060602

United States Naval Postgraduate School

THESIS

FATIGUE MONITORING OF 70-30 COPPER-NICKEL

by

Reproduced by the CLEARING # OUSE for Federal Scientific & Technical Information Springfield Va. 22151

Franklin bruce Lash

June 1970

This document has been approved for public release and sale; its distribution is unlimited.

Patigue Monitoring of 70-30 Copper-Nickel

by

Franklin Bruce Lash
Lieutenant Commander, United States Navy
B.S., University of Minnesota, 1961

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Author

Franklin Bruce Las

Approved by

Thesis Advisor

chairman, Department of Mechanical Engineering

Academic Dean

ABSTRACT

Recent tests by G. L. Rowe indicated the possibility of monitoring fatigue damage of 70-30 copper-nickel by use of a commercial fatigue life gage. The work reported herein, however, which includes tests at cyclic strain levels considerably higher and lower than those used by Rowe, suggests that much more study and development will be required before in-service monitoring will be useful or reliable. Fatigue failure, using initial surface crack formation as a criterion, takes place at low cyclic strain levels with appreciably smaller gage indication than does failure at medium or high cyclic strain levels. It is further noted that ability to detect surface cracks depends greatly upon the expertise of the observer so that a less subjective criterion of failure should be developed.

TABLE OF CONTENTS

I. INTRODUCTION	9
II. EXPERIMENTAL PROCEDURES	18
III. EXPERIMENTAL DATA	25
IV. DISCUSSION OF RESULTS	27
V. CONCLUSIONS AND RECOMMENDATIONS	35
APPENDIX A DESCRIPTION OF GAGE	37
APPENDIX B PREPARATION OF SPECIMEN	41
APPENDIX C DESCRIPTION OF APPARATUS	46
APPENDIX D TABULATION OF DATA	
APPENDIX E MEAN STRAIN	100
BIBLIOGRAPHY	
INITIAL DISTRIBUTION LIST	103
FORM DD 1473	105

INDEX OF FIGURES

FIGURES

1	S/N Fatigue Specimen, Type 1	12
2	S/N Fatigue Specimen, Type 2	14
3	S/N Fatigue Specimen, Type 3	15
4	Test Specimen Mounted in Clamping Block	19
5	Performance Curve Showing Results of Selected Tests	26
6	S/N Fatigue Life Gage	37
7	Performance Curves of Type NA-01 Fatigue Life Gage	39
8	Mounted Gage Ready for Testing	44
9	Test Apparatus Showing Modifications to Fatigue Machine	47
10	Test Apparatus Used for All Tests	50

SYMBOLS AND DEFINITIONS

cpm Cycles per minute

in. Inches

F Degrees Fahrenheit

KSI 1000 pounds per square inch

N Number of cycles

PSI Pounds per square inch

AR Resistance change

 ϵ Strain, 10^{-6} inches per inch

 $\epsilon_{\mathbf{C}}$ Compressive strain indication

 $\epsilon_{\mathbf{n}}$ Strain reading in neutral position

 $\epsilon_{\rm R}$ Cyclic strain amplitude, also called strain level $\frac{1}{2}(\epsilon_{\rm t}-\epsilon_{\rm c})$

 ϵ_{t} Tensile strain indication

 μ Micro (10⁻⁶)

n Ohms

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. J. E. Brock of the Naval Postgraduate School for his help and direction during this study.

Thanks are also due to the following people for their technical advice and interest during this study:

Mr. R. J. Whitehead of Micro-Measurements, Inc., Romulus, Michigan, who provided the gages for this study;

LT G. L. Rowe, USCG, who initiated this study and provided much of the basic information;

Mr. H. G. MacKerrow of San Francisco Bay Naval Shipyard, Vallejo, California who provided the chemical and physical analyses of the material.

I. INTRODUCTION

70-30 Copper-Nickel is a tough alloy designed to withstand high stresses over a wide range of temperatures and in
severely corrosive environments. Because of these properties
the alloy has been accepted for wide use in marine construction. It has been the predominant material used in the main
sea water piping systems of Navy, Coast Guard, and Merchant
Marine vessels. These systems are subject to varying and
continual strains. The failure of any system could be critical,
especially in a deep diving submersible.

The ability to signal when fatigue failure is about to occur in a material has long been of interest. To date no satisfactory method of prediction has been developed. A new device called the S/N* Fatigue Life Gage was invented by Mr. Darrell R. Harting of the Boeing Company, Seattle, Washington. This gage, described in Appendix A, is used to aid in predicting failure. This is accomplished by observing the change in the electrical resistance of the gage. The resistance change is caused by the straining of the gage material which follows the straining of the material to which the gage is bonded. By conducting a series of tests with these gages on various materials it has been found that under certain circumstances the failure of a material can be predicted by monitoring the resistance change of the gage. Different values of these resistance changes have been found

^{*}Trademark: Micro-Measurements, Inc., Romulus, Michigan

for various base materials. Typical values of resistance change at failure have been between four and eight ohms for the 100 ohm sensor (Ref. 3).

Knowing that these gages have shown good results for several other materials it was decided to investigate the suitability of this gage for use with 70-30 copper-nickel.

The study was begun last year at the Naval Postgraduate School by G. L. Rowe (Ref. 4). The immediate goal of his work was to obtain sufficient data to relate the change in gage resistance to crack initiation in the cyclically strained base metal specimen to which it was applied. It was known that the gage had limitations in the low strain levels when applied to other materials (Ref. 3). However, it was believed that due to the similarity of the constantan grid material (approximately 55% copper, 45% nickel) and the 70-30 coppernickel specimen material that the gage could be correlated over all ranges of strain.

The results obtained by Rowe were generally favorable, indicating that there was reason to continue the study.

Therefore, the present work was undertaken to:

- Independently verify Rowe's findings for medium cyclic strain levels;
- Obtain data for cyclic strain levels lower and higher than those investigated by Rowe;
- Observe the effects of aging;
- Obtain block cycling data;
- 5. Compare the observed results of the tests with the characteristic curves provided by the manufacturer;

6. Make recommendations as to further investigation to be accomplished prior to actual field application of the gage to copper-nickel piping in actual service.

The aging tests were intended to determine the effect of a rest period on the resistance of the gage. Any significant decrease in the resistance of the gage while the specimen was not being strained would complicate the interpretation of gage readings. Block cycling was to be done to assess the results of applying various random loads to the gage. It was hoped that the resistance change would be constant at crack initiation regardless of the load history.

Initial tests in this study verified the results obtained by Rowe. However, at low strain levels it was observed that the resistance change at crack initiation was much lower than was anticipated. During these tests a question as to the suitability o the fatigue specimen being used was raised. The initial tests were conducted using the S/N fatigue specimen designed by Mr. W. T. Bean. (We will refer to this specimen as Type 1) (Figure 1). These tests were numbers 1A through 5A inclusive and 1 through 7. Tests number 8 through 11 were performed on a specimen of the same configuration (Type 1) but lengthened to ten inches. This was done to allow testing at lower strain levels. The cracks in specimen Type 1 at the low strain levels initiated on the bottom surface and propagated upward. These cracks started at the juncture of the curved and flat section. It was decided that these results

Figure 1. S/N Fatigue Specinen, Type 1

were due to the existence of a stress raiser on the bottom surface at those points.

To eliminate this tendency to crack on the bottom surface. a series of modified specimens was tested. Specimen types 2 and 3 (Fig. 2 and Fig. 3) were tested. Type 2 had the stress raiser on the bottom eliminated completely, only the width of the specimen being reduced. However, the reduction in area was insufficient to make this reduced area the point of maximum strain. As a result the specimen cracked at the edge of the clamping block (Fig. 4). It was felt that any further increase in the depth of the side cuts would create excessive stress raisers in these areas. To avoid that possibility, specimen type 3 was tested. A stress raiser still exists on the bottom. The effect of this stress raiser did not appear to be sufficient to make the bottom surface the preferred area to crack. Further tests at various strain levels appear to have verified this belief.

As the number of tests completed increased, it was noted that the resistance change at the time cracks were first detected decreased. This was attributed to the fact that the experience level of the investigator was increasing. To try to determine when the cracks were initiating, a 500x microscope was used. The surfaces of the specimens were inspected at various periods during the test. In so doing it was possible to verify the existence of small cracks very early in the life of the specimen. As the test progressed these

Figure 2. S/N Fatigue Specimen, Type 2

Figure 3. S/N Fatigue Specimen, Type 3

cracks became observable over the entire width of the specimen except under the gage and various cracks propagated deeper into the material. This ultimately led to gross failure of the specimen.

The ability to detect these early cracks is dependent upon the expertise of the observer. Because of this it is now felt that possibly the use of "crack initiation" as a failure criterion is too subjective. Also the fact that the initial cracks were observed when a major portion of the material life of the specimen was not yet expended seemed to indicate that crack initiation as a failure criterion is not sufficiently closely keyed to the practical employment of the material. In other words, early detection of hairline cracks is not adequately keyed to the necessity of removing an operating copper-nickel piping system from actual service and repairing or replacing it. Based on these observations it was decided that additional tests should be conducted using failure of the gage or total specimen fracture as a failure criterion. Tests conducted using this basis for failure show that the resistance change at gage failure depends on the strain level at which tests are conducted. Knowing this, it is felt the use of the gage in a system subjected to various unknown levels of strain would not provide useful information. As a result block cycling tests were not conducted.

It may be hoped that the manufacturers of the gage will be able to overcome the difficulties mentioned above, inasmuch

as the idea still seems to have much promise. However, we conclude that it would not presently be justified to consider employing this device for in-service monitoring of coppernickel piping.

II. EXPERIMENTAL PROCEDURES

To accomplish the objectives of this study a series of tests was conducted. Each test was assigned a test number.

A description of the apparatus used can be found in Appendix C. A tabulation of the rough data for all tests is found in Appendix D.

The general procedures for all tests were indentical. The bending specimen was prepared as outlined in Appendix B. The clamping block was positioned to obtain the desired strain. The specimen was placed in the clamping block. The exact positioning of the specimen depended on the specimen configuration. For specimen type 1 the vertical edge of the longest reduced section was aligned with the edge of the clamping block (Fig. 1, Ref. 4). For specimen types 2 and 3 the end of the specimen was aligned with the end of the clamping block (Fig. 4). In all cases the horizontal edge of the specimen was aligned with the edge of the clamping block. A specimen compensating block was used to ensure a balanced clamping pressure. Since all of the tests conducted in this study were in reversed bending, the shim plate was positioned on top of the specimen. By placing the shim plate in this position the specimen was cycled through both tension and compression.

With the specimen properly mounted in the clamping block the gage leads were connected. The gage was connected to a terminal strip mounted on top of the clamping block. This method of connection was used to avoid any interference between the electrical leads and the flywheel at high strain

levels. A one inch piece of 134-AWP solid copper wire was used to increase the length of the gage leads. This was done to avoid contact between the leads and the clamping block. It also helped to eliminate the possibility of gage lead fatigue. Figure 4 is a photograph of the completed installation.

After the gage was connected, the specimen was ready to be tested. The loading spring was installed. The spring is located directly under the flywheel of the machine. inserted through a hole in the base of the testing machine and is held in place by the spring retainer pin. With the spring cap installed, the specimen is kept in continual contact with the eccentric. The temperature was then recorded. For all tests this varied between 73° to 76° F. The initial resistance was then recorded. To obtain the initial resistance, the flywheel is placed in the neutral position. This was done by positioning the arrow on the cam in a horizontal position. It was maintained in this position by inserting an allen wrench through a hole in the positioner block into a hole in the cylindrical surface of the flywheel. position was the reference position for all resistance readings (Fig. 9).

