Customer No.: 22,852

Page 3 of 13

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1-22. (Canceled)

23. (New) A compound of formula I, stereoisomeric and tautomeric forms and mixtures thereof in all ratios, and physiologically tolerated salts, hydrates and esters thereof:

$$R_1$$
 N R_2 N R_4 R_{12} R_{13} R_{11} R_{11} R_{12}

wherein:

R₁ is chosen from hydrogen, (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkenyl, (C₁-C₂₀)-alkynyl, cycloalkyl, cycloalkylalkyl, aryl, alkylaryl, and arylalkyl, wherein the organic radicals may be substituted by at least one substituent,

R₂ is chosen from, independently of R₁, hydrogen, (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkenyl, (C₁-C₂₀)-alkynyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, aryl, alkylaryl, and arylalkyl, wherein the organic radicals may be substituted by at least one substituent, or

Customer No.: 22,852

Page 4 of 13

 R_1 and R_2 may, together with the nitrogen atom bearing them, form a 3-8-membered ring which may optionally contain 0, 1 or 2 further heteroatoms chosen from N, O, and S, and which is optionally substituted by at least one radical,

- R_4 is chosen from (C_1-C_{20}) -alkyl, (C_1-C_{20}) -alkenyl, (C_1-C_{20}) -alkynyl, cycloalkyl, cycloalkyl, aryl, (C_1-C_{20}) -alkylaryl, arylalkyl, -CO-O-alkyl, -CO-O-aryl, -CO-alkyl, and -CO-aryl, wherein the organic radicals may be substituted by at least one substituent,
- R₁₁ is chosen from hydrogen, (C₁-C₂₀)-alkyl, aryl, -CO-alkyl, and -CO-aryl, wherein the organic radicals may be substituted by at least one substituent,
- R_{12} and R_{13} are independently chosen from hydrogen, (C_1-C_{10}) -alkyl, aryl, -O- (C_1-C_{10}) -alkyl, -O-phenyl, -O-CO- (C_1-C_{10}) -alkyl, -O-CO-aryl, -NR₈R₉, phenyl, -CO- (C_1-C_{10}) -alkyl, -CF₃, -CN, -CONR₈R₉, -COOH, -CO-O- (C_1-C_{10}) -alkyl, -CO-O-aryl, -F and -Cl,
- R_8 is chosen from hydrogen and (C_1-C_{20}) -alkyl,
- R₉ is chosen from hydrogen, (C₁-C₂₀)-alkyl, and aryl, and

Customer No.: 22,852

Page 5 of 13

n is 0, 1 or 2,

with the proviso that compounds of the formula (Ia)

$$R_1$$
 R_3 R_4 R_2 R_4 (la) are excluded,

wherein in formula (Ia) R_1 , R_2 , R_3 and R_4 are independently chosen from H and OH, R_5 is chosen from H, CH₃, CH₂OH, CHO, a lower (C₁-C₉) alkyl radical, which can be a straight or a branched chain, (CH(OH))_n-Y and (CH(OH))_n-(CH₂)_m-W, wherein Y is hydrogen or a lower alkyl (C₁-C₉) radical, W is hydrogen or a hydroxyl group, and n and m are independently from each other 1-20.

24. (New) The compound of claim 23, wherein:

R₁ is hydrogen,

R₂ is chosen from hydrogen, (C₁-C₂₀)-alkyl and cycloalkylalkyl,

 R_4 is chosen from phenyl, (C_1-C_{20}) -alkylphenyl and $(C_{12}-C_{20})$ -alkyl which is optionally substituted with -OH, alkyloxy or halogen, and

 $R_{11},\,R_{12}$ and R_{13} are independently of each other chosen from hydrogen and methyl.

Customer No.: 22,852

Page 6 of 13

25. (New) The compound of claim 23, wherein:

 R_1 is chosen from cycloalkylalkyl, optionally substituted with (C_1-C_5) -alkyl, and (C_1-C_5) -O-alkyl,

R₂ is hydrogen,

R₄ is 1,2-dihydroxypropyl and

R₁₁, R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

26. (New) The compound of claim 25, wherein R_1 is chosen from cyclohexylmethyl and cylcohexylethyl.

