

INVESTIGATION OF SCALING LAWS OF THE FIBER/MATRIX INTERFACE CRACK IN POLYMER COMPOSITES THROUGH FINITE ELEMENT-BASED MICROMECHANICAL MODELING

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

10th EEIGM International Conference on Advanced Materials Research Moscow (RU), April 25-26, 2019

Outline

Initiation of Transverse Cracking in Fiber Reinforced Polymer Composites (FRPCs): Microscopic Observations & Modeling

- The Fiber-Matrix Interface Crack Problem
- Analysis of the Infinite Reference Volume Element (RVE)
- Conclusions & Outlook

Observations: From Macro to Micro Mathematical Modeling of Fracture Mathematical Modeling of Fracture

TRANSVERSE CRACKING IN FRPCs

Transverse Cracking in FRPCs The Fiber-Matrix Interface Crack Problem Analysis of the Infinite RVE Conclusions

Observations: From Macro to Micro Mathematical Modeling of Fracture Mathematical Modeling of Fracture

Observations: From Macro to Micro

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of $[0, 90]_S$, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Transverse Cracking in FRPCs The Fiber-Matrix Interface Crack Problem Analysis of the Infinite RVE Conclusions
Observations: From Macro to Micro Mathematical Modeling of Fracture Mathematical Modeling of Fracture

Mathematical Modeling of Fracture: Linear Elastic Fracture Mechanics (LEFM)

→ Energy Release Rate

$$G_m = G_m(p_1, \dots, p_i, \dots, p_n)$$
 where $G = \frac{\partial W}{\partial A} - \left(\frac{\partial U}{\partial A} + \frac{\partial E_k}{\partial A}\right)$

→ Stress Intensity Factor

$$K_m = K_m(p_1, \dots, p_i, \dots, p_n)$$
 where $\sigma_m \sim K_m \frac{\alpha}{(x-a)^{\beta}}$ $\alpha, \beta > 0$

→ J-Integral

$$J=J\left(p_{1},\ldots,p_{i},\ldots,p_{n}\right)\quad\text{where}\quad J=\lim_{\varepsilon\rightarrow0}\int_{\Gamma_{\varepsilon}}\left(W\left(\Gamma\right)n_{i}-n_{j}\sigma_{jk}\frac{\partial u_{k}\left(\Gamma,x_{i}\right)}{\partial x_{i}}\right)d\Gamma=G$$

→ Crack Opening & Shear Displacement

$$COD = COD(p_1, \dots, p_i, \dots, p_n)$$
 and $CSD = CSD(p_1, \dots, p_i, \dots, p_n)$

 $p_i \in \{\text{geometry}, \text{materials}, \text{boundary conditions}, \text{loading mode}, \text{scale}\}\$ $m \in \{I, II, III, I/III, II/III\}$

Transverse Cracking in FRPCs The Fiber-Matrix Interface Crack Problem Analysis of the Infinite RVE Conclusions Observations: From Macro to Micro Mathematical Modeling of Fracture Mathematical Modeling of Fracture

Numerical Characterization of Fracture: VCCT & J-Integral

J-Integral Virtual Crack Closure Technique (VCCT)

$$G_{I} = \frac{Z_{C} \Delta w_{C}}{2B \Delta a}$$
 $G_{II} = \frac{X_{C} \Delta u_{C}}{2B \Delta a}$

Krueger, 2004

$$J_{i}=\lim_{\varepsilon\rightarrow0}\int_{\Gamma_{\varepsilon}}\left(W\left(\Gamma\right)n_{i}-n_{j}\sigma_{jk}\frac{\partial u_{k}\left(\Gamma,x_{i}\right)}{\partial x_{i}}\right)d\Gamma$$

Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

THE FIBER-MATRIX INTERFACE CRACK PROBLEM

Transverse Cracking in FRPCs The Fiber-Matrix Interface Crack Problem Analysis of the Infinite RVE Conclusions Multi-Scale Decomposition The Fiber-Matrix Interface Crack Problem

Multi-scale Decomposition of Fiber Reinforced Polymer Laminates

Transverse Cracking in FRPCs
The Fiber-Matrix Interface Crack Problem
Analysis of the Infinite RVE
Conclusions
Multi-Scale Decomposition
The Fiber-Matrix Interface Crack Problem

The Fiber-Matrix Interface Crack Problem: Statement

- 2D space
- → Linear elastic homogeneous isotropic materials
- Mismatching elastic properties
- Plane state (strain or stress)
- → Dirichlet-type BC
- → Linear Fracture Mechanics
- Contact interaction
- → Applied uniaxial traction
- SIF, ERR, mode ratio, stress and displacement distribution at the interface

