Theoretische Physik (Hebecker)

Robin Heinemann

November 18, 2016

Contents

1	Sem 1.1	Semesterüberblick 1.1 Mathe				
2	Kine	Kinematik des Massenpunktes				
	2.1		atik der Massenpunktes in <u>einer</u> Dimension	3		
		2.1.1	Graphik	3		
		2.1.2	Üben dieser Logik an unserem Beispiel	4		
	2.2	Grund	begriffe der Differenzial und Integralrechung	4		
		2.2.1	Funktion	4		
		2.2.2	Differentiation oder Ableitung	4		
		2.2.3	Integrieren	5		
	2.3	Kinema	atik in mehreren Dimensionen	6		
		2.3.1	Zweidimensionale Bewegung	6		
		2.3.2	Dreidimensionale Bewegung	7		
	2.4		räume	7		
		2.4.1	Einfachstes Beispiel	7		
		2.4.2	Unser Haupt-Beispiel	8		
	2.5	Kinema	atik in $d>1$	8		
		2.5.1	Beispiel für 3-dimensionale Trajketorie	8		
	2.6	Skaları	produkt	9		
		2.6.1	Symmetrische Bilinearform	9		
		2.6.2	Norm (Länge) eines Vektors	9		
	2.7	Abstan		10		
		2.7.1		10		
		2.7.2		10		
	2.8			11		
		2.8.1	9	11		
	2.9	Vektor		12		
	2.10		•	12		
				12		

3	Gru	ndbegri	ffe der Newtonsche Mechanik	13			
	3.1	Newto	onsche Axiome	13			
	3.2	Trajek	ttorie	13			
	3.3	Differe	entialgleichungen	13			
		3.3.1	1. Ordung	13			
		3.3.2	Anfangswertproblem	13			
		3.3.3	partielle Ableitung	14			
		3.3.4	Existenz und Eindeutigkeit	14			
		3.3.5	Beispiele	14			
		3.3.6	Seperation der Variablen	15			
		3.3.7	System von Dgl	15			
		3.3.8	Systeme von n gewöhnlicher Dgl. p-ter Ordnung	15			
		3.3.9	Erste physikalische Beipiele	16			
	3.4	Taylor	rentwickung	18			
		3.4.1	Interessantes "Gegenbeispiel"	19			
	3.5	Harmo	onicher Oszillator	19			
		3.5.1	Eindimensionales System	19			
	3.6	Linear	re Differentialgleichungen	20			
		3.6.1	Zusammenfassung / Verallgemeinerung auf $n > 1 \dots \dots \dots$	21			
		3.6.2	Finden der partikulären Lösung	21			
4	Erhaltungssätze in Newtonscher Mechanik						
	4.1	Impuls	serhaltung	22			
	4.2	Drehir	npusherhaltung	22			
	4.3	Konse	rvative Kräfte und Energieerhaltung	24			
		4.3.1	Energieerhaltung	24			
		4.3.2	Kriterium für Konservativität	25			
	4.4	Satz v	on Stokes	27			
	4.5	Energieerhaltung für Systeme von Massenpunkten					
		itung:					

• Bartelman skripte

1 Semesterüberblick

- 1. Newtonsche Mechanik
- 2. Lagrange / Hamilton Mechanik / Statistik / Kontinua
- 3. Elektrodynamik / Spezielle Relativitättheorie
- 4. Quatenmechanik

- 5. Thermodynamik / Quantenstatistik
- 6. Allgemeine Relativitättheorie / Kosmologie
- 7. Quatenfeldtheorie I (ggf. 5.)
- 8. Quatenfeldtheorie II (ggf. 6. \Leftarrow Stringtheorie / Teilchenphysik / Supersymmetrie)
- 9. Masterarbeit
- 10. Masterarbeit

1.1 Mathe

wichtig:

- Gruppentheorie
- Differientialgeometrie

2 Kinematik des Massenpunktes

Massenpunkt / Punktmasse - (selbstevidente) Abstraktion Kinematik: Bescheibung der Bewegung (Ursachen der Bewegung \rightarrow Dynamik)

2.1 Kinematik der Massenpunktes in einer Dimension

2.1.1 Graphik

- Ort: *x*
- zu Zeit t: x(t)
- Geschwindigketi: $v(t) \equiv \frac{dx(t)}{dt} \equiv \dot{x}(t)$
- Beschleunigung: $a(t) \equiv \dot{v}(t) = \ddot{x}(t)$
- Beispiel: $x(t) \equiv x_0 + v_0 t + \frac{a_0}{2}, \ t^2, \ v(t) = v_0 + a_0 t, \ a(t) = a_0$
- Umgekehrt: Integration, z.B. von Geschwindigkeit zu Trajektorie: Anfangsposition muss gegeben sein, z.B. $x(t_0) \equiv x_0$

$$x(T) = x_0 + \int_{t_0}^t v(t) dt$$

Man prüft leicht $\dot{x}(t) = v(t)$

– Es gibt keine andere Funktion $\tilde{x}(t)$ mit $\dot{\tilde{x}}(t)=v(t)$ und $\tilde{x}(t_0)=x_0$

Analog: Von Beschleunigung zur Geschwindigkeit, und dann weiter zur Trajektorie

2.1.2 Üben dieser Logik an unserem Beispiel

Gegeben: $a(t) = a_0, t_0 = 0, v_0, x_0$

$$\Rightarrow v(t) = v_0 + \int_0^t a_0 dt' = v_0 + a_0 t$$
$$x(t) = x_0 + \int_0^t (v_0 + a_0 t') dt' = x_0 + v_0 t + \frac{a_0}{2} t^2$$

2.2 Grundbegriffe der Differenzial und Integralrechung

2.2.1 Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$$

2.2.2 Differentiation oder Ableitung

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

df bezeichnet den in Δx linearen Anteil des Zuwaches $\Delta f \equiv f(x + \Delta x) - f(x)$.

- Aus $\Delta f = f'(x)\Delta(x) + O(\Delta x^2)$ folgt $df = f'(x)\Delta x$
- Anwendung auf die Identitätabbildung: $x \mapsto x \Rightarrow dx = \Delta x$

$$\Rightarrow df = f'(x)dx \text{ oder } \frac{df(x)}{dx} = f'(x)$$

Dies ist eigentlich nur eine Schreibweise für f'(x), <u>aber</u> nützlich, weil bei kleinen $\Delta x \, df \simeq \Delta f$ (Schreibweise beinhaltet intuitiv die Grenzwertdefinition)

- f'(x) wieder Funktion \Rightarrow analog: $f''(x), f'''(x), \dots, f^{(n)}(x)$
- Praxis

$$(f\cdot g)'=f'g+g'f \text{ (Produkt/Leibnizregel)}$$

$$(f\circ g)'(x)=f'(g(x))g'(x) \text{ (Kettenregel)}$$

$$(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))} \text{ (Ableitung der Inversen Funktion)}$$

- Begründung (nur zum letzen Punkt)

$$(f^{-1})'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}(f(y))} = \frac{\mathrm{d}y}{f'(y)\mathrm{d}y} = \frac{1}{f'(f^{-1}(x))}$$

Schöne Beispiele

$$(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$$

 $\arctan'(x) \equiv (\tan^{-1}(x)) = \frac{1}{\tan^{-1}(y)}$ wobei $y = \tan^{-1}(x)$

Besser:

$$\tan^{-1}(y) = (\sin y \frac{1}{\cos y})' = \cos y \frac{1}{\cos y} + \sin y (\frac{1}{\cos y})' = 1 + \sin y (-\frac{1}{\cos^2 y})(-\sin y) = 1 + \tan^2 y = 1 + \sin^2 y$$

• Verknüpfung

$$f \circ g : x \mapsto f(g(x))$$

• Inverse

$$f^{-1}: x = f(y) \mapsto y$$

- Grenzwerte:
 - nützliche Regel: l'Hôpital (" $\frac{0}{0}$ ") Falls $\lim_{x\to x_0} f, g=0$ und $\lim_{x\to x_0} \frac{f'}{g'}$ existiert, so gilt $\lim_{x\to x_0} \frac{f}{g}=\lim_{x\to x_0} \frac{f'}{g'}$
 - weitere nützliche Regel

$$\lim \frac{\mathrm{Beschr\ddot{a}nkt}}{\mathrm{Unbeschr\ddot{a}nkt} \ \mathrm{und} \ \mathrm{monoton} \ \mathrm{wachsend}} = 0$$

