CS 580 ALGORITHM DESIGN AND ANALYSIS

Linear Programming 2: Duality

Vassilis Zikas

SO FAR

- Linear programming
 - Basic definitions
 - Some problem formulations
 - Simplex
- Today:
 - Duality
 - Linear programs as games

- Example due to Tim Roughgarden
- $max x_1 + x_2$
- Subject to:

$$4x_1 + x_2 \le 2$$

$$x_1 + 2x_2 \le 1$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

• Claim: The optimal solution is $x_1 = \frac{3}{7}$, $x_2 = \frac{2}{7}$ for an objective of $\frac{5}{7}$

• $max x_1 + x_2$, subject to:

$$4x_1 + x_2 \le 2, x_1 + 2x_2 \le 1, x_1, x_2 \ge 0$$

- Claim: The optimal solution is $x_1 = \frac{3}{7}$, $x_2 = \frac{2}{7}$ for an objective of $\frac{5}{7}$
- How can we confirm this??

- $max x_1 + x_2$, subject to:
 - $4x_1 + x_2 \le 2, x_1 + 2x_2 \le 1, x_1, x_2 \ge 0$
- Claim: The optimal solution is $x_1 = \frac{3}{7}$, $x_2 = \frac{2}{7}$ for an objective of $\frac{5}{7}$
- How can we confirm this??
- Objective = $x_1 + x_2 \le 4x_1 + x_2 \le 2!$
 - So, optimal can be at most 2

- $max x_1 + x_2$, subject to:
 - $4x_1 + x_2 \le 2, x_1 + 2x_2 \le 1, x_1, x_2 \ge 0$
- Claim: The optimal solution is $x_1 = \frac{3}{7}$, $x_2 = \frac{2}{7}$ for an objective of $\frac{5}{7}$
- How can we confirm this??
- Objective = $x_1 + x_2 \le x_1 + 2x_2 \le 1$

•
$$x_1 + x_2 = \frac{4}{7}x_1 + \frac{3}{7}x_1 + \frac{1}{7}x_2 + \frac{6}{7}x_2$$

• =
$$\frac{1}{7}(4x_1 + x_2) + \frac{3}{7}(x_1 + 2x_2)$$

$$\bullet \le \frac{1}{7}2 + \frac{3}{7}1$$

•
$$=\frac{5}{7}$$

- Cool!
- This is a proof that we have an optimal solution!!

- Arbitrary LP
 - We'll call this the Primal (P) LP
- max $\sum_{i=1}^{n} c_i x_i$, s.t.
 - $\circ \sum_{i=1}^{n} a_{1i} x_i \le b_1$
 - $\circ \sum_{i=1}^{n} a_{2i} x_i \le b_2$
 - 0
 - $\sum_{i=1}^{n} a_{mi} x_i \leq b_m$
 - $x_i \ge 0$, for all i = 1, ..., n

- Arbitrary LP
 - We'll call this the Primal (P) LP
- max $\vec{c}^T \vec{x}$, s.t.
 - $A \cdot \vec{x} \leq \vec{b}$
 - $\circ \vec{x} \geq 0$
- Where $A_{j,i} = a_{j,i}$
- \vec{c} and \vec{x} are vectors in n dimensions
- \vec{b} is a vector in m dimensions
- A is an m by n matrix

- In order to get our upper bound on the objective, we were trying to express the objective by combining constraints
- Multiply constraint j by a number $y_j \ge 0$
- We want the coefficient of x_i in the objective, i.e. c_i , to be at most the coefficient in the combo of constraints

$$c_i \leq \sum_{j=1}^m y_j a_{j,i}$$

• In matrix notation:

$$A^T \vec{y} \ge \vec{c}$$

WEAK DUALITY

- Objective = $\sum_{i=1}^{n} c_i x_i$
- $\bullet \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{m} y_j a_{j,i} \right) x_i$
- $\bullet = \sum_{j=1}^m y_j \sum_{i=1}^n a_{j,i} x_i$
- $\leq \sum_{j=1}^{m} y_j b_j$
- Matrix way:
 - $\circ \quad \vec{c}^T \vec{x} \le (A^T \vec{y})^T \vec{x} = (\vec{y})^T A \vec{x} \le (\vec{y})^T \vec{b}$
- Overall, OPT at most $\sum_{j=1}^m y_j b_j$ for all \vec{y} such that $A^T \vec{y} \geq \vec{c}$

WEAK DUALITY

- This is a whole other LP!
- min $\vec{y}^T \vec{b}$
- Subject to: $A^T \vec{y} \ge \vec{c}$, $\vec{y} \ge 0$
- We call this LP the Dual (D)
- Theorem (Weak Duality): OPT of P at most OPT of D
 - Remember max flow and min cut?

