الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2013

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة مدنية)

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

ا-الميكانيك التطبيقية:

المسألة الأولى: (06 نقاط)

نريد دراسة رافدة معدنية من نوع IPE؛ ترتكز على مسندين، تتلقى حمولات كما في الرسم الميكانيكي شكل(1).

المسند A مضاعف.

المسند B بسيط.

العمل المطلوب:

1- احسب ردود الأفعال في المسندين A وB .

2- اكتب معادلات الجهد القاطع T و عزم الانحناء Mr على طول الرافدة.

3- احسب العزم الأقصى M_{fmax}.

- ارسم منحنى T، و M_f . M_f . T . ارسم منحنى T، و M_f . T . ارسم منحنى T، و M_f . T . ارسم منحنى T، و M_f . T . المرافدة هي من نوع IPE240 ؛ هل تستطيع أن تقاوم و بشكل آمن، علما أن: ★

- 3

- 4

- 4

- 5

- 5

- 6

- 7

- 7

- 7

- 7

- 8

- 8

- 1200

- 1200

- 1200

- 1200

- 1200

- 1200

جدول خصائص IPE240:

	100							
Y'	<u> </u>	IPE	h(mm)	b(mm)	e(mm)	S(cm²)	Wxx'(cm ³)	Ixx'(cm ⁴)
< b →		240	240	120	9,8	39,1	324	3892

المسألة الثانية: (06 نقاط)

نعتبر النظام المثلثي المبين في الرسم الميكانيكي على الشكل(2):

العمل المطلوب:

- 1 تأكد أن النظام محدد سكونيا .
- -2 احسب ردود الأفعال في المسندين A و B
- 3- احسب الجهود الداخلية في جميع القضبان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول .
- يتكون $N_{\mathrm{DB}}=27.5\mathrm{KN}$ ومقطعه العرضي يتكون $N_{\mathrm{DB}}=27.5\mathrm{KN}$ ومقطعه العرضي يتكون -4
 - $\overline{\sigma}$ =1000daN/cm² : والإجهاد المسموح به ($L50 \times 50 \times 5$) مساحته ($L50 \times 50 \times 5$
 - $^{-5}$ احسب قيمة التقلص ΔL للقضيب " $^{-5}$ إذا كان طوله $^{-5}$ و معامل المرونة الطولي: $E=2.1\times 10^6 {
 m daN/\ cm^2}$

اا - البناء:

المسألة الأولى: (04.5 نقاط)

نريد حساب مساحة القطعة (MCB). النقطة M تقع على استقامة واحدة مع النقطتين A و B (انظر شكل (3)).

تعطى الإحداثيات القائمة للنقاط:

النقاط	X(m)	Y(m)
A	350.00	150.00
В	430.00	170.00
С	415.00	220.00

العمل المطلوب:

. G_{AM} ثم استنتج السمت الإحداثي G_{AB} ثم استنتج السمت الإحداثي -1

($X_{\rm M}$ =388.80 ${f m}$; $Y_{\rm M}$ = 159.70 ${f m}$) ${f M}$ انقطة -2

احسب مساحة القطعة (MCB) بالإحداثيات القائمة .

المسألة الثانية: (03.5 نقاط)

الشكل (4) يمثل المظهر العرضي النموذجي لطريق.

العمل المطلوب:

1- عرّف المظهر العرضي النموذجي.

2- سمّ العناصر المرقمة من (1) إلى (6). 3- ما هو دور العنصر(2) و (3)?

شكل (4)

الموضوع الثاني

ا-الميكانيك التطبيقية:

المسألة الأولى: (08 نقاط)

نريد دراسة رافدة معدنية من نوعIPN ؛ ترتكز على مسندين، تتلقى حمولات كما في الرسم الميكانيكي شكل (1)

- 1- احسب ردود الأفعال في المسندين A و B .
- 2- اكتب معادلات الجهد القاطع T و عزم الانحناء Mf على طول الرافدة .
 - 3- احسب العزم الأقصى Mfmax.
 - 4- ارسم منحنيات الجهد القاطع T و عزم الانحناء Mf.
- 5− لنفرض أن الرافدة من نوع IPN180 ، حيث Wxx'=161cm³ و FN180 و M_{fmax} =23.80KN.m و المسبب الإجهاد الناظمي الأعظمي الناتج في مقطع الرافدة.

المسألة الثانية: (04 نقاط)

أجريت تجربة على نموذج فولاذي، طوله الابتدائي Lo، ومساحة مقطعه

 $S_{\rm O}$ =150mm² شکل (2)؛

فأعطت المنحنى البياني الوارد في الشكل(3).

العمل المطلوب:

1- ما اسم هذه التجربة؟

المرافقة. $\varepsilon_{\rm e}$ المنحنى إجهاد حد المرونة $\sigma_{\rm e}$ و الاستطالة النسبية $\varepsilon_{\rm e}$ المرافقة.

E احسب معامل المرونة الطولي -3

 $\epsilon_{
m r}$ استخرج من المنحنى إجهاد الانكسار $\sigma_{
m r}$ والاستطالة النسبية $\epsilon_{
m r}$ المرافقة.

5- استنتج القوة القصوى F_{max} المطبقة في هذه التجربة.

<u>اا - البناء:</u>

المسألة الأولى: (04 نقاط)

نريد تقسيم القطعة الأرضية ABCD ذات المساحة $S=4560.38m^2$ إلى جزأين مساحتهما S_1 و S_2 ، يفصل بينهما المستقيم MC (انظر شكل S_1) .

جدول الإحداثيات القائمة:

النقاط	X (m)	Y (m)
A	450.30	820.80
С	499.50	860.00
D	520.00	730.30

العمل المطلوب:

. α و G_{DA} . ثم استنتج الزاوية الأفقية G_{DC} . ثم استنتج الزاوية الأفقية

 S_2 احسب المساحة S_1 ، ثم استنج المساحة S_2

المسألة الثانية: (04 نقاط)

لاحظ الشكل (5):

العمل المطلوب:

-1 سمّ العناصر المرقمة في الشكل (5).

2- ما هو دور العنصر رقم (و 6 ؟

3- ما نوع الأرضية الممثلة في الشكل(5) ؟

-4 نريد انجاز مدرج مستقيم ذي قلبتين متوازيتين للانتقال من الطابق الأرضى إلى الطابق العلوي الذي ارتفاعه H=3.24m ، وارتفاع القائمة h=18cm

أ- احسب عدد الدرجات.

ب-احسب g عرض الدرجة.

الإجابة التموذجية لموضوع امتحان بكالوريا. نورة: جوان 2013. اختيار مادة: تكتولوجيا هندسة مدنية الشعية: نقتي رياضي. المدة: 04 سا و30 د.

العلامة		عنادي الأحادة الأحياء						
مجموع	مجزأة	عناصر الإجابة للموضوع الأول						
	0.5x3	$egin{aligned} & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -$						
	0.5x2	: $0 \le X \le 1.5$ $T(x) = 22 - 8x \rightarrow T(0) = 22KN, T(1.5) = 10KN$ $M_f(x) = 22x - 4x^2 \rightarrow M_f(0) = 0, M_f(1.5) = 24KN.m$: $0 \le X \le 3$						
	0.5x2	$T(x)$ =-26+12x \to $T(0)$ = -26KN , $T(3)$ =10KN $M_f(x)$ =26x-6x ² \to $M_f(0)$ = 0, $M_f(3)$ = 24KN.m : X نبحث عن X : نبحث عن X : X نبحث عن X : X نبحث عن X : X المعرّم المرابع						
	0.5x2	- عدم المنحنيات : - 3 T(x)=-26 +12x =0→ x=2.17m T(x)=-26 +12x =0→ x=2.17m M _f (2.17)= M _{f(max)} = 28.17 KN.m 42 43						
	0.5	A 22.00 10.00 0.00						
4	0.5	-24.00						
	0.5	: حالتحقق من المقاومة $\sigma_{mex}=M_{f(mex)}/W_{xx'}\leq \overline{\sigma}=1600~daN/cm^2$ $869,44~daN/cm^2<\overline{\sigma}=1600~daN/cm^2$						
6								

الإجابة النموذجية لموضوع امتحان بكالوريا. دورة: جوان 2013. اختبار مادة: تكنولوجيا هندسة مدنية الشعبة: تقني رياضي. المدة: 04 سا و 30 د.

0.25	المسألة الثانية: (06 نقاط)
0.25 0.125	b=2n-3 b=7, n=5 7=2.(5)-3 1-1 1-1 التأكد من النظام : b=2n-3 b=7 النظام مستقر داخليا ومحدد سكونيا.
	المصاب ردود الأفعال: 2- حساب ردود الأفعال:
0.25x3	$\sum F/x=0 , \sum F/y=0 , \sum M_{f}/=0$ $\sum F/x=0 \rightarrow H_B = 15KN$ $\sum F/y=0 \leftrightarrow V_B + V_A = 69 KN$ $\sum M_{f}/A=0 \rightarrow V_B = 42KN$ $\sum M_{f}/B=0 \rightarrow V_A = 27KN$
0.25x2	S = 1000 + 10
0.25x2	$\sum F/y=0 \rightarrow N_{CA}=-25~KN$ (انضغاط) (انضغاط) $\sum F/x=0 \rightarrow N_{CD}=-15~KN$ (انضغاط) عزل العقدة (A):
0.25x2	$Tang(\alpha)=4/3=1.33 \rightarrow \alpha=53.13^{\circ}: \alpha$ حساب قیمهٔ $\alpha=53.13^{\circ}: \alpha$ SIN(53.13°) =0.8
0.25x2	$\sum F/X=0 \leftrightarrow N_{AB}-N_{AD}.0.6=0$ $N_{AB}=1.5 \ KN (شد)$ $\sum F/y=0 \leftrightarrow 27-N_{AC}-N_{AD}.0.8=0$ $N_{AD}=-2.5 \ KN (انضغاط)$
0.25	$\Sigma \text{ F/y=0} \leftrightarrow 42\text{- N}_{BE}\text{- N}_{BD}.0.8 = 0$ N_{BD} =-27.5 KN (انضغاط)
0.125x7	العقد القضبان الجهد(KN) الطبيعة / 0 N _{ED} E
	انضغاط 15 N _{CD} C انضغاط 25 N _{CA} انضغاط N _{CA} انضغاط 0
	النصنة الله الله الله الله الله الله الله الل
	Ziii Iii

الإجابة النموذجية لموضوع امتحان بكالوريا. دورة: جوان 2013. اختبار مادة: تكنولوجيا هندسة مدنية الشعبة: تقني رياضي. المدة: 04 سا و 30 د.

	0.75	$\sigma = N/S \le \overline{\sigma}$ 4. شرط المقاومة:
	1	$572.92 ext{daN/cm}^2 < 1000 ext{ daN/cm}^2$ σ = ϵ .E=(Δ L/L).E
	1	$\sigma=N/S$
		$\Delta L=(N.L)/(S.E)=1.36mm$
6		ال-البناء:
		المسألة الاولى: (4.5 نقاط) 1-حساب السمت الإحداثي G _{AB} :
	0.25x2	$ \left.\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.25x2	$tg g = 4 \Rightarrow g = 84.40 g r$
	0.2582	
	0.5x3	$ \left.\begin{array}{cccccccccccccccccccccccccccccccccccc$
		: G _{AM} إستنتاج
	0.50	$oldsymbol{\mathrm{M}}$ موجودة على نفس استقامة $oldsymbol{\mathrm{AB}}$ إذن :
	0.50	$G_{AM} = G_{AB} = 84.40 \text{gr}$
		2-حساب مساحة (MCB) : الله عساحة الساحة السا
	0.25	$S = \frac{1}{2} \sum_{n} X_{n} \left(Y_{n-1} - Y_{n+1} \right)$
	0.50	$S = \frac{1}{2} \left[X_M \left(Y_B - Y_C \right) + X_C \left(Y_M - Y_B \right) + X_B \left(Y_C - Y_M \right) \right]$
	0.50	$S = \frac{1}{2} [388.8 (170 - 220) + 415 (159.7 - 170) + 430 (220 - 159.70)]$
	0.25	$S = 1107.25m^2$
4.5	-	المسألة الثانية: (3.5 ن)
4.5	0.5	1- المظهر العرضي النموذجي: وثيقة خطية يتم إعدادها في مكتب الدر اسات
		لمشاريع الطرق، يمثل مقطع عرضي لجسم القارعة يحتوي على جميع البيانات الخاصة بعناصر الطريق المستقبلي
		2- العناصر: _
	0.25x6	(1) منحدر الحفر -(2) الخندق (الصارف) -(3) مزلقة الأمان-(4) منحدر الردم-(5) الحفر
	0.75	(6) الردم . 3- دور (2) : صرف المياه دور (3) : منع خروج العربات من القارعة في حالة حوادث أو انز لاق
	0.75	- دور(2) : صرف المياه دور(3) : منع خروج العربات من القارعة في حالة حوادث أو انزلاق.
	0.13	توروي . شع محروج العربات من العارضة لي محملة موالت أو الرام في
3.5	1	
20		

الإجابة النموذجية لموضوع امتحان بكالوريا. دورة: جوان 2013. اختبار مادة: تكنولوجيا هندسة مدنية الشعبة: تقني رياضي. المدة: 40 سا و30 د.

	الموضوع الثاثي:
	المسألة الأولى: (08 نقاط)
	$\sum \mathrm{F/x}=0$ $ ightarrow \mathrm{H_A}=0$: کساب ردود الأفعال -1
0.5x3	$\sum F/y=0 \rightarrow V_A + V_B = 50 \text{ KN}$
	$\sum M/A=0 \rightarrow V_B = 34KN$
	$\sum M/B=0 \rightarrow V_A = 16KN$
	2 كتابة معادلات الجهد القاطع و عزم الإنحناء:
	: 0≤X≤2
0.5x2	$T(x)=16-5x \rightarrow T(0)=16KN, T(2)=6KN$ $M_f(x)=16x-2.5x^2 \rightarrow M_f(0)=0, M_f(2)=22KN.m$
0.0.12	$W_{f}(x) = 10x - 2.5x \rightarrow W_{f}(0) = 0$, $W_{f}(2) = 22KN.III$: $2 \le X \le 5$
0.5x2	$T(x)=6-10(x-2) \rightarrow T(2)=6KN, T(5)=-24KN$ $M_f(x)=16x-10(x-1) -5(x-2)^2 \rightarrow M_f(2)=22KN.m, M_f(5)=-5KN.m$
	$W_{f}(x) = 10x - 10(x - 1) - 3(x - 2) \rightarrow W_{f}(2) = 22x N \cdot M \cdot N \cdot M_{f}(3) = -3x N \cdot M$: $0 \le X \le 1$
	$T(x)=10x \rightarrow T(0)=0$, $T(1)=10KN$
0.5x2	$M_f(x) = -5x^2 \rightarrow M_f(0) = 0$, $M_f(1) = -5KN.m$
	$VI_f(X) = -3X \rightarrow VI_f(0) = 0$, $VI_f(1) = -3X VI III$ المعزم الأقصى: نبحث عن X :
0.5.0	$T(x)=6-10(x-2)=0 \rightarrow x=2.6m$
0.5x2	$M_f(2.6) = M_f(max) = 23.8KN.m$
	** * - * *!
	q ₁ q ₂ : Cintal part 4
	A
	16.00
1	6.00
	0.00
	-24.00
	5.00
	0.00
1	0.0
	*22.00 - _{23.80}
	2.6 4.78 6.(

الإجابة النموذجية لموضوع امتحان بكالوريا. دورة: جوان 2013. اختبار مادة: تكنولوجيا هندسة مدنية الشعبة: تقني رياضي. المدة: 04 سا و30 د.

		5-حساب الإجهاد الناظمي الأعظمي:
	0.5	$G_{\text{max}} = M_{f(\text{max})} / W_{xx} = 1478.26 \text{ daN/cm}^2$
8	1 0.25x2 0.5x2 0.25x2 0.5x2	المسألة الثانية: نجربة الشد البسيط $\sigma_e = 240 \text{N/mm}^2$ -2 $\varepsilon_e = 240 \text{N/mm}^2$ -2 $\varepsilon_e = 1.2 \text{x} 10^{-3}$ $E = \sigma_e$ / $\varepsilon_e = 240 \text{/} 1.2 \text{ x} 10^{-3} = 200000 \text{ N/mm}^2$ -3 $\sigma_r = 400 \text{N/mm}^2$ -4 $\varepsilon_r = 200.10^{-3}$ $\sigma_{\text{max}} = F_{\text{max}}$ / S -5 $F_{\text{max}} = \sigma_{\text{max}}$ x S = $400 \text{x} 150 = 60000 \text{N} = 60 \text{K}$ N
4		البناع: $-$ البناع: المسألة الأولى: (4ن) G_{DA} و G_{DA} و G_{DA} :
	0.25x2	$\Delta X_{DC} = -20.50 m$ $\Delta Y_{DC} = 129.70 m$ \Rightarrow
	0.25x2	$tgg = 0.15805 \Rightarrow g = 9.98gr$
	0.25x2	$ \left(\begin{array}{c} \Delta X_{DC} < 0 \\ \Delta Y_{DC} > 0 \right) \Rightarrow G_{DC} = 400 - g \Rightarrow G_{DC} = 390.02gr $
	0.25x2	$ \Delta X_{DA} = -69.70 m $ $ \Delta Y_{DA} = 90.50 m $ $ \Rightarrow $
	0.25x2	$tgg = 0.77016 \Rightarrow g = 41.78gr$
	0.25x2	
	0.25	رستنتا <u>ج α:</u> α=G _{DC} -G _{DA} =31.80gr

الإجابة النموذجية لموضوع امتحان بكالوريا. دورة: جوان 2013. اختبار مادة: تكنولوجيا هندسة مدنية الشعبة: تقني رياضي. المدة: 04 سا و30 د.

		: المساحة . 3 - 2
	0.25	$S_1 = \frac{1}{2} D_{MD} \times D_{DC} \times \sin \left(G_{DC} - G_{DM} \right)$
	0.25	$S_{1} = \frac{1}{2} [60 \times 131.31 \sin (31.8)]$ $S_{1} = 1886.92 m^{2}$
	0.25	: S_2 in its state of the second state of t
4		$S_2 = 2673.46 m^2$ المسألة الثانية: (4ن)
	0.25x7	1- العناصر: (1) القائمة-(2) النائمة - (3) الحصيرة -(4) عمود-(5) جدار -(6) رافدة (7) الأرضية
	0.25 0.5 0.5	2- دور (A): تحمل الأثقال المؤثرة عليها وإيصالها إلى الأساسات دور (C): إيصال القوى المسلطة عليها نحوالأعمدة والربط بين المساند 3- نوع الأرضية: أرضية ذات بلاطة مملوءة
	0.5 0.5	4- المدرج: أ- المعدد : n= 324 /18 = 18 أ- المعدد : 2h+g =64 ب-عرض الدرجة : g =28cm
4		g –zociii
20		

الجمهورية الجزائوية الديمقواطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (05 نقاط)

.78 g/mol وكتلته المولية C_nH_{2n-6} ، وكتلته المولية A، صيغته العامة C_nH_{2n-6}

1) جد الصيغة نصف المفصلة للمركب A.

يعطى: H = 1g/mol ، C = 12g/mol

2) انطلاقا من المركب A، نجري سلسلة التفاعلات التالية:

1) A + Cl₂
$$\xrightarrow{\text{AlCl}_3}$$
 B + HCl

3) C +
$$CO_2 \longrightarrow D$$

4) D +
$$H_2O \longrightarrow E + MgCl(OH)$$

- جد الصيغ نصف المفصلة للمركبات: E ،D ،C ،B.

، H_3C-CH_2 اكتب معادلات التفاعلات التي تسمح بالحصول على المركب NH_2 المركب NH_2 انطلاقا من البنزن و الإيثانول و كواشف أخرى.

. C_3H_8O عبارة عن كحولين لهما نفس الصيغة المجملة F' عبارة عن كحولين الهما الصيغة المجملة F'

يتفاعل $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ من المركب $0.1 \, \text{mol}$ فينتج عند التوازن $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ الكتلة المولية $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ الكتلة المولية $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ الكتلة المولية $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ الكتلة المولية $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ من الأمام المواقع الإستر $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ من الإستر $0.1 \, \text{mol}$ من الأمام المواقع المو

- 1) احسب مردود تفاعل الأسترة، ثمّ استنتج صنف الكحول F.
 - 2) استنتج الصيغة نصف المفصلة للكحولF.
 - 3) اكتب معادلة تفاعل الأسترة.

الله المحصول على البوليمير P، انطلاقا من الكحول F'، نجري التفاعلين التاليين:

1)
$$F' = \frac{H_2SO_4}{170^{\circ}C} + H + H_2O$$

1) جد الصيغة نصف المفصلة لكل من المركبين \mathbf{F}' و \mathbf{H} ، والصيغة العامة للبوليمير \mathbf{P}

 140° C عند $H_{2}SO_{4}$ عند بخمض الكبريت F' عند (2

- اكتب معادلة التفاعل الموافق.

التمرين الثاني: (05 نقاط)

1) نجري اختبار الونيا على الببتيدين A و B، فكانت النتائج كما هي مبيّنة في الوثيقة(1).

كاشف كزانتوبروتييك	كاشف بيوري	الببتيد
لا يتفاعل	يتفاعل	А
يتفاعل	يتفاعل	В

الوثيقة (1)

أ- ما هي مكونات كاشف بيوري؟

ب- ما هي الاستنتاجات التي تستخلصها من هذا الاختبار اللوني بالنسبة لكل من A و B ؟

2) أعطى التحليل المائي للببتيد A الأحماض الأمينية التالية:

$$H_2N$$
-CH-COOH H_2N -CH-COOH CH_2 CH_2 CH_3 $COOH$ $COOH$

أ- إذا كانت صيغة الببتيد A هي: Ser-Val-Asp، اكتب صيغته نصف المفصلة.

ب- مثّل الصورة L للحمض الأميني (Val) حسب إسقاط فيشر.

ج- احسب pH_i للحمض الأميني (Asp)، إذا علمت أنّ:

 $pKa_1 = 1,88$ $pKa_2 = 9,60$ $pKa_R = 3,66$

د- اكتب الصيغ الأيونية للحمض الأميني (Asp) عند تغير قيمة pH من 1 إلى 12.

3) أعطى التحليل المائي للببتيد B مزيجا من عدة أحماض أمينية، تم الكشف عنها بطريقة الكروماتوغرافيا الورقية، فكانت النتائج كما هي مبينة في الوثيقة (2).

أ- ماذا يمثّل كل من الطور الثابت والطور المتحرك في تقنية الكروماتوغرافيا الورقية؟

ب- ما هو دور كاشف النينهيدرين في طريقة الفصل
 بالكروماتوغرافيا الورقية؟

ج- استنتج الأحماض الأمينية المكونة للببتيدB.

د- أكمل التفاعلين التاليين:

التمرين الثالث: (05 نقاط)

عند °25°، لدينا التفاعلان التاليان:

1)
$$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \longrightarrow N_{2(g)} + 3H_{2}O_{(\ell)} \Delta H_{1}$$

2) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)} \Delta H_{2} = -92kJ$

- $\Delta H_{\rm f}^0({
 m NH_{3(g)}})$ استنتج أنطالبي تشكل غاز النشادر ($\Delta H_{3(g)}^0$
 - ΔH_1 الأنطالبي الأنطالبي (1).

$$\Delta H_f^0(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$$
 يعطى:

(3) احسب الفرق ($\Delta H - \Delta U$) بالنسبة للتفاعل (1) في الحالتين:

 $H_2O_{(\ell)}$ أ- إذا كان الماء الناتج في الحالة السائلة

 $+ H_2O_{(g)}$ ب إذا كان الماء الناتج في الحالة الغازية

يعطى: R= 8,314 J.mol⁻¹.K⁻¹

4) احسب طاقة الرابطة (N-H) في NH_{3(g)}.

$$\Delta H_{dis}^{0}$$
 (N \equiv N) = 945 kJ.mol⁻¹ . يعطى:

$$\Delta H_{dis}^{0}(H-H) = 436 \text{ kJ.mol}^{-1}$$

 $^{\circ}$ کم تصبح قیمة $^{\circ}$ للتفاعل (2) عند $^{\circ}$ 350 عند (5

$$Cp(H_2) = 27.25 + 3.2 \times 10^{-3} T$$
 $J.K^{-1}.mol^{-1}$:

$$Cp(N_2) = 27.84 + 4.2 \times 10^{-3} T$$
 J.K⁻¹.mol⁻¹

$$Cp(NH_3) = 29.72 + 2.5 \times 10^{-3} \text{T} \text{ J.K}^{-1}.\text{mol}^{-1}$$

التمرين الرابع: (05 نقاط)

I- يحضر النيلون 6-6 من تفاعل المركبين:

 $HOOC-(CH_2)_4-COOH$ $_{\mathfrak{g}}$ $H_2N-(CH_2)_6-NH_2$

- 1) سمِّ المجموعتين الوظيفيتين للمركبين.
- 2) ما نوع البلمرة التي تؤدي إلى تشكل النيلون 6-6 ؟
 - 3) اكتب معادلة تفاعل البلمرة.

II- لتحضير النيلون 6-6 في المخبر، استخدمنا المواد التالية:

- $H_2N-(CH_2)_6-NH_2$ مكسامثيلين ثنائى أمين -
 - رباعي كلور الكربون CC14
 - 1) ما هو دور رباعي كلور الكربون؟
 - 6-6 اكتب معادلة تفاعل البلمرة لتحضير النيلون 6-6.
- 3) أ- ما هي المجموعة الفعالة في الصيغة العامة للنيلون 6-6؟

- 4) اكتب معادلة التفاعل الذي يسمح بالحصول على كلوريد الأديبيل انطلاقا من حمض الأديبيك.
 - n = 200 ما هي الكتلة المولية المتوسطة للنيلون 6-6، إذا كانت درجة بلمرته n = 200

C=12g/mol H=1g/mol O=16g/mol N=14g/mol : يعطى

6) برر تسمية هذا البوليمير بالنيلون 6-6.

الموضوع الثاني

التمرين الأول: (07 نقاط)

مركبين A بالأوزون والمتبوعة بالإماهة، أعطت مركبين A الأوزون والمتبوعة بالإماهة، أعطت مركبين (C_3H_6O) B ((C_2H_4O)) B و (C_2H_4O)

أ- ما طبيعة المركبين B و C?

ب- استنتج الصيغ نصف المفصلة للمركبات: A ،B ،A .

2) انطلاقا من المركب C، نجري التفاعلات التالية:

$$C \xrightarrow{\text{LiAlH}_4} D$$

$$D + PCl_5 \longrightarrow E + HCl + POCl_3$$

$$E + Mg \xrightarrow{f} F$$

$$F + CO_2 \longrightarrow G$$

$$G + H_2O \longrightarrow H + MgCl(OH)$$

$$H + D$$
 $\xrightarrow{H^+}$ CH_3 - CH - C - O - CH - CH_3 $+$ H_2O

أ- جِدْ الصيغ نصف المفصلة للمركبات: H · G · F · E · D.

ب- أكمل التفاعل التالي:

II- يمكن الحصول على البوليمير PVC (بولي كلوريد الفينيل) انطلاقا من الأسيتيلين.

- 1) اكتب التفاعلات التي تسمح بذلك.
- 2) ما نوع البلمرة التي ينتج عنها هذا البوليمير؟
- 3) احسب الكتلة المولية المتوسطة للبوليمير PVC، إذا علمت أنّ درجة بلمرته 1936. n

$$H=1\ g/mol$$
 $C=12\ g/mol$ $Cl=35,5\ g/mol$ يعطى:

التمرين الثاني: (06 نقاط)

مختلفة، pH مختلفة، $H_2N-CH-COOH$ في المجال الكهربائي عند قيم pH مختلفة، CH_3

تمّ وضع محلول من الألانين في منتصف شريط الهجرة الكهربائية، فتحصلنا على النتائج التالية:

نتائج الهجرة	рН
- • +	1
- • +	pH _i
- • +	11

- 1) فسر هجرة الألانين في الحالات الثلاث.
- 2) مثّل الصورتين D و L للألانين حسب إسقاط فيشر.

II- نعاير $20 \, \text{mL}$ من محلول حمضي للألانين تركيزه ($0.1 \, \text{mol} \, / \, \text{L}$) بمحلول من هيدروكسيد الصوديوم NaOH تركيزه ($0.1 \, \text{mol} \, / \, \text{L}$) باستعمال جهاز pH متر والنتائج مدونة في الجدول التالى:

V _{NaOH} (mL)	0	4	8	10	14	16	18	19,5	20,5	21	22	24	30
рН	1,4	1,7	2,1	2,3	2,8	3,1	3,5	4,1	7,6	8	8,6	9,2	9,9

- 1) اكتب التفاعلات التي تحدث أثناء المعايرة.
 - $.pH = f(V_{NaOH})$ ارسم المنحنى (2
- استنتج من المنحنى قيمة كل من pH_i و pKa_1 للألانين.
 - 4) احسب قيمة pKa₂.
 - 5) اكتب الصيغ الأيونية للألانين عند قيم pH التالية:

$$pH=pKa_2 \quad \text{`} \quad pH=pH_i \quad \text{`} \quad pH=pKa_1$$

التمرين الثالث: (07 نقاط)

I- يحترق الميثانول السائل وفق التفاعل التالي:

$$CH_3OH_{(\ell)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(\ell)}$$

 $\Delta U = -724,76 \; \mathrm{kJ.mol^{-1}}$ ديث التغير في الطاقة الداخلية لهذا التفاعل عند $25^{\circ}\mathrm{C}$ هو:

1) احسب أنطالبي احتراق الميثانول السائل.

 $R = 8.314 \text{ J.mol}^{-1}.\text{K}^{-1}$

 $CH_3OH_{(\ell)}$ احسب أنطالبي التشكل ΔH_f^0 التشكل (2

 $\Delta H_f^0(CO_{2(g)}) = -393 \text{ kJ.mol}^{-1}$ يعطى:

 $\Delta H_f^0(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$

3) احسب طاقة الرابطة (C-O) في CH₃OH.

 $\Delta H_{\text{van}}^{0}(\text{CH}_{3}\text{OH}) = 35,4 \text{ kJ.mol}^{-1}$ يعطى:

 $\Delta H_{\text{sub}}^{0}(C_{(s)}) = 717 \text{ kJ.mol}^{-1}$

 $\Delta H_{dis}^{0}(H - H) = 436 \text{ kJ.mol}^{-1}$

 $\Delta H_{dis}^{0}(O = O) = 498 \text{ kJ.mol}^{-1}$

 $E_{C-H} = -413 \text{ kJ.mol}^{-1}$

 $E_{O-H} = -463 \text{ kJ.mol}^{-1}$

يتعرض غاز مثالي حجمه $(V_1=24.5~L)$ إلى انضغاط وفق تحول عكوسي (1–II) يتعرض غاز مثالي حجمه $P_1=1$ عند درجة حرارة ثابتة تساوي $P_1=1$ عند $P_2=10~{\rm atm}$

أ- ما هو عدد مولات هذا الغاز؟

ب- ما هو حجم الغاز بعد انضغاطه؟

ج- احسب العمل (W) المطبق على الغاز.

د – استنتج قيمة التغير في الطاقة الداخلية (ΔU).

ه- ما هي قيمة كمية الحرارة (Q) المتبادلة أثناء الانضغاط؟

يتمدّد غاز مثالي من الحجم $V_1=0.9~L$ إلى الحجم $V_2=1~L$ عند ضغط خارجي (2 P=30~atm ثابت . P=30~atm

- احسب العمل بالجول الذي يقدمه النظام أثناء تمدد الغاز.

الإجابة النموذجية وسيلم التنقيط

امتحان شهادة البكالوريا دورة: 2013

المادة : تكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

دمة	العا		محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
0,5	0,25	التمرين الأول: (05 نقاط) $(1 - 1)$ $(1 -$	
	0,25	والصيغة نصف المفصلة هي:	
1	0,25x4	2) الصيغ نصف المفصلة للمركبات: B: CI	
0,75	0,25x3	CH ₂ -CH ₃ + CH ₂ -CH ₃ + H ₂ SO ₄ + H ₂ SO ₄ + H ₂ SO ₄ + H ₂ O CH ₂ -CH ₃ + H ₂ O CH ₂ -CH ₃ + H ₂ O CH ₂ -CH ₃ + H ₂ O	
		H ₂ N الكوظة: يمكن استعمال LiAIH4/H ₂ O في مكان Fe/HCl	

ىي	فني رياض	تابع الإجابة النموذجية المادة : تكنولوجيا(هندسة الطرائق) الشعبة: تا ناور ا	i
		LINI CARANII A JAVI VALIC	
المجموع	مجزأة	ضوع صدر البيب (التوسوع الدول)	المو
0,75	0,25 0,25	$n($ استر) = $\frac{m}{M} = \frac{9,84}{164} = 0,06 \text{ mol}$ = $\frac{m}{164} = 0,06 \text{ mol}$ = $\frac{n(\text{ester})}{n(\text{acide})} \times 100 = \frac{0,06}{0,1} \times 100 = 60\%$	
	0,25	- صنف الكحول F هو كحول ثانوي	
0,25	0,25	H ₃ C—CH—OH :F الصيغة نصف المفصلة للكحول (2 CH ₃	
0,5	0,5	(3 معادلة تفاعل الأسترة: (3 المعادلة تفاعل الأسترة: (3 المعادلة تفاعل الأسترة: (3 المعادلة تفاعل الأسترة: (4 المعادلة تفاعل الأسترة: (5 المعادلة تفاعل ا	
	0,25x2	+ H ₃ C-CH-OH (CH ₃ + H ₂ O) CH ₃ + H ₂ O (CH ₃) + H ₂ O	
0,75	0,25	F: H ₃ C-CH ₂ -CH ₂ -OH H: H ₃ C-CH=CH ₂ - CH ₂ -CH- :P الصيغة العامة للبوليمير	
		CH ₃ ⁻ⁿ : معادلة التفاعل:	
0,5	0,5	$2 \text{ CH}_3\text{-CH}_2\text{-CH}_2\text{-OH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2\text{-CH}_3 + \text{H}_2\text{O}$	
	0,25	التمرين الثاني: (05 نقاط) NaOH عكونات كاشف بيوري: محلول كبريتات النحاس (١١) ومحلول الصود NaOH	
0,75	0,25 0,25	 ب- الاستنتاجات المستخلصة: بالنسبة لـ A: ببتید لا یحتوي علی أي حمض أروماتي بانسبة لـ B: ببتید یحتوي علی حمض أمینی أروماتی 	
	0,5	Ser – Val - Asp ميغة الببتيد (2) أ- صيغة الببتيد (2) الله الله الله الله الله الله الله الل	

صفحة 2 من 11

رمّة	<u>سي ربي </u>	جب المسووبي المساور بالمساور المساور	محاور محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
		ب- تمثيل الصورة L للحمض الأميني Val حسب إسقاط فيشر:	
2	0,25	COOH H ₂ N — H	
		H ₃ C CH ₃	
		ج- حساب pH _i للحمض الأميني Asp:	
	0,25	$pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{1.88 + 3.66}{2} = 2.77$ $c - 10$	
		pH=1 pKa ₁ =1,88 pH _i =2,77 pKa _R =3,66 pKa ₂ =9,6 pH=12	
	0,25x4	H ₃ N ⁺ -CH-COOH OH- H ₃ N+-CH-COO OH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH-COO- CH- CH- CH- CH- CH- CH- CH- CH- CH- CH	
		СН ₂ СН ₂ СН ₂ СН ₂ СН ₂ СН ₂ СООН СООТ	
2,25	0,25x2 0,25	 (3) أ- يمثل الطور الثابت ورق الكروماتوغرافيا أما الطور المتحرك فيمثله المذيب. ب- دور كاشف النينهيدرين في طريقة الفصل بالكروماتوغرافيا الورقية هو إظهار مواقع الأحماض الأمينية بتلوينها بالأزرق البنفسجي. 	
-,	0,5	ج- الأحماض الأمينية المكونة للببتيد B هي : Tyr ، Ala ، Lys د- كتابة معادلات التفاعلات:	
	0,5	H_2N —CH—COOH + H_2O — HO—CH—COOH + N_2 + H_2O H_3C	
	0,5	H_2N —CH—COOH + 2HNO ₃ \longrightarrow H_2N —CH—COOH + 2H ₂ O H_2C \longrightarrow O_2N \longrightarrow	

ي رياضي	الشعبة: تقن
---------	-------------

ي لامة		جابه التمودجيه المادة . تحتولوجيا (هندسه الطرائق) السعبه. تا	ب <u> </u>
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
		التمرين الثالث:(05 نقاط)	
		$\Delta H_f^0(NH_{3(g)})$ استنتاج (1	
		بتطبيق قانون Hess :	
		$\Delta H_2 = \sum \Delta H_f^0 \left(\text{Pr oduits} \right) - \sum \Delta H_f^0 \left(\text{Re actifs} \right)$	
	0,25	$\Delta H_2 = 2\Delta H_f^0 \left(NH_{3(g)} \right) - \left[\Delta H_f^0 \left(N_{2(g)} \right) + 3\Delta H_f^0 \left(H_{2(g)} \right) \right]$	
		$-92 = 2\Delta H_f^0 (NH_{3(g)}) - (0 + 3 \times 0)$	
		()	
0,5		$\Delta H_f^0(NH_{3(g)}) = -\frac{92}{2} = -46 \text{ kJ/mol}$	
	0,25	$\Delta H_f^0 \left(NH_{3(g)} \right) = -46 \ kJ / mol$	
		ΔH_1 حساب (2)	
	0,25	$\Delta H_{1} = \left[\Delta H_{f}^{0} \left(N_{2_{(g)}} \right) + 3\Delta H_{f}^{0} \left(H_{2} O_{(\ell)} \right) \right] - \left[2\Delta H_{f}^{0} \left(N H_{3_{(g)}} \right) + \frac{3}{2} \Delta H_{f}^{0} \left(O_{2(g)} \right) \right]$	
		$\Delta H_1 = 0 + 3(-286) - 2(-46) - \frac{3}{2}(0)$	
		$\Delta H_1 = -858 + 92 = -766 kJ$	
	0,25	$\Delta H_1 = -766 kJ$	
0,5		·	
	0,25	$\Delta H = \Delta U + \Delta nRT$: ادینا (3)	
	ŕ	$H_2O_{(\ell)}$ السائلة السائلة $H_2O_{(\ell)}$:	
		$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \rightarrow N_{2(g)} + 3H_2O_{(\ell)}$	
	0,25	$\Delta n = 1 - \left(2 + \frac{3}{2}\right) = -2,5 mol$	
		T = 25 + 273 = 298K	
		$\Delta H - \Delta U = \Delta nRT = -2,5 \times 8,314 \times 298$	
	0,25	$\Delta H - \Delta U = -6193,93J = -6,194kJ$	
1,5			
	0.25	$H_2O_{(g)}$: $H_2O_{(g)}$ عبد مي الحالة الغازية	
	0,25	$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \to N_{2(g)} + 3H_2O_{(g)}$	
	0,25	$\Delta n = (1+3) - \left(2 + \frac{3}{2}\right) = 0,5 \text{ mol}$	
	0,25	$\Delta H - \Delta U = \Delta nRT = 0.5 \times 8.314 \times 298$	
	, -	$\Delta H - \Delta U = 1238,786J = 1,239kJ$	

ىي	فني رياض	لإجابة النموذجية المادة : تكنولوجيا (هندسة الطرائق) الشعبة: تَا	تابع الا
لمة المجموع	العا مجزأة	لإجابة النموذجية المادة: تكنولوجيا (هندسة الطرائق) الشعبة: تناصر الإجابة (الموضوع الأول)	محاور الموضوع
	3.	:(N-H) حساب طاقة الرابطة $\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)} \xrightarrow{\Delta H_{I}^{0}(NH_{3(g)})} NH_{3(g)}$	
	0,5	$\frac{1}{2}\Delta H_{dis}^{\circ}(N) \equiv N \frac{3}{2}\Delta H_{dis}^{\circ}(H-H) 3E_{N-H}$ $N_{(g)} + 3H_{(g)}$	
1	0,25	$\Delta H_f^0 \left(NH_{3(g)} \right) = \frac{1}{2} \Delta H_{dis}^0 \left(N \equiv N \right) + \frac{3}{2} \Delta H_{dis}^0 \left(H - H \right) + 3E_{N-H}$ $-46 = \frac{1}{2} (945) + \frac{3}{2} (436) + 3E_{N-H}$	
	0,25	$E_{N-H} = -\frac{1172.5}{3} = -390.83kJ.mol^{-1}$	
		ΔH_2 حساب قيمة ΔH_2 للتفاعل (2) عند ΔH_2 :	
		بتطبیق قانون کرشوف حیث:	
	0,25	$\Delta H_T = \Delta H_{T_0} + \int_{T_0}^{T} \Delta C_p dT$	
		$\Delta C_p = \sum_{p} C_p \left(\text{Pr oduits} \right) - \sum_{p} C_p \left(\text{Re actifs} \right)$	
	0,25	$\Delta C_p = 2C_p (NH_3) - \left[C_p (N_2) + 3C_p (H_2)\right]$ $\Delta C_p = 2(29,72 + 2,5 \times 10^{-3}T) - (27,84 + 4,2 \times 10^{-3}T) - 3(27,25 + 3,2 \times 10^{-3}T)$	
	0.25	$\Delta C_p = -50,15 - 8,8 \times 10^{-3} T$	
	0,23	T = 550 + 273 = 823K	
1,5		$T_0 = 25 + 273 = 298K$	
	0,25	$\Delta H_T = \Delta H_{T_0} + \int_{T_0}^{T} \left(-50,15 - 8,8 \times 10^{-3}T\right) dT$	
	0,25	$\Delta H_T = \Delta H_{T_0} - 50,15 (T - T_0) - 8,8 \times 10^{-3} \left(\frac{T^2}{2} - \frac{T_0^2}{2} \right)$	
		$\Delta H_{823} = -92 \times 10^3 - 50,15 (823 - 298) - 8,8 \times 10^{-3} \left(\frac{(823)^2}{2} - \frac{(298)^2}{2} \right)$	
	0,25	$\Delta H_{823} = -120918, 26J = -120, 92 kJ$	
	,		

<u>پ</u> دمة	<u>سي ريا</u> العا	ب مسودی مسودی	حبے ہے۔ محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
		التمرين الرابع: (05 نقاط)	
		1-1) تسمية المجموعتين الوظيفيتين:	
0,5	0,25	ا المركب $H_2N-(CH_2)_6-NH_2$: المجموعة الأمينية	
	0,25	- المركب COOH-4_CH2) : المجموعة الحمضية الكربوكسيلية	
0,25	0,25	2) نوع البلمرة: بلمرة بالتكاثف	
0,75	0,75	3) معادلة تفاعل البلمرة:	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0,25	0,25	CCl ₄ يلعب 4Cl ₄ دور المذيب 2) معادلة تفاعل البلمرة:	
0,5	0,5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0,75	0,25	3) أ- المجموعة الفعالة في الصيغة العامة للنيلون 6-6: هي المجموعة الأميدية O II I I I I I I I I I I I I I I I I I	
0,73		ب- تمثیل مقطع من النیلون 6-6 یحتوی علی وحدتین بنائیتین:	
	0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		4) كتابة معادلة التفاعل الذي يسمح بالحصول على كلوريد الأدببيل:	
1	4×0.25	$ HOOC-(CH_2)_4-COOH + 2PCI_5 \longrightarrow CIOC-(CH_2)_4-COCI + 2POCI_3 + 2HCI$	
_	1.0,23	أو	
		HOOC-(CH ₂) ₄ -COOH + 2SOCI ₂	
		5) الكتلة المولية المتوسطة للنيلون 6-6:	
	0,25	$n = \frac{M(Polymère)}{M(Monomère)} \longrightarrow M(Polymère) = n M(Monomère)$	
0,75	0,25	M(Monomère) = (12 x 12) + (22 x1) + (2 x 16) + (2 x 14)= 226 g/mol	
	0,25	M(Poly) = 200 x 226 = 45200 g/mol	
0,25	0,25	6) تبرير تسمية النيلون 6-6: يدخل في تركيب النيلون 6-6 حمض الأديبيك والهكسامثيلين ثنائي أمين الذين كل منهما يحتوي على ستة ذرات كربون.	

