formula	bartlett.test			cohensD	Coefficients		summary(mod)\$coefficients[, 2]		sqrt(diag(var_betaHat))		harrison_mccabe(mod)			
data\$net_sqm K-squared	1 (df	p-value		(Intercept)	data\$bedroom_count	(Intercept)	data\$bedroom_count			statistic	p.value	parameter alt	ernative
"data\$center_	2043.1	13	2.2E-16	0.7679533	6.28E+	4 -2.95E+13	2.62E+1	5.87E+12	2.62E+13	5.87E+12	0.541	0.473	0.5 les	ss
distance*data														
metro_distan														
ce*data\$floor														
"data\$age"dat a\$price														

Функція bartlett.test використовується для здійснення тесту Бартлетта, який є одним із методів порівняння дисперсій між групами у аналізі даних. Цей тест ставить гіпотезу про рівність дисперсій у різних групах. Якщо значення р-рівня значимості, отримане в результаті тесту, менше за обране значення (зазвичай 0,05 або 0,01), то ми відхиляємо нульову гіпотезу про рівність дисперсій.

В R мова програмування, функція bartlett.test використовується для виконання тесту Бартлетта на групах даних для перевірки рівності дисперсій між групами.

В нашому випадку число дорівнює 2.2Е-16 що є менше ніж 0.01 тому ми відхиляємо нульову гіпотезу про рівність дисперсій

Функція `cohensD` використовується для обчислення коефіцієнта Koeнa (Cohen's d), який є одним із показників ефективності різниці між середніми значеннями двох груп у статистичному аналізі.

Коефіцієнт Коена обчислюється як різниця між середніми значеннями двох груп, поділена на загальний стандартний відхід. Він дозволяє оцінити розмір ефекту зміни між групами у стандартних відхиленнях.

У більшості випадків, значення коефіцієнта Коена менше 0.2 вказує на дуже малий ефект, 0.2-0.5 - на малий ефект, 0.5-0.8 - на середній ефект, а більше 0.8 - на великий ефект.

В нашому випадку значення 0.76 тому маємо великий ефект

```
> lm(formula ~ data$bedroom_count)
```

Call:

Im(formula = formula ~ data\$bedroom_count)

Coefficients:

```
(Intercept) data$bedroom_count
6.276e+14 -2.946e+13
```

Це результат лінійної регресії (моделі), який вказує на оцінки коефіцієнтів для рівняння регресії, що моделює зв'язок між двома змінними: залежною змінною (`formula`) і незалежною змінною (`data\$bedroom_count`).

У вищенаведеному виразі `lm` (`linear model`) показує, що наше рівняння регресії виглядає приблизно так:

 $\[\text{text{formula}} = 6.276 \times 10^{14} - 2.946 \times 10^{13} \times \text{text{bedroom_count} } \]$

Це означає, що для кожного одиниці зміни у `bedroom_count`, `formula` зменшується на приблизно \$2.946 \times 10^{13}\$, ураховуючи інші змінні. Коефіцієнт перед першим членом є значенням перетину з віссю у, коли всі інші змінні рівні нулю.

> summary(Im)\$coefficients[, 2] (Intercept) data\$bedroom_count 2.624523e+13 5.868340e+12

Це результати коефіцієнтів змінної наклона (slope) та константи (intercept), отримані з використанням функції `summary(lm)\$coefficients[, 2]`.

Згідно з цими результатами:

- Значення коефіцієнта перед `(Intercept)` (константа) приблизно дорівнює \$2.624523 \times 10^{13}\$.
- Значення коефіцієнта перед `data\$bedroom_count` (змінна наклона) приблизно дорівнює \$5.868340 \times 10^{12}\$.

Ці значення вказують на те, як змінюється наша залежна змінна (`formula`) при зміні на одиницю нашої незалежної змінної (`data\$bedroom_count`), ураховуючи інші змінні в моделі.

```
X <- cbind(1,data$bedroom_count)
var_betaHat <- anova(lm)[[3]][2] * solve(t(X) %*% X)
sqrt(diag(var_betaHat))
```

Цей код використовується для обчислення стандартних помилок коефіцієнтів регресії у лінійній моделі. Ось пояснення кожного кроку:

x <- cbind(1,data\$bedroom_count): Тут створюється матриця x, яка містить перший стовпчик з одиницями (це для константи) і другий стовпчик зі значеннями data\$bedroom_count (це для незалежної змінної в моделі).

```
var_betaHat <- anova(lm)[[3]][2] * solve(t(X) %*% X): Вираховується дисперсія коефіцієнта перед data$bedroom_count у регресійній моделі. anova(lm)[[3]][2] повертає квадрат стандартної помилки для data$bedroom_count з результатів аналізу дисперсії (anova(lm)). solve(t(X) %*% X) обчислює обернену матрицю, яка використовується для обчислення коваріаційної матриці для оцінок коефіцієнтів.
```

sqrt (diag (var_betaHat)): Обчислюється квадратний корінь з діагональних елементів матриці var_betaHat, що представляють стандартні помилки кожного коефіцієнта.

Отже, результат цієї операції дає нам стандартні помилки кожного коефіцієнта у нашій моделі лінійної регресії.