10

15

What we claim is:

1. A compound having the Formula (I):

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of hydrido, halo, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, alkyl, alkenyl, haloalkyl, haloalkenyl, carboxy, carboxyalkyl, carboalkoxy, amidocarbonyl, acyl, phosphono, sulfo, O-R⁶, NH-R⁶, S-R⁶, S(O)-R⁶, and S(O)₂-R⁶, wherein R⁶ is selected from the group consisting of alkyl, alkenyl, aryl, heteroaryl, aralkyl, heteroaralkyl, haloalkyl, haloalkenyl, acyl, aroyl, and heteroaroyl;

B is formula (V):

$$R^{33}$$
 R^{34}
 R^{35}
 R^{35}
 R^{32}
 R^{34}
 R^{35}
 R^{35}
 R^{36}
 R^{36}

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and

10

15

no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N with the proviso that R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected to be Q^b ; R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{16} , R^{17} , R^{18} , R^{19} , R^{32} , R^{33} , R^{34} , R^{35} , and

R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aryloylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocyclo

halocycloalkenyloxyalkyl, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, heteroarylsulfonylalkyl, haloalkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido,

alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl,

haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl,

10

15

20

25

haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, aminoalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

$$R^{32}$$
 and R^{33} , R^{33} and R^{34} , R^{34} and R^{35} , and R^{36}

substituent pairs are independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R³² and R³³, R³³ and R³⁴, R³⁴

and R³⁵, and R³⁵ and R³⁶ are used at the same time;

$$R^9$$
 and R^{10} , R^{10} and R^{11} , R^{11} and R^{12} , and R^{12} and R^{13} spacer

pairs are independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R^9 and R^{10} , R^{10} and R^{11} , R^{11} and R^{12} , and R^{12}

and R 13 is used at the same time;

30 B is formula (VI):

10

15

20

$$R^{32}$$
 D^{3} D^{4} R^{35} (VI)

wherein D³, D⁴, J³, and J⁴ are independently selected from the group consisting of C, N, O, and S, no more than one of D³, D⁴, J³, and J⁴ is O, no more than one of D³, D⁴, J³, and J⁴ is S, and no more than three of D¹, D², J¹, and J² are N with the proviso that R³², R³³, R³⁴, and R³⁵ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

B is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, and C3-C8 haloalkenyl wherein each member of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₃, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms

20

25

from the point of attachment may be substituted with R_{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{33} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{33} positions may be substituted with R_{34} ;

A is selected from the group consisting of single covalent bond, $(W^{7})_{rr} - (CH(R^{15}))_{pa} \text{ and } (CH(R^{15}))_{pa} - (W^{7})_{rr} \text{ wherein rr is an integer}$ 10 selected from 0 through 1, pa is an integer selected from 0 through 6, and W⁷ is selected from the group consisting of O, S, C(O), C(S), C(O)S, C(S)O, C(O)N(R⁷), C(S)N(R⁷), (R⁷)NC(O), (R⁷)NC(S), S(O), S(O)₂, S(O)₂N(R⁷), (R⁷)NS(O)₂, Se(O), Se(O)₂, Se(O)₂N(R⁷), (R⁷)NSe(O)₂, P(O)(R⁸), N(R⁷)P(O)(R⁸), P(O)(R⁸)N(R⁷), C(NR⁷)N(R⁷), (R⁷)NC(NR⁷), and N(R⁷) with the proviso that no more than one of the group consisting of rr and pa are 0 at the same time;

R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydroxy, alkyl, alkenyl, aryl, aralkyl, aryloxy, alkoxy, alkenyloxy, alkylthio, alkylamino, arylthio, arylamino, acyl, aroyl, heteroaroyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, heteroaryl, heteroaryloxy, heteroarylamino, heteroaralkyl, heteroaralkylamino, and heteroaryloxyalkyl;

R¹⁴, R¹⁵, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹ and R⁴² are independently selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, amino, alkylamino, dialkylamino, hydroxyalkyl, aminoalkyl, acyl, aroyl, heteroaroyl,

10

15

25

30

heteroaryloxyalkyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkylalkoxy, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkoxythioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroarylkyl, dicarboalkoxyalkyl,

monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, arylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfinylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, trialkylsilyl, dialkoxyphosphono,

diaralkoxyphosphonoalkyl with the proviso that R^{37} and R^{38} are independently selected from an acyl other than formyl;

diaralkoxyphosphono, dialkoxyphosphonoalkyl, and

R¹⁴ and R¹⁴, when bonded to different carbons, are taken together to form a group selected from the group consisting of covalent bond, alkylene, haloalkylene, and a linear moiety spacer selected to form a ring selected from the group consisting of cycloalkyl ring having from 5 through 8 contiguous members, cycloalkenyl ring having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

R¹⁴ and R¹⁵, when bonded to different carbons, are taken together to form a group selected from the group consisting of covalent bond, alkylene, haloalkylene, and a linear moiety spacer selected to form a ring selected from the group consisting of a cycloalkyl ring having from 5 through 8 contiguous members, a cycloalkenyl ring having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

20

25

30

R¹⁵ and R¹⁵, when bonded to different carbons, are taken together to form a group selected from the group consisting of covalent bond, alkylene, haloalkylene, and a linear moiety spacer selected to form a ring selected from the group consisting of cycloalkyl ring having from 5 through 8 contiguous members, cycloalkenyl ring having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

 Ψ is selected from the group consisting of NR 5 , O, C(O), C(S), S, S(O), S(O) $_2$, ON(R 5), P(O)(R 8), and CR 39 R 40 with the provisos that Ψ is selected from other than NR 5 , O, S, S(O), and S(O) $_2$ unless any two of X 0 , R 2 ,

R¹, and J are other than hydrido, or that Ψ is selected from other than O, unless A is selected from other than methylene when B is phenyl, that Ψ is selected from other than C(O), unless A is selected from other than methyleneoxy when B is phenyl, or that Ψ is selected from other than NH unless A is selected from other than a single covalent bond when B is acyl, or that Ψ is selected from other than NH unless A is selected from other than S(O) or S(O)₂ when B is phenyl;

R⁵ is selected from the group consisting of hydrido, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxy, alkoxy, alkenyloxy, alkylthio, arylthio, aralkoxyalkyl, heteroaralkoxyalkyl, aryloxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkylsulfinylalkyl, aralkoxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, heteroaryl, heteroarylalkyl, monocarboalkoxyalkyl, monocarboalkoxyalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, and dialkoxyphosphonoalkyl;

 R^{39} and R^{40} , when bonded to the same carbon, are taken together to form a group selected from a group consisting of oxo, thiono, R^{5} -N, alkylene, haloalkylene, and a linear moiety spacer having from 2 through 7 contiguous

10

15

20

25

30

atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

 X^0 , R^2 and R^1 are independently selected from the group consisting of Z^0 -Q, hydrido, alkyl, alkenyl, and halo;

X⁰, R² and R¹ are independently selected from the group consisting of amidino, guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, heteroarylamino, amino, nitro, alkylamino, arylamino, aralkylamino, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, haloalkanoyl, hydroxyhaloalkyl, cyano, and phosphono;

 X^0 and R^1 are taken together to form a spacer pair wherein the spacer pair forms a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a partially saturated heterocyclyl ring having from 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pair X^0 and R^1 and spacer pair R^2 and R^1 is used at the same time:

X⁰ and R⁵ are taken together to form a spacer pair wherein the spacer pair forms a linear spacer moiety having from 2 through 5 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having from 5 through 8 contiguous members;

X⁰ and R³⁹ are taken together to form a spacer pair wherein the spacer pair forms a linear spacer moiety having from 2 through 5 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having from 5 through 8 contiguous members;

X⁰ and R⁴⁰ are taken together to form a spacer pair wherein the spacer pair forms a linear spacer moiety having from 2 through 5 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having from 5 through 8 contiguous members;

10

15

20

25

30

 X^0 is selected to form a linear moiety having from 2 through 5 contiguous atoms linked to the points of bonding of both R^{39} and R^{40} to form a heterocyclyl ring having from 5 through 8 contiguous members;

 R^2 and R^1 are taken together to form a spacer pair wherein the spacer pair forms a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a partially saturated heterocyclyl ring having from 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pair X^0 and R^1 and spacer pair R^2 and R^1 is used at the same time:

 X^0 and R^1 and R^2 and R^1 spacer pairs are selected independently to be -W=X-Y=Z- forming a ring selected from the group consisting of a heteroaryl ring having from 5 through 6 contiguous members and an aryl with the proviso that no more than one of the group consisting of spacer pair X^0 and R^1 and spacer pair R^2 and R^1 is used at the same time;

W, X, Y, and Z are independently selected from the group consisting of $C(R^9)$, $N, N(R^{10})$, O_1 S and a covalent bond with the provisos that W, X, Y, and Z are independently selected to be a covalent bond when one of W, X, Y, and Z is selected from the group consisting of O and S, no more than one of W, X, Y, and Z is selected from the group consisting of O and S, no more than three of W, X, Y, and Z are selected from the group consisting of N and $N(R^{10})$, and $C(R^9)$, $N, N(R^{10})$, O_1 , and S are independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, the divalent nature of oxygen, and the aromaticity of the ring;

R² and R^{4a}, R² and R^{4b}, R² and R¹⁴, and R² and R¹⁵ spacer pairs are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 2 through 5 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having from 5 through 8 contiguous members with the

15

20

proviso that no more than one of the group of spacer pairs consisting of R^2 and R^{4a} , R^2 and R^{4b} , R^2 and R^{14} , and R^2 and R^{15} is used at the same time;

R² is independently selected to form a linear moiety having from 2 through 5 contiguous atoms linked to the points of bonding of both R^{4a} and R^{4b} to form a heterocyclyl ring having from 5 through 8 contiguous members; Z⁰ is selected from the group consisting of covalent single bond, $(CR^{41}R^{42})_q$ wherein q is an integer selected from 1 through 6, $(CH(R^{41}))_{g^{-1}}$ W^{0} -(CH(R⁴²))_p wherein g and p are integers independently selected from 0 through 3 and W⁰ is selected from the group consisting of O, S, C(O), C(S), $C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{41}), (R^{41})NC(O), C(S)N(R^{41})$ $(R^{41})NC(S)$, OC(O)N(R⁴¹), (R⁴¹)NC(O)O, SC(S)N(R⁴¹), (R⁴¹)NC(S)S, $SC(O)N(R^{41}), (R^{41})NC(O)S, OC(S)N(R^{41}), (R^{41})NC(S)O,$ $N(R^{42})C(O)N(R^{41}), (R^{41})NC(O)N(R^{42}), N(R^{42})C(S)N(R^{41}),$ $(R^{41})NC(S)N(R^{42})$, S(O), $S(O)_2$, $S(O)_2N(R^{41})$, $N(R^{41})S(O)_2$, Se, Se(O), $Se(O)_2$, $Se(O)_2N(R^{41})$, $N(R^{41})Se(O)_2$, $P(O)(R^8)$, $N(R^7)P(O)(R^8)$, $P(O)(R^8)N(R^7)$, $N(R^{41})$, $ON(R^{41})$, and $SiR^{28}R^{29}$, and $(CH(R^{41}))_e-W^2$ (CH(R⁴²))_h wherein e and h are integers independently selected from 0 through 2 and W² is selected from the group consisting of CR⁴¹=CR⁴², CR⁴¹R⁴²=C; vinylidene), and ethynylidene (C=C; 1,2-ethynyl), with the provisos that R 41 and R 42 are selected from other than halo and cyano when directly bonded to N and Z⁰ is directly bonded to the benzene ring, that W⁰ is

selected, wherein g is 0, from other than NHS(O)₂CH₂aryl or N(R⁴¹) unless

30

 R^{41} is selected from other than hydrido, alkyl, or aralkylsulfonyl, and Z^0 is selected from other than OC(O), C(O)N(H), and (H)NC(O), unless Q is selected from other than phenyl, 2-furyl, 2-thienyl, 4-thiazolyl, 2-pyridyl, 2-naphthyl, 1,2-dihydrobenzofuran-5-yl, 1,2-dihydrobenzofuran-6-yl, or 1,2benzisoxazol-6-yl, or X^0 is selected from other than hydrido, halo, or methyl, or R^1 is selected from other than hydrido, fluoro, hydroxy, acetoxy, propanoyloxy, 2-carboxyacetoxy, 2,3 or 4-carboxypropanoyloxy, benzoyloxy, methyl, or methoxy;

R²⁸ and R²⁹ are independently selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, acyl, aroyl, 10 aralkanoyl, heteroaroyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, 15 halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, cyanoalkyl, dicyanoalkyl, carboxamidoalkyl, dicarboxamidoalkyl, cyanocarboalkoxyalkyl, carboalkoxyalkyl, dicarboalkoxyalkyl, cyanocycloalkyl, dicyanocycloalkyl, carboxamidocycloalkyl, 20 dicarboxamidocycloalkyl, carboalkoxycyanocycloalkyl, carboalkoxycycloalkyl, dicarboalkoxycycloalkyl, formylalkyl, acylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, aralkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, dialkoxyphosphono, diaralkoxyphosphono, 25 dialkoxyphosphonoalkyl and diaralkoxyphosphonoalkyl;

R²⁸ and R²⁹ are taken together to form a linear moiety spacer having from 2 through 7 contiguous atoms and forming a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

Q is formula (II):

10

15

$$\begin{array}{c}
R^{10} \\
R^{10} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{11} \\
R^{12}
\end{array}$$

$$\begin{array}{c}
R^{12} \\
R^{13}
\end{array}$$
(II)

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N, with the proviso that R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

O is formula (III):

$$R^{9} \longrightarrow D^{3} \longrightarrow D^{4} \longrightarrow R^{12}$$
(III)

wherein D^3 , D^4 , J^3 , and J^4 are independently selected from the group consisting of C, N, O, and S, no more than one of D^3 , D^4 , J^3 , and J^4 is O, no more than one of D^3 , D^4 , J^3 , and J^4 is S, and no more than three of D^1 , D^2 , J^1 ,

10

15

20

25

30

and J^2 are N with the proviso that R^9 , R^{10} , R^{11} , and R^{12} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

Q is selected from the group consisting of alkyl, alkoxy, alkylamino, alkylthio, haloalkylthio, alkenyl, alkynyl, saturated heterocyclyl, partially saturated heterocyclyl, acyl, aroyl, heteroaroyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, and halocycloalkenyloxyalkyl with the proviso that Q is selected from other than than alkyl or alkenyl unless any one of X^0 , R^1 , and J are other than hydrido;

K is $(CR^{4a}R^{4b})_n$ wherein n is an integer selected from 1 through 4;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, hydroxy, cyano, hydroxyalkyl, alkyl, alkenyl, aryl, aralkyl, aralkoxyalkyl, aryloxyalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, aralkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, haloalkenyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, haloalkylsulfinyl, arylsulfinylalkyl, alkylsulfonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, and aralkylsulfonylalkyl;

R^{4a} and R^{4b}, when bonded to the same carbon, are taken together to form a group selected from the group consisting of oxo, thiono, and a linear spacer moiety having from 2 through 7 contiguous atoms connected to form a ring selected from the group consisting of a cycloalkyl ring having 3 through 8 contiguous members, a cycloalkenyl ring having 5 through 8 contiguous members, and a heterocyclyl ring having 5 through 8 contiguous members;

 E^0 is E^1 , when K is $(CR^{4a}R^{4b})_n$, wherein E^1 is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R⁷), (R⁷)NC(O), C(S)N(R⁷), (R⁷)NC(S), OC(O)N(R⁷),

 $(R^7)NC(O)O, SC(S)N(R^7), (R^7)NC(S)S, SC(O)N(R^7), (R^7)NC(O)S, \\ OC(S)N(R^7), (R^7)NC(S)O, N(R^8)C(O)N(R^7), (R^7)NC(O)N(R^8), \\ N(R^8)C(S)N(R^7), (R^7)NC(S)N(R^8), S(O), S(O)_2, S(O)_2N(R^7), N(R^7)S(O)_2, \\ S(O)_2N(R^7)C(O), C(O)N(R^7)S(O)_2, Se, Se(O), Se(O)_2, Se(O)_2N(R^7), \\ N(R^7)Se(O)_2, P(O)(R^8), N(R^7)P(O)(R^8), P(O)(R^8)N(R^7), N(R^7), ON(R^7), \\ SiR^{28}R^{29}, CR^{4a} = CR^{4b}, ethynylidene (C = C; 1,2-ethynyl), and C = CR^{4a}R^{4b};$

K is $(CH(R^{14}))_j$ -T wherein j is selected from a integer from 0 through 3 and T is selected from the group consisting of single covalent bond, O, S, and $N(R^7)$ with the proviso that $(CH(R^{14}))_j$ is bonded to the phenyl ring;

 $E^{0} \text{ is } E^{2}, \text{ when } K \text{ is } (CH(R^{14}))_{j}\text{-T, wherein } E^{2} \text{ is selected from the}$ group consisting of a covalent single bond, C(O), C(S), C(O)O, C(S)O, C(O)S, $C(S)S, C(O)N(R^{7}), (R^{7})NC(O), C(S)N(R^{7}), (R^{7})NC(S), (R^{7})NC(O)O,$ $(R^{7})NC(S)S, (R^{7})NC(O)S, (R^{7})NC(S)O, N(R^{8})C(O)N(R^{7}),$ $(R^{7})NC(O)N(R^{8}), N(R^{8})C(S)N(R^{7}), (R^{7})NC(S)N(R^{8}), S(O), S(O)_{2},$ $15 \quad S(O)_{2}N(R^{7}), N(R^{7})S(O)_{2}, S(O)_{2}N(H)C(O), C(O)N(H)S(O)_{2}, Se(O),$ $Se(O)_{2}, Se(O)_{2}N(R^{7}), N(R^{7})Se(O)_{2}, P(O)(R^{8}), N(R^{7})P(O)(R^{8}),$ $P(O)(R^{8})N(R^{7}), \text{ and } N(R^{7});$

K is G- $(CH(R^{15}))_k$ wherein k is selected from an integer from 1 through 3 and G is selected from the group consisting of O, S, and $N(R^7)$ with the proviso that R^{15} is other than hydroxy, cyano, halo, amino, alkylamino, dialkylamino, and sulfhydryl when k is 1;

 E^0 is E^3 when K is G- $(CH(R^{15}))_k$ wherein E^3 is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O,

