

DSN, DENVER, 2017 - 06 - 28

Load-Optimal Local Fast Rerouting for Resilient Networks

Yvonne-Anne Pignolet, ABB Corporate Research Stefan Schmid, University of Aalborg Gilles Trédan, LAAS-CNRS, Toulouse

Motivation

- Critical infrastructure has high availability requirements
- Industrial systems are more and more connected
- Hard real-time requirements

Slide 2

- \Rightarrow How to provide dependability guarantee despite link failures in networks?
- ⇒ Possible without communication between nodes? And low load?

Traffic demand: {1,2,3}->6

Local failover @1:
Does not know
failures downstream!

Failover matrix:

flow 1->6: 2,3,4,5,...

Local failover @1: Reroute to 2!

Traffic demand: {1,2,3}->6

Failover matrix:

flow 1->6: 2,3,4,5,...

Traffic demand: {1,2,3}->6

Local failover @1: Reroute to 2!

But also from 2: 6 not reachable. Next: 3.

Traffic demand:

{1,2,3}->6

Slide 6

Failover matrix:

flow 1->6: 2,3,4,5,...

flow 2->6: 3,4,5,...

flow 3->6: 4,5,...

Max load:

3 (3

Statically defined, no global knowledge and no communication!

Failover matrix:

```
flow 1->6: 2,5, ...
flow 2->6: 3,4,5,...
flow 3->6: 4,5,...
```

A better solution: load 2 ©

For load balance the prefixes should differ

Failover matrix:

flow 1->6: 2,5, ...

flow 2->6: 3,4,5,...

flow 3->6: 4,5,...

A better solution: load 2 ©

Slide 8

Problem statement

Find a failover matrix M that needs many link failures for a high load

Γ	-
12345	6
25134	
34512	6
41253	6
53421	6
51234	6
L	-

Row i used for flow i, each row is a permutation, source and destination are ignored

- 1: Upon receiving a packet of flow i at node v
- 2: If v != destination:
- 3: If (v,destination) available: forward to d
- 4: $j = index of v in ith row, /*m_i, j = v*/$
- 5: While m_i,j = source or (v,m_i,j) unavailable
- 6: j = j+1
- 7: Forward to m_i,j

Good and bad news [BS,Opodis 2013]

Lower bound:

High load unavoidable even in well-connected residual networks: # failures φ can lead to load at least $\sqrt{\varphi}$, even in highly connected networks

Example: All-to-One Traffic

Upper bound:

Load $\sqrt{\varphi}$ generated with a failover matrix where each row is a random permutation needs at least Omega(φ /log n) failures.

Deterministic Failover Matrices

Construction goal:

Low intersection in short prefixes!

Latin Squares with Low Intersection

If $k < \sqrt{n}$ a latin square failover matrix where the intersection of two k-prefixes is at most 1 has load $\varphi < k$ with Omega($\varphi ^2$).

Can we construct such matrices?

Ingredients: Design Theory and Graph Theory

Symmetric Balanced Incomplete Block Designs

An (n, k, λ) -BIBD consists of

- Set X with n elements {1,...,n}
- Blocks A1, ..., An, containing k elements of X
- $|Ai \cap Aj| = \lambda$

Hall's Marriage Theorem:

A d-regular graph contains d disjoint perfect matchings

3-regular bipartite graph

Construction of k-prefix with low intersection

Results

Theory:

Deterministic BIBD-Failover Matrix achieves asymptotically optimal load

Experiments:

All-to-one routing and random failures

Permutation routing and random failures

Conclusion and Future Work

Deterministic failover with load guarantees
 applying latin squares, BIBDs, matchings

BIBDs are a tool that can probably be used in many other contexts

Next:

Algorithms and improved bounds for sparse communication networks

#