11 ianuarie 2020 Lect. dr. Anca GRAD

Reprezentări grafice ale funcțiilor

A. Asimptote - breviar teoretic

Fie $\emptyset \neq D \subseteq \mathbb{R}$ și funcția $f: D \to \mathbb{R}$.

Observație: Asimptotele atașate oricărei funcții se determină analizând limitele funcției f în punctele de acumulare ale domeniului de definiție, care nu aparțin domeniului, deci din mulțimea

$$D'\backslash D$$
.

Reamintim definiția mulțimii punctelor de acumulare

$$D' = \left\{ x_0 \in \mathbb{R} \cup \{\pm \infty\} : \forall V \in \mathcal{V}(x_0), \quad V \cap D \setminus \{x_0\} \neq \emptyset \right\}.$$

O submulțime V a lui $\mathbb{R} \cup \{\pm\}$ este vecinătate a lui x_0 (deci $\in \mathcal{V}(x_0)$) dacă, atunci când:

- $x_0 \in \mathbb{R}$ $\exists r > 0$ astfel încât $(x_0 r, x_0 + r) \subseteq V$;
- $x_0 = \infty$ $\exists r > 0$ astfel încât $(r, \infty] \subseteq V$;
- $x_0 = -\infty$ $\exists r > 0$ astfel încât $[-\infty, -r) \subseteq V$;

Folosind aceste formulări echivalente prin intervale centrate (degenerate pentru $\pm \infty$), obținem următoarele formulări echivalente pentru punctele de acumulare ale unei mulțimi. Astfel

dacă
$$x_0 \in \mathbb{R}$$
, atunci $x_0 \in D' \iff \forall r > 0$, $(x_0 - r, x_0 + r) \cap D \setminus \{x_0\} \neq \emptyset$
 $\infty \in D' \iff \forall r > 0$, $(r, \infty] \cap D \neq \emptyset$
 $-\infty \in D' \iff \forall r > 0$, $[-\infty, r) \cap D \neq \emptyset$

Observaţie:

- Dacă D este nemărginită inferior, atunci $-\infty \in D'$.
- Dacă D este nemărginită superior, atunci $\infty \in D'$.
- Dacă $x_0 \in D$, dar nu este punct izolat atunci $x_0 \in D'$, deci $D \setminus IzoD \subset D'$.
- De cele mai multe ori, chiar și pentru mulțimi mărginite, $D' \setminus D \neq \emptyset$.
- Fie $a < b \in \mathbb{R}$. Atunci
 - $-\operatorname{dac\check{a}}(a,b]\in D$, atunci $a\in D'\backslash D$;
 - $-\operatorname{dac\check{a}}[a,b)\in D$, atunci $b\in D'\backslash D$;
 - $-\operatorname{dac\check{a}}(a,b)\in D$, atunci $a,b\in D'\backslash D$.

Studiind limitele funcției f către ∞ și respectiv $-\infty$ putem obține în cazuri particulare, fie asimptote **orizontale**, fie **oblice** la graficul funcției f. Astfel, diferențiem:

• Asimptote orizontale

- Dacă D este nemărginită inferior (deci $-\infty \in D'$), se verifică existența

$$a := \lim_{x \to -\infty} f(x).$$

Dacă $\exists a \in \mathbb{R}$, atunci dreapta de ecuație

$$y = a = \lim_{x \to -\infty} f(x)$$

este asimptota orizontală către $-\infty$ a funcției f.

– Dacă D este nemărginită superior (deci $\infty \in D'$), se verifică existența

$$b := \lim_{x \to \infty} f(x).$$

Dacă $\exists b \in \mathbb{R}$, atunci dreapta de ecuație

$$y = b = \lim_{x \to \infty} f(x)$$

este asimptota orizontală către ∞ a funcției f.

- Asimptote oblice (se verifică existența lor doar atunci când nu există cele orizontale)
 - Dacă D este nemărginită inferior și $\lim_{x\to -\infty} f(x) \notin \mathbb{R}$, analizăm

$$m := \lim_{x \to -\infty} \frac{f(x)}{x}.$$

Dacă $m \in \mathbb{R}$, verificăm dacă există în \mathbb{R}

$$n = \lim_{x \to -\infty} (f(x) - mx).$$

Atunci, dreapta de ecuație

$$y = mx + n$$

este asimptota oblică către $-\infty$ a funcției f.

