Задача Штейнера о минимальном дереве

Шлычков Константин

Декабрь 2020

Аннотация

В данной работе рассматривается задача Штейнера о минимальном дереве. Основная цель состоит в том, чтобы показать, что имея ε -приближенное решение метрической версии задачи, можно получить ε -приближенное решение в общем случае.

1 Введение

Первоначально проблема была сформулирована в форме, которая стала известна как задача о метрическом дереве Штейнера: при помощи отрезков соединить N точек на плоскости таким образом, чтобы их суммарная длина была наименьшей. При этом любые две точки могут быть соединены отрезками либо напрямую, либо через дополнительные точки. Может быть показано, что полученная сеть образует дерево, отсюда и название проблемы.

Хотя общая постановка задачи Штайнера была сформулирована Гауссом в 1836 году, впервые ее серьезное рассмотрение было в статье 1934 года, написанной Войтехом Ярником и Милошем Кесслером. Эта статья уже содержала практически все свойства деревьев Штейнера, включая обобщение проблемы с плоскости на более высокие измерения. Было показано, что для метрической задачи Штейнера степень точек, добавленных к графу (так называемые точки Штейнера), должна быть равна трем, а три ребра, инцидентные такой точке, должны образовывать три угла в 120 градусов. Кроме того было показано, что количество точек Штейнера, которое может иметь дерево, не превосходит N-2, где N- начальное количество точек.

Для общего N проблема евклидова дерева Штейнера является \mathbf{NP} -трудной, и, следовательно, неизвестно, можно ли найти оптимальное решение с помощью алгоритма с полиномиальным временем. Однако существуют схемы аппроксимации за полиномиальное время для евклидовых деревьев Штейнера. Один из таких алгоритмов будет рассмотрен дальше. Неизвестно, является ли проблема евклидова дерева Штейнера \mathbf{NP} -полной, поскольку неизвестна принадлежность к классу сложности \mathbf{NP} .

Эта задача, в некотором смысле, является обобщением задачи о минимальном остовном дереве, поскольку, в отличии от последней, для уменьшения суммарного веса, мы можем добавлять новые точки. Дальше покажем, что минимальное остовное дерево является 2-приближением задачи Штейнера.

2 Формулировка проблемы и основные определения

Постановка задачи

Дан связный неориентированный граф $G=(V,\ E)$ и неотрицательная весовая функция $\omega:E\to\mathbb{R}_+$. Множество вершин V разбито на два непересекающихся множества R и S, т.е. $V=R\cup S$, где $R\neq\varnothing$ и $R\cap S=\varnothing$. Требуется найти дерево T минимального веса, которое содержит все вершины из множества R и произвольное число вершин (возможно, 0) из S.

Определение. Элементы множества R называются **терминальными вершинами**.

Определение. Элементы множества S называются точками Штейнера.

Определение. $\omega(G) = \sum_{e \in E} \omega(e)$

Определение. Определим замыкание метрики графа (англ. metric completion) как весовую

функцию $d: V \times V \to R$ построенную по следующему правилу: для каждых $u, v \in V$ определим d(u, v) как кратчайший путь от u до v относительно весовой функции ω .

Определение. Пусть дано множество X: |X| = 3q и семейство множеств $C = \{C_1, \ldots, C_n\}$, где $C_i \subseteq X$ и $|C_i| = 3$. Требуется определить содержит ли C покрытие множества X, то есть такое $C' \subseteq C$, что $\forall x \in X$ $\exists ! C'' \in C' : x \in C''$. Данная задача называется **EXACT3COVER**.

3 Основная часть

Сначала покажем, что задача проверки существования дерева Штейнера веса не более k является **NP**-полной. Для этого сведем к ней **NP**-полную задачу **EXACT3COVER**[1].

Пусть $X = \{x_1, \dots, x_{3q}\}, C = \{c_1, \dots, c_n\}$. Построим граф G = (V, E) по следующим правилам:

- $V = \{v\} \cup \{x_1, \dots, x_{3q}\} \cup \{c_1, \dots, c_n\}$. Обратите внимание, что к множеству вершин V мы добавили дополнительную вершину v. Это необходимо, чтобы граф был связный.
- $E = \{\{C_i, x_i\} | x_i \in c_i\} \cup \{\{v, c_i\} | 1 \le i \le n\}$
- ullet $R = \{v, x_1, x_2, \dots, x_{3q}\}$ множество терминальных вершин.
- k = 4q
- $w(u,v)=1 \ \forall u,v\in V$ веса на ребрах возьмем равными 1.

