Analysis II

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

28. September 2017

Inhaltsverzeichnis

Inl	haltsverzeichnis	2
I.	Vorwort I.1. Über dieses Skriptum I.2. Wer I.3. Wo	
1.	Der Raum \mathbb{R}^n	7
2.	Konvergenz im \mathbb{R}^n	11
3.	Grenzwerte bei Funktionen, Stetigkeit	15
4.	Partielle Ableitungen	19
5 .	Differentiation	23
6.	Differenzierbarkeitseigenschaften reellwertiger Funktionen	29
7.	Quadratische Formen	35
8.	Extremwerte	39
9.	Der Umkehrsatz	41
10	.Implizit definierte Funktionen	45
11	.Extremwerte unter Nebenbedingungen	47
12	. Wege im \mathbb{R}^n	51
13	. Wegintegrale	57
14	. Stammfunktionen	61
15	.Integration von Treppenfunktionen	65
16	. Das Lebesguesche Integral	69
17	. Quadrierbare Mengen	81
18	. Konvergenzsätze	87
19	. Messbare Mengen und messbare Funktionen	93
20	.Satz von Fubini / Substitutionsregel	95

In halts verzeichn is

21. Parameterabhängige Integrale	99
A. Satz um Satz (hüpft der Has)	101
Stichwortverzeichnis	104
B. Credits für Analysis II	107

I. Vorwort

I.1. Über dieses Skriptum

Dies ist ein erweiterter Mitschrieb der Vorlesung "Analysis II" von Herrn Schmoeger im Sommersemester 05 an der Universität Karlsruhe (TH). Die Mitschriebe der Vorlesung werden mit ausdrücklicher Genehmigung von Herrn Schmoeger hier veröffentlicht, Herr Schmoeger ist für den Inhalt nicht verantwortlich.

I.2. Wer

Gestartet wurde das Projekt von Joachim Breitner. Beteiligt am Mitschrieb sind außer Joachim noch Pascal Maillard, Wenzel Jakob und andere.

1.3. Wo

Alle Kapitel inklusive IATEX-Quellen können unter http://mitschriebwiki.nomeata.de abgerufen werden. Dort ist ein Wiki eingerichtet und von Joachim Breitner um die IATEX-Funktionen erweitert. Das heißt, jeder kann Fehler nachbessern und sich an der Entwicklung beteiligen. Auf Wunsch ist auch ein Zugang über Subversion möglich.

1. Der Raum \mathbb{R}^n

Sei $n \in \mathbb{N}$. $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$ ist mit der üblichen Addition und Skalarmultiplikation ein reeller Vektorraum.

$$e_1 := (1, 0, \dots, 0), \ e_2 := (0, 1, 0, \dots, 0), \ \dots, \ e_n := (0, \dots, 0, 1) \in \mathbb{R}^n.$$

Definition

Seien $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$

- (1) $x \cdot y := xy := x_1y_1 + \dots + x_ny_n$ heißt das **Skalar** oder **Innenprodukt** von x und y.
- (2) $||x|| = (x \cdot x)^{\frac{1}{2}} = (x_1^2 + \dots + x_n^2)^{\frac{1}{2}}$ heißt die **Norm** oder **Länge** von x.
- (3) ||x y|| heißt der **Abstand** von x und y.

Beispiele:

- (1) $||e_j|| = 1$ (j = 1, ..., n)
- (2) $n = 3 : ||(1,2,3)|| = (1+4+9)^{\frac{1}{2}} = \sqrt{14}$

Beachte:

- (1) $x \cdot y \in \mathbb{R}$
- (2) $||x||^2 = x \cdot x$

Satz 1.1 (Rechenregeln zur Norm)

Seien $x, y, z \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{R}$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$

- (1) $(\alpha x + \beta y) \cdot z = \alpha(x \cdot z) + \beta(y \cdot z), \ x(\alpha y + \beta z) = \alpha(xy) + \beta(xz)$
- (2) $||x|| \ge 0; ||x|| = 0 \iff x = 0$
- (3) $\|\alpha x\| = |\alpha| \|x\|$
- (4) $|x \cdot y| \le ||x|| ||y||$ Cauchy-Schwarzsche Ungleichung (CSU)
- (5) $||x + y|| \le ||x|| + ||y||$
- (6) $|||x|| ||y||| \le ||x y||$
- (7) $|x_j| \le ||x|| \le |x_1| + |x_2| + \ldots + |x_n| \ (j = 1, \ldots, n)$

Beweis

(1), (2), (3) nachrechnen.

- (6) Übung.
- (4) O.B.d.A: $y \neq 0$ also ||y|| > 0. $a := x \cdot x = ||x||^2$, b := xy, $c := ||y||^2 = y \cdot y$, $\alpha := \frac{b}{c}$. $0 \le \sum_{j=1}^{n} (x_j \alpha y_j)^2 = \sum_{j=1}^{n} (x_j^2 2\alpha x_j y_j + a^2 y^2) = a 2\alpha b + \alpha^2 c = a 2\frac{b}{c}b + \frac{b^2}{c^2}c = a \frac{b^2}{c} \implies 0 \le ac b^2 \implies b^2 \le ac \implies (xy)^2 \le ||x||^2 ||y||^2$.
- (5) $||x+y||^2 = (x+y)(x+y) \stackrel{(1)}{=} x \cdot x + 2xy + y \cdot y = ||x||^2 + 2xy + ||y||^2 \le ||x||^2 + 2||xy|| + ||y||^2 \stackrel{(4)}{\leq} ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$

(7)
$$|x_j|^2 = x_j^2 \le x_1^2 + \dots + x_n^2 = ||x||^2 \implies 1$$
. Ungleichung; $x = x_1 e_1 + \dots + x_n e_n \implies ||x|| = ||x_1 e_1 + \dots + x_n e_n|| \le ||x_1 e_1|| + \dots + ||x_n e_n|| = |x_1| + \dots + |x_n||$

Seien $p, q, l \in \mathbb{N}$. Es sei A eine reelle $p_{\times}q$ -Matrix.

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1q} \\ \vdots & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nq} \end{pmatrix} \qquad ||A|| := \left(\sum_{j=1}^{p} \sum_{k=1}^{q} \alpha_{jk}^{2} \right)^{\frac{1}{2}} \mathbf{Norm} \text{ von A}$$

Sei B eine reelle $q_x l$ -Matrix ($\Longrightarrow AB$ existiert). Übung: $||AB|| \le ||A|| ||B||$

Sei
$$x = (x_1, \dots, x_q) \in \mathbb{R}^q$$
. $Ax := A \begin{pmatrix} x_1 \\ \vdots \\ x_q \end{pmatrix}$ (Matrix-Vektorprodukt).

Es folgt:

$$||Ax|| \le ||A|| ||x||$$

Definition

Sei $x_0 \in \mathbb{R}^n$, $\delta > 0$, $A, U \subseteq \mathbb{R}^n$.

- (1) $U_{\delta}(x_0) := \{x \in \mathbb{R}^n : ||x x_0|| < \delta\}$ heißt δ -Umgebung von x_0 oder **offene Kugel** um x_0 mit Radius δ .
- (2) U ist eine **Umgebung** von $x_0 : \iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq U$.
- (3) A heißt **beschränkt**: $\iff \exists c \geq 0 : ||a|| \leq c \forall a \in A.$
- (4) $x_0 \in A$ heißt ein **innerer Punkt** von $A : \iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq A$. $A^{\circ} := \{x \in A : x \text{ x ist innerer Punkt von } A\}$ heißt das **Innere** von A. Klar: $A^{\circ} \subseteq A$.
- (5) A heißt offen : $\iff A = A^{\circ}$. Zur Übung: A° ist offen.

Beispiele:

- (1) offene Kugeln sind offen, \mathbb{R}^n ist offen, \emptyset ist offen.
- (2) $A = \{x \in \mathbb{R}^n : ||x x_0|| < \delta\}, A^{\circ} = U_{\delta}(x_0)$
- (3) n = 2: $A = \{(x_1, x_2) \in \mathbb{R}^n : x_2 = x_1^2\}, A^\circ = \emptyset$

Definition

 $A \subseteq \mathbb{R}^n$

(1) $x_0 \in \mathbb{R}^n$ heißt ein **Häufungspunkt** (HP) von $A : \iff \forall \delta > 0 : (U_{\delta}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$. $\mathscr{H}(A) := \{x \in \mathbb{R}^n : x \text{ ist Häufungspunkt von } A\}.$

- (2) $x_0 \in \mathbb{R}^n$ heißt ein **Berührungspunkt** (BP) von $A : \iff \forall \delta > 0 : U_{\delta}(x_0) \cap A \neq \emptyset$. $\bar{A} := \{x \in \mathbb{R}^n : x \text{ ist ein Berührungspunkt von } A\}$ heißt die **Abschließung** von A. Klar: $A \subseteq \bar{A}$. Zur Übung: $\bar{A} = A \cup \mathcal{H}(A)$.
- (3) A heißt **abgeschlossen** : $\iff A = \bar{A}$. Zur Übung: \bar{A} ist abgeschlossen.
- (4) $x_0 \in \mathbb{R}^n$ heißt ein **Randpunkt** von $A : \iff \forall \delta > 0 : U_\delta(x_0) \cap A \neq \emptyset$ und $U_\delta(x_0) \cap (\mathbb{R}^n \backslash A) \neq \emptyset$. $\partial A := \{x \in \mathbb{R}^n : x \text{ ist ein Randpunkt von } A\}$ heißt der **Rand** von A. Zur Übung: $\partial A = \bar{A} \backslash A^\circ$.

Beispiele:

- (1) \mathbb{R}^n ist abgeschlossen, \emptyset ist abgeschlossen; $\bar{A} = U_{\delta}(\bar{x}_0) = \{x \in \mathbb{R}^n : ||x x_0|| \le \delta\}$ (abgeschlossene Kugel um x_0 mit Radius δ)
- (2) $\partial U_{\delta}(x_0) = \{x \in \mathbb{R}^n : ||x x_0|| = \delta\} = \partial U_{\delta}(x_0)$
- (3) $A = \{(x_1, x_2) \in \mathbb{R}^2; x_2 = x_1^2\}. A = \bar{A} = \partial A$

Satz 1.2 (Offene und abgeschlossene Mengen)

- (1) Sei $A \subseteq \mathbb{R}^n$. A ist abgeschlossen : $\iff \mathbb{R}^n \setminus A$ ist offen.
- (2) Die Vereinigung offener Mengen ist offen.
- (3) Der Durchschnitt abgeschlossener Mengen ist abgeschlossen.
- (4) Sind $A_1, \ldots, A_n \subseteq \mathbb{R}^n$ offen $\implies \bigcap_{j=1}^n A_j$ ist offen
- (5) Sind $A_1, \ldots, A_n \subseteq \mathbb{R}^n$ abgeschlossen $\implies \bigcap_{j=1}^n A_j$ ist abgeschlossen

Beispiel

 $(n=1). A_t := (0,1+t) (t>0). \text{ Jedes } A_t \text{ ist offen. } \bigcap_{t>0} A_t = (0,1] \text{ ist nicht offen.}$

- (1) " \Longrightarrow ": Sei $x_0 \in \mathbb{R}^n \backslash A$. Annahme: $\forall \delta > 0 : U_\delta(x_0) \nsubseteq \mathbb{R}^n \backslash A \implies \forall \delta > 0 : U_\delta(x_0) \cap A \neq \emptyset \implies x_0 \in \bar{A} \stackrel{\text{Vor.}}{=} A$, Widerspruch " \Leftarrow ": Annahme: $\subset \bar{A} \implies \exists x_0 \in \bar{A} : x_0 \notin A$; also $x_0 \in \mathbb{R}^n \backslash A$. Voraussetzung $\Longrightarrow \exists \delta > 0 : U_\delta(x_0) \subseteq \mathbb{R}^n \backslash A \implies U_\delta(x_0) \cap A = \emptyset \implies x_0 \notin \bar{A}$, Widerspruch!
- (2) Sei $(A_{\lambda})_{{\lambda}\in M}$ eine Familie offener Mengen und $V:=\bigcup_{{\lambda}\in M}A_{\lambda}$. Sei $x_0\in V\implies \exists \lambda_0\in M: x_0\in A_{\lambda_0}$. A λ_0 offen $\Longrightarrow \exists \delta>0: U_{\delta}(x_0)\subseteq A_{\lambda_0}\subseteq V$
- (3) folgt aus (1) und (2) (Komplemente!)
- (4) $D := \bigcap_{j=1}^m A_j$. Sei $x_0 \in D$. $\forall j \in \{1, \dots, m\} : x_0 \in A_j$, also eixistiert $\delta_j > 0 : U_\delta(x_0) \subseteq A_j$. $\delta := \min\{\delta_j, \dots, \delta_m\} \implies U_\delta(x_0) \subseteq D$
- (5) folgt aus (1) und (4)

2. Konvergenz im \mathbb{R}^n

Sei $(a^{(k)})$ eine Folge in \mathbb{R}^n , also $(a^{(k)}) = (a^{(1)}, a^{(2)}, \ldots)$ mit $a^{(k)} = (a_1^{(k)}, \ldots a_n^{(k)}) \in \mathbb{R}^n$. Die Begriffe **Teilfolge** und **Umordnung** definiert man wie in Analysis I. $(a^{(k)})$ heißt beschränkt : $\iff \exists c \geq 0 : ||a^{(k)}|| \leq c \ \forall k \in \mathbb{N}$.

Definition (Grenzwert und Beschränktheit)

 $(a^{(k)})$ heißt **konvergent**: $\iff \exists a \in \mathbb{R}^n : \|a^{(k)} - a\| \to 0 \ (k \to \infty) \ (\iff \exists a \in \mathbb{R}^n : \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} : \|a^{(k)} - a\| < \varepsilon \ \forall k \ge k_0)$. In diesem Fall heißt a der **Grenzwert** (GW) oder **Limes** von $(a^{(k)})$ und schreibt: $a = \lim_{k \to \infty} a^{(k)}$ oder $a^{(k)} \to a \ (k \to \infty)$

Beispiel

 $(n=2): a^{(k)} = (\frac{1}{k}, 1 + \frac{1}{k^n}) \text{ (Erinnerung: } \frac{1}{n} \text{ konvergiert gegen 17); } a := (0,1); ||a^{(k)} - a|| = ||(\frac{1}{k}, \frac{1}{k^2})|| = (\frac{1}{k^2} + \frac{1}{k^4})^{\frac{1}{2}} \to 0 \implies a^{(k)} \to (0,1)$

Satz 2.1 (Konvergenz)

Sei $(a^{(k)})$ eine Folge in \mathbb{R}^n .

(1) Sei $a^{(k)} = (a_1^{(k)}, \dots, a_n^{(k)})$ und $a = (a_1, \dots, a_n) \in \mathbb{R}^n$. Dann:

$$a^{(k)} \to a \ (k \to \infty) \iff a_1^{(k)} \to a_1, \dots, a_n^{(k)} \to a_n \ (k \to \infty)$$

- (2) Der Grenzwert einer konvergenen Folge ist eindeutig bestimmt.
- (3) Ist $(a^{(k)})$ konvergent $\implies a^{(k)}$ ist beschränkgt und jede Teilfolge und jede Umordnung von $(a^{(k)})$ konvergiert gegen $\lim a^{(k)}$.
- (4) Sei $(b^{(k)})$ eine weitere Folge, $a,b\in\mathbb{R}^n$ und $\alpha\in\mathbb{R}$. Es gelte $a^{(k)}\to a,\,b^{(k)}\to b$ Dann:

$$||a^{(k)}|| \to ||a||$$
$$a^{(k)} + b^{(k)} \to a + b$$
$$\alpha a^{(k)} \to \alpha a$$
$$a^{(k)} \cdot b^{(k)} \to a \cdot b$$

- (5) **Bolzano-Weierstraß**: Ist $(a^{(k)})$ beschränkt, so enthält $(a^{(k)})$ eine konvergente Teilfolge.
- (6) Cauchy-Kriterium: $(a^{(k)})$ konvergent \iff $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : \|a^{(k)} a^{(l)}\| < \varepsilon \ \forall k, l \geq k_0$

2. Konvergenz im \mathbb{R}^n

Beweis

- (1) $1.1(7) \implies |a_i^{(k)} a_j| \le ||a^{(k)} a|| \le \sum_{i=1}^n |a_i^{(k)} a_j| \implies \text{Behauptung.}$
- (2) und
- (3) wie in Analysis I.
- (4) folgt aus (1)
- (5) Sei $(a^{(k)})$ beschränkt. O.B.d.A: n=2. Also $a^{(k)}=(a_1^{(k)},a_2^{(k)})$ 1.1(7) $\Longrightarrow |a_1^{(k)}|,|a_2^{(k)}| \le \|a^{(k)}\| \ \forall k \in \mathbb{N} \implies (a_1^{(k)},a_2^{(k)})$ sind beschränkte Folgen in \mathbb{R} . Analysis $1 \implies (a_1^{(k)})$ enthält eine konvergente Teilfolge $(a_1^{(k_{j_l})})$. $(a_2^{(k_{j_l})})$ enthält eine konvergente Teilfolge $(a_2^{(k_{j_l})})$. Analysis $1 \implies (a_1^{(k_{j_l})})$ ist konvergent $\stackrel{(1)}{\Longrightarrow} (a^{(k_{j_l})})$ konvergiert.
- (6) " \Longrightarrow ": wie in Analysis 1. " \Leftarrow ": 1.1(7) \Longrightarrow $|a_j^{(k)} a_j^{(l)}| \le ||a^{(k)} a^{(l)}|| \ (j = 1, ..., n) \implies$ jede Folge $(a_j^{(k)})$ ist eine Cauchyfolge in $\mathbb R$, also konvergent $\stackrel{(1)}{\Longrightarrow}$ $(a^{(k)})$ konvergiert.

Satz 2.2 (Häufungswerte und konvergente Folgen)

Sei $A \subseteq \mathbb{R}^n$

- (1) $x_0 \in H(A) \iff \exists \text{ Folge } (x^{(k)}) \text{ in } A \setminus \{x_0\} \text{ mit } x^{(k)} \to x_0.$
- (2) $x_0 \in \bar{A} \iff \exists \text{ Folge } (x^{(k)}) \text{ in } A \text{ mit } x^{(k)} \to x_0.$
- (3) A ist abgeschlossen \iff der Grenzwert jeder konvergenten Folge in A gehört zu A.
- (4) A ist beschränkt und abgeschlossen \iff jede Folge in A enthält eine konvergente Teilfolge, deren Grenzwert zu A gehört.

Beweis

- (1) Wie in Analysis 1
- (2) Fast wörtlich wie bei (1)
- (4) Wörtlich wie in Analysis 1
- (3) " \Longrightarrow ": Sei $(a^{(k)})$ eine konvergente Folge in A und $x_0 := \lim a^{(k)} \stackrel{(2)}{\Longrightarrow} x_0 \in \bar{A} \stackrel{\text{Vor.}}{=} A$. " \Leftarrow ": z.z: $\bar{A} \subseteq A$. Sei $x_0 \in \bar{A} \stackrel{(2)}{\Longrightarrow} x_0 \in A$. Also: $A = \bar{A}$.

Satz 2.3 (Überdeckungen)

 $A \subseteq \mathbb{R}^n$ sei abgeschlossen und beschränkt

(1) Ist
$$\varepsilon > 0 \implies \exists a^{(1)}, \dots, a^{(m)} \in A : A \subseteq \bigcup_{i=1}^{m} U_{\varepsilon}(a^{(i)})$$

(2) \exists abzählbare Teilmenge B von $A: \bar{B} = A$.

(3) Überdeckungssatz von Heine-Borel: Ist $(G_{\lambda})_{\lambda \in M}$ eine Familie offener Mengen mit $A \subseteq \bigcup_{\lambda \in M} G_{\lambda}$, dann existieren $\lambda_1, \dots, \lambda_m \in M : A \subseteq \bigcup_{j=1}^m G_{\lambda_j}$.

Beweis

- (1) Sei $\varepsilon > 0$. Annahme: Die Behauptung ist falsch. Sei $a^{(1)} \in A$. Dann: $A \nsubseteq U_{\varepsilon}(a^{(1)}) \Longrightarrow \exists a^{(2)} \in A: a^{(2)} \notin U_{\varepsilon}(a^{(1)}) \Longrightarrow \|a^{(2)} a^{(1)}\| \ge \varepsilon. A \nsubseteq U_{\varepsilon}(a^{(1)}) \cup U_{\varepsilon}(a^{(2)}) \Longrightarrow \exists a^{(3)} \in A: \|a^{(3)} a^{(2)}\| \ge \varepsilon, \|a^{(3)} a^{(1)}\| \ge \varepsilon \text{ etc..}$ Wir erhalten so eine Folge $(a^{(k)})$ in A: $\|a^{(k)} a^{(l)}\| \ge \varepsilon$ für $k \ne l$. 2.2(4) $\Longrightarrow (a^{(k)})$ enthält eine konvergente Teilfolge $\xrightarrow{2.1(6)} \exists j_0 \in \mathbb{N}: \|a^{(k_j)} a^{(k_l)}\| < \varepsilon \ \forall j, l \ge j_0$, Widerspruch!
- (2) Sei $j \in \mathbb{N}$. $\varepsilon := \frac{1}{j}$. (1) \Longrightarrow \exists endl. Teilmenge B_j von A mit (*) $A \subseteq \bigcup_{x \in B_j} U_{\frac{1}{j}}(x)$. $B := \bigcup_{j \in \mathbb{N}} B_j \Longrightarrow B \subseteq A$ und B ist abzählbar. Dann: $\bar{B} \subseteq \bar{A} \stackrel{\text{Vor.}}{=} A$. Noch zu zeigen: $A \subseteq \bar{B}$. Sei $x_0 \in A$ und $\delta > 0$: zu zeigen: $U_{\delta}(x_0) \cap B \neq \emptyset$. Wähle $j \in \mathbb{N}$ so, daß $\frac{1}{j} < \delta$ (*) $\Longrightarrow \exists x \in B_j \subseteq B : x_0 \in U_{\frac{1}{j}}(x) \Longrightarrow ||x_0 x|| < \frac{1}{j} < \delta \Longrightarrow x \in U_{\delta}(x_0) \Longrightarrow x \in U_{\delta}(x_0) \cap B$.
- (3) Teil 1: Behauptung: $\exists \varepsilon > 0$: $\forall a \in A \ \exists \lambda \in M : U_{\varepsilon}(a) \subseteq G_{\lambda}$. Beweis: Annahme: Die Behauptung ist falsch. $\forall k \in \mathbb{N} \ \exists a^{(k)} \in A : \ (**)U_{\frac{1}{k}}(a^{(k)}) \not\subseteq G_{\lambda} \ \forall \lambda \in M. \ 2.2(4) \implies (a^{(k)})$ enthält eine konvergente Teilfolge $(a^{(k_j)})$ und $x_0 := \lim_{j \to \infty} a^{k_j} \in A \implies \exists \lambda_0 \in M : x_0 \in G_{\lambda_0}$; G_{λ_0} offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq G_{\lambda_0}$. $a^{(k_j)} \to x_0 \ (j \to \infty) \implies \exists m_0 \in \mathbb{N} : a^{(m_0)} \in U_{\frac{\delta}{2}}(x_0)$ und $m_0 \ge \frac{2}{\delta}$. Sei $x \in U_{\frac{1}{m_0}}(a^{(m_0)}) \implies \|x x_0\| = \|x a^{(m_0)} + a^{(m_0)} x_0\| \le \|x a^{(m_0)}\| + \|a^{(m_0)} x_0\| \le \frac{1}{m_0} + \frac{\delta}{2} \le \frac{\delta}{2} + \frac{\delta}{2} = \delta \implies x \in U_{\delta}(x_0) \implies x \in G_{\lambda_0}$. Also: $U_{\frac{1}{m_0}}(a^{(m_0)}) \subseteq G_{\lambda_0}$, Widerspruch zu (**)!

Teil 2: Sei $\varepsilon > 0$ wie in Teil 1. (1) $\implies \exists a^{(1)}, \dots, a^{(m)} \in A : A \subseteq \bigcup_{j=1}^m U_{\varepsilon}(a^{(j)})$. Teil 1

$$\implies \exists \lambda_j \in M : U_{\varepsilon}(a^{(j)}) \subseteq G_{\lambda_j} \ (j = 1, \dots, m) \implies A \subseteq \bigcup_{j=1}^m G_{\lambda_j}$$

Grenzwerte bei Funktionen, Stetigkeit

Vereinbarung: Stets in dem Paragraphen: Sei $\emptyset \neq D \subseteq \mathbb{R}^n$ und $f: D \to \mathbb{R}^m$ eine (**vektorwertige**) Funktion. Für Punkte $(x_1, x_2) \in \mathbb{R}^2$ schreiben wir auch (x, y). Für Punkte $(x_1, x_2, x_3) \in \mathbb{R}^3$ schreiben wir auch (x, y, z). Mit $x = (x_1, \ldots, x_n) \in D$ hat f die Form $f(x) = f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$, wobei $f_j: D \to \mathbb{R}$ $(j = 1, \ldots, m)$. Kurz: $f = (f_1, \ldots, f_m)$.

Beispiele:

- (1) n = 2, m = 3. $f(x,y) = (x + y, xy, xe^y)$; $f_1(x,y) = x + y$, $f_2(x,y) = xy$, $f_3(x,y) = xe^y$.
- (2) n = 3, m = 1. $f(x, y, z) = 1 + x^2 + y^2 + z^2$

Definition

Sei $x_0 \in H(D)$.

- (1) Sei $y_0 \in \mathbb{R}^m$. $\lim_{x \to x_0} f(x) = y_0 : \iff$ für **jede** Folge $(x^{(k)})$ in $D \setminus \{x_0\}$ mit $x^{(k)} \to x_0$ gilt: $f(x^{(k)}) \to y_0$. In diesem Fall schreibt man: $f(x) \to y_0(x \to x_0)$.
- (2) $\lim_{x \to x_0} f(x)$ existiert : $\iff \exists y_0 \in \mathbb{R}^m : \lim_{x \to x_0} f(x) = y_0.$

Beispiele:

- (1) $f(x,y) = (x+y,xy,xe^y)$; $\lim_{(x,y)\to(1,1)} f(x,y) = (2,1,e)$, denn: ist $((x_k,y_n))$ eine Folge mit $(x,y)\to(1,1) \implies (x_k,y_k)\to(1,1) \stackrel{2.1}{\Longrightarrow} x_k\to 1, y_k\to 1 \implies x_k+y_k\to 2, x_ky_k\to 1, x_ke^{y_k}\to e \stackrel{2.1}{\Longrightarrow} (x_k,y_k)\to(2,1,e).$
- $(2) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, \text{ falls } (x,y) \neq (0,0) \\ 0 &, \text{ falls } (x,y) = (0,0) \end{cases}$ $f(\frac{1}{k},0) = 0 \to 0 \ (k \to \infty), (\frac{1}{k},0) \to (0,0), f(\frac{1}{k},\frac{1}{k}) = \frac{1}{2} \to \frac{1}{2} \ (k \to \infty), (\frac{1}{k},\frac{1}{k}) \to (0,0), \text{ d.h.}$ $\lim_{(x,y) \to (0,0)} f(x,y) \text{ existiert nicht! } \mathbf{Aber: } \lim_{x \to 0} (\lim_{y \to 0} f(x,y)) = 0 = \lim_{y \to 0} (\lim_{x \to 0} f(x,y)).$

Satz 3.1 (Grenzwerte vektorwertiger Funktionen)

- (1) Ist $f = (f_1, \ldots, f_m)$ und $y_0 = (y_1, \ldots, y_m) \in \mathbb{R}^m$, so gilt: $f(x) \to y_0 \ (x \to x_0) \iff f_j(x) \to y_j \ (x \to x_0) \ (j = 1, \ldots, m)$
- (2) Die Aussagen des Satzes Ana I, 16.1 und die Aussagen (1) und (2) des Satzes Ana I, 16.2 gelten sinngemäß für Funktionen von mehreren Variablen.

- (1) folgt aus 2.1
- (2) wie in Ana I

Definition (Stetigkeit vektorwertiger Funktionen)

- (1) Sei $x_0 \in D$. f heißt **stetig** in x_0 gdw. für jede Folge $(x^{(k)})$ in D mit $(x^{(k)}) \to x_0$ gilt: $f(x^{(k)}) \to f(x_0)$. Wie in Ana I: Ist $x_0 \in D \cap H(D)$, so gilt: f ist stetig in $x_0 \iff$ $\lim_{x \to x_0} f(x) = f(x_0).$
- (2) f heißt auf D stetig gdw. f in jedem $x \in D$ stetig ist. In diesem Fall schreibt man: $f \in C(D, \mathbb{R}^m) \ (C(D) = C(D, \mathbb{R})).$
- (3) f heißt auf D gleichmäßig (glm) stetig gdw. gilt: $\forall \varepsilon > 0 \ \exists \delta > 0 : ||f(x) - f(y)|| < \varepsilon \ \forall x, y \in D : ||x - y|| < \delta$
- (4) f heißt auf D Lipschitzstetig gdw. gilt: $\exists L \ge 0 : ||f(x) - f(y)|| \le L||x - y|| \ \forall x, y \in D.$

Satz 3.2 (Stetigkeit vektorwertiger Funktionen)

- (1) Sei $x_0 \in D$ und $f = (f_1, \ldots, f_m)$. Dann ist f stetig in x_0 gdw. alle f_i stetig in x_0 sind. Entsprechendes gilt für "stetig auf D", "glm stetig auf D", "Lipschitzstetig auf D".
- (2) Die Aussagen des Satzes Ana I, 17.1 gelten sinngemäß für Funktionen von mehreren Variablen.
- (3) Sei $x_0 \in D$. f ist stetig in x_0 gdw. zu jeder Umgebung V von $f(x_0)$ eine Umgebung U von x_0 existiert mit $f(U \cap D) \subseteq V$.
- (4) Sei $\emptyset \neq E \subseteq \mathbb{R}^m$, $f(D) \subseteq E$, $g: E \to \mathbb{R}^p$ eine Funktion, f stetig in $x_0 \in D$ und gstetig in $f(x_0)$. Dann ist $g \circ f : D \to \mathbb{R}^p$ stetig in x_0 .

Beweis

- (1) folgt aus 2.1
- (2) wie in Ana 1
- (3) Übung
- (4) wie in Ana 1

Beispiele: (1)
$$f(x,y) := \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 $(D = \mathbb{R}^2)$

$$f(\frac{1}{k}, \frac{1}{k}) = \frac{1}{2} \to \frac{1}{2} \neq 0 = f(0, 0) \implies f \text{ ist in } (0, 0) \text{ nicht stetig.}$$

(2)
$$f(x,y) := \begin{cases} \frac{1}{y}\sin(xy), & y \neq 0\\ x, & y = 0 \end{cases}$$

Für
$$y \neq 0$$
: $|f(x,y) - f(0,0)| = \frac{1}{|y|} |\sin(xy)| \le \frac{1}{|y|} |xy| = |x|$.

Also gilt: $|f(x,y)-f(0,0)| \leq |x| \ \forall (x,y) \in \mathbb{R}^2 \implies f(x,y) \to f(0,0) \ ((x,y) \to (0,0)) \implies$ f ist stetig in (0,0).

(3) Sei $\Phi \in C^1(\mathbb{R}), \ \Phi(0) = 0, \ \Phi'(0) = 2 \text{ und } a \in \mathbb{R}.$

$$f(x,y) := \begin{cases} \frac{\Phi(a(x^2+y^2))}{x^2+y^2}, & (x,y) \neq (0,0) \\ \frac{1}{2}, & (x,y) = (0,0) \end{cases}$$

Für welche $a \in \mathbb{R}$ ist f stetig in (0,0)?

Fall 1: a = 0

$$f(x,y) = 0 \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \implies f \text{ ist in } (0,0) \text{ nicht stetig.}$$

Fall 2: $a \neq 0$

$$r:=x^2+y^2$$
. $(x,y)\to(0,0)\iff ||(x,y)||\to 0\iff r\to 0$, Sei $(x,y)\neq(0,0)$. Dann gilt:

$$f(x,y) = \frac{\Phi(ar)}{r} = \frac{\Phi(ar) - \Phi(0)}{r - 0} = a \frac{\Phi(ar) - \Phi(0)}{ar - 0} \stackrel{r \to 0}{\to} a\Phi'(0) = 2a$$
. Das heißt: $f(x,y) \to 2a \ ((x,y) \to (0,0))$.

Daher gilt: f ist stetig in $(0,0) \iff 2a = \frac{1}{2} \iff a = \frac{1}{4}$.

Definition (Beschränktheit einer Funktion)

 $f: D \to \mathbb{R}^m$ heißt beschränkt (auf D) gdw. f(D) beschränkt ist ($\iff \exists c \geq 0: ||f(x)|| \leq c \ \forall x \in D$).

Satz 3.3 (Funktionen auf beschränkten und abgeschlossenen Intervallen)

D sei beschränkt und abgeschlossen und es sei $f \in C(D, \mathbb{R}^m)$.

- (1) f(D) ist beschränkt und abgeschlossen.
- (2) f ist auf D gleichmäßig stetig.
- (3) Ist f injektiv auf D, so gilt: $f^{-1} \in C(f(D), \mathbb{R}^n)$.
- (4) Ist m = 1, so gilt: $\exists a, b \in D : f(a) \le f(x) \le f(b) \ \forall x \in D$.

Beweis

wie in Ana I.

Satz 3.4 (Fortsetzungssatz von Tietze)

Sei D abgeschlossen und $f \in C(D, \mathbb{R}) \implies \exists F \in C(\mathbb{R}^n, \mathbb{R}^m) : F = f$ auf D.

Satz 3.5 (Lineare Funktionen und Untervektorräume von \mathbb{R}^n)

- (1) Ist $f: \mathbb{R}^n \to \mathbb{R}^m$ und *linear*, so gilt: f ist Lipschitzstetig auf \mathbb{R}^n , insbesondere gilt: $f \in C(\mathbb{R}^n, \mathbb{R}^m)$.
- (2) Ist U ein Untervektorraum von \mathbb{R}^n , so ist U abgeschlossen.

3. Grenzwerte bei Funktionen, Stetigkeit

Beweis

- (1) Aus der Linearen Algebra ist bekannt: Es gibt eine $(m \times n)$ -Matrix A mit f(x) = Ax. Für $x, y \in \mathbb{R}^n$ gilt: $||f(x) f(y)|| = ||Ax Ay|| = ||A(x y)|| \le ||A|| \cdot ||x y||$
- (2) Aus der Linearen Algebra ist bekannt: Es gibt einen UVR V von \mathbb{R}^n mit: $\mathbb{R}^n = U \oplus V$. Definiere $P: \mathbb{R}^n \to \mathbb{R}^n$ wie folgt: zu $x \in \mathbb{R}^n$ existieren eindeutig bestimmte $u \in U$, $v \in V$ mit: x = u + v; P(x) := u.

Nachrechnen: P ist linear.

 $P(\mathbb{R}^n)=U$ (Kern $P=V,\ P^2=P$). Sei $(u^{(k)})$ eine konvergente Folge in U und $x_0:=\lim u^{(k)},\ \mathrm{z.z.}$: $x_0\in U$.

Aus (1) folgt:
$$P$$
 ist stetig $\implies P(u^{(k)}) \rightarrow P(x_0) \implies x_0 = \lim u^{(k)} = \lim P(u^{(k)}) = P(x_0) \in P(\mathbb{R}^n) = U$.

Definition (Abstand eines Vektor zu einer Menge)

Sei $\emptyset \neq A \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$. $d(x,A) := \inf\{||x-a|| : a \in A\}$ heißt der **Abstand** von x und A.

Klar: $d(a, A) = 0 \ \forall a \in A$.

Satz 3.6 (Eigenschaften des Abstands zwischen Vektor und Menge)

- (1) $|d(x, A) d(y, A)| \le ||x y|| \ \forall x, y \in \mathbb{R}^n$.
- (2) $d(x, A) = 0 \iff x \in \overline{A}$.

Beweis

- (1) Seien $x,y\in\mathbb{R}^n$. Sei $a\in A$. $d(x,A)\leq ||x-a||=||x-y+y-a||\leq ||x-y||+||y-a||$
 - $\implies d(x,A) ||x y|| \le ||y a|| \ \forall a \in A$
 - $\implies d(x, A) ||x y|| \le d(y, A)$
 - $\implies d(x,A) d(y,A) \le ||x-y||$

Genauso: $d(y, A) - d(x, A) \le ||y - x|| = ||x - y|| \implies \text{Beh.}$

- (2) ,, \Leftarrow ": Sei $x \in \overline{A} \stackrel{2.2}{\Longrightarrow} \exists$ Folge $(a^{(k)})$ in $A: a^{(k)} \to x \stackrel{(1)}{\Longrightarrow} d(a^{(k)}, A) \to d(x, A) \Longrightarrow d(x, A) = 0$.
 - ,,⇒": Sei d(x,A)=0. $\forall k\in\mathbb{N}\ \exists a^{(k)}\in A: ||a^{(k)}-x||<\frac{1}{k}\implies a^{(k)}\to x\ \stackrel{2.2}{\Longrightarrow}\ x\in\overline{A}.$

4. Partielle Ableitungen

Stets in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D sei offen und $f: D \to \mathbb{R}$ eine reellwertige Funktion. $x_0 = (x_1^{(0)}, \dots, x_n^{(0)}) \in D$. Sei $j \in \{1, \dots, n\}$ (fest).

