

Matemática Teste II 20 · 05 · 2022

Duração: 90 minutos

Nome:

N.º de identificação civil:

Turma:

Formulário

Gráficos de funções exponenciais e logarítmicas

Regras de derivação

$$(a)' = 0 \qquad (a \in \mathbb{R})$$

$$(x)' = 1$$

$$(ax+b)'=a$$
 $(a,b\in\mathbb{R})$

$$(ax^p)' = apx^{p-1} \ (a \in \mathbb{R}, p \in \mathbb{Z} \setminus \{0\})$$

$$(f+q)' = f' + q'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(f^n)' = n f^{n-1} f' \qquad (n \in \mathbb{R})$$

$$\left(\sqrt[n]{f}\right)' = \frac{f'}{n\sqrt[n]{f^{n-1}}} \qquad (n \in \mathbb{N})$$

$$(\operatorname{sen} f)' = f' \cos f$$

$$(\cos f)' = -f' \operatorname{sen} f$$

$$(\operatorname{tg} f)' = \frac{f'}{\cos^2 f}$$

$$(e^f)' = f'e^f$$

$$(a^f)' = f'a^f \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln f)' = \frac{f'}{f}$$

$$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Justifique convenientemente todas as suas respostas.

Cotações:

Exercício 1 Considere a sucessão $(u_n)_n$, definida por $u_n = \frac{2n}{3n+5}$.

a) Mostre que a sucessão $(u_n)_n$ é uma sucessão convergente.

b) A sucessão $(u_n)_n$ é uma sucessão limitada? Justifique a sua resposta.

Exercício 2 Determine, caso existam, os seguintes limites:

a)
$$\lim_{n} (\sqrt{n+3} - \sqrt{n});$$

b)
$$\lim_{n} \left(1 + \frac{5}{n+1}\right)^{\frac{n+1}{5}}.$$

Exercício 3 Considere a função quadrática f, de domínio \mathbb{R} , definida por $f(x) = -x^2 + 4x + 3$.

a) Mostre que o vértice da parábola definida pelo gráfico de f é $V(\mathbf{2},\mathbf{7})$.

- b) Indique o contradomínio de f.
- c) Indique, caso existam, o máximo e o mínimo absoluto de f.

Exercício 4 Resolva em $\mathbb R$ a seguinte inequação fracionária : $\frac{x^2+2}{-x^2+2x}>0$.

Exercício 5 Considere a função polinomial definida em \mathbb{R} por $p(x) = x^3 - x^2 - 4x + 4$.

a) Mostre, usando a regra de Ruffini, que $p(x)=(x-1)(x^2-4)$, para qualquer $x\in\mathbb{R}$.

b) Determine $\lim_{x \to +\infty} (x^3 - x^2 - 4x + 4)$.

- Exercício 6 Calcule y', sendo: $y = \frac{x^3 + 1}{x}$.
- Exercício 7 Considere a função f definida por $f(x) = -\frac{x^2}{2} + 5x 10$. Determine, na forma reduzida, a equação da reta tangente ao gráfico de f no ponto de abcissa 2.

Exercício 8 Considere a função real, de variável real, definida por $g(x) = 5 - 3^{2x+3}$.

a) Determine o domínio e o contradomínio da função g.

b) Caracterize a função inversa da função g.

c) Resolva em $\mathbb R$ a seguinte equação: g(x)=-4.

Exercício 9 Resolva, em \mathbb{R} , as seguintes condições:

a)
$$\ln(-x+5) = \ln(-2x);$$

b) $(x+3) \cdot 3^x - 3^x = 0$.