Introduction à la modélisation statistique bayésienne

Un cours en R et Stan avec brms

Ladislas Nalborczyk (LPC, LNC, CNRS, Aix-Marseille Univ)

Planning

Cours n°01: Introduction à l'inférence bayésienne

Cours n°02: Modèle Beta-Binomial

Cours n°03 : Introduction à brms, modèle de régression linéaire

Cours n°04 : Modèle de régression linéaire (suite)

Cours n°05: Markov Chain Monte Carlo

Cours n°06: Modèle linéaire généralisé

Cours n°07 : Comparaison de modèles

Cours n°08: Modèles multi-niveaux

Cours n°09 : Modèles multi-niveaux généralisés

Cours n°10: Data Hackathon

Modèles multi-niveaux

Le but est de construire un modèle qui puisse **apprendre à plusieurs niveaux**, qui puisse produire des estimations qui seront informées par les différents groupes présents dans les données. Nous allons suivre l'exemple suivant tout au long de ce cours.

Imaginons que nous ayons construit un robot visiteur de cafés, et que celui-ci s'amuse à mesurer le temps d'attente après avoir commandé. Ce robot visite 20 cafés différents, 5 fois le matin et 5 fois l'aprèsmidi, et mesure le temps (en minutes) de service d'un café.

Robot et café

```
1 library(tidyverse)
  2 library(imsb)
  3
  4 df <- open data(robot)
  5 head(x = \overline{df}, n = 15)
   cafe afternoon
                        wait
                 0 4.9989926
                 1 2.2133944
                 0 4.1866730
                 1 3.5624399
                 0 3.9956779
                1 2.8957176
                 0 3.7804582
                1 2.3844837
                 0 3.8617982
10
                 1 2.5800004
11
      2
                 0 2.7421223
12
                 1 1.3525907
13
                 0 2.5215095
14
                 1 0.9628102
15
      2
                 0 1.9543977
```


Robot et café

```
1 df %>%
2    ggplot(aes(x = factor(cafe), y = wait, fill = factor(afternoon) ) ) +
3    geom_dotplot(
4    stackdir = "center", binaxis = "y",
5    dotsize = 1, show.legend = FALSE
6    ) +
7    geom_hline(yintercept = mean(df$wait), linetype = 3) +
8    facet_wrap(~afternoon, ncol = 2) +
9    labs(x = "Café", y = "Temps d'attente (en minutes)")
```


Robot et café, premier modèle

On peut construire un premier modèle, qui estime le temps moyen (sur tous les bistrots confondus) pour être servi.

```
w_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha

\alpha \sim \text{Normal}(5, 10)

\sigma \sim \text{HalfCauchy}(0, 2)
```


Half-Cauchy

$$p(x \mid x_0, \gamma) = \left(\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma} \right)^2 \right] \right)^{-1}$$

```
1 ggplot(data = data.frame(x = c(0, 10)), aes(x = x)) +
2    stat_function(
3         fun = dcauchy,
4         args = list(location = 0, scale = 2), size = 1.5
5    )
```


Robot et café, premier modèle

```
1 library(brms)
  2
  3 mod1 <- brm(</pre>
      formula = wait \sim 1,
      prior = c(
        prior(normal(5, 10), class = Intercept),
        prior(cauchy(0, 2), class = sigma)
  8
  9
      data = df,
      # on utilise tous les coeurs disponibles
 10
      cores = parallel::detectCores()
 11
 12
  1 posterior summary(x = mod1, probs = c(0.025, 0.975), pars = c("^b ", "sigma"))
                                             Q97.5
                                    Q2.5
            Estimate Est.Error
b Intercept 3.118824 0.07953888 2.963235 3.274122
sigma
            1.141772 0.05642862 1.038975 1.256931
```


Diagnostic plot

```
1 plot(
      x = mod1, combo = c("dens_overlay", "trace"),
      theme = theme_bw(base_size = 16, base_family = "Open Sans")
                       b_Intercept
                                                                                           b_Intercept
                                                                   3.4
5 -
4 ·
                                                                   3.2
3 -
2 -
                                                          Chain
                                                                                                                             Chain
                                                                   2.8
                                 3.2
                3.0
                                                                                200
                                                                                          400
                                                                                                   600
                                                                                                             800
                                                  3.4
                                                                                                                     1000
                                                                                             sigma
                         sigma
6.
                                                                   1.3
                                                                   1.2
4 -
                                                                   1.1
2 -
                                                                   1.0
                1.1
                              1.2
                                           1.3
                                                                                200
                                                                                          400
                                                                                                   600
                                                                                                             800
                                                                                                                     1000
```


