Image Enhancement (Spatial Domain Methods)

What Is Image Enhancement?

- Image enhancement is the process of making images more useful
- The reasons for doing this include:
 - cs Highlighting interesting detail in images
 - Emphasize, sharpen or smoothen image features
 - Removing noise from images
 - Making images more visually appealing
 - Enhance otherwise hidden information

Classification of Image enhancement

× Spatial Domain

- · Process intensity of pixels
- Two types- intensity transformation and spatial filtering

× Transform Domain

- Compute transform of image
- process transformed image
- then find inverse transform to get image in spatial domain

Enhancement in Spatial Domain

Image f(x, y)

g (x, y) = T[f(x, y)]
 f(x, y) is input image
 g (x, y) is processed image
 T is operator defined over some neighbourhood of (x, y)

Classification of spatial domain

- Point operation
- Mask operation
- Global operation

Point Processing

$$s = T(r)$$

r is pixel value of the original image at (x,y)

s is pixel value of the processed image at (x,y)

T is a grey level transformation function for a point

$$f(x,y) \rightarrow g(x,y)$$

Point Operation

Point Operation

Neighbourhood Processing

The operator T can be defined over the set of 'neighbourhood', N(x, y) of each pixel

Neighbourhood Operation

Neighbourhood Operation

Global Operation

Global Operation

Point operation

- Brightness modification
- Contrast manipulation
- Histogram manipulation

Gray Level/Intensity Transformations

- Brightness modification
- Log transformations
- Power Law transformations
- Piecewise-Linear transformation Functions

Brightness modification: Image Negative

Suited for enhancing white or grey detail embedded in dark region i.e. black area predominates

Brightness modification: Image Negative

For 8-bit image, L=255

f(x,y)

20	0	100	15
10	25	255	30
0	10	55	10
15	0	200	100

g(x,y)

235	255	155	240
245	230	0	225
255	245	200	245
240	255	55	155

example, 3-bit image negative

Image matrix is given by
$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

Compute image negative

$$A1=7-A = \begin{bmatrix} 5 & 4 & 7 & 1 & 0 \\ 7 & 4 & 0 & 2 & 5 \\ 2 & 4 & 5 & 3 & 7 \\ 3 & 5 & 5 & 6 & 7 \\ 6 & 0 & 1 & 3 & 2 \end{bmatrix}$$

Intensity Level Transformations

SLinear

× Negative/Identity

SLogarithmic

× Log/Inverse log

©Power law

 $\times n^{th} power/n^{th} root$

maximum amplitude, L=255

Logarithmic Transformations

$$s = c * log (1 + r)$$

- The log transformation maps a narrow range of low input values into a wider range of output values
- The inverse log maps a wide range of input values into a narrow range of output values

Input grey level values a has large range of values

Inverse log transformation maps a wide range of input values into a narrow range of output values

log transformation maps a narrow range of low input values into a wider range of output values

Log

example, intensity change(3-bit image)

Image matrix is given by

$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

Use

1. Log Transformation (multiplier, c = 8)

example

3-bit Image matrix is given by
$$A = \begin{bmatrix}
2 & 3 & 0 & 6 & 7 \\
0 & 3 & 7 & 5 & 2 \\
5 & 3 & 2 & 4 & 0 \\
4 & 2 & 2 & 1 & 0 \\
1 & 7 & 6 & 4 & 5
\end{bmatrix}$$

1. Log of the image

$$A2=8 \log_{10}(1+A) = \begin{bmatrix} 3.81 & 4.81 & 0 & 6.76 & 7.22 \\ 0 & 4.81 & 7.22 & 6.22 & 3.81 \\ 6.22 & 4.81 & 3.81 & 5.59 & 0 \\ 5.59 & 3.81 & 3.81 & 2.40 & 0 \\ 2.40 & 7.22 & 6.76 & 5.59 & 6.22 \end{bmatrix}$$

$$A2\sim = \begin{bmatrix} 4 & 5 & 0 & 7 & 7 \\ 0 & 5 & 7 & 6 & 4 \\ 6 & 5 & 4 & 6 & 0 \\ 6 & 4 & 4 & 2 & 0 \\ 2 & 7 & 7 & 6 & 6 \end{bmatrix}$$

a b

(a) Fourier spectrum.

