APHICAL DISPLAYS

HFLS) CHFLS)

(right) of happiness de-

e, the income of both e only the woman has dents live in relationth partners seems only For lower levels of eduof couples where only way around. Ignoring o association between

najor strengths of the ics are programmable introduction to some pecialised books, most al. (2008). Interactive Murdoch, 2009).

SUMMARY

Exercises

Ex. 2.1 The data in Table 2.3 are part of a data set collected from a survey of household expenditure and give the expenditure of 20 single men and 20 single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are

housing: housing, including fuel and light, food: foodstuffs, including alcohol and tobacco, goods: other goods, including clothing, footwear and durable goods, services: services, including transport and vehicles.

The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions.

Table 2.3: household data. Household expenditure for single men and women.

housing	food	goods	service	gender
820	114	183	154	female
184	74	6	20	female
921	66	1686	455	female
488	80	103	115	female
721	83	176	104	female
614	55	441	193	female
801	56	357	214	female
396	59	61	80	female
864	65	1618	352	female
845	64	1935	414	female
404	97	33	47	female
781	47	1906	452	female
457	103	136	108	female
1029	71	244	189	female
1047	90	653	298	female
552	91	185	158	female
718	104	583	304	female
495	114	65	74	female
382	77	230	147	female
1090	59	313	177	female
497	591	153	291	male
839	942	302	365	male
798	1308	668	584	male
892	842	287	395	male
1585	781	2476	1740	mal
755	764	428	438	mal
388	655	153	233	mal
617		757	719	mal
248		22	65	mal
1641		6471	2063	mal
1180		768	813	
619		99	204	
253				
661			188	
1981			1032	ma
1746			1594	
1865				
238				
1199			344	
1524) ma

SUMMARY

Ex. 2.2 Mortality rates groups and a number by-side box plots for t what the graphic tells

Table 2.4: suicia male s

	A2
Canada	
Israel	
Japan	
Austria	
France	
Germany	
Hungary	
Italy	
Netherlands	
Poland	
Spain	
Sweden	
Switzerland	
UK .	
USA	

Ex. 2.3 The data set she for ten states in the US

Population: population Income: average per car Illiteracy: illiteracy Life. Expectancy: life Homicide: homicide ra Graduates: percentage Freezing: average num

With these data

- 1. Construct a scatterpl name (using function
- 2. Construct a plot of average per capita inc

GRAPHICAL DISPLAYS

expenditure for single

ce	gender
54	female
20	female
55	female
15	female
04	female
93	female
$\frac{33}{14}$	female
80	female
52	female
14	female
47	female
52	female
08	female
89	female
98	female
58	female
04	female
74	female
47	female
.77	female
:91	$_{\mathrm{male}}$
165	$_{ m male}$
184	male
195	male
'40	$_{\mathrm{male}}$
138	male
233	male
⁷ 19	$_{\mathrm{male}}$
65	male
)63	$_{\mathrm{male}}$
313	$_{ m male}$
204	male
48	male
188	male
)32	male
594	male
767	male
75	male
344	male
410	male

SUMMARY

Ex. 2.2 Mortality rates per 100,000 from male suicides for a number of age groups and a number of countries are given in Table 2.4. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data.

Table 2.4: suicides2 data. Mortality rates per 100,000 from male suicides.

	A25.34	A35.44	A45.54	A55.64	A65.74
Canada	22	27	31	34	24
Israel	9	19	10	14	27
Japan	22	19	21	31	49
Austria	29	40	52	53	69
France	16	25	36	47	56
Germany	28	35	41	49	52
Hungary	48	65	84	81	107
Italy	7	8	11	18	27
Netherlands	8	11	18	20	28
Poland	26	29	36	32	28
Spain	4	7	10	16	22
Sweden	28	41	46	51	35
Switzerland	22	34	41	50	51
UK .	10	13	15	17	22
USA	20	22	28	33	37

Ex. 2.3 The data set shown in Table 2.5 contains values of seven variables for ten states in the US. The seven variables are

Population: population size divided by 1000,

Income: average per capita income,

Illiteracy: illiteracy rate (% population),

Life. Expectancy: life expectancy (years),

Homicide: homicide rate (per 1000),

Graduates: percentage of high school graduates,

Freezing: average number of days per below freezing.

With these data

- 1. Construct a scatterplot matrix of the data labelling the points by state name (using function text).
- 2. Construct a plot of life expectancy and homicide rate conditional on average per capita income.

Table 2.6: ba

Length
214.8
214.6
214.8
214.8
215.0
214.4
214.9
214.9
215.0
214.7

Use whatever grapl whether there is a something suspicio

Table 2.5: USstates data. Socio-demographic variables for ten US states.

Population	Tucome	Illiteracy	Life. Expectancy	Homicide	Graduates	Freezing
3615		2.1	69.05	15.1	41.3	20
91108		1.1	71.71	10.3	62.6	20
9861		0.5	72.56	2.3	59.0	140
2341		2.4	68.09	12.5	41.0	20
819		0.7	71.23	3.3	57.6	174
10735		0.8	70.82	7.4	53.2	124
2284		0.0	72.13	4.2	0.09	44
11860	4449	1.0	70.43	6.1	50.2	126
681		0.5	72.08	1.7	52.3	172
470		0.6	71.64	5.5	57.1	168

Ex. 2.4 Flury and Riedwyl (1988) report data that give various lengths measurements on 200 Swiss bank notes. The data are available from package alr3 (Weisberg, 2008); a sample of ten bank notes is given in Table 2.6.

Table 2.6: banknote data (package alr3). Swiss bank note data.

Length	Left	Right	Bottom	Top	Diagonal
214.8	131.0	131.1	9.0	9.7	141.0
214.6	129.7	129.7	8.1	9.5	141.7
214.8	129.7	129.7	8.7	9.6	142.2
214.8	129.7	129.6	7.5	10.4	142.0
215.0	129.6	129.7	10.4	7.7	141.8
214.4	130.1	130.3	9.7	11.7	139.8
214.9	130.5	130.2	11.0	11.5	139.5
214.9	130.3	130.1	8.7	11.7	140.2
215.0	130.4	130.6	9.9	10.9	140.3
214.7	130.2	130.3	11.8	10.9	139.7
÷	:	:		:	

Use whatever graphical techniques you think are appropriate to investigate whether there is any 'pattern' or structure in the data. Do you observe something suspicious?