§11.6: Power Series	5
§11.7: Taylor Serie	!S
Math 1910	

NAME:		
	November 28, 20)17

RAPID REVIEW

- (1) An infinite series of the form $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ is called a **power series** and c is called the **center**.
- (2) The **radius of convergence** of $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ is a constant R such that F(x) converges absolutely for |x-c| < R and diverges for |x-c| > R. If F(x) converges for all x, then $R = \infty$.
- (3) To determine R, use
- (4) $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, with $R = \frac{1}{1-x}$.
- (5) The powerseries $T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ is called the **Taylor Series** for f(x). If c=0, this is called a **Maclaurin series**.
- (6) $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} =$
- (7) $(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} {\alpha \choose n} x^n$ for |x| < 1, where ${\alpha \choose n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}$

PROBLEMS

(1) Show that all three of the following power series have the same radius of convergence, but different behavior at the endpoints.

(a)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{9^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n9^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n^2 9^n}$$

- (2) Use the geometric series formula to expand the function $\frac{1}{1+3x}$ in a power series with center c=0 and determine radius of convergence.
- (3) Find the Taylor series of the following functions and determine the radius of convergence.

(a)
$$f(x) = \sin(2x)$$
, centered at $x = 0$.

(b)
$$f(x) = e^{4x}$$
, centered at $x = 0$.

(c)
$$f(x) = x^2 e^{x^2}$$
, centered at $x = 0$.

(d)
$$f(x) = \frac{1}{3x-2}$$
, centered at $c = -1$.

(e)
$$f(x) = (1+x)^{1/3}$$
, centered at $c = 0$.

(f)
$$f(x) = \sqrt{x}$$
, centered at $c = 4$.