《机器学习及其在化学中的应用》2025年课程

混合模型: 聚类

(K-均值法; 高斯混合模型)

刘志荣 (LiuZhiRong@pku.edu.cn)

北京大学化学学院

2025.11.10

内容提要

■ K-均值法

■混合高斯模型

■ 应用例子

1. K-均值法... (K-means clustering)

团簇ing...

无监督学习 (Unsupervised Learning)

- 给学习算法一个数据集 $\{\mathbf{x}_n\}$ (n = 1, 2, ..., N),里面没有答案或标签,让算法据此寻找其中的规律与结构。
- 例如: 聚类 (clustering)
 - □市场分割(客户群);
 - □产品分割(电商目录、 手机套餐);
 - □ 社交网络(社区);
 - □新闻聚合;
- ■例如:降维

聚类: K-均值法(K-means)

- 假设我们想把数据点分成K组,K已知。
- 直观想法:与组内点的距离小于与组外点的距离。
- 一种方法: 找一些原型prototype μ_k (聚类中心cluster centroids)
- 在K-均值法中,定义畸变函数(Distortion function):

$$J(\{r_{nk}\},\{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

- □ r_{nk} 是第n个数据点分类结果的独热编码(的第k分量)。如果被分到第k个组,则 r_{nk} = 1;否则为0。
- 任务变成:

$$\min_{r_{nk},\mathbf{\mu}_k} J(\{r_{nk}\},\{\mathbf{\mu}_k\})$$

求解方法***

arg min: 使后面函数达到最小值时

的变量的取值

(1)
$$\min_{r_{nk}} J$$

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} ||\mathbf{x}_{n} - \mathbf{\mu}_{j}||^{2} \\ 0, & \text{otherwise} \end{cases}$$

 \mathbf{x}_n 离哪个 $\mathbf{\mu}_j$ 近就分到哪个组。

(2)
$$\min_{\mathbf{\mu}_k} J \qquad \qquad \mathbf{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

 μ_k 等于组内数据点 \mathbf{x}_n 的平均值。

- (3)不断循环(1,2),迭代求解。
- J不断下降,但有可能收敛到局部极小值。可用不同初值多次求解。

例子···

在线学习

基于任何距离(相似性)定义1/

不一定使用欧氏距离

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \mathbf{\mu}_k)$$

应用例子:调色板选择与图像压缩

■ 有损压缩。全彩色: 3 bytes

调色板: 4.2%, 8.3%, 16.7%。

Bishop Fig. 9.3

应用例子: 扫描笔记去噪

- 左:输入扫描件(300 DPI, 7.2MB PNG / 790KB JPG.)
- 右:输出图片(8种颜色,300 DPI,121KB PNG)。

扫描笔记去噪-代码: noteshrinkmaster.zip

Orthogonal Transformations	Orthogonal Transformations		
. spatial relationerips in 3D	· speking relationships in 3D		
bef - An nan matrix A is an orthogonal	pef - An nan matrix A is an orthogonal		
transformation (.E.F. (1) and entry (4)	transformation LFF (if and only 14)		
- It has in nurually perpendicular	- it has n mutually perpendicular		
cousing columns with unit length	rows or columns with unit length		
* 1 1000 must be in dependent	· I must be independent		
"cap'r be multiples of each other)	(can't be multiples of eachother)		
28 [3] - linearly dependent			
2 0 to independent but	2 6] - inappendent but		
to we perpendicular, DET 1	to we perpendicular,		
the dat product must be O	the dot product must be O		
Act produce : X+y = \$ xy;	Not produce: x·y = \$ siy;		
Y-y=0 ++ x 14 (perp)	x, y = 0 + x 1 y (perq.)		
The way to be feeling must have unit length	· town (column must have unit length		
1 × 11 × 11 = √2×x = √×××	1.5 × - √±×2 = √×·×		
- The rows or columns of A form an orthonormal basis of R^	- The rows or columns of A form an orthonormal basis of R"		
a bookle for space - set of vectors than	· bosic for space - set of vectors than		
can combine to create any yester in	can combine to asente any yector in		
Ca space to so late	a space		
· busically first point with more words	· bostrally first point with more words		
A More - AAT = ATA = I transpose LIT	* More - AAT = ATA = I transpose []		
about - A-1 L-AT switches the rows transport - and columns	temper - A-1 - AT switches the rows		
ange (1 2 3) = 25	on heat onge er (1 2 3 % 2 2 5		
4 5 6 3 6	456 36		