Un intercept par café

Deuxième modèle qui estime un intercept par café. Équivalent à construire 20 dummy variables.

```
w_i \sim \text{Normal}(\mu_i, \sigma)
\mu_i = \alpha_{\text{café}[i]}
\alpha_{\text{café}[i]} \sim \text{Normal}(5, 10)
\sigma \sim \text{HalfCauchy}(0, 2)
```

```
1 mod2 <- brm(
2    formula = wait ~ 0 + factor(cafe),
3    prior = c(
4         prior(normal(5, 10), class = b),
5         prior(cauchy(0, 2), class = sigma)
6         ),
7         data = df,
8         cores = parallel::detectCores()
9         )</pre>
```


Un intercept par café

```
1 posterior summary(x = mod2, pars = "^b ")
               Estimate Est.Error
                                       02.5
                                               097.5
b factorcafe1 3.446205 0.2645303 2.9313403 3.954503
b factorcafe2 1.728562 0.2519766 1.2333122 2.229070
b factorcafe3 3.317633 0.2546584 2.8298730 3.809318
b factorcafe4 2.799464 0.2537309 2.3120310 3.295132
b factorcafe5 1.465384 0.2663197 0.9487625 1.973528
b factorcafe6 3.635864 0.2583575 3.1241016 4.148555
b factorcafe7 2.940702 0.2538981 2.4470846 3.439896
b factorcafe8 3.179737 0.2579619 2.6878408 3.679906
b factorcafe9 3.335391 0.2616709 2.8338354 3.850855
b factorcafe10 3.101582 0.2570983 2.5966855 3.607365
b factorcafell 1.914888 0.2563538 1.4076090 2.415308
b factorcafe12 3.490106 0.2576796 2.9853369 4.005503
b factorcafe13 3.220218 0.2607201 2.7211301 3.735910
b factorcafe14 2.630154 0.2554882 2.1134215 3.148689
b factorcafe15 3.480625 0.2563819 2.9866802 3.983956
b factorcafe16 3.000218 0.2700380 2.4678319 3.521794
b factorcafe17 3.874953 0.2614359 3.3764925 4.390826
b factorcafe18 5.530325 0.2635470 5.0243866 6.032981
b factorcafe19 2.974775 0.2660832 2.4568977 3.489795
b factorcafe20 3.364509 0.2594216 2.8460383 3.872511
```


Modèle multi-niveaux

Est-ce qu'on ne pourrait pas faire en sorte que le temps mesuré au café 1 **informe** la mesure réalisée au café 2, et au café 3 ? Ainsi que le temps moyen pour être servi ? Nous allons apprendre le prior à partir des données...

```
Niveau 1 : w_i \sim \text{Normal}(\mu_i, \sigma)
\mu_i = \alpha_{\text{café}[i]}
Niveau 2 : \alpha_{\text{café}} \sim \text{Normal}(\alpha, \sigma_{\text{café}})
\alpha \sim \text{Normal}(5, 10)
\sigma_{\text{café}} \sim \text{HalfCauchy}(0, 2)
\sigma \sim \text{HalfCauchy}(0, 2)
```

Le prior de l'intercept pour chaque café ($\alpha_{\rm café}$) est maintenant fonction de deux paramètres (α et $\sigma_{\rm café}$). α et $\sigma_{\rm café}$ sont appelés des **hyper-paramètres**, ce sont des paramètres pour des paramètres, et leurs priors sont appelés des **hyperpriors**. Il y a deux niveaux dans le modèle...

Équivalences

```
w_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha_{\text{café}[i]}

\alpha_{\text{café}} \sim \text{Normal}(\alpha, \sigma_{\text{café}})
```

NB : α est ici défini dans le prior de $\alpha_{\rm café}$ mais on pourrait, de la même manière, le définir dans le modèle linéaire :

```
w_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \alpha_{\text{café}[i]}

\alpha_{\text{café}} \sim \text{Normal}(0, \sigma_{\text{café}})
```

On peut toujours "enlever" la moyenne d'une distribution gaussienne et la considérer comme une constante plus une gaussienne centrée sur zéro.

