Supervised Classification

Dr Muhammad Atif Tahir

Professor

School of Computer Science

National University of Computing & Emerging Sciences

Karachi Campus

Contents

- kNN classifier
- Confusion Matrix
- Conclusions

Types of Machine Learning

Supervised Learning Workflow

Instance Based Classifiers

- First Example of Supervised Classification
- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Nearest Neighbor Classifiers

• Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$
 $d(p,q) = \sum_{i} abs(p_i - q_i)$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

F1	F2	Class
1	5	0
0	8	0
0	6	1
1	2	1

Training Data

1	3	?
1	4	?
0	3	?
0	4	?

Test Data

Step 1: Computer Distance from Test Sample 1 to Training Data

Step 2:

Distance from Test Sample 1 to All Training Samples		Class
1	1-1 + 3-5 =0+2=2	0
2	1-0 + 3-8 =1+5=6	0
3	1-0 + 3-6 =1+3=4	1
4	1-1 + 3-2 =0+1=1	1

Step 3: Assign the Test Sample to Class with minimum Distance, Here is Class 1. So Test Sample 1 belongs to Class 1

Exercise: Calculate for other 3 Test Samples

ID	Actual	Predicted
1	0	1
2	0	0
3	1	1
4	1	0 or 1

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Normalize Data from 0 to 1

F1	F2	Class	
1	0.5	0	Training Data
0	1	0	
0	0.667	1	
1	0	1	
1	0.167	?	
1	0.334	?	Test Data
0	0.167	?	
0	0.334	?	

After Normalization

ID	Actual	Predicted
1	0	1
2	0	0
3	1	1
4	1	1

In the field of machine learning, a confusion
 matrix is a specific table layout that allows
 visualization of the performance of an algorithm

	Predicted Negative	Predicted Positive
Actual Negative	True Negative	False Positive
Actual Positive	False Negative	True Positive

- <u>TN</u> is the number of correct predictions that an instance is negative
- <u>FP</u> is the number of incorrect predictions that an instance is positive
- <u>FN</u> is the number of incorrect predictions that an instance is negative
- <u>TP</u> is the number of correct predictions that an instance is positive

 Confusion Matrix from the example of Lecture 2 (without Normalization)

ID	Actual	Predicted
1	1	1
2	0	0
3	1	1
4	1	0

	Negative	Positive
Negative	1	0
Positive	1	2

- Several standard terms have been defined for the 2 class matrix
- The accuracy (AC) is the proportion of the total number of predictions that were correct

$$Accuracy = \frac{TN + TP}{TN + FN + TP + FP}$$

• Accuracy = 3 / 4 = 75%

The recall or true positive rate (TPR) is the proportion of positive cases that were correctly identified

 $TPR = \frac{TP}{TP + FN}$

 The false positive rate (FPR) is the proportion of negatives cases that were incorrectly classified as positive

$$FPR = \frac{FP}{FP + TN}$$

- TPR or recall = 2/3 = 66.7%
- FPR = 0 / 1 = 0 %

The true negative rate (TNR) is defined as the proportion of negatives cases that were classified correctly,

 $TNR = \frac{TN}{FP + TN}$

 The false negative rate (FNR) is the proportion of positives cases that were incorrectly classified as negative

$$FNR = \frac{FN}{FN + TP}$$

- TNR = 1 / 1 = 100%
- FNR = 1 / 3 = 33.3%

 precision (P) is the proportion of the predicted positive cases that were correct,

$$precision = \frac{tp}{tp + fp}$$

- precision = 2/2 = 100%
- F measure is harmonic mean of precision and recall

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

• F1 = (2 * 1 * 0.667)/(1+0.667) = 0.8

Exercise

		Actual	
		Negative	Positive
Predicted	Negative	9760	40
	Positive	140	60

References

- Introduction to Data Mining by Tan, Steinbach, Kumar (Lecture Slides)
- http://robotics.stanford.edu/~ronnyk/glossary.html
- http://www.cs.tufts.edu/comp/135/Handouts/introductionlecture-12-handout.pdf

Questions!