15

 $C(O)S, C(S)S, C(O)N(R^{7}), (R^{7})NC(O), C(S)N(R^{7}), (R^{7})NC(S),$ $OC(O)N(R^{7}), (R^{7})NC(O)O, SC(S)N(R^{7}), (R^{7})NC(S)S, SC(O)N(R^{7}),$ $(R^{7})NC(O)S, OC(S)N(R^{7}), (R^{7})NC(S)O, N(R^{8})C(O)N(R^{7}),$ $(R^{7})NC(O)N(R^{8}), N(R^{8})C(S)N(R^{7}), (R^{7})NC(S)N(R^{8}), S(O), S(O)_{2},$ $S(O)_{2}N(R^{7}), N(R^{7})S(O)_{2}, Se, Se(O), Se(O)_{2}, Se(O)_{2}N(R^{7}), N(R^{7})Se(O)_{2},$ $P(O)(R^{8}), N(R^{7})P(O)(R^{8}), P(O)(R^{8})N(R^{7}), N(R^{7}), ON(R^{7}), SiR^{28}R^{29},$ $CR^{4a} = CR^{4b}, \text{ ethynylidene } (C = C; 1, 2-\text{ ethynyl}), \text{ and } C = CR^{4a}R^{4b};$ $Y^{0} \text{ is formula } (IV):$

R¹⁷
J⁵
J⁶
R¹⁸
R¹⁶
Q^b
(IV)

wherein D^5 , D^6 , J^5 , and J^6 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K^2 is independently selected from the group consisting of C, and N^+ , no more than one of D^5 , D^6 , J^5 , and J^6 is O, no more than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, no more than three of D^5 , D^6 , J^5 , and J^6 are N when K^2 is N^+ , and no more than four of D^5 , D^6 , J^5 , and J^6 are N when K^2 is carbon with the provisos that R^{16} , R^{17} , R^{18} , and R^{19} are each independently selected to maintain the tetravalent nature of carbon,

10

25

trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R¹⁶ and R¹⁷ are independently taken together to form a linear moiety spacer having from 3 through 6 contiguous atoms connected to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members, a partially saturated heterocyclyl ring having from 5 through 8 contiguous members, a heteroaryl having from 5 through 6 contiguous members, and an aryl;

R¹⁸ and R¹⁹ are independently taken together to form a linear moiety spacer having from 3 through 6 contiguous atoms connected to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members, a partially saturated heterocyclyl ring having from 5 through 8 contiguous members, a heteroaryl having from 5 through 6 contiguous members, and an aryl;

Q^b is selected from the group consisting of NR²⁰R²¹, +NR²⁰R²¹R²², oxy, alkyl, alkylaminoalkyl, aminoalkyl, dialkylsulfoniumalkyl, and acylamino wherein R²⁰, R²¹, and R²² are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl with the provisos that no more than one of R²⁰, R²¹, and R²² is hydroxy, alkoxy, alkylamino, amino, and dialkylamino and that R²⁰, R²¹, and R²² must be other than be hydroxy, alkoxy, alkylamino, amino, and dialkylamino when K² is N⁺;

R²⁰ and R²¹, R²⁰ and R²², and R²¹ and R²² pairs are independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 4 through 7 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R²⁰ and R²¹, R²⁰ and R²², and R²¹ and R²² is used at the same time;

25

 Q^b is selected from the group consisting of $N(R^{26})SO_2N(R^{23})(R^{24})$, $N(R^{26})C(O)OR^5$, $N(R^{26})C(O)SR^5$, $N(R^{26})C(S)OR^5$ and $N(R^{26})C(S)SR^5$ with the proviso that no more than one of R^{23} , R^{24} , and R^{26} are hydroxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom;

Q^b is selected from the group consisting of dialkylsulfonium, trialkylphosphonium, C(NR²⁵)NR²³R²⁴, N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)C(O)N(R²³)(R²⁴), N(R²⁶)C(S)N(R²³)(R²⁴), C(NR²⁵)OR⁵, C(O)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), C(S)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)N(R²⁶)SO₂N(R²³)(R²⁴), C(NR²⁵)SR⁵, C(O)NR²³R²⁴, and C(O)NR²³R²⁴ with the provisos that no more than one of R²³, R²⁴, and R²⁶ is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R²³, R²⁴, and R²⁶ are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl;

R²³ and R²⁴ are taken together to form a linear spacer moiety having
from 4 through 7 contiguous atoms connecting the points of bonding to form a
heterocyclyl ring having 5 through 8 contiguous members;

R²³ and R²⁵, R²⁴ and R²⁵, R²⁵ and R²⁶, R²⁴ and R²⁶, and R²³ and R²⁶ pairs are independently selected to form a spacer pair wherein a spacer pair is taken together from the points of bonding of selected spacer pair members to form the group L-U-V wherein L, U, and V are independently selected from the group

10

15

20

25

consisting of O, S, C(O), C(S), C(I_H)₂ S(O), SO₂, OP(OR³¹)R³⁰, P(O)R³⁰, P(S)R³⁰, C(R³⁰)R³¹, C=C(R³⁰)R³¹, (O)₂POP(O)₂, R³⁰(O)POP(O)R³⁰, Si(R²⁹)R²⁸, Si(R²⁹)R²⁸Si(R²⁹)R²⁸, Si(R²⁹)R²⁸OSi(R²⁹)R²⁸, (R²⁸)R²⁹COC(R²⁸)R²⁹, (R²⁸)R²⁹CSC(R²⁸)R²⁹, C(O)C(R³⁰)=C(R³¹), C(S)C(R³⁰)=C(R³¹), S(O)C(R³⁰)=C(R³¹), SO₂C(R³⁰)=C(R³¹), P(S)R³⁰C(R³⁰)=C(R³¹), P(O)R³⁰C(R³⁰)=C(R³¹), P(S)R³⁰C(R³⁰)=C(R³¹), D(C(R³⁰)(R³¹)D, OP(OR³¹)R³⁰, P(O)R³⁰, P(S)R³⁰, Si(R²⁸)R²⁹ and N(R³⁰), and a covalent bond with the proviso that no more than any two of L, U and V are simultaneously covalent bonds and the heterocyclyl comprised of by L, U, and V has from 5 through 10 contiguous member;

D is selected from the group consisting of oxygen, C=O, C=S, S(O)_m wherein m is an integer selected from 0 through 2;

 J_H is independently selected from the group consisting of OR^{27} , SR^{27} and $N(R^{20})R^{21}$;

R²⁷ is selected from the group consisting of hydrido, alkyl, alkenyl, alkynyl, aralkyl, aryloxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkenyl, haloalkenyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, arylsulfinylalkyl, arylsulfinylalkyl, heteroarylsulfonylalkyl, cycloalkylsulfinylalkyl, aralkylsulfinylalkyl and aralkylsulfonylalkyl;

R³⁰ and R³¹ are independently selected from hydrido, hydroxy, thiol, aryloxy, amino, alkylamino, dialkylamino, hydroxyalkyl, heteroaryloxyalkyl, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkoxythioalkyl,

10

15

20

25

30

alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkyl, haloaralkylsulfinylalkyl, aralkylsulfonylalkyl, cyanoalkyl, dicyanoalkyl, carboxamidoalkyl, dicarboxamidoalkyl, cyanocarboalkoxyalkyl, carboalkoxyalkyl, dicarboalkoxyalkyl, cyanocycloalkyl, dicyanocycloalkyl, carboxamidocycloalkyl, dicarboxamidocycloalkyl, carboalkoxycyanocycloalkyl, carboalkoxycycloalkyl, dicarboalkoxycycloalkyl, formylalkyl, acylalkyl, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, phosphonoalkyl, dialkoxyphosphonoalkoxy, diaralkoxyphosphonoalkoxy, phosphonoalkoxy, dialkoxyphosphonoalkylamino, diaralkoxyphosphonoalkylamino, phosphonoalkylamino, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, sulfonylalkyl, alkoxysulfonylalkyl, alkoxysulfonylalkoxy, aralkoxysulfonylalkoxy, sulfonylalkoxy, alkoxysulfonylalkylamino, and sulfonylalkylamino;

R³⁰ and R³¹ are taken to form a linear moiety spacer group having from 2 through 7 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

$$R^{23}$$
 and R^{25} , R^{24} and R^{25} , R^{25} and R^{26} , R^{24} and R^{26} , and R^{23} and R^{26}

pairs are independently selected to form a spacer pair wherein a spacer pair is taken together from the points of bonding of selected spacer pair members to form the group L-U-V wherein L, U, and V are independently selected from the group of 1,2-disubstituted radicals consisting of a cycloalkyl radical, a cycloalkenyl radical wherein cycloalkyl and cycloalkenyl radicals are substituted with one or more groups selected from R³⁰ and R³¹, an aryl radical, an heteroaryl radical, a saturated heterocyclic radical and a partially saturated heterocyclic radical wherein said 1,2-substitutents are independently selected from C=O, C=S, C(R²⁸)R³², S(O),

$$S(O)_2$$
, $OP(OR^{31})R^{30}$, $P(O)R^{30}$, $P(S)R^{30}$ and $Si(R^{28})R^{29}$;

$$R^{23}$$
 and R^{25} , R^{24} and R^{25} , R^{25} and R^{26} , R^{24} and R^{26} , and R^{23} and R^{26}

pairs are independently selected to form a spacer pair wherein a spacer pair is taken together from the points of bonding of selected spacer pair members to form the

group L-U-V wherein L, U, and V are independently selected from the group of radicals consisting of 1,2-disubstituted alkylene radicals and 1,2-disubstituted alkenylene radical wherein said 1,2-substitutents are independently selected from C=O, C=S, $C(R^{28})R^{29}$, S(O), $S(O)_2$, $OP(OR^{31})R^{30}$, $P(O)R^{30}$, $P(S)R^{30}$, and $Si(R^{28})R^{29}$ and said alkylene and alkenylene radical are substituted with one or more R^{30} or R^{31} substituents;

Q^s is selected from the group consisting of a single covalent bond, (CR³⁷R³⁸)_h-(W⁰)_{az} wherein az is an integer selected from 0 through 1, b is an integer selected from 1 through 4, and W⁰ is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R¹⁴), 10 $(R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}), SC(S)N(R^{14}),$ $SC(O)N(R^{14}), OC(S)N(R^{14}), N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),$ $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}),$ $N(R^{14})S(O)_2$, Se, Se(O), Se(O)₂, Se(O)₂ $N(R^{17})$, $N(R^{14})Se(O)_2$, $P(O)(R^8)$, $N(R^7)P(O)(R^8)$, $P(O)(R^8)N(R^7)$, $N(R^{14})$, $ON(R^{14})$, and $SiR^{28}R^{29}$, 15 (CH(R¹⁴))_c-W¹-(CH(R¹⁵))_d wherein c and d are integers independently selected from 1 through 4, and W¹ is selected from the group consisting of O, $S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{14}), (R^{14})NC(O),$ $C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}), (R^{14})NC(O)O, SC(S)N(R^{14}),$ $(R^{14})NC(S)S$, $SC(O)N(R^{14})$, $(R^{14})NC(O)S$, $OC(S)N(R^{14})$, $(R^{14})NC(S)O$, 20 $N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}), N(R^{15})C(S)N(R^{14}),$ $(R^{14})NC(S)N(R^{15})$, S(O), $S(O)_2$, $S(O)_2N(R^{14})$, $N(R^{14})S(O)_2$, Se, Se(O), $Se(O)_2$, $Se(O)_2N(R^{14})$, $N(R^{14})Se(O)_2$, $P(O)(R^8)$, $N(R^7)P(O)(R^8)$,

10

15

20

25

 $P(O)(R^8)N(R^7)$, $N(R^{14})$, $ON(R^{14})$, $SiR^{28}R^{29}$, and $(CH(R^{14}))_e$ - W^2 - $(CH(R^{15}))_h$ wherein e and h are integers independently selected from 0 through 2 and W^2 is selected from the group consisting of CR^{4a} = CR^{4b} , ethynylidene (C=C; 1,2-ethynyl), and C= $CR^{4a}R^{4b}$ with the provisos that R^{14} and R^{15} are selected from other than halo and cyano when directly bonded to R^{15} and that R^{15} are selected from other than halo and cyano when directly bonded to R^{15} and R^{15} are selected from other than halo and cyano when directly bonded to R^{15}

R³⁷ and R³⁷, when bonded to different carbons, are taken together to form a linear moiety spacer having from 1 through 7 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

R³⁷ and R³⁸, when bonded to different carbons, are taken together to form a linear moiety spacer having from 1 through 7 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

R³⁸ and R³⁸, when bonded to different carbons, are taken together to form a linear moiety spacer having from 1 through 7 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from 3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

R³⁷ and R³⁸, when bonded to the same carbon, are taken together to form a group selected from a group consisting of oxo, thiono, alkylene, haloalkylene, and a linear moiety spacer having from 2 through 7 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl ring having from 3 through 8 contiguous members, a cycloalkenyl ring having from

3 through 8 contiguous members, and a heterocyclyl ring having from 3 through 8 contiguous members;

Y⁰ is Q^b-Q^{ss} wherein Q^{ss} is selected from the group consisting of $(CH(R^{14}))_{c}$ (CR 37 R 38)_f wherein f is an integer selected from 1 through 6, W¹-(CH(R¹⁵))_d wherein c and d are integers independently selected from 1 through 4, and W is selected from the group consisting of W is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, $C(O)N(R^{14}), (R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}),$ $(R^{14})NC(O)O, SC(S)N(R^{14}), (R^{14})NC(S)S, SC(O)N(R^{14}), (R^{14})NC(O)S,$ $OC(S)N(R^{14}), (R^{14})NC(S)O, N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),$ 10 $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}),$ N(R¹⁴)S(O)₂, Se, Se(O), Se(O)₂, Se(O)₂N(R¹⁴), N(R¹⁴)Se(O)₂, P(O)(R⁸), $N(R^{7})P(O)(R^{8})$, $P(O)(R^{8})N(R^{7})$, $N(R^{14})$, $ON(R^{14})$, $SiR^{28}R^{29}$, and (CH(R¹⁴))_e-W²-(CH(R¹⁵))_h wherein e and h are integers independently selected from 0 through 2 and W² is selected from the group consisting of 15 CR =CR 4b, ethynylidene (C=C; 1,2-ethynyl), and C=CR R with the provisos that R^{14} and R^{15} are selected from other than halo and cyano when directly bonded to N and that $(CR^{37}R^{38})_f$, $(CH(R^{15}))_c$, and $(CH(R^{15}))_e$ are bonded to E⁰:

You is Q^b-Q^{sss} wherein Q^{sss} is (CH(R³⁸))_r-W³, r is an integer selected from 1 through 3, and W³ is selected from the group consisting of 1,1-cyclopropyl, 1,2-cyclopropyl, 1,1-cyclobutyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6-morpholinyl, 3,4-

morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 2,3-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 1,4-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2H-2,3-pyranyl, 2H-2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5-yl, 4H-pyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4-tetrahydropyranyl, 2,6-tetrahydropyranyl, 2,5-tetrahydropyranyl with the proviso that (CH(R³⁸))_r is bonded to E⁰ and Q^b is bonded to lowest numbered substituent position of each W³;

 Y^0 is $Q^b - Q^{sssr}$ wherein Q^{sssr} is $(CH(R^{38}))_r - W^4$, r is an integer

selected from 1 through 3, and W⁴ is selected from the group consisting of 1,2-15 cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 2,3-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 20 1,3-piperidinyl, 1,4-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4pyrrolidinyl, 2H-2,3-pyranyl, 2H-2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4-pyranyl, 4H-2,5-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5yl, 4H-pyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-25 tetrahydrofuranyl, 3,4-tetrahydrofuranyl, 2,3-tetrahydropyranyl, 2,4tetrahydropyranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4tetrahydropyranyl, and 3,5-tetrahydropyranyl with the provisos that (CH(R³⁸)), is bonded to E⁰ and Q^b is bonded to highest number substituent position of each W⁴: 30

 Y^0 is $Q^b - Q^{ssss}$ wherein Q^{ssss} is $(CH(R^{38}))_r - W^5$, r is an integer selected from 1 through 3, and W⁵ is selected from the group consisting of 1.4indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-5 benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-10 isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-15 naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-20 isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that Q^b is bonded to lowest number substituent position of each 25 W^5 and that $(CH(R^{38}))_r$ is bonded to E^0 ;

Y⁰ is Q^b-Q^{ssssr} wherein Q^{ssssr} is (CH(R³⁸))_r-W⁶, r is an integer selected from 1 through 3, and W⁶ is selected from the group consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4-

benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7-5 isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 10 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8-15 isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that O^b is bonded to highest number substituent position of each W^6 and that $(CH(R^{38}))_r$ is bonded to E^0 . 20

2. The compound as recited in Claim 1 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of hydrido, halo, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, alkyl, haloalkyl, carboxy, carboxyalkyl, carboalkoxy, amidocarbonyl, acyl, phosphono, sulfo, O-R⁶, NH-R⁶, S-R⁶, S(O)-R⁶, and S(O)₂-R⁶, wherein R⁶ is selected from the group consisting of alkyl, and haloalkyl, haloalkenyl;

B is formula (V):

10

15

$$R^{33}$$
 R^{34}
 R^{35}
 R^{35}
 R^{32}
 R^{35}
 R^{36}
 R^{36}

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N with the proviso that R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected to be Q^b ; R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{16} , R^{17} , R^{18} , R^{19} , R^{32} , R^{33} , R^{34} , R^{35} , and

R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aryloylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino, N-heter

cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy,

cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, 5 arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, 10 monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, 15 cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, aminoalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, 20 arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl; 25

 R^{32} and R^{33} , R^{33} and R^{34} , R^{34} and R^{35} , and R^{35} and R^{36} pairs are

independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group

10

15

20

25

consisting of spacer pairs R^{32} and R^{33} , R^{33} and R^{34} , R^{34} and R^{35} , and R^{36} is used at the same time;

R⁹ and R¹⁰, R¹⁰ and R¹¹, R¹¹ and R¹², and R¹² and R¹³ pairs are independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R⁹ and R¹⁰, R¹⁰ and R¹¹, R¹¹ and R¹², and R¹² and R¹³ is used at the same time;

B is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, and C3-C8 haloalkenyl wherein each member of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₃, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or

10

15

20

25

nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{33} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{33} positions may be substituted with R_{34} ;

