EA772 Circuitos Lógicos Sistemas Combinacionais

Prof. José Mario De Martino

Departamento de Engenharia de Computação e Automação Industrial Faculdade de Engenharia de Elétrica e de Computação Universidade Estadual de Campinas

Sala 317A - FEEC <u>martino@dca.fee.unicamp.br</u>

Sistema combinacional

- Conceito
 - sistema no qual o valor da saída em um determinado instante de tempo depende apenas do valor da entrada naquele instante de temp.

Especificação

- Dois tipos de especificação:
 - Especificação de alto nível (mais próxima do problema)
 - Especificação binária (mais próxima da implementação)

Especificação de alto nível

- Especificação de alto nível abrange 3 aspectos:
 - Especificação da entrada
 - Especificação da saída
 - Especificação da função (transformação da entrada na saída)

Especificação de alto nível da entrada e da saída

Lista dos elementos:

$$\{0, 1, 2\}$$

Propriedade que identifique os elementos:

$$\{x \mid (5 \le x \le 10^4) \text{ e (x mod 3 = 0)} \}$$

- Elementos compostos podem ser especificados como vetores de elementos primitivos:
 - Vetor de dígitos

$$\underline{x} = (x_{n-1}, x_{n-2}, ..., x_0)$$
 $x_i \in \{0, 1, 2, ..., 9\}$ Exemplo: $(4, 8, 0, 3) = 4803$

Vetor de caracteres ("string")

$$\underline{c} = (c_{n-1}, c_{n-2}, ..., c_0)$$
 $c_i \in \{A, B, ..., Z\}$ Exemplo: $(F, E, E, C) = FEEC$

Vetor de bits

$$\underline{y} = (y_{n-1}, y_{n-2}, ..., y_0)$$
 $y_i \in \{0, 1\}$ Exemplo: $(1, 1, 0, 1, 1, 1) = 1101111$

Especificação de alto nível da função

Tabela

Expressão aritmética

$$z = 2 x + 4$$
 (+ representa a soma)

Expressão condicional

$$z = \begin{cases} a+b & \text{se } c > d \\ a-b & \text{se } c = d \\ 0 & \text{se } c < d \end{cases}$$

Expressão lógica

$$z = a + b$$
 (+ representa a soma lógica OR)

Composição de funções mais simples

Especificação de alto nível: exemplo

- Sistema cuja entrada é uma "string" (cadeia de caracteres) de 4 caracteres, um único caractere e um número inteiro entre 0 e 3 (inclusive). A saída é um "string" de 4 caracteres. O sistema realiza a substituição, na "string" de entrada, do caractere da posição indicada pelo número inteiro.
 - Entradas

$$\underline{x} = (x_3, \, x_2, \, x_1, \, x_0) \qquad x_i \in \{A, \, B, \, ... Z, a, \, b, \, ... \, z\} \, i = 0,...,3$$

$$y \in \{A, \, B, \, ... Z, a, \, b, \, ... \, z\}$$

$$k \in \{0, \, 1, \, 2, \, 3\}$$

Saídas

$$\underline{z} = (z_3, z_2, z_1, z_0)$$
 $z_i \in \{A, B, ...Z, a, b, ... z\}$

Função

$$Z_{j} = \begin{cases} X_{j} & \text{se } j \neq k \\ y & \text{se } j = k \end{cases}$$

Especificação binária

- Para a especificação binária é necessário codificar o conjunto de entrada e decodificar o conjunto saída para/da representação binária.
- Códigos estabelecem a correspondência entre os conjuntos de alto nível e a representação binária.

Códigos: exemplo

Entrada	Código 1	Código 2
PAULO	000	01
JOSÉ	001	001
JOÃO	010	0001
CARLOS	011	00001
PEDRO	100	000001

Código para a representação de caracteres

ASCII (American Standard Code for Information Interchange) 7 bits:

- A 100 0001
- B 100 0010
- C 100 0011

. . .

- Y 101 1001
- Z 101 1010
- 0 011 0000
- 1 011 0001

• • •

- 9 011 1001
- SP 010 0000
- . 010 1110
- (010 1000
- + 010 1011

Código para a representação de caracteres

EBCDIC (Extended Binary-Coded Decimal Interchange Code)

```
A 1100 0001
```

B 1100 0010

C 1100 0011

. . .

Y 1110 1000

Z 1110 1001

0 1111 0000

1 1111 0001

...

