Sequence Alignment Algorithms

by Ahmet Sacan

Finding optimal alignment

• Given two sequences, find an alignment that gives maximum alignment score.

```
GS-APVK -GSAP-VK GSA-P-VK ...
G-NPKVK G-N-PKVK G--NPKVK ...
score:3 score:4 ...
```

- Two sequences with 100 residues can be aligned in ~10^75 different ways.
- Two sequences with 1000 residues can be aligned in ~10^600 different ways.

Dynamic Programming is about re-using solutions to subproblems

 Game: Start from top left corner, move right, down, or diagonal until you reach bottom right. Collect money on diagonal moves. Pay \$1 penalty on non-diagonal moves and not collect the money on the target square.

5	2	5
6	3	4
3	12	2

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6		5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7			5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10			7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5					3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

3	7	8	8	7	6	8	5	2	10
5	3	7	4	2	7	3	9	10	3
6	7	1	8	8	6	2	9	7	2
5	7	7	5	3	5	7	3	5	2
9	1	4	1	10	7	5	7	7	1
6	3	10	2	3	7	5	6	6	5
10	3	1	8	8	7	7	6	7	5
7	7	5	5	2	7	8	9	6	4
10	9	5	2	3	10	4	3	8	5
3	4	5	4	1	3	7	4	6	7

12

Dynamic Programming Table

G N P K V K

GSAPVK

GNPKVK

GS-APVK G-NPKVK

G N P K V K

GSAPVK

GNPKVK

match: +1

mismatch: 0

gap: -1

S

G

Α

P

V

K

G	Ν	Р	K	V	K
	1 4	ı	1 /	V	1 /

GSAPVK

GNPKVK

match: +1

mismatch: 0

	0						
G		1	0	0	0	0	0
S		0	0	0	0	0	0
Α		0	0	0	0	0	0
Р		0	0	1	0	0	0
V		0	0	0	0	1	0
K		0	0	0	1	0	1

GSAPVK			G	N	P	K	V	K
		0	0	0	0	0	0	0
GNPKVK	G	0	1	0	0	0	0	0
match: +1	S	0	0	0	0	0	0	0
mismatch: 0	Α	0	0	0	0	0	0	0
gap: -1	Р	0	0	0	1	0	0	0
	V	0	0	0	0	0	1	0

			Game Board				<u> </u>	Dynamic Programming Table								
		G	N	Р	K	V	K			G	N	Р	K	V	K	
GSAPVK	0	0	0	0	0	n	0		0	_1	-2	-3	_/1	_5	-6	
GNPKVK	U	U	U	U	U	U	U		U	T	-2	-5	-4	-5	-0	
GNPRVR	0	1	0	0	0	0	0	G	-1	1						
match: +1	0	0	0	0	0	0	0	S	-2							
mismatch:0	0	0	0	0	0	0	0	Α	-3							
gap: -1	0	0	0	1	0	0	0	Р	-4							
V	0	0	0	0	0	1	0	V	-5							
K	0	0	0	0	1	0	1	K	-6							

GSAPVK

GNPKVK

match: +1
mismatch: 0

gap: -1

<u>Dynamic Programming Table</u> G N P K V K

Game Board Dynamic Programming Table TACG TACG CAG 0 -1 -2 -3 -4 0 0 **TACG** 0 -4 3 -4 -4 A -2 match: +3 mismatch:-4 G

Game Board Dynamic Programming Table TACG TACG CAG 0 -1 -2 -3 -4 0 0 **TACG** 0 -4 3 -4 -4 A -2 match: +3 mismatch:-4 G

Game Board Dynamic Programming Table TACG TACG CAG 0 -1 -2 -3 -4 0 0 TACG C -1 -2 -3 **-4 3** A -2 -3 1 match: +3 mismatch:-4 0

