Optimization

Lusine Poghosyan

AUA

February 8, 2019

Conditions for Local Minimizers

minimize f(x)

subject to $x \in \Omega$,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

Definition

A vector $d \in \mathbb{R}^n$, $d \neq 0$ is a feasible direction at $x^* \in \Omega$ if there exists $\alpha_0 > 0$ such that $x^* + \alpha d \in \Omega$ for all $\alpha \in [0, \alpha_0]$.

Example

If it is possible, find two vectors d_1 , $d_2 \in \mathbb{R}^n$ different from 0 vector such that d_1 is a feasible direction at $x^* \in \Omega$ and d_2 is not a feasible direction at $x^* \in \Omega$, if

- **a.** $\Omega = [1,3], x^* = 1;$
- **b.** $\Omega = [1,3], x^* = 3;$
- **c.** $\Omega = [1,3], x^* = 2;$
- **d.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\}, x^* = [0, 0]^T;$
- **e.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\}, x^* = [1, 0]^T.$

Definition

A point $x^* \in \Omega$ is said to be an interior point of the set Ω if Ω contains some neighborhood of x^* .

Example

Determine whether $x^* \in \Omega$ is an interior point of Ω , if

a.
$$\Omega = [1,3], x^* = 1;$$

b.
$$\Omega = [1, 3], x^* = 2;$$

c.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\}, x^* = [0, 0]^T;$$

d.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\}, x^* = [1, 0]^T.$$

Proposition. Assume $x^* \in \Omega$ is an interior point of Ω , then any vector $d \in \mathbb{R}^n$, $d \neq 0$ is a feasible direction at x^* .

Theorem (First-Order Necessary Conditions (FONC))

Assume f is a continuously differentiable function in Ω . If x^* is a local minimizer of f over Ω , then for any feasible direction d at x^* , we have

$$d^T \nabla f(x^*) \geq 0.$$

Theorem (First-Order Necessary Conditions (FONC))

Assume f is a continuously differentiable function in Ω . If x^* is a local minimizer of f over Ω and x^* is an interior point of Ω , then

$$\nabla f(x^*) = 0.$$

Definition

We call x^* a stationary point if $\nabla f(x^*) = 0$.

Consider the problem

minimize
$$x_1^2 + 0.5x_2^2 + 3x_2 + 4.5$$

subject to $x_1, x_2 > 0$.

Is the first-order necessary condition (FONC) for a local minimizer satisfied at:

- **a.** $x^* = [1,3]^T$;
- **b.** $x^* = [0, 3]^T$;
- **c.** $x^* = [1, 0]^T$;
- **d.** $x^* = [0, 0]^T$.

Consider the problem

minimize
$$x_1^2 + 0.5x_2^2 + 3x_2 + 4.5$$

subject to $x \in \mathbb{R}^2$.

Find the points which satisfy the first-order necessary condition (FONC) for a local minimizer.

Theorem (Second-Order Necessary Conditions (SONC))

Assume f is twice continuously differentiable in Ω . If x^* is a local minimizer (maximizer) of f over Ω and x^* is an interior point of Ω , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive (negative) semidefinite.

Definition

A saddle point is a stationary point which is not a local extremum.

Example

Show that $x^* = (0,0)^T$ is a saddle point for the function $f(x_1, x_2) = x_1^2 + 8x_1x_2 + x_2^2$.

Theorem (Second-Order Sufficient Conditions (SOSC))

Assume f is twice continuously differentiable in Ω . If x^* is an interior point of Ω such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive (negative) definite, then x^* is a strict local minimizer (maximizer) of f.

Find all stationary points of *f* and check if these points are local maximum, minimum or saddle points for that function if

a.
$$f(x_1, x_2) = 4x_1^4 + x_2^4 + 4x_1x_2$$
;

b.
$$f(x_1, x_2) = \frac{1}{3}x_1^3 - 4x_1 + \frac{1}{3}x_2^3 - 16x_2$$
;

c.
$$f(x_1, x_2, x_3) = 3x_1^3 - 9x_1 + x_2^3 + x_3^3 - 6x_3^2 - 10.$$

Theorem

When f is convex, any local minimizer x^* is a global minimizer of f. If in addition f is differentiable, then any stationary point x^* is a global minimizer of f.

Find the global minimizer of f on Ω if

- **a.** $f(x_1, x_2, x_3) = x_1^4 + x_2^4 + x_1^2 x_2^2 + x_3^2$, $\Omega = \mathbb{R}^3$;
- **b.** $f(x) = x^T A x$, where A is symmetric and positive definite matrix and $\Omega = \mathbb{R}^n$.