(b) Result of applying the log transformation

(a)

a b

(a) Fourier spectrum.

(b) Result of applying the log transformation

(a)

(b)

- s = c * log (1 + r)
- For r = 0, s = 0
- For $r = 10^6$ $s = log_{10} (1 + 10^6) = 6$
- Range of 0 to 10⁶ becomes 0 to 6.2 on log scale
- Therefore Logarithm of FT reveals more details

Power Law Transformations

$$s=T(r)=c\times r^{\gamma}$$

Power Law Transformations

$$s = c \times r^{\gamma}$$

- For γ < 1, map a narrow range of dark input values into a wider range of output values</p>
- For γ > 1, map a narrow range of light input values into a wider range of output values
- × Varying γ gives a family of curves

example, 3-bit image intensity change

Image matrix is given by

$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

Use

1. Power law Transformation using nth root Given multiplier, c=3 and root, n=2

examples

3-bit Image matrix is given by
$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$
1. n=2 for nth root of the image

$$\mathbf{I} = \mathbf{3} \times \mathbf{A}^{1/2} = \begin{bmatrix} 4.24 & 5.19 & 0 & 7.34 & 7.93 \\ 0 & 5.19 & 7.93 & 6.70 & 4.24 \\ 6.7 & 5.19 & 4.24 & 6 & 0 \\ 6 & 4.24 & 4.24 & 3 & 0 \\ 3 & 7.93 & 7.34 & 6 & 6.7 \end{bmatrix}$$

\approx	4	5	0	7	8
	0	5	8	7	4
	7	5	4	6	0
	6	4	4	3	0
	3	8	7	6	7

a b c d

FIGURE 3.7

- (a) Linear-wedge gray-scale image.
- (b) Response of monitor to linear wedge.
- (c) Gammacorrected wedge.
- (d) Output of monitor.

a b c d

FIGURE 3.7

- (a) Linear-wedge gray-scale image.
- (b) Response of monitor to linear wedge.
- (c) Gammacorrected wedge.
- (d) Output of monitor.

a b c d

FIGURE 3.7

- (a) Linear-wedge gray-scale image.
- (b) Response of monitor to linear wedge.
- (c) Gammacorrected wedge.
- (d) Output of monitor.

Power Law Example

Magnetic Resonance (MR) image of a fractured human spine

Power Law Example

$$\gamma = 0.6$$

Power Law Example ($\gamma = 0.4$)

$$\gamma = 0.4$$

Power Law Example ($\gamma = 0.3$)

$$\gamma = 0.3$$

Power Law Example for power law

Power Law Example (Image with washed out appearance)

An aerial view of a runway

Image after gamma correction $(\gamma > 1)$

$$\gamma = 5.0$$

Image after gamma correction

Brightness/ contrast modification

- g(m,n) = f(m,n) + k (increase brightness)
- g(m,n) = f(m,n) k (decrease brightness)
- $\overline{\bullet g(m,n)} = k \times f(m,n)$

Brightness/contrast modification

- g(m,n) = f(m,n) + k (increase brightness)
- g(m,n) = f(m,n) k (decrease brightness)
- $g(m,n) = k \times f(m,n)$

Brightness/contrast modification

- g(m,n) = f(m,n) + k (increase brightness)
- g(m,n) = f(m,n) k (decrease brightness)
- $g(m,n) = k \times f(m,n)$

original image

increased brightness by 50

decreased brightness by 50

Brightness/contrast modification

- g(m,n) = f(m,n) + k (increase brightness)
- g(m,n) = f(m,n) k (decrease brightness)
- $g(m,n) = k \times f(m,n)$

decreased brightness by 50

increased brightness by 50

increase in contrast by 1.5

Gray Level/Intensity Transformations

- Brightness modification
- Log transformations
- Power Law transformations
- Piecewise-Linear transformation Functions

