台北市松山高中九十七學年度第一學期 期末考 高二化學科試卷

說明:

- 1.本試卷共6頁,總計44題。請斟酌考試時間,掌握作答效率。
- 2.本試卷滿分為 100 分,實際得分將依全校成績分布而加權、調整。
- 3.原子量: C=12, N=14, O=16, Br=80
- 一、單選題(part A): (每題2分,共22分,答錯不倒扣。)
- 1. 『科學迎向真理,無知引來災難』,下列何項是避免『無知』的積極作法?
 - (A)食用不含化學物質的天然物質 (B)近鬼神而知天命
- - (C)維持規律作息,常保身體健康 (D)探究化學,奮力不懈。

【2~4 題為題組】下列科學發展歷程:

- (甲)推定電子的基本荷電量 (乙)推定電子的荷質比 (丙)建立原子核模型概念
- (丁)以α粒子撞擊鈹原子核而發現中子 (戊)建立原子序概念

回答下列問題:

- 2. 下列對應的科學家,有幾項正確?
 - 甲-拉塞福;乙-湯姆森;丙-查兌克;丁-密立坎;戊-莫斯利
- (A)僅一項 (B)二項 (C)三項 (D)四項 (E)五項
- 3. 下列對應的實驗論證,何者錯誤?
 - (A) 甲-油滴實驗 (B) 乙-陰極射線實驗 (C) 丙- α 粒子散射 (D) 戊- α 粒子撞擊氮原子核
- 4. 科學發展的時間先後順序為何?
 - (A)甲 \rightarrow 乙 \rightarrow 丙 \rightarrow 戊 \rightarrow 丁 (B)乙 \rightarrow 甲 \rightarrow 丙 \rightarrow 戊 \rightarrow 丁

 - (C) 甲 \rightarrow 丙 \rightarrow 乙 \rightarrow 丁 \rightarrow 戊 (D) 乙 \rightarrow 丙 \rightarrow 甲 \rightarrow 丁 \rightarrow 戊 (E) 無合適答案
- 5. 下列各惰性氣體所代表的元素符號、原子序、價軌域,何者正確?

選項	(A)	(B)	(C)	(D)	(E)
符號,原子序	Hi, 2	Ne, 8	Kr, 36	Xn, 54	Rn, 86
價軌域	$2s^2$	$2s^22p^6$	$3s^2 3p^6$	$5s^2 5p^6$	$6s^2 6p^6$

- 6. 下列多電子原子能階高低順序,何者正確?

 - (A)(n+1)s > (n-1)f > np (B)(n-2)f > (n-1)p > ns > (n-1)d
 - (C)(n-2)f > (n-1)d > np > ns (D) np > (n-1)d > (n-2)f > ns
- 7. 取某烴2.1克, 經完全燃燒後產生6.6 克二氧化碳, 則此化合物最可能為何者?
 - $(A)C_3H_8$ $(B)C_4H_6$ $(C)C_4H_8$ $(D)C_5H_8$ $(E)C_5H_{12}$
- 8. 接續上題,關於該烴可能結構的敍述,何者錯誤?

 - (A)共有6種不同結構 (B)屬於烯類的,有3種結構
 - (C)屬於烷類的,有2種結構 (D)可與溴水在室溫進行加成反應的總數為4種結構

- 9. 荷質比為粒子電荷量與質量的比值之絕對值,離子 ¹⁶O²⁺ 的荷質比為12062庫倫/克 α 粒子的荷質比為多少庫倫/克? (α 粒子即為氦原子核)

- (A) 12062 (B)48250 (C) 96500 (D)19300 (E)無合適答案
- 10 下列哪一選項的數字,代表四個脂肪烴同系物的分子量?
 - (A)12 , 12 , 24 , 36
- (B)12, 24, 36, 48
- (C)14, 28, 42, 56
- (D)16, 30, 44, 58 (E)16, 32, 48, 64
- 11. 下列各項物質變化,何者不是加成反應?

