Conjugate Direction Methods

• First, consider a quadratic problem:

min
$$f(x) = \frac{1}{2} x'Qx - b'x$$

where Q is positive definite

- Is it convex?
- What is the equivalent linear program?

How to solve it?

- Start gently
 - Consider the simplest case
 - When Q = I = 0
- Orthogonality of searching directions a must?
- Can we extend it to general Q?

Conjugacy

• Given a positive definite matrix Q, a set of nonzero vectors d^1 , ..., d^k are Q-conjugate if $d^i Qd^j = 0$, for all i and j such that $i \neq j$

• If d^l , ..., d^k are Q-conjugate, they are linearly independent

Conjugate Direction Method for Quadratic Optimization

- 1. Start with arbitrary x^0
- 2. Get d^0 , ..., d^{n-1} which are *Q-conjugate*
- 3. Repeat

$$x^{k+1} = x^k + \alpha^k d^k$$
 Where $\alpha^k = argmin_{\alpha} f(x^k + \alpha d^k)$ for $k = 0, ..., n-1$

- Intuition: dimensional decomposition
 - "orthogonal" w.r.t. Q

GENERATING Q-CONJUGATE DIRECTIONS

- Given set of linearly independent vectors ξ^0, \ldots, ξ^k , we can construct a set of Q-conjugate directions d^0, \ldots, d^k s.t. $Span(d^0, \ldots, d^i) = Span(\xi^0, \ldots, \xi^i)$
- Gram- $Schmidt\ procedure$. Start with $d^0 = \xi^0$. If for some $i < k,\ d^0, \ldots, d^i$ are Q-conjugate and the above property holds, take

$$d^{i+1} = \xi^{i+1} + \sum_{m=0}^{i} c^{(i+1)m} d^m;$$

choose $c^{(i+1)m}$ so d^{i+1} is Q-conjugate to d^0, \ldots, d^i ,

$$d^{i+1'}Qd^{j} = \xi^{i+1'}Qd^{j} + \left(\sum_{m=0}^{i} c^{(i+1)m}d^{m}\right)'Qd^{j} = 0.$$

CONJUGATE GRADIENT METHOD

• Apply Gram-Schmidt to the vectors $\xi^k = -g^k = -\nabla f(x^k)$, $k = 0, 1, \dots, n-1$. Then

$$d^{k} = -g^{k} + \sum_{j=0}^{k-1} \frac{g^{k'}Qd^{j}}{d^{j'}Qd^{j}}d^{j}$$

• Key fact: Direction formula can be simplified.

Proposition : The directions of the CGM are generated by $d^0=-g^0,$ and

$$d^k = -g^k + \beta^k d^{k-1}, \qquad k = 1, \dots, n-1,$$

where β^k is given by

$$\beta^k = \frac{g^{k'}g^k}{g^{k-1'}g^{k-1}}$$
 or $\beta^k = \frac{(g^k - g^{k-1})'g^k}{g^{k-1'}g^{k-1}}$

Furthermore, the method terminates with an optimal solution after at most n steps.

• Extension to nonquadratic problems.

Conjugate Gradient Methods applied to Nonquadratic Problems

- min f(x), where f(x) is a general function
 use the same algorithm
- $x^{k+1} = x^k + \alpha^k d^k$ Where $\alpha^k = argmin_{\alpha} f(x^k + \alpha d^k)$ $d^k = -g^k + \beta^k d^{k-1}$
- Approximation: d0, d1, ..., gradually lose conjugacy. Remedies:
 - Restart every n iterations (with a steepest descent)
 - Restart when conjugacy is lost
- Line search may be expensive

Quasi-Newton Method

• Newton's method:

$$-d^{k} = -(H^{k})^{-1} g^{k}$$

- But (H^k) ⁻¹ is expensive to evaluate
- Can we approximate (H^k) ⁻¹ given
 - $-x^0, x^1, ..., x^{k-1}$
 - $-f^0, f^1, ..., f^{k-1}$
 - $-g^0, g^1, ..., g^{k-1}$

QUASI-NEWTON METHODS

- $x^{k+1} = x^k \alpha^k D^k \nabla f(x^k)$, where D^k is an inverse Hessian approximation.
- Key idea: Successive iterates x^k , x^{k+1} and gradients $\nabla f(x^k)$, $\nabla f(x^{k+1})$, yield curvature info

$$q^{k} \approx \nabla^{2} f(x^{k+1}) p^{k},$$

$$p^{k} = x^{k+1} - x^{k}, \quad q^{k} = \nabla f(x^{k+1}) - \nabla f(x^{k}),$$

$$\nabla^{2} f(x^{n}) \approx \left[q^{0} \cdots q^{n-1} \right] \left[p^{0} \cdots p^{n-1} \right]^{-1}$$

 Most popular Quasi-Newton method is a clever way to implement this idea

$$D^{k+1} = D^k + \frac{p^k p^{k'}}{p^{k'} q^k} - \frac{D^k q^k q^{k'} D^k}{q^{k'} D^k q^k} + \xi^k \tau^k v^k v^{k'},$$

$$v^k = \frac{p^k}{p^{k'}q^k} - \frac{D^k q^k}{\tau^k}, \quad \tau^k = q^{k'}D^k q^k, \quad 0 \le \xi^k \le 1$$

and $D^0>0$ is arbitrary, α^k by line minimization, and $D^n=Q^{-1}$ for a quadratic.

Summary of Gradient Methods

- Steepest Descent
 - 1 iteration for linear problems
- Newton's Method
 - 1 iteration for quadratic problems
- Conjugate gradient and quasi-Newton
 - -n iterations for quadratic problems
- All solve non-quadratic problems heuristically
 - needs infinite number of iterations to converge

More comparisons

- Advantages of Quasi-Newton over conjugate gradient for nonquadratic problems:
 - Better local convergence since QN approximates Newton
 - Does not needs to periodically restart
 - CGM loses conjugacy, while QN improves approximation
 - Experimentally, QN is less sensitive to linear search quality

• Complexity per iteration:

- Newton: $O(n^3)$, f, gradient, Hessian, to generate H^{k-1}
- QN: $O(n^2)$, f, gradient, to generate D^k
- CGM: O(n), f, gradient, to generate d^k
- CGM is preferable when *n* is large and computing gradient is efficient