Задания

Задание 01

Построить методом Хаффмана оптимальный код для алфавита со следующим распределением вероятностей появления символов в тексте: A-0,4; Б - 0,2; В - 0,2; Г - 0,15; Д - 0,05.

Описание метода Хаффмана

1-й этап - построение двоичного дерева. Будем строить двоичное дерево с m листьями, начиная с листьев и продвигаясь к корню. Возьмём в качестве листьев дерева символы a_1,\ldots,a_m , которым приписаны вероятности p_1,\ldots,p_m .

Основная операция алгоритма - peдукция - состоит в следующем. Возьмём две вершины a_{m-1} и a_m с a_m с a_m с a_m на a_m и a_m и a_m и добавим в дерево новую вершину $a_{m-1}\cup a_m$, которой припишем вероятность a_m на a_m вершину $a_{m-1}\cup a_m$ соединим рёбрами с вершинами a_{m-1} и a_m и объявим общим предком для этих вершин. Ребро от $a_{m-1}\cup a_m$ к a_{m-1} пометим символом 0, а ребро от $a_{m-1}\cup a_m$ к a_m - символом 1. Получаем новый (редуцированный) алфавит $\mathscr{A}^{(1)}=\{a_1,\ldots,a_{m-2},a_{m-1}\cup a_m\}$ с набором вероятностей $\overrightarrow{p}^{(1)}=(p_1,\ldots,p_{m-2},p_{m-1}+p_m)$.

Если в полученном алфавите $\mathscr{A}^{(1)}$ не менее двух символов, то упорядочим эти символы в порядке невозрастания вероятностей набора $\vec{p}^{(1)}$ и снова применим операцию редукции.

Если же алфавит $\mathscr{A}^{(1)}$ состоит из одного символа с приписанной ему вероятностью 1, то этот символ объявим корнем и завершим этап построения дерева.

2-й этап - кодирование. Чтобы получить кодовое слово $\varphi(a_j)$ для символа a_j , последовательно считываем метки рёбер на пути от корня дерева к листу a_j .

Решение

$$arphi({\mathbf A}) = 00 \quad arphi({\mathbf B}) = 01 \quad arphi({\mathbf B}) = 10 \quad arphi({\mathbf \Gamma}) = 110 \quad arphi({\mathbf A}) = 111$$

Задание 02

Построить методом Шеннона-Фано оптимальный код для алфавита со следующим распределением вероятностей появления символов в тексте: A - 0.4; B - 0.2; B - 0.2; C - 0.15; C - 0.05.

Описание метода Шеннона-Фано

Выберем число $k, 1 \le k < m$, так, чтобы величина

$$\left|\sum_{i=1}^k p_i - \sum_{i=k+1}^m p_i
ight|$$

была минимальной. Разобьём множество $\mathscr{A}=\{a_1,\ldots,a_m\}$ на подмножества: $\mathscr{A}=\mathscr{A}_0\cup\mathscr{A}_1$, где $\mathscr{A}_0=\{a_1,\ldots,a_k\}$, $\mathscr{A}_1=\{a_{k+1},\ldots,a_m\}$.

Следующие шаги алгоритма определим индуктивно. Предположим, что уже задано подмножество $\mathscr{A}_{i_1,\ldots,i_t}\subseteq\mathscr{A}$, где $i_1,\ldots,i_t\in\mathscr{B}$.

Если подмножество $\mathscr{A}_{i_1,\ldots,i_t}$ состоит из единственного символа a_j , то для этого символа определяем кодирование $\varphi(a_j)=i_1\ldots i_t$. Если же в подмножестве $\mathscr{A}_{i_1,\ldots,i_t}=\{a_j,\ldots,a_s\}$ не менее двух символов, то выберем число $k,j\leq k< s$, так, чтобы минимизировать величину

$$\left|\sum_{i=j}^k p_i - \sum_{i=k+1}^s p_i
ight|$$

и разобьём множество $\mathscr{A}_{i_1,\ldots,i_t}$ на подмножества $\mathscr{A}_{i_1,\ldots,i_t,0}=\{a_j,\ldots a_k\}$ и $\mathscr{A}_{i_1,\ldots,i_t,1}=\{a_{k+1},\ldots,a_s\}.$

Процесс разбиения на подмножества продолжается, пока не получим все одноэлементные подмножества и тем самым не определим кодирование φ всюду на алфавите \mathscr{A} .

Решение

$$\varphi(A) = 00 \quad \varphi(B) = 01 \quad \varphi(B) = 10 \quad \varphi(\Gamma) = 110 \quad \varphi(\Pi) = 111$$

Задание 03

Осуществить кодирование данных с помощью итеративного кода для информационной последовательности 101001110.