WEAK DUALITY

• Primal:

- $\circ max x_1 + x_2$
- Subject to:
 - $4x_1 + x_2 \le 2$
 - $x_1 + 2x_2 \le 1$
 - $x_1, x_2 \ge 0$

• Dual:

- \circ min 2 $y_1 + y_2$
- Subject to:
 - $4y_1 + y_2 \ge 1$
 - $y_1 + 2y_2 \ge 1$
 - $y_1, y_2 \ge 0$

Recipe for taking duals:

Primal	Dual	
variables x_1, \ldots, x_n	n constraints	
m constraints	variables y_1, \ldots, y_m	
objective function ${f c}$	right-hand side ${f c}$	
right-hand side \mathbf{b}	objective function b	
$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$	
constraint matrix ${\bf A}$	constraint matrix \mathbf{A}^T	
<i>i</i> th constraint is " \leq "	$y_i \ge 0$	
<i>i</i> th constraint is " \geq "	$y_i \le 0$	
ith constraint is "="	$y_i \in \mathbb{R}$	
$x_j \ge 0$	j th constraint is " \geq "	
$x_j \le 0$	j th constraint is " \leq "	
$x_j \in \mathbb{R}$	jth constraint is "="	

WEAK DUALITY COROLLARIES

• OPT $P \le OPT D$

- Therefore, if P is unbounded, D is infeasible!
- If P is infeasible, then D is unbounded!
- If x, y are two feasible solutions for the primal and dual, and $c^T x = y^T b$, then x and y are both optimal!

COMPLEMENTARY SLACKNESS

- Complementary Slackness: If both of the following conditions hold, then \vec{x} and \vec{y} are optimal
 - When $x_i \neq 0$, \vec{y} satisfies the *i*-th constraint of *D* with equality
 - When $y_j \neq 0$, \vec{x} satisfies the *j*-th constraint of P with equality

COMPLEMENTARY SLACKNESS

• Proof:

- What's the *i*-th constraint of D?
 - $c_i \leq \sum_{j=1}^m y_j a_{j,i}$
- Thus, $c_i x_i = \left(\sum_{j=1}^m y_j a_{j,i}\right) x_i$
- What's the *j*-th constraint of P?
 - $\sum_{i=1}^{n} a_{ji} x_i \le b_j$
- Thus, $y_j(\sum_{i=1}^n a_{j,i}x_i) = y_jb_j$
- Overall, $\vec{c}^T \vec{x} = (A^T \vec{y})^T \vec{x} = (\vec{y})^T A \vec{x} = (\vec{y})^T \vec{b}$

COMPLEMENTARY SLACKNESS

- A particle is pushed in direction c until it rests at x^*
- Total "force" on the particle is 0
 - "Force" from constraint i is $-A_i$, the i-th row of the constraint matrix
 - Dual variable y_i : magnitude of force of constraint i
- Complementary slackness: A "wall" can exert force only if you touch it

- Theorem (Strong Duality): OPT of P is equal to OPT of D
- Sketch:
- Separating hyperplane → Farka's Lemma
- Farka's Lemma → strong LP duality

Separating Hyperplane Theorem:

• Let C be a closed and convex region of \mathbb{R}^n and $z \notin C$ a point. Then, there exists a hyperplane that separates z from C

- Farka's lemma:
 - Given a matrix $A \in \mathbb{R}^{m \times n}$ and a right-hand side $b \in \mathbb{R}^m$ exactly one of the following is true:
 - There exists $x \in \mathbb{R}^n$: $Ax \le b$
 - There exists $y \in \mathbb{R}^m$: $A^T y = 0$, $y \ge 0$ and $y^T b < 0$

- Farka's lemma to strong duality (sketch):
 - \circ Assume that the optimal value of the dual was γ and the primal's optimal value was strictly less
 - Add the $-c^T x \le -\gamma$ constraint to the primal
 - Use Farka's lemma to argue that $[A c]^T[y z] = 0, [y z]^T[b \gamma] < 0$ and $y \ge 0, z \ge 0$
 - It must be that z > 0 (why?)
 - $\circ yA zc = 0 \to \left(\frac{y}{z}\right)A = c$
 - $\circ yb z\gamma < 0$ and $\frac{y}{z}$ is feasible, so γ is not optimal

BREAK

- Weak duality
 - Primal value smaller or equal to Dual value
- Complementary slackness
 - In an optimal pair of solutions, positive variables in one program correspond to tight constraints in the other
- Strong duality
 - Primal value is equal to Dual value

Rock-Paper-Scissors

A lice/Bob	Rock	Paper	Scissors
Rock	(0,0)	(-1,1)	(1,-1)
Paper	(1,-1)	(0,0)	(-1,1)
Scissors	(-1,1)	(1,-1)	(0,0)

- Alice wins if Bob loses, and vice versa
- Minimizing the opponents reward is the same as maximizing your reward
- Minimax value: The highest value a player can guarantee without knowing the actions of the other player
 - Equivalently, "if I go first, and the other player plays after they've seen my strategy, what's the best I can do?"

