1 x 1 Convolution

- First time introduce in the paper of Network in Network.
- ❖ Size of Filter is equal to 1.

- It uses to reduce the number of parameters.
- ❖ If more numbers of parameters chance of overfitting, so it reduces the over fitting problem.
- It also uses to decreases or increases the number of feature maps.
- Suppose we have filter 5 x 5 and other is 1 x 1, so its number of parameters reduces (1/25) times.

It increases or decreases the dimension of No: of feature maps.

Main application of 1 x1 Convolution is applied in Inception Network architecture

❖ How to Reduce the number of parameters using 1x1 Convolution

convolution without the use of 1×1 convolution as below:

Without the Use of 1×1 Convolution

Number of operations = $(14 \times 14 \times 48) \times (5 \times 5 \times 480) = 112.9M$

With the use of 1×1 convolution:

With the Use of 1×1 Convolution

1x1 Convolutions

2	4	6	8
10	12	14	16
18	20	22	24
26	28	30	32

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Image Size	Filter	Padding	Stride	OutPut
6x6x1	3x3	Valid	1	(6 - 3 + 1)/Stride = (28 - 3 + 1)/1 = 4x4x1
28x28x8	3x3	Valid	1	(28 - 3 + 1)/Stride = (28 - 3 + 1)/1 = 26x26x8
28x28x8	3x3	Valid	2	(28 - 3 + 1)/Stride = (28 - 3 + 1)/2 = 13x13x8
28x28x8	3x3	Same	1	28x28x8