Die Gerade durch x_0 mit der Richtung e_j ist gegeben durch folgende Menge: $\{x_0 + te_j : t \in \mathbb{R}\}$. D offen $\implies \exists \delta > 0 : U_{\delta}(x_0) \subseteq D$. $||x_0 + te_j - x_0|| = ||te_j|| = |t| \implies x_0 + e_j \in D$ für $t \in (-\delta, \delta)$. $g(t) := f(x_0 + te_j)$ $(t \in (-\delta, \delta))$ Es ist $g(t) = f(x_1^{(0)}, \dots, x_{j-1}^{(0)}, x_j^{(0)} + t, x_{j+1}^{(0)}, \dots, x_n^{(0)})$

Definition

f heißt in x_0 partiell differenzierbar nach $x_i : \iff$ es exisitert der Grenzwert

$$\lim_{t \to 0} \frac{f(x_0 + te_j) - f(x_0)}{t}$$

und ist $\in \mathbb{R}$. In diesem Fall heißt obiger Grenzwert die partielle Ableitung von f in x_0 nach x_j und man schreibt für diesen Grenzwert:

$$f_{x_j}(x_0)$$
 oder $\frac{\partial f}{\partial x_j}(x_0)$

Im Falle n=2 oder n=3 schreibt man f_x , f_y , f_z bzw. $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Beispiele:

- (1) $f(x,y,z) = xy + z^2 + e^{x+y}$; $f_x(x,y,z) = y + e^{x+y} = \frac{\partial f}{\partial x}(x,y,z)$. $f_x(1,1,2) = 1 + e^2$. $f_y(x,y,z) = x + e^{x+y}$. $f_z(x,y,z) = 2z = \frac{\partial f}{\partial z}(x,y,z)$.
- (2) $f(x) = f(x_1, \dots, x_n) = ||x|| = \sqrt{x_1^2 + \dots + x_n^2}$

Sei
$$x \neq 0$$
: $f_{x_j}(x) = \frac{1}{2\sqrt{\dots}} 2x_j = \frac{x_j}{\|x\|}$

Sei x = 0: $\frac{f(t,0,\dots,0) - f(0,0,\dots,0)}{t} = \frac{|t|}{t} = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases} \implies f$ ist in $(0,\dots,0)$ nicht partiell differenzierbar nach x_1 . Analog: f ist in $(0,\dots,0)$ nicht partiell differenzierbar nach x_2,\dots,x_n

(3)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

 $\frac{f(t,0)-f(0,0)}{t}=0 \to 0 \ (t\to 0) \implies f$ ist in (0,0) partiell differenzierbar nach x und $f_x(0,0)=0$. Analog: f ist in (0,0) partiell differenzierbar nach y und $f_y(0,0)=0$. Aber: f ist in (0,0) nicht stetig.

Definition

(1) f heißt in x_0 partiell differenzierbar : \iff f ist in x_0 partiell differenzierbar nach allen Variablen x_1, \ldots, x_n . In diesem Fall heißt grad $f(x_0) := \nabla f(x_0) := (f_{x_1}(x_0), \ldots, f_{x_n}(x_0))$ der Gradient von f in x_0 .

- (2) f ist auf D partiell differenzierbar nach x_j oder f_{x_j} ist auf D vorhanden : $\iff f$ ist in jedem $x \in D$ partiell differenzierbar nach x_j . In diesem Fall wird durch $x \mapsto f_{x_j}(x)$ eine Funktion $f_{x_j}: D \to \mathbb{R}$ definiert die partielle Ableitung von f auf D nach x_j .
- (3) f heißt partiell differenzierbar auf $D:\iff f_{x_1},\ldots,f_{x_n}$ sind auf D vorhanden.
- (4) f heißt auf D stetig partiell differenzierbar : $\iff f$ ist auf D partiell differenzierbar und f_{x_1}, \ldots, f_{x_n} sind auf D stetig. In diesem Fall schreibt man $f \in C^1(D, \mathbb{R})$.

Beispiele:

- (1) Sei f wie in obigem Beispiel (3). f ist in (0,0) partiell differenzierbar und grad f(0,0) = (0,0)
- (2) Sei f wie in obigem Beispiel (2). f ist auf $\mathbb{R}^n \setminus \{0\}$ partiell differenzierbar und grad $f(x) = (\frac{x_1}{\|x_n\|}, \dots, \frac{x_n}{\|x_n\|}) = \frac{1}{\|x\|} x \ (x \neq 0)$

Definition

Seien $j, k \in \{1, ..., n\}$ und f_{x_j} sei auf D vorhanden. Ist f_{x_j} in $x_0 \in D$ partiell differenzierbar nach x_k , so heißt

$$f_{x_j x_k}(x_0) := \frac{\partial^2 f}{\partial x_j \partial x_k}(x_0) := \left(f_{x_j}\right)_{x_k}(x_0)$$

die partielle Ableitung zweiter Ordnung von f in x_0 nach x_i und x_k . Ist k=j, so schreibt man:

$$\frac{\partial^2 f}{\partial x_j^2}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_j}(x_0)$$

Entsprechend definiert man partielle Ableitungen höherer Ordnung (soweit vorhanden).

Schreibweisen:
$$f_{xxyzz} = \frac{\partial^5 f}{\partial x^2 \partial y \partial z^2}$$
, vergleiche: $\frac{\partial^{180} f}{\partial x^{179} \partial y}$

Beispiele:

- (1) $f(x,y) = xy + y^2$, $f_x(x,y) = y$, $f_{xx} = 0$, $f_y = x + 2y$, $f_{yy} = 2$, $f_{xy} = 1$, $f_{yx} = 1$.
- (2) $f(x,y,z) = xy + z^2 e^x$, $f_x = y + z^2 e^x$, $f_{xy} = 1$, $f_{xyz} = 0$. $f_z = 2ze^x$, $f_{zy} = 0$, $f_{zyx} = 0$.

(3)
$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Übungsblatt: $f_{xy}(0,0)$, $f_{yx}(0,0)$ exisitieren, aber $f_{xy}(0,0) \neq f_{yx}(0,0)$

Definition

Sei $m \in \mathbb{N}$. f heißt auf D m-mal steig partiell differenzierbar : \iff alle partiellen Ableitungen von f der Ordnung $\leq m$ sind auf D vorhanden und auf D stetig. In diesem Fall schreibt man: $f \in C^m(D, \mathbb{R})$

$$C^0(D,\mathbb{R}) := C(D,\mathbb{R}), \qquad C^\infty(D,\mathbb{R}) := \bigcap_{k \in \mathbb{N}_0} C^k(D,\mathbb{R})$$

Satz 4.1 (Satz von Schwarz)

Es sei $f \in C^2(D, \mathbb{R}), x_0 \in D$ und $j, k \in \{1, ..., n\}$. Dann: $f_{x_j x_k}(x_0) = f_{x_k x_j}(x_0)$

Satz 4.2 (Folgerung)

Ist $f \in C^m(D, \mathbb{R})$, so sind die partiellen Ableitungen von f der Ordnung $\leq m$ unabhängig von der Reihenfolge der Differentation.

Beweis

O.B.d.A: n=2 und $x_0=(0,0)$. Zu zeigen: $f_{xy}(0,0)=f_{yx}(0,0)$. D offen $\Longrightarrow \exists \delta>0$: $U_{\delta}(0,0)\subseteq D$. Sei $(x,y)\in U_{\delta}(0,0)$ und $x\neq 0\neq y$.

$$\nabla := f(x,y) - f(x,0) - (f(0,y) - f(0,0)), \quad \varphi(t) := f(t,y) - f(t,0)$$

für t zwischen 0 und x. φ ist differenzierbar und $\varphi'(t) = f_x(t,y) - f_x(t,0)$. $\varphi(x) - \varphi(0) = \nabla$. MWS, Analysis $1 \implies \exists \xi = \xi(x,y)$ zwischen 0 und x: $\nabla = x\varphi'(\xi) = x(f_x(\xi,y) - f_x(\xi,0))$. $g(s) := f_x(\xi,s)$ für s zwischen 0 und y; g ist differenzierbar und $g'(s) = f_{xy}(\xi,s)$. Es ist $\nabla = x(g(y) - g(0)) \stackrel{\text{MWS}}{=} xyg'(\eta)$, $\eta = \eta(x,y)$ zwischen 0 und y. $\implies \nabla = xyf_{xy}(\xi,\eta)$. (1) $\psi(t) := f(x,t) - f(0,t)$, t zwischen 0 und y. $\psi'(t) = f_y(x,t) - f_y(0,t)$. $\nabla = \psi(y) - \psi(0)$. Analog: $\exists \bar{\eta} = \bar{\eta}(x,y)$ und $\bar{\xi} = \bar{\xi}(x,y)$, $\bar{\eta}$ zwischen 0 und y, $\bar{\xi}$ zwischen 0 und x. $\nabla = xyf_{yx}(\bar{\xi},\bar{\eta})$. (2) Aus (1), (2) und $xy \neq 0$ folgt $f_{xy}(\xi,\eta) = f_{yx}(\bar{\xi},\bar{\eta})$. $(x,y) \to (0,0) \implies \xi,\bar{\xi},\eta,\bar{\eta} \to 0 \implies f_{xy}(0,0) = f_{yx}(0,0)$

Differentiation

Vereinbarung: Stets in dem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}^m$ eine Funktion, also $f = (f_1, \dots, f_m)$

Definition

- (1) Sei $k \in \mathbb{N}$. $f \in C^k(D, \mathbb{R}^m) : \iff f_j \in C^k(D, \mathbb{R}) \ (j = 1, \dots, m)$
- (2) Sei $x_0 \in D$. f heißt partiell differenzierbar in $x_0 : \iff$ jedes f_j ist in x_0 partiell differenzierbar. In diesem Fall heißt

$$\frac{\partial f}{\partial x}(x_0) := \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)} := J_f(x_0) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

die Jacobi- oder Funktionalmatrix von f in x_0 .

Beachte: (1) $J_f(x_0)$ ist eine $(m \times n)$ -Matrix, (2) Ist $m = 1 \implies J_f(x_0) = \operatorname{grad} f(x_0)$

Erinnerung: Sei $I \subseteq \mathbb{R}$ ein Intervall, $\varphi : I \to \mathbb{R}$ eine Funktion, $x_0 \in I$. φ ist in x_0 differenzierbar

$$\stackrel{\text{ANA}}{\Longleftrightarrow} \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} = a$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0) - ah}{h} = 0$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0) - ah}{|h|} = 0$$

Definition

- (1) Sei $x_0 \in D$. f heißt **differenzierbar** (db) in $x_0 : \iff \exists (m \times n)$ -Matrix $A : \lim_{h \to 0} \frac{f(x_0 + h) f(x_0) Ah}{\|h\|} = 0$ (*)
- (2) f heißt differenzierbar auf $D:\iff f$ ist in jedem $x\in D$ differenzierbar.

Bemerkungen:

(i) f ist differenzierbar in $x_0 \iff \exists (m \times n)$ -Matrix A:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{\|x - x_0\|} = 0$$

(ii) Ist m=1, so gilt: f ist differenzierbar in x_0

$$\iff \exists a \in \mathbb{R}^n : \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ah}{\|h\|} = 0 \ (**)$$

(iii) Aus 2.1 folgt: f ist differenzierbar in $x_0 \iff \text{jedes } f_j$ ist differenzierbar in x_0 .

Satz 5.1 (Differnzierbarkeit und Stetigkeit)

f sei in $x_0 \in D$ differenzierbar

- (1) f ist in x_0 stetig
- (2) f ist in x_0 partiell differenzierbar und die Matrix A in (*) ist eindeutig bestimmt: $A = J_f(x_0)$. $f'(x_0) := A = J_f(x_0)$ (**Ableitung** von f in x_0).

Beweis

Sei A wie in (*), $A = (a_{jk})$, $\varrho(h) := \frac{f(x_0+h)-f(x_0)-Ah}{\|h\|}$, also: $\varrho(h) \to 0$ $(h \to 0)$. Sei $\varrho = (\varrho_1, \ldots, \varrho_m)$. $2.1 \Longrightarrow \varrho_j(h) \to 0$ $(h \to 0)$ $(j = 1, \ldots, m)$

(1)
$$f(x_0 + h) = f(x_0) + \underbrace{Ah}_{3.50} + \underbrace{\|h\|\varrho(h)}_{\to 0 \ (h\to 0)} \to f(x_0) \ (h\to 0)$$

(2) Sei $j \in \{1, ..., m\}$ und $k \in \{1, ..., n\}$. Zu zeigen: f_j ist partiell differenzierbar und $\frac{\partial f_j}{\partial x_k}(x_0) = a_{jk}$. $\varrho_j(h) = \frac{1}{\|h\|} (f_j(x_0 + h) - f_j(x_0) - (a_{j1}, ..., a_{jn}) \cdot h) \to 0 \ (h \to 0)$. Für $t \in \mathbb{R}$ sei $h = te_k \implies \varrho(h) = \frac{1}{|t|} (f(x_0 + te_k) - a_{jk}t) \to 0 \ (t \to 0) \implies \left|\frac{f(x_0 + te_k) - f(x_0)}{t} - a_{jk}\right| \to 0 \ (t \to 0) \implies f_j$ ist in x_0 partiell differenzierbar und $\frac{\partial f_j}{\partial x_k}(x_0) = a_{jk}$.

Beispiele:

(1)

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

Bekannt: f ist in (0,0) **nicht** stetig, aber partiell differenzierbar und grad f(0,0) = (0,0) 5.1 $\implies f$ ist in (0,0) **nicht** differenzierbar.

(2)

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} &, \text{ falls } (x,y) \neq (0,0) \\ 0 &, \text{ falls } (x,y) = (0,0) \end{cases}$$

Für $(x,y) \neq (0,0)$: $|f(x,y)| = (x^2 + y^2) \left| \sin \frac{1}{\sqrt{x^2 + y^2}} \right| \leq x^2 + y^2 \stackrel{(x,y) \to (0,0)}{\Longrightarrow} f$ ist in (0,0) stetig. $\frac{f(t,0) - f(0,0)}{t} = \frac{1}{t} t^2 \sin \frac{1}{|t|} = t \sin \frac{1}{|t|} \to 0 \ (t \to 0) \implies f$ ist in (0,0) partiell differenzierbar nach x und $f_x(0,0) = 0$. Analog: f ist in (0,0) partiell differenzierbar nach y und $f_y(0,0) = 0$. $\varrho(h) = \frac{1}{\|h\|} f(h) \stackrel{h=(h_1,h_2)}{=} \frac{1}{\sqrt{h_1^2 + h_2^2}} (h_1^2 + h_2^2) \sin \frac{1}{h_1^2 + h_2^2} = \sqrt{h_1^2 + h_2^2} \sin \frac{1}{\sqrt{h_1^2 + h_2^2}} \to 0 \ (h \to 0) \implies f$ ist differenzierbar in (0,0) und $f'(0,0) = \gcd f(0,0) = (0,0)$

$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2} & \text{, falls}(x,y) \neq (0,0) \\ 0 & \text{, falls}(x,y) = (0,0) \end{cases}$$

Übung: f ist in (0,0) stetig.

$$\frac{f(t,0)-f(0,0)}{t} = \frac{1}{t}\frac{t^3}{t^2} = 1 \to 1 \ (t \to 0). \ \frac{f(0,t)-f(0,0)}{t} = 0 \to 0 \ (t \to 0).$$

 \implies f ist in (0,0) partiell db und grad f(0,0) = (1,0).

Für
$$h = (h_1, h_2) \neq (0, 0) : \rho(h) = \frac{1}{||h||} (f(h) - f(0, 0) - \operatorname{grad} f(0, 0) \cdot h) = \frac{1}{||h||} (\frac{h_1^3}{h_1^2 + h_2^2} - h_1) = \frac{1}{||h||} \frac{-h_1 h_2^2}{h_1^2 + h_2^2} = \frac{-h_1 h_2^2}{(h_1^2 + h_2^2)^{3/2}}.$$

Für $h_2 = h_1 > 0$: $\rho(h) = \frac{-h_1^3}{(\sqrt{2})^3 h_1^3} = -\frac{1}{(\sqrt{2})^3} \implies \rho(h) \nrightarrow 0 \ (h \to 0) \implies f \text{ ist in } (0,0)$ nicht db.

Satz 5.2 (Stetigkeit aller paritiellen Ableitungen) Sei $x_0 \in D$ und alle partiellen Ableitungen $\frac{\partial f_j}{\partial x_k}$ seien auf D vorhanden und in x_0 stetig $(j=1,\ldots,m,\ k=1,\ldots,n)$. Dann ist f in x_0 db.

Beweis

O.B.d.A: m = 1 und $x_0 = 0$. Der Übersicht wegen sei n = 2.

Für $h = (h_1, h_2) \neq (0, 0)$:

$$\rho(h) := \frac{1}{||h||} (f(h) - f(0,0) - (\underbrace{h_1 f_x(0,0) + h_2 f_y(0,0)}_{= \operatorname{grad} f(0,0) \cdot h}))$$

$$f(h) - f(0) = f(h_1, h_2) - f(0, 0) = \underbrace{f(h_1, h_2) - f(0, h_2)}_{=:\Delta_1} + \underbrace{f(0, h_2) - f(0, 0)}_{=:\Delta_2}$$

$$\varphi(t) := f(t, h_2), \ t \text{ zwischen } 0 \text{ und } h_1 \implies \Delta_1 = \varphi(h_1) - \varphi(0), \ \varphi'(t) = f_x(t, h_2)$$

Aus dem Mittelwertsatz aus Analysis I folgt: $\exists \xi = \xi(h)$ zw. 0 und $h_1 : \Delta_1 = h_1 \varphi(\xi) = h_1 f_x(\xi, h_2)$ $\exists \eta = \eta(h) \text{ zw. } 0 \text{ und } h_2 : \Delta_2 = h_2 \varphi(\eta) = h_2 f_x(\eta, h_2)$

$$\implies \rho(h) := \frac{1}{||h||} (h_1 f_x(\xi, h_2) - h_2 f_y(0, \eta) - (h_1 f_x(0, 0) + h_2 f_y(0, 0)))$$

$$= \frac{1}{||h||} h(\underbrace{f_x(\xi, h_2) - f_x(0, 0), f_y(0, \eta) - f_y(0, 0)}_{=:v(h)}) = \frac{1}{||h||} h \cdot v(h)$$

$$\implies |\rho(h)| = \frac{1}{||h||} |h \cdot v(h)| \stackrel{\text{CSU}}{\leq} \frac{1}{||h||} ||h||||v(h)|| = ||v(h)||$$

$$f_x, f_y \text{ sind stetig in } (0,0) \implies v(h) \to 0 \ (h \to 0) \implies \rho(h) \to 0 \ (h \to 0)$$

Folgerung 5.3

Ist $f \in C^1(D, \mathbb{R}^m) \implies f$ ist auf D db.

Definition

Sei $k \in \mathbb{N}$ und $f \in C^k(D, \mathbb{R}^m)$. Dann heißt f auf D k-mal stetig db.

Beispiele:

Generalize (1)
$$f(x,y,z) = (x^2 + y, xyz)$$
. $J_f(x,y,z) = \begin{pmatrix} 2x & 1 & 0 \\ yz & xz & xy \end{pmatrix} \implies f \in C^1(\mathbb{R}^3, \mathbb{R}^2)$

 $\stackrel{5.3}{\Longrightarrow} f$ ist auf \mathbb{R}^3 db und $f'(x,y,z) = J_f(x,y,z) \ \forall (x,y,z) \in \mathbb{R}^3$.

(2) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear, es ex. also eine $(m \times n)$ -Matrix A: f(x) = Ax $(x \in \mathbb{R}^n)$.

Für
$$x_0 \in \mathbb{R}^n$$
 und $h \in \mathbb{R}^n \setminus \{0\}$ gilt:

$$\rho(h) = \frac{1}{\|h\|} (f(x_0 + h) - f(x_0) - Ah) = \frac{1}{\|h\|} (f(x_0) + f(h) - f(x_0) - f(h)) = 0.$$

Also: f ist auf \mathbb{R}^n db und $f'(x) = A \ \forall x \in \mathbb{R}^n$. Insbesondere ist $f \in C^1(\mathbb{R}^n, \mathbb{R}^m)$.

- (2.1) n = m und f(x) = x = Ix ($I = (m \times n)$ -Einheitsmatrix). Dann: $f'(x) = I \ \forall x \in \mathbb{R}^n$.
- (2.2) m = 1: $\exists a \in \mathbb{R}^n : f(x) = ax \ (x \in \mathbb{R}^n)$ (Linearform). $f'(x) = a \ \forall x \in \mathbb{R}^n$.

(3) $f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} &, \text{ falls}(x,y) \neq (0,0) \\ 0 &, \text{ falls}(x,y) = (0,0) \end{cases}$

Bekannt: f ist in (0,0) db. Übungsblatt: f_x, f_y sind in (0,0) nicht stetig.

- (4) Sei $I \subseteq \mathbb{R}$ ein Intervall und $g = (g_1, \dots, g_m) : I \to \mathbb{R}^m; g_1, \dots, g_m : I \to \mathbb{R}$. g ist in $t_0 \in I$ db $\iff g_1, \dots, g_m$ sind in $t_0 \in I$ db. In diesem Fall gilt: $g'(t_0) = (g'_1(t_0), \dots, g'_m(t_0))$.
- $(4.1) m = 2 : g(t) = (\cos t, \sin t), t \in [0, 2\pi]. g'(t) = (-\sin t, \cos t).$
- (4.2) Seien $a, b \in \mathbb{R}^m$, g(t) = a + t(b a), $t \in [0, 1]$, g'(t) = b a.

Satz 5.4 (Kettenregel)

f sei in $x_0 \in D$ db, $\emptyset \neq E \subseteq \mathbb{R}^m$, E sei offen, $f(D) \subseteq E$ und $g: E \to \mathbb{R}^p$ sei db in $y_0 := f(x_0)$. Dann ist $g \circ f: D \to \mathbb{R}^p$ db in x_0 und

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$
 (Matrizenprodukt)

Beweis

 $A := f'(x_0), B := g'(y_0) = g'(f(x_0)), h := g \circ f.$

$$\tilde{g}(y) = \begin{cases} \frac{g(y) - g(y_0) - B(y - y_0)}{||y - y_0||} &, \text{ falls } y \in E \setminus \{y_0\} \\ 0 &, \text{ falls } y = y_0 \end{cases}$$

g ist db in $y_0 \implies \tilde{g}(y) \to 0 \ (y \to y_0)$. Aus Satz 5.1 folgt, dass f stetig ist in $x_0 \implies f(x) \to f(x_0) = y_0 \ (x \to x_0) \implies \tilde{g}(f(x)) \to 0 \ (x \to x_0)$

Es ist $g(y) - g(y_0) = ||y - y_0||\tilde{g}(y) = B(y - y_0) \ \forall y \in E$.

$$\frac{h(x) - h(x_0) - BA(x - x_0)}{||x - x_0||} = \frac{1}{||x - x_0||} (g(f(x)) - g(f(x_0)) - BA(x - x_0))$$

$$= \frac{1}{||x - x_0||} (||f(x) - f(x_0)|| \tilde{g}(f(x)) + B(f(x) - f(x_0)) - BA(x - x_0))$$

$$= \underbrace{\frac{||f(x) - f(x_0)||}{||x - x_0||}}_{=:D(x)} \underbrace{\tilde{g}(f(x))}_{\to 0} + B(\underbrace{\frac{f(x) - f(x_0) - A(x - x_0)}{||x - x_0||}}_{f \to 0 \ (x \to x_0)})$$

Noch zu zeigen: D(x) bleibt in der "Nähe" von x_0 beschränkt.

$$0 \le D(x) = \frac{||f(x) - f(x_0) - A(x - x_0) + A(x - x_0)||}{||x - x_0||}$$

$$= \underbrace{\frac{||f(x) - f(x_0) - A(x - x_0)||}{||x - x_0||}}_{\to 0} + \underbrace{\frac{||A(x - x_0)||}{||x - x_0||}}_{\le ||A||}.$$

Wichtigster Fall $g = g(x_1, \ldots, x_m)$ reellwertig, $h(x) = h(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), f_2(x_1, \ldots, x_n), \ldots, f_m)$ $(g \circ f)(x)$.

$$h_{x_j}(x) = g_{x_1}(f(x)) \frac{\partial f_1}{\partial x_j}(x) + g_{x_2}(f(x)) \frac{\partial f_2}{\partial x_j}(x) + \dots + g_{x_m}(f(x)) \frac{\partial f_m}{\partial x_j}(x)$$

Beispiel

$$g = g(x, y, z), h(x, y) = g(xy, x^2 + y, x \sin y) = g(f(x, y)).$$

$$h_x(x,y) = g_x(f(x,y))y + g_y(f(x,y))2x + g_z(f(x,y))\sin y.$$

$$h_y(x,y) = g_x(f(x,y))x + g_y(f(x,y))1 + g_z(f(x,y))x\cos y.$$

Hilfssatz

Es sei A eine $(m \times n)$ -Matrix (reell), es sei B eine $(n \times n)$ -Matrix (reell) und es gelte

- (i) $BA = I(= (n \times n)$ -Einheitsmatrix) und
- (ii) $AB = \tilde{I}(= (m \times m)$ -Einheitsmatrix)

Dann: m = n.

Beweis

 $\Phi(x) := Ax(x \in \mathbb{R}^n)$. Lin. Alg. $\Longrightarrow \Phi$ ist linear, $\Phi : \mathbb{R}^n \to \mathbb{R}^m$. $\stackrel{\text{(i)}}{\Longrightarrow} \Phi$ ist injektiv, also $Kern\Phi = 0$. (ii) Sei $z \in \mathbb{R}^m, x := Bz \stackrel{\text{(ii)}}{\Longrightarrow} z = ABz = Ax = \Phi(x) \Longrightarrow \Phi$ ist surjektiv. Dann: $n = \dim \mathbb{R}^n \stackrel{\text{LA}}{=} \dim Kern \Phi + \dim \Phi(\mathbb{R}^n) = m$.

Satz 5.5 (Injektivität und Dimensionsgleichheit)

 $f: D \to \mathbb{R}^n$ sei db auf D, es sei f(D) offen, f injektiv auf D und $f^{-1}: f(D) \to \mathbb{R}^n$ sei db auf f(D). Dann:

$$(1) \ m = n$$

(2) $\forall x \in D : f'(x)$ ist eine invertierbare Matrix und $f'(x)^{-1} = (f^{-1})'(f(x))$

Beachte:

- (1) Ist D offen und $f:D\to\mathbb{R}^m$ db, so muss i. A. f(D) nicht offen sein. Z.B.: $f(x)=\sin x, D=\mathbb{R}, f(D)=[-1,1]$
- (2) Ist D offen, $f: D \to \mathbb{R}^m$ db und injektiv, so muss i.A. f^{-1} <u>nicht</u> db sein. Z.B.: $f(x) = x^3, D = \mathbb{R}, f^{-1}$ ist in 0 <u>nicht</u> db.

von 5.5:
$$g := f^{-1}; x_0 \in D, z_0 := f(x_0) (\implies x_0 = g(z_0))$$
 Es gilt: $g(f(x)) = x \forall x \in D, f(g(z)) = z \forall z \in f(D) \stackrel{5.4}{\Longrightarrow} g'(f(x)) \cdot f'(x) = I \forall x \in D; f'(g(z)) \cdot g'(z) = \tilde{I} \forall z \in f(D) \implies \underbrace{g'(z_0)}_{=:B} \cdot \underbrace{f'(x_0)}_{=:A} = I, f'(x_0) \cdot g'(z_0) = \tilde{I} \stackrel{5.5}{\Longrightarrow} m = n \text{ und } f'(x_0)^{-1} = g'(z_0) = (f^{-1})'(f(x_0)).$

Differenzierbarkeitseigenschaften reellwertiger Funktionen

Definition

- (1) Seien $a, b \in \mathbb{R}^n$; $S[a, b] := \{a + t(b a) : t \in [0, 1]\}$ heißt **Verbindungsstrecke** von a und b
- (2) $M \subseteq \mathbb{R}^n$ heißt konvex : \iff aus $a, b \in M$ folgt stets: $S[a, b] \subseteq M$
- (3) Sei $k \in \mathbb{N}$ und $x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$. $S[x^{(0)}, \dots, x^{(k)}] := \bigcup_{j=1}^k S[x^{(j-1)}, x^{(j)}]$ heißt Streckenzug durch $x^{(0)}, \dots, x^{(k)}$ (in dieser Reihenfolge!)
- (4) Sei $G \subseteq \mathbb{R}^n$. G heißt **Gebiet**: \iff G ist offen und aus $a, b \in G$ folgt: $\exists x^{(0)}, \dots, x^{(k)} \in G$: $x^{(0)} = a, x^{(k)} = b$ und $S[x^{(0)}, \dots, x^{(k)}] \subseteq G$.

Vereinbarung: Ab jetzt in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}$ eine Funktion.

Satz 6.1 (Der Mittelwertsatz)

 $f: D \to \mathbb{R}$ sei differenzierbar auf D, es seien $a, b \in D$ und $S[a, b] \subseteq D$. Dann:

$$\exists \ \xi \in S[a,b] : f(b) - f(a) = f'(\xi) \cdot (b-a)$$

Beweis

Sei
$$g(t) := a + t \cdot (b - a)$$
 für $t \in [0, 1]$. $g([0, 1]) = S[a, b] \subseteq D$. $\Phi(t) := f(g(t))(t \in [0, 1])$ 5.4 $\implies \Phi$ ist differenzierbar auf $[0, 1]$ und $\Phi'(t) = f'(g(t)) \cdot g'(t) = f'(a + t(b - a)) \cdot (b - a)$. $f(b) - f(a) = \Phi(1) - \Phi(0) \stackrel{\downarrow}{\Rightarrow} MWS, AI]\Phi'(\eta) = f'(\underbrace{a + \eta(b - a)}_{=:S}) \cdot (b - a), \eta \in [0, 1]$

Folgerungen 6.2

Sei D ein **Gebiet** und $f, g: D \to \mathbb{R}$ seien differenzierbar auf D.

- (1) Ist $f'(x) = 0 \ \forall x \in D \implies f$ ist auf D konstant.
- (2) Ist $f'(x) = g'(x) \forall x \in D \implies \exists c \in \mathbb{R} : f = g + c \text{ auf } D$.

(2) folgt aus (1). (1) Seien
$$a, b \in D$$
. Z.z.: $f(a) = f(b)$. $\exists x^{(0)}, \dots, x^{(k)} \in D, x^{(0)} = a, x^{(k)} = b$: $S[x^{(0)}, \dots, x^{(k)}] \subseteq D \ \forall j \in \{1, \dots, k\} \text{ ex. nach } 6.1 \text{ ein } \xi_j \in S[x^{(j-1)}, x^{(j)}] : f(x^{(j)}) - f(x^{(j-1)}) = f(x^{(j)}) \cdot (x^{(j)} - x^{(j-1)}) = 0 \implies f(x^{(j)}) = f(x^{(j-1)}) \implies f(a) = f(x^{(0)}) = f(x^{(1)}) = f(x^{(2)}) = \dots = f(x^{(k)}) = f(b).$

Satz 6.3 (Bedingung für Lipschitzstetigkeit)

D sei konvex und $f:D\to\mathbb{R}$ sei differenzierbar auf D. Weiter sei f' auf D beschränkt. Dann ist f auf D Lipschitzstetig.

Beweis

 $\exists L \geq 0: ||f'(x)|| \leq L \forall x \in D. \text{ Seien } u, v \in D. \text{ } D \text{ konvex} \implies S[u,v] \subseteq D. \text{ } 6.1 \implies \exists \xi \in S[u,v]: f(u)-f(v)=f'(\xi)\cdot(u-v) \implies |f(u)-f(v)|=|f'(\xi)\cdot(u-v)| \stackrel{CSU}{\leq} ||f'(\xi)||||u-v|| \leq L||u-v||.$

Satz 6.4 (Linearität)

Sei $\Phi: \mathbb{R}^n \to \mathbb{R}^m$ eine Funktion.

 Φ ist linear $\iff \Phi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ und $\Phi(\alpha x) = \alpha \Phi(x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R}$.

Beweis

" \Longrightarrow ": " \Leftarrow ": O.B.d.A.: m=1. Z.z.: $\exists a \in \mathbb{R}^n : \Phi(x) = a \cdot x \forall x \in \mathbb{R}^n$. $a:=\Phi'(0)\Phi(0) = \Phi(2 \cdot 0) = 2 \cdot \Phi(0) \implies \Phi(0) = 0$. $\forall x \in \mathbb{R}^n \forall \alpha \in \mathbb{R} : \Phi(\alpha x) = \alpha \Phi(x) \xrightarrow{5.4} \alpha \Phi'(\alpha x) = \alpha \Phi'(x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R} \implies \Phi'(x) = \Phi'(\alpha x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \neq 0$. $\xrightarrow{\alpha \to 0, f \in C^1} \Phi'(x) = \Phi'(0) = a \ \forall x \in \mathbb{R}^n$. $g(x) := (\Phi(x) - ax)^2 \ (x \in \mathbb{R}^n), \ g(0) = (\Phi(0) - a \cdot 0)^2 = 0$. $5.4 \implies g$ ist differentier auf \mathbb{R}^n und $g'(x) = 2(\Phi(x) - ax)(\Phi'(x) - a) = 0 \ \forall x \in \mathbb{R}^n$. $6.2(1) \implies g(x) = g(0) = 0 \ \forall x \in \mathbb{R}^n \implies \Phi(x) = a \cdot x \ \forall x \in \mathbb{R}^n$.

Die Richtungsableitung Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f: D \to \mathbb{R}$ und $x_0 \in D$. Ist $a \in \mathbb{R}^n$ und ||a|| = 1, so heißt a eine **Richtung** (oder ein **Richtungsvektor**).

Sei $a \in \mathbb{R}^n$ eine Richtung. D offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq D$. Gerade durch x_0 mit Richtung $a : \{x_0 + ta : t \in \mathbb{R}\}$. $||x_0 + ta - x_0|| = ||ta|| = |t|$. Also: $x_0 + ta \in D$ für $t \in (-\delta, \delta)$, $g(t) := f(x_0 + ta)$ $(t \in (-\delta, \delta))$.

f heißt in x_0 in Richtung a db, gdw. der Grenzwert

$$\lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t}$$

existiert und $\in \mathbb{R}$ ist. In diesem Fall heißt

$$\frac{\partial f}{\partial a}(x_0) := \lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t}$$

die Richtungsableitung von f in x_0 in Richtung a.

Beispiele:

(1) f ist in x_0 partiell db nach $x_j \iff f$ ist in x_0 db in Richtung e_j . In diesem Fall gilt: $\frac{\partial f}{\partial x_j}(x_0) = \frac{\partial f}{\partial e_j}(x_0)$.

(2)

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

 $x_0 = (0,0)$. Sei $a = (a_1,a_2) \in \mathbb{R}^2$ eine Richtung, also $a_1^2 + a_2^2 = 1$; $\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \frac{t^2 a_1 a_2}{t^2 a_1^2 + t^2 a_2^2} = \frac{a_1 a_2}{t}$. D.h.: $\frac{\partial f}{\partial a}(0,0)$ ex. $\iff a_1 a_2 = 0 \iff a \in \{(1,0), (-1,0), (0,1), (0,-1)\}$ In diesem Fall: $\frac{\partial f}{\partial a}(0,0) = 0$.

(3)

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

 $x_0 = (0,0). \text{ Sei } a = (a_1,a_2) \in \mathbb{R} \text{ eine Richtung. } \frac{f(ta)-f(0,0)}{t} = \frac{1}{t} \frac{t^3 a_1 a_2^2}{t^2 a_1^2 + t^4 a_2^4} = \frac{a_1 a_2^2}{a_1^2 + t^2 a_2^4} \overset{t \to 0}{\to} \begin{cases} 0 & \text{, falls } a_1 = 0 \\ \frac{a_2^2}{a_1} & \text{, falls } a_1 \neq 0 \end{cases}$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert für jede Richtung $a \in \mathbb{R}^2$. Z.B.: $a = \frac{1}{\sqrt{2}}(1,1) : \frac{\partial f}{\partial a}(0,0) = \frac{1}{\sqrt{2}}$.

 $f(x,\sqrt{x}) = \frac{x^2}{2x^2} = \frac{1}{2} \ \forall x > 0 \implies f \text{ ist in } (0,0) \text{ nicht stetig.}$

Satz 6.5 (Richtungsableitungen)

Sei $x_0 \in D$, $a \in \mathbb{R}^n$ eine Richtung, $f: D \to \mathbb{R}$.