Построение данного графа можно осуществить за полиномиальное время.

Утверждение. Если $(X,C) \in \mathbf{EXACT3COVER}$, то граф G удовлетворяет условиям задачи, то есть он неориентирован и связен.

▲ Неоринтированность графа очевидна, докажем его связность. Достаточно проверить, что для любой вершины $u \in V$, где $u \neq v$ существует путь из u в v. Если $u = c_i$ для некоторого $i = \overline{1, n}$, то из u в v существует по построению. Если $u = x_i$ для некоторого $i = \overline{1, 3q}$, то из $(X, C) \in \mathbf{EXACT3COVER} \ \forall x \in X \ \exists i = \overline{1, n}$: $x \in c_i \Rightarrow$ из u существует путь в c_i , а из c_i в v. Значит, граф связен.

Лемма 1. $(X,C) \in \mathbf{EXACT3COVER} \Leftrightarrow$ в графе G существует дерево Штейнера веса не более k.

▲ ⇒ Пусть $(X,C) \in \mathbf{EXACT3COVER}$ и C' — решение задачи $\mathbf{EXACT3COVER}$, тогда ясно, что |C'| = q. Пусть без ограничения общности $C' = \{c_1, \ldots, c_q\}$. Рассмотрим подграф G', состоящий из ребер $\{v, c_1\}, \ldots, \{v, c_q\}$ и $\{c_i, x_j\}$, если $x_j \in c_i$, $i = \overline{1, q}$, $j = \overline{1, 3q}$. Аналогично утверждению выше можно показать, что он связен. Кроме того, он содержит все терминальные вершины и его вес равен q + 3q = 4q = k. Покажем, что в G' отсутсвуют циклы. Запустим DFS из вершины v и проверим отсутствие обратных ребер. Из вершины v \exists ! ребро в c_i , поэтому обратное ребро из c_i в v отсутствует. Далее, из c_i есть ребро в x_j , тогда, поскольку \exists ! c_i : $x_j \in c_i$, то обратное ребро снова отсутсвует. Из вершины x_j других ребер нет, поэтому происходит возвращение из рекурсии, что доказывает, что на каждом шаге обратные ребра отсутствуют, а значит граф не имеет циклов. Таким образом, мы нашли дерево Штейнера веса k.

 \Leftarrow Пусть теперь существует дерево Штейнера T веса не более 4q, тогда у него не более 4q+1 вершина (так как веса на ребрах равны 1). По определению дерева Штейнера T должно содержать вершины x_1, \ldots, x_{3q} и v, поэтому T содержит не более q вершин из множества C. Пусть это вершины c_1, \ldots, c_k , где $k \leq q$, но каждая из них, по построению, соединена ровно с 3 вершинами x_1, \ldots, x_{3q} , поэтому если бы k < q, то нашлась бы вершина x_j , которая не была бы соединена ни с каким из c_i , что нарушало бы связность дерева, а значит k = q. Это доказывает, что $\forall x_j \; \exists! c_i \colon x_j \in c_i$. Таким образом, мы нашли покрывающее множество $C' = \{c_1, \ldots, c_q\}$.

Лемма 2. Задача проверки существования дерева Штейнера веса не более k принадлежит классу **NP**. В качестве сертификата возьмем произвольный подграф $G' \subseteq G$. Тогда проверка, что G' являетя деревом веса не более k и содержит все терминальные вершины происходит за полиномиальное время (все можно сделать через DFS). Из лемм 1 и 2 следует, что задача проверки существования дерева Штейнера веса не более k является **NP**-полной.

Покажем, что ε -приближенное решение метрической задачи является ε -приближенным решением задачи в общей постановки.[2]

Утверждение. Если ребра неориентированного графа G = (V, E) имеют неотрицательный вес, то замыкание метрики графа $d: V \times V \to R$ действительно является метрикой.

A Поскольку все ребера имеют неотрицательный вес, то очевидно, что $d(u,v) \geq 0 \ \forall u,v \in V$. Аналогично, d(u,u) = 0, согласно определению. Поскольку исходный граф неориентированный, кратчайший путь от u до v также является кратчайшим путем от v до u и, следовательно, d(u,v) = d(v,u). Далее, поскольку кратчайший путь от u до v не больше пути от u до v, проходящего через вершину w, то $d(u,v) \leq d(u,w) + d(w,v)$.

