# UFV- CCE - DET

EST 105 - 3ª avaliação - 1º semestre de 2014 - 05/JUL/14

| Nome:                                                                   | Matrícula:                                                                                  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Assinatura:                                                             | Favor apresentar documento com foto.                                                        |
| - ,                                                                     | rio em páginas numeradas de 1 a 9, total de 40 ES DE INICIAR. Serão 2h de prova, término as |
| • Interpretar corretamente as questõe questionamentos durante a prova!  | es é parte da avaliação, portanto não é permitido                                           |
| <ul> <li>É OBRIGATÓRIO APRESENTAI<br/>reito à revisão.</li> </ul>       | R OS CÁLCULOS organizadamente, para ter di-                                                 |
| • NOTA ZERO se mostrar a respo<br>apresentar valores incorretos utiliza | sta correta e não apresentar os cálculos ou se ados nos cálculos.                           |
| qual turma está matriculado.                                            | ada no sistema SAPIENS: informe a seguir em                                                 |
| TURMA HORÁRIO SALA PF                                                   | OFESSOR                                                                                     |
| T20: EST 085 5e6=18:30-20:10 PVA10                                      | 02 - Gabi,Monitor II                                                                        |
| T1: 3=08-10 e 5=10-12 PVB300 - Pau                                      |                                                                                             |
| T2: 3=10-12 e 6=08-10 PVB109 - Ana                                      | Carolina                                                                                    |
| T3: 3=14-16 e 5=16-18 PVB109 - CHC                                      | DS                                                                                          |
| T4: 2=14-16 e 4=16-18 PVB107 - Fer                                      |                                                                                             |
| T5: 4=18:30-20:10 e 6=20:30-22:10                                       | PVB208 - Camila                                                                             |
| T6: 4=14-16 e 6=16-18 PVA361 - CHC                                      |                                                                                             |

T7: 2=16-18 e 5=14-16 PVB307 - Ana Carolina

T10: 2=18:30-20:10 e 4=20:30-22:10 PVB104 - Camila

T8: 2=16-18 e 5=14-16 PVB209 - Moysés

# FORMULÁRIO

Para 
$$k=1,2,\ldots,n<\infty$$
  $E(X^k)=\sum_x x^k P(x)$  ou  $E(X^k)=\int x^k f(x) dx$  
$$E(XY)=\sum_x \sum_y xy P(x,y) \quad \text{ou} \quad E(XY)=\int \int xy f(x,y) dx dy$$
 
$$COV(X,Y)=E(XY)-E(X)E(Y), \quad \rho_{X,Y}=\frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X)=E(X^2)-[E(X)]^2$$
 
$$X \sim N(\mu,\sigma^2), \quad E(X)=\mu \quad \text{e} \quad V(X)=\sigma^2 \quad Z=\frac{X-\mu}{\sigma}, \quad Z \sim N(0,\,1)$$
 
$$P(x)=\binom{N}{x}p^x(1-p)^{N-x} \qquad \binom{N}{x}=\frac{N!}{x!(N-x)!} \qquad E(X)=Np \quad V(X)=Np(1-p)$$
 
$$P(x)=\frac{e^{-m}m^x}{x!} \qquad E(X)=V(X)=m$$
 
$$\chi^2=\sum_{i=1}^h\sum_{j=1}^k\frac{(O_{ij}-E_{ij})^2}{E_{ij}} \quad \text{com } n \text{ graus de liberdade} \quad n=(h-1)(k-1)$$
 
$$Z=\frac{\overline{X}-\mu}{\sqrt{\frac{\sigma^2}{n}}}$$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

