

SEQUENCE LISTING

EMARIN		
<110>	Colucci, M. Gabriella Chrispeels, Maarten J. Moore, Jeffrey G.	
<120>	Progenitor Cell Preservation Factors and Methods for and Products of Their Use	c
<130>	108236.119	
<140> <141>	US 09/476,485 1999-12-30	RECEIVED
	US 08/881,189 1997-06-24	SEP 1 2 2002
<160>	57	TECH CENTER 1600/290
<170>	PatentIn version 3.0	

<220>

D1-FRIL.

<400> gcacagtcat tgtcatttag tttcaccaag tttgatccta accaagagga tcttatcttc 60 caaggtcatg ccacttctac aaacaatgtc ttacaagtca ccaagttaga cagtgcagga 120 aaccctgtga gttctagtgc gggaagagtg ttatattctg caccattgcg cctttgggaa 180 gactctgcgg tattgacaag ctttgacacc attatcaact ttgaaatctc aacaccttac 240 acttctcgta tagctgatgg cttggccttc ttcattgcac cacctgactc tgtcatcagt 300 tatcatggtg gttttcttgg actctttccc aacgcaaaca ctctcaacaa ctcttccacc 360 tctgaaaacc aaaccaccac taaggctgca tcaagcaacg ttgttgctgt tgaatttgac 420 acctatctta atcccgatta tggtgatcca aactacatac acatcggaat tgacgtcaac 480 tctattagat ccaaggtaac tgctaagtgg gactggcaaa atgggaaaat agccactgca 540 cacattagct ataactctgt ctctaaaaga ctatctgtta ctagttatta tgctgggagt 600 aaacctgcga ctctctccta tgatattgag ttacatacag tgcttcctga atgggtcaga 660 gtagggttat ctgcttcaac tggacaagat aaagaaagaa ataccgttca ctcatggtct 720 ttcacttcaa gcttgtggac caatgtggcg aagaaggaga atgaaaacaa gtatattaca 780

840

900

939

aga	aggc	gttc	tġtạ	gatga	ata t	tatgt	tgta	tc aa	atgat	tttt	c tat	tgtta	ataa	gcat	gtaatg
tgo	gat	gagt	caat	aato	cac a	aagta	acagt	tg ta	agtad	cttgt	ato	gttgt	ttg	tgta	aagagtc
agt	agtttgcttt taataataac aagtgcagtt agtacttgt														
<21 <21	<210> 2 <211> 264 <212> PRT <213> Artificial Sequence														
	<220> <223> D1-FRIL.														
<400> 2															
Ala 1	Gly	Ser	Leu	Ser 5	Phe	Ser	Phe	Thr	Lys 10	Phe	Asp	Pro	Asn	Gln 15	Glu
Asp	Leu	Ile	Phe 20	Gln	Gly	His	Ala	Thr 25	Ser	Thr	Asn	Asn	Val 30	Leu	Gln
Val	Thr	Lys 35	Leu	Asp	Ser	Ala	Gly 40	Asn	Pro	Val	Ser	Ser 45	Ser	Ala	Gly
	50					55					60				Val
Leu 65	Thr	Ser	Phe	Asp	Thr 70	Ile	Ile	Asn	Phe	Glu 75	Ile	Ser	Thr	Pro	Tyr 80
			Ile	85					90					95	-
			Ser 100					105					110		
		115	Asn				120					125			
	130		Ser			135					140				
Pro 145	Asp	Tyr	Gly	Asp	Pro 150	Asn	Tyr	Ile	His	Ile 155	Gly	Ile	Asp	Val	Asn 160
			Ser	165					170					175	
			Ala 180					185					190		
Val	Thr	Ser 195	Tyr	Tyr	Ala	Gly	Ser 200	Lys	Pro	Ala	Thr	Leu 205	Ser	Tyr	Asp

Page · 2

7.