دمة "	. تعني ريا العلا		
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
	2 x 0,25	التمرين الأول: (07 نقاط) التمرين الأول: (07 نقاط) I - الحديد وطبيعة C : سيتون B: الدهيد وطبيعة C - الصيغ نصف المفصلة للمركبات: CH ₃	
		2) أ – الصيغ نصف المفصلة للمركبات: OH CI MgCI D: H ₃ C-CH-CH ₃ F: H ₃ C-CH-CH ₃	
	5 x 0,5	G: H ₃ C-CH-C-OMgCl H: H ₃ C-CH-C-OH CH ₃ CH ₃	
3	0,5	: با المناعل: CH3 H ₃ C—CH—Cl + (CH ₃) ₃ N	
	0.5	اا) 1) التفاعلات التي تسمح بالحصول على البوليمير PVC:	
	0,5	HC≡CH + HCI → H ₂ C=CH-CI	
1	0,5	n H ₂ C=CH	
0,25	0,25	2) نوع البلمرة: بلمرة بالضم.	
		3) حساب الكتلة المولية المتوسطة لــ PVC:	
	0,25	M _{monomère} = 2x12 + 3x1 + 35,5 = 62,5 g/mol	
0,75	0,25	$n = \frac{M_{\text{polymère}}}{M_{\text{monomère}}} \Rightarrow M_{\text{polymère}} = nxM_{\text{monomère}}$	
	0,25	$M_{polymère} = 1936x62,5 = 121000g/mol$	

المة أ	العلا	(nên c. h. n) î le Ni . el le	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	الموضوع
	0,25	التمرين الثاني: (06 نقاط) 1-۱) تفسير هجرة الألانين في الحالات التالية: - عند pH=1 (وسط حمضي) يكون الألانين على شكل أيون موجب - عند CH—COOH CH3	
0,75	0,25	 عند pH=pHi یکون الألانین علی شكل أیون متعادل كهربائیا لا یهاجر H₃N⁺—CH—COO-CH₃ 	
	0,25	- عند pH=11 (وسط قاعدي) يكون الألانين على شكل أيون سالب	
		- CH—COO يهاجر نحو القطب الموجب H ₂ N—CH—COO CH ₃ (2) تمثیل صورتي D و L للألانین حسب إسقاط فیشر:	
0,5	2 x 0,25	$H \longrightarrow NH_2$ $H_2N \longrightarrow H$ CH_3 CH_3 CH_3	
1	0,5	اا −1) التفاعلات التي تحدث أثناء المعايرة: * تعديل الحموضة الأولى: H ₃ N ⁺ —CH—COOH + HO → H ₃ N → CH—COO + H ₂ O CH ₃ * تعديل الحموضة الثانية:	
	0,5	H_3N^{+} CH COO + HO - + H_2N CH COO + H_2O CH ₃	

	ي ر. و	— · · · · · · · · · · · · · · · · · · ·	F - C
الله م		عناصر الإجابة (الموضوع الثاني)	محاور السفية
المجموع	مجزأة		الموضوع
1	1	2) رسم المنحنى: (pH = f (V _{NaOH}	
	_	3) تعیین قیمة کل من pH _i و pKa ₁ بیانیا:	
1 1	2 0 5	من البيان نجد: pH _i = 6 و pKa ₁ = 2,3	
	2 x 0,5	4) حساب قيمة pKa ₂ للألانين:	
		$pH_{i} = \frac{pKa_{1} + pKa_{2}}{2} \Rightarrow pKa_{2} = 2pH_{i} - pKa_{1}$	
0.5	0,25	$pH_i = \frac{1}{2} \Rightarrow pKa_2 = 2pH_i - pKa_1$	
0,5		$pKa_2 = 2x6 - 2,3 = 9,7$	
	0,25	5) الصيغ الأيونية للألانين:	
		- عند pH= pKa ₁ لدينا مزيجا من:	
	2 0 25	U N ⁺ CU COO⁻	
	2 x 0,25	H ₃ N ⁺ —CH—COO ⁻ • H ₃ N ⁺ —CH—COOH CH ₃ CH ₃	
		CH_3	
1 25	0,25	− عند pH=pH _i کدینا:	
1,25			
		– عند pH= pKa ₂ لدينا مزيجا من:	
		+ H N OU OO	
	2 x 0,25	H ₃ N ⁺ —CH—COO ⁻ 9 H ₂ N——CH—COO ⁻	
		ĊH₃ CH₃	

<u>ي ري ي</u> العلامة			حب <i>ے</i> ہے۔ محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	الموضوع
		التمرين الثالث: (07 نقاط)	
		ا-1) حساب أنطالبي احتراق الميثانول السائل:	
	0,25	$\Delta H = \Delta U + \Delta nRT$	
	0,25	$\Delta n = 1 - \frac{3}{2} = -0,5 \text{mol}$	
1		2 T = 25 + 273 = 298K	
		$\Delta H = -724,76x10^3 - 0,5x8,314x298$	
		$\Delta H = -724760 - 1238,786 = -725998,786 \text{J.mol}^{-1}$	
	0,5	$\Delta H = -726 \text{kJ.mol}^{-1}$	
		: ۵H ⁰ (CH ₃ OH _(I)) حساب (2	
		بتطبيق قانون Hess:	
		$\Delta H = \sum \Delta H_f^0(\text{produits}) - \sum \Delta H_f^0(\text{reactifs})$	
	0,5	$\Delta H = \left[\Delta H_{f}^{0}(CO_{2(g)}) + 2\Delta H_{f}^{0}(H_{2}O_{(l)})\right] - \left[\Delta H_{f}^{0}(CH_{3}OH_{(l)}) + \frac{3}{2}\Delta H_{f}^{0}(O_{2(g)})\right]$	
0,75		$-726 = -393 + 2(-286) - \Delta H_f^0(CH_3OH_{(1)}) - \frac{3}{2}(0)$	
		$\Delta H_f^0(CH_3OH_{(1)}) = 726 - 393 - 572$	
	0,25	$\Delta H_f^0(CH_3OH_{(I)}) = -239kJ.mol^{-1}$	
		3) حساب طاقة الرابطة c-o:	
		$C_{(s)} + 2 H_{2(g)} + 1/2 O_{2(g)} \xrightarrow{\Delta H_f \circ (CH_3OH_{(I)})} CH_3OH_{(I)}$	
	0,75	$\Delta H^{\circ}_{\text{sub}} (C_{(s)}) 2\Delta H^{\circ}_{\text{dis}} (H-H) 1/_{2}\Delta H^{\circ}_{\text{dis}} (O=O) - \Delta H^{\circ}_{\text{vap}} (CH_{3}OH)$	
		Tap 3	
		$C(g) + 4 H(g) + O(g) \xrightarrow{3E_{C-H} + E_{C-O} + E_{O-H}} CH_3OH_{(g)}$	
		$\Delta H_{f}^{0}(CH_{3}OH_{(I)}) = \Delta H_{sub}^{0}(C_{(s)}) + 2\Delta H_{dis}^{0}(H-H) + \frac{1}{2}\Delta H_{dis}^{0}(O=O)$	
1,5	0,5	$+3E_{C-H} + E_{C-O} + E_{O-H} - \Delta H_{vap}^{0} (CH_{3}OH)$	
		$-239 = 717 + 2(436) + 1/2(498) + 3(-413) + E_{c-0} - 463 - 35,4$	
		$E_{c-0} = -239 - 717 - 872 - 249 + 1239 + 463 + 35,4$	
	0,25	$E_{c-0} = -339,6 \text{kJ.mol}^{-1}$	
		ملاحظة: تقبل إجابة أخرى باستعمال مخطط تشكل CH ₃ OH ₍₉₎	

السعبه، لعني رياضي العلامة		بابه التمودجية المادة . تحتولوجي (مندسه الطراق) السعبة ا	
رمه. المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
	0,25	ا -1) أ $-$ حساب عدد مو لات الغاز : $P_1V_1 = nRT \Rightarrow n = \frac{P_1V_1}{RT}$	
	0,5	$P_1 = 1atm = 1,013 \times 10^5 Pa$ $V_1 = 24,5L = 24,5 \times 10^{-3} m^3$ $T = 25 + 273 = 298K$ $n = \frac{1,013 \times 10^5 \times 24,5 \times 10^{-3}}{8,314 \times 298} = 1 \text{ mol}$ $p = \frac{1,013 \times 10^5 \times 24,5 \times 10^{-3}}{8,314 \times 298} = 1 \text{ mol}$ $p = \frac{1,013 \times 10^5 \times 24,5 \times 10^{-3}}{8,314 \times 298} = 1 \text{ mol}$	
	0, 5	$P_1V_1 = P_2V_2 \Rightarrow V_2 = \frac{P_1V_1}{P}$	
	0,25	$V_2 = \frac{1 \times 24,5}{10} = 2,45 \text{ L}$	
3		$W: W:$ $W: PV = PdV$ $PV = nRT \Rightarrow P = \frac{nRT}{V}$	
	0,5	$W = \int_{V_1}^{V_2} -nRT \frac{dV}{V} = -nRT \int_{V_1}^{V_2} \frac{dV}{V}$ $W = -nRT \ln \frac{V_2}{V_1}$	
	0,25	W = -1 x8,314x298 ln $\frac{2,45}{24,5}$ = 5704,82 J W = 5,705 kJ	
	0,25	د- استنتاج قيمة التغير في الطاقة الداخلية ΔU : عند درجة حرارة ثابتة يكون $\Delta U = 0$ هــ- كمية الحرارة المتبادلة أثناء الإنضغاط:	
	0,25	$\Delta U = Q + W$ دينا	
	0,25	0 = Q + W => Q = -W = -5,705 kJ (2) $C = Q + W => Q = -W = -2,705 kJ$	
	0,5	$W = -P_{\text{ext}}\Delta V = -P_{\text{ext}}(V_2 - V_1)$ عند ضغط ثابت یکون	
0,75	0,25	W = $-30x1,013x10^{5}(10^{-3} - 0.9x10^{-3})$ W = -303.9 J	

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول: نظام آلي لتوضيب زيت صناعي في دلاء

I - دفتر الشروط:

1-I هدف التألية: يهدف النظام إلى ملء دلاء بلاستيكية ذات سعة 5 لتر بالزيت الصناعي، غلقها وعدها ثمّ إخلائها.

2-I المواد الأولية: - زيت محضر مسبقا - دلاء بالستيكية فارغة - أغطية معدنية.

3-I الوصف:

- أ النظام: يحتوي النظام على 5 مراكز وهي:
- مركز (1): تدوير الصحن. مركز (2): التقديم. مركز (3): الملء.
 - مركز (4): الغلق.
 مركز (5): العد والإخلاء.

ب- التشغيل:

- تأتي الدِلاء إلى مركز التقديم عبر قناة عمودية، حيث يتم تحويلها من مركز إلى آخر بواسطة صحن دوار.
 - يُفتح الكهروصمام E_{V2} لمدة 10 ثوان، ثمّ يُفتح الكهروصمام E_{V2} لمدة 10 ثوان.
 - يُغلق الدلو بواسطة الرافعتين B و C .
- تُدفع الدِلاء المملوءة بواسطة الرافعة D إلى بساط يديره المحرك M_1 ، لتحول إلى طبع تاريخ الإنتاج ومدة صلاحية الاستهلاك على الغطاء بعدد 12 دلوا (خارج النظام المدروس).

ملاحظة: عند بلوغ كمية الزيت في الخزان المستوى الأدنى vo، يتمّ التنبيه عنه بواسطة جرس.

4-I الاستغلال: - عامل مختص للقيادة والصيانة الدورية .

- عاملان دون اختصاص، يقومان بتزويد القناة العمودية بالدلاء الفارغة، وملء الخزان عندما يدق جرس التنبيه.

I-5 الأمن: حسب الاتفاقيات المعتمدة والمعمول بها.

II - التحليل الوظيفي: الوظيفة الشاملة: نشاط بياني (A-O).

صفحة 2 من 17

$\overline{ m VI}$ الاختبار إن التكنولوجية للمنفذات والمنفذات المتصدرة والملتقطات

الأشغو لة الأجهزة	المنفذات	المنفذات المتصدرة	الملتقطات
تدوير	MPAP: محر ^{ای} خطوة- خطوة	SAA1027	m: ملتقط نهایة شوط یکشف عن دوران الصحن بزاویة 90°.
التقديم	A: رافعة أحادية المفعول	4A: موزع کهرو هو ائي 2/2 أحادي الاسنقرار .	a: ملتقط پکشف عن خروج ساق الرافعة A. الدافعة A. بکشف عن حضور الدلو القارغ في الدلو التقديم.
الملء	EV1: كهروصمام. کهروصمام.	الكهر وصمام ملامس الكهر وصمام ملامس الكهر وصمام ملامس الكهر وصمام ملامس 1. مؤجلة 1.	E_{V1} رمن فتح t_1 $t_1 = 10s$ E_{V2} رمن فتح $t_2 = 10s$ $t_2 = 10s$
الغاق	B: رافعة مزدوجة المفعول مزودة بمصاصة هوائية. C رافعة مزدوجة المفعول. C مباشر، اتجاء واحد للدوران.	'44 ثنائي الاستقرار كهروهوائي 244. الاستقرار ~244. طائي الاستقرار ~244 ماري عهروهوائي 244. طائي الاستقرار ~244. حياطيسي 244.	الكشف عن دخول وخروج ساق الكشف عن دخول وخروج ساق الر افعة A . حين ملتقطا نهاية شوط الكشف عن دخول وخروج ساق الر افعة A . حثي يكشف عن وجود الغطاء.
العد والإخلاء	 G: رافعة مزدوجة المفعول IM: محرك لا تزامني 3~، إقلاع مباشر، اتجاه واحد للدوران. 	$^{+}$ dD، dD موزع کهروهوائي $24V_{\odot}$ نتائي الاستقرار $2/4$ نتائي الاستقرار $2/4$ نتاطيسي $2/4V_{\odot}$.	الكشف عن دخول وخروج ساق الكشف عن دخول وخروج ساق الر افعة ط. عن ولد البلاء. عن وصولية تكشف عن عن وصول البلاء إلى مركز الطبع.

V- التحليل الزمني:

متمن تنسيق الأشغولات (GPN):

متمن أشغولة 5 (عد وإخلاء الدلاء)

VI - الإنجازات التكنولوجية:

دارة الكشف عن مرور وعد الدِلاء:

أسئلة الامتحان

التحليل الوظيفي:

-1 كمل النشاط البياني التنازلي -1 على وثيقة الإجابة -1 (الصفحة -1).

التحليل الزمني:

س2- ارسم متمن من وجهة نظر جزء التحكم للأشغولة 3 (أشغولة الملء).

س3- اكتب على شكل جدول، معادلات التنشيط والتخميل والمخارج للأشغولة 5 (أشغولة عد وإخلاء الدِلاء) (الصفحة 17/5).

-4س ارسم تدرج المتامن (GS-GCI-GPN).

انجازات مادية:

س5- لماذا استعملنا ملتقط سيعي (h) وآخر حثي (k) في المناولة الهيكلية (الصفحة 17/2)؟ دارة الكشف عن مرور وعد الدلاء (الصفحة 17/5).

F3 و F3 هي وظيفة كل من الطوابقF3 ، F3 و F3?

دراسة الطابق F1 (الصفحة 17/5).

س7- ما هو دور كل من العناصر التالية:

- المقاومة R1 - الصمام D - المقحل T2 ؟

-8س الثنائي D1 هي $(R_1, 2V)$ علما أنّ خصائص الثنائي D1 هي $(R_1, 2V)$

-9 ما نوع البوابة المنطقية المستعملة مع مخارج العداد في تركيب الطابق -9

س10- أكمل رسم دارة العداد اللامتزامن لعد 12 دلوا على وثيقة الإجابة 2/2 (الصفحة 17/8).

س11- أكمل ربط كل من: المعقب الكهربائي، المنفذ المتصدر ودارة استطاعة الرافعة A للأشغولة 2 على وثيقة الإجابة 2/1 (الصفحة 17/7).

در اسة الميكرومر اقب:

نرغب في تجسيد الأشغولة 2 بالتكنولوجيا المبرمجة باستعمال المكرومراقب PIC 16F84A على وثيقة الإجابة 2/2 (الصفحة 17/8).

س12− فسر مدلول رموز الــ: PIC 16F84A.

س13- أتمم كتابة التعليمات والتعليقات الخاصة ببرنامج تهيئة المداخل والمخارج للميكرومراقب.

دارة تحويل الطاقة:

يُغذّى الملامس KM1 بمحول كهربائي، كتب على لوحة مواصفاته ما يلي:

80VA; 220 V/24 V; 50Hz

. I_{2n} الشيخ الثانوي الثانوي -14 الشيخ الثانوي الثانوي -14

 I_{2n} بتيار 0.86 بتيار المحول حمولة حثية معامل استطاعتها

 $\sim X_{
m S} = 0.6\Omega$ و $R_{
m S} = 0.1\Omega$ المبوط في التوتر الثانوي $\Delta {
m U}_2$ ، علما أنّ

 m_0 استنتج نسبة التحويل -16

ج1: التحليل الوظيفي التنازلي:

ج11- رسم المعقب الكهربائي وربط المنفذ المتصدر ودارة استطاعة الرافعة A.

-X200-

وتيقة الإجابة 2/2

ج10- دارة العداد اللامتزامن لعد 12 دلوا

الموضوع الثاني: موزع آلي لمشروب القهوة

I- دفتر الشروط المبسط:

I-I الهدف من التألية: يهدف هذا النظام إلى توزيع مشروب القهوة الساخن لعمال وأساتذة الثانوية أثناء فترة الاستراحة.

2-I الوصف: يحتوي النظام على أربعة (4) أشغو لات:

- الأشغولة (1): طحن حبيبات القهوة وتكديسها.
 - الأشغولة (2): امتصاص وتسخين الماء.
 - الأشغولة (3): توزيع القهوة.
 - الأشغولة (4): التخلص من النفايات.

I-3 كيفية التشغيل:

- عند وضع قطعة نقود (DA (20 DA) داخل الموزع مع حضور كأس فارغة أمام خلية الكشف الكهروضوئية cp والضغط على الضاغطة (Dcy)، تؤدي إلى:
 - طحن حبيبات القهوة لمدة 15 ثانية بواسطة سكين الطحن.
- امدة R_{θ} المدة المكبس بدخول ساق الرافعة A، ثمّ تسخينه بواسطة مقاومة التسخين R_{θ} المدة R_{θ} المدة R_{θ} المدة ثو ان.
- تغريغ مسحوق القهوة في المصفاة بفتح الكهروصمام E_V لمدة زمنية تقدر بـ 5 ثوان، ثمّ نزول الماء الساخن والمضغوط لينفذ عبر مسحوق القهوة إلى الكأس بواسطة خروج ساق الرافعة A.
 - التخلص من مسحوق القهوة المستعمل بخروج ساق الرافعة B نحو سلة النفايات وذلك عند سحب كأس القهوة من أمام خلية الكشف الكهروضوئية cp، ثمّ تعود الساق لتنتهي الدورة.

ملاحظة: نظام ملء الطاحونة بحبيبات القهوة، خزان الماء؛ تقديم كل من الكؤوس الفارغة، السكر، الملاعق البلاستيكية؛ ونظام مراقبة قطع النقود خارجة عن الدراسة.

الستغلال: النظام يتطلب وجود عاملين: I-J

- الأول متخصص في: التهيئة، المراقبة والصيانة الدورية.
- الثاني دون اختصاص: يزود النظام بالكؤوس الفارغة، السكر، الملاعق البلاستيكية، حبيبات القهوة وصرف سلة النفايات.

I-5 الأمن: حسب القوانين المعمول بها.

لاحظ العامل المكلف بصيانة النظام انكسار سكين الطحن، فكلف التلميذ إبراهيم من قسم 3 تقني رياضي لشراء سكين حسب النموذج شكل a، فوجد نموذجا آخر للوجه الحاد يمينا شكل d، فاقترح عليه تغيير برنامج دارة التحكم الآلي المبرمج الصناعي API (المكتوب بلغة الملامس LADDER).

II - التحليل الوظيفي: الوظيفة الشاملة

- مخطط النشاط (A-0) :

- معطيات النشاط:

حبيبات القهوة – ماء – كؤوس فارغة – سكر – الملاعق البلاستيكية – نظام آلي – عاملان – كؤوس مملوءة بالقهوة الساخنة – نقارير.

صفحة 11 من 17

VI - الاختيار إن التكنولوجية للمنقذات والمنقذات المتصدرة والملتقطات:

الأجهزة	المنفذات	المنفذات	الملتقطات
طحن حبيبات القهوة وتكديسها	. عمرك لا ترامني 3 ~ إقلاع مباشر، اتجاء واحد للدرران، 20/380V;50Hz;0,5kw 0,5A; 1425tr/mn; cosq=0,8	KM: ملامس كهرومغنا البسم _24V	t : زمن تأجيل مدة طحن القهوة بقدربــ 15s
امتصاص و تسخين الماء	A : رافعة مزدوجة المنسول R9: مقاومة التسخين NE555 بالدارة 755	dA: موزع كهروهوائية/2 ثنائي الاستقرار ~4V. مرحل مقاومة التسخين	a : ملتقط الكشف عن دخول ساق الرافعة A. يا : زمن تسخين الماء يتبر ب 10s
توزيع القهوة	A : رافعة مزدوجة المفعول A : كهروصمام E_V : مؤجلة بعداد لامتزامي	4/5 موزع كهروهو الي2/2 . ثنائي الاستقرار ~24V. ثنائي الاستقرار ~4K. الكهرو صمام . 24V.	الا: ملتقط الكشف عن خرجج ساق الر افعة A. با: زمن توزيع القهوة يقدر بــ 53. كأس القهوة (عدد الكؤوس الموزعة).
التخلص من النفايات	B: رافعة مزدوجة المفعول	'dB';dB: موزع کهروهوائي 2/4 ثنائي الاستقرار ~24V.	od : ملتقط الكشف عن دخول ساق الرافعة B. رط: ملتقط الكشف عن خروج ساق الرافعة B.

شبكة التعذية: $3 \times 380 V_{\odot}$; 3

V- المناولة الزمنية:

متمن تنسيق الأشغولات(GCT)

VI إنجاز ات تكنولوجية:

1- دارة الكشف والعد:

شكل 1

أسئلة الامتحان

التحليل الوظيفي:

مستعينا بالمعطيات في (صفحة 17/10).

س1: أكمل النشاط البياني A-0 على وثيقة الإجابة 2/1 (صفحة 17/16).

التحليل الزمني:

س2: ارسم متمن (أشغولة 2) من وجهة نظر جزء التحكم وفقا لدفتر المعطيات.

س3: أكمل جدول معادلات التنشيط والتخميل والأفعال للأشغولة 3 على وثيقة الإجابة 2/1 (صفحة 17/16).

س4: فسر الأوامر التالية: F/GPN:(10,20,30,40) و I/GPN:(4-12) (صفحة 17/13).

س5: أكمل رسم دارة العداد لعد 12 كأس مملوءة بالقهوة على وثيقة الإجابة 2/1 (صفحة 17/16).

س6: أكمل البيان الزمني لعد 12 كأسا على وثبقة الإجابة 2/2 (صفحة 17/17).

إنجازات تكنولوجية:

س7: ما هو دور كل من (AU -Dcy-AT) في لوحة التحكم في المناولة الهيكلية (صفحة 17/11)؟

س8: احسب قيمة C2 لدارة إشارة الساعة، علماً أن دورة الإشارة $T_=4s$ الشكل (صفحة 17/14).

س9: ما هو اسم ودور كل من AOP1 وAOP2 في دارة المؤجلة بالقلاب أحادي الاستقرار شكل 3 (صفحة 17/14)؟

س10 : احسب قيمة R لدارة المؤجلة بالقلاب أحادي الاستقرار في الشكل3 (صفحة 17/14). نأخذ: 1.1≈2.1.

س11: أكمل دارة المعقب الكهربائي للأشغولة 3 على وثيقة الإجابة 2/2 (صفحة 17/17).

س 12: في رأيك ما هو الحل الذي اقترحه إبراهيم على العامل المختص لحل الإشكال المطروح في تغيير الجهة الحادة للسكين كما هو موضح في الشكل a والشكل b (الصفحة a (الصفحة a)؛

الآلي المبرمج الصناعيAPI:

س 13: أكمل البرنامج المقترح للتحكم في محرك الطاحونة بلغة الملامس (LADDER) على وثيقة الإجابة 2/2 (صفحة 17/17). مخرج Q: مدخل Q: مدخل

محرك سكين الطحن M:

س14: ما نوع الإقران المناسب للمحرك على الشبكة؟ علَّل إجابتك.

س15: من جدول الاختيارات التكنولوجية (الصفحة 17/12)، فسر المقادير المسجلة من لوحة مواصفات المحرك.

س16: في جدول الاختيارات التكنولوجية، ماذا يعني التعيين 2/5 للموزع الكهروهوائي dA؟

وثيقة الإجابة 2/1:

ج1/الوظيفة الشاملة A-0:

ج3/ جدول معادلات التنشيط والتخميل والأفعال للأشغولة 3:

الأفعال	التخميل	التتشيط	المراحل
			X30
			X31
			X32
			X33

ج5/عداد لاتزامني لعد 12 كأسا

وثيقة الإجابة 2/2:

ج6/ البيان الزمنى للعداد لعد 12 كأس:

ج11/ المعقب الكهربائي للأشغولة 3:

-X200-

ج13/ دارة تحكم محرك الطحن باستعمال الآلي المبرمج الصناعي API بلغة الملامس LADDER :

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2013

المادة: تكنولوجيا الشعبة: تقني رياضي هندسة كهربائية

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقني رياضي

	العلا		(الموضوع الأول)	عناصر الاجابة		محاور
مجموع	مجزأة					موضوع
			``	التنشيط و التخميل للأشغولة (التشيط و التخميل الأشغولة (1	ج3
		المخارج	التخميل	التنشيط	المراحل	
		RAZ	X51	X55 . X5 + X200	X50	
		العد +dD	X52 + X200	X50 . X5 . X104 + X53.N	X51	
1.5	3×0.5	dD-	X53 + X200	X51 . d1	X52	
			X54 + X51 + X200	X52 . do	X53	
		KM1	X55 + X200	X53 . N	X54	
			X50 + X200	X54 . e	X55	
					b	
				متامن :	- رسم تدرج ال	ج4
		51100	الأمن : (GS)	متمن ممّن		
		FIGCI:1100	<u> </u>			
0.75	3×0.25		٦	10,30 M		
		متمن القيادة و التهيئة (GCI)	//GPN:(1)	CPN: (10,30,30,40,40,40,40,40,40,40,40,40,40,40,40,40	(b)	
			(1)			1
				اج العادي	متمن الإثت	
				اج العادي (Gl	متمن الإثت	
				اج العادي (GI)	متمن الإثت P N)	5.7
1	2×0.5		لاستيكية	ر (GI) يكشف عن الدلاء الب	متمن الإنت PN) - الملتقط السيعي	5 &
1	2×0.5		لاستيكية	ر (GI) يكشف عن الدلاء البر (k) يكشف عن الأغطية	متمن الإنت PN) - الملتقط السيعج - الملتقط الحثي	
1			لاستيكية	ر (h) يكشف عن الدلاء البر (k) يكشف عن الأغطية المشف عن الأغطية الشف عن الدلاء.	متمن الإنت (PN) - الملتقط السيعج - الملتقط الحثي - F1 دارة الك	5 ट 6 ट
	2×0.5 3×0.25		لاستيكية	ر (h) يكشف عن الدلاء البر (h) يكشف عن الدلاء البر (k) يكشف عن الأغطية شف عن مرور الدلاء. لارتداد	متمن الإنت - الملتقط السيعج - الملتقط الحثي - F1 دارة الك - F2 دارة ضد	
			لاستيكية	ر (h) يكشف عن الدلاء البر (h) يكشف عن الدلاء البر (k) يكشف عن الأغطية شف عن مرور الدلاء. لارتداد	متمن الإنت (PN) - الملتقط السيعج - الملتقط الحثي - F1 دارة الك	
0.75	3×0.25		لاستيكية	ر (h) يكشف عن الدلاء البر (h) يكشف عن الدلاء البر (k) يكشف عن الأغطية شف عن مرور الدلاء. و الارتداد و الدلاء . و المرتداد و المرتدا	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F2 دارة ضا - F3 دارة ال	
0.75			لاستيكية	ر (h) يكشف عن الدلاء البر (h) يكشف عن الدلاء البرشف عن الأغطية شف عن الأغطية د الارتداد مد	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F3 دارة ضي - دور العناص - المقاومة المقاومة	6₹
0.75	3×0.25		لاستيكية	ر (A) يكشف عن الدلاء البر (h) يكشف عن الدلاء البرشف عن الأغطية شف عن مرور الدلاء. الارتداد عدد الارتداد عماية الصمام D1 . T2 . T2 .	متمن الإنت - الملتقط السيعج - الملتقط الحثي - F1 دارة الك - F3 دارة ضد - دور العناص - المقاومة المقاومة الصمام	6₹
1 0.75 0.75	3×0.25		لاستيكية	ر (A) يكشف عن الدلاء البر (h) يكشف عن الدلاء البرشف عن الأغطية شف عن مرور الدلاء. الارتداد عدد الارتداد عماية الصمام D1 . T2 . T2 .	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F3 دارة ضي - دور العناص - المقاومة المقاومة	6₹
0.75 0.75	3×0.25 3×0.25		لاستيكية	ر (A) يكشف عن الدلاء البر (k) يكشف عن الدلاء البرشف عن الأغطية الرتداد الرتداد المرتداد الله المرتداد الله المرتداد الله المرتداد الله الله الله الله الله الله الله ا	متمن الإنت - الملتقط السيعج - الملتقط الحثي - F1 دارة الك - F3 دارة ضد - دور العناص - المقاومة المقاومة الصمام	6₹
0.75	3×0.25	Vcc =	$V_{\rm Max}$ المعدنية $V_{\rm D1} = 1$ $V_{\rm D1} = 1$	ر (A) يكشف عن الدلاء البر (A) يكشف عن الدلاء البر (A) يكشف عن الأغطية شف عن مرور الدلاء. و الارتداد الرتداد R : حماية الصمام R : R : R لمقاومة R : R المقاومة R : R المقاومة R : R	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F3 دارة ضا - دور العناص - المقاومة ا - المقحل 2 - المقحل 2 - حساب قيمة ا	6ද 7 ද
0.75 0.75	3×0.25 3×0.25	Vcc =	$V_{\rm Max}$ المعدنية $V_{\rm D1} = 1$ $V_{\rm D1} = 1$	ر (A) يكشف عن الدلاء البر (A) يكشف عن الدلاء البر شف عن الأغطية الارتداد الارتداد الدلاء. المرتداد الله المقدل D1 . المقاومة T2 . المقاومة R1 : المقاومة R1 .	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F3 دارة ضا - دور العناص - المقاومة ا - المقحل 2 - المقحل 2 - حساب قيمة ا	6ද 7 ද
0.75 0.75	3×0.25 3×0.25	Vcc =	$V_{\rm Max}$ المعدنية $V_{\rm D1} = 1$ $V_{\rm D1} = 1$	ر (A) يكشف عن الدلاء البر (A) يكشف عن الدلاء البر (A) يكشف عن الأغطية شف عن مرور الدلاء. و الارتداد الرتداد R : حماية الصمام R : R : R لمقاومة R : R المقاومة R : R المقاومة R : R	متمن الإنت - الملتقط السيعي - الملتقط الحثي - F1 دارة الك - F3 دارة ضا - دور العناص - المقاومة ا - المقحل 2 - المقحل 2 - حساب قيمة ا	6ද 7 ද

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقني رياضي دارة العداد اللامتزامن لعد 12 دلوا ج10 Vcc J PRE Q J PRE Q ΗJ C 回 В 2 4×0.5 X50 المعقب الكهربائي: ج11 X200 X104 X2 h 2 4×0.5 20 22 21 X200 الرافعة ٨ X2 2×0.25 0.5 24~ dA [- تفسير البيانات PIC 16F84A . ج12 PIC : مراقبة الربط الخارجي/التحكم في الأجهزة المحيطة. mide Range : 16 المدى المتوسط 5×0.2 1 · الكرة من نوع فلاش. F 84 : نوع المكرومراقب. A : كوارتز أعظمي 20MHz

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقني رياضي

العلامة		تابع الإجابه النمودجيه اختبار ماده: التكنولوجيا الشعبه/السلك(*): تعني ر عناصر الإجابة (الموضوع الأول)	محاور
المجموع	مجزأة	(35 25 5)	الموضوع
1	4×0.25	- التعليقات والتعليمات الخاصة ببرنامج تهيئة المداخل و المخارج . BSF STATUS, RPO ; ; Wwith the least of the point of the	13 E
1	2×0.5	$I_{2n} = S_n/U_{2n} = 80/24 = 3,33A$: حساب القيمة الأسمية لشدة التيار	145
1	2×0.5	حساب قيمة الهبوط في التوتر : $\Delta U_2 = Rs.I_{2n}.Cos\phi_2 + Xs.I_{2n}.Sin\phi_2 \\ = 0.1\times3,33\times0,86+0.6\times3,33\times0,51 \\ \Delta U_2 = 1,3V$	15₹
2	4×0.5	: m_0 in the content of the content of m_0 in the	16₹

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2013 الشعبة: تقني رياضي هندسة كهربائية المادة: تكنولوجيا

ā	العلام					
المجموع	مجزأة		جابــــة	عناصر الإ		محاور الموضوع
1.5	15×0.1	رس فار غة	EE EP E	T N → ملوءة بالقهوة →	الوظيفة الشام	15
			نظام ألي	عاملان :2 غ	متمن الأشغول	ج2
2.0	4×0.5	<u> </u> 2 +	X23	20 X2.X104 21		
1.5	3×0.5	الأفعال kEv T3 dA+	: 3 مراحل الأشغولة 3 التخميل X31 X32 + X200 X33 + X200 X30 + X200	معادلات التنشيط والتخميل لبعض التنشيط X33 . X3 + X200 X30 . X3 . X104 X31 . t3 X32 . a1	جدول المراحل X30 X31 X32 X33	3 *

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقني رياضي

T a	العلام	الإجابه النمودجيه اختبار مادة : التكنولوجيا الشعبه/السلك(*): تقني رياضي	البع
المجموع	مجزاة	عناصر الإجابــة	محاور الموضوع
1.0	0.5 0.5	/تفسير التعيين: (F/GPN(10,20,30,40) أمر إرغام صادر من متمن الأمن إلى متمن الإنتاج العادي بتنشيط المراحل الابتدائية وتخميل بقية المراحل ويبقى ساري المفعول حتى زوال الخلل. (I/GPN(4-12) أمر التهيئة صادر من متمن القيادة والتهيئة إلى المرحلة (12-4) في متمن الإنتاج العادي ويزول بمجرد تنفيذه. عداد لا تزامني لعد 12 كأسا:	4ਦ 5ਦ
2.5	5×0.5	البيان الزمني العداد نعد 12 كأس:	67
1.25	5×0.25	QA	
0.75	3×0.25	دور كل من: - الوضع في '0' دور كل من: - Dcy: ضاغطة لانطلاق الدورة AT: ضاغطة لتوقيف الدورة AU: ضاغطة لتوقف الاستعجالي.	7 _ح

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقنى رياضى

		الإجابه النمودجيه احتبار ماده: التكنولوجيا الشعبه/السلك(*): تقني رياضي	<u> </u>
_ a_	العلام		
المجموع	مجزأة	عناصر الإجابـــة	محاور الموضوع
1.0	0.75 0.25	حساب سعة المكثفة: من التركيب نكتب $T = Ln2.C.(R_1 + 2R_2)$ $C = \frac{T}{(R_1 + 2R_2).Ln2} = \frac{20}{(5 + 2.10).10^3.0,7}$	8 ट
0.5	0.25 0.25	$C=228\mu F$ دور كل من AOP1 و AOP2: $- AOP1:$ مضخم عملي يعمل كمقارن لوضع القلاب RS في 0 منطقي. $- AOP2:$ $- AOP2:$ مضخم عملي يعمل كمقارن لوضع القلاب RS في 1 منطقى.	95
	0.75	حساب المقاومة ${f R}$: - العلاقة العامة : ${f t}_2={f RC\ ln\ 3}$	ج10
1.0	0.25	$R = \frac{t_2}{C \cdot L n 3} = \frac{10}{200 \cdot 10^{-6} \cdot 1, 1}$ $R = 0,045 \cdot 10^{6} \Omega$ $R = 45,45 k \Omega$	
2.5	5×0.5	-X200 - X3	דל11

تابع الإجابة النموذجية اختبار مادة: التكنولوجيا الشعبة/السلك(*): تقنى رياضى

- *	N 1 11	الإجابه النمودجيه احتبار ماده: التكنولوجيا الشعبة/السلك(*): نفني رياضني	<u></u>
المجموع	ملافيا مجز آة	عناصر الإجابة	محاور الموضوع
0.25	0.25	الاقتراح: الحل الذي أقترحه التلميذ إبراهيم هو تغيير جهة دوران المحرك بتبديل طورين من الشبكة.	125
		دارة تحكم محرك الطحن باستعمال الآلي المبرمج الصناعي API بلغة الملامس LADDER	135
1.0	2×0.5	+24V Q0,1 Q0,2 Q0,1 OV Q0,2 Q0,1 Q0,2 Q0,2 Q0,2 Q0,2 Q0,2 Q0,2 Q0,2 Q0,2	
0.75	0.5	نوع إ <u>قران المحرك</u> - اقران نجمي.	ج14
	0.25	- لأن كل ملف المحرك يتحمل 220v. تفسير المقادير المسجلة على لوحة مواصفات المحرك: - 220/380V: التوتران الممكنان لتشغيل المحرك 50Hz: تواتر الشبكة.	ج15
1.5	6×0.25	- 0.5kw: الاستطاعة الاسمية المفيدة (Pu). - 0.5A,: تيار الممتص من خط الشبكة.	
		- 1425tr/mn : سرعة الدوار الاسمية. - cosφ=0.8 : معامل الاستطاعة.	
1	4×0.25	تفسير التعيين 2/5 الموزع الكهروهوائي: - 5: عدد المنافذ (02 مخارج لتغذية الرافعة + 02 مخارج للتفريغ + 01 للتغذية بالهواء المضغوط) 2: عدد الوضعيات (1 وضعية الراحة + 1 وضعية عمل).	ج16

الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2013

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04سا و 30د

اختبار في مادة: التكنولوجيا (هندسة ميكانيكية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

الموضوع: نظام آلي لختم المنتجات

يحتوي ملف الدراسة على جزأين:

1- <u>الملف التقني</u>: الصفحات: { 20/1، 20/2، 20/3، 20/4، 20/6، 3/6

2- ملف الأجوية : الصفحات: { 20/6، 20/7، 20/8، 20/9، 20/0} }

ملاحظة

• لا يسمح باستعمال أية وثيقة خارجية عن الاختبار.

• يسلم ملف الأجوبة بكامل صفحاته { 20/6، 20/7، 20/8، 20/9، 20/0 } في نهاية الاختبار.

1- الملف التقني

1-1- وصف و تشغيل:

يمثل الشكل(1) الموجود في الصفحة 20/2 نظاما آليا خاصًا بختم منتجات، ثم جمعها داخل علب ليتم نقلها بواسطة عربات للتخزين. نتم هذه العملية على النحو التالى:

- تعبئة يدوية للمنتجات داخل موجه.
- توجيه المنتجات بواسطة الدافعة (Va) نحو الدافعة (Vb) للختم .
- إخلاء المنتجات و توجيهها نحو العلبة بواسطة الدافعة بسيطة المفعول (VC).
 - توجيه العلب بعد ملئها نحو التخزين بواسطة نظام النقل.

1-2- جهاز محل الدراسة:

بمثلُ الجهاز الموجود في الصفحة 20/2 و الرسم التجميعي في الصفحة 20/3 "محرك - مخفض" المنتمي لنظام النقل .

بتكون هذا الجهاز من جزأين:

- محرك كهربائي باتجاهين للدوران

- مخفض بنظامین للنقل (بکرات وسیر، منسننات)

1-3- معطيات تقنية:

- يتمّ نقل الحركة بواسطة نظام بكرات وسير شبه منحرفة الشكل و متسننات أسطوانية ذات أسنان قائمة.
 - استطاعة المحرك P=750w، مسرعة دوران المحرك N=1500tr/mn

1-4- سير الجهاز (محرك مخفض):

تنقل الحركة الدور انية من العمود المحرك(1) إلى العمود الوسيطي (9) بواسطة نظام بكرات و سير شبه منحرفة الشكل {(3)،(4)،(8)} ثم إلى عمود الخروج(11)بواسطة متسننات أسطوانية ذات أسنان قائمة (9)و(10)، ثم أخير ا إلى برغي التشغيل لتحريك عربة النقل (غير ممثلين في الرسم).

1-5- العمل المطلوب:

1-5-1- دراسة الإنشاء: (13 نقطة)

أ- تحليل وظيفى: أجب مباشرة على الصفحتين 20/6 و 20/7.

ب- تحلیل بنیوی:

* دراسة تصميمية جزئية: أتمم الدراسة التصميمية الجزئية مباشرة على الصفحة 20/8.

* دراسة تعريفية جزئية: أتمم الدراسة التعريفية الجزئية مباشرة على الصفحة 20/8.

2-5-1 دراسة التحضير: (7 نقاط).

أ- تكنولوجيا لوسائل الصنع: أجب مباشرة على الصفحة 20/9.

ب- تكنولوجيا لطرق الصنع : أجب مباشرة على الصفحة 20/9.

ج- آليات: أجب مباشرة على الصفحة 20/10.