Dynamic Programming Table Game Board -1 -2 -3 -4 0 0 0 0 0 0 G

 Substitution Matrix

 A
 C
 G
 T

 A
 4
 0
 1
 0

 C
 0
 9
 -3
 -1

 G
 1
 -3
 6
 -2

 T
 0
 -1
 -2
 5

gap: -1

CAG

TACG

Dynamic Programming Table Game Board 0 0 -1 -2 -3 0 9 4 G -3 G

TACG Substitution Matrix C G 0 0 9 -3 -1 -3 G 6 -2 -1 5

CAG

Dynamic Programming Table

Τ

Α

 C

(

CAG

TACG

Substitution Matrix

A C G T

A 4 0 1 0

C 0 9 -3 -1

G 1 -3 6 -2

T | 0 | -1 | -2 | 5

	0	-1	-2	-3	-4
С	-1				
Α	-2				
G	-3				

Dynamic Programming Table

Γ

Α

C

G

CAG

TACG

Substitution Matrix

A C G T

A 4 0 1 0

C 0 9 -3 -1

G 1 -3 6 -2 T 0 -1 -2 5

	0	-1	-2	-3	-4
С	-1	-1	-1	7	6
Α	-2	-1	3	6	8
G	-3	-2	2	5	12

Dynamic Programming Table

Γ

Α

C

G

CAG

TACG

Substitution Matrix

A C G T

A 4 0 1 0

C 0 9 -3 -1

G 1 -3 6 -2 T 0 -1 -2 5

	0	-1	-2	-3	-4
С	-1	-1	-1	7	6
Α	-2	-1	3	6	8
G	-3	-2	2	5	12

Applying Dynamic Programming to sequence alignment

- Score of an aligned amino acid pair is independent of others
- Due to additivity of scores, any sub-alignment of the optimal alignment must also be optimal
- Thus, the optimal score can be found by search for local optima

Optimality of sub-alignments

• If this is the best alignment:

```
GS-AQVK
G-NPKVK
```

Then, any part of it, for example

```
-AQ
NPK
```

must be better than any other possible alignment. Otherwise, say it was not as good as:

```
A-Q
NPK
```

Becase then, the following would've been the best alignment:

```
GSA-QVK
G-NPKVK
```

Solving for Sij using subsolutions

•
$$S_{i,j} = max \begin{cases} S_{i-1,j-1} + s(x_i, y_j) \\ S_{i-1,j} + g \\ S_{i,j-1} + g \end{cases}$$

• Find the optimal alignment of:

ACAG

ACCG

 Use gap=-2, and match: +2, mismatch:0

• Find the optimal alignment of:

ACAG ACCG

 Use gap=-2, and match: +2, mismatch:0

	<u>Dyna</u>	A	C	C	G	
	0	-2	-4	-6	-8	
Д	-2	2	0	-2	-4	
С	-4	0	4	2	0	
Д	-6	-2	2	4	2	
G	-8	-4	0	2	6	

Dynamic Programming Tahle

• Find the optimal alignment of:

ACAG

ACCG

• gap=-2, and the following substitution matrix:

	Α	С	G
Α	5	-5	0
С	-5	2	5
G	0	5	1

• Find the optimal alignment of:

ACAG ACCG

 gap=-2, and the following substitution matrix:

	Α	С	G
Α	5	-5	0
С	-5	2	5
G	0	5	1

	Бупа	A	C	C	G
	0	-2	-4	-6	-8
4	-2	5			
	-4				
7	-6				
6	-8				

Dynamic Programming Table

When Global alignment is not a good choice

- · Consider:
- ☐ GCGCACTTCCGGCATAAAAGGATGGATTTTTGACAATCCCCGATGT**CCAAGCTATGGTCCCTTAACA**GCAATCGGTCTAACA
- ☐ CCAACCTATGGTCCCTTAACA
- Global alignment: score=-40

- +21 matches, -0 mismatch, -61 gaps (-29 end, -32 internal)
- More meaningful alignment: score=-42

GCGCACTTCCGGCATAAAAGGATGGATTTTTGACAATCCCCGATGT**CCAAGCTATGGTCCCTTAACA**GCAATCGGTCTAACA

■ 20 matches, -1 mismatch, -61 gaps (all end gaps)

Semi-global alignment (aka "free end gaps")

- · Consider:
- ☐ GCGCACTTCCGGCATAAAAGGATGGATTTTTGACAATCCCCGATGT**CCAAGCTATGGTCCCTTAACA**GCAATCGGTCTAACA
- ☐ CCAACCTATGGTCCCTTAACA
- Global alignment: score= 40 score=-11

- +21 matches, -0 mismatch, 61 gaps (29 end, -32 internal)
- Semi-global alignment: score= 42 score=+19

GCGCACTTCCGGCATAAAAGGATGGATTTTTGACAATCCCCGATGT**CCAAGCTATGGTCCCTTAACA**GCAATCGGTCTAACA

■ 20 matches, -1 mismatch, -61 gaps (all end gaps)

Semi-global alignment (aka "free end gaps")

- 1. Use zeros in first row and first column.
- 2. Use the largest value in the last row or last column as the end point of the alignment.

