

0962CH02

अध्याय दो

बहुआयामी पद

2.1 परिचय

आपने पिछली कक्षाओं में बीजीय व्यंजकों, उनके योग, घटाव, गुणा और भाग का अध्ययन किया है। आपने कुछ बीजीय व्यंजकों का गुणनखंडन करना भी सीखा है। आपको बीजीय सर्वसमिकाएँ याद होंगी:

और

और गुणनखंडन में उनके उपयोग। इस अध्याय में, हम अपना अध्ययन एक विशिष्ट प्रकार के बीजीय व्यंजक, जिसे बहुपद कहते हैं, और उससे संबंधित शब्दावली से शुरू करेंगे। हम शेषफल प्रमेय और गुणनखंड प्रमेय तथा बहुपदों के गुणनखंडन में उनके उपयोग का भी अध्ययन करेंगे। उपरोक्त के अतिरिक्त, हम कुछ और बीजीय सर्वसमिकाओं और गुणनखंडन में उनके उपयोग तथा कुछ दिए गए व्यंजकों के मूल्यांकन में उनके उपयोग का अध्ययन करेंगे।

2.2 एक चर वाले बहुपद

आइए हम यह याद करके शुरू करें कि एक चर को एक प्रतीक द्वारा दर्शाया जाता है जो कोई भी वास्तविक मान ले सकता है

1 -

बीजीय व्यंजक हैं। ये सभी व्यंजक (एक स्थिरांक) × x के रूप के हैं। अब मान लीजिए कि हम एक व्यंजक लिखना चाहते हैं जो (एक स्थिरांक) × (एक चर) है और हमें स्थिरांक का मान ज्ञात नहीं है। ऐसी स्थिति में, हम स्थिरांक को a, b, c, आदि के रूप में लिखते हैं। अतः व्यंजक ax होगा।

हालाँकि, स्थिरांक को दर्शाने वाले अक्षर और चर को दर्शाने वाले अक्षर में अंतर होता है। स्थिरांकों के मान किसी विशेष परिस्थिति में समान रहते हैं, अर्थात् किसी समस्या में स्थिरांकों के मान नहीं बदलते, लेकिन चर का मान बदलता रह सकता है।

अब, 3 इकाई भुजा वाले एक वर्ग पर विचार करें (चित्र 2.1 देखें)। इसका परिमाप क्या है? आप जानते हैं कि एक वर्ग का परिमाप उसकी चारों भुजाओं की लंबाइयों का योग होता है। यहाँ, प्रत्येक भुजा 3 इकाई है। अतः इसका परिमाप 4 × 3, अर्थात् 12 इकाई है। यदि वर्ग की प्रत्येक भुजा 10 इकाई हो, तो परिमाप क्या होगा? परिमाप 4 × 10, अर्थात् 40 इकाई है। यदि प्रत्येक भुजा की लंबाई x इकाई है (चित्र 2.2 देखें), तो परिमाप 4x इकाई होगा। अतः, जैसे-जैसे भुजा की लंबाई बदलती है, परिमाप भी बदलता है।

चित्र 2.1

क्या आप वर्ग PQRS का क्षेत्रफल ज्ञात कर सकते हैं? यह एक बीजीय व्यंजक है। आप 2x, x + 4x + 7 $2 \times x \times x = x$ वर्ग इकाइयाँ. x 2 जैसे अन्य बीजीय व्यंजकों से भी परिचित हैं। ध्यान दें कि, अब तक हमने जिन सभी बीजीय व्यंजकों पर विचार किया है, उनमें चर के घातांक केवल पूर्ण संख्याएँ ही हैं। इस रूप के व्यंजकों की एक्कटेब्बद ब्राले बहुपद कहते हैं। उपरोक्त उदाहरणों में, चर x है। उदाहरण के लिए, x + 4x + 7 एक है।

x में बहुपद । इसी प्रकार, 3y चर y और t बहुपद x 2 + 2 + 5y एक बहुपद है + 4 एक बहुपद है चर t में। 2x में, व्यंजक x 2 और 2x

2

बहुपद के पद कहलाते हैं। इसी प्रकार, बहुपद 3y 2 + 5y + 7 के तीन पद हैं, अर्थात् 3y

7x – 2 ? इस बहुपद का मान 7 है। क्या आप बहुपद –x के 4 पद, अर्थात् –x लिख सकते हैं? बहुपद के प्रत्येक पद का एक

x = x = 1 (याद रखें, x = 0 = 1). क्या आप x + i + x का गुणांक जानते हैं ? यह -1 है।

2 भी एक बहुपद है। वास्तव में, 2, -5, 7, आदि अचर बहुपदों के उदाहरण हैं। अचर बहुपद 0 को शून्य बहुपद कहते हैं। यह सभी बहुपदों के संग्रह में बहुत महत्वपूर्ण भूमिका निभाता है, जैसा कि आप उच्च कक्षाओं में देखेंगे।

अब, बीजीय व्यंजकों पर विचार करें जैसे कि x +

मुझे पता है कि आप x + लिख सकते हैं

— = x + x −1? यहाँ, दूसरे पद का घातांक, अर्थात्,

···--1 = -1, जो एक पूर्ण संख्या नहीं है। इसलिए, यह बीजीय व्यंजक एक बहुपद नहीं है।

पुनः, x+3 को $\sqrt{x+3}$ के रूप में लिखा जा सकता है । यहाँ x का घातांक है

1 — , जो है 2

पूर्ण संख्या नहीं है। तो क्या x + 3 एक बहुपद है $\sqrt[3]{}$ नहीं, यह नहीं है। इसके बारे में क्या? $\sqrt[3]{}$ y + y 2? यह भी एक बहुपद नहीं है (क्यों?)।

