1. (a) $\overline{F_{RUGAL}}$ is defined as follows:

Input: A set of *ingredients* $G = \{g_1, g_2, ..., g_m\}$, a set of *recipes* $R = \{r_1, r_2, ..., r_n\}$, where each recipe is a subset of ingredients $(r_i \subseteq G)$, and a positive integer M.

Output: Is there **NO** subset of recipes $R' \subseteq R$ with size $|R'| \le M$ such that all together, the recipes in R' use up exactly the ingredients from $G(\bigcup_{r \in R'} r = G \text{ and } r_1 \cap r_2 = \emptyset \text{ for all } r_1, r_2 \in R')$?

(b) Verifier for Frugal:

```
VerifyFrugal(G, R, M, C):

# C is a subset of R

if |C| > M: return False

H \leftarrow \bigcup_{r \in C} r

if H \neq G: return False

for q, r \in C:

if q \cap r \neq \emptyset: return False

return True
```

Correctness: Clearly, VerifyFrugal(G, R, M, C) = True iff C is a subset of R with the desired properties: $|C| \le M$ and $\bigcup_{r \in C} r = G$ and $q \cap r = \emptyset$ for all $q, r \in C$.

Hence, the answer for (G, R, M) is True iff VerifyFrugal(G, R, M, C) = True for some C.

Runtime: Assuming that sets are stored simply as unsorted lists, the total running time is $O(n^2m)$:

- $\mathcal{O}(|C|) = \mathcal{O}(n)$ to compute |C| and compare it with M;
- $\mathcal{O}(mn)$ to compute H (each union takes time $\mathcal{O}(m)$ and there are $\mathcal{O}(n)$ unions performed);
- $\mathcal{O}(m)$ to compare H with G;
- $\mathcal{O}(n^2m)$ to verify that every pair of recipes in C ($\mathcal{O}(n^2)$ many pairs) contains no common ingredient ($\mathcal{O}(m)$ to compute the intersection).
- 2. (a) ShortPaths is defined as follows:

Input: An undirected graph G = (V, E) and a positive integer k.

Output: Does **some** simple path in *G* contain **more than** *k* edges?

(b) Verifier for ShortPaths:

```
VerifyNoShortPaths(G,k,C):

# C = [v_1,v_2,...,v_\ell] is a list of vertices from G if \ell \leqslant k: return False

for i \leftarrow 2,3,...,\ell:

if (v_{i-1},v_i) \notin E: return False

for j \leftarrow i-1,i-2,...,1:

if v_j = v_i: return False

return True
```

Correctness: Clearly, VerifyNoShortPaths(G, k, C) = True iff C is a path in G with the desired properties: len(C) > k and C is simple (no repeated vertex or edge).

Hence, the answer for (G,k) is True iff VerifyNoShortPaths(G,k,C) = True for some C.

Runtime: Assuming that vertices and edges are stored simply as unsorted lists, with n = |V| and m = |E|, the total running time is $\mathcal{O}(n^2)$:

- $\mathcal{O}(\log_2 n)$ to compare ℓ with k (because both are at most n);
- $\mathcal{O}(n)$ to verify that G contains every edge between successive vertices in C;
- $\mathcal{O}(n^2)$ to compare every pair of vertices in C (to ensure there are no duplicates).