* Beispiel:

$$\lim_{y \to 0} \frac{\sin \frac{1}{y}}{\frac{1}{y}}$$

- Kürzen unter lim
 - * Beispiel:

$$\lim_{x \to \infty} \frac{x}{2x + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{\sqrt{x}}} = \frac{1}{2}$$

2.2.3 Integrieren

Fundamentalsatz der Analysis

$$\int_{a}^{y} f(x)dx = F(y)\&F'(y) = f(y)$$
$$\int_{a}^{b} f(x)dx = F(x) + C$$
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

 $(\rightarrow \text{ saubere Definition "über Riemansches Integral})$

Praxis

Partielle Integration

$$\int_{-\infty}^{y} f(x)g'(x)dx = f(y)g(y) - \int_{-\infty}^{y} f'(x)g(x)dx$$

Substitution Unter Annahme einer invertierbaren Funktion $x: y \mapsto x(y)$

$$\int f(x)dx = \int f(x)\frac{dx}{dy}dy = \int f(x(y))x'(y)dy$$

Andere Formulierung:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution y = g(x)

Klassiker

$$\int \ln x dx = \int \ln x 1 dx = \ln x - \int \frac{1}{x} x dx = x(\ln x - 1)$$
$$\int x e^{x^2} dx = \int e^{x^2} \frac{1}{2} d(x^2) = \frac{1}{2} \int e^y dy = \frac{1}{2} e^y = \frac{1}{2} e^{x^2}$$

2.3 Kinematik in mehreren Dimensionen

2.3.1 Zweidimensionale Bewegung

Zweidimensional \rightarrow Bewegung in der Ebene. Trajektorie: x(t), y(t)

Bespiel

$$x(t) = v_0 t \sin \omega t$$

$$y(t) = v_0 t \cos \omega t$$

TODO Skizze der Trajektorie (Bahnkurve)

Raumkurve Menge aller Punkte \${x,y}, die das Teilchen durchläuft

TODO Skizze Nichtriviale Darstellung nur im Raum (Raumkurve)

2.3.2 Dreidimensionale Bewegung

Die Darstellung der Tranjektorie istr erschwert, denn man bräuchte 4 Dimensionen: 3 für Raum und 1 für Zeit Formal keim Problem: Trajektorie ist

•

•

$$x^{1}(t), x^{2}(t), x^{3}(t)$$

•

$$\{x^i(t)\}, i = 1, 2, 3$$

Dementsprechend:

$$v^{i}(t) = \dot{x}^{i}(t); a^{i}(t) = \dot{v}^{i}(t); i = 1, 2, 3$$

2.4 Vektorräume

Eine Menge V heißt Vektorraum, wenn auf ihr zwei Abbildungen

- die Addition (+)
- die Multiplikation mit reellen Zahlen (*)

definiert sind.

$$x: V \times V \to V$$

 $\text{Multiplikation}: \mathbb{R} \times V \to V$

 $V \times V$ - Produktmenge \equiv Menge aller Paare so dass gilt:

$$v+(w+u)=(v+w)+u\quad u,v,w\in V \qquad \qquad \text{Assoziativit\"at}$$

$$v+w=w+v \qquad \qquad \text{Kommutativit\"at}$$

$$\exists 0\in V: v+0=v\,\forall\,v\in V \qquad \qquad \text{Null}$$

$$\alpha(v+w)=\alpha v+\alpha w \qquad \qquad \text{Distributvit\"at}$$

$$(\alpha+\beta)v=\alpha v+\beta v \quad \alpha,\beta\in\mathbb{R} \qquad \qquad \text{Distributivit\"at}$$

$$\alpha(\beta v)=(\alpha\beta)v \qquad \qquad \text{Assoziativit\"at der Multiplikation}$$

$$1v=v \qquad \qquad \text{Multiplikation mit Eins}$$

2.4.1 Einfachstes Beispiel

 $V\equiv \mathbb{R}$ (mit der gewöhnlichen Addition und Multiplikation und mit $0\in \mathbb{R}$ als Vektorraumnull)

2.4.2 Unser Haupt-Beispiel

Zahlentupel aus n-Zahlen:

$$V \equiv \mathbb{R}^n = \{(x^1, x^2, \dots, x^n), x^i \in \mathbb{R}\}\$$

Notation:

$$\vec{x} = \begin{pmatrix} x^1 & x^2 & \dots & x^n \end{pmatrix}, \vec{y} = \begin{pmatrix} y^1 & \dots & y^n \end{pmatrix}$$

Man definiert:

$$\vec{x} + \vec{y} \equiv (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n)$$
$$\vec{0} \equiv (0, \dots, 0)$$
$$\alpha \vec{x} \equiv (\alpha x^1, \dots, \alpha x^n)$$

TODO (Maybe) Skizze 3D Vektor → übliche Darstellung durch "Pfeile"

2.5 Kinematik in d > 1

Trajektorie ist Abbildung: $\mathbb{R} \to \mathbb{R}^3, t \to \vec{x}(t))(x^1(t), x^1(t), x^3(t))$

$$\vec{v} = \dot{\vec{x}}(t), \vec{a(t)} = \dot{\vec{v}}(t) = \ddot{\vec{x}}(t)$$

Setzt allgemeine Definition der Ableitun voraus:

$$\frac{\mathrm{d}\vec{y}(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\vec{y}(x + \Delta x) - \vec{y}(x)}{\Delta x} \Rightarrow \vec{y}'(x) = (y^{1'}(x), \dots, y^{n'}(x))$$

2.5.1 Beispiel für 3-dimensionale Trajketorie

Schraubenbahn:

$$\vec{x}t = (R\cos\omega t, R\sin\omega t, v_0 t)$$
$$\vec{v} = (-R\omega\sin\omega t, R\omega\cos\omega t, v_0)$$
$$\vec{a} = (-R\omega^2\cos\omega t, -R\omega^2\sin\omega t, 0)$$

TODO Skizze (Raumkurve) Kommentar:

 $\vec{x}, \vec{v}, \vec{a}$ leben in verschiedenen Vektorräumen! allein schon wegen $[x] = m, [v] = m s^{-1}$ Wir können wie in d = 1 von \vec{a} zu \vec{v} zu \vec{x} gelangen!

$$\vec{v}(t) = \vec{v_0} + \int_{t_0}^t dt' \vec{a}(t') = (v_0^1 + \int_{t_0}^t dt' a^1(t'), v_0^2 + \int_{t_0}^t dt' a^2(t'), v_0^3 + \int_{t_0}^t dt' a^2(t'))$$

Üben: Schraubenbahn; $t_0 = 0$, $\vec{x_0} = (R, 0, 0)$, $v_0 = (0, R\omega, v_0)$ Es folgt:

$$\vec{v}(t)(0, R\omega, v_0) + \int_0^t dt'(-R\omega^2)(\cos \omega t', \sin \omega t', 0)$$

$$= (0, R\omega, v_0) + (-R\omega^2)(\frac{1}{\omega}\sin \omega t', -\frac{1}{\omega}\cos \omega t', 0) \mid_0^t$$

$$= (0, R\omega, v_0) - R\omega(\sin \omega t, -\cos \omega t, 0) - (0, -1, 0)$$

$$= (-R\omega\sin \omega t, R\omega + R\omega\cos \omega t - R\omega, v_0)$$

$$= (-R\omega\sin \omega t, R\omega\cos \omega t, v_0)$$

Bemerkung Man kann Integrale über Vektoren auch durch Riemansche Summen definieren:

$$\int_{t_0}^t \vec{v}(t')dt' = \lim_{n \to \infty} (v(t_0)\Delta t + \vec{v}(t_0 + \Delta t)\Delta t + \dots + \vec{v}(t - \Delta t)\Delta t)$$

mit
$$\Delta t = \frac{t - t_0}{N}$$

2.6 Skalarprodukt

Führt von Vektoren wieder zu nicht-vektoriellen (Skalaren) Größen.

