1. Consider the page table shown in Figure 3.1 for a system with 12-bit virtual and physical addresses and with 256-byte pages. The list of free page frames is D, E, F (that is, D is at the head of the list, E is second, and F is last). Convert the following virtual

Page	Page Frame
0	_
1	2
2	С
3	A
4	_
5	4
6	3
7	_
8	В
9	0

Figure 3.1: Page table for Exercise 1

addresses to their equivalent physical addresses in hexadecimal. All numbers are given in hexadecimal. (A dash for a page frame indicates that the page is not in memory.)

Because we have 12 bit as virtual address, and 256 byte per page, that mean we need 8 bits for offset $(2^8 = 256)$

9EE \rightarrow index: 0x9, offset: 0xEE \rightarrow physical address: 0EE

111 \rightarrow index: 0x1, offset: 0x11 \rightarrow physical address: 211

 $700 \rightarrow$ index: 0x7, offset: 0x00. But page 7 isn't there, so we add the first frame from free frame list: frame D. \rightarrow physical address: D00

 $0FF \rightarrow index$: 0x0, offset: 0xFF. But page 0 isn't there, so we add the first frame from the remaing free frame list: frame E \rightarrow physical address: EFF