Universidad Nacional Autónoma de México. IIMAS

Aprendizaje de Maquina

Semestre 2026-1.

D.C.C. Carlos Ignacio Hernández Castellanos

José Alberto Alonso González

Tarea 1

Integrantes:

• Villalón Pineda Luis Enrique .

- 1. (10 puntos) Monotonía de la Complejidad de Muestra: Sea \mathcal{H} una clase de hipótesis para una tarea de clasificación binaria. Supón que \mathcal{H} es PAC-aprendible y que su complejidad de muestra está dada por $m_{\mathcal{H}}(\cdot,\cdot)$. Demuestre que $m_{\mathcal{H}}$ es monótonamente no creciente en cada uno de sus parámetros. Es decir:
- Si $0 < \epsilon_1 \le \epsilon_2 < 1$, entonces $m_{\mathcal{H}}(\epsilon_1, \delta) \ge m_{\mathcal{H}}(\epsilon_2, \delta)$.
- Si $0 < \delta_1 \le \delta_2 < 1$, entonces $m_{\mathcal{H}}(\epsilon, \delta_1) \ge m_{\mathcal{H}}(\epsilon, \delta_2)$.

Demostración:

Demostremos que la complejidad de la muestra disminuye de forma monótona en el parámetro de precisión ϵ . La prueba de que la complejidad de la muestra disminuye de forma monótona en el parámetro de confianza δ es análoga. Denotemos por \mathcal{D} una distribución desconocida sobre \mathcal{X} , y sea $f \in \mathcal{H}$ la hipótesis objetivo. Denotemos por A un algoritmo que aprende \mathcal{H} con complejidad de muestra $m_{\mathcal{H}}(\cdot,\cdot)$. Fijemos algún $\delta \in (0,1)$. Supongamos que $0 < \epsilon_1 \le \epsilon_2 \le 1$. Necesitamos demostrar que $m_1 \stackrel{\text{def}}{=} m_{\mathcal{H}}(\epsilon_1, \delta) \ge m_{\mathcal{H}}(\epsilon_2, \delta) \stackrel{\text{def}}{=} m_2$. Dada una secuencia de entrenamiento i.i.d. de tamaño $m \ge m_1$, tenemos que, con una probabilidad de al menos $1 - \delta$, Λ devuelve una hipótesis h tal que

$$L_{\mathcal{D},f}(h) \le \epsilon_1 \le \epsilon_2$$

Por la minimalidad de m_2 , concluimos que $m_2 \leq m_1$.

2. (10 puntos) Valor Esperado del Riesgo Empírico: Sea \mathcal{H} una clase de clasificadores binarios sobre un dominio \mathcal{X} . Sea \mathcal{D} una distribución desconocida sobre \mathcal{X} y f la hipótesis verdadera. Fijado $h \in \mathcal{H}$, muestra que el valor esperado del error empírico $L_S(h)$ sobre la elección de S es igual al riesgo verdadero $L_{(\mathcal{D},f)}(h)$:

$$\mathbb{E}_{S|x\sim\mathcal{D}^m}\left[L_S(h)\right] = L_{(\mathcal{D},f)}(h).$$

Demostración:

Por la linealidad del valor esperado:

$$\mathbb{E}_{S|x \sim \mathcal{D}^m}[L_S(h)] = \mathbb{E}_{S|x \sim \mathcal{D}^m} \left[\frac{1}{m} \sum_{i=1}^m \mathbb{1}_{\{h(x_i) \neq f(x_i)\}} \right]$$

$$= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{x_i \sim \mathcal{D}} [\mathbb{1}_{\{h(x_i) \neq f(x_i)\}}]$$

$$= \frac{1}{m} \sum_{i=1}^m \mathbb{P}_{x_i \sim \mathcal{D}}[h(x_i) \neq f(x_i)]$$

$$= \frac{1}{m} \cdot m \cdot L_{(\mathcal{D}, f)}(h)$$

$$= L_{(\mathcal{D}, f)}(h)$$

3. (5 puntos) Círculos Concéntricos: Sea $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{0,1\}$ y la clase de hipótesis \mathcal{H} definida como:

$$\mathcal{H} = \left\{ h_r : r \in \mathbb{R}_+, h_r(x) = \mathbf{1}_{\|x\| \le r} \right\}.$$

Demuestre que \mathcal{H} es PAC-aprendible (bajo el supuesto de realizabilidad) y su complejidad de muestra por:

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{\log(1/\delta)}{\epsilon} \right\rceil.$$

Demostración:

