SEMAINE DU 28/02

1 Cours

Probabilités

Ensembles dénombrables Un ensemble est dit dénombrable s'il est en bijection avec \mathbb{N} . Un ensemble st fini ou dénombrable si et seulement s'il est en biejction avec une partie de \mathbb{N} . Un produit cartésien fini d'ensembles dénombrables est dénombrable. Une réunion finie ou dénombrable d'ensembles finis ou dénombrables est finie ou dénombrable. \mathbb{R} n'est pas dénombrable.

Univers probabilisé Tribu. Stabilité par passage au complémentaire, intersection et union finie ou dénombrable. Espace probabilisable.

Probabilité sur un espace probabilisable. Continuité croissante/décroissante. Si (A_n) est une suite d'événements, $\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq$

 $\sum_{n=0}^{\infty} \mathbb{P}(A_n)$. Evénements négligeables/presque sûrs. Une union finie ou dénombrable d'événements négligeables est négligeable. Une intersection finie ou dénombrable d'événements presque sûrs est presque sûre. Si Ω est un ensemble, une distribution de probabilités discrètes sur Ω est une famille d'éléments de \mathbb{R}_+ indexée par Ω et de somme 1. Support d'une distribution de probabilités discrète ; le support est au plus dénombrable. Probabilité définie sur $\mathcal{A} = \mathcal{P}(\Omega)$ associée à une distribution de probabilités discrètes sur Ω

Probabilité conditionnelle et indépendance Probabilité conditionnelle. Formule des probabilités composées. Formule des probabilités totales. Formule de Bayes. Evénéments indépendants. Si A et B sont indépendants, A et B sont indépendants.

Variables aléatoires Définition d'une variable aléatoire discrète. Loi d'une variable aléatoire. Image d'une variable aléatoire. Si $X \sim Y$, alors $f(X) \sim f(Y)$. Lois usuelles : loi géométrique, loi de Poisson (plus les lois usuelles de première année). Couples de variables aléatoires : loi conjointe, loi marginale, loi conditionnelle. Détermination des lois marginales à partir de la loi conjointe. Variables aléatoires indépendantes. Notation $X \perp Y$. Si $X \perp Y$, alors $f(X) \perp Y$, Lemme des coalitions. Existence d'espaces probabilisés portant une suite de variables indépendantes de lois discrètes données.

Espérance, variance, covariance Espérance d'une variable aléatoire à valeurs dans $\mathbb{R}_+ \cup \{+\infty\}$. Une variable aléatoire X à valeurs dans \mathbb{C} est dite d'espérance finie si $\mathbb{E}(|X|) < +\infty$. Notation $X \in L^1$. Espérance des lois usuelles. Propriétés de l'espérance : linéarité, positivité, croissance, inégalité triangulaire. Formule de transfert. Espérance d'un produit de deux variables aléatoires $+\infty$

indépendantes. Formule d'antirépartition : pour une variable aléatoire X à valeurs dans $\mathbb{N} \cup \{+\infty\}$, $\mathbb{E}(X) = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$ (égalité dans $[0, +\infty]$). Notation : si X est une variable aléatoire réelle, on dit que $X \in L^2$ si $\mathbb{E}(X^2) < +\infty$. Si $X \in L^2$, alors $X \in L^1$. Inégalité de Cauchy-Schwarz : si X et Y sont dans L^2 , alors $XY \in L^1$ et $\mathbb{E}(XY)^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$. Variance d'une variable aléatoire réelle $X \in L^2$: $\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$. Ecart-type. Formule de König-Huygens : $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X^2) = \mathbb{E}($

 $\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$. Covariance de deux variables aléatoires indépendantes. Variance d'une somme, cas de variables aléatoires deux à deux indépendantes (théorème de Pythagore).

Inégalités classiques Inégalité de Markov. Inégalité de Bienaymé-Tchebychev. Loi faible des grands nombres.

Fonctions génératrices Fonction génératrice d'une variable aléatoire discrète à valeurs dans $\mathbb N$. Fonctions génératrices des lois usuelles. Deux variables aléatoires ont même loi si et seulement si elles ont même fonction génératrice. Une variable aléatoire X à valeurs dans $\mathbb N$ admet une espérance si et seulement si G_X est dérivable en 1 et, dans ce cas, $\mathbb E(X) = G_X'(1)$. Fonction génératrice d'une somme de variables aléatoires indépendantes.

2 Méthodes à maîtriser

- Savoir récupérer les lois marginales à partir de la loi conjointe.
- Reconnaître un cas concret de loi géométrique : temps d'attente du premier succès lors d'une répétion d'épreuves de Bernoulli indépendantes.
- Partitionner un événement pour en calculer la probabilité.
- Appliquer la formule des probabilités totales : bien souvent, les énoncés donnent des probabilités conditionelles.
- Appliquer la formule de transfert pour calculer l'espérance de f(X): seule la loi de X est nécessaire, pas besoin de la loi de f(X). Possibilité d'appliquer la formule de transfert à un couple de variables aléatoires.
- Calculer une variance : appliquer la formule de transfert pour calculer $\mathbb{E}(X^2)$.
- Utiliser les fonctions génératrices pour déterminer une loi. Exemple classique : somme de variables aléatoires indépendantes suivant des lois de Poisson.
- Utiliser les fonctions génératrices pour calculer l'espérance.

3 Questions de cours

Banque CCP Exercices 96, 97, 99, 100, 102, 103, 106, 108, 110, 111