## **Complex Dynamical Networks:**

Lecture 6b: Network Robustness

**EE 6605** 

Instructor: G Ron Chen



Most pictures on this ppt were taken from un-copyrighted websites on the web with thanks

## **Percolation Theory**

Percolation (渗流) theory studies clustering in complex networks

Example: Consider a cellular material (多孔材料).

Can liquid flow from the top through to the bottom?



Describe the material by a 3D lattice

## **Percolation Theory**

Mathematical framework: On an  $n \times n \times n$  lattice, for each pair of adjacent vertices (nodes), with a probability p connect them together (namely, with probability (1-p), do not connect them).

Assume that all connection events are mutually independent.



## **Percolation Theory**

Bond percolation (边渗流): as  $n \to \infty$ , for what values of p, there exists at least one path that allows the liquid to flow through?

The lower bound of p, denoted  $p_c$ , is the percolation threshold



Random operation: Connect adjacent nodes with probability p (namely, not connecting with probability 1-p)

Bond percolation: for what values of p, there exists at least one path that allows the liquid to flow through?

1D: Chain:  $p_c = 1$ 

2D: Lattice:  $p_c = 0.5$ 

½ are connected horizontally

1/2 are connected vertically



Inverse Problem: Given a lattice network

**Edge-attack:** with probability p, remove an edge (namely, with probability (1-p), not remove it), such that the liquid cannot flow through the network

#### Robustness Problem 1:

For what range of *p* values, there exists at least one path?



#### Inverse Problem: Given a lattice network

**Edge-attack:** with probability p remove an edge (namely, with probability (1-p), not remove it), such that the liquid cannot flow through the network

Robustness Problem 2: For what range of *p* values, the lattice remains to be connected after being attacked?

Robustness Problem 3: After an attack, what is the size of the largest cluster (community)?



Example: (Erdos-Renyi random graph) 50 nodes, 116 edges,  $\langle k \rangle = 4.64$ 



 $p_c = 0.25$  Removed 29 edges (on average)

Above Graph: Even after removed 40 edges, the network remains to be connected,  $\langle k \rangle = 3.04$ 

## Site Percolation (点渗流):

Every node is "occupied" with probability p (namely, "not occupied" with probability 1 - p).

["occupied" → allowing liquid to pass]

If two adjacent nodes are both occupied, then connect them together by an edge.



## Site Percolation (点渗流):

### Problem 1:

For what range of p values, there exist at least one path?



**Giant Cluster** appears



## **Problem 1:**

For what range of p values, there exist at least one path?



(Lada Adamic)

## Percolation of General Complex Networks

Percolation concept can be extended to general complex networks

A network percolates if giant cluster(s) are emerged



A scale-free network always has giant cluster(s), so it always percolates

## Average Degree can be used as a measure

**Example:** Random Graph



## Dual Lattice can be used as a framework



## Dual Lattice can be used as a framework



#### Inverse Problem: Given a lattice network

**Node-attack:** With probability p remove a node (namely, with probability (1-p), not remove it), such that the liquid cannot flow through the network

#### **Robustness Problem 1:**

For what range of p values, there exist at least one path?

#### **Robustness Problem 2:**

For what range of *p* values, the lattice remains to be connected?

#### **Robustness Problem 3:**

After an attack, what is the size of the largest cluster?

# Average size of giant clusters:

$$\langle s \rangle \sim |p - p_c|^{-\gamma}$$

Constant  $\gamma$  is determined by the network

p far from  $p_c \rightarrow \langle s \rangle$  small

 $p \text{ near } p_c \rightarrow \langle s \rangle \text{ large}$ 





Size of the largest cluster  $S_{\infty}$  versus lattice size L at  $p=p_c$ 

$$S_{\infty} \sim L^{D}$$

D — dimension of lattice

#### **Order Parameter:**

Probability of a randomly picked cluster is a giant one:

$$P_{\infty} \sim \begin{cases} (p - p_c)^{\beta} & p > p_c \\ \approx 0 & p \le p_c \end{cases}$$

p =probability of occupying a node

Constant  $\beta > 0$  is determined by the network

$$p \gg p_c \rightarrow P_{\infty} \text{ large } (\rightarrow 1)$$

$$p \ll p_c \rightarrow P_{\infty} \text{ small } (\approx 0)$$



## Complementary Lattices





1-p

#### **Order Parameter**

(for Inverse Percolation):

Probability of a randomly picked cluster is a giant one:

$$P_{\infty} \sim \begin{cases} (f - f_c)^{\beta} & f < f_c \\ \approx 0 & f \ge f_c \end{cases}$$

f = attacked nodes (f = 1 - p)

Constant  $\beta > 0$  is determined by the network

$$f \ll f_c \rightarrow P_{\infty} \text{ large } (\rightarrow 1)$$

$$f \gg f_c \rightarrow P_\infty \text{ small } (\approx 0)$$



### **Example:** Wild fire spreads on a forest

Suppose a forest is a lattice, where each square has at most one tree. With probability  $p \in (0,1)$ , place a tree into a square

