CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

10/18/07

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost		
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c	
⇒cB	A→c	← AcbB	B→ca	
⇒ ccbB	B→cbB	← AB	B→cbB	
⇒ccbca	B→ca	← S	S→AB	

10/18/07

Top-Down: Backtracking

Backtracking

Transition Diagram

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right
Second L: produce Leftmost derivation
1: one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

10/18/07

Leftmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$ $E \rightarrow E * E$ $\Rightarrow id + E$ $E \rightarrow (E)$ $\Rightarrow id + E * E$ $E \rightarrow -E$ $\Rightarrow id + id * E$ $E \rightarrow id$ $\Rightarrow id + id * id$

$$E \Rightarrow^*_{lm} id + E \setminus^* E$$

Predictive Parsing Table

Productions		
1	T → F T '	
2	Τ' → ε	
3	T' → * F T'	
4	F → id	
5	$\mathbf{F} \rightarrow (\mathbf{T})$	

	*	()	id	\$
T		T → F T'		T → F T '	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

10/18/07

Trace "(id)*id"

		*	()	id	\$
	T		T → FT'		T → FT'	
,	T'	T' → *FT'		Τ' → ε		T' → ε
	F		F → (T)		F → id	

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T'
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T'
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

		*	()	id	\$
	T		T → FT'		T → FT'	
Trace "(id)*id"	T'	T' → *FT'		Τ' → ε		T' → ε
11833 (18) 18	F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T' → * F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

10/18/07

Table-Driven Parsing

```
stack.push(\$); stack.push(S); \\ a = input.read(); \\ \textbf{forever do begin} \\ X = stack.peek(); \\ \textbf{if } X = a \textbf{ and } a = \$ \textbf{ then } return SUCCESS; \\ \textbf{elsif } X = a \textbf{ and } a != \$ \textbf{ then} \\ pop X; a = input.read(); \\ \textbf{elsif } X != a \textbf{ and } X \in \textbf{N} \textbf{ and } M[X,a] \textbf{ then} \\ pop X; push right-hand side of M[X,a]; \\ \textbf{else } ERROR! \\ \textbf{end}
```

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules $A \rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

10/18/07

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a\beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a\beta$
and $\gamma \Rightarrow^* \epsilon$

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) iff whenever
 A → α | β
 - 1. $First(\alpha) \cap First(\beta) = \emptyset$
 - 2. $\alpha \Rightarrow^* \epsilon$ implies !($\beta \Rightarrow^* \epsilon$)
 - 3. $\alpha \Rightarrow^* \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

10/18/07 15

ComputeFirst(α : string of symbols)

```
\label{eq:continuous_series} \begin{split} & /\!/ \operatorname{assume} \ \alpha = X_1 \ X_2 \ X_3 \ \dots \ X_n \\ & \text{if} \ X_1 \! \in \mathbf{T} \ \text{then} \ \operatorname{First}[\alpha] := \{X_1\} \\ & \text{else begin} \\ & \mathrm{i} := 1; \ \operatorname{First}[\alpha] := \operatorname{ComputeFirst}(X_1) \backslash \{ \mathbf{\epsilon} \}; \\ & \text{while} \ X_i \Longrightarrow^* \mathbf{\epsilon} \ \text{do begin} \\ & \text{if} \ i < n \ \text{then} \\ & \operatorname{First}[\alpha] := \operatorname{First}[\alpha] \ \cup \ \operatorname{ComputeFirst}(X_{i+1}) \backslash \{ \mathbf{\epsilon} \}; \\ & \text{else} \\ & \operatorname{First}[\alpha] := \operatorname{First}[\alpha] \ \cup \ \{ \mathbf{\epsilon} \}; \\ & \mathrm{i} := \mathrm{i} + 1; \\ & \text{end} \\ & \text{end} \end{split}
```

ComputeFirst(α : string of symbols)

```
// assume \alpha = X_1 \ X_2 \ X_3 \dots X_n

if X_1 \in \mathbf{T} then \mathrm{First}[\alpha] := \{X_1\}

else begin

\mathrm{i} :=1; \, \mathrm{First}[\alpha] := \mathrm{ComputeFirst}(X_1) \setminus \{\epsilon\};

while X_i \Rightarrow^* \epsilon do begin

if \mathrm{i} < \mathrm{n} then

\mathrm{First}[\alpha] := \mathrm{First}[\alpha] \cup \mathrm{ComputeFirst}(X_{i+1}) \setminus \{\epsilon\};

else

\mathrm{First}[\alpha] := \mathrm{First}[\alpha] \cup \{\epsilon\}; break;

\mathrm{i} := \mathrm{i} + 1;

end

end

Recursion in computing FIRST causes problems when faced with left-recursive grammars
```

17

ComputeFirst; modified

```
foreach X \in T do First[X] := X;

foreach p \in P : X \rightarrow \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \rightarrow Y_1 Y_2 Y_3 ... Y_n do

begin i := 1;

while Y_i \Rightarrow^* \epsilon and i <= n do begin

First[X] := First[X] \cup First[Y_i] \setminus \{\epsilon\};

i := i + 1;

end

if i = n + 1 then First[X] := First[X] \cup \{\epsilon\};

else First[X] := First[X] \cup First[Y_i];

until no change in First[X] for any X;
```

