

IRF9620, IRF9621, IRF9622, IRF9623

-3A and -3.5A, -150V and -200V, 1.5 and 2.4 Ohm, P-Channel Power MOSFETs

July 1998

Features

- -3A and -3.5A, -150V and -200V
- $r_{DS(ON)} = 1.5\Omega$ and 2.4 Ω
- Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Ordering Information

PART NUMBER	PACKAGE	BRAND
IRF9620	TO-220AB	IRF9620
IRF9621	TO-220AB	IRF9621
IRF9622	TO-220AB	IRF9622
IRF9623	TO-220AB	IRF9623

NOTE: When ordering, use the entire part number.

Description

These are P-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17502.

Symbol

Packaging

JEDEC TO-220AB

IRF9620, IRF9621, IRF9622, IRF9623

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified IRF9621 IRF9622 IRF9623 UNITS Drain to Source Breakdown Voltage (Note 1).....V_{DS} -200 -150 -200 -150 Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR} -200 -150 -200 -150 ٧ Continuous Drain Current......I_D -3.5 -3.5 -3 -3 $T_C = 100^{\circ}C \dots I_D$ -2 -2 -1.5 -1.5 Α -14 -14 -12 -12 Α Gate to Source VoltageVGS ±20 ±20 ±20 ±20 ٧ W 40 40 40 40 W/oC 0.32 0.32 0.32 0.32 Single Pulse Avalanche Energy Rating (Note 4) EAS 290 290 290 290 mJ Operating and Storage Temperature T_{J.} T_{STG} -55 to 150 -55 to 150 -55 to 150 ٥С -55 to 150 Maximum Temperature for Soldering οС Leads at 0.063in (1.6mm) from Case for 10s T_L 300 300 300 300 Package Body for 10s, See Techbrief 334 T_{pkg} 260 260 260 οС 260

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $T_J = 125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNITS
Drain to Source Breakdown Voltage IRF9620, IRF9622	BV _{DSS}	$I_D = -250 \mu A$, $V_{GS} = 0V$, (Figure 10)	-200	-	-	٧
IRF9621, IRF9623	1		-150	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = -250μA	-2	-	-4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V		-	-25	μΑ
		V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V, T_C =125°C		-	-250	μА
On-State Drain Current (Note 2) IRF9620, IRF9621	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, V_{GS} = -10V$		-	-	А
IRF9622, IRF9623]			-	-	Α
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	=	-	±100	nA
Drain to Source On Resistance (Note 2) IRF9620, IRF9621	r _{DS(ON)}	I _D = -1.5A, V _{GS} = -10V, (Figures 8, 9)		1.0	1.5	Ω
IRF9622, IRF9623	1			1.5	2.4	Ω
Forward Transconductance (Note 2)	9fs	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$, $I_{D} = -1.5A$, (Figure 12)		1.8	-	S
Turn-On Delay Time	t _{d(ON)}	$\begin{split} &V_{DD}=0.5 \text{ x Rated BV}_{DSS}, I_D \approx \text{-}3.5\text{A}, R_G=50\Omega, \\ &R_L=26\Omega, \text{ for BV}_{DSS}=200\text{V} \\ &R_L=20\Omega \text{ for BV}_{DSS}=150\text{V} \\ &(\text{Figures 17, 18) MOSFET Switching Times are} \\ &\text{Essentially Independent of Operating} \\ &\text{Temperature} \end{split}$		30	50	ns
Rise Time	t _r			50	100	ns
Turn-Off Delay Time	t _{d(OFF)}			80	120	ns
Fall Time	t _f			50	75	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V_{GS} = -10V, I_D = -3.5A, V_{DS} = 0.8 x Rated BV _{DSS} , $I_{G(REF)}$ = 1.5mA, (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature		16	22	nC
Gate to Source Charge	Q _{gs}			9	-	nC
Gate to Drain "Miller" Charge	Q _{gd}]	-	7	-	nC

IRF9620, IRF9621, IRF9622, IRF9623

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Input Capacitance	C _{ISS}	$V_{DS} = -25V$, $V_{GS} = 0V$, $f = 1MHz$, (Figure 11)		-	350	-	pF
Output Capacitance	C _{OSS}			-	100	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	30	-	pF
Internal Drain Inductance	L _D	Measured From the Contact Screw on Tab To Center of Die	Modified MOSFET Symbol Showing the Internal Devices	-	3.5	-	nH
		Measured From the Drain Lead, 6mm (0.25in) from Package to Center of Die	Inductances D D ELD	-	4.5	-	nH
Internal Source Inductance	LS	Measured From the Source Lead, 6mm (0.25in) from Header to Source Bonding Pad	G ELS	-	7.5	-	nH
Thermal Resistance Junction to Case	$R_{ heta JC}$		•	-	-	3.12	°C/W
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	Typical Socket Mount		-	-	80	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	⋄ D	-	-	-3.5	Α
Pulse Source to Drain Current (Note 3)	I _{SDM}	Symbol Showing the In- tegral Reverse P-N Junction Diode	G S S	-	-	-14	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_C = 25^{\circ}C$, $I_{SD} = -3.5A$, $V_{GS} = 0V$ (Figure 13)		-	-	-1.5	V
Reverse Recovery Time	t _{rr}	$T_J = 150^{\circ}\text{C}$, $I_{SD} = -3.5\text{A}$, $dI_{SD}/dt = 100\text{A}/\mu\text{s}$		-	300	-	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 150^{o}C$, $I_{SD} = -3.5A$, $dI_{SD}/dt = 100A/\mu s$		-	1.9	-	μС

NOTES:

- 2. Pulse test: pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4. V_{DD} = 50V, starting T_J = 25°C, L = 35.5mH, R_G = 25 Ω , peak I_{AS} = 3.5A (Figures 15, 16).

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE **TEMPERATURE**

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs **CASE TEMPERATURE**

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. OUTPUT CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 6. SATURATION CHARACTERISTICS

FIGURE 7. TRANSFER CHARACTERISTICS

NOTE: Heating effect of 2µs pulse is minimal.

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. SWITCHING TIME TEST CIRCUIT

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

FIGURE 19. GATE CHARGE TEST CIRCUIT

FIGURE 20. GATE CHARGE WAVEFORMS