Const Dev Challenge 2022.2

CONSTELLATION

ASSET MANAGEMENT

Sumário

GVCode CONSTELLATION

- 1. O Challenge
- 2. O Modelo
- 3. Análise da série
- 4. Seleção das variáveis
- 5. Seleção do modelo
- 6. Resultados do modelo
- 7. Aplicações
- 8. Conclusão

Victor Laube Dutra FGV ADM 4° semestre

FGV Econo 6° semestre

Ricardo Semião e Castro FGV Econo 8º semestre

O Challenge

1. O Challenge

GVCode | CONSTELLATION

Previsão do fluxo de dinheiro investido dentro dos fundos de ações

1^a ETAPA

Quantitativa

Competição de Data Science - Kaggle

Avaliação por RMSE

GVCode no 1º lugar (747.841 RMSE)

2ª ETAPA

Qualitativa

Entrega do relatório sobre o modelo

Verificação funcionalidade e aplicabilidade

Otimização do modelo

Z.
O Modelo

2. O Modelo

GVCode | CONSTELLATION

- Desenvolvido em Python (Jupyter)
- Rede Neural Perceptron Multicamadas
- Treinado em 3 anos (2016 2018)

Variáveis:

MERCA [ו טכ	NACI	UNAL

Índice imobiliário (IMOB)

Índice financeiro (IFNC)

Índice energia elétrica (IEE)

MERCADO EXTERNO

Nasdaq 100 (NDX)

S&P 500 (SPX)

Cotação Dólar

RESULTADOS

(19/05/2021 - 26/07/2022)

658,08 RMSE

409,17 MAE

3,41% MAPE

Análise da Série

GVCode | CONSTELLATION

• Características Teóricas - Decisão de Investimento

GVCode CONSTELLATION

Características Operacionais - Fundos & B³

Fundos

- Podem ser abertos ou fechados
- Prazo de cotização
 - Agente toma decisão em D, mas o fundo só realiza o resgate / captação em D + x
 - Para renda variável, o prazo costuma ser 7, até 120 dias

GVCode | CONSTELLATION

Características Estatísticas - Outliers

Presença:

- 26 obs. > 2 desvios padrões
- 2 obs. > 20 desvios padrões
- Maior presença durante a pandemia

Problema:

- Enviesar os modelos para amostras extremas
- Punição de grandes erros via RMSE

Solução:

 identificação e substituição pelo método de quantis

GVCode | CONSTELLATION

Características Estatísticas - Sazonalidade

Sazonalidade:

- Fatos estilizados do mercado financeiro
 - Efeitos de dia da semana
 - Efeitos de trimestre
 - Modelos ARMA sazonais
- Ambos métodos com baixo poder explicativo

Tendência:

- Apresenta estacionariedade
- Série centrada no 0
- Possível quebra a partir de 2019

GVCode | CONSTELLATION

Características Estatísticas - Quebras estruturais

Presença:

- Teste com regressões segmentadas
- Possível mudança no processo gerador dos dados

Problema:

- Viesar estimativas
- Possível volta ao processo original pós pandemia

Solução:

 limpar a tendência, ou treinar apenas pré/pós 2019

GVCode | CONSTELLATION

Características Estatísticas - Distribuição

Características:

- Alta densidade próximo à média
- Alta densidade de longes da média
- Assimetria

Implicações para modelagem:

- Não desviar muito da média, mas conseguir prever valores extremos
- Prever valores altos positivos com maior frequência

GVCode CONSTELLATION

• Características Estatísticas - Autocorrelação

Características:

- Correlação muito persistente
- Forte dinâmica temporal

Implicação para modelagem:

 Modelos que incluam a dinâmica de séries de tempo

+.