نظام آلي لختم المنتجات

تجارة		فاصل الكتامة	1	20
تــجــارة		خابور متوازي	1	19
تجارة		.رو روپ حلقة مرنة	1	18
تجارة		حلقة مرنة	1	17
تــــارة			1	16
ب ره		خابور متوازي		
	EN-GJL 250	حامل	1	15
	S 185	<u>۽ شاء</u>	1	14
	EN-GJL 250	حامل	1	13
	Cu Sn 8	وسادة ذات مسند	2	12
	30 Cr Ni 6	عمود الخروج	1	11
	30 Cr Ni 6	عجلة مسننة	1	10
	30 Cr Ni 6	عمود وسيطي	1	9
	Al Si 13	بكرة مستقبلة	1	8
	S 235	قاعدة	1	7
	Cu Sn 8	وسادة ذات مسند	1	6
	Cu Sn 8	وسادة ذات مسند	1	5
تجارة		سير شبه منحرف الشكل	1	4
	Al Si 13	بكرة محركة	1	3
تجارة		برغي الضغط	1	2
	30 Cr Ni 6	العمود المحرك	1	1
ملاحظات	المادة	<u>تعیین</u> ات	العدد	الرقم
المقياس:1:3	محرك - مخفض		1	ill Ar
			00	
		<u> </u>		

ملف الموارد

_				
d	е	С	f	9
40	1,75	53	1,85	37,5
45	1,75	59,4	1,85	42,5
50	2	64,8	2,15	47
55	2	70,4	2,15	52
60	2	75,8	2,15	57
65	2,5	81,6	2,65	62

d x pas	D	В	\$	d ₁	Ε	G
M10 × 0,75	18	4	3	8,5	3	1
12 × 1	22	4	3	10,5	3	1
15 × 1	25	5	4	13,5	4	1
17 × 1	28	5	4	15,5	4	1
20 × 1	32	6	4	18,5	4	1
25 × 1,5	38	7	5	23	5	1,25
30 × 1,5	45	7	5	27,5	5	1,25
35 × 1,5	52	8	5	32,5	6	1,25
40 × 1,5	58	9	6	37,5	6	1,25
45 × 1,5	65	10	6	42,5	6	1,25

1-5-1- دراسة الإنشاء:

أ_تحليل وظيفي

1- أتمم المخطط (A-0) الموالي للنظام الآلي:

 2- أكمل المخطط التجميعي للوسط المحيطي للجهاز (محرك- مخفض):

3- أكمل جدول الوظائف للجهاز (محرك- مخفض):

صياغة الوظيفة	رمز الوظيفة

4- أكمل جدول الوصلات الحركية للجهاز:

الوسيلة	رمز الوصلة	اسم الوصلة	العناصر
			(3)/(1)
			(11)/(10)
			(13)/(9) (15)
			(11)/(13) و (15)

5- أكمل الرسم التخطيطي الحركي للجهاز:

6- ما هو نوع التوافق الذي تقترحه لتركيب الوسادتين
 على الأعمدة 0 و داخل الأجواف 2 مع إعطاء التعيين
 المناسب.

التعيين	نوع التوافق	الأقطار
		Ø ₁
		\emptyset_2

7- أنجز سلسلة الأبعاد الخاصة بالشرطين(A) و (B).

8- برر استعمال نظام بكرات و سير لنقل الحركة من (1) إلى (9)

ما	ا أن	أن	ن	ن	۲	(,	٤	٢	ن	أر	أُر	j 1	L	ے	ţ	6	20	je	,					,			,			3			•			٠.	•													
ما	ا أن	أن	ن	ن	۲	•	,	٤	Ċ	ن	أر	أُو	į 1	L	ے	ţ	c	.	je				,									,	٠.		 	 		 	 	 	 	 · · · · · ·	. , – . ,	. , ,	. , – . ,	. , ,	. , – . ,	. , – . ,	. , – . ,	. , – . ,	-احسب نسبة النقل بين(3) و (8)؛ d3=90mm و d ₈ =150mm

	 الجهود القاطعة:	ب ₁ - احسب			خاص بحس أن 10=>	••		10- أتمم التسنن بين
	 		b	h	z	d	m	العناصر
	 					60		(9)
	 						2	(10)
	عزوم الانحناء:	ب3- مثل المن		.(11- احسد
	قاطعة. سلم: ON حناء . سلم: ۱.N رئيس		أن	Lale (1	,	_	_	13- استنت سرعة المد
→		x*	(1)	ن العمود	ع له کل ه	الذي يخض	ع النتأثير ا 16)؟):	14- مقاوه أ- ما نوخ والخابور (ذ -العمود(1 -الخابور(ذ
Mf		$\ \overrightarrow{\mathbf{A}}\ $		В	نین D,	ن تأثير قوز)) و تحت ن :	ب- نعتبر (A) و (A) - المعطيات $\ \overline{D}\ = 10N$
0		x	A A	70 _{mm}	B	36 _{mm}	50 _m	D to

ب- تحلیل بنیوی:

* دراسة تصميمية جزئية: للرفع من مردود الجهاز وجعله أكثر وظيفيا نقترح التغييرات التالية:

- تعويض الوسادتين (5) و (6) بمدحر جتين (21) ذات صف واحد من الكريات بتلامس نصف قطري.

-إعطاء حل آخر التحقيقُ ألوصلةُ الإندماجية للعجلة المسننة (10) مع العمود (11).

- صمان حماية و كتامة الجهاز من الطرفين .

* دراسة تعريفية جزئية: أنمم الرسم التعريفي للعمود (11) بمقياس 2:1 ب:

- رسم المقاطع (A-A) و (B-B).

- وضع الأبعاد الوظيفية الخاصة بالأقطار، السمحات الهندسية و الخشونة (بدون قيم).

1-5-2 دراسة التحضير:

أ- تكنولوجيا لوسائل الصنع:

يمثل الرسم الموالي العمود (9) المنجز من مادة 30CrNi6 بسلسلة صغيرة.

1- اشرح تعيين مادة العمود (9):

الآلة	الأداة	العملية	السطوح
			(3) (1)
			(2)
			(11)(10)(9)
			(15)(14)(13)

2- أكمل رسم المرحلة الخاصة بإنجاز السطوح (1) و (3) في إطار العمل بسلسلة صغيرة بوضع القطعة في

2- ما هو أسلوب الحصول على خام العمود (9)؟

 3- مستعينا بالرسم أعلاه ،أتمم الجدول المقابل بذكر العملية و اسم الأداة و اسم الآلة الخاصة بإنجاز السطوح المرقمة.

ب- تكنولوجيا لطرق الصنع:

يمثل الشكل الموالي الرسم التعريفي للبكرة (8)

خشونة عامة :ISO 2768mK، Ra=6.3

1- أعط الشكل الأولي للخام؛ علما أن السمك الإضافي يقدر بـ 2mm.

3- احسب عناصر القطع مع ذكر أدوات المراقبة الخاصة بإنجاز السطح(3) وذالك بملء الجدول الموالي.

عطيات: - سرعة القطع:Vc=80m/mn - التغذية في الدورة: f=0.1mm/tr											
مراقبة (3)	حساب Vf	حساب ۱۸									

ج- آليات:

مستعينا بالشكل(1) الموجود على الصفحة 20/2

- حالة الراحة: كل سيفان الدافعات في وضعية الدخول .

- سير النظام:

-عندما يشير الملتقط (p) لوجود المنتج أمام الدافعة (Va)، وعند الضغط على زر انطلاق الدورة (dcy)، يؤدي إلى خروج ساق الدافعة (Va) لدفع المنتج نحو وضعية الختم .

-عند نهاية مشوار سأق الدافعة (Va)، تنزل ساق الدافعة (Vb) لختم المنتج، ثم ترجع بعد ذلك إلى وضعيتها الأصلية.

رَجُوع ساق الدافعة (Vb) يؤدي إلى عودة الدافعة (Va) .

-عند نهاية رجوع الدافعة (Va)، تخرج ساق الدافعة بسيطة المفعول (Vc) لإخلاء المنتج نحو العلبة و الضغط على الماتقط (c)، ثم ترجع بعد ذلك لوضعيتها الأصلية وننتهي الدورة.

العمل المطلوب:

1- (Vc) هي دافعة ذات مفعول بسيط. ما هو نوع الموزع الذي بناسبها؟

2- أتمم التركيب الموالي المتضمن للدافعة (Vb) و الموزع 5/2.

3- مستعینا بسیر النظام ، أنجز ال م . و . ت . م . ن مستوى 2 النظام.

الموضوع الثاني الموضوع : نظام آلي لإنجاز التحويطات

يحتوى ملف الدراسة على جزأين:

1- <u>الملف التقني</u>: الصفحات: { 20/12، 20/13، 20/14، 20/15، 20/14

2- ملف الأجوية : الصفحات: { 20/16، 20/17، 20/18، 20/19، 20/20} }

ملاحظة

• لا يسمح باستعمال أية وثيقة خارجية عن الاختبار.

ويسلم ملف الأجوبة بكامل وثائقه: { 20/16، 20/17، 20/18، 20/19، 20/20 } في نهاية الاختبار

1- الملف التقني

1-1 وصف و تشغيل:

يمثل الشكل (1) الموجود في الصفحة 20/12 نظاما آليا خاصًا بإنجاز التحويط على السطح العلوي لقطعة موشورية بواسطة جهاز التفريز . نتم العملية على النحو التالي:

- وصول القطعة الخامة عبر حامل مائل أمام الدافعة V بسبطة المفعول.

- توجيه القطعة نحو الدافعة Va .

- تثبيت القطعة في وضعية التشغيل بواسطة Va .

- إنجاز عملية التحويط.

- إخلاء القطعة من المنصب بواسطة Vb .

1-2- جهاز محل الدراسة:

يمثل الجهاز الموجود في الصفحة 20/12 و الرسم التجميعي في الصفحة 20/13 "جهاز التفريز"، حيث تركب أداة التفريز (أداة التشغيل) داخل الغمد (1) الحامل للأداة عن طريق الحصر لإنجاز عملية التحويط على قطعة موشورية.

1-3- معطيات تقنية:

ـ يتم نقل الحركة بواسطة متسننات اسطوانية ذات أسنان قائمة.

ـ استطاعة المحرك P=1kw و سرعة دورانه N=1500tr/mn.

1-4- سير الجهاز:

تنقل الحركة الدورانية من العمود المحرك (10) إلى الغمد (1) بواسطة المتسننات الأسطوانية ذات الأسنان القائمة (7) و (6)، ثم إلى أداة التفريز غير الممثلة .

1-5- العمل المطلوب:

1-5-1 دراسة الإنشاء: (13 نقطة)

أ- تحليل وظيفي: أجب مباشرة على الصفحتين 20/16 و20/17.

ب- تحليل بنيوي:

* دراسة تصميمية جزئية: أنمم الدراسة النصميمية الجزئية مباشرة على الصفحة 20/18.

* دراسة تعريفية جزئية: أتمم الدراسة التعريفية الجزئية مباشرة على الصفحة 20/18.

1-5-2- دراسة التحضير: (7 نقاط).

أ- تكنولوجيا لوسائل الصنع : أجب مباشرة على الصفحة 20/19.

ب- تكنولوجيا لطرق الصنع: أجب مباشرة على الصفحة 20/19.

ج- آليات: أجب مباشرة على الصفحة 20/20.

نظام آلي لإنجاز التحويطات

تــــارة		خابور متوازي	1	21
تجارة		برغي ذو رأس سداسي	4	20
تجارة		حلقة مرنة	1	19
تجارة		حلقة مرنة	1	18
	EN-GJL 200	غطاء	1	17
تجارة		برغي ذو رأس أسطواني بتجويف سداسي	4	16
تجارة		برغي ذو رأس سداسي	4	15
	S235	لجاف	1	14
	S235	أجاف	1	13
تجارة		حلقة مرنة	1	12
تجارة		خابور متوازي	1	11
	30 Cr Ni 6	عمود محرك	1	10
تجارة		حلقة مرنة	1	9
	EN-GJL 200	غطاء	1	8
	30 Cr Ni 6	تر <i>س</i>	1	7
	C40	عجلة مسننة	1	6
	EN-GJL 200	غطاء	1	5
تـجـارة		مدحرجة ذات صف واحد من الكريات	3	4
	S235	لجاف	1	3
	EN-GJL 200	هيکل	1	2
	30 Cr Ni 6	غمد حامل الأداة	1	1
ملاحظات	المادة	تعيينات	العدد	الرقم
3:2 Ilain 3:2	هاز التقري		4	غلنا Ar
			00	

ملف الموارد

فاصل بشفة واحدة و بشفتين

صامولة وحلقة محززة

d x pas	D	В	S	d_1	E	G
M10 × 0,75	18	4	3	8,5	3	1
12×1	22	4	3	10,5	3	1
15 × 1	25	5	4	13,5	4	1
17 × 1	28	5	4	15,5	4	1
20 × 1	32	6	4	18,5	4	1
25 > 1,5	38	7	5	23	5	1,25
30 × 1,5	45	7	5	27,5	5	1,25
35 × 1,5	52	8	5	32,5	6	1,25
40 × 1,5	58	9	6	37,5	6	1,25
45 × 1,5	65	10	6	42,5	6	1,25

الطقات المرنة

D	E	C	-	G
45	1,75	31,6	1;85	47,5
50	2	36	2,15	53
55	2	40,4	2,15	58
60	2	44,4	2,15	63
65	2,5	48,8	2,65	68
70	2,5	53,4	2,65	73
70	2,5	53,4	2,65	/3

12 - مقاومة المواد: أ- ما نوع التأثير الذي يخضع له كل من العمود (10)	۰(B)	ين(A) و 9 علما أن:	ة بالشرطب ط 177:	عاد الخاصد حمول للشر	سلة الأب البعد الم	8- أنجز سلا ثم أحسب
والخابور (11)؟				² B=:		•
-العمود(10):			-2	15 15	8	
-الخابور (11):			7czto	<i> </i> /	_	
ب-إذا علمنا أن سرعة دوران العمود (10) تقدر بـ:	14	8 2				
N ₁₀ = 22mm وقطره بساوي N ₁₀ = 1500tr/mn						
P=1kw و	5			1	<u> </u>	7
قياسات الخابور (axbxl = 6x6x15)	10		2777) -2777)			
احسب: - المزدوجة المحركة C.					J√m	Ĺ
- الجهد المماسي Tالذي يتحمله الخابور.	(,		\7	2/	h = hi	. h. c
- المقاومة التطبيقية الننيا للإنز لاق Rpg			**************	: 	المجهور	حساب البعد
* حساب المزدوجة المحركة C :						
* حساب الجهد المماسي T الذي يتحمله الخابور:		T .	a=90	أن Dmm		9- أنّمم الم بين(6) و (7
	d _f	d a	Z	d	m	العناصر
				80	2	(7)
						(6)
* حساب المقاومة التطبيقية الننيا للانز لاق Rpg :			ا) و (7).	هَل بين (6	، نمية الن	10- احسب
	ىرعة 	علما أن س		_		11- استتج المحرك تقدر
	********	•••••	• • • • • • • • • • • • • • • • • • • •			

ب- تحليل بنيوي:

. دراسة تصميمية جزئية:

*للرفع من مردود الجهاز وجعله أكثر وظيفيا، نقترح التغييرات التالية:

- تُعُويض المُدحرجتين (4) بمدحرجتين ذات دحاريج مخروطية.

- اتمام الوصلة الإندماجية للعجلة المسننة (6) مع الغمد (1) .

- ضمان حماية و كتامة الجهاز من الطرفين .

* دراسة تعريفية جزئية: أتمم الرسم التعريفي للغمد (1) بمقياس 3:2 حسب: - المسقط الأمامي بدون قطاع و المقطع الخارجي A-A.

المقياس:2:3

1-5-2 دراسة التحضير:

يمثل الرسم الموالي العجلة المسننة(6) المنجزة من مادة C40 بسلسلة صغيرة.

أ- تكنولوجيا لوسائل الصنع:

1- اشرح مادة تعيين العجلة المسننة (6):

2- أكمل رسم المرحلة الخاصة بإنجاز السطوح (2) و (7) في إطار العمل بسلسلة صنغيرة بوضع القطعة في وُضْعيةً سكونية مع إضافة أبعاد الصنع.

2- ما هو أسلوب الحصول على خام العجلة المسننة (6)؟

3- ضع علامة(x) عند الألات المستعملة لإنجاز هذه القطعة.

مخرطة نصف آلية	مخرطة متوازية
مثقاب متعدد الرؤوس	مثقاب بقائم
مفرزة متعددة الأغراض	مفرزة ذات تحكم عددي

ب- تكنولوجيا لطرق الصنع:

1-أكمل سير الصنع الخاص بالعجلة (6):

المنصب	السطوح	المراحل
منصب المراقبة	مراقبة الخام	100
منصب المراقبة	مراقبة نهائية	600
	منصب المراقبة	مراقبة الخام منصب المراقبة

] 3- ضع علامة (x) عند أدوات القياس المستعملة لمراقبة

مقارن	ابعاد سطوح هده القطعه قدم القياس
TLD	قدم العمق
CMD	ميكرومتر
مساند معيارية	قدم مديول

ج- آليات:

مستعينا بالشكل(1) والشكل(2) الموجودين في الصفحة 20/12 .

- حالة الراحة: كلُّ سيقان الدافعات في وضعيَّة الدخول وكل المحركات (Mt1, Mt2, M) متوقفة.

ـ سير النظام

- عندما يشير الملتقط (p) لوجود القطعة أمام الدافعة (V)، الضغط على زر انطلاق الدورة(dcy) يؤدي إلى خروج ساق الدافعة البسيطة المفعول (V) لدفع القطعة أمام الدافعة (Va) .

-عند نهاية خروج ساق الدافعة(V)تضغط هذه الأخيرة على (m)فتخرج ساق الدافعة(Va) لتثبيت القطعة في وضعية التشغيل

- تلامس ساق الدافعة (Va) للملتقط (a₁) يؤدي إلى دوران المحرك (M) والمحرك (Mt₁⁺=1) الذي يؤدي بدوره إلى انتقال العربة الطولية في انجاه السهم (1) لإنجاز السطحين(أ).

عند تلامس العربة الطّولية للملتقط ((c_1))، يتوقف المحرك ($Mt_1^+=0$) ويدور المحرك ($Mt_2^-=1$) في الاتجاه المعاكس الذي يؤدي إلى انتقال العربة العرضية في اتجاه السهم (2) لإنجاز السطحين(ب).

-عند تلامس العربة العرضية للملتقط (d_1) ، يتوقف المحرك $(Mt_0=0)$ ويدور المحرك $(Mt_1=1)$ في الاتجاه المعاكس الذي يؤدي إلى انتقال العربة الطولية في انجاه السهم (3) لإنجاز السطحين (ج).

-عند تلامس العربة الطولية للملتقط (c₀)، يتوقف المحرك (Mt₁⁻-0) ويدور المحرك(1=+Mt₂) الذي يؤدي إلى انتقال العربة العرضية في اتجاه السهم (4) لإنجاز السطحين(د).

-عند تلامس العربة العرضية للملتقط (do)، ينوقف المحرك (Mt, +0) والمحرك (M=0)

8

 Vb^{\dagger}

Vb⁻

سلم التنقيط

الديوان الوطني للامتحانات والمسابقات

... دورة: **جوان** 2013

اختبار في مادة:التكنولوجيا (الهندسة الميكانيكية)

وزارة التربية الوطنية امتحان شهادة بكالوريا التعليم الثانوي الشعبة: تقني رياضي

الموضوع الأول: نظام آلي لختم المنتجات

العلامـــة	الفق رات
20 /13	دراسة الإنشاء
20 /07	دراسة التحضير

العلامة		العلامة	1 2 24 91 7 1 1
07	دراسة التحضير	13	دراسة الإنشاء
03	تكثولوجيا لوسائل الصنع	08.50	التحليل الوظيفي
	1(1		0.25 (1
	0.5(2		0.25 (2
	1.5 (3		0.25 (3
0.0			1 (4
02	تكنولوجيا لطرق الصنع 1)		1 (5
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.25+0.25 (6 0.25+0.25 (7
	0.5 (3		0.25+0.25 (7 0.25 (8
	0.3		0.25 (8
02	آلیات		1(10
	0.5(1		0.25 (11
	0.5 (2		0.25 (12
\	1 (3		0.25 (13
			0.75 _ اب 0.25 _ أ (14
			ب 2.75 ب 3 0.75
		04.50	التحليل البنيوي
			دراسة تصميمية جزئية
			_ تركيب المدحرجات _ 1.50
			 تركيب العجلة تركيب العجلة
			_ ضمان الكتامة1
			دراسة تعريفية جزئية المتلامة عريقة
			_ المقاطع 0.25 + 0.25 الترديد 25 + 0.25 م 25 + 0.25
			_ التحديد 0.25+0.25+0.25

1-5-1- دراسة الإنشاء:

أ- تحليل وظيفي

1- أَتُمم المخططُّ (A-0) الموالي للنظام الآلي:

2- أكمل المخطط التجميعي للوسط المحيطي للجهاز (محرك- مخفض):

3- أكمل جدول الوظائف للجهاز (محرك- مخفض):

صياغة الوظيفة	رمز الوظيفة
تدوير برغي التشغيل بتخفيض السرعة	FP
توصيل الحركة الدورانية لبرغي التشغيل	FC ₁
تشغيل المحرك	FC ₂
حمل الجهاز	FC ₃

4- أكمل جدول الوصلات الحركية للجهاز:

الوسيلة	رمز الوصلة	اسم الوصلة	العناصر
برغي+تسطيح		إندماجية	(3)/(1)
خابور+حلقة+مسند		إندماجية	(11)/(10)
وسلاة بمسند	₩	متمحورة	(15)3(13)/(9)
وسندة بمسند		متمحورة	(15).(13)/(11)

5- أكمل الرسم التخطيطي الحركي للجهاز:

6- ما هو نوع التوافق الذي تقترحه لتركيب الوسادتين على الأعمدة \emptyset_1 و داخل الأجواف \emptyset_2 مع إعطاء التعيين المناسي

التعيين	نوع التوافق	الأقطار
H7f7-H7f6	بالخلوص	$Ø_1$
H7m6-H7p6	بالشد	$\mathbf{Ø}_{2}$

7- أنجز سلسلة الأبعاد الخاصة بالشرطين(A) و (B).

8- برر استعمل نظام بكرات و سير لنقل الحركة من
 (1) إلى (9)

تباعد العمودين (1) و (9)

9- أحسب نسبة النقل بين(3)و (8)علما أن d₃=90mm و d₈=150mm

$$r_{8.3} = N_8 / N_3 = d_3 / d_8 = 90 / 150$$

 $r_{8.3} = 3/5 = 0.6$

10 - أتمم الجدول الموالي الخاص بحساب مميزات السنن بين (9) و (10) علما أن 10=10 و a=174mm

b	h	Z	d	m	العناصر
20	4.5	30	60	2	(9)
20	4.5	144	288	2	(10)

11- أحسب نسبة النقل بين (9) و (10).

12 - أحسب نسبة نقل الجهاز

$r = r_{8.3} \times r_{10.9} = 3/5 \times 5/24 = 1/8 = 0.125$

13 -استنتج سرعة الخروج للعمود (11) علما أن سرعة - عزوم الإنحناء. المحرك تقدر ب: 1500tr/mn

$N_{11} = N \times 0.125 = 187.5 tr/mn$

14 - مقاومة المواد أ- ما نوع التَأثير الذي يخضع له كل من العمود (1) والخابور (16)؟

> العمود(1): تأثير الالتواء البسيط -الخابور (16): تأثير القص السيط

ب- نعتبر العمود (9) عارضة موضوعة على ركيزتين (C) و (C) و تحت تأثير قوتين (C) - المعطبات:

$$\|\vec{A}\| = 12,27N, \|\vec{B}\| = 50N, \|\vec{C}\| = 47,73N, \|\vec{D}\| = 10N$$

ب 1- أحسب الجهود القاطعة: منطقة AB : 20 ≤ x ≤ 70 منطقة 丁 = +A = +12.27N

منطقة BC ≥ 70 × x ≤ 106 T = +A - B = 12.27 - 50 = -37.73Nمنطقة CD : 106 ≤ x ≤ 156

T = +A - B + C = 12.27 - 50 + 47.73 = +10N

ب2- أحسب عزوم الانحناء: منطقة AB : 0 × × ≥ 0

 $\overline{M}f=-A.x$ $\longrightarrow x=0$ $\longrightarrow \overline{M}f=0$ $\longrightarrow \overline{M}f=-858.9$ mm * منطقة BC ± 70 ≤ x ≤ 106 ك

 $\overline{M}f=-A.x+B.(x-70) \rightarrow x=70 \rightarrow \overline{M}f=-858.9mmN$ * منطقة 106 ≤ x ≤ 156 ; CD منطقة

Mf = -A.x + B.(x-70) - C.(x-106)x=106 Mf=+499.38 Mf=0

بء - مثل المنحنى البياني لـ:

- الجهود القاطعة. رسم المنحنيات بدون سلم

ب- تحلیل بنیوی:

- * دراسة تصميمية جزئية: للرفع من مردود الجهاز وجعله أكثر وظيفيا نقترح التغييرات التالية:
- تعويض الوسادتين (5) و (6) بمدحر جتين (21) ذات صف واحد من الكريات بتلامس نصف قطري. إعطاء حل آخر لتحقيق الوصلة الإندماجية للعجلة المسننة (10) مع العمود (11).
 - ضمان حماية و كتامة الجهاز من الطرفين .

- * دراسة تعريفية جزئية : أنهم الرسم التعريفي للعمود (11) بمقياس 2:1 ب:
 - رسم المقاطع (A-A) و (B-B).
- وضع الأبعاد الوظيفية الخاصة بالأقطار، السمحات الهندسية و الخشونة (بدون قيم).

1-5-1- دراسة التحضير:

أ- تكنولوجيا لوسائل الصنع:

يمثل الرسم الموالي العمود (9) المنجز من مادة 30CrNi6 بسلسلة صغيرة.

1- إشرح تعيين مادة العمود(9):

صلب ضعيف المزج - 0.30% من الكربون ،

1.5% من الكروم و آثار من النيكال

الآلة	الأداة	العملية	السطوح
مخرطة	أ.خرط قائمة	خرط طولي بإسناد	(3) (1)
مخرطة	أخرط معكوفة	تشطيف	(2)
مخرطة	أ.عنق خارجي	إنجازعنق	(11)(10)(9)
مفرزة	فريزة ذات شفتين	إنجاز مجرى الخابور	(15)(14)(13)

2- ما هو أسلوب الحصول على خام العمود(9)؟ حدادة القالب

3- مستعينا بالرسم أعلاه ،أتمم الجدول المقابل بذكر
 العملية و اسم الأداة و اسم الآلة الخاصة بإنجاز السطوح
 المرقمة.

ب- تكنولوجيا لطرق الصنع:

يمثل الشكل الموالي الرسم التعريفي للبكرة (8)

خشونة عامة :ISO 2768mK، Ra=6.3

1- أعط الشكل الأولي للخام علما أن السمك الإضافي يقدر بـ 2mm.

1f. → □ 0.5 B2	B ₁ ① 2 3 3 3	.5 B2
J 2 7 ■	3 4	
<u> </u>	41	

2- أكمل رسم المرحلة الخاصة بإنجاز السطوح (1) و

(3) في إطار العمل بسلسلة صغيرة بوضع القطعة في

وُضِعيةً سكونية مع إضافة أبعاد الصنع.

3- أحسب عناصر القطع مع ذكر أدوات المراقبة الخاصة بإنجاز السطح (3) وذالك بملء الجدول

معطيات: - سرعة القطع:Vc=80m/mn - التغذية في الدورة: f=0.1mm/tr			
1=0.1	ئي الدوره: mm/tr	- التعديه	
مراقبة(3)	حساب Vf	حساب ۸	
TLD Ø24H7	Vf=N.f =106.15 _{mm/mr}	$N = \frac{1000 \times Vc}{\pi \times d}$ N=1061.57 _{tr/mn}	

ج- آليات:

مستعينا بالشكل(1) الموجود على الصفحة 20/2

- حالة الراحة كل سيقان الدافعات في وضعية الدخول .
 - ـ سير النظام:
- عندما يشير الماتقط (p) لوجود المنتج أمام الدافعة (Va) وعند الضغط على زر انطلاق الدورة (dcy) يؤدي المي خروج ساق الدافعة (Va) لدفع المنتج نحو وضعية الختم .
- عند نهاية مشوار ساق الدافعة (Va) تنزل ساق الدافعة (Vb) لختم المنتج ليرجع بعد ذالك إلى وضعيته الأصلية.
 - رجوع ساق الدافعة (Vb) يؤدي إلى عودة الدافعة (Va) .
 - عند نهاية رجوع الدافعة (Va) تخرج ساق الدافعة بسيطة المفعول (Vc) لإخلاء المنتج نحو العلبة و الضغط على الملتقط (c) ليرجع بعد ذالك لوضعيته الأصلية وتنتهي الدورة.

العمل المطلوب:

- 1- (Vc) هي دافعة ذات مفعول بسيط ، ما هو نوع الموزع الذي يناسبها؟
 - الموزع المناسب هو 3/2.
 - 2- أنمم التركيب الموالي المتضمن للدافعة (Vb) و الموزع 5/2.

سلم التنقيط

الديوان الوطني للامتحانات والمسابقات دورة: جوان 2013 اختبار في مادة: تكنولوجيا

وزارة التربية الوطنية امتحان شهادة بكالوريا التعليم الثانوي الشعبة: تقني رياضي هندسة ميكانيكية

الموضوع الثاني: نظام آلي لإنجاز التحويطات

العلامــة	الفق رات
20 /13	دراسة الإنشاء
20 /07	دراسة التحضير

علامة	دراسة التحضير	علامة	دراسة الإنشاء
07		13	
1.5	أ- تكنولوجيا لوسائل الصنع 0.5 (1 0.5 (2 0.5 (3	09	التحليل الوظيفي 0.25 (1 0.25 (2 1 (3 0.5 (4
3.5	ب- تكنولوچيا لطرق الصنع 1.5 (1 1.5 (2 0.5 (3		0.5 + 0.25 + 0.25 (5 0.25 + 0.25 (6 1 (7 0.25 + 0.25 + 0.5 (8 (7×0.25) (9
2	ريات 0.5 (1 1.5 (2	04	(7 × 0.25) (9 (10 (10 (11 (12 × 0.125) (12 (0.25 + 0.25) التحليل البنيوي دراسة تصميمية جزئية دراسة تصميمية جزئية تركيب المدحرجات تركيب العجلة منان الكتامة دراسة تعريفية جزئية دراسة تعريفية جزئية دراسة تعريفية جزئية

1-5-1 دراسة الإنشاء:

4- أكمل الرسم التخطيطي الحركي للجهاز (جهاز التفريز):

أ ـ تحليل وظيفي
 1 ـ أتمم المخطط (A-0) الموالي للنظام الآلي:

2- أكمل المخطط التجميعي للوسط المحيطي للجهاز (جهاز التفريز):

3- أكمل المخطط الجزئي للوظائف التقنية الموالي FAST

6- ما هو نوع التوافق الذي تقترحه لتركيب المدحرجات (4) على الغمد (1) \emptyset_2 و داخل جون الهيكل (2) \emptyset_2 مع إعطاء التبريرات اللازمة؟

آلاً :توافق بالشد الأن العمود (غمد) في حالة دوران.
 آلاً :توافق بالخلوص الأن الجوف (هيكل) ثابت.

7- إذا علمنا أن النرس (7) مركب على العمود (10)
 بتوافق 22H7g6 مع

Jmaxi= 0.021+ 0.02 = +0.041 mm Jmini = 0 + 0.007 = + 0.007mm نوع النوافق: توافق بخلوص

8- أنجز سلسلة الأبعاد الخاصة بالشرطين $\overline{(B)}$ و $\overline{(B)}$ تم أحسب البعد المجهول للشرط $\overline{(B)}$ علما أن:

$$B_2 = 8^{\pm 0.2}$$
 $B = 3^{\pm 0.5}$

حساب البعد المجهول:

$$\begin{array}{c} B_{5\text{maxi}} = B_{2\text{mini}} - \ B_{mini} = 7.8 - 2.5 = 5.3 \\ B_{5\text{mini}} = B_{2\text{maxi}} - \ B_{maxi} = 8.2 - 3.5 = 4.7 \\ \hline \\ B_{5} = 5^{\pm 0.3} \end{array}$$

9- أتمم الجدول الموالي الخاص بحساب مميزات التسنن بين(6) و (7) علما أن a=90mm

đ	d _a	Z	đ	m	العناصر
75	84	40	80	2	(7)
95	104	50	100	2	(6)

10- أحسب نسبة النقل بين (6) و (7). $r_{6.7} = N_6/N_7 = d_7/d_6 = 80/100$ $\underline{r_{6.7}} = 4/5 = 0.8$

11- أستتج سرعة الخروج للغمد (1) علما أن سرعة المحرك تقدر ب: 1500tr/mn

 $N_1 = N \times r_{6.7} = 1500 \times 0.8 = 1200 \text{ tr/mn}$

12- مقاومة المواد. أ- ما نوع التأثير الذي يخضع له كل من العمود (10) والخابور (11)؟

-العمود(10): تأثير الالتواء البسيط الخابور (11): تأثير القص البسيط الخابور (11): تأثير القص البسيط ب-إذا علمنا أن سرعة دوران العمود (10) تقدر ب d₁₀=22mm وقطره يساوي P=1kw و

قياسات الخابور (axbxl = 6x6x15)

أحسب: - المزدوجة المحركة C

- الجهد المماسي Tالذي يتحمله الخابور
- المقاومة التطبيقية الننيا للإنز لاق Rpg

* حساب المزدوجة المحركة C

$$P = C \times \omega = C \times \frac{\pi \times N}{30} \qquad C = \frac{P \times 30.}{\pi \times N}$$

$$C = \frac{1000 \times 30}{3.14 \times 1500} = 6.37 \text{ m/N}$$

$$C = 6.37 \text{ m/N}$$

* حساب الجهد المماسي Tالذي يتحمله الخابور

$$C = T \times r$$
 $T = \frac{C}{r} = \frac{6.37}{11} \times 10^{3}$

$$T = 579.09V$$

* حساب المقاومة التطبيقية الننيا للإنز لاق Rpg

$$Rpg \ge \frac{T}{S} = \frac{579.09}{6 \times 15} = 6.43 N / mm^2$$

 $Rpg = 6.43N / mm^2$ المقاومة الدنيا

ب- تحليل بنيوي:

* دراسة تصميمية جزئية:

*للرفع من مردود الجهاز وجعله أكثر وظيفيا نقترح التغييرات التالية:

- تُعُويض المدحرجتين (4) بمدحرجتين ذات دحاريج مخروطية.

-إِتَمَام الوصلة الإندماجية للعجلة المسننة (6) مع الغمد (1) .

- ضمان حماية و كتامة الجهاز من الطرفين .

* دراسة تعريفية جزئية: أتمم الرسم التعريفي للغمد (1) بمقياس 3:2 حسب: - المسقط الأمامي بدون قطاع و المقطع الخارجي A-A.

1-5-2 دراسة التحضير:

يمثل الرسم الموالي العجلة المسننة(6) المنجزة من مادة C40 بسلسلة صغيرة.

أ- تكنولوجيا لوسائل الصنع:

1- إشرح تعيين مادة العجلة المسننة (6): صلب غير ممزوج قابل للمعالجة الحرارية يحتوي على 0.40% من الكربون.

2- ما هو أسلوب الحصول على خام العجلة المسننة (6)؟ القو لية

3- ضع علامة (x) عند الألات المستعملة لإنجاز هذه القطعة

مخرطة نصف آلية	Х	مخرطة متوازية
مثقاب متعدد الرؤوس		مثقاب بقائم
مفرزة متعددة الأغراض X		مفرزة دات تحكم عددي

ب- تكنولوجيا لطرق الصنع: 1-أكمل جدول سير الصنع الخاص بالعجلة (6):

	المنصب	السطوح	المراحل
١	منصب المراقبة	مراقبة الخام	100
	خراطة	(3) ، (1)	200
	خراطة	(7) (2)	300
	تفريز	(6) (5) (4)	400
	تفريز	(8)	500
	منصب المراقبة	مراقبة نهائية	600

2- أكمل رسم المرحلة الخاصة بإنجاز السطوح (2) و (7) في إطار العمل بسلسلة صغيرة بوضع القطعة في وضعية سكونية مع إضافة أبعاد الصنع.

3- ضع علامة (x) عند أدوات القياس المستعملة لمراقبة

			أبعاد سطوح هده القطعة
	مقارن	Х	قدم القياس
Х	TLD		قدم العمق
	CMD		ميكرومتر
	مساند معيارية	X	قدم مديول

ج- آليات:

مستعينا بالشكل(1) و الشكل(2) الموجود بن على الصفحة 20/12.

- حالة الراحة: كل سيقان الدافعات في وضعية الدخول و كل المحركات (Mt1, Mt2, M) متوقفة .
 - سير النظام:
- عندما يشير المُلتقط (p) لوجود القطعة أمام الدافعة (V) ،الضغط على زر انطلاق الدورة(dcy)يؤدي إلى خروج ساق الدافعة البسيطة المفعول (V) لدفع القطعة أمام الدافعة(Va) .
- عند نهاية خروج ساق الدافعة (\overline{V}) تضغط هذه الأخيرة على (m) فتخرج ساق الدافعة (\overline{V}) لتثبيت القطعة في وضعية التشغيل. التماس ساق الدافعة (\overline{V}) للملتقط (\overline{V}) يؤدي إلى دوران المحرك (\overline{V}) و المحرك (\overline{V} 1) الذي يؤدي بدوره إلى إنتقال
 - النماس ساق الدافعة (Va) للمتنفط (a) يؤدي إلى دوران المحرك(W) و المحرك(= WIt1) الذي يؤدي بدوره إلى إنتفار العربة الطولية في إتجاه السهم (1) لإتجاز السطحين(أ).
 - عند التماس العربة الطولية للمُلتقطُ (c_1) يتوقف المحرك($mt_1^+=0$) و يدور المحرك($mt_2^-=1$) في الإتجاه المعاكس الذي يؤدي إلى إنتقال العربة العرضية في اتجاه السهم (2) الإتجاز السطحين(ب).
 - عند التماس العربة العرضية للملتقط (d_1) يتوقف المحرك ($Mt_2=0$) و يدور المحرك ($Mt_1=1$) في الإتجاه المعاكس الذي يؤدي إلى إنتقال العربة الطولية في اتجاه السهم (3) لإنجاز السطحين (ج).
- -عند النتماس العربة الطولية للملتقط (co)يتوقف المحرك (Mt₁=0) و يدور المحرك (mt₂+=1) الذي يؤدي إلى إنتقال العربة العرضية في اتجاه السهم (4) لإنجاز السطحين(د).
 - -عند التماس العربة العرضية للملتقط (do) يتوقف المحرك (Mt2+=0) والمحرك (M=0) و رجوع ساق الدافعة (Va)
 - -عند التماس ساق الدافعة (Va) للملتقط (a₀)تخرج ساق الدافعة (Vb) لإخلاء القطعة.
 - عند التماس ساق الدافعة (Vb) للملتقط (b_1) ترجع ساق الدافعة (Vb) و التماسها للملتقط (b_0)الذي يؤدي إلى بداية الدورة من جديد.

- dcy ,p - m Va 2 -|-a₁ 3 $Mt_1^+=1$ - C₁ $Mt_2 = 1 | Mt_1 = 0$ $Mt_2 = 0 | Mt_1 = 1$ 5 6 $Mt_1=0 | Mt_2=1$ $-d_0$ 7 |Mt₂⁺=0 M=0Va⁻ 8 Vb^{\dagger} -b₁ Vb⁻

☆ العمل المطلوب:

1- (Va) هي دافعة مزدوجة المفعول ، ما هو نوع الموزع الذي يناسبها مع شرحه؟

- الموزع 5/2
- وضعيتين و خمسة منافذ

2- مستعینا بسیر النظام ، أتمم ال م . و . ت . م . ن مستوى 2 للنظام.

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعب: علوم تجريبية، رياضيات ، تقني رياضي

اختبار في مادة: التاريخ والجغرافيا المدة : 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التاريخ:

الجزء الأول: (06 نقاط)

"... إن مرحلة الحرب الباردة قد اتسمت بالتوتر الشديد بين القطبين وبين المعسكرين الشرقي والمغربي... وتزايدت حدّة الحملات الدعائية التشهيرية المتبادلة وحدّة السباق نحو التسلح على المستويين التقليدي والنووي... كما شهدت هذه المرحلة تزايد حدّة سياسات الاستقطاب الدولي لاجتذاب أكبر عدد من دول العالم الثالث حديثة الاستقلال بعد أن نجحا في اقتسام القارة الأوربية بينهما...".

د. ممدوح منصور و د. أحمد وهبان/ التاريخ الدبلوماسي 1815-1991 ص209

1- اشرح ما تحته خط في النّص".

2- عرّف بالشخصيات التالية:

جمال عبد الناصر - نیکتا خروتشوف - رابح بیطاط.

3- على خريطة أوربا المرفقة، وقّع أربع دول من المعسكر الشرقي وأربع دول من المعسكر الغربي.

الجزء الثاني: (04 نقاط)

شهدت القضية الجزائرية أحداثا وتطورات هامة في المحافل الدولية والإقليمية، أثرت على مكانة فرنسا الخارجية، مما جعلها ترضخ للتفاوض.

المطلوب: انطلاقا من الفقرة، واعتمادا على ما درست، اكتب مقالا تاريخيا تبيّن فيه:

-1 الأساليب التي استخدمتها الثورة على المستوى الخارجي.

2- انعكاسات هذه الأساليب على مكانة فرنسا الخارجية.

الجغر افياا:

الجزء الأول: (06 نقاط)

1- «... ترى نظرية ارتباط التخلف بظهور الرأسمالية والاستعمار: إن العالم الثالث لـم يكن متخلفا قبل أن تستولي عليه أوربا الاستعمارية... إن نهب شروات المستعمرات أدى إلـى نمو الصناعة والزراعة في أوربا... ووجهت اقتصاديات بلـدان العالم الثالث لخدمة الاقتصاد الاستعماري الرأسمالي وفرض الاستعمار التقسيم الدولي للعمل أين تخصص العالم الثالث في الإناج وتصدير المواد الأولية والمحاصيل الزراعية النقدية كالقطن في مصر والكروم في الجزائر، القصدير في بوليفيا، البن في البرازيل، قصب السكر في كوبا، الكاكاو في غانا والشاي في الهند... أما المركز الرأسمالي فيحولها إلى مواد مصنعة ويعيد بيعها إلى بلدان العالم الثالث بأسعار عالية...»

المطلوب:

أ- اشرح ما تحته خط في النّص".

ب- على خريطة العالم المرفقة، وقع أربع دول وردت في النّص".

2- الجدول التالي يمثل صادرات الصين سنة 2002:

% من مجموع الصادرات	القيمة (مليون دو لار)	البلد أو المنطقة
21,5	69950	الولايات المتحدة الأمريكية
18,2	659226	أوريسا
14,8	48437	اليسابان
37,5	121878	آسيا
08,0	26074	باقي العالم

صور اقتصادية 2006

المطلوب: علّق على معطيات الجدول.

الجزء الثاني: (04 نقاط)

عمل قادة أوربا الغربية منذ 1957 على أن تكون القارة الأوربية البيت الأوربي الموحد، وتجلى ذلك في عدد الدول المشكلة للإتحاد الأوربي سنة 2007.

المطلوب: انطلاقا من الفقرة، واعتمادا على ما درست، اكتب موضوعا جغرافيا تبيّن فيه:

1- أهداف التكتل الأوربي.

