

Przydział kanałów

Zarys wykładu

- Wprowadzenie
- Alokacja statyczna a alokacja dynamiczna
- Statyczne metody alokacji kanałów
- Dynamiczne metody alokacji kanałów
- Inne metody alokacji kanałów
- Alokacja w strukturach systemów specjalizowanych
- Modelowanie kanałów
- Modelowanie dla zgłoszeń typu przeniesienie regionu

Wprowadzenie

- Czym jest przydział (alokacja) kanałów?
- Dostępne radiowe spektrum częstotliwości musi być podzielone na pewną liczbę rozłącznych kanałów, które mogą być używane jednocześnie w taki sposób, aby minimalizować interferencję przyległych kanałów i poprzez ich odpowiednią alokację (szczególnie kanałów roboczych)
- Techniki alokacji kanałów można podzielić na
 - Statyczne (Fixed Channel Allocation (FCA) schemes);
 - Dynamiczne (Dynamic Channel Allocation (DCA) schemes);
 - Hybrydowe (Hybrid Channel Allocation (HCA) schemes: łączące techniki FCA oraz DCA

- Techniki statycznej alokacji zakładają, że dany zbiór kanałów jest na stale przydzielony do każdej komórki w sieci
- Jeżeli całkowita liczba dostępnych kanałów w systemie S jest podzielona na zbiory, to minimalna liczba N zbiorów tych kanałów wymagana, aby obsłużyć całkowity obszar pokrycia jest związana z odległością D wykorzystania częstotliwości w sposób następujący:

$$N = D^2/3R^2$$

W wyniku krótkoterminowych fluktuacji ruchu sieciowego, schematy FCA często nie są w stanie podtrzymywać wysokiej jakości obsługi. Jedną z możliwości rozwiązania tego problemu jest pożyczanie wolnych kanałów z sąsiednich komórek

- komórka (acceptor cell), która zużyła wszystkie swoje nominalne kanały może pożyczyć wolne kanały z sąsiedniej komórki (donor cell), po to aby obsłużyć nowe zgłoszenia
- Pożyczenie może nastąpić z przyległej komórki, np. z tej, która ma największą liczbę wolnych kanałów (pożyczanie od najbogatszego)
 - Wybierz pierwszy wolny kanał odnaleziony przez algorytm poszukiwania (pożycz pierwszy dostępny kanał)
 - Zwróć pożyczony kanał gdy on staje się wolny w komórce (basic algorithm with reassignment)
 - Aby kanał nadawał się do pożyczenia nie może on interferować z obsługiwanymi aktualnie zgłoszeniami (patrz, następny slajd)

Proste schematy pożyczania kanałów

komórka 3

• zgłoszenie zainicjowane w sektorze X komórki 3 może pożyczyć kanał z przyległych komórek 1 lub 2.

Konsekwencje pożyczania kanałów w systemach bezprzewodowych z sektorowanymi komórkami

Metody prostego pożyczania kanałów (CB)

Metoda	Opis
Proste pożyczanie (CB)	Nominalny zbiór kanałów przyznaje się komórce, tak jak w przypadku FCA. Po wykorzystaniu wszystkich nominalnych kanałow, dostępny kanał z sąsiedniej komórki jest pożyczany
Pożycz od najbogatszego (SBR)	Kandydatami do pożyczania są dostępne nominalne kanały przypisane do jednej z przyległych komórek komórki akceptora. Jeżeli więcej niż jedna z przyległych komórek ma dostępne dla pożyczania kanały to jest pożyczany kanał z komórki z największą liczbą dostępnych kanałów
Algorytm podstawowy (BA)	Jest to ulepszona wersja strategii SBR, która wybiera kanał badając stan podczas wyboru kanału kandydata na pożyczenie. Ta metoda próbuje minimalizować prawdopodobieństwo przyszłej blokady zgłoszenia w komórce, która jest najbardziej dotknięta pożyczaniem
Algorytm podstawowy ze zwrotem (BAR)	Ta metoda transferuje zgłoszenie z pożyczonego kanału do kanału nominalnego jak tylko kanał nominalny staje się dostępny
Pożycz pierwszy dostępny (BFA)	Zamiast próby optymalizacji podczas pożyczania, ten algorytm wybiera do pożyczenia pierszwszego znalezionego kandyda

