

IE0005 Introduction To Data Science & Artificial Intelligence

PREDICTORS OF CARDIOVASCULAR DISEASE

EL06 Group 7
Phua Wei An
Pagdanganan Robert Martin Gosioco
Tan Chuan Bing
Nguyen Hoang Minh

CONTENT

Dataset:

• Cardiovascular Disease Prediction

Objective:

- To build a prediction model to determine the variable that best indicates the likelihood of cardiovascular disease
- Suggest to low-income countries what equipment and testing methodology to channel limited hospital resources into, for early detection and prevention of cardiovascular disease in these lower-income places

Initial Data Preparation 2

Exploratory Analysis & Further Prep

3

Machine Learning
Techniques

Findings

DATA PREPARATION

01

SIMPLIFY CATEGORICAL DATA FOR EASIER UNDERSTANDING

02

ADDED IN NEW POSSIBLE VARIABLE: BMI

03

CONVERT AGE FROM DAYS TO YEARS
FOR EASIER UNDERSTANDING


```
#Replaced binary int with strings

cardioData['Gender'].replace([1,2],['Female','Male'],inplace=True)
cardioData['Smoke'].replace([0,1],['No','Yes'],inplace=True)
cardioData['Cholesterol'].replace([1,2,3],['Normal','Above Normal','Well Above Normal'],inplace=True)
cardioData['Glucose'].replace([1,2,3],['Normal','Above Normal', 'Well Above Normal'],inplace=True)
cardioData['Physical Activity'].replace([0,1],['No','Yes'],inplace=True)
cardioData['Cardiovascular Disease'].replace([0,1],['No','Yes'],inplace=True)
cardioData['Alcohol Intake'].replace([0,1],['No','Yes'],inplace=True)
cardioData['Age'] = (cardioData['Age']/365).astype(int) #Change age from days to years
cardioData['Height'] = (cardioData['Height']/100).astype(float)
cardioData['BMI'] = (cardioData['Weight']/(cardioData['Height']*cardioData['Height']).round(2) #Add BMI
del cardioData['id'] #Removing "id" column from the dataset
```

2: EXPLORATORY
DATA ANALYSIS AND
OBSERVATION

we then visualize the statistical distributions

OBSERVATIONS

we then visualize the relations between pairs of variables using Seaborn pairplot

Pairplot

OBSERVATIONS

visualizing the anomalies in the pairplot

OBSERVATIONS

After importing the dataset, we did boxplots for all 6 variables before

cleaning

OBSERVATIONS

After importing the dataset, we did boxplots for all 6 variables before

cleaning

Boxplot

OBSERVATIONS visualizing the variables using boxplot for the <u>cleaned</u> data

Boxplot

OBSERVATIONS visualizing the variables using boxplot for the <u>cleaned</u> data

before cleaning

after cleaning

OBSERVATIONS

Heatmap

3: MACHINE LEARNING MODELS

TYPES OF ML MODELS

Logistic Regression K-Means

Clustering

Decision Tree

4

Random Forest

LOGISTIC REGRESSION

Require categorical variables

Our dependent variable, <u>Presence of</u> cardiovascular disease, is binary [0, 1]

	Age	Gender	Height	Weight	ВМІ	Systolic BP	Diastolic BP	Cholesterol	Glucose	Smoke	Alcohol Intake	Physical Activity	Cardiovascular Disease
0	50	Male	1.68	62.0	21.97	110	80	1	1	0	0	1	0
1	55	Female	1.56	85.0	34.93	140	90	3	1	0	0	1	1
2	51	Female	1.65	64.0	23.51	130	70	3	1	0	0	0	1
3	48	Male	1.69	82.0	28.71	150	100	1	1	0	0	1	1
4	60	Female	1.51	67.0	29.38	120	80	2	2	0	0	0	0
61779	53	Female	1.72	70.0	23.66	130	90	1	1	0	0	1	1
61780	57	Female	1.65	80.0	29.38	150	80	1	1	0	0	1	1
61781	52	Male	1.68	76.0	28.93	120	80	1	1	1	0	1	0
61782	61	Female	1.63	72.0	27.10	135	80	1	2	0	0	0	1
61783	58	Female	1.70	72.0	24.91	120	80	2	1	0	0	1	0