9 1111 1001

SP 0100 0000

. 0100 1011

(0100 1101

+ 0100 1110

Código para a representação de números inteiros

- Sistema de numeração (código binário)
- Código de Gray para representar valores de 0 a 15 (valores consecutivos diferem em apenas 1 bit)

\cap	0000
U	0000

15 1000

Códigos para a representação de decimais (0 a 9)

	C1	C2	C3	C4
0	0000	0000	0011	00011
1	0001	0001	0100	11000
2	0010	0010	0101	10100
3	0011	0011	0110	01100
4	0100	0100	0111	10010
5	0101	1011	1000	01010
6	0110	1100	1001	00110
7	0111	1101	1010	10001
8	1000	1110	1011	01001
9	1001	1111	1100	00101
	l _			

C1 – Código BCD : ponderado 8421.

C2 – Código 2421: ponderado; para complemento de 9 basta complementar bits.

C3 – Código Excesso-3: para complemento de 9 basta complementar bits.

C4 – Código 2-entre-5: representação sempre com 2 bits iguais a 1; detecção de erro em um bit; utiliza 5 bits.

Especificação binária

- Como a especificação de alto-nível, descreve:
 - Entrada
 - Saída
 - Função (transformação da entrada na saída)
- Especificação binária da entrada e da Saída
 - A especificação advém da codificação/decodificação adotada.
- Função
 - Um sistema combinacional de *n* entradas (binárias) e *m* saídas (binárias) é representado por *m* funções (funções booleanas ou de chaveamento).
 - Cada função booleana tem como domínio o conjunto de n-tuplas (vetor de n bits) e como imagem o conjunto {0, 1}.

Especificação binária da função

Tabela verdade

X_2 X_1 X_0	$f(x_2, x_1, x_0)$	j	f(j)
0 0 0	0	0	0
0 0 1	0	1	0
0 1 0	1	2	1
0 1 1	1	3	1
1 0 0	0	4	0
1 0 1	0	5	0
1 1 0	1	6	1
1 1 1	1	7	1

OBS.: j representa de forma compacta o valor em decimal das variáveis de entrada.

Especificação binária da função

Especificação do conjunto-um (ou conjunto-verdade)

$$f(x_2, x_1, x_0) = conjunto-um \{2, 3, 6, 7\}$$

Especificação do conjunto-zero (ou conjunto-falso)

$$f(x_2, x_1, x_0) = conjunto-zero \{0, 1, 4, 5\}$$

Expressão booleana

$$f(x_2, x_1, x_0) = x_1$$

Funções booleanas importantes

Uma Variável

X	f ₀	f_1	f_2	f_3
0	0	0	1	1
1	0	1	0	1

$$f_0(x)=0$$

 \rightarrow constante 0

$$f_1(x) = x$$

 \rightarrow identidade

$$f_2(x) = x \quad (ou \ x')$$

 $f_2(x) = x \text{ (ou x')} \rightarrow \text{NOT (complemento)}$

$$f_3(x) = 1$$

 \rightarrow constante 1

Funções booleanas importantes

Duas variável

		X_1	X_0	
	00	01	10	11
f_0	0	0	0	0
f_1	0	0	0	$1 \rightarrow AND(E)$
f_2	0	0	1	0
f_3	0	0	1	1
f_4	0	1	0	0
f_5	0	1	0	1
f_6	0	1	1	$0 \rightarrow XOR$ (eXclusive OR)
f_7	0	1	1	$1 \rightarrow OR (OU)$
f_8	1	0	0	$0 \rightarrow NOR$
f_9	1	0	0	$1 \rightarrow XNOR$ (Equivalência)
f_{10}	1	0	1	0
f_{11}	1	0	1	1
f_{12}	1	1	0	0
f_{13}	1	1	0	1
f_{14}	1	1	1	$0 \rightarrow NAND$
f ₁₅	1	1	1	1
	•			

Funções booleanas importantes

- Duas variável (expressões booleanas)
 - AND $x_1 x_0$
 - NAND $(x_1 x_0)'$
 - OR $x_1 + x_0$
 - NOR $(x_1 + x_0)'$
 - XOR $x_1 x'_0 + x'_1 x_0$
 - XNOR $x'_1 x'_0 + x_1 x_0$

Funções booleanas: representação esquemática

- Representação esquemática utilizando portas.
- Porta é um módulo que implementa uma função de booleana simples, possuindo apenas 1 saída.

