Sorting and
Algorithm Analysis:
The Basics

Computer Science 112
Boston University

Christine Papadakis-Kanaris

Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort "in place," using only a small amount of additional storage
- Terminology:
 - position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - element i: the element at position i

Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort "in place," using only a small a
- Terminology:
 - position: one of the memory location
 - element: one of the data item\$ stored in the array
 - element i: the element at position i
- Goal: minimize the number of operations needed to sort the array.

```
comparison is applying a relational operation on two elements of the array. example: arr[1] > arr[2]
```

```
Which are?
```

number of comparisons and moves needed to sort the array.

move = copying an element from one position to another
example: arr[3] = arr[5];

Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort "in place," using only a small a
- Terminology:
 - position: one of the memory location
 - element: one of the data items stored in the array
 - element i: the element at position i
- Goal: minimize the number of operations needed to sort the array.

comparison is applying a relational operation on two elements of the array. example: arr[1] > arr[2]

```
Which are?
```

number of comparisons and moves needed to sort the array.

```
move = copying an element from one position to another
example: arr[3] = arr[5];
```

Defining a Class for our Sort Methods

```
public class Sort {
    public static void bubbleSort(int[] arr) {
        ...
    }
    public static void insertionSort(int[] arr) {
        ...
    }
}
```

- Our Sort class is simply a collection of methods like Java's built-in Math class.
- Because we never create Sort objects, all of the methods in the class must be static.
 - outside the class, we invoke them using the class name:
 e.g., Sort.bubbleSort(arr)

Selection Sort

Selection Sort

- Basic idea:
 - consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that's currently there

Example:

Selecting an Element

When we consider position i, the elements in positions
 0 through i – 1 are already in their final positions.

example for i = 3:

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- To select an element for position i:
 - consider elements i, i+1,i+2,...,arr.length 1, and keep track of indexMin, the index of the smallest element seen thus far, example:

indexMin: 3, 5

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- when we finish this pass, indexMin is the index of the element that belongs in position i.
- swap arr[i] and arr[indexMin]:


```
    public static void selectionSort(int[] arr) {
        // scan every position from current to length-1 {
            // find the index containing the smallest element

            // swap the current element (i.e. element at i)
            // with the element at the index containing the
            // smallest element
      }
}
```

```
• public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest( arr, i );

        // swap the cur
        // with the el( ... from position i to
        // smallest the last element of
    }
}</pre>
```

Implementation of Selection Sort

Use a helper method to find the index of the smallest element:

```
private static int indexSmallest(int[] arr, int start) {
   int indexMin = start;

   for (int i = start + 1; i < arr.length; i++) {
      if (arr[i] < arr[indexMin]) {
         indexMin = i;
      }
   }
   return indexMin;
}</pre>
```

```
• public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest( arr, i );

        // swap the current element (i.e. element at i)
        // with the element at the index containing the
        // smallest element
    }
}</pre>
```

```
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest( arr, i );

        swap(arr, i, j);

}
</pre>
```

A Method for Swapping Elements

within an array

A private helper method used by several of the algorithms:
 private static void swap(int[] arr, int a, int b) {
 int temp = arr[a];
 arr[a] = arr[b];
 arr[b] = temp;
}

For example:

```
int[] arr = {15, 7, 3, 6, 12};
swap(arr, 0, 1);
System.out.println(Arrays.toString(arr));
```

A Method for Swapping Elements

within an array

A private helper method used by several of the algorithms:
 private static void swap(int[] arr, int a, int b) {
 int temp = arr[a];
 arr[a] = arr[b];
 arr[b] = temp;
}

For example:

```
int[] arr = {15, 7, 3, 6, 12};
swap(arr, 0, 1);
System.out.println(Arrays.toString(arr));
```

Where **a** an **b** are positions (i.e. indices) into the array.

A Method for Swapping Elements

within an array

A private helper method used by several of the algorithms:
 private static void swap(int[] arr, int a, int b) {
 int temp = arr[a];
 arr[a] = arr[b];
 arr[b] = temp;
}

For example:

```
int[] arr = {15, 7, 3, 6, 12};
swap(arr, 0, 1);
System.out.println(Arrays.toString(arr));

output:
[7, 15, 3, 6, 12]
```

Another method for Swapping Variables?

