«بسمه تعالى»

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)

درس بهینهسازی خطی مدرس: دکتر هوشمند

فصل چهارم: مباحث تكميلي در خصوص الگوريتم سيمپلكس

دور در الگوریتم سیمپلکس

- ✓ در هر تکرار از الگوریتم سیمپلکس، متغیری که پتانسیل بهبود تابع هدف را دارد، برای ورود به پایه انتخاب میکنیم. اگر برندهٔ آزمون نسبت صفر نباشد، قطعاً متغیر وارد شونده، مقداری اکیداً مثبت را در جدول بعدی اختیار خواهد کرد و در نتیجه مقدار تابع هدف از این جدول به جدول بعدی اکیداً بهبود مییابد.
- √ پس نتیجه می گیریم که اگر مسأله تباهیده نباشد، در الگوریتم سیمپلکس همواره از یک نقطهٔ گوشهای به یک نقطهٔ گوشهای دیگر با Z اکیداً بهتر میرویم و چون تعداد نقاط گوشهای متناهی است، الگوریتم سیمپلکس در تعداد متناهی تکرار متوقف می شود.
- ✓ اما اگر مسأله تباهیده باشد، وقتی متغیری را که پتانسیل بهبود تابع هدف را دارد، برای ورود انتخاب می کنیم، ممکن است برندهٔ آزمون نسبت صفر شود. در این صورت، متغیر وارد شونده، در جدول بعدی مقدار صفر را اختیار خواهد کرد. در نتیجه نقطهٔ گوشهای متناظر با جدول بعدی عیناً مشابه با نقطهٔ گوشهای جدول فعلی است و تابع هدف از جدول قبلی به جدول بعدی بدون تغییر می ماند. در این حالت اصطلاحاً می گوییم «در همان نقطهٔ گوشهای در جا زدهایم»

لذا، در مسائل تباهیده این امکان وجود دارد (البته با احتمال کم) که در یک نقطهٔ گوشهای غیربهینه توقف کنیم و دنبالهای از جوابهای شدنی پایهای متناظر با آن را به صورت BV_1, BV_2, \dots, BV_k

که $BV_1=BV_k$ ملاقات کنیم و این دنباله دوباره و دوباره تکرار شود و برای همیشه بین پایههای فوق بدون آنکه بهبودی در تابع هدف رخ دهد، دور بزنیم.

چنین حالتی را اصطلاحاً «در دور افتادن» می گوییم.

مثال: در مسألهٔ زیر الگوریتم سیمیلکس در دور میافتد.

$$\min z = \frac{-3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
s. t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 \le 0$$

$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 \le 0$$

$$x_3 \le 1$$

$$x_i \ge 0 \quad \forall i = 1, 2, 3, 4$$

By By Sy	2 0 0	x - 2 - 1 + 1 - 1 x 0	2 y x - 0 y - 1 y x -	X 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x + -7 -9 +	S ₁	S,	5 m	RHS	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} =$	$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
BU Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	7 1 - 0 0	×,	* + + + + + + + + + + + + + + + + + + +	x p - 4 - 4 - 1	-44 -47 -10	3, -4 -4	S _Y	Sr 0	RHS	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} =$	$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
By Lopings	Z 1 0 0 0	×, 0 0 0 0	× 4 0 0	X+ X X Y X 1	-1N -18 -18 0	5, -1 -14 -14 0	Sx -1 - 1 + 0	S#	RHS	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$	$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

By Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1 2 1 0 0	メートーースをからく	X y	χφ 	X + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5, 2 2/2 / 2/2	St -4"	S*	RHS	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$	(0 0 0 0 0 0 1
BV Z Z Z X Y X Y	2 0 0	x -1x - 1+ 012	xy -17 -07 -72 - 77 -07 - 77 - 77	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** **	X+ 0 - 0 1 0	S, 1 Y 1/2 - 7	5x -1 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	S+	RHS	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$	(0 0 0 0 0 0 1
BV Z SI SY	2	x > 1+ 1 0 1+ 1 7 0	4× -+- +	-1 y	X.4 0	S1 0 0	Sy y - 4 (1)20 0	Sr.	RHS o I	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} =$	(0 0 0 0 0 0 1

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 هستند و روی پایههای زیر دور زدهایم:

$$\begin{array}{c}
BV_1 = \{s_1, s_2, s_3\} \to BV_2 = \{x_1, s_2, s_3\} \to BV_3 = \{x_1, x_2, s_3\} \to BV_4 = \{x_3, x_2, s_3\} \to BV_5 = \{x_3, x_4, s_3\} \to BV_6 = \{s_1, x_4, s_3\} \to BV_1 = \{s_1, s_2, s_3\}
\end{array}$$

قاعدهٔ بلاند همگرایی الگوریتم سیمپلکس را با اطمینان از اینکه هیچ پایهای تکرار نخواهد شد، تضمین می کند.

