Transfer function of closed-loop system

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1}$$
 --- closed-loop gain

A₁ is the open-loop gainK is the feedback factor

$$KA_1 > 0 \rightarrow |A_{cL}| < |A_1|$$

Example

Nominal gain of an amp: $A_1 = 100$ Actual gain in application: $A'_1 = 50$

How much does A_1 change? How much does the closed-loop gain A_{cL} change?

$$A_{cL} = A_1 / (1 + K A_1) = 100/11 = 9.09$$

 $A_{cL}' = A_1 / (1 + K A_1') = 50/6 = 8.33$

A_{cL} change: 8.3%

Feedback system example

The op amp A1 performs two functions:

- substraction
- Amplification

What is the closed-loop gain?

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2} A_1}$$

$$A_{cL} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}, \text{ if } \frac{R_2}{R_1 + R_2} A_1 \gg 1$$

Loop-gain

• Open-loop gain: A₁

• Closed-loop gain:
$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1}$$

• Loop-gain: KA₁

Procedure to measure loop-gain

- Set the input X to zero (X is voltage → AC ground; if X is current → open)
- · Break the loop at an arbitrary point
- Apply a test signal V_{test} at one terminal and measure the signal V_F at the other terminal Calculate the loop-gain $-\frac{V_F}{V_{test}}$ = KA_1
- - $\frac{V_F}{V_{test}} < 0 \rightarrow \text{negative feedback}$ $\frac{V_F}{V_{test}} > 0 \rightarrow \text{positivie feedback}$

Summary of negative feedback concept

- Sacrifice the open-loop gain A_1 to benefit from negative feedback
- The feedback signal X_F is a good copy of input signal X
- The feedback factor K is normally independent to frequency
 - Make Y a good (scaled by 1/K) copy of X
 - · Wider frequency band
 - · Better linearity
- If loop-gain $KA_1\gg 1$ \Rightarrow $A_{cL}\approx \frac{1}{K}$, relatively independent of A_1
 - Factors that cause A_1 to vary have less impact on the closed-loop gain
 - · Factors: temperature, supply voltage, frequency, load impedance

Gain desensitization example

Assume the nominal gain of A_1 =100 and $\frac{R_1}{R_2}$ = 3. Due to e.g., temperature, supply voltage, frequency and loading imdedance, A_1 drops to 50.

 How does the closed-loop gain A_{cL} change?

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2}A_1}$$

Linearity improvement

Modification of input and output impedance Voltage-voltage FB

Modification of input and output impedance

Assume $R_1 + R_2 \gg R_D$

$$\begin{split} A_1 &= g_m R_D \\ K &= \frac{R_2}{R_1 + R_2} \\ A_{CL} &= \frac{A_1}{1 + KA_1} \\ R_{in} &= 1/g_m \\ R_{out} &= R_D \\ R_{in,CL} &= R_{in}(1 + KA_1) \\ R_{out,CL} &= R_{out}/(1 + KA_1) \end{split}$$

Feedback topologies

$$R_{in,CL} = R_{in}/(1 + KA_1)$$

$$R_{out,CL} = R_{out}/(1 + KA_1)$$

$$R_{in,CL} = R_{in}(1 + KA_1)$$

$$R_{out,CL} = R_{out}(1 + KA_1)$$

$$\begin{array}{ll} R_{in,CL} = R_{in}(1 + KA_1) & R_{in,CL} = R_{in}/(1 + KA_1) \\ R_{out,CL} = R_{out}(1 + KA_1) & R_{out,CL} = R_{out}(1 + KA_1) \end{array}$$

Rules for breaking the feedback network(self-study)

Assignments:

10.1:

A CE stage circuit without (by setting $R_f = 0$) or with feedback (by setting $R_f = 20 \Omega$) is shown in Fig. 1.

- (1) Set $R_f = 0$, i.e., without negative feedback, run the simulation and find out $A_v = ?$ $f_L = ?$ $f_H = ?$ THD = ? @ 20KHz.
- (2) Set $R_f = 20$, i.e., with negative feedback, run the simulation and find out $A_v = ?$ $f_L = ?$ $f_H = ?$ THD = ? @ 20KHz.
- (3) Comparing the results obtained in (1) and (2), discuss what is the advantages and disadvantages by introducing negative feedback into the circuit.

Fig. 1 A CE stage

Solution:

- (1) For $R_f=0~\Omega$, A_V_simulated = 127.6 --(42 dB); f_L = 127 Hz; f_H = 543 KHz; THD = 10.6%
- (2) For $R_f=20~\Omega$, A_V_simulated = 78.5 --(37.9 dB); f_L = 78.1 Hz; f_H = 865 KHz; THD = 4.45%
- (3) Disadvantage: gain A_v is dropped. Advantages: frequency bandwidth becomes wider; harmonic distortion becomes smaller.