After the initial resistance reading was taken, the S/N resistance meter was disconnected. Using the S/N Fatigue Gage in one leg of a half wheatstone bridge and a decade resistance box in the other leg, a BUDD/STRAINSERT Strain

Indicator was connected. The strain indication in the neutral position was recorded. The allen wrench was then removed. The flywheel was put into the position of maximum compression and the strain level was recorded. The flywheel was then cycled into the position of maximum tension and the strain level was recorded. The flywheel was then returned to the neutral position and the allen wrench inserted in the positioner block. The strain indicator was disconnected. The resistance meter was connected and the resistance was recorded. The resistance meter was then disconnected and the strain indicator was connected. The strain in the neutral, maximum compression, and maximum tension positions was recorded.

The specimen was then hand cycled through ten cycles. During cycles six through ten, the strains in the neutral, maximum compression, and maximum tension positions were recorded. After the initial ten cycles the flywheel was returned to the neutral position. The strain indicator was disconnected. The resistance meter was connected and the resistance recorded. For the remainder of the test the resistance meter stayed connected.

The average strain level for cycles six through ten was used as the strain level characterizing the test. The strains obtained in cycle ten were used to calculate what has been called mean strain in this thesis (see Appendix E). The resistance after ten cycles was used as the reference for computing ΔR . This procedure for computing ΔR minimizes the effects of plastic flow and of "seating" of the specimen (Ref. 3).

The specimen was hand cycled through 100 cycles and the resistance recorded. At this point in the test hand cycling was terminated. The test was continued using the variable speed motor. The tests were conducted at a cyclic speed of 1800 cpm. At the desired number of cycles the motor was stopped. The flywheel was put in the neutral position and the resistance was recorded. The ΔR was computed. The value of ΔR vs. N was plotted to compare with the characteristic curves. Section III includes plots of some of the tests which were conducted.

The initial objective of this study was to correlate the resistance change of the gage to crack initiation. The cracks were located by applying a coat of W. T. Bean "Solder Stop" and visually inspecting. The Solder Stop is a surface coating that accentuates the cracks by a shadowing effect. A desk type flourescent lamp was used to provide direct lighting on the surface of the specimen. An 8x eyepiece was used to examine the surface. A discernable crack in the material would show up as a fine black line. Reference 4 indicates initial cracking will occur at about 4.5 ohms. Initial tests appeared to verify these results.

The results at low strain levels (i.e., strain amplitude, ϵ_R) deviated from the expected results. During test number eight, conducted at 1364 $\mu\epsilon$, cracking of the specimen occurred with a resistance change of less than 1.5 ohms. The cracking initiated on the bottom surface an penetrated upward through

the specimen. After 500,000 cycles, with a ΔR of 0.80 chms, no cracks had been detected. At 600,000 cycles a ΔR of 1.44 chms was recorded. A plot of the data showed a large increase in the slope of ΔR vs. N. A visual inspection failed to indicate any cracks on the upper surface. However, the lower surface had a crack that had propagated half way through the specimen. Test number nine conducted at a strain level of $1381\mu\epsilon$ verified these results. However, in this case after 325,000 cycles, with a ΔR of 0.80 chms, initial cracks on the upper surface were detected. At 547,750 cycles cracking initiated on the bottom surface. This crack propagated upward and at 560,000 cycles the slope of ΔR vs. N increased.

At this time it was determined that the original specimen, type 1, had a stress raiser that made the lower surface the preferred area to crack. To eliminate this as much as possible, specimen type 3 was used for following tests.

Knowing that cracking had occurred so early in some of the preceding tests, all specimens were thoroughly inspected every time a resistance reading was taken. This resulted in a AR that varied between 2.36 and 4.36 ohms at crack initiation for tests 17 through 24. For tests 25 through 31 as soon as any question as to possible cracking occurred, the specimen was removed from the testing machine and inspected with a 500x microscope. Using this procedure resistance changes varying between 1. 3 and 3.83 ohms were recorded.

Based on these findings it was felt that initial crack detection is a highly subjective failure criterion. Detection can depend on many factors including position of lighting and expertise of the observer. To limit the effects of these factors, all remaining tests were conducted with failure of the gage or total specimen fracture as the failure criterion. Comments are recorded on the rough data sheets concerning physical observations made.

III. EXPERIMENTAL DATA

Figure 5 is a plot comparing several typical tests with an adaption of the manufacturer's characteristic curves for the type NA-01 gage. The data plotted is the results of tests 8,32,36,35 and 3A. These tests were selected because they represent various strain levels between $1364\mu\epsilon$ and $4389\mu\epsilon$. A comparison of the data with the curves shows that at all strain levels plotted, the gage registers resistance changes that agree closely with expectations.

A complete record of all tests is included in Appendix

D. A plot of any of this data will result in curves that

closely correspond to the curves in Figure 5. (The exception

to this can be noted on tests 14 through 16 when specimen

type 2 was used.) A discussion of the various tests is

included in Section IV.

Performance Curve Showing Results of Selected Tests

Figure 5.

26

IV. DISCUSSION OF RESULTS

Figure 5 is a plot comparing data collected with the manufacturer's characteristic curves. It can be observed that the gage reacts in a predictable manner when bonded to 70-30 copper-nickel. However, these plots are tests that were continued until the gage had failed. The ΔR at which the first cracks were observed varied between 0.97 and 3.27 ohms.

The study was accomplished to observe the reaction of the gage when bonded to 70-30 copper-nickel and to correlate the results. The following are comments concerning the various tests completed.

Test #1

This test was conducted using specimen type 1. The strain varied between $-2745\mu\epsilon$ and $5509\mu\epsilon$ with a strain level of 4127 $\mu\epsilon$. The mean strain was $1382\mu\epsilon$. At a ΔR of 3.90 ohms, striations were observed in the solder stop. A closer inspection of the surface failed to confirm the existence of any cracking. This had occurred after 2263 cycles. The test was continued and after 4500 cycles a crack was confirmed. The ΔR at this time was 5.13 ohms. The observation of the striations at 3.90 ohms was at a lower resistance than reported in Reference 4. Further experience indicated that the striations noted were cracks in the material.

Tests #2-7

These tests were conducted at varying strain levels to verify results obtained by Rowe (Ref. 4). The strain levels for these tests varied between $3415\mu\epsilon$ and $3970\mu\epsilon$. All of these tests were conducted using specimen type 1. The ΔR at

the time the first cracks were observed varied between 4.30 and 4.77 ohms. A plot of ΔR vs. N shows that the data closely matches the provided curves.

Test #8

This was the first test conducted at low strain level. It was accomplished at a strain level of 1364µє with a mean strain of 241µє, The plot of ΔR vs. N corresponds very closely with the provided curves. No cracks were observed and there was no indication of failure occurring until after 600,000 cycles. At this time the slope of ΔR vs. N increased rapidly. A visual inspection of the upper surface did not reveal any cracks. However, an inspection of the bottom surface showed that cracking had initiated on that side and had propagated upward. This sudden increase in the slope of ΔR vs. N corresponds to what Livingston (Ref. 6) reported in his study. This test was conducted over a three day span. It was noted during this period that the ΔR of the gage showed no change as the gage was rested.

Test #9

This test was conducted at approximately the same level as test number eight to confirm the results obtained. The strain during this test was $1381\mu\epsilon$ with a mean strain of $236\mu\epsilon$. A more detailed examination of the surface was conducted during this test. The first cracks were observed on the upper surface after 325,006 cycles. The ΔR was 0.80 ohms. After 547,748 cycles with a ΔR of 0.94 ohms cracking

became visible on the lower surface. After 560,005 cycles the resistance had increased to 1.04 ohms. It was observed that by this time the crack on the lower surface had propagated approximately half way through the specimen. The slope of the data started to increase rapidly. The test was terminated after 564,996 cycles. At that time the resistance had increased to 1.14 ohms.

Test #10

The strain level for this test was 1796 μ E with a mean strain of 337 μ E. The initial striations in the solder stop for this test were observed after 50,001 cycles with a Δ R of 2.40 ohms. The test was continued and between 92,011 and 93,005 cycles a decrease in the resistance, from 2.92 to 2.87 ohms, was observed. An inspection of the gage installation did not show any sig.s that the bond was breaking loose so the test was continued. The Δ R continued to increase until after 102,997 cycles. At that time the slope of Δ R vs. N began to increase rapidly. The test was terminated after 104,013 cycles. The Δ R at that time was 3.28 ohms. An examination of the specimen again showed that cracking had initiated on the bottom and had propagated upward deep into the specimen.

Test #11

The observation methods used in this test varied from the initial procedures. The test was conducted with a strain level of $1732\mu\epsilon$ and a mean strain of $344\mu\epsilon$. The initial striations in the solder stop were observed after 37,489 cycles

At that time the specimen was removed with a ΔR of 1.67 ohms. from the testing machine and inspected with a 500x microscope. No cracks were observed. A new coat of solder stop was applied and the test was continued. After 70,009 cycles with a recorded resistance change of 2.00 ohms the striations were again observed. A search of the surface with a 36x lens failed to confirm the existance of any cracks. After 95,013 cycles the AR had increased to 2.20 ohms. The striations were still visible in the solder stop. The specimen was removed from the testing machine and the solder stop removed. A dye penetrant was used to check for possible cracks. The results failed to give any indication of cracking so the specimen was remounted and the test resumed. After 120,009 cycles the plot of AR vs. N began to increase in slope. An inspection of the lower surface showed that cracking had begun in this area and had propagated upward. The test was terminated after 135,204 cycles with a ΔR of 3.09 ohms.

Test #12

This was the first test conducted using a modified specimen. Specimen type 3 was used for this test with a strain level of $3101\mu\epsilon$ and a mean strain of $1081\mu\epsilon$. The first crack was observed after 11,012 cycles with a ΔR of 4.26 ohms. After 13,008 cycles with a ΔR of 4.37 ohms the first cracks were observed on the lower surface. The test was terminated after 20,996 cycles at a ΔR of 5.37 ohms. The major cracking in this specimen occurred on both the top and

bottom surfaces. The characteristic increase in the slope of ΔR vs. N can be noted indicating that gross failure of the material is occurring.

Test #13

This was the first test that was continued until the gage failed. A strain of $3125\mu^{\text{c}}$ with a mean strain of $1000\mu\text{c}$ was recorded. The ΔR at the time the first crack was observed was 4.36 ohms. This was after 9,992 cycles. The first crack on the lower surface was observed after 15,005 cycles. The ΔR at that time was 4.84 ohms. After completing 20,301 cycles the slope of the curve began to increase. The gage failed after 20,766 cycles due to a crack penetrating the backing material and breaking the grid.

Tests #14-16

The specimens used for these tests were specimen type 2 (Fig.2). In this case the stress raiser on the lower surface had been removed. The only stress raiser that existed in this specimen was on the sides. The initial data shows that the plot of ΔR vs. N closely follows the characteristic curves. However, as the number of cycles increased the slope of the ΔR vs. N began to decrease. At that time no reason could be observed for this change in the slope. During test #14 after 66,626 cycles the specimen physically parted at the clamping block. The same type of behavior was noted in both test 15 and 16. The stress raisers that were cut in the sides of the specimen were insufficient to make this the area of maximum

strain. Accordingly, the remainder of the tests was conducted using specimen type 3.

Tests #17-24

The strain level for these tests varied between 2097 $\mu\epsilon$ and 3702 $\mu\epsilon$. The object of all of these tests was to try to obtain a ΔR for the initiation of cracking. At the first observation of cracks the test was considered complete. In these tests the ΔR varied between 2.74 and 4.21 ohms.

