The smell of the ocean

Dimethyl-sulfonio-propionate (DMSP) and its break down product Dimethyl sulfide are produced by corals as an antioxidant to protect them from environmental stress.

H₃C^SCH₃

They also have an impact on the atmosphere - both molecules aid naturally in cloud formation as seeds for water droplets to form on.

thecraftychemist.tumblr.com

Nomenclature

The language of chemistry

Assigning Oxidation States

The concept of oxidation numbers (or oxidation states) was devised as a simple way of keeping track of electrons in reactions. We use the following rules for assigning oxidation numbers:

Free Elements (Na, O ₂ , etc.)	0
Group 1 Elements in a compound ¹	+1
Group 2 Elements in a compound	+2
Group 3 Elements in a compound	+3
"O" in a compound ²	-2
"F" in a compound	-1

¹Exception to this rule occurs for hydrogen in hydrides (e.g. LiH, where the oxidation state of hydrogen is −1).

²Exception to this rule occurs in peroxides (e.g. H_2O_2 , where the oxidation state of oxygen is -1).

NOTE: Three transition metals, Cd²⁺, Zn²⁺ and Ag⁺, are understood to exist in these oxidation states (numbers); therefore, Roman numerals are NOT included in parentheses. Also note that the mercury(I) ion is written as a diatomic ion (dimer): Hg₂⁺².

Practice

Determine the oxidation state of each underlined atom:

KMnO₄,
$$ClO_4$$
, $S_2O_3^{2-}$.

K+Mn+4O = 0 $Cl + 4O = -1$ $2S + 3O = -2$

1 + Mn + 4(-2) = 0 $Cl + 4(-2) = -1$ $2S + 3(-2) = -2$

Mn= 8-1 = +7 $Cl = 8-1 = +7$ $2S = -2 + 6 = +4$
 $S = +2$

Self-study #6A

Give the oxidation state for the following:

- A) HClO
- B) HClO₃
- C) WS₂
- D) Na₂WO₄
- E) WOCl₄
- $F)H_3PW_{12}O_{40}$

Phosphotungstic acid

- e- transfer
- Crystal lattice
- ions

- "salts" __
- very strong bonds generally between metals and non metals.
- Solids at room temp.
- Poor conductors of electricity in a solid state

- sharing
- "molecules"
- hypothetical charge
- H + H H H H
- orbital overlap
- Bonding e- are localized between two atoms
- Formed between two nonmetals

- "sea" of e-
- e- are delocalized.

Common Polyatomic Ions – YOU MUST MEMORIZE THESE!!!			
acetate	$C_2H_3O_2^-$	hydrogen phosphate	HPO_4^{2-}
ammonium	NH ₄ ⁺	hydrogen sulfate	HSO ₄ -
carbonate	CO ₃ ² -	hydroxide	OH-
chromate	CrO ₄ ² -	nitrate	NO ₃ -
hypochlorite	ClO-	nitrite	NO ₂ -
chlorite	ClO ₂ -	oxalate	$C_2O_4^{2-}$
chlorate	ClO ₃ -	permanganate	MnO ₄ -
perchlorate	ClO ₄ -	peroxide	O_2^{2-}
cyanide	CN-	phosphate	PO ₄ ³⁻
dichromate	Cr ₂ O ₇ ²⁻	sulfate	SO ₄ ²⁻
dihydrogen phosphate	$H_2PO_4^-$	sulfite	SO_3^{2-}
hydrogen carbonate	HCO ₃ -	thiocyanate	SCN-

- 1. Cation is named first and the anion is named second.
- 2. Monatomic cation takes its name from the name of the element.
- 3. A monatomic anion is named by taking the first part of the element name and adding the *-ide* suffix.

examples:

NaCl sodium chloride MgO magnesium oxide Li₃N lithium nitride Metals that can form more than one type of positive ion have Roman numerals in parentheses (no space) to indicate the charge of the cation.

examples:

CoBr₂ cobalt(II) bromide CrCl₃ chromium(III) chloride

- The first element is named using its full name.
- 2. The second element is named by taking the first part of the element name and adding the *-ide* suffix.
- Prefixes are used to denote the numbers of atoms present (note: mono- is NEVER used to name the first element).

examples:

 N_2O dinitrogen monoxide NO_2 nitrogen dioxide N_2O_3 dinitrogen trioxide

Non-binary

- ionic compounds that contain polyatomic ions

Nomenclature

Manganese dioxide

Cesium oxalate

Manganese(II) oxalate

Strontium iodide

Triphosphorous Pentanitride

General Rules for Nomenclature

- 1) Naming is actually related to bonding so you need to know about bonding. (chapter 8 & 9)
- 2) Until you understand quantum mechanics, you need to memorize the oxidation states. (chapter 6 & 7)
- 3) Decisions made in naming requires understanding of electronegativity. (chap 6-9)

So why naming now? Because it is the language of chemistry but we will revisit naming in 102 AFTER you develop the knowledge needed to really get naming.

