

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MERCEDES MARIA BARBOSA DINIZ

TEORIA DE SISTEMAS LINEARES ATIVIDADE 2

MERCEDES MARIA BARBOSA DINIZ

TEORIA DE SISTEMAS LINEARES ATIVIDADE 2

Relatório com requisito para obtenção parcial de nota na disciplina de Teoria de Sistemas Lineares, ministrada pelo Professor. Antonio da Silva Silveira

Sumário

1	Mod	elagem do Sistema	
2	Proj	eto do Controlador LQG	
3	Rest	ıltados e Discussões	
Li	sta	controlador LQG	
	1.1	Diagramas de corpo livre dos elementos do sistema de pêndulo invertido	
	1.2		
	2.1	Diagrama do controlador LQG	
	3.1		
	3.2	Variáveis de estados estimadas na simulação sem perturbação e sinal de referência nulo	
	3.3	Simulação do controlador LQG com sinal de referência nulo e ruído no sensor do pendulo 9	
	3.4	Simulação do controlador LQG com sinal de referência nulo e deformação de aproximadamente 2° sobre o pêndulo	
	3.5	Simulação do controlador LQG com perturbação e ruído do sensor	
Li	sta	de Tabelas	
	1	Avaliação de diferentes sintonias do controlador LQR	

1 Modelagem do Sistema

Esta atividade tem como objetivo revisar os conceitos relacionados ao projeto de um controlador LQG (Linear-Quadrático-Gaussiano), aplicado ao controle de um pêndulo invertido sobre um carro. A modelagem foi baseada no *Control Tutorials for Matlab and Simulink* (CTMS) da University of Michigan, disponível em https://ctms.engin.umich.edu, com a Figura 1.1 ilustrando os elementos considerados na modelagem física.

Figura 1.1: Diagramas de corpo livre dos elementos do sistema de pêndulo invertido.

Com quatro variáveis de estado $x=[x,\dot{x},\phi,\dot{\phi}]^{\top}$, onde x representa a posição do carro e ϕ o ângulo do pêndulo com a vertical, e $\dot{x},\dot{\phi}$ suas respectivas derivadas, a representação em espaço de estados contínua do sistema é dada por:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) + Du(t) \tag{2}$$

com as matrizes:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{(I+ml^2)b}{p} & \frac{m^2gl^2}{p} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{mlb}{p} & \frac{mgl(M+m)}{p} & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ \frac{I+ml^2}{p} \\ 0 \\ \frac{ml}{p} \end{bmatrix},$$

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 \end{bmatrix},$$

sendo $p = I(M + m) + Mml^2$ o denominador comum da dinâmica.

Onde os parâmetros físicos são: massa do carro $M=0.5\,\mathrm{kg}$, massa do pêndulo $m=0.2\,\mathrm{kg}$, comprimento $l=0.3\,\mathrm{m}$, inércia $I=0.006\,\mathrm{kg\cdot m^2}$, atrito $b=0.1\,\mathrm{N\cdot s/m}$ e aceleração da gravidade $g=9.8\,\mathrm{m/s^2}$.

A análise dos autovalores da matriz A, que representam os polos do sistema contínuo, revelou a presença de um polo instável:

$$\lambda = \{0, -0.1428, -5.6041, 5.5651\}$$

O valor positivo de 5,5651 indica que o sistema é instável, pois este polo encontra-se no semiplano direito do plano s. Esta instabilidade é típica de sistemas de pêndulo invertido, cuja configuração naturalmente tende ao desequilíbrio.

Para discretização do modelo, foi utilizado um período de amostragem $T_s = 0.005$ s, calculado a partir da maior frequência natural do sistema com um fator de segurança. Na Figura 1.2, temos a comparação dos diagramas

Digrama de bode do modelo cont. e disc.

Figura 1.2: Digrama de bode do modelo contínuo e discreto.

de Bode do modelo original e sua versão discretizada, nela podemos observar que os mesmos divergem nas altas frequências e que na região de inversão de fase há o aumento do ganho, caracterizando um sistema instável.