NB : quand α est défini dans le modèle linéaire, les $\alpha_{\rm café}$ représentent des déviations de l'intercept moyen. Il faut donc ajouter α et $\alpha_{\rm café}$ pour obtenir le temps d'attente moyen par café...

Équivalences (encore)

```
1 y1 <- rnorm(n = 1e4, mean = 5, sd = 1)
2 y2 <- rnorm(n = 1e4, mean = 0, sd = 1) + 5
3
4 data.frame(y1 = y1, y2 = y2) %>%
5     pivot_longer(cols = 1:2, names_to = "x", values_to = "y") %>%
6     ggplot(aes(x = y, colour = x) ) +
7     geom_density(show.legend = FALSE)
```


Modèle multi-niveaux

```
1 mod3 <- brm(</pre>
     formula = wait \sim 1 + (1 \mid cafe),
     prior = c(
3
       prior(normal(5, 10), class = Intercept),
 4
       prior(cauchy(0, 2), class = sigma),
       prior(cauchy(0, 2), class = sd)
       ),
     data = df,
8
     warmup = 1000, iter = 5000,
9
     cores = parallel::detectCores()
10
11
```

Ce modèle a 23 paramètres, l'intercept général α , la variabilité résiduelle σ , la variabilité entre les cafés $\sigma_{\text{café}}$, et un intercept par café.

Shrinkage

Shrinkage magic (Efron & Morris, 1977)

Stein's Paradox in Statistics

The best guess about the future is usually obtained by computing the average of past events. Stein's paradox defines circumstances in which there are estimators better than the arithmetic average

by Bradley Efron and Carl Morris

L'estimateur James-Stein est défini comme $z = \bar{y} + c(y - \bar{y})$, où \bar{y} désigne la moyenne de l'échantillon, y une observation individuelle, et c une constante, le **shrinking factor** (<u>Efron & Morris, 1977</u>).

Shrinkage magic (Efron & Morris, 1977)

Le shrinking factor est déterminé à la fois par la variabilité (imprécision) de la mesure (e.g., son écart-type) et par la distance à l'estimation moyenne (i.e., $y - \bar{y}$). En d'autres termes, cet estimateur fait moins "confiance" (i.e., accorde moins de poids) aux observations imprécises et/ou extrêmes. En pratique, le shrinkage agit comme une protection contre le sur-apprentissage (overfitting).

Pooling

Le **shrinkage** observé slide précédente est dû à des phénomènes de partage (pooling) de l'information entre les cafés. L'estimation de l'intercept pour chaque café informe l'estimation de l'intercept des autres cafés, ainsi que l'estimation de l'intercept général (i.e., la moyenne générale).

On distingue en général trois perspectives (ou stratégies) :

- **Complete pooling**: on suppose que le temps d'attente est invariant, on estime un intercept commun (mod1).
- **No pooling** : on suppose que les temps d'attente de chaque café sont uniques et indépendants : on estime un intercept par café, mais sans informer le niveau supérieur (mod2).
- Partial pooling: on utilise un prior adaptatif, comme dans l'exemple précédent (mod3).

La stratégie **complete pooling** en général underfitte les données (faibles capacités de prédiction) tandis que le stratégie **no pooling** revient à overfitter les données (faibles capacités de prédiction ici aussi). La stratégie **partial pooling** (i.e., celle des modèles multi-niveaux) permet d'équilibrer underfitting et overfitting.

Comparaison de modèles

On peut comparer ces trois modèles en utilisant le WAIC (discuté au Cours n°07).

```
1 # calcul du WAIC et ajout du WAIC à chaque modèle
  2 mod1 <- add criterion(mod1, "waic")</pre>
  3 mod2 <- add criterion(mod2, "waic")</pre>
  4 mod3 <- add criterion(mod3, "waic")</pre>
  6 # comparaison des WAIC de chaque modèle
  7 w <- loo compare(mod1, mod2, mod3, criterion = "waic")</pre>
  8 print(w, simplify = FALSE)
     elpd diff se diff elpd waic se elpd waic p waic se p waic waic
                                                                         se waic
                  0.0 -253.8
      0.0
                                                                           16.6
mod3
                                     8.3
                                                  18.1
                                                          1.5
                                                                   507.6
                                     8.4
       -0.6
                  1.3 -254.4
                                                          1.6
mod2
                                                  19.4
                                                                   508.7
                                                                           16.7
mod1 -57.3
                  10.6 -311.1
                                    10.6
                                                          0.3
                                                                   622.1
                                                                           21.1
                                                   2.0
```

On remarque que le modèle 3 a seulement 18 "effective parameters" (pWAIC) et moins de paramètres que le modèle 2, alors qu'il en a en réalité 2 de plus… posterior_summary(mod3)[3, 1] nous donne le sigma du prior adaptatif des $\alpha_{\text{café}}$ ($\sigma_{\text{café}}=0.82$). On remarque que ce sigma est très faible et correspond à assigner un prior très contraignant, ou **régularisateur**.