2.6.1 Symmetrische Bilinearform

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ "linear" Abbildung von $V \times V \to \mathbb{R}$, $(v, w) \mapsto v \cdot w$ mit den Eigenschaften

- $v \cdot w = w \cdot v$
- $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$

Sie heißt positiv-semidefinit, falls $v \cdot v \ge 0$,

Sie heißt positiv-definit, falls $v\cdot v=0 \Rightarrow v=0$ Hier : Skalarprodukt \equiv positiv definite symmetrische Bilinearform

2.6.2 Norm (Länge) eines Vektors

$$|v| = \sqrt{v \cdot v} = \sqrt{v^2}$$

 \mathbb{R}^n : Wir definieren

$$\vec{x} \cdot \vec{y} = x^1 y^1 + \ldots + x^n y^n \equiv \sum_{i=1}^n x^i y^i \equiv \underbrace{x^i y^i}_{\text{Einsteinsche Summenkonvention}}$$

$$|\vec{x}| = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$$

Wichtig: oben euklidiesches Skalarprodukt! Anderes Skalarprodukt auf $\mathbb{R}^2: \vec{x}\cdot\vec{y}=7x^1y^2+x^2y^2$ anderes Beispiel:

$$\vec{x} \cdot \vec{y} \equiv x^1 y^1 - x^2 y^2$$

symmetrische Bilinearform, nicht positiv, semidefinit! Frage: Beispiel für Bilinearform die positiv-semidefinit ist, aber nicht positiv definit

$$\vec{x}\vec{y} = x^1y^1$$

2.7 Abstand zwischen Raumpunkten

Der anschauliche Abstand zweichen Raumpunkten \vec{x}, \vec{y} :

$$|\vec{x} - \vec{y}| = \sqrt{(\vec{x} - \vec{y})(\vec{x} - \vec{y})} = \sqrt{(\vec{x} - \vec{y})^2} = \sqrt{\sum_{i=1}^{3} (x^i - y^i)^2} = \sqrt{(x^i - y^i)(x^i - y^i)}$$
$$= \sqrt{\vec{x}^2 + \vec{y}^2 - 2\vec{x}\vec{y}} = \sqrt{|\vec{x}|^2 + |\vec{y}|^2 - 2|\vec{x}||\vec{y}|} \cos \theta$$

Haben benutzt: $\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta$

2.7.1 Spezialfall

$$\vec{x} = (x^1, 0, 0), \vec{y} = (y^1, y^2, 0)$$

$$\vec{x} \cdot \vec{y} = x^1 \cdot y^1; \cos \theta = \frac{y^1}{|\vec{y}|}; |\vec{x}| = x^1$$

TODO Skizze

$$\Rightarrow \vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$$

Dass dies für beliebige Vektoren gilt, wird später klar werden.

2.7.2 Infinisetimaler Abstand

Speziell wird der infinitesimale Abstand wichtig sein:

$$d\vec{x} = (dx^1, dx^2, dx^3)$$

$$d\vec{x} = (\frac{dx^1}{dt}dt, \frac{dx^2}{dt}dt, \frac{dx^3}{dt}dt) = (v^1dt, v^2dt, v^3dt) = (v^1, v^2, v^3)dt = \vec{v}dt, \text{ oder: } \vec{v} = \frac{d\vec{x}}{dt}$$

$$\begin{split} &(\mathrm{d}\vec{x} \text{ analog zu d} f \text{ vorher});\\ &\mathrm{d}\vec{x}^2 = \left|\mathrm{d}\vec{x}\right|^2 = \left|\vec{v}\right|^2 \! \mathrm{d}t^2 \end{split}$$

$$\mathbf{d}\vec{x}^2 = |\mathbf{d}\vec{x}|^2 = |\vec{v}|^2 \mathbf{d}t^2$$

 $|\mathrm{d}x| = |\vec{v}|\mathrm{d}t.$

2.8 Bogenlänge und begleitendes Dreibein

 $|d\vec{x}|$ entlang $\vec{x}(t)$ aufaddieren \rightarrow Bogenlänge.

$$s(t) = \int_{t_0}^t |d\vec{x}| = \int_{t_0}^t dt' \left| \frac{d\vec{x}}{dt'} \right| = \int_{t_0}^t dt' \sqrt{\dot{\vec{x}}(t')^2} = \int_{t_0}^t \sqrt{\vec{v}(t')^2}$$

Infinitesimale Version:

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| = |\vec{v}|$$

Man kann (im Prinzip) s(t) = s nach t auflösen.

$$\Rightarrow t = t(s) \Rightarrow \underbrace{\vec{x}(s)}_{\text{Parametrisierung der Trajektorie durch die Weglänge } \vec{x}(t(s))$$

Nützlich, zum Beispiel für die Definition des Tangentenvektors:

$$\vec{T}(s) = \frac{\mathrm{d}\vec{x}(s)}{\mathrm{d}s}$$

Es gilt

$$\vec{T} \parallel \vec{v}; \left| \vec{T} \right| = \left| \frac{\vec{v} \mathrm{d}t}{|\vec{v}| \mathrm{d}t} \right| = 1 \Rightarrow \vec{T} \cdot \vec{T} = 1$$

Ableiten nach s:

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}(1) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}(\vec{T} \cdot \vec{T}) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} \cdot \vec{T} + \vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = 2\vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

Nutze

$$\vec{T} \cdot \vec{T} = T^i T^i$$

⇒ Ableitung des Tangentenvektors ist ortogonal zum Tangentenvektor. Krümmungsradius der Bahn:

$$\rho \equiv \frac{1}{\left|\frac{\mathrm{d}\vec{T}}{\mathrm{d}s}\right|}$$

Normalenvektor:

$$\vec{N} = \frac{\frac{d\vec{T}}{ds}}{\left|\frac{d\vec{T}}{ds}\right|} = \rho \frac{d\vec{T}}{ds}$$

2.8.1 Beispiel in d=2

$$\vec{x}(t) = R(\cos \omega t, \sin \omega t)$$
$$\vec{v}(t) = R\omega(-\sin(\omega t), \cos \omega t)$$
$$|\vec{v}| = \sqrt{(R\omega)^2(\sin^2 \omega t + \cos^2 \omega t)} = R\omega$$

$$s(t) = \int_{t_0=0}^{t} dt' |\vec{v}| = R\omega t; \ t(x) = \frac{s}{R\omega}$$

$$\Rightarrow \vec{x}(s) = R(\cos\frac{s}{R}, \sin\frac{s}{R}), \vec{T} = \frac{d\vec{x}}{ds} = (-\sin\frac{s}{R}, \cos\frac{s}{R})$$

$$\frac{d\vec{T}}{ds} = -\frac{1}{R}(\cos\frac{s}{R}, \sin\frac{s}{R}) \Rightarrow \rho = R; \ \vec{N} = -(\cos\frac{s}{R}, \sin\frac{s}{R})$$

TODO Skizze

2.9 Vektorprodukt

$$V \times V \mapsto V; \ (\vec{a}, \vec{b}) \mapsto \vec{c} = \vec{a} \times \vec{b}$$

mit

$$c^{i} = (\vec{a} \times \vec{b})^{i} \equiv \sum_{i,k=1}^{3} \varepsilon^{ijk} a^{j} b^{k} = \varepsilon^{ijk} a^{j} b^{k}$$

dabei:

- $\varepsilon^{123} = \varepsilon^{231} = \varepsilon^{321} = 1$
- $\varepsilon^{213} = \varepsilon^{132} = \varepsilon^{321} = -1$
- sonst 0 ($\$\varepsilon^{ijk} = 0$, falls zwei Indizes gleich)

Alternativ:

•

$$|\vec{c}| = |\vec{a}| \left| \vec{b} \right| |\sin \theta|$$

- Richtung von \vec{c} definiert durch $\vec{c} \perp \vec{a} \wedge \vec{c} \perp \vec{c}$
- Vorzeichen von \vec{c} ist so, dass $\vec{a}, \vec{b}, \vec{c}$ ein "Rechtssystem" bilden

TODO Skizze

2.10 Binormalenvektor

$$= \vec{T} \times \vec{N}$$

 \vec{T},\vec{N},\vec{B} heißen "begleitendes Dreibein" und bilden ein Rechtssystem. alle haben Länge 1 \vec{T},\vec{N} spannen die "Smiegeebene" auf

2.10.1 Zur Information

$$\frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = \frac{1}{\rho}\vec{N}; \ \frac{\mathrm{d}\vec{B}}{\mathrm{d}s} = -\frac{1}{\sigma}\vec{B}; \ \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{\sigma}\vec{B} - \frac{1}{\rho}\vec{T}$$

 σ definiert die Torsion.