A lice/Bob	Rock	Paper	Scissors
Rock	(0,0)	(-1,1)	(1,-1)
Paper	(1,-1)	(0,0)	(-1,1)
Scissors	(-1,1)	(1,-1)	(0,0)

- Clearly, if we focus on deterministic strategies, Alice (or Bob) cannot guarantee a minimax value better than -1
 - If Alice's strategy is to play "Rock", then Bob will play "Paper"

A lice/Bob	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

- What about randomized strategies?
- Say, with probability ½ Alice plays "Rock" and with probability ½ Alice plays "Paper".
- What would Bob do, knowing this strategy?
 - If he plays "Rock", with probability ½ it's a tie, and with probability ½ he loses
 - If he plays "Paper", with probability ½ he wins, and with probability ½ it's a tie
 - If he plays "Scissors", with probability ½ he loses, and with probability ½ he wins

A lice/Bob	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

- So, Bob responds with "Paper" to Alice's strategy
- Alice's value: $\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 0 = -\frac{1}{2}$
- Better than every deterministic strategy
- Can she do even better?
 - Yes! Playing (1/3,1/3,1/3) gives value zero!
 - Is this optimal? How would you show this?

- Input: An n by m matrix A
 - $A_{i,j}$ is the reward of the "row" player, when she plays action i and the "column" player plays action j
- Problem: Compute minimax value

- Let p_i be the probability that the row player assigns to action i
- We have a strategy $\vec{p} = (p_1, p_2, ..., p_n)$
- The column player will see this strategy and then try to maximize his reward, i.e. minimize the reward of the row player
 - ∘ The column player picks a single action $j \in [m]$
 - Why???
- Reward $\min_{j \in [m]} \sum_{i \in [n]} p_i A_{i,j}$
- Best strategy for row player:

$$\max_{feasible \ \vec{p} \ j \in [m]} \sum_{i \in [n]} p_i A_{i,j}$$

- Write an LP!
- Variables: $p_1, ..., p_n$ and v (the minimax value)
- Objective: max *v*
- Subject to:
 - $\circ \ 1 \le \sum_{i \in [n]} p_i \le 1$ (feasibility)
 - $\circ \sum_{i \in [n]} p_i A_{i,j} \ge v, \forall j \in [m]$ (minimax)
 - $\circ \forall i \ p_i \geq 0$

- Theorem: The LP described computes the minimax value
- Proof:
- We will show that
 - (1) Every valid strategy corresponds to a feasible solution for the LP, and the corresponding minimax value is equal to the LPs objective
 - (2) Every feasible LP solution corresponds to a valid strategy, whose minimax value is at least the LPs objective

- Proof of (1)
- A valid strategy \vec{x} is a distribution over actions, i.e. non-negative numbers x_1, \dots, x_n that add up to 1
 - Setting $p_i = x_i$ satisfies the feasibility constraints
- Given a valid strategy \vec{x} the column player best responds, resulting in value $v^* = \min_{j \in [m]} \sum_{i \in [n]} x_i A_{i,j}$
 - \circ Setting $v=v^*$ we have that the minimax constraints are satisfied and that the LP objective is precisely the value v^*

- Proof of (2)
- Let $p_1, ..., p_n, v$ be a feasible solution of the LP
- Then, setting $x_i = p_i$ we get a valid strategy for the row player
- The column player will best respond and give value $v^* = \min_{j \in [m]} \sum_{i \in [n]} x_i A_{i,j}$
 - v is smaller than $\sum_{i \in [n]} x_i A_{i,j}$ for all j, thus $v \leq v^*$
 - Note that in an optimal solution, v will be as large as possible, i.e. at least one of the minimax constraints will be tight. Therefore $v = v^*$

- What if the column player goes first?
- Write an LP!
- Objective: min *c*
- Subject to:
 - $\circ \ 1 \le \sum_{j \in [m]} q_j \le 1$ (feasibility)
 - $\circ \sum_{j \in [m]} q_j A_{i,j} \le c, \forall i \in [n]$ (minimax)
 - $\lor \forall j \ q_j \ge 0$

Objective: $\max v$

Subject to:

$$\sum_{i \in [n]} p_i = 1$$

$$\mathbf{v} - \sum_{i \in [n]} p_i A_{i,j} \le 0, \forall j \in [m]$$

$$\forall i \in [n], p_i \ge 0$$

Objective: min *c*

Subject to:

$$\begin{split} &\sum_{j \in [m]} q_j = 1 & \text{(Variable } v) \\ &\mathbf{c} - \sum_{j \in [m]} q_j A_{i,j} \geq 0, \forall i \in [n] & \text{(Variable } p_i) \\ &\forall j \in , q_i \geq 0 \end{split}$$

Minimax Theorem:

$$\max_{feasible \ \vec{p} \ j \in [m]} \sum_{i \in [n]} p_i A_{i,j} = \min_{feasible \ \vec{q} \ i \in [n]} \max_{j \in [m]} q_j A_{i,j}$$

• Different version:

$$\max_{\vec{p}} \min_{\vec{q}} p^T A q = \min_{\vec{q}} \max_{\vec{p}} p^T A q$$

- Proof: Strong Duality!
 - Other direction is true as well!!

SUMMARY

- Linear programs:
 - Weak and Strong Duality
 - Complementary Slackness
 - 2 player zero sum games