SI231b: Matrix Computations

Lecture 8: Special LU Factorization and Computational Complexity

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 12, 2021

MIT Lab, Yue Qiu Sl231b. Matrix Computations, ShanghaiTech Oct. 12, 2021

Recap: LU Factorization with Partial Pivoting Through Recursion

For $A \in \mathbb{R}^{n \times n}$, and a permutation matrix P_1

$$\mathsf{P}_1\mathsf{A} = \left[\begin{array}{c|c} a_{11}^{(0)} & \mathsf{v}^T \\ \hline u & \mathsf{A}_1' \end{array} \right] = \underbrace{\left[\begin{array}{c|c} 1 & 0 \\ \hline 1/a_{11}^{(0)} u & \mathsf{I}_{n-1} \end{array} \right]}_{\mathsf{L}_1} \underbrace{\left[\begin{array}{c|c} a_{11}^{(0)} & \mathsf{v}^T \\ \hline 0 & \mathsf{A}_1' - 1/a_{11}^{(0)} \mathsf{u} \mathsf{v}^T \end{array} \right]}_{\mathsf{U}_1}$$

Then repeat the above procedure to $\mathsf{A}_1' - 1/\mathit{a}_{11}^{(0)}\mathsf{uv}^{T}$, i.e.,

$$\begin{aligned} \mathsf{P}_2'\left(\mathsf{A}_1' - 1/a_{11}^{(0)}\mathsf{uv}^T\right) &= \left[\begin{array}{c|c} a_{22}^{(1)} & \mathsf{w}^T \\ \hline \mathsf{s} & \mathsf{A}_2' \end{array}\right] \\ &= \left[\begin{array}{c|c} 1 & 0 \\ \hline 1/a_{22}^{(1)}\mathsf{s} & \mathsf{I}_{n-2} \end{array}\right] \left[\begin{array}{c|c} a_{22}^{(1)} & \mathsf{w}^T \\ \hline 0 & \mathsf{A}_2' - 1/a_{22}^{(1)}\mathsf{s}\mathsf{w}^T \end{array}\right] \end{aligned}$$

Denote
$$P_2 = \begin{bmatrix} 1 & \\ & P'_2 \end{bmatrix}$$
, we obtain (next page)

MIT Lab, Yue Qiu

Recap: LU Factorization with Partial Pivoting Through Recursion

$$\mathsf{P}_2\mathsf{P}_1\mathsf{A} = \underbrace{\left[\begin{array}{ccc} 1 & & & \\ & 1 & \\ \frac{1}{a_{11}^{(0)}}\mathsf{P}_2'\mathsf{u} & \frac{1}{a_{22}^{(1)}}\mathsf{s} & \mathsf{I}_{n-2} \end{array}\right]}_{\mathsf{L}_2} \underbrace{\left[\begin{array}{ccc} a_{11}^{(0)} & & \mathsf{v}^T \\ & a_{22}^{(1)} & \mathsf{w}^T \\ & & \mathsf{A}_2' - \frac{1}{a_{22}^{(1)}}\mathsf{s}\mathsf{w}^T \end{array}\right]}_{\mathsf{U}_2}$$

- following the above notations, $L = L_{n-1}$, $U = U_{n-1}$
- $ightharpoonup P_k$ only acts on the first (k-1) columns of L_k
- ▶ algorithm style, suitable for computer implementation

Remark:

- Gaussian elimination tells why you can perform an LU factorization, and when does it exist
- ▶ the recursive approach tells how you can compute the LU factorization on a modern computer

MIT Lab. Yue Qiu SSR33bi Marco Computations. Shandhilledic S

Example

Please compute an LU factorization with partial pivoting using the method introduced in the last page for

$$\begin{bmatrix} 2 & 4 & 5 \\ -3 & 1 & 4 \\ 4 & 2 & 3 \end{bmatrix}$$

Answer:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ -3 & 1 & 4 \\ 4 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{2} & 1 \\ -\frac{3}{4} & \frac{5}{6} & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 3 \\ 3 & \frac{7}{2} \\ & & \frac{10}{3} \end{bmatrix}$$

