Output Response from Transfer Functions

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Evaluating nominal steady-state condition

Seborg Ex. 4.5a Given constant liquid density ρ , volume V, mass flow rates w_1 , w_2 , and w, the governing equation for a continuous blending process is

$$ho Vrac{dx}{dt}=w_1x_1+w_2x_2-wx_1$$

where x are compositions. When output x varies upon change in input x_1 while x_2 is held constant, the transfer function is

$$G(s)=rac{K_1}{ au s+1}, \quad K_1\equivrac{w_1}{w}, \quad au\equivrac{
ho V}{w}.$$

Determine the nominal exit concentration \overline{x} , given $w_1=600$ kg/min, $w_2=2$ kg/min, $x_1=0.05$, $x_2=1$.

Output response upon step input change can be determined from transfer functions

Seborg Ex. 4.5b Derive an expression of the output response x(t) given the transfer function

$$G(s)=rac{K_1}{ au s+1}, \quad K_1\equivrac{w_1}{w}, \quad au\equivrac{
ho V}{w}.$$

and sudden input change in x_1 from 0.050 to 0.075 at t=0. Assume the process is initially at steady-state. Given $w_1=600$ kg/min, $w_2=2$ kg/min, $x_1=0.05$, $x_2=1$, V=2 m³, $\rho=900$ kg/m³.