A is selected from the group consisting of single covalent bond, $(W^7)_{rr}$ -(CH(R¹⁵))_{pa} and (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is an integer selected from 0 through 1, pa is an integer selected from 0 through 6, and W^7 is selected from the group consisting of O, S, C(O), C(S), C(O)S, C(S)O, C(O)N(R⁷), C(S)N(R⁷), (R⁷)NC(O), (R⁷)NC(S), S(O), S(O)₂, S(O)₂N(R⁷), (R⁷)NS(O)₂, P(O)(R⁸), N(R⁷)P(O)(R⁸), P(O)(R⁸)N(R⁷), C(NR⁷)N(R⁷), (R⁷)NC(NR⁷), and N(R⁷) with the proviso that no more than one of the group consisting of rr and pa is 0 at the same time;

R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydroxy, alkyl, acyl, aroyl, heteroaroyl, and alkoxyalkyl;

R¹⁴, R¹⁵, R³⁷, and R³⁸ are independently selected from the group consisting of hydrido, hydroxy, halo, cyano, hydroxyalkyl, alkoxy, alkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

 Ψ is selected from the group consisting of NR⁵, O, C(O), C(S), S, S(O), S(O)₂, ON(R⁵), P(O)(R⁸), and CR³⁹R⁴⁰ with the provisos that Ψ is selected from other than NR⁵, O, S, S(O), and S(O)₂ unless any two of X⁰, R²,

10

15

20

25

 R^1 , and J are other than hydrido, or that Ψ is selected from other than O, unless A is selected from other than methylene when B is phenyl, that Ψ is selected from other than C(O), unless A is selected from other than methyleneoxy when B is phenyl, or that Ψ is selected from other than NH unless A is selected from other than a single covalent bond when B is acyl, or that Ψ is selected from other than NH unless A is selected from other than S(O) or S(O)₂ when B is phenyl;

R⁵ is selected from the group consisting of hydrido, alkyl, alkoxy, alkoxyalkyl, haloalkyl, acyl, aroyl, and heteroaroyl;

R³⁹ and R⁴⁰ are independently selected from the group consisting of hydrido, hydroxy, halo, cyano, hydroxyalkyl, acyl, aroyl, heteroaroyl, acylamido, alkoxy, alkyl, alkoxyalkyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, alkylsulfonyl, haloalkylsulfonyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

 X^0 , R^2 and R^1 are independently selected from the group consisting of Z^0 -Q, hydrido, alkyl, alkenyl, and halo;

X⁰, R² and R¹ are independently selected from the group consisting of amidino, guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, heteroarylamino, amino, nitro, alkylamino, arylamino, aralkylamino, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, haloalkanoyl, hydroxyhaloalkyl, cyano, and phosphono;

 X^0 and R^1 are taken together to form a spacer pair wherein the spacer pair forms a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a partially saturated heterocyclyl ring having from 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pair X^0 and X^1 and spacer pair X^2 and X^3 is used at the same time:

10

15

20

 R^2 and R^1 are taken together to form a spacer pair wherein the spacer pair forms a linear moiety naving from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a partially saturated heterocyclyl ring having from 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pair X^0 and R^1 and spacer pair R^2 and R^1 is used at the same time;

 X^0 and R^1 and R^2 and R^1 spacer pairs are selected independently to be -W=X-Y=Z- forming a ring selected from the group consisting of a heteroaryl ring having from 5 through 6 contiguous members and an aryl with the proviso that no more than one of the group consisting of spacer pair X^0 and R^1 and spacer pair R^2 and R^1 is used at the same time;

W, X, Y, and Z are independently selected from the group consisting of $C(R^9)$, $N, N(R^{10})$, O, S and a covalent bond with the provisos that one of W, X, Y, and Z is independently selected to be a covalent bond when one of W, X, Y, and Z is selected from the group consisting of O and S, no more than one of W, X, Y, and Z is selected from the group consisting of O and S, no more than three of W, X, Y, and Z are selected from the group consisting of N and $N(R^{10})$, and $C(R^9)$, $N, N(R^{10})$, O, and S are independently selected to

maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, the divalent nature of oxygen, and the aromaticity of the ring; Z^{0} is selected from the group consisting of covalent single bond,

 $(CR^{41}R^{42})_q$ wherein q is an integer selected from 1 through 6, $(CH(R^{41}))_g$ - W^0 - $(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0 through 3 and W^0 is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{41}), (R^{41})NC(O), C(S)N(R^{41}), (R^{41})NC(S), OC(O)N(R^{41}), (R^{41})NC(O)O, SC(S)N(R^{41}), (R^{41})NC(S)S,

 $SC(O)N(R^{41}), (R^{41})NC(O)S, OC(S)N(R^{41}), (R^{41})NC(S)O,$ $N(R^{42})C(O)N(R^{41}), (R^{41})NC(O)N(R^{42}), N(R^{42})C(S)N(R^{41}),$ $(R^{41})NC(S)N(R^{42}),\,S(O),\,S(O)_2,\,S(O)_2N(R^{41}),\,N(R^{41})S(O)_2,\,P(O)(R^8),$ $N(R^7)P(O)(R^8)$, $P(O)(R^8)N(R^7)$, $N(R^{41})$, $ON(R^{41})$, and $(CH(R^{41}))_e$ - W^2 -(CH(R⁴²))_h wherein e and h are integers independently selected from 0 5 through 2 and W^2 is selected from the group consisting of $CR^{41} = CR^{42}$, CR⁴¹R⁴²=C; vinylidene), and ethynylidene (C≡C; 1,2-ethynyl), with the provisos that R 41 and R 42 are selected from other than halo and cyano when directly bonded to N and Z⁰ is directly bonded to the benzene ring, that W⁰ is selected, wherein g is 0, from other than NHS(O)₂CH₂aryl or N(R⁴¹) unless 10 R^{41} is selected from other than hydrido, alkyl, or aralkylsulfonyl, and Z^0 is selected from other than OC(O), C(O)N(H), and (H)NC(O), unless Q is selected from other than phenyl, 2-furyl, 2-thienyl, 4-thiazolyl, 2-pyridyl, 2naphthyl, 1,2-dihydrobenzofuran-5-yl, 1,2-dihydrobenzofuran-6-yl, or 1,2benzisoxazol-6-yl, or X^o is selected from other than hydrido, halo, or 15 methyl, or R¹ is selected from other than hydrido, fluoro, hydroxy, acetoxy, propanoyloxy, 2-carboxyacetoxy, 2,3 or 4-carboxypropanoyloxy, benzoyloxy, methyl, or methoxy; R and R 2 are independently selected from the group consisting of

hydrido, hydroxy, halo, cyano, aryloxy, hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, alkoxy, alkyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkylalkoxy, alkoxyalkyl, heteroaryloxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxy, haloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, saturated heterocyclyl, partially saturated

10

15

heterocyclyl, heteroaryl, heteroaralkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, alkylsulfonyl, haloalkylsulfonyl, arylsulfonyl, arylsulfonyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfonyl, and aralkylsulfonylalkyl;

Q is formula (II):

$$\begin{array}{c}
R^{10} \\
R^{10} \\
R^{11} \\
R^{12} \\
R^{12}
\end{array}$$
(II)

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N, with the proviso that R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

Q is formula (III):

$$R^{9} \longrightarrow D^{3} \longrightarrow D^{4} \longrightarrow R^{11}$$

$$R^{9} \longrightarrow D^{4} \longrightarrow R^{12}$$

$$R^{12} \longrightarrow R^{12}$$

$$R^{11} \longrightarrow R^{12}$$

$$R^{12} \longrightarrow R^{12}$$

10

15

20

25

wherein D^3 , D^4 , J^3 , and J^4 are independently selected from the group consisting of C, N, O, and S, no more than one of D^3 , D^4 , J^3 , and J^4 is O, no more than one of D^3 , D^4 , J^3 , and J^4 is S, and no more than three of D^1 , D^2 , J^1 , and J^2 are N with the proviso that R^9 , R^{10} , R^{11} , and R^{12} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

Q is selected from the group consisting of alkyl, alkoxy, alkylamino, alkylthio, haloalkylthio, alkenyl, alkynyl, saturated heterocyclyl, partially saturated heterocyclyl, acyl, aroyl, heteroaroyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkenyl, haloalkoxy, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, halocycloalkenyl, haloalkoxyalkyl, halocycloalkoxyalkyl, and halocycloalkenyloxyalkyl with the proviso that Q is selected from other than than alkyl or alkenyl unless any one of X^0 , R^1 , and J is other than hydrido;

K is $(CR^{4a}R^{4b})_n$ wherein n is an integer selected from 1 through 2;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, hydroxy, cyano, hydroxyalkyl, alkyl, alkenyl, alkoxyalkyl, haloalkyl, haloalkenyl, and cyanoalkyl;

R^{4a} and R^{4b}, when bonded to the same carbon, are taken together to form a group selected from the group consisting of oxo, and a linear spacer moiety having from 2 through 7 contiguous atoms connected to form a ring selected from the group consisting of a cycloalkyl ring having 3 through 8 contiguous members, a cycloalkenyl ring having 5 through 8 contiguous members, and a heterocyclyl ring having 5 through 8 contiguous members;

 E^0 is E^1 , when K is $(CR^{4a}R^{4b})_n$, wherein E^1 is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R⁷), (R⁷)NC(O), C(S)N(R⁷), (R⁷)NC(S), OC(O)N(R⁷),

 $(R^{7})NC(O)O, SC(S)N(R^{7}), (R^{7})NC(S)S, SC(O)N(R^{7}), (R^{7})NC(O)S, \\ OC(S)N(R^{7}), (R^{7})NC(S)O, N(R^{8})C(O)N(R^{7}), (R^{7})NC(O)N(R^{8}), \\ N(R^{8})C(S)N(R^{7}), (R^{7})NC(S)N(R^{8}), S(O), S(O)_{2}, S(O)_{2}N(R^{7}), N(R^{7})S(O)_{2}, \\ S(O)_{2}N(R^{7})C(O), C(O)N(R^{7})S(O)_{2}, P(O)(R^{8}), N(R^{7})P(O)(R^{8}), \\ P(O)(R^{8})N(R^{7}), N(R^{7}), ON(R^{7}), CR^{4a} = CR^{4b}, ethynylidene (C = C; 1,2-ethynyl), and C = CR^{4a}R^{4b};$

K is $(CH(R^{14}))_j$ -T wherein j is selected from a integer from 0 through 2 and T is selected from the group consisting of single covalent bond, O, S, and $N(R^7)$ with the proviso that $(CH(R^{14}))_j$ is bonded to the phenyl ring;

 $E^{0} \text{ is } E^{2}, \text{ when K is } (CH(R^{14}))_{j}\text{-T, wherein } E^{2} \text{ is selected from the}$ $\text{group consisting of a covalent single bond, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{7}), (R^{7})NC(O), C(S)N(R^{7}), (R^{7})NC(S), (R^{7})NC(O)O, (R^{7})NC(S)S, (R^{7})NC(O)S, (R^{7})NC(S)O, N(R^{8})C(O)N(R^{7}), (R^{7})NC(O)N(R^{8}), N(R^{8})C(S)N(R^{7}), (R^{7})NC(S)N(R^{8}), S(O), S(O)_{2}, (R^{7})NC(O)N(R^{8}), N(R^{7})S(O)_{2}, S(O)_{2}N(H)C(O), C(O)N(H)S(O)_{2}, P(O)(R^{8}), N(R^{7})P(O)(R^{8}), P(O)(R^{8})N(R^{7}), \text{ and } N(R^{7});$

K is G- $(CH(R^{15}))_k$ wherein k is selected from an integer from 1 through 2 and G is selected from the group consisting of O, S, and $N(R^7)$ with the proviso that R^{15} is other than hydroxy, cyano, halo, amino, alkylamino, dialkylamino, and sulfhydryl when k is 1;

 E^0 is E^3 , when K is G-(CH(R¹⁵))_k, wherein E^3 is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R⁷), (R⁷)NC(O), C(S)N(R⁷), (R⁷)NC(S),

15

OC(O)N(R⁷), (R⁷)NC(O)O, SC(S)N(R⁷), (R⁷)NC(S)S, SC(O)N(R⁷),

(R⁷)NC(O)S, OC(S)N(R⁷), (R⁷)NC(S)O, N(R⁸)C(O)N(R⁷),

(R⁷)NC(O)N(R⁸), N(R⁸)C(S)N(R⁷), (R⁷)NC(S)N(R⁸), S(O), S(O)₂,

S(O)₂N(R⁷), N(R⁷)S(O)₂, P(O)(R⁸), N(R⁷)P(O)(R⁸), P(O)(R⁸)N(R⁷),

N(R⁷), ON(R⁷), CR^{4a}=CR^{4b}, ethynylidene (C=C; 1,2-ethynyl), and

C=CR^{4a}R^{4b};

Y⁰ is formula (IV):

wherein D^5 , D^6 , J^5 , and J^6 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K^2 is independently selected from the group consisting of C, and N^+ , no more than one of D^5 , D^6 , J^5 , and J^6 is O, no more than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, no more than three of D^5 , D^6 , J^5 , and J^6 are N when K^2 is N^+ , and no more than four of D^5 , D^6 , J^5 , and J^6 are N when K^2 is carbon with the provisos that R^{16} , R^{17} , R^{18} , and R^{19} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

10

15

20

25

R¹⁶ and R¹⁷ are taken together to form a linear moiety spacer having from 3 through 6 contiguous atoms connected to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members, a partially saturated heterocyclyl ring having from 5 through 8 contiguous members, a heteroaryl having from 5 through 6 contiguous members, and an aryl;

 Q^b is selected from the group consisting of NR 20 R 21 , $^+$ NR 20 R 21 R 22 , oxy, alkyl, alkylaminoalkyl, aminoalkyl, dialkylsulfoniumalkyl, and acylamino wherein R 20 , R 21 , and R 22 are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl with the provisos that no more than one of R 20 , R 21 , and R 22 is hydroxy, alkoxy, alkylamino, amino, and dialkylamino and that R 20 , R 21 , and R 22 must be other than be hydroxy, alkoxy, alkylamino, amino, and dialkylamino, amino, and dialkylamino when K 2 is N $^+$;

R²⁰ and R²¹, R²⁰ and R²², and R²¹ and R²² pairs are independently selected to form a spacer pair wherein a spacer pair is taken together to form a linear moiety having from 4 through 7 contiguous atoms connecting the points of bonding of said spacer pair members to form a heterocyclyl ring having 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R²⁰ and R²¹, R²⁰ and R²², and R²¹ and R²² is used at the same time;

 Q^b is selected from the group consisting of $N(R^{26})SO_2N(R^{23})(R^{24})$, $N(R^{26})C(O)OR^5$, $N(R^{26})C(O)SR^5$, $N(R^{26})C(S)OR^5$ and $N(R^{26})C(S)SR^5$ with the proviso that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom;

20

Q^b is selected from the group consisting of dialkylsulfonium, trialkylphosphonium, C(NR²⁵)NR²³R²⁴, N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)C(O)N(R²³)(R²⁴), N(R²⁶)C(S)N(R²³)(R²⁴), C(NR²⁵)OR⁵, C(O)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), C(S)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)N(R²⁶)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)N(R²⁶)SO₂N(R²³)(R²⁴), C(NR²⁵)SR⁵, C(O)NR²³R²⁴, and C(O)NR²³R²⁴ with the provisos that no more than one of R²³, R²⁴, and R²⁶ is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R²³, R²⁴, and R²⁶ are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl;

R²³ and R²⁴ are taken together to form a linear spacer moiety having from 4 through 7 contiguous atoms connecting the points of bonding to form a heterocyclyl ring having 5 through 8 contiguous members;

 Q^{S} is selected from the group consisting of a single covalent bond, $(CR^{37}R^{38})_{b}$ - $(W^{0})_{az}$ wherein az is an integer selected from 0 through 1, b is an integer selected from 1 through 4, and W^{0} is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{14}), $(R^{14})NC(O)$, C(S)N(R¹⁴), $(R^{14})NC(S)$, OC(O)N(R¹⁴), SC(S)N(R¹⁴), SC(S)N(R¹⁴), SC(O)N(R¹⁴), N(R¹⁵)C(O)N(R¹⁴), $(R^{14})NC(O)N(R^{15})$, $(R^{15})C(S)N(R^{14})$, $(R^{14})NC(S)N(R^{15})$, S(O), S(O)₂, S(O)₂N(R¹⁴),

 $N(R^{14})S(O)_2$, $P(O)(R^8)$, $N(R^7)P(O)(R^8)$, $P(O)(R^8)N(R^7)$, $N(R^{14})$, $ON(R^{14})$, $(CH(R^{14}))_c$ - W_{\bullet}^1 - $(CH(R^{15}))_d$ wherein c and d are integers independently selected from 1 through 4, and W is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R¹⁴), $(R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}), (R^{14})NC(O)O,$ $SC(S)N(R^{14}), (R^{14})NC(S)S, SC(O)N(R^{14}), (R^{14})NC(O)S, OC(S)N(R^{14}),$ $(R^{14})NC(S)O, N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15})$ $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}),$ $N(R^{14})S(O)_2$, $P(O)(R^8)$, $N(R^7)P(O)(R^8)$, $P(O)(R^8)N(R^7)$, $N(R^{14})$, $ON(R^{14})$, and $(CH(R^{14}))_e$ - W^2 - $(CH(R^{15}))_h$ wherein e and h are integers 10 independently selected from 0 through 2 and W² is selected from the group consisting of CR^{4a}=CR^{4b}, ethynylidene (C≡C; 1,2-ethynyl), and C=CR^{4a}R^{4b} with the provisos that R 14 and R 15 are selected from other than halo and cyano when directly bonded to N and that $(CR^{37}R^{38})_b$, $(CH(R^{14}))_c$, $(CH(R^{14}))_e$ and are bonded to E^0 ; 15 Y⁰ is Q^b-Q^{ss} wherein Q^{ss} is selected from the group consisting of

Y is Q -Q wherein Q is selected from the group consisting of (CR 17 R 18) wherein f is an integer selected from 1 through 6, (CH(R 14)) c W -(CH(R 15)) d wherein c and d are integers independently selected from 1 through 4, and W is selected from the group consisting of W is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R 14), (R 14)NC(O), C(S)N(R 14), (R 14)NC(S), OC(O)N(R 14), (R 14)NC(O)S, (R 14)NC(O)S, SC(O)N(R 14), (R 14)NC(O)S,