| -            |        |            |            |            |            |            |            |            |            |            |
|--------------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\mathbf{z}$ | 0,00   | 0,01       | 0,02       | 0,03       | 0,04       | 0,05       | 0,06       | 0,07       | 0,08       | 0,09       |
| 0,0          | 0,0000 | 0,0040     | 0,0080     | 0,0120     | 0,0160     | 0,0199     | 0,0239     | 0,0279     | 0,0319     | 0,0359     |
| 0,1          | 0,0398 | 0,0438     | 0,0478     | 0,0517     | 0,0557     | 0,0596     | 0,0636     | 0,0675     | 0,0714     | 0,0753     |
| 0,2          | 0,0793 | 0,0832     | 0,0871     | 0,0910     | 0,0948     | 0,0987     | 0,1026     | 0,1064     | 0,1103     | $0,\!1141$ |
| 0,3          | 0,1179 | $0,\!1217$ | $0,\!1255$ | $0,\!1293$ | 0,1331     | $0,\!1368$ | 0,1406     | 0,1443     | 0,1480     | $0,\!1517$ |
| 0,4          | 0,1554 | $0,\!1591$ | 0,1628     | $0,\!1664$ | 0,1700     | 0,1736     | 0,1772     | $0,\!1808$ | 0,1844     | $0,\!1879$ |
| 0,5          | 0,1915 | $0,\!1950$ | $0,\!1985$ | 0,2019     | 0,2054     | 0,2088     | 0,2123     | 0,2157     | 0,2190     | 0,2224     |
| 0,6          | 0,2257 | $0,\!2291$ | 0,2324     | $0,\!2357$ | 0,2389     | 0,2422     | 0,2454     | 0,2486     | 0,2517     | $0,\!2549$ |
| 0,7          | 0,2580 | $0,\!2611$ | 0,2642     | 0,2673     | $0,\!2703$ | 0,2734     | $0,\!2764$ | $0,\!2794$ | 0,2823     | $0,\!2852$ |
| 0,8          | 0,2881 | $0,\!2910$ | 0,2939     | $0,\!2967$ | 0,2995     | 0,3023     | 0,3051     | 0,3078     | 0,3106     | 0,3133     |
| 0,9          | 0,3159 | 0,3186     | 0,3212     | 0,3238     | 0,3264     | 0,3289     | 0,3315     | 0,3340     | 0,3365     | 0,3389     |
| 1,0          | 0,3413 | 0,3438     | 0,3461     | 0,3485     | $0,\!3508$ | 0,3531     | 0,3554     | 0,3577     | 0,3599     | 0,3621     |
| 1,1          | 0,3643 | $0,\!3665$ | $0,\!3686$ | $0,\!3708$ | $0,\!3729$ | 0,3749     | 0,3770     | $0,\!3790$ | 0,3810     | 0,3830     |
| $^{1,2}$     | 0,3849 | $0,\!3869$ | $0,\!3888$ | $0,\!3907$ | 0,3925     | 0,3944     | 0,3962     | 0,3980     | 0,3997     | 0,4015     |
| 1,3          | 0,4032 | 0,4049     | $0,\!4066$ | $0,\!4082$ | 0,4099     | 0,4115     | 0,4131     | 0,4147     | 0,4162     | 0,4177     |