Will this method swap the values of variables a and b? Why or why not? For example:

```
int x = 5, y = 10;

System.out.println(x + " " + y); // What would this print?

swap(x,y);

System.out.println(x + " " + y); // What would this print?
```

And this method for Swapping Variables?

```
public static void swap( Integer a, Integer b ) {
    Integer tmp = new Integer(a);
    a = b;
    b = tmp;
}

Where a an b are references to integer objects whose values we want to swap.
```

Will this method swap the values of variables a and b? Why or why not? For example:

```
Integer x = \text{new Integer}(5), y = \text{new Integer}(10);
System.out.println(x + " + y); // What would this print?
swap(x,y);
System.out.println(x + " + y); // What would this print?
```

```
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest( arr, i );
        swap(arr, i, j);
                                        Note that the swap
                                        is being performed
                                       even if the minimum
                                         index returned is
                                       equal to i. Consider
                                             why....
```

You would have to perform the comparison each time!

Analysis of Selection Sort

Use a helper method to find the index of the smallest element:

```
private static int indexSmallest(int[] arr, int start) {
   int indexMin = start;

   for (int i = start + 1; i < arr.length; i++) {
      if (arr[i] < arr[indexMin]) {
        indexMin = i;
      }
   }
   return indexMin;
}</pre>
```

The actual sort method is very simple:

```
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest(arr, i);
        swap(arr, i, j);
    }
}</pre>
```

Time Analysis

- The *time efficiency* or *time complexity* of an algorithm is some measure of the number of "operations" that it performs.
 - for sorting algorithms, we'll focus on two types of operations: comparisons and moves
- The number of operations that an algorithm performs typically depends on the size, n, of its input.
 - for sorting algorithms, n is the # of elements in the array
 - C(n) = number of comparisons
 - M(n) = number of moves
- To express the time complexity of an algorithm, we'll express the number of operations performed as a function of n.
 - examples: $C(n) = n^2 + 3n$ $M(n) = 2n^2 - 1$

```
private static int indexSmallest(int[] arr, int start){
    int indexMin = start;
    for (int i = start + 1; i < arr.length; i++) {
        if (arr[i] < arr[indexMin]) {</pre>
            indexMin = i;
    }
    return indexMin;
}
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) { // n - 1 iterations
        int j = indexSmallest(arr, i);
        swap(arr, i, j);
    }
}
```

To sort n elements, selection sort performs n – 1 iterations:

```
private static int indexSmallest(int[] arr, int start){
    int indexMin = start;
    for (int i = start + 1; i < arr.length; i++) {
        if (arr[i] < arr[indexMin]) {</pre>
            indexMin = i;
    return indexMin;
}
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) { // n - 1 iterations
        int j = indexSmallest(arr, i); // each iteration performs
                                         // one pass starting at i
        swap(arr, i, j);
}
```

To sort n elements, selection sort performs n – 1 iterations:

```
private static int indexSmallest(int[] arr, int start){
    int indexMin = start;
    for (int i = start + 1; i < arr.length; i++) {
        if (arr[i] < arr[indexMin]) {</pre>
            indexMin = i:
    }
    return indexMin;
}
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest(arr, i);
        swap(arr, i, j);
}
```

- To sort n elements, selection sort performs n 1 passes:
 on 1st pass, it performs n 1 comparisons to find indexSmallest on 2nd pass, it performs n 2 comparisons
 on the (n-1)st pass, it performs 1 comparison
- Adding them up: C(n) = 1 + 2 + ... + (n 2) + (n 1)

 The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

 The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

Closed Formula for the sum of this type of arithmetic sequence:

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

 The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

• Closed Formula for the sum of this type of arithmetic sequence:

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

Thus, we can re-write our expressid

C(n) =
$$\sum_{i=1}^{n-1} i$$

= $\frac{(n-1)((n-1)+1)}{2}$

factor out (n-1)

 The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

Closed Formula for the sum of this type of arithmetic sequence:

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

Thus, we can re-write our expression for C(n) as follows:

$$C(n) = \sum_{i=1}^{n-1} i$$

$$= \frac{(n-1)((n-1)+1)}{2}$$

$$= \frac{(n-1)n}{2}$$

$$C(n) = n^2/2 - n/2$$

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = n^2/2 n/2$ is $O(n^2)$

As **n** increases and approaches *infinity*, the solution grows in proportion to **n**²

