Hybrid Anomaly Detection System to Prevent Malicious Attacks on Automotive CAN Networks

Jonathan Cochran (cochra48@purdue.edu), Logan Coles (colesl@purdue.edu), and John Mushatt (jmushatt@purdue.edu)

Introduction

What is CAN?

- Controller Area Network protocol
 - 1. Developed in 1983 and widely used in the automotive
 - 2. Nodes are connected and communicate via a bus
 - Bus acts as a wired AND channel

What is an ECU? [1]

An ECU is an electronic control unit and often used interchangeably with a node in CAN

- Start of frame: denotes the start of a CAN frame
- Arbitration: used for identifying message priority
- Control: defines how long the data payload is
- Data: payload a node wishes to send
- CRC: cyclic redundancy check for error detection
- Ack: acknowledgement for receiving messages
- End of frame: marks the end of a message

Existing work [2]

- Propose a two-stage anomaly detection system using a rule-based and ML model
- Proves using Decision Tree, Random Forest, and XGBoost is an efficient method on the OTIDS dataset [3]

Cybersecurity

- Vehicles are becoming more connected to the internet and need methods for identifying malicious attacks / messages.
- Goals of project: simulate an anomaly detection system (ADS) in a vehicle environment
 - Combination of 2 filters:
 - 1. Machine Learning filter
 - Lightweight model
 - Hyper-parameter tuning
 - 2. Rule-based filter
 - Simulate ADS with Python-can

Methodology

- Attack Types [3]
 - DoS: flooding with communication
 - Fuzzy: sniff network to create passable randomized CAN ID & DATA payload

 Impersonation: malicious node stops messages by controlling a target node and inserting specified IDs

Rule-based model

- Implemented rule set:
 - Arbitration ID: Check for illegal ID
 - Message frequency: Compare message frequency for certain ID
 - Sequence: Compare sequence of IDs

ML Model

- OTIDS dataset
- Feature extraction
- Data preprocessing
- Classifier model

 - Decision Tree (DT)
 - Random Forest (RF)
 - XGBoost (XGB)
- Hyper-parameter tuning

Attack Type Number of Instances

2,369,868

656,579

591,990

Description

Impersonation 995,472

CAN Network

- Multi-ECU network (ECM, BCM, etc.)
- Gateway ECU implements both Rule and ML filter
- Random selection of 10,000 messages, comprised of both valid and invalid messages
- Messages propagate in through gateway, valid messages pass through, invalid are marked

Results

- CAN Network: Rule-based Filter
 - Simplistic rule filtering is ineffective

CAN Network: ML-based filter

Rule-Based %	ML-Based %	
0.480514096185738	0.802860696517413	
0.400314030103738	0.002000030317413	

 $Acc = \frac{1}{TP + TN + FP + FN}$

 $F1 = \frac{2*TP}{2*TP + FP + FN}$

 $FAR = \frac{FP}{TN + FP}$

- ML Model
 - Training Time
 - Confusion Matrix [4]

		L . J
Confusion Matrix	Attack	No Attack
Attack	231,961	4,453
No Attack	11,927	213,003

- Validation Equations [2]
 - Accuracy
 - Detection Rate
- False Alarm Rate
- F1 Score
- Validation Results

- Tuned Hyper-parameters
 - - criterion='entropy'
 - max_leaf_nodes=1000
 - min_samples_leaf=2

 - n estimators=30
 - max leaf nodes=1000
 - max_features=None
 - XGB

Lightweight model

max_features=100

• Size reduction from 698MB to 5.1MB

Pickle format

- Tuning Hyper-parameters for ML Model
 - Tuned by iterating through ranges for each parameter
- Documentation for each ML method investigated to determine parameter
- Example of a tuned parameter 'num_trees'

XGBoost								
num_trees	No Attack Accuracy	No Attack F1 Score	Attack Accuracy	Attack F1 Score				
20	96.555282%	96.679981%	96.555282%	96.420850%				
30	96.615757%	96.739868%	96.615757%	96.481823%				
50	96.619659%	96.744388%	96.619659%	96.484992%				
100	96.657592%	96.781855%	96.657592%	96.523347%				
125	96.653473%	96.778380%	96.653473%	96.518490%				
150	96.661710%	96.785934%	96.661710%	96.527498%				
175	96.658242%	96.782743%	96.658242%	96.523718%				
Optimal Value	96.661710%	96.785934%	96.661710%	96.527498%				

Conclusions

- ADS performance in classifying an attack
 - ML filter performed better than rule based filter
 - During simulation the combined performance was 85% efficient in identifying an attack
- Future Work:
 - Work with ECU team at General Motors to develop calibration set to disable message authentication code (MAC) check at the ECU.
 - Evaluate ADS in vehicle using a NeoVi and Vehicle Spy to read and send messages into the vehicle CAN bus.
 - o Implement more detailed rule-based schema to improve capture efficiency of rule-based filter.
 - Tune further to reduce ML model size and export in universal format

References

- P. G. A. G. Marco Di Natale, Haibo Zeng, Ed., Understanding and Using the Controller Area Network Communication Protocol. New York, NY: Springer, 2012
- 2. Purohit and M. Govindarasu, "MI-based anomaly detection for intravehicular can-bus networks," in 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 233–238.
- 3. H. Lee, S. H. Jeong, and H. K. Kim, "Otids: A novel intrusion detection system for in-vehicle network by using remote frame," in 2017 15th Annual Conference on Privacy, Security and Trust (PST), 2017, pp. 57-5709
- 4. Y. Yalman, T. Uyanık, I. Atli, A. Tan, K. Bayindir, Karal, S. Golestan, and J. Guerrero, "Prediction of voltage sag relative location with data-driven algorithms in distribution grid," Energies, vol. 15, p. 6641, 09