OC(S)N(R¹⁴), (R¹⁴)NC(S)O, N(R¹⁵)C(O)N(R¹⁴), (R¹⁴)NC(O)N(R¹⁵), $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}), \\ N(R^{14})S(O)_2, P(O)(R^8), N(R^7)P(O)(R^8), P(O)(R^8)N(R^7), N(R^{14}), \\ ON(R^{14}), and (CH(R^{14}))_e-W^2-(CH(R^{15}))_h wherein e and h are integers \\ independently selected from 0 through 2 and W² is selected from the group consisting of <math>CR^{4a}$ = CR^{4b} , ethynylidene (C=C; 1,2-ethynyl), and C= $CR^{4a}R^{4b}$ with the provisos that R^{14} and R^{15} are selected from other than halo and cyano when directly bonded to N and that $(CR^{37}R^{38})_f$, $(CH(R^{15}))_c$, and $(CH(R^{15}))_e$ are bonded to E^0 ;

 Y^0 is Q^b-Q^{sss} , wherein Q^{sss} is $(CH(R^{38}))_{r}-W^3$, r is an integer selected 10 from 1 through 3, and W³ is selected from the group consisting of 1,1cyclopropyl, 1,2-cyclopropyl, 1,1-cyclobutyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6-morpholinyl, 3,4morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 15 2,3-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 1,4-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 1,3pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2H-2,3-pyranyl, 2H-2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4-20 pyranyl, 4H-2,5-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5-yl, 4Hpyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5tetrahydrofuranyl, 3,4-tetrahydrofuranyl, 2,3-tetrahydropyranyl, 2,4tetrahydropyranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4-

25 tetrahydropyranyl, and 3,5-tetrahydropyranyl with the proviso that (CH(R³⁸))_r

is bonded to E^0 and Q^b is bonded to lowest numbered substituent position of each W^3 ;

 Y^0 is $Q^b - Q^{sssr}$, wherein Q^{sssr} is $(CH(R^{38}))_{r} - W^4$, r is an integer

selected from 1 through 3, and W⁴ is selected from the group consisting of 1,2cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3-5 cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 2,3-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 1,4-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 10 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4pyrrolidinyl, 2H-2,3-pyranyl, 2H-2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4-pyranyl, 4H-2,5-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5yl, 4H-pyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5tetrahydrofuranyl, 3,4-tetrahydrofuranyl, 2,3-tetrahydropyranyl, 2,4-15 tetrahydropyranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4tetrahydropyranyl, and 3,5-tetrahydropyranyl with the provisos that (CH(R³⁸))_r

is bonded to E^0 and Q^b is bonded to highest number substituent position of each W^4 ;

Y⁰ is Q^b-Q^{ssss}, wherein Q^{sssss} is (CH(R³⁸))_r-W⁵, r is an integer selected from 1 through 3, and W⁵ is selected from the group consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,7-benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6-benzothiophenyl, 3,6-benzothiophenyl, 3,7-benzothiophenyl, 3,6-benzothiophenyl, 3,7-benzothiophenyl, 2,5-indolyl, 2,6-indolyl, 2,7-indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-isoindolyl, 2,6-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,7-indolyl, 2,6-isoindolyl, 2,7-indolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,7-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 2,7-isoindo

isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 5 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-10 isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that Q^b is bonded to lowest number substituent position of each W^{5} and that $(CH(R^{38}))_{r}$ is bonded to E^{0} ; 15

 Y^0 is Q^b - Q^{ssssr} , wherein Q^{ssssr} is $(CH(R^{38}))_r$ - W^6 , r is an integer selected from 1 through 3, and W⁶ is selected from the group consisting of 1,4indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-20 benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-25 isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-30 naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5-

15

20

quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5-isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8-isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8-isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8-cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that Q^b is bonded to highest number substituent position of each W^6 and that $(CH(R^{38}))_r$ is bonded to E^0 .

3. The compound as recited in Claim 1 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of hydrido, halo, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, haloalkyl, carboxy, carboxyalkyl, amidocarbonyl, acyl, O-R⁶, NH-R⁶, S-R⁶, wherein R⁶ is selected from the group consisting of alkyl and haloalkyl;

B is formula (V):

$$R^{33}$$
 R^{34}
 R^{35}
 R^{35}
 R^{32}
 R^{34}
 R^{35}
 R^{35}
 R^{36}
 R^{32}

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected to be Q^b ; R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{16} , R^{17} , R^{18} , R^{19} , R^{32} , R^{33} , R^{34} , R^{35} , and

R³⁶ are independently selected from the group consisting of hydrido, amidino,

- guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aryloylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl,
- cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy,
- halocycloalkenyloxyalkyl, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl,
- 20 haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio,
- alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl,
- aminoalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido,

15

20

25

alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

B is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, and C3-C8 haloalkenyl wherein each member of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

10 B is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R33, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R33, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₃ positions may be substituted with R34;

15

20

25

A is selected from the group consisting of single covalent bond, $(W^7)_{rr} - (CH(R^{15}))_{pa} \text{ and } (CH(R^{15}))_{pa} - (W^7)_{rr} \text{ wherein rr is an integer}$ selected from 0 through 1, pa is an integer selected from 0 through 6, and W^7 is selected from the group consisting of O, S, C(O), C(S), C(O)S, C(S)O, C(O)N(R^7), C(S)N(R^7), (R^7)NC(O), (R^7)NC(S), S(O), S(O)_2, S(O)_2N(R^7), (R^7)NS(O)_2, C(NR^7)N(R^7), (R^7)NC(NR^7), and N(R^7) with the proviso that no more than one of the group consisting of rr and pa is 0 at the same time;

R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydroxy, alkyl, and alkoxyalkyl;

R¹⁴, R¹⁵, R³⁷, and R³⁸ are independently selected from the group consisting of hydrido, hydroxy, halo, alkyl, alkoxyalkyl, haloalkoxy, and haloalkoxyalkyl;

 Ψ is selected from the group consisting of NR 5 , O, C(O), C(S), S, S(O), S(O) $_2$, and CR 39 R 40 with the provisos that Ψ is selected from other than NR 5 , O, S, S(O), and S(O) $_2$ unless any two of X 0 , R 2 , R 1 , and J are other than hydrido, or that Ψ is selected from other than O, unless A is selected from other than methylene when B is phenyl, that Ψ is selected from other than C(O), unless A is selected from other than methyleneoxy when B is phenyl, or that Ψ is selected from other than NH unless A is selected from other than a single covalent bond when B is acyl, or that Ψ is selected from other than NH unless A is selected from other than NH unless A is selected from other than S(O) or S(O) $_2$ when B is phenyl;

R⁵ is selected from the group consisting of hydrido, alkyl, and alkoxy;

R³⁹ and R⁴⁰ are independently selected from the group consisting of hydrido, hydroxy, halo, hydroxyalkyl, alkyl, alkoxyalkyl, haloalkoxy, and haloalkoxyalkyl;

 X^0 , R^2 and R^1 are independently selected from the group consisting of Z^0 -Q, hydrido, alkyl, alkenyl, and halo;

X⁰, R² and R¹ are independently selected from the group consisting of amidino, guanidino, dialkylsulfonium, trialkylphosphonium, dialkylsulfoniumalkyl, heteroarylamino, amino, nitro, alkylamino, arylamino, aralkylamino, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, hydroxyhaloalkyl, cyano, and phosphono;

- Z^0 is selected from the group consisting of covalent single bond, $(CR^{41}R^{42})_q$ wherein q is an integer selected from 1 through 2, $(CH(R^{41}))_g$ - W^0 - $(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0 through 2 and W^0 is selected from the group consisting of O, S, C(O), C(S),
- ON(R⁴¹), and (CH(R⁴¹))_e-W²-(CH(R⁴²))_h wherein e and h are integers independently selected from 0 through 2 and W² is selected from the group consisting of CR⁴¹=CR⁴², CR⁴¹R⁴²=C; vinylidene), and ethynylidene (C≡C; 1,2-ethynyl), with the provisos that R⁴¹ and R⁴² are selected from other than halo and cyano when directly bonded to N and Z⁰ is directly bonded to the
- benzene ring, that W⁰ is selected, wherein g is 0, from other than NHS(O)₂CH₂aryl or N(R⁴¹) unless R⁴¹ is selected from other than hydrido, alkyl, or aralkylsulfonyl, and Z⁰ is selected from other than OC(O), C(O)N(H), and (H)NC(O), unless Q is selected from other than phenyl, 2-furyl, 2-thienyl, 4-thiazolyl, 2-pyridyl, 2-naphthyl, 1,2-dihydrobenzofuran-5-yl, 1,2-
- 25 dihydrobenzofuran-6-yl, or 1,2benzisoxazol-6-yl, or X⁰ is selected from other

than hydrido, halo, or methyl, or R¹ is selected from other than hydrido, fluoro, hydroxy, acetoxy, propanoyloxy, 2-carboxyacetoxy, 2,3 or 4-carboxypropanoyloxy, benzoyloxy, methyl, or methoxy;

R⁴¹ and R⁴² are independently selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, alkoxy, alkyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkylalkoxy, alkoxyalkyl, heteroaryloxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, and heteroaralkyl;

Q is formula (II):

wherein D¹, D², J¹, J² and K¹ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D¹, D², J¹, J² and K¹ is O, no more than one of D¹, D², J¹, J² and K¹ is S, one of D¹, D², J¹, J² and K¹ must be a covalent bond when two of D¹, D², J¹, J² and K¹ are O and S, and no more than four of D¹, D², J¹, J² and K¹ are N, with the proviso that R⁹, R¹⁰, R¹¹, R¹², and R¹³ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

10

15

20

Q is selected from the group consisting of alkyl, alkoxy, alkylamino, alkylthio, haloalkylthio, saturated heterocyclyl, alkyl, partially saturated heterocyclyl, acyl, aroyl, heteroaroyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, haloalkyl, haloalkoxy, haloalkenyl, haloalkoxy, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, and halocycloalkenyloxyalkyl;

K is $(CR^{4a}R^{4b})_n$ wherein n is the integer 1;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, hydroxy, hydroxyalkyl, alkyl, alkoxyalkyl, and haloalkyl;

 $E^{0} \text{ is } E^{1}, \text{ when } K \text{ is } (CR^{4a}R^{4b})_{n}, \text{ wherein } E^{1} \text{ is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{7}), (R^{7})NC(O), C(S)N(R^{7}), (R^{7})NC(S), OC(O)N(R^{7}), (R^{7})NC(O)O, SC(S)N(R^{7}), (R^{7})NC(S)S, SC(O)N(R^{7}), (R^{7})NC(O)S, OC(S)N(R^{7}), (R^{7})NC(S)O, N(R^{8})C(O)N(R^{7}), (R^{7})NC(O)N(R^{8}), N(R^{8})C(S)N(R^{7}), (R^{7})NC(S)N(R^{8}), S(O), S(O)_{2}, S(O)_{2}N(R^{7}), N(R^{7})S(O)_{2}, S(O)_{2}N(R^{7})C(O), C(O)N(R^{7})S(O)_{2}, N(R^{7}), ON(R^{7}), CR^{4a} = CR^{4b}, ethynylidene (C=C; 1,2-ethynyl), and C=CR^{4a}R^{4b};$

K is $(CH(R^{14}))_j$ -T wherein j is selected from a integer from 0 through 1 and T is selected from the group consisting of single covalent bond, O, S, and $N(R^7)$ with the proviso that $(CH(R^{14}))_i$ is bonded to the phenyl ring;

 E^0 is E^2 , when K is $(CH(R^{14}))_j$ -T, wherein E^2 is selected from the group consisting of a covalent single bond, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R⁷), (R⁷)NC(O), C(S)N(R⁷), (R⁷)NC(S), (R⁷)NC(O)O, (R⁷)NC(S)S, (R⁷)NC(O)S, (R⁷)NC(S)O, N(R⁸)C(O)N(R⁷),

10

 $(R^7)NC(O)N(R^8), N(R^8)C(S)N(R^7), (R^7)NC(S)N(R^8), S(O), S(O)_2,$ $S(O)_2N(R^7), N(R^7)S(O)_2, S(O)_2N(H)C(O), C(O)N(H)S(O)_2, and N(R^7);$ K is G-(CH(R¹⁵))_k wherein k is the integer 1 and G is selected from

the group consisting of O, S, and $N(R^7)$;

 E^{0} is E^{3} , when K is G-(CH(R¹⁵))_k, wherein E^{3} is selected from the group consisting of a covalent single bond, O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R⁷), (R⁷)NC(O), C(S)N(R⁷), (R⁷)NC(S), OC(O)N(R⁷), (R⁷)NC(O)O, SC(S)N(R⁷), (R⁷)NC(S)S, SC(O)N(R⁷), (R⁷)NC(O)S, OC(S)N(R⁷), (R⁷)NC(S)O, N(R⁸)C(O)N(R⁷), (R⁷)NC(O)N(R⁸), N(R⁸)C(S)N(R⁷), (R⁷)NC(S)N(R⁸), S(O), S(O)₂, S(O)₂N(R⁷), N(R⁷)S(O)₂, N(R⁷), ON(R⁷), CR^{4a}=CR^{4b}, ethynylidene (C=C; 1,2-ethynyl), and C=CR^{4a}R^{4b};

Y⁰ is formula (IV):

wherein D⁵, D⁶, J⁵, and J⁶ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K² is independently selected from the group consisting of C and N⁺, no more than one of D⁵, D⁶, J⁵, and J⁶ is O, no more

10

20

than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, no more than three of D^5 , D^6 , J^5 , and J^6 are N when K^2 is N^+ , and no more than four of D^5 , D^6 , J^5 , and J^6 are N when K^2 is carbon with the provisos that R^{16} , R^{17} , R^{18} , and R^{19} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 Q^b is selected from the group consisting of NR 20 R 21 , $^+$ NR 20 R 21 R 22 , oxy, alkyl, alkylaminoalkyl, aminoalkyl, dialkylsulfoniumalkyl, and acylamino wherein R 20 , R 21 , and R 22 are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl with the provisos that no more than one of R 20 , R 21 , and R 22 is hydroxy, alkoxy, alkylamino, amino, or dialkylamino and that R 20 , R 21 , and R 22 must be other than be hydroxy, alkoxy, alkylamino, amino, amino, and dialkylamino when K 2 is N $^+$:

 Q^b is selected from the group consisting of $N(R^{26})SO_2N(R^{23})(R^{24})$, $N(R^{26})C(O)OR^5$, $N(R^{26})C(O)SR^5$, $N(R^{26})C(S)OR^5$ and $N(R^{26})C(S)SR^5$ with the proviso that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom;

Q^b is selected from the group consisting of dialkylsulfonium, trialkylphosphonium, $C(NR^{25})NR^{23}R^{24}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $N(R^{26})C(O)N(R^{23})(R^{24})$, $N(R^{26})C(S)N(R^{23})(R^{24})$, $C(NR^{25})OR^{5}$.

10

 $C(O)N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $C(S)N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $N(R^{26})N(R^{26})C(NR^{25})N(R^{25})N(R^{23})(R^{24})$, $N(R^{26})N(R^{26})SO_2N(R^{23})(R^{24})$, $C(NR^{25})SR^5$, $C(O)NR^{23}R^{24}$, and $C(O)NR^{23}R^{24}$ with the provisos that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl;

 $Q^{S} \text{ is selected from the group consisting of a single covalent bond,} \\ (CR^{37}R^{38})_{b}-(W^{0})_{az} \text{ wherein az is an integer selected from 0 through 1, b is an integer selected from 1 through 2, and } W^{0} \text{ is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{14}),} \\ (R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}), SC(S)N(R^{14}),\\ SC(O)N(R^{14}), OC(S)N(R^{14}), N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),\\ N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_{2}, S(O)_{2}N(R^{14}),\\ N(R^{14})S(O)_{2}, N(R^{14}), ON(R^{14}), (CH(R^{14}))_{c}-W^{1}-(CH(R^{15}))_{d} \text{ wherein c and d are integers independently selected from 1 through 2, and } W^{1} \text{ is selected} \\ 20 \text{ from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, C(O)N(R^{14}), (R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}),\\ (R^{14})NC(O)O, SC(S)N(R^{14}), (R^{14})NC(S)S, SC(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),\\ OC(S)N(R^{14}), (R^{14})NC(S)O, N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),\\ OC(S)N(R^{15}), (R^{15})C(O)N(R^{15}), (R^{15})C(O)N(R^{15}),\\ OC(S)N(R^{15}), (R^{15})C(O)N(R^{15}), (R^{15})C(O)N(R^{15}),\\ OC(S)N(R^{15}), (R^{15})C(O$

 $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}),$ $N(R^{14})S(O)_2$, $N(R^{14})$, $ON(R^{14})$, and $(CH(R^{14}))_{e^{-}}W^{2}$ - $(CH(R^{15}))_{h}$ wherein e and h are integers independently selected from 0 through 2 and W is selected from the group consisting of CR =CR, ethynylidene (C=C; 1,2ethynyl), and C=CR^{4a}R^{4b} with the provisos that R¹⁴ and R¹⁵ are selected from other than halo and cyano when directly bonded to N and that $(CR^{37}R^{38})_b$, $(CH(R^{14}))_c$, $(CH(R^{14}))_e$ and are bonded to E^0 ; Y⁰ is Q^b-Q^{ss} wherein Q^{ss} is selected from the group consisting of $(CR^{37}R^{38})_f$ wherein f is an integer selected from 1 through 4, W¹-(CH(R¹⁵))_d wherein c and d are integers independently selected from 1 10 through 2, and W¹ is selected from the group consisting of W¹ is selected from the group consisting of O, S, C(O), C(S), C(O)O, C(S)O, C(O)S, C(S)S, $C(O)N(R^{14}), (R^{14})NC(O), C(S)N(R^{14}), (R^{14})NC(S), OC(O)N(R^{14}),$ $(R^{14})NC(O)O, SC(S)N(R^{14}), (R^{14})NC(S)S, SC(O)N(R^{14}), (R^{14})NC(O)S,$ $OC(S)N(R^{14}), (R^{14})NC(S)O, N(R^{15})C(O)N(R^{14}), (R^{14})NC(O)N(R^{15}),$ $N(R^{15})C(S)N(R^{14}), (R^{14})NC(S)N(R^{15}), S(O), S(O)_2, S(O)_2N(R^{14}),$ $N(R^{14})S(O)_2$, $N(R^{14})$, $ON(R^{14})$, and $(CH(R^{14}))_e W^2 - (CH(R^{15}))_h$ wherein e and h are integers independently selected from 0 through 2 and W² is selected from the group consisting of CR ^{4a}=CR ^{4b}, ethynylidene (C=C; 1,2ethynyl), and C=CR 4a R 4b with the provisos that R 14 and R 15 are selected 20 from other than halo when directly bonded to N and that (CR 37 R 38)_f, $(CH(R^{15}))_c$, and $(CH(R^{15}))_e$ are bonded to E^0 ;