Ile Glu L 210	eu His Thr	Val L 2	eu Pro 15	Glu	Trp	Val	Arg 220	Val	Gly	Leu	Ser		
Ala Ser T 225	hr Gly Gln	Asp L 230	/s Glu	Arg	Asn	Thr 235	Val	His	Ser	Trp	Ser 240		
Phe Thr S	er Ser Leu 245	Trp T	nr Asn	Val	Ala 250	Lys	Lys	Glu	Asn	Glu 255	Asn		
Lys Tyr I	le Thr Arg 260	Gly Va	ıl Leu										
<210> 3 <211> 1005 <212> DNA <213> Artificial Sequence													
<220> <223> Nucleic acid sequence of the naturally-occurring D1-FRIL protein.													
<400> 3 atggcttcct	ccaactta	ct cacc	ctaged	c ctc	ttcc	ttg	tgct	tctca	ac c	cacg	caaac	60	
tcagccgcac	agtcattgt	c attt	agtttc	c acc	aagt	ttg	atcc	taac	ca a	gagg	atctt	120	
atcttccaag	gtcatgcca	c ttct	acaaac	c aat	gtct [.]	tac	aagt	cacca	aa g	ttag	acagt	180	
gcaggaaacc	: ctgtgagtt	c tagt	gcggga	a aga	gtgt	tat	attc	tgcad	cc a	ttgc	gcctt	240	
tgggaagact	ctgcggtat	t gaca	agcttt	gac	accat	tta	tcaa	ctttq	ja a	atct	caaca	300	
ccttacactt	ctcgtataç	c tgat	ggcttg	gcc.	ttctt	tca	ttgca	accac	c to	gact	ctgtc	360	
atcagttatc	atggtggtt	t tctt	ggactc	ttt	cccaa	acg	caaa	cacto	et ca	aacaa	actct	420	
tccacctctg	aaaaccaaa	c cacc	actaag	gct	gcato	caa	gcaad	gttg	jt to	gctgt	tgaa	480	
tttgacacct	atcttaatc	c cgat	catggt	gate	ccaaa	act .	acata	acaca	ıt c	ggaat	tgac	540	
gtcaactcta	ttagatcca	a ggta	actgct	aagt	tggga	act (ggcaa	aatg	ig ga	aaaat	agcc	600	
actgcacaca	ttagctata	a ctct	gtctct	aaaa	agact	at d	ctgtt	acta	g tt	tatta	atgct	660	
gggagtaaac	ctgcgactc	t ctcc	atgat	atto	gagtt	ac a	ataca	igtga	t to	cctga	atgg	720	
gtcagagtag	ggttatctg	c ttcaa	ctgga	caaq	gataa	ag a	aaaga	aata	c cg	gttca	ctca	780	
tggtctttca	cttcaagct	t gtgga	ccaat	gtgg	gcgaa	ga a	aggag	aatg	a aa	acaa	gtat	840	
attacaagag	gcgttctgt	g atgat	atatg	tgta	itcaa	tg a	atttt	ctat	g tt	ataa	gcat	900	
gtaatgtgcg	atgagtcaa	t aatca	caagt	acag	gtgta	gt a	acttg	tatg	t tg	ıtttg	tgta	960	
agagtcagtt	tgcttttaa	t aataa	caagt	gcag	ıttag	ta c	ettgt					1005	

<211> <212>	4 22 PRT Artificial Sequence	
<220> <223>	Signal sequence from the FRIL family isolated from Dolichos lab lab	
<400>	4	
Met Ala 1	Ser Ser Asn Leu Leu Thr Leu Ala Leu Phe Leu Val Leu Leu 5 10 15	
Thr His	Ala Asn Ser Ala 20	
<211> 9 <212> 0	5 914 DNA Artificial Sequence	
<220> <223> F	Pv-FRIL.	
<400> 5	5 cat tatcttttaa ctttaccaag tttgatcttg accaaaaaga tcttatcttc	60
caaggtga	atg ccacttctac aaacaatgtc ttacaactca ctaagttaga cagtggagga	120
aaccctgt	gg gtgctagtgt gggaagagtg ttattctctg caccatttca tctttgggaa	180
aactctat	gg cagtgtcaag ctttgaaact aatctcacca ttcaaatctc aacacctcac	240
ccttatta	tg cagetgatgg etttgeette tteettgeae caeatgaeae tgteateeet	300
ccaaattc	ett ggggcaaatt cettggacte tactcaaacg ttttcagaaa ctcccccacc	360
tctgaaaa	cc aaagctttgg tgatgtcaat actgactcaa gagttgttgc tgtcgaattt	420
gacacctt	cc ctaatgccaa tattgatcca aattacagac acattggaat cgatgtgaac	480
tctattaa	gt ccaaggaaac tgctaggtgg gagtggcaaa atgggaaaac ggccactgca	540
cgcatcag	ct ataactctgc ctctaaaaaa tcaactgtta ctacgtttta tcctgggatg	600
gaagttgt	gg ctctctccca tgatgttgac ttacatgcag agcttcctga atgggttaga 🥻	660
		720
ttcacttca	aa gettgaagaa caacgaggtg aaggageega aagaagaeat gtatattgea 🦪	780
aacgttgto	gc gatcatatac atggatcaat gacgttctat cttatataag caataaataa 🥏 8	340
atgtatgat	tg cactcaataa taatcacaag tacgtacggt gtagtacttg tatgttgttt 💢 g	900

atgaaaaaaa aaaa

914

<210> 6

<211> 303

<212> PRT

<213> Artificial Sequence

<220>

<223> Pv-FRIL.

