Hyslan Silva Cruz Iara Regina Grilo Papais

Transformações Lineares e suas aplicações

Suzano

Hyslan Silva Cruz Iara Regina Grilo Papais

Transformações Lineares e suas aplicações

Monografia de graduação à Universidade Virtual do Estado de São Paulo, como requisito parcial para a obtenção do título de Licenciatura em Matemática.

Orientadora: Lorena Salvi Stringheta

Universidade Virtual do Estado de São Paulo

Orientadora: Lorena Salvi Stringheta

Suzano

2024

Resumo

Resumo de nosso trabalho.

Palavras-chave: Transformação Linear, Álgebra Linear, Matrizes

Abstract

This is the english abstract.

Keywords: latex. abntex. text editoration.

Lista de tabelas

	Tabela 1 – Ve	etores e escalares	utilizados na com	binação linear		13
--	---------------	--------------------	-------------------	----------------	--	----

Lista de símbolos

 \mathbb{R} Conjunto dos números reais.

 \exists Existe.

 \in Pertence.

Tal que.

Sumário

1	INTRODUÇÃO 7
2	ESPAÇOS VETORIAIS
2.1	Subespaços Vetoriais
2.2	Combinação Linear
2.3	Dependência e Independência Linear
3	TRANSFORMAÇÕES LINEARES
4	APLICAÇÕES DE TRANSFORMAÇÕES LINEARES 16
5	CONSIDERAÇÕES FINAIS
	REFERÊNCIAS

1 Introdução

Com o decorrer do tempo, depois da era de ouro da álgebra linear nos meados do século XVIII. Onde, Euler e Louis Lagrange publicaram o "Recherche d'Arithmétique", entre 1773 e 1775, no qual estudavam certos conceitos da transformação linear. Posteriormente, Johann Carl Friedrich Gauss, também estudou sobre assuntos que apresentou similaridade com a matriz de transformação linear.

Até se arrefecer o assunto no século XIX e XX, com Giuseppe Peano, onde foi cunhado o termo "sistema linear"com a primeira definição de axiomática para espaço vetorial. Nos dias atuais, a apresentação da álgebra linear, temas abordados nesse campo da matemática são frequentemente esquecidos, portanto, este estudo trata de buscar o entendimento e compreender sobre as transformações lineares em sua totalidade e aplicações no contexto atual contemporâneo.

Passado esse brevíssimo contexto histórico e motivador para a nossa pesquisa e deleite deste ramo de estudado, iremos nos adiantar a certos conceitos matemáticos elementares já bastantes fundamentados no decorrer dos anos escolares do ensino básico regular. Para isto, passaremos a certas definições matemáticas primordiais que serão apresentadas nesta monografia para as discussões advindas a posteriori neste estudo.

Portanto, dividimos esta monografia em 4 capítulos, a saber, revisão literária fundamentais, pesquisas de artigos, teses e discussões recentes sobre as transformações lineares em diversas aplicações, seu contexto educacional atual em questão de matéria aplicada e por conseguinte nossa metodologia utilizada, os resultados obtidos dessa pesquisa e, por fim, nossa discussão final, a saber, do uso da transformação linear atualmente.

2 Espaços Vetoriais

Começaremos pela definição de um espaço vetorial, onde, podemos tratar como um vetor ao designar um elemento do espaço vetorial de um número \mathbb{R} definido tal que:

Definição 01: Seja um conjunto V, não vazio, com duas operações: soma, $V \times V \to V$, e multiplicação por escalar, $R \times V \to V$, tais que, para quaisquer $u, v, w \in \mathbb{R}$, satisfaçam as propriedades:

- 1. $(u+v)+w=u+(v+w), \forall u,v,w\in V$ (propriedade associativa.)
- 2. 1u = u.
- 3. $u + v = v + u, \forall u, v \in V$ (propriedade comutativa).
- 4. $\exists 0 \in V \text{ tal que } u + 0 = u.$
- 5. $\exists -u \in V$ tal que u + (-u) = 0.
- 6. a(u + v) = au + av.
- 7. (a + b)v = av + bv.
- 8. (ab)v = a(bv).
- 9. 1u = u.

