Linear Algebra Sabrina Edition

1. Vector Space

§1-3 Subspace.

Ex This is Question

Solution.

This is Solution.

- 13 Let S be a nonempty set and F a field. Prove that for any $s_0 \in S$, $\{ f \in F(S, F) \mid f(s_0) = 0 \}$, is a subspace of F(S, F).
- 14 Let S be a nonempty set and F a field. Let C(S, F) denote the set of all functions $f \in F(S, F)$ such that f(s) = 0 for all but a finite number of elements of S. Prove that C(S, F) is a subspace of F(S, F)
- 20 Max
- 23 Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
 - (b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.
- 30 Let W_1 and W_2 be subspaces of a vector space V Prove that V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely written as $x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$.

§1-4 Linear Combination.

- (a) Show that if S_1 and S_2 are subsets of a vector space V such that $S_1 \subseteq S_2$, then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$. In particular, if $S_1 \subseteq S_2$ and $\operatorname{span}(S_1) = V$, deduce that $\operatorname{span}(S_2) = V$
- (b) Show that if S_1 and S_2 are arbitrary subsets of a vector space V, then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

§1-5 Linear Independent.

- (a) Let V be a vector space over a field of characteristic not equal to two.
 - i. Let u and v be distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u v\}$ is linearly independent.

Linear Algebra Sabrina Edition

- ii. Let u, v and w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u + v, u + w, v_w\}$ is linearly independent.
- (b) Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.
- (c) Let $f, g \in F(R, R)$ be the functions defined by $f(t) = e^{et}$ and $g(t) = e^{st}$, where $r \neq s$. Prove that f and g are linearly independent in F(R, R).