```
In [1]: # Import packages
import pandas as pd # Reading csv file
import matplotlib.pyplot as plt # for plotting
import numpy as np
```

```
In [2]: # data sourced from US Bureau of Labor & Statistics www.bls.gov
    df = pd.read_csv('data/Largest_occupations_Seattle-Bellevue-Everett_2016-2019.
    df['Year'] = df['Year'].astype('int64')
    df = df.sort_values(by=['Year'])
    df.head(3)
```

Out[2]: Description Group Employment Year

35	Waiters and Waitresses	Waiters	25990	2016
18	Registered Nurses	Nurses	26120	2016
3	Cashiers	Cashiers	26450	2016

```
In [3]: # graph occupations by year
    xlabels = []
    fig, ax = plt.subplots(figsize=(10,8))
    for key, grp in df.groupby(['Group']):
        ax.plot(grp['Year'], grp['Employment'], label=key, marker='o')
    plt.title('Largest occupations in Seattle 2016 - 2019')
    plt.xticks(np.arange(2016, 2020))
    ax.legend(loc="best")
    ax.set_xlabel('year')
    ax.set_ylabel('no. of jobs')
    plt.show()
```

12/26/2020 employment_data

Tn []:

```
# Import packages
In [1]:
          import pandas as pd # Reading csv file
          from shapely.geometry import Point # Shapely for converting latitude/longtitude
          import geopandas as gpd # To create GeodataFrame
          import matplotlib.pyplot as plt # for plotting
          from pyproj import CRS
In [2]:
          # import housing data
          df_all = pd.read_csv('data/kc_house_data.csv')
          df all.head(10)
Out[2]:
                     id
                               date
                                       price
                                              bedrooms bathrooms sqft living sqft lot floors
         0 7129300520
                         10/13/2014
                                                      3
                                                               1.00
                                                                                   5650
                                      221900
                                                                          1180
                                                                                            1.0
         1 6414100192
                          12/9/2014
                                      538000
                                                      3
                                                               2.25
                                                                          2570
                                                                                   7242
                                                                                           2.0
         2 5631500400
                          2/25/2015
                                      180000
                                                      2
                                                               1.00
                                                                           770
                                                                                  10000
                                                                                           1.0
         3 2487200875
                                                                                   5000
                          12/9/2014
                                      604000
                                                               3.00
                                                                          1960
                                                                                            1.0
                                                               2.00
                                                                                   8080
           1954400510
                          2/18/2015
                                      510000
                                                      3
                                                                          1680
                                                                                            1.0
         5 7237550310
                          5/12/2014
                                     1230000
                                                               4.50
                                                                          5420
                                                                                 101930
                                                                                            1.0
         6 1321400060
                          6/27/2014
                                      257500
                                                      3
                                                               2.25
                                                                                   6819
                                                                                           2.0
                                                                          1715
           2008000270
                                                      3
                                                               1.50
                                                                                   9711
                                                                                            1.0
                          1/15/2015
                                      291850
                                                                          1060
                                                      3
                                                               1.00
            2414600126
                          4/15/2015
                                      229500
                                                                          1780
                                                                                   7470
                                                                                            1.0
            3793500160
                                                                                   6560
                          3/12/2015
                                      323000
                                                               2.50
                                                                          1890
                                                                                            2.0
         10 \text{ rows} \times 21 \text{ columns}
          # clean data--convert "NaN" to 0 and replace "?" with 0
In [9]:
          df all = df all.fillna(0).replace('?',0)
          df_all.head(10)
Out[9]:
                     id
                               date
                                       price
                                              bedrooms bathrooms sqft_living sqft_lot floors war
           7129300520
                         10/13/2014
                                      221900
                                                      3
                                                               1.00
                                                                          1180
                                                                                   5650
                                                                                            1.0
            6414100192
                                      538000
                                                      3
                                                               2.25
                                                                          2570
                                                                                   7242
                                                                                            2.0
                          12/9/2014
                                                      2
                                                               1.00
                                                                                  10000
         2 5631500400
                          2/25/2015
                                      180000
                                                                           770
                                                                                            1.0
         3 2487200875
                          12/9/2014
                                      604000
                                                      4
                                                               3.00
                                                                          1960
                                                                                   5000
                                                                                            1.0
           1954400510
                          2/18/2015
                                      510000
                                                      3
                                                               2.00
                                                                          1680
                                                                                   8080
                                                                                            1.0
            7237550310
                          5/12/2014
                                     1230000
                                                               4.50
                                                                          5420
                                                                                 101930
                                                                                            1.0
```

1321400060

6/27/2014

257500

3

2.25

1715

6819

2.0

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wa
7	2008000270	1/15/2015	291850	3	1.50	1060	9711	1.0	
8	2414600126	4/15/2015	229500	3	1.00	1780	7470	1.0	
9	3793500160	3/12/2015	323000	3	2.50	1890	6560	2.0	

10 rows × 21 columns

Out[16]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
	0	7129300520	10/13/2014	221900	3	1.00	1180	5650	1.0
	1	6414100192	12/9/2014	538000	3	2.25	2570	7242	2.0
	2	5631500400	2/25/2015	180000	2	1.00	770	10000	1.0
	3	2487200875	12/9/2014	604000	4	3.00	1960	5000	1.0
	4	1954400510	2/18/2015	510000	3	2.00	1680	8080	1.0
	•••								
	21592	263000018	5/21/2014	360000	3	2.50	1530	1131	3.0
	21593	6600060120	2/23/2015	400000	4	2.50	2310	5813	2.0
	21594	1523300141	6/23/2014	402101	2	0.75	1020	1350	2.0
	21595	291310100	1/16/2015	400000	3	2.50	1600	2388	2.0
	21596	1523300157	10/15/2014	325000	2	0.75	1020	1076	2.0

20250 rows × 21 columns

```
In [17]: # want to look at price range
    df.plot(kind='scatter', x='id', y='price')
```

Out[17]: <AxesSubplot:xlabel='id', ylabel='price'>


```
In [18]: # function to create GeoDataFrame
    def add_geo_col(df):
        # create a geometry column
        geometry = [Point(xy) for xy in zip(df['long'], df['lat'])]

# Coordinate reference system : WGS84 (the GPS model for conversion)
        crs = CRS('epsg:4326')

# Creating a Geographic data frame
        gdf = gpd.GeoDataFrame(df, crs=crs, geometry=geometry).reset_index()
        return gdf
```

In [19]: gdf = add_geo_col(df)
 gdf.head()

Out[19]:		index	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flooi
	0	0	7129300520	10/13/2014	221900	3	1.00	1180	5650	1.
	1	1	6414100192	12/9/2014	538000	3	2.25	2570	7242	2.
	2	2	5631500400	2/25/2015	180000	2	1.00	770	10000	1.
	3	3	2487200875	12/9/2014	604000	4	3.00	1960	5000	1.
	4	4	1954400510	2/18/2015	510000	3	2.00	1680	8080	1.

5 rows × 23 columns

```
# Plot all points
In [20]:
          gdf.plot(marker='o', color='b', markersize=0.5)
Out[20]: <AxesSubplot:>
          47.8
          47.7
          47.6
          47.5
          47.4
          47.3
          47.2
                 -122.4 -122.2 -122.0 -121.8 -121.6 -121.4
In [10]:
          # check what projection is used
          gdf.crs
Out[10]: <Geographic 2D CRS: EPSG:4326>
         Name: WGS 84
         Axis Info [ellipsoidal]:
          - Lat[north]: Geodetic latitude (degree)
          - Lon[east]: Geodetic longitude (degree)
          Area of Use:
          - name: World
          - bounds: (-180.0, -90.0, 180.0, 90.0)
         Datum: World Geodetic System 1984
          - Ellipsoid: WGS 84
          - Prime Meridian: Greenwich
          # function to convert meters to miles
In [21]:
          def m 2 mi(meters):
               return meters * 0.00062137
In [22]:
          # function to find distance between two Points
          def dist to point(point1, point2):
               pt1_gdf = gpd.GeoSeries([point1], crs=4326)
               pt2_gdf = gpd.GeoSeries([point2], crs=4326)
               pt1 gdf = pt1 gdf.to crs(3857)
               pt2_gdf = pt2_gdf.to_crs(3857)
               distance = m 2 mi(pt1 gdf.distance(pt2 gdf))
               return round(distance.at[0], 3)
          # Want to compile list of top 5 employers in Seattle area with a centralized of
In [13]:
```

```
# Source is https://www.huduser.gov/portal/publications/pdf/SeattleWA-CHMA-19.
# df_top10_employers = pd.read_csv('data/top_employers.csv')
# df_central5 = df_top10_employers[df_top10_employers['centralized_campus']==
# df_central5 = add_geo_col(df_central5)
# df_central5
```

