```
1)
M1 = { a, b, c } ; M2 = { b, d, e, f }
Vereinigung: M3 = M1 oder M2 = { a, b, c, d, e, f }
Durchschnitt: M3 = M1 und M2 = { b }
Differenz: M3 = M1 \ M2 = { a, c }
Kreuzprodukt: M3 = M1 x M2 = { ab, ad, ae, af, bb, bd, be, bf, cb, cd, ce, cf }
```

Eine Menge M heißt abzählbar unendlich, wenn sie zur Menge N der natürlichen Zahlen gleichmächtig ist. Alle anderen unendlichen Mengen sollen überabzählbar unendlich heißen. Die abzählbare Unendlichkeit einer Menge M bedeutet also nichts anderes, als dass M mit den natürlichen Zahlen durchnummeriert werden kann, quasi abgezählt werden kann.

2) Alphabet (Sigma): Eine endliche nicht-leere Menge von Symbolen

Wort: Eine Aneinanderreihung von Symbolen eines Alphabets

Sprache (T): Die Menge aller Eingabefolgen, die von einem Automaten A akzeptiert werden, nennt man die Sprache T des Automaten

endlicher Automat:

- -Verfügt über eine endliche Menge von Zuständen
- -Folgezustand ist von Eingabezeichen und dem momentaten Zustand abhängig

Eingabe: dient zur Versorgung des Automaten mit Eingabedaten ei aus den sog. Eingabealphabet Sigma

Interne Zustände: werden als Reaktion auf die Eingabe durchlaufen

Ausgabe: sind die vom Automaten i.d.R. produzierten Ausgabedaten mit A = Ausgabealphabet

2 unterschiedliche Automatenmodelle sind äquivalent (s =~ s') wenn die Menge der Worte, die in einen Endzustand führen, für beide identisch ist delta(s,w) Element von $F \le$ delta(s', w) Element von F für alle w Element von Sigma*.

Eine Sprache ist regulär wenn sie von einem endlichen Automaten akzeptiert wird

```
Sigma = \{a, b\}; S = Knoten; F = Endknoten; S0 = Startknoten => A = \{S, S0, F, Sigma, S\}
```

3)

- -Die Vereinigung zweier entscheidbarer Mengen ist entscheidbar => wahr
- -Jede von einem DFA akzeptierte Sprache wird auch von einem äquivalenten NFA akzeptiert, der möglicherweise weniger Zustände hat => wahr
- -Jede Sprache enthält das leere Wort => falsch
- -Seinen La, Lb ∈ Typ3 zwei beliebige reguläre Sprachen. Dann gilt: La ∪ Lb ∈ Typ3. => wahr
- -Es gibt reguläre Sprachen, die nicht von einem nichtdeterministischen endlichen Automaten mit ε-Übergängen akzeptiert werden können. => falsch
- -Alle regulären Sprachen sind endlich => falsch

4) Teilmengenkonstruktion

DEA minimieren

Aufgabe 4.3

Gegeben sei der folgende deterministische endliche Automat A₁, der Wörter über dem Alphabet $\{a, b\}$ akzeptiert und die Endzustände $F = \{S_2, S_4\}$ besitzen möge

Bestimmen Sie mit Hilfe nachstehender Dreiecksmatrix, welche äquivalente Zustände der Automat A₁ besitzt. Kennzeichnen Sie dabei die einzutragenden x-Markierungen mit dem Index des Durchlaufs, bei dem die Eintragung vorgenommen wurde.

b) Stellen Sie die Tabelle der Zustandsüberführungsfunktion δ des Minimalautomaten auf und zeichnen Sie ihn.

5)

6) Chomsky

G = (N, T, P, S); Nichtterminale, Terminale, Produktion, Syntaxregeln (der Produktion)

Typ 0 (allgemein, nicht eingeschränkt): $\alpha \to \beta$ mit $\alpha \neq \epsilon [\alpha, \beta \in (N \cup T)^*]$

Typ 1 (kontextsensitiv): $\alpha A\beta \rightarrow \alpha \gamma \beta$ mit $\gamma \neq \epsilon$ [$A \in N$; $\alpha, \beta, \gamma \in (N \cup T)^*$]

Typ 2 (kontextfrei): $A \rightarrow \gamma$ mit $A \in N$; oder $\gamma = \epsilon [\gamma \in (N \cup T)^*]$

Typ 3 (rechtslineare – N ist ganz rechts!): $A \rightarrow \epsilon$; $A \rightarrow a$ oder $A \rightarrow aB$; mit $a \in T$; $A, B \in N$

Pumping Lemma

```
7)
CYK
```

8)

Kellerautomat:

$$\delta(s \ 0, \ a, \ k0) = (s0, \ ak0) \ ; \ \delta(s0, \ a, \ a) = (s0, \ aa) \ ; \ \delta(s0, \ b, \ a) = (s1, \ \epsilon) \ ; \ \delta(s \ 1, \ b, \ a) = (s1, \ \epsilon)$$

"aaabb"

k0	a	a	a	a	а
	k0	a	а	а	k0
		k0	а	k0	
			k0		

"aabbb"

"abab"

"aabb"