Grundbegriffe der Informatik Aufgabenblatt 4

Matr.nr.:				
Nachname:				
Vorname:				
Tutorium:	Nr.		Naı	me des Tutors:
Ausgabe:	14. Nover	nber 201	3	
Abgabe:	22. November 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34			
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.				
Vom Tutor auszufüllen:				
erreichte Punkte				
Blatt 4:		/ 18		
Blätter 1 – 4:		/ 72		

Aufgabe 4.1 (5 Punkte)

Es sei $A = \{a, b\}$. Eine Folge L_n formaler Sprachen sei wie folgt definiert:

$$L_0 = \{\varepsilon\}$$

$$\forall n \in \mathbb{N}_0 \colon L_{n+1} = \{\mathtt{a}\} \cdot L_n \cdot \{\mathtt{b}\}$$

Außerdem sei $L = \bigcup_{n=0}^{\infty} L_n$.

Beweisen Sie (im Kern durch vollständige Induktion) die Aussage

$$\forall w \in L \colon \exists i \in \mathbb{N}_0 \colon w = a^i b^i$$

Lösung 4.1

Beweis in 2 Schritten;

Schritt 1: Wir zeigen zunächst durch vollständige Induktion:

$$\forall n \in \mathbb{N}_0 \colon \forall w \in L_n \colon w = a^n b^n$$

Induktionsanfang: n = 0: $w \in L_0 = \{\varepsilon\} \Longrightarrow w = \varepsilon = a^0b^0$

Induktionsvoraussetzung: für ein beliebiges aber festes *n* gelte

$$\forall w \in L_n \colon w = a^n b^n$$

Induktionsschluss: $n \rightsquigarrow n+1$: zu zeigen:

$$\forall w \in L_{n+1} \colon w = \mathtt{a}^{n+1}\mathtt{b}^{n+1}$$

Wenn $w \in L_{n+1} = \{a\} \cdot L_n \cdot \{b\}$, dann ist w von der Form w = aw'b mit $w' \in L_n$. Nach Induktionsvoraussetzung ist $w' = a^nb^n$, also ist $w = aa^nb^nb = a^{n+1}b^{n+1}$.

Hinweis: Alternativ kann man z. B. auch zeigen: $\forall n \in \mathbb{N}_0$: $L_n = \{a^n b^n\}$.

Schritt 2: Es sei nun $w \in L$ beliebig aber fest. Dann gibt es ein $n \in \mathbb{N}_0$ mit $w \in L_n$ und folglich ist nach dem eben gezeigten $w = a^n b^n$ wie gefordert.

Aufgabe 4.2 (1+1+4=6 Punkte)

Gegeben sei das Alphabet $A = \{a, b\}$. Für jedes $y \in A$ wird eine Abbildung U_y wie folgt definiert:

$$U_{y}(\varepsilon) = \varepsilon$$
$$\forall w \in A^{*} \colon \forall x \in A \colon U_{y}(wx) = yU_{y}(w)$$

- a) Geben $U_a(babbba)$ explizit an und beschreiben Sie anschaulich, was im allgemeinen U_V als Ergebnis liefert.
- b) Geben Sie eine explizite Formel für $U_y(w)$ an.

c) Beweisen Sie die Richtigkeit Ihrer Formel aus Teilaufgabe b) durch vollständige Induktion über die Wortlänge (was das ist, wird in der großen Übung am 15.11. erklärt).

Lösung 4.2

a) aaaaaa

Allgemein: U_y ersetzt jedes Symbol des Arguments durch y.

- b) $U_y(w) = y^{|w|}$
- c) Zeige:

$$\forall n \in \mathbb{N}_0 \colon \forall w \in A^n : U_v(w) = y^n$$

Induktionsanfang: n = 0: dann ist $w = \varepsilon$ und $U_y(w) = U_y(\varepsilon) = \varepsilon = y^0$.

Induktionsvoraussetzung: für ein beliebiges aber festes n gelte: $\forall w \in A^n$: $U_y(w) = y^n$

Induktionsschritt: $n \rightsquigarrow n+1$: zu zeigen: $\forall w \in A^{n+1}$: $U_y(w) = y^{n+1}$, also $\forall w' \in A^n : \forall x \in A : U_y(w'x) = y^{n+1}$:

Es ist $U_y(w'x) = yU_y(w')$. Nach Induktionsvoraussetzung ist $U_y(w') = y^n$, also $U_y(w'x) = yU_y(w') = yy^n = y^{n+1}$.

