STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

FU1.2: ABSOLUTE VALUE

The absolute value of a number |x| gives a measure of its size or magnitude regardless of whether it is positive or negative. If a number is plotted on a number line then its absolute value can be considered to be the distance from zero.

Examples

Eg (i)
$$|2| = 2$$

(ii)
$$|-2|=2$$

(iii)
$$\left| -4 + 3 \right| = \left| -1 \right| = 1$$

(iv)
$$|-8|+|-1|=8+1=9$$

(v)
$$|x| = 7 \Rightarrow x = 7 \text{ or } x = -7$$

The absolute value function and its graph

The absolute value function is a hybrid function defined as follows:

$$f:R \rightarrow R$$
 where $f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$

with graph

NB: The domain of f(x) = |x| is R The range is $R^+ \cup 0$

The graph of y = |x| may be translated in the same way as the graphs of other functions.

Compare the graphs of the following functions with that of y = |x|

1.
$$y = |x-2|$$

2.
$$y = |x| + 1$$

2.
$$y = |x| + 1$$
 3. $y = 3 - |x| = -|x| + 3$

To sketch the graph of y = |f(x)| we need to sketch the graph of y = f(x) first and then reflect in the x-axis the portion of the graph which is below the x-axis.

Example

Sketch {
$$(x,y)$$
: $y = |x^2 - 1|$ }

The graph of this function is the graph of $y = x^2 - 1$ with the portion below the x-axis reflected across the x-axis.

Equations & inequalities involving If(x)I

Because y = |f(x)| is a hybrid function two cases must be considered when solving equations and inequalties

Examples

1. Solve
$$|x - 2| = 3$$

2.

If
$$|x-2|=3$$

then $x-2=3$ or $-(x-2)=3$
ie $x=5$ or $x=-1$

With an absolute value expression on each side of the equation it is easier to square both sides:

2. Solve
$$|2x + 1| = |x - 5|$$

If
$$|2x + 1| = |x - 5|$$

then
$$(2x+1)^2 = (x-5)^2$$

ie
$$4x^2 + 4x + 1 = x^2 - 10x + 25$$

ie
$$3x^2 + 14x - 24 = 0$$

ie
$$(3x-4)(x+6)=0$$

ie
$$x = \frac{4}{3}$$
 or $x = -6$

NB: Care must be taken when multiplying or dividing by a negative to reverse an inequality

3. Solve
$$\left| \frac{2-x}{3} \right| < 4$$

$$\left| \frac{2-x}{3} \right| < 4 \implies \left| 2-x \right| < 12$$

$$\Rightarrow -12 < 2-x < 12$$

$$\Rightarrow -14 < -x < 10$$

$$\Rightarrow 14 > x > -10 \text{ or } -10 < x < 14$$

Exercises

Exercise 1

Evaluate

- 1. |-11|
- 2. $\left| -9 + 4 \right|$
- 3. |4| |-5|
- 4. |-12|-|3|
- 5. $|-30| \div |5|$

Exercise 2

Sketch the graph of

- 1. y = |x+4|
- 2. y = |x-1|-3
- 3. $y = |3 x^2|$

Exercise 3

Find for $x \in \mathbf{R}$

- 1. $\{x: |x| = 6\}$
- 2. $\{x: |x-1| < 3\}$
- 3. $\{x: \left| \frac{x-3}{2} \right| \ge 1 \}$
- $4. \quad \left\{ \left| \frac{x}{2} \right| = \left| x + 2 \right| \right\}$

Answers

Exercise 2

2.

3.

Exercise 3

- 1. {-6,6} 2. {x: -2<x<4}
- 3. $\{x: x \le 1\} \cup \{x: x \ge 5\}$
- 4. $\{-4, -\frac{4}{3}\}$