943/U0020

Physical Design for Nano-Technology (Nanometer ICs)

張耀文
Yao-Wen Chang
ywchang@cc.ee.ntu.edu.tw
http://cc.ee.ntu.edu.tw/~ywchang
Graduate Institute of Electronics Engineering
Department of Electrical Engineering
National Taiwan University
Spring 2004

Unit 1

Administrative Matters

- Time/Location: Tuesdays 9:10am--12:10pm; EE#2-503.
- Instructor: Yao-Wen Chang.
- E-mail: ywchang@cc.ee.ntu.edu.tw
- **URL:** http://cc.ee.ntu.edu.tw/~ywchang.
- Office: EE#2-548. (Tel) 2363-5251x 548; (Fax) 2364-1972.
- Office Hours: Thursdays 2-3pm
- Teaching Assistants
 - 陳泰蓁 Tai-Chen Chen (d0943008@ee.ntu.edu.tw)
 - 陳東傑 Tung-Chieh Chen (donnie@eda.ee.ntu.edu.tw)
- Prerequisites: data structures (or algorithms) & logic design.
- Required Text: Any of the following two books:
 - S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World Scientific Publishing Co., 1999.
 - N. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd
 Ed., Kluwer Academic Publishers, 1999.
- **References:** Selected reading materials from recent publications.

Course Objectives

- Study techniques/algorithms for physical design (converting a circuit description into a geometric description) and their comparisons
- Study nanometer electrical effects and their impacts on the development of physical EDA tools
- Study problem-solving (-finding) techniques!!!

Unit 1

Y.-W. Chang

3

Course Contents

- Introduction to VLSI design flow/styles and technology roadmap
- Traditional physical design processes
 - Partitioning
 - Floorplanning
 - Placement & pin assignment
 - Routing (global, detailed, clock, and power/ground routing)
 - Post-layout optimization
- Signal/power integrity: noise modeling & optimization, IR drop
- Timing issues: timing modeling & optimization, performancedriven design
- Design methodology: large-scale design, interconnect-centric design flow, buffer/wiring planning.
- Design for manufacturability & reliability: process variation, antenna effects, optical proximity correction, metal-fill patterning, electromigration, thermal issues

Grading Policy

• Grading Policy:

- Homework assignments: 25%
- One in-class open-book, open-note test: 30% (June 15)
- Programming assignment #1: 25% (due April 27)
 - Default programming assignment #1: Problem 2, 4, 5, or 6 of the 2004 MOE IC/CAD contest
 - Contest web site: http://www.cs.nthu.edu.tw/~cad
 - Team work (1--4 persons) is permitted (preferably 2 persons)
- Programming assignment #2: 20% (due June 8)
 - No team work is allowed.
- Bonus for class participation
- **Homework:** Penalty for late submission: 15% per day.
- **WWW:** http://cc.ee.ntu.edu.tw/~ywchang/Courses/PD04/pd04.html
- Academic Honesty: Avoiding cheating at all cost.

Unit 1

Unit 1: Introduction

- Course contents:
 - Introduction to VLSI design flow/styles
 - Introduction to physical design automation
 - Semiconductor technology roadmap
- Readings
 - S&Y: Chapter 1
 - Sherwani: Chapter 1

IC Design & Manufacturing Process

Unit 1 Y.-W. Chang

Unit 1

Y.-W. Chang

IC Design Considerations

- Several conflicting considerations:
 - Design Complexity: large number of devices/transistors
 - Performance: optimization requirements for high performance
 - Time-to-market: about a 15% gain for early birds
 - Cost: die area, packaging, testing, etc.
 - Others: power, signal integrity (noise, etc), testability, reliability, manufacturability, etc

Unit 1 Y.-W. Chang 9

"Moore's" Law: Driving Technology Advances

- Logic capacity doubles per IC at a regular interval.
- Moore: Logic capacity doubles per IC every two years (1975).
- D. House: Computer performance doubles every 18 months (1975)

Unit 1

Y.-W. Chang

Design Productivity Crisis

- Human factors may limit design more than technology.
- Keys to solve the productivity crisis: CAD (tool & methodology), hierarchical design, abstraction, IP reuse, etc.

Unit 1 Y.-W. Chang

Technology Roadmap for Semiconductors

Year	1997	1999	2002	2005	2008	2011	2014
Technology node (nm)	250	180	130	100	70	50	35
On-chip local clock (GHz)	0.75	1.25	2.1	3.5	6.0	10	16.9
Microprocessor chip size (mm^2)	300	340	430	520	620	750	901
Microprocessor transistors/chip	11M	21M	76M	200M	520M	1.40B	3.62B
Microprocessor cost/transistor (×10 ⁻⁸ USD)	3000	1735	580	255	110	49	22
DRAM bits per chip	256M	1G	4G	16G	64G	256G	1T
Wiring level Supply voltage	6	6-7	7	7–8	8–9	9	10
(V)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.37-0.42
Power (W)	70	90	130	160	170	175	183

- Source: International Technology Roadmap for Semiconductors (ITRS), Nov. 2002. http://www.itrs.net/ntrs/publntrs.nsf.
- Deep submicron technology: node (**feature size**) < 0.25 μ m.
- Nanometer Technology: node < 0.1 μm.

Nanometer Design Challenges

- In 2005, feature size ≈ 0.1 μm, μP frequency ≈ 3.5 GHz, die size ≈ 520 mm², μP transistor count per chip ≈ 200M, wiring level ≈ 8 layers, supply voltage ≈ 1 V, power consumption ≈ 160 W.
 - Feature size

 → sub-wavelength lithography (impacts of process variation)? noise? wire coupling? reliability?
 - Frequency ♠, dimension ♠ → interconnect delay? electromagnetic field effects? timing closure?
 - Chip complexity ↑ → large-scale system design methodology?
 - Supply voltage

 → signal integrity (noise, IR drop, etc)?
 - Wiring level ↑ → manufacturability? 3D layout?
 - Power consumption ↑ → power & thermal issues?

Unit 1

Y.-W. Chang

13

14

Interconnect Dominates Circuit Performance!!

Traditional VLSI Design Cycles

- 1. System specification
- 2. Functional design
- 3. Logic synthesis & formal verification
- 4. Circuit design
- 5. Physical design and verification
- 6. Fabrication
- 7. Packaging
- Other tasks involved: testing, simulation, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.
- Design revolution: interconnect (not gate) delay dominates circuit performance in deep submicron era.
 - Interconnects are determined in physical design.
 - Shall consider interconnections in early design stages.

Traditional VLSI Design Flow (Cont'd) extraction & structural representation Physical Synthesis

Physical Synthesis

physical representation

Fabrication

Packaging

Unit 1

Y.-W. Chang

Physical Design

- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- Physical design cycle:
 - Partitioning
 - 2. Floorplanning and placement
 - 3. Routing
 - 4. Post-layout optimization
- Others: parasitic extraction, timing verification, and design rule checking

Physical Design Flow al Design | Cut 1 | Cut

B*-tree based floorplanning system

Timing, signal integrity, and antenna-driven routing systems

Unit 1

Y.-W. Chang

23

PowerPC 604 A floorplan with interconnections Unit 1 P.W. Chang Floorplan Examples Intel Pentium 4

Routing Example

• 0.18um technology, pitch = 1 um, 2774 nets.

Unit 1

Y.-W. Chang

Standard Cell Design Style

• Selects pre-designed cells (of same height) to implement logic

Unit 1 Y.-W. Chang 29

Standard Cell Example

Courtesy Newton/Pister, UC-Berkeley

30

Gate Array Design Style

- Prefabricates a transistor array
- Needs wiring customization to implement logic

Unit 1 Y.-W. Chang 31

FPGA Design Style

- Logic and interconnects are both prefabricated.
- Illustrated by a symmetric array-based FPGA

Unit 1

Array-Based FPGA Example

Lucent Technologies 15K ORCA FPGA, 1995

- 0.5 um 3LM CMOS
- 2.45 M Transistors
- 1600 Flip-flops
- 25K bit user RAM
- 320 I/Os

Fujitsu's non-volatile Dynamically Programmable Gate Array (DPGA), 2002

Unit 1 Y.-W. Chang 33

FPGA Design Process

- Illustrated by a symmetric array-based FPGA
- No fabrication is needed

logic + layout synthesis

Comparisons of Design Styles

	Full custom	Standard cell	Gate array	FPGA	SPLD
Cell size	variable	fixed height*	fixed	fixed	fixed
Cell type	variable	variable	fixed	programmable	programmable
Cell placement	variable	in row	fixed	fixed	fixed
Interconnections	variable	variable	variable	programmable	programmable

^{*} Uneven height cells are also used.

Unit 1 Y.-W. Chang 35

Comparisons of Design Styles

	Full custom	Standard cell	Gate array	FPGA	SPLD
Fabrication time			+	+++	++
Packing density	+++	++	+		
Unit cost in large quantity	+++	++	+		_
Unit cost in small quantity			+	+++	++
Easy design and simulation			-	++	+
Easy design change			_	++	++
Accuracy of timing simulation	_	_	_	+	++
Chip speed	+++	++	+	_	

36

+ desirable; - not desirable