https://baijia.baidu.com/s?id=1595977285675528555

手把手:扫描图片又大又不清晰?这个Python小程序帮你搞定!

选择聚类数K

- 非监督学习,因此没有所谓的"最佳"K值。
- 通常是需要根据不同的问题,人工进行选择的。选择的时候思考采用聚类的动机是什么,然后选择能最好服务于该目标的聚类数。
- 从数据本身的特征来讲,最佳K值对应的类别下应该是类内距离最小化并且类间距离最大化。有些辅助指标可以用来评估这种特征,比如平均轮廓系数、类内距离/类间距离等都可以做此类评估。

■ 平均轮廓系数:

$$S(i) \in [-1,1]$$

$$S(i) = \frac{b(i) - a(i)}{\max[a(i), b(i)]}$$

□ 其中*a*(*i*)与*b*(*i*)分别是第*i*类的类内平均距离 及其与最近类的类间平均距离。

■ "肘部法则"

Choosing the value of K

Elbow method:

2. 高斯混合模型...

(Gaussian mixture models)

高斯混合模型

■ 假设x的分布是由多个高斯分布混合而成: **

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

■ 通过引入具有K个离散取值的隐藏变量Z(采用独热编码),可以变成简单的贝叶斯网络:

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$$

其中

$$p(z_k = 1) = \pi_k$$
$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

Expectation-Maximization(EM)算法 期望-最大化

$$p(\mathbf{X}|\mathbf{\pi}, \mathbf{\mu}, \mathbf{\Sigma}) = \prod_{n} p(\mathbf{x}_{n}) = \prod_{n} \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mathbf{\mu}_{k}, \mathbf{\Sigma}_{k})$$
$$\ln p(\mathbf{X}|\mathbf{\pi}, \mathbf{\mu}, \mathbf{\Sigma}) = \sum_{n} \ln \left[\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mathbf{\mu}_{k}, \mathbf{\Sigma}_{k}) \right]$$

- 最大化这个似然函数。
- 对 μ_k 求导,得(Bishop 9.2.2)

$$\left(\mu_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}\right)$$

代表 \mathbf{x}_n 来自第k个高斯函数的概率,而

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

■ 对 Σ_k 求导(复杂,略),得

$$(\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mathbf{\mu}_k) (\mathbf{x}_n - \mathbf{\mu}_k)^T)$$

■ 对 π_k 求导,得

$$\pi_k = \frac{N_k}{N}$$

- EM算法:
 - 初始化μ,Σ,π。
 - □ E步骤: 计算 $\gamma(z_{nk})$
 - M步骤: 用上述公式更新μ, Σ, π
 - □ 重复E与M步骤直至收敛。

例子

一般隐藏变量下的EM算法

- 假设x是可观测量,z是不可观测的隐藏量。我们想通过对x的观测来求解 $p(x,z|\theta)$ 中的参数 θ 。
- $p(x,z|\theta)$ 比较简单(如高斯函数),求 $\ln p(X,Z|\theta)$ 对 θ 的极值比较容易。但Z未知,我们需考虑

$$p(\mathbf{X}|\theta) = \prod_{n} p(x_{n}|\theta) = \prod_{n} \int p(x_{n}, z_{n}|\theta) dz_{n}$$
$$\ln p(\mathbf{X}|\theta) = \sum_{n} \ln \int p(x_{n}, z_{n}|\theta) dz_{n}$$

