Task 1: Cityscapes Mask Conversion Report

Yash Gupta

April 16, 2025

Objective

The goal is to convert Cityscapes dataset labelIds into:

- Multiclass masks with 19 training classes
- Binary masks for foreground vs background

Decisions Made

- Used predefined labelIds to trainId mapping for 19 semantic classes
- \bullet Ignored all non-mapped class IDs by setting them to 255
- Binary masks contain only 0 (background) and 255 (foreground)
- Added exception handling for corrupt or missing files

Folder Structure

```
Cityscapes/
leftImg8bit/ # Original images
train/
gtFine/ # Ground truth labelIds
train/
train_masks_multiclass/ # Output multiclass masks
train_masks_binary/ # Output binary masks
```

Example Outputs

Figure 1: Original Image

Figure 2: Multiclass Mask

Figure 3: Binary Mask

Reproducibility Instructions

1. Install uv

```
curl -Ls https://astral.sh/uv/install.sh | sh
# Add ~/.cargo/bin to PATH
```

2. Create Environment and Install Dependencies

```
uv venv .venv

source .venv/bin/activate

uv pip install -r requirements.txt
```

3. requirements.txt

```
numpy
pillow
tqdm
```

4. Run the Script

```
python mask_generator.py
```

For binary masks:

```
python mask_generator.py --mode binary --output_dir Cityscapes/
    train_masks_binary
```

Summary of Results

Mode	Classes	Shape	Values	Format
Multiclass	19 Classes	$H \times W$	0-18, 255	8-bit PNG
Binary	Foreground only	$H \times W$	0, 255	8-bit PNG

Table 1: Comparison of conversion modes

Future Enhancements

- Add CLI using argparse
- Visualize masks with colored palettes
- Add pixel count stats per class
- Write tests for validation