यदि किसी बहुपद में चर x है, तो हम बहुपद को p(x), या q(x), या r(x), आदि से निरूपित कर सकते हैं। इसलिए, उदाहरण के लिए, हम लिख सकते हैं: $p(x) = 2x \ 2 + 5x - 3$

कोई भी (परिमित) संख्या हो सकती है। उदाहरण के लिए, x 150 + x 149 + 2 + x + 1 एक बहुपद है जिसमें 151 पद हैं। + x बहुपद 2x, 2, 5x पर विचार करें।

 3 , $^{-5x}$ 2 , y और u 4 क्या आप देखते हैं कि इनमें से प्रत्येक बहुपद में केवल एक ही पद है? जिन बहुपदों में केवल एक ही पद होता है, उन्हें एकपद कहते हैं ('मोनो' का अर्थ 'एक' होता है)।

इसी प्रकार, केवल तीन पदों वाले बहुपदों को त्रिपद कहा जाता है ('त्रि' का अर्थ है 'तीन')। त्रिपद के कुछ उदाहरण हैं

पी(एक्स) = एक्स + एक्स
2
 + पी, $q(x) = 2 + \sqrt{-x} + x + y + 5$. 2 $r(u) = u + u$ अब, $^2 - 2$, $t(y) = y$

बहुपद p(x) = 3x 7 - 4x 6 + x + 9 को देखें। x की उच्चतम घात वाला पद क्या है ? यह 3x 7 है। इस पद में x का घात 7 है। इसी प्रकार, -6 में, y की उच्चतम घात वाला पद 5y 6 है और

बहुपद q(y) = 5y, इस पद में y का 6 - 4 वर्ष 2

घात 6 है। किसी बहुपद में चर की उच्चतम घात को हम बहुपद की घात कहते हैं। अतः, बहुपद 3x 7 – 4x 6 + x + 9 की घात 7 है और बहुपद 5y अचर बहुपद की घात शुन्य है।

उदाहरण 1: नीचे दिए गए प्रत्येक बहुपद की घात ज्ञात कीजिए: (i) x

5
 - $_{\text{vort}}$ 4 + 3 (ii) 2 - y 2 y 3 + 2y - 8 (iii) 2

हल : (i) चर की उच्चतम घात 5 है। अतः बहुपद की घात 5 है।

(ii) चर की उच्चतम घात 8 है। अतः बहुपद की घात 8 है। (iii) यहाँ एकमात्र पद 2 है जिसे 2x 0 के रूप में लिखा जा सकता है। अतः x का घात 0 है।

इसलिए, बहुपद की घात 0 है।

अब बहुपदों p(x) = 4x + 5, q(y) = 2y, r(t) = t + 2 और s(u) = 3 − u का अवलोकन करें। क्या आपको इन सभी में र्र्जुछ समान दिखाई देता है? इनमें से प्रत्येक बहुपद की घात एक है। घात एक वाले बहुपद को रैखिक बहुपद कहते हैं।

एक चर वाले कुछ और रैखिक बहुपद 2x − 1, 2y + 1, 2 − u हैं । अब, x में 3 पदों वाला एक र्रैखिक बहुपद ज्ञात करने का प्रयास करें? आप इसे नहीं ज्ञात कर पाएँगे क्योंकि x में एक रैखिक बहुपद में अधिकतम दो पद हो सकते हैं। अतः, x में कोई भी रैखिक बहुपद ax + b के रूप का होगा , जहाँ a और b अचर हैं और a ≠0 (क्यों?)। इसी प्रकार, ay + b, y में एक रैखिक बहुपद है।

अब बहुपदों पर विचार करें:

क्या आप इस बात से सहमत हैं कि ये सभी दो घात के हैं? दो घात वाले बहुपद को कहते हैं एक द्विघात बहुपद। द्विघात बहुपद के कुछ उदाहरण हैं 5 - y + 5y के 2 और $6 - y - y 4y^2$ क्या आप एक चर वाले चार द्विघात बहुपद लिख सकते हैं?

अलग-अलग पद क्या हैं? आप पाएँगे कि एक चर वाले द्विघात बहुपद में अधिकतम 3 पद होंगे। यदि आप कुछ और द्विघात बहुपदों की सूची

बनाएँ, तो आप पाएँगे कि x में कोई भी द्विघात बहुपद ax2 + bx + c के रूप का होता है , जहाँ a ≠0 और a, b, c अचर हैं। इसी प्रकार, y में द्विघात बहपद ay2 + by + c के रूप का होगा , बशर्ते a ≠0 और a, b, c अचर हों।

हम तीन घात वाले बहुपद को त्रिघाती बहुपद कहते हैं। 2x 3 + 4x 2 + 6x + 7 के कुछ उदाहरण । कैसे 2 , 6x3-x, 6-xx में त्रिघात बहपद 4x 3 हैं । आपको क्या , 2x 3 + 1, 5x 3 + x लगता है कि एक चर वाले त्रिघात बहुपद में कितने पद हो सकते हैं? इसमें अधिकतम 4 पद हो सकते हैं। इन्हें ax3 + bx2 + cx + d के रूप में लिखा जा सकता है, जहाँ a =/0 और a, b, c और d अचर हैं।

अब, जब आपने देख लिया है कि घात 1, घात 2, या घात 3 वाला बहुपद कैसा दिखता है, तो क्या आप किसी भी प्राकृत संख्या n के लिए घात n वाले एक चर वाला बहुपद लिख सकते हैं? घात n वाले एक चर x वाला बहुपद इस रूप का व्यंजक होता है।

x जहां a0, a1, a2, ..., an स्थिरांक हैं और an =/0.

