(若发现问题,请及时告知)

1. 下面的文法 G[S] 描述由命题变量 p, q ,联结词 Λ (合取)、V (析取)、 Π (否定)构成的命题公式集合:

$$\begin{split} S \rightarrow S \lor T & \mid T \\ T \rightarrow T \land F & \mid F \\ F \rightarrow \neg F & \mid p \mid q \end{split}$$

试分别指出句型 $\neg F \lor \neg q \land p$ 和 $\neg F \lor p \land \neg F \lor T$ 的所有短语,直接短语。如果这些句型同时也是右句型,那么还要给出其句柄 . 请将结果填入下表中:

	短语	直接短语	句柄
$\neg F \lor \neg q \land p$			
$\neg F \lor p \land \neg F \lor T$			

参考解答:

 句型	短语			直接短语			句柄	
¬F\¬q\p	$\neg F \lor \neg q \land p$	¬F	(q^p	¬F	q	p	¬F
	¬q	q		p				
¬F∨p∧¬F∨T	$\neg F \lor p \land \neg F \lor T$		$\neg F \lor p$	⊳⊸F	¬F	p	$\neg F$	无
	¬F p∧-	¬F	p	¬F				

2. (1) 给定文法 G[S]:

$$S \to A B$$

$$A \to a A \mid \varepsilon$$

$$B \to B b \mid \varepsilon$$

- (a) 构造该文法 G[S] 的 LR(0) 有限状态机。
- (b) 说明该文法不是 LR(0) 文法。
- (c) 该文法是否 SLR(1) 文法? 为什么?
- (2) 给定文法 G[S]:

$$S \rightarrow SS \mid (S) \mid a$$

完成同(1)一样三个问题(a),(b),(c)。

参考解答:

(2) 首先变换文法为增广文法。增加如下产生式

$$S' \rightarrow S$$

得到增广文法如下

$$S' \rightarrow S$$

$$S \rightarrow S S$$

$$S \rightarrow (S)$$

$$S \rightarrow a$$

(a) 该文法的LR(0) 有限状态机状态转换图如下:

- (b) 状态I3中包含移进-归约冲突, 所以G(S)不是LR(0)文法。
- (c) 对于状态I3,由于 $FOLLOW(S)=\{a, (,), \#\}$,在面临第一个符号是a时,不能选择是归约成S还是移进a,所以,不是SLR(1)文法。
- 4. 给定 SLR(1) 文法 G[S]:

(1)
$$S \rightarrow Ab$$

(2)
$$S \rightarrow ABc$$

(3)
$$A \rightarrow aA$$

$$(4) A \rightarrow a$$

(5)
$$B \rightarrow b$$

其 LR(0) 有限状态机如下图所示:

- (a) 构造该文法的 SLR(1) 分析表。
- (b) 若采用 SLR(1) 方法对于 L(G) 中的某一输入串进行分析,当栈顶出现句柄 a 时, 余留输入符号串中的第一个符号是什么?

参考解答:

(a) SLR(1) 分析表:

状态 —	ACTION				GOTO		
	a	b	c	#	S	A	В
0	s_3				1	2	
1				acc			
2		s_4					5
3	s_3	r_4				7	
4			\mathbf{r}_5	\mathbf{r}_1			
5			s_6				
6				\mathbf{r}_2			
7		r_3					
(b) l	,)			·			

6. 给定文法 G[S]:

$$S \rightarrow SS \mid aSb \mid \varepsilon$$

- (a) 构造该文法的 LR (1) 有限状态机。
- (b) 该文法是否 LR(1) 文法? 为什么?

参考解答:

(a) 完整的 LR(1) 自动机:

- (b) 该文法不是 LR(1) 文法。存在"移进/归约冲突"的状态: I_0 , I_1 , I_2 , I_3 , I_4 , I_5 , I_7 , I_8 存在"归约/归约冲突"的状态: I_3 , I_5
- 8. (1) 构造下列增广文法 G[P']的 LR(1) FSM, 验证原文法是 LR(1) 文法:
 - (0) $P' \rightarrow P$
 - $(1) P \rightarrow P(P)$
 - (2) $P \rightarrow Aa$
 - (3) $P \rightarrow \epsilon$
 - (4) $A \rightarrow \epsilon$

其中 P', P, A 为非终结符

(2) 通过合并同芯集(状态)的方法构造相应于上述 LR(1) FSM 的 LALR(1) FSM,并 判断原文法是否 LALR(1)文法?

