Analysis of Networks

Tao Wang

University of Southampton t.wang@soton.ac.uk

November 6, 2015

Distribution of Indegrees

Experimental Results

The probability density function (PDF) of indegrees, excluding the nodes with zero degrees. The power-law fitting parameters $\alpha = -1.319$ and standard error (i.e., RMSE) $\sigma = 0.14$ (The power-law distributions are formulated with: $p(\bar{x}) \propto x^{\alpha}$).

Distribution of Outdegrees

Experimental Results

The probability density function (PDF) of outdegrees, excluding the nodes with zero degrees. The power-law fitting parameters $\alpha = -1.403$ and standard error (i.e., RMSE) $\sigma = 0.21$.

Distribution of Outdegrees (Splitting)

Experimental Results

Splitting outdegree at k=10, the power-law fitting parameters in the first range $\alpha=-0.593$ and standard error (i.e., RMSE) $\sigma=0.05$; $\alpha=-1.908$ and $\sigma=0.08$ in the second range.

Distribution of Instrength

Experimental Results

The power-law fitting parameters $\alpha = -0.8562$ and standard error (i.e., RMSE) $\sigma = 0.24$.

Distribution of Instrength

Experimental Results

If excluding the nodes with instrength larger than 1000, the power-law fitting parameters $\alpha=-1.044$ and standard error (i.e., RMSE) $\sigma=0.13$.

Distribution of Outstrength

Experimental Results Tao Wang

The power-law fitting parameters $\alpha = -0.9535$ and standard error (i.e., RMSE) $\sigma = 0.16$.

Distribution of Outstrength (Splitting)

Experimental Results Tao Wang

Fitting the nodes with outstrength in the range of [1,500] and splitting outdegree at k = 10, the power-law fitting parameters in the first range $\alpha = -0.383$ and standard error (i.e., RMSE)

Dependence of Indegrees and Outdegrees

Experimental Results

Fitting the nodes with indegree in the range of [1, 100], the power-law fitting parameters $\alpha = 0.6638$ and standard error (i.e., RMSE) $\sigma = 0.03$.

Dependence of Outdegrees and Indegrees

Experimental Results

Fitting the nodes with outdegree in the range of [3, 100], the power-law fitting parameters $\alpha = 1.121$ and standard error (i.e., RMSE) $\sigma = 0.09$.

Dependence of Instrength and Outstrength

Experimental Results

Fitting the nodes with instrength in the range of [2, 1000], the power-law fitting parameters $\alpha = 0.7094$ and standard error (i.e., RMSE) $\sigma = 0.06$.

Dependence of Outstrength and Instrength

Experimental Results

Fitting the nodes with instrength in the range of [2, 1000], the power-law fitting parameters $\alpha = 0.9154$ and standard error (i.e., RMSE) $\sigma = 0.12$.

Dependence of Indegree and Avg. Indegree of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = -0.03401$ and standard error (i.e., RMSE) $\sigma = 0.07$.

Dependence of Indegree and Avg. Outdegree of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = -0.005108$ and standard error (i.e., RMSE) $\sigma = 0.05$.

Dependence of Indegree and Avg. Indegree of Successors

Experimental Results

The power-law fitting parameters $\alpha = -0.03862$ and standard error (i.e., RMSE) $\sigma = 0.04$.

Dependence of Indegree and Avg. Outdegree of Successors

Experimental Results

The power-law fitting parameters $\alpha = 0.06204$ and standard error (i.e., RMSE) $\sigma = 0.04$.

Dependence of Outdegree and Avg. Indegree of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.1387$ and standard error (i.e., RMSE) $\sigma = 0.06$.

Dependence of Outdegree and Avg. Outdegree of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.1293$ and standard error (i.e., RMSE) $\sigma = 0.03$.

Dependence of Outdegree and Avg. Indegree of Successors

Experimental Results

The power-law fitting parameters $\alpha = -0.04032$ and standard error (i.e., RMSE) $\sigma = 0.05$.

Dependence of Outdegree and Avg. Outdegree of Successors

Experimental Results

The power-law fitting parameters $\alpha = 0.1202$ and standard error (i.e., RMSE) $\sigma = 0.02$.

Dependence of Instrength and Avg. Instrength of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.08118$ and standard error (i.e., RMSE) $\sigma = 0.09$.

Dependence of Instrength and Avg. Outstrength of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.09193$ and standard error (i.e., RMSE) $\sigma = 0.09$.

Dependence of Instrength and Avg. Instrength of Successors

Experimental Results

The power-law fitting parameters $\alpha = 0.04223$ and standard error (i.e., RMSE) $\sigma = 0.06$.

Dependence of Instrength and Avg. Outstrength of Successors

Experimental Results

The power-law fitting parameters $\alpha = 0.1385$ and standard error (i.e., RMSE) $\sigma = 0.08$.

Dependence of Outstrength and Avg. Instrength of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.09821$ and standard error (i.e., RMSE) $\sigma = 0.04$.

Dependence of Outstrength and Avg. Outstrength of Predecessors

Experimental Results

The power-law fitting parameters $\alpha = 0.07583$ and standard error (i.e., RMSE) $\sigma = 0.03$.

Dependence of Outstrength and Avg. Instrength of Successors

Experimental Results

The power-law fitting parameters $\alpha = -0.01945$ and standard error (i.e., RMSE) $\sigma = 0.04$.

Dependence of Outstrength and Avg. Outstrength of Successors

Experimental Results

The power-law fitting parameters $\alpha = 0.0736$ and standard error (i.e., RMSE) $\sigma = 0.03$.

The End