

소프트웨어개발방법론 활용

UML

🔷 학습내용 🕶

- UML 개요
- UML 시스템 개발 모형

🔷 학습목표 🤄

- ▶ UML의 개념 및 UML 다이어그램에 대하여 설명할 수 있다.
- UML 시스템 개발 모형 및 각 모형을 표현하는 다이어그램에 대하여 설명할 수 있다.

- UML의 개념
 - ① UML(Unified Modeling Language)의 개념
 - 🗼 UML의 정의

UML

객체지향 소프트웨어를 모델링하는 표준 그래픽 언어 → 시스템의 여러 측면을 그림으로 모델링

[UML과 회로도 예]

📝 UML 개요

- UML의 개념
 - 🗍 UML(Unified Modeling Language)의 개념
 - 🗼 UML의 배경과 역사
 - UML은 OMT(Object Modeling Technique)[Rumbaugh, 1991]와 Booch[Booch, 1994], OOSE(Object Oriented Software Engineering)[Jackson, 1992] 방법의 통합으로 만들어진 표현

[UML의 진화]

UML 다이어그램

∰ UML 다이어그램과 모델링(1/2)

다이어그램 이름	설명	모델링 적용
사용 사례 다이어그램	 업무 프로세스를 나타내는 사용 사례와 액터가 정점에 표시된 그래프 간선은 어떤 액터가 업무 프로세스와 상호작용 하는지 나타냄 	 현재 존재하는 어플리케이션이나 사용자가 개발 요구한 시스템의 업무 프로세스의 개관을 나타내는데 사용됨 시스템 또는 서브시스템의 범위를 나타냄
클래스 다이어그램	 정점은 클래스 방향이 있는 간선에는 클래스의 관계를 나타내는 방향성 그래프 정점에는 클래스가 가지고 있는 속성과 오퍼레이션의 정보가 표시되어 있음 	 도메인 모델을 나타내는데 사용됨 개발자가 도메인 개념과 이들 사이의 관계를 이해하고 전달하는데 도움이 됨
순차 다이어그램	 정점은 객체를 나타냄. 방향성 있는 간선은 객체 사이에 오가는 메시지를 시간 순으로 나타냄 	■ 개발팀이 현재의 업무프로세스를 이해하고 분석하는데 도움이 됨
상태 다이어그램	 정점에는 시스템의 상태 방향이 있는 간선에는 상태의 변환을 나타낸 방향성 있는 그래프 	 상태 의존적이며 반응적인 시스템 또는 서브시스템의 동작을 나타내는데 사용

UML 다이어그램

∰ UML 다이어그램과 모델링(2/2)

다이어그램 이름	설명	모델링 적용
액티비티 다이어그램	 각 정점은 정보를 처리하는 작업을 나타내며 방향이 있는 간선은 자료 및 제어 흐름을 나타내는 방향성 있는 그래프 제어흐름은 순차, 병렬, 동기화를 나타냄 	 시스템 또는 서브시스템의 복잡한 작업 흐름을 나타내는데 사용됨
패키지 다이어그램	■ 정점은 클래스의 묶음인 패키지, 방향이 있는 간선은 패키지의 의존관계를 나타냄	복잡한 클래스를 묶어서 서브시스템으로 조직화하는 데 사용
배치 다이어그램	 정점은 분산 시스템의 물리적인 컴퓨팅 파워와 그 위에 실행되는 컴포넌트를 나타내며 간선은 네트워크 연결을 나타냄 	 배치 다이어그램은 분산 시스템의 각 컴퓨팅 노드, 컴포넌트, 커넥터 등 시스템의 물리적 자원 배치를 나타내는데 사용됨

- 🛄 UML 다이어그램
 - ∰ UML 다이어그램의 모양(1/3)

다이어그램 이름	설명	개략적인 모양
사용 사례 다이어그램	■ 액터와 사용 사례를 이용하여 시스템의 기능을 모델링	Use Case
클래스 다이어그램	 객체지향 시스템에서 가장 근간이 되는 다이어그램 으로서 시스템의 정적인 구조를 나타냄 	Person Name Phone Number Email Address Purchase Parking Pass Purchase Parking Pass Professor Student Student Number Average Mark Is Eligible To Enroll Get Seminars Taken
패키지 다이어그램	 관련된 클래스를 패키지로 그룹핑하여 의존도를 낮추기 위해 사용 	Package Name + Attribute 1 + Attribute 2 - Attribute 3 Package Name + Attribute 3 Package Name + Attribute 3