| $^{1,4}$     | 0,4192 | $0,\!4207$ | $0,\!4222$ | $0,\!4236$ | $0,\!4251$ | $0,\!4265$ | $0,\!4279$ | $0,\!4292$ | 0,4006     | $0,\!4319$ |
| $^{1,5}$     | 0,4332 | $0,\!4345$ | $0,\!4357$ | $0,\!4370$ | $0,\!4382$ | 0,4394     | 0,4406     | 0,4418     | 0,4429     | 0,4441     |
| 1,6          | 0,4452 | $0,\!4463$ | $0,\!4474$ | $0,\!4484$ | 0,4495     | $0,\!4505$ | $0,\!4515$ | $0,\!4525$ | $0,\!4535$ | $0,\!4545$ |
| 1,7          | 0,4554 | $0,\!4564$ | $0,\!4573$ | $0,\!4582$ | $0,\!4591$ | $0,\!4599$ | 0,4608     | 0,4616     | 0,4625     | $0,\!4633$ |
| 1,8          | 0,4641 | 0,4649     | $0,\!4656$ | $0,\!4664$ | 0,4671     | 0,4678     | $0,\!4686$ | 0,4693     | 0,4699     | $0,\!4706$ |
| 1,9          | 0,4713 | $0,\!4719$ | $0,\!4726$ | $0,\!4732$ | $0,\!4738$ | 0,4744     | $0,\!4750$ | $0,\!4756$ | $0,\!4761$ | $0,\!4767$ |
| 2,0          | 0,4772 | $0,\!4778$ | $0,\!4783$ | $0,\!4788$ | 0,4793     | 0,4798     | $0,\!4803$ | $0,\!4808$ | $0,\!4812$ | $0,\!4817$ |
| $^{2,1}$     | 0,4821 | $0,\!4826$ | $0,\!4830$ | $0,\!4834$ | $0,\!4838$ | $0,\!4842$ | $0,\!4846$ | $0,\!4850$ | 0,4854     | $0,\!4857$ |
| $^{2,2}$     | 0,4861 | $0,\!4864$ | $0,\!4868$ | $0,\!4871$ | $0,\!4875$ | $0,\!4878$ | $0,\!4881$ | $0,\!4884$ | $0,\!4887$ | $0,\!4890$ |
| $^{2,3}$     | 0,4893 | $0,\!4896$ | $0,\!4898$ | 0,4901     | 0,4904     | 0,4906     | 0,4909     | 0,4911     | 0,4913     | $0,\!4916$ |
| $^{2,4}$     | 0,4918 | $0,\!4920$ | $0,\!4922$ | $0,\!4925$ | 0,4927     | 0,4929     | 0,4931     | 0,4932     | 0,4934     | $0,\!4936$ |
| $^{2,5}$     | 0,4938 | $0,\!4940$ | 0,4941     | 0,4943     | 0,4945     | 0,4946     | 0,4948     | 0,4949     | 0,4951     | $0,\!4952$ |
| $^{2,6}$     | 0,4953 | $0,\!4955$ | $0,\!4956$ | 0,4957     | 0,4959     | 0,4960     | 0,4961     | 0,4962     | 0,4963     | $0,\!4964$ |
| $^{2,7}$     | 0,4965 | $0,\!4966$ | $0,\!4967$ | $0,\!4968$ | 0,4969     | 0,4970     | 0,4971     | 0,4972     | 0,4973     | $0,\!4974$ |
| 2,8          | 0,4974 | $0,\!4975$ | $0,\!4976$ | 0,4977     | 0,4977     | 0,4978     | 0,4979     | 0,4979     | 0,4980     | $0,\!4981$ |
| $^{2,9}$     | 0,4981 | $0,\!4982$ | $0,\!4982$ | $0,\!4983$ | 0,4984     | 0,4984     | 0,4985     | 0,4985     | 0,4986     | $0,\!4986$ |
| 3,0          | 0,4987 | 0,4987     | 0,4987     | 0,4988     | 0,4988     | 0,4989     | 0,4989     | 0,4989     | 0,4990     | 0,4990     |