 - (A) $C_nH_{2n-2} \to C_nH_{2n-1}Cl$ (B) $C_nH_{2n+2} \to C_nH_{2n+1}Cl$

 - $(C)C_nH_{2n} \rightarrow C_nH_{2n+2}$ $(D)C_nH_{2n-1}Br \rightarrow C_nH_{2n}Br_2$
- 二、單選題(part B) (每題 2 分, 共 42 分, 答錯倒扣該題分的 1/3)

【12~16 題為題組】 氫原子電子能階變化如下:

- $@n=2 \rightarrow n=1$ $@n=6 \rightarrow n=3$ $@n=2 \rightarrow n=7$
- $(4)n=3 \rightarrow n=2$ $(5)n=5 \rightarrow n=3$ $(6)n=4 \rightarrow n=2$

回答下列問題:

- 12. 若①放出的光譜波長為 121.6 奈米, 則⑥放出的光譜波長約為多少奈米?

- (A)126.1 (B) 182.4 (C)365.6 (D) 486.4 (E)無合適答案。
- 13. 若①放出的光譜,對應下圖(氫原子光譜)的線條d; ④對應線條a,則⑥對應何條光譜?
 - (A)b (B)c (C)e (D)f (E)不在圖示上。

- 14. 關於上圖光譜I、II區段的敘述,何者正確?
 - (A)I區一巴耳末系 (紫外光區) (B)I區一帕申系(紅外光區)
- - (C)II區—巴耳末系(可見光區) (D)II區—來曼系 (可見光區)
- 15. 若②放出光譜頻率為 S, 哪些所產生的光譜頻率大於 S?

- (A)僅①、③ (B)僅③、④ (C)僅①、③、④ (D)僅①、④、⑥ (E)無合適答案
- 16. 接續上題,放出光譜頻率 (v) 與主量子數(n)的關係 (從較高能階(n_2)回到低能階(n_1)), 最符合下列何項公式?

 - (A) $v = 6S \times (\frac{1}{n_2} \frac{1}{n_1})$ (B) $v = 12S \times (\frac{1}{n_2^2} \frac{1}{n_1^2})$
 - (C) $v = 6S \times (\frac{1}{n_1} \frac{1}{n_2})$ (D) $v = 12S \times (\frac{1}{n_1^2} \frac{1}{n_2^2})$ (E) 無合適答案

- 17. 關於鉻(24Cr) 的基態電子組態,其 K、L、M、N 各主層的電子數依序為何?
 - $(A)2 \cdot 8 \cdot 8 \cdot 6$ $(B)2 \cdot 8 \cdot 10 \cdot 4$ $(C)2 \cdot 8 \cdot 12 \cdot 2$ $(D)2 \cdot 8 \cdot 13 \cdot 1$
- 18. 接續上題,下列哪一個示意圖(未標示出能階高低)是基態鉻原子的電子組態?
 - (A) $\frac{1}{4}$ $\frac{1}{3d}$ (B) $\frac{1}{4}$ $\frac{1}{3d}$ $\frac{1}{4s}$ (C) $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4s}$
- (D) $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{4} \frac{1}{4}$
- 19. 某正二價離子的基態電子組態, 3d軌域所含電子數, 比上題中的基態鉻原子多3個, 則該 原子的原子序為何?

- (A)30 (B) 28 (C) 26 (D) 24 (E)無合適答案。

【20~23 題為題組】針(210 84Po) 是一種放射性元素,在十九世紀末由居里夫人所發現。自然界 的釙含量非常的低,少量的釙可由鉍的核反應產生,回答下列問題:

- 20 . 有關核反應: $^{209}_{83}$ Bi + x $\rightarrow ^{210}_{84}$ Po + y, 下列敘述何者正確?

 - (A)x是電子, y是質子 (B) x是中子, y是電子

 - (C)x是中子, y是質子 (D)x是電子, y是中子
- 21. 依週期表來推測,上題中的『釙』在週期表中的位置為何?

 - (A)第五週期第 8 族 (C)第五週期第 16 族

 - (B)第六週期第9族 (D)第六週期第16族 (E)無合適答案

- 22. 『針』應屬於何類元素?
 - (A)典型元素 (B)過渡元素 (C)鑭系元素 (D)錒系元素 (E)外過渡元素。

- 23. 下列有關『釙』元素的敘述,何者正確?
 - (A)最外層價電子組態為 5s²5p³ (B)週期表中, 釙與硫元素屬於同一族

 - (C)Po²⁺核外電子數為 86 (D)原子核內中子數為 124 (E)無合適答案
- 24 下表所列的是鹼金屬元素的原子序、沸點與熔點。科學家尚未測量到鹼金族中鍅(87Fr)元 素的沸點與熔點,但根據此表及调期表的規律性,下列有關鉄元素的沸點與熔點的推論, 何者最不可能?
 - (A)鍅元素的熔點可能低於25°C (B)鍅元素的沸點稍高於600°C