■ 对θ求导数:

$$\frac{\partial \ln p(\mathbf{X}|\theta)}{\partial \theta} = \sum_{n} \frac{\int \frac{\partial p(x_{n}, z_{n}|\theta)}{\partial \theta} dz_{n}}{\int p(x_{n}, z_{n}|\theta) dz_{n}} = \sum_{n} \int \left[\frac{p(x_{n}, z_{n}|\theta)}{\int p(x_{n}, z_{n}|\theta) dz_{n}} , \frac{\partial \ln p(x_{n}, z_{n}|\theta)}{\partial \theta} \right] dz_{n}$$

 $p(z_n|x_n,\theta)$

$$\frac{\partial \ln p(\mathbf{X}|\theta)}{\partial \theta} = \sum_{n} \int \left[p(z_n|x_n, \theta) \cdot \frac{\partial \ln p(x_n, z_n|\theta)}{\partial \theta} \right] dz_n = 0$$

■ 利用上式可得到某些类型的迭代求解方法。在某些情况下(如混合高斯模型),如果把 $p(z_n|x_n,\theta)$ 看做固定的值,即与 θ 无关,

$$\sum_{n} \int \left[p(z_{n}|x_{n}, \theta_{0}) \cdot \frac{\partial \ln p(x_{n}, z_{n}|\theta)}{\partial \theta} \right] dz_{n} = 0$$

有简单的封闭形式的解,不需迭代。

- 总体的迭代EM算法:
 - □ E步骤: $\theta_0 \leftarrow \theta$, 计算 $p(z_n|x_n,\theta_0)$;
 - □ M步骤:利用上面的方程求解 θ ;
 - □ 循环(E, M)步骤, 直至收敛。

EM算法可以保证收敛到一个稳定点,不过不能保证收敛到全局的极大值点

与K-均值法的联系

■ 在高斯混合模型中(假设 $\Sigma_k = \epsilon I$),

$$p(\mathbf{x}|z_k = 1, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{\sqrt{2\pi\epsilon}} \exp\left\{-\frac{1}{2\epsilon} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2\right\}$$

则在E步骤中,

$$\gamma(z_{nk}) = \frac{\pi_k \exp\{-\frac{1}{2\epsilon} ||\mathbf{x}_n - \mathbf{\mu}_k||^2\}}{\sum_k \pi_k \exp\{-\frac{1}{2\epsilon} ||\mathbf{x}_n - \mathbf{\mu}_k||^2\}}$$

- 」 当 ϵ 趋向于0时,离 \mathbf{x}_n 最近的 $\mathbf{\mu}_k$ 所对应的 $\gamma(z_{nk}) = 1$,其余为0,这其实就是K-均值法中对 r_{nk} 的求解(E步骤)。
- \mathbf{p} 对 \mathbf{p}_k 的求解(M步骤)与K-均值法中的相同。
- 因此,K-均值法可看做是一种硬边界的高斯混合模型。

与K-均值法的比较

- 高斯混合模型假设数据点是高斯分布的(可以是椭圆),这是一个限制较少的假设;而K-均值法假设它们是圆形的。
- 高斯混合模型有概率信息,可描述混合类。
- 高斯混合参数多, 求解难度比K-均值法大。

离散x分布

- 也可以考虑离散的x分布,例如其分量 $x_i = \{0,1\}$
- 在z固定的条件下,进一步假设x分量的分布是独立的。这类似于朴素贝叶斯,但此时没有已知标签。

- 例子: 抛铜钱(各种类型,如狄青钱)。
- 应用:数字识别的无监督学习EM算法。

■ 伯努利混合模型。

其它聚类方法(略)

- 层次聚类(Hierarchical clustering)
- InfoMap
- DBSCAN
- 图论中的团体检测(community detection)

...