(1) $\frac{\partial f}{\partial a}(x_0)$ existiert $\iff \frac{\partial f}{\partial (-a)}(x_0)$ existiert. In diesem Fall ist:

$$\frac{\partial f}{\partial (-a)}(x_0) = -\frac{\partial f}{\partial a}(x_0)$$

- (2) f sei in x_0 db. Dann:
 - (i) $\frac{\partial f}{\partial a}(x_0)$ existiert und

$$\frac{\partial f}{\partial a}(x_0) = a \cdot \operatorname{grad} f(x_0).$$

(ii) Sei grad $f(x_0) \neq 0$ und $a_0 := || \operatorname{grad} f(x_0)||^{-1} \cdot \operatorname{grad} f(x_0)$. Dann:

$$\frac{\partial f}{\partial (-a_0)}(x_0) \le \frac{\partial f}{\partial a}(x_0) \le \frac{\partial f}{\partial a_0}(x_0) = ||\operatorname{grad} f(x_0)||.$$

Weiter gilt: $\frac{\partial f}{\partial a}(x_0) < \frac{\partial f}{\partial a_0}(x_0)$, falls $a \neq a_0$; $\frac{\partial f}{\partial (-a_0)}(x_0) < \frac{\partial f}{\partial a}(x_0)$, falls $a \neq -a_0$.

- (1) $\frac{(f(x_0+t(-a))-f(x_0))}{t} = -\frac{(f(x_0+(-t)a)-f(x_0))}{-t} \implies \text{Beh.}$
- (2) (i) $g(t) := f(x_0 + ta)$ (|t| hinreichend klein). Aus Satz 5.4 folgt: g ist db in t = 0 und $g'(0) = f'(x_0) \cdot a \implies \frac{\partial f}{\partial a}(x_0)$ existiert und ist $= g'(0) = \operatorname{grad} f(x_0) \cdot a$

6. Differenzierbarkeitseigenschaften reellwertiger Funktionen

(ii)
$$\left| \frac{\partial f}{\partial a}(x_0) \right| \stackrel{\text{(i)}}{=} |a \cdot \operatorname{grad} f(x_0)| \stackrel{\text{CSU}}{\leq} ||a|| \cdot || \operatorname{grad} f(x_0)|| = || \operatorname{grad} f(x_0)|| = \frac{1}{|| \operatorname{grad} f(x_0)||} \operatorname{grad} f(x_0) \cdot \operatorname{grad} f(x_0) = a_0 \cdot \operatorname{grad} f(x_0) \stackrel{\text{(i)}}{=} \frac{\partial f}{\partial a_0}(x_0)$$

$$\implies \frac{\partial f}{\partial (-a_0)}(x_0) \stackrel{\text{(1)}}{=} -\frac{\partial f}{\partial a_0}(x_0) \leq \frac{\partial f}{\partial a}(x_0) \leq \frac{\partial f}{\partial a_0}(x_0) = || \operatorname{grad} f(x_0)||$$

$$\operatorname{Sei} \frac{\partial f}{\partial a}(x_0) = \frac{\partial f}{\partial a_0}(x_0) \stackrel{\text{(i),(ii)}}{\Longrightarrow} a \cdot \operatorname{grad} f(x_0) = || \operatorname{grad} f(x_0)|| \implies a \cdot a_0 = 1 \implies ||a - a_0||^2 = (a - a_0)(a - a_0) = a \cdot a - 2a \cdot a_0 + a_0 \cdot a_0 = 1 - 2 + 1 = 0 \implies a = a_0. \blacksquare$$

Der Satz von Taylor Im Folgenden sei $f: D \to \mathbb{R}$ zunächst "genügend oft partiell db", $x_0 \in D$ und $h = (h_1, \dots, h_n) \in \mathbb{R}^n$. Wir führen folgenden Formalismus ein.

$$\nabla := \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \text{ (,,Nabla``)}; \ \nabla f := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right) = \operatorname{grad} f; \ \nabla f(x_0) := \operatorname{grad} f(x_0)$$

$$(h \cdot \nabla) := h_1 \frac{\partial}{\partial x_1} + \ldots + h_n \frac{\partial}{\partial x_n}; \ (h \cdot \nabla) f := h_1 \frac{\partial f}{\partial x_1} + \ldots + h_n \frac{\partial f}{\partial x_n} = h \operatorname{grad} f; \ (h \cdot \nabla) f(x_0) := h \cdot \operatorname{grad} f(x_0)$$

$$(h \cdot \nabla)^{(0)} f(x_0) := f(x_0)$$
. Für $k \in \mathbb{N} : (h \cdot \nabla)^{(k)} := \left(h_1 \frac{\partial}{\partial x_1} + \dots + h_n \frac{\partial}{\partial x_n}\right)^k$

$$(h \cdot \nabla)^{(2)} f(x_0) = \sum_{j=1}^n \sum_{k=1}^n h_j h_k \frac{\partial^2 f}{\partial x_j \partial x_k}(x_0)$$

$$(h \cdot \nabla)^{(3)} f(x_0) = \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n h_j h_k h_l \frac{\partial^3 f}{\partial x_j \partial x_k \partial x_l}(x_0)$$

Beispiel

$$(n=2): h = (h_1, h_2).$$

$$(h \cdot \nabla)^{(0)} f(x_0) = f(x_0), \ (h \cdot \nabla)^{(1)} f(x_0) = h \cdot \operatorname{grad} f(x_0) = h_1 f_x(x_0) + h_2 f_y(x_0).$$

$$(h \cdot \nabla)^{(2)} f(x_0) = \left(h_1 \frac{\partial f}{\partial x} + h_2 \frac{\partial f}{\partial y}\right)^2 (x_0) = h_1^2 \frac{\partial^2 f}{\partial^2 x}(x_0) + h_1 h_2 \frac{\partial^2 f}{\partial x \partial y}(x_0) + h_2 h_1 \frac{\partial^2 f}{\partial y \partial x}(x_0) + h_2^2 \frac{\partial^2 f}{\partial y$$

Satz 6.6 (Der Satz von Taylor)

Sei $k \in \mathbb{N}, f \in C^{k+1}(D, \mathbb{R}), x_0 \in D, h \in \mathbb{R}^n$ und $S[x_0, x_0 + h] \subseteq D$. Dann:

$$f(x_0 + h) = \sum_{i=0}^{k} \frac{(h \cdot \nabla)^{(j)} f(x_0)}{j!} + \frac{(h \cdot \nabla)^{(k+1)} f(\xi)}{(k+1)!}$$

wobei $\xi \in S[x_0, x_0 + h]$

$$\Phi(t) := f(x_0 + th) \text{ für } t \in [0, 1]. \ 5.4 \Longrightarrow \ \Phi \in C^{k+1}[0, 1], \ \Phi'(t) = f'(x_0 + th) * h = (h * \nabla) f(x_0 + th)$$

Induktiv: $\Phi^{(j)}(t) = (h \cdot \nabla)^{(j)} f(x_0 + th) \ (j = 0, \dots, k+1, t \in [0, 1]). \ \Phi(0) = f(x_0), \Phi(1) = f(x_0 + th)$

h);
$$\Phi^{(j)}(0) = (h \cdot \nabla)^{(j)} f(x_0)$$
. Analysis 1 (22.2) $\implies \Phi(1) = \sum_{j=0}^{k} \frac{\Phi^{(j)}(0) f(x_0)}{j!} + \frac{\Phi^{(k+1)} f(\eta)}{(k+1)!}$, wobei $\eta \in [0,1] \implies f(x_0 + h) = \sum_{j=1}^{k} \frac{(h \cdot \nabla)^{(j)} f(x_0)}{j!} + \frac{(h \cdot \nabla)^{(k+1)} f(x_0 + \eta h)}{(k+1)!}$, $\xi := x_0 + \eta h$

Spezialfall 6.7 Sei $f \in C^2(D,\mathbb{R}), x_0 \in D, h \in \mathbb{R}^n, S[x_0, x_0 + h] \subseteq D$. Dann:

$$f(x_0 + h) = f(x_0) + \operatorname{grad} f(x_0) \cdot h + \frac{1}{2} \sum_{j,k=1}^n h_j h_k \frac{\partial^2 f}{\partial x_j \partial x_k} (x_0 + \eta h)$$

7. Quadratische Formen

Vereinbarung: In diesem Paragraphen sei A stets eine reelle und symmetrische $(n \times n)$ -Matrix, $(A = A^{\top})$. Also: $A = (a_{jk})$, dann $a_{jk} = a_{kj}$ (k, j = 1, ..., n)

Definition

 $Q_A: \mathbb{R}^n \to \mathbb{R}$ durch $Q_A(x) := x(Ax^T)$. Q_A heißt die zu A gehörende **quadratische Form**. Für $x = (x_1, \dots, x_n)$:

$$Q_A(x) = \sum_{i,k=1}^n a_{jk} x_j x_k$$

Beispiel

Sei $f \in C^2(D, \mathbb{R}), x_0 \in D, h \in \mathbb{R}^n, S[x_0, x_0 + h] \subseteq D.$

$$H_f(x_0) := \begin{pmatrix} f_{x_1x_1}(x_0) & \cdots & f_{x_1x_n}(x_0) \\ f_{x_2x_1}(x_0) & \cdots & f_{x_2x_n}(x_0) \\ \vdots & & \vdots \\ f_{x_nx_1}(x_0) & \cdots & f_{x_nx_n}(x_0) \end{pmatrix}$$

heißt die **Hesse-Matrix** von f in x_0 . 4.1 $\Longrightarrow H_f(x_0)$ ist symmetrisch. Aus 6.7 folgt:

$$f(x_0 + h) = f(x_0) + \operatorname{grad} f(x_0) \cdot h + \frac{1}{2}Q_B(h) \text{ mit } B = H_f(x_0 + \eta h)$$

Definition

A heißt positiv definit (pd) $:\iff Q_A(x)>0 \ \forall x\in\mathbb{R}^n\setminus\{0\}$ A heißt negativ definit (nd) $:\iff Q_A(x)<0 \ \forall x\in\mathbb{R}^n\setminus\{0\}$ A heißt indefinit (id) $:\iff \exists u,v\in\mathbb{R}^n:Q_A(u)>0,Q_A(v)<0$

Beispiele:

(1) $(n=2), A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ $Q_A(x,y) := ax^2 + 2bxy + cy^2 \ \big((x,y) \in \mathbb{R}^2\big).$ Nachrechnen:

$$aQa(x,y) = (ax+by)^2 + (\det A)y^2 \ \forall (x,y) \in \mathbb{R}^2$$

Übung:

A ist positiv definit $\iff a > 0, \det A > 0$ A ist negativ definit $\iff a < 0, \det A > 0$ A ist indefinit $\iff \det A < 0$

(2) (n=3), $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ $Q_A(x,y,z) = (x+z)^2 \ \forall \ (x,y,z) \in \mathbb{R}^3$. $Q_A(0,1,0) = 0$. A ist weder pd, noch id, noch nd.

7. Quadratische Formen

(3) ohne Beweis (\rightarrow Lineare Algebra). A symmetrisch \implies alle **Eigenwerte** (EW) von A sind $\in \mathbb{R}$.

A ist positiv definit \iff Alle Eigenwerte von $A \sin d > 0$

A ist negativ definit \iff Alle Eigenwerte von A sind < 0

 \iff \exists Eigenwerte λ, μ von A mit $\lambda > 0, \mu < 0$ A ist indefinit

Satz 7.1 (Regeln zu definiten Matrizen und quadratischen Formen)

- (1) A ist positiv definit \iff -A ist negativ definit
- (2) $Q_A(\alpha x) = \alpha^2 Q_A(x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R}$

A ist positiv definit $\iff \exists c > 0 : Q_A(x) \ge c ||x||^2 \ \forall x \in \mathbb{R}^n$ A ist negativ definit $\iff \exists c > 0 : Q_A(x) \le -c ||x||^2 \ \forall x \in \mathbb{R}^n$

Beweis

- (1) Klar
- (2) $Q_A(\alpha x) = (\alpha x)(A(\alpha x)) = \alpha^2 x(Ax) = \alpha^2 Q_A(x)$
- (3) " \Leftarrow ": Klar. " \Longrightarrow ": $K := \{x \in \mathbb{R}^n : ||x|| = 1\} = \partial U_1(0)$ ist beschränkt und abgeschlossen. Q_A ist stetig auf K. 3.3 $\implies \exists x_0 \in K : Q_A(x_0) \leq Q_A(x) \ \forall x \in K . \ c := Q_A(x_0). \ A$ positiv definit, $x_0 \neq 0 \implies Q_A(x_0) = c > 0$. Sei $x \in \mathbb{R}^n \setminus \{0\}; \ z := \frac{1}{\|x\|} x \implies z \in K \implies$ $Q_A(z) \ge c \implies c \le Q_A\left(\frac{1}{\|x\|}x\right) \stackrel{(2)}{=} \frac{1}{\|x\|^2} Q_A(x) \implies Q_A(x) \ge c\|x\|^2$

Satz 7.2 (Störung von definiten Matrizen)

- (1) A sei positiv definit (negativ definit). Dann existiert ein $\varepsilon > 0$ mit: Ist $B = (b_{jk})$ eine weitere symmetrische $(n \times n)$ -Matrix und gilt: $(*) |a_{jk} - b_{jk}| \leq \varepsilon \ (j, k = 1, \ldots, n)$, so ist B positiv definit (negativ definit).
- (2) A sei indefinit. Dann existieren $u,v\in\mathbb{R}^n$ und $\varepsilon>0$ mit: ist $B=(b_{jk})$ eine weitere symmetrische $(n \times n)$ -Matrix und gilt: $(*) |a_{jk} - b_{jk}| \leq \varepsilon \ (j, k = 1, \ldots, n)$, so ist $Q_B(u) > 0, Q_B(v) < 0$. Insbesondere: B ist indefinit.

Beweis

(1) A sei positiv definit $\stackrel{7.1}{\Longrightarrow} \exists c > 0 : Q_A(x) \ge c ||x||^2 \ \forall x \in \mathbb{R}^n. \ \varepsilon := \frac{c}{2n^2}$. Sei $B = (b_{jk})$ eine symmetrische Matrix mit (*). Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n : Q_A(x) - Q_B(x) \le |Q_A(x)|$

$$Q_{B}(x)| = \left| \sum_{j,k=1}^{m} (a_{jk} - b_{jk}) x_{j} x_{k} \right| \leq \sum_{j,k=1}^{n} \underbrace{|a_{jk} - b_{jk}|}_{\leq \varepsilon} \underbrace{|x_{j}|}_{\leq |x|} \underbrace{|x_{k}|}_{\leq |x|} \leq \varepsilon ||x||^{2} n^{2} = \frac{c}{2n^{2}} ||x||^{2} n^{2} = \frac{c}{2n^{2}} ||x||^{2}$$

(2) A sei indefinit. $\exists u, v \in \mathbb{R}^n: Q_A(u) > 0, Q_A(v) < 0. \alpha := \min \left\{ \frac{Q_A(u)}{\|u\|^2}, -\frac{Q_A(v)}{\|v\|^2} \right\} \implies \alpha > 0$ 0. $\varepsilon := \frac{\alpha}{2n^2}$. Sei $B = (b_{jk})$ eine symmetrische Matrix mit (*).

$$Q_A(u) - Q_B(u) \overset{\text{Wie bei (1)}}{\leq} \varepsilon u^2 ||u||^2 = \frac{\alpha}{2n^2} n^2 ||u||^2 = \frac{\alpha}{2} ||u||^2 \leq \frac{1}{2} \frac{Q_A(u)}{||u||^2} ||u||^2 = \frac{1}{2} Q_A(u) \implies Q_B(u) \geq \frac{1}{2} Q_A(u) > 0. \text{ Analog: } Q_B(v) < 0.$$

8. Extremwerte

Vereinbarung: In diesem Paragraphen sei $\emptyset \neq D \subseteq \mathbb{R}^n, f: D \to \mathbb{R}$ und $x_0 \in D$

Definition

- (1) f hat in x_0 ein lokales Maximum : $\iff \exists \delta > 0 : f(x) \leq f(x_0) \ \forall x \in D \cap U_{\delta}(x_0).$ f hat in x_0 ein lokales Minimum : $\iff \exists \delta > 0 : f(x) \geq f(x_0) \ \forall x \in D \cap U_{\delta}(x_0).$ lokales Extremum = lokales Maximum oder lokales Minimum
- (2) Ist D offen, f in x_0 partiel differenzierbar und grad $f(x_0) = 0$, so heißt x_0 ein stationärer Punkt.

Satz 8.1 (Nullstelle des Gradienten)

Ist D offen und hat f in x_0 ein lokales Extremum und ist f in x_0 partiell differenzierbar, dann ist grad $f(x_0) = 0$.

Beweis

f habe in x_0 ein lokales Maximum. Also $\exists \delta > 0 : U_{\delta}(x_0) \subseteq D$ und $f(x) \leq f(x_0) \ \forall x \in U_{\delta}(x_0)$. Sei $j \in \{1, \ldots, n\}$. Dann: $x_0 + te_j \in U_{\delta}(x_0)$ für $t \in (-\delta, \delta)$. $g(t) := f(x_0 + te_j)$ $(t \in (-\delta, \delta))$. $g(t) := f(x_0 + te_j)$ ist differenzierbar in t = 0 und $g'(0) = f_{x_j}(x_0)$. $g(t) = f(x_0 + te_j) \leq f(x_0) = g(0) \ \forall t \in (-\delta, \delta)$. Analysis 1, 21.5 $\implies g'(0) = 0 \implies f_{x_j}(x_0) = 0$

Satz 8.2 (Definitheit und Extremwerte)

Sei D offen, $f \in C^2(D, \mathbb{R})$ und grad $f(x_0) = 0$.

- (i) Ist $H_f(x_0)$ positiv definit $\implies f$ hat in x_0 ein lokales Minimum.
- (ii) Ist $H_f(x_0)$ negative definit $\implies f$ hat in x_0 ein lokales Maximum.
- (iii) Ist $H_f(x_0)$ indefinit $\implies f$ hat in x_0 kein lokales Extremum.

Beweis

(i), (ii) $A := H_f(x_0)$ sei positiv definit oder negativ definit oder indefinit. Sei $\varepsilon > 0$ wie in 7.2. $f \in C^2(D, \mathbb{R}) \implies \exists \delta > 0 : U_\delta(x_0) \subseteq D$ und (*) $|f_{x_j x_k}(x) - f_{x_j x_k}(x_0)| \le \varepsilon \ \forall x \in U_\delta(x_0) \ (j, k = 1, ..., n)$. Sei $x \in U_\delta(x_0) \setminus \{x_0\}, h := x - x_0 \implies x = x_0 + h, h \neq 0$ und $S[x_0, x_0 + h] \subseteq U_\delta(x_0)$ 6.7 $\implies \exists \eta \in [0, 1] : f(x) = f(x_0 + h) = f(x_0) + h \cdot \operatorname{grad} f(x_0) + \frac{1}{2}Q_B(h)$, wobei $B = H_f(x_0 + \eta h)$. Also: (**) $f(x) = f(x_0) + \frac{1}{2}Q_B(h)$.

A sei positiv definit (negativ definit) $\stackrel{7.2}{\Longrightarrow}$ B ist positiv definit (negativ definit). $\stackrel{h\neq 0}{\Longrightarrow}$ $Q_B(h) \stackrel{(<)}{>} 0 \stackrel{(**)}{\Longrightarrow} f(x) \stackrel{(<)}{>} f(x_0) \Longrightarrow f$ hat in x_0 ein lokales Minimum (Maximum).

(iii) A sei indefinit und es seien $u, v \in \mathbb{R}^n$ wie in 7.2. Wegen 7.1 OBdA: ||u|| = ||v|| = 1. Dann: $x_0 + tu, x_0 + tv \in U_\delta(x_0)$ für $t \in (-\delta, \delta)$. Sei $t \in (-\delta, \delta), t \neq 0$. Mit $h := t \stackrel{(v)}{u}$ folgt aus 7.2 und $(**): f(x_0 + t \stackrel{(v)}{u}) = f(x_0) + \frac{1}{2}Q_B(t \stackrel{(v)}{u}) = f(x_0) + \frac{t^2}{2}\underbrace{Q_B(\stackrel{(v)}{u})}_{>0/<0} \stackrel{(>)}{\leftarrow} f(x_0) \implies f$ hat in x_0 kein lokales Extremum.

Beispiele:

(1) $D = \mathbb{R}^2$, $f(x,y) = x^2 + y^2 - 2xy - 5$. $f_x = 2x - 2y$, $f_y = 2y - 2x$; grad $f(x,y) = (0,0) \iff x = y$. Stationäre: (x,x) $(x \in \mathbb{R})$.

$$f_{xx} = 2, \ f_{xy} = -2 = f_{yx}, \ f_{yy} = 2 \implies H_f(x, x) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

 $\det H_f(x,x) = 0 \implies H_f(x,x)$ ist weder pd, noch nd, noch id. Es ist $f(x,y) = (x-y)^2 - 5 \ge -5 \ \forall \ (x,y) \in \mathbb{R}^2$ und $f(x,x) = -5 \ \forall x \in \mathbb{R}$.

(2) $D = \mathbb{R}^2$, $f(x,y) = x^3 - 12xy + 8y^3$. $f_x = 3x^2 - 12y = 3(x^2 - 4y)$, $f_y = -12x + 24y^2 = 12(-x + 2y^2)$. grad $f(x,y) = (0,0) \iff x^2 = 4y$, $x = 2y^2 \implies 4y^4 = 4y \implies y = 0$ oder $y = 1 \implies (x,y) = (0,0)$ oder (x,y) = (2,1)

$$f_{xx} = 6x$$
, $f_{xy} = -12 = f_{yx}$, $f_{yy} = 48y$. $H_f(0,0) = \begin{pmatrix} 0 & -12 \\ -12 & 0 \end{pmatrix}$

 $\det H_f(0,0) = -144 < 0 \implies H_f(0,0)$ ist indefinit $\implies f$ hat in (0,0) kein lokales Extremum.

$$H_f(2,1) = \begin{pmatrix} 12 & -12 \\ -12 & 48 \end{pmatrix}$$

12 > 0, det $H_f(2,1) > 0 \implies H_f(2,1)$ ist positiv definit $\implies f$ hat in (2,1) ein lokales Minimum.

(3) $K := \{(x,y) \in \mathbb{R}^2 : x,y \geq 0, y \leq -x + 3\}, f(x,y) = 3xy - x^2y - xy^2$. Bestimme $\max f(K), \min f(K). \ f(x,y) = xy(3-x-y). \ K = \partial K \cup K^{\circ}. \ K$ ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists (x_1,y_1), (x_2,y_2) \in K : \max f(K) = f(x_1,y_1), \min f(K) = f(x_2,y_2). f \geq 0$ auf K, f = 0 auf ∂K , also $\min f(K) = 0$. f ist nicht konstant $\implies f(x_2,y_2) > 0 \implies (x_2,y_2) \in K^{\circ} \stackrel{8.1}{\Longrightarrow} \operatorname{grad} f(x_1,x_2) = 0$. Nachrechnen: $(x_2,y_2) = (1,1); f(1,1) = 1 = \max f(K)$.

9. Der Umkehrsatz

Erinnerung: Sei $x_0 \in \mathbb{R}^n$ und $U \subseteq \mathbb{R}^n$. U ist eine Umgebung von $x_0 \iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq U$

Hilfssatz 9.1 (Offenheit des Bildes)

Sei $\delta > 0, f : U_{\delta}(0) \subseteq \mathbb{R}^n \to \mathbb{R}^n$ stetig, f(0) = 0 und V sei eine offene Umgebung von f(0) (= 0). $U := \{x \in U_{\delta}(0) : f(x) \in V\}$. Dann ist U eine offene Umgebung von 0.

Beweis

Übung

Erinnerung: Cramersche Regel: Sei A eine reelle $(n \times n)$ -Matrix, det $A \neq 0$, und $b \in \mathbb{R}^n$. Das lineare Gleichungssystem Ax = b hat genau eine Lösung: $x = (x_1, \dots, x_n) = A^{-1}b$. Ersetze in A die j-te Spalte durch b^{\top} . Es entsteht eine Matrix A_j . Dann: $x_j = \frac{\det A_j}{\det A}$.

Satz 9.2 (Stetigkeit der Umkehrfunktion)

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f \in C^1(D, \mathbb{R}^n)$. f sei auf D injektiv und es sei f(D) offen. Weiter sei det $f'(x) \neq 0 \ \forall x \in D$ und f^{-1} sei auf f(D) differenzierbar. Dann: $f^{-1} \in C^1(f(D), \mathbb{R}^n)$.

Beweis

Sei $f^{-1} = g = (g_1, \dots, g_n), g = g(y)$. Zu zeigen: $\frac{\partial g_j}{\partial y_k}$ sind stetig auf f(D). 5.6 $\Longrightarrow g'(y) \cdot f'(x) = I$ $(n \times n$ -Einheitsmatrix), wobei $y = f(x) \in f(D) \Longrightarrow$

$$\begin{pmatrix} g_1'(y) \\ \vdots \\ g_n'(y) \end{pmatrix} \cdot f'(x) = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

 $\Longrightarrow \operatorname{grad} g_j(y) \cdot f'(x) = e_j \Longrightarrow f'(x)^\top \cdot \operatorname{grad} g_j(y)^\top = e_j^\top$. Ersetze in $f'(x)^\top$ die k-te Spalte durch e_j^\top . Es entsteht die Matrix $A_k(x) = A_k(f^{-1}(y))$. Cramersche Regel $\Longrightarrow \frac{\partial g_j}{\partial y_k}(y) = \frac{\det A_k(f^{-1}(y))}{\det f'(x)} = \frac{\det A_k(f^{-1}(y))}{\det f'(f^{-1}(y))}$. $f \in C^1(D, \mathbb{R}), f^{-1}$ stetig \Longrightarrow obige Definitionen hängen stetig von y ab $\Longrightarrow \frac{\partial g_j}{\partial y_k} \in C(f(D), \mathbb{R})$.

Satz 9.3 (Der Umkehrsatz)

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D sei offen, $f \in C^1(D, \mathbb{R}^n)$, $x_0 \in D$ und $\det f'(x_0) \neq 0$. Dann existiert eine offene Umgebung U von x_0 und eine offene Umgebung V von $f(x_0)$ mit:

- (a) f ist auf U injektiv, f(U) = V und $\det f'(x) \neq 0 \ \forall x \in U$
- (b) Für $f^{-1}: V \to U$ gilt: f^{-1} ist stetig differenzierbar auf V und

$$(f^{-1})'(f(x)) = (f'(x))^{-1} \ \forall x \in U$$

Folgerung 9.4 (Satz von der offenen Abbildung)

D und f seien wie in 9.3 und es gelte: det $f'(x) \neq 0 \ \forall x \in D$. Dann ist f(D) offen.

Beweis

O.B.d.A:
$$x_0 = 0$$
, $f(x_0) = f(0) = 0$ und $f'(0) = I$ (= $(n \times n)$ -Einheitsmatrix)

Die Abbildungen $x \mapsto \det f'(x)$ und $x \mapsto \|f'(x) - I\|$ sind auf D stetig, $\det f'(0) \neq 0$, $\|f'(0) - I\| = 0$. Dann existiert ein $\delta > 0$: $K := U_{\delta}(0) \subseteq D$, $\overline{K} = \overline{U_{\delta}(0)} \subseteq D$ und

- (1) $\det f'(x) \neq 0 \ \forall x \in \overline{K}$ und
- (2) $||f'(x) I|| \le \frac{1}{2n} \ \forall x \in \overline{K}$
- (3) **Behauptung:** $\frac{1}{2}||u-v|| \le ||f(u)-f(v)|| \ \forall u,v \in \overline{K}$, insbesondere ist f injektiv auf \overline{K}

(4)
$$f^{-1}$$
 ist stetig auf $f(\overline{K})$: Seien $\xi, \eta \in f(\overline{K}), u := f^{-1}(\xi), v := f^{-1}(\eta) \implies u, v \in \overline{K}$ und $||f^{-1}(\xi) - f^{-1}(\eta)|| = ||u - v|| \leq 2||f(u) - f(v)|| = 2||\xi - \eta||$

Beweis zu (3):
$$h(x) := f(x) - x$$
 $(x \in D) \implies h \in C^1(D, \mathbb{R}^n)$ und $h'(x) = f'(x) - I$. Sei $h = (h1, \dots, h_n)$. Also: $h' = \begin{pmatrix} h'_1 \\ \vdots \\ h'_n \end{pmatrix}$. Seien $u, v \in \overline{K}$ und $j \in \{1, \dots, n\}$.

$$|h_{j}(u) - h_{j}(v)| \stackrel{6.1}{=} |h'_{j}(\xi) \cdot (u - v)| \stackrel{\text{CSU}}{\leq} ||h'_{j}(\xi)|| ||u - v|| \leq ||h'(\xi)|| ||u - v||, \ \xi \in S[u, v] \in \overline{K}. \ (2)$$

$$\implies \leq \frac{1}{2n} ||u - v||$$

$$\Rightarrow \|h(u) - h(v)\| = \left(\sum_{j=1}^{n} (h_{j}(n) - h_{j}(v))^{2}\right)^{\frac{1}{2}} \leq \left(\sum_{j=1}^{n} \frac{1}{4n^{2}} \|u - v\|^{2}\right)^{\frac{1}{2}} = \frac{1}{2n} \|u - v\| \sqrt{n} \leq \frac{1}{2} \|u - v\| \Rightarrow \|u - v\| - \|f(u) - f(v)\| \leq \|f(u) - f(v) - (u - v)\| = \|h(u) - h(v)\| \leq \frac{1}{2} \|u - v\| \Rightarrow (3)$$

 $V:=U_{\frac{\delta}{4}}(0)$ ist eine offene Umgebung von f(0) (= 0). $U:=\{x\in K: f(x)\in V\}$ Klar: $U\subseteq K\subseteq \overline{K}, 0\in U, 9.1\Longrightarrow U$ ist eine offene Umgebung von 0. (3) $\Longrightarrow f$ ist auf U injektiv. (1) $\Longrightarrow \det f'(x)\neq 0 \ \forall x\in U.$ (4) $\Longrightarrow f^{-1}$ ist stetig auf f(U). Klar: $f(U)\subseteq V$. Für (a) ist noch zu zeigen: $V\subseteq f(U)$.

Sei $y \in V$. $w(x) := ||f(x) - y||^2 = (f(x) - y) \cdot (f(x) - y) \implies w \in C^1(D, \mathbb{R})$ und (nachzurechnen) $w'(x) = 2(f(x) - y) \cdot f'(x)$. \overline{K} ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists x_1 \in \overline{K}$: (5) $w(x_1) \leq w(x) \ \forall x \in \overline{K}$.

Behauptung: $x_1 \in K$.

Annahme: $x_1 \neq K \implies x_1 \in \partial K \implies ||x_1|| = \delta$. $2\sqrt{w(0)} = 2||f(0) - y|| = 2||y|| \le 2\frac{\delta}{4} = \frac{\delta}{2} = \frac{||x_1||}{2} = \frac{1}{2}||x_1 - 0|| \stackrel{(3)}{\le} ||f(x_1) - f(0)|| = ||f(x_1) - y + y - f(0)|| \le ||f(x_1) - y|| - ||f(0) - y|| = \sqrt{w(x_1)} + \sqrt{w(0)} \implies \sqrt{w(0)} < \sqrt{w(x_1)} \implies w(0) < w(x_1) \stackrel{(5)}{\le} w(0)$, Widerspruch. Also: $x_1 \in K$

- (5) $\Longrightarrow w(x_1) \leq w(x) \ \forall x \in K. \ 8.1 \implies w'(x_1) = 0 \implies (f(x_1) y) \cdot f'(x_1) = 0;$ (1) $\Longrightarrow f'(x_1)$ ist invertierbar $\Longrightarrow y = f(x_1) \implies x_1 \in U \implies y = f(x_1) \in f(U).$ Also: f(U) = V. Damit ist (a) gezeigt.
- (b): Wegen 5.5 und 9.2 ist nur zu zeigen: f^{-1} ist differenzierbar auf V. Sei $y_1 \in V$, $y \in V \setminus \{y_1\}$, $x_1 := f^{-1}(y_1), \ x := f^{-1}(y); \ L(y) := \frac{f^{-1}(y) f^{-1}(y_1) f'(x_0)^{-1}(y-y_1)}{\|y-y_1\|}$. zu zeigen: $L(y) \to 0 \ (y-y_1)$.

 $\varrho(x) := f(x) - f(x_1) - f'(x_1)(x - x_1)$. f ist differenzierbar in $x_1 \implies \frac{\varrho(x)}{\|x - x_1\|} \to 0 \ (x \to x_1)$.

$$f'(x_1)^{-1}\varrho(x) = f'(x_1)^{-1}(y - y_1) - (f^{-1}(y) - f^{-1}(y_1)) = -\|y - y_1\|L(y)$$

$$\implies L(y) = -f'(x_1)^{-1} \frac{\varrho(x)}{\|y - y_1\|} = -f'(x_1)^{-1} \underbrace{\frac{\varrho(x)}{\|x - x_1\|}}_{\to 0} \cdot \underbrace{\frac{\|x - x_1\|}{\|f(x) - f(x_1)\|}}_{\le 2. \text{ nach } (3)}$$

Für $y \to y_1$, gilt (wegen (4)) $x \to x_1 \implies L(y) \to 0$.

Beispiel

$$f(x,y) = (x\cos y, x\sin y)$$

$$f'(x,y) = \begin{pmatrix} \cos y & -x\sin y \\ \sin y & x\cos y \end{pmatrix}, \det f'(x,y) = x\cos^2 y + x\sin^2 y = x$$

 $D := \{(x,y) \in \mathbb{R}^2 : x \neq 0\}. \text{ Sei } (\xi,\eta) \in D \text{ 9.3} \implies \exists \text{ Umgebung } U \text{ von } (\xi,\eta) \text{ mit: } f \text{ ist auf } U \text{ injektiv } (*). \text{ z.B. } (\xi,\eta) = (1,\frac{\pi}{2}) \implies f(1,\frac{\pi}{2}) = (0,1). \ f'(1,\frac{\pi}{2}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ (f^{-1})(0,1) = f'(1,\frac{\pi}{2})^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

Beachte: f ist auf D "lokal" injektiv (im Sinne von (*)), aber f ist auf D nicht injektiv, da $f(x,y)=f(x,y+2k\pi) \ \forall x,y\in \mathbb{R} \ \forall k\in \mathbb{Z}.$

10. Implizit definierte Funktionen

Beispiele:

(1) $f(x,y) = x^2 + y^2 - 1$. $f(x,y) = 0 \iff y^2 = 1 - x^2 \iff y = \pm \sqrt{1 - x^2}$.

Sei $(x_0, y_0) \in \mathbb{R}^2$ mit $f(x_0, y_0) = 0$ und $g(x_0) > 0$. Dann existiert eine Umgebung U von x_0 und genau eine Funktion $g: U \to \mathbb{R}$ mit $g(x_0) = y_0$ und $f(x, g(x)) = 0 \ \forall x \in U$, nämlich $g(x) = \sqrt{1 - x^2}$

Sprechweisen: "g ist implizit durch die Gleichung f(x,y) = 0 definiert" oder "die Gleichung f(x,y) = 0 kann in der Form y = g(x) aufgelöst werden"

(2) $f(x,y,z) = y + z + \log(x+z)$. Wir werden sehen: \exists Umgebung $U \subseteq \mathbb{R}^2$ von (0,1) und genau eine Funktion $g: U \to \mathbb{R}$ mit g(0,-1) = 1 und $f(x,y,g(x,y)) = 0 \; \forall \; (x,y) \in U$.

