华中农业大学本科课程期末考试试卷 B 卷

考试课程: 概率论与数理统计

题 号	1	11	Ш	四	五	六	七	八	总 分
得 分									
评卷人									

本题 得分

单项选择题(从下列各题四个备选答案中选出一个正确答案, 并将其字母代号写在该题【 】内。答案错选或未选者,该题不得分。 每小题 2 分, 共 10 分。)

1. 设随机变量 X 的分布密度 $p(x) = \frac{1}{\pi(1+x^2)}$, 则 Y = 2X 的分布密度为_____.

(a)
$$\frac{1}{\pi(1+4x^2)}$$
; (b) $\frac{2}{\pi(4+x^2)}$; (c) $\frac{1}{\pi(1+x^2)}$; (d) $\frac{1}{\pi} \arctan x$.

(b)
$$\frac{2}{\pi(4+x^2)}$$

(c)
$$\frac{1}{\pi(1+x^2)}$$

- 2. 设随机变量序列 x₁, x₂,..., x_n...相互独立,并且都服从参数为 1/2 的指数分布,则

当 n 充分大时,随机变量 $Y_n = \frac{1}{n} \sum_{i=1}^{n} x_i$ 的概率分布近似服从______.

- (a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n)
- (d) N(2n,4n)
- 3. 设总体X服从正态分布 $N(\mu,\sigma^2)$, 其中 μ 已知, σ^2 未知, X_1,X_2,X_3 是总体X的

 - 4. 在假设检验问题中,检验水平 α 意义是 ____ (a) 原假设 H_0 成立,经检验被拒绝的概率;

- (b) 原假设 H₀成立, 经检验不能拒绝的概率;
- (c) 原假设 H₀ 不成立, 经检验被拒绝的概率;
- (d) 原假设 H₀ 不成立, 经检验不能拒绝的概率.

- (a) SSR 越大, SSE 越小, (b) SSE 越小, 回归效果越好;
- (c) |r| 越大,回归效果越好; (d) |r| 越小,SSR 越大.

本题	
得分	

填空题(将答案写在该题横线上。答案错选或未选者,该题不得分。

每小题 2 分, 共 10 分。)

1. 设离散型随机变量 X 只取 x_1 和 x_2 两个可能值(且 $x_1 < x_2$),又已知 $P\{X = x_1\} = 0.2$, $E(X) = 2.6$,
方差 D(X)=0.64, 则 x ₁ =
2. 从 10 个数字 0,1,2,3,,9 中任取两个数字,其和大于 10 的概率为
3. 设 A,B 为两个事件, P(A)=0.5, P(B)=0.6, P(B/A)=0.8, 则 P(¬A ∩ B)= 0 - 2
4. 在单因素方差分析中,试验因素 A 的 r 个水平的样本总容量为 n ,则当原假设 H_0 成立时, SSA/σ^2 服从
5. 在线性回归分析中,回归平方和的含义是 <u>有之</u> 是人对 <u>有</u> 之
5. 在线性回归分析中,回归平方和的含义是 15人
本题 = (10分 更求写法+

得分 品的合格率是 0.8.要使一批产品的合格率达到 76%与 84%之间的概

率不小于 90%,**问**:这批产品至少要生产多少件 $?\sqrt{0.1 \times 0.8}$

(附: Ф(1.64)=0.95, 其中Ф(x)是标准正态分布函数。) 强设至寸生产机件,X表示产品。

$$\frac{76\%}{-P} \leq \frac{x}{N} \leq 89\%$$

$$\frac{5.91}{10} \leq \frac{5.991}{04\sqrt{n}} \leq \frac{20.091}{04\sqrt{n}} \leq \frac{720.000}{04\sqrt{n}} \leq \frac{720.0000}{04\sqrt{n}} \leq \frac{720.000}{04\sqrt{n}} \leq \frac{720.000}{04\sqrt{n}} \leq \frac{720.00$$

本题 得分 四、(10 分,要求写清步骤及结果)为估计鱼池内的鱼数,第一次捕

了 2000 尾,做了记号再放回鱼池内,充分混和后再捕 2000 尾,结果发

现 500 尾有记号,试用极大试然法估计鱼池内的鱼数。

(提示:用 $X_{i=}$ $\begin{cases} 1, \ \text{混合后从鱼池内捕出的第<math>}i$ 条鱼有记号, $i=1,2,...,2000. \end{cases}$ i=1,2,...,2000.

N 表示鱼池的鱼数, $P\{X_i=x_i\}=(2000/N)^{x_i}(1-2000/N)$ $L = \frac{2000}{N} \left(\frac{2000}{N} \right)^{\frac{2000}{N}} \left(1 - \frac{2000}{N} \right)^{\frac{200$

本题 得分

五、(12分,要求写清步骤及结果) 己知某树种的木材横纹抗压

力遵从正态分布,随机抽取该中木材的试件 9 个,做横纹抗压力试 llate

验,获得下列数据(单位 kg/cm2):

 $\frac{X-M}{S^{*}} \sim t(n-1). X=450$ $(X-to.915(8)) \frac{S^{*}}{Jn}, X+to.975(8) \frac{S^{*}}{Jn})$

(430.449, 487.556)

28.5.+

本题 得分

在施以底肥与不施底肥的两块苗床 六、(15分,要求写清步骤及结果)

上,分别抽取 10 株苗木,测得苗高数据(单位:cm)如下表:

								行和	10 > 18	77
	施肥	77.,3	79. 1	81.0	79.,1	82, 1	77. 3	475. 9	77-5	1
	不施肥	75. 5	76. 2	78.1	72.4	77.,4	76. 7	456. 3	76-1	
设ī	苗木的苗高服	从正态分	布,且为	重复抽样	. (取显著	嗜水平α=	=0.05) 问	:	1	
1.	检验施肥苗床	E的苗木的	的苗高的	方差是否	一样2/			20 - l		

1. 检验施肥苗床的苗木的苗高的方差是否

问施肥苗床的苗木的苗高是否显著高于不施肥苗床上苗木的苗高. ($/\!\!\!/ t_0$, $F_{0.975}$ (6-1, 6-1) =7.15 , $\langle t_{0.95} (6+6-2)=1.812 \rangle$ 1. Ho: 61262, -0.975(5,5)=7.15 $-0.025(5,5)=\frac{1}{7.15}$ 2. Ho: MiZME HI: MIZM () - [M1 - M2) = 2.82 > to 95(6+6+2): 七、(15分,要求写清步骤及结果)设在育苗试验中有3种不同的处理方法,每种方法做6次重复试验,一年后,苗高数据如下表:

处理 方法	苗高 y _{ij} (cm)	行 和	
1	39.2 29.0 25.8 33.5 41.7 37.2	T ₁ . =206.4	
2	37. 3 27. 7 23. 4 33. 4 29. 2 35. 6	T_{2} . =186.6	
3	20.8 33.8 28.6 23.4 22.7 30.9	T3. =160.2	

- 1. 试问不同的处理方法是否有显著差异?
- 2. 请列出方差分析表.
- 3. 哪种处理方法最好? (附:α =0.05, F_{0.95}(3-1,18-3)=3.68)

..

本题 得分

八、(18分, 要求写清步骤及结果)为研究某种商品的单位家庭的月需求量 Y与该商品的价格 x 之间的关系,得数据如下: $(\alpha = 0.05)$

											行和
价格 X _i (元)	1.0	2.0	2.0	2.3	2.5	2.6	2.8	3.0	3.3	3.5	25
月需求量 Yi	5.0	3.5	3.0	2.7	2.4	2.5	2.0	1.5	1.3	1.2	25.1
(500克)											

- 1. 试求: \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} ;
- 2. 试求:对 x 的一元线性之经验回归方程;
- 3. 对此一元线性回归方程进行显著性检验.
- 4. 求当 x=1.5 时,需求量 y_0 的估计值和 y_0 的 95%的置信区间.

(提示: 预测公式
$$t = (y_0 - \hat{y_0}) / \sqrt{\frac{SSE}{n-2} \bullet [1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}]} \sim t(n-2)$$
)

