Formelsammlung Physik

Mario Felder Michael Fallegger

14. April 2014

Inhaltsverzeichnis

1	Bev	regung	1			
	1.1	Gerade Bewegung	1			
		1.1.1 Spezialfall: konstante Beschleunigung a	1			
	1.2	Bewegung im Raum	2			
		1.2.1 Bahnkurve	2			
		1.2.2 Kreisbewegung	2			
	1.3	Schiefer Wurf	2			
			3			
		1.3.2 schräge Zerlegung	3			
2	Kra	ft	5			
	2.1	Übersicht	6			
	2.2	Federkraft	7			
	2.3	Reibung	7			
		2.3.1 Kontaktkräfte: Normal- & Reibungskraft	7			
		2.3.2 Luftwiderstand	8			
	2.4	Kurvenkräfte	8			
			8			
		2.4.2 Neigungswinkel	8			
3	Arbeit und Energie					
	3.1	Arbeit	. 1			
	3.2	Energie	2			
	3.3	Leistung	2			
		3.3.1 Bewegung mit konstanter Leistung	2			

INHALTSVERZEICHNIS

4 Impuls und Kraftstoss		ouls und Kraftstoss 15
	4.1	Impuls \vec{p}
	4.2	Kraftstoss \vec{J}
	4.3	Impulserhaltung
		4.3.1 elastischer Stoss
		4.3.2 inelastischer Stoss
5	Sch	werpunkt 19
	5.1	Bewegung des Schwerpunktes
	5.2	Raketenantrieb
6	Rot	cation
	6.1	Übersicht
	6.2	Kreisbewegung
	6.3	Trägheitsmoment
		6.3.1 Parallel Axis Theorem:
		6.3.2 Trägheitsmoment regelmässiger Körper 23
	6.4	Perfektes Rollen
		6.4.1 Momentane Drehachse P 25
	6.5	Drehmoment \vec{M}
	6.6	Arbeit und Leistung (rot.) 25
	6.7	Drehimpuls \vec{L} und Drallsatz
	6.8	Präzession
7	Sch	wingungen 29
	7.1	Einfache harmonische Schwingung 29
		7.1.1 $x(t), v(t) \text{ und } a(t) \text{ der EHS } \dots \dots 30$
		7.1.2 EHS und Kreisbewegung
		7.1.3 Energie der harmonischen Schwingung 31
		7.1.4 Torsion, Koordinate θ
		7.1.5 Fadenpendel
		7.1.6 Physikalisches Pendel
	7.2	Gedämpfte Schwingung
		7.2.1 Abklingkonstante β , Zerfallszeit τ
		7.2.2 Torsionsschwingung mit Dämpfung 34
		7.2.3 Physikalisches Pendel mit Dämpfung 34
		7.2.4 Elektrischer Schwingkreis 35
		7.2.5 Energieverlust durch Dämpfung 35

		7.2.6 Güte, Q -Faktor bei kleiner Dämpfung	36
	7.3	Erzwungene Schwingung	36
			37
			37
8	Wel	len .	39
	8.1		40
	0.1		40
	8.2	9	40
	8.3		41
	8.4	· · · · · · · · · · · · · · · · · · ·	${42}$
	8.5	8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	42^{-2}
			43
	8.6		43
	8.7		44
	8.8		45
	8.9		45
	8.10		45
	8.11	~	46
	8.12		46
		8.12.1 Harmonische	46
		8.12.2 Orgelpfeife	47
		8.12.3 Wasserwelle	47
9	Wäı	rme .	49
	9.1		49
	9.2		49
	9.3	8 8	50
	9.4		50
	9.5		51
	9.6		51
	9.7	9	51
	9.8		52
	9.9	-	53
	9.10		53
	9.11		54
	9.12	Innere Energie U, Erster Hauptsatz der TD	54
			55

INHALTSVERZEICHNIS

9.12.2	Zustandsänderungen des idealen Gas	56
9.12.3	Spezifische Wärme C_p des idealen Gas	56
9.12.4	Adiabatischer Prozess des idealen Gas	56
Appendices		59
A Periodensy	ystem	i

Bewegung

1.1 Gerade Bewegung

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{x}$$

$$\Delta x = \lim_{\Delta t_i \to 0} \sum_{i=1}^{n} v_i \cdot \Delta t = \int_{tA}^{tB} v \mathrm{d}t$$

1.1.1 Spezialfall: konstante Beschleunigung a

$$a(t) = a = \text{konstant}$$

$$v(t) = v_0 + a \cdot t$$

$$x(t) = x_0 + v_0 \cdot t + \frac{1}{2}a^2$$

$$\Delta x = x - x_0 = v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$$

$$v^2 = v_0^2 + 2a\Delta x$$

$$a = \frac{v(t)^2 - v_0^2}{2 \cdot \Delta s}$$

1.2 Bewegung im Raum

Postition, Geschwindigkeit und Beschleunigung sind Vektoren.

$$\vec{\Delta r} = \vec{r_2} - \vec{r_1} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$v \to \vec{v} = \lim_{\Delta t \to 0} \frac{\vec{\Delta r}}{\Delta t} = \frac{d\vec{r}}{dt} = (\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt})$$

$$a \to \vec{a} = \lim_{\Delta t \to 0} \frac{\vec{\Delta v}}{\Delta t} = \frac{\vec{dv}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

1.2.1 Bahnkurve

Die Geschwindigkeit liegt immer tangential an der Bahnkurve.

Die Beschleunigung zeigt immer nach innen.

1.2.2 Kreisbewegung

Bei einer **gleichförmigen** Kreisbewegung (v = konst.) gilt:

$$a_{ZP} = a_{radial} = \frac{v^2}{r} = \omega^2 \cdot r$$

Bei einer **ungleichförmigen** Kreisbewegung gilt:

$$a_{radial} = \frac{v^2}{r} = \omega^2 \cdot r$$
 $a_{tangential} = \frac{\mathrm{d}|v|}{\mathrm{d}t}$

1.3 Schiefer Wurf

x- und y-Bewegung sind unabhängig:

1		
	horizontal:	vertikal:
	$a_x = 0$	$a_y = -g$
	$v_x = v_0 \cdot \cos \alpha_0$	$v_y = v_0 \cdot \sin \alpha_0 - g \cdot t$
	$x = (v_0 \cdot \cos \alpha_0) \cdot t$	$y = (v_0 \cdot \sin \alpha_0) \cdot t - \frac{1}{2}g \cdot t^2$
		$v_y^2 = v_{0y}^2 - 2gy$

Wurfdauer:

$$t_R = \frac{2 \cdot v_{0y}}{g} = \frac{2v_0 \cdot \sin \theta}{g}$$

Wurfweite:

$$R = x(t_r) = \frac{v_0^2 \sin 2\theta}{g}$$

1.3.1
$$x(t), y(t) \leftrightarrow y(x)$$

$$y(x) = \tan \theta_0 \cdot x - \frac{g}{2(v_0 \cos \theta_0)^2} \cdot x^2$$

1.3.2 schräge Zerlegung

Die Komponentenzerlegung eines Vektors ist beliebig. Manchmal ist eine schräge Zerlegung besser als eine Senkrechte, beispielsweise in die $\vec{v_0}$ und \vec{g} Richtung:

$$s = v_0 \cdot t \qquad \qquad y = \frac{1}{2}g \cdot t^2$$

Kraft

Die 4 fundamentalen Käften sind:

- Gravitationskraft (Anziehung zwischen Massen) (Bsp: Anziehung zwischen Sonne und Erde, Gezeitenkräfte)
- Elektromagnetische Kraft (Kräfte zwischen Ladungen) (Bsp: Reibung, Seilkraft, Lorentzkraft)
- Schwache Kraft und starke Kraft (Kernkräfte) (Bsp: Radioaktiver Zerfall, Anziehung zwischen Protonen und Neutronen)

• Kräfte sind Vektoren:

$$\vec{F}_{Res} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$

 $\vec{F} = (F_x, F_y, F_z) = (F_r, F_\varphi, F_z)$

• Trägheitsgesetz (1. Axiom)

$$\vec{F}_{Res} = 0 \leftrightarrow \vec{a} = 0 \leftrightarrow \vec{v} = \text{konstant}$$

• Bewegungsgleichung (2. Axiom)

$$\vec{F}_{Res} = m \cdot \vec{a} \leftrightarrow F_x = m \cdot a_x, F_y = m \cdot a_y, F_z = m \cdot a_z$$