3 Grundbegriffe der Newtonsche Mechanik

3.1 Newtonsche Axiome

Dynamik: Ursachen der Bewegungsänderung \rightarrow Kräfte: $\vec{F} = (F^1, F^2, F^3)$

- 1. Es existierten Inertialsysteme (Koordinatensysteme in denen eine Punktmasse an der keine Kraft wirkt) nicht oder sich geradlinig gleichförmig bewegt: $\ddot{\vec{x}} = 0$
- 2. In solchen Systemen gilt: $\vec{F} = m\ddot{\vec{x}}$
- 3. Für Kräfte zwischen zwei Massenpunkten gilt:

$$\vec{F}_1 2 = -\vec{F}_2 1$$

\$2.\$ definiert die **träge** Masse Die entscheidene physikalische Aussage von \$2.\$ ist das Auftreten von \vec{x} (nicht etwa \vec{x} oder \vec{x}) Alternative Diskussionen der obigen Axiomatik:

• zum Beispiel Kapitel 1.2 von Jose/Saletan (mit \$2.\$ Definition der Kraft)

3.2 Trajektorie

Vorhersagen erfordern: $\vec{F} \to \text{Trajektorie}$. Genauer: Sei $\vec{F}(\vec{x},t)$ gegeben. Berechne $\vec{x}(t)$!

3.3 Differentialgleichungen

hier nur "gewöhnliche DGL" (nur Ableitungen nach einer Variable) (im Gegensatz zu "partiellen" (Ableitung nach verschiedenen Variabeln))

3.3.1 1. Ordung

Die allgemeine Form einer gewöhlichen Dgl. 1. Ordnung (\Rightarrow nur 1. Ableitung):

$$y'(x) = f(x, y)$$

Lösung Funktionn: $y: x \mapsto y(x)$ mit y'(x) = f(x, y(x)) (im Allgemeinen wird x aus einem gewissen Intervall kommen: $x \in I \equiv (a, b) \subseteq \mathbb{R}$)

3.3.2 Anfangswertproblem

Gegeben durch:

- 1. Dgl.: y' = f(x, y)
- 2. Anfangsbedingung $(x_0; y_0) \in \mathbb{R}^2$

Gesucht: Funktion y(x) mit (für $x \in I, x_0 \in I$:

- 1. y'(x) = f(x, y(x))
- 2. $y(x_0) = y_0$

3.3.3 partielle Ableitung

Wir betrachten ab sofort auch Funktionen mehrerer Variablen: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto f(x, y)$ Partielle Ableitung:

$$\frac{\partial f(x,y)}{\partial y} \equiv \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$$

Rechenregeln: Wie bei normalen Ableitung, nur mit x fest.

Beispiel

$$f(x, y, z) \equiv x^{2} + yz$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = z$$

$$\frac{\partial f}{\partial z} = y$$

3.3.4 Existenz und Eindeutigkeit

... viele Theoreme über Existenz und Eindeutigkeit (Peano und Picand / Lindelöf) Insbesondere sind Existenz und Eindeutigkeit gesichert falls:

$$f(x,y) \wedge \frac{\partial f(x,y)}{\partial y}$$

stetig sind.

"Begründung" Zeichne an jedem Punkt (x,y) einen Vektor (1,f(x,y)) ein.

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = y'(x) = f(x, y(x)) = \frac{(x, y(x))}{1}$$

Weiteres Argument für die Existenz und Eindeutigkeit TODO(Skizze) Steigung der gesuchten Funktion bei x_0 ist bekannt als $f(x_0, y_0) \Rightarrow$ kann Wert der Funktion bei $x + \Delta x$ abschätzen: $y_0 + \Delta x f(x_0, y_0)$ (für kleine Δx) Kenne Steigung bei $x_0 \Delta x : f(x_0 + \Delta x, y_0 + \Delta x f(x_0, y_0)) \Rightarrow$ Schätze Wert der Funktion bei $x_0 + 2\Delta x$ ab. (\Rightarrow perfekt für Numerik)

3.3.5 Beispiele

1.

$$y'(x) = f(x, y), f(x, y) = 3$$
$$y'(x) = 3 \Rightarrow y(x) = \int 3dx = 3x + c$$

Das ist schon die allgemeine Lösung der Dgl. Ein Anfangswertproblem, zum Beispiel mit $(x_0, y_0) = (-1, 1)$ lässt sich duch Bestimmen der Konstanten lösen:

$$y(x) = 3x + c \Rightarrow 1 = 3(-1) + c \Rightarrow c = 4 \Rightarrow y(x) = 3x + 4$$

3.3.6 Seperation der Variablen

Seperation der Variablen funktioniert wenn f(x, y) = g(x)h(y)

Beispiel

$$f(x,y) = \frac{x}{y} \Rightarrow y'(x) = \frac{x}{y(x)}$$

$$\frac{dx}{dx} = \frac{x}{y} \Rightarrow ydy = xdx$$

Variablen sind getrennt, kann einfach Integrieren

$$\int y dy = \int x dx \Rightarrow \frac{y^2}{2} = \frac{x^2}{2} + c \Rightarrow y = \pm \sqrt{x^2 + 2c}$$

Lösen allgemeines Anfangswertproblem allgemeines Anfangswertproblem mit Anfangsbedingung (x_0, y_0)

$$y_0^2 = x_0^2 + 2c \Rightarrow 2c = y_0^2 - x_0^2 \Rightarrow y = \begin{cases} \sqrt{y_0^2 + x^2 - x_0^2} & y_0 \ge 0\\ -\sqrt{y_0^2 + x^2 - x_0^2} & y_0 \le 0 \end{cases}$$

1. TODO Skizze

3.3.7 System von Dgl

(fast) alles oben gesagte funktioniert auch für Systeme gewöhnlicher Dgl. 1. Ordnung:

$$\frac{\mathrm{d}y^1(x)}{\mathrm{d}x} = f^1(x, y^1, \dots, y^n)$$

$$\frac{\mathrm{d}y^n(x)}{\mathrm{d}x} = f^n(x, y^n, \dots, y^n)$$

Vektorschreibweise:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \vec{f}(x, \vec{y})$$

Wir haben hier eine vektorwertige Funktion von n+1 Variablen benutzt:

$$\vec{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

Anfangsbedingungen: $(x_0, \vec{y_0}) \to n+1$ Parameter. Einer davon entspricht der verschiebung entlang der ein under derselben Lösung \Rightarrow allgemeine Lösung hat (n+1)-1=n Parameter oder Integrationskonstanten.