SYSTOLIC BP VS CARDIOVASCULAR DISEASE

Intercept	: b = [-9.70092741]					
Coefficients	: a = [[0.07696742]]					
	precision	recall	f1-score	support		
0	0.68	0.80	0.74	9503		
1	0.74	0.61	0.67	9033		
accuracy macro avg weighted avg	0.71 0.71	0.70 0.71	0.71 0.70 0.70	18536 18536 18536		

AUC-ROC: 0.7420967146326647 Accuracy: 0.7068946914113077

- Precision: Prediction of Classes
- Recall: Correctly Identify of Classes
- F1-Score: Weighted Average of Precision and Recall
- Support: Number of Instances
- Accuracy: Correctly Classified of Classes

Cholesterol vs Cardiovascular Disease

Intercept	: b = [-0.9628198]				
Coefficients	: a = [[0.70070073]]				
	precision	recall	f1-score	support	
0	0.57	0.84	0.68	9503	
1	0.66	0.33	0.44	9033	
accuracy macro avg weighted avg	0.61 0.61	0.58 0.59	0.59 0.56 0.56	18536 18536 18536	

Accuracy: 0.5897712559343979

AUC-ROC: 0.5885370452738803

Systolic BP vs Cardiovascular Disease

Intercept	: b = [-9.70092741]				
Coefficients	: a = [[0.07696742]]				
	precision	recall	f1-score	support	
0	0.68	0.80	0.74	9503	
1	0.74	0.61	0.67	9033	
accuracy macro avg weighted avg	0.71 0.71	0.70 0.71	0.71 0.70 0.70	18536 18536 18536	

AUC-ROC: 0.7420967146326647 Accuracy: 0.7068946914113077

Diastolic BP vs Cardiovascular Disease

Intercept Coefficients	: b = [-8.15131333] : a = [[0.09960165]]				
	precision	recall	f1-score	support	
0	0.61	0.86	0.72	9503	
1	0.75	0.43	0.55	9033	
accuracy			0.65	18536	
macro avg	0.68	0.65	0.63	18536	
weighted avg	0.68	0.65	0.63	18536	

AUC-ROC: 0.6773027935184843 Accuracy: 0.6515968925334484

Cholesterol vs Cardiovascular Disease

Intercept	: b = [-0.9628198]				
Coefficients	: a = [[0.70070073]]				
	precision	recall	f1-score	support	
0	0.57	0.84	0.68	9503	
1	0.66	0.33	0.44	9033	
accuracy macro avg weighted avg	0.61 0.61	0.58 0.59	0.59 0.56 0.56	18536 18536 18536	

AUC-ROC: 0.5885370452738803 Accuracy: 0.5897712559343979

Systolic BP vs Cardiovascular Disease

Intercept	: $b = [-9.70092741]$					
Coefficients	: $a = [[0.07696742]]$					
	precision	recall	f1-score	support		
0	0.68	0.80	0.74	9503		
1	0.74	0.61	0.67	9033		
accuracy macro avg weighted avg	0.71 0.71	0.70 0.71	0.71 0.70 0.70	18536 18536 18536		

AUC-ROC: 0.7420967146326647 Accuracy: 0.7068946914113077

Diastolic BP vs Cardiovascular Disease

Coefficients	: b = [-8.15131333] : a = [[0.09960165]]				
	precision	recall	f1-score	support	
0	0.61	0.86	0.72	9503	
1	0.75	0.43	0.55	9033	
accuracy			0.65	18536	
macro avg	0.68	0.65	0.63	18536	
weighted avg	0.68	0.65	0.63	18536	

