STUDENT PERFORMANCE EVALUATOR AND COURSE MATERIALS SUGGESTOR

Project Title: Student performance Evaluator and Course Materials Suggestor

Group-1

2221699642

Abir Al Mahdi Akhand

2012328043

Rafio Tazowar

2112347642

Muhammad Ahnaf Islam

Brief about topic

This project predicts your academic performance and offers personalized recommendations to help you excel. It analyzes your data to identify strengths, weaknesses, and tailor tips, resources, and strategies to your individual needs. It empowers students to learn efficiently, stay engaged, and achieve their full academic potential. For educators, it provides valuable insights to personalize learning approaches, identify struggling students, and optimize resource allocation. It is the future of personalized learning, revolutionizing education by empowering both students and educators.

Expected Outcomes:

Improved academic performance: Higher grades and better understanding of concepts.

Increased motivation and engagement: Students feel more confident and invested in their learning.

Reduced stress and anxiety: Early identification of potential difficulties and proactive interventions.

Enhanced self-awareness and confidence: Understanding their strengths and weaknesses helps students

develop ownership of their learning.

Improved resource allocation and data-driven decision making: Data insights inform resource allocation and curriculum development.

Suggest resources: Suggests resources to a student regarding a particular discipline and course

Objective:

Predict individual student performance and offer personalized recommendations to improve academic outcomes and suggest academic course materials.

Our Problem

Problem Statement:

Students often lack personalized feedback and resources to address their unique strengths and weaknesses, leading to suboptimal learning and performance. Many of them lack in resources and dont know what books to follow.

Motivation

PERSONALIZED LEARNING TAILORED LEARNING FOR EACH STUDENT, UNLOCKING THEIR POTENTIAL

EARLY INTERVENTION
IDENTIFYING STRUGGLES EARLY, ENSURING
STUDENT SUCCESS

PERSONALIZED LEARNING FOR

MAXIMUM POTENTIAL

PAPIA personalizes learning, maximizing student
potential by catering to individual strengths and
weaknesses.

SUGGEST MATERIALS AND RESOURCES

suggests books and academic papers and resources.

Related Works

01

Predicting student's performance of a university in Turkey using machine learning methods

02

Predicting Underperforming students grades using machine learning

03

Prediction of Students
Performance using
Machine learning

Yahia Baashar; Gamal Alkawsi; Nor'ashikin Ali; Hitham Alhussian; Hussein T Bahbouh

Student performance in higher education institutions impacts rankings, and predicting it is crucial for identifying weaknesses. This systematic review explores machine learning methods (ANNs, decision trees, SVM, KNN, naïve Bayes) and attributes (demographic, academic, family/personal, internal assessment) influencing student performance, with ANN showing the highest accuracy.

Opeyemi Ojajuni, Foluso Ayeni, Olagunju Akodu, Femi Ekanoye

This paper introduces an ML model utilizing various algorithms, including XGBoost, to predict student academic success with 97.12% accuracy based on historical data, identifying key factors and emphasizing the application of ML for early detection of underperforming students in the classroom.

J. Dhilipan, N.Vijayalakshmi , S.Suriya , Arockiya Christopher

Utilizing data mining techniques, this study proposes a prediction system based on 10th, 12th, and previous semester marks, employing Binomial logical regression, Decision tree, Entropy, and KNN classifier to assist students in recognizing and improving their final grade and academic conduct.

Aim/goal

PERSONALIZED PREDICTION

EMPOWERED LEARNING
AND ENGAGEMENT

IMPROVED ACADEMIC OUTCOMES

Methodology:

Machine learning:

Analyzing student data (grades, demographics, learning patterns) to predict performance and identify strengths/weaknesses.

Personalized recommendations:

Tailored tips, strategies, and resources based on individual needs.

User-friendly interface:

Easy access to personalized insights and interaction with the system.

Flow Chart

Software Architecture

Tech stack

Python
Numpy
Pandas
ScikitLearn

HTML
CSS
JavaScript
Django

Dataset Introduction

We have two datasets which is collected from Google forms and IEEE data-port. The link of the google form was released in different university groups, programming communities and student communities. The academic resources dataset was collected from IEEE data-port official website which scraped data from Amazon and other Ebook services.

Student performance dataset:

Total instances: 1272

Total features: 22

Books and Resources dataset:

Total instances: 56402

Total features: 5

Dataset Features (Student Performance)

Age	Gend	der	Scholarship			Co- Curricular/Ad al Activiti			ic or Sports ctivities	Involvement in Romantic Relationship
Travel to	Travel to University		Place of Residence		М	Mother's Education Level		Father's Education Level		Study Hours per Week
Readir	Non-Scientific Reading Frequency		eientific eading equency	Seminar/Confe ence Attendance		er Impact of Personal Projects on Success		Class	Attendance	Exam Preparation Timing
Note-Tak Frequen	_	Attentiveness in Class		Last Semester's CGPA		Credits Completed	_	ed CGPA at duation		

Dataset Sample

age		Gender		scholarship		Co- Curricular/Additi onal Activities			Artistic or Sports Activities		Involvement in Romantic Relationship
22-25 Male		Male		50		0				1	0
Travel to University		Place of Residence		Mother	Mother's Education Level		Father's Education Level			Study Hours per Week	
Other		On-Campus Housing		N	Masters			Masters		18	
Non-Scientific Reading Frequency			Seminar/Conferen ce Attendance			t of Pers		Cla	ass Att	endance	Exam Preparation Timing
often	often always			1	F	positive		50	ometim clas	nes miss ses	Regularly
Note-Taking Frequency	Attentiveness in Class		Last	Semester's CGPA	Credit Comple	•		eted CGP/ aduation			
always	sometimes			3.2	80		3.6				