Big-O Time Analysis of Selection Sort

- Comparisons: we showed that $C(n) = \frac{n^2}{2} \frac{n}{2}$
 - selection sort performs O(n²) comparisons
- Moves: after each of the n-1 passes, the algorithm does one swap.

```
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest(arr, i);
        swap(arr, i, j);
    }
}</pre>
```

Big-O Time Analysis of Selection Sort

- Comparisons: we showed that $C(n) = n^2/2 n/2$
 - selection sort performs O(n²) comparisons
- Moves: after each of the n-1 passes, the algorithm does one swap.
 - n-1 swaps, 3 moves per swap
 - M(n) = 3(n-1) = 3n-3
 - selection sort performs O(n) moves.

Big-O Time Analysis of Selection Sort

- Comparisons: we showed that $C(n) = n^2/2 n/2$
 - selection sort performs O(n²) comparisons
- Moves: after each of the n−1 passes, the algorithm does one swap.
 - n-1 swaps, 3 moves per swap
 - M(n) = 3(n-1) = 3n-3
 - selection sort performs O(n) moves.
- Running time (i.e., total operations): O(n²)
 - $C(n) = O(n^2)$
 - M(n) = O(n)
 - therefore, the largest term of C(n) + M(n) is $O(n^2)$
- Selection sort is a quadratic-time or O(n²) algorithm.

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = n^2/2 n/2$ is $O(n^2)$
- Common classes of algorithms:

<u>name</u>	example expressions	big-O notation
constant time	1, 7, 10	0(1)
logarithmic time	$3\log_{10}n$, $\log_2 n + 5$	O(log n)
linear time	5n, 10n - 2log ₂ n	O(n)
nlogn time	$4n\log_2 n$, $n\log_2 n + n$	O(nlog n)
quadratic time	$2n^2 + 3n, n^2 - 1$	$O(n^2)$
exponential time	2^{n} , $5e^{n} + 2n^{2}$	$O(c^n)$

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = \frac{n^2}{2} n/2$ is $O(n^2)$
- Common classes of algorithms:

<u>name</u>	<u>example expressions</u>	big-O notation
constant time	1, 7, 10	0(1)
logarithmic time	$3\log_{10}n$, $\log_2n + 5$	O(log n)
linear time	5n, 10n - 2log ₂ n	O(n)
nlogn time	$4n\log_2 n$, $n\log_2 n + n$	O(nlog n)
quadratic time	$2n^2 + 3n, n^2 - 1$	$O(n^2)$
exponential time	2^{n} , $5e^{n} + 2n^{2}$	$O(c^n)$

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an O(log n) algorithm on a slow machine will outperform an O(n) algorithm on a fast machine

Ordering of Functions

We can see below that:

n² grows faster than nlog₂n nlog₂n grows faster than n n grows faster than log₂n

Ordering of Functions (cont.)

Zooming in, we see that: n² >= n for all n >= 1
 nlog₂n >= n for all n >= 2
 n > log₂n for all n >= 1

Exchange based sorting algorithms

Selection Sort

SWAP

Sorting by Exchange: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order.
- Larger elements bubble up to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions, so we don't need to consider them in subsequent passes.

• Example:	0	1	2	3
Example:	28	24	27	18
		1		
after the first pass:	24	27	18	28
				-
after the second:	24	18	27	28
after the third:	18	24	27	28

Implementation of Bubble Sort

- One for-loop nested in another:
 - the inner loop performs a single pass
 - the outer loop governs the number of passes, <u>and</u> the <u>ending</u> <u>point</u> of each pass

Time Analysis of Bubble Sort

Comparisons: the kth pass performs n - k comparisons,

so we get
$$C(n) = \sum_{i=1}^{n-1} i = n^2/2 - n/2 = O(n^2)$$

- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves)
 - $M(n) = 3C(n) = O(n^2)$
 - in the best case: the array is already sorted, and no moves are needed
- Running time: O(n²)
 - C(n) is always O(n²), M(n) is never worse than O(n²)
 - therefore, the largest term of C(n) + M(n) is $O(n^2)$
- Bubble sort is a quadratic-time or O(n²) algorithm.
 - same run-time efficiency as selection sort!

