מתמטיקה בדידה - תרגיל בית 13 - שחר פרץ

מידע כללי

ניתן בתאריך: 14.2.2024 תאריך הגשה: 20.2.2024

מאת: שחר פרץ **:.ī.n** 334558962

תרגיל בית 13 – יחסי סדר

שאלה 1

(א) סעיף

 $A \times B$ נניח $\langle A, <_B \rangle$, קבוצות סדורות חזק. נגדיר את יחס הסדר הלקסיקוגרפי על

$$\langle a, b \rangle <_{lex} \langle c, d \rangle \iff (a <_A c \lor (a = c \land b <_B d))$$

A imes B נוכיח כי $<_{lex}$ יחס סדר חזק על

- $\langle a,b \rangle <_{lex} \langle e,f \rangle$ נוכיח $\langle a,c,e \in A \land b,d,f \in B$ טרנזיטיבי: יהי $\langle a,b \rangle <_{lex} \langle c,d \rangle, \langle c,d \rangle <_{lex} \langle e,f \rangle$ נוכיח מההנחה $\langle a,b \rangle <_{lex} \langle c,d \rangle$, ידוע $\langle a,b \rangle <_{lex} \langle c,d \rangle$ נפלג למקרים:
 - : נפלג למקרים: $c <_A e \lor (c = e \land d <_B f)$ נסיק ל $c,d >_{lex} \langle e,f \rangle$ נפלג למקרים: $a <_A c$
 - $\langle a,c \rangle <_{lex} \langle e,f \rangle$ אם $a <_A e$ כלומר $a <_A e$ יחס סדר חזק ובפרט טרנזיטיבי: $c <_A e$ אם
 - $.\langle a,c
 angle <_{lex} \langle e,f
 angle$ אם $a<_A e$ אזי מהצבה האי מהצבה : $c=e \land b <_B f$
 - : נפלג למקרים: $c <_A e \lor (c = e \land d <_B f)$ נסיק ל $\langle c, d \rangle <_{lex} \langle e, f \rangle$ מההנחה : $a = c \land b <_B d$ אם \circ
 - $.\langle a,c
 angle <_{lex} \langle e,f
 angle$ אם $a<_A e$ מהצבה אז מהצבה : $c<_A e$
- $b <_B f$ אם $c = e \land d <_B f$ אם אם מטרנזיטיביות שוויון שוויון מטרנזיטיביות שוויון מטרנזיטיביות אז מטרנזיטיביות שוויון a = e ומטרנזיטיביות יחס הסדר החזק $c = e \land d <_B f$ אם כלומר $c = e \land d <_B f$
- אנטי־סימטרי חזק: יהי $\langle c,d \rangle <_{lex} \langle a,b \rangle$, נניח בשלילה $\langle a,b \rangle <_{lex} \langle c,d \rangle$ ונראה סתירה. מההנחה נסיק אנטי־סימטרי חזק: יהי $a <_{lex} \langle c,d \rangle$, נפלג למקרים:
- $c<_A a\wedge a<_A c$ אז $c<_A a$ שם $c<_A a$ במקרה ש־ $a<_A c$ אז $a<_A c$ שזו $a<_A c$ שזו $a<_A c$ שזו $a<_A c$ שחזו $a<_A c$ שחזו $a<_A c$ שחזו מערירה לכך ש־ $a>_A$ יחס סדר חזק ובפרט אנטי־סימטרי חזק, ובמקרה ש־ $a>_A$ נקבל ש־ $a<_A$ שזו סתירה באופן דומה.

אם $a<_A a$ אז $a<_A a$ אז סתירה: $a=c\wedge b<_B d$ אם $a=c\wedge b<_B d$ סתירה: $a=c\wedge b<_B d$ אם $a=c\wedge b<_B d$ סדר חזק לכך ש־ $a>_B$ אנטי־סימטרי חזק, ואם $a<_B b$ אז $a<_B b$ אז $a<_B b$ בסתירה לכך ש־ $a>_B$ יחס סדר חזק. ובפרט אנטי־סימטרי חזק.

