С. А. ИСУПОВ

КАРКАС ПРОИЗВОДСТВЕННОГО ЗДАНИЯ С ДЕРЕВЯННЫМИ КОНСТРУКЦИЯМИ НА НАГЕЛЬНЫХ ПЛАСТИНАХ ТГк

Учебно-методическое пособие

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Политехнический институт Факультет строительства и архитектуры Кафедра строительных конструкций и машин

С. А. ИСУПОВ

КАРКАС ПРОИЗВОДСТВЕННОГО ЗДАНИЯ С ДЕРЕВЯННЫМИ КОНСТРУКЦИЯМИ НА НАГЕЛЬНЫХ ПЛАСТИНАХ ТГк

Учебно-методическое пособие

УДК 694.143 (07) И916

Допущено к изданию методическим советом факультета строительства и архитектуры ВятГУ в качестве учебно-методического пособия для выполнения курсового проекта дисциплины «Конструкции из дерева и пластмасс» для бакалавров направления 08.03.01 «Строительство», дневной формы обучения

Рецензент к. т. н., зав. кафедрой строительного производства ВятГУ

А. Б. Чаганов

Исупов, С. А.

И916 Каркас производственного здания с деревянными конструкциями на нагельных пластинах ТГк : учеб.-метод. пособие / С. А. Исупов. – Киров : ВятГУ, 2020. – 48 с.

Учебно-методическое пособие следует рассматривать как актуализированное издание учебного пособия «Несущие деревянные конструкции с соединениями на нагельных коннекторах». В пособии рассмотрены примеры расчета и проектирования основных несущих деревянных конструкций для одноэтажного, однопролетного производственного здания.

УДК 694.143 (07)

ОГЛАВЛЕНИЕ

3	АДАНИЕ НА ПРОЕКТИРОВАНИЕ	4
1	ПРОЕКТИРОВАНИЕ ПЛИТЫ ПОКРЫТИЯ	6
	1.1 Сбор нагрузок	6
	1.2 Конструктивный расчет продольного ребра	8
2	ПРОЕКТИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ	12
	2.1 Сбор нагрузок	12
	2.2 Статический расчет фермы	14
	2.3 Конструктивный расчет верхнего пояса	14
	2.4 Расчет нижнего пояса фермы	19
	2.5 Расчет элементов раскосной решетки	20
	2.6 Расчет и конструирование узлов фермы	21
	2.6.1. Опорный узел фермы (узел 1)	21
	2.6.2 Промежуточный узел фермы по верхнему поясу (узел 2)	26
	2.6.3 Коньковый узел фермы (узел 4)	28
	2.6.4 Промежуточный узел по нижнему поясу (узел 3)	31
3	ПРОЕКТИРОВАНИЕ КОЛОННЫ	32
	3.1 Сбор нагрузок	32
	3.2 Определение изгибающих моментов в колоннах рамного поперечника	35
	3.3 Расчетные сочетания нагрузок	35
	3.4 Конструктивные параметры колонны	36
	3.5 Конструктивный расчет колонны	37
	3.5.1 Расчет при сочетании нагрузок 1а (центральное сжатие)	37
	3.5.2 Расчет при 2-м сочетании нагрузок (сжатие с изгибом)	39
	3.5.3 Расстановка нагельных пластин	41
	3.6 Проектирование базы колонны	42
	3.6.1 Расчет анкерных болтов	43
	3.6.2 Расчет нагельных болтов	44
	3.6.3 Расчет монтажных столиков	45
Б	ИБЛИОГРАФИЧЕСКИЙ СПИСОК	46

ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ

Произвести конструирование и расчет основных несущих конструкций одноэтажного, однопролетного промышленного здания — плиты покрытия, стропильной фермы, составной колонны — при следующих условиях:

пролет здания	18 м;
длина здания	60 м;
высота колонны	5,0 м;
шаг несущих конструкций	6,0 м;
условия эксплуатации А1, А2 (табл.1 СП) [2];	
район строительства: г. Киров.	

Плита покрытия: каркасная деревянная с продольными ребрами составного сечения с соединениями на нагельных пластинах ТГк, нижняя общивка фанера толщиной 8 мм., пароизоляция из полиэтиленовой пленки толщиной 200 мк, утеплитель толщиной 150 мм. с объемной массой 97 кг/см², кровля — профилированный настил Н-44. Ширина плиты покрытия — 1,5 метра.

Стропильная ферма: металлодеревянная треугольного очертания с соотношением высоты к пролету 1:6; верхний пояс — деревянный составного сечения с соединениями на нагельных пластинах ТГк, нижний пояс металлический из уголкового проката, стойки — деревянные, раскосы — металлические из круглой стали.

Колонна: деревянная составного сечения с соединениями на нагельных пластинах ТГк .

Компоновочная схема здания показана на рис. 1.

Рисунок 1 – Компоновочная схема здания

1 ПРОЕКТИРОВАНИЕ ПЛИТЫ ПОКРЫТИЯ

Конструкция плиты покрытия пролетом $L=6\,\mathrm{m}$ с деревянным каркасом показана на рис. 2.

Продольные ребра панели выполняются в виде составных стержней с соединениями на нагельных коннекторах типа ТГк, поперечные ребра выполняются из одиночных брусьев целого сечения.

Объединение продольных и поперечных ребер каркаса осуществляется с помощью шурупов или гвоздей, закрепляющих монтажные выпуски основы десяти нагельных коннекторов, размещенных по концам и середине длины продольных ребер, относительно поперечных ребер.

1.1 Сбор нагрузок

Расчет плиты покрытия такого типа сводится к расчету продольных ребер, совместно воспринимающих всю приложенную к плите нагрузку.

Сбор нагрузок осуществим по предварительно принятым, ориентировочным размерам элементов каркаса и средств соединения.

Таблица 1

Наименование нагрузки	Нормативная интенсив- ность, кН/м ²	Коэф- фици- ент у _f	Расчетная интенсивность, кН/м²
2	3	4	5
Кровля – профнастил Н-44	0,055	1,1	0,060
Минераловатная плита толщиной 15 см, $m = 87 \text{ кг/м}^3$	0,131	1,3	0,170
Каркас плиты покрытия (Брус 100×150 $L_{\text{общ}} = 30,5$ м.; масса -230 кг, площадь -9 кв. м.)	0,256	1,1	0,280
Нижняя обшивка фанера толщ. 8 мм., $m = 600 \text{ kg/m}^3$	0,048	1,1	0,050
Итого : постоянные нагрузки g к H/M^2	0,490		0,560
Снеговая нагрузка р сн кН/м ²	2,500	1,4	3,500
Итого: постоянные и временные нагрузки кН/м ²	2,990		4,060

Погонная нагрузка на каждое продольное ребро каркаса имеет, при ширине плиты $b_{\pi} = 150$ см, следующие значения:

- нормативное $q_{\scriptscriptstyle H}$ = 2,99 × 0,75 = 2,24 кH/м;
- расчетное $q = 4,06 \times 0,75 = 3,04 кH/м.$

Рисунок 2 — Каркасная деревянная плита покрытия с продольными ребрами составного сечения на нагельных пластинах ТГк

Максимальный изгибающий момент:

- расчетное значение $M_{\text{max}} = 0.125$ q $L^2 = 1368$ кH см;
- нормативное значение $M_{\scriptscriptstyle H}=0.125~q_{\scriptscriptstyle H}~L^2=1008~\kappa H$ см.

1.2 Конструктивный расчет продольного ребра

Конструктивный расчет продольного ребра, как составного стержня с соединениями на деформативных (податливых) связях сдвига, выполним по методике, представленной в разделе 4 Рекомендаций [4] и СП «Деревянные конструкции» [2].

Принимаем поперечное сечение ребра из двух составляющих элементов (n=2); размеры их поперечного сечения:

- нижний элемент $A_1 = b \times h_1 = 10 \times 15$ см; $I_1 = (b \times h_1^3) / 12 = 2812,5$ см⁴;
- верхний элемент $A_2 = b \times h_2 = 10 \times 15$ см; $I_2 = (b \times h_2^3) / 12 = 2812,5$ см⁴.

Суммарная величина моментов инерции составляющих элементов $\Sigma I_i = 5625 \,\, \text{cm}^4.$

Геометрические характеристики поперечного сечения ребра как целого: $W = (b \times h^2) / 6 = 1500$ см³; $I = (b \times h^3) / 12 = 22500$ см⁴; статический момент сдвигаемой части относительно обобщенной нейтральной оси $S = 10 \times 15 \times 7,5 = 1125$ см³; отношение S / I = 0,05 см.

Материал: сосна 2-го сорта; $R_{\text{\tiny H}}=19.5\times0.66=12.8~\text{М}$ Па $\approx 1.3~\text{кH/cm}^2$; $E=300R_{\text{\tiny C}}=390~\text{кH/cm}^2$; $E_{\text{\tiny H}}=1000~\text{кH/cm}^2$ (здесь $E,E_{\text{\tiny H}}-$ модули упругости древесины при расчете по первому и второму предельным состояниям соответственно).

Средства соединения: нагельные пластины Ст5Г6к по номенклатуре, представленной в Рекомендациях [4]: $n_{\rm H}=5, d_{\rm H}=6$ мм, $T_{\rm c}=T_{\rm H.\Pi}=5\times 1, 4=7$ кH.

Расчетная деформативность по одной плоскости сдвига $\delta_c=0.1\,$ см, полные расчетные деформации взаимного сдвига $\Delta_c=0.2\,$ см.

Количество связей сдвига на полудлине продольного ребра определим из выражения:

$$n_c \approx k_{Tj} \ M \ S \ / \ I \ T_c \eqno(1)$$

$$n_c = 1 \times 1368 \times 0.05 \ / \ 7 \approx 10 \ \text{mt}.$$

где k_{Tj} – коэффициент неравномерности распределения сдвигающих усилий между связями сдвига; при изгибе распределенной нагрузкой и расстановке связей сдвига с переменным шагом (см. ниже) $k_{Tj} = 1,0$.

