Лабораторная работа 1.2

Определение моментов инерции твердых тел с помощью трифилярного подвеса

Зотов Алексей 496 гр.

21 марта 2016 г.

Цель работы: измерение момента инерции ряда тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддттивности моментов инерции и справедливости формулы Гюйгенса— Штейнера.

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полый цилиндр и другие).

Определение. Моментом инерции твердого тела (или системы тел) относительно выбранной оси, называется величина, определяемая соотношением:

$$I = \int r^2 dm \tag{1}$$

Из определения момента инерции и по 2-му закону Ньютона для движения материальной точки под действием силы \vec{F} , учитывая $v=\omega r$, уравнение вращательного движения принимает вид:

$$I\frac{d\omega}{dt} = M$$
 где M - момент силы \vec{F} (2)

Теорема Гюйгенса—**Штейнера.** Момент инерции I относительно произвольной оси равен сумме момента инерции I_0 относительно оси, параллельной ей и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния между осями a_0 :

$$I = I_0 + ma_0^2 (3)$$

Экспериментальная установка. Будем использовать устройство, показанное на рис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположенных нитях AA', BB' и CC' вращающейся платформы P'.

Платформа P укреплена на кронштейне и снабжена рычагом (на рисунке не показан), при помощи которого в системе создадим крутильные колебания путем небольшого поворота верхней платформы.

Для счета числа колебаний используется счетчик, состоящий из осветителя (2), фотоэлемента (3) и пересчетного устройства (1). Легкий лепесток, укрепленный на платформе, при колебаниях пересекает световой луч дважды за период. Соответствующие сигналы от фотоэлемента поступают на пересчетное устройство.

Рис. 1: трифилярный подвес

Уравнение гармонических колебаний. Уравнение малых колебаний трифилярного подвеса выглядит следующим образом:

$$I\ddot{\varphi} + mg\frac{Rr}{z_0}\varphi = 0\tag{4}$$

где I — момент инерции тела вместе с платформой, m — их суммарная масса, z_0 — расстояние от центра нижней платформы O' до центра верхней O в положении равновесия, а R и r — расстояния от оси вращения до точки крепления нити на нижней и на верхней платформах соответственно (см. рис. 2).

Решение уравнения (4) представляет собой гармонические колебания:

$$\varphi(t) = \varphi_m \sin(2\pi t/T + \theta) \tag{5}$$

где амплитуда φ_m и фаза θ определяются начальными условиями, а nepuod колебаний равен

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{6}$$

положим $k=\frac{gRr}{4\pi^2z_0}$, эта величина постоянна для данной установки. Тогда момент инерции можно выразить следующим образом:

$$I = kmT^2 (7)$$

Таким образом, полученные формулы позволяют определить момент инерции платформы с телом и отдельно платформы по соответствующим периодам крутильных колебаний.

Аддитивность моментов инерции. Момент инерции самого тела можно вычислить, воспользовавшись аддитивностью I_{A+B} — момент инерции составного тела (A+B) равен сумме моментов инерции его частей A и B :

$$I_{A+B} = I_A + I_B \tag{8}$$

Ход работы

1. Параметры установки.

$$R_0 = (114.6 \pm 0.5)mm.$$

$$r_0 = (30.2 \pm 0.3)mm.$$

$$m_0 = (448.2 \pm 0.3)g.$$

$$z_0 = (214 \pm 1)cm.$$

$$\Delta k = \frac{g}{4\pi^2} \sqrt{\left(\frac{r_0 \Delta R_0}{z_0}\right)^2 + \left(\frac{R_0 \Delta r_0}{z_0}\right)^2 + \left(\frac{r_0 R_0 \Delta z_0}{z_0^2}\right)^2}$$

$$k = (3.9920 \pm 0.0699) * 10^{-4} [m^2/c^2]$$

$$I_0 = \left(\frac{R_0^2 M_0}{2} = (2.9431 \pm 0.0154) * 10^{-3}\right) [m^2 * kg]$$

2. Пустая платформа, определение погрешности.

Измерим период колебаний пустой платформы: $N_T=20$ - количество полных колебаний на 1 измерение. n=6 - количество измерений.