Tests #25-30

The initial failure criterion for tests numbers 1 through 30 was initial crack detection. The strain level for tests 25 through 30 varies from 3151 $\mu\epsilon$ to 4026 $\mu\epsilon$. The ΔR at which the first crack was observed varied between 1.93 and 3.93 ohms. After observing the results of this series of tests, it was concluded that the failure criterion being used was not satisfactory. The initial detection of cracks depended on the experience level of the observer. To limit the effect of this factor it was decided that all subsequent tests would be terminated at either failure of the gage or specimen fracture which was indicated by penetration of a crack more than half way through the thickness of the specimen. Accordingly, all of the specimens in this series of tests, with the exception of specimen 29, were remounted in the testing machine and cycled to gage failure. It is possible that the strain levels for the additional cycling of the specimens may have varied slightly due to positioning of the specimen in the clamping block.

However, the curves of ΔR vs. N do not indicate any major change in the strain level. It was noted in the plots of data for tests number 26 and 27 that the characteristic increase in the slope of the curve of ΔR vs. N is not observed. This can possibly be attributed to the rapidity of crack propagation at the higher strain levels. In both of these cases approximately 500 cycles were completed after the last resistance reading until the gage failed.

Test #31

Test number 31 was conducted on another of the specimens that was remounted in the testing machine for additional cycling. The strain level for this test was 3908με with a mean strain of 1146με. The first crack in this specimen was observed after 806 cycles. The ΔR at that time was 2.03 ohms. After 8902 cycles had been completed, it was observed that a slight drop in the resistance of the gage had occurred. This was the same type of phenomenon that had occurred during test number ten. After 9095 cycles an additional decrease in the resistance change was observed. To try to get an idea as to what was causing this, the specimen was hand cycled through additional cycles. In the next 449 cycles it was observed that two additional decreases in resistance occurred. For the rest of the test the gage resistance continued to increase until the gage broke at approximately 10,135 cycles.

Tests #32-36

These tests were all terminated at failure of the gage. The strain levels varied between $1677\mu\epsilon$ and $3219\mu\epsilon$. In all

of these tests the first cracks were observed after only a relatively small percentage of the total number of cyles to failure. A plot of the data shows that even after the first cracks are observed the gage continues to record in a predictable manner. On tests number 33 and 34 it was noted that the running plot of the data appeared about $200\mu\epsilon$ higher than would be expected.

Tests #1A-5A

These gages were mounted to observe the effect of a rest period on the gages. All of the gages were mounted using Eastman 910 Adhesive and protected with a coat of Polyurethane. At random periods over several months the specimens were cycled through various numbers of cycles. In all cases the decrease in AR during a rest period did not exceed 0.09 ohms. For tests number 3A and 5A which were cycled to failure the plot of data corresponds to the manufacturer's characteristic curves. In all cases the bond of the gage appears sound after four months.

V. CONCLUSIONS

The S/N Fatigue Life Gage was developed to provide a method by which incipient fatigue failure could be predicted. It was the objective of this study and that of Rowe (Ref. 4) to try to study the ΔR at crack initiation of 70-30 copper-nickel with the expectation that a fairly definite ΔR would be observed regardless of the details of the previous strain history. This expectation was not realized. As experience in detection of cracks improved, small surface cracks were noted very early in specimen life. These cracks were observed over the width of the specimen except under the gage. Even though the specimen was cracked, the gage continued to give the characteristic curve of ΔR vs. N shown in Figure 7. This curve began to vary when the cracks had propagated deeply into the specimen. The gages finally failed when one of the cracks penetrated the glass-fiber/epoxy laminate of the gage and broke the grid.

The plotted data of all tests show that the resulting curve of ΔR vs. N closely follows the trend of curves based on the manufacturer's tests. This was true of all specimen types used. In most of the tests conducted, a rapid increase in the slope of ΔR vs. N was obvious just prior to the gage failure. However, for tests 26 and 27 this increase in slope was not observed.

As reported by Triebes (Ref. 7) the existence of a non-zero mean strain does not appear to have any adverse effects. All tests conducted during this study were cycled about non-zero mean strains. The resulting data corresponds closely with the predicted characteristics.

The effect of a rest period on the gage does not appear to have any significant effect. Tests 1A through 5A were conducted on specimens which had the gages mounted for periods of from one to feur menths. A maximum decrease of 0.09 ohms resistance was recorded as the gages were tested. It is possible that a slight variation in the clamping of the specimen in the machine may account for part of this difference. For the two specimens that were tested to failure the curves of AR vo. N agree closely with the manufacturer's curves.

The mounting procedure as described in Appendix B appears satisfactory. All jages during this study were mounted with Eastman 910 Adhesive. None of the gages appeared to break loose from the specimen during testing. On the specimens that were cycled to total failure the cracking all occurred about mid-gage. The gage remained bonded to the specimen after the gage had broken. Two specimens were subjected to increasing levels of strain. At strain levels in excess of 13,000pc the gages did shear loose from the specimen. However, at this level of strain this is expected (Ref. 8). For the aging tests the same procedures were followed. After four months no appearance of bonding failure was observed.

After evaluating all tests, it was concluded that the gage still holds much promise for use on copper-nickel. However, the use of the gage on systems subjected to unknown strain levels does not appear feasible at this time.

APPENDIX A

DESCRIPTION OF GAGE

The S/N Fatigue Life Gage has the general appearance of a common foil strain gage (Figure 6). It is constructed of a specially treated constantan (approximately 55% copper, 45% nickel) foil grid encapsulated in a glass-fiber/epoxy laminate. The gage is available in various sizes with either solder turrets or integral leads. Application of the gage is made using standard strain , we adhesives and techniques (Ref. 1).

Pigure 6 - S/N Fatigue Life Gage

The gage is made to be bonded to the area where fatigue failure is expected. When strains occur, a permanent and irreversible increase in the resistance of the grid occurs.

Because the resistance change is permanent, only an intermittent monitoring of the gage is required.

The resistance change is a function of the grid material, grid configuration, physical dimensions, heat-treatment,

cold-working and residual stresses in the grid material of the gage. By maintaining careful control of these parameters the inventor claims that the required gage characteristics can be obtained (Ref. 2).

The fatigue life gage can initially be used as a conventional strain gage. The initial gage resistance is approximately 100 ohms with a gage factor of 2.04. As the resistance of the gage changes, however, so does the gage factor. With a resistance change of three ohms the gage factor will increase to approximately 2.07. Beyond this level of resistance change the gage factor increases rapidly. As a result the gage will no longer give accurate strain indications and should not be used as a strain gage.

When using the gage, consideration must be given to temperature variations. The temperature coefficient of resistance of the NA series gages varies as a function of the fatigue damage sustained. The resistance coefficient varies between $-20\mu\alpha/\alpha/^{\circ}F$ to $-34\mu\alpha/\alpha/^{\circ}F$ in the temperature range of $75^{\circ} - 150^{\circ}F$. To eliminate the error due to temperature variations it is recommended that all measurements be made at or near $75^{\circ}F$.

The resistance change of the sensor is a result of cumulative fatigue damage caused by varying strains. Figure 7 is a plot showing ΔR (Resistance change) vs. N (Number of cycles) at various strain levels. The curves are a result of cycling about a zero mean strain. Experiments have shown, however,

Performance Curves of Type NA-01 Fatigue Life Gaye Figure 7.

that the same curves also correspond fairly closely to cycling about a non-zero mean strain providing the total strain amplitude $(2x\epsilon_R)$ is not too small (Ref. 3). Triebes (Ref. 7) concluded that the performance of the gage is virtually unaffected by the application of a mean load.

Since the gage response is basically independent of the mean strain, the ΔR caused by tension-tension or compression-compression at a given strain level is the same as for reversed bending. It is also noted that the curves are a plot of ΔR vs. N and as a result do not depend on the nature of the material to which they are bonded.

APPENDIX B

PREPARATION OF SPECIMEN

All test specimens used in this study were fabricated from 0.375 inch 70-30 copper-nickel plate. The original specimen used (Figure 1) was the "W. T. Bean Plain Fatigue Specimen." This specimen was chosen because:

- The manufacturer's predicted gage characteristics curves were based on it;
- The strain was known to be concentrated in the reduced area;
- 3. The specimen was designed to fit the machine being used;
- 4. Initial data collected (Ref. 4) was obtained using this specimen.

For reasons listed in Section II the specimen configuration was later changed to that shown in Figure 3.

The specimens were all obtained from two 24 inch by 12 inch by 0.375 inch 70-30 copper-nickel plates. The desired length and width were obtained by machining with a shaper. The reduced section and finished surface were produced by milling at slow speed to avoid specimen distortion.

The procedures used in preparing the specimen surface and gage for testing were those recommended by References 3 through 5 inclusive. The only modifications required were in the mounting of the gage. The procedures were as follows:

- Clean the specimen surface with Chlorothene NU Degreaser;
- 2. Dip one end of a one inch piece of 320 grit silicon carbide paper into metal conditioner (M-Prep

- Conditioner A), lap all surfaces, and remove residue with one stroke of a clean tissue;
- 3. Dip one end of a one inch piece of 400 grit silicon carbide paper into metal conditioner, lap the flat surface where the gage is to be applied, and remove residue with one stroke of a clean tissue;
- 4. Layout gage location using a 6-H pencil (For specimen type 1 this was 1/16 inch toward the clamped end from the center-line of the reduced section. For specimens type 2 and 3 this was the center of the reduced section);
- 5. Clean the mounting surface of the specimen with metal conditioner and a cotton swab and wipe dry;
- 6. Wash hands;
- 7. Clean the mounting surface of the specimen with a cotton swab and isopropyl alcohol and wipe dry with one swipe of a clean tissue (Extreme care should be taken to ensure that the surface of the specimen is absolutely clean prior to the application of the gage. Failure to obtain this goal may result in poor bonding of the gage and lead to erroneous strain indications.);
- 8. With a circular motion and light pressure applied by the finger, lap the bonding surface of the gage in a fine pumice powder on a clean surface (This action ensures that the bonding surface of the gage is slightly roughened to provide for a better bond);

- 9. Attach a small piece of cellophane tape to the surface of the gage (This tape is used to position the gage over the specimen.);
- 10. Clean the back of the gage with a cotton swab dampened with isopropyl alcohol (This step ensures that all of the pumice powder is removed and leaves a clean bonding surface.);
- 11. Position the gage using the scribe marks on the specimen (In this study the lead end of the gage was towards the clamping end of the specimen.) (Fig. 8);
- 12. Carefully mask the area around the gage with masking tape to avoid excessive flow of adhesive;
- 13. Apply a thin coat of M-Line Catalyst to the back of the gage and allow it to dry for one minute;
- 14. Apply two (2) drops of Eastman 910 adhesive to the specimen;
- 15. Place the gage in position over the surface of the specimen and force it into place with one stroke of thin teflon sheet;
- Within one second press the gage firmly into position with a thumb or forefinger and hold for thirty seconds (This not only forces the gage firmly into position but the heat from the finger helps cure the adhesive and ensures a solid bcnd.);
- 17 Wait for two minutes and remove the cellophane tape from the surface of the gage (Applying a light coat of rosin solvent will help to loosen the tape.);

Figure 8. Mounted Gage Ready for Testing

- 18. Apply a thin coat of M-Coat A (Polyurethane) and allow to dry for ten minutes (The M-Coat A is a water-proofing. If allowed to stand exposed to the air the Eastman 910 has a tendency to absorb moisture and this could affect the bond. This is particularly important if the specimen is not to be tested immediately.);
- 19. Remove the masking tape and apply a coat of solder stop and allow it to dry for one minute.

At this stage the gage is mounted and the specimen is ready for testing. To complete the preparation for testing:

- Place the specimen in position (Fig. 4) in the clamping block;
- 2. Cover the surface of the gage to protect it from solder spatter;
- 3. Solder connect the gage leads to the copper wire leading to the terminal strip;
- 4. Remove the protective cover from the gage.

The initial resistance in the neutral position was recorded. The gage was then connected to the Budd/Strainsert and checked for drift. A drift in the strain readings would be considered evidence that a poor bond existed. With all of the preliminary checks complete the assembly was ready for testing.