قاعدهٔ بلاند برای انتخاب متغیرهای ورودی و خروجی

 x_1, x_2, \dots, x_n متغیرها را به صورت یک دنبالهٔ مرتب نامگذاری می کنیم مثلاً

هنگام انتخاب متغیر وارد شونده، از بین همهٔ متغیرهایی که کاندید ورود هستند (یعنی ضریب کاهش هزینهٔ آنها منفی (در مسألهٔ ماکزیممسازی) یا مثبت (در مسألهٔ مینیممسازی) است)، متغیری که کوچکترین اندیس را دارد انتخاب میکنیم.

هنگام انتخاب متغیر خارجشونده، از بین تمام متغیرهای کاندید خروجی (یعنی متغیرهای متناظر با مینیمم نسبت) آن متغیری که کوچکترین اندیس را دارد، انتخاب میکنیم.

مثال: قاعدهٔ بلاند را روی مثال قبل به کار میبریم.

$$\min z = \frac{-3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$
s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + s_1 = 0$$

$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + s_2 = 0$$

$$x_3 + s_3 = 1$$

$$x_i \ge 0 \quad \forall i = 1, 2, 3, 4$$

$$s_1, s_2, s_3 \ge 0$$

متغیرهای S_1 و S_2 و S_3 را به ترتیب S_5 و S_5 مینامیم.

Brub	Z	261	XY	xy	*	x ₀	x	X/	1 RHS
Z	7	po de	-40	1/4	7	0	0	0	0
*	0	1	-1	-1	9		0	0	• →
ダー	0	7 4	-14	1 y	4	Đ		0	•
	The state of the s						a		-

व प्याची	12	x,	xy	XY	×€	* 0	*~	*/	RHS
2	1	0	+	<u> </u>	-44	-4	0	•	•
*,	0	1	-44	-41	۲۳	4	0	o	o
*7	0	0	4	p	-18	_٢		0	o →
MARKET STATE OF THE STATE OF TH	SECTION AND ADDRESS OF THE PARTY OF THE PART					•		- 1	1

BV	Z	xı	yx	X4	xk	x b	X	x.	1 RHS
	1	•	0	4	1 -IV	2-1	-1,	0	0
X,	•	1	0	\wedge	-14	-14		0	
Xy	•		1	<u>m</u>	-18	<u>-1</u>	1	0	0
1/2	•	0		•		· · ·	*		

الم قراحا	2	×1	xy	y X			x	×v	RHS
Z	1	-1	v	ð	Y	٧	-h	0	•
	•	<u> </u>	6	11	-K1	-40		•	•
XY	o	- pr - 74	•	0		1	-1	•	o →
×Y	•	六	o	ی	×1 ×	4	-1	•	1

Brigh	12	*,	xy	24	xt	x	x	×	RHS
Z		-1-4	-17	ڻ	0	\	-1	0	0
 **	0	-0-	87	1	0	9	-7	0	o →
x	0	-1	87 17 8	•	ı	(1)	- p	o	• •
1 11	0	201	78-	. 0	0	-4		•	1

المرسرا	2	X,	**	Xp	×é	*8	Xy	×v	RHS
2		\(\frac{\psi}{\psi} \)	THE RESIDENCE OF THE PARTY OF THE PARTY.	And in case of the last of the	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	0 ,			0
x _o	0	<u>-0</u>	7.7	1 7	0		-44		•
×0	0	1 × 12	-*	-1-	1	0	1/4	o	° →
x J.	0	10	•		•	0 1	O	1	1

Br Barb	12	×ı	yX	X to	×	xo	×	X	RHS
2	1	V 0	-4	5	- <u>Y1</u>	0	- r	o	•
x ₀	0	0	-4	- - +	10	1	- ' Y	.0	•
xı	0	1	-44	-1	7	•	۲	•	•
×v	o	0	0) 。	0	•	ı	1 -
				1					440,000

छ ।	12	x1	yx	X to	xk	xo	xz	x,	RHS
Z	1	0	- Y	0	- 1	0	<u>-r</u>	-0	-0
20		0	-4	•	18	1	$\frac{1}{y}$	<u>m</u>	*
x,	•	1	37-	0	7	•	۲	t	1
X4	0	o		1		υ	•		1

جدول فوق متناظر با جواب بهین است.

