MACM 316 — Computing Assignment #2

David Pham / dhpham@sfu.ca / 301318482

Values of N and N_{ex}

I knew that I was eventually going to take $log_{10}(N)$ to explore a potential power-law relationship between matrices of size N and flop counts involved in GE, so I chose to define $N=10^k$, where k=1,2,3,4, to correspond nicely with log_{10} values. I chose not to include $N=10^0$, since this is a trivial 1×1 matrix, which takes no operations to solve.

I started by defining dense_Nex, tri_Nex, and perm_Nex to be the number of solves for each type of matrix $[M_d], [M_t]$, and $[M_p]$, respectively. I fiddled around with each, until the time to solve each type of matrix *_Nex times was around 1 second.

	N = 10	N = 100	N = 1,000	N = 3,163
dense_Nex avg_dense_time	3×10^5 4×10^{-6}	$3.5 \times 10^4 \\ 1.68 \times 10^{-4}$	$3.5 \times 10^4 2.2472 \times 10^{-2}$	
tri_Nex avg_tri_time	2×10^6 1×10^{-6}		$8 \times 10^{5} \\ 4.84 \times 10^{-3}$	
perm_Nex avg_perm_time	$1.2 \times 10^{6} \\ 1 \times 10^{-6}$	1.2×10^{5} 3.4×10^{-5}	1.2×10^{5} 4.550×10^{-3}	