Optimisation opérationnelle des flux maritimes

Solutions algorithmiques & Application pratique

Comment <u>minimiser</u> le coût de l'itinéraire d'un navire marchand?

- 1. Une première approche relationnelle
- 2. Une solution géométrique optimale
- 3. Développement d'une application pratique cartographique

Lucas RODRIGUEZ

Vendredi 08 Novembre 2019 • 13h00

Introduction structurelle

Soit $G = (S, A, \varphi, \psi)$ un graphe orienté pondéré positivement.

- \triangleright S: ens des sommets
- A : ens des arrêtes orientés
- $ightharpoonup \varphi: A \longrightarrow S^2$: fonction d'incidence
- $\psi: A \subsetneq S^2 \longrightarrow \mathbb{R}^+$ fonction de pondération

- $|\operatorname{card}(S) = n \in \mathbb{N}^* | \operatorname{et} | \operatorname{card}(A) = m \in \mathbb{N}^*$
- Chemin μ : séquence ordonnée de sommets:

$$\forall (x_1,\ldots,x_n) \in S^n, \quad \mu = (x_1,\ldots,x_n)$$

Coût d'un chemin $d(\mu)$

$$d(\mu) = \sum_{i=1}^{n-1} \psi(x_i, x_{i+1})$$

Sommet de départ D et Sommet d'arrivée A

Approche relationnelle : Propriétés

Importance des chemins d'élémentaires : sans répétition d'arcs et de sommets

Th 1 (Lemme de König)

De tout chemin, on peut extraire un chemin élémentaire.

Th 2 (Existence des solutions)

Il existe un chemin de coût minimum de \bigcirc à tout sommet si G ne possède pas de circuit à coût strictement négatif.

Unicité selon la géographie.

Th 3 (Propriété fondamentale d'un PCC)

Tout sous-chemin d'un chemin de coût minimum est un chemin de coût minimum.

Hypothèses de travail

- 1. Existence d'au moins un chemin, même défavorable entre D et 🔥
- 2. S et A finis.

Solution par l'algorithme de Dijkstra

- ▶ T : sommets traités
- U : sommets à analyser
- ▶ **D** : coûts du PCC entre \bigcirc et $x \in S$

```
Initialisation:
     \forall i \in S, \ \mathbf{D}(i) \leftarrow +\infty; \ \mathbf{T} \leftarrow []; \ \mathbf{U} \leftarrow [\mathbf{D}]; \ \mathbf{D}(\mathbf{D}) = 0;
Traitement:
     tant que U \neq \emptyset faire
           Choisir i \in U tel que D(i) = \min\{D(k), k \in U\} (Sommet jugé optimal)
           Transférer i de U vers T (Changement d'état pour traitement)
          pour j \in \Gamma^+(i) faire
               si i \in \mathbf{U} alors
                     \mathbf{Si} \ \mathbf{D}(j) > \mathbf{D}(i) + \psi(i,j) \ \mathbf{alors}
                         \mathbf{D}(j) \leftarrow \mathbf{D}(i) + \psi(i,j);
                     fin
                fin
               sinon
                     Ajouter i à U:
                     \mathbf{D}(i) \leftarrow \mathbf{D}(i) + \psi(i, j);
                fin
          fin
     fin
     Reconstruction du chemin optimal entre D et A
```

Amélioration possible : files de priorités

Traite efficacement des éléments dans l'ordre des priorités imposées.

Une première approche relationnelle

0000000

Soit h la hauteur d'un tas de n sommets :

$$h \le \lfloor \log_2 n \rfloor + 1$$

3 implémentations possibles

o imprementations possibles			
Structure	Insert.	Extract.	
Liste (insert.)	$\mathcal{O}(n)$	$\mathcal{O}(1)$	
Liste (extact.)	$\mathcal{O}(1)$	$\mathcal{O}(n)$	
Tas binaire	$\mathcal{O}(n\log_2 n)$	$\mathcal{O}(1)$	

Étude comparative des 3 implémentations

Une première approche relationnelle

0000000

Temps d'exécution : 0.001382 sec; n = 400

Étude expérimentale : Évolution temporelle pour plusieurs valeurs de n

Problème d'optimisation combinatoire où l'on doit minimiser \mathbf{D} sur $S-\mathbf{D}$

Th 4 (Complexités dans le cas le plus défavorable)

Complexités spatiale en $\mathcal{O}(n+m)$ et temporelle en $\mathcal{O}(n^2)$ ou $\mathcal{O}(m+n\times\log_2(n))$.

