LC18 — Solides cristallins

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Modèle du cristal

1. Construction géométrique du modèle

I. Modèle du cristal

1. Construction géométrique du modèle

I. Modèle du cristal

Hexagonal compact ABA

1. Empilement compact de sphère dures

Cubique à faces centrées ABC

II. Propriétés des mailles cristallines illustrées sur la CFC

1. Définitions

$$m_{eau\;3} = m_{eau\;2} - m_{eau\;1}$$

$$V_{cuivre} = \frac{m_{eau\;3}}{\rho_{eau}}$$

$$\rho_{cuivre} = \frac{m_{cuivre}}{V_{cuivre}} = \rho_{eau} \cdot \frac{m_{cuivre}}{m_{eau} - (m_{fiole+eau2+cuivre} - m_{fiole+cuivre})}$$

II. Propriétés des mailles cristallines illustrées sur la CFC

2. Sites interstitiels

Site octaédrique central

Site octaédrique latéral

- Site tétraédrique dans la structure c.f.c.

III. Diversité des cristaux et des propriétés

2. Cristaux covalents, influence de l'agencement

	Diamant	Graphite
Température de changement d'état	3500 °C (fusion)	3642 °C (sublimation)
Dureté	Extrêmement dur	Friable
Aspect	Transparent	Noir opaque
Propriétés électriques et thermiques	Isolant	Conducteur dans deux directions de l'espace

III. Diversité des cristaux et des propriétés

2. Cristaux covalents, influence de l'agencement