 - (C)室溫時的鍅元素可能是氣體 (D)室溫時的鍅元素可能是液體。

金屬	鋰	鈉	鉀	銣	銫
原子序	3	11	19	37	55
沸點(°C)	1342	882.9	759	688	671
熔點(°C)	180.54	97.72	63.38	39.31	28.44

【25~32 題為題組】六種烴的結構如下所示,回答下列問題:

- $HC \equiv C-CH(CH_3)_2$
- ② $CH_3CH_2CH=CHCH(CH_3)$, ③ $CH_3C\equiv CCH_3$

- 25. 上列化合物,屬於不飽和烴的有 x 個,與溴的四氯化碳溶液混合後,溶液顏色會褪去 者有 y 個, 則 x+y 為何值?
- (A)3 (B)5 (C)7 (D)8 (E)無合適答案。
- 26. 依 IUPAC 命名法則,下列何者正確?
 - (A)①為『1.1-二甲基-3-丁炔』; ⑥為『3.4.4-三甲基己烷』
 - (B)①為『1,1-二甲基-3-丙炔』;⑥為『2-乙基-3,3-二甲基戊烷』
 - (C)①為 『3-甲基-1-丁炔』 ; ⑥為『3,3,4-三甲基己烷』
- - (D)①為『3,3-二甲基-1-丙炔』; ⑥為『3,3-二甲基-4-乙基戊烷』 (E)無合適答案。

- 27. 哪些烴具有順反異構物?
- - (A)僅② (B)僅②、④ (C)僅②、③、⑤ (D)僅②、③、④、⑤ (E)無合適答案
- 28 若以硝酸银的氨水溶液試驗,總計有幾個烴會產生『白色沈澱物』?
- (A)僅一個 (B)二個 (C)三個 (D)四個
- (E)五個
- 29. 取烴 6.8 克與 Br₂進行加成反應,生成溴的有機衍生物(通式 C_nH_{2n-2}Br₂)重 22.8 克,則 此烴可能為何者?

- (A)^① (B)^② (C)^③ (D)^⑤ (E)無合適答案。
- 30. 烴①在酸性溶液(以硫酸汞催化),發生加成作用的主要產物為何?

- H OH OH H
 (A) HC-C-CH(CH₃)₂ (B) HC-C-CH(CH₃)₂ (C) HC=C-CH(CH₃)₂
 H OH OH H
 (D) HC-C-CH(CH₃)₂ (E) HC-C-CH(CH₃)₂
- 31. 烟③與足量的 HBr,在適當的反應條件下,得到的主要產物為何?
 - (A)CH₃CHBrCHBrCH₃
- (B)CH₃CH₂CBr₂CH₃
- (C)CH₂BrCH₂CHBrCH₃
- (D)CH₃CBr=CBrCH₃ (E)無合適答案。
- 32. 烴⑤與 KMnO₄ 的 微 鹼 性 溶 液 反 應條件下,生成物的化學式為何?

- (A) C₇H₁₂O (B) C₇H₁₄O₂ (C)C₇H₁₃OH (D)C₇H₁₀(OH)₂ (E)無合適答案。

三、多重選擇題(共36分)

第33 題至第44 題,每題3分。每題各有5個備選答案,各自獨立,其中至少有一個是正確答 案,每答對一個可各獲題分之 1/5,每答錯一個則各倒扣題分之 1/5,整題完全不作答者,視同 放棄,不給分亦不扣分。答案請在「選擇題答案卡」上標出。