Th 5 (Terminaison de l'algorithme)

Durée d'exécution finie.

Th 6 (Correction de l'algorithme)

En sortie de traitement $\forall x \in S - \mathbf{D}$, $\mathbf{D}(x)$ est bien le coût du PCC entre \mathbf{D} et x.

Avantages

- ▶ Détermination assez efficace sur des simulations de moyenne taille
- ► Complexité spatiale tolérable
- ▶ Dispositif rapide & facile à mettre en place

Inconvénients

- ▶ Complexité quadratique peu satisfaisante pour les graphes de grande taille
- ▶ Perte d'information en se restreignant aux arcs
- ► Critère de minimisation peut être améliorer
- ▶ Ne permet pas de résoudre directement le problème

Approche géométrique : Présentation

Idée Quadrillage à coordonnées entières : $[0, N-1]^2 \subset \mathbb{N} \times \mathbb{N}$

$$\psi: S = [0, N-1]^2 \longrightarrow [\psi_{\min}, \psi_{\max}] \subset \mathbb{R}^+ \cup \{-1\}$$

Approche géométrique : Principe de fonctionnement d'A*

Remarque

La grille est également un GOP avec $n = N^2$ et $m = 2 \times 2(\sqrt{n} - 1)\sqrt{n} \sim 4n$.

Idée: Estimer également la distance à la cible (principe de l'algorithme A*, dérivé de Dijkstra)

Sommet source

Sommet courant

Sommet cible

Le sommet courant doit maintenant minimiser :

$$\Lambda : S \longrightarrow \mathbb{R}^+
n \longmapsto \Lambda(n) = g(n) + h(n)$$

- \triangleright g(n): coût entre \bigcirc et n (identique à celle de Dijkstra)
- $\blacktriangleright h(n)$: distance **estimée** entre n et A

Approche géométrique : Détermination de h

3 systèmes de navigation envisagés :

NSEO

N NE E SE S SO O NO 8 directions

360

4 directions

Toute direction

A = (x, y) et B = (x', y') deux nœuds distincts.

▶ 4 directions

Distance de Manhattan

$$d_1(A, B) = |x - x'| + |y - y'|$$

8 directions → Distance de Tchebychev

$$d_{\infty}(A, B) = \max\{|x - x'|, |y - y'|\}$$

► Toutes directions \(\sim \) Distance euclidienne

$$d_2(A, B) = \sqrt{(x - x')^2 + (y - y')^2}$$

Inconvénient

Manipulation de nombres flottants avec la distance euclidienne. On préfère h^2 .

Raffinement par « depixellisation récursive »

Définition d'un secteur :

$$\boxed{\forall (i,j) \in [\![1,a]\!]^2, \ S^a_{(i,j)} = \left\{ (x,y) \in [\![0,N-1]\!]^2, \left\lfloor x \times \frac{a}{N} \right\rfloor + 1 = i \text{ et } \left\lfloor y \times \frac{a}{N} \right\rfloor + 1 = j \right\}}$$

Protocole

- 1. On exécute A* sur les secteurs de la maille
- 2. Le secteur extrait minimise une somme globale
- 3. On segmente encore la grille (en gardant uniquement les secteurs pertinents)

Invariant

$$\forall a \in \mathbb{N}, \bigcup_{\substack{i \in \llbracket 1, a \rrbracket \\ j \in \llbracket 1, a \rrbracket}} S_{(i,j)}^a = \llbracket 0, N - 1 \rrbracket^2$$

Cas terminal a > N

On obtient un nombre réduit de nœuds à traiter

Réduit le temps de calcul¹ et le nombre de nœuds à analyser

^{1.} en calculant plusieurs fois Λ sur des ensembles de définitions plus restreints