Comparaison de modèles

On compare les estimations du premier modèle (complete pooling model) et du troisième modèle (partial pooling model).

```
1 posterior_summary(mod1, pars = c("^b", "sigma"))

Estimate Est.Error Q2.5 Q97.5
b_Intercept 3.118824 0.07953888 2.963235 3.274122
sigma 1.141772 0.05642862 1.038975 1.256931

1 posterior_summary(mod3, pars = c("^b", "sigma"))

Estimate Est.Error Q2.5 Q97.5
b_Intercept 3.1224462 0.20548659 2.7134453 3.5301519
sigma 0.8219151 0.04328802 0.7430558 0.9108058
```

Les deux modèles font la même prédiction (en moyenne) pour α , mais le modèle 3 est plus incertain de sa prédiction que le modèle 1 (voir l'erreur standard pour α)...

L'estimation de σ du modèle 3 est plus petite que celle du modèle 1 car le modèle 3 **décompose** la variabilité non expliquée en deux sources : la variabilité du temps d'attente entre les cafés $\sigma_{\text{café}}$ et la variabilité résiduelle σ .

Robot et café

Imaginons que notre robot ne visite pas tous les cafés le même nombre de fois (comme dans le cas précédent) mais qu'il visite plus souvent les cafés proches de chez lui...

```
1 df2 <- open data(robot unequal) # nouveau jeu de données
 2
3 mod4 <- brm(</pre>
     formula = wait \sim 1 + (1 \mid cafe),
     prior = c(
 5
       prior(normal(5, 10), class = Intercept),
 6
       prior(cauchy(0, 2), class = sigma),
       prior(cauchy(0, 2), class = sd)
       ),
9
10
     data = df2,
11
     warmup = 1000, iter = 5000,
     cores = parallel::detectCores()
12
13
```


Shrinkage

On observe que les cafés qui sont souvent visités (à droite) subissent moins l'effet du **shrinkage**. Leur estimation est moins "tirée" vers la moyenne générale que les estimations des cafés les moins souvent visités (à gauche).

Aparté : effets fixes et effets aléatoires

Cinq définitions (contradictoires) relevées par Gelman (2005).

- Fixed effects are constant across individuals, and random effects vary.
- Effects are fixed if they are interesting in themselves or random if there is interest in the underlying population.
- When a sample exhausts the population, the corresponding variable is fixed; when the sample is a small (i.e., negligible) part of the population the corresponding variable is random.
- If an effect is assumed to be a realized value of a random variable, it is called a random effect.
- Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and random effects are estimated with shrinkage.

Gelman & Hill ($\underline{2006}$) suggèrent plutôt l'utilisation des termes de **constant effects** et **varying effects**, et de toujours utiliser la modélisation multi-niveaux, en considérant que ce qu'on appelle **effet fixe** peut simplement être considéré comme un **effet aléatoire** dont la variance serait égale à 0.

Régularisation et terminologie

Le fait de faire varier les intercepts de chaque café est simplement une autre manière de régulariser (de manière adaptative), c'est à dire de diminuer le poids accordé aux données dans l'estimation. Le modèle devient à même d'estimer à quel point les groupes (ici les cafés) sont différents, tout en estimant les caractéristiques de chaque café...

Différence entre les **cross-classified** (ou "crossed") multilevel models et **nested or hierarchical** multilevel models. Le premier type de modèle concerne des données structurées selon deux (ou plus) facteurs aléatoires non "nichés". Le deuxième type de modèles concerne des données structurées de manière hiérarchique (e.g., un élève dans une classe dans une école dans une ville…). Voir <u>cette discussion</u> pour plus de détails.

Les deux types de modèles s'écrivent cependant de manière similaire, sur plusieurs "niveaux". Le terme "multi-niveaux" (dans notre terminologie) fait donc référence à la structure du modèle, à sa spécification. À distinguer de la structure des données.