Consideremos el algoritmo ERM A que, dada una secuencia de entrenamiento $S=((\mathbf{x}i,y_i))\,i=1^m$, devuelve la hipótesis \hat{h} correspondiente al círculo «más ajustado» que contiene todas las instancias positivas. Denotemos el radio de esta hipótesis por \hat{r} . Supongamos que es realizable y sea h^* un círculo con error de generalización cero. Denotemos su radio por r^* . Sea $\epsilon, \delta \in (0,1)$. Sea $\bar{r} \leq r$ un escalar tal que $\mathcal{D}_{\mathcal{X}}(\{x:\bar{r}\leq ||\mathbf{x}||\leq r\})=\epsilon$. Definamos $E=\{\mathbf{x}\in\mathbb{R}^2:\bar{r}\leq ||\mathbf{x}||\leq r^*\}$. La probabilidad (sobre el muestreo S) de que $L_{\mathcal{D}}(h_S)\geq \epsilon$ está limitada por la probabilidad de que ningún punto en S pertenezca a E. La probabilidad de este evento está limitada por

$$(1 - \epsilon)^m \le e^{-\epsilon m}$$

El límite deseado en la complejidad de la muestra se obtiene al requerir que $e^{-\epsilon m} \leq \delta$.

4. (5 puntos) Conjunciones Booleanas: Sea $\mathcal{X} = \{0,1\}^d$ y $\mathcal{Y} = \{0,1\}$. Sea \mathcal{H} la clase de todas las conjunciones booleanas (positivas y negativas) sobre d variables. Asume realizabilidad. Demuestra que esta clase es PAC-aprendible y acota su complejidad de muestra. Propón un algoritmo que implemente la regla ERM y cuya complejidad sea polinomial en d y m.

Demostracion:

En primer lugar, observamos que \mathcal{H} es finito. Calculemos su tamaño con precisión. Cada hipótesis, además de la hipótesis totalmente negativa, se determina decidiendo para cada variable x_i si x_i, \bar{x}_i o ninguna de ellas aparece en la conjunción correspondiente. Por lo tanto, $|\mathcal{H}| = 3^d + 1$. Concluimos que \mathcal{H} es PAC aprendible y su complejidad de muestra puede limitarse por

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{d \log 3 + \log(1/\delta)}{\epsilon} \right\rceil$$

Dado que el algoritmo tarda un tiempo lineal (en términos de la dimensión d) en procesar cada ejemplo, el tiempo de ejecución está limitado por $O(m \cdot d)$.

Ahora veamos el algoritmo. Definimos $h_0 = x_1 \cap \bar{x}_1 \cap \ldots \cap x_d \cap \bar{x}_d$. Obsérvese que h_0 es la hipótesis siempre negativa. Sea $((\mathbf{a}^1, y^1), \ldots, (\mathbf{a}^m, y^m))$ una secuencia de entrenamiento i.i.d. de tamaño m. Dado que no podemos obtener ninguna información de los ejemplos negativos, nuestro algoritmo los ignora. Para cada ejemplo positivo a, eliminamos de h_i todos los literales que faltan en a. Es decir, si $a_i = 1$, eliminamos \bar{x}_i de h y si $a_i = 0$, eliminamos x_i de h_i . Finalmente, nuestro algoritmo devuelve h_m . Por construcción y

realizabilidad, h_i etiqueta positivamente todos los ejemplos positivos entre $\mathbf{a}^1, \dots, \mathbf{a}^i$. Por las mismas razones, el conjunto de literales en h_i contiene el conjunto de literales en la hipótesis objetivo. Por lo tanto, h_i clasifica correctamente los elementos negativos entre $\mathbf{a}^1, \dots, \mathbf{a}^i$. Esto implica que h_m es un ERM.

5. (10 puntos) PAC Agnóstico: Sea \mathcal{H} una clase de clasificadores binarios. Demuestra que si \mathcal{H} es agnósticamente PAC-aprendible, entonces también es PAC-aprendible. Además, si un algoritmo A es un aprendiz agnóstico exitoso, también lo es para el caso PAC bajo realizabilidad.

Demostracion:

Supongamos que \mathcal{H} es agnóstico PAC aprendible, y sea A un algoritmo de aprendizaje que aprende \mathcal{H} con complejidad de muestra $m_{\mathcal{H}}(\cdot,\cdot)$. Demostramos que \mathcal{H} es PAC aprendible utilizando A.