• Wechselwirkungsgesetz (3. Axiom)

$$\vec{F}_{K\ddot{o}rper\ A\ auf\ K\ddot{o}rper\ B} = -\vec{F}_{K\ddot{o}rper\ B\ auf\ K\ddot{o}rper\ A}$$

2.1 Übersicht

Kraft	Gleichung	Ursprung und Bemer- kung
Feder	$F_{Feder} = k \cdot x \; (\vec{F}_H = -k \cdot \vec{x})$	(em); lineare Näherung - Hooke'sches Gesetz
Normalkraft	$F_N = F_g \cdot \cos \theta$	(em); F_N ist immer senkrecht zur Kontaktfläche
Hangkraft	$F_H = m \cdot g \cdot \sin \theta$	(em); F_H ist immer parallel zu Kontaktfläche
Haftreibung	$F_{HR} < F_{HR,max} = \mu_{HR} \cdot F_N$	(em); Parallel zur Kontakt- fläche und der angreifenden Kraft engegengesetzt
Gleitreibung	$F_{GR} = \mu_{GR} \cdot F_N$	(em); Der Bewegung entgegengesetzt; Van der Waals Kräfte
Lorentzkraft	$F_L = qvB \cdot \sin \theta$	(em); $\vec{F}_L = q(\vec{v} \times \vec{B})$
Hydrostatische	$F_{hydr} = \rho g h \cdot A = \int \rho g h dA$	Gravitation (und em);
Kraft	J	$p_{hydr} = \rho g h$ ist der hydrostatische Druck
Auftrieb	$F_A = \rho_{Fluid} g V_{K\"{o}rper}$	Gravitation (und em)

2.2 Federkraft

Hooke'sches Gesetz:

$$F_{Feder} = k \cdot \Delta x$$
 $[k] = \frac{N}{m}$

Federn in Serie:

$$F_{Res} = k_{Res} \cdot \Delta x$$

wobei:

$$k_{Res} = \frac{k_1 \cdot k_2}{k_1 + k_2}$$

oder allgemein:

$$k_{Res} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \dots}$$

Federn parallel:

$$F_{Res} = k_{Res} \cdot \Delta x = F_{H,1} + F_{H,2} + \dots = (k_1 + k_2 + \dots) \cdot \Delta x$$

2.3 Reibung

2.3.1 Kontaktkräfte: Normal- & Reibungskraft

Die Normalkraft steht immer senkrecht auf der Kontaktfläche.

Die Reibungskraft zeigt immer parallel zu Kontaktfläche.

Haftreibungskraft:

$$F_{Zug} = F_{HR} \le \mu_{HR} \cdot F_N$$

Die Haftreibung muss überwunden werden, damit sich der Körper in Bewegung setzt.

Solange die angreifende Kraft F_{Zug} nicht grösser als $F_{HR,max} = \mu_{HR}$.

 F_N ist, ist die Haftreibungskraft gleich der Zugkraft.

Gleitreibung:

$$F_{GR} = \mu_{GR} \cdot F_N$$

Die Gleitreibung zwischen festen Körpern hängt nicht von deren relativer Geschwindigkeit v ab.

 $\mu_{GR} < \mu_{HR}!$

2.3.2 Luftwiderstand

Im Gegensatz zur Reibung zwischen festen Körpern ist der Luftwiderstand von der Fahrgeschwindigkeit v abhängig.

$$F_{LW,l} = b \cdot v$$
 langsam, kleines v schnell, grosses v

2.4 Kurvenkräfte

2.4.1 Zentripetalkraft

$$F_{rad} = F_{Zentripetal} = m \cdot a_{rad} = m \frac{v^2}{R} = m\omega^2 R = m \frac{4\pi^2 R}{T^2}$$

2.4.2 Neigungswinkel

Bei hängenden Massenen:

$$\boxed{\tan \beta = \frac{\omega^2 R}{g} = \frac{R}{H}}$$

mit $H=\frac{g}{\omega^2}$; die Höhe unter der Aufhängung ist einzig eine Funktion der Kreisfrequenz ω und g, nicht der Seillänge L!

Steilwandkurven:

$$\tan \beta = \frac{F_{ZP}}{F_g} = \frac{v^2}{R \cdot g}$$

In die Kurve liegen (Winkel β gegenüber horizontalen sonst wie bei Steilwandkurve):

$$\tan \beta = \frac{F_g}{F_{ZP}} = \frac{R \cdot g}{v^2}$$

Arbeit und Energie

3.1 Arbeit

Eine Kraft verrichtet Arbeit an einem Körper, wenn sie sich mit diesem verschiebt.

Bei konstanter Kraft:

$$W = F_{||} \cdot s = F \cdot \cos \theta \cdot s$$

$$[W] = N \cdot m = \frac{kg \cdot m^2}{s^2} = J = Joule$$

Bei veränderlicher Kraft:

$$W = \sum_{i} F_{||}(x_i) \cdot dx_i = \int_a^b F_x(x) \cdot dx$$

Federarbeit:

$$W = \int_{a}^{b} F_{x} \cdot \mathrm{d}x = k \int_{a}^{b} x \cdot \mathrm{d}x$$

3.2 Energie

Energie kann weder vergehen noch entstehen. Energie kann nur umgewandelt oder zwischen Körpern ausgetauscht werden.

Beschleunigungsarbeit	kinetische Energie
$W_{beschl} = ma \cdot \Delta x$	$\Delta E_{kin} = \frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2$
Reibungsarbeit	innere, thermische Energie
$W_{gleiten} = \mu_{GleitR} F_N \cdot \Delta x$	ΔQ
Hubarbeit	potentielle Energie der Höhe
$W_{hub} = mg \cdot \Delta h$	$\Delta E_{pot} = mg \cdot \Delta h$
Dehnarbeit an der Feder	potentielle Energie der Spannung
$W_{dehnen} = \int_0^s F_{zug} \cdot \mathrm{d}x = \frac{1}{2}ks^2$	$\Delta E_{elast} = \frac{1}{2}ks^2$
	Rotationsenergie
	$E_{rot} = \frac{1}{2}I\omega^2$

3.3 Leistung

Definition Leistung:

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{F \cdot \mathrm{d}s}{\mathrm{d}t} = F \cdot v$$

Durchschnittliche Leistung:

$$\langle P \rangle = \frac{\int_{t_1}^{t_2} P dt}{t_2 - t_1} = \frac{\Delta W}{\Delta t}$$

$$[P] = W = \frac{J}{s} = \frac{kg \cdot m^2}{s^3}$$

1PS = 735.5W

3.3.1 Bewegung mit konstanter Leistung

$$v = \sqrt{\frac{2 \cdot P \cdot t}{m}}$$

$$\Delta t = (v_2^2 - v_1^2) \frac{m}{P}$$

$$s = \int v \cdot dt = \sqrt{\frac{2 \cdot P}{m}} \int \sqrt{t} \cdot dt = \frac{2}{3} \sqrt{\frac{2 \cdot P \cdot t^3}{m}} \Big|_{t_A}^{t_B}$$

Impuls und Kraftstoss

4.1 Impuls \vec{p}

Definition:

$$\vec{p} = m \cdot \vec{v}$$

Das zweite Newtonsche Gesetz verallgemeinert:

$$\sum \vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

4.2 Kraftstoss \vec{J}

Definition des Kraftstosses (Impulsänderung):

$$\vec{J} = \int_{t_1}^{t_2} (\sum \vec{F}) dt = \vec{p}_2 - \vec{p}_1$$

Durchschnittliche Kraft:

$$\vec{F}_{average} = \frac{1}{\Delta t} \int_{t_1}^{t_2} \vec{F}(t) \mathrm{d}t = \frac{\vec{J}}{\Delta t}$$

4.3 Impulserhaltung

Definition Gesamtimpuls:

$$\vec{P} = \vec{p}_A + \vec{p}_B + \vec{p}_C + \dots$$

Ist die Vektrosumme aller äusseren Kräfte auf ein System Null, bleibt der Gesamtimpuls erhalten:

$$\sum \vec{F}_{extern} = 0 \leftrightarrow \vec{P} = konst.$$

4.3.1 elastischer Stoss

Definition:

Beim elastischen Stoss bleibt die kinetische Energie vor und nach dem Stoss vollständig erhalten.