LU Factorization without Pivoting:

```
\begin{array}{l} {\tt U} = {\tt A, \ L} = {\tt I;} \\ {\tt for \ k} = {\tt 1: \ n-1} \\ \\ {\tt for \ j} = {\tt k+1: \ n} \\ \\ \ell_{jk} = u_{jk}/u_{kk} \\ \\ u_{j,k:n} = u_{j,k:n} - \ell_{jk}u_{k,k:n} \\ \\ {\tt end} \\ \\ {\tt end} \\ \\ {\tt U} = {\tt triu}({\tt U}) \end{array}
```

Operations count:

 $ightharpoonup \mathcal{O}\left(\frac{2}{3}n^3\right)$ flops

Please give your own explanation

LU Factorization with Partial Pivoting:

```
U = A, L = I, P = I;
for k = 1 : n-1
        select i \geq k to maximize |u_{ik}|
        u_{k,k:m} \leftrightarrow u_{i,k:m} (exchange of rows)
        \ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}
        p_{k,:} \leftrightarrow p_{i,:}
        for j = k+1 : n
               \ell_{ik} = u_{ik}/u_{kk}
               u_{i,k:n} = u_{i,k:n} - \ell_{ik} u_{k,k:n}
        end
end
U = triu(U)
```

Operations count:

 $ightharpoonup \mathcal{O}\left(\frac{2}{3}n^3\right)$ flops, flops count of partial pivoting?

LDL^T Factorization for Symmetric Matrices

Theorem

If $A \in \mathbb{R}^{n \times n}$ is symmetric and nonsingular, and every leading principal sub-matrix $A_{\{1,...,k\}}$ satisfies

$$\det(\mathsf{A}_{\{1,\ldots,k\}})\neq 0,$$

for $k = 1, 2, \dots, n-1$, then there exists a lower-triangular matrix L with unit entries and a diagonal matrix

$$D = \operatorname{diag}(d_1, d_2, \cdots, d_n),$$

where $d_i \neq 0$ for $i = 1, 2, \dots, n$, such that $A = LDL^T$. The factorization is unique.

Proof: making use of the LU factorization

Computational complexity: not surprisingly $\mathcal{O}\left(\frac{n^3}{3}\right)$

LDL^T Factorization with Symmetric Pivoting

Symmetry is preferred

If A is symmetric, and P_1 is a permutation matrix

- ► P₁A is not symmetric
- \triangleright P₁AP₁^T is symmetric

Consider the following

$$\begin{aligned} \mathsf{P}_1 \mathsf{A} \mathsf{P}_1^{\mathsf{T}} &= \begin{bmatrix} \alpha & \mathsf{v}^{\mathsf{T}} \\ \mathsf{v} & \mathsf{A}_1 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 1/\alpha \mathsf{v} & \mathsf{I}_{n-1} \end{bmatrix} \begin{bmatrix} \alpha & \\ & \tilde{\mathsf{A}}_1 \end{bmatrix} \begin{bmatrix} 1 & 1/\alpha \mathsf{v}^{\mathsf{T}} \\ & \mathsf{I}_{n-1} \end{bmatrix}, \end{aligned}$$

with $\tilde{A}_1 = A_1 - 1/\alpha vv^T$ also symmetric.

Note: with symmetric pivoting, α is some diagonal entry a_{ii} , why?

When the procedure terminates, $PAP^{T} = LDL^{T}$ where

$$\mathsf{P} = \mathsf{P}_{n-1} \cdots \mathsf{P}_2 \mathsf{P}_1 \qquad \qquad \qquad \mathsf{P} = \mathsf{P}_{n-1} \cdots \mathsf{P}_2 \mathsf{P}_1$$

Symmetric Positive Definite Systems

Symmetric Positive Definite (SPD)

 $M = M^T \in \mathbb{R}^{n \times n}$ is SPD iff (if and only if)

$$x^T M x > 0, \quad \forall x \in \mathbb{R}^n \backslash 0$$

Properties of SPD Matrices:

- ► real positive eigenvalues
- positive diagonal entries
- ▶ all principle sub-matrices are SPD
- ▶ $A \in \mathbb{R}^{n \times n}$ is SPD and $X \in \mathbb{R}^{n \times r}$ has full rank, then $X^T A X$ is also SPD

MIT Lab, Yue Qiu

Cholesky Factorization for SPD Matrices

Recursive Factorization

For an SPD matrix $A \in \mathbb{R}^{n \times n}$,

$$\begin{split} A &= \begin{bmatrix} a_{11} & w^T \\ w & A_1 \end{bmatrix} \\ &= \underbrace{\begin{bmatrix} \sqrt{a_{11}} & \\ 1/\sqrt{a_{11}}w & I_{n-1} \end{bmatrix}}_{L_1} \underbrace{\begin{bmatrix} 1 & \\ & A_1 - 1/a_{11}ww^T \end{bmatrix}}_{D_1} \underbrace{\begin{bmatrix} \sqrt{a_{11}} & 1/\sqrt{a_{11}}w^T \\ & I_{n-1} \end{bmatrix}}_{L_1^T} \end{split}$$

Require: the (1, 1) entry of $(A_1 - 1/a_{11}ww^T)$ should be positive to continue.

Note: $(A_1 - 1/a_{11}ww^T)$ is a principle sub-matrix of $L_1^{-1}AL_1^{-T}$.

Following the same principle, when the procedure terminates,

- ightharpoonup L_n = L, D_n = I_n
- $ightharpoonup A = LL^T$: Cholesky factorization
- $ightharpoonup \mathcal{O}\left(\frac{1}{3}n^3\right)$ flops, half of LU factorization

MIT Lab. Yue Qiu

Floating Point Arithmetic

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

- ▶ single format, 32 bit
- double format, 64 bit

Take the double format for example,

- ▶ 1 bit for sign;
- ▶ 52 bits for the mantissa;
- ▶ 11 bits for the exponent;

IEEE standard stipulates that each arithmetic operation be correctly rounded, meaning that the computed result is the rounded version of the exact result.

Finite Precision

Machine Precision

Resolution is traditionally summarized by a number known as machine epsilon, i.e., ε_m

$$arepsilon_m = rac{1}{2} imes ext{(gap between 1 and next largest floating point number)}$$

- $\varepsilon_m \approx 5.96 \times 10^{-8}$ for single format
- $\varepsilon_m \approx 1.11 \times 10^{-16}$ for double format

Try the eps command in Matlab to get ε_m

Property

$$\forall x \in \mathbb{R}$$
, there exists $x' \in \mathbb{F}$, such that $|x - x'| < \varepsilon_m |x|$

where \mathbb{F} represents the set of floating point numbers. Or equivalently,

$$\forall x \in \mathbb{R}$$
, there exists ε with $|\varepsilon| \leq \varepsilon_m$, such that $f(x) = x(1+\varepsilon)$

Condition of Linear Systems of Equations

Matrix Condition Number

Consider solving the linear equation Ax = b using direct methods, such as LUP/Cholesky factorization, which can be represented by

$$(A + \sigma A)(x + \sigma x) = b.$$

Making use of Ax = b and dropping out the product $\sigma A \sigma x$, we obtain

$$\frac{\|\sigma x\|}{\|x\|} / \frac{\|\sigma A\|}{\|A\|} \le \|A\| \|A^{-1}\|$$

where $\|A\|\|A^{-1}\|$ defines the condition number of the matrix A and is often denoted by $\kappa(A)$.

The linear equation Ax = b is

- well-conditioned if small σA leads to small σx (small $\kappa(A)$)
- ▶ ill-conditioned if small σA leads to large σx (large $\kappa(A)$)

Note: here the meaning of "small" and "large" depends on the application.

Readings

You are supposed to read

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Johns Hopkins University Press, 2013.

Chapter 2.6 - 2.7, Chapter 4.1 - 4.4

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, SIAM, 1997.

Lecture 12 - 13, 23