المستوى: الثانية ع- رياضية المدة: 4 ساعات السنة الدراسية: 2014-2015

الامتحان التجريبي الأول مادة الرياضيات دورة فبراير 2015

المستوى P منسوب إلى معلم متعامد ممنظم ومباشر (آزآزQ) . نعتبر التطبيق Q الذي يربطكل نقطة M من P الحقها Z $z'=-i\overline{z}+2i$: بطنة M' اللحق $Z'=-i\overline{z}+2i$ التي الحقها على التوالي $z_{B}=2$ و $z_{B}=2$ و $z_{B}=2$ و النقط $z_{C}=0$ و النقط $z_{C}=\sqrt{2}+\sqrt{2}i$ و النقط $z_{C}=\sqrt{2}+\sqrt{2}$ و 'Mو "Mالتي الحاقها على التوالي z و \overline{z} و z و \overline{z} بحيث M هي صورة M بالتطبيق φ و $\{2-\}-2$. 1- حدد النقطة ك صورة ك بالتطبيق م 0,50 -2- أ) بين أن المستقيمين (ON) و (AM) متعلمدان. 0,50 حب) لتكن (ع) الدائرة التي مركزها () وشعاعها 2 $\mathcal{E} = \varphi(\mathcal{E})$ 0,50 0; 50 θ بدلالة θ بدلالة θ بين أن: $\theta \in [0,2\pi[z=2e^{i\theta}: i]$ بدلالة θ بدلالة θ بدلالة θ 0,50 950 $\frac{\pi}{2}$ بین آن M هی صوره Mبالدوران π الذی مزکزه $\Omega(1-i)$ وزاویته $\Omega(1-i)$ $-r(M_n)=\dot{B}$ من $\{1\}-W$ وتعتبر النقطة M_n ذات اللحق Z حدد Z إذا علمت أن $W-\{1\}$

	م) بين دن دن عدد اوني	
(5): 13x-162y=1	نعتبر في \mathbb{Z}^2 المعادلة:	

(E) عادلة \mathbb{Z} نعتبر في \mathbb{Z} النظمة: b=3 و a=2 على الحالة a=3 و a=3

المستوى: الثانية ع- رياضية المدة: 4 ساعات

السنة الدراسية: 2014-2015

الامتحان التجريبي الأول مادة الرياضيات دورة فبراير 2015

المرين الراز در

(e_3)	اللمرير
تذكير: $(M_3(\Re),+,X)$ حلقة وإحديه	·
1) نزود المجموعة G=R°XR بقانون التركيب الداخلي T المعرف بما يلي:	,
$ \mathcal{H}(a,b) \in G (\mathcal{H}(c,d)) \in G (a,b) T(c,d) = (ac,ad+bc)$	0,50
ب عدد العنصر المحايد للفانون T	0,25
ج-بین آن (G,T) زمره تبادلیه	0,25
$(-1;1)$ من \mathbb{R}^{2} بن این این این این \mathbb{R}^{2} من \mathbb{R}^{2} بن این این این این \mathbb{R}^{2} من \mathbb{R}^{2} بن هن \mathbb{R}^{2} بن \mathbb{R}^{2} بن هن \mathbb{R}^{2} بن من \mathbb{R}^{2} بن من \mathbb{R}^{2} بن هن \mathbb{R}^{2} بن من \mathbb{R}^{2}	
$(M_3(\mathbb{R}), \times)$ جزء مستقر من $(M_3(\mathbb{R}), \times)$ جزء مستقر من $(M_3(\mathbb{R}), \times)$	0,25
(E, \times) نحو (G, T) نحو $(a; b) \longrightarrow M_{(a; b)}$ نحو (E, \times)	0,50
ع السلاج بينه (x;x) تم حدد مقلوب كا مصدولا الا الله الله الله الله الله الله ال	0,2,6
$N' - \{1\}$ الحسب: " الكل n من $\{1\} - N' - \{1\}$	

