Math 102. Lab 3. Det Product ?

Roots & Unity

for vectors $\vec{X} = (X_1, X_2, ..., X_n), \vec{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, the dot product of \vec{X} and \vec{y} is the number

 $\overrightarrow{X} \cdot \overrightarrow{y} = \sum_{i=1}^{N} \chi_i y_i = \chi_i y_1 + \chi_2 y_2 + \dots + \chi_n y_n$

The norm of $\vec{X} = (x_1, x_2, ..., x_n)$ is the number $\|\vec{X}\| = (\vec{X} \cdot \vec{X})^2 = (x_1, x_2, ..., x_n)$ is the number

An introot of unity is a complex number ZEC satisfying the equation $Z^n=1$.

There are n' many nth roots of unity. Setting $w_n=e^{2\pi i/n}$. These are given by $w_n=1$, $w_n=e^{2\pi i/n}$, $w_n=e^{2\pi i/n}$. So: An nth root of unity has the form $w_n=e^{2\pi i/n}$. For some k=0,1,...,n-1.

Example: The "4" 4th roots of unity are

 $\omega_{4}^{3} = e^{2\pi 3i4} = e^{6\pi i4} = e^{2\pi i} = -i$

Example: Find the 8"8th roots of unity and plot them.

When.

When.

Im unit eircle $w_8 = w_8 = e = e$ $w_8 = w_8 = e = e$ $w_8 = e = e$