Operating Systems and Networs SoSe 25 Solutions

Igor Dimitrov

2024-12-18

Table of contents

Pr	eface	2																					3
1	Blat	t 01																					4
	1.1	Aufgabe	1.															 					4
		Aufgabe																					
	1.3	Aufgabe	3.																				5
	1.4	Aufgabe 4	4.															 					6
		Aufgabe																					
		Aufgabe																					
	1.7	Aufgabe	7.				_				_	_	_	 			_	 					7

Preface

1 Blatt 01

1.1 Aufgabe 1

Learning how to Learn:

- Zwei Denkmodi aus "Learning How to Learn"
 - Fokussierter Modus: Zielgerichtetes, konzentriertes Denken. Gut für bekannte Aufgaben und Übung.
 - Diffuser Modus: Entspanntes, offenes Denken. Hilft bei neuen Ideen und kreativen Verknüpfungen.

• Aufgaben und passende Denkmodi

a) Fokussierter Modus

Warum: Erfordert Konzentration und gezieltes Einprägen.

b) Zuerst diffuser, dann fokussierter Modus

Warum: Erst Überblick und Verständnis aufbauen, dann vertiefen.

c) Fokussierter Modus

Warum: Klare, schrittweise Übung – ideal für fokussiertes Denken.

d) Beide Modi

Warum: Fokussiert für Details & Übungen, diffus für Überblick & Vernetzung.

John Cleese:

- Zwei Denkmodi:
 - 1. Offener Modus: Locker, spielerisch, kreativ.

Beispiel: Ideen für eine Geschichte sammeln.

Warum: Offenheit fördert neue Einfälle.

2. Geschlossener Modus: Zielgerichtet, angespannt, entscheidungsfreudig.

Beispiel: Bericht überarbeiten und fertigstellen.

Warum: Präzises Arbeiten und klare Entscheidungen nötig.

• Vergleich mit "Learning How to Learn"

- Offen ⇔ Diffus: Für Kreativität und Überblick.
- **Geschlossen** ⇔ **Fokussiert**: Für Detailarbeit und Umsetzung.

• Alexander Fleming:

- Modus: Offen
- Warum: Fleming entdeckte Penicillin zufällig, weil er offen und entspannt war neugierig statt zielgerichtet. Im geschlossenen Modus hätte er die verschimmelte Petrischale wohl einfach weggeschmissen – zu fokussiert für zufällige Entdeckungen.

• Alfred Hitchcock:

- Modus: Offen
- Wie: Er erzählte lustige Anekdoten, um das Team zum Lachen zu bringen so schuf er eine entspannte Atmosphäre, die kreatives Denken förderte.

1.2 Aufgabe 2

- $x64: 16 64 Bit GPRs^1 \Rightarrow 16 \times 64 b = 16 \times 8 B = 2^7 B.$
 - AVX2: 16 256 Bit $GPRs^2 \Rightarrow 16 \times 256 \text{ b} = 16 \times 32 \text{ B} = 2^9 \text{ B}$
- x64: $\frac{2^7}{2^{30}} = \frac{1}{2^{23}}$ AVX2: $\frac{2^9}{2^{30}} = \frac{1}{2^{21}}$

allgemein gilt: $10^3 \approx 2^{10}$, und $\frac{2^x}{2^y} = \frac{1}{2^{y-x}}$

1.3 Aufgabe 3

- Der Zugriff scheitert, weil der Arbeitsspeicher durch die Memory Protection (z.B. Paging mit Zugriffsrechten) vom Betriebssystem isoliert wird. Nur der Kernel darf die Speicherbereiche aller Prozesse sehen und verwalten.
- Ein Prozess kann trotzdem auf Ressourcen anderer Prozesse zugreifen über kontrollierte Schnittstellen wie IPC (Inter-Process Communication), Dateisysteme, Sockets oder Shared Memory, die vom Betriebssystem verwaltet und überwacht werden.
- Welche Risiken entstehen bei höchstem Privileg für alle Prozesse?
 - Sicherheitslücken: Jeder Prozess könnte beliebige Speicherbereiche lesen/schreiben.

¹https://www.wikiwand.com/en/articles/X86-64

²https://www.wikiwand.com/en/articles/Advanced_Vector_Extensions

- Stabilitätsprobleme: Fehlerhafte Prozesse könnten das System zum Absturz bringen.
- Keine Isolation: Malware hätte vollen Systemzugriff, keine Schutzmechanismen.

1.4 Aufgabe 4

Kernel-Code benötigt einen sicheren, kontrollierten Speicherbereich (seinen eigenen Stack), um zu vermeiden:

- Beschädigung durch Benutzerprozesse
- Abstürze oder Rechteausweitung (Privilege Escalation)

Daher hat jeder Prozess:

- Einen User-Mode-Stack (wird bei normaler Ausführung verwendet)
- Einen Kernel-Mode-Stack (wird bei System Calls und Interrupts verwendet)

1.5 Aufgabe 5

Entfernte Systemaufrufe

Systemaufruf	Grund für Entfernung
creat	Entspricht vollständig open(path, O_CREAT O_WRONLY O_TRUNC, mode).
dup	Entspricht vollständig fcntl(fd, F_DUPFD, 0).

Alle übrigen Systemaufrufe bieten **essenzielle Funktionen**, die nicht exakt durch andere ersetzt werden können.

Sie decken ab:

- Datei- und Verzeichnisoperationen (open, read, write, unlink, mkdir, etc.)
- Prozessmanagement (fork, exec, wait, exit, etc.)
- Metadatenverwaltung (chmod, chown, utime, etc.)
- Kommunikation und Steuerung (pipe, kill, ioctl, etc.)
- Zeit- und Systemabfragen (time, times, stat, etc.)

Ohne sie wären bestimmte Kernfunktionen unmöglich.

1.6 Aufgabe 6

script.sh auch im Zip:

```
cd $1
while :
do
    echo "5 biggest files in $1:"
    ls -S | head -5
    echo "5 last modified files starting with '$2' in $1:"
    ls -t | grep ^$2 | head -5
    sleep 5
done
```

1.7 Aufgabe 7

Vorteile:

- Komplexitätsreduktion: Abstraktionen verbergen technische Details und erleichtern das Entwickeln und Verstehen von Systemen.
- Wiederverwendbarkeit: Einmal geschaffene Abstraktionen (z.B. Dateisystem, Prozesse) können flexibel in verschiedenen Programmen genutzt werden.

Nachteile:

- Leistungsaufwand: Abstraktionsschichten können zusätzliche Rechenzeit und Speicherverbrauch verursachen.
- Fehlerverdeckung: Probleme in tieferen Schichten bleiben oft verborgen und erschweren Fehlersuche und Optimierung.