

# MEEC/MIEEC

### Analog Integrated Circuits

### 2nd Order Single-bit Sigma Delta Modulator

#### **Authors:**

Martim Duarte Agostinho (70392) Francisco Simões Coelho Sá da Costa (70386) Sofia Margarida Mafra Dias Inácio (58079)

```
md.agostinho@campus.fct.unl.pt
   fsc.costa@campus.fct.unl.pt
   sm.inacio@campus.fct.unl.pt
```



### Contents

1 Template 3



## List of Figures

| $\frac{1}{2}$   | Logo da Nova FCT                                             |   |
|-----------------|--------------------------------------------------------------|---|
| $\mathbf{List}$ | f Tables                                                     |   |
| 1               | Anti-Aliasing Filter Specifications and Achieved Performance | 3 |

#### 1 **Template**

| Table 1: Anti-Aliasing | Filter S | pecifications a | and Achie | ved Performance |
|------------------------|----------|-----------------|-----------|-----------------|
|------------------------|----------|-----------------|-----------|-----------------|

| Specification                                           | Target | 2 <sup>nd</sup> -Order<br>Butterworth | 3 <sup>rd</sup> -Order<br>Butterworth |
|---------------------------------------------------------|--------|---------------------------------------|---------------------------------------|
| Pass-band ripple $A_{\text{max}}$ (dB)                  | ≤ 0.5  | 0.5                                   | 0.5                                   |
| Stop-band attenuation $A_{\min}$ (dB)                   | ≥ 80   | 90                                    | 90                                    |
| Pass-band edge $f_p$ (kHz)                              | 20     | 20                                    | 20                                    |
| Stop-band edge $f'_s$ $(MHz)^1$                         | 4.62   | 4.62                                  | 4.62                                  |
| Transition ratio $f_s'/f_p$                             | 231    | 231                                   | 231                                   |
| Filter order $N$                                        |        | 2 (chosen)                            | 3 (strict)                            |
| Theoretical in-band group delay <sup>2</sup> ( $\mu$ s) | _      | 7.9                                   | 11.8                                  |

Figure 1: Logo da Nova FCT

$$\begin{cases} R(283, 15) = 1,998 \cdot 10^{4} \ \Omega \\ R(298, 15) = 10^{4} \ \Omega \\ R(313, 15) = 0,5282 \cdot 10^{4} \ \Omega \end{cases} \Leftrightarrow \begin{cases} A = 1,3092 \cdot 10^{-3} \\ B = 2,1439 \cdot 10^{-4} \\ C = 9,6600 \cdot 10^{-8} \end{cases}$$
(1)

Listing 1: Matlab code example

```
printf('Polos: ');
PlFdz
\%figure (3);
pzmap (Fdz);
%figure (4);
step (Fdz);
```

<sup>&</sup>lt;sup>1</sup>First stop-band edge equals  $f_s - f_p$ , where  $f_s$  is the modulator sampling frequency (4.64 MHz). <sup>2</sup>Approximate group delay evaluated at  $\omega_p$  for a Butterworth LPF:  $\tau_g \approx N/(2\pi f_p)$ .



• item 1

...

- item n
- 1. Butterworth
- 2. Chebyshev
- 3. Elliptic
- 4. Bessel

In the application in study, the group delay is a critical factor because the ECG signal is a time-domain signal, and the phase distortion can lead to a misinterpretation of the signal. So it is safe to say that the Bessel filter is the best choice for this application.



Figure 2: NTC's block diagram

Referece like this [?]