— Dacă D este nemărginită inferior și $\lim_{x\to\infty} f(x) \not\in \mathbb{R}$, analizăm

$$m' := \lim_{x \to \infty} \frac{f(x)}{x}.$$

Dacă $m' \in \mathbb{R}$, verificăm dacă există în \mathbb{R}

$$n' = \lim_{x \to \infty} (f(x) - m'x).$$

Atunci, dreapta de ecuație

$$y = m'x + n'$$

este asimptota oblică către ∞ a funcției f.

• Asimptote verticale se caută analizând limitele laterale în puncte situate în mulțimea

$$\left(D'\backslash D\right)\cap\mathbb{R}$$
.

În fapt, aceste puncte sunt toate capetele reale ale intervalelor deschise incluse în D. Fiecare astfel de punct trebuie analizat în parte. Astfel, pentru fiecare

$$x_0 \in \left(D' \backslash D\right) \cap \mathbb{R},$$

se analizează limitele laterale ale lui f în x_0 .

- Dacă

$$\exists f(x_0 - 0) = \lim_{x \uparrow x_0} f(x_0) \in \{\pm \infty\}.$$

atunci dreapta de ecuație

$$x = x_0$$

este asimptotă verticală la stânga la graficul funcției f.

Dacă

$$\exists f(x_0 + 0) = \lim_{x \downarrow x_0} f(x_0) \in \{\pm \infty\}.$$

atunci dreapta de ecuație

$$x = x_0$$

este asimptotă verticală la dreapta la graficul funcției f.

- Dacă

$$\exists f(x_0 - 0) = f(x_0 + 0) \in \{\pm \infty\}.$$

atunci dreapta de ecuație

$$x = x_0$$

este asimptotă verticală la graficul funcției f.

B. Algoritm de abordare al graficului unei funcții

I. Analiza lui D și a lui D'

- 1. Determinarea multimii de definiție
- 2. Studiul parității (simetrie față de axa Oy), imparității (simetria față de origine) sau a periodicității.
- 3. Intersecția cu axele de coordonate
- 4. Asimptote
- 5. Multimea de continuitate $C \subseteq D$.

II. Analiza cu ajutorul derivatei de ordinul 1

1. Determinarea mulțimii de derivabilitate $D_1 \subset D$.

- 2. Calcularea valorilor funcției derivate f'.
- 3. Studierea pentru ficare punct $x_0 \in C \setminus D_1$ a derivatelor laterale la stânga şi la dreapta şi detereminarea
 - punctelor unghiulare, atunci când există ambele derivate laterale, și cel puţin una e finită.
 - punctelor de întoarcere, atunci când există amândoua derivatele laterale, sunt infinite şi diferite.
- 4. Determinarea soluțiilor reale ale ecuației f'(x) = 0.
- 5. Studierea monotoniei și a punctelor de extrem ale f prin analizarea tabelului de variație funcției derivatei derivatei.

III. Analiza cu ajutorul derivatei de ordinul al II-lea

- 1. Determinarea mulțimii de derivabilitate pentru derivate de ordinul 2 $D_2 \subset D_1$.
- 2. Calcularea valorilor funcției derivate de ordinul 2, f''.
- 3. Determinarea soluțiilor reale ale ecuației f''(x) = 0.
- 4. Stabilirea
 - intervalelor de convexitate, când $f''(x) \ge 0$;
 - intervalelor de concavitate, când $f''(x) \leq 0$;
 - punctelor de inflexiune în care derivata de oridinul 2 are o schimbare de semn.

C. Aplicații

- a) Reprezentați grafic funcțiile definite prin:
- 1. $f(x) = x^3 3x + 2;$
- 2. $f(x) = \frac{1}{x^2 4x + 3}$;
- $3. \ f(x) = \frac{\sin x}{1 + \sin x};$
- 4. $f(x) = \frac{|1+x|}{1+|x|}$;
- 5. $f(x) = \sqrt[3]{(x-1)^2}$
- 6. $f(x) = \frac{2 \ln x 1}{x^2}$;
- 7. $f(x) = \frac{|\ln x|}{\sqrt{x}}$.
- b) Analizând reprezentarea grafică, prin discuție după parametrul $m \in \mathbb{R}$, stabiliți numărul de soluții reale ale ecuației

$$f(x) = m$$

pentru funcțiile 1, 6 și 7 de la subpunctul a). Indicație: translatați graficul de-a lungul axei Oy.