Mit dem Energie- und Impulserhalt:

$$\frac{1}{2}m_A v_{A1}^2 + \frac{1}{2}m_B v_{B1}^2 = \frac{1}{2}m_A v_{A2}^2 + \frac{1}{2}m_B v_{B2}^2$$
$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = m_A \vec{v}_{A2} + m_B \vec{v}_{B2}$$

ergibt sich:

$$v_{A2} = \frac{m_A \cdot v_{A1} + m_B (2 \cdot v_{B1} - v_{A1})}{m_A + m_B}$$
$$v_{B2} = \frac{m_B \cdot v_{B1} + m_A (2 \cdot v_{A1} - v_{B1})}{m_A + m_B}$$

4.3.2 inelastischer Stoss

Definition:

Beim inelastischen Stoss wird ein Teil der kinetischen Energie in Verformungsarbeit gesteckt.

Gemeinsame Geschwindigkeit nach dem Stoss:

$$\vec{v}_{A2} = \vec{v}_{B2} = \vec{v}_2$$

$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = (m_A + m_B) \cdot \vec{v}_2$$

 \vec{v}_2 ist die Geschwindigkeit des Schwerpunktes der beiden Körper.

Schwerpunkt

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$
$$y_{cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

oder durch integrieren:

$$x_{cm} = \frac{1}{M} \int_0^M x \cdot dm$$
$$y_{cm} = \frac{1}{M} \int_0^M y \cdot dm$$

5.1 Bewegung des Schwerpunktes

$$v_{cm,x} = \frac{m_1 v_{1x} + m_2 v_{2x} + m_3 v_{3x} + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\mathrm{d}x_{cm}}{\mathrm{d}t}$$

Gesamtimpuls des Systems:

$$M \cdot \vec{v}_{cm} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \ldots = \vec{P}$$

Ableitung nach Zeit:

$$M \cdot \vec{a}_{cm} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3 + \dots = \frac{d\vec{P}}{dt} = \vec{F}_{res} = \sum \vec{F}_{ext}$$

5.2 Raketenantrieb

$$m \cdot a = v_{rel} \frac{\mathrm{d}m}{\mathrm{d}t} + \sum F_{ext}$$
$$v_{rel} \frac{\mathrm{d}m}{\mathrm{d}t} \Rightarrow \text{Schubkraft}$$

Im Fall $F_{ext} = -mg$ und einem konstanten Massentrom $R = \frac{\mathrm{d}m}{\mathrm{d}t}$:

$$a(t) = \frac{v_{rel}}{m} \frac{\mathrm{d}m}{\mathrm{d}t} - g = \frac{v_{rel} \cdot R}{m_0 - R \cdot t} - g$$

 \boldsymbol{v}_{rel} : realtive ausstossgeschw. des Gases (gegenüber der Rakete)

Rotation

6.1 Übersicht

ROTATION	LINEARE BEWEGUNG
Trägheitsmoment $[kg \cdot m^2]$	Masse
$I = \sum r_i^2 m_i = \int r^2 \mathrm{d}m$	m
Drehmoment $[N \cdot m]$	Kraft $[N]$
$M = I \cdot \alpha$	$F = m \cdot a$
Drehimpuls $\left[\frac{kg \cdot m^2}{s}\right]$	Impuls $[N \cdot s]$
$L = I \cdot \omega$	$p = m \cdot v$
Newtonsches Gesetz $[N \cdot m]$	Newtonsches Gesetz
$M = \frac{\mathrm{d}L}{\mathrm{d}t}$	$F = \frac{\mathrm{d}p}{\mathrm{d}t}$
Rotationsenergie $[J]$	Kinetische Energie
$E_{rot} = \frac{1}{2}I\omega^2$	$E_{kin} = \frac{1}{2}mv^2$
Leistung [W]	Leistung
$P = \frac{\mathrm{d}E}{\mathrm{d}t} = M \cdot \omega$	$P = F \cdot v$

6.2 Kreisbewegung

Bogenlänge s:

$$s = r \cdot \theta$$

Geschwindigkeit tagnetial v:

$$v = r \cdot \omega = r \cdot \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

Beschleunigung tangential a_{tan} :

$$a_{tan} = r \cdot \alpha = r \cdot \frac{\mathrm{d}^2 \theta}{\mathrm{d}^2 t}$$

Beschleunigung raidal a_{rad} :

$$a_{rad} = \frac{v^2}{r} = \omega^2 \cdot r$$

6.3 Trägheitsmoment

Definition bzgl. fester Achse:

$$I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots = \sum_i r_i^2 m_i = \int_i r^2 dm$$

$$[I] = kg \cdot m^2$$

Fehlende Massen haben negatives Trägheitsmoment!

Scheibe mit Loch: $I_{tot} = I^* + I_{Loch}$ $I^* \Rightarrow I$ der Scheibe ohne Loch $I_{Loch} \Rightarrow \text{negatives Moment}$

6.3.1 Parallel Axis Theorem:

$$I_P = I_{cm} + m \cdot h^2$$

6.3.2 Trägheitsmoment regelmässiger Körper

Körper	Achse	I
Kreisring, dünn		$egin{array}{ll} I_x &= m \cdot r^2 \ & & & & & & & & & & & & & & & & & & $
$ Volltorus \\ (Vollring) $		$I_x = m \left(r_1^2 + \frac{3}{4} \cdot r_2^2 \right)$
Kreisbogen	$r_1 \Rightarrow r_2$	$I_x = \frac{1}{2}m \cdot r^2 \left(1 - \frac{\sin(\alpha)}{\alpha}\right)$ $I_y = \frac{1}{2}m \cdot r^2 \left(1 + \frac{\sin(\alpha)}{\alpha}\right)$ $I_z = m \cdot r^2$
Kreissektor		$I_x = \frac{1}{4}m \cdot r^2 \left(1 - \frac{\sin(\alpha)}{\alpha}\right)$ $I_y = \frac{1}{4}m \cdot r^2 \left(1 + \frac{\sin(\alpha)}{\alpha}\right)$ $I_z = \frac{1}{2}m \cdot r^2$
Kreisscheibe, dünn		$I_x = \frac{1}{2}m \cdot r^2$ $I_y = \frac{1}{4}m \cdot r^2$
Kugel, solid		$I_x = rac{2}{5}m \cdot r^2$
Kugel, dünn- wandig		$I_x pprox rac{2}{3} m \cdot r^2$

Körper

Achse

Ι

Stab

$$I_y = \frac{1}{12}m \cdot l^2$$

$$I_{y'} = \frac{1}{3}m \cdot l^2$$

Vollzylinder

$$I_x = \frac{1}{2}m \cdot r^2$$

$$I_y = \frac{1}{12}m\left(3r^2 + l^2\right)$$

 $\begin{array}{c} {\rm Hohlzylinder}, \\ {\rm d\"{u}nnwandig} \end{array}$

$$I_m = m \cdot r^2$$

$$I_y = \frac{1}{2}m(r^2 + \frac{1}{6}l^2)$$

Hohlzylinder

$$I_x = \frac{1}{2}m\left(r_1^2 + r_2^2\right)$$

$$I_y = \frac{1}{4}m\left(r_1^2 + r_2^2 + \frac{1}{3}l^2\right)$$

Quader

$$I_x = \frac{1}{12}m\left(b^2 + c^2\right)$$

$$I_y = \frac{1}{12}m\left(a^2 + c^2\right)$$

$$I_z = \frac{1}{12}m\left(a^2 + b^2\right)$$

Platte, dünn

$$I_z = \frac{1}{12}m \cdot a^2$$

$$I_{z'} = \frac{1}{3}m \cdot a^2$$

6.4 Perfektes Rollen

$$v_{cm} = R \cdot \omega$$

6.4.1 Momentane Drehachse P

Beim perfekten Rollen ist der Kontaktpunkt P zwischen Rad und Unterlage momentan in Ruhe:

$$E_{pot} = E_{kin,cm} + E_{rot,cm} = E_{rot,P}$$

6.5 Drehmoment \vec{M}

Definition:

$$\vec{M} = \vec{r} \times \vec{F}$$

$$[M] = Nm$$

Das Drehmoment ist senkrecht zu \vec{F} und \vec{r} .

