Chain Rule Examples d [x]=0x0-1 (ompute of [x'4] = $(\times^{4})^{4} = \times^{1}$ for 1 on integer de [xyt] = dex [x] Outside (4) = U^{4} Inside $f(x) = X^{4}$ Outside (4) = U^{4} Inside $f(x) = \frac{1}{2} \frac{1$ 4 x 34 . dx [x 4] = 1 d [x4] - 4 x - 34 cleck: 4-1=-34 $X_{L} = (e_{L}(x))_{L} = (e_{L}(x))_{L}$ $\frac{d}{dx} \left[x^{T} \right] = \frac{d}{dx} \left[e^{T \cdot \Omega n(x)} \right]$ Inside(x)-1. In(x) Outside(4)= e" Inside (x)=1. outside (4) = eu outside ((nside(x))= e · lm(x) $= \frac{r \cdot om(x)}{x} \cdot r \cdot \frac{1}{x}$ $= \frac{x}{x} \cdot r = r \cdot x^{r-1}$ Pover Rule; for any real number (, ax[x]=7.x]-1 $\frac{d}{dx} \left[2^{\times} \right] = \frac{d}{dx} \left[\left(e^{\alpha m(2)} \right)^{\times} \right] = \frac{d}{dx} \left[e^{\times \cdot m(2)} \right]$ out(4) = e4 Inside(x) = X - In(2)04+7(4)= e4 04+7(x ln(2)= ex.gn(2)= 2x $lns_ide'(x) = ln(e) \frac{d}{dx}[x] = ln(2)$ $\left|\frac{d}{dx}\left[\alpha^{\times}\right]=\ln(\alpha)\cdot\alpha^{\times}$ $=2^{\times}\cdot lm(2)$