CS5112: Algorithms and Data Structures for Applications

Lecture 18: Locality-sensitive hashing

Ramin Zabih

Some content from: Piotr Indyk; Wikipedia/Google image search;

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Today

- Prelim discussion
- Locality sensitive hashing

Prelim discussion

- Final will be a lot like the prelim
 - But including material starting today
 - Review session in class before exam
- Regrades are done on the entire exam
 - Your score can go up or down
 - Clearly you should request one if we made an obvious mistake
 - Regrades on gradescope, open at 2PM, close a week later
- Staff available after lecture, informally

Prelim stats

- Overall people did quite well
- 14 students got a perfect score
- Hardest questions:
 - 1.4 (collision handling data structures): 54% got this right
 - 4.5 (last 4 had c): 45%
 - Dynamic programming question: 72%

Curse of dimensionality

- High dimensions are not intuitive, and data becomes sparse
 - Volume goes up so fast that an exponential amount of data needed
- "Most of the volume is in the corners" theorem
 - Think of a 3D sphere inscribed in a box
- Particularly problematic for NN search
- Quad trees require exponential space and time
- k-d trees requires exponential time

Locality sensitive hashing

- We can use hashing to solve 'near neighbors'
 - And thus nearest neighbors, if we really need this
- Ensuring collisions is the key idea!
- Make nearby points hash to the same bucket
 - In a probabilistic manner
- By giving up on exactness we can overcome the curse of dimensionality
 - This is an extremely important technique in practice

Basic idea of LSH

- A family of hash functions is locality sensitive if, when we pick a random element h of that family, for any 2 points p, q
 - -P[h(p) = h(q)] is 'high' if p is 'close' to q
 - -P[h(p) = h(q)] is 'low' if p is 'far' from q

Cool idea, assuming such hash functions exist! (they do)

How to use LSH for NN

- Pick l different hash functions at random, h_1, \dots, h_l
- Put each data point p into the l buckets $h_1(p), ..., h_l(p)$
- Now for a query point q we look in the corresponding buckets $h_1(q), \ldots, h_l(q)$
 - Return the closest point to q
- How does the running time scale up with the dimension d?
 - Nothing is exponential in d, which is awesome!
 - Can prove worst case is slightly better than O(nd)

Do such functions exist?

- Generally LSH functions use random projections
- Main example: consider the hypercube, i.e.,
 - Points from $\{0,1\}^d$
 - Hamming distance D(p,q) = # positions on which p and q differ
- Define hash function h by choosing a set S of k random coordinates, and setting
 - h(p) = projection of p on S

Example

Take

$$d = 10,$$
 $p = 0101110010,$
 $k = 2,$
 $S = \{2,5\}$

• Then h(p) = 11

These hash functions are locality-sensitive

$$P[h(p) = h(q)] = (1 - \frac{D(p,q)}{d})^k$$

• We can vary the probability by changing k

Random Projections + Binning

- Nearby points will often fall in same bin
- Faraway points will rarely fall in same bin

Other important LSH families

- We looked at Hamming distance via random subset projection
- There is a large literature on what distance functions support LSH, including lots of important cases and impossibility proofs
- Two particularly nice examples:
 - Jacard similarity via MinHash
 - Angle similarity via SimHash

Jacard similarity via min hash

- Given a universe of items we want to compare two subsets
 - Need a hash function which maps to same bucket if they have a lot of overlap
- Hash functions are random re-ordering of the universe
 - Hash is the minimum value of a subset under a permutation
- When there is a lot of overlap, the minimum value tends to be the same, and so the two subsets map to the same bucket

Angle similarity via SimHash

- Angle similarity via projection onto random vector
 - VERY important for machine learning, etc.
- Pick a random unit vector r, and check if the two inputs x, y are on the same side of the half-space it defines
- Compute the dot products $\langle x, r \rangle$, $\langle y, r \rangle$
 - Do they have the same sign?