<400> 6

Ala Gln Ser Leu Ser Phe Asn Phe Thr Lys Phe Asp Leu Asp Gln Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Leu Ile Phe Gln Gly Asp Ala Thr Ser Thr Asn Asn Val Leu Gln 20 25 30

Leu Thr Lys Leu Asp Ser Gly Gly Asn Pro Val Gly Ala Ser Val Gly 35 40 45

Arg Val Leu Phe Ser Ala Pro Phe His Leu Trp Glu Asn Ser Met Ala 50 55 60

Val Ser Ser Phe Glu Thr Asn Leu Thr Ile Gln Ile Ser Thr Pro His 65 70 75 80

Pro Tyr Tyr Ala Ala Asp Gly Phe Ala Phe Phe Leu Ala Pro His Asp 85 90 95

Thr Val Ile Pro Pro Asn Ser Trp Gly Lys Phe Leu Gly Leu Tyr Ser 100 105 110

Asn Val Phe Arg Asn Ser Pro Thr Ser Glu Asn Gln Ser Phe Gly Asp 115

Val Asn Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Thr Phe Pro 130 135 140

Asn Ala Asn Ile Asp Pro Asn Tyr Arg His Ile Gly Ile Asp Val Asn 145 150 155 160

Ser Ile Lys Ser Lys Glu Thr Ala Arg Trp Glu Trp Gln Asn Gly Lys 165 170 175

Thr Ala Thr Ala Arg Ile Ser Tyr Asn Ser Ala Ser Lys Lys Ser Thr

Val Thr Thr Phe Tyr Pro Gly Met Glu Val Val Ala Leu Ser His Asp 195 200 205

Val Asp Leu His Ala Glu Leu Pro Glu Trp Val Arg Val Gly Leu Ser 210 220

Ala Ser Thr Gly Glu Glu Lys Gln Lys Asn Thr Ile Ile Ser Trp Ser

225	•	230				235					240		
Phe Thr S	er Ser Leu 245	Lys Asn	Asn	Glu	Val 250	Lys	Glu	Pro	Lys	Glu 255	Asp		
Met Tyr I	le Ala Asn 260	Val Val	Arg	Ser 265	Tyr	Thr	Trp	Ile	Asn 270	Asp	Val		
Leu Ser T 2	yr Ile Ser 75	Asn Lys	Met 280	Tyr	Asp	Ala	Leu	Asn 285	Asn	Asn	His		
Lys Tyr V 290	al Arg Cys	Ser Thr 295	Cys	Met	Leu	Phe	Met 300	Lys	Lys	Lys			
<210> 7 <211> 678 <212> DNA <213> Artificial Sequence <220> <223> YamFril partial mRNA sequence. <400> 7													
	g acagegace	a aaagga	tctt	atgi	ttcca	aag	gtca [.]	tacc	at t	tcta	gcagc	60	
aatgtcatad	aactcacca	a gttaga	cagt	aato	ggaaa	acc	ctgt	gagt	ac c	agtg	tggga	120	
agagtgttat	actctgcac	c attgcg	cctt	tggg	gaaaq	gct	ctaca	agta	gt g	tcaa	ccttt	180	
gagaccactt	tcacctttc	a aatctc	aaca	cctt	acad	cta	gtcct	cct	gg t	gatg	ggctc	240	
gccttcttcc	ttgcaccata	a tgacac	tgtc	atco	cctcc	caa	attct	gct	gg c	aatct	tctt	300	
ggactctttc	ctaacttaaa	a tgcttt	aaga	aact	ccac	cca	ccagt	aaaq	ga aa	accad	ctatt	360	
gatgtcaatg	ctgcatctaa	a caacgt	tgtt	gccg	ıttga	at	ttgad	acct	a co	cctaa	ıcgac	420	
aatattggtg	atccaagata	caaaca	catt	ggaa	tcga	ıtg :	tcaac	tcta	at ca	aggto	caag	480	
gcaactgttg	cgtgggactg	g gcaaaat	ggg	aaaa	cago	ca (ctgca	caca	ıt ca	agcta	taac	540	
tctgcctcta	aaagactato	: tgttact	cact	tttt	atco	tg q	ggggt	aaag	rc to	gtgag	tctt	600	
	ttgagctcac											660	
tcaacaggat	tagagaaa											678	

<210> 8 <211> 234 <212> PRT <213> Artificial Sequence

<220>

<223> YamFril deduced amino acid squence.