27. (New) The compound of claim 23, wherein:

R₁ is hydrogen,

R₂ is chosen from hydrogen, (C₁-C₂₀)-alkyl and cycloalkylalkyl,

 R_4 is chosen from phenyl, (C_1-C_{20}) -alkylphenyl and (C_1-C_{20}) -alkyl which is optionally substituted with -OH, (C_1-C_{20}) -alkyloxy or halogen,

 R_{11} is (C_1-C_5) -alkyl, which is optionally substituted,

 R_{12} and R_{13} are independently of each other chosen from hydrogen and (C_1 - C_5)-alkyl, which is optionally substituted.

28. (New) The compound of claim 27, wherein:

R₁ and R₂ are hydrogen,

 R_4 is 1,2-dihydroxypropyl

 R_{11} is chosen from methyl and ethyl, and

Customer No.: 22,852

Page 7 of 13

R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

29. (New) The compound of claim 23, wherein:

 R_1 is chosen from cycloalkylalkyl, optionally substituted with (C_1 - C_5)-alkyl, and (C_1 - C_5)-O-alkyl,

R₂ is hydrogen,

R₄ is 1,2-dihydroxypropyl, and

R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

30. (New) The compound of claim 29, wherein R_1 is chosen from cyclohexylmethyl and cyclohexylethyl.

- 31. (New) A pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and a therapeutically effective amount of a compound according to claim 23, or a pharmaceutically acceptable acid addition salt thereof.
- 32. (New) A method of treating a disorder associated with an increased nitric oxide (NO) level, comprising administering to the subject a therapeutically sufficient amount of a compound of formula I, stereoisomeric and tautomeric forms and mixtures thereof in all ratios, and physiologically tolerated salts, hydrates and esters thereof,:

Customer No.: 22,852

Page 8 of 13

$$R_{1}$$
, R_{2}
 N
 R_{4}
 R_{12}
 R_{13}

(l)

wherein in formula (I)

R₁ is chosen from hydrogen, (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkenyl, (C₁-C₂₀)alkynyl, cycloalkyl, cycloalkylalkyl, aryl, alkylaryl, and arylalkyl, wherein the organic radicals may be substituted by at least one substituent,

R₂ is chosen from, independently of R₁, hydrogen, (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkenyl, (C₁-C₂₀)-alkynyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, aryl, alkylaryl, and arylalkyl, wherein the organic radicals may be substituted by at least one substituent,

 R_1 and R_2 may, together with the nitrogen atom bearing them, form a 3-8-membered ring which may optionally contain 0, 1 or 2 further heteroatoms chosen from N, O, and S, and which is optionally substituted by at least one radical,

- is chosen from (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkenyl, (C₁-C₂₀)-alkynyl, cycloalkyl, cycloalkyl, aryl, alkylaryl, arylalkyl, -CO-O-alkyl, -CO-O-aryl, -CO-alkyl, and -CO-aryl, wherein the organic radicals may be substituted by at least one substituent,
- R₁₁ is chosen from hydrogen, (C₁-C₂₀)-alkyl, (C₁-C₂₀)-alkylaryl, aryl, arylalkyl, -CO-alkyl, -CO-aryl, where the organic radicals may be substituted by at least one substituent,
- R₁₂ and R₁₃ are independently chosen from hydrogen, (C_1-C_5) -alkyl, aryl, -O- (C_1-C_{10}) -alkyl, -O-phenyl, -O-CO- (C_1-C_{10}) -alkyl, -O-CO-aryl, -NR₈R₉, phenyl, -CO- (C_1-C_5) -alkyl, -CF₃, -CN, -CONR₈R₉, -COOH, -CO-O- (C_1-C_5) -alkyl, -CO-O-aryl, -F and -Cl
- R_8 is hydrogen or (C_1-C_{20}) -alkyl, preferably (C_1-C_5) -alkyl,
- R₉ is hydrogen, (C₁-C₂₀)-alkyl, preferably (C₁-C₅)-alkyl or aryl, preferably phenyl, and
- n is 0, 1 or 2,

with the proviso that compounds of the formula (Ia)

