

PROCESSAMENTO DIGITAL DE IMAGENS 01/2020 – PLANO DE CURSO MODALIDADE REMOTA

1 Descrição geral

Ao final do curso, o aluno deverá estar apto a desempenhar manipulações básicas sobre imagens, elaborar análises de sistemas computacionais baseados no uso de imagens digitais e continuar estudos mais avançados na área.

2 Pré-requisitos

FGA0219 – Processamento de Sinais

3 Professor(es)

Prof. Renan Utida Barbosa Ferreira

E-mail: renan@unb.br

4 Formato das aulas remotas

As aulas serão realizadas em formato combinado síncrono e assíncrono. Todas as atividades do curso ocorrerão via plataforma Aprender UnB (aprender3.unb.br), no curso "FGA0015 - PROCESSAMENTO DIGITAL DE IMAGENS - Turma A - 2020/1". As atividades síncronas ocorrerão às segundas e quartas, às 9:00. Sugere-se que a parte assíncrona seja realizada às 8:00, ou seja, imediatamente anterior às atividades síncronas. Cada aula será dividida em 3 partes:

1- Atividade: Vídeo-aula

Duração aproximada: 55 minutos.

Descrição: Este vídeo deverá ser assistido pelos alunos previamente às atividades seguintes.

Formato: assíncrono.

2- Atividade: Aula-resumo

Duração aproximada: 10 minutos.

Descrição: Esta aula recapitulará o conteúdo da vídeo-aula de forma resumida, começando às 9:00.

Formato: síncrono.

3- Atividade: Discussão e simulação

Duração aproximada: 45 minutos.

Descrição: Momento destinado à discussão acerca do conteúdo visto e a tirar dúvidas dos alunos. Também serão executados códigos exemplificando as ferramentas apresentadas. Essas atividades terão início imediatamente após o término da Atividade 2.

Formato: síncrono.

O tempo das atividades é previsto para contemplar o total de créditos da disciplina.

5 Controle de presenças durante o curso remoto

O controle de presença se dará pelo log de acesso dos alunos ao curso na plataforma Aprender UnB.

6 Ementa

Fundamentos do processamento digital de imagens; Processamento de imagens em cores; Relações de conectividade e transformações de intensidade; Transformada de wavelets e processamento multirresolução; Realce de imagens e filtragem espacial; Introdução à compressão de imagens e de vídeo; Transformada de Fourier e filtragem de imagens no domínio da frequência; Introdução à morfologia matemática e aplicações em imagens; Análise e restauração de imagens; Introdução à segmentação, representação, descrição e classificação de padrões.

7 Programa

- 1) Fundamentos do processamento digital de imagens Introdução, motivação e breve histórico do Processamento de Imagens, Luz e formação da imagem, Sensores e aquisição, Amostragem e quantização;
- 2) Relações de conectividade e transformações de intensidade Vizinhança, adjacência, conectividade, regiões e fronteiras, Métricas de distância e operadores matemáticos, Transformações de intensidade em imagens;
- 3) Realce de imagens e filtragem espacial Equalização e Especificação de histograma, Processamento local de histograma, Convolução e correlação espacial, Filtros espaciais de suavização e de aguçamento, Técnicas fuzzy a realce e filtragem espacial;
- 4) Transformada de Fourier e filtragem de imagens no domínio da frequência Amostragem bidimensional e a transformada de Fourier 2-D, Aliasing em imagens, Propriedades da transformada discreta de Fourier 2-D e de sua inversa, Fundamentos da filtragem no domínio da frequência, Suavização e Aguçamento de imagens no domínio da frequência, Filtragem seletiva;
- 5) Análise e restauração de imagens Análise da degradação e restauração de imagens, Caracterização do ruído e filtragem espacial, Ruído periódico e filtragem no domínio da frequência;
- 6) Processamento de imagens em cores Modelos de formação de cores, Processamento de imagens em pseudocores, Processamento de imagens coloridas e conversão entre espaços de representação de cor, Transformações e correções de cores, Suavização e aguçamento de imagens coloridas, Segmentação e detecção de bordas baseadas em cores;
- 7) Transformada de wavelets e processamento multirresolução Codificação em sub-bandas, Expansões multirresolução, Transformadas contínua e discreta de wavelets, Transformadas bidimensional de wavelets, Wavelet packets;
- 8) Introdução à compressão de imagens e de vídeo Redundância, Irrelevância, Entropia, Critérios de fidelidade, Modelos de compressão, Codificadores Entrópicos, Codificação sem perdas ("lossless"), Codificação com perdas ("lossy"), Codificação por transformadas, CODECs de imagens e de vídeo;

- 9) Introdução à morfologia matemática e aplicações em imagens Processamento morfológico de imagens binárias, Erosão e dilatação, Abertura e fechamento, Transformada hit-or-miss, Algoritmos morfológicos básicos, Morfologia em tons de cinza;
- 10) Introdução à segmentação, representação, descrição e classificação de padrões Detecção de elementos, Limiarização, Transformada de watersheds, Descritores, Reconhecimento de objetos.

8 Critérios de avaliação do curso remoto

A avaliação dos alunos na disciplina será feita de através de **cinco** trabalhos, **dois** projetos individuais e **um** projeto final. A nota final (N_t) será calculada por meio da equação seguinte:

$$N_f = \frac{1 \cdot MT + 2 \cdot MPI + 2 \cdot PF}{4}$$

em que MT é a média das notas dos trabalhos, MPI é a média das notas dos projetos individuais e PF é a nota do projeto final. Todas as instruções de provas e trabalhos serão informadas plataforma Aprender UnB.

Os trabalhos deverão ser feitos individualmente e serão destinados à resolução de problemas específicos e serão avaliados via entrega de relatório em data especificada na plataforma Aprender UnB.

