EECS 203: Discrete Mathematics Winter 2024 Homework 2

Due Thursday, Feb. 1st, 10:00 pm

No late homework accepted past midnight.

Number of Problems: 8 + 2 Total Points: 100 + 40

- Match your pages! Your submission time is when you upload the file, so the time you take to match pages doesn't count against you.
- Submit this assignment (and any regrade requests later) on Gradescope.
- Justify your answers and show your work (unless a question says otherwise).
- By submitting this homework, you agree that you are in compliance with the Engineering Honor Code and the Course Policies for 203, and that you are submitting your own work.
- Check the syllabus for full details.

Grading of Groupwork 2

Using the solutions and Grading Guidelines, grade your Groupwork 2 Problems:

- Use the table below to grade your past groupwork submission and calculate scores.
- While grading, mark up your past submission. Include this with the table when you submit your grading.
- Write whether your submission achieved each rubric item. If it didn't achieve one, say why not.
- For extra credit, write positive comment(s) about your work.
- You don't have to redo problems correctly, but it is recommended!
- See "All About Groupwork" on Canvas for more detailed guidance, and what to do if you change groups.

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	Total:
Problem 1	+4	+4	+2	+2	+2	+4	+2					/20
Problem 2	+5	+0	+5	+0								/20
Total:												/40

Groupwork 2 Problems

1. Bézout's Identity [20 points]

In number theory, there's a simple yet powerful theorem called Bézout's identity, which states that for any two integers a and b (with a and b not both zero) there exist two integers r and s such that $ar + bs = \gcd(a, b)$. Use Bézout's identity to prove the following statements (you may assume all variables are integers):

- (a) If $d \mid a$ and $d \mid b$, then $d \mid \gcd(a, b)$.
- (b) If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

 $a = kd \wedge b = id$, k and j are arbitary integers

Note: gcd is short for "greatest common divisor," so the value of gcd(a, b) is the largest integer that evenly divides a and b. You won't need to apply this definition, just know that gcd(a, b) is an integer.

premise

definition of divide

Solution:

Thus, $a \mid c$

a) Assume $d \mid a \wedge d \mid b$

```
kdr + ids = qcd(a, b)
                                                       Bezout's Identity
gcd(a,b) = d(kr + js)
                                                       factoring
Since kr + js is also an integer, thus d \mid qcd(a, b)
                                                       definition of divide
Thus, d \mid qcd(a, b).
b) Assume d \mid bc \land gcd(a,b) = 1
                                                       premise
bc = ka
                                                       definition of divide
ar + bs = 1
                                                       Bezout's Identity
Since c is an non-zero integer, arc + bsc = c
                                                       equation
arc + kac = c
                                                       subsitution
a(rc+kc)=c
                                                       factoring
Since rc + kc is also an integer, thus a \mid c
                                                       definition of divide
```

2. Proposition Michigan [20 points]

Translate each of the following English statements into logic. You may define predicates as necessary.

Note: Your predicates should not trivialize the problem.

- (a) Each pair of students at UMich has at least two mutual friends at UMich. The domain of discourse is all students at UMich.
- (b) Nobody knows everyone's Wolverine Access password except the Wolverine Access administrators, who know all passwords. The domain of discourse is all people who have a Wolverine Access account (the administrators have Wolverine Access accounts).

Solution:

a) Let F(x) be UMich students who are friends $\forall x \forall y [x \neq y \rightarrow \exists z \exists w [z \neq w \land F(x)]]$

I have a different predicate defined that should also work

b) Let A(x) be is administrator, P(x,y) be y knows someone's password $\forall x (A(x) \iff \forall y P(x,y))$