Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Tutoren:

Isabell Groß, Markus Krottenmüller, Martin Ibrügger

19.03.2012

Aufgabe 1 - Wechselwirkung zwischen Drähten

Ein dünner rechteckiger Draht #2 befinde sich in der skizzierten Weise neben einem dünnen, unendlich langen Draht #1. Die Drähte werden von den Gleichströmen I_1 und I_2 durchflossen. Welche Kraft üben die Drähte aufeinander aus?

Aufgabe 2 - Rotierender Zylinder

Ein unendlich langer Zylinder, der homogen mit der Ladungsdichte ρ geladen ist, rotiert starr um die Zylinderachse mit der Winkelgeschwindigkeit ω . Geben Sie die Stromdichte $\mathbf{j}(\mathbf{r})$ an und berechnen Sie unter der Annahme $\mathbf{B}(\mathbf{r}) = B(r)\hat{\mathbf{e}}_z$ das Magnetfeld innerhalb und außerhalb des Zylinders.

Aufgabe 3 - Rotierende Scheibe

Eine unendlich dünne runde Scheibe mit Radius R ist homogen geladen. Die Scheibe liege in der xy-Ebene mit ihrem Mittelpunkt im Ursprung und rotiere mit der Winkel-

geschwindigkeit ω um die z-Achse. Bestimmen Sie die asymptotische Form des Magnetfeldes ${\bf B}$ mithilfe des Dipolmoments ${\bf m}$. Berechnen Sie außerdem das exakte Feld auf der Symmetrieachse, also ${\bf B}(0,0,z)$ und vergleichen Sie mit der Dipolnäherung.

Ferienkurs Elektrodynamik

Elektrische und Magentische Felder in polarisierbarer Materie Stand: 19. März 2012

Übungsblatt WS11/12

1. Dielektrische Kugel im äußeren E-Feld

In einem homogenen elektrischen Feld mit $\vec{E_o} = E_o \cdot \vec{e_z}$ ($\vec{e_z}$ ist der Einheitsvektor in z-Richtung) befinde sich eine dielektrische Kugel mit dem Radius R und der Dielektrizitätskonstante ϵ .

a) Berechnen sie das Elektrische Feld innerhalb und außerhalb der Kugel mit dem Ansatz:

$$\phi(r,\theta) = \sum_{l} (A_l r^l + \frac{B_l}{r^{l+1}}) P_l(\cos\theta)$$
 (0.1)

 A_l und B_l sind dabei zu bestimmende Unbekannte, $P_l(cos)$ die Legendre-Polynome.

b) Berechnen sie die Polarisation und die Oberflächenladungsdichte der Kugel.

2. Magnetisierbare Kugel im äußeren B-Feld

In einem homogenen Feld $\vec{B_o} = B_o \cdot \vec{e_z}$ ($\vec{e_z}$ ist der Einheitsvektor in z-Richtung) befinde sich eine magnetische Kugel mit dem Radius R und der Dielektrizitätskonstante μ .

- a) Berechnen sie das magnetische Feld \vec{H} innerhalb und außerhalb der Kugel. Hinweis: Sind keine freien Ströme vorhanden, kann \vec{H} als Gradient eines Skalarfeldes ausgedrückt werden. (Analog zum Elektrischen Feld)
- **b)** Berechnen sie die Magnetisierung der Kugel und diskutieren sie die Fälle $\mu > 1$ und $\mu < 1$.
- c) Was würde sich bei der Berechnung ändern, wenn sich auch außerhalb der Kugel ein magnetisierbares Material befinden würde $\mu_a \neq \mu$?

3. Spiegelladung mit Dielektrikum

Eine Punktladung q im Raum mit ϵ_1 befindet sich im Abstand d von einer ebenen Grenzfläche (bei z=0) zu einem dielektrischen Medium mit der Dielektrizitätskonstante ϵ_2 . Bestimmen sie das erzeugte elektrische Feld mit der Methode der Spiegelladungen.

4. Plattenkondensator mit Dielektrikum

Zwischen zwei rechteckigen, unendlich dünnen Metallplatten der Fläche l \times s, die parallel im Abstand d liegen, ist ein Dielektrikum ϵ mit den Ausmaßen r \times s \times d eingeschoben. Die obere/ untere Platte trägt die Ladung +Q/-Q. Da die Platten leitend sind, sind die

Ladungsträger auf den Platten frei verschiebbar. Die z-Achse steht senkrecht auf den Platten.

- a) Berechnen sie \vec{D}, \vec{E} und die Oberflächenladungsdichte, jeweils in Region I (mit Dielektrikum) und in Region II (ohne Dielektrikum).
- b) Wie groß ist die Kapazität ($C = \frac{Q}{\Delta \Phi}$) dieser Anordnung?