

Ulrike Kuhl

Bielefeld University, Bielefeld, Germany

Mark T. Keane

University College Dublin, Dublin, Ireland

More Complex Designs

- We have...looked at simple 2-GP Expt
- Now we consider more complex designs
- With new concerns that arise

Six Steps to Heaven...

Motivation

Design

Materials & Procedure

Piloting

Data Collection & Analysis

Results

Design: Two Groups

Control: No-Explanation

Experimental: CF-Explanation

What are we going to show people?

Design: N Groups (N=3)

Control: Experimental#1: Experimental#2: XP-method-1 XP-method-2

What are we going to show people?

Design: N Groups (N=3)

Control: Experimental#1: Experimental#2:
XP-method-1 XP-method-2

Is this just more people?

Design: N Groups (N=3)

Design

Matching of materials & procedure become harder!

Bird ID App: Classifying Terns

Which is Little, Which is Least?

Bird ID App: Classifying Terns

Which is Little, Which is Least?

Method #1: Feature Importance

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

Method #2: Counterfactual

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

Matching Issues?

Materials & Procedure

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

If behavior is different, what is it due

- ~ feature-attribution V counterfactual*
- ~ the use of salience-box V yellow-box
- ~ see the white-patch V salience-box
- ~ confusion over words, "area(s)" V "area"
- ~ words used in one over the other
- ~ poor positioning of the saliency patch
- ~ color confusions of saliency patch ...

Matching Issues?

material-issues procedure-issue

Materials & Procedure

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

If behavior is different, what is it due to?

- ~ feature-attribution V counterfactual*
- ~ the use of salience-box V yellow-box
- ~ see the white-patch V salience-box
- ~ what people are being asked to do
- ~ poor positioning of the saliency patch
- ~ color confusions of saliency patch ...
- ~ use of area(s) versus area

Materials Solutions?

Materials & Procedure

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

Create new variable (h-salience v h-box) and cross that with method; but then you have unbalanced design.

h-salience

h-box

Oops, 5 conditions!

Control

Expt1.1

h-sal.

Expt1.1

h-box

method-1

Expt2.1

Expt2.1

method-2

Simple Solution?

Materials & Procedure

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

Take the 4 picture-items and for each person randomly assign salience-boxes to ½ and highlight-boxes to other ½

This will control for this box-variable across methods but will mean we will not know if they have a role to play.

Back to 3 conditions!

balanced h-box + h-sal

Procedural Issues?

App says this is a:

Little Tern

because of the highlighted area(s) in picture.

App says this is a:

Little Tern

if the highlighted area was grey then it would be a **Least Tern**.

If behavior is different, what is it due to?

~ what people are being asked to do

The counterfactual refers to a region+feature+bird, but the feature one just refers to a region! Does this matter, is it really just reflecting what the method does?

Procedural Solution?

App says this is a:

Little Tern

because the highlighted tailfeature makes it a *Little Tern*.

App says this is a:

Little Tern

if the highlighted tail-feature was grey it would make it a **Least Tern**.

App says this is a:

Little Tern

because the features we see make it a *Little Tern*.

Contile

App says this is a:

Little Tern

because the highlighted tailfeature makes it a *Little Tern*.

EXPerimentality.

App says this is a:

Little Tern

if the highlighted tail-feature was grey it would make it a **Least Tern**.

EXPerimental?:

- Image-based learning classification is task (nb. BAC one earlier is also classification)
- We could ask people to check the correctness of the App's classification (objective measure)
- And/Or we could ask if the explanation is helpful/satisfactory etc... (subjective measure)
- Again we could pilot it to test these options.

Data Collection & Analysis

After Collecting, Cleaning!

 Legitimate removal of bad data-points/people:

• speedsters, strange materials (pilot!), attention failures, straight-liners, non-varying responses...

Doing Descriptive Statistics

Mean, median, mode, standard deviation...

Make sure to describe your sample!

"We recruited 15 participants, randomly assigned to one of the three groups the Control, XP-method-1 and XP-method-2 Groups. No participants were excluded because reaction times were >3 SDs from the sample mean, there was no straight-lining response patterns (i.e., same response in 5 consecutive trials) and all attention checks were passed.

Thus, data from all participants was included in the final analysis for the **Control Group** (n=5, 3 female, median age 35-44y...); the **XP-method-1 Group** (n=5, 2 female, median age 35-44y...); and the **XP-method-2 Group** (n=5, 6 female, median age 25-35y...)."

Starting the Statistics

Simplest first step is to just look at the means of the groups, this can tell you a lot...

Starting the Statistics

Mean Accuracy per Group

Simplest first step is to just look at the means of the groups, this can tell you a lot...

A > B, C

C >> A
and
C > B

no difference

Accuracy: Looks like XP-m2 > control ... at least...?

N-group case (that is ND) is a **Kruskal-Wallis Test***.

Design Constrains the Statistical Choices!!

N-group case (that is ND) is a **Kruskal-Wallis Test***.

Kruskal-Wallis rank sum test

data: Accuracy by Group

Kruskal-Wallis chi-squared = 12.438, df = 2, p-value = 0.001991

Bingo, something is different!

... but what exactly?

Significant Kruskal-Wallis tells us:

At least one group is different in terms of accuracy – but we cannot say which one, yet!