Der allgemeine Fall: Es seien $p, n \in \mathbb{N}$, $\emptyset \neq D \subseteq \mathbb{R}^{n+p}$, D offen, $f = (f_1, \dots, f_p) \in C^1(D, \mathbb{R}^p)$. Punkte in D (bzw. \mathbb{R}^{n+p}) bezeichnen wir mit (x, y), wobei $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ und $y = (y_1, \dots, y_p) \in \mathbb{R}^p$, also $(x, y) = (x_1, \dots, x_n, y_1, \dots, y_p)$. Damit:

$$f' = \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_n} \end{pmatrix}}_{=:\frac{\partial f}{\partial x}} \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_p} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial y_1} & \cdots & \frac{\partial f_p}{\partial y_p} \end{pmatrix}}_{=:\frac{\partial f}{\partial y}}; \text{ also } f'(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y), & \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$$

Satz 10.1 (Satz über implizit definierte Funktionen)

Sei $(x_0, y_0) \in D$, $f(x_0, y_0) = 0$ und det $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Dann existiert eine offene Umgebung $U \subseteq \mathbb{R}^n$ von x_0 und genau eine Funktion $g: U \to \mathbb{R}^p$ mit:

- (1) $(x, g(x)) \in D \ \forall x \in U$
- (2) $g(x_0) = y_0$
- $(3) f(x, g(x)) = 0 \forall x \in U$
- $(4) \ g \in C^1(U, \mathbb{R}^p)$
- (5) $\det \frac{\partial f}{\partial y}(x, g(x)) \neq 0 \ \forall x \in U$
- (6) $g'(x) = -\left(\frac{\partial f}{\partial y}(x, g(x))^{-1}\right) \cdot \frac{\partial f}{\partial x}(x, g(x)) \ \forall x \in U$

Beweis

Definition: $F: D \to \mathbb{R}^{n+p}$ durch F(x,y) := (x, f(x,y)). Dann: $F \in C^1(D, \mathbb{R}^{n+p})$ und

$$F'(x,y) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ & \ddots & & \vdots & & \vdots \\ & 0 & 1 & 0 & \cdots & 0 \\ \hline & \frac{\partial f}{\partial x}(x,y) & & \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$$

Dann:

(I) $\det F'(x,y) \stackrel{\text{LA}}{=} \det \frac{\partial f}{\partial y}(x,y)$ $((x,y) \in D)$, insbesondere: $\det F'(x_0,y_0) \neq 0$. Es ist $F(x_0,y_0)=(x_0,0)$. $9.3 \Longrightarrow \exists$ eine offene Umgebung \mathbb{U} von (x_0,y_0) mit: $\mathbb{U} \subseteq D, f(\mathbb{U})=\vartheta$. F ist auf \mathbb{U} injektiv, $F^{-1}:\vartheta \to \mathbb{U}$ ist stetig differenzierbar und

(II)
$$\det F'(x,y) \stackrel{\text{(I)}}{=} \det \frac{\partial f}{\partial y}(x,y) \neq 0 \ \forall \ (x,y) \in \mathbb{U}$$

Bezeichnungen: Sei $(s,t) \in \vartheta$ $(s \in \mathbb{R}^n, t \in \mathbb{R}^p)$, $F^{-1}(s,t) =: (u(s,t),v(s,t))$, also $u : \vartheta \to \mathbb{R}^n$ stetig differenzierbar, $v : \vartheta \to \mathbb{R}^p$ stetig differenzierbar. Dann: $(s,t) = F(F^{-1}(s,t)) = (u(s,t),f(u(s,t),v(s,t))) \implies u(s,t) = s \implies F^{-1}(s,t) = (s,v(s,t))$. Für $(x,y) \in \mathbb{U} : f(x,y) = 0 \iff F(x,y) = (x,0) \iff (x,y) = F^{-1}(x,0) = (x,v(x,0)) \iff y = v(x,0)$, insbesondere: $y_0 = v(x_0,0)$. $U := \{x \in \mathbb{R}^n : (x,0) \in \vartheta\}$. Es gilt: $x_0 \in U$. Übung: U ist eine offene Umgebung von x_0 .

Definition: $g: U \to \mathbb{R}^p$ durch g(x) := v(x,0), für $x \in U$ gilt: $(x,0) \in \vartheta \implies F^{-1}(x,0) = (x,v(x,0)) = (x,g(x)) \in \mathbb{U}$. Dann gelten: (1), (2), (3) und (4). (5) folgt aus (II).

Zu (6): Definition für $x \in U : \psi(x) := (x, g(x)), \psi \in C^1(U, \mathbb{R}^{n+p}),$

$$\psi'(x) = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ & 0 & 1 \\ & & \\ & & g'(x) \end{pmatrix}$$

 $(3) \implies 0 = f(\psi(x)) \ \forall x \in U. \ 5.4 \implies 0 = f'(\psi(x)) \cdot \psi'(x) = \left(\frac{\partial f}{\partial x}(x,g(x)) \left| \frac{\partial f}{\partial y}(x,g(x)) \right.\right) \cdot \psi'(x) = \left(\frac{\partial f}{\partial x}(x,g(x)) + \frac{\partial f}{\partial y}(x,g(x)) \cdot g'(x) \ \forall x \in U. \ (5) \implies \frac{\partial f}{\partial y}(x,g(x)) \ \text{invertierbar, Multiplikation von links mit } \frac{\partial f}{\partial y}(x,g(x))^{-1} \ \text{liefert } (6).$

Beispiel

 $f(x,y,z)=y+z+\log(x+z)$. Zeige: \exists offene Umgebung U von (0,1) und genau eine stetig differenzierbare Funktion $g:U\to\mathbb{R}$ mit g(0,-1)=1 und f(x,y,g(x,y))=0 $\forall (x,y)\in U$. Berechne g' an der Stelle (0,-1).

f(0,-1,1) = 0, $f_z = 1 + \frac{1}{x+z}$; $f_z(0,-1,1) = 2 \neq 0$. Die Behauptung folgt aus dem Satz über impliziert definierte Funktionen. Also: $0 = y + g(x,y) + \log(x + g(x,y)) \, \forall (x,y) \in U$.

Differentiation nach $x: 0 = g_x(x, y) + \frac{1}{x + g(x, y)} (1 + g_x(x, y)) \ \forall (x, y) \in U \stackrel{(x, y) = (0, -1)}{\Longrightarrow} 0 = g_x(0, -1) + \frac{1}{1} (g_x(0, -1) + 1) \implies g_x(0, -1) = -\frac{1}{2}.$

Differentiation nach $y: 0 = 1 + g_y(x, y) + \frac{1}{x + g(x, y)} g_y(x, y) \ \forall (x, y) \in U \xrightarrow{(x, y) = (0, -1)} g_y(0, -1) = -\frac{1}{2}$. Also: $g'(0, -1) = (-\frac{1}{2}, -\frac{1}{2})$.

11. Extremwerte unter Nebenbedingungen

Definition

Seien M, N Mengen $\neq \emptyset$, $f: M \to N$ eine Funktion und $\emptyset \neq T \subseteq M$. Die Funktion $f_{|_T}: T \to N$, $f_{|_T}(x) := f(x) \ \forall x \in T$ heißt die **Einschränkung** von f auf T.

In diesem Paragraphen gelte stets: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f \in C^1(D, \mathbb{R})$, $p \in \mathbb{N}$, p < n und $\varphi = (\varphi_1, \dots, \varphi_p) \in C^1(D, \mathbb{R}^p)$. Es sei $T := \{x \in D : \varphi(x) = 0\} \neq \emptyset$.

Definition

f hat in $x_0 \in D$ ein lokales Extremum unter der Nebenbedingung $\varphi = 0 : \iff x_0 \in T$ und $f_{|_T}$ hat in x_0 ein lokales Extremum.

Wir führen folgende Hilfsfunktion ein: Für $x = (x_1, \dots, x_n) \in D$ und $\lambda = (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$ gilt:

$$H(x,\lambda) := f(x) + \lambda \cdot \varphi(x) = f(x) + \lambda_1 \varphi_1(x) + \dots + \lambda_p \varphi_p(x)$$

Es ist

$$H_{x_j} = f_{x_j} + \lambda_1 \frac{\partial \varphi_1}{\partial x_j} + \cdots + \lambda_p \frac{\partial \varphi_p}{\partial x_j} \ (j = 1, \dots, n), \ H_{\lambda_j} = \varphi_j$$

Für $x_0 \in D$ und $\lambda_0 \in \mathbb{R}^p$ gilt:

$$H'(x_0, \lambda_0) = 0 \iff f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \text{ und } \varphi(x_0) = 0$$

 $\iff f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \text{ und } x_0 \in T \text{ (I)}$

Satz 11.1 (Multiplikationenregel von Lagrange)

f habe in $x_0 \in D$ eine lokales Extremum unter der Nebenbedingung $\varphi = 0$ und es sei Rang $\varphi'(x_0) = p$. Dann existiert ein $\lambda_0 \in \mathbb{R}^p$ mit: $H'(x_0, \lambda_0) = 0$ (λ_0 heißt **Multiplikator**).

Folgerung 11.2

T sei beschränkt und abgeschlossen. Wegen 3.3 gilt: $\exists a,b\in T: f(a)=\max f(T),\ f(b)=\min f(T)$. Ist Rang $\varphi'(a)=p\implies \exists \lambda_0\in\mathbb{R}^p: H'(a,\lambda_0)=0$.

Beweis

Es ist $x_0 \in T$ und

$$\varphi'(x_0) = \underbrace{\begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(x_0) & \cdots & \frac{\partial \varphi_1}{\partial x_p}(x_0) \\ \vdots & & \vdots \\ \frac{\partial \varphi_p}{\partial x_1}(x_0) & \cdots & \frac{\partial \varphi_p}{\partial x_p}(x_0) \end{pmatrix}}_{-\cdot A} \quad \cdots \quad \frac{\frac{\partial \varphi_1}{\partial x_n}(x_0)}{\frac{\partial \varphi_p}{\partial x_n}(x_0)}$$

Rang $\varphi'(x_0) = p \implies \text{o.B.d.A.: } \det A \neq 0.$

Für $x=(x_1,\ldots,x_n)\in D$ schreiben wir x=(y,z), wobei $y=(x_1,\ldots,x_p),\ z=(x_{p+1},\ldots,x_n).$ Insbesondere ist $x_0=(y_0,z_0).$ Damit gilt: $\varphi(y_0,z_0)=0$ und $\det\frac{\partial \varphi}{\partial y}(y_0,z_0)\neq 0.$

Aus 10.1 folgt: \exists offene Umgebung $U \subseteq \mathbb{R}^{n-p}$ von z_0 , \exists offene Umgebung $V \subseteq \mathbb{R}^p$ von y_0 und es existiert $g \in C^1(U, \mathbb{R}^p)$ mit:

$$(II) \ g(z_0) = y_0$$

(III)
$$\varphi(q(z), z) = 0 \ \forall z \in U$$

(IV)
$$g'(z_0) = -\left(\frac{\partial \varphi}{\partial y} \underbrace{(g(z_0), z_0)}_{=x_0}\right)^{-1} \frac{\partial \varphi}{\partial z} \underbrace{(g(z_0), z_0)}_{=x_0}$$

(III) \implies $(g(z), z) \in T \ \forall z \in U$. Wir definieren h(z) durch

$$h(z) := f(g(z), z) \ (z \in U)$$

Dann hat h in z_0 ein lokales Extremum (ohne Nebenbedingung). Damit gilt nach 8.1:

$$0 = h'(z_0) \stackrel{5.4}{=} f'(g(z_0), z_0) \cdot \begin{pmatrix} g'(z_0) \\ I \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial y}(x_0) \mid \frac{\partial f}{\partial z}(x_0) \end{pmatrix} \cdot \begin{pmatrix} g'(z_0) \\ I \end{pmatrix} = \frac{\partial f}{\partial y}(x_0)g'(z_0) + \frac{\partial f}{\partial z}(x_0)g'(z_0) + \frac{$$

$$\stackrel{\text{(IV)}}{=} \underbrace{\frac{\partial f}{\partial y}(x_0) \left(-\frac{\partial \varphi}{\partial y}(x_0) \right)^{-1}}_{-:\lambda_0 \in \mathbb{R}^p} \underbrace{\frac{\partial \varphi}{\partial z}(x_0) + \frac{\partial f}{\partial z}(x_0)}_{-i\lambda_0 \in \mathbb{R}^p} \Rightarrow \underbrace{\frac{\partial f}{\partial z}(x_0) + \lambda_0 \frac{\partial \varphi}{\partial z}(x_0) = 0 \text{ (V)}$$

$$\lambda_0 = \frac{\partial f}{\partial y}(x_0) \left(-\frac{\partial \varphi}{\partial y}(x_0) \right)^{-1} \implies \frac{\partial f}{\partial y}(x_0) + \lambda_0 \frac{\partial \varphi}{\partial y}(x_0) = 0 \text{ (VI)}$$

Aus (V),(VI) folgt: $f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \stackrel{\text{(I)}}{\Longrightarrow} H'(x_0, \lambda_0) = 0.$

Beispiel

Desipper
$$(n=3,p=2)$$
 $f(x,y,z)=x+y+z,$ $T:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=2,$ $x+z=1\},$ $\varphi(x,y,z)=(x^2+y^2-2,x+z-1).$

Bestimme $\max f(T)$, $\min f(T)$. Übung: T ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists a,b \in T$: $f(a) = \max f(T), \ f(b) = \min f(T).$

$$\varphi'(x,y,z) = \left(\begin{array}{ccc} 2x & 2y & 0\\ 1 & 0 & 1 \end{array}\right)$$

Rang $\varphi'(x, y, z) = 1 <math>a, b \in T \implies \text{Rang } \varphi'(a) = \text{Rang } \varphi'(b) = 2$ $H(x, y, z, \lambda_1, \lambda_2) = x + y + z + \lambda_1(x^2 + y^2 - 2) + \lambda_2(x + z - 1)$

$$\begin{split} H_x &= 1 + 2\lambda_1 x + \lambda_2 \stackrel{!}{=} 0 \ (1) \\ H_y &= 1 + 2\lambda_1 y & \stackrel{!}{=} 0 \ (2) \\ H_z &= 1 + \lambda_2 & \stackrel{!}{=} 0 \ (3) \\ H_{\lambda_1} &= x^2 + y^2 - 2 & \stackrel{!}{=} 0 \ (4) \\ H_{\lambda_2} &= x + z - 1 & \stackrel{!}{=} 0 \ (5) \end{split}$$

(3)
$$\Longrightarrow \lambda_2 = -1 \stackrel{(1)}{\Longrightarrow} 2\lambda_1 x = 0;$$
 (2) $\Longrightarrow \lambda_1 \neq 0 \Longrightarrow x = 0 \stackrel{(5)}{\Longrightarrow} z = 1;$ (4) $\Longrightarrow y = \pm \sqrt{2}$
11.2 $\Longrightarrow a, b \in \{(0, \sqrt{2}, 1), (0, -\sqrt{2}, 1)\}$
 $f(0, \sqrt{2}, 1) = 1 + \sqrt{2} = \max f(T); \ f(0, -\sqrt{2}, 1) = 1 - \sqrt{2} = \min f(T)$

Anwendung Sei A eine reelle, symmetrische $(n \times n)$ -Matrix. Beh: A besitzt einen reellen EW.

Beweis

 $f(x) := x \cdot (Ax) = Q_A(x) \ (x \in \mathbb{R}^n), \ T := \{x \in \mathbb{R}^n : ||x|| = 1\} = \partial U_1(0)$ ist beschränkt und abgeschlossen.

$$\varphi(x) := ||x||^2 - 1 = x \cdot x - 1; \ \varphi'(x) = 2x, \ f'(x) = 2Ax.$$

$$3.3 \implies \exists x_0 \in T : f(x_0) = \max f(T); \ \varphi'(x) = 2(x_1, \dots, x_n); \ x_0 \in T \implies \operatorname{Rang} \varphi'(x_0) = 1 \ (= p)$$

11.2
$$\Longrightarrow \exists \lambda_0 \in \mathbb{R} : H'(x_0, \lambda_0) = 0; \ h(x, \lambda) = f(x) + \lambda \varphi(x); \ H'(x, \lambda) = 2Ax + 2\lambda x$$

 $\Longrightarrow 0 = 2(Ax_0 + \lambda_0 x_0) \Longrightarrow Ax_0 = (-\lambda_0)x_0, \ x_0 \neq 0 \Longrightarrow -\lambda_0 \text{ ist ein EW von } A.$

12. Wege im \mathbb{R}^n

Definition

- (1) Sei $[a,b] \subseteq \mathbb{R}$ und $\gamma: [a,b] \to \mathbb{R}^n$ sei stetig. Dann heißt γ ein Weg im \mathbb{R}^n
- (2) Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg. $\Gamma_\gamma:=\gamma([a,b])$ heißt der zu γ gehörende Bogen, $\Gamma_\gamma\subseteq\mathbb{R}^n$. 3.3 $\Longrightarrow \Gamma_\gamma$ ist beschränkt und abgeschlossen. $\gamma(a)$ heißt der Anfangspunkt von γ , $\gamma(b)$ heißt der Endpunkt von γ . [a,b] heißt Parameterintervall von γ .
- (3) $\gamma^-:[a,b]\to\mathbb{R}^n$, definiert durch $\gamma^-(t):=\gamma(b+a-t)$ heißt der zu γ inverse Weg. Beachte: $\gamma^-\neq\gamma$, aber $\Gamma_\gamma=\Gamma_{\gamma^-}$.

Beispiele:

- (1) Sei $x_0, y_0 \in \mathbb{R}^n$, $\gamma(t) := x_0 + t(y_0 x_0)$, $t \in [0, 1]$. $\Gamma_{\gamma} = S[x_0, y_0]$
- (2) Sei r > 0 und $y(t) := (r \cos t, r \sin t), t \in [0, 2\pi]$ $\Gamma_{\gamma} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\} = \partial U_r(0)$ $\tilde{\gamma}(t) := (r \cos t, r \sin t), t \in [0, 4\pi]. \ \tilde{\gamma} \neq \gamma, \text{ aber } \Gamma_{\tilde{\gamma}} = \Gamma_{\gamma}.$

Erinnerung: 3 ist die Menge aller Zerlegungen von [a, b]

Definition

Sei $\gamma: [a,b] \to \mathbb{R}^n$ ein Weg. Sei $Z = \{t_0, \ldots, t_m\} \in \mathfrak{Z}$.

$$L(\gamma, Z) := \sum_{j=1}^{m} \| \gamma(t_j) - \gamma(t_{j-1}) \|$$

Übung: Sind $Z_1, Z_2 \in \mathfrak{Z}$ und gilt $Z_1 \subseteq Z_2 \implies L(\gamma, Z_1) \leq L(\gamma, Z_2)$

 γ heißt rektifizierbar (rb) : $\iff \exists M \geq 0 : L(\gamma, Z) \leq M \ \forall Z \in \mathfrak{Z}$. In diesem Fall heißt $L(\gamma) := \sup\{L(\gamma, Z) : Z \in \mathfrak{Z}\}$ die Länge von γ .

Ist n=1, so gilt: γ ist rektifizierbar $\iff \gamma \in \mathrm{BV}[a,b]$. In diesem Fall: $L(\gamma) = V_{\gamma}([a,b])$.

Satz 12.1 (Rektifizierbarkeit und Beschränkte Variation)

Sei $\gamma = (\eta_1, \dots, \eta_n) : [a, b] \to \mathbb{R}^n$ ein Weg. γ ist rektifizierbar $\iff \eta_1, \dots, \eta_n \in BV[a, b]$.

Beweis

Sei
$$Z = \{t_0, \dots, t_n\} \in \mathfrak{Z} \text{ und } J = \{1, \dots, n\}.$$

$$|\eta_j(t_k) - \eta_j(t_{k-1})| \overset{1.7}{\leq} ||\gamma(t_k) - \gamma(t_{k-1})|| \overset{1.7}{\leq} \sum_{\nu=1}^n |\eta_\nu(t_k) - \eta_\nu(t_{k-1})||. \text{ Summation "uber } k \implies V_{\eta_j} \leq L(\gamma, Z) \leq \sum_{k=1}^m \sum_{\nu=1}^n |\eta_\nu(t_k) - \eta_\nu(t_{k-1})| = \sum_{\nu=1}^n V_{\eta_\nu}(Z) \implies \text{ Behauptung}$$

Übung: γ ist rektifizierbar $\iff \gamma^-$ ist rektifizierbar. In diesem Fall: $L(\gamma) = L(\gamma^-)$

Summe von Wege: Gegeben: $a_0, a_1, \ldots a_l \in \mathbb{R}, \ a_0 < a_1 < a_2 < \ldots < a_c \ \text{und Wege} \ \gamma_k : [a_{k-1}, a_k] \to \mathbb{R}^n \ (k = 1, \ldots, l) \ \text{mit} : \gamma_k(a_k) = \gamma_{k+1}(a_k) \ (k = 1, \ldots, l-1).$ Definiere $\gamma : [a_0, a_l] \to \mathbb{R}^n \ \text{durch} \ \gamma(t) := \gamma_k(t), \ \text{falls} \ t \in [a_{k-1}, a_k].$ $\gamma \ \text{ist} \ \text{ein} \ \text{Weg} \ \text{im} \ \mathbb{R}^n, \ \Gamma_{\gamma} = \Gamma_{\gamma_1} \cup \Gamma_{\gamma_2} \cup \cdots \cup \Gamma_{\gamma_l}.$ $\gamma \ \text{heißt} \ \text{die} \ \text{Summe} \ \text{der} \ \text{Wege} \ \gamma_1, \ldots, \gamma_l \ \text{und} \ \text{wird} \ \text{mit}.$ $\gamma = \gamma_1 \oplus \gamma_2 \oplus \cdots \oplus \gamma_l \ \text{bezeichnet}.$

Bemerkung: Ist $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg und $Z=\{t_0,\ldots,t_m\}\in\mathfrak{Z}$ und $\gamma_k:=\gamma_{|[t_{k-1},t_k]}$ $(k=1,\ldots,m)\implies \gamma=\gamma_1\oplus\cdots\oplus\gamma_m$. Aus Analysis I, 25.1(7) und 12.1 folgt:

Satz 12.2 (Summe von Wegen)

Ist $\gamma = \gamma_1 \oplus \cdots \oplus \gamma_m$, so gilt: γ ist rektifizierbar $\iff \gamma_1, \ldots, \gamma_m$ sind rektifizierbar. In diesem Fall: $L(\gamma) = L(\gamma_1) + \cdots + L(\gamma_m)$

Definition

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein rektifizierbarer Weg. Sei $t\in(a,b]$. Dann: $\gamma_{|_{[a,t]}}$ ist rektifizierbar (12.2).

$$s(t) := \begin{cases} L(\gamma_{|[a,t]}), & \text{falls } t \in (a,b] \\ 0, & \text{falls } t = a \end{cases}$$

heißt die zu γ gehörende Weglängenfunktion.

Satz 12.3 (Eigenschaften der Weglängenfunktion)

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein rektifizierbarer Weg. Dann:

- (1) $s \in C[a, b]$
- (2) s ist wachsend.

Beweis

- (1) In der großen Übung
- (2) Sei $t_1, t_2 \in [a, b]$ und $t_1 < t_2$. $\gamma_1 := \gamma_{|[a,t_1]}, \ \gamma_2 := \gamma_{|[t_1,t_2]}, \ \gamma_3 := \gamma_{|[a,t_2]}$. Dann $\gamma_3 = \gamma_1 \oplus \gamma_2$. 12.2 $\Longrightarrow \gamma_1, \gamma_2, \gamma_3$ sind rektifizierbar und $\underbrace{L(\gamma_3)}_{=s(t_2)} = \underbrace{L(\gamma_1)}_{s(t_1)} + \underbrace{L(\gamma_3)}_{\geq 0} \Longrightarrow s(t_2) \geq s(t_1)$.

Satz 12.4 (Rechenregeln für Wegintegrale)

Sei $f = (f_1, \ldots, f_n) : [a, b] \to \mathbb{R}^n$ und $f_1, \ldots, f_n \in R[a, b]$.

$$\int_a^b f(t)dt := \left(\int_a^b f_1(t)dt, \int_a^b f_2(t)dt, \dots, \int_a^b f_n(t)dt\right) \quad (\in \mathbb{R}^n)$$

Dann:

(1)
$$x \cdot \int_{a}^{b} f(t)dt = \int_{a}^{b} (x \cdot f(t))dt \ \forall x \in \mathbb{R}^{n}$$

(2)
$$\left\| \int_{a}^{b} f(t)dt \right\| \leq \int_{a}^{b} \|f(t)\|dt$$

Beweis

(1) Sei
$$x = (x_1, \dots, x_n) \Longrightarrow$$

$$x \cdot \int_a^b f(t)dt = \sum_{j=1}^n x_j \int_a^b f_j(t)dt = \int_a^b \left(\sum_{j=1}^n x_j f_j(t)dt\right) = \int_a^b \left(x \cdot f(t)\right)dt$$

(2)
$$y := \int_a^b f(t)dt$$
. O.B.d.A: $y \neq 0$. $x := \frac{1}{\|y\|}y \implies \|x\| = 1, y = \|y\|x$. $\|y\|^2 = y \cdot y = \| < \|(x \cdot y)\| = \|y\| \left(x \cdot \int_a^b f(t)dt\right) = \|y\| \int_a^b \left(x \cdot f(t)\right) dt \le \|y\| \int_a^b \underbrace{\|x \cdot f(t)\|}_{\le \|y\| \|f(t)\| = \|f(t)\|} \le \|y\| \int_a^b \|f(t)\| dt$

Satz 12.5 (Eigenschaften stetig differenzierbarer Wege)

 $\gamma:[a,b]\to\mathbb{R}^n$ sei ein stetig differenzierbarer Weg. Dann:

- (1) γ ist rektifizierbar
- (2) Ist s die zu γ gehörende Weglängenfunktion, so ist $s \in C^1[a,b]$ und $s'(t) = ||\gamma'(t)|| \ \forall t \in$ [a,b]
- (3) $L(\gamma) = \int_a^b \|\gamma'(t)\| dt$

Beweis

(1)
$$\gamma = (\eta_1, \dots, \eta_n), \ \eta_i \in C^1[a, b] \xrightarrow{\text{A1,25.1}} \eta_i \in \text{BV}[a, b] \xrightarrow{12.1} \gamma \text{ ist rektifizierbar.}$$

(2) Sei $t_0 \in [a, b)$. Wir zeigen:

$$\frac{s(t) - s(t_0)}{t - t_0} \to \|\gamma'(t_0)\| \ (t \to t_0 + 0). \ (\text{analog zeigt man} : \frac{s(t) - s(t_0)}{t - t_0} \to \|\gamma'(t_0)\| \ (t \to t_0 - 0)).$$

Sei
$$t \in (t_0, b]; \ \gamma_1 := \gamma_{|[a,t_0]}, \gamma_2 := \gamma_{|[t_0,t]}, \gamma_3 := \gamma_{|[a,t]}.$$
 Dann: $\gamma_3 = \gamma_1 \oplus \gamma_2$ und $\underbrace{L(\gamma_3)}_{=s(t)} = \underbrace{L(\gamma_3)}_{=s(t)}$

$$\underbrace{L(\gamma_1)}_{=s(t_0)} + L(\gamma_2) \implies s(t) - s(t_0) = L(\gamma_2) (I).$$

$$\tilde{Z} := \{t_0, t\}$$
 ist eine Zerlegung von $[t_0, t] \implies \|\gamma(t) - \gamma(t_0)\| = L(\gamma_2, \tilde{Z}) \le L(\gamma_2)$

 $\tilde{Z} := \{t_0, t\} \text{ ist eine Zerlegung von } [t_0, t] \implies \|\gamma(t) - \gamma(t_0)\| = L(\gamma_2, \tilde{Z}) \le L(\gamma_2)$ **Definition**: $F : [a, b] \to \mathbb{R}$ durch $F(t) = \int_a^t \|\gamma'(\tau)\| d\tau$. 2.Hauptsatz der Differentialund Integralrechnung $\implies F$ ist differenzierbar und $F'(t) = \|\gamma'(t)\| \ \forall t \in [a, b]$. Sei

 $Z = \{\tau_0, \dots, \tau_m\}$ eine beliebige Zerlegung von $[t_0, t]$.

$$\int_{\tau_{j-1}}^{\tau_{j}} \gamma'(\tau) d\tau = \left(\cdots, \int_{\tau_{j-1}}^{\tau_{j}} \eta'_{k}(\tau) d\tau, \cdots \right) \stackrel{\text{A1}}{=} \left(\cdots, \eta_{k}(\tau_{j}) - \eta_{k}(\tau_{j-1}), \cdots \right) = \gamma(\tau_{j}) - \gamma(\tau_{j-1})$$

$$\implies \|\gamma(\tau_{j}) - \gamma(\tau_{j-1})\| \stackrel{12.4}{\leq} \int_{\tau_{j-1}}^{\tau_{j}} \|\gamma'(\tau)\| d\tau. \text{ Summation } \implies L(\gamma_{2}, Z) \leq \int_{t_{0}}^{t} \|\gamma'(\tau)\| d\tau =$$

$$F(t) - F(t_{0}) \implies L(\gamma_{2}) \leq F(t) - F(t_{0}) \text{ (III)}.$$

$$(I), (II), (III) \implies \|\gamma(t) - \gamma(t_{0})\| \stackrel{(II)}{\leq} L(\gamma_{2}) \stackrel{(I)}{=} s(t) - s(t_{0}) \stackrel{(III)}{\leq} F(t) - F(t_{0})$$

$$\implies \underbrace{\|\gamma(t) - \gamma(t_{0})\|}_{t \to t_{0}} \leq \frac{s(t) - s(t_{0})}{t - t_{0}} \leq \underbrace{\frac{F(t) - F(t_{0})}{t - t_{0}}}_{t \to t_{0}}$$

(3)
$$L(\gamma) = s(b) = s(b) - s(a) \stackrel{AI}{=} \int_a^b s'(t) dt \stackrel{(2)}{=} \int_a^b \|\gamma'(t)\| dt$$

Beispiele:

- (1) $x_0, y_0 \in \mathbb{R}^n, \gamma(t) := x_0 + t(y_0 x_0) \ (t \in [0, 1]). \ \gamma'(t) = y_0 x_0 \implies L(\gamma) = \int_0^1 \|y_0 x_0\| dt = \|y_0 x_0\|.$
- (2) Sei $f:[a,b] \to \mathbb{R}$ stetig und $\gamma(t):=(t,f(t)), t \in [a,b]$. γ ist ein Weg im \mathbb{R}^2 . γ ist rektifizierbar $\iff f \in \mathrm{BV}[a,b]$. $\Gamma_{\gamma} = \mathrm{Graph}$ von f. Jetzt sei $f \in C^1[a,b] \stackrel{12.5}{\Longrightarrow} L(\gamma) = \int_a^b \|\gamma'(t)\| \mathrm{d}t = \int_a^b (1+f'(t)^2)^{\frac{1}{2}} \mathrm{d}t$.
- (3) $\gamma(t) := (\cos t, \sin t)$ $(t \in [0, 2\pi])$. $\gamma'(t) = (-\sin t, \cos t)$. $\|\gamma'(t)\| = 1 \ \forall t \in [0, 2\pi] \Longrightarrow s'(t) = 1 \ \forall t \in [0, 2\pi] \Longrightarrow s(t) = t \ \forall t \in [0, 2\pi]$ (Bogenmaß). Winkelmaß: $\varphi := \frac{180}{\pi}t$. $L(\gamma) = 2\pi$.

Definition

 $\gamma: [a,b] \to \mathbb{R}^n$ sei ein Weg.

- (1) γ heißt stückweise stetig differenzierbar : $\iff \exists z = \{t_0, \dots, t_m\} \in \mathfrak{Z} \text{ mit: } \gamma_{|_{[t_k-1,t_k]}} \text{ sind stetig differenzierbar } (k=1,\dots,m) \iff \exists \text{ stetig differenzierbare Wege } \gamma_1,\dots,\gamma_l : \gamma = \gamma_1 \oplus \dots \oplus \gamma_l.$
- (2) γ heißt glatt : $\iff \gamma$ ist stetig differenzierbar und $\|\gamma'(t)\| > 0 \ \forall t \in [a, b]$.
- (3) γ heißt stückweise glatt : $\iff \exists$ glatte Wege $\gamma = \gamma_1 \oplus \cdots \oplus \gamma_l$

Aus 12.2 und 12.5 folgt:

Satz 12.6 (Rektivizierbarkeit von Wegsummen)

Ist $\gamma = \gamma_1 \oplus \cdots \oplus \gamma_l$ stückweise stetig differenzierbar, mit stetig differenzierbaren Wegen $\gamma_1, \ldots, \gamma_l \implies \gamma$ ist rektifizierbar und $L(\gamma) = L(\gamma_1) + \cdots + L(\gamma_l)$.

Definition

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg. γ heißt eine **Parameterdarstellung** von Γ_{γ} .

Beispiele:

- (1) $x_0, y_0 \in \mathbb{R}^n, \gamma_1(t) := x_0 + t(y_0 x_0) \ t \in [0, 1], \ \gamma_2(t) := \gamma_1^-(t) \ t \in [0, 1], \ \gamma_3(t) := x_0 + t(y_0 x_0) \ t \in [0, \frac{1}{2}]. \ \gamma_1, \gamma_2, \gamma_3 \text{ sind Parameterdarstellungen von } S[x_0, y_0].$
- (2) $\gamma_1(t) = (\cos t, \sin t), \ (t \in [0, 2\pi]), \gamma_2(t) := (\cos t, \sin t), (t \in [0, 4\pi]). \ \gamma_1, \gamma_2 \text{ sind Parameter-darstellungen von } K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

Definition

 $\gamma_1: [a,b] \to \mathbb{R}^n \text{ und } \gamma_2: [\alpha,\beta] \to \mathbb{R}^n \text{ seien Wege.}$

 γ_1 und γ_2 heißen **äquivalent**, in Zeichen $\gamma_1 \sim \gamma_2 : \iff \exists h : [a, b] \to [\alpha, \beta]$ stetig und streng wachsend, $h(a) = \alpha, h(b) = \beta$ und $\gamma_1(t) = \gamma_2(h(t))$ $\forall t \in [a, b]$ (also $\gamma_1 = \gamma_2 \circ h$). h heißt eine **Parametertransformation** (PTF). Analysis $1 \implies h([a, b]) = [\alpha, \beta] \implies \Gamma_{\gamma_1} = \Gamma_{\gamma_2}$. Es gilt: $\gamma_2 = \gamma_1 \circ h^{-1} \implies \gamma_2 \sim \gamma_1$. ,~" ist eine Äquivalenzrelation.

Beispiele:

- (1) $\gamma_1, \gamma_2, \gamma_3$ seien wie in obigem Beispiel (1). $\gamma_1 \sim \gamma_3, \gamma_1 \nsim \gamma_2$.
- (2) γ_1, γ_2 seien wie in obigem Beispiel (2). $\gamma_1 \nsim \gamma_2$, denn $L(\gamma_1) = 2\pi \neq 4\pi = L(\gamma_2)$

Satz 12.7 (Eigenschaften der Parametertransformation)

 $\gamma_1:[a,b]\to\mathbb{R}^n$ und $\gamma_2:[\alpha,\beta]\to\mathbb{R}^n$ seien äquivalente Wege und $h:[a,b]\to[\alpha,\beta]$ eine Parametertransformation.

- (1) γ_1 ist rektifizierbar $\iff \gamma_2$ ist rektifizierbar. In diesem Falle: $L(\gamma_1) = L(\gamma_2)$
- (2) Sind γ_1 und γ_2 glatt $\implies h \in C^1[a, b]$ und h' > 0.

Beweis

- (2) In den großen Übungen.
- (1) Es genügt zu zeigen: Aus γ_2 rektifizierbar folgt: γ_1 ist rektifizierbar und $L(\gamma_1) \leq L(\gamma_2)$. Sei $Z = \{t_0, \dots, t_m\} \in \mathfrak{Z} \implies \tilde{Z} := \{h(t_0), \dots, h(t_m)\}$ ist eine Zerlegung von $[\alpha, \beta]$.

$$L(\gamma_1, Z) = \sum_{j=1}^{m} \|\gamma_1(t_j) - \gamma_1(t_{j-1})\| = \sum_{j=1}^{m} \|\gamma_2(h(t_j)) - \gamma_2(h(t_{j-1}))\| = L(\gamma_2, \tilde{Z}) \le L(\gamma_2)$$

 $\implies \gamma_1$ ist rektifizierbar und $L(\gamma_1) \leq L(\gamma_2)$.

Weglänge als Parameter Es sei $\gamma:[a,b]->\mathbb{R}^n$ ein glatter Weg. 12.5 $\Longrightarrow \gamma$ ist rb. $L:=L(\gamma)$. 12.5 $\Longrightarrow s\in C^1[a,b]$ und $s'(t)=||\gamma'(t)||>0 \ \forall t\in[a,b]$. s ist also streng wachsend. Dann gilt: $s([a,b])=[0,L],\ s^{-1}:[0,L]\to[a,b]$ ist streng wachsend und stetig db. $(s^{-1})'(\sigma)=\frac{1}{s'(t)}$ für $\sigma\in[0,L],\ s(t)=\sigma$.

Definition

 $\tilde{\gamma}[0,L] \to \mathbb{R}^n$ durch $\tilde{\gamma}(\sigma) := \gamma(s^{-1}(\sigma))$, also $\tilde{\gamma} = \gamma \cdot s^{-1}$; $\tilde{\gamma}$ ist ein Weg im \mathbb{R}^n und $\tilde{\gamma} \sim \gamma$; $\Gamma_{\gamma} = \Gamma_{\tilde{\gamma}}$.

12.7 $\implies \tilde{\gamma}$ ist rb, $L(\tilde{\gamma}) = L(\gamma) = L$, $\tilde{\gamma}$ ist stetig db. $\tilde{\gamma}$ heißt Parameterdarstellung von Γ_{γ} mit der Weglänge als Parameter. Warum?

