Was ist die Formel für die WK einer syntaktischen Analyse (ein Parsebaum) T?

Was ist die Formel für die WK einer syntaktischen Analyse (ein Parsebaum) T?

$$p(T) = p(r_1, ..., r_n) \stackrel{\circ}{=} \prod_{i=1}^n p(r_i)$$

das produkt der Regelwahsrscheinlichkeiten

Führe den 3. Schritt durch

Straktion der gewichteten Regelhäufigkeiten

Regel	p_0	f_1
$S \to NP \; VP$	1.00	2.00
$NP \to D \; N$	0.25	0.50
$NP \to D \; N \; N$	0.25	0.50
$NP \to N$	0.25	3.00
$NP \to NP \; PP$	0.25	0.50
$VP \to V$	0.50	0.50
$VP \to V \; NP$	0.50	1.50
$PP \to P \; NP$	1.00	0.50
D o a	0.50	1.00
$D \ \to the$	0.50	0.00
$N \to bar$	0.25	0.50
$N \; o candy$	0.25	1.00
$N \ o children$	0.25	2.00
$N \ \to chocolate$	0.25	1.00
V o bar	0.50	0.50
$V \; o like$	0.50	1.50
$P \; o like$	1.00	0.50

Wie bekommen wie **f1** für folgenden Regeln?

S
$$\rightarrow$$
 NP VP = **1*0,5 + 1*0,5 + 1*1 = 2**
NP \rightarrow N = **1 * 0,5 + 1 * 0,5 + 2 * 1 = 3**
NP \rightarrow NP PP = 1 * 0,5 = 0,5
V \rightarrow like = **1*0,5 + 0*0,5 + 1*1 = 1,5**

f2 (NP
$$\rightarrow$$
 N) = 1 * gewicht(t1)+ 1 * gewicht(t2) + 2 * gewicht(t3)

p2

Gegeben folgenden Gewichte:

1. Schreibe all Regeln von diesem Baum (mit der Reihenfolge der Regeln nach Linksableitung)?

2. P(T) für dieses Beispiel aufschreiben

$$p(T) = p(r_1, ..., r_n) \stackrel{\circ}{=} \prod_{i=1}^n p(r_i)$$

p(s
$$\rightarrow$$
 NP VP, NP \rightarrow D N1, D \rightarrow the, N1 \rightarrow N) = p(S -> NP VP)* p(NP -> D N1) * p(D -> the)* p(N1 -> N)

Wozu brauchen wir EM-Training in syntaktische Desambiguierung (Um was zu berechnen) ?

Antwort: um die WK der Regeln p(regel) zu berechnen, wenn kein annotieres Kopus vorhanden ist.

- Um die Wortarten zu annotieren? (Das ist die Anwendung in HMM)
- um die beste Analyse zu finden? (Das macht der Viterbi-Algorithmus)
- Wen man die wahrscheinlichste Analyse (Viterbi) eines satzes haben will ohne Zugriff auf baumbank

$$p(T) = p(r_1, ..., r_n) \stackrel{\circ}{=} \prod_{i=1}^n p(r_i)$$

Wozu brauchen wir EM-Training in syntaktische Desambiguierung (Um was zu berechnen) ?

- 1 Initialisierung der Regelwahrscheinlichkeiten
- 2 Berechnung der Parsebaumgewichte p(t|s)
- 3 Extraktion der gewichteten Regelhäufigkeiten
- Neuschätzung der Regelwahrscheinlichkeiten
- Weiter mit Schritt 2

$$p(T) = p(r_1, ..., r_n) \stackrel{\circ}{=} \prod_{i=1} p(r_i)$$

Führe den 1. Schritt durch

$$p(S \rightarrow NP VP)$$

 $p(NP \rightarrow N)$
 $p(V \rightarrow like)$

- Initialisierung der Regelwahrscheinlichkeiten
- ② Berechnung der Parsebaumgewichte p(t|s)
- Extraktion der gewichteten Regelhäufigkeiten
- Neuschätzung der Regelwahrscheinlichkeiten
- Weiter mit Schritt 2

