Suites Numériques:

I. Généralité:

1. Définition et Exemple:

Une suite est un ensemble d'éléments ordonnés.

Exemple:

$$U = \{-15, -3,7,8,97\}$$

2. Terme et indice:

On appelle terme, un élément de cette suite, et indice ou rang sa position dans a suite.

Par exemple le terme d'indice 4 de la suite U donnée par

$$\{-15, -3, 7, 8, 97\}$$

est 8.

3. Notations:

Le terme d'indice n de la suite U se note U(n) ou U_n .

Dans l'exemple précédent, le terme d'indice 4 est noté U(4) et est égal à 8.

On note aussi $U_4 = 8$.

`Remarque:

- Dans certains cas on comptera les positions à partir de 0, dans d'autres à partir de 1. (l'énoncé dira quelle convention utiliser).

Par exemple dans la suite U ci-dessus:

U(2) = -3 si on compte les positions à partir de 1.

U(2) = 7 si on compte les positions à partir de 0.

4. Représentation graphique:

La représentation graphique d'une suite U sera un nuage de points. Ces points auront pour coordonnées $(n; U_n)$.

La suite U des multiples de 2, définie par $U = \{0,2,4,6,8,....\}$ est représentée cicontre.

5. Suite définie comme une fonction:

Plutôt que de donner chacun des termes d'une suite, on peut la définir à l'aide d'une formule.

a. Définition:

La première façon de définir une suite est à l'aide d'une fonction du rang n. On dit que la suite est **définie de façon explicite.**

Exemple : Soit u la suite définie pour tout entier naturel n par u(n) = 5n + 7. On trouve chaque terme de la suite en remplaçant n par 0, puis 1, 2, etc. Ainsi $u(10) = 5 \times 10 + 7 = 57$ et de façon plus générale $u = \{7; 12; 17; 22; \ldots\}$.

b. Expression de U_{N+1}, U_{2N}, \ldots :

Si l'expression de U_n est donnée, on peut donner celle de U_{n+1} en remplaçant n par n+1 (en oubliant pas les parenthèses).

De même on peut donner l'expression de U_{2n} , en remplaçant n par 2n.

Exemple:

Soit la suite u définie pour tout entier naturel par $u_n = 7n + 5$. Donner l'expression de u_{n+1} et de u_{n-1} .

Réponse:
$$u_{n+1} = 7(n+1) + 5 = 7n+7+5 = 7n+12$$
. Donc $u_{n+1} = 7n+12$.

Et
$$u_{n-1} = 7(n-1) + 5 = 7n - 7 + 5 = 7n - 2$$
. Donc $u_{n-1} = 7n - 2$.

EXERCICES (4 à 7 page 89)

6. Suite définie par récurrence:

Pour maîtriser la partie qui suit, il est nécessaire de comprendre que :

- -u(n+1) est le terme après u(n),
- -u(n) est le terme après u(n-1),
- -u(n-1) est le terme après u(n-2),
- etc.

Et aussi que :

- si u(n+1) est u(4), alors u(n) est u(3).
- si u(n+1) est u(12), alors u(n) est u(11).
- si u(n) est u(10), alors u(n-1) est u(9).
- etc.

a. Définition:

La seconde façon de définir une suite est par **récurrence**. Dans ce cas, pour calculer la valeur d'un terme de la suite, on a besoin d'un ou plusieurs termes précédents. Ainsi on aura par exemple une formule du type.

$$U_{n+1} = \dots U_n$$
 ou $U_n = \dots U_{n-1}$

Exemple:

$$\begin{cases} u(n+1) = 4u(n) + 7 \\ u(0) = -1 \end{cases}$$

Pour calculer u_1 :

$$u(1) = 4u(0) + 7 = 4 \times (-1) + 7 = 3.$$

Maintenant que l'on connaît u_1 , on peut calculer u_2 :

$$u(2) = 4u(1) + 7 = 4 \times 3 + 7 = 19.$$

EXERCICES (13 à 16 page 89)

7. Sens de variation:

Propriété:

- Une suite est croissante si un terme de la suite est toujours plus grand que son précédent

$$u(n+1) \ge u(n)$$
, pour tout $n \in \mathbb{N}$.

- Une suite est décroissante si:

$$u(n+1) \le u(n)$$
, pour tout $n \in \mathbb{N}$.

Exemple:

Donner le sens de variation des suites représentées ci-dessous.

Réponse : La suite u est croissante, la suite v est décroissante.

EXERCICES (17 et 18 page 89)