Math 4000/6000 - Homework #5

posted October 9, 2018; due at the start of class on October 18, 2018

"Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country." – David Hilbert

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Exercise 3.1.13.
- 2. Exercise 3.1.15. *Hint:* You may assume, without proof, that the product rule holds for derivatives of polynomials over an arbitrary field. That is, (fg)' = f'g + fg'.
- 3. Let F be a field. Recall the definition of the gcd in F[x]: a gcd of a(x), b(x) is a common divisor of a(x) and b(x) in F[x] that is divisible by every common divisor.

Show that if $d(x) \in F[x]$ is a gcd of a(x), b(x), then so is $c \cdot d(x)$ for every nonzero $c \in F$. Conversely, show that every gcd of a(x), b(x) has the form $c \cdot d(x)$ for some nonzero $c \in F$.

4. Let F be a subfield of K, and let $\alpha \in K$. Suppose that α is a root of the irreducible polynomial $p(x) \in F[x]$. Let n be the degree of p(x). Show that every element of $F[\alpha]$ has a unique representation in the form

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{n-1}\alpha^{n-1}$$

where $a_0, a_1, ..., a_{n-1} \in F$.

Hint: We [will have] proved this in class without the uniqueness requirement. So your job is (only) to prove uniqueness.

- 5. Exercise 3.2.2(a,b) *Hint:* First read Examples 2 on p. 97.
- 6. Exercise 3.2.6(a,c,e)
- 7. (a) Let F and K be fields, and suppose that the nonconstant polynomial $f(x) \in F[x]$ factors in K[x] as

$$f(x) = c(x - \alpha_1) \cdots (x - \alpha_d),$$

where $\alpha_1, \ldots, \alpha_d \in K$. Show that $F[\alpha_1, \ldots, \alpha_d]$ is a field. Then explain why $F[\alpha_1, \ldots, \alpha_d]$ is a splitting field for f(x) over F.

- (b) Let $K = \mathbb{Q}[\sqrt[5]{2}, \cos(2\pi/5) + i\sin(2\pi/5)]$. First, show that K is a field. Then show that K is a splitting field of $x^5 2$ over \mathbb{Q} .
- 8. In Chapter 4, we will construct a field K with 4 elements containing \mathbb{Z}_2 as subfield. In this exercise, assume K is such a field. Then in addition to 0, 1 from \mathbb{Z}_2 , the field K has two extra elements; call these α and β .
 - (a) Show that $\alpha + 1 = \beta$.
 - (b) Show that $\alpha^2 = \beta$.
 - (c) Prove that K is a splitting field over \mathbb{Z}_2 of the polynomial $x^2 + x + 1 \in \mathbb{Z}_2[x]$.
- 9. (More on $\mathbb{Z}[i]$) In this exercise, we outline a proof of the following **division algorithm for** $\mathbb{Z}[i]$:

Division algorithm for $\mathbb{Z}[i]$: Let $a, b \in \mathbb{Z}[i]$, with $b \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ with

$$a = bq + r$$
, and $N(r) < N(b)$. (\dagger)

Example: Let a = 10 + i and b = 2 - i. We have

$$10 + i = (2 - i) \underbrace{(4 + 2i)}_{q} + \underbrace{i}_{r},$$

where 1 = N(i) < N(2 - i) = 5.

(a) Explain (perhaps with a picture) why every complex number is within a distance $\frac{\sqrt{2}}{2}$ of some element of $\mathbb{Z}[i]$.

Hint: Think geometrically about the complex plane. Where are the elements of $\mathbb{Z}[i]$ located there?

- (b) Given $a, b \in \mathbb{Z}[i]$ with $b \neq 0$, let Q = a/b. (Remember that \mathbb{C} is a field, so a/b exists in \mathbb{Q} .) From part (a), you can find a Gaussian integer q with $|a/b q| \leq \frac{\sqrt{2}}{2}$. Prove that if we define r := a bq, then (†) holds. In fact, prove the stronger statement that $N(r) \leq \frac{1}{2}N(b)$.
- (c) Find q and r satisfying (†) if a = 5 + 7i and b = 3 i.
- 10. (*) Exercise 3.1.24.
- 11. (*) (An example where there is no gcd) Let $\sqrt{-3}$ denote the complex number $i\sqrt{3}$. Define $\mathbb{Z}[\sqrt{-3}]$ as $\{a+b\sqrt{-3}:a,b\in\mathbb{Z}\}$. Then $\mathbb{Z}[\sqrt{-3}]$ is a subring of \mathbb{C} . (This is easy to check, but you are not asked to do so.) Prove that the elements a=4 and $b=2+2\sqrt{-3}$ do not have a gcd in $\mathbb{Z}[\sqrt{-3}]$, meaning that they have no common divisor in $\mathbb{Z}[\sqrt{-3}]$ divisible by every common divisor.

Hint: Define a function N(z) on $\mathbb{Z}[\sqrt{-3}]$ by putting $N(z) = z\bar{z}$. You may use without proof that N(z) is nonnegative-integer valued, that N(z) = 0 iff z = 0, that N(z) = 1 iff z is a unit, and that N(zw) = N(z)N(w). (The proofs are the same as for $\mathbb{Z}[i]$.) It may help to first prove the lemma that if $a \mid b$ (in $\mathbb{Z}[\sqrt{-3}]$), then $N(a) \mid N(b)$ (in \mathbb{Z}).