OPTICAL SYSTEMS

System analysis

Fibre

Transmitter

Detector

Amplifiers/Regenerators

Examples

System Requirements

Require transmission at some data rate between points on a network with certain BER (10⁻⁹ – 10⁻¹²)

Build in options to increase data rate in future?

Fibre

Two key factors – Dispersion and loss

Affect system performance via making pulse less intense and broadening the optical pulse (n.b. polarization dispersion is ignored)

Transmitter

Wavelength

1.3 μ m, 1.55μm for Silica Fibre

Linewidth

LED ~100nm Fabry-Perot Laser ~ 1nm DFB Laser ~ 0.0001nm

Power

Need to couple light efficiently, robustly, cheaply, into fibre

Modulation Characteristics

LED – slow –spontaneous recombination LD – fast – if modulated above threshold – but further implications Broadening of linewidth with modulation (chirp)?

WDM?

Wavelength control, narrow linewidth

Detector

High Sensitivity – Low noise

- -Internal Gain (APD)?
- -external gain via boosting amplifier?

Fraction of incident light converted to current depends on depletion region width

Speed – limited by depleted region width and area of diode

System Example

Single Mode Silica Fibre

Operating wavelength 1.55 μ m at which wavelength D = 15 ps/nm.km α =0.2dB/km

Transmitter Fabry Perot laser

AM with 50:50 mark:space ratio Launches 2dBm of power in fibre $\Delta\lambda$ =1nm

Detector

p-i-n photodiode
Time averaged optical power
to measure a bit as a function of
bit rate is shown in the graph

Loss Limits

Tx power - total loss+ amplification = margin + Rx sensitivity

- @ < 0.01 Gbit/s: Loss + Margin = 62dBm Loss = α L
- @0.1 Gbit/s: Loss + Margin = 47dBm
- @1 Gbit/s: Loss + Margin = 32dBm
- @10 Gbit/s: Loss + Margin = 17dBm
- @100 Gbit/s: Loss + Margin = 2dBm

- → 310km Transmission Distance
- → 235 km Transmission Distance
- → 160 km Transmission Distance
- → 85 km Transmission Distance
- → 10 km Transmission Distance

Transmitter launches 2dBm of power

Dispersion Limits

Commonly used criterion is that broadening $\leq T_B/4$

BL
$$\Delta\lambda$$
 D(λ) \leq 1/4

$$D(\lambda)=15 \text{ ps/nm.km}$$

For FP Laser
$$\Delta\lambda$$
=1nm so $\Delta\lambda$ D(λ) = 15 ps/km = 15x10⁻¹⁵ s/m

BL
$$\leq 1/(60x10^{-15})$$
 m/s BL $\leq 1.67x10^{13}$ m/s

Want B In GBit (10⁹) and L in km (10³) So BL≤16.7 (Gbit/s.km)

B (Gbit) Distance(km)

0.01	1670
0.1	167
1	16.7
10	1.67
100	0.167
1000	0.0167

Loss and Dispersion Limits - Silica Fibre

Plastic Optical Fibres

- Growing demand for delivering high speed services directly to work stations has led to development of high bandwidth graded-index polymer (plastic) fibres.
- Losses much greater than glass fibres but they are tough and durable. Core diameters 10x larger than glass and connector tolerances much larger.
- Cheap to manufacture.

Plastic Fibre Example

Multi Mode Plastic Fibre

Multimode plastic fibre operating at 650nm Modal Dispersion = 300 ns/km, α =200dB/km

Two Transmitters

AM with 50:50 mark:space ratio Both launch 2dBm of power in fibre LED $\Delta\lambda$ =100nm FP $\Delta\lambda$ =1nm

Detector

p-i-n photodiode
Time averaged optical power
to measure a bit as a function of
bit rate is shown in the graph

Loss Limits - Plastic

Tx power - total loss+ amplification = margin + Rx sensitivity

```
@ < 0.01 Gbit/s Loss + Margin = 62dBm loss = \alphaL
```

→ 0.310 Km Transmission Distance

- @0.1 Gbit/s Loss + Margin = 47dBm
- @1 Gbit/s Loss + Margin = 32dBm
- @10 Gbit/s Loss + Margin = 17dBm
- @100 Gbit/s Loss +Margin = 2dBm

- → 0.235 Km Transmission Distance
- → 0.160 Km Transmission Distance
- → 0.085 Km Transmission Distance
- → 0.01 Km Transmission Distance

Dispersion Limits

Commonly used criterion is that broadening $\leq T_B/4$

BLD ≤1/4

B (Mbit) Distance(km)

Modal Dispersion D = 300 ns/km

0.01 83

0.1 8.3

1 0.83

10 0.083

100 0.0083

 $D = 300 \text{ ns/km} = 300 \text{ x} 10^{-12} \text{ s/m} = 3\text{x} 10^{-10}$

BL $\leq 1/1.2 \times 10^{-9}$

BL $\le 8.3 \times 10^8 \text{ m/s}$

Want B in MBit (10^6) and L in km (10^3) So BL \leq 0.83 (Mbit/s.km)

Loss and Dispersion Limits - Plastic Fibre

Bit Rate (MBit/s)

Summary

Complex interplay between fibre dispersion and loss characteristics as a fn of wavelength and transmitter and receiver performance.

Required data rate, bit error rate, and link length will typically determine the wavelength of operation and result in either loss or dispersion being a limiting factor.

This in turn will determine the use of amplifiers or regenerators for long link lengths.

Example

In a certain optical fibre communication system the receiver needs a minimum power at the photo detector of -50 dBm. The transmitted power is 1 dBm and the link losses are:

Fibre loss 2dB/km Splice loss 0.2dB/km Two connector losses at 4dB each Operating margin 10dB

- (a) Calculate the maximum link length,
- (b) If the fibre dispersion is 0.7 ns/km, for the length of fibre found in (a) determine the maximum transmission bit rate,
- (c) Derive an expression for the bitrate-length product in relation to fibre dispersion for a NRZ pulse stream. Calculate the maximum bitrate for a length of 30 km.

(i) Power budget:
$$P_T = P_R + (\alpha_{fc} + \alpha_j)L + L_c + M$$

 $1 = -50 + (2 + 0.2)L + 2x4 + 10$

hence L = 15 km

(ii) Dispersion over length L, $\tau = 0.7 \times 15 = 10.5 \text{ ns}$

Max bite rate $B_T = 1/2T = 47 \text{ Mb/s}$ OR 1/T = 94 Mb/s

(iii)

Commonly used criterion is that broadening $\Delta t \leq T_B/4$

$$\Delta t = L\Delta \lambda \ D(\lambda)$$

 $L\Delta\lambda D(\lambda) \leq T_B/4$

BL $\Delta\lambda$ D(λ) \leq 1/4

BL=1/[4 $\Delta\lambda$ D(λ)]

Note: $\Delta\lambda$ D(λ) often quoted as dispersion in ns/km

So bitrate- length product is B x L = $1/(4 \Delta \lambda D(\lambda))$ MHz.km For a length of 30 km, B = 1/(4x0.7x30) = 11.9 Mb/s.