INICIOS Y EVOLUCIÓN DE LOS PROCESADORES GRÁFICOS (GPUs)

X JORNADAS DE DIVULGACIÓN DE APLICACIONES CIENTÍFICAS Y VISIÓN POR COMPUTADOR SOBRE PROCESADORES GRÁFICOS

UNIVERSIDAD DE ALICANTE

Pablo Martínez-González <pmartinez@dtic.ua.es>

Albert García-García <agarcia@dtic.ua.es>

José García-Rodríguez < jgarcia@dtic.ua.es>

PABLO MARTÍNEZ

GONZÁLEZ

- Grado en Ingeniería Informática
 - Universidad de Alicante
 - 2011 2015
- Máster en Informática Gráfica, Videojuegos y RV
 - Universidad Rey Juan Carlos
 - 2015 2017
- Doctorado en Informática (Deep Learning and Computer Vision)
 - Univerisdad de Alicante
 - 2018 Actualidad

MAIL: PMARTINEZ @ DTIC.UA.ES

DEDICACIÓN

INVESTIGACIÓN

The 3D Perception Lab at the University of Alicante is a group of researchers interested in the intersection of machine learning and computer vision. Our research mission focuses on various aspects of perception often related with mobile robotics in which we exploit 3D data as the main source of information. Some of our research lines include object recognition, semantic segmentation, rigid and non-rigid registration, visual localization and mapping, behavior analysis, and depth estimation. Apart from those general lines we are also highly interested in making those solutions run efficiently by leveraging GPU acceleration using CUDA. Aside from 3D data as our backbone, we are also tied together by our shared vision in the great potential of artificial intelligence, mainly deep learning, which we try to apply and push its limits in every project we work on.

DEEP LEARNING

Artificial intelligence applied to computer vision and robotics (semantic segmentation, depth estimation, scene understanding, object recognition, localization and maping).

3D COMPUTER VISION

Traditional computer vision methods and new challenges for 3D data (rigid registration, non-rigid registration, reconstruction).

GPU COMPUTING

Acceleration of computer vision methods and artificial intelligence pipelines for real-time execution and maximum efficiency.

ESTRUCTURA

- TEORÍA:
 - HISTORIA DE LA GPGPU
 - ARQUITECTURA CUDA
- PRÁCTICAS:
 - SUMA DE VECTORES

La Ley de Moore

El Pipeline Gráfico

La Unidad de Procesamiento Gráfico (GPU)

Primeros Pasos en Computación sobre GPUs

La Arquitectura CUDA

CONTENIDO

GORDON MOORE

GORDON MOORE

Cramming More Components onto Integrated Circuits. Gordon E. Moore, 1965

"THE NUMBER OF TRANSISTORS ON A CHIP DOUBLES EVERY 12 MONTHS"

- GORDON MOORE, COFUNDADOR DE INTEL, 1965

"THE NUMBER OF TRANSISTORS ON A CHIP DOUBLES EVERY 24 MONTHS"

- GORDON MOORE, COFUNDADOR DE INTEL, 1975

CADA DOS AÑOS, APROXIMADAMENTE, SE DUPLICA EL NÚMERO DE TRANSISTORES

PROBLEMAS: TAMAÑO DEL TRANSISTOR Y EFECTO TÚNEL

PROBLEMAS: CONSUMO ENERGÉTICO Y DISIPACIÓN DE CALOR

¿CÓMO CONTINUAR ESCALANDO? MULTICORE

RENDERING

RENDERING

OpenGL GRAPHICS PIPELINE OVERVIEW por Owens

RAY TRACING

GEFORCE 256 (1999)

GEFORCE 256 (1999)

"A SINGLE-CHIP PROCESSOR WITH INTEGRATED TRANSFORM, LIGHTING, TRIANGLE SETUP/CLIPPING, AND RENDERING ENGINES THAT IS CAPABLE OF PROCESSING A MINIMUM OF 10 MILLION POLYGONS PER SECOND."

