Deep Learning for Natural Language Processing

Basic Models for Sequence Labeling

CHALMERS

Richard Johansson

richard.johansson@gu.se

recap: main type of sequence prediction tasks

- sequence labeling tasks
- segmentation tasks
- bracketing tasks

detection Astronomers the of water in the atmosphere announce NNS NN INI IN DT **VBP** DT NN NN

recap: BIO coding

▶ for segmentation and bracketing tasks, we often convert into sequence labeling by applying BIO coding or similar

The	cases	of	metastatic cancer		of	the	gall	bladder	
			Patholo	gy			Organ		
0	0	0	B-PAT	I-PAT	0	0	B-ORC	i-ORG	

structured prediction: basic terminology

- sequence labeling is a structured prediction task
 - the output is a complex object, not just a category
 - later in the course: trees, graphs, ...
- input: a sequence x
- ightharpoonup output: a sequence $m{y}$ of the same length as $m{x}$

Algorithmic approaches

Exhaustive search

Cast structured prediction as a combinatorial optimisation problem over the set of target representations.

Viterbi algorithm, Eisner algorithm

Greedy search

Cast structured prediction as a sequence of classification problems: at each point in time, predict one of several options.

window-based part-of-speech tagging, arc-standard algorithm

Algorithmic approaches

Exhaustive search

Cast structured prediction as a combinatorial optimisation problem over the set of target representations.

Viterbi algorithm, Eisner algorithm

Greedy search

Cast structured prediction as a sequence of classification problems: at each point in time, predict one of several options.

window-based part-of-speech tagging, arc-standard algorithm

simplest approach: word-level classification

what if we train a model that classifies each word independently of other words?

Manchester United will

Manchester United will ↓
I-ORG

Manchester United will

will

RNN-based sequence labeling

- we have already seen different types of recurrent neural networks, which operate on sequences
- it is straightforward to apply an output layer on top of an RNN

computing the loss in an RNN-based sequence labeler

computing the loss in an RNN-based sequence labeler

computing the loss in an RNN-based sequence labeler

a note about working with sequences in PyTorch

- the final output is a 3-dimensional tensor of shape (n_docs, n_words, n_labels)
- we use padding to make sure all documents in a batch have the same length
- if we don't want to compute the loss for the padded dummy tokens, we can use a mask

padding and masking example

label sequences:

encoded and padded:

loss mask:

easier solution

▶ PyTorch provides automatic masking for some loss functions:

```
loss = nn.CrossEntropyLoss(ignore_index=pad_label_id)
```

▶ note that most loss functions expect 2-dimensional tensors, so we need to reshape before computing the loss

exercise 1

simple models for named entity recognition

Manchester	United	will	return	to	the	United	States
B-ORG	I-ORG	Ο	0	0	Ο	B-LOC	I-LOC

we will investigate more complex models in a second exercise