Anteproyecto de Amperímetro y Voltímetro

Integrante 1: Orciani Gino

ginoorciani@impatrq

Integrante 2: Korylkiewicz Joaquin

joaquinkorylkiewicz@impatrq

Integrante 3: Minutillo Joaquin

joaquinminutillo@impatrq

1- INTRODUCCIÓN

Nuestro proyecto consiste en llevar a cabo mediciones detalladas utilizando un amperímetro y un voltímetro para evaluar tanto las baterías como el consumo del motor de un automóvil eléctrico. Nos proponemos registrar y analizar los datos obtenidos a fin de comprender mejor el rendimiento energético del vehículo. Este estudio incluirá la medición de la corriente y el voltaje de las baterías, así como del consumo del motor en diversas condiciones de funcionamiento.

2- MARCO DE APLICACIÓN

Los amperímetros y voltímetros son instrumentos fundamentales en diversas áreas y campos de la ingeniería y la tecnología. A continuación, se presentan algunos ejemplos de su aplicación:

Ingeniería Eléctrica y Electrónica

En el campo de la ingeniería eléctrica y electrónica, estos instrumentos se utilizan ampliamente para el diseño, desarrollo y mantenimiento de circuitos y sistemas eléctricos. Los ingenieros emplean amperímetros para medir la corriente eléctrica que fluye a través de un circuito, asegurando que los componentes funcionen dentro de sus especificaciones y detectando posibles fallos o sobrecargas. Los voltímetros, por su parte, se utilizan para medir el voltaje entre dos puntos de un circuito, lo que es crucial para el diagnóstico de problemas y la verificación del funcionamiento correcto de fuentes de alimentación y componentes electrónicos.

Automotriz

En la industria automotriz, los amperímetros y voltímetros son esenciales para evaluar el rendimiento de los sistemas eléctricos de los vehículos, especialmente en los autos eléctricos e híbridos. Los técnicos utilizan estos instrumentos para medir la carga y descarga de las baterías, así como el consumo de corriente de los motores eléctricos y otros sistemas auxiliares. Esto permite optimizar el rendimiento energético del vehículo y asegurar la fiabilidad del sistema eléctrico.

Energía Renovable

En el sector de las energías renovables, estos dispositivos son cruciales para la instalación y mantenimiento de sistemas fotovoltaicos y eólicos. Los instaladores de paneles solares usan amperímetros y voltímetros para verificar que los paneles y los inversores estén funcionando correctamente, asegurando que la energía generada se convierta y se distribuya de manera eficiente.

Telecomunicaciones

En el ámbito de las telecomunicaciones, los técnicos emplean amperímetros y voltímetros para mantener y reparar equipos de transmisión y recepción. La correcta medición de corriente y voltaje es vital para garantizar que los equipos operen dentro de sus parámetros especificados, evitando así interrupciones en el servicio y prolongando la vida útil de los dispositivos.

3- DESCRIPCIÓN TÉCNICA

A continuación se muestra una imagen de como será el circuito de este voltímetro y amperímetro:

Descripción del Circuito

1. Voltímetro:

 El voltímetro está conectado a los extremos de las resistencias R1 y R2, y mide el voltaje en ese punto del circuito. Este voltaje es la carga de la batería. El capacitor se encuentra ahí en casa de que la tensión varie.

2. Sensor de Corriente (Amperímetro):

 El sensor de corriente está representado en la parte inferior del circuito. Este sensor mide la corriente que pasa a través del M y convierte esta medición en una señal de voltaje proporcional. El amperímetro mide esta señal de voltaje.

3. Microcontrolador con EEPROM (E2P):

- El microcontrolador (E2P) recibe las señales de voltaje tanto del voltímetro como del sensor de corriente.
- Este microcontrolador realiza la conversión de la señal de voltaje proveniente del sensor de corriente a una medida en amperios.
- Además, el microcontrolador puede almacenar estos datos en su memoria EEPROM para un análisis posterior o para ajustar el rendimiento del sistema.

Descripción del Microcontrolador con EEPROM (E2P)

Un microcontrolador con EEPROM (E2P) es un tipo de microcontrolador que incluye una memoria EEPROM (Electrically Erasable Programmable Read-Only Memory) integrada. Esta memoria permite almacenar y preservar datos de manera no volátil, es decir, los datos permanecen guardados incluso cuando el dispositivo está apagado. A continuación, se detallan sus características:

- La EEPROM integrada permite la escritura, borrado y lectura de datos múltiples veces, ofreciendo una solución para almacenar configuraciones, parámetros, y datos importantes que necesitan ser retenidos sin suministro de energía.
- A diferencia de la memoria RAM, los datos en EEPROM no se pierden cuando el dispositivo se apaga, lo que la hace ideal para almacenar información crítica y configuraciones del sistema.
- Los microcontroladores con EEPROM son diseñados para consumir poca energía, lo que es especialmente útil en aplicaciones de bajo consumo y dispositivos alimentados por batería.

Algunas funciones de este:

- Los dispositivos electrónicos, como electrodomésticos, controles remotos y dispositivos portátiles, utilizan EEPROM para guardar configuraciones del usuario, preferencias y ajustes personalizados.
- En aplicaciones industriales y médicas, los microcontroladores con EEPROM registran datos operativos, eventos y parámetros de funcionamiento, proporcionando una forma fiable de monitorear y analizar el rendimiento del sistema.
- En sistemas que requieren alta precisión, como sensores y equipos de medición, la EEPROM se usa para almacenar datos de calibración y compensación, asegurando una operación precisa a lo largo del tiempo.

3.1 SOBRE EL HARDWARE

Microcontrolador E2P

Sensor de corriente: Acs 712
Especificaciones técnicas:

Voltaje de Operación: 5V Corriente máx: 30A Sensibilidad: 185 mV/A

Señal analógica de bajo ruido

Tiempo de respuesta de la salida: 5us Error: ±1.5% (@25 °C) ajustado en fábrica Resistencia del conductor: 1.2 Mohm Mide tanto corrientes AC como DC Offset de salida sumamente estable Histéresis magnética próxima a cero

3.2 SOBRE EL SOFTWARE

- Lectura de voltaje desde el voltímetro.
- Lectura de la señal de voltaje desde el sensor de corriente.
- Conversión de la señal de voltaje del sensor de corriente a una medida de corriente (amperios).
- Almacenamiento de los datos medidos en la EEPROM del microcontrolador.

4-DIVISIÓN DE TAREAS

Integrante 1: Realizar el código para que el microcontrolador haga los pasajes de unidad.

Integrante 2: Diseñar y armar el circuito, y verificar la funcionalidad de la batería.

Integrante 3: Diseñar y armar el circuito, y verificar la funcionalidad de la batería.

5-LISTA DE MATERIALES

- Microcontrolador con EEPROM (E2P)
- Sensor de corriente Acs712

- Resistencias
- Capacitor
- Las baterías para medir