Exemple de modèle "cross-classified"

On pourrait se poser la question de savoir si la récence des cafés (leur âge) ne serait pas une source de variabilité non contrôlée ? Il suffit d'ajouter un intercept qui varie par âge, et de lui attribuer un prior adaptatif.

```
w_i \sim \text{Normal}(\mu_i, \sigma)
\mu_i = \alpha + \alpha_{\text{café}[i]} + \alpha_{\text{âge}[i]}
\alpha_{\text{café}} \sim \text{Normal}(5, \sigma_{\text{café}})
\alpha_{\text{âge}} \sim \text{Normal}(5, \sigma_{\text{âge}})
\alpha \sim \text{Normal}(0, 10)
\sigma_{\text{café}} \sim \text{HalfCauchy}(0, 2)
\sigma_{\text{âge}} \sim \text{HalfCauchy}(0, 2)
```


Robot et café : varying intercept + varying slope

On s'intéresse maintenant à l'effet du moment de la journée sur le temps d'attente. Attend-on plus le matin, ou l'après-midi ?

$$w_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha_{\text{café}[i]} + \beta_{\text{café}[i]} \times A_i$

Où A_i est une dummy variable codée 0/1 pour le matin et l'après-midi et où $\beta_{\text{café}}$ est donc un paramètre de différence (i.e., une pente) entre le matin et l'après-midi.

Remarque : on sait que les cafés ont des intercepts et des pentes qui co-varient... Les cafés populaires seront surchargés le matin et beaucoup moins l'après-midi, résultant en une pente importante. Ces cafés auront aussi un temps d'attente moyen plus long (i.e., un intercept plus grand). Dans ces cafés, α est grand et β est loin de zéro. À l'inverse, dans un café peu populaire, le temps d'attente sera faible, ainsi que la différence entre matin et après-midi.

On pourrait donc utiliser la co-variation entre intercept et pente pour faire de meilleures inférences. Autrement dit, faire en sorte que l'estimation de l'intercept informe celle de la pente, et réciproquement.

Robot et café : varying intercept + varying slope

On s'intéresse maintenant à l'effet du moment de la journée sur le temps d'attente. Attend-on plus le matin, ou l'après-midi ?

$$w_{i} \sim \text{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha_{\text{café}[i]} + \beta_{\text{café}[i]} \times A_{i}$$

$$\begin{bmatrix} \alpha_{\text{café}} \\ \beta_{\text{café}} \end{bmatrix} \sim \text{MVNormal}\left(\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S}\right)$$

La troisième ligne postule que chaque café a un intercept $\alpha_{\text{café}}$ et une pente $\beta_{\text{café}}$, définis par un prior Gaussien bivarié (i.e., à deux dimensions) ayant comme moyennes α et β et comme matrice de covariance \mathbf{S} .

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Où μ est un vecteur (à k dimensions) de moyennes, par exemple: μ <- μ <- μ <- μ (a, b).

 Σ est une matrice de covariance de $k \times k$ dimensions, et qui correspond à la matrice donnée par la fonction vcov().

$$oldsymbol{\Sigma} = \left(egin{array}{ccc} \sigma_{lpha}^2 & \sigma_{lpha}\sigma_{eta}
ho \ \sigma_{lpha}\sigma_{eta}
ho & \sigma_{eta}^2 \end{array}
ight)$$

$$oldsymbol{\Sigma} = \left(egin{array}{ccc} \sigma_{lpha}^2 & \sigma_{lpha}\sigma_{eta}
ho \ \sigma_{lpha}\sigma_{eta}
ho & \sigma_{eta}^2 \end{array}
ight)$$

Cette matrice peut se construire de deux manières différentes, strictement équivalentes.

```
1 sigma_a <- 1
2 sigma_b <- 0.75
3 rho <- 0.7
4 cov_ab <- sigma_a * sigma_b * rho
5 (Sigmal <- matrix(c(sigma_a^2, cov_ab, cov_ab, sigma_b^2), ncol = 2) )

[,1] [,2]
[1,] 1.000 0.5250
[2,] 0.525 0.5625</pre>
```


$$oldsymbol{\Sigma} = \left(egin{array}{ccc} \sigma_{lpha}^2 & \sigma_{lpha}\sigma_{eta}
ho \ \sigma_{lpha}\sigma_{eta}
ho & \sigma_{eta}^2 \end{array}
ight)$$

La deuxième méthode est pratique car elle considère séparément les écart-types et les corrélations.

