



# B C O C C A ONYTIM IC



# BIG DATA IN EPIDEMIOLOGY: A study of diabetes and gender differences in ALS risk, in a population of three million Israeli individuals.

Stefano Rola Matr. 790383 Advisor: prof. Vittadini Co-advisor: dr. Rotem Co-advisor: dr. Bellavia

### AGENDA





# INTRODUCTION







# ALS RISK FACTORS





10%'Familial ALS'



90% Non-genetic factors





#### **METABOLIC DISORDERS**

- Weight loss
- Hypermetabolism
- Hyperlipidemia
- Insulin resistance
- Glucose intolerance
- Increased energy consumption



#### **DIABETES MELLITUS**

- 2010, Jawaid et al.
- ? 2015, Kioumourtzoglou et al.
- ? 2015, Mariosa et al.
- 2015, Sun et al.
- 2018, D'Ovidio et al.



# BGDATA IN EPIDEMIOLOGY

#### HOW?



- EHR/EMR
- Repurposed data
- Record linkage

**VOLUME** 



- Monitoring
- Quick intervention
- Rapid iteration

**VELOCITY** 



- Imaging data
- Behavioural data
- Geo-location

**VARIETY** 

#### WHY?

- To monitor **drug** and device safety
- Measure hospital quality
- **Predict** outbreaks of epidemics
- **Avoid** preventable diseases
- Reduce the **costs** of healthcare delivery
- Reduce the amount of medical errors



MACCABI
HEALTHCARE
SERVICES

ALS

BIGDATA



# MACCABI HEALTHCARE SERVICES

Israel's second largest integrated healthcare organization, serving **25%** of the Israeli population

Linked to records from Israel's Central Bureau of Statistics, allowing **linkage** to additional information

All medical history of ~3 million individuals

Recorded computerized medical data since 1998





# METHODS



#### WHAT?



**Nested Case-Control Study** 

#### WHY?



- Rarity of the outcome (unbalanced dataset)
- Large number of individuals
- OR estimates the underlying HR in cohort

#### HOW?



- Selection of all cases
- 2 Randomly sample 100 controls per case, matched on the year of birth and on being **alive** at the time of ALS diagnosis



### **Outcome & Exposures**

#### **OUTCOME**



DEFINITION:

First occurrence ever of **ALS** according to ICD-9 diagnosis code: 335.20

#### • TIME RESTRICTIONS:

**Cases** in the system less than 1 year before ALS diagnosis removed;

**Controls** in the system less than 1 year before ALS diagnosis of matched case removed;

ALS diagnoses **prior 2001** removed.

#### **EXPOSURE**



DEFINITION:

**Diabetes** cases identified with ICD-9 diagnosis code: 250.00;

- TIME RESTRICTIONS:
  - **3 Years Lag** applied between exposure's diagnoses and ALS

#### **CONFOUNDERS**



DEFINITION:

**Obesity** cases identified with ICD-9 diagnosis code: 278.00-278.02;

Last **BMI** measurement before ALS diagnosis;

Country of birth, District, SES.

- TIME RESTRICTIONS:
  - **3 Years Lag** applied between confounding information and ALS





### Pre-Processing

#### **MERGING DATASETS**

- **Join** small datasets in a bigger one
- Keeping a **flexible** schema



#### **DATA MINING**

- MDClone Platform
- Multiple datasets extracted, each regarding a different diagnosis or feature







#### **OUT/EXP CREATION**

- ALS, Diabetes and Obesity coded as a binary variable (presence/absence)
- Overweight if patient obese or having BMI > 25

#### TIME MANAGEMENT

- ALS diagnosis prior 2001 removed
- Cases in the system less than 1 year before ALS diagnosis removed
- Controls in the system less than 1 year before ALS diagnosis of matched case removed
- 3 Years Lag applied between exposures' diagnoses and ALS



#### MISSING VALUES

- Merging operation caused missing
- Not all real missing values
- Use of a **standard** format

13



### Statistical Analysis

$$logit(p) = \beta_0 + \sum_{j=1}^m \beta_j X_{ij} + \sum_{j=1}^m y_k C_{ik}$$

```
1. ALS ~ Diabetes
2. ALS ~ Diabetes + Overweight
3. ALS ~ Diabetes * Overweight
4. ALS ~ Diabetes + Overweight + Country of birth + District + SES
```

```
1. ALS ~Diabetes2. ALS ~Diabetes + Overweight2. ALS ~Diabetes + Overweight3. ALS ~Diabetes * Overweight3. ALS ~Diabetes * Overweight4. ALS ~Diabetes + Overweight + Country of birth + District + SES4. ALS ~Diabetes + Overweight + Country of birth + District + SES
```



