Report No.: RF-A340-1010-040

for

Game-Bike

Model No. : 39800

FCC ID : YY8GAMEBIKE39800

Report Number: RF- A340-1010-040

Date of Receipt: October 15, 2010

Date of Report : December 3, 2010

Prepared for

Chen-Chang Health Technology Marketing Co., Ltd.

No.32, Ln. 197, Shenlin S. Rd., Daya Township, Taichung County 428, Taiwan (R.O.C.)

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11 Lane 41 European St., Jungshan Chiu, Tainei, Taiwan, 104, R.O.C.

FAX.: 886-2-25984542

Page : