Statistical Analysis in Fin Mkts

MSF 502

Li Cai

Sampling and Sampling Distributions

Chapter 7 Learning Objectives (LOs)

- LO 7.1: Differentiate between a population parameter and a sample statistic.
- LO 7.2: Explain common sample biases.
- LO 7.3: Describe simple random sampling.
- LO 7.4: Distinguish between stratified random sampling and cluster sampling.
- LO 7.5: Describe the properties of the sample

Chapter 7 Learning Objectives (LOs)

- LO 7.6: Explain the importance of the central limit theorem.
- LO 7.7: Describe the properties of the sampling distribution of the sample proportion.
- LO 7.8: Use a finite population correction factor.
- LO 7.9: Construct and interpret control charts for quantitative and

qualitative data? F TECHNOLOGY

Marketing Iced Coffee

- In order to capitalize on the iced coffee trend, Starbucks offered for a limited time half-priced Frappuccino beverages between 3 pm and 5 pm.
- Anne Jones, manager at a local Starbucks, determines the following from past historical data:
 - 43% of iced-coffee customers were women.
 - 21% were teenage girls.
 - Customers spent an average of \$4.18 on iced coffee with a standard deviation of \$0.84.

Marketing Iced Coffee

- One month after the marketing period ends, Anne surveys 50 of her iced-coffee customers and finds:
 - 46% were women.
 - 34% were teenage girls.
 - They spent an average of \$4.26 on the drink.
- Anne wants to use this survey information to calculate the probability that:
 - Customers spend an average of \$4.26 or more on iced coffee.
 - 46% or more of iced-coffee customers are women.
 - 34% or more of iced-coffee customers are teenage girls.

LO 7.1 Differentiate between a population parameter and sample statistic.

- Population—consists of all items of interest in a statistical problem.
 - Population Parameter is unknown.
- Sample—a subset of the population.
 - □ Sample Statistic is calculated from sample and used to make inferences about the population.
- **Bias**—the tendency of a sample statistic to systematically over- or underestimate a population parameter.

LO 7.2 Explain common sample biases.

- Classic Case of a "Bad" Sample: The Literary Digest Debacle of 1936
 - During the1936 presidential election, the *Literary Digest* predicted a landslide victory for Alf Landon
 over Franklin D. Roosevelt (FDR) with only a 1%
 margin of error.
 - They were wrong! FDR won in a landslide election.
 - The Literary Digest had committed selection bias by randomly sampling from their own subscriber/ membership lists, etc.
 - In addition, with only a 24% response rate, the *Literary Digest* had a great deal of non-response bias.

7.1 Sampling

- Selection bias—a systematic exclusion of certain groups from consideration for the sample.
 - The Literary Digest committed selection bias by excluding a large portion of the population (e.g., lower income voters).
- Nonresponse bias—a systematic difference in preferences between respondents and nonrespondents to a survey or a poll.
 - The *Literary Digest* had only a 24% response rate. This indicates that only those who cared a great deal about the election took the time to respond to the survey. These respondents may be atypical of the population as a whole.

LO 7.3 Describe simple random sampling.

- Sampling Methods
 - Simple random sample is a sample of n observations which has the same probability of being selected from the population as any other sample of n observations.
 - Most statistical methods presume simple random samples.
 - However, in some situations other sampling methods have an advantage over simple random samples.

- Example: In 1961, students invested 24 hours per week in their academic pursuits, whereas today's students study an average of 14 hours per week.
 - A dean at a large university in California wonders if this trend is reflective of the students at her university. The university has 20,000 students and the dean would like a sample of 100. Use Excel to draw a simple random sample of 100 students.
 - In Excel, choose
 Formulas > Insert function > RANDBETWEEN and input the values shown here.

LO 7.4 Distinguish between stratified random sampling and cluster

- Stratified Random Sampling
 - Divide the population into mutually exclusive and collectively exhaustive groups, called strata.
 - Randomly select observations from each stratum, which are proportional to the stratum's size.
 - Advantages:
 - Guarantees that the each population subdivision is represented in the sample.
 - Parameter estimates have greater precision than those estimated from simple random sampling.

- Cluster Sampling
 - Divide population into mutually exclusive and collectively exhaustive groups, called clusters.
 - Randomly select clusters.
 - Sample every observation in those randomly selected clusters.
 - Advantages and disadvantages:
 - Less expensive than other sampling methods.
 - Less precision than simple random sampling or stratified sampling.
 - Useful when clusters occur naturally in the population.

- Stratified versus Cluster Sampling
 - Stratified Sampling
 Cluster Sampling
 - Sample consists of elements from each group.
 - Preferred when the objective is to increase precision.
- Sample consists of elements from the selected groups.
- Preferred when the objective is to reduce costs.

LO 7.5 Describe the properties of the sampling distribution of the sample mean.

- Population is described by parameters.
 - A parameter is a constant, whose value may be unknown.
 - Only one population.
- Sample is described by statistics.
 - A statistic is a random variable whose value depends on the chosen random sample.
 - Statistics are used to make inferences about the population parameters.
 - Can draw multiple random samples of size n.

7.2 The Sampling Distribution of the Sample Mean

Estimator

- A statistic that is used to estimate a population parameter.
- \blacksquare For example, \overline{X} , the mean of the sample, is an estimator of $\mu,$ the mean of the population.

Estimate

- A particular value of the estimator.

- Sampling Distribution of the Meax
 - \blacksquare Each random sample of size *n* drawn from the population provides an estimate of μ —the sample mean \blacksquare .
 - Drawing many samples of size n results in many different sample means, one for each sample.
 - The sampling distribution of the mean is the frequency or probability distribution of these sample means.

7.2 The Sampling Distribution of the Sample Mean

Example

One simple random sample drawn from the population—a single *distribution of values* of *X*.

	Random Variable							
	X ₁	X ₂	X ₃	X ₄	Mean of X			
	6	1/0	8	4	5.57			
	5	10	4	3	5.71			
	1	8	4	3	6.36			
	4	1	6	2	4.07			
	6	6	8	4				
	7	7	8	6				
	1	5	10	5				
	5	5	9	1				
	4	6	4	2				
	7	4	9	5				
	8	5	8	6				
	9	2	7	7				
	9	1	2	3				
	6	10	2	6				
Means	5.57	5.71	6.36	4.07	5.43			

A distribution of means from each random draw from the population—a sampling distribution.

Means from each distribution (random draw) from the population.

- The Expected Value and Standard Deviation of the Sample Mean
 - Expected Value
 - The expected value of X,

$$E(X) = \mu$$

The expected value of the mean,

$$E(\overline{X}) = E(X) = \mu$$

- The Expected Value and Standard **Deviation of the Sample Mean**
 - □ Variance of X $Var(X) = \sigma^2$
 - Standard Deviation

of
$$X$$
 $SD(X) = \sqrt{\sigma^2} = \sigma$

• of
$$\overline{X}$$
 $SD(\overline{X}) = \frac{\sigma}{\sqrt{n}}$

of \overline{X} SD $(\overline{X}) = \frac{\sigma}{\sqrt{n}}$ Where n is the sample size. Also known as the Standard Error of the Mean.

- Example: Given that μ = 16 inches and σ = 0.8 inches, determine the following:
 - What is the expected value and the standard deviation of the sample mean derived from a random sample of

2 pizzas
$$E(\bar{X}) = \mu = 16$$

2 pizzas
$$E(\bar{X}) = \mu = 16$$
 $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{0.8}{\sqrt{2}} = 0.57$

4 pizzas
$$E(\bar{X}) = \mu = 16$$

■ 4 pizzas
$$E(\bar{X}) = \mu = 16$$
 $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{0.8}{4} = 0.40$

7.2 The Sampling Distribution of the Sample Mean

Sampling from a Normal Distribution

- For any sample size n, the sampling distribution of X is normal if the population X from which the sample is drawn is normally distributed.
- If X is normal, then we can transform it into the standard normal random variable as:

For a sampling distribution.

$$Z = \frac{\bar{X} - E(\bar{X})}{SD(\bar{X})} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

For a distribution of the values of *X*.

$$Z = \frac{x - E(X)}{SD(X)} = \frac{x - \mu}{\sigma}$$

Note that each value \overline{x} on \overline{X} has a corresponding value z on Z given by the transformation formula shown here as indicated by the arrows.

	Mea	<u>n</u>			<u>-</u>
	Random		Standard		
	Variable		Normal		
	X-bar		Z		$\overline{X} - H$
\overline{X}_1	3		-2.39	$= Z_1 =$	$=\frac{\lambda_1}{\mu}$
\overline{X}_1 \overline{X}_2	9		4.30	'	σ/\sqrt{n}
:	4		-1.28	•	
•	2		-3.51	:	
	10		5.42		
	5		-0.16		
	9		4.30		
	4		-1.28		
	9		4.30		
	2		-3.51		
	3		-2.39		
	8		3.19		
	4		-1.28		$\overline{\mathbf{X}} - \mathbf{U}$
\overline{X}_{13}	0		-5.74	$= Z_{13}$	$=\frac{X_{13}-\mu}{\sqrt{1/2}}$
Means	5.14		0.00	13	σ/\sqrt{n}
Standard		_			,
Error	0.90		1.00		_

- Example: Given that $\mu = 16$ inches and $\sigma = 0.8$ inches, determine the following:
 - What is the probability that a randomly selected pizza is less than 15.5 inches?

$$Z = \frac{x - \mu}{\sigma} = \frac{15.5 - 16}{0.8} = -0.63$$

$$= 0.2643 \text{ or } 26.43\%$$

$$P(X < 15.5) = P(Z < -0.63)$$

= 0.2643 or 26.43%

What is the probability that 2 randomly selected pizzas average less than 15.5 inches?

