Fermat + Coq: FLT from Global Normalization via a Coverage Parameter

We present a global-normalization reading of G. L. Dedenko's manuscript. A single real factor o > 1 is postulated to serve all putative counterexamples to Fermat's equation

$$x^n + y^n = z^n \qquad (n > 2),$$

and is linked to the exponent n by the coverage identity

$$pow(o, n) = 2 \cdot INR(n).$$

Under the maximum-coverage principle (the same o covers exactly $n \in \{1, 2\}$ and no other exponents), the development shows that o = 2, and that $pow(2, n) = 2 \cdot INR(n)$ can hold only for $n \in \{1, 2\}$. Hence any putative solution with n > 2 yields a contradiction, and Fermat's Last Theorem (FLT) follows.

What is formalized in Coq.

• Coverage predicate:

Definition covers_with (o:R) (n:nat) := pow o n = 2 * INR n.

- Global normalization hypotheses (as section assumptions):
 - normalization_gt1: 1 < o.
 - maximum_coverage: covers_with(o,1) and covers_with(o,2), and $\forall n$, covers_with(o, n) $\Rightarrow n \in \{1,2\}$.
 - normalization_equation: if n > 2 and $x^n + y^n = z^n$ in \mathbb{N} , then covers with (o, n).
- Consequences in Coq:
 - normalization_parameter_is_two: o = 2 (from pow(o, 1) = 2).
 - normalization_forces_small_exponent: no solutions for any n > 2.
- Concrete realisation o = 2: covers_two_one, covers_two_two, and covers_two_only_small prove that o = 2 indeed satisfies maximum coverage.
- Bridges & growth: covers_two_nat, INR_two_mul_nat, and the lemmas pow2_gt_linear, pow3_gt_linear, pow_eq_linear_positive establish that $2^n=2n$ forces $n\in\{1,2\}$.
- Parity & parametrization (motivation only): over \mathbb{R} and \mathbb{Z} , sum_diff_from_parameters_R/Z, parity_condition_Z show evenness of $z \pm x$ for $z := m^n + p^n$, $x := m^n p^n$; these are not used in the final contradiction.

Motivation vs. proof. The coverage-parameter viewpoint subsumes the earlier explicit-base phrasing. While the behaviour of $f(n) = (2n)^{1/n}$ motivates why o = 2 is the "full-coverage" choice, the *proof* relies only on the formal hypotheses above and elementary growth lemmas, not on an a priori GN(2) postulate.

Repository (code and PDFs): github.com/Gendalf71/FLT-Coq

Figure 1: Formal pipeline: global normalization $(o > 1) \Rightarrow FLT$ (Coq).

The package includes:

- FLT.v: Coq development (no Admitted); proofs compile.
- A reasoning flowchart (figure above).
- Explanatory PDFs (EN/RU), updated to the coverage-parameter reading.

Further reading:

- Reconstruction of Fermat's Proof (ResearchGate) RU
- Formalization & discussion EN