NODEA Note

1 Basic Knowledge

Def of ODE & ODEs: $\frac{dy}{dt} = f(t,y)$ & ODEs: $\frac{dy}{dt} = \mathbf{f}(t,y)$, $\mathbf{y} = (y_1,...,y_d)^T$, $\mathbf{f}(t,y) = (f_1(t,y),...,f_d(t,y))^T$ **Autonomous**: $\frac{dy}{dt} = \mathbf{f}(\mathbf{y}) \Rightarrow \text{autonomous ODE}(\mathbf{s})$. $|| \downarrow \text{New Autonomous ODEs}: \frac{dy}{ds} = \mathbf{f}(y_{d+1},y) \text{ and } \frac{dy_{d+1}}{ds} = 1$ • **Change to Autonomous**: For $\frac{dy}{dt} = \mathbf{f}(t,y)$. Let $y_{d+1} = t$ and new independent variable s s.t. $\frac{dt}{ds} = 1$ \uparrow **Linearity**: ODE: $\frac{dy}{dt} = f(t,y)$ is linearity if f(t,y) = a(t)y + b(t) || ODEs: If each ODE is linear, then the ODEs are linear. **Picard's Theorem**: If f(t,y) is continuous in $D := \{(t,y): t_0 \le t \le T, |y-y_0| < K\}$ and $\exists L > 0$ (Lipschitz constant) s.t. $\forall (t,u), (t,v) \in D \quad |f(t,u)-f(t,v)| \le L|u-v|$. And Assume that $M_f(T-t_0) \le K$, $M_f := \max\{|f(t,u)|: (t,u) \in D\}$ \Rightarrow **Then**, \exists a unique continuously differentiable solution y(t) to the IVP $\frac{dy}{dt} = f(t,y), y(t_0) = y_0$ on $t \in [t_0,T]$. **Existence & Uniqueness Theorem**: IVP $\frac{dy}{dt} = \mathbf{f}(t,y), \mathbf{y}(t_0) = \mathbf{y}_0$. If f(t,y) and $\frac{\partial f}{\partial y_i}$ are continuous in a neighborhood of (t_0, \mathbf{y}_0) . \Rightarrow **Then**, $\exists I := (t_0 - \delta, t_0 + \delta)$ s.t. \exists a unique continuously differentiable solution $\mathbf{y}(t)$ to the IVP on $t \in I$.

2 Euler's Method and Taylor Series Method