Распад протона

Мошарев П. А.

Таблица частиц

Группа		Название	Символ		l.	, go	¥	_	8	2	É	Приблизи- тельное
			частицы	RETH-	Bapan, en. e	Масса покож, сц. <i>те</i>	Спин, ед.	Изоспян /	Лептонное число L	Барионное число В	Странность. S	время жизни, с
Фотоны		Фотон	γ		0	0	1		0	0	0	Стабилен
ſ		Электрон Электронное нейтрино	e- v _e	e ⁺ v̄ _e	1 0	1 0	1/2 1/2	_	+1 +1	0	0	Стабилен Стабильно
Лептоны		Мюон Мюонное нейтрино	μ ⁻ ν _μ	μ ⁺ ν̃ _μ	1 0	206,8 0	1/2 1/2	 -	+1 +1	0 0	0	≈10 ⁻⁶ Стабильно
		Таон Таонное нейтрино	τ- ν _τ	τ ⁺ ῦ _τ	1	3487 0	1/2 1/2		+1 +1	0	0	≈10 ⁻¹² ?
		Пионы	$\left\{\begin{array}{l} \pi^0 \\ \pi^+ \end{array}\right.$	π-	0	264,1 273,1	0	1 1	0	0	0	≈10 ⁻¹⁶ ≈10 ⁻⁸
	Мезоны	Каоны	$\begin{cases} K^0 \\ K^+ \end{cases}$	\tilde{K}^0 K^-	0	974,0 966,2	0 0	1/2 1/2	0	0 0	+1 +1	10 ⁻¹⁰ - 10 ⁻⁶ ≈10 ⁻⁸
		Эта-мезон	ηο		1	1074	0	_	0	0	0	≈10 ⁻¹⁹
Адровы		Протон Нейтрон Гипероны:	p n	p ñ		1836,2 1838,7	1/2 1/2	1/2 1/2	0 0	+1 +1	0	Стабилен ≈10 ³
	Барионы		Λ°	ð	ł	2183	1/2	0	0	+1	-1	≈10 ⁻¹⁰
	;	ситма.	$\begin{cases} \Sigma^{\circ} \\ \Sigma^{+} \\ \Sigma^{-} \end{cases}$	ΣΩ + ΣΩ ΣΩ (Ε	1 1 0	2334 2328 2343 2573	1/2 1/2 1/2 1/2	1 1 1 1 1/2	0 0 0	+1 +1 +1 +1		$\approx 10^{-20}$ $\approx 10^{-10}$ $\approx 10^{-10}$ $\approx 10^{-10}$
		кси омега	Ω- {Ξ-	Ξ° Ξ- Ω-	1	2586 3273	1/2 1/2 3/2	1/2 1/2 0	0	+1	-2 -2 -3	≈10 ⁻¹⁰ ≈10 ⁻¹⁰

Частицы распадаются: более тяжелые на менее тяжелые, если это не запрещено законами сохранения.

Есть ли закон сохранения, запрещающий распад протона?

Барионы

IV. Стабильные и квазистабильные барионы $(J^P = 1/2^+, L = 0, B = +1)$

Час- тица	Квар- ковый состав	S	C	T	T_3	Масса, МэВ	Время жизни, с	Основные каналы распада		
p	uud	0	0	1/2	+1/2	938,279	$> 10^{32}$ лет			
n	udd	0	0	1/2	-1/2	939,573	925 ± 11	$\mathrm{pe^-} \ \overline{\nu}_\mathrm{e} \ (100 \%)$		
Λ^0	uds	-1	0	0	0	1115,6	$2,63 \cdot 10^{-10}$	$p\pi^{-} (64\%)$ $n\pi^{0} (36\%)$		
Σ^+	uus	-1	0	1	+1	1189,4	0,80 · 10 ⁻¹⁰	$p\pi^{0} (52\%)$ $n\pi^{+} (48\%)$		
Σ^0	uds	-1	0	1	0	1192,5	$5 \cdot 10^{-20}$	$\Lambda\gamma~(100\%)$		
Σ^-	dds	-1	0	1	-1	1197,3	$1,48 \cdot 10^{-10}$	$n\pi^{-} (100\%)$		
Ξ^0	uss	-2	0	1/2	+1/2	1315	$2,9 \cdot 10^{-10}$	$\Lambda\pi^0~(100\%)$		
Ξ^-	dss	-2	0	1/2	-1/2	1321,3	$1,64 \cdot 10^{-10}$	$\Lambda\pi^-~(100\%)$		
Ω^-	888	-3	0	0	0	1672,5	0,8 · 10 ⁻¹⁰	$\Lambda K^{-} (69\%)$ $\Xi^{0} \pi^{-} (29\%)$		
Λ_c^+	udc	0	+1	0	0	2282	(1-2)-10 ⁻¹³	Ξ ⁻ π ⁰ (8%) Наблюдалось 12 типов распадов		
Λ_b^0	udb	0	0			~ 5400				