Post-hoc Analysis to the Rescue

Follow-up Significant Kruskal-Wallis tests with Dunn's Test (Dunn, 1964, Technometrics)

```
???
# A tibble: 3 \times 9
                      group2
                                     n1
                                           n2 statistic
                                                                    p.adj.signif
  .у.
           group1
* <chr>
                                  <int> <int>
           <chr>
                      <chr>
                                                  <db1>
                                                                          <chr>
1 Accuracy Control
                      XP-method1
                                                  2.45
                                                        0.0145
                                                                  0.0434
                                    100
                                          100
2 Accuracy Control
                      XP-method2
                                          100
                                                  3.42
                                                        0.000618 0.00185
                                    100
3 Accuracy XP-method1 XP-method2
                                    100
                                          100
                                                  0.978 0.328
                                                                  0.984
                                                                          ns
```


Beware: each statistical test we run carries a chance of error! We might find:

- **Type I Error** = false positive: Detect an effect that is not actually there
- Type II Error = false negative: Overlook an effect that is there

& Analysis

Beware: each statistical test we run carries a chance of error! We might find:

Type I Error = false positive: Detect an effect that is not actually there

An analogy:

drawing marbles, with replacement – what is the chance for getting black?

Overall chance:

Draw 1: 1/20 5%

An analogy:

drawing marbles, with replacement – what is the chance for getting black?

Overall chance:

Draw 1: 1/20 9.75%

Draw 2: 1/20

An analogy:

drawing marbles, with replacement – what is the chance for getting black?

Overall chance:

Draw 1: 1/20 14.26%

Draw 2: 1/20

Draw 3: 1/20

An analogy:

drawing marbles, with replacement – what is the chance for getting black?

Overall chance:

Draw 1: 1/20 18.55%

Draw 2: 1/20

Draw 3: 1/20

Draw 4: 1/20

An analogy:

drawing marbles, with replacement – what is the chance for getting black?

Overall chance:

Draw 1: 1/20 64.15%

Draw 2: 1/20

Draw 3: 1/20

Draw 4: 1/20

Draw 20: 1/20

Inflated chance of committing a Type I Error!

Bonferroni-correction

Convention: choose a significance level (a) of 0.05

Carlo Emilio Bonferroni

Inflated chance of committing a Type I Error!

Bonferroni-correction

Convention: choose a significance level (a) of 0.05

Adjust significance level:

- divide a by the number of comparisons
- Conversely: multiply p with number of comparisons

Example for three comparisons: $a_{orig} = 0.05 --> a_{adi} = 0.05 / 3 = 0.0167$

$$p_{orig} = .0145 --> p_{adj} = .0145 * 3 = .0435$$

Carlo Emilio Bonferroni

Post-hoc Analysis to the Rescue

Follow-up Significant Kruskal-Wallis tests with **Dunn's Test** (Dunn, 1964, Technometrics)

```
# A tibble: 3 \times 9
                                            n2 statistic
                                                                      p.adj p.adj.signif
  .у.
           group1
                       group2
                                      n1
* <chr>
                                   <int> <int>
           <chr>
                      <chr>
                                                    <db1>
                                                             <dbl>
                                                                      <db1> <chr>
1 Accuracy Control
                      XP-method1
                                                   2.45
                                                         0.0145
                                     100
                                           100
                                                                   0.0434
2 Accuracy Control
                       XP-method2
                                           100
                                                   3.42 0.000618 0.00185 **
                                     100
3 Accuracy XP-method1 XP-method2
                                     100
                                           100
                                                   0.978 0.328
                                                                   0.984
                                                                            ns
                                                                         Mean Accuracy per Group
```

Bingo, something is different! ... and now the know!

Put a Nice Bow on It!

Mean Accuracy per Group

A Kruskal-Wallis Test found that the differences in accuracy between the three groups were statistically significant (H(2)=12.44, p=.002).

Planned pairwise comparisons of the three conditions using Dunn's test indicated that accuracy of control group participants was significantly different from those of the XP-materials-1 Group (p = .043) and the XP-materials-1 Group (p = .002). There was no evidence, however, for a difference in accuracy between the two experimental groups (p = .984).

Plan for the Day

CF Tutorial	
TIME	Topics
9:00 AM	Introduction
	Hello and Introducing Ourselves!
	Hands-on: Trying Our Study (follow link)
9:30 AM	Historical Fundamentals of Counterfactuals
	From Philosophy to XAI (via Psychology)
	Two Sample User Studies and Q&A
10:30 AM	COFFEE (10:30-11:00)
11:00 AM	Fundamentals of Counterfactuals in AI
	Formalisation
	Modelling Approaches & Key Constraints
11:30 AM	Using Counterfactual Algorithms
	Hands-on: A Counterfactual Toolbox (AA)
	Hands-on: Checking Out Notebooks and Q&A
12:00 PM	Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design
12:30 PM	LUNCH (12:30-14:00)
2:00 PM	Algorithmic Growth Points
	Computational Future Directions and Q&A
2:30 PM	More Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design (cont.)
3:00 PM	COFFEE (15:00-15:30)
3:30 PM	From Fundamentals to an Actual User Study
	User Studies II: A More Complex Design
	User Studies III: Even More Complex Designs
	Hands-on: Looking At Our Study
5:00 PM	Closing Session, Discussion and Final Q&A
	TUTORIAL END