Time Analysis of Bubble Sort

Comparisons: the kth pass performs n - k comparisons,

so we get
$$C(n) = \sum_{i=1}^{n-1} i = n^2/2 - n/2 = O(n^2)$$

- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (I Inless we optimize the algority
 - $M(n) = 3C(n) = O(n^2)$
 - in the best case: the array is a sorted and stop the loop from moves are needed making any additional passes
- Running time: O(n²)
 - C(n) is always O(n²), M(n) is
 - therefore, the largest term of

Unless we optimize the algorithm to determine when the array is sorted and stop the loop from making any additional passes:

O(n) in best case!

- Bubble sort is a quadratic-time or O(n²) algorithm.
 - same run-time efficiency as selection sort!

Sorting by Insertion

- Basic idea:
 - going from left to right, "insert" each element into its proper place with respect to the elements to its left, "sliding over" other elements to make room.
- Example:

0	1	2	3	4
15	4	2	12	6

- Basic idea:
 - going from left to right, "insert" each element into its proper place with respect to the elements to its left, "sliding over" other elements to make room.
- Example:

Basic idea:

• going from left to right, "insert" each element into its proper place with respect to the elements to its left ""

other elements to make room.

Example:

- Basic idea:
 - going from left to right, "insert" each element into its proper place with respect to the elements to its left, "sliding over" other elements to make room.

Example:

Comparing Selection and Insertion Strategies

- In selection sort, we start with the positions in the array and select the correct elements to fill them.
- In insertion sort, we start with the *elements* and determine where to *insert* them in the array.
- Here's an example that illustrates the difference:

0	1	2	3	4	5	6
18	12	15	9	25	2	17

- Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - •
- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15; determine where to insert it
 - ...

Comparing Selection and Insertion Strategies

- In selection sort, we start with the positions in the array and select the correct elements to fill them.
- In insertion sort, we start with the *elements* and determine where to *insert* them in the array.
- Here's an example that illustrates the difference:

0	1	2	3	4	5	6
18	12	15	9	25	2	17

- Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - ...
- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15; determine where to insert it
 - •

Inserting an Element:

following the algorithm

When we consider element i, elements 0 through i – 1
are already sorted with respect to each other.

example for i = 3:

Inserting an Element:

following the algorithm

When we consider element i, elements 0 through i – 1
are already sorted with respect to each other.

example for i = 3:

Inserting an Element:

following the algorithm

When we consider element i, elements 0 through i – 1 are already sorted with respect to each other.

example for i = 3:

0	1	2	3	4
6	14	19	9	

- To insert element i:
 - make a copy of element i, storing it in the variable toInsert:

_		0	1	2	3
toInsert	9	6	14	19	9

- consider elements i-1, i-2, ...
 - if an element > toInsert, slide it over to the right
 - stop at the first element <= toInsert

		_	0	1	2	3
toInsert	9		6		14	19

copy toInsert into the resulting "hole":

0	1	2	3
6	9	14	19

Insertion Sort Example (done together)

Insertion Sort Example (done together)

description of steps

 12
 5
 2
 13
 18
 4

1. copy the 5

5 12 5 2 13 18 4

Note by copying this value somewhere, we have opened up a slot that elements in the sorted region can slide into.

Insertion Sort Example (done together)