Observação: 0 é o vetor nulo.

Observação: Limitaremos nossa discussão, demonstrações e aplicações dentro do conjunto dos números reais apenas.

Exemplo 01: Suponhamos uma matriz $M_{(2,2)}$, onde, é denotado por $M_{(m,n)}$, dado por $M=[a_{ij}]_{m\times n}$ podendo ser interpretada dessa forma, $V=M_{(2,2)}$, onde V, é um conjunto não vazio, seu escalar pertencente ao conjunto dos \mathbb{R} , que satisfazem todas as propriedades de um espaço vetorial.

Figura 1 – Exemplo 01: Vetor no plano.

A partir disto, podemos perceber o uso analítico dos espaços vetoriais para resolução de problemas em geral. Vejamos mais alguns exemplos.

Exemplo 02: O exemplo anterior, trata-se de uma matriz de \mathbb{R}^2 pode ser dito como, no plano, agora iremos expandir para \mathbb{R}^3 , seja um vetor A = (x, y, z) ou representado pela forma matricial:

$$A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Assim, por quaisquer números reais, podemos fazer uma projeção ortogonal no espaço, segue um exemplo traçado:

Figura 2 – Exemplo 02: Exemplo de vetor no espaço.

Exemplo 03: Consideremos n - uplas de números reais.

$$V = \mathbb{R}^n = (x_1, x_2, \dots, x_n); x_i \in \mathbb{R}$$
 e se $u = (x_1, x_2, \dots, x_n), v = (y_1, y_2, \dots, y_n)$ e $a \in \mathbb{R}$,
$$u + v = (x_1 + y_1, x_2, y_2, \dots, x_n, y_n)$$
 e $au = (ax_1, ax_2, \dots, ax_n)$

Por tratarmos de uma quantidade n de números, o campo tridimensional deixa de ser visto, e passamos a ter \mathbb{R}^n dimensões, as propriedades não deixam de valer independente a quantidade de dimensões.

2.1 Subespaços Vetoriais

Nesta seção iremos introduzir conceitos no estudo de espaço vetorial para subespaço vetorial.

Definição 02: Dado um espaço vetorial V, um subconjunto W, não vazio, será um subespaço vetorial de V se:

- 1. Para quaisquer $u, v \in W$ tivermos $u + v \in W$.
- 2. Para quaisquer $a \in R, u \in W$ tivermos $au \in W$.

Teorema 01: Um subconjunto não vazio W de V é um subespaço de V se, e somente se, para cada par de vetores α , β em W e cada escalar c em F, o vetor $c\alpha + \beta$ está em W.

Demonstração: Suponhamos que W seja um subconjunto não vazio de V, tal que, $c\alpha + \beta$ pertença a W para todos os vetores α , β em W e todos escalares c em F. Como W é não vazio, existe um vetor ρ em W, logo $(-1)\rho + \rho = 0$ está em W. Então se α é um vetor arbitrário em W e c é um escalar arbitrário, o vetor $c\alpha = c\alpha + 0$ está em W. Em particular $(-l)\alpha = -\alpha$ está em W. Finalmente se α e β estão em W, então $\alpha + \beta = 1\alpha + \beta$ está em W. Assim, W é um subespaço de V.

Exemplo 04: Considere o espaço vetorial \mathbb{R}^3 . O conjunto de todos os vetores que residem no plano xy, ou seja, $(x, y, 0) \mid x, y \in \mathbb{R}$, forma um subespaço vetorial de \mathbb{R}^3 .

