

$\begin{array}{c} {\bf Type 977~fitting~for~heat~pump}\\ {\bf SI\text{-}GEO\text{-}12\text{-}40} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:02:11 h

Table 1: Fitted coefficients for the heat pump.

O . C	D : 1:	
Coefficient	Description	f a ===3
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	4.2591e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	5.1331e+02
P_{Q_3}	3^{st} condenser polynomial coefficient	1.2416e + 02
P_{Q_4}	4^{st} condenser polynomial coefficient	-4.9565e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	1.8510e + 02
P_{Q_6}	6 st condenser polynomial coefficient	-6.3589e + 02
P_{COP_1}	1 st COP polynomial coefficient	4.6857e + 00
P_{COP_2}	2 st COP polynomial coefficient	6.6191e+01
P_{COP_3}	3 st COP polynomial coefficient	1.4660e + 01
P_{COP_4}	4 st COP polynomial coefficient	-1.8831e+02
P_{COP_5}	5^{st} COP polynomial coefficient	9.2342 e-01
P_{COP_6}	6 st COP polynomial coefficient	-1.2266e+02
\dot{m}_{cond}	$7312.00 \ [kg/h]$	
\dot{m}_{evap}	7312.00 [kg/h]	
COP_{nom} (A0W35)	4.29	
$Q_{cond,nom}$ (A0W35)	44.22 [kW]	
$Q_{evap,nom}$ (A0W35)	$33.92 \ [kW]$	
$W_{comp,nom}$ (A0W35)	$10.30 \ [kW]$	
RMS_{COP}	7.70e - 02	
$RMS_{Q_{cond}}$	9.72e - 02	
$RMS_{W_{comp}}$	1.93e - 01	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	${}^{o}C$	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.60	3.70	2.5	37.25	37.29	0.1	10.34	10.09	2.47
35.00	0.00	4.34	4.10	5.9	44.69	44.60	0.2	10.29	10.88	5.40
35.00	5.00	5.09	5.20	2.0	52.25	52.28	0.1	10.26	10.05	2.03
50.00	-5.00	2.70	2.67	1.4	34.88	34.95	0.2	12.91	13.11	1.53
50.00	0.00	3.29	3.23	1.7	41.99	41.77	0.5	12.77	12.92	1.17
50.00	5.00	3.89	3.83	1.6	49.24	49.16	0.2	12.66	12.83	1.37
45.00	-5.00	3.08	3.11	0.9	36.04	36.12	0.2	11.69	11.60	0.73
45.00	0.00	3.72	3.78	1.5	43.27	43.19	0.2	11.62	11.43	1.68
45.00	5.00	4.38	4.43	1.3	50.63	50.72	0.2	11.57	11.44	1.09
55.00	0.00	2.77	2.80	1.0	40.37	40.36	0.0	14.55	14.40	1.02
55.00	5.00	3.32	3.35	0.7	47.50	47.60	0.2	14.29	14.22	0.48
35.00	10.00	5.85	5.90	0.8	59.92	59.95	0.1	10.24	10.16	0.72
35.00	15.00	6.62	6.58	0.6	67.70	67.63	0.1	10.22	10.27	0.48
50.00	10.00	4.50	4.44	1.4	56.60	56.54	0.1	12.58	12.74	1.32
50.00	15.00	5.12	5.05	1.4	64.07	63.92	0.2	12.52	12.66	1.16
45.00	10.00	5.04	5.08	0.9	58.10	58.25	0.3	11.53	11.46	0.65
45.00	15.00	5.71	5.74	0.5	65.68	65.78	0.2	11.51	11.46	0.38
55.00	10.00	3.88	3.91	0.6	54.74	54.84	0.2	14.10	14.04	0.45
55.00	15.00	4.45	4.48	0.7	62.10	62.08	0.0	13.96	13.86	0.76
Sum				27.4			3.2			24.88
RMS_{COP}	7.70e - 02									
$RMS_{Q_{cond}}$	9.72e - 02									
$RMS_{W_{comp}}$	1.93e - 01									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data