"Deep Learning Frameworks for Natural Language Processing: BERT and GPT-2"
Research Computing Center Workshop — Spring 2020
Jeffrey Tharsen tharsen@uchicago.edu

This Guide and ipynb files:

https://github.com/rcc-uchicago/BERT-ELMo_tutorial_Spring2020

1. "This Grad Student Used a Neural Network to Write His Papers" (GPT-2) https://futurism.com/grad-student-neural-network-write-papers

2. What are Transformers?

	GPT	Bert	Transformer-XL	XLM	GPT-2	UniLM	XLNet	RoBERTa	Albert	CTRL	DistilBert	Bart	T5
Encoder stack	1	/	✓	/	✓	✓	✓	✓	✓	/	✓	/	/
Decoder stack	×	X	\approx	X	\approx	X	\approx	×	X	\approx	×	1	/
Not all models implement the Encoder-Decoder architecture; they are actually only becoming popular now. Transformer-XL_GPT2_X11xet and CTRL approximate a decoder stack during generation by using the hidden state of the previous state as the key & values of the note all these set on the state of the previous state as the key & values of the note all these set of the previous state as the key & values of the case all these set of the previous state as the key & values of the case all these set of the previous state as the key & values of the case all the set of the previous state of the p													

- https://github.com/google-research/bert (official Google repository for BERT)
- https://medium.com/huggingface/encoder-decoders-in-transformers-a-hybrid-pre-trained-architecture-for-seq2seq-af4d7bf14bb8
- https://github.com/huggingface/transformers

- https://medium.com/@ngwaifoong92/beginners-guide-to-retrain-gpt-2-117m-to-generate-custom-text-content-8bb5363d8b7f
- http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ (DistilBert)

3. What Tasks can Transformers be trained for?

• https://github.com/huggingface/transformers/blob/master/examples/README.md

The Big Table of Tasks

Task	Example datasets	Trainer support	TFTrainer support	pytorch- lightning	Colab
language-modeling	Raw text	~	-	-	Open in Colat
text- classification	GLUE, XNLI	▼	~	V	Open in Colai
token- classification	CoNLL NER	▼	▼	V	-
multiple-choice	SWAG, RACE, ARC	▽	~	-	Open in Cola
question- answering	SQuAD	-	~	-	-
text-generation	-	-	-	-	Open in Cola
distillation	All	-	-	-	-
summarization	CNN/Daily Mail	-	-	-	-
translation	WMT	-	-	-	-
bertology	-	-	-	-	-
adversarial	HANS	_	_	_	_

- https://towardsdatascience.com/bert-for-dummies-step-by-step-tutorial-fb90890ffe03
- https://medium.com/@Moscow25/the-best-deep-natural-language-papers-you-should-read-bert-gpt-2-and-looking-forward-1647f4438797
- https://medium.com/@ranko.mosic/googles-bert-nlp-5b2bb1236d78
- 4. Jupyter Notebook : Single-token prediction with Google's BERT (via Pytorch) BERT_Predict_masked_token.ipynb
- 5. Jupyter Notebook: Next sentence prediction with OpenAI's GPT-2 BERT+GPT2 sentence prediction.ipynb

https://openai.com/blog/better-language-models/

The code comes from this tutorial: https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_ho w to generate.ipynb

6. Training BERT for various tasks (on Google Cloud TPU via Colab)

Google Cloud TPU Quickstart:

https://cloud.google.com/tpu/docs/quickstart

https://cloud.google.com/tpu/docs/setup-gcp-account

In Cloud Console ("Dashboard")

Create a cloud storage bucket; run the tutorial

Enable billing – you must put in a credit card number

"Start my free trial"

Create bucket (I used "bert tutorial 12345")

Colab: Predicting Movie Review Sentiment with BERT on TF Hub (requires Tf 1.x, you may need to add!pip install --upgrade --force-reinstall tensorflow-gpu==1.15.0 at the beginning) https://colab.research.google.com/github/google-research/bert/blob/master/predicting movie reviews with bert on tf hub.ipynb

- 7. Training BERT for various tasks on Midway using pre-built models
 - A. Classification: MRPC (Sentence Equivalence) via GLUE See Appendix I below
 - B. Question & Answer via SquAD (1.1/2.0)

https://github.com/google-research/bert#squad-11 https://github.com/google-research/bert#squad-20

- 8. How to build ("pre-train") a BERT model from a custom source corpus on Midway
 - A. The basic procedure: https://github.com/google-research/bert#pre-training-with-bert
 - B. Formatting the source corpus: one line per sentence, one blank line between documents
 - C. Creating vocab.txt (<u>WordPiece</u> tokenization) https://github.com/kwonmha/bert-vocab-builder
 - D. Setting up bert_config.json (make sure the vocab length is correct)

Tips and best practices: https://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf

9. How to build a GPT-2 model from a custom corpus

 $\underline{https://medium.com/@ngwaifoong92/beginners-guide-to-retrain-gpt-2-117m-to-generate-custom-text-content-8bb5363d8b7f}$

