Floating Point Arithmetic

Administrivia

Computer Science 61C Spring 2021

- Assignments Due This Week:
 - Homework 2: 2/5
 - Lab 2: 2/5
- Project 1 is due on 2/8
 - We recommend finishing Lab 2 before starting
- Upcoming Assignments:
 - Lab 3, due 2/12
 - Homework 3, due 2/12
- We will be enforcing a 10-minute limit on office hour slots
 - Please follow the template when submitting a ticket: compiler warnings, valgrind, etc.

Outline

Computer Science 61C Spring 2021

- Revisit Number Representation
- Floating-Point Representation and Arithmetic
- Starting RISC-V (potentially)

Back to Number Representation — Working Towards Floating Point

Computer Science 61C Spring 2021

- Reminder, a collection of *n* bits can represent one of any 2ⁿ
 "things"
- Our default is "unsigned integer"
 - 0 to 2ⁿ-1
 - Naturally good for representing addresses
- Also like "signed" as 2s-complement
 - -2ⁿ⁻¹ to 2ⁿ⁻¹-1
- For both of these the math is "easy"
 - Addition and subtraction are the same for both
 - Subtract by just inverting and adding one...

Some other cool arithmetic tricks

Computer Science 61C Spring 2021

- Does x == y?
 - Easy test: does **x y** == **0**?
- Multiply by 2ⁿ?
 - We left shift (<<) (move the bits to the left) by n
- Can we similarly divide by 2ⁿ?
 - We right shift (>>) by n
 - For unsigned (logical) shift: Left gets 0s
 - For signed (arithmetic) shift: Left gets the sign bit
 - Not quite right for negative numbers:
 you'd say -1/2 = 0, but in 2s complement -1 >> 1 = -1

But "Any one of 2^n " is whatever we make it to be!

Computer Science 61C Spring 20

- One alternate representation: Sign/Magnitude
 - Lets have the first bit say the sign (+ or as 0 or 1)
 - And the rest be unsigned
- Allows us to represent $-2^{n-1}+1$ to $2^{n-1}-1$
- This gives us two zeros (+/- 0)...
- This gives us a cleaner symmetry otherwise
 - Magnitude is consistent for both positive and negative
- But math is more of a pain...
 - So a poor choice if we want to do "simple" math like add and subtract...

Another Alternative Representation: Biased...

Computer Science 61C Spring 2021

- The actual value is the binary value plus a fixed bias
 - So "bias = -127" means the actual number is the binary value with -127 added to it
 - Binary 00000000 -> -127
 - Binary 11111111 -> +128
- Why do this?
 - Can set our range to be arbitrary
 - No discontinuity around 0
- Disadvantages
 - All bits 0 != 0
 - Math more of a pain: To add A + B...
 - A + B bias (To eliminate the extra bias)

Other Numbers

Computer Science 61C Spring 2021

- Numbers with both integer & fractional parts?
 - ex: 1.5
- Very large numbers? (how big is the universe)
 - 860,000,000,000,000,000,000,000 m in diameter (give-or-take...)
 - aka 860 yottameters...
- Very small numbers? (Bohr radius of an atom)

 - aka 0.877 femtometers...
- Notice the huge range!

Representation of Fractions

- Look at decimal (base 10) first:
- Decimal "point" signifies boundary between integer and fractional parts: XX.yyyy

Example 6-digit representation:

Example 6-digit representation:
$$10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-4}$$
$$25.2406_{ten} = 2x10^{1} + 5x10^{0} + 2x10^{-1} + 4x10^{-2} + 6x10^{-4}$$

If we assume "fixed decimal point", range of 6-digit representations with this format: 0 to 99.9999. Not much range, but lots of "precision":

6 significant figures

Binary Representation of Fractions

Computer Science 61C Spring 2021 Kolb and Wear

 "Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit representation:
$$2^{1}$$
 2^{0} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-2} 2^{-2} 2^{-3} 2^{-4} 2^{-2}

If we assume "fixed binary point", range of 6-bit representations with this format: 0 to 3.9375 (almost 4)