Os projetos individuais e final da disciplina têm por objetivo preparar a(o) aluna(o) para desenvolver suas habilidades e conhecimentos aplicados a questões práticas de processamento digital de imagens. Os projetos individuais visam prover aos alunos um espaço de desenvolvimento de senso crítico e capacidade de avaliação de problemas e suas soluções. Já o projeto final visa a solução de um problema complexo, mediante trabalho em grupo, separação de tarefas e avaliação de ferramentas disponíveis.

Os trabalhos individuais devem ser entregues contendo um relatório e os códigos-fonte via plataforma Aprender UnB.

O projeto final será desenvolvido em trios. Seu objetivo é prover aos alunos uma oportunidade de investigação aprofundada de algum problema na área de processamento digital de imagens. O professor irá propor alguns problemas, mas é fortemente recomendado aos alunos que busquem problemas de seu interesse. Os problemas propostos serão discutidos em data prevista no cronograma. Ao final do semestre, o projeto deverá ser apresentado pelos grupos, que terão 15 minutos para apresentar e 15 minutos para responder questionamentos do professor e demais alunos. O relatório e código-fonte do projeto devem ser enviados via plataforma Aprender UnB. A ordem de apresentação será definida mediante sorteio.

Tanto os trabalhos individuais quanto o projeto final deverão ser desenvolvidos nas linguagens C/C++ ou Python, usando a biblioteca OpenCV, ou em Matlab/Octave.

Para todas as avaliações, qualquer atraso na entrega acarretará nota ZERO.

Para obter aprovação é necessário

- Ter 75% de presença nas aulas;
- Atingir Nota Final (N_f) maior ou igual a 5,0.

Referências básicas

Rafael C. Gonzalez e Richard E. Woods, Processamento Digital de Imagens, 3ra Ed. Pearson, Brasil, 2010.

https://plataforma.bvirtual.com.br/Leitor/Publicacao/2608/pdf/0

(acesse pela página http://minhabcedigital.bce.unb.br/, no terceiro campo escolha "PEARSON")

Solomon, Chris, et al. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, John Wiley & Sons, Incorporated, 2011.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=644955.

Referências complementares

PEDRINI, H.; SCHWARTZ, W. R. Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações.

CENGAGE, 2008. https://integrada.minhabiblioteca.com.br/books/9788522128365

(acesse pela página http://minhabcedigital.bce.unb.br/, no terceiro campo escolha "MINHA BIBLIOTECA")

Ghosh, S.K.. Digital Image Processing, Alpha Science International, 2012.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=5248353

Nixon, Mark, and Alberto S. Aguado. *Feature Extraction and Image Processing for Computer Vision*, Elsevier Science & Technology, 2012.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=998617

Parker, J. R. Algorithms for Image Processing and Computer Vision, John Wiley & Sons, Incorporated, 2010.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=706758

Multimedia Image and Video Processing, edited by Ling Guan, et al., Taylor & Francis Group, 2012. https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=877130

The Essential Guide to Image Processing, edited by Alan C. Bovik, and Alan C Bovik, Elsevier Science & Technology, 2009.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=452947

Young, S. Susan, et al. Signal Processing and Performance Analysis for Imaging Systems, Artech House, 2008.

https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=456883

Cronograma

Data	Tópico	Atividade
1ª Semana	Introdução	
17/08/20 19/08/20	Fundamentos	
2ª Semana 24/08/20 26/08/20	Fundamentos	
	Domínio espacial – Transformações de intensidade	
3ª Semana 31/08/20 02/09/20	Domínio espacial – Processamento de histograma	
	Domínio espacial – Suavização e realce	
4ª Semana 07/09/20 09/09/20	Feriado	Trabalho 1
	Domínio da frequência – Conceitos	
5ª Semana 14/09/20 16/09/20	Domínio da frequência – Filtragem	
	Domínio da frequência – Filtragem	
6ª Semana 21/09/20 23/09/20	Restauração e reconstrução – Ruídos	Trabalho 2
	Restauração e reconstrução – Filtragem	
7ª Semana 28/09/20 30/09/20	Morfologia matemática – conceitos e operações	
	Morfologia matemática – algoritmos básicos	
8 ^a Semana 05/10/20 07/10/20	Morfologia matemática – morfologia em escala de cinza	Trabalho 3
	Processamento de cores – introdução e modelos	
9ª Semana	Feriado	Projeto Individual 1
12/10/20 14/10/20	Processamento de cores – Pseudocores e transformação de cores	
10 ^a Semana 19/10/20 21/10/20	Discussão sobre projeto final	
	Transformada em imagens – fundamentos	Trabalho 4
11ª Semana 26/10/20 28/10/20	Transformada em imagens – DCT e wavelets	
	Transformada em imagens – wavelets e multirresolução	
12ª Semana 02/11/20 04/11/20	Feriado	Trabalho 5
	Segmentação – detectores de pontos, linhas e bordas	
13ª Semana 09/11/20 11/11/20	Segmentação – limiarização	
	Segmentação – superpixel	
14ª Semana 16/11/20 18/11/20	Segmentação – watershed	
	Segmentação – segmentação por cores	
	Compressão de imagens – fundamentos	Projeto Individual 2

23/11/20 25/11/20	Compressão de imagens – JPEG	
16 ^a Semana 30/11/20 02/12/20	Compressão de imagens – marca d'água	
	Introdução a sinais multidimensionais (vídeos e nuvens de pontos)	
17 ^a Semana 07/12/20 09/12/20	Apresentação do projeto final	
	Apresentação do projeto final	
18 ^a Semana 14/12/20 16/12/20	Apresentação do projeto final	Data limite para entrega do relatório e código-fonte do projeto