विशेष रूप से, यदि a0 = a1 = a2 = a3 = = an = 0 (सभी स्थिरांक शून्य हैं), तो हमें शून्य बहुपद प्राप्त होता है, जिसे 0 से दर्शाया जाता है। शून्य बहुपद की घात क्या है? शून्य बहुपद की घात परिभाषित नहीं है।

अभी तक हमने केवल एक चर वाले बहुपदों पर ही चर्चा की है। हम + xyz (जहाँ चर + r (जहाँ चर u और v हैं) भी प्राप्त कर सकते हैं। एक से अधिक चर वाले बहुपद। उदाहरण के लिए, x (x, y और z) तीन चरों वाला एक बहुपद है। इसी 2 + और 2 प्रकार, p चर क्रमशः p, q और r) हैं, u क्रमशः तीन और दो चर हैं। आप आगे ऐसे बहुपदों का विस्तार से अध्ययन करेंगे 2 + क्यू 10 3 + में 2

अभ्यास 2.1

1. निम्नलिखित में से कौन-से व्यंजक एक चर वाले बहुपद हैं और कौन-से नहीं? अपने उत्तर के लिए कारण बताइए।

(i)
$$4x$$
 $^2 - 3x + 7$ (ii) $aiff$ $^2 + 2\sqrt{2}$ (iii) $3\sqrt{a} + \sqrt{2}$ (iv) $aff + \sqrt{2}$ (iv) $aff + \sqrt{2}$ (v) $x + 10 + y + 3 + t$

2. निम्नलिखित में से प्रत्येक में x 2 के गुणांक लिखिए :

(i)
$$2 + x$$
 $\frac{2 + var}{2}$ (ii) $2 - x$ $\frac{2 + var}{2}$ (iii) $\frac{vfl_2}{2} \times xx$ (iv) $2 + x = 1$

- 3. घात 35 वाले द्विपद तथा घात 100 वाले एकपदी का एक-एक उदाहरण दीजिए।
- 4. निम्नलिखित बहुपदों में से प्रत्येक की घात लिखिए:

5. निम्नलिखित को रैखिक, द्विचात और त्रिघात बहुपदों के रूप में वर्गीकृत करें:

(i)
$$x$$
 (v) 2 + 1 y + y (vi) 2 + 4 (iv) $1 + x$ 3t 3t 3f 2 7x 3

2.3 बहुपद के शून्यक

बहुपद
$$p(x) = 5x$$
 पर विचार करें $3 - 2x^2 + 3x - 2x^3$

यदि हम p(x) में हर जगह x को 1 से प्रतिस्थापित करते हैं, तो हमें $p(1) = 5 \times (1)3 - 2 \times (1)2 +$

इसलिए, हम कहते हैं कि x = 1 पर p(x) का मान 4 है। p(0) = 5(0)3 - 2(0)2

क्या आप p(-1) ज्ञात कर सकते हैं?

उदाहरण 2: चरों के दर्शाए गए मान पर निम्नलिखित बहुपदों में से प्रत्येक का मान ज्ञात कीजिए:

(i)
$$p(x) = 5x$$
 (ii) $q(y) = {}^{2} - 3x + 7 \text{ ut } x = 1.$
 $3y$ (iii) $p(t) = 4t + 5t = {}^{3} - 4y + 11 \text{ ut} \sqrt{y} = 2.$
 $32 + 6t = a - t \text{ ut}$

$$^{2} - 3x + 7$$

x = 1 पर बहुपद p(x) का मान p(1) = 5(1)2 - 3(1) + 7 द्वारा दिया गया है

$$= 5 - 3 + 7 = 9$$

(ii)
$$q(y) = 3y$$

3
 - 4y + 11 $\sqrt{}$

y = 2 पर बहुपद q(y) का मान निम्न प्रकार दिया गया है

$$q(2) = 3(2)3 - 4(2) + 11 = 24 - 8\sqrt{11} = 16 + 11$$

 $\sqrt{}$

(iii) p(t) = 4t 4 + 5t 3

t = a पर बहुपद p(t) का मान निम्न प्रकार दिया गया है

पी(ए) =
$$4$$
ए $4 + 5$ ए 3 $-$ ए $2 + 6$

अब, बहुपद p(x) = x – 1 पर विचार करें।

p(1) क्या है ? ध्यान दें: p(1) = 1 - 1 = 0.

चूँिक p(1) = 0, हम कहते हैं कि 1 बहुपद p(x) का शून्य है।

इसी प्रकार, आप जाँच सकते हैं कि 2, q(x) का शून्य है, जहाँ q(x) = x - 2 है।

सामान्यतः हम कहते हैं कि बहुपद p(x) का शून्यक एक संख्या c है जिससे p(c) = 0 होता है।

आपने देखा होगा कि बहुपद x-1 का शून्यक इसे 0 के बराबर करके प्राप्त किया जाता है, अर्थात, x-1=0, जो x=1 देता है। हम कहते हैं कि p(x)=0 एक बहुपद समीकरण है और 1 बहुपद समीकरण p(x)=0 का मूल है। इसलिए हम कहते हैं कि 1 बहुपद x-1 का शून्यक है , या बहुपद समीकरण x-1=0 का मूल है ।

अब, अचर बहुपद 5 पर विचार करें। क्या आप बता सकते हैं कि इसका शून्यक क्या है? इसका कोई शून्यक नहीं है क्योंकि 5x 0 में x को किसी भी संख्या से बदलने पर भी हमें 5 ही प्राप्त होता है। वास्तव में, एक शून्येतर अचर बहुपद का कोई शून्यक नहीं होता। शून्यक बहुपद के शून्यकों के बारे में क्या? परंपरा के अनुसार, प्रत्येक वास्तविक संख्या शुन्यक बहुपद का एक शून्यक होती है।

उदाहरण 3: जाँच कीजिए कि क्या -2 और 2 बहुपद x + 2 के शून्यक हैं।

हल : मान लीजिए p(x) = x + 2.

