EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

53015502

PUBLICATION DATE

13-02-78

APPLICATION DATE

28-07-76

APPLICATION NUMBER

51089208

APPLICANT: HITACHI LTD;

INVENTOR :

MIYASHITA KUNIO;

INT.CL.

H02K 1/18 H02K 9/00 H02K 16/02

TITLE

ROTARY ELECTRIC MACHINE

ABSTRACT :

PURPOSE: To realize effective heat radiation from a stator core in an electric motor which is located between rotors arranged along its internal and external circumference via each

clearance and is fixed with a hollow bolt including liquid coolant inside.

COPYRIGHT: (C)1978,JPO&Japio

(19日本国特許庁

公開特許公報

① 特 許 出 願 公 開

昭53—15502

Int. Cl ² .	
H 02 K	1/18
H 02 K	9/00
H 02 K	16/02

日本分類 庁内整理番号 55 A 02 7319—51 55 A 041 7052—51 55 A 051 6123—51 ❸公開 昭和53年(1978)2月13日

発明の数 1 審査請求 未請求

(全 4 頁)

匈回転電機

@特

願 昭51-89208

②出 願 昭51(1976)7月28日

⑩発 明 者 笹本久称

日立市幸町3丁目1番1号 株式会社日立製作所日立研究所内

⑫発 明 者 宮下邦夫

日立市幸町3丁目1番1号 株式会社日立製作所日立研究所内

⑪出 願 人 株式会社日立製作所

東京都千代田区丸の内一丁目 5

番1号.

個代 理 人 弁理士 高橋明夫

8月 - 紀田 - 君

発明の名称 回転電機

特許請求の範囲

- 1. 固定子鉄心にリング状に巻回された電機子巻線を有する固定子と、該固定子と空際を介して、内外周面で対向し、回転可能に支承された内側回転子と外側回転子を備えたものにおいて、上記固定子鉄心をエンドプラケットに固定するためのボルトを中空体となし、このボルト内に冷却液を封入したことを特徴とする回転電機。
- 2. 特許請求の範囲第1項記載において固定子鉄 心とエンドプラケットとの間に熟伝導率の良好 な材料よりなるスペーサを介在せしめ、該スペ ーサをボルトを介して固定子鉄心と共にエンド プラケットに固着せしめたことを特徴とする回 転間機。
- 3. 特許請求の範囲第1項記載において固定子鉄 心とエンドブラケットの間にスペーサを介在せ しめると共に該スペーサの周面に冷却用リブを 形成したことを特徴とする回転電機。

- 4. 特許請求の範囲第1項記載において固定子鉄 心とエンドプラケットの間にスペーサを介在せ しめ、このスペーサに内外周を連通する複数個 の貫通孔を設けると共に上記エンドプラケット の中心部に通風孔を設けたことを特徴とする回 転電機。
- 5. 特許請求の範囲第1項記載において固定子鉄 心をエントプラケットに固定する側の回転子の 端面に冷却用フアンを設け、エンドプラケット に設けられた通風孔を介して冷却風を流通せし めるようにしたことを特徴とする回転電機。
- 6. 特許請求の範囲第1項において固定子鉄心と エンドブラケット間にスペーサを介在せしめ、 該スペーサの爪部を前記固定子鉄心の端面に当 接すると共に爪部に形成された軸方向の貫通孔 を介して固定子鉄心をポルトによつてエンドブ ラケットに固定したことを特象とする回転電機。
- 7. 特許請求の範囲第1項記載において固定子鉄心をエンドプラケットに固定するためのポルトが中実体と中空体よりなり、中実体と中空体の

特明 呕53-15502(2)

ボルトが分散配置されていることを特徴とする 回転電機。

8. 特許請求の範囲第1項記載において固定子鉄 心をエンドプラケットに固定するためのポルト が機械的固着のためのポルトと、熱伝達のため のポルトよりなることを特徴とする回転電機。 登明の詳細な説明

本発明は回転電機に係り、特にリング状巻線の 巻装された固定子鉄心の内外周に空隙を介して回 転可能に支水された回転子を備えた回転電機に関 するものである。

回転電機例えば電動機を小形軽量化するための 有効な方法として電機子巻線を固定子鉄心にリン グ状に配置して電機子巻線導体を有効に利用した 電動機を開発した。

これは電機子巻線が巻装された固定子鉄心に対向して、その内外周にそれぞれ設けられた回転子を有するものが有利であり、第1図において先に 提案したこの種の電動機を説明する。

図において1 は薄鋼板を積層して形成された固

定子鉄心で、該固定子鉄心1にリング状に巻回された電機子巻線2が設けられている。

3 は上記固定子鉄心1 の内周面を空隙を介して 対向する内側回転子で、該内側回転子3 は回転軸 6 に固着されている。4 は上記固定子鉄心1 の外 周面に空隙を介して対向する外側回転子で該外側 回転子4 は回転子支え5 を介して前述回転軸6 に は着されている。

そして上記回転軸6は軸受7を介してエンドプラケット8に回転可能に支承されている。

9は上記エントプラケット8がその両端面に固 着された電動機のハウジングで該ハウジングに前 記固定子鉄心1の一端に止めボルト11を介して 固着された固定子支え10が固定されている。

12は前記電機子巻線2を傷つけないように固定子鉄心1と固定子支えとの間に設けられたスペーサであり、13はナント14を介して上記積層された固定子鉄心1を締付けるための複数個の固定ボルトである。

以上の様な構成の電動機において、電機子巻線

2 に電流を流すことにより、固定子鉄心1の内外 周面に回転磁界が発生し、この固定子鉄心1の内 外周面にそれぞれ空隙を介して対向する回転子3. 4 との間に電磁力が作用して該回転子が回転する よのである。

