16: Spis definicji i ważniejszych twierdzeń

Rozwiązanie ogólne układu $U = (f_1, ..., f_m)$ to $\overline{a} = (a_1, ..., a_n)$ takie, że $I(\overline{a}/R) = (f_1, ..., f_m)$, gdzie $f_i \in R[x_1, ..., x_n]$ oraz $\overline{a} \in S^n$, gdzie $S \supseteq R$.

Niech $\overline{a}_i \in L_i \supseteq K$ (i = 1, 2). Wtedy $I(\overline{a}_1/K) = I(\overline{a}_2/K) \iff (\exists \ \phi : K[\overline{a}_i] \to K[\overline{a}_2]) \ \phi \upharpoonright K = \operatorname{id}_K i \ \phi(\overline{a}_1) = \overline{a}_2$.

Ciała L_1 i L_2 są izomorficzne nad K, gdzie $K \subseteq L_j$, wtw. istnieje izomorfizm $f: L_1 \to L_2$ taki, że $f \upharpoonright K = id_K$.

 $L \supseteq K$ jest ciałem rozkładu nad K wielomianu $f \in K[x]$ jeśli:

- 1. f rozkłada się w L[x] na czynniki liniowe
- 2. L jest rozszerzeniem K o wszystkie pierwiastki f.

Ciało rozkładu wielomianu jest jedyne z dokładnością do izomorfizmu nad K.

Ciało algebraicznie domknięte to ciało L takie, że każdy f ∈ L[x] o stopniu > 0 posiada w L pierwiastek (każdy wielomian rozkłada się na czynniki liniowe).

Ciało proste nie zawiera żadnego właściwego podciała.

Pierwiastki z jedności: 1. $a \in R$ jest pierwiastkiem z jedności stopnia n jeśli $a^n - 1 = 0$

- 2. $\mu_n(R) = \{a \in R : a^n 1 = 0\}$ jest grupą pierwiastków z 1 stopnia n
- 3. $\mu(R) = \{a \in R : (\exists n)a^n 1 = 0\} = \bigcup \mu_n(R)$ jest grupą pierwiastków z 1. Jest to torsyjna grupa abelowa i jest podgrupą R^*
- 4. a jest **pierwiastkiem pierwotnym** stopnia n z 1 jeśli a $\in \mu_n(R)$ i dla każdego k < n a $\notin \mu_k(R)$.

Element a **jest algebraiczny** jeśli istnieje $f \in K[x]$ taki, że f(a) = 0.

Jeśli a jest algebraiczny nad K, to K[a] = K(a), tzn. K[a] jest ciałem.

Element a **jest przestępny** jeśli dla każdego $f \in K[x] f(a) \neq 0$.

Rozszerzenie algebraiczne składa się z samych elementów algebraicznych.

Niech $K \subseteq L \subseteq M$, wtedy $K \subseteq M$ jest algebraiczne $\iff K \subseteq L$ oraz $L \subseteq M$ są algebraiczne.

Stopień rozszerzenia: jeśli K ⊆ L jest rozszerzeniem ciała, to L możemy traktować jako przestrzeń liniową nad K. Definiujemy wtedy stopień rozszerzenia [L : K] = dim_K(L) jako rozmiar bazy L nad K.

Algebraiczne domknięcie K w L : $K_{alg}(L) = \{a \in L : a \text{ jest algebraiczny}\}$

Mówimy, że K jest relatywnie algebraicznie domknięte w L jeśli $K_{alg}(L) = K$.

Funkcja Eulera: $\phi(m) = |\{k \in \mathbb{N} : 0 \le k < m : NWD(k, m) = 1\}|.$

m-ty wielomian cyklotoniczny: zdefiniujmy $\{k \in \mathbb{N} : NWD(k, m) = 1\} = \{m_1, ..., m_{\phi(m)}\}$ i niech $a \in \mu_m(R)$ będzie generatorem tej grupy. Wtedy wielomian

$$F_m(x) = (x - a^{m_1})...(x - a^m \phi(m))$$

nazywamy m-tym wielomianem cyklotonicznym.

Wiemy, że
$$w_m(x) = x^m - 1 = F_m(x) \prod_{\substack{d < m \\ d \mid m}} F_d(x)$$
.

Lemat Liouville'a: jeśli $a \in \mathbb{R}$ jest liczbą algebraiczną stopnia N > 1, to istnieje c = c(a) $\in \mathbb{R}$ takie, że dla każdego r = $\frac{p}{a} \in \mathbb{Q}$ zachodzi

$$\left|a - \frac{p}{q}\right| \ge \frac{c}{q^N}$$

Jeśli liczba nie spełnia tego lematu, to jest liczbą przestępną.

Domknięcie algebraiczne $\widehat{K} = K^{alg}$ to ciało $L \subseteq K$, które jest algebraicznie domkniętym rozszerzeniem algebraicznym K (każdy a $\in L$ jest pierwiastkiem wielomianu z K[x]).

