GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2

The GICR IGROUPR<n>E characteristics are:

Purpose

Controls whether the corresponding PPI is in Group 0 or Group 1.

Configuration

This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_IGROUPR<n>E are res0.

When GICD CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes

GICR IGROUPR<n>E is a 32-bit register.

Field descriptions

31 30 29 28 27

Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Gr

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit <x></x>	Meaning
0b0	When
	$\underline{GICD_CTLR}$.DS==1, the
	corresponding interrupt is
	Group 0.
	When
	\underline{GICD} CTLR.DS==0, the
	corresponding interrupt is
	Secure.

0b1	When
	$\underline{GICD_CTLR}$.DS==1, the
	corresponding interrupt is
	Group 1.
	When
	$\underline{GICD} \ \underline{CTLR}.DS = = 0$, the
	corresponding interrupt is
	Non-secure Group 1.

The reset behavior of this field is:

 On a GIC reset, this field resets to an architecturally unknown value.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGRPMODR<n>E to form a 2-bit field that defines an interrupt group. The encoding of this field is described in GICR_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is res0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

- The corresponding GICR_IGROUPR<n>E number, n, is given by n = (m-1024) DIV 32.
- The offset of the required GICR IGROUPR<n>E is (0x080 + (4*n)).
- The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_IGROUPR<n>E

When affinity routing is not enabled for the Security state of an interrupt in GICR IGROUPR<n>E, the corresponding bit is res0.

When <u>GICD_CTLR</u>.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
GIC Redistributor		0x0080 + (4 *	GICR_IGROUPR <n>E</n>
		n)	

Accesses on this interface are **RW**.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.