Sea \mathcal{D}, f una distribución (desconocida) sobre \mathcal{X} y la función objetivo, respectivamente. Podemos suponer, sin pérdida de generalidad, que \mathcal{D} es una distribución conjunta sobre $\mathcal{X} \times \{0,1\}$, donde la probabilidad condicional de y dada x se determina de forma determinista por f. Dado que asumimos la realizabilidad, tenemos ínf $h \in \mathcal{H}L\mathcal{D}(h) = 0$. Sea $\epsilon, \delta \in (0,1)$. Entonces, para cada entero positivo $m \geq m_{\mathcal{H}}(\epsilon,\delta)$, si equipamos A con un conjunto de entrenamiento S que consiste en m instancias i.i.d. etiquetadas por f, entonces con una probabilidad de al menos $1 - \delta$ (sobre la elección de $S|_x$), devuelve una hipótesis h con

$$L_{\mathcal{D}}(h) \le \inf h' \in \mathcal{H}L\mathcal{D}(h') + \epsilon$$
$$= 0 + \epsilon$$
$$= \epsilon$$

6. (5 puntos) Predictor Bayesiano Óptimo: Demuestra que para toda distribución \mathcal{D} , el predictor bayesiano $f_{\mathcal{D}}$ minimiza el riesgo verdadero:

$$L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$$
, para todo $g: \mathcal{X} \to \{0, 1\}$

Demostración:

Sea $x \in \mathcal{X}$. Sea α_x la probabilidad condicional de una etiqueta positiva dada x. Tenemos que

$$\mathbb{P}\left[f_{\mathcal{D}}(X) \ neqy \mid X = x\right] = \mathbb{K}\left[\alpha_x \ge 1/2\right] \cdot \mathbb{P}[Y = 0 \mid X = x] + \mathbb{K}\left[\alpha_x < 1/2\right] \cdot \mathbb{P}[Y = 1 \mid X = x]$$

$$= \mathbb{K}\left[\alpha_x \ge 1/2\right] \cdot (1 - \alpha_x) + \mathbb{K}\left[\alpha_x < 1/2\right] \cdot \alpha_x$$

$$= \min\left\{\alpha_x, 1 - \alpha_x\right\}.$$

Sea g un clasificador ¹ de \mathcal{X} a $\{0,1\}$. Tenemos que

$$\begin{split} \mathbb{P}[g(X) \neq Y \mid X = x] &= \mathbb{P}[g(X) = 0 \mid X = x] \cdot \mathbb{P}[Y = 1 \mid X = x] \\ &+ \mathbb{P}[g(X) = 1 \mid X = x] \cdot \mathbb{P}[Y = 0 \mid X = x] \\ &= \mathbb{P}[g(X) = 0 \mid X = x] \cdot \alpha_x + \mathbb{P}[g(X) = 1 \mid X = x] \cdot (1 - \alpha_x) \\ &\geq \mathbb{P}[g(X) = 0 \mid X = x] \cdot \min\left\{\alpha_x, 1 - \alpha_x\right\} \\ &+ \mathbb{P}[g(X) = 1 \mid x] \cdot \min\left\{\alpha_x, 1 - \alpha_x\right\} \\ &= \min\left\{\alpha_x, 1 - \alpha_x\right\}, \end{split}$$

La afirmación se deduce ahora del hecho de que lo anterior es cierto para cada $x \in \mathcal{X}$. Más formalmente, por la ley de la esperanza total,

$$L_{\mathcal{D}}(f_{\mathcal{D}}) = \mathbb{E}(x, y) \sim \mathcal{D} \left[\mathbb{1}[f_{\mathcal{D}}(x) \neq y] \right]$$

$$= \mathbb{E}x \sim \mathcal{D}_X \left[\mathbb{E}y \sim \mathcal{D}Y \mid x \left[\mathbb{1}[f_{\mathcal{D}}(x) \neq y] \mid X = x \right] \right]$$

$$= \mathbb{E}_{x \sim \mathcal{D}_X} \left[\alpha_x \right]$$

$$\leq \mathbb{E}x \sim \mathcal{D}_X \left[\mathbb{E}y \sim \mathcal{D}Y \mid x \left[\mathbb{1}[g(x) \neq y] \mid X = x \right] \right]$$

$$= L_{\mathcal{D}}(g).$$

- 7. (5 puntos) Comparación de Algoritmos de Aprendizaje
- a) Demuestre que para toda distribución generadora de datos \mathcal{D} sobre $\mathcal{X} \times \{0, 1\}$, el predictor bayesiano minimiza el riesgo con respecto a la pérdida |h(x) y| entre todos los predictores probabilísticos.
- b) Demuestre que para toda distribución \mathcal{D} , existe un algoritmo $A_{\mathcal{D}}$ que es mejor que cualquier otro algoritmo de aprendizaje en términos del riesgo.
- c) Demuestre que para cada algoritmo de aprendizaje A, existe una distribución \mathcal{D} y un algoritmo B tal que A no es mejor que B respecto a \mathcal{D} .

Demostraciones:

- (a) Esto se demostró en el ejercicio anterior.
- (b) En el ejercicio anterior demostramos que, para cada distribución \mathcal{D} , el predictor óptimo bayesiano $f_{\mathcal{D}}$ es óptimo con respecto a \mathcal{D} .
 - (c) Elija cualquier distribución \mathcal{D} . Entonces, A no es mejor que $f_{\mathcal{D}}$ con respecto a D.