(ב) סעיף

נפריך. נבחר $B=\emptyset$ יחס סדר חזק (טרנזיטיבי הטענה מתקיימת לכל $B\neq\emptyset$. נבחר $A=\{1,2\}, B=\emptyset$ יחס סדר חזק (טרנזיטיבי אנטי־סימטרי חזק באופן ריק) ואת $A=\{\langle 1,2\rangle\}$ יחס סדר חזק בעל איבר מינימלי A. נתבונן ביחס הסדר הלקסיקוגרפי על יחס הסדר A, ונניח בשלילה שקיים מינימלי $A\times B=\emptyset$ ונסיק $A\times B=\emptyset$ שזו סתירה.

שאלה 2

(א) סעיף

 $R_f = \{\langle A,B \rangle \mid f(A) \subseteq f(B) \}$ יהי $f \in \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ יהי $f \in \mathcal{P}(\mathbb{N})$ נגדיר את היחס:

:נוכיח f יחס סדר אמ"מ R_f חח"ע

- R_f יחס סדר גורר חח"ע. יהי ($F(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ ונניח בשלילה R_f יחס סדר גורר חח"ע. מההנחה, f(A) = f(B) אך $A \neq B$ ער כן קיימות $A, B \in \mathcal{P}(\mathbb{N})$ מהכלה דו־כיוונית $A, B \in \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ מתקיים שאם $A, B \subseteq \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ מתקיים שאם $A, B \subseteq \mathcal{P}(\mathbb{N})$ ובפרט $A, B \subseteq \mathcal{P}(\mathbb{N})$ שמתקיים לפי האמור לעיל) אז A = B בסתירה לכך ש $A, B \subseteq \mathcal{P}(\mathbb{N})$
 - :חח"ע גורר יחס סדר: \Longrightarrow
- רפלקסיבי: יהי f(A)=f(A), נוכיח AR_fA , באופן שקול $f(A)\subseteq f(A)$ ובפרט AR_fA המהווה פסוק $A\in \mathcal{P}(\mathbb{N})$ המהווה פסוק.

(ב) סעיף

נגדיר f מתקיים f מתקיים f כאשר f כאשר f קבוצת הפונקציות חח"ע על $\mathcal{P}(\mathbb{N})$ (כלומר לכל f מתקיים f חח"ע). נשלול $f=\lambda N\in\mathcal{P}(\mathbb{N}).\{1\}$ חח"ע, נניח בשלילה שהיא חח"ע ונראה דוגמה נגדית. נבחר $f=\lambda N\in\mathcal{P}(\mathbb{N}).\{1\}$ חח"ע, נניח בשלילה עוכראה f כדי להשלים את הדוגמה הנגדית. נניח בשלילה f בוכיח f כלומר f כלומר f בוכיח f בומר f בומר

(א) סעיף

. על A, נוכיח קיום $a_M \in A$ כך ש־ a_M איבר מקסימלי. A על A על A נוכיח קיום איבר a_M

משום שהקבוצה A סופית, נוכל לסמן $\mathbb{N}=n\in\mathbb{N}$. נניח בשלילה שאין מקסימום, כלומר נשלול לוגית ונקבל A בשום שהקבוצה A נוכיח באינדוקציה על A גודל הקבוצה שמתקיימת סתירה:

- בסיס $R=\{\langle a,a\rangle\}$: נסמן $A=\{A\}$ ולכן $A=\{A\}$ בהכרח משתווה ל־ $R=\{\langle a,a\rangle\}$, מהנחת השלילה קיים $A=\{A\}$ כך ש־ גרוים מודי.
- עד (n>1): נניח בישנה סתירה על קבוצה בגודל n, ונוכיח שהסתירה מתקיימת על קבוצה בגודל n. אם n עד (n>1): נניח בישנה סתירה על קבוצה בגודל n, אזי שעליה קיים מקסימום. נתבונן באיבר n, ונתבונן בקבוצה a_{M-1} מתקיימת סתירה על קבוצה בגודל n, אזי שעליה קיים מקסימום. a_{M-1} מקסימום a_{M-1} מקסימום a_{M-1} מסרנזיטיביות יחס הסדר n נקבל ש־n נסים n ומשום ש־n ומשום ש־n ומשום ש־n מתקיים n מתקיים n מהטענות n ביבר מקסימום n על הקבוצה n אנטי־סימטרי n ונוכיח מתירה לכך ש־n וזו סתירה לכך ש-n ומהיות n ומהיות n אנטי־סימטרי n ווו סתירה לכך ש-n ווו סתירה לב

