Aula 2 - processamento de dados com numpy e pandas

Jayme Anchante

23 de fevereiro de 2021

software

- ▶ git: versionamento de código
- anaconda: ambientes isolados, reproducibilidade
- jupyter: interface gráfica

pacotes que usam numpy

Quantum Computing	Statistical Computing	Signal Processing	Image Processing	Graphs and Networks	Astronomy Processes	Cognitive Psychology
	*	ահերգրո		M		
QuTiP PyQuil Qiskit	Pandas statsmodels Seaborn	SciPy PyWavelets	Scikit-image OpenCV	NetworkX graph-tool igraph PyGSP	AstroPy SunPy SpacePy	PsychoPy
Bioinformatics	Bayesian Inference	Mathematical Analysis	Simulation Modeling	Multi-variate Analysis	Geographic Processing	Interactive Computing
3000		+ - x =				-ign
BioPython Scikit-Bio PyEnsembl	PyStan PyMC3	SciPy SymPy cvxpy FEniCS	PyDSTool	PyChem	Shapely GeoPandas Folium	Jupyter IPython Binder

The fundamental package for scientific computing with Python, NumPy website

fronteira da ciência

Case Study: First Image of a Black Hole

listas vs arrays vs numpy arrays

- listas aceitam qualquer tipo de dados (flexibilidade)
- arrays tem tipo fixo (armazenamento eficiente)
- numpy arrays tem tipo fixo e otimizações (armazenamento e cálculo eficiente)

lista vs numpy array

criando arrays

```
np.zeros(10)
np.ones((2,2))
np.full((3,1), 3.14)
np.arange(5)
np.linspace(0, 1, 5)
```

gerador de números pseudo-aleatórios

- np.random.RandomState(42)
- p.random.seed(42)
- 3 np.random.<tab>

acessando elementos

```
x1 = np.random.randint(10, size=6) # 1 dim
x2 = np.random.randint(10, size=(3, 4)) # 2 dim
x1[0]
x1[-2]
x2[0, 0]
x2[2, -1]
x2[0, 0] = 12
```

fatiamento de elementos

```
1 # x[start:stop:step]
2 x1[:5] # primeiros cinco elementos
3 x1[::2] # cada dois elementos
4 x1[::-1] # inversão dos elementos
```

cópia de objetos

```
1     x2_sub = x2[:2, :2]
2     x2_sub[0, 0] = 99
3     # o que aconteceu com x2?
4     x2_sub_copy = x2[:2, :2].copy() # fazendo uma cópia
5     x2_sub_copy[0, 0] = 42
6     # o que aconteceu com x2?
```

reformatação de objetos

```
x = np.array([1, 2, 3])
x.reshape((1, 3)) # row vector via reshape
x[np.newaxis, :] # row vector via newaxis
x.reshape((3, 1)) # column vector via reshape
x[:, np.newaxis] # column vector via newaxis
```

junção e separação de objetos

- np.concatenate
- 2 np.vstack
- 3 np.hstack
- 4 np.split
- $_{5}$ np.vsplit
- np.hsplit

operações com numpy

10

```
def compute reciprocals(values):
       output = np.empty(len(values))
2
       for i in range(len(values)):
3
           output[i] = 1.0 / values[i]
4
       return output
5
  big array = np.random.randint(1, 100, size=1000000)
6
7
  %timeit compute_reciprocals(big_array)
9
  %timeit 1.0 / big_array
```

operações com numpy

```
# operações agregação
x = np.arange(1, 6)
np.add.reduce(x) # soma dos elementos
np.add.accumulate(x) # soma acumulada
np.multiply.outer(x, x) # produto cartesiano
```

sumarizando np.array

```
1  a = np.random.random(100)
2  sum(a)
3  np.sum(a)
4  a.max()
5  # soma com dados faltantes
6  np.nansum(a)
```

máscaras np.array

```
1  a = np.random.random(10)
2  a > 5
3  a[a>5]
4  a[(a>5) & (a<7)]
5  # suporte ao //or e ~/not</pre>
```

dado o seguinte np.array

- a = np.arange(25).reshape(5,5)
 - 1. Retorne os valores pares positivos menores que 14.
 - 2. Qual a média da segunda coluna?
 - 3. Qual a soma da quarta linha?
 - 4. Separe a última linha e transforme em um vetor coluna.
 - 5. Salve o objeto contendo o np.array em disco.