Out[13]:		level_0	index	rank	employer	no_employees	long	lat	centralize	d_can
	0	0	0	1	The Boeing Company		-122.312023	47.532685		
	1	1	1	2	Amazon.com, Inc.	45.000	-122.339688	47.615875		
	2	2	2	3	Microsoft Corporation	43031	-122.339688	47.645744		
	3	3	3	4	University of Washington	30 700	-122.303644	47.655544		
	4	4	7	8	Starbucks Corporation	11 739	-122.336000	47.580700		
	4									•
In [14]:		def av	g_dists sts = [s(poir [dist_ n(dist	nt1, gdf):	distance of a pint1, point2) ts)		-]]
In [23]:	#	Calcul	ate ave	rage	distance o	.6050) # coord f each propert _to_point(poin	y to centra	L downtown	1	
In [16]:				_	-	f each propert s(point, df_ce	•			netry
In [24]:	go	lf.head	()							
Out[24]:		index		id	date	price bedrooms	bathrooms	sqft_living	sqft_lot	flooi
	0	0	7129300	520 1	10/13/2014 22	21900 3	3 1.00	1180	5650	1.
	1	1	6414100	192	12/9/2014 5:	38000	3 2.25	2570	7242	2.

	index	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flooi
2	2	5631500400	2/25/2015	180000	2	1.00	770	10000	1.
3	3	2487200875	12/9/2014	604000	4	3.00	1960	5000	1.
4	4	1954400510	2/18/2015	510000	3	2.00	1680	8080	1.

5 rows × 24 columns


```
import pandas as pd
In [1]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         import statsmodels.api as sm
         import numpy as np
         from statsmodels.stats.outliers influence import variance inflation factor
         import scipy.stats as stats
         from statsmodels.formula.api import ols
         from statsmodels.stats.diagnostic import het white
         from matplotlib.cbook import boxplot stats
In [2]:
         # Load data from other notebook
         gdf = pd.read pickle('data/geodata.pkl')
         df = pd.DataFrame(gdf)
In [3]:
         df.columns
Out[3]: Index(['index', 'id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
               'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                'lat', 'long', 'sqft_living15', 'sqft_lot15', 'geometry',
                'dist_2_downtown'],
              dtype='object')
         df = df.fillna(0).replace('?',0).replace('"?',0)
In [4]:
         df.info()
In [5]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20250 entries, 0 to 20249
        Data columns (total 24 columns):
         #
             Column
                              Non-Null Count
                                              Dtype
             _____
                              -----
         0
             index
                              20250 non-null int64
         1
             id
                              20250 non-null int64
         2
             date
                              20250 non-null object
         3
             price
                              20250 non-null int64
         4
             bedrooms
                             20250 non-null int64
             bathrooms
         5
                             20250 non-null float64
             saft living
                              20250 non-null int64
         7
             sqft lot
                              20250 non-null int64
         8
                              20250 non-null float64
             floors
         9
             waterfront
                              20250 non-null float64
                              20250 non-null float64
         10 view
         11 condition
                              20250 non-null int64
         12 grade
                              20250 non-null int64
         13 sqft above
                              20250 non-null object
         14 sqft_basement
                              20250 non-null object
                              20250 non-null int64
         15 yr built
         16 yr_renovated
                              20250 non-null float64
         17 zipcode
                              20250 non-null int64
         18 lat
                              20250 non-null float64
         19 long
                              20250 non-null float64
         20 sqft_living15
                              20250 non-null int64
            sqft lot15
                              20250 non-null int64
```

22 geometry

```
23 dist 2 downtown 20250 non-null float64
        dtypes: float64(8), int64(12), object(4)
        memory usage: 3.7+ MB
         # Clean up the data to change strings to integers and delete unnecessary colum
In [6]:
         df['sqft_above'] = df['sqft_above'].astype(int)
         df['sqft basement'] = df['sqft basement'].astype(int)
         df = df.drop(columns=['index', 'id', 'geometry'])
         df['yr renovated'] = df['yr renovated'].astype(int)
In [7]:
         # Converting date to datetime
         df['date'] = pd.to datetime(df['date'])
         df['date'] = df['date'].dt.month
         df b4 dummies = df.copy()
In [8]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20250 entries, 0 to 20249
        Data columns (total 21 columns):
             Column
                              Non-Null Count Dtype
             -----
                              -----
         0
             date
                              20250 non-null int64
                              20250 non-null int64
         1
             price
         2
             bedrooms
                              20250 non-null int64
         3
             bathrooms
                              20250 non-null float64
             sqft living
                              20250 non-null int64
         5
             sqft lot
                              20250 non-null int64
         6
             floors
                              20250 non-null float64
         7
             waterfront
                              20250 non-null float64
             view
         8
                              20250 non-null float64
         9
             condition
                              20250 non-null int64
         10 grade
                              20250 non-null int64
         11 sqft above
                              20250 non-null int32
         12 sqft basement
                              20250 non-null int32
         13 vr built
                              20250 non-null int64
         14 yr_renovated
                              20250 non-null int32
         15 zipcode
                              20250 non-null int64
         16 lat
                              20250 non-null float64
                              20250 non-null float64
         17 long
         18 sqft_living15
                              20250 non-null int64
         19
             saft lot15
                              20250 non-null int64
         20 dist_2_downtown 20250 non-null float64
        dtypes: float64(7), int32(3), int64(11)
        memory usage: 3.0 MB
         df b4 dummies.head(3)
In [9]:
                  price bedrooms bathrooms sqft_living sqft_lot floors waterfront view cond
Out[9]:
           date
        0
             10 221900
                              3
                                       1.00
                                                1180
                                                        5650
                                                               1.0
                                                                          0.0
                                                                               0.0
        1
             12 538000
                               3
                                       2.25
                                                2570
                                                        7242
                                                               2.0
                                                                          0.0
                                                                               0.0
```

20250 non-null object

2 180000

2

1.00

770

10000

1.0

0.0

0.0

2

3 rows × 21 columns

```
plt.style.use('ggplot')
In [10]:
           # Remove outliers first
In [11]:
           cols_to_limit = ['price', 'bedrooms', 'bathrooms', 'sqft_living',
                              'sqft_lot', 'floors', 'condition', 'sqft_above',
                              'sqft_basement', 'lat', 'long', 'sqft_living15',
'sqft_lot15', 'dist_2_downtown', 'zipcode']
           plot_no = 1
           plt.figure(figsize=(16,12))
           feat ranges = []
           for col in cols to limit:
                plt.subplot(4, 4, plot_no)
                sns.boxplot(x=df_b4_dummies[col])
                feat ranges.append([col, boxplot stats(df b4 dummies[col]).pop(0)['whislo'
                                boxplot stats(df b4 dummies[col]).pop(0)['whishi']])
                plot_no += 1
           print(feat ranges)
```

[['price', 105000, 1020000], ['bedrooms', 2, 5], ['bathrooms', 0.5, 4.0], ['sqft_living', 370, 3950], ['sqft_lot', 520, 18205], ['floors', 1.0, 3.5], ['condition', 2, 5], ['sqft_above', 0, 3470], ['sqft_basement', 0, 1250], ['lat', 47.1559, 47.7776], ['long', -122.5189999999999, -121.815], ['sqft_living15', 399, 3470], ['sqft_lot15', 651, 17085], ['dist_2_downtown', 1.065, 45.357], ['zipcode', 98001, 98199]]

In [12]: # Remove rows with outliers from dataframe
for feat in feat_ranges:
 df_b4_dummies = df_b4_dummies[(df_b4_dummies[feat[0]] >= feat[1])
 & (df_b4_dummies[feat[0]] <= feat[2])]
 df_b4_dummies</pre>

Out[12]:		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
	0	10	221900	3	1.00	1180	5650	1.0	0.0	0.0
	1	12	538000	3	2.25	2570	7242	2.0	0.0	0.0
	2	2	180000	2	1.00	770	10000	1.0	0.0	0.0
	3	12	604000	4	3.00	1960	5000	1.0	0.0	0.0
	4	2	510000	3	2.00	1680	8080	1.0	0.0	0.0
	•••						•••			
	20245	5	360000	3	2.50	1530	1131	3.0	0.0	0.0
	20246	2	400000	4	2.50	2310	5813	2.0	0.0	0.0
	20247	6	402101	2	0.75	1020	1350	2.0	0.0	0.0
	20248	1	400000	3	2.50	1600	2388	2.0	0.0	0.0
	20249	10	325000	2	0.75	1020	1076	2.0	0.0	0.0

16363 rows × 21 columns

```
In [13]: # look at features vs. price to get a sense what the influencers are
    cols = list(df_b4_dummies.columns)
    cols.remove('price')
    print(cols)
    for col in cols:
        sns.jointplot(x=col, y='price', data=df_b4_dummies, kind='reg')
        title = col+' vs. Price'
        plt.title(title)
```