AUC-ROC: 0.6773027935184843 Accuracy: 0.6515968925334484

Cholesterol vs Cardiovascular Disease

Intercept	: b = [-0.9628198]				
Coefficients	: a = [[0.70070073]]				
	precision	recall	f1-score	support	
0	0.57	0.84	0.68	9503	
1	0.66	0.33	0.44	9033	
accuracy macro avg weighted avg	0.61 0.61	0.58 0.59	0.59 0.56 0.56	18536 18536 18536	

AUC-ROC: 0.5885370452738803 Accuracy: 0.5897712559343979

Systolic BP vs Cardiovascular Disease

Intercept	: b = [-9.70092741]				
Coefficients	: a = [[0.07696742]]				
	precision	recall	f1-score	support	
0	0.68	0.80	0.74	9503	
1	0.74	0.61	0.67	9033	
accuracy macro avg weighted avg	0.71 0.71	0.70 0.71	0.71 0.70 0.70	18536 18536 18536	

AUC-ROC: 0.7420967146326647 Accuracy: 0.7068946914113077

Diastolic BP vs Cardiovascular Disease

Intercept : b = [-8.15131333]
Coefficients : a = [[0.09960165]]

	precision	recall	f1-score	support
0 1	0.61 0.75	0.86 0.43	0.72 0.55	9503 9033
accuracy macro avg weighted avg	0.68 0.68	0.65 0.65	0.65 0.63 0.63	18536 18536 18536

AUC-ROC: 0.6773027935184843 Accuracy: 0.6515968925334484

WHICH MODEL IS BEST BASED ON ITS METRICS?

00	NA CONTRACTOR OF THE PARTY OF T	١

Cholesterol vs Presence of Cardiovascular Disease (A)				Systolic BP vs Presence of Cardiovascular Disease (B)				Diastolic BP vs Presence of Cardiovascular Disease (C)				Best			
<pre>Intercept : b = [-0.9628198] Coefficients : a = [[0.70070073]]</pre>				Intercept : b = [-9.70092741] Coefficients : a = [[0.07696742]]				Intercept : b = [-8.15131333] Coefficients : a = [[0.09960165]]							
	precision	recall	f1-score	support	t	precision	recall	f1-score	support		precision	recall	f1-score	support	
0	0.57	0.84	0.68	9503	0	0.68	0.80	0.74	9503	0	0.61	0.86	0.72	9503	
1	0.66	0.33	0.44	9033	1	0.74	0.61	0.67	9033	1	0.75	0.43	0.55	9033	В
accuracy			0.59	18536	accuracy			0.71	18536	accuracy			0.65	18536	
macro avg	0.61	0.58	0.56	18536	macro avg	0.71	0.70	0.70	18536	macro avg	0.68	0.65	0.63	18536	
weighted avg	0.61	0.59	0.56	18536	weighted avg	0.71	0.71	0.70	18536	weighted avg	0.68	0.65	0.63	18536	
AUC-ROC: 0.5885370452738803 Accuracy: 0.5897712559343979			AUC-ROC: 0.7420967146326647 Accuracy: 0.7068946914113077				AUC-ROC: 0.6773027935184843 Accuracy: 0.6515968925334484								

<u>Higher</u> Precision, recall, F1-score, AUC

\rightarrow

COMPARISON TO PRE-CLEANING

Original Dataset	Cleaned Dataset				
Intercept : b = [-5.6937604] Coefficients : a = [[0.0450365]]	Intercept : b = [-9.70092741] Coefficients : a = [[0.07696742]]				
precision recall f1-score support	precision recall f1-score support				
0 0.68 0.80 0.74 10461	0 0.68 0.80 0.74 9503				
1 0.76 0.63 0.69 10539	1 0.74 0.61 0.67 9033				
accuracy 0.72 21000	accuracy 0.71 18536				
macro avg 0.72 0.72 21000	macro avg 0.71 0.70 0.70 18536				
weighted avg 0.72 0.72 21000	weighted avg 0.71 0.71 0.70 18536				
AUC-ROC: 0.7551067439216099	AUC-ROC: 0.7420967146326647				
Accuracy: 0.7177619047619047	Accuracy: 0.7068946914113077				

