Ідеальний шифр. Чи існує він?

Шифр Вернама

- 1917 рік співробітники компанії АТ&Т Гілберт Вернам та Джозеф Моборн розробили метод шифрування з нескінченною стрічкою.
- Літери відкритого тексту додавалися за правилами XOR з літерами ключової стрічки, довжина якої завжди була рівною довжині повідомлення.
- Вернам використовував кожну стрічку лише один раз, а потім знищував її.
- 1919 рік отримано патент на цей спосіб шифрування.
- Шифр Вернама <u>єдиний шифр, для якого</u> <u>теоретично доведено абсолютну криптографічну стійкість</u>.

Що це значить?

- <u>Теоретично</u>: шифр буде ідеально стійким, якщо апріорна ймовірність отримання інформації (тобто до її розшифрування) дорівнює апостеріорній ймовірності (тобто після її розшифрування).
- Статистично: якщо детерміновану величину об'єднати з випадковою, то результат буде випадковим.
- Як реалізувати таке шифрування?

- Припустимо, що нам треба передати у військо повідомлення: «наказую відступати».
- Використаємо таку таблицю заміни:

A	Б	В	Γ	Д	E	ϵ	Ж	3	И	Ι	Ϊ	Й	К	Л	M
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Н	Ο	П	P	C	T	У	Φ	X	Ц	Ч	Ш	Щ	Ь	Ю	R
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

• Згенеруємо випадковий ключ однакової з повідомленням довжини (18 символів):

• Повідомлення перетворимо так:

«наказуюфвідступати»

• Замінимо літери повідомлення цифрами згідно таблиці заміни:

16	00	13	00	08	22	30	23	02	10	04	20	21	22	18	00	21	09

• Тепер додамо цифри повідомлення і ключа за правилами mod 32. Отримаємо:

16	00	13	00	08	22	30	23	02	10	04	20	21	22	18	00	21	09
10	30	01	17	26	13	01	09	04	21	12	05	19	21	00	27	14	18
26	30	14	17	02	03	31	00	06	31	16	25	08	11	18	27	03	27

- Цю шифрограму передаємо у військо каналами зв'язку.
- Отримавши повідомлення, шифрувальник розшифровує повідомлення, віднімаючи від нього ключ за правилами mod 32:

• Отримає:

26	30	14	17	02	03	31	00	06	31	16	25	08	11	18	2 7	03	2 7
10	30	01	17	26	13	01	09	04	21	12	05	19	21	00	27	14	18
16	00	13	00	08	22	30	23	02	10	04	20	21	22	18	00	21	09
H	A	К	A	3	\mathbf{y}	Ю	Φ	В	I	Д	C	T	\mathbf{y}	П	A	T	И

- Замінивши коди літерами, отримуємо повідомлення.
- Таким чином, ми розшифрували повідомлення: «наказую відступати».

- Зловмисник не знає ключа, на якому шифрувалося повідомлення!
- Перехопивши повідомлення, знаючи, що використовувався шифр Вернама, він буде підставляти усі можливі ключі шифрування.
- Якщо він підставить наш використаний ключ, він отримає розшифроване повідомлення: «наказуюфвідступати».

Якщо він підставить ключ:

10	30	01	17	26	13	01	09	22	31	28	04	18	25	18	06	26	04
																	i e

Він отримає таке повідомлення:

26	30	14	17	02	03	31	00	06	31	16	25	08	11	18	2 7	03	2 7
10	30	01	17	26	13	01	09	22	31	28	04	18	25	18	06	26	04
16	00	13	00	08	22	30	23	16	00	20	21	22	18	00	21	09	23
Н	A	К	A	3	\mathbf{y}	Ю	Φ	Н	A	C	T	\mathbf{y}	П	A	T	И	Φ

«наказуюфнаступатиф»

Якщо ж він підставить ключ:

10	25	11	17	22	19	14	09	30	2 7	16	23	08	31	29	22	15	28

Він отримає таке повідомлення:

26	30	14	17	02	03	31	00	06	31	16	25	08	11	18	2 7	03	2 7
10	25	11	17	22	19	14	09	30	27	16	23	08	31	29	22	15	28
26	30	14	17	02	03	31	00	06	31	16	25	08	11	18	2 7	03	2 7
H	E	Γ	A	Й	Н	O	Φ	3	Д	A	В	A	Й	T	E	C	R

«негайнофздавайтеся»

- Зловмисник може отримати ще багато інших логічно зв'язаних текстів, тобто <u>BCI</u> <u>МОЖЛИВІ ТЕКСТИ ДОВЖИНОЮ ДО 18</u> <u>СИМВОЛІВ!</u>
- Розглянемо отримані три тексти:
 - «наказую відступати»;
 - «наказую наступати»;
 - «негайно здавайтеся».

Який з них правильний? Як це визначити?

- Для вибору правильного повідомлення зловмисник повинен володіти ще якоюсь додатковою інформацією.
- Такою інформацією для супротивника може бути розвідувальна або агентурна інформація.
- Наприклад: якщо чисельність та озброєння військ супротивника кращі, ніж у нього, тоді найбільш ймовірне друге повідомлення;
- Якщо навпаки перше, про відступ.
- Якщо військо супротивника деморалізоване – тоді останнє.

- Уявимо, що ми знайшли цю шифровку через 100 років. Чи зможемо ми обрати правильне, те, яке є дійсно істинним повідомленням? Адже такої додаткової інформації у нас немає!
- У цьому сенсі говорять, що шифр Вернама і є ідеально стійким шифром.
- Розшифрувати його можна, але ми одержимо таку кількість відкритих текстів, що не зможемо вибрати з них істинне повідомлення.

Умови застосування шифру Вернама

- Ключ шифрування повинен бути повністю випадковим;
- Довжина ключа шифрування повинна дорівнювати довжині повідомлення;
- Ключ повинен використовуватися лише один раз.

Чому ж не використовують ідеальний шифр? Навіщо придумали інші шифри, якщо вони не ідеальні?

Чому не використовують шифр Вернама?

- Використовують для особливо важливих випадків.
- Недоліки:
 - Проблема передавання ключа для розшифрування;
 - Проблема зберігання ключа.
- Приклади:
 - Одноразова стрічка;
 - Одноразовий блокнот.