Insertions and deletions in the great tit genome

Henry Barton

01/05/18

Insertions and deletions

- short INDELs: sections of DNA < 50bp that are deleted or inserted in a genome
- deletion bias in most organisms
- deletions more deleterious than insertions

Figure 1: indel_diag

INDELs often overlooked

- Disproportionately occur in repetitive sequence
- Hard to align
- Often occur in hotspots
- ▶ 1/8 as frequent as SNPs in humans

(Earl et al., 2014; Montgomery et al., 2013)

The importance of INDELs in genome evolution

- Influence genome size:
 - ▶ low deletion rate → large genomes?
 - ▶ high deletion rate → compact genomes?

(Leushkin and Bazykin, 2013; Nam and Ellegren, 2012; Ometto et al., 2005; Sun et al., 2012)

The importance of INDELs in genome evolution

- Influence genome size:
 - ▶ low deletion rate → large genomes?
 - ▶ high deletion rate → compact genomes?

(Leushkin and Bazykin, 2013; Nam and Ellegren, 2012; Ometto et al., 2005; Sun et al., 2012)

INDEL mutation

INDEL selection

- Deletions
- ▶ Insertions may be favoured:
 - ▶ biased gene conversion
 - minimum intron size
 - polarisation error

Aims - make more specific

- 1. Quanitfy the selective and mutational pressures acting on INDELs in great tits (*Parus major*)
- 2. Investigate how these pressures vary in different genomic contexts, ie coding, non-coding, recombination rate.

Figure 2: tit

Advantages of an avian system

- Conserved karyotype and synteny good for alignments
- Genomes consist of few large macrochromosomes and many small microchromosomes
- Results in a highly dynamic recombination landscape power to associations with recombination

Figure 3: chroms

Data

Sample and pipeline

- ▶ 10 european great tit males (Corcoran et al., 2017)
- ▶ high coverage (44x)
- variant calling with GATK
- multispecies alignment between zebra finch, flycatcher and great tit
- parsimony based polarisation

The model - 'anavar'

A novel maximum likelihood approach

- takes the unfolded site frequency spectrum
- estimates for both insertions and deletions:
 - mutation rate $(\theta = 4N_e\mu)$
 - selection:
 - either selection coefficient ($\gamma = 4N_e s$)
 - or scale and shape paramater for distribution of fitness effects
 - polarisation error
- Controls for demography using neutral sites (Eyre-Walker et al., 2006)

(Barton and Zeng, 2018)

Regional variation in purifying selection

Coding INDELs

Moving away from genes

Figure 5: Is2

Figure 6: Is3

Figure 7: Is4

Evidence for linked selection

Spearman's rank correlation rho

##

```
##
## data: as.numeric(ins_theta$ins_theta) and ins_theta$di;
## S = 14906, p-value = 0.04581
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.2842257
## [1] 50
##
##
    Spearman's rank correlation rho
##
## data: as.numeric(del_theta$del_theta) and del_theta$dis
## S = 10950, p-value = 0.0005822
```

alternative hypothesis: true rho is not equal to 0

Recombination Analyses

Figure 11: r4

Getting the data - recombination rate

Figure 12: r5

Figure 13: r6

Figure 14: r7

Figure 15: r8

Association between diversity and recombination

```
##
##
    Spearman's rank correlation rho
##
## data: window_data$tajd_ins and window_data$rec_rate
## S = 3969000, p-value = 3.725e-08
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.2998399
##
    Spearman's rank correlation rho
##
##
## data: window data$tajd del and window data$rec rate
## S = 3810100, p-value = 1.478e-09
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
```

Round up

Conclusion

- ▶ INDELs in genes are bad
- ▶ Don't find a link between recombination rate and deletion bias
- Linked selection appears to be constraining INDEL rates

Next steps

- Calculate alpha proportion of substitutions fixed by positive selection
- Separate UCNE and CDS in linked selection analysis
- Any suggestions?

Questions?