XX/EIE

Advancements in satellite data collection and relay concepts using small satellites

Alejandro Lopez-Telgie – Engenheria e Tecnologias Espaciais, ETE, CSE Dr. Walter Abrahão dos Santos, – INPE SJC

Outline

- Introduction
- Methodology
- (Some) Enabling technologies
- Results
- Discussion
- Conclusions

Introduction

Introduction

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Figure 1. Smallsats launched from 1995 to 2014 ordered by launch year and class.

Figure 2. Histogram of Smallsats launched from 1995 to 2014 ordered by mass. Constellations are marked with color.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.7, № 3, pp.269-286, Jul.-Sep., 2017

Methodology

- Case studies for Spire Global AIS constellation and SCD-2
 - Mission context
 - Satellite data relay architectures
 - Enabling technologies: SDR, Satellite AIS, Small Satellite design philosophies

(Some) Enabling technologies

(Some enabling technologies) - SDR

https://www.esa.int/spaceinimages/Images/2014/07/SAT-

Satellie AIS: Expectation (ESA 2014)

Satellite AIS: Reallity

Results

Main orbital parameters

	SCD-2 INPE	Lemur-2 Spire
Orbit type	Circular	SSO
Inclination [°]	25.0°	97.5
Altitude [km]	742km x	500km
	768 km	
Design	2 year	2 years
lifetime		
Operational	10 + years	
lifetime		

(Some) Spacecraft characteristics

	SCD-2	Lemur-2 Spire
Payload	RF communications: S-band	STRATOS (GPS radio
	TT&C for housekeeping. On-	occultation payload),
	board storage capability for	SENSE (AIS payload)
	TT&C data. A UHF uplink at	
	401.650 MHz and 401.620	
	MHz used for data collection.	
Total mass	117 kg	4 kg
Power	110W	20 W
Manufactur	INPE	Spire Global
er		
Launched	23/Oct/1998 (on Pegasus)	15/Feb/2017 (PSLV-XL-C37
Launch cost	12 million USD	295 thousand USD_

Discussion

- Note difference concerning the number of ground stations for INPE's
 missions and several spacecraft and contacts to be managed per day in the
 case of Spire's Constellation.
- SCD-2 is relevant at its launch is around the first release of the CubeSat standard in the early 2000s (Puig-Suari, 2001). Also, one should consider how many cell phone updates have we had over the past two decades, in terms of hardware and software technological evolution.
- Power and link budgets of an individual Lemur spacecraft are far inferior with respect to SCD-2. However, the temporal resolution and the size of the active constellation allow for shorter revisit periods, which allow for lower volumes of data need to be stored and relayed.

Conclusions

- A case study for SCD-2 and Lemur-2 was developed. Challenges in the availability of relevant technical details made it difficult to benchmark each concept in much details. Hence, a generalization of aspects has been provided.
- Though some principles of small satellite design philosophy can be observed in the SCD-2 mission, only two spacecraft effectively reached orbit, while over 60 spire spacecraft have been successfully deployed and operated.
- Constrains for cost-effective deployment of CubeSat in specific orbital inclinations, different than SSO or Polar and ISS near 50°, yield challenges for missions with specific orbital needs (as the case of Brazilian territory).

Further research

- Satellite internet concepts: One Web, Keppler, Starlink (Space X) and other mega LEO constellations
- Propulsion capabilities for orbital maneuvering or innovative concepts for Nano-satellite deployment will be critical to providing specific orbits to fill in the constellation or replaced decayed or nonoperational spacecraft. For this, the work of (Grönland, Palmer, Bejhed, & Elgaard, n.d.; NASA, 2019; Pascoa, Teixeira, & Filipe, 2018) will provide relevant insights in terms of current technology readiness level and trends.

X WEILE

Advancements in satellite data collection and relay concepts using small satellites

Alejandro Lopez Telgie, Walter Abrahão Dos santos

References

- Arash Mehrparvar. (2014). *CubeSat Design Specification Rev. 13*. Retrieved from http://www.cubesat.org/images/developers/cds_rev13_final.pdf
- Birkeland, R., & Quintana, G. (2018). SOFTWARE-DEFINED RADIOS IN SATELLITE COMMUNICATIONS. In ESA
 4S Symposium. Sorrento, Italy. Retrieved from
 https://www.researchgate.net/publication/330398017 SOFTWAREDEFINED RADIOS IN SATELLITE COMMUNICATIONS
- Bryce Space and Technology. (2019). *Smallsats by the Numbers 2019*. Retrieved from http://brycetech.com/reports.html
- Carson-Jackson, J. (2019). Satellite AIS-Developing Technology or Existing Capability? https://doi.org/10.1017/S037346331100066X
- eoPortal Directory. (2019). SCD (Satélite de Coleta de Dados) Data Collection Program of Brazil. Retrieved July 18, 2019, from https://earth.esa.int/web/eoportal/satellite-missions/s/scd
- Grönland, T., Palmer, K., Bejhed, J., & Elgaard, D. (n.d.). Development and on-orbit demonstration of miniaturized propulsion for micro- and nanosatellites.
- Kulu, E. (2018). FP7 NANOSAT database. Retrieved August 20, 2010, from http://www.nanosats.eu/
- Larson, W. J., & Wertz, J. R. (1999). Space mission analysis and design. (W. Larson & J. Wertz, Eds.) (3rd ed.).
 Microcosm.
 7 a 9 de agosto de 2019
 São José dos Campos

References (cont.)

- NASA. (2019). State of the Art of Small Spacecraft Technology: Ch4 Propulsion (rev March 2019). Retrieved from https://sst-soa.arc.nasa.gov/04-propulsion
- NASA Space Science Data Coordinated Archive. (n.d.). Satelite de Coleta de Dados 2. Retrieved June 29, 2019, from https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1998-060A
- Pascoa, J. C., Teixeira, O., & Filipe, G. (2018). A Review of Propulsion Systems for CubeSats. In *Volume 1:* Advances in Aerospace Technology (p. V001T03A039). ASME. https://doi.org/10.1115/IMECE2018-88174
- Puig-Suari, J. (2001). Development of the standard CubeSat deployer and a CubeSat class PicoSatellite. ...
 Conference, 2001, IEEE ..., 347–353. Retrieved from
 http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=931726
- Spire. (2019). Spire Global Website. Retrieved July 18, 2019, from https://spire.com/en/spire/about-spire
- UCS. (2019). Union of Concerned Scientists (UCS) Satellite Database. Retrieved June 29, 2019, from https://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database
- Wekerle, T., Pessoa Filho, J. B., Costa, L. E. V. L. da, Trabasso, L. G., Wekerle, T., Pessoa Filho, J. B., ... Trabasso, L. G. (2017). Status and Trends of Smallsats and their Launch Vehicles An Up-to-date Review. *Journal of Aerospace Technology and Management*, 9(3), 269–286. https://doi.org/10.5028/jatm.v9i3.853