One tree is on fired at random. This tree spreads fire to its neighboring trees (assuming the fire cannot spread over an empty square)

 $\rightarrow$  There exists a threshold value  $p_c$ 



## **Molloy-Reed Index**

Condition for existence of giant cluster:  $\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} > 2$ 

Interpretation: Consider a cluster of k nodes, almost fully connected. Thus, every node has degree about k-1, so the cluster has  $\frac{1}{2}k(k-1) \approx \frac{k^2}{2}$  edges

Consider the average of all such large clusters, which has  $\left\langle \frac{k^2}{2} \right\rangle$  edges

#### Define Ratio:

(Average total edge of a large cluster) / (Average total edge of a node in the cluster)

$$\kappa' := \frac{\left\langle \frac{k^2}{2} \right\rangle}{\langle k \rangle}$$

### Molloy-Reed Index

#### Define a Ratio:

(Average total edge of a giant cluster) / (Average total edge of a node in the cluster)

$$\kappa' := \frac{\binom{k^2}{2}}{\langle k \rangle}$$

If  $\kappa' > 1$ , then  $\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} > 2 \rightarrow$  condition for giant cluster to exist

#### Because:

If  $\kappa' = 1$ , then  $\langle k^2 \rangle = 2 \langle k \rangle \rightarrow \langle k \rangle \approx 2 \rightarrow$  ring-shaped or chain-shaped (far from being "almost fully connected" giant cluster)

If  $\kappa' < 1$ , then  $\langle k \rangle < 2 \rightarrow$  star-shaped or broken pieces (far from being "almost fully connected" giant cluster)

## Random Graphs:

$$\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1)$$

### Interpretation:

Every node has degree  $\langle k \rangle$ , and every neighbor has degree  $\langle k \rangle \rightarrow$  total increasing degree is  $\langle k^2 \rangle - \langle k \rangle$ 

Increasing rate of total degree:  $\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle}$ 

Since this is a linear growth:  $\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \sim \langle k \rangle$ 



#### **Molloy-Reed Index**

Condition for existence of giant cluster:  $\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} > 2$ 

#### For random networks

$$\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1)$$

 $\rightarrow$ 

$$\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} = \frac{\langle k \rangle (\langle k \rangle + 1)}{\langle k \rangle} = \langle k \rangle + 1 > 2$$

 $\rightarrow$ 

$$\langle k \rangle > 1$$

This is a (necessary) condition for giant cluster to exist



### **General Complex Networks**

#### Molloy-Reed Index →

$$f_c = 1 - \frac{1}{\frac{\langle k^2 \rangle}{\langle k \rangle} - 1}$$

where f = attacked nodes,  $f_c = \text{threshold}$ 

Random Networks:  $\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1)$ 

$$f_c = 1 - \frac{1}{\langle k \rangle}$$
  
 $f_c \to 1 \quad \text{as } k \to \infty$ 

$$f_c \to 1$$
 as  $k \to \infty$ 

Giant clusters disappear

(R. Cohen, K. Erez, D. ben-Avraham and S. Havlin, Phys. Rev. Lett., 2000).



## **Scale-free Networks:** $P_N(k) \sim k^{-\gamma}$

$$f_c = 1 - \frac{1}{\frac{\langle k^2 \rangle}{\langle k \rangle} - 1}$$
 (Barabasi, 2016 book)

$$f_{c} = \begin{cases} 1 - \frac{1}{\frac{\gamma - 2}{3 - \gamma} k_{\min}^{\gamma - 2} k_{\max}^{3 - \gamma} - 1} & 2 < \gamma < 3 \\ \frac{1}{3 - \gamma} k_{\min}^{\gamma - 2} k_{\max}^{\gamma - 2} - 1 & \gamma > 3 \\ \frac{\gamma - 2}{\gamma - 3} k_{\min} - 1 & \gamma > 3 \end{cases}$$



## Comparison



## **Comparing Two Typical Attacks**

Random attacks (Random failures)

Targeted attacks
(Intentional removals)



## **Summary**

## **Attack Strategies**

|                        | Random                 | Targeted                 |
|------------------------|------------------------|--------------------------|
| Random<br>Networks     | Low cost               | High cost<br>Low effect  |
| Scale-free<br>Networks | Low cost<br>Low effect | High cost<br>High effect |

## **Network Topologies**

(a) Centralized: Low cost, Fragale

(b) Decentralized: Trade-off

(c) Distributed: High cost, Robust



(Barabasi Book)

## **Building Robust Networks**

\* Power grid \* Internet service denials \* Financial crisis \* Traffic jams \* ... ...



Power failures

Data jams on Tritter

Earthquakes

How to build robust power grid, Internet, transportation systems, ... ...?

## Criterion: Make its threshold as large as possible



## Which One is Better?



Constraint: Low cost

$$\min f_c^{tot} = f_c^{rand} + f_c^{tar}$$

(tot = total, rand = random, tar = targeted)

This is an Optimization problem

## **Example:** Optimization (of Robustness vs Cost)















## **END**