<400> 8

Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln Lys $1 \hspace{1.5cm} 1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Asp Leu Met Phe Gln Gly His Thr Ile Ser Ser Ser Asn Val Ile Gln 20 25 30

Leu Thr Lys Leu Asp Ser Asn Gly Asn Pro Val Ser Thr Ser Val Gly 35

Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Ser Ser Thr Val 50 55 60

Val Ser Thr Phe Glu Thr Thr Phe Thr Phe Gln Ile Ser Thr Pro Tyr 65 70 75 80

Thr Ser Pro Pro Gly Asp Gly Leu Ala Phe Phe Leu Ala Pro Tyr Asp 85 90 95

Asn Leu Asn Ala Leu Arg Asn Ser Thr Thr Ser Lys Glu Thr Thr Ile 115

Asp Val Asn Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr 130 135 140

Tyr Pro Asn Asp Asn Ile Gly Asp Pro Tyr Arg Lys His Ile Gly Ile 145 150 155 160

Asp Val Asn Ser Ile Arg Ser Lys Ala Thr Val Ala Trp Asp Trp Gln 165 170 175

Asn Gly Lys Thr Ala Thr Ala His Ile Ser Tyr Asn Ser Ala Ser Lys 180 185 190

Arg Leu Ser Val Thr Thr Phe Tyr Pro Gly Gly Lys Ala Val Ser Leu 195 200 205

Ser His Asp Val Glu Leu Thr Gln Val Leu Pro Gln Trp Ile Arg Val 210 215 220

Gly Phe Ser Ala Ser Thr Gly Leu Glu Lys 225 230

<210> 9

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Beta band polypeptide.

```
<400> 9
 Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln
 <210> 10
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Alpha band polypeptide.
 <220>
 <221>
       PEPTIDE
 <222>
       (14) \dots (14)
<223> Amino acid 14 is Xaa wherein Xaa = any amino acid.
<400> 10
Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr Xaa Pro Asn
<210> 11
<211>
      23
<212> DNA
<213> Artificial Sequence
<220>
<223> MLA degenerate oligonucleotide primer.
<220>
<221> misc_feature
<222> (3)..(21)
<223> Nucleotides 3, 18 and 21 are n wherein n = a or g.
<220>
<221> misc_feature
<222>
      (6)...(15)
<223> Nucleotides 6, 9, and 15 are n wherein n = t or c.
<220>
<221> misc_feature
<222>
      (12)..(12)
<223> Nucleotide 12 is n wherein n = a or t.
<400> 11
aanttnganc cnaancanga nga
                                                                      23
```

<210> 12

```
<211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> MLZ degenerate oligonucleotide primer.
 <220>
 <221> misc_feature
 \langle 222 \rangle (3)...(3)
 <223> Nucleotide 3 is n wherein n = a or t.
 <220>
 <221> misc_feature
 <222> (6)..(15)
 <223> Nucleotides 6 and 15 are n wherein n = a or g.
 <220>
<221> misc_feature
 <222>
       (9)..(9)
<223> Nucleotide 9 is n wherein n = t or c.
<400> 12
ttnccnttnt gccantccca
                                                                        20
<210> 13
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> primer.
<400> 13
gtaccgagct cggat
                                                                       15
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> primer.
<400> 14
tctagatgca tgctcgag
                                                                       18
<210> 15
<211> 22
<212> DNA
```

```
<213> Artificial Sequence
 <220>
 <223> MLX primer.
 <400> 15
 gttggacgtc aattccgatg tg
                                                                      22
 <210> 16
 <211> 17
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> MLI degenerate primer.
 <220>
<221> misc_feature
 <222>
       (3)..(15)
<223> Nucleotides 3, 9, 12 and 15 are n wherein n=t or c.
 <220>
<221> misc_feature
<222>
       (6)..(6)
<223> Nucleotide 6 is n wherein n = a or g.
<400> 16
gcncantcnc tntcntt
                                                                      17
<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligo(dT) anchor primer.
<400> 17
gaccacgcgt atcgatgtcg ac
                                                                     22
<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> MLB primer.
<400> 18
```

```
aagttagaca gtgcaggaaa c
                                                                           21
 <210> 19
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> MLII primer.
 <400> 19
 gcacagtcat tgtcatttag
                                                                           20
 <210> 20
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> D1-FRIL.
 <400> 20
Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile
Asp Val
<210> 21
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Pea.
<400> 21
Phe Tyr Asn Ala Ala Trp Asp Pro Ser Asn Arg Asp Arg His Ile Gly
Ile Asp Val
<210> 22
<210> 22
<211> 1005
<212> DNA
<213> Artificial Sequence
```

<220> <223> SpDLA.