Jest to najmniejsze algebraicznie domknięte ciało zawierające K.

Domknięcie algebraiczne jest jedyne z dokładnością do izomorfizmu nad K

Izomorfizm ciał przenosi się na izomorfizm ich domknięć algebraicznych dokładniej, jeśli f : $K \xrightarrow{\cong} L$, to istnieje h : $\widehat{K} \xrightarrow{\cong} \widehat{L}$ taki, że h $\upharpoonright K = f$.

Grupa Galois rozszerzenia $K \subseteq L$ to grupa $Gal(L/K) = \{f \in Aut(L) : f \upharpoonright K = id_K\} = Aut(L/K)$. Jest to podgrupa wszystkich automorfizmów ciała L.

Grupa $Gal(\widehat{K}/K)$ jest nazywana **absolutną grupą Galois** ciała K.

Rozszerzenie normalne to rozszerzenie algebraiczne $K \subseteq L$ takie, że dla wszystkich $f: L \to K$ zachodzi $f[L] \subseteq \widehat{K}$ oraz f[L] jest jedno dla wszystkich takich f.

Rozszerzenie jest normalne \iff dla każdego $f \in Gal(\widehat{K}/K)$ mamy f[L] = L.

Rozszerzenie algebraiczne $K \subseteq L$ jest normalne \iff dla każdego $b \in L$ wielomian minimalny $f \in K[x]$ rozkłada się w L[x] na iloczyn czynników liniowych.

Rozszerzenie skończone i normalne $L \subseteq K \iff L$ jest ciałem rozkładu pewnego wielomianu.

Normalne domknięcie ciała: niech $K\subseteq L$ i niech L_1 będzie generowane przez $\bigcup \{f[L]: f\in Gal(\widehat{K}/K)\}$. Wtedy

- 1. L₁ jest normalnym domknięciem ciała L w K
- 2. rozszerzenie $K \subseteq L_1$ jest normalne
- 3. $K\subseteq L_2$ i $L\subseteq L_2$ są normalne, to istnieje monomorfizm $L_1\to L_2$ który po obcięciu do K jest id_K .

Element rozdzielczy: $a \in \widehat{K}$ jest rozdzielczy nad K gdy wielomian minimalny $w_a(x) \in K[x]$ ma jedynie pierwiastki pojedyncze. Wielomian taki nazywamy **wielomianem rozdzielczym**.

Rozszerzenie rozdzielcze to rozszerzenie algebraiczne którego wszystkie elementy są rozdzielcze nad K.

Wielomian w(x) jest nierozdzielczy $\iff w \in K[x^p]$.

Jeśli $a \in \widehat{K}$, to $|\{f(a) : f \in Gal(\widehat{K}/K)\}| \le deg(a)$, a jeśli a jest rozdzielczy to zamiast \le jest =.

Element pierwotny $L \supseteq K$ to $a \in L$ takie, $\dot{z}e L = K(a)$.

Jeśli K \subseteq L jest rozszerzeniem skończonym takim, że L = K(a₁, ..., a_n) i a_i są rozdzielcze nad K, to istnieje a \in L rozdzielczy nad K taki, że L = K(a).

Rozszerzenia radykalne: K ⊂ L

- 1. $a \in L$ jest czysto nierozdzielczy [radykalny] nad K gdy wielomian minimalny w_a matylko jeden pierwiastek w K
- 2. $K \subseteq L$ jest **rozszerzeniem radykalnym** gdy każdy $a \in L$ jest radykalny.

a jest radykalne nad K \iff dla każdego $f \in Gal(\widehat{K}/K)$ f(a) = a. Jeśli z kolei char(K) = p, to a radykalne \iff istnieje n takie, że $a^{p^n} \in K$.

Domknięcie rozdzielcze K w L sep_L(K) = {a \in L : a rozdzielcze nad K}. Oznaczamy \widehat{K}^S = sep_{\widehat{K}}(K) jako **rozdzielcze domknięcie** K.

Domkniecie radykalne K w L rad_L(K) = $\{a \in L : a \text{ radykalne nad } K\}$. Oznaczamy $\widehat{K}^r = \text{rad}_{\widehat{K}}(K)$ jako radykalne domkniecie K.

Stopień rozdzielczy rozszerzenia L nad K definiujemy $[L:K]_S = [sep_1(K):K]$.

Stopień radykalny rozszerzenia L nad K to z kolei [L : K]_r = [rad₁ (K)].

Rozszerzenie Galois to rozszerzenie algebraiczne $K \subseteq L$ takie, że dla każdego $a \in L \setminus K$ istnieje $f \in Gal(L/K)$ taki, że $f(a) \neq a$.

 $K \subseteq L$ jest Galois $\iff K \subseteq L$ jest rozdzielcze i normalne.

Niech $K \subseteq L \subseteq M$. Wtedy $K \subseteq M$ jest Galois $\iff L \subseteq M$ jest Galois.