APPENDIX C

DESCRIPTION OF APPARATUS

S/N Fatigue Machine

All of the tests conducted for this study were done on a modified W. T. Bean S/N Fatigue Machine (Figures 4 and 9).

The machine 's a constant displacement device designed to be used for low-cycle fatigue studies. The specimen is positioned to be strained as a cantilever beam. By repositioning the shim plate on the clamping block the specimen can be tested in reversed bending, all tension or all compression (Ref. 6).

The origin 1 machine was modified to allow for additional strain ranges without having to modify the specimen configuration. The modified base made it easier to change the strain levels. The modifications consisted of:

- 1. The fabrication of a new base plate;
- 2. The relocation of the motor and controller;
- 3. The addition of a moveable clamping block.

 The block can be moved by a fabricated tailstock. It slides between two rails. During the test the block is held rigid by a lock bolt that moves in a traveling slot in the base and by an adjustable gib plate.

S/N Fatigue Life Gages

The gages used were provided by Micro-Measurements, Inc., Romulus Michigan. They were the FWA-01 series with a constantan grid and a glass-fiber/epoxy laminate. The initial resistance of the gages was $100.0 \pm 0.2\%$ with a gage factor of 2.04. All gages used were from lots ZD-Al2AP39 or ZD-Al2AP41 (Figure 6).

Test Set Up Showing Modifications to Fatigue Machine Figure 9.

Cu-Ni Specimens

All specimens used were fabricated from two copper-nickel plates. The chemical composition of the plates was:

						×				Other flowents
Flate 1	60.37	30,50	0.09	0.62	N ₊ 42	<0,01	∢0,01	<0.01	<0.10	<0,50
Plate 7	8.61	30,30	N.C5	0,43	8,50	<0.05	0,007	0.009		<0.50

The mechanical properties were as follows:

Plate 1

Yield strength	20 KSI
Tensile strength	52.3 KSI
Elongation in two inches	48%
Young's modulus	21x10 ⁶ PSI
Reduction in area	73%

Plate 2

Yield strength	19.5 KSI
Tensile strength	53.9 KST
Elongation in two inches	45%
Young's Modulus	25.9x10 ⁶ PSI
Reduction in area	70.1%

The chemical and mechanical properties for both plates were provided by Mr. H. G. MacKerrow, Head, Metallurgical Laboratory Branch, San Francisco Bay Naval Shipyard, Vallejo, California.

The following equipment was also used:

- 1. Budd/Strainsert Portable Strain Indicator
- 2. General Radio Co. Decade Resistor

- 3. W. T. Bean Co. S/N Meter Null Indicator
- 4. Hewlett Packard Co. Tachometer Head
- 5. Power Designs Inc. Regulated DC Power Supply
- 6. Hewlett Packard Co. Electronic Counter
- 7. Eveready mini-max batteries

Items four through seven were used in the counting circuit for the tests.

A complete description of items one through seven can be found in Reference 4. Figure 10 is a photograph of the apparatus.

APPENDIX D TABULATION OF DATA

Test #1

Strain Level: ±4127p€

Mean Strain: 1382με

Cycles	$R_{\mathbf{g}}$	ΔR	$\epsilon_{\mathbf{n}}$	ε _C	εt	$\epsilon_{\mathbf{R}}$
0	100.00		142	-2640	5796	4218
1	100.09		358	-2740	5588	4164
6			608	-2738	5564	4151
7			737	-2771	5481	4126
8			749	-2749	5483	4126
9			779	-2740	5496	4118
10	100.23		810	-2741	5504	4123
100	100.68	0.45				
493	101.87	1.64			•	
1000	102.77	2.54				
1497	103.46	3.23				
2007	103.97	3.74				
2263	104.13	3.90	First c	rack obser	rved	
2504	104.31	4.08				
2759	104.52	4.29				
2994	104.66	4.43				
3260	104.79	4.56	•			
3499	104.88	4.65				
3753	104.99	4.76		_		
4001	105.08	4.85				
4247	105.22	4.99				
4500	105.36	5.13				

Test #2

Strain Level: ±3926με

Mean Strain: 1302με

Cycles	R g	ΔR	ε _n	E C	ε _t	εR
0	100.12		361	-2496	5676	4086
	100.19		572	-2611	5450	4031
6			905	-2629	5256	3943
1 6 7			911	-2593	5265	3929
8			988	-2622	5216	3919
9			1032	-2625	5218	3922
10	100.25	-	1061	-2613	5217	3915
100	100.62	0.37	1001	-2013	3211	2313
1005	102.63	2.38				
1507	103.25	3.00				
2000	103.71	3.46			,	
2498	104.03	3.78				
2755	104.03	3.97				
2998	104.22	4.08				
3497	104.54	4.29				
3749	104.54	4.44			•	
3999	104.78	4.53		4		
4252	104.76	4.61	First o	rack obse	rared	
4500	104.96	4.71	TIISC C	tack obse.	Lyea	
4750	104.98	4.73				
5006	105.09	4.84	•			
5256	105.20	4.95				
5508	105.26	5.01				
5753	105.29	5.04				
6004	105.38	5.13				
6250	105.41	5.16				

Test #3

Strain Level: $\pm 3970 \mu\epsilon$

Mean Strain: $1283\mu\varepsilon$

Cycles	R g	ΔR	ε _n	ε _C	ε _t	$\epsilon_{ m R}$
0	100.05		088	-2623	5560	4092
1	100.36		1582	-4004	4098	4051
6	-		505	-2653	5313	3983
7	-		587	-2678	5256	3967
8			612	-2672	5260	3966
9			671	-2686	5267	3977
10	100.22		724	-2672	5237	3955
100	100.58	0.36				0,00
997	102.86	2.64			•	_
1496	103.56	3.34				~
1999	103.88	3.66				
2 50 0	104.30	4.08				
2748	104.38	4.16				
3000	104.57	4.35				
3257	104.69	4.47				•
3496	104.81	4.59				
3750	104.87	4.65	-			
3998	104.99	4.77	First c	rack obsei	cved	

Test #4

Strain Level: ±3539με

Mean Strain: $1116\mu\epsilon$

Cycles	R _g	ΔR	$\epsilon_{\mathbf{n}}$	€ _C	ε _t	$\epsilon_{\mathbf{R}}$
0	100.06		109	-2437	4771	3604
1	100.09		145	-2387	4763	3575
6			319	-2375	4714	3545
7			1141	-3163	3933	3548
8			399	-2379	4693	3536
9			440	-2394	4668	3531
10	100.15		485	-2421	4652	3537
100	100.47	0.32				
1002	102.12	1.97				
2002	103.08	2.93	-,			
3003	103.71	3.56				
3495	103.94	3.79				
4006	104.12	3.97				
4505	104.30	4.15				
5006	104.45	4.30	First c	rack obse	rved	
5556	104.59	4.44			*	
6002	104.70	4.55	~			

Test #5

Strain Level: ±3415με

Mean Strain: $1183\mu^{\epsilon}$

Cycles	R_{g}	ΔR	εn	€ C ~	ε _t	۶ R
0 1 6 7 8 9	100.24		916 1135 1221 1271 1308 1329	-2124 -2250 -2181 -2204 -2208 -2207	4862 4656 4668 4629 4610 4620	3493 3451 3425 3417 3409 3419
10	100.33		1370	-2222	4588	3405
100 1009 1993 3012 3504 4007 4507 5003 5501 5998 6497	100.63 102.12 102.99 103.59 103.85 104.04 104.20 104.36 104.48 104.69 104.71	0.30 1.79 2.66 3.26 3.52 3.71 3.87 4.03 4.15 4.36	First c	rack obse	rved	
6998 7500 8001 8504	104.78 104.90 104.99 105.05	4.45 4.57 4.66 4.72				

Test #6

Strain Level: ±3695με

Mean Strain: 1249με

Cycles	R _g	ΔR	$\epsilon_{\mathbf{n}}$	εc	٤t	ϵ_{R}
0	100.18		625	-2397	5177	3787
1	100.20		772	-2452	5036	3744
6			970	-2430	4978	3704
7			1172	-2584	4803	3694
8			1069	-2453	4921	3687
9			1128	-2488	4888	3688
10	100.31		1120	-2451	4948	3700
100	100.64	0.33				
1007	102.14	1.83			•	
2006	103.27	2.96				
2498	103.66	3.35				
3006	103.90	3.59				
3504	104.20	3.89				
3997	104.41	4.10				
4502	104.61	4.30				
4998	104.76	4.45	First c	rack obse	rved	
5497	104.90	4.59				
5999	105.00	4.69				
6501	105.13	4.82				
7002	105.31	5.00				
7490	105.38	5.07				
8012	105.48	5.17				

Test #7

Strain Level: ±3678µE

Mean Strain: $1207\mu^{\epsilon}$

Cycles	Rg	ΔR	$\epsilon_{\mathtt{n}}$	εc	εt	$\epsilon_{\mathtt{R}}$
0 .	100.03		-025	-2445	4956	3701
1	100.06		015	-2729	4700	3715
6			-049	-2467	4898	3683
7			-002	-2484	4892	3688
8			060	-2482	4878	3680
9			098	1472	4867	3670
10	100.15		121	-2460	4873	3667
100	100.50	0.35				
988	102.22	2.07				
1495	102.77	2.62	•			
2008	103.24	3.09				
3007	103.84	3.69	12			
3492	104.12	3.97				
4007	104.36	4.21				
4493	104.54	4.39	•			
5004	104.69	4.54	First c	rack obser	rved	
5497	104.83	4.68				
6003	104.94	4.79				
6494	105.07	4.92				

Test #8

Strain Level: $\pm 1364 \mu \epsilon$

Mean Strain: $241\mu\epsilon$

Cycles	Rg	ΔR	ϵ_{n}	ε _C	ϵ_{t}	$\epsilon_{\mathtt{R}}$
0 1 6 7 8	100.18		-049 -022 -016 -010 -005	-1122 -1138 -1125 -1124 -1132	1646 1613 1603 1599 1595	1384 1376 1364 1362 1364
9 10 100 1024 2011 4004 6009 7981 10002	100.18 100.18 100.22 100.24 100.26 100.29 100.30	0.00 0.04 0.06 0.08 0.11 0.12	000 -012	-1137 -1123	1592 1604	1365 1364
14992 20014 30014 39993 50005 59997 70050 80004 90013	100.37 100.42 100.46 100.51 100.55 100.63 100.67	0.19 0.24 0.28 0.33 0.37 0.40 0.45 0.49				
99994 149995 200026 300016 399986 499974 599986 609965	100.70 100.73 100.80 100.88 100.96 100.98 101.62 102.00	0.52 0.55 0.62 0.70 0.78 0.80 1.44 1.82	First c	rack obse	rved	

Test #9

Strain Level: ±1381µc

Mean Strain: 236με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	ε _C	ε _t	$\epsilon_{\mathbf{R}}$
0 1 6	100.06 100.09		-435 -399 -392	-1141 -1163 -1147	1674 1633 1619	1408 1398 1383
7 8 9			-381 -388 -392	-1153 -1148 -1146	1603 1612 1622	1378 1380 1384
10	100.09	-	-384	-1142	1613	1378
100	100.10	0.01			2020	
1984	100.14	0.05		•		
3997	100.16	0.07				
6000	100.20	0.11				
8012	100.24	0.15				
9999	100.26	0.17				
14998	100.30	0.21				
20006	100.35	0.26				
30011	100.41	0.32				
39995	100.46	0.37				
50005	100.50	0.41				
60002	100.52	0.43				
70003	100.56	0.47				
79998	100.59	0.50				
90001 99995	100.62 100.65	0.53 0.56				
125000	100.70	0.61				
150005	100.70	0.64				
175000	100.76	0.67				
200008	100.78	0.69		·		
225001	100.80	0.71				
249999	100.83	0.74				
275000	100.87	0.78				
299989	100.88	0.79				
325006	100.89		rirst cr	ack observ	red	
349997	100.90	0.81				
374984	100.92	0.83				
400040	100.93	0.84		•		
425006	100.95	0.86	_			
450008	100.98	0.89 0.89				
475007 499999	100.98 100.99	0.89				
524986	100.99	0.90				
547748	101.01		rack vi	sible on u	nder sur	face
549998	101.03	0.94	JACK VI		bul	2400
560005	101.13	1.04				
564996	101.23	1.14				
30.330						

