DD2448 Foundations of Cryptography Lecture 8

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

April 3, 2020

Elementary Number Theory

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

► The GCD is the positive GCD.

Greatest Common Divisors

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

- ▶ **The** GCD is the **positive** GCD.
- ▶ We denote the GCD of m and n by gcd(m, n).

Properties

- $ightharpoonup \gcd(m,n) = \gcd(n,m)$
- ightharpoonup gcd(m, n) = gcd(m n, n) if $m \ge n$
- $\gcd(m,n) = \gcd(m \bmod n,n)$
- ightharpoonup gcd $(m, n) = 2 \operatorname{gcd}(m/2, n/2)$ if m and n are even.
- ightharpoonup gcd $(m,n)=\gcd(m/2,n)$ if m is even and n is odd.

Euclidean Algorithm

```
EUCLIDEAN(m, n)
(1) while n \neq 0
(2) t \leftarrow n
(3) n \leftarrow m \mod n
(4) m \leftarrow t
(5) return m
```

Steins Algorithm (Binary GCD Algorithm)

```
Stein(m, n)
(1)
        if m=0 or n=0 then return 0
(2)
     s \leftarrow 0
     while m and n are even
(3)
(4)
            m \leftarrow m/2, n \leftarrow n/2, s \leftarrow s+1
(5)
       while n is even
(6)
            n \leftarrow n/2
(7)
        while m \neq 0
(8)
            while m is even
(9)
                m \leftarrow m/2
(10)
        if m < n
(11)
               SWAP(m, n)
(12)
       m \leftarrow m - n
(13)
            m \leftarrow m/2
        return 2<sup>s</sup>n
(14)
```

Bezout's Lemma

Lemma. There exists integers a and b such that

$$gcd(m, n) = am + bn$$
.

Bezout's Lemma

Lemma. There exists integers a and b such that

$$gcd(m, n) = am + bn$$
.

Proof. Let $d > \gcd(m, n)$ be the smallest positive integer on the form d = am + bn. Write m = cd + r with 0 < r < d. Then

$$d > r = m - cd = m - c(am + bn) = (1 - ca)m + (-cb)n$$
,

a contradiction! Thus, r = 0 and $d \mid m$. Similarly, $d \mid n$.

Extended Euclidean Algorithm (Recursive Version)

```
EXTENDEDEUCLIDEAN(m, n)
(1) if m \mod n = 0
(2) return (0,1)
(3) else
(4) (x,y) \leftarrow \text{EXTENDEDEUCLIDEAN}(n, m \mod n)
(5) return (y,x-y\lfloor m/n\rfloor)

If (x,y) \leftarrow \text{EXTENDEDEUCLIDEAN}(m,n) then \gcd(m,n) = xm + yn.
```

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Excercise: Why is this so?

Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

$$x = a_1 \mod n_1$$

$$x = a_2 \mod n_2$$

$$x = a_3 \mod n_3$$

$$\vdots$$

$$x = a_k \mod n_k$$

has a unique solution in $\{0, \ldots, \prod_i n_i - 1\}$.

Constructive Proof of CRT

- 1. Set $N = n_1 n_2 \cdot \ldots \cdot n_k$.
- 2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i} = 1$ (Bezout).
- 3. Note that

$$s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 \pmod{n_i} \\ 0 \pmod{n_j} & \text{if } j \neq i \end{cases}$$

4. The solution to the equation system becomes:

$$x = \sum_{i=1}^{k} \left(s_i \frac{N}{n_i} \right) \cdot a_i$$

The Multiplicative Group

The set $\mathbb{Z}_n^* = \{0 \le a < n : \gcd(a, n) = 1\}$ forms a group, since:

- ▶ **Closure.** It is closed under multiplication modulo *n*.
- ▶ Associativity. For $x, y, z \in \mathbb{Z}_n^*$:

$$(xy)z = x(yz) \bmod n$$
.

▶ **Identity.** For every $x \in \mathbb{Z}_n^*$:

$$1 \cdot x = x \cdot 1 = x$$
.

▶ **Inverse.** For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$ab = 1 \mod n$$
.

Lagrange's Theorem

Theorem. If H is a subgroup of a finite group G, then |H| divides |G|.

Proof.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \land h \in H$, and a partition, of G.
- 2. The map $\phi_{a,b}: aH \to bH$, defined by $\phi_{a,b}(x) = ba^{-1}x$ is a bijection, so |aH| = |bH| for $a, b \in G$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

▶ Clearly: $\phi(p) = p - 1$ when p is prime.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.
- ▶ In general: $\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k p_i^{k-1}\right)$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.
- ▶ In general: $\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k p_i^{k-1}\right)$.

Excercise: How does this follow from CRT?

- 1. $\mathbb{Z}_n \simeq \prod_i \mathbb{Z}_{p_i^{k_i}}$ (CRT is a bijection)
- 2. If $a \in \mathbb{Z}_n^*$, then $a \mod p_i^{k_i} \in \mathbb{Z}_{p_i^{k_i}}^*$ (aligns bijection on subsets)

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. b generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ by Lagrange's theorem and $b^{|\langle b \rangle|} = 1 \mod n$.

Multiplicative Group of a Prime Order Field

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Multiplicative Group of a Prime Order Field

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Multiplicative Group of a Prime Order Field

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Keep in mind the difference between:

- $ightharpoonup \mathbb{Z}_p$ with prime order as an additive group,
- $ightharpoonup \mathbb{Z}_p^*$ with non-prime order as a multiplicative group.
- ightharpoonup group G_p of prime order.