روش نقطهٔ درونی (Interior point method)

- روشهای نقطهٔ درونی دستهٔ دیگری از روشها برای حل مسائل LP میباشند.
- ✓ برخلاف روش سیمپلکس که روی نقاط گوشهای ناحیهٔ شدنی به جستجو میپردازد، روش نقطهٔ گوشهای بهینه نقطهٔ گوشهای بهینه همگرا میشود.

✓ این روش از یک نقطه درون ناحیهٔ شدنی شروع می کند و در راستای یک جهت بهبوددهنده با طول گام مناسب حرکت می کند و به نقطهٔ دیگری درون ناحیهٔ شدنی می رود. در حرکت از یک جواب به جواب بعدی، جهت جستجو و طول گام باید به گونهای انتخاب شوند که جواب جدید کماکان درون ناحیهٔ شدنی باشد و نیز مقدار تابع هدف آن نسبت به جواب قبلی بهبود یابد.

پیچیدگی الگوریتم سیمپلکس

Rank(A)=m مسألهٔ زیر را در نظر بگیرید و فرض کنید A ماتریس m imes n باشد و

min or max
$$z = c^T x$$

 $s. t.$
 $Ax = b$
 $x \ge 0$

تعداد جوابهای شدنی پایهای حداکثر برابر است با:

$$\binom{n}{m} = \frac{n!}{m! \ (n-m)!}$$

 $n \geq 2m$ اگر

$$\frac{n!}{m! \ (n-m)!} = \frac{n \times (n-1) \times \dots (n-m+1)}{m \times (m-1) \times \dots \times 1} \ge 2^m$$

پس تعداد نقاط گوشهای یک LP می تواند از مرتبهٔ نمایی باشد.

و Minty مثالهای زیر را ارائه کردند که در آنها روش سیمپلکس همهٔ نقاط گوشهای را ملاقات می کند تا به جواب بهین برسد:

مثالهای Klee و Klee						
$\max z = x_1 + x_2$	$\max z = x_1 + x_2 + x_3$					
s.t.	s.t.					
$x_1 \leq 1$	$x_1 \le 1$					
$2x_1 + x_2 \le 3$	$2x_1 + x_2 \le 3$					
$x_1, x_2 \ge 0$	$2x_1 + 2x_2 + x_3 \le 9$					
	$x_1, x_2, x_3 \ge 0$					

لذا، پیچیدگی الگوریتم سیمپلکس از مرتبهٔ نمایی است.

البته به صورت تجربی ملاحظه شده که روش سیمپلکس عموماً همهٔ نقاط گوشهای را ملاقات نمی کند و غالباً در کمتر از 3m تکرار به جواب بهین می رسد. در مقابل، نسخه های متفاوتی از روش نقطهٔ درونی ارائه شده که تعداد تکرارهای آنها از مرتبهٔ چند جمله ای است.

تعداد تکرارهای روش سیمپلکس > تعداد تکرارهای روش نقطهٔ درونی

محاسبات لازم در هر تکرار از روش سیمپلکس > محاسبات لازم در هر تکرار از روش نقطهٔ درونی

جزئیات بیشتر در خصوص مثالهای Klee و Minty

و Minty مسائلی را با n قید تساوی و 2n متغیر نامنفی تعریف کردند که در آن الگوریتم Klee سیمپلکس 2^n-1 تکرار را انجام می دهد و همه نقاط گوشه ای را ملاقات می کند.

قالب کلی این مسائل به صورت زیر است که θ یک پارامتر بزرگتر از γ است.

Maximize
$$\sum_{j=1}^{n} y_{j}$$
subject to
$$y_{1} \leq 1$$

$$y_{j} + 2\sum_{k=1}^{j-1} y_{k} \leq \theta^{j-1} \quad \text{for } j = 2, ..., n$$

$$y_{1}, ..., y_{n} \geq 0.$$

شكلهای زیر ناحیه شدنی مسأله فوق و ترتیب ملاقات گوشهها در الگوریتم سیمپلکس را برای n=2,3 و به ازای n=2,3

جبر الگوريتم سيمپلكس

یک LP استاندارد را به صورت زیر در نظر بگیرید:

min or $\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ s. t.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$
 $x_1, x_2, \dots, x_n \ge 0$

عریف میکنیم:

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, a_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

 x_i ستون متناظر با ضرایب متغیر

فرم ماتریسی LP:

min or max $z = c^T x$ s.t.Ax = b

$$x \ge 0$$

کل متغیرها BV	\mathbf{z} \mathbf{x}_{j}	RHS
Z	\overline{c}_{j}	Z
متغیر پایهای قید اول متغیر پایهای قید دوم : متغیر پایهای قید شام	\overline{a}_{j}	b

مجموعهٔ BV در جدول فوق به صورت زیر است:

 $BV=\left\{$ متغیر پایهای قید دوم متغیر پایهای قید دوم متغیر پایهای قید اول m متغیر پایهای قید اول BV می توان همهٔ مؤلفات جدول را حساب کرد. در هر جدول سیمپلکس تنها با دانستن اعضای BV می توان همهٔ مؤلفات جدول را حساب کرد. بدین منظور، متناظر با BV ، بردار C_{BV} و ماتریس B را به صورت زیر تعریف می کنیم:

$$c_{BV} = egin{bmatrix} 1$$
 فریب اولین متغیر پایهای در تابع هدف مسألهٔ استاندارد $c_{BV} = c_{BV} = egin{bmatrix} 1$ فریب دومین متغیر پایهای در تابع هدف مسألهٔ استاندارد $c_{BV} = c_{BV} = c_{BV}$ فریب $c_{BV} = c_{BV}$ امین متغیر پایهای در تابع هدف مسألهٔ استاندارد $c_{BV} = c_{BV}$

و روابط زیر را به کار میبریم:

این روابط
$$ar{a}_j = B^{-1} a_j$$
 $ar{b} = B^{-1} b$ را به خاطر $ar{c}_j = c_{BV}^T B^{-1} a_j - c_j$ بسپارید. $ar{z} = c_{BV}^T B^{-1} b$

.مثال: مسألهٔ زیر را در نظر بگیرید و جدول متناظر با پایهٔ $BV = \{s_1, x_2, s_3\}$ را تشکیل دهید

$$\max z = 3x_1 + 5x_2 \\ s. t. \\ x_1 \le 4 \\ x_2 \le 6 \\ 3x_1 + 2x_2 \le 18 \\ x_1, x_2 \ge 0$$

$$\max z = 3x_1 + 5x_2 \\ s. t. \\ x_1 + s_1 = 4 \\ x_2 + s_2 = 6 \\ 3x_1 + 2x_2 + s_3 = 18 \\ x_1, x_2, s_1, s_2, s_3 \ge 0$$

باید جدول زیر را تکمیل کنیم:

کل متغیرها BV	Z	x_1	x_2	S_1	S_2	s_3	RHS
Z	1	\overline{c}_{χ_1}	\bar{c}_{x_2}	\bar{c}_{s_1}	\overline{c}_{s_2}	$\bar{\mathcal{C}}_{S_3}$	\bar{Z}
s_1	0] 	
x_2	0	\bar{a}_{x_1}	\overline{a}_{x_2}	\bar{a}_{s_1}	\bar{a}_{s_2}	\bar{a}_{s_3}	\overline{b}
s_3	0			 	 	 	

داريم:

$$c_{BV} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$BV = \{s_1, x_2, s_3\}$$

$$\max z = 3x_1 + 5x_2$$
s. t.
$$x_1 + s_1 = 4$$

$$x_2 + s_2 = 6$$

$$3x_1 + 2x_2 + s_3 = 18$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

$$c_{BV} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

پس داریم:

$$\begin{split} \overline{a}_{x_1} &= B^{-1} a_{x_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \\ \overline{a}_{x_2} &= B^{-1} a_{x_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ supplies a point of the problem} \\ \overline{a}_{s_1} &= B^{-1} a_{s_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ \overline{a}_{s_2} &= B^{-1} a_{s_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \\ \overline{a}_{s_3} &= B^{-1} a_{s_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ \text{ indicates the problem} \end{aligned}$$

$$\max z = 3x_1 + 5x_2$$
s. t.
$$x_1 + s_1 = 4$$

$$x_2 + s_2 = 6$$

$$3x_1 + 2x_2 + s_3 = 18$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

$$c_{BV} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$\bar{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

$$\bar{c}_{x_1} = c_{BV}^T B^{-1} a_{x_1} - c_{x_1} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} - 3 = -3$$

$$ar{c}_{\chi_2} = c_{BV}^T B^{-1} a_{\chi_2} - c_{\chi_2} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 5 = 0$$
 نیازی به محاسبه نبود

$$ar{c}_{S_1} = c_{BV}^T B^{-1} a_{S_1} - c_{S_1} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 0 = 0$$
 نیازی به محاسبه نبود

$$\bar{c}_{s_2} = c_{BV}^T B^{-1} a_{s_2} - c_{s_2} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} - 0 = 5$$

$$ar{c}_{s_3} = c_{BV}^T B^{-1} a_{s_3} - c_{s_3} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0 = 0$$
 نیازی به محاسبه نبود

$$\bar{z} = c_{BV}^T B^{-1} b = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix} = 30$$

By day	2	XI	Хţ	s,	Sp	54	RHS
2	(-4	0	0	0	0	4.
5,	0	1	0	1	0	0	4
XY	0	0	(•	1	0	٦
54	0	4	•	O	-٢	1	7

مثال: مسألهٔ زیر و جدول داده شده را در نظر بگیرید و مجهولات جدول را محاسبه کنید.

$$\max z = 2x_1 - x_2 + x_3$$
s.t.
$$x_1 + x_2 + x_3 \le 6$$

$$-x_1 + 2x_2 \le 4$$

$$x_1, x_2, x_3 \ge 0$$

$$BV = \{x_{1}, s_{2}\}\$$

$$B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad c_{BV} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \overline{a}_{x_{2}} = B^{-1}a_{x_{2}} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$g = \overline{c}_{x_{2}} = c_{BV}^{T}B^{-1}a_{x_{2}} - c_{x_{2}} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} - (-1) = 3$$

$$\begin{bmatrix} c \\ d \end{bmatrix} = \overline{a}_{x_{3}} = B^{-1}a_{x_{3}} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$h = \overline{c}_{x_{3}} = c_{BV}^{T}B^{-1}a_{x_{3}} - c_{x_{3}} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 1 = 1$$

$$\begin{bmatrix} e \\ f \end{bmatrix} = \overline{b} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$

$$k = \overline{z} = c_{BV}^{T}B^{-1}b = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 10 \end{bmatrix} = 12$$

مثال: یک LP را با هدف $2x_1-3x_2=2x_1-3x_2$ و با دو قید در نظر بگیرید. فرض کنید قیود از S_2 و S_1 و S_2 متغیرهای کمبود باشند. مجهولات جدول زیر را حساب کنید.

داخل پایه هستند. پس داریم: x_1 و s_1

$$f = 0, b = 0, c = 0, d = 1$$

$$\overline{c}_{x_2} = 1 \quad \Rightarrow \quad c_{BV}^T B^{-1} a_{x_2} - c_{x_2} = 1 \quad \Rightarrow \quad c_{BV}^T \overline{a}_{x_2} - c_{x_2} = 1$$

$$\Rightarrow \quad \begin{bmatrix} 0 \\ e \end{bmatrix} - (-3) = 1 \quad \Rightarrow \quad e = -1$$

$$g = \overline{c}_{s_2} = c_{BV}^T B^{-1} a_{s_2} - c_{s_2} = c_{BV}^T \overline{a}_{s_2} - c_{s_2} = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{5} \\ \frac{1}{2} \end{bmatrix} - 0 = 4$$

$$\bar{\mathbf{z}} = c_{BV}^T B^{-1} b \quad \Rightarrow \quad \bar{\mathbf{z}} = c_{BV}^T \bar{b} \quad \Rightarrow \quad 6 = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ a \end{bmatrix} \quad \Rightarrow \quad a = 3$$

در هر جدول، ماتریس B^{-1} متناظر با پایهٔ فعلی را در کدام قسمت جدول می توان دید؟

$$\max z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$
s. t.
$$x_1 + x_2 - x_3 + s_1 = 5$$

$$6x_1 + 5x_2 - x_4 + s_2 = 10$$

$$x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$$

CONTRACTOR					
ع الموتنز المالي الم	x, x,	x4 x4	s, s _t	ールニャ	جدول اوليه
2	-k-1 -h.º	4 4	0 0	•	
S, o	1	-1 0	1 0	0	
Sy	7 0	0 -1	0 1	1.	
5/2450pis 6 Z	yx ,x	74 x4	S, S,		جدول متناظر با
Z 1	۰ ۲	9 .	4 49	١٥٥	پایه
X + 0	6 1	1 7-	7 -1	۲.	$BV = \{x_4, x_1\}$
71		-1 0	1 0	0	(4, 1)
$B = \begin{bmatrix} 0 & 1 \\ -1 & 6 \end{bmatrix}, B^-$	$^{1} = \begin{bmatrix} 6 & -1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$			
r—1 01		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			