3.3.8 Systeme von n gewöhnlicher Dgl. p-ter Ordnung

$$\vec{y}^{(p)}(x) = \vec{f}(x, \vec{y}, \vec{y}', \vec{y}'', \dots, \vec{y}^{(p-1)})$$

Anfangsbedingungen: $(x_0, \vec{y_0}, \vec{y_0}, \dots, \vec{y_0}^{(p-1)}), \vec{y_0} \stackrel{\triangle}{=} \vec{y'}(x)$ bei $x = x_0$

Tatsache Systeme von Dgl können auf größere Systeme niedrigerer Ordnung zurückgeführt werden. Wir illustieren dies am Beispiel mit p=2

Beispiel

$$\vec{y}''(x) = \vec{f}(x, \vec{y}, \vec{y}')$$

Dies ist äquivalent zu einem System von 2n Dgl 1. Ordnung

$$\begin{cases} \vec{z}'(x) &= \vec{f}(x, \vec{y}, \vec{z}) \\ \vec{y}'(x) &= \vec{z} \end{cases} (\equiv g(x, \vec{y}, \vec{z}))$$

Ursprüngliche Form folgt duch Eisezten der 2. Gleichung in die erste. Das verallgemeinert sich sofort auf die Ordnung p: Man gibt einfach der (p-1) niederen Ableitungen neue Namen und betrachtet sie als neue Variablen. Die zusätzlichen Dgl sind schlicht die Aussagen, dass es sich dabei immer noch um die ehemaligen Ableitungen handelt. \Rightarrow System von np Dgl 1. Ordung; allgemeine Lösung hat np Parameter

3.3.9 Erste physikalische Beipiele

Punktmasse 3 Dgl 2. Ordung:

$$\ddot{\vec{x}} = \frac{1}{m} \vec{F}(t, \vec{x}, \dot{\vec{x}})$$

 \Rightarrow 6 Dgl 1. Ordung:

$$\begin{cases} \dot{\vec{v}} &= \frac{1}{m} \vec{F}(t, \vec{x}, \vec{v}) \\ \dot{\vec{x}} &= \vec{v} \end{cases}$$
 (1)

In vielen Fällen: (zeitunabhängiges) Kraftfeld $\vec{F}(\vec{x})$ ("Vektorfeld").

Darstellung in d=2 (Skizze Vektorfeld). wichtig: doppelte Makierung der Achsen

Einfachster Fall (d = 1) betrachte den Fall, dass F von v, aber nicht von t abhängt:

$$\begin{cases} \dot{v} &= \frac{F(x,v)}{m} \\ \dot{x} = v \end{cases} \tag{2}$$

$$\binom{v}{x} = \left(\frac{F(x,v)}{m}\right)$$

1. **TODO** Darstellung im Phasenraum Analyse im Phasenraum passt perfekt zur früheren allgemeinen Analyse von Dgl 1. Ordnung Analog in d=3: Vektorfeld: $(\frac{\vec{F}}{m}, \vec{v})$, Phasenraum (\vec{x}, \vec{v}) oder (\vec{x}, \vec{p}) ist 6-dimensional

Harmonischer Oszilator (d = 1**)** F(x) = -kx

$$\begin{cases} \dot{v} &= -x \\ \dot{x} &= v \end{cases} \tag{3}$$

Phasenraum des Harmonischen Oszilators

Freier Fall mit Luftwiederstand Aufgabe: Bestime zeitliche Entwicklung von v wenn Körper im Schwerefeld losgelassen wird. $F_R=-cv^2$

Problem 1-dim: x wachse nach unten, Start bei $t=0, x=0, \dot{x}=0$

$$F = m\ddot{x} \Rightarrow mg - c\dot{x}^2 = m\ddot{x} \Rightarrow \begin{cases} mg - cv^2 &= m\dot{v} \\ v &= \dot{x} \end{cases}$$

Erste Gleichung enthält kein x und kann unabhängig gelöst werden:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{c}{m}v^2$$
$$\mathrm{d}t = \frac{\mathrm{d}v}{g - \frac{c}{m}v^2}$$

Konstanten und Dimensionen

$$[g] = \text{m s}^{-2}; [\frac{c}{m}] = \text{N kg}^{-1} \,\text{m}^{-2} \,\text{s}^{2}$$

Kann leicht Konstanten der Dimension Zeit und Geschwindigkeit bilden:

$$\hat{t} = \sqrt{\frac{m}{gc}}, \hat{v} = \sqrt{\frac{gm}{c}}$$

Benutze jetzt die dimensionslosen Variablen $t' = \frac{t}{\hat{t}}, v' = \frac{v}{\hat{v}}$

$$\Rightarrow dt' = \frac{dv'}{1 - v^{2\prime}} = \frac{dv'}{2} (\frac{1}{1 + v'} + \frac{1}{1 - v'})$$

$$2t' = \ln 1 + v' - \ln 1 - v' + c$$

v'=0 bei $t'=0 \Rightarrow c=0$ Auflösen nach v':

$$e^{2t'} = \frac{1+v'}{1-v'} \Rightarrow \dots$$
$$\Rightarrow v' = 1 - \frac{2}{e^{2t'}+1} \Rightarrow v = \hat{v}(1 - \frac{2}{e^{\frac{2t}{\hat{t}}}} + 1)$$

 $\Rightarrow \hat{v}$ ist Grenzgeschwindigkeit, wird exponentiell angenommen, wenn $t \gg \hat{t}$

Zugabe: einfache physikalische Argumente für die Größe von c:

- 1. $[c] = \text{kg m}^{-1}$, Input: A (Querschnitt), $\rho_L \Rightarrow c \sim \rho_L A$
- 2. Energiebilanz an verdrängter Luft:

$$F_R \cdot l \sim E_{\rm kin, Luft} \sim \rho_L l A \frac{v^2}{2}$$

3.4 Taylorentwickung

Ohne Beschränkung der Allgemeinheit $x_0 = 0$. Untersuche Verhalten beliebiger glatter Funktionen f(x) nahe x = 0

$$f(x) = f(0) + \int_0^x dx' f'(x')$$

$$= f(0) + f'(x')(x_- x) \Big|_0^x - \int_0^x dx' f''(x')(x' - x)$$

$$= f(0) + f'(0)x - f''(x') \frac{(x' - x)}{2} \Big|_0^x + \int_0^x dx' f'''(x') \frac{(x' - x)^2}{2}$$

$$= f(0) + f'(x)x + f''(0) \frac{x^2}{2} + \dots$$

Allgemein:

$$f(x) = f(0) + \sum_{n=1}^{m} f^{(n)}(0) \frac{x^n}{n!} + \int_0^x dx' f^{(m+1)}(x') \frac{(x'-x)^m}{m!}$$

Falls das Restgliend für $n \to \infty$ verschwindet

$$f(x) = f(0) + \sum_{n=1}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$$

Analog: Taylor-Reihe:

$$f(x) = f(x_0) + \sum_{n=1}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

- 1. Oft erste Terme = gute Näherung
- 2. Verallgemeinerung auf viele Variablen

3.4.1 Interessantes "Gegenbeispiel"

$$f(x) \equiv \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Überzeugen sie sich, dass alle Ableitungen existieren, auch bei Null! Sie Brauchen:

$$\lim_{x \to 0} \frac{1}{x^n} e^{-\frac{1}{x^2}} = 0$$

Die Ableitungen verschwinden sogar bei Null \Rightarrow Taylor-Reihe ist Null, keine gute Näherung

3.5 Harmonicher Oszillator

- eines der wichtigesten physikalischen Systeme
- beschreibt viele kompilziertere Systeme angenähert

3.5.1 Eindimensionales System

$$d=1, F=F(x)$$

$$F(x) = -\frac{\mathrm{d}}{\mathrm{d}x}v(x) = -v'(x)$$

Damit haben wir das **Potetial** (\rightarrow beschreibt die potentielle Energie des Massenpunktes) v als Stammfunktion von -F definiert

• Skizze

Massenpunkt kann nur ruhen, wo F=0 beziehungsweise V'=0. Genauer: Nur Minima (Maxima instabil).