Fractional Powers of 2

Computer Science 61C Spring 2021				
	i	2 -i		
		(base 2)	(base 10)	(fraction)
	0	1.0	1.0	1
	1	0.01	0.5	1/2
	2	0.001	0.25	1/4
	3	0.0001	0.125	1/8
	4	0.00001	0.0625	1/16
	5	0.000001	0.03125	1/32
	6	0.0000001	0.015625	1/64
	7	0.00000001	0.0078125	1/128
	8	0.00000001	0.00390625	1/256
	9	0.000000001	0.001953125	1/512
	10	0.00000000001	0.0009765625	1/1024
	11	0.000000000001	0.00048828125	1/2048
erkeley EE <mark>CS</mark>	12	0.0000000000001	0.000244140625	1/4096

Representation of Fractions with Fixed Point What about addition and multiplication?

Kolb and Weave

Addition is straightforward:

$$\begin{array}{cccc} & 01.100 & 1.5_{\rm ten} \\ + & 00.100 & 0.5_{\rm ten} \\ \hline & 10.000 & 2.0_{\rm ten} \end{array}$$

Multiplication a bit more complex:

000

0000.110000

Where's the answer, 0.11? (i.e., 0.5 + 0.25; Need to remember where point is!)

Representation of Fractions

Computer Science 61C Spring 2021

Kolb and Weave

- Our examples used a "fixed" binary point.
 What we really want is to "float" the binary point to make most effective use of limited bits
- With floating-point representation, each numeral carries an exponent field recording the whereabouts of its binary point
- Binary point can be outside the stored bits, so very large and small numbers can be represented ... 000000.001010100000...

Store these bits and keep track of the binary point as 2 places to the left of the MSB

Any other solution would lose precision!

Scientific Notation (in Decimal)

mantissa 6.02_{ten} x 10²³ exponent decimal point radix (base)

- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized:
 - Not normalized:

- 1.0×10^{-9}
- 0.1×10^{-8} , 10.0×10^{-10}

Other Numbers Redux

Computer Science 61C Spring 2021

- Numbers with both integer & fractional parts?
 - 1.5 x 10°
 - Also written as 1.5e0
- Very large numbers? (how big is the universe)
 - 8.6 x 10²⁶ m in diameter (give-or-take...)
- Very small numbers? (Bohr radius of an atom)
 - 8.77 x 10^{-16} m in diameter (give or take \pm 7 x 10^{-18} m)
- Separate out the notion of "precision" from "range"
 - Can represent a very large range with roughly the same "precision"
 So the universe we can measure relative to the size of the universe...
 - While atoms are measured relative to the size of atoms...

Scientific Notation (in Binary)

- Computer arithmetic that supports it is called <u>floating</u> <u>point</u>, because it represents numbers where the binary point is not fixed, as it is for integers
 - Declare such variable in C as float
 - double for double precision

UCB's "Father" of IEEE Floating point

Computer Science 61C Sp

754 for Binary Floating-Point Arithmetic.

Prof. Kahan

www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html

Berkeley EE

Goals for IEEE 754 Floating-Point Standard

Computer Science 61C Spring 2021

Kolb and Weav

- Standard arithmetic for reals for all computers
 - Important because computer representation of real numbers is approximate.
 Want same results on all computers.
- Keep as much precision as possible
- Help programmer with errors in real arithmetic
 - +∞, -∞, Not-A-Number (NaN), exponent overflow, exponent underflow, +/- zero
- Keep encoding that is somewhat compatible with two's complement
 - E.g., +0 in Fl. Pt. is 0 in two's complement
- Make it possible to sort *without* needing to do floating-point comparisons

 Berkeley EECS

18

Floating-Point Representation

Computer Science 61C Spring 2021

Kolb and Wear

- For "single precision", a 32-bit word.
- IEEE 754 single precision Floating-Point Standard:
 - 1 bit for sign (s) of floating point number
 - 8 bits for exponent (E)
 - 23 bits for fraction (F)
 (get 1 extra bit of precision because leading 1 is implicit: there should always be a 1 so why store it at all?)

$$(-1)^s \times (1 + F) \times 2^E$$

 Can represent approximately numbers in the range of 2.0 x 10⁻³⁸ to 2.0 x 10³⁸

Floating-Point Representation

Computer Science 61C Spring 2021

Kolb and Wear

Normal format: (-1)^S * 1.xxx...x * 2^(yyy...y - 127)

<u>31</u>	30	23	22	C)
S	Exponent			Significand	Ī
1 bit	8 bits			23 bits	

- S represents Sign
 - 1 for negative, 0 for positive
- x's represent Fractional part called Significand
 - implicit leading 1, signed-magnitude (not 2's complement)
- y's represent Exponent
 - in biased notation (bias of -127)

Sorting Requirement...