['date', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterf ront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_buil t', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15', 'dist_2_downtown']

zipcode

Out[14]: <AxesSubplot:>


```
In [15]:
          # Check for Multicollinearity
          cols = list(df b4 dummies.columns)
          cols.remove('price')
          X = df_b4_dummies[cols]
          vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
          list(zip(cols, vif))
Out[15]: [('date', 5.427906964820898),
           ('bedrooms', 31.625437529691265),
           ('bathrooms', 29.476658559136723),
           ('sqft_living', 904.6142468883447),
           ('saft lot', 24.960479391174058),
           ('floors', 22.728808628566043),
           ('waterfront', 1.0584945221909234),
           ('view', 1.2160235503031127),
           ('condition', 36.579883403067946),
           ('grade', 172.59117505076833),
           ('sqft_above', 699.4802751163973),
           ('sqft_basement', 41.54200617688805),
           ('yr_built', 12137.995857422487),
```

('yr renovated', 1.1323170181402764),

('zipcode', 2522913.612925252), ('lat', 201501.25243492762),

```
('long', 1989633.5705918972),
('sqft_living15', 35.12230238770869),
('sqft_lot15', 29.369390536629286),
('dist_2_downtown', 11.12353795197118)]
```

In [16]: # Drop location-related columns, drop zipcode and latitude
 df_b4_dummies = df_b4_dummies.drop(columns=['zipcode'])

Out[17]: <AxesSubplot:>


```
In [18]: df = df_b4_dummies.copy()
```

In [19]: df.describe()

Out[19]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
count	16363.000000	1.636300e+04	16363.000000	16363.000000	16363.000000	16363.000000
mean	6.562366	4.517670e+05	3.255638	1.983285	1827.464585	6971.636741
std	3.123924	1.860190e+05	0.774378	0.659509	620.560299	3323.913730
min	1.000000	1.050000e+05	2.000000	0.500000	520.000000	520.000000
25%	4.000000	3.065000e+05	3.000000	1.500000	1350.000000	4680.500000
50%	6.000000	4.200000e+05	3.000000	2.000000	1760.000000	6984.000000
75%	9.000000	5.650000e+05	4.000000	2.500000	2240.000000	8924.500000
max	12.000000	1.020000e+06	5.000000	4.000000	3940.000000	18205.000000

```
In [20]: # Marking Categories
    df.waterfront = df.waterfront.astype('category')
    df.view = df.view.astype('category')
    df.condition = df.condition.astype('category')
    df.grade = df.grade.astype('category')
    df.bedrooms = df.bedrooms.astype('category')
    df.floors = df.floors.astype('category')
    df.bathrooms = df.bathrooms.astype('category')
```

```
# Making Dummies
In [21]:
          waterfront = pd.get dummies(df.waterfront, prefix='waterfront', drop first=Tru
          view = pd.get_dummies(df.view, prefix='view', drop_first=True)
          condition = pd.get dummies(df.condition, prefix='condition', drop first=True)
          grade = pd.get_dummies(df.grade, prefix='grade', drop_first=True)
          bedrooms = pd.get dummies(df.bedrooms, prefix='bedrooms', drop first=True)
          floors = pd.get dummies(df.floors, prefix='floors', drop first=True)
          bathrooms = pd.get_dummies(df.bathrooms, prefix='bathrooms', drop_first=True)
          # Take care of dates
          mos = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'
          df['date'] = [mos[mo-1] for mo in df['date']]
          df['date'] = df['date'].astype(str)
          date = pd.get_dummies(df.date, prefix='date', drop_first=True)
          # Adding dummies to the dataset and removing original features
          df = df.join([waterfront, view, condition, grade, bedrooms, floors, bathrooms,
          df.drop(['waterfront','view','condition','grade','bedrooms', 'floors', 'bathro
          df.head()
```

Out[21]:		price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	yr_renovated	lat
	0	221900	1180	5650	1180	0	1955	0	47.5112
	1	538000	2570	7242	2170	400	1951	1991	47.7210
	2	180000	770	10000	770	0	1933	0	47.7379

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	yr_renovated	lat	
3	604000	1960	5000	1050	910	1965	0	47.5208	
4	510000	1680	8080	1680	0	1987	0	47.6168	

5 rows × 60 columns

```
In [22]: df.columns = df.columns.str.replace(".", "_")
    df.head()
```

770

Out[22]:		price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	yr_renovated
	0	221900	1180	5650	1180	0	1955	0
	1	538000	2570	7242	2170	400	1951	1991

10000

770

3 604000 1960 5000 1050 910 1965 0 47.5208

0

1933

4 510000 1680 8080 1680 0 1987 0 47.6168

5 rows × 60 columns

2 180000

→

1st Model

```
In [23]: # First Model
    outcome = 'price' # dependent variable
    x_cols = list(df.columns)
    x_cols.remove('price')# independence variables --> everything except price
    # Fitting the actual model using OLS
    predictors = '+'.join(x_cols)
    formula = outcome + '~' + predictors
    model = ols(formula=formula, data=df).fit()
    model.summary()
```

Out[23]: OLS Regression Results

Dep. Variable:	price	R-squared:	0.722
Model:	OLS	Adj. R-squared:	0.721
Method:	Least Squares	F-statistic:	716.8
Date:	Sat, 26 Dec 2020	Prob (F-statistic):	0.00
Time:	19:16:42	Log-Likelihood:	-2.1129e+05
No. Observations:	16363	AIC:	4.227e+05
Df Residuals:	16303	BIC:	4.232e+05

lat

0 47.5112

0 47.7379

1991 47.7210

Df Model: 59

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.732e+07	1.3e+06	13.289	0.000	1.48e+07	1.99e+07
sqft_living	69.1177	12.003	5.758	0.000	45.590	92.645
sqft_lot	-0.1089	0.499	-0.218	0.827	-1.087	0.869
sqft_above	27.4052	11.999	2.284	0.022	3.885	50.925
sqft_basement	-1.2451	11.862	-0.105	0.916	-24.496	22.006
yr_built	-1179.6058	48.138	-24.505	0.000	-1273.962	-1085.250
yr_renovated	20.3160	2.502	8.120	0.000	15.412	25.220
lat	3.071e+05	7733.767	39.712	0.000	2.92e+05	3.22e+05
long	2.409e+05	9124.720	26.397	0.000	2.23e+05	2.59e+05
sqft_living15	49.9025	2.469	20.214	0.000	45.064	54.741
sqft_lot15	-4.4249	0.560	-7.901	0.000	-5.523	-3.327
dist_2_downtown	-7629.0980	162.092	-47.066	0.000	-7946.816	-7311.380
waterfront_1_0	2.032e+05	2.91e+04	6.987	0.000	1.46e+05	2.6e+05
view_1_0	6.303e+04	7028.602	8.967	0.000	4.92e+04	7.68e+04
view_2_0	4.999e+04	4437.507	11.266	0.000	4.13e+04	5.87e+04
view_3_0	4.849e+04	7646.855	6.341	0.000	3.35e+04	6.35e+04
view_4_0	1.554e+05	1.41e+04	11.040	0.000	1.28e+05	1.83e+05
condition_3	2.95e+04	9528.093	3.096	0.002	1.08e+04	4.82e+04
condition_4	6.312e+04	9563.179	6.600	0.000	4.44e+04	8.19e+04
condition_5	8.378e+04	9849.156	8.506	0.000	6.45e+04	1.03e+05
grade_5	-1.341e+04	3.7e+04	-0.362	0.717	-8.59e+04	5.91e+04
grade_6	9924.8634	3.63e+04	0.273	0.785	-6.13e+04	8.11e+04
grade_7	7.307e+04	3.63e+04	2.011	0.044	1864.761	1.44e+05
grade_8	1.396e+05	3.64e+04	3.834	0.000	6.82e+04	2.11e+05
grade_9	2.218e+05	3.66e+04	6.065	0.000	1.5e+05	2.94e+05
grade_10	2.802e+05	3.7e+04	7.566	0.000	2.08e+05	3.53e+05
grade_11	3.194e+05	4.73e+04	6.757	0.000	2.27e+05	4.12e+05
bedrooms_3	-1349.4951	2578.404	-0.523	0.601	-6403.450	3704.460

