```
MATH 3801 Problem Set Three:
O let (P) denote the following linear Programming Problem:
              min 2x, +3x3
              S.t. X1+ X2+3X3 ≥ 6
                   -x_1 + 3x_2 + x_3 \le 1
                         3x_2 - 4x_3 = 0
                     X1 X3 ≥ 0
                         Xa is free
    a) Write down the dual Problem for (P):
            We Know:
                A = \begin{bmatrix} -1 & 1 & 3 \\ -1 & 2 & 1 \\ 0 & 3 & -4 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, & C = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}
           30, for the duel Problem we use b as the objective, C for Constraints, & dip min to max
                   max 64,+42
                                                         We also get Constraint Vanables
                                                           by Selecting Columns from A.
                                                         P(min) to D(max)
                                                          Evar -D & const.
                                                          ≥ Var -> ≤ Const.
                                                           = Const -1> free
                                                      (P) Since XI & X3 ≥0:
                                                           (b) Const. 1) 3 is 4 Const.
                                                      (?) X2 is free 80:
    b) With the help of Software, find an optimal
       Solution to (P) & its duelo Express all
                                                           (D) Constraint 2'S = Const.
       numbers as exact rational Values, not decimals: (?) Since consts. are >, =, =:
                                                       gi is à
         (P) After running in microsoft excel, we see:
                   X1=53/X2= = 1/8 ) is the
                                                            92 is €
                   optimal variable values for a
                   minimum of 2(\frac{53}{24}) + 0(\frac{7}{6}) + 3(\frac{7}{8}) = \frac{169}{24}
         (D) After running in Microsoft Excel, we see:
                   (X= 3/1 / X2= - 17/24 / X3 = 24
                   optimal variables values for a
                   maximum of 6(31/24)+1(-17)+0(24)=(19)
```

Primal Problem Linear Program

Variables	x1	x2 x	:3	value	
Solution	2.20833333	1.16666667	0.875		
Objective	2	0	3	7.04166667	
Constraint 1	1	1	3	6 >=	6
Constraint 2	-1	2	1	1 <=	1
Constraint 3	0	3	-4	-8.882E-16 =	0
Constraint 4	1	0	0	2.20833333 >=	0
Constraint 5	0	0	1	0.875 >=	0

Microsoft Excel 16.0 Answer Report

Worksheet: [lp (1).xlsx]Sheet1

Report Created: 10/20/2020 5:59:39 PM

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.031 Seconds. Iterations: 5 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$E\$3 Objective value		0	7.041666667

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2 Sc	lution x1	0	2.208333333	Contin
\$C\$2 Sc	lution x2	0	1.166666667	Contin
\$D\$2 Sc	lution x3	0	0.875	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	Constraint 1 value	ϵ	\$E\$5>=\$G\$5	Binding	0
\$E\$6	Constraint 2 value	1	\$E\$6<=\$G\$6	Binding	0
\$E\$7	Constraint 3 value	-8.88178E-16	\$E\$7=\$G\$7	Binding	0
\$E\$8	Constraint 4 value	2.208333333	\$ \$E\$8>=\$G\$8	Not Binding	2.208333333
\$E\$9	Constraint 5 value	0.875	\$E\$9>=\$G\$9	Not Binding	0.875

Duel Problem Linear Program

Variables	x1	x2	x3	value	
Solution	1.291667	-0.70833	0.041667		
Objective	6	1	0	7.041667	
Constraint	1	-1	0	2 <=	2
Constraint	1	2	3	-1.9E-16 =	0
Constraint	3	1	-4	3 <=	3
Constraint	1	0	0	1.291667 >=	0
Constraint	0	1	0	-0.70833 <=	0

Microsoft Excel 16.0 Answer Report

Worksheet: [lp (1).xlsx]Sheet2

Report Created: 10/20/2020 6:10:06 PM

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.046 Seconds. Iterations: 5 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$E\$3 Ok	jective value	0	7.041666667

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2 Sc	olution x1	0	1.291666667	Contin
\$C\$2 Sc	olution x2	0	-0.708333333	Contin
\$D\$2 Sc	olution x3	0	0.041666667	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	Constraint 1 value	2	\$E\$5<=\$G\$5	Binding	0
\$E\$6	Constraint 2 value	-1.94289E-16	\$E\$6=\$G\$6	Binding	0
\$E\$7	Constraint 3 value	3	\$\$E\$7<=\$G\$7	Binding	0
\$E\$8	Constraint 4 value	1.291666667	' \$E\$8>=\$G\$8	Not Binding	1.291666667
\$E\$9	Constraint 5 value	-0.708333333	\$E\$9<=\$G\$9	Not Binding	0.708333333

(2) let (7) denote the following linear programming Problem:

Nin
$$3x_1 + 3x_2 + x_3 = 10$$
 $x_1 + 3x_2 + x_3 = 10$
 $x_1 + 3x_2 + x_3 > 0$

(a) Obtain the tableau associated with the basis $B = \{1/2\}$:

Convert to system:

 $Z - 2x_1 - 3x_2 = 0$
 $2x_1 + 3x_2 + x_3 = 10$
 $x_1 + 2x_2 = 5$

Set Columns $1 \ 2 \ 2 \ 3 \ 1 \ 10$
 $0 \ 1 \ 2 \ 0 \ 5$
 $0 \ 1 \ 2 \ 0 \ 5$
 $0 \ 1 \ 2 \ 0 \ 5$
 $0 \ 1 \ 2 \ 0 \ 5$
 $0 \ 1 \ 2 \ 0 \ 5$

Thus,

 $Z + X_3 = 10$
 $X_1 + 2X_3 = 5$
 $X_2 - X_3 = 0$

is the tableau associated with the basis

b) Predom one Complete iteration of the tableau Starting with the tableau in the Previous Part:

We know $3z_1 + 2x_2 = 5$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 + x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 + x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 + x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 + x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3 = 0$
 $x_3 - x_3 = 0$
 $x_1 + x_2 = 0$
 $x_2 - x_3$

-1) Choose and as it's the only Positive coefficient

Since
$$R = \{1\}$$
, $S = \{5\}$ for $i=1$, therefore in the part of $\frac{1}{2\sqrt{3}}\} = \min\left\{\frac{5}{3}\right\} = \frac{5}{3}$; $r=1$

So, the new basis has r replaced with R new basis is: $B = \{2,3\}$

(3) Find all basic densitie solutions to the System: $4x_1 + x_2 + x_3 - x_4 = 9$.

 $3x_1 + x_2 + x_3 - x_4 = 9$.

 $3x_1 + x_2 + x_3 - x_4 = 9$.

For each basic densitie solution, list all the basis that determine it:

We know:

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 3 & 1 & 0 \\ 6 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

Since A has two Rows, for all B of length B :

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 3 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 3 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 3 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 3 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$A =$$