STAT 231 Tutorial Test 3

Monday March 24 4:30-5:20 p.m.

Version 1 Solutions

- 1. [8] Suppose y_1, y_2, \dots, y_n is an observed random sample from a $Poisson(\theta)$ distribution.
- (a) Show clearly that the likelihood ratio test statistic for testing $H_0: \theta = \theta_0$ is given by:

$$\Lambda\left(\theta_{0}\right)=2n\left[\tilde{\theta}\log\left(\frac{\tilde{\theta}}{\theta_{0}}\right)+\theta_{0}-\tilde{\theta}\right]\quad\text{where}\ \ \tilde{\theta}=\bar{Y}.$$

$$L\left(\theta\right) = \prod_{i=1}^{n} \frac{\theta^{y_{i}} e^{-\theta}}{y_{i}!} = \frac{\theta^{n\bar{y}} e^{-n\theta}}{\prod_{i=1}^{n} y_{i}!} \quad \text{or more simply} \quad L\left(\theta\right) = \theta^{n\bar{y}} e^{-n\theta}, \quad \theta > 0$$

$$l(\theta) = \log L(\theta) = n\bar{y}\log\theta - n\theta, \quad \theta > 0$$

Thus

$$\begin{split} \Lambda\left(\theta_{0}\right) &= 2\left[l\left(\tilde{\theta}\right) - l\left(\theta_{0}\right)\right] \\ &= 2\left[n\bar{Y}\log\tilde{\theta} - n\tilde{\theta} - n\bar{Y}\log\theta_{0} + n\theta_{0}\right] \\ &= 2\left[n\tilde{\theta}\log\left(\frac{\tilde{\theta}}{\theta_{0}}\right) + n\left(\theta_{0} - \tilde{\theta}\right)\right] \quad \text{since} \quad \tilde{\theta} = \bar{Y} \\ &= 2n\left[\tilde{\theta}\log\left(\frac{\tilde{\theta}}{\theta_{0}}\right) + \theta_{0} - \tilde{\theta}\right] \quad \text{as required.} \end{split}$$

- (b) Use this test statistic to test $H_0: \theta = 2$ if n = 10 and $\sum_{i=1}^{10} y_i = 18$. Write your final answers in the space provided.
 - (i) The observed value of the test statistic is <u>0.2070</u>

$$\lambda\left(\theta_{0}\right) = 2n\left[\hat{\theta}\log\left(\frac{\hat{\theta}}{\theta_{0}}\right) + \theta_{0} - \hat{\theta}\right] \quad \text{where} \quad n = 10, \quad \hat{\theta} = \frac{18}{10} = 1.8 \quad \text{and} \quad \theta_{0} = 2$$

$$= 2\left(10\right)\left[1.8\log\left(\frac{1.8}{2}\right) + 2 - 1.8\right]$$

$$= 0.2070$$

(ii) The approximate p-value using Normal tables is 0.65272.

$$p - value \approx P(W \ge 0.2070)$$
 where $W \backsim \chi^{2}(1)$
= $2\left[1 - P\left(Z \le \sqrt{0.2070}\right)\right]$ where $Z \backsim G(0, 1)$
= $2\left[1 - P\left(Z \le 0.45\right)\right] = 0.65272$

(iii) Your conclusion regarding $H_0: \theta = 2$ is:

There is no evidence based on the data to contradict $H_0: \theta = 2$.

2. [13] The following data were obtained from an experiment involving a chemical process in which the yield (y) in grams of the process was thought to be related to the reaction temperature (x) in degrees celsius:

i	x_i	y_i		i	x_i	y_i		i	x_i	y_i	25
1	50	108		11	72	160		21	93	204	$\sum_{i=1} x_i = 1871$
2	53	118		12	74	161		22	94	208	i=1
3	54	130		13	75	161		23	95	204	25
4	55	124		14	76	168		24	97	211	$\sum_{i=1}^{23} y_i = 4129$
5	56	130		15	79	174		25	100	218	i=1
6	59	141		16	80	175					G
7	62	137		17	82	180					$S_{xx} = 5679.36$
8	65	143		18	85	183					
9	67	149		19	87	193					$S_{xy} = 11501.64$
10	71	161		20	90	188					
1 = 0	1	-01	I	ı = v	1 - 0	1 -30	I	l		l	$S_{yy} = 23629.36$

To analyse these data (x_i, y_i) , $i = 1, 2, \dots, 25$ the simple linear regression model

$$Y_i \backsim G(\alpha + \beta x_i, \sigma)$$
 $i = 1, 2, ..., 25$ independently

is assumed where α , β and σ are unknown parameters and the x_i 's are known constants.