- 🔲 UML 다이어그램
 - UML 다이어그램의 모양(2/3)

다이어그램 이름	설명	개략적인 모양
순차 다이어그램	■ 클래스 사이의 메시지 교환을 시간이 흐름에 따라 나타냄	User Register Database Validate details Send user details Return result
협동 다이어그램	■ 순차 다이어그램과 같은 내용을 나타내지만 모양이 네트워크 형태임	Chiect-class 1:wesongs 2:wesongs 3:wesongs Chiect-class Chiect-class Chiect-class Chiect-class Chiect-class Chiect-class Chiect-class
상태 다이어그램	 외부 자극에 대한 시스템의 동적 상태 변화를 나타냄 외부 이벤트에 대하여 민감하게 상태를 변화시키는 객체를 모델링 	State do/activity State do/activity State do/activity Event [Ouard] / Action

- 🕕 UML 다이어그램
 - UML 다이어그램의 모양(3/3)

다이어그램 이름	설명	개략적인 모양
액티비티 다이어그램	 액티비티 단계별로 제어라는 흐름을 모델링 하여 시스템의 동적 특징을 나타냄 	Class Class Class Activity Activity Class Class Activity
컴포넌트 다이어그램	 소프트웨어 부품, 예를 들면 원시코드, 런타임 라이브러리, 실행 파일 등의 구성을 나타냄 	Component
배치 다이어그램	■ 노드, 컴포넌트, 커넥터 등 시스템의 물리적 자원 배치를 나타냄	Node Name Name And Andrews And

- ── UML 시스템 개발모형 분류
 - ∰ UML 시스템 개발 모형 분류
 - 🗽 기능적 모형(Functional Model)
 - 사용자 측면에서 본 시스템 기능을 나타냄
 - ▶ UML에서는 사용 사례 다이어그램으로 표현함
 - ∴ 객체 모형(Object Model)
 - 객체, 속성, 연관 관계, 오퍼레이션에 의하여 시스템의 구조를 나타냄
 - ▶ UML에서는 클래스 다이어그램으로 표현함
 - 🔆 동적 모형(Dynamic Model)
 - ▶ 시스템의 내부 동작을 나타냄
 - UML에서는 순서 다이어그램, 상태 다이어그램, 액티비티 다이어그램으로 표현함
 - 순서 다이어그램은 객체들 사이의 메시지 교환을 나타냄
 - 상태 다이어그램은 하나의 객체가 가질 수 있는 상태와 상태의 변화에 의하여 동작을 나타냄

- ₩ 사용 사례 다이어그램
 - ∰ 사용 사례 다이어그램의 개념
 - 🔆 사용 사례 다이어그램의 정의

사용 사례 다이어그램

'순서 있는 액션의 집합을 기술한 것으로 액터에게 혜택이 있는 결과를 제공하여야 함'

- UML User Guide -

- 🔆 사용 사례 다이어그램의 목적
 - ▶ 시스템의 외부 기능을 나타냄
 - ▶ 사용자의 요구를 추출하고 분석함

- 사용 사례 다이어그램
 - Ĥ 사용 사례 다이어그램의 개념
 - 🤆 사용 사례
 - ▶ 사용자가 주어진 작업을 완료하기 위하여 수행한 일련의 액션이나 이벤트를 의미함
 - ▶ 사용 사례 분석의 목적 : 시스템을 모델링 하는 것
 - → 특정 목적을 달성하려고 할 때
 - → 사용자가 시스템과 어떻게 상호작용 하는지에 대한 관점으로
 - ▶ 사용 사례 모델의 구성
 - 사용 사례 집합
 - 사용 사례에 대한 설명
 - 사용 사례 사이의 관계