तब p(2) = 2 + 2 = 4, p(-2) = -2 + 2 = 0 इसलिए, -2 बहुपद x + 2

का शून्य है , लेकिन 2 नहीं है।

उदाहरण 4 : बहुपद p(x) = 2x + 1 का शून्यक ज्ञात कीजिए ।

समाधान: p(x) का शून्य ज्ञात करना , समीकरण को हल करने के समान है

पी(एक्स) = 0

अब, $2x + 1 = 0 \; ह \vec{H} \; x = देता \; \hat{R}$

 $\frac{1}{2}$ बहुपद 2x + 1 का शून्यक है ।

अब, यदि p(x)=ax+b, $a\neq 0$, एक रैखिक बहुपद है, तो हम इसका शून्यक कैसे ज्ञात कर सकते हैं? p(x)? उदाहरण a से आपको कुछ समझ आ गई होगी। बहुपद a0 का शून्यक ज्ञात करने पर , बहुपद समीकरण a1 के बराबर है।

अब, p(x) = 0 का अर्थ है

$$ax + b = 0, a \neq 0$$

इसलिए,

$$ax = -b$$

वह है,

अतः, x = -p(x) का एकमात्र शून्यक है , अर्थात्, एक रैखिक बहुपद में एक और केवल एक शून्यक होता है। अब हम कह सकते हैं कि 1, x - 1 का शून्य है , और -2, x + 2 का शून्य है ।

उदाहरण 5: सत्यापित करें कि क्या 2 और 0 बहुपद x के शून्यक हैं

² – 2x.

हल: मान लीजिए

तब

$$f(2) = 2$$
 $2 - 4 = 4 - 4 = 0$

और

अतः, 2 और 0 दोनों बहुपद x के शून्यक हैं आइये अब हम अपने अवलोकनों को सूचीबद्ध करें:

- - ZX
- (i) किसी बहुपद का शून्यक 0 होना आवश्यक नहीं है।
- (ii) 0 किसी बहुपद का शून्यक हो सकता है।
- (iii) प्रत्येक रैखिक बहुपद में एक और केवल एक शून्य होता है।
- (iv) एक बहुपद में एक से अधिक शून्य हो सकते हैं।

अभ्यास 2.2

1. बहुपद 5x – 4x का मान ज्ञात कीजिए

(i) x = 0 (ii) x = -1 2. निम्नलिखित बहुपदों में से प्रत्येक के

लिए p(0), p(1) और p(2) ज्ञात कीजिए:

(iii) x = 2

(iii) पी(x) = x ³

(iv) पी(x) = (x - 1)(x + 1)

3. सत्यापित करें कि क्या निम्नलिखित उनके सामने दर्शाए गए बहुपद के शून्यक हैं।

(vii)
$$p(x) = 3x$$
 $\frac{2}{\sqrt{3}}, x = \frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ (viii) $p(x) = 2x + 1, x = 2$

4. निम्नलिखित प्रत्येक स्थिति में बहुपद का शून्यक ज्ञात कीजिए: (i) p(x) = x + 5 (iii) p(x) = 2x + 5 (iv) p(x) = 3x - 2 (vi)

= 3x

2.4 बहपदों का गुणनखंडन

आइए अब ऊपर दिए गए उदाहरण 10 की स्थिति को और गौर से देखें। यह हमें बताता है कि चूँकि 🛭 🗈 🗎 🗎 – = 0, (2t + 1) q(t) का एक गुणनखंड है , अर्थात,

किसी बहुपद g(t) के लिए। यह निम्नलिखित प्रमेय का एक विशेष मामला है।

गुणनखंड प्रमेय: यदि p(x) घात n>1 का एक बहुपद है और a कोई वास्तविक संख्य<u>ा है</u>, तो (i) x-a, p(x) का एक गुणनखंड है , यदि p(a)=0, और (ii) p(a)=0, यदि x-a, p(x) का एक गुणनखंड है ।

प्रमाण: शेषफल प्रमेय द्वारा, p(x)=(x-a) q(x) + p(a).

(i) यदि p(a) = 0, तो $p(x) = (x - a) \ q(x)$, जो दर्शाता है कि x - a, p(x) का एक गुणनखंड है । (ii) चूँिक x - a, p(x) का एक गुणनखंड है , समान बहुपद g(x) के लिए $p(x) = (x - a) \ g(x)$ ।

उदाहरण 6 : जाँच कीजिए कि क्या x + 2, x 3 + 3x 2 + 5x + 6 और 2x + 4 का एक गुणनखंड है ।

हल : x + 2 का शून्यक -2 है। मान लीजिए p(x) = x 3 + 3x 2 + 5x + 6 और s(x) = 2x + 4

तो, कारक प्रमेय द्वारा, x + 2, x का एक कारक है फिर, s(-2) = 2(-2) + 4 = 0 $^3 + 3x$ $^2 + 5x + 6$. तो, x + 2, 2x + 4 का एक कारक है । वास्तव में, आप कारक प्रमेय को लागू किए बिना इसकी जांच कर सकते हैं, क्योंकि 2x + 4 = 2(x + 2)।

उदाहरण 7 : k का मान ज्ञात कीजिए , यदि x – 1, 4x का एक गुणनखंड है

हल : चुँकि x - 1 , p(x) = 4x का एक गुणनखंड है

$$^{3} + 3x^{2} - 4x + k$$
, $p(1) = 0$ $p(1) = 4(1)3$

अब.

