upel.agh.edu.pl

TM1: Instrukcja (tranzystor jako klucz)

8 — 11 minut

I Przygotowanie stanowiska do zajęć

- 1. Sprawdzić czy na stanowisku znajduje się kompletny zestaw laboratoryjny (zgodnie z listą naklejoną na stołach).
- 2. Ustawić zasilacze w trybie "Independent", dzięki czemu kanały będą pracować niezależnie
- 3. Ustawić napięcie na pierwszym kanale zasilacza na 5 V a na drugim na 10 V.
- 4. Ustawić **ograniczenia prądowe na obu kanałach na 0,01 A**. Trzeba to zrobić w stanie zwarcia dla każdego z kanałów z osobna.

II Pomiar parametru beta tranzystora bipolarnego npn

Przed zaczęciem tego ćwiczenia musimy wyznaczyć współczynnik β tranzystora dla którego będziemy przeprowadzać następne pomiary. By to zrobić trzeba zmontować poniższy układ do pomiaru parametru β tranzystora przedstawiony na rysunku 1. Należy założyć następujące parametry: U₁ = 10 V, U₂ = 10 V, R_B = 100 kΩ i R_C = 100 Ω. Na podstawie pomiaru napięcia (z dokładnością 0,01 V) na rezystorze R_B i R_C, obliczyć współczynnik β tranzystora. Oczywiście konieczne jest tu też uwzględnienie rzeczywistej (zmierzonej) wartości rezystancji obu rezystorów.

Rys 1. Układ do pomiaru parametru β tranzystora

UWAGA Przy wpinaniu tranzystora do gniazda na płytce należy sprawdzić czy kolejność jego wyprowadzeń zgadza się z oznaczeniami na płytce. Można to zrobić posiłkując się notą katalogową tranzystora (jego oznaczenie można znaleźć na obudowie).

DO SPRAWOZDANIA

Tym razem pomiar współczynnika β nie musi być uwzględniony , dokonujemy go tylko po to, by móc wykonać dalszą część ćwiczenia. Należy jednak zanotować jego wartość.

III Tranzystor bipolarny npn pracujący jako klucz (obliczenia)

W tej części ćwiczenia sprawdzimy jak za pomocą tranzystora npn można kluczować element wykonawczy. W tym przypadku będzie nim dioda LED, byśmy mogli łatwo zaobserwować działanie klucza. Klucz taki pozwoli nam za pomocą napięcia sterującego U_{wei},

pobierając niewiele prądu z elementu sterującego (w naszym przypadku będzie to generator). Dioda LED będzie zasilana z oddzielnego źródła o innym, stałym, napięciu z którego będzie pobierać stosunkowo większy prąd. Rysunek 1 przedstawia ukłąd który będziemy badać.

Rys 2. Klucz tranzystorowy sterujący diodą LED.

Wartości rezystora R_C należy dobrać samodzielnie czyniąc kilka założeń:

- U_{zas} = 10 V.
- Dla tranzystora w stanie nasycenia U_{CE(sat)} = 0,2 V (nie jest to wartość dokładna, ale w tym przypadku takie przybliżenie powinno wystarczyć).
- Spadek napięcia na diodzie U_D jest zależny od koloru diody.
 Najwygodniej będzie wybrać diodę LED o kolorze który badali

państwo w pierwszej serii ćwiczeń (<u>Sprawozdanie - podstawy</u>) i sprawdzić jakie było napięcie przewodzenia diody. W przeciwnym razie można odszukać napięcie przewodzenia dla diody o wybranym kolorze w notach katalogowych.

 Znając napięcie na rezystorze U_{RC} = U_{zas} - U_{CE(sat)} - U_D, oraz zakładając że chcemy by prąd płynący przez diodę dla wysokiego stanu wejścia był równy I_C = 10 mA możemy teraz wyliczyć wartość R_C.

Wartość rezystora R_B należy dobrać zakładając że:

- U_{wej} będzie falą prostokątną (pulse) podawaną z generatora o poziomie wysokim 5 V i niskim 0 V. Oczywiście obliczenia wartości rezystorów należy przeprowadzić dla stanu wysokiego.
- Dla tranzystora w stanie nasycenia U_{BE} = 0,7 V.
- Będziemy badać trzy przypadki o różnych wartościach rezystora R_B . Pierwszy zakłada, że tranzystor działa jeszcze w liniowej części charakterystyki: $IB1=IC\beta I_{B1}=\frac{I_C}{\beta}$. Drugi, że tranzystor jest w stanie nasycenia: $IB2=2IC\beta I_{B2}=2\frac{I_C}{\beta}$. Trzeci, że tranzystor nie jest w stanie jeszcze głębszego nasycenia, o zprądzie bazy $IB3=4IC\beta I_{B3}=4\frac{I_C}{\beta}$.

IV Tranzystor bipolarny npn pracujący jako klucz (pomiary)

Przedstawione w tej sekcji pomiary należy przeprowadzić trzy razy (dla każdego z przypadków założonym w powyższym rozdziale instrukcji, dla I_{B1}, I_{B2}, I_{B3}). Za każdym razem zestawiamy układ z rysunku 2 używając obliczonych wartości rezystorów R_B i R_C.