Aufgabe 4.3 (1+1+1+1+3=7 Punkte)

Die beiden Funktionen inc und dec von \mathbb{N}_0 nach \mathbb{N}_0 seien wie folgt definiert:

$$\mathbf{inc}(0) = 1$$
 $\mathbf{dec}(0) = 0$ $\forall x \in \mathbb{N}_0 \colon \mathbf{inc}(x+1) = \mathbf{inc}(x) + 1$ $\mathbf{dec}(x+1) = x$

Außerdem sei die binäre Operation $\div \colon \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ für alle $x,y \in \mathbb{N}_0$ definiert durch die Feslegung

$$x - y = \begin{cases} x - y & \text{falls } x > y \\ 0 & \text{falls } x \le y \end{cases}.$$

- a) Drücken Sie die Funktion **dec** mit Hilfe der Operation ∸ aus.
- b) Welche Funktion wird durch den Ausdruck $1 \div (x \div y)$ berechnet?
- c) Geben Sie einen "arithmetischen" Ausdruck an, in dem nur Konstanten, die Variablen x und y und die binären Operationen + und vorkommen, und der als Wert min(x,y) liefert.
- d) Rechnen Sie nach, dass stets $(a \div z) \div 1 = a \div (z+1)$ ist (für alle $a, z \in \mathbb{N}_0$). Hinweis: Es ist unter Umständen hilfreich, die Definition von \div mit Hilfe einer Fallunterscheidung aufzuschreiben.
- e) Im folgenden Algorithmus seien $a \in \mathbb{N}_0$ und $b \in \mathbb{N}_0$ beliebige nichtnegative

ganze Zahlen.

$$x \leftarrow a$$
 $z \leftarrow 0$

// Z_1

for $i \leftarrow 0$ to $b - 1$ do

// Z_2
 $x \leftarrow \mathbf{dec}(x)$
// Z_3
 $z \leftarrow \mathbf{inc}(z)$
// Z_2

od

// $Z_4 : x = a - b$

Finden Sie Zusicherungen für die Stellen Z₁, Z₂ und Z₃ (also Aussagen, die an den betreffenden Stellen wahr sind) aus denen man ablesen kann, dass am Ende des Algorithmus Zusicherung Z₄ wahr ist.

Hinweis: Gehen Sie davon aus, dass im Fall b = 0 die Schleife überhaupt nicht durchlaufen wird. Dann muss "sofort" Z4 gelten.

Lösung 4.3

a)
$$\operatorname{dec}(x) = x \div 1$$

b) Es ist

$$1 - (x - y) = \begin{cases} 0 & \text{falls } x > y \\ 1 & \text{falls } x \le y \end{cases}$$

c)
$$x \div (x \div y)$$

$$(a - z) - 1 = \begin{cases} (a - z) - 1 & \text{falls } a - z \ge 1 \\ 0 & \text{falls } a - z < 1 \end{cases}$$

$$= \begin{cases} (a - z) - 1 & \text{falls } a - z \ge 1 \\ 0 & \text{falls } a - z \ge 0 \end{cases}$$

$$= \begin{cases} (a - z) - 1 & \text{falls } a \ge z + 1 \\ 0 & \text{falls } a \le z \end{cases}$$

$$= \begin{cases} a - (z + 1) & \text{falls } a \ge z + 1 \\ 0 & \text{falls } a < z + 1 \end{cases}$$

$$= a - (z + 1)$$

e) Im folgenden Algorithmus seien $a \in \mathbb{N}_0$ und $b \in \mathbb{N}_0$ beliebige nichtnegative ganze Zahlen.

$$x \leftarrow a$$

 $z \leftarrow 0$
 $/\!\!/ x = a \dot{-} z$
for $i \leftarrow 0$ **to** $b - 1$ **do**
 $/\!\!/ x = a \dot{-} z$
 $x \leftarrow \mathbf{dec}(x)$
 $/\!\!/ x = (a \dot{-} z) \dot{-} 1$ bzw.
 $/\!\!/ x = a \dot{-} (z + 1)$
 $z \leftarrow \mathbf{inc}(z)$
 $/\!\!/ x = a \dot{-} z$
od
 $/\!\!/ x = a \dot{-} b$

Wie man in der vorangegangenen Teilaufgabe gesehen hat, sind die beiden Zusicherungen in der Mitte des Schleifenrumpfes äquivalent. Der Schleifenrumpf wird b mal ausgeführt, also ist am Ende z=b. Da

x = a - z Schleifeninvariante ist, ergibt sich die letzte Zusicherung.