अतः,

अब हम घात 2 और 3 वाले कुछ बहुपदों का गुणनखंडन करने के लिए गुणनखंड प्रमेय का उपयोग करेंगे।

आप 2 + |x + m| जैसे द्विघाती बहुपद के गुणनखंडन से पहले से ही परिचित हैं । आपने मध्य पद |x + m| |x + m| के रूप में विभाजित करके इसका गुणनखंडन किया था तािक |x + m| ति |x + m| ति

मध्य पद को विभाजित करके बहुपद ax2 + bx + c का गुणनखंडन इस प्रकार है:

मान लीजिए इसके गुणनखंड (px + q) और (rx + s) हैं। तब ax2 + bx +

$$c = (px + q) (rx + s) = pr x^2 + (ps + qr) x + qs$$

x के गुणांकों की तुलना करने पर इसी प्रकार, x के 2 , हमें a = pr मिलता है

गुणांकों की तुलना करने पर , हमें b = ps + qr प्राप्त होता है।

और, स्थिर पदों की तुलना करने पर, हमें c = qs प्राप्त होता है।

इससे हमें पता चलता है कि b दो संख्याओं ps और qr का योग है , जिनका गुणनफल (ps)(qr) = (pr)(qs) = ac है।

इसलिए, ax2 + bx + c का गुणनखंड करने के लिए, हमें b को दो के योग के रूप में लिखना होगा वे संख्याएँ जिनका गुणनफल ac है। यह उदाहरण 13 से स्पष्ट होगा।

उदाहरण 8: मध्य पद को विभाजित करके और गुणनखंड प्रमेय का उपयोग करके 6x 2 + 17x + 5 का गुणनखंडन करें ।

समाधान 1: (विभाजन विधि द्वारा): यदि हम दो संख्याएँ p और q ज्ञात कर सकें जिससे p+q=17 और $pq=6\times 5=30$ हो, तो हम गुणनखंड प्राप्त कर सकते हैं।

तो, आइए 30 के गुणनखंडों के जोडे देखें। कुछ हैं 1 और 30, 2 और 15, 3 और 10, 5 और 6। इन जोडों में से, 2 और 15 हमें p + q = 17 देंगे।

तो,
$$6x$$
 $^2 + 17x + 5 = 6x$ $^2 + (2 + 15)x + 5$ $= 6x$ $^2 + 2x + 15x + 5$ $= 2x(3x + 1) + 5(3x + 1)$ $= (3x + 1)(2x + 5)$

समाधान 2 : (कारक प्रमेय का उपयोग करके)

$$6x\ 2 + 17x + 5 = 6(x - a)\ (x - b)$$
. अतः, $ab = \frac{5}{6}$ आइए हम a और a के लिए कुछ संभावनाओं पर नज़र डालें

ख. वे हो सकते हैं
$$\pm \pm \pm \pm 3$$
 ब, -2 , ± 3 ब, -2 , ± 3 व. -2 , ± 4 हो सकते हैं ± 4 हे ± 4 हे ± 4 हे ± 4 है ± 4 है है ± 4 है है ± 4 ह

उपरोक्त उदाहरण के लिए, विभाजन विधि का उपयोग अधिक कुशल प्रतीत होता है। हालाँकि, आइए एक और उदाहरण पर गौर करें।

उदाहरण 9 : y का गुणनखंड कीजिए ² – 5y + 6 को गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए।

हल : मान लीजिए p(y) = y $^2 - 5y + 6$. अब, यदि p(y) = (y - a) (y - b), तो आप जानते हैं कि

अचर पद ab होगा । अतः, ab = 6. अतः, p(y) के गुणनखंडों को देखने के लिए , हम 6 के कारक.

6 के गुणनखंड 1, 2 और 3 हैं।

अतः y – 2 , p(y) का एक गुणनखंड है।

साथ ही, p(3) = 32 - (5 × 3) + 6 = 0

अतः y – 3 भी y का एक गुणनखंड है

2
 – 5y + 6.

दसलिए v

2
 - 5y + 6 = (y - 2)(y - 3)

ध्यान दें कि y अब, 2 – 5y + 6 को मध्य पद –5y को विभाजित करके भी गुणनखंडित किया जा सकता है।

आइए त्रिघात बहुपदों के गुणनखंडन पर विचार करें। यहाँ, विभाजन विधि शुरू करने के लिए उपयुक्त नहीं होगी। हमें पहले कम से कम एक गुणनखंड ज्ञात करना होगा, जैसा कि आप निम्नलिखित उदाहरण में देखेंगे।

उदाहरण 10 : x का गुणनखंड कीजिए

हल : मान लीजिए p(x) = x

अब हम –120 के सभी गुणनखंडों को देखेंगे। इनमें से कुछ हैं ±1, ±2, ±3,

परीक्षण से, हम पाते हैं कि p(1)=0. अतः x-1 , p(x) का एक गुणनखंड है ।

अब हम देखते हैं कि x

$$3 - 23x 2 + 142x - 120 = x$$

हम इसे p(x) को x-1 से विभाजित करके भी प्राप्त कर सकते थे ।

अब x 2 – 22x + 120 को या तो मध्य पद को विभाजित करके या का उपयोग करके कारक बनाया जा सकता है