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores  $\chi^2$  na distribuição de qui-quadrado com n graus de liberdade tais que  $P\left(\chi_n^2 \geq \chi^2\right) = p \times 100\%$ .

| n  | p=99%      | 98%        | $97,\!5\%$ | 95%       | 90%       | 80%        | 70%       | 50%       | 30%        | 20%        | 10%        | 5%         | 4%         | $2,\!5\%$  | 2%         | 1%         | $0,\!2\%$  | 0,1%       | n  |
|----|------------|------------|------------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| 1  | $0.0^3 16$ | $0.0^3 63$ | 0,001      | 0,004     | 0,016     | 0,064      | 0,148     | 0,455     | 1,074      | 1,642      | 2,706      | 3,841      | 4,218      | 5,024      | $5,\!412$  | 6,635      | $9,\!550$  | 10,827     | 1  |
| 2  | 0,020      | 0,040      | 0,051      | $0,\!103$ | 0,211     | 0,446      | 0,713     | 1,386     | 2,408      | 3,219      | 4,605      | 5,991      | 6,438      | 7,378      | $7,\!824$  | 9,210      | $12,\!429$ | $13,\!815$ | 2  |
| 3  | 0,115      | $0,\!185$  | 0,216      | $0,\!352$ | 0,584     | 1,005      | 1,424     | 2,366     | 3,665      | 4,642      | $6,\!251$  | 7,815      | 8,311      | 9,348      | $9,\!837$  | 11,345     | 14,796     | 16,266     | 3  |
| 4  | 0,297      | $0,\!429$  | 0,484      | 0,711     | 1,064     | 1,649      | $2{,}195$ | $3,\!357$ | 4,878      | 5,989      | 7,779      | 9,488      | 10,026     | 11,143     | 11,668     | 13,277     | 16,924     | 18,467     | 4  |
| 5  | 0,554      | 0,752      | 0,831      | 1,145     | 1,610     | 2,343      | 3,000     | 4,351     | 6,064      | 7,289      | 9,236      | 11,070     | 11,644     | $12,\!832$ | $13,\!388$ | 15,086     | 18,907     | $20,\!515$ | 5  |
| 6  | 0,872      | $1,\!134$  | 1,237      | 1,635     | 2,204     | 3,070      | $3,\!828$ | 5,348     | 7,231      | $8,\!558$  | 10,645     | $12,\!592$ | 13,198     | 14,449     | 15,033     | 16,812     | 20,791     | $22,\!457$ | 6  |
| 7  | 1,239      | 1,564      | 1,690      | 2,167     | 2,833     | 3,822      | 4,671     | 6,346     | 8,383      | 9,803      | 12,017     | 14,067     | 14,703     | 16,013     | 16,622     | 18,475     | 22,601     | $24,\!322$ | 7  |
| 8  | 1,646      | 2,032      | 2,180      | 2,733     | 3,490     | 4,594      | 5,527     | 7,344     | 9,524      | 11,030     | $13,\!362$ | $15,\!507$ | 16,171     | 17,534     | 18,168     | 20,090     | $24,\!352$ | 26,125     | 8  |
| 9  | 2,088      | $2,\!532$  | 2,700      | 3,325     | 4,168     | $5,\!380$  | 6,393     | 8,343     | 10,656     | 12,242     | 14,684     | 16,919     | 17,608     | 19,023     | 19,679     | 21,666     | 26,056     | $27,\!877$ | 9  |
| 10 | 2,558      | 3,059      | 3,247      | 3,940     | 4,865     | $6,\!179$  | 7,267     | 9,342     | 11,781     | 13,442     | 15,987     | 18,307     | 19,021     | $20,\!483$ | 21,161     | 23,209     | 27,722     | 29,588     | 10 |
| 11 | 3,053      | 3,609      | 3,816      | 4,575     | $5,\!578$ | 6,989      | 8,148     | 10,341    | $12,\!899$ | 14,631     | $17,\!275$ | 19,675     | 20,412     | 21,920     | 22,618     | 24,725     | 29,354     | 31,264     | 11 |
| 12 | 3,571      | $4,\!178$  | 4,404      | $5,\!226$ | 6,304     | $7,\!807$  | 9,034     | 11,340    | 14,011     | $15,\!812$ | $18,\!549$ | 21,026     | 21,785     | 23,337     | 24,054     | 26,217     | 30,957     | 32,909     | 12 |
| 13 | 4,107      | 4,765      | 5,009      | 5,892     | 7,042     | 8,634      | 9,926     | 12,340    | 15,119     | 16,985     | 19,812     | $22,\!362$ | 23,142     | 24,736     | $25,\!472$ | 27,688     | $32,\!535$ | $34,\!528$ | 13 |
| 14 | 4,660      | 5,368      | 5,629      | $6,\!571$ | 7,790     | 9,467      | 10,821    | 13,339    | 16,222     | 18,151     | 21,064     | $23,\!685$ | 24,485     | 26,119     | $26,\!873$ | 29,141     | 34,091     | 36,123     | 14 |
| 15 | 5,229      | 5,985      | 6,262      | 7,261     | 8,547     | $10,\!307$ | 11,721    | 14,339    | 17,322     | 19,311     | $22,\!307$ | 24,996     | $25,\!816$ | $27,\!488$ | 28,259     | $30,\!578$ | 35,628     | 37,697     | 15 |