В любой цепочке распадов в итоге оказывается протон. Всё выглядит так, будто бы барионы обладают некоторой сохраняющейся величиной — барионным числом В = 1.

Существует ли барионный заряд

- Электрический заряд, в отличие от барионного, связан с электромагнитным взаимодействием и может быть независимо измерен.
- Попытки зарегистрировать баритропическое взаимодействие основаны на двух идеях:
 - 1) Земной шар содержит около 4*10⁵¹ барионов, и их взаимодействие, отличное от гравитационного, должно приводить к видимому различию между гравитационной и инертной массой.
 - 2) Благодаря дефекту масс ядер и разнице между массами нейтрона и протона два образца разных веществ, содержащие одинаковое число нуклонов, могут иметь массы, отличающиеся почти на 1%. Поэтому можно пытаться зарегистрировать баритропические эффекты на фоне гравитационных.
- В результате этих экспериментов установлено, что баритропическое взаимодействие, как минимум, на 10 порядков слабее гравитационного.

Существует ли барионный заряд

- Еще одно отличие барионного заряда от электрического барионная асимметрия Вселенной. Вселенная электрически нейтральна, но, в то же время, в ней есть барионы и нет антибарионов.
- Оценка асимметрии

$$(BAU) = \frac{n_{\rm B}}{n_{\gamma}} \sim 10^{-9}$$

• Распад протона, запущенный назад, делает из античастиц частицы

$$p \rightarrow e^+ + \pi^0 \rightarrow e^+ + 2 \gamma$$

Эксперименты по поиску распада протона до 1980 года предпринимались, в основном, исходя из соображений, заставлявших сомневаться в сохранении барионного заряда.

Закономерности распадов

- Так как мы сомневаемся в существовании барионного заряда, можно предположить, что стабильность протона обусловлена не законом сохранения, а закономерностями распадов.
- Каждый барион состоит из трех кварков. Процесс с несохранением барионного числа на этом уровне требует перехода кварка либо в антикварк, либо в лептон.

Распады в электромагнитном взаимодействии

• Лагранжиан КЭД

$$\mathcal{L} = \bar{\psi}i\gamma^{\mu}\left(\partial_{\mu} + ieA_{\mu}\right)\psi - m\bar{\psi}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

симметричен относительно калибровочного преобразования, описываемого группой U(1).

$$\psi(x) \rightarrow \psi'(x) = e^{-i\alpha(x)}\psi(x)$$

$$A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x)$$

Распады в электромагнитном взаимодействии

• Переносчик взаимодействия — фотон, который взаимодействует с фермионами посредством вершины

- Не меняется аромат и цвет кварков, сохраняется лептонное и барионное число.
- Пример распада распад нейтрального пи-мезона:

$$\begin{array}{c} u \\ \hline \\ \overline{u} \end{array} \begin{array}{c} v \\ \hline \\ \overline{v} \end{array}$$

$$\pi^0 \rightarrow 2\gamma$$

- Фундаментальные фермионы объединяются в дублеты $\psi_l = \begin{pmatrix} \mathbf{v}_e \\ e \end{pmatrix}$, $\psi_q = \begin{pmatrix} u \\ d \end{pmatrix}$
- Лагранжиан

$$\begin{split} \mathscr{L} &= -\frac{1}{4} F^{i}_{\mu\nu} F^{i\mu\nu} + \bar{\psi} i \gamma^{\mu} D_{\mu} \psi - m \bar{\psi} \psi, \\ F^{i}_{\mu\nu} &= \partial_{\mu} A^{i}_{\nu} - \partial_{\nu} A^{i}_{\mu} + g \varepsilon^{ijk} A^{j}_{\mu} A^{k}_{\nu}, \\ D_{\mu} \psi &= \left(\partial_{\mu} - i g \frac{\tau A_{\mu}}{2} \right) \psi. \end{split}$$

где

$$\tau A_{\mu} = A_{1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + A_{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + A_{3} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \\
= W^{+} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + W^{-} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + A_{3} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

линейная комбинация матриц Паули — генераторов группы SU(2) — описывает переносчики взаимодействия.

