PUSH DOWN AUTOMATA

Swathi J

Assistant Professor(Sr.Gr.)

PSG College of Technology

Push Down Automata

- Memory in the form of finite stack (LIFO)
- Transition from one state to another is based on current state, input and TOS only.

TRANSITIONS IN PDA

ACTIONS PERFORMED ON STACK

 $(Q \times \Sigma \times \Gamma) \rightarrow Q \times \Gamma^*$

$$(q0, a, z0) \rightarrow (q1, az0)$$

$$(q0, a, z0) \rightarrow (q1,z0)$$

$$(q0, a, a) \rightarrow (q1, ^)$$

1.Push

2. No Change

3. Pop

NOTE:

- 1. Empty Stack z0
- 2. End of input symbol ^

Let G be a CFG having the production S → a S a | bSb | c

L ={c, aca,bcb,aacaa, bbcbb,abcba,bacab......}

$$L = \{x c x^r \mid x \in \{a, b\} * \}$$

z0

$L = \{x c x^r \mid x \in \{a, b\} * \}$

STATE	INPUT	STACK SYMBOL	MOVES
q0	a	z0	(q0,a z0)
q0	b	z0	(q0,b z0)
q0	a	a	(q0,aa)
q0	b	b	(q0, bb)
q0	a	b	(q0,a b)
q0	b	a	(q0,ba)
q0	С	z0	(q1, z0)
q0	С	a	(q1,a)
q0	С	b	(q1, b)
q1	a	a	(q1, ^)
q1	b	b	(q1, ^)
q1	٨	z0	(q1, z0)

Trace string: abcba

RESULTING STATE	UNREAD INPUT	STACK
q0	a bcba	z0
q0	b cba	a z0
q0	c ba	b a z0
q1	b a	b a z0
q1	a ^	a z0
q1	^	z0
q2	-	z0

Trace string: bcba

RESULTING STATE	UNREAD INPUT	STACK
q0	b cba	z0
q0	c ba	b z0
q1	b a	b z0
q1	a	z0

FORMAL DEFINITION OF PUSH DOWN AUTOMATA

- A PDA is a **7 tuple** (**Q**, **Σ**, **Γ**, **q0**, **z0**, **F**, **δ**) where
 - Q finite set of states
 - $-\Sigma$ finite set of input symbols
 - $-\Gamma$ finite set of stack symbols
 - -q0- start state $q0 \in Q$
 - Z0- initial stack symbol, q0 ∈ Γ
 - F set of final states F \subseteq Q
 - -- δ transition function (Q x Σ x Γ) \rightarrow Q x Γ*

Design a PDA to accept the language L(G) = { $a^n b^n \mid n \ge 0$ }

Design a PDA to accept the language L(G) = { $a^n b^n \mid n > 0$ }

TYPES

- DPDA- Deterministic PDA
- 2. NPDA- Non Deterministic PDA

DPDA- Deterministic PDA

Let M= (Q, Σ , Γ , q0, z0, F, δ) be a PDA. M is deterministic if it satisfies both the following conditions

- 1. For any $q \in Q$, $a \in \Sigma \cup \{^{\wedge}\}$ and $X \in \Gamma$, the set (q,a,X) has at most one element.
- 2. For any $q \in Q$ and $X \in \Gamma$, if $(q, ^,X) \neq NULL$ then (q,a,X) = NULL for every $a \in \Sigma$

POWER OF DPDA ≠ POWER OF NPDA

PDA to accept palindromes – odd length

Strings={a,b, aaa,bbb,aba,bab,aabaa,ababa......}

PDA to accept palindromes - odd & even length

Swathi J, AP(Sr.Gr), PSG College of

Strings={^,a,b, aa,bb, aaa,bbb,aba,bab, aaaa,abba, aabaa,ababa.......}

COMPUTATION TREE: aa

Draw PDA for the language L(G) = { $a^n b \ a^n \mid n \ge 1$ }

Draw a PDA for the language L(G) = { $a^nb^{n+1} \mid n \ge 0$ }

CFG TO PDA

- 1. Top down PDA
- 2. Bottom up PDA

TOP DOWN PDA CORRESPONDING TO CFG

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow b$

TO IMPLEMENT TOP DOWN APPROACH USING STACK

- 1. Push start symbol into stack
- 2. Replace variable on TOS with production on RHS (Push production in reverse order)
- 3. Pop symbols from stack if it matches with input symbol

Construct a TOP DOWN PDA to accept strings with more number of a's than b's

 $S \rightarrow a |aS| bSS | SbS | SSb$

$S \rightarrow a |aS| bSS | SbS | SSb$

STATE	INPUT	STACK SYMBOL	MOVES
q0	٨	z0	(q1, Szo)
q1	^	S	(q1, a) (q1,aS) (q1, bSS) (q1, SbS) (q1,SSb)
q1	a	a	(q1, ^)
q1	b	b	(q1, ^)
q1	٨	z0	(q2, zo)

BOTTOM UP PDA CORRESPONDING TO CFG

$S \rightarrow a |aS| bSS | SbS | SSb$

String: aba

$S \rightarrow a |aS| bSS | SbS | SSb$

	STATE	INPUT	STACK SYMBOL	MOVES	
SHIFT	q	а	X	(q,aX)	
S→ a	q	^	a	(q,S)	
	q	^	S	(q1, ^)	
S→ aS	q1	^	а	(q, S)	
	q	۸	S	(q2, ^)	
s→ bss	q2	^	S	(q3, ^)	
	q3	^	b	(q, S)	
S→ SSb	q	^	b	(q4, ^)	
	q4	^	S	(q5, ^)	
	q5	^	S	(q, S)	
S→ SSb	q	٨	S	(q6, ^)	
	q6	^	b	(q7, ^)	
	q7	٨	S	(q, S)	
ACCEPT	q	^	S	(qs, ^)	
	qs	∧ Swath	i J, AP(Sr.Gr), PSG College o	(qf, z0)	

Technology

PDA FOR THE LANGUAGE L= $\{0^N 1^N 0^N \mid N > 0\}$

PUMPING LEMMA FOR CONTEXT FREE LANGUAGE

- USED TO PROVE THAT A LANGUAGE IS NOT CONTEXT FREE.
- Let L be a CFL. Then there exist a constant "n" such that for every string u in L such that |u| ≥ n we can break u into 5 strings vwxyz such that
 - -|wy|>0
 - $-|wxy| \le n$
 - For all m ≥ 0, the string v w^m x y^m z is in language

THE LANGUAGE L= $\{0^N 1^N 0^N \mid N > 0\}$ is NOT regular

```
n=6 (pumping constant)
```

u= 000111000

v= 00 w=01 x= 11 y=00 z= 0

For all $m \ge 0$, the string $v w^m \times y^m z$ is in language

 $\mathbf{v} \ \mathbf{w}^{\mathbf{0}} \ \mathbf{x} \ \mathbf{y}^{\mathbf{0}} \ \mathbf{z} = 00 \ 11 \ 0 \rightarrow \text{invalid string that does NOT}$ belongs to language

L is not CFL.