história

Iniciado por Wes McKinney em 2008 quando ele trabalhava no mercado financeiro

Começou como uma implementação em Python da API de dataframe do R

Código aberto em 2009 e posterior apoio pela NumFocus

pd.Series

```
import pandas as pd
data = pd.Series([0, 2, 4, 6])
# valores e indice são np.array
data.values
data.index
# acessando elementos pelo indice
data[-1]
data[:2]
```

pd.Series vs np.array

Uma das grandes diferenças está no índice. Ele pode ser não numérico, não sequencial.

pd.Series vs dict

pd.DataFrame

Se o pd.Series pode ser comparados a um vetor unidimensional, o pd.DataFrame pode ser comparado a uma matrix bidimensional.

O pd.DataFrame é como uma sequencia de pd.Series que compatilham o mesmo índice.

pd.DataFrame a partir de pd.Series

construção de pd.DataFrame

```
1 # a partir de series
  pd.DataFrame(population, columns='population')
3 # a partir de listas
   data = [\{'a': i, 'b': 2 * i\} \text{ for } i \text{ in } range(3)]
  pd.DataFrame(data)
   # preenchimento com nan
6
   pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])
   # a partir de np.array
   pd.DataFrame(np.random.rand(3, 2),
                 columns=['foo', 'bar'],
10
                 index=['a', 'b', 'c'])
11
```

índices em pandas

Os índices são como arrays, porém são imutáveis

```
ind = pd.Index([2, 3, 5, 7, 11])
ind[::2]
# tentando colocar novo valor
ind[1] = 0
```

índices como sets

Os índices são otimizados para joins e outras operações, baseado na lógica de sets.

```
indA = pd.Index([1, 3, 5, 7, 9])
indB = pd.Index([2, 3, 5, 7, 11])
indA & indB # intersection
indA | indB # union
indA ^ indB # symmetric difference
```

índices como dicts

pd.Series como vetor unidimensional

```
data['a':'c'] # indice explicatio
data[0:2] # indice implicatio
data[(data > 0.3) & (data < 0.8)] # mask</pre>
```

exercícios

- 1. Crie uma série cujo índice são nomes e cujos valores são idades (use suas informações, de seus amigos e familiares)
- 2. Teste se 'João' está nos nomes
- 3. Retorne a última idade
- 4. Retorne as idades maiores que 65
- 5. Retorne as idades maiores que 18 e menos que 35

indexadores: loc, iloc, ix

```
data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
2
   data[1] # indice explicito
3
   data[1:3] # indice implication
   # explícito com loc
6 data.loc[1]
7 data.loc[1:3]
8 # implícito com iloc
9 data.iloc[1]
10 data.iloc[1:3]
   > "Sempre" usar .loc!
```

dataframe como dict

```
data = pd.DataFrame({'area':area, 'pop':pop})

# selecionar uma coluna

data['area'] # como dict

data.area # como atributo

data.area is data['area'] # teste equivalência

data.pop is data['pop'] # pop é uma método do obj, periga

data['density'] = data['pop'] / data['area']
```

> Operações usar [column], para atribuições usar .loc!

dataframe como vetor bidimensional

```
data.values # valores brutos
data.T # transposição
data.values[0] # acessando 1a linha
data['area'] # acessando coluna
data.loc[
data.density > 100,
['pop', 'density']
# select pop, density where density>100
```

operações em dataframe

```
df = pd.DataFrame(np.random.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D'])
np.sin(df * np.pi / 4) # operações com np e pd
```

dados faltantes

Duas estratégias principais:

- usando um indicador (V/F) de presença de dados faltantes
- usando um valor reservado para representar um dado faltante;
 e.g. -9999 or NaN

Como pandas segue numpy, não existe a noção de NA fora do tipo ponto flutuante

Existem dois valores reservados: NaN (numpy) e None (python)

None

```
vals1 = np.array([1, None, 3, 4])
 vals1 # inferência de tipo é python object
  # ineficiência da operação em object
  for dtype in ['object', 'int']:
2
      print("dtype =", dtype)
3
      %timeit np.arange(1E6, dtype=dtype).sum()
      print()
```

vals1.sum()

NaN

vals2.dtype

```
1  1 + np.nan
2  vals2.sum(), vals2.min(), vals2.max()
3  np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)
```

vals2 = np.array([1, np.nan, 3, 4])

pandas: None e NaN

None e NaN são intercambiáveis em pandas

```
pd.Series([1, np.nan, 2, None])

x = pd.Series(range(2), dtype=int)
x # int
x | [0] = None
x # float
```

operações em nulos

```
data = pd.Series([1, np.nan, 'hello', None])
data.isnull()
data.notnull()
data.dropna()
data.fillna()
```

> Não fazer comparações diretas como data == np.nan!

combinação de dados com numpy: concat

```
linha = [1,2,3]
pn.concatenate([linha, linha, linha])
matriz = [[1, 2], [3, 4]]
pn.concatenate([matriz, matriz])
```

combinação de dados com pandas: concat

```
ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
pd.concat([ser1, ser1])
pd.concat([ser1, ser1], axis=1) # ou axis='columns'
pd.concat([ser1, ser1], ignore_index=True)
def d(): return np.random.randint(1, 10, (5,2))
df1 = pd.DataFrame(d(), columns=['a', 'b'])
df2 = pd.DataFrame(d(), columns=['a', 'c'])
pd.concat([df1, df2])
pd.concat([df1, df2], axis=1)
df1.append(df2)
```

combinação de dados: merge

```
pd.merge(df1, df2)
pd.merge(df1, df2, on='a') # explicitando chave
pd.merge(df1, df2, how='outer')
```

agregação e agrupamento

import seaborn as sns

planets.shape

Vamos usar um dataset do pacote seaborn

planets = sns.load_dataset('planets')

```
planets.head()
planets.describe()
planets.mean()
# quantidade de planetas descobertos / ano
planets.groupby('year')['number'].sum()
# mediana período orbitas / método
planets.groupby('method')['orbital_period'].median()
```

vetorização de operações com apply

Aplicação de uma função genérica especifica em python puro

```
def add2(x):
    return x + 2
df = pd.DataFrame(d(), columns=['col1', 'col2'])
df.apply(add2)
df['col1'].apply(add2)
```

trabalhando com texto

```
data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
[s.capitalize() for s in data]
names = pd.Series(data)
names.str.capitalize()
```

mais recursos

Livro Python para Análise de dados do autor do pacote pandas Vídeos nas conferências PyCon, SciPy e PyData podem ser encontrados no PyVideo

exercícios

Usando a base de planetas:

- 1. Mostre os métodos e distâncias após o ano de 2010
- 2. Calcule o período orbitas vezes massa dividido pela distância
- 3. Quantos valores nulos existem em cada coluna?
- 4. Quantos planetas foram descobertos por cada método.
- Remova os espaços do texto e coloque em caixa baixa a coluna método.

lista

Usando a base de dados de antibióticos (clicar no link para acessar os dados), responda:

- 1. Leia a base e atribua a um objeto chamado df
- 2. Quantas bactérias do tipo "Streptococcus" existem?
- 3. Qual o maior e menor valor de neomicina? E a qual bactéria estão associados?
- 4. Quantas bactérias existem por tipo de grama?
- 5. Crie uma nova coluna chamada "valor" sendo a penicilina vezes a estreptomicina dividido pela neomicina.
- 6. Salve os dados com essa nova coluna num arquivo chamado "antibioticos.csv" sem o índice e com separador de ";".