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{15.5 - 16}{0.8 / \sqrt{2}} = -0.88$$

$$P(\overline{X} < 15.5) = P(Z < -0.88)$$

$$= 0.1894 \text{ or } 18.94\%$$

$$P(\overline{X} < 15.5) = P(Z < -0.88)$$

= 0.1894 or 18.94%

LO 7.6 Explain the importance of the central limit

- The Central Limit Theorem
 - \blacksquare For any population X with expected value μ and standard deviation σ , the sampling distribution of Xwill be approximately normal if the sample size n is sufficiently large.
 - As a general guideline, the normal distribution approximation is justified when n > 30.
 - \square As before, if $\overline{\chi}$ is approximately normal, then we can transform it to $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

7.2 The Sampling Distribution of the Sample Mean

The Central Limit Theorem

Sampling distribution of $\overline{\chi}$ when the population has a uniform distribution.

Sampling distribution of \overline{X} when the population has an exponential distribution.

- Example: From the introductory case, Anne wants to determine if the marketing campaign has had a lingering effect on the amount of money customers spend on iced coffee.
- □ Before the campaign, μ = \$4.18 and σ = \$0.84. Based on 50 customers sampled after the campaign, \bar{x} = \$4.26.
- □ Let's find $P(\bar{X} \ge 4.26)$ Since $n \ge 30$, the central limit theorem states that $\hat{\chi}$ is approximately normal. So,

$$P(\bar{X} \ge 4.26) = P\left(Z \ge \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right) = P\left(Z \ge \frac{4.26 - 4.18}{0.84/\sqrt{50}}\right)$$
$$= P(Z \ge 0.67) = 1 - 0.7486 = 0.2514$$

LO 7.7 Describe the properties of the sampling distribution of the sample proportion.

Estimator

□ Sample proportion \overline{P} is used to estimate the population parameter p.

Estimate

 $lue{}$ A particular value of the estimator \overline{p} .

- The Expected Value and Standard **Deviation of the Sample Proportion**
 - Expected Value
 - The expected value of

$$E(\overline{P}) = p$$

■ The standard deviation of ,

$$SD(\overline{P}) = \sqrt{\frac{p(1-p)}{n}}$$

- The Central Limit Theorem for the Sample Proportion
 - □ For any population proportion p, the sampling distribution of \overline{P} is approximately normal if the sample size n is sufficiently large .
 - As a general guideline, the normal distribution approximation is justified when $np \ge 5$ and $n(1 p) \ge 5$.

- The Central Limit Theorem for the Sample **Proportion**
 - If P is normal, we can transform it into the standard normal random variable as

$$Z = \frac{\overline{P} - E(\overline{P})}{SD(\overline{P})} = \frac{\overline{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

lacksquare Therefore any value \overline{p} on \overline{p} has a corresponding value z on Z given by

$$Z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

The Central Limit Theorem for the Sample Proportion

Sampling distribution of \overline{P} when the population proportion is p = 0.10.

Sampling distribution of \overline{P} when the population proportion is p = 0.30.

7.3 The Sampling Distribution of the Sample Proportion

- Example: From the introductory case, Anne wants to determine if the marketing campaign has had a lingering effect on the proportion of customers who are women and teenage girls.
 - Before the campaign, p = 0.43 for women and p = 0.21 for teenage girls. Based on 50 customers sampled after the 40 mpaign, p = 0.46 and p = 0.34, respectively.
 - Let's find
 Since n ≥ 30, the central limit theorem states that is approximately normal. ILLINOIS INSTITUTE OF TECHNOLOGY

$$P(\bar{P} \ge 0.46) = P\left(Z \ge \frac{\bar{p} - p}{\sqrt{\frac{p(1-p)}{n}}}\right) = P\left(Z \ge \frac{0.46 - 0.43}{\sqrt{\frac{0.43(1-0.43)}{50}}}\right)$$
$$= P(Z \ge 0.43) = 1 - 0.6664 = 0.3336$$

7.4 The Finite Population Correction Factor

LO 7.8 Use a finite population correction factor.

- The Finite Population Correction Factor
 - $lue{}$ Used to reduce the sampling variation of $\overline{\chi}$.
 - The resulting standard deviation is

$$SD(\bar{X}) = \frac{\sigma}{\sqrt{n}} \left(\sqrt{\frac{N-n}{N-1}} \right)$$

■ The transformation of \overline{X} to Z is made accordingly.

