

Cálculo 3 MACC

A continuación, se muestra cómo estarán constituidos los equipos de estudiantes, en ambos grupos, para este último corte de clases.

Pareja	Estudiante 1	Estudiante 2	
1	Édgar Santiago Jaimes	Daniel Felipe Ramírez	
2	Ana Valentina López	Sara Julieth Zuleta Quevedo	
3	Paula Lorena López	Santiago Linares	
4	Manuela Acosta Fajardo	Diana Valentina Caro Corredor	
5	Luna Gabriela Durán Pérez	Dayana Valentina González	
6	Santiago Ortíz Pérez	Camilo Gómez Vargas	
7	Luis Ángel de Ávila Bula	Juan Andrés Guevara Ángel	
8	Natalia Chacón	Alejandra Pardo	
9	María Fernanda Rodríguez	Nelson Santiago Guayazán	
10	Sofía Robayo Bonilla	Daniel Forero Corredor	
11	Jessenia Piza Londoño	Laura Alejandra Salazar Pérez	
12	Miguel Ángel Atencio	Andrés Sebastián Salazar	
13	María José Chavarro	Michael Hernández	
14	Samuel Restrepo Osorio	Emanuel Naval Oviedo	
15	Carlos Muñoz	Rodrigo Castillo	

Instrucciones: La siguiente actividad se realizará en equipos de estudiantes. Cada equipo, entregará, vía Moodle, la solución de los problemas asignados, así:

- 1) Un PDF de la solución. Es clave que la presentación sea la mejor, de manera que lo propuesto por el equipo sea claramente entendible.
- 2) Un vídeo de no más de 7 minutos, en el que se evidencie una discusión entre los miembros del equipo presentando la solución a su problema. La idea es que todos expongan la solución. Para realizar este vídeo, realice una conversación grabada vía zoom, con sus usuarios institucionales. Para hacerlo, tenga en cuenta:
 - a. Uno de los miembros del equipo será anfitrión y generará la reunión virtual a grabar. Para ello, acceda a https://urosario.zoom.us/ y haga clic en anfitrión.
 - b. Una vez dentro de su "sala", haga clic en participantes y luego en invitar. Esto generará un *link* que debe enviarse a los demás miembros del equipo para que se unan a la conversación.
 - c. Una vez todos dentro, deben comenzar a grabar la discusión. Para ello, el anfitrión debe hacer clic en grabar y escoger grabar en PC, de manera que no quede en la nube, sino que guarde directamente en el computador.
 - d. Una vez finalicen la exposición y el archivo se guarde (automáticamente cuando se cierra la reunión), ubíquelo en su PC. Este será el archivo que subirá junto con el PDF descrito en 1).
- 3) El espacio de tarea estará disponible desde el 11-5-20 (8:00 pm) hasta el 17-5-20 (11:59pm).

- 4) Solo un miembro del equipo debe subir el pdf y el vídeo. En ambos casos, debe estar marcado con los nombres de todos los integrantes.
- 5) La nota n de esta actividad es individual y resulta del siguiente cálculo: n = 0.5t + 0.5e, siendo t la calificación del trabajo escrito y e la calificación individual de la exposición.

Sugerencia: Prueben el manejo en ZOOM, antes de grabar la discusión, de manera que todo lo logístico esté resuelto a priori.

Cada grupo deberá solucionar 2 ejercicios de la siguiente lista, así:

Parejas	Ejercicios		
1, 5, 9, 13	1 a	у	3 a
2, 6, 10, 14	1 b	у	2 C
3, 7, 11, 15	2 a	у	2 d
4, 8, 12	2 b	У	3 b

A continuación se presenta el listado de ejercicios para la actividad 3.2 (Teorema de Green). Por favor, tenga en cuenta las instrucciones que se describen arriba.

- 1. Evalúe la integral de línea por dos métodos: directamente y usando el teorema de Green.
 - a) $\oint_C xy^2 dx + x^3 dy$, donde C es el rectángulo con vértices (0,0), (2,0), (2,3) y (0,3).
 - b) $\oint_C xydx + x^2y^3dy$, donde C es el triángulo con vértices (0,0), (1,0) y (1,2).
- 2. Utilice el teorema de Green para evaluar la integral de línea a lo largo de la curva dada, positivamente orientada:
 - a) $\int_C (y+e^{\sqrt{x}})dx + (2x+\cos y^2)dy$, donde C es la frontera de la región limitada por las parábolas $y=x^2$ y $x=y^2$.
 - b) $\int_C xydx + 2x^2dy$, donde C está formada por el segmento de recta de (-2,0) a (2,0) y la mitad superior del círculo $x^2 + y^2 = 4$.
 - c) $\int_C \sin y dx + x \cos y dy$, donde C es la elipse $x^2 + xy + y^2 = 1$
 - d) $\int_C (y^2 \tan^{-1}x) dx + (3x + \sin y) dy$, donde C es la frontera de la región limitada por la parábola $y = x^2$ y la recta y = 4.
- 3. Halle el área de la región que se describe abajo:
 - a) La astroide $\vec{r}(t) = (\cos^3 t)\hat{i} + (\sin^3 t)\hat{j}, 0 \le t \le 2\pi$.
 - b) Un arco de la cicloide $x = t \sin t$, $y = 1 \cos t$.