

Lecture 17

Correlation & Linear Regression

Prediction

Guessing the Future

Based on incomplete information

- One way of making predictions:
 - To predict an outcome for an individual,
 - find others who are like that individual
 - and whose outcomes you know.
 - Use those outcomes as the basis of your prediction.

Association

Two Numerical Variables

- Trend
 - Positive association
 - Negative association
- Pattern
 - Any discernible "shape" in the scatter
 - Linear
 - Non-linear

Visualize, then quantify

(Demo)

Correlation Coefficient

Definition of *r*

Correlation Coefficient (r) =

average of	product of	x in standard	and	y in standard
		units		units

Measures how clustered the scatter is around a straight line

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - \circ r = -1: scatter is perfect straight line sloping down
- *r* = 0: No linear association; *uncorrelated*

(Demo)

Discussion Question

For each pair, which one will have a higher value of r?

Properties of Correlation

Properties of r

- r is a pure number, with no units
- r is not affected by changing units of measurement
- r is not affected by switching the horizontal and vertical axes

Watch out for:

- Jumping to conclusions about causality
- Non-linearity
- Outliers
- Ecological correlations, based on aggregates or averaged data

Don't jump to conclusions about causality

Watch out for non-linearity.

$$r = 0.0$$

Watch out for outliers.

$$r = 0.0$$

Watch out for ecological correlations, based on aggregates or averaged data.

r = 0.98

Prediction

Galton's Heights

Galton's Heights

Galton's Heights

$$r = 0.99$$

$$r = 0.0$$

$$r = 0.5$$

$$r = 0.2$$

Nearest Neighbor Regression

A method for prediction:

- Group each x with a representative x value (rounding)
- Average the corresponding y values for each group

For each representative x value, the corresponding prediction is the average of the y values in the group.

Graph these predictions.

If the association between x and y is linear, then points in the graph of averages tend to fall on the regression line.

Regression to the Mean

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average, y deviates from 0 less than x deviates from 0

Regression Line
$$y_{(su)} = r \times x_{(su)}$$

Not true for all points — a statement about averages

Linear Regression

(Demo)

Slope & Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$\left| \frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} \right| = r \times \left| \frac{\text{the given } x - \text{average of } x}{\text{SD of } x} \right|$$

y in standard units

x in standard units

Lines can be expressed by slope & intercept

$$y = \text{slope} \times x + \text{intercept}$$

Regression Line

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

(Demo)