Background selection!

An alternative explanation for why pi and recombination rate are correlated...

...and a continuing, heated debate!

A positive view of the world...

0.02

0.08

Coefficient of exchange

 Beneficial mutations around the genome cause the association of recombination Nucleotide diversity (π) rate to pi!

Advocates:

But what if beneficial mutations very rare?

... won't see a strong overall trend: many low recombination regions may still have high pi.

An alternative hypothesis:

- "Bad" mutations are **very** common.
- When a bad mutation happens, it dooms the alleles near it to eventual death.
- The size of the doomed window varies with recombination rate.

"Background selection"

Background selection low/ no recombination

GCATGCTAGTCGATTGCGGAATTTTTG GCATGAGAGTCGATTGCGGCATTTTCG GCATGCTAGTTGATTGCGGCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GCATGCGAGTCGATTGCTGCATTTTCG GCATGCTAGGCGATTGCGGCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GAATGCGAGTCGATTGCGGAATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG

Background selection low/ no recombination

GCATGCTAGTCGATTGCGGAATTTTTG GCATGAGAGTCGATTGCGGCATTTTCG GCATGCTAGTTGATTGCGGCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GCATGCGAGTCGATTGCTGCATTTTCG GCATGCTAGGCGATTGCGGCATTTTCG ${}^{>}$ GCATGCTAGTCGATTGCGGCATTTTCG GAATGCGAGTCGATTGCGGAATTTTCG imesGCATGCTAGTCGATTGCGGCATTTTCG

Background selection low/ no recombination

GCATGCTAGTCGATTGCGGCATTTTCG

→GCATGCTAGTCGATTGCGGCATTTTCG

→GCATGCTAGTCGATTGCGGCATTTTCG

Background selection high recombination

GCATGCTAGTCGATTGCGGAATTTTTG GCATGAGAGTCGATTGCGCGCATTTTCG GCATGCTAGTTGATTGCGGCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GCATGCGAGTCGATTGCTGCATTTTCG GCATGCTAGGCGATTGCGCCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GAATGCGAGTCGATTGCGGAATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG

Background selection high recombination

Persisting chromosome segments

GCATGCTAGTCGATTGCGGAATTT **GCAT** TGCGGCATTTTCG TGCGGCATTTTCG **GCAT** GCATGCTAGTCGATTGCGGCATTTTCG **GCATGCGAGTCGAT** TCG **GCAT** TGCGGCATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG GCGAGTCGATTGCGGAATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG

Persisting chromosome segments

Background selection high recombination

GCATGCTAGTCGATTGCGGAATTT **GCAT** TGCGGCATTTTCG TGCGGCATTTTCG **GCAT** GCATGCTAGTCGATTGCGGCATTTTCG GCATGCGAGTCGAT TCG TGCGGCATTTTCG GCAT GCATGCTAGTCGATTGCGGCATTTTCG GCGAGTCGATTGCGGAATTTTCG GCATGCTAGTCGATTGCGGCATTTTCG

A lot more variability is retained because bad mutations can be lost without "dragging away" so much of the rest of the chromosomes

Background selection prediction

Depends on <u>high</u> rates of bad mutation

- Regions of high recombination (close hotspots) will preserve more variation (high pi)
 - Exactly the same prediction as hitchhiking!

"The big debate..."

- Could be selective sweeps & hitchhiking
 - New advantageous variants arise frequently, and their fixation takes away variation
 - Neutral theory says these are very rare.
- Could be background selection
 - New bad mutations arise <u>very</u> frequently, and their elimination takes away variation
 - Neutral theory has no problem with this.

Very much an area of active research today!!!

Big debate and much continued disagreement...

Whole genome analyses show positive associations of pi and

recombination rate:

Drosophila simulans-

- Begun argues it's mostly from hitchhiking, and some beneficial mutations have been found
- Charlesworth argues that we know of WAY more cases of bad mutation

Perspectives

Evolutionary Analysis, Freeman & Herron, 4th ed:

"The current consensus is that hitchhiking is probably responsible for the most dramatic instances of reduced polymorphism in linked regions- for example, where sequence variation is entirely eliminated- while background selection causes the less extreme cases." -page 263

Begun reply

• E-mail 28 February 2012:

"There is no convincing evidence that background selection is a significant factor in Drosophila genome evolution!"

Charlesworth reply

• E-mail 15 March 2011:

"Bulls**t! Look at the paper by Vera Kaiser and me in the 2009 Trends in Genetics ... I think we make a reasonable case that the reduced variability on the ... Y and the [fourth] chromosome can be explained by background selection."

Still unsettled...

• "The controversy surrounding the relative significance of strongly beneficial and deleterious mutations in evolution has stimulated research activities for almost a decade. Despite efforts from many theorists and empiricists, fundamental questions are still open, in particular for the population genetics of regions of reduced recombination." Stephan, 2010

Image Credits, Unit 14-4

- Drosophila simulans recombination rate, © 2007 Begun et al, CC by 2.5,
 "Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans", www.plosbiology.org
- Puzzled chimp, © 2005 Kabir Bakie, CC by 2.5, en.wikipedia.org