Führe den 1. Schritt durch

1 Initialisierung der Regelwahrscheinlichkeiten

Regel	n o
$\frac{NP VP}{S \to NP VP}$	<i>p</i> ₀
	1.00
$NP \to D \; N$	0.25
$NP \to D \; N \; N$	0.25
$NP \to N$	0.25
$NP \to NP \; PP$	0.25
$VP \to V$	0.50
$VP \to V \; NP$	0.50
$PP \to P \; NP$	1.00
D o a	0.50
$D \; o \; the$	0.50
N o bar	0.25
$N \; o candy$	0.25
$N \ o children$	€.25
$N \ \to chocolate$	0.25
V o bar	0.50
$V \; o \; like$	0.50
$P \; o \; like$	1.00

p_init(regel) = 1 / Anzahl der verschiedenen Regel

$$p(S \rightarrow NP VP)$$

 $p(NP \rightarrow N)$
 $p(V \rightarrow like)$

Führe den 2. Schritt durch

EM-Training

- Initialisierung der Regelwahrscheinlichkeiten
- **2** Berechnung der Parsebaumgewichte p(t|s)
- Extraktion der gewichteten Regelhäufigkeiten
- Neuschätzung der Regelwahrscheinlichkeiten
- Weiter mit Schritt 2

t2

t1

$$p(T) = p(r_1, ..., r_n) \stackrel{\circ}{=} \prod_{i=1} p(r_i)$$

$$p(t1|s) = \frac{p(t)}{\sum_{t' \in T(s)} p(t')}$$

$$p(t2|s) =$$

$$t3 p(t3 | s) =$$

* der Satz s kann verschieden sein

Regel	p_0
$S \to NP VP$	1.00
$NP \to D \; N$	0.25
$NP \to D \; N \; N$	0.25
$NP \to N$	0.25
$NP \to NP \; PP$	0.25
$VP \to V$	0.50
$VP \to V \; NP$	0.50
$PP \to P \; NP$	1.00
$D \; o a$	0.50
$D \ \to the$	0.50
N o bar	0.25
$N \; o candy$	0.25
$N \ o children$	€25
$N \ o chocolate$	0.25
V o bar	0.50
$V \; o \; like$	0.50
$P \; o like$	1.00

D - -- - I

$$p(t_1) = 0.0002333$$
 $p(t_2) = 0.0000173$ $p(t_1|s) = \frac{p(t_1)}{p(t_1) + p(t_2)} = 0.93$ $p(t_2|s) = \frac{p(t_2)}{p(t_1) + p(t_2)} = 0.07$

Führe den 2. Schritt durch

p(t1) = 1 * 0.25 * 0	0,25 * 0,5* 0,5	5 * 0,25 *0,5 ³	* 0,25 * 0,25
= 0,00012207			

Regel	p_0		
$S \to NP VP$	1.00		
$NP \to D \; N$	0.25		
$NP \to D \; N \; N$	0.25		
$NP \to N$	0.25		
$NP \to NP \; PP$	0.25		
$VP \to V$	0.50		
$VP \to V \; NP$	0.50		
$PP \to P \; NP$	1.00		
$D \; o a$	0.50		
$D \; o the$	0.50		
$N \; o bar$	0.25		
$N \; o candy$	0.25		
$N \rightarrow children$	€.25		
$N \ o chocolate$	0.25		
$V \; o \; bar$	0.50		
$V \; o \; like$	0.50		
$P \; o \; like$	1.00		