Em seguida, foi implementado um modelo aumentado com ação integral, necessário para eliminar o erro em regime permanente, o mesmo foi construído como as matrizes:

$$A_a = \begin{bmatrix} I & C_d A_d \\ 0 & A_d \end{bmatrix}, \qquad B_a = \begin{bmatrix} C_d B_d \\ B_d \end{bmatrix},$$

$$C_a = \begin{bmatrix} I & 0 \end{bmatrix}$$

Para verificar se o sistema era controlável e observável, foram verificadas as matrizes de controlabilidade e observabilidade do modelo aumentado, definidas como:

$$Co = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$
 (3)

$$Ob = \begin{bmatrix} C & CA & \cdots & (CA^{n-1}) \end{bmatrix}^{\top}$$
(4)

De forma mais prática, um sistema é dito controlável se é possível influenciar diretamente a dinâmica de todas as variáveis de estado, por meio das entradas do sistema. Já a observabilidade indica se é possível deduzir esses mesmos estados apenas observando as saídas medidas.

Para que o sistema seja considerado controlável ou observável, é necessário que o *posto* (ou *rank*) das matrizes Co e Ob, respectivamente, sejam igual ao número total de variáveis de estado, representado por *n*.

No contexto deste trabalho, foi utilizado um modelo aumentado, que inclui uma variável integradora adicional, totalizando n=5 variáveis de estado. Os postos das matrizes foram rank(Co) = 4 e rank(Co) = 4, logo, o sistema não é nem controlável, nem e observável.

2 Projeto do Controlador LQG

O controle LQG (Linear-Quadrático-Gaussiano) é um método de controle ótimo para sistemas com incertezas representadas por ruído gaussiano. Ele combina o controle LQR (Linear-Quadrático) com um filtro de Kalman, que atua como um estimador de estados, permitindo lidar com a incerteza na medição do estado do sistema. Sendo assim, o LQG encontra um controlador que minimiza um custo quadrático, levando em conta a dinâmica do sistema e os ruídos de processo e de medição.

Na Figura 2.1, temos o esquema de controle por realimentação de estados com um estimador de estado completo, onde fica claro o papel do controlador LQR e do filtro de Kalman que compõem o LQG.

Figura 2.1: Diagrama do controlador LQG.

O projeto do controlador LQR e do filtro de Kalman envolve a resolução a equações diferenciais de Riccati. Estas equações são fundamentais para calcular as matrizes que permitem obter os ganhos ótimos de controle e de estimação.

A equação a diferenças de Riccati para o controlador LQR é dada por:

$$P_{lqr}(k+1) = A^{\top} P_{lqr}(k) A - A^{\top} P_{lqr}(k) B \left(B^{\top} P_{lqr}(k) B + R_{lqr} \right)^{-1} B^{\top} P_{lqr}(k) A + Q_{lqr}$$
(5)

Sendo Q_{lqr} a matriz de penalização dos estados e R_{lqr} a penalização do esforço de controle. A solução de P_{lqr} permite obter o ganho ótimo de realimentação de estados:

$$K = \left[A^{\top} P_{lqr} B \left(B^{\top} P_{lqr} B + R_{lqr} \right)^{-1} \right]^{\top}$$
 (6)

Analogamente, o filtro de Kalman resolve uma equação de Riccati, relacionada à estimação de estados a partir de medições ruidosas:

$$P_{kf}(k+1) = AP_{kf}(k)A^{\top} - AP_{kf}(k)C^{\top} \left(CP_{kf}(k)C^{\top} + R_{kf} \right)^{-1} CP(k)A^{\top} + Q_{kf}$$
(7)

Nessa equação, Q_{kf} é a covariância do ruído de processo, e R_{kf} representa a covariância do ruído de medição. A matriz de ganho do filtro de Kalman é dada por:

$$L = AP_{kf}C^{\top} \left(CP_{kf}C^{\top} + R_{kf} \right)^{-1} \tag{8}$$

No projeto do controlador LQR e do filtro de Kalman, as matrizes Q e R foram definidas como $Q = \mathrm{diag}(1,1,1,1,1)$ e R=1, respectivamente. A matriz Q penaliza as variáveis de estado, atribuindo a mesma importância a todas as variáveis do sistema, enquanto R penaliza o esforço de controle e medições. De forma análoga, no filtro de Kalman, Q reflete a incerteza do modelo do sistema (ruído de processo), e R a incerteza das medições, sendo ambos ajustados para garantir um bom desempenho de estimativa e controle no sistema.

No caso prático estudado, o sistema modelado não é totalmente controlável nem observável, o que pode inviabilizar a aplicação direta de alguns métodos clássicos. Contudo, uma condição menos restritiva — chamada detectabilidade — pode ser verificada.

A detectabilidade é uma propriedade que garante que todos os modos instáveis do sistema sejam observáveis, o que é suficiente para a estabilidade do filtro de Kalman e do controlador LQG.

