南京航空航天大学

第1页 (共12页)

										> V =	/ , \/\.	
二	0=0 ~	~(0=-	学年	第2学	明 《数	据结	构与	数据	库》	考试	试题
		考试	日期:	2021年	三月	日 .	试卷类型	』: 闭卷-	-A	试卷代号	글 :	
			班	号		学号	•		姓名			
题	号 -		=	三	四	五	六	七	八	九	+	总分
得	分											
	本题分	+	40		一、选打	泽题(每题 2	分)	300.0	Soie		1
注	意:答第	写 有	E答题	纸上,	题目上	答题不:	给分。	-XX				
A. 2.	在数据 逻辑 以下数 树	B. 据结 ⁷	存储构中,	(C. 逻辑) 是非:	和存储 线性数:	据结构。	D. 物理	里	结构。		
	设无向 n-1											
А. В. С.	下面关 线性表 线性表 线性表	采用/采用/	顺序有 顺序有 链接有	字储, 必 字储, 便 字储, 不	必须占用 更于进行 下必占用	目一片连 厅插入和 目一片连	E续的存 I删除操 E续的存	储单元 作。	0			
A. C.	栈和队 顺序存限制存 从逻辑	储的: 取点	线性结 的线性	吉构 生结构	D	. 限制	存取点的	的非线性				

7、下列四个序列中,哪一个是堆()。

A. 动态结构、静态结构 B. 顺序结构、链式结构 C. 线性结构、非线性结构 D. 初等结构、构造型结构

		第2页(共12	2页)
A. 75, 65, 30, 15, 25, 45, 20, 10 C. 75, 45, 65, 30, 15, 25, 20, 10			
8、设森林 F 中有三棵树,第一森林 F 对应的二叉树根结点的A. M1 B. M1+M2 C	右子树上的结点个数是		M3。与
9、一个 n 个顶点的连通无向图 A. n-1 B. n	图, 其边的个数至少为 C. n+1 D. nl		
10、下列排序算法中() 置上。	排序在一趟结束后不一	·定能选出一个元素放在其是	最终位
A. 选择 B. 冒泡	C. 归并	D. 堆	
11、下面的二叉树中,图()是完全二叉树。	K, Nijolo,	
C	C	С	
A E F	A E F	A E	
图 A 12、下列排序算法中 () ; 置上。	图 B 排序在一趟结束后不一	图 C ·定能选出一个元素放在其占	最终位
A. 选择 B. 冒泡	C. 归并	D. 堆	
13、请指出在顺序表{2、5、7 找关键码 12 需做多少次关键码 A. 2 B. 3 C.	冯比较。()	3、35、41、52}中,用二分	分法查
14、一个栈的输入序列为1,2	2,3,4,下面哪一个序	列不可能是这个栈的输出。	序列?
	B. 2, 3, 4, 1 D. 3, 4, 2, 1		

- 15、下面关于图的存储的叙述中,哪一个是正确的。(
- A. 用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关
- B. 用邻接矩阵法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
- C. 用邻接表法存储图, 占用的存储空间数只与图中结点个数有关, 而与边数无关
- D. 用邻接表法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
- 16、首先访问结点的左子树,然后访问根结点,最后访问结点的右子树,这种遍历称 为()

- A. 前序遍历 B. 后序遍历 C. 中序遍历 D. 层次遍历
- 17、对一棵排序树根结点而言,左子树中所有结点与根结点的关键字大小关系是

- A. 小于 B. 大于 C. 等于 D. 不小于
- 18、给定下列有向图和初始结点 V_1 按深度优先遍历的结点序列为(

- A. V1, V2, V4, V5, V3
- B. V1, V3, V4, V5, V2
- C. V1, V2, V5, V3, V4
- D. V1, V2, V3, V4, V5
- 19、在以下的叙述中,正确的是()。
- A. 线性表的顺序存储结构优于链表存储结构
- B. 二维数组是其数据元素为线性表的线性表
- C. 栈的操作方式是先进先出
- D. 队列的操作方式是先进后出
- 20、不带头结点的单链表 head 为空的判定条件是 ()。
- A. head == NULL