<u>Test #10</u>

Strain Level: ±1796με

Mean Strain: 337με

Cycles	$R_{\mathbf{g}}$	ΔR	$\epsilon_{\mathbf{n}}$	ε _c	ε _t	$\epsilon_{\mathbf{R}}$
0	100.18		-2492	-1330	1977	1654
ì	100.19		-2490	-1452	2180	1816
6			-2425	-1465	2127	1796
7			-2432	-1458	2134	1796
8			-2425	-1463	2133	1798
9			-2410	-1472	2120	1796
10	100.21		-2415	-1457	2130	1794
100	100.21					
988	100.40	0.19	•			
1999	100.57	0.36				
4025	100.83	0.62				•
6001	101.03	0.82				
8001	101.24	1.03				
9998	101.36	1.15				
15004	101.66	1.45				
20004	101.86	1.65				
30007	102.18	1.97				
40005	102.41	2.20				
50001	102.61	2.40	First cr	ack obser	ved	
60001	102.76	2.55				
69988	102.83	2.62	•			
80320	102.96	2.75				
90009	103.08	2.87			•	
92011	103.13	2.92				
93005	103.08	2.87				
94020	103.10	2.89				
95999	103.13	2.92				
98022	103.14	2.93				
100003	103.22	3.01				
101019	103.26	3.05				
101997	103.28	3.07				
102997	103.36	3.15				
104013	103.49	3.28				

Test #11

Strain Level: ±17? με

Mean Strain: 344με

Cycles	Rg	ΔR	εn	ε _C	ε _t	εR
0	100.10		-2750	-1310	2274	1792
ì	100.15		-2622	-1378	2140	1759
6			-2574	-1360	2104	1732
7			-2561	-1374	2099	1737
7 8			-2555	-1357	2097	1.727
9			-2540	-1369	2086	1728
10	100.16		-2531	-1390	2078	1734
100	100.21	0.05				
998	100.34	0.18				
2005	100.46	0.30	ŧ			
4005	100.65	0.49				
6001	100.81	0.65				
8004	100.92	0.76		4		
10000	101.04	0.88				
15006	101.24	1.08				
20001	101.40	1.24				
30012	101.68	1.52				
35004	101.74	1.58				
37489	101.83	1.67				
40013	101.84	1.68	•			
44986	101.89	1.73				
50004	101.97	1.78				
55006	102.03	1.84				
60000	102.09	1.90				
65012	102.15	1.96	_•			
70009	102.19	2.00	First cr	ack observ	red	
75003	1.02.25	2.06				
80004	102.29	2.10				
85007	102.32	2.13				
90007	102.36	2.17				
95013	102.39	2.20				t
99995	102.45	2.26				
105000	102.45	2.26				
120009	102.91	2.72				
135204	103.28	3.09				

Test #12

Strain Level: ±3101με

Mean Strain: 1081με

Cycles R_g ΔR ϵ_n ϵ_c	ε _t	$\epsilon_{ m R}$
0 99.72 -3892 -202	3 4523	3273
1 99.72 -1715 -210	3 4333	3218
6 -1532 -198	0 4215	3098
7 -1515 -203	3 4211	3122
8 -1470 -201		3103
9 -1422 -2023		3091
10 99.80 -1428 -201	2 4173	3093
100 100.00 0.20	_	
1007 101.23 1.43	•	
2000 101.89 2.09		
2995 102.39 2.59		
4000 102.76 2.96		,
5002 102.97 3.17		
6003 103.32 3.52		
7001 103.49 3.69		
7996 103.66 3.86		
9002 103.78 3.98		
10008 103.93 4.13	_	
11012 104.06 4.26 First crack ob-	ser.neg	
12013 104.10 4.30	., , ,	
13008 104.17 4.37 Crack observed	on the bott	com surface
13999 104.28 4.48		
15006 104.38 4.58		
15998 104.46 4.66		
16994 104.52 4.72		
17996 104.59 4.79		
18995 104.66 4.86		
20011 104.73 4.93 20996 105.17 5.37		

<u>Test #13</u>

Strain Level: ±3125με

Mean Strain: 1000με

Cycles	Rg	ΔR	$\epsilon_{ extbf{n}}$	ε _C	εt	ϵ_{R}
0	100.02		-656	-1956	4546	3251
1	100.09		-320	-2118	4258	3188
6			-167	-2088	4207	3148
7			-058	-2094	4110	3102
8		•	-060	-2120	4163	3142
9			-031	-2118	4122	3120
10	100.16		-017	-2113	4112	3113
100	100.32	0.16				
1003	101.52	1.36				
2002	102.31	2.15				
3008	102.87	2.71				
4005	103.25	3.09				
4998	103.55	3.39				
5998	103.81	3.65				
6997	104.02	3.86				
79 98	104.21	4.05				
8998	104.39	4.23				
9992	104.52	4.36	First c	cack obser	ved	
11000	104.63	4.47				
11987	104.73	4.57				
13005	104.82	4.66				
14001	104.91	4.75		_		_
15005	105.00	4.84	Crack of	served on	bottom	surface
16001	105.09	4.93				
16996	105.19	5.03				
18000	105.25	5.09				
19005	105.35	5.19				
20301	105.50	5.34				
20768	Gage fail	.ed				

Test #14

Strain Level: ±1727με

Mean Strain: 260με

Cycles	^R g	ΔR	$\epsilon_{\mathbf{n}}$	[€] c	ε _t	$\epsilon_{\mathtt{R}}$
0 1	100.30		1092 1038	-1217 -1458	1531 1987	1374 1723
6	100.50		942	-1484	1975	1730
7 .			931	-1473	1992	1733
8 9			928	-1460	1999	1730
10	100.30		935 948	-1447 -1463	1995 1983	1721 1723
100	100.32	0.02	• • •			
1008	100.44	0.14				
1998	100.54	0.24				
2999	100.64	0.34				
4000	100.72	0.42				
4999	100.80	0.50				
5998	100.87	0.57				
7002	100.92	0.62				
8003	100.98	0.68				
9001	101.00	0.70				
10003	101.05	0.75				
14999	101.28	0.98	•			
20021	101.40	1.10				*
30022	101.60	1.30				
40009	101.74	1.44				
50007	101.86	1.56				
60008	101.89	1.59				
65005	101.89	1.59				
66626	Cracked at	clamping	block			

Test #15

Strain Level: ±2172με

Mean Strain: 433με

Cycles	Rg	ΔR	$\epsilon_{ m n}$	€ C	εt	$\hat{\epsilon_R}$
0 1 6 7 8 9	100.25		715 745 805 819 843	-1643 -1747 -1748 -1761 -1778	2658 2634 2596 2588 2566	2151 2191 2172 2175 2172
10 100 989 2004 3006 4007 5007	100.28 100.32 100.71 101.03 101.24 101.49 101.64	0.04 0.43 0.75 0.96 1.21 1.36	833 819	-1756 -1741	2579 2606	2168 2174
6006 6993 8000 9006 9999 12496 14993 17496 20685	101.79 101.92 102.00 102.10 102.20 102.41 102.57 102.72	1.51 1.64 1.72 1.82 1.92 2.13 2.29 2.44 2.54				
22500 25000 27506 29997 32498 34997 37512 39992	102.90 102.98 103.08 103.19 103.24 103.30 103.34	2.62 2.70 2.80 2.91 2.96 3.02 3.06 3.16	First cr	ack obser	ved	
41264 42001 43003 43994 45000	103.49 103.51 103.55 103.56 103.60	3.21 3.23 3.27 3.28 3.32	Cracked	at clampi	ng block	

<u>Test #16</u>

Strain Level: $\pm 2104 \mu \epsilon$

Mean Strain: 426με

Cycles	Rg	ΔR	$\epsilon_{ m n}$	εc	ε _t	$\epsilon_{\mathtt{R}}$
0	100.14		142	-1670	2614	2142
1 6 7 8	100.15		197	-1692	2571	2132
6 7			263 277	-1681 -1695	2533 2513	2107 2104
8			289	-1095 -1702	2513 2511	2104
9			293	-1682	2518	2100
10	100.19		304	-1684	2516	2100
100	100.21	0.02				
1000	100.58	0.39				
1993 2998	190.82 101.06	0.63 0.87				
4003	101.24	1.05				
5000	101.42	1.23				
5997	101.54	1.35	•			
7004	101.67	1.48				
7999	101.78	1.59				
9001 10008	101.89 101.98	1.70 1.79				
15002	102.34	2.15				
20007	102.62	2.43				
24995	102.82	2.63				
27500	102.91	2.72				
30115	102.94	2.75				
32507 35006	103.02 103.10	2.83 2.91				
37505	103.10	2.91				
40001	103.24	3.05				
42499	103.29	3.10				
45002	103.32	3.13				
47506	103.38	3.19				
49260			Cracked a	at clampi :	ng block	

Test #17

Strain Level: $\pm 3702 \mu \epsilon$

Mean Strain: $1019\mu\epsilon$

Cycles	^R g	ΔR	ε _n	ε¢	ε _t	$\epsilon_{\mathtt{R}}$
0 1 6 7 8 9	90.89 99.91		-1163 -945 -442 -531 -460 -473	-2349 -2504 -2798 -2674 -2707 -2625	5213 5023 4647 4763 4705 4735	3781 3764 3723 3719 3706 3680
10 100 990 2013 2998 3998 4996 5998 7009	100.04 100.34 102.18 103.20 103.83 104.25 104.60 104.86 105.04	0.30 2.14 3.16 3.79 4.21 4.56 4.82 5.00	-425 First cra	-2663	4700	3682

Test #8

Strain Level: $\pm 2304 \mu \epsilon$

Mean Strain: $541\mu\varepsilon$

Cycles	R _g	ΔR	$\epsilon_{ m n}$	[€] C	$\epsilon_{ t t}$	$\epsilon_{ m R}$
0 1 6 7 8	100.07 100.08		-300 -259 -200 -218 -172 -174	-1670 -1736 -1752 -1745 -1756 -1758	2914 2884 2852 2866 2848 2846	2292 2310 2317 2306 2302 2302
10	100.08		-163	-1760	2842	2301
100	100.18	0.10				
999	100.58	0.50				
2011	100.96	0.88				
3007	101.26	1.18				
3999	101.47	1.39				
4995	101.65	1.57				
6008	101.85	1.77				
7000	101.99	1.91				
7994	102.12	2.04				
9007	102.23	2.15				
10013	102.34	2.26				•
15004	102.70	2.62	•			
20011	103.02	2.94				
25005	103.24	3.16				
27500	103.33	3.25	•			
29995	103.40	3.32	First cr	ack obser	ved	
32514	103.46	3.38				
34993	103.55	3.47				
37503	103.61	3.53				
40006	103.65	3.57				

Test #19

Strain Level: $\pm 2585 \mu \epsilon$

Mean Strain: 722με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	εc	ε _t	$\epsilon_{\mathbf{R}}$
0	99.95		-805	-1687	3130	2409
1	99.99		-842	-1798	3376	2587
6			-688	-1878	3289	2584
7			-660	-1901	3263	2582
8		•	-685	-1863	3305	2584
9			-655	-1895	3283	2589
10	99.99		-674	-1861	3305	2584
100	100.10	0.11				
993	100.80	0.81				
1998	101.33	1.34				
2994	101.72	1.73				
4001	102.00	2.01				
4999	102.26	2.27				
6000	102.47	2.48				
6995	102.72	2.73				
7994	102.85	2.86				
9001	102.97	2.98				
9999	103.13	3.14				
12505	103.35	3.36				
15006	103.56	3.57	First cr	ack obsei	cved	
17501	103.74	3.75				
20021	104.02	4.03				