Rotation eines starren Körpers um feste Achse:

$$\sum \vec{M}_i = \vec{M}_{res} = I\vec{\alpha}$$

Teilchengeschwindigkeit:

$$\vec{v}_i = \vec{v}_{cm} + \vec{v}_{i,rel} = \vec{v}_{cm} + \vec{\omega} \times \vec{r}_i$$

6.6 Arbeit und Leistung (rot.)

Bei der Rotation verrichtete Arbeit:

$$W = \int_{\omega_1}^{\omega_2} I\omega_z d\omega_z = \frac{1}{2}I\omega_2^2 - \frac{1}{2}I\omega_1^2$$

Bei der Rotation verrichtete Leistung:

$$P = M_z \omega_z$$

6.7 Drehimpuls $ec{L}$ und Drallsatz

Definition:

$$\boxed{\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}}$$

$$[L] = \frac{kg \cdot m^2}{s}$$

Drehimpuls für Symmetrieachse von starrem Körper:

$$ec{L} = I \cdot \vec{\omega}$$

Drallsatz (Newton für die Rotation):

$$\boxed{\sum \vec{M} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}}$$

6.8 Präzession

Die Schwerkraft bewirkt das Drehmoment:

$$M = r \times mg$$

Mit r als Abstand des Schwerpunkts zum Unterstützungspunkt.

DaM senkrecht zu r und F_g ist, ist es auch senkrecht zum Drehimpuls L. Daher ändert sich nur dessen Richtung, nicht jedoch der Betrag. Somit dreht sich der Kreisel horizontal. Es ist:

$$\frac{\mathrm{d}L}{L} = \mathrm{d}\varphi$$

$$\Rightarrow M = \frac{\mathrm{d}L}{\mathrm{d}t} = L\frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

Die Winkelgeschwindigkeit ω_P diser Rotation beträgt $(w_P \ll w_K)$:

$$\omega_P = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{M}{L} = \frac{mgr}{I\omega_K}$$

 w_P auch als Ω

Abbildung 6.1: Päzession

Schwingungen

7.1 Einfache harmonische Schwingung

Die rücktreibende Kraft ist proportional zur Auslenkung. In diesem Fall ist die Schwingung harmonisch, d.h. eine Sinus- bzw. Kosinus-Schwingung.

$$-kx = F_x = ma = m\ddot{x} \to \ddot{x} + \frac{k}{m}x = 0$$

Die Lösung aus dieser homogenen Differenzialgleichung:

$$x(t) = A\cos(\omega t \pm \phi)$$

$$\omega = 2\pi f = \sqrt{\frac{k}{m}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Eine positive Phase ϕ bedeutet eine Verschiebung nach links, ein negatives ϕ eine nach rechts!

Phase und Amplitude aus Anfangsbedingungen:

$$\phi = \arctan\left(-\frac{v_0}{\omega x_0}\right) \qquad A = \sqrt{x_0^2 + \frac{{v_0}^2}{\omega^2}}$$

7.1.1 x(t), v(t) und a(t) der EHS

Einfache harmonische Schwingung:

$$x(t) = A\cos(\omega t \pm \phi)$$

$$\dot{x}(t) = v(t) = -\omega A\sin(\omega t \pm \phi)$$

$$\ddot{x}(t) = a(t) = -\omega^2 A\cos(\omega t \pm \phi)$$

 $\omega = \text{Kreisfrequenz} (2\pi f)$

A = Amplitude

 $\phi = Phasenwinkel$

v aus Amplitude und Position:

$$v(t) = \sqrt{\frac{k}{m}} \cdot \sqrt{A^2 - x^2(t)}$$

$$v_{max} = \omega A = A\sqrt{\frac{k}{m}}$$

a aus Amplitude und Position:

$$a(t) = -\frac{k}{m} \cdot x(t)$$

$$a_{max} = -\omega^2 \cdot A$$

7.1.2 EHS und Kreisbewegung

Position:

$$r(t) = (x(t), y(t)) = A \cdot (\cos(\omega t), \sin(\omega t))$$

Geschwindigkeit:

$$v = \frac{\mathrm{d}r}{\mathrm{d}t} = A\omega \cdot (-\sin(\omega t), \cos(\omega t))$$

Beschleunigung:

$$a = \frac{v^2}{r} = A \cdot \omega^2$$

7.1.3 Energie der harmonischen Schwingung

Gesamte energie der EHS:

$$\boxed{\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}m(v_{max})^2}$$

7.1.4 Torsion, Koordinate θ

Das rücktreibende Drehmoment M_A ist proportional zum Torsionswinkel θ :

$$M_A = -\kappa \cdot \theta$$

harmonische Torsionsschwingung:

$$M = I_A \cdot \ddot{\theta} + \kappa \cdot \theta$$
$$\theta(t) = \theta_{max} \cos(\omega t \pm \phi)$$

Kreisfrequenz und Periode:

$$\omega = \sqrt{\frac{\kappa}{I_A}} \qquad T = 2\pi \sqrt{\frac{I_A}{\kappa}}$$

für kleine Winkel:

$$\kappa = k_1 \cdot r_1^2 + k_2 \cdot r_2^2 = \sum_{1}^{n} (k_n \cdot r_n^2)$$

7.1.5 Fadenpendel

Es gilt die Näherung: $\sin \theta \approx \theta$ (in rad)

$$m\ddot{x} = F_{tan} = -mg\sin\theta \approx -mg\theta = -mg\frac{x}{L} \rightarrow \ddot{x} + \frac{g}{L}x = 0$$

Kreisfrequenz und Periodendauer:

$$\omega = \sqrt{\frac{g}{L}} \qquad T = 2\pi\sqrt{\frac{L}{g}}$$

Fadenkraft:

$$F_s = mg \cdot \cos \theta + m\frac{v^2}{L} = mg \cdot \cos \theta + m\omega^2 L$$

7.1.6 Physikalisches Pendel

Anstelle von F = ma wird $M = I\alpha$ verwendet:

$$I_z\ddot{\theta} = M_z = -d \cdot mg\sin\theta \approx -mgd\cdot\theta \rightarrow \ddot{\theta} + \frac{mgd}{I_z}\theta = 0$$

Kreisfrequenz und Periodendauer:

$$\omega = \sqrt{\frac{mgd}{I_z}} \qquad T = 2\pi \sqrt{\frac{I_z}{mgd}}$$

d: Abstand der Drehachse zum Schwerpunkt

Iz: Trägheitsmoment bzgl. der Drehachse

m: Masse des Körpers

7.2 Gedämpfte Schwingung

Reale Schwingungen sind gedämpft durch Reibung. Die Reibungskraft ist proportional zur Geschwindigkeit v.

$$\vec{F}_{Res} = ma \rightarrow \vec{F}_{Riick} + \vec{F}_{D\ddot{a}mnf} = -kx - bv = ma$$

$$\left| \ddot{x} + \frac{k}{m}x + \frac{b}{m}\dot{x} = 0 \right|$$

$$F_{D\ddot{a}mpf} = 6\pi \cdot \eta \cdot R \cdot v \rightarrow b = 6\pi \cdot \eta \cdot R$$

Radikant: $\delta^2 = \beta^2 - \omega^2$

1. Fall: $\delta^2 > 0 \rightarrow$ Kriechfall allgeimeine Lösung:

$$x(t) = e^{-\beta t} \left(C_1 e^{\delta t} + C_2 e^{-\delta t} \right)$$

2. Fall: $\delta^2=0 \to \text{kritische Dämpfung}$ allgeimeine Lösung:

$$x(t) = e^{-\beta t} (C_1 t + C_2)$$
$$b_{krit} = \sqrt{4k \cdot m}$$

3. Fall: $\delta^2 < 0 \rightarrow$ gedämpfte Schwingung allgemeine Lösung:

$$x(t) = A \cdot e^{-\beta t} \cdot \cos(\omega_d \cdot t \pm \phi)$$

Kreisfrequenz:

$$\omega_d = \sqrt{\omega^2 - \beta^2} = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

$$\beta = \frac{b}{2m} \qquad \omega = \sqrt{\frac{k}{m}}$$
$$\beta^2 < \omega^2 \implies b^2 < 4k \cdot m$$

7.2.1 Abklingkonstante β , Zerfallszeit τ

Die Amplitude zerfällt exponentiell:

$$A(t) = Ae^{-\beta t} = Ae^{-\frac{t}{\tau}}$$

$$\beta = \frac{1}{\tau} \qquad \beta = \frac{\ln\left(\frac{x(t_1)}{x(t_2)}\right)}{t_2 - t_1}$$

7.2.2 Torsionsschwingung mit Dämpfung

Differenzialgleichung:

$$-\kappa\theta - B\dot{\theta} = I_A\ddot{\theta}$$

$$\theta(t) = \theta_0 \cdot e^{-\beta t} \cdot \cos(\omega_d t \pm \phi)$$

Daraus folgt:

$$\beta = \frac{B}{2I_A}$$
 $\omega = \sqrt{\frac{\kappa}{I_A}}$ $\omega_d = \sqrt{\frac{\kappa}{I_A} - \frac{B^2}{4{I_A}^2}}$

