Abstract

The aim of this project is to analyse the effect of the Covid-19 vaccination on the number of positive Covid-19 cases, as well as its effect on the number of hospitalizations in Ontario. All data used was from https://data.ontario.ca/dataset/. The available vaccination data begins from January 2021. Routine VOC PCR testing of positive Covid-19 samples ceased on November 12th 2021 [1], and so to compare the effect of vaccinations to positive Covid-19 cases, we use analyse data from 1st January 2021 to 31st October 2021. The effect to be analysed is whether administration of the Covid-19 vaccination led to a reduction of positive Covid-19 cases, as well as to analyse if administration of the vaccine reduced the number of intensive care unit hospitalizations caused by Covid-19 (in Ontario). As the effect of the vaccination is being analysed, rather than using data of total number of first doses administered per day, we instead want to look at total number of people who have received their first dose of vaccination for least 14 days ago. For this reason, the vaccination data will be shifted by 14 days.

Filtering the data

The data from the data ontario website was downloaded and plotted as discrete time series. Before using techniques to compare different data sets (i.e. to see correlation between vaccine doses administered and positive Covid-19 cases etc), the data was filtered using techniques used in class, to remove any unwanted noise. In order to filter the data, techniques from lab 3 were used, where our original time-series was de-trended by removing a numpy polyfit line (of sufficiently high degree, at least degree 7). The de-trended data was Fourier Transformed (using Numpy's built in FFT), with the Fourier spectrum in the frequency domain set to zero for high frequencies. This filtered detrended time-series was then inverse Fourier transformed back to the time domain (using Numpy fft.ifft), with the original trend finally added back in. Initially, filtering this way led to a bit of an unexpected effect; an unnatural uptick was introduced to the end of the data. It appears that this uptick was due to the periodic nature of the inverse fourier transform, leading to the end values of the data being mirrored (offset due to frequency changes when filtering). In order to rectify this, the data used was taken for upto November 14th 2021, with a boxcar window applied before filtering. The data is then shown upto October 31st 2021. The data for number of total first dose vaccine administered had minimal high frequency noise (as this data was cumulative, not day-to-day), and so this data was not filtered. The data was however filtered, in order for it to represent total people who had been vaccinated for 14 days, rather than just the total number of people vaccinated who had been vaccinated by that day

Figure 1: Covid-19 cases f-domain filtering comparison; unfiltered (left) versus filtered (right)

Figure 2: Hospitalization data f-domain filtering comparison; unfiltered (left) versus filtered (right)

Figure 3: First dose vaccination data; unshifted (left), shifted (right)

Figures

References

[1] data.ontario.ca. Status of covid-19 cases in ontario. https://data.ontario.ca/dataset/status-of-covid-19-cases-in-ontario/resource/ed270bb8-340b-41f9-a7c6-e8ef587e6d11, 2022. [Online; accessed 19-April-2022].