Twierdzenie Artina: jeśli G < Aut(L), to $L^G = \{a \in : (\forall f \in G) f(a) = a\} \subseteq L$ jest rozszerzeniem Galois i $[L : L^G] = |G|$.

Stopień rozszerzenia Galois jeśli K \subseteq L jest skończonym rozszerzeniem Galois, to [L : K] = |Gal(L/K)|.

Dla K \subseteq L skończonego i Galois oraz H \le Gal(L/K) mamy H \triangleleft Gal(L/K) \iff K \subseteq L^H jest normalne.

Rozszerzenie abelowe to skończone rozszerzenie Galois dla którego grupa Galois jest cykliczna.

Rozszerzenie rozwiązywalne to rozszerzenie Galois dla którego grupa Galois jest rozwiązywalna.

Rozszerzenie ciała przez pierwiastki K ⊆ L to rozszerzenie dla którego istnieje k oraz L ⊆ L₀ ⊇ L₁ ⊇ ... ⊇ L_k = K takie, że dla każdego i < k ciało L_i jest ciałem rozkładu nad L_{i+1} wielomianu

- 1. $x^{n_i} b_i$ dla $b_i \in L_{i+1}$ lub
- 2. $x^p x b_i$ dla $b_i \in L_{i+1}$.

 $K \subseteq L$ jest skończonym rozszerzeniem przez pierwiastki \iff istnieje $L' \supseteq L$ takie, że $K \subseteq L'$ jest rozwiązywalna.

Rozszerzenie przestępne posiada element a przestępny nad K (tzn. I(a/K) = 0). Rozszerzenie czysto przestępne składa się wyłącznie z elementów przestępnych.

a jest elementem przestępnym, jeśli $K(a) \cong K(x)$.

Domknięcie algebraiczne U = \widehat{U} jest dużym ciałem, F \subseteq K \subseteq U, gdzie F jest ciałem prostym, wtedy

- 1. $\operatorname{acl}_K: \mathscr{P}(U) \to \mathscr{P}(U)$ jest operatorem domknięcia algebraicznego który podzbiór $A \subseteq U$ przekształca na $K(A)^{alg}$
- 2. $A \subset U$ jest algebraicznie domkniety nad K gdy $A = \operatorname{ack}_{K}(A)$.

Podzbiór algebraicznie niezależny spełnia (\forall a \in A) a \notin acl_K(A \ {a}).

Równoważnie, dla każdego n oraz $a_1, ..., a_n \in A$ parami różnych dla każdego $w(x_1, ..., x_n) \in K[\overline{x}]$ $w(\overline{a}) \neq 0$.

Baza przestępna to algebraicznie niezależny podzbiór $B \subseteq A$ taki, że $B \subseteq A \subseteq \operatorname{acl}_K(B)$. **Wymiar przestępny** A nad K to moc jego bazy przestępnej.

Lemat Schura: jeśli M jest R-modułem prostym, to End_R(M) jest pierścieniem z dzieleniem (prawie ciało, ale niekoniecznie jest przemienny)

Podzbiór liniowo niezależny w R**-module** $\{m_i\}\subseteq M$ znaczy, że jeśli $\sum r_i m_i = 0$, to $r_i = 0$ dla każdego i

Baza modułu spełnia:

- 1. jest liniowo niezależna
- 2. generuje M jako R-moduł (czyli dowolny M \ni m = $\sum r_i b_i$ dla $r_i \in R$ oraz b_i z bazy)
- 3. $Lin_R(B) = M$

Suma prosta modułów to $\coprod M_i = \bigoplus M_i = \{f \in \prod M_i : \{i \in I : f(i) \neq 0\} \text{ jest skończony} \}$ (skończenie wiele współrzędnych jest niezerowych).

Moduł wolny posiada bazę.

Każdy R-moduł M jest obrazem pewnego R-modułu wolnego przez homomorfizm.

Niech M, N będą R-modułami i N jest wolny. Niech $f: M \to N$ będzie epimorfizmem, wtedy $M \cong \ker(f) \oplus N$.

Moduł projektwyny N dla każdego epimorfizmu $f : M \to N$ ma $M = ker(f) \oplus M'$ dla $M' \subseteq M$.

Równoważnie isnieje g : N \rightarrow M takie, że fg = id_N [f rozszczepia się].

Moduł injektywny M to taki, że dla każdego N i każdego monomorfizmu g : M \rightarrow N istnieje N' \subseteq N taki, że N = Im(g) \oplus N', tzn. obraz g jest *składnikiem prostym* N.

Moduł cykliczny jest generowany przez pojedynczy element, tzn. M = Ra dla pewnego $a \in M$. **Torsje**

- 1. a jest **torsyjny** gdy istnieje r ≠ 0 takie, że ra = 0
- 2. M jest **modułem torsyjnym** gdy każdy element jest torsyjny. Jeśli każdy element jest beztorsyjny to M jest modułem **beztorsyjnym**
- 3. $M_t = \{a \in M : a \text{ jest torsyjny}\}\ \text{jest }$ **częścią torsyjną** M i jest jego podmodułem.