Cavallaro, Jeffery Math 275A Homework #8

Theorem: 6.1

Let X be a topological space. If X is finite then X is compact.

Proof. Assume that X is finite and assume that \mathcal{U} is an open cover of X. For each $p \in X$ there exists some $U_p \in \mathcal{U}$ such that $p \in U_p$. Thus, $p \mapsto \mathcal{U}_p$ is injective and so $\{U_p : p \in X\}$ is a finite subcover of X.

Therefore X is compact.

Theorem: 6.2

Let $A \subset \mathbb{R}_{std}$. If A is compact then A has a maximum point.

Proof. If A is finite then trivial, so assume that A is infinite. Let $\mathcal{U}=\{(-\infty,x):x\in A\}$, which is an open cover for A. Since A is compact, \mathcal{U} contains a finite subcover. So ABC that A has no maximum point: $\forall x\in A, \exists\,y\in A,y>x$. Assume $x,y\in A$ such that y>x. This means $(-\infty,x)\subsetneq (-\infty,y)$ and so $x\mapsto (-\infty,x)$ is injective. Hence there is no possible finite subcover, contradicting the compactness of A.

Therefore A has a maximum point.

Theorem: 6.3

If *X* is a compact space then every infinite subset of *X* has a limit point.

Proof. Assume that X is a compact set and assume that $A \subset X$ is infinite. Now, ABC that A has no limit points, and so all $a \in A$ are isolated points. So let $\mathcal{U} = \{U_a : a \in A\}$ be an open cover of A such that the $U_a \cap A = \{a\}$. Thus the U_a are disjoint and so $a \mapsto U_a$ is bijective. Hence \mathcal{U} is an infinite cover and no finite subcover is possible, violating the compactness of A.

Therefore *A* has a limit point.

Theorem: 6.5

Let X be a topological space. X is compact iff every collection of closed subsets of X with the finite intersection property has a non-empty intersection.

Proof.

 \implies Assume that X is compact.

Assume that $\mathcal{A}=\{A_{\alpha}:\alpha\in\lambda\}$ is a collection of closed subsets of X with the finite intersection property. Now, ABC that $\bigcap_{\alpha\in\lambda}A_{\alpha}=\emptyset$. But since the A_{α} are closed, the A_{α}^{C} are open and $\bigcup_{\alpha\in\lambda}A_{\alpha}^{C}=X$ is an open cover for X. Furthermore, since X is compact, there exists a finite subcover $A_{\alpha_{1}}^{C}\cup\cdots\cup A_{\alpha_{n}}^{C}=X$. Thus, $A_{\alpha_{1}}\cap\cdots\cap A_{\alpha_{n}}=\emptyset$ is a finite subcollection of \mathcal{A} with empty intersection, contradicting the finite intersection property of \mathcal{A} .

Therefore, every collection of closed subsets of X with the finite intersection property has a non-empty intersection.

Assume that every collection of closed subsets of X with the finite intersection property has a non-empty intersection.

Assume that $\mathcal{U}=\{U_{\alpha}:\alpha\in\lambda\}$ is an open cover of X and ABC that \mathcal{U} contains no finite subcover. This means that for all finite subcollections $\{U_{\alpha_1},\ldots,U_{\alpha_n}\}\subset\mathcal{U}$ there exists $x\in X$ such that $x\notin U_{\alpha_1}\cup\cdots\cup U_{\alpha_n}$ and hence $x\in U^C_{\alpha_1}\cap\cdots\cap U^C_{\alpha_n}$ and so $U^C_{\alpha_1}\cap\cdots\cap U^C_{\alpha_n}\neq\emptyset$. This shows that $\{U^C_{\alpha}:\alpha\in\lambda\}$ is a collection of closed sets with the finite intersection property, and so by assumption, $\bigcap_{\alpha\in\lambda}U^C_{\alpha}\neq\emptyset$. But this means that $\bigcup_{\alpha\in\lambda}U_{\alpha}\neq X$, contradicting the assumption that \mathcal{U} is a cover for X, and so \mathcal{U} must contain a finite subcover.

Therefore X is compact.

Theorem: 6.6

Let X be a topological space. X is compact iff for all $U \in \mathscr{T}$ and all collections of closed sets $\mathcal{K} = \{K_{\alpha} : \alpha \in \lambda\}$ such that $\bigcap \mathcal{K} \subset U$, there exists a finite subcollection of \mathcal{K} whose intersection $K_{\alpha_1} \cap \cdots \cap K_{\alpha_n} \subset U$.

Proof.

 \implies Assume that X is compact.

Assume that $U \in \mathscr{T}$ and $\mathcal{K} = \{K_{\alpha} : \alpha \in \lambda\}$ is a collection of closed sets such that $\bigcap_{\alpha \in \lambda} K_{\alpha} \subset U$. Let $U_{\alpha} = K_{a}^{C} \in \mathscr{T}$. This means that $\bigcup_{\alpha \in \lambda} U_{\alpha} \supset U^{C}$ and so $\mathcal{U} = \{U\} \cup \{U_{\alpha} : \alpha \in \lambda\}$ is an open cover for X, which must contain a finite subcover. Now, note that $\bigcap_{\alpha \in \lambda} K_{\alpha} \subset U$ but $\bigcap_{\alpha \in \lambda} K_{\alpha} \not\subset \bigcup_{\alpha \in \lambda} U_{\alpha}$, so any finite subcover must contain U and some finite subcollection of the U_{α} . So assume that $U \cup U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}} = X$ is such a finite subcover. Therefore $U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}} \supset U^{C}$ and hence $K_{\alpha_{1}} \cap \cdots \cap K_{\alpha_{n}} \subset U$.