Dynamiczna alokacja kanałów (Dynamic Channel Allocation-(DCA))

- W metodach DCA wszystkie kanały trzymane są w centralnej puli i są przypisywane dynamicznie do nowych zgłoszeń podczas ich napływu do systemu
- Po zakończeniu obsługi zgłoszenia kanał jest zwracany do centralnej puli. Wybór odpowiedniego kanału dla pojawiającego się zgłoszenia jest zadaniem prostym i odbywa się na podstawie bieżącej alokacji i bieżącego ruchu, w taki sposób aby minimalizować interferencję
- Metoda DCA potrafi sprostać problemom związanym z metodą FCA. Różne odmiany metod DCA są skupione wokół różnych funkcji kosztów używanych podczas selekcji jednego z kanałów kandydatów do przydzielenia

Dynamiczna alokacja kanałów (Dynamic Channel Allocation-(DCA))

- Metody DCA mogą być <u>zcentralizowane</u> lub <u>rozproszone</u>
- Metoda <u>zcentralizowanego DCA</u> polega na używaniu jednego kontrolera wybierającego kanał dla każdej komórki
- Metoda <u>rozproszonego DCA</u> wykorzystuje pewną liczbę kontrolerów rozmieszczonych w sieci (MSCs).
- Metody zcentralizowanego DCA mogą teoretycznie zapewnić najlepszą wydajność. Jednak, ogromna liczba obliczeń i komunikacji między BS-mi prowadzi do nadmiernych systemowych opóźnień i powoduje, że zcentralizowane DCA są niepraktyczne. Tym niemniej, zcentralizowane DCA często służą jako pożyteczny benchmark umożliwiający porównanie z praktycznymi zdecentralizowanymi DCA

- Przy pojawieniu się nowego zgłoszenia, wybierany jest z centralnej puli wolny kanał w taki sposób, aby maksymalizować rozmiar zbioru współkanałów, który będzie można przypisać komórkom znajdującym się w odległości wykorzystania
- Inna modyfikacja: minimalizować średniokwadratową odległość między komórkami używającymi tego samego kanału

Zcentralizowane metody DCA

Metoda

Opis

Pierwszy dostępny (First Available-(FA)) Strategia FA jest najprostrzą metodą spośród metod DCA. W FA, pierwszy dostępny kanał spełniający kryterium odległości wykorzystania jest przypisywany zgłoszeniu.

Ta strategia minimalizuje czas obliczeniowy systemu.

Lokalnie optymalizowany dynamiczny przydział (LODA)) Wybór kanału oparty jest na prawdopodobieństwie przyszłej blokady w sasiedztwie tej komórki gdzie pojawiło się zgłoszenie

Wybór na podstawie maksymalnego użycia (RING) Jako kandydat wybierany jest kanał, który jest w użyciu w największej liczbie komórek w zbiorze wspólkanałów. Jeżeli więcej niż jeden kanał ma tę własność to wybierany jest w sposób arbitralny jeden z nich, aby obsłużyć zgłoszenie. Jeżeli żaden z nich nie jest dostepny to wybór dokonuje się metodą FA

Zcentralizowane metody DCA

Metoda	Opis
--------	------

średniokwadratowy (MSQ),

metoda MSQ wybiera dostępny kanał tak, aby minimalizować średniokwadratową odległość między komórkami używającymi tego samego kanału

1-clique

Metoda oparta na terorii grafów. Wykorzystuje zbiór węzłów grafu, jeden węzeł dla kanału i połączenie krawędzią dwóch węzłów jeżeli nie ma ma między nimi współkanałowej interferencji. Maksymalizacja liczby krawędzi wskazuje na dostępność węzłów (kanałów) po

wykonaniu bieżącej selekcji

Rozproszone metody DCA

- Opierają się na jednym z trzech parametrów:
 - współkanałowej odległości
 - współkanałowych komórkach w sąsiedztwie nieużywających danego kanału
 - czasami interferencja przyległych kanałow jest brana pod uwagę
 - Pomiar siły sygnału
 - przewidywany współczynnik współkanałowej interferencji (CIR) ponad zadany poziom
 - Współczynnik sygnału do szumu
 - spełnia wymaganą wielkość wspólczynnika CIR

