电磁波的辐射

1. 规范变换

[电磁场的势] $\vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$.

[规范不唯一的证明]

设 ψ 为任意时空函数,作规范变换: $\begin{cases} \vec{A} \to \vec{A'} = \vec{A} + \vec{\nabla} \psi \\ \varphi \to \varphi' = \varphi - \frac{\partial \psi}{\partial t} \end{cases}$

此时
$$\begin{cases} \vec{B'} = \vec{\nabla} \times \vec{A'} = \vec{\nabla} \times \vec{A} + \vec{\nabla} \times \vec{\nabla} \psi = \vec{\nabla} \times \vec{A} = \vec{B} \\ \vec{E'} = -\vec{\nabla} \varphi' - \frac{\partial \vec{A'}}{\partial t} = -\vec{\nabla} \varphi + \frac{\partial \vec{\nabla} \psi}{\partial t} - \frac{\partial \vec{A}}{\partial t} - \frac{\partial \vec{\nabla} \psi}{\partial t} = -\vec{\nabla} \varphi - \frac{\partial \vec{A}}{\partial t} = \vec{E} \end{cases}$$

[**规范变换与规范不变性**] 当势作规范变换时, 所有物理量与物理规律都应该保持不变. 这种不变性称为规范不变性.

[规范条件]

库伦规范: $\vec{\nabla} \cdot \vec{A} = 0$;

洛伦兹规范: $\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0.$

2. 电磁场的势

1

 $[真空中电磁场势的基本方程] \begin{cases} \vec{\nabla}^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla} (\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t}) = -\mu_0 \vec{J} \\ \vec{\nabla}^2 \varphi + \frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{A} = -\frac{\rho}{\varepsilon_0} \end{cases}.$

采用库伦规范:
$$\begin{cases} \vec{\nabla}^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = -\mu_0 \vec{J} \\ \vec{\nabla}^2 \varphi = -\frac{\rho}{\varepsilon_0} \end{cases};$$

采用洛伦兹规范:
$$\begin{cases} \vec{\nabla}^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \\ \vec{\nabla}^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon_0} \end{cases}.$$

[达朗贝尔方程] 电荷产生标势波动, 电流产生矢势波动.

$$\begin{cases} \vec{\nabla}^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \\ \vec{\nabla}^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon_0} \\ \vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0 \end{cases}$$

[推迟势 (达朗贝尔方程的解)]
$$\begin{cases} \varphi(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{x'},t-\frac{r}{c})}{r} dV' \\ \vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x'},t-\frac{r}{c})}{t} dV' \end{cases}$$

[推迟势的推导]

先求只在原点存在点电荷的情形. 由 $\vec{\nabla}^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon_0}$, 得 $\vec{\nabla}^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{1}{\varepsilon_0} Q(t) \delta(\vec{x})$.

因点电荷激发的势具有球对称性, 所以 $\vec{\nabla}\varphi = \frac{\partial \varphi}{\partial r}$, $\vec{\nabla}\cdot\vec{\nabla}\varphi = \frac{1}{r^2\sin\theta}\frac{\partial}{\partial r}\left(r^2\sin\theta\frac{\partial \varphi}{\partial t}\right) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \varphi}{\partial t}\right)$

除原点外空间均无源, 有 $\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \varphi}{\partial r}\right) - \frac{1}{c^2}\frac{\partial^2 \varphi}{\partial t^2} = 0$.

因 φ 随 r 增大而减弱, 可以设 $\varphi(r,t) = \frac{u(r,t)}{r}$, 即 $\frac{\partial^2 u}{\partial r^2} - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = 0$.