Решение

1. Разбиваем исходную последовательность на блоки равной длины. При невозможности сформировать такие блоки допускается дополнить недостающие разряды нулями.

$$101001110 \to 101\ 001\ 110$$

2. Полученные блоки помещаются в матрицу (обычно используется квадратная матрица):

3. Для каждого блока вычисляется контрольный разряд по правилу суммирования по модулю

2. Суммирование выполняется по строкам и столбцам. Полученные кодовые разряды помещаются в конце строки или столбца соответственно. Элемент [n,n] формируется путём суммирования n-й строки и n-го столбца, где n - размерность матрицы.

4. Закодированная комбинация формируется путём последовательного выписывания строк получившейся матрицы:

1010 0011 1100 0100

Задание 04

Провести проверку принятых данных 1110 0011 1100 0100 закодированных с помощью итеративного кода (длина блока 3).

1. Полученная кодовая комбинация помещается в матрицу:

2. Выполняется проверка по строкам и столбцам, аналогично кодированию (*прим. См. предыдущее задание*):

Проверка для 1-й строки: $1 \oplus 1 \oplus 1 \neq 0$

Проверка для 2-й строки: $0 \oplus 1 \oplus 1 = 0$

Проверка для 3-й строки: $1 \oplus 1 \oplus 0 = 0$

Проверка для 1-го столбца: $1\oplus 0\oplus 1=0$

Проверка для 2-го столбца: $1 \oplus 0 \oplus 1 \neq 1$

Проверка для 3-го столбца: $0 \oplus 1 \oplus 0 = 1$

Проверка элемента (4,4): $0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$

- 3. Если проверка не выполняется, строка и столбец помечаются. В данном случае это строка 1 и столбец 2.
- 4. Искажённые разряды находятся на пересечении помеченных строк и столбцов.
- 5. Таким образом, на месте элемента (1,2) вместо 1 должен быть 0.

Задание 05

Вычислить CRC код (порождающий полином x^4+x+1) для информационной последовательности 11000100110101.

Вычисление значения кода СRC происходит посредством деления многочлена, соответствующего исходному сообщению (полином сообщение), на фиксированный многочлен (полином-генератор). В нашем случае просто выполняется последовательное сложение по модулю 2. Перед этим к сообщению добавляется (n-1) нулевых бит, где n – длина порождающего полинома.

Остаток от такого деления и есть код CRC, соответствующий исходному сообщению.

К исходному сообщению на место добавленных в самом начале (n-1) нулей записывается CRC код (т.е. с (n-1) добавленными нулями выполняется логическое сложение полученного CRC кода). CRC код: 1001

Итоговая последовательность: 110001001101011001

Задание 06

Провести проверку принятых данных 100001001101010111, закодированных с помощью СRC кода (порождающий полином x^4+x+1).

Проверка данных производится путём вычисления остатка от деления закодированной последовательности на порождающий многочлен. В нашем случае просто выполняется последовательное сложение по модулю 2. Если в полученной последовательности отсутствуют ошибки, то в результате должна быть получена последовательность из нулей.

Полученная в результате последовательность содержит единицы, следовательно, данные приняты с ошибкой.

Задание 07

Осуществить кодирование данных с помощью кода Хэмминга (4,3) для информационной последовательности 0101.

Примечание. В условии возможно опечатка, и, скорее всего, имеется ввиду код (7,4). Тогда n=7, m=4.

Количество контрольных разрядов k должно быть выбрано так, чтобы удовлетворялось неравенство:

$$k \ge \log_2(k+m+1)$$

- m количество информационных символов в сообщении;
- n количество символов в сообщении. Числа m и n берутся из маркировки (n,m).

$$3 \geq log_2(3+4+1)$$
, следовательно, $k=3$.

Проверочные биты располагаются на позициях, равным степеням двойки в порядке возрастания: первый проверочный бит на позиции 1, второй проверочный бит на позиции 2, третий проверочный бит на позиции 4.

Номер позиции	7	6	5	4	3	2	1
Значение	$i_4=0$	$i_3=1$	$i_2=0$	k_3	$i_1=1$	k_2	k_1

Определим, какие группы информационных бит контролируют проверочные биты:

- Номер позиции i_1 равен 3, значит, $3=2^0+2^1=1+2$, поэтому информационный бит контролируется битами k_1 и k_2 ;
- Номер позиции i_2 равен 5, значит, $5=2^0+2^2=1+4$, поэтому информационный бит контролируется битами k_1 и k_3 ;
- Номер позиции i_3 равен 6, значит, $6=2^1+2^2=2+4$, поэтому информационный бит контролируется битами k_2 и k_3 ;
- Номер позиции i_4 равен 7, значит, $7=2^0+2^1+2^2=1+2+4$, поэтому информационный бит контролируется битами k_1, k_2 и k_3 .