description of steps

 12
 5
 2
 13
 18
 4

1. copy the 5; shift the 12 to make room

5 12 2 13 18 4

2. insert the 5

5 12 2 13 18 4

3. copy the 2; shift the 12 and the 5 to make room

2 5 12 13 18 4

4. insert the 2

2 5 12 13 18 4

5. 13 > 12, so no need to insert it; similarly, 18 > 13

2 5 12 13 18 4

6. copy the 4; shift 18,13, 12, and 5 to make room

4 2 5 12 13 18

7. insert the 4

2 4 5 12 13 18

```
public class Sort {
  public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
          if (arr[i] < arr[i-1]) {
              int toInsert = arr[i];
              int j = i;
              do {
                  arr[j] = arr[j-1];
                  j = j - 1;
              } while (j > 0 \& toInsert < arr[j-1]);
              arr[j] = toInsert;
```

```
public class Sort {
  public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
           if (arr[i] < arr[i-1]) {
                int toInsert = >
                int j = i;
                                        Note that control variable
                do {
                                          i represents the 1st
                    arr[j] = arr_0
                                         element in the unsorted
                    j = j - 1;
                                         region. All the elements
                } while (j > 0)
                                          to the left are sorted.
                arr[j] = toInsert;
```

```
public class Sort {
  public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
          if (arr[i] < arr[i-1]) {
              int toInsert = arr[i];
              int j = i;
              do {
                  arr[j] = arr[j-1];
                  j = j - 1;
              } while (j > 0 \& toInsert < arr[j-1]);
              arr[j] = toInsert;
```

```
public class Sort {
  public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
           if (arr[i] < arr[i-1]) {
                int toInser (arr[i];
                int j = i;
                                        If the element at position i
                do {
                                        is smaller than the element
                    arr[j] = arr[j
                    j = j - 1;
                                         at position i-1, find the
                } while (j > 0)
                                         proper place in the sorted
                                            region to insert the
                arr[j] = toInsert
                                                element.
```

```
public class Sort {
 public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
          if (arr[i] < arr[i-1]) {
              int toInsert = arr[i]; // save the element
              int j = i;
              do {
                  arr[j] = arr[j-1];
                  j = j - 1;
              } while (j > 0 \& toInsert < arr[j-1]);
              arr[j] = toInsert;
```

```
public class Sort {
                                         Loop through the sorted
                                         region to find the correct
  public static void insertionSo
      for (int i = 1; i < arr.)
                                          position to insert the
           if (arr[i] < arr[i-1]
                                           element saved in
               int toInsert = ari
                                           variable tolnsert.
               int j = i;
               do {
                    arr[j] = arr[j-1];
                    j = j - 1;
               } while (j > 0 \&\& toInsert < arr[j-1]);
               arr[j] = toInsert;
```

```
public class Sort {
                                           Loop through the sorted
                                           region to find the correct
  public static void insertionSor
       for (int i = 1; i < arr.)
                                            position to insert the
           if (arr[i] < arr[i-1]
                                              element saved in
                int toInsert = arm
                                              variable tolnsert.
                int j = i;
                do {
                     arr[j] = arr[j-1];
                     j = j - 1;
                } while (j > 0 \&\& toInsert < arr[j-1]);
                arr[j] = toInsert;
                                    while there are more
                                    elements to check in the
                                    sorted region!
```

```
public class Sort {
                                            Loop through the sorted
                                            region to find the correct
  public static void insertionSo
       for (int i = 1; i < arr.1
                                              position to insert the
            if (arr[i] < arr[i-1]
                                               element saved in
                 int toInsert = ari
                                               variable tolnsert.
                 int j = i;
                 do {
                      arr[j] = arr[j-1];
                      j = j - 1;
                 } while (j > 0 \&\& toInsert < arr[j-1]);
                 arr[j] = toInsert;
                                     ... and the element to insert is
                                     less than the elements being
                                     considered in the sorted region
```

```
public class Sort {
  public static void insertionSort(int[] arr) {
      for (int i = 1; i < arr.length; i++) {
          if (arr[i] < arr[i-1]) {
              int toInsert = arr[i];
              int j = i;
              do {
                  arr[j] = arr[j-1];
                  j = j - 1;
              } while (j > 0 \& toInsert < arr[j-1]);
              arr[j] = toInsert;
```

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- best case: array is sorted
 - thus, we never execute the do-while loop
 - each element is only compared to the element to its left
 - C(n) = n 1 = O(n), M(n) = 0, running time = O(n)

also true if array is almost sorted

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- best case: array is sorted
 - thus, we never execute the do-while loop
 - each element is only compared to the element to its left
 - C(n) = n 1 = O(n), M(n) = 0, running time = O(n)
- worst case: array is in reverse order

- also true if array is almost sorted
- each element is compared to all of the elements to its left:
 arr[1] is compared to 1 element (arr[0])

```
arr[2] is compared to 2 elements (arr[0] and arr[1])
```

arr[n-1] is compared to n-1 elements

- $C(n) = 1 + 2 + ... + (n 1) = O(n^2)$ as seen in selection sort
- similarly, $M(n) = O(n^2)$, running time = $O(n^2)$
- average case: elements are randomly arranged
 - each element is compared to half of the elements to its left
 - still get $C(n) = M(n) = O(n^2)$, running time = $O(n^2)$