

FIG.1A

FIG.1C

FIG.3

FIG.4A

FIG.4B

FIG.4C

FIG.7B

NOV 19 2001 9:34AM

FIG.8B

E1 [DT-A] = 1st EVENT, 196bp. Trans-SPLICING BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

DT-A E3 = 2nd EVENT, 161bp. Trans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.9

FIG. 10B

FIG.11B

FIG.11C

FIG.12A

1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp):

BioLac-TR1

GOGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCCGTTTACAG/GGCGCCTTCGTCTAATAATG Splice junction

GGACTGGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTT

TOSCOSATACCCCCAACCATCCCCAGTTCTGTATGAACCGTCTGGTCTTTGCCCGACCCCACCCCATCCAC

2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp)

BioLac-TR1

GCCTTTCGCTACCTGGAGAGACGCCCCCTGATCCTTTGCGAATACGCCCACGCGATGCGTAACAGTCTTGG

COGITICOCIAAAIACICOCCAGGCCITICOICAGIAICCCCCTITIACAG/OGCCIGCIGCIGTIGCIGCIGCI Splice junction

GAGCATGGGGGACATGGGCATCCAAGGAGCCACTTCGGCCCACGTGCCG

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

FIG.13

FIG.14

FIG. 15A

				15B
Kpn I Dra I	PRESENT IN PTM 3° UT BUT NOT TARGET	STGCCTTCCTTGACC 480 SACGGAAGTGG		Sauge 1 2 Sca 1 1 Sma 1 - Sph 1 1 - Spl 1 - Ssp 1 - Stu 1 - FIG. 15B
Sau3a 1 Sau3a 1 Dpn 1 BamH 1 Kpn CCACACTGGACTAGTGGATCCCAGCTCGGT/ GGTGTGACCTAGTGGATCCCCATGGCAT GGTGTGACCTAGTGGATCCCATGGCATGG	378 378	3CCAGCCATCTGTTGTTTGCCCCTCCCCC		Restriction Endonucleases site usage EcoR I 1 Nde I - EcoR V 1 Nhe I 1 1 Hae II - Not I 1 Hae III 2 PFIM I - HinC II - Pst I 2 HinD III 1 Pvu I -
Sau 1 Sau 1 Sau 1 Sau 2 Sau 3 Hin D 111 Dpn 1 Hin D 111 Dra 1 Dpn 1 Hin D 111 Dra 1 Dpn 1 Hin D 111 Dra 1 Dr	Sau3A 1 Dpn 1	TAAACCCTGATCAGCCTCCACTGTGCCTTCTAGTTGCCAGCCA	CTGCAAGCTGCCACTCCCAC 500 GACCTTCCACGGTGAGGGTG	Acc I — EcoR I Apa I 1 EcoR V ApaL I — Hae II BomH I 1 HinC II Bon II 2 HinD II

FIG. 16

FIG.17

FIG. 19

(1) 3' BD (120 BP): CATICACTICCTCCAATTATCATCCTAAGCAGAAGTGTATATTICTTATTIGTAAAGATTCTATTAACTCATTTGATTC AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACCTTGCTCGAA

(3) Branch point, pyrimidine tract and acceptor splice site: IACIAAC I GCTACC ICTICITITITITI GAIAIC CIGCAC GGC GGC

3'ss LacZ mini

(4) 5' donor site and 2nd spacer sequence:| <u>IGA_ACG</u>|*GTAAGT* GTTATCACCCAIATGTGTCTAACCTGATTGGGCCTTCGATACG LacZ mini 5'88

CTAAGATCCACCGG

BD (260 BP): ICAAAAAGITTICACATAATTICTTACCICTICTICAAATTCATCCTTIGATGACGCTICTGTATGTATTCATCATTGGAA ACACCAATGATTTTTETTTAATGGTGCTGGCATAATCCTGGAAAACTGATAACAATGAAATTCTTCCACTGTGGTTAA AAAAACCCTCTGAA77CTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATTATTAACTCA TTATCAAATCACGC ۍ

(5)

FIG.21

FIG.23A

FIG.23B

Double Trans-splicing Produces Full-length Protein

Figure 24

FIG.26

FIG.27

SPECIFICITY OF DOUBLE TRANS-SPLICING REACTION

FIG.29

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target

FIG. 31

Sequence of a double *Trans*—spliced product

FIG.32

CF—TR Repair: 5' Exon—Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini—gene target

FIG.34A

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini—gene target.