No contexto do projeto, uma forma prática de avaliar a detectabilidade é por meio da observabilidade generalizada da dupla (\sqrt{Q},A) . Esta abordagem considera que os estados ponderados por Q devem ser observáveis, conforme a matriz de observabilidade modificada:

$$\mathcal{O}_{Q} = \begin{bmatrix} \sqrt{Q} \\ \sqrt{Q}A \\ \vdots \\ \sqrt{Q}A^{n-1} \end{bmatrix}$$

$$(9)$$

Se \mathcal{O}_Q tiver posto completo, então o sistema satisfaz a detectabilidade com relação ao peso Q. Isso implica que os modos instáveis serão estabilizados pela ação do controlador, uma vez que estão ponderados na função de custo.

Essa condição é suficiente para garantir a existência de uma solução positiva definida para a equação de Riccati associada, possibilitando o cálculo do ganho ótimo K do LQR.

3 Resultados e Discussões

A seguir serão apresentados os resultados obtidos por meio da simulação do sistema de controle LQG para diferentes condições operacionais: ausência de perturbações, presença de ruído nos sensores e aplicação de perturbações no pêndulo. As simulações visam avaliar a robustez do controlador e a capacidade do filtro de Kalman em estimar corretamente os estados do sistema.

A Figura 3.1 mostra a resposta do sistema sob controle LQG quando não há perturbações externas e o sinal de referência é nulo. Observa-se que o sistema converge para a origem em torno de 2 segungos e sem oscilações significativas, o que indica a estabilidade da malha fechada. Na Figura 3.2, são mostradas as variáveis de estado estimadas pelo filtro de Kalman.

Figura 3.1: Simulação do controlador LQG sem perturbação e sinal de referência nulo.

Figura 3.2: Variáveis de estados estimadas na simulação sem perturbação e sinal de referência nulo.

A Figura 3.3 apresenta o desempenho do sistema quando um ruído branco gaussiano (WGN) é adicionado à medição do pêndulo. O ruído utilizado possui média zero e variância 1×10^{-5} , representando uma interferência de baixa intensidade. Observa-se que o controlador mantém a estabilidade do sistema, e as flutuações nas variáveis medidas são bem filtradas pelo estimador. Essa simulação evidencia a capacidade do filtro de Kalman em rejeitar ruídos de medição, sem comprometer o desempenho do sistema.

Figura 3.3: Simulação do controlador LQG com sinal de referência nulo e ruído no sensor do pendulo.

Na Figura 3.4, o sistema é submetido a uma perturbação angular inicial de aproximadamente 2° no pêndulo, enquanto o sinal de referência permanece nulo. O sistema responde rapidamente, retornando à condição de equilíbrio.

Figura 3.4: Simulação do controlador LQG com sinal de referência nulo e deformação de aproximadamente 2º sobre o pêndulo.

Por fim, a Figura 3.5 mostra o cenário mais adverso, no qual o sistema sofre tanto uma perturbação angular quanto a adição de ruído de medição. Apesar da condição desafiadora, o controlador LQG é capaz de estabilizar o sistema, ainda que com uma leve degradação na qualidade da resposta. O filtro de Kalman continua fornecendo

estimativas suficientemente precisas para manter a ação de controle efetiva.

Figura 3.5: Simulação do controlador LQG com perturbação e ruído do sensor.

Foram avaliadas também quatro diferentes sintonias do controlador LQR, destacados na Tabela 1, com o objetivo de minimizar a função de custo quadrática discreta. A primeira sintonia foi a usada nas simulação anteriores, onde se adotou pesos unitários em todas as variáveis de estado e no esforço de controle, servindo como referência. A segunda sintonia priorizou fortemente o ângulo do pêndulo, resultando na menor penalidade total, com $J=2,012710^4$. A terceira sintonia aumentou o peso sobre o controle (R=10), penalizando fortemente o esforço de atuação, o que resultou no maior custo. Por fim, a última buscou uma ponderação intermediária, reforçando as velocidades do carro e do pêndulo, mantendo custo menor que o caso base.

Tabela 1: Avaliação de diferentes sintonias do controlador LQR

#	Pesos (Q, R)	Custo J
1	$Q = I_{5 \times 5}, R = 1$	$2,9045 \times 10^4$
2	Q = diag(0.1, 0.1, 100, 0.1, 0.5), R = 1	$2,0127 \times 10^4$
3	Q = diag(1, 1, 100, 1, 1), R = 10	$2,3061 \times 10^{5}$
4	Q = diag(1, 10, 100, 10, 1), R = 1	$2,4229 \times 10^4$