• Фотон можно включить в эту теорию, добавив в лагранжиан слагаемое с единичной матрицей, умноженное на константу связи электромагнитного взаимодействия

$$g \cdot \left(W^{+} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + W^{-} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + A_{3} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right) + g' \cdot B \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Волновые функции фотона и Z-бозона будут описываться линейными комбинациями A₃ и B:

$$\gamma = B\cos(\theta_W) + A_3\sin(\theta_W)$$
$$Z = -B\sin(\theta_W) + A_3\cos(\theta_W)$$

где θ_w — угол Вайнберга. Он отражает различие констант связи слабого и электромагнитного взаимодействий.

• Таким образом мы получаем единую теорию электрослабого взаимодействия, в которой уже нельзя отделить друг от друга вклад групп SU(2) и U(1).

• Благодаря наличию недиагональных матриц среди генераторов SU(2) возможны процессы с переходом одного лептона в другой и одного кварка в другой в рамках одного поколения, например:

$$(\mathbf{v}_e, e) \cdot W \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v}_e \\ e \end{pmatrix} = e W \cdot \mathbf{v}_e$$

$$(u,d) \cdot W \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} u \\ d \end{pmatrix} = dW \cdot u$$

 Для описания распадов странных частиц нижнюю компоненту кваркового дублета представляют в виде линейной комбинации d и s кварков:

$$d \rightarrow d' = d \cos(\theta_c) + s \sin(\theta_c)$$

 $\theta_{\rm c}$ — угол Кабиббо, определяющий степень смешивания кварков.

• Пример — бета-распад нейтрона или заряженного пи-мезона:

Слабое взаимодействие не может:

- Превращать кварки в антикварки.
- Превращать кварки в лептоны и наоборот.

Следовательно, в слабом взаимодействии сохраняются барионный и лептонный заряды: ΔB =0, ΔL =0.

 Лептоны в сильном взаимодействии не участвуют. Кварки входят в лагранжиан в виде триплетов по цвету — особому квантовому числу, которое проявляется только в сильном взаимодействии.

$$u = \begin{pmatrix} u_r \\ u_g \\ u_b \end{pmatrix} \qquad d = \begin{pmatrix} d_r \\ d_g \\ d_b \end{pmatrix}$$

 Переносчики взаимодействия — глюоны — описываются линейной комбинацией генераторов группы SU(3), матриц Гелл-Манна.

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$\lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

- Глюоны, соответствующие недиагональным матрицам, могут менять цвет кварков и только. Возможности сильного взаимодействия по распаду частиц очень ограничены.
- Пример распада распад нуклонного резонанса.

Фотон можно включить в это описание, умножив его на единичную матрицу 3х3, а слабое взаимодействие описать единым образом с сильным не получится. Объединить взаимодействия в рамках единой теории возможно на основе группы симметрии, включающей в себя в качестве подгруппы прямое произведение групп SU(3)xSU(2)xU(1).

Причем подойдет не любая группа достаточной размерности, а такая, в рамках которой сильное и слабое взаимодействие могут быть описаны отдельно.

• Минимальная группа, удовлетворяющая этим требованиям — SU(5). Линейная комбинация 24 её генераторов, представляющих переносчики взаимодействий, может быть записана следующим образом:

Здесь мы видим в левом верхнем углу матрицу глюонов, в правом нижнем — переносчики слабого взаимодействия, «электромагнитный» бозон В отдельно и 12 разных цветовых и зарядовых состояний X и Y бозонов.

$$+\frac{B_{\mu}}{2\sqrt{15}}\begin{pmatrix} -2 & & & \\ & -2 & & \\ & & -2 & \\ & & & 3 \end{pmatrix}$$

• Уже на этом этапе из модели SU(5) можно вывести одно экспериментальное следствие, а именно, вычислить угол Вайнберга, определяющий смешивание фотона и Z-бозона. В случае чистой, ненарушенной SU(5) $\sin^2(\theta_W) = \frac{3}{8} = 0.375$

Это значение отличается от измеренного в эксперименте $\sin^2\theta_{
m W}^{
m exp} \approx 0.23$ из-за нарушения симметрии и расхождения констант связи фундаментальных взаимодействий при низких энергиях.