- B. head->next == NULL
- C. head -> next == head D. head != NULL

本题分数	20
得 分	

二、判断题(每题2分)

注意: 答案写在答题纸上, 题目上答题不给分。

- 1、算法是由若干条指令组成的有穷序列,而一个程序不一定满足有穷性。()
- 2、顺序存储方式只能用于存储线性结构。()
- 3、对任何数据结构链式存储结构一定优于顺序存储结构。()
- 4、有向图的邻接矩阵是对称矩阵,无向图的邻接矩阵是非对称矩阵。()
- 5、所有二叉树的度均为2。()
- 6、满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。《)
- 7、循环链表不是线性表。 ()
- 8、线性结构中的数据元素必存在一个唯一的后继元素。()
- 9、线性表的特点是每个元素都有一个前驱和一个后继。()
- 10、按中序遍历二叉排序树所得到中序序列是一个递增有序序列。()

本题分数	20
得 分	

三、概念题 (每题 5 分)

1、已知某树的结构如下图所示,请按要求回答下面的问题。

- (1) 用 C 语言描述该树的孩子链存储结构(应有适当的文字说明)。
- (2) 将该树转换成二叉树, 画出转换后的二叉树, 并写出其中序遍历结果。

2、已知无向图 G 的邻接表如下,请画出其所有的连通分量,并写出其按广度优先搜索各连通分量的访问序列。

3、给定整数表(40,36,53,38,25,16,28,64,60,42),按数据元素在表中的次序构造一棵二叉排序树。

4、设散列表长度为 13, 即其地址空间为 0-12, 哈希函数 H(k)=K mod 13,对关键字序列 {19, 14, 23, 01, 68, 20, 84, 27, 55, 11, 10, 79}。填写用线性探测法解决冲突时构造的哈希表。

哈希表:

散列地址	0	1	2	3	4	5	6	7	8	9	10	11	12
关键字													

本题	20	
得	分	

四、算法程序设计(每题10分)

1、设有带头结点的整数单向链表 L,对链表中任一值只保留一个结点,删除其余相同

	第7页(共12页)
值的结点。要求:	
(1)设计该单向链表的结点存储结构。	
(2) 设计实现上述过程的算法程序。	
	.0
	5
/////	
2、编写算法程序计算二叉树中度为1的结点个数。	
X-257	
1^	

		第8页(共12页)
— \ 1-5 AABBC 6-10 CCDAC 11-15 CCBCA 16-20 CADBA = \ 1-5 XXXXX 6-10 VXXXV		
	WHAT HE WAS TONE OF THE PARTY O	
	Kallin Allender of the second	

```
三、
1、
 (1)
 typedef struct TreeNode* ptrToNode;
 struct TreeNode
      ElementType Element;
      ptrToNode FirstChild;//指向该节点的第一个儿子ptrToNode NextSibling;//指向该节点的下一个兄弟
 }
 (2)
```


中序遍历: CGBFDIHEA


```
四、1
 (1)
 typedef struct Node{
     int data;
     struct Node *next;
 }LinkList;
 (2)
 void deleteLinkList(LinkList *&L){
     LinkList *pre=L, *p=L->next, *s;
     int k=0;
     while(p!=NULL){
         s=p;
         pre=p;
         while(pre->next!=NULL) {
              if(pre->next->data==s->data){
                  pre->next=pre->next->next;
              pre=pre->next;
         p=p->next;
```

四、2

```
typedef struct Node{
   int data;
   struct Node *next;
}LinkList;

int leaf_1(BiTreeNode *T) {
   if (T==NULL) {
      return 0;
   }
   if ((T->leftchild == NULL && T->rightchild != NULL)

|| (T->leftchild != NULL && T->rightchild == NULL))
   {
      return 1 + leaf_1(T->leftchild) + leaf_1(T->rightchild);
   }
   return leaf_1(T->leftchild) + leaf_1(T->rightchild);
}
```