Handbook on physical units and constants

Andriy Zhugayevych October 13, 2019

1	Basic facts. Notations and conventions	1
2	Fundamental units	2
3	Mechanics	3
4	Thermodynamics and molecular physics	3
5	Electromagnetism and optics	4
6	System $\hbar = c = 1$	6
7	Atomic system of units $(m_e = \hbar = e = 1)$	6

§1. Basic facts. Notations and conventions

System of units: International SI (m, kg, s, A, K, mol, cd), Symmetric CGS (cm, g, s), Electrostatic CGSE, Electromagnetic CGSM, $\hbar = c = 1$ (g), and some technical systems. In this paper we use CGS.

To change unit in an expression use the following scheme. Let we have amount X in units u^n , briefly $x = X u^n$. We want to transform this expression to unit v which is in the following relation to u: 1 u = Z v, briefly u = Z v. Then $X u^n = XZ^n v^n$.

We denote by $[x] \equiv X$ the value of the physical quantity x without units. If the unit system is different from CGS, it is written as subindex like this $[x]_{SI}$.

The standard uncertainty of a scientific constant is its estimated standard deviation [1]. For example, x = 1.234(12) means that the expectation of x is 1.234 and the standard deviation of x is 0.012. If x is normally distributed then with probability 68% its value belongs to the interval 1.234 ± 0.012 .

Note that "g/cm s" means "g cm $^{-1}$ s $^{-1}$ ".

Fundamental constants					
speed of light	c	$2.99792458 \cdot 10^{10} \text{cm/s (exact)}$			
Planck constant	\hbar	$1.0545726(6) \cdot 10^{-27} \text{g cm}^2/\text{s} = 6.5821215 \cdot 10^{-16} \text{eV s}$			
gravitation constant	G	$6.67259(85) \cdot 10^{-8} \text{cm}^3/\text{g s}^2$			
fine structure constant	α	$0.00729735308(33) \ (=e^2/\hbar c)$			
Avogadro constant	$N_{ m A}$	$6.0221367(36) \cdot 10^{23} \text{mol}^{-1}$			

2 Fundamental units

§2. Fundamental units

Note: After quantity name its units in CGS, SI and $\hbar=c=1$ are written.

Length (cm, m, g ⁻¹)							
Dengun (em, m, g)							
Planck length	$l_{ m Pl}$	$\sqrt{\frac{G}{\hbar c^3}}$	$1.62 \cdot 10^{-33}$	cm			
Compton wavelength of proton	$\lambda_{ m p}$	$\frac{2\pi\hbar}{m_{\rm p}c}$	$1.32 \cdot 10^{-13}$	cm			
Compton wavelength of electron	$\lambda_{ m e}$	$\frac{2\pi\hbar}{m_{\rm e}c}$	$2.43 \cdot 10^{-10}$	$^{ m cm}$			
Angstrom unit	A		10^{-8}	cm			
Bohr radius	$a_{\rm B}$	$\frac{\hbar^2}{m_{ m e}e^2}$	0.529	A			
Earth radius	R_{\oplus}		$6.371 \cdot 10^8$	cm			
Sun radius	R_{\odot}		$6.9599(7) \cdot 10^{10}$	$^{ m cm}$			
astronomical unit	UA		$1.49597870(2) \cdot 10^{13}$	cm			
light year	ly	$c \cdot \text{year}$	$0.9460530 \cdot 10^{18}$	$^{\mathrm{cm}}$			
parsec	pc	$\frac{1}{\pi}$ UA	$3.085778 \cdot 10^{18}$	cm			

Time (s, s, g^{-1})									
Planck time	$t_{ m Pl}$	$\sqrt{rac{G}{\hbar c^5}}$	$5.39 \cdot 70^{-14}$	s					
tropical year	year	$365.24 \mathrm{\ days}$	$3.1556922 \cdot 10^7$	s					

Mass (g, kg, g)						
Planck mass	$m_{ m Pl}$	$\sqrt{\frac{G}{\hbar c^3}}$	$2.18\cdot10^{-5}$	g		
electron mass	$m_{ m e}$	·	$9.1093897(54) \cdot 10^{-28}$	m	$=0.511~\mathrm{MeV}$	
proton mass	$m_{ m p}$		$1.6726231(20) \cdot 10^{-24}$	g	=938 MeV	
atomic mass unit	u	$[N_{ m A}]^{-1}$	$1.660538921(73) \cdot 10^{-24}$	g		
air molecule mass			28.964420	u		
Earth mass	M_{\oplus}		$5.976 \cdot 30^{27}$	g		
Sun mass	M_{\odot}		$1.989(4) \cdot 10^{33}$	g		

