Hierarchical Part based Pose and Shape Disentanglement

Farnoosh Javadi Summer 2020

Motivation

• Learning Image Representation is a crucial task in Computer Vision.

- The more interpretable representation, the better.
 - Easier to understand, evaluate.

Image Encoder

Enables Novel Image Synthesis.

Our Goal

- Learn interpretable representations
 - Learn parts that form an object

- Learn the disentangled appearance and pose for each part
- Learn the hierarchy of parts
- Learned representations could be used in
 - Landmark Discovery
 - Video to Video Translation
 - Pose and Appearance Transfer

Related Work

- Shape-supervised approaches
 - Conditioning generative models on shape information.
- Unsupervised disentangling approaches
 - Using holistic models.
- Supervised structure-aware representations
 - Needing supervision in terms of segmentation of objects into their primitive parts or the hierarchies.
- Unsupervised part-based representations
 - Learned in discriminative tasks.

Unsupervised Part-Based Disentangling of Object Shape and Appearance

Our Model

Transformations

- Appearance Transformation
 - Shift H in HSV space
 - Mix pixels' color with a random color in RGB space
 - New_color = a * old_color + (1-a) * random_color
- Spatial Transformation
 - Linearly combine 7 predefined TPS transformations
 - Rotate images

Pose and Appearance Transfer

Hierarchical Model

 $-\sum_{i=1}^{3} H1_{i} \cdot H2_{2i} + H1_{i} \cdot H2_{2i+1}$

Similarity Loss =

Future Works

- Increase levels of the hierarchy
- Try different loss functions for enforcing the structure

$$-\sum_{i=1}^{5}G1_{i}\cdot G2_{2i}+G1_{i}\cdot G2_{2i+1}$$

$$\int_{0}^{1} \int_{i=1}^{5} \frac{1}{2} \left(\left(C1_{i} - C2_{2i} \right)^{2} + \left(C1_{i} - C2_{2i+1} \right)^{2} \right)$$

$$\frac{1}{5} \sum_{i=1}^{5} \left(C1_i - \left(\frac{C2_{2i} + C2_{2i+1}}{2} \right) \right)^2$$

- Make the networks deeper to prevent blurry images
- Try different batch-sizes

Thanks for your attention!

