Thermal Imaging HUD Block Diagram

Dustin Schnelle
Eric Rulh
Preston Cazier
Kirk Hooper

Table of Content:

Thermal Imaging HUD: Level 0Page 3	,
Thermal Imaging HUD: Level 1Page 4	Ļ
Over Charge Protection: Level 0Page 5	<u>.</u>
LiPo Battery: Level 0Page 6	6
Brown Out/Over Discharge Protection: Level 0	7
3.3V Linear Regulation: Level 0	8
3.3V Linear Regulator: Level 0Page	9
Noise Reduction: Level 0Page	10
Oscillator: Level 0	11
Microcontroller: Level 0Page 1	12
AMG8833 Thermal Imaging Camera: Level 0	13
AMG8833 Thermal Imaging Camera: Level 1Page 1	14
Panasonic Infrared Sensor Array: Level 0	15
Linear Voltage Regulator AMG8833: Level 0Page 1	16
Level Shifting: Level 0Page	17
SSD1331 OLED Display: Level 0Page 1	18
SSD1331 OLED Display: Level 1Page 1	19
Linear Voltage Regulator SSD1331: Level 0Page 2	20
Non-Inverting High-to-Low Level Shifter: Level 0	21
OLED LCD Display: Level 0	22

Thermal Imaging HUD: Level 0

Module	Thermal Imaging HUD
Inputs	 Ambient temperature between 0° – 80°C Power: Micro-USB 5V DC
Outputs	Thermal Overlay Displays (HUD)
Functionality	Measure a matrix of ambient temperature between $0^{\circ}-80^{\circ}\text{C}$ with an accuracy of +/-2.5°C. Then process the ambient temperature data and transmit via I2C communication. The microcontroller executes an image processing algorithm to extrapolate to a large more displayable matrix. Then transfer the data via SPI communication to the OLED display. The image is then optically transmitted through a glass lenses to the heads up display.

Thermal Imaging HUD: Level 1

Over Charge Protection: Level 0

Module	Over Charge Protection
Inputs	Power: 5V DC from the micro-USB
Outputs	• Power: 3.7V DC
Functionality	To prevent the LiPo battery from charging more than 3.7V DC. Prevent the explosion/damage of the LiPo battery.

LiPo Battery: Level 0

Module	LiPo Battery
Inputs	Power: 3.7V DC from the over charge protection
Outputs	• Power: 3V – 3.7V DC
Functionality	To provide portable power to the circuit

Brown Out/Over Discharge Protection: Level 0

Module	Brown Out/Over Discharge Protection
Inputs	Power: 3V – 3.7V DC from the LiPo battery
Outputs	Power: 3V – 3.7V DC with undercurrent protection
Functionality	To protect the LiOp battery form over discharging.

3.3V Linear Regulation: Level 0

Module	3.3V Linear Regulation
Inputs	 Power: 3V – 3.7V DC from LiPo battery through the brown out/over discharge protection.
Outputs	• Power: 3.3V DC
Functionality	Takes the voltage provided by the LiPo battery to provide a 3.3V DC Reset logic of the mircocontroller.

3.3V Linear Regulator: Level 0

Module	3.3V Linear Regulator
Inputs	 Power: 3V – 3.7V DC from the LiPo battery
Outputs	• Power: 3.3V DC
Functionality	Takes the voltage provided by the LiPo battery to provide a 3.3V DC Vcc for the mircocontroller.

Noise Reduction: Level 0

Module	Noise Reduction
Inputs	Power: 3.3V DC from the voltage regulator
Outputs	Power: 3.3V DC less noise
Functionality	Reducing electric noise from the ground plan using ferrite beads

Oscillator: Level 0

Module	Oscillator
Inputs	• None
Outputs	Clock: 16MHz
Functionality	Sends the mircocontroller a 16MHz clock pulse.

Microcontroller: Level 0

Module	Microcontroller
Inputs	 Power: 3.3V DC to Vcc and AVcc Power: 3.3V DC to reset and once the voltage falls below 3.3V reset becomes active I2C SCL: I2C serial clock line 3.3V DC bidirectional communication I2C SDA: I2C serial data line 3.3V DC bidirectional communication Clock: 16Mhz
Outputs	 Power: 3.3V DC RST: 3.3V DC signal used to reset OLED display D/C: 3.3V DC SCK: 3.3V DC SPI clock line MOSI: 3.3V DC SPI master out/slave in LCD_CS: 3.3V DC signal to select the OLED display
Functionality	Translate the I2C data to SPI output data with an intermediate step of extrapolating the input 8x8 image matrix to a larger output image matrix.