Very similar AUC and Accuracy

K-MEANS CLUSTERING

To group similar data points together and discover underlying patterns

K-MEANS CLUSTERING

BP variables for people
with Cardiovascular
Disease are generally
higher than those without
Cardiovascular Disease

K-MEANS CLUSTERING

DECISION TREE

Description: Tree-like models are useful for classification tasks and uses categorical data.

Purpose of Decision Tree in the context of our Project:

Classifies the factors used, measures the effectiveness for predicting the likelihood of the country being happy or unhappy.

- Response variable: Presence of Cardiovascular Disease
- Predictor factors:
- 1.Age
- 2. Weight
- 3.BMI
- 4. Systolic BP
- 5. Diastolic BP
- 6. Cholesterol

DECISION TREE

Goodness of Fit of Model Classification Accuracy

Goodness of Fit of Model Classification Accuracy Train Dataset : 0.7214459131373078

Test Dataset

: 0.7191470421623372

Observations:

Gini Index of the decision tree is relatively low (0.0 - 0.5), denoting high purity or low impurity.

In a multivariate decision tree, **overfitting** may occur.

Preventative Measures:
Limiting the number of variables and setting max_depth to 3.

DECISION TREE

RANDOM FOREST

Description: Multiple decision trees are used to give a prediction based on the factors in relation to the presence of Cardiovascular Disease

Purpose of Decision Tree in the context of our Project:

Classifies the factors used, measures the effectiveness for predicting the likelihood of cardiovascular disease.

How Random Forest works:

- 1. Select random samples from a given dataset and split into Train and Test sets
- 2. Construct a decision tree for each sample and get a prediction result from each decision tree.
- 3. Perform a vote for each predicted result.
- 4. Select the prediction result with the most votes as the final prediction.

RANDOM FOREST

Observations:

Gini Index is also relatively low (0.0-0.5), denoting the high purity and low impurity

To improve the accuracy of our random forest, we used a validation test set.

Accuracy on validation set: 0.6883952415634863

4: FINDINGS AND OUTCOMES

	<u>Logistic Regression</u>	<u>Decision Tree</u>	Random Forest
Advantages	Great at measuring relationships between	Great at capturing <u>non-</u> <u>linear relationship</u> between predictors.	Strong at providing accurate prediction than other models. Can capture non-linear relationships between predictors. Less prone to overfitting.
Disadvantages (Limitations)	non linear	complex tree, especially a	More <u>difficult to</u> <u>interpret</u> than a single Decision Tree.

Outcome

 \Rightarrow

Through this project, we analyzed the data set, trained a classification model with classification, clustering and anomaly predication and evaluated the data.

We have built a relatively effective model of >70% accuracy with an AUC >0.74 to predict the likelihood of cardiovascular disease.

Outcome

Each of our Machine Learning models generally support that

<u>Systolic Blood Pressure</u>

is the most important variable in predicting the presence of cardiovascular disease.

CONCLUSION

are the most important indicators of cardiovascular

disease

• Lower income countries should <u>focus on</u>
<u>testing for BP</u> since BP monitoring devices
are <u>cheap and widely available</u> and can
be <u>easily purchased and maintained</u> by
healthcare facilities.

JOB DISTRIBUTION

Name:	Phua Wei An	Pagdanganan Robert Martin Gosioco	Tan Chuan Bing	Nguyen Hoang Minh	
Initial Data Preparation	✓		✓	support	
Exploratory Analysis + Further Data Cleaning	>	support	✓	✓	
Logistic Regression	>	support	support	support	
K-Means Clustering	✓	support	support	support	
Decision Tree	>	support	support	support	
Random Forest	✓	support	support	support	
Findings + Conclusion	✓	support	support	✓	