Porównanie między FCA i DCA

FCA

- lepsza przy dużym ruchu
- niska elastycznośc podczas przydziału kanału
- Maksymalne powtórne wykorzystanie kanałów
- czuła na zmiany w czasie i przestrzeni
- Niestabilny poziom obslugi komórki z grupy interferujących komórek
- wysokie wymuszone prawdopodobieństwo zakończenia rozmowy
- Stosowna dla dużych sieci komórkowych
- niska elastyczność

DCA

- lepsza przy małym/umiarkowanym ruchu
- elastyczna alokacja kanałów
- Nie zawsze maksymalne powtórne wykorzystanie kanałów
- nieczuła na zmiany w czasie i przestrzeni
- Stabilny poziom obsługi komórki z grupy interferujących komórek
- niskie lub umiarkowane wymuszone prawdopodobieństwo zakończenia rozmowy
- Stosowana w sieciach mikrokomórkowych
- wysoka elastyczność

Porównanie między FCA i DCA

FCA

- urządzenia radiowe pokrywają wszystkie kanały przyznane komórce
- niezależne zarządzanie kanałów
- niskie koszty obliczeniowe
- małe opóźnienia podczas ustanowienia połączenia
- •niska złożoność implementacji
- planowanie częstotliwości złożone i pracochłonne
- niskie obciażenie sygnalizacyjne
- zarządzanie zcentralizowane

DCA

- urządzenia radiowe pokrywają chwilowy kanał przyznany komórce
- od całkowicie zcentralizowanego do całkowicie rozproszonego zarządzania w zależności od przyjętej metody
- wysokie koszty obliczeniowe
- opóźnienie od umiarkowanego do dużego podczas ustanowienia połączenia
- złożoność implementacji od umiarkowanej do wysokiej
- nie ma żadnego planowania częstotliwości
- obciążenie sygnalizacyjne od umiarkowanego do wysokiego
- zarządzanie zcentralizowane, rozproszone w zależności od metody 16

Inne metody alokacji kanałów

Na podstawie różnych kryteriów używanych w celu optymalizacji wydajności zaproponowano wiele innych metod alokacji kanałów

- Hybrydowa alokacja kanałów (HCA)
- Elastyczna alokacja kanałów (FCA)
- Alokacja kanałów z przeniesieniem (HCA)

- Techniki HCA są kombinacją technik FCA i DCA
- W HCA całkowita liczba dostępnych kanałów jest dzielona na zbiory stałe i dynamiczne
 - Zbiór stały zawiera liczbę nominalnych kanałów, które są przydzielane do komórek podobnie jak w metodach FCA; te kanały są preferowane do użycia podczas pojawiania się kolejnych zgłoszeń
 - Zbiór dynamiczny jest współdzielony przez wszystkich użytkowników systemu w celu zwiększenia elastyczności systemu

Przykład: gdy pojawia się zgłoszenie w komórce i jej wszystkie nominalne kanały są zajęte to wówczas przydzielany jest kanał ze zbioru dynamicznego

- Zapotrzebowanie na kanał ze zbioru dynamicznego jest inicjalizowane tylko wtedy gdy komórka jest przeciążona zużywając wszystkie kanały ze zbioru stałego
- Optymalna proporcja (stosunek liczby kanałów stałych i kanałów dynamicznych) zależy od obciążenia systemu
- 3:1 (stałe do dynamicznych) zapewnia lepszą obsługę niż metoda stała dla obciążenia do 50%
- Dla obciążenia powyżej 50% metoda stała jest lepsza
- Dla metod dynamicznych, przy obciążeniu od 15% do 32%, lepsze wyniki daje HCA

Elastyczna (flexible) alokacja kanałów (FCA)

