Priority (Preemptive)

Nirmala Shinde Baloorkar Assistant Professor Department of Computer Engineering

CPU Scheduling Algorithms

First Come First Serve (FCFS) Shortest Job First (SJF)

Priority Scheduling Round Robin (RR)

Priority-Based Scheduling

Scenario:

If a newly arrived process has a higher priority than the currently running process.

Characteristics:

- Preemptive Priority Scheduling Algorithm:
 - The CPU is preempted, and the currently running process is moved to the ready queue.
 - The newly arrived process is then scheduled for execution.
- Non-Preemptive Priority Scheduling Algorithm:
 - The newly arrived process is placed at the tail of the ready queue.
 - The currently running process continues execution until it finishes, after which the scheduler picks the next process.

Pre-emptive Priority Scheduling

- Pre-emptive Priority Scheduling is a CPU scheduling algorithm where processes are assigned priorities, and the CPU is always allocated to the process with the highest priority that is ready to run.
- If a higher-priority process arrives while a lower-priority process is executing, the current process is pre-empted, and the CPU is given to the higher-priority process.

Example 1 Pre-emptive Priority

Turnaround Time = Completion Time - Arrival Time

Process	Priority	Burst Time	Arrival
			Time
P1	1	4	0
P2	2	3	0
Р3	1	7	6
P4	3	4	11
P5	2	2	12

• Gantt Chart

- Turnaround Time $P_1 = 4$; $P_2 = 14$; $P_3 = 7$; $P_4 = 9$; $P_5 = 4$
- Average turnaround time: 38/5 = 7.6ms

Example 1 Pre-emptive Priority

Waiting Time = Turnaround Time - Burst Time

Process	Priority	Burst Time	Arrival Time
P1	1	4	0
P2	2	3	0
Р3	1	7	6
P4	3	4	11
P5	2	2	12

Gantt Chart

- Turnaround Time $P_1 = 4$; $P_2 = 14$; $P_3 = 7$; $P_4 = 9$; $P_5 = 4$
- Waiting Time $P_1 = 0$; $P_2 = 11$; $P_3 = 0$; $P_4 = 5$; $P_5 = 2$
- Average waiting time: 18/5 = 3.6ms

Example 2 Pre-emptive Priority

• Consider the following set of processes, given in milliseconds.

process	Burst time	Arrival time	Priority
P1	6	0	2
P2	2	5	3
P3	8	3	2
P4	3	0	1
P5	4	8	1

• Low number represents the high priority.

Priority Scheduling

• Problem = Starvation/Indefinite blocking

- Low priority processes may never execute
 - Leave some low priority processes waiting indefinitely for the CPU

Priority Scheduling

- Solution ≡ Aging as time progresses increase the priority of the process that wait in the system for a long time.
- For e.g- If priorities range from 127 (low) to 0 (high), decrement the priority of a waiting process by 1 every 15 minutes.

Question?