- BLOSUM62 substitution matrix
- Gap penalty = -8.

When Global alignment is not a good choice - Case 2

· Consider:

- ☐ GCGCACTTCCGGCATAAAAGGGATGGATTTTTGACAATCCCCGATGTCCAAGCTATGGTCCCTTAACAGCAATCGGTCTAACA
- □ CATATCACGTGGTACAAGGTGATTCGTGTCCGCGGGCACCTTGAAGCTTC**GGATGGATTTTT**TGTTGGGACGGCTTTCGTT

Global alignment:

Semi-Global alignment:

· More meaningful alignment: Local Alignment

When Global alignment is not a good choice - Case 2

Local alignment

1. Use zeros in first row and first column.

2.
$$S_{i,j} = max \begin{cases} S_{i-1,j-1} + s(x_i, y_j) \\ S_{i-1,j} + g \\ S_{i,j-1} + g \\ 0 \end{cases}$$

- 3. Use the largest value anywhere on the table as the end point of the alignment.
- 4. Stop back-tracking when you reach a 0.

- BLOSUM62 substitution matrix
- Gap penalty = -4.

Local Alignment

KVLEFGY

EQLLKALEFKL

match:+4

mismatch:-2

gap:-1

	-	E	Q	L	L	K	A	L	E	F	K	L
-	0	0	0	0	0	0	0	0	0	0	0	0
K	0	0	0	0	0	4	3	2	1	0	4	3
V	0	0	0	0	0	3	2	1	0	0	3	2
L	0	0	0	4	4	3	2	6	5	4	3	7
E	0	4	3	3	3	2	1	5	10	9	8	7
F	0	3	2	2	2	1	0	4	9	14	13	12
G	0	2	1	1	1	0	0	3	8	13	12	11
Y	0	1	0	0	0	0	0	2	7	12	11	10

KA-LEF K-VLEF

Multiple Local alignments

		I	S	Α	L	I	G	N	E	D
	0	0	0	0	0	0	0	0	0	0
Т	0	0	1	0	0	0	0	0	0	0
Н	0	0	0	0	0	0	0	1	0	0
I	0	4	0	0	2	4 ->	0	0	0	0
s	0	0	8 →	4	0	0	4	1	0	0
L	0	2	4	7	8	4 ->	0	1	0	0
I	0	4	0	3	9	12 🗪	8	4 ⇒	0	0
N	0	0	5 ->	1	5	8	12	14	10 →	6
E	0	0	1	4	1	4	8	12	19 →	15

Complex gap function can also be handled efficiently

- Linear gap penalty $gappenalty = -n_{gaps} * E$
- Affine gap penalty gappenalty $= -\frac{n_{gapopen}}{n_{gapopen}} * I \frac{n_{gapextend}}{n_{gapextend}} * E$

Computational Complexity of Alignment

- · Lenghts of sequences: m, n
 - O(mn) time
 - O(mn) space

Computational Complexity of Alignment

- If only alignment score is needed (and not the alignment itself):
 - O(mn) time
 - O(min(m, n)) space

V -5 -3 -2 0 1 2 1 K -6 -4 -3 -1 1 1 3

Summary

- Sequence alignment problem can be solved efficiently using dynamic programming algorithm.
 - Optimal alignments of shorter sequences are used to find the optimal alignment of the longer sequences.
- Semi-global, local, and multiple-local alignments can be calculated by modifying the global alignment algorithm.
- Match/mismatch scores vs. substitution matrix can be used for scoring character pairings
- Linear or affine gap penalty can be used to score gaps in the alignment.