

Final Presentation

Al vs Human Content Detection

Group 2 Ava Leon and Sofia Curi

Project Overview

Topic Goal

Al vs human content detection. The goal is to explore and analyze the differences between text written by a human and text generated by artificial intelligence.

df.head()

We loaded the dataset and used **df.head()** to show the first rows of the data, to give a quick look at what's inside.

Part 1 Dataset Loaded

We started bringing all the tools (libraries) we will need for the project

- pandas **for** working with data
- matplotlib and seaborn **for** making charts
- numpy **for** math operations

Part 2 Initial Exploration

Summary of the dataset

- Total number of **rows** (1367) and **columns** (17) in the data.
- The Non-Null Count shows how many of the rows have a value for that column.
- In columns like **sentiment_score** (1313), the number is *less than 1367* because it indicates there are **missing values** in these columns.
 - * key insight for the data cleaning step in Part 8
- **Dtype** tells what kind of data is in each column (integers (numbers), floats, text (object)).
- Shows which columns have missing pieces of info.
 flesch_reading_ease has 79 missing values.

```
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1367 entries, 0 to 1366
Data columns (total 17 columns):
                          Non-Null Count
     Column
                                          Dtype
     text content
                          1367 non-null
                                          object
                                          object
     content_type
                          1367 non-null
                                          int64
    word count
                          1367 non-null
    character count
                          1367 non-null
                                          int64
                          1367 non-null
    sentence_count
                                          int64
    lexical_diversity
                          1367 non-null
                                          float64
                                          float64
    avg_sentence_length
                          1367 non-null
     avg_word_length
                          1367 non-null
                                          float64
    punctuation_ratio
                           1367 non-null
                                          float64
    flesch_reading_ease
                          1288 non-null
                                          float64
    gunning fog index
                           1332 non-null
                                          float64
    grammar_errors
                           1367 non-null
                                          int64
    passive_voice_ratio
                                          float64
                          1336 non-null
    predictability score 1367 non-null
                                          float64
 14 burstiness
                          1367 non-null
                                          float64
    sentiment_score
                          1313 non-null
                                          float64
 16 label
                                          int64
                          1367 non-null
dtypes: float64(10), int64(5), object(2)
memory usage: 181.7+ KB
None
```

Part 2 Initial Exploration

Summary of the dataset

- mean: average value for the column (word_count = 140, meaning the average text in the dataset has like 140 words).
- std: is the standard deviation, tells how spread out the data is. If it is large then it means the values are very spread out (std for word_count = 97.4 is large, which shows the word counts vary a lot between the different texts).
- min: is the *smallest value* word_count = 3, so the shortest text has only three words.
- max: is the *largest value* in the column max.
- The distance between the **25% and 75%** values is the **(IQR)**, which tells how spread out the middle of the data is.

Part 4 & 5 Dataset Description & Questions

Brief

- The dataset is about *classifying the detection* between Al vs. human generated text content.
- word_count is the total number of words
- label tells if the content is human (0) or Al-generated (1).

QUESTION 1

Can we tell if a text is Al generated or a human written by looking at things like word choice, sentence length, and how the ideas are organized (features)?

QUESTION 2

How is the writing style of a Al generated text different from human written? - lexical_diversity and punctuation_ratio

QUESTION 3

Is there a relationship between sentiment (sentiment_score) and content type (content_type)?

Part 6 Basic Visualizations

- Show how often different values appear in a column (ranges and frequency)
- The histogram word_count shows
- 1. the number of times a word count appears
- 2. how many texts are into a specific range of word counts.
- The histogram for avg_word_lenght shows
- 1. the distribution for all the texts, to understand their writing style.
- 2. If the bars are high, there is a consistent writing style.
- * It helped us identify if the writers use many short words or a mix of shorter and longer words.
- The histogram for **sentiment_score** shows a ranges from -1 (negative) to 1 (positive), to understand the "emotional tone" of the content.