Таблица 1: Измерения вермени 40 колебаний пустой платформы.

i	1	2	3	4	5	6
t_i ,c	86.546	86.435	86.614	87.299	87.325	87.148

среднее время 20 колебаний: $t_{cp} = 86.8945(c)$

среднее время одного колебания: $T_{cp} = \frac{t_{cp}}{20} = 4.344725 \approx 4.345$ (c)

Среднеквадратичное отклонение измерения: $\sigma = \sqrt{\frac{\Sigma (t_i - t_{cp})^2}{n-1}} \approx 0.3957$

Относительная погрешность измеряемой величины: $\varepsilon=\frac{\sigma}{N*T_{cp}}$ положим $N=19\implies \varepsilon<0.0048<0.005$

3. Измерения с различными телами

(a)
$$\frac{\text{Диск}}{R = (8.5 \pm 0.025) cm}$$
 - радиус диска

$$m=580.1g$$
 - общая масса

$$t=69.189 \implies T \approx 3.5047(\mathrm{c})$$
 - измеренный период

$$I_1=k(m+m_0)T^2-I_0=(2.0976\pm0.0658)*10^{-3}~[m^2*kg]$$
 - измеренный момент $I_2=R^2*m/2=2.0956*10^{-3}$ - теоретический результат, с учетом погрешности совпадает с результатом, полученным из опыта.

(b) Кольцо

$$R=(8.4\pm0.025)cm$$
 - радиус кольца $d=(0.5\pm0.025)cm$ - толщина стенки кольца $m=975.2g$ - общая масса

$$t = 79.027(c) \implies T \approx 4.16()$$

 $I_1=(6.8905\pm0.0984)*10^{-3}~[m^2*kg]$ - измеренный момент $I_2=6.8810*10^{-3}$ - теоретический результат, с учетом погрешности, совпадает с результатом, полученным из опыта.

(с) Брус

$$\overline{M} = 706.5g$$
 - общая масса $l = (21 \pm 0.05)cm$ - длина $d_{cp} = (2 \pm 0.025)cm$ - толщина

Таблица 2: Измерения толщины бруса.

i	1	2	3	4	5
d_i, cm	2.0	2.0	2.0	2.0	2.0

$$t = 68.840(c) \implies T \approx 3.623(c)$$

 $I_1 = (3.1084 \pm 0.0605) * 10^{-3} [m^2 * kg]$
 $I_2 = 2.596 * 10^{-3}$

(d) Диск + Кольцо

$$\overline{t = 72.837(c)} \implies T \approx 3.834(c)$$

$$I = (8.8137 \pm 0.117582) * 10^{-3} [m^2 * kg]$$

По закону аддитивности $I=I_d+I_k=(8.9881\pm0.16416)*10^{-3},$ что, с учетом погрешности, удовлетворяет результатам опыта.

(е) Полудиск

$$M = 566.4g$$

 $R = (4.15 \pm 0.025)cm$

Расположим диски как показано на рисунке 2. Найдем зависимость T(h) периода колебаний от расстояния до центра платформы.

Рис. 2: расположение дисков на платформе.

Таблица 3: Период колебаний и расположение дисков.

h	0	0.45	1.375	2.85	3.35	4.35	5.35	7.35
t, c	50.532	50.686	52.048	55.297	57.383	61.748	66.124	76.614
T, c	2.6596	2.6677	2.7394	2.9104	3.0202	3.2499	3.4802	4.0323

Таблица 4: Данные для построения графика $I(h^2)$

h, [m]	0.0	2e-05	0.00019	0.00081	0.00112	0.00189	0.00286	0.0054
$I(h^2), [kg*m^2]$	0.00152	0.00155	0.00179	0.0024	0.00281	0.00372	0.0047	0.00732

Рис. 3: график $I(h^2)$.

 $\Delta I_{max}=0.1136*10^{-3} \implies I_0=I(0)=(1.52\pm0.11)*10^{-3}[kg*m^2]$ Рассчитанный момент инерции диска $I_{th}=(0.978\pm0.117)*10^{-3}[kg*m^2]$

Коэффициент наклона прямой k=1.07567683217 из закона Гюйгенса-Штейнера равен массе m.

 $\Delta k_{max} = 0.0122017789351 \implies m = 1.0757 \pm 0.0122[kg]$ Указанная масса диска $m_d = 1.1317[kg].$