 $\underline{https://towardsdatascience.com/train-a-gpt-2-transformer-to-write-harry-potter-books-edf8b2e3f3db}$

10. Retrieving and Visualizing the vectors from a BERT model (t-SNE with PCA)

A. Google's method:

 $\underline{https://github.com/google-research/bert\#using-bert-to-extract-fixed-feature-vectors-like-elmo}$

B. The "bert-embedding" library on Github:

https://github.com/negedng/bert-embedding

C. Colab (for Tf 2.x):

https://colab.research.google.com/drive/1hMLd5-r82FrnFnBub-B-fVW78Px4KPX1#scrollTo= Iwew0KP8vRM

D. Use Tensorflow's Tensorboard Embeddings Projector (3 dimensions): https://towardsdatascience.com/bert-visualization-in-embedding-projector-dfe4c9e18ca9

Appendix I. Using Midway to train BERT for Classification : MRPC (Sentence Equivalence) via GLUE

- I. Clone or download Google's main BERT repository: git clone https://github.com/google-research/bert.git
- II. Download one of the pre-trained Google BERT models: https://github.com/google-research/bert#pre-trained-models

e.g. BERT-Base, Uncased (recommended)

12-layer, 768-hidden, 12-heads, 110M parameters https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip

Open Firefox, download the zip file, then move it to your working directory and unzip it:

mv ~/Downloads/uncased_L-12_H-768_A-12.zip . unzip uncased_L-12_H-768_A-12.zip

III. The model zip file will contain:

a. vocab.txt
 b. bert_config.json
 c. bert_model.ckpt.meta
 BERT-Base, Uncased = 30,522
 the all-important config file
 binary metadata file

d. bert_model.ckpt.index binary index file

e. bert_model.ckpt.data-00000-of-00001 the DATA, aka "the checkpoint file"

IV. To run the GLUE test

First download download_glue_data.py script from https://gist.github.com/W4ngatang/

module load Anaconda3/2018.12

Run: python download_glue_data.py

cd bert

Create an sinteractive session for yourself on Midway:

sinteractive -mem-per-cpu=24G

```
(or: sinteractive -mem-per-cpu=24G -partition=gpu2 -gres=gpu:1)
```

Load the modules and Tensorflow 1.13.1 environment:

module load Anaconda3/2018.12 source activate tf-cpu-1.13.1 (or source activate tf-gpu-1.13.1)

Export these directories (makes it easier to run run classifier.py):

export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 export GLUE_DIR=/path/to/glue_data

To train the classifier, run this: python run classifier.py \ --task_name=MRPC \ --do train=true \ --do_eval=true \ --data_dir=\$GLUE_DIR/MRPC \ --vocab_file=\$BERT_BASE_DIR/vocab.txt \ --bert config file=\$BERT BASE DIR/bert config.json \ --init checkpoint=\$BERT BASE DIR/bert model.ckpt \ --max_seq_length=128 \ --train batch size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3.0 \ --output_dir=/tmp/mrpc_output/ → change this to somewhere useful Then to run it, set TRAINED_CLASSIFIER to the output directory export TRAINED_CLASSIFIER=/tmp/mrpc_output/ → what you used above *Create the file test.tsv in the /bert directory (see below for a sample);* the process will create test_results.tsv in your output_dir. When test.tsv is ready, run this to create test_results.tsv in the output_dir: python run classifier.py \

```
python run_classifier.py \
--task_name=MRPC \
--do_predict=true \
--data_dir=$GLUE_DIR/MRPC \
--vocab_file=$BERT_BASE_DIR/vocab.txt \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$TRAINED_CLASSIFIER \
--max_seq_length=128 \
--output_dir=/tmp/mrpc_output/ → change this also to somewhere useful,

| I use mrpc_test |
```

Here are samples of both of these files (note that they are tab-delimited):

test.tsv:

guid	text_a	text_b
casd4	I hate pizza, as everone knows.	Pizza is the food I hate the most.
3ndf9	She is the greatest singer in the world.	As a singer, she's just the very best.
abcde	She loves me not.	Are penguins cold?

test_results.tsv will contain a list of vectors, to combine with test.tsv, do:

```
import pandas as pd #read the original test data for the text and id
df_test = pd.read_csv('bert/test.tsv', sep='\t')
#read the results data for the probabilities
df_result = pd.read_csv('mrpc_test/test_results.tsv', sep='\t', header=None) #change to the output dir
#create a new dataframe
df_map_result = pd.DataFrame({'guid': df_test['guid'],
    'text_a': df_test['text_a'],
    'text_b': df_test['text_b'],
    'label': df_result.idxmax(axis=1)})
#view the first 3 rows of the newly created dataframe
print(df_map_result[0:3])
```

The final results should look something like this:

guid	text_a	text_b	label
0 casd4	I hate pizza, as everone knows.	Pizza is the food I hate the most.	1
1 3ndf9	She is the greatest singer in the world.	As a singer, she's just the very best.	1
2 abcde	She loves me not.	Are penguins cold?	0