التمرين الرابع (3 نقط)

 $a \wedge 10 = 1$: یکن $a \sim 10 = 1$ عدد صحیح طبیعی غیر منعدم بحیث $a \sim 10$

.
$$a^8 \equiv 1$$
 [2]: نا عند فردي و استنتج ان نا $a^8 \equiv 1$ نا

$$a^4 \equiv 1$$
 [5] ن عير قابل الفسمة على 5 و ان $a^4 \equiv 1$

$$a^8 \equiv 1$$
 [10] تا ج

$$a^{800000001} \equiv a \ [10^9]$$
 : المتنتج ان $a^{8 \times 10^k} \equiv 1 \ [10^{k+1}]$

ن
$$x^3$$
 ن بالمعدد 123456789 السابق ، اثبت وجود عدد صحيح طبيعي x بحيث الكتابة العشرية المعدد x^3 المعدد x^3

E =
$$\{0,1,2,.... \}$$
 عنصر n من E = $\{0,1,2,... \}$ عنصر e نضع $\{0,1,2,... \}$ عنصر E = $\{0,1,2,... \}$ عنصر e نضع $\{0,1,2,... \}$ بباقي القسمة ل $\{0,1,2,... \}$ على 31

بین أن f تقابل من E نحو E وحدد f^{-1} .

الكل
$$n$$
 من $\{0,1\} - N$ نضع: $n \to n$ لكل n من $\{0,1\}$ المعرفة بمايلي: نعتبر الدالة العددية n المعرفة بمايلي:

$$\begin{cases} f_n(x) = \frac{\ln(1+nx)}{x} & : x \in I - \{0\} \\ f_n(0) = n \end{cases}$$

1) أ- إحسب (ع) أأنه النابيجة هندسيا.

. 0 متصلة على اليمين في f_n بين أن الدالة

2) نعتبر الدالة ϕ_{μ} للمتغير الحقيقي χ المعرفة على I بمايلي: $t \in I$; $\varphi_{i}(x) = x^{2} (\ln(1+nt)-nt) - (\ln(1+nx)-nx)t^{2}$ ا-باستعمال م بین انه پوجد عدد ی من آرو بحیث:

$$\frac{\ln(1+nt)-nt}{t^2} = \frac{-n^2}{2(1+nc)}$$

$$f_n'(0) = -\frac{n^2}{2}$$
 المتنتج ان f_n قابلة للاشتقاق في f_n وان $f_n''(0)$

3) نعتبر الدالة على 1 بمايلي: $g_n(x) = nx - (1 + nx) \ln(1 + nx)$

 $\{\forall x \in I - \{0\}\}\}$ $g_n(x) \prec 0$:نان ان $\{0\}$

ب- بین ان f_n قابلة للاشتقاق علی $\{0\}$ – I وان:

$$\forall x \in I - \{0\}$$
 $f'_n(x) = \frac{g_n(x)}{x^2(1+nx)}$

ج- أعط جدول تغييرات الدالة ركر.

 $(4-10,+\infty)$ الدرس الوضع النسبي لمنحنبي الدالتين $(4-10,+\infty)$ على المجال $(4-10,+\infty)$

ور المعادلة $x = f_n(x) = f_n(x)$ قي ا α_n في المعادلة والمعادلة عبد المعادلة عب i 0,5 ب بین ان $1.09 \times \alpha_{7} \times 1.01$ وحدد باستعمال طریقة التفرع الثنائي تاطیرا 40,5 العدد م سعته 0,02

ج- بین أن المتتالیة (α_n) تز ایدیة.

· lim a, with a

 f_3 و f_2 انشئ في معلم منعامد ممنظم منحنى الدالتين f_2 و f_3

i0,50

JQ 50

UD 50

ن م 50

1:0,50

1:0,50

i 0,5

i0,5 30,5

00,5 +0,5