| 16 | 5,812      | 6,614      | 6,908      | 7,962     | 9,312     | 11,152     | 12,624    | 15,338    | 18,418     | 20,465     | $23,\!542$ | 26,296     | 27,136     | $28,\!845$ | 29,633     | 32,000     | 37,146     | $39,\!252$ | 16 |
| 17 | 6,408      | 7,255      | $7,\!564$  | 8,672     | 10,085    | 12,002     | 13,531    | 16,338    | 19,511     | 21,615     | 24,769     | $27,\!587$ | 28,445     | 30,191     | 30,995     | 33,409     | 38,648     | 40,790     | 17 |
| 18 | 7,015      | 7,906      | 8,231      | 9,390     | 10,865    | $12,\!857$ | 14,440    | 17,338    | 20,601     | 22,760     | 25,989     | $28,\!869$ | 29,745     | $31,\!526$ | 32,346     | $34,\!805$ | 40,136     | $42,\!312$ | 18 |
| 19 | 7,633      | 8,567      | 8,906      | 10,117    | 11,651    | 13,716     | 15,352    | 18,338    | 21,689     | 23,900     | 27,204     | 30,144     | 31,037     | 32,852     | 33,687     | 36,191     | 41,610     | 43,820     | 19 |
| 20 | 8,260      | 9,237      | 9,591      | 10,851    | 12,443    | $14,\!578$ | 16,266    | 19,337    | 22,775     | 25,038     | 28,412     | 31,410     | 32,321     | 34,170     | 35,020     | $37,\!566$ | 43,072     | $45,\!315$ | 20 |
| 21 | 8,897      | 9,915      | 10,283     | 11,591    | 13,240    | 15,445     | 17,182    | 20,337    | $23,\!858$ | 26,171     | 29,615     | 32,671     | 33,597     | 35,479     | 36,343     | 38,932     | 44,522     | 46,797     | 21 |
| 22 | 9,542      | 10,600     | 10,982     | 12,338    | 14,041    | 16,314     | 18,101    | 21,337    | 24,939     | 27,301     | 30,813     | 33,924     | 34,867     | 36,781     | 37,659     | 40,289     | 45,962     | 48,268     | 22 |
| 23 | 10,196     | 11,293     | 11,688     | 13,091    | 14,848    | 17,187     | 19,021    | 22,337    | 26,018     | 28,429     | 32,007     | 35,172     | 36,131     | 38,076     | 38,968     | 41,638     | 47,391     | 49,728     | 23 |
| 24 | 10,856     | 11,992     | 12,401     | 13,848    | 15,659    | 18,062     | 19,943    | 23,337    | 27,096     | 29,553     | 33,196     | 36,415     | $37,\!389$ | 39,364     | 40,270     | 42,980     | 48,812     | 51,179     | 24 |
| 25 | 11,524     | 12,697     | 13,120     | 14,611    | 16,473    | 18,940     | 20,867    | 24,337    | 28,172     | 30,675     | 34,382     | $37,\!652$ | 38,642     | 40,646     | $41,\!566$ | 44,314     | 50,223     | 52,620     | 25 |
| 26 | 12,198     | 13,409     | 13,844     | 15,379    | 17,292    | 19,820     | 21,792    | 25,336    | 29,246     | 31,795     | 35,563     | 38,885     | 39,889     | 41,923     | 42,856     | 45,642     | 51,627     | 54,052     | 26 |
| 27 | 12,879     | 14,125     | 14,573     | 16,151    | 18,114    | 20,703     | 22,719    | 26,336    | 30,319     | 32,912     | 36,741     | 40,113     | 41,132     | 43,194     | 44,140     | 46,963     | 53,022     | $55,\!476$ | 27 |
| 28 | 13,565     | 14,847     | 15,308     | 16,928    | 18,939    | 21,588     | 23,647    | 27,336    | 31,319     | 34,027     | 37,916     | 41,337     | $42,\!370$ | 44,461     | 45,419     | 48,278     | 54,411     | 56,893     | 28 |
| 29 | 14,256     | 15,574     | 16,047     | 17,708    | 19,768    | 22,475     | 24,577    | 28,336    | 32,461     | 35,139     | 39,087     | 42,557     | 43,604     | 45,722     | 46,693     | 49,588     | 55,792     | 58,302     | 29 |
| 30 | 14,953     | 16,306     | 16,791     | 18,493    | 20,599    | 23,364     | 25,508    | 29,336    | 33,530     | 36,250     | 40,256     | 43,773     | 44,834     | 46,979     | 47,962     | 50,892     | 57,167     | 59,703     | 30 |
| n  | p=99%      | 98%        | 97,5%      | 95%       | 90%       | 80%        | 70%       | 50%       | 30%        | 20%        | 10%        | 5%         | 4%         | 2,5%       | 2%         | 1%         | 0,2%       | 0,1%       | n  |
|    |            |            | -          |           |           |            |           |           |            |            |            |            |            |            |            |            | -          |            |    |