GEFORCE 256 TECH DEMO

LA ESENCIA DE LA GPU

DEJEMOS QUE LOS CAZADORES DE MITOS LO EXPLIQUEN

ARQUITECTURA CPU/GPU TÍPICA

ARQUITECTURA CPU/GPU INTEGRADA

COMPUTACIÓN HETEROGÉNEA

GEFORCE 3 CON VERTEX Y PIXEL SHADERS PROGRAMABLES (2001)

GEFORCE 3 TECH DEMO

ENGAÑAR A LA GPU EMPLEANDO APIS GRÁFICAS (OPENGL O DIRECTX)

```
float saxpy (
       float2 coords : TEXCOORDO,
    uniform sampler2D textureY,
    uniform sampler2D textureX,
    uniform float alpha ) : COLOR
       float result;
       float yval=y old[i];
       float y = tex2D(textureY, coords);
       float xval=x[i];
       float x = tex2D(textureX, coords);
       y new[i]=yval+alpha*xval;
       result = y + alpha * x;
       return result;
```

LIMITACIONES QUE IMPIDIERON EL PROGRESO

CURVA DE APRENDIZAJE DE OPENGL/DIRECTX Y ESFUERZO DE TRADUCCIÓN

NECESIDAD DE APRENDER LENGUAJES DE SHADING (CG, GLSL)

SOPORTE DE FLOAT O DOUBLE NO GARANTIZADO

LIMITACIONES EN LOS PATRONES DE ESCRITURA Y LECTURA DE MEMORIA

CARENCIA DE HERRAMIENTAS DE DEPURACIÓN Y CONTROL DE ERRORES

RECURSOS LIMITADOS: MEMORIA, VELOCIDAD, FLEXIBILIDAD...

GEFORCE 8800 GTX (2007)

GEFORCE 8800 GTX TECH DEMO

SHADERS UNIFICADOS

PRECISIÓN FLOAT Y PATRONES DE ACCESO

ECOSISTEMA

ARQUITECTURA HARDWARE PROPIA

DRIVER ESPECIALIZADO PARA LA GPU

LENGUAJE DE PROGRAMACIÓN FLEXIBLE (BASADO EN C++ INICIALMENTE)

COMPILADOR Y ENTORNO DE DESARROLLO Y DEPURACIÓN

DOCUMENTACIÓN, TUTORIALES, DONACIONES

GEFORCE RTX

TURING

REAL-TIME RAYTRACING

TURING

REAL-TIME SIMULATIONS

10X GROWTH IN GPU COMPUTING

2008

2015

150,000 CUDA Downloads

27 CUDA Apps

60
Universities Teaching

4,000

Supercomputing Teraflops

800

319

BIBLIOGRAFÍA RECOMENDADA

PARA APRENDER UN POQUITO MÁS

Programación de GPUs Usando Compute Unified Device Architecture (CUDA)

 Alberto García García, Sergio Orts Escolano, José Celilia Canales, José García Rodríguez

Programming Massively Parallel Processors (A Handson Approach)

David B. Kirk, Wen-mei W. Hwu

BIBLIOGRAFÍA RECOMENDADA

PARA APRENDER UN POQUITO MÁS

CUDA BY EXAMPLE (An Introduction to General-Purpose GPU Programming)

• Jason Sanders, Edward Kandrot

THE CUDA HANDBOOK (A Comprehensive Guide to GPU Programming)

Nicholas Wilt

INICIOS Y EVOLUCIÓN DE LOS PROCESADORES GRÁFICOS (GPUs)

X JORNADAS DE DIVULGACIÓN DE APLICACIONES CIENTÍFICAS Y VISIÓN POR COMPUTADOR SOBRE PROCESADORES GRÁFICOS

UNIVERSIDAD DE ALICANTE

Pablo Martínez-González <pmartinez@dtic.ua.es>
Albert García-García <agarcia@dtic.ua.es>
José García-Rodríquez <jqarcia@dtic.ua.es>