CS 5683: Big Data Analytics

Machine Learning for Graphs: Basics of Neural Networks

Arunkumar Bagavathi

Department of Computer Science

Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application Rec. Systems **Text Data**

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection

Others

Data
Streams
Mining

Intro. to Apache Spark

Let's Start Easy

A supervised machine learning task: Given input x, the goal is to predict label y

f(x)

- Types of x:
 - Vectors of real numbers
 - Sequences (text)
 - Matrices (images)
 - Graphs (potentially with node and edge features)
- Let's formulate this ML task as an optimization problem

Supervised Task as Optimization

Formulate the supervised task as an optimization problem $\min_{\theta} \mathcal{L}(y, f(x)) \longleftarrow$ Objective function

- Θ: a set of parameters to optimize could be one or more scalars, vectors, matrices,...
- \mathcal{L} : loss function Example: L2 loss $\mathcal{L}(y, f(x)) = \big| |y f(x)| \big|_2$
 - Other common loss functions: L1 loss, Cross Entropy, KL Divergence,...
 - Check out: https://pytorch.org/docs/stable/nn.html#loss-functions

Loss Function Example

- Common loss function for classification tasks with neural networks:
 Cross Entropy (CE)
- Label y is a categorical vector (one-hot encoding)
 - Example: 0 0 0 1 0 \longrightarrow y is class '4' in the 5 class classification problem
- $f(x) = Softmax(g(x)) \rightarrow f(x)_i = \frac{e^{g(x)_i}}{\sum_{j=1}^{C} e^{g(x)_j}} \text{ denotes ith coordinate of the vector output of function: } g(x)$
- $CE(y, f(x)) = -\sum_{i=1}^{C} (y_i \log f(x)_i)$
 - y_i , $f(x)_i$ are the actual and predicted value of the ith class
 - Intuition: the lower the loss, the closer the prediction is to one-hot
- Total loss over all training instances:

 - \blacksquare training data containing pairs of data and labels (x,y)

Optimizing the Objective Function

Gradient vector: Direction and magnitude of the fastest increase

$$\nabla_{\theta} \mathcal{L} = (\frac{\partial \mathcal{L}}{\partial \theta_1}, \frac{\partial \mathcal{L}}{\partial \theta_2}, \dots)$$
 Partial derivative

- θ_1 , θ_2 are multiple parameters of the supervised task or model
- Gradient Descent: Iterative algorithm to update parameters in the opposite direction of gradients until convergence – training stage

$$\theta = \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$
 Learning rate – a hyperparameter to control the size of gradient step

- Ideal algorithm termination condition: 0 gradient
 - In reality, we stop training if it no longer improve the performance of the underlying task on validation dataset (small chunk of training data)

Stochastic Gradient Descent

- Problems with gradient descent: Extracting gradient requires computing $\nabla_{\theta} \mathcal{L}(y, f(x))$, where x is the entire dataset!
 - This means summing gradient contributions over all points in the dataset
 - Modern dataset often contains billions of data instances
 - Extremely expensive for every gradient step
- Solution: Stochastic Gradient Descent (SGD)
 - Pick only one sample to make a step
 - Problems: The loss keeps fluctuating a lot for each sample and does not decrease after some point. It requires many iterations

Minibatch Stochastic Gradient Descent

Solution to SGD problems:

- Pick a different minibatch @containing a subset of training data for each iteration of the algorithm
- Use $\boldsymbol{\mathcal{Z}}$ as input \boldsymbol{x} for optimizing $\boldsymbol{\theta}$

Concepts:

- Batch size: the number of data points in minibatch
- Iteration: 1 step of SGD on a minibatch
- **Epoch:** one full pass over the entire dataset (# iterations = $\frac{dataset \ size}{batch \ size}$)
- Minibatch SGD is an unbiased estimator of full gradient however, there is no guarantee on the rate of convergence
- Optimizers that improve over SGD: Adam, AdaGrad, RMSProp,...