General Rules for Nomenclature

- 1) Memorize element and polyatomic names, ionic charges and spelling. (see table on ions on website)
- 2) Decide if *organic* or inorganic or acid.
- 3) INORGANIC: Determine if ionic or covalent bonding if ionic then decide if it is *fixed* oxidation state or *variable*. (see flow chart, follow directions).
- 4) **ACID**: Decide of binary or oxyacid.
 Binary = hydro root ic acid Oxyacid = root-ic/ous acid
- 5) *ORGANIC*: Determine # of carbon atoms, type of bond between carbons, and functional groups

Nomenclature 101

- 1. Cation is named first and the anion is named second.
- Monatomic cation takes its name from the name of the element.
- 3. A monatomic anion is named by taking the first part of the element name and adding the *-ide* suffix.

examples:

NaCl sodium chloride MgO magnesium oxide Li₃N lithium nitride Metals that can form more than one type of positive ion have Roman numerals in parentheses (no space) to indicate the charge of the cation.

examples:

CoBr₂ cobalt(II) bromide CrCl₃ chromium(III) chloride

- The first element is named using its full name.
- 2. The second element is named by taking the first part of the element name and adding the *-ide* suffix.
- 3. Prefixes are used to denote the numbers of atoms present (note: *mono* is NEVER used to name the first element).

examples:

 N_2O dinitrogen monoxide NO_2 nitrogen dioxide N_2O_3 dinitrogen trioxide

Non-binary

- ionic compounds that contain polyatomic ions

Naming Hydrates

Hydrates are ordinary chemical substances that have associated with them a certain number of water molecules. For example, CuSO₄•5H₂O is read copper(II) sulfate pentahydrate. As we will see later, when determining the overall molecular weight of this particular compound, you ADD five water molecules to the initial CuSO₄ (as opposed to multiply, where the "•" is commonly misinterpreted by beginner chemistry students; more on this later)!

MgSO₄•7H₂O is commonly known as Epsom salt, what is it chemical name?

0.5	hemi-
1	mono-
1.5	sesqui-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Naming Acids

There are two main types of acids that we will encounter at the onset of this course, binary acids, and oxoacids.

1. Binary Acids – certain compounds of H with other nonmetal atoms.

```
Examples: HF(aq) = hydrofluoric acid

HCl(aq) = hydrochloric acid

HBr(aq) = hydrobromic acid

HI(aq) = hydroiodic acid

H_2S(aq) = hydrosulfuric acid
```

2. Oxoacids – Hydrogen with two other nonmetals, one of which is oxygen.

```
Examples: HClO = hypochlorous acid
HClO_2 = chlorous acid
HClO_3 = chloric acid
HClO_4 = perchloric acid

HNO_2 = nitrous acid
HNO_3 = nitric acid
HNO_3 = nitric acid
H_2SO_4 = sulfuric acid
```

Simple Organic Compounds

When dealing with organic (or carboncontaining) compounds, we refer to the following prefixes:

iono wing premies.		of boliding between the	
1) Number of Carbons	Prefix	carbon atoms.	
1	Meth-		
2	Eth-	Alkanas, singla C C bands	
3	Prop-	Alkanes: single C—C bond	
4	But-		
5	Pent-	alkenes: double C=C bonds	
6	Hex-		
7	Hept-	alkynes: triple $C \equiv C$ bonds	
8	Oct-	any nest triple e e bond	
9	Non-		
10	Dec-		

2) NEXT: consider the TYPE

of bonding between the

CH₃CH₂CH₂CH₂CH₂CH₃

heptane

CH₃CCCH₃

CH₂CHCH₂CH₃

Propane

CH₃CCCCH₃

CH₂CHCH₂CH₃

2-butyne

1-butene

CH₃CH₂CH₂CH₃

ethyne

$$CH_{3}CCCH_{3}$$

$$H \qquad H$$

$$| \qquad | \qquad |$$

$$H - C - C \equiv C - C - H$$

$$| \qquad | \qquad |$$

$$H \qquad H$$

heptane

propane

2-butyne

1-butene

6-ethyl-3,3-dimethyl nonane

1.	Name each of the following	ng compounds:
	$A \setminus IID_{m} \cap \langle \cdot \rangle$	

A) HBrO₄(aq)

E) KMnO₄

B) $Ca_3(PO_4)_2$

 $F) K_2Cr_2O_7$

C) $HIO_3(s)$

 $G) C_2H_4$

D) FePO₄

H) $Ba(OH)_2 \bullet 8H_2O$

2. Write formulas for the following compounds:

A. chromium(III) carbonate

B. potassium chlorate

C. octane

D. Nitrous acid

E. cobalt(II) chloride heptahydrate

F. 2-butene

G. Sodium hypochlorite

H. Sulfur hexafluoride

I. aluminum hydroxide

J. Lead(IV) phosphate

LECTURE GROUP QUIZ 6B # NOMENCLATURE

A) AII_3

B) SiF₄

 $\mathbf{C}) \mathbf{V_2O_5}$

D) $Ca(HSO_3)_2$

E) C_5H_{12}

F) TiO₂

H. peroiodic acid

I. carbon tetrafluoride

J. sodium peroxide

K. copper(I) chromate

L. copper(II) acetate

M. germanium dioxide

Two men walk into a bar. One man orders H₃O. The other says, "I'll have H,O, too."

The second man dies.

