Duration :	SOLUTIONS 75 Minutes ook, Notes, HW	UNumber:CDA 3201 Exam 1	Computer Logic Desig September 29, 201 R. Kastu
	One sheet of Lett	er size paper written on front :	
I (One po	int each) Answer True	or False. Unless otherwise no	oted, all numbers are in decimal.
<u>T</u> a. If	a Boolean expression is	s false its dual must also be fa	lse.
_T b. Q ex	uine-McCluskey metho pression.	d is guaranteed to find the mo	ost minimized Sum of Products
	or a function of three bin $M(4,5)$. $\prod D(0,2)$ have	nary variables, $\sum m(1,3,6,7)$ - identical truth tables.	$+\sum d(0,2)$ and
F d. Ex	very <i>Don't Care</i> term moolean expression.	nust be covered by at least one	of the terms of the resulting
F f. A	truth table implemented mber of literals as its C	d by its Canonical Product of anonical Sum of Products imp	Sums form must have the same plementation.
F e. Ar	n N-Channel MOS trans spect to its source.	sistor forms a conducting char	nnel when its gate is negative with
<u>F</u> g. Th	e minimized Boolean e ethod must include ever	expression for any function ob y variable in its true or compl	tained from Quine McCluskey ement form.
<u>F</u> h. (01	$(11)_2 \times (011)_2 \times (011)_2 =$	(0111111) ₂ where x denotes	multiplication operation.
_ <u>T_</u> i. Wl	nen representing positiv	ve values, $(4077)_8 = (83F)_{16}$	
_T_j. [A	$\overline{(AB)}$]. $\overline{[B(\overline{AB})]} = \overline{A\overline{B}}$	$\overline{+\overline{A}B}$	

NAME:	SOLUTIONS	UNumber:	Computer Logic Design
Duration: 75	Minutes	Exam 1 CDA 3201	Sentember 20 201

II (10 points) Use the Quine-McCluskey Method to find the minimum sum of products form for the Boolean expression F(W, X, Y, Z) = Em(0,4,5,8,9,13) + Ed(2,7,15). Identify Essential Prime Imlicants, if any.

QUINE-McCLUSKEY IMPLICATION TABLE

Minterm	Column 1	Column 2	Column 3
0	00001		
2	00 101	0-00*	
2 4 8	0 1001	-000*	
8	10001	010-4	
5	01011	100_*	_1_1*
9	1001	01-14	,
7	0111	1_01*	
13	1101	-1111	
15]	11-11	

				r
YZ	00	01	11	10
0 0	e (I	4	0	\$
0 1	O	Ŧ,	13	
1 1	3 ()	7 X	15 J	0
1 0	2 X	60	140	100

CROSS CHECK WITH
K- MAP
XZ+ WYZ+WXY

Prime Implicant Chart

MINTERMS	0	4	5	8	9	13	
5,7,13,15-1-1-		and the second second	-X-	ridayi diri	al mada sepada vojen	***	1
0,200_0	*	· Color of the colors					THEK ARE VNO
0,40-00-	*	*			***	-	√ <u>No</u>
0,8-000	X			*		73110722 - 37333183 - 12 133	<u>EPI</u>
4,5010-	Pality 1- Appendix	*	*				
8,9 100		-co attacement and	-	* -	- * -		V
9,131-01		**** New York and the State of			*	*	
COVERED ?-	1	1	1	1	V	1	

Final Boolean Expression, F(WXYZ) = XZ + W 7 Z + W X Y

THIS PROVIDES MINIMAL COVER

NAME:

SOLUTIONS

UNumber:

Computer Logic Design September 29, 2016

Duration: 75 Minutes

Exam 1 CDA 3201

III (a) (5 points) Using K-map find the simplified Boolean expression for the function $F(A, B, C, D, E) = \sum m(3,7,12,14,15,19,23,27,28,29,31) + \sum d(4,5,6,13,30)$

(b) (i) (2 points) Draw the gate level diagram for the multi-level function exactly as expressed here (i.e., do not expand or simplify): $G(A, B, C, D) = ((A + \overline{B}) \cdot D) + (A + B \cdot C)$

(ii) (3 points) Redraw the function (do not expand or simplify) using only NORs:

NAME: SOLUTIONS UNumber: Computer Logic Design Duration: 75 Minutes Exam 1 CDA 3201 September 29, 2016

IV (a) (6 points) Days of the week are represented using three bits as shown in the table. An alarm circuit is enabled and rings a bell each day of the week at 7 AM but you want to disable it on the weekend. Complete the Truth Table representing disabled alarm on Saturday and Sunday by 0; derive the minimized **product of sums** (POS) binary expression for the alarm. Draw the corresponding gate level diagram. Assume that the variables are available in both True and Complement form.

\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	DAY	ALARM	
0	0	0	SUN	0	B ₂ B ₁ B ₀ 00, 01, 11, 10
0	0	1	MON	1	
0	1	0	TUE	l	
0	1	1	WED .	İ	1 1 1 × 1
1	0	0	THU	1	
1	0	1	FRI	1	ALARM = $(B_2+B_1+B_0)$, $(\overline{B}_2+\overline{B}_1)$
1	1	0	SAT	0	B ₂
1	1	1	400	x	8° = = = = = = = = = = = = = = = = = = =
		9.2	T	9	B ₂ — ALARM
					B, ————————————————————————————————————
11		N. PRIC.	S 4		de S p

(b) (4 points) Show the arrangement of CMOS transistors to realize the function $\overline{((A.B+C).D)}$