I_A: Trägheitsmoment

 κ : Hookesche Prportionalitätskonstante

B: viskose Dämpfungskonstante

7.2.3 Physikalisches Pendel mit Dämpfung

Differenzialgleichung:

$$-mgd \cdot \theta - b^* \dot{\theta} = I_z \ddot{\theta}$$

$$\theta(t) = \theta_0 \cdot e^{-\beta t} \cdot \cos(\omega_d t \pm \phi)$$

Daraus folgt:

$$\beta = \frac{b}{2I_z} \qquad \omega = \sqrt{\frac{mgd}{I_A}} \qquad \omega_d = \sqrt{\frac{mgd}{I_A} - \frac{b^2}{4{I_z}^2}}$$

 I_{zA} : Trägheitsmoment b^* : viskose Dämpfung

7.2.4 Elektrischer Schwingkreis

Differenzialgleichung:

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = 0$$

Daraus folgt:

$$\beta = \frac{R}{2L}$$
 $\omega = \sqrt{\frac{1}{L \cdot C}}$ $\omega_d = \sqrt{\frac{1}{L \cdot C} - \frac{R^2}{4L^2}}$

$$Q = \sqrt{\frac{L}{R^2 \cdot C}}$$

$$q(t) = \hat{q} \cdot e^{-\beta t} \cdot \cos(\omega_d \cdot t + \phi)$$

$$u(t) = \frac{\hat{q}}{C} \cdot e^{-\beta t} \cdot \cos(\omega_d \cdot t + \phi)$$

$$i(t) = \hat{q} \cdot e^{-\beta t} \left(-\beta \cdot \cos(\omega_d \cdot t + \phi) - \omega_d \cdot \sin(\omega_d \cdot t + \phi)\right)$$

 $i = \frac{\mathrm{d}q}{\mathrm{d}t}$: El. Strom

 $u_c = \frac{q}{C}$: Kondensatorspannung

 $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$: Spulenspannung

 $u_R = R \cdot i$: Spannung am Widerstand

7.2.5 Energieverlust durch Dämpfung

Energie am schwingenden System:

$$E(t) = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

Momentante Energieänderungsrate:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = kx\frac{\mathrm{d}x}{\mathrm{d}t} + mv\frac{\mathrm{d}v}{\mathrm{d}t} = \dot{x}(kx + m\ddot{x}) = \dot{x} \cdot F_D = -bv^2$$

Mittlere Energie des schwingenden Systems:

$$\langle E(t) \rangle = \frac{1}{2} kA^2 \cdot e^{-2\frac{t}{\tau}} = E_0 \cdot e^{-2\frac{t}{\tau}} = E_0 \cdot e^{-2\beta t}$$

7.2.6 Güte, Q-Faktor bei kleiner Dämpfung

Der Energieverlust pro Zyklus wird mit der Güte ausgedrückt. Definition:

$$Q = \frac{2\pi \cdot E(t)}{|\Delta E(t)_T|} = \frac{2\pi \cdot E(t)}{\left|\frac{\mathrm{d}E}{\mathrm{d}t} \cdot T\right|} = \frac{\omega_d \cdot E(t)}{\left|\frac{\mathrm{d}E}{\mathrm{d}t}\right|} = \frac{\pi}{\beta \cdot T} = \pi \frac{\tau}{T} = \frac{\omega_d \cdot \tau}{2}$$

 $\Delta E(t)_T$: Energieverlust pro Zyklus

Je kleiner die Dämpfung β , bzw. b und je grösser die Kreisfrequenz $\omega_d \approx \omega$, desto grösser die Güte Q.

Für grosse Q (Q > 5):

$$\boxed{ \omega_d \approx \frac{\omega}{\sqrt{1 + \frac{1}{4Q^2}}} \approx \omega \left(1 - \frac{1}{8Q^2}\right) }$$

7.3 Erzwungene Schwingung

Differenzialgleichung:

$$\ddot{x} + 2\beta \dot{x} + \omega^2 x = \omega^2 H \cos(\Omega \cdot t) = \frac{F_0}{m} \cos(\Omega \cdot t)$$

Die Amplitude A und die Phase ϕ sind nun Funktion der Anreger-Kreisfrequenz Ω :

$$A(\Omega) = \frac{F_0}{m \cdot \sqrt{(\omega^2 - \Omega^2)^2 + (2\beta \cdot \Omega)^2}} = \frac{H}{\sqrt{\left(1 - \left(\frac{\Omega}{\omega}\right)^2\right)^2 + \frac{b^2}{k \cdot m} \left(\frac{\Omega}{\omega}\right)^2}}$$

$$\approx \frac{H}{\sqrt{\left(1 - \left(\frac{\Omega}{\omega}\right)^2\right)^2 + \left(\frac{\Omega}{Q \cdot \omega}\right)^2}}$$

 \approx gilt für Q > 5

 F_0 : Anregerkraft $(= k \cdot H)$

Ω: Anreger-Kreisfrequenz

H: Anreger-Auslenkung

$$\phi(\Omega) = \arctan\left(\frac{2\beta \cdot \Omega}{\omega^2 - \Omega^2}\right) = \arctan\left(\frac{\frac{b}{\sqrt{k \cdot m}} \left(\frac{\Omega}{\omega}\right)}{1 - \left(\frac{\Omega}{\omega}\right)^2}\right)$$

Weiterhin gilt:

$$\omega = \sqrt{\frac{k}{m}} \qquad \beta = \frac{b}{2m} = \frac{1}{\tau} \qquad Q = \frac{\omega_d}{2\beta} = \pi \frac{\tau}{T}$$

Allerdings ist jetzt:

$$x(t) = A(\omega) \cdot \cos(\Omega \cdot t - \phi(\omega))$$

7.3.1 Frequenzgang

Kurvendiskussion von $A(\Omega)$ und $\phi(\Omega)$:

 $\Omega := 0: \qquad A(\Omega) = H \qquad \phi(\Omega) = 0$ $\Omega := \infty: \qquad A(\Omega) = 0 \qquad \phi(\Omega) = \pi$ $\Omega := \omega: \qquad A(\Omega) = \frac{k \cdot H}{h_{tot}} \qquad \phi(\Omega) = \frac{\pi}{2}$

7.3.2 Resonanz

Resonanz bedeutet maximale Amplitude.

$$\Omega_R = \sqrt{\omega^2 - \frac{b^2}{2m^2}} = \sqrt{\omega^2 - 2\beta^2} \approx \omega \cdot \sqrt{1 - \frac{1}{2Q^2}}$$
$$\approx \omega \cdot \left(1 - \frac{1}{4Q^2}\right)$$

$$A_R = A(\Omega_R) \approx \frac{Q \cdot H}{\sqrt{1 - \frac{1}{2Q^2}}} \approx Q \cdot H$$

$$\phi_R = \phi(\Omega_R) \approx \arctan\left(\sqrt{4Q^2 - 2}\right) \approx \frac{\pi}{2}$$

 \approx gilt für Q > 5

Q-Faktor und Resonanzkurve

Die Güte ist ein Mass für die Peak-Schärfe. Für grosse Q (=kleine Dämpfung) gilt:

$$Q = \frac{\Omega_R}{\Delta\Omega}$$

 $\Delta\Omega$: Kurfenbreite auf der Höhe $\frac{A_R}{\sqrt{2}}$

Kapitel 8

Wellen

Wellentypen:

- Transversal: Die Auslenkung ist veritkal oder horizontal zur Fortbewegung. z.B. Seilwelle
- Longitudinal: Die Auslenkung ist in die gleiche Richtung wie die Fortbewegung. z.B. Schallwelle in Luft

Allgemein:

$$f(x,0) = f^*(x)$$
 $f(x,t) = f^*(x - vt)$

8.1 Seilwelle

Wellengleichung:

$$v^{2} \frac{\partial f(x,t)}{\partial x^{2}} = \frac{\partial f(x,t)}{\partial t^{2}}$$

mit der Wellengeschwindigkeit:

$$v = \sqrt{\frac{F_S}{\mu}} = \sqrt{\frac{F_S}{\rho S}}$$

μ: Längendichte

S: Seilquerschnittsfläche

 ρ : Volumendichte

8.1.1 Freihängendes Seil

Die Spannkraft ist an jeder Höhe x unterschiedlich:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v = \sqrt{\frac{F_S}{\mu}} = \sqrt{\frac{x\mu \cdot g}{\mu}} \implies t = \int_0^t \mathrm{d}t = \int_0^L \frac{1}{\sqrt{x \cdot g}} \mathrm{d}x$$