Transverse Cracking in FRPCs
The Fiber-Matrix Interface Crack Problem
Analysis of the Infinite RVE
Conclusions
Multi-Scale Decomposition
The Fiber-Matrix Interface Crack Problem

The Fiber-Matrix Interface Crack Problem: Solution

Method	Domain	Natural Variable	Conjugate	Dirichlet	
			Variable	ВС	
Analytical (complex)	2D, contin-	Airy stress potential & stress	Displacement	In stress	
functions	uous, infi-		& strain		
	nite				
		M. Toya (1975), A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid [10].			
Boundary Element	1D,	Stress, by using Green's potentials	Displacement	In stress	
Method (BEM)	discrete,	or Betti's influence functions	& strain		
	finite				
		F. París et al. (1996), The fiber-matrix interface crack - A numerical analysis using Boundary Elements [11].			
Finite Element Method	2D,	Displacement	Stress	In	
(FEM)	discrete,			displacement	
	finite				

The Finite Element Model

▲ ANALYSIS OF THE INFINITE RVE

The Finite Element Model

The Finite Element Model

- θ [°] = 0, angular position of debond's center
- → 2∆θ [°], debond's angular size
- δ [°], angle subtended by an element at the fiber/matrix interface
- → VF_f [-], fiber volume fraction
- → 2L [μm], RVE's side length
- \rightarrow $R_F [\mu m]$, fiber radius
- $ightarrow \frac{L}{R_f} = \frac{1}{2} \sqrt{\frac{\pi}{VF_f}} [-], RVE's aspect ratio$
- → σ_0 [MPa] = $\frac{E_m}{1-\nu_m^2} \varepsilon_{XX}$, reaction stress of undamaged infinite RVE
- $ightarrow G_0\left[rac{J}{m^2}
 ight]=\pi R_f\sigma_R^2rac{1+(3-4nu_m)}{8Gm},$ normalization G following Toya [10] and París [11]
- → Small displacement formulation

Conclusions & Outlook

Conclusions

- \rightarrow There is a limiting value of $\frac{L}{R_L}$ after which models are effectively infinite
- → For models larger than this value, domain size and mesh refinement at the interface has a similar effect on the energy release rate
- → The discrepancy in modes with the use of linear elements might be linked to the deformed shape of crack faces

Outlook

- → Modeling extreme ply geometries, for example a ply with a single layer of fibers bounded by stiffer plies
- → Investigate the effect of clusters of fibers in thin plies
- → Analyzing the effect of complex stress and deformation states, thermal loads, different sets of boundary conditions

- Kawabe K., Tomoda S. and Matsuo T.; A pneumatic process for spreading reinforcing fiber tow Proc. 42nd Int. SAMPE USA (Anaheim, CA, USA) 6576, 1997.
- Kawabe K., Tomoda S.; *Method of producing a spread multi-filament bundle and an apparatus used in the same.*Japan: Fukui Prefectural Government; 2003. JP 2003-193895. 2003.
- Kawabe K.; New Spreading Technology for Carbon Fiber Tow and Its Application to Composite Materials Sen'i Gakkaishi **64** (8) 262–267, 2008 [in Japanese].

- Sasayama H. and Tomoda S.; New Carbon Fiber Tow-Spread Technology and Applications to Advanced Composite Materials S.A.M.P.E. journal 45 (2) 6–17, 2009.
- Meijer A.; NTPT makes worlds thinnest prepeg even thinner [Internet] [cited 30 April 2017] North Thin Ply Technology (NTPT) press release 2015. Available from http://www.thinplytechnology.com/mesimages/Press_Release_N 16JUN2015.pdf.
- oXeon TECHNOLOGIES 2014 [Internet] [cited 30 April 2017] Available from http://oxeon.se/technologies/.

- Donald L. Flaggs, Murat H. Kural; Experimental

 Determination of the In Situ Transverse Lamina Strength
 in Graphite/Epoxy Laminates. J. Comp. Mat. 16 2, 1982.
- Krueger R.; Virtual crack closure technique: History, approach, and applications Appl. Mech. Rev. **57** (2) 109–143, 2004.
- Rice J. R.; A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks J. Appl. Mech. **35** 379–386, 1968.

- Toya M.; A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid J. Mech. Phys. 22 325–348. 1975.
- París F., Caño J. C., Varna J.; *The fiber-matrix interface crack A numerical analysis using Boundary Elements Int. J. Fract.* **82** 1 11–29, 1996.

