

SÍLABO TELECOMUNICACIONES I

ÁREA CURRICULAR: COMUNICACIONES Y REDES

CICLO VII SEMESTRE ACADÉMICO 2017-I

I. CÓDIGO DEL CURSO : 09012607050

II. CREDITOS : 05

III.REQUÍSITOS : 09069606040 Señales y Sistemas

: 09005403040 Estadística y Probabilidades I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte de la formación especializada; tiene carácter científico - aplicativo. Permite al alumno conocer los conceptos y fundamentos básicos que describen a un sistema analógico de comunicaciones, haciendo énfasis en las técnicas de modulación en amplitud y en la modulación angular. Asimismo aporta los conocimientos para analizar señales y canales de transmisión en distintos escenarios de ruido y distorsión.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Conceptos introductorios a las telecomunicaciones. II. Canales de transmisión. III. Transmisión y recepción de señales utilizando modulación en amplitud. IV. Transmisión y recepción de señales utilizando modulación angular.

VI. FUENTES DE CONSULTA

Bibliográficas

- · Haykin Simon. (2002). Sistemas de Comunicación. México: Limusa John Wiley y Sons.
- LATHI, B. P. (1994). Sistemas de Comunicación. México: Interamericana.
- Ruiz, Cruz. (2007). Material del Curso de Teoría de la Comunicación. Madrid: Escuela Politécnica Superior, Universidad Autónoma de Madrid (UAM).
- Tomasi, Wayne, (2003). Sistemas de Comunicaciones Electrónicas. México: Prentice Hall Hispanoamericana S.A.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTRODUCCIÓN A LAS TELECOMUNICACIONES

OBJETIVOS DE APRENDIZAJE:

- Interpretar los conceptos básicos y los términos empleados para definir un sistemas de comunicaciones.
- Modelar esquemas básicos de sistemas de comunicaciones.

PRIMERA SEMANA

Primera sesión:

Introducción a las telecomunicaciones: conceptos y fundamentos básicos.

Segunda sesión:

Sistemas de telecomunicaciones y sistemas de transmisión: definiciones y clasificación.

SEGUNDA SEMANA

Primera sesión:

Sistemas de telecomunicaciones y sistemas de transmisión: Parámetros de calidad y recursos.

Segunda sesión:

Sistemas de telecomunicaciones y sistemas de transmisión: Canal y Multiplexación.

Tercera sesión:

Laboratorio No. 1: Manejo de Equipos de Laboratorio

UNIDAD II: CANALES DE TRANSMISIÓN

OBJETIVOS DE APRENDIZAJE:

- Caracterizar y clasificar los tipos distorsión que introduce un canal de comunicaciones.
- Medir e identificar las repercusiones de los diferentes tipos de distorsión sobre los diferentes esquemas de transmisión.

TERCERA SEMANA

Primera sesión:

Caracterización de señales: Tipos de señales y parámetros fundamentales.

Segunda sesión:

Caracterización de señales: Densidad Espectral de Energía y Densidad Espectral de Potencia.

CUARTA SEMANA

Primera sesión:

Perturbaciones en los sistemas de transmisión: Canales libres de distorsión.

Segunda sesión:

Perturbaciones en los Sistemas de Transmisión: Distorsión lineal.

Tercera sesión:

Laboratorio No. 2: Análisis de Señales

QUINTA SEMANA

Primera sesión:

Seminario de Ejercicios No. 1

Segunda sesión:

Practica Calificada No. 1

SEXTA SEMANA

Primera sesión:

Perturbaciones en los sistemas de transmisión: Distorsión no Lineal. Diafonía e Interferencia.

Segunda sesión:

Perturbaciones en los Sistemas de Transmisión: Multitrayectoria (ecos) y Fading. Ruido,

SÉPTIMA SEMANA

Primera sesión:

Perturbaciones en los Sistemas de Transmisión: Ruido AWGN y Relación Señal/Ruido SNR. Seminario de Ejercicios No. 2

Segunda sesión:

Practica Calificada No. 2

OCTAVA SEMANA

Semana de Exámenes Parciales

NOVENA SEMANA

Primera sesión:

Señales pasa-banda y de banda angosta: Envolvente compleja y Ruido AWGN pasa-banda.