<400> 22						
atggcttcct	ccaacttact	caccctagec	: ctcttccttg	tgcttctcac	ccacgcaaac	60
tcagccgcac	: agtcattgtc	atttagtttc	accaagtttg	atcctaacca	agaggatctt	120
atcttccaag	gtcatgccac	ttctacaaac	aatgtcttac	aagtcaccaa	gttagacagt	180
gcaggaaacc	ctgtgagttc	tagtgcggga	agagtgttat	attctgcacc	attgcgcctt	240
tgggaagact	ctgcggtatt	gacaagcttt	gacaccatta	tcaactttga	aatctcaaca	300
ccttacactt	ctcgtatagc	tgatggcttg	gccttcttca	ttgcaccacc	tgactctgtc	360
atcagttatc	atggtggttt	tcttggactc	tttcccaacg	caaacactct	caacaactct	420
tccacctctg	aaaaccaaac	caccactaag	gctgcatcaa	gcaacgttgt	tgctgttgaa	480
tttgacacct	atcttaatcc	cgattatggt	gatccaaact	acatacacat	cggaattgac	540
gtcaactcta	ttagatccaa	ggtaactgct	aagtgggact	ggcaaaatgg	gaaaatagcc	600
actgcacaca	ttagctataa	ctctgtctct	aaaagactat	ctgttactag	ttattatgct	660
gggagtaaac	ctgcgactct	ctcctatgat	attgagttac	atacagtgct	tcctgaatgg	720
gtcagagtag	ggttatctgc	ttcaactgga	caagataaag	aaagaaatac	cgttcactca	780
tggtctttca	cttcaagctt	gtggaccaat	gtggcgaaga	aggagaatga	aaacaagtat	840
attacaagag	gcgttctgtg	atgatatatg	tgtatcaatg	attttctatg	ttataagcat	900
gtaatgtgcg	atgagtcaat	aatcacaagt	acagtgtagt	acttgtatgt	tgtttgtgta	960
agagtcagtt	tgcttttaat	aataacaagt	gcagttagta	cttgt		1005

<210> 23 <211> 286 <212> PRT <213> Artificial Sequence <220>

<223> SpDLA.

<400> 23

Met Ala Ser Ser Asn Leu Leu Thr Leu Ala Leu Phe Leu Val Leu Leu 1 5 10 15

Thr His Ala Asn Ser Ala Ala Gln Ser Leu Ser Phe Ser Phe Thr Lys 25

Phe Asp Pro Asn Gln Glu Asp Leu Ile Phe Gln Gly His Ala Thr Ser 35 40 45

Thr Asn Asn Val Leu Gln Val Thr Lys Leu Asp Ser Ala Gly Asn Pro 50 55 60

Val Ser Ser Ser Ala Gly Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu 65 70 75 80

Trp Glu Asp Ser Ala Val Leu Thr Ser Phe Asp Thr Ile Ile Asn Phe 85 90 95

Phe Ile Ala Pro Pro Asp Ser Val Ile Ser Tyr His Gly Gly Phe Leu 115 120 125

Gly Leu Phe Pro Asn Ala Asn Thr Leu Asn Asn Ser Ser Thr Ser Glu 130 135 140

Asn Gln Thr Thr Thr Lys Ala Ala Ser Ser Asn Val Val Ala Val Glu 150 155 160

Phe Asp Thr Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His 165 170 175

Asp Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser 195 200 205

Val Ser Lys Arg Leu Ser Val Thr Ser Tyr Tyr Ala Gly Ser Lys Pro 210 215 220

Ala Thr Leu Ser Tyr Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp 235 230 235 240

Val Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asp Lys Glu Arg Asn 245 250 255

Thr Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala 260 265 270

Lys Lys Glu Asn Glu Asn Lys Tyr Ile Thr Arg Gly Val Leu 275 280 285

<210> 24

<211> 8

<212> PRT

<213> Dolichos lablab

<220>

<221> PEPTIDE

<222> (7)..(7)

<223> Amino acid 7 is Xaa wherein Xaa = any amino acid.

<400>	24	
Thr A	sn Asn Val Leu Gln Xaa Thr 5	
<210><211><212><213>	24 DNA	
<220> <223>		
<400> ccata	25 atcgg gatcaagata ggtg	24
<210> <211> <212> <213>	24 DNA	
<220> <223>	MutII primer.	
<400> caccta	26 atctt gatcccgatt atgg	24
<210><211><211><212><213>	24	
<220> <223>	M1 Forw primer.	
<400> aactca	27 gccg cacagtcatt gtca	24
<210> <211> <212> <213>	28 28 DNA Artificial Sequence	
<220> <223>	APEcoRI primer.	