应用例子1:

http://www.dataivy.cn/blog/ad_clustering_with_keans/

基于K-Means的广告效果聚类分析.mht

问题描述

- 某企业由于投放的广告渠道比较多,需要对其做广告效果分析以实现 有针对性的广告效果测量和优化工作。
- 数据记录数: 889
- 数据预处理:
 - □ 缺失值替换:例如,替换为均值;
 - □ 字符串分类转换为整数分类;
 - □ 数据标准化: Min-Max标准化

■ 数据维度:

- 1. 日均UV: 每天的平均独立访客,从一个渠道中带来的一个访客即使一天中到 达多次都统计为1次
- 2. 平均注册率: 日均注册的用户数量/平均每天的访问量
- 3. 平均搜索量: 平均每个访问的搜索次数
- 4. 访问深度: 总页面浏览量/平均每天的访问量
- 5. 平均停留时间: 总停留时间/平均每天的访问量
- 6. 订单转化率: 总订单数量/平均每天的访问量
- 7. 投放总时间: 每个广告媒介在站外投放的天数
- 8. 素材类型:广告素材类型,包括jpg、gif、swf、sp
- 9. 广告类型:广告投放类型,包括banner、tips、横幅、通栏、暂停以及不确定 (不知道到底是何种形式)
- 10.合作方式:广告合作方式,包括roi、cpc、cpm和cpd
- 11.广告尺寸:每个广告投放的尺寸大小,包括140*40、308*388、450*300、600*90、480*360、960*126、900*120、390*270
- 12.广告卖点:包括打折、满减、满赠、秒杀、直降、满返。

K值的确定

- K值的确定一直是K-Means算法的关键,而由于K-Means是一个非监督式学习,因此没有所谓的"最佳"K值。但是,从数据本身的特征来讲,最佳K值对应的类别下应该是类内距离最小化并且类间距离最大化。有多个指标可以用来评估这种特征,比如平均轮廓系数、类内距离/类间距离等都可以做此类评估。
- 平均轮廓系数:

$$S(i) = \frac{b(i) - a(i)}{\max[a(i), b(i)]}$$

□ 其中*a*(*i*)与*b*(*i*)分别是第*i*类的类内 平均距离及其与最近类的类间平均距离。

- *******K value and silhouette summary:*********
- **[** 2. 0.46692821]
- **[** 3. 0.54904646]
- **4.** 0.56968547]
- [5. 0.48186604]
- **[** 6. 0.45477667]
- **[** 7. 0.48204261]
- **[** 8. 0.50447223]
- [9. 0.52697493]]

如果平均轮廓得分值小于0, 意味着聚类效果不佳; 如果值大于0且小于0.5,那么 说明聚类效果一般; 如果值大于0.5,则说明聚类

效果比较好。

Best K is: 4 with average silhouette of 0.5697

聚类结果的特征分析

- clusters 0 1 2 3
- counts 411 297 27 154
- percentage 0.46 0.33 0.03 0.17
- 日均UV 1369.81 1194.69 1263.03 2718.7
- 平均注册率 0.003 0.003 0.003 0.005
- 平均搜索量 0.082 0.144 0.151 0.051
- 访问深度 0.918 5.728 9.8 0.948
- 平均停留时间 165.094 285.992 374.689 104.14
- 订单转化率 0.009 0.016 0.017 0.007
- 投放总时间 8.462 8.57 7.996 8.569
- 素材类型 swf jpg swf jpg
- 广告类型 不确定 不确定 通栏 banner
- 合作方式 cpc cpc cpc cpc

- 聚类0(46%):效果比较平庸;
- 聚类1(33%):除了注册转化率 较低外在各指标表现较好,是规模 较大且综合效果较好的媒体。
- 聚类2(3%):与1类似,并且表现更好,属于少量的"精英"类渠道。
- 聚类3(17%): 日均UV和平均注 册率突出,其它差,是一类"引 流"+"拉新"的渠道;

各聚类类别显著特征对比

应用例子2:

David McKay, Robert F. Moran, Daniel M. Dawson, John M. Griffin, Simone Sturniolo, Chris J. Pickard, Andrew J. Berry, and Sharon E. Ashbrook.