Segunda sesión:

Practica calificada 3

Tercera sesión:

Laboratorio 3: Distorsión y Ruido

UNIDAD III: TRANSMISIÓN Y RECEPCIÓN DE SEÑALES UTILIZANDO MODULACIÓN EN AMPLITUD

OBJETIVOS DE APRENDIZAJE:

- Modelar, caracterizar e implementar las principales técnicas de modulación en amplitud.
- Reconocer las ventajas y desventajas de los métodos de modulación en amplitud frente al ruido y a la distorsión.
- Implementar los diferentes métodos de demodulación y recepción de señales moduladas en amplitud reconociendo sus ventajas y desventajas.

Segunda sesión:

Introducción. Transmisión en banda base y modulación.

DÉCIMA SEMANA

Primera sesión:

Modulaciones Lineales - Doble Banda Lateral (DBL) y Modulación AM.

Segunda sesión:

Modulaciones Lineales - Modulación en Banda Lateral Única (BLU) y Vestigial (BLV)

UNDÉCIMA SEMANA

Primera sesión:

Modulaciones Lineales - Modulación QAM. Ruido en DBL, AM y BLU.

Segunda sesión:

Recepción de Modulación AM: Parámetros de un receptor. El receptor superheterodino.

Tercera sesión:

Laboratorio 4: Modulación AM - Parte 1

DUODÉCIMA SEMANA

Primera sesión:

Seminario de Ejercicios No. 3.

Segunda sesión: Practica calificada 4

UNIDAD IV: TRANSMISIÓN Y RECEPCIÓN DE SEÑALES UTILIZANDO MODULACIÓN ANGULAR

OBJETIVOS DE APRENDIZAJE:

- Modelar, caracterizar e implementar técnicas de modulación angular.
- Reconocer las ventajas y desventajas de los métodos de modulación en frecuencia frente al ruido y a la distorsión.
- Implementar los diferentes métodos de demodulación y recepción de señales moduladas en frecuencia reconociendo sus ventajas y desventajas.

DECIMOTERCERA SEMANA

Primera sesión:

Modulación angular: PM FM. Banda angosta. Índice de Modulación. Espectro en frecuencia.

Segunda sesión: Practica calificada 5 Tercera sesión:

Laboratorio 5: Modulación AM - Parte 2

DECIMOCUARTA SEMANA

Primera sesión:

Modulación angular: Generación y Demodulación. Circuitos moduladores y Demoduladores.

Segunda sesión:

Demodulación Angular. Ruido en PM y en FM.

DECIMOQUINTA SEMANA

Primera sesión:

Umbral de FM. Efecto Captura. Pre-énfasis y De- énfasis. Comparación de los esquemas de modulación. Transmisión de FM Estéreo.

Segunda sesión:

Recepción de FM Estéreo. Mejora utilizando limitadores. El Receptor superheterodino para recepción de FM estéreo.

Tercera sesión:

Laboratorio 6: Modulación FM Laboratorio 7: Recepción de FM

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

. Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, módulos circuitales y de telecomunicaciones, una computadora personal para cada grupo de trabajo, ecran, proyector multimedia.

Materiales: Protoboard, cables, MATLAB, multímetro, osciloscopio, generados de funciones, manuales, componentes circuitales, libros y separatas.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+PL+EF)/4

PE= (P1+P2+P3+P4+P5-MN)/4 PL= (Lb1+Lb2+Lb3+Lb4+Lb5+Lb6+Lb7-MN)/6

Dónde: P1 .. P5 : Practica calificada escritas

PE: Promedio de evaluaciones **PL** : Promedio de laboratorios calificados,

EF: Examen final escrito **Lb1...Lb7**: Laboratorio calificado

PP: Promedio de prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería.				
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.				
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas.	R			

(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario.		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería.		
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		
(g)	Habilidad para comunicarse con efectividad.		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería electrónica dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.		
(j)	Conocimiento de los principales temas contemporáneos	R	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería electrónica.	K	

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		3	2	2

b) Sesiones por semana: tres sesiones.

c) **Duración**: 7 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Dr. Guillermo Kemper Vásquez.

XV. FECHA

La Molina, marzo de 2017.