Теперь сведем задачу Штейнера к метрической версии. Рассмотрим неориентированный связный граф $G_{\omega}=(V,E)$ с неотрицательной весовой функцией ω и терминальным множеством вершин R. С помощью замыкания метрики графа G_{ω} построим граф $G_{d}=(V,E)$ с весовой функцией d, которая, по предудущему утверждению, является метрикой. Так как граф G_{ω} связен, то граф G_{d} полон. Множество терминальных вершин оставим прежним.

Лемма. Пусть OPT_{ω} — решение общей задачи Штейнера, а OPT_d — решение метрической задачи. Тогда $\omega(OPT_{\omega}) = d(OPT_d)$.

▲ Сначала докажем, что $\omega(OPT_{\omega}) \leq d(OPT_{d})$. Пусть мы знаем оптимальное решение метрической задачи $T_{d} = (V_{d}, E_{d})$. Тогда по построению каждому ребру $(u, v) \in E_{d}$ соответствует путь от u до v в графе G_{ω} . Пусть P — множество таких путей, а E_{ω} — множество ребер, которые образуют пути из P. Тогда подграф $H = (V_{\omega}, E_{\omega})$ неориентирован, связен (так как T_{d} связен), содержит все терминальные вершины и $\omega(H) \leq d(T_{d})$ (неравенство, так как некоторые пути могли пересекаться). Пусть T_{ω} - произвольное дерево Штейнера в графе H, тогда $\omega(T_{\omega}) \leq \omega(H)$. В итоге получаем, что $\omega(OPT_{\omega}) \leq \omega(T_{\omega}) \leq \omega(H) \leq d(T_{d}) = d(OPT_{d})$. Теперь покажем, что $\omega(OPT_{\omega}) \geq d(OPT_{d})$. Пусть $T_{\omega} = (V_{\omega}, E_{\omega})$ - решение общей задачи Штейнера. По построению графа G_{d} выполнено вложение $T_{\omega} \subseteq G_{d}$, поэтому T_{ω} является деревом Штейнера и в метрическом случае. Кроме того, $d(T_{\omega}) = \omega(T_{\omega})$, поскольку веса на дереве не меняются. В итоге получаем, что $d(OPT_{d}) \leq d(T_{\omega}) = \omega(OPT_{\omega})$

Таким образом, из леммы следует, что если OPT_{ε} - ε -приближенное решение метрической задачи Штейнера, то оно является и ε -приближенным решением общей задачи.

Теперь докажем, что минимальное остовное дерево (MST), построенное на множестве R, является 2-приближением метрической задачи.

Лемма. Пусть T — минимальное дерево Штейнера в метрической версии и пусть M — минимальное остовное дерево для множества терминальных вершин R, тогда $d(M) \leq 2 \cdot \left(1 - \frac{1}{|R|}\right) \cdot d(T)$.

A Запустим DFS на дереве T из терминальной вершины, тогда мы получим цикл P, длина которого равна $2 \cdot d(T)$ (каждое ребро в T мы обошли 2 раза — при первом спуске и по возвращению из рекурсии). Пусть $(u,v), (v,w) \in P$. Если v — точка Штейнера, то заменим ребра (u,v) и (v,w) на ребро (u,w) (такое ребро существует, так как граф полон). Это не увеличит вес пути, поскольку выполняется неравенство треугольника и $d(u,w) \leq d(u,v) + d(v,w)$. Если одна из вершин u,w являетя точкой Штейнера, то повторим этот процесс снова.

Получим цикл, который состоит исключительно из множества терминальных вершин, но в нем возможны повторения некоторых вершин. Пусть v — повторяющая вершина, отличная от стартовой, тогда ребра (u,v) и $(v,w) \in P$ заменим на ребро (u,w). По тем же рассуждениям, что и для вершин из S получим, что новый цикл C не длиннее P, то есть $d(C) \leq d(P)$.