$$p(t2) = (0.25 ^5) * (0.5 ^3) = 0.00012207$$

Regel	p_0
$S \to NP VP$	1.00
$NP \to D \; N$	0.25
$NP \to D \; N \; N$	0.25
$NP \to N$	0.25
$NP \to NP \; PP$	0.25
$VP \to V$	0.50
$VP \to V \; NP$	0.50
$PP \to P \; NP$	1.00
D o a	0.50
$D \; o \; the$	0.50
N o bar	0.25
$N \; o candy$	0.25
$N \ o children$	€25
$N \ \to chocolate$	0.25
V o bar	0.50
$V \rightarrow like$	0.50
P o like	1.00

```
p(t1 | s1) = 0.00012207 / 0.00012207 + 0.00012207 = 0.5

p(t2 | s1) = 0.00012207 / 0.00012207 + 0.00012207 = 0.5

p(t1|s2) = nummer / nummer = 1
```


Führe den 3. Schritt durch

 $S \rightarrow NP VP$ $f (S \rightarrow NP VP) = 1*0,5 + 1*0,5 + 1*1 = 2$ gewicht(t1) = 0,5 gewicht(t2) = 0,5gewicht(t3) = 1

- Initialisierung der Regelwahrscheinlichkeiten
- 2 Berechnung der Parsebaumgewichte p(t|s)
- Extraktion der gewichteten Regelhäufigkeiten
- Neuschätzung der Regelwahrscheinlichkeiten
- Weiter mit Schritt 2

Führe den 3. Schritt durch

Straktion der gewichteten Regelhäufigkeiten

Regel	p_0	f_1
$S \to NP \; VP$	1.00	2.00
$NP \to D \; N$	0.25	0.50
$NP \to D \; N \; N$	0.25	0.50
$NP \to N$	0.25	3.00
$NP \to NP \; PP$	0.25	0.50
$VP \to V$	0.50	0.50
$VP \to V \; NP$	0.50	1.50
$PP \to P \; NP$	1.00	0.50
D o a	0.50	1.00
$D \ o the$	0.50	0.00
$N \to bar$	0.25	0.50
$N \; o candy$	0.25	1.00
$N \ o children$	0.25	2.00
$N \ \to chocolate$	0.25	1.00
V o bar	0.50	0.50
$V \; o \; like$	0.50	1.50
$P \; o like$	1.00	0.50
· · · · · · · · · · · · · · · · · · ·		

Wie bekommen wir f1 für folgende Regeln? $S \rightarrow NP VP$ $NP \rightarrow N = 1*0,5 + 1*0,5 + 2*1 = 3$ $NP \rightarrow NP PP = 1*0,5 = 0,5$ $V \rightarrow like = 1*0,5 + 1*1 = 1,5$

Gegeben folgenden Gewichte: p(t1 | s) = 0.5p(t2 | s) = 0.5p(t3 | s) = 1

Führe den 4. Schritt durch

- Initialisierung der Regelwahrscheinlichkeiten
- 2 Berechnung der Parsebaumgewichte p(t|s)
- Extraktion der gewichteten Regelhäufigkeiten
- Neuschätzung der Regelwahrscheinlichkeiten
- Weiter mit Schritt 2

candy bar

Führe den 4. Schritt durch

Neuschätzung der Regelwahrscheinlichkeiten

Regel	n _o	f_1
	<i>p</i> ₀	
$S \ \to NP \ VP$	1.00	2.00
$NP \to D \; N$	0.25	0.50
$NP \to D \; N \; N$	0.25	0.50
$NP \to N$	0.25	3.00
$NP \to NP \; PP$	0.25	0.50
$VP \to V$	0.50	0.50
$VP \to V \; NP$	0.50	1.50
$PP \to P \; NP$	1.00	0.50
$D \; o a$	0.50	1.00
$D \ \to the$	0.50	0.00
$N \; o \; bar$	0.25	0.50
$N \; o candy$	0.25	1.00
$N \ o children$	0.25	2.00
$N \ \to chocolate$	0.25	1.00
V o bar	0.50	0.50
$V \; o like$	0.50	1.50
$P \; o like$	1.00	0.50

Wie bekommen wie p1 für folgenden Regeln?

