3 kaynak Sistem Çevrimini (system clock SYSCLOCK) besleyebilir

- HSI: High Speed Internal, Yüksek Hızlı Dahili
- HSE: High Speed External, Yüksek Hızlı Harici
- PLL: Phase Lock Loop, Faz kilitli döngü

RCC clock control yazmacı ile (RCC_CR) sistem çevrim kaynağı belirlenebilir.

RCC clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

Reserved RDY ON Y PLLON Reserved ON BYP RDY ON IN IN IN IN IN IN IN	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HSICAL[7:0] HSITRIM[4:0] Res. HSI RDY HSIC		Rese	erved					PLLON		Rese	erved		1			HSE ON			
HSICAL[7:0] HSITRIM[4:0] Res. HSI RDY HSIC					r	rw	r	rw											rw
HSICAL[7:0] HSITRIM[4:0] Res. RDY HSIC	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
rrrrrrwwwwwww				HSIC	AL[7:0]					H	SITRIM[4	:0]		Res.		HSION			
	r	r	r	r	r	r	r	r	rw rw rw			rw		r	rw				

HSION: Dahili Yüksek Hızlı Çevrim etkinleştirme. HSI sistem çevrimi olarak kullanıldığında bu bit değiştirilemez. HSIRDY: 1 olduğunda HSI osilatörünün stabil olduğunu belirtir.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved PLLI2S PLLI2S PLLRD ON Y									Rese	erved		CSS ON	HSE BYP	HSE RDY	HSE ON
				r	rw	r	rw		rw rw			r	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	HSICAL[7:0] HSITRIM[4:0]									Res.	HSI RDY	HSION			
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw		r	rw

Bit 16 HSEON: Harici Yüksek Hızlı Çevrim etkinleştirme. HSE sistem çevrimi olarak kullanıldığında bu bit değiştirilemez.

Bit 17 HSERDY: Hazır Bayrağı (Ready Flag) 1 olduğunda HSE osilatörünün stabil olduğunu belirtir.

RCC clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

3

2

1

0

SWS1	SWS0	SW1	SW0		
r	r	rw	rw		

Bits 3:2 **SWS:** System clock switch status

Set and cleared by hardware to indicate which clock source is used as the system clock.

00: HSI oscillator used as the system clock

01: HSE oscillator used as the system clock

10: PLL used as the system clock

11: not applicable

Bits 1:0 SW: System clock switch

Set and cleared by software to select the system clock source.

Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of failure of the HSE oscillator used directly or indirectly as the system clock.

00: HSI oscillator selected as system clock

01: HSE oscillator selected as system clock

10: PLL selected as system clock

11: not allowed

- 4-26 MHz arasında harici crystal oscillator bağlanabilir.
- % 1 doğruluğu olan 16 MHz hızında Dahili Clock Kaynağı vardır.
- RCC clock control yazmacının reset değerinden, varsayılan olarak, cihazın dahili çevrim kaynağını kullandığını anlıyoruz.
- stm32f407xx.h dosyasında, RCC ile ilgili yapıya (struct) (613. satır), RCC_CR bit tanımlamalarına (9443. satır) ve RCC_CFGR bit tanımlamaların (9549. satır) ulaşılabilir.

Address	Name	Туре	Description
0xE000E010	SYST_CSR	RW	SysTick Control and Status Register
0xE000E014	SYST_RVR	RW	SysTick Reload Value Register
0xE000E018	SYST_CVR	RW	SysTick Current Value Register
0xE000E01C	SYST_CALIB	RO	SysTick Calibration Value Register

SysTick Control and Status Register (SYST_CSR)

ENABLE: 1 yapılırsa timer çalışır:

TICKINT: 1 yapılırsa timer 1 değerinden 0 değerine geçişte kesme yapar.

CLKSOURCE: 0: sistem clocku 8'e bölünür , 1: sistem clocku seçilir.

COUNTFLAG: Timer sayma işleri sonucu 0 değerine ulaştığında 1 yapılır. Bu bir şekilde okunduğunda tekrar 0 olur.

SysTick Reload Value Register (SYST_RVR)

23:0 bitlerindeki değer sayaç aktifleştirildiğinde ve 0'a ulaştığında SYST_CVR yazmacına yüklenir.

SysTick Current Value Register (SYST_CVR)

23:0 bitleri stytick timerının mevcut sayısını tutar. Bu yazmaca yazılacak herhangi bir değer yazmacı 0 yapar ve SYST_CSR COUNTFLAG bitini de 0 yapar.

Systick Timer arm işlemcisinin içerisinde bulunan bir yapıdır.

Systick Timer ile ilgili tanımlamalar core_cm4.h dosyasının 757. satırından itibaren mevcuttur.

- Output
 - Push-pull
 - open-drain+pull-up/down
- Input
 - floating
 - pull-up/down
 - analog

Push-pull

Open Drain + Pull up

Floating

Pull down

GPIO port output type register (GPIOx_OTYPER) (x = A..I/J/K)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	ОТ8	OT7	ОТ6	OT5	OT4	ОТ3	OT2	OT1	OT0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..I/J/K)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

0x0000 0100 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPD	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPD	R6[1:0]	PUPD	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPD	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw										

PUPDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

Table 35. Port bit configuration table⁽¹⁾

MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) [B:A]	l .	DR(i) :0]	I/O configuration			
	0		0	0	GP output	PP		
	0		0	1	GP output	PP + PU		
	0		1	0	GP output	PP + PD		
01	0	SPEED	1	1	Reserved			
01	1	[B:A]	0	0	GP output	OD		
	1		0	1	GP output	OD + PU		
	1		1	0	GP output	OD + PD		
	1		1	1	Reserved (GP ou	tput OD)		

Devamı reference manual 269. sayfada.