UWAGA Obliczenia wartości rezystorów mają w tym przypadku charakter zgrubny. Rezystor RB można dobrać na płytce w

zakresie plus minus 20% wobec wartości wynikającej z obliczeń. Rezystor RC należy dobrać tak by prąd zawierał się w przedziale 8-12 mA.

Najpierw zmierzymy czasy otwierania i zamykania klucza U_{wej} będzie falą prostokątną (pulse) podawaną z generatora o poziomie wysokim 5 V i niskim 0 V. Oscyloskop podłączymy tak, by mierzyć nim na jednym z kanałów napięcie U_{wej} a na drugim U_{CE} . Następnie, należy zmierzyć za pomocą kursorów oscyloskopu (menu Cursor) czas otwierania T_{otw} i zamykania T_{zam} tranzystora. Są to czasy pomiędzy ustaleniem się odpowiednio stanu wysokiego (lub niskiego) stanu U_{wej} a spadnięciem do wartości minimalnej (lub wzrostem do maksymalnej U_{CE}). Przykładowy przebieg uzyskany dla otwierającego się tranzystora przedstawiono na rysunku 2.

Rys 2. Otwieranie się klucza tranzystorowego.

Dodatkowo, należy podać na wejście stałe U_{wej} = 5 V i zmierzyć za pomocą multimeru napięcia U_{RB} , U_{BE} , U_{CE} i U_{RC} . Pozwoli nam to później obliczyć prąd bazy, prąd kolektora oraz moc wydzielaną na tranzystorze.

Pomiary należy odpowiednio dla każdego z trzech przypadków przesłać poprzez formularze:

- Praca klucza npn dla IB1
- Praca klucza npn dla IB2
- Praca klucza npn dla IB3

DO SPRAWOZDANIA

W sprawozdaniu należy porównać trzy przypadki (tranzystor działający w liniowej części charakterystyki wyjściowej, w stanie nasycenia i w stanie głębszego nasycenia). Porównanie powinno zawierać:

- Porównanie mocy wydzielanej na tranzystorze (P = I_C U_{CE}). Należy sprawdzić w nocie katalogowej wykorzystanego tranzystora maksymalną dozwoloną moc i porównać z otrzymanym wynikiem. Dodatkowo należy na ukłąd współrzędnych charakterystyki wyjścieowej I_C = f(U_{CE}) nanieść trzy proste obciążenia opowiadające trzem badanym przypadkom i zaznaczyć na nich punkty w których pracowały tranzystory. Dodatkowo trzeba spróbować zgadnąć jak mogły wyglądać krzywe I_C = f(U_{CE}) dla każdego z przypadków (zapewne różne, ponieważ różne będą prądy bazy I_B) i naszkicować je na tym samym wykresie.
- Porównanie czasów otwarcia i zamknięcia tranzystora.
- Wnioski o tym który z tych przypadków będzie w praktyce najlepszy dla klucza tranzystorowego.

V Sterowanie sygnałem PWM kluczem wykorzystującym tranzystor J-FET

Należy zestawić układ z poniższego schematu zakładając U_{zas} = 10V, R_G = 1 k Ω , R_D = 1 k Ω . Dobrać diodę o wybranym kolorze i znaleźć jej napięcie przewodzenia w notach katalogowych (zależnie od koloru).

Rys 3. Klucz tranzystorowy wykorzystujący tranzystor J-FET.

Jako napięcie U_{wej} należy zastosować sygnał PWM podany z generatora (Pulse) spolaryzowany w ten sposób by doprowadzał na przemian do całkowitego otwarcia i całkowitego zamknięcia klucza (jakie powinny być wartości napięcia w stanie wysokim i niskim? Od jakiego parametru tranzystora zależy kiedy klucz będzie całkowicie zamknięty?). Na początku współczynnik wypełnienia należy ustawić na 50%. Następnie należy przeprowadzić obserwację zachowania diody dla różnych częstotliwości sygnału PWM począwszy od 1 Hz w górę. Należy zanotować częstotliwość przy której przestaje być widoczne

miganie diody. Następnie należy nadal podnosić częstotliwość, by sprawdzić czy dla jeszcze wyższych częstotliwości uda się zaobserwować przyciemnienie diody związane z tym, że klucz nie jest w stanie się tak szybko otwierać. Należy zanotować tę częstotliwość.

Na koniec należy ustawić rozsądną częstotliwość PWM (tak by nie było widoczne miganie, ale by klucz nadążał z otwieraniem się). Teraz należy zmieniać współczynnik wypełnienia fali prostokątnej i zanotować zachowanie diody LED. Wszystkie obserwacje z rej części ćwiczenia należy krótko opisać w formularzu: Sterowanie diodą za pomocą sygnału PWM.

VI Uporządkowanie stanowiska po zajęciach

Po skończonych zajęciach należy po sobie uporządkować stanowisko. Wszystkie kable (z wyjątkiem kabli wkręcanych do gniazd zaciskowych płytki laboratoryjnej) należy schludnie zwinąć i umieścić w pudełku.

Rys 4. Przewody należy zwinąć i schować do pudełka.