Darum: Sei \tilde{s} die zu $\tilde{\gamma}$ gehörende Weglängenfunktion. $\forall \sigma \in [0, L] : \tilde{\gamma}(\sigma) = \gamma(s^{-1}(\sigma))$. Sei $\sigma \in [0, L], t := s^{-1}(\sigma) \in [a, b], s(t) = \sigma$.

$$\tilde{\gamma}(\sigma) = (s^{-1})'(\sigma) \cdot \gamma'(s^{-1}(\sigma)) = \tfrac{1}{s'(t)} \gamma'(t) \stackrel{12.5}{=} \tfrac{1}{||\gamma'(t)||} \gamma'(t) \implies ||\gamma'(\sigma)|| = 1 \ (\Longrightarrow \ \tilde{\gamma} \ \text{ist glatt}).$$

$$\tilde{s}'(\gamma) \stackrel{12.5}{=} ||\gamma'(\sigma)|| = 1 \stackrel{\tilde{s}(0)=0}{\Longrightarrow} \tilde{s}(\sigma) = \sigma.$$

Also: $||\tilde{\gamma}'(\sigma)|| = 1$, $\tilde{s}(\sigma) = \sigma \ \forall \sigma \in [0, L]$.

Beispiel

 $\gamma(t) = \frac{e^t}{\sqrt{2}}(\cos t, \sin t), \ t \in [0, 1]; \ \gamma \text{ ist stetig db; Nachrechnen: } ||\gamma'(t)|| = e^t \ \forall t \in [0, 1] \implies \gamma \text{ ist glatt.}$

$$s'(t) \stackrel{12.5}{=} ||\gamma'(t)|| = e^t \implies s(t) = e^t + c \implies 0 = s(0) = 1 + c \implies c = -1, \ s(t) = e^t - 1 \ (t \in [0,1]) \implies L = L(\gamma) = s(1) = e - 1. \ e^t = 1 + s(t), \ t = \log(1 + s(t)).$$

$$\tilde{\gamma}(\sigma) = \gamma(s^{-1}(\sigma)) = \gamma(\log(1+\sigma)) = \frac{1+\sigma}{\sqrt{2}}(\cos(\log(1+\sigma)), \sin(\log(1+\sigma))), \ \sigma \in [0,e-1].$$

13. Wegintegrale

Definition

 $\gamma = (\gamma_1, \dots, \gamma_n) : [a, b] \to \mathbb{R}^n$ sei ein rektifizierbarer Weg, $\Gamma := \Gamma_{\gamma}$ und $f = (f_1, \dots, f_n) : \Gamma \to \mathbb{R}^n$ sei stetig. Sei $j \in \{1, \dots, n\}; \ \gamma_j \in BV[a, b] \ (12.1).$ $f_j \circ \gamma$ ist stetig. Ana I, 26.6 $\Longrightarrow f_j \circ \gamma \in R_{\gamma_j}[a, b]$.

$$\int_{\gamma} f_j(x)dx_j := \int_a^b f_j(\gamma(t))d\gamma_j(t)$$

$$\int_{\gamma} f(x) \cdot dx := \int_{\gamma} f_1(x)dx_1 + \dots + f_n(x)dx_n := \int_{\gamma} f_1(x)dx_1 + \dots + \int_{\gamma} f_n(x)dx_n$$

$$= \int_a^b f_1(\gamma(t))d\gamma_1(t) + \dots + \int_a^b f_n(\gamma(t))d\gamma_n(t).$$

Wegintegral von f längs γ .

Aus Ana I, 26.3 folgt:

Satz 13.1 (Berechnung des Wegintegrals)

 γ, Γ und f seien wie oben. γ sei stetig differenzierbar. Dann:

$$\int_{\gamma} f_j(x)dx_j = \int_a^b f_j(\gamma(t))\gamma'_j(t)dt \ (j=1,\ldots,n)$$

und

$$\int_{\gamma} f(x) \cdot dx = \sum_{i=1}^{n} \int_{a}^{b} f_{j}(\gamma(t)) \gamma'_{j}(t) dt = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt.$$

Beispiel

 $f(x,y,z) := (z,y,x), \ \gamma(t) = (t,t^2,3t), \ t \in [0,1]. \ f(\gamma(t)) = (3t,t^2,t), \ \gamma'(t) = (1,2t,3), \ f(\gamma(t)) \cdot \gamma'(t) = 3t + 2t^3 + 3t = 6t + 2t^3.$

$$\int_{\gamma} f(x, y, z) \cdot d(x, y, z) = \int_{0}^{1} (6t + 2t^{3}) dt = \frac{7}{2}.$$

Satz 13.2 (Rechnen mit Wegintegralen)

 γ, Γ, f seien wie oben, $g: \Gamma \to \mathbb{R}^n$ sei stetig, $\hat{\gamma} = (\hat{\gamma}_1, \dots, \hat{\gamma}_n) : [\alpha, \beta] \to \mathbb{R}^n$ sei rektifizierbar und $\xi, \eta \in \mathbb{R}$.

(1)
$$\int_{\gamma} (\xi f(x) + \eta g(x)) \cdot dx = \xi \int_{\gamma} f(x) \cdot dx + \eta \int_{\gamma} g(x) \cdot dx$$

(2) Ist
$$\gamma = \gamma^{(1)} \oplus \gamma^{(2)} \implies \int_{\gamma} f(x) \cdot dx = \int_{\gamma^{(1)}} f(x) \cdot dx + \int_{\gamma^{(2)}} f(x) \cdot dx$$

(3)
$$\int_{\gamma^{-}} f(x) \cdot dx = -\int_{\gamma} f(x) \cdot dx$$

(4)
$$\left| \int_{\gamma} f(x) \cdot dx \right| \le L(\gamma) \cdot \max\{||f(x)|| : x \in \Gamma\}$$

(5) Ist
$$\hat{\gamma} \sim \gamma \implies \int_{\gamma} f(x) \cdot dx = \int_{\hat{\gamma}} f(x) \cdot dx$$
.

Beweis

- (1) klar
- (2) Ana I, 26.1(3)
- (3) nur für γ stetig differenzierbar. $\gamma^-(t) = \gamma(b+a-t), \ t \in [a,b].$ $\int_{\gamma^-} f(x) \cdot dx = \int_a^b f(\gamma(b+a-t)) \cdot \gamma'(b+a-t)(-1)dt = (\text{subst. } \tau = b+a-t, \ d\tau = dt)$ $= \int_b^a f(\gamma(\tau)) \cdot \gamma'(\tau)d\tau = -\int_a^b f(\gamma(\tau)) \cdot \gamma'(\tau)d\tau = -\int_\gamma f(x) \cdot dx.$
- (4) Übung
- (5) Sei $\hat{\gamma} = \gamma \circ h$, $h : [\alpha, \beta] \to [a, b]$ stetig und streng wachsend. $h(\alpha) = a$, $h(\beta) = b$. Nur für γ und h stetig db. Dann ist $\hat{\gamma}$ stetig db.

$$\int_{\hat{\gamma}} f(x) \cdot dx = \int_{\alpha}^{\beta} f(\gamma(h(t))) \cdot \gamma'(h(t)) \cdot h'(t) dt = \text{(subst. } \tau = h(t), \ d\tau = h'(t) dt) = \int_{\alpha}^{b} f(\gamma(\tau)) \cdot \gamma'(\tau) d\tau = \int_{\gamma} f(x) \cdot dx.$$

Definition

 γ, Γ seien wie immer in diesem Paragraphen. s sei die zu γ gehörende Weglängenfunktion und $g: \Gamma \to \mathbb{R}$ stetig. 12.4 $\Longrightarrow s$ ist wachsend $\stackrel{\text{Ana I}}{\Longrightarrow} s \in BV[a,b]; g \circ \gamma$ stetig $\stackrel{\text{Ana I}}{\Longrightarrow} g \circ \gamma \in R_s[a,b].$

$$\int_{\gamma} g(x)ds := \int_{a}^{b} g(\gamma(t))ds(t)$$

Integral bzgl. der Weglänge.

Satz 13.3 (Rechnen mit Integralen bezgl. der Weglänge) Seien γ, g wie oben.

$$(1) \int_{\gamma^{-}} g(x)ds = \int_{\gamma} g(x)ds$$

$$(2) \ \text{Ist} \ \gamma = \gamma^{(1)} \oplus \gamma^{(2)} \implies \int_{\gamma} g(x) ds = \int_{\gamma^{(1)}} g(x) ds + \int_{\gamma^{(2)}} g(x) ds.$$

(3) Ist
$$\gamma$$
 stetig db $\Longrightarrow \int_{\gamma} g(x)ds = \int_{a}^{b} g(\gamma(t))||\gamma'(t)||dt$.

Beispiel

$$g(x,y) = (1+x^2+3y)^{1/2}, \ \gamma(t) = (t,t^2), \ t \in [0,1].$$

$$g(\gamma(t)) = (1 + t^2 + 3t^2)^{1/2} = (1 + 4t^2)^{1/2}, \ \gamma'(t) = (1 + 2t), \ ||\gamma'(t)|| = (1 + 4t^2)^{1/2} \implies \int_{\gamma} g(x,y) ds = \int_{0}^{1} (1 + 4t^2) dt = \frac{7}{3}$$

Gegeben: $\gamma_1, \gamma_2, \ldots, \gamma_m$ rektifizierbare Wege, $\gamma_k : [a_k, b_k] \to \mathbb{R}^n$ mit $\gamma_1(b_1) = \gamma_2(a_2), \gamma_2(b_2) = \gamma_3(a_3), \ldots, \gamma_{m-1}(b_{m-1}) = \gamma_m(a_m). \Gamma := \Gamma_{\gamma_1} \cup \ldots \cup \Gamma_{\gamma_m} r.$

 $\begin{array}{l} \operatorname{AH}(\gamma_1,\ldots,\gamma_m):=\{\gamma:\gamma \text{ ist ein rektifizierbarer Weg im }\mathbb{R}^n \text{ mit: } \Gamma_{\gamma}=\Gamma,\, L(\gamma)=L(\gamma_1)+\cdots+L(\gamma_m) \text{ und } \int_{\gamma}f(x)\cdot dx=\int_{\gamma_1}f(x)\cdot dx+\cdots+\int_{\gamma_m}f(x)\cdot dx \text{ für } jedes \text{ stetige } f:\Gamma\to\mathbb{R}^n\}. \end{array}$

Ist $\gamma \in AH(\gamma_1, \dots, \gamma_m)$, so sagt man γ entsteht durch **Aneinanderhängen** der Wege $\gamma_1, \dots, \gamma_m$.

Satz 13.4 (Stetige Differenzierbarekeit der Aneinanderhängung)

 $\gamma_1, \ldots, \gamma_m$ seien wie oben. Dann: $AH(\gamma_1, \ldots, \gamma_m) \neq \emptyset$.

Sind $\gamma_1, \ldots, \gamma_m$ stetig differenzierbar, so existiert ein stückweise stetig differenzierbarer Weg $\gamma \in AH(\gamma_1, \ldots, \gamma_m)$.

Beweis

O.B.d.A: m = 2.

Def. $h: [b_1, c] \to [a_2, b_2]$ linear wie folgt: h(x) = px + q, $h(b_1) = a_2$, $h(c) = b_2$. $\hat{\gamma}_2 := \gamma_2 \circ h$. Dann: $\gamma_2 \sim \hat{\gamma}_2$. $\gamma_2 := \gamma_1 \oplus \hat{\gamma}_2$. 12.2, 12.7, 13.2 $\implies \gamma \in AH(\gamma_1, \gamma_2)$.

Beispiel

In allen Beispielen sei f(x,y) = (y, x - y) und $t \in [0,1]$.

(1) $\gamma_1(t) = (t, 0), \gamma_2(t) = (1, t).$

Sei $\gamma \in AH(\gamma_1, \gamma_2)$. Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma_1} f(x,y) \cdot d(x,y) = 0$, $\int_{\gamma_2} f(x,y) \cdot d(x,y) = \frac{1}{2}$. Also: $\int_{\gamma} f(x,y) \cdot d(x,y) = \frac{1}{2}$

(2) $\gamma_1(t) = (0, t), \gamma_2(t) = (t, 1).$

Sei $\gamma \in AH(\gamma_1, \gamma_2)$, Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma} f(x,y) \cdot d(x,y) = \frac{1}{2}$

13. Wegintegrale

(3) $\gamma(t)=(t,t^3)$. Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma}f(x,y)\cdot d(x,y)=\frac{1}{2}$

14. Stammfunktionen

In diesem Paragraphen sei stets: $\emptyset \neq G \subseteq \mathbb{R}^n$, G ein Gebiet und $f = (f_1, \ldots, f_n) : G \to \mathbb{R}^n$ stetig.

Definition

Eine Funktion $\varphi: G \to \mathbb{R}$ heißt eine **Stammfunktion (SF) von** f **auf** $G: \iff \varphi$ ist auf Gpartiell differenzierbar und grad $\varphi = f$ auf G. Also: $f_{x_j} = f_j$ auf G (j = 1, ..., n).

- Bemerkung: (1) Ist φ eine Stammfunktion von f auf $G \implies \operatorname{grad} \varphi = f \implies \varphi \in C^1(G, \mathbb{R}) \stackrel{5.3}{\implies} \varphi$ ist auf G differenzierbar und $\varphi' = f$ auf G.
 - (2) Sind φ_1, φ_2 Stammfunktionen von f auf $G \stackrel{(1)}{\Longrightarrow} \varphi'_1 = \varphi'_2$ auf $G \stackrel{6.2}{\Longrightarrow} \exists c \in \mathbb{R} : \varphi_1 = \varphi_2 + c$ auf G
 - (3) Ist $n=1 \implies G$ ist ein offenes Intervall. AI, 23.14 \implies jedes stetige $f: G \to \mathbb{R}$ besitzt auf Geine Stammfunktion! Im Falle $n\geq 2$ ist dies nicht so.

Beispiele:

(1) $G = \mathbb{R}^2$, f(x,y) = (y, -x).

Annahme: f besitzt auf \mathbb{R}^2 die Stammfunktion φ . Dann: $\varphi_x=y,\ \varphi_y=-x$ auf $G\implies$ $\varphi \in C^2(\mathbb{R}^2, \mathbb{R})$ und $\varphi_{xy} = 1 \neq -1 = \varphi_{yx}$. Widerspruch zu 4.1. Also: f besitzt auf \mathbb{R}^2 keine Stammfunktion.

(2) $G = \mathbb{R}^2$, f(x, y) = (y, x - y).

Ansatz für eine Stammfunktion φ von $f: \varphi_x = y \implies \varphi = xy + c(y)$, c differenzierbar, $\Rightarrow \varphi_y \stackrel{!}{=} x + c'(y) = x - y \implies c'(y) = -y$, etwa $c(y) = -\frac{1}{2}y^2$. Also: $\varphi(x, y) = xy - \frac{1}{2}y^2$. Probe: $\varphi_x = y$, $\varphi_y = x - y$, also: grad $\varphi = f$. φ ist also eine Stammfunktion von f auf \mathbb{R}^n .

Satz 14.1 (Hauptsatz der mehrdimensionalen Integralrechnung)

f besitzt auf G die Stammfunktion φ ; $\gamma:[a,b]\to\mathbb{R}^n$ ein ein stückweise stetig differenzierbarer Weg mit $\Gamma_{\gamma} \subseteq G$. Dann:

$$\int_{\gamma} f(x) \cdot dx = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

Das heißt: $\int_{\gamma} f(x) \cdot dx$ hängt nur vom Anfangs- und Endpunkt von γ ab.

Ist γ geschlossen, das heißt $\gamma(a) = \gamma(b)$, dann gilt $\int_{\gamma} f(x) \cdot dx = 0$.

Beweis

O.B.d.A.: γ ist stetig differenzierbar. $\Phi(t) := \varphi(\gamma(t)), t \in [a,b]$. Φ ist stetig differenzierbar und $\Phi'(t) = \varphi'(\gamma(t)) \cdot \gamma'(t) = f(\gamma(t)) \cdot \gamma(t)$ Dann: $\int_{\gamma} f(x) \cdot dx \stackrel{\text{13.1}}{=} \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} \Phi'(t) dt \stackrel{\text{AI}}{=} \Phi(b) - \Phi(a) = \varphi(\gamma(b)) - \varphi(\gamma(a))$.

Hilfssatz 14.2

Es seien $x_0, y_0 \in G$. Dann existiert ein stückweise stetig differenzierbarer Weg γ mit: $\Gamma_{\gamma} \subseteq G$ und Anfangspunkt von $\gamma = x_0$ und Endpunkt von $\gamma = y_0$.

Beweis

 $G \text{ Gebiet} \implies \exists z_0, z_1, \dots, z_m \in G : S[z_0, \dots, z_m] \subseteq G, z_0 = x_0, z_m = y_0.$

$$\begin{split} \gamma_j(t) &:= z_{j-1} + t(z_j - z_{j-1}), \ (t \in [0,1]), \ (j = 1, \dots, n). \ \text{Dann:} \Gamma_{\gamma_j} = S[z_{j-1}, z_j] \implies \Gamma_{\gamma_1} \cup \\ \dots \cup \Gamma_{\gamma_m} &= S[z_0, \dots, z_m] \subseteq G. \ 13.4 \implies \exists \gamma \in \text{AH}(\gamma_1, \dots, \gamma_m) \ \text{stückweise stetig differenzierbar} \\ \implies \Gamma_{\gamma} &= S[z_0, \dots, z_m] \subseteq G. \end{split}$$

Definition

 $\int f(x) \cdot dx$ heißt **in G wegunabhängig** (wu) : \iff für je zwei Punkte $x_0, y_0 \in G$ gilt: für jeden stückweise stetig differenzierbaren Weg $\gamma: [a,b] \to \mathbb{R}^n$ mit $\Gamma_\gamma \subseteq G, \ \gamma(a) = x_0 \ \text{und} \ \gamma(b) = y_0$ hat das Integral $\int_\gamma f(x) \cdot dx$ stets denselben Wert. In diesem Fall: $\int_{x_0}^{y_0} f(x) \cdot dx := \int_\gamma f(x) \cdot dx$.

14.4 lautet dann: besitzt fauf G die Stammfunktion $\varphi \implies \int f(x) \cdot dx$ ist in G wegunabhängig und $\int_{x_0}^{y_0} = \varphi(y_0) - \varphi(x_0)$ (Verallgemeinerung von Analysis 1, 23.5).

Satz 14.3 (Wegunabhängigkeit, Existenz von Stammfunktionen)

f besitzt auf G eine Stammfunktion $\iff \int f(x) \cdot dx$ ist in G wegunabhängig. In diesem Fall: ist $x_0 \in G$ und $\varphi : G \to \mathbb{R}$ definiert durch:

$$\varphi(z) = \int_{x_0}^z f(x) \cdot dx \ (z \in G) \ (*)$$

Dann ist φ eine Stammfunktion von f auf G.

Reweis

" \Longrightarrow ": 14.1 " \Leftarrow ": Sei $x_0 \in G$ und φ wie in (*). Zu zeigen: φ ist auf G differenzierbar und $\varphi' = f$ auf G. Sei $z_0 \in G, h \in \mathbb{R}^n, h \neq 0$ und ||h|| so klein, dass $z_0 + th \in G \ \forall t \in [0,1].$ $\gamma(t) := z_0 + th \ (t \in [0,1]), \Gamma_{\gamma} = s[z_0, z_0 + h] \subseteq G.$ $\rho(h) := \frac{1}{||h||} (\varphi(z_0 + h) - \varphi(z_0) - f(z_0) \cdot h).$ Zu zeigen: $\rho(h) \to 0 \ (h \to 0).$ 14.2 \Longrightarrow es existieren stückweise stetig differenzierbare Wege γ_1, γ_2 mit: $\Gamma_{\gamma_1}, \Gamma_{\gamma_2} \subseteq G$. Anfangspunkt von $\gamma_1 = x_0$ =Anfangspunkt von γ_2 . Endpunkt von $\gamma_1 = z_0$, Endpunkt von $\gamma_2 = z_0 + h$. Sei $\gamma_3 \in AH(\gamma_1, \gamma)$ stückweise stetig differenzierbar (13.4!). Dann:

$$\underbrace{\int_{\gamma_3} f(x) \cdot dx}_{=\varphi(z_0+h)} = \underbrace{\int_{\gamma_1} f(x) \cdot dx}_{=\varphi(z_0)} + \int_{\gamma} f(x) \cdot dx$$

 $\int f(x) \cdot dx$ ist wegunabhängig in $G \implies$

$$\int_{\gamma_3} f(x) \cdot dx = \int_{\gamma_2} f(x) \cdot dx = \varphi(z_0 + h) \implies \varphi(z_0 + h) - \varphi(z_0) = \int_{\gamma} f(x) \cdot dx$$

Es ist:

$$\int_{\gamma} f(z_0) \cdot dx = \int_{0}^{1} f(z_0) \cdot \underbrace{\gamma'(t)}_{=h} dt = f(z_0) \cdot h$$

$$\implies \rho(h) = \frac{1}{\|h\|} \int_{\gamma} (f(x) - f(z_0)) dx$$

$$\implies |\rho(h)| = \frac{1}{\|h\|} \left| \int_{\gamma} f(x) - f(z_0) dx \right|$$

$$\leq \frac{1}{\|h\|} \underbrace{L(\gamma) \max\{\|f(x) - f(z_0)\| : x \in \Gamma_{\gamma}\}}_{=\|f(x_n) - f(z_0)\|}$$

wobei $x_n \in \Gamma_{\gamma} = S[z_0, z_0 + h] \implies |\rho(h)| \le ||f(x_n) - f(z_0)||$. Für $h \to 0 : x_n \to z_0 \xrightarrow{\text{f stetig}} ||f(x_n) - f(z_0)|| \to 0 \implies \rho(h) \to 0$.

Satz 14.4 (Integrabilitätsbedingungen)

Sei $f = (f_1, \ldots, f_n) \in C^1(G, \mathbb{R}^n)$. Besitzt f auf G die Stammfunktion $\varphi \implies$

$$\frac{\partial f_j}{\partial x_k} = \frac{\partial f_k}{\partial x_j}$$
 auf G $(j, k = 1, \dots, n)$

(Integrabilitätsbedingungen (IB)). Warnung: Die Umkehrung von 14.4 gilt im Allgemeinen nicht (\rightarrow Übungen!).

Beweis

Sei φ eine Stammfunktion von f auf $G \Longrightarrow \varphi$ ist differenzierbar auf G und $\varphi_{x_j} = f_j$ auf G (j = 1, ..., n). $f \in C^1(G, \mathbb{R}^n) \Longrightarrow \varphi \in C^2(G, \mathbb{R})$

$$\implies \frac{\partial f_j}{\partial x_k} = \varphi_{x_j x_k} \stackrel{4.7}{=} \varphi_{x_k x_j} = \frac{\partial f_k}{\partial x_j} \text{ auf G.}$$

Definition

Sei $\emptyset \neq M \subseteq \mathbb{R}^n$. M heißt **sternförmig** : $\iff \exists x_0 \in M : S[x_0, x] \subseteq M \ \forall x \in M$.

Beachte:

- (1) Ist M konvex $\Longrightarrow M$ ist sternförmig
- (2) Ist M offen und sternförmig $\Longrightarrow M$ ist ein Gebiet

Satz 14.5 (Kriterium zur Existenz von Stammfunktionen)

Sei G sternförmig und $f \in C^1(G, \mathbb{R}^n)$. Dann: f besitzt auf G eine Stammfunktion : $\iff f$ erfüllt auf G die Integrabilitätsbedingungen

Beweis

 \Rightarrow ": 14.1 \Rightarrow ": G sternförmig $\Rightarrow \exists x_0 \in G : S[x_0, x] \subseteq G \ \forall x \in G$. OBdA: $x_0 = 0$.

Für $x = (x_1, ..., x_n) \in G$ sei $\gamma_x(t) = tx, t \in [0, 1]$.

$$\varphi(x) := \int_{\gamma_x} f(z) \cdot dz \ (x \in G)$$

$$= \int_0^1 f(tx) \cdot x dt$$

$$= \int_0^1 (f_1(tx) \cdot x_1 + f_2(tx) \cdot x_2 + \dots + f_n(tx) \cdot x_n) dt$$

Zu zeigen: φ ist auf G partiell differenzierbar nach x_j und $\varphi_{x_j} = f_j$ (j = 1, ..., n). OBdA: j = 1. Später (in 21.3) zeigen wir: φ ist partiell differenzierbar nach x_1 und:

$$\varphi_{x_1}(x) = \int_0^1 \frac{\partial}{\partial x_1} (f_1(tx)x_1 + \dots + f_n(tx) \cdot x_n) dt$$

Für
$$k = 1, ..., n : g_k(x) = f_k(tx) \cdot x_k$$
.
 $k = 1 : g_1(x) = f_1(tx)x_1 \Longrightarrow \frac{\partial g_1}{\partial x_1}(x) = f_1(tx) + t \frac{\partial f_1}{\partial x_1}(tx)x_1$
 $k \ge 2 : g_k(x) = f_k(tx)x_k \Longrightarrow \frac{\partial g_k}{\partial x_1}(x) = t \frac{\partial f_k}{\partial x_1}(tx)x_k \Longrightarrow$

$$\varphi_{x_1}(x) = \int_0^1 (f_1(tx) + t(\frac{\partial f_1}{\partial x_1}(tx)x_1 + \dots + \frac{\partial f_n}{\partial x_1}(tx)x_n))dt$$

$$\stackrel{\text{IB}}{=} \int_0^1 (f_1(tx) + t(\frac{\partial f_1}{\partial x_1}(tx)x_1 + \frac{\partial f_1}{\partial x_2}(tx)x_2 + \dots + \frac{\partial f_1}{\partial x_n}(tx)x_n))dt$$

$$= \int_0^1 (f_1(tx) + tf'_1(tx) \cdot x)dt$$

Sei $x \in G$ (fest), $h(t) := t \cdot f_1(tx)$ ($t \in [0,1]$). h ist stetig differenzierbar und $h'(t) = f_1(tx) + tf'_1(tx) \cdot x \implies \varphi_{x_1}(x) = \int_0^1 h'(t) dt \stackrel{\text{A1}}{=} h(1) - h(0) = f_1(x)$.

15. Integration von Treppenfunktionen

Definition

(1) $\mathfrak{M} := \{I : I \text{ ist ein } beschränktes \text{ Intervall in } \mathbb{R}\}$. Also: $I \in \mathfrak{M} : \iff \exists a, b \in \mathbb{R} \text{ mit } a < b : I = [a, b] \text{ oder } I = (a, b) \text{ oder } I = [a, b] \text{ oder } I = \{a\}.$

In den ersten 4 Fällen setzt man |I| := b - a und $|\{a\}| := 0$ (Intervalllänge).

(2) Sei $n \in \mathbb{R}$ und es seien $I_1, I_2, \dots, I_n \in \mathfrak{M}$. Dann heißt $Q := I_1 \times I_2 \times \dots \times I_n$ ein **Quader** im \mathbb{R}^n und $v_n(Q) := |I_1| \cdot |I_2| \cdot \dots \cdot |I_n|$ das (n-dim.) Volumen von Q.

Beispiel

(n=2)

- (i) $Q = [a_1, b_1) \times [a_2, b_2], \ v_2(Q) = (b_1 a_1)(b_2 a_2).$
- (ii) $Q = [a_1, b_1) \times \{a\}, \ v_2(Q) = 0.$
- (3) Eine Funktion $\varphi : \mathbb{R}^n \to \mathbb{R}$ heißt eine **Treppenfunktion** im $\mathbb{R}^n : \iff \exists$ Quader Q_1, \ldots, Q_m im \mathbb{R}^n mit:
 - (i) $Q_i \cap Q_k = \emptyset \ (j \neq k)$
 - (ii) φ ist auf jedem Q_j konstant
 - (iii) $\varphi = 0$ auf $\mathbb{R}^n \setminus (Q_1 \cup \ldots \cup Q_m)$

 $\mathcal{T}_n =$ Menge aller Treppenfunktionen in \mathbb{R}^n .

Der nächste Satz wird hier nicht bewiesen:

Satz 15.1 (Disjunkte Quaderzerlegung und Treppenfunktionsraum)

(1) Es seien Q'_1, Q'_2, \ldots, Q'_k Quader im \mathbb{R}^n . Dann ex. Quader Q_1, Q_2, \ldots, Q_m im \mathbb{R}^n : $Q'_1 \cup Q'_2 \cup \ldots \cup Q'_k = Q_1 \cup Q_2 \cup \ldots \cup Q_m$ und $Q_j \cap Q_k = \emptyset$ $(j \neq k)$.

Beachte: Q_1, \ldots, Q_m sind nicht eindeutig bestimmt.

- (2) \mathcal{T}_n ist ein reeller Vektorraum.
- (3) Aus $\varphi, \psi \in \mathscr{T}_n$ folgt: $|\varphi|, \varphi \cdot \psi \in \mathscr{T}_n$.

Definition

Sei $A \subseteq \mathbb{R}^n$.

$$1_A(x) := \begin{cases} 1 & \text{, falls } x \in A \\ 0 & \text{, sonst} \end{cases}$$

 1_A heißt die charakteristische Funktion von A.

Aus 15.1 folgt:

Ist $\varphi : \mathbb{R}^n \to \mathbb{R}$ eine Funktion, dann gilt: $\varphi \in \mathscr{T}_n \iff \exists \text{ Quader } Q_1, \dots, Q_m \text{ in } \mathbb{R}^n \text{ und } c_1, \dots, c_m \in \mathbb{R}$:

$$\varphi = \sum_{j=1}^{m} c_j 1_{Q_j} \ (*)$$

Beachte:

- (1) Die Darstellung von φ in (*) ist i.A. *nicht* eindeutig.
- (2) In (*) wird *nicht* gefordert, dass $Q_j \cap Q_k = \emptyset$ $(j \neq k)$.

Beispiel

FIXME: Bild

 $\varphi = 2 \cdot 1_{Q_1} + 3 \cdot 1_{Q_2}.$

Satz 15.2 (Integral über Treppenfunktion (mit Definition))

Sei $\varphi \in \mathscr{T}_n$ wie in (*).

$$\int \varphi dx := \int \varphi(x) dx := \int_{\mathbb{R}^n} \varphi(x) dx := \int_{\mathbb{R}^n} \varphi dx := \sum_{j=1}^m c_j v_n(Q_j)$$

Behauptung: $\int \varphi dx$ ist wohldefiniert, d.h. obige Def. ist unabhängig von der Darstellung von φ in (*).

Vorbemerkung: Sei $Q = I_1 \times \ldots \times I_n$ Quader im \mathbb{R}^n $(I_j \in \mathfrak{M})$. Sei $p \in \{1, \ldots, n-1\}$. $P := I_j \times \ldots \times I_p$, $R := I_{p+1} \times \ldots \times I_n$. P ist ein Quader im \mathbb{R}^p . R ist ein Quader im \mathbb{R}^{n-p} . $Q = P \times R$. $v_n(Q) = v_p(P) \cdot v_{n-p}(R)$. Ist $z = (x, y) \in \mathbb{R}^n$, $x \in \mathbb{R}^p$, $y \in \mathbb{R}^{n-p} \implies 1_Q(z) = 1_P(x) \cdot 1_R(y)$.

Beweis (von 15.2)

Induktion nach n.

IA: n = 1: Übung

IV: Die Beh. sei gezeigt für jedes $q \in \{1, ..., n-1\}$.

IS: Sei $p \in \{1, ..., n-1\}$. Vorbemerkung $\Longrightarrow \exists$ Quader $P_1, ..., P_m$ im \mathbb{R}^p und Quader $R_1, ..., R_m$ im $\mathbb{R}^{n-p} : Q_j = P_j \times R_j$ (j = 1, ..., m). Für $z \in \mathbb{R}^n$ schreiben wir $z = (x, y), x \in \mathbb{R}^p, y \in \mathbb{R}^{n-p}$.

Sei $y \in \mathbb{R}^{n-p}$ fest. $\varphi_y(x) := \varphi(x,y) \ (x \in \mathbb{R}^p)$.

$$\varphi_{y}(x) = \varphi(x,y) \overset{\text{(*)}}{=} \sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y) \overset{\text{Vorbem.}}{=} \sum_{j=1}^{m} c_{j} 1_{P_{j}}(x) \cdot 1_{R_{j}}(y) = \sum_{j=1}^{m} \underbrace{c_{j} 1_{R_{j}}(y)}_{=:d_{j} = d_{j}(y)} \cdot 1_{P_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)} \cdot 1_{Q_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)}}_{=:d_{j} = d_{j}(y)} \cdot 1_{Q_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)}}_{=:d_{j} = d_{j}(y)}$$

$$\sum_{j=1}^{m} d_j 1_{P_j}(x)$$

$$\implies \varphi_y = \sum_{j=1}^m d_j 1_{P_j} \implies \varphi_y \in \mathscr{T}_p$$

IV $\Longrightarrow \sum_{j=1}^m d_j v_p(P_j) = \int_{\mathbb{R}^p} \varphi_y(x) dx$ ist unabhängig von der Darstellung von φ_y (und damit auch von φ).

Def.
$$\phi : \mathbb{R}^{n-p} \to \mathbb{R}$$
 durch $\phi(y) := \int_{\mathbb{R}^p} \varphi_y(x) dx = \sum_{j=1}^m d_j(y) v_p(P_j) = \sum_{j=1}^m c_j 1_{R_j}(y) v_p(P_j) = \sum_{j=1}^m c_j v_p(P_j) v_p(P_j) v_p(P_j) v_p(P_j) = \sum_{j=1}^m c_j v_p(P_j) v_p(P_j) v_p(P_j) v_p(P_j) = \sum_{j=1}^m c_j v_p(P_j) v_p(P$

$$\implies \phi = \sum_{j=1}^{m} e_j \cdot 1_{R_j} \implies \phi \in \mathscr{T}_{n-p}.$$

IV
$$\Longrightarrow \int_{\mathbb{R}^{n-p}} \phi(y) dy = \sum_{j=1}^m e_j v_{n-p}(R_j) = \sum_{j=1}^m c_j v_p(P_j) v_{n-p}(R_j) = \sum_{j=1}^m c_j v_n(Q_j)$$
 ist unabhängig von der Darstellung von φ .

Aus dem Beweis von 15.2 folgt:

Satz 15.3 (Satz von Fubini für Treppenfunktionen)

Ist $\varphi \in \mathscr{T}_n$ und $p \in \{1, \ldots, n-1\}$ so gilt:

$$\int_{\mathbb{R}^n} \varphi(z)dz = \int_{\mathbb{R}^{n-p}} \left(\int_{\mathbb{R}^p} \varphi(x,y)dx \right) dy = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^{n-p}} \varphi(x,y)dy \right) dx$$

Satz 15.4 (Eigenschaften des Integrals über Treppenfunktionen)

Es seien $\varphi, \psi \in \mathscr{T}_n$ und $\alpha, \beta \in \mathbb{R}$.

(1)
$$\int (\alpha \varphi + \beta \psi) dx = \alpha \int \varphi dx + \beta \int \psi dx$$

$$(2) \left| \int \varphi dx \right| \le \int |\varphi| dx$$

(3) Aus
$$\varphi \leq \psi$$
 auf \mathbb{R}^n folgt $\int \varphi dx \leq \int \psi dx$

Beweis

- (1) Übung
- (2) Sei $\varphi = \sum_{j=1}^m c_j 1_{Q_j}$ wie in (*). Wegen 15.1: O.B.d.A: $Q_j \cap Q_k = \emptyset$ $(j \neq k)$. Dann: $|\varphi| = \sum_{j=1}^m |c_j| 1_{Q_j}$.

$$\implies |\int \varphi dx| = |\sum_{j=1}^m c_j v_n(Q_j)| \le \sum_{j=1}^m |c_j| v_n(Q_j) = \int |\varphi| dx.$$

16. Das Lebesguesche Integral

Es sei $\tilde{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ Im Folgenden lassen wir Funktionen und Reihen mit Werten in $\tilde{\mathbb{R}}$ zu.