$$S \rightarrow NP VP = f1(S \rightarrow NP VP) / f1(S \rightarrow NP VP)$$

=1

$$NP \rightarrow N = f(NP \rightarrow N) / f(NP \rightarrow N) + f(NP \rightarrow D N N) + f(NP \rightarrow D N N) + f(NP \rightarrow NP PP)$$

$$NP \rightarrow NP PP = V \rightarrow like =$$

$$p(A \to \alpha) = \frac{f_{A \to \alpha}}{\sum_{\beta} f_{A \to \beta}}$$

$$p(N \rightarrow P NP) = p(N \rightarrow P NP) / p(N \rightarrow ...) + p(N \rightarrow ...) + ...$$

Führe den 4. Schritt durch

Meuschätzung der Regelwahrscheinlichkeiten

 p_1

1.00

0.11

0.11

0.67

0.11

0.25

0.75

1.00

1.00

0.00

0.11

0.22

0.44

0.22

0.25

0.75

1.00

Wie bekommen wie p1 für folgenden Regeln?
$$S \rightarrow NP \ VP = 2/2 = 1$$
 $NP \rightarrow N = 3 \ / \ (0,5 + 0,5 + 3 + 0,5) = 0,67$ $NP \rightarrow NP \ PP = 0,5 \ / \ (0,5 + 0,5 + 3 + 0,5) = 0,11$ $V \rightarrow like = 1,5 \ / \ (1,5 + 0,5) = 0,75$

$$p(A \to \alpha) = \frac{f_{A \to \alpha}}{\sum_{\beta} f_{A \to \beta}}$$

Wie wird **f2** (NP \rightarrow NP PP) berechnet ? **f2** (NP \rightarrow NP PP)= $f(NP \rightarrow NP PP)$ * gewicht(t2) = 1 * gewicht(t2) = 0,10

gewicht(t2) wird geschätzt nach dem wir p1 in den Bäume einsetzen (die Aktualisierung der Regel-WK).

note: $f(NP \rightarrow NP PP)$ ist nicht die erwartete Häufigkeit (f1, f2, ...) sondern die echte Häufigkeit, die wir aus Parsebäume extrahieren.

Wie wird f2 (NP → NP PP) berechnet ?

 $f2 (NP \rightarrow NP PP) = f(NP \rightarrow NP PP)_t2 * Gewicht(t2)$

 $f2 (VP \rightarrow V NP) = f(VP \rightarrow V NP)_t1 * Gewicht(t1) + f(VP \rightarrow V NP)_t3 * Gewicht(t3)$

Welche Methode wird in **überwachtes Training ve**rwendet? Wie funktioniert das (wie wird p(regel) geschätzt)?

Welche Methode wird in überwachtes Training verwendet? Wie funktioniert das (wie wird p(regel) geschätzt)?

- Baumbanktraining
 - benötigt eine manuell erstellte Baumbank.
 - ▶ Die Regelhäufigkeiten werden gezählt.
 - ▶ Die Regelwahrscheinlichkeiten werden mit relativen Häufigkeiten geschätzt:

$$p(A \to \alpha) = \frac{f_{A \to \alpha}}{\sum_{\beta} f_{A \to \beta}}$$

Baumbank-Training

Extraktion der Grammatikregeln und Regelhäufigkeiten:

$S \to NP \; VP$	4	1	D o a	2 {	0.67	N o Peter	2	0.29
$VP \rightarrow V NP$	3	0.75	D o the	1	0.33	N o John	2	0.29
$VP \rightarrow V$	1	0.25	$V \rightarrow sleeps$	1	0.25	N o stone	1	0.14
$NP \rightarrow D N$	3	0.43	$V \rightarrow hits$	1	0.25	N o window	1	0.14
$NP \rightarrow N$	4	0.57	$V \rightarrow sees$	1	0.25	N o book	1	0.14
7 14		0.51	$V \rightarrow reads$	1	0.25			