Lista 12

Curso de Ciências Atuariais Disciplina Probabilidade 1- Professora Cristina 26/09/2022 - Exercícios distribuição bidimensional

1) Um aluno faz um teste de múltipla escolha com 4 questões do tipo Verdadeiro-Falso. Suponha que o aluno esteja "chutando" todas as questões, uma vez que ele não estudou a matéria da prova. Defina as seguintes variáveis aleatórias:

 $X_1 =$ número de acertos entre as duas primeiras questões da prova

 $Y_1=$ número de acertos entre as duas últimas questões da prova

 $X_2 =$ número de acertos entre as três primeiras questões da prova

 $Y_2 =$ número de acertos entre as três últimas questões da prova

a) Construa uma tabela com o espaço amostral associado a este experimento, listando todas as possibilidades de acerto e os valores de $X_1,\,Y_1,\,X_2,\,Y_2$ e suas probabilidades.

	X_1	X_1	X_2	X_2
(E, E, E, E)	0	0	0	0
(E, E, E, C)	0	1	0	1
(E, E, C, E)	0	1	1	1
(E, C, E, E)	1	0	1	1
(C, E, E, E)	1	0	1	0
(E, E, C, C)	0	2	1	2
(E, C, E, C)	1	1	1	1
(C, E, E, C)	1	1	1	1
(C, E, C, E)	1	1	2	1
(C, C, E, E)	2	0	2	1
(E, C, C, E)	1	1	2	2
(E, C, C, C)	1	2	2	3
(C, E, C, C)	1	2	2	2
(C, C, E, C)	2	1	2	2
(C, C, C, E)	2	1	3	2
(C, C, C, C)	2	2	3	3

$$S_{X_1} = \begin{cases} (E, E, _, _) = 0 \\ (E, C, _, _); (C, E, _, _) = 1 \\ (C, C, _, _) = 2 \end{cases}$$

$$S_{Y_1} = \begin{cases} (_, _, E, E) = 0 \\ (_, _, E, C); (_, _, C, E) = 1 \\ (_, _, C, C) = 2 \end{cases}$$

$$S_{X_2} = \begin{cases} (E, E, E, _) = 0\\ (E, E, C, _); (E, C, E, _); (C, E, E, _) = 1\\ (E, C, C, _); (C, E, C, _); (C, C, E, _) = 2\\ (C, C, C, _) = 3 \end{cases}$$

$$S_{Y_2} = \begin{cases} (_, E, E, E) = 0\\ (_, E, E, C); (_, E, C, E); (_, C, E, E) = 1\\ (_, E, C, C); (_, C, E, C); (_, C, C, E) = 2\\ (_, C, C, C) = 3 \end{cases}$$

Variável Probabilidade

$$X_{1} = \begin{bmatrix} \mathbb{P}(X_{1}=0) = \binom{2}{0} * \left(\frac{1}{2}\right)^{0} * \left(\frac{1}{2}\right)^{2} = \frac{1}{4} \end{bmatrix}$$

$$\mathbb{P}(X_{1}=1) = \binom{2}{1} * \left(\frac{1}{2}\right)^{1} * \left(\frac{1}{2}\right)^{1} = \frac{2}{4} \end{bmatrix}$$

$$\mathbb{P}(X_{1}=2) = \binom{2}{2} * \left(\frac{1}{2}\right)^{2} * \left(\frac{1}{2}\right)^{0} = \frac{1}{4} \end{bmatrix}$$

$$\mathbb{P}(Y_{1}=0) = \binom{2}{0} * \left(\frac{1}{2}\right)^{0} * \left(\frac{1}{2}\right)^{2} = \frac{1}{4} \end{bmatrix}$$

$$\mathbb{P}(Y_{1}=1) = \binom{2}{1} * \left(\frac{1}{2}\right)^{1} * \left(\frac{1}{2}\right)^{1} = \frac{2}{4}$$

$$\mathbb{P}(Y_{1}=2) = \binom{2}{2} * \left(\frac{1}{2}\right)^{2} * \left(\frac{1}{2}\right)^{0} = \frac{1}{4}$$