8.2 Harmonische Wellen

Rechts laufende Sinuswelle:

$$f(x,t) = A\cos\left(\frac{2\pi}{\lambda}(x-vt) + \phi\right)$$

Eine positive Phase ϕ bedeutet eine Verschiebung nach links!

$$\omega = \frac{2\pi}{T}$$
 $k = \frac{2\pi}{\lambda}$ $v = \frac{\lambda}{T} = \frac{\omega}{k}$

A: Amplitude

 ω : Kreisfrequenz

k: Wellenzahl

v: Wellengeschwindigkeit

 ϕ : Phasenwinkel

T: Periodendauer

 λ : Wellenlänge

8.3 Durckwellen, Schallwellen

Schallgeschwindigkeit in einem Fluid wie Luft oder Wasser:

$$v = \sqrt{\frac{1}{\kappa \cdot \rho}}$$

 κ : Kompressibilität des Fluids ($\kappa = -\frac{1}{V}\frac{\mathrm{d}V}{\mathrm{d}p})$

Schallgeschwindigkeit einer Kompressionswelle in einem Festkörper:

$$v = \sqrt{\frac{E}{\rho}}$$

 ρ : Dichte

E: Elastizitätsmodul (Hooke)

Luft $(20^{\circ}C)$	$343\frac{m}{s}$
Helium $(20^{\circ}C)$	$999\frac{s}{s}$
Wasserstoff $(20^{\circ}C)$	$1330\frac{m}{s}$
flüssiges Helium $(4K)$	$211\frac{m}{s}$
Wasser $(0^{\circ}C)$	$1402\frac{m}{2}$
Wasser $(20^{\circ}C)$	$1482\frac{m}{2}$
Quecksilber $(20^{\circ}C)$	$1451\frac{s}{s}$
Aluminium	$6420\frac{m}{s}$
Blei	$1960\frac{m}{s}$
Stahl	$5941\frac{m}{s}$

8.4 Energiefluss

Allgemein:

$$P \propto A^2$$

Leistung der flachen harmonischen Seilwelle:

$$P_{Seil} = \frac{1}{2}\mu v \cdot \omega^2 A^2 = \frac{1}{2}\rho S v \omega^2 A^2$$

 ρ : Volumendichte

S: Seilquerschnittsfläche

 $\rho \cdot S = \mu$: Längendichte

Für eine harmonische Schallwelle:

$$P_{Schall} = \frac{1}{2}\rho Sv\omega^2 A^2 = \frac{1}{2}\frac{S}{\rho v}\hat{p}^2$$

A: maximale Auslenkung der Luftteilchen $\hat{p}=\rho\omega vA\text{: Maximum des Schalldrucks}$

8.5 Intensität I

Die Intensität I ist definiert als die durchschnittliche Leistung P_{av} einer Welle pro Einheitsfläche, senkrecht zur Ausbreitungsrichtung:

$$I = \frac{P_{av}}{S}$$

S: Querschnittsfläche

Intensität der harmonischen Seilwelle:

$$I_{Seil} = \frac{1}{2}\rho v\omega^2 A^2$$

Intensität der harmonischen Schallwelle:

$$I_{Schall} = \frac{1}{2} \frac{\hat{p}^2}{\rho v}$$

8.5.1 Intensität und Abstand

Die **ebene** Welle oder der gerichtete Strahl entlang x (z.B. Laser-strahl):

$$I(x) = \frac{P_{av}}{S} = konst.$$

Die **Zylinder** Welle oder Kreiswelle entlang r (z.B. Säulenlautsprecher):

$$I(r) = \frac{P_{av}}{S_{Zylinder}} = \frac{P_{av}}{L \cdot 2\pi r} \propto \frac{1}{r}$$

Die Kugel Welle entlang r (z.B. Punktquelle):

$$I(r) = \frac{P_{av}}{S_{Kugelschale}} = \frac{P_{av}}{4\pi r^2} \propto \frac{1}{r^2}$$

8.6 Schallpegel L

Wir nehmen Lautstärke lögarithmisch wahr. Zwei Frösche hören wir nicht doppelt so laut wie einen, erst zehn Frösche.

$$L = 10 \cdot \log \left(\frac{I}{I_0}\right)$$

mit:

$$I_0 = 10^{-12} \ \frac{W}{m^2}$$

$$\frac{I_2}{I_1} = 10^{\frac{L_2 - L_1}{10}}$$

Doppler Effekt 8.7

Abbildung 8.1: Why so serious?

Quelle bewegt sich:

$$\lambda = \frac{v \mp u_s}{f_s}$$

- -: Wellenlänge vor der bewegten Quelle
- +: Wellenlänge hinter der bewegten Quelle

Empfänger bewegt sich:

$$f_e = \frac{v \pm u_e}{\lambda}$$

- +: Bewegung zur Quelle
- -: Bewegung weg von Quelle

Quelle und Empfänger bewegen sich:

$$f_e = \frac{v \pm u_e}{v \mp u_s} f_s$$

- $\boxed{f_e = \frac{v \pm u_e}{v \mp u_s} f_s} + \text{wenn } e \text{ auf Quelle } \mathbf{zu} \text{ steuert} \\ + \text{wenn } s \text{ vom Empfänger } \mathbf{weg} \text{ steuert}$

 u_e : Geschwindigkeit Empfänger

 u_s : Geschwindigkeit Sender

v: Schallgeschwindigkeit (343 $\frac{m}{s}$ @ Luft)

8.8 Überschall

$$\sin \theta = \frac{v}{u} = \frac{1}{Ma}$$

 θ : Halber Öffnungswinkel des Kegels

v: Schallgeschwindigkeit

u: Geschwindigkeit des Objekts

8.9 Superposition - Interferenz

Konstruktive Interferenz: Gleiche Phase $\Delta \phi = 0$

$$A = A_1 + A_2 \qquad P = \left(\sqrt{P_1} + \sqrt{P_2}\right)^2$$

Destruktive Interferenz: gegenphasig $\Delta \phi = \pi$

$$A = A_1 - A_2$$
 $P = \left(\sqrt{P_1} - \sqrt{P_2}\right)^2$

8.10 Schwebung

Schwebungsfrequenz:

$$f_B = \frac{\Delta\omega}{2\pi} = \frac{|\omega_1 - \omega_2|}{2\pi}$$

Resultierende Welle:

$$f_{av} = \frac{\omega_1 + \omega_2}{4\pi}$$

8.11 Reflexion und Transmission

- Reflexion einer Seilwelle an der Wand invertiert den Puls
- An einem losen Ende wird der Puls ohne Inversion reflektiert
- Trifft die Seilwelle auf ein andere Schnur, findet Reflexion und Transmission statt (Übergang leicht → schwer: invertierte Reflexion; Übergang schwer → leicht: keine Inversion)

8.12 Stehende Welle

$$2A\sin(kx)\cdot\sin(\omega t)$$

8.12.1 Harmonische

n	λ	Bäuche	Knoten	Mitte
1	$\frac{2L}{1}$	1	2	Bauch
2	$\frac{2L}{2}$	2	3	Knoten
3	$\frac{2L}{3}$	3	4	Bauch
4	$\frac{2L}{4}$	4	5	Knoten
5	$\frac{2L}{5}$	5	6	Bauch

Eine Saite ist auf beiden Seiten eingespannt (\Rightarrow Wellenknoten):

$$\lambda_n = \frac{2L}{n}$$
 $f_n = \frac{v}{\lambda_n} = n \frac{v}{2L} = n \cdot f_1$

 f_1 : Grundschwingung

 $n = 1, 2, 3, \dots$

$$y_n(x,t) = A_n \sin(k_n x) \cdot \sin(\omega_n t)$$

n = 1: 1. Harmonische = Grundton

n=2: 2. Harmonische = 1. Oberschwingung

n=3: 3. Harmonische = 2. Oberschwingung

8.12.2 Orgelpfeife

Am Ende der Pfeife ist ein Bauch:

$$\lambda_n = \frac{4L}{n}$$
 $f_n = \frac{v}{\lambda_n} = n \frac{v}{4L} = n \cdot f_1$