2- مظاهر القوة والضعف في الإتحاد الأوربي.

الموضوع الثاتي

التاريـــخ:

الجزء الأول: (06 نقاط)

1- «... مثلت <u>حركة التحرر</u> في الهند الصينية مظهرا من مظاهر انحسار وتصفية الاستعمار التقليدي وظهور الاستعمار الجديد المجسد في القوى العظمى التي أفرزتها الحرب العالمية الثانية وعلى رأسها الولايات المتحدة الأمريكية التي اشتهرت بسياسة ملء الفراغ الإيديولوجي في المنطقة عقب انسحاب فرنسا...».

تاريخ العالم المعاصر، ص: 233

المطلوب:

أ- اشرح ما تحته خط في النّص".

ب- على خريطة العالم المرفقة، وقع أسماء المناطق والدول الواردة في الوثيقة.

2- عرّف بالشخصيات التالية:

هو شي منه - الجنرال جياب - أحمد سوكارنو.

الجزء الثاني: (04 نقاط)

رغم تباين شعوب المستعمرات من حيث الموقع الجغرافي والوضع السياسي والاقتصادي والاجتماعي والرصيد التاريخي، إلا أنها اشتركت في بعض خصائصها التحررية.

المطلوب: انطلاقا من الفقرة، واعتمادا على ما درست، اكتب مقالا تاريخيا تبرز فيه:

1- الخصائص المشتركة للحركات التحررية.

2- نتائج الحركات التحررية في إفريقيا.

الجغر افيا:

الجزء الأول: (06 نقاط)

1- حدّد مفهوم المصطلحات التالية:

التنمية المستدامة - الشراكة - العولمة.

2- الجدول التالي يمثل كمية إنتاج واستهلاك الاتحاد الأوربي للموارد الطاقوية والمعدنية لسنة 2004 :

الغاز الطبيعي	الحديد	البترول	القحم	المادة
250 مليار /م ³	14.8	165	340	الإنتاج م/طن
420 مليار /م ³	141	750	307	الاستهلاك م/طن

المنظمة العالمية للتجارة 2005

المطلوب: علّق على معطيات الجدول.

3- على خريطة آسيا المرفقة، وقّع التنينات الأربعة.

الجزء الثاني: (04 نقاط)

يعرف العالم تزايدا هائلا في مبادلات السلع والخدمات، وتنقلا واسعا لرؤوس الأموال والإعلام.

المطلوب: انطلاقا من الفقرة، واعتمادا على ما درست، اكتب موضوعا جغرافيا تبيّن فيه:

- 1- خصائص أسواق المواد الإستراتيجية (الغذاء والطاقة).
 - 2- انعكاسات واقع المبادلات على العالم المتخلف.

خريطة العالم

ينجز العمل المطلوب على الخريطة وتعلا مع أوراق الإجابة

خريطة أوربا

ينجز العمل المطلوب على الخريطة وتعاد مع أوراق الإجابة

خربطـــة تشرق وجنوب تشرق أسد

ينجز العمل المطلوب على الخريطة وتعاد مع أوراق الإجابة

الإجابة النموذجية لموضوع امتحان: البكالوريا دورة: جوان 2013

اختبار مادة: التاريخ والجغرافيا الشعبة: علوم تجريبية، رياضيات وتقني رياضي المدة: 03 سا و 30 د

الإجابة النموذجية وسلم التنقيط

امة ا	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجزأة		
		<u>الموضوع الأول</u> التاريخ:	
		الجزء الأول: (6 نقاط) 1- شرح ما تحته خط:	
	0.75	م الحرب الباردة: صراع إيديولوجي بين الاتحاد السوفيتي والولايات المتحدة الأمريكية ظاهرها حربا بين الشيوعية والرأسمالية وحقيقتها صراع مصالح.	
	0.75	- المعسكرين: دول المعسكر الشيوعي (الاتحاد السوفيتي، دول وسط وشرق أوربا الصين، الفيتنام ، كوبا) ودول المعسكر الرأسمالي (الولايات المتحدة	
06	0.75	كندا، اليابان ، دول أوربا الغربية) - الاستقطاب الدولي: سعي كل كتلة إلى جذب دول من العالم إلى صفها من خلال عضوية: الأحلاف، المعاهدات الدفاعية المشتركة، المشاريع الاقتصادية	
		2- التعريف بالشخصيات:	
	0.75	*- جمال عبد الناصر: 1918-1970، زعيم الثورة المصرية 1952، رئيس جمهورية مصر 1954-1970، أحد مؤسسي حركة عدم الانحياز.	
	0.75	*- نيكتا خروتشوف: (1894-1971)، رجل دولة سوفياتي خلف ستالين سنة 1953، ساهم في إرساء دعائم التعايش السلمي، أبعد عن السلطة في سنة 1964.	
	0.75	* رابح بيطاط: 1925-2000، مناضل في حزب الشعب وحركة الانتصار للحريات الديمقر اطية، عضو اللجنة الثورية للوحدة والعمل أول رئيس للمجلس الشعبي الوطني.	
		3- التوقيع على خريطة أوروبا:	
	4×0.25	۔ ویلی کی وی ۔ الإنجاز ِ	
	0.25	ـ المعنوان.	
	0.25	ـ المفتاح.	

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع.تجريبية، رياضيات، تقني رياضي دورة: جوان 2013 محاور الموضوع عناصر الإجابة العلامة المجموع مجزأة تعيين دول من المعسكر الشرقي وأخرى من المعسكر الغربي: المفتاح: دول المعسكر الشرقي: دول المعسكر الغربي: أ- إيطاليا ألمانيا الشرقية ب- ألمانية الغربية 2- بولندا ج- فرنسا 3- المجر 4- الاتحاد السوفياتي د۔ بریطانیا 4

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع تجريبية ، رياضيات ، تقني رياضي دورة: جوان 2013

امة	العلا	عناصر الإجابة	حاور الموضوع
المجموع	مجزأة		
		الجزء الثاني: (4 نقاط)	
	0.50	المواجهة مع الاستعمار الفرنسي كانت داخلية وخارجية، عسكرية وسياسية. 1- الأساليب التي استخدمتها الثورة على المستوى الخارجي:	المقدمة
		- إنشاء إذاعة صوت الجزائر بالقاهرة.	
		 إرسال وفود إلى مختلف الدول للتعريف بالقضية الجزائرية. 	
		- تفعيل النشاط الدبلوماسي في الخارج. - إنشاء الحكومة الجزائرية المؤقتة.	
	6×0.25	- طرح القضية الجزائرية في مختلف المحافل الدولية والإقليمية.	العرض
		 نقل الثورة إلى داخل فرنسا. 	
	0.50	2- انعكاسات هذه الأساليب على مكانة فرنسا الخارجية:	
04	$0.50 \\ 0.50$	 اهتزاز مكانة فرنسا دوليا وتراجع دورها. تزايد الضغوط الخارجية على الدولة الفرنسية. 	
	0.50	- انساع المواجهة وتزايد حدتها في المستعمرات الفرنسية.	
		نجاح الدبلوماسية الجزائرية وتدويل القضية فرض على فرنسا التسليم بمبدأ حق تقرير	الخاتمة
	0.50	المصير	
		المجعرافيا:	
		الجزء الأول: (06 نقاط) 1-	
		أ - مفهوم المصطلحات:	
	0.75	- العالم الثالث: تسمية أطلقت على دول إفريقيا ، أسيا وأمريكا اللاتينية التي لم تتكتل في	
		سياق الحرب الباردة وهو مصطلح مرادف للعالم المتخلف أو الدول النامية أو السائرة في طريق النمو.	
06	0.75	ـ التقسيم الدولي للعمل: توزيع إجمالي للأدوار بين الدول المتقدمة والدول المتخلفة بحيث	
		تقوم الدول المتخلفة بتصدير خامات الموارد الأولية بينما تقوم	
	0.75	الدول المتقدمة بتحويلها إلى مواد مصنعة و تصديرها المركز الرأسمالي: الدول المتقدمة أو الشركات متعددة الجنسيات من خلال	
		(الاستثمار، القروض، النشاط الزراعي و الصناعي والخدماتي).	
		ب - التوقيع على خريطة العالم: الدول الواردة في الوثيقة.	
	4 ×0.25	*- الإنجاز:	
	0.5	*- التعليق على الجدول: 2- التعليق على الجدول:	
	0.75	2- التعليق على البدون. *- تفاوت في نسب التبادل التجاري الصيني من منطقة إلى أخرى.	
	0.50	*- تعدد التعامل التجاري الصيني .	
	0.50	*- ضخامة نسبة التعامل مع العالم المتقدم 54.5 %.	
	0.50	*- أكثر من نصف معاملاتها مع الدول الآسيوية.	

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع.تجريبية، رياضيات، تقني رياضي دورة: جوان 2013 محاور الموضوع العلامة مجزأة المجموع خريطة بعض الدول المصدرة للمواد الأولية والمحاصيل الزراعية النقدية الجزائر كوبا بو ليفيا الجزء الثاني: (04) نقاط) تعتبر معاهدة روما 1957النواة الأساسية لتشكل الإتحاد الأوربي 0.50 المقدمة : 1- أهداف التكتل: - تشكيل قوة اقتصادية كبرى الاسترجاع المكانة الدولية المفقودة 0.25 - التخلص من التبعية الأجنبية المالية الأمريكية و الطاقوية والمعدنية 0.25ـ إقامة سوق مشتركة بين الدول الأعضاء لتوفير السلع وتوحيد السعر 0.25 ـ تحقيق الاكتفاء الذاتي و الأمن الغذائي وتوفير الرفاهية لشعوبهم 0.25 السياسية: العرض - تقوية علاقات الصداقة والتعاون بين الدول الأعضاء 0.25 - توحيد المواقف الأوربية تجاه القضايا الدولية 0.252 - مظاهر القوة والضعف: - المساحة والقورة البشرية 0.25- القوة الاقتصادية (الشركات الكبرى والمؤسسات المالية) 0.25 - الموقف السياسي والاقتصادي الموحد في إطار المفوضية الأوربية 0.25 ٥ الضعف: - نقص المواد الأولية لاسيما الطاقة 04 0.25 - التلوث البيئي نتيجة ضخامة التصنيع 0.25 0.25 - المنافسة الخارجية لاسيما من طرف اليابان ، الولايات المتحدة والصين الدول الأوربية ضعيفة بمفردها قوية بتكتلها الخاتمة: 0.50

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع تجريبية ، رياضيات ، تقني رياضي دورة: جوان 2013

دمه	العا	عناصر الإجابة	عاور الموضوع
المجمو	مجزأة	1	
		الموضوع الثاني	
		التاريخ:	
		الجزء الأول: (06 نقاط) أ ـ مفهوم المصطلحات:	
		* - حركة التحرر: هو رد الفعل النضالي الوطني الذي قامت به شعوب	
	0.75	المستعمرات في كل من إفريقيا وآسيا وأمريكا اللاتينية ضد الاستعمار الأوروبي	
	0.75	المستعمرات في حل من إفريقيا والله والمريك المرتبية صد الاستعمار الأوروبي من أجل التحرر والانعتاق.	
		من أجل التحرر والإعفاق.	
	0.75	الكشوفات الجغر افية والثورة الصناعية، تزعمتها كل من بريطانيا، فرنسا، هولند	
	0.73	والبرتغال، استعملت فيها عدة أساليب لفرض الهيمنة على شعوب إفريقيا وآسيا	
		والبريعان، استعملت فيها عده التاليب تعرض الهيمته على سعوب إفريقيا والليا والمانية.	
		والمريك المنتيد. " - ملء الفراغ: سياسة استعمارية جديدة نبنتها الو. م. أ في عهد إيزنهاور	
06	0.75		
00	0.73	بعد تراجع القوى الاستعمارية التقليدية وطبقتها في الهند الصينية بعد انسحاب الاستعمار الفرنسي منها.	
		الاستعمال العربسي منها. ب ـ التوقيع على خريطة العالم المناطق والدول الواردة في الوثيقة:	
	1.25	ب ــ التوليق على عربيطه المعالق والدول الواردة في الوليفة. *- الإنجاز:	
	0.25	الم بعدار. *- العنوان:	
	0.23	٠ - العنوان:	
		2- التعريف بالشخصيات:	
	0.75	*- هوشى منه: زعيم سياسى فيتنامى قاد حركة التحرر فى بلاده	
	0.75	موسى منه. رحيم سياسي فيتنامي عاد خرجه التحرر في بارده رئيس جمهورية فيتنام الشمالية 1945.	
	0.75	رئيس جمهوريه فيشام السمالية 0401. *- الجنر ال جياب: فان غويان جياب: بطل معركة ديان بيان فـو 1954	
	0.75		
		وصاحب مقولة الاستعمار تلميذ غبي لا يفهم إلا بتكرار الدرس.	
	0.75	*- أحمد سوكارنو: 1901-1970، سياسي وزعيم اندونيسي، تزعم تحرير	
	0.73	بلاده من الاستعمار الهولندي ،رئيس اندونيسيا 1951-1967، ساهم في	
		تأسيس حركة عدم الانحياز من خلال مؤتمر باندونغ 1955.	
			1

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع تجريبية، رياضيات، تقني رياضي دورة: جوان 2013 محاور الموضوع العلامة مجز أة المجموع الولايات المتحدة الأمر بكية الهند توقيع الدول المذكورة في النص الجزء الثاني: (04) نقاط) 0.5 الحركات التحررية بين الخصائص المشتركة والأهداف المحققة. المقدمة: 1- الخصائص المشتركة: - وحدة العدو: الاستعمار بأشكاله المختلفة. 0.25 0.50 - وحدة الهدف: الاستقلال. 0.25 - الشمولية والشعبية. العرض: 04 0.25 - التضامن و الوطنية. 0.25 التزامن. 2- نتائج الحركات التحررية في إفريقيا: - حصول أغلب الدول على الاستقلال ونراجع الإمبراطوريات الاستعمارية 0.50 0.25 - ظهور التضامن الأفروأسيوي. 0.25 - القضاء على الأنظمة العميلة . - تزايد قوة الدول المستقلة وتكتلها في منظمات إقليمية (الوحدة الإفريقية سابقا 0.50 وحركة عدم الانحياز) . 0.50 تمكنت الحركات التحررية من تحرير الشعوب إلا أنها لم تتمكن الخاتمة: من تحريرها من التخلف

تابع الإجابة اختبار مادة : التاريخ والجغرافيا الشعبة : ع تجريبية ، رياضيات ، تقني رياضي دورة: جوان 2013

2013 دمة	رره. جوان ا العلا	بع الإجابة اختبار مادة : التاريخ والجغرافيا الشعبة : ع تجريبية ، رياضيات ، تقني رياضي دو عاور الموضوع	
المجموع	مجزأة		
		. 21 . 41	
		الْجغرافيا:	
		<u>الجزء الأول</u> : (06 نقاط)	
		-1 - absenting the management -1	
	0.75	*- التنمية المستدامة: هي التنمية التي تلبي حاجيات الحاضر دون المساس بمستقبل الأجيال القادمة.	
	0.75	* - الشراكة: التعاون بين دولتين أو أكثر بموجب اتفاقيات ،تهدف إلى تبادل الخبرات والمنفعة لتحقيق مصالح مشتركة .	
	0.75	*- العولمة: ظاهرة فرضت نفسها منذ الثمانينات ،تتميز بتوزيع أنماط سياسية	
06		اقتصادية وثقافية ،أنتجها الشمال المتقدم 2 – التعليق على معطيات الجدول:	
UO	0.50	2 - التفاوت الكبير في الإنتاج باستثناء الفحم.	
	0.50	التقاوت الخبير في الإلكاع بالمتلكاء المعكم. - طاقة إنتاجية كبيرة وقوة استهلاكية.	
	0.25	صف إلى جيد كبيرة وقوة الشهدية. - الاستهلاك أكبر من الإنتاج دليل على الحركية الصناعية والتبعية للخارج.	
	0.50	- استهلاك الفحم أقل من الإنتاج بسبب الاعتماد على البترول والمغاز والطاقات البديلة.	
	0.25	- استهلاك الحديد يفوق الإتتاج بحوالي10 مرات وهذا مظهر من مظاهر النشاط الصناعي الواسع.	
	0.25	 استهلاك الغاز ضعف الإنتاج بسبب النشاط الاقتصادي وكذلك الظروف المناخية 	
		(البرودة) 3 - التوقيع على خريطة آسيا:	
	4×0.25	- الإنجاز - توقيع التنينات الأربعة.	
	0.25	المفتاح.	
	0.25	- العنوان	
	3 = 2		

نابع الإجابة اختبار مادة: الثاربغ والجنرافيا الشعبة: ع يُجرببية ، رياضيات ، تَقَلَي رياضي دورة: جوان 2013 مداور الموضوع عناصر الإجابة العلامة المجموع مجزأة تعيين التتينات الأسيوية الأربعة: كوريا الجنوبية، هونغ كونغ، تايوان، سنغفوارة. ம் كور با الجنوببة ثايوان هونخ كوذخ

تابع الإجابة اختبار مادة: التاريخ والجغرافيا الشعبة: ع تجريبية ، رياضيات ، تقني رياضي دورة: جوان 2013

العلامة		ختبار مادة : التاريخ والجغرافيا الشعبة : ع تجريبية ، رياضيات ، تقني رياضي د عناصر الإجابة	حاور الموضوع
المجمو	مجزأة		
		/1 12: O/1 · 10th - 1-th	
		<u>الجزء الثاني</u> : (04 نقاط)	
	0.50	العولمة التجارية وأثرها على العالم المتخلف.	مقدمة
		1 _ خصائص أسواق المواد الاستراتيجية:	
	0.50	_ احتكار العالم المتقدم لتجارة المواد الاستراتيجية	
	0.25	ــ سيطرة المواد الغذائية والأولية على صادرات العالم المنقدم إلى العالم المتخلف.	
	0.25	ــ سيطرة المواد الطاقوية والأولية على صادرات العالم المتخلف.	
04	0.50	ـ تحكم العالم المتقدم في الأسواق العالمية: إنتاجا وأسعارا.	•_
		2 ــ انعكاسات واقع المبادلات على العالم المتخلف:	رض
	0.50	 التبعية التجارية والمالية. 	
	0.25	 عجز الموازين التجارية وموازين المدفوعات. 	
	0.50	ــ ارتفاع حجم الديون الخار جية.	
	0.25	 استنزاف الثروات وانتشار الأزمات في العالم المتخلف. 	
		•	
	0.50	ضرورة تكتل دول الجنوب والتصدي لظاهرة العولمة وانعكاساتها.	اتمة
		ملحظة: تقبل الإجابات الصحيحة الأخرى.	

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقاط)

، B(5;-3;2) ، A(3;-2;-1) نعتبر النقط ، $O(\vec{i},\vec{j},\vec{k})$ الفضاء منسوب إلى المعلم المتعامد المتجانس ، D(1;-5;-2) و C(2;3;2)

- (P) بيّن أنّ النقط A و B و B تعين مستويا؛ نرمز له بالرمز (1
- . (P) بيّن أنّ الشعاع $\vec{n}(2;1;-1)$ ناظمي للمستوي $\vec{n}(2;1;-1)$ ، ثمّ جد معادلة ديكارتية للمستوي (2
 - . (P) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة D و يعامد (3
 - . (P) عين إحداثيات النقطة E المسقط العمودي للنقطة D على المستوي
- . $\overrightarrow{AH} = \lambda \overrightarrow{AB}$: المسقط العمودي للنقطة D على المستقيم AB)، و AB العدد الحقيقي حيث H (4

$$.\lambda = \frac{\overrightarrow{AD}.\overrightarrow{AB}}{\left\|\overrightarrow{AB}\right\|^2} :$$
 ا بيّن أنّ (أ

ب) استنتج العدد الحقيقي λ و إحداثيات النقطة H، ثمّ المسافة بين النقطة D والمستقيم (AB).

التمرين الثاني: (05 نقاط)

- . $2z^2 + 6z + 17 = 0$: z المعادلة ذات المجهول z المعادلة المركبة z المعادلة ذات المجهول المركبة z
- في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(O; \overrightarrow{u}, \overrightarrow{v}\right)$ ، النقط A و B و C لاحقاتها على (2

.
$$z_{C}=-\frac{3}{2}-\frac{5}{2}i$$
 و $z_{B}=-\frac{3}{2}+\frac{5}{2}i$ و $z_{A}=-4$

. ABC مثمّ استنتج طبيعة المثلث - احسب الطويلة وعمدة للعدد المركب $\frac{Z_B-Z_A}{Z_C-Z_A}$ ، ثمّ استنتج طبيعة المثلث

- . Aمربعا مركزه BCDE و Z_{E} على الترتيب حتّى يكون الرباعي BCDE مربعا مركزه (3
 - . $\|\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{ME}\| = 10\sqrt{2}$ ب عيّن (Γ_1) مجموعة النقط M من المستوي حيث:
 - . $\arg(z+4)=\frac{\pi}{4}$: حيث z حيث مجموعة النقط M من المستوي، ذات اللاحقة z حيث (Γ_2) (4
 - . (Γ_2) مَيِّن المجموعة B تنتمي إلى (Γ_2) ، ثمّ عيّن المجموعة B

التمرين الثالث: (04 نقاط)

المتتالية العددية المعرفة كما يلي: (u_n)

$$u_n = \sqrt{\frac{u_{n-1}}{e}}$$
 : $u_0 = e^2$ ومن أجل كل عدد طبيعي غير معدوم $u_0 = e^2$

.
$$v_n = \frac{1}{2} \ln u_n + \frac{1}{2}$$
 كما يلي: \mathbb{N} كما المتتالية العددية المعرفة على المعرفة على \mathbb{N}

) بيّن أن
$$\binom{v_n}{n}$$
 متتالية هندسية أساسها $\frac{1}{2}$ ، ثمّ احسب حدها الأول.

n بدلاله n ، ثمّ استتج عباره u_n بدلاله (2

$$\lim_{n\to +\infty} S_n$$
 احسب بدلالة n المجموع $S_n=V_0+V_1+...+V_n$ ؛ حيث عبد المجموع (3

$$\lim_{n\to +\infty} p_n$$
 الجداء $p_n=u_0\times u_1\times ...\times u_n$: حيث الجداء n الجداء (4

التمرين الرابع: (07 نقاط)

.
$$g(x) = (x+1)^2 - 2 + \ln(x+1)$$
 : الدّالة g معرفة على المجال $g(x) = (1, +\infty)$ بالعبارة: $g(x) = (1, +\infty)^2 - 2 + \ln(x+1)$

.]-1;+ ∞ [ادرس اتجاه تغير الدالة g على المجال (1

وأن:
$$\alpha < 0.32 < \alpha < 0.32$$
 ييّن أنّ المعادلة $g(x) = 0$ تقبل حلا وحيدا α حيث:

$$\ln(\alpha+1) = 2 - (\alpha+1)^2$$

g(X) استنتج حسب قیم X اشارهٔ

.
$$f(x) = (x+1)^2 + (2-\ln(x+1))^2$$
 : بالعبارة: $[-1;+\infty[$ بالعبارة: $f(x) = (x+1)^2 + (2-\ln(x+1))^2$. II

.
$$\left(O; \overrightarrow{I}, \overrightarrow{f}
ight)$$
 سنجامد المتعامد المتعامد المستوي المنسوب إلى المعلم المتعامد $\left(C_{f}
ight)$

.
$$\lim_{x \to +\infty} f(x)$$
 e $\lim_{x \to -1} f(x)$ the (1)

.
$$f'(x) = \frac{2g(x)}{x+1}$$
 :]-1;+∞[من أجل كل كل كل أنبّ أنّه، من أجل كل (2

درس اتجاه تغیّر الدالة f، ثمّ شكّل جدول تغیر اتها .

.
$$f(\alpha)$$
 بيّن أنّ: $f(\alpha) = (\alpha+1)^2 (1+(\alpha+1)^2)$ ثمّ استنتج حصر اللعدد (4

.]–1;2] على المجال (C_f) مثل المنحنى (5

.
$$h(x) = \ln(x+1)$$
 المنحنى الممثل للدالة h المعرفة على المجال $-1;+\infty$ المعرفة المعرفة المعرفة المعرفة المعرفة على المجال $-\Pi$

. X النقطة ذات الإحداثيتين (-1,2) و M نقطة من (Γ) فاصلتها A

.
$$AM = \sqrt{f(x)}$$
 أثبت أنّ المسافة AM تعطى بالعبارة (1

.
$$k\left(X\right)=\sqrt{f\left(X\right)}$$
 : الدّالة k معرفة على المجال $-1;+\infty$ معرفة على المجال (2

.]
$$-1;+\infty$$
 المجال ما التعبير على المجال k و k نفس المجال المجال المجال المجال

. بكن إحداثيتي النقطة B من (Γ) ، بحيث تكون المسافة AM أصغر ما يمكن

$$AB = (\alpha+1)\sqrt{(\alpha+1)^2+1}$$
 : بيّن أنّ (جـ

الموضوع الثاني

التمرين الأول: (04.5 نقطة)

$$B\left(3;-4;6
ight)$$
 و $A\left(2;-5;4
ight)$ ، نعتبر النقطتين $A\left(2;-5;4
ight)$ و الفضاء المنسوب إلى المعلم المتعامد المتجانس $A\left(2;-5;4
ight)$ ، نعتبر النقطتين $X=1+t$. $X=1+t$ و المستقيم $X=1+t$ المعرف بالتمثيل الوسيطي التالمي: $X=1+t$ $X=1+t$ المعرف بالتمثيل الوسيطي التالمي: $X=1+t$

- A و A المار من النقطتين B و A المار من النقطتين A
 - (D) ب) ادر (Δ) ب للمستقيمين الوضع النسبي للمستقيمين (Δ)
 - . (Δ) المستوي الذي يشمل (D) و يوازي (P) -2
- برهن أنّ $\vec{n}(3;1;-2)$ شعاع ناظمي للمستوي (P)، ثمّ عيّن معادلة ديكارتية للمستوي $\vec{n}(3;1;-2)$
 - . (D) نقطة كيفية من (Δ) و (Δ) نقطة كيفية من (Δ)
- (D) عيّن إحداثيات النقطتين M و N بحيث يكون المستقيم (MN) عموديا على كل من (Δ) و (D) .
 - (P) والمستوي (Δ) والمستوي (P).

التمرين الثاني: (04.5 نقطة)

- . $(z+5-i\sqrt{3})(z^2+2z+4)=0: z$ المعادلة ذات المجهول \mathbb{C} المعادلة ذات المجهول المجهول المجهول المحادلة ذات المجهول المحادلة ذات المجهول المحادلة ذات المجهول المحادلة ذات المجهول المحادلة المحادلة ذات المحادلة
- (2) المستوي منسوب إلى المعلم المتعامد المتجانس A . $O;\vec{u},\vec{v}$ و B و C النقط التي لاحقاتها على الترتيب $z_B=-1+i\sqrt{3}$ و $z_A=-1-i\sqrt{3}$
 - . B التشابه المباشر الذي يحول A إلى C ويحول C الم
 - جد الكتابة المركبة للتشابه المباشر ${\cal S}$ ، ثمّ عيّن العناصر المميزة له .
 - . $\{(A;2),(B;-1),(C;1)\}$ عيّن Z_D لاحقة النقطة D مرجح الجملة و(1; 3)
 - . ABD على الشكل الأسي، ثمّ استنج طبيعة المثلث $\frac{Z_B-Z_A}{Z_D-Z_A}$ على الشكل الأسي، ثمّ استنج طبيعة المثلث
 - $\|2\overline{MA} \overline{MB} + \overline{MC}\| = \|\overline{MA} \overline{MB}\|$ عيّن المجموعة (Γ) للنقط M من المستوي حيث: (1.50 id) التمرين الثالث: (3.5)
 - Xو Y عددان صحیحان و (E) المعادلة ذات المجهول (X;y) التالیة:
 - $\cdot \, x_0 + y_0 = -1 : الذي يحقق (E) الذي يحقق (X_0; y_0) أ) عيّن (X_0; y_0) عيّن (E) استتج حلول المعادلة (E).$
 - S=11a+1 . S=7b+2 : الغدد الذي يحقق S عددان طبيعيان و S العدد b و a
 - . (E) حل للمعادلة (a;-b) بيّن أنّ
 - ب) ما هو باقي القسمة الإقليدية للعدد S على 77?

. 2 مدد طبیعی باقی قسمته علی 11هو 1 وباقی قسمته علی 7هو n (3

n < 2013 عيّن أكبر قيمة للعدد n حتى يكون

التمرين الرابع: (07.5 نقطة)

. $g(x) = (x-1)e^x$ الدالة g معرفة على \mathbb{R} كما يلى: -1

g ادرس تغیرات (1

. $1 + (x - 1)e^x \ge 0$ بيّن أنّه، من أجل كل عدد حقيقي (2

.
$$\begin{cases} f(x) = \frac{e^x - 1}{X}; x > 0 \\ f(0) = 1 \end{cases}$$
 كما يلي:
$$\begin{cases} 0; +\infty [0; +\infty] \text{ And } f(0) = 1 \end{cases}$$

. $[0;+\infty]$ مستمرة على $]\infty+,0$.

 $\lim_{x\to +\infty} f(x) \quad (\psi$

. $f'(x) = \frac{1 + (x - 1)e^x}{x^2} :]0; +\infty[$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي (أ –2

ب) استنتج اتجاه تغيّر الدالة f، ثمّ شكّل جدول تغيّر اتها.

. $f_n(x) = \frac{e^x - 1}{X} + n \ln x$: بر $= \frac{1}{2} + n \ln x$ عدد طبیعی حیث $= \frac{1}{2} + n \ln x$ الدالة المعرفة علی $= \frac{1}{2} + n \ln x$ عدد طبیعی حیث $= \frac{1}{2} + n \ln x$ الدالة المعرفة علی $= \frac{1}{2} + n \ln x$

. $\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ سنجاها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس و $\left(C_{n}
ight)$

.]0;+∞ ملی الداله f_n علی اتجاه تغیر الداله -1

 $\lim_{x\to+\infty} f_n(x)$ و $\lim_{x\to\infty} f_n(x)$ احسب -2

. (C_{n+1}) و (C_n) ادر الوضع النسبي للمنحنيين -3

4- بيّن أنّ جميع المنحنيات تمر من نقطة ثابتة B يطلب تعيين إحداثيتيها.

. $f_1(\alpha_1) = 0$ بيّن أنّه، يوجد عدد حقيقي وحيد α_1 من α_2 من α_3 عدد عدد حقيقي وحيد (5 – 5

بيّن أنّه، من أجل كل عدد طبيعي n حيث $1 \geq n$ فإنّ: $f_n(\alpha_1) < 0$ ، ثمّ برهن أنّه يوجد عدد حقيقي (ب $f_n(\alpha_1) < 0$. $f_n(\alpha_n) = 0$ بين أنّه، من $[\alpha_1;1]$ بحيث $[\alpha_1;1]$ بحيث $[\alpha_1;1]$ بحيث $[\alpha_1;1]$

. $\frac{e^x-1}{x} \le e-1$:]0;1] من أجل كل x من أجل إلى إلى الجزء الجزء الجزء أنّه، من أجل إلى الجزء أنه، من أجل الجزء الجزء الجزء الجزء أنه، من أجل كل الجزء الحراء الحراء

. $\alpha_n \ge e^{\frac{1-e}{n}}$ بنّم ، $\ln(\alpha_n) \ge \frac{1-e}{n}$ ، $n \ge 1$ عدد طبیعی n حیث $n \ge 1$ من أجل كل عدد طبیعی n حیث (ب

 (α_n) جد نهاية المتتالية (ب

المدة: 04 سا و 30 د

الإجابة النموذجية لموضوع امتحان: البكـــــالوريا

اختبار هادة: الرياضيات الشعبة: تقني رياضي

الإجابة النموذجية

العلامة		عناصر الإجابة الموضوع الأول	
مجموع	مجزأة	032, E3-3-,	
04	0.5	التمرين الأولى: (04 نقاط) التمرين الأولى: (04 نقاط) \overrightarrow{AC} و \overrightarrow{AC} و \overrightarrow{AC} و \overrightarrow{AC} غير مرتبطين خطيا -1 الشعاعان \overrightarrow{AC} و B ، B و B ، B و B ، B و B ،	
	0.5	\overrightarrow{AC} و $\overrightarrow{nAC}=0$ ومنه \overrightarrow{n} عمودي على الشعاعين $\overrightarrow{nAC}=0$ و $\overrightarrow{nAB}=0$	
	+ 0.5	. $2x+y-z-5=0$: هي (P) هي –	
	0.5	$x=1+2t$. $\begin{cases} x=1+2t \\ y=-5+t \end{cases}$; $(t\in\mathbb{R})$. هو (Δ) هو (Δ) هو (Δ) هو (Δ) مثيل وسيطي للمستقيم (Δ)	
	0.5	. $(3;-4;-3)$ هي E مي ب $-$ إحداثيات النقطة	
	0.75	$AH = \lambda \overrightarrow{AB}$ ومنه $\overline{AB} = \lambda \overrightarrow{AB}. \overline{AB} = \lambda \overrightarrow{AB}. \overline{AB}$ ومنه $\overline{AH} = \lambda \overrightarrow{AB}$ ومنه $\overline{AB} = \lambda \overrightarrow{AB}. \overline{AB}$ ومنه $\lambda = \frac{\overrightarrow{AD}. \overrightarrow{AB}}{\left\ \overrightarrow{AB}\right\ ^2}$ ومنه $\overline{AD}. \overline{AB} = \lambda \overrightarrow{AB}. \overline{AB}$ ومنه $\overline{AB} = \overline{AB}. \overline{AB}$	
	0.25	$\lambda=rac{-4}{14}=-rac{2}{7}$ ومنه : $A\overrightarrow{D}(-2;-3;-1)$ ومنه : $\lambda=1$	
	0.25 + 0.25	$d(D;(AB)) = DH = \frac{3\sqrt{70}}{7}$ و $\left(\frac{17}{7}; -\frac{12}{7}; -\frac{13}{7}\right)$ المحداثیات H هي:	
05		، الثاني: (05 نقاط)	
	0.75	$S = \left\{ -rac{3}{2} - rac{5}{2}i \; ; -rac{3}{2} + rac{5}{2}i ight\}$ ومنه $\Delta = -100 = \left(10i ight)^2$ للمعادلة: لدينا $\Delta = -100 = \left(10i ight)^2$	
	0.5	$\frac{Z_B - Z_A}{z_B} = i$: ادينا: $\frac{Z_B - Z_A}{z_B}$ قادة $\frac{Z_B - Z_A}{z_B}$	
	+ 0.5	$\frac{Z_B - Z_A}{Z_C - Z_A} = i$: وعمدة له : لدينا $\frac{Z_B - Z_A}{Z_C - Z_A}$	
	+ 0.5	. $\left(\overrightarrow{AC}; \overrightarrow{AB}\right) = \frac{\pi}{2}$ ويعني: $\frac{\pi}{2} = \frac{\pi}{2}$ و $\frac{AB}{AC} = 1$ ومنه: $\frac{z_B - z_A}{z_C - z_A} = 1$	
	0.5	. A متساوي الساقين وقائم في ABC المثلث ABC متساوي الساقين وقائم في	

العلامة		\$ £94 _
مجموع	مجزأة	عناصر الإجابة الموضوع الأول
	0.5 + 0.5	$\begin{bmatrix} CE \end{bmatrix}$ و $\begin{bmatrix} BD \end{bmatrix}$ و $A:z_E$ منتصف القطعتين $A:z_E=1$ و $Z_D=1$. $Z_E=2z_A-z_C=-1$ و منه: $Z_E=2z_A-z_B=1$ و $Z_D=2z_A-z_B=1$
	0.5	$ \overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{ME} =4MA$: لدينا : (Γ_1) : لدينا : $(\overline{S}\sqrt{2})$: لدينا A الدينا : (Γ_1) هي الدائرة الذي مركزها A ونصف قطرها (Γ_1) هي الدائرة الذي مركزها A ونصف قطرها (Γ_1)
	0.25 + 0.5	$\operatorname{arg}(z_B+4)=\frac{\pi}{4}$ يعني $B\in (\Gamma_2): (\Gamma_2)$ يعني $B\in (\Gamma_2): B\in (\Gamma_2): B\in (\Gamma_2): B\in (\Gamma_2):$ $B\in (\Gamma_2): B\in (\Gamma_2): B\in (\Gamma_2):$ $\operatorname{arg}(z_B+4)=\frac{\pi}{4}:$ $\operatorname{arg}(z_B+4)=\pi$
		التمرين الثالث: (04 نقاط)
	+ 0.5 +0.25 0.25	$V_0 = \frac{3}{2}$ و $\frac{1}{2}$ أمتتالية هندسية أساسها (V_n) ($V_n = \frac{1}{2}$ المنتالية هندسية أساسها (V_n) متتالية هندسية أساسها (V_n) المنتالية المنتا
04	+0.5	$u_n = e^{3(\frac{1}{2})^n - 1}$ $v_n = 3 \times \left(\frac{1}{2}\right)^{n+1}$ /2
	+ 0.5	. $\lim_{n \to +\infty} S_n = 3$ و $S_n = 3 \left(1 - 2^{-n-1}\right)$ /3
	0.5	
	+ 0.5	. $\lim_{n \to +\infty} P_n = 0$, $p_n = e^{6\left(1 - \frac{1}{2^{n+1}}\right) - (n+1)}$ (1/4)

نمة	العلا	t Su contra tu Tabbu and to
مجموع	مجزأة	عناصر الإجابة الموضوع الأول
		التمرين الرابع: (07 نقاط)
	0.5	. $]-1;+\infty[$ على المجال g على المجال $]-1;+\infty[$
	+ 0.5]-1;+ ∞ [من أجل كل x من $g'(x) > 0$ ومنه $g'(x) = \frac{2(x+1)^2+1}{x+1}$
		$[-1;+\infty]$ متز ايدة تماما على المجال $]\infty+;-1$.
	0.75 +	. $\ln(\alpha+1)=2-(\alpha+1)^2$ و $g(\alpha)=0$ و القيم المتوسطة: نجد $g(\alpha)=0$
	0.25	$g(0,31) \times g(0,32) < 0$
	0.25	. $x \in [\alpha; +\infty[$ لمّا $g(x) \ge 0$ و $x \in]-1; \alpha]$ لمّا $g(x) \le 0 : g(x)$ لمّا $g(x) \le 0$
	0.5	$\lim_{x \to +\infty} f\left(x\right) = +\infty \lim_{x \to -1} f\left(x\right) = +\infty : f \text{قایتا الداله -1 -II}$
	0.5	$f'(x) = \frac{2g(x)}{x+1}$ التحقق أنّ: -2
	0.5	g(x) كإشارة $f'(x)$ كإشارة $g(x)$ كإشارة $f'(x)$ كإشارة الدّالة $f'(x)$
07		ومنه الدّالة f متناقصة تماما على المجال $[lpha;+\infty[$ ومتزايدة تماما على المجال $lpha;+\infty[$.
	0.5	f جدول تغیّر ات الداله f .
	0.25	. $f(\alpha) = (\alpha+1)^2(1+(\alpha+1)^2)$: -4
	0.25	. $4,66 < f\left(lpha ight) < 4,77 : f\left(lpha ight)$ صدر لعدد
	0.5	.] $-1,2$] على الجال (C_f) على الجال -5
		-III
	0. 5	$AM=\sqrt{f\left(X ight) }$ تعطى بالعبارة $AM=1$: اثبات أنّ المسافة
		$AM = \sqrt{(x+1)^2 + (\ln(x+1) - 2)^2} = \sqrt{f(x)}$ دينا:
	0.5	.] -1 ; $+\infty$ [التغيّر على المحال k و k نفس نفس إتحاه التغيّر على المحال الكلال الكلام المحال ال
	ני	ب- تعيين إحداثيتي النقطة B من (Γ) بحيث تكون المسافة AM أصغر ما يمكن.
	0.5	$Big(lpha;\ln(lpha\!+\!1)ig)$ أو $Big(lpha;2\!-\!(lpha\!+\!1)^2ig)$
	0.25	$AB = (\alpha+1)\sqrt{(\alpha+1)^2+1}$ جــ تبیان أنّ:

تابع الإجابة النموذجية لامتحان: البكالــوريــا مادة: الرياضيات الشعبة: تقني رياضي دورة: جوان 2013

العلامة		11.591 _	
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني:	
	0.75	(x=2+k) $x=2+k$ $y=-5+k$ هو (D) هو (D) هو (D) هو (D) المستقيم (D) هو (D)	
	0.75	. ب $-$ الوضع النسبي للمستقيمين (Δ) و (D) : ليسا من نفس المستوي	
	0.5	$\overrightarrow{n}\perp\overrightarrow{AB}$ و $\overrightarrow{n}\perp\overrightarrow{AB}$. $\overrightarrow{n}\perp\overrightarrow{u_{(\Delta)}}$ لأنّ (P) لأنّ (P) شعاع ناظمي للمستوي (P) لأنّ	
04.5	0.5	3x+y-2z+7=0 هي: (P) معادلة المستوي – معادلة	
	+0.5 0.5	. $N\left(\frac{31}{7};\frac{-18}{7};\frac{62}{7}\right)$ ، $M\left(\frac{37}{7};\frac{-16}{7};\frac{58}{7}\right)$: N و M احداثیات M و M	
	0.5	. $MN = \frac{2\sqrt{14}}{7}$: MN الطول –	
	0.5	$d\left(M;(P) ight)=rac{2\sqrt{14}}{7}$ $:(P)$ و Δ و نقطة كيفية من نقطة كيفية من Φ	
	01	التمرين الثاني: (04.5 نقطة) التمرين الثاني: (04.5 نقطة) $S = \left\{-5 + i\sqrt{3} \; ; \; -1 - i\sqrt{3} \; ; \; -1 + i\sqrt{3} \right\}$.	
	0.5	$z' = (1-i\sqrt{3})z - 1 + i\sqrt{3}$ هي: S الصيغة المركبة للتشابه المباشر S هي:	
	0.75	. $z_{\omega}=1+irac{\sqrt{3}}{3}$ ، لاحقة المركز : $\theta=-rac{\pi}{3}$ ، الزاوية : $\theta=-rac{\pi}{3}$ ، الزاوية العناصر المميزة : النسبة : $z_{\omega}=1+irac{\sqrt{3}}{3}$	
04.5	0.5	$z_D = \frac{1}{2}(2z_A - z_B + z_C) = -3 - i\sqrt{3} : z_D$ آ-أ-3	
	0.25+ 0.5	$rac{z_B-z_A}{z_D-z_A}=-i\sqrt{3}=\sqrt{3}e^{-irac{\pi}{2}}$: $rac{z_B-z_A}{z_D-z_A}$ بيعة المثلث ABD : المثلث ABD قائم في ABD	
	0.25	. A فائم في ABD طبيعة المثلث ABD : المثلث المثلث $-$	
	0.75	$\sqrt{3}$ جــ تعيين D : $DM=rac{AB}{2}=\sqrt{3}$ ،أي Γ هي دائرة مركزها D ونصف قطرها $\sqrt{3}$.	
03.5	0.5	$(x_0; y_0) = (2; -3)$ ومنه $(x_0; y_0) = (2; -3)$ ومنه $(x_0; y_0) = (2; -3)$ ومنه $(x_0; y_0) = (2; -3)$	
	0.5×2	$\{x=7k+2 \ y=-11k-3 \ , k\in \mathbb{Z} :$ ب) حلول المعادلة (E) هي: (E)	

