

Lecture 7: DC & Transient Response

Assignment for 9/19

- ☐ Continue working on Lab 3
- □ Prepare for quiz on Thursday (covers lecture 5)
- ☐ Text book reading sections 2.5, 4.1-4.3

Outline

- Pass Transistors
- □ DC Response
- Logic Levels and Noise Margins
- ☐ Transient Response
- ☐ RC Delay Models
- Delay Estimation

Pass Transistors

- We have assumed source is grounded
- ☐ What if source > 0?
 - e.g. pass transistor passing V_{DD}
- \Box $V_g = V_{DD}$
 - If $V_s > V_{DD}-V_t$, $V_{gs} < V_t$
 - Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
- ☐ Transmission gates are needed to pass both 0 and 1

Pass Transistor Ckts

DC Response

- ☐ DC Response: V_{out} vs. V_{in} for a gate
- ☐ Ex: Inverter

$$-$$
 When $V_{in} = 0$

$$\rightarrow$$
 $V_{out} = V_{DD}$

- When
$$V_{in} = V_{DD}$$

$$\rightarrow$$
 $V_{out} = 0$

 In between, V_{out} depends on transistor size and current

- By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
- We could solve equations
- But graphical solution gives more insight

Transistor Operation

- ☐ Current depends on region of transistor behavior
- ☐ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

nMOS Operation

Cutoff	Linear	Saturated
V _{gsn} <	V _{gsn} >	V _{gsn} >
	V _{dsn} <	V _{dsn} >

pMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

I-V Characteristics

 \square Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. Vout, Vin

Load Line Analysis

- ☐ For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - Vout must be where |currents| are equal in

Load Line Analysis

DC Transfer Curve

☐ Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

☐ Revisit transistor operating regions

Region	nMOS	pMOS
А		
В		
С		
D		
E		

Beta Ratio

- □ If $β_p$ / $β_n ≠ 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

Noise Margins

□ How much noise can a gate input see before it does not recognize the input?

Logic Levels

- ☐ To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

Transient Response

- ☐ DC analysis tells us V_{out} if V_{in} is constant
- \Box Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

Delay Definitions

- ☐ **t**_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- □ t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- ☐ t_{pd}: average propagation delay 1.0
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- \Box **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- ☐ t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions

- □ **t**_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- □ t_{cdf}: falling contamination delay
 - From input to falling output crossing V_{DD}/2
- □ t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- ☐ But simulations take time to write, may hide insight

Delay Estimation

- ☐ We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- □ The step response usually looks like a 1st order RC response with a decaying exponential.
- ☐ Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- ☐ Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Effective Resistance

- ☐ Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- ☐ Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{qs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- ☐ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

- ☐ Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- ☐ Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

- Capacitance
 - $-C = C_q = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width in 0.6 μm
 - Gradually decline to 1 fF/μm in 65 nm
- Resistance
 - R ≈ 10 KΩ• μ m in 0.6 μ m process
 - Improves with shorter channel lengths
 - 1.25 KΩ•μm in 65 nm process
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent

Inverter Delay Estimate

☐ Estimate the delay of a fanout-of-1 inverter

d = 6RC

Delay Model Comparison

Example: 3-input NAND

☐ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- ☐ Pullup or pulldown network modeled as RC ladder
- ☐ Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$$

Example: 3-input NAND

■ Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

$$R = \left[\left(9 + 5h \right) C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right) RC$$

$$\frac{1}{2} \left(9 + 5h \right) C$$

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- ☐ Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Layout Comparison

■ Which layout is better?