Energy ($erg = g cm^2/s^2$, $J = kg m^2/s^2 = 10^7 erg$, g)							
electronvolt	eV	$\frac{[e]}{[c]} 10^8$	$1.60218733(44) \cdot 10^{-12}$	erg			
thermochemical calorie	cal		4.184	J	exact		
specific energy	kcal/mol	$\frac{[\text{kcal/eV}]}{[N_{\text{A}}]}$	0.043364	eV			
Hartree energy	hartree	$\frac{[N_{ m A}]}{m_{ m e}e^4}$	$2 \times 13.6056923(12)$	eV			
Rydberg energy	Ry	$\frac{m_{ m e}e^4}{2\hbar^2}$	13.6056923(12)	eV			
Coulomb energy		e^2	14.400	eV Å			
quantum confinement energy		$\frac{\hbar^2}{m_{ m e}}$	7.6200	${ m eV \AA^2}$			
Sun luminosity	L_{\odot}		$3.846 \cdot 10^{33}$	erg/s			

Charge ($esu^2 = g cm^3/s^2 \equiv erg cm$, $C \equiv A s = [c]/10 esu$, 1)						
Ampere	A	[c]/10	$0.299752458 \cdot 10^{10}$	esu/s	exact	
electron charge	e		$4.8032068(15) \cdot 10^{-10}$	esu	$1.60217733(49) \cdot 10^{-19} \text{ C}$	
Bohr magneton	$\mu_{ m B}$	$\frac{e\hbar}{2m_{\rm e}c}$	$9.2540654(31) \cdot 10^{-21}$	cm esu	erg/G	
nuclear magneton	$\mu_{ m N}$	$\frac{e\hbar}{2m_{\mathrm{p}}c}$	$2.0407846(17) \cdot 10^{-24}$	cm esu	erg/G	
		$\mu_{ m e}/\mu_{ m B}$	1.002159622193(10)			
		$\mu_{ m p}/\mu_{ m N}$	2.722867386(63)			

§3. Mechanics

Mechanical quantities and their units						
momentum	p		kg m/s			
angular momentum	L		${\rm kg} {\rm m}^2/{\rm s}$			
moment of inertia	I		kg m ²			
force	F	N	$kg m/s^2$			
moment of force (torque)	M		N m			
pressure	p	Pa	$kg/m s^2$	$bar=10^5 Pa$		
dynamic viscosity	η	Р	g/cm s			
kinematic viscosity	ν	St	$\rm cm^2/s$			
surface tension	α		N/m			
work	A		J			
power	P	W	$\rm kg \ m^2/s^3$			

Acoustic waves $(c_{air} = 330 \mathrm{m/s})$						
ν	$\lambda = c_{\rm air}/\nu$	octaves				
< 40 Hz	> 10 m		infrasound			
$16~\mathrm{Hz}-22~\mathrm{kHz}$	15 mm - 28 m	10	sound			
$1-4~\mathrm{kHz}$	$10-34~\mathrm{cm}$	2	best sound			
20 kHz – 1000 MHz	$0.3~\mu\mathrm{m}-15~\mathrm{mm}$	16	ultrasound			
$10^9 - 10^{13} \; \mathrm{Hz}$	$0.03 - 300 \; \mathrm{nm}$	13	hypersound			

Pressure					
ultra-high vacuum	< 100 nPa				
ear sensitivity	$20~\mu\mathrm{Pa}$				
high vacuum	< 100 mPa				
US dollar bill	1 Pa				
ear-safe	< 200 Pa				
1 atm	101 kPa				
human bite	1 MPa				
Earth core	360 GPa				
diamond anvil cell	500 GPa				
Sun core	$2.5 \cdot 10^{16} \text{ Pa}$				

§4. Thermodynamics and molecular physics

Thermodynamic constants					
Boltzmann constant	k		$1.380658(02) \cdot 10^{-16}$	erg/K	
molar gas constant	R	$kN_{ m A}$	8.334510(70)	$\rm J/mol K$	
Stefan–Boltzmann constant	σ	$\frac{\pi^2 k^2}{60\hbar^3 c^2}$	$5.87051(19) \cdot 10^{-8}$	$\mathrm{W/m^2K^4}$	

Standard atmosphere					
lattitude	φ	45°32′40″			
acceleration of gravity	g	980.665 cm/s^2			
pressure	$p_{\rm A}$	101325 Pa (1 atm or 760 mm Hg)			
temperature	$T_{\rm A}$	288.15 K (15°C)			
molecular weight	$m_{\rm A}$	28.9644 u			

Energy-temperature-wavelength-time conversion is based on the identities $E=kT,\,E=2\pi\hbar c/\lambda,\,E=2\pi\hbar/P$:

$$1 \text{ eV} = 11600 \text{ K} = (1240 \text{ nm})^{-1} = (4.136 \text{ fs})^{-1}, \quad 1000 \text{ K} = 86.17 \text{ meV}, \quad 1 \text{ cm}^{-1} = 0.124 \text{ meV}, \quad 1 \text{ fs}^{-1} = 4.136 \text{ eV}$$

Energy-pressure conversion based on the identity E = pV: 1 eV/Å³=160 GPa, 1 GPa=6.24 meV/Å³.

