Circuitos Lógicos

Módulo#2

Funções e Tecnologias das Famílias Lógicas

Tabelas verdade

Inputs

Função OR

Α	В	x = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Função OR - aplicações

Função AND

Α	В	$x = A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Função AND - aplicações

Função INVERSOR - NOT

NVERSOR			
Α	x = Ā		
0	1		
1	0		

Combinações

 $x = [D + (\overline{A + B})C] \cdot E$

Análise de circuitos

Α	В	С	D	X	
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1	0	
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Análise de circuitos

X = A'.B.C.(A+D)'

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Função NOR

Função NAND

Análise de circuitos

Α	В	С	D	Х
1	1	0	0	
1	1	0	1	
1	1	1	0	1
1	1	1	1	

Função XOR

Ou +

A = 1 e B = 0 A.B'

X = A.B + A.B

Álgebra de Boole

Combinações

Propriedades

OR	AND

	a + (bc)	= b + a = $(a + b)(a + c)$ = $(a + b) + c$ = $a + b + c$	a(b + c)	= ba $= (ab) + (ab)c$ $= abc$	(ac)	Comutativa Distributiva Associativa
4. 5.		= a = 1		= a $= 0$		Complemento
6. 7.	1 + a 0 + a	= a		= 0 = a		
8. 9. 10.	(a')' $a + ab$ $a + a'b$	= a	a(a + b) $a(a' + b)$			
11.	(a + b)'				Teor	ema de DeMorgan

Teorema de DeMorgan

$$\begin{array}{c}
x \\
y
\end{array}$$

$$\begin{array}{c}
x \\
\hline
\end{array}$$

Circuitos digitais

Redução de circuitos

Níveis lógicos

A saída vai para o nível BAIXO apenas quando todas as entradas forem para o nível ALTO.

A saida vai para o nivel ALTO quando qualquer entrada for para o nivel BAIXO.

A saida vai para o nível ALTO quando qualquer entrada for para o nível ALTO.

Exercícios

Ţ\$

O que se quer representar?

Uma fábrica precisa de uma sirene para indicar final de expediente.

Ela deve ser ativada quando ocorrer uma das seguintes condições:

- * já passou das 17:00 h e as máquinas estão ligadas ;
- * é sexta-feira, a produção foi atingida e todas as máquinas estão desligadas.

Famílias Lógicas e a Tecnologias de Cls

Circuitos lógicos são dispositivos físicos que implementam funções lógicas.

 \dots são 3 variáveis booleanas, ou seja, têm dois "valores físicos" que vão representar o 0 e o 1.

Que função está representada no circuitos elétrico acima ?

Circuitos lógicos são dispositivos físicos que implementam funções lógicas.

... são 3 variáveis booleanas, ou seja, têm dois "valores físicos" que vão representar o 0 e o 1.

Que função está representada no circuitos elétrico acima ?

Outro dispositivo ...

Importantes dispositivos ... diodo

... Se tensão sobre o diodo for Vd, então existe a corrente I.

Importantes dispositivos ... transistor

... se tensão sobre a junção PN base-emissor, chamada Vbe for Vd, então existe uma corrente passando nela, chamada lb; se existe lb então existe lc.

... então há duas situações possíveis :

Α	В	F
0	0	
0	1	
1	0	
1	1	

Vamos analisar o circuito abaixo ...

Α	В	F
0	0	1
0	1	
1	0	
1	1	

Α	В	F
0	0	1
0	1	0
1	0	
1	1	

Vamos analisar o circuito abaixo ...

В	F
0	1
1	0
0	0
1	
	0

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Vamos analisar o circuito abaixo ...

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

NOR

Vamos analisar o circuito abaixo ...

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

NAND

Evolução das famílias lógicas

Evolução das famílias lógicas : DTL -> TTL

Fig. 3.2 Two-input DTL NAND gate

DTL

Porta NAND TTL

... equivalente aos 3 diodos DTL

7

7

Α	В	Saída
0	0	1
0	1	1
1	0	1
1	1	0

Chaveamento TTL

Condições de entrada	Condições de saída	
A e B estão ambas em nível ALTO (≥2 V)	Q ₃ OFF	
As correntes de entrada s⊲o muito baixas I _{IH} = 10 μA	Q ₄ ON, logo, V _X estā em nivel baixo (< 0,4 V)	

Chaveamento TTL

Condições	Condições
de entrada	de saída
A e B estão ambas em nivel ALTO (≤ 0,8 V)	Q ₄ OFF
A corrente flui para	Q ₃ atua como
GND através do	um seguidor de
terminal de entrada	emissor e
em nível baixo.	V _{OH} ≥ 2,4 V,
I _{IL} = 1,1 mA	geralmente 3,6 V

Que porta é esta ?