Adaptada de Bussab, W. O. e Morettin, P. A. Estatística Básica - Métodos Quantitativos, Editora Atual.

1.(8 pontos) Sejam  $X \in Y$  variáveis aleatórias tais que:

$$E(X) = 1.8 \quad V(X) = 0.36 \quad E(Y) = 1.9 \quad V(Y) = 0.49 \quad e \quad E(XY) = 3.42$$

Pede-se: utilize as propriedades de esperança, variância e covariância para calcular:

**a.(3 pts)**  $E(X^2 - 2Y^2 + 15)$ .

$$E(X^2) = V(X) + [E(X)]^2 = 0.36 + (1.8)^2 = 3.6$$

е

$$E(Y^2) = V(Y) + [E(Y)]^2 = 0.49 + (1.9)^2 = 4.1.$$

Então

$$E(X^2 - 2Y^2 + 15) = E(X^2) - 2E(Y^2) + 15 = 3, 6 - 2 \times 4, 1 + 15 = 10, 4$$

**b.(3 pts)** V(2X - 3Y + 5).

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
  
= 3,42 - 1,8 × 1,9  
= 0

Então

$$V(2X - 3Y + 5) = 4V(X) + 9V(Y) - 12Cov(X, Y)$$
  
=  $4 \times 0, 36 + 9 \times 0, 49 - 12 \times 0$   
=  $5, 85$ 

**c.(2 pts)** COV(5X-1,3Y+2).

$$Cov(5X - 1, 3Y + 2) = Cov(5X, 3Y) = 15Cov(X, Y) = 0$$

**2.(8 pontos)** Admita que os escores (X), obtidos no exame de avaliação dos candidatos a motorista de ônibus, sejam normalmente distribuídos com média  $\mu = 50$  pontos e desvio padrão  $\sigma = 2$  pontos. Deseja-se classificar 20,05% dos candidatos com os menores escores como ruins (R) e 12,1% dos candidatos com os maiores escores como muito bons (A), sendo os demais candidatos classificados como adequados. Pede-se: faça um desenho ilustrativo com a indicação das notas  $x_R$  e  $x_A$ , para respectivamente classificar os candidatos como R e como A. Indique todos os cálculos.



Áreas tabeladas:

$$0, 5 - 0, 1210 = 0, 3790$$
  $(Z_A = 1, 17)$   
 $0, 5 - 0, 2005 = 0, 2995$   $(Z_R = -0, 84)$   
 $Z = \frac{X - \mu}{\sigma} \Rightarrow X = \sigma Z + \mu$   
 $x_A = 2 \times 1, 17 + 50 = 52, 34$   
 $x_R = 2 \times (-0, 84) + 50 = 48, 32$ 

**3.(5 pontos)** Admita que um pesquisador irá entrevistar aleatoriamente habitantes numa cidade na qual 60% dos habitantes têm acesso à internet em casa (na residência). Utilize o modelo binomial para calcular a probabilidade de exatamente 7 entrevistados informarem que têm internet em casa quando 10 são entrevistados.

$$N = 10$$

$$p = 0,60$$

X = número de habitantes com internet em casa

$$P(X = 7) = {10 \choose 7} 0,60^7 \times 0,40^3 = 120 \times 0,028 \times 0,064$$
  
 $\cong 0,215$ 

**4.(5 pontos)** O número de erros tipográficos numa página de determinado livro é uma variável aleatória X com distribuição de Poisson de parâmetro m=0,5. Pede-se: calcule a probabilidade de que haja 3 ou mais erros tipográficos em uma página.