Regeln: $a < \infty \ \forall a \in \mathbb{R}. \ \infty \le \infty, \ \infty \pm c = c \pm \infty = \infty \ \forall c \in \tilde{\mathbb{R}}. \ \infty \cdot c = c \cdot \infty = \infty \ \forall c \in \tilde{\mathbb{R}} \setminus \{0\}.$ $\infty \cdot 0 = 0 \cdot \infty = 0$. Ist (a_n) eine Folge in $\tilde{\mathbb{R}}$ und $a_n \ge 0 \ \forall n \in \mathbb{N}; \ \sum_{n=1}^{\infty} a_n := \infty$, falls alle $a_n \in \mathbb{R}$ und $\sum_{n=1}^{\infty} a_n$ divergiert; $\sum_{n=1}^{\infty} a_n := \infty$, falls $a_n = \infty$ für ein $n \in \mathbb{N}$. Sei $A \subseteq \tilde{\mathbb{R}}$ und $a \ge 0 \ \forall a \in A$.

$$\inf A := \begin{cases} \infty &, \text{ falls } A = \{\infty\} \\ \inf(A \setminus \{\infty\}) &, \text{ falls } A \setminus \{\infty\} \neq \emptyset \end{cases}$$

Motivation: $f: \mathbb{R} \to \mathbb{R}$ sei eine Funktion, $f \geq 0$ auf \mathbb{R} und $M := \{(x,y) \in \mathbb{R}^2 : 0 \leq y \leq f(x)\}$. Es seien Q_1, Q_2, \ldots offene Quader im \mathbb{R}^1 und $c_1, c_2, \ldots \geq 0$. Es gelte $f(x) \leq \sum_{k=1}^{\infty} c_k 1_{Q_k}(x) \ \forall x \in \mathbb{R}$ $(\sum_{k=1}^{\infty} c_k 1_{Q_k}(x) = \infty \text{ ist zugelassen!})$

Dann kann man $\sum_{k=1}^{\infty} c_k v_1(Q_k)$ betrachten als obere Approximation an den "Inhalt" von M. $(\sum_{k=1}^{\infty} c_k v_1(Q_k) = \infty$ ist zugelassen)

Im Folgenden bedeutet \sum_k entweder eine endliche Summe oder eine unendliche Reihe $\sum_{k=1}^{\infty} \dots$

Definition

Sei $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$ eine Funktion. Seien $(Q_1, c_1), (Q_2, c_2), \ldots$ endlich viele oder abzählbar viele Paare mit Q_j offener Quader und $c_j \in [0, \infty)$ und es gelte $|f(x)| \leq \sum_k c_k 1_{Q_k}(x) \ \forall x \in \mathbb{R}^n$.

Dann heißt $\Phi := \sum_k c_k 1_{Q_k}$ eine **Hüllreihe** für f und $I(\Phi) := \sum_k c_k v_n(Q_k)$ ihr **Inhalt**. $\mathscr{H}(f) := \{\Phi : \Phi \text{ ist eine Hüllreihe für } f\} \|f\|_1 := \inf\{I(\Phi) : \Phi \in \mathscr{H}(f)\} (L^1\text{-Halbnorm von } f.)$

Beachte: $||f||_1 \ge 0$, $||f||_1 = \infty$ ist zugelassen.

Behauptung: $\mathcal{H}(f) \neq \emptyset$

Beweis: Für
$$k \in \mathbb{N}$$
 sei $Q_k := (-k, k) \times \cdots \times (-k, k) \ (\subseteq \mathbb{R}^n)$. $\Phi := \sum_{k=1}^{\infty} 1 \cdot 1_{Q_k}$. Sei $x \in \mathbb{R}^n \implies \exists m_0 \in \mathbb{N} : x \in Q_{m_0} \implies x \in Q_k \ \forall k \geq m_0 \implies \Phi(x) \geq \sum_{k=m_0}^{\infty} 1 \cdot \underbrace{1_{Q_k}}_{=1} = \infty \implies 0$

$$\begin{aligned} |f(x)| &\leq \Phi(x) \ \forall x \in \mathbb{R}^n \implies \Phi \in \mathscr{H}(f). \\ (I(\Phi) &= \sum_{k=1}^{\infty} v_n(Q_k) = \sum_{k=1}^{\infty} (2k)^n = \infty). \end{aligned}$$

Beispiel

$$(n = 1), A = \{0\} (\subseteq \mathbb{R}); f := 1_A \text{ (also: } f(0) = 1, f(x) = 0 \ \forall x \neq 0).$$

Sei
$$\varepsilon > 0$$
, $Q := (-\varepsilon, \varepsilon)$, $\Phi := 1_Q \implies \Phi \in \mathcal{H}(f)$.
 $I(\Phi) = v_1(Q) = 2\varepsilon \implies ||f||_1 \le 2\varepsilon \stackrel{\varepsilon \to 0}{\implies} ||f||_1 = 0$. Aber: $f \ne 0$

Satz 16.1 (Rechenregeln der L^1 -Halbnorm)

Seien $f, g, f_1, g_1, \ldots : \mathbb{R}^n \to \tilde{\mathbb{R}}$ Funktionen.

- (1) $||cf||_1 = |c|||f||_1 \ \forall c \in \mathbb{R}$
- (2) $||f + g||_1 \le ||f||_1 + ||g||_1$
- (3) Aus $|f| \leq |g|$ auf \mathbb{R}^n folgt $||f||_1 \leq ||g||_1$
- $(4) \|\sum_{k=1}^{\infty} f_k\|_1 \le \sum_{k=1}^{\infty} \|f_k\|_1$

Beweis

- (1) Klar
- (2) O.B.d.A.: $||f_1||_1 + ||g_1||_2 < \infty$. Sei $\varepsilon > 0$. $\exists \Phi_1 \in \mathcal{H}(f)$, $\exists \Phi_2 \in \mathcal{H}(g)$: $I(\Phi_1) \leq ||f||_1 + \varepsilon$, $I(\Phi_2) \leq ||g||_1 + \varepsilon$. $\Phi := \Phi_1 + \Phi_2 \implies \Phi \in \mathcal{H}(f+g)$ und $I(\Phi) = I(\Phi_1) + I(\Phi_2) \leq ||f||_1 + ||g||_1 + 2\varepsilon \implies ||f+g||_1 \leq ||f||_1 + ||g||_1 + 2\varepsilon \implies \text{Beh.}$
- (3) Sei $\Phi \in \mathcal{H}(g) \implies \Phi \in \mathcal{H}(f)$. Also: $\mathcal{H}(g) \subseteq \mathcal{H}(f) \implies$ Beh.
- (4) In der Übung

Satz 16.2 (L^1 -Halbnorm eines Quaders)

Es sei Q ein abgeschlossener Quader im \mathbb{R}^n . Dann:

$$v_n(Q) = \int_{\mathbb{R}^n} 1_Q dx = ||1_Q||_1$$

Beweis

 $f := 1_Q$. $\int f dx \stackrel{\S^{15}}{=} v_n(Q)$. Zu zeigen: $v_n(Q) = ||f||_1$.

- (1) Es sei $\varepsilon > 0$. Dann existiert ein offener Quader \hat{Q} mit: $Q \subseteq \hat{Q}$ und $v_n(\hat{Q}) = v_n(Q) + \varepsilon$. $\Phi := 1_{\hat{Q}} \implies \Phi \in \mathscr{H}(f)$ und $I(\Phi) = v_n(\hat{Q}) = v_n(Q) + \varepsilon \implies \|f\|_1 \le v_n(Q) + \varepsilon \implies \|f\|_1 \le v_n(Q)$
- (2) Sei $\Phi = \sum_k f_k 1_{Q_k} \in \mathcal{H}(f)$, also $c_k \geq 0$, Q_k offene Quader.

Sei
$$\varepsilon \in (0,1)$$
. Für $x \in Q$: $1 = 1_Q(x) = f(x) = |f(x)| \le \sum_k c_k 1_{Q_k}(X)$

 $\exists n(x) \leq \mathbb{N} \colon \sum_{k=1}^{n(x)} c_k 1_{Q_k}(x) \geq 1 - \varepsilon \text{ und (o.B.d.A.) } 1_{Q_k}(x) = 1 \ (k = 1, \dots, n(x)).$ $Q_1, \dots, Q_{n(x)} \text{ offen } \Longrightarrow \exists \delta_x > 0 : U_{\delta}(x) \subseteq Q_j \ (j = 1, \dots, n(x)) \implies \sum_{k=1}^{n(x)} c_k 1_{Q_k}(z) \geq 1 - \varepsilon \ \forall z \in U_{\delta_x}(x) \ (*).$

$$Q \subseteq \bigcup_{x \in Q} U_{\delta_x}(X) \xrightarrow{2.2(3)} \exists x_1, \dots, x_p \in Q : Q \subseteq \bigcup_{j=1}^p U_{\delta_{x_j}}(x_j)$$

 $N := \max\{n(x_1), \dots, n(x_p)\}. \ \varphi_1 := \sum_{k=1}^{N} c_k 1_{Q_k}, \ \varphi_2(x) := (1-\varepsilon)1_Q. \ \text{Also:} \ \varphi_1, \varphi_2 \in \mathscr{T}_n.$

$$\int \varphi_2 dx = (1 - \varepsilon)v_n(Q), \int \varphi_1 dx = \sum_{k=1}^N c_k v_n(Q_k) \le \sum_k v_k v_n(Q_k) = I(\Phi)$$

Sei $x \notin Q$: $\varphi_2(x) = 0 \le \varphi_1(x)$.

Sei $z \in Q$: $\exists j \in \{1, \dots, p\} : z \in U_{\delta_{x_j}}(x_j) \implies \varphi_1(z) = \sum_{k=1}^N c_k 1_{Q_k}(z) \ge \sum_{k=1}^{n(x_j)} c_k 1_{Q_k}(z) \ge 1 - \varepsilon = \varphi_2(z)$. Also $\varphi_2 \le \varphi_1$ auf \mathbb{R}^n . 15.4 $\implies \int \varphi_2 dx \le \int \varphi_1 dx \implies (1 - \varepsilon)v_n(Q) \le I(\Phi)$. $\Phi \in \mathscr{H}(f)$ beliebig $\implies (1 - \varepsilon)v_n(Q) \le ||f||_1$. Also: $(1 - \varepsilon)v_n(Q) \le ||f||_1$ $\forall \varepsilon > 0 \stackrel{\varepsilon \to 0}{\Longrightarrow} v_n(Q) \le ||f||_1$.

(1) und (2)
$$\implies v_n(Q) = ||f||_1$$

Vorbemerkung: Es sei $Q \subseteq \mathbb{R}^n$ ein nicht offene Quader. Dann existieren Quader $Q_1, \ldots, Q_{\nu} \subseteq \partial Q$ mit: $Q = Q^0 \cup Q_1 \cup \ldots \cup Q_{\nu}$ und $Q^0, Q_1, \ldots, Q_{\nu}$ paarweise disjunkt. Insbesondere: $v_n(Q_j) = 0$ $(j = 1, \ldots, \nu)$ und $1_Q = 1_{Q^0} + 1_{Q_1} + \cdots + 1_{Q_{\nu}}$.

Satz 16.3 (L^1 -Halbnorm einer Treppenfunktion)

Sei $\varphi \in \mathscr{T}_n$ und Q ein beliebiger Quader im \mathbb{R}^n .

(1)
$$\mathcal{H}(\varphi) = \mathcal{H}(|\varphi|), ||f||_1 = |||\varphi|||_1$$

- $(2) \|\varphi\|_1 = \int |\varphi| dx$
- (3) $v_n(Q) = \int 1_Q dx = ||1_Q||_1$

Beweis

- (1) Klar
- (2) Sei $\varphi = \sum_{k=1}^{m} \hat{c}_k 1_{\hat{Q}_k}$ wobei $\hat{c}_k \in \mathbb{R}$, $\hat{Q}_1, \dots, \hat{Q}_m$ passende disjunkte Quader. Anwendung der Vorbemerkung auf jeden nichtoffenen Quader \hat{Q}_j liefert:

$$\varphi = \sum_{k=1}^{s} c_k 1_{Q_k} + \sum_{k=1}^{r} d_k 1_{R_k}$$

wobei $Q_1, \ldots, Q_s, R_1, \ldots, R_r$ paarweise diskunkt, Q_1, \ldots, Q_s offen, $v_n(R_j) = 0$ $(j = 1, \ldots, r)$. Wegen (1): O.B.d.A: $\varphi \geq 0$; dann: $c_k, d_k \geq 0$, $\alpha := \sum_{k=1}^r d_k$. Sei $\varepsilon > 0$. Zu jedem R_k existert ein Quader \hat{R}_k : $v_n(\hat{R}_k) = \varepsilon$.

$$\Phi := \sum_{k=1}^{s} c_k 1_{Q_k} + \sum_{k=1}^{r} d_k 1_{\hat{R}_k} \implies \Phi \in \mathscr{H}(f)$$

und

$$I(\Phi) = \underbrace{\sum_{k=1}^{s} c_k v_n(Q_k)}_{=\int \varphi dx} + \underbrace{\sum_{k=1}^{r} d_k v_n(\hat{R}_k)}_{=\varepsilon\alpha} = \int \varphi dx + \varepsilon\alpha \implies \|\varphi\|_1 \le \int \varphi dx + \varepsilon\alpha$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \|\varphi\|_1 \le \int \varphi dx$$

Wähle einen abgeschlossenen Quader Q mit $Q_1 \cup ... \cup Q_s \cup R_1 \cup ... \cup R_r \subseteq Q$. Dann: $\varphi(x) = 0 \ \forall x \in \mathbb{R}^n \backslash Q, \ m := \max\{\varphi(x) : x \in \mathbb{R}^n\}, \ \psi := m \cdot 1_Q - \varphi \in \mathscr{T}_n \implies \psi \ge 0$ auf \mathbb{R}^n . Wie oben: $\|\psi\|_1 \le \int \psi dx. \ \int \psi dx = \int (m \cdot 1_Q - \phi) dx = m \int 1_Q dx - \int \psi dx \le m \int 1_Q dx - \|\psi\|_1 \stackrel{16.2}{=} m \|1_Q\|_1 - \|\psi\|_1 = \|m \cdot 1_Q\|_1 - \|\psi\|_1 = \|\varphi + \psi\|_1 - \|\psi\|_1 \le \|\varphi\|_1 + \|\psi\|_1 - \|\psi\|_1 = \|\varphi\|_1.$

(3) folgt aus (2) und
$$\varphi = 1_Q$$

Satz 16.4 (Integration und Grenzwertbildung bei Treppenfunktionen)

Sei $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$, seien $(\varphi_k), (\psi_k)$ Folgen in \mathscr{T}_n mit $||f - \varphi_k||_1 \to 0$, $||f - \psi_k||_1 \to 0$ $(k \to \infty)$. Dann sind $(\int \varphi_k dx)$ und $(\int \psi_k dx)$ konvergente Folgen in \mathbb{R} und

$$\lim_{k \to \infty} \int \varphi_k dx = \lim_{k \to \infty} \int \psi_k dx$$

Beweis

 $a_k := \int \varphi_k dx, \, b_k := \int \psi_k dx \, (k \in \mathbb{N}).$

 $|a_k - a_l| = |\int \varphi_k dx - \int \varphi_l dx| = |\int (\varphi_k - \varphi_l) dx| \stackrel{15.4}{\leq} \int |\varphi_k - \varphi_l| dx \stackrel{16.3}{=} \|\varphi_k - \varphi_l\|_1 = \|\varphi_k - f + f - \varphi_l\|_1 \leq \|\varphi_k - f\|_1 + \|f - \varphi_l\|_1 \implies (a_k) \text{ ist eine Cauchyfolge in } \mathbb{R} \text{ und als solche konvergent.}$ Genau so: (b_k) ist konvergent.

$$a := \lim a_k, \ b := \lim b_k. \ |a_k - b_k| \stackrel{\text{wie oben}}{\leq} \|f - \varphi_k\|_1 + \|f - \psi_k\|_1 \stackrel{k \to \infty}{\Longrightarrow} a = b.$$

Definition

- (1) $L(\mathbb{R}^n) := \{ f : \mathbb{R}^n \to \tilde{\mathbb{R}} : \exists \text{ Folge } (\varphi_k) \in \mathscr{T}_n \text{ mit: } || f \varphi_k ||_1 \to 0 \ (k \to \infty) \}$
- (2) Ist $f \in L(\mathbb{R}^n)$, so heißt f Lebesgueintegrierbar über \mathbb{R}^n .
- (3) Ist $f \in L(\mathbb{R}^n)$ und (φ_k) eine Folge in \mathscr{T}_n mit $||f \varphi_k||_1 \to 0$, so heißt

$$\int f dx := \int f(x) dx := \int_{\mathbb{R}^n} f dx := \int_{\mathbb{R}^n} f(x) dx := \lim_{k \to \infty} \int \varphi_k dx$$

das Lebesgueintegral von f über \mathbb{R}^n .

Bemerkung: (1) Wegen 16.4 ist $\int f dx$ wohldefiniert und reell.

(2) Ist $\varphi \in \mathscr{T}_n$, so wähle $(\varphi_k) = (\varphi, \varphi, \varphi, \ldots) \implies \varphi \in L(\mathbb{R}^n)$ und Integral von φ aus §15 stimmt mit obigem Integral überein. Insbesondere: $\mathscr{T}_n \subseteq L(\mathbb{R}^n)$

Satz 16.5 (Rechenreglin für Lebesgueintegrale)

Es seien $f, g \in L(\mathbb{R}^n)$ und $\alpha, \beta \in \mathbb{R}^n$.

- (1) $\alpha f + \beta g \in L(\mathbb{R}^n)$ und $\int (\alpha f + \beta g) dx = \alpha \int f dx + \beta \int g dx$
- (2) $|f| \in L(\mathbb{R}^n)$ und $|\int f dx| \le \int |f| dx = ||f||_1$
- (3) Aus $f \leq g$ auf \mathbb{R}^n folgt: $\int f dx \leq \int g dx$
- (4) Ist g auf \mathbb{R}^n beschränkt $\Longrightarrow fg \in L(\mathbb{R}^n)$.

- (1) Klar.
- (2) \exists Folge (φ_k) in \mathscr{T}_n mit $||f \varphi_k||_1 \to 0$ $(k \to \infty)$. $|\varphi_k| \in \mathscr{T}_n$ $(k \in \mathbb{N})$. $||f| |\varphi|| \le ||f \varphi_k|| \xrightarrow{16.4} ||f| |\varphi_k||_1 \le ||f k\varphi_k||_1 \Longrightarrow |f| \in L(\mathbb{R}^n)$ und $||f| f dx| = |\lim \int \varphi_k dx| = \lim ||f| \varphi_k dx|| \le \lim \int |\varphi_k| dx = \int |f| dx$.

$$\begin{split} \|f\|_1 &= \|f - \varphi_k + \varphi_k\|_1 \leq \|f - \varphi_k\|_1 + \|\varphi_k\|_1 &\stackrel{k \to \infty}{=} \|f\|_1 \leq \int |f| dx. \ \|\varphi_k\|_1 = \|\varphi_k - f + f\|_1 \leq \|\varphi_k - f\|_1 + \|f\|_1 &\xrightarrow{k \to \infty} \int |f| dx \leq \|f\|_1 \end{split}$$

- (3) Es ist $g f \ge 0$ auf \mathbb{R}^n . $\int g dx \int f dx \stackrel{\text{(1)}}{=} \int \underbrace{(g f)}_{>0} dx = \int |g f| dx \stackrel{\text{(2)}}{=} ||g f||_1 \ge 0$.
- (4) $\exists M \geq 0 : |g| \leq M$ auf \mathbb{R}^n . Sei $k \in \mathbb{N}$. $\exists \varphi_k \in \mathscr{T}_n : \|f \varphi_k\|_1 \leq \frac{1}{2Mk}$. $\exists \gamma \geq 0 : |\varphi_k| \leq \gamma$ auf \mathbb{R}^n . $\exists \psi_k \in \mathscr{T}_n : \|g \psi_k\|_1 \leq \frac{1}{2\gamma k}$. Dann: $\varphi_k \psi_k \in \mathscr{T}_n$.

$$|fg-\varphi_k\psi_k| = |gf-g\varphi_k+g\varphi_k-\varphi_k\psi_k| \le |g||f-\varphi_k|+|\varphi_k||g-\psi_k| \le M|f-\varphi_k|+\gamma|g-\psi_k| \xrightarrow{16.1} |fg-\varphi_k\psi_k||_1 \le M|f-\varphi_k||_1 + \gamma|g-\psi_k||_1 \le M \cdot \frac{1}{2Mk} + \gamma \frac{1}{2\gamma k} = \frac{1}{k} \implies \text{Beh.}$$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$ und $f, g: D \to \mathbb{R}$ (nicht $\tilde{\mathbb{R}}!$) seien Funktionen.

$$\max(f,g)(x) := \max\{f(x),g(x)\} \ (x \in D)$$
$$\min(f,g)(x) := \min\{f(x),g(x)\} \ (x \in D)$$
$$f^+ := \max(f,0), \ f^- := \max(-f,0) = (-f)^+$$

Es ist $\max(f,g) = \frac{1}{2}(f+g+|f-g|)$, $\min(f,g) = \frac{1}{2}(f+g-|f-g|)$, $f^+, f^- \ge 0$ auf D und $f = f^+ - f^-$.

Folgerung 16.6

Gilt für $f, g : \mathbb{R}^n \to \mathbb{R}$, dass $f, g \in L(\mathbb{R}^n) \implies \max(f, g), \min(f, g), f^+, f^- \in L(\mathbb{R}^n)$.

Satz 16.7 ("Kleiner" Satz von Beppo Levi)

 $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$ sei eine Fkt., (φ_k) sei eine Folge in \mathscr{T}_n mit: $\varphi_1 \leq \varphi_2 \leq \varphi_3 \leq \ldots$ auf \mathbb{R}^n , $\varphi_k(x) \to f(x)$ $(k \to \infty) \ \forall x \in \mathbb{R}^n$ und $(\int \varphi_k dx)$ sei beschränkt.

Dann: $f \in L(\mathbb{R}^n)$ und $\int f dx = \lim \int \varphi_k dx$ ($\lim \int \varphi_k dx = \int \lim \varphi_k dx$)

 $a_j := \int \varphi_{j+1} dx - \int \varphi_j dx \ (j \in \mathbb{N}). \ a_j \ge 0 \ (j \in \mathbb{N}). \ \sum_{j=1}^m a_j = \int \varphi_{m+1} dx - \int \varphi_1 dx \implies (\sum_{j=1}^m a_j)$ ist beschränkt. $\xrightarrow{\text{Ana I}} \sum_{j=1}^\infty a_j$ konvergiert.

Für $k \in \mathbb{N} : c_k := \sum_{j=k}^{\infty} a_j$. Ana I $\implies c_k \to 0 \ (k \to \infty)$.

Sei $k \in \mathbb{N}$ und $m \ge k : \sum_{j=k}^{m} (\varphi_{j+1} - \varphi_j) = \varphi_{m+1} - \varphi_k \overset{m \to \infty}{\to} f - \varphi_k = \sum_{j=k}^{\infty} (\varphi_{j+1} - \varphi_j).$

$$||f - \varphi_k||_1 = ||\sum_{j=k}^{\infty} (\varphi_{j+1} - \varphi_j)||_1 \stackrel{16.1}{\leq} \sum_{j=k}^{\infty} ||\varphi_{j+1} - \varphi_j||_1 \stackrel{16.3}{=} \sum_{j=k}^{\infty} \int |\varphi_{j+1} - \varphi_j| dx = \sum_{j=k}^{\infty} a_j = c_k \to 0 \ (k \to \infty) \implies ||f - \varphi_k||_1 \to 0 \ (k \to \infty) \implies \text{Beh.}$$

Definition

Sei $A \subseteq \mathbb{R}^n$

(1) Ist $f: A \to \tilde{\mathbb{R}}$ eine Fkt.:

$$f_A(x) := \begin{cases} f(x) &, x \in A \\ 0 &, x \notin A \end{cases}, f_A : \mathbb{R}^n \to \tilde{\mathbb{R}}$$

 $||f||_{1,A} := ||f_A||_1$

(2) $L(A) := \{ f : A \to \tilde{\mathbb{R}} : f_A \in L(\mathbb{R}^n) \}$. Ist $f \in L(A)$, so heißt f auf A Lebesgueintegrierbar und $\int_A f dx := \int_A f(x) dx := \int_{\mathbb{R}^n} f_A dx$ heißt das Lebesgueintegral von f über A. Bem.: $\int_{\emptyset} f dx$ existiert und = 0.

Satz 16.8 (Lebegueintegral und L^1 -Halbnorm)

Die Sätze 16.5 bis 16.6 gelten sinngemäß für L(A). Insbes.:

$$||f||_{1,A} = \int_A |f| dx$$

Beispiel

(n = 1), A := [0, 1].

$$f(x) := \begin{cases} 1 &, x \in A \backslash \mathbb{Q} \\ 0 &, x \in A \cap \mathbb{Q} \end{cases}$$

Bekannt: $f \notin R[0,1]$. Gr. Übung: $f \in L(A)$ und $\int_A f dx = 1$

Satz 16.9 (Riemann- und Lebegueintegrale)

Sei I := [a, b] (a < b), $I \subseteq \mathbb{R}$ und $f \in R[a, b]$. Dann: $f \in L(I)$,

$$\underbrace{\int_{a}^{b} f dx}_{\text{R-Int.}} = \underbrace{\int_{I} f dx}_{\text{L-Int.}}.$$

Also: $R[a,b] \subset L([a,b])$

 $h := f_I$

(1) Sei $Z = \{x_0, \ldots, x_m\} \in \mathfrak{Z}, \ I_j := [x_{j-1}, x_j], \ m_j := \inf f(I_j), \ M_j := \sup f(I_j), \ Q_j := (x_{j-1}, x_j) \ (j = 1, \ldots, m).$

Zu Z definiere $\varphi \in \mathcal{T}_1$ durch:

$$\varphi(x) := \begin{cases} f(x) &, x \in \mathbb{Z} \\ m_j &, x \in \mathbb{Q}_j \\ 0 &, x \notin [a, b] \end{cases}$$

$$\int \varphi dx = \sum_{j=1}^{m} m_j \underbrace{v_1(Q_j)}_{=|I_j|} = s_f(Z)$$

Def.: $\Phi := \sum_{j=1}^{m} (M_j - m_j) 1_{Q_j}$; Dann: $0 \le h - \varphi \le \Phi$ auf $\mathbb{R} \implies \Phi \in \mathcal{H}(h - f)$ und $I(\Phi) = \sum_{j=1}^{m} (M_j - m_j) |I_j| = S_f(Z) - s_f(Z) \implies ||h - \varphi||_1 \le S_f(Z) - s_f(Z)$

(2) Sei (Z_k) eine Folge in \mathfrak{Z} mit $|Z_k| \to 0$. Ana I, 23.18 $\Longrightarrow S_f(Z_k) \to \int_a^b f dx$, $s_f(Z_k) \to \int_a^b f dx$. Zu jedem Z_k konstruiere $\varphi_k \in \mathscr{T}_1$ wie in (1). Dann: $||h - \varphi_k||_1 \leq S_f(Z_k) - s_f(Z_k) \to 0$ $(k \to \infty) \Longrightarrow h \in L(\mathbb{R})$ und $\int_{\mathbb{R}} h dx = \lim_{h \to \infty} \int_a^b f dx \stackrel{\text{(1)}}{=} \lim_{h \to \infty} s_f(Z_k) = \int_a^b f dx \Longrightarrow f \in L([a,b])$ und $\int_{[a,b]} f dx = \int_{\mathbb{R}} h dx = \int_a^b f dx$.

Satz 16.10 (Konvergente Treppenfunktionsfolge)

Sei $A \subseteq \mathbb{R}^n$ offen, $f \in C(A, \mathbb{R})$ und $f \ge 0$ auf A. Dann: \exists Folge (φ_k) in \mathscr{T}_n mit: $\varphi_1 \le \varphi_2 \le \varphi_3 \le \ldots$ auf \mathbb{R}^n und $\varphi_k(x) \to f_A(x) \ \forall x \in \mathbb{R}^n$.

Insbes.: $\varphi_k \leq f_A$ auf $\mathbb{R}^n \ \forall k \in \mathbb{N}$

Beweis

$$g := f_A, \ \mathbb{Q}^n := \{(a_1, \dots, a_n) \in \mathbb{R}^n : a_1, \dots, a_k \in \mathbb{Q}\}, \ \mathbb{Q}^+ := \{r \in \mathbb{Q} : r \ge 0\}$$

Für
$$(a_1, ..., a_n) \in \mathbb{Q}^n$$
, $r \in \mathbb{Q}^+ : W_r(a) := [a_1 - r, a_1 + r] \times ... \times [a_n - r, a_n + r]$.

 $m_{r,a} := \inf g(W_r(a)) \ge 0, \ \psi_{r,a} := m_{r,a} 1_{W_r(a)} \ge 0, \ \psi_{r,a} \in \mathscr{T}_n.$

Dann: $0 \le \psi_{r,a} \le g$ auf \mathbb{R}^n (*)

 $\mathscr{T}:=\{\psi_{r,a}:a\in\mathbb{Q}^n,\ r\in\mathbb{Q}^+\}.\ \mathbb{Q}^n,\mathbb{Q}^+$ abzählbar \Longrightarrow \mathscr{T} ist abzählbar, etwa $\mathscr{T}=\{\psi_1,\psi_2,\psi_3,\ldots\}.$

$$s(x) := \sup \{ \psi(x) : \psi \in \mathscr{T} \} \ (x \in \mathbb{R}^n)$$

Aus (*) folgt:
$$s(x) \leq g(x) \ \forall x \in \mathbb{R}^n$$

Sei
$$x \in \mathbb{R}^n$$
: Fall 1: $x \notin A$. Dann: $0 = g(x) \le s(x)$

Fall 2:
$$x \in A$$
. Sei $\varepsilon > 0$. A offen, f stetig

$$\implies \exists a \in \mathbb{Q}^n, \ r \in \mathbb{Q}^+ : |f(z) - f(x)| < \varepsilon \ \forall z \in W_r(a) \subseteq A$$

$$\implies g(z) > f(x) - \varepsilon \ \forall z \in W_r(a) \implies m_{r,a} \ge f(x) - \varepsilon$$
$$\implies g(x) - \varepsilon \le m_{r,a} = \psi_{r,a}(x) \le s(x) \stackrel{\varepsilon \to 0}{\implies} g(x) \le s(x).$$

Also: s = g auf \mathbb{R}^n

 $\varphi_k := \max(\psi_1, \psi_2, \dots, \psi_k) \ (k \in \mathbb{N}) \in \mathscr{T}_n. \ (\varphi_k)$ leistet das Verlangte.

Satz 16.11 (Stetige und beschränkte Funktionen sind Lebegue-Integrierbar) Sei $A \subseteq \mathbb{R}^n$ offen und beschränkt und $f \in C(A, \mathbb{R})$ sei beschränkt. Dann: $f \in L(A)$.

Beweis

 $f = f^+ - f^-, f^+, f^- \in C(A, \mathbb{R}), f^+, f^-$ beschr. auf A. O.B.d.A: $f \ge 0$ auf A.

Sei (φ_k) wie in 16.10. Sei $Q \subseteq \mathbb{R}^n$ ein Quader mit $A \subseteq Q$. $\gamma := \sup\{f(x) : x \in A\}$. Dann: $\varphi_1 \leq \varphi_k \leq f_A \leq \gamma \cdot 1_Q$ auf $\mathbb{R}^n \ \forall k \in \mathbb{N}$

$$\implies \int \varphi_1 dx \le \int \varphi_k dx \le \gamma \int 1_Q dx = \gamma v_1(Q) \ \forall k \in \mathbb{N}$$

 $\implies (\int \varphi_k dx)$ ist beschränkt. 16.7 $\implies f_A \in L(\mathbb{R}^n) \implies f \in L(A)$.

Satz 16.12 (Stetige und beschränkte Funktionen sind Lebegue-Integrierbar) $A \subseteq \mathbb{R}^n$ sei abg. und beschr. und $f \in C(A, \mathbb{R})$. Dann: $f \in L(A)$.

Beweis

 $3.4 \implies \exists F \in C(\mathbb{R}^n, \mathbb{R}) : F = f \text{ auf } A. \text{ Sei } Q \text{ ein } \textit{offener } \text{Quader mit } A \subseteq Q. \ \bar{Q} \text{ ist beschr. und abg. } 3.3 \implies F \text{ ist auf } \bar{Q} \text{ beschr. } \implies F \text{ ist auf } Q \text{ beschr. } \stackrel{16.11}{\implies} F_{|_Q} \in L(Q) \implies \underbrace{(F_{|_Q})_Q}_{=F_Q} \in F_{|_Q}$

 $L(\mathbb{R}^n) \implies F_O \in L(\mathbb{R}^n).$

 $Q\backslash A \text{ ist offen und beschr.} \xrightarrow{16.11} 1 \in L(Q\backslash A) \implies 1_{Q\backslash A} \in L(\mathbb{R}^n) \xrightarrow{16.5} F_Q \cdot 1_{Q\backslash A} \in L(\mathbb{R}^n).$

Es ist $f_A = F_Q - F_Q \cdot 1_{Q \setminus A} \xrightarrow{16.5} f_A \in L(\mathbb{R}^n) \implies f \in L(A)$.

Bezeichungen: $\mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m = \{(x,y) : x \in \mathbb{R}^n, yG \in \mathbb{R}^m\}$. Sei $A \subseteq \mathbb{R}^{n+m}$.

Für $y \in \mathbb{R}^m : A_y := \{x \in \mathbb{R}^n : (x,y) \in A\} \subseteq \mathbb{R}^n$. Für $x \in \mathbb{R}^n : A_x := \{y \in \mathbb{R}^m : (x,y) \in A\} \subseteq \mathbb{R}^m$.

Satz 16.13 ("Kleiner" Satz von Fubini)

 $A \subseteq \mathbb{R}^{n+m}$ sei beschränkt und offen und $f \in C(A, \mathbb{R})$ sei beschränkt (also $f \in L(A)$, 16.11!).

 $A \subseteq \mathbb{R}^{n+m}$ sei beschränkt und abgeschlossen und $f \in C(A, \mathbb{R})$ sei beschränkt (also $f \in L(A)$, 16.12!).

Dann:

- (1) Für jedes $y \in \mathbb{R}^m$ ist die Funktion $x \mapsto f(x,y)$ Lebesgueintegrierbar über A_y
- (2) Die Funktion $y\mapsto \int_{A_y} f(x,y)dx$ ist Lebesgueintegrierbar über \mathbb{R}^n und

$$\int_A f(x,y)d(x,y) = \int_{\mathbb{R}^m} (\int_{A_y} f(x,y)dx)dy$$

(3) Analog zu (1),(2):

$$\int_{A} f(x,y)d(x,y) = \int_{\mathbb{R}^{n}} \left(\int_{A_{x}} f(x,y)dy \right) dx$$

Beweis

Nur für A beschränkt und offen (für A beschränkt und abgeschlossen ähnlich wie bei 16.12). O.B.d.A.: $f \ge 0$ auf $A(f = f^+ - f^-)$.

- (1) Sei (φ_k) eine Folge in \mathscr{T}_{n+m} wie in 16.10. Wie im Beweis von 16.11: $(\int_{\mathbb{R}^{n+m}} \varphi_k(x,y) d(x,y))$ ist beschränkt. 16.7 $\Longrightarrow \int_A f(x,y) d(x,y) = \int_{\mathbb{R}^{n+m}} f_A(x,y) d(x,y) = \lim_{x \to \infty} \int_A \varphi_k(x,y) d(x,y)$
- (2) Sei $y \in \mathbb{R}^m$ (fest). $\Psi_k(x) := \varphi_k(x, y), g(x) := f_A(x, y)(x \in \mathbb{R}^n), \tilde{f}(x) := f(x, y)(x \in A_y)$ Dann: $g = \tilde{f}_A$.

Es gilt: $\Psi_1 \leq \Psi_2 \leq \dots$ auf \mathbb{R}^n , $\Psi_k(x) = \varphi_k(x,y) \to f_A(x,y) = g(x) \forall x \in \mathbb{R}^n$. $(\Psi_k \in \mathscr{T}_n)$ Übung: $(\int \Psi_k(x) dx)$ beschränkt.

16.7 $\Longrightarrow g \in L(\mathbb{R}^n)$, also $\tilde{f}_{A_y} \in L(\mathbb{R}^n) \implies \tilde{f} \in L(A_y) \implies (1)$,

$$\underbrace{\int_{\mathbb{R}^n} g(x)dx}_{\int_{A_n} f(x,y)dx} = \lim \int \Psi_k dx = \lim \int \Psi_k (x,y)dx$$

(3) $\Phi_k(y) := \int_{\mathbb{R}^n} \varphi_k(x, y) dx (y \in \mathbb{R}^m)$. Dann: $\Phi_k \in \mathscr{T}_m$, $\Phi_1 \le \Phi_2 \le \dots$ auf \mathbb{R}^m .

$$\Phi_k(y) \stackrel{(2)}{\Longrightarrow} \int_{A_y} f(x,y) dx$$

 $\forall y \in \mathbb{R}^m$.

$$\int_{\mathbb{R}^m} \Phi_k(y) dy = \int_{\mathbb{R}^m} (\int_{\mathbb{R}^n} \varphi_k(x, y) dx) dy$$

$$=_{15.3} \int_{\mathbb{R}^{n+m}} \varphi_k(x, y) d(x, y)$$

$$\stackrel{(1)}{\Longrightarrow} \int_A f(x, y) d(x, y)$$

16.7 $\Longrightarrow y \mapsto \int_{A_n} f(x,y) dx$ ist Lebesgueintegrierbar über \mathbb{R}^m und

$$\int_{\mathbb{R}^m} (\int_{A_y} f(x, y) dx) dy = \lim_{A \to \infty} \int \Phi_k(y) dy = \int_A f(x, y) d(x, y)$$

.

