Computer Technology

Logic Gates Part 1

Gayan Rukshantha gayanp@nsbm.lk
Faculty of Computing
NSBM Green University

The AND Gate

Input		Output
Α	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

The AND Gate only results True (1) when all the inputs are True (1).

The OR Gate

Input		Output
Α	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

The OR Gate only results False (0) when all the inputs are False (0).

The NOT Gate / The Invertor

Input(2 ¹)	Output
Α	Y= \(\overline{A} \)
0	1
1	0

The NOT Gate convert the state of the input into its corresponding Opposite.

Recap

Inputs		Output
A	B	C
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
A	C
0	1
1	0

Construct the logic circuits for following Boolean expressions.

- I. (A'.B)+(B+C)
- II. (A.B.C) . (C+B')'
- III. (B'+C')'.A'
- IV. A+B'.C+D
- V. X'.Y'.Z'+(P.Q)'

The NAND Gate

Input		Output
Α	В	Y= \(\overline{A.B} \)
0	0	1
0	1	1
1	0	1
1	1	0

NAND gate is a combination of And gate and the Not gate

The NOR Gate

Inp	ut	Output
Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Nor gate is a combination of Or gate and the Not gate

The XOR Gate

Inp	outs	Outputs
Х	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

XOR gate is the exclusive approach of the Or gate.

XOR Continue

. . . is equivalent to . .

$$A \oplus B = A\overline{B} + \overline{A}B$$

Construct a truth table to prove the relationship of these two circuits!!!!

Draw the logic circuits for following expressions

- I. (A'.B.C)'+(B+C)
- II. (A.B.C) . (C+B')'
- III. ((B'+C')'.A')'
- IV. (A+B'.C)+D
- V. X'.Y.Z'+(P.Q)'
- VI. A'B+AB'

Question 2

A greenhouse uses a system to monitor the conditions that plants need to grow.

The inputs to the system are:

Input	Binary value	Condition
W	1	Window is open
VV	0	Window is closed
Т	1	Temperature >=26 °C
	0	Temperature <26 °C
Н	1	Humidity >=50%
	0	Humidity <50%

The system will sound an alarm when certain conditions are detected.

Alarm (X) will sound (=1) when:

window is closed and temperature >=26 °C

or

temperature <26 °C and humidity >=50%

Thank You!!!