bedrooms_4	-1.109e+04	3135.363	-3.538	0.000	-1.72e+04	-4946.788
bedrooms_5	-2.735e+04	4568.799	-5.986	0.000	-3.63e+04	-1.84e+04
floors_1_5	7788.6738	3208.460	2.428	0.015	1499.741	1.41e+04
floors_2_0	-6187.0589	2953.403	-2.095	0.036	-1.2e+04	-398.066
floors_2_5	1.111e+04	1.15e+04	0.968	0.333	-1.14e+04	3.36e+04
floors_3_0	-676.1106	5582.105	-0.121	0.904	-1.16e+04	1.03e+04
floors_3_5	-8196.1999	4.04e+04	-0.203	0.839	-8.74e+04	7.1e+04
bathrooms_0_75	3.686e+04	6.01e+04	0.613	0.540	-8.1e+04	1.55e+05
bathrooms_1_0	4.766e+04	5.69e+04	0.838	0.402	-6.38e+04	1.59e+05
bathrooms_1_25	8791.2791	6.96e+04	0.126	0.900	-1.28e+05	1.45e+05
bathrooms_1_5	5.436e+04	5.69e+04	0.955	0.340	-5.72e+04	1.66e+05
bathrooms_1_75	6.528e+04	5.69e+04	1.147	0.251	-4.63e+04	1.77e+05
bathrooms_2_0	6.692e+04	5.69e+04	1.176	0.240	-4.47e+04	1.78e+05
bathrooms_2_25	7.326e+04	5.69e+04	1.287	0.198	-3.83e+04	1.85e+05
bathrooms_2_5	7.468e+04	5.69e+04	1.312	0.190	-3.69e+04	1.86e+05
bathrooms_2_75	8.455e+04	5.7e+04	1.483	0.138	-2.72e+04	1.96e+05
bathrooms_3_0	7.424e+04	5.71e+04	1.300	0.194	-3.77e+04	1.86e+05
bathrooms_3_25	8.847e+04	5.73e+04	1.545	0.122	-2.38e+04	2.01e+05
bathrooms_3_5	1.146e+05	5.72e+04	2.002	0.045	2419.338	2.27e+05
bathrooms_3_75	1.049e+05	5.98e+04	1.753	0.080	-1.24e+04	2.22e+05
bathrooms_4_0	1.054e+05	6.13e+04	1.720	0.085	-1.47e+04	2.25e+05
date_Aug	-3.167e+04	3501.514	-9.046	0.000	-3.85e+04	-2.48e+04
date_Dec	-3.492e+04	3799.986	-9.189	0.000	-4.24e+04	-2.75e+04
date_Feb	-2.465e+04	3950.777	-6.240	0.000	-3.24e+04	-1.69e+04
date_Jan	-3.138e+04	4341.550	-7.229	0.000	-3.99e+04	-2.29e+04
date_Jul	-2.721e+04	3396.901	-8.010	0.000	-3.39e+04	-2.05e+04
date_Jun	-2.559e+04	3419.953	-7.484	0.000	-3.23e+04	-1.89e+04
date_Mar	-6086.4314	3519.212	-1.729	0.084	-1.3e+04	811.610
date_May	-2.436e+04	3329.978	-7.317	0.000	-3.09e+04	-1.78e+04
date_Nov	-3.151e+04	3842.752	-8.199	0.000	-3.9e+04	-2.4e+04
date_Oct	-3.523e+04	3529.897	-9.980	0.000	-4.21e+04	-2.83e+04
date_Sep		3594.655	-8.909	0.000	-3.91e+04	-2.5e+04

Omnibus:	964.082	Durbin-Watson:	1.977
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1586.180
Skew:	0.477	Prob(JB):	0.00
Kurtosis:	4.189	Cond. No.	1.90e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.9e+07. This might indicate that there are strong multicollinearity or other numerical problems.

Model Refinement 1

Normalize and standardize data

```
In [24]: # Create histograms to get a sense of data
df.hist(figsize = (20,18));
```



```
In [25]: df_b4_scale = df.copy() #save unscaled df for later
```

```
In [27]: df.describe()
```

Out[27]: price sqft_living sqft_lot sqft above sqft_basement yr built 16363.000000 16363.000000 16363.000000 16363.000000 16363.000000 16363.000000 count 12.935661 7.450935 6971.636741 1591.236693 230.948665 1969.898735 mean 0.418902 0.352283 3323.913730 606.013212 348.763516 29.919001 std 11.561716 6.253829 520.000000 0.000000 0.000000 1900.000000 min

yr_built	sqft_basement	sqft_above	sqft_lot	sqft_living	price	
1950.000000	0.000000	1140.000000	4680.500000	7.207860	12.632973	25%
1971.000000	0.000000	1440.000000	6984.000000	7.473069	12.948010	50%
1997.000000	460.000000	1930.000000	8924.500000	7.714231	13.244581	75%
2015.000000	1250.000000	3470.000000	18205.000000	8.278936	13.835313	max

8 rows × 60 columns

```
In [28]: def scale_feat(series):
    return (series - series.min())/(series.max() - series.min())

In [29]: cols = list(df.columns)

for feat in cols:
    df[feat] = scale_feat(df[feat])
    df.describe()
```

Out[29]:		price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built
	count	16363.000000	16363.000000	16363.000000	16363.000000	16363.000000	16363.000000
	mean	0.604305	0.591132	0.364808	0.458570	0.184759	0.607815
	std	0.184246	0.173958	0.187951	0.174644	0.279011	0.260165
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.471173	0.471102	0.235256	0.328530	0.000000	0.434783
	50%	0.609736	0.602062	0.365507	0.414986	0.000000	0.617391
	75%	0.740177	0.721148	0.475233	0.556196	0.368000	0.843478
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

8 rows × 60 columns

```
In [30]: # See what normalization & scaling did
    df.hist(figsize = (20,18));
```



```
In [31]: outcome = 'price' # dependent variable

# Fitting the model again
    predictors = '+'.join(x_cols)
    formula = outcome + '~' + predictors
    model = ols(formula=formula, data=df).fit()
    model.summary()
```

Out[31]: OLS Regression Results

Dep. Variable:	price	R-squared:	0.764
Model:	OLS	Adj. R-squared:	0.763
Method:	Least Squares	F-statistic:	894.4
Date:	Sat, 26 Dec 2020	Prob (F-statistic):	0.00
Time:	19:17:04	Log-Likelihood:	16273.
No. Observations:	16363	AIC:	-3.243e+04
Df Residuals:	16303	BIC:	-3.196e+04
Df Model:	59		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.3467	0.063	5.527	0.000	0.224	0.470
sqft_living	0.2283	0.022	10.368	0.000	0.185	0.272
sqft_lot	-0.0227	0.007	-3.305	0.001	-0.036	-0.009
sqft_above	0.1325	0.021	6.375	0.000	0.092	0.173
sqft_basement	0.0007	0.008	0.085	0.932	-0.015	0.016
yr_built	-0.0904	0.005	-17.521	0.000	-0.101	-0.080
yr_renovated	0.0324	0.005	7.042	0.000	0.023	0.041
lat	0.2444	0.003	76.859	0.000	0.238	0.251
long	-0.1602	0.005	-29.151	0.000	-0.171	-0.149
sqft_living15	0.1683	0.007	24.339	0.000	0.155	0.182
sqft_lot15	-0.0185	0.009	-2.076	0.038	-0.036	-0.001
dist_2_downtown	-0.3915	0.007	-55.833	0.000	-0.405	-0.378
waterfront_1_0	0.2076	0.027	7.827	0.000	0.156	0.260
view_1_0	0.0617	0.006	9.628	0.000	0.049	0.074
view_2_0	0.0411	0.004	10.157	0.000	0.033	0.049
view_3_0	0.0453	0.007	6.507	0.000	0.032	0.059
view_4_0	0.1089	0.013	8.482	0.000	0.084	0.134
condition_3	0.0491	0.009	5.650	0.000	0.032	0.066
condition_4	0.0827	0.009	9.481	0.000	0.066	0.100
condition_5	0.1024	0.009	11.393	0.000	0.085	0.120
grade_5	-0.0191	0.034	-0.566	0.571	-0.085	0.047
grade_6	0.0257	0.033	0.773	0.440	-0.039	0.091
grade_7	0.0903	0.033	2.716	0.007	0.025	0.156
grade_8	0.1469	0.033	4.406	0.000	0.082	0.212
grade_9	0.2040	0.033	6.099	0.000	0.138	0.270
grade_10	0.2410	0.034	7.121	0.000	0.175	0.307
grade_11	0.2540	0.043	5.885	0.000	0.169	0.339
bedrooms_3	-0.0111	0.002	-4.555	0.000	-0.016	-0.006
bedrooms_4	-0.0149	0.003	-5.050	0.000	-0.021	-0.009