Теперь удалим из цикла ребро e наибольшего веса и получим путь P', проходящий по всем вершинам из R

ровно 1 раз, то есть получим остовное дерево для R. Заметим, что цикл C состоит из |R| ребер, поэтому найдется ребро веса хотя бы $\frac{1}{|R|} \cdot d(C)$, поэтому $\frac{1}{|R|} \cdot d(C) \le d(e)$ и, значит, $d(P') = d(C) - d(e) \le \left(1 - \frac{1}{|R|}\right) \cdot d(C)$. В итоге получим, что $d(M) \le d(P') \le \left(1 - \frac{1}{|R|}\right) \cdot d(C) \le \left(1 - \frac{1}{|R|}\right) \cdot d(P) = 2 \cdot \left(1 - \frac{1}{|R|}\right) \cdot d(T)$.

Итоговый алгоритм для 2-приближения:

- 1. Построить граф, весовой функцией которго является метрическое замыкание. Это можно сделать за полиномиальное время с помощью алгоритма Джонсона или Флойда—Уоршелла.
- 2. Из построенного графа удалить все точки Штейнера.
- 3. В полученном графе найти минимальное остовное дерево. Это можно сделать за полиномиальное время при помощи алгоритма Краскала или Борувки.
- 4. Найденное остовное дерево и будет являться ответом на задачу.

4 Анализ алгоритма

Лемма. Оценка приближения для данного алгоритма неулучшаема[3], то есть существует такой граф G со множеством терминальных вершин R, что алгоритм возвращает ответ $2 \cdot \left(1 - \frac{1}{|R|}\right) \cdot d(T)$, где d(T) — вес минимального дерева Штейнера.

▲ Рассмотрим граф на n вершинах, имеющий вид звезды (один центр и n-1 лист), у которого ребра от центра к листьям имеют вес 1 (поэтому стоимость между листьями равна 2). Множество терминальных вершин — листья, поэтому |R| = n-1 Тогда оптимальным решением является сама звезда, стоимость которой равна n-1. Но алгоритм находит минимальное остовное дерево на листьях, которое стоит $2 \cdot (n-2) = 2 \cdot \left(1 - \frac{1}{n-1}\right) \cdot (n-1) = 2 \cdot \left(1 - \frac{1}{|R|}\right) \cdot d(T)$.

Описание реализации и анализ асимптотики:

Для построения замыкания будем использовать алгоритм Джонсона. Так как веса на ребрах неотрицательны, то данный алгоритм вырождается до алгоритма Дейкстры, запускаемого от каждой вершины. Асимптотика такого алгоритма будет равна $O(|V||E|\log|V|)$. Для построения минимального остовного дерева воспользуемся алгоритмом Краскала, асимптотика которого равна $O(|E'|\log|E'|)$, где |E'| - число ребер в новом графе, но так как граф полный, то $|E'| = O(|R|^2)$, поэтому **итоговая асимптотика** равна $O(|V||E|\log|V| + |R|^2\log|R|)$.

Для поиска оптимального решения будем использовать перебор по всем подмножествам точек Штейнера и для каждого такого подмножества S', если оно образует с терминальными вершинами связный граф, будем искать минимальное остовное дерево на множестве $R \cup S'$. Асимптотика такого алгоритма равна $O(2^{|S|}|V|^2\log|V|)$, где |S| - число точек Штейнера.

5 Результаты тестовых запусков

Исследуем следующие параметры:

- Коэффициент приближения (С)
- Время работы приближенного алгоритма (t_{approx})
- Время работы точного алгоритма (t_{opt})

в зависимости от

• Вида графа

- \bullet Числа вершин (|V|)
- Числа ребер (|E|)
- Числа терминальных вершин (|R|)

Описание тестов:

Тесты включают 7 тест-сетов:

- 1. Простые графы с произвольными весами
- 2. Полные графы с евклидовыми весами
- 3. Полные графы с произвольными весами
- 4. Разреженные графы с евклидовыми весами
- 5. Разреженные графы с произвольными весами
- 6. Сеточные графы с прямоугольными отверстиями
- 7. Графы с небольшим числом точек Штейнера

Тесты были взяты с [4]. Также, в связи с вычислительными трудозатратами для вычисления оптимального ответа, с [4] также были взяты веса минимальных деревьев Штейнера для проводимых тестов (кроме 7 тест-сета).

Анализ запусков

Тест-сеты имеют небольшой размер, поэтому графики, построенные по каждому из них в отдельности, неинформативные. Для построения графиков будем использовать результаты всех тестов, а для каждого тест-сета (кроме 7) рассмотрим только минимум, максимум, среднее и медиану.