Que porta é esta?

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

Que porta é esta ?

Α	В	Υ
0	0	1
0	1	
1	0	
1	1	

Que porta é esta?

Α	В	Υ
0	0	1
0	1	
1	0	
1	1	

Que porta é esta ?

Que porta é esta? NOR

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Correntes nas interligações de portas TTL

Correntes nas interligações de portas TTL

Tensão nos níveis lógicos

Margem de ruído

Características da Familia TTL

A família TTL, como qualquer outra famíla lógica, têm uma série de características que lhe são peculiares. Apresentamos a seguir algumas delas :

Tensão de Alimentação:

Família	M ínim a	Típica	Máxima
TTL	4,5 V	5 V	5,5 V

• Tensão de Entrada : $V_{\pi, m \, 4x} = 0.8 \, \text{V}$ $V_{\pi, m \, 4x} = 2 \, \text{V}$

Tensão de Saida*:
 V_{OL, máx} = 0,4 V V_{OH, máx} = 2,4 V

• Correntes de Entrada : $I_{IL,\;M\dot{A}X} = -1,6\;m\;A \quad I_{H,\;M\dot{A}X} = 40\;m\;A$

Correntes de Saída*:

I_{OL, MÁX} = 16 m A I_{OH, MÁX} = -400 m A

Fan-out \rightarrow 10

Margem de ruído \rightarrow 0,4 V

A traso por porta \rightarrow 10 η s

Consumo por porta → 10 m W

Circuitos integrados : Cls e chips

,	ASSISTMENTS (FOR YIELDS)			
COMMUNICACIONAL COMPATI PORTITO MANO DATES BO MANO DATES T - 18			Constituting 1 proper Transition (and the constitution of the con	888444 66 66 66 60 66 66 66 66 66 66 66 66 66 66 66 66 6
CONTRACTOR STATES OF THE STATE				
book 14)	65	
manufacture of control particle with control 02 manufacture 7 - 278		13°12'	INC. WAS TOTAL BUTTONS DOWNERS WITH SPECIAL COUNTYS DO SO TOTAL TILL TILL TILL TILL TILL TILL TILL T	2000

Porta open-collector OC (coletor aberto)

74LS05 (coletor aberto) ou 74HC05 (dreno aberto)

Porta 3-state (three-state)

Barramentos

Ciclo de vida das famílias lógicas (Texas Instruments)

Tecnologia MOS

Tecnologia NMOS

V _{IN}	Q ₁	Q ₂	V _{OUT} = V _{IN}
0 V	R _{ON} =	R _{OFF} = 10 ¹⁰ Ω	+5 V
(lógico 0)	1,00 kΩ		(lógico 1)
+5 V	R _{ON} =	R _{ON} =	+0,05 V
(lógico 1)	1,00 kΩ	1 kΩ	(lógico 0)

(b)

Tecnologia CMOS

V _{IN}	Q ₁	Q ₂	V _{OUT}
+V _{DD}	OFF	ON	≃ 0 V
(1 lógico)	R _{OFF} = 10 ¹⁰ Ω	R _{ON} = 1 kΩ	
0 V	ON	OFF	≃+V _{D0}
(0 lógico)	R _{ON} = 1 kΩ	R _{OFF} = 10 ¹⁰ Ω	

 $V_{OUT} = \overline{V_{IN}}$

NOT CMOS

NOR CMOS

A	В	X
BAIXO	BAIXO	ALTO
BAIXO	ALTO	BAIXO
ALTO	BAIXO	BAIXO
ALTO	ALTO	BAIXO

Leitura indicada

Maini, A.K. "Digital Electronics - Principles and Integrated Circuits"

- a) Sec. 3.1 3.10, pgs. 71 93
- b) Sec. 4.1 4.7, pgs. 107 146

Logic Gates and Related Devices

Logic Families

LEARNING OBJECTIVES

LEARNING OBJECTIVES

