# Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 8

### Clase 8

Espacio logarítmico:  ${\bf L}$  y  ${\bf N}{\bf L}$ 

Teorema de Immerman-Szelepcsényi

# Espacio logarítmico: L y NL

Clase 8

Espacio logarítmico: L<br/> y  ${\bf NL}$ 

Teorema de Immerman-Szelepcsényi

## LyNL

## Clase de complejidad: L, NL

 $\mathbf{L} = \mathbf{Space}(\log n)$ 

 $\mathbf{NL} = \mathbf{NSPACE}(\log n)$ 

### Observación

 $L \subseteq NL \subseteq P$ .

### Demostración.

Si S es construible en espacio, sabemos que

$$\mathbf{NSPACE}(S(n)) \subseteq \mathbf{DTIME}(2^{O(S(n))})$$
. Tomar  $S(n) = \log n$ .

2

## L y NL

$$\mathbf{L} = \mathbf{Space}(\log n)$$

$$\mathbf{NL} = \mathbf{NSPACE}(\log n)$$

## Observación

$$L \subseteq NL \subseteq P$$
.

### Demostración.

Si S es construible en espacio, sabemos que

$$\mathbf{NSPACE}(S(n)) \subseteq \mathbf{DTIME}(2^{O(S(n))})$$
. Tomar  $S(n) = \log n$ .

Problema: EVEN (cantidad par de 1s)

$$\mathsf{EVEN} = \{x \in \{0,1\}^* : \text{ hay una cantidad par de 1s en } x\}$$

## Ejercicio

 $EVEN \in \mathbf{L}$ .



# Ejemplo de problema en **NL**

Problema: PATH (existencia de camino)

 $\mathsf{PATH} = \{ \langle G, s, t \rangle \colon \text{hay un camino de } s \text{ a } t \text{ en el grafo dirigido } G \}$ 

No se sabe si  $PATH \in \mathbf{L}$ , pero

Proposición

 $\mathsf{PATH} \in \mathbf{NL}.$ 

#### Demostración.

Suponemos que los nodos de  $G=\langle V,E\rangle$  están codificados como números del 0 a |V|-1.

Definimos la máquina no-determinística N que con entrada  $x = \langle G, s, t \rangle$  inventa un camino de s a t:

```
\begin{aligned} y \leftarrow s; & m \leftarrow 0 \\ \text{mientras } m < |V|: \\ & z \leftarrow \text{inventar un valor en } \{0, \dots, |V|-1\} \\ & \text{si } (y,z) \notin E \text{ (para esto, revisa } G), \text{ pasar a } q_{\text{no}} \\ & \text{si no:} \\ & \text{si no:} \\ & y \leftarrow z; m \leftarrow m+1 \\ & \text{pasar a } q_{\text{no}} \end{aligned}
```

Las variables y, z, m son posiciones contiguas de celdas en la cinta de trabajo. Solo almacenan números  $\leq |V|$ , de modo que alcanzan  $\log |V|$  celdas para cada variable. Entonces M usa espacio  $O(\log n)$ .

 $N \text{ acepta } x \text{ sii } x \in \mathsf{PATH},$ 

luego PATH  $\in \mathbf{NL}$ .

# Reducibilidad para **NL**

Para la pregunta  $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$  usamos la (Karp) reducibilidad polinomial  $\leq_{\mathbf{p}}$ .

Para la pregunta  $\mathbf{L} \stackrel{?}{=} \mathbf{NL}$  no nos sirve  $\leq_{\mathbf{p}}$ :

## Proposición

Si  $\mathcal{L} \notin \{\{0,1\}^*,\emptyset\}$  entonces  $\mathcal{L}$  es **NL-hard** con respecto a  $\leq_p$ .

### Demostración.

Sea  $a \in \mathcal{L}$  y  $b \notin \mathcal{L}$ . Tomemos  $\mathcal{L}' \in \mathbf{NL}$ . Sea f la función

$$f(x) = \begin{cases} a & \text{si } x \in \mathcal{L}' \\ b & \text{si } x \notin \mathcal{L}' \end{cases}$$

Como  $\mathbf{NL}\subseteq\mathbf{P},\,f$ es computable en tiempo polinomial. Además,

$$x \in \mathcal{L}'$$
 sii  $f(x) \in \mathcal{L}$ 

Entonces  $\mathcal{L}' \leq_{p} \mathcal{L}$ .



