Übungsblatt 5

Aufgabe 1. In einem ausgewählten Ort scheint an 55 % aller Tage die Sonne und es ist niederschlagsfrei, an 25 % aller Tage ist es bewölkt aber niederschlagsfrei und an 20 % aller Tage regnet es ununterbrochen. Ein Bewohner dieses Ortes schaut jeden Morgen ehe er das Haus verlässt aus dem Fenster. Falls es regnet, nimmt er mit Wahrscheinlichkeit 90 % seinen Regenschirm mit (er ist vergesslich), falls es bewölkt ist aber nicht regnet, nimmt er mit Wahrscheinlichkeit 50 % seinen Regenschirm mit (er ist unsicher) und falls die Sonne scheint, nimmt er mit Wahrscheinlichkeit 15 % seinen Regenschirm mit (er ist Pessimist).

- a) Wie groß ist die Wahrscheinlichkeit, dass diese Person das Haus mit Regenschirm verlässt.
- b) Wie groß ist die Wahrscheinlichkeit, dass die Sonne scheint, wenn diese Person am Morgen das Haus mit dem Regenschirm verlässt.

Aufgabe 2. Wird eine Produktionsanlage am Morgen vor Beginn ihres Einsatzes gewartet, so beträgt die Wahrscheinlichkeit, dass sie an diesem Tag ausfällt, 0.6 %, wird die Wartung unterlassen, so beträgt sie 8 %.

Aus Bequemlichkeit lässt der verantwortliche Wartungsingenieur die morgendliche Wartung mit einer Wahrscheinlichkeit von 20 % ausfallen.

- a) Wie groß ist die Wahrscheinlichkeit, dass die Produktionsanlage an einem gegebenen Tag ausfällt?
- b) Wie groß ist die Wahrscheinlichkeit, dass die Produktionsanlage an diesem Tag nicht gewartet wurde, wenn sie ausfällt?
- c) Ein anderer Ingenieur übernimmt die Urlaubsvertretung des Wartungsingenieurs. In der Zeit seiner Urlaubsvertretung beträgt die Wahrscheinlichkeit, dass die Produktionsanlage an einem gegebenen Tag ausfällt, genau 1.49 %.

Mit welcher Wahrscheinlichkeit lässt dieser Ingenieur die tägliche Wartung ausfallen?

Aufgabe 3. Zeigen Sie, dass für drei Ereignisse $A, B, C \in \mathcal{A}$ mit p(A) > 0, p(B) > 0 und p(C) > 0 die folgende Formel gilt:

$$p(A \cap B \cap C) = p(A) \cdot p(B|A) \cdot p(C|(A \cap B))$$