Robot et café : varying intercept + varying slope

$$w_{i} \sim \text{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha_{\text{café}[i]} + \beta_{\text{café}[i]} \times A_{i}$$

$$\begin{bmatrix} \alpha_{\text{café}} \\ \beta_{\text{café}} \end{bmatrix} \sim \text{MVNormal}\begin{pmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix}$$

$$\alpha \sim \text{Normal}(0, 10)$$

$$\beta \sim \text{Normal}(0, 10)$$

$$\sigma_{\alpha} \sim \text{HalfCauchy}(0, 2)$$

$$\sigma_{\beta} \sim \text{HalfCauchy}(0, 2)$$

$$\sigma \sim \text{HalfCauchy}(0, 2)$$

$$\mathbf{R} \sim \text{LKJ}(2)$$

 ${f S}$ est définie en factorisant σ_{α} , σ_{β} , et la matrice de corrélation ${f R}$. La suite du modèle définit simplement les priors pour les effets constants. La dernière ligne spécifie le prior pour ${f R}$.

LKJ prior

Prior proposé par Lewandowski et al. (2009). Un seul paramètre ζ (zeta) spécifie la concentration de la distribution du coefficient de corrélation. Le prior LKJ(2) définit un prior peu informatif pour ρ (rho) qui est sceptique des corrélations extrêmes (i.e., des valeurs proches de -1 ou 1).

Rappels de syntaxe

Le paquet brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le paquet lme4.

```
1 Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou "outcome", i.e., ce qu'on essaye de prédire).

La partie droite permet de définir les prédicteurs. L'intercept est généralement implicite, de sorte que les deux écritures ci-dessous sont équivalentes.

```
1 Reaction ~ Days + (1 + Days | Subject)
2 Reaction ~ 1 + Days + (1 + Days | Subject)
```


Rappels de syntaxe

La première partie de la partie droite de la formule représente les effets constants (effets fixes), tandis que la seconde partie (entre parenthèses) représente les effets "variants" ou "variables" (effets aléatoires).

```
1 Reaction ~ 1 + Days + (1 | Subject)
2 Reaction ~ 1 + Days + (1 + Days | Subject)
```

Le premier modèle ci-dessus contient seulement un intercept variable, qui varie par **Subject**. Le deuxième modèle contient également un intercept variable, mais aussi une pente variable pour l'effet de **Days**.

Rappels de syntaxe

Lorsqu'on inclut plusieurs effets variants (e.g., un intercept et une pente variables), **brms** postule qu'on souhaite aussi estimer la corrélation entre ces deux effets. Dans le cas contraire, on peut supprimer cette corrélation (i.e., la fixer à 0) en utilisant | | |.

```
1 Reaction ~ Days + (1 + Days || Subject)
```

Les modèles précédents postulaient un modèle génératif Gaussien. Ce postulat peut être changé facilement en spécifiant la fonction souhaitée via l'argument **family**.

```
1 brm(formula = Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal())
```


Modèle brms

On spécifie un intercept et une pente (pour l'effet d'afternoon) qui varient par cafe.

```
1 mod5 <- brm(</pre>
     formula = wait ~ 1 + afternoon + (1 + afternoon | cafe),
     prior = c(
 3
       prior(normal(0, 10), class = Intercept),
 4
       prior(normal(0, 10), class = b),
 5
       prior(cauchy(0, 2), class = sigma),
 6
       prior(cauchy(0, 2), class = sd)
 8
       ),
 9
     data = df,
     warmup = 1000, iter = 5000,
10
11
     cores = parallel::detectCores()
12
```


Distribution postérieure

Shrinkage en deux dimensions

Comparaison de modèles

On compare le premier modèle (complete pooling model), le troisième modèle (partial pooling model), et le dernier modèle (avec intercept et pente variable).