1. Простые графы с произвольными весами

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	1000.000000	25000.000000	500.000000	3538.000000	9.187801	3250.000000	1.272727
min	50.000000	63.000000	5.000000	13.000000	0.006011	11.000000	1.007491
mean	540.517241	4337.431034	104.103448	495.603448	2.455763	443.706897	1.136260
50%	500.000000	1250.000000	25.000000	172.000000	1.174348	155.500000	1.139465

2. Полные графы с евклидовыми весами

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
m	ax 666.000000	221445.0	174.000000	123139.000000	19.725824	122467.0	1.024605
n	nin 52.000000	1326.0	5.000000	1069.000000	0.013992	1044.0	1.000000
me	an 162.571429	24191.0	36.071429	11993.214286	1.632688	11923.5	1.010840
5	100.000000	4950.0	20.000000	2461.000000	0.082778	2445.0	1.007983

3. Полные графы с произвольными весами

	V	ĮΕĮ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	100.0	4950.0	50.0	1045.0	0.130650	1010.0	1.218519
min	100.0	4950.0	5.0	116.0	0.118188	116.0	1.000000
mean	100.0	4950.0	18.5	481.5	0.121086	438.5	1.109165
50%	100.0	4950.0	10.0	335.0	0.119192	280.0	1.103738

4. Разреженные графы с евклидовыми весами

	V	ĮΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	200.000000	370.000000	100.000000	87182.000000	0.123180	86268.000000	1.148902
min	100.000000	180.000000	5.000000	7592.000000	0.024933	7485.000000	1.002485
mean	126.666667	230.666667	27.666667	31790.933333	0.049352	30511.733333	1.050163
50%	100.000000	180.000000	20.000000	24496.000000	0.025960	23078.000000	1.046545

5. Разреженные графы с произвольными весами

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	200.000000	370.000000	100.0	66506.000000	0.123670	62263.0	1.233317
min	100.000000	180.000000	5.0	5295.000000	0.027925	5022.0	1.034054
mean	126.666667	230.666667	28.0	23893.666667	0.052563	22248.6	1.079969
50%	100.000000	180.000000	20.0	19584.000000	0.027952	18263.0	1.065169

6. Полные графы с евклидовыми весами

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	4045.000000	7094.00000	89.000000	3462.000000	145.524665	3135.000000	1.155087
min	90.000000	135.00000	10.000000	196.000000	0.019966	188.000000	1.017730
mean	1199.666667	2076.62963	17.407407	875.888889	17.254727	812.851852	1.072541
50%	898.000000	1554.00000	12.000000	653.000000	3.069680	607.000000	1.070175

7. Графы с небольшим числом точек Штейнера

Зависимость времени поиска точного решения от числа точек Штейнера

8. Все тесты

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
max	4045.000000	221445.000000	500.000000	123139.000000	145.524665	122467.000000	1.272727
min	50.000000	63.000000	5.000000	13.000000	0.006011	11.000000	1.000000
mean	473.013072	4603.098039	61.607843	10101.196078	4.146319	9737.261438	1.086430
50%	200.000000	723.000000	20.000000	969.000000	0.119654	926.000000	1.072332

Выводы

- Время работы приближенного алгоритма от числа вершин в графе равно $O(|V|\log |V|)$, что подтвеждает теоретическую оценку.
- **Время работы** приближенного алгоритма, за исключением некоторых выбросов, есть линейная функция от **числа ребер** в графе, что подтвеждает теоретическую оценку.
- Время работы приближенного алгоритма в зависимости от числа терминальных вершин не равно $O(|R|^2 \log |R|)$, что не подтверждает теоретическую оценку.
- Коэффициент приближения не зависит от числа вершин в графе.
- Коэффициент приближения не зависит от числа ребер в графе.
- Коэффициент приближения уменьшается с ростом числа терминальных вершин, поэтому приближение становится лучше. Это связано с тем, что число точек Штейнера уменьшается, поэтому больше вероятность, что приближенный алгоритм найдет решение близкое к минимальному.
- Время поиска оптимального решения увеличивается в 2 раза при увеличении точек Штейнера на 1, то есть равно $O(2^{|V|-|R|}) = O(2^{|S|})$ (в приведенных тестах оно приблизительно равно $2^{|S|-12}$), что подтверждает теоретическую оценку.
- Как было показано у алгоритма 2-приближения могут быть случаи, когда он достигает наихудшей оценки, однако на произвольных данных среднее приближение равно 1.086, а медиана 1.0723, что говорит о том, что алгоритм на случайных данных дает достаточно хорошее приближение.
- Лучше всего алгоритм показал себя на полных графах с евклидовыми весами (то есть для весовой функции выполняется неравенство треугольника): максимальный коэффициент приближения составил 1.0246, а минимальный 1.008.