# RESULTS



## **Descriptive Statistics**

|                  | Overall     | ALS: Yes   | ALS: No          |
|------------------|-------------|------------|------------------|
| N                | 52,254      | 547        | 51,707           |
| Diabetes         | 6,602(13%)  | 78(14%)    | 6,524(13%)       |
| Overweight       | 13,290(25%) | 168(31%)   | $13{,}122(25\%)$ |
| A                |             | 50.0(15.7) |                  |
| Age              | 1040(15.7)  | 59.9(15.7) | 1040(15.7)       |
| Birth date       | 1949(15.7)  | 1950(16)   | 1949(15.7)       |
| Gender           | ( 0.1)      |            |                  |
| Male             | 24,986(48%) | 322(59%)   | 24,664(48%)      |
| Female           | 27,268(52%) | 225(41%)   | 27,043(52%)      |
| SES (1-10)       | 6.1(1.8)    | 6.2(1.8)   | 6.1(1.8)         |
| Country of birth |             |            |                  |
| Israel           | 27,697(53%) | 284(52%)   | 27,692(53%)      |
| USSR             | 12,341(24%) | 124(23%)   | 12,217(24%)      |
| Other            | 11,937(23%) | 139(25%)   | 11,798(23%)      |
| District         |             |            |                  |
| Jerusalem&Shfela | 12,535(24%) | 116(21%)   | 12,419(24%)      |
| Center           | 11,257(22%) | 124(23%)   | 11,133(21%)      |
| North            | 10,159(19%) | 88(16%)    | 10,071(19%)      |
| Sharon           | 9,934(19%)  | 122(22%)   | 9,812(19%)       |
| South            | 8,065(16%)  | 72(13%)    | 7,993(16%)       |
| Obesity          | 1,791(3%)   | 16(3%)     | 1,775(3%)        |
| BMI              | 27.9(5.3)   | 27.6(5)    | 27.9(5.3)        |



### **Descriptive Statistics**





# **Descriptive Statistics**





## **Main Analysis**

#### TOTAL

| Models  | Diabetes         | Overweight             | Interaction            |
|---------|------------------|------------------------|------------------------|
| Model 1 | 1.17 (0.91 1.49) |                        |                        |
| Model 2 | 1.07 (0.83 1.38) | $1.29 \ (1.06 \ 1.56)$ |                        |
| Model 3 | 1.24 (0.87 1.78) | $1.35 \ (1.10 \ 1.66)$ | $0.75 \ (0.46 \ 1.23)$ |
| Model 4 | 1.14 (0.88 1.48) | $1.37 \ (1.13 \ 1.66)$ |                        |

MALE

| Models  | Diabetes         | Overweight             | Interaction            |
|---------|------------------|------------------------|------------------------|
| Model 1 | 1.32 (0.97 1.80) |                        |                        |
| Model 2 | 1.23 (0.89 1.69) | $1.24 \ (0.97 \ 1.59)$ |                        |
| Model 3 | 1.59 (1.04 2.43) | $1.37 \ (1.05 \ 1.80)$ | $0.59 \ (0.32 \ 1.10)$ |
| Model 4 | 1.28 (0.93 1.77) | $1.25 \ (0.97 \ 1.60)$ | ,                      |
|         |                  |                        |                        |

FEMALE

| Models  | Diabetes         | Overweight             | Interaction            |
|---------|------------------|------------------------|------------------------|
| Model 1 | 0.92 (0.60 1.39) |                        |                        |
| Model 2 | 0.83 (0.54 1.27) | $1.34 \ (1.00 \ 1.81)$ |                        |
| Model 3 | 0.73 (0.37 1.45) | $1.31 \ (0.95 \ 1.80)$ | $1.22 \ (0.51 \ 2.93)$ |
| Model 4 | 0.89 (0.57 1.40) | $1.57 \ (1.15 \ 2.13)$ |                        |



## **Additional Analysis**

|                        | Overall    | ALS: Yes | ALS: No    |
|------------------------|------------|----------|------------|
| N                      | 52,254     | 547      | 51,707     |
| Low risk pre-diabetes  | 7,418(14%) | 109(20%) | 7,309(14%) |
| High risk pre-diabetes | 311(0.6%)  | 4(0.7%)  | 307 (0.6%) |
| Diabetes               | 4,843(9%)  | 53(10%)  | 4,790(9%)  |





# CONCLUSIONS



### Strengths and limitations



Large population

Consistency

Robustness

Outcome and exposures Inaccuracy ascertainment

Information since 1998
 Misclassification



### What's next

#### **ALS and DIABETES**

- Diabetes type 1/2 distinction
- More confounding factors

#### **TIME FACTOR**

- Survival analysis
- Trajectories and trends

#### **MEDICATIONS**

- Identify candidates for ALS
- More accurate results
- Taking time and dosage

#### **MACHINE LEARNING**

 Evaluate the relationship between complex and multi-factorial elements

# QUESTIONS?

Where is the wisdom we have lost in knowledge? Where is the knowledge we have lost in information?

-- T.S. Eliot







