Валерий Исаев

24 марта 2021 г.

План лекции

Определение сопряженности

Единица и коединица сопряжения

Примеры

Over categories

- тусть $O: Mon \to Set$ заоывающий функтор на категории моноидов.
- ▶ Пусть $F: \mathbf{Set} \to \mathbf{Mon}$ функтор, сопоставляющий множеству A множество слов в алфавите A.

$$F(A) = \{ [a_1 \ldots a_n] \mid a_i \in A \}$$

- lacktriangle Тогда любая функция f:A o U(B) уникальным образом доопределяется до морфизма моноидов g:F(A) o B.
- У этого соотвествия существует обратное, каждому морфизму моноидов $g:F(A)\to B$ сопоставляющее функцию $f:A\to U(B),\ f(a)=g([a]).$
- ► Таким образом, существует биекция $\varphi: Hom_{\mathbf{Set}}(A, U(B)) \simeq Hom_{\mathbf{Mon}}(F(A), B).$

Векторные пространства и базисы

- ightharpoons Пусть \mathbf{Vec}_K категория векторных пространств над полем Κ.
- lacktriangle Пусть $U: \mathbf{Vec}_K o \mathbf{Set}$ забывающий функтор.
- ightharpoons Пусть $F: \mathbf{Set} o \mathbf{Vec}_K \mathbf{\phi}$ унктор, сопоставляющий множеству A векторное пространство с базисом A.

$$F(A) = \{ c_1 a_1 + \ldots + c_n a_n \mid c_i \in K, a_i \in A \}$$

- lacktriangle Тогда любая функция f:A o U(B) уникальным образом доопределяется до линейного преобразования $g: F(A) \to B$.
- У этого соотвествия существует обратное, каждому линейному преобразованию g:F(A) o B сопоставляющее функцию $f: A \to U(B)$, f(a) = g(1a).
- Таким образом, существует биекция $\varphi: \mathit{Hom}_{\mathsf{Set}}(A, \mathit{U}(B)) \simeq \mathit{Hom}_{\mathsf{Vec}}(\mathit{F}(A), \mathit{B})$

Кольца и полиномы

- lacktriangle Пусть $U: \mathbf{Ring}
 ightarrow \mathbf{Set}$ забывающий функтор на категории колец.
- ightharpoons Пусть $F: \mathbf{Set} o \mathbf{Ring} \mathbf{ф}$ унктор, сопоставляющий множеству X кольцо полиномов с переменными в X.
- lacktriangle Тогда любая функция f:A o U(B) уникальным образом доопределяется до морфизма колец $g: F(A) \to B$.
- > У этого соотвествия существует обратное, каждому линейному преобразованию $g:F(A)\to B$ сопоставляющее функцию $f: A \to U(B), f(a) = g(1a^1).$
- Таким образом, существует биекция $\varphi: Hom_{\mathbf{Set}}(A, U(B)) \simeq Hom_{\mathbf{Ring}}(F(A), B).$

Сопряжение

Definition

Сопряжение между категориями **C** и **D** – это тройка (F, U, φ) , состоящая из функторов $F: \mathbf{C} \to \mathbf{D}$ и $U: \mathbf{D} \to \mathbf{C}$ и естественного изоморфизма $\varphi_{A,B}: Hom_{\mathbb{D}}(F(A),B) \simeq Hom_{\mathbb{C}}(A,U(B)).$

В определении φ является естественным изоморфизмом между функторами $Hom_{\mathbf{D}}(F(-),-), Hom_{\mathbf{C}}(-,U(-)): \mathbf{C}^{op} \times \mathbf{D} \to \mathbf{Set}.$

Во всех примерах, приведенных ранее, изоморфизм $\varphi_{A.B}$ был естественен по A и B. Таким образом, это были примеры сопряжений.

- ► Если (F, U, φ) сопряжение, то пишут $F \dashv U$ и говорят, что F левый сопряженный к U, а U правый сопряженный к F.
- \blacktriangleright Если $F \dashv U$ и $F' \dashv U$, то F и F' изоморфны.
- Доказательство: упражнение.
- \blacktriangleright Если $F \dashv U$ и $F \dashv U'$, то U и U' изоморфны.
- Доказательство: по дуальности.

Сохранение (ко)пределов

Proposition

Левые сопряженные функторы сохраняют копределы. Правые сопряженные функторы сохраняют пределы.

Доказательство.

Второе утверждение является дуальным к первому. Докажем первое. Пусть $F: \mathbf{C} \to \mathbf{D}$ – левый сопряженный к $G: \mathbf{D} \to \mathbf{C}$. Пусть $D: J \to \mathbf{C}$ – некоторая диаграмма в \mathbf{C} . Пусть $L=colim\ D$ – копредел этой диаграммы. Пусть $\alpha: F\circ D \to X$ – некоторый коконус в \mathbf{D} . Тогда существует уникальная стрелка из L в G(X). По сопряженности она соответствует уникальной стрелки из F(L) в X. Таким образом, F(L) – копредел $F\circ D$.