分离变量解 u(r,t)=R(r)T(t), 得 $T\frac{\partial^2 R}{\partial r^2}-\frac{1}{c^2}R\frac{\partial^2 T}{\partial t^2}=0.$

解得:
$$\begin{cases} R(r) = C_1 e^{i\sqrt{\lambda}r} + D_1 e^{-i\sqrt{\lambda}r} \\ T(t) = C_2 e^{ic\sqrt{\lambda}t} + D_2 e^{-ic\sqrt{\lambda}t} \end{cases}$$

解得 $u(r,t) = R(r)T(t) = A_1e^{ic\sqrt{\lambda}(t-\frac{r}{c})} + A_2e^{-ic\sqrt{\lambda}(t-\frac{r}{c})} + B_1e^{ic\sqrt{\lambda}(t+\frac{r}{c})} + B_2e^{-ic\sqrt{\lambda}(t+\frac{r}{c})}$

在 $g(t+\frac{r}{c})$ 中, t 随 r 的增大而减小, 表示电磁波向内收敛. 在辐射问题中应有 $B_1=B_2=g(t-\frac{r}{c})=0$, 所以 $u(r,t)=f(t-\frac{r}{c})$, 即 $\varphi(r,t)=\frac{1}{r}f(t-\frac{r}{c})$.

与静电情形 $\varphi(r)=rac{Q}{4\piarepsilon_0 r}$ 比较可以猜解: $\varphi(r,t)=rac{Q(t-rac{r}{c})}{4\piarepsilon_0 r}$

为了验证此解成立,作 $r=\eta \to 0$ 的球面,应有: $\int_0^\eta 4\pi r^2 dr \left(\vec{\nabla}^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \varphi = \int_0^\eta 4\pi r^2 dr \left[-\frac{Q(t-\frac{r}{c})}{\varepsilon_0} \delta(t-\frac{r}{c}) \right] dr$

此时,
$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\varphi \eta \to 0$$
, $t - \frac{r}{c} \to t$.

左式
$$\rightarrow \frac{Q(t)}{4\pi\varepsilon_0} \int_V dV \vec{\nabla}^2 \frac{1}{r} = \frac{Q(t)}{4\pi\varepsilon_0} \oint_S \vec{\nabla} \frac{1}{r} \cdot d\vec{S} = -\frac{Q(t)}{\varepsilon_0}$$

右式 =
$$\int_{V} -\frac{Q(t)}{\varepsilon_0} \delta(\vec{x}) dV = -\frac{Q(t)}{\varepsilon_0}$$

所以 $\varphi(r,t)=\frac{Q(t-\frac{r}{c})}{4\pi\varepsilon_0 r}$ 是可行解,当点电荷位于任意位置时: $\varphi(\vec{x},t)=\frac{Q(\vec{x}',t-\frac{r}{c})}{4\pi\varepsilon_0 r}$

对于一般的电荷分布 $\rho(\vec{x}',t)$, 有 $\varphi(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{x}',t-\frac{r}{c})}{r} dV'$;

矢势 \vec{A} 具有相同形势, 故 $\vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}',t-\frac{r}{c})}{r} dV'$.

[推迟势的意义] 空间某点 \vec{x} 在时刻 t 的场值不依赖于同一时刻的电荷电流分布, 而是决定于较早时刻 $t-\frac{r}{c}$ 的电荷电流分布. 反映了电磁作用具有一定的传播速度.

3. 电偶极辐射

[计算辐射场的一般公式]

已知
$$\vec{J}(\vec{x}', t - \frac{r}{c})$$
 时,有 $\vec{A}(\vec{x}, t) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}', t - \frac{r}{c})}{r} dV'$ 设 $\vec{J}(\vec{x}', t) = \vec{J}(\vec{x}')e^{-i\omega t}$,即 $\vec{J}(\vec{x}', t) = \vec{J}(\vec{x}')e^{i(\frac{\omega}{c}r - \omega t)} = \vec{J}(\vec{x}')e^{i(kr - \omega t)}$ 则 $\vec{A}(\vec{x}, t) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{i(kr - \omega t)}}{r} dV' = \frac{\mu_0e^{-i\omega t}}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{ikr}}{r} dV'$ 设 $\vec{A}(\vec{x}, t) = \vec{A}(\vec{x})e^{-i\omega t}$,则 $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{ikr}}{r} dV'$ 设 电 荷密度为 $\rho(\vec{x}, t) = \rho(\vec{x})e^{-i\omega t}$ 由 电流连续性 $\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$ 得 $\vec{\nabla} \cdot \vec{J} = i\omega \rho$ 由 $\vec{B} = \vec{\nabla} \times \vec{A}$ 可得磁场 \vec{B} .

