PRODUCT PREDICTIVE DEMAND IN MACHINE LEARNING

Data Loading:

Begin by loading the dataset. You can use libraries like Pandas to read data from various sources such as CSV, Excel, or SQL databases.

import pandas as pd

Load data

data = pd.read_csv('https://raw.githubusercontent.com/amankharwal/Websit')

ID Store ID Total Price Base Price Units Sold					
0	1	8091	99.0375	111.8625	20
1	2	8091	99.0375	99.0375	28
2	3	8091	133.9500	133.9500	19
3	4	8091	133.9500	133.9500	44
4	5	8091	141.0750	141.0750	52

Data Preprocessing:

This step involves handling missing values, data normalization, feature scaling, and encoding categorical variables.

```
# Data preprocessing
# Handle missing values
data = data.dropna()

# Perform feature scaling and encoding if necessary
# ...

# Split data into features and target variable
X = data.drop('target_column', axis=1) # Features
```


Exploratory Data Analysis (EDA): This step helps you understand the dataset. You can use visualizations to analyze the distribution of features, correlations, and other patterns. import matplotlib.pyplot as plt

EDA # Perform data visualization # ...

Feature Engineering:

Create new features or transform existing ones to improve the performance of your machine learning models.

: # Feature engineering

Perform feature transformations, extraction, or selection

..

Model Building:

Choose an appropriate machine learning model for demand prediction, such as linear regression, decision trees, random forests, or deep learning models. from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize and train the model
model = LinearRegression()
model.fit(X_train, y_train)

Make predictions predictions = model.predict(X_test)

Model Evaluation:

Evaluate the model using appropriate metrics such as mean squared error, mean absolute error, or R-squared.

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

Model evaluation

mse = mean_squared_error(y_test, predictions)
mae = mean_absolute_error(y_test, predictions)
r2 = r2_score(y_test, predictions)

print(f"Mean Squared Error: {mse}")
print(f"Mean Absolute Error: {mae}")
print(f"R-squared: {r2}")

Hyperparameter Tuning:

If necessary, optimize the model's hyperparameters to improve its performance.

 $from \ sklearn.model_selection \ import \ Grid Search CV$

Hyperparameter tuning

Perform grid search for finding the best hyperparameters

Finalize the Model:

Once you're satisfied with the model's performance, train it on the entire dataset and save it for future use.

Finalize the model
final_model = LinearRegression()
final_model.fit(X, y)

Save the model import joblib joblib.dump(final_model, 'demand_p