0.0333000

Passage du sphérique ³ au planaire

Théorème 1 (Fonction de projection ψ)

$$\begin{array}{cccc} \Pi & : &]-\pi,\pi[\times\left]-\frac{\pi}{2},\frac{\pi}{2}\left[& \longrightarrow & [-\pi,\pi]\times\right]-\infty,+\infty[\\ & & (\lambda,\varphi) & \longmapsto & (x,y)=(\lambda,\ln|\tan(\frac{\pi}{4}+\frac{\varphi}{2})|)=(\lambda,\ln|\tan\varphi+\sec\varphi|) \end{array}$$

Application pratique cartographique

Quadrillage pour A*:

$$\mathcal{A}_{\text{terre}} = 4\pi R_T^2 \simeq 510\,064\,471,9 \text{ km}^2$$

Nombre de secteurs ²:

$$n = \left\lceil \frac{\mathcal{A}_{\text{terre}}}{\mathcal{A}_{\text{sectour}}} \right\rceil \sim 10^6$$

$$\psi: S = \llbracket 1, \ n \rrbracket \longrightarrow [\psi_{\min}, \psi_{\max}] \subset \mathbb{R}^+ \cup \{-1\}$$

- ▶ -1 réservé pour les continents/îles
- Aucun fleuve, ni rivière, pas de navigation côtière

^{2.} $A_{\text{secteur}} = 400 \text{km}^2$

^{3.} λ : longitude et φ : latitude

Application pratique cartographique

00000

Application 3 : Helsinki \triangleright San Francisco

Entretien

Lemme de König

De tout chemin, on peut extraire un chemin élémentaire.

Démonstration.

Raisonnons par récurrence sur le nombre de sommets l de μ , un chemin.

- ightharpoonup si $l(\mu) = 0$: μ est élémentaire.
- soit $\mu = (x_1, x_2, ..., x_k)$ avec $l(\mu) = k > 0$. Si μ n'est pas élémentaire, $\exists (a,b) \in [1,l(\mu)], a \neq b \Longrightarrow x_a = x_b$, càd :

$$\mu = (x_1, ..., x_{a-1}, x_a, ..., x_a, x_{b+1}, ..., x_k)$$

Mais alors, en supprimant le cycle entre x_a et x_b , on obtient :

$$\mu' = (x_1, ...x_a, x_{b+1}, ..., x_k)$$

 μ' est strictement plus petit que μ . On peut donc extraire de μ' donc de μ un chemin élémentaire

Existence d'un PCC (opérationnel pour $\mathrm{DJK}/\mathrm{A}^*)$

Il existe un chemin de coût minimum de s à tout sommet si G ne possède pas de circuit à coût strictement négatif.

Démonstration.

Prendre un circuit possédant un arc à coût strictement négatif.

Puis conclure sur le caractère infini de la minimisation, qui doit être tout de même minorée par une borne inférieure fixée par l'utilisateur.

Règle fondamentale de la programmation dynamique

Soit $\mu = (x_0, ..., x_q)$ un chemin de coût minimum. Tout chemin $\gamma = (x_k, ..., x_l)$ avec $0 \le k \le l \le q$ est un chemin de coût minimum.

Tout sous-chemin d'un chemin de coût minimum est un chemin de coût minimum

Démonstration.

Soit λ un chemin de x_k à x_l différent de γ tel que $d(\lambda) < d(\gamma)$ Soit μ' , le chemin obtenu à partir de μ en remplaçant γ par λ . Alors $d(\mu') < d(\mu)$. Contradiction avec le choix initial de μ .

Majoration de la hauteur d'un tas binaire

La hauteur h d'un tas binaire \mathcal{H} peut être majorée :

$$h(\mathcal{H}) \le \lfloor \log_2 n \rfloor + 1$$

Démonstration.

Si \mathcal{H} est un tas binaire de hauteur h et comportant n nœuds, alors :

$$\forall m \in \mathbb{N}, h \le m - 1 \Longrightarrow n < 2^{m-1}$$

Par contraposée, on a $n \geq 2^{m-1} \Longrightarrow h \geq m$. D'où le plus grand entier m vérifiant la condition $n \ge 2^{m-1}$ est $m = \lfloor \log_2 n \rfloor + 1$. Donc $h < \lfloor \log_2 n \rfloor + 1$.

Complexités dans le cas le plus défavorable

Complexités spatiale en $\mathcal{O}(n+m)$ et temporelle en $\mathcal{O}(n^2)$ ou $\mathcal{O}(m+n\times\log_2(n))$.