HISTOGRAM TO VISUALLY SHOW THE DATA

Part 6 Basic Visualizations

- Show how often different values appear in a column
- In the plot, we showed the relationship between a text's word count and its count
- In word_count the numbers range from about 0 to 450, which matches the min and max word counts we saw in df.describe().
- The thin line shows the "general trend"

PART 7 INTERPRETATION OF VISUALIZATIONS

- Most histograms are right skewed, with short low values
- There are outliers in the right distributions (like in word_count)
- The long parts extended to the right show that a few texts that are longer than the rest.
- Most texts are short (short sentences, words, and characters)
- There is AI vs Human distinction (The predictability_score tell the difference between AI written and human written text).

Part 8 Data Cleaning

Cleaned what we found in Part 2 about some missing values, so that it can be used for modeling.

- To go through every value in the *DataFrame* and make a simple list that shows the total number of missing values for each column in the dataset.
- In the line **flesch_reading_ease** there are 79 missing values.
- We used this code to automatically find outliers in the numerical data using the IQR.

```
→ Missing values per column:
 text_content
 content_type
 word_count
 character_count
 sentence_count
 lexical_diversity
 avg_sentence_length
 avg_word_length
 punctuation_ratio
flesch_reading_ease
 gunning_fog_index
                          35
 grammar_errors
 passive_voice_ratio
                          31
 predictability_score
                           0
 burstiness
 sentiment_score
                          54
 label
 dtype: int64
```

```
Column: word_count
Lower limit: -140.5
Upper limit: 391.5
Number of outliers: 40
Number of outliers: 40
```

We created a histogram to visualize the distribution of word_count in the dataset.

- Typical length of texts in the dataset, the tallest bars in the histogram show the most common word count ranges.
- See if the texts are all similar in length or if there's a variety of short, medium, and long texts.
- Spot extreme values that might be outliers.
- Help us into the insight of the data before building a machine learning model to distinguish between AI and human content.

Scatter Plot

- The scatter plot of word_count vs character_count helps us visualize the relationship between them.
- Which we expected to be a strong one, because longer texts almost always have a higher character count. The scatter plot visually confirms this.
- It also helps us *spot inconsistencies*: If we saw points with a high word count but a very low character count, it could mean an error or an outlier that we missed.

Box Plot

- The box plot to understand the key features of word_count.
- The line in the middle of the box shows the **median**, which is the middle value of the data.
- This tells us the typical **word_count** in the dataset.
- The size of the box shows the (IQR), representing the middle of the data.
- We did this to identify the central point, spread, and extreme values.

To create a New Feature

- Creates a new column called words_per_sentence.
- Calculates the average number of words per sentence for each text by dividing the word_count by the sentence_count.
- To distinguish between different writing styles.

Example: Create a new feature df["words_per_sentence"] = df["word_count"] / df["sentence_count"] # Example: Transform a feature df["log_word_count"] = np.log1p(df["word_count"]) print(df[["word_count", "log_word_count"]].head())

Transforming an Existing Feature

- Creates another new column called log_word_count.
- Takes the **word_count** values and applies the logarithm math function.
- The table shows the original and the newly created column.
- For each row, you can see how the word_count is converted into the transformed log_word_count

	word_count	log_word_count
0	288	5.666427
1	253	5.537334
2	420	6.042633
5	198	5.293305
6	84	4.442651

Part 11 Observations and Findings

This part is where we explained the process and summarized the findings from the previous step.

DATA CLEANING

- Removed rows with missing values.
- Removed duplicate rows.
- Checked for outliers using the IQR method (none found).

DATA VISUALIZATION

- Histogram: showed word count distribution.
- Scatter plot: explored relationships between columns.
- Box plot: displayed range, median, and potential outliers.

FEATURE ENGINEERING

- Created a feature for average words per sentence.
- Applied log math function to transform the word count and have an easier analysis.

Part 12 Data Processing

Prepared the data for a machine learning model

Using **TF-IDF** (Term Frequency-Inverse Document Frequency) method.

- Counts how often a word appears in a document and also gives more importance to words that are unique in a document.
- max_features=5000 considers the 5,000 most common words, which helps keep the data manageable.
- stop_words="english" ignores common English words like "the," "a" and "is" because they are not very useful for distinguishing between different types of content.