	Variável	Probabilidade				
	X_2	$\mathbb{P}(X_2=0) = \binom{3}{0} * \left(\frac{1}{2}\right)^0 * \left(\frac{1}{2}\right)^3 = \frac{1}{8}$				
		$\boxed{\mathbb{P}(X_2=1) = \binom{3}{1} * \left(\frac{1}{2}\right)^1 * \left(\frac{1}{2}\right)^2 = \frac{3}{8}}$				
		$\mathbb{P}(X_2=2) = \binom{3}{2} * \left(\frac{1}{2}\right)^2 * \left(\frac{1}{2}\right)^1 = \frac{3}{8}$				
		$\mathbb{P}(X_2=3) = {3 \choose 3} * {1 \choose 2}^3 * {1 \choose 2}^0 = {1 \over 8}$				
		$\mathbb{P}(Y_2=0) = \binom{3}{0} * \left(\frac{1}{2}\right)^0 * \left(\frac{1}{2}\right)^3 = \frac{1}{8}$				
	Y_2	$\mathbb{P}(Y_2=1) = \binom{3}{1} * \left(\frac{1}{2}\right)^1 * \left(\frac{1}{2}\right)^2 = \frac{3}{8}$				
		$\mathbb{P}(Y_2=2) = \binom{3}{2} * \left(\frac{1}{2}\right)^2 * \left(\frac{1}{2}\right)^1 = \frac{3}{8}$				
		$\mathbb{P}(Y_2=3) = {3 \choose 3} * {1 \choose 2}^3 * {1 \choose 2}^0 = {1 \over 8}$				

b) Construa a função de distribuição conjunta de $(X_1,\,Y_1)$ com as respectivas marginais.

X_1	Y_1			$\mathbb{P}(X_1 = x)$	
71	0	1	2	$\mathbf{I} = \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$	
0	1	2	1	1_	
	16	16	16	4	
1	2	4	2	2	
1	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{4}$	
2	1	2	1	1	
	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{4}$	
m/V)	1	2	1	1	
$\mathbb{P}(\mathbf{Y}_1 = \mathbf{y})$	$\overline{4}$	$\overline{4}$	$\overline{4}$	1	

c) Construa a função de distribuição conjunta de $(X_2,\,Y_2)$ com as respectivas marginais.

X_2	Y_2				$\mathbb{P}(\mathrm{X}_2=\mathrm{x})$
	0	1	2	3	- (2)
0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{8}$
1	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	0	$\frac{3}{8}$
2	0	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{3}{8}$
3	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$
$\mathbb{P}(Y_2 = y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

d) Verifique se X1 e Y1 são independentes

$$E(X_1) = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = \frac{4}{4} = 1$$

$$E(Y_1) = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = \frac{4}{4} = 1$$

$$S_{X_1Y_1} = \begin{cases} (0,2); (0,1); (0,0); (1,0); (2,0) = 0\\ (1,1) = 1\\ (2,1); (1,2) = 2\\ (2,2) = 4 \end{cases}$$

$$E(X_1Y_1) = 0 * \left(2 * \frac{1}{16} + 3 * \frac{1}{16}\right) + 1 * \frac{4}{16} + 2 * 2 * \frac{2}{16} + 4 * \frac{1}{16}$$
$$E(X_1Y_1) = 0 + \frac{4}{16} + \frac{8}{16} + \frac{4}{16} = \frac{16}{16} = 1$$

$$E(X_1Y_1) = E(X_1) * E(Y_1)$$

 $1 = 1 * 1$

 X_1 e Y_1 são independentes

e) Verifique se X2 e Y2 são independentes.

$$\begin{split} \mathbb{P}(X_2 = x) * \mathbb{P}(Y_2 = y) &= \mathbb{P}(X_2 = x \cap Y_2 = y) \\ \mathbb{P}(X_2 = 3) * \mathbb{P}(Y_2 = 3) &= \mathbb{P}(X_2 = 3 \cap Y_2 = 3) \\ &\frac{1}{8} * \frac{1}{8} \neq 0 \end{split}$$

 \mathbf{X}_2 e \mathbf{Y}_2 não são independentes

- 2) Uma moeda honesta é lançada 4 vezes. Seja X o número de caras nos 2 primeiros lançamentos e seja Y o número de caras nos 3 últimos lançamentos.
- a) Liste todos os elementos do espaço amostral deste experimento, especificando os valores de X e Y.

