Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16

Πράξεις με δυαδικούς αριθμούς

(αριθμητικές πράξεις)

http://di.ionio.gr/~mistral/tp/csintro/

Μ. Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

• Δυαδικοί Αριθμοί

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits (bytes ή πολλαπλάσιά τους)

Το Byte ως δυαδικός αριθμός

• Δυαδικοί αριθμοί

128	64	32	16	8	4	2	1
2^7	2^6	2^5	2^4	2^3	2^2	21	2^{0}
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

το περισσότερο σημαντικό bit το λιγότερο σημαντικό bit

Εάν ο αριθμός
διαθέτει
περισσότερα bits
χρησιμοποιούμε
μεγαλύτερες
δυνάμεις του 2

Μετατροπή από το δυαδικό στο δεκαδικό σύστημα

Μετατροπή δεκαδικού σε δυαδικό

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

- 16 ψηφία
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Αντιστοιχία με τους δεκαδικούς 0 έως 15
- Σε δυνάμεις του 16
 - 16ⁿ ...16⁴ 16³ 16² 16¹ 16⁰
 - $\Pi.\chi$. $16F(hex) = 1x16^2 + 6x16^1 + 15x16^0$
 - = 256 + 96 + 15 = 367 (δεκαδικό)
- Χρήσιμο μόνο ως "συντομογραφία"
 δυαδικών αριθμών

Δεκαεξαδικό Σύστημα

 Δυαδικοί αριθμοί

 Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό!

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Παράδειγμα στο δεκαεξαδικό σύστημα

• Δυαδικοί αριθμοί

- Παράδειγμα: 1100100110010100 1100 1001 1001 0100

C 9 9 4 = C994(hex)

Παράδειγμα: 10000101011110
 0010 0001 0101 1110

2 1 5 E = 215E (hex)

- Συμπλήρωση με 0 στα αριστερά
- Δεν αλλάζει τον αριθμό, όπως ακριβώς και στο δεκαδικό σύστημα

Φυσικοί αριθμοί (χωρίς πρόσημο)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί

• Άμεση αντιστοιχία

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
••••	• • •

- Με *n* bits περιγράφονται
 - Οι φυσικοί αριθμοί από θ έως και 2^n -1

Ποια η χρήση των "φυσικών αριθμών";

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Για αναπαράσταση
 - Διαφορετικών "πραγμάτων"
 - Συνήθως χωρίς αριθμητική έννοια
 - Αν και η ταξινόμηση είναι bonus!
 - Απαρίθμηση!
 - Παρέχοντας μοναδικούς αναγνωριστικούς αριθμούς
 - Παραδείγματα
 - Οι ξεχωριστές διευθύνσεις μνήμης
 - Οι χαρακτήρες σε ένα αλφάβητο
- $\Xi \alpha \vee \dot{\alpha}$: $\mu \in n$ bits $\alpha \pi \alpha \rho \iota \theta \mu \circ \dot{\nu} \vee \tau \alpha \iota$
 - έως και 2ⁿ διαφορετικά "πράγματα"

Ακέραιοι αριθμοί (με πρόσημο)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Πώς θα αναπαρασταθούν οι αρνητικοί;
 - Για να γίνονται εύκολα οι πράξεις!
- Όχι καλή ιδέα:
 - Ξεχωριστό bit πρόσημου

± (0/1) Μέγεθος (N-1 bits)

Αριθμός (N bits)

Πρόσημο (1 bit)

Διάστημα τιμών για αριθμούς με n bits

$$-(2^{n-1}-1) \epsilon \omega \varsigma + (2^{n-1}-1)$$
 ($\gamma \iota \alpha n=8, -127 ... +127$)

- ένα χρήσιμο bit λιγότερο
- δυσκολία στις πράξεις
- 2 αναπαραστάσεις του 0;

Ακέραιοι αριθμοί (προσημασμένοι - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Επίσης όχι καλή ιδέα:
 - Συμπλήρωμα ως προς 1
 - αντιστροφή όλων των bits του αριθμού
 - Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Διάστημα τιμών για αριθμούς με n bits

$$-(2^{n-1}-1) \cos \zeta + (2^{n-1}-1) (\gamma \iota \alpha \tau i;)$$

- Τα ίδια προβλήματα με την χρήση ξεχωριστού bit πρόσημου!
- Καλή ιδέα!
 - Συμπλήρωμα ως προς 2
 - Πώς υπολογίζεται;

Συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Ίσο με το "συμπλήρωμα ως προς 1" + 1
 - εμπειρικός κανόνας
 - "αντιστροφή όλων των bits εκτός από τα δεξιότερα συνεχόμενα 0 και το πρώτο 1 αριστερά από αυτά"
 - Προσοχή στο 0 (και το 10000....0)
- Συμπλήρωμα ως προς 2: παραδείγματα
- $001011100 \Rightarrow 110100100$
- $0\overline{1111111111} \Rightarrow 100000001$
- Προσοχή:
- $000000000 \Rightarrow 000000000$

Ακέραιοι σε συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

• Διάστημα τιμών για αριθμούς με *n* bits

$$-(2^{n-1}) \dot{\varepsilon}\omega\varsigma + (2^{n-1}-1)$$
 ($\gamma\iota\alpha$ n=8, $-128 \dots +127$)

- Μόνο το $+(2^{n-1})$ δεν μπορεί να αναπαρασταθεί
- Ευκολία στις πράξεις
 - αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2
 - Μία και μοναδική αναπαράσταση του 0
- Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Δεν είναι όμως bit προσήμου!!!

Κλασματικοί αριθμοί

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί

• Θεωρητικά:

 Θα μπορούσαμε να επεξεργαζόμαστε ξεχωριστά το ακέραιο και το κλασματικό μέρος

Αλλά:

- Δυσκολία στις πράξεις απώλεια ακρίβειας κατά τις διαιρέσεις
- Αδυναμία αναπαράστασης πολύ μεγάλων και πολύ μικρών αριθμών

Η λύση:

- Αριθμοί κινητής υποδιαστολής (floating point)
 - Εύκολη αναπαράσταση τόσο του 1.000.000.000.000 όσο και του 0,0000000000000001

Αριθμοί κινητής υποδιαστολής

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί

- 3 μέρη
 - Πρόσημο (Π) (1 bit)
 - 0 = + 1 = -
 - Εκθέτης (E) (8 ή 11 bits)
 - Η βάση είναι το 2 (εννοείται)
 - Θετικοί και αρνητικοί εκθέτες με πλεόνασμα 127 ή 1023
 (π.χ. αντί -55, Ε= -55+127 = 72!)
 - Σημαινόμενο τμήμα (Σ) (23 ή 52 bits)
 - Κανονικοποίηση: μορφή 1,xxxxxxxxxxxx...
 - Το '1,' εννοείται και δεν αποθηκεύεται
- Τελικός αριθμός: -1^Π x 1.Σ x 2^{E-127} (ή 2^{E-1023)}
 - Ειδικοί αριθμοί: 0, ∞, NaN (Not a Number)

Αριθμητικές πράξεις

- Αριθμητικές πράξεις
- Οι βασικές πράξεις
 - Πρόσθεση
 - Αφαίρεση
- Άλλες πράξεις
 - Πολλαπλασιασμός
 - Διαίρεση
 - Επίσης:
 - Τετραγωνική ρίζα, τριγωνομετρικές συναρτήσεις, εκθετικά, λογάριθμοι κλπ..
 - Υλοποίηση σε υλικό με διάφορες τεχνικές
 - Π.χ με πολυώνυμα

Προσθέτοντας 2 bits

• Αριθμητικές πράξεις

bits	άθροισμα	κρατούμενο
0+0	0	0
0 + 1	1	0
1 + 0	1	0
1+1	0	1

Ημιαθροιστής (half-adder)

• Αριθμητικές πράξεις

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Προσθέτοντας δυαδικούς αριθμούς (μη προσημασμένους)

Κρατούμενο	,1,1,1	
Α' Αριθμός (119)	0 1 1 1 0 1 1	1
Β' Αριθμός (88)	0 1 0 1 1 0 0	0
Άθροισμα (207)	1 1 0 0 1 1 1	1

- 1. Αριθμοί με ίδιο μήκος (ίσος αριθμός bits)
- 2. Αρχίζοντας από το λιγότερο σημαντικό bit (το δεξιότερο)
- 3. Προσθέτουμε ζεύγη bits και μεταφέρουμε το κρατούμενο (αν υπάρχει) προς τα αριστερά
 - Το προσθέτουμε στο επόμενο ζεύγος bits

Πλήρης αθροιστής (full-adder)

