Linux任督二脉之内存管理(一)

讲解时间: 6月10日-14日晚9点 宋宝华 <21cnbao@gmail.com> 扫描二维码报名

麦当劳喜欢您来,喜欢您再来

扫描关注 Linux阅码场

硬件原理和分页管理

- *CPU寻址内存,虚拟地址、物理地址
- *MMU以及RWX权限、kernel和user模式权限
- *内存的zone: DMA、Normal和HIGHMEM
- *Linux内存管理Buddy算法
- *连续内存分配器(CMA)

练习题

- *尝试去更改一个const变量
- *meltdown实例
- *看/proc/buddyinfo

分页机制

- 1. 进程访问虚拟地址v=(p,d)
- 2。MMU以p作为索引检索页 表
- 3. Page frame(f), 加上偏移d, 得到物理地址

页表里面可以表明: RWX权限

页表里面可以表明: kernel/User+kernel 权限

找不到物理地址 权限不对

都page fault!

尝试更改一个const变量

```
main.c
                               g.c
#include <stdio.h>
const int g = 2;
extern void add_g(void);
main()
    g=1; 这行不注释编译不过
{//
```

```
extern int g;
  void add_g(void)
        g++;
但是做9++会发生段错误
```

RWX

Meltdown漏洞

页表里面可以表明: kernel/User+kernel权限

Meltdown则从用户空间 偷取了内核空间数据

内存分ZONE的一般概念

DMA+ZONE往3G以上一一映射; HIIGHIMIEM内核一般不使用,如果要使用 通过kmap映射; DMA ZONE的原因是:有的硬件DMA引擎无法access所 有内存。

DMA: 可以直接在内存和外设间进行数据搬移

DMA zone 应该多大的例子 假设一款芯片,含多个DMA

SoC

DMA A无限制

DMA B无限制

DMA C无限制

DMA D只能访问 32MB以内内存

DMA D只能访问 64MB以内内存 DMA ZONE设置多大?

---- 32MB !!

Buddy

n. 密友,好友;同伴,搭档;互相帮助的朋友;[名]巴迪;

vi. 交朋友; 做朋友;

the buddy system was invented in 1963 by Harry Markowitz, who won the

1990 Nobel Memorial Prize in Economics

Linux Buddy分配算法

空闲页面按照2的n次方管理

Buddy info

DMA ZONE里面1页空闲的还有6个

NORMAL ZONE里面2页空闲的还有32

Buddy算法会导致内存碎片化

空闲内存很多,但是连续的空闲内存少! 谁需要连续的空闲内存? DMA

一般方法: reserved内存

高级方法: CMA(连续内存分配器)

平时给app, movable页面用

CMA区域

平时不浪费!!

CMA的 工作机制

平时给app, movable页面用

第一步

CMA区域

课程练习源码

https://github.com/21cnbao/memory-courses

更早课程

- 《Linux总线、设备、驱动模型》录播: http://edu.csdn.net/course/detail/5329
- 深入探究Linux的设备树 http://edu.csdn.net/course/detail/5627
- C语言大型软件设计的面向对象 https://edu.csdn.net/course/detail/6496

谢谢!