Page 14

<400> 28

gaatt	cgacc acgcgtatcg atgtcgac	28
<210><211><211><212><213>	21	
<220> <223>		
<400> gaatt	29 catgg cttcctccaa c	21
<210> <211> <212> <213>	28	
<220> <223>	Sigrev primer.	
<400> tgacto	30 gtgcg gctgagtttg cgtgggtg	28
<210><211><211><212><213>	31 14 PRT Artificial Sequence	
<220> <223>	Peptide corresponding to Pv-FRIL.	
<220> <221> <222> <223>	PEPTIDE (7)(7) Amino acid 7 is Xaa wherein Xaa = Asn, Cys or Ser.	
<400>	31	
Ala Gl 1	n Ser Leu Ser Phe Xaa Phe Thr Lys Phe Asp Leu Asp 5 10	
<210> <211> <212> <213>	32 14 PRT Artificial Sequence	
<220>		

```
<223> Polypeptide of 18 kDa.
 <220>
 <221>
        PEPTIDE
 <222>
        (7)..(7)
 <223> Amino acid 7 is Xaa wherein Xaa = unknown amino acid.
 <400> 32
 Ala Gln Ser Leu Ser Phe Xaa Phe Thr Lys Asp Ala Leu Asp
 <210> 33
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Aminoterminal sequence.
 <220>
 <221> PEPTIDE
 <222>
       (12)..(12)
 <223> Amino acid 12 is Xaa wherein Xaa = unknown amino acid.
 <400> 33
Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Xaa Phe Pro
<210> 34
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Aminoterminal polypeptide.
<220>
<221> PEPTIDE
      (7)..(7)
<223> Amino acid 7 is Xaa wherein Xaa = unknown amino acid.
<400> 34
Ala Gln Ser Leu Ser Phe Xaa Phe Lys Phe Asp Pro Asn
<210> 35
<211> 11
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Aminoterminal polypeptide.
 <400> 35
 Thr Asp Ser Arg Val Val Ala Val Glu Asp Phe
 <210> 36
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Degenerate oligonucleotide PVBetal.
 <220>
<221> misc_feature
      (18)...(18)
<222>
<223> Nucleotide 18 is n wherein n = any nucleotide.
<400> 36
ttyacyaart tygayytnga
                                                                      20
<210> 37
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide PVBeta2.
<400> 37
atyttycarg gwgaygc
                                                                      17
<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide PVAlfal.
<400> 38
ttracrtcra twccratrtg
                                                                     20
```

<210> 39

<211> <212> <213>	DNA	
<220> <223>	Degenerate oligonucleotide PVAlfa2.	
<400> tarttw	39 ggrt cratrttrgc rtt	23
<212>	40 22 DNA Artificial Sequence	
<220> <223>	PV3 PCR-Anchor primer.	
<400> caatgt	40 ctta caactcacta ag	22
<210><211><211><212><213>	21	
<220> <223>	PV4 PCR-Anchor primer.	
<400> agtgtgg	41 ggaa gagtgttatt c	21
<210> <211> <212> <213>	42 21 DNA Artificial Sequence	
<220> <223>	SPV2 Anchor primer.	
	42 octt tggttttcag a	21
<211>	43 21	

<213>	Artificial Sequence	
<220>		
	SPV3 Anchor primer.	
<400>	43	
	aaacg tttgagtaga g	21
<210>		
<211> <212>		
<213>	Artificial Sequence	
<220> <223>	PVEcoRI primer.	
.2237	rubconi primer.	
<400>		
tacato	gaatt cgctcagtca ttatctttta ac	32
<210> <211>		
<212>	DNA	
	Artificial Sequence	
<220> <223>	Sigfor BglII primer.	
	January Deliner.	
<400>		
agatet	atgg cttcctccaa c	21
<210> <211>	46 32	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Sigrev primer.	
	5 F- 	
	46	
aaagata	aatg actgagcggc tgagtttgcg tg	32
<210> <211>	47 32	
<212>	DNA	
<213>	Artificial Sequence	

32

27

```
<220>
 <223> SpMlforw primer.
 <400> 47
 cacgcaaact cagccgctca gtcattatct tt
 <210> 48
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> APXhoI primer.
 <400> 48
 ctcgaggacc acgcgtatcg atgtcga
 <210> 49
<211> 106
<212> PRT
 <213> Artificial Sequence
<220>
<223> Beta-subunit of the mannose lectin of Gowda et al.
<400> 49
Ala Gln Ser Leu Ser Phe Ser Ser Phe Thr Lys Phe Asp Pro Asn Gln
Glu Asp Leu Ile Phe Gln Gly Thr Ala Thr Ser Lys Leu Asp Ser Ala
Gly Asn Pro Val Ser Ser Ala Gly Arg Val Leu Tyr Ser Ala Pro
Leu Arg Leu Trp Glu Asp Ser Ala Val Leu Thr Ser Phe Asp Pro Thr
Ile Tyr Ile Phe Thr Asn Tyr Thr Ser Arg Ile Ala Asp Gly Leu Ala
Phe Ile Ala Pro Pro Asp Ser Val Ile Ser Tyr His Gly Gly Phe Leu
Gly Leu Phe Pro Asn Ala Ala Glu Ser Gly
            100
```

Page 20

<210> 50 <211> 123 <212> PRT <213> Artificial Sequence

<220>

<223> Beta-subunit of D1-FRIL.

