Simulating Wildfire Spread Using Physically Accurate Models

Stephen Lee, Anthony Mansur, and Lindsay Smith

Quick Recap

- Already implemented the computations for our simulation and are in the debug stage
- We were behind on rendering last milestone, so we made that our focus for this milestone

Goals for this milestone

- ★ Generate an **actual forest** small "forest" to test code
- ✓ Tree Rendering (branches & leaves)
- √ Module culling
- √ Terrain texturing
- √ Fluid Rendering (smoke)
- x Simulation Combustion

Scene Loader

- Researcher sent two scenes
 - Scene 1 (~40fps)
 - # of trees: 336
 - **#** of modules: **25,589**
 - # of branches: 192,085
 - # of grid cells: 4,608
 - Scene 2 (~4fps)
 - # of trees: 3,102
 - # of modules: 204,690
 - # of branches: 1,784,435
 - # grid cells: **120,000**

Scene 1 (vertices only)

Scene 2 (vertices only)

Tree Render

- OpenGL: Vertex, Geometry,
 Fragment Shaders
- Pipeline
 - VBOs connected with CUDA buffers
 - Generate cones & leaves
 - User inputs
 - Lambertian shading

Basic combustion testing

User Interface Demoing

Smoke Render

- ✓ Implement kernels for ray marching algorithm and VBO color update
- ✓ Create new data structures to maintain position and color data for smoke

Next Steps

- TOP PRIORITY: Test combustion simulation with our render by tuning physics parameters
- 2. Test simulation on the larger scene
- 3. Add fire color to grid cells based on heat map