AMG8833 Infrared Thermal Imaging Camera: Level 0

Module	AMG8833
Inputs	 Ambient temperature from 0° to 80°C I2C SCL: to receive master requests I2C SDA: to receive master requests Power: 3.3V DC
Outputs	 I2C SCL: to transmit ambient temperature to master I2C SDA: to transmit ambient temperature to master
Functionality	Return an array of 64 (8x8) individual infrared temperature readings with an accuracy of +/- 2.5°C via I2C when requested by master device.

AMG8833 Infrared Thermal Imaging Camera: Level 1

Panasonic Infrared Array Sensor: Level 0

Module	Panasonic Infrared Array Sensor "Grid-EYE"
Inputs	 Ambient temperature from 0° to 80°C I2C SCL: 3.3V DC I2C SDA 3.3V DC AD_SELECT: configurable slave address of the device Power: 3.3V DC
Outputs	I2C SCL: 3.3V DCI2C SDA: 3.3V DC
Functionality	Return an array of 64 (8x8) individual infrared temperature readings via I2C when requested by master device. Control registers can be programmed by the master.

Linear Voltage Regulator AMG8833: Level 0

Module	Linear Voltage Regulator
Inputs	 Power: 3.3V DC Enable: to enable the mic5225-3.3V chip (tied to power)
Outputs	 Power: 3.3V DC AD_SELECT: configurable slave address of the device
Functionality	Regulated power supply that produces 3.3V DC using the mic5225-3.3V chip and an input voltage of 3.3V DC.

Level Shifting: Level 0

Module	Level Shifting
Inputs	Power: 3.3V DC I2C SCL signalPower: 3.3V DC I2C SDA signal
Outputs	Power: 3.3 DC I2C SCL signalPower: 3.3 DC I2C SDA signal
Functionality	Shifts the voltage level of the I2C communication signal form 3.3V DC to 3.3V DC using two BSS138 MOSEFTs.

SSD1331 OLED Display: Level 0

Module	SSD1331 OLED display
Inputs	 RST: Reset SCK: SPI serial clock MOSI: SPI master out/slave in OCS: OLED chip select D/C: Data command controll Power: 3.3V DC
Outputs	Display the array of individual ambient temperature in with colors to represent the temperature of the current pixel.
Functionality	Displays the transformed ambient temperature array of 64 individual pixels data to OLED display via SPI communication from the processor.

SSD1331 OLED Display: Level 1

Linear Voltage Regulator SSD1331: Level 0

Module	Linear Voltage Regulator
Inputs	• Power: 3.3V DC
	Enable: to enable the mic5225-3.3V chip (tied to power)
Outputs	Power: 3.3V DC
Functionality	Regulated power supply that produces 3.3V DC using the mic5225-3.3V chip and an input voltage of 3.3V DC.

Non-Inverting High-to-Low Level Shifter: Level 0

Module	74HC4050 Non-Inverting High-to-Low Level Shifter
Inputs	 RST: reset 3.3V DC SCK: SPI serial clock 3.3V DC MOSI: SPI master out/slave in 3.3V DC LCD_CS: OLED chip select 3.3V DC DC: Data command control 3,3V DC
Outputs	 RST: reset 3.3V DC SCK: SPI serial clock 3.3V DC MOSI: SPI master out/slave in 3.3V DC LCD_CS: OLED Chip select 3.3V DC DC: Data command control 3.3V DC
Functionality	Shifts the voltage levels of the inputs from high voltage (3.3V DC) to low voltage (3.3V DC).

OLED LCD Display: Level 0

Module	OLED Display UG-9664HDDAG01
Inputs	 RST: reset 3.3V DC SCK: SPI serial clock 3.3V DC MOSI: SPI master out/slave in 3.3V DC LCD_CS: OLED Chip select 3.3V DC DC: Data command control 3.3V DC Power: 3.3V DC
Outputs	Thermal Overlay Display HUD
Functionality	Displays the transformed thermal imaging data to the OLED Display. The image is then propagated through the mirror to the HUD.