- Podobnie jak w technice hybrydowej kanały są dzielone na zbiory stałe i elastyczne (dla sytuacji nadzwyczajnych)
- Zbiory stałe są używane do obsługi lżejszego obciążenia
- Zmiany obciążenia (piki w czasie i przestrzeni) aktywizują uruchomienie polityki wykorzystania kanałów nadzwyczajnych
- Dwie strategie: harmonogramujące oraz przewidujące
 - harmonogramujące: na podstawie oceny a priori oczekiwanych zmian ruchu
 - przewidujące: na podstawie bieżącego monitorowania w każdej komórce intensywności ruchu sieciowego oraz prawdopodobieństwa blokowania

Struktury specjalizowane: alokacja kanałów w 1D systemie

Nowe połączenie jest inicjowane w komórce 1 i bieżąca lokalizacja kanałów a, b, c, d, e jak pokazano na rysunku. Zakłada się, że MS w komórce 1 porusza się w kierunku komórki 2, MS w komórce 7 porusza się w kierunku komórki 8.

Lepiej przypisać kanał e do urządzenia mobilnego w komórce

¹21

Struktury specjalizowane: alokacja kanałów oparta na partycjonowaniu odległości wykorzystania

- Każda komórka jest dzielona na koncentryczne strefy
- Wewnętrzna strefa bliższa do BS wymaga mniejszej mocy aby osiągnąć niezbędną wielkość współczynnika CIR or SIR

- Dzięki niższemu SIR możliwe jest korzystanie z mniejszych wartości parametru odległości wykorzystania i lepsze wykorzystanie spektrum
- Grupom MS-ow z najlepszym SIR przydziela się kanały charakteryzujące się najmniejszą wartość odległości wykorzystania
- podobną strategię stosuje się przydzielając kanały z największą wartością odległości wykorzystania i najniższym SIR
- konieczna modyfikacja grup kanałów gdy zmienia sie SIR dla MS-ow

Struktury specjalizowane: alokacja oparta na nakładających się komórkach

Alokacja oparta na nakładających się komórkach

- Komórkę dzieli się na pewną liczbę mniejszych komórek (pico, mikrokomórki), aby zarządzać zwiększonym ruchem
- Jedna z alternatyw: przydział kanałów przez mikrokomórki bądź komórki zależy od tego czy dany MS należy do grupy szybko czy wolno poruszających się urzadzeń
- Dla wolno poruszających się komórek kanały przydzielane są przez mikrokomórki (lub pico) na podstawie bieżącej lokalizacji
- jeżeli kanały przydzielane byłyby z mikrokomórki dla szybko poruszających się MS to zwiększyłoby częstotliwość regionu przenoszenia połączenia
- Dlatego dla MS-ow szybko przemieszczających się kanały przydzielane są przez komórki

- Inna alternatywa: logiczna struktura komórki zmienia się dynamicznie w zależności od wielkości obciążenia
- Na początku, przy małym obciążeniu, tylko główna komórka jest włączona, a mikrokomórki są wyłączone
- Gdy obciążenie rośnie w jednej lub kilku częściach komórki to odpowiednie mikrokomórki są włączane jeżeli jest nieakceptowalny poziom międzykanałowej interferencji lub jeżeli niedostępność zasobów prowadzi do wymuszonego blokowania komórek
- Włączanie mikrokomórek położonych najbliżej od MS-ow żądających kanału powoduje, że BS-y tych mikrokomórek zapewniają odpowiedni poziom CIR
- Gdy obciążenie maleje to komórka wyłącza odpowiednie mikrokomórki automatycznie adoptując się do aktualnego obciążenia

Wykorzystanie nakładających się obszarów komórek

- Jeżeli nowe zgłoszenie w komórce A nie znajduje w niej wolnego kanału to realizowane aktualnie w współdzielonej strefie inne połączenie może być zmuszone do przeniesienia połaczenia do komórki B i zwolnienia w ten sposób kanału
- jeżeli MS w współdzielonej strefie nie może znaleźć wolnego kanału w A, to może on użyć wolny kanał z komórki B

Modelowanie kanału

Przyjmuje się następujące założenia w celu uzyskania przybliżonego modelu systemu