Ziel Untersuchung der Bewegung in der Nähe von Minimal (also bei $x\approx x_0$ wobei $v'(x_0)=0$ gelte)

V(x) bei $x_0, V'(x_0) = 0, |x - x_0|$ klein

$$\Rightarrow V(x) \simeq V(x_0) + \frac{1}{2}v''(x_0)(x - x_0)^2$$

$$\Rightarrow F(x) \simeq -V''(x_0)(x - x_0)$$

$$x - x_0 \equiv y \Rightarrow \underbrace{F(y) = -ky}_{\text{harmonischer Oszillator}}, k \equiv v''(0)$$

Wir sehen: Harmonischer Oszillator ist eine Idealisierung von potentiell sehr großem Nutzen (viele Systeme)

Lösung Newton $\Rightarrow m\ddot{y} = -ky$ beziehungsweise $\ddot{y} = -\omega^2 y, \omega \equiv \sqrt{\frac{k}{m}}$ $\Rightarrow \sin \omega t$ und $\cos \omega t$ sind Lösungen $\Rightarrow y(t) = A \sin \omega t + B \cos \omega t$ iist auch Lösung (wegen Linearität) (wegen der beiden frei wählbaren Konstanten ist dies schon die allgemeine Lösung)

Verallgemeinerungen

- Reibungterm $\sim \dot{y}$
- treibende Kraft $\sim f(t)$

3.6 Lineare Differentialgleichungen

allgemeine Form einer linearen Dgl. n-ter Ordnung:

$$y^{(n)} + f_{n-1}(x)y^{(n-1)}(x) + \ldots + f_0(x)y(x) = f(x)$$

Das Wort linear bezieht sich nur auf y, nicht xDie Dgl. heißt homogen falls $f(x) \equiv 0$ Homogen von Grad p: Ersetzung $y \to \alpha y$ führt zu Vorfaktor αp , hier p = 1

- wir hatten oben dem Fall n=2 "mit konstanten Koeffizienten"
- noch einfacheres Beispiel: $n = 1, f \equiv 0$ (aber beliebige Koeffizienten)

$$y' + a(x)y = 0$$

Das ist seperabel:

$$\frac{dy}{dx} + a(x)y = 0$$

$$\frac{dy}{dx} = -a(x)y$$

$$\frac{dy}{x} = -a(x)dx$$

$$\int \frac{dy}{y} = -\int a(x)dx$$

$$\ln y - A(x) + c_1$$

$$y = ce^{-A(x)}$$

A(x) sei eine beliebege aber fest gewählte Stammfunktion von a Wir können den inhomogenen Fall lösen, durch "Variation der Konstanten"

– Ansatz:
$$y = C(x)e^{-A(x)}$$
, Dgl. $y' + ay = f$
$$(ce^{-A})' + aCe^{-A} = f$$

$$c'e^{-A} - CA'e^{-A} + Cae^{-A} = f$$

Beachte A' = a

$$\Rightarrow c'e^{-A} = fe^{A}, c(x) = \int dx f(x)e^{A(x)}$$
$$y(x) = \left[\int_{-\infty}^{\infty} dx' f(x')e^{A(x')}\right]e^{-A(x)}$$

f(x') ist eine frei wählbare additive Konsante im x'-Int. $(C(x) \to C(x) + \alpha)$ entspricht der Addition der Lösung der homogenen Dgl.

3.6.1 Zusammenfassung / Verallgemeinerung auf n > 1

Definition 1 Linear Unabhängig. Ein Satz von Funktionen $f_1(x), \ldots, f_n(x)$ heißt linear unabhängig, falls jede Linearkombination bei der nicht alle Koeffizienten Null sind auch nicht Null ist:

$$\alpha_1 f_1(x) + \dots + \alpha_n f_n(x) \equiv 0 \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

(identisch zur linearen Unabhängigkeit von Vektoren)

Fakt Kennt man n linear unabhängige Lösungen einer homogenen linearen Dgl. n-ter Ordnung, so kenn man die allgemeine Lösung:

$$y_{hom}(x) = C_1 y_1(x) + \ldots + C_n y_n(x)$$

Die allgeimeine Lösung ist stets von dieser Form.

Wenn wir außerdem eine **partikuläre** Lösung der onhomogenen Gleichung haben, so haben wir auch schon deren allgemeinen Lösung

$$y(x) = y_{hom}(x) + y_{part}(x)$$

"Beweis" durch Einsetzen in

$$y^{(n)} + f_{n-1}y^{(n-1)} + \ldots + f_0y = f$$

3.6.2 Finden der partikulären Lösung

Auch bei n > 1: Variation der Konstanten (Funktioniert gut bei konstanten Koeffizienten) Mächtigere Methoden: Überführen von System von linearen Dgl. 1. Ordnung (braucht Matrixrechnung)

4 Erhaltungssätze in Newtonscher Mechanik

4.1 Impulserhaltung

Systeme mit mehreren Massenpunkten $a, b \in \{1, ..., n\}$ Trajektorien: $\vec{x}_a(t), a = 1, ..., n$

Satz 1 Impulserhaltung. Bei verschwindenen externen Kräften ($\vec{F}_{ext}=0$) gilt:

$$\vec{p} \equiv \sum_{a} \vec{P_a} \equiv \sum_{a} m_a \dot{\vec{x_a}} = const$$

Beweis.

$$\dot{\vec{p}} = \sum_{a} m_{a} \dot{\vec{x}_{a}}$$

$$= \sum_{a} \vec{F_{a}}$$

$$= \sum_{a \neq b} (\sum_{a \neq b} \vec{F_{ab}})$$

$$= \sum_{a,b} \vec{F_{ab}}$$
(Summe über alle Paare von a,b)
$$= \sum_{a > b} \vec{F_{ab}} + \sum_{a < b} \vec{F_{ab}}$$

$$= \sum_{a > b} (\vec{F_{ab}} + \vec{F_{ba}})$$

$$= 0$$

$$\downarrow$$
2. Note to use here Agricus

3. Newtonsches Axiom

mit äußeren Kräften:

$$\dot{\vec{p}} = \sum_a \vec{F}_{a,ext.} \equiv \vec{F}_{ext}$$

Falls zum Beispiel die äußere Kraft nicht in x^1 -Richtung wirkt ($F_{\text{ext}}^1 = 0$), so gilt immer nocht $p^1 = \text{const}$ (eigentlich drei Erhaltungssätze für p^1 , p^2 , p^3 , manchmal gelten nur einige davon)

4.2 Drehimpusherhaltung

Oft: Kräfte wirken parallel zur Verbindungslinie zweier Massenpunkte:

- Gravitationskraft
- Elektrostatitsche Kraft
- Modell der masselosen Stange (\rightarrow Modell für starre Körper!)

Definition 2 Drehimpuls.

$$\vec{L}_a \equiv \vec{x}_a \times \vec{p}_a$$
$$(\vec{L}_a)^i = \varepsilon^{ijk} x_a^j p_a^k$$

Falls $\vec{F}_{a,ext} = 0$ und alle interen Kräfte wirken parallel zur Verbindungslinie der jeweiligen Punkte, dann gilt **Drehimplusherhaltung**

Satz 2 Drehimpulserhaltung.

$$\vec{L} \equiv \sum_{a} \vec{L}_{a} = \sum_{a} m_{a} \vec{x}_{a} \times \dot{\vec{x}}_{a} = \sum_{a} \vec{x}_{a} \times \vec{p}_{a} = const$$

Beweis. Nachrechnen:

$$\begin{split} \dot{\vec{L}} &= \sum_{a} m_{a} (\dot{\vec{x}}_{a} \times \dot{\vec{x}}_{a} + \vec{x}_{a} + \dot{\vec{x}}_{a}) \\ &= \sum_{a} \vec{x}_{a} \times \vec{F}_{a} \\ &= \sum_{a \neq b} \vec{x}_{a} \times \vec{F}_{ab} \qquad \text{(Summe "über alle Paare von } a, b, a \neq b) \\ &= \sum_{a > b} (\vec{x}_{a} \times \vec{F}_{ab} + \vec{x}_{b} \times \vec{F}_{ba}) \\ &= \sum_{a > b} (\vec{x}_{a} - \vec{x}_{b}) \times \vec{F}_{ab} \end{split}$$

da $\vec{F}_{ab} \parallel (\vec{x}_a - \vec{x}_b)$ per Annahme

$$=0$$

Bei externen Kräften:

$$\dot{\vec{L}} = \sum_{a} \vec{x}_a \times \vec{F}_{a,ext} \equiv \vec{M}_{ext}$$

 M_{ext} ist das durch äußere Kräfte auf Punkt a ausgeübte **Drehmoment**, allgemein (für einzelnen Punkt):

$$\vec{M} = \vec{x} \times \vec{F} = \dot{\vec{L}}$$

Wichtig: Drehimpulserhaltung gilt auch dann wenn alle äußeren Kräfte Zentralkräfte sind, Zentralkraft:

$$\vec{F}_a \parallel \vec{x}_a$$

Drehimpuls hängt vom Koordinatensystem ab.