参考解答:

构造增广文法 G(P') 的 LR(1) 项目集族和转换函数如下:

其中的每个状态均无冲突,所以原文法是 LR(1)文法。

可以看出: I2 和 I6, I3 和 I8, I4 和 I9, I5 和 I10, I7 和 I11 是同芯状态. 通过合并同芯状态的方法构造相应于上述 LR(1)转换图的 LALR(1)转换图 如下:

可以看出: 所有状态都不存在移进-归约和归约-归约冲突. 所以, 原文法是 LALR(1) 文法。

10. 给定增广文法 G[S']:

- (0) S' \rightarrow S
- (1) $S \rightarrow \underline{do} S \underline{or} S$
- (2) $S \rightarrow do S$
- $(3) S \rightarrow S;S$
- (4) $S \rightarrow \underline{act}$

其中S', S为非终结符, 其余符号为终结符。

- a) 构造 LR(0)FSM;
- b) 判别原文法是否 LR(0)或 SLR(1) 文法;
- c) 若对一些终结符的优先级或结合性作如下规定:

or 优先性大与 do;

; 优先性大与 do

; 优先性大与 or

; 服从左结合性

试构造原文法的一个 LR 分析表。

参考解答:

由产生式知:

 $Follow(S) = \{or, ;, \#\}$

a) 原文法的LR(0)FSM(其中, d、o和a分别代表 do、or和 act, 下同):

b) 原文法不是 LR(0)的也不是 SLR(1)的, 因为:

在 I5、I6、和 I8 中存在移进-归约冲突,因此所给文法不是 LR(0) 文法。

又由于 $Follow(S) = \{o, ; , \#\}$

在I6、和I8中:

Follow(S) $\cap \{$; $\} = \{ \circ, ; , \# \} \cap \{ ; \} = \{ ; \} \neq \emptyset$

在15中:

Follow(S) $\cap \{$; , \circ }={ \circ , ; ,#} $\cap \{$; , \circ }={ \circ , \circ } $\neq \emptyset$ 所以该文法也不是SLR(1) 文法。

实际上很容易证明所给文法是二义性的,因此该文法不可能是LR文法,

c) 若对一些终结符的优先级以及算符的结合规则规定如下:

or 优先性大与 do

; 优先性大与 do

- ; 优先性大与 <u>or</u>
- ; 服从左结合性

则在I5中: "o 和;优先性都大于d", 所以遇输入符号o和; 时移进; 遇#号归约。

在I6中: "; 服从左结合"所以遇输入符属于Follow(S)的都应归约。

在I8中: "; 优先性大于 o" 所以遇输入符为;号移进; 遇o和# 归约。

此外,在I1中:接受和移进可以不看成冲突,因为接受只有遇#。

由以上分析,所有存在的移进-归约冲突可用规定的终结符优先级以及算符的结合规则解决,所构造的LR分析表如下表所示:

CTATE		GOTO				
STATE	<u>do</u>	<u>or</u>	;	<u>act</u>	#	S
0	<i>S2</i>			<i>S3</i>		1
1			S4		accept	
2	<i>S2</i>			<i>S3</i>		5
3		r4	r4		r4	
4	<i>S2</i>			<i>S3</i>		6
5		<i>S7</i>	S4		r2	
6		r3	r3		r3	
7	<i>S2</i>			<i>S3</i>		8
8		r1	S4		r1	

12. 己知某文法 G[S] 的 LALR(1)分析表如下:

状态			ACTION			GOTO
	а	t	g	c	#	S
0	s11	s8		s4		1
1				s2	acc	
2			s3			
3	s11	s8		s4		16
4	s5					
5	s6					
6				s7		
7			r1	r1	R1	
8			s9			
9				s10		
10	s11	s8		s4		14
11	s11	s8		s4		12
12			s13	s2		
13	s11	s8		s4		15
14			r4	s2	R4	
15			r2	s2	R2	
16			r3	s2	R3	

