

Active working group members:

James Biard (<u>j.biard@computer.org</u>)

Jonathan Yu (jonathan.yu@csiro.au)

Mark Hedley (<u>mark.hedley@metoffice.gov.uk</u>)

Adam Leadbetter (<u>Adam.Leadbetter@Marine.ie</u>)

Acknowledgements

Nick Car & Alex Ip (Geoscience Australia)

Kelsey Druken (NCI Australia)

Sean Arms (UCAR)

Contributors to bald repository

Recommended best practice for exposing, sharing, and connecting pieces of data, information, and knowledge *on the web.*

Standard format ...

Reachable ...

Relationships between data ...

Collection of interrelated data → Linked Data **Key concept:** Give each *thing* in the data an individual identity or URI

Linked Open Data Cloud http://lod-cloud.net/

32 billion triples in 2014

. . .

192 billion+ triples in 2017 See http://stats.lod2.eu/stats

Can we plug netCDF/HDF data in?

Other motivations

Encode and interpret nc files that use multiple metadata standards/conventions effectively (e.g. check naming and codelist conflicts) - CF often combined with other conventions (e.g. ACDD + CF)

Exploit Web and Linked Data tech to *enhance discovery* across large collections of files (e.g. represent separate files as graphs)

Represent nc/hdf files as close to the spirit of a binary array data model (vs. transform into other data models like RDF Data Cube (yet))

People are *already* linking to external references but not consistently ...

Design principles

Work with current netCDF files

Design a simple mechanism to that works with existing netCDF files as-is to encode in a Linked Data friendly format.

Allow consistent and precise naming of each thing in netCDF/HDF metadata

Implies introducing new syntax (compatible with netCDF / HDF) to build URIs for each attribute name and property value

Enable consistent way to link to references, e.g. model, instrument, etc.

Overview

What have we been up to?

Tools

Syntax (aliasing, prefixes)

Supporting registries

Next steps

What have we been up to?

Tools

Python libraries (Github bald repo) - (bald = binary array linked data) https://github.com/binary-array-ld/bald

Command line tools (in development):

nclddump

nc2rdf

Demos

nclddump \$ python nclddump.py example.cdl Hotlinked HTML CDL or netCDF/HDF file styled ncdump (reads metadata) output

Information on web pages and registries

nc2rdf

\$ python nc2rdf.py example.cdl

CDL or netCDF/HDF file (reads metadata)

Demo visualisations of graphs from CDL examples in bald repo

ereefs convention example

```
variables:
    float eta(time, j, i);
        eta:units = "metre";
        eta:long_name = "Surface elevation";
        eta:standard_name = "sea_surface_height_above_sea_level";
        eta:medium_id = "ocean"
        eta:scaledQuantityKind_id = "sea_surface_elevation"
        eta:substanceOrTaxon_id = "ocean_near_surface"
```

ereefs convention example - what we wanted

```
variables:
  float eta(time, j, i);
      eta:units = "metre" :
      eta:long name = "Surface elevation";
      eta:standard name = "sea surface height above sea level";
      eta:medium id = "ocean"
      eta:scaledQuantityKind id = "sea surface elevation"
                                                                        Who defines
                                                                        these terms?
      eta:substanceOrTaxon_id = "ocean_near_surface"
                                                                       How do I check
                                                                          validity?
```

ereefs convention example - what we ended up with

```
variables:
  float eta(time, j, i);
          eta:units = "metre" :
          eta:long name = "Surface elevation";
          eta:standard name = "sea surface height above sea level";
         eta:medium_id = "http://environment.data.gov.au/def/feature/ocean";
          eta:scaledQuantityKind id =
                  "http://environment.data.gov.au/def/property/sea surface elevation";
          eta:substanceOrTaxon id =
                  "http://environment.data.gov.au/def/feature/ocean near surface";
```

I can check validity over the web (HTTP)

Not very scalable or extensible :(
Also not that readable...

Binary Array LD Syntax (for netCDF and HDF)

Methods to encode or process nc/hdf for translating to RDF / Linked Data ready

<u>Aliasing</u> <u>Prefixing</u>

Lookup table for 'well-known' or declared mappings

Kinda like namespacing

Can be explicit or implicit

Pros: Easy to convert <u>current</u> nc files

→ acdd:title

Cons: Resolving clashes

e.q. title

Pros: Easy to convert <u>conformant</u> files Cons: Current files need tweaking

e.g. acdd title > acdd:title

(netcdf) (RDF) (netcdf) (RDF)

Binary Array Linked Data (BALD) model

http://binary-arrayId.net/ latest?classView=true

Aliasing example

variables:

```
int variable(pdim0, pdim1);
     variable:SDN_ParameterDiscoveryCode = "BactTaxaAbundSed";
int cfvariable(pdim0, pdim1);
     cfvariable:standard_name = "air_temperature";

// global attributes:
     :isAliasedBy = "alias_list";
```