- 33 下列電子組態,哪些是激發態?
 - $(A)1s^22s^22p^6$
- (B) $1s^2 2s^2 2p^6 3p^5$
- $(C)1s^22s^22p_x^22p_y^1 \qquad (D)1s^22s^22p^63s^23p^63d^94s^2 \qquad (E)1s^22s^22p^63f^1 \circ$
- 34. 下列能階之大小關係對於氫原子與氧原子均可適用者為何?
 - (A) 3d < 4s (B)3p < 4s (C)3p < 4d (D)4s < 4f (E)4f < 6p
- 35. 關於 mp 軌域,下列敘述何者正確?
 - (A) 軌域是表示電子在空間出現的機率 (B) n 值愈大, mp 軌域的能量愈高
 - (C) *n* 值愈大,mp 軌域中的軌域個數愈多 (D)4p 軌域有四個軌域,至多可容納 8 個子。
 - (E)氫原子軌域能量 $3p_x=3p_y=3p_z$,多電子軌域能量 $3p_x>3p_y>3p_z$
- 36. 下列粒子之基態電子組態,何項正確?
- $(A)_9 F^- : 1s^2 2s^2 2p^5 3s^1$ $(B)_{16} S^{2-} : [Ar] 3s^2 3p^6$ $(C)_{29} Cu^{2+} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$
- (D) $_{30}Zn^{2+}$: $1s^22s^22p^63s^23p^63d^{10}$ (E) $_{35}Br$: [Ar] $4s^24p^5$
- 37. 原子的電子組態中,若一軌域僅含一個電子,則此原子具有一個不成對電子。例如氫原 子有一個不成對電子。下列哪幾種原子或離子在基態的電子組態中有**不成對電子**存在? $(A)N^{+}$ (B)O $(C)_{14}Si$ $(D)_{28}Ni^{2+}$ $(E)_{21}Sc^{+}$
- 38. 下列有關原子的敘述,何者正確?
 - (A)碳原子在基態時的電子組態,有四個未成對電子
 - (B)銅原子在基態時的價電子組態爲 3d¹⁰4s¹
 - (C)第四週期中含有 4s1 電子組態的原子有 3 種元素
 - (D)第四週期元素中具有最多不成對電子的原子是鉻原子
 - (E)在週期表第五週期、13 族元素的原子序為49

(*考古題: 95 學測模擬考)

- 39 下圖中,區塊①~⑤表示接在主鏈上的烷基,下列對應的烷基名稱,何者正確?
 - (A)①為『正丙基』 (B)②為『異丙基』 (C)③為『三級丁基』(或第三丁基)
 - (D)④為『異丁基』 (E)⑤為『二級丁基』(或第二丁基)

40 圖①~④表示烴的結構,下列關於各異構物的敘述何者正確?

- (A)①與②為結構異構物
- (B)①與②為幾何異構物
- (C)③與④為幾何異構物

- (D)①與④為結構異構物
- (E)③與④在常壓下具有相同熔點。
- 41 接續上題,圖中各烴的命名,何者正確?
 - (A)①為『乙基乙烯』
- (B)②為『異丁烯』
- (C)③為『反-1,2-二甲基乙烯』
- (D)③為『順-1,2-二甲基乙烯』 (E)④為『反-2-丁烯』
- 42. 關於『異辛烷』[CH₃C(CH₃)₂CH₂CH(CH₃)₂]的敘述,下列何者正確?
 - (A) 異辛烷的名稱為『2.2.4-三甲基戊烷』
 - (B)正庚烷與異辛烷為同系物
 - (C)正庚烷的標準莫耳燃燒熱高於異辛烷
 - (D)正庚烷的辛烷值為0, 異辛烷的辛烷值為100
 - (E) 烴類結構具有支鏈的烷類具有較高的辛烷值
- 43. 關於『烴的製備與性質』實驗裝置如右圖,下 列敘述何者正確?
 - (A)以碳化鈣(CaC₂)與溴水反應來製備乙炔
 - (B)產生的乙炔與正己烷反應成環己烯
 - (C)乙炔的酒精溶液能使過錳酸鉀溶液褪色
 - (D)玻璃儀器甲為分液漏斗
 - (E)實驗後, 若玻璃儀器乙中的溶液檢驗,可使 酚酞指示劑呈現紅色。

(*回味、反芻高一基礎化學)

- 44. 下列反應物在適當條件下進行反應,所得產物何者正確?
 - (A)丙烯加溴反應,生成1,1-二溴丙烷
 - (B)乙炔加水反應(催化劑硫酸汞),生成乙醛
 - (C)丙炔與過量氯化氫反應,生成 2,2-二氯丙烷
 - (D) 乙烯加水反應(催化劑酸性溶液),生成乙醇
 - (E) 乙烯與微鹼性過錳酸鉀反應, 生成乙二醇

(*考古題: 96 模擬考)