FIG.34C

MCU in exon 10 of PTM 88 of 192 (46%) bases in PTM exon 10 are not complemetary to its binding domain.

ACCACCTTCCTCATCATCATCATCCCCCCGTTACAACCCAACTCAACCCAAGATCAAACATTCCC GCCCCATCACCTTTTCCAGCCAATTCAGTTGCATCATCCCCCCTACCATCAAGAGAGAAGATAAT CTTCCCCTCAGTTACCACCAGTACCCCTATCCCTCCTGATTAAGCCCTGTCAGTTGCAGGAG

FIG.35

Figure 36

FIG.37A

FIG.37B

top)
soc 4.00
soc Trans-spliced
200 (299 bp) # PCR cycles Total RNA 14 15 3 50 ng lacZCF9 20 25 13 10 11 12 M Trans-splicing 3 100 ng 2 20 0 lacZCF9n1 + PTM-CF24 2 00 50 ng 20 25 ~ Σ v 25 30 Sı) IIB Cis-splicing 20 ಜ್ಞ 25 ag 25 2 The same of the same Cis-spliced (303 bp)

Figure 35 A

Figure 38B

Figure 39

00001100 0000

Figure 40A

FIG.41A

03k

FIG.41C

Exons

1-10

ATGCAGAGGTCGCCTCTGGAAAAGGCCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG GGAAAGAGAATGGGATAGAGAGGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT TIGATITATAAGAAGACTITAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATIGGACAACTTGTTAGTCTCCTTT CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGGATCGCTCCTTTGCAAGTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG CCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAATGATTGAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGCAG AATGTAACAGCCTTCTGGGAGGAGGATTTGGGGAATTATTTGAGAAAGCAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT TTAGAACCAAGTGAAGGCAAGATCAAACATTCCGGCCCCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTA CCATCAAGGAGAACATAATC77CGGCGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCTGTCAGTTGGA **G**CAG

Trans-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

ICAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATGCTTTGATGACCCTTCTGTATCTATATTCATCATTG GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGT GCTTAATTTTACCCTCTGAATTCTCCATTTCCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATT ATTAACTCATTATCAAATCACGCT

FIG.42

153 bp PTM24 Binding Domain:

Nhe I

CTAGC—AATAATGAGGAGGGGCCCTCAGGCTCAGGATTCACTCCCAATTATCATCCTAAGCAGAGTGTATA

COTAGC—AATAATGAGGAAGCGGGGGAGGGATTCACTTGCCTCCAATTATCATCCTAAGCAGAGTGTATA

TTCTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTCTGCTATGC

Sac II AC-CCCCCC

FIG.43A

Trans-splicing domain

Exons 10-24

ACTICACTICTAATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTICATTCT GTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA CGTGGAATCACACTGACTGGACGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATITITATGGGACATTITCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAATTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT CTCAATCCAATCAACTCTATACGAAAATTTTCCATTGTGCAMAGACTCCCTTACAAATGAATGCCATCGAAGAGGATT CTGATGAGCCTTTAGAGAGAAGGCTGTCCTTAGTACCAGATTCTGAGCAGGGGAGAGGCGATACTGCCTCGCATCAGCGT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAACACCATCCACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATICAAGAAGGITATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ACACTCCTCTTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT ATTIGACTICATCCAGTIGITATTAATTGTGATTGGAGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATAGAAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG CAGAACGAGAAGGAAGAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTGGATGGGGGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA AAGCCATCAGCCCCTCCGACAGGGTGAAGCTCTTTCCCCACCGGAACTCAAGCCAAGTGCAAGTCTAAGCCCCAGATTGC

Histidine tog Stop
TGCTCTGAAAGAGGAGACAGAAGAAGAGGGTGCAAGATACAAGGCTTCATCATCATCATCATCATTAG