CSES 1202

Investigation

Prof. Edson Alves

Faculdade UnB Gama

You are going to travel from Syrjälä to Lehmälä by plane. You would like to find answers to the following questions:

- what is the minimum price of such a route?
- \blacktriangleright how many minimum-price routes are there? (modulo 10^9+7)
- what is the minimum number of flights in a minimum-price route?
- what is the maximum number of flights in a minimum-price route?

Você irá viajar de Syrjälä para Lehmälä de avião. Você gostaria de encontrar respostas para as seguintes questões:

- qual é o preço mínimo de tal rota?
- ightharpoonup existem quantas rotas de preço mínimo? (módulo 10^9+7)
- qual é o número mínimo de vôos em uma rota de preço mínimo?
- qual é o número máximo de vôos em uma rota de preço mínimo?

Input

The first input line contains two integers n and m: the number of cities and the number of flights. The cities are numbered $1,2,\ldots,n$. City 1 is Syrjälä, and city n is Lehmälä.

After this, there are m lines describing the flights. Each line has three integers a,b, and c: there is a flight from city a to city b with price c. All flights are one-way flights.

You may assume that there is a route from Syrjälä to Lehmälä.

Entrada

A primeira linha da entrada contém dois inteiros n e m: o número de cidades e o número de vôos. As cidades são numeradas $1,2,\ldots,n$. A cidade 1 é Syrjälä e a cidade n é Lehmälä.

Após isto, há m linhas descrevendo os vôos. Cada linha tem três inteiros a,b, e c: há um vôo da cidade a para a cidade b com preço c. Todos vôos são dados em sentido único.

Você pode assumir que existe uma rota de Syrjälä para Lehmälä.

Output

Print four integers according to the problem statement.

Constraints

- ▶ $1 \le n \le 10^5$
- ▶ $1 \le m \le 2 \times 10^5$
- $ightharpoonup 1 \le a, b \le n$
- ▶ $1 \le c \le 10^9$

Saída

Imprima quatro inteiros, de acordo com o texto do problema.

Restrições

- $ightharpoonup 1 < n < 10^5$
- ▶ $1 \le m \le 2 \times 10^5$
- $ightharpoonup 1 \le a, b \le n$
- ▶ $1 \le c \le 10^9$

2

4 5

1)

2

4 5 1 4 5

1)

2

4 5 1 4 5

2)

- 4 5
- 1 4 5
- 1 2 4
- 2 4 5

(3

- 4 5
- 1 4 5
- 1 2 4
- 2 4 5

(3

1 3 2

- 4 5
- 1 4 5
- 1 2 4
- 2 4 5
- 1 3 2
- 3 4 3

 \star Os quatro subproblemas apresentados podem ser divididos em dois grupos: o problema de distância mínima e os outros três

 \star Os quatro subproblemas apresentados podem ser divididos em dois grupos: o problema de distância mínima e os outros três

* O algoritmo de Dijkstra resolve o problema das distâncias mínimas

- \star Os quatro subproblemas apresentados podem ser divididos em dois grupos: o problema de distância mínima e os outros três
 - * O algoritmo de Dijkstra resolve o problema das distâncias mínimas
- \star Além disso, ele gera dois subprodutos úteis para os demais problemas: uma ordenação de vértices O e um subgrafo G'(V,E') de G(V,E)

- \star Os quatro subproblemas apresentados podem ser divididos em dois grupos: o problema de distância mínima e os outros três
 - * O algoritmo de Dijkstra resolve o problema das distâncias mínimas
- \star Além disso, ele gera dois subprodutos úteis para os demais problemas: uma ordenação de vértices O e um subgrafo G'(V,E') de G(V,E)
 - \star A aresta $(v,u) \in E'$ se $(u,v) \in E$ finaliza um caminho mínimo de 1 a v

 \star A partir de G' os três outros subproblemas podem ser resolvidos por DP

- \star A partir de G' os três outros subproblemas podem ser resolvidos por DP
- \star Os casos base são: minPaths[1] = 1 e minEdges[1] = maxEdges[1] = 0

- \star A partir de G' os três outros subproblemas podem ser resolvidos por DP
- \star Os casos base são: minPaths[1]=1 e minEdges[1]= maxEdges[1]=0
- * As transições são dadas por:

- \star A partir de G' os três outros subproblemas podem ser resolvidos por DP
- \star Os casos base são: minPaths[1]=1 e minEdges[1]= maxEdges[1]=0
- * As transições são dadas por:

$$\mathsf{minPaths}[u] = \sum_{(v,u) \in E'} \mathsf{minPaths}[v]$$

- \star A partir de G' os três outros subproblemas podem ser resolvidos por DP
- \star Os casos base são: minPaths[1]=1 e minEdges[1]= maxEdges[1]=0
- * As transições são dadas por:

$$\mathsf{minPaths}[u] = \sum_{(v,u) \in E'} \mathsf{minPaths}[v]$$

$$\mathsf{minEdges}[u] = \min_{(v,u) \in E'} \{ \ \mathsf{minEdges}[u], \mathsf{minEdges}[v] + 1 \ \}$$

- \star A partir de G' os três outros subproblemas podem ser resolvidos por DP
- \star Os casos base são: minPaths[1] = 1 e minEdges[1] = maxEdges[1] = 0
- * As transições são dadas por:

$$\begin{aligned} & \min \mathsf{Paths}[u] = \sum_{(v,u) \in E'} \mathsf{minPaths}[v] \\ & \min \mathsf{Edges}[u] = \min_{(v,u) \in E'} \{ \ \mathsf{minEdges}[\mathsf{u}], \mathsf{minEdges}[v] + 1 \ \} \\ & \max \mathsf{Edges}[u] = \max_{(v,u) \in E'} \{ \ \mathsf{maxEdges}[\mathsf{u}], \mathsf{maxEdges}[v] + 1 \ \} \end{aligned}$$

```
vector<ll> solve(int N)
{
   auto [dist, order] = dijkstra(1, N);
   auto [ps, ms, Ms] = min_paths(1, N, order);
   return { dist[N], ps[N], ms[N], Ms[N] };
}
```

```
pair<vector<ll>, vector<ll>> dijkstra(int s, int N)
    vector<ll> dist(N + 1, oo), order;
    dist[s] = 0:
    processed.reset();
    priority_queue<ii, vector<ii>, greater<ii>> pq;
    pq.emplace(0, s);
    while (not pq.empty())
        auto [d, u] = pq.top();
        pq.pop();
        if (processed[u])
            continue;
        order.emplace_back(u);
        processed[u] = true;
```

```
for (auto [v, w] : adj[u])
        if (dist[v] > d + w)
            dist[v] = d + w;
            pq.emplace(dist[v], v);
            in[v].clear();
            in[v].push_back(u);
        } else if (dist[v] == d + w)
            in[v].push_back(u);
return { dist, order };
```

```
tuple<vector<ll>, vector<ll>, vector<ll>>
min paths(int s, int N, const vector<11>& order)
{
    vector<11> ps(N + 1, 0), ms(N + 1, oo), Ms(N + 1. 0):
   ps[s] = 1;
   ms[s] = 0:
    for (auto x: order)
        for (auto v : in[x])
            ps[x] = (ps[x] + ps[v]) \% MOD;
            ms[x] = min(ms[x], 1 + ms[v]);
            Ms[x] = max(Ms[x], 1 + Ms[v]);
    return { ps, ms, Ms };
```