# Funciones computables implícitamente en L

### Definición

Una función f es computable **implícitamente en L** si

- existe un polinomio p tal que para todo  $x \in \{0,1\}^*$ ,  $|f(x)| \le p(x)$
- $\{\langle x,i\rangle\colon f(x)(i)=1\}$  y  $\{\langle x,i\rangle\colon i\leq |f(x)|\}$  están en L.

La función booleana

$$\langle x, i \rangle \mapsto \begin{cases} f(x)(i) & \text{si } i \leq |f(x)| \\ 0 & \text{si no} \end{cases}$$

es  $\mathbf{L}$ 

(Dado  $\langle x, i \rangle$ , decidir si  $i \leq |f(x)|$  también es **L**.)

# Funciones computables en L sin contar salida

### Definición

Una función f es **trabajo-L** computable si existe una máquina determinística que computa f en espacio  $O(\log n)$  pero donde solo se cuenta el espacio de las cintas de trabajo y no de la cinta de salida. Como siempre,

- la cinta de salida es de solo escritura
- la cabeza escribe y se mueve a la derecha

## Ejercicio

Una función es computable implícitamente en  ${\bf L}$  sii es trabajo- ${\bf L}$  computable.

Composición de funciones computables implícitamente en  ${\bf L}$ 

### Proposición

Sean f, g computables implícitamente en  $\mathbf{L}$ . Entonces  $g \circ f$  es computable implícitamente en  $\mathbf{L}$ .

#### Demostración

Sean  $M_f$  y  $M_g$  máquinas determinísticas que corren en espacio  $O(\log n)$  tales que  $M_f(\langle x,i\rangle)=f(x)(i)$  y  $M_g(\langle x,i\rangle)=g(x)(i)$ . Definimos la máquina M que con entrada  $\langle x,i\rangle$  hace esto:

ios la maquina 
$$M$$
 que con entrada  $\langle x,t\rangle$  nace esto.  $j\leftarrow 1$  (índice de la entrada ficticia  $M_f(\langle x,j\rangle)$ )  $k\leftarrow 1$  (índice de la salida de  $M_f(\langle x,j\rangle)$ )  $b\leftarrow$  resultado de simular  $M_f(\langle x,j\rangle)$  simular  $M_g$  con entrada  $M_f(x)$  paso a paso pero con estos cambios: engañamos a  $M_g$  con la entrada: el símbolo leído de la entrada de  $M_g$  es  $b$  sea  $I$  la instrucción de  $M_g$  a ejecutar (depende de  $b$ , de las cintas de trabajo de  $M_g$   $y$  del estado de  $M_g$ ) si  $I$  mueve la cabeza de entrada a  $R/L$ , incrementa/decrementa  $j$  en uno  $b\leftarrow$  resultado de simular  $M_f(\langle x,j\rangle)$  si  $I$  mueve la cabeza de salida (solo puede a  $R$ ), incrementa  $k$  en uno si  $I$  escribe  $y\in\{0,1,\Box\}$  en la salida  $y$   $k=i$ , escribir  $y$  en la cinta de salida de  $M$ 

- Cada vez que  $M_q$  lee un bit de f(x), M lo calcula
  - no tiene espacio para calcular f(x) entero, porque  $|f(x)| \leq |x|^c$  para todo x suficientemente largo, pero  $|x|^c$  es demasiado grande
- Para simular  $M_f(\langle x, j \rangle)$  necesita leer el x de la entrada original de M porque no tiene espacio para copiar x en otro lado
- Lleva cuenta de las cintas de trabajo de  $M_g$
- $M(\langle x, i \rangle) = g(f(x))(i)$
- ullet Para las variables j y k usa

$$\leq \log |f(x)| = \log(|x|^c) = O(\log |x|)$$

• El resto del espacio que usa es el de que usan  $M_g$  y  $M_f$ .

13

### Reducibilidad L

#### Definición

 $\mathcal{L}$  es **L-reducible** a  $\mathcal{L}'$ , notado  $\mathcal{L} \leq_{\ell} \mathcal{L}'$ , si existe una función f computable implícitamente en **L** tal que para todo x,

$$x \in \mathcal{L}$$
 sii  $f(x) \in \mathcal{L}'$ .