Piecewise Linear Transformations

Thresholding Function

L-1=255 for 8-bit image

$$g(x,y) = L-1$$
, if $f(x,y) > t$
 $= 0$, if $f(x,y) < t$
 $t = \text{'threshold level'}$
L-1

Piecewise Linear Transformations

Thresholding Function

$$t = 128$$

Thresholding

Useful for segmentation in order to isolate an object of interest from a background

For normalized image, L-1=1

 $s = \begin{cases} 1.0 & r > \text{threshold} \\ 0.0 & r <= \text{threshold} \end{cases}$

Examples, Thresholding for 3-bit image

Image matrix is given by
$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

- 1. Highlight intensity for r >30% of maximum
- 2. T=0.3*7 = 2.1 = 2, r > 2, s = 7 else s = 0

$$A' = \begin{bmatrix} 0 & 7 & 0 & 7 & 7 \\ 0 & 7 & 7 & 7 & 0 \\ 7 & 7 & 0 & 7 & 0 \\ 7 & 0 & 0 & 0 & 0 \\ 0 & 7 & 7 & 7 & 7 \end{bmatrix}$$

Low contrast image

Low contrast image

Transformation function

Low contrast image

Transformation function

After contrast stretching

Low contrast image

Transformation function

After contrast stretching

After thresholding

$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

- Perform contrast stretching using two location points, (3,1) and (5,6)
- For the first segment,
 - slope, m = (1-0)/(3-0) = 0.3
 - Equation, s = m x r

r	0	1	2	3		
S	0	0	1	1		

$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

- Perform contrast stretching using two location points, (3,1) and (5,6)
- For the middle segment,
 - slope, m = (6-1)/(5-3) = 2.5
 - equation, s 1 = m (r 3)

S

r	0	1	2	3	4	5	6	7
S	0	0	1	1	3	6		

3-bit Image matrix is given by
$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$

- Perform contrast stretching using two location points, (3,1) and (5,6)
- For the third segment, slope,
 - m = (7-6)/(7-5) = 0.5
 - Equation, S 6 = 0.5 (r 5)

S

r	0	1	2	3	4	5	6	7
S	0	0	1	1	3	6	6	7

r	0	1	2	3	4	5	6	7
S	0	0	1	1	3	6	6	7

$$A = \begin{bmatrix} 2 & 3 & 0 & 6 & 7 \\ 0 & 3 & 7 & 5 & 2 \\ 5 & 3 & 2 & 4 & 0 \\ 4 & 2 & 2 & 1 & 0 \\ 1 & 7 & 6 & 4 & 5 \end{bmatrix}$$
Enhanced, A'=
$$\begin{bmatrix} 1 & 1 & 0 & 6 & 7 \\ 0 & 1 & 7 & 6 & 1 \\ 6 & 1 & 1 & 3 & 0 \\ 3 & 1 & 1 & 0 & 0 \\ 0 & 7 & 6 & 3 & 6 \end{bmatrix}$$

3-bit Image matrix is given by

$$A = \begin{bmatrix} 2 & 3 & 2 & 6 & 4 \\ 6 & 3 & 4 & 5 & 2 \\ 5 & 3 & 2 & 4 & 2 \\ 4 & 2 & 3 & 6 & 5 \\ 5 & 3 & 6 & 4 & 5 \end{bmatrix}$$