This is where we predict whether a text is AI or human written.

Classification Report

Gives a detailed breakdown of the model's performance for each class (0 for human and 1 for AI).

It includes:

- **Precision:** Out of all the times the model predicted a class ("AI"), how many times was it correct?
- **Recall:** Out of all the actual examples of a class ("human"), how many of them did the model correctly identify?
- **F1-Score:** Combines precision and recall, and gives an overall measure of performance.
- **Support:** The number of actual examples of that class in the test data.

Gives a summary of the predictions.

- Top left number is **True Positives**: How many times the model predicted correctly "AI".
- The bottom right number is **True Negatives**: How many times the model predicted correctly "human".
- The other two numbers show the False Positives and Negatives where the model was wrong.

Random Forest Classifier

Predicts whether a text is AI or human-written.

• precision:

 For class 0 (Human): 0.49. means that when the model predicted a text was human, it was only correct about 49% of the time.

• recall:

- For class 1 (AI)
- f1-score: Combination of precision and recall.
- **support:** Number of examples in the test data for each class. There were 133 human written texts and 141 Al generated texts.
- accuracy: 0.50. means the model was correct 50% of the time.

Classification Report (Random Forest):						
	precision	recall	f1-score	support		
0 1	0.49 0.52	0.56 0.44	0.52 0.48	133 141		
accuracy macro avg weighted avg	0.50 0.50	0.50 0.50	0.50 0.50 0.50	274 274 274		

Confusion Matrix

Visualizes it as a heatmap, a way to understand the It shows the model's predictions into four categories:

Predicted: Human	Predicted: Al
Correct Predictions	Incorrect Predictions
(True negative)	(False negative)
Incorrect Predictions	Correct Predictions
(False negative)	(True positive)

We can see how many times it correctly identified a human written text and how many it labeled incorrectly an Al generated text as human.

The ROC Curve (Receiver Operating Characteristic Curve)

Calculates the AUC (Area Under the Curve) to evaluate the performance of the model.

• Another way to see how well the model can distinguish between the two Human vs. Al.

The plot visualizes between the **True Positive** and the **False Positive** Rate.

• A visual way to see if the model is a good classifier. The higher the blue curve is above the gray line, the better the model is.

The **blue curve** shows the model's performance. The closer it is to the top left corner, the better the model is at distinguishing the two classes.

The dotted grey line represents a random guess.

Code Block

Identifies the most important words that the Random Forest model used to make its predictions.

• Tells which words were most "influential" in classifying a text.

This helps interpret the model's findings, see the writing styles and helps us understand why it made the predictions it did.

We can answer questions like:

- What are the key differences between AI and human content?
- Do Al-generated texts use different vocabulary than human-written ones?

Part 14 Summary Key Insights

The Logistic Regression worked very well for telling the difference in Al vs Human writing.

The Random Forest also did a good job and showed which words mattered the most.

- Some words and writing styles made it easier to guess if the text was written by Al or a human.
- The TF-IDF method helped highlight rare or unique words that are strong signals.
- The ROC curve showed that the Logistic Regression model was good at separating Al text from Human text.
- The visuals showed that most predictions were correct, with a few mistakes.
- The Random Forest chart showed the top words that helped the model make decisions.

Part 15 Reflection on Challenges and Learning

- Some challenges we had was figuring out how to clean and prepare the text so the computer could read it, and also understanding the different scores and outputs n the precision.
- Also choosing which models to test at first made us a bit confusing.
- Finding out how the TF-IDF works to turn text into numbers, and understanding how to train simple models and check how well they perform, and how to understand results.
- At first, we thought it was just about counting words, but now we see how weighting the words makes models smarter. We also realized accuracy isn't enough, other scores give a better result.
- We think we became more confident in explaining the results, not just running the code.

Final Reflection

- What surprised us that is a very simple model and it was very effective. In the future, maybe we would try more advanced models.
- This project helped me understand datasets and learn the machine learning basics, specially how to prepare data, train models, and explain my results.

Thank You

Ava Leon and Sofia Curi Group 2