Digital Systems Fundamentals

CSE 232 Digital Systems Fundamentals

Lecture 2

Binary Number Revision and new concepts

Numerical System Review

$$(56.32)_{10} = 5*10^{1} + 6*10^{0} + 3*10^{-1} + 2*10^{-2}$$

$$(34)_8 = 3*8^1 + 4*8^0$$

$$(E1)_{16} = 14*16^1 + 1*16^0$$

$$(010.11)_2 = 0*2^2 + 1*2^1 + 0*2^0 + 1*2^{-1} + 1*2^{-2}$$

Numbers in the Decimal System starts from 0 to 9 NOT from 1 to 10 (which represents 2 digits)

Binary 0 to 1, Octal 0 to 7, Hexadecimal 0 to F(15)

Decimal Binary Equivalence

Decimal	Binary	
0	0	0
1	0	1
2	1	0
3	1	1

Decimal	Binary		
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Conversion

$$(34)_{10} = (?)_{2}$$

$$34/2 = 17 + 0$$

$$17/2 = 8 + 1/2$$

$$8/2 = 4 + 0$$

$$4/2 = 2 + 0$$

$$2/2 = 1 + 0$$

$$1/2 = 1/2$$

$$(34)_{10} = (a_{5}a_{4}a_{3}a_{2}a_{1}a_{0})_{2}$$

$$a_{0} = 0$$

$$a_{1} = 1$$

$$a_{2} = 0$$

$$a_{3} = 0$$

$$a_{4} = 0$$

$$a_{5} = 1$$

© Gamal Fahmy

Class objective

- What is a Digital Signal and how it is represented
- What type of signal that all IT devices has
- What are Bits, Bytes, words, other data types, strings, characters
- Why we need Binary representation
- Why we need Hexadecimal representation

Digital Signals

 The amplitude of a digital signal varies between a logical "0" and logical "1".

All IT devices uses digital signals, why

- Easier to send signals
- Less error in transmission
- Less error
- Better in design

All memory in IT devices are represented in Bytes,

- 16 GB=16 Gegabyte = 16x 10⁹ bytes
- 16 MB=16 Megabytes = 16x 10⁶ bytes

A bit

- A single piece of digital information
 - Either a logical "0" or a logical "1"
 - "1101" is a 4 bit number
 - Since digital electronic circuits output voltages not bits, we assign a voltage range to be equal to a logical "0" and a different voltage range to be a logical "1"
 - Different logic families assign a different range of voltages to be equal to a logical "0" and a logical "1".
 - For example:
 - » TTL "0" → 0 0.7V; "1" → 2 5V
 - » CMOS "0" → 0 1.5V; "1" → 3.5 5V

Converting Decimal to Binary

Grouping of Bits

- Byte: Composed of 8 bits
- String: Sequential set of bits of arbitrary length
- Nibble: Composed of 4 bits or half a byte
 - Nibbles are occasionally written as hexadecimals to make the data more readable
 - Hexadecimals are the numbers in base 16
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Word: The standard memory bus width in the microprocessor or computer architecture
 - 16-bit, 32-bit, or 64-bit architecture

Why we need Binary System

All signals in digital IT devices are represented in Binary, just zeros and ones

All input output signals are converted to digital

All communications/transmission are in digital form by cables

Why we need Hexadecimal

An easy way of reading a binary number

Representation is better memory wise

All data is READABLE

Can you read this 1101 0110 0111 0111 0000 or D6770

A Trick: Converting Binary to Octal

- Mark groups of three (from right)
- Convert each group

10101011 is 253 in base 8

Why does this work??

Converting Binary to Hexadecimal

- Mark groups of four (from right)
- Convert each group

10101011 is AB in base 16

And this?

Converting Decimal to Octal

Converting Decimal to Hex

Strings, Characters

Each character has its own code in any computer or IT device, known as ASCII code For example

Strings are concatenated characters, all a few digitals in HEX according to size of string "This is the first string"=ADBD3F46789..... and so on

How to convert Hex or Octal to Binary

Decimal	Binary	Octal	Hex
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
-5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	c
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	12
18	10010	22	13

Remember

Decimal Binary Equivalence

Decimal	Binary	
0	0	0
1	0	1
2	1	0
3	1	1

This is BCD
Binary Coded
Decimal

Decimal	Binary		
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

1's Complement and 2's Complement

An easier implementation for negative numbers in the subtraction process

1's complement of $C(N)=2^n - N-1$

1's complement of C(N)=(1000-1)-110=001

2's complement of C(N)=1's complement + 1 =010

Subtraction with 2's complement

$$K + C(N) = K - N + 2^n$$

If $K > N$, then you get a carry that you can discard

If K < N, then you get the 2's complement of the result

Example

Codes

Binary Coded Decimals (BCD):

Each decimal digits 4 binary digits

ASCII Each character get 7 binary digits

Gray Coded Numbers:1 bit change per one increment

Home work

Problems:

Number 8, 16, 18, 21 due next week in tutorial