```
1 # comparaison des WAIC de chaque modèle
  2 mod5 <- add criterion(mod5, "waic")</pre>
  3 w <- loo compare(mod1, mod2, mod3, mod5, criterion = "waic")</pre>
  4 print(w, simplify = FALSE)
     elpd diff se diff elpd waic se elpd waic p waic se p waic waic
                                                                        se waic
        0.0
                                   10.1
                                                                         20.1
mod5
                  0.0 - 155.0
                                                         2.6
                                                                 310.0
                                                 26.6
mod3 -98.8
                  8.3 -253.8
                                    8.3
                                                 18.1
                                                         1.5
                                                                 507.6
                                                                         16.6
mod2 - 99.4
                  8.3 - 254.4
                                    8.4
                                                         1.6
                                                                 508.7
                                                                         16.7
                                                 19.4
mod1 -156.1
                 13.7 -311.1
                                   10.6
                                                  2.0
                                                         0.3
                                                                 622.1
                                                                         21.1
  1 model weights(mod1, mod2, mod3, mod5, weights = "waic")
        mod1
                     mod2
                                   mod3
                                                mod5
1.648031e-68 6.938094e-44 1.221044e-43 1.000000e+00
```


Comparaison de modèles

L'estimation du temps d'attente moyen est plus incertaine lorsqu'on prend en compte de nouvelles sources d'erreur. Cependant, l'erreur du modèle (i.e., ce qui n'est pas expliqué), la variation résiduelle σ , diminue...

```
1 posterior summary(mod1, pars = c("^b", "sigma") )
            Estimate Est.Error
                                    02.5
                                            097.5
b Intercept 3.118824 0.07953888 2.963235 3.274122
sigma
            1.141772 0.05642862 1.038975 1.256931
  1 posterior summary(mod3, pars = c("^b", "sigma") )
             Estimate Est.Error
                                      02.5
                                               097.5
b Intercept 3.1224462 0.20548659 2.7134453 3.5301519
sigma
            0.8219151 0.04328802 0.7430558 0.9108058
  1 posterior summary(mod5, pars = c("^b", "sigma") )
              Estimate Est.Error
                                       02.5
                                                 097.5
b Intercept 3.7397979 0.21646428 3.305611
                                             4.1743387
b afternoon -1.2317902 0.08691248 -1.405042 -1.0591450
             0.4892566 0.02748533 0.438913 0.5466079
sigma
```


Conclusions

Les modèles multi-niveaux (ou "modèles mixtes") sont des extensions naturelles des modèles de régression classiques, où les paramètres de ces derniers se voient eux-même attribués des "modèles", gouvernés par des hyper-paramètres.

Cette extension permet de faire des prédictions plus précises en prenant en compte la variabilité liée aux groupes ou structures (clusters) présent(e)s dans les données. Autrement dit, en modélisant les populations d'où sont tirés les effets aléatoires (e.g., la population de participants ou de stimuli).

Un modèle de régression classique est équivalent à un modèle multi-niveaux où la variabilité des effets aléatoires serait fixée à 0.

La cadre bayésien permet une interprétation naturelle des distributions desquelles proviennent les effets aléatoires (varying effects). En effet, ces distributions peuvent être interprétées comme des distributions a priori, dont les paramètres sont estimés à partir des données.

Travaux pratiques - sleepstudy

```
1 library(lme4)
  2 data(sleepstudy)
  3 head(sleepstudy, 20)
   Reaction Days Subject
  249.5600
                     308
  258.7047
                     308
  250.8006
                     308
  321.4398
                     308
  356.8519
                     308
6 414.6901
                     308
  382.2038
                     308
  290.1486
                     308
  430.5853
                     308
10 466.3535
                     308
11 222.7339
                     309
12 205.2658
                     309
13 202.9778
                     309
14 204.7070
               3
                     309
15 207.7161
                     309
16 215.9618
                     309
17 213.6303
                     309
18 217.7272
                     309
19 224.2957
               8
                     309
20 237.3142
                     309
```


Travaux pratiques - sleepstudy

```
1 sleepstudy %>%
2    ggplot(aes(x = Days, y = Reaction) ) +
3    geom_smooth(method = "lm", colour = "black") +
4    geom_point() +
5    facet_wrap(~Subject, nrow = 2) +
6    scale_x_continuous(breaks = c(0, 2, 4, 6, 8) )
```


Travaux pratiques - sleepstudy

À vous de construire les modèles mathématiques et les modèles **brms** correspondant aux modèles suivants :

- Modèle avec seulement l'effet fixe de Days.
- Modèle avec l'effet fixe de Days + un effet aléatoire de Subject (varying intercept).
- Modèle avec l'effet fixe de **Days** + un effet aléatoire de **Subject**. (varying intercept) + un effet aléatoire de **Days** (varying slope).

Comparez ensuite ces modèles en utilisant les outils discutés aux cours précédents (e.g., WAIC) et concluez.