	X	Y
(c, c, c, c)	0	0
(c, c, c, k)	0	0
(c, c, k, c)	0	1
(c, k, c, c)	1	1
(k, c, c, c)	1	1
(c, c, k, k)	0	1
(c, k, c, k)	1	1
(k, c, c, k)	1	1
(c, k, k, c)	1	2
(k, k, c, c)	2	2
(k, c, k, c)	1	2
(c, k, k, k)	1	2
(k, c, k, k)	1	2
(k, k, c, k)	2	2
(k, k, k, c)	2	3
(k, k, k, k)	2	3

$$S_X = \begin{cases} (c, c, _, _) = 0\\ (k, c, _, _); (c, k, _, _) = 1\\ (k, k, _, _) = 2 \end{cases}$$

$$S_Y = \begin{cases} (c, c, c, _) = 0\\ (k, c, c, _); (c, k, c, _)(c, c, k, _) = 1\\ (k, k, c, _); (k, c, k, _); (c, k, k, _) = 2\\ (k, k, k, _) = 3 \end{cases}$$

b) Construa a função de distribuição conjunta de X e Y.

X	Y				$\mathbb{P}(X=x)$
	0	1	2	3	- ()
0	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$
1	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{2}{4}$
2	0	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
$\mathbb{P}(Y{=}y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

c) Encontre a distribuição condicional de X dado Y=3

$$\begin{array}{c|c}
X & \mathbb{P}(X=x \mid Y=3) \\
\hline
0 & \frac{0}{\frac{1}{8}} = 0 \\
\hline
1 & \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2} \\
\hline
2 & \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}
\end{array}$$

d) Calcule E(X), E(Y), Var(X), Var(Y)

$$E(X) = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = \frac{4}{4} = 1$$

$$E(X^2) = 0^2 * \frac{1}{4} + 1^2 * \frac{2}{4} + 2^2 * \frac{1}{4} = \frac{6}{4}$$

$$E(Y) = 0 * \frac{1}{8} + 1 * \frac{3}{8} + 2 * \frac{3}{8} + 3 * \frac{1}{8} = \frac{12}{8}$$

$$E(Y^2) = 0^2 * \frac{1}{8} + 1^2 * \frac{3}{8} + 2^2 * \frac{3}{8} + 3^2 * \frac{1}{8} = \frac{24}{8} = 3$$

$$V(X) = E(X^2) - E^2(X) = \frac{6}{4} - 1^2 = \frac{2}{4} = \frac{1}{2}$$

$$V(Y) = E(Y^2) - E^2(Y) = 3 - \left(\frac{6}{4}\right)^2 = \frac{12}{16} = \frac{3}{4}$$

e) Verifique se X e Y são independentes

$$\mathbb{P}(X=x) * \mathbb{P}(Y=y) = \mathbb{P}(X_2=x \cap Y_2=x)$$

$$\mathbb{P}(X=0) * \mathbb{P}(Y=3) = \mathbb{P}(X=0 \cap Y=3)$$

$$\frac{1}{8} * \frac{1}{4} \neq 0 \ X \ e \ Y \ n\~{a}o \ s\~{a}o \ independentes$$

3) Em uma clínica médica foram coletados dados em 150 pacientes, referentes ao último ano. Observou-se a ocorrência de infecções urinárias (U) e o número de parceiros sexuais (N). Os valores em % encontram-se a seguir:

U	Núi	Total		
	0	1	2+	Total
Sim	10	20	45	75
Não	10	10	5	25
Total	20	30	50	100

a) Encontre todas as distribuições condicionais.

U	$\mathbb{P}(\mathbf{U}{=}\mathbf{u}\mid\mathbf{N}{=}0)$	\mathbb{T} U $\mathbb{P}(\mathbb{T})$	$U=u\mid N=1)$	U	$\mathbb{P}(\text{U=u} \mid \text{N=2+})$
Sim	$\frac{\frac{10}{100}}{\frac{20}{100}} = \frac{1}{2}$	Sim	$\frac{20}{\frac{100}{30}} = \frac{2}{3}$	Sim	$\frac{\frac{45}{100}}{\frac{50}{100}} = \frac{9}{10}$
Não	$\frac{\frac{10}{100}}{\frac{20}{100}} = \frac{1}{2}$	Não	$\frac{\frac{10}{100}}{\frac{30}{100}} = \frac{1}{3}$	Não	$\frac{\frac{5}{100}}{\frac{50}{100}} = \frac{1}{10}$

b) Verifique se U e N são independentes

$$\begin{split} \mathbb{P}(U=u) \ ^*\mathbb{P}(N=n) &= \mathbb{P}(U=u \cap N=n) \\ \\ \mathbb{P}(U=Sim) \ ^*\mathbb{P}(N=0) &= \mathbb{P}(U=Sim \cap N=0) \\ \\ \frac{20}{100} \ ^*\frac{75}{100} \neq \frac{10}{100} \end{split}$$

U e N não são independentes