[推迟作用因子] e^{ikr} , 表示电磁波传至场点时有 kr 相位滞后.

[矢势的三个线度]

- (1). 电荷分布区域线度: l;
- (2). 波长线度: $\lambda = \frac{2\pi}{k}$;
- (3). 电荷到场点的距离线度: r.

[小区域条件] $l << r, l << \lambda$.

[近区 $(r << \lambda)$ 场的特点] 近区内 kr << 1,推迟因子 e^{kr} 1,场保持恒定场的主要特点. 即电场具有静电场的纵向形式,磁场也与恒定磁场相似.

[矢势对远区 $(r >> \lambda)$ 的展开]

选原点在电荷分布区域内,则 $|\vec{x}'|$ 的数量级为 l. 用 R 表示原点到场点 \vec{x} 的距离 $(R = |\vec{x}|)$,r 为由源点 \vec{x}' 到场点 \vec{x} 的距离,有:

$$r \approx R - \vec{e}_R \cdot \vec{x}'$$

曲
$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{ikr}}{r} dV'$$
 得 $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{ik(R-\vec{e}_R \cdot \vec{x}')}}{R-\vec{e}_R \cdot \vec{x}'} dV'$

计算远场时, 只保留 🖁 最低级项, 对 🕽 保留各级项.

由
$$k = \frac{2\pi}{\lambda}$$
 得 $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{i\frac{2\pi}{\lambda}(R-\vec{e}_R\cdot\vec{x}')}}{R} dV' = \frac{\mu_0e^{ikR}}{4\pi R} \int_V \vec{J}(\vec{x}')e^{-ik\vec{e}_R\cdot\vec{x}'} dV'.$
对相因子展开 $\vec{A}(\vec{x}) = \frac{\mu_0e^{ikR}}{4\pi R} \int_V \vec{J}(\vec{x}')(1-ik\vec{e}_R\cdot\vec{x}'+...)dV'.$

[电偶极辐射]

考虑矢势展开的第一项 $\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikR}}{4\pi R} \int_V \vec{J}(\vec{x}') dV'$

设单位体积内有 n_i 个带电 q_i 且速度为 v_i 的粒子, 则单位体积内粒子对电流密度的贡献为: $n_iq_iv_i$, 有 $\vec{J}=\sum_i n_iq_i\vec{v_i}$.

则粒子对电流的总贡献为: $\int_V \vec{J}(\vec{x}')dV' = \sum q\vec{v}$

因
$$\sum q\vec{v} = \frac{d}{dt} \sum q\vec{x} = \frac{d\vec{p}}{dt} = \dot{p}$$
, 所以 $\int_V \vec{J}(\vec{x}')dV' = \dot{\vec{p}}$.

对电偶极系统,
$$\vec{p} = Q\Delta \vec{l}$$
, $\dot{\vec{p}} = \frac{d\vec{p}}{dt} = \frac{dQ}{dt}\Delta \vec{l} = I\Delta \vec{l} = \int_V \vec{J}(\vec{x}')dV'$

则电偶极辐射 $\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikR}}{4\pi R} \dot{\vec{p}}$.

因展开式只保留 $\frac{1}{R}$ 的最低级项, $\vec{\nabla}$ 不须作用在 $\frac{1}{R}$ 上, 有 $\vec{B} = \vec{\nabla} \times \vec{A} = \frac{\mu_0 i k \vec{e}_R}{4\pi R} e^{ikR} \times \dot{\vec{p}}$. 由 $\ddot{\vec{p}} = -i\omega\dot{\vec{p}}$, 有 $\dot{\vec{p}} = \frac{i}{\omega}\ddot{\vec{p}}$, 即 $\vec{B} = \frac{e^{ikR}}{4\pi\epsilon_0 c^3 R} \left(\ddot{\vec{p}} \times \vec{e}_R \right)$.

由
$$\vec{E} = \frac{ic^2}{\omega} \vec{\nabla} \times \vec{B}$$
 得 $\vec{E} = \frac{e^{ikR}}{4\pi\varepsilon_0 c^2 R} \left(\ddot{\vec{p}} \times \vec{e}_R \right) \times \vec{e}_R$.

