IOI Training Camp 2017 Team Selection Tests, Day 1

Convex Hull Count

You are given N points on a 2D plane. Let the set of points be $P = \{P_1, P_2, \dots, P_N\}$. It is guaranteed that no three of them are collinear.

The Score of a point P_i , is the number of subsets S of P, such that $|S| \ge 3$ and P_i lies on the boundary of the convex hull of S (that is, it should be a corner in the convex hull). Obviously, P_i has to be part of any such S.

You have to output the *Score* of each point.

Input

The first line contains exactly one integer N, the number of points.

The *i*-th of the next N lines contains a pair of integers x_i and y_i , denoting the coordinates of P_i .

Output

Output N lines, the i-th of which should contain the Score of P_i . The answers should be outputted modulo $10^9 + 7$.

General Constraints

Unless otherwise mentioned, the following constraints are met throughout all subtasks:

- $1 \le N \le 2000$
- $-10^9 \le x_i, y_i \le 10^9$
- No three points are collinear

Subtasks

Subtask 1 (10 Points):

 $\bullet \ 1 \leq N \leq 20$

Subtask 2 (15 Points):

• $1 \le N \le 100$

Subtask 3 (25 Points):

 $\bullet \ 1 \leq N \leq 500$

Subtask 4 (50 Points):

• Original constraints.

Sample Input 1

4

0 0

1 1

1 2

2 0

Sample Output 1

4

3

4

4

Explanation

 P_1 is on the boundary of the convex hull of 4 different subsets: $\{P_1, P_2, P_3\}, \{P_1, P_2, P_4\}, \{P_1, P_3, P_4\},$ and $\{P_1, P_2, P_3, P_4\}.$ But P_2 lies on the boundary of the convex hull of only 3 subsets: $\{P_1, P_2, P_3\}, \{P_1, P_2, P_4\},$ and $\{P_2, P_3, P_4\}.$ $\{P_1, P_2, P_3, P_4\}$ does not contain P_2 on the boundary of its convex hull.

Limits

Time: 2 seconds Memory: 256 MB