Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Jason Wei, et al

Google Research, Brain Team

NeurIPS 2022

Abstract

- Chain-of-Thought Prompting
 - Reasoning ability emerges naturally in large models
- Reasoning Experiments
 - Arithmetic / Commonsense / Symbolic
 - GPT-3, LaMDA, PaLM, etc.
 - For each model, variate parameter size
 - Compare standard prompting, CoT, and supervised SOTA
- Results
 - As model becomes larger, CoT outperforms SOTA
 - Limitations: Mimicking, Manual exemplar cost

Abstract

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls, 2 cans of 3 tennis balls each is 6 tennis balls, 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9 The answer is 9. <

- Reasoning abilities emerge naturally via Chain-of-Thought (CoT)
- Experiments on arithmetic, commonsense, and symbolic reasoning tasks

Introduction

- Few-shot prompting [1]
 - We could perform unsupervised learning
 - However, it was poor at 'Reasoning'
- · Chain-of-thought
 - [Input, Chain of thought, Output] is given
 - Decomposes problem into subproblems
 - Provides interpretable window for debugging
 - Potentially applicable for any tasks
- Tom Brown et al. "Language models are few-shot learners". In: Advances in neural information processing systems 33 (2020), pp. 1877–1901.

Arithmetic Reasoning - Result

- Standard prompting
- Chain-of-thought prompting
- - Prior supervised best

- Benchmarks
 - GSM8K
 - SVAMP
 - ASDiv
 - AQuA
 - MAWPS
- · CoT is efficient when
 - model is larger
 - problems are complicated

Arithmetic Reasoning - Ablation

- · Equation only
 - Only helpful for short problems
- Variable compute only
 - Length of CoT is given
 - No improvement
- Reasoning after answer
 - No improvement

Arithmetic Reasoning - Robustness

- Sensitivity to exemplars
 - Different exemplar annotators
 - GSM8K Training exemplars
- · Result
 - All CoT outperformed standard
 - CoT is robust to linguistic style

Commonsense Reasoning

- Benchmarks
 - CSQA, StrategyQA, Date, Sports, SayCan
- · Experimental setup
 - Same as prior section

Symbolic Reasoning

- · Last letter concatenation
 - "Amy Brown" → yn
 - Challenging than first letter
- Coin flip
 - People flip or don't flip the coin
 - Asks the model to answer whether a coin is still heads up
- Results
 - Performed well even in OOD
 - Length generalization by CoT

Conclusion

- Chain-of-Thought performance
 - Standard prompting has a flat scaling curve
 - CoT has dramatically increasing scaling curves
- It raises more questions
 - How much improvement with a further increase in model scale?
 - What other prompting methods would be there?
- Limitation
 - Open question: Is it actually "Reasoning"?
 - Cost of manually augmenting exemplars
 - There is no guarantee of correct reasoning paths
 - CoT appears only at large models