Introduction to Formal Language, Fall 2016

Homework 2 Solutions

Instructor: Prof. Wen-Guey Tzeng Scribe: Amir Rezapour Yi-Ruei Chen

Due: 22-Mar-2016

1. Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than four.

Answer.

The strings with length 1: $\{\lambda b\lambda\} = \{b\};$

The strings with length 2: $\{ab\lambda, bb\lambda, \lambda ba\} = \{ab, bb, ba\};$

The strings with length 3: $\{(aa)b\lambda, (ab)b\lambda, (ba)b\lambda, (bb)b\lambda, (a)b(a), (b)b(a), \lambda b(ab)\} = \{aab, abb, bab, bbb, aba, bba, bab\}.$

2. Find a regular expression for the set $\{a^nb^m : (n+m) \text{ is even}\}.$

Answer.

There are two cases:

- n and m are even: $(aa)^*(bb^*)$;
- n and m are odd: a(aa)*b(bb*);

Thus, a regular expression for the set $\{a^nb^m : (n+m) \text{ is } even\}$ is $(aa)^*(bb^*) + a(aa)^*b(bb^*)$.

3. Give a regular expression for $L = \{a^n b^m : n < 4, m \le 3\}.$

Answer.

A regular expression for $L_1 = \{a^n : n < 4\}$ is $\lambda + a + aa + aaa$;

A regular expression for $L_2 = \{b^m : m \leq 3\}$ is $\lambda + b + bb + bbb$;

Thus, a regular expression for $L = L_1L_2$ is $(\lambda + a + aa + aaa)(\lambda + b + bb + bbb)$.

4. What languages do the expressions $(\phi^*)^*$ and $a\phi$ denote?

Answer.

$$L((\emptyset^*)^*) = (L(\emptyset^*))^* = (\emptyset^*)^* = \{\lambda\};$$

$$L(a\emptyset) = L(a)L(\emptyset) = \{a\}\{\} = \emptyset.$$

5. Find a regular expression for $L = \{vwv : v, w \in \{a, b\}^*, |v| \le 3\}.$

Answer.

For any string $x \in \{a, b\}^*$, we can treat it as $x = \lambda x \lambda$, where $v = \lambda$, x = w. Therefore, any string $x \in \{a, b\}^*$ is in L. Thus, $L = (a + b)^*$.

6. Give a regular expression for all strings that contain no run of a's of length greater than two. $(\Sigma = \{a, b, c\})$.

Answer.

A regular expression for $\{a^n : n \leq 2\}$ is $\lambda + a + aa$.

Thus, for $\Sigma = \{a, b, c\}$, a regular expression for all strings that contain no run of a's of length greater than two is $((\lambda + a + aa)(b + c))^*(\lambda + a + aa)$.

7. Give a regular expression for all strings with at most two occurrences of the substring 00. $(\Sigma = \{0, 1\})$.

Answer.

There are three cases for a string with at most two occurrences of 00:

- 0 occurrence of 00: λ ;
- 1 occurrence 00: 00;
- 2 occurrences 00: 000, 0011*00;

Thus, a regular expression for all strings with at most two occurrences of the substring 00 is $(1+01)^*(\lambda+00+000+0011^*00)(1+10)^*$

8. Determine whether or not the following claim is true for all regular expressions r_1 and r_2 . The symbol \equiv stands for equivalence regular expressions in the sense that both expressions denote the same language. $r_1^*(r_1 + r_2)^* \equiv (r_1 + r_2)^*$.

Answer.

Since
$$L(r_1^*(r_1+r_2)^*) \subseteq L((r_1+r_2)^*(r_1+r_2)^*) = L((r_1+r_2)^*)$$
 and $L((r_1+r_2)^*) = L(\lambda(r_1+r_2)^*) \subseteq L(r_1^*(r_1+r_2)^*)$, they are equivalent.

9. Find an nfa that accepts the language $L(aa^*(a+b))$.

Answer.

The following graph represents the NFA $M=(\{q1,q2,q3\},\{a,b\},\delta,q1,\{q3\})$ that accepts $L(aa^*(a+b))$, where δ is described as in the graph.

10. Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(ab^*aa + bba^*ab)$.

Answer.

By Theorem 3.1, the automata for L(a) is

By Theorem 3.1, the automata for $L(a^*)$ is

The automata for L(b) and $L(b^*)$ can be constructed in a similar way. Then by Theorem 3.1, the automata for $L(ab^*aa)$ is

Then by Theorem 3.1, the automata for $L(bba^*ab)$ is

Thus, by Theorem 3.1, the automata for $L(ab^*aa + bba^*ab)$ is

11. Find dfa that accept $L = L(ab^*a^*) \cap L((ab)^*ba)$.

Answer. $L = L(ab^*a^*) \cap L((ab)^*ba) = \{abba\}$. The following graph represents the DFA $M = (\{q_0, q_1, \dots, q_5\}, \{a, b\}, \delta, q_0, \{q_4\})$ that accepts L, where δ is described as in the graph.

12. Find regular expression for the language accepted by the following automata.

Answer.

We first convert the given nfa to a complete GTG as follows.

Then we reduce the state q_1 to obtain a two states one as follows.

Then we have:

Finally, we obtain a regular expression: $a^*(ab^*+c+a(a+b)^*(a+b))(a+b^*)^*$

13. Find a regular expression for $L = \{w : (n_a(w) - n_b(w)) \mod 3 = 1\}$ on $\{a, b\}$. Answer.

The following figure shows the dfa of the language L, where

- q_0 : the state for $n_a(w) n_b(w) \mod 3 = 0$;
- q_1 : the state for $n_a(w) n_b(w) \mod 3 = 1$;
- q_2 : the state for $n_a(w) n_b(w) \mod 3 = 2$;

Then, we use reduce the steps to obtain the following nfa:

Finally the regular expression is $((ba)^*(a+bb))((ab)^*+(b+aa)(ba)^*(a+bb))^*$.

14. Construct a dfa that accepts the language generated by the grammar

$$S \to abA$$
,

$$A \rightarrow baB$$
,

$$B \to aA|bb$$
.

Answer.

The dfa is constructed as follows, where q_x corresponds to variable $x, x \in \{S, A, B\}$.

15. Find a regular grammar for $L = \{w : |(n_a(w) - n_b(w))| \text{ is odd}\}\$ on $\{a,b\}$. Answer.

$$S \to aA|bA$$

$$A \to aS|bS|\lambda$$