Iniciada domingo, 19 dezembro 2021, 16:32

Estado Terminada terça, 21 dezembro 2021, 23:59

Tempo gasto 2 dias 7 horas

Nota 13,27 num máximo de 20,00 (66%)

Pergunta 1 Parcialmente

correta

Nota: 2.40 em 6.00

Titulou-se 12 ml de uma solução de 0,09 M de ibuprofeno (($\mathrm{CH_3}$) $_2\mathrm{CHC_6H_5CH(CH_3)COOH}$, Ka = 3,72 x 10 $^{-5}$) (princípio activo anti-inflamatório) com uma solução 0,15 M de NaOH, a 25 °C.

O pH da solução de ibuprofeno antes de se iniciar a titulação é 2.74 ✓

Para que o pH da solução seja igual a 4,43 temos que adicionar 36 ml de solução de NaOH.

O pH da solução após a adição de 4,0 ml da solução de NaOH é 4.53

O pH da solução após a adição de 9,0 ml da solução de NaOH é 12.77

No ponto de equivalência o pH da solução é

Pergunta 2

Correta

Nota: 1,00 em 1,00

Os aminoácidos são os blocos básicos constituintes das proteínas. Estes compostos contêm pelo menos um grupo amina e (-NH₂) e um grupo carboxílico (-COOH). Considere a alanina:

NH2-C(CH2)H-COOH

Dependendodo pH a alanina pode existir nas seguintes formas:

Totalmente protonada: ⁺NH₃-C(CH₃)H-COOH

lão dipolar: ⁺NH₃-C(CH₃)H-COO

Completamente ionizada: NH₂-C(CH₃)H-COO

Preveja qual a forma predominante da alanina a pH 12.0 sabendo que o p K_a do grupo -COOH = 2.35 e o p K_a do grupo $\Box NH_3^+$ = 9.87

Selecione uma opção de resposta:

- A. Ião dipolar: +NH3-C(CH3)H-COO-
- B. Completamente ionizada: NH2-C(CH3)H-COO-
- C. Totalmente protonada: +NH3-C(CH3)H-COOH

A resposta correta é: Completamente ionizada: NH2-C(CH3)H-COO-

Pergunta 3

Parcialmente

correta

Nota: 0,67 em 1,00

Os produtos de solubilidade para uma série de iodetos são os seguintes:

TII $K_{\rm sp} = 6.5 \times 10^{-6}$

Agl $K_{\rm sp} = 8.3 \times 10^{-17}$

 $Pbl_2 K_{sp} = 7.1 \times 10^{-9}$

 $Bil_3 K_{sp} = 8.1 \times 10^{-19}$

Quais das seguintes afirmações em relação à ordem de solubilidade estão correctas ?

Selecione uma ou mais opções de resposta:

- ✓ A. Em água: AgI < Bil₃ < TII < PbI₂ ✓ para calcular a solubilidade em água usar: Ks TII = S^2; Ks AgI = S^2; Ks PbI2 = 4S^3; Ks Bil3 = 27S^4
- B. Numa solução 0.1 M do catião: Pbl₂ > TII > Bil₃ > AgI
- C. Numa solução 0.1 M em Nal : Bil₃< Agl < TIl < Pbl₂
- D. O Agl é o sal mais insolúvel da série em duas das condições.

Respostas corretas: Em água: Agl < Bil₃< TII < Pbl₂, Numa solução 0.1 M em NaI : Bil₃< Agl < TII < Pbl₂, O Agl é o sal mais insolúvel da série em duas das condicões.