Πρόσθεση αριθμών με πλήρεις αθροιστές

• Αριθμητικές πράξεις

- Πολλαπλά τμήματα πλήρη αθροιστή
 - Όμως: πόσο γρήγορα διαδίδεται το κρατούμενο; (ripple carry)
 - Τεχνικές πρόβλεψης κρατουμένου (carry lookahead)

Προσθέτοντας δυαδικούς αριθμούς

(μη προσημασμένους)

- Υπερχείλιση
 - Στον υπολογιστή το πλήθος των bits ανά αριθμό είναι προκαθορισμένο
 - Το αποτέλεσμα της πρόσθεσης θα πρέπει να χωρά στα διαθέσιμα bits ενός καταχωρητή
 - Μη προσημασμένοι αριθμοί:
 - α αριθμός με N bits \Rightarrow πεδίο τιμών [$0 \dots 2^N$ 1]
 - π.χ. για αριθμούς με 8 bits, από 0 έως 255

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

• Προσημασμένοι ακέραιοι

- Συμπλήρωμα ως προς 2
 - Το περισσότερο σημαντικό bit υποδηλώνει το πρόσημο
 - 0=θετικός, 1=αρνητικός
- αριθμός με N bits \Rightarrow πεδίο τιμών [-2^{N-1} ...0... +2^{N-1} 1]
 - π.χ. για αριθμούς με 8 bits, από -128 έως +127

• Πρόσθεση

- Όπως σε μη προσημασμένους
- Τελικό κρατούμενο αγνοείται
 - Πώς γίνεται τώρα ο έλεγχος υπερχείλισης;
- Αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2 του αφαιρετέου
 - A B = A + (-B)
 - χωρίς πρόσθετα κυκλώματα για την αφαίρεση!

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	_/ 1
Α' Αριθμός (+17)	0 0 0 1 0 0 0 1
Β' Αριθμός (+22)	0 0 0 1 0 1 1 0
Άθροισμα (+39)	0 0 1 0 0 1 1 1

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	<u>_1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _</u>	
Α' Αριθμός (+24)	0 0 0 1 1 0	0 0
Β' Αριθμός (-17)	1 1 1 0 1 1	1 1
Άθροισμα (+7)	0 0 0 0 0 1	1 1

• το κρατούμενο αγνοείται

Υπερχείλιση σε προσημασμένους αριθμούς

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο	1, 1, 1, 1, 1, 1, 1,
Α' Αριθμός (+127)	0 1 1 1 1 1 1
Β' Αριθμός (+3)	0 0 0 0 0 1 1
Άθροισμα (-126;)	1 0 0 0 0 0 1 0

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο!
 - στην αντίθετη περίπτωση: υπερχείλιση

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο	x ¹					/1	
Α' Αριθμός (-126)	1 0	0	0	0	0	1	0
Β' Αριθμός (-5)	1 1	1	1	1	0	1	0
Άθροισμα (+124;)	0 1	1	1	1	1	0	0

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο!
 - στην αντίθετη περίπτωση: υπερχείλιση
 - πώς θα ήταν ένα κύκλωμα με πύλες για ανίχνευση υπερχείλισης;

Πράξεις με αριθμούς κινητής υποδιαστολής

• Αριθμητικές πράξεις

- Σύνθετη διαδικασία
- Η γενική μορφή της πρόσθεσης:
 - 1. Σύγκριση προσήμων
 - αν είναι ίδια ⇒ πρόσθεση
 - αλλιώς ⇒ αφαίρεση
 - 2. Εξίσωση εκθετών
 - μετακίνηση υποδιαστολής
 - 3. Πρόσθεση ή αφαίρεση σημαινόμενων τμημάτων
 - ακέραιο και κλασματικό μέρος
 - 4. Κανονικοποίηση αποτελέσματος
 - 5. Έλεγχος για υπερχείλιση

Πράξεις με αριθμούς κινητής υποδιαστολής

```
132
                           Α' αριθμός:
                 2^{132-127} \times 1,1011
                                      (+2^5 \times 1,1011)
                       130
Β' αριθμός:
                           2^{130-127} \times 1,011 (+2^3 \times 1,011)
                                1,10110
                   +25
  Α
                                 0,01011
 В
                   +25
                                10,00001
                   +2<sup>5</sup>
                          X
                                 1,000001
κανονικοποίηση
                   +2<sup>6</sup>
                          X
```