Assignment - 1

EEC201 - Signals, Systems, and Networks (Monsoon 2024) Department of Electrical Engineering, IIT (ISM) Dhanbad

1. Determine the energy and power for each of the following signals:

(a)
$$x_1(t) = \cos^2(4t)$$

(b)
$$x_2(t) = e^{-2t}u(t)$$

(c)
$$x_3(t) = e^{j(2t+\pi/4)}$$

(d)
$$x_4(t) = \frac{u(t) - u(t-3)}{3}$$

Answer:

(a)
$$E \to \infty$$
 and $P = \frac{1}{2}$

(b)
$$E = \frac{1}{4}$$
 and $P = 0$

(c)
$$E \to \infty$$
 and $P = 1$

(d)
$$E = \frac{1}{3}$$
 and $P = 0$

2. Let x(t) represent the signal shown below. Plot the following:

(a)
$$x_1(t) = x(4-t)$$

(b)
$$x_2(t) = x(3t + 2)$$

(c)
$$x_3(t) = 2 + x(t/2)$$

(d)
$$x_4(t) = x(t)[\delta(t+3/2) - \delta(t-3/2)]$$

(e)
$$x_5(t) = x_e(t) = \frac{x(t) + x(-t)}{2}$$

(f)
$$x_6(t) = x_o(t) = \frac{x(t) - x(-t)}{2}$$

Answer:

3. Let x(t) be a signal with x(t) = 0 for t < 3. For each signal given below, determine the values of t for which the signal is guaranteed to be zero:

(a)
$$x_1(t) = x(-t)$$

(b)
$$x_2(t) = x(1-t) + x(2-t)$$

(c)
$$x_3(t) = x(1-t) x(2-t)$$

Answer:

- (a) We know that x(t) is zero for t < 3. Then, x(-t) will be zero for t > -3.
- (b) We know that x(1-t) is zero for t > -2. Similarly, x(2-t) is zero for t > -1. Therefore, x(1-t) + x(2-t) will be zero for t > -1.
- (c) x(1-t) is zero for $1-t < 3 \Rightarrow t > -2$. Similarly, x(2-t) is zero for t > -1. Therefore, x(1-t) x(2-t) will be zero for t > -2.
- **4.** Simplify and/or evaluate the following expressions:

(a)
$$\frac{(x^2+1) \delta(x-1)}{x^2+7}$$
 (b) $\cos(2\pi t)(\dot{u}(t)+\delta(t+1/4))$ (c) $\frac{(x^4-x^2+6) \delta(2x+3)}{e^{x^2}+5x}$

(d)
$$\int_{-\infty}^{\infty} (\tau^2 + 1) \ \delta(\tau - 2) \ d\tau$$
 (e)
$$\int_{-\infty}^{\infty} e^{t-1} \cos\left(\frac{\pi(t-5)}{2}\right) \ \delta(t-3) \ dt$$

(f)
$$\int_{-\infty}^{\infty} \sin(\pi t) \ \delta(2t - 3) \ dt$$
 (g)
$$\int_{-\infty}^{\infty} \sin(2\pi t) \ \delta(4t - 1) \ dt$$

Answer:

(a)
$$\frac{\delta(x-1)}{4}$$
 (b) $\delta(t)$ (c) $4.433 \ \delta(2x+3)$ (d) 5 (e) $-e^2$ (f) $\frac{-1}{2}$ (g) $\frac{1}{4}$

5. Determine if each system given below is linear. Explain your reasoning.

(a)
$$y(t) = tu(t)x(t)$$
 (b) $y(t) = \frac{x(t) - 2}{3}$ (c) $y(t) = 3[x(4t + 3)]$

(d)
$$y(t) = \frac{x^2(t)}{1 + x(t)}$$
 (e) $y(t) = x(t - 10)$ (f) $y(t) = x(t) + t$

Answer:

- (a) Linear
- (b) Not-linear
- (c) Linear
- (d) Not-linear
- (e) Linear
- (f) Not-linear

6. Determine if each system given below is time-invariant. Explain your reasoning.

(a)
$$y(t) = tu(t)x(t)$$

(b)
$$y(t) = \frac{d^5 x(t)}{dt^5}$$

(c)
$$y(t) = x(2t+5)$$

(d)
$$y(t) = e^{4x(t)}$$

(e)
$$y(t) = \frac{x(t)}{1 + x(t)}$$

$$(f) y(t) = \ln(x(t)) + 4$$

Answer:

- (a) Not time-invariant
- (b) Time-invariant
- (c) Not time-invariant
- (d) Time-invariant
- (e) Time-invariant
- (f) Time-invariant

