[I'mal Roview]

LEC34 205.1.26

Unit 1:

· veetors , dot product

A.B = 181.181. Caso = [aibi

cross-product AXB -> area in space

vector I A and B

· equations of plane fax + by + cz=d

(a, b, c > = normal veetor

equation of lines coarametric fx= (x) + at

point onl vector//L

· parametric equations of curve 10°

decompose vector to other vector's tor-

decompose position vector in to some simple vector

· velocity $\vec{J} = \frac{d\vec{r}}{dt}$, speed = $|\vec{v}|$

段 图 网							
	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	/	1

1	oration:	-> di
Accel	oration:	d= It

· matrices, determinants, liner systems,

SX3 liner system => BX = B - solumn vector

when vector

3x3 material

inventing (2x2 or 3x3) page $\begin{bmatrix}
\vdots \\
\end{bmatrix}$ $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ $\begin{bmatrix}$

s transpose, * det(A)

· A invortible () det A + 0 , AX=B, X=A-'B then

otherwise: AX=B has either no solution or o

many solution > X + intersection of three planes

Ax=0, then 0 is always a solution ("trivial" solution)

Unit 2:

· viewing f cxy): graph, contour plot

\times	7	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	1	/

,	Partial	derivative	$f_x = \frac{d}{dx}$	f	$f_{v} =$	of Ty
	1 . 0141	<i>~~~~~~~</i>		X	/	

linear Imear approximation

of & to AX + ty AY

tagent plane to the graph of f

· differentials, chain rules

 $df = t_{x}d_{x} + t_{y}d_{y}$ $if \quad \lambda = \lambda(t), \quad \gamma = \gamma(t) = 0 \quad df = t_{x}dx + t_{y}dx$

· gradient Vector: $\nabla f = (f_x, f_y)$

Directional derivative

tor unit û, df/2 = Tf. û

· max/min problems

critical points $\Rightarrow \nabla f = 0 \Rightarrow \text{second derivative}$ test -1(|local min), (|local max), (saddle) -) need

the boundary value of f or at ∞ $AC-B^2>0$, A>0 min, Az0 max

AC-B20, saddle

AC-B2=0, fail test

M LIM							
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.		
Date	1	1

Mo Tu We Th Fr Sa Su	Memo No
INIO 14 WE III FI 3d 3u	Date / /
· max/min	f with non-indepent variables
	LAGRANGE MAT MUTIPLIERS
	$\nabla f = \Lambda \nabla g$ two curve toget times $g = c$
careful:	second derivative does not apply this
· constrained	partial denivatives:
	of? (of) y hold anstant
	X varies, t depend on xiy
	(st)t, y deponds on Xit
LEC35. 200	5. 2.22
Unit 3 a	nd 4
· Double inter	goals ,-setting up bounds
Strong dy a	
1 2	1 - 12/2

also in polar condinates da = rdrdo also: changing to uv-wordinates

jacoby duch = | xu,v) | dxdy y

斑 图 图							
М	7	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	/	/

36	M	, 1	1
D9	X.	1	_

Triple integrals, rectingular, sylindrical (2,5,6)

spherical (4,0,0)

ye | x= esin 4 cos

y= psin 4 sin 0

dv=dzrdodo, dv=e²smødedødo Applications: - area/volume/mass

SIDA SSIZAV

-average value of a function f:

f = voi SSJdV , or (weighted) voi SSJ 8dy

-center of mass $(\bar{x}, \bar{y}, \bar{z})$

- moments of mertia: Iz= IS (x2+y) 8dV (r2m)

- grat vitational attraction

F= G m. SSS & csp/e2 dV

· work and Une integrals (in plane & inspace)

· Sc Fidr = Sc Mdx + Ndy , F=(M,N)

Express X& y in terms of styn smyle parametric

日 四									
	Мо	Tu	We	Th	Fr	Sa	Su		

Memo No.			
Date	/	/	

gradient Field & path-independence: -if aurlf=0 [in 20: Nx-My] -if aurlf=0 [in 30: Vx f]
$F = x_1^2 + y_3^2 \text{and } F = \left \frac{\partial (x_1 + y_2)}{\partial (x_1 + y_3)} \right = 0$
and \vec{F} is defined in a simply-anneated region than \vec{F} is a gradient \vec{F} is a gradient \vec{F} is a gradient \vec{F} is a gradient.
· how to find the potential
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(giy), (B) stemt with $f_x = M$ $\int_{dx}^{dx} f = L_1 + g(y, z)$ - once we have potential,
$\int_{\rho_0}^{\pi} R^{\rho} \int_{C} \nabla f \cdot d\vec{r} = f(\rho_{i}) - f(\rho_{i})$
- Flux in plane & space
• in the plane $\frac{7}{2}$ this = $\int_{C} \vec{F} \cdot \hat{n} ds$ $\vec{F} = \langle P, \Psi \rangle$ $\hat{n} = \hat{T}$ rotated 9. checkwise
$= \int_{c} -\alpha dx + \beta dy \qquad \qquad \hat{n} ds = 2dy, -dx $
in the space
Is finds of set up, express in and ds

日 四 四								
Мо	Tu	We	Th	Fr	Sa	Su		

Memo No.		
Date	1	/

	Memo No.
Mo Tu We Th Fr Sa Su	Date / /
or use A	
if sis given by Z	= f(x,y), Ads = (-tx,-ty, 1) dxdy
but here day a	t ds
	Str +ty+1 ds = Str fit do
	nal vector to the surface N
Ads=±	dxdy
S slanted plane.	
$S: g_{c}(x,y,\pm 1) = 0$	\mathcal{A}

		3 //			
		20		(3)	
work	Greet	n theorem		stokes'	theorem
	(F)	\$cF'dr=[]	e ourled A	n'Alt	D'C
	F=(M,	N> & Mess t	•		J de la
	•	(AA MX-MY)		β _c ξ' 20	? = //s LVXF
^^	,,,,	or flux		livergence	theorem

Sc fc ads = Skdiv FdA & S ff inds = SSR div FdV div Rairi = Px +0 y+Rz