Test #20

Strain Level: ±2972µE

Mean Strain: 911με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	€c	εt	$\epsilon_{\mathbf{R}}$
0	99.90	•	-583	-1915	4194	3055
ì	99.96		-335	-2050	4002	3026
6	JJ.J0		-167	-2010	3914	2962
7			-170			
8				-2039	3921	2980
			-1.20	-2069	3901	2985
9			-056	-2066	3879	2973
10	100.63		-052	-2050	3872	2961
100	100.25	0.22				
994	101.24	1.21				
1988	101.94	1.91				
2998	102.39	2.36				
3998	102.79	2.76				
4997	103.07	3.04				
5990	103.28	3.25				
6997	03.49	3.46				
8000	. 3.71	3.68				
9000	103.89	3.86				
9992	104.00	3.97				
10993	104.11	4.08	First cr	ack obser	ved	
12004	104.17	4.14		3,		

Test #21

Strain Level: +2861µE

Mean Strain: 827με

Cycles	R _g	ΔR	$\epsilon_{\mathbf{n}}$	€ _C	[€] t	$\epsilon^{\mathbf{p}}$
0	99.99		-493	~1952	4388	3170
ĭ	100.05		-262	-2033	4194	3114
2	100.06		-10	-1983	3814	2899
6			027	-2015	3739	2877
7			059	-1993	3733	2863
8			059	-1974	3753	2864
9		-	096	-1977	3734	2856
10	100.11		167	-2019	3673	2846
100	100.27	0.16				
989	100.99	0.88				
1992	101.75	1.64				
3003	102.23	2.12				
3994	102.56	2.45				
4988	102.87	2.76				
6002	103.09	2.98				
6999	102.30	3.19	_		•"	
8001	103.52	3.41				
9000	103.65	3.54				
10008	103.76	3.65				
11001	103.85	3.74				
11997	103.95	3.84	First cr	ack obser	rved	
13004	104.03	3.92		•		

Test #22

Strain Level: $\pm 2097 \mu\epsilon$

Mean Strain: $516\mu^{\epsilon}$

Cycles	Rg	ΔR	εn	ε _C	ε _t	εR
0 1 6 7 8 9	99.96 99.97 99.99		-625 -577 -535 -503 -529 -505 -502	-1473 -1588 -1570 -1600 -1566 -1585 -1578	2737 2677 2637 2592 2629 2602 2610	2105 2133 2104 2096 2098 2094 2094
100 995 2003 3005 3998 4994 5996 7000 7989 8994 9998 12507 15004 17506 20010 22507 25006 26010 27502 30014 32509 35003 37503 40009 42503	100.03 100.27 100.50 100.75 100.92 101.00 101.18 101.28 101.38 101.48 101.58 101.77 101.91 102.04 102.16 102.28 102.35 102.35 102.38 102.42 102.50 102.63 102.70 102.74 102.78	0.04 0.28 0.51 0.76 0.93 1.01 1.19 1.39 1.49 1.59 1.78 1.92 2.05 2.17 2.29 2.36 2.39 2.43 2.51 2.57 2.64 2.75 2.79		ack obser		2077

Test #23

Strain Level: $\pm 2184 \mu \epsilon$

Mean Strain: $562\mu\epsilon$

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	ε _C	ε _t	ϵ_{R}
0 1 6	100.06 100.11		-135 010 100	-1557 -1588 -1591	2811 2691	2184 2140
7 8 9			044 097 127	-1584 -1576 -1646	2812 2755 2733	2198 2166 2190
10 11	100.13		125 130	-1608 -1627	2741 2751	2175 2189
100 999 2007	100.20 100.59 100.87	0.07 0.46 0.74				
2996 4001	101.21 101.45	1.08				
5007 6002	101.62 101.81	1.49				
6998 8002 9001	101.92 102.05 102.14	1.79 1.93 2.01				
9994 12507	102.30 102.53	2.17 2.40	· ·			
15006 17502	102.74	2.61 2.75				
20011 22512 25009	103.00 103.08 103.2	2.87 2.95 3.08				
26014 27495	103.23 103.30	3.10 3.17				
30013 32500	103.39	3.26 3.33				
34995 37500 39999	103.51 103.50 103.65	3.38 3.45 3.52	First cra	ck observ	ed	

Test #24

Strain Level. ±2262με

Mean Strain: 513με

Cycles	Rg	ΔR	$\epsilon_{ m n}$	ε¢	ε _t	$\epsilon_{\rm R}$
0	100.12		-897	-1740	2989	2365
ì	100.14	,	-712	-1736	2804	2270
6	200121		-622	-1766	2751	2259
7			-622	-1743	2782	2263
8			-607	-1740	2780	2260
9			-592	-1746	2794	2267
10	100.15		-559	-1746	2771	2259
100	100.23	0.08	333	2710	2772	
998	100.68	0.53				
2001	101.30	1.15				
3008	101.45	1.30	•			
4001	101.71	1.56				
5004	101.88	1.73				
6004	102.04	1.89				
	102.04	2.09				
7007						
7998	102.38	2.23				
8998	102.50	2.35				
10003	102.61	2.46				
12510	102.76	2.61				
15006	103.02	2.87	_•			
17511	103.24	3.09	First cr	ack obser	ved	

Test #25

Strain Level: ±3151µε

Mean Strain: 1000με

		X				
Cycles	Rg	ΔR	εn	ε _C	ε _t	$\epsilon_{\mathtt{R}}$
0	100.02		-1840	-1970	4550	3260
ì	100.06		-1574	-2095	4353	3224
6			-1315	-2147	4178	3163
7			-1322	-2103	4279	3191
8			-1128	-2148	4112	3130
9			-1119	-2139	4143	3141
10	100.15		-1100	-2129	4129	3129
100	100.30	0.15				
1004	101.63	1.48				
2001	102.55	2.40				
2994	103.04	2.89				
4002	103.27	3.12				
4998	103.50	3.35				
5499	103.67	3.52				
5993	103.77	3.62				
6496	103.84	3.69				
6999	103.98	3.83	First cra	ck obser	ved	
6999	103.84					
7504	103.91	3.76				
8010	104.08	3.93				
8493	104.20	4.05				
9005	104.31	4.16				
9502	104.70	4.55				
9995	104.53	4.38				
10502	104.60	4.45				
11012	104.68	4.53				
12004	104.86	4.71				
12496	104.94	4.79				
13001	104.98	4.83				
13493	105.06	4.91	Crack obs	erved on	bottom	surface
14000	105.12	4.97				
14501	105.20	5.05				
15008	105.23	5.08				
15494	105.31	5.16				
15998	105.34	5.19				
16499	105.39	5.24				
17003	105.49	5.34				
17497	105.49	5.34				
18000	105.57	5.42				
18510	105.76	5.61				
18839	Gage fail	ed				

Test #26

Strain Level: ±4026με

Mean Strain: $1412\mu\epsilon$

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	ε _c	ε _t	ϵ_{R}
0 1 6 7 8	99.95 100.08		-979 -700 -435 -272 -222 -183	-2498 -2512 -2556 -2603 -2596 -2590	5830 5608 5574 5440 5422 5425	4164 4060 4065 4022 4009 4008
10	100.14		-125	-2613	5437	4025
100	100.45	0.31				••
999	102.72	2.58				
1560	103.41	3.27	First crac	ck observ	ed	
1560	103.19					
1998	103.50	3.26				
2498	104.16	4.02				
3002	104.63	4.49				
3505	104.97	4.83				
4006	105.23	5.09				
4506	105.46	5.32				
5005	105.69	5.55	•			
5521	105.94	5.80				
6009	106.14	6.00				
6500	106.24	6.10				
7012	106.27	6.13				
7506	106.42	6.28				
7998	106.50	6.36				
8521	Gage faile	đ				

Test #27

Strain Level: ±3676με

Mean Strain: 1210με

Cycles	Rg	ΔR	εn	ε _C	ε _t	$\epsilon_{\mathtt{R}}$
0 1 6	99.96 100.00		-904 -702 -491	-2412 -2443 -2462	5026 4904 4909	3719 3674 3686
7 8			-448 -390	-2460 -2469	4890 4876	3675 3673
9			-347	-2472	4877	3675
10	100.06		-334	-2463	4883	3673
100	100.40	0.34				
993	102.11	2.05				
1501	102.71	2.65				
1993	103.14	3.08				
2253	103.34	3.28		•		
2490	103.49	3.43				
2749	103.64	3.58	First cra	ck observ	ed	
2740	102 50					
2749	103.59	2 62				
3003 3503	103.68 103.98	3.62 3.92				
4003	103.98	4.20				
4497	104.45	4.39				
4999	104.66	4.60				
5498	104.86	4.80				
6001	105.00	4.94				
6507	105.11	5.05				
7005	105.20	5.14				
7499	105.38	5.32	Crack obs	ervea on	bottom s	urface
7999	105.48	5.42				
8497	105.58	5.52				
9004	105.68	5.62				
9491	105.76	5.70				
9998	105.80	5.74				
10507	105.84	5.78				
10997	105.91	5.85				
11439	Gage faile	đ				

Test #28

Strain Level: +3361µε

Mean Strain: 955με

Cycles	R _g	ΔR	$\epsilon_{ m n}$	[€] c	ε _t	$\epsilon_{\mathtt{R}}$
0 1 6 7 8	99.95 100.01		-1195 -958 -849 -770 -728 -775	-2290 -2380 -2386 -2404 -2331 -2370	4347 4228 4351 4287 4281 4435	3319 3304 3369 3346 3306 3403
10 100 1000 1492 1781 1994 2252 2496 2756 3000 3254	100.09 100.30 101.89 102.65 102.78 102.95 103.13 103.26 103.39 103.51	0.21 1.80 2.30 2.56 2.69 2.86 3.04 3.17 3.30 3.42	-678	-2427	4336	3382
3497 3993 4494 5003 5497 6001 6502 6995 7498 7995 8500 8998 9490 10001 10499 11000 11502 11824	103.53 103.80 104.05 104.29 104.48 104.65 104.82 105.07 105.11 105.23 105.34 105.45 105.54 105.61 105.65 105.71 106.18 Gage faile	3.44 3.71 3.96 4.20 4.39 4.56 4.73 4.98 5.02 5.14 5.25 5.36 5.45 5.56 5.62 6.09	Crack obse	erved on 1	bottom s	urface

Test #29

Strain Level: ±3812με

Mean Strain: $1225\mu\varepsilon$

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	εc	ε _t	ϵ_{R}
0 1 6 7 8 9 10 100 997 1491 1743	99.93 99.95 100.02 100.38 102.26 102.87 103.08	0.36 2.24 2.85 3.06	-2549 -1797 -1483 -1426 -1403 -1380 -1291	-2570 -2555 -2591 -2604 -2595 -2553 -2591	5107 5087 5018 5014 5038 5069 5041	3839 3821 3805 3809 3817 3811 3816

Test #30

Strain Level: $\pm 3292 \mu\epsilon$

Mean Strain: 956με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	ε _C	ε _t	εR
0 1 6 7 8 9 10 100 999	100.00 100.04 100.10 100.33 102.03	0.23 1.93	-2002 -3104 -2910 -2963 -2678 -200 -198	-2412 -2492 -2397 -2280 -2404 -2342 -2327 ck observ	3995 3923 4167 4412 4158 4198 4239	3204 3208 3282 3346 3281 3270 3283
999 1246 1503 1757 2002 2254 2499 2752 2999 3250 3504 3787 3998 4501 4996 5504 6001 6505 7006 7493 7997 8516 9011 9503 9996 10498 11019 11284	102.00 102.31 102.58 102.87 103.11 103.29 103.47 103.62 103.78 104.03 104.16 104.26 104.34 104.49 104.68 104.78 104.88 105.02 105.18 105.28 105.40 105.50 105.50 105.50 105.50 105.64 106.42 Gage faile	2.21 2.48 2.77 3.01 3.37 3.52 3.68 3.93 4.06 4.16 4.24 4.39 4.58 4.78 4.58 4.78 5.18 5.40 5.40 5.40 5.54 6.32 d.32	Crack obs	erved on	bottom s	urface