しかるに一般の電動機にあつては、主要発熱源は固定子鉄心1に巻装された電機子巻線2に流れる電流による一次調損によるものであるが、前述の如く、固定子鉄心1の内外周に空隙を介して回転子3、4が対向するような電動機においては、他の一般に公知の電動機のように固定子鉄心1の外周値を通風により冷却することはその構造上困難である。

それ故上記の如き構成の電動機においては温度 上昇が大であるため、熱的制約から電動機の外径 寸法が必然的に大きくなつてしまう欠点があつた。

本発明は以上の様な欠点にかんがみてなされた もので、内外周面に空線を介して対向し、リング 状の電機子巻線が巻装された固定子鉄心を有する 電動機の固定子鉄心を有効に冷却し、電動機の効 率を向上させることを目的とするものである。

本発明の主たる特徴は固定子鉄心の固定ボルトが発熱部と冷却部の2つの領域にわたつてのびていることに着目し、該ボルトを中空体となし、この内部に冷却液体を封入することによつて該液体の気化凝縮作用によつて固定子鉄心の熱放散を有効に行なわしめることにある。

以下本発明を第2四に示す一実施例に基づき説明ナム

図において(第1図と同一符号のものはこれと 等効物であるからその詳細な説明は一部省略す る。)

15は中空の通しボルトで固定子鉄心1を貫通 し、その一端はナット14を介して上記固定子鉄 心1の端面に固定されており、他端部はスペーサ 12を通してエントプラケット8にナット14を 介して固定されている。

そして上記エンドプラケット8と固定子鉄心1間に上記ポルト15を介して介在されるスペーサ 12は第4図に示すようにその一端に多数の爪部

20

特開 昭53-15502 (3)

23.23′を有しており、爪部23には上記ポルト15の貫通孔24が設けられている。

それ故爪部23.23、の端面を固定子鉄心1 の端面に押し当てボルト15を介して固定すると とによつて電機子巻線2を何ら損傷することなく 固定子鉄心1をエントプラケット8に固着するこ とができる。

実に固定子鉄心1を固定するボルトは複数本であっため、第3図に示すように固定子鉄心1を押える固定ボルト13(中実体)と中空の通しボルト15を交互に、あるいは隔数本おきに分散配置することも可能であり、この中の通しボルト15は図示の如く中空体でありその中に小量の冷却液(たとえば水、アルコール)16が封入されている。

またスペーサ12は機械的強度が大でしかも熱 伝達墨の良い(たとえばステンレス鋼など)材料 で作るほどその効果は大である。

尚第3図中21.22はそれぞれ回転子導体である。

更に複数個の通しボルト 5 を鉄、銅で作つたものを併用することによつて機械的強度は鉄製ボルトで受持たせ、主冷却は鍋ボルトで受持たせることもできる。

第5図は本発明の他の実施例を示すもので、スペーサ12の外表面にリブ17が設けられている。またエンドプラケント8、ハウジング9にはそれぞれ通風孔18が設けられ、さらに外側回転子側面には冷却フアン19が取付けられている。以上の様を構成によると、冷却風20は、ファン19によつて電動機内部に導入され、リブ17の表面を有効に冷却することによつて、炭縮部Bを効果的に冷却することができる。

第6図は、本発明のさらに他の実施例を示すもので、スペサー12の内外周両面にリブ16が設けられ、さらにスペーサ12の内側から外側に、半径万向に貫通する複数個の貫通孔25が設けられている。また、エンドブラケット8の通風孔18は、固定子鉄心1の内周側にも設けられ、回転子3.4が回転することによつて、冷却ファン19

以上の様な様成の本発明において電機子巻線2 に電流を流すと、該電機子巻線2に発生する一次 銅損により巻線2の温度が上昇する。

との熱は固定子鉄心1に伝達され、中空の通し ポルト15内に封入された冷却被16に伝達され

それ故との冷却液 1 6 は固定子鉄心 1 から伝達される熱によつて気化部 A (鉄心内部)で気化され、凝縮部 B (スペーサ 1 2 内部)に導かれると大気および回転子の回転によつてひき起こされる冷却風が凝縮部 B を有効に冷却する。

それ政冷却被 16 は液化されるため 政冷却液 16 は再び鉄心 1 内に流れ込むため固定子鉄心 1、電機子巻線 2 が有効に冷却される。

また固定子鉄心1の背部の磁束は、ボルト孔を 除いて部分の鉄心長により制限されるため、ボル ト15は特に強磁性体である必要はなく、機械的 強度の制約さえ持ては、熱伝導率の良好な材質 (たとえば銅など)で作ることによつて更に熱交 機の作用は大きくなる。

によつて導入される冷却風20は、スペーサ12の内外周両面を有効に冷却することになり、 疑縮 部 B はさらに効果的に冷却される。 なお、第6 図 において、 リブ17 は内外いずれか一方でも良く、 またリブを設けず、 貫通孔25の外でも同様の効果を得られることは言うまでもない。

以上述べたように本発明によれば、固定子鉄心、 電破子巻線を有効的に冷却することができるため、 効率の良い電動機を得ることができる。

図面の簡単な説明

第1図は改良前リング状巻線を有した電動機の一部縦断正面図、第2図は本発明の一実施例における一部縦断正面図、第3図は第2図中Ⅲ一Ⅲ断面の部分拡大図、第4図はスペーサの取付状態を示す斜視図、第5図、第6図は本発明の他の実施例の一部縦断正面図である。

符号の説明

- 1 固定子鉄心
- 2 電機子巻線
- 3 内侧回転子

- 4 外側回転子
- 8 エンドプラケット
- 15 通しボルト
- 16 冷却液

代理人 弁理士 髙橋明夫

第1図

第 2 図

