Modeling echo chambers and polarization dynamics in social networks – review and model extension

Jakub Koral, Marcin Kostrzewa, Marcin Miśkiewicz

Wroclaw University of Science and Technology, Faculty of Pure and Applied Mathematics

21.06.2023

Assumptions [1]

- * more active users tend to show more extreme opinions,
- * agents sharing similar opinions can mutually reinforce each other and move towards more extreme views.

Figure source: Own elaboration.

Considered model [1]

We consider N agents, each with random opinion variable $x_i(t_0) \in [-1,1]$, and the *activity* parameter a_i drawn from the power-law distribution.

At time t:

- **1** We initialize the temporary adjacency matrix A_{ij} with zeros,
- **2** Agent *i* is activated with probability a_i ,
- **3** Active agent influences m distinct agents, so that $A_{ji}(t) = 1$, choosing j-th agent with probability

$$p_{ij} = \frac{|x_i - x_j|^{-\beta}}{\sum_j |x_i - x_j|^{-\beta}},$$

- **4** Agent j influenced by agent i may reciprocate the influence with probability r, and then $A_{ij}(t) = 1$,
- 6 Opinions change

$$\dot{x_i} = -x_i + K \sum_{j=1}^{N} A_{ij}(t) \tanh(\alpha x_j).$$

We discretize the above model and integrate the system of N coupled ODEs using fourth-order Runge-Kutta method with a time step dt = 0.01.

Interpretation of the parameters:

- $\alpha > 0$ topic controversialness,
- K > 0 social interaction strength,
- $\beta \geqslant 0$ homophily strength.

Example: network with m = 2.

Figure source: Own elaboration.

Figure source: Own elaboration.

7/22

JK \star MK \star MM Polarization dynamics 21.06.2023

Figure source: Own elaboration.

$$\dot{x_i} = -x_i + K \sum_{j=1}^{N} A_{ij}(t) \tanh(\alpha x_j)$$

Figure source: Own elaboration.

 $JK \star MK \star MM$

From now we assume* N = 1000 and m = 10.

^{*}Unless stated differently.

Results from [1]

Figure: Temporal evolution of the agents' opinions for K=3 and r=0.5.

- (a) Neutral consensus for which all opinions converge to zero
- $(\alpha=0.05,\beta=2).$ (b) One-sided radicalization $(\alpha=3,\beta=0).$
- (c) Opinion polarization, in which opinions split into two opposite sides ($\alpha=3,\beta=3$).

Our results

Figure: Temporal evolution of the agents' opinions for K=3 and r=0.5.

- (a) Neutral consensus for which all opinions converge to zero
- $(\alpha=0.05,\beta=2)$. (b) One-sided radicalization $(\alpha=3,\beta=0)$.
- (c) Opinion polarization, in which opinions split into two opposite sides ($\alpha = 3, \beta = 3$).

Results from [1]

Figure: Transition from consensus to radicalization dynamics. Absolute values of the average final opinions $|\langle x_f \rangle|$ in K- α phase space for N=1000, $\beta=0.5$ and r=0.5.

Our results

Figure: Transition from consensus to radicalization dynamics. Absolute values of the average final opinions $|\langle x_f \rangle|$ in $K\text{-}\alpha$ phase space for $N = 100, \beta = 0.5 \text{ and } r = 0.5.$

Results from [1]

Figure: Opinion evolution for asymmetric initial conditions $x_i(0) \in [-1,1] + \delta$. Model parameters are the same as in figure 1 subpanel (c).

Our results

Figure: Opinion evolution for asymmetric initial conditions $x_i(0) \in [-1,1] + \delta$. Model parameters are the same as in figure 1 subpanel (c).

Model extension suggestion

From now, an active agent interacts with m of his neighbours from the **predefined** social network.

Our results for a BA(1000, 20) network

Figure: Temporal evolution of the agents' opinions for K=3 and r=0.5.

- (a) Neutral consensus for which all opinions converge to zero
- $(\alpha=0.05,\beta=2).$ (b) One-sided radicalization $(\alpha=3,\beta=0).$
- (c) Opinion polarization, in which opinions split into two opposite sides ($\alpha=3,\beta=3$).

Our results for a WS(1000, 20, 0.2) network

Figure: Temporal evolution of the agents' opinions for K=3 and r=0.5. (a) Neutral consensus for which all opinions converge to zero $(\alpha=0.05,\beta=2)$. (b-c) Opinion polarization, in which opinions split into two opposite sides $\alpha=3,\beta=0$ for (b), $\alpha=3,\beta=3$ for (c).

Our results for a WS(1000, 20, 0.2) network

Figure: Transition from consensus to radicalization dynamics. Absolute values of the average final opinions $|\langle x_f \rangle|$ in K- α phase space for $N=100,\,\beta=0.5$ and r=0.5.

Project contribution

- * Marcin Kostrzewa key research, extensions ideas, initial model implementation,
- * Jakub Koral extensions ideas and implementation, plots, extensive simulations,
- ★ Marcin Miśkiewicz extensions ideas and implementation, slides, explanatory diagrams, speaking

References

[1] Fabian Baumann et al. "Modeling Echo Chambers and Polarization Dynamics in Social Networks". In: *Phys. Rev. Lett.* 124 (4 2020), p. 048301.