Chapter 1

Code

For the simulations in this project, I used R; "a language and environment for statistical computing and graphics". I created a package with the functions needed to created the Kozachenko-Leonenko entropy estimator (KLEE), and then used this package to run simulations on samples from different statistical distributions to create the results in section ??.

To create my package Entropy-Estimators, I used two of Hadley's ?? packages; devtools and roxygen2, I also used ggplot2 to plot the graphs of the estimator bias against the sample size. Entropy-Estimators also has 2 dependency packages (alongside the base R packages); dplyr for the manipulation of data and FNN for the kth nearest neighbour function. I will outline the important code used for the simulations; however, the full package and a complete account of the code used can be found on my GitHub page https://github.com/KarinaMarks/Entropy-Estimators.

1.1 The Estimator

1.2 Exact Entropies

To consider the bias of the estimator, I had to find the exact value of entropy from a 1-dimensional normal, uniform and exponential distribution. The function written to return this for the normal distribution is NormalEnt with parameter sd, the standard deviation of the sample, we do not need the mean value for finding the entropy of the normal distribution. The function is defined as follows:

```
NormalEnt <- function(sd){
 (log(sqrt(2*pi*exp(1))*sd))
}
```

With sd =1, as is true in the samples considered here, we find the entropy to be given by;

```
> NormalEnt(sd=1)
[1] 1.418939
```

The function for the uniform distribution is UniformEnt, with parameters min and max, is defined as;

```
UniformEnt <- function(min, max){
  log(max - min)
}</pre>
```

Here we use min=0 and max=100 in the samples considered; thus we find the exact entropy to be given by;

```
> UniformEnt(min = 0, max = 100)
[1] 4.60517
```

Lastly, for the exponential distribution we have the function ExpoEnt, with only one parameter rate, defined below;

```
ExpoEnt <- function(rate){
  1 - log(rate)
}</pre>
```

In this paper we are using the exponential distribution with parameter rate=1.5, thus;

```
> ExpoEnt(rate = 1.5)
[1] 0.5945349
```

1.3 Simulations