在球坐标系中, 选 \vec{p} 的方向为极轴方向, 则:

$$\begin{cases} \vec{B} = \frac{\ddot{p}e^{ikR}}{4\pi\varepsilon_0c^3R}\sin\theta\vec{e}_{\varphi} \\ \vec{E} = \frac{\ddot{p}e^{ikR}}{4\pi\varepsilon_0c^2R}\sin\theta\vec{e}_{\theta} \end{cases}$$

[电偶极辐射的角分布] \vec{B} 总是横向的 (在纬线上), \vec{E} 在经面上闭合. 由 $\vec{\nabla} \cdot \vec{E} = 0$ 可知 \vec{E} 必须完全闭合, 即不可能完全横向. 电偶极辐射只在略去 $\frac{1}{R}$ 高次项后才近似为空间中的 TEM 波.

[电偶极辐射的能流] $ec{\vec{S}} = \frac{|\ddot{\vec{p}}|^2 \sin^2 \theta}{32\pi^2 \varepsilon_0 c^3 R^2} \vec{e}_R$.

- (1). 在 $\theta = 90^{\circ}$ 方向上辐射最强;
- (2). 在 $\theta = 0^\circ$ 和 $\theta = 180^\circ$ (沿电偶极矩轴线) 方向没有辐射.

[电偶极辐射功率] $P=\oint |ar{\vec{S}}|R^2d\Omega=rac{1}{4\pi\varepsilon_0}rac{|\ddot{ec{p}}|^2}{3c^3}.$

4. 电磁场的动量与动量守恒

[电磁场动量守恒] $\vec{f} = [\varepsilon_0(\vec{\nabla} \cdot \vec{E})\vec{E} + \varepsilon_0(\vec{\nabla} \times \vec{E}) \times \vec{E} + \frac{1}{\mu_0}(\vec{\nabla} \cdot \vec{B})\vec{B} + \frac{1}{\mu_0}(\vec{\nabla} \times \vec{B}) \times \vec{B}] - \varepsilon_0 \frac{\partial}{\partial}(\vec{E} \times \vec{B}).$ [电磁场动量守恒推导]

由
$$\vec{f} = \rho \vec{E} + \vec{J} \times \vec{B}$$
 和 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ 得 $\vec{f} = \varepsilon_0(\vec{\nabla} \cdot \vec{E})\vec{E} + \vec{J} \times \vec{B}$
由 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ 得 $\vec{f} = \varepsilon_0(\vec{\nabla} \cdot \vec{E})\vec{E} + \frac{1}{\mu_0}(\vec{\nabla} \times \vec{B}) \times \vec{B} - \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \times \vec{B}$
由 $\vec{\nabla} \cdot \vec{B} = 0$ 得 $\vec{f} = \varepsilon_0(\vec{\nabla} \cdot \vec{E})\vec{E} + \frac{1}{\mu_0}(\vec{\nabla} \cdot \vec{B})\vec{B} + \frac{1}{\mu_0}(\vec{\nabla} \times \vec{B}) \times \vec{B} - \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \times \vec{B}$
由 $\frac{\partial}{\partial t}(\vec{E} \times \vec{B}) = \frac{\partial \vec{E}}{\partial t} \times \vec{B} + \vec{E} \times \frac{\partial \vec{B}}{\partial t}$ 得 $\varepsilon_0 \frac{\partial \vec{E}}{\partial t} \times \vec{B} = \varepsilon_0 \frac{\partial}{\partial t}(\vec{E} \times \vec{B}) - \varepsilon_0 \vec{E} \times \frac{\partial \vec{B}}{\partial t}$
由 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ 得 $\varepsilon_0 \frac{\partial \vec{E}}{\partial t} \times \vec{B} = \varepsilon_0 \frac{\partial}{\partial t}(\vec{E} \times \vec{B}) - \varepsilon_0(\vec{\nabla} \times \vec{E}) \times \vec{E}$
综上所述, $\vec{f} = [\varepsilon_0(\vec{\nabla} \cdot \vec{E})\vec{E} + \varepsilon_0(\vec{\nabla} \times \vec{E}) \times \vec{E} + \frac{1}{\mu_0}(\vec{\nabla} \cdot \vec{B})\vec{B} + \frac{1}{\mu_0}(\vec{\nabla} \times \vec{B}) \times \vec{B}] - \varepsilon_0 \frac{\partial}{\partial t}(\vec{E} \times \vec{B}).$

[电磁场的动量密度] $\vec{g} = \varepsilon_0 \vec{E} \times \vec{B} = \frac{1}{c^2} \vec{S}$.