bedrooms_5	-0.0310	0.004	-7.398	0.000	-0.039	-0.023
floors_1_5	-0.0003	0.003	-0.094	0.925	-0.006	0.006
floors_2_0	-0.0138	0.003	-5.024	0.000	-0.019	-0.008
floors_2_5	-0.0101	0.011	-0.955	0.340	-0.031	0.011
floors_3_0	-0.0130	0.005	-2.422	0.015	-0.023	-0.002
floors_3_5	-0.0129	0.037	-0.350	0.727	-0.085	0.059
bathrooms_0_75	0.0817	0.055	1.489	0.137	-0.026	0.189
bathrooms_1_0	0.1038	0.052	2.001	0.045	0.002	0.206
bathrooms_1_25	0.0663	0.064	1.044	0.296	-0.058	0.191
bathrooms_1_5	0.1035	0.052	1.993	0.046	0.002	0.205
bathrooms_1_75	0.1211	0.052	2.333	0.020	0.019	0.223
bathrooms_2_0	0.1183	0.052	2.277	0.023	0.016	0.220
bathrooms_2_25	0.1273	0.052	2.450	0.014	0.025	0.229
bathrooms_2_5	0.1344	0.052	2.589	0.010	0.033	0.236
bathrooms_2_75	0.1385	0.052	2.663	0.008	0.037	0.240
bathrooms_3_0	0.1279	0.052	2.454	0.014	0.026	0.230
bathrooms_3_25	0.1397	0.052	2.674	0.008	0.037	0.242
bathrooms_3_5	0.1574	0.052	3.015	0.003	0.055	0.260
bathrooms_3_75	0.1416	0.055	2.594	0.009	0.035	0.249
bathrooms_4_0	0.1467	0.056	2.626	0.009	0.037	0.256
date_Aug	-0.0319	0.003	-9.972	0.000	-0.038	-0.026
date_Dec	-0.0342	0.003	-9.880	0.000	-0.041	-0.027
date_Feb	-0.0251	0.004	-6.958	0.000	-0.032	-0.018
date_Jan	-0.0340	0.004	-8.573	0.000	-0.042	-0.026
date_Jul	-0.0291	0.003	-9.387	0.000	-0.035	-0.023
date_Jun	-0.0266	0.003	-8.534	0.000	-0.033	-0.021
date_Mar	-0.0077	0.003	-2.390	0.017	-0.014	-0.001
date_May	-0.0240	0.003	-7.894	0.000	-0.030	-0.018
date_Nov	-0.0323	0.004	-9.212	0.000	-0.039	-0.025
date_Oct	-0.0355	0.003	-11.017	0.000	-0.042	-0.029
date_Sep	-0.0319	0.003	-9.739	0.000	-0.038	-0.026

Omnibus:	525.368	Durbin-Watson:	1.996
Prob(Omnibus):	0.000	Jarque-Bera (JB):	968.644
Skew:	-0.257	Prob(JB):	4.59e-211
Kurtosis:	4.076	Cond. No.	689.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model Refinement 2

Remove unecessary features (p-value > 0.05)

```
In [32]:
           # Get new columns
           p vals = pd.DataFrame(model.pvalues)
           x cols = p vals[p vals[0]<=0.05][1:].index # independent variables
           # Keep columns with p-value less than 0.05
In [33]:
           outcome = 'price' # dependent variable
           # Fitting the model again
           predictors = '+'.join(x_cols)
           formula = outcome + '~' + predictors
           model = ols(formula=formula, data=df).fit()
           model.summary()
                               OLS Regression Results
Out[33]:
                                                                   0.763
              Dep. Variable:
                                                  R-squared:
                                      price
                    Model:
                                       OLS
                                              Adj. R-squared:
                                                                   0.763
                   Method:
                               Least Squares
                                                   F-statistic:
                                                                   1032.
                            Sat, 26 Dec 2020 Prob (F-statistic):
                                                                    0.00
                     Time:
                                    19:17:04
                                              Log-Likelihood:
                                                                  16255.
           No. Observations:
                                     16363
                                                        AIC: -3.241e+04
               Df Residuals:
                                                        BIC: -3.200e+04
                                     16311
                  Df Model:
                                         51
           Covariance Type:
                                  nonrobust
                               coef std err
                                                  t P>|t| [0.025 0.975]
                  Intercept
                             0.4284
                                      0.019
                                             22.221 0.000
                                                            0.391
                                                                    0.466
```

sqft_living

0.2339

0.010

23.700 0.000

0.215

0.253

sqft_lot	-0.0219	0.007	-3.188	0.001	-0.035	-0.008
sqft_above	0.1290	0.009	13.812	0.000	0.111	0.147
yr_built	-0.0886	0.005	-18.013	0.000	-0.098	-0.079
yr_renovated	0.0326	0.005	7.105	0.000	0.024	0.042
lat	0.2449	0.003	77.015	0.000	0.239	0.251
long	-0.1587	0.005	-28.916	0.000	-0.169	-0.148
-				0.000		
sqft_living15	0.1684	0.007	24.369		0.155	0.182
sqft_lot15	-0.0182	0.009	-2.072	0.038	-0.035	-0.001
dist_2_downtown	-0.3924	0.007	-56.069	0.000	-0.406	-0.379
waterfront_1_0	0.2101	0.027	7.918	0.000	0.158	0.262
view_1_0	0.0614	0.006	9.597	0.000	0.049	0.074
view_2_0	0.0411	0.004	10.157	0.000	0.033	0.049
view_3_0	0.0453	0.007	6.500	0.000	0.032	0.059
view_4_0	0.1077	0.013	8.389	0.000	0.083	0.133
condition_3	0.0516	0.009	5.935	0.000	0.035	0.069
condition_4	0.0851	0.009	9.763	0.000	0.068	0.102
condition_5	0.1047	0.009	11.658	0.000	0.087	0.122
grade_7	0.0675	0.003	25.121	0.000	0.062	0.073
grade_8	0.1236	0.003	36.978	0.000	0.117	0.130
grade_9	0.1806	0.004	41.335	0.000	0.172	0.189
grade_10	0.2175	0.007	32.037	0.000	0.204	0.231
grade_11	0.2306	0.028	8.341	0.000	0.176	0.285
bedrooms_3	-0.0108	0.002	-4.531	0.000	-0.015	-0.006
bedrooms_4	-0.0147	0.003	-5.048	0.000	-0.020	-0.009
bedrooms_5	-0.0311	0.004	-7.442	0.000	-0.039	-0.023
floors_2_0	-0.0133	0.003	-5.111	0.000	-0.018	-0.008
floors_3_0	-0.0127	0.005	-2.436	0.015	-0.023	-0.002
bathrooms_1_0	0.0389	0.015	2.582	0.010	0.009	0.068
bathrooms_1_5	0.0384	0.015	2.516	0.012	0.008	0.068
bathrooms_1_75	0.0558	0.015	3.678	0.000	0.026	0.086
bathrooms_2_0						
	0.0528	0.015	3.465	0.001	0.023	0.083

bathrooms_2_5	0.0686	0.015	4.480	0.000	0.039	0.099
bathrooms_2_75	0.0727	0.016	4.666	0.000	0.042	0.103
bathrooms_3_0	0.0618	0.016	3.903	0.000	0.031	0.093
bathrooms_3_25	0.0735	0.016	4.496	0.000	0.041	0.106
bathrooms_3_5	0.0911	0.016	5.615	0.000	0.059	0.123
bathrooms_3_75	0.0754	0.023	3.314	0.001	0.031	0.120
bathrooms_4_0	0.0811	0.026	3.155	0.002	0.031	0.132
date_Aug	-0.0316	0.003	-9.886	0.000	-0.038	-0.025
date_Dec	-0.0342	0.003	-9.852	0.000	-0.041	-0.027
date_Feb	-0.0251	0.004	-6.948	0.000	-0.032	-0.018
date_Jan	-0.0341	0.004	-8.606	0.000	-0.042	-0.026
date_Jul	-0.0289	0.003	-9.330	0.000	-0.035	-0.023
date_Jun	-0.0264	0.003	-8.452	0.000	-0.033	-0.020
date_Mar	-0.0074	0.003	-2.318	0.020	-0.014	-0.001
date_May	-0.0238	0.003	-7.844	0.000	-0.030	-0.018
date_Nov	-0.0324	0.004	-9.232	0.000	-0.039	-0.026
date_Oct	-0.0353	0.003	-10.951	0.000	-0.042	-0.029
date_Sep	-0.0317	0.003	-9.676	0.000	-0.038	-0.025
Omnibus:	529.936	Durbin-	·Watson:	1.5	997	
Prob(Omnibus):	0.000	Jarque-B		961.		
Skew:	-0.264	•	Prob(JB):	1.32e-		
Kurtosis:	4.064		ond. No.		188.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [34]: # Q-Q Plot to check normality of residuals
    residuals = model.resid
    fig = sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True)
```