गुणनखंड प्रमेय। मध्य पद को विभाजित करने पर, हमें यह प्राप्त होता है:

$$\frac{2}{x^{2}} - 22x + 120 = x$$

$$= x(x - 12) - 10(x - 12) = (x - 12)(x - 10)$$

रमित

3
 - 23x 2 - 142x - 120 = (x - 1)(x - 10)(x - 12)

अभ्यास 2.3

1. निर्धारित करें कि निम्नलिखित बहुपदों में से किसका गुणनखंड (x + 1) है:

2. गुणनखंड प्रमेय का उपयोग करके निर्धारित करें कि क्या निम्नलिखित प्रत्येक स्थिति में g(x), p(x) का एक गुणनखंड है : (i) $p(x) = 2x \ 3 + x$

2
 - 2x - 1, g(x) = x + 1

3. k का मान ज्ञात कीजिए , यदि निम्नलिखित प्रत्येक स्थिति में x – 1 , p(x) का एक गुणनखंड है : + x + k

(i)
$$p(x) = x$$
 (iii) $p(x)^2$ (ii) $f(x) = 2x$ $x^2 + kx + 2$ (iv) $f(x) = kx^2 - 2x + 1$ $f(x) = kx^2 - 3x + k$

4. गुणनखंड करें :

(i)
$$12x$$
 $^2 - 7x + 1$ (ii) $2x$ $^2 + 7x + 1$ (iii) $6x$ $^2 + 5x - 6$ (iv) $3x$ $^2 - x - 4$

5. गुणनखंड करें :

(i)
$$\times$$
 3 + 3 - 2 \times 2 - \times + 2 (ii) \times 3 3 - 3 \times 2 - 9 \times - 5 13 \times (iii) \times 2 + 32 \times + 20 2 \times + \times (iv) 2 - 2 \times - 1

2.5 बीजीय सर्वसमिकाएँ

अपनी पिछली कक्षाओं से, आपको याद होगा कि एक बीजीय सर्वसमिका एक बीजीय समीकरण होती है जो उसमें आने वाले चरों के सभी मानों के लिए सत्य होती है। आपने पिछली कक्षाओं में निम्नलिखित बीजीय सर्वसमिकाओं का अध्ययन किया है: 2 + 2xy + y

सर्वसिमका
$$I: (x+y)$$
 $^2 = var$ 2 सर्वसिमका $II: (x-y)$ $^2 = var$ $^2 - 2xy + y$ 2 सर्वसिमका $II: x$ सर्वसिमका $II: x$ सर्वसिमका $IV: ^2 - silt x$ $^2 = (x+y)(x-y)$

(x + a)(x + b) = x 2 + (a + b)x + ab आपने बीजीय व्यंजकों के गुणनखंडन के लिए इनमें से कुछ बीजीय

सर्वसमिकाओं का भी उपयोग किया होगा। आप गणनाओं में भी इनकी उपयोगिता देख सकते हैं।

उदाहरण 11: उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए: (ii) (x - 3) (x + 5)

(i)
$$(x + 3) (x + 3)$$

हल : (i) यहाँ हम सर्वसमिका I : (x + y) का उपयोग कर सकते हैं, हमें प्राप्त होता है

$$2 = var$$
 $2 + 2xy + y$ $2 = 3 + 2xy + y$ $2 = 3 + 2xy + y$

$$(x + 3) (x + 3) = (x + 3)2 = x$$

= $\sqrt{3} + 2(x)(3) + (3)2$

(ii) उपरोक्त सर्वसमिका IV का उपयोग करने पर, अर्थात्, (x + a) (x + b) = x 2 + (a + b)x + ab, हमें प्राप्त होता है

$$2 + 2x - 15$$
 $2 + (-3 + 5)x + (-3)(5)(x - 3)(x + 5) = x$ = vare

उदाहरण 12 : सीधे गुणा किए बिना 105 × 106 का मान ज्ञात कीजिए।

समाधान : $105 \times 106 = (100 + 5) \times (100 + 6)$ $= (100)2 + (5 + 6) (100) + (5 \times 6), सर्वसिमका IV का उपयोग करते हुए$ = 10000 + 1100 + 30

= 11130

आपने ऊपर सूचीबद्ध सर्वसमिकाओं के कुछ उपयोगों को कुछ सर्वसमिकाओं के गुणनफल ज्ञात करने में देखा है।

दिए गए व्यंजक। ये सर्वसमिकाएँ बीजीय व्यंजकों के गुणनखंडन में उपयोगी होती हैं

जैसा कि आप निम्नलिखित उदाहरणों में देख सकते हैं।

उदाहरण 13 : गुणनखंड करें:

(i) 49a 2 + 70ab + 25b 2 (ii)
$$\frac{252}{4}$$
 एक्स - $\frac{35}{9}$

हल : (i) यहाँ आप देख सकते हैं कि

$$49$$
ए 2 = $(7$ ए) 2 , 2 5बी 2 = $(5$ बी) 2 , 2 70 एखी = 2 70 (5बी)

दिए गए व्यंजक की x से तुलना करने पर

पहचान I का उपयोग करके, हम पाते हैं

(ii) हमारे पास है
$$\frac{252}{4}$$
 $\frac{2}{\sqrt{3}}$ $\frac{2}{\sqrt{3}}$ $\frac{5}{\sqrt{2}}$ $\frac{5}{\sqrt{2}}$ $\frac{2}{\sqrt{3}}$ $\frac{5}{\sqrt{3}}$ $\frac{2}{\sqrt{3}}$