Test #31

Strain Level: ±390 δμε

Mean Strain: 1146με

Cycles	Rg	ΔR	ϵ_n	[€] c .	ε	$\epsilon_{\mathbf{R}}$
1 2 6 7	99.92 99.92		-982 -967 -829 -776	-2800 -2785 -2770 -2788	4980 4994 5042 5016	3890 3890 3906 3902
8 9 10	99.97	•	-763 -727 -689	-2759 -2755 -2779	5051 5044 5071	3905 3900 3925
100 495 593 694	100.35 101.47 101.67 101.84	0.38 1.50 1.70 1.87				
806 1007 1249	102.00 102.26 102.58	2.03 2.29 2.61	First cr	ack obser	ved	
1501 1748 1990	102 86 103.03 103.33	2.89 3.06 3.36				
2248 2496 2759	103.53 103.70 103.90	3.56 3.73 3.93				
2997 3258 3495 3746	104.04 104.15 104.26 104.37	4.07 4.18 4.29 4.40				
3998 4249 4495	104.47 104.55 104.66	4.50 4.58 4.69	-			
4754 4999 5253	104.75 104.88 104.93	4.78 4.91 4.96				
5502 5747 6002 6254	105.02 105.10 105.17 105.22	5.05 5.13 5.20 5.25				
6504 6749 6999	105.28 105.35 105.35	5.31 5.38 5.38				
7111 7207 7301	105.41 105.45 105.47	5.44 5.48 5.50				
7402 7497	105.50 105.50	5. 53 5. 53				

Test #31 (Continued)

Cycles	Rg	Δ						
7604	105.51	5.34						
7702	105.56	5.59						
7796	105.56	5.59						
7901	105.58	5.61			-			
8001	105.60	5.63	~					
8100	105.62	5.65				•		
8208	105.66	5.69						
8304	105.66	5.69						
8396	105.69	5.72 5.73						
8495	105.70 105.70	5.74						
8600 8702	105.70	5.74						
8702 8807	105.71	5.83						
8902	105.76	5.79						
9001	105.79	5.82						
9095	105.75	5.78						
9150	105.71	5.74	Hand	cvcled	for	remainder	of	test
9250	105.72	5.75		0,1				
9275	105.72	5.75		•				
9300	105.72	5.75						
9325	105.72	5.75						
9350	105.74	5.77						
9375	105.74	5.77						
9400	105.74	5.77	•					
9425	105.73	5.76						
9450	105.70	5.73						
9475	105.70	5.73						
9500	105.70	5.73						
9525	105.70	5.73						
9550	105.72	5.75						
9575 9600	105.72 105.75	5.75 5.78						
9625	105.75	5.78						
9650	105.77	5.80						
9675	105.77	5.80	•					
9700	105.77	5.80						
9725	105.79	5.82						
9750	105.83	5.86						
9775	105.83	5.86						
9800	105.83	5.86						
9825	105.93	5.96						
9850	105.98	6.01						
9875	106.01	6.04						
9900	106.13	6.16						
9925	106.16	6.19						
9950	106.27	6.30						
9975	106.36	6.39						
10000	106.46	6.49						

Test #31	(Continued	
Cycles	Rg	ΔR
10025	106.60	6.63
10050	106.65	6.68
10075	106.81	6.84
10100	106.96	6.99
10125	107.27	7.30
10135	Gage failed	l

Test #32

Strain Level: ±1677με

Mean Strain: 248με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	εc	εt	$\epsilon_{\mathtt{R}}$
0 1 6 7 8 9	100.11		307 355 402 407 411 416	-1412 -1327 -1427 -1419 -1426 -1423	2019 1967 1938 1927 1932 1926	1716 1647 1683 1673 1679 1675
10 100 1006 2007 3001 3999 4997 5998 7001 7999 8999 9994 12502 14998 17503 20000 24500 24500 30006 32495	100.20 100.22 100.35 100.43 100.53 100.63 100.71 100.80 100.97 101.04 101.17 101.23 101.31 101.39 101.48 101.56 101.65 101.73	0.02 0.15 0.23 0.33 0.43 0.51 0.60 0.65 0.70 0.77 0.84 0.97 1.03 1.11 1.19 1.28 1.36 1.41 1.45 1.53	423 First cra	-1428	1924 ved	1676
34999 37503 39998	101.79 101.84 101.88	1.59 1.64 1.68				
44999 50002 54996	101.97 102.03 102.10	1.77 1.83 1.90		•		
60005 65009 70008	102.14 102.20 102.29	1.94 2.00 2.09				
75006 80002 85003	102.33 102.39 102.44	2.13 2.19 2.24		•		
90005 95008 100007	102.51 102.53 102.58	2.31 2.33 2.38	· .			
110006	102.64	2.44				

Test #32 (Continued)

Cycles	TQ.	ΔR					
O _I CICS	R_{g}						
120000	102.70	2.50					
130006	102.76	2.56					
140005	102.82	2.62					
150014	102.87	2.65					
160010	102.91	2.71		•			
169997	102.93	2.73					
180013	103.00	2.80					
190006	103.04	2.84					
200008	103.09	2.89					
210008	103.11	2.91					
220007	103.14	2.94					
230011	103.17	2.97					
239999	103.19	2.99					
250003	103.22	3.02					
260002	103.25	3.05					
269997	103.27	3.07					
279987	103.28	3.08					
290000	103.34	3.14					
295010	103.39	3.19					
30 5008	103.38	3.18					
309994	103.38	3.18					
315132	103.40	3.20					
319995	103.43	3.23					
324996	103.45	3.25	,				
329997	103.51	3.31					
334001	103.59	3.39	Ероху	backing	of	gage	penetrated
334991	103.60	3.40					
337488	103.67	3.47					
338352	103.73	3.53					
338835	103.76	3.56					
339519	103.79	3.59					
340874	104.13	3.93					
341608	Gage faile	α					

Test #33

Strain Level: ±1929με

Mean Strain: 294με

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	ε _c	ε _t	$\epsilon_{ m R}$
0 1 6 7 8	100.14		256 363 412 423 432	-1612 -1634 -1625 -1631 -1635	2364 2253 2230 2227 2236	1988 1944 1928 1929 1936
9 10 100 489 996 1499	100.19 100.23 100.37 100.47 100.62	0.04 0.10 0.28 0.43	449 450	-1637 -1635	2213 2222	1925 1929
1998 2994 4004 5004 5998	100.76 100.97 101.12 101.25 101.40 101.51	0.57 0.78 0.93 1.06 1.21 1.32	First c	rack cbser	veď	
7987 9002 9996 12497 14998 17495	101.63 101.78 101.84 102.06 102.25 102.40	1.44 1.59 1.65 1.87 2.06 2.21				
19994 22495 24995 27505 30005 32498	102.53 102.64 102.76 102.86 102.94 103.03	2.34 2.45 2.57 2.67 2.75 2.84				
34998 37511 39994 42500 44991 47498	103.10 103.18 103.25 103.30 103.35	2.91 2.99 3.06 3.11 3.16 3.23				
49998 52500 55005 57502 59997 62496 65004	103.46 103.50 103.57 103.62 103.69 103.72	3.27 3.31 3.38 3.43 3.50 3.53 3.53				

Test #33 (Continued)

Cycles	Rg	ΔR					
67508	103.81	3.62					
70007	103.84	3.65					
72500	103.87	3,68					
75003	103.90	3.71					
77493	103.94	3.75					
80004	103.96	3.77					
82499	104.00	3.81					
85009	104.03	3.84					
87563	104.05	3.86					
90004	104.09	3.90	•				
92498	104.11	3.92					
94996	104.11	3.92					
97499	104.16	3.97					
100004	104.19	4.00					
102494	104.23	4.04					
105001	104.26	4.07					
107500	104.31	4.12					
109395	104.37	4.18					
112496	104,41	4.22					
114986	104.45	4.26					
117494	104.46	4.27	Crack	observed	on	bottom	surface
119998	104.49	4.30					
122496	104.51	4.32					
124999	104.55	4.36					
127497	104.60	4.41					
128992	104.64	4.45					
130005	104.73	4.54					
130494	104.79	4.60					
130996	104.90	4.71					
131272	105.00	4.81					
131569	105.14	4.95					
131731	105.27	5.08					
132083	105.86	5.67					
132301	Gage faile	d					

Test #34

Strain Level: $\pm 2450 \mu \epsilon$

Mean Strain: $502\mu\epsilon$

Cycles	Rg	ΔR	εn	ε _C	εt	$\epsilon_{\mathbf{R}}$
0 1 6 7 8	99.90 99.94		-1092 -900 -815 -825 -808	-1950 -1962 -1963 -1950 -1954	2955 2938 2920 2950 2946	2453 2450 2442 2450 2450
9 10	99.96		-782 -782	-1973 -1960	2917 2964	2445 2462
100	100.06	0.10	-762	-1960	2904	2402
512	100.52	0.56				
998	100.90	0.94				
1496	101.16	1.20				
1995	101.42	1.46	First cra	ck observ	ed	
3002	101.92	1.96				
4001	102.28	2.32				
5002	102.53	2.57				
6001	102.82	2.86	•			
6999	102.99	3.03				
7996	103.03	3.07				
8996	103.16	3.20	1			
10003	103.29	3.34				
12495	103.60	3.64				
15005 17499	103.82	3.86				
20005	104.03 104.17	4.07 4.21				
22509	104.17	4.43				
25011	104.46	4.50				
27509	104.52	4.56				
29998	104.61	4.65	Crack obs	erved on l	bottom s	urface
32502	104.72	4.76				
35004	104.77	4.81				
37498	104.84	4.88				
38370	104.88	4.92				
39000	105.04	5.08				
39483	105.39	5.43				
39733	105.76	5.80				
39885	106.10	6.14				
40136	Gage faile	d				

Test #35

Strain Level: ±3219με

Mean Strain: 925με

Cycles	Rg	ΔR	$\epsilon_{\mathtt{n}}$	ε _C	εt	$\epsilon_{\mathtt{R}}$
0 1 6 7 8	100.12		252 397 600 614 639	-2250 -2295 -2283 -2280 -2268	4366 4225 4151 4149 4149	3308 3260 3217 3215 3209
9 10 100 499 990 1493	100.28 100.51 101.13 101.69 102.14	0.23 0.85 1.41 1.86	695 750	-2295 -2300	4163 4150	3229 3225
1996 3002 4007 4992 5996 6995 7994	102.51 103.06 103.54 103.81 104.07 104.30	2.23 2.78 3.26 3.53 3.79 4.02 4.20	First	crack obserb	ed	
9004 9998 10999 12000 12997 14002	104.63 104.76 104.88 104.95 105.06 105.15 105.26	4.35 4.48 4.60 4.67 4.78 4.87 4.98				
15003 16038 16999 17998 18992 19992 21000	105.26 105.35 105.42 105.48 105.53 105.58	5.07 5.14 5.20 5.25 5.30 5.32				
21644 21994 22207 22282 22383 22505	105.60 105.71 105.94 106.07 106.35 106.72	5.32 5.43 5.66 5.79 6.07 6.44 6.76				
22573 22606 22621	107.04 107.35 Gage faile	7.07				