` 사용 사례 다이어그램

- ⚠ 사용 사례 다이어그램의 개념
 - 🔆 사용 사례 다이어그램의 구성요소
 - ▶ 사용 사례(Use Case): 액터에게 보이는 시스템의 기능, 외부동작
 - ▶ 액터(Actor): 시스템과 상호작용하는 외부 엔티티(사람이나 다른 시스템, 하드웨어), 이름과 설명 필요
 - ▶ 통신: 액터와 사용 사례가 정보를 교화
 - 🔆 사용 사례 다이어그램의 의미
 - ▶ 시스템의 범위를 정함
 - ☀️ 사용 사례 기술
 - 스크립트 형태, 자연어 사용

[사용 사례 다이어그램의 구성요소]

- 🚺 사용 사례 다이어그램
 - 🕘 사용 사례 다이어그램 예

[사용 사례 다이어그램 예(Video Tape 대여점)]

- ` 사용 사례 다이어그램
 - ⚠ 사용 사례 다이어그램의 관계
 - * 포함 관계(Include)
 - ▶ 공통적인 기능을 나타낼 때
 - 표현 : 점선 화살표, 〈〈Include〉〉
 - 🗼 확장 관계(Extend)
 - 어떤 사용 사례가 확장되어 동작이 다름으로 인해 여러 다른 인스턴스가 있을 때
 - ▶ 어떤 사용 사례가 다른 사용 사례를 포함할 때
 - 예외적인 조건이 있을 때
 - 표현 : 점선 화살표, 〈〈Extend〉〉
 - 👚 포함 관계와 확장 관계의 차이점
 - ▶ 의존 관계를 어느 쪽으로 할 것인가

[확장 관계 예]

- ` 클래스 다이어그램
 - 🖺 클래스 다이어그램의 개념
 - 🔆 클래스 다이어그램의 정의

클래스 다이어그램

- ▶ 시스템을 구성하는 클래스의 구조를 나타내는 것
- 객체들의 공통 구조와 동작들을 추상화한 것
- ☀️ 클래스 다이어그램의 목적
 - ▶ 시스템을 구현할 때 어떤 클래스가 필요한지를 나타냄
 - 클래스 사이의 관계를 나타냄
- ☀️ 클래스 다이어그램의 구성요소
 - 객체, 클래스, 속성, 오퍼레이션, 연관 관계
- ☀️ 클래스 다이어그램의 의미
 - ▶ 클래스 다이어그램은 객체지향 프로그램의 골격(클래스의 정의)을 나타냄

- 🛄 클래스 다이어그램
 - 🕕 클래스 다이어그램 예

[클래스 다이어그램 예(Video Tape 대여점)]

- 🚺 클래스 다이어그램
 - 클래스 다이어그램의 표현
 - 🔆 연관 관계(Association)
 - ▶ 클래스 사이의 관계를 표시함
 - ▶ 링크로 나타냄(선으로 표현)
 - ☀ 역할(Role)
 - 연관 관계 표시 선분 끝에 역할을 표시함(has, exist, rent)
 - 🗼 다중도(Multiplicity)
 - ▶ 숫자로 표현함
 - ▶ 연관된 링크의 개수를 나타냄
 - ▶ * 는 다수를 나타냄

Customer 1 * Rental

[클래스 다이어그램 예]

- ` 순서 다이어그램
 - 🖺 순서 다이어그램의 개념
 - ☀️ 순서 다이어그램의 정의

순서 다이어그램

시스템 동작을 정형화하고 객체들의 메시지 교환을 시각화한 것

- 🧼 순서 다이어그램의 목적
 - 참여 객체(Participating Object)를 추가로 찾아내기 위함
 - 객체 사이에 일어나는 상호작용을 파악함
- ☀️ 순서 다이어그램의 구성요소
 - 액터(왼쪽), 객체, 메시지(이름있는 화살표), 수직선(시간의 흐름)
- 僚 순서 다이어그램의 의미
 - 클래스가 가져야 할 오퍼레이션을 파악하는데 사용됨
 - 객체들 사이의 통신 패턴, 사용 사례의 이벤트 흐름을 나타냄

- ◯ 순서 다이어그램
 - 🕕 순서 다이어그램 예

[순서 다이어그램 예(Video Tape 대여점)]

- │ 상태 다이어그램
 - 아마 상태 다이어그램의 개념
 - ☀️ 상태 다이어그램의 정의

상태 다이어그램

객체가 갖는 여러 상태와 상태 사이의 전환을 표현한 것 (상태: 객체가 만족하는 조건)