План лекции

Определение сопряженности

Единица и коединица сопряжения

Примеры

Over categories

- ightharpoonup Пусть (F,G) сопряжение.
- lacktriangle Тогда $\varphi_{A,F(A)}: Hom_{\mathbb{D}}(F(A),F(A)) \simeq Hom_{\mathbb{C}}(A,GF(A)).$
- ▶ Пусть $\eta_A: A \to GF(A)$ естественное преобразование, которое определяется как $\eta_A = \varphi_{A,F(A)}(id_{F(A)})$.
- ightharpoonup С другой стороны $arphi_{G(B),B}: Hom_{\mathbf{D}}(FG(B),B) \simeq Hom_{\mathbf{C}}(G(B),G(B)).$
- ▶ Пусть $\epsilon_B : FG(B) \to B$ естественное преобразование, которое определяется как $\epsilon_B = \varphi_{G(B),B}^{-1}(id_{G(B)})$.
- $ightharpoonup \eta_A$ называется *единицей* сопряжения, а ϵ_B *коединицей*.

Примеры

- $ightharpoonup \eta_A(a)$ возвращает "одноэлементное слово на букве a".
 - ightharpoonup Для категории моноидов $\eta_A(a) = [a]$.
 - ightharpoonup Для категории векторных пространств $\eta_A(a)=1a$.
 - lacktriangle Для категории колец $\eta_A(a)=a$ полином, состоящий из одной переменной а.
- lacktriangle ϵ_B : FU(B) o B "вычисляет" формальное выражение в B.
 - ightharpoonup Для категории моноидов $\epsilon_B([a_1 \ldots a_n]) = a_1 \cdot \ldots \cdot a_n$.
 - Для категории векторных пространств $\epsilon_B(c_1a_1+\ldots+c_na_n)=c_1\cdot a_1+\ldots+c_n\cdot a_n.$
 - lacktriangle Для категории колец ϵ_B определяется аналогичным образом как функция, вычисляющая полином на данных значениях.

Свойства единицы и коединицы

Proposition

Если (F, G, φ) – сопряжение, то следующие диаграммы коммутируют:

$$G(B) \xrightarrow{\eta_{GB}} GFG(B) \qquad F(A) \xrightarrow{F\eta_{A}} FGF(A)$$

$$\downarrow_{id_{GB}} \qquad \downarrow_{G\epsilon_{B}} \qquad \downarrow_{id_{FA}} \qquad \downarrow_{\epsilon_{FA}} \qquad \downarrow_{\epsilon_$$

оказательство

Доказательство.

Условия естественности arphi и $arphi^{-1}$ можно переписать в следующем виде:

Нижний треугольник в первой диаграмме дает первое необходимое равенство при $f=id_{FG(B)}$ и $g=\epsilon_B$. Второе необходимое равенство получается из верхнего треугольника во второй диаграмме при $f'=id_{GF(A)}$ и $h=\eta_A$.

Определение сопряжения через единицу и коединицу

Существует эквивалентное определение понятия сопряжения через единицу и коединицу.

Proposition

Четверка

 $(F: \mathbf{C} \to \mathbf{D}, G: \mathbf{D} \to \mathbf{C}, \eta_A: A \to GF(A), \epsilon: FG(B) \to B),$ состоящая из пары функторов и пары естественных преобразований, удовлетворяющих условию, приведенному в предыдущем утверждении, определяет сопряжение (F,G,φ) , где $\varphi(f) = G(f) \circ \eta_A$ для любого $f: F(A) \to B$, $\varphi^{-1}(g) = \epsilon_B \circ F(g)$ для любого $g: A \to G(B)$. Единицей и коединицей этого сопряжения являются η и ϵ соответственно.

Доказательство

Доказательство.

Последнее утверждение элементарно следует из определения arphiи φ^{-1} . Докажем, что φ и φ^{-1} взаимообратны:

$$arphi^{-1}(arphi(f))=$$
 (по определению $arphi$ и $arphi^{-1})$ $\epsilon_B\circ FG(f)\circ F(\eta_A)=$ (по естественности ϵ) $f\circ \epsilon_{F(A)}\circ F(\eta_A)=$ (по свойству ϵ и η) $f.$ $arphi(arphi^{-1}(g))=$ (по определению $arphi$ и $arphi^{-1})$ $G(\epsilon_B)\circ GF(g)\circ \eta_A=$ (по естественности η) $G(\epsilon_B)\circ \eta_{G(B)}\circ g=$ (по свойству ϵ и η) $g.$

Доказательство

Доказательство.