(ב) סעיף

נראה דוגמה נגדית. נבחר את הקבוצה $A=\{1,2\}$ ואת יחס הסדר $R=\{\langle 1,1\rangle,\langle 1,2\rangle\}$ בעל שני איברים מקסימליים נראה דוגמה נגדית. נבחר את הקבוצה $A=\{1,2\}$ ואת יחס הסדר $A=\{1,2\}$

שאלה 4

(א) סעיף

 \mathbb{Z} נגדיר על X קבוצת כל חלוקות \mathbb{R} . נגדיר על X

$$\pi_1 \sqsubset \pi_2 \iff \forall Z \in \pi_2 \exists Y \in \pi_1(Z \subseteq Y)$$

:X נוכיח ש־ \square יחס סדר חלש על

- רפלקסיביות: תהי $X\in X$, כלומר π חלוקה של \mathbb{R} , ונוכיח π כלומר יהי $Z\in \pi$, ונוכיח קיום $Y\in \mathcal{X}$ כך ש־ $Z\subseteq Y$ ונחה"כ Z=Y וסה"כ בער ונוכיח קיום Z=Y
- יהי $Z\in\pi_3$ יהי π_1 Ξ π_3 יהי π_1 Ξ π_3 טרנזיטיביות: יהי יהי π_1 π_2 חלוקות של π_1 , נניח π_2 π_2 π_3 נניח π_1 π_2 π_3 ומההנחה π_1 π_2 π_3 סרנזיטיביות π_2 π_3 מההנחה π_2 π_3 קיימת π_2 π_3 ומטרנזיטיביות הכלה π_3 נבחר π_2 ומטרנ π_3 ומטרנ π_3 ומטרנ π_3 ומטרנ π_3 נבחר π_3 ומטרנ π_3 ומ
- אי־סימטרי חלש: יהי π_1 ב π_2 חלוקות של \mathbb{R} , נניח π_1 ב π_2 א π_1 ונוכיח π_1 ב π_2 ונוכיח π_1 אי־סימטרי חלש: יהי π_1 חלוקות של π_1 נניח π_2 ב π_1 ונוכיח π_2 ב π_1 נכיח π_2 ב π_2 בחלים ב π_2 ב π_2 יהי יתקיים גם π_2 ב π_1 יהי י π_2 ב π_2 ונוכיח π_2 ב π_2 יונניח בשלילה ומההנחה π_2 ב π_2 בפרט, π_2 ב π_3 ונניח בשלילה π_1 ב π_2 בפרט באותה החלוקה π_2 אזי π_2 ב π_2 ובפרט ב π_2 בפרט באותה החלוקה π_2 אזי π_3 בפרט ב π_3 ובפרט ב π_3 בפרט באותה החלוקה π_3 אזי π_3 בפרט ב π_3 ובפרט ב π_3 בפרט ב π_3 בישום שהם באותה החלוקה π_3 אזי π_3 בפרט ב π_3 ובפרט ב π_3 בפרט ב π_3 בישום שהם באותה החלוקה π_3 אזי π_3 בפרט ב π_3 ובפרט ב π_3 בישום שהם ב

 $Z=Y_1$ משום שהוא בחלוקה אז $\emptyset
eq X$ כלומר קיים $X\in X$, ומהטענות לעיל Y
eq X ומשום ש $X\in X$ סה"כ X
eq X סה"כ X
eq X סה"כ $Y_2 \in \pi_2$ ומשום ש $Y_2 = Z$ ומהכלה דו כיוונית $Y_2 = Z$ ומשום ש $Y_2 = Z$ סה"כ כדרוש.

(ב) סעיף

 $:\pi_1 \sqsubset \pi_2 \sqsubset \pi_3$ ־דוגמה ל־ $\pi_1,\pi_2,\pi_3 \in X$ דוגמה ל

$$\pi_1 = \{\{r\} \mid r \in \mathbb{R}\}, \pi_2 = \{[r, r+1) \mid r \in \mathbb{Z}\}, \pi_3 = \{[r, r+2) \mid r \in \mathbb{Z}_{\text{even}}\}$$

(ג) סעיף

קווי

היחס לא יחס סדר קווי. לדוגמה, בעבור החלוקות:

$$\pi_1 = \{ [r, r+2) \mid r \in \mathbb{Z}_{\text{even}} \}, \pi_2 = \{ [r, r+2) \mid r \in \{ r \in \mathbb{R} : r \in \mathbb{Z}_{\text{odd}} \} \}$$