Summary of Distributions for Simple Linear Regression

Random variable	Distribution	Mean or df	Standard Deviation
$\widetilde{eta} = rac{S_{xy}}{S_{xx}}$	Gaussian	β	$\sigma \left[\frac{1}{S_{xx}} \right]^{1/2}$
$rac{ ilde{eta}-eta}{S_e/\sqrt{s_{xx}}}$	t	df = n - 2	
$S_e^2 = rac{1}{n-2} \left(S_{yy} - ilde{eta} S_{xy} ight)$			
$\tilde{\alpha} = \bar{Y} - \tilde{\beta}\bar{x}$	Gaussian	α	$\sigma \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]^{1/2}$
$\tilde{\mu}(x) = \tilde{\alpha} + \tilde{\beta}x$	Gaussian	$\mu(x) = \alpha + \beta x$	$\sigma \left[\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}} \right]^{1/2}$
$\frac{\tilde{\mu}(x) - \mu(x)}{S_e \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}}$	t	df = n - 2	
$Y - \tilde{\mu}(x)$	Gaussian	0	$\sigma \left[1 + \frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}} \right]^{1/2}$
$\frac{Y - \tilde{\mu}(x)}{S_e \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}}$	t	df = n - 2	
$\frac{(n-2)S_e^2}{\sigma^2}$	Chi-squared	df = n - 2	

Write your final answer only in the space provided.

- (a) The least squares estimate of β is $\frac{11501.64}{5679.36} = 2.0252$
- (b) The least squares estimate of α is $\frac{4129}{25} \left(\frac{11501.64}{5679.36}\right) \left(\frac{1871}{25}\right) = 13.5967$.
- (c) An unbiased estimate of σ^2 is $s_e^2 = \frac{1}{23} \left[23629.36 \left(\frac{11501.64}{5679.36} \right) \left(23629.36 \right) \right] = 14.6367 = \left(3.8258 \right)^2$.
- (d) The p-value for testing the hypothesis of no relationship between yield and temperature $(H_0: \beta=0)$ is approximately equal to $\underline{0}$.

$$d = \frac{\left|\hat{\beta} - 0\right|}{s_e/\sqrt{S_{xx}}} = \frac{|2.0252 - 0|}{3.8258/\sqrt{5679.36}} = 39.89$$
$$p - value = 2\left[1 - P(T \le 39.89)\right] \approx 0 \text{ where } T \backsim t (23)$$

= [132.8852, 137.3279]

(e) A 95% confidence interval for the mean response at a temperature of x=60 is [132.89, 137.33].

$$(13.5967) + (2.0252)(60) \pm (2.0687)(3.8258)\sqrt{\frac{1}{25} + \frac{(60 - 74.84)^2}{5679.36}}$$

= 135.1066 ± 2.2213

(f) A 95% prediction interval for the response at a temperature of x = 40 is [85.74, 103.46]

$$(13.5967) + (2.0252) (40) \pm (2.0687) (3.8258) \sqrt{1 + \frac{1}{25} + \frac{(40 - 74.84)^2}{5679.36}}$$

= 94.6033 \pm 8.8616
= [85.7417, 103.4648]

(g) What warning would you give regarding the interval in (f)?

The value x = 40 is outside the observed interval of x values [50, 100]. Therefore the prediction interval is based on an assumption that the linear relationship holds below x = 50 and we have no data to support this assumption.

3. [4] To analyse the data (x_i, y_i) , $i = 1, 2, \ldots, 100$ the simple linear regression model

$$Y_i \backsim G(\alpha + \beta x_i, \sigma)$$
 $i = 1, 2, ..., 100$ independently

is assumed where α , β and σ are unknown parameters and the x_i 's are known constants.

Use all **three** of the following plots to make a conclusion regarding the reasonableness of the model assumptions. If the assumed model is not reasonable suggest a better model.

If the Gaussian linear model with constant variance is reasonable then we expect to see that a scatterplot of the data lie reasonably along the fitted line. Plot A indicates that the linear model is not adequate since for small and large values of x the points lie below the fitted line and for values of x in the middle the points all lie above the fitted line.

If the Gaussian linear model with constant variance is reasonable then we expect to see the points in a standardized residual plot lying in a horizontal band around the line $r_i^* = 0$. The residual plot in Plot B does not exhibit this behaviour since for small and large values of x the residuals are all negative and for values of x in the middle the residuals are all positive. Plot B indicates the assumptions do not hold.

If the Gaussian linear model with constant variance is reasonable then we expect the points in a qqplot of the residuals to lie along a straight. In Plot C we see that, although the points in the middle lie along a straight line, for small and large values of the standard Normal quantiles the points all lie below the line. Plot C also indicates the assumptions do not hold.

The pattern of departures observed in Plots A and B suggest that a quadratic model for the mean of the form $\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ would provide a better fit to the data.

Plot A:

Plot B:

Plot C:

