

Autonomous Vehicle Simulation (AVS) Laboratory

AVS-Sim Technical Memorandum

Document ID: AVS-SIM-locationPointing

GUIDANCE MODULE FOR GROUND LOCATION POINTING

Prepared by	L. Redner		
Status: Initial Version			
Scope/Contents			
Generate the attitude reference to perform a constant pointing towards a static ground location			

Rev:	Change Description	Ву
Draft	initial copy	L. Redner

Contents

1	Module Input and Output	1
2	Introduction	2

1 Module Input and Output

Table 2 shows the Spacecraft State input message.

Table 2: Input Spacecraft States Message

Name	Туре	Length	Description
$oldsymbol{r}_{B/N}$	double []	3	Position vector of the spacecraft body-point
			with respect to the inertial frame in inertial
			frame components $({}^{\mathcal{N}}\!m{r}_{B/N})$.
$oldsymbol{\omega}_{B/N}$	double []	3	Angular velocity vector of the spacecraft point
			with respect to the inertial frame in body frame
			components $({}^{\mathcal{B}}\!\omega_{B/N})$.

Table 4 shows the Ground State input message.

 Table 3: Input Ground State Message

Name	Туре	Length	Description
$oldsymbol{r}_{L/N}$	double []	3	Position vector of the ground location with re-
			spect to the inertial origin in the inertial frame
			$\mid (^{\mathcal{N}} oldsymbol{r}_{L/N}).$

Table 4 shows the user specified inputs required.

Table 4: User Specified Input

Name	Туре	Length	Description
$\hat{m{p}}$	double []	3	Satellite vector that will be aligned to point at
			the ground location.

Table 5 shows the Attitude Guidance output message of the module locationPointing.

Name	Туре	Length	Description
$\sigma_{B/R}$	double []	3	Current attitude error estimate of B relative to
,			R.
$\omega_{B/R}$	double []	3	Current body error estimate of B relative to R
,			in B frame components $({}^{\mathcal{B}}\!\omega_{B/R})$.
$\omega_{R/N}$	double []	3	Reference frame rate vector of R relative to N
,			in B frame components $({}^{\mathcal{B}}\!\omega_{R/N})$.
$\dot{\omega}_{R/N}$	double []	3	Reference frame inertial body acceleration of R
,			relative to N in B frame components $({}^{\mathcal{B}}\!\dot{\omega}_{R/N})$.

Table 5: Output Attitude Guidance Message

2 Introduction

In this module, the output attitude guidance message acts to point a prescribed satellite vector toward a static ground location. An example formulation of this problem is shown below.

Fig. 1: Problem formulation

The position of the spacecraft relative to the ground location is calculated by the following simple subtraction:

$$\bar{r}_{L/B} = \bar{r}_{L/N} - \bar{r}_{B/N} \tag{1}$$

From this, the eigen axis is computed using the value calculated above and the user given satellite pointing vector.

$$\hat{e} = rac{\hat{oldsymbol{p}} imes ar{oldsymbol{r}}_{L/B}}{|\hat{oldsymbol{p}} imes ar{oldsymbol{r}}_{L/B}|}$$
 (2)

Next, ϕ was calculated again using the pointing vector and the relative position of the ground location w.r.t the spacecraft:

$$\phi = \arccos \frac{\hat{p} \cdot \bar{r}_{L/B}}{|\bar{r}_{L/B}|} \tag{3}$$

The current attitude error estimate of B relative to R (an output of the module) is computed using the

above intermediate value:

$$\sigma_{R/B} = \tan \frac{\phi}{4} \hat{e}$$
 (4)

 $\sigma_{B/R}$ is the negative of $\sigma_{R/B}$, as shown below:

$$\sigma_{B/R} = -\sigma_{R/B} \tag{5}$$

A basic finite difference was used to calculate the time derivative of σ . Only two consecutive data points were used for the computation over the uniform time-step between them:

$$\dot{\sigma}_{R/B} = \frac{\Delta \sigma_{R/B}}{\Delta t} \tag{6}$$

At which point we can calculate the angular velocity required in the output message:

$$\omega_{R/B} = 4\dot{\sigma}_{R/B}B(\sigma_{R/B})^{-1} \tag{7}$$

Where B inverse is computed using the following:

$$B^{-1} = \frac{1}{|\boldsymbol{\sigma}_{R/B}|^2} \begin{bmatrix} 1 - |\boldsymbol{\sigma}| + 2\boldsymbol{\sigma}_0^2 & 2(\boldsymbol{\sigma}_0\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) & 2(\boldsymbol{\sigma}_0\boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_1) \\ 2(\boldsymbol{\sigma}_1\boldsymbol{\sigma}_0 - \boldsymbol{\sigma}_2) & 1 - |\boldsymbol{\sigma}| + 2\boldsymbol{\sigma}_1\boldsymbol{\sigma}_1 & 2(\boldsymbol{\sigma}_1\boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_0) \\ 2(\boldsymbol{\sigma}_2\boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_1) & 2(\boldsymbol{\sigma}_2\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_0) & 1 - |\boldsymbol{\sigma}| + 2\boldsymbol{\sigma}_2\boldsymbol{\sigma}_2 \end{bmatrix}$$
(8)

The angular velocity of the reference frame vector relative to the inertial frame in B frame components is then computed using the values calculated above.

$$\omega_{R/N} = \omega_{R/B} + \omega_{B/N} \tag{9}$$

Finally, the angular acceleration of R relative to N is computed using a finite difference of the angular velocity values over 1 time-step.

$$\dot{\omega}_{R/N} = \frac{\Delta \omega_{R/N}}{\Delta t} \tag{10}$$