ComputeFirst; modified

```
\label{eq:foreach} \begin{split} & \textbf{foreach} \ X \in \textbf{T} \ \textbf{do} \ \text{First}[X] := X; \\ & \textbf{foreach} \ p \in \textbf{P} : X \rightarrow \epsilon \ \textbf{do} \ \text{First}[X] := \{\epsilon\}; \\ & \textbf{repeat foreach} \ X \in \textbf{N}, \ p : X \rightarrow Y_1 \ Y_2 \ Y_3 \ \dots \ Y_n \ \textbf{do} \\ & \textbf{begin} \ i := 1; \\ & \textbf{while} \ Y_i \Rightarrow^* \\ & \textbf{works with left-recursive grammars.} \\ & \textbf{First}[X] := \\ & \textbf{Computes a fixed point for FIRST}[X] \\ & \textbf{i} := \textbf{i} + 1; \\ & \textbf{for all non-terminals } X \ \textbf{in the grammar.} \\ & \textbf{end} \\ & \textbf{But this algorithm is very inefficient.} \\ & \textbf{if} \ i = n + 1 \ \textbf{then} \ \text{First}[X] := \text{First}[X] \ \cup \ \{\epsilon\}; \\ & \textbf{else} \ \text{First}[X] := \text{First}[X] \ \cup \ \text{First}[Y_i]; \\ & \textbf{until} \ \textbf{no change in First}[X] \ \textbf{for any } X; \\ & \textbf{10} \end{split}
```

ComputeFollow

```
Follow(S) := {$};

repeat

for each p \in P do

    case p = A \rightarrow \alpha B\beta begin

    Follow[B] := Follow[B] \cup ComputeFirst(\beta)\{\epsilon};

    if \epsilon \in First(\beta) then

    Follow[B] := Follow[B] \cup Follow[A];

    end

    case p = A \rightarrow \alpha B

    Follow[B] := Follow[B] \cup Follow[A];

until no change in any Follow[N]
```

20

Example First/Follow

$$S \rightarrow AB$$

 $A \rightarrow c \mid \epsilon$ Not an LL(1) grammar
 $B \rightarrow cbB \mid ca$
First(A) = {c, \epsilon} Follow(A) = {c}
First(B) = {c} Follow(A) \cap First(cbB) = First(c) = {c}
First(ca) = {c} Follow(B) = {\$}
First(S) = {c} Follow(S) = {\$}

ComputeFirst on Left-recursive Grammars

- ComputeFirst as defined earlier loops on leftrecursive grammars
- Here is an alternative algorithm for ComputeFirst
 - 1. Compute non left-recursive cases of FIRST
 - 2. Create a graph of recursive cases where FIRST of a non-terminal depends on another non-terminal
 - 3. Compute Strongly Connected Components (SCC)
 - 4. Compute FIRST starting from root of SCC to avoid cycles
- Unlike top-down LL parsing, bottom-up LR parsing allows left-recursive grammars, so this algorithm is useful for LR parsing

ComputeFirst on Left-recursive Grammars

• A → CB | a • $S \rightarrow BD \mid D$ • C → Bb | ε • $D \rightarrow d \mid Sd$ • $B \rightarrow Ab \mid b$ Compute Strongly $FIRST_0[A] := \{a, b\}$ Connected $FIRST_0[C] := \{\}$ Components $FIRST_0[B] := \{b\}$ $FIRST_0[S] := \{b, d\}$ 2 SCCs: e.g. consider B-A-C $FIRST_0[D] := \{d\}$ $FIRST[B] := FIRST_0[B] + FIRST[A]$ $FIRST[A] := FIRST_0[A] + FIRST[C]$ $FIRST[C] := FIRST_0[C] + FIRST_0[B]$

 $FIRST[C] := FIRST[C] + \{\epsilon\}$

23

10/18/07

Converting to LL(1)

$$S \rightarrow AB$$
 $A \rightarrow c \mid \epsilon$
 $B \rightarrow cbB \mid ca$
 $c (c b c b ... c b) c a$
 $(c b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$
 $c (b c b ... c b) c a$

Verifying LL(1) using F/F sets

$$S \rightarrow cAa$$

 $A \rightarrow cB \mid B$
 $B \rightarrow bcB \mid \epsilon$
First(A) = {b, c, \epsilon} Follow(A) = {a}
First(B) = {b, \epsilon} Follow(B) = {a}
First(S) = {c} Follow(S) = {\$}

10/18/07 25

Building the Parse Table

- Compute First and Follow sets
- For each production $A \rightarrow \alpha$
 - foreach a ∈ First(α) add A \rightarrow α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. $First(\alpha) \cap First(\beta) = \emptyset$
 - 2. $\alpha \Rightarrow^* \epsilon \text{ implies } !(\beta \Rightarrow^* \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

10/18/07 27

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - · garbage before
 - Epsilon
 - if nullable
 - Pop/Insert terminal
 - "auto-insert"
- Add "synch" actions to table

10/18/07

Summary so far

- LL(1) grammars, necessary conditions
 - No left recursion
 - Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
 - Alternative: table-driven top-down parser