6 Список источников

- 1. More on NP and Reductions (N.Sadagopan)
- 2. Steiner Tree Problem (V1.0: Seth Gilbert, V1.1: Steven Halim)
- 3. Steiner Tree and TSP (Michael Dinitz)
- 4. Steiner Tree Test Sets (SteinLib Testdata Library)

7 Результаты всех тестов

Здесь приведены результаты, полученные во всех тестах.

	V	ΙΕΙ	R	Approx.	Approx. time	Opt.	Approx. coeff.
0	50	63	9	94	0.006011	82	1.146341
1	50	63	13	97	0.006011	83	1.168675
2	50	63	25	140	0.007007	138	1.014493
3	50	100	9	68	0.007011	59	1.152542
4	50	100	13	67	0.006982	61	1.098361
5	50	100	25	128	0.006980	122	1.049180
6	75	94	13	141	0.013989	111	1.270270
7	75	94	19	114	0.014960	104	1.096154
8	75	94	38	236	0.016982	220	1.072727
9	75	150	13	105	0.014987	86	1.220930
10	75	150	19	97	0.016982	88	1.102273
11	75	150	38	179	0.015957	174	1.028736
12	100	125	17	194	0.025930	165	1.175758
13	100	125	25	273	0.025957	235	1.161702
14	100	125	50	338	0.027925	318	1.062893
15	100	200	17	138	0.028923	127	1.086614
16	100	200	25	145	0.028942	131	1.106870
17	100	200	50	234	0.029946	218	1.073394
18	500	625	5	106	0.823993	85	1.247059
19	500	625	10	151	0.825643	144	1.048611
20	500	625	83	858	0.827758	754	1.137931
21	500	1000	5	66	0.925554	55	1.200000
22	500	1000	10	123	0.909642	102	1.205882
23	500	1000	83	577	0.929454	509	1.133595
24	500	2500	5	39	1.212149	32	1.218750

2 5	500	2500	10	55	1.172863	46	1.195652
26	500	2500	83	296	1.180156	258	1.147287
27	500	12500	5	13	2.002144	11	1.181818
28	500	12500	10	20	2.044037	18	1.111111
29	500	12500	83	131	2.023853	113	1.159292
30	1000	1250	5	124	4.170370	106	1.169811
31	1000	1250	10	280	4.169637	220	1.272727
32	1000	2000	5	85	4.502302	67	1.268657
33	1000	2000	10	126	4.510789	103	1.223301
34	1000	5000	5	32	5.533247	29	1.103448
35	1000	5000	10	47	5.513922	42	1.119048
36	1000	25000	5	16	9.101144	13	1.230769
37	1000	25000	10	27	9.053885	23	1.173913
38	52	1326	16	1069	0.013992	1044	1.023946
39	58	1653	25	13682	0.024960	13655	1.001977
40	100	4950	5	1166	0.081754	1138	1.024605
41	100	4950	5	1239	0.081754	1228	1.008958
42	100	4950	10	1642	0.082779	1609	1.020510
43	100	4950	10	1868	0.083748	1868	1.000000
44	100	4950	20	2348	0.081753	2345	1.001279
45	100	4950	20	3010	0.081782	2959	1.017236
46	100	4950	50	4491	0.082778	4474	1.003800
47	200	19900	10	1544	0.625330	1510	1.022517
48	200	19900	20	2574	0.625501	2545	1.011395
49	200	19900	40	3880	0.625392	3853	1.007008
50	200	19900	100	6253	0.640287	6234	1.003048
51	100	4950	5	170	0.130650	155	1.096774
52	100	4950	5	116	0.118729	116	1.000000
53	100	4950	5	207	0.118686	179	1.156425
54	100	4950	10	289	0.118188	270	1.070370
55	100	4950	10	329	0.122220	270	1.218519

