Table des matières

Table des matières							
1	Pré	sentation du langage R	1				
	1.1	Bref historique	1				
	1.2	Description sommaire de R	2				
	1.3	Interfaces	3				
A	Inst	callation de packages dans R	5				

Chapitre 1

Présentation du langage R

1.1 Bref historique

À l'origine fut le S, un langage pour «programmer avec des données» développé chez Bell Laboratories à partir du milieu des années 1970 par une équipe de chercheurs menée par John M. Chambers. Au fil du temps, le S a connu quatre principales versions communément identifiées par la couleur du livre dans lequel elles étaient présentées : version «originale», version 2, version 3 et version 4; voir aussi <citation> et <citation> pour plus de détails.

Dès la fin des années 1980 et pendant près de vingt ans, le S a principalement été popularisé par une mise en œuvre commerciale nommée S-PLUS. En 2008, Lucent Technologies a vendu le langage S à Insightful Corporation, ce qui a effectivement stoppé le développement du langage par ses auteurs originaux. Aujourd'hui, le S est commercialisé de manière relativement confidentielle sous le nom Spotfire S+ par TIBCO Software.

Ce qui a fortement contribué à la perte d'influence de S-PLUS, c'est une nouvelle mise en œuvre du langage développée au milieu des années 1990. Inspirés à la fois par le S et par Scheme (un dérivé du Lisp), Ross Ihaka et Robert Gentleman proposent un langage pour l'analyse de données et les graphiques qu'ils nomment R. À la suggestion de Martin Maechler de l'ETH de Zurich, les auteurs décident d'intégrer leur nouveau langage au projet GNU ¹, faisant de R un logiciel libre.

Ainsi disponible gratuitement et ouvert aux contributions de tous, R gagne rapidement en popularité là même où S-PLUS avait acquis ses lettres de noblesse, soit dans les milieux académiques. De simple dérivé «not~unlike~S», R devient un concurrent sérieux à S-PLUS, puis le surpasse lorsque les efforts de

^{1.} http://www.gnu.org

développement se rangent massivement derrière le projet libre. D'ailleurs John Chambers place aujourd'hui ses efforts de réflexion et de développement dans le projet R.

1.2 Description sommaire de R

R est un environnement intégré de manipulation de données, de calcul et de préparation de graphiques. Toutefois, ce n'est pas seulement un «autre» environnement statistique (comme SPSS ou SAS, par exemple), mais aussi un langage de programmation complet et autonome.

Tel que mentionné précédemment, le R est un langage principalement inspiré du S et de Scheme. Le S était à son tour inspiré de plusieurs langages, dont l'APL (autrefois un langage très prisé par les actuaires) et le Lisp. Comme tous ces langages, le R est *interprété*, c'est-à-dire qu'il requiert un autre programme — l'*interprète* — pour que ses commandes soient exécutées. Par opposition, les programmes de langages *compilés*, comme le C ou le C++, sont d'abord convertis en code machine par le compilateur puis directement exécutés par l'ordinateur.

Cela signifie donc que lorsque l'on programme en R, il n'est pas possible de plaider l'attente de la fin de la phase de compilation pour perdre son temps au travail. Désolé!

Le programme que l'on lance lorsque l'on exécute R est en fait l'interprète. Celui-ci attend que l'on lui soumette des commandes dans le langage R, commandes qu'il exécutera immédiatement, une à une et en séquence.

Par analogie, Excel est certes un logiciel de manipulation de données, de mise en forme et de préparation de graphiques, mais c'est aussi au sens large un langage de programmation interprété. On utilise le langage de programmation lorsque l'on entre des commandes dans une cellule d'une feuille de calcul. L'interprète exécute les commandes et affiche les résultats dans la cellule.

Le R est un langage particulièrement puissant pour les applications mathématiques et statistiques (et donc actuarielles) puisque précisément développé dans ce but. Parmi ses caractéristiques particulièrement intéressantes, on note :

- langage basé sur la notion de vecteur, ce qui simplifie les calculs mathématiques et réduit considérablement le recours aux structures itératives (boucles for, while, etc.);
- pas de typage ni de déclaration obligatoire des variables;
- programmes courts, en général quelques lignes de code seulement;
- temps de développement très court.

image

FIGURE 1.1 – Fenêtre de la console sous Mac OS X au démarrage de R

1.3 Interfaces

R est d'abord et avant tout une application n'offrant qu'une invite de commande du type de celle présentée à la Figure 1.1. En soi, cela n'est pas si différent d'un tableur tel que Excel : la zone d'entrée de texte dans une cellule n'est rien d'autre qu'une invite de commande ², par ailleurs aux capacités d'édition plutôt réduites.

- Sous Unix et Linux, R n'est accessible que depuis la ligne de commande du système d'exploitation (terminal). Aucune interface graphique n'est offerte avec la distribution de base de R.
- Sous Windows, une interface graphique plutôt rudimentaire est disponible. Elle facilite certaines opérations tel que l'installation de packages externes, mais elle offre autrement peu de fonctionnalités additionnelles pour l'édition de code R.
- L'interface graphique de R sous Mac OS X est la plus élaborée. Outre la console présentée à la Figure 1.1, l'application R.app comporte de nombreuses fonctionnalités, dont un éditeur de code assez complet.

^{2.} Merci à Markus Gesmann pour cette observation.

Annexe A

Installation de packages dans R

Cette annexe explique comment installer et charger des extensions (pa-ckage) dans R.