En este caso decimos que  $\mathcal{L} \leq_{\ell} \mathcal{L}'$  vía f.

## Clase de complejidad: NL-hard, NL-completo

 $\mathcal{L}$  es NL-hard si  $\mathcal{L}' \leq_{\ell} \mathcal{L}$  para todo  $\mathcal{L}' \in \mathbf{NL}$ .

 $\mathcal{L}$  es NL-completo si  $\mathcal{L} \in NL$  y  $\mathcal{L} \in NL$ -hard.

## Reducibilidad L

## Ejercicio

Si  $\mathcal{L} \leq_{\ell} \mathcal{L}'$  y  $\mathcal{L}' \in \mathbf{L}$ , entonces  $\mathcal{L} \in \mathbf{L}$ .

# Ejercicio

La relación  $\leq_{\ell}$  es transitiva.

# Teorema de Immerman-Szelepcsényi

Clase 8

Espacio logarítmico:  $\mathbf{L}$  y  $\mathbf{NL}$ 

Teorema de Immerman-Szelepcsényi

# $PATH \in NL$ -completo

#### Teorema

 $\mathsf{PATH} \in \mathbf{NL\text{-}completo}.$ 

### Demostración.

Ya vimos que  $\mathsf{PATH} \in \mathbf{NL}$ .

Solo falta ver  $PATH \in \mathbf{NL}\text{-}\mathbf{hard}$ .

# $PATH \in \mathbf{NL\text{-}completo}$

#### Teorema

 $\mathsf{PATH} \in \mathbf{NL\text{-}completo}.$ 

### Demostración.

Ya vimos que  $\mathsf{PATH} \in \mathbf{NL}$ .

Solo falta ver  $\mathsf{PATH} \in \mathbf{NL}\text{-}\mathbf{hard}.$ 

### Corolario

 $\overline{\mathsf{PATH}} \in \mathbf{coNL\text{-}completo}$ .

#### Demostración de PATH $\in$ NL-hard.

Sea  $\mathcal{L} \in \mathbf{NL}$  y N una máquina no-determinística tal que  $\mathcal{L}(N) = \mathcal{L}$  y N usa espacio  $O(\log n)$ . Veamos que  $\mathcal{L} \leq_{\ell} \mathsf{PATH}$  vía f.

$$f(x) = \langle G_{N,x}, C_0, C_f \rangle$$

donde  $C_0$  es la configuración inicial de N para x y  $C_f$  es la final.

### Demostración de PATH $\in$ NL-hard.

Sea  $\mathcal{L} \in \mathbf{NL}$  y N una máquina no-determinística tal que  $\mathcal{L}(N) = \mathcal{L}$  y N usa espacio  $O(\log n)$ . Veamos que  $\mathcal{L} \leq_{\ell} \mathsf{PATH}$  vía f.

$$f(x) = \langle G_{N,x}, C_0, C_f \rangle$$

donde  $C_0$  es la configuración inicial de N para x y  $C_f$  es la final. Cada configuración C se codifica con  $c \cdot \log |x|$  bits.

$$x\in\mathcal{L}$$
sii  $N$ acepta  $x$ sii existe un camino desde  $C_0$ hasta  $C_f$  en  $G_{N,x}$ sii  $f(x)\in\mathsf{PATH}$ 

### Demostración de PATH $\in$ NL-hard.

Sea  $\mathcal{L} \in \mathbf{NL}$  y N una máquina no-determinística tal que  $\mathcal{L}(N) = \mathcal{L}$  y N usa espacio  $O(\log n)$ . Veamos que  $\mathcal{L} \leq_{\ell} \mathsf{PATH}$  vía f.

$$f(x) = \langle G_{N,x}, C_0, C_f \rangle$$

donde  $C_0$  es la configuración inicial de N para x y  $C_f$  es la final. Cada configuración C se codifica con  $c \cdot \log |x|$  bits.

$$x \in \mathcal{L}$$
 sii  $N$  acepta  $x$  sii existe un camino desde  $C_0$  hasta  $C_f$  en  $G_{N,x}$  sii  $f(x) \in \mathsf{PATH}$ 

Falta ver que f es computable implícitamente en  $\mathbf{L}$ .

