Worksheet answers

- The questions on this worksheet involve the calculation of mass defect, binding energy and binding energy per nucleon.
- 1. Complete the following calculations to find the mass defect, binding energy and binding energy per nucleon of helium.

mass of a neutral helium atom	4.002 604 u
mass of a proton	1.007 276 u
mass of a neutron	1.008 665 u
mass of an electron	0.000 549 u

Start by totalling the individual masses of protons, neutrons and electrons in a neutral helium atom that contains two protons, two neutrons and two electrons.

particle	mass (u) x	number		
protons	1.007 276 x	2	=	2.014 552
neutrons	1.008 665 x	2	=	2.017 330
electrons	0.000 549 x	2	=	0.001 098
total mass			=	4.032 980 u

The mass of the neutral helium atom

= 4.002 604 u

Calculate the mass defect by subtracting the mass of neutral helium atom from the total mass of the individual particles.

Mass defect (u)

= 4.032 980 - 4.002 604

= 0.030 376 u

Convert the mass defect into kilograms using the conversion factor 1 $u = 1.6605 \times 10^{-27} \text{ kg}$.

Mass defect (kg)

= $0.030\ 376\ x\ (1.6605\ x\ 10^{-27})$ = $5.044\ x\ 10^{-29}\ kg$

Using Einstein's famous equation $E = m c^2$, convert this mass into binding energy.

Binding energy (J)

= $5.044 \times 10^{-29} \times (3.00 \times 10^8)^2 = 4.54 \times 10^{-12} \text{ J}$

Helium has four nucleons (two protons and two neutrons). Calculate the binding energy per nucleon.

Binding energy per nucleon = $4.54 \times 10^{-12} / 4$

 $= 1.14 \times 10^{-12} \text{ J per nucleon}$

Convert this to MeV per nucleon using the conversion: $1 \text{MeV} = 1.6 \times 10^{-13} \text{ J}$

For helium:

Binding energy (MeV)

 $= 4.54 \times 10^{-12} / 1.6 \times 10^{-13}$

= 28.4 MeV

Binding energy per nucleon = 28.4 / 4

= 7.1 MeV per nucleon

2. When the nucleus of a uranium-235 atom is divided into two smaller nuclei, mass is converted into energy. Where does this energy originate?

The energy originates from the difference in binding energy between a uranium-235 nucleus and its fission products.

3. Boron undergoes fission via thermal neutron capture to produce lithium-7, an alpha particle and energy in the reaction $n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He$. Using the data below, calculate the mass defect (in u and kg) and binding energy (in J and MeV) for this reaction.

mass of a neutral boron-10 atom	10.012 939 u
mass of a neutral lithium-7 atom	7.016 005 u
mass of a neutral helium-4 atom	4.002 603 u
mass of a neutron	1.008 665 u

Mass of n + $^{10}_{5}$ B	= 1.008 665 + 10.012 939	= 11.021 604 u
Mass of ${}_{3}^{7}\text{Li} + {}_{2}^{4}\text{He}$	= 7.016 005 + 4.002 603	= 11.018 608 u
Mass defect	= 11.021 604 - 11.018 608	= 0.002 996 u
	= 0.002 996 x (1.6605 x 10 ⁻²⁷)	= 4.975 x 10 ⁻³⁰ kg
Binding energy	= $4.975 \times 10^{-30} \times (3.00 \times 10^8)^2$	= 4.478 x 10 ⁻¹³ J
	= $4.478 \times 10^{-13} / 1.6 \times 10^{-13}$	= 2.80 MeV

4. Thorium-228 undergoes fission according to the equation $^{228}_{90}$ Th $\rightarrow ^{224}_{88}$ Ra + $^{4}_{2}$ He. Use the data below to calculate the mass defect and binding energy for this reaction.

mass of a neutral thorium-228 atom	228.028 73 u
mass of a neutral radium-224 atom	224.020 20 u
mass of a neutral helium-4 atom	4.002 60 u
mass of an electron	0.000 55 u

Mass of neutral ²²⁸ ₉₀ Th atom		= 228.028 73 u
Mass of $^{224}_{88}$ Ra + $^{4}_{2}$ He nuclei	= 224.020 20 + 4.002 60	= 228.022 80 u
Mass defect	= 228.028 73 - 228.022 80	= 0.005 93 u
	= $0.005 93 \times (1.6605 \times 10^{-27})$	$= 9.847 \times 10^{-30} \text{ kg}$
Binding energy	= $9.847 \times 10^{-30} \times (3.00 \times 10^8)^2$	= 8.862 x 10 ⁻¹³ J
	$= 8.862 \times 10^{-13} / 1.6 \times 10^{-13}$	= 5.54 MeV

