논문 리뷰 (요약 및 정리)

과제연구 주제	딥러닝을 활용한 핸드 제스처 인식 및 음성화			
리뷰자	학 년	반	번 호	이 름
	1	1	18	이현수
	1	3	14	이건희

관련 논문	논문제목	실시간 핸드 제스처 추적 및 인식		
	저자	하정요, 김계영, 최형일		
	출처(년도)	한국컴퓨터정보학회 학술발표논문집 18(2), 2010.7, 141-144		
논문의 목적	인간과 컴퓨터 상호간의 의사소통기술을 필요로 하는 이 시대에, '제스처인식'시스템을 개발하여서 사람과 사람 사이의 의사소통 수준에 이르게하기 위해서이다. 즉, 최종적으로 제스처를 인식하는 것이다.			
논문의 실험방법	(1) 손 피부색 추출 $ - \ \ \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $			
	(2) 손 영역 무게중심 추출 - 특정 순간의 영상이나 사진을 픽셀 단위로 나눈 뒤, 수직/수평 방향으로 히스토그램을 만들어 아래와 같이 손의 무게중심을 추출한다.			
	Y	$C_{x} = \frac{\sum_{i=x1}^{x^{2}} \sum_{j=y1}^{y^{2}} jB(i,j)}{A}, C_{y} = \frac{\sum_{i=x1}^{x^{2}} \sum_{j=y1}^{y^{2}} iB(i,j)}{A}$		
	- '칼만 필	【 추적 / 인식 월터'를 사용한다. 인식 단계에서는 HMM 알고리즘¹) 을 이용하 ☞출된 벡터 중 가장 높은 확률을 갖는 모델을 선택해 그 경로		
	(4) 프로그 - Visual (제작한다.	램 개발 Studio 2008을 이용하여 인식 결과를 나타내는 프로그램을		

(1) 프로그램 실행 모습 (2) 인식 정확도 각 숫자를 나타내는 그림(영상)에서 컴퓨터가 인식한 결과의 정확률을 이 나타낸 표이다. 숫자 인식결과 인식률(%) 논문의 결론 1 95 95 2 97 3 96 96 4 95 95 5 94 94 평균 94.5 945 (3) 후속 연구 진행방안 향후 실험에는 더욱 복잡한 배경 에서도 손 모양을 인식할수 있는 연구 가 필요하며, 손 영역을 더욱 빠르고 안정적으로 추출하기 위한 연구가 수 행되어야 한다. (대표 2개만 첨부) [1] D. Chai and K.N. Ngan, "Face segmentation using skin-color map in videophone application." IEEE Trans. Circuits System Video Technol. 9(4) (1999) 551-564. 논문의 참고 문헌 [2] 하정요, 이민호, 최형일, "HMM(Hidden Markov Model)을 이용한 핸 드 제스처 인식," Journal of Digital Contents Society, vol.10, no. 2, pp. 291~298, Jun. 2009 → 다른 논문 리뷰에도 있음 과제연구를 진행할 때, 동작을 나타내는 손 사진을 분석하기 위해서는 기 과제연구 주제와의 본적으로 손의 윤곽을 본떠 내는 등 손 부분만 인식하는 작업이 필요한데, 연관성 위 논문에 나온 방법(기술)을 인용해서 해결할 수 있을 것이다.

¹⁾ HMM(Hidden Markov Mode) 알고리즘 : 시스템에 존재하는 여러 상태간의 전이 확률과 시스템의 상태와 관측결 과를 연결하는 관측 확률을 이용하여 시스템의 거동을 모델링하는 방법