تابع الإجابة النموذجية لامتحان: البكالــوريــا مادة: الرياضيات الشعبة: تقني رياضي دورة: جوان 2013

العلامة		****** * * * * * * * * * * * * * * * *
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني
	0.75	S = 11a + 1 ومنه $S = 11a + 1 $ ومنه $S = 7b + 2$ $S = 7b + 2$ اذن $S = 7b + 2$ ومنه $S = 7b + 2$ ومنه المعادلة $S = 7b + 2$
	0.5	(E) باک طبحت (A, B) باک طبحت $S = (A, B)$ ب (A, B) باک جیث: $S = 77k + 23$ ومنه باقی قسمة S علی 77 هو 23
	0.25	$ \begin{cases} n = 11a + 1 \\ n = 7b + 2 \end{cases} $ (3)
	0.5	n = 1948 ومنه أكبر قيمة هي: $n = 1948$
	0.5	x $-\infty$ 0 $+\infty$ $g(x)$ $g'(x) = xe^x$ $g'(x) = xe^x$ $g'(x) = xe^x$
	0.5	$1+g(x) \ge 0$ ومنه $g(x) > -1$ (2
	0. 5	$\lim_{x \to 0} f(x) = f(0)$ و $0 = 0$ اا -1 . آ مستمرة على $0 = 0$
	0.25	$\lim_{x \to +\infty} f(x) = +\infty . \ . \ .$
07.5	0.5	$f'(x) = \frac{e^x(x-1)+1}{x^2}$:]0;+ ∞ [نه من أجل كل x من أجل كل أ
	0.25	. $]0;+\infty[$ ب- اتجاه تغير الدالة $f:f$ متزايدة تماما على المجال
	0.25	- جدول تغيرات الدالة f .
	0.5 + 0.25	f_n نغير الدالة $f_n'(x) = f(x) + \frac{n}{x}$: $ 0;+\infty $ لدينا من أجل كل x من $x \to \infty$ من $x \to \infty$ دينا من أجل كل x من $x \to \infty$. $ 0;+\infty $ ومنا $x \to \infty$ ومن
	0.25 + 0.25	$\lim_{x\to +\infty} f_n(x) = +\infty$ و $\lim_{x\to +\infty} f_n(x) = -\infty$: f_n الدالة $f_n(x) = -\infty$

امة	العلا	mati a transfer at a
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني
	0.5	$f_{n+1}(x) - f_n(x) = \ln x : (C_{n+1})$ و (C_n) و لنسبي للمنحنيين (C_n) و (C_n) و لما (C_n) يقع فوق (C_n) يقع تحت (C_n) ، ولما (C_n) يقطع (C_n) عند النقطة (C_n) عند النقطة (C_n) عند النقطة (C_n)
	0.25	B(1;e-1) . $B(1;e-1)$. $B(1;e-1)$. (وتقبل أيّة طريقة صحيحة)
	0.5	$f_1(lpha_1)=0$ ببیان أنّه یوجد عدد حقیقی وحید $lpha_1$ من $a_1=0$ بحیث $a_1=0$ بیان أنّه یوجد عدد حقیقی وحید $a_1=0$ بحیث $a_1=0$ بخیث $a_1=0$ بخیث $a_1=0$ بردید و
	0.5	$p_n(x) < f_n(\alpha_1) < 0$: $p_n(\alpha_1) < 0$ نبیان أنّ $p_n(\alpha_1) < 0$ من السؤال $p_n(\alpha_1) < 0$ من ا
	+ 0.5	$f_n(x) < f_1(x)$ بما أن $f_n(\alpha_1) < 0$ نبو منه $f_n(\alpha_1) < f_1(\alpha_1)$ بما أن $f_n(\alpha_1) < 0$ فإن $f_n(\alpha_1) < 0$ أي: $f_n(\alpha_1) < f_1(\alpha_1)$ ومنه $f_n(\alpha_1) < 0$ فإن $f_n(\alpha_1) < 0$ أي: $f_n(\alpha_1) < 0$ بمن $f_n(\alpha_1) = 0$ بمن f
	0. 5	. $\frac{e^x-1}{x} \le e-1$ ، $]0;1]$ ، x من أجل كل x من أجل كل x من $e^x-1 \le e-1$. $f(x) \le f(1)$. $f(x) \le f(1)$. $g(x) \le e-1$. $g(x) \le f(1)$. $g(x) \le f(1)$.
		$\ln(lpha_n) \ge rac{1-e}{n}$: $n \ge 1$ جيث $n \ge 1$ عدد طبيعي عدد طبيعي $n \ge 1$
	0.25 + 0.25	$n\ln(\alpha_n) = -\left(rac{e^{lpha_n}-1}{lpha_n} ight) \geq -(e-1)$ ومنه $rac{e^{lpha_n}-1}{lpha_n} + n\ln(lpha_n) = 0$: $\inf_n(lpha_n) = 0$. $\ln(lpha_n) \geq rac{e-1}{n}$: $\lim_n(lpha_n) \geq rac{e-1}{n}$: $\lim_n(lpha_n) \geq rac{e^{-1}}{n}$. $\lim_n(lpha_n) \geq rac{e^{-1}}{n}$. $\lim_n(lpha_n) \geq \frac{e^{-1}}{n}$. $\lim_n(lpha_n) \geq $
	0.25	$\alpha_n \ge e$ عبد المتناج ال $\max_n \ge e$ المتنالية $\alpha_n \ge e$. (α_n)

الإجابة النموذجية وسلم التنقيط _ مادة: الفلسفة _ شعبة: تقنى رياضى+ ت اقتصاد _ بكالوريا دورة: جوان 2013

العلامة		7.10VI d 70	l to all
مجموع	مجزأة	عناصر الإجابة	المحاور
		رع الأول قارن بين الرياضيات والعلوم التجريبية.	الموضو
	01	 پتمیز کل علم بموضوعه ومنهجه ونتائجه 	
	01	 ومن أهم العلوم، الرياضيات والعلوم التجريبية 	-4
04	01	- هل وجود الفاصل المميز بين العلمين يستبعد أن تكون بينهما علاقة؟ وإذا كانت هذه	N 5
04	01	العلاقة ممكنة، فما هي طبيعتها؟	لم المشكلة
	0.5	- صحة المعلومات] <u>'</u> 'ਤ
	0.5	- سلامة اللغة.	
	01	* أوجه الاختلاف: - الاختلاف في الموضوع: موضوع الرياضيات المعقول (الكم)	
	01	المجرد أما العلوم التجريبية تدرس المادة الجامدة والمادة الحية	
04	01	- الاختلاف في المنهج: منهج الرياضيات الاستدلال العقلي (فرضي استنتاجي)، أما	
	01	العلوم التجريبية، فتعتمد على المنهج التجريبي (الاستقراء).	
	01	- الاختلاف في النتائج: نتائج الرياضيات يقينية (في حدود النسق) ودقيقة، أما نتائج	
	U1	العلوم التجريبية احتمالية ونسبية	
	0.5	– الأقوال و الأمثلة	
	0.5	 سلامة اللغة. 	
	01	* أوجه التشابه: - الرياضيات والعلوم التجريبية تعتمد على مبادئ سابقة للتجربة	ا کِلْ جَا
	01	- إن الفصل القاطع بين منهجيهما (الاستنتاج والاستقراء) يبدو في واقع التطبيق	محاولة حــــــــــــــــــــــــــــــــــــ
		أمرا صعبا	1 : 7
04	01	 يصل كالاهما إلى قوانين موضوعية، خدمة الإنسان معرفيا، حل المشكلات] -5
	0.5	– الأقوال والأمثلة]
	0.5	- سلامة اللغة.	
	01	* أوجه التداخل: - إن العلوم التجريبية تستعين بالعلوم الدقيقة، مستخدمة لغة الكم.	1
04	0.1	- يستمد العالم التجريبي من الرياضيات المنهج الاستنتاجي في المراحل المتقدمة من	
	01	البحث، كما تعلو قيمة الرياضيات عندما تتجسد نتائجها تجريبيًا في عالم الواقع.	
	01	 يظهر التداخل بينهما في انطباق الفكر مع ذاته ومع الواقع في آن واحد. 	-
	01	 الأقوال و الأمثلة 	
411	01.5	- رغم الاختلاف القائم بينهما فهذا لا ينفي إمكانية الترابط والتكامل بينهما في خدمة	11
	01.3	المعرفة الإنسانية.	1 1
04	01	- انسجام الحل مع منطوق الأطروحة	حسل المشكلة
	01	صحة المعلومات] 3
	0.5	سلامة اللغة.	
20/20	20/20	<u> </u>	المجم

الإجابة النموذجية وسنم التنقيط ـ مادة: الفنسفة ـ شعبة: تقني رياضي+ ت اقتصاد ـ بكانوريا دورة: جوان 2013

العلامة		عناصر الإجابة	اأمحام
مجموع	مجزأة		المحاور
		لِثَانِي: يقول ديكارت:" إن حضارة كل أمّة تقاس بقدرة ناسها على التفلسف" - دافع عن هذه الأطروحة.	الموضوع ا
	01	 الفكرة الشائعة: الشك في قيمة الفلسفة 	
04	01	- نقيضها: غير أن هناك من يقول بضرورة الفلسفة، ومنهم ديكارت صاحب المقولة	الما الما
	01.5	 كيف يمكن الدفاع عن صحة الأطروحة الديكارتية ؟ 	المشكلة
	0.5	- سلامة اللغة.	••
	01	 * منطق الأطروحة: التفاسف عنوان التحضر 	
04	0.1	- المسلمة: التفاسف يساهم في التقدم الفكري والبحث وبناء إنسان متحضر	
	01	ومتفتح متسامح	
	01	- البرهنة: التقلسف أداة تطور الحضارات؛ خصائص التقكير الفلسفي	
	0.5+0.5	- توظيف الأمثلة والأقوال + سلامة اللغة.	
04	01.5	* الدفاع عن الأطروحة بحجج شخصية: التفلسف ساعد الإنسان على فهم واقعه الاجتماعي (السياسي، الاقتصادي، الثقافي)، كما أنّ هناك أفكار فلسفية أدت إلى نظريات علمية.	محاول َهُ حــــــــــــــــــــــــــــــــــــ
	01.5	 مذاهب فلسفية مؤسسة تؤكد قيمة الفلسفة وما تطرحه من أسئلة. 	4 3
	01	– الأمثلة والأقوال	-7
04	01	* نقد خصوم الأطروحة: - منطق الخصوم: عرض وجهة نظر النزعة الوضعية والنزعة العلمية المغالية التي ترى أن العلم له قيمة (الأسئلة العلمية).	
04	02	- نقد منطقهم: العلم وحده غير كاف؛ الإنسان بحاجة إلى فلسفة وهو يتفلسف بطبعه	
	0.5+0.5	 الأمثلة و الأقوال + سلامة اللغة. 	
04	02	- الأطروحة صحيحة، ينبغي الدفاع عانها وتبنيها.	1
	01	- انسجام الخاتمة مع منطق التحليل.	7
	0.5+0.5	 الأمثلة والأقوال + سلامة اللغة. 	الشكاة
20/20	20/20		المجمــوع

الإجابة النموذجية وسلم التنقيط _ مادة: الفلسفة _ شعبة: تقني رياضي+ ت اقتصاد _ بكالوريا جوان 2013

رمة ا	العلا	عناصر الإجابة	المحاور
مجموع	مجزأة		
		موع الثالث: النّص – أزفلد كولبي –	<u>الموح</u> ا
-	01	 اختلف الفلاسفة حول مصدر المعرفة. 	Pa.
	01	 ظهور عدة مذاهب متناقضة تفسر مصدر المعرفة. 	ال م طر ۲
04	01.5	 ضبط المشكلة: 	المشكلة
-		 ما هو مصدر المعرفة؟ هل مصدرها العقل أم التجربة؟ 	<u>کان:</u>
	0.5	 سلامة اللغة 	
		 موقف صاحب النص: يستعرض صاحب النص ثلاثة مذاهب فلسفية: 	
		أ) المذهب العقلي الذي يرجع المعرفة إلى العقل.	
	02	ب) المذهب التجريبي الذي يرى أن التجربة هي المنبع الوحيد لكل معارفنا.	
04		ج) المذهب النقدي وهو موقف الفيلسوف كانط الذي يحاول التوفيق بين المذهبين ويبدو	
_		أن صاحب النص يتبناه.	
-	01.5	- الاستئناس بعبارات النص.	
	0.5	- سلامة اللغة.	
		 الحجة: المذهب العقلي يؤكد أن العقل يحتوي على مبادئ قبلية - فطرية - بها ينظم 	
		العقل مادة المعرفة ويعطي معنى للمعطيات التجريبية التي تصل إليه عن طريق الحواس.	7
	02	-المذهب الحسي التجريبي يبرر موقفه من خلال دور الحواس في المعرفة (الانطباعات	محاولة حــــــــــــــــــــــــــــــــــــ
04		الحسية).	يا كاي
_		 المذهب النقدي يؤكد تعاون التجربة الحسية مع العقل في بناء المعرفة. 	4
<u> </u>	01	- الاستئناس بعبارات النص.	
	0.5	- التمثيل للحجة (ذكر أمثلة لها ارتباط منطقي بالحجة)	
	0.5	 سلامة اللغة. 	
		 نقد وتقييم: من الصعب الاستدلال على وجود معان قبلية سابقة على التجربة. 	
0.4	02	 لا يزال الخلاف موجودا حول مسألة وجود مبادئ فطرية في العقل. 	
04	02	 كما أن التجربة الحسية وحدها لا تكفي في بناء المعرفة. 	
		 بيدو أن المذهب النقدي منطقي في تفسيره للمعرفة. 	
	02	 الرأي الشخصي وتبريره: اختلاف المذاهب الفلسفية أمر مشروع 	
	01.5	- مصدر المعرفة هو العقل والتجربة معا، دون استبعاد عوامل أخرى تساهم في المعرفة.	1
04	01	 مدى تناسق الحل مع منطوق المشكلة. 	う
V 1	01	- مدى وضوح حل المشكلة.	حسل المشكلة
	0.5	- سلامة اللغة.	14
20/20	20/20	<u> </u>	المجم

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2013

المدة: 04 سا و30 د

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب:رياضيات وتقني رياضي

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03 نقاط)

 $Cr_2O_7^{2-}(aq)$ مع شوارد ثنائى الكرومات $H_2C_2O_4$ (aq) مع شوارد ثنائى الكرومات

 $c_1=12\ mmol/L$: من محلول حمض الأكساليك، تركيزه المولي: $V_1=50mL$ عجما $t=0\ min$ مع حجم: $V_2=50\ mL$ من محلول ثنائي كرومات البوتاسيوم ($V_1=50mL$) تركيزه المولي: مع حجم

وبوجود وفرة من حمض الكبريت المركز. ننمذج التحول الحاصل بالمعادلة التالية: $c_2 = 16 \; mmol/L$

$$3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) = 6CO_2(g) + 2Cr^{3+}(aq) + 7H_2O(l)$$

1- أ- حدّد الثنائيتين Ox / Red المشاركتين في التفاعل.

ب- أنشئ جدولا لتقدم التفاعل ، ثمّ حدّد المتفاعل المُحِد.

2- البيان يمثّل تغيرات التركيز المولي لحمض الأكساليك بدلالة الزمن (الشكل-1).

أ- عرّف السرعة الحجمية للتفاعل.

 $v = -\frac{1}{3} \times \frac{d \left[H_2 C_2 O_4 \right]}{dt}$: قال عبارة السرعة الحجمية للتفاعل في أي لحظة تكتب بالعلاقة :

 $t = 12 \, min$: المحظة السرعة الحجمية للتفاعل في اللحظة

3 - عرّف زمن نصف التفاعل، ثمّ احسبه.

التمرين الثاني: (03,5 نقطة)

. $E{=}12V$:مكثقة سعتها C شحنت كليا تحت توتر كهربائي ثابتC

 $R{=}1K\Omega$:حيث C حيث (الشكل C)، معرفة سعتها للدارة الكهربائية

. t=0~ms : في اللحظة K في القاطعة -1

أ- بتطبيق قانون جمع التوترات، جِدْ المعادلة التفاضلية

للتوتر الكهربائي $u_{C}(t)$ بين طرفي المكثفة.

ب- حَل المعادلة التفاضلية السابقة يُعطى من الشكل:

. میث: A و α ثابتان یطلب کتابه عبارتیهما $u_{c}(t)=Ae^{at}$

-2 اكتب العبارة اللحظية $E_c(t)$ للطاقة المخزنة في المكثفة.

 $E_c(t)$ يمثّل تطوّر ($E_c(t)$ ، الطاقة المخزية في المكثفة بدلالة الزمن.

أ- استنتج قيمة E_{C0} الطاقة المخزنة العظمى في المكثفة.

t = 0 ms: في اللحظة أن المماس للمنحنى في اللحظة أن المماس بين أن المماس المنحنى

 $t = \frac{\tau}{2}$ يقطع محور الأزمنة في اللحظة:

 $\cdot C$ احسب au ثابت الزمن، ثمّ استنتج سعة المكثفة

-4 أثبت أن زمن نتاقص الطاقة إلى النصف هو: $t_{1/2} = \frac{\tau}{2} \ln 2$ ، ثمّ احسب قيمته.

التمرين الثالث: (03 نقاط)

من حمض m = 0.72g: وذلك بانحلال كتلة: $CH_3 - COOH$ من حمض الإيثانويك المحلولة m = 0.72g: من حمض الإيثانويك النقى في m = 0.72g من الماء المقطر. في درجة الحرارة m = 0.72g: كانت قيمة الـ m = 0.72g من الماء المقطر.

أ- احسب c_1 التركيز المولى للمحلول (S_1).

ب- اكتب المعادلة المنمذِجة لتفاعل حمض الإيثانويك مع الماء.

ج - أنشئ جدولا لتقدم التفاعل.

 (S_I) عند التقدم X_{eq} عند التوازن بدلالة: PH وV، حيث: V حجم المحلول (X_{eq}

.4,76 هي CH_3 – COOH / CH_3 – COO^- هي pK_a هي أن قيمة الـ pK_a

. n_0 مع حجم النشادر له نفس كمية المادة N_2 مع حجم النشادر له نفس كمية المادة N_1 من المحلول N_2 من المحلول (N_2 من المحلول (

 $.NH_3$ و $.NH_3$ و $.NH_3$ و $.NH_3$ و $.NH_3$

K ب- احسب ثابت التوازن

 $au_{eq} = rac{\sqrt{K}}{1+\sqrt{K}}$: بیّن أن النسبة النهائیة au_{eq} لتقدم التفاعل یمکن کتابتها علی الشکل برای النسبة النهائیة جو بیّن أن النسبة النهائیة برای التقدم التفاعل برای التفاعل

 \cdot د - احسب au_{eq} ماذا تستنج

M(O) = 16g/mol ، M(C) = 12g/mol ، M(H) = 1g/mol ، $pka(NH_4^+/NH_3) = 9, 2$ تعطی:

التمرين الرابع: (03,5 نقطة)

يعتبر القفز على الخنادق بواسطة الدراجات النارية أحد التحديات التي تواجه المجازفين. إنّ التغلب على هذه التحديات يتطلب التعرف على بعض الشروط التي يجب توفرها لتحقيق هذا التحدي.

يتكون مسلك المجازفة من قطعة مستقيم أفقية AB، وأخرى BC تميل عن الأفق بزاوية: $\alpha=10^\circ$ ، وخندق عرضه m=170 الشكل $\alpha=1$. ننمذج الجملة (الدراج + الدراجة) بجسم صلب ($\alpha=170$ مركز عطالته $\alpha=170$ وكتلته: $\alpha=170$ الشكل $\alpha=170$ تعطى: $\alpha=170$

B تمر من النقطة A في اللحظة: t=0 s بسرعة: $v_A=10$, وفي اللحظة: $t_1=5$ تمر من النقطة -1 بالسرعة $V_A=10$, الشكل -5) يمثّل تغيرات سرعة مركز عطالة الجملة بدلالة الزمن.

اعتمادا على البيان: أ- حدّد طبيعة الحركة ، ثمّ استنتج تسارع مركز عطالة الجملة (S). - احسب المسافة المقطوعة AB.

وموازيتان وموازيتان . f = 500N القوتان ثابتتان وموازيتان وقوة احتكاك شدتها: BC القوتان ثابتتان وموازيتان للمسار BC.

بتطبيق القانون الثاني لنيوتن، جِدْ شدة القوة \overline{F} حتى تبقى للجملة (S) نفس قيمة التسارع في الجزء AB.

.P النقطة C بسرعة: $V_c = 25 m/s$ بسرعة: $V_c = 25 m/s$ بسرعة: C النقطة C

أ- باعتبار لحظة المغادرة مبدأ للأزمنة، ادرس حركة مركز عطالة الجملة (S) في المعلم (Cx,Cy) ثمّ جِدْ معادلة مسارها.

 $BC = 56.3 \, m$ و $d = 40 \, m$ ، و برر إجابتك، علما أن

التمرين الخامس: (03,5 نقطة)

نعتبر قمرا اصطناعيا (S) كتلته m_s يدور حول الأرض في جهة دورانها بسرعة ثابتة (الشكل-6).

-1 مثل القوى الخارجية المؤثرة على القمر الاصطناعي (S).

-2 ما هو المرجع المناسب لدراسة حركة القمر الاصطناعي (S)؟ عرّفه.

(s) الأرض

-3 بتطبيق القانون الثاني لنيوتن، جِدْ العبارة الحرفية لسرعة القمر الاصطناعي بدلالة: ثابت الجذب العام -3 ، كتلة الأرض $-M_T$ ، نصف قطر الأرض -1 المناه القم الاصطناع بدلالة القم الاصطناع بدلالة القم الاصطناع بدلالة القم الاصطناع بدلاله بالمناه بدلاله بالمناه بالمن

وارتفاع مركز عطالة القمر الاصطناعي عن سطح الأرض h، ثمّ احسب قيمتها.

 M_T ، G، M_T ، G، M_T ، G، M_T ، M_T ، M_T ، M_T ، ثمّ احسب قيمته. M_T هل يمكن اعتبار هذا القمر جيو مستقر ؟ علّل.

6- ذكر بالقانون الثالث لكبلر، ثمّ بيّن أن النسبة: $k: \frac{T^2}{(R_T + h)^3} = k$ محيث: $k: \frac{T^2}{(R_T + h)^3}$ الشكل -5

 $G=6.67 imes10^{11}$ (SI), $M_T=6.0 imes10^{24}$ kg , $R_T=6380$ km , h=35800 km , $\pi^2=10$

التمرين التجريبي: (03,5 نقطة)

مع اكتشاف النشاط الإشعاعي الاصطناعي، أصبح من الممكن الحصول على أنوية مشعة اصطناعيا، ومن بينها نواة الصوديوم $^{23}_{11}Na$ نحصل على الصوديوم $^{24}_{11}Na$ بقذف النظير $^{23}_{11}Na$ الطبيعي بنيترون.

1- أ- ما المقصود بمايلي:

– نواة مشعة.

- النظائر .

 $^{24}_{11}Na$ المعادلة النووية للحصول على النواة

eta- إنّ نواة الصوديوم $eta^2 Na$ المشعة تصدر جسيمات -2

(الشكل-7) يمثّل تغيرات كمية مادة الصوديوم 24 بدلالة الزمن.

اعتمادا على البيان حدد:

أ- n_0 كمية مادة الصوديوم 24 التي تمّ حقنها للمريض.

ب- عرّف زمن نصف العمر $t_{1/2}$ ، ثمّ حدّد قيمته.

 $t=0\,h$: إنّ دم المريض لايحتوي على الصوديوم 24 قبل اللحظة -4

. $n(t)=n_0e^{-\lambda t}$: تكتب بالعلاقة: t في لحظة زمنية t منية الصوديوم t في لحظة أ- أثبت أنّ

 $n_1 = 7.6 \times 10^{-6} \ mol$ هي: $t_1 = 6h$ هي: المتبقية في دم المريض في اللحظة: $t_1 = 6h$ هي: $t_1 = 6h$ المتبقية في دم المريض حجمها: $V_2 = 10 \ mL$ فنجد أنها تحتوي على كمية مادة الصوديوم $t_1 = 6h$ فنجد أنها تحتوي على كمية مادة $t_2 = 6h$ الصوديوم $t_1 = 6h$ فنجد أنها تحتوي على الصوديوم $t_2 = 1.5 \times 10^{-8} \ mol$ الصوديوم $t_1 = 1.5 \times 10^{-8} \ mol$ الصوديوم $t_2 = 1.5 \times 10^{-8} \ mol$ الصوديوم $t_1 = 1.5 \times 10^{-8} \ mol$

-جدْ V حجم دم المريض، علما أن الصوديوم 24 موزع فيه بانتظام.

الموضوع الثاني

التمرين الأول: (03,5 نقاط)

انطلق برنامج البحث International Thermonuclear Experimental Reactor) ITER بفرنسا لدراسة الاندماج النووي. لنظيري الهيدروجين H_{1}^{3} وذلك من أجل التأكد من الإمكانية العلمية لإنتاج الطاقة عبر الاندماج النووي.

-1ا كتب معادلة الاندماج النووي بين الديوتريوم H_1^2 والتريتيوم H_1^3 ، علما أن التفاعل ينتج نواة H_2^2 ونيترونا.

ب- يتعلق زمن نصف العمر ب:

- عدد الأنوية الابتدائية N_0 للنظير المشع.
 - درجة حرارة العينة المشعة.
 - نوع النظير المشع.

اختر الإجابة الصحيحة من بين الإجابات السابقة.

2- أ- عرّف طاقة الربط للنواة $E_{\epsilon}({}_{Z}^{A}X)$ ، ثمّ اكتب عبارتها.

ب- احسب طاقة الربط للنواة وطاقة الربط لكل نوية:

. المُقرر استقرارا. $MeV_{z} \overset{A}{\times} X$, $^{3}_{1}H$, $^{2}_{1}H$

أ- احسب مقدار الطاقة المحررة عن تفاعل الاندماج الحادث.

 3H من 2H من 2H من 3H من الطاقة المحررة عن اندماج

يعطى:

 $m\binom{1}{0}n$ = 1,00866u; $m\binom{1}{1}p$ = 1,00728u; $m\binom{2}{1}H$ = 2,01355u; $m\binom{3}{1}H$ = 3,0155u; $m\binom{4}{2}He$ = 4,0015u; $1u = 931,5\frac{MeV}{C^2}$; $N_A = 6,02 \times 10^{23} \text{ mol}^{-1}$

التمرين الثاني: (03,5 نقاط)

 $R = 90\Omega$: حيث مميزات وشيعة ، نحقق دارة كهربائية (الشكل-2)، حيث

 $t=0\ ms$: نغلق القاطعة K في اللحظة

 $\frac{du_R}{dt} + \frac{R+r}{L}u_R = \frac{RE}{L}$: نين أن المعادلة التفاضلية للتوتر الكهربائي بين طرفي المقاومة تعطى بالشكل -1

- تحقق أن العبارة: $A: U_R(t) = \frac{B}{A}(1-e^{-At})$ ، هي حل للمعادلة التفاضلية السابقة، حيث: $A: U_R(t) = \frac{B}{A}(1-e^{-At})$

3- باستعمال راسم اهتزاز مهبطى ذي ذاكرة تحصلنا على (الشكل-3).

أ- أعد رسم الدارة، ثمّ وضِّح عليها كيفية ربط راسم الاهتزاز المهبطي لمشاهدة المنحنيين (1) و (2) (الشكل-3).

ب- أنسب لكل عنصر كهربائي من الدارة المنحنى الموافق له مع التعليل.

. Γ شيعة القوة المحركة الكهربائية للمولد E ومقاومة الو شيعة -

 $m \binom{1}{0}n = 1,00866u; m \binom{1}{1}p = 1$ $m \binom{4}{2}He = 4,0015u; 1u = 931,$

 ΔE_1

الشكل-1

E(MeV)

4- اعتمادا على نقطة تقاطع المنحنيين (1) و (2):

أ- بيّن أن ثابت الزمن t_c يكتب بالعبارة: $au = \frac{t_c}{\ln(\frac{2R}{R-r})}$ تمّ احسب قيمته، حيث: τ الزمن الموافق لتقاطع

$$u_b(t) = \frac{E}{R+r}(r+\mathrm{Re}^{-\frac{t}{r}})$$
: المنحنيين، علما أن التوتر بين طرفي الوشيعة يعطى بالعلاقة $U(V)$. L احسب ذاتية الوشيعة L

التمرين الثالث: (03,5 نقاط)

أثناء التدريبات التي تقوم بها فرق الصاعقة للمظليين بالمدرسة العليا للقوات الخاصنة ببسكرة، استعملت طائرة عمودية حلقت على ارتفاع ثابت من سطح الأرض لإنزال المظليين دون سرعة إبتدائية.

1 – ننمذج المظلي ومظلته بجملة (S) مركز عطالتها G وكتلتها: m=80%، نهمل تأثير دافعة أرخميدس. يقفز المظلي دون سرعة ابتدائية، فيقطع ارتفاعًا h خلال S قبل فتح مظلته؛ نعتبر حركته سقوطًا حرًا .

إنّ دراسة تطوّر V(t) ، سرعة المظلي بدلالة الزمن في معلم شاقولي (O, K)) موجه نحو الأسفل، مرتبط بمرجع سطحي أرضي، مكنت من الحصول على البيان (الشكل-4).

أ- حدّد طبيعة حركة الجملة (5) مع التعليل.

ب- احسب الارتفاع h .

g بتطبيق القانون الثاني لنيوتن، استتج تسارع حقل الجاذبية الأرضية g - -2 بعد قطع المظلي الارتفاع f يفتح مظلته، فتخضع الجملة لقوة احتكاك الهواء عبارتها: $f = kv^2$

أ-بتطبيق القانون الثاني لنيوتن، بين أن المعادلة التفاضلية لسرعة

$$\frac{dv}{dt} = g(1 - \frac{v^2}{\beta^2})$$
 :الجملة (S) الجملة

. m , g , k ثابت يطلب التعبير عنه بدلالة: β

 β بمثل المقدار β :

- t = 0 المحطة: (S) المحطة سرعة الجملة
- تسارع حركة مركز عطالة الجملة في النظام الدائم.
 - السرعة الحدية V_{lim} للجملة (3).

اختر الإجابة الصحيحة من بين الإجابات السابقة.

4 – يمثّل (الشكل–5) تغيرات سرعة مركز عطالة الجملة (S) بدءا من لحظة فتح المظلة التي نعتبرها مبدأ للأزمنة: t=0

أ- حدّد قيمة السرعة الحدية V_{lim} .

ب- بالاعتماد على التحليل البعدي حدد وحدة الثابت k، ثمّ احسب قيمته.

يعطى: g=9,8m/s².

التمرين الرابع: (03 نقاط)

 $.c_a$ كتب على قارورة ما يلى: محلول حمض الإيثانويك CH_3COOH ، تركيره المولى

.25°C في درجة الحرارة pH له فوجد pH له فوجد التركيز المولى لمحلول حمض الإيثانويك، قيس ال

أ- اكتب معادلة انحلال حمض الإيثانويك في الماء.

 $-[H_3O^+]_{eq}$ و c_a : كتب عبارة نسبة التقدم عند التوازن بدلالة

 $au_{eq} = 0.0158$: التركيز المولى لمحلول حمض الإيثانويك c_a علما أنَ

 $V_a=18\ mL$ من محلول حمض الإيثانويك بمحلول هيدروكسيد $V_a=18\ mL$ من محلول حمض الإيثانويك بمحلول هيدروكسيد الصوديوم، تركيزه المولي: $C_b=1.0\times 10^2\ mol/L$. استعمال تجهيز ExAO مكن من الحصول على (الشكل-6). أ- أنشئ جدولا لتقدم تفاعل المعايرة.

 C_a بـــ جِدْ إحداثيتي نقطة التكافؤ ($E(V_{bE}, pH_E)$ ، ثمّ احسب

 $V_b=9~mL$ المزيج هو $V_b=9~m$ عند إضافة حجم: المزيج هو $V_b=9~m$

. بدلالة pKa و pKa ، ثم احسبها بدلالة pKa عبّر عن النسبة: $[CH_3COOH]$

X عبر عن النسبة السابقة بدلالة تقدم التفاعل X ، ثمّ استنتج قيمة

ج- احسب النسبة النهائية للتقدم ت. ماذا تستتج ؟

 $pKa\left(CH_{3}COOH \mid CH_{3}COO^{-}\right) = 4.8$ يعظى:

التمرين الخامس (03,5 نقطة)

يدور قمر اصطناعي (S) حول الأرض بحركة دائرية منتظمة على ارتفاع h = 700 km من سطحها، حيث ينجز 14,55 دورة في اليوم الواحد، نفرض أن المرجع الأرضى المركزي مرجع غاليلي.

- مثل شعاع النسارع \vec{a} لحركة القمر الاصطناعي (S) (الشكل-1) .

-2 أعط دون برهان عبارة شعاع التسارع \vec{a} لحركة القمر الاصطناعي (S). بدلالة ν سرعة القمر الاصطناعي (S)، ونصف القطر ν لمسار حركة القمر حول الأرض، وشعاع الوحدة \vec{n} .

. حيث:
$$M_T$$
 کتلهٔ الأرض، $v=\sqrt{\frac{G\,M_T}{r}}$

(S) و القمر الاصطناعي T_S ، و T_S ، و القمر الاصطناعي T_S دول الأرض.

$$\frac{T_s}{r^3} = 9.85 \times 10^{-14} \, s^2 \cdot m^{-3} : \frac{1}{10^{-14}} \, s^2 \cdot m^{-3} = -5$$

استنتج M_T كتلة الأرض.

 $G = 6,67 \times 10^{-11} SI$ يعطى: ثابت التجاذب الكونى:

 $R_T = 6400 Km$ نصف قطر الأرض:

T=24h دور الأرض:

/C10 /(mol/L)

30°C 0,5 0 الشكل-8

التمرين التجريبي: (03 نقاط)

كتب على قارورة ماء جافيل المعلومات التالية:

- يحفظ في مكان بارد معزولا عن الأشعة الضوئية.
 - لا يمزج مع منتوجات أخرى.
 - بملامسته لمحلول حمضى ينتج غاز سام.

إنّ ماء جافيل منتوج شائع، يستعمل في التنظيف والتطهير. نحصل على ماء جافيل من تفاعل غاز ثنائي الكلور Cl2 مع $((Na^+(aq)+HO^-(aq))$ محلول هيدروكسيد الصوديوم ينمذج هذا التحول بالمعادلة (1):

t (semaines)

$$CI_2(g) + 2HO(aq) = CIO(aq) + CI(aq) + H_2O(1) - \cdots (1)$$

يتفكك ماء جافيل ببطء في الشروط العادية وفق المعادلة (2):

$$2CIO'(aq) = 2CI(aq) + O_2(g)$$
(2)

أما في وسط حمضي ينمذج التفاعل وفق المعادلة (3):

$$CIO'(aq) + CI(aq) + 2H_3O^+(aq) = CI_2(g) + 3H_2O(l) - (3)$$

1- أنجز جدول التقدم للتفاعل المنمذج وفق المعادلة (2).

2- اعتمادا على البيانين (الشكل-8)، المعبرين عن تغيرات تركيز شوارد (c10 (aq) في التفاعل المنمذج بالمعادلة (2) بدلالة الزمن.

أ- استنتج تركيز شوارد CIO(aq) في اللحظة: t=8 semaines من أجل درجتي الحرارة:

 $\theta_2 = 40^{\circ} C$, $\theta_1 = 30^{\circ} C$

$$v(t) = -\frac{1}{2} \times \frac{d\left[CIO^{-}\right]}{dt}$$
: السرعة الحجمية للتفاعل، وبيّن أن عبارتها تكتب بالشكل التالي:

 $heta_2=40\,^{\circ}C$ و $heta_1=30\,^{\circ}C$ ج- احسب قيمة السرعة الحجمية في اللحظة: t=0 من أجل درجتي الحرارة:

د- هل النتائج المتحصل عليها في السؤالين (2-1) و (2- ج) تبرر المعلومة " يحفظ في مكان بارد"؟ علّل.

3- عرّف زمن نصف التفاعل، ثمّ جِدْ قيمته انطلاقا من المنحني(2)، علما أنّ التفكك تام.

4- أعط رمز واسم الغاز السام المشار على القارورة.

مجموع	العلامة مجزأة	عناصر الإجابة على الموضوع الأول
		التمرين الأول (3نقاط):
	2x0,25	$Cr_2O_7^{2-}$ / Cr^{3+} , CO_2 / $H_2C_2O_4$: $\left({ m ox/red} ight)$ الثنائيتان $-1/1$
		ب- جدول التقدم:
		المعادلة $3H_2C_2O_{4(a\phi)} + Cr_2O_7^{2-}$ (a ϕ) $+8H^+$ (a ϕ) $=6CO_{2(g)} + 2Cr^{3+}$ (a ϕ) $+7H_2O_{(l)}$
	0.5	كمية المادة بالمول التقدم الحالة
	0,5	بوفرة $\mathbf{x} = 0$ الابتدائية $\mathbf{x} = 0$ الابتدائية $\mathbf{x} = 0$ الابتدائية
		الانتقالية x n ₀₁ -3x n ₀₂ -x الانتقالية 6x 2x
		النهائية
		$X_{\text{max}} = \frac{C_1 V_1}{3} = \frac{12 \times 10^{-3} \times 50 \times 10^{-3}}{3} = 2 \times 10^{-4} \text{mol}$: تحدید المتفاعل المحد:
	20.25	$X_{\text{max}} = C_2 V_2 = 16 \times 10^{-3} \times 50 \times 10^{-3} = 8 \times 10^{-4} \text{ mol}$
3.0	2×0,25	$x_{max}=2\times10^{-4}$ mol: ومنه المتفاعل المحد هو $H_2C_2O_4$ وبالتالي
		-2 أ- السرعة الحجمية:
		$v_{vol} = \frac{1}{V} \frac{dx}{dt}$. تعريف: هي سرعة التفاعل في وحدة الحجوم
	0,25	· ut
	0,25	$n_{H_2C_2O_4} = n_{01} - 3x$: نجول التقدم $v = -\frac{1}{3} \times \frac{d[H_2C_2O_4]}{dt}$: نبات أن
	0,25	o u
		$v_{Vol} = -\frac{1}{3} \times \frac{d[H_2C_2O_4]}{dt}$ ومنه $\frac{dX}{dt} = \frac{-V}{3} \times \frac{d[H_2C_2O_4]}{dt}$
	0,25	$v_{12\text{min}} = -\frac{1}{3} \times \frac{(0-3,1)\times 10^{-3}}{20.8-0} = 5,0\times 10^{-5}(mol/L.min)$: حساب قیمتها
	,	$V_{12\text{min}} = -\frac{1}{3} \times \frac{1}{20,8-0} = 3,0 \times 10^{-1} \text{ (Mol / L.11111)}$
	0,25	
		3- تعريف زمن نصف التفاعل: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي
		النهائي
	0,25	$CV = 3\frac{X_{\text{max}}}{2}$ 12×10 ⁻³ ×50×10 ⁻³ 2×2×10 ⁻⁴
		$\left[H_2C_2O_4\right]_{4/2} = \frac{C_1V_1}{V} - \frac{3\frac{A_{\max}}{2}}{V} = \frac{12\times10^{-3}\times50\times10^{-3}}{0.1} - \frac{3\times2\times10^{-4}}{0.2} = 3\times10^{-3}\text{mol/I}$
		$t_{1/2} = 5.6 \; \mathrm{min} :$ من البيان نجد
=		3112 3,3 — <u>— J</u> J — —

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

نمة	العلا	1 Eur
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	2×0,25	$u_R+u_c=0\Rightarrow RCrac{du_c}{dt}+u_c=0\Rightarrow rac{du_c}{dt}+rac{u_c}{RC}=0$ أ- إيجاد المعادلة التفاضلية: $u_R+u_c=0$
	20.25	ب- $\frac{du_c}{dt} = A\alpha e^{at}$: قلمعادلة التفاضلية $u_c(t) = Ae^{at}$ و بالتعويض في المعادلة التفاضلية $u_c(t) = Ae^{at}$ - $A\alpha e^{at} + \frac{A}{RC}e^{at} = 0 \Rightarrow Ae^{at}(\alpha + \frac{1}{RC}) = 0, Ae^{at} \neq 0 \Rightarrow \alpha + \frac{1}{RC} = O \Rightarrow \alpha = -\frac{1}{RC}$: نحد
	3×0,25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0,25	$E_c = \frac{1}{2}CE^2e^{-2\frac{t}{Rc}}$: عبارة الطاقة -2
	0,25	$E_0 = 140 \mu J$: الطاقة العظمى للمكثفة: من البيان نجد $-i-3$
3.5		: ب معادلة المماس $E_{C}(t) = at + b, a = \frac{dE_{c}}{dt}, t = 0 \Rightarrow \frac{dE_{C}}{dt} = \frac{-CE^{2}}{\tau}e^{-2\frac{t}{\tau}} \Rightarrow a = -\frac{CE^{2}}{\tau}$
	0,25×3	$E_{c}(0) = \frac{1}{2}CE^{2} \Rightarrow E_{c}(t) = -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} \Rightarrow -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} = 0$ $\Rightarrow -\frac{CE^{2}}{\tau}t = \frac{1}{2}CE^{2} \Rightarrow t = \frac{\tau}{2}$
	0,25	$\frac{\tau}{2} = 1 \Rightarrow \tau = 2ms : \tau \Rightarrow$
	0,25	$ au=RC\Rightarrow C=rac{ au}{R}=2 imes 10^{-6}F=2\mu F$: حساب سعة المكثفة
		4- زمن تناقص الطاقة إلى النصف:
	0,25	$E(t_{1/2}) = \frac{E_0}{2} \Rightarrow \frac{1}{2} C E^2 e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{42} C E^2 \Rightarrow e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{2} \Rightarrow -2\frac{t_{1/2}}{\tau} = -\ln 2 \Rightarrow t = \frac{\tau}{2} \ln 2$
	0,25	$ m t_{1/2} = ln2 = 0,693 ms:$ قیمته $ m t_{1/2} = ln2 = 0,693 ms$

