Chapter 3 (Answers to Exercises)

3.1.1 0.

3.1.2 0.12, 0.12.

3.1.3 0.03.

3.1.4 0.02, 0.02.

3.1.5 0.025, 0.0075.

3.2.1 (a)
$$\mathbf{P}^2 = \begin{bmatrix} 0.47 & 0.13 & 0.40 \\ 0.42 & 0.14 & 0.44 \\ 0.26 & 0.17 & 0.57 \end{bmatrix}$$

- **(b)** 0.13.
- (c) 0.16.

3.2.2
$$n$$
 0 1 2 3 4
 $Pr\{X_n = 0 | X_0 = 0\}$ 1 0 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{3}{8}$

3.2.3 0.264, 0.254.

3.2.4 0.35.

3.2.5 0.27, 0.27.

3.2.6 0.42, 0.416.

3.3.2
$$P_{ii} = \left(\frac{i}{N}\right)p + \left(\frac{N-i}{N}\right)q;$$
 $P_{i,i+1} = \left(\frac{N-i}{N}\right)p;$ $P_{i,i-1} = \left(\frac{i}{N}\right)q.$

3.3.5 0 1 2
$$\mathbf{P} = \begin{bmatrix}
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
2 & 0 & 1 & 0
\end{bmatrix}$$

3.4.1
$$v_{03} = 10$$
.

3.4.2 (a)
$$u_{10} = \frac{1}{4}$$
;

(b)
$$v_1 = \frac{5}{2}$$
.

3.4.3 (a)
$$u_{10} = \frac{40}{105}$$
;

(b)
$$v_1 = \frac{10}{3}$$
.

3.6.1 (a)
$$u_{35} = \frac{3}{5}$$
;

(b)
$$u_{35} = \left[1 - \left(\frac{q}{p}\right)^3\right] / \left[1 - \left(\frac{q}{p}\right)^5\right].$$

3.6.2
$$u_{10} = 0.65$$
.

3.6.3
$$v = 2152.777...$$

3.6.4
$$v_1 = 2.1518987$$
.

(a)
$$u_{10} = \frac{9}{22}$$
;

(b)
$$w_{11} = \frac{20}{11}$$
; $w_{12} = \frac{25}{11}$.

(a)
$$u_{10} = \frac{30}{79}$$
;

(b)
$$w_{11} = \frac{100}{79}$$
; $w_{12} = \frac{70}{79}$.

3.8.1
$$M(n) = 1, V(n) = n$$
.

3.8.2
$$\mu = b + 2c$$
; $\sigma^2 = b + 4c - (b + 2c)^2$.

3.8.4
$$M(n) = \lambda^n$$
, $V(n) = \lambda^n \left(\frac{1-\lambda^n}{1-\lambda}\right)$, $\lambda \neq 1$.

3.9.1
$$n$$
 1 2 3 4 5 u_n 0.333 0.480 0.564 0.619 0.658 u_∞ = 0.82387.

3.9.2
$$\varphi(s) = p_0 + p_2 s^2$$
.

3.9.3
$$\varphi(s) = p + qs^N$$
.

3.9.4
$$\frac{\varphi(s)-\varphi(0)}{1-\varphi(0)}$$
.

Chapter 4 (Answers to Excercises)

4.1.1
$$\pi_0 = \frac{10}{21}, \pi_1 = \frac{5}{21}, \pi_2 = \frac{6}{21}.$$

4.1.2
$$\pi_0 = \frac{31}{66}, \pi_1 = \frac{16}{66}, \pi_2 = \frac{19}{66}$$

4.1.3
$$\pi_1 = \frac{3}{13}$$
.

4.1.5
$$\pi_0 = \frac{10}{29}, \pi_1 = \frac{5}{29}, \pi_2 = \frac{5}{29}, \pi_3 = \frac{9}{29}.$$

4.1.6
$$\pi_0 = \frac{5}{14}$$
, $\pi_1 = \frac{6}{14}$, $\pi_2 = \frac{3}{14}$.

4.1.7
$$\pi_0 = \frac{140}{441}, \, \pi_1 = \frac{40}{441}, \, \pi_2 = \frac{135}{441}, \, \pi_3 = \frac{126}{441}.$$

4.1.8
$$\pi_u = \frac{4}{17}$$
.

4.1.9
$$\pi_0 = \frac{2}{7}, \pi_1 = \frac{3}{7}, \pi_2 = \frac{2}{7}.$$

4.1.10
$$\pi_{\text{late}} = \frac{17}{40}$$
.

4.2.1
$$\pi_s = \frac{8}{9}$$
.

4.2.2 One facility:
$$Pr\{Idle\} = \frac{q^2}{1+p^2}$$
;
Two facilities: $Pr\{Idle\} = \frac{1}{1+p+p^2}$.

4.2.5
$$\pi_A = \frac{1}{5}$$
.

4.2.6
$$\pi_0 = \frac{1}{3}$$
.

(b)
$$\pi_1 = \pi_2 = \frac{10}{21}, \pi_3 = \frac{1}{21};$$

(c)
$$\pi_3 = \frac{1}{21}$$
.

4.2.8
$$\pi_3 = \frac{8}{51}$$
.

4.3.1
$$\left\{ n \ge 1; P_{00}^{(n)} > 0 \right\} = \{5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, \dots \}$$

$$d(0) = 1, P_{5,7}^{(37)} = 0, P_{i,j}^{(38)} > 0 \quad \text{for all } i, j.$$

4.3.4 {0},
$$d = 1$$
; {1}, $d = 0$; {2, 3, 4, 5}, $d = 1$.

4.4.1
$$\pi_k = p^k / (1 + p + p^2 + p^3 + p^4)$$
 for $k = 0, ..., 4$.

4.4.2 (a)
$$\pi_0 = \frac{1449}{9999}$$
.
(b) $m_{10} = \frac{8550}{1440}$.

4.4.3
$$\pi_0 = \pi_1 = 0.2, \pi_2 = \pi_3 = 0.3.$$

4.5.1
$$\lim P_{00}^{(n)} = \lim P_{10}^{(n)} = 0.4;$$
 $\lim P_{20}^{(n)} = \lim P_{30}^{(n)} = 0;$ $\lim P_{40}^{(n)} = 0.4.$

4.5.2 (a)
$$\frac{3}{11}$$
, (e) $\frac{3}{11}$,

(b) 0, **(f)**
$$X$$
,

(c)
$$\frac{2}{33}$$
, (g) $\frac{1}{3}$,

(d)
$$\frac{2}{9}$$
, (h) $\frac{4}{27}$.