# Welcome to the course!

TIME SERIES ANALYSIS IN R



David S. Matteson
Associate Professor at Cornell University



#### Introduction

- Time Series: A sequence of data in chronological order.
- Data is commonly recorded sequentially, over time.
- Time series data is everywhere.



#### Time series example

Monthly values of the Consumer Price Index (CPI):





#### Time series data

• Time series data is dated or time stamped in R.

```
print(BMW_data)
```

```
1996-07-08
            0.002
1996-07-09 -0.006
1996-07-10 -0.016
1996-07-11 -0.020
1996-07-14 -0.006
1996-07-15 -0.014
1996-07-16 0.002
1996-07-17 -0.001
```

#### Time series plots

plot(Time\_Series)



10

Time

5

15

20

#### Basic time series models

- White Noise (WN)
- Random Walk (RW)
- Autoregression (AR)
- Simple Moving Average (MA)

<sup>&</sup>lt;sup>1</sup> Throughout this course, you will not only be learning how to use R for time series analysis and forecasting, you will also learn several models for time



# Time series plots

TIME SERIES ANALYSIS IN R



## Sampling frequency

TIME SERIES ANALYSIS IN R



David S. Matteson
Associate Professor at Cornell University



#### Sampling frequency: exact

• Some time series data is exactly evenly spaced.



#### Sampling frequency: approximate

• Some time series data is only approximately evenly spaced.



#### Sampling frequency: missing values

 Some time series data is evenly spaced, but with missing values.



#### **Basic assumptions**

Simplifying assumptions for time series:

- Consecutive observations are equally spaced.
- Apply a discrete-time observation index.
- This may only hold approximately.

Ex. Daily log returns on stock may only be available for weekdays.

Ex. Monthly CPI values are equally spaced by month, not by days.

#### Sampling frequency: R functions

```
• R functions: start(),
                                frequency(Hourly_series)
  end() , frequency() ,
  deltat()
                                24
 start(Hourly_series)
                                deltat(Hourly_series)
1 1
                                0.0417
 end(Hourly_series)
1 24
```



# Let's practice!

TIME SERIES ANALYSIS IN R



# Basic time series objects

TIME SERIES ANALYSIS IN R



**David S. Matteson**Associate Professor at Cornell University



## Building ts() objects - I

- Start with a vector of data
- Apply the ts() function

data\_vector

10 6 11 8 10 3 6 9

```
time_series <- ts(data_vector)
plot(time_series)</pre>
```



## Building ts() objects - II

• Specify the start date and observation frequency:

```
time_series <- ts(data_vector, start = 2001, frequency = 1)</pre>
```

```
plot(time_series)
```





## Using is.ts()

• The is.ts() function checks whether an object is of the ts() class:

```
is.ts(data_vector)
```

#### FALSE

is.ts(time\_series)

TRUE

## Why ts() objects?

Why create and use time series objects of the ts() class?

- Improved plotting.
- Access to time index information.
- Model estimation and forecasting (later chapters).

# Let's practice!

TIME SERIES ANALYSIS IN R

