

LipsNet++: Unifying Filter and Controller into a Policy Network

X. Song¹², L. Chen³, T. Liu¹, W. Wang¹, Y. Wang¹, S. Qin¹, Y. Ma⁴, J. Duan¹³, S. E. Li¹

¹Tsinghua University, ²University of Michigan, ³USTB, ⁴Johns Hopkins University

Website: xjsong99.github.io/LipsNet v2 Contact : xisong@umich.edu

JOHNS HOPKINS UNIVERSITY

1. Background

Deep reinforcement learning (RL) is effective for decision-making and control tasks like autonomous driving and embodied Al.

However, RL policies often suffer from the action fluctuation problem in real-world applications, resulting in severe actuator wear, safety risk, and performance degradation.

Theorem & Learning Mechanism

Fourier Filter Layer

Tailor the policy improvement (PIM) loss as

$$\mathcal{L}' = \mathcal{L} + \lambda_h ||H||_F$$

For policy improvement

For learning the filtering strength of each frequency

Lipschitz Controller Layer

In this layer, we propose Jacobian regularization to constrain the Lipschitz constant of policy network.

Definition 3.1 (Local Lipschitz Constant) Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is a continuous neural network. The K(x) is defined as the local Lipschitz constant of f on the neighborhood $\mathcal{B}(x, \rho) = \{x' : ||x' - x|| < \rho\}$:

$$K(x) = \max_{x_1, x_2 \in \mathcal{B}(x, \rho)} \frac{\|f(x_1) - f(x_2)\|}{\|x_1 - x_2\|}.$$

Theorem 3.2 (Lipschitz's Jacobian Approximation) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuously differentiable network. The Jacobian norm $\|\nabla_x f\|$ is an approximation of K(x)within $\mathcal{B}(x,\rho)$. The approximation error is

$$\max_{\delta \in \mathcal{B}(0,\rho)} \left[\left(\nabla_x \| \nabla_x f(x) \| \right)^\top \delta + o(\delta) \right].$$

Moreover, as $\rho \to 0$, the Jacobian norm converges to the exact local Lipschitz constant, i.e. $\lim_{x \to 0} \|\nabla_x f\| = K(x)$.

Overall Performance

We evaluate the overall performance of LipsNet++ with 6 baselines across 6 metrics. It shows that LipsNet++ achieves the SOTA overall performance.

Experiment Results

DeepMind Control Suit

The results show that LipsNet++ has the lowest action fluctuation ratio (AFR) with the same level of total average return (TAR). E.g., LipsNet++ reduces the AFR by 35.5% in Walker env. compared to LipsNet (Song, ICML 2023).

Mini-Vehicle Driving

We evaluated LipsNet++ on the trajectory tracking and obstacle avoidance task in 4 scenarios with varies noise levels. The result implies that LipsNet++ has much better action smoothness and noise robustness.