מתקיים $\pi_1 \not\sqsubset \pi_2$ (כי בעבור $\pi_1 \not\sqsubset \pi_2$ לא קיים $\pi_1 \not\sqsubset \pi_2$ כך ש־ $\pi_1 \not\sqsubset \pi_2 \land \pi_2 \not\sqsubset \pi_1$ ולכן $\pi_1 \not\sqsubset \pi_2 \land \pi_2 \not\sqsubset \pi_1$ ובאופן דומה $\pi_1 \not = \pi_1 \not= \pi_2$ למרות ש־ $\pi_1 \not= \pi_2 \not= \pi_1$

קיום איבר גדול ביותר

קיים איבר גדול ביותר $\mathbb{R} = \pi$, כי יהי $X = \pi$, נניח $\pi = \pi$ ונניח בשלילה ש $\pi_- = \pi$ כלומר נניח בשלילה שקיים איבר גדול ביותר $Z \not\subseteq \mathbb{R}$, כי יהי $Z \not\subseteq X$, ולפיכך לכל $Z \not\in \pi$ שקול $Z \not\subseteq Y$ כלומר $Z \not\subseteq X$ בסתירה לכך שלא קיים $Z \not\in \pi$ בעבורו $Z \not\subseteq X$, ולפיכך לכל $Z \not\in \pi$ ש $Z \in \pi$ בעוד $Z \in \pi$ חלוקה של $Z \in \pi$.

שאלה 5

(א) סעיף

יהיו $X \neq X$ קבוצות, ונניח $X \neq X$ יחס סדר חלש על X. נגדיר את יחס הסדר ב מעל קבוצת הפונקציות איי יחס סדר $Y \neq X$ באופן $X \neq X$ יהיו $Y \neq X$ יהיו $Y \neq X$ יהיו $Y \neq X$ יחס סדר חלש על $Y \in Y$. נגדיר את יחס הסדר ב מעל קבוצת הפונקציות $Y \neq X$ יהיו $Y \neq X$ יהיו $Y \neq X$

נניח $x_0\in X$ איבר מקסימלי ב־X. נוכיח $y\in Y$. נוכיח גוכיח $y=x_0\in X$ איבר מקסימלי ב־ $x_0\in X$ איבר $x_0\in X$ איבר $x_0\in X$ איבר מקסימלי באופן שקול לוגית $y=x_0\in X$ איבר $y=x_0\in X$ ולפי הגדרת איבר מקסימלי באופן שקול לוגית $y=x_0\in X$ שקסימלי ב- $y=x_0\in X$ המהווה פסוק אמת בהתאם להנחה מקסימלי ב- $y=x_0\in X$

(ב) סעיף

יהיו קבוצות סדורות $(B,\leq_B), \langle B,\leq_A
angle,$ נגדיר פונקציה B:A o B שומרת סדר:

$$\forall a_1, a_2 \in A.a_1 \leq_A a_2 \iff h(a_1) \leq_B h(a_2)$$

נוכיח ש־ $h:X o (Y o X), h=\lambda x\in X. \lambda y\in Y. x$ שומרת סדר (בעבור הקבוצות הסדורות הסדורות באופן לפי $x_1\leq_X x_2\iff h(x_1)\preceq h(x_2)$. וֹהיו $(X,\leq_X), (X o Y,\preceq)$

$$h(x_1) \le h(x_2) \tag{1}$$

$$\iff f := \lambda y \in Y. x_1 \leq g := \lambda y \in Y. x_2 \qquad (\beta \text{ rule})$$

$$\iff \forall y \in Y. f(y) \le_X g(y) \tag{\preceq definition}$$

$$\iff \forall y \in Y. x_1 \leq_X x_2 \tag{\beta rule}$$

$$\iff x_1 \leq_X x_2$$
 (5)

כמבוקש ■

(ג) סעיף

 $(X \to \{0,1\}, \preceq), (\mathcal{P}(Y), \subseteq)$ נניח $X = \{0,1\}, Y \neq \emptyset$. נניח $X = \{0,1\}, Y \neq \emptyset$

