

Vidyavardhini's College of Engineering & Technology, Vasai (W)

First Year Engineering

Academic Year: 2024-25

Subject: BSC102/AP QUESTION BANK - (IAT-II)

Course Outcome (CO)-4: Electrodynamics

Theory Questions:

- 1. What is divergence and curl of a vector function? Give their significance.
- 2. Derive Maxwell's first equation in differential form for static electric field produced by charge enclosed within a closed surface.
- 3. Derive Maxwell's 3rd equation in differential form, which describes how the electric field circulates around the time-varying magnetic field.
- 4. Obtain Ampere's circuital law for static magnetic field in integral and differential form.

Numericals:

- 1. Find the divergence of a field for $\vec{A} = x^2y \, i 3xyz^2 \, j + 2xy \, k$ at (1,1,1)
- 2. Find the curl of a Vector field for $\vec{E} = 4x \, i + 2y \, j + 3z \, k$ at (1,0,1)
- 3. Find the gradient of a scalar field $\phi = x^2y + 4xy + xy^2z^2$
- 4. Calculate $\vec{\nabla}$ B for B= $x^2+y^2+z^2$ at a point (1, -2, 4)

Course Outcome (CO)-5: Quantum Physics

Theory Questions:

- 1. Explain de-Broglie's hypothesis and derive expression for its wavelength.
- 2. What is Heisenberg's Uncertainty Principle? Prove that electron cannot exist in the nucleus using H.U.P.
- 3. Derive Schrodinger Time dependent Wave Equation.
- 4. Derive Schrodinger Time Independent Wave Equation.

Numericals:

- 1. An electron has a speed of 400 m/sec with uncertainty of 0.01%. Find the accuracy in its position.
- 2. An electron has a momentum $5.4 \times 10^{-26} \, \text{kg-m/sec}$ with an accuracy of 0.05%. Find the minimum uncertainty in the location of the electron.
- 3. Find the energy of the neutron in unit of electron volt. Where De- Broglie wavelength is 1Å Mass of neutron= 1.674×10^{-27} Kg and Planck's constant= 6.63×10^{-34} Js

Course Outcome (CO)-6: Basics of Semiconductor Physics

Theory Questions:

- 1. What is the difference between direct and indirect bandgap semiconductors?
- 2. Explain Fermi-Dirac distribution function.
- 3. Explain conductivity, mobility, drift velocity and establish relation among them.

Numericals:

- 1. Calculate the conductivity of a Ge specimen if the donor impurity added to Ge is 1.2×10^{23} atoms/m³. Given mobility of electron is $3800 \text{ cm}^2/\text{V-sec}$.
- 2. If fermi level in K is 2.1eV, calculate the energy for which the probability of occupancy at 300°K is 0.99?
- 3. Find the resistivity of intrinsic germanium at 300K. Given density of carriers is 2.5×10^{19} atoms/m³, mobility of electron is $0.39 \text{ m}^2/\text{V}$ -sec and mobility of hole is $0.19 \text{m}^2/\text{V}$ -sec.

Dr. Suraj Vishwakarma

(Subject In-charge)