Funções booleanas: representação esquemática

Funções booleanas incompletas

- Além dos estados (valores) 0 e 1, pode existir o estado "don´t care" (não importa).
- O estado "don´t care" ocorre sempre que algum valor da entrada não é permitido (não ocorre) e portanto não importa ("don´t care") o valor da saída. Esta pode, portanto, ser associada ao valor 0 ou ao 1 dependendo da conveniência do projeto.
- A representação por conjunto, quanto existe o conjunto-do (conjunto "dont´t care"), deve ser expressa por pares de conjuntos:
 - conjunto-um e conjunto-zero
 - conjunto-um e conjunto-dc
 - conjunto-zero e conjunto-dc

Funções booleanas incompletas: exemplo

A entrada é um conjunto de 4 bits, representando um valor BCD.
 A saída deve indicar 1 sempre que o número na entrada for ímpar e 0 caso contrário.

Funções booleanas incompletas: exemplo

Entrada	Saída	
0000	0	
0001	1	
0010	0	
0011	1	
0100	0	
0 1 0 1	1	
0110	0	
0 1 1 1	1	
1000	0	
1001	1	
1010	X ("d	on´t care"
1011	X	
1 1 0 0	X	
1 1 0 1	Х	
1110	Х	
1111	Χ	

Expressões booleanas

 Duas expressões booleanas são equivalente se representam a mesma função booleana

$$W = x_1 x_0 + x'_1$$

$$Z = x'_1 + x_0$$

X ₁ X ₀	W	Z
0 0	1	1
0 1	1	1
1 0	0	0
1 1	1	1

• É possível obter expressões booleanas equivalentes através da manipulação algébrica (utilizando a álgebra de Boole)

$$x_1 x_0 + x'_1 = (x_1 + x'_1) (x_0 + x'_1) = x_0 + x'_1 = x'_1 + x_0$$

Expressões booleanas: Soma de mintermos

- Um mintermo de n variáveis é o produto (AND) em que todas as variáveis aparecem uma única vez na forma complementada ou na forma não-complementada.
- Exemplos de mintermos de 4 variávies x₃ x₂ x₁ x₀

$$x'_3 x'_2 x'_1 x'_0$$

$$X'_{3} X'_{2} X'_{1} X_{0}$$

$$X'_{3} X'_{2} X_{1} X_{0}$$

$$x'_3 x_2 x_1 x_0$$

Para n variáveis → 2ⁿ mintermos

Expressões booleanas: Soma de mintermos

- Os mintermos são denotados por:
 - m₀ m₁ m₂ ... m₂ⁿ-1
 - m_j $j = 0, 1, 2, ..., 2^{n-1}$
 - j é o valor decimal obtido associando "1" à variável não-complementada e "0" à variável complementada (lógica positiva)
 - Cada mintermo tem o valor igual a "1" para uma única atribuição de valores para as variáveis, a saber, a atribuição associada ao valor decimal j.

$$m_0 = 1$$
 $0 = 0 \ 0 \ 0_2$ $m_0 = x'_3 \ x'_2 \ x'_1 \ x'_0$
 $m_{11} = 1$ $11 = 1 \ 0 \ 1 \ 1_2$ $m_{11} = x_3 \ x'_2 \ x_1 \ x_0$
 $m_{15} = 1$ $15 = 1 \ 1 \ 1 \ 1_2$ $m_{15} = x_3 \ x_2 \ x_1 \ x_0$

Expressões booleanas: Soma de mintermos

- O mintermo m_j representa uma função booleana cujo conjuntoum tem somente o elemento j.
- Uma expressão booleana dada pela soma de mintermos representa uma função booleana cujo conjunto-um é formado pelos estados da variáveis de entrada associados aos mintermos
 - Exemplo

$$F(x_2, x_1, x_0) = x'_2 x'_1 x'_0 + x'_2 x_1 x'_0 + x_2 x_1 x'_0$$

$$F(x_2, x_1, x_0) = m_0 + m_2 + m_6$$

$$F(x_2, x_1, x_0) = \text{conjunto-um}\{0, 2, 6\}$$

 Toda expressão booleana pode ser representada por um soma de mintermos (soma de produtos canônica).

