Example

What mass (g) of Al₂O₃ is formed if 75.89 g of Al (s) (26.98 g/mol) is reacted with 112.25 g O₂ (g)?

$$\forall AI(s) + 3O_2(g) \rightarrow 2AI_2O_3(s)$$

- Balance the chemical equation for the reaction.
- Find moles of Al (s) available. 75.899 $\cdot \frac{1 \text{ mol}}{26.959} = 2.81 \text{ mol}$

- c. Find moles O_2 (g) available. 112.259 · $\frac{1 \text{ mol}}{329}$ = 3.51 mol

d. Determine if
$$\overline{Al}$$
 (s) or O_2 (g) is the limiting reactant.

The reactant that is used up first 2.81 mol Al $\cdot \frac{3 O_2}{4 Al} = 2.11$ mol O_1

Example

Determine moles of Al₂O₃ that can be produced based on

the limiting reactant.
2.81 mol Al
$$\frac{2 \text{ Al}_2O_3}{4 \text{ Al}} = 1.44 \text{ mol Al}_2O_3$$

Calculate the mass of Al₂O₃ (101.96 g/mol) that will be

Example

What mass (g) of $Al_2(SO_4)_3$ (342.15 g/mol) is formed if 31.2 g of $Al(OH)_3$ (78.0 g/mol) is combined with 0.500 mol H_2SO_4 ?

$$2 \text{ Al(OH)}_3 \text{ (s)} + 3 \text{H}_2 \text{SO}_4 \text{ (aq)} \rightarrow \text{Al}_2 (\text{SO}_4)_3 \text{ (aq)} + 6 \text{ H}_2 \text{O (I)}$$

- a. Balance the chemical equation for the reaction.
- b. Find moles of Al(OH)₃ (s) available. $31.29 \cdot \frac{1 mol}{789} = 0.4 mol$
- c. Determine if Al(OH)₃ (s) or H₂SO₄ (aq) is the *limiting* reactant.

Example

d. Determine moles of Al₂(SO₄)₃ that can be produced based on the limiting reactant.

e. Calculate the mass of Al₂(SO₄)₃ that will be produced.

$$0.17 \, \text{mol} \cdot \frac{342.15 \, \text{g}}{1 \, \text{mol}} = 58.11 \, \text{g}$$
 Theoretical yield

f. When the reaction was performed 41.2 g of Al₂(SO₄)₃ was produced. Calculate the *percent yield* for the reaction.