 Y^0 is $Q^b - Q^{sss}$ wherein Q^{sss} is $(CH(R^{38}))_r - W^3$, r is an integer selected from 1 through 2, and W³ is selected from the group consisting of 1,1cyclopropyl, 1,2-cyclopropyl, 1,1-cyclobutyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6-morpholinyl, 3,4-5 morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 2,3-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 1,4-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 1,3pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 10 2H-2,3-pyranyl, 2H-2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4pyranyl, 4H-2,5-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5-yl, 4Hpyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5tetrahydrofuranyl, 3,4-tetrahydrofuranyl, 2,3-tetrahydropyranyl, 2,4-15 tetrahydropyranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4tetrahydropyranyl, and 3,5-tetrahydropyranyl with the proviso that (CH(R³⁸)). is bonded to E⁰ and Q^b is bonded to lowest numbered substituent position of each W³:

 Y^0 is $Q^b - Q^{sssr}$ wherein Q^{sssr} is $(CH(R^{38}))_r - W^4$, r is an integer

selected from 1 through 2, and W⁴ is selected from the group consisting of 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,5-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 1,4-piperazinyl, 2,5-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,5-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 3,5-piperidinyl, 3,6-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,4-pyranyl, 2H-2,5-pyranyl, 4H-2,3-pyranyl, 4H-2,4-pyranyl, 4H-2,5-pyranyl, 2H-pyran-2-one-3,4-yl, 2H-pyran-2-one-4,5-yl, 4H-pyran-4-one-2,3-yl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,4-

tetrahydropyranyl, 2,5-tetrahydropyranyl, 2,6-tetrahydropyranyl, 3,4-tetrahydropyranyl, and 3,5-tetrahydropyranyl with the provisor that $(CH(R^{38}))_r$ is bonded to E^0 and Q^b is bonded to highest number substituent position of each W^4 ;

Y⁰ is Q^b-Q^{ssss} wherein Q^{ssss} is (CH(R³⁸))_r-W⁵, r is an integer 5 selected from 1 through 2, and W⁵ is selected from the group consisting of 1,4indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-10 benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-15 isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-20 naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-25 isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4.5-cinnolinyl, 4.6-cinnolinyl, 4.7-cinnolinyl, and 4.8-cinnolinyl with the proviso that Q^b is bonded to lowest number substituent position of each W^{5} and that $(CH(R^{38}))_{r}$ is bonded to E^{0} ; 30

 Y^0 is $Q^b - Q^{ssssr}$ wherein Q^{ssssr} is $(CH(R^{38}))_r - W^6$, r is an integer selected from 1 through 2, and W⁶ is selected from the group consisting of 1,4indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-5 benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-10 isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-15 naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-20 isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that Q^b is bonded to highest number substituent position of each 25 W^6 and that $(CH(R^{38}))_r$ is bonded to E^0 .

4. The compound as recited in Claim 3 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of hydrido, halo, hydroxy, hydroxyalkyl, amino, aminoalkyl, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is selected from the group consisting of alkyl and haloalkyl;

10

15

20

B is formula (V):

$$R^{33}$$
 $L^{R^{34}}$
 $L^{R^{35}}$
 $L^{R^{35}}$
 $L^{R^{36}}$
 $L^{R^{36}}$
 $L^{R^{36}}$

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N;

$$R^{32}$$
, R^{33} , R^{34} , R^{35} , and R^{36} are independently selected to be Q^b ;
 R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are

independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, carboxy, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, alkylsulfinyl, alkylsulfinylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, alkanoyl, alkenoyl, haloalkanoyl, alkyl, alkenyl, alkenyloxy, alkenyloxyalky, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkyl, carboxamido, carboxamidoalkyl, and cyano;

B is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 haloalkyl, and C3-C8 haloalkenyl wherein each member

10

15

20

25

of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₃, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₃, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₃ positions may be substituted with R₃₄;

A is selected from the group consisting of single covalent bond, $(W^7)_{rr} - (CH(R^{15}))_{pa} \text{ and } (CH(R^{15}))_{pa} - (W^7)_{rr} \text{ wherein rr is an integer}$ selected from 0 through 1, pa is an integer selected from 0 through 6, and W^7 is selected from the group consisting of O, S, C(O), C(S), C(O)S, C(S)O, C(O)N(R⁷), C(S)N(R⁷), (R⁷)NC(O), (R⁷)NC(S), S(O), S(O)₂, S(O)₂N(R⁷),

10

15

(R⁷)NS(O)₂, C(NR⁷)N(R⁷), (R⁷)NC(NR⁷), and N(R⁷) with the proviso that no more than one of the group consisting of rr and pa is 0 at the same time;

R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydroxy, alkyl, and alkoxyalkyl;

R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

 Ψ is NHwith the provisos that Ψ is selected from other than NH unless any two of X^0 , R^2 , R^1 , and J are other than hydrido or that Ψ is selected from other than NH unless A is selected from other than a single covalent bond when B is acyl, or that Ψ is selected from other than NH unless A is selected from other than NH unless A is selected from other than S(O) or S(O)₂ when B is phenyl;

X⁰ is hydrido;

R¹ is selected from the group consisting of hydrido, alkyl, alkoxy, alkylamino, alkylthio, haloalkylthio, haloalkyl, haloalkoxy, and halo;

R² is selected from the group consisting of Z⁰-Q, hydrido, alkyl, alkenyl, and halo;

Z⁰ is a covalent single bond;

Q is formula (II):

$$\begin{array}{c}
R^{10} \\
R^{10} \\
R^{11} \\
R^{12} \\
R^{12} \\
R^{12} \\
R^{12} \\
R^{13} \\
R^{13}
\end{array}$$
(III)

wherein D^1 , D^2 , J^1 , J^2 and K^1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is O,

10

15

no more than one of D^1 , D^2 , J^1 , J^2 and K^1 is S, one of D^1 , D^2 , J^1 , J^2 and K^1 must be a covalent bond when two of D^1 , D^2 , J^1 , J^2 and K^1 are O and S, and no more than four of D^1 , D^2 , J^1 , J^2 and K^1 are N, with the proviso that R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

K is
$$CR^{4a}R^{4b}$$
;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, hydroxy, alkyl, and haloalkyl;

E⁰ is E¹, when K is CR^{4a}R^{4b}, wherein E¹ is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), C(S)N(H), (H)NC(S), S(O)₂N(H), N(H)S(O)₂, S(O)₂N(H)C(O), and C(O)N(H)S(O)₂;

K is $(CH(R^{14}))_j$ -T wherein j is selected from an integer from 0 through 1 and T is selected from the group consisting of single covalent bond and $N(R^7)$ with the proviso that $(CH(R^{14}))_i$ is bonded to the phenyl ring;

 E^0 is E^2 , when K is $(CH(R^{14}))_j$ -T, wherein E^2 is selected from the group consisting of C(O)N(H), (H)NC(O), C(S)N(H), (H)NC(S), $S(O)_2N(H)$, $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

R¹⁴ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

Y⁰ is formula (IV):

wherein D⁵, D⁶, J⁵, and J⁶ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K² is independently selected from the group

5 consisting of C and N⁺, no more than one of D⁵, D⁶, J⁵, and J⁶ is O, no more than one of D⁵, D⁶, J⁵, and J⁶ is S, one of D⁵, D⁶, J⁵, and J⁶ must be a covalent bond when two of D⁵, D⁶, J⁵, and J⁶ are O and S, no more than three of D⁵, D⁶, J⁵, and J⁶ are N when K² is N⁺, and no more than four of D⁵, D⁶, J⁵, and J⁶ are N when K² is carbon with the provisos that R¹⁶, R¹⁷, R¹⁸, and

10 R¹⁹ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, carboxy, haloalkylthio, alkoxy, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, alkenoyl, haloalkanoyl, alkyl, alkenyl, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, carboalkoxyalkyl, and cyano;

Q^b is selected from the group consisting of NR²⁰R²¹, +NR²⁰R²¹R²², oxy, alkyl, alkylaminoalkyl, aminoalkyl, dialkylsulfoniumalkyl, and acylamino wherein R²⁰, R²¹, and R²² are independently selected from the group

consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl with the provisos that no more than one of R^{20} , R^{21} , and R^{22} is hydroxy, alkoxy, alkylamino, amino, or dialkylamino and that R^{20} , R^{21} , and R^{22} must be other than be hydroxy, alkoxy, alkylamino, amino, or dialkylamino when K^2 is N^+ ;

 Q^b is $N(R^{26})SO_2N(R^{23})(R^{24})$ with the proviso that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom;

Q^b is selected from the group consisting of dialkylsulfonium, trialkylphosphonium, C(NR²⁵)NR²³R²⁴, N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)C(O)N(R²³)(R²⁴), N(R²⁶)C(S)N(R²³)(R²⁴), C(O)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), C(S)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), N(R²⁶)N(R²⁶)SO₂N(R²³)(R²⁴), N(R²⁶)N(R²⁶)SO₂N(R²³)(R²⁴), C(O)NR²³R²⁴, and C(O)NR²³R²⁴ with the provisos that no more than one of R²³, R²⁴, and R²⁶ is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R²³, R²⁴, and R²⁶ are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl;

 Q^{s} is selected from the group consisting of a single covalent bond and $(CR^{37}R^{38})_{b}$ - $(W^{0})_{az}$ wherein az is an integer selected from 0 through 1, b is an

10

integer selected from 1 through 2, and W^0 is selected from the group consisting of O, S, C(O), S(O)₂, N(R¹⁴), and ON(R¹⁴) with the proviso that R¹⁴ is selected from other than halo when directly bonded to N and that $(CR^{37}R^{38})_b$ is bonded to E^0 ;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

Y⁰ is Q^b-Q^{ssss} wherein Q^{ssss} is (CH(R³⁸))_r-W⁵, r is an integer selected from 1 through 2, and W⁵ is selected from the group consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6-benzothiophenyl, 3,6-benzothiophenyl, 3,6-benzothiophenyl, 3,6-benzothiophenyl, 3,6-benzothiophenyl, 3,7-benzothiophenyl, 3,6-benzothiophenyl, 3,6-be

- benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7-indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7-indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7-
- benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7-benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4-quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5-
- quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5-isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8-isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8-isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8-
- cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with

the proviso that Q^b is bonded to lowest number substituent position of each W^5 and that $(CH(R^{38}))_r$ is bonded to E^0 ;

 Y^0 is Q^b - Q^{ssssr} wherein Q^{ssssr} is $(CH(R^{38}))_r$ - W^6 , r is an integer

selected from 1 through 2, and W⁶ is selected from the group consisting of 1,4-

- indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-benzofuranyl, 2,4-benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7-
- benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6-benzothiophenyl, 3,7-benzothiophenyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7-indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7-
- indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7-benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7-benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4-
- quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5-quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5-isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8-isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8-
- isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8-cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl with the proviso that Q^b is bonded to highest number substituent position of each W⁶ and that (CH(R³⁸))_r is bonded to E⁰.

30

5. The compound as recited in Claim 4 having the Formula I-S:

10

15

20

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{0}$$

$$\mathbb{R}^{1}$$

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, bromo, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, methoxy, ethoxy, trifluoromethoxy, N-methylamino, N-ethylamino, methythio, ethylthio, and trifluoromethylthio;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-oxadiazol-3-yl, 1,3,4-oxadiazol-5-yl, 3-isothiazolyl, 5-isothiazolyl, 2-oxazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, and 1,2,3-triazin-4-yl, wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R 32 , the other carbon adjacent to the carbon at the point of attachment may be substituted by R 36 , a carbon adjacent to R 32 and two atoms from the carbon at the point of attachment may be substituted by R 36 , and any carbon adjacent to both R 33 and R 35 may be substituted by R 34 ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, dimethylsulfonium, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, thio, nitro, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-

methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, carboxymethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-

10 dimethylamidocarbonyl, cyano, and O^b:

B is selected from the group consisting of 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, isobutyl, 2methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentynyl, 3pentynyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 1-methyl-2-15 butynyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2methyl-3-butenyl, 2-methyl-3-butynyl, 3-methylbutyl, 3-methyl-2-butenyl, 3methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3pentenyl, 1-methyl-4-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3hexyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-20 butynyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl, 25 1-ethyl-3-pentynyl, 1-octyl, 2-octenyl, 3-octenyl, 4-octenyl, 5-octenyl, 6-octenyl, 7-octenyl, 2-octynyl, 3-octynyl, 4-octynyl, 5-octynyl, 6-octynyl, 2-octyl, 1methyl-2-heptenyl, 1-methyl-3-heptenyl, 1-methyl-4-heptenyl, 1-methyl-5heptenyl, 1-methyl-6-heptenyl, 1-methyl-2-heptynyl, 1-methyl-3-heptynyl, 1-30 methyl-4-heptenyl, 1-methyl-5-heptenyl, 1-methyl-6-heptenyl, 1-methyl-2heptenyl, 1-methyl-3-heptynyl, 1-methyl-4-heptynyl, 1-methyl-5-heptynyl, 3octyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl, 1-ethyl-4-hexenyl, 1-ethyl-2hexynyl, 1-ethyl-3-hexynyl, 1-ethyl-4-hexynyl, 1-ethyl-5-hexenyl, 1-pentyl-2propenyl, 4-octyl, 1-propyl-2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-35 pentenyl, 1-butyl-2-butenyl, 1-propyl-2-pentynyl, 1-propyl-3-pentynyl, 1-butyl2-butynyl, 1-butyl-3-butenyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B may be optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to

5 A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-2-yl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-2-yl, thiaetan-3-yl, cyclopentyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-ethylphenoxycyclohexyl, 3-

- trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl, adamantyl, 3trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cyclohex-2-enyl, cyclohex-3-enyl, cycloheptyl, cyclohept-2-enyl, cyclohept-3-enyl, cyclooctyl,
- cyclooct-2-enyl, cyclooct-3-enyl, cyclooct-4-enyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2H-2-pyranyl, 2H-3-pyranyl, 2H-4-pyranyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 2H-pyran-2-one-3-yl, 2H-pyran-2-one-
- 4-yl, 2H-pyran-2-one-5-yl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R₃₃, a ring carbon and nitrogen atoms adjacent to the carbon atom at the point
- of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, and a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂;

10

20

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of amidino, guanidino, dimethylsulfonium, methylethylsulfonium, carboxy, methoxy, ethoxy, isopropoxy, propoxy, butoxy, hydroxy, amino, methoxyamino, ethoxyamino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-dimethylamino, N-methylamino, N-ethylamino, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, acetyl, propanoyl, butanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, carboxymethyl, 2-carboxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

A is selected from the group consisting of single covalent bond, O, C(O), CH₂, CH₃CH, CF₃CH, CH₃CC(O), CF₃CC(O), C(O)CCH₃,

 $\begin{array}{ll} \text{C(O)CCF}_3, \text{CH}_2\text{C(O)}, \text{(O)CCH}_2, \text{CH}_2\text{CH}_2, \text{CH}_2\text{CH}_2, \text{CH}_3\text{CCH}_2, \\ \\ \text{CF}_3\text{CCH}_2, \text{CH}_3\text{CC(O)CH}_2, \text{CF}_3\text{CC(O)CH}_2, \text{CH}_2\text{C(O)CCH}_3, \\ \\ \text{CH}_2\text{C(O)CCF}_3, \text{CH}_2\text{CH}_2\text{C(O)}, \text{ and } \text{CH}_2\text{(O)CCH}_2; \end{array}$

R¹ is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, N-methylamino, N,N-dimethylamino, N-ethylamino, N,N-diethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R² is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,3,4-oxadiazol-5-yl, 3-isothiazolyl, 5-isothiazolyl, 2-oxazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, and 1,2,3-triazin-4-yl, wherein a carbon adjacent to the carbon

at the point of attachment may be substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment may be substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment may be substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment may be substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} may be substituted by R^{11} ;

K is CR ^{4a}R ^{4b} wherein R ^{4a} and R ^{4b} are independently selected from the group consisting of chloro, fluoro, and hydrido;

 E^0 is E^1 , when K is $CR^{4a}R^{4b}$, wherein E^1 is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), $S(O)_2N(H)$, $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

K is selected from the group consisting of N(H) and $CH_2N(H)$;

 E^0 is E^2 , when K is N(H) and CH₂N(H), wherein E^2 is selected from the group consisting of C(O)N(H), (H)NC(O), S(O)₂N(H), N(H)S(O)₂,

15 $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

Y⁰ is selected from the group of formulas consisting of:

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, dimethylsulfonium, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, thio, nitro, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-

10

15

20

hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, carboxymethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

Q^b is selected, when bonded to a carbon, from the group consisting of NR ²⁰R ²¹, ⁺NR ²⁰R ²¹R ²², dimethylsulfonium, methylethylsulfonium, diethylsulfonium, trimethylphosphonium, C(NR ²⁵)NR ²³R ²⁴, N(R ²⁶)C(NR ²⁵)N(R ²³)(R ²⁴), C(O)N(R ²⁶)C(NR ²⁵)N(R ²³)(R ²⁴), N(R ²⁶)N(R ²⁶)C(NR ²⁵)N(R ²³)(R ²⁴), C(O)NR ²⁶R ²⁴, and C(O)NR ²³R ²⁴ with the provisos that no more than one of R ²⁰, R ²¹, and R ²² is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, N,N,N-trimethylamino, or amino and that no more than one of R ²³, R ²⁴, and R ²⁶ is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, N,N,N-trimethylamino, or amino when two of the group consisting of R ²³, R ²⁴, and R ²⁶ are bonded to the same atom and that said O b

R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, hydroxy, methoxy, ethoxy, isopropoxy, propoxy, 2-aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2-(N,N,N-trimethylamino)ethyl, N-(2-hydroxyethyl)amino, N,N-bis-(2-hydroxyethyl)amino, N-(2-hydroxyethyl)-N-(2-aminoethyl)amino, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino, and N,N,N-trimethylamino;

group is bonded directly to a carbon atom;

Q^b is selected, when bonded to a nitrogen, from the group consisting of oxy, methyl, ethyl, 2-aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2-(N,N,N-trimethylamino)ethyl, N-(2-hydroxyethyl)amino, N,N-bis-(2-hydroxyethyl)amino, amino, hydroxylamino, N-methoxyamino, N-methylamino, N,N-dimethylamino, and N,N,N-trimethylamino;

 Q^{S} is selected from the group consisting of a single covalent bond, CH_{2} , $CH_{3}CH$, CF_{2} , $CF_{3}CH$, $CH_{2}O$, $CH_{3}C(H)O$, $CF_{3}C(H)O$, $CH_{2}S$, $CH_{3}C(H)S$, $CF_{3}C(H)S$, $CH_{2}C(O)$, $CH_{3}C(H)C(O)$, $CF_{3}C(H)C(O)$, and $CF_{2}C(O)$ with the proviso that Q^{S} is bonded to E^{O} through a carbon atom.