<400> 50

Ala Gln Ser Leu Ser Phe Ser Phe Thr Lys Phe Asp Pro Asn Gln Glu 1 5 10 15

Asp Leu Ile Phe Gln Gly His Ala Thr Ser Thr Asn Asn Val Leu Gln 20 25 30

Val Thr Lys Leu Asp Ser Ala Gly Asn Pro Val Ser Ser Ser Ala Gly 35 40 45

Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Asp Ser Ala Val 50 55 60

Leu Thr Ser Phe Asp Thr Ile Ile Asn Phe Glu Ile Ser Thr Pro Tyr 70 75 80

Thr Ser Arg Ile Ala Asp Gly Leu Ala Phe Phe Ile Ala Pro Pro Asp 85 90 95

Ser Val Ile Ser Tyr His Gly Gly Phe Leu Gly Leu Phe Pro Asn Ala 100 105 110

Asn Thr Leu Asn Asn Ser Ser Thr Ser Glu Asn 115 120

<210> 51

<211> 132

<212> PRT

<213> Artificial Sequence

<220>

<223> Alpha-subunit of the mannose lectin of Gowda et al.

<400> 51

Ile Ala Glu Ser Asn Val Val Ala Val Glu Phe Asp Thr Asp Tyr Leu $1 \hspace{1.5cm} 1 \hspace{1.5cm}$

Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile Asp Val

Asn Ser Ile Arg Ser Lys Val Thr Ala Ser Trp Asp Trp Gln Asn Gly 35 40 45

Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser Val Ser Lys Arg Leu 50 55 60

Ser Val Thr Thr Tyr Tyr Pro Gly Arg Gly Lys Pro Ala Thr Ser Tyr 65 70 75 80

Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp Val Arg Val Gly Leu 85 90 95

Ser Ala Ser Thr Gly Gln Asn Ile Glu Arg Asn Thr Val His Ser Trp 100 105 110

Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala Lys Val Gly Val Ala 115 120 125

Ser Ile Ser Gly 130

<210> 52

<211> 147

<212> PRT

<213> Artificial Sequence

<220>

<223> Alpha-subunit of D1-FRIL.

<400> 52

Gln Thr Thr Thr Lys Ala Ala Ser Ser Asn Val Val Ala Val Glu Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Thr Tyr Leu Asn Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile 20 25 30

Gly Ile Asp Val Asn Ser Ile Arg Ser Lys Val Thr Ala Lys Trp Asp 35 40 45

Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile Ser Tyr Asn Ser Val 50 55 60

Ser Lys Arg Leu Ser Val Thr Ser Tyr Tyr Ala Gly Ser Lys Pro Ala 65 70 75 80

Thr Leu Ser Tyr Asp Ile Glu Leu His Thr Val Leu Pro Glu Trp Val 85 90 95

Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asp Lys Glu Arg Asn Thr 100 105 110

Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp Thr Asn Val Ala Lys
115 120 125

Lys Glu Asn Glu Asn Lys Tyr Ile Thr Arg Gly Val Leu Tyr Met Cys 130 135 140

Ile Asn Asp 145

<210> 53

<211> 64

<212> DNA

<2	13>	Art	ific	ial	Sequ	ence											
	20> 23>	Rec	ombi	nant	ехр	ress	ion	vect	or.								
		53 ccgc	gtg	gatc	CCC (ggaa	ttca	tg c	ccgg	ttcg	a ct	cgag	egge	cgc	atcgtga		50 54
<21 <21		54 54 DNA Art:	54														
	20> 23>																
<40 ctg		54 ecge	gtgç	gatco	ecc g	ıgaat	tcat	ig ct	cgag	gegge	c aga	categ	rtga	ctga	1	5.	4
	3>	PRT	fici	al S	eque	nce											
	3>	DLL.															
< 40	0>	55															
Ala 1	Gln	Ser	Leu	Ser 5	Phe	Ser	Phe	Thr	Lys 10	Phe	Asp	Pro	Asn	Gln 15	Glu		
Asp	Leu	Ile	Phe 20	Gln	Gly	Thr	Ala	Thr 25	Ser	Lys	Leu	Asp	Ser 30	Ala	Gly		
		33					40	Arg				45					
Arg	Leu 50	Trp	Glu	Asp	Ser	Ala 55	Val	Leu	Thr	Ser	Phe 60	Asp	Pro	Thr	Ile		
03					70			Arg		75					80		
				0.5				Ser	90					95			
Leu	Phe	Pro	Asn 100	Ala	Ala	Glu	Ser	Gly 105	Ile	Ala	Glu	Ser	Asn 110	Val	Val		

Ala Val Glu Phe Asp Thr Asp Tyr Leu Asn Pro Asp Tyr Gly Asp Pro
115 120 125

Asn Tyr Ile His Ile Gly Ile Asp Val Asn Ser Ile Arg Ser Lys Val 130 135 140

Thr Ala Ser Trp Asp Trp Gln Asn Gly Lys Ile Ala Thr Ala His Ile 145 150 155 160

Ser Tyr Asn Ser Val Ser Lys Arg Leu Ser Val Thr Thr Tyr Tyr Pro 165 170 175

Gly Arg Gly Lys Pro Ala Thr Ser Tyr Asp Leu Glu Leu His Thr Val

Leu Pro Glu Trp Val Arg Val Gly Leu Ser Ala Ser Thr Gly Gln Asn 195 200 205

Ile Glu Arg Asn Thr Val His Ser Trp Ser Phe Thr Ser Ser Leu Trp 210 215 220

Thr Asn Val Ala Lys Val Gly Val Ala Ser Ile Ser Gly 225 230 235

<210> 56

<211> 279

<212> PRT

<213> Artificial Sequence

<220>

<223> PvFRIL.

