

CS-3002: Information Security

Lecture # 8: Basic Key Exchange

Prof. Dr. Sufian Hameed
Department of Computer Science
FAST-NUCES

Overview

- What will you learn today
 - Basic Key Exchange
 - Trusted 3rd party (introduce toy protocol)
 - Merkle Puzzle
 - The Diffie-Helmann Protocol
 - Public Key Encryption

Trusted 3rd Parties

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3rd Party (TTP)

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, A, B'' ll k_{AB})$; $E(k_B, A, B'' ll k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

For example a book order

Attacker replays session to Bob

• Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

eavesdropper??

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle(P) = E(P, "message") where $P = 0^{96} \text{ ll } b_1 \dots b_{32}$
 - Goal: find P by trying all 2³² possibilities

Ralph Merkle design this a part of a seminar as an undergrad student.

Merkle puzzles

Alice: prepare 2³² puzzles

• For i=1, ..., 2^{32} choose random $P_i \in \{0,1\}^{32}$ and $x_i, k_i \in \{0,1\}^{128}$ set puzzle; $\leftarrow E(0^{96} \text{ll } P_i, \text{"Puzzle } \# x_i \text{"ll } k_i)$

• Send puzzle₁, ..., puzzle₂32 to Bob

<u>Bob</u>:choose a random puzzle_j and solve it. Obtain (x_j, k_j) .

• Send x_i to Alice

Alice: lookup puzzle with number x_j . Use k_j as shared secret

In a figure

Alice's work: O(n) (prepare n puzzles)

Bob's work: O(n) (solve one puzzle)

Eavesdropper's work: $O(n^2)$ (e.g. 2^{64} time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as

a black box oracle [IR'89, BM'09]

The Diffie-Hellman Protocol

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits i.e 2K bits)
Fix an integer g in {1, ..., p}

<u>Alice</u> <u>Bob</u>

choose random \mathbf{a} in $\{1,...,p-1\}$

choose random \mathbf{b} in $\{1,...,p-1\}$

"Alice",
$$A \leftarrow g' \pmod{p}$$

"Bob", $B \leftarrow g' \pmod{p}$

$$Ba (mod p) = (gb)a = kAB = gab (mod p) = (ga)b = Ab (mod p)$$

Security

Eavesdropper sees:

$$p, g, A=g^a \pmod{p}$$
, and $B=g^b \pmod{p}$

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long.

Best known algorithm (GNFS): run time $\exp(\tilde{O}(\sqrt[3]{n}))$

<u>cipher key size</u>	<u>modulus size</u>	Elliptic Curve size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits

As a result: slow transition away from (mod p) to elliptic curves

www.google.com

The identity of this website has been verified by Thawte SGC CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit encryption.

The connection uses TLS 1.0.

The connection is encrypted using RC4_128, with SHA1 for message authentication and ECDHE_RSA as the key exchange mechanism.

Elliptic curve Diffie-Hellman

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Later we will see that it is not that difficult to enhance the protocol against MiTM attack

Further readings

Merkle Puzzles are Optimal,
B. Barak, M. Mahmoody-Ghidary, Crypto '09

On formal models of key exchange (sections 7-9)
 V. Shoup, 1999

Acknowledgements

Material in this lecture are taken from the slides prepared by:

Prof. Dan Boneh (Standford)

