Wykorzystanie algorytmów ML do określenia predyspozycji do otyłości na podstawie danych z analiz GWAS

Drużyny:

BinaryMudTurtles

十

ParaData

Jacek Stańdo Artur Jurgas Monika Krzyżanowska Artur Bąk Bartłomiej Kantor Grzegorz Migdałek

Cel 1: spersonalizowany profil predyspozycji do otyłości zależnie od płci i SNP

Cel 2: Wyznaczenie najistotniejszych SNP, wpływających na predyspozycje do otyłości za pomocą algorytmów uczenia maszynowego

Workflow:

1. Analiza i wizualizacja danych

2. Plan kategoryzacji danych

Age_group

60 - 69

20 - 29

60 - 69

^{20 - 29}Zbyt mało

^{30 - 39} danych

40 - 49

50 - 59

20 - 29

40 - 49

20 - 29

Uproszczenie:

20 - 40

40 +

Binaryzacja danych

SNP325.2	SNP326.1	SNP326.2	SNP327.1	SNP327.2	SNP328.1	SNP328.2	SNP3
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	G	G	
G	Т	Т	Α	G	Α	G	
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	G	G	
G	Т	Т	G	G	0	0	
G	Т	Т	G	G	G	G	

SNP325.1	SNP325.2	SNP326.1	SNP326.2	SNP327.1	SNP327.2
0	0	0	0	0	C
1	0	0	0	0	C
0	0	0	0	0	C
0	0	0	0	0	C
0	0	0	0	0	C
0	0	0	0	1	C
0	0	0	0	0	C
1	0	0	0	0	C

Model

XgBoost – zastosowanie optymalizacji

Bootstrap Aggregating of Alternating Decision Trees to Detect Sets of SNPs that Associate with Disease

Richard T. Guy, 1,4 Peter Santago, 2,3 and Carl D. Langefeld 1

▶ Author information ▶ Copyright and License information <u>Disclaimer</u>

Drzewo decyzyjne

Najistotniejsze SNP

Drzewo decyzyjne

Perspektywy zastosowania prototypu

- Po optymalizacji
- Jakie SNP są istotne przy diagnostyce predyspozycji do chorób – diagnostyka na podstawie wybranych SNP

Wątpliwości, co ulepszyć

- Użycie Age + Sex w algorytmie
- BMI czy dobry wyznacznik?
 - Zawartość tłuszczu w organizmie
- Otyłość nie tylko genetyka …
 - Warunki środowiska

Zaplecze techniczne

Python, R, ggplot, scikit-learn, Xgboost

Dziękujemy za uwagę