Bemerkung 1. $\vec{L} \equiv \vec{x} \times \vec{p}$ (allgemeiner jedes Kreuzprodukt von Vektoren) ist ein **Axial-** oder **Pseudovektor**, das heißt: Bei Drehungen wei Vektor, Bei Reflexion an ursprung kein Vorzeichenänderung

Beweis.

$$\vec{a} \rightarrow -\vec{a}, \vec{b} \rightarrow -\vec{b} \Rightarrow \vec{a} \times \vec{b} \rightarrow +\vec{a} \times \vec{b}$$

4.3 Konservative Kräfte und Energieerhaltung

Definition 3 Gradient. Gradient von V:

$$\vec{\nabla} \equiv \left(\frac{\partial V}{\partial x^1}, \frac{\partial V}{\partial x^2}, \frac{\partial V}{\partial x^3}\right)$$

 $\frac{\partial}{\partial x}$ ist ein "Differentialoperator", also:

$$\frac{\partial}{\partial x}: f(x,y) \mapsto \frac{\partial f(x,y)}{\partial x}$$

Dementsprechen $\frac{\partial^2}{\partial x^2}$ ist ein "Differentialoperator" zweiter Ordung, also:

$$\frac{\partial^2}{\partial x^2}: f(x,y) \mapsto \frac{\partial^2 f(x,y)}{\partial x^2}$$

 $\vec{\nabla} V$ ist gute Schreibweise, weil $\vec{\nabla}$ ein vektorwertiger Differentialoperator ist:

$$\vec{\nabla} = \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3}\right)$$

Definition 4 konservatives Kraftfeld. Ein zeitunabhängiges Kraftfeld $\vec{F}(\vec{x})$ heißt konservativ falls es eine Funktion $V(\vec{x})$ ("Potential") gibt. dodass

$$\vec{F} = -\vec{\nabla}V$$

4.3.1 Energieerhaltung

Für einen Massenpunkt in einem konservativen Kraftfeld gilt:

$$E = T_{\text{kinetisch}} + V_{\text{potentielle Energie}} = \frac{m}{2}\dot{\vec{x}}(t)^2 + V(\vec{x}(t)) = \text{const}$$

Begründung

$$\begin{split} \frac{\mathrm{d}T}{\mathrm{d}t} &= \frac{m}{2} \frac{\mathrm{d}}{\mathrm{d}t} (\dot{x}^i \dot{x}^i) = \frac{m}{2} 2 \dot{x}^i \ddot{x}^i = m \dot{\vec{x}} \ddot{\vec{x}} \\ \frac{\mathrm{d}V}{\mathrm{d}t} &= \lim_{\Delta t \to 0} \frac{V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3)}{\Delta t} \\ \mathrm{mit} \ \Delta x &= \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \Delta t \end{split}$$

Umschreiben des Zählers

$$\begin{split} &V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3) \\ &\cong \frac{\partial V}{\partial x^1}(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \Delta x^1 + \frac{\partial V}{\partial x^1}(x^1, x^2, x^3 + \Delta x^3) \Delta x^2 + \frac{\partial V}{\partial x^1}(\vec{x}) \Delta x^3 \end{split}$$

Teilen durch Δt , Grenzwertbildung

$$\frac{\mathrm{d}V}{dt} = \frac{\partial V}{\partial x^i}(\vec{x}(t)) \frac{\mathrm{d}x^i}{dt}$$

oder (allgemeine Rechenregel)

$$\mathrm{d}V = \frac{\partial V}{\partial x^i} \mathrm{d}x^i$$

Allgemeine Formulierung der Rechenregel: Sei $f: \mathbb{R}^n \to \mathbb{R} \wedge \vec{x} : \mathbb{R} \to \mathbb{R}^n$ Die Verknüpfung $f \circ \vec{x} : \mathbb{R} \to \mathbb{R}$ ist eine Funktion. Für diese gilt:

$$\underbrace{\mathrm{d}f}_{\text{totales Differential}} = \frac{\partial f}{\partial x^i} \mathrm{d}x^i = (\vec{\nabla}f) \mathrm{d}\vec{x} \tag{4}$$

oder totale Ableitung:

(5)

$$\frac{\mathrm{d}f}{dt} = \frac{\partial f}{\partial x^i} \frac{\mathrm{d}x^i}{\mathrm{d}t} \tag{6}$$

Unsere Anwendung

(7)

$$\dot{E} = m\ddot{x}\ddot{\ddot{x}} + \frac{\partial V}{\partial x^i}\dot{x}^i = \vec{F}\dot{\vec{x}} + (\vec{\nabla}V)\dot{\vec{x}} = 0 \checkmark$$
(8)

$$V(x^{1} + \Delta x^{1}, x^{2} + \Delta x^{2}, x^{3} + \Delta x^{3}) - V(x^{1}, x^{2} + \Delta x^{2}, x^{3} + \Delta x^{3})$$

Vergleiche:

$$f(x + \Delta) - f(x) \cong f'(x)\Delta$$

4.3.2 Kriterium für Konservativität

Für *einfach zusammenhängende Gebiete*1 gilt:

$$\vec{F}$$
 ist konservativ $\Leftrightarrow \vec{\nabla} \vec{F} = 0$

Begründung ⇒

$$\vec{F} = -\vec{\nabla}V \Rightarrow \underbrace{\vec{\nabla} \times \vec{F}}_{\equiv \text{Rotation von } F \text{ (rot } F)}$$

 $^{^{1}\}mathrm{Jede}$ geschlossene Kurve kann auf Länge Null zusammengezogen werden

$$\begin{split} (\vec{\nabla} \times \vec{F})^i &= \varepsilon^{ijk} \frac{\partial}{\partial x^j} F^k = \varepsilon^{ijk} \partial^i F^k \\ &= -\varepsilon^{ijk} \partial^j \partial^k V = -\frac{1}{2} (\varepsilon^{ijk} - \varepsilon^{ikj}) \partial^j \partial^k V \\ &= -\frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V + \frac{1}{2} \varepsilon^{ikj} \underbrace{\partial^k \partial^j}_{\partial x} V \\ &\text{habe benutzt} \underbrace{\frac{\partial}{\partial x} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial x}}_{\partial x} \\ &= -\frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V + \frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V = 0 \\ &\downarrow \\ k \leftrightarrow j \end{split}$$

 \Leftarrow

Wähle beliebiges festes \vec{x}_0 im Gebiet. Definiere Potential als minus Arbeit am Massenpunkt $\to Abbildung$

$$V(\vec{x}) \equiv -\int_{\vec{x}_0}^{\vec{x}} \vec{F}(x) d\vec{s}$$
 (Linienintegral)

Linienintegral kann immer definiert werden, wenn Kurve durch Gebiet mit Vektorfeld verläuft

$$d\vec{s} \equiv d\vec{x}(s) = (\frac{dx^1}{ddx}, \frac{dx^2}{ddx}, \frac{dx^3}{ddx})ds$$

Also gilt:

$$\vec{F} \, \mathrm{d}\vec{s} = F^i(\frac{\mathrm{d}x^i}{ds}) \, \mathrm{d}s$$

Integrand im normalen Riemann Inegral

Wähle beliebigen kleinen Vektor \vec{l} und berechne:

$$\vec{l}\vec{F}(\vec{x}) \cong -(-\int_{\vec{x}}^{\vec{x}+\vec{l}} d\vec{s}\vec{F})$$

$$= -((-\int_{\vec{x}_0}^{\vec{x}+\vec{l}} d\vec{s}\vec{F}) - (-\int_{\vec{x}_0}^{\vec{x}} d\vec{s}\vec{F}))$$

$$= -(V(\vec{x}+\vec{l}) - V(\vec{x}))$$

$$\cong -\frac{\partial V}{\partial x^i} l^i = -\vec{l}(\vec{\nabla}V)$$

$$\Rightarrow \vec{l}(\vec{F} + \vec{\nabla}V) = 0$$

$$\Rightarrow \vec{F} + \vec{\nabla}V = 0\checkmark$$

Lücke: Wegunabhängigketi der Definition von V: Wähle zwei unterschiedliche Wege (L_1, L_2) :