Aliasing example – adding context (explicit aliases)

```
variables:
 int alias list;
           alias list:SDN ParameterDiscoveryCode =
"http://vocab.nerc.ac.uk/isoCodelists/sdnCodelists/cdicsrCodeList.xml#SDN ParameterDiscoveryCode"
           alias list:BactTaxaAbundSed = "http://vocab.nerc.ac.uk/collection/P02/current/BAUC/";
           alias list:standard name = "https://def.scitools.org.uk/CFTerms/standard name";
           alias list:air temperature = "http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/"
 int variable(pdim0, pdim1);
           variable:SDN ParameterDiscoveryCode = "BactTaxaAbundSed";
 int cfvariable(pdim0, pdim1);
           cfvariable:standard name = "air temperature";
// global attributes:
           :isAliasedBy = "alias list";
```

Aliasing example – RDF representation

```
<example> a bald:Container;
   bald:contains <variable>. <cfvariable>.
<variable> a bald:Array ;
  ns1:SDN ParameterDiscoveryCode
        <a href="http://vocab.nerc.ac.uk/collection/P02/current/BAUC/">http://vocab.nerc.ac.uk/collection/P02/current/BAUC/</a>;
<cfvariable> a bald:Array ;
  ns2:standard name
            <a href="http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/">http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/</a>.
```

Variable metadata

Prefix example – ereefs running example

variables:

```
float eta(time, j, i);
    eta:units = "metre";
    eta:long_name = "Surface elevation";
    eta:standard_name = "sea_surface_height_above_sea_level";
    eta:medium_id = "ocean"
    eta:scaledQuantityKind_id = "sea_surface_elevation"
    eta:substanceOrTaxon_id = "ocean_near_surface"
```

variable metadata

Prefix example – ereefs with prefixes added

variables:

```
float eta(time, j, i);
    eta:units = "metre";
    eta:cf__long_name = "Surface elevation";
    eta:cf__standard_name = "cfsn__sea_surface_height_above_sea_level";
    eta:ereefs_medium_id = "feature__ocean"
    eta:ereefs_scaledQuantityKind_id = "property__sea_surface_elevation"
    eta:ereefs_substanceOrTaxon_id = "feature__ocean_near_surface"
```

Prefix example – added prefix mappings

```
variables:
 int prefix list;
      prefix list:cf = https://def.scitools.org.uk/CFTerms/
      prefix list:cfsn = http://mmisw.org/ont/cf/parameter/
      prefix list:feature = "http://environment.data.gov.au/def/feature/";
      prefix_list:property__ = "http://environment.data.gov.au/def/property/";
      prefix_list:ereefs__ = "http://registry.it.csiro.au/sandbox/ncld/ereefs-attributes/";
 float eta(time, j, i);
      eta:units = "metre";
      eta:cf long name = "Surface elevation";
      eta:cf standard name = "cfsn sea surface height above sea level";
      eta:ereefs medium id = "feature ocean"
      eta:ereefs scaledQuantityKind id = "property sea surface elevation"
      eta:ereefs substanceOrTaxon id = "feature ocean near surface"
```

Demo visualisations of graphs from CDL examples in bald repo

Supporting registries

List all registers

Developed by Epimorphics Ltd

Next steps

Establishing trusted registers online - CF terms, NUG, ACDD

Process THREDDS servers and explore integration and visualisations

Explore opportunities to link to other codelists

- Area type http://vocab.nerc.ac.uk/collection/P30/current
- Standardised regions (P29) http://vocab.nerc.ac.uk/collection/P29/current/

Build tools and demonstrators showing discovery across existing netCDF CF repositories (e.g. via THREDDS)

Want to contribute? Submit nc samples to the bald repo

Thanks

Active working group members:

James Biard (j.biard@computer.org)

Jonathan Yu (jonathan.yu@csiro.au)

Mark Hedley (<u>mark.hedley@metoffice.gov.uk</u>)

Adam Leadbetter (<u>Adam.Leadbetter@Marine.ie</u>)

Python libraries (bald = binary array linked data)
https://github.com/binary-array-ld/bald

http://tinyurl.com/netcdf-ld

Demo

http://waterinformatics-ext1-cdc.it.csiro.au/ncld-demo/

```
variables:
                                                        (Aliasing example)
 int alias list;
      alias_list:standard_name = "https://def.scitools.org.uk/CFTerms/standard_name";
      alias list:sea surface elevation =
                    "http://environment.data.gov.au/def/property/sea surface elevation";
      alias list:ocean near surface =
                       "http://environment.data.gov.au/def/feature/ocean near surface";
      alias list:ocean = "http://environment.data.gov.au/def/feature/ocean";
 float eta(time, j, i);
      eta:units = "metre";
      eta:long name = "Surface elevation" :
      eta:standard name = "sea surface height above sea level";
      eta:medium id = "ocean"
      eta:scaledQuantityKind id = "sea surface elevation"
      eta:substanceOrTaxon id = "ocean near surface"
```