अब इसकी तुलना पहचान III से करने पर, हमें प्राप्त होता है

$$\frac{25}{4} = \frac{2}{9} = \frac{\cancel{5} \cancel{0} \cancel{0} \cancel{0} \cancel{0}}{\cancel{3} \cancel{0} \cancel{0}} = \frac{\cancel{3} \cancel{0} \cancel{0}}{\cancel{3}} = \frac{\cancel{5} \cancel{0} \cancel{0} \cancel{0}}{\cancel{3} \cancel{0}} = \frac{\cancel{5}}{\cancel{0}} = \frac{\cancel{5}}{\cancel{0}} = \frac{\cancel{0}}{\cancel{0}} = \frac{\cancel{0}}{\cancel{0$$

अब तक, हमारी सभी सर्वसमिकाओं में द्विपदों के गुणनफल शामिल थे। आइए अब सर्वसमिका को आगे बढ़ाते हैं

I को त्रिपद x + y + z में बदलें। हम (x + y + z) की गणना करेंगे 2 पहचान I का उपयोग करके.

मान लीजिए x + y = t. तब,

2
 2

तो, हमें निम्नलिखित पहचान मिलती है: 2 + y 2 + z 2 + 2xy +

सर्वसमिका V:
$$(x + y + z)$$
 $2 = \sqrt{q}$ 2yz + 2zx

टिप्पणी: हम दाएँ पक्ष के व्यंजक को बाएँ पक्ष के व्यंजक का विस्तारित रूप कहते हैं। ध्यान दें कि (x + y + z) 2 के विस्तार में तीन वर्ग पद और तीन गुणनफल पद होते हैं।

उदाहरण 14 : (3a + 4b + 5c) 2 को विस्तारित रूप में लिखें।

हल : दिए गए व्यंजक की तुलना (x + y + z) से करने पर

2 हम पाते हैं कि

इसलिए, सर्वसमिका V का उपयोग करते हुए, हमारे पास = (3a) है

$$(3 \triangledown + 4 \vec{a} \vec{l} + 5 \vec{t} \vec{l})$$

$$2 \qquad 2 \qquad + (4 \vec{a} \vec{l}) \qquad 2 \qquad + (5 \vec{t} \vec{l}) \qquad 2 \qquad + 2(3 \nabla)(4 \vec{a} \vec{l}) + 2(4 \vec{a} \vec{l})(5 \vec{t} \vec{l}) + 2(5 \vec{t} \vec{l})(3 \nabla)$$

$$= 9 \ \nabla \ 2 + 16 \vec{a} \vec{l} \ 2 + 25 \ \vec{t} \vec{l} \ 2 + 24 \nabla \vec{a} \vec{l} + 40 \vec{a} \vec{l} \vec{t} \vec{l} + 30 \nabla \vec{t} \vec{l}$$

उदाहरण 15 : (4a – 2b – 3c) का विस्तार करें

2.

हल: सर्वसिमका V का उपयोग करते हुए, हमारे पास है = [4a + (-2b) + (-

उदाहरण 16 : 4x 2 + y 2 + z का गुणनखंड कीजिए

हल : हमारे पास 4x है

2(-y)(z) + 2(2x)(z)

=
$$[2x + (-y) + z] = (2x - y + {}^{2}$$
 (सर्वसमिका \forall का प्रयोग करके) = $(2x - y + z)(2x - y + z)$

अब तक हमने द्वितीय घात पदों वाली सर्वसमिकाओं पर विचार किया है। अब आइए... हमारे पास है:

(x + y) की गणना करने के लिए पहचान I का विस्तार करें

(एक्स + वाई)
$$\frac{3}{2} = (x + y)(x + y) = (x + y)(x^2 + 2xy + y) = (x + y)(x^2 + 2xy + y)$$
 $\frac{2}{3} = \sqrt{2}$ $+ y(x^2 + 2xy + y)$ $\frac{2}{3} = \sqrt{2}$ $+ 2x^2 + 2xy + y$ $\frac{2}{3} = \sqrt{2}$ $+ 3x^2 + 3x^2$

तो, हमें निम्नलिखित पहचान मिलती है:

साथ ही, पहचान VI में y को -y से प्रतिस्थापित करने पर, हमें प्राप्त होता है

सर्वसमिका VII :
$$(x - y)$$
 $\frac{3}{\sqrt{2}} = \sqrt{2} \pi x^3 - 3xy(x - y) - 3x 2y + \frac{3}{\sqrt{2}} = \sqrt{2} \pi x^3 - 3xy(x - y) - 3x 2y + \frac{3}{\sqrt{2}} = \sqrt{2} \pi x^3 +$

उदाहरण 17 : निम्नलिखित घनों को विस्तारित रूप में लिखिए: (i) (3a + 4b) (ii) (5p - 3q)

हल : (i) दिए गए व्यंजक की तुलना (x + y) x = 3a और y = 4b से करने पर। $\frac{3}{7}$, हम पाते हैं कि

3

अतः, सर्वसमिका VI का उपयोग करने पर, हमें प्राप्त होता है: (3a +

(ii) दिए गए व्यंजक की तुलना (x – y) x = 5p, y = 3q से करने पर।

³ हम पाते हैं कि

3

अतः, पहचान VII का उपयोग करते हुए, हमारे पास है:

$$(5\text{tfl} - 3\text{arg})$$
 $= (5\text{tfl})$ $= (3\text{arg})$ $= (3\text{arg})$ $= -3\text{arg}$ $= -3$

