ALU Module Explained

ALU stands for **Arithmetic Logic Unit**.

It is the primary building block in any CPU for doing calculations—addition, subtraction, and various logic operations such as AND and OR.

Name	Dir.	Width	Description
а	input	32-bit	First operand
b	input	32-bit	Second operand
aluop	input	3-bit	Selects the operation to perform
у	output	32-bit	Result of the selected operation
zero	output	1-bit	True if result y is zero (y == 0)

Operation Selection

The aluop input chooses which calculation or logic operation the ALU should perform on inputs a and b:

aluo p	Operation	Meaning
000	y = a + b	ADD
001	y = a - b	SUB
010	y = a & b	AND (bitwise AND)
011	y = a b	OR (bitwise OR)
other	y = 0xDEAD_BEEF	Default/error case

1. Combinational Logic

The result y is computed continuously based on the current inputs—no waiting for a clock; it's combinational.

2. Zero Flag

The zero output is set to 1 (true) if the result y equals zero. This is commonly used for branch decisions (beq, bne, etc.).

Where does the ALU fit in the CPU?

• EXE Stage:

The ALU is the main component in the Execute (EXE) pipeline stage. It receives operands (numbers to operate on) and control signals (which operation to perform) from previous pipeline stages.

• Arithmetic & Logic:

All arithmetic (add, sub) and logical (and, or) operations in the CPU are performed here.

Branch Decisions:

The zero output helps the CPU quickly check if two values are equal (used by branch instructions).