<400> 56

Ala Gln Ser Leu Ser Phe Asn Phe Thr Lys Phe Asp Leu Asp Gln Lys 1 10 15

Asp Leu Ile Phe Gln Gly Asp Ala Thr Ser Thr Asn Asn Val Leu Gln 20 25 30

Leu Thr Lys Leu Asp Ser Gly Gly Asn Pro Val Gly Ala Ser Val Gly 35 40 45

Arg Val Leu Phe Ser Ala Pro Phe His Leu Trp Glu Asn Ser Met Ala 50 55 60

Val Ser Ser Phe Glu Thr Asn Leu Thr Ile Gln Ile Ser Thr Pro His 65 70 75 80

Pro Tyr Tyr Ala Ala Asp Gly Phe Ala Phe Phe Leu Ala Pro His Asp 85 90 95

Thr Val Ile Pro Pro Asn Ser Trp Gly Lys Phe Leu Gly Leu Tyr Ser 100 105 110

Asn Val Phe Arg Asn Ser Pro Thr Ser Glu Asn Gln Ser Phe Gly Asp

115 120 125

Val Asn Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Thr Phe Pro 130 135 140

Asn Ala Asn Ile Asp Pro Asn Tyr Arg His Ile Gly Ile Asp Val Asn 145 150 155 160

Ser Ile Lys Ser Lys Glu Thr Ala Arg Trp Glu Trp Gln Asn Gly Lys 165 170 175

Val Thr Thr Phe Tyr Pro Gly Met Glu Val Val Ala Leu Ser His Asp 195 200 205

Val Asp Leu His Ala Glu Leu Pro Glu Trp Val Arg Val Gly Leu Ser 210 215 220

Ala Ser Thr Gly Glu Glu Lys Gln Lys Asn Thr Ile Ile Ser Trp Ser 225 230 235 240

Phe Thr Ser Ser Leu Lys Asn Asn Glu Val Lys Glu Pro Lys Glu Asp 245 250 255

Met Tyr Ile Ala Asn Val Val Arg Ser Tyr Thr Trp Ile Asn Asp Val 260 265 270

Leu Ser Tyr Ile Ser Asn Lys 275

<210> 57

<211> 254

<212> PRT

<213> Artificial Sequence

<220>

<223> PHA-E.

<400> 57

Ala Ser Gln Thr Ser Phe Ser Phe Gln Arg Phe Asn Glu Thr Asn Leu 1 10 15

Ile Leu Gln Arg Asp Ala Thr Val Ser Ser Lys Gly Gln Leu Arg Leu 20 25 30

Thr Asn Val Asn Asp Asn Gly Glu Pro Thr Leu Ser Ser Leu Gly Arg 35 40 45

Ala Phe Tyr Ser Ala Pro Ile Gln Ile Trp Asp Asn Thr Thr Gly Ala 50 55 60

Val Ala Ala Ser Pro Thr Ser Phe Thr Phe Asn Ile Asp Val Pro Asn 65 70 75 80

Asn Ser Gly Pro Ala Asp Gly Leu Ala Phe Val Leu Pro Val Gly Ser Gln Pro Lys Asp Lys Gly Gly Leu Leu Gly Leu Phe Asn Asn Tyr Lys Tyr Asp Ser Asn Ala His Thr Val Ala Val Glu Phe Asp Thr Leu 120 Tyr Asn Val His Trp Asp Pro Lys Pro Arg His Ile Gly Ile Asp Val Asn Ser Ile Lys Ser Ile Lys Thr Thr Trp Asp Phe Val Lys Gly 150 Glu Asn Ala Glu Val Leu Ile Thr Tyr Asp Ser Ser Thr Lys Leu Leu Val Ala Ser Leu Val Tyr Pro Ser Leu Lys Thr Ser Phe Ile Val Ser Asp Thr Val Asp Leu Lys Ser Val Leu Pro Glu Trp Val Ile Val Gly Phe Thr Ala Thr Thr Gly Ile Thr Lys Gly Asn Val Glu Thr Asn Asp Ile Leu Ser Trp Ser Phe Ala Ser Lys Leu Ser Asp Gly Thr Thr Ser 225 235 Glu Ala Leu Asn Leu Ala Asn Phe Ala Leu Asn Gln Ile Leu 250