$$P(X \ge 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - e^{-m} \left(\frac{m^0}{0!} + \frac{m^1}{1!} + \frac{m^2}{2!}\right)$$

$$= 1 - e^{-0.5} \left(\frac{0.5^0}{1} + \frac{0.5^1}{1} + \frac{0.5^2}{2}\right)$$

$$= 1 - e^{-0.5} (1 + 0.5 + 0.125)$$

$$= 1 - 1.625e^{-0.5}$$

$$\cong 1 - 0.9856$$

$$= 0.0144$$

**5.(8 pontos)** Um fabricante informa que a vida útil média de seus pneus  $(\mu)$  é igual a 38 mil Km, com um desvio padrão  $\sigma=1348$  km. Para avaliar esta informação uma empresa instalou 40 desses pneus em seus caminhões e obteve vida útil média  $\overline{X}=37.563$  km. Pede-se: o que deve ser concluído com um teste de hipóteses unilateral.

a.(2 pts) Hipóteses estatísticas.

$$\begin{cases} H_0: \mu = 3800 & \text{(informação correta)} \\ H_1: \mu < 3800 & \text{(informação incorreta)} \end{cases}$$

b.(2 pts) Valor calculado.

$$Z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{37563 - 38000}{\frac{1348}{\sqrt{40}}} \cong -2,05$$

**c.(2 pts)** Valor-p (faça um desenho ilustrativo). Área tabelada para Z=2,05:

$$P(0 \le Z \le 2,05) = 0,4798$$

Assim

$$0, 5 - 0, 4798 = \text{valor-p} = 0,0202$$



d.(2 pts) Decisão do teste (explique em termos da hipótese de nulidade e também em termos do problema).

Se for adotado  $\alpha \geq 2,02\%$  a hipótese  $H_0$  deve ser rejeitada em favor de  $H_1$  ( $\alpha = 1\%$  não rejeita  $H_0$  e  $\alpha = 5\%$  rejeita  $H_0$ ).

Rejeitar = considerar informação incorreta.

6.(6 pontos) Um estudo realizado com 609 homens, com idades entre 40 e 76 anos, forneceu os resultados apresentados na tabela a seguir. Pede-se: adote o nível de significância igual a 1% e teste a hipótese de que o nível de catecolamina no sangue e a incidência de doença coronariana sejam independentes.

| Doença coronariana | Nível de ca |              |       |  |
|--------------------|-------------|--------------|-------|--|
| Doença coronariana | Alto        | Baixo        | Total |  |
| Presente           | 27 (14,22)  | 44 (56,78)   | (71)  |  |
| Ausente            | 95 (107,78) | 443 (430,22) | (538) |  |
| Total              | (122)       | (487)        | (609) |  |

Fonte: Introdução à Estatística Médica, Soares e Siqueira (2002)

### a.(2 pts) Hipóteses estatísticas.

 $\begin{cases} H_0: & \text{Doença coronariana e Nível de catelacolamia são independentes} \\ H_1: & \text{Doença coronariana e Nível de catelacolamia não são independentes} \end{cases}$ 

## **b.(2 pts)** Valor calculado.

$$\chi_{\text{cal}}^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \frac{(27 - 14, 22)^{2}}{14, 22} + \frac{(44 - 56, 78)^{2}}{56, 78} + \frac{(95 - 107, 78)^{2}}{107, 78} + \frac{(443 - 430, 22)^{2}}{430, 22}$$

$$= 11, 49 + 2, 88 + 1, 52 + 0, 38$$

$$\cong 16, 27$$

#### c.(1 pt) Valor tabelado.

Temos que n = (2-1)(2-1) = 1 e  $\alpha = 0,01$ , assim

$$\chi^2_{(1\%;1)} = 6,635.$$

#### **d.(1 pt)** Decisão do teste (assinale uma opção).

- ) Não rejeitar  $H_0$  e concluir que são independentes.
- ) Rejeitar H<sub>0</sub> e concluir que são independentes.
- ) Não rejeitar  $H_0$  e concluir que não são independentes.
- (X) Rejeitar H<sub>0</sub> e concluir que não são independentes.