 $n = 1, 3, 5, \dots$

8.12.3 Wasserwelle

Wellengeschwindigkeit einer seichten Oberflächenwelle ($\delta y \ll y$):

$$v = \sqrt{g \cdot y}$$

Tiefwasser:

$$v = \sqrt{\frac{g\lambda}{2\pi}}$$

y: Wassertiefe

Kapitel 9

Wärme

9.1 Konstanten

Avogadrozahl

 $N_A = 6.00221 \cdot 10^{23}$ Teilchen

Universelle Gaskonstante

$$R = 8.314472 \frac{J}{mol \cdot K}$$

Boltzmann

$$k_B = \frac{R}{N_A} = 1.381 \cdot 10^{-23} \frac{J}{K}$$

9.2 Ideale Gasgleichung

$$pV = nRT = \frac{N_{tot}}{N_A}RT = \frac{m_{tot}}{m_{mol}}RT$$

Variable	Bedeutung	Einheit
\overline{p}	Gasdruck	Pa
T	Gastemperatur	K
N_{tot}	Anzahl Moleküle im Gas	
m_{tot}	Gasmasse	
\overline{n}	Anzahl mol im Gas	
N_A	Avogadrozahl	$N_A = 6.022 \cdot 10^{23} \frac{Teilchen}{mol}$
m_{mol}	Molmasse	11000

9.3 Luftdruck vs. Höhe bei konstanter Temperatur

Der Schweredruck in einm Fluid ist $\Delta p = -\rho \cdot g \Delta y$.

$$p(y) = p_0 \cdot e^{-\frac{m_{mol}g}{RT}y} = p_0 e^{-\frac{y}{H}}$$

$$H = \frac{RT}{m_{mol}g}$$

H:charakteristische Höhe (analog zu Zerfallszeit $\tau)$

9.4 Luftdruck bei veränderlicher Temperatur

Troposphäre (0 - 11km):

$$T = a - b \cdot y$$
$$a = 15^{\circ}C$$
$$b = 6.5 \frac{^{\circ}C}{km}$$

Druck:

$$p = p_0 \left(\frac{a - b \cdot y}{a}\right)^{\frac{m_m o l g}{R \cdot b}} = p_0 \left(\frac{T}{T_0}\right)^{\frac{m_m o l g}{R \cdot b}}$$

9.5 Energie

Kinetische Energie im idealen Gas.

$$E_{Gas} = \frac{3}{2}nRT$$

Mittlere kinetische Energie eines Moleküls im idealen Gas.

$$\langle E_{kin,k\ddot{u}l} \rangle = \frac{1}{2} m_{k\ddot{u}l} \langle v^2 \rangle = \frac{3}{2} k_B T$$

9.6 Geschwindigkeiten

$$v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3k_BT}{m_{k\ddot{\text{u}}l}}} = \sqrt{\frac{3RT}{m_{mol}}}$$

Wahrscheinlichste Geschwindigkeit:

$$v_w = \sqrt{\frac{2k_BT}{m_{k\"ul}}} = \sqrt{\frac{2RT}{m_{mol}}}$$

Durchschnittsgeschwindigkeit:

$$v_{av} = \sqrt{\frac{8k_BT}{\pi m_{k\ddot{\mathbf{u}}l}}} = \sqrt{\frac{8RT}{\pi m_{mol}}}$$

9.7 Freiheitsgrade FG

Das einatomige, ideale Gas hat genau drei Bewegungs-Freiheitgrade: links nach rechts, hinten nach vorn, unten nach oben. Zweiatomige Gase haben mehr Bewegungsmöglichkeiten.

Äquipartitions Gesetz der klassischen Mechanik:

Auf jeden aktiven Freiheitsgrad eines Moleküls in einem Gas der Temperatur T entfällt im Mittel die Energie $\frac{1}{2}k_BT$.

$$\frac{\langle E_{k\ddot{\mathbf{u}}l} \rangle}{FG} = \frac{1}{2} k_B T$$
$$\frac{\langle E_{mol} \rangle}{FG} = \frac{1}{2} R \cdot T$$

9.8 Spezifische Wärmekapazität c

Um die Temperatur einer Substanz zu erhöhen, kann man ihr Wärme Q zuführen. Wärme ist eine Energieform [J]. Eine Kalorie entspricht 4.186J.

$$\begin{split} Q &= m \cdot c \cdot \Delta T \to \mathrm{d}Q = m \cdot c \cdot \mathrm{d}T \\ \mathrm{c} \text{ pro Masse: } c_{(m)} &= \frac{1}{m} \frac{\mathrm{d}Q}{\mathrm{d}T} \\ \mathrm{c} \text{ pro Mol: } c_{(n)} &= \frac{1}{n} \frac{\mathrm{d}Q}{\mathrm{d}T} \\ c_{(m)} &= \frac{c_{(n)}}{m_{mol}} \end{split}$$

Spezifische Wärmekapazität des **idealen Gases** pro Mol, bei <u>konstantem</u> Gasvolumen.

Einatomigen Gases:

$$c_{(n)V} = C_V = \frac{3}{2}R$$

Zweiatomigen Gases:

$$c_{(n)V} = C_V = \frac{5}{2}R$$

9.9 Mittlere freie Weglänge Λ

Wir betrachten die Moleküle alas harte Kugeln mit Radius r und leiten eine Kollisionszeit t_{mean} und eine mittlere freie Weglänge Λ her.

Mittlere Kollisionszeit

$$t_{mean} = \frac{dt}{dN} = \frac{V}{4\pi\sqrt{2} \cdot r^2 vN}$$

Mittlere freie Weglänge

$$\Lambda = v \cdot t_{mean} = \frac{V}{4\pi\sqrt{2} \cdot r^2 \cdot N} = \frac{k_B \cdot T}{4\pi\sqrt{2} \cdot r^2 \cdot p}$$

9.10 Wahrscheinlichkeit

Die Verteilfunktion der molekularen Geschwindigkeiten f(v) kann mittels statistischer Mechanik hergeleitet werden.

Maxwell-Boltzmann Verteilung

$$f(v) = 4\pi \left(\frac{m_{mol}}{2\pi \cdot RT}\right)^{\frac{3}{2}} \cdot v^2 \cdot e^{-\frac{m_{mol} \cdot v^2}{2RT}}$$

$$f(v) = 4\pi \left(\frac{m_{k\ddot{\mathbf{u}}l}}{2\pi \cdot k_B T}\right)^{\frac{3}{2}} \cdot v^2 \cdot e^{-\frac{m_{kul} \cdot v^2}{2k_B T}}$$

Wahrscheinlichkeitsdichte:

$$W(v_1, v_2) = \int_{v_1}^{v_2} f(v) dv$$

$$W(v_1, v_2) = \int_{v_1}^{v_2} 4\pi \left(\frac{m_{mol}}{2\pi \cdot RT}\right)^{\frac{3}{2}} \cdot v^2 \cdot e^{-\frac{m_{mol} \cdot v^2}{2RT}} dv$$

Energie-Verteilfunktion:

$$W(E_1, E_2) = \int_{E_1}^{E_2} \frac{8\pi}{\sqrt{2}} \left(\frac{1}{2\pi k_B T} \right)^{\frac{3}{2}} \sqrt{2} \cdot e^{-\frac{E}{k_B T}} dE$$

9.11 Volumenarbeit eines Gases

Das Vorzeichen stellt sicher, dass das Gas bei Expansion $(V_2 > V_1)$ Arbeit an der Aussenwelt verrichtet. Die Arbeit W ist bei Expansion negativ und geht aus dem Gas heraus, das Gas verliert Energie!

$$W = -\int_{V_1}^{V_2} p \cdot dV$$

9.12 Innere Energie U, Erster Hauptsatz der TD

Die innere Energie U eines Körpers ist eine Zustandsgrösse der Thermodynamik. Sie setzt sich zusammen aus der kinetischen (SZittern") und der potentiellen Energie ("Federn") aller Moleküle des Körpers vorstellen. Der erste Hauptsatz der Thermodynamik besagt: Die innere Energie vergrössert sich mit Zufuhr von Wärme und/oder Arbeit.

$$\Delta U_{U_2-U_1} = Q_{in} + W_{in} \qquad dU = dQ_{in} + dW_{in} = dQ - p \cdot dV$$