Definition

Sei $A \subseteq \mathbb{R}^{n-1} \times \mathbb{R} (= \mathbb{R}^n)$. A heißt einfach bezüglich des 1. Faktors $(\mathbb{R}^{n-1}) : \Leftrightarrow \forall x \in \mathbb{R}^{n-1}$ ist $A_x = \emptyset$ oder ein Intervall in \mathbb{R} .

Sei $a \subseteq \mathbb{R} \times \mathbb{R}^{n-1} (= \mathbb{R}^n)$. A heißt einfach bezüglich des 2. Faktors $(\mathbb{R}^{n-1}) : \Leftrightarrow \forall y \in \mathbb{R}^{n-1}$ ist $A_y = \emptyset$ oder ein Intervall in \mathbb{R} .

Aus 16.13 folgt:

Satz 16.14 (Aufteilung des Integrals in Doppelintegrale)

 $A \subseteq \mathbb{R}^{n-1} \times \mathbb{R}$ sei beschränkt und abgeschlossen und einfach bezüglich des 1. Faktors.

$$B := \{ x \in \mathbb{R}^{n-1} : A_x \neq \emptyset \}.$$

Dann:

(1) $\forall x \in B$ ist A_x ein beschränktes und abgeschlossenes Intervall in \mathbb{R}

(2)

$$\forall f \in C(A, \mathbb{R}) : \int_A f(x, y) d(x, y) = \int_B (\int_{A_{\mathbb{R}}} f(x, y) dy) dx$$

 $A\subseteq\mathbb{R}\times\mathbb{R}^{n-1}$ sei beschränkt und abgeschlossen und einfach bezüglich des 2. Faktors.

$$B := \{ y \in \mathbb{R}^{n-1} : A_y \neq \emptyset \}.$$

Dann:

(1) $\forall y \in B \text{ ist } A_y \text{ ein beschränktes und abgeschlossenes Intervall in } \mathbb{R}$

(2)

$$\forall f \in C(A, \mathbb{R}) : \int_{A} f(x, y) d(x, y) = \int_{B} (\int_{A_{x}} f(x, y) dx) dy$$

$$Q := [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n] \subseteq \mathbb{R}^n. \ f \in C(Q, \mathbb{R}) :$$

$$\int_{Q} f(x)dx = \int_{a_{n}}^{b_{n}} (\dots (\int_{a_{2}}^{b_{2}} (\int_{a_{1}}^{b_{1}} f(x_{1}, \dots, x_{n})dx_{1})dx_{2}) \dots)dx_{n}$$

Die Reihenfolge der Integration darf beliebig vertauscht werden.

Beispiel

1

¹Anmerkung des TEXers: in jedem dieser Beispiele kommt eine Skizze vor, mit deren Hilfe man sich klar machen kann, dass die entsprechenden Mengen einfach bezüglich des 1. Faktors sind. Diese Skizzen sind hier (bisher) nicht wiedergegeben.

(1)
$$(n = 2)$$
, $Q := [0, 1] \times [1, 2]$, $f(x, y) = xy$.

$$\int_{Q} xyd(x, y) = \int_{1}^{2} (\int_{0}^{1} xydx)dy = \int_{1}^{2} ([\frac{1}{2}x^{2}y]_{x=0}^{x=1})dy = \int_{1}^{2} \frac{1}{2}ydy = \frac{1}{4}y^{2}|_{1}^{2} = \frac{3}{4}.$$

(2)
$$A := \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], x^2 \le y \le x\}, f(x, y) = xy^2$$

A ist einfach bezüglich des 1. Faktors

$$B = [0, 1]$$

Für $x \in B : A_x = [x^2, x]$

$$\int_{A} xy^{2} d(x, y) = \int_{0}^{1} \left(\int_{x^{2}}^{x} xy^{2} dy \right) dx$$
$$= \int_{0}^{1} \left(\left[\frac{1}{3} xy^{3} \right]_{y=x^{2}}^{y=x} \right) dx = \int_{0}^{1} \frac{1}{3} x^{4} - \frac{1}{3} x^{7} dx = \frac{1}{40}$$

(3)
$$A := \{(x, y) \in \mathbb{R}^2 : y \ge 0, x^2 + y^2 \le 1\}, f(x, y) = y$$

 $B = [-1, 1]$
 $x \in B : A_x = [0, \sqrt{1 - x^2}];$

$$\int_{A} y d(x, y) = \int_{-1}^{1} \left(\int_{0}^{\sqrt{1 - x^{2}}} y dy \right) dx$$

$$= \int_{-1}^{1} \left(\left[\frac{1}{2} y^{2} \right]_{y=0}^{y=\sqrt{1 - x^{2}}} \right) dx = \int_{-1}^{1} \frac{1}{2} (1 - x^{2}) dx = \frac{2}{3}$$

(4)
$$A := \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0, x + y + z \le 1\}, f(x, y, z) = x$$

A ist einfach bezüglich des 1. Faktors (\mathbb{R}^2)

Für
$$(x,y) \in B$$
: $A_{(x,y)} = [0, 1 - (x+y)]$
 $B = \{(x,y) \in \mathbb{R}^2 : x \in [0,1], x+y \le 1, y \ge 0\}$

$$\int_{A} x d(x, y, z) = \int_{B} \left(\int_{0}^{1 - (x+y)} x dz \right) d(x, y) = \int_{B} \left[xz \right]_{z=0}^{z=1 - (x+y)} d(x, y)$$

$$= \int_{B} x (1 - (x+y)) d(x, y) = \int_{0}^{1} \left(\int_{0}^{1-x} x (1 - (x+y)) dy \right) dx = \frac{1}{24} (?)$$

17. Quadrierbare Mengen

Sei $A \subseteq \mathbb{R}^n$. A heißt quadrierbar (qb) : $\iff 1_A \in L(\mathbb{R}^n)$ ($\iff 1 \in L(A)$)

In diesem Fall heißt $v_n(A) := \int_{\mathbb{R}^n} 1_A dx = \int_A 1 dx$ das *n*-dimensionale **Volumen** oder **Lebesguemaß** von A. **Beachte:** $v_n(A) \in \mathbb{R}$

Satz 17.1

Sei $A \subseteq \mathbb{R}^n$ beschränkt. Ist A offen oder abgeschlossen, dann ist A quadrierbar.

Beweis

16.11, 16.12

Beispiele:

- (1) \emptyset ist quadrierbar und $v_n(\emptyset) = 0$.
- (2) Sei Q ein Quader im $\mathbb{R}^n \implies 1_Q \in \mathscr{T}_n \subseteq L(\mathbb{R}^n) \implies Q$ ist quadrierbar und n-dimensionale Volumen von oben gleich dem n-dimensionalen Volumen aus §15
- (3) Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D beschränkt und abgeschlossen, $f \in C(D, \mathbb{R})$ und $f \geq 0$ auf D. $A := \{(x,y) \in \mathbb{R}^{n+1} : x \in D, 0 \leq y \leq f(x)\}$. A ist beschränkt und abgeschlossen $\stackrel{17.1}{\Longrightarrow} A$ ist quadrierbar (im \mathbb{R}^{n+1}). $v_{n+1}(A) = \int_A 1d(x,y) \stackrel{16.3}{=} \int D\left(\int_0^{f(x)} 1dy\right) dx = \int_D f(x)dx$
- (4) $A := \{(x,y) \in \mathbb{R}^n : x^2 + y^2 \le r^2\}$ (r > 0). $A = \overline{U_r(0)}$. A ist beschränkt und abgeschlossen $\stackrel{17.1}{\Longrightarrow} A$ ist quadrierbar. $v_2(A) = \int_A 1 dx$. Für $x \in [-r, r]$: $A_x = [-\sqrt{r^2 x^2}, \sqrt{r^2 x^2}] \implies v_n(A) = \int_{-r}^r \left(\int_{-\sqrt{r^2 x^2}}^{\sqrt{r^2 x^2}} 1 dy\right) dx = \int_{-r}^r 2\sqrt{r^2 x^2} dx \stackrel{\text{AI}}{=} \pi r^2$.

Satz 17.2

 A, B, A_1, \ldots, A_m seien $\subseteq \mathbb{R}^n$ und quadrierbar.

- (1) $A \cap B, A \cup B, A \setminus B$ sind quadrierbar und $v_n(A \cup B) = v_n(A) + v_n(B) v_n(A \cap B)$.
- (2) Aus $A \subseteq B$ folgt $v_n(A) \le v_n(B)$.
- (3) $A_1 \cup A_2 \cup \ldots \cup A_m$ ist quadrierbar und $v_n(A_1 \cup A_2 \cup \ldots \cup A_m) \leq v_n(A_1) + \cdots + v_n(A_m)$

17. Quadrierbare Mengen

Beweis

- (1) $1_{A\cap B} = 1_A \cdot 1_B \stackrel{16.5}{\Longrightarrow} 1_{A\cap B} \in L(\mathbb{R}^n) \implies A \cup B$ ist quadrierbar. $1_{A\cup B} = 1_A + 1_B - 1_{A\cap B} \stackrel{16.5}{\Longrightarrow} 1_{A\cup B} \in L(\mathbb{R}^n) \implies A \cup B$ ist quadrierbar. $v_n(A \cup B) = \int_{\mathbb{R}^n} 1_{A\cup B} dx = \int_{\mathbb{R}^n} 1_A dx + \int_{\mathbb{R}^n} 1_B dx - \int_{\mathbb{R}^n} 1_{A\cap B} dx = v_n(A) + v_n(B) - v_n(A \cap B).$ $1_{A\setminus B} = 1_A (1 - 1_B) \stackrel{16.5}{\Longrightarrow} 1_{A\setminus B} \in L(\mathbb{R}^n) \implies A \setminus B$ ist quadrierbar.
- (2) $A \subseteq B \implies 1_A \le 1_B \text{ auf } \mathbb{R}^n \implies v_n(A) = \int_{\mathbb{R}^n} 1_A dx \le \int_{\mathbb{R}^n} 1_B dx = v_n(B)$
- (3) folgt aus (1) mit Induktion

Satz 17.3 (Prinzip von Cavalieri)

Sei $A \subseteq \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1} = \{(x,z) : x \in \mathbb{R}^n, z \in \mathbb{R}\}$ beschränkt und abgeschlossen (also quadrierbar im \mathbb{R}^{n+1}). Dann:

- (1) $\forall z \in \mathbb{R}$ ist A_z beschränkt und abgeschlossen (also quadrierbar im \mathbb{R}^n).
- $(2) v_{n+1}(A) = \int_{\mathbb{R}} v_n(A_z) dz$

Beweis

(1) Übung

$$(2) v_{n+1}(A) = \int_A 1d(x,z) \stackrel{16.3}{=} \int_{\mathbb{R}} \underbrace{\left(\int_{A_z} 1dx\right)}_{=v_n(A_z)} dz.$$

Beispiele:

- (1) $A:=\{(x,y,z)\in\mathbb{R}^3:z\in[0,1],x^2+y^2\leq z^2\}$. A ist beschränkt und abgeschlossen \Longrightarrow A ist quadrierbar. Für $z\notin[0,1]:A_z=\emptyset$. Für $z\in[0,1]:A_z=\{(x,y)\in\mathbb{R}^n:x^2+y^2\leq z^2\}$ $\Longrightarrow v_2(A_z)=\pi z^2\Longrightarrow v_3(A)=\int_0^1\pi z^2dz=\frac{\pi}{3}$
- (2) Sei $[a,b] \subseteq \mathbb{R}$, $f \in C([a,b],\mathbb{R})$ und $f \ge 0$ auf [a,b]. Graph von f rotiert um die x-Achse \longrightarrow Rotationskörper A. $A = \{(x,y,z) \in \mathbb{R}^3 : x \in [a,b], y^2 + z^2 \le f(x)^2\}$. $A_x = \{(y,z) \in \mathbb{R}^2 : y^2 + z^2 \le f(x)^2\}$ für $x \in [a,b]$. $v_2(A_X) = \pi f(x)^2$. $v_3(A) = \pi \int_a^b f(x)^2 dx$.

Speziell:
$$f(x) = \sqrt{r^2 - x^2} \ (r > 0), \ x \in [-r, r].$$

Rotationskörper $A = \overline{U_r(0)} \subseteq \mathbb{R}^3. \ v_3(A) = \pi \int_{-r}^r (r^2 - x^2) dx = \frac{4}{3}\pi r^3.$

Definition

Sei $N \subseteq \mathbb{R}^n$. N heißt eine **Nullmenge** genau dann, wenn F quadrierbar und $v_n(N) = 0$ ist.

Satz 17.4

Sei $N \subseteq \mathbb{R}^n$. N ist eine Nullmenge $\iff \|1_N\|_1 = 0$.

"⇒": N Nullmenge $\implies 1_N \in L(\mathbb{R}^n)$. 16.5 $\implies \|1_N\|_1 = \int_{\mathbb{R}^n} 1_N dx = v_n(N) = 0$. " \Leftarrow ": Setze $(\varphi_k) := (0,0,0,\ldots)$; (φ_k) ist eine Folge in \mathscr{T}_n : $\|1_N - \phi_k\|_1 = \|1_N\|_1 = \|1_N\|_1 \stackrel{\text{Vor.}}{=} 0 \ \forall k \in \mathbb{N} \implies 1_N \in L(\mathbb{R}^n)$ und $\int 1_N dx = \lim \int \varphi_k dx = 0 \implies N$ ist quadrierbar und $v_n(N) = 0$.

Satz 17.5

 N, N_1, N_2, \dots seien Nullmengen im \mathbb{R}^n .

- (1) Ist $M \subseteq N \implies M$ ist eine Nullmenge.
- (2) $\bigcup_{k=1}^{\infty} N_k$ ist eine Nullmenge.

Beweis

- (1) $1_M \le 1_N \stackrel{16.1}{\Longrightarrow} ||1_M||_1 \le ||1_N||_1 \stackrel{17.4}{=} 0 \implies ||1_M||_1 = 0 \implies \text{Beh.}$
- (2) $A := \bigcup_{k=1}^{\infty} N_k$; $1_A \le \sum_{k=1}^{\infty} 1_{N_K} \xrightarrow{16.1} ||1_A||_1 \le \sum_{k=1}^{\infty} ||1_{N_k}||_1 \stackrel{17.4}{=} 0 \implies \text{Beh.}$

Beispiele:

- (1) Sei $x_0 = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $N := \{x_0\} = \{x_1\} \times \{x_2\} \times \cdots \times \{x_0\}$. N ist ein Quader, also quadrierbar, $v_n(N) = 0$, N ist eine Nullmenge.
- (2) Beispiel (1) und 17.5(2) liefern: Jede abzählbare Teilmenge des \mathbb{R}^n ist eine Nullmenge
- (3) Ist $Q = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$. Q ist eine Nullmenge $\iff a_j = b_j$ für ein $j \in \{1, \ldots, n\}$.

Satz 17.6

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D sei beschränkt und abgeschlossen, es sei $f \in C(D, \mathbb{R})$ und $G_f := \{(x, f(x)) : x \in D\} \subseteq \mathbb{R}^{n+1}$. Dann ist G_f eine Nullmenge im \mathbb{R}^{n+1} .

Beweis

 G_f ist beschränkt und abgeschlossen $\stackrel{17.1}{\Longrightarrow}$ G_f ist qb. $v_{n+1}(G_f) = \int_{G_f} 1d(x,y) \stackrel{16.13}{=}$ $\int_D \left(\int_{f(x)}^{f(x)} 1dy \right) dx = 0.$

Definition

Sei $A \subseteq \mathbb{R}^n$ und (E) eine Eigenschaft, welche die Elemente von A betrifft. (E) gilt **fast überall** (f.ü.) auf $A : \iff \exists$ Nullmenge $N \subseteq A$ mit: (E) gilt für alle $x \in A \setminus N$.

Beispiel

 $f: A \to \mathbb{R}$ sei eine Funktion. f = 0 f.ü. auf $A \iff \exists$ Nullmenge $N \subseteq A: f(x) = 0 \ \forall x \in A \setminus N$.

Satz 17.7

- (1) $f, g : \mathbb{R}^n \to \mathbb{R}$ seien Funktionen mit f = g f.ü. auf \mathbb{R}^n . Dann: $f \in L(\mathbb{R}^n) \iff g \in L(\mathbb{R}^n)$. I. d. Fall: $\int f dx = \int g dx$.
- (2) Seien $A, B \subseteq \mathbb{R}^n$, $f \in L(A) \cap L(B)$ und $A \cap B$ sei eine Nullmenge. Dann: $f \in L(A \cup B)$ und $\int_{A \cup B} f dx = \int_A f dx + \int_B f dx$.

Beweis

(1) \exists Nullmenge $N \subseteq \mathbb{R}^n : f(x) = g(x) \ \forall x \in \mathbb{R}^n \backslash N$. Sei $f \in L(\mathbb{R}^n) \implies \exists$ Folge (φ_k) von Treppenfunktionen mit: $||f - \varphi_k||_1 \to 0$ und $\int f dx = \lim_{k \to \infty} \int \varphi_k dx$.

$$f_k := 1_N \ (k \in N), \ h := \sum_{k=1}^{\infty} f_k, \ ||h||_1 \stackrel{16.1}{\leq} \sum_{k=1}^{\infty} ||f_k||_1 \stackrel{17.4}{=} 0 \implies ||h||_1 = 0.$$

Es ist
$$|g - \varphi_k| \le |f - \varphi_k| + h$$
 auf $\mathbb{R}^n \xrightarrow{\text{16.1}} ||g - \varphi_k||_1 \le ||f - \varphi_k||_1 + ||h||_1 = ||f - \varphi_k||_1 \implies ||g - \varphi_k||_1 \to 0 \implies g \in L(\mathbb{R}^n) \text{ und } \int g dx = \lim \int \varphi_k dx = \int f dx.$

(2) Wegen (1) o.B.d.A: f = 0 auf $A \cap B$. Dann: $f_{A \cup B} = f_A + f_B \stackrel{16.5}{\in} L(\mathbb{R}^n) \implies f \in L(A \cup B)$ und $\int_{A \cup B} f dx = \int_{\mathbb{R}^n} f_{A \cup B} dx = \int_{\mathbb{R}^n} f_A dx + \int_{\mathbb{R}^n} f_B dx = \int_A f dx + \int_B f dx$.

Satz 17.8

 $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$ sei eine Funktion.

- (1) Ist $||f||_1 < \infty$ und $N := \{x \in \mathbb{R}^n : f(x) = \infty\} \implies N$ ist eine Nullmenge. Dies ist z.B. der Fall, wenn $f \in L(\mathbb{R}^n)$ (16.5: $||f||_1 = \int |f| dx$)
- (2) $||f||_1 = 0 \iff f = 0$ f.ü. auf \mathbb{R}^n .

Beweis

- $(1) \text{ Sei } \varepsilon > 0: 1_N \leq \varepsilon |f| \text{ auf } \mathbb{R}^n \xrightarrow{\underline{16.1}} ||1_N||_1 \leq \varepsilon ||f||_1 \xrightarrow{\varepsilon \to 0} ||1_N||_1 = 0 \xrightarrow{\underline{17.4}} \text{ Beh.}$
- (2) "⇒": Für $k \in N : N_k := \{x \in \mathbb{R}^n : |f(x)| \ge \frac{1}{k}\}$. Dann: $1_{N_k} \le k|f|$ auf $\mathbb{R}^n \xrightarrow{16.1} ||1_{N_k}||_1 \le k||f||_1 = 0 \xrightarrow{17.4} N_k$ ist eine Nullmenge $\xrightarrow{17.5} N := \bigcup_{k=1}^{\infty} N_k$ ist eine Nullmenge. Es ist $N = \{x \in \mathbb{R}^n : f(x) \ne 0\} \implies f = 0$ f.ü. auf \mathbb{R}^n .

"⇐":
$$|f| = 0$$
 f.ü. auf $\mathbb{R}^n \stackrel{17.7}{\Longrightarrow} |f| \in L(\mathbb{R}^n)$ und $\int |f| dx = \int 0 dx = 0$. 16.5 $\Longrightarrow ||f||_1 = \int |f| dx = 0$.

Definition

Seien Q_1, Q_2, \ldots, Q_m abgeschlossene Quader im \mathbb{R}^n und $A := Q_1 \cup Q_2 \cup \ldots \cup Q_m$. Dann heißt A eine **Figur**.

Satz 17.9

Sei $U \subseteq \mathbb{R}^n$ offen. Dann ex. Figuren A_1, A_2, \ldots mit $A_1 \subseteq A_2 \subseteq \ldots$ und $U = \bigcup_{k=1}^{\infty} A_k$. Ist U qb $\Longrightarrow v_n(U) = \lim_{k \to \infty} v_n(A_k) = \sup\{v_n(A_k) : k \in \mathbb{N}\}.$

Beweis

Für $a \in \mathbb{Q}^n$ und $r \in \mathbb{Q}^+$ sei $W_r(a)$ wie im Beweis von 16.10.

$$\mathscr{Q} := \{W_r(a) : a \in \mathbb{Q}^n, \ r \in \mathbb{Q}^+, \ W_r(a) \subseteq U\}, \ U \text{ offen } \Longrightarrow \mathscr{Q} \neq \emptyset.$$

Es ist $\mathcal{Q} = \{Q_1, Q_2, \ldots\}, A_k := Q_1 \cup Q_2 \cup \ldots \cup Q_k \ (k \in \mathbb{N}). \ (A_k)$ leistet das Verlangte.

Sei
$$U$$
 qb. $\varphi_k := 1_{A_k} \ (k \in \mathbb{N}) \implies \varphi_k \in \mathscr{T}_n, \ \varphi_1 \le \varphi_2 \le \dots \text{ auf } \mathbb{R}^n \text{ und } \varphi_k(x) \to 1_U(x) \ \forall x \in \mathbb{R}^n \text{ und } \varphi_1 \le \varphi_k \le 1_U \text{ auf } \mathbb{R}^n \implies \int \varphi_1 dx \le \int \varphi_k dx \le \int 1_U dx = v_n(U). \ 16.7 \implies \lim_{v_n(A_k)} \underbrace{\int \varphi_k dx}_{v_n(A_k)} = \underbrace{\int \varphi_k dx$

$$\int 1_u dx = v_n(U).$$

Satz 17.10

Sei $U \subseteq \mathbb{R}^n$ offen. Dann ex. Quader $Q_1, Q_2, \ldots \subseteq \mathbb{R}^n$ mit:

$$U = \bigcup_{k=1}^{\infty} Q_k \text{ und } Q_k^{\circ} \cap Q_j^{\circ} = \emptyset \ (j \neq k)$$

Ist
$$U$$
 qb $\implies v_n(U) = \sum_{k=1}^{\infty} v_n(Q_k)$.

Beweis

In der gr. Übung.

Satz 17.11

Sei $N \subseteq \mathbb{R}^n$. N ist eine Nullmenge $\iff \forall \varepsilon > 0 \exists \text{ Quader } Q_1, Q_2, \dots \text{ im } \mathbb{R}^n \text{ mit: (*)}$ $N \subseteq \bigcup_{k=1}^{\infty} Q_k \text{ und } \sum_{k=1}^{\infty} v_n(Q_k) < \varepsilon$.

Beweis

"\equiver ": Sei $\varepsilon > 0$. Seien Q_1, Q_2, \ldots wie in (*). Dann: $1_N \leq \sum_{k=1}^{\infty} 1_{Q_k}$ auf $\mathbb{R}^n \stackrel{16.1}{\Longrightarrow} ||1_N||_1 \leq \sum_{k=1}^{\infty} ||1_{Q_k}||_1 = \sum_{k=1}^{\infty} \int 1_{Q_k} dx = \sum_{k=1}^{\infty} v_n(Q_k) < \varepsilon \implies ||1_N||_1 = 0 \stackrel{17.4}{\Longrightarrow} N$ ist eine Nullmenge.

"⇒": Sei $\varepsilon > 0$. Es genügt z.z.: ∃ offene Menge U mit: $N \subseteq U$, U ist qb und $v_n(U) < \varepsilon$ (wegen 17.10).

 $||2 \cdot 1_N||_1 = 2||1_N||_1 \stackrel{17.4}{=} 0 \implies \exists \Phi \in \mathscr{H}(2 \cdot 1_N) : I(\Phi) < \varepsilon$. Sei $\Phi = \sum_k c_k 1_{R_k}$, wobei $c_k \geq 0$, R_k offene Quader. O.B.d.A: $\Phi = \sum_{k=1}^{\infty} c_k 1_{R_k}$.

 $\varphi_m := \sum_{k=1}^m c_k 1_{R_k} \in \mathscr{T}_n; \ \varphi_1 \le \varphi_2 \le \ldots \le \Phi; \ \varphi_m(x) \to \Phi(x) \ \forall x \in \mathbb{R}^n. \ \int \varphi_1 dx \le \int \varphi_m dx = \sum_{k=1}^m c_k v_n(R_k) \overset{m \to \infty}{\to} \sum_{k=1}^\infty c_k v_n(R_k) = I(\Phi) < \varepsilon.$

16.7 $\implies \Phi \in L(\mathbb{R}^n) \text{ und } \int \Phi dx = \lim \int \varphi_m dx = I(\Phi) < \varepsilon.$

 $U:=\{x\in\mathbb{R}^n:\Phi(x)>1\}.\ x\in N\implies \Phi(x)\geq 2\cdot 1_N(x)=2\implies x\in U.\ \text{Also:}\ N\subseteq U.\ U \text{ offen,}\ U\ \text{qb},\ v_n(U)<\varepsilon.$

Folgerung 17.12

Sei $N \subseteq \mathbb{R}^n$ eine Nullmenge und $\varepsilon > 0$. Dann existiert eine Menge $U \subseteq \mathbb{R}^n$: U ist offen, U ist quadrierbar, $N \subseteq U$ und $v_n(U) < \varepsilon$.

Beweis

Beweis von 17.11

Satz 17.13

Sei $A \subseteq \mathbb{R}^n$ beschränkt und abgeschlossen, $f: A \to \mathbb{R}$ sei beschränkt und fast überall stetig auf A. Dann: $f \in L(A)$.

Beweis

 $\exists \gamma \geq 0 : |f| \leq \gamma \text{ auf A. } \exists \text{ Nullmenge } N \subseteq A \text{: } f \text{ ist stetig auf } A \setminus N. \text{ Sei } \varepsilon > 0. 17.12 \implies \exists \text{ offene und quadrierbare Menge } U \text{ mit } N \subseteq U, v_n(U) < \varepsilon. A \setminus U \subseteq A \setminus N, f \text{ stetig auf } A \setminus U, A \setminus U \text{ ist beschränkt und abgeschlossen. } 16.12 \implies f \in L(A \setminus U) \implies f_{A \setminus U} \in L(\mathbb{R}^n) \implies \exists \varphi \in \mathscr{T}_n : \|f_{A \setminus U} - \varphi\|_1 \leq \varepsilon. \text{ Es ist } |f_A - f_{A \setminus U}| \leq \gamma \cdot 1_U \text{ auf } \mathbb{R}^n. \stackrel{16.1}{\Longrightarrow} \|f_A - f_{A \setminus U}\|_1 \leq \gamma \|1_U\|_1 \stackrel{16.5}{\Longrightarrow} \gamma \int 1_U \mathrm{d}x = \gamma v_n(U) < \gamma \varepsilon. \text{ Dann:}$

$$||f_A - \varphi||_1 = ||f_A - f_{A \setminus U} + f_{A \setminus U} - \varphi||_1$$

$$\leq ||f_A - f_{A \setminus U}||_1 + ||f_{A \setminus U} - \varphi||_1$$

$$\leq \gamma \varepsilon + \varepsilon$$

$$= (\gamma + 1)\varepsilon$$

D.h: $\forall k \in \mathbb{N} \ \exists \varphi_k \in \mathscr{T}_n : \|f_A - \varphi_k\| < \frac{\gamma+1}{k} \implies f_a \in L(\mathbb{R}^n) \implies f \in L(A).$

18. Konvergenzsätze

Definition

Sei (f_k) eine Folge von Funktionen, $f_k : \mathbb{R}^n \to \tilde{\mathbb{R}}$ und $f : \mathbb{R}^n \to \tilde{\mathbb{R}}$.

- (1) (f_k) heißt L^1 -konvergent gegen $\mathbf{f} : \iff ||f f_l||_1 \to 0 \ (k \to \infty)$
- (2) (f_k) heißt eine L^1 -Cauchyfolge : $\iff \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : ||f_k f_l||_1 < \varepsilon \ \forall k, l \ge k_0.$

Ist (f_k) L^1 -konvergent gegen f, so ist (f_k) eine L^1 -Cauchyfolge: $||f_l - f_k||_1 = ||f_l - f + f - f_k||_1 \ge ||f - f_l||_1 + ||f - f_k||_1$.

Satz 18.1 (Satz von Riesz-Fischer)

 (f_k) sei eine L^1 -Cauchyfolge in $L(\mathbb{R}^n)$, also $f_k \in L(\mathbb{R}^n) \ \forall k \in \mathbb{N}$. Dann existiert ein $f \in L(\mathbb{R}^n)$:

- (1) $||f f_k||_1 \to 0 \ (k \to \infty)$
- (2) $\int f dx = \lim_{k \to \infty} \int f_k dx$
- (3) (f_k) enthält eine Teilfolge, die fast überall auf \mathbb{R}^n punktweise gegen f konvergiert.

(Ohne Beweis)

Satz 18.2 (Satz von Beppo Levi)

Sei (f_k) eine Folge in $L(\mathbb{R})$ mit $f_1 \leq f_2 \leq f_3 \leq \cdots$ auf \mathbb{R}^n und $(\int f_k dx)$ beschränkt. $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$ sei definiert durch $f(x) := \lim_{k \to \infty} f_k(x)$. Dann: $f \in L(\mathbb{R}^n)$ und

$$\int f dx = \lim_{k \to \infty} \int f_k dx \quad (= \int \lim_{k \to \infty} f_k(x) dx)$$

Beweis

Für
$$k \ge l : \|f_k - f_l\|_1 \stackrel{16.5}{=} \int \underbrace{f_k - f_l}_{\ge 0} dx = \int f_k dx - \int f_l dx = |\int f_k dx - \int f_l dx|. (\int f_k dx)$$
 ist

beschränkt und monoton, also konvergent $\Longrightarrow (\int f_k dx)$ ist eine Cauchyfolge in $\mathbb{R} \Longrightarrow (f_k)$ ist eine L^1 -Cauchyfolge in $L(\mathbb{R}^n)$. 18.1 $\Longrightarrow \exists g \in L(\mathbb{R}^n)$ mit: $\int g dx = \lim \int f_k dx$ und (f_k) enthält eine Teilfolge, die fast überall auf \mathbb{R}^n punktweise gegen g konvergiert $\Longrightarrow f = g$ fast überall auf $\mathbb{R}^n \xrightarrow{17.7} f \in L(\mathbb{R}^n)$ und $\int f dx = \int g dx = \lim \int f_k dx$.

Definition

Sei $A \subseteq \mathbb{R}^n$, (A_k) sei eine Folge von Teilmengen von A. (A_k) ist eine **Ausschöpfung von** \mathbf{A} : $\iff A_1 \subseteq A_2 \subseteq A_3 \dots \text{ und } \bigcup_{k=1}^{\infty} A_k = A.$

Sei $A \subseteq \mathbb{R}^n$, (A_k) sei eine Ausschöpfung von A und es sei $f \in L(A_k) \ \forall k \in \mathbb{N}$. $f \in L(A) \iff$ $(\int_A |f| dx)$ ist beschränkt. In diesem Fall:

$$\int_A f \mathrm{d}x = \lim_{k \to \infty} \int_{A_k} f \mathrm{d}x$$

$$": A_k \subseteq A \implies |f|_{A_k} \le |f|_A \implies \underbrace{\int |f|_{A_k} \mathrm{d}x}_{= \int |f| \mathrm{d}x}$$

Beweis $": A_k \subseteq A \implies |f|_{A_k} \le |f|_A \implies \underbrace{\int |f|_{A_k} \mathrm{d}x} \le \int |f|_A \mathrm{d}x.$ $": \mathrm{OBdA:} \ f \ge 0 \ \mathrm{auf} \ A \ (f = f^+ - f^-). \ \mathrm{Dann:} \ 0 \le f_{A_1} \le f_{A_2} \le f_{A_3} \le \dots \ |\int f_{A_k} \mathrm{d}x| \le \int |f|_{A_k} \mathrm{d}x = \int_{A_k} |f| \mathrm{d}x \implies (\int f_{A_k} \mathrm{d}x) \ \mathrm{beschränkt.} \ \mathrm{Es \ gilt:} \ f_{A_k}(x) \to f_A(x) \ \forall x \in \mathbb{R}^n. \ 18.2 \Longrightarrow f_A \in L(\mathbb{R}^n) \ \mathrm{und} \ \int f_A \mathrm{d}x = \lim \int f_{A_k} \mathrm{d}x \implies f \in L(A) \ \mathrm{und} \ \int_A f \mathrm{d}x = \lim \int_{A_k} f \mathrm{d}x.$

Satz 18.4 (Uneigentliche Lebesgue- und Riemann-Integrale)

Es sei $f:[a,\infty)\to\mathbb{R}$ eine Funktion $(a\in\mathbb{R})$ und es gelte $f\in R[a,t]\ \forall t>a$. Dann: $f \in L([a,\infty)) \iff \int_{-\infty}^{\infty} f dx$ ist **absolut** konvergent. In diesem Fall:

$$\underbrace{\int_{[a,\infty)} f dx}_{\text{L-Int.}} = \underbrace{\int_{a}^{\infty} f dx}_{\text{uneigentl. R-Int}}$$

Beweis

Sei (t_k) eine Folge in $[a, \infty)$ mit: $a < t_1 < t_2 < t_3 < \dots$ und $t_k \to \infty$ $(k \to \infty)$. $A_k := [a, t_k]$ $(k \in$ \mathbb{N}), $A:=[a,\infty)$. Für $k\in N:I_k:=\int_a^{t_k}f\mathrm{d}x, J_k:=\int_a^{t_k}|f|\mathrm{d}x$ (R-Integrale). 16.9 $\implies f,|f|\in \mathbb{N}$ $L([a,t_k])$ und $I_k = \int_{A_k} f dx$, $J_k = \int_{A_k} |f| dx$. $f \in L(A) \stackrel{18.3}{\Longleftrightarrow} (\int |f| dx)$ ist beschränkt $\iff (J_k)$ ist beschränkt $\overset{J_1 \subseteq J_2 \subseteq \cdots}{\Longleftrightarrow} (J_k)$ konvergent $\iff \int_a^\infty |f| \mathrm{d}x$ konv. In diesem Fall: $\int_A f \mathrm{d}x$ $\lim \int_{A_k} f dx = \lim I_k = \int_a^\infty f dx.$

Beispiele:

(1)
$$f(x) := \frac{1}{\sqrt{x}}$$
; Analysis $1 \implies \int_0^1 \frac{1}{\sqrt{x}} dx$ abs. konv. $\stackrel{18.4}{\Longrightarrow} f \in L([0,1])$. Analysis $1 \implies \int_0^1 \frac{1}{x} dx$ div. $\stackrel{18.4}{\Longrightarrow} f^2 \notin L([0,1])$.

 $(2) \ f(x) := \begin{cases} \frac{\sin x}{x} & , x > 0 \\ 1 & , x = 0 \end{cases}$ Analysis $1 \implies \int_0^\infty \frac{\sin x}{x}$ konv., aber nicht abs. konv. $18.4 \implies f \notin L([0,\infty))$, aber $\int_0^\infty \frac{\sin x}{x} \mathrm{d}x \text{ existiert im uneigentlichen R-Sinne.}$

Satz 18.5

 $(A_k),(B_k)$ seien Folgen qber Mengen im \mathbb{R}^n .

- (1) Ist $A_1 \subseteq A_2 \subseteq \dots$ und $A := \bigcup_{k=1}^{\infty} A_k$. Dann gilt: A ist qb \iff $(v_n(A_k))$ ist beschränkt $(\iff (v_n(A_k))$ konvergiert).
 - I. d. Fall: $v_n(A) = \lim_{k \to \infty} v_n(A_k)$.
- (2) Für $j \neq k$ sei $B_j \cap B_k$ jeweils eine Nullmenge und $B := \bigcup_{k=1}^{\infty} B_k$. B ist qb $\iff \sum_{j=1}^{\infty} v_n(B_j)$ konvergiert.
 - I. d. Fall: $v_n(B) = \sum_{j=1}^{\infty} v_n(B_j)$.

Beweis

- (1) Folgt aus 18.3 mit $f \equiv 1$
- (2) $\tilde{A}_k := B_1 \cup B_2 \cup \ldots \cup B_k \ (k \in \mathbb{N})$. Dann: $\tilde{A}_1 \subseteq \tilde{A}_2 \subseteq \ldots$ und $B = \bigcup_{k=1}^{\infty} \tilde{A}_k$. 17.2 $\Longrightarrow \tilde{A}_k$ ist qb und $v_n(\tilde{A}_k) = v_n(B_1) + \ldots + v_n(B_k)$. B ist qb $\iff (v_n(\tilde{A}_k))$ konvergiert $\iff \sum_{j=1}^{\infty} v_n(B_j)$ konvergiert.

