- In the definition of a finite state acceptor, t is the transition mapping, which may or may not be a function (hence the careful terminology). This is because finite state acceptors come in 2 flavours:
 - 1. Deterministic: every state has exactly one transition for each possible input, i.e. $\forall (s,a) \in S \times A \exists ! \ t(s,a) \in S$. In other words, the transition mapping is a function.
 - 2. Non-deterministic: an input can lead to one, more than one or no transition for a given state. Some $(s, a) \in S \times A$ might be assigned to more than one element of S, i.e. the transition mapping is not a function.
- Surprisingly ∃ algorithm that transforms a non-deterministic (thought more complex one) using the power set construction. As a result, we have the following theorem:
- **Theorem:** A language L over some alphabet A is a regular language $\Leftrightarrow L$ is recognised by a deterministic finite state acceptor with input alphabet $A \Leftrightarrow L$ is recognised by a non-deterministic finite state acceptor with input alphabet A.
- **Example:** Build a deterministic finite state acceptor for the regular language $L = \{0^m 1^n \mid m, n \in \mathbb{N}, m > 0, n > 0\}$
 - Accepting states in this examples: i, s_1, s_2
 - Non accepting states: s_3
 - Start states: i

 - Here $S = \{i, s_1, s_2, s_3\}$ $F = \{i, s_1, s_2\}$ $A = \{0, 1\}$ $t: S \times A \rightarrow$ $S t(i,0) = s_1 t(i,1) = s_2 t(s_1,0) = s_1 t(s_1,1) = s_2 t(s_2,0) = s_1 t(s_2,0) = s_2 t(s_$

 s_3 $t(s_2, 1) = s_2$ Let's process some strings:

String	ε (empty string)
State (i)	i
Output	YES

String	0	0	1	1	1	
State i	s_1	s_1	s_2	s_2	s_2	
Output	YES					

String	1	1		String	1
State i	s_2	s_2		State i	s_2
Output	Y]	ΞS	,	Output	YES

String	0	1	0	1	
State i	s_1	s_2	s_3	s_3	
Output	NO				

Now that we really understand what a finite state acceptor is, we can develop a criterion for recognising regular languages called the $\underline{\text{Myhill-Nerode theorem}}$ based on an equivalence relation we can set up on words in our language over the alphabet A.

Definition: Let $x, y \in L$, a language over the alphabet A. We call x and y equivalent over L denoted by $x \equiv_L y$ if $\forall w \in A^*, xw \in L \Leftrightarrow yw \in L$.

Note: xw means the concatenation $x \circ w$, and yw is the concatenation $y \circ w$.

Idea: If $x \equiv_L y$, then x and y place our finite state acceptor into the <u>same state</u> s.

Notation: Let L/N be the set of equivalence classes determined by the equivalence relation \equiv_L .

The Myhill-Nerode Theorem: Let L be a language over the alphabet A. If the set L/N of equivalence classes in L is infinite, then L is not a regular language.

Stretch of Proof: All element of one equivalence class in L/N place our automation into the same state s. Elements of distinct equivalence classes place the automation into distinct state, i.e. if $[x], [y] \in L/N$ and $[x] \neq [y]$, then all elements of [x] place the automation into some state s, while all

elements of [y] place the automation into some state s', with $s \neq s' \Rightarrow$ an automation that can recognise L has as many states at the number of equivalence classes in L/N, but L/N is $\overline{\text{NOT}}$ finite $\Rightarrow L$ cannot be recognised by a finite state automation $\Rightarrow L$ is not regular by the theorem above.

qed

8.4 Regular Grammars

Task: Understand what is the form of the production rules of a grammar that generates a regular language.

Recall: that a context-free grammar is given by $(V, A, \langle s \rangle, P)$ where every production rule $\langle T \rangle \rightarrow w$ in P causes one and only one nonterminal to be replaced by a string in V^* .

Definition: A context-free grammar $(V, A, \langle s \rangle, P)$ is called a <u>regular grammar</u> is every production rule in P is of one of the three forms:

- (i) $\langle A \rangle \rightarrow b \langle B \rangle$
- (ii) $\langle A \rangle \rightarrow b$
- (iii) $\langle A \rangle \rightarrow \varepsilon$

where $\langle A \rangle$ and $\langle B \rangle$ are nonterminals, b is a terminal, and ε is the empty word. A regular grammar is said to be in normal form if all its production rules are of types (i) and (iii).

Remark: In the literature, you often see this definition labelled <u>left-regular grammar</u> as opposed to <u>right-regular grammar</u>, where the production rules of types 1 have the form $\langle A \rangle \rightarrow \langle B \rangle$ b, (i.e. the terminal is one the right of the nonterminal). This distinction is not really important as long as we stick to one type throughout since both <u>left-regular grammars</u> and right-regular grammars generate regular languages.

Lemma: Any language generated by a regular grammar may be generated by a regular grammar in normal form.

Proof: Let <A $>\to$ b be a rule of type (ii). Replace it by two rules: <A $>\to$ b<F> and <F $>\to \varepsilon$, where <F> is a new nonterminal. Add <F> to the set V. We do the same for every rule of type (ii) obtaining a bigger set V, but now our production rules are only of type (i) and (iii) and we are generating the same language.

qed

Example: Recall the regular language $L = \{0^m 1^n \mid m, n \in \mathbb{N}, m \geq 0, n \geq 0\}$. We can generate it from the regular grammar in normal gorm given by production rules:

1.
$$\langle s \rangle \rightarrow 0 \langle A \rangle$$

2. $\langle A \rangle \rightarrow 0 \langle A \rangle$

3. $\langle A \rangle \rightarrow \varepsilon$

4. $\langle s \rangle \rightarrow \varepsilon$

5. $\langle A \rangle \rightarrow 1 \langle B \rangle$

6. $< B > \to 1 < B >$

7. $\langle s \rangle \to 1 \langle B \rangle$

8. $\langle B \rangle \rightarrow \varepsilon$

m > 2.

for $n \geq 2$.

Rules (1), (2), (5), (6), (7) are of type (i), where rules (3), (4) and (8) are

of types (iii). (1) and (3) gives 0. (1), (2) applied m-1 times and (3) gives 0^m for

(7) and (8) give 1. (7), (6) applied n-1 times and (8) give 1^n for $n \geq 2$.

(1), (5) and (8) give 01. (1), (5), (6) applied n-1 times and (8) gives 01^n

(1), (2) applied m-1 times, (5) and (8) gives $0^m 1$ for $m \geq 2$.

(1), (2) applied m-1 times, (5), (6) applied n-1 times, and (8) gives $0^m 1^n \text{ for } m \ge 2, n \ge 2.$

Rule (4) gives the empty word $\varepsilon = 0^0 1^0$.

Q: Why does a regular grammar yield a regular language, i.e. one recognised

by a finite state acceptor? A: Not obvious from the definition, but we can construct the finite state acceptor from the regular grammar as follows: our regular grammar is given by $(V, A, \langle s \rangle, P)$. Want a finite state acceptor (S, A, i, t, F). Immediately,

we see the alphabet A is the same and i = <s>. This gives us the idea of

associating to every nonterminal symbol in $V \setminus A$ a state. $\langle s \rangle \in V \setminus A$, so that's good. Next we ask:

Q: Is it sufficient for $S = V \setminus A$?