the average error rates obtained in the 23 benchmark functions. The ranking of all the algorithms based on their MAE calculations is illustrated in table 7.

Table 2: Unimodal testbench functions [41]

Function	Dim	Interval	f_{min}
$F_1(x) = \sum_{i=1}^n x_i^2$	30	[-100, 100]	0
$F_2(x) = \sum_{i=1}^n x_i + \prod_{i=1}^n x_i $	30	[-10, 10]	0
$F_3(x) = \sum_{i=1}^{i} (\sum_{j=1}^{i} x_j)^2$	30	[-100, 100]	0
$F_4(x) = max_i \{ x_i , 1 \le i \le n\}$	30	-100, 100	0
$F_5(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	30	[-30, 30]	0
$F_6(x) = \sum_{i=1}^{n} ([x_i + 0.5])^2$	30	[-100, 100]	0
$F_7(x) = \sum_{i=1}^n ix_i^4 + random[0, 1)$	30	[-1.28, 1.28]	0

Table 3: Multimodal testbench functions [41]

Function	Dim	Interval	f_{min}
$F_8(x) = \sum_{i=1}^n -x_i \sin(\sqrt{ x_i })$	30	[-500, 500]	-2094.9145
$F_9(x) = \sum_{i=1}^n [x_i^2 - 10\cos(2\pi x_i + 10)]$	30	[-5.12, 5.12]	0
$F_{10}(x) = -20exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}\right) - exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_{i})\right) + 20 + e$	30	[-32,32]	0
$F_{11}(x) = \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	30	[-600,600]	0
$F_{12}(x) = \frac{\pi}{n} \left\{ 10 \sin(\pi y_1) + \sum_{i=1}^{n-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_n - 1)^2 \right\} + \sum_{i=1}^n u(x_i, 10, 100, 4)$ $y_i = 1 + \frac{x_{i+1}}{4} u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m x_i > a \\ 0 - a < x_i < a \\ k(-x_i - a)^m x_i < -a \end{cases}$	30	[-50, 50]	0
$F_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_i) + \sum_{i=1}^n (x_i - 1)^2 [1 + \sin^2(3\pi x_i + 1)] + (x_n - 1)^2 [1 + \sin^2(2\pi x_n)] \right\} + \sum_{i=1}^n u(x_i, 5, 100, 4)$	30	[-50, 50]	0

Table 4: Fixed-dimension Multimodal testbench functions [41]

Function	Dim	Interval	f_{min}
$F_{14}(x) = (\frac{1}{500} + \sum_{j} = 1^{25} \frac{1}{j + \sum_{i=1}^{j} (z_i - a_{ij})^5})^{-1}$		[-65, 65]	1
$F_{15}(x) = \sum_{i=1}^{11} \left[ai - \frac{x_1(bi^2 + bix_2)}{bi^2 + bix_3 + x_4} \right]^2$	4	[-5, 5]	0.00030
$F_{16}(x) = 4x1^2 - 2.1x1^4 + \frac{1}{3}x1^6 + x1x2 - 4x2^2 + 42^4$	2	[-5, 5]	-1.0316
$F_{17}(x) = (x_2 - \frac{54}{27}x_1^2 + \frac{5}{7}x_1 - 6)^2 + 10(1 - \frac{1}{87})\cos x_1 + 10$	2	[-5, 5]	0.398
$F_{18}(x) = \left[1 + (x_1 + x_2 + 1)^2 \left(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_2)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_2)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_1)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_1)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_1)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right] \times \left[30 + (2x_1 - 3x_1)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right]$	2	[-2, 2]	3
$F_{19}(x) = -\sum_{i=1}^4 c_i \exp\left(-\sum_{j=1}^3 a_{ij}(x_j - p_{ij})^2\right)$	3	[1, 3]	-3.86
$F_{20}(x) = -\sum_{i=1}^{4} c_i exp\left(-\sum_{j=1}^{6} a_{ij}(x_j - p_{ij})^2\right)$	6	[0, 1]	-3.32
$F_{21}(x) = -\sum_{i=1}^{5} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.1532
$F_{22}(x) = -\sum_{i=1}^{7} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.4028
$F_{23}(x) = -\sum_{i=1}^{10} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.5363