

Memory Management Requirements

Memory Management Techniques

Virtual Memory Management Techniques

Learning objectives (3.1-3.2)

By the end of this lecture you should be able to:

- Understand Memory Management Requirements
 - Explain what's Relocation (重定位), Logical Organization vs. Physical Organization, Logical/Physical Address, Relative/Absolute Address, Overlay (覆盖), Page/ Frame, Translation Lookaside Buffer (联想存储器,快表)

Learning objectives (3.1-3.2)

By the end of this lecture you should be able to:

- Understand Memory Management Techniques
 - Fixed Partitioning, Dynamic Partitioning, Simple Paging, Simple Segmentation
 - Explain Internal/External Fragmentation (内 / 外 零头), Compaction (紧凑)
 - Understand Dynamic Partitioning Placement Algorithm, Logical-to-Physical Address

 Translation

第27讲 存储管理需求分析

§3.1 Overview

Memory Management

- Subdividing memory to accommodate multiple processes.
- Memory needs to be allocated efficiently to pack as many processes into memory as possible.

Memory Management Requirements

- ➤ Relocation (重定位)
- **➢ Memory Protection (存储保护)**
- ➤ Memory Sharing (存储共享)
- ▶ Logical Organization (逻辑组织)
- ➤ Physical Organization (物理组织)

Relocation

- Programmer does not know where the program will be placed in memory when it is executed.
- ➤ While the program is executing, it may be swapped to disk and returned to main memory at a different location (relocated).
- ➤ Memory references(存储引用) must be translated in the code to actual physical memory address.

Relocation

- When program loaded into memory the actual (absolute) memory locations are determined.
- A process may occupy different partitions which means different absolute memory locations during execution (from swapping).
- Compaction will also cause a program to occupy a different partition which means different absolute memory locations.

Addresses

Logical

- reference to a memory location independent of the current assignment of data to memory.
- translation must be made to the physical address.

Relative

 address expressed as a location relative to some known point.

Physical

 the absolute address or actual location in main memory.

Protection

- Processes should not be able to reference memory locations in another process without permission.
- Impossible to check absolute addresses in programs at compile time since the program could be relocated.
- Must be checked during execution by the processor(hardware) rather than OS(software)
- Operating system cannot anticipate all of the memory references that a program will make.

Sharing

➤ Allow several processes to access the same portion of memory.

➤ Better to allow each process (person) access to the same copy of the program rather than have their own separate copy.

Logical Organization

- Programs are written in modules.
- Modules can be written and compiled independently.
- Different degrees of protection given to modules (read-only, execute-only).
- Share modules.

Physical Organization

- Computer memory is organized into at least two levels, referred as main memory and secondary memory.
- Memory available for a program plus its data may be insufficient.
 - Overlaying allows various modules to be assigned the same region of memory.
- Programmer does not know how much space will be available.