Démonstration.

Espace : 2 dictionnaires, 2 listes et un dictionnaire d'adjacence : $\mathcal{O}(n+m)$

- Sélection/Extraction du nœud :
 - \triangleright avec liste: parcours linéaire pour chaque sommet de O donc O(n).
 - ightharpoonup avec tas $H: \mathcal{O}(\log_2(n))$ (car coût de l'insertion majorée par h(H)
- Répété au plus n fois
- Relâchement des arcs : unique pour chaque arc d'où $\mathcal{O}(m)$
- ▶ avec liste : $\boxed{\mathcal{O}(m+n^2)}$ ▶ avec tas : $\boxed{\mathcal{O}(m+n \times \log_2(n))}$

Terminaison pour Dijkstra et A*

Durée d'exécution finie.

Démonstration.

Cdts d'arrêts : O vide **ou** extraction de c depuis O.

Comme V est fini, O et F également. D'après hypothèse 2, le nombre d'opérations est fini, d'où terminaison garantie.

Echelle Nord - Sud (en φ) = Echelle Est - Ouest (en λ)

$$\forall (\lambda, \varphi) \in [-\pi, \pi] \times \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[, \frac{\frac{\partial x}{\partial \lambda}}{\frac{\partial y}{\partial \varphi}} = \frac{2\pi R_T \cos \varphi}{2\pi R_T} \right] \right]$$

Projection de Mercator : $\frac{\partial x}{\partial \lambda} = 1 \Longrightarrow \boxed{x = \lambda}$

$$\frac{\partial y}{\partial \varphi} = \frac{1}{\cos \varphi} = \sec \varphi \ (\star)$$

$$\frac{1}{\cos\varphi} = \frac{1}{\sin(\frac{\pi}{2} + \varphi)} = \frac{1}{2\sin(\frac{\pi}{4} + \frac{\varphi}{2})\cos(\frac{\pi}{4} + \frac{\varphi}{2})} = \frac{\frac{1}{2}\frac{1}{\cos(\frac{\pi}{4} + \frac{\varphi}{2})^2}}{\tan(\frac{\pi}{4} + \frac{\varphi}{2})} = \frac{\frac{\partial(\tan(\frac{\pi}{4} + \frac{\varphi}{2})}{\partial\varphi}}{\tan(\frac{\pi}{4} + \frac{\varphi}{2})}$$

$$\implies \boxed{y = \ln|\tan(\frac{\pi}{4} + \frac{\varphi}{2})|}$$

$$\begin{split} \int \sec \varphi \; d\varphi &= \int \frac{d\varphi}{\cos \varphi} \\ &= \int \frac{\cos \varphi}{1 - \sin^2 \varphi} \; d\varphi \\ &= \int \frac{\cos \varphi}{(1 - \sin \varphi)(1 + \sin \varphi)} \; d\varphi \\ &= \frac{1}{2} \ln \left| \frac{(1 + \sin \varphi)^2}{1 - \sin^2 \varphi} \right| + c \; , c \in \mathbb{K} \\ &= \frac{1}{2} \int \frac{\cos \varphi}{1 - \sin \varphi} + \frac{\cos \varphi}{1 + \sin \varphi} \; d\varphi \\ &= \frac{1}{2} (-\ln |1 - \sin \varphi| + \ln |1 + \sin \varphi|) + c \; , c \in \mathbb{K} \end{split}$$

$$= \frac{1}{2} \ln \left| \frac{1 + \sin \varphi}{1 - \sin \varphi} \right| + c \; , c \in \mathbb{K}$$

$$= \frac{1}{2} \ln \left| \frac{1 + \sin \varphi}{1 - \sin \varphi} \right| + c \; , c \in \mathbb{K}$$