Pergunta 4	K _b (HS) é a constante de equilíbrio de qual das seguintes reacções em água ?
Correta	1 HS + OH <-> H O + S ²
Nota: 1,00 em 1,00	1. $HS^{-} + OH^{-} <=> H_{2}O + S^{2^{-}}$ 2. $HS^{-} + H_{2}O <=> H_{3}O^{+} + S^{2^{-}}$ 3. $HS^{-} + H_{3}O^{+} <=> H_{2}O + H_{2}S$ 4. $HS^{-} + H_{2}O <=> H_{2}S + OH^{-}$
	3. $HS^{2} + H_{3}O^{+} <=> H_{2}O + H_{2}S$
	4. $HS^{-} + H_{2}^{-}O \iff H_{2}^{-}S + OH^{-}$
	Selecione uma opção de resposta:
	O B. 3
	O C. 1
	O D. 2
	A resposta correta é: 4
Pergunta 5	Responda às seguintes questões com base nas constantes do produto de solubilidade e nos dados de potencial de redução padrão fornecidos
Parcialmente correta	Kps (CuCl) = 1.0×10^{-6} E^{0} $Cu^{+}/Cu = +0.36$ V E^{0} $Fe^{3+}/Fe^{2+} = +0.77$ V
	Considere a pilha constituída pelo acoplamento da semi-célula
Nota: 4,20 em 6,00	Fe^{3+} (1,0 x 10 ⁻⁵ M), Fe^{2+} (1,0 x 10 ⁻³ M) Pt(s) com
	Cu(s) CuCl (sat)
	A 25 ° C o valor do potencial padrão de redução da pilha assim formada será E 0 = 0,41 ✓ V
	A 23 0 0 Valor do potencial padrao de redução da plina assim formada será E = 0,41
	Calcule o quociente da reacção que ocorre na pilha, Q = 0,1 ✓
	A pilha apresenta uma diferença de potencial E= 469,18E-3
	A constante de equilíbrio da reacção que ocorre na pilha é K = 2.72
	Considere agora uma nova pilha onde se utilizou uma solução com [Cu ⁺] = 0,01 M ao invés da solução saturada de CuCl no eléctrodo de cobre,
	mantendo todas as outras condições constantes.
	A nova pilha assim formada tem uma força electromotriz de E=
	No cátodo desta nova pilha ocorre a seguinte semi-reacção de redução Fe3+/Fe2+ ◆ ✓
	Enquanto no ânodo a semi-reacção de oxidação é Cu/Cu+
Pergunta 6	Para preparar 250 mL de uma solução de ácido nítrico 0,39 M, partindo de uma solução concentrada do ácido nítrico (70 %w/w e d = 1.420
Correta	kg/L) que volume de solução de HNO ₃ concentrada necessito ?
Nota: 1,00 em 1,00	$MM (HNO_3) = 63.01 \text{ g.mol}^{-1}$
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tolerância ± 1 % NOTA: responda em mL sem indicar as unidades, na resposta pode usar potências de base 10 com a notação E, exemplo:
	$0.00105 = 1.05 \times 10^{-3} = 1.05E-3$
	5160 160 11 10 11 11 11 11 11 11 11 11 11 11 11
	Resposta: 6,181
	Resposta correta: 6,18
7	
Pergunta 7	Qual a diferença de potencial de uma pilha constituida por um eléctrodo de prata e um eléctrodo de estanho mergulhados respectivamente numa solução 9,09 x10 ⁻² M em Ag ⁺ e numa solução 3,87 x10 ⁻² M em Sn ²⁺ , a 25 °C?
Incorreta	
Nota: 0,00 em 1,00	(Responda em volts, sem introduzir unidades.)
	Dados: $E^{\circ}(Ag^{+}/Ag) = +0.800 \text{ V}; E^{\circ}(Sn^{2+}/Sn) = -0.136 \text{ V}$
	Resposta: 824,57E-3
	Resposta correta: 0,92

Pergunta 8	Qual a constante de equilíbrio, a 25 °C, para a seguinte reacção :
Correta	$Mn^{2+} + 5Fe^{3+} + 4H_2O \le MnO_4^- + 5Fe^{2+} + 8H^+$
Nota: 1,00 em 1,00	
	$E^{0} MnO_{4}^{-}/Mn^{2+} = + 1.51 V$ $E^{0} Fe^{3+}/Fe^{2+} = + 0.771 V$
	Utilize notação científica na resposta (exemplo: 0.00010 será 1.0E-4)
	Resposta: 3,63E-63 ✓
	Resposta correta: 3,6E-63
Pergunta 9	Se se adicionar uma solução de Nal a uma solução contendo 0,01 M em Hg ₂ ²⁺ e 0,5 M em Pb ²⁺ , o primeiro sal a precipitar é Hg 2l2 •
Correta	
Nota: 1,00 em 1,00	$K_{ps} (Pbl_2) = 8.0 \times 10^{-17}$
	$K_{ps} (Hg_2I_2) = 1.2 \times 10^{-28}$
Pergunta 10 Correta	Qual a concentração deamónia aquosa (NH ₃) em mol dm ⁻³ (M) necessária para iniciar a precipitação de Fe(OH) ₂ de uma solução 0,0025 M em FeCl ₂ ?
Nota: 1,00 em 1,00	(Na resposta indique apenas o resultado numérico)
	Tolerância 5%
	K NH - 18 × 10 ⁻⁵
	$K_b NH_3 = 1.8 \times 10^{-5}$ $K_{sp} Fe(OH)_2 = 1.6 \times 10^{-14}$
	Resposta: 2,89E-6
	Primeiro calcular com Ksp a [OH-] a partir da qual Fe(OH)2 precipita. Em seguida usar esse valor e Kb para calcular a [NH3] necessária para gerar essa concentração de [OH-] através do equilíbrio ácido-base.
	Resposta correta: 2,9e-6
◆ 2º mini-teste_	IQF_21-22