• На этих диаграммах видно, что энергия объединения, соответствующая массам X и Y бозонов, равна примерно 10¹⁵ — 10¹⁶ ГэВ.

• Фермионы входят в лагранжиан в составе квинтуплета и декуплета

$$\begin{vmatrix} d_r \\ d_g \\ d_b \\ e^+ \\ \bar{\mathbf{v}}_e \end{vmatrix} = \begin{vmatrix} 0 & \bar{u}^b & -\bar{u}^g & -u_r & -d_r \\ -\bar{u}^b & 0 & \bar{u}_r & -u_g & -d_g \\ \bar{u}_g & -\bar{u}_r & 0 & -u_b & -d_b \\ u_r & u_g & u_b & 0 & -e^+ \\ d_r & d_g & d_b & e^+ & 0 \end{vmatrix}$$

- Объединение кварков и лептонов в единые мультиплеты естественным образом приводит к квантованию электрического заряда и возможности выразить его через заряд электрона.
- Также отсюда следует, что в каждом поколении должно быть 4 частицы: 2 кварка и 2 лептона.
- Прямой проверкой можно убедиться, что взаимодействие с глюонами, W и Z бозонами даёт уже знакомые нам вершины сильного и слабого взаимодействий.

• Рассмотрим взаимодействие с X-бозоном, для чего выберем одно из цветовых состояний:

Подставляя в лагранжиан, видим, что взаимодействие описывает вершину, в которой «красный» d-кварк переходит в позитрон.

Х-бозон уносит красный цветовой заряд и электрический заряд -4/3.

• При взаимодействии частиц декуплета в лагранжиан войдет след матрицы, полученной при умножении матрицы переносчиков слева и справа на матрицу фермионов

В результате видим, кроме предыдущей вершины, вершину с переходом антикварка в кварк.

• Аналогично можно описать взаимодействия Y-бозона и других цветовых состояний X-бозона.

• Диаграммы с другим направлением времени, отвечающие за распад протона:

Диаграммы распада протона в SU(5)

• Возможные диаграммы распада протона посредством обмена X и Y бозонами:

• В модели SU(5) нарушается сохранение барионного и лептонного зарядов, но величина B-L остаётся сохраняющейся. Регистрация процессов, не сохраняющих B-L, будет говорить о принципиально другой теории.

Замечания о модели SU(5)

- Предсказанное время жизни протона ~10³¹ лет на три порядка меньше, чем предел чувствительности современных экспериментов, то есть, следствия теории противоречат наблюдениям.
- Фермионы входят в теорию по поколениям, модель не даёт естественного описания распадам странных частиц.
- Однако, данный вариант теории наиболее прост для изучения и позволяет понять основные черты теорий Великого объединения.

• Модели, основанные на группах большей размерности, например, SO(10), не обладают привлекательным свойством «минимальности», хотя и бурно обсуждаются. Гипотетическая модель, которая могла бы включить единым образом фермионы сразу всех поколений, оказывается слишком сложна для практического применения.

Эксперименты по распаду протона

М. Гольдхабер:

- «Мы своими костями чувствуем, что время жизни протона больше, чем 10¹⁶ лет, иначе из-за внутреннего облучения продуктами распада мы представляли бы угрозу своему собственному здоровью».
- «Сейчас все уже привыкли к тому, что так называемые «элементарные частицы» могут распадаться, но я еще помню шок, который испытал в 1934 году, узнав, что свободный нейтрон весит тяжелее, чем атом водорода, а значит, должен испытывать бета-распад с периодом около получаса...»

Историю экспериментов по поиску распада протона можно разделить на два периода: 1954-1980 и 1980-н.в. Переход между ними произошел с созданием теории, предсказавшей конкретные каналы распада в середине 1970-х годов.