العلامة		\$ \$ps * \$s \$r_ * s \$s = * -		
مجزأة مجموع		عناصر الإجابة على الموضوع الأول		
	0.05	التمرين الثالث (3 نقاط):		
	0,25	$C_1 = \frac{H}{V} = \frac{M}{MV} = 1,5 \times 10^{-2} \text{mol} / L : C_1 = -1$		
	0,25	$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{(aq)} + H_3O^+_{(aq)}$: جدول تقدم التفاعل $=$		
		جـ جبول بعدم المعادلة . $CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{(aq)} + H_3O^+_{(aq)}$		
		كميات المادة بالمول التقدم الحالة		
	2×0,25	ابتدائیة x=0 n ₀ n ₀ ابتدائیة x x x		
		X_{eq} N_{eq}		
3.0	0,25	$n_{H_3O^+} = X_{eq} = [H_3O^+]_{eq} \times V = 10^{-PH} \times V$		
	0,25	$PK_{a} = PH - \log \frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} = PH - \log \frac{X_{eq}}{n_{0} - X_{eq}} = 3,3 - \log \frac{4 \times 10^{-4}}{1,2 \times 10^{-2} - 4 \times 10^{-4}} = 4,76 - 2.5$		
	0,25	: $CH_3COOH_{(aq)} + NH_{3(aq)} = CH_3COO^{-}_{(aq)} + NH_{4}^{+}_{(aq)}$		
	0,25×2	: k ب-حساب ثابت التوازن : k بات التوازن : $K = \frac{\left[CH_3COO^{-}\right]_{eq} \times \left[NH_4^{+}\right]_{eq}}{\left[CH_3COOH\right]_{eq} \times \left[NH_3\right]_{eq}} \times \frac{\left[H_3O^{+}\right]}{\left[H_3O^{+}\right]} = \frac{K_{a1}}{K_{a2}} = \frac{10^{-pk_{a1}}}{10^{-pka_2}} = 10^{pka_2 - pka_1} = 2,75 \times 10^4$		
		$ au_{eq} = \frac{\sqrt{K}}{1 + \sqrt{K}}$: قبات العلاقة :		
	0,25	$K = \frac{\left[CH_3COO^{-}\right]_{eq} \times \left[NH_4^{+}\right]_{eq}}{\left[CH_2COOH\right]_{eq} \times \left[NH_2\right]} = \frac{X_{eq}^{2}}{\left(n_2 - X_{eq}\right)^2} \Rightarrow \sqrt{K} = \frac{X_{eq}}{n_2 - X} \Rightarrow X_{eq} = n_0\sqrt{K} - X_{eq}\sqrt{K}$		
	0,25	$X_{eq}(1+\sqrt{K}) = n_0 \sqrt{K} \Rightarrow \frac{X_{eq}}{n_0} = \frac{\sqrt{K}}{1+\sqrt{K}} \Rightarrow \tau_{eq} = \frac{\sqrt{K}}{1+\sqrt{K}}$		
	0,25	. حساب $ au_{eq}=rac{\sqrt{2,75 imes10^4}}{1+\sqrt{2,75 imes10^4}}=0,99=1$: $ au_{ m eq}$ ومنه التفاعل تام		

نمة	العلا	+ śn _ + + + + + + + + + + + + + + + + + +
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين الرابع: (03.5) نقطة) التمرين الرابع: $(-1-1)$ التمرين الرابع: $(-1-1)$ التمرين المسار مستقيم والسرعة متزايدة فالحركة مستقيمة متغيرة بانتظام.
	0,25	$v=at+v_0: $ ونظريا لدينا ، $v=eta t+b$ ، ونظريا لدينا ، $v=at+v_0$
l V	0,25	$a = \beta = \frac{\Delta v}{\Delta t} = 2 m / s^2$
	0,25	$AB = \frac{(20+10)}{2} \times 5 = 75m$: ب- حساب المسافة AB : تمثل مساحة شبه المنحرف \times
	الرسم 0,25	جساب شدة F : F حساب شدة P
		ندرس الجملة في معلم غاليلي مرتبط بسطح الأرض : ينطبيق القانون الثاني لنيوتن ، وبالإسقاط على محور الحركة : $\overrightarrow{F} + \overrightarrow{f} + \overrightarrow{P} + \overrightarrow{R}_n = m\overrightarrow{a}$
	0,25	$F - f - mg \sin \alpha = ma \Rightarrow F = m(a + g \sin \alpha) + f$
	0,25	$F = 170(2+10\times0,174) + 500 = 1135,8N$
	0,25	$m\overrightarrow{g}=m\overrightarrow{a}\Leftrightarrow \overrightarrow{a}=\overrightarrow{g}$: أ- معادلة المسار : بتطبيق القانون الثاني لنيوتن : $-/3$
3,5	0,25	$a_x = 0 m/s^2$ الحركة مستقيمة منتظمة $X = v_c \cos \alpha t$ (1) الحركة الحرك
	0,25	$a_y = -g$ $ y = -\frac{1}{2}gt^2 + v_c \sin \alpha t \dots (2) $: cy وفق -*
	0,25	: من (1) نجد $t = \frac{X}{v_c \cos \alpha}$ نجد عن (1) نجد
	0,25	$y = -\frac{g}{2v_c^2 \cos^2 \alpha} x^2 + \tan \alpha x$
		$y = -8,24 \times 10^{-3} x^2 + 0,176 x$
	0,25	ب- حساب المدى : عند النقطة p :
	,	$h = CM = BC \sin \alpha = 56,323 \times 0,174 = 9,8 m$ - 9,8 = -8,24 × 10 ⁻³ x_p^2 + 0,176 x_p
		$-8,24 \times 10^{-3} x_p^2 + 0,176 x_p + 9,8 = 0$
	0,25	$\Delta = 0,254 \Rightarrow \sqrt{\Delta} = 0,6 \Rightarrow x_{1P} = 47,1 m$ $x_{2P} = -25,73 m < 0$
		. ومنه $x_p = 47.1m \succ d$ ومنه $x_p = 47.1m \succ d$

نمة	العلا	+ 5H _ + H + T + 5H ++-
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين الخامس: (3,5 نقطة) -/1 تمثيل القوى : T
	0,25	2/- المرجع المناسب لدراسة حركة القمر الاصطناعي : هو المرجع المركزي الأرضى
	0,25	تعريفه : هومرجع مركزه مركز الأرض وله ثلاث محاور توازي محاور المرجع المركزي الشمسي .
	2x0,25	. عبارة السرعة : بتطبيق القانون الثاني لنيوتن و الإسقاط على المحور الناظمي . $\vec{F} = m\vec{a} \Leftrightarrow F = m_s a_n \Leftrightarrow G \frac{M_T \times M_s}{(R_T + h)^2} = M_s \times \frac{v^2}{(R_T + h)}$
	0,25	$v = \sqrt{\frac{GM_T}{R_T + h}}$
3,5	0,25	$v = \sqrt{\frac{6,67 \times 10^{-11} \times 6,0 \times 10^{24}}{(6380 + 35800) \times 10^3}} = 3080,24 \text{m/s}$
0,0	0,25	$T = \frac{2\pi (R_T + h)}{V} = 2\pi \sqrt{\frac{(R_T + h)^3}{GM_T}}$
	0,25	$T = 6,28\sqrt{\frac{(6380 + 35800)^3 \times 10^9}{6,67 \times 10^{-11} \times 6 \times 10^{24}}} = 85996,54s \approx 24h$:قيمة الدور
	2x0,25	ب- نعم يمكن اعتبار هذا القمر جيومستقر لأن جهة دورانه بجهة دوران الأرض ودوره يساوى دور الأرض حول نفسها .
	0,25	روي وروي الثالث : النسبة بين مربع دور القمر ومكعب البعد بين مركزي القمر والأرض يساوي مقدار ثابت .
	2x0,25	$T^2 = \frac{4\pi^2 (R_T + h)^3}{GM_T} \Rightarrow \frac{T^2}{(R_T + h)^3} = \frac{4\pi^2}{GM_T} = k \approx 10^{-13}$: الإثبات :

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

العلامة		
1		عناصر الإجابة على الموضوع الأول
	0,25	التمرين التجريبي: (03.5 نقطة) -1 أ- النواة المشعة : هي نواة غير مستقرة تتفكك تلقائيا لتصدر جسيمات ($\beta \cdot \alpha$) مصحوبة في الغالب باشعاع γ .
	0,25	- النظائر : هي أنوية لنفس العنصر الكيميائي تتفق في العدد الذري Z وتختلف في العدد الكتلي A (الاختلافها في عدد النيترونات) .
	0,25	$^{23}_{11}~Na + ^1_0~n ightarrow ^{24}_{11}~Na : كتابة المعادلة : Na ightarrow ^{24}_{11}~Na ightarrow ^{0}_{-1}e + ^{4}_{Z}X : 24 معادلة تفكك نواة الصوديوم -/2$
	0,25 2x0,25	بتطبيق قانونا صودي نجد : $A=24$ ، $Z=12$ والنواة البنت هي: Mg
0.5	0,25	$n_0=10^{-5}$ mol : من البيان نجد $t=0$ عند $t=0$ عند $t=0$ عند $n_0=10^{-5}$
3, 5	0,25 0,25	$-$ بن نصف العمر : هو الزمن الملازم لتفكك نصف عدد الأنوية الأبتدائية . $t_{1/2} = 15h$. $-$ قيمته : بيانيا نجد : $t_{1/2} = 15h$.
	2×0,25	$N(t)=N_0e^{-\lambda t}=n(t)\times N_A=n_0N_Ae^{-\lambda t}\Rightarrow n(t)=n_0e^{-\lambda t}$ اثبات العلاقة: $n_0e^{-\lambda t}=n_0e^{-\lambda t}$
	0,25	$n_1(6h) = 10^{-5}e^{\frac{-00935}{15}} = 7.6 \times 10^{-6}mo$, $:n_1(6h)$ $:n_1(6h)$
	2×0,25	$n_2 o V_2 = 10 mL$ ومنه $n_1 o V$: ومنه $V = \frac{n_1 imes V_2}{n_2} = 5L$

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

دمة	العلا	158 _ · 8 9_ 7 4 bt 4
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
		التمرين الأول (3.5 نقطة):
		$_{1}^{3}H+_{1}^{2}H\longrightarrow _{Z}^{A}X+_{0}^{1}n$
	0.25	${\sf A} = (2+3)-1=4$ حسب قانونا صودي: ${\sf A} = (2+3)$
		4_2He النواة البنت $Z=(1+1)-0=2$
	0.25	$_{1}^{3}H+_{1}^{2}H \longrightarrow _{2}^{4}He+_{0}^{1}n$
	0.25	ب- يتعلق زمن نصف العمر بنوع النظير المشع.
	0.25	2-أ- طاقة ربط النواة هي الطاقة الواجب إعطاؤها لنواة ساكنة لتفكيكها إلى نوياتها الساكنة.
	0.25	$\mathrm{E}_{\mathrm{I}}({}_{Z}^{A}X$) $=$ [Z $\mathrm{m_{p}}$ + (A-Z) $\mathrm{m_{n}}$ - $\mathrm{m}({}_{Z}^{A}X)$] C^{2} عبارتها:
		$\mathrm{E_{l}}\left(_{1}^{2}H ight)=\left(1,00728+1,00866-2,0155 ight) imes931,5=2,226~\mathrm{MeV}$. فيمتها:
3.5	0.25×3	$E_1\binom{3}{1}H$ = $(1,00728 + 2 \times 1,00866 - 3,0155) \times 931,5 = 8,477 \text{ MeV}$
5.5		$E_1({}_{2}^{4}He) = (2\times1,00728 + 2\times1,00866 - 4,0015)\times931,5 = 28,29 \text{ MeV}$
		قيمة طاقة الربط لكل نوية:
	0.25×2	$\frac{E_{I}\binom{4}{2}He}{4} = \frac{28,29}{4} = 7,072MeV / nuc \qquad \qquad \frac{E_{I}\binom{2}{1}H}{2} = \frac{2,226}{2} = 1,113MeV / nuc$
	0.25	$\frac{E_1({}^{3}H)}{3} = \frac{8,477}{3} = 2,826 MeV / nuc$
	0.25	$\cdot {}_{2}^{4}He$ النواة الأكثر استقرار هي ${}_{2}^{4}He$
		$\Delta E = \Delta E_1 - \Delta E_2 = \left(E_1 \binom{3}{1} H \right) + E_1 \binom{2}{1} H \right) - E_1 \binom{4}{2} H e$ الطاقة المحررة: -3
	0.25	$E_{Iib} = \Delta E = (2,226+8,4777) - 28,29 = -17,59 MeV$
		الإشارة السالبة تعني أن الجملة تقدم طاقة للوسط الخارجي.
		$N(_1^2H) + N(_1^3H) = (\frac{1}{2} + \frac{1.5}{3}) \times 6.02 \times 10^{23} = 6.02 \times 10^{23} \text{ (noy)} \neg \varphi$
	0.25	$E_{lib} = N\Delta E = 6.02 \times 10^{23} \times 17.59 = 105.89 \times 10^{23} \text{ MeV}$

امة ا	العلا	MS41 _ * 41 + * 4 > 61
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
		التمرين الثاني (3.5 نقطة):
	2×0.25	$\frac{di}{dt} = \frac{1}{R} \frac{du_R}{dt}$ و $i = \frac{u_R}{R}$ لكن $u_R + ri + L \frac{di}{dt} = E$ المعادلة التفاضلية $u_R + ri + L \frac{di}{dt} = E$
	0.25	$\frac{du_R}{dt} + (\frac{r+R}{L})u_R = \frac{RE}{L}$ و منه:
	0.25	على: لدينا $u_R(t) = \frac{B}{A}(1 - e^{-At})$ ومنه $u_R(t) = \frac{B}{A}(1 - e^{-At})$ بالتعويض نجد -2
	2×0.25	$Be^{-At}\left(1 - \frac{r+R}{AL}\right) + \frac{B}{A}\left(\frac{r+R}{L}\right) - \frac{RE}{L} = 0 \Rightarrow A = \frac{r+R}{L} , B = \frac{ER}{L}$
	الرسىم 0.25	Y_2 $-1-3$
	0.25	Y_1
	0.23	$\mathbf{u}_{R}=0$ فإن $\mathbf{u}_{R}=0$ يمثل \mathbf{u}_{R} لأن لما: $\mathbf{u}_{R}=0$ فإن
3.5	0.25	$\mathbf{u_b}=\mathbf{E}$ فإن المنحني (2) يمثل $\mathbf{u_b}$ لأن لما: $\mathbf{u_b}=\mathbf{t}$
	0.25	$E = 10 \ V: (2)$ من البيان $E = 10 \ V: (2)$
	0.25	$u_b(t \to \infty) = \frac{rE}{R+r} = 1V \Rightarrow r = \frac{R}{E-1} = 10\Omega : (2)$ من البيان
		$\mathbf{u_b} = \mathbf{u_R}$: عند النقطة $\tau = \frac{t_C}{\ln(\frac{2R}{R-I})}$ عند النقطة $-1-4$
	0.25	$ au = \frac{t_C}{\ln(\frac{2R}{R-r})}$: ومنه $\frac{E}{R+r}(r + \operatorname{Re}^{-\frac{t}{\tau}}) = \frac{ER}{R+r}(1 - e^{-\frac{t}{\tau}})$
	0.25	$ au=10~\mathrm{ms}$
	0.25	$ au = \frac{L}{R+r} \Rightarrow L = au(R+r) = 1.0H$: ناتية الو شيعة

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء /شعبة (رياضيات + تقني رياضي)

ية ا	العلاه	421 - • • • • • • •
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
		التمرين الثالث: (03.5 نقطة)
	0,25	1- أ- طبيعة الحركة: بما أن المسار مستقيم والسرعة متزايد فالحركة م. م بانتظام.
	0.25	$h = \frac{8 \times 80}{2} = 320 m$ ب- الارتفاع: من البيان:
	0.25	g=a . و منه بالإسقاط على المحول Oz نجد $g=m$ و منه بالإسقاط على المحول $g=m$
	2×0.25 0.25 الرسم	z ومعادلة البيان (الشكل $v=\beta$ ($v=\beta$ ونظريا $v=\beta$ ونظريا $v=\beta$ ومنه $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا $v=\beta$ ونظريا $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا والمعادلة البيان (الشكل $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ومعادلة البيان (الشكل $v=\beta$ ونظريا والمعادلة البيان (الشكل $v=\beta$ ومعادلة البيان (المعادلة المعادلة المعادلة المعادلة المعادلة المعادلة المعادلة المعادلة ا
	0.25	P − 1 − 2 - 1 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 −
3,5	2×0.25	z dv نجد dv على dv نجد dv dt e dv e e dv e e dv e e dv e e dv e e dv e e e dv e e dv e
0,0	0.25	$\frac{dv}{dt} = g(1 - \frac{v^2}{\beta^2})$ وهي من الشكل: $\frac{dv}{dt} = g(1 - \frac{k}{mg}v^2)$
		$\beta = \sqrt{m\frac{g}{k}} : \frac{1}{2}$
	0,25	$v_{_{ m lim}}=\sqrt{mrac{g}{k}}=eta$ لأن $v_{ m lim}$ لأن $v_{ m lim}$ المقدار eta
	0,25	$ m v_{lim}=40~m/s$. قيمة السرعة الحدية: $ m v_{lim}=40~m/s$
	0,25	$[k] = \frac{[M][L][T]^{-2}[T]^2}{[L]^2} = [M][L]^{-1}$ ومن $k = \frac{mg}{v_{\text{lim}}}$:k ب. وحدة
		ومنه وحدة k هي: kg/m .
	0,25	$k = \frac{80 \times 9.8}{40^2} \approx 0.5 kg / m$: k قيمة

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء /شعبة (رياضيات + تقني رياضي)

مة	العلا	عناصر الإجابة على الموضوع الثاني					
مجموع	مجزأة		ي	الموصوع الناد	صر الإجابة علم		
						: (3نقاط)	التمرين الرابع
	0,25	$CH_{3}COOH_{(aq)} + H_{2}0_{(l)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$: أ- معادلة الانحلال				1. أ– معادل	
	0,25	$ au_{eq} = rac{\left[H_3 O^+ ight]_{eq}}{C}$ ب				$\frac{O^+\Big _{eq}}{C}$ ب	
	0,25		$C_a = \frac{\left[H_3O^+\right]_{eq}}{\tau_{eq}} = \frac{10^{-3.8}}{0.0158} = 10^{-2} mol / L : C_a$ جستناج				ج استنتاج a
		ادلة	المع	CH₂COOH	$_{(aq)} + HO^{-}{}_{(aq)}$	·	2. أ- جدول تقد (ao) +H ₂ O(p)
		حالة الجملة	النقدم	, ,		 كميات الما	Z (1)
	0.75	حالة إبتدائية	$\mathbf{x}=0$	n ₀₁	n ₀₂	0	
		حالة إنتقالية حالة نهائية	X	n ₀₁ -x	n ₀₂ -x	X	ا بوفرة
	0,25	مياها مالح	XE	$\frac{1}{E(V_r=18mL)}$	n_{02} - x_E • PH _E = 8.4)	XE : نقطة التكافة	 ب- إحداثياتي
	0,25			c(ve rome			ر برساب 1:C _a
	0,25		<u>[</u> ($\frac{CH_3COO^{-}]}{CH_3COOH]} = 1$	$10^{PH-PK_a} = 10^0$	عن النسبة: 1=	3- أ- التعبير د
	0,25				قدم X:	النسبة بدلالة الت	ب- التعبير عن
3,0				$\frac{[CH_{3}CC]}{[CH_{3}CC]}$	$\frac{OO^{-}]}{OOH]} = \frac{X}{n_{\text{al}} - X}$	= 1	
	0,25			2	$=\frac{c_a \times v_a}{2} = \frac{10^-}{2}$	2	
	0,25	د- حساب نسبة التقدم النهائي : $1=\frac{8\times10^{-5}}{9\times10^{-5}}=1$ ومنه تفاعل المعايرة تام .					

امة	اثعلا	eliction to the first later
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
	0,25	التمرين الخامس: (3.5 نقطة)
		a تمثیل شعا التسارع a الأرض حركة دائریة منتظمة فإن تسارعه تسارع ناظمی بما أن حركة القمر a
	2×0,25	عبارة شعاع التسارع $\stackrel{\frown}{a}$ لحركة القمر الإصطناعي (S) \rightarrow $V^2 \rightarrow$
	الرسم	$\vec{a} = \vec{a}_n = \frac{v^2}{r} \cdot \vec{n}$
	0,25	-3
		نطبق القانون الثاني لنيوتن في المرجع الجيومركزي الذي نعتبره الأرض عاليايا
	2×0,25	$\sum \overrightarrow{F}_{out} = \overrightarrow{F} = \overrightarrow{m} \cdot \overrightarrow{a}$
	0,25	$\overrightarrow{F}=G.rac{M_T.m_S}{r^2}.\stackrel{ op}{n}:$ من قانون الجذب العام لدينا
	0,25	$\overrightarrow{F}=G.rac{M_T.m_S}{r^2}.\overset{ ightarrow}{n}=m_Srac{v^2}{r}.\overset{ ightarrow}{n}$ من العلاقتين نجد:
3,5		$\Leftarrow v = \sqrt{\frac{G.M_T}{r}}$ $v^2 = G.\frac{M_T}{r}$: و منه
	0,25	العلاقة بين T ، و r : خلال دورة واحدة حول الأرض القمر S يقطع مسافة تساوي -4
		v بالسرعة الثابتة v بالسرعة الثابتة $ au$
	0,25	$2\pi.r = v.T$ ومنه: $T.2$
	0,25	$\frac{T^2}{r^3} = 9.85 \times 10^{-14} s^2.m^{-3}$: إثبات أن $= 5$
	2×0,25	$T=rac{24}{14,55}$ = $1,65h=5938,14s$: نحسب دور هذا أنقمر الإصطناعي
		$r = R_T + h = 7100Km = 71 \times 10^5 m$
		$\frac{T^2}{r^3} = \frac{(5938,14)^2}{(71 \times 10^5)^3} = 9,85 \times 10^{-14} s^2.m^{-3}$ و منه:
		M_T إستنتاج كتلة الأرض M_T :
	0,25	$rac{4.\pi^2}{G.M_T} = 9.85 imes 10^{-14}$ و منه: $v = rac{2\pi.r}{T} \ v = \sqrt{rac{G.M_T}{r}} \Leftarrow rac{T^2}{r^3} = rac{4.\pi^2}{G.M_T}$
		$M_T=6 imes 10^{24} Kg$: نجد كتلة الأرض

نمة	العلا		urit c	and to I do	VI d io	
مجموع	مجزأة		عناصر الإجابة على الموضوع الثاني			
				<u>(7</u>	يبي (3,0 نقاه	
						1/- جدول تقدم التق
		عادلة		2C1O-(aq)	= 2C1 _(aq) نميات المادة بالمول	$+ O_{2(g)}$
	0,25	حالة الجملة	التقدم		1	
	0,20	حالة ابتدائية	x=0 x	n_0 n_0 -2x	$\frac{0}{2x}$	0 x
		حالة نهائية	X X _{max}	n_0 -2x n	$2x_{\text{max}}$	X X _{max}
		, 6]	Amax		$\begin{bmatrix} CIO^- \end{bmatrix}_{t=8 \text{ sam}}$	
	0.05		Га:о Т	· · · · · · · · · · · · · · · · · · ·	=======================================	·
	0,25		$[CIO^-]_t$	$_{=8sem}$ =1,85mo	$1/1: \theta_1 = 30^{\circ}C: $	من المنحنى (1
	0,25		$\begin{bmatrix} CIO^- \end{bmatrix}_{t=8se}$	=1,25mol/1	$:\theta_{2} = 40^{\circ}\text{C}:$ (من المنحنى (2
	0,25		ي وحدة الحجوم .	ي سرعة التفاعل في	ىرعة الحجمية : ه	ب- تعريف الس
		: 1			$-\frac{1}{2} \times \frac{d \left[CIO^{-}\right]}{dt} \ddot{s}$	
	0,25				$X = \frac{n_0 - n_{CIO^-}}{2} \Rightarrow \frac{1}{2} d \left[0 \right]$	at Dat
	0,25		(n 2 cn	$\overrightarrow{=} \Rightarrow v_{vol} = -\frac{1}{2} \frac{d \left[0 \right]}{2}$ $= 0 \text{sem}$ $= 0 \text{sem}$	a
	0,25		2 (20-0)	$=6,875 \times 10^{-2} mc$	$ol.I^{-1}.sem^{-1}$: (1)	- من المنحنى
3,0	0,25	V _{2(40°C)}			$nol J^{-1}sem^{-1} : (2$	
	0,25		· ·	•	ائج تبرر ماکتب علم ة عامل حركى تزيد	1
					$\left[C10^{-}\right]_{(40)}$	
		V	$(vo1, 30 \circ C, t = 0)$	$_{sem}$) \prec $_{(vol}$	$,40^{\circ}C, t=0 sem$)	
	0,25	نصف تقدمه	بلوغ تقدم التفاعل	هو الزمن اللازم ل	ىن نصف التفاعل:	3/- تعريف زه النهائي .
		·	•	$- \int_0^\infty -\frac{X_f}{V} = \left[CIO^- \right]$	(2)	– من المنحنى
	0,25 0,25	$\left[CIO^{-}\right]_{t_{1/2}} = \left[C\right]$	CIO^{-} $\left[\frac{CIO^{-}}{2}\right]$	$\frac{\left _{0}\right }{2} = \frac{\left[CIO^{-}\right]_{0}}{2} = 1,$	375 <i>mol 1</i> t _{1/2} =7,2sem :	و من الدائر و
	0,20			کلور Cl ₂	. ۲,2sem ق ق هو غاز ثنائي الا	

الجمهورية الجزائرية الديمقراطية الشعبية

الليوان الوطني للامتحانات والمسابقات

النيوان الوطني نارهنجانات والمسابقات

دورة: جوان 2013

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

المدة: 02 سا و30د

اختبار في مادة: العلوم الإسلامية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

الجزء الأول: (14 نقطة)

قال الله تعالى:

وَمَا تَكُونُ فِي شَأْنِ وَمَا تَتُلُواْ مِنْ هُ مِن قُرْءَ انِ وَلَا تَعَلَّمَلُونَ مِنْ عَلِ اللّا كُنّا عَلَيْكُرُ شُهُودًا إِذْ نُفِيضُونَ فِيهِ وَمَا يَعَزُبُ عَن رّبِّكَ مِن مِّنْقَالِ ذَرّة فِي إَلَارْضِ وَلَا فِي إِلسَّمَآءٌ وَلاَ أَصْغَرَ مِن ذَالِكَ وَلاَ أَكْبَرَ إِلَّا فِي كِنْكِ مُّبِينٍ ۞ ذَرّة فِي إِلَارْضِ وَلَا فِي إِلسَّمَآءٌ وَلاَ أَصْغَرَ مِن ذَالِكَ وَلاَ أَكْبَرَ إِلَّا فِي كِنْكِ مُّبِينٍ

[سورة يونس /61]

المطلوب:

1 - للآية علاقة بموضوع العقيدة الإسلامية. فما هو مفهوم العقيدة الإسلامية?

2- بيّن أهمية العقيدة الإسلامية.

3- أشارت الآية الكريمة إلى وسيلة من وسائل تثبيت العقيدة الإسلامية. اذكرها.

4- اشرح هذه الوسيلة مبيّنًا أثرها في سلوك الإنسان.

5- استخرج من الآية أربع فوائد.

الجزء الثاني: (06 نقاط)

من مصادر التشريع الإسلامي: القياس.

1- عرقه لغة واصطلاحا.

2- ما هي أركانه؟

3− ما هو دلیل مشروعیته؟

الموضوع الثاني

الجزء الأول: (14 نقطة)

قال الله تعالى:

إِنْمَا حَدَّمَ عَلَيْكُو الْمُيْنَةَ وَالدَّمَ وَلَحْمَ أَلِخَنْزِيرِ وَمَاۤ أُهِلَ لِغَيْرِ إِللَّهِ بِدَّ، فَمَنُ اضَّطُرَّ غَيْرَ بَاغٍ وَلَاعَادِ فَإِنَّ أَللَّهَ غَفُورٌ رَّحِبُمٌ ۞

[سورة النحل / 115]

<u>المطلوب:</u>

- 1 في الآية الكريمة إشارة إلى اهتمام القرآن الكريم بالجانب الوقائي لصحة الإنسان الجسمية، بيّن كيف اهتمّ القرآن الكريم بالوقاية من الأمراض.
 - 2- حافظ القرآن الكريم على استقرار الأسر واستمرارها بقيم. عدّدها، ثم اشرح واحدة منها.
 - 3- حثّ الإسلام على العمل ورغّب فيه. اذكر ثلاثة حقوق من حقوق العمّال.
 - 4- مما يؤدّي إلى البغى والانحراف: التفريق بين الأبناء. عَدِّدْ أربعة مخاطر للتفريق بين الأبناء.
- 5- لغير المسلمين في بلد الإسلام حقوق وعليهم واجبات. اذكر أربعة من واجبات غير المسلمين في بلد الإسلام.
 - 6- استخرج من الآية الكريمة ثلاث فوائد.

الجزء الثاني: (06 نقاط)

قال الله تعالى:

إِنَّ أَلدِينَ عِندَ أَلْتَهَ إِلاِسْ لَمُ ۚ وَمَا إَخْتَلَفَ أَلذِينَ أُوْتُوا ۚ الْكِنَابَ إِلَا مِنْ بَعْدِ مَا جَاءَ هُمُ ۚ الْفِلْرِ بَغْينًا بَبْنَهُمٌ وَمَنْ يَكَ فُرْبِاَيْتِ إِلَّهِ فَإِنَّ أَللَّهَ سَرِيعُ الْحُسَابِ ۗ ۞

[سورة آل عمران / 19]

المطلوب:

بيّن الله تعالى في الآية الكريمة أن الإسلام هو الدين الذي ارتضاه للعباد.

- 1- عرف الإسلام لغة واصطلاحا.
- 2- إنّ الرسالات السماوية تشكّل وحدة متلاحمة وجوهرا مشتركا. فيم تتمثل هذه الوحدة ؟
 - 3- ما هي علاقة الإسلام بالرسالات السماوية السابقة ؟
 - 4- وَضَعَ الإسلام أسسا نتظم علاقة المسلمين بغيرهم. ما هي هذه الأسس؟

امة	العلا	عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	, , ,
		الجزء الأول: [14 نقطة]
		1/ مفهوم العقيدة:
2	01	غة: مصدر عقد يعقد عقدة وهو الربط والإحكام.
	01	اصطلاحا: الإيمان الجازم بالله وما يجب له في ألوهيته وربوبيته وأسمائه وصفاته، وملائكتــه
		وكتبه ورسله واليوم الآخر والقدر خيره وشره.
		2/ أهمية العقيدة:
		- تمكّن الإنسان من معرفة حقيقة وجوده في الحياة، وحقيقة مصيره بعد الموت.
		- هي أساس قبول الأعمال.
4	4×1	- لها دور في الاستقامة وتصحيح السلوك.
		- تحقق الأمن والصحة النفسية.
		- ضمان النجاة والفوز في الآخرة.
		- تدفع صاحبها إلى العمل والاجتهاد لتحقيق مرضاة الله عز وجل.
	01	3/ وسيلة تثبيت العقيدة: التذكير بقدرة الله تعالى ومراقبته للإنسان.
		4/ شرح الوسيلة وبيان أثرها في سلوك الإنسان:
	01	- تربي الإنسان على إخلاص العمل لله في السّر والعلانية.
7	01	- تثبيت العقيدة وتعميقها في النفس.
	01	- الخوف من الله، ليخشع القلب ويستسلم لله تعالى.
		- الشعور الدائم بالرقابة الإلهية، ممّا يؤدي إلى استقامة سلوك الفرد.
	<u>-</u>	- المبادرة إلى الطاعات وتجنب المعاصي.
		5/ استخراج أربع فوائد من الآية:
		- بيان قدرة الله.
		 التذكير برقابة الله للإنسان ومحاسبته.
		- كل ما في الكون مكتوب عند الله تعالى في اللوح المحفوظ.
4	4×1	- علم الله تعالى وَسِعَ كل شيء.
		- الملائكة تكتب أعمال العباد.
4		

الإجابة النموذجية وسلم التنقيط لموضوع امتحان: البكالوريا الشعبة: جميع الشعب دورة: جوان 2013 الحتبار مادة: العلوم الإسلامية

		الجزء الثاني: [06 نقطة]
		1- تعريف القياس:
2	2×1	<u>لغة</u> : التقدير والمساواة.
	2^1	شرعا: مساواة أمر الأمر آخر في الحكم الثابت له الشتر اكهما في علة الحكم.
		أو هو إلحاق أصل بفرع لعلة جامعة بينهما.
		2 - ذكر أركان القياس:
	0.5	- المقيس عليه (الأصل).
2	0.5	 المقيس (الفرع).
	0.5 0.5	- الحكم.
	0.3	العلة.
		3- دليل مشروعية القياس:
		القياس دليل من أدلة الأحكام وهو يفيد غلبة الظن، فهو حجة يجب العمل به، وهــو مشــروع
		بالقرآن والسنة.
		أ – <u>من القرآن:</u>
	0.5	قوله تعالى: " فاعتبروا يا أولي الأبصار" سورة الحشر /02
	0.5	وجه الاستدلال:
		أمر الله بوجوب الاعتبار، والقياس نوع من الاعتبار.
	0.5	ب- <u>من السنة</u> : روي أنّ امر أة خَثْعَميّة جاءت إلى الرسول صلى الله عليه وسلّم، وقالت لــه:
		النّ أبي أَدْركته فريضة الحج، أَفَأَحُج عنه؟ فقال لها: أَر أَيتِ لو ْ كان على أبيكِ دَيْن فَقَضيتيه
2		أَكَانَ يَنْفَعَهُ ذَلِك؟ قالت: نَعَم، قال: فَدَيْنُ اللهِ أَحقُّ بالقضاء" رواه الإمام مالك.
		وجه الاستدلال:
	0.5	قاسَ النبي صلى الله علية وسلم جواز الحج عن الميت على جواز قضاء ديونه بعد موته.

مة	العلامة			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
	_	الجزء الأول: [14 نقطة]		
	01	1 / منهج القرآن الكريم في الوقاية من الأمراض: المقصود بالوقاية من الأمراض: هي ما أوجبه الله من وقاية الجسم من حدوث الأمراض نتيجة الإهمال قواعد الصحة العامة، أو التقريط في الطعام أو الشراب أو الانغماس في ملذات حسية تضر		
03	0.5	الجسم وغيرها، ولأن من مقاصد الإسلام حفظ النفس جعل: _ تشريع الطهارة خمس مرات في اليوم، وجعلها شرطا لصحة العبادة.		
	0.5	_ تصريح المنهارة خمس مراك في اليوم، وجعلها سرك المنكة العبدة. _ تحريم الخمر وكل ما يذهب العقل.		
	0.5	_ النهي عن الإسراف في المأكل والمشرب.		
	0.5	_ تحريم العلاقات غير الشرعية.		
		2 / القيم الأسرية:		
	0.5	 ✓ المودة و الرحمة. ✓ المعاشرة بالمعروف. 		
	0.5	 المعاشرة بالمعروف. التكافل الأسرى. 		
	0.5	_ شرح واحدة منها:		
02.5		♦ المودة والرحمة: وهي أساس سعادة الأسرة ويقصد بها اللطف في التعامل مع الأهل، والتجاوز		
		عن الأخطاء، وهما وقود استمرار العلاقة الأسرية.		
		 المعاشرة بالمعروف: ويقصد بها حسن التعامل بين الزوجين وإحسان كل و احد منهما للآخر. 		
	01	 التكافل الأسري: وهو التعاون بين أفراد الأسرة؛ ويكون بين الزوجين بالتعاون على تقاسم أعباء البيث وتكاليف الأسرة. 		
	01	البيب وتحاليف الاسرة. 3/ ذكر ثلاثة حقوق من حقوق العمال:		
		1) الحق في الأجرة.		
		2) الحق في الراحة.		
	0.5	3) الحق في التأمين.		
01.5	0.5	4) الحق في الترقية.		
01.3	0.5	5) حق العامل في الحصول على حقوقه المتعاقد عليها.		
	0.5	6) الحق في المحافظة على كرامته.		
		7) الحق في الشكوى والتقاضي. 8) حقه في أداء ما افترض عليه.		
		 ٥) حقة في اداء ما العرص عليه. 9) الحق في الاستمرار في عمله إذا نقصت مقدرته. 		
		4 / أربعة مخاطر للتفريق بين الأبناء: 1) تشتت الأسر.		
	0.5	1) فللنت المسر. 2) انتشار الحقد و الكراهية بين الأبناء.		
02	0.5	 الأزمات والعقد النفسية عند الأبناء. 		
	0.5	4) كثرة الجرائم والآفات الاجتماعية.		
	0.5	5) عقوق الوالدين.		
		مُلْحِظة: كل سبب صحيح تمنح للتلميذ علامة.		
		5 / ذكر أربعة من واجبات غير المسلمين في بلد الإسلام:		
	0.5	1) نفع الجزية. 2) احتدادنا حقد الدائم الدائ		
00	0.5	2) احترام نظم وقوانين الدولة المسلمة.		
02	0.5	3) ترك قتال المسلمين. 1) اتا شاه المسلمين.		
	0.5	4) احترام مشاعر ومقدسات المسلمين.		
		5) عدم نشر دیانتهم أو إظهار طقوسهم.		
		6) ترك ما فيه منكر.		

الإجابة النموذجية وسلم التنقيط لموضوع امتحان: البكالوريا الشعبة: جميع الشعب دورة: جوان 2013 الختبار مادة: العلوم الإسلامية

		6 / استخراج ثلاث فوائد من الآية الكريمة:
		1) تحریم کل ما یضر الجسم من طعام وشراب وغیرهما.
	01	2) جواز تناول بعض المحرمات عند الضرورة.
	01	3) سعة مغفرة الله تعالى ورحمته بعباده.
03	01	4) اعتناء القرآن الكريم بكل ما يحافظ على صحة الإنسان.
		5) تحريم الشرك بالله تعالى.
		 6) تحريم الانتقاع بكل ما حرمه الله عز وجل من مطعومات ومشروبات.
		7) تحريم الأكل من كل ما ذبح لغير الله.
		الجزء الثاني: [06 نقطة]
	01	1 / تعريف الإسلام:
02	01	 <u>لغة</u>: الخضوع و الاتقياد و الاستسلام.
	01	 ا<u>صطلاحا</u>: هو الاستسلام والخضوع لله تعالى في كل أو امره ونو اهيه.
		2 / تتمثل هذه الوحدة:
01	0.5	ً وحدة المصدر.
	0.5	_ وحدة الغاية.
		3 / علاقة الإسلام بالرسالات السماوية السابقة:
	0.5	_ التأكيد. ان
01	0.5	ــ التصحيح.
		_ النسخ.
		_ الهيمنة.
	0.5	4 / أسس علاقة المسلمين بغيرهم:
	0.5	1 _ التعاون.
02		2 _ التعايش.
	0.5	3 _ التعارف.
	0.5	4 _ الروابط الاجتماعية.

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعب: علوم تجريبية، رياضيات، تقني رياضي، تسيير و اقتصاد

المدة :02 سا و 30 د

اختبار في مادة: اللغة الانجليزية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

PART ONE: Reading

(15 points)

A. Comprehension

(08 points)

Read the text carefully then do the following activities.

An estimated 158 million children aged 5-14 are engaged in child labour- one in six children in the world. Millions of children are engaged in hazardous situations or conditions such as working in mines, working with chemicals and pesticides in agriculture or working with dangerous machinery. <u>They</u> are everywhere but invisible: toiling as domestic servants in homes, labouring behind the walls of workshops, hidden from view in plantations...

In Sub-Saharan Africa, one child in three is engaged in child labour, representing 69 million children. In South Asia, another 44 million are at work.

Children living in the poorest households and in rural areas are most likely to be engaged in child labour. Those burdened with household chores are girls. Millions of girls who work as domestic servants are especially vulnerable to exploitation and abuse.

The UNICEF often interferes with children's education. Ensuring that all children go to school and that their education is of good quality, is a key to preventing child labour.

Adapted from "UNICEF, Social Media".

1. Circle the letter which corresponds to the right answer.

The text is:

- a. descriptive.
- b. expository.
- **c.** prescriptive.
- 2. Write the letter which corresponds to the right answer.
 - A. children are engaged in child labour in the world.
 - a. One out of six
- **b**. Fifty eight million
- c. Sixty nine million
- B. Some African and Asian children are working in
 - a. fair conditions.
- **b**. unsafe conditions.
- c. legal conditions.

- **C.** Girls in rural areas are boys.
 - a. less exploited than
- b. as exploited as
- c. much more exploited than

- **D**. The UNICEF is an institution which......
 - **a.** encourages child labour. **b.** protects children from child labour.
 - c. prevents children's education.
- 3. Answer the following questions according to the text.
 - a. Mention three tasks children are forced to do.
 - **b.** In which continents are children engaged in child labour?
 - c. How can we fight child labour?
- 4. Choose the general idea of the text.
 - a. Children are exploited in labour in some parts of the world.
 - **b.** Millions of children are deprived of protection and health care.
 - c. Children are suffering from conflicts and wars.
- 5. Who or what do the underlined words refer to in the text?
 - a. they (§1)

b. who (§3)

B. Text Exploration

(07 points)

- 1. Find in the text words that are closest in meaning to the following.
 - **a**. risky (§1)
- b. answer (§4)
- 2. Complete the chart as shown in the example.

verb	noun	adjective
to labour	labour	labouring
to engage		
*********	abuse	
		preventive

- 3. Rewrite sentence (b) so that it means the same as sentence (a).
 - 1. a. Some café owners exploit children as waiters for a miserable pay.
 - **b**. Children
 - 2. a. Children do most of the hard work. They are badly paid.
 - **b**. Although.....
 - 3. a. Governments should protect children from exploitation.
 - **b.** It's high time
- 4. Classify the following words according to the number of their syllables.

domestic - children - labour - work

one syllable	two syllables	three syllables	

5. Fill in the gaps with words from the list.

Child labour is a worldwide issue. It is \dots (1) \dots to overpopulation, unemployment and especially to \dots (2) \dots Parents have to send their children doing \dots (3) \dots works rather than studying. If they \dots (4) \dots that this brings them happiness they are mistaken.

PART TWO: Written Expression

(05 points)

Choose ONE of the following topics.

<u>Topic one:</u>

Using the following notes, write a composition of 120 to 150 words on:

the causes of child labour all over the world.

- poverty / illiterate parents
- lack of motivation for schooling
- no protection nor care from families and institutions
- exploitation by rich owners.

Topic two:

Write a composition of 120 to 150 words on the following:

How can advertising be beneficial to the consumer? Illustrate your arguments with examples.

الموضوع الثاني

PART ONE: Reading

(15 points) (08 points)

A. Comprehension

Read the text carefully then do the following activities.

The Hubble space telescope is a deep space imager used by NASA to explore space. <u>It</u> collects light, magnifies images and gives astronomers the most detailed images unknown to man. Hubble has been at work since April 25, 1990, and celebrated its 20th anniversary in orbit on April 24, 2010.

Twenty years in service, and still being the leading source for space news, says a lot about Hubble's overall longevity and productiveness. Over 6000 scientific articles have been published based on Hubble data with some of its discoveries being so significant that NASA would have needed multiple satellite missions to accomplish the same results. Its importance to me is based on my lifelong interest in astronomy, and the galaxy <u>where</u> we live in.

Its importance to <u>others</u>, such as NASA and astronomers around the world, is due to the fact that Hubble is currently the leading source for new information and ground-breaking discoveries when it comes to deep space. But, after a stalled launch in 1985, five repair missions since its beginning, and billions of dollars in funding, I asked myself: "Is Hubble worth it?".

www.123helpme.com

1. Circle the letter that corresponds to the right answer.

The text is:

a. a newspaper article.