Neural Network Function

- Objective: $\min_{\theta} \mathcal{L}(y, f(x))$
- In deep learning f can be very complex
- To start simple, consider a linear function $f(x) = W.x \longrightarrow \Theta = \{W\}$
- If f returns a scalar, then W is a learnable vector
- If f returns a vector, then W is a learnable matrix

Apply softmax function usually to the output of the last/output layer

NN - Back-propagation

•
$$f(x) = W_2(W_1(x)) \longrightarrow \Theta = \{W_1, W_2\}$$

• Chain Rule:
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

• We use chain rule to propagate gradients of intermediate steps to finally obtain gradient of $\mathcal L$ w.r.t θ

Back-propagation Example (1)

- Consider two-layer linear network
- $f(x) = W_2(W_1(x)) = g(h(x))$

- $\mathcal{L} = \sum_{(x,y)\in\mathcal{Z}} ||y f(x)||_2$ sums L2 loss in a minibatch \mathcal{Z}
- Forward propagation: Compute loss starting from input

Back-propagation Example (2)

Back-propagation to compute gradient of

$$\Theta = \{W_1, W_2\}$$

Start from loss and compute the gradient

Compute backwards

Remember:

$$f(x) = W_2(W_1(x))$$

Non-linearity

- In our simple example of $f(x) = W_2(W_1(x))$, f(x) is still linear w.r.t x no matter how many weight matrices we compose in intermediate layers
- Introducing non-linearity:
 - Rectified Linear Unit (ReLU)

$$ReLU(x) = max(x, 0)$$

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

-10

-5

Purpose: Converts linear signals to non-linear signals to learn complex and higher order polynomials

Multi-Layer Perceptron (MLP)

Each layer of MLP combines linear transformation and non-linearity

$$a^l = x^{l+1} = \sigma(W^l \cdot x^l + b^l)$$

- $W^{(l)}$: weight matrix to transform hidden representations at layer 'l' to layer 'l+1'
- b': bias of layer I and added to the linear transformation of x
- σ some non-linear function (sigmoid function, for example)

 Each layer of the neural network – perform linear + non-linear transformation

Putting them all together...

- We update W_l and b_l using
 - $W_l = W_l \eta \frac{\partial \mathcal{L}}{\partial W_l}$
 - $b_l = b_l \eta \frac{\partial \mathcal{L}}{\partial b_l}$

 W_2 , a_2 , b_2

 W_1 , a_1 , b_1

$$\frac{\partial \mathcal{L}}{\partial W_{2}} = \frac{\partial \mathcal{L}}{\partial a_{2}} \cdot \frac{\partial a_{2}}{\partial z_{2}} \cdot \frac{\partial z_{2}}{\partial W_{2}} \cdot \frac{\partial \mathcal{L}}{\partial b_{2}} = \frac{\partial \mathcal{L}}{\partial a_{2}} \cdot \frac{\partial a_{2}}{\partial z_{2}} \cdot \frac{\partial z_{2}}{\partial b_{2}}$$

$$\frac{\partial \mathcal{L}}{\partial W_{1}} = \frac{\partial \mathcal{L}}{\partial a_{2}} \cdot \frac{\partial a_{2}}{\partial z_{2}} \cdot \frac{\partial z_{2}}{\partial a_{1}} \cdot \frac{\partial z_{1}}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial W_{1}} \cdot \frac{\partial \mathcal{L}}{\partial b_{1}} = \frac{\partial \mathcal{L}}{\partial a_{2}} \cdot \frac{\partial a_{2}}{\partial z_{2}} \cdot \frac{\partial z_{2}}{\partial a_{1}} \cdot \frac{\partial a_{1}}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial b_{1}}$$

Assume:
$$z_l = W_l$$
. $a_{l-1} + b_l$ with $a_0 = x$

Real-World Deep Neural Nets

^{*** &}lt;a href="https://medium.com/binaryandmore/beginners-guide-to-deriving-and-implementing-backpropagation-e3c1a5a1e536">https://medium.com/binaryandmore/beginners-guide-to-deriving-and-implementing-backpropagation-e3c1a5a1e536

Summary

- Objective function $\min_{\theta} \mathcal{L}(y, f(x))$
 - f can be a simple linear layer, MLP, or any other neural networks (say, GNN)
 - Sample a minibatch **3** of input **x**
 - Forward Propagation: Compute \mathcal{L} given x
 - **Backpropagation:** obtain gradient $\nabla_{\theta} \mathcal{L}$ using a chain rule
 - Use Stochastic Gradient Descent (SGD) to optimize θ over many iterations of updating the matrix $W^{(l)}$ and $b^{(l)}$

Questions???