```
# Checking for Homoscedasticity
plt.scatter(model.predict(df[x_cols]), model.resid)
plt.plot(model.predict(df[x_cols]), [0 for i in range(len(df))])
```

Out[35]: [<matplotlib.lines.Line2D at 0x2445bc7ee20>]

Model Refinement 3

Improve residual normality and heteroscedasticity

```
In [36]: # Finding a cutoff point to narrow the price range
    xmin=11.561716
    xmax=13.835313

for i in range(0, 25, 1):
    q = i / 100
    price = np.exp(df['price']*(xmax-xmin)+xmin) # get back to meaningful val
    print('{} percentile: {}'.format(q, price.quantile(q=q)))

    print('---')
```

```
for i in range(75, 101, 1):
     q = i / 100
     price = np.exp(df['price']*(xmax-xmin)+xmin) # get back to meaningful val
     print('{} percentile: {}'.format(q, price.quantile(q=q)))
0.0 percentile: 105000.03894034293
0.01 percentile: 156848.4227721934
0.02 percentile: 175000.04303472006
0.03 percentile: 190000.04290148403
0.04 percentile: 200000.0426501934
0.05 percentile: 208955.04232114536
0.06 percentile: 215000.04204569408
0.07 percentile: 222000.0416748515
0.08 percentile: 229000.04125001185
0.09 percentile: 234753.04086157965
0.1 percentile: 240000.04047724814
0.11 percentile: 245000.040084874
0.12 percentile: 250000.0396675398
0.13 percentile: 253000.03940536638
0.14 percentile: 258000.03894912492
0.15 percentile: 262500.03851822816
0.16 percentile: 267000.038068462
0.17 percentile: 270000.0377582919
0.18 percentile: 275000.037223267
0.19 percentile: 280000.0366660045
0.2 percentile: 285000.0360869022
0.21 percentile: 289950.0354924526
0.22 percentile: 294950.03487101494
0.23 percentile: 299900.03423536656
0.24 percentile: 301500.0340256149
0.75 percentile: 564999.9769662684
0.76 percentile: 574999.9740910776
0.77 percentile: 579999.9726374826
0.78 percentile: 589999.9696987554
0.79 percentile: 599999.9667185666
0.8 percentile: 608619.9641169005
0.81 percentile: 619999.9606365543
0.82 percentile: 628839.9578976792
0.83 percentile: 639999.954396708
0.84 percentile: 649999.9512191516
0.85 percentile: 659999.9480039636
0.86 percentile: 672999.9437688929
0.87 percentile: 684999.9398050511
0.88 percentile: 698999.9351156388
0.89 percentile: 709999.9313829138
0.9 percentile: 724999.9262257792
0.91 percentile: 739999.9209927277
0.92 percentile: 751999.9167526646
0.93 percentile: 770702.7500510826
0.94 percentile: 789999.9030202533
0.95 percentile: 809999.8956116732
0.96 percentile: 834999.8861814148
0.97 percentile: 864999.8746238704
0.98 percentile: 902759.8597159835
0.99 percentile: 951999.8396976517
```

1.0 percentile: 1019999.8110343539

```
In [37]: # Keep values between 1% and 80%
    lower = df['price'].quantile(q=.03)
    upper = df['price'].quantile(q=.9)

subset = df[(df['price'] >= lower) & (df['price'] <= upper)].reset_index()
    print('Percent removed:',(len(df) - len(subset))/len(df))

predictors = '+'.join(x_cols)
    formula = outcome + '~' + predictors
    model = ols(formula=formula, data=subset).fit()
    model.summary()</pre>
```

Percent removed: 0.1272993949764713

OLS Regression Results

Out[37]:

Dep. Variable:	price	R-squared:	0.708
Model:	OLS	Adj. R-squared:	0.707
Method:	Least Squares	F-statistic:	676.6
Date:	Sat, 26 Dec 2020	Prob (F-statistic):	0.00
Time:	19:17:05	Log-Likelihood:	15791.
No. Observations:	14280	AIC:	-3.148e+04
Df Residuals:	14228	BIC:	-3.109e+04
Df Model:	51		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.5044	0.019	26.269	0.000	0.467	0.542
sqft_living	0.1868	0.009	19.782	0.000	0.168	0.205
sqft_lot	-0.0296	0.007	-4.462	0.000	-0.043	-0.017
sqft_above	0.1068	0.009	11.661	0.000	0.089	0.125
yr_built	-0.0892	0.005	-18.265	0.000	-0.099	-0.080
yr_renovated	0.0142	0.005	2.979	0.003	0.005	0.024
lat	0.2272	0.003	76.626	0.000	0.221	0.233
long	-0.1554	0.005	-30.330	0.000	-0.165	-0.145
sqft_living15	0.1534	0.007	22.601	0.000	0.140	0.167
sqft_lot15	-0.0180	0.008	-2.145	0.032	-0.034	-0.002
dist_2_downtown	-0.3392	0.007	-50.108	0.000	-0.352	-0.326
waterfront_1_0	0.2147	0.038	5.598	0.000	0.140	0.290
view_1_0	0.0578	0.007	8.752	0.000	0.045	0.071

				anaiysis		
view_2_0	0.0367	0.004	8.713	0.000	0.028	0.045
view_3_0	0.0497	0.007	6.758	0.000	0.035	0.064
view_4_0	0.1124	0.020	5.742	0.000	0.074	0.151
condition_3	0.0218	0.009	2.434	0.015	0.004	0.039
condition_4	0.0471	0.009	5.233	0.000	0.029	0.065
condition_5	0.0630	0.009	6.814	0.000	0.045	0.081
grade_7	0.0568	0.003	22.301	0.000	0.052	0.062
grade_8	0.1091	0.003	34.342	0.000	0.103	0.115
grade_9	0.1533	0.004	35.320	0.000	0.145	0.162
grade_10	0.1959	0.009	22.934	0.000	0.179	0.213
grade_11	0.1802	0.080	2.242	0.025	0.023	0.338
bedrooms_3	-0.0114	0.002	-5.047	0.000	-0.016	-0.007
bedrooms_4	-0.0138	0.003	-4.988	0.000	-0.019	-0.008
bedrooms_5	-0.0312	0.004	-7.576	0.000	-0.039	-0.023
floors_2_0	-0.0112	0.003	-4.363	0.000	-0.016	-0.006
floors_3_0	-0.0109	0.005	-2.191	0.028	-0.021	-0.001
bathrooms_1_0	0.0204	0.015	1.356	0.175	-0.009	0.050
bathrooms_1_5	0.0163	0.015	1.075	0.282	-0.013	0.046
bathrooms_1_75	0.0348	0.015	2.306	0.021	0.005	0.064
bathrooms_2_0	0.0317	0.015	2.090	0.037	0.002	0.061
bathrooms_2_25	0.0385	0.015	2.526	0.012	0.009	0.068
bathrooms_2_5	0.0493	0.015	3.242	0.001	0.020	0.079
bathrooms_2_75	0.0540	0.016	3.481	0.001	0.024	0.084
bathrooms_3_0	0.0407	0.016	2.587	0.010	0.010	0.072
bathrooms_3_25	0.0531	0.016	3.250	0.001	0.021	0.085
bathrooms_3_5	0.0583	0.016	3.559	0.000	0.026	0.090
bathrooms_3_75	0.0533	0.026	2.070	0.038	0.003	0.104
bathrooms_4_0	0.0448	0.028	1.612	0.107	-0.010	0.099
date_Aug	-0.0268	0.003	-8.756	0.000	-0.033	-0.021
date_Dec	-0.0276	0.003	-8.361	0.000	-0.034	-0.021
date_Feb	-0.0168	0.003	-4.914	0.000	-0.024	-0.010
date_Jan	-0.0257	0.004	-6.728	0.000	-0.033	-0.018

date_Jul	-0.0218	0.003	-7.331	0.000	-0.028	-0.016
date_Jun	-0.0214	0.003	-7.153	0.000	-0.027	-0.016
date_Mar	-0.0042	0.003	-1.348	0.178	-0.010	0.002
date_May	-0.0169	0.003	-5.794	0.000	-0.023	-0.011
date_Nov	-0.0286	0.003	-8.517	0.000	-0.035	-0.022
date_Oct	-0.0298	0.003	-9.640	0.000	-0.036	-0.024
date_Sep	-0.0234	0.003	-7.460	0.000	-0.029	-0.017
Omnibus:	216.268	Durbin-\	Natson:	2.00	06	
Prob(Omnibus):	0.000	Jarque-Be	era (JB):	276.6	54	
Skew:	-0.219	Pı	rob(JB):	8.38e-6	61	

Notes:

Kurtosis:

3.522

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

286.

```
In [38]: # Check Q-Q again
fig = sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)
```

Cond. No.