并且已知各规则右边语法符号的个数以及左边的非终结符如下:

规则编号	1	2	3	4
右部长度	4	4	4	4
左部符号	S	S	S	S

(a) 写出使用上述 LALR(1)分析器分析下面串的过程(只需写出前 10 步,列出所有可能的 ri ,sj 序列,注意先后次序):

(b) 试指出该串相对于上述文法的句柄。

参考解答:

- (a) s11, s4, s5, s6, s7, r1, s2, s3, s8, s9, ...
- (b) 原始文法(不在题目中公开)是

$$S \rightarrow c a a c \mid a S g S \mid S c g S \mid t g c S$$

该串相对于上述文法的句柄是: caac

- 13. 给定如下文法 G[S]:
 - (1) $S \rightarrow \underline{\text{if}} S \underline{\text{else}} S$
 - (2) $S \rightarrow \text{if } S$
 - (3) $S \rightarrow a$

为文法 G[S] 增加产生式 $S' \rightarrow S$,得到增广文法 G'[S'],下图是相应的LR(0)自动 机 (i 表示 <u>if</u>, e 表示 <u>else</u>):

- (1) 指出LR(0)自动机中的全部冲突状态及其冲突类型,以说明文法G[S]不是LR(0) 文法。
- (2) 文法G[S]也不是SLR(1)文法。为什么?
- (3) 下图表示文法G[S]的LR(1)自动机,部分状态所对应的项目集未给出,试补齐之 (即分别给出状态 I_2 , I_8 ,和 I_{10} 对应的项目集。

- (4) 指出LR(1)自动机中的全部冲突状态,这说明文法 G[S] 也不是 LR(1) 文法。
- (5) 若规定最近匹配原则,即 else 优先匹配左边靠近它的未匹配的if,则可以解决上述2个自动机中的状态冲突。下图表示文法G[S]在规定这一规则情况下的 SLR(1)分析表,状态 4~6 对应的行未给出,试补齐之 。

状态		GOTO			
	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s2		s3		4
3		r3		r3	
4					
5					
6					

下图表示文法G[S] 在规定这一规则情况下的LR(1)分析表,状态 4,7 和 9 对

应的行未给出,试补齐之。

\ \ 41,		GOTO			
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4					
5	s2		s3		6
6				r1	
7					
8	s8		s7		9
9					
10	s8		s7		11
11		r1		r1	

(6) 对于文法G[S]中正确的句子,基于上述两个分析表均可以成功进行LR分析。然而,对于不属于文法G[S]中的句子,两种分析过程发现错误的速度不同,即发现错误时所经过的移进/归约总步数有差异。试给出一个长度不超过10的句子(即所包含的终结符个数不超过10),使得两种分析过程发现错误的速度不同。哪一个更快?对于你给的例子,两种分析过程分别到达哪个状态会发现错误?

参考解答:

- (1) 状态 I4 有冲突, 为移进-归约冲突。
- (2) 因 $Follow(S) = \{e, \#\}, e \in Follow(S),$ 所以状态 I_4 的移进-归约冲突不可解决,所以该文法不是 SLR(1) 文法。
 - (3) 完整的 LR(1) 自动机如下:

(4) 状态 I9 有冲突,同样为移进-归约冲突。

(5) 完整的 SLR(1)分析表

状态		ACTION					
	i	e	a	#	S		
0	s2		s3		1		
1				acc			
2	s2		s3		4		
3		r3		r3			
4		s5		r2			
5	s2		s3		6		
6		r1		r1			
	l				I		

完整的 LR(1)分析表

112 - Y -		GOTO			
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4		s5		r2	
5	s2		s3		6
6				r1	
7		r3		r3	
8	s8		s7		9
9		s10		r2	
10	s8		s7		11
11		r1		r1	

(6) 如对于句子 a else,用LR(1)分析1步后到达状态3发现错误,用SLR(1)分析2步后到达状态1发现错误,所以LR(1) 分析更快。

另解: 如对于句子 <u>if</u> a <u>else</u> a <u>else</u> ,用LR(1)分析5步后到达状态3发现错误,用SLR(1)分析8步后到达状态1发现错误,所以LR(1) 分析更快。