Seleção das variáveis

Intuição Econômica

Macroeconômicas

- **IPCA**
- PIB
- SELIC
- Desemprego
- Federal Funds Rate

Mercado Externo

- Câmbio
- SPX
- NDX
- N100
- DJI
- Outras Bolsas

Decomposição IBOV

- IEE
- IFNC
- IMOB
- IMAT

4. Seleção das variáveis

GVCode | CONSTELLATION

Possível problema

 Os métodos selecionar as variáveis que explicam bem apenas naquele período

Solução encontrada

 Utilizar teoria econômica para complementar os métodos empíricos

Seleção do Modelo

5. Seleção do modelo: univariados

GVCode | CONSTELLATION

5. Seleção do modelo: multivariados

GVCode | CONSTELLATION

PRINCIPAIS CANDIDATOS

Redes Neurais

VANTAGENS

Alta performance com bases grandes, complexas e não lineares

DESVANTAGENS

Performance dependente do treino Computação demorada Ensembles

VANTAGENS

Alta acurácia de predição Baixa variância e viés Identifica padrões ocultos

DESVANTAGENS

Amostra x População Difíceis de interpretar e montar Support Vectors

VANTAGENS

Excelente generalização Robusto à outliers Facilmente atualizado

DESVANTAGENS

Não é adequado para bases grandes com muito *noise*

5. Seleção do modelo: multivariados

GVCode CONSTELLATION

 Avaliação dos modelos por validação cruzada K-Fold

COMO FUNCIONA

- 1. Divide a série em k grupos
- 2. Para cada grupo:
 - a. Separa o grupo como teste
 - b. Treina o modelo com o resto
 - c. Avalia na base de teste
 - d. Armazena o resultado e descarta o modelo
- 3. Resume a acurácia do modelo

k = 1	TESTE	TREINO	TREINO	TREINO
k = 2	TREINO	TESTE	TREINO	TREINO
k = 3	TREINO	TREINO	TESTE	TREINO
k = 4	TREINO	TREINO	TREINO	TESTE

5. Seleção do modelo: multivariados

 Avaliação dos modelos por validação cruzada K-Fold

RESULTADOS

A rede neural obteve o melhor desempenho até mesmo que o modelo de stacking

O que mais se aproximou da rede neural foi o SVR, porém não teve boa performance na hora de testar o modelo

GVCode CONSTELLATION

5. Seleção do modelo: MLP

GVCode | CONSTELLATION

5. Seleção do modelo: MLP

GVCode | CONSTELLATION

Parametrização da rede neural

PRINCIPAIS PARÂMETROS

- Função de ativação = Rectified Linear Unit (ReLU)
- Camadas escondidas = (100,)
- Solver = Stochastic Gradient Descent (sgd)
- Taxa de aprendizagem = Adaptive
- Alfa = 0.05

GRIDSEARCH

- Ferramenta da biblioteca sklearn
- Testa diversas combinações de parâmetros
 - Retorna combinação ideal de acordo com RMSE

Aplicação

6. Aplicabilidade- Problema comum nas gestoras

6. Aplicabilidade

GVCode CONSTELLATION

- Previsão de fluxos futuros
 - Modelo multivariado
 - Necessidade de prever outras variáveis

/. Resultados

7. Resultados

GVCode | CONSTELLATION

Robustez do modelo

- Teste de performance para vários períodos de previsão comuns
- Para cada período, fizemos 5 testes,
 variando o tamanho da base de treino e teste

- 15 dias a frente:
 - MAPE: 2,253 (0,872)
- 1 mês a frente:
 - o MAPE: 3,096 (2,446)
- 1 semestre a frente:
 - MAPE: 3,382 (1,1601)

7. Resultados

GVCode | CONSTELLATION

Robustez do modelo

Variável	Nível	Período	RMSE	RMA	MAPE
Selic	alto	2 anos	413	99	2,8%
	baixo	4 anos	285	228	1,2%
	baixo	2 anos	479	394	1,7%
IPCA	alto	1 ano	139	88	3,7%
	baixo	4 anos	413	330	1,2%
Desemprego	alto	4 anos	350	274	1,4%
Dólar	baixo	2 anos	479	394	1,7%

8. Conclusão

8. Conclusão

GVCode | CONSTELLATION

Modelo final e insights

O MODELO

- Bom desempenho constante
- Robusto a vários períodos e cenários
- Aplicações para gestoras
- Mecanismo complexo de rede neural
- Fácil de ser adaptado e atualizado
- Dados de fácil acesso

INSIGHTS

- Complexidade do fluxo
- Relacionamento com o mercado americano
- Impacto macroeconômico da pandemia

Obrigado!

Equipe GVCode

