

Catania, 15 – 17 settembre 2016

hogwarts • IT

Scale di Hogwarts (hogwarts)

A Hogwarts, la più prestigiosa scuola di magia del mondo, si sa che alle scale piace cambiare! Dopo un lungo viaggio in treno e la cerimonia di smistamento, sei pronto per la tua prima lezione: Pozioni. Il castello ha N sale, numerate da 0 a N-1, tra loro collegate da M scale. Il tuo dormitorio si trova nella sala 0 e la lezione di Pozioni si tiene nell'aula allestita nella stanza N-1, nei sotterranei del castello. Fortunatamente, prima di intraprendere il percorso attraverso le sale, conosci l'orario in cui compare e quello in cui scompare ogni scala. Per percorrere una scala impieghi esattamente 1 minuto, ma puoi sostare nelle sale per tutto il tempo che ritieni necessario.

Il professore di Pozioni è molto severo e non tollera ritardi, dunque devi assolutamente arrivare a lezione nel minor tempo possibile. Trova un modo per raggiungere l'aula nel minimo tempo possibile, se un modo per raggiungerla esiste!

Implementazione

Dovrai sottoporre un unico file, con estensione .c, .cpp o .pas.

Tra gli allegati a questo task troverai un template hogwarts.c, hogwarts.cpp, hogwarts.pas con un esempio di implementazione.

Dovrai implementare la seguente funzione:

C/C++	<pre>int raggiungi(int N, int M, int A[], int B[], int inizio[], int fine[]);</pre>
Pascal	function raggiungi(N,M: longint; A,B,inizio,fine: array of longint): longint

- L'intero N rappresenta il numero di sale del castello.
- L'intero M rappresenta il numero di scale.
- Gli array A, B, inizio e fine sono indicizzati da 0 a M-1 e contengono le informazioni sulla comparsa e sparizione delle scale: l'*i*-esima scala collega tra loro le sale A[*i*] e B[*i*], compare al tempo inizio[*i*] e scompare al tempo fine[*i*].
- La funzione deve restituire il minimo tempo necessario per andare dalla sala 0 alla sala N-1; se non è possibile raggiungere la sala N-1, deve restituire il valore -1.

Il grader chiamerà la funzione raggiungi e ne stamperà il valore restituito sul file di output.

Grader di prova

Nella directory relativa a questo problema è presente una versione semplificata del grader usato durante la correzione, che potete usare per verificare le vostre soluzioni in locale. Il grader di esempio legge i dati da stdin, chiama la funzione che dovete implementare e scrive su stdout, secondo il seguente formato.

Il file di input è composto da M+1 righe, contenenti:

- Riga 1: gli interi $N \in M$.
- Righe 2, ..., M+1: l'i-esima di queste righe contiene, nell'ordine, i valori A[i], B[i], inizio[i] e fine [i] per i=0,...,M-1.

Il file di output è composto da un'unica riga, contenente:

• Riga 1: il valore restituito dalla funzione raggiungi.

hogwarts Pagina 1 di 3

Catania, 15 – 17 settembre 2016

hogwarts • IT

Assunzioni

- $2 \le N \le 500\,000$.
- $1 \le M \le 1000000$.
- $0 \le A[i], B[i] \le N 1$ per ogni i = 0, ..., M 1.
- Non ci sono scale che collegano una sala a se stessa ($A[i] \neq B[i]$).
- Non ci sono due o più scale che collegano le stesse due sale.
- Ogni scala è percorribile in una qualunque delle due direzioni.
- $0 \le inizio[i] < fine[i] \le 2000000$.

Assegnazione del punteggio

Il tuo programma verrà verificato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo a un subtask, è necessario risolvere correttamente tutti i test che lo compongono.

- Subtask 1 [0 punti]: Casi d'esempio.
- Subtask 2 [10 punti]: $N \le 10, M \le 15$ e fine $[i] \le 20$ per ogni i.
- Subtask 3 [21 punti]: Tutte le scale sono fisse, cioè il tempo di inizio è 0 per tutte e il tempo di fine è uguale per tutte.
- Subtask 4 [18 punti]: Le scale scompaiono soltanto, cioè il tempo di inizio è 0 per tutte.
- Subtask 5 [22 punti]: $N \le 1000$, $M \le 2000$, fine [i] ≤ 5000 per ogni i.
- Subtask 6 [29 punti]: Nessuna limitazione specifica.

Esempi di input/output

4 5 0 2 0 5 0 1 1 3	3
0 1 1 3 0 3 3 6 3 2 3 8 3 1 0 10	
3 2 0 1 3 5 1 2 2 4	-1

Spiegazione

Nel **primo caso di esempio** il modo più veloce per andare dalla sala 0 alla 3 è aspettare 1 minuto, poi prendere la scala che collega 0 e 1 (ci metti 1 minuto) e poi prendere immediatamente la scala che collega 1 e 3 (anche qui ci metti 1 minuto), impiegando in totale 3 minuti per arrivare a lezione.

hogwarts Pagina 2 di 3

Catania, 15 – 17 settembre 2016

hogwarts • IT

Nel **secondo caso di esempio** non è possibile andare dalla sala 0 alla sala 2! Infatti dovresti necessariamente passare per la sala 1 perché non c'è mai una scala che collega direttamente 0 e 2. Al tempo 3 compare una scala per andare da 0 a 1, dunque puoi trovarti nella stanza 1 al più presto dopo 4 minuti, e in quell'istante scompare la scala che collega le sale 1 e 2, impedendoti di raggiungere la destinazione.

hogwarts Pagina 3 di 3