5. 天线的辐射

[短天线的辐射功率] $P = \frac{\pi I_0^2}{12} \sqrt{\frac{\mu_0}{\varepsilon_0}} \left(\frac{l}{\lambda}\right)^2$.

设天线长为 l, 中心馈电点电流最大且为 I_0 , 在两端点电流为 0.

短天线满足 $l << \lambda$, 天线上的电流分布近似线性: $I(z) = \left(1 - \frac{2}{l}|z|\right)I_0$, $(|z| \le \frac{1}{2}l)$.

由
$$\dot{\vec{p}} = \int_{V} \vec{J} dV'$$
 得 $\dot{\vec{p}} = \int_{-\frac{1}{2}l}^{\frac{1}{2}l} I(z) dz = \frac{1}{2} I_0 \vec{l}$

短天线的辐射功率 $P = \frac{|\ddot{p}|^2}{4\pi\varepsilon_0} \frac{1}{c^3} = \frac{\pi I_0^2}{12} \sqrt{\frac{\mu_0}{\varepsilon_0}} \left(\frac{l}{\lambda}\right)^2$.

[短天线辐射电阻] $R_r = \frac{\pi}{6} \sqrt{\frac{\mu_0}{\varepsilon_0}} \left(\frac{l}{\lambda}\right)^2, \quad (l << \lambda).$

[长线天线的矢势]

由 $\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t}$ 和 $\vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$, 且长线天线电流只沿 z 方向, \vec{A} 也只沿 z 方向.

由
$$\begin{cases} \frac{\partial A_z}{\partial z} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0 \\ E_z = -\frac{\partial \varphi}{\partial z} - \frac{\partial A_z}{\partial t} \end{cases}$$
 得 $\frac{1}{c^2} \frac{E_z}{\partial t} = \frac{\partial^2 A_z}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 A_z}{\partial t^2}$

在天线表面切向方向上 $E_z = 0$, 所以 $\frac{\partial^2 A_z}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 A_z}{\partial t^2} = 0$ \vec{A} 满足推迟势 $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')e^{ikr}}{r} dV'$.

[半波天线的矢势] $\vec{A}(\vec{x}) = \frac{\mu_0 I_0 e^{ikR}}{2\pi kR} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin^2\theta} \vec{e}_z$.

[半波天线的场]
$$\begin{cases} \vec{B}(\vec{x}) = -i\frac{\mu_0 I_0 e^{ikR}}{2\pi R} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \vec{e}_{\varphi} \\ \vec{E}(\vec{x}) = c\vec{B} \times \vec{e}_R = -i\frac{\mu_0 c I_0 e^{ikR}}{2\pi R} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \vec{e}_{\theta} \end{cases}$$

[半波天线的辐射能流密度] $\bar{\vec{S}} = \frac{\mu_0 c I_0^2}{8\pi^2 R^2} \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin^2\theta} \vec{e}_R$.

辐射角由分布因子 $\frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin^2\theta}$ 确定,与偶极辐射角分布相似,但较集中于 $\theta=90^\circ$ 平面上.

[**半波天线总辐射功率**] $P = \frac{\mu_0 c I_0^2}{8\pi} [\ln(2\pi\gamma) - Ci(2\pi)]$, 其中: 欧拉常数 $\ln(\gamma) \approx 0.577$, 积分余弦函数 $Ci(x) = -\int_x^\infty \frac{\cos t}{t} dt$. $P \approx 2.44 \frac{\mu_0 c I_0^2}{8\pi}$.

[半波天线的辐射电阻] $R_r \approx \frac{\mu_0 c}{4\pi} \times 2.44 \approx 73.2\Omega$