

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

«Прогнозирование конечных свойств новых материалов (композиционных материалов)»

Гриценко Ольга Олеговна

Цели исследования, постановка задачи

1

Цель исследования: решение актуальной производственной задачи по прогнозированию свойств получаемых композиционных материалов.

2

Объект исследования: композиционные материалы, которые означают искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними.

Предмет исследования: прогнозные данные свойств композитов: соотношение матрица-наполнитель, модуль упругости при растяжении, прочность при растяжении.

Исследуемые датасеты

Х_bp (матрица из базальтопластика):

• признаков: 10 и индекс

• строк: 1023

Х_пир (наполнитель из углепластика):

• признаков: 3 и индекс

• строк: 1040

Объединение INNER по индексу:

• признаков: 13

строк: 1023

Разведочный анализ данных

Гистограммы распределения и диаграммы "ящик с усами"

- Большинство количественные, вещественные, положительные, нормально распределенные
- Угол нашивки категориальный, бинарный

Разведочный анализ данных

Попарные графики рассеяния точек

- Выбросы есть
- Зависимости не обнаружены

Поиск выбросов

Найдено:

- методом 3-х сигм 24 выброса
- методом межквартильных расстояний 93 выброса

После удаления методом 3-х сигм осталось 1000 строк

Тепловая карта корреляции

Зависимость между признаками минимальна

Модели регрессионного анализа

1. Модель для модуля упругости при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.001377	-3.222954	-2.577796	-0.035319	-7.800690
Лучшая модель (дерево решений)	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

	R2	RMSE	MAE	MAPE	max_error
Модуль упругости, тренировочный	0.017295	-3.037284	-2.410294	-0.032850	-9.008468
Модуль упругости, тестовый	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

2. Модель для модуля прочности при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.000531	-479.694153	-375.066608	-0.165566	-1431.321957
Лучшая модель (градиентный бустинг)	0.004028	-478.600202	-376.647056	-0.166046	-1384.841404

	R2	RMSE	MAE	MAPE	max_error
Прочность при растяжении, тренировочный	0.057141	-472.832206	-374.670333	-0.164825	-1383.885510
Прочность при растяжении тестовый	0.004028	-478 600202	-376 647056	-0.166046	-1384 841404

Модели для соотношения матрица-наполнитель

do.bmstu.ru

