THE TUBULAR NEIGHBOURHOOD THEOREM

YANNIS BÄHNI

1. Prerequisites

Definition 1.1. Let (X, d) be a metric space and $A \subseteq X$. For $x \in X$, define the **distance** from x to A, written dist(x, A), by

$$dist(x, A) := \inf_{a \in A} d(x, a).$$

Lemma 1.1. Let (X, d) be a metric space and $A \subseteq X$ nonempty. Then $dist(\cdot, A) : X \to \mathbb{R}$ is a continuous function.

Proof. We show that $dist(\cdot, A)$ is in fact Lipschitz continuous. Let $x, y \in X$. Then for any $a \in A$ we have that

$$\operatorname{dist}(x, A) \le d(x, a) \le d(x, y) + d(y, a).$$

Hence dist(x, A) - d(x, y) is a lower bound for d(y, a) for any $a \in A$. But this means

$$\operatorname{dist}(x, A) - d(x, y) \leq \operatorname{dist}(y, A).$$

Reversing the roles of x and y in the previous argument and applying the symmetry of the metric, we get that

$$|\operatorname{dist}(x, A) - \operatorname{dist}(y, A)| \le d(x, y).$$

Lemma 1.2. Let (X, d) be a metric space and $K \subseteq X$ be compact and nonempty. If dist(x, K) = 0 for some $x \in X$, then $x \in K$.

Proof. For any $\varepsilon > 0$, we find $y \in K$ such that

$$dist(x, K) \le dist(x, y) < dist(x, K) + \varepsilon$$
.

Thus we find a sequence $(y_n)_{n\in\mathbb{N}}$, such that $\operatorname{dist}(x,y_n)\to 0$. Since K is compact, there exists a subsequence y_{n_k} in K such that $y_{n_k}\to y$, where $y\in K$. But then

$$d(x, y) = \lim_{k \to \infty} d(x, y_{n_k}) = 0$$

which implies x = y and so $x \in K$.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Theorem 1.1 (Inverse Function Theorem Generalization, Compact Case). Let M and N be smooth manifolds, K a compact subspace of M and $F: M \to N$ a smooth mapping, such that $F|_K$ is injective and dF_p is nonsingular for any $p \in K$. Then there exists a neighbourhood U of K in M and a neighbourhood V of F(K) in N such that $F|_U: U \to V$ is a diffeomorphism.

Proof. By corollary 13.30 [Lee13, p. 341], every smooth manifold is metrizable. Hence we can equip M with a metric d. Moreover, the metric topology on M induced by d is the same as the original manifold topology. By proposition 1.12 [Lee13, p. 9], every topological manifold is locally compact, hence by proposition 4.63 [Lee11, pp. 104–105], each point of M has a precompact neighbourhood. Since $K \subseteq M$, we find for any $p \in K$ a precompact neighbourhood V_p of p. Thus $(V_p)_{p \in K}$ is an open cover of K and the compactness of K implies that there exists a finite subcover V_{p_1}, \ldots, V_{p_n} of K. For any $\varepsilon > 0$, define

$$U_{\varepsilon} := \{ p \in M : \operatorname{dist}(p, K) < \varepsilon \}.$$

By lemma 1.1, U_{ε} is open since $U_{\varepsilon} = \operatorname{dist}(\cdot, A)^{-1}((-\infty, \varepsilon))$. Thus

$$W_{\varepsilon} := \bigcup_{i=1}^{n} (V_{p_i} \cap U_{\varepsilon})$$

is open and clearly $K\subseteq W_{\varepsilon}$ for any $\varepsilon>0$. Hence W_{ε} is a neighbourhood of K. Assume now that F is not injective on any neighbourhood of K. For any $n\in\mathbb{N}$ we thus find $x_n,y_n\in W_{1/n}$ such that $x_n\neq y_n$ but $F(x_n)=F(y_n)$. Hence we have constructed two sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ in W_1 . Now by

$$W_{\varepsilon} = \bigcup_{i=1}^{n} (V_{p_i} \cap U_{\varepsilon}) \subseteq \bigcup_{i=1}^{n} V_{p_i} \subseteq \bigcup_{i=1}^{n} \overline{V}_{p_i}$$

we get that W_{ε} is contained in a compact set. Thus we find $p_1, p_2 \in \bigcup_{i=1}^n \overline{V}_{p_i}$ such that $x_{n_k} \to p$ and $y_{n_k} \to q$. But

$$\operatorname{dist}(p, K) = \lim_{k \to \infty} \operatorname{dist}(x_{n_k}, A) \le \lim_{k \to \infty} \frac{1}{n_k} = 0.$$

by the continuity of the distance function and so $\operatorname{dist}(p, K) = \operatorname{dist}(q, K) = 0$. But this implies $p, q \in K$ by lemma 1.2. Moreover, since F is continuous by [Lee13, p. 34] we have that

$$F(p) = \lim_{k \to \infty} F(x_{n_k}) = \lim_{k \to \infty} F(y_{n_k}) = F(q)$$

and so by injectivity of $F|_K$ we get that p = q.

Finally, since dF_p is nonsingular, the inverse function theorem for manifolds [Lee13, p. 79] guarantees the existence of connected neighbourhoods U_0 of p and V_0 of F(p) such that $F|_{U_0}: U_0 \to V_0$ is a diffeomorphism. Since x_{n_k} and y_{n_k} both converge to p and $x_{n_k} \neq y_{n_k}$ for all $k \in \mathbb{N}$ but $F(x_{n_k}) = F(y_{n_k})$, we get that F cannot be a

diffeomorphism, which is a contradiction. Hence there exists a neighbourhood U of K such that $F|_U$ is injective. Again, by applying the inverse function theorem for manifolds, for any $p \in K$ we find connected neighbourhoods $U_{0,p}$ of p and $V_{0,p}$ of F(p) such that $F|_{U_{0,p}}: U_{0,p} \to V_{0,p}$ is a diffeomorphism. Hence F restricted to $\bigcup_{p \in K} U_{0,p}$ is a local diffeomorphism. Moreover, F restricted to $U \cap \bigcup_{p \in K} U_{0,p}$ is a local diffeomorphism by proposition 4.6 (d) [Lee13, p. 80]. Therefore $F: U \cap \bigcup_{p \in K} U_{0,p} \to F(U \cap \bigcup_{p \in M} U_{0,p})$ is a diffeomorphism by proposition 4.6 (f) [Lee13, p. 80].