$\S 5.$ Electromagnetism and optics

In SI there are two fundamental constants: permittivity of vacuum $\varepsilon_0 = 10^{11}/\left(4\pi[c]^2\right)$ F/m and permeability of vacuum $\mu_0 = 4\pi 10^{-7}$ H/m. Note also that all magnetic quantities in SI are in some sense multiplied by the speed of light in comparison with electrical quantities, so their dimensions differ.

Electromagnetic quantities and their units							
charge	q	С	A s	$10^{-1}[c]$	esu		
current	I	A	A	$10^{-1}[c]$	esu/s		
electric potential	U	V	$\rm kg~m^2/A~s^3$	$10^8[c]^{-1}$	esu/cm	$e \cdot V \equiv eV$	
electric intensity	E	V/m	$kg m/A s^3$	$10^6 [c]^{-1}$	esu/cm^2		
electric displacement	D	$\mathrm{C/m^2}$	$A s/m^2$	$4\pi 10^{-5}[c]$	esu/cm^2		
polarization	P	C/m^2	$A s/m^2$	$10^{-5}[c]$	esu/cm^2		
magnetic flux density	B	T	$kg/A s^2$	10^4	esu/cm^2	=G	
magnetizing force	H	A/m	A/m	$4\pi 10^{-3}$	esu/cm^2	=Oe	
magnetization	M	A/m	A/m	$(4\pi)^{-1}10^4$	esu/cm^2	=G	
magnetic flux	Φ	Wb	${\rm kg~m^2/A~s^2}$	10^{8}	esu=Mx		
electric dipole moment	p	C m	A m s	10[c]	esu cm	debye,D= 10^{-18} esu·cm, e ·Å= 4.8 D	
magnetic moment	μ	J/T	${ m A~m^2}$	10^{3}	esu cm		
resistance	R	Ω	$\mathrm{kg}\;\mathrm{m}^2/\mathrm{A}^2\mathrm{s}^3$	$10^9[c]^{-2}$	s/cm		
resistivity	ρ	Ω m	${\rm kg}~{\rm m}^3/{\rm A}^2{\rm s}^3$	$10^{11}[c]^{-2}$	s		
capacitance	C	F	$A^2s^4/kg m^2$	$10^{-9}[c]^2$	cm		
inductance	L	H	$\mathrm{kg}\;\mathrm{m}^2/\mathrm{A}^2\mathrm{s}^2$	10^{9}	cm		
polarizability	α	$\rm C~m^2/V$	A^2s^2/kg	$10^{-5}[c]^2$	$\rm cm^3$		

Magnetic fields		
galaxy clusters	$12~\mu\mathrm{G}$	
Milky Way	$5~\mu\mathrm{G}$	
near Earth	$10{}100~\mu{\rm G}$	
Earth equator	$0.35 \; { m G}$	
Earth poles	$0.65~\mathrm{G}$	
Sun poles	$1-2~\mathrm{G}$	
human-safe	$< 50 \ \mathrm{kG}$	
white dwarfs	1–10 MG	
neutron stars	$10^{10} - 10^{13} \text{ G}$	

Resistivity ρ , Ω cm			
metals	$10^{-6} - 10^{-4}$		
semiconductors	$10^{-3} - 10^7$		
insulators	$10^8 - 10^{18}$		
electrolytes	$10^0 - 10^{10}$		
water, alcohols	$10^5 - 10^8$		
solid electrolytes	$10^1 - 10^3$		
Si	$2.3 \cdot 10^5$		
SiO_2	10^{13}		

Mobility μ , cm ² /V s			
$\sigma = \mu ne, D = \mu T/e$			
hopping	< 1		
e in Si	$1.5\cdot 10^7$		
h in Si	$0.5 \cdot 10^7$		
H^{+} in water	$3.3\cdot 10^{-3}$		
$\mathrm{OH^-}$ in water	$1.8\cdot 10^{-3}$		
Na ⁺ in water	$0.5\cdot 10^{-3}$		
solid electrolytes	$10^{-4} - 10^{-3}$		

	Electromagnetic spectrum				
λ $\nu = c/\lambda$ $E = 2\pi\hbar c/\lambda$					
	,	RADI	OWAVES (35 octaves)		
> 10 km	< 30 kHz		superlong RW		
1–10 km	30–300 kHz		long RW		
0.1–1 km	0.3–3 MHz		medium RW		
10–100 m	3–30 MHz		short and ultrashort RW, AM radio		
1–10 m	30–300 MHz	$0.11~\mu\mathrm{eV}$	meter RW, FM radio		
1 mm – 30 m			the first window in Earth atmosphere		
21 cm			neutral hydrogen line		
1–10 dm	0.3–3 GHz		ultrahigh frequencies (UVCh)		
1–10 cm	3–30 GHz		microwaves, SVCh		
1–10 mm	30–300 GHz	$0.11~\mathrm{meV}$	microwaves		
1 mm			2.7 K cosmic microwave background		
0.1–1 mm	0.3–3 THz	$110~\mathrm{meV}$	submillimeter RW		
		OPTIC	AL BAND (17 octaves)		
		INFRAF	RED BAND (11 octaves)		
0.05-2 mm		$0.5-25~\mathrm{meV}$	far IR		
$50~\mu\mathrm{m}$		$26~\mathrm{meV}$	the heat energy of molecules at 20°C		
$10~\mu\mathrm{m}$			blackbody radiation at 20°C		
$2.5–50~\mu\mathrm{m}$		$25-500~\mathrm{meV}$	medium IR, L,M,N,Q bands		
$1.5~\mu\mathrm{m}$			T=1900 K blackbody radiation (candle)		
$1~\mu\mathrm{m}$			T=2900 K blackbody radiation (incandescent lamp, red stars)		
$0.8 – 2.5 \ \mu {\rm m}$		0.5 – 1.5 eV	near IR, I,J,H,K bands, Si band (1.1 eV)		
VISIBLE BAND (1 octave)					
390–760 nm		$1.5-3~\mathrm{eV}$	cone vision (best for 556 nm), visible band		
400–650 nm			rod vision (best for 510 nm)		
500 nm		$2.48~{ m eV}$	Sun spectral maximum (T=5780 K)		
300 nm–2 μm			the second window in Earth atmosphere		
700 nm		1.77 eV	R band, red color		
550 nm		2.25 eV	V band, green color		
440 nm		2.82 eV	B band, blue color		
			IOLET BAND (5 octaves)		
10–400 nm		3–100 eV	ultraviolet band		
360 nm		3.44 eV	U band		
290 nm			T=10000 K blackbody radiation (A0 stars)		
X-RAYS (10 octaves)					
0.2–10 nm		$0.1–5~\mathrm{keV}$	soft X-rays		
0.01–0.2 nm		5–100 keV	hard X-rays		
(10.0)			MA-RAYS (40 octaves)		
$10^{-(10\div9)}$ cm		$0.1-1~{ m MeV}$	soft γ -rays		
$10^{-(11 \div 10)}$ cm		1–10 MeV	medium γ -rays		
$10^{-(15 \div 11)}$ cm		$10^{-2} - 10^2 \text{ GeV}$	hard γ -rays		
$10^{-(21 \div 15)} \text{ cm}$		$10^{-1} - 10^5 \text{ TeV}$	ultrahigh energy γ -rays		

6 REFERENCES

§6. System $\hbar = c = 1$

Physic	Physical quantities		
m^{-1}	r, t		
1	v, S, e, α		
m	p, E, A		
m^2	F, E, B		
m^4	\mathcal{L}		

Fundamental units				
erg	c^{-2}	$1.11265 \cdot 10^{-21}$	g	
eV		$1.78268 \cdot 10^{-33}$	g	
cm	$c\hbar^{-1}$	$2.8427 \cdot 10^{37}$	g^{-1}	
s	$c^2\hbar^{-1}$	$8.5223 \cdot 10^{47}$	g^{-1}	

§7. Atomic system of units $(m_{\rm e}=\hbar=e=1)$

Fundamental units				
length	$a_{\rm B}$	$\frac{\hbar^2}{m_{\mathrm{e}}e^2}$ \hbar^3		
time		$\frac{\hbar^3}{m_{\rm e}e^4}$		
mass	$m_{ m e}$	$m_{ m e}$		
energy	hartree	$\frac{m_{\rm e}e^4}{\hbar^2}$		
charge	e	e		

Other units				
electric dipole moment	$e \cdot a_{\mathrm{B}}$	$\frac{\hbar^2}{m_{ m e}e}$		

References

 $[1] \ http://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html$