Осталось доказать, что arphi естественно. Для этого достаточно проверить равенства, приводившиеся в доказательстве предыдущего утверждения.

$$G(g)\circ arphi(f)=$$
 (по определению $arphi)$ $G(g)\circ G(f)\circ \eta_B=$ (так как G — функтор) $G(g\circ f)\circ \eta_B=$ (по определению $arphi)$ $arphi(g\circ f).$ $arphi(f)\circ h=$ (по определению $arphi)$ $G(f)\circ \eta_B\circ h=$ (по естественности η) $G(f)\circ GF(h)\circ \eta_A=$ (по определению $arphi$) $arphi(f\circ F(h)).$

План лекции

Определение сопряженности

Единица и коединица сопряжения

Примеры

Over categories

Эквивалентность категорий

- **Е**сли $F : \mathbf{C} \to \mathbf{D}$ эквивалентность категорий, то F одновеременно и левый и правый сопряженный.
- ightharpoonup Любой обратный к F будет его правым и левым сопряженным.

Рефлективные подкатегории

- **Р** Если $i: \mathbf{C} \to \mathbf{D}$ функтор вложения полной подкатегории, то i является правым сопряженным тогда и только тогда, когда \mathbf{C} рефлективная подкатегория.
- Левый сопряженный к і называется рефлектором.
- ightharpoonup Если $F\dashv i$, то $\eta_X:X\to i(F(X))$ дает нам необходимую аппроксимацию к X в ${f C}$.
- ▶ Если ${\bf C}$ рефлективная подкатегория, то $F:{\bf D}\to{\bf C}$ на объектах определяется очевидным образом, а на морфизмах по универсальному свойству.

Определение

- Декартова категория является декартово замкнутой тогда и только тогда, когда для любого объекта B функтор $- \times B$ является левым сопряженным.
- Действительно, правый сопряженный к нему это функтор $(-)^B$, а коединица сопряжения $\epsilon_C:C^B imes B o C$ – это морфизм вычисления *ev*.
- Биекция, которая появляется в определении сопряженных функторов, – это в точности биекция каррирования.

План лекции

Определение сопряженности

Единица и коединица сопряжения

Примеры

Over categories

Семейства множеств

- ▶ Мы можем определить категорию множеств, параметризованных некоторым множеством 1.
- ► Ее объекты это семейства множеств, т.е. просто функции $I o \mathbf{Set}$.
- ▶ Морфизмы двух семейств $\{X_i\}_{i\in I}$ и $\{Y_i\}_{i\in I}$ это семейства морфизмов $\{f_i: X_i \to Y_i\}_{i\in I}$.
- Тождественный морфизм и композиция задаются поточечно.
- Очевидно, мы получим категорию, которую мы будем обозначать Fam_I.

Множества над *I*

- Эта конструкция не обобщается на произвольную категорию очевидным образом.
- ▶ Но мы можем определить категорию Fam, эквивалентным образом как \mathbf{Set}/I .
- ▶ Объекты категории \mathbf{Set}/I это множества над I, т.е. пара (A, f), где A – множество, а $f: A \rightarrow I$ – функция.
- lacktriangle Морфизмы между f:A o I и g:B o I это функции h:A o B такие, что следующий треугольник коммутирует:

 Тождественный морфизм и композиция определены как соответствующие операции в **Set**. 4D + 4B + 4B + B + 990

Объекты над I

- Теперь мы можем обобщить эту конструкцию на произвольную категорию.
- **Р** Если I объект некоторой категории \mathbb{C} , то *категория объектов над I* (aka slice category) обозначается \mathbb{C}/I и определяется следующим образом.
- lackbox Объекты ${f C}/I$ это пары (A,f), где A объект ${f C}$, а f:A o I морфизм в ${f C}$.
- lacktriangle Морфизмы между f:A o I и g:B o I это морфизмы h:A o B такие, что следующий треугольник коммутирует:

 Тождественный морфизм и композиция определены как соответствующие операции в С.

Переиндексирование

- lacktriangle Если у нас есть семейство множеств $\{A_i\}_{i\in I}$ и функция $f: J \to I$, то мы можем построить новое семейство $\{A_{f(i)}\}_{i\in J}$
- Если переформулировать это в терминах множеств над I, то мы получим операцию, строящую множество над J по множеству над I и функции $f: J \rightarrow I$:

Что это за операция? Можно ли ее обобщить на произвольную категорию?

Пулбэк-функтор

- Конечно, переиндексация соответствует просто пулбэку $f^*(A)$.
- **Р** Если в категории **C** существуют пулбэки, то для любого морфизма $f: J \to I$ мы можем определить функтор $f^*: \mathbf{C}/I \to \mathbf{C}/J$, обобщий эту конструкцию.
- ightharpoonup Этот функтор по объекту над I возвращает его пулбэк вдоль f, а на морфизмах действует по универсальному свойству пулбэков.
- lackbox У функтора $f^*: {f C}/I o {f C}/J$ всегда есть левый сопряженный $\Sigma_f: {f C}/J o {f C}/I$, который определяется как $\Sigma_f(A) = f \circ A$.