Рассчитаем значения проверочных символов:

$$k_1=i_1\oplus i_2\oplus i_4=1\oplus 0\oplus 0=1$$
 $k_2=i_1\oplus i_3\oplus i_4=1\oplus 1\oplus 0=0$ $k_3=i_2\oplus i_3\oplus i_4=0\oplus 1\oplus 0=1$

Таким образом, закодированная последовательность имеет вид: 0101101.

Задание 08

Провести проверку принятых данных 0101101 закодированных с помощью кода Хэмминга (4,3).

Примечание. В условии возможно опечатка, и, скорее всего, имеется ввиду код (7,4).

Вычисляем значения проверочных символов на основании принятых данных:

Номер позиции	7	6	5	4	3	2	1
Значение	$i_4=0$	$i_3=1$	$i_2=0$	$k_3=1$	$i_1=1$	$k_2 = 0$	$k_1=1$

$$k_1 = i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1$$

$$k_2 = i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 = 0$$

$$k_3 = i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 = 1$$

Следовательно, принятая комбинация не имеет ошибок.

Если бы комбинация содержала ошибку, то можно было бы вычислить номер неверно принятого бита. Для этого вычисляется синдром $S=s_3s_2s_1$:

$$s_1=k_1\oplus k_1'$$

$$s_2=k_2\oplus k_2'$$

$$s_3 = k_3 \oplus k_3'$$

После этого полученное двоичное число $s_3s_2s_1$ переводится в десятичное – номер искажённого бита:

$$S = s_3 \cdot 2^2 + s_2 \cdot 2^1 + s_1 \cdot 2^0$$

Задание 09

Провести кодирование последовательности символов «kababababababa» по методу Лемпеля-Зива (LZ78).

Описание алгоритма LZ78

Используется словарь из уже просмотренных фраз. Алгоритм считывает символы сообщения до тех пор, пока накапливаемая подстрока входит целиком в одну из фраз словаря. Как только эта строка перестанет соответствовать хотя бы одной фразе словаря, алгоритм генерирует код, состоящий из индекса строки в словаре, которая до последнего введенного символа содержала входную строку, и символа, нарушившего совпадение.

Затем в словарь добавляется введенная подстрока. Если в конце алгоритма мы не находим символ, нарушивший совпадения, то тогда мы выдаем код в виде (индекс строки в словаре без последнего символа, последний символ).

Содержимое словаря	Содержимое считываемой строки		
	k	<0,k>	
k	a	<0,a>	
k, a	b	<0, <i>b</i> >	
k, a, b	ab	<2, <i>b</i> >	
k, a, b, ab	aba	<4,a>	
k, a, b, ab, aba	ba	<3,a>	
k, a, b, ab, aba, ba	abab	<5,b>	
k, a, b, ab, aba, ba, abab	z	<0,z>	

Результатом кодирования является список пар:

$$[<0, k>; <0, a>; <0, b>; <2, b>; <4, a>; <3, a>; <5, b>; <0, z>]$$

Задание 10

Для сверточного кодера (2,1,3) (схема приведена на рис.1) получить закодированный сигнал, если на вход поступает информационная последовательность символов 101.

Кодируется последовательность символов 101, следовательно, ей соответствует многочлен $A(x)=1+x^2.$

У кодера, изображенного на рисунке, имеются два порождающих многочлена:

$$G_1(x) = 1 + x + x^2, ~~G_2(x) = 1 + x^2$$

На выходе первого сумматора кодера последовательность кодовых символов будет 11011, т.к. ей соответствует многочлен

$$B_1(x) = G_1(x)A(x) = (1+x+x^2)(1+x^2) = 1+x+x^3+x^4$$

На выходе второго сумматора кодера последовательность кодовых символов будет 10001, т.к. ей соответствует многочлен

$$B_2(x) = G_2(x)A(x) = (1+x^2)(1+x^2) = 1+x^4.$$

В итоге на выходе кодера будет сформирована последовательность B(x) выходных символов за 5 тактов нахождения входной последовательности 101 в трехразрядном регистре:

$B_1(X)$	1	1	0	1	1
$B_2(X)$	1	0	0	0	1
B(X)	11	10	00	10	11
Такты	1	2	3	4	5

Получили следующую закодированную последовательность: 11 10 00 10 11.