उदाहरण 18: उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित में से प्रत्येक का मूल्यांकन करें: (i) (104)3

(ii) (999)3

हल : (i) हमारे पास है

(पहचान VI का उपयोग करके)

= 1000000 + 64 + 124800

= 1124864

(ii) हमारे पास है

= 997002999

⁴⁰ अंक शास्त्र

उदाहरण 19 :
$$8x$$
 का गुणनखंड कीजिए $\begin{pmatrix} 3 \\ +27 \end{pmatrix}$ वर्ष $\begin{pmatrix} 3 \\ +36x \end{pmatrix}$ $\begin{pmatrix} 2 \\ y +54xy2 \end{pmatrix}$

हल : दी गई अभिव्यक्ति को (2x) 3 + (3y) 3 + 3(4x = (2x) 3 + (3y) 3 + 3(2x) के रूप में लिखा जा

2

अब (x + y + z)(x) पर विचार करें

विस्तार करने पर, हमें उत्पाद इस प्रकार मिलता है

तो, हमें निम्नलिखित पहचान प्राप्त होती है:

समाधान : यहाँ, हमारे पास है

$$8x 3 + y 3 + 27z 3 - 18xyz 3 + y 3 +$$

$$+ 3z)[(2x) (3z) = (2x) = (2x + y^{3} - 3(2x)(y)(3z)$$

$$2 + y 2 + (3z) = (2x + y + 3z) (4x 2 + y 2 + 9z 2 - 2xy - 2 - (2x)(y) - (y)(3z) - (2x)(3z)]$$

$$3yz - 6xz)$$

अभ्यास 2.4

1. निम्नलिखित गुणनफल ज्ञात करने के लिए उपयुक्त सर्वसमिकाओं का प्रयोग करें:

(i)
$$(x + 4) (x + 10)$$
 (ii) $(x + 8) (x - 10)$ (iii) $(3x + 4) (3x - 5)$
(iv) $(3 + 2) (3 + 2)$ (v) $(3 - 2x) (3 + 2x)$

2. सीधे गुणा किए बिना निम्नलिखित उत्पादों का मूल्यांकन करें:

3. उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित का गुणनखंडन कीजिए:

4. उपयुक्त सर्वसमिकाओं का प्रयोग करते हुए निम्नलिखित में से प्रत्येक का विस्तार कीजिए: (ii) (2x – y + z)

(v) (-2x + 5y - 3z)

5. गुणनखंडन:

6. निम्नलिखित घनों को विस्तारित रूप में लिखिए:

7. उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित का मूल्यांकन करें: (i) (99)3 (ii) (102)3 8.

(iii) 27 - 125a 3 - 135a + 225a

(v)
$$27 \text{ th}$$
 3 - $\frac{1}{216}$ - $\frac{9}{4}$ 2 1 $\frac{1}{4}$

9. सत्यापित करें: (i)
$$x 3 + y 10$$
. $3 = (x + y)(x$ $2 - xy + y$ 2) (ii) एक्स 3 $_{3- alt}$ $= (x - y)(x$ $2 + xy + y$ 2

निम्नलिखित में से प्रत्येक का गुणनखंड करें: (ii) 64m3 – 343n 3

[संकेत : प्रश्न 9 देखें।]

11. गुणनखंड कीजिए : 27x 3 + y 3 + z

वास्तविक गणना किए बिना, निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए: (i) (-12)3 + (7)3 + (5)3 (ii) (28)3 + (-15)3 + (-13)3

15. निम्नलिखित में से प्रत्येक की लंबाई और चौड़ाई के लिए संभावित व्यंजक दीजिए आयत, जिनमें उनके क्षेत्रफल दिए गए हैं:

16. नीचे दिए गए घनाभों के आयतनों के आयामों के लिए संभावित व्यंजक क्या हैं?

वॉल्यूम : 3x ² – 12x आयतन : 12ky2 + 8ky – 20k

2.6 सारांश

इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है: 1. एक चर x में एक बहुपद p(x), x में एक

बीजीय व्यंजक है जिसका रूप है

- 2. एक पद वाले बहुपद को एकपदी कहते हैं।
- 3. दो पदों वाले बहुपद को द्विपद कहते हैं।
- 4. तीन पदों वाले बहुपद को त्रिपद कहते हैं।
- 5. घात एक वाले बहुपद को रैखिक बहुपद कहते हैं।
- 6. दो घात वाले बहुपद को द्विघात बहुपद कहते हैं।
- 7. तीन घात वाले बहुपद को त्रिघाती बहुपद कहते हैं।
- एक वास्तविक संख्या 'a' बहुपद p(x) का शून्यक है यदि p(a) = 0. इस स्थिति मैं, a को भी कहा जाता है समीकरण p(x) का मूल = 0.
- 9. एक चर वाले प्रत्येक रेखिक बहुपद का एक अद्वितीय शून्य होता है, शून्येतर स्थिर बहुपद का कोई शून्य नहीं होता है, तथा प्रत्येक वास्तविक संख्या शून्य बहुपद का एक शून्य होती है।
- 10. गुणनखंड प्रमेय: x a बहुपद p(x) का एक गुणनखंड है, यदि p(a) = 0. साथ ही, यदि x a एक गुणनखंड है

14.
$$x + y + z$$
 3 - 3 $xyz = (x + y + z)(x$ 2 + $ant^2 + ant^2 - xy - yz - zx)$