Se o conjunto dado forma um subespaço vetorial de \mathbb{R}^3 , precisamos verificar as três propriedades fundamentais:

- 1. Contém o vetor nulo: O vetor nulo em \mathbb{R}^3 é (0,0,0). Este vetor também está contido no plano xy, pois z=0.
- 2. É fechado sob adição: Se tomarmos dois vetores $(x_1, y_1, 0)$ e $(x_2, y_2, 0)$ no plano xy, a sua soma será $(x_1 + x_2, y_1 + y_2, 0)$, que também reside no plano xy.
- 3. É fechado sob multiplicação por escalar: Para qualquer escalar c e vetor (x, y, 0) no plano xy, $c \cdot (x, y, 0) = (cx, cy, 0)$, que também está no plano xy.

Então, o conjunto de todos os vetores (x,y,0) com $x,y\in\mathbb{R}$ forma um subespaço vetorial de \mathbb{R}^3 .

Exemplo 05: No espaço vetorial das funções reais de uma variável real, $V = f(x) \mid f : \mathbb{R} \to \mathbb{R}$, considere o conjunto de todas as funções lineares, ou seja, $f(x) = mx + b \mid m, b \in \mathbb{R}$. Esse conjunto forma um subespaço vetorial de V. Novamente, você pode verificar as propriedades para confirmar.

Se o conjunto dado forma um subespaço vetorial de V, novamente precisamos verificar as três propriedades fundamentais:

- 1. Contém a função nula: A função nula em V é f(x)=0. Esta função é uma função linear, pois pode ser escrita como $f(x)=0\cdot x+0$. Portanto, a função nula está contida no conjunto.
- 2. É fechado sob adição: Se tomarmos duas funções lineares $f_1(x) = m_1 x + b_1$ e $f_2(x) = m_2 x + b_2$, a sua soma será $f_1(x) + f_2(x) = (m_1 + m_2)x + (b_1 + b_2)$, que também é uma função linear. Portanto, o conjunto é fechado sob adição.
- 3. É fechado sob multiplicação por escalar: Para qualquer escalar c e função linear f(x) = mx + b, a multiplicação por escalar cf(x) = c(mx + b) = (cm)x + (cb) também é uma função linear. Assim, o conjunto é fechado sob multiplicação por escalar.

Portanto, o conjunto de todas as funções lineares f(x)=mx+b com $m,b\in\mathbb{R}$ forma um subespaço vetorial de V.

Exemplo 06: No espaço das matrizes reais 2×2 , $M_{(2,2)}$, considere o conjunto de todas as matrizes simétricas, ou seja, aquelas em que $A = A^T$. Esse conjunto forma um subespaço vetorial de $M_{(2,2)}$. Você pode demonstrar isso verificando as propriedades de um subespaço vetorial

Para tal, é imperativo investigar as três propriedades basilares:

- 1. **Presença da Matriz Nula:** A matriz nula em $M_{(2,2)}$ é a matriz $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Nota-se que esta matriz é simétrica, posto que $A=A^T$. Portanto, a matriz nula está asseguradamente contida no conjunto em questão.
- 2. **Fechamento sob Adição:** Considerando duas matrizes simétricas A e B, a sua soma A+B é também simétrica, visto que $(A+B)^T=A^T+B^T=A+B$. Logo, o conjunto demonstra ser fechado sob adição.
- 3. **Fechamento sob Multiplicação por Escalar:** Para qualquer escalar c e matriz simétrica A, a multiplicação por escalar cA é igualmente simétrica, haja vista que $(cA)^T = cA^T = cA$. Deste modo, o conjunto revela-se fechado sob multiplicação por escalar.

Assim sendo, constata-se que o conjunto de todas as matrizes simétricas configura-se como um subespaço vetorial de $M_{(2,2)}$.

2.2 Combinação Linear

Dentro de um espaço vetorial, conforme demonstrado que podemos ter subconjuntos de espaços vetoriais, é possível a obtenção de novos vetores a partir de vetores dados (BOLDRINI et al., 1986).