Принимаем $n_c = 7$ (может быть принято и меньшее число, чем получено из расчета); общее количество связей по всей длине продольного ребра получим из выражения $n_\kappa = 2~n_c + 1 = 15$ (дополнительная связь устанавливается в середине пролета для закрепления среднего поперечного ребра (смотри выше), а также для уменьшения местных изгибающих напряжений в верхнем составляющем элементе ребра (см. далее)).

Поверочный расчет принятых конструктивных параметров (размеров сечения и числа связей сдвига) произведем в табличной форме, располагая расчетные формулы в алгоритмизированной последовательности.

Таблица 2

Что определяется	Как определяется	Результат
Напряжения в стержне целого сечения, кH/см ²	$\sigma = M_{max} / W_{HT} = 1368 / 1500$	0,912
Сдвигающая сила на полудлине стержня целого сечения, кН	$T = MS / I = 1368 \times 0.05$	58,40
Прогиб стержня целого сечения (без учета сдвигов), см	$f = M_{\rm H} L^2 / K_{\rm f} E_{\rm H} I =$ $= 1008 \times 600^2 / 9,6 \times 1000 \times 22500$	1,68
Суммарная жесткость средств соединения, кН/см	$K_c = n_c T_c / \delta_c = 7 \times 7 / 0,1$	490
Деформативность средств соединения (n _c = 7), см	$\Delta_{\rm ck} = 2 \ {\rm T} \ / \ {\rm K_c} = 2 \times 58,40 \ / \ 490$	0,24
Взаимное смещение элементов стержня-пакета (Кс = 0), см	$\Delta_0 = ML \Sigma h_i / 2K_f EI_i = $ = 1368 x 600 × 30 / 2 × 3 × 390 × 5625	1,87
Смещение элементов в составном стержне (n _c = 7), см	$\Delta_{oc} = \Delta_o \; \Delta_{c\kappa} / (\Delta_o + \Delta_{c\kappa}) =$ = 1,87 × 0,24 / (1,87 + 0,24)	0,21
Параметр m_{wi} (для определения коэффициента k_w)	$\begin{split} m_{wi} = (h_i \mathrel{E} \mathrel{I} / \mathrel{h} \mathrel{\Sigma} \mathrel{E} \mathrel{I_i}) - 1 = n - 1 = \\ = 2 - 1 \end{split}$	1,0
Коэффициент влияния податливости связей сдвига k_w)	$k_{w} = 1 / (1 + m_{w2} \Delta_{oc} / \Delta_{o}) =$ $= 1 / (1 + 0.21 / 1.87)$	0,899
Параметр m_I (для определения коэффициента k_I)	$m_{I}\!=\!(EI/\Sigma EI_{i})-1=n^{2}-1=4-1$	3,0
Коэффициент влияния податливости связей k _I	$k_{I} = 1 / (1 + m_{wi} \Delta_{oc} / \Delta_{o}) =$ $= 1 / (1 + 3 \times 0.21 / 1.87)$	0,748
I предельное состояние. Расчет нормальных сечений	$\sigma_{n2} = \sigma \ / \ k_w < R_{\scriptscriptstyle H} \ / \ \gamma_{\scriptscriptstyle \Pi} = \\ = 0.912 \ / \ 0.899 < 1.3 \ / \ 0.95 = 1.37$	1,01
I предельное состояние. Расчет средств соединения	$T_{n}=k_{T} T (1-\Delta_{oc}/\Delta_{o}) < n_{c} T_{c}$ $1 \times 58,40 (1-0.21/1.87) < 7 \times 7 = 49$	51,8
II предельное состояние. Прогиб продольного ребра панели	$f_{\pi} = f \ / \ k_{I} < f_{\text{доп}} \ 1,68 \ / \ 0,748 < 2,4$	2,24

Расчетные координаты связей сдвига определим из выражения:

$$X_{K+1} = (L / \pi) \arcsin(k / n_c),$$
 (2)

где ($\kappa + 1$) – порядковый номер связи; $\kappa = 0...7$ (при вычислении значений arcsin (k/n_c) следует использовать размерность «радианы»).

Расстояние между связями определим из выражения:

$$S_{1,k+1} = X_{k+1} - X_k < S_{1min} = 12d$$
 (3)

где $S_{1,k+1}$ – расстояние между (k+1)-й и k-й связями сдвига (нагельными пластинами) в продольном направлении; d – диаметр нагелей.

Расстояние от торца составляющих элементов до первого нагельного коннектора (k=0) примем равным $S_1=9d=5,5\,$ см (вместо обычных S=12d), что допустимо в виду имеющихся запасов прочности и целесообразно для объединения продольных и поперечных ребер каркаса. Координаты связей и расстояние между ними даны в табл. 3.

Таблица 3

N связи	1	2	3	4	5	6	7	8
X_{k+1}	0,0	27,4	55,4	84,6	116,2	152,0	196,8	300,0
$S_{1,k+1}$	5,5	21,9	28,0	29,2	31,6	35,0	44,8	97,7

Примечание — Как следует из выражения для коэффициента k_{wi} = 1 / (1+ m_{wi} Δ_{oc} / Δ_{o}), его значение минимально в случае, когда максимально значение параметра m_{wi} — отсюда следует, что напряжения изгиба выше в составляющих элементах с большей высотой сечения (при $b_1 = b_2$ и $E_1 = E_2$). В рассматриваемом случае получим, например: $k_{w1} = (1 + 0.77 \times 0.21 / 1.72) = 0.91$; напряжения изгиба σ_{n1} = $0.86 / 0.91 = 0.95 < \sigma_{n2} = 0.98$ кH/см и, поэтому, можно ограничиться определением напряжений в элементе составного сечения, имеющего наибольшую высоту сечения.

Напряжения в сжатой (верхней) зоне верхнего элемента продольного ребра от местного изгиба на пролете между нагельными пластинами, равном расстоянию между 7-й и 8-й пластинами $l = S_{7.8} = 97.7$ см определяются из выражения:

$$\sigma_{M2} = -M_2 / W_2 = -q S / 24 W_2$$
 (4)

$$\sigma_{\text{M2}} = -0.0241 \times 97.7 \ / \ 24 \times 375 = -0.026 \ \kappa\text{H/cm}^2$$

Здесь в качестве расчетного принят «пролетный» момент, полученный на основе многопролетной расчетной модели, так как именно этот момент инициирует напряжения сжатия, увеличивающие величину общих напряжений.

Суммарные напряжения в верхнем элементе:

$$\sigma_2 = \sigma_{\pi 2} + \sigma_{m2} = 1.01 + 0.026 = 1.036 \text{ kH/cm} < R_{\text{\tiny H}} = 1.37 \text{ kH/cm}^2$$

Заключение

Из представленных расчетов следует, что прочность и жесткость составного продольного ребра с принятыми размерами поперечного сечения и общим количеством связей сдвига на полудлине одной плоскости соединения $n_c = 7$ обеспечены.

2 ПРОЕКТИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ

Треугольная ферма с расчетным пролетом $L_o=17.7$ м с высотой в средней части $h_{\varphi}=L\,/\,6=2.95$ м. Геометрическая схема стропильной фермы с индексацией узлов показана на рис.3.

2.1 Сбор нагрузок

В соответствии со СП «Нагрузки и воздействия» [1] статический расчет стропильных ферм принятой геометрии производится на действие постоянных и снеговой нагрузки (приложенной по всему пролету с коэффициентом $\mu = 1,0$ и неравномерного загружения на половине пролета с коэффициентами $\mu = 1,25$ и $\mu = 0,75$).

Сбор указанных нагрузок осуществим в табличной форме.

Таблица 4

	Интенс	ивность	, κH/м ²	Интенсивность, кН/м.п.		
Вид нагрузки	Норма- тивная	Коэф үг	Расчет- ная	Норма- тивная	Расчетная	
Покрытие g _п	0,49		0,56	2,94	3,36	
Собственный вес фермы дф	0,14	1,1	0,16	0,84	0,96	
Итого: постоянная нагрузка						
Снеговая нагрузка	0,63		0,72	3,78	4,32	
	2,50	1,4	3,50	15,00	21,00	
Итого: постоянная + снеговая	3,13		4,22	18,78	25,32	

Примечание – Собственный вес фермы определяется по выражению:

$$g_{\phi} = (g_{H} + p_{cH}) / (1000 / K_{\phi} \cdot L - 1)$$

$$g_{\phi} = (0.49 + 2.50) / (1000 / (2.5 \times 18 - 1)) = 0.141 \text{ kH/ m}^{2}.$$
(5)

где K_{φ} – коэффициент «собственного веса», различный для различных типов конструкций.

Рисунок 3 – Расчетно-геометрическая схема фермы

Рисунок 4 – Верхний пояс фермы

- а) расчетная схема, б) поперечное сечение,
- в) передача через диафрагму усилия на два бруса,
- г) передача через диафрагму усилия на один брус.

2.2 Статический расчет фермы

Продольные усилия в элементах фермы определим, используя данные компьютерного расчета при воздействии равномерно распределенной единичной нагрузки q=1,0 по всему пролету и неравномерной нагрузки q=1,25 слева и q=0,75 справа. Данные расчета сведем в таблицу.

Таблица 5

Стержень		ничной рузки	Пост. нагрузка	Снеговая p = 21,	Расчетное усилие,	
Стерх	неравно-	равномер-	g = 4,32	неравно-	равномер-	N, ĸH
	мерно	НО	кН/м	мерно	НО	
1	2	3	4	5	6	7
1-2	-23,49	-21,67	-93,61	-493,29	-455,07	-586,9
2–4	-23,49	-21,67	-93,61	-493,29	-455,07	-586,9
4–6	-19,85	-21,67	-93,61	-416,85	-455,07	-548,7
6-7	-19,85	-21,67	-93,61	-416,85	-455,07	-548,7
1-3	21,58	19,89	85,92	453,18	417,69	539,1
3–5	13,28	13,28	57,37	278,88	278,88	336,25
5–7	18,26	19,89	85,92	383,46	417,69	503,6
2-3	-5,53	-4,42	-19,09	-116,13	-92,82	-135,22
3-4	9,97	7,95	34,34	209,37	166,95	243,71
4-5	5,99	7,95	34,34	125,79	166,95	201,29
5-6	-3,32	-4,42	-19,09	-69,72	-92,82	-111,91

2.3 Конструктивный расчет верхнего пояса

Расчетная и компоновочная схема панели верхнего пояса при изготовлении из стержней составного сечения показана на рис. 4.