```
In [39]: # Check heteroscedasticity again
   plt.scatter(model.predict(subset[x_cols]), model.resid)
   plt.plot(model.predict(subset[x_cols]), [0 for i in range(len(subset))])
```

Out[39]: [<matplotlib.lines.Line2D at 0x24458ee8df0>]

Test/train

train test

In [40]:

```
from statsmodels.formula.api import ols
           import statsmodels.api as sm
           import scipy.stats as stats
           from sklearn.model_selection import train_test_split
           # split data into train and test sets
In [41]:
           train, test = train test split(subset)
           print(len(train), len(test))
          10710 3570
           # Fitting the model to train data
In [42]:
           predictors = '+'.join(x cols)
           formula = outcome + '~' + predictors
           model = ols(formula=formula, data=train).fit()
           model.summary()
                              OLS Regression Results
Out[42]:
                                                                 0.707
              Dep. Variable:
                                     price
                                                R-squared:
                    Model:
                                      OLS
                                             Adj. R-squared:
                                                                 0.705
                  Method:
                              Least Squares
                                                 F-statistic:
                                                                 513.9
                     Date:
                           Sat, 26 Dec 2020 Prob (F-statistic):
                                                                  0.00
                     Time:
                                  19:17:07
                                            Log-Likelihood:
                                                                11844.
```

AIC: -2.359e+04

BIC: -2.321e+04

10710

10659

nonrobust

50

No. Observations:

Covariance Type:

Df Residuals:

Df Model:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.4972	0.022	22.114	0.000	0.453	0.541
sqft_living	0.1789	0.011	16.381	0.000	0.157	0.200
sqft_lot	-0.0307	0.008	-3.999	0.000	-0.046	-0.016
sqft_above	0.1059	0.011	9.976	0.000	0.085	0.127
yr_built	-0.0865	0.006	-15.298	0.000	-0.098	-0.075
yr_renovated	0.0241	0.006	4.279	0.000	0.013	0.035
lat	0.2252	0.003	65.959	0.000	0.218	0.232
long	-0.1527	0.006	-25.840	0.000	-0.164	-0.141
sqft_living15	0.1621	0.008	20.814	0.000	0.147	0.177
sqft_lot15	-0.0201	0.010	-2.079	0.038	-0.039	-0.001
dist_2_downtown	-0.3435	0.008	-44.204	0.000	-0.359	-0.328
waterfront_1_0	0.2059	0.046	4.481	0.000	0.116	0.296
view_1_0	0.0611	0.008	7.995	0.000	0.046	0.076
view_2_0	0.0366	0.005	7.667	0.000	0.027	0.046
view_3_0	0.0514	0.009	5.972	0.000	0.035	0.068
view_4_0	0.1085	0.022	5.018	0.000	0.066	0.151
condition_3	0.0216	0.011	2.029	0.042	0.001	0.043
condition_4	0.0479	0.011	4.479	0.000	0.027	0.069
condition_5	0.0629	0.011	5.730	0.000	0.041	0.084
grade_7	0.0546	0.003	18.509	0.000	0.049	0.060
grade_8	0.1069	0.004	29.062	0.000	0.100	0.114
grade_9	0.1497	0.005	29.683	0.000	0.140	0.160
grade_10	0.1964	0.010	19.583	0.000	0.177	0.216
grade_11	4.464e-16	9.57e-17	4.665	0.000	2.59e-16	6.34e-16
bedrooms_3	-0.0123	0.003	-4.700	0.000	-0.017	-0.007
bedrooms_4	-0.0135	0.003	-4.197	0.000	-0.020	-0.007
bedrooms_5	-0.0299	0.005	-6.335	0.000	-0.039	-0.021
floors_2_0	-0.0125	0.003	-4.182	0.000	-0.018	-0.007
floors_3_0	-0.0162	0.006	-2.823	0.005	-0.028	-0.005
bathrooms_1_0	0.0287	0.018	1.619	0.105	-0.006	0.063
bathrooms_1_5	0.0271	0.018	1.516	0.130	-0.008	0.062

bathrooms_1_75	0.0446	0.018	2.504	0.012	0.010	0.080
bathrooms_2_0	0.0426	0.018	2.383	0.017	0.008	0.078
bathrooms_2_25	0.0482	0.018	2.683	0.007	0.013	0.083
bathrooms_2_5	0.0602	0.018	3.354	0.001	0.025	0.095
bathrooms_2_75	0.0608	0.018	3.324	0.001	0.025	0.097
bathrooms_3_0	0.0529	0.019	2.853	0.004	0.017	0.089
bathrooms_3_25	0.0632	0.019	3.275	0.001	0.025	0.101
bathrooms_3_5	0.0748	0.019	3.894	0.000	0.037	0.113
bathrooms_3_75	0.0608	0.028	2.174	0.030	0.006	0.116
bathrooms_4_0	0.0627	0.030	2.075	0.038	0.003	0.122
date_Aug	-0.0254	0.004	-7.084	0.000	-0.032	-0.018
date_Dec	-0.0269	0.004	-6.993	0.000	-0.034	-0.019
date_Feb	-0.0140	0.004	-3.513	0.000	-0.022	-0.006
date_Jan	-0.0190	0.004	-4.318	0.000	-0.028	-0.010
date_Jul	-0.0174	0.003	-5.059	0.000	-0.024	-0.011
date_Jun	-0.0189	0.003	-5.446	0.000	-0.026	-0.012
date_Mar	-0.0022	0.004	-0.625	0.532	-0.009	0.005
date_May	-0.0134	0.003	-3.991	0.000	-0.020	-0.007
date_Nov	-0.0285	0.004	-7.346	0.000	-0.036	-0.021
date_Oct	-0.0263	0.004	-7.351	0.000	-0.033	-0.019
date_Sep	-0.0203	0.004	-5.636	0.000	-0.027	-0.013
Omnibus:	138.464 D	urbin-Wats	on:	1.990		
Prob(Omnibus):		rque-Bera (J		67.279		
Skew:	-0.212	Prob(J		74e-37		
Kurtosis:	3.441		No. 1.1			

Prob(Omnibus):	0.000	Jarque-Bera (JB):	167.279
Skew:	-0.212	Prob(JB):	4.74e-37
Kurtosis:	3.441	Cond. No.	1.11e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.95e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In [43]: fig = sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)


```
In [44]: plt.scatter(model.predict(train[x_cols]), model.resid)
   plt.plot(model.predict(train[x_cols]), [0 for i in range(len(train))])
```

Out[44]: [<matplotlib.lines.Line2D at 0x24459351fd0>]


```
In [45]: # Most significant features
    coeffs = pd.DataFrame(model.params, columns=['coeffs'])
    coeffs['abs'] = coeffs.abs()
    coeffs = coeffs.sort_values('abs', ascending=False)
    coeffs.head(10)
```

Out[45]:		coeffs	abs
	Intercept	0.497250	0.497250
	dist_2_downtown	-0.343534	0.343534
	lat	0.225159	0.225159
	waterfront_1_0	0.205905	0.205905

```
coeffs
                               abs
   grade_10
               0.196366
                         0.196366
                         0.178862
  sqft_living
               0.178862
sqft_living15
               0.162060
                         0.162060
        long
              -0.152748
                         0.152748
    grade 9
               0.149680
                         0.149680
   view 4 0
               0.108460
                         0.108460
```

```
In [46]: # Use the test set to see how the train set did
X = test[x_cols].sort_index()
ypred = model.predict(X)
bot = 1100
top = 1200

x = range(top-bot)
ypred = ypred[bot:top]
yactual = test['price'].sort_index()[bot:top]

plt.figure(figsize=(16,6))
sns.lineplot(x=x, y=ypred, label='Predicted Prices')
sns.lineplot(x=x, y=yactual, label='Actual Prices')
plt.show()
```



```
In [47]: print('R^2 Score:',round(model.rsquared, 5))
    print('Average Predicted Price:', round(ypred.mean(),4))
    print('Average Actual Price:', round(yactual.mean(), 4))
```

R^2 Score: 0.70681

Average Predicted Price: 0.5905 Average Actual Price: 0.5886

Model Evaluation

In [48]: # function to take a random property and make a graph by adjusting a selected

12/26/2020