- **b.** an extract from a book.
- **c.** a website article.
- 2. Are these statements true or false? Write T or F next to the letter corresponding to the statement.
 - a. Hubble space telescope retransmits pictures to astronomers.
 - b. NASA celebrated the twentieth anniversary of Hubble here on Earth.
 - c. Hubble is useful to provide NASA with necessary data.
 - d. The 1985 space mission was unsuccessful.
- 3. Answer the following questions according to the text.
 - a. When did Hubble telescope start work?
 - **b.** Is the writer interested in astrology? Justify from the text.
 - c. Why is Hubble telescope important?
- 4. In which paragraph is the cost for the reparation of Hubble telescope mentioned?
- 5. Who or what do the underlined words refer to in the text?
 - a. <u>It</u> (§1)

b. where (§2)

c. <u>others</u> (§3)

B.Text Exploration (07 points)

1. Find in the text words whose definitions follow.

- a. to travel in order to learn about something. (§1)
- **b.** facts or information. (§2)
- c. the scientific study of the sun, moon, stars, planets, etc. (§2)
- **d.** at the present time. (§3)

2. Divide the following words into roots and affixes.

productive - impossible - exploration

prefix	root	suffix

3. Ask questions which the underlined words answer.

- **a.** We use the telescope to magnify distant stars.
- **b.** The telescope was invented <u>in the 16thcentury</u>.
- c. Thousands of satellites revolve around the planet Earth.

4. Classify the following words according to the pronunciation of their final "s".

missions - planets - telescopes - images

/s/	/z/	/iz/

5. Reorder the following sentences into a coherent paragraph.

- a. as they are quite similar in size and gravity.
- **b.** Astronomers have known Venus for thousands of years.
- c. It is sometimes called the sister planet of the Earth
- d. Anyway the two planets are very different.

PART TWO: Written Expression

(05 points)

Choose ONE of the following topics:

Topic One: Using the notes below, write a composition of 120 to 150 words on the following:

Imagine that, with a group of tourists you went on planet Mars. How life would be like there compared to the one on Earth.

- Mars / planet of solar system
- more space / no inhabitants
- no traffic jams / no pollution

but - no form of life / no water

- no leisure / boring life
- no nice places to visit ...

Topic Two: Write a composition of 120 to 150 words on the following:

You have recently been victim of an intoxication after eating at a fast food. Tell how you felt and what measures you decided to take.

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2013

اختبار مادة: اللغة الانجليزية الشعبة: علوم تجريبية ، رياضيات، تقني رياضي،تسيير و اقتصاد المدة: ساعتان و نصف

العلامة			/+ \$n - · · ·	N 7 4 KM 41-	
مجموع	مجزأة		الموصوع الاول)	عناصر الإجابة (ا	
15 pts 08 pts 1pt	1 pt	Part One: Reading A) Comprehension 1. The text is:	An est	imated 158 million	•••••
2pts	0.5×4	2. A. a - B. b -	C. c - D. b		
3pts	1×3	- working as dome b- Africa and Asia	 3. a- working in mines/ chemicals/ pesticides / machinery - working as domestic servants. b- Africa and Asia. c- ensuring that all children go to school and get an education of good quality. 		
1pt 1pt	1 0.5×2	 a- children are exp a- they. children 	loited in labour in se b- who. girls	ome parts of the world	•
07 pts		B) Text Exploration			
1 pt	0.5×2	1. a. hazardous/ danş	gerous b. k	ey	
1.5 pts	0. 25×6	verb to abuse to prevent	noun engagement prevention	adjective engaged- engaging abusive	
1.5 pts	0.5×3	b2: Although chi l d . Although child	fren do most of the l ren are badly paid th	or a miserable pay by s nard work they are bad ney do most of the hard ed children from explo	ly paid/ l work.
1 pts	0.25×4	4. one syllable work	two syllables children, labo		es
2 pt	0. 5×4	5. 1. due - 2. pove	erty - 3. illegal -	4. think	
05 pts		_	Expression orm: 3 pts orm: 2.5 pts	content: 2 pts content: 2.5 pts	

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2013

اختبار مادة: اللغة الانجليزية الشعبة: علوم تجريبية ، رياضيات، تقني رياضي،تسيير و اقتصاد المدة: ساعتان و نصف

دمة ا		(:	ifti c . t . ti	منامی الامانی	
مجموع	مجزأة	ني)	الموصوع الكا	عناصر الإجابة (
15 pts 08 pts 0.5 pt	0.5	PART ONE: Reading A/ Comprehension 1. The text is: a. website	e articl e		The Hubble space
02 pts	0.5x 4	2. a. T b. F c. T d	. T		
03 pts	01x3	 3. a. It started on April 25,1990./ 23 years ago. b. No, "its importance to me is based on my lifelong interest in astronomy." c. because it is the leading source for new information and ground-breaking discoveries. 			
1 pt	1 pt	4. In paragraph three / last	paragraph/	§ 3	
01.5 pts	0.50 x 3	5. a- it. The Hubble space b- where, galaxy c- others. NASA /astron			mers.
07pts		B/ Text Exploration			
01 pt	0.25 x4	1- a. to explore b. da	ata c. ast	ronomy d.	currently
01.5 pts	0.5x3	2-			
		prefix	root	suffix	
		im	product oossible explore	ive ation	
01.5 pts	05.x3	3- a. What do we use the to b. When was the telesco c. How many satellites r	pe invented?	•	•
01 pts	0.25x4	4- /s/			/IZ/
		planets - telescopes	missions		images
02 pts	0.5x4	5- 1. b 2. c 3. a		(0.5 opening se (0.5 each pair)	entence)
05pts		PART TWO: Written Expre Topic One: Fo Topic Two: Fo	rm 03 I	ots Cont 5 0 pts Cont	-

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات و المسابقات

دورة: جوان 2013

المدة :02 سا و 30د

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد.

اختبار في مادة: اللغة العربية وآدابها

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

النّصّ: يقول الشّاعر نزار قبّاتى:

- 1 -

أحمل الزمن المحترق في عيني، وأسافر إليكم أحمل بيروت قصيدة مطعونة على راحة يدي وأقدم جسدها للعالم شهادة ناصعة على عصر عربي يَحْتَرِف قَتْل القصائد.

-2-

قبل عام تلاقينا.

كان جرحي لا يزال في طفولته، وكان حُزني لا يزال يتعلَّم الكلماتِ الأولى.

بعد عام، صار جُرحي قبيلةً من الجراح. وصار حزنى وطنًا، وصار أمّة.

كنت أتصور أنّ الحزن يُمْكن أن يصبح صديقا ولكنّني لم أتصور أن يصبح الحزن وطنا نسكنه ونتكلّم لغته، ونحمل جنسيّته.

- 3 -

أحمل منْفَايَ في حقائبي، وأسافر إليكم حين يصبح صوتُك مادّة كماليّة تدفع الرسوم الجمركيّة

عنوع المون

حين تصبح الحرية غير مُرخّص لها فأنت منْفيّ.

أحمل بيروت نجمة مضرّجة بدمها وأسافر إليكم.

- 4 -

بيروت.. بيروت.. بيروت.. يروت.. يا سلطانة، يا قنديلا مشتعلا في القلب ماذا بقي من بيروت ؟ سوى دموعها الممتزجة بمياه البحر

آهِ .. ما أصعب موت البَجَعِ ! لو قرأنا التّاريخ ما ضاعت بيروت. وكان الأمل، أن نتمّ الولادة دون ألم ودون شقّ بطنٍ

لكن ليس لدينا على امتدادِ الوطن العربيّ و لادات طبيعيّة. لأنّه ليس لدينا حمل طبيعيّ.

الأسئلة:

أوّلا - البناء الفكريّ: (12 نقطة)

- 1- ماذا كان يحمل الشّاعر أثناء سفره؟
- 2- نبرة الحزن والألم بارزة في النّص". حدّد ثلاث عبارات تدلّ على ذلك.
 - 3- ختم الشّاعر نصّه بالإشارة إلى أمل لم يتحقّق. وضّحه.
- 4- الشّاعر ملتزم بقضايا أمّته. دلّ على ذلك بعبار نين من النّصّ، موضّحا معنى الالتزام.
 - 5- في النّص نمطان بارزان. ما هما ؟ اذكر مؤشّرًا لكلّ منهما مع التّمثيل.
 - 6- انثر المقطع رقم 2 بأسلوبك الخاص".

ثانيا - البناء اللّغويّ: (08 نقاط)

1- في أيّ حقل دلاليّ تضع السّياقات الآتية:

عصر عربي - وطنا - أمّة - نتكلّم لغته - نحمل جنسيّته - الوطن العربيّ.

- 2- كرّر الشّاعر كلمة " بيروت " عدّة مرّات. فما هي دلالات هذا النّكرار في نظرك؟
 - 3- أعرب ما يلي إعراب مفردات:
 - * " شمهادة " الواقعة في المقطع رقم 1 -
 - * " لو" الواقعة في المقطع رقم 4 -
 - وأعرب ما يلي إعراب جمل:
 - * " يَحْتَرِفُ " الواقعة في المقطع رقم 1 -
 - * " وأسافر إليكم " الواقعة في آخر المقطع رقم 3 -
- 4- وظَّف الشَّاعر مجموعة من الرّوابط، ساهمت في اتّساق النّص وانسجامه. استخرج ثلاثة منها مختلفة.
 - 5- إليك العبارات الآتية:
 - " بيروت قصيدة مطعونة " الواقعة في المقطع رقم 1 -
 - " صار جرحي قبيلةً " الواقعة في المقطع رقم 2 -
 - " أحمل منفاي في حقائبي" الواقعة في المقطع رقم 3 -
 - بيّن نوع الصور البيانية التي تضمّنتها هذه العبارات وسر بلاغتها.

الموضوع الثّاتي

النّ<u>صّ</u>:

"...الخدمة النّي تفرضها طبيعة الإنسان على الإنسان هي نعمة من نِعم الله عليه، إنّها في لبّ النّعاون الّذي به تقوم الأسرة البشريّة، ولكنّها تغدو نقمة وأيّ نقمة عندما يفرضها إنسان على إنسان برغم أنفِه، أو أمّة على أمّة بقوّة السّلاح أو بقوّة المال والدّهاء، ذلك بالتّمام ما فعله الإقطاع والاستعمار في خلال قرون وقرون، فلا الإقطاع ولا الاستعمار جاء ليَخدِم بل لِيُخدَم، ولا ليُعطِي بل ليَأخُذَ، ولا ليُريح بل ليستريح.

ثمّ كان القرن العشرون الّذي يمكن أن ندعوَّه بحق قرنَ تصفية الاستعمار وإذْ هبّتِ الشّعوب المعلُوبة على أمرها تطالب بحقها في أن تكون سبّدة أرضها وسيّدة مصييرها، فكانت انتفاضة الجزائر من أروع ما شهدَه هذا القرن من انتفاضات ضدّ الاستعمار.

وها هي الجزائر تحتفل بذكرى استقلالها، وهي دَائبة بإخلاص وعزم وإيمان على تصفية استقلالها من رواسب الاستعمار الّتي قد تكون عالقة حتى اليوم بنفوس أبنائها. فلا طبقات فوق طبقات، ولا محظوظون ومحرومون، ولا أسياد وعبيد بل هناك فُرص متكافِئة للخدمة المتبادلة، وللنّهوض بالبلاد أعلى فأعلى وأبْعَد فأبْعَد، ولكبْح جماح الاستغلال الّذي هو ألد أعداء الاستقلال.

ألا بُوركَ الاستقلالُ لا تشوبُه شائبة من الاستغلال سواءً جاءتْهُ تلك الشّائبة من الخارج أو من الدّاخل. وبُوركتْ هذه الذّكرى تُحْيِبها الجزائر البطلة عاماً بعد عام."

ميخائيل نعيمة، مجلّة "البلاغ" اللبنائية بتاريخ: 1 يوليو 1974 (بتصرّف)

الأسئلة:

أوّلا - البناء الفكريّ: (12 نقطة)

- الذي ساقه -1 متى تكون الخدمة نعمة على الإنسان ومتى تكون نقمة في نظر الكاتب؟ وما الدّليل الّذي ساقه على ذلك؟
 - 2- أكّد الكاتب أنّ القرن العشرين يمكن أن ندعوَّه بحقّ قرن تصفية الاستعمار . لماذا؟
 - 3- ما هي القيّم الّتي تبنّتها الانتفاضة الجزائريّة وكانت محلّ اعتزاز الكتّاب العرب؟
- 4- بارك الكاتب استقلال الجزائر. أبْدِ رأيك في الشَّرط الَّذي وضعه، معتمدًا على أمثلة من الواقع.
 - 5- في أيّ نوع من أنواع النّثر تصنف النّص؟ انكر ثلاث خصائص له تجلّت في هذا النّص.
 - 6- ما النّمط الغالب على النّص ؟ حدّد مؤشّرين من مؤشّراته مع التّمثيل من النّص.
 - 7- لخص مضمون النص بأسلوبك الخاص.

ثانيا - البناء اللّغويّ: (08 نقاط)

1- وردت في النص الألفاظ التّالية:

الخدمة - الاستغلال - الاستعمار - الأسرة البشريّة - التّعاون - الاستقلال.

- * صنَّفها حسب الحقلين الدّلاليّين التّاليين:
 - الحقل السّياسيّ.
 - الحقل الاجتماعيّ.
 - 2- أعرب ما يلى إعراب مفردات:
- * " نقمة " الواقعة في العبارة: " ولكنَّها تغدو نقمة " من الفقرة الأولى.
- * " إذَّ" الواقعة في العبارة: " وإذَّ هبّت الشّعوب المغلُوبة على أمرها" من الفقرة الثَّانية.
 - وأعرب ما يلي إعراب جمل:
 - * " هي نعمة " الواقعة في الفقرة الأولى.
 - * " هو ألدُّ أعداء الاستقلال " الواقعة في الفقرة الثّالثة.
 - 3- إليك العبارة التَّالية:

" وها هي الجزائر تحتفل بذكرى استقلالها، وهي دائبة بإخلاص وعزم وإيمان على تصفية استقلالها من رواسب الاستعمار التي قد تكون عالقة حتى اليوم بنفوس أبنائها".

- استخرج الروابط الموجودة فيها، ثمّ بيّن كيف ساهمت في انساقها.
 - 4- ما نوع الصورتين البيانيتين الآتينين، وما سر بلاغتهما:
 - " الخدمة ... هي نعمـة..." الواقعة في الفقرة الأولى.
 - " فكانت انتفاضة الجزائر..." الواقعة في الفقرة الثّانية.

الإجابة النموذجية وسلم التنقيط. مادة: اللغة العربية وآدابها. الشّعب العلميّة المشتركة دورة: جوان 2013

دمة	العا	Tida Nila and Canada
المجموع	مجزأة	عناصر الإجابة
		إجابة الموضوع الأول:
		أوّلا - البناء الفكري: (12 نقطة)
	1.5	1-كان الشَّاعر يحمل معه الزمن المحترق لبيروت المطعونة.
		2- استخراج ثلاث عبارات تدلّ على نبرة الحزن والألم:
	3×0.5	 الزمن المحترق - قتل القصائد - صار جرحي أمة - أحمل منفاي - تنفع الرسوم الجمركية
		 بیروت مضرجة بدمها - دموعها الممتزجة بمیاه البحر
		* ملاحظة: يكتفي المترشح بذكر ثلاث عبارات فقط.
		3- الأمل الذي لم يتحقّق هو استتباب الأمن والاستقرار في بيروت ومنه إلى الوطن العربي بسبب
	01	تبعات الضعف والهوان الذي أصاب الأمة.
		4- العبارات الدالة على أن الشَّاعر ملتزم بقضايا أمَّته هي:
	250 5	 أسافر إليكم - صار حزني وطنا وصار أمة - أحمل بيروت نجمة مضرجة بدمها
	2×0.5	 لو قرأنا التاريخ ما ضاعت بيروت - على امتداد الوطن العربي
		* ملاحظة: يكتفي المترشح بذكر عبارتين.
		توضيح معنى الالتزام: الالتزام هو:
12		 توظیف الفن لغایات اجتماعیة و سیاسیة.
	3×0.5	– التعبير عن الواقع والارتقاء به، واستشراف المستقبل.
		- استكمال عملية التغيير والبحث عن الحلول
		* ملاحظة: قد يأتي المترشح بمفاهيم أخرى صحيحة، تؤخذ بعين الاعتبار.
	2×0.5	5- النّمطان البارزان في النّص هما: الوصفي والسردي.
	0.1	- مؤشر النمط الوصفي: النعوت، الإضافات، أدوات التوكيد، الأفعال الماضية، كثرة التشبيهات
	01	مثال النعوت: المحترق، مطعونة مثال الإضافات: يدي، جسدها مثال لأدوات التوكيد:
		لأنّ، لكنّ مثال للأفعال الماضية: كان، بقي، قرأنا مثال التشبيهات: بيروت قصيدة،
		جرحي قبيلة
		- مؤشر النمط السردي : سرد حادثة مفردة أو مجموعة أحداث.
	01	مثال: أسافر إليكم، قبل عام تلاقينا، لو قرأنا التاريخ ما ضاعت بيروت
		* ملاحظة: يكتفي المترشح بذكر مؤشّر واحد لكلّ نمط.
		6- نثر الفقرة الثانية الممتدة من السطر 5 إلى 12 : يراعى فيه ما يلي:
	01	– المضمون.
	01	– أسلوب المترشح ولغته.
	0.5	– الحجم.

2013	رة: جوان	تابع الإجابة النموذجية وسلم التنقيط. مادة: اللغة العربية وآدابها. الشعب العلميّة المشتركة دو
		ثانيا - البناء اللغوي: (08 نقطة)
		1- الحقل الدلالي الذي توضع فيه السّياقات الآتية: " عصر عربيّ – وطنا – أمّة – نتكلّم لغته –
	01	نحمل جنسيَّته - الوطن العربيّ " هو: القومي.
		2- دلالات تكرار كلمة " بيروت " عدّة مرّات هي:
	3×0.5	 التأكيد - البعد الرمزي - ترابط النص - لفت انتباه المتلقي حفاظاً على تركيزه
		* ملاحظة: بإمكان المترشح أن يهتدي إلى دلالات أخرى يجب أن تؤخذ بعين الاعتبار.
		3- الإعراب:
		- الإعراب المفصل:
		الكلمة إعرابها
	2×0.5	شهادة تمييز منصوب وعلامة نصبه الفتحة الظاهرة على آخره.
	240.3	المو على السكون لا محل له من الإعراب. الشرط مبني على السكون لا محل له من الإعراب.
08		- إعراب الجمل:
		الجملة محلها من الإعراب
		(يَحْتَرفُ) جملة فعلية في محل جر نعت
	2×0.5	أسافر اليكم جملة لا محل لها من الإعراب لأنها جملة معطوفة على جملة لا محل لها من
		الإعراب.
		4- استخراج ثلاثة روابط ساهمت في اتساق النّص وانسجامه:
		 حروف الجر ومنها: في، إلى، اللام، على
	3×0.25	- حروف العطف ومنها: الواو
		 الضمائر ومنها: أنت، إليكم، جرحي، صوتك، لأنه
		* ملاحظة: يكتفي المترشح بذكر رابط واحد من كل نوع.
		5- نوع الصّور الَّذي احتوتها العبارات الآتية وسرّ بلاغتها:
	3×0.5	 " بيروت قصيدة مطعونة ": تشبيه بليغ حيث ذكر المشبه بيروت والمشبه به قصيدة.
		 " صار جرحي قبيلة ": تشبيه بليغ حيث ذكر المشبه جرحي والمشبه به قبيلة.
		- " أحمل منفاي في حقائبي": استعارة مكنية حيث شبه المنفى بشيء مادي يُحمل ويُوضع في
		حقائب. *** ********************************
	2×0.5	*سر بلاغة التشبيهين:
	0.25	 لا فرق بين المشبه والمشبه به - إيضاح المعنى وبيان المراد - التأثير في النفس وتحريكها. *سر بلاغة الاستعارة:
	0.23	سر بدعه المستعره. - عنصر الإيجاز - تشخيص المعنوي في قالب مادي
		<u> </u>

تابع الإجابة النموذجية وسلم التنقيط. مادة: اللغة العربية وآدابها. الشّعب العلميّة المشتركة دورة: جوان 2013

دمة	العا	عناصر الإجابة
المجموع	مجزأة	حاصر الإجب
		إجابة الموضوع الثّاني:
		أوّلا - البناء الفكري: (12 نقطة)
		1- تكون الخدمة نعمة على الإنسان إذا كانت في لبّ التّعاون الّذي به تقوم الأسرة البشريّة وتكون
	2×0.5	نقمة عندما يفرضها إنسان على إنسان برغم أنفه، أو أمّة على أمّة بقوّة السّلاح أو بقوّة المال والدّهاء.
	0.5	- الدليل الذي ساقه الكاتب على ذلك هو الإقطاع والاستعمار الذي بسط هيمنته وجبروته على
		الشعوب المغلوبة على أمرها طوال قرون عديدة.
	01	2- أكد الكاتب أنّ القرن العشرين يمكن أن ندعوه بحق قرن تصفية الاستعمار لأن الشعوب
	01	المغلوبة على أمرها علمت أن الاستعمار جاء لِيُخدَم، ليَأْخَذ، وليستريح فراحت تطالب بحقها عن
		طريق الانتفاضات.
	3×0.5	 3- القيم التي تبنتها الانتفاضة الجزائرية وكانت محل اعتزاز الكتاب العرب هي: - يقظة الشعب الجزائري لتقرير حقه في الاستقلال الإيمان بأنه سيّد أرضه وسيّد مصيره.
		- يقطه السعب الجرائري للفرير خفه في الاستعمار - الإيمان بانه سيد ارضه وسيد مصيره. - تصفية استقلالها من رواسب الاستعمار - العدالة الاجتماعية.
	0.5	- المعلق الكاتب في الشرط الذي وضعه وهو أنّ الاستقلال يجب ألا تشوبه شائبة من الاستغلال.
		* أمثلة من الخارج: التبعية - الاستغلال
	2×0.5	* أمثلة من الداخل: عدم تكافؤ الفرص – الحرمان – الطبقية
12		* ملاحظة: يمكن للمترشِّح أن يذكر أمثلة أخرى تؤخذ بعين الاعتبار.
	0.5	5- ينتمي النّص ّ إلى فن المقال السياسي.
	0.5	* من خصائصه التي تجلت في النّص:
		– وحدة الموضوع.
	3×0.5	 التدرج في الطرح. (منهجية: المقدمة، العرض والخاتمة)
		- تناسق الأفكار وتسلسلها.
		- عنصر الإقناع عن طريق التوكيد ب: إنّ، الجمل الاسمية، لا النافية، اسم التفضيل
	01 2×0.5	6- النمط الغالب على النص هو التفسيري.
	2^0.3	* من مؤشراته: – تحليل فكرة أو ظاهرة بهدف تيسير فهمها وسهولة استيعابها
		- استخدام ضمائر الغائب. * التمثيل:
		العملين. - فلا الإقطاع ولا الاستعمار جاء ليَخدِم بل ليُخدَم، ولا ليُعطِي بل ليَأخُذَ، ولا ليُريح بل ليستريح.
	2×0.25	- استخدام ضمير الغائب "هي" العائد على الخدمة في الفقرة الأولى، وعلى الجزائر في الفقرة الثالثة.
		* ملاحظُة : يمكن للمترشّح أن يذكر أمثلة أخرى من النص.
		7- تلخيص مضمون النص: يراعي فيه ما يلي:
	01	- مضمون النّص.
	0.5	– لغة وأسلوب المترشّح.
	0.5	- حجم ا <i>لنص.</i>

2013	ة: جوان 3	تابع الإجابة النموذجية وسلم التنقيط. مادة: اللغة العربية وآدابها. الشُّعب العلميّة المشتركة دور
		ثانيا - البناء النَّغوي: (08 نقطة)
		1- تصنيف الألفاظ حسب الحقلين الدّلاليين:
	2×0.75	* الحقل السياسي: الاستغلال- الاستعمار- الاستقلال.
	2.0.75	* الحقل الاجتماعي: الخدمة - الأسرة البشرية - التعاون.
		2 الإعراب:
		- الإعراب المفصل:
		الكلمة إعرابها
	2×0.5	نقمةً حال منصوبة وعلامة نصبها الفتحة الظاهرة على آخرها.
		إذ
		مضاف.
		- إعراب الجمل:
	2×0.75	الجملة محلها من الإعراب
08	2 0.75	(هو ألدُّ أعداء الاستقلال) جملة لا محل لها من الإعراب لأنها صلة موصول.
		(هي نعمة) جملة اسمية في محل رفع خبر .
		3- استخراج الروابط الموجودة في العبارة الآتية:
		" وها هي الجزائر تحتفل بذكري استقلالها، وهي دائبة بإخلاص وعزم و ليمان على تصفية
		استقلالها من رواسب الاستعمار الّتي قد تكون عالقة حتّى اليوم بنفوس أبنائها".
	3×0.5	- حرف العطف: الواو.
		– حروف الجر: الباء، على، من.
		- الضمير المنفصل "هي" ، العائد على "الجزائر".
		* تبيان كيفية مساهمتها في اتساقها:
	0.75	 الربط ووصل الجمل فيما بينها.
		 الجمع بين المتر ادفات.
		 ترتیب المفردات والجمل حسب معانیها.
		 * ملاحظة: يمكن للمترشح أن يذكر أسبابا أخرى للاتساق والانسجام يجب أن تؤخذ بعين الاعتبار.
		4- نوع الصورتيْن البيانيتيْن في قول الكاتب وسرّ بلاغتهما:
	0.75	 " الخدمة هي نعمة": تشبيه بليغ حيث ذكر المشبه الخدمة والمشبه به نعمة وحذف وجه الشبه
	0.5	والأداة.
	0.3	- " فكانت انتفاضة الجزائر ": مجاز مرسل علاقته المكانية. * *سر بلاغة التشبيه:
	0.25	سر بدعه المصبيه. - لا فرق بين المشبه و المشبه به - إيضاح المعنى وبيان المراد -التأثير في النفس وتحريكها.
		" ترق بين المدار المرسل: "سر بلاغة المجاز المرسل:
	0.25	- إيجاز الكلام والوصول إلى المعنى من أقرب طريق – المساهمة في تقوية المعنى

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعب : علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد

المدة: 02 سا و 30 د

اختبار في مادة : اللغة الفرنسية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

La célébration d'un anniversaire est un moment de joie, de partage. A cette occasion, on glorifie la naissance et les parents d'un être dont c'est l'anniversaire.

Ces célébrations, comme les mariages, les fêtes de fin d'années ou encore les fêtes religieuses, sont l'occasion de rassembler ceux que l'on perd vite de vue pendant l'année. Pour parvenir à s'extirper du quotidien, il est pratique de fixer un jour dans l'année. Un anniversaire est donc un point de repère utile pour rassembler des amis ou des membres de sa famille.

Pour les âmes généreuses, l'anniversaire est aussi une occasion d'exprimer son affection en offrant, en plus des petites attentions quotidiennes, des présents de valeur.

Enfin, un anniversaire marque également une nouvelle année de maturité. Chaque cycle supplémentaire de 365 jours nous apporte son lot d'expériences enrichissantes.

Cependant, fêter un anniversaire n'est-il pas hypocrite? Pourquoi profiter d'une date précise pour avouer aux êtres aimés les sentiments qu'on leur porte? Avec l'arrivée des réseaux sociaux par exemple, on peut se demander à quel point les « joyeux anniversaires » reçus sont sincères. Il suffit de voir tous les commentaires reçus sur nos « murs facebook » de la part d'amis que l'on n'a pas revus depuis dix ans et qui font le simple effort de cliquer sur un bouton car le système les a généreusement prévenus!

Et puis, il y a un truc vraiment pesant lors des anniversaires, c'est de se sentir obligé de trouver un cadeau! Comme si le fait de célébrer l'anniversaire ne suffisait pas... C'est vraiment un gaspillage d'argent et de cadeaux inutiles! On a même conçu sur le web des sites Internet pour refiler les cadeaux qui ne nous plaisaient pas!

Que penser ensuite de ceux qui organisent des soirées pour fêter leurs anniversaires ? Il est vraiment dommage qu'un événement censé rassembler des gens que l'on apprécie pour vivre des moments mémorables se transforme parfois en événement insignifiant et vite oublié!

Enfin, souhaiter un anniversaire, c'est entretenir la nostalgie du temps qui passe, c'est compter les années passées alors qu'il faudrait se tourner vers le futur !

D'après Jean-Philippe le 31 juillet 2010 dans <u>Article invité</u> Site : Révolution personnelle

QUESTIONS

I. COMPREHENSION: (14 points)

- 1. L'auteur de ce texte est :
 - un éducateur
 - un romancier
 - un journaliste

Recopiez la bonne réponse.

2. L'auteur s'implique nettement dans ce texte.

Relevez dans ce texte 4 indices qui le montrent.

- 3. Relevez dans le texte 4 types de célébration cités par l'auteur.
- 4. « En cette occasion, <u>on</u> glorifie la naissance ...». Qui est désigné par "on" dans cette phrase?
- 5. « ... sentiments qu'on <u>leur</u> porte.» paragraphe 5.
 - « les a généreusement prévenus » paragraphe 5.

A quelles personnes renvoient les 2 pronoms "leur", " les"?

6. En vous aidant du texte, classez les expressions suivantes : réunion des proches – obligation d'offrir – retombée dans l'oubli – fuite de la monotonie

- manque de sincérité - expression d'un amour.

Pour la célébration	:,,
---------------------	-----

Contre la célébratiun :,

7. « Il faudrait se tourner vers le futur ».

Le conditionnel dans cette phrase exprime :

- Un regret
- Une hypothèse
- Un souhait

Recopiez la bonne réponse.

- 8. Parmi ces 4 propositions, 2 seulement sont en relation avec les idées du texte. Recopiez-les.
 - Chaque anniversaire montre qu'on a muri.
 - Chaque anniversaire nous incite à plus de dépenses.
 - On n'attend pas la fête pour exprimer nos sentiments.
 - On ne se sent pas obligé d'offrir des cadeaux.
- 9. L'auteur est-il pour ou contre la célébration des anniversaires? Justifiez votre réponse en relevant une phrase du texte.
- 10. Donnez un titre à ce texte.

II. PRODUCTION ECRITE: (6 points)

Traitez un seul sujet au choix.

- 1. Dans le cadre d'un débat sur l'utilité ou non de célébrer une fête quelconque, rédigez le compte rendu objectif de ce texte (environ 100 mots) que vous ferez paraître dans le journal de votre établissement dont vous êtes un des rédacteurs.
- 2. Dans un forum Internet, vous intervenez sur la question : « **Fêter un anniversaire n'est-il pas** hypocrite ou inutile? »

En tant que membre d'une association intitulée : « Pour une culture nationale », quelle est votre position sur ce sujet ?

Rédigez un texte argumentatif d'une quinzaine de lignes (environ 150 mots) dans lequel vous présenterez vos arguments étayés d'exemples précis.

الموضوع الثاني

Yougourtha, fils du Maghreb

Orphelin de bonne heure, Yougourtha fut élevé à la cour de Miscipsa, son oncle. Dès sa prime jeunesse, il frappa les esprits par ses dons exceptionnels.

Salluste nous le présente ainsi : "Yougourtha, remarquable par sa force, par sa beauté, et surtout par l'énergie de son caractère, ne se laissa point corrompre par le luxe et la mollesse. Il s'adonnait à tous les exercices en usage dans son pays, montait à cheval, lançait le javelot, disputait le prix de la course aux jeunes gens de son âge ; et, bien qu'il eût la gloire de les surpasser tous, tous le chérissaient . A la chasse qui occupait une grande partie de son temps, toujours des premiers à frapper le lion et d'autres bêtes féroces, il en faisait plus que tout autre, et c'était de lui qu'il parlait le moins."

Qu'à de si brillantes qualités il joignit la modestie, c'est là un fait rare.

Le roi parut d'abord flatté d'avoir un neveu si brillant. Mais, de l'admiration il passa vite à l'inquiétude. Après sa mort, que ferait Yougourtha? N'allait-il pas tenter de s'emparer du trône au détriment de ses cousins?

En outre, il était à craindre que Rome ne prit ombrage de la popularité de Yougourtha qui apparaissait comme l'espoir du mouvement national.

L'idée vint donc au roi de se débarrasser d'un prince aussi gênant. Mais comment faire? Par l'assassinat? Le peuple indigné se révolterait. Il fallait donc songer à un autre moyen. Comptant sur les hasards et les périls de la guerre, Miscipsa confia à Yougourtha le contingent d'auxiliaires que Rome venait de réclamer pour le siège de Numance, en Espagne.

Yougourtha ne devait pas être dupe d'un tel calcul. Dominant sa répulsion pour ce genre de besogne, il partit avec un plan dans sa tête. Il allait, là bas, s'appliquer à étudier et à connaître le caractère et la tactique des romains comme s'il se préparait déjà à les combattre.

En Espagne, il ne tarda point à se tailler une belle renommée par son énergie, son activité infatigable, sa modestie et sa valeur au combat. Scipion Emilien, chef de l'armée romaine, avait une confiance absolue en lui. Sans doute, retrouvait-il en lui l'image du grand Massinissa. Pour toute opération délicate et périlleuse, on faisait appel à Yougourtha qui, volant de victoire en victoire, devint la terreur et l'idole des romains.

M. Chérif SAHLI, « Le message de Yougourtha »

¹ chérissaient=aimaient.

² **répulsion**=dégoût.

QUESTIONS

I. <u>COMPREHENSION</u>: (14 points)

- 1. L'auteur de ce texte est :
 - un journaliste
 - un romancier
 - un historien.

Recopiez la bonne réponse.

- 2. Relevez dans le texte 4 termes ou expressions qui renvoient à « roi ».
- 3. Relevez dans le texte 4 sports pratiqués par Yougourtha.
- 4. Yougourtha est modeste. Quelle est dans le texte la proposition qui exprime cette idée?
- 5. Miscipsa veut se débarrasser de Yougourtha.
 - il veut le tuer
 - il veut le mettre en prison
 - il veut l'envoyer à la guerre.

Recopiez la bonne réponse.

- 6. Yougourtha accepte de combattre pour les romains :
 - pour montrer qu'il aime les romains.
 - pour faire plaisir à son oncle.
 - pour étudier les stratégies guerrières.

Recopiez la bonne réponse.

7. "Le peuple se <u>révolterait</u>......"

Le conditionnel est employé ici pour exprimer :

- une éventualité
- un souhait
- un regret

Recopiez la bonne réponse.

- 8. "Bien qu'il eût la gloire de <u>les</u> surpasser " paragraphe 2
 - "Tous le chérissaient" paragraphe 2
 - "... se préparait déjà à les combattre ... " paragraphe 7

A qui renvoient les pronoms "les", "le ", et "les"?

- 9. Yougourtha a compris que son oncle voulait l'éloigner. Quelle phrase du texte le montre?
- 10. Proposez un autre titre à ce texte.

II. PRODUCTION ECRITE: (6 points)

Traitez un seul sujet au choix.

- Vous êtes membre de l'association culturelle de votre lycée.
 Pour la rubrique « Nos héros » de votre journal scolaire, faîtes connaître Yougourtha à vos camarades en rédigeant en 100 mots le compte rendu objectif de ce texte.
- 2. Beaucoup de jeunes sont tombés au champ d'honneur durant la guerre de libération. Dans votre village, les anciens ne cessent de vous raconter les faits héroïques de l'un d'eux. Faites connaître un de ces héros de la révolution en le présentant brièvement et en racontant un de ses exploits.

Votre texte paraîtra dans le journal du lycée dans la rubrique « Des hommes et des faits ».

الإجابة النموذجية وسلم التنقيط لموضوع امتحان شهادة البكالوريا دورة : جوان 2013

اختبار مادة : اللغة الفرنسية الشعبة : ع ت + ر + ت ر + ا ت المدة : 02 سا 30 د

العلامة		عناصر الإجابة (الموضوع الاول : LA CELEBRATION)		
مجموع	مجزأة	(LA CELEBRATION: 032) '455		
		I. COMPREHENSION: (14 points)		
1	1	1. journaliste		
1	0.25x4	2. indices de 1 ^{ère} personne (nous – nos) + modalisations (généreuses – enrichissantes – généreusement – pesant – vraiment – inutiles – dommage – insignifiant – mémorables)		
1	0.25x4	3. les mariages / les fêtes de fin d'années / les fêtes religieuses / les anniversaire.		
1.5	1.5	4. on = nous – amis – parents – proches – famille – les gens – tout le monde.		
2	1+1	5. leur = les êtres aimés - les = amis		
1.5	0.25x 6	6. pour : réunion des proches / fuite de la monotonie / expression d'un amour. contre : obligation d'offrir / retombée dans l'oubli / manque de sincérité.		
1	1	7. souhait.		
2	1 + 1	8. chaque anniversaire montre qu'on a muri. chaque anniversaire nous incite à plus de dépenses.		
1.5	0.5 + 1	9. contre. Justification: - fêter un anniversaire n'est –il pas hypocrite? - c'est vraiment un gaspillage d'argent et de cadeaux inutiles. * accepter: « pourquoi faut-il attendre? »		
1.5	1.5	10. Accepter tout titre en relation avec la problématique du texte (pour et contre les célébrations)		

العلامة		عناصر الاجابة (الموضوع الثاني: YOUGOURTHA)
مجموع	مجزأة	I. COMPREHENSION: (14 points)
1.5	1.5	1. un historien
1	0.25 x 4	2. la cour – le trône – un prince – le luxe – un prince.
1	0.25 x 4	3. monter à cheval (l'équitation) — lancer le javelot (athlétisme) — la course — la chasse.
1.5	1.5	4. c'était de lui qu'il parlait le moins.
1.5	1.5	5. il veut l'envoyer à la guerre.
1.5	1.5	6. pour étudier les stratégies guerrières.
1.5	1.5	7. une éventualité.
1.5	0.5 x 3	8. les = jeunes gens de son âge. le = Yougourtha. les = les romains.
1.5	1.5	9. Yougourtha ne devait pas être dupe d'un tel calcul.
1.5	1.5	10. Accepter tout titre en relation avec la problématique du texte (les qualités de Yougourtha: un guerrier redoutable – un prince extraordinaire etc).

تابع الإجابة النموذجية الأصل لموضوع امتحان شهادة البكالوريا دورة : جوان 2013 الحتبار مادة : اللغة الفرنسية الشعبة : ع ت + ر + ت ر + ا ت المدة : 02 سا 30 د

II. PRODUCTION ECRITE (6 points)

Sujet 1 (COMPTE RENDU)	
1. Organisation de la production	0.05
Présentation du texte (mise en page)	0.25
Présence de titre et de sous titres	0.25
Cohérence du texte	0.25×4
- Progression des informations	
- absence de répétitions	
- absence de contre sens	
- emploi de connecteurs	0.5
structure adéquate (accroche – résumé - commentaire)	0.5
TOTAL	02
2. Planification de la production	
Choix énonciatif en relation avec la consigne	1
Choix des informations (sélection des informations essentielles)	1
TOTAL	02
3. Utilisation de la langue de façon appropriée	
Correction des phrases au plan syntaxique	1
Adéquation du lexique à la thématique	0.25
Utilisation adéquate des signes de ponctuation	
Emploi correct des temps et des modes	0.25
Orthographe (pas plus de 10 fautes pour un texte de 150 mots environ)	0.25
	0.25
TOTAL	02

C + 10 (TCCAT)	
Sujet 2 (ESSAI)	
1. Organisation de la production	0.05
Présentation du texte (mise en page selon le type d'écrit demandé)	0.25
Cohérence du texte	
- Progression des informations	
- absence de répétitions	0.25×4
- absence de contre sens	
- emploi de connecteurs	0.25×3
structure adéquate (introduction – développement – conclusion)	0.2
TOTAL	02
2. Planification de la production	
Choix énonciatif en relation avec la consigne	1
Choix des informations (originalité et pertinence des idées)	1
	02
3. Utilisation de la langue de façon appropriée	
Correction des phrases au plan syntaxique	1
Adéquation du lexique à la thématique	0.25
Utilisation adéquate des signes de ponctuation	0.25
- Emploi correct des temps et des modes	0.25
Orthographe (pas plus de 10 fautes pour un texte de 150 mots environ)	0.25
TOTAL	0.23

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

المدة: 02 سا و30 د

اختبار في مادة: اللغة الأمازيغية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

ثو غالبن*

أساقتاس ذ وآزفان ئ قاقيم رامضان ذي فرانسا. شران ثماديث ن ومازوارو ن ثمانزوث، فورولو أك ذ وماس دادار وآلاند سى ثر أوسا، راند ثاسار عوفت ن نغاطين. مى دكانان غار وقاوار ملالان ئذ ن حسان مّيس ن خالتيثسان. حسان ً نقالا غار دادار، نحاركاس ماق تأس باتاس: " أزّال، زوار ؤماك غار واخّام، بوسيد باباك".

تراري بادّان ذاق وامّاس ن وأبريذ أم وا يأتواسار عان ؛ رازمان ثيطاوين نسان ذ يقامّاش نسان، عَوقتنان، قيتش ؛ ئناقتار فورولو، أم وا يار آبزان. ئسار حاس تاز لا غار واخام، يادجا ؤماس ذ واقال ناس.

ذائق واتحام، يوفا ياماس تصاتاع، ثاتتُقابال تنيجيوان، باباس تضان فالاس تعشيران، ترفازان، تيساذنان، أم وفروخ ن تزيز وي. نقا أبريذ غارس، مسالامان. شا ن تامغارث، ثاستيوال غار رامضان:

" ياَوّاَضَ ذ ارقاز فورولو، أ ثيهانتا رابتي". - أ شاميهانتا رابتي، ياقتاعمار. يارني ذ لغارز. أقلاي ميراغ.

- شاكة ؟ ئمبر اي تَقْآدر آذ خبر ن زيك

وين أهاذ ياقتلان ذي رامضان، أثياف ئباداً فتوت: ئرابًا ئمافتان، ياطيقات، أكسوم ناس ئمال، وذام ناس ذ از ٱُقْتَاغ، أم وا وَر يُوضّينانش! وا يالان غارس وا سياتيلين ذي باري ياستافساي فالاس. رامضان تواعا فألأسان س وأوال بيزيضان

ئحير فورولو مالمي أذيار في لغاشي باش أذ ياقتيم ناتتا تتواشولت ناس. ثبط ناس غار ثاغمارت، مانى ثالا ثفاليزيثُ ذ و ٱقراب س نات أس اياتماس، مي زرين أناقار و يارقا، رقان وولاو أن نسان سي لفارح.

مُمار ذين، يأكساد رامضان سأق واقراب قيتش ن لقاش، يابضاهان ئ ثاروا ناس نشات نشات ذين ذين ئر ٱضنيهان. أخام مارّا يأبـّار قاش، فأرحان أس لآن. سبين يامتار فأد سي ثفاليزت أماقون، ن لأكواغاض تواقتنان. ذ لأكواغاض ن وأخيام ن شراع ن ثامدينت ن"la Seine". ياتاسان: " أَقَالَتْ نُميراً أَعَادَيس نُنوغ ! يار رُام ثيقاً فالين ن ثقامجات ناس، يارني يانتا: " أقالت أماك ئ بيشار قان! "

ما تــّاكابتانيث ئ ثيسخادمان ئلازميت شراع باش أسثوش لبانصيو ن7080 دورو يال ثلاثا ن ييوران. ثَأْتَاس فاضما: " أطان أيا ناك تواغيت ئ ذاَق يألا تفاع ".