- Przyjmuje sie, że MS-sy są równomiernie rozlokowane w komórce
- każdy MS porusza się z losową prędkością oraz w dowolnym losowym kierunku
- Średnia liczba napływających nowych zgłoszeń λ₀
- Średnia liczba przeniesień regionu połączeń $\lambda_{\mathbb{H}}$
- Średnia liczba obsłużonych zgłoszeń μ

Model systemu

Generyczny model systemu modelującego komórkę

Analiza modelu

Stany komórki mogą być reprezentowane przez (S+1) stanów modelu Markowa. Diagram przejść modelu M/M/S/S pokazano niżej:

(A/B/C/D : A-rozkład odcinków czasu między kolejnymi pojawiającymi się użytkownikami, B-rozkład czasów obsługi, C-liczba serwerów, D-maksymalna liczba użytkowników w systemie; M – rozkład wykładniczy)

Diagram przejść stanów

Analiza modelu (cd.)

- Następujące parametry są określone w modelu analizy:
- P(i): prawdopodobieństwo, że kanał "i" jest zajęty
- λ_o : średnia liczba napływu nowych zgłoszeń w komórce
- λ_H : średnia liczba pojawiania się przeniesień regionu połączeń z sąsiednich komórek
- $lacktriangle B_o$: prawdopodobieństwo blokowania pojawiających się zgłoszeń
- *S* : całkowita liczba kanałów przydzielonych komórce
- μ : średnia liczba obsługiwanych zgłoszeń
- μ_c : średni czas obsługi pojedyńczego zgłoszenia
- $\mu_{c\text{-}dwell}$: średnia liczba wychodzących z systemu MS-ow

Analiza modelu (cd.)

Równanie równowagi stanu dla danego stanu i można określić jako

$$P(i) = \frac{\lambda_0 + \lambda_H}{i\mu} P(i-1), \quad 0 \le i \le S.$$

suma dla wszystkich stanów musi wynosić 1:

$$\sum_{i=0}^{S} P(i) = 1.$$

Prawdopodobieństwo blokowania gdy wszystkie S kanałów jest zajętych można wyrazić jako:

$$B_{O} = P(S) = \frac{\frac{(\lambda_{O} + \lambda_{H})^{S}}{S! \mu^{S}}}{\sum_{i=0}^{S} \frac{(\lambda_{O} + \lambda_{H})^{i}}{i! \mu^{i}}}$$

Modelowanie zgłoszeń typu przeniesienie regionu

- Dlaczego powinnismy zapewnić wyższy priorytet dla zgłoszeń typu przeniesienie regionu ?
 - Z punktu widzenia użytkownika przerwanie połączenia typu przeniesienie regionu jest sprawą bardziej poważną i irytującą niż blokada nowych połączeń.
- Jak zapewnić wyższy priorytet dla połączeń typu przeniesienie regionu?
 - Jedno z podejść opiera się na rezerwacji spośród S kanałów komórki S_R kanałów przeznaczonych wyłącznie dla połączeń typu przeniesienie połączenia

Model systemu

Model systemu z rezerwacją kanałów dla połączeń typu region przeniesienia

(Nie ma blokady dopóki mniej niż S_c kanałów jest zajętych)

Model analizy

diagram przejść stanów

Model analizy (cd.)

Równania równowagi stanów:

$$\begin{cases} i\mu P(i) = (\lambda_{\mathcal{O}} + \lambda_{\mathcal{H}})P(i-1), 0 \leq i \leq S_{\mathcal{C}} \\ i\mu P(i) = \lambda_{\mathcal{H}}P(i-1), S_{\mathcal{C}} \leq i \leq S \end{cases}$$

i

$$\sum_{i=0}^{S} P(i) = 1.$$

Prawdopodobieństwo blokady B₀dla nowych zgłoszeń
(conajmniej S₀ kanałów jest zajętych):

$$B_o = \sum_{i=S_C}^S P(i).$$

■ Prawdopodobieństwo blokady B_H zgłoszenia typu przeniesienie regionu (wszystkie S kanałów jest zajętych):

$$B_{H} = P(S) = \frac{\left(\lambda_{O} + \lambda_{H}\right)^{S_{C}} \lambda_{H}^{S-S_{C}}}{S! \mu^{S}} P(0).$$