7.4 The Finite Population Correction Factor

- The Finite Population Correction Factor for the Sample Proportion
 - Used to reduce the sampling variation of the sample proportion \overline{P} .
 - The resulting standard deviation is

$$SD(\overline{P}) = \sqrt{\frac{p(1-p)}{n}} \left(\sqrt{\frac{N-n}{N-1}}\right)$$

□ The transformation of \overline{P} to Z is made accordingly.

7.4 The Finite Population Correction Factor

- Example: A large introductory marketing class with 340 students has been divided up into 10 groups. Connie is in a group of 34 students that averaged 72 on the midterm. The class average was 73 with a standard deviation of 10.
 - □ The population parameters are: μ = 73 and σ = 10.
 - □ $E(\bar{X}) = \mu = 73$ but since n = 34 is more than 5% of the population size N = 340, we need to use the finite population correction factor.

$$SD(\bar{X}) = \frac{\sigma}{\sqrt{n}} \left(\sqrt{\frac{N-n}{N-1}} \right) = \frac{10}{\sqrt{34}} \left(\sqrt{\frac{340-34}{340-1}} \right) = 1.63$$

7.5 Statistical Quality Control

LO 7.9 Construct and interpret control charts for quantitative and qualitative data.

- Statistical Quality Control
 - Involves statistical techniques used to develop and maintain a firm's ability to produce high-quality goods and services.
 - Two Approaches for Statistical Quality Control
 - Acceptance Sampling
 - Detection Approach

7.5 Statistical Quality Control

- Acceptance Sampling
 - Used at the completion of a production process or service.
 - If a particular product does not conform to certain specifications, then it is either discarded or repaired.
 - Disadvantages
 - It is costly to discard or repair a product.
 - The detection of all defective products is not guaranteed.

7.5 Statistical Quality Control

- Detection Approach
 - Inspection occurs during the production process in order to detect any nonconformance to specifications.
 - Goal is to determine whether the production process should be continued or adjusted before producing a large number of defects.
 - Types of variation:
 - Chance variation.
 - Assignable variation.

7.5 Statistical Quality Control

Types of Variation

- Chance variation (common variation) is:
 - Caused by a number of randomly occurring events that are part of the production process.
 - Not controllable by the individual worker or machine.
 - Expected, so not a source of alarm as long as its magnitude is tolerable and the end product meets specifications.
- Assignable variation (special cause variation) is:
 - Caused by specific events or factors that can usually be identified and eliminated.
 - Identified and corrected or removed.

7.5 Statistical Quality Control

Control Charts

- Developed by Walter A. Shewhart.
- A plot of calculated statistics of the production process over time.
- Production process is "in control" if the calculated statistics fall in an expected range.
- Production process is "out of control" if calculated statistics reveal an undesirable trend.
 - For quantitative data— \bar{x} chart.
 - For qualitative data— \overline{p} chart.

7.5 Statistical Quality Control

- Control Charts for Quantitative Data
 - $\Box \overline{X}$ Control Charts
 - Centerline—the mean when the process is under control.
 - Upper control limit—set at +3σ from the mean.
 - □ Points falling above the upper control limit are considered to be *out of control*.
 - Lower control limit—set at -3σ from the mean.
 - □ Points falling below the lower control limit are considered to be *out of control*.

7.5 Statistical Quality Control

- Control Charts for Quantitative Data
 - $\Box \overline{X}$ Control Charts
 - Upper control limit (UCL):

$$\mu + 3\frac{\sigma}{\sqrt{n}}$$

Lower control limit (LCL):

$$\mu - 3 \frac{\sigma}{\sqrt{n}}$$

Process is in control—all points fall within the control limits.

7.5 Statistical Quality Control

Control Charts for Qualitative Data

- $oldsymbol{\square}$ chart (fraction defective or percent defective chart).
- Tracks proportion of defects in a production process.
- Relies on central limit theorem for normal approximation for the sampling distribution of the sample proportion.
- Centerline—the mean when the process is under control.
- □ Upper control limit—set at $+3\sigma$ from the centerline.
 - Points falling above the upper control limit are considered to be out of control.
- \Box Lower control limit—set at -3 σ from the centerline.
 - Points falling below the lower control limit are considered to be out of control.

7.5 Statistical Quality Control

- Control Charts for Qualitative Data
 - lacksquare \overline{p} Control Charts
 - Upper control limit (UCL):

$$p + 3\sqrt{\frac{p(1-p)}{n}}$$

Lower control limit (LCL):

$$p-3\sqrt{\frac{p(1-p)}{n}}$$

Process is out of control—some points fall above the UCL.

End of Chapter