Annexe: Fonctions d'initialisation, d'extraction/sélection et de sélection du voisinage

```
def initialisation(G, source):
    """ Fonction d'initialisation """
    INF = float("inf")
    liste_ouverte = [source]
    liste fermee = []
    distances = {sommet: INF for sommet in G}
    parents = {sommet: sommet for sommet in G}
    chemin = []
    distances[source] = 0
    return liste ouverte, liste fermee, distances, parents, chemin
def selection sommet courant (liste ouverte, distances):
    """ Fonction de sélection du sommet courant """
    sommet_courant = liste_ouverte[0]
    for k in range(0, len(liste ouverte)):
        if distances[liste ouverte[k]] < distances[sommet courant]:</pre>
            sommet courant = liste ouverte[k]
    return sommet courant
def successeurs sommet courant (G, sommet courant):
       Fonction retournant les successeurs du sommet courant dans G """
    return G[sommet courant]
```

Annexe: Fonctions de relâchement et de reconstruction

```
def relachement sommet (sommet courant, s, liste ouverte, liste fermee, distances
 parents):
    """ Procédure de relâchement du sommet """
    nouveau_cout = distances[sommet_courant] + s[1]
    if s[0] in liste ouverte:
        if nouveau cout < distances[s[0]]:</pre>
            distances[s[0]] = nouveau_cout
            parents[s[0]] = sommet courant
    else:
        liste ouverte.append(s[0])
        distances[s[0]] = nouveau cout
        parents[s[0]] = sommet_courant
def construction_chemin(source, cible, liste_ouverte, parents, chemin):
    """ Fonction de construction du chemin trouvé """
    if len(liste ouverte) == 0:
        return []
    else:
        n = cible
        while n != source:
            chemin.append(n)
            n = parents[n]
        chemin.append(source)
        chemin.reverse()
        return chemin
```

Annexe: Corps principal de l'algorithme

```
def dijkstra(G, source, cible):
    """ Fonction implémentant l'algorithme de Dijkstra """
    assert source != cible
    # Initialisation
    liste_ouverte, liste_fermee, distances, parents, chemin = initialisation(G,
    source)
    while len(liste ouverte) > 0:
        # Sélection du sommet
        sommet courant = selection sommet courant(liste ouverte, distances)
        if sommet_courant == cible:
            break
        # Transfert du sommet
        liste_ouverte.remove(sommet_courant)
        liste fermee.append(sommet courant)
        # Etape de relâchement de chaque successeur du sommet courant
        for s in successeurs sommet courant (G, sommet courant):
            if s[0] in liste_fermee:
                continue # passer au suivant
            relachement_sommet(sommet_courant, s, liste_ouverte, liste_fermee,
            distances, parents)
    # renvover le chemin trouvé
    return construction chemin(source, cible, liste ouverte, parents, chemin),
    distances[cible]
```

Annexe: Corps principal de l'algorithme

```
class Noeud:
    def __init__(self, x, y, w):
        """ Méthode de construction d'une instance Noeud """
        self.x = x
                                       # abscisse de la case
        self.v = v
                                       # ordonnée de la case
        self.w = w
                                       # pondération de la case
        self.empruntable = 0
                                       # booléen indiquant s'il s'agit d'un obsta
        if self.w != -1:
            self.empruntable = 1
        self.g = 0
                                       # coût q (distance source - noeud)
        self.h = 0
                                       # coût h (distance noeud - cible)
        self.f = 0
                                       \# coût f = q + h
        self.parent = self
                                       # parent du noeud (initialisé à lui-même)
    def __str__(self):
        """ Méthode de représentation du Noeud """
        return "Noeud ({}, {})".format(self.x, self.y)
```

Annexe: Norme IEEE-754 (rev 2008)

$$\forall x \in \mathbb{R}, \ x = (-1)^s \times 1.m \times 2^e$$

- ightharpoonup s: signe (0 si <math>x > 0 et 1 sinon)
- $m \in \{0,1\}^{52} : \text{mantisse}$
- $e : \text{exposant } e = E 1023 \text{ avec } E \in [1, 2^{11} 2]$

Liste d'adjacence de G:

Critères	Matrice d'adjacence	Liste d'adjacence
Complexité spatiale	$O(n^2)$	O(n+m)
Accès à un sommet	O(1)	O(1)
Parcours des sommets	O(n)	O(n)
Parcours des arcs	$O(n^2)$	O(n+m)
Existence d'un arc	O(1)	$O(d^+(x))$

Table - Comparaison détaillée des complexités spatiales et temporelles

(faible si $\Delta < 0.3)$ (page 4 pour ex. de GOP)