函數

沈威宇

2025年1月16日

目錄

第一	-節	函數(Functions)................................	1
	- `	Definition	1
	= \	Denotation	1
第二	節	函數性質	1
	<u> </u>	單射(Injection)/一對一(One-to-one)	1
	=,	多對一(Many-to-one)	1
	三、	滿射/蓋射(Surjection, Onto)	1
	四、	對射(Bijection)	1
	五、	光滑(Smooth).............................	2
	六、	遞增及遞減	2
	七、	合成函數(Composite Function)	2
	八、	反函數(Inverse Function)	2
	九、	分段函數(Piecewise Function)	2

第一節 函數(Functions)

— \ Definition

A function is formed by three sets, the domain (定義域) X, the codomain (對應域) Y, and the graph, R that satisfy the three following conditions.

$$R \subseteq \{(x, y) \mid x \in X, y \in Y\}$$

$$\forall x \in X, \exists y \in Y, (x, y) \in R$$

$$(x, y) \in R \land (x, z) \in R \implies y = z$$

二、 Denotation

A function *f* is defined by

$$R \subseteq \{(x, y) \mid x \in X, y \in Y\}$$

$$\forall x \in X, \exists y \in Y, (x, y) \in R$$

$$(x, y) \in R \land (x, z) \in R \implies y = z$$

We denote X as D_f , define range (值域), denoted as R_f or f(X), as

$$R_f = f(X) = \{y \mid x \in X \land (x,y) \in R$$

and denote f as $f:D_f\to R_f$. If

$$x \in X \land (x, y) \in R$$

, we call x independent variable, call y dependent variable, denote y = f(x), and call f(x) functional value.

第二節 函數性質

一、 單射 (Injection) /一對一 (One-to-one)

函數 $f: V \to W$ 為單射函數 $\iff \forall x_1, x_2 \in V \text{ s.t. } f(x_1) = f(x_2): x_1 = x_2$

二、 多對一(Many-to-one)

函數 $f: V \to W$ 為多對一函數 $\iff \exists x_1, x_2 \in V \land x_1 \neq x_2 \text{ s.t. } f(x_1) = f(x_2)$

三、 滿射/蓋射(Surjection, Onto)

函數 $f: V \to W$ 為滿射函數 $\iff f(V) = W$

四、 對射 (Bijection)

函數 f 為對射函數 \iff 函數 f 為單射且滿射

五、 光滑 (Smooth)

函數
$$f(x): V \to W$$
 為光滑函數,即 $C^{\infty} \iff \forall a \in V \forall n \in \mathbb{N} \exists \frac{\partial^n f(x)}{\partial x^n}$

六、 遞增及遞減

- 函數 f 為遞增(Increasing)函數 $\iff \forall x_1, x_2 \in D_f : x_1 < x_2 \implies f(x_1) \le f(x_2)$
- 函數 f 為遞減(Decreasing)函數 $\iff \forall x_1, x_2 \in D_f : x_1 < x_2 \implies f(x_1) \ge f(x_2)$
- 函數 f 為嚴格遞增(Strictly Increasing)函數 $\iff \forall x_1, x_2 \in D_f: x_1 < x_2 \implies f(x_1) < f(x_2)$
- 函數 f 為嚴格遞減(Strictly Decreasing)函數 $\iff \forall x_1, x_2 \in D_f : x_1 < x_2 \implies f(x_1) > f(x_2)$
- 函數 f 在 I 上遞增(Increasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
- 函數 f 在 I 上遞增(Increasing) $\iff \forall x_1, x_2 \in I \subset D_f : x_1 < x_2 \implies f(x_1) \leq f(x_2)$
- 函數 f 在 I 上遞減(Decreasing) $\iff \forall x_1, x_2 \in I \subset D_f : x_1 < x_2 \implies f(x_1) \ge f(x_2)$
- 函數 f 在 I 上嚴格遞增 (Strictly Increasing) $\iff \forall x_1, x_2 \in I \subset D_f : x_1 < x_2 \implies f(x_1) < f(x_2)$
- 函數 f 在 I 上嚴格遞減(Strictly Decreasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) > f(x_2)$

七、 合成函數(Composite Function)

合成函數:
$$(f \circ g)(x) = f(g(x))$$

其中 g(x) 的定義域 D_g 與 f 的定義域 D_f 必須滿足 $g(D_g) \subseteq D_f$ 。

八、 反函數 (Inverse Function)

反函數:
$$f^{-1}(y) = x \iff f(x) = y$$

其中 f 必須是雙射,且反函數的定義域為 f 的值域,值域為 f 的定義域。

九、 分段函數 (Piecewise Function)

分段函數:
$$f(x) = \begin{cases} f_1(x), & \text{if } x \in A_1 \\ f_2(x), & \text{if } x \in A_2 \\ \vdots \\ f_n(x), & \text{if } x \in A_n \end{cases}$$

2

其中 A_1, A_2, \dots, A_n 是 D_f 的子集,且 $A_1 \cup A_2 \cup \dots \cup A_n = D_f$ 。