- 僚 상태 다이어그램의 목적
 - ▶ 단일 객체의 동작을 나타냄
 - 객체의 상태 변환을 점검하며 빠진 오퍼레이션을 점검함
 - 솔루션 도메인 객체를 표현함
- ☀️ 상태 다이어그램의 구성요소
 - 원: 객체의 상태, 화살표: 전환(Transition)
- ☀️ 상태 다이어그램의 의미
 - ▶ 외부 사건의 결과로 일어나는 단일 객체의 상태 변화에 초점을 맞춤
 - 객체의 동작을 구체화함

- 상태 다이어그램
 - ∰ 상태 다이어그램 예

[상태 다이어그램 예(Video Tape 대여점)]

- ၴၴ 액티비티 다이어그램
 - ⊕ | 액티비티 다이어그램의 개념
 - 🔆 액티비티 다이어그램의 정의

액티비티 다이어그램

- 시스템을 액티비티로 표현한 것
- ▶ 액션 상태인 상태 다이어그램
- > 액티비티와 천이 사이의 제어 흐름
 - ※ 액티비티
 - 시스템에서 수행되는 작업(오퍼레이션의 집합)
 - 클래스의 메소드
- 🔆 액티비티 다이어그램의 구성요소
 - ▶ 워:액티비티
 - ▶ 화살표 : 트랜지션(다른 액티비티로 전환)
 - ▶ 동기 막대: 제어흐름 동기화
 - ▶ 다이아몬드: 선택 분기, 시작·종료

- 액티비티 다이어그램
 - 倒 액티비티 다이어그램 예

[액티비티 다이어그램 예(Video Tape 대여점)]

- ◆UML 다이어그램과 모델링
 - 사용 사례 다이어그램: 액터와 사용 사례를 이용하여 시스템의 기능을 모델링함
 - 클래스 다이어그램 : 객체지향 시스템의 가장 근간이 되는 다이어그램으로서 시스템의 정적인 구조를 나타냄
 - 패키지 다이어그램 : 관련된 클래스를 패키지로 그룹핑하여 의존도를 낮추기 위해 사용됨
 - 순서 다이어그램 : 클래스 사이의 메시지 교환을 시간이 흐름에 따라 나타냄
 - 협동 다이어그램: 순서 다이어그램과 같은 내용을 나타내지만 모양이 네트워크 형태임
 - 상태 다이어그램 : 외부 자극에 대한 시스템의 동적 상태 변화를 나타냄
 - 액티비티 다이어그램: 액티비티 단계별로 제어라는 흐름을 모델링하여 시스템의 동적 특징을 나타냄
 - 컴포넌트 다이어그램 : 소프트웨어 부품의 구성을 나타냄
 - 배치 다이어그램 : 시스템의 물리적 자원 배치를 나타냄

- ◆UML 시스템 개발 모형
 - 기능적 모형 : 사용 사례 다이어그램으로 표현
 - 객체 모형 : 클래스 다이어그램으로 표현
 - 동적 모형 : 순서 다이어그램, 상태 다이어그램, 액티비티 다이어그램으로 표현
- ◆사용 사례 다이어그램
 - 정의: '순서 있는 액션의 집합을 기술한 것으로 액터에게 혜택이 있는 결과를 제공해야 함' (UML User Guide)
 - 구성 요소 : 사용 사례, 액터, 통신
- ◆클래스 다이어그램
 - 정의: 객체들의 공통 구조와 동작들을 추상화한 것
 - 구성 요소 : 객체, 클래스, 속성, 오퍼레이션, 연관 관계
- ◆순서 다이어그램
 - 정의 : 시스템 동작을 정형화하고 객체들의 메시지 교환을 시각화
 - 구성 요소 : 액터, 객체, 메시지, 수직선
- ◆상태 다이어그램
 - 정의: 객체가 갖는 여러 상태와 상태 사이의 전환을 표현
 - 구성 요소 : 원, 화살표
- ◆액티비티 다이어그램
 - 정의 : 시스템을 액티비티로 표현한 것
 - 구성 요소 : 원, 화살표, 동기 막대, 다이아몬드, 시작·종료