Traitement d'images fondamental

MORPHOLOGIE MATHÉMATIQUE

Elodie Puybareau

RAPPELS DES DERNIÈRES FOIS

Premiers filtres:

- « extremums » (supremum d'ouverture et infimum de fermeture)
- Filtres alternés (exemple sel poivre) et alternés séquencés

RAPPELS DES DERNIÈRES FOIS

Plein d'outils!

- Les résidus
- Les marqueurs
- Les squelettes
- La carte des distance
- Le watershed…

"White top-hat" : récupérer de petits éléments blancs $X-\gamma(X)_{\mathcal{B}}$ Image - ouverture de l'image

"Black top-hat" : récupérer de petits éléments noirs $\varphi(X)_{\mathcal{B}} - X$ Fermeture de l'image - image

Les représentations hiérarchiques

Les représentations hiérarchiques sont une représentation de l'image sous la forme d'un arbre, construit selon des critères précis.

Chaque nœud de l'arbre correspond à une partition de l'image dans laquelle tous les pixels ont en commun le critère en question.

L'arbre est un outil très puissant de segmentation, débruitage, filtrage etc.

Hierarchies de partitions

Les hiérarchies de partition sont des représentations hiérarchiques particulières où chaque parent est égal à la fusion stricte de ses enfants.

QUAD TREE

Représentation sous forme d'arbre dont chaque parent à 4 enfants. Les régions sont donc « carrées » jusqu'à avoir des zones plates.

Problème : les divisions sont faites à l'aveugle

Avantage : très facile à mettre en place, permet une partition naïve de l'image

Binary Partition Tree

La fusion se fait entre 2 régions à chaque iteration.

La fusion et la partition se font sur des critères choisis.

Figure 1.20: Example of region merging sequence along with its corresponding binary partition tree.

Image provenant de la thèse de Guillaume Tochon

Alpha-tree

La fusion se fait entre 2 regions "quasi plates"

Figure 1.19: Example α -tree hierarchy: (a) 0-, 1-, 2- and 3-connected components of a toy image (with adjacency defined by 4-connectivity) and (b) the corresponding α -tree. In that example, the dissimilarity measure between pixels p and q is $d(p,q) = |\mathcal{I}(p) - \mathcal{I}(q)|$.

Image provenant (encore) de la thèse de Guillaume Tochon

HIÉRARCHIES DE WATERSHED

Autres représentations hiérarchiques

Image d'Edwin Carlinet

(a) Image originale.

Représentations hiérarchiques : l'exemple du max-tree

O

C

D

Е

L'arbre des formes

Représentations Hiérarchiques

Représentations hierarchiques : intérêts

Les avantages d'avoir des représentations hiérarchiques sont :

- Une représentation « légère » de l'image (performances ++)
- Chaque nœud a des attributs : texture, taille, compacité, élongation etc.
- On va « au-delà » de l'image
- On peut faire très facilement du filtrage!

Exemple d'application : Valdo 2021

Task 1 - EPVS

Construction du Max-Tree

Extraction des Features Classification par Random Forest

	Detection		Segmentation	
	F1	AED	Mean Dice	AVD
Bigrbrain	35.81 [28.14; 40.42]	14.50 [6.00; 34.50]	61.09 [55.40 ; 66.57]	45.30 [16.12; 89.12]
Neurophet	$0.00 \; [0.00 \; ; \; 3.34]$	29.00 [13.00 ; 47.00]	$28.23 \ [23.27 \ ; \ 29.76]$	$390.15 \ [250.72 \ ; \ 636.58]$
TeamTea	$17.12 \ [6.79 \ ; \ 25.90]$	$41.00 \; [24.25 \; ; \; 69.25]$	$55.07 \ [46.25 \ ; \ 64.23]$	$106.05 \ [73.00 \ ; \ 175.86]$
TheGPU	$38.92 \ [28.87 \ ; \ 49.44]$	16.00 [9.00 ; 35.75]	$72.38 \ [64.97 \ ; \ 77.12]$	45.20 [23.79 ; 82.21]
EnsembleAll	38.62 [28.1 ; 44.82]	24.00 [12.00 ; 46.00]	64.33 [59.14 ; 68.40]	96.15 [63.67 ; 151.69]
EnsembleTop	38.86 [31.19 ; 45.13]	29.00 [15.25; 50.25]	$67.38 \ [58.24 \ ; \ 72.23]$	36.10 [20.15; 66.33]

FIGURE 3.26 – Filtrage d'une image par élimination des noeuds de volume inférieur à 50 dans le max-tree correspondant, et maxima régionaux des images originale et filtrée respectivement.

FILTRAGE PAR ÉLAGAGE

https://hal.science/hal-04148876v1/file/ejcim_2023_chap3.pdf

Filtrage sur arbre : exemple du top-hat

$$HMAX_h(f) = REC_f^{\delta}(f - h) \tag{4}$$

where $h \in \mathcal{V}$ is a parameter. To each regional maximum of f with dynamic strictly larger than h, corresponds exactly one regional maximum in $\mathtt{HMAX}_h(f)$.

H-EXTREMA

https://hal.science/hal-04541886/document

Morphologie mathématique et deep learning

En tant que pré-processing!

[Xu et al., 2018]: White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.

Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly fine to coarse feature maps of the pre-trained VGG network 22. Note that each color image (**Input**) is built from the slice n of the T1 and FLAIR sequences, and from a pre-processing result.

Morphological pre-processing

[Decencière et al., 2018]: Dealing with Topological Information within a Fully

Convolutional Neural Network

A fill-holes filter adds non-local topological information.

A geodesical reconstruction adds non-local topological information.

Left: input image; **Middle:** Segmentation of a test image by a U-net trained on raw images (no pre-processing); **Right:** Segmentation of the same image by a U-net trained on pre-processed images where non-local topolgical information was included.

[Couteaux et al., 2019]: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN

The input to the CNN is enhanced by a black top-hat, which improves explainability.

ET AUSSI DANS LES RÉSEAUX!