PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA

Avance 1 de robótica

Bryam Gonzalez Mendez Alejandro Malvacias Pimentel Pablo Paillalef Avendaño Benjamín Vega Mardones

Profesor: Sandra Cano

Ayudante: Andrés Ignacio Romo

Asignatura: Robótica y Sistemas Autónomos

EP1.1: ¿Qué tipo de robot es? (Justifique)

Móvil, servicio profesional. Ya que posee capacidad de movilidad gracias a las 4 ruedas que posee. Y además, la de tomar decisiones dependiendo de la información que reciba del entorno. Esto último es gracias a la capacidad de detectar colores.

EP1.2: ¿ Qué tipo de sensores incluirá su robot?, ¿Cómo se puede extraer información de los sensores? (Justifique, debe incluir al menos dos sensores)

- Sensor de color: Este sensor se va a incluir para poder identificar el estado de la víctima (el color rojo significa que esta en un estado grave y si el color es verde es que esta estable/no existe un riesgo vital). Tambien sera utilizado para detectar agujeros en el suelo, representado con el color negro.
- Sensor de Ultrasonido: Este sensor será utilizado para detectar la distancia del robot hasta un obstáculo (como una pared o escombros).

EP1.3: ¿Cómo podemos representar el error y cómo podemos razonar ante la incertidumbre?

El error en el robot puede ocurrir de las siguientes fuentes:

- <u>Los servomotores</u>: los servomotores pueden ser programados de forma errónea, donde las respuestas esperadas no son las que ocurren en la realidad, ej: seguir hacia al frente despues de detectar el color negro (que representa un agujero).
- Los sensores: la sensibilidad de los sensores e intervalos a los que estos trabajan pueden ser propuestos de forma errónea, ej: el rango puede ser muy pequeño para la distancia que necesita para reaccionar, moverse, comunicar información correcta.

La forma que podemos razonar es a través de la prueba en ambientes controlados, donde se pueda saber qué tipo de respuesta se espera del robot, y analizar la verdadera respuesta de este. Así se puede lograr detectar el error y corregirlo.

EP1.4: ¿Cómo se mueve el robot? (Puede existir un dibujo o gráfico)

El robot posee 4 ruedas bien separadas entre sí para movimiento en terreno difícil. Estas 4 ruedas no giran lateralmente, pero las cuatro están motorizadas individualmente, lo que permite al robot rotar en el lugar al accionar las ruedas de formas específicas.

EP1.5: ¿Cuántos grados de libertad dispone el robot con el que va a trabajar? (Justifique)

NGDL = 8

EP1.6: ¿Cómo se puede controlar la velocidad de las ruedas para alcanzar una posición deseada?

Incrementando o disminuyendo la energía eléctrica que potencian los motores, así cambiando la velocidad y, con un poco de cálculo matemático y fórmulas, se obtiene la medida necesaria para alcanzar cierto punto.

EP1.7: ¿Qué sistema embebido usará? (Arduino UNO, Raspberry Pi, Jetson Nano, etc) (Justifique)

Arduino UNO, ya que permite la implementación de todos los sensores y actuadores que se requieren para este robot.

EP1.8 ¿Qué respuestas de retroalimentación tendrá el robot? (Justifique)

En el caso de que detecte un color, el robot responderá de la siguiente manera:

- Rojo: Avisa que encontró una víctima grave.
- <u>Verde:</u> Avisa que encontró una víctima estable.
- Negro: Evita el agujero.

Además, cuando detecta que la superficie al frente está a cierta distancia, reduce la velocidad y se detiene para cambiar de dirección.