5

10

15

6. The compound as recited in Claim 1 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, hydroxy, hydroxyalkyl, amino, aminoalkyl, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is selected from the group consisting of alkyl and haloalkyl;

B is selected from the group consisting of aryl and heteroaryl wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment may be substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment may be substituted by R^{36} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment may be substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} may be substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl, carboxyalkyl, carboalkoxy, carboxamido, cyano, and Q^b;

25

20

B is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 haloalkyl, and C3-C8 haloalkenyl wherein each member of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

10

15

20

25

B is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₃, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R33, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₃ positions may be substituted with R34;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, thio, nitro, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl, carboxyalkyl, carboxyalkyl, carboxamido, and cyano;

A is selected from the group consisting of single covalent bond, $(W^{7})_{rr}(CH(R^{15}))_{pa} \text{ and } (CH(R^{15}))_{pa}(W^{7})_{rr} \text{ wherein rr is an integer}$ selected from 0 through 1, pa is an integer selected from 0 through 6, and W⁷

is selected from the group consisting of O, S, and C(O) with the proviso that no

more than one of the group consisting of rr and pa is the integer 0 at the same time;

R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

Ψ is NH;

X⁰ is hydrido;

R¹ is selected from the group consisting of hydrido, alkyl, alkoxy, alkylamino, alkylthio, haloalkylthio, haloalkyl, haloalkoxy, and halo;

R² is Q, wherein Q is selected from the group consisting of aryl and heteroaryl wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment may be substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment may be substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment may be substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² may be substituted by R¹¹;

K is CR ^{4a} R ^{4b} wherein R ^{4a} and R ^{4b} are independently selected from the group consisting of halo and hydrido;

 E^0 is E^1 , when K is $CR^{4a}R^{4b}$, wherein E^1 is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), $S(O)_2N(H)$, $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

K is $(CH(R^{14}))_j$ -T wherein j is selected from an integer from 0 through 1 and T is selected from the group consisting of single covalent bond and $N(R^7)$ with the proviso that $(CH(R^{14}))_j$ is bonded to the phenyl ring;

15

R⁷ is selected from the group consisting of hydrido, hydroxy, alkyl, and alkoxyalkyl;

 R^{14} is selected from the group consisting of hydrido and halo; E^0 is E^2 , when K is $(CH(R^{14}))_j$ -T, wherein E^2 is selected from the

group consisting of C(O)N(H), (H)NC(O), S(O)₂N(H), N(H)S(O)₂, S(O)₂N(H)C(O), and C(O)N(H)S(O)₂;

Y⁰ is formula (IV):

wherein D^5 , D^6 , J^5 , and J^6 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K^2 is independently selected from the group consisting of C and N^+ , no more than one of D^5 , D^6 , J^5 , and J^6 is O, no more than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, no more than three of D^5 , D^6 , J^5 , and J^6 are N when K^2 is N^+ , and no more than four of D^5 , D^6 , J^5 , and J^6 are N when K^2 is carbon with the provisos that R^{16} , R^{17} , R^{18} , and R^{19} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

10

15

20

25

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, dialkylsulfonium, carboxy, haloalkylthio, alkoxy, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, alkenoyl, haloalkanoyl, alkyl, alkenyl, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, carboalkoxyalkyl, and cyano;

 Q^b is selected from the group consisting of NR 20 R 21 , $^+$ NR 20 R 21 R 22 , oxy, alkyl, alkylaminoalkyl, aminoalkyl, dialkylsulfoniumalkyl, and acylamino wherein R 20 , R 21 , and R 22 are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl with the provisos that no more than one of R 20 , R 21 , and R 22 is hydroxy, alkoxy, alkylamino, amino, or dialkylamino and that R 20 , R 21 , and R 22 must be other than be hydroxy, alkoxy, alkylamino, amino, or dialkylamino when K 2 is N $^+$;

 Q^b is selected from the group consisting of dialkylsulfonium, trialkylphosphonium, $C(NR^{25})NR^{23}R^{24}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $C(O)N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $C(O)N(R^{26})C(NR^{25})N(R^{25})N(R^{23})(R^{24})$, $C(O)NR^{26}N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $C(O)NR^{23}R^{24}$, and $C(O)NR^{23}R^{24}$ with the provisos that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, alkoxy, alkylamino, amino, or dialkylamino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylamino, dialkylamino, aminoalkyl, and hydroxyalkyl;

15

20

 Q^{S} is selected from the group consisting of a single covalent bond and $(CR^{37}R^{38})_{b}$ - $(W^{0})_{az}$ wherein az is an integer selected from 0 through 1, b is the integer 1, and W^{0} is selected from the group consisting of O, S, and C(O) with the proviso that $(CR^{37}R^{38})_{b}$ is bonded to E^{0} ;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, halo, alkyl, and haloalkyl.

7. The compound as recited in Claim 6 having the Formula I-MPS:

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, hydroxy, hydroxymethyl, amino, aminomethyl, methoxy, trifluoromethoxy, N-methylamino, methythio, and trifluoromethylthio;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R³², the other carbon adjacent to

the carbon at the point of attachment may be substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment may be substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon

20

25

30

at the point of attachment may be substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} may be substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, dimethylsulfonium, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, thio, nitro, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-

pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, carboxymethyl, methoxycarbonyl,
 ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-

dimethylamidocarbonyl, cyano, and Qb;

B is selected from the group consisting of 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 2,2-difluoropropyl, 2-trifluoromethyl-3,3,3-trifluoropropyl, 1,1,1,2,2,2-hexafluoropropyl, 3,3,3-trifluoroprop-1-yl, and 3,3,3-trifluoroprop-2-yl, wherein each member of group B may be optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-2-yl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-2-yl, thiaetan-3-yl, wherein each ring carbon may be optionally substituted with R_{33} , a ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R_9 or R_{13} , a ring carbon or

10

15

20

25

nitrogen atom adjacent to the R_9 position and two atoms from the point of attachment may be substituted with R_{10} , and a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} ;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of amidino, guanidino, dimethylsulfonium, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-methylamino, dimethylamino, N-ethylamino, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, carboxymethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

A is selected from the group consisting of single covalent bond, O, C(O), CH₂, CH₃CH, CF₃CH, CH₃CC(O), CF₃CC(O), CC(O)CCH₃, C(O)CCF₃, CH₂C(O), and (O)CCH₂;

R¹ is selected from the group consisting of hydrido, methyl, ethyl, propyl, methoxy, ethoxy, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, trifluoromethylthio, trifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R² is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R⁹, the other carbon adjacent to

the carbon at the point of attachment may be substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment may be substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment may be substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} may be substituted by R^{11} ;

K is CR^{4a}R^{4b} wherein R^{4a} and R^{4b} are independently selected from the group consisting of chloro, fluoro, and hydrido;

 E^0 is E^1 , when K is $CR^{4a}R^{4b}$, wherein E^1 is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), $S(O)_2N(H)$,

10 $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

K is selected from the group consisting of N(H) and CH₂N(H);

 E^0 is E^2 , when K is selected from the group consisting of N(H) and $CH_2N(H)$, wherein E^2 is selected from the group consisting of C(O)N(H), (H)NC(O), S(O)₂N(H), N(H)S(O)₂, S(O)₂N(H)C(O), and C(O)N(H)S(O)₂;

15

Y⁰ is selected from the group of formulas consisting of:

10

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, methoxy, ethoxy, isopropoxy, methylthio, ethylthio, trifluoromethylthio, trifluoromethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, methoxycarbonyl, ethoxycarbonyl, and cyano;

 Q^b is selected, when bonded to a carbon, from the group consisting of $NR^{20}R^{21}$, $^+NR^{20}R^{21}R^{22}$, dimethylsulfonium, methylethylsulfonium,

20

25

diethylsulfonium, trimethylphosphonium, $C(NR^{25})NR^{23}R^{24}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $C(O)N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, $N(R^{26})N(R^{26})C(NR^{25})N(R^{25})N(R^{23})(R^{24})$, $N(R^{26})N(R^{26})SO_2N(R^{23})(R^{24})$, $C(O)NR^{23}R^{24}$, and $C(O)NR^{23}R^{24}$ with the provisos that no more than one of R^{20} , R^{21} , and R^{22} is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, N,N,N-trimethylamino, or amino and that no more than one of R^{23} , R^{24} , and R^{26} is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, N,N,N-trimethylamino, or amino when two of the group consisting of R^{23} , R^{24} , and R^{26} are bonded to the same atom and that said Q^b group is bonded directly to a carbon atom;

R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, methyl, ethyl, hydroxy, methoxy, ethoxy, 2-aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2-(N,N,N-trimethylamino)ethyl, N-(2-hydroxyethyl)amino, N,N-bis-(2-hydroxyethyl)amino, N-(2-hydroxyethyl)-N-(2-aminoethyl)amino, N-methylamino, N,N-dimethylamino, and N,N,N-trimethylamino;

Q^b is selected, when bonded to a nitrogen, from the group consisting of oxy, methyl, ethyl, 2-aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2-(N,N-trimethylamino)ethyl, N-(2-hydroxyethyl)amino, N,N-bis-(2-hydroxyethyl)amino, amino, hydroxylamino, N-methoxyamino, N-methylamino, N,N-dimethylamino, and N,N,N-trimethylamino;

 Q^{S} is selected from the group consisting of a single covalent bond, CH_{2} , $CH_{3}CH$, CF_{2} , $CF_{3}CH$, $CH_{2}O$, $CH_{3}C(H)O$, $CF_{3}C(H)O$, $CH_{2}S$, $CH_{3}C(H)S$, $CF_{3}C(H)S$, $CH_{2}C(O)$, $CH_{3}C(H)C(O)$, $CF_{3}C(H)C(O)$, and $CF_{2}C(O)$ with the proviso that Q^{S} is bonded to E^{O} through a carbon atom.

8. The compound as recited in Claim 7 having the Formula I-EMPS:

10

15

20

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, hydroxy, hydroxymethyl, amino, aminomethyl, methoxy, trifluoromethoxy, and N-methylamino;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment may be substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment may be substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment may be substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} may be substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, methoxy, ethoxy, hydroxy, amino, methoxyamino, ethoxyamino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-methylamino, dimethylamino, N-ethylamino, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 2,2,2-trifluoro-1-trifluoromethyl-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, cyano, and Q^b;

10

15

20

25

B is selected from the group consisting of propyl, isopropyl, butyl, secbutyl, isobutyl, 1-pentyl, 2-pentyl, 3-pentyl, 2-methylbutyl, 3-methylbutyl, 2,2-difluoropropyl, 2-trifluoromethyl-3,3,3-trifluoropropyl, 1,1,1,2,2,2-hexafluoropropyl, 3,3,3-trifluoroprop-1-yl, and 3,3,3-trifluoroprop-2-yl, wherein each member of group B may be optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆;

B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-2-yl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-2-yl, thiaetan-3-yl, wherein each ring carbon may be optionally substituted with R_{33} , a ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R_9 or R_{13} , a ring carbon or nitrogen atom adjacent to the R_9 position and two atoms from the point of attachment may be substituted with R_{10} , and a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} ;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of amidino, guanidino, carboxy, methoxy, ethoxy, hydroxy, amino, methoxyamino, ethoxyamino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-N-methylamino, dimethylamino, N-ethylamino, acetyl, propanoyl, trifluoroacetyl, pentafluoropropanoyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxymethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

A is selected from the group consisting of single covalent bond, O, C(O), CH₂, CH₂C(O), and (O)CCH₂;

R¹ is selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, N-methylamino, dimethylamino, N-ethylamino, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, and bromo;

10

R² is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment may be substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment may be substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment may be substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment may be substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² may be substituted by R¹¹;

K is CR ^{4a}R ^{4b} wherein R ^{4a} and R ^{4b} are independently selected from the group consisting of chloro, fluoro, and hydrido;

E⁰ is E¹, when K is CR^{4a}R^{4b}, wherein E¹ is selected from the group

consisting of a covalent single bond, C(O)N(H), (H)NC(O), S(O)₂N(H),

N(H)S(O)₂, S(O)₂N(H)C(O), and C(O)N(H)S(O)₂;

K is selected from the group consisting of N(H) and $CH_2N(H)$;

 E^0 is E^2 , when K is selected from the group consisting of N(H) and $CH_2N(H)$, wherein E^2 is selected from the group consisting of C(O)N(H),

20 (H)NC(O), S(O)₂N(H), N(H)S(O)₂, S(O)₂N(H)C(O), and C(O)N(H)S(O)₂;

Y⁰ is selected from the group of formulas consisting of:

5

QS QS -R¹⁹ R¹⁶ R¹⁷ -R¹⁹ R¹⁷ R¹⁶ ****R16 QS -R¹⁹ R¹⁶ R¹⁷ ****R16 -R¹⁹ R¹⁶ R¹⁶ R16 -R¹⁹ R¹⁷ and

330

10

20

25

R 16 R 17 R 18 and R 19 are independently selected from the group consisting of hydrido, methoxy, ethoxy, trifluoromethyl, pentafluoroethyl, 2,2,2trifluoroethyl, trifluoromethoxy, fluoro, chloro, bromo, acetyl, trifluoroacetyl, methoxycarbonyl, ethoxycarbonyl, and cyano;

 Q^b is selected from the group consisting of NR 20 R 21 , $^+$ NR 20 R 21 R 22 . dimethylsulfonium, methylethylsulfonium, diethylsulfonium, trimethylphosphonium, $C(NR^{25})NR^{23}R^{24}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$. $C(O)N(R^{26})C(NR^{25})N(R^{23})(R^{24}), N(R^{26})N(R^{26})C(NR^{25})N(R^{23})(R^{24}).$ $N(R^{26})N(R^{26})SO_2N(R^{23})(R^{24})$, $C(O)NR^{23}R^{24}$, and $C(O)NR^{23}R^{24}$ with the provisos that no more than one of R^{20} , R^{21} , and R^{22} is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, and N,N,N-trimethylamino, or amino and that no more than one of R²³, R²⁴, and R²⁶ is hydroxy, methoxy, ethoxy, N-methylamino, N,N-dimethylamino, N,N,N-trimethylamino, or amino when two of the group consisting of R²³, R²⁴, and R²⁶ are bonded to the same 15 atom and that said O group is bonded directly to a carbon atom;

R²⁰ R²¹ R²² R²³ R²⁴ R²⁵ and R²⁶ are independently selected from the group consisting of hydrido, methyl, ethyl, hydroxy, methoxy, ethoxy, 2aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2-(N,N,Ntrimethylamino)ethyl, N-(2-hydroxyethyl)amino, N,N-bis-(2-hydroxyethyl)amino, N-(2-hydroxyethyl)-N-(2-aminoethyl)amino, N-methylamino, N,N-dimethylamino, and N,N,N-trimethylamino;

Os is selected from the group consisting of a single covalent bond, CH₂, CH₂CH, CF₂, CF₃CH, CH₂O, CH₃C(H)O, CF₃C(H)O, CH₂C(O), $CH_3C(H)C(O)$, $CF_3C(H)C(O)$, and $CF_2C(O)$ with the proviso that Q^S is

bonded to E⁰ through a carbon atom.

25

30

- 9. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 1 through 8 and a pharmaceutically acceptable carrier.
- 5 10. A method for inhibiting thrombotic conditions in blood comprising adding to blood a therapeutically effective amount of a composition of Claim 9.
 - 11. A method for inhibiting formation of blood platelet aggregates in blood comprising adding to blood a therapeutically effective amount of a composition of Claim 9.
 - 12. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a composition of Claim 9.
- 13. A method for treating or preventing venuous thromboembolism and pulmonary embolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.
- 14. A method for treating or preventing deep vein thrombosis in a mammal
 20 comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.
 - 15. A method for treating or preventing cardiogenic thromboembolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.
 - 16. A method for treating or preventing thromboembolic stroke in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.
 - 17. A method for treating or preventing thrombosis associated with cancer and cancer chemotherapy in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.

- 18. A method for treating or preventing unstable angina in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of Claim 9.
- 19. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a compound of any one of Claims 1 through 8 with a therapeutically effective amount of fibrinogen receptor antagonist.
- 20. The use of a compound of any one of Claims 1 through 8, or a pharmaceutically acceptable salt thereof, in the manufacture of medicament for inhibiting thrombus formation, treating thrombus formation, or preventing thrombus formation in a mammal.