Эксперимент Райнеса и Коуэна

- Первый эксперимент был предпринят в 1954 году Райнесом, Коуэном и Гольдхабером.
- Оборудование, созданное для регистрации нейтрино: детектор, содержащий 300 литров жидкого сцинтиллятора, около 3*1028 протонов.
- 30 метров под землей для снижения космического фона.
- 6.6 события с энергией >15 МэВ в секунду, ограничение на время жизни протона 10²² лет после вычета мюонного фона и с учетом связанных нуклонов.

Спектр, полученный за 1000 секунд работы установки. Пик соответствует вертикально падающим космическим мюонам.

Эксперимент Флерова

- Эксперимент был проведен в 1957 году в НИФИ-2 МГУ (сейчас это НИИЯФ).
- Идея: распад нуклона на внутренней оболочке ядра будет оставлять его в состоянии возбуждения. Для тяжелых ядер наиболее вероятный канал снятия возбуждения деление. Поэтому нижняя граница периода спонтанного деления связана с нижней границей периода распада нуклона.
- Регистрировались осколки деления Th-232 при помощи пропорциональных счетчиков.
- При чувствительности 7000 грамм*час ограничение на спонтанное деление тория 10^{21} лет, что с учетом количества нуклонов в ядре даёт ограничение на распад протона $2*10^{23}$ лет.
- Эксперимент позволял установить нижнюю границу, но не позволял зарегистрировать распад протона.

• Интересный факт: результаты Флерова были актуальны до 1995 года, когда было открыто спонтанное деление Th-232 с периодом 1.22*10²¹ лет.

Радиохимические и геохимические эксперименты

- В 1960-х 1970-х годах поиск распада протона проводился в нескольких экспериментах, «паразитных» по отношению к нейтринным и экспериментам по поиску двойного бета-распада.
- Среди продуктов двойного бета-распада теллура-130 искали продукты, образовавшиеся после распада нуклона в ядрах этого изотопа:

Двойной бета-распад
$$Te^{130} \rightarrow Xe^{130} + 2e^{-} + 2\bar{\nu}_{e}$$
 Распад нейтрона (гипотеза) $Te^{130} - n \rightarrow Te^{129} * \rightarrow I^{129} \rightarrow Xe^{129}$

- Из массы калия-39 выделялся аргон-37 по методике, разработанной Дэвисом для хлор-аргонового метода регистрации солнечных нейтрино.
- В образцах древних минералов производился поиск продуктов распада ядер изза распада нуклонов и поиск треков продуктов распада нуклона.

- Преимущество «ядерных» методов возможность регистрировать «невидимые» распады, например, распад нейтрона на три нейтрино.
- Достигнутая точность около 10²⁶ лет.

Радиохимические и геохимические эксперименты

- В 1960-х 1970-х годах поиск распада протона проводился в нескольких экспериментах, «паразитных» по отношению к нейтринным и экспериментам по поиску двойного бета-распада.
- Среди продуктов двойного бета-распада теллура-130 искали продукты, образовавшиеся после распада нуклона в ядрах этого изотопа:

Двойной бета-распад
$$Te^{130} \rightarrow Xe^{130} + 2e^{-} + 2\bar{\nu}_{e}$$
 Распад нейтрона (гипотеза) $Te^{130} - n \rightarrow Te^{129} * \rightarrow I^{129} \rightarrow Xe^{129}$

- Из массы калия-39 выделялся аргон-37 по методике, разработанной Дэвисом для хлор-аргонового метода регистрации солнечных нейтрино.
- В образцах древних минералов производился поиск продуктов распада ядер изза распада нуклонов и поиск треков продуктов распада нуклона.

- Преимущество «ядерных» методов возможность регистрировать «невидимые» распады, например, распад нейтрона на три нейтрино.
- Достигнутая точность около 10²⁶ лет.

Эксперименты после 1980 года

 Когда появились конкретные предсказания, понадобилось создать детекторы, способные надежно регистрировать распад нуклона и различать каналы распада.

Два типа детекторов:

Калориметры

Регистрируются треки продуктов распада путем считывания ионизации газа в объеме детектора.

Достоинства: Большее разрешение, меньший энергетический порог.

Черенковские счетчики

Регистрируется черенковское излучение продуктов распада.

