Vertex of the Quadratic

Given a quadratic $r(k) = a k^2 + b k + c$ compute its value at $k_1 = -\frac{b}{2a}$ namely $r(k_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $k_1 + h$, namely $r(k_1 + h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = r(k_1 + h) - r(k_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1.

r(k) = 2 k² + 31