Dataset Features (Books and Resources)

idbook	title	toc	Single_Label	Rest_of_labels

Dataset Sample

idbook	title	toc	Single_Label	Rest_of_labels
99500000	Bioequivalence	Canada / China /	Medicine	Pharmaceutical
	Requirements in	The European		technology,
	Various Global	Union /		Biomedicine,
				Pharm

Feature Explanation

Age: Numerical (22-25)

Gender: Nominal (male / female)

Scholarship/Financial Aid Type: Numerical (0-100)

Co-Curricular/Additional Activities: Nominal (yes/no)

Artistic or Sports Activities: Nominal(yes/no)

Involvement in Romantic Relationship: Nominal(yes/no)

Travel to University: Categorical (public transport/ private car/ other)

Place of Residence: Categorical (on campus housing/ family/ other)

Mother's Education Level: Nominal(high school/bachelors/masters)

Father's Education Level: Nominal(high school/bachelors/masters)

Feature Explanation cont.

- Study Hours per Week: Numerical
- Non-Scientific Reading Frequency: Nominal (often/sometimes/occationaly/never)
- Scientific Reading Frequency: Nominal (often/sometimes/occationaly/never)
- Seminar/Conference Attendance: Nominal (yes/no)
- •Impact of Personal Projects on Success: Nominal (positive/negative/neutral)
- •Class Attendance: Nominal (Always attend classes and rarely miss classes/sometimes miss classes/frequently miss classes)
- •Exam Preparation Timing: Nominal (close date to exam/regularly/never)
- Note-Taking Frequency: No minal (always/sometimes/never)
- •Attentiveness in Class: Nominal (always/sometimes/never)
- Last Semester's CGPA: Numerical
- Credits Completed: Numerical
- •Expected CGPA at Graduation: Numerical

Dataset after Feature Engineering

age	Gender	Gender scholarship		Co- Curricular/Addition al Activities		Artistic or Sports Activities		Involvement in Romantic Relationship
22-25	Male	50		0		1		0
Travel to Universit	y Place of Reside	e of Residence Mother's Educa		ntion Level Father's Education L		ducation Le	evel Study Hours per Week	
Other	On-Campus Hou	using Maste		rs Mas		asters		18
Non-Scientific Reading Frequency	Scientific Reading Frequency	Seminar/Conferen ce Attendance		Impact of Personal Projects on Success		Class Attendance		Exam Preparation Timing
often	always	1		positive		sometimes miss classes		Regularly
Note-Taking Frequency	Attentiveness in Class	Last Semester's CGPA		Credits Completed	Expected CGPA at Graduation			To be
always	sometimes		3.2		3.6			dropped To be edited

Training method and Task

The training to be performed is

Supervised Learning
(Batch learning)

The task our model will perform is

Regression and Classification

Training method and Task

Features:

Performance predictions: Predict individual student performance across various courses.

Tailored recommendations: Receive actionable insights and strategies based on your strengths and weaknesses.

Recommendation of course materials: The system recommends valid course materials and books for the users to begin with.

Goal setting: Set personalized goals and track your progress. Communication channels: Connect with educators and access support services.

Data-driven insights for educators: Gain valuable data to personalize learning experiences and identify at-risk students.

Target Audience:

Students of all ages and educational levels seeking to improve their academic performance.

Application of the Project in Real Life

01 ENHANCED LEARNING EFFICIENCY PERSONALIZE METHODS FOR BETTER LEARNING OUTCOMES. AND EFFECTIVENESS 02 PERSONALIZED LEARNING •TAILORED RECOMMENDATIONS & SUPPORT SERVICES EMPOWER STUDENTS FOR SUCCESS. **SUPPORT** 03 •GOAL-SETTING, PROGRESS TRACKING & ENGAGING IMPROVED ENGAGEMENT EXPERIENCES MOTIVATE STUDENTS. AND MOTIVATION 04•PERSONALIZED INTERVENTIONS & RESOURCE REDUCED ACADEMIC INEQUALITY 05 DATA-DRIVEN DECISION •DATA-DRIVEN DECISIONS OPTIMIZE PROGRAMS & PERSONALIZE LEARNING EXPERIENCES. MAKING 06 FUTURE OF EDUCATION •PAPIA PAVES THE WAY FOR PERSONALIZED, EQUITABLE, AND FUTURE-PROOFED EDUCATION.

Timeline

Gantt Chart

	PERSONALIZED ACADEMIC PERFORMANCE PREDICTOR AND IMPROVEMENT ASSISTANT								
		GANTT	CHART						
	Week 1	Week 2	Week 3	Week 4					
	Import and clean data								
Phase 1: Data Exploration	Analyze data distribution								
and Preparation	Visualize relationships								
	Identify outliers and biases								
Phase 2: Model	Analyze factor influence								
Development and Selection		Select and implement models							
Phase 3: System			Train models						
Prototyping and Design			Evaluate model performance						
				Select best model					
				Develop prototype					
Phase 4: System Testing				Design user interface					
and Refinement				Implement recommendation engine					
				Test and refine system					

REFFERENCES

- 1. Baashar, Y., Alkawsi, G., Ali, N., Alhussian, H., & Bahbouh, H. T. (2022). Predicting student's performance using machine learning methods. International Journal of Emerging Technologies in Learning (iJET), 17(13), 234-247.**
- 2. Ojajuni, O., Ayeni, F., Akodu, O., & Ekanoye, F. (2023). Predicting student academic performance using machine learning: A systematic literature review. Education and Information Technologies, 28(4), 3635-3656.**
- 3. Dhilipan, J., Vijayalakshmi, N., Suriya, S., & Christopher, A. (2022). Prediction of students performance using machine learning. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 11(10), 1-9.**

THANK YOU!