```
1 mod6 <- brm(
      Reaction ~ 1 + Days,
  3
      prior = c(
  4
        prior(normal(200, 100), class = Intercept),
        prior(normal(0, 10), class = b),
        prior(cauchy(0, 10), class = sigma)
        ),
  8
      data = sleepstudy,
      warmup = 1000, iter = 5000,
  9
 10
      cores = parallel::detectCores()
 11
  1 posterior summary(mod6)
                                       02.5
                                                 Q97.5
              Estimate Est.Error
b Intercept 251.93039 6.6371239 238.884234 264.84498
b Days
             10.32424 1.2315772
                                   7.902365 12.73023
sigma
            47.74154 2.5503911
                                  43.037914 52.96216
lprior
            -15.69187 0.1670769 -16.039829 -15.38754
            -963.48096 1.2294009 -966.624701 -962.07437
lp__
```



```
1 mod7 <- brm(</pre>
      Reaction ~ 1 + Days + (1 | Subject),
  3
      prior = c(
  4
        prior(normal(200, 100), class = Intercept),
        prior(normal(0, 10), class = b),
  5
        prior(cauchy(0, 10), class = sigma),
        prior(cauchy(0, 10), class = sd)
  8
  9
      data = sleepstudy,
      warmup = 1000, iter = 5000,
 10
      cores = parallel::detectCores()
 11
 12
  1 posterior summary(mod7, pars = c("^b", "sigma") )
             Estimate Est.Error
                                      Q2.5
                                               097.5
b Intercept 250.88978 10.0223168 230.99318 270.56323
b Days
             10.40515 0.8027281
                                   8.84247 11.99794
sigma
             31.08754 1.7404375 27.86194 34.74327
```



```
1 mod8 <- brm(
      Reaction ~ 1 + Days + (1 + Days | Subject),
  3
      prior = c(
  4
        prior(normal(200, 100), class = Intercept),
        prior(normal(0, 10), class = b),
  5
        prior(cauchy(0, 10), class = sigma),
        prior(cauchy(0, 10), class = sd)
  8
  9
      data = sleepstudy,
      warmup = 1000, iter = 5000,
 10
      cores = parallel::detectCores()
 11
 12
  1 posterior summary(mod8, pars = c("^b", "sigma") )
             Estimate Est.Error
                                      Q2.5
                                               097.5
b Intercept 251.14710 6.934251 237.643148 264.81612
b Days
             10.07880 1.635332 6.724357 13.21770
sigma
             25.85959 1.555886 23.008627 29.06938
```



```
1 # calcul du WAIC et ajout du WAIC à chaque modèle
  2 mod6 <- add criterion(mod6, "waic")</pre>
  3 mod7 <- add criterion(mod7, "waic")</pre>
   mod8 <- add criterion(mod8, "waic")</pre>
   # comparaison des WAIC de chaque modèle
  7 w <- loo compare(mod6, mod7, mod8, criterion = "waic")</pre>
  8 print(w, simplify = FALSE)
     elpd diff se diff elpd waic se elpd waic p waic se p waic waic
                                                                        se waic
      0.0
                  0.0 -860.2
mod8
                                    22.3
                                                 32.7
                                                         8.3
                                                                 1720.5
                                                                          44.6
mod7 -24.4
                 11.5 -884.6
                                    14.4
                                                 19.1
                                                         3.3
                                                                1769.2
                                                                          28.8
mod6 - 93.1
                 20.9 -953.3
                                    10.6
                                                  3.2
                                                         0.5
                                                                1906.6
                                                                          21.2
  1 # calcul du poids relatif de chaque modèle
  2 model_weights(mod6, mod7, mod8, weights = "waic")
        mod6
                     mod7
                                   mod8
3.798293e-41 2.647074e-11 1.000000e+00
```


Références

Efron, B., & Morris, C. (1977). Stein's paradox in statistics. *Scientific American*, 236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119

Gelman, A. (2005). Analysis of variance? Why it is more important than ever. *The Annals of Statistics*, *33*(1), 1–53. https://doi.org/10.1214/009053604000001048

Gelman, A., & Hill, J. (2006). *Data analysis using regression and multilevel/hierarchical models*. https://doi.org/10.1017/cbo9780511790942

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. *Journal of Multivariate Analysis*, 100(9), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008