Assume that $\mathcal{U}=\{U_{\alpha}:\alpha\in\lambda\}$ is an open cover for X. Now, assume $U_{\alpha_0}\in\mathcal{U}$. This means that $U_{\alpha_0}\cup\bigcup_{\alpha\neq\alpha_0}U_{\alpha}=X$. Let $K_{\alpha}=U_{\alpha}^C$, and so the K_{α} are closed. Then $K_{\alpha_0}\cap\bigcap_{\alpha\neq\alpha_0}K_{\alpha}=\emptyset$ and hence $\bigcap_{\alpha\neq\alpha_0}K_{\alpha}\subset U_{\alpha_0}$. Furthermore, by the assumption, there exists

a finite subcollection $\{K_{\alpha_1},\ldots,K_{\alpha_n}\}$ such that $K_{\alpha_1}\cap\cdots\cap K_{\alpha_n}\subset U_{\alpha_0}$ and so $U_{\alpha_1}\cup\ldots\cup U_{\alpha_n}\supset K_{\alpha_0}$. Therefore $U_{\alpha_0}\cup U_{\alpha_1}\cup\cdots\cup U_{\alpha_n}=X$ is a finite subcover, hence X is compact.

Theorem: 6.8

Every closed subspace of a compact space is compact.

Proof. Assume that X is a compact topological space and A is a closed subspace of X. Now, assume that $\mathcal U$ is an open cover of X and $\mathcal U_A = \{U_\alpha : \alpha \in \lambda\} \subset \mathcal U$ is an open cover of A. Since A is closed, let $U = A^C \in \mathscr T$. Thus, $U \cup \bigcup_{\alpha \in \lambda} U_\alpha = X$ is also an open cover of X. But X is compact and so this open cover contains a finite subcover. Since any such finite subcover can always include U and still be finite, let $U \cup U_{\alpha_1} \cup \ldots U_{\alpha_n} = X$ be such a finite subcover. This requires that $U_{\alpha_1} \cup \ldots U_{\alpha_n} \supset A$ be a finite subcover for A. Therefore, $(U_{\alpha_1} \cup \ldots U_{\alpha_n}) \cap A = (U_{\alpha_1} \cap A) \cup \cdots \cup (U_{\alpha_n} \cap A) = A$ is a finite open cover of the subspace A and hence A is compact.

Theorem: 6.9

Every compact subspace of a Hausdorff space is closed.

Proof. Assume that X is Hausdorff and A is a compact subspace of X. Assume that $b \in A^C$. Since X is Hausdorff, for every $a \in A$ there exists $U_a, V_a \in \mathscr{T}_X$ such that $a \in U_a, b \in V_a$, and $U_a \cap V_a = \emptyset$. So let the $\{U_a : a \in A\}$ be an open cover of A in X. Thus $\{U_a \cap A : a \in A\}$ for $U_a \cap A \in \mathscr{T}_Y$ is an open cover of A in A. Now, since A is a compact subspace of X, there exists a finite subcover $(U_{a_1} \cap A) \cup \cdots \cup (U_{a_n} \cap A)$ of A in A, and hence a finite subcover $U_{a_1} \cup \cdots \cup U_{a_n}$ of A in A. Let $V = V_{a_1} \cup \cdots \cup V_{a_n}$. Note that $b \in V$ and $V \in \mathscr{T}_X$. Furthermore, since all the $U_a \cap V_a = \emptyset$, it must be the case that $V \cap (U_{a_1} \cup \cdots \cup U_{a_n}) = \emptyset$. But since $U_{a_1} \cup \cdots \cup U_{a_n} \supset A$ it must be the case that $V \subset A^C$. So b is an interior point in A^C , meaning that all the points in A^C are interior, and so $A^C \in \mathscr{T}_X$. Therefore A is closed in X.

Lemma

Every compact, Hausdorff space is regular.

Proof. Assume that X is compact and Hausdorff. Assume that $A\subset X$ is closed. Thus, by previous theorem, A is also compact. So assume $p\in A^C$. This means that $p\notin A$ and so, by the previous proof, there exists $U,V\in \mathscr{T}$ such that $A\subset U$ and $p\in V$ and $U\cap V=\emptyset$.

Therefore X is regular.

Theorem: 6.12

Every compact, Hausdorff space is normal.

Proof. Assume $A,B\subset X$ are closed. Since X is regular (by the previous lemma), for all $b\in B$ there exists $U_b,V_b\in \mathscr{T}$ such that $A\subset U_b$ and $b\in V_b$ and $U_b\cap V_b=\emptyset$. So let $V=\{V_b:b\in B\}$ be an open cover for B. But, by previous theorem, B is also compact, and so there exists a finite subcover $V_{b_1}\cup \cdots \cup V_{b_n}\subset B$. So let $U=U_{b_1}\cap \cdots \cap U_{b_n}\in \mathscr{T}$. Note that $A\subset U$ and, since all the $U_b\cap V_b=\emptyset$, $U\cap V=\emptyset$. Therefore, X is normal.