

Exam information: Midterm exam

Version: I

Date: Friday Nov. 4, 2022 Time: 2:30 pm to 3:30 pm

Duration: 1 hours

Part 1: Multi choice questions:

- 1. Quicksort is guaranteed to run in time $O(n \log n)$ so long as the pivot is (5 points)
 - a. randomly selected.
 - b. set to the median of the first, middle, and last array element.
 - c. set to the median of the array.
 - d. none of the above

Ans: c

- 2. In a double hashing solution to cope with a collision, what is not correct? (5 points)
 - a. There are two hash functions; first hash function: $h(k) = k \mod N$ and second hash function: $d(k) = q (k \mod q)$
 - b. Second hash function cannot have a zero value
 - c. There is no condition for table size to allow probing to all cells
 - d. For these hash functions: q < N and q and N are prime

Ans: c

3. The worst-case running time T(n) for inserting n elements into an initially empty binary search tree (BST) is: (5 points)

a.
$$T(n) = O(n^2)$$

b.
$$T(n) = O(\sqrt{n} \log n)$$

c.
$$T(n) = O(n)$$

d.
$$T(n) = O(n \log n)$$

Ans: a

- 4. When following Kruskal's algorithm, the greedy choice is to: (5 points)
 - a. remove the edge of greatest cost from the graph so long as its removal does not disconnect the graph.
 - b. add the edge of least cost to the forest so long as its addition does not create a cycle.
 - c. add the vertex having least connection cost to the current tree.
 - d. remove the vertex having greatest connection cost from the tree.

Ans: b

- 5. Which of the following expressions surely supports the statement $f(n) = \Omega(g(n))$? (5 points)
 - a. $g(n) \le 4f(n)$ for all $n \ge 1$
 - b. $g(n) \le 4f(n)$ for all $n \ge 136$
 - c. $f(n) \le 4g(n)$ for all $n \ge 1$

- d. $f(n) \ge 4g(n)$ for all $n \ge 136$ Ans: d
- 6. Which of the following algorithms does not require a heap for its efficient implementation? (5 points)
 - a. Human's algorithm
 - b. Dijkstra's algorithm
 - c. Kruskal's algorithm
 - d. Prim's algorithm
 - Ans: c
- 7. Which function has the least growth rate? (5 points)
 - a. $2n^3 + 80$
 - b. $n \log n$
 - c. $98 \log n$
 - d. $n + \log n$
 - Ans: c
- 8. What is the output sequence of a Breath-first search (BFS) traversing over the following graph? (5 points)

- a. ABFCDGEH
- b. ABCDEFGH
- c. ABCFDGEH
- d. AFGHBCDE
 - Ans: a

Part 2: Essay questions:

- 9. Consider an open addressing hash table with 18 slots. Find proper hash function to insert the keys {33, 15, 69, 74, 68, 109, 50, 96} (in the order given) into the table.
 - a. Use linear probing for collision resolution. (5 points)
 - b. Use quadratic probing for collision resolution. (5 points)

Ans: proper hash function to save on table is $f(k) = k \mod 18$. Hash values for input values are $\{15, 15, 15, 2, 14, 1, 14, 6\}$. There are conflicts on hash table on 15 and 14.

- a: By linier probing at collision place: $f(i) = [(i+j) \mod 18], j = 1,2,3,...$ Therefore, we have following values after addressing the collisions: $\{15, 16, 17, 2, 14, 1, 18, 6\}$
- b: By quadratic probing at collision place: $f(i) = [(i+j^2) \mod 18], j = 1,2,3,...$ Therefore, we have following values after addressing the collisions: $\{15, 16, 1, 2, 14, 5, 18, 6\}$ (Students can show hash table and its cells with values)
- 10. Consider the following algorithm:

```
Algorithm Alg (n)

if (n \le 1)

return false

if (n == 2)

return true;

if (n\%2 == 0)

return false;

for (int i = 3; i^2 \le n; i += 2)

if (n\%i == 0)

return false;

return true;
```

- a. What does Alg compute? (5 points)
- b. What is O() complexity? (5 points)

Ans a: The function returns whether n is a prime number.

Ans b: The complexity/cost is determined by the loop, which makes $O(\sqrt{n})$ iterations, each of which has constant cost. Thus, the complexity is $O(\sqrt{n})$

- 11. a: Make an AVL tree of a list of [129,56,7,32,95,46,54,80] (10 points)
 - b: What is the Insertion complexity of this AVL tree? (5 points)

Ans a:

Ans b: Insertion complexity of this AVL tree is $O(\log n)$.

12. Use Dijkstra algorithm and find the shortest path to all nodes from the starting point node E. (10 points)

Ans:

Vertex	Shortest distance	Previous
	from E	vertex
E	0	i
Α	4	С
В	11	Α
С	3	Е
D	9	F
F	5	G
G	2	Е
Н	8	G

- 13. For a given integer array a[] with n integers,
 - a. Write an algorithm to find if there are three indices i, j, and k (not necessarily distinct) such that a[i] + a[j] + a[k] == 0. (10 points)
 - b. What is time complexity of your algorithm? (5 points)

Ans: there is no unique answer for this question. I want to challenge students and find their understanding and novelty to solve the problem. To evaluate an algorithm, three items are considered, namely Correctness, Performance, and Ending in a finite time. Consider these three properties and grade the suggested algorithms.

Good luck, Mahdi Firoozjaei November 2022