

Alignment of the Muon System with HIP

Jim Pivarski, Alexei Safonov

Texas A&M University

29 June, 2007

Introduction: monitoring tools (we'll be using it later...)

- 1. CommonAlignmentMonitor: general plotting package integrated into AlignmentProducer
 - Manages iteration, collection after parallel processing
- 2. AlignmentMonitorMuonHIP outputs histograms for every chamber (or every layer): residuals versus everything
- 3. pyROOT script merges histograms on the fly

all of this will be in CVS early next week

Muon alignment simulation

- ▶ First full-scale muon alignment in AlignmentProducer
 - Large dataset: 10 pb⁻¹ of muons from W and Z (simulated by Z only)
 - ▶ Full precision goals (200 μ m)
 - Random misalignments with SurveyOnlyScenario (rather than moving all chambers in the same direction)
- Two major approaches, developed simultaneously
 - ► Align the muon system to the tracker (globalMuons)
 - converges more quickly
 - Align the muon system to itself (standAloneMuons)
 - independent of the tracker

Aligning to the tracker

▶ Residuals from globalMuons have two peaks per chamber, due to track-fitting bias

Tracking algorithm avoids the

- Simply extrapolating a tracker track into the muon system removes the bias, but at a severe resolution cost (note wider scale)
- Neither is optimal

The "lowbias" method

- ▶ Re-fit globalMuon tracks with inflated hit uncertainties in the muon system
- Resulting tracks are determined mostly by the silicon tracker, but they "know" about scattering in the muon system

The "standalone" method

- standAloneMuons have the two-peak structure in residuals, and therefore need to iterate to decouple track-fitting from chamber alignment
- ▶ With a |residuals| < 5 cm cut, this method shows clear convergence for most chambers:

▶ We are keenly interested in saving the tails. . .

The same plots for "lowbias"

- ► Converges in one iteration
- ▶ Beyond that most chambers are stable, but a few DTs wander
- ▶ There's also a cumulative problem with hit efficiency

Alignment Results (10 pb⁻¹)

- Starting from MuonSurveyOnlyScenario: positions misaligned 2.5 mm, ϕ_z misaligned 0.25 mrad
- ▶ Five degrees of freedom in alignment: x, y, ϕ_x , ϕ_y , ϕ_z
- Accuracy: one iteration lowbias, ten iterations standalone

 Precision: alignment uncertainties are underestimated by a factor of 3–4 (pull distribution is wide)

Figures of merit

- 1. σ of core Gaussian (best-measured chambers)
- 2. RMS, cut at 1 cm
- 3. |max| (worst outlier)

790 chambers	core σ	RMS	max
lowbias x	50	280	4500
lowbias y	270	860	6000
standalone x	50	1040	∞
standalone <i>y</i>	290	1540	34000
	•		microns

| Combined | Company | Com

Figures of merit versus iteration

- \blacktriangleright Core σ largely unchanged after first iteration
- standalone method requires 7 iterations

Figures of merit versus integrated luminosity

- ▶ lowbias reaches sensitivity limit between 10 and 100 pb⁻¹
- ▶ standalone technique reaches limit below 10 pb⁻¹

12/21

- Just apply the tool to the chambers that diverge
- \triangleright x beyond 0.8 cm in the second iteration (standalone):

▶ x between 0.02 and 0.1 cm in the tenth iteration (standalone):

14/21

 \triangleright x between 0.02 and 0.1 cm in the tenth iteration (standalone):

 \triangleright x between 0.02 and 0.1 cm in the tenth iteration (standalone):

▶ x between 0.02 and 0.1 cm in the tenth iteration (standalone):

 \triangleright x between 0.02 and 0.1 cm in the tenth iteration (standalone):

Aligning individual layers

- ▶ CSC chambers known to have 100-300 μ m offsets (MTCC)
- ▶ The near-tails are bigger (this is 100 pb⁻¹, x, y, ϕ_z only)

3920 layers	core σ	RMS	max
lowbias x	50	1630	6600
lowbias y	360	1830	13000
standalone x	60	1720	6600
standalone y	380	1970	6400
			microns

Whole-disk/wheel alignment is also important

- ▶ 0.7 cm disk misalignment observed in MTCC phase 2
- ► How many tracks does HIP need?
- Not many: x,y to 800 μ m with 300 tracks

top row: x, y, z (cm), bottom: ϕ_x , ϕ_y , ϕ_z (rad)

Summary

- Overall scheme and infrastructure components are now mature
- ► Entering the era of precision alignment studies
- Procedure is ready for CSA07, some updates need to be checked into CVS
- ▶ We have taken a first glance at MTCC data and are ready to apply our software to 1_5_0 re-reconstructed data
- Concrete list of systematics studies planned for CSA07
- ▶ The software is available for cosmic ray/beam halo studies. . .
- ▶ We're starting to write a CMS Note