יחס הסדר אפשרויות אפשרויות לזהותו: באמצעות יחס הסדר באמצעות יחס הסדר באמצעות יחס באמצעות יחס הסדר יחס הסדר באמצעות יחס באמצעות יחס הסדר באמצעות יחס המדר באמצעות יחס המדר באמצעות יחס המומנים המומב המומנים המיב

$$\leq_X = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 0, 1 \rangle\} \lor \leq_X = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 0 \rangle\}$$

 $(0 \le_X 1$ בה"כ דו האפשרות הראשונה (ובפרט

נוכיח ש $^{ extsf{-}}$ חח"ע ושומרת סדר, בעבור h המוגדרת באופן הבא:

$$h: (Y \to \{0,1\}) \to \mathcal{P}(Y).h = \lambda f \in Y \to \{0,1\}.\{y \in Y: f(y) = 1\}$$

שומרת סדר

 $f \preceq g \iff h(f) \subseteq h(g)$ נוכיח. $f,g \in Y \to \{0,1\}$ יהי

- נניח בשלילה קיים $\forall y \in Y. f(y) \leq_X g(y)$ מתוך ההנחה, $h(f) \subseteq h(g)$ נניח בשלילה קיים $\Rightarrow \cdot f(y) \leq_X g(y)$ נניח בשלילה קיים $y \in Y. f(y) \leq_X g(y)$ לפי הטווח של h המוגדר לעיל, $y \notin h(g)$ כלומר נסיק $y \in h(f) \land y \notin h(g)$ ידוע $y \in h(f) \land y \notin h(g)$ ולכן נוכל לפלג למקרים:
 - . אם g(y)=0, אזי f(y)=0 לפי הגדרת הגדרת יחס הסדר \succeq , ולכן g(y)=0 לפי הגדרה וזו סתירה.
 - אם 1 = h, אזי $y \in h(g)$, אזי $y \in h(g)$, אזי אם g(y) = 1

וסה"כ הגענו לסתירה בכל המקרים כלומר $g(f)\subseteq h(g)$ כדרוש.

- כלומר לומר $\forall y \in h(f).y \in h(g)$ מתוך ההנחה, $f \leq g$ נוכיח נוכיח, $h(f) \subseteq h(g)$ כלומר $f \leq g$ כלומר נניח בשלילה לפי הצבה בהגדרת $f \leq g$ לפי הצבה בהגדרת לפי הצבה בהגדרת לפי הצבה בהגדרת f(y) = 1 נניח בשלילה למקרים: $\exists y \in Y. \neg f(y) \leq_X g(y)$
 - $\le X$ או ש־ $f(y)=0 \le X$ מתקיים g(y)=0 מתקיים $f(y)=0 \le X$ לפי הגדרת g(y)=0 או ש־
- $f(y)=1\leq_X 1=g(y)$ אם f(y)=1, אז לפי הטענה שהנחנוg(y)=1, כלומר לפי הגדרת, אז לפי הטענה שהנחנוg(y)=1
 - \blacksquare סה"כ הגענו לסתירה בכל המקרים כלומר $f \preceq g$ כדרוש.

על

. נבחר: h(f)=Y' כך ש־ $f\in Y o\{0,1\}$ נבחר. נוכיח קיום $Y'\subseteq Y$ כלומר נניח $Y'\subseteq Y$

$$f = \lambda y \in Y.$$

$$\begin{cases} 1 & \text{if } y \in Y' \\ 0 & \text{else} \end{cases}$$

lacktriangle . כדרוש. $h(f) = \{y \in Y \mid f(y) = 1\} = \{y \in Y \mid y \in Y'\} = Y'$ לפיכך, לפי תחשיב למדא:

חחייע

יהיו $f(\tilde{y}) \neq g(\tilde{y}) \neq g(\tilde{y})$ כך ש־ $\tilde{y} \in Y$ יהיו $f(f) \neq h(g)$ נניח נניח $f \neq g$ ונוכיח נניח $f \neq g$ ונוכיח $f(\tilde{y}) \neq g(\tilde{y})$. נניח בשלילה $f(g) \neq g(\tilde{y})$ כך ש־ $f(g) \neq g(\tilde{y})$. נניח בשלילה בשלילה ($f(g) \neq g(\tilde{y}) \neq g(\tilde{y})$

$$h(f) = h(g) \tag{1}$$

$$\iff \{y \in Y \mid f(y) = 1\} = \{y \in Y \mid g(y) = 1\} \qquad (\beta \text{ rule})$$

$$\iff \forall y \in Y. f(y) = 1 \iff g(y) = 1$$
 (= definition) (3)

