

IV.7. Määritä kuvan ympyräsylinterikuoren kalvovoimien N_x , N_ψ ja $N_{x\psi}$ lausekkeet, kun sylinteri on täynnä nestettä, jonka tiheys on ρ . Kuori on tuettu päistään ohuilla levyillä, jolloin kuoren päissä $N_x=0$.

Ratkaisu:

$$r = a$$
 $p_x = 0$ $p_{\psi} = 0$ $p_r = \rho ga(1 - cos \psi)$

$$N_{\psi} = ap_r$$
 \Rightarrow $N_{\psi} = \rho ga^2 (1 - \cos \psi)$ vetoa

$$N_{\Psi}(0^{\circ}) = 0$$
 $N_{\Psi}(90^{\circ}) = \rho ga^{2}$ $N_{\Psi}(180^{\circ}) = 2\rho ga^{2} = max N_{\Psi}$

$$N_{x\psi} = -\int \frac{1}{a} \rho g a^2 \sin \psi \, dx + f_1(\psi) = -\rho g a x \sin \psi + f_1(\psi)$$

Symmetriaehto:
$$N_{x\psi}(x=0)=0$$
 \Rightarrow $f_1(\psi)=0$ \Rightarrow

$$N_{x\psi} = -\rho gax \sin \psi$$
 max $N_{x\psi} = \rho gaL/2$, kun $x = \pm L/2$ $\psi = 90^{\circ}$

$$N_x = -\int \frac{1}{a} (-\rho gax \cos \psi) dx + f_2(\psi) = \frac{1}{2} \rho gx^2 \cos \psi + f_2(\psi)$$

Reunaehto:
$$N_x(x = \pm L/2) = 0$$
 \Rightarrow $\frac{1}{2}\rho g \frac{L^2}{4} \cos \psi + f_2(\psi) = 0$

$$\Rightarrow f_2(\psi) = -\frac{1}{8}\rho g L^2 \cos \psi \Rightarrow N_x = -\frac{1}{8}\rho g (L^2 - 4x^2) \cos \psi$$

 N_x on puristusta, kun $0^\circ \le \psi \le 90^\circ$ ja vetoa, kun $90^\circ \le \psi \le 180^\circ$.

$$\max |N_x| = \rho g L^2 / 8$$
, kun $x = 0 \quad \psi = 180^\circ$