I. d. Fall:
$$v_n(B) \stackrel{(1)}{=} \lim_{k \to \infty} v_n(\tilde{A}_k) = \sum_{i=1}^{\infty} v_n(B_i)$$
.

Satz 18.6 (Satz von Lebesgue (Majorisierte Konvergenz))

Sei $A \subseteq \mathbb{R}^n$ und (f_k) eine Folge in L(A) und (f_k) konv. fast überall auf A punktweise gegen $f: A \to \tilde{\mathbb{R}}$

- (1) Ist $F \in L(A)$ und gilt $|f_k| \leq F$ auf $A \ \forall k \in \mathbb{N}$, so ist $f \in L(A)$ und $\int_A f dx = \lim_{A \to \infty} \int_A f_k dx$.
- (2) Ist A qb und ex. ein $M \ge 0$ mit $(f_k) \le M$ auf $A \ \forall k \in \mathbb{N}$, so ist $f \in L(A)$ und $\int_A f dx = \lim \int_A f_k dx$.

Beweis

(1) O.B.d.A: $A = \mathbb{R}^n$ (Übergang $f \to f_A$). \exists Nullmenge N mit $F(x) \in \mathbb{R} \ \forall x \in \mathbb{R}^n \setminus N$ (17.8) $und\ f_k(x) \to f(x)\ (k \to \infty)\ \forall x \in \mathbb{R}^n \setminus N$. Dann: $f_k(x) \in \mathbb{R} \ \forall x \in \mathbb{R}^n \setminus N \ \forall k \in \mathbb{N}$. Wegen 17.7 ändern wir ab: $f(x) := f_k(x) := F(x) := 0\ \forall x \in N \ \forall k \in \mathbb{N}$. Dann: $f_k(x) \to f(x)\ \forall x \in \mathbb{R}^n$. Für $k, \nu \in \mathbb{N} : g_k(x) := \sup\{f_j(x) : j \ge k\};\ g_{k,\nu}(x) := \max\{f_k(x), f_{k+1}(x), \dots, f_{k+\nu}(x)\}$. Dann: $|g_k|, |g_{k,\nu}| \le F$ auf \mathbb{R}^n . 16.6 $\Longrightarrow g_{k,\nu} \in L(\mathbb{R}^n)$.

Sei $k \in \mathbb{N}$ (fest). $g_{k,1} \leq g_{k,2} \leq g_{k,3} \leq \ldots$ auf \mathbb{R}^n , $|\int g_{k,\nu} dx| \leq \int |g_{k,\nu}| dx \leq \int F dx \implies (\int g_{k,\nu} dx)_{\nu=1}^{\infty}$ ist beschränkt. Es gilt: $g_{k,\nu}(x) \to g_k(x)$ ($\nu \to \infty$) $\forall x \in \mathbb{R}^n$. 18.2 $\Longrightarrow g_k \in L(\mathbb{R}^n)$. Es ist: $g_1 \geq g_2 \geq g_3 \geq \ldots$ auf \mathbb{R}^n ; wie oben: $(\int g_k dx)$ beschränkt. Weiter gilt: $g_k(x) \to f(x)$ ($k \to \infty$) $\forall x \in \mathbb{R}^n$.

18.2 $\Longrightarrow f \in L(\mathbb{R}^n)$ und $\int f dx = \lim \int g_k dx$. $h_k(x) := \inf\{f_j(x) : j \geq k\}$ $(x \in \mathbb{R}^n)$. Analog: $h_k \in L(\mathbb{R}^n)$ und $\int f dx = \lim \int h_k dx$. Es ist: $h_k \leq f_k \leq g_k$ auf $\mathbb{R}^n \Longrightarrow \int h_k dx \leq \int f_k dx \leq \int g_k dx \xrightarrow{k \to \infty} \int f dx = \lim \int f_k dx$.

(2) folgt aus (1):
$$A \neq A \Rightarrow A \in L(A) \implies M \in L(A), F := M.$$

Beispiel

Für $k \in \mathbb{N}$ sei $f_k : [1, k] \to \mathbb{R}$ def. durch

$$f_k(x) := \frac{k^3 \sin\left(\frac{x}{k}\right)}{(1 + kx^2)^2}$$

Bestimme: $\lim_{k\to\infty} \int_1^k f_k(x) dx$.

$$g_k(x) := \begin{cases} f_k(x), & x \in [1, k] \\ 0, & x > k \end{cases} (x \in [1, \infty))$$

Sei $x \in [1, \infty) \implies \exists k_0 \in \mathbb{N} : x \in [1, k] \ \forall k \geq k_0$. Für $k \geq k_0 : g_k(x) = f_k(x) = \frac{\sin(\frac{x}{k})}{\frac{x}{k}} \cdot \frac{k^2 x^2}{(1+kx^2)^2} = \frac{\sin(\frac{x}{k})}{\frac{x}{k}} \cdot \frac{1}{(\frac{1}{kx}+x)^2} \xrightarrow{k \to \infty} \frac{1}{x^2} =: f(x)$.

$$|g_k(x)| = \underbrace{\frac{|\sin\frac{x}{k}|}{\frac{x}{k}}}_{\leq 1} \cdot \underbrace{\frac{1}{(\frac{1}{kx} + x)^2}}_{\leq \frac{1}{x^2}} \leq \frac{1}{x^2} = f(x). \ f_k \in R[1, k] \stackrel{16.9}{\Longrightarrow} f_k \in L([1, k]) \stackrel{17.7}{\Longrightarrow} g_k \in L([1, \infty))$$

und
$$\int_{[1,\infty)} f dx = \int_1^\infty \frac{1}{x^2} dx = 1$$
. 18.6 $\Longrightarrow \underbrace{\int_{[1,\infty)} g_k dx}_{\int_1^k f_k dx} \to \int_{[1,\infty)} f dx = 1$.

Erinnerung: (Ana I, 23.5): $f:[a,b] \to \mathbb{R}$ sei auf [a,b] db und $f' \in R[a,b]$. Dann: $\int_a^b f' dx = f(b) - f(a)$.

Satz 18.7

 $f:[a,b]\to\mathbb{R}$ sei d
b auf [a,b] und f' sei auf [a,b] beschränkt. Dann: $f'\in L([a,b])$ und
 $\int_{[a,b]}f'dx=f(b)-f(a).$

$$\begin{array}{lll} \textbf{Beweis} & M := \sup\{|f'(x)| : x \in [a,b]\}. \ f_k(x) := \begin{cases} \frac{f(x+\frac{1}{k}) - f(x)}{\frac{1}{k}}, & x \in [a,b-\frac{1}{k}] \\ 0, & x \in (b-\frac{1}{k},b] \end{cases}. \ \text{Ana I} \implies f_k \in \\ R[a,b] & \stackrel{16.9}{\Longrightarrow} f \in L([a,b]) : |f(x+\frac{1}{k}) - f(x)| & \stackrel{\text{MWS}}{=} |f'(\xi)| \frac{1}{k} \leq M \frac{1}{k} \ (x \in [a,b-\frac{1}{k}]) \implies \end{cases}$$

 $|f_k(x)| \leq M \ \forall x \in [a,b]. \text{ Sei } x \in [a,b) \implies \exists k_0 \in \mathbb{N} : x \in [a,b-\frac{1}{k}] \ \forall k \geq k_0. \text{ Für } k \geq k_0 :$ $f_k(x) = \frac{f(x+\frac{1}{k})-f(x)}{\frac{1}{k}} \stackrel{k\to\infty}{\to} f'(x). \text{ Also: } f_k(x) \to g(x) := \begin{cases} f'(x), & x \in [a,b) \\ 0, & x = b \end{cases} \ \forall x \in [a,b].$

 $18.6 \implies g \in L([a,b]) \stackrel{17.7}{\Longrightarrow} f' \in L([a,b]) \text{ und } \int_{[a,b]} f' dx = \int_{[a,b]} g dx \stackrel{18.6}{=} \lim_{k \to \infty} \int_{[a,b]} f_k dx \stackrel{16.9}{=} \lim_{k \to \infty} \int_a^b f_k dx.$

 $f \in C[a,b] \xrightarrow{\text{Ana I}} f \text{ besitzt auf } [a,b] \text{ eine Stammfunktion } F. \int_a^b f_k(x) dx = k \int_a^{b-\frac{1}{k}} (f(x+\frac{1}{k}) - f(x)) dx = k \int_1^{b-\frac{1}{k}} f(x+\frac{1}{k}) dx - k \int_a^{b-\frac{1}{k}} f(x) dx \xrightarrow{z:=x+\frac{1}{k}} \int_{a+\frac{1}{k}}^b f(z) dz - k \int_a^{b-\frac{1}{k}} f(x) dx = k (F(b) - F(a+\frac{1}{k})) - k (F(b-\frac{1}{k}) - F(a)) = \frac{F(b) - F(b-\frac{1}{k})}{\frac{1}{k}} - \frac{F(a+\frac{1}{k}) - F(a)}{\frac{1}{k}} \xrightarrow{k \to \infty} F'(b) - F'(a) = f(b) - f(a).$

Messbare Mengen und messbare Funktionen

Definition

 $A \subseteq \mathbb{R}^n$ heißt (Lebesgue-)messbar (mb) : $\iff \exists$ Folge quadrierbarer Mengen (A_k) mit

$$A = \bigcup_{k=1}^{\infty} A_k$$

 $\mathfrak{L}_n := \{ A \subseteq \mathbb{R}^n : A \text{ ist messbar} \}$. Ist A quadrierbar $\implies A \in \mathfrak{L}_n$. Die Abbildung $\lambda_n \to \tilde{\mathbb{R}}$ definiert durch

$$\lambda_n(A) := \begin{cases} v_n(A) & \text{, falls } A \text{ quadrierbar} \\ \infty & \text{, falls } A \text{ nicht quadrierbar} \end{cases}$$

heißt das n-dimensional Lebesguemaß.

Beispiel

 $\mathbb{R}^n \in \mathfrak{L}_n, \lambda_n(\mathbb{R}^n) = \infty$

Satz 19.1

Es seien $A, B, A_1, A_2, \ldots \in \mathfrak{L}_n$

(1)
$$A \setminus B$$
, $\bigcup_{j=1}^{\infty} A_j$, $\bigcap_{j=1}^{\infty} A_j \in \mathfrak{L}_n$.

- (2) Sei $B \subseteq A$
 - (i) $\lambda_n(B) \leq \lambda_n(A)$.
 - (ii) Ist B quadrierbar $\implies \lambda_n(A \setminus B) = \lambda_n(A) \lambda_n(B)$

(3)
$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) \le \sum_{j=1}^{\infty} \lambda_n(A_j).$$

(4) Aus $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ folgt

$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) = \lim_{j=1} \lambda_n(A_j)$$

(5) Ist A_1 quadrierbar und $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$ folgt

$$\lambda_n(\bigcap_{j=1}^{\infty} A_j) = \lim_{j=1} \lambda_n(A_j)$$

(6) Ist $A_j \cap A_k = \emptyset \ (j \neq k)$ folgt

$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \lambda_n(A_j)$$

Ohne Beweis!

Folgerung 19.2

- (1) Ist $A \subseteq \mathbb{R}^n$ offen $\implies A \in \mathfrak{L}_n$
- (2) Ist $A \subseteq \mathbb{R}^n$ abgeschlossen $\implies A \in \mathfrak{L}_n$

Beweis

- (1) folgt aus 17.10
- (2) $\mathbb{R}^n \setminus A$ ist offen $\stackrel{(1)}{\Longrightarrow} \mathbb{R}^n \setminus A \in \mathfrak{L}_n \stackrel{19.1(1)}{\Longrightarrow} A \in \mathfrak{L}_n$.

Definition

Sei $A \in \mathfrak{L}_n$ und $F: A \to \tilde{\mathbb{R}}$ eine Funktion. f heißt **messbar**: $\iff \exists$ Folge (φ_k) in \mathscr{T}_n : (φ_k) konvergiert fast überall auf \mathbb{R}^n punktweise gegen f_A .

Satz 19.3

 $A \in \mathfrak{L}_n, f, g: A \to \tilde{\mathbb{R}}$ seien Funktionen.

- (1) Ist $f \in L(A) \implies f$ ist messbar.
- (2) Sind f,g messbar $\Longrightarrow f+g, f^+, f^-, cf$ $(c \in \mathbb{R}), |f|^p$ $(p>0), \max(f,g), \min(f,g)$ sind messbar $(\infty^p := \infty)$

Ohne Beweis!

20. Satz von Fubini / Substitutionsregel

Satz 20.1 (Satz von Fubini)

Ohne Beweis: $\mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m = \{(x,y): x \in \mathbb{R}^n, y \in \mathbb{R}^m\}$. Es sei $f \in L(\mathbb{R}^n \times \mathbb{R}^m)$.

- (1) \exists Nullmenge $N \subseteq \mathbb{R}^m$: für jedes $y \in \mathbb{R}^m \setminus N$ ist $x \mapsto f(x,y)$ Lebesgueintegrierbar über \mathbb{R}^n .
- (2) Mit

$$F(y) := \begin{cases} \int_{\mathbb{R}^n} f(x, y) dx &, \text{ falls } y \in \mathbb{R}^m \setminus N \\ 0 &, \text{ falls } y \in N \end{cases}$$

gilt:
$$F \in L(\mathbb{R}^m)$$
 und $\int_{\mathbb{R}^{n+m}} f(x,y) \mathrm{d}(x,y) = \int_{\mathbb{R}^m} F(y) \mathrm{d}y$

Satz 20.2 (Substitutionsregel)

 $U \subseteq \mathbb{R}^n$ sei offen und beschränkt. $\phi \in C^1(U, \mathbb{R}^n)$ sei auf U injektiv und Lipschitzstetig. Es sei $B := \bar{U}$ (B beschränkt und abgeschlossen). Dann lässt sich ϕ Lipschitzstetig auf B fortsetzen und für $A := \phi(B)$ gilt:

$$\int_{A} f(x) dx = \int_{B} f(\phi(z)) |\det \phi'(z)| dz \ \forall f \in C(A, \mathbb{R})$$

(A beschränkt und abgeschlossen, im Allgemeinen ist auf der Nullmenge $\partial U \phi'$ nicht erklärt).

Polarkoordinaten (n=2):

$$r = \|(x,y)\| = \sqrt{x^2 + y^2}, x = r \cdot \cos \varphi, y = r \cdot \sin \varphi \ (r \ge 0, \varphi \in [0,2\pi])$$

$$\phi(r,\varphi) := (r \cos \varphi, r \sin \varphi). \det \phi'(r,\varphi) = r.$$

Beispiele:

$$(1) A := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}, f(x,y) = y\sqrt{x^2 + y^2}. B := [0,1] \times [0,\pi] \implies 0$$

 $\phi(B) = A$. Dann:

$$\begin{split} \int_A f(x,y) \mathrm{d}(x,y) &= \int_B f(r\cos\varphi,r\sin\varphi) \cdot r \; \mathrm{d}(r,\varphi) \\ &= \int_B r\sin\varphi \cdot r \cdot r \; \mathrm{d}(r,\varphi) \\ &= \int_0^\pi (\int_0^1 r^3 \sin\varphi \mathrm{d}r) \mathrm{d}\varphi \\ &= \int_0^\pi \left[\frac{1}{4} r^4 \sin\varphi\right]_{r=0}^{r=1} \mathrm{d}\varphi \\ &= \int_0^\pi \frac{1}{4} \sin\varphi \mathrm{d}\varphi \\ &= \frac{1}{2} \end{split}$$

(2) Behauptung:

$$\begin{split} \int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x &= \sqrt{\pi} \\ \mathbf{Beweis} \colon f(x,y) := e^{-(x^2 + y^2)} &= e^{-x^2} \cdot e^{-y^2}. \text{ Sei } \varrho > 0. \ Q_{\varrho} := [0,\varrho] \times [0,\varrho]. \\ \int_{Q_{\varrho}} f(x,y) \mathrm{d}(x,y) &= \int_{0}^{\varrho} (\int_{0}^{\varrho} e^{-x^2} e^{-y^2} \mathrm{d}y) \mathrm{d}x \\ &= (\int_{0}^{\varrho} e^{-x^2} \mathrm{d}x)^2 \\ A_{\varrho} := \{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \leq \varrho^2, \ x,y \geq 0\}, B_{\varrho} = [0,\varrho] \times [0,\frac{\pi}{2}], \phi(B_{\varrho}) = A. \end{split}$$

$$A_{\varrho} := \{(x,y) \in \mathbb{R} : x + y \le \varrho , x, y \ge 0\}, B_{\varrho} = [0, \varrho] \times [0, \frac{1}{2}], \varphi(B_{\varrho}) = 0$$

$$\int_{A_{\varrho}} f(x,y) d(x,y) = \int_{B_{\varrho}} f(r \cos \varphi, r \sin \varphi) d(r,\varphi)$$

$$= \int_{B_{\varrho}} r \cdot e^{-r^{2}} d(r,\varphi)$$

$$= \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\varrho} r \cdot e^{-r^{2}} dr \right) d\varphi$$

$$= \frac{\pi}{2} \int_{0}^{\varrho} r \cdot e^{-r^{2}} dr$$

$$= \frac{\pi}{2} \left[-\frac{1}{2} e^{-r^{2}} \right]_{0}^{\varrho}$$

$$= \frac{\pi}{2} (-\frac{1}{2} e^{-\varrho^{2}} + \frac{1}{2}) =: h(\varrho)$$

$$h(\varrho) \to \frac{\pi}{4} \ (\varrho \to \infty). \ A_{\varrho} \subseteq Q_{\varrho} \subseteq A_{\sqrt{2}\varrho} \stackrel{\underline{f} \ge 0}{\Longrightarrow} \ f_{A_{\varrho}} \le f_{Q_{\varrho}} \le f_{A_{\sqrt{2}\varrho}}.$$

$$\Longrightarrow \underbrace{\int_{\mathbb{R}^{2}} f_{A_{\varrho}} \mathrm{d}(x, y)}_{=h(\varrho)} \le \underbrace{\int_{\mathbb{R}^{2}} f_{Q_{\varrho}} \mathrm{d}(x, y)}_{=(\int_{0}^{\varrho} e^{-x^{2}} \mathrm{d}x)^{2}} \le \underbrace{\int_{\mathbb{R}^{2}} f_{A_{\sqrt{2}\varrho}} \mathrm{d}(x, y)}_{=h(\sqrt{2}\varrho)}$$

$$\Longrightarrow \left(\int_{0}^{\varrho} e^{-x^{2}} \mathrm{d}x\right)^{2} \to \frac{\pi}{4} \ (\varrho \to \infty)$$

$$\Longrightarrow \int_{0}^{\infty} e^{-x^{2}} \mathrm{d}x = \frac{\sqrt{\pi}}{2} \Longrightarrow \int_{0}^{\infty} e^{-x^{2}} \mathrm{d}x = \sqrt{\pi}$$

Zylinderkoordinaten (n=3):

$$\phi(r,\varphi,z) := (r \cdot \cos\varphi, r \cdot \sin\varphi, z), r \ge 0, \varphi \in [0,2\pi], z \in \mathbb{R}, \det\phi'(r,\varphi,z) = r.$$

Beispiel

$$A := \{(x, y, z) \in \mathbb{R}^3 : x, y \ge 0, x^2 + y^2 \le 1, 0 \le z \le 1\}.$$

$$f(x, y, z) = y\sqrt{x^2 + y^2} + z, \ B = [0, 1] \times [0, \frac{\pi}{2}] \times [0, 1].$$

$$\begin{split} \int_A f(x,y,z) \mathrm{d}(x,y,z) &= \int_b f(r\cos\varphi,r\sin\varphi,z) \mathrm{d}(r,\varphi,z) \\ &= \int_B (r\sin\varphi r + z) r \mathrm{d}(r,\varphi,z) \\ &= \int_0^1 (\int_0^{\frac{\pi}{2}} (\int_0^1 (r^2\sin\varphi + rz) \mathrm{d}r) + \mathrm{d}\varphi) \mathrm{d}z \\ &= \frac{\pi}{8} + \frac{1}{4} \end{split}$$

Kugelkoordinaten (n=3):

$$r = \|(x, y, z)\| = (x^{2} + y^{2} + z^{2})^{\frac{1}{2}},$$

$$x = r \cos \varphi \sin \nu, \ y = r \sin \varphi \sin \nu, \ z = \cos \nu \ (r \ge 0, \varphi \in [0, 2\pi], \nu \in [0\pi]).$$

$$\phi(r, \varphi, \nu) = (r \cos \varphi \sin \nu, r \sin \varphi \sin \nu, r \cos \nu), \det \phi'(r, \varphi, \nu) = -r^{2} \sin \nu.$$

Beispiel

$$A := \{(x, y, z) \in \mathbb{R}^3 : 1 \le ||(x, y, z)|| \le 2, \ x, y, z \ge 0\}.$$

$$f(x, y, z) := \frac{1}{x^2 + y^2 + z^2}. \ B = [1, 2] \times [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}].$$

$$\begin{split} \int_{a} \frac{1}{x^2 + y^2 + z^2} \mathrm{d}(x, y, z) &= \int_{B} \frac{1}{r^2} \sin \nu \mathrm{d}(r, \varphi, \nu) \\ &= \int_{0}^{\frac{\pi}{2}} (\int_{0}^{\frac{\pi}{2}} (\int_{1}^{2} \sin \nu \mathrm{d}r) \mathrm{d}\varphi) \mathrm{d}\nu \\ &= \frac{\pi}{2} \end{split}$$

21. Parameterabhängige Integrale

Satz 21.1

Sei $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^m, A \times B = \{(x,y) : x \in A, y \in B\}$. Es sei $f : A \times B \to \mathbb{R}$ eine Funktion mit:

- (1) Für jedes (feste) $x \in A$ sei $y \mapsto f(x,y)$ Lebesgueintegrierbar über B.
- (2) Für jedes (feste) $y \in B$ sei $x \mapsto f(x, y)$ stetig auf A.
- (3) $\exists \phi \in L(B) : |f(x,y)| \le \phi(y) \ \forall (x,y) \in A \times B.$

 $F: A \to \mathbb{R}$ sei definiert durch $F(x) := \int_B f(x, y) dy$. Dann: $F \in C(A, \mathbb{R})$.

Beweis

Sei $x_0 \in A$. Sei (x_k) eine Folge in A mit $x_k \to x_0$. zu zeigen: $F(x_k) \to F(x_0)$. Definiere $g, f_1, f_2, \ldots : B \to \mathbb{R}$ durch $g(y) := f(x_0, y), \ f_k(y) := f(x_k, y)$. Vor.(1) $\Longrightarrow f_k \in L(B) \ \forall k \in \mathbb{N}$. Vor.(2) $\Longrightarrow f_k(y) \to g(y) \ \forall y \in B$. Vor.(3) $\Longrightarrow |f_k(y)| \le \phi(y) \ \forall y \in B$.

18.6
$$\Longrightarrow \underbrace{\int_{B} g(y) dy}_{=F(x_0)} = \lim_{k \to \infty} \underbrace{\int_{B} f_k(y) dy}_{=F(x_k)}$$

Satz 21.2 (Vertauschbarkeit von Integration und Differentiation)

Sei $A\subseteq \mathbb{R}^n$ offen, $B\subseteq \mathbb{R}^m$ und $f:A\times B\to \mathbb{R}$ mit:

- (1) Für jedes (feste) $x \in A$ sei $y \mapsto f(x,y)$ Lebesgueintegrierbar über B.
- (2) Für jedes (feste) $y \in B$ sei $x \mapsto f(x,y)$ stetig differenzierbar auf A.
- (3) $\exists \phi \in L(B) : |f_{x_i}(x, y)| \le \phi(y) \ \forall (x, y) \in A \times B, \ \forall j \in \{1, \dots, n\}.$

F sei wie in 21.1. Dann ist $F \in C^1(A, \mathbb{R})$, für jedes (feste) $x \in A$ ist $y \mapsto f_{x_j}(x, y)$ Lebesgueintegrierbar über B und $F_{x_j}(x) = \int_B f_{x_j}(x, y) dy \ \forall x \in A \ \forall j \in \{1, \dots, n\}.$

Beweis

Sei $x_0 \in A, j \in \{1, ..., n\}$. A offen $\implies \exists \delta > 0 : x_0 + te_j \in A$ für $|t| < \delta$. Sei (t_n) eine Folge in \mathbb{R} mit $t_k \to 0$ $(k \to \infty)$ und $0 < |t_k| < \delta \ \forall k$.

$$g(y) := f_{x_j}(x_0, y), \ f_k(y) := \frac{f(x_0 + t_k e_j, y) - f(x_0, y)}{t_k} \ (k \in \mathbb{N}, y \in B)$$

 $\underbrace{ \text{Vor.}(1) \implies f_k \in L(B) \ \forall k \in \mathbb{N}. \ \text{Vor.}(2) \implies f_k(y) \rightarrow g(y) \ \forall y \in B. \ \text{Vor.}(3) \implies |f_k(y)| \ \stackrel{\text{MWS}}{=} }_{\leq \phi(y) \ \forall y \in B}$ $\underbrace{ |f_{x_j}(x_0 + \xi_k e_j, y)|}_{\leq \phi(y) \ \forall y \in B}, \ \xi_k \ \text{zwischen 0 und } t_k. \ 18.6 \implies g \in L(B) \ \text{und}$

$$\underbrace{\int_B g(y)dy}_{=\int_B f_{x_j}(x_0,y)\mathrm{d}y} = \lim_{k\to\infty} \int_B f_k(y)\mathrm{d}y = \lim_{k\to\infty} \frac{F(x_0+t_ke_j)-F(x_0)}{t_k}$$

Satz 21.3

Es sei $D \subseteq \mathbb{R}^2$ offen, $[a,b] \times [c,d] \subseteq D$ und $\varphi : [a,b] \to [c,d]$ sei stetig differenzierbar. Es sei $f \in C^1(D,\mathbb{R})$ und $\alpha : [a,b] \to \mathbb{R}$ sei definiert durch $\alpha(x) := \int_c^{\varphi(x)} f(x,y) \mathrm{d}y$. Dann ist α auf [a,b] differenzierbar und

$$\alpha'(x) = \int_{c}^{\varphi(x)} f_x(x, y) dy + f(x, \varphi(x)) \cdot \varphi'(x) \ \forall x \in [c, b]$$

Beweis

 $\beta(x,z) := \int_c^z f(x,y) dy$. Dann: $\alpha(x) = \beta(x,\varphi(x))$ $(z \in [c,d])$. Analysis $1 \Longrightarrow \beta$ ist partiell differenzierbar nach z und $\beta_z(x,z) = f(x,z)$. $21.2 \Longrightarrow \beta$ ist partiell differenzierbar nach x und $\beta_x(x,z) = \int_c^z f_x(x,y) dy$. β_x,β_z sind stetig. $5.2 \Longrightarrow \beta$ ist differenzierbar $\stackrel{5.4}{\Longrightarrow} \alpha$ ist differenzierbar und

$$\alpha'(x) = \beta_x(x, \varphi(x)) \cdot 1 + \beta_z(x, \varphi(x)) \cdot \varphi'(x)$$
$$= \int_c^{\varphi(x)} f_x(x, y) dy + f(x, \varphi(x)) \cdot \varphi'(x).$$

A. Satz um Satz (hüpft der Has)

1.1.	Rechenregeln zur Norm	7
1.2.	Offene und abgeschlossene Mengen	S
2.1.	Konvergenz	11
2.2.	Häufungswerte und konvergente Folgen	12
2.3.	Überdeckungen	12
3.1.	Grenzwerte vektorwertiger Funktionen	15
3.2.	Stetigkeit vektorwertiger Funktionen	16
3.3.	Funktionen auf beschränkten und abgeschlossenen Intervallen	17
3.4.	Fortsetzungssatz von Tietze	17
3.5.	Lineare Funktionen und Untervektorräume von \mathbb{R}^n	17
3.6.	Eigenschaften des Abstands zwischen Vektor und Menge	18
4.1.	Satz von Schwarz	20
4.2.	Folgerung	21
5.1.	Differnzierbarkeit und Stetigkeit	24
5.2.	Stetigkeit aller paritiellen Ableitungen	25
5.4.	Kettenregel	26
5.5.	Injektivität und Dimensionsgleichheit	27
6.1.	Der Mittelwertsatz	29
6.3.	Bedingung für Lipschitzstetigkeit	30
6.4.	Linearität	30
6.5.	Richtungsableitungen	31
6.6.	Der Satz von Taylor	32
7.1.	Regeln zu definiten Matrizen und quadratischen Formen	36
7.2.	Störung von definiten Matrizen	36
8 1	Nullstelle des Gradienten	30

A. Satz um Satz (hüpft der Has)

8.2. Definitheit und Extremwerte	39
9.2. Stetigkeit der Umkehrfunktion	41
9.3. Der Umkehrsatz	41
10.1. Satz über implizit definierte Funktionen	45
11.1. Multiplikationenregel von Lagrange	47
12.1. Rektifizierbarkeit und Beschränkte Variation	51
12.2. Summe von Wegen	52
12.3. Eigenschaften der Weglängenfunktion	52
12.4. Rechenregeln für Wegintegrale	52
12.5. Eigenschaften stetig differenzierbarer Wege	53
12.6. Rektivizierbarkeit von Wegsummen	54
12.7. Eigenschaften der Parametertransformation	55
13.1. Berechnung des Wegintegrals	57
13.2. Rechnen mit Wegintegralen	57
13.3. Rechnen mit Integralen bezgl. der Weglänge	58
13.4. Stetige Differenzierbarekeit der Aneinanderhängung	59
14.1. Hauptsatz der mehrdimensionalen Integralrechnung	61
14.3. Wegunabhängigkeit, Existenz von Stammfunktionen	62
14.4. Integrabilitätsbedingungen	63
14.5. Kriterium zur Existenz von Stammfunktionen	63
15.1. Disjunkte Quaderzerlegung und Treppenfunktionsraum	65
15.2. Integral über Treppenfunktion (mit Definition)	66
15.3. Satz von Fubini für Treppenfunktionen	67
15.4. Eigenschaften des Integrals über Treppenfunktionen	67
16.1. Rechenregeln der L^1 -Halbnorm	70
16.2. L^1 -Halbnorm eines Quaders	70
16.3. L^1 -Halbnorm einer Treppenfunktion	71
16.4. Integration und Grenzwertbildung bei Treppenfunktionen	72
16.5. Rechenregln für Lebesgueintegrale	72

16.7. "Kleiner" Satz von Beppo Levi
16.8. Lebegueintegral und L^1 -Halbnorm
16.9. Riemann- und Lebegueintegrale
16.10Konvergente Treppenfunktionsfolge
16.11Stetige und beschränkte Funktionen sind Lebegue-Integrierbar
16.12Stetige und beschränkte Funktionen sind Lebegue-Integrierbar
16.13"Kleiner" Satz von Fubini
16.14Aufteilung des Integrals in Doppelintegrale
17.1
17.2.
17.3. Prinzip von Cavalieri
17.4
17.5.
17.6.
17.7.
17.8.
17.9.
17.10.
17.11
17.13.
18.1. Satz von Riesz-Fischer
18.2. Satz von Beppo Levi
18.3
18.4. Uneigentliche Lebesgue- und Riemann-Integrale
18.5.
18.6. Satz von Lebesgue (Majorisierte Konvergenz)
18.7.
19.1
19.3.

A. Satz um Satz (hüpft der Has)

20.1. Satz von Fubini
20.2. Substitutionsregel
21.1
21.2. Vertauschbarkeit von Integration und Differentiation
21.3.

Stichwortverzeichnis

L ¹ Coughufoles 27	Figur, 84 Funktion
Cauchyfolge, 87	
Halbnorm, 69 Konvergenz, 87	triviale Erweiterung, 74
Konvergenz, 87	Funktionalmatrix, 23
abgeschlossene Kugel, 9	Gebiet, 29
abgeschlossene Menge, 9	glatt, 54
Ableitung, 24	Gradient, 19
partielle, 19	Grenzwert, 11
Abschließung, 9	
Abstand	Häufungspunkt, 8
zwischen Vektor und Menge, 18	Hüllreihe, 69
zwischen zwei Vektoren, 7	Hesse-Matrix, 35
Aneinanderhängung, 59	indefinit 25
Anfangspunkt, 51	indefinit, 35
aquivalent, 55	Inhalt
Ausschöpfung, 87	einer Hüllreihe, 69
	Innenprodukt, 7
Berührungspunkt, 9	innerer Punkt, 8
Beschränktheit	Inneres einer Menge, 8
einer Funktion, 17	Integrabilitätsbedingungen, 63
einer Menge, 8	Inverser Weg, 51
Bogen, 51	Jacobi-Matrix, 23
Bogenmas, 54	Jacobi-Matrix, 25
Bolzano-Weierstraß, 11	Konvergenz, 11
	konvex, 29
Cauchy-Kriterium, 11	,
Cauchy-Schwarzsche Ungleichung, 7	Länge, 51
charakteristische Funktion, 65	Lange, 7
Cramersche Regel, 41	Lebegueintegrierbarkeit, 72
CSU, 7	Lebesgueintegral, 72
differenzierbar, 23	über einer Menge, 74
Differenzierbarkeit	Lebesguemaß, 81, 93
	Limes, 11
partielle, 19	lokales Extremum, 39
Eigenwerte, 36	unter einer Nebenbedingung, 47
einfach	lokales Maximum, 39
bezüglich eines Faktors, 78	lokales Minimum, 39
Einschränkung einer Funktion, 47	,
Endpunkt, 51	Matrix-Vektorprodukt, 8
Zinap amity, VI	messbar, 93 , 94
fast überall, 83	Multiplikator, 47

```
negativ definit, 35
Norm, 7
Nullmenge, 82
offene Kugel, 8
Parameterdarstellung, 54
Parameterintervall, 51
Parametertransformation, 55
Partielle Ableitung, 19
Partielle Differenzierbarkeit, 19
positiv definit, 35
Quader, 65
quadratische Form, 35
quadrierbar, 81
Rand, 9
Randpunkt, 9
Rektifizierbarkeit, 51
Richtung, 30
Richtungsableitung, 30
Richtungsvektor, 30
Skalarprodukt, 7
Stammfunktion, 61
Stationarer Punkt, 39
sternförmig, 63
Stetigkeit, 16
    auf einem Intervall, 16
    gleichmäßige, 16
    Lipschitz-, 16
stuckweise glatt, 54
stuckweise stetig differenzierbar, 54
Summe
    von Wegen, 52
Teilfolge, 11
Treppenfunktion, 65
Uberdeckungssatz von Heine-Borel, 13
Umgebung, 8
Umordnung, 11
vektorwertige Funktion, 15
Verbindungsstrecke, 29
Volumen, 65, 81
Weg, 51
    inverser, 51
Wegintegral, 57
Weglängenfunktion, 52
wegunabhängig, 62
Winkelmas, 54
```

B. Credits für Analysis II

Abgetippt haben die folgenden Paragraphen:

- § 1: Der Raum \mathbb{R}^n : Wenzel Jakob, Joachim Breitner
- \S 2: Konvergenz im \mathbb{R}^n : Joachim Breitner und Wenzel Jakob
- § 3: Grenzwerte bei Funktionen, Stetigkeit: Wenzel Jakob, Pascal Maillard
- § 4: Partielle Ableitungen: Joachim Breitner und Wenzel Jakob
- § 5: Differentiation: Wenzel Jakob, Pascal Maillard, Jonathan Picht
- § 6: Differenzierbarkeitseigenschaften reellwertiger Funktionen: Jonathan Picht, Pascal Maillard, Wenzel Jakob
- § 7: Quadratische Formen: Wenzel Jakob
- § 8: Extremwerte: Wenzel Jakob
- § 9: Der Umkehrsatz: Wenzel Jakob und Joachim Breitner
- § 10: Implizit definierte Funktionen: Wenzel Jakob
- § 11: Extremwerte unter Nebenbedingungen: Pascal Maillard
- § 12: Wege im \mathbb{R}^n : Joachim Breitner, Wenzel Jakob und Pascal Maillard
- § 13: Wegintegrale: Pascal Maillard und Joachim Breitner
- § 14: Stammfunktionen: Joachim Breitner und Ines Türk
- § 15: Integration von Treppenfunktionen: Ines Türk
- § 16: Das Lebesguesche Integral: Joachim Breitner, Pascal Maillard und Jonathan Picht
- § 17: Quadrierbare Mengen: Joachim Breitner, Pascal Maillard und Wenzel Jakob
- § 18: Konvergenzsätze: Wenzel Jakob und Pascal Maillard
- § 19: Messbare Mengen und messbare Funktionen: Wenzel Jakob
- § 20: Satz von Fubini / Substitutionsregel: Wenzel Jakob
- § 21: Parameterabhängige Integrale: Wenzel Jakob