Satz von Stokes

$$= \int_{\Sigma} \vec{df} (\vec{\nabla} \times \vec{F})$$
$$(\operatorname{rot} \vec{F})^{i} = (\vec{\nabla} \times \vec{F})^{i} = \varepsilon^{ijk} \frac{\partial}{\partial x^{j}} F^{k}$$

zum Beispiel:

$$(\vec{\nabla} \times \vec{F})^1 = \frac{\partial F^3}{\partial x^2} - \frac{\partial F^2}{\partial x^3}$$
$$\int_{L_2} d\vec{s} \vec{F} - \int_{L_1} d\vec{s} \vec{F} = \oint_{\partial \Sigma} d\vec{s} \vec{F} = \int_{\Sigma} d\vec{f} * (\vec{\nabla} \times \vec{F}) \stackrel{!}{=} 0$$
"Stokes"

4.4 Satz von Stokes

Definition 5 Satz von Stokes.

$$\oint d\vec{s}\vec{F} = \int_{\Sigma} d\vec{f}(\vec{\nabla} \times \vec{F})$$

Beweis.

$$\oint d\vec{s}\vec{F} = \int_0^{\Delta x^1} ds F^1(x,0) + \int_0^{\Delta x^2} ds F^2(\Delta x^1,s) - \int_0^{\Delta x^1} ds F^1(s,\Delta x^2) - \int_0^{\Delta x^2} ds F^2(0,s)$$

$$= \int_0^{\Delta x^1} ds (F^1(s,0) - F^1(s,\Delta x^2)) + \int_0^{\Delta x^2} ds (F^2(\Delta x^1,s) - F^2(0,s))$$

$$= \int_0^{\Delta x^1} ds (\frac{\partial F^1}{\partial x^2}) \Delta x^2 + \int_0^{\Delta x^2} ds \frac{\partial F^2}{\partial x^1} \Delta x^1 + O(\Delta^3)$$

$$= \Delta x^1 \Delta x^2 (\frac{\partial F^2}{\partial x^1} - \frac{\partial F^1}{\partial x^2}) + O(\Delta^3)$$

$$= \Delta x^1 \Delta x^2 (\vec{\nabla} \times \vec{F})^3 + O(\Delta^3)$$

$$= \underbrace{\Delta x^1 \Delta x^2 \hat{e_3}}_{0} (\vec{\nabla} \times \vec{F})$$

 $\Delta \vec{f}$ Der dem kleinen Flächenelement zugeordnete Vektor

$$\approx \Delta \vec{f}(\vec{\nabla} \times \vec{F})$$

Allgemein steht $\Delta \vec{f}$ oder d \vec{f} für ein kleines oder infinitesimales Flächenelement, Länge $\hat{}$ Größe der Fläche Die Richtung des Vektors definiert **Orientierung** der Fläche (Zum Beispiel Oben = da, wo der Pfeil hinzeigt)

Randkurve: so definiert, dass man von oben gesehen linksherum (mathematisch positiver Drehsinn) läuft

- 1. Spezielle Lange in unsererer Rechung unwichtig
- 2. Übergang zu größeren Flächen durch Aufaddieren

Fläche = $N\Delta^2 \Rightarrow N \sim \frac{1}{Delta^2}$

$$\sum_{\text{Rechtecke}} \oint \mathrm{d}\vec{s} \vec{F} = \sum_{\text{Rechtecke}} \int \mathrm{d}\vec{f} (\vec{\nabla} \times \vec{F}) + NO(\Delta^3)$$

$$\downarrow$$
Zahl der Rechtecke = $O(\Delta)$

weil sich nicht "innere Ränder wegheben"

$$\oint d\vec{s}\vec{F} = \sum_{\text{Rechtecke}} \int d\vec{f}(\vec{\nabla} \times \vec{F})$$

klar

$$\oint d\vec{s} \vec{F} = \int d\vec{f} (\vec{\nabla} \times \vec{F})$$

Glätten des Randes: Zerlegung des Randes $\Delta \vec{s}$ in kleine Rechtecke $\Delta \vec{s}_1, \Delta \vec{s}_2$

$$\Delta \vec{s} = \Delta \vec{s}_1 + \Delta \vec{s}_2$$

$$\vec{F} \Delta \vec{s} = \vec{F} \Delta \vec{s}_1 + \vec{F} \Delta \vec{s}_2 = \vec{F}_1 \Delta \vec{s}_1 + \vec{F}_2 \Delta \vec{s}_2 + O(\Delta x^2)$$

 $\vec{F}, \vec{F_1}, \vec{F_2}$ jeweils am Mittelpunkt der Linienelemente Zahl derartiger Randelemente $\sim \frac{1}{\Delta} \Rightarrow$ Fehler $O(\Delta)$

 \Rightarrow Auch nach Summation bleibt Fehler von $O(\Delta)$

Besser wäre Zerlegung in Simplices ("Haben sie mal versucht eine Schildkröte zu fliesen") $\hfill\Box$

Für unsere Anwendung: wichtig, dass jede geschlossene Kurve inn einem einfach zusammenhängenden Gebiet, Rand ist.

4.5 Energieerhaltung für Systeme von Massenpunkten

Massenpunkte: $\vec{x}_a, a = 1, \dots, n$

Kräfte: seien \parallel zu $\vec{x}_a - \vec{x}_b$ ("Zentralkräfte") Solche Kräfte kann man stets schreiben als:

$$\vec{F}_{ab} = -\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|)$$

mit:

$$V_{ab} = Vba, \vec{\nabla}_a = (\frac{\partial}{\partial x_a^1}, \frac{\partial}{\partial x_a^2}, \frac{\partial}{\partial x_a^3})$$

dazu:

$$-\vec{\nabla}_{a}V_{ab}(|\vec{x}_{a}-\vec{x}_{b}|) = (-\vec{\nabla}_{a}|\vec{x}_{a}-\vec{x}_{b}|)V'_{ab}(|\vec{x}_{a}-\vec{x}_{b}|)$$

Dies zeigt:

$$= -\vec{\nabla}_a \sqrt{(\vec{x}_a - \vec{x}_b)^2}$$
$$= \frac{\vec{x}_a - \vec{x}_b}{|\vec{x}_a - \vec{x}_b|}$$

Wir können passendes V für jede Zentralkraft finden. Man berechnet einfach V' und sucht die Stammfunktion.

Prüfe Konsistenz mit 3. Axiom:

$$\underbrace{-\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|)}_{\vec{F}_i} = +\vec{\nabla}_b V_{ab}(|\vec{x}_a - \vec{x}_b|) = \underbrace{+\vec{\nabla}_b V_{ba}(|\vec{x}_b - \vec{x}_a|)}_{-\vec{F}_i}$$

In diesem System gilt Energieerhaltung:

$$E = \sum_{a} T_a + \frac{1}{2} \sum_{a \neq b} V_{ab} = \sum_{a} T_a + \sum_{a < b} V_{ab} = \text{const}$$

Begründung:

$$\dot{E} = \sum_{a} \dot{\vec{x}}_{a} \vec{F}_{a} + \frac{1}{2} \sum_{a \neq b} ((\vec{\nabla}_{a} V_{ab}) \dot{\vec{x}}_{a} + (\vec{\nabla}_{b} V_{ab}) \dot{\vec{x}}_{b})$$

$$= \sum_{a \neq b} \dot{\vec{x}}_{a} \vec{F}_{ab} + \frac{1}{2} \sum_{a \neq b} (-\vec{F}_{ab} \dot{\vec{x}}_{a} - \underbrace{\vec{F}_{ab} \dot{\vec{x}}_{b}}_{\text{Umbennenung } a \leftrightarrow b}) = 0$$

$$(= W - \frac{1}{2}W - \frac{1}{2}W)$$

Bemerkung: Passend gewähltes V_{ab} gibt das Modell der starren Stangen