A Picture of Disorder in Hydrous Wadsleyite under the Combined Microscope of Solid-State NMR Spectroscopy and Ab Initio Random Structure Searching.

J. Am. Chem. Soc. 141, 3024-3036 (2019).

学习资料: jacs3024.pdf, jacs3024s.pdf

问题描述

- 地壳中 β -Mg₂SiO₄很重要。
- 存在多种质子化可能。

研究方案

- (1) ab initio random structure searching (AIRSS)
- (2) DFT geometry optimization during the AIRSS process
- (3) K-means clustering.
- (4) DFT optimization with increased accuracy on the selected structures
- (5) GIPAW NMR calculations

Of the original 1287 AIRSS-generated candidates, K-means clustering identified a total of 88 candidate structures for further study.

方法: K-均值法

■ 特征:

- \Box the relative enthalpy, ΔH ;
- hydroxyl O type;
- vacancy type;
- □ H···H distance;
- □ H···vacancy distance;
- O–H bond length;
- OH···O hydrogen-bond length and the magnitude of the combined hydroxyl orientation vector

■ K的选择: plotting the sum of squared errors within each cluster

against K

■ 利用聚类结果指导结构的选择

小结

■ K-均值法(K-means)

- □ 每个数据点被分到离自己最近的聚类中心所在的类。
- □ 畸变函数 (Distortion function):

$$J(\{r_{nk}\}, \{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

■高斯混合模型

- □ 生成式模型
- \square 假设分布是由多个高斯分布混合而成: $p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k)$
- \square EM算法:交替计算数据点组别概率 $\gamma(z_{nk})$ 与组别特征 μ , Σ , π

Scikit-Learn相关内容

https://scikit-learn.org/ https://sklearn.apachecn.org/

- 2.3. Clustering
- 2.3.2. K-means
 - cluster.KMeans
- 2.1. Gaussian mixture models
 - mixture.GaussianMixture

Reference:

- □ Bishop 9.1-9.3.3;
- □ Elements 13。
- □ 实战 10。
- □ 吴恩达 13。

■扩展阅读:

- https://zhuanlan.zhihu.com/p/26144586
- 机器理解大数据的秘密: 聚类算法深度详解.mht
- https://blog.csdn.net/u011511601/article/details/81951939
 - 【聚类】五种主要聚类算法.mht
- http://www.sohu.com/a/215759232_642762
- 干货 | EM算法原理总结.mht
- http://www.dataivy.cn/blog/ad_clustering_with_keans/基于K-Means的广告效果聚类分析.mht
- https://baijia.baidu.com/s?id=1595977285675528555
- 手把手:扫描图片又大又不清晰?这个Python小程序帮你搞定!.mht
- 扫描笔记去噪-代码: noteshrink-master.zip

https://36kr.com/p/1488545128907139

人的情绪岂止6种? Google发布大规模数据集GoEmotions, 情感类别提升到28种.mhtml

- 1992 年提出的六种基本情绪:愤怒(anger)、惊讶(surprise)、沮丧(disgust)、快乐(joy)、恐惧(fear)和悲伤(sadness)。
- 新的分类包括12种积极情绪、11种消极情绪、4种模棱两可的情绪类别和1种中立情绪

Positi	ve	Negat	tive	Ambiguous
admiration 🤲	joy 😃	anger 😡	grief 😢	confusion 😕
amusement 😂	love 🤎	annoyance 😒	nervousness 😬	curiosity 🤔
approval 👍	optimism 🤞	disappointment	remorse 😔	realization 💡
caring 🤗	pride 😌	disapproval 👎	sadness 😞	surprise 😲
desire 😍	relief 😅	disgust 🤮		
excitement 🤩		embarrassment 😳		
gratitude 🚣		fear 😨		

