

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$= \frac{6 \sin A}{b^{2}c^{3}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} \left\{ \int_{o}^{u} \int_{o}^{z'} (x-y)(u-v) dv dz + \int_{o}^{b} \int_{o}^{z'} (x-y)(v-u) dv dz \right\} du dx dy$$

$$= \frac{6 \sin A}{b^{3}c^{2}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} \left\{ \int_{o}^{u} (x-y)(uv-v^{2}) dv + \int_{o}^{b} (x-y)(v^{2}-uv) dv \right\} du dx dy$$

$$= \frac{\sin A}{b^{3}c^{2}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} (2u^{3}+2b^{3}-3b^{2}u)(x-y) du dx dy$$

$$= \frac{\sin A}{2b^3c^2} \int_{a}^{b} \int_{a}^{x'} (2u^3 + 2b^3 - 3b^2u)x^2 du dx$$

$$= \frac{c \sin A}{6b^6} \int_0^b (2u^6 + 2b^3u^3 - 3b^2u^4) du$$

$$= \frac{13bc \sin A}{420} = \frac{13}{210} \frac{1}{2} (bc \sin A) = \frac{13}{210} \text{ (area of given triangle)}$$

9. Proposed by H. C. WHITAKER, B. S., M. E., Professor of Mathematics, Manual Training School, Philadelphia, Pennsylvania.

Four numbers taken at random are multiplied together. What is the probability that the last digit, will be 0?

I. Solution by H. W. DRAUGHON, Clinton, Louisiana.

The probability that the final digit will be odd is $\binom{6}{10}^4 = \frac{6}{10}\frac{6}{10}\frac{6}{10}$; the probability that it will be 2, 4, 6, or 8, is $\binom{4}{10}^4 + 4\binom{4}{10}(\binom{4}{10})^3 + 6\binom{4}{10}^2\binom{4}{10}^2 + 4\binom{4}{10}^3$ $\binom{4}{10}^4 = \frac{1}{10}\frac{6}{10}\frac{4}{10}^4 = \frac{3}{10}\frac{8}{10}\frac{4}{10}^6$. \therefore the probability that it will be 0 is, $P = 1 - \frac{3}{10}\frac{8}{10}\frac{4}{10}^6$ $-\frac{6}{10}\frac{8}{10}\frac{6}{10} = \frac{5}{10}\frac{6}{10}\frac{6}{10}\frac{6}{10}$.

II. Solution by F P. MATZ, M. Sc., Ph. D.. Professor of Mathematics and Astronomy in New Windsor College, New Windsor, Maryland.

We know from Hall and Knight's Higher Algebra if n integers be taken at random and multiplied together, the probability that the last digit of the product is 1, 3, 7, or 9, is $P_1 = \frac{4^n}{10^n}$; also, the probability that the last digit of the product is 2, 4, 6, or 8, is $P_2 = \frac{8^n - 4^n}{10^n}$; and, finally, the probability that the last digit of this product is 5, is $P_3 = \frac{5^n - 4^n}{10^n}$. Consequently the probability that the last digit of this product is zero, when n=4, is $P_4=1$ $-(P_1+P_2+P_3)$; that is, $P_4 = \frac{10^4 - 8^4 - 5^4 + 4^4}{10^4} = \frac{(5^4 - 4^4)(2^4 - 1)}{5^4 \times 2^4} = \frac{1107}{2000}$.

Solutions to this problem were also received from Hon. JOSIAH DRUMMOND, P. H. PHILBRICK and J. F. W. SCHEFFER,

PROBLEMS.

 Proposed by F. P. MATZ, M. Sc., Ph. D., Professor of Mathematics and Astronomy in New Windsor College, New Windsor, Maryland. A surface one inch square is thrown at random upon a surface one foot square, but so as always to lie wholly upon the larger surface. Find the mean value of the rum of the distances of the vertices of the smaller surface, from any vertex of the larger surface.

19. Proposed by H. W. DRAUGHON, Clinton, Louisiana.

From one corner of a square field, a boy runs in a random direction, with a random uniform velocity. The greatest distance the boy can run in one minute is equal to the diagonal of the field. What is the probability that the boy will be in the field at the end of one minute?

Solutions to these problems should be received on or before December 1st.

MISCELLANEOUS.

Conducted by J M. COLAW, Monterey. Va. All contributions to this department should be sent to him.

SOLUTIONS TO PROBLEMS.

4. Proposed by J K. ELLWOOD, A. M., Principal of Colfax School, Pittsburg, Pennsylvania.

I have two grindstones, each $\frac{1}{2}$ inch thick. One is 6 in. and the other $4\frac{1}{2}$ in. in diameter, the aperature at center of each being $1\frac{1}{4}$ in. If when in motion the yare continually tangent to each other, and $\frac{1}{4}$ cu. in. is ground off the larger wheel and $\frac{1}{4}$ cu. in. off the smaller in the first hour, how must their speed be increased so that the same amount per hour may be ground off each wheel until one is worn out? If in the first hour the larger wheel makes a revolutions, and the smaller b, how many must each make in each succeeding hour?

II. Solution by P. H. PHILBRICK, C. E., Lake Charles, Louisiana.

The diagonal of the aperature is, $\sqrt{45}=2.1213$. Vol. of larger stone outside of the circle circumscribing the aperature is, $\frac{1}{2}\frac{\pi}{4}(36-4.5)=12.37$ and the same for the smaller stone is, $\frac{1}{2}\frac{\pi}{4}(20.25-4.5)=6.185$. The stones will therefore wear out at the same time and in $12.37 \div \frac{1}{2}=24.74$ hours.

The side face of larger stone including the aperature $=\frac{\pi}{4}36=28.27$; and the available area $=\frac{\pi}{4}(36-4.5)=24.74$. One inch area is therefore worn off the side face of the larger stone per hour and one half of an inch off the face of the smaller stone. Hence, including the aperature, the side face of the larger stone at the end of the first hour is 27.27.

At end of second hour 26.27.
At end of third hour 25.25.
etc.,etc.
At the end of the 24½ hour is 4.27.