9.12.1 Innere Energie des idealen Gases

Innere Energie des idealen Gas:

$$U = U(T) = n \underbrace{\frac{FG}{2}RT}_{C_V} = nC_VT$$

Freiheitsgrade: = 3 für einatomiges Gas

 $=\,5$ für zweiatomiges Gas

9.12.2 Zustandsänderungen des idealen Gas

<u>a-1</u>: adiabatischer Prozess, dQ = 0Keine Wärmeaustausch! $Q_{a1} = 0 \quad \Delta U_{a1} = nC_V \left(T_1 - T_a\right) = W_{a1}$ <u>a-2</u>: isochorer Prozess, V = konstantKeine Volumenänderung! $W_{a2} = 0 \quad Q_{a2} = nC_V \left(T_2 - T_a\right) = \Delta U_{a2}$ <u>a-3</u>: isobarer Prozess, p = konstantKeine Druckänderung! $W_{a3} = -p \left(V_3 - V_a\right) \quad Q_{a3} = nC_p \left(T_3 - T_a\right)$ <u>a-4</u>: isothermer Prozess, T = konstant $\Rightarrow U = U(T) = \text{konstant}$! $W_{a4} = \int_{V}^{V_4} - p dV = -nRT \ln \left(\frac{V_4}{V_a}\right) = -Q_{a4}$

Abbildung 9.1: Zustandsänderung

adiabatisch = isotrop

9.12.3 Spezifische Wärme C_p des idealen Gas

Molare Wärmekapazitäten des idealen Gas:

$$C_p = C_V + R$$

Verhältnis der molaren Wärmekapazitäten des idealen Gas:

$$\gamma = \frac{C_p}{C_V} = \frac{C_V + R}{C_V} = \left\{ \begin{array}{cc} 1.67 & 1 - atomigesGas \\ 1.40 & 2 - atomigesGas \end{array} \right\}$$

9.12.4 Adiabatischer Prozess des idealen Gas

Das System ist thermisch isoliert. Eine Temperaturänderung stammt immer von einer Arbeit, nicht von einem Wärmefluss $\to \Delta U = W$

$$(Q=0)$$

$$T_1 \cdot V_1^{\gamma - 1} = T_2 \cdot V_2^{\gamma - 1}$$

$$p_1 \cdot V_1^{\gamma} = p_2 \cdot V_2^{\gamma}$$

$$T_1 \cdot p_1^{\frac{1 - \gamma}{\gamma}} = T_2 \cdot p_2^{\frac{1 - \gamma}{\gamma}}$$

$$\Delta U = nC_V(T_2 - T_1) = W = \frac{p_2V_2 - p_1V_1}{\gamma - 1}$$

Appendices

Anhang A Periodensystem

	1																
	IA																
1	1,008*																
	Н		2														
Was	serstoff		IΙΑ														
3	6,94*	4	9,012														
	Li	F	3e														
l it	hium		yllium														
11		_	24,31*														
N	la	I.	1~		3		4		-				7		0		0
_			1 g		₃ II B		4 IV B	5 V B		6 VI B		7 VII B		8		9 VIII B	
19	trium 39,10		nesium 40.08		44,96		47,87	23	50,94		52,00		54.94	26	55,85		58.93
				_		-	- 77,57	25	\		_		4	l _	_		
	K	•	_a	3	SC		• •		V	١,	Cr	ľ	4n		e	•	-0
	alium		lcium	Scandium		+	Γitan	Vanadium		-	nrom	_	angan	Eisen			obalt
37	85,47	38	87,62	39	88,91	١	91,22	41	92,91	42	95,96* -	43 _	[98]	44	101,1	45	102,9
F	Rb		Sr	ľ	Y	4	Zr	ſ	dV	l	10	_	TC	F	Ku	R	łh∣
Ruk	oidium	Strontium		Yttrium		Zirconium		Niob		Molybdän		Technetium		Ruthenium		Rho	odium
55	132,9	56	137,3	57-7	71	72	178,5	73	180,9	74	183,8	75	186,2	76	190,2	77	192,2
	CS	E	3a				Чf		Га	│	N	F	₹e)s		Ir
Ca	esium	Ba	arium			Ha	fnium	T	antal	Wo	lfram	Rh	enium	Os	mium	Irio	dium
87	[223]	88	[226]	89-1	1037	104	[267]	105	[268]	106	[269]	107	[270]	108	[269]	109	[278]
ı	Fr	F	la l				Rf	I	Ob	S	g	F	₹h	▐	ls.	N	Лt
Fra	ncium	Ra	dium			Ruth	erfordium	_	ıbnium			Bo	hrium	Ha	ssium	Meit	nerium
*H:[1,00784	1, 1,0	0811]			rider				000.	, or grain				5514111	1	
	[6,938, 6 10,806,					_											
	12,0096		0116] 4,00728]	l		57	138,9	58	140,1	59	140,9	60	144,2	61	[145]	62	150,4
O: [15,99903, 15,99977] Mg: [24,304, 24,307]						┨	_a		Ce		٦r	N	bl	P	m	S	m
Si: [26,084, 26,086]						La	nthan		Cer	Pras	eodym	Νe	eodym	Pron	nethium	San	narium
S: [32,059, 32,076] CI: [35,446, 35,457]						89	[227]	90	232,0	91	231,0	92	238,0	93	[237]	94	[244]
TI: I	[79,901 [204,382	2, 20				1	A C	٦	Γh	F	Pa		U	N	lp	F)u ∣
	65,38(2 78,96(3					Ac	tinium	T+	norium	Prot	actinium	,	Jran		•	Plut	onium
Mo:	95,96(2	2)					c.i ii di i i		Juli	1, 100	acciniui II	<u>'</u>	orun.	Litch	carnuill		STRUTT

																	18
																V	III A
																2	4,00
							13		14		15		16		17	H	le
							III A		IVA		VΑ	١	VI A	,	VIIA	Не	elium
						5	10,81*	6	12,01*	7	14,01*	8	16,00*	9	19,00	10	20,1
							В		C		N	(0		F	N	le
							Bor	Koł	nlenstoff	Sti	ckstoff	Sau	erstoff		Fluor	N	eon
						13	26,98	14	28,09*	15	30,97	16	32,06*	17	35,45*	18	39,9
	10	1	1		12	4	ΑI		Si		Р		S	(CI	F	۱۲
	\neg	I	В	ı	ΙB	Alu	minium	Si	ilicium	Pho	osphor	Scl	nwefel		Chlor	Aı	rgon
28	58,69	29	63,55	30	65,38*	31	69,72	32	72,63	33	74,92	34	78,96*	35	79,90*	36	83,8
	١i	C	u	Z	'n		зa		Эe	F	\s	5	Se		Br	k	(r
N	ickel	Kup	ofer	Z	ink	G	allium	Ger	manium	Д	rsen	S	elen	ı	Brom		/pton
46	106,4	47	107,9	48	112,4	49	114,8	50	118,7	51	121,8	52	127,6	53	126,9	54	131,
F	d	Α	a		d		ln	9	Sn	9	Sb	-	Ге			X	(e
- Pall	adium	Sill		Cac	lmium		ndium		Zinn	An	timon	Т	ellur		lod	Χe	enon
78	195,1	79	197,0	80	200,6	81	204,4*	82	207,2	83	209,0	84	[209]	85	[210]	86	[222
I	Pt	Α	u	F	lg	•	TI		Pb		Bi	F	90	4	Δt	R	ln
Platin			Gold Ouecksilber		_	Thallium		-	Blei	Bi	smut	Pol	onium	Astat		Radon	
110	[281]	111	[281]	112	[285]	113	[286]	114	1 [289]	115	[288]	116	[293]	117	7 [294]	118	[294
Г)s	R	a	('n	ı	lut		FI	u	un		V	U	lus	П	116
		l .					untrium		■ ■ erovium		•						
Jaili	istautiuiii	riverity	gernum	Cope	melum	UII	ancidin	1, 16	.ioviuiii	onui	ipentium	Live	monum	Onc	iiisepuuiii	onui	ioctiui

63	152,0	64	157,3	65	158,9	66	162,5	67	164,9	68	167,3	69	168,9	70	173,1	71	175,0
E	Eu	G	id	T	b	D	у	H	lo	E	Ξr	T	m	Y	b	L	u
Eur	Europium Gadolinium		linium	Terl	oium	um Dysprosiur		Holmium		Erbium		Thulium		Ytterbium		Lutetium	
95	[243]	96	[247]	97	[247]	98	[251]	99	[252]	100	[257]	101	[258]	102	[259]	103	[262]
A	m	C	m	В	k	C	f	E	S	F	m	M	1d	N	lo	L	.r
Ame	ericium	Cu	rium	Berk	elium	Califo	rnium	Einst	einium	Fer	mium	Mend	elevium	Nob	elium	Lawre	ncium

iii