- El grafo  $G_{N,x}$  tiene  $2^{c \cdot \log |x|}$  nodos
- Lo representamos con la matriz de adyacencia, de dimensión  $2^{c\cdot \log |x|} \times 2^{c\cdot \log |x|}$ .
- $|f(x)| = O((2^{c \cdot \log|x|})^2) = O(|x|^{2 \cdot c})$
- Dado  $\langle x, i \rangle$ , calculamos el *i*-ésimo bit de f(x) usando espacio logarítmico (enumera configuraciones reusando el espacio).

## Caracterización de NL con certificados

#### Teorema.

 $\mathcal{L} \in \mathbf{NL}$  sii existe un polinomio  $p: \mathbb{N} \to \mathbb{N}$  y una máquina determinística M con una cinta adicional de lectura de una única vez (lee y pasa a la siguiente celda a la derecha; no puede volver atrás) tal que

- M usa espacio  $O(\log n)$  (como siempre, solo cuentan sus cintas de trabajo y salida)
- para todo x:

$$x \in \mathcal{L}$$
 sii existe  $u \in \{0,1\}^{p(|x|)}$  tal que  $M(x,u) = 1$  donde  $M(x,u)$  denota la salida de  $M$  cuando

- $\bullet$  la cinta de entrada tiene x
- ullet la cinta adicional de lectura de una única vez tiene u
- la cinta de entrada y la cinta adicional no cuentan en el espacio usado por M
- $\bullet$  M se llama **verificador**
- *u* se llama **certificado**

# $\overline{\mathsf{PATH}} \in \mathbf{NL}$

## Teorema (Immerman-Szelepcsényi)

 $\overline{\mathsf{PATH}} \in \mathbf{NL}$ 

### Corolario

NL = CoNL.

### Demostración.

Veamos  $\mathbf{coNL} \subseteq \mathbf{NL}$  (el caso  $\mathbf{NL} \subseteq \mathbf{coNL}$  es análogo). Sea  $\mathcal{L} \in \mathbf{coNL}$ . Como  $\overline{\mathsf{PATH}} \in \mathbf{coNL\text{-}completo}$ , tenemos  $\mathcal{L} \leq_{\ell} \overline{\mathsf{PATH}} \in \mathbf{NL}$ . Luego  $\mathcal{L} \in \mathbf{NL}$ .

Distinto a lo que pasa con **NP** vs **coNP**.

- NP  $\stackrel{?}{=}$  coNP
- se cree que  $NP \neq coNP$

### Demostración de $\overline{\mathsf{PATH}} \in \mathbf{NL}$

Definimos un verificador M que

- usa espacio logarítmico; no cuenta cinta de entrada ni cinta de lectura de única vez donde va el certificado Z
- certifica que  $x \notin \mathsf{PATH}$

```
x \in \overline{\mathsf{PATH}} sii existe Z \in \{0,1\}^{p(|x|)} tal que M(x,Z) = 1
```

### Demostración de $\overline{\mathsf{PATH}} \in \mathbf{NL}$

Definimos un verificador M que

- usa espacio logarítmico; no cuenta cinta de entrada ni cinta de lectura de única vez donde va el certificado Z
- certifica que  $x \notin \mathsf{PATH}$

$$x \in \overline{\mathsf{PATH}}$$
 sii existe  $Z \in \{0,1\}^{p(|x|)}$  tal que  $M(x,Z) = 1$ 

Supongamos 
$$G = (V, E)$$
 y  $V = \{1, ..., n\}$ . Sea

$$A_i = \{v \in V : v \text{ es alcanzable desde } s \text{ en } \leq i \text{ pasos}\}$$

Notar que  $A_n$  es la componente conexa de s en G. Luego

$$\langle G, s, t \rangle \notin \mathsf{PATH}$$
 sii  $t \notin A_n$ .

Vamos a dar varios certificados Z de distintos hechos. Hay un verificador que puede revisar que Z sea un certificado válido para el hecho que pretende certificar

- solo puede leer Z de izquierda a derecha una celda a la vez sin volver atrás
- solo puede usar espacio logarítmico para su revisión
- puede buscar lo que quiera en la cinta de entrada (mover la cabeza a izquierda y derecha)
- puede guardar partes de la entrada o partes del certificado en cintas de trabajo, siempre que no excedan el espacio logarítmico

Siempre codificamos a los nodos de G en binario (tamaño  $O(\log n)$ ).