Computer Science 61C Spring 2021

- We can sort the sign field by just +/-...
 - Makes it easy to separate the two.. But what then?
- We need to sort by exponent + mantissa easily
 - Thus biased notation:
 An unsigned comparison between exponents Just Works
 - Bigger is larger
 - And the exponent is more significant, so it just sorts by exponent
 - And when the exponent is the same, the mantissa sorting Just Works
- So we can sort all positive numbers together just like they were integers
- And also an exponent of 0 isn't actually special...
 - The special exponents are MAX and MIN...

Bias Notation (exponent = stored value - 127)

How it is interpreted

How it is encoded

Computer Science 61C Spring 2021				Kolb and Weaver
_				
	Decimal	signed 2's	Biased Notation	Decimal Value of
	Exponent	complement		Biased Notation
∞, NaN	For infinities		11111111	255
∞, ivaiv	127	01111111	11111110	254
	2	00000010	10000001	129
Getting	1	00000001	10000000	128
closer to	0	00000000	01111111	127
	-1	11111111	01111110	126
zero	-2	11111110	01111101	125
1				
<u> </u>	-126	10000010	00000001	1
Zero	For Denorms	10000001	00000000	0

Floating-Point Representation

Computer Science 61C Spring 2021

Kolb and Weaver

- What about bigger or smaller numbers?
- IEEE 754 Floating-Point Double Precision Standard (64 bits)
 - 1 bit for **sign (s)** of floating-point number
 - 11 bits for exponent (E) with a bias of -1023
 - 52 bits for fraction (F)
 (get 1 extra bit of precision if leading 1 is implicit)

$$(-1)^s \times (1 + F) \times 2^E$$

- Can represent from 2.0 x 10⁻³⁰⁸ to 2.0 x 10³⁰⁸
- More importantly, 53 bits of precision!
- Recall, 32-bit format called Single Precision
- The FP specifications for bit pattern and biases are printed on the RISC-V green sheet

Floating-Point Representation

Computer Science 61C Spring 2021

Kolb and Wear

- What if result too large?
 (> 2.0x10³⁸ , < -2.0x10³⁸)
 - Overflow! ⇒ Exponent larger than represented in 8-bit Exponent field
- What if result too small?

$$(>0 \& < 2.0x10^{-38}, <0 \& > -2.0x10^{-38})$$

<u>Underflow!</u> ⇒ Negative exponent larger than represented in 8-bit Exponent field

What would help reduce chances of overflow and/or underflow?

Lets consider two exponents "special"

Computer Science 61C Spring 2021

- Exponent all-zeros
 - Very small numbers
- Exponent all-ones
 - Infinity/NaN...
- What these do we will get to in a bit...

Example

Computer Science 61C Spring 2021 Kolb and Weaver

 What's the base 10 value of this single precision Floating Point number?

1 1000 0000 1000 0000 0000 0000 0000 000

Example

Computer Science 61C Spring 2021

- What's the base-10 value of this single precision Floating Point number?
- 1 1000 0000 1000 0000 0000 0000 0000
- -1 * 2¹²⁸-127 * 1.1₂
- -1.5 * 2
- -3

More Floating Point: Preview

Computer Science 61C Spring 202

- What about 0?
 - Bit pattern all 0s means 0 (so no implicit leading 1 in this case)
- What if divide 1 by 0?
 - Can get infinity symbols +∞, -∞
 - Sign bit 0 or 1, largest exponent (all 1s), 0 in fraction
- What if do something stupid? ($\infty \infty$, $0 \div 0$)
 - Can get special symbols NaN for "Not-a-Number"
 - Sign bit 0 or 1, largest exponent (all 1s), not zero in fraction
- What if result is too big?
 - Get overflow in exponent, alert programmer!
- What if result is too small?
 - Get underflow in exponent, alert programmer!

