Chemistry 1142 Spring 2013 Exam 4a

N	Ja	me	e :		
_	100		•		

Take a deep breath, and relax! First, answer the questions you know how to do and then work on the more difficult problems. Don't forget to show all your work, so I can give you as much credit as possible.

Good Luck!

Andy

Show all work to receive credit. Be sure to include units, and express answers to the correct number of significant figures / decimal places.

Q1. [12 pts.] Predict whether the following reactions have a positive, negative, or ≈ 0 value of ΔS .

a)
$$C_3H_8(g) + 7O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

b)
$$C_2H_5OH(g) \rightarrow C_2H_5OH(l)$$

c)
$$Fe_2O_3(s) + C(s) \rightarrow 2Fe(s) + \frac{3}{2}CO_2(g)$$

d)
$$N_2O_4(g) + CO_2(g) \rightarrow N_2O_5(g) + CO(g)$$

Q2. [12 pts.] Calculate ΔG° at 15 °C and 105 °C for the reaction: $2\text{CH}_3\text{CH}_2\text{OH}(l) + 2\text{O}_2(g) \rightarrow 2\text{CH}_3\text{CO}_2\text{H}(l) + 2\text{H}_2\text{O}(l)$ given the following data:

Compound	$\Delta H_{\rm f}^{\circ} / {\rm kJ \cdot mol^{-1}}$	$S^{o} / J \cdot mol^{-1} \cdot K^{-1}$
CH ₃ CH ₂ OH(l)	-276.98	161.04
$O_2(g)$	0	205.0
$CH_3CO_2H(1)$	-484.2	159.83
$H_2O(1)$	-285.8	69.9

Q3. [8 pts.] Calculate ΔG° for the process: $Ag^{+}(aq) + NH_{3}(aq) \longrightarrow Ag(NH_{3})_{2}^{+}(aq)$, if $K = 1.5 \times 10^{7}$ at 25 °C.

Q4. [12 pts.] Using the standard electrode potentials given on the back page of this exam, calculate E^{o}_{cell} for the following cells:

a)
$$Zn(s) | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu(s)$$

b)
$$Cr(s) | Cr^{3+}(aq) | | Cd^{2+}(aq) | Cd(s)$$

c)
$$Al(s) | Al^{3+}(aq) | | Cu^{2+}(aq) | Cu(s)$$

"Now, in the second law of thermodynamics..."

Q5. [20 pts.] Balance the following redox reactions using the half-reaction method.

a) Zn(s) + ClO^-(aq)
$$\boldsymbol{\rightarrow}$$
 Zn(OH)_2(s) + Cl^-(aq)

(BASIC Conditions)

b)
$$MnO_2(s) + Cl^-(aq) \rightarrow Mn^{2+}(aq) + Cl_2(g)$$

(ACIDIC Conditions)

~ .		0 1 1					
Q6.	116 pts.l	Calculate	E_{-1} tor	the	tollow	nng	cell

$$Al(s)\,|\,Al^{3^{+}}\!(aq,\,0.010\;M)\;\,||\;\,Zn^{2^{+}}\!(aq,\,2.50\;M)\,|\,Zn(s)$$

Be sure to write out the overall balanced equation for the cell reaction as part of your answer. The cell operates at a temperature of 298 K.

Q7. [10 pts.] A particular chemical reaction is non-spontaneous at low temperatures, but becomes spontaneous at high temperatures. What can you say about the signs (+ve or –ve) of ΔS and ΔH ? Be sure to explain your answer.

le 19.1 Standard Reduction Potentials at 25°C*

Half-Reaction	$E^{\circ}(\mathbf{V})$
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07
$Co^{3+}(aq) + e^{-} \longrightarrow Co^{2+}(aq)$	+1.82
$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70
$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.61
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.36
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.33
$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O$	+1.23
$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.07
$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96
$2Hg^{2+}(aq) + 2e^{-} \longrightarrow Hg_2^{2+}(aq)$	+0.92
$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.85
$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68
$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.53
$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.34
$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	+0.15
$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13
$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2^+}(aq) + 2e^- \longrightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.25
$Co^{2+}(aq) + 2e^{-} \longrightarrow Co(s)$	-0.28
$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.31
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Mn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Mn}(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66
$Be^{2+}(aq) + 2e^{-} \longrightarrow Be(s)$	-1.85
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.37
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.87
$Sr^{2+}(aq) + 2e^{-} \longrightarrow Sr(s)$	-2.89
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.90
$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.05

Useful Information

$$N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$$

Given:
$$ax^2 + bx + c$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O}^+][{\rm OH}^-] = 1.0 \ {\rm x} \ 10^{-14} \ {\rm at} \ 25 \ {\rm ^{\circ}C}.$$

$$pH = -log[H_3O^+]$$

$$pH + pOH = 14.00 (at 25 °C)$$

$$K_{\rm a}K_{\rm b}=K_{\rm w}$$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L atm/mol} \cdot \text{K}$$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

$$M_1 V_1 = M_2 V_2$$

$$\Delta G = -nFE_{cell}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

$$E_{\text{cell}}^o = \frac{RT}{nF} \ln K$$

$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{RT}{nF} \ln Q$$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$
 $F = 96,500 \text{ C/mol e}^{-1}$

$$F = 96,500 \text{ C/mol e}^-$$

$$Q ext{ (charge)} = I \cdot t$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S = q/T$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

Periodic Table of the Flements

			1 CITC	Juic i	abic	טו נווכ	LICII	CHIC									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1																	18
1																	2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]

[57	58	59	60	61	62	63	64	65	66	67	68	69	70
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ſ	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]