Customer No.: 22,852

Page 10 of 13

$$R_1$$
 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_5 R_6 R_6 R_6 R_7 R_8 R_8 R_9 R_9

wherein in formula (Ia) R_1 , R_2 , R_3 and R_4 are independently chosen from H and OH, R_5 is chosen from H, CH_3 , CH_2OH , CHO, a lower (C_1-C_9) alkyl radical, which can be a straight or a branched chain, $(CH(OH))_n$ -Y, and $(CH(OH))_n$ -(CH_2)_m-W, wherein Y is hydrogen or a lower alkyl (C_1-C_9) radical, W is hydrogen or a hydroxyl group, an n and m are independently from each other 1-20.

33. (New) The method of claim 32, wherein in the compound of formula (I)

R₁ is hydrogen,

R₂ is chosen from hydrogen, (C₁-C₂₀)-alkyl and cycloalkylalkyl,

 R_4 is chosen from phenyl, (C_1-C_{20}) -alkylphenyl and $(C_{12}-C_{20})$ -alkyl which is optionally substituted with -OH, alkyloxy or halogen, and

R₁₁, R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

34. (New) The method of claim 32, wherein in the compound of formula (I)

 R_1 is chosen from cycloalkylalkyl, optionally substituted with (C_1 - C_5)-alkyl, and (C_1 - C_5)-O-alkyl,

R₂ is hydrogen,

Customer No.: 22,852

Page 11 of 13

R₄ is 1,2-dihydroxypropyl and

R₁₁, R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

35. (New) The method of claim 34, wherein in the compound of formula (I) R₁ is chosen from cyclohexylmethyl and cyclohexylethyl.

36. (New) The method of claim 32, wherein in the compound of formula (I)

R₁ is hydrogen,

R₂ is chosen from hydrogen, (C₁-C₂₀)-alkyl and cycloalkylalkyl,

 R_4 is chosen from phenyl, (C_1-C_{20}) -alkylphenyl and (C_1-C_{20}) -alkyl which is optionally substituted with -OH, (C_1-C_{20}) -alkyloxy or halogen,

 R_{11} is (C_1-C_5) -alkyl, which is optionally substituted,

 R_{12} and R_{13} are independently of each other chosen from hydrogen and (C_1 - C_5)-alkyl, which is optionally substituted.

37. (New) The method of claim 36, wherein in the compound of formula (I) R_1 and R_2 are hydrogen,

R₄ is 1,2-dihydroxypropyl

R₁₁, is chosen from methyl and ethyl, and

R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

38. (New) The method of claim 32, wherein in the compound of formula (I)

Customer No.: 22,852 Page 12 of 13

 R_1 is chosen from cycloalkylalkyl, optionally substituted with (C₁-C₅)-alkyl, and $(C_1-C_5)-O-alkyl$,

 R_2 is hydrogen,

 R_4 is 1,2-dihydroxypropyl and

R₁₂ and R₁₃ are independently of each other chosen from hydrogen and methyl.

- 39. (New) The method of claim 38, wherein in compound of formula (I) R₁ is chosen from cyclohexylmethyl and cyclohexylethyl.
- 40. (New) The method of claim 32, wherein said disorder associated with an increased NO level is chosen from:
- disorders characterized by pathological blood pressure decreases; (a)
- (b) inflammatory disorders;
- (c) insulin-dependent diabetes mellitus;
- (d) transplant rejection reactions;
- (e) cardiovascular disorders;
- (f) disorders of the nervous system/central nervous system;
- (g) disorders of the kidney.
- 41. (New) The method of claim 32, wherein the subject is a mammal.
- 42. (New) The method of claim 41, wherein the subject is a human.