Recordar que

$$A_i = \{v \in V \colon v \text{ es alcanzable desde } s \text{ en } \leq i \text{ pasos}\}$$

Certificado de que  $v \in A_i$ : una lista de nodos

$$Z_{v \in A_i} = \langle v_0, v_1, \dots, v_k \rangle$$

tal que

- cada  $v_i$  es la codificación en binario de un nodo de V
- $v_0 = s$
- $(v_i, v_{i+1}) \in E$
- $v_k = v$
- k < i</li>

La lista que muestra  $Z_{v \in A_i}$  es una forma de probar que  $v \in A_i$ .

Notar que el tamaño de  $Z_{v \in A_i}$  es polinomial.

Certificado de que  $v \notin A_i$  conociendo  $|A_i|$ : una lista de pares

$$Z_{v\notin A_i}^{|A_i|} = \langle (v_1, Z_{v_1\in A_i}), (v_2, Z_{v_2\in A_i}), \dots, (v_k, Z_{v_k\in A_i}) \rangle$$

tal que

- cada  $v_i$  es la codificación en binario de un nodo de V
- $k = |A_i|$
- $\bullet$   $v_j < v_{j+1}$
- $v \notin \{v_1, \ldots, v_k\}$

 $Z_{v\notin A_i}^{|A_i|}$  muestra k elementos distintos en  $A_i$  tal que ninguno es v y  $|A_i|=k$ . Es una forma de probar que  $v\notin A_i$ .

Notar que el tamaño de  $Z_{v\notin A_i}^{|A_i|}$  es polinomial.

Certificado de que  $v \notin A_i$  conociendo  $|A_{i-1}|$ : una lista de pares

$$Z_{v\notin A_i}^{|A_{i-1}|} = \langle (v_1, Z_{v_1\in A_{i-1}}), (v_2, Z_{v_2\in A_{i-1}}), \dots, (v_k, Z_{v_k\in A_{i-1}}) \rangle$$

tal que

- cada  $v_i$  es la codificación en binario de un nodo de V
- $k = |A_{i-1}|$
- $v_j < v_{j+1}$
- $v \notin \{v_1, \dots, v_k\}$
- $v \notin \bigcup_{1 \le j \le k} E(v_i)$ , donde  $E(x) = \{y \in V : (x, y) \in E\}$

Notar que el tamaño de  $Z_{v \notin A_i}^{|A_{i-1}|}$  es polinomial.

Recordar que  $V = \{1, \dots, n\}$ 

Certificado de que  $|A_i| = a$  conociendo  $|A_{i-1}|$ : una lista de pares

$$Z_{|A_i|=a}^{|A_{i-1}|} = \langle (1, Z_1), \dots, (n, Z_n) \rangle$$

tal que

- si  $v \in A_i$  entonces  $Z_v = Z_{v \in A_i}$
- si  $v \notin A_i$  entonces  $Z_v = Z_{v \notin A_i}^{|A_i|-1}$
- $|v: Z_v = Z_{v \in A_i}| = |A_i| = a$

Notar que el tamaño de  $Z_{|A_i|=a}^{|A_{i-1}|}$  es polinomial.

Certificado final de que  $t \notin A_n$ :

$$Z = \langle Z_{|A_1|=a_1}^{|A_0|}, Z_{|A_2|=a_2}^{|A_1|}, \dots, Z_{|A_n|=a_n}^{|A_{n-1}|}, Z_{t\notin A_n}^{|A_n|} \rangle$$

tal que

•  $a_i = |A_i|$  para todo i

Notar que el tama $\tilde{n}$ o de Z es polinomial.

- sabemos que  $A_0 = \{s\}$  y por lo tanto  $|A_0| = 1$
- a medida que lee de izquierda a derecha, va guardando  $|A_{i-1}|$  para verificar  $Z_{|A_i|=a_i}^{|A_{i-1}|}$  (reusa espacio)

# Teorema de Immerman-Szelepcsényi más general

#### Teorema

Si  $S(n) \ge \log n$  es construible en espacio entonces  $\mathbf{NSPACE}(S(n)) = \mathbf{CoNSPACE}(S(n))$ .

## Ejercicio

Demostrarlo.

NL = CONL es un caso particular cuando  $S(n) = \log n$ .