Soma de mintermos: exercícios

 Qual a soma de mintermos que representa a função booleana especificada pela tabela verdade abaixo:

X 2	X ₁	X 0	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Qual a soma de mintermos equivalente à expressão:

$$F(x_2, x_1, x_0) = x_2 (x_1 x_0)' + x_2 x_0'$$

Expressões booleanas: Produto de Maxtermos

- Um Maxtermo de n variáveis é a soma (OR) em que todas as variáveis aparecem uma única vez na forma complementada ou na forma não-complementada.
- Exemplos de maxtermos de 4 variávies x₃ x₂ x₁ x₀

$$X'_3 + X'_2 + X'_1 + X'_0$$

 $X'_3 + X'_2 + X'_1 + X_0$
 $X'_3 + X'_2 + X_1 + X_0$
 $X'_3 + X_2 + X_1 + X_0$

• Para n variáveis \rightarrow 2ⁿ maxtermos.

Expressões booleanas: Produto de Maxtermos

- Os maxtermos são denotados por:
 - $M_0 M_1 M_2 ... M_2^{n}_{-1}$
 - M_j $j = 0, 1, 2, ..., 2^{n-1}$
 - j é o valor decimal obtido associando "0" à variável não-complementada e "1" à variável complementada (lógica negativa)
 - Cada maxtermo tem o valor igual a "0" para uma única atribuição de valores para as variáveis, a saber, a atribuição associada ao estado j.

$$M_0 = 0$$
 $0 = 0 \ 0 \ 0_2$ $M_0 = x_3 + x_2 + x_1 + x_0$ $M_{11} = 0$ $11 = 1 \ 0 \ 1 \ 1_2$ $M_{11} = x'_3 + x_2 + x'_1 + x'_0$

$$M_{15} = 0$$
 $15 = 1 \ 1 \ 1 \ 1_2$ $M_{15} = x'_3 + x'_2 + x'_1 + x'_0$

Expressões booleanas: Produto de Maxtermos

- O maxtermo M_j representa uma função booleana cujo conjuntozero tem somente o elemento j.
- Uma expressão booleana dada pelo produto de maxtermos representa uma função booleana cujo conjunto-zero é formado pelos estados das variáveis associados aos maxtermos
 - Exemplo

$$F(x_2, x_1, x_0) = (x_2 + x_1 + x_0) (x_2 + x_1' + x_0') (x_2' + x_1 + x_0')$$

$$F(x_2, x_1, x_0) = M_0 M_3 M_5$$

$$conjunto-zero = \{0, 3, 5\}$$

 Toda expressão booleana pode ser representada por um produto de maxtermos (produto de somas canônico).

Produto de Maxtermos: exercícios

 Qual o produto de Maxtermos que representa a função booleana especificada pela tabela verdade abaixo:

X 2	X_1	X 0	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

• Qual ao produto de maxtermos equivalente à expressão:

$$F(x_2, x_1, x_0) = x_2 (x_1 x_0)' + x_2 x_0'$$

 Especificar um sistema combinacional para comparar dígitos da base 4. O sistema deve comparar dois dígitos da base 4, x e y, e produzir a saída G (greater) se x > y, E (equal) se x = y e L (less) se x < y.

- Um sistema combinacional tem entrada x, a qual representa um dígito decimal. A saída z é o quadrado de x se x for maior do que 4; caso contrário, a saída z é duas vezes x.
 - Dê uma descrição de alto nível do sistema utilizando expressões matemáticas;
 - Apresente também uma tabela da função entrada-saída realizada pelo sistema.

- Um incrementador/decrementador combinacional tem como entradas um número inteiro na faixa de 0 a 2¹⁶ – 1 e um sinal de controle binário. Se o sinal de controle tiver o valor 1, o sistema incrementa módulo 2¹⁶ (isto é, ele computará z = (x+1) mod 2¹⁶); caso contrário, ele decrementa módulo 2¹⁶.
 - Dê uma descrição de alto nível do sistema em termos expressões aritméticas condicionais.
 - A representação na forma de tabela da função entrada-saída é viável?

- Um sistema combinacional computa a distância entre dois 1's no vetor de bits de entrada x = (x3, x2, x1, x0), o qual tem exatamente dois 1's. Por exemplo, para x = (0, 1, 0, 1), a distância é 2. Ou seja, se os dois 1's estiverem nas posições i ej, a distância será |i j|.
 - Apresente um especificação de alto nível do sistema
 - Apresente uma especificação em nível binário. A função e entrada-saída deve ser especificada utilizando expressões lógicas de soma de produtos e produtos de soma.