Representation for 0

Computer Science 61C Spring 2021

Kolb and Weaver

- Represent 0?
 - Exponent all zeroes
 - Significand all zeroes
 - What about sign? Both cases valid!

Because it isn't really zero!

Computer Science 61C Spring 2021

Kolb and Weaver

- +0 is really "This number is too small to represent and either zero or somewhere between 0 and our smallest number"
- -0 is really "This number is too small to represent, and either zero or somewhere between 0 and our smallest negative number"

Representation for ± ∞

Computer Science 61C Spring 2021
Kolb and Weav

- In FP, divide by 0 should produce ± ∞, not overflow
- Why?
 - OK to do further computations with ∞
 E.g., X/0 > Y may be a valid comparison
- IEEE 754 represents ± ∞
 - Most positive exponent reserved for ∞
 - Significand all zeroes

Special Numbers

Computer Science 61C Spring 2021

Kolb and Weaver

What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
1-254	anything	Normal Floating Point
255	0	Infinity
255	Nonzero	???

Representation for Not-a-Number

Computer Science 61C Spring 2021

- What do I get if I calculate sqrt(-4.0)or 0/0?
 - If ∞ not an error, these shouldn't be either
 - Called Not a Number (NaN)
 - Exponent = 255, Significand nonzero
- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN, X) = NaN
 - Can use the significand to identify which! (e.g., quiet NaNs and signaling NaNs)
- Watch out for NaN in comparisons!

NaN ≥ <i>x</i>	NaN ≤ <i>x</i>	NaN > <i>x</i>	
Always False	Always False	Always False	
NaN < x	NaN = x	NaN ≠ x	

Always False | Always False | Always True

Representation for Denorms (1/2)

Computer Science 61C Spring 2021

Kolb and Weav

Problem: There's a gap among representable FP numbers around 0

Smallest representable positive number:

$$a = 1.0..._{2} * 2^{-126} = 2^{-126}$$

Second smallest representable positive number:

Representation for Denorms (2/2)

Computer Science 61C Spring 2021

Kolh and Weave

Solution:

- We still haven't used Exponent = 0, Significand nonzero
- <u>Denormalized number</u>: no (implied) leading 1,
 implicit exponent = -126
- Smallest representable positive number: $a = 2^{-149}$ (i.e., $2^{-126} \times 2^{-23}$)
- Second-smallest representable positive number:

b =
$$2^{-148}$$
 (i.e., $2^{-126} \times 2^{-22}$)

- ∞ + ∞

Special Numbers Summary

Computer Science 61C Spring 2021
Kolb and Weaver

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
1-254	aynthing	Normal Floating Point
255	0	Infinity
255	Nonzero	NaN

Saving Bits

Computer Science 61C Spring 2021

- Many applications in machine learning, graphics, signal processing can make do with lower precision
- IEEE "half-precision" or "FP16" uses 16 bits of storage
 - 1 sign bit
 - 5 exponent bits (exponent bias of 15)
 - 10 significand bits

So In Review...

Computer Science 61C Spring 2021
Kolb and Weav

- Floating point: we interpret sequence of bits differently than for signed/unsigned integers
 - A single sign bit (0 == positive, 1 == negative)
 - An exponent in biased form
 - A mantissa with an implicit leading 1
- Complications occur at the edges
 - Maximum exponent -> Either ∞ or NaN
 - Minimum exponent -> Either 0 or a denormalization
 - Fixed exponent, no more implicit leading 1

So Real Choice is Precision v Performance

Computer Science 61C Spring 2021

- Half Precision: 16b
 - 1b signed
 - 5b exponent, bias -15
 - 10b significand
- Single precision: 32b
 - 1b signed
 - 8b exponent, bias -127
 - 24b significand
 - float

- Double precision: 64b
 - 1b signed
 - 11b exponent, bias -1023
 - 53b significand
 - double
- Quad precision: 128b
 - 1b signed
 - 15b exponent, bias -16383
 - 113b significand