Definição 03: Sejam V um espaço vetorial \mathbb{R} , $v_1, v_2, \ldots, v_n \in V$ e $a_1, \ldots, a_n \in \mathbb{R}$. Então, o vetor $v = a_1v_1 + a_2v_2 + \ldots + a_nv_n$ é um elemento de V podendo ser chamado combinação linear de v_1, \ldots, v_n .

Se $V \subset W$, podemos adotar a notação $W = [v_1, \dots, v_n]$, onde expandindo-o $W = [v_1, \dots, v_n] = v \in V; v = a_1v_1 + \dots + a_nv_n, a_i \in \mathbb{R}, 1 \leqslant i \leqslant n$

Exemplo 07: Presuma um vetor $V=\mathbb{R}^3, v\in V, v\neq 0$. Se imaginarmos sua reta que contém o vetor v, onde, $[v]=av:a\in\mathbb{R}$

Figura 3 – Retirado de (BOLDRINI et al., 1986), pg. 113.

Exemplo 08: Se obtemos $v_1, v_2 \in \mathbb{R}^3$ e $v_3 \in [v_1, v_2]$, então $[v_1, v_2, v_3] = [v_1, v_2]$, então v_3 é um combinação linear de v_1 e v_2 .

Figura 4 – Retirado de (BOLDRINI et al., 1986), pg. 113.

Exemplo 09: Consideremos o espaço vetorial \mathbb{R}^3 e os vetores $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ e $\mathbf{w} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$. Sejam também os escalares a=3 e b=-1. Então temos, os seguintes elementos.

> **Componentes Escalar** Vetor 3 2, 3, 1 \mathbf{v} 1, -1, 2-1

w

Tabela 1 – Vetores e escalares utilizados na combinação linear

Definimos a combinação linear dos vetores v e w como:

$$a\mathbf{v} + b\mathbf{w} = 3 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

Aplicando as operações, obtemos:

$$a\mathbf{v} + b\mathbf{w} = \begin{pmatrix} 6\\9\\3 \end{pmatrix} + \begin{pmatrix} -1\\1\\-2 \end{pmatrix} = \begin{pmatrix} 6-1\\9+1\\3-2 \end{pmatrix} = \begin{pmatrix} 5\\10\\1 \end{pmatrix}.$$

Portanto, a combinação linear dos vetores v e w com os coeficientes a=3 e b=-1 é o vetor

$$\begin{pmatrix} 5 \\ 10 \\ 1 \end{pmatrix}$$

2.3 Dependência e Independência Linear

3 Transformações Lineares

Neste capítulo, iremos tratar sobre um tipo especial de função ou aplicação, onde, segundo (STEINBRUCH; WINTERLE, 1987), o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto a variável independente como a variável dependente são vetores, razão pela qual essas funções são chamadas vetoriais.

Definição 03: Sejam V e W dois espaços vetoriais. Uma transformação linear (aplicação linear) é uma função de V em W, $F: V \to W$, que satisfaz as seguintes condições:

- 1. Para quaisquer u e v em V, F(u+v) = F(u) + F(v).
- 2. Para quaisquer $k \in R$ e $v \in V$, F(kv) = kF(v).

4 Aplicações de Transformações Lineares

Aguardando pela Caroline Pires...

5 Considerações Finais

That's all folks!

Referências

BOLDRINI, J. L. et al. Algebra Linear. 3. ed. São Paulo: Harbra, 1986. 12, 13

HOFFMAN, K.; KUNZE, R. Álgebra Linear. 2. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1979.

STEINBRUCH, A.; WINTERLE, P. *Álgebra Linear*. Pearson Universidades, 1987. ISBN 9780074504123. Disponível em: https://books.google.com.br/books?id=q36CPgAACAAJ. 15

ULHOA, C. F.; LOURENÇO, M. L. *Um Curso de Álgebra Linear*. 2. ed. São Paulo: EDUSP, 2018.