SOLUTIONS FOR TOPOLOGY WRITTEN BY J.MUNKRES

JAEMIN OH

Date: July 22, 2020.

1

JAEMIN OH

22. The Quotient Topology

22.1. Quotient Topology.

22.2. Topological Group.

Problem (5).

2

(a) Let $\varphi_{\alpha}: xH \mapsto \alpha \cdot xH$ be the map induced by f_{α} . Then φ_{α} is clearly bijective. Let V be an open set in G/H. We want to show that $\varphi_{\alpha}^{-1}(V)$ is open in G. Since G/H is quotient space, it is good to consider $p^{-1}(\varphi_{\alpha}^{-1}(V))$ where p corresponds each $x \in G$ to xH.

$$p^{-1}\left(\varphi_{\alpha}^{-1}\left(V\right)\right) = \left\{x \in G : \alpha \cdot xH \in V\right\}$$
$$= \left\{\alpha^{-1} \cdot x : xH \in V\right\}$$
$$= f_{\alpha^{-1}}\left(p^{-1}\left(V\right)\right)$$

But the last one is open since $f_g: x \mapsto g \cdot x, g \in G$ is homeomorphism, and p is a quotient map. Note that $\varphi_{\alpha}^{-1} = \varphi_{\alpha^{-1}}$. So φ_{α} is a homeomorphism.

(b) Note that G/H is a homogeneous space by a). So, closedness of $\{eH\}$ implies closedness of every other singleton sets. Now Consider

$$p^{-1}(G/H \setminus \{eH\}) = \{x \in G : xH \in G/H \setminus \{eH\}\}\$$
$$= H^c$$

Therefore $G/H \setminus \{eH\}$ is open, hence $\{eH\}$ is closed.

(c) Let V be an open set in G. We want to check whether p(V) is open or not. So, it is good to consider

$$p^{-1}(p(V)) = \{x \in G : xH \in p(V)\}$$

$$= \bigcup_{x \in V} xH$$

$$= \{x \cdot h : x \in V, h \in H\}$$

$$= \bigcup_{h \in H} V \cdot h$$

But $V \cdot h = \{x \cdot h : x \in V\} = g_h(V)$ is open since g_h is homeomorphism. (see problem 4) So, last one of above equation is union of open sets, therefore p(V) is open. So p is open mapping.

(d) By b), G/H is T_1 space. Let $f: xH \mapsto x^{-1}H$, V be an open set in G/H. We want to show that $f^{-1}(V)$ is open in G/H. So, consider

$$p^{-1}(f^{-1}(V)) = \{g \in G : g^{-1}H \in V\}$$
$$= \{g^{-1} \in G : gH \in V\}$$

But note that $F: x \mapsto x^{-1}$ is a homeomorphism, and last one of above equation is $F(p^{-1}(V))$, therefore open.

Now consider $g:(xH,yH) \mapsto x \cdot yH$. Let $(xH,yH) \in g^{-1}(V)$. Then $x \cdot yH \in V \leftrightarrow p(x \cdot y) \in V$. Therefore $x \cdot y \in p^{-1}(V)$ which is open. Let $G:(x,y) \mapsto x \cdot y$. Then $(x,y) \in G^{-1}(p^{-1}(V))$ which is open in $G \times G$. So there

exists basis element of $G \times G$ such that $(x, y) \in B_1 \times B_2 \subset G^{-1}(p^{-1}(V))$. Then,

$$(p \times p) (x, y) = (xH, yH) \in p (B_1) \times p (B_2)$$
$$\subset (p \times p) (G^{-1} (p^{-1} (V))) \subset g^{-1} (V)$$

So $g^{-1}(V)$ is open since p is open mapping therefore $p(B_1) \times p(B_2)$ is open.

JAEMIN OH

35. The Tietze Extension Theorem

Problem (1).

4

Let A, B be disjoint closed subspace of X. Define f as following:

$$f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$$

Then $f: A \cup B \rightarrow [0,1]$ is continuous (by pasting lemma).

By Tietze extension theorem, we can extend f to $\overline{f}: X \to [0,1]$. This \overline{f} is what we can get from Urysohn lemma.

Problem (5).

- (a) Let (X, A, f) be given. Since $f: A \to \mathbb{R}^J$, $f_{\alpha}: A \to \mathbb{R}$. Apply the Tietze extension theorem to $f_{\underline{\alpha}}$. Then we get continuous function $\overline{f}: X \to \mathbb{R}^J$ which satisfies $(\overline{f})_{\alpha} = \overline{f_{\alpha}}$. This \overline{f} is what we want.
- (b) Without loss of generality, we can assume that Y is a retract of \mathbb{R}^J . Let $f: A \to Y$ be a continuous function. By expanding codomain, we can get $f': A \to \mathbb{R}^J$ which is continuous. Let \overline{f} be the extension of f'. Then $r \circ \overline{f}$ is continuous extension of f where f' is a retraction of f' into f'.

Problem (6).

- (a) Let h be a homeomorphism of Y_o onto Y. Since Y has universal extension property, we can extend h to $\overline{h}: X \to Y$ which is continuous. Then $h^{-1} \circ \overline{h}$ is the retraction of X into Y_o .
- (b) Note that (b) of problem 5 still holds if we replace \mathbb{R}^J to $[0,1]^J$. Fix $y \in Y$ and choose neighborhood V_y of y. By Urysohn lemma, there is a continuous function f_y such that $f_y(y) = 1$ and vanishes outside of V_y . Let $F(x) = (f_y(x))_{y \in Y}$. Then F is imbedding of Y into $[0,1]^Y$ by theorem 34.2.

Since F is imbedding of Y into $[0,1]^J$, $F(Y) \cong Y$. Now, it is sufficient to show that F(Y) is retract of $[0,1]^J$. But it follows directly by (b) of problem 5 since F(Y) is compact hence closed, $[0,1]^J$ is compact Hausdorff hence normal.