AI IN THE BUILT ENVIRONMENT **DCP4300**

Week 10: Robotics

Reinforcement Learning

Dr. Chaofeng 'Charles' Wang

University of Florida College of Design Construction and Planning

Reinforcement Learning:

Train the Agent to learn to React to an Environment by trial and error.

Has broad applications. Some examples:

Autonomous Driving

Gaming Al

Robotics

Design

Value-based RL

If we know the optimal action-value function $Q^*(s_t, a_t)$: The agent can take an action that maximize Q^* : $a_t = argmax_aQ^*(s_t, a)$

 $Q^*(s_t, a_t)$ can be calculated by looping over all *possible future paths*, for simplest cases.

A practical method is to approximate it **iteratively**.

Q-learning Algorithm

Action

State

Q	a_1	a_2	a_3	a_4
s_1	$Q(s_1, a_1)$	$Q(s_1, a_2)$	$Q(s_1, a_3)$	$Q(s_1, a_4)$
\mathbf{s}_2	$Q(s_2, a_1)$	$Q(s_2, a_2)$	$Q(s_2, a_3)$	$Q(s_2, a_4)$
s_3	$Q(s_3, a_1)$	$Q(s_3, a_2)$	$Q(s_3, a_3)$	$Q(s_3, a_4)$
•	•	•	•	•
•	•	•	•	•

Our objective is to learn the values $Q(s_t, a_t)$ which represents the policy

Q-learning Algorithm

Action

State

Q	a1	a2	a3	a4
s1	0	0	0	0
s2	0	0	0	0
s3	0	0	0	0
•	•	•	•	•
•	•	•	•	•

 $Update \ Q(s,a) \ in \ table$ $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma max * Q(s',*) - Q(s,a)]$ r

S

In Q-learning, we use a table to store and calculate the optimal Q values. This is ok for simple cases.

But for more complicated cases, this is not doable because the dimension of the table can the calculation needed are too large.

Instead of using a table, we can use a neural network to approximate the real $Q^*(s_t, a_t)$.

The method is called Deep Q Network (DQN)

Deep Q Network (DQN)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. https://www.cs.toronto.edu/~vmnih/docs/dgn.pdf

Deep Q Network (DQN)

 s_t

Create A Reinforcement Learning Workflow

OpenAl Gym DeepMind-control Atari *Your own*

Algorithms:

ARS

A2C

DDPG

DQN

HER

PPO

QR-DQN

SAC

TD3

TQC

TRPO

Maskable PPO

Some robotics simulation environments:

OpenAl Gym:

https://www.gymlibrary.ml/pages/third party environments/#other-environments

A Review of Physics Simulators for Robotic Applications

https://ieeexplore.ieee.org/document/9386154

A Survey on Simulation Environments for Reinforcement Learning

https://ieeexplore.ieee.org/document/9494694

More RL

https://spinningup.openai.com/en/latest/

DeepMind x UCL Reinforcement Learning Lecture Series

https://deepmind.com/learning-resources/reinforcementlearning-series-2021

Collection of implementations of RL https://stable-baselines3.readthedocs.io/en/master/

Tensorflow Agents also has implementations https://www.tensorflow.org/agents

Exercise: RL with Stable-baseline3

Lunar Lander example: https://stable-baselines3.readthedocs.io/en/master/guide/examples.html

Create your own environments: https://stable-baselines3.readthedocs.io/en/master/guide/custom_env.html

Exercise: Build your own environment and RL workflow (TensorFlow)

Tensorflow Agents: Environment: https://www.tensorflow.org/agents/tutorials/2_environments_tutorial

Tensorflow Agents: DQN https://www.tensorflow.org/agents/tutorials/1 dqn tutorial

Workflow:

https://colab.research.google.com/drive/1wkklY2cj -qvA7AJvRUnTYWuE GNJvvt?usp=sharing