7. Determine if each system given below is memoryless <u>and/or</u> causal. Explain your reasoning.

(a)
$$y(t) = x(t^2)$$

(b)
$$y(t) = 30$$

(c)
$$y(t) = x(u(t))$$

(d)
$$y(t) = \frac{x^7(t) + x^6(t) + x^5(t)}{1 + x^2(t) + x^9(t)}$$
 (e) $y(t) = \frac{dx(t)}{dt} + x^2(t)$

(e)
$$y(t) = \frac{dx(t)}{dt} + x^2(t)$$

Answer:

- (a) Not memoryless and Not Causal
- (b) Memoryless and Causal
- (c) Not memoryless and Not Causal
- (d) Memoryless and Causal
- (e) Not memoryless and Not Causal

8. Determine if each system given below is BIBO stable. Explain your reasoning.

(a)
$$y(t) = u(t)x(t)$$

(b)
$$y(t) = e^{x(t)}$$

(c)
$$y(t) = \frac{x^2(t) + x^4(t)}{1 + x(t)}$$

(d)
$$y(t) = \ln(x(t))$$

(d)
$$y(t) = \ln(x(t))$$
 (e) $y(t) = |x(t) - 4|$

Answer:

- (a) BIBO stable
- (b) BIBO stable
- (c) Not BIBO stable
- (d) Not BIBO stable
- (e) BIBO stable

9. Find the zero-input response of the following LTIC systems with their initial conditions described below. Furthermore, investigate the asymptotic (internal) and BIBO (external) stabilities of the systems.

(a)
$$(D + 5)y(t) = x(t)$$
 with the initial condition $y(0) = 5$.

(b)
$$(D^2 + 2D)y(t) = (5D + 2)x(t)$$
 with the initial conditions $y(0) = 1$ and $\dot{y}(0) = 4$.

(c)
$$(D^2 + 6D + 9)y(t) = (3D + 5)x(t)$$
 with the initial conditions $y(0) = 3$ and $\dot{y}(0) = -7$.

(d)
$$(D+1)(D^2+5D+6)y(t) = Dx(t)$$
 with the initial conditions $y(0) = 2$, $\dot{y}(0) = -1$, and $\ddot{y}(0) = 5$.

Answer:

- (a) $5e^{-5t}$ $(t \ge 0)$ \implies Asymptotically and BIBO stable.
- (b) $3 2e^{-2t}$ $(t \ge 0)$ \Longrightarrow Marginally stable and BIBO unstable.
- (c) $(3+2t)e^{-3t}$ $(t \ge 0) \implies$ Asymptotically and BIBO stable.
- (d) $6e^{-t} 7e^{-2t} + 3e^{-3t}$ $(t \ge 0) \Longrightarrow$ Asymptotically and BIBO stable.

10. Find the zero-state response of the following LTIC systems with the unit impulse response and input described below. Essentially, compute the convolution x(t) * h(t).

(a)
$$h(t) = u(t) - u(t-1)$$
 and $x(t) = u(t) - u(t-1)$

(b)
$$h(t) = e^{-3t}u(t)$$
 and $x(t) = (e^{-3t} - e^{-4t})u(t)$

(c)
$$h(t) = -\delta(t) + 2e^{-t}u(t)$$
 and $x(t) = e^{t}u(-t)$

(d)
$$h(t) = e^{-t}u(t)$$
 and $x(t) = \begin{cases} 1 & |t| \le 1 \\ 0 & \text{else} \end{cases}$

(e)
$$h(t) = e^{-t}u(t)$$
 and $x(t) = 4e^{-2t}\cos(3t)u(t)$

(f)
$$h(t) = u(t)$$
 and $x(t) = \begin{cases} 2 - |t| & |t| \le 2\\ 0 & \text{else} \end{cases}$

Answer

(a)
$$y(t) = \begin{cases} t & 0 \le t \le 1\\ 2 - t & 1 \le t \le 2\\ 0 & \text{else} \end{cases}$$
 (b) $y(t) = (te^{-3t} - e^{-3t} + e^{-4t})u(t)$ (c) $y(t) = e^{-t}u(t)$

(d)
$$y(t) = \begin{cases} 0 & t \le -1 \\ 1 - e^{-(t+1)} & -1 \le t \le 1 \\ e^{-t+1} - e^{-t-1} & 1 \le t \end{cases}$$
 (e) $y(t) = \frac{4}{\sqrt{10}} u(t) \left(\tan^{-1}(3)e^{-t} - e^{-2t}\cos(3t + \tan^{-1}(3)) \right)$

(f)
$$y(t) = \begin{cases} 0 & t \le -2\\ 0.5(t+2)^2 & -2 \le t \le 0\\ 0.5(4+4t-t^2) & 0 \le t \le 2\\ 4 & 2 \le t \end{cases}$$