20

25

30

35

10

15

21. A compound of the Formula:

$$\mathbb{R}^{2}$$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, amidino, carboxy, carboxamido, alkylsulfinyl, acyl, cyano, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is alkyl or haloalkyl;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R^{36} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{32} and two atoms from the point of attachment is optionally substituted by R^{33} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{36} and two atoms from the point of attachment is optionally substituted by R^{35} , and a nitrogen with a removable hydrogen or a carbon adjacent to both R^{35} is optionally substituted by R^{34} ;

$$R^{9}, R^{10}, R^{11}, R^{12}, R^{13}, R^{32}, R^{33}, R^{34}, R^{35},$$
 and R^{36} are

independently selected from the group consisting of hydrido, acetamido, 20 haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,

10

15

20

25

heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, alkoxyalkyl, haloalkoxylalkyl, hydroxy, amino, alkoxyamino, nitro, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino, alkylthio, alkylthioalkyl, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, alkylsulfonylalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboxyalkyl, carboxyalkyl, carboxyanido, carboxamidoalkyl, and cyano;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently optionally Q^b ;

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

B is optionally a C3-C12 cycloalkyl or C4-C9 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R^{33} , a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring carbon or nitrogen atom adjacent to the R^9 position and two atoms from the point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen adjacent to the R^{13} position and two atoms from the point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{10} position is optionally substituted

10

15

20

with R^{11} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{12} position is optionally substituted with R^{33} , and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R^{11} and R^{33} positions is optionally substituted with R^{34} ;

A is selected from the group consisting of a bond, $(W^7)_{rr} - (CH(R^{15}))_{pa}, \text{ and } (CH(R^{15}))_{pa} - (W^7)_{rr} \text{ wherein rr is 0 or 1, pa is an integer selected from 0 through 6, and } W^7 \text{ is selected from the group consisting of O, S, C(O), } (R^7)NC(O), (R^7)NC(S), \text{ and } N(R^7) \text{ with the proviso that no more than one of the group consisting of rr and pa is 0 at the same time and with the further proviso that } W^7 \text{ is selected from other than C(O)} \text{ when } W^7 \text{ is bonded to } \Psi;$

R⁷ is selected from the group consisting of hydrido, hydroxy, and alkyl;

R 15 is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

Ψ is NH or NOH;

X⁰ and R¹ are independently selected from the group consisting of hydrido, alkyl, alkenyl, cyano, halo, haloalkyl, haloalkoxy, haloalkylthio, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

 R^2 is Z^0 -Q;

 Z^0 is selected from the group consisting of a bond, $(CR^{41}R^{42})_q$ wherein q is an integer selected from 1 through 3, and $(CH(R^{41}))_g$ - W^0 - $(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0

20

25

through 3 and W^0 is selected from the group consisting of O, S, C(O), S(O), $N(R^{41})$, and $ON(R^{41})$;

Z⁰ is optionally (CH(R⁴¹))_e-W²²-(CH(R⁴²))_h wherein e and h are independently 0 or 1 and W²² is selected from the group consisting of

CR⁴¹=CR⁴², 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and 3,4-tetrahydrofuranyl, wherein Z⁰ is directly bonded to the benzene ring and W²² is optionally substituted with one or more substituents selected from the group consisting of R⁹, R¹⁰, R¹¹, R¹², and R¹³;

R⁴¹ and R⁴² are independently selected from the group consisting of amidino, hydroxyamino, hydrido, hydroxy, amino, and alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen

with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R^{13} , a nitrogen with a removable hydrogen or a carbon adjacent to R^9 and two atoms from the point of attachment is optionally substituted by R^{10} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{13} and two atoms from the point of attachment is optionally substituted by R^{10} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{13} and two atoms from the point of attachment is optionally substituted by R^{12} , and a nitrogen with a removable

10

20

hydrogen or a carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

Q is optionally hydrido with the proviso that Z^0 is selected from other than a bond;

K is CR^{4a}R^{4b};

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydroxy, alkyl, and haloalkyl;

 E^0 , with the proviso that K is $CR^{4a}R^{4b}$, is E^1 wherein E^1 is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), C(S)N(H), (H)NC(S), $S(O)_2N(H)$, $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

K is optionally $(CH(R^{14}))_j$ -T wherein j is 0 or 1 and T is a bond or $N(R^7)$ with the proviso that $(CH(R^{14}))_j$ is bonded to the phenyl ring;

R¹⁴ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

 E^0 , with the proviso that K is $(CH(R^{14}))_j$ -T, is E^2 wherein E^2 is selected from the group consisting of C(O)N(H), (H)NC(O), C(S)N(H), (H)NC(S), $S(O)_2N(H)$, $N(H)S(O)_2$, $S(O)_2N(H)C(O)$, and $C(O)N(H)S(O)_2$;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to said phenyl or said heteroaryl to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} ,

10

15

20

25

another carbon adjacent to the point of attachment of Q^s is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, nitro, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, aminoalkyl, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time, with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, aminoalkyl, amino, dialkylamino, alkylamino, and hydroxyalkyl;

 Q^s is selected from the group consisting of a bond, $(CR^{37}R^{38})_b$ wherein b is an integer selected from 1 through 4, and $(CH(R^{14}))_c$ - W^1 - $(CH(R^{15}))_d$ wherein c and d are integers independently selected from 1 through 3 and W^1 is selected from the group consisting of $C(O)N(R^{14})$,

10

20

 $(R^{14})NC(O)$, S(O), $S(O)_2$, $S(O)_2N(R^{14})$, $N(R^{14})S(O)_2$, and $N(R^{14})$, with the proviso that R^{14} is selected from other than halo when directly bonded to N, and with the additional proviso that $(CR^{37}R^{38})_b$ and $(CH(R^{14}))_c$ are bonded to E^0 ;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

 R^{38} is optionally aroyl or heteroaroyl, wherein R^{38} is optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} ;

 Y^{0} is optionally Y^{AT} wherein Y^{AT} is Q^{b} - Q^{s} ;

 Y^0 is optionally $Q^b - Q^{ss}$ wherein Q^{ss} is $(CH(R^{14}))_e - W^2 - (CH(R^{15}))_h$, wherein e and h are independently 1 or 2 and W^2 is $CR^{4a} = CR^{4b}$, with the proviso that $(CH(R^{14}))_e$ is bonded to E^0 .

22. Compound of Claim 21 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, amidino, carboxy, carboxamido, alkylsulfinyl, formyl, cyano, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is alkyl or haloalkyl;

20

25

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the

group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino, alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxamido, cyano, and O^b:

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R 32, R 34, R 35, and R 36;

B is optionally a C3-C12 cycloalkyl or a C4-C9 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R^{33} , a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring carbon or nitrogen atom adjacent to the R^9 position and two atoms from the

25

point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen atom adjacent to the R^{13} position and two atoms from the point of attachment is optionally substituted with R^{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R^{10} position is optionally substituted with R^{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R^{12} position is optionally substituted with R^{33} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R^{11} and R^{33} positions is optionally substituted with R^{34} ;

 R^{9} , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from the group 10 consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, 15 alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, 20 cycloalkylalkyl, heterocyclyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

A is bond or $(CH(R^{15}))_{pa}^{-}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is selected from the group consisting of O, S, C(O), $(R^{7})NC(O)$, $(R^{7})NC(S)$, and $N(R^{7})$, with the further proviso that W^{7}

is selected from other than C(O) when W^7 is bonded to the N(H) on the benzene ring;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;
R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo,

5 alkyl, and haloalkyl;

 R^1 and X^0 are independently selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

10 $R^2 \text{ is } Z^0 - Q;$

 Z^0 is selected from the group consisting of a bond, $(CR^{41}R^{42})_q$ wherein q is 1 or 2, and $(CH(R^{41}))_g$ - W^0 - $(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0 through 3 and W^0 is selected from the group consisting of O, S, C(O), S(O), N(R⁴¹), and ON(R⁴¹);

15 Z^0 is optionally $(CH(R^{41}))_e$ - W^{22} - $(CH(R^{42}))_h$ wherein e and h are independently 0 or 1 and W^{22} is selected from the group consisting of CR^{41} = CR^{42} , 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl,

 $2,\!6\text{-morpholinyl},\,3,\!4\text{-morpholinyl},\,3,\!5\text{-morpholinyl},\,1,\!2\text{-piperazinyl},$

1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl,

2,5-tetrahydrofuranyl, and 3,4-tetrahydrofuranyl, wherein Z⁰ is directly bonded

to the benzene ring and W²² is optionally substituted with one or more substituents selected from the group consisting of R⁹, R¹⁰, R¹¹, R¹², and R¹³;

10

15

R⁴¹ and R⁴² are independently selected from the group consisting of hydrido, alkyl, hydroxy, and amino;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

Q is optionally hydrido with the proviso that Z^0 is other than a bond; K is $CR^{4a}R^{4b}$;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, and hydroxy;

 E^{0} , with the proviso that K is $CR^{4a}R^{4b}$, is E^{1} wherein E^{1} is selected from the group consisting of a covalent single bond, C(O)N(H), (H)NC(O), $S(O)_{2}N(H)$, and $N(H)S(O)_{2}$;

K is optionally $(CH(R^{14}))_j$ -T wherein j is 0 or 1 and T is a bond or $N(R^7)$ with the proviso that $(CH(R^{14}))_j$ is bonded to the phenyl ring;

20 R¹⁴ is hydrido or halo;

 E^{0} , with the proviso that K is $(CH(R^{14}))_{j}$ -T, is E^{2} wherein E^{2} is selected from the group consisting of C(O)N(H), (H)NC(O), C(S)N(H), (H)NC(S), $S(O)_{2}N(H)$, $N(H)S(O)_{2}$, $S(O)_{2}N(H)C(O)$, and $C(O)N(H)S(O)_{2}$;

15

20

 y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^S , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^S , a carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S .

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time, with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;

 Q^{s} is selected from the group consisting of a bond, $(CR^{37}R^{38})_{b}$ wherein b is an integer selected from 1 through 4, and $(CH(R^{14}))_{c}$ - W^{1} - $(CH(R^{15}))_{d}$ wherein c and d are integers independently selected from 1 through 3 and W^{1} is selected from the group consisting of $C(O)N(R^{14})$, $(R^{14})NC(O)$, S(O), S(O)

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

 R^{38} is optionally aroyl or heteroaroyl, wherein R^{38} is optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} ;

 Y^{0} is optionally Y^{AT} wherein Y^{AT} is Q^{b} - Q^{s} ;

15 Y^0 is optionally $Q^b - Q^{ss}$ wherein Q^{ss} is $(CH(R^{14}))_{e^-}W^2 - (CH(R^{15}))_{h^-}$, wherein e and h are independently 1 or 2 and W^2 is $CR^{4a} = CR^{4b}$ with the proviso that $(CH(R^{14}))_{e^-}$ is bonded to E^0 .

20

25

10

15

20

23. Compound of Claim 22 or a pharmaceutically acceptable salt thereof, wherein;

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is alkyl or haloalkyl;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by R³⁴;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

10

15

25

A is a bond or $(CH(R^{15}))_{pa}^{-}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W⁷ is (R⁷)NC(O) or N(R⁷);

R is selected from the group consisting of hydrido, hydroxy and alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^{2} is Z^{0} -O:

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, W⁰-(CH(R⁴²))_p wherein p is 0 or 1 and W⁰ is selected from the group consisting of O, S, and $N(R^{41})$;

R⁴¹ and R⁴² are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R 13, a carbon adjacent to R and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the 20 carbon at the point of attachment is optionally substituted by R 12, and any carbon adjacent to both R 10 and R 12 is optionally substituted by R 11;

R 2 R 11 and R 13 are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy,

20

25

halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

20

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R 20 and R 21 is

5 hydroxy at the same time and with the further proviso that no more than one of R²³ and R²⁴ is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

24. Compound of Claim 23 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, methoxy, trifluoromethoxy, N-methylamino, methythio, and trifluoromethylthio;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the

point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at

the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

 $R^{32}, R^{33}, R^{34}, R^{35}$, and R^{36} are independently selected from the

group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃),

15 N(OH), CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH,
C(O)N(CH₃), CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂;

 R^1 and X^0 are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl,

pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

 Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , O,

25 S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl,

3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

- N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
- N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
- 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylphenylamino,
 4-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
- 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,5-difluorophenoxy, 4-difluorophenoxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,
- 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
- 25 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino, 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
- phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy, 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
- 35 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

Y⁰ is selected from the group consisting of:

15
$$2-Q^{b}-5-Q^{s}-4-R^{16}$$
 pyrazole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and $2-Q^{b}-5-Q^{s}-4-R^{17}$ thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino,

aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,

25 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

5 R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂ and CH₂CH₂.

25. Compound of Claim 24 or a pharmaceutically acceptable salt thereof,

10 wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, aminomethyl, methoxy, trifluoromethoxy, and N-methylamino;

B is selected from the group consisting of 2-aminophenyl,

- 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
 - 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
 - 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
 - 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
- 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,
 - 5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and
 - 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of CH₂, CH₃CH, CF₃CH,

 $\mathsf{NHC}(\mathsf{O}), \mathsf{CH}_2\mathsf{CH}_2, \mathsf{and} \ \mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2;$

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, CH₂, O, S, NH,

N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 5 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,
 - 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,
 - 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 15 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 20 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 - 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 - 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
- 25 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
 - 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
- 30 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
 - 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
 - 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
 - phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 - 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 35 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of:

$$^{1-Q}_{-4-Q}^{-4-Q}_{-2-R}^{-16}_{-3-R}^{-17}_{-5-R}^{-18}_{-6-R}^{-19}_{-6-R}^{$$

5
$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,

10 R¹⁹, and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^b$$
 is $C(NR^{25})NR^{23}R^{24}$ or hydrido;

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

15
$$Q^{s}$$
 is CH_{2} .

26. Compound of Claim 23 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, and aminoalkyl;

10

15

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a bond or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is $N(R^{7})$;

R⁷ is hydrido or alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^2 is Z^0 -Q;

 Z^0 is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl

10

15

20

ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

 y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , a carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D .

15

20

25

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, and C(NR 25)NR 23 R 24 ;

10 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently hydrido or alkyl; Q^s is CH_2 .

27. Compound of Claim 26 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{36} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

10

15

20

25

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, and CH₂CH₂;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, chloro, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

 R^2 is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the benzene ring is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl,

- 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano; R 10 and R 12 are independently selected from the group consisting of
- hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
- N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
- carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;
- Y⁰ is selected from the group consisting of: 1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene, 2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene, 3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine, 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene, 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ furan, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ furan, 25 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ nyrrole
- 25 $3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$ pyrrole, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ pyrrole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and $2-Q^{b}-5-Q^{s}-4-R^{17}$ thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl,

methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$$Q^{b}$$
 is $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group

5 consisting of hydrido, methyl, and ethyl;

$$Q^s$$
 is CH_2 .

- 28. Compound of Claim 27 or a pharmaceutically acceptable salt thereof, wherein;
- J is selected from the group consisting of fluoro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of 2-aminophenyl,

- 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,
- 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
- 15 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
 - 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
 - 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
 - 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,
 - 5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and
- 20 3-trifluoromethyl-2-pyridyl;

- X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro;
- 25 R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;
 - R² is selected from the group consisting of
 - 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
- 30 3-amino-5-(N-benzylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

```
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
```

- 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 5 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 - 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 10 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 - 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
- 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
 - 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 20 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
 - 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
 - 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 - 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 - 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 25 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 - 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

 Y^0 is selected from the group consisting of:

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^b$$
 is $C(NR^{25})NR^{23}R^{24}$;
 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;
 Q^s is CH_2 .

29. Compound of Claim 28 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, hydroxy, hydroxymethyl, and amino;

B is selected from the group consisting of 3-aminophenyl,
3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl,
3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl,
3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

25 R² is selected from the group consisting of
3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

5 3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,

3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amdinobenzyl.

30. Compound of Claim 23 where said compound is selected from the group of the Formula:

20

15

or a pharmaceutically acceptable salt thereof, wherein;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro; R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-

25 amidinobenzyl, J is fluoro, and R¹ is chloro;

10

15

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is 2-imidazoyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

10

25

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-imidazoyl, A is CH₂CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

15

20

25

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

10 R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido.

31. Compound of Claim 22 of the Formula:

15

20

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is alkyl or haloalkyl;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³²,

10
$$R^{33}, R^{34}, R^{35}, \text{ and } R^{36};$$

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a bond or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $(R^7)NC(O)$ or $N(R^7)$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;
R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy,

15

20

alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, W⁰
(CH(R⁴²))_p wherein p is 0 or 1 and W⁰ is selected from the group consisting

of O, S, and N(R⁴¹);

 R^{41} and R^{42} are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aryloxy, heteroaryloxy,

25 heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino,

10

alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D .

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}, N(R^{26})C(NR^{25})N(R^{23})(R^{24}), \text{ and } C(NR^{25})NR^{23}R^{24}, \text{ with the proviso that } R^{16}, R^{19}, \text{ and } Q^b \text{ are not simultaneously hydrido;}$

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} and R^{21} is hydroxy at the same time and with the

further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

 Q^s is selected from the group consisting of a bond, CH_2 , and CH_2CH_2 .

32. Compound of Claim 31 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, methoxy, trifluoromethoxy, N-methylamino, methythio, and trifluoromethylthio;

B is selected from the group consisting of hydrido, ethyl, 2-propynyl,
2-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, 2-butynyl, sec-butyl,
tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl,
4-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 1-methyl-2-butenyl,
1-methyl-3-butenyl, 1-methyl-2-butynyl, 3-pentyl, 1-ethyl-2-propenyl,
2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 2-methyl-3-butynyl,

3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl, 1-methyl-2-butenyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-butynyl, 1-heptyl, 2-heptenyl,

3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptynyl, 3-heptynyl,
4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl,
1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2-hexynyl,
1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl,
1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl,

1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted

at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl,

N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b;

A is selected from the group consisting of bond, NH, N(CH₃), N(OH),

CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂, CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂;

 R^1 and X^0 are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl,

pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, O,

25 S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl,

5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^0 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl,

- N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl.
- N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
- 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylphenylamino,
 4-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
- 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy,
- 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy, 4-fluoro-3-trifluoromethylphenoxy,
- 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, phenylamino, 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
- phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy, 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
- 35 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

Y⁰ is selected from the group consisting of:

15 $2-Q^{b}-5-Q^{s}-4-R^{16}$ pyrazole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and $2-Q^{b}-5-Q^{s}-4-R^{17}$ thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,

25 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido,

5 C(NR²⁵)NR²³R²⁴, and N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), with the proviso that no more than one of R²⁰ and R²¹ is hydroxy at the same time and with the further proviso that no more than one of R²³ and R²⁴ is hydroxy at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

33. Compound of Claim 32 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, aminomethyl, methoxy, trifluoromethoxy, and N-methylamino;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl,

- 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl,
 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,
 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl,
 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl,
 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl,
- 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, NHC(O), CH₂CH₂, CH₂CH₂CH₂, and CH₃CHCH₂;

 R^1 and X^0 are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

5 $R^2 \text{ is } Z^0 - Q;$

Z⁰ is selected from the group consisting of a bond, CH₂, O, S, NH,

N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

 $3\hbox{-amino-}5\hbox{-}(N\hbox{-}(2\hbox{-chlorobenzyl}) a midosul fonyl) phenyl,$

20 3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

25 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

30 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,

3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,

3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,

2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,

2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,

3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,

3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,

5 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,

3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of:

10
$$3-Q^{b}-6-Q^{s}-2-R^{16}-5-R^{18}-4-R^{19}$$
 pyridine,

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^b$$
 is $C(NR^{25})NR^{23}R^{24}$ or hydrido;

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^{s} is CH_{2} .