Расчет составного верхнего пояса проведем в форме проверки принятых конструктивных параметров по методике Рекомендаций [4].

Предварительно зададимся:

а) **геометрическими** размерами поперечного сечения составляющих элементов (n=2) и сечения в целом: $A_1=A_2=b\times h_1=b\times h_2=17,5\times 20=350$ см²; $I_1=I_2=(b-h_1^3)$ / $12=17,5-20^3$ / 12=11666,7см⁴; $\Sigma I_i=23333,4$ см⁴; $W=(b-h^2)$ / $6=17,5-40^2$ / 6=4666,66 см³; $I=(b-h^3)$ / $12=17,5-40^3$ / 12=93333,33 см⁴; $S_i=3500$ см³; S_i / S_i

- б) **механическими** характеристиками древесины: сосна 2-го сорта; R_c = $= R_{\text{\tiny H}} = 2,25 \times 0,66 = 1,489 \text{ кH/cm}^2 \approx 1,5 \text{ кH/cm}^2$; $E = 300 \text{ R}_c = 450 \text{ кH/cm}^2$.
- в) **характеристиками** средств соединения: нагельные пластины Ст11Г6к, по номенклатуре рекомендаций: d=6 мм; $n_{\text{H}}=11$; $T_{\text{c}}=T_{\text{H.П}}=11\times 1, 4=15, 4$ кH; $\delta_{\text{c}}=0,1$ см; $\Delta_{\text{c}}=0,2$ см.

Силовые параметры нагружения: продольная сила N=-586,9 кН (см. выше табл.5); максимальный изгибающий момент от поперечной нагрузки:

 $M_q=0,125ql^2=0,125\times0,2532\times454, l^2=$ 6526,7 кH см (длина верхнего пояса с учетом вычета опорных узлов!).

Для уменьшения величины изгибающего момента используем эксцентричное сопряжение панелей верхнего пояса в узлах фермы через жесткие торцевые диафрагмы. Минимально допустимую высоту диафрагмы определим из расчета опорного торца панели на смятие:

$$h_{T} > N / b R_{cM}$$
 (6)

$$h_T = 586.9 / 17.5 \times 1.5 = 22.36 \text{ cm}.$$

При загружении торцов обеих составляющих элементов пояса, величина целесообразного эксцентриситета определится из выражения [1,4]:

$$e = M_{q} / N (\xi + 1) \tag{7}$$

$$e = 6526.7 / 586.9 \times (0.6+1) = 6.95 \text{ cm},$$

где ξ – коэффициент, учитывающий деформационные приращения изгибающих моментов на стадии компоновки сечения этим коэффициентом следует задаться ориентировочно, принимаем ξ = 0,6.

Высота опорной диафрагмы из геометрических построений:

$$h_{T} = h - 2 e \tag{8}$$

$$h_T = 40 - 2 \times 6.95 = 26.1$$
 cm.

По конструктивным требованиям:

$$h_T > h_1 + 0.2 h_2$$
 (9)

$$h_{\rm T} = 20 + 0.2 \times 20 = 24$$
 cm.

Принимаем расчетную высоту диафрагмы $h_m = 24 \ cm$.

В итоге получим момент, образуемый за счет эксцентричного сжатия панели верхнего пояса при эксцентриситете $e = 0.5 (h - h_{\scriptscriptstyle T}) = 0.5 (40 - 24) = 8$ см:

$$M_e = N \times e \tag{10}$$

$$M_e = 586.9 \times 8 = 4695.2 \text{ kH} \cdot \text{cm}.$$

Суммарная сдвигающая сила на <u>полудлине</u> плоскости соединения панели верхнего пояса как стержня целого сечения:

- от поперечной нагрузки q:

$$T_{q} = M_{q} S / I \tag{11}$$

$$T_q = 6526,7 \times 0,0375 = 244,75 \text{ kH};$$

- от изгибающего момента M_e , (с учетом его воздействия через диафрагмы):

$$T_{e'} = K_{\pi} M_{e} S / I$$
 (12)

$$T_{e'} = 0.25 \times 4695.2 \times 0.0375 = 44.02 \text{ kH}.$$

<u>Расчетное количество связей</u> сдвига, необходимое для восприятия сдвигающих сил на полудлине стержня (с учетом их деформационных приращений, ξ = 0,6):

$$n_c = K_T (T_q - T_e) / \xi T_c$$
 (13)

$$n_c = 1 \times (244,75 - 44,02) / 0.6 \times 15.4 = 21.72 \sim 22 \text{ m}$$

Количество связей сдвига, <u>подлежащих установке</u> на полудлине (с учетом работы опорных диафрагм, перекрывающих плоскость сплачивания):

$$n_{c}' = K_{T} (K_{TQ} T_{Q} - T_{e}') / \xi T_{c}$$
 (14)

$$n_c' = 1 \times (0.833 \times 244.75 - 44.02) / 0.6 \times 15.4 = 17.3 \sim 17 \text{ iiit.}$$

где $K_{\text{дq}}$ — коэффициент, учитывающий работу опорных диафрагм при изгибе распределенными нагрузками; $K_{\text{дq}} = 0.833$.

Поверочный расчет принятых конструктивных параметров проведем в табличной форме, располагая расчетные формулы в алгоритмизированной последовательности.

Таблица 6

Что определяется	Как определяется	Рез-тат
2	3	4
Напряжения сжатия в составных элементах	$\sigma_{ic} = N_i / A_i = 586,9 / 2 \times 350$	0,838
Жесткость соединения на полудлине шва	$K_c = n_c T_c / \delta_c = 22 \times 15,4 / 0,1$	3388
Деформативность соединения по шву	$\Delta_{c\kappa} = 2 \; T_q / \; K_c = 2 \times 244,75 / \; 3388$	0,144
Взаимное смещение элементов при $K_c = 0$	$\Delta_0 = M \ L \ \Sigma h_i \ / \ 2 \ K_\phi \ \Sigma E I_i$ $6526,7 \times 466,43 \times 40 \ / \ 2 \times 3 \times 450 \times 23333,3$	1,93
Взаимное смещение элементов при $n_c = 0$	$\Delta_{oc} = \Delta_o \; \Delta_{c_K} / (\Delta_o + \Delta_{c_K})$ $1,93 \times 0,144 / (1,93 + 0,144)$	0,134
Параметр m_{wi} (для определения k_{wi})	$m_{wi} = (h_i \to I / h \to EI_i) - 1 = n - 1$ $2 - 1$	1,00
Коэффициент влияния податливости k_{wi}	$K_{wi} = 1 / (1 + m_{wi} \Delta_{oc} / \Delta_{o})$ $1 / (1 + 1 \times 0.134 / 1.93)$	0,94
Параметр m_I (для определения коэффициента k_I)	$m_{I} = (EI / \Sigma EI_{i}) - 1 = n^{2} - 1$ $4 - 1$	3,00
Коэффициент влияния податливости $k_{\rm I}$	$k_{I} = 1 / (1 + m_{I} \Delta_{oc} / \Delta_{o})$ $1 / (1 + 3 \times 0.134 / 1.93)$	0,83
Радиус инерции поперечного сечения	$r\pi = r \times kI \ 0.5 = (I \times kI / A)^{0.5}$ $(93333,33 \times 0.83 / 700)^{0.5}$	10,52

Окончание табл. 6

2	3	4
Гибкость стержня составного сечения	$\lambda_{\pi} = l_{o} / r_{\pi} = 466,43 / 10,52$	44,34
Критическая сила (для определения ξ)	$N_{kp} = 3000 \text{ A R}_c / \lambda_n^2$ $3000 \times 700 \times 1,5 / 44,34^2$	1602,4
Коэффициент деформационных приращений	$\xi = 1 / (1 + \psi N / (N_{\kappa p} - N))$ $1 / (1 + 1 \times 586,9 / (1602,4 - 586,9))$	0,634
Изгибающий момент с учетом деформационных приращений	$M_{\text{де}\varphi} = (M_q - M_e) / \xi$ $(6526,7 - 4695,2) / 0,634$	2888,8
Прочность нормальных сечений	$\begin{split} \sigma &= \sigma_c + M_{\text{де}\varphi} / \; K_w \; W_{\text{HT}} < R_c / \; \gamma_n \\ 0,838 + 2888,8 / \; 0,94 \times 4666,66 \\ &< 1,5 / \; 0,95 = 1,58 \end{split}$	1,49
Прочность средств соединения	$\begin{split} T_{\pi} &= K_{\tau} \left(K_{\pi q} T_q - T_e' \right) \left(1 - \Delta_{oc} \! / \Delta_o \right) / \xi < n_c T_c \\ &1 \times \left(0.833 \times 244,75 - 44,02 \right) \left(1 - 0,134 / \right. \\ &\left. / 1,93 \right) / 0,634 < 17 \times 15,4 = 261,8 \end{split}$	234,5

Таким образом, прочность составного стержня по нормальным сечениям и прочность средств соединения при данном количестве обеспечена. Проверку устойчивости плоской формы деформирования панели верхнего пояса в данном случае производить не нужно, так как раскрепление связями по схеме рис.1, в в сочетании с продольными ребрами и наклонными элементами плит покрытия следует рассматривать как «сплошное».

Расчетные координаты связей сдвига, устанавливаемых на полудлине плоскости сплачивания (n_c ' = 17) определим по выражению (2). Общее количество связей по всей длине панели верхнего пояса $2n_c$ ' + 1 = 37. Длина марки верхнего пояса – 454 см.

Расстояние между нагельными пластинами равно: $S_{k,k+1} = X_{k+1} - X_k < S_{1min} = 12d$. Расстояние от первой связи до торцов стержня примем равным $S_1 = 15d = 9$ см.

Результаты расчета сведем в таблицу.

Таблица 7

<u>№</u> связей	1	2	3	4	5	6	7	8	9	10
X_{k+1}	0,0	8,5	17,0	25,6	34,3	43,2	52,2	61,4	70,8	80,7
$S_{k, k+1}$	9,0	8,5	8,5	8,6	8,7	8,9	9,0	9,2	9,5	9,9

<u>№</u> связей	11	12	13	14	15	16	17	18
X_{k+1}	90,9	101,7	113,3	125,9	139,9	156,3	177,3	227,0
$S_{k, k+1}$	10,2	10,8	11,6	12,6	14,0	16,4	21,0	49,7

2.4 Расчет нижнего пояса фермы

Нижний пояс выполним из проката уголкового профиля, сталь марки С245.

Учитывая значительную разницу в величине усилий в отдельных панелях нижнего пояса, определим сечение каждой из них.

Элементы 1–3, 5–7. Расчетное усилие N = +539,1 кH.

Требуемая площадь сечения:

$$A_{\text{Tp}} > N \gamma_{\pi} / R_{y} \gamma_{c} \tag{15}$$

$$A_{\text{\tiny TP}} = 539,1 \times 0,95 \ / \ 23,5 \times 0,95 = 22,94 \ \text{cm}$$

Здесь γ_{π} — коэффициент, учитывающий степень ответственности по назначению, $\gamma_{\pi}=0.95;\ R_y$ — расчетное сопротивление по пределу текучести, $R_y=23.5\ \kappa H/cm^2$; γ_c — коэффициент условий работы, $\gamma_c=0.95$.

Принимаем 2 уголка 90×7 ; $A = 2 \times 12,3 = 24,6 \text{ cm}^2 > 22,94$; i = 2,77 cm;

Гибкость элемента $\lambda_{z\pi} = L \ / \ i = 442,5 \ / \ 2,77 = 159,75 < \lambda_{\pi p} = 400.$

Элемент 3–5. Расчетное усилие N = +336,25 кH.

Требуемая площадь сечения по формуле (15):

$$A_{\rm Tp} = 336,25 / 23,5 = 14,31 \text{ cm}^2.$$

Принимаем 2 уголка 75×5 ; $A = 2 \times 7,39 = 14,78$ см²; i = 2,31 см

Гибкость элемента $\lambda_{z_{II}} = L / i = 885,0 / 2,31 = 383 < \lambda_{np} = 400.$

2.5 Расчет элементов раскосной решетки

Элементы 2-3, 5-6. Расчетное усилие N = -135,22 кH.

Используем деревянные элементы с поперечным сечением bxh = 100×175 мм. Размер из плоскости (h = 175 мм) принимаем равным ширине сечения верхнего пояса для упрощения узловых сопряжений. Размер из плоскости b = 100 мм принимаем из условий размещения болтов возможного d = 20 мм для закрепления стойки к панели верхнего пояса (см. ниже узел 3); при этом b > 2 S3 = 2×2.5 d = 10 см.

Материал: сосна 3-го сорта, $R_c = 2,25 \times 0,66 = 1,489 \text{ кH/cm}^2 \approx 1,5 \text{ кH/cm}^2$

В связи с отсутствием изгибающих моментов, определяющим расчетом является расчет на устойчивость.

Гибкость элемента (в плоскости фермы):

$$\lambda_y = \lambda_{max} = l_o / i_{min} \tag{16}$$

$$\lambda_y = 142,7 \; / \; 0,289 \times 10 = 49,4 \; \text{< } 70,$$

коэффициент продольного изгиба:

$$\varphi = 1 - 0.8 \, (\lambda \, / \, 100)^2 \tag{17}$$

$$\phi$$
= 1 – 0,8 (49,4 / 100)² = 0,805

Расчет устойчивости элемента принятого сечения:

$$\sigma = N / \varphi A \tag{18}$$

$$\sigma = 135,22 / 0,805 \times 10 \times 17,5 = 0,96 < R_c = 1,5 \text{ kH/cm}^2$$
.

Элементы 3-4, 4-5. Расчетное усилие N = +243,71 кН.

В связи с значительной величиной усилий растяжения указанные элементы целесообразно изготавливать из металлического круга — сталь C245; принимаем 2 стержня (расчетное сопротивление $R_v = 23.5 \text{ kH/cm}^2$).

Требуемая площадь поперечного сечения по формуле (15):

$$A_{TP} = 243,71 \times 0,95 / 0,85 \times 23,5 = 11,59 \text{ cm}.$$

Здесь коэффициентом $\gamma_c = 0.85$ учитывается неравномерность распределения усилий между отдельными, совместно работающими, гибкими элементами (арматурными стержнями).

Требуемый диаметр стержней:

$$d_{\rm rp} > (2 A_{\rm rp} / \pi)^{0.5} \tag{19}$$

$$d_{Tp} = (2 \times 11,59 / 3,14)^{0.5} = 2,71 \text{ cm}.$$

Принимаем 2 d 27, C245, $A = 11,45 \text{ cm}^2 \sim A_{\text{тр}} = 11,59 \text{ cm}^2$.

2.6 Расчет и конструирование узлов фермы

2.6.1. Опорный узел фермы (узел 1)

Конструкция узла показана на рис. 5 (следует обратить внимание на эксцентричное сопряжение элементов верхнего пояса, предусмотренное проведенным ранее расчетом, <u>размеры показаны условно</u>).

Расчетные усилия: $N_{\text{вп}} = -586,9 \text{ кH.}$; $N_{\text{нп}} = +539,1 \text{ кH.}$

Конструированию и расчету подлежат: опорная торцевая диафрагма; опорная пластина; ребра жесткости; фасонки; сварные швы.

Опорная торцовая диафрагма

Ширина торцевой диафрагмы принята равной ширине верхнего пояса: $b_{\pi}=b_{\pi}=17,5 \text{ cm, ee высота } h_{\pi}=24 \text{ cm.}$

Толщина торцевой диафрагмы определяется из расчета отдельных ее участков на поперечный изгиб под действием равномерно распределенной нагрузки q кН/см, величина которой на единичную ширину пластинки численно равна контактным напряжениям сжатия в верхнем поясе фермы:

$$q = \sigma_c \times (1 \text{ cm}) = (N \gamma_{\pi} / A_{\pi}) \times (1 \text{ cm})$$

$$q = (586.9 \times 0.95 / 24 \times 17.5) \times 1 = 1.328 \text{ kH/cm}$$
(20)

Максимальный изгибающий момент на единичную полосу торцевой диафрагмы, как пластинки, опертой по трем сторонам (принимаем два ребра жесткости, рис. 5) с соотношением размеров b / a = 24 / 5,83 = 4,12, при котором численный коэффициент Галеркина β = 0,133 [5]:

Рисунок 5 — Опорный узел фермы

Рисунок 6 — Промежуточный узел фермы по верхнему поясу

$$M_{\text{max}} = \beta \ a^2 \, q \tag{21}$$

$$M_{max} = 0.133 \times 5.83^2 \times 1.328 = 6.00$$
 кН см.

Требуемая толщина диафрагмы:

$$t_{\pi} > (6 \text{ M} \gamma_{\pi} / \gamma_{c} K_{\pi\pi} R_{y})^{0.5}$$
 (22)

$$t_{\pi} = (6 \times 6,00 \times 0,95 / 0,95 \times 1,2 \text{ x } 23,5)^{0,5} = 1,13 \text{ cm}.$$

Принимаем толщину опорной диафрагмы $t_{\text{д}} = 1,2$ см.

Опорная пластина

Размеры опорной пластины в плане определим из следующих геометрических и конструктивных представлений:

— Ширину пластины b_{π} (размер из плоскости) примем, учитывая необходимость фланцевых выступов (за габариты верхнего пояса) для размещения крепежных (по отношению к колонне) болтов. Задаваясь диаметром этих бол-

тов d=20 мм, и учитывая, что размеры стандартных шайб равны $b_{\rm m}=4d$, получим ширину выступов: $b_a=4d+0.5d=4\times2+0.5\times2=9$ см, а затем и ширину опорной пластины $b_{\rm n}=b_{\rm n}+2b_{\rm a}=35.5$ см.

– Длину опорной пластины и размеры ее отдельных участков определим из геометрических построений с учетом центрирования всех несущих элементов узлового сопряжения в соответствии с рис. 5 и расчетным обеспечением прочности древесины в оголовке колонны при торцевом смятии под действием продольной силы в колонне.

Принимаем $l_{\rm n} = 15$ см, при этом:

$$\sigma_{\rm cm} = N_{\rm k} / A_{\rm cm} \tag{23}$$

$$\sigma_{cm} = 231,7 / 17,5 \times 15 = 0,9 \text{ kH/cm}^2 < R_{cm} \gamma_c / \gamma_n = 1,5 \text{ kH/cm}^2$$

Здесь N_{κ} — вертикальная реакция на опорах стропильной фермы, определенная с учетом карнизов здания, $N_{\kappa}=(L_{\varphi}+0.3)\times q/2=1830\times 0.2532/2=231.7$ кH.

Рассматривая, как и ранее, напряжения смятия как внешнюю нагрузку на совместно работающие пластины опорного узла и оголовка колонны (см. рис. 5), получим следующие значения изгибающих моментов для полосы единичной ширины (для каждой из указанных пластин) на отдельных участках по формуле (21):

- участок 1, b / a = 10 / 5,83 = 1,72
$$\Rightarrow$$
 β = 0,133

$$M_{1max} = 0.133 \times 0.9 \times 5.83^2 = 4.07 \text{ kH} \cdot \text{cm}.$$

— участок 2, b / a = 5 / 17,5 < 0,5 и поэтому момент определяется из расчета консоли с расчетным вылетом l_{κ} = 5 см.

$$\mathbf{M}_{2\text{max}} = \mathbf{q} \times \mathbf{1}_{\kappa}^{2} / 2 \tag{24}$$

$$M_{2\text{max}} = 0.9 \times 5^2 / 2 = 11.25 \text{ kH} \cdot \text{cm} > 4.07 \text{ kH} \cdot \text{cm}.$$

Контактные напряжения сжатия на 3-м участке пластины существенно меньше по величине и, поэтому, расчетом не учитываются.

Необходимая толщина опорной пластины определится по формуле (22):

$$t_{\pi} = (6 \times 11,25 / 1,2 \times 23,5)^{0,5} = 1,55$$
 cm.

Принимаем пластину толщиной $t_n = 1.6$ см.

Ребра жесткости, фасонки

При определении геометрических размеров и формы боковых фасонок следует учесть положение фиксирующих болтов по отношению к составляющим элементам (напомним, что минимальный шаг болтов в продольном направлении $S_1 = 6d$; расстояние до края элементов в поперечном направлении, $S_3 = 2,5d$), а также место расположения крайних (ближайших к торцу) нагельных коннекторов по плоскости сплачивания.

Толщина ребер жесткости и фасонок принимается по конструктивным соображениям $t=0.5\ {\rm cm}.$

Сварные швы

Принятая толщина фасонок и полок проката уголкового профиля дает возможность использовать сварные швы с высотой $h_{\rm m}=0.6$ см; длина сварных швов определиться следующим образом:

– при соединении уголков нижнего пояса (N = +539,1 kH):

$$l_{\text{III}} > N\gamma_{\text{II}} / 2 h_{\text{III}} \beta_{\text{III}} R_{\text{wf}} \gamma_{\text{c}}$$
 (25)

$$l_{\text{III}} = 539,1 / 2 \times 0,6 \times 0,7 \times 18 = 35,65 \text{ cm}.$$

Принимаем длину сварных швов: у обушка $l_{\text{шо}} = 0.7 \ l_{\text{ш}} + 1 = 26 \ \text{см};$ у пера $l_{\text{шп}} = 13 \ \text{см}.$

- при соединении ребер жесткости с торцевой диафрагмой и опорной пластиной (N = -586.9 кH):

$$l_{\text{III}} > 586.9 / 0.6 \times 0.7 \times 18 = 77.63 \text{ cm}.$$

Длина сварного шва с каждой стороны каждого из ребер жесткости и с одной стороны фасонки $l_{\rm mi} = (l_{\rm m} \ / \ 8) + 1 = 11,0$ см.

2.6.2 Промежуточный узел фермы по верхнему поясу (узел 2)

Конструкция промежуточного узла фермы по верхнему поясу показана на рис.6 (Размеры показаны условно). Расчету подлежат: площадка смятия по торцу сжатой стойки «2-3»; болты (стержневые нагели), закрепляющие стойку от смещений в плоскости ската верхнего пояса.

Расчетные усилия: N = -135,22 кH (для площадки смятия); скатная составляющая (для расчета болтов) $T = N \sin 18,43 = 135,22 \sin 18,43 = 38,54$ кH.

Расчет упора стойки

Усилие сжатия N=-135,22 кН передаем на древесину верхнего пояса посредством «торцевого упора» (через опорную диафрагму). Угол смятия древесины верхнего пояса $\alpha_c=90-18,43=71,46$.

Расчетное сопротивление древесины смятию определим из выражения:

$$R_{cM} = R_{cMO} / [1 + ((R_{cM}^{O} / R_{cM}^{\bot}) - 1) \sin \alpha^{3}]$$
 (26)

$$R_{\text{cm}} = 1.5 \ / \ [1 + ((1.5 \ / \ 0.4) - 1) \ (\sin 71.46)^3] = 0.446 \ \kappa H/\text{cm}^2$$

Здесь $R_{cm}\bot$ — расчетное сопротивление местному смятию под шайбами под углом 90° к волокнам древесины; $R_{cm}\bot = 0,4$ кH/см².

Необходимая площадь смятия:

$$A_{cM} > N \gamma_{II} / R_{cMO} \tag{27}$$

$$A_{cm} = 135,22 \times 0,95 / 0,446 = 288,0 \text{ cm}^2.$$

Необходимая длина площадки смятия l_{cr} (при $b_{cr} = b_n = 17.5$ см):

$$l_{\scriptscriptstyle T} > A_{\scriptscriptstyle \rm CM} / b_{\scriptscriptstyle \rm CM} \tag{28}$$

$$l_{\rm T} = 288,0 / 17,5 = 16,5$$
 cm

Принимаем $l_{cr} = 17,5$ см; b_{cr} / соз 18,43 = 18,4 см. Толщину опорной диафрагмы принимаем по конструктивным соображениям $t_r = 0,5$ см (изгиб диафрагмы при принятых размерах $b_r \times l_r$ практически исключен).

Расчет болтов

<u>Предварительно</u> зададимся диаметром стержневых нагелей (болтов) d=2,4 см. Расчетная несущая способность на один срез нагеля при действии усилия под углом $\alpha=71,43$ к волокнам древесины; коэффициент $K_{\alpha}=0,6$:

- по условиям смятия:

$$T_{cM} = 0.5 \text{ cd} \times K_{\alpha} \tag{29}$$

$$T_{cm} = 0.5 \times 17.5 \times 2.4 \times 0.6 = 12.6 \text{ kH};$$

по условиям изгиба:

$$T_{\text{M3}\Gamma} = 2.5 \text{ d} \times (K_{\alpha})^{0.5}$$
 (30)

$$T_{\text{изг}} = 2.5 \times 4.8 \times 0.6^{0.5} = 9.29 \text{ кH} < 12.6 \text{ кH}.$$

Требуемое количество нагельных болтов ($n_s = 2$):

$$n > T / n_s T_{\min}$$
 (31)

$$n = 38,54 / 2 \times 9,29 = 2,07$$

С незначительным перенапряжением принимаем 2 d 24. Размеры накладок и фасонок определяем из геометрических построений с учетом необходимости в сохранении требуемых размеров S_1 , S_2 и S_3 при расстановке болтов в древесине и металле; ширина металлических накладок $b_{\rm H} > 3 \, {\rm d} = 7,2 \, {\rm cm}$ (округляем до 7,5 cm), при этом толщину накладок, фасонок и диафрагмы-прокладки верхнего пояса принимаем равной t=0,5 см по конструктивным соображениям.

Увеличиваем ширину стойки до $2,4 \times 5 = 12$ см — принимаем по сортаменту с учетом смятия упора стойки 125 мм.

Для обеспечения необходимой жесткости узла из плоскости фермы используются деревянные накладки сечением 10×15 см длиной 1,0 метр с закреплением их к элементам верхнего пояса с помощью шпилек диаметром 12 мм.

2.6.3 Коньковый узел фермы (узел 4)

Конструкция узла показана на рис. 7 (Размеры показаны условно). Расчету и конструированию подлежат: вкладыш узлового сопряжения элементов верхнего пояса; центровой болт; листовые фасонки растянутых раскосов; сварные швы.

Расчетные усилия: $N_{BII} = -586,90$ кH; $N_{34} = N_{45} = +243,71$ кH.

Конструирование и расчет вкладыша

Торцевые диафрагмы вкладыша (при количестве ребер жесткости $n_p=2$) работают и рассчитываются аналогично диафрагмам опорного узла.

Толщину диафрагмы принимаем как в опорном узле $t_{\pi} = 1,2$ см.; промежуточных ребер жесткости $t_p = 0,5$ см. Толщину крайних ребер определим из последующих расчетов сопряжений центрового болта (см. ниже).

Рисунок 7 — Коньковый узел фермы

Рисунок 8 — Промежуточный узел фермы по нижнему поясу

Расчет центрового болта

Требуемый диаметр центрового болта (шпильки) определим из расчета его на срез под действием равнодействующей усилий в элементах 3-4 и 4-5:

$$N = 2 N_{34} \sin 36,87 \tag{32}$$

$$N = 2 \times 243,71 \times \sin 36,87 = 266,62 \text{ kH}$$

$$d > (4N \gamma_{\pi} / \gamma_{c} n_{s} R_{cp} \pi)^{0.5}$$
 (33)

$$d = (4 \times 266,62 / 21 \times 2 \times 3,14)^{0.5} = 2,84 \text{ cm}.$$

Принимаем d = 3.0 см.

Толщину крайних (рабочих) ребер вкладыша определим из расчета болтового соединения на смятие

$$t_p > N \gamma_{\pi} / 2 R_{c_M} \gamma_c d \tag{34}$$

$$t_p = 266,62 \times 0,95 / 2 \times 47,5 \times 0,9 \times 3,0 = 0,94 \text{ cm}.$$

Принимаем толщину крайних ребер вкладыша $t_p = 1,2$ см; толщину двух промежуточных ребер принимаем равной 0,5 см.

Конструирование и расчет фасонок

Толщину фасонок, примыкающих к узлу растянутых раскосов 3-4 и 4-5 определим из расчета на смятие отверстий для центрового болта по формуле (34) (диаметром 3 см) под действием усилия $N_{34} = N_{45} = 243,71$ кH:

$$2 t = 243,71 / 47,5 \times 3,0 = 1,71 cm.$$

Принимаем толщину 2-х фасонок $t_{\phi} = 1,0$ см.

Ширину фасонок определим из расчета на растяжение с учетом ослабления отверстием под центровой болт диаметром 3,3 см):

$$b_{\phi} > (N \gamma_{\pi} / \gamma_{c} t_{\phi} R_{v}) + 3.3 \text{ cm}$$
 (35)

$$b_{\phi} = (243,71 \times 0.95 / 2 \times 0.95 \times 1 \times 23.5) + 3.3 = 8.49$$
 cm.

По конструктивным соображениям (по условиям обеспечения требуемых расстояний от болта до краев металлических пластин): $b_{\phi} > 2 \times 1,5 \ d = 9 \ cm$.

Принимаем ширину фасонки $b_{\phi} = 9$ см.

Расчет сварных швов

Длину сварных швов, объединяющих торцевые диафрагмы с ребрами, принимаем равной $l_{\rm m}=10,5$ см с каждой стороны ребра (по аналогии с опорным узлом I).

Длину сварных швов (два шва на каждой фасонке, всего 4 шва) при соединении арматурных стержней и фасонок элементов раскосной решетки 3-4 и 4-5 определим расчетным путем по формуле (25):

$$1_{\text{III}} = (243,71 / 4 \times 0,6 \times 0,7 \times 18) + 1 = 9,06$$
 см.

Принимаем длину каждого из указанных швов $l_{\text{ш}} = 9$ см.

2.6.4 Промежуточный узел по нижнему поясу (узел 3)

Конструкция узла показана на рис. 8. Поскольку конструктивные параметры соединений раскосов 3-4 и 4-5 определены при расчете предыдущего узла, остается рассчитать лишь торцевое опирание стойки 2-3.

Расчетное усилие $N_{23} = -135,22$ кH. Напряжения смятия (при размерах опорной пластины в плане $b \times l = 17,5 \times 17,5$ см) определим по формуле (23):

$$\sigma_{cm} = 135,22 / 306,25 = 0,44 \text{ kH/cm}^2 < R_{cm} = 1,5 \text{ kH/cm}^2.$$

Изгибающие моменты в опорной пластине определим с учетом того, что часть ее располагается частично на полках уголков нижнего пояса; ширина свободного, неподкрепленного полками, участка определяется размером $a=b_\pi-2b_y=17.5-2\times 5=7.5$ см.

Принимая одно ребро жесткости (рис. 8) получим, что «глубина» этого участка, b = 8,75 см; таким образом, b / a = 8,75 / 7,5 = 1,16 и, следовательно, $\beta = 0,16$. Изгибающий момент определим по формуле (21):

$$M_{max} = 0.16 \times 0.44 \times 7.5^2 = 3.96$$
 к $H \cdot c_M$

Требуемая толщина пластины определится по формуле (22):

$$t_{\pi} = (6 \times 3.96 \times 0.95 / 0.95 \times 1.2 \times 23.5)^{0.5} = 0.92$$
 cm.

Принимаем пластину толщиной 1,0 см.

Толщину ребра жесткости примем равной $0,5\,$ см; ее высоту, $h_p=5\,$ см, по конструктивным соображениям.

3 ПРОЕКТИРОВАНИЕ КОЛОННЫ

Колонны являются составной частью поперечной рамы сооружения, и поэтому, усилия в этом конструктивном элементе должны быть определены в результате расчета статически неопределимой системы (рис. 9 – высота колонны принята условно).

В состав действующих на раму нагрузок, включаются:

- Вертикальные нагрузки: собственная масса покрытия, стропильных ферм, колонн и панелей стенового ограждения; снеговая нагрузка; вертикальные составляющие ветрового давления.
- Горизонтальные нагрузки: ветровое давление на стеновое ограждение по высоте колонны; горизонтальные составляющие ветрового давления на ригель.
- Моментные нагрузки (от возможного эксцентричного воздействия веса навесных стеновых конструкций по отношению к геометрической оси колонны).

3.1 Сбор нагрузок

Интенсивность вертикальных нагрузок от массы покрытия конструкций и стропильной фермы определим, используя данные предыдущих расчетов (табл.4). Нормативная масса колонны (длиной 5,0 м с поперечным сечением $b \times h = 17,5 \times 37,5$ см), определенная ориентировочно с учетом веса «оголовка» и «башмака», составляет: $P_{\kappa} = 1,85$ кН.

Таблица 8

Наименование нагрузки		ивность, І/м	Грузо- вая ши- рина, м	Интенсивность, кН		
	Норма- тивная	Расчет- ная		Норматив- ная	Расчет- ная	
Собственный вес покрытия (см. табл. 4)	3,78	4,32	9,30*	35,15	40,18	
Собственный вес колонны				1,85	2,02	
Итого: постоянная нагрузка				37,00	42,20	
Снеговая нагрузка	15,00	21,00	9,30*	139,50	195,30	

Примечания:

- 1. Вертикальными составляющими ветрового давления на ригель пренебрежем ввиду их разгружающего воздействия;
 - 2. Грузовая ширина дана с учетом карнизов покрытия.

Интенсивность горизонтальных нагрузок (ветровое давление) определим на основании СП [1]:

Нормативное значение ветровой нагрузки w следует определять как сумму средней w_m и пульсационной w_p составляющих:

$$w = w_m + w_p \tag{36}$$

Нормативное значение средней составляющей ветровой нагрузки w_m в зависимости от эквивалентной высоты z_e над поверхностью земли следует определять по формуле

$$w_m = w_0 k_{(ze)} c \tag{37}$$

где w_0 – нормативное значение ветрового давления (см. СП п.11.1.4);

 $k_{(ze)}$ — коэффициент, учитывающий изменение ветрового давления для высоты z_e (см. СП п.11.1.5 и 11.1.6);

c – аэродинамический коэффициент (см. СП п.11.1.7).

Нормативное значение пульсационной составляющей ветровой нагрузки w_p на эквивалентной высоте z_e следует определять следующим образом:

$$w_p = w_m \, \zeta_{(ze)} \, v \tag{38}$$

где w_m – нормативное значение средней составляющей ветровой нагрузки;

 $\zeta_{(ze)}$ — коэффициент пульсации давления ветра, принимаемый по таблице 11.4 или формуле (11.6) для эквивалентной высоты z_e [1];

v — коэффициент пространственной корреляции пульсаций давления ветра [1] Данные о величине ветровых нагрузок сведем в таблицу.

Таблица 9

Нагрузка	Интенсив- ность		c	$k_{(ze)}$	$\zeta_{(ze)}$	v	$\gamma_{ m f}$	Расчетная интенсив-
	$\kappa H/m^2$	кН/м						ность
Наветренное давление	0,23	1,38	0,8	0,53	1,19	0,8	1,4	1,14
Подветренное давление	0,23	1,38	-0,5	0,53	1,19	0,8	1,4	0,71

 $\gamma_{\rm f}$ – коэффициент надежности по ветровой нагрузке, $\gamma_{\rm f}$ = 1.4;

b – грузовая ширина, b = 6.0 м.

Примечание: Учитывая приблизительное равенство коэффициентов C_{e1} и C_{e2} по покрытию, влиянием горизонтальных составляющих и этих компонентов ветровой нагрузки пренебрежем.

Рисунок 9 — Расчетная схема поперечника здания

Рисунок 10 — Расчетная схема базы колонны

3.2 Определение изгибающих моментов в колоннах рамного поперечника

Используя метод сил, получим следующие значения усилия $X_{\rm w}$ и $X_{\rm m}$ («нормальная» жесткость ригеля $EA_{\rm p}$ принимается бесконечно большой):

- от ветрового давления W:

$$X_w = 3 \text{ H } (W_a - W_o) / 16$$
 (39)
 $X_w = 3 \times 5,0 \times (1,14 - 0.71) / 16 = 0,403 \text{ kH}$

Максимальный изгибающий момент в опорном сечении колонны M_{aw} от ветрового давления на уровне обреза фундамента ($L_{\kappa} = 500$ см):

$$M_{aw} = W_a L_{\kappa}^2 / 2 - X_w L_{\kappa}$$
 (40)

$$M_{\rm aw}$$
 = 1,14 × 5.0² / 2 – 0,403 × 5,0 = 12,36 кН м = 1236 кН см.

3.3 Расчетные сочетания нагрузок

Возможны следующие сочетания воздействующих на колонну постоянной и временной нагрузок:

- 1. Постоянная и одна временная в следующих вариантах (коэффициент сочетания нагрузок C= 1.0):
 - а) постоянная + снеговая; в этом случае:

$$N = N_{\text{max}} = 42,20 + 195,30 = 237,50 \text{ kH};$$

б) постоянная + ветровая; в этом случае:

$$N = 42,\!20 \ кH;$$

$$M_a = M_{max} = 1236 \ кH \ cm.$$

2. Постоянная + снеговая + ветровая (коэффициент сочетания нагрузок C= 0.9); в этом случае:

$$N = 237,5 \times 0,9 = 213,75$$
 кH; $M_a = 1236 \times 0,9 = 1112,4$ кH см.

3.4 Конструктивные параметры колонны

Конструктивный расчет сжато-изгибаемых элементов производится в форме проверки конструктивных параметров сечения. При определении размеров поперечного сечения и числа связей сдвига проектируемой колонны следует учесть требования норм проектирования в отношении ограничения гибкости основных элементов несущих конструкций для сжатых и сжато-изгибаемых стержней $\lambda < \lambda_{np} = 120$.

Учитывая, что в плоскости изгиба рамного поперечника коэффициент приведения длины колонны μ_z = 2,2, получим минимально достаточный радиус инерции поперечного сечения в этой плоскости:

$$r_z > \mu_z L_\kappa / \lambda_{\pi p} (41)$$

$$r_z = 2.2 \times 500 / 120 = 9.17$$
 cm.

Отсюда, требуемая (минимальная) высота поперечного сечения:

$$h_{Tp} > r_z / 0.289 (42)$$

$$h_{\text{Tp}} = 9,17 / 0,289 = 31,73 \text{ cm}.$$

С запасом на податливость связей принимаем: $h_{\kappa} = 17,5 + 20,0 = 37,5$ см.

Аналогично этому, при расчете из плоскости изгиба получим минимально достаточный радиус инерции сечения в этом направлении, $r_y = 4,17$ см, далее определим значение минимально достаточной ширины поперечного сечения колонны (учитывая при этом, что в данном случае $\mu_y = 1.0$):

$$b_{\kappa} > r_y \: / \: 0.289 = 4.17 \: / \: 0.289 = 14.43 \: \text{cm}$$

Принимаем брусья с шириной сечения $b_i = b_\kappa = 17,5$ см.

Таким образом, геометрические параметры поперечного сечения приобретают следующие значения: $A_1 = 17.5 \times 17.5 = 306.25 \text{ cm}^2$; $A_2 = 17.5 \times 20.0 = 350.0 \text{ cm}^2$; $A = 656.3 \text{ cm}^2$; $I_1 = 7815.8 \text{ cm}^4$; $I_2 = 11666.7 \text{ cm}^4$; $\Sigma I_i = 19484.5 \text{ cm}^4$; $I = 76904.3 \text{ cm}^4$; $W = 4101.6 \text{ cm}^3$; $S = 3062.5 \text{ cm}^3$; $S / I = 0.04 \text{ cm}^{-1}$.

Материал составляющих элементов: сосна 2-го сорта, R_c = R_u = 2,25 \times \times 0,66 = 1,489 кH/см² \approx 1,5 кH/см²; E = 300Rc = 450 кH/см².

Средства соединения: нагельные пластины НПСт11Г6к, T_c =15.4 кH, δ_c = 0,1 см, Δ_c = 0,2 см.

Количеством нагельных пластин по длине плоскости соединения составляющих элементов зададимся на основании следующего расчета (возможен также и прежний вариант, использованный ранее при расчете верхнего пояса фермы, см. п.3.2):

$$n_c > k_T M S / I T_c = k_T W R S / I T_c (43)$$

 $n_c = 1 \times 4101,6 \times 1,5 \times 0,04 / 15,4 = 15,98$

3десь M = WR - виртуальный изгибающий момент (возможный при потере устойчивости колонны).

Принимаем 15 нагельных пластин Ст11Г6к.

Общий вид колонны показан на рис.11 (размеры показаны условно).

Расчету подлежат: ствол колонны, узел сопряжения с фундаментом; оголовок колонны принимается конструктивно во взаимосвязи с опорным узлом фермы (см. выше).

3.5 Конструктивный расчет колонны

Расчет колонны произведем при двух сочетаниях нагрузок, характеризующихся следующими соотношениями продольной силы и изгибающего момента:

 $[N]_{max} - M$ (сочетание 1a);

 $[M]_{max}$ – N (сочетание 2).

3.5.1 Расчет при сочетании нагрузок 1а (центральное сжатие)

Расчетные усилия N = -237,5 кH.

Поверочный расчет принятого сечения выполним в табличной форме (табл. 10).

Гибкость колонны целого сечения определена:

$$\lambda_z = \mu_z \ L / r_z$$
 (44)
 $\lambda_z = 2.2 \times 500 / 0.289 \times 37.5 = 101.5$

Гибкость отдельного составляющего элемента на участках между раскреплениями $\lambda_{iz}=0$, так как расстояние между нагельными пластинами $S_{1\text{maxcm}}<7h_i=122,5$ см.

Рисунок 11 — Деревянная колонна составного сечения с соединениями на нагельных пластинах

Таблица 10

Что определяется	Как определяется	Результат		
2	3	4		
Жесткость принятого количества связей	$K_c = n_c T_c / \delta_c$	2310		
сдвига	15 × 15,4 / 0,1	2310		
Деформативность принятого количества	$\Delta_{c\kappa} = 2 \text{ W R S / I K}_c = 2 \text{ T / K}_c$	0,213		
связей сдвига	2 × 246,1 / 2310	0,213		
Смещение составляющих элементов	$\Delta_o = W \ R \ L \ h_i \ / \ 2 \ k_\phi \ \Sigma \ E \ I_i =$			
в стержне-пакете	$= 4101,6 \times 1,5 \times 500 \times 37,5 / 2 \times$	2,193		
B erepaire nakere	× 3 × 450 × 19484,5			
То же, в составном стержне оснащенном	$\Delta_{ m oc} = \Delta_{ m o} \; \Delta_{ m c_K} / (\Delta_{ m o} + \Delta_{ m c_K})$	0,194		
связями сдвига ($n_c = 14$)	$2,193 \times 0,213 / (2,193 + 0,213)$	0,174		
Параметр m _I	$m_{\rm I} = ({\rm E~I/E~I_i}) - 1 = (76904,3)$	2.047		
(для определения коэффициента k _I)	/ 19484,5) — 1	2,947		
Коэффициент приведения k _I	$k_{\rm I} = 1 - 1 / (1 + m_{\rm I} \Delta_{\rm oc} / \Delta_{\rm o})$	0.704		
(при $\Delta_{ m oc}$ / $\Delta_{ m o}$ = 0 ,088)	$1/(1+2,947\times0,088)$	0,794		
Гибкость колонны в плоскости изгиба ($\lambda_z = 0$)	$\lambda_{\pi} = \lambda_z / k_I^{0.5}$	112.0		
Тиокость колонны в плоскости изгиоа ($\lambda_z = 0$)	$101,5 / 0,794^{0.5} < \lambda_{\pi p} = 120$	113,9		
	$N_{KP} = \phi_{\Pi} A R_{c} = 3000 A R_{c} /$			
Критическая сила. Расчет на устойчивость	$/\lambda_{\rm II}^2 \gamma_{\rm II} > N = 237,50$	239,6		
Teprim reckus crista. I de lei na jeton imboetb	3000 × 656,3 × 1,5 / 113,9 ² ×	207,0		
	× 0,95			

Таким образом, устойчивость колонны с принятыми конструктивными параметрами в плоскости рамного поперечника обеспечена $N_{\kappa p} > N = 237,50 \, \mathrm{kH}.$

3.5.2 Расчет при 2-м сочетании нагрузок (сжатие с изгибом)

Из двух вариантов нагружения по сочетаниям 16 и 2, возбуждающим значительные по величине изгибающие моменты, наиболее опасным является последний, так как при почти одинаковых изгибающих моментах продольная сила существенно выше той, которая проявляется в варианте 16, в результате чего увеличиваются и напряжения сжатия и возрастает величина расчетного изгибающего момента, определяемого с учетом деформационных приращений.

Заметим также, что продольная сила в колонне формируется постоянными и снеговыми нагрузками и коэффициент m_{H} , учитывающий влияние длительности нагружения на сопротивление сжатию, $m_{\text{Hc}}=1,0$; изгибающие моменты формируются кратковременным ветровым давлением, поэтому $m_{\text{Hu}}=1,2$.

Расчетные усилия N = -213,75 кH, $M_a = 1112,4$ кH см.

С учетом сказанного получим при расчете по I предельному состоянию в вычислениях по п. 14 табл.11 (см. ниже):

$$\sigma = N_i / A_i + M_{\text{деф}} / K_w m_{\text{HM}} W_{\text{HT}} < R_c$$
 (45)

Таблица 11

Что определяется	Как определяется	Результат
2	3	4
Напряжения сжатия	$\sigma_{ic} = N_i / A_i$	0,326
в составляющих элементах	213,75 / 656,3	0,520
Обобщенная жесткость	$K_c = n_c T_c / c$	2310
связей сдвига (n _c = 14)	15 × 15,4 /0,1	2310
Деформативность связей сдвига	$\Delta_{c\kappa} = 2 M_a S / I K_c$	0,035
принятой жесткости	2 × 1023,75 × 0,04 / 2310	
Смещение составляющих	$\Delta_o = M_a L h_i / 2 k_f E I_i$	
элементов в стержне-пакете	1112,4 × 500 × 37,5 / 2 × 3 × 450 ×	0,365
1	× 19484,5	
Смещение составляю-	$\Delta_{ m oc} = \Delta_{ m o} \; \Delta_{ m c_{ m K}} / (\Delta_{ m o} + \Delta_{ m c_{ m K}})$	0.000
щих элементов в составном	$0,365 \times 0,035 / (0,365 + 0,035)$	0,032
стержне	4.51/1.51) 1	
Параметр m _w	$m_{w} = (h_{i} E I / h E I_{i}) - 1 =$	0,842
(для определения K_w)	$= (17,5 \times 76904,3 / 37,5 \times 19484,5) - 1$	
Коэффициент приведения	$K_{\rm w}=1/(1+m_{\rm w}\Delta_{\rm oc}/\Delta_{\rm o})$	0,931
$K_{\rm w} \left(\Delta_{\rm oc} / \Delta_{\rm o} = 0.088 \right)$	1 / (1 + 0,842 × 0,088)	
Параметр m _I (для определения	$m_{I} = (E I / E I_{i}) - 1 =$	2,947
коэффициента К _І)	= (76904,3 / 19484,5) - 1	2,947
Коэффициент приведения	$k_{\rm I}=1/(1+m_{\rm I}\Delta_{\rm oc}/\Delta_{\rm o})$	0.704
$K_{\rm I} \left(\Delta_{\rm oc} / \Delta_{\rm o} = 0.088 \right)$	$1/(1+2,947\times0,088)$	0,794
Гибкость составного стержня	$\lambda_{\pi} = \lambda_{z} / k_{I}^{0.5}$	113,9
$(\lambda_{iz} = 0)$	$101,5 \ / \ 0,794^{0.5} < \lambda_{\pi p} = 120$	113,9
Критическая сила N _{кр} для	$N_{\kappa p} = \phi_{\pi} \; A \; R_c = 3000 \; A \; R_c m_i / \lambda_{\pi}^{\; 2} \gamma_{\pi} =$	287,6
определения коэффициента ξ)	$=3000\times656,3\times1,5\times1,2/113,9^2\times0,95$	201,0
Коэффициент влияния	$\xi = 1 / (1 + N / (N \kappa p - N))$	
деформационных приращений	1 / (1 + 0,616 × 213,75 /	0,36
, 11 ,	(287,6 – 213,75))	

Окончание табл. 11

2	3	4
Деформационный изгибающий момент	$M_{\text{деф}} = M / \zeta 1112,4 / 0,36$	3090
Прочность нормальных сечений	$\sigma_{\text{п}} = \sigma_{\text{ic}} + M_{\text{деф}} / m_{\text{ни}} K_{\text{w}} W_{\text{нт}} < R_{\text{c}}$ $0,326 + 3090 / 0,931 \times 1,2 \times 4101,6 <$ $< 2,25 \times 0,66 / 0,95 = 1,56$	1,00
Прочность средств соединения	$T_{\pi} = K_{T} T (1 - \Delta_{oc} / \Delta_{o}) / \zeta < n_{c} T_{c}$ $1023,75 \times 0,04 (1 - 0,032 / 0,365) / 0,36 <$ $< 15 \times 15,4 = 231,0$	104,0

Таким образом, несущая способность колонны с принятыми конструктивными параметрами обеспечена; имеются запасы прочности как в нормальных сечениях (п.14), так и связях сдвига (п.15). Появляется возможность уменьшения размеров поперечного сечения элементов (или числа связей сдвига) — однако в данном случае, как показывает выполненный ранее расчет на устойчивость при 1-м сочетании нагрузок (смотри выше таблица 10), ни то, ни другое невозможно, так как величина продольной силы при этом сочетании практически равна критической.

3.5.3 Расстановка нагельных пластин

Расчетные координаты связей сдвига (нагельных пластин НПСт11Г6) определим по выражению (2):

$$X_{k+1} = 1000 \arcsin (k / 15) / \pi$$
,

где k=0 ... 15.

Затем определяются расстояния между пластинами по выражению:

$$S_{1,k+1} = X_{k+1} - X_k < S_{1 \text{ min}} = 12d$$

Расстояние от первой связи до торца колонны в месте заделки (по обрезу фундамента) примем равным $S_1 = 15d = 9$ см.

Результаты расчета сведем в таблицу.

Таблица 12

№ связей	1	2	3	4	5	6	7	8
X_{k+1}	0,00	21,2	42,6	64,1	86,0	108,2	131,1	154,6
S _k , _{k+1}	9,0	21,2	21,4	21,5	21,9	22,2	22,9	23,5

9	10	11	12	13	14	15	15
179,2	204,9	232,4	262,2	292,3	333,9	383,3	500,0
24,6	25,7	27,5	29,8	30,1	41,6	59,4	116,7

3.6 Проектирование базы колонны

Проектирование узла примыкания колонны с фундаментом осуществим на основе следующих основных предпосылок:

- Сжимающая компонента усилий, возникающих от продольной силы и изгибающего момента (с учетом деформационных приращений), воспринимается за счет контактного сопряжения торца колонны и фундамента.
- Растягивающая компонента тех же усилий воспринимается за счет работающих на растяжение анкерных болтов, закрепляемых к колонне посредством металлических башмаков и нагельных болтов.

Параметры напряженного состояния, вызванные действием приложенных силовых факторов, определяются по разработанному нами методу эквивалентных сечений, в соответствии с которым принимается, что равнодействующая растягивающих напряжений от изгибающего момента координатно совмещается с линией расположения анкерных болтов, в растянутой зоне поперечного сечения (см. рис. 10).

При треугольном очертании эпюры нормальных напряжений, вызванных действием изгибающего момента, получим расстояние h_a между точкой приложения равнодействующей напряжений растяжения до противоположной (сжатой) грани колонны.

С другой стороны, при фиксированном (принятом) расположении анкерных болтов по отношению к граням колонны, указанное расстояние h_a может быть связано также с высотой поперечного сечения колонны h_{κ} и расстоянием а от анкеров до растянутой грани сечения $h_a = h_{\kappa} - a$.

На основании сказанного из расчетных эпюр нормальных напряжений по высоте «эквивалентного сечения» получим численное значение его высоты $h_{_{9KB}}=1,2\ (h_{_K}-a)=1,2\ h_a$, а также размеры «плеча» внутренней пары, образуемой равнодействующей сжимающих напряжений — S и равнодействующей напряжений растяжения +S: $e=0,8\ h_a$.

В итоге, искомое усилие растяжения $N_a = + \; S$ в анкерах растянутой зоны определится из выражения

$$N_a = -0.5 \text{ N} + M_{\pi e \oplus} / K_w e$$
 (46)

Максимальные напряжения сжатия по образу фундамента:

$$\sigma_{c} = -N / A - M_{neb} / K_{w} W_{skB}$$

$$(47)$$

где $W_{_{\text{ЭКВ}}}$ – момент сопротивления эквивалентного сечения $W=b\ h_{_{\text{ЭКВ}}}/$ 6.

3.6.1 Расчет анкерных болтов

Для удобства размещения стеновых панелей анкерные болты разместим на боковых плоскостях колонны, со смещением от растянутой кромки сечения на расстояние «а».

Задаваясь диаметром нагельных болтов d = 16 мм, определим минимально допустимое расстояние а до края колонны: $a > S_3 = 2.5d = 4$ см.

В итоге получим необходимые для расчета геометрические параметры:

$$h_a = 37.5 - 5 = 33.5$$
 cm; $h_{3KB} = 1.2$ $h_a = 40.2$ cm; $e = 0.8$ $h_a = 32.16$ cm.

Усилие растяжения в анкерных болтах определим для двух сочетаний нагрузок, рассмотренных ранее в п. 3.3.

— сочетание 2 (постоянная, снеговая и ветровая нагрузки): $\mathbf{N} = -213,75 \text{ кH}, \quad \mathbf{M}_a = 1112,4 \text{ кH см}. \quad \mathbf{M}_{\text{деф}} = 3090 \text{ кH см}. \quad (\text{табл.11}).$ $\mathbf{N}_a = -0.5 \times 213,75 + 3090 / 0.931 \times 32.16 = -3,67 \text{ кH}.$ — сочетание 16 (постоянная и ветровая нагрузки): $\mathbf{N} = -42,20 \text{ кH}; \quad \mathbf{M}_a = \mathbf{M}_{\text{max}} = 1236 \text{ кH см}.$

$$M_{\text{деф}} = M \, / \, \xi = 1236 \, / \, 0,904 = 1367 \, \, \text{кH cm},$$
 где ξ = 1 / $(1+0,616 \times 42,2 \, / \, (287,6-42,2)) = 0,904$ для этого случая нагружения.

$$N_a = -0.5 \times 42.2 + 1367 / 0.931 \times 32.16 = 24.5 \text{ kH} > -3.67 \text{ kH}$$

Требуемую площадь поперечного сечения анкерных болтов определим из расчета на максимальные усилия растяжения:

$$A_{\rm Tp} > N_{\rm amax} / K_c R k_o \tag{48}$$

$$A_{\text{TP}} = 24.5 / 0.85 \times 20 \times 0.8 = 1.80 \text{ cm}$$

где k_o – коэффициент, учитывающий влияние концентрации напряжений в сечениях с винтовой нарезкой, $k_o = 0.8$;

 K_c – коэффициент условий работы спаренных болтов $K_c = 0.85$.

Принимаем 2 d 16 (меньше не рекомендуется), $A_{\rm HT} = 2 \times 1,57 = 3,14$ см > 1,80 см.

3.6.2 Расчет нагельных болтов

Изначально задались диаметром нагельных болтов 16 мм.

Количество болтовых нагелей, необходимых для закрепления металлических накладок к стволу колонны определится по формуле (31):

$$n_6 > N_a / n_s T_{6,min} = 24.5 / 2 \times 6.4 = 1.91$$

Здесь
$$T_{\text{изг}} = T_{\text{и}} = 2,5 \ d^2 = 2,5 \times 1,6^2 = 6,4 \ \kappa H$$

$$T_{cm} = 0.5 \text{ cd} = 0.5 \times 17.5 \times 1.6 = 14.0 \text{ kH}$$

Принимаем 2d 16.

Требуемая площадь сечения накладок из расчета на растяжение:

$$A_{\rm Tp} > N_a / 2 R_y \gamma_c \tag{49}$$

$$A_{Tp} = 24,50 / 2 \times 23,5 \times 0,95 = 0,52 \text{ cm}.$$

Принимаем накладку по минимуму

$$b_{\rm h} = 5$$
 cm, $t_{\rm h} = 5$ mm, $A_{\rm ht} = 0.5$ $(5 - 1.9) = 1.55$ cm > 0.52 cm.

3.6.3 Расчет монтажных столиков

Размеры монтажного столика в плане определим из условия размещения шайбы под анкерные болты диаметром 16 мм: a > 4d = 64 мм.

Принимаем монтажный столик размером 70×80 мм.

Напряжения смятия, возникающие по плоскости контакта между шайбами и монтажным столиком под действием анкерных усилий, определим по формуле (23):

$$\sigma_{cm} = N_a / \ 2 \ A_{cm} = 24.5 \ / \ 2 \times 7 \times 8 = 0.22 \ \kappa H/cm^2.$$

Изгибающий момент для единичной полосы монтажного столика (как пластины, подкрепленной по трем сторонам, и соотношением размеров в плане b/a = 8/7 = 1,14) определим по формуле (22):

$$M_{max} = \beta \ a^2 \ \sigma_{cm} = 0,121 \times 7^2 \times 0,22 = 1,3$$
 кН см.

Требуемая толщина монтажного столика определится по формуле (23):

$$t_{cr} > (6 \text{ M} \gamma_{\pi} / \gamma_{c} \text{ K}_{\pi\pi} \text{ R}_{\mu})^{0.5} = (6 \times 1.3 / 1.2 \times 23.5)^{0.5} = 0.53 \text{ cm}.$$

Принимаем $t_{cr} = 6$ мм.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СП 20.13330.2016. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07–85* : с Изм. N 1, 2 : действ. с 04.06.2017 / разраб. ЦНИИСК им. В. А. Кучеренко ОА «НИЦ «Строительство» ; ФГБУ «Главная геофизическая обсерватория им. А. И. Воейкова». Москва, 2017. Режим доступа : норматив.-техн. система «Техэксперт». Текст : электронный.
- 2. СП 64.13330.2017. Деревянные конструкции. Актуализированная редакция СНиП II-25-80 : с Изм. N 1, 2 : действ. с 28.08.2017 / разраб. ГУП ЦНИИСК им. А. В. Кучеренко. Москва : Стандартинформ, 2017. Режим доступа : норматив.-техн. система «Техэксперт». Текст : электронный.
- 3. СП 16.13330.2017. Стальные конструкции. Актуализированная редакция СНиП II-23-81*: с Поправкой, с Изм. N 1: действ. с 28.08.2017 / разраб. ЦНИИСК им. В. А. Кучеренко, МГСУ, СПбГАСУ. Москва: Стандартинформ, 2017. Режим доступа: норматив.-техн. система «Техэксперт». Текст: электронный.
- 4. Рекомендации по проектированию и изготовлению деревянных конструкций с соединениями на пластинах с цилиндрическими нагелями (системы КирПИ-ЦНИИСК). Москва : [б. и.], 1988. 77 с. Текст : непосредственный.
- 5. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Расчетно-теоретический. В 2 кн. Кн. 1 / под ред. А. А. Уманского. 2-е изд., перераб. и доп. Москва : Стройиздат. 1972. 599 с. Текст : непосредственный.

Учебное издание

Исупов Сергей Александрович

КАРКАС ПРОИЗВОДСТВЕННОГО ЗДАНИЯ С ДЕРЕВЯННЫМИ КОНСТРУКЦИЯМИ НА НАГЕЛЬНЫХ ПЛАСТИНАХ ТГк

Учебно-методическое пособие

Авторская редакция Тех. редактор Нилова А. В.

Подписано в печать 04.02.2020. Печать цифровая. Бумага для офисной техники. Усл. печ. л. 2,99. Тираж 5 экз. Заказ № 6104

Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

610000, г. Киров, ул. Московская, 36, тел.: (8332) 64-23-56, http://vyatsu.ru