Test #36

Strain Level: $\pm 2444 \mu \epsilon$

Mean Strain: $623\mu\epsilon$

Cycles	Rg	ΔR	$\epsilon_{\mathbf{n}}$	εc	ε _t	$\epsilon_{\mathtt{R}}$
0 1 6 7 8 9	99.98 100.01		-620 -372 -189 -165 -155	-1755 -1790 -1774 -1792 -1777	3495 3260 3124 3097 3118	2625 2525 2449 2445 2448
10 100 502 1017	100.08 100.18 100.50 100.74	0.10 0.42 0.66	-138 -080	-1772 -1820	3101 3065	2437 2443
1500 1998 3000 3999 5005	101.01 101.17 101.53 101.77 102.00	0.93 1.09 1.45 1.69 1.92	First crac	ck observe	ed	
5997 7002 8000 9003 10006	102.20 102.35 102.50 102.61 102.72	2.12 2.27 2.42 2.53 2.64				
12507 15007 17508 20013 22497	102.99 103.17 103.35 103.51 103.61	2.91 3.09 3.27 3.43 3.53	Crack cbse	erved on l	oottom	surface
24997 27500 30004 31004 32001	103.76 103.86 103.92 103.97 104.00	3.68 3.78 3.84 3.89 3.92				
32993 34008 35004 35996 37509	104.02 104.07 104.11 104.12 104.16	3.94 3.99 4.03 4.04				
40002 42505 45010 47508	104.21 104.27 104.33 104.37	4.08 4.13 4.19 4.25 4.29				
49995 52508 55008	104.42 104.48 104.52	4.34 4.40 4.44				

Test #36 (Continued)

Cycles	R _g	Δ
57497	104.54	4.46
60002	104.58	4.50
62502	104.62	4.54
64999	104.68	4.60
67503	104.71	4.63
70005	104.75	4.67
72507	104.78	4.70
74986	104.86	4.78
76000	104.90	4.82
76507	104.95	4.87
77013	105.02	4.94
77992	105.16	5.08
78507	105.36	5.28
79006	105.57	5.49
79503	Gage fail	leđ

Test #37

Strain Level: ±4316με

Mean Strain: 1458με

Cycles R_g Unstrained ε_n ε_c ε_t ε_R 0 99.94 -4263 -4700 -7558 1073 4316

Test #38

Strain Level: ±4160με

Mean Strain: 1453με

Cycles R_g Unstrained ϵ_n ϵ_c ϵ_t ϵ_R 0 100.01 -4375 -5028 -7735 584 4160

Test #1A

Strain Level: +3826με

Mean Strain: 1236με

Cycles	Rg	ΔR	εn	εc	ε _t	εR	
0 1 6 7 8 9	100.02 100.03		-195 -155 072 088 146 178 214	-2513 -2593 -2584 -2569 -2605 -2595 -2585	5149 5128 5069 5083 5054 5053 5057	3831 3861 3827 3826 3830 3824 3821	2/3/70
10 100 1005	100.91 101.14 103.07	***					2/17/70
1005	102.35						2/18/70
1005	102.29						5/14/70

*** Readings taken on 2/17/70 did not register the expected results. At that time no explanation was available. However, after checking the set-up it was felt that possibly a partial ground existed in the terminal strip. Accordingly a new terminal strip was mounted 2/18/70 and the resistance change checked. The results of this check and following tests seemed to verify this idea.

Test #2A

Strain Level: $\pm 3958 \mu \epsilon$

Mean Strain: 1256με

Cycles	Rg	ΔR	^e n	[€] c	ε _t	εR	
0	100.14		423	-2635	5330	3983	
6 7 8 9	100.18		668 751 787 823 898	-2638 -2670 -2674 -2673 -2695	5289 5249 5241 5239 5207	3964 3960 3958 3956 3951	2/3/70
10 100	100.20 100.62				•		2/18/70
100	100.55			•			5/14/70

Test #3A

Strain Level: ±4389µɛ

Mean Strain: 1420με

Cycles	Rg	ΔR	ε _n	[€] c	ε _t	$\epsilon_{\mathtt{R}}$	
0 1 5 7 8 9	99.94 99.99		-623 -527 -150 -107 -040 022 053	-2877 -2955 -2962 -2951 -2957 -2969 -2952	6093 6017 5861 5841 5808 5793	4485 4486 4412 4396 4383 4381 4372	2/3/70
10 100 1002 1253	100.10 100.61 103.03 103.39	0.51 2.91 3.27	-1350	-3022	5739	4380	4/1/70
1523 1991 2499 2996 3498 3998 4490 5002 5554 6111 6242 6497 6998	103.71 104.25 104.68 105.02 105.27 105.50 105.74 105.87 106.08 106.18 106.23 106.28	6.08 6.13 6.18 6.24	crack obs	served on	bottom	sruface	2
7207 7312	106.77 Gage fa	6.67 iled					4/15/70

Test #4A

Strain Level: ±3980με

Mean Strain: 1126με

Cycles	Rg	ΔR	εn	c ·	εt	εR	
0 1 6 7 8 9	100.09 100.15		090 221 422 402 512 555 649	-2703 -2771 -2800 -2745 -2814 -2833 -2881	5090 5030 5146 5228 5147 5174 5132	3897 3901 3973 3987 3981 3953 4007	2/3/70
10 100	100.19 100.62		-858	-2907	5116	4010	4/1/70
100	100.57						5/14/70

Test #5A

Strain Level: ±2637με

Mean Strain: 1334με

Cycles	Rg	ΔR	εn	[€] c	εt	ε _R	
0 1 6 7 8 9	99.93 99.93		-889 -769 -540 -509 -436 -413 -395	-2616 -2665 -2663 -2640 -2673 -2669 -2662	5344 5318 5263 5277 5248 5245 5329	3980 3992 3963 3960 3961 3958 3996	2/3/70
10 11 12 13 14 15 100 1009	99.98 100.05 100.20 100.94 101.52 101.93	0.07 0.22 0.96 1.54 1.95	-488 -017 012 007 -008 023	-1982 -2075 -2059 -2047 -2034 -2052	3663 3210 3198 3206 3232 3217	2822 2643 2649 2627 2633 2635	
3000 4002 4992 6002 6988 7999 8994 10003 12499	101.93 102.27 102.52 102.73 102.94 103.13 103.24 103.41 103.68 103.92	2.29 2.54 2.75 2.96 3.15 3.26 3.43 3.70 3.94	First c	rack obse	erved		3/10/70

APPENDIX E

MEAN STRAIN

A remark is in order concerning the significance of the quantity which has been called mean strain in this thesis. Through oversight, no strain indication was observed when the specimen was in an unstrained condition. Accordingly, there is no basis for determining a reference strain indication which is necessary to determine actual strain levels at any time, and in particular to determine the mean strain. However, it was observed that the strain indication always was positive when the specimen was in the position causing greatest tensile strain, and that the loading on the specimen was actually such as to cause tensile strain in this position. Similarly, when the loading was such as to cause maximum compressive strain, the strain actually was compressive and the strain indication was negative. Accordingly, it may be concluded that the mean strain did not exceed the strain level (ϵ_R) in absolute value.

In Appendix A there is discussion of other tests made with varying mean strains. These tests indicate that the variations in mean strain do not appear to have a pronounced effect upon the performance of the gage. Furthermore, from a qualitative examination of the eccentric mechanism on the fatigue machine, it appears that when the specimen is in the neutral position, the actual strain level is quite small compared to the strain amplitude due to cycling.

In order to shed definite light on this matter, two final experiments were conducted in which a strain indication was

observed for the specimen in an unstrained condition. The results are:

	Test	Number	37	Test	Number	38
€ R		4316			4160	
Mean Strain (As recorded this study)	in	1458			1453	
True Mean Strain		1021			800	

This indicates that the true mean strain is about $500\mu\epsilon$ less than the quantity herein called mean strain when the specimen was positioned so as to give an ϵ_R of about $4200\mu\epsilon$. Presumably the descrepancy is of the same order of magnitude when the specimen is loaded in other positions.

BIBLIOGRAPHY

- 1. <u>S/N Fatigue Life Gage</u>, Product Bulletin PB 103, Micro-Measurements, Inc., Romulus, Michigan.
- 2. Harting, D. R., Fatique Life Gaging Methods, U. S. Patent 3,272,003, 13 September 1966.
- 3. S/N/ Fatigue Life Gage Application Manual, 2nd Edition, Micro-Measurements, Inc., Romulus, Michigan.
- 4. Rowe, G. L., <u>Fatigue Testing of 70-30 Copper-Nickel</u>, M.S. Thesis, Naval Postgraduate School, December 1969.
- 5. Instrumentations Systems, Instruction Manual, S/N Fatigue Life Educational Kit, W. T. Bean, Inc., Detroit, Michigan.
- 6. Livingston, G. F., An Investigation of the S/N Fatigue Life Gage, M.S. and N.E. Thesis, M.I.T., May 1968.
- 7. Triebes, C. J., Jr., An Investigation of the S/N Fatigue Gage, M.S. and N.E. Thesis, M.I.T., June 1966.
- 8. Personal communications with Mr. R. J. Whitehead of Micro-Measurements, Inc., Romulus, Michigan.

Security Classification			
DOCUMENT CONT (Security classification of title, body of abstract and indexing a	ROL DATA - R & D	the overall tenort is classified)	
(Security classification of fills, body of abarract and indexing a 1. ORIGINATING ACTIVITY (Corporate author)		ORT SECURITY CLASSIFICATION	
Naval Postgraduate School	1	lassified	
Monterey, California 93940	26. GROU		
3. REPORT TITLE			
Fatigue Monitoring of 70-30 Copper-	Nickal		
racigue monitoring of 70 30 copper	NICKEI		
<u></u>			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Master's Thesis; June 1970	·		
5. AUTHOR(5) (First name, middle initial, last name)			
l ,			
Franklin Bruce Lash			
6. REPORT DATE	TA. TOTAL NO. OF PAGES	7b. NO. OF REFS	
1	1		
June 1970	103	NUMBER(S)	
se. CONTRACT ON GRANT NO.	TE, Univina I un e ngren i	NUMBER17	
b. PROJECT NO.	}		
a. Phose Cine.			
c.	M. OTHER REPORT NO(S) (Any other numbers that may be essigned	
· ·	this report)	, , , , , , , , , , , , , , , , , , ,	
d.			
10. DISTRIBUTION STATEMENT	L		
This document has been approved for	nublic release	and cale:	
its distribution is unlimited.	Puntio rototto	and sale,	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	ACTIVITY	
į	Naval Postgraduate School		
	Monterey, Cal:		
13. ABSTRACT			
Recent tests by G. L. Rowe indic	rated the mossi'	hility of monitoring	
faitgue damage of 70-30 copper-nicke	of he use of a	commercial fations	
life gage. The work reported herein	n however, whi	ch includes tests at	
cyclic strain levels considerably has	igher and lower	than those used by	
Rowe, suggests that much more study	and developmen	t will be required	
before in-service monitoring will be	e useful or rel	iable. Fatigue fail-	
ure, using initial surface crack for	rmation as a cr	iterion takes place	
at low cyclic strain levels with app	preciably small	er gage indication	
than does failure at medium or high	cvolic strain	levels. It is further	
noted that ability to detect surface	e cracks depend	s greatly upon the	
expertise of the observer so that a	less subjectiv	e criterion of	
failure should be developed.			
l j			
f			
I			

Security Classification KEY WORDS	LIN	LINK A		LINK B		LINK C	
	ROLE		ROLE	w T	ROLE	WT	
		}					
Fatigue		ļ					
70-30 Copper-Nickel							
S/N Fatigue Life Gage							
5/N racigue dile Gage							
						İ	
		ŀ					
		Ì					
		ļ					
					1		
			j				
		}		!			
			Ì	ĺ			
]			
		1					

DD FORM .. 1473 (BACK)

106 -

Security Consideration

A-31401