```
def predict_feat(feat, maxfeat, minfeat, title):
    df copy = df b4 scale[(df b4 scale[feat]<=maxfeat) & (df b4 scale[feat]>=n
    i = int(len(df copy)/2) # take a house from middle of set
    df dist = pd.DataFrame(df copy.iloc[i]).transpose()
    step = minfeat
    for row in range(1,11):
        df dist = df dist.append(df copy.iloc[i].transpose(), ignore index=Tru
        df dist[feat][row] = step
        step += (maxfeat - minfeat)/10
    actual feat = df dist[feat][0]
    actual price = df dist['price'][0]
    df_dist['long'] = df_dist['long']*-1
    for feat3 in feats 4 log:
        df dist[feat3] = np.log(df dist[feat3])
    for feat2 in list(df_dist.columns):
        if feat2 == 'long':
            featmax = max(np.log(df b4 scale[feat2]*-1))
            featmin = min(np.log(df_b4_scale[feat2]*-1))
            df dist[feat2] = (df dist[feat2] - featmin) / (featmax - featmin)
            continue
        if feat2 in feats 4 log:
            featmax = max(np.log(df b4 scale[feat2]))
            featmin = min(np.log(df_b4_scale[feat2]))
            df dist[feat2] = (df dist[feat2] - featmin) / (featmax - featmin)
            continue
        else:
            featmax = max(df b4 scale[feat2])
            featmin = min(df_b4_scale[feat2])
            df_dist[feat2] = (df_dist[feat2] - featmin) / (featmax - featmin)
    maxprice = 13.835313
    minprice = 11.561716
    maxfeat = max(np.log(df_b4_scale[feat]))
    minfeat = min(np.log(df_b4_scale[feat]))
    x=np.exp(df_dist[feat] * (maxfeat-minfeat) + minfeat)
    ypred_feat = model.predict(df_dist)
    ypred_feat = np.exp(ypred_feat * (maxprice-minprice) + minprice)
    print('Actual Price: ${}, Actual Feat: {}.'.format(int(actual_price), actual
    plt.figure(figsize=(6,4))
    plt.title(('{} v. Price').format(title))
    sns.lineplot(x=x, y=ypred_feat, label='Predicted Prices', markers=True)
    return (x, ypred_feat)
x_dists, prices_v_dists = predict_feat('dist_2_downtown', 22, 1, 'Random prope
```

```
In [49]:
```

Actual Price: \$318000, Actual Feat: 12.074.


```
x dists
In [50]:
          0
                12.074
Out[50]:
                 1.000
          1
          2
                 3.100
          3
                 5.200
          4
                 7.300
          5
                 9.400
          6
                11.500
          7
                13.600
          8
                15.700
          9
                17.800
          10
                19.900
          Name: dist 2 downtown, dtype: float64
In [51]:
           prices_v_dists
Out[51]:
                376463.558048
          1
                636670.208638
          2
                501502.493816
          3
                449666.066366
          4
                418616.610001
          5
                396876.717628
                380351.164740
          6
          7
                367130.617693
          8
                356177.960191
          9
                346870.391405
                338806.231080
          10
          dtype: float64
           current feat = 'lat'
In [52]:
           x_lat, prices_v_lat = predict_feat(current_feat, max(df_b4_scale[current_feat]
                                                min(df_b4_scale[current_feat]), 'Random pro
```

Actual Price: \$291000, Actual Feat: 47.3768.

Random property: Latitude v. Price


```
print(x_lat)
In [53]:
           print(prices_v_lat)
          0
                47.37680
          1
                47.25740
          2
                47.30942
          3
                47.36144
          4
                47.41346
          5
                47.46548
                47.51750
          6
          7
                47.56952
          8
                47.62154
          9
                47.67356
                47.72558
          10
          Name: lat, dtype: float64
          0
                282972.333273
                251477.391731
          1
          2
                264753.187261
          3
                278714.070203
          4
                293394.582628
          5
                308830.967395
          6
                325061.249899
          7
                342125.323634
          8
                360065.039778
          9
                378924.300956
          10
                398749.159394
          dtype: float64
In [54]:
          x_sgft, prices_v_sgft = predict_feat('sqft_living', 1800, 600, 'Random propert
```

x_sgrt, prices_v_sgrt = predict_reat(sqrt_living , 1800, 600, kandom propert

Actual Price: \$295832, Actual Feat: 1410.0.

Random property: Living Sq. Ft v. Price

In [55]: x_sgft15, prices_v_sgft15 = predict_feat('sqft_living15', 1800, 600, 'Random r

Actual Price: \$281000, Actual Feat: 1020.0.

Random property: Nearest Neighbors Living Sq. Ft v. Price


```
In [56]:

def predict_categorical(feat, pricemax, pricemin, feat_true, title):
    df_copy = df_b4_scale[(df_b4_scale[feat]==feat_true) &(df_b4_scale['price'
        i = int(len(df_copy)/2) # take a house from middle of set

df_cat = pd.DataFrame(df_copy.iloc[i]).transpose()
    df_cat = df_cat.append(df_copy.iloc[i].transpose(), ignore_index=True)
    df_cat[feat][1] = (df_cat[feat][0] - 1)*-1

actual_feat = df_cat[feat][0]
    actual_price = df_cat['price'][0]

df_cat['long'] = df_cat['long']*-1

for feat3 in feats_4_log:
    df_cat[feat3] = np.log(df_cat[feat3])
```

```
for feat2 in list(df cat.columns):
    if feat2 == 'long':
        featmax = max(np.log(df b4 scale[feat2]*-1))
        featmin = min(np.log(df_b4_scale[feat2]*-1))
        df cat[feat2] = (df cat[feat2] - featmin) / (featmax - featmin)
        continue
    if feat2 in feats 4 log:
        featmax = max(np.log(df b4 scale[feat2]))
        featmin = min(np.log(df b4 scale[feat2]))
        df cat[feat2] = (df cat[feat2] - featmin) / (featmax - featmin)
        continue
    else:
        featmax = max(df_b4_scale[feat2])
        featmin = min(df b4 scale[feat2])
        df cat[feat2] = (df cat[feat2] - featmin) / (featmax - featmin)
maxprice = 13.835313
minprice = 11.561716
maxfeat = 0
minfeat = 1
x=[df cat[feat][0], df cat[feat][1]]
ypred feat = model.predict(df cat)
ypred feat = np.exp(ypred feat * (maxprice-minprice) + minprice)
print('Actual Price: ${}, Actual Feat: {}.'.format(int(actual price), actual
plt.figure(figsize=(6,4))
g=sns.lineplot(x=x, y=ypred feat, label='Predicted Prices')
g.set xticks([0,1])
plt.title(('{} v. Price').format(title))
 plt.show()
return (x, ypred_feat)
```

Actual Price: \$443000, Actual Feat: 0.0. Actual Price: \$520000, Actual Feat: 1.0.

Waterfront v. Price

Random property: Waterfront v. Price


```
In [58]: print(y_water1)
    print(y_water2)
```

0 420299.776075
1 671231.313808
dtype: float64
0 588071.760047
1 368228.394563
dtype: float64

In [59]: x_g11, y_g11 = predict_categorical('grade_11', 1*10**6, 2*10**5, 1, 'Grade 11'
 x_g10, y_g10 = predict_categorical('grade_10', 1*10**6, 2*10**5, 1, 'Grade 10'
 x_g9, y_g9 = predict_categorical('grade_9', 1*10**6, 2*10**5, 1, 'Grade 9')

Actual Price: \$965000, Actual Feat: 1.0. Actual Price: \$746500, Actual Feat: 1.0. Actual Price: \$600000, Actual Feat: 1.0.

Grade 11 v. Price

Grade 10 v. Price

Grade 9 v. Price

In [60]: # create additional graphics
 from shapely.geometry import Point # Shapely for converting latitude/longtitude
 import geopandas as gpd # To create GeodataFram
 import pandas as pd
 from pyproj import CRS
 import matplotlib.pyplot as plt

```
In [61]: def add_geo_col(df):
    # create a geometry column
    geometry = [Point(xy) for xy in zip(df['long'], df['lat'])]

# Coordinate reference system : WGS84 (the GPS model for conversion)
    crs = CRS('epsg:4326')

# Creating a Geographic data frame
    gdf = gpd.GeoDataFrame(df, crs=crs, geometry=geometry).reset_index()
    return gdf
```

```
In [62]: gdf2 = pd.read_pickle('data/geodata.pkl')
```

```
In [63]:

df_top10_employers = pd.read_csv('data/top_employers.csv')

df3 = df_top10_employers[df_top10_employers['centralized_campus']=='y'].reset_
    gdf3 = add_geo_col(df3)
```

```
In [64]: downtown = Point(-122.3244, 47.6150)
gdf4 = gpd.GeoSeries(downtown, crs=4326)
```

```
fig, ax = plt.subplots(ncols=1, sharex=True, sharey=True, figsize=(11, 20))
gdf4.plot(ax=ax, marker='o', color='#FFA12A', markersize=500, label='downtown'
gdf2.plot(ax=ax, marker='s', color='#333333', markersize=1, label='properties'
gdf3.plot(ax=ax, marker='*', color='r', markersize=100, label='employer')
ax.title.set_text('Map of Properties and Key Locations')
ax.legend()
```

Out[65]: <matplotlib.legend.Legend at 0x2445c4d0220>