ثاسوقتیلت مولود فأرعون ، میس ن وقالیل . .2004 H.C.A سب، 105

*ثوغالين: ثيو ٱليّين/ ثاو ٱليّث

ئسـاًستانـان

I. ثيڤزين وضريس: (06)

1- ئنيد ماتاً يالا ونالاس ذي ثسادارث ثامازواروث. ماغار؟

2- فورولو يأفراح س واساي ن باباس. وثلاياد ف تأمسال ئ ثيسفار حان.

3- فأضما ثأفر آح أك ذ نأت أث مات ع ديام الأن وايا ذاق وضريس؟

4- كساد ساق وضريس أكتاوال ن تف أكل.

5- بأدّال أوال يوزير أن س وأكنيو نأس ئذن وساتال "أفلاي مّيراغ".

II. ثوثلایث: (06)

1- سلاكض ثافييرث: "رقان وولاوان نسان سي لفارح ".

2- وُشد ثالغا ثاحاً رفيث ن ومياق: "نَناَقْتَاز".

III. أسانفالي س ثيرا: (08)

أريد وليس، ئذاق أها ثوثلاياذ ف لغوربات جار زيك ذيميرا.

Tuyalin

Aseggas d uzgen i yeqqim Remdan di Fransa. Yiwet n tmeddit n umezwaru n lexrif, Furulu akked gma-s Dadar uyalen-d seg lexla, nehren-d tajlibt n tyetten. Mi d tikli ad awden taddart, mlalen-d Ḥsen, mmi-s n xalti-tsen. Ḥsen yekna yer Dadar, yebbi-t di thenket-is, yenna-as: "Azzel, zwir gma-k s axxam, yusa-d baba-k".

Arrac bedden di tlemmast n ubrid am wid isereen; ldin allen-nsen d yiqemmucen-nsen, ggugmen. Yiwet n teswiet, ijelleb Furulu, amzun di tnafa i d-yefrawes. Iserreḥ-as d tazzla s axxam, yeǧǧa gma-s d lmal-is.

Deg uxxam, yufa yemma-s tcebbeḥ, tettmagar imzuren, baba-s zzin-as lǧiran, irgazen, tilawin, am uglaf. Iga abrid yer-s, msalamen. Yiwet n temyart, tenṭeq yer Remḍan: «Yewweḍ d argaz Furulu, ad t-yeḥrez Rebbi.

- Ad kem-ihenni Rebbi. D tidet megger. Yerna d lawan, aql-i fukkey.
- Keččini? Tura i těehded wala zik! »

Win ara imuqlen mliḥ di Remḍan, ad t-yaf ibeddel nezzeh: irebba leḥnak, yebbelbel, taksumt-is mellulet, udem-is d azeggay; amzun urǧin yuḍin! Kra n win yescan win i as-yettilin deg *Lpari* yesteqsa fell-as. Remḍan yettarra-d yef tuttriwin-nsen s wawal azidan.

Iḥar Furulu melmi ara ffɣen lɣaci akken ad yeqqim netta d yimawlan-is. Tiṭ-is ɣer yiwet n teɣmert, tεennec dinna yiwet n tbalizt d yiwen n uqrab. S netta s watmaten-is, mi walan aneggaru yekka tawwurt, nneflen wulawen-nsen seg lferḥ.

Imir, yejbed-d Remḍan seg uqrab cwiṭ n lqec, yebḍa-ten i warraw-is, yiwen yiwen. Din din, lsan-ten. Axxam merra yebberqec, ferḥen akken llan. Syin yeddem-d si tbalizt ameqqun n lekwayeḍ, ttwacudden am uttafttar. D lekwayeḍ n uxxam n ccreɛ n temdint n "la Seine ".Yenna-asen: «Walit tura aɛebbuḍ-iw! Yekkes tiqeffal n tsedrit-is, ikemmel awal-is: muqlet amek i yicerrgen! »

D acu kan takebbanit i t-yesxedmen yelzem-itt ccreε ad as-d-tettak *αpansyu* n wazal n 7080 n duru yal tlata wayyuren.

Tenna-as Faḍma: " Aṭṭan-ayi inek d tawaɣit ideg yella nnfeɛ! »

Mouloud FERAOUN, Mmi-s n yigellil, HCA, 2004, sb. 105.

Isestanen:

I. Tigzi n udris: (06)

- 1- Ini-d d acu-t unallas deg tseddart tamezwarut. Ayyer?
- 2- Furulu yefreh s tisin n baba-s. Mmeslay-d yef temsal i t-yesferhen.
- 3- Fadma tefreh ula d nettat. D acu i d-yemmalen aya deg udris?
- 4- Suffey-d seg udris aktawal (iger n umawal) n tfekka.
- 5- Beddel awal yettuderren s uknaw-is (urwas-is) ilmend n usatal: 'Aql-i fukey!'

II. Tutlayt: (06)

- 1- Sled isegran n tafyirt-a: nneflen wulawen-nsen seg lferh.
- 2- Efk-d talya taherfit n umyag "yefrawes".

III. Asenfali s tira: (08)

Deg tallit n Urumi, uqbel tagrawla n 1954, Remḍan yuɣal-d seg Fransa, yegla-d s waṭṭan. Maca, yewwi-d apansyu. Xersum d at uxxam ad rwun aɣrum. Awal tenna-t-id Faḍma, "d tawayit ideg yella nnfeɛ!"

Aru-d ullis ideg ara d-temmeslayed yef lyerba gar zik d tura.

7:4.181

•00•6 Ø÷ΛΛ÷Ι Λε ΤΙ÷ΓΓ•ΘΤ Ι :Ø02Λ •Γ :εΛ 2Θ÷Ο*÷Ι; ԱΛ2Ι •ԱΙ÷Ι-ΙΘ÷Ι Λ Π2Τ÷ΓΓ•6-ΙΘ÷Ι, XX:XΓ÷Ι. Πε:÷Τ Ι Τ÷Θ:ε*Τ, ΕΙ*Ημ ÷Φ ΙΕ:Ο:ΙΙ:, •ΓΧ:Ι Λε ΤΙ•ΙΓ• ε Λ-Π÷ΙΕΟ•:÷Θ. 2Θ÷ΟΟ÷Λ-•Θ Λ Τ•ΧΧΙ• Θ •ΧΧ•Γ, Π÷ΧΧ• ΧΓ•-Θ Λ μΓ•Ι-2Θ.

Λ÷Χ :ΧΧ•Ε, Π: Δ• Π÷ΕΕ•-Θ †Ε÷ΦΦ÷Λ, †÷††Ε•Χ•Ο 2ΕΚ:Ο÷Ι, Φ•Φ•-Θ ΧΧ2Ι-•Θ UZ2O•Ι, 20Χ•Χ÷Ι, †20•:21, •Ε :Χ0• Δ. 2Χ• •ΦΟ2Λ Υ÷Ο-Θ, ΕΘ•0•Ε÷Ι. Π2:÷† 1 †÷ΕΥ•Ο†, †÷19÷Ε Υ÷Ο Ο÷Ε=•Ι: "Π÷:÷Ε Λ•ΟΧ•Χ Δ:Ο:0:, •Λ †-Π÷ΛΟ÷Χ Ο÷ΦΦ2".

- • A K+E-20+1/2 O+002. A +2A++ E+VV+O. N+O1• A U•:•1, VU2 JE: KK+Y.
- K+66818? +: O. 8 + X+0 N+E: · U. X8K !"

ENO DECIL: EXILE OF DESCRIPTION OF REST OF THE NOTION OF STREET OF A TREE SO THE SOURCE OF STREET OF STREE

2E20, N+IO+1-1 O+E-1 O+X : VO+O G:2Y 1 NV+GG, N+OE+-++1 2 : • OO+:-20 N2:+1 N2:+1. A21 A21 NO+-++1. • XX+C C+OO+ N+OO+OV+G, X+OA+1 • KK+1 N+1. ON21 N+AA+C-A O2 +O+N2X+ • C+VV:11 N+K:• Y+E, ++:• G:AA+1 • C:++• X++OC+-O. A N+K:• Y+E 1 : XX+C 1 GGO++
1 ++CA21+ 1 "la seine ". N+10-•O+1: ":• N2+ +:O+ • • ++OO:E-2:! N+K+O +2V+XXII-• 1
+O+AO2+-EO, 2K+CC+N • •• N-EO: C:VN++ • C+K 2 N2-C+OOX+1!"

++110-00 DE-EC : " •4401-012 SI+K A +0:048+ SA+X 11+1110 11DE++! "

20*07-141:

I. 72**%%21:E**020:(06)

- 1- 212-1 1 C:-+ :1 LLL O 1 T O 1 C X O 1 TY O ?
- 2- 15:0:4: 11:15:0:4 0 +2021 1 0.0.0.0. 5:04.11 4:15 +250.4 2 +-11:015:0 6:1.
- 3- JE . EE. + + JEO + K : U. A 1+++++. A . E: & A-11+EE. U+1 . 11. A+X : EO & O?
- 4- O:JEJE*Y-1 O*X :EOSO R+ · · · · · (SX*O 1 : E · · · · · ·) 1 + JE* R R · .
- 5- O&AA&U •:•U 11&++:A&OO&1 O:R1•:-80 SUL&1A 1:0•+•U: '•ZU-2 IL:R&Y!'

II. +:+U•11+: (06)

- 1- OURE 204X0-11 +4 JEN2O+-+: 114 JEU/1 :11 + 141-1041 OAX UJE4OX.
- 2- *JEK-A +•UY• +• K*OJES+ 1:EN• X "11. JEO• ** O".

III. • 0 + 1 III • 0 + 2 O • : (08)

•O:-A: ULEO EA&X •O • A-+&[[&OU • 17 &E Y&JE UY&O O • X • O XEX A +: O •.

الموضوع الثاني

ثاديانث ن لويزا

جار ن يذورار ن لاقبايال ئعالان، ثاغميد ثناوارث تامالالث؛ ئسام ناس لويزا. تاهوث ياحلان قوت ثيف ثيساننان ن وقاوار ناس أس لانث. أس مي ثاموث ياماس ثادجيتيد غارس أرباعطاش (14) ن يساقاسان ذاق يلا (لاعمار) ناس. باباس ئعاواذ أرشال، لويزا ثوالا تاربيبث. أس مي ثاخلاص عاشرين (20) ن يساقاسان عارماند فالاس ئنالقفان (ئخاطابان)، يوساد بيدج ن وماران ئعادجباس؛ ثقابليث، ثارني أساقاس ياويت. ثوري ئذاس ثاهيويث ثساماس: زاهرا.

أس مي هأنتان ووذان رباح ذ لأهنا ف لويزا، بنون تتوثلايان؛ قتاران فالاس أوار ثقي. ثاخلاًض ثوثلايث أيا غار ورقاز نتاس، يومان؛ ثاغضال أخانفوف نتاس، ياكتار يار عين، ثادجا ياليس، ثوالا غار ثادتارث ن باباس، ثاقيم أساقتاس ئخاطبيت ويشت. ثارفاذ أعانيس، ثوري أهو، أمدا ياخس رابتي أنيدوم وارشال نتاس، ثالتقاد، ثوالاد غار يفاستان ن ثماطتوث ن باباس؛ ثاروا ثار وقي (لامرار)، فرينيت ذي ثادارث توال ن وابريذ غارس طاقث، ثاقيم ذيس ثلاثا ن يساقاسان س ثيشث ن ثقاندورث.

وستان زارتین، لویزا ثاتتزایتار ثمادورث فالاس، شان واس ثوالا أم ثناهبولث، ثاکتار ثاروال سي لحابس نتاس، ثانس، ثاتتزال ور ثارري ماني، ألدي ثانخا (ثاتعاب)؛ ثوضي، یوفیت یبشث، ئرافذیت غار ستبیطار، یادجیت ذین و یروح، می دوسین ئماجتایان (نطبیبان) داوانیت، ستافسانت؛ ثاحکاسان ثانوست أماك ثالا و اطتاوان نتاس تشار شوران س یماطاوان. كسان فالاس أكانبیل، لاغان ئ وا تیعاونان یوسید. می یاسلا أك ذناتا ثاقصیت، ثغاضیث؛ یاویت غارس.

شرا ن واس تأخس لویزا لأكواغاض، ثروح غار وقاوّار ناس باش أهانیتاسارق. ذاق وبرید ثاملیل ئذ ن یالیس، ول ماعقالانش، جاماك ساق واس مي نادجا و نارریش، أك زاهرا ول ثاسینش یاماس، ول ثارري لا ثاموث لا ثانادار. أیث وقاوّار ور تونش ثاناوّارث ع دیرابا وادرار، سیوضان لاخبار ع زاهرا، ناناس: یامام هاتا ذاق وقاوّار. ثاهوث ثافراح، ثومان ول ثومینش، ثورزي ألدي توفا، ثیلا، و ثامقار فالاس ثاسونینی، موثانث سی لفارح. می ثاکار لویزا أنروح ثاسیوال غارس یالیس: «أ یاما ول ثوفید مانی أتروحاد؛ أتروحاد ئذی، أتادراد ذاق وخام ئنو». ذاق ومازوار و ثاقوما، می زرین و وسان ثافبال، و ثروح غار یالیس ثاسامد وسان ناس.

أمّا قتار آن: «أسّ بيفآن وستان وكتآل، ذ اسّ ماني أتتآمليل ثسا ئذ ن وا تتيورين».

نورا باَلڤاسمبيا اُساَنفالي س ثيرا ذي ثمازيغث. 4.C.A 2006.2007 سب 58-59

ئساستانان:

I- ثيڤزي ن وضريس: (06)

- 1- ماتتا يوغان ثاماتورث ن لويزا ألمي ثاخلاص غار والاف؟
- 2- كساد ساق وضريس سانتات ن ثافيار ياتوثلايان ف ووسان نقابحان ثادار لويزا.
 - 3- وَشد أَناماكُ نَ تَأْفَييرِ ثُ أَيا: "ثَانَتْز آبَار ثَمَاتُور ثُ فَالاّسْ".
 - 4- سارقاد سى شسادارث ثامازواروث أكثاوال ن ثهوسكى (زين).

II- ثوثلایث: (06)

- 1- سلاّض ثافييرثا: ماعقالاًنث.
- 2- قتآن ثافييرتُ أيا س ثاسغونث ئواثان جار ثبيتا: (أك، جاماك، كيس ما) ثينيذد ماتتا ثاستانفالاي. تتغير أن ووذان سي لويزا............ ژرين رباح ذ لاهنا فالاس.

III- أسانفالي س ثيرا: (08)

لويزا ثالاًف ثادجًا يأليس تاماً (نث (ذي دوح). أريد وليس ف يأليس: زاهرا، سأق واس مي تتادجًا.

Tadyant n Lwiza

Ger yidurar n leqbayel ɛlayen, temmvi-d tjeǧǧigt mellulen, isem-is Lwiza, d taqcict icebḥen aṭas, tufrar vef tullas n taddart-is merra. Asmi temmut yemma-s teǧǧa-tt-id tesɛa rebɛeṭṭac n yiseggasen deg leɛmer-is. Baba-s iɛawed zzwaǧ, Lwiza teqqel d tarbibt. Asmi tessaweḍ ɛecrin n yiseggasen, ṭṭuqten-d fell-as yinexḍaben; yusa-d yiwen n yilemzi iɛǧeb-as, teqbel-it, aseggas kan tedda, tesɛa-d yid-s taqcict tsemma-as Zehra.

Asmi walan lvaci izad rrbeḥ d lehna vef Lwiza, usmen, bdan heddren, gren-d fell-as ayen ur texdim, awal yewweḍ ver umezzuv n urgaz-is, dva yerfa ivil d sseḥ, tevḍel nnif-is, yekker yebra-as, teğğa-n yelli-s deg dduḥ, tuval-d s axxam n baba-s teqqim aseggas yuval yusa-d yiwen ixḍeb-itt, yuv-itt, tuval terfed s tadist tesɛa-d aqcic. Imi Rebbi irad akka zzwağ-is ur idum ara tennebra-d, tuval ver yifassen n tmeṭṭut n baba-s; terwa lemrar. Gren-tt deg yiwet n texxamt tama n ubrid, d tamecṭuḥt tesɛa taḍwiqt, teqqim deg-s tlata n yiseggasen s yiwet n tqendurt.

Ussan zerrin, Lwiza tettidyiq ddunit fell-as. Yiwen n wass tedra yid-s am tmeslubt, terwel-d seg lhebs-is, tettazzal ur tezri anda, armi tt-yerza facal, tevli ur d-tewwi s lexber, yufa-tt-id yiwen yerfed-itt ver sbiṭar, yeğğa-tt din iruḥ. Mi d-usan yimesujiyen, dawan-tt, syin steqsan-tt, teḥka-asen-d taqsiṭ akken tella, allen-is ttcercurent d imeṭṭawen. Dva kksen-as avbel, kkren ssawlen i umdan-nni i tt-iɛawnen yusa-d. Mi yesla ula d netta taqsiṭ, tvaḍ-it, yekker ijmeɛ-itt tettidir ver twacult-is.

Yiwen n wass tuḥwağ Lwiza lekwaveḍ, terza ver taddart-is n zik akken ad ten-id-tesuffev. Deg ubrid-is, temlal d yelli-s maca ur myeɛqalent ara, acku seg wasmi i tt-in-teğĕa deg dduḥ ur tt-twala, ula d Zehra werĕin tessin yemma-s ur teẓri temmut nev tedder. At taddart ur ttun ara tajeĕğigt i d-irebba udrar-nsen, ssawḍen lexbar ver Zehra, nnan-as yemma-m atta deg taddart. Taqcict yeffev-itt leɛqel, tumen ur tumin, tnuda armi tt-temlal, tmuger-itt s yimeṭṭi, tḥennec-itt ver tama-s, nneflent seg lferḥ. Mi tekker Lwiza ad truḥ tenṭeq vur-s yelli-s: "A yemma ur tufiḍ sani ara terreḍ, ad tedduḍ yid-i, ad teiceḍ deg uxxam-iw". Tazwara tugi, armi ɛeddan wussan, tuɣal teqbel, truḥ ver yelli-s tkemmel yid-s ussan-is.

Akken qqaren: "Anwa ass yifen akk ussan ... Mi ara temlil tasa d wayen turew".

Nora BELGASMIA.

Asenfali s tira di tmazivt,

H.C.A 2006- 2007. Sb: 58-59

Isestanen:

I. Tigzi n udris: (06)

- 1- D acu i ihudden tudert n Lwiza, imi tewwed armi tennebra?
- 2- Kkes-d seg udris snat n tefyar i d-yemmalen yir ussan i tedder Lwiza.
- 3- Efk-d anamek n tefyirt-a: "Tettidyiq ddunit fell-as".
- 4- Suffex-d seg tseddart tamezwrut aktawal (iger n umawal) n thuski (ccbaḥa).

II. Tutlayt: (06)

- 1- Sled isegran n tefyirt-a: "Myeeqalent".
- 2- Qqen tafyirt-a s tesyunt iwatan ger tiyi: (Ulamma, acku, yas akken), temleḍ-d d acu i tessenfalay:
 - Usmen medden yef Lwiza ... walan izad rrbeḥ d lehna fell-as.

III. Asenfali s tira (08)

Lwiza tennebra-d, teğğa yelli-s deg dduḥ.

-Aru-d ullis ideg ara d-tessugneḍ (d-txayleḍ) amek i d-tekker Zehra seg wasmi i tt-teǧǧa yemma-s.

4.VU-14 1 1:5%.

•OLS:•N•1 NY•GS SX•A OOD+A A N+O1• Y+X N:SX•, :OL+1, OA•1 Ø+AAO+1, XO+1-A X+N1-•O
•N+1 :O ++XASL, •:•N N+:+E Y+O :L+XX:Y 1:OX•X-SO, AY• N+OX-• SYSN A OO+A, ++YE+N NSXSO, N+KK+O N+OO•-•O, ++XX•-1 N+NS-O A+X AA:A, +:Y•N-A O •XX•L 1 ؕؕ-O ++ZZSL
•O+XX•O N:Y•N N:O•-A NS:+1 SXE+O-S++, N:Y-S++, +:Y•N ++OX+A O +•ASO+ ++O••-A •ZSSC.
SLS O+OOS SO•A •KK• XX:•X-SO :O SA:L •O• ++N+OO-A, +:Y•N Y+O SX-•OO+1 1 +L+YY:+ 1
ؕؕ-O; ++O:• N+LO•O. XO+1-++ A+X NS:++ 1 ++XX•L+ +•E• 1 :OOSA, A +•L+SY:A+ ++O*•
+•Y:SZ+, ++ZZSL A+X-O+N•+• 1 NSO+XX•O+1 O NS:++ 1 +Z+X1.O+.

Π2:41 1:000 4: Λ:• Χ U:2Χ• U+Κ:• Υ+Ε, ++ΟΧ• Υ+Ο +•ΛΛ•Ο+-20 1 Χ2Κ • ΚΚ+1 •Λ ++1-2Λ
++0: ΣΙΕ+Υ. Λ+Χ : ΦΟ2Λ-20 ++ΕU•U Λ Π+U2-Ο Ε•Ε• :Ο ΕΠ+ΦΕ•U+Η •Ο•, •ΕΚ: Θ+Χ :•ΘΕ2 Ε ++
21-+ΧΧ• Λ+Χ ΛΛ:Λ :Ο ++-+:•U•, :U• Λ Χ+ΘΟ• :+ΟΧ21 ++ΘΩ21 Π+ΕΕ•-Ο :Ο ++ΧΟ2 ++ΕΕ:+ 1+Υ

++ΛΛ+Ο. •+ +•ΛΛ•Ο+ :Ο ++:1 •Ο• +•Ι+ΧΧ2Χ+ 2 Λ-2Ο+ΦΦ• :ΛΟ•Ο-10+1, ΘΟ•:Ε+1 U+ΧΦ•Ο Υ+Ο

Κ+ΘΟ•, 11•1-•Ο Π+ΕΕ•-Ε •++• Λ+Χ +•ΛΛ•Ο+. +•Σ22Ε+ Π+ΣΣΕ+Υ-2++ U+ΦΕ+U, +:Ε+1 :Ο +:Ε21,

+1:Λ• •ΟΕ2 ++-++ΕU•U, +Ε:Χ+Ο-2++ Ο Π2Ε+ΥΥ2, +Λ+11+Ε-2++ Υ+Ο +•Ε•-Ο, 11+ΣΕ+1 Ο+Χ

UΠ+ΟΛ. Ε2 ++ΚΚ+Ο U:2Χ• •Λ +Ο:Λ ++1Υ+Σ Υ:Ο-Ο Π+U2-Ο : "• Π+ΕΕ• :Ο +:Σ2Ε Θ•12 •Ο•

++ΟΟ+Ε, •Λ ++ΛΛ:Ε Π2Λ2, •Λ +*2Ε+Ε Λ+Χ :ΧΧ*•Ε-2:". +•Χ:•Ο• +:Χ2, •ΟΕ2 *+ΛΛ•1 :ΘΘ•1, +:Υ•U

++ΣΦ+U, +Ο:Λ Υ+Ο Π+U2-Ο +Κ+ΕΕ+U Π2Λ-Ο :ΘΟ•1-20.

•KK+1 ZZ•O+1: "•1:• •00 NSJE+1 •KK :00•1... ES •O• ++EUSU +•0• A:•N+1 +:0+:".

180 • OHR • OTH • OTH • OHR • OTH • AE HE • XEYH H.C.A 2006 - 2007. OO: 58-59

20+07-141:

I. 72XX2 1 :E020 : (06)

- 2- KK*O-1 O*X :EO20 01-7 1 7 = JEN-0 2 1-N = EL = U = 1 N = 0 :00-1 2 7 = 1 1 1 2 X = .
- 3- *JEK-A ·I·E*K I +*JENSO+-: "+*++SENSE AA:18+ JE*W-.O".
- 4- O:III:47-1 O&X +O&11.00+ +.02*:00+ .K+...(2X&01:[....()1+0:0K2 (CCO.C.).

II. +:+11.17: (06)

- 1- OURE 20-X0-11+ DETISO+-: "ETT- "ETT- "ETT-
- 2- EE&1 + DEMEO+- + ** O ** It 2: + 1 X* O + 2M2 : (*U EE , • K *), + * EU * E A A C: E + * O O * | D N :
- -: O[&] [& A A &] [Y &] [U & S & :• U] S & A O O O & A A U & Ø] JE & U U • O.

III. •0*17E•112 @ 720• (08)

U: EX. +: 11: 00 -- 1. +: XX - 11: UUS-0 1: X 11: 1.

-•O:-A:UU2O 2A*X •O• A-+*OO:XI*E (A-+X*MU*E) •E*R 2 A-+*RR*O X*ØO•O*X:•OE2 2++-+*XX• N*EE•-O.

علامة		عناصر الإجابة "توغالين"	محاور
المجموع	مجزأة	G-3	موضوع
	0.5 0.5	1- أنالاس ذي تسادارت ثامازواروث ذاز غاراي. -لاخاطار ئمياڤان فثين غار ووذام ويس كراد.	l نیفر <i>ي</i> ن ضریس ضریس
	0.5	2- يأفرآح س لقاش أساد يأوي سي فرانسا (أروض)	
06	1	3- أديامًا لأن لفارح ن فاضما ذاق وضريس : ثصاتاً ع ، ثاتقابال نيجيوان .	
	0.75	- ثَانَّاس فاضما: " أطَّان أيا نَاكُ تُواغيت يَ ذَاق بِالْا تَفَاع ".	
	0.25×9	4- أكتاوال ن ثفاكًا: ماق ، أطاو آن ، ئقاماش ، ئماقان ، أكسوم ، و أكتاو أن ، أعاديس ، ثبط ، والاو آن.	
	0. 5	5- أباتال ن و او ال يوزير آن س و آكنيو تاس ئذ ن وساتال " أقلاي مير آغ ". " أقلاي مير آغ ". مأغر آغ ، فعامر آغ ، وقيغ ، فوكتاًغ	
	0.5 0.5	1- ثاسلاًط ن ثافییرث : " رفْآن و و لاو آن نسان سی لفارح " رقْ : د امیاق یافتین غار ییزری ذ اساغرو ن : د اماثار و ذماوان د اماسکار (اسانتال،امیقاو)	II ٹلایٹ
06	1 1 0.5 1	وولاوأن: ذاسامّاذ ئمساڤزي نسان: ذامقيم أوصيل أسامّاذن يسام نسان: ذامقيم أوصيل أسامّاذن يسام سي: ثانزاعث لفرراعث لفارح: أساماذ أروسريذ (أسامّاذس ثانزاعث)	
	1.5	2- ثالغا ثاحاً رفیث ن ومیاق"ئناقاً ز": ناقاً آز	

لامة		ابه التمودجية وسنم التنفيط تماده. النعه الأماريغية الامتحال سنهاده البخالوريا د د . :	محاور
المجموع	مجزأة	عناصر الإجابـــة	الموضوع
	1	- أضريس أذ بيلي ذ ولتيس - ولتيس أذيبات ف كراض ن يمورآن أذيبلي وفاريس يآحلا؛ ما:	III أساتفالي س ثير ا
08		, p	
	0.5 0.5 0.5 0.5 0.5	 الماتواغراي س وآسهال أسابتار يازديق (ثالونين، ثيسادارين) أسية أز ئواثا؟ ثيفيار رسانت ف يلوقان ن تجارومت؟ أماوال يوقير ئذ ن وسائتال؟ ئلوقان ن تيرا تواضافران. 	
	0.5 0.5 0.5 0.5	 2. یازضا أمالک ئلاق تودسان واضریس تسادارین؛ توقا جار شادارین ثاتساهال ثیفزی؛ شمارران بیمیافان وفیرانت ئذن ثیلاوت؛ اسامراس نیامالان ن واکود ذیان واذاق فارزان. 	
	0.5 0.5 0.5	 3. يوڤير ئذن وسانتال ئ دينتواوشان - أضريس ذولتيس يامدان؛ - أضريس ياتوابنا ف ثغاستان وولتيس؛ - أضريس أذيوڤير ئذن وسائتال 	

العلامة		عناصر الإجابة	محاور
المجموع	مجزأة	* Tuyalin*	محاور الموضوع
	0.5 0.5	1- Deg tseddart tamezwarut anallas d azyaray, acku imyagen ftin yer wudem wis krad.	l Tigzi n
	0.5	2- Ayen i yesferḥen Furulu d iceţţiḍen i as-d-yewwi baba-s seg Fransa.	uḍris
		3- Ayen i d-yemmlen lferḥ n Faḍma :	
06	0.5x2	- Tcebbeḥ, tettmaggar imzuren.	
	0.75	- Mi d-tenna: "aṭṭan-ayi-inek d tawayit ideg yella nnfeε! »	
	0.25x9	4- Aktawal n tfekka : taḥenket, allen, iqemmucen, leḥnak, taksumt, udem, aɛebbuḍ, tiṭ, ulawen.	
	0.5	5- Abeddel n wawal yettuderren s uknaw-is ilmend n usatal: "aql- i fukkey" = γliγ, zwiγ, meqqreγ, wessreγ, ḍeεfeγ.	
		1- Tasleḍt n tefyirt : " nneflen wulawen-nsen seg lferḥ"	İİ
	0.5	- nnefl = d amyag yeftin yer yizri, d aseyru	Tutlayt
	0.5	n = d amatar udmawan, d asentel (d ameskar, amigaw)	
06	1	- wulawen = d asemmad imsegzi.	
	1	nsen = damqim awsil asemmad n yisem	
	0.5	-seg = tanzeyt	
	1	- lferḥ = asemmad arusrid.	
	1.5	2- talya taḥerfit n umyag "yefrawes" = friwes.	
		Aḍris ad yili d ullis. Aktazal ad ibedd ɣef yisefranen-a: - Taferkit:	III
	0.5	Asebter zeddig	Asenfali s tira
	0.5	Tira tettwayer	Stira
08		- Afares :	
	1.5	Asentel iban Adris dullis (terrossa n vyullis tofnoz)	
	1.5	Aḍris d ullis (taγessa n wullis tefreẓ). - Tutlayt :	
	0.5	Asemres n yinamalen n wakud / adeg.	
	0.5	Asemres n yimyagen d tmezra	
	0.5	Asemres n umawal	
	0.5 0.5	Aqader n yilugan n tira	
	0.5	Asigez n uḍris - Taseddast / Tazḍawt	
	0.5	Lebni n tefyar tummidin	
	0.5	Tuqna gar tefyar d tseddarin	
	0.5	Aqader n yilugan n tezḍawt taḍrisant	

العلامة		عناصر الإجابة	محاور
المجموع	مجزأة	* Tuyalin*	الموضوع
	0.5 0.5	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	1 2%%25
	0.5	2- NH S NHOJEHOH : O:U: A SCHSVH S • O-A-NHS Ø• Ø• -O OHX O• 10•.	1:5056
		3- • N ÷ 1 & A - N ÷ E E • 1 & 1 D ÷ O & 1 D • E E • :	
6	0.5×2	- te+oo+a, t+ttexx•0 eex:0+1.	
	0.75	-ES A-++11: "•44.1-•118-81+k A +•:•48+ 8A+X 11+111. "IJE++! »	
	0.25×9	4- • R+•••U 1 + X * RR• : +•	
	0.5	5- • O÷AA÷U 1 :•:•U TI÷++:A÷OO÷1 © :K1•:-80 2UT÷1A 1 :0•+•U : "• TU-8 <u>JE:KK÷Y</u> " = YUSY, X:SY, T÷TTO÷Y, :÷000÷Y, E÷*JE÷Y.	
	1	1- 4-01*E+ 1+*JETSO+: "11*JEU*1:U•:*1-10*1 0*X UJE*0.C"	II
	1	- 11÷ DEU = Λ • Θ + ΨΟ = / 1 = Λ • Θ + 17 + 12, (Λ • Σ • 7 • Ο : ΛΣ • : • 1)	1:12:11
	0.5×2	- :U•:+1 = 1 • O+CC• 1 SCO+XXS.	
		10+1 = A • ETSE • • 0 • ET • A 1 TS 0 • E	
6	1	-O+X = +•1X+Y+	
	0.5	- UDE+OR = • 0+EE• 1 • 0 = 0021 (1 + + 1 x + 4 + 1).	
	1.5	2- +•lt+• +• <<0.0000000000000000000000000000000000	
		• Rt • X • U • A & O ÷ AA Y ÷ JE TI& O ÷ JE O • I ÷ I • . *** IE * O R & E * .	III
	0.5	•0÷0+÷0 **^^2	•0+1JE•
	0.5	7.00 +:++:• IIذ[9 ع
		•IE•O∻⊙ :	120.
	1.5	• © ÷ 17 ÷ ll & Ø • 1	
	1.5	•E080 V:11180 (4•4.00•1:1180 4+710+%)	
08		रः १ ५० तरः	
	0.5	•0+L0+0 1 1E0:0•%	
	0.5	•0+E0+0 1 NSEN•X+1 1 +E+XO•	
	0.5	•0+L0+0 1 :L•:•U 2 2:UL+1 •0+1++U	
	0.5	450 - SUL+14 1 USU:X-1-51+0	
	0.5	•0+L0+0 1:08X+X 2:•+•1	
		₹•⊙₹ΛΛ•⊙₹/₹•ЖΕ•₽₹:	
	0.5	12A2JJ:+ O•1JU:+ 1 210+	
	0.5	130.44.0.44.0.0 13:E	
	0.5	•E080 81: 140 81: X • 1 1 + + X E • : + + • E080 • 1 +	

تابع الإجابة النموذجية وسلم التنقيط لمادة: اللغة الأمازيغية لامتحان شهادة البكالوريا دورة جوان 2013

لعلامة	ii	عناصر الإجابة "ثادياتت ن لويزا"	محاور
المجموع	مجزأة	عاصر الإجبية تاديات ن تويرا	الموضوع
	2	 آ. تتوثلایث ن یوذان. 2. سآنات ن تافیار یاتتوثلایان ف ووستان ئقابحان ثاقار لویزا: 	I تیڤزي ن وضریس
	0.5	 ثاروا ثار ژو ڤي (لامرار). 	
06	0.5	 - ثاتتزآیار ثمادورث فالاس. 	
	1 4×0.5	3. أناماك ن تافييرت: "ثاتر آيار ثماتورث فالآس" ثاتيضيق ثماتورث فالآس. 4. أكتاوال ن تهوسكي (زين): ثاناوارث، ثاماً لآلت، ياحلان، ثيف.	
	1.5	 أسلاض ن تأفييرث "مأعقالأنت": مأعقال: د امياق يأفتين غار بيزري د امياغ د اسأغرو، 	II ثوثلایث
06	1.5 2×1.5	نت: أماثار و ذماوان، د اماسكار (أسانتال، أميقاو) 2. تخير آن ووذان سي لويزا جاماك ژرين رباح ذ لا هنا فالاس. ثاستانفالاي ثامانتيلت.	

تابع الإجابة النموذجية وسلم التنقيط لمادة: اللغة الأمازيغية لامتحان شهادة البكالوريا دورة جوان 2013

ولامة الم		ابه التمودجية ومنتم التنفيظ تماده. التعه الاماريعية الامتحال منهاده البناتوريا ا	
المجموع	مجزأة	عاصر الإجابـــه	الموضوع
المجموع 80	الع	عاصر الإجابة المسريس أذييلي ذولتيس ولتيس أذييات ف كراض نيمور أن اذييلي وفاريس ياحلا؛ ما: الميتواغراي س وأسهال الميتار يازديق (ثالتونين، ثيساد الرين)؛ اسبيتار رسانت ف يلوقان ن تجارومت؛ الموال يوقير ئذن وسانتال؛ الموال يوقير ئذن وسانتال؛ الموان نيرا تتواضافر أن. وقتسان وأضريس تسادرين؛ وثوتسان وأضريس تتسادرين؛ وثوتنا جار شمادارين ثانتساهال ثيقزي؛ شمارران بيمياقان وقير آنت ئذن ثيلاوت؛ اسامراس نينامالأن ن واكود ذيتان واذاق فارزان.	محاور الموضوع الل أسـانفالي
	0.5	- ثِيماً رُرِا ن بيمياقاً أَن وَقير أنت ئذ ن ثيلاً وت؛	

علامة	11	عناصر الإجابة	محاور
المجموع	مجزأة	* Tadyant n Lwiza*	الموضوع
			ı
	02	1-Ayen i ihudden tudert n Lwiza d tismin d lehdur n medden.	Tigzi
		2-Snat n tefyar i d-yemmalen yir ussan tedder Lwiza:	n uḍris
	0.5	- terwa lemrar	
06	0.5	- tettiḍyiq ddunit fell-as	
	01	3- "Tettiḍyiq ddunit fell-as": ttzaden iɣeblan – ttnernin wurfan	
	0.5×4	4. Aktawal n thuski: tağeğğigt, mellulen, icebḥen, tufrar.	
	1.5	1. myeεqal: damyag, d aseγru	11
	1.5	nt: Amatar udmawan, d ameskar	
06	1.5	2. "usmen medden yef Lwiza acku walan izad rrbeh d lehna fell-as".	Tutlayt
	1.5×2	- Tessenfalay tamentilt	*
		Aktazal ad ibedd yef yisefranen-a :	
		Taferkit:	III
	0.5	Asebter zeddig	Asenfal
	0.5	Tira tettwafham	i s tira
		Afares:	
	1.5	Asentel iban	
	1.5	Aḍris d ullis (tayessa n wullis tefrez)	
00	0.5	Tutlayt:	
80	0.5 0.5	Asemres n yisuraz Asemres n yimyagen d tmezra	
	0.5	Asemres n ymryagen u tineżra Asemres n umawal i iwulmen asentel	
	0.5	Tira ilmend n yilugan-ines	
	0.5	Asemres n usigez iwatan	
		Taseddast / tazdawt:	
	0.5	Lebni n tefyar tummidin	
	0.5	Tuqna gar tefyar d tseddarin	
	0.5	Aqader n yilugan n tezḍawt taḍrisant	

1-・1代 2 80:ハハキ オ・ハキのオ 1 1:2※・ハ オをのにと ハ 4をめれ:〇 にキハハキ . 12 2-0!・ナ オ・カハキ 2・0!・ナ オ・オ・カル 2・0!・ナ オ・オ・カル 2・0!・1 オ・オ・カル 2・0!・1 オ・オ・カル 2・0!・1 オ・オ・カル 2・0!・1 オ・オ・カル 2・0!・1 オ・カル・ 2・0!・1 オ・カル・ 2・0!・1 オ・カル・ 2・0!・1 オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・オ・カル・ 2・0!・カル・ 2・0!・オ・カル・ 2・0!・カル・ 2・0!・カル・カル・カル・カル・カル・カル・カル・カル・カル・カル・カル・カル・カル・	لعلامة		عناصر الإجابـــة	محاور
02 2-0 *↑ †* IT(*) ② A TI (U * E * 1 TE *	المجموح	مجزأة	عاصر الإجابــــــ	الموضوع
06 01 - ナキウ:・ セキロ・〇 - ナキオナを日尾と ハハ: 日本 コエキロリー・〇 - ナキオナを日尾と ハハ: 日本 コエキロリー・〇*: ナナボ・ハキ は とてきのい。 ナナは・〇日 に カ・・ シー・ナーの されに・・ ハ・ こもの 木・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		02		! የደጆች
01	OG.	01	_ · · · · · · · · · · · · · · · · · · ·	
1. ER##E*U: ハ・○◆*YO:	00			
01 十: *E*+**の**ハE****1, ハ * E ***(*****************************		02		
03 2.・************************************		01		II
12	06	03	2. •R+•:•U 1+Ø:ORE: +•X*XXEX+, [*W:U*1, EC*O/.*1, +:IEO•O.	₹: ₹₡•∏₹
・R十・米・ル・ハ 2のキハハ ヤキガエ N8のキガモ〇・1キ1・・:		02		
1.5			- +*00*1JE•U•N +•E*1+2U+	
さ・近さのK2寸: ・のさの			•R+•X•U•A 20÷AA Y÷JE N20÷JEO•l÷l-• :	
0.5 するの・すます・・)正の・に ・ 近・〇・〇・○ :			t•JE÷OK2t:	•0+17E• 1 8
1.5 ・○・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		0.5	•0+0+0 ** 10+0	0 420•
1.5 ・○÷計・4 を①・1 ・E○を② か:UUを②(十・ヤ・○②・1:UUを② ナ・コエ〇・米) オ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		0.5	+80• +÷++:•JEØ•E	
1.5 ・EOSの A:USO (ナ・ヤキのの・1:USO ナキガロキボ) オ・ヤリ・川ナ: 0.5 ・○キレのキの 1 MSO:〇・米 0.5 ・○キレのキの 1 MSEM・米キ1 A ナレキ米の・ 0.5 ・○キレのキの 1:レ・・・・リ 8 ミ・ルレキル 0.5 ・○キレのキの 1:ロミス・メ・1・シーショキの 0.5 ・○キレのキの 1:のミス・米 ミ・・ナ・1 ナ・〇キハハ・〇ナ / ナ・米医・・ナ・1 はよの18 1 オ・ガエの・0 オ・レビミハ21			•JE•O*O :	
1・1・1・1・1・1・1・1・1・1・1・1・1・1・1・1・1・1・1・		1.5	•0+17+11 EO•1	
0.5		1.5	•E080 V:1180 (4•4.00• 1:1180 4+DE0+X)	
0.5 ・○キじのその 1 円をの: ○・米 0.5 ・○キじのその 1 円を用・又キ1 ハ オじゃ米〇・ 0.5 ・○キじのその 1 : じ・・・ル を を: ルじゃ1 ・○キ1オキル 0.5 オを○・ をはじゃ1 ハ 1 円をル: 又・1 - と1 ÷ ○ 0.5 ・○キじのその 1 : ○を又 キ米 を・・オ・1 オ・○キハハ・○オ / オ・米医・・オ・ 0.5 ルルキの1 1 オキガビ用・○ オ・じじを入れ1	08		†÷†¼•∏† :	
0.5 ・○キじのキの 1:じ・・・ル 2 2:ルじキ1・○キ1オキル 0.5 オ2〇・24じキ1ハ 1 円24: X・1-21キ〇 0.5 ・○キじのキの 1:○2 X キ ※ 2:・オ・1 オ・○キハハ・○オ / オ・※E・・・オ・1 10.5 ルルキの12 1 オキ ※E用・○ オ・じじを入21	00	0.5	•0+L0+0 1 120:0•X	
0.5		0.5	•0+E0+0 1 NSEN•X+1 1 +E+XO•	
0.5 ・○キじのもの 1:○名文 キ※ 2:・ ナ・1 ナ・○キハハ・○ナ / ナ・※ E・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		0.5	•0+L0+0 1 : L•:• L & &: U L + 1 •0+17 + U	
さ・○キハハ・○ナノナ・米E・・・・ 0.5				
0.5 uu÷qie 1 +÷ jen•0 +: etealei		0.5		
U.5 7:121. X.O 74.JEU.O V 404.VV.OSI				
0.5 • EOSO SZ: 140 SU: X • 1 1 + + XE • + + • EOSO • 17				