- 1. A firm knows that the demand function for one of its product is linear. It also knows that it can sell 1400 units when the price is ₹4 per unit and it can sell 1800 units at a price ₹2 per unit. Find the marginal revenue function of this product.
- 2. Find the intervals in which the function $f(x) = x^4 4x^3 + 6x^2 4x + 1$ is increasing or decreasing.
- 3. If $\sqrt{1-x^2} + \sqrt{1-y^2} = 4(x-y)$, then show that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.
- 4. If $f'(x) = 3x^2 4x \frac{2}{x^3}$ and f(1) = 0, then find f(2).
- 5. A window is in the form of a rectangle mounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimensions of the rectangular part of the window to admit maximum light through the whole opening.
- 6. Divide the number 8 into two positive numbers such that the sum of the cube of one and the square of the other is minimum.
- 7. If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}$ is:
 - (a) e^{y-x}
 - (b) e^{x+y}
 - (c) $-e^{y-x}$
 - (d) $2e^{x-y}$
- 8. $If y = 5\cos x 3\sin x$, then $\frac{d^2y}{dx^2}$ is equal to
 - (a) -y
 - (b) y
 - (c) 25y
 - (d) 9y
- 9. The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y-axis are:
 - (a) $(0, \pm 4)$
 - (b) $(\pm 4, 0)$
 - (c) $(\pm 3, 0)$
 - (d) $(0, \pm 3)$

(Differentiation 2021)