Достоинства: Дешевизна материалов, меньшая сложность электроники.

Эксперимент Kolar Gold Fields

- Золотая шахта на юге Индии, 1980 1992 год.
- Калориметр из 1600 пропорциональных счетчиков поперечным сечением 10х10 сантиметров и длиной 4 и 6 метров, образующих 34 слоя.
- Источник нуклонов железные листы между слоями счетчиков.

Было сообщено о регистрации двух десятков событий распада протона, время жизни (1.4 ± 0.5)*10³¹ лет. Результаты не подтвердились.

Также сообщалось о наблюдении необъясненных событий — возможных кандидатов на распад тёмной материи, «Kolar events».

Пример регистрации события в двух проекциях

Эксперимент Nusex

- Автомобильный туннель под Монбланом, 1982-1984 год.
- Калориметр из 134 слоев пластиковых стримерных трубок диаметром 9 миллиметров и длиной 3.5 метра, отделенных друг от друга листами железа толщиной 1 см.
- Чувствительность 207 тонн*год.

decay mode	nr. of candidates	lifetime/branching ratio (yr·10 ³¹) 90% C.L.
$N \rightarrow e^{\pm}\pi^{0}$	<pre>\$ 1</pre>	> 1.8
$N \rightarrow \mu^{+} \pi^{0}$	0	> 1.14
$p \rightarrow \overline{\nu}\pi^+$	\$ 6	> 0.2
$n \rightarrow \overline{\nu}\pi^0$	0	> 1.1
$p \rightarrow \overline{\nu} K^*$	0	> 0.49
$n \rightarrow \overline{\nu} K^0$	0	> 0.87
$p \rightarrow \mu^+ K^0$	1	> 0.86

Результаты по каналам

18 событий с треками внутри объема детектора (fully-contained events). Все, кроме одного, могут быть вызваны нейтрино.

Фоновые нейтринные события симулировались специальным пучком нейтрино из ЦЕРН.

Эксперимент Frejus

- Автомобильный туннель под Альпами, 1984-1988 год.
- Калориметр из 114 модулей, каждый из которых имел 8 слоев взаимно перпендикулярных разрядных камер и один слой счетчиков Гейгера. Общие размеры 6x6x12.3 метра и масса 912 тонн.
- Чувствительность 2.5 килотонны*год.

Ограничение на время жизни нуклона по разным каналам установлено на уровне 10^{31} - $1.5*10^{32}$ лет.

Точность детектора позволила установить ограничения также на некоторые распады с трехчастичными конечными состояниями и распады с несохранением числа B-L.

Эксперимент Soudan

- Железная шахта, США, 1981-2001 год.
- Калориметр из 213 модулей по 240 слоев пластиковых дрейфовых трубок длиной 1 метр и диаметром 2 см в ячейках из гофрированного железа. Размер модуля 1х1х2.5 метра, масса 4.2 тонны. Первые 3 года работал прототип массой 30 тонн.
- Имел внешнюю активную защиту
- Общая чувствительность 5.5 килотонн*год.

Decay Mode	Final State	$\epsilon \times B.R.$	Background			Data	N_{90}	$\tau/B \times 10^{30} y$
			$\overline{\nu}$	Rock	Total			
$p \rightarrow \mu^+ \eta$	$\gamma\gamma$	0.07	0.9(1.1)	0.1	1.0	0	2.3	89
$p \rightarrow \mu^+ \eta$	$\pi^0\pi^0\pi^0$	0.06	0.5(0.6)	< 0.06	0.6	0		
$p \rightarrow e^+ \eta$	$\gamma\gamma$	0.08	0.7	0.1	0.9	1	2.9	81
$p \rightarrow e^+ \eta$	$\pi^0\pi^0\pi^0$	0.07	0.6	0.2	0.8	0		
$n \rightarrow \overline{\nu} \eta$	$\gamma\gamma$	0.07	1.5	0.2	1.7	0	2.9	71
$n \rightarrow \overline{\nu} \eta$	$\pi^0\pi^0\pi^0$	0.05	1.5	0.6	2.0	2		
$n \rightarrow \overline{\nu} \pi^0$	$\gamma\gamma$	0.11	2.9	0.9	3.8	4	4.8	39
$p \rightarrow \overline{\nu} \pi^+$	π^+	0.05	5.0(8.8)	1.7	7.7	6	4.0	16

Установлены ограничения на время жизни протона по разным каналам на уровне $10^{31} - 10^{32}$ лет. Правда, на конец работы эксперимент уже проигрывал по чувствительности черенковским детекторам.

