A bonding model for noble gas hydrides and noble gas-noble metal halides

College of Chemistry,

Shandong Normal University, Wenhua East Road 88, Jinan, Shandong 250014, P. R. China.

Dative or/and electron-shared bonding for the H-Ng bond?

Fig.1 ω-bonding picture of NgMX molecules (Ng=Cu, Ag, Au; X= F, Cl, Br, I).

Fig.2 ω -bonding picture of HNgX molecules (Ng=Ne, Ar, Kr, Xe; X= F, Cl, Br, I).

complexes	H: Ng ⁺ -Y	H-Ng ⁺ :Y	X^Y
HXeI	9. 52%	66.41%	24.07%
HXeI H ₂ O	20. 33%	61.63%	18.05%
HXeI HCl	17. 18%	59. 43%	21.43%
HXeI HBr	19.91%	59.04%	18. 40%
HXeI HI	20.04%	58. 41%	18. 57%
HXeI HCCH	21.62%	58.81%	19. 34%

Tab.1 Resonance weightings of HXeI...HX complexes (HX=H,O, HCl, HBr, HI, HCCH).

Further calculated analyses on the H-Xe blue shift in HXeX...H2O complexes, unexpected add strong evidence to support the duality of dative and electron-shared bonding. The bonding in both HNgX and NgMX molecules is ω -bonding, and that its covalent character is duality of dative and electron-shared bonding. Overall, the present work provides electronic and chemical insights that helps understanding the bonding in these two types of molecules and develop ω -bonding model.