MIE-ARI (Computer Arithmetic – Homework 2)

Pavel Kubalík
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague

https://courses.fit.cvut.cz/MIE-ARI/

Task 1 – Negative number representation – all codes

• Fill the following table:

	resentation	sign and	2's	1's	biased type 0 biased type 1	
binary	decimal	magnitude	complement	complement		
0000	0					
0001	1					
-	-					
0111	7					
1000	8					
1001	9					
-	-					
1111	15					

Task 2 – addition of non-negative numbers I.

Add two numbers using 1's complement code (diminished radix complement). Write the image of each addend and sum on the left side in the decimal system with a sign. Analyze when an overflow occurs. For n=3. (4bits adder) Specify an allowable range of numbers for n=2.

a)	b)	c)	d)
1001	0110	1001	0110
0111	1000	<u> 1100</u>	0011

Advice: Carry out from the higher-order must be added to the lower order (circular carry).

Task 2 – addition of non-negative numbers II.

Add two numbers using biased code type 0.

Write the image of each addend and sum on the left side in the decimal system with a sign. Analyze when an overflow occurs. For n=2. (3bits adder)

Specify an allowable range of numbers for n=2.

a)	b)	c)	d)
101	101	011	011
110	111	010	000

Advice: Negate bit of the sum in higher order.

Task 2 – addition of non-negative numbers III.

Add two numbers using biased code type 1.

Write the image of each addend and sum on the left side in the decimal system with a sign. Analyze when an overflow occurs. For n=2. (3bits adder)

Specify an allowable range of numbers for n=2.

a)	b)	c)	d)
100	100	010	010
<u>101</u>	111	001	000

Advice: Add one to the lower order of the sum and then negate the bit in the higher order of the result.