56	100	4950	10	341	0.118682	290	1.175862
57	100	4950	20	680	0.119654	590	1.152542
58	100	4950	20	602	0.118684	542	1.110701
59	100	4950	50	1036	0.125665	963	1.075805
60	100	4950	50	1045	0.119707	1010	1.034653
61	100	180	5	7592	0.025960	7485	1.014295
62	100	180	5	8853	0.025956	8746	1.012234
63	100	180	5	9327	0.025957	8688	1.073550
64	100	180	10	17877	0.024960	15972	1.119271
65	100	180	10	22399	0.025958	19496	1.148902
66	100	180	20	20699	0.024933	20246	1.022375
67	100	180	20	24496	0.025931	23078	1.061444
68	100	180	20	23613	0.028922	22346	1.056699
69	100	180	50	40748	0.026928	40647	1.002485
70	100	180	50	40842	0.025958	40008	1.020846
71	100	180	50	43933	0.026928	43287	1.014924
72	200	370	10	27341	0.105717	26125	1.046545
73	200	370	20	42844	0.123180	39067	1.096680
74	200	370	40	59118	0.110239	56217	1.051604
75	200	370	100	87182	0.112757	86268	1.010595
76	100	180	5	8800	0.027952	8083	1.088705
77	100	180	5	5295	0.028923	5022	1.054361
78	100	180	10	12120	0.027927	11397	1.063438
79	100	180	10	12771	0.027925	10355	1.233317
80	100	180	10	14675	0.027952	13048	1.124693
81	100	180	20	15881	0.027952	15358	1.034054
82	100	180	20	15292	0.027952	14439	1.059076
83	100	180	20	19584	0.027953	18263	1.072332
84	100	180	50	31844	0.028950	30161	1.055801
85	100	180	50	28311	0.027927	26903	1.052336
86	100	180	50	31515	0.027925	30258	1.041543

87	200	370	10	19630	0.117881	18429	1.065169
88	200	370	20	29956	0.118277	27276	1.098255
89	200	370	40	46225	0.119274	42474	1.088313
90	200	370	100	66506	0.123670	62263	1.068146
91	338	541	11	529	0.337922	467	1.132762
92	1290	2270	10	875	7.409902	823	1.063183
93	1442	2403	16	915	9.814334	884	1.035068
94	752	1264	26	931	2.024369	806	1.155087
95	402	695	11	550	0.485852	494	1.113360
96	933	1632	13	568	3.392669	550	1.032727
97	1199	2078	31	1193	6.186639	1068	1.117041
98	278	478	11	574	0.210129	564	1.017730
99	90	135	10	196	0.019966	188	1.042553
100	875	1522	10	653	2.884900	604	1.081126
101	898	1562	10	627	3.069680	594	1.055556
102	2132	3702	37	1764	26.644648	1590	1.109434
103	418	723	14	427	0.534360	399	1.070175
104	4045	7094	12	1520	145.524665	1459	1.041809
105	3031	5239	12	1336	66.646827	1290	1.035659
106	2961	5100	16	1580	62.772042	1440	1.097222
107	1359	2458	13	789	8.459466	714	1.105042
108	1709	2963	18	969	15.135360	926	1.046436
109	3263	5783	89	3462	82.062892	3135	1.104306
110	1704	2991	12	892	14.984263	869	1.026467
111	957	1554	10	637	3.581077	607	1.049423
112	237	390	11	383	0.152591	353	1.084986
113	402	690	16	411	0.488152	393	1.045802
114	391	666	16	412	0.465211	381	1.081365
115	191	302	11	333	0.095743	311	1.070740
116	317	476	11	418	0.281002	408	1.024510
117	777	1358	13	705	2.212965	630	1.119048

118	111	110	106	35050	0.036901	34850	1.005739
119	111	110	97	34650	0.033908	34100	1.016129
120	111	110	96	34650	0.033996	34100	1.016129
121	111	110	95	34850	0.032958	34100	1.021994
122	111	110	94	34450	0.032953	33900	1.016224
123	111	110	93	34450	0.032912	33900	1.016224
124	111	110	105	35250	0.034198	34850	1.011478
125	111	110	104	34450	0.034911	34250	1.005839
126	111	110	103	34450	0.034908	34250	1.005839
127	111	110	102	34450	0.033910	34250	1.005839
128	111	110	101	34450	0.034935	34250	1.005839
129	111	110	100	34750	0.033327	34250	1.014599
130	111	110	99	34750	0.033910	34250	1.014599
131	111	110	98	34450	0.034063	34100	1.010264