- Apply contrast stretching to cover the entire range of the given image.
- location points, r_{min} = 2, r_{max} = 6
- To stretch the image, $r'_{min} \rightarrow 0 \ r'_{max} \rightarrow 7$
- Step size for the original image, st = (6-2)/7 = 0.57
- For contrast stretching, $s = (r r_{min})/st = (r 2)/0.57$

r	2	3	4	5	6
S	0	2	3	5	7

Some examples (4), contrast stretching

r	2	3	4	5	6
S	0	2	3	5	7

$$A = \begin{bmatrix} 2 & 3 & 2 & 6 & 4 \\ 6 & 3 & 4 & 5 & 2 \\ 5 & 3 & 2 & 4 & 2 \\ 4 & 2 & 3 & 6 & 5 \\ 5 & 3 & 6 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 0 & 7 & 3 \\
7 & 2 & 3 & 5 & 0 \\
5 & 2 & 0 & 3 & 0 \\
3 & 0 & 2 & 7 & 5 \\
5 & 2 & 7 & 3 & 5
\end{bmatrix}$$

Gray/Intensity Level Slicing

- Highlight a specific range of gray values
- Two approaches:
 - Display high value for range of interest and discard background
 - Display high value for range of interest, and preserve background

Gray/Intensity Level Slicing

original image

image slice without background

image slice with background

Gray Level Slicing, example

Gray Level Slicing, example

example, intensity level slicing

3-bit Image matrix,
$$f(x,y) = A = \begin{bmatrix} 0 & 3 & 2 & 6 & 4 \\ 6 & 3 & 4 & 5 & 2 \\ 5 & 3 & 2 & 1 & 2 \\ 4 & 2 & 3 & 6 & 5 \\ 5 & 3 & 6 & 4 & 5 \end{bmatrix}$$

- Highlight pixel with intensity in the range 40-70 % of max possible intensity and keep other pixels unchanged
- Range is 0.4×7 ≈ 3 to 0.7×7 ≈ 5

•
$$g(x,y) = 7$$
, $3 \le f(x,y) \le 5$
= $f(x,y)$, otherwise
$$g(x,y) = B = \begin{bmatrix} 0.7267 \\ 67752 \\ 57212 \\ 72765 \\ 57675 \end{bmatrix}$$

Plot of number of pixels for each grey level against grey level for the given image matrix

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \\ 3 & 5 & 0 \end{bmatrix}$$

Plot of number of occurrences of grey levels against each grey level value for the given image matrix

0	1	2	3	4	5
3	3	2	2	1	1
0.25	0.25	0.16	0.16	0.08	0.08

Intensity, r

No of pixels, n

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \\ 3 & 5 & 0 \end{bmatrix}$$

Plot of number of occurrences of grey levels against each grey level value for the given image matrix

0	1	2	3	4	5
3	3	2	2	1	1
0.25	0.25	0.16	0.16	0.08	0.08

Intensity, r

No of pixels, n

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \\ 3 & 5 & 0 \end{bmatrix}$$

Plot of number of occurrences of grey levels against grey level values for 4 by 3 image, N = 12

0	1	2	3	4	5
3	3	2	2	1	1
0.25	0.25	0.16	0.16	0.08	0.08

Intensity, r

No of pixels, n

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \\ 3 & 5 & 0 \end{bmatrix}$$

Plot of number of occurrences of grey levels against grey level values for 4 by 3 image, N = 12

0	1	2	3	4	5
3	3	2	2	1	1
0.25	0.25	0.16	0.16	0.08	0.08

Intensity, r

No of pixels, n

Histogram of an image

High contrast image has the most evenly spaced histogram

Histogram Equalization

- Preprocessing technique to enhance contrast in 'natural' images
- Improves dark or washed out images
- Redistributes to generate equal number of pixels for every gray-value
- Spreads the frequencies of an image
- Therefore it is called as equalization
- Gray level transformation function T to transform image f such that the histogram of T(f) is 'equalized'

Equalisation Transformation Function

Equalisation Transformation Function

Equalisation Transformation Function

Equalisation Transformation Functions

Histogram Equalization