34. Compound of Claim 31 of the Formula:

15

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, and aminoalkyl;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a bond or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

R⁷ is hydrido or alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

20 R¹ and X⁰ are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

10

15

20

25

 R^2 is Z^0 -Q;

Z⁰ is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , a carbon adjacent to Q^D is

optionally substituted by R¹⁶, and another carbon adjacent to Q^b is optionally substituted by R¹⁹;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido,

$$N(R^{26})C(NR^{25})N(R^{23})(R^{24})$$
, and $C(NR^{25})NR^{23}R^{24}$;
$$R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$$
, and R^{26} are independently hydrido or alkyl; Q^s is CH₂.

15

10

35. Compound of Claim 34 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl, 2-methyl-2-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 2-heptynyl, 3-hexenyl, 1-methyl-2-hexenyl, 1-methyl-2-hexenyl, 1-methyl-2-hexenyl, 1-methyl-2-hexenyl, 1-methyl-2-hexenyl, 1-methyl-2-hexynyl,

10

20

25

1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b ;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂,

15 CH₃CH, and CH₂CH₂;

A is optionally selected from the group consisting of $CH_2N(CH_3)$, $CH_2N(CH_2CH_3)$, $CH_2CH_2N(CH_3)$, and $CH_2CH_2N(CH_3)$ with the proviso that B is hydrido;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, chloro, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the benzene ring is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally

substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl,

N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, l-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

- N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
- N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy,
 hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
 carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,
 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino,
- dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

 Y^0 is selected from the group consisting of: 1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹benzene,

25

 $2-Q^{b}-5-Q^{s}-6-R^{17}-4-R^{18}-3-R^{19} \text{ pyridine, } 2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17} \text{ thiophene, } \\ 3-Q^{b}-6-Q^{s}-2-R^{16}-5-R^{18}-4-R^{19} \text{ pyridine, } 3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19} \text{ thiophene, } \\ 3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19} \text{ furan, } 2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17} \text{ furan, } \\ 3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19} \text{ pyrrole, } 2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17} \text{ pyrrole, } \\ 4-Q^{b}-2-Q^{s}-5-R^{19} \text{ thiazole, and } 2-Q^{b}-5-Q^{s}-4-R^{17} \text{ thiazole; }$

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

Q^b is selected from the group consisting of NR²⁰R²¹, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$;

 $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$, and R^{26} are independently selected from the

group consisting of hydrido, methyl, and ethyl;

Q^s is CH₂.

36. Compound of Claim 35 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl,

3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and CH₂CH₂;

5 X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro:

R² is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl.

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

30 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,

3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,

10

25

- 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
- 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
- 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 - 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 - 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

15 R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R 17 and R 18 are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^{b} \text{ is C(NR}^{25}) NR^{23} R^{24};$$

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^s is CH_2 .

37. Compound of Claim 36 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, hydroxy, hydroxymethyl, and amino;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl,

tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl,

1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,

2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl,

5 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl,

3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl,

3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and

10 CH₂CH₂;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy,
hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and
fluoro;

R² is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

25 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

30 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

- 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
- 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
- 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

38. Compound of Claim 31 where said compound is selected from the group of the Formula:

10

15

20

or a pharmaceutically acceptable salt thereof, wherein;

 R^2 is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is (S)-2-butyl, A is a bond, Y⁰ is 4-amidinobenzyl,

J is hydroxy, and R¹ is chloro;

R² is 5-amino-2-fluorophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 2-methyl-3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2- . fluorobenzyl, J is hydroxy, and R^1 is chloro;

15

 R^2 is 3-aminophenyl, B is 2-propenyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-aminophenyl, B is 2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro:

 R^2 is 3-aminophenyl, B is 2-propynyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 3-pentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is ethyl, A is CH_2, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-methypropyl, A is a bond, Y⁰ is 4-

amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-aminophenyl, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is propyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

15

20

 R^2 is 3-aminophenyl, B is tert-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is tert-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 3-hydroxypropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-methylpropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 1-methoxy-2-propyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-methoxyethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-propyl, A is a bond, Y^0 is 5-amidino-2-thienylmethyl, J is hydroxy, and R^1 is chloro;

 R^2 is 5-amino-2-methylthiophenyl, B is 2-propyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carbomethoxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is bromo;

R² is 3-amino-5-carboxamidophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

10

 R^2 is 3-amino-5-(N-benzyl-N-methylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro:

R² is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is 5 isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro; R² is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; 10 R² is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2-15 ylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro; R² is 3-aminophenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidino-3fluorobenzyl, J is hydroxy, and R¹ is hydrido; R² is 3-carboxyphenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidinobenzyl, J 20 is hydroxy, and R¹ is hydrido; R² is 3-aminophenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidino-3fluorobenzyl, J is hydroxy, and R¹ is chloro: R² is 3,5-diaminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y⁰ is 4amidinobenzyl, J is hydroxy, and R¹ is chloro; 25

15

20

 R^2 is 3,5-diaminophenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzylbenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is ethyl, A is a bond, Y⁰ is 4-amidino-2-

10 fluorobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzylbenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro:

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzylbenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzylbenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro:

 R^2 is 5-amino-2-fluorophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 2-methyl-3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-propenyl, A is a bond, Y⁰ is 4-amidinobenzyl, J

20 is fluoro, and R¹ is chloro;

 R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-propynyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

5 R² is 3-aminophenyl, B is 3-pentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3-aminophenyl, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro:

R² is 3-aminophenyl, B is ethyl, A is CH₂, Y⁰ is 4-amidinobenzyl, J is

10 fluoro, and R¹ is chloro;

 R^2 is 3-aminophenyl, B is 2-methypropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is propyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is tert-butyl, A is a bond, Y⁰ is 4-amidinobenzyl, J

20 is fluoro, and R¹ is hydrido;

 R^2 is 3-aminophenyl, B is tert-butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 3-hydroxypropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-methylpropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is fluoro, and R¹ is chloro;

10

15

20

25

 R^2 is 3-aminophenyl, B is butyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 1-methoxy-2-propyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-methoxyethyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-aminophenyl, B is 2-propyl, A is a bond, Y⁰ is 5-amidino-2-thienylmethyl, J is fluoro, and R¹ is chloro;

 R^2 is 5-amino-2-methylthiophenyl, B is 2-propyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-carbomethoxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is bromo;

 R^2 is 3-amino-5-carboxamidophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-benzyl-N-methylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is isopropyl,

A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

25 R² is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro; R² is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro; R² is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is 5 isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro; R² is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2ylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl. J is fluoro, and R¹ is chloro; R² is 3-aminophenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidino-3-10 fluorobenzyl, J is fluoro, and R¹ is hydrido; R² is 3-carboxyphenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido; R² is 3-aminophenyl, B is 2-propyl, A is a bond, Y⁰ is 4-amidino-3fluorobenzyl, J is fluoro, and R¹ is chloro; 15 R² is 3,5-diaminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y⁰ is 4amidinobenzyl, J is fluoro, and R¹ is chloro; R² is 3,5-diaminophenyl, B is (S)-2-butyl, A is a bond, Y⁰ is 4amidinobenzyl, J is fluoro, and R¹ is chloro; R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-20 amidinobenzyl, J is fluoro, and R¹ is chloro: R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidino-2fluorobenzylbenzyl, J is fluoro, and R¹ is chloro; R² is 3,5-diaminophenyl, B is ethyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is

fluoro, and R¹ is chloro;

25

	R ² is 3,5-diaminophenyl, B is ethyl, A is a bond, Y ⁰ is 4-amidino-2-
	fluorobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-carboxyphenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y ⁰ is
	4-amidinobenzyl, J is fluoro, and R ¹ is chloro;
5	R ² is 3-amino-5-carboxyphenyl, B is (S)-2-butyl, A is a bond, Y ⁰ is 4-
	amidinobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y ⁰ is 4-
	amidino-2-fluorobenzylbenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y ⁰ is 4-
10	amidinobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y ⁰ is 4-amidino-2-
	fluorobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2,2,2-trifluoroethyl,
	A is a bond, Y ⁰ is 4-amidinobenzyl, J is fluoro, and R ¹ is chloro;
15	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is (S)-2-butyl, A is a
	bond, Y ⁰ is 4-amidinobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a
	bond, Y ⁰ is 4-amidino-2-fluorobenzylbenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond,
20	Y ⁰ is 4-amidinobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond,
	Y ⁰ is 4-amidino-2-fluorobenzyl, J is fluoro, and R ¹ is chloro;
	R ² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y ⁰ is 4-
25	amidinobenzylbenzyl, J is fluoro, and R ¹ is hydrido.
25	39. Compound of Claim 22 of the Formula:
	-

10

15

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, cyano, O-R⁶, NH-R⁶, and S-R⁶, wherein R⁶ is alkyl or haloalkyl;

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R³³, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹², a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R¹¹, a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R¹¹ and R³³

20 positions is optionally substituted with R³⁴;

20

25

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,

heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

R³³ and R³⁴ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

R³³ is optionally Q^b;

A is a bond or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is $(R^{7})NC(O)$ or $N(R^{7})$;

R is selected from the group consisting of hydrido, hydroxy and alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy,

15

20

alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$$R^2$$
 is Z^0 -Q;

 Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , W^0 - $(CH(R^{42}))_p$ wherein p is 0 or 1 and W^0 is selected from the group consisting of O, S, and $N(R^{41})$;

R⁴¹ and R⁴² are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

15

20

25

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R 20 and R 21 is

hydroxy at the same time and with the further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

40. Compound of Claim 39 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, methoxy, trifluoromethoxy, N-methylamino, methythio, and trifluoromethylthio;

B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-3-yl, cyclopentyl, cyclohexyl, norbornyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cycloheptyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-pyrrolidinyl, 3-pyrrolidinyl,

10

15

20

25

€,

2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with R³³, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R¹⁰, and a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹²;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano:

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N,N-dimethylamidocarbonyl,

N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

- N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
- N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
- 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylphenzylamino,
 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
- 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,5-difluorophenoxy, 4-difluorophenoxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy,
- 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
- 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, 4-isopropylphenoxy, phenylamino, 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
- phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy, 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
- 35 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

25

4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

 R^{33} is selected from the group consisting of hydrido, amidino,

- guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b;
- A is selected from the group consisting of a bond, NH, N(CH₃), N(OH), CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl,

4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl,

3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

Y is selected from the group consisting of:

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ pyrrole,

4-Q^b-2-Q^s-5-R¹⁹ imidazole, 2-Q^b-4-Q^s-5-R¹⁷ imidazole,

 $3-Q^{b}-5-Q^{s}-4-R^{16}$ isoxazole, $5-Q^{b}-3-Q^{s}-4-R^{16}$ isoxazole,

20 $2-Q^{b}-5-Q^{s}-4-R^{16}$ pyrazole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and $2-Q^{b}-5-Q^{s}-4-R^{17}$ thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino,

guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,

R¹⁹, and Q^b are not simultaneously hydrido;

 Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂ and CH₂CH₂.

15

20

10

41. Compound of Claim 40 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, aminomethyl, methoxy, trifluoromethoxy, and N-methylamino;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, 1-pyrrolidinyl, 1-piperidinyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl,

- 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl,
- 30 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl;

A is selected from the group consisting of a bond, CH₂, NHC(O),

CH₂CH₂, and CH₂CH₂CH₂;

R¹ and X^o are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -O;

Z⁰ is selected from the group consisting of a bond, CH₂, O, S, NH,

N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

20 3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

25 3-amino-5-(N-isobutylamidocarbonyl)phenyl.

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

30 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,

3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,

15

20

25

3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
2-trifluoromethylphenyl, 5-amino-2-thienyl,
3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y is selected from the group consisting of:

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is C(NR²⁵)NR²³R²⁴ or hydrido;

$$R^{23}$$
, R^{24} , and R^{25} are independently hydrido or methyl; Q^{s} is CH_{2} .

42. Compound of Claim 39 of the Formula:

10

15

20

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of halo, haloalkyl, hydroxy, hydroxyalkyl, amino, and aminoalkyl;

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R³³, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹², a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R¹¹, a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³⁴;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy,

10

20

25

alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

R³³ and R³⁴ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

R³³ is optionally Q^b;

A is a bond or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

15 R⁷ is hydrido or alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R¹ and X⁰ are independently selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$$R^2$$
 is Z^0 -Q;

Z⁰ is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is

10

15

optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^S , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^S , a carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S , and another carbon adjacent to Q^S is optionally substituted by Q^S .

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, and 20 C(NR 25)NR 23 R 24 :

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently hydrido or alkyl; Q^s is CH_2 .

10

25

30

43. Compound of Claim 42 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, chloro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 3-tetrahydrofuranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with R 33, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted

with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment are optionally substituted with R¹⁰, and a ring carbon or nitrogen atom adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹²;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,

25

30

N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

 R^{33} is selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, carboxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, cyano, and Q^b ;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, CH₂CH₂, and CH₂CH₂CH₂;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, chloro, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

 R^2 is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the benzene ring is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at

the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

5 Y^0 is selected from the group consisting of:

10
$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 pyrrole, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ pyrrole,

R 16, R 17, R 18, and R 19 are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy,

amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$$Q^b$$
 is $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$;

 $R^{20}, R^{21}, R^{23}, R^{24}, \text{ and } R^{25}$ are independently selected from the group

20 consisting of hydrido, methyl, and ethyl;

44. Compound of Claim 43 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, trifluoromethyl, hydroxy, hydroxymethyl, amino, and aminomethyl;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;

A is selected from the group consisting of a bond, CH₂, CH₂CH₂ and

5 CH₂CH₂CH₂;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro:

R¹ is selected from the group consisting of hydrido, hydroxy,

hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R² is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 - 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 25 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 30 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 - 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,

10

15

25

3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,

2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,

2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,

3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,

3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,

2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,

4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,

2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,

3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of:

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

20
$$Q^b \text{ is } C(NR^{25})NR^{23}R^{24};$$

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^s is CH_2 .

45. Compound of Claim 44 or a pharmaceutically acceptable salt thereof, wherein;

J is selected from the group consisting of fluoro, hydroxy, hydroxymethyl, and amino;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;

A is selected from the group consisting of a bond, CH2, CH2CH2 and

5 $CH_2CH_2CH_2$;

X^O is selected from the group consisting of hydrido, hydroxy, amino, amidino, aminomethyl, cyano, methyl, trifluoromethyl, hydroxymethyl, and fluoro;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R² is selected from the group consisting of 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

20 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

30 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,

3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;

15

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

46. Compound of Claim 39 where said compound is selected from the group ofthe Formula:

$$\mathbb{R}^{2} \mathbb{N}^{\mathbb{N}^{2}}$$

or a pharmaceutically acceptable salt thereof, wherein;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is hydroxy, and R^1 is chloro;

20 R² is 3-aminophenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl,

J is hydroxy, and R¹ is chloro;

 R^2 is 5-amino-2-thienyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-aminophenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-

amidinobenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 3-aminophenyl, B is oxalan-2-yl, A is CH_2, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-aminophenyl, B is 1-piperidinyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

R² is 3-aminophenyl, B is 1-pyrrolidinyl, A is CH₂CH₂CH₂, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

R² is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-20 amidinobenzyl, J is hydroxy, and R¹ is hydrido;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 2-amino-6-carboxy-4-pyridyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is hydrido;

R² is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

10

15

25

 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is hydroxy, and R¹ is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y⁰ is 4amidino-2-fluorobenzyl, J is hydroxy, and R¹ is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-3-fluorobenzyl, J is hydroxy, and R¹ is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

- R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;
- R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;
- R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;
 - R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is hydroxy, and R¹ is chloro;
- R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;
 - R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-3-fluorobenzyl, J is hydroxy, and R¹ is chloro;
 - R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;
- R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;
 - R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;
 - R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;
 - R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;
- 25 R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

10

15

20

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is hydroxy, and R^1 is chloro;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is hydroxy, and R¹ is hydrido;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is hydroxy, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, 25 J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

15

25

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-aminophenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl,

J is fluoro, and R¹ is chloro;

 R^2 is 5-amino-2-thienyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-

20 amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3-aminophenyl, B is oxalan-2-yl, A is CH_2, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 1-piperidinyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-aminophenyl, B is 1-pyrrolidinyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

R² is 2-amino-6-carboxy-4-pyridyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

R² is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y⁰

10 is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is fluoro, and R¹ is chloro;

R² is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is fluoro, and R¹ is chloro;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-

20 amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3,5-diaminophenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

25 R² is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

10

15

25

 R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-carboxy-5-aminophenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidino-3-fluorobenzyl, J is fluoro, and R¹ is chloro;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopentyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

15

20

25

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is

cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, J is fluoro, and R¹ is hydrido;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, J is fluoro, and R^1 is chloro;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is hydrido;

20

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y° is 4-amidino-3-fluorobenzyl, J is fluoro, and R^1 is chloro;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl,

- B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, J is fluoro, and R^1 is chloro.
 - 47. A composition for inhibiting thrombotic conditions in blood comprising a compound of Claim 21 and a pharmaceutically acceptable carrier.
 - 48. A composition for inhibiting thrombotic conditions in blood comprising a compound of Claim 21 and a pharmaceutically acceptable carrier.
- 49. A method for inhibiting thrombotic conditions in blood comprising
 adding to blood a therapeutically effective amount of a composition of Claim
 21.
 - 50. A method for inhibiting formation of blood platelet aggregates in blood comprising adding to blood a therapeutically effective amount of a composition of Claim 21.
 - 51. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a composition of Claim 21.
- 52. A method for treating or preventing venuous thromboembolism and pulmonary embolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of Claim 21.

20

25

- 53. A method for treating or preventing deep vein thrombosis in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of Claim 21.
- 5 54. A method for treating or preventing cardiogenic thromboembolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of Claim 21.
- 55. A method for treating or preventing thromboembolic stroke in humans
 and other mammals comprising administering to the mammal a
 therapeutically effective amount of a composition of Claim 21.
 - 56. A method for treating or preventing thrombosis associated with cancer and cancer chemotherapy in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of Claim 21.
 - 57. A method for treating or preventing unstable angina in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of Claim 21.
 - 58. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a compound of Claim 21 with a therapeutically effective amount of fibrinogen receptor antagonist.
 - 59. The use of a compound of Claim 21, or a pharmaceutically acceptable salt thereof, in the manufacture of medicament for inhibiting thrombus formation, treating thrombus formation, or preventing thrombus formation in a mammal.