Пространственное разрешение было столь высоким, что позволило наблюдать тень Луны в потоке высокоэнергетических космических лучей.

Статистическая обработка событий

Эксперимент IMB

- Солевая шахта, США, 1982-1991 год.
- Черенковский детектор: бак размером 22.5x17x18 метров с 8000 тонн воды, 2048 фотоэлектронных умножителей на стенках.
- На протяжении времени существования несколько раз совершенствовался.
- Общая чувствительность 7.6 килотонн*год, 44 изучаемых канала распада.

Зарегистрировано 935 событий-кандидатов, что согласуется с ожидаемым фоном.

Ограничение на время жизни протона от 10^{31} до 10^{33} лет по отдельным каналам.

Надежно исключена теория SU(5).

Один из результатов — наблюдение нейтрино от сверхновой SN 1987A

Contained Events

Сравнение событий и модельного фона: Общий результат и отдельно события, имеющие и не имеющие сигнала от распада мюона.

Эксперимент Kamiokande I-II

- Шахта на севере Японии, 1983-1995 год.
- Черенковский детектор: стальной цилиндрический бак диаметром 15 и высотой 16 метров, 3000 тонн воды, 1000 фотоэлектронных умножителей на стенках.
- В 1985 году установлена активная защита, улучшена система очистки воды (стадия II).
- Большая, чем у ІМВ, чувствительность фотоумножителей и большее число каналов распада.
- Меньший энергетический порог, чем у ІМВ, позволил наблюдать солнечные нейтрино.

Эксперимент Super-Kamiokande

- Шахта на севере Японии, 1996 год н. в.
- Черенковский детектор: стальной цилиндрический бак диаметром 39 и высотой 41 метр, 50 килотонн воды, 11000 фотоэлектронных умножителей внутреннего детектора и 1600 внешний детектор (активная защита).
- Самый чувствительный эксперимент по распаду протона, чувствительность 315 килотонн*год.

Нейтринный фон был понижен благодаря регистрации гамма-квантов энергией 2.2 МэВ от захвата протоном вторичного нейтрона.

Ограничения на время жизни протона 10³³-10³⁴ лет для наиболее вероятных каналов распада.

Результаты Super-Kamiokande и других экспериментов

Перспективные эксперименты

• Черенковские: MEMPHYS, Hyper-Kamiokande, UNO. Массы 0.5 — 1 мегатонна.

Размер черенковского детектора ограничен прозрачностью воды, прочностью горных выработок и фотоэлектронных умножителей, что дает сходные предельные размеры 70-80 метров. Поэтому перспективные детекторы будут модульными.

Перспективные эксперименты

- Жидко-аргоновые: DUNE, GLACIER.
 - Идея основана на способности ионизационных треков заряженных частиц дрейфовать в жидком аргоне на большие расстояния и благодаря этому считываться с хорошей точностью. Считывание треков дополняется регистрацией фотонов, излучаемых аргоном при взаимодействии с продуктами распада.
- В 2001 году создан прототип ICARUS из двух модулей, содержавших в сумме 600 тонн жидкого аргона.

Схема детектора ICARUS.

Выводы

- Распад протона ожидается как из общих соображений (отсутствие взаимодействия, связанного с барионным зарядом, барионная асимметрия Вселенной), так и предсказывается в самых привлекательных теориях Великого объединения взаимодействий.
- На текущий момент распад протона не зарегистрирован, ограничение на время жизни по наиболее вероятным каналам установлено на уровне 10³³ 10³⁴ лет.
- Отсутствие наблюдения распада протона исключает пока только некоторые, пусть самые простые и привлекательные, теории, и поэтому не является фатальным.
- Регистрация распада протона по какому-либо экзотическому каналу при подавлении наиболее естественных каналов будет говорить о необходимости принятия принципиально новой, экзотической теории элементарных частиц. В некоторых предлагаемых теориях такого рода предсказываются новые частицы с массой всего 10⁴ ГэВ и особыми свойствами.