ובפרט עבור g(y)=1 אזי g(y)=1 אזי g(y)=1 ומטרנזיטיביות נפלג למקרים: אם g(y)=1 אזי g(y)=1 וזו g(y)=g(y)=1 וזו סתירה. אם g(y)=g(y)=1 אז g(y)=g(y)=1 ומשום ש־g(y)=g(y)=1 וסה"כ ווא ווא מתירה. לכן, בכל המקרים הגענו לסתירה כלומר g(y)=1 בדרוש.

שאלה 6

(א) סעיף

:נגדיר על הקבוצה $\mathbb{N} \to \mathbb{N}$ את היחס הבא

$$f \leq^* g \iff \exists n \in \mathbb{N}. \forall m \geq n. f(m) \leq_{\mathbb{N}} g(m)$$

. כאשר \le הוא יחס הסדר הסטנדרטי על הטבעיים. נפריך \le יחס סדר אנטי־סימטרי חלש, ע"י הפרכת אנטי־סימטריות. נפחר:

$$f = \lambda n \in \mathbb{N}. \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n = 1 , g = id_{\mathbb{N}} \\ n & \text{else} \end{cases}$$

כי $f \neq g$ אך $f \leq^* g \land g \leq^* f$ כי כלומר $f \neq g \land g \leq^* f$ אך אך $f \leq g \land g \leq^* f$ כי מתקיים $f \neq g \land g \leq^* f$ ארך אינו יחס סדר חלש. $f(0) = 1 \neq 0 = g(0)$

(ב) סעיף

:נגדיר את היחס R על $\mathbb{N} o \mathbb{N}$ באופן הבא

$$fRg \iff \exists n \in \mathbb{N}. \forall m \ge n. f(m) = g(m)$$

R וחס שקילות.

רפלקסיביות: יהי $m\in\mathbb{N}. f(n)=f(n)$ לפי הגדרה, $f\in\mathbb{N}\to\mathbb{N}$, ובפרט בעבור $f\in\mathbb{N}\to\mathbb{N}$, ובפרט בעבור $m\in\mathbb{N}. f(n)=f(n)$ כדרוש. $m\geq n. f(n)=f(n)$

- סימטריות: יהי $m\geq n_1.$, ונניח fRg , כלומר קיים n_1 כך ש־ m_1 כך ש־ m_1 ומקומוטטיביות , ונניח $m\geq n_1.$, ונניח $m\geq n_1$ כלומר אשר צ.ל. מתקיים בעבור $m\geq n_1$ ומקומוטטיביות $m\geq n_1$ ומקומוטטיביות
- טרנזיטיביות: יהי n_1,n_2 נניח $fRg \wedge gRf$ ונוכיח $fRg \wedge gRf$ מההנחה קיימים $fRg \wedge gRf$ טרנזיטיביות: יהי $fRg \wedge gRf$ נגיח $fRg \wedge gRf$ נגיח $fRg \wedge gRf$ וגם $fRg \wedge gRf$ ואם $fRg \wedge gRf$ ואם

(ג) סעיף

 \leq נתבונן בקבוצה $(\mathbb{N} o \mathbb{N})/R$, עליה נגדיר את היחס באופן הבא

$$[f]_R \leq [g]_R \iff f \leq^* g$$

בלתי תלוי בנציגים

יהי $f'Rf \wedge g'Rg$ ונניח $f' \leq g'$ ונניח $f' \leq g'$ נוכיח $f' \leq g'$ נוכיח $f' \leq g'$ ונניח $f' \in g'$ ונניח $f' \in g'$ ונניח $f' \in g'$ ונניח $f' \in g'$ עבורם:

$$\forall m \ge n_1. f(n) = f'(n) \land \forall m \ge n_2. g(n) = g'(n) \land \forall m \ge n_3. g(n) = f(n)$$

 $m \geq n_1$ בה"כ $n_1 \geq n_2$, ומטרנזיטיביות יחס הסדר הסטנדרטי על $\mathbb N$ נקבל שכל הטענות מתקיימות בעבור, ומטרנזיטיביות ומס הסדר הסטנדרטי אונק

$$\forall m \ge n_1.f'(m) = f(m) \land g'(m) = g(m) \land g(m) = f(m)$$

lacktriangle כדרוש. $\forall m \geq n_1.f'(m) = g'(m)$ כלומר על $m \geq n_1.f'(m)$ כלומר ע"פ טרנזיטיביות יחס הזהות על

יחס סדר חלש

- רפלקסיביות: יהי $f \leq *f$ לפי שוויון פונקציות, נוכיח $f \leq *f$, כלומר נוכיח לפי שוויון פונקציות, $f(f)_R \in (\mathbb{N} \to \mathbb{N})/R$ לפי שוויון פונקציות, $\forall m \in \mathbb{N}. f(n) = f(n)$, ובפרט בעבור $m \geq n = 1 \in \mathbb{N}$, ובהכללה עבור יחס הסדר הסטנדרטי על $m \in \mathbb{N}. f(n) = f(n)$ כדרוש.
- סרנזיטיביות: יהי . $[f]_R \leq [g]_R$ ובאופן שקול $[f]_R \leq [g]_R$ ונניח $[f]_R \leq [g]_R$ ונניח $[f]_R \in \mathbb{N} \to \mathbb{N}$. ע"פ חוקי $f \leq s$ $g \leq s$ $g \leq s$ ונניח $g(n) \leq s$ $g \leq s$ $g \leq s$ $g \leq s$ $g \leq s$ ובה"כ $g \leq s$ ובה"כ $g \leq s$ $g \leq s$ $g \leq s$ $g \leq s$ ונניח $g \leq s$ $g \leq s$ $g \leq s$ ובה"כ $g \leq s$ ובה"כ $g \leq s$ ובה"כ $g \leq s$ $g \in s$ ונניח $g \in s$ $g \in s$ $g \in s$ ובה"כ $g \in s$ וב"כ $g \in s$ ובה"כ $g \in s$ ובח"כ $g \in s$ וובח"כ $g \in s$ ובח"כ $g \in s$ ובח"כ
- $[f]_R = [g]_R$ עניח $[f]_R \leq [g]_R \wedge [g]_R \leq [f]_R$ עניח $[f]_R = [g]_R$ עניים $[f]_R = [g]_R$ עניים $[f]_R = [g]_R$ עניים $[f]_R = [g]_R$ עניים על $[f]_R = [g]_R$ על $[f]_R = [g]_R$ על $[f]_R = [g]_R$ עניים על $[f]_R = [g]_R$ עניים $[f]_R = [g]_R$ עניים על $[f]_R = [g]_R$ עניים עניים עניים על $[f]_R = [g]_R$ עניים עניים

הזהות חסם מלעיל על הפונקציות הקבועות

נגדיר $(c_n)_R \leq [id_{\mathbb{N}}]_R$ נוכיח $(c_n)_R \leq [id_{\mathbb{N}}]_R$ בעבור $(c_n)_R \leq [id_{\mathbb{N}}]_R$ נבחר $(c_n)_R \leq [id_{\mathbb{N}}]_R$ בעבור $(c_n)_R \leq [id_{\mathbb{N}}]_R$ המהווה פסוק אמת כדרוש.

האם מחלקת השקילות של הזהות נמצאת ב־B?

לא. נניח בשלילה שכן. לפיכך, נסיק מהנחת השלילה:

$$[id_{\mathbb{N}}] \in B$$

$$\iff \exists n \in \mathbb{N}. [c_n]_R = [id_{\mathbb{N}}]_R$$

$$\iff \exists n \in \mathbb{N}. c_n R d_{\mathbb{N}}$$

$$\iff \exists n \in \mathbb{N}. \exists a \in \mathbb{N}. \forall m \geq a. c_n(m) = g(m)$$

$$\iff \exists n \in \mathbb{N}. \exists a \in \mathbb{N}. \forall m \geq a. n = m$$

$$(c_n, id_{\mathbb{N}} \text{ definition})$$

$$(5)$$

נתבונן ב־a=0 אגפים ונקבל a=0, ותחת הנחת השלילה מתקיים a=n+n=m, נחסר אגפים ונקבל a=0, וועחת הנחת השלילה מתקיים m=a+n=m, נחסר אגפים ונקבל m=n+1 וזו סתירה. m=m=m