

TÌM TẦN SỐ CƠ BẢN (F0) CỦA TÍN HIỆU CHỈ CHỨA NGUYÊN ÂM VÀ KHOẢNG LẶNG

Sinh viên thực hiện: Nguyễn Tấn Nhất

Lóp: 19TCLC_DT3

Giáo viên hướng dẫn: Ts. Ninh Khánh Duy

TÌM TẦN SỐ CƠ BẨN (F0) CỦA TÍN HIỆU VÀ XÁC ĐỊNH NGUYÊN ÂM VÀ KHOẢNG LẶNG

Sinh viên thực hiện: Nguyễn Tấn Nhất

Lóp: 19TCLC_DT3

Giáo viên hướng dẫn: Ts. Ninh Khánh Duy

XÁC ĐỊNH NGUYÊN ÂM VÀ KHOẢNG LẶNG

CÀI ĐẶT THUẬT TOÁN

```
1 def threshold(f, g):
      Nf = len(f)
       Ng = len(g)
      Tmin = min(g)
      Tmax = max(f)
      print(min(f),min(g),Tmin)
      print(max(f),max(g),Tmax)
      T = 0.5 * (Tmin + Tmax)
      i = len(np.where(f < T)[0])
       p = len(np.where(g > T)[0])
10
      j = -1
11
12
       q = -1
       tong1 = 0
13
       tong2 = 0
14
       while i == j or p == q:
15
        for a in np.arange(0,Nf,1):
16
        tong1 = max(f(a) - T,0) + tong1
17
        for b in np.arange(0,Ng,1):
18
19
         tong2 = max(T - g(b),0) + tong2
20
        A = (1.0 / Nf) * tong1 - (1.0 / Ng) * tong2
        if A < 0:
21
22
         Tmin = T
23
         else:
         Tmax = T
24
        T = 0.5 * (Tmin + Tmax)
25
        j = i
26
27
        q = p
        i = len(np.where(f < T)[0])
28
        p = len(np.where(g > T)[0])
29
       print("KL:" + str(T))
30
31
       return T
```

THỐNG KỂ GIẢ TRỊ TÌM NGƯỚNG

	01MDA.wav	02FVA.wav	03MAB.wav	06FTB.wav
Tmin	0.02202	0.006503	0.069909	0.01624
Tmax	0.25469	0.03275	0.65018	0.105688
T	0.13836	0.019629	0.36	0.06096

T(average) = 0.14475

30FTN.wav

	1	2	3	4	5	6	7	8	9	10	11	12
Tính Toán	0	0.6	0.9	1.77	2.07	3.45	3.75	4.71	5.07	5.97	6.27	6.78
Kiểm Thử	0	0.57	0.96	1.74	2.1	3.42	3.75	4.68	5.13	5.94	6.27	6.27
Độ lệch	0	0.03	-0.06	0.03	-0.03	0.03	0	0.03	-0.06	0.03	0	-0.03

42FQT.wav

	1	2	3	4	5	6	7	8	9	10	11	12
Tính Toán	0	0.48	0.78	1.56	1.89	2.52	2.85	3.78	4.14	4.8	5.1	5.79
Kiểm Thử	0	0.45	0.99	1.56	2.1	2.49	2.91	3.78	4.38	4.74	5.19	5.79
Độ lệch	0	0.03	-0.21	0	-0.21	0.03	0.06	0	-0.24	0.06	-0.09	0

44MTT.wav

	1	2	3	4	5	6	7	8	9	10	11	12
Tính Toán	0	0.93	1.32	2.61	2.94	4.71	5.07	6.27	6.6	8.04	8.34	9.24
Kiểm Thử	0	0.93	1.41	2.58	3	4.71	5.04	6.24	6.66	8.01	8.37	9.24
Độ lệch	0	0	-0.09	0.03	-0.06	0	-0.03	0.03	-0.06	0.03	-0.03	0

45MDV.wav

	1	2	3	4	5	6	7	8	9	10	11	12
Tính Toán	0	0.6	1.17	2.37	2.64	3.75	3.96	5.04	5.37	6.42	6.66	7.41
Kiểm Thử	0	0.57	1.32	2.34	2.79	3.75	4.11	5.04	5.49	6.39	6.78	7.41
Độ lệch	0	0.03	-0.15	0.03	-0.15	0	-0.15	0	-0.12	0.03	-0.12	0

\	30FTN.wav	0	0.03	-0.06	0.03	-0.03	0.03	0	0.03	-0.06	0.03	0	0.03	1
	42FQT.wav	0	0.03	-0.21	0	-0.21	0.03	0.06	0	-0.24	0.06	-0.09	0	3
	44MTT.wav	0	0	-0.09	0.03	-0.06	0	-0.03	0.03	-0.06	0.03	-0.03	0	2
/	45MDV.wav	0	0.03	-0.15	0.03	-0.15	0	-0.15	0	-0.12	0.03	-0.12	0	3

TÌM KIẾM F0 TRÊN MIỀN TẦN SỐ

Kết quả trung gian

30FTN.wav

Kết quả trung gian

42FQT.wav

Kết quả trung gian

44MTT.wav

45MDV.wav

F0_mean_30FTN.wav = 225.1098 Std = 22.3333

F0_mean_42FQT.wav =243.2642 Std = 13.35349

F0_mean_44MTT.wav = 129.199 Std = 5.17210

F0_mean_45MDV.wav = 180.012326 Std = 5.58295

Kết luận

- Thuật toán tìm kiếm nhị phân xác định khoảng lặng tiếng nói:

 Thuật toán xác định ngưỡng bằng tìm kiếm nhị phân đã cho

 kết quả gần đúng, còn một số ít vị trí đã bỏ lọt khoảng tiếng nói
- O Tìm kiếm F0 trên miền tần số
 - Phương pháp tìm F0 trên miền tần số với N=4096 đã cho kết quả F0 khá đúng so với yêu cầu
 - Phương pháp lọc trung vị đã giúp loại bỏ lỗi pitch ảo gây nhiễu cho việc tìm kiếm F0

DEMO