Partial differential equations

Marcin Kuta

Types of PDEs

$$au_{xx} + bu_{xy} + cu_{yy} + du_x + eu_y + fu + g = 0$$
 (1)

- $b^2 ac > 0$: hyperbolic
- $b^2 ac = 0$: parabolic
- $b^2 ac < 0$: elliptic
- Wave equation $u_{tt} = u_{xx}$
- Heat equation $u_t = u_{xx}$
- Laplace equation $u_{xx} + u_{yy} = 0$

Solving PDEs with neural networks

Advantages:

- fully implicit method
- mesh-free
- no time step
- no stability problems

Disadvantages:

- does not generalize beyond domain (no extrapolation)
- no guarantee of unique solutions
- may converge to different solutions from different network initial values

Boundary conditions

- Dirichlet (essential boundary conditions)
- Neumann (natural boundary conditions)
- Robin
- mixed
- general

Partial differential equations

$$u_t + \mathcal{N}_x[u] = 0, \qquad x \in \Omega, t \in [0, T]$$

$$u(x, 0) = h(x), \qquad x \in \Omega$$

$$u(x, t) = g(x, t), \qquad x \in \partial\Omega, t \in [0, T]$$

$$(2)$$

$$(3)$$

$$(4)$$

$$\hat{u}(x,t) = Z_{l} \circ a \circ Z_{l-1} \circ a \dots a \circ Z_{2} \circ a \circ Z_{1}(x,t)$$
 (5)

Loss function

$$\mathcal{L} = \lambda_{\text{PDE}} \mathcal{L}_{\text{PDE}} + \lambda_{\text{BC}} \mathcal{L}_{\text{BC}} + \lambda_{\text{IC}} \mathcal{L}_{\text{IC}} + \lambda_{\text{REC}} \mathcal{L}_{\text{REC}} + \lambda_{\text{REG}} \mathcal{L}_{\text{REG}}$$
 (6)

$$\mathcal{L}_{PDE} = \frac{1}{N_r} \sum_{i=1}^{N_r} |\hat{u}_t(x_i, t_i) + \mathcal{N}_x [\hat{u}(x_i, t_i)]|^2$$
 (7)

$$\mathcal{L}_{BC} = \frac{1}{N_b} \sum_{i=1}^{N_b} |\hat{u}(x_i, t_i) - g(x_i, t_i)|^2$$
 (8)

$$\mathcal{L}_{IC} = \frac{1}{N_0} \sum_{i=1}^{N_0} |\hat{u}(x_i, 0) - h(x_i, 0)|^2$$
 (9)

$$\mathcal{L}_{\mathsf{REC}} = \frac{1}{N_d} \sum_{i=1}^{N_d} |\hat{u}(x_i, t_i) - u_i^{\mathsf{true}}|^2$$
 (10)

$$\mathcal{L}_{\mathsf{REG}} = \frac{1}{2} \sum_{i,j} |w_{ij}|^2 \tag{11}$$

Physics-informed neural network

Source: [2]

Loss function

$$\mathcal{L} = w_f \mathcal{L}_f + w_b \mathcal{L}_b \tag{12}$$

$$\mathcal{L}_f = \frac{1}{N_f} \sum_{\mathbf{x} \in \Omega} ||f(\mathbf{x}, \frac{\partial \hat{u}}{\partial x_1}, ..., \frac{\partial \hat{u}}{\partial x_d}, \frac{\partial^2 \hat{u}}{\partial x_1^2}, ...)||_2^2$$
 (13)

$$\mathcal{L}_b = \frac{1}{N_b} \sum_{\mathbf{x} \in \partial \Omega} ||\mathcal{B}(\hat{u}, \mathbf{x})||_2^2$$
 (14)

Heat equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \ x \in [0, 1], \ t \in [0, 1]$$
 (15)

 $\alpha = 0.3$

Boundary conditions:

$$u(0,t) = u(1,t) = 0 (16)$$

Initial conditions:

$$u(x,0) = \sin(\pi x) \tag{17}$$

Exact solution:

$$u(x,t) = \sin(\pi x)e^{-\pi^2 \alpha t}$$
(18)

$$NN(x,t) = \hat{u}(x,t) \approx u(x,t)$$
 (19)

Definition of the problem

- domain
- PDE
- condition equations
- training data
- the architecture of the NN
- optimizer and initializer

Domain

```
import numpy as np
import deepxde as dde
geom = dde.geometry.Interval(0,1)
timedomain = dde.geometry.TimeDomain(0,1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
def pde(x, y):
    dy_t = dde.grad.jacobian(y, x, i=0, j=1)
    dy_x = dde.grad.hessian(y, x, i=0, j=0)
    return dy_t - 0.3*dy_xx
```

Conditions and training data

```
bc = dde.icbc.DirichletBC(geomtime, lambda x: 0, \
                     lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime,
    lambda x:, np.sin(np.pi * x[:, 0:1]),
    lambda _, on_initial: on_initial,
data = dde.data.TimePDE(
    geomtime,
    pde,
    [bc, ic],
    num_domain = 4000,
    num_boundary = 2000,
    num_initial = 1000,
    num_test = 1000,
```

Network

```
layer_size = [2] + [32]*3 + [1]
activation = "tanh"
initializer = "Glorot normal"
net = dde.nn.FNN(layer_size, activation, initializer)
```

Model

```
net = dde.nn.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
optimizer = "adam"
model.compile("adam", lr=0.001)
losshistory, train_state = model.train(iterations=10000)
```

Results

References

- [1] Maziar Raissi, Paris Perdikaris, George Em Karniadakis Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
- [2] Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis DeepXDE: A Deep Learning Library for Solving Differential Equations
- [3] http://github.com/lululxvi/deepxde