

<u>)</u>

<u>Deep Segmentation And Transfer</u>

<u>Course</u> > <u>Learning</u>

> Transfer Learning > Lesson Quiz

Lesson Quiz

Answer the following questions to test your knowledge of the concepts and techniques taught in this lesson.

Note: Some of the questions are based on the lab associated with this lesson, so make sure you have explored and run the lab.

Question 1

1/1 point (graded)

Which of the following statements about Transfer Learning are **true**? Choose one

- Transfer Learning is very expensive in time.
- Transfer Learning requires that the training and test data is of similar domains and similar distributions.
- Transfer Learning is a generic method for transferring a model trained in one domain and applying it in any other arbitrary problem domain.
- Transfer Learning can give more accurate results, but requires much more data.
- Transfer Learning takes longer to convert, but can be more accurate.

Explanation

Transfer Learning allows applying a model trained for one domain to another, as long as the data and domains are relatively similar. It requires less data to learn a new skill, and can make training faster. It is also likely to lead to better model accuracy than if the data wasn't available.

Submit

You have used 1 of 1 attempt

Question 2		
/1 point (graded) When choosing between fine-tuning vs. freezing, Thoose one	when should we consider freezing some or all of the weights?	
When datasets are similar in content and di	istribution, and ratio of target dataset size to original dataset size is small. 🗸	
When the target dataset is much larger than	n the original, base model, dataset.	
 When the target dataset is dissimilar to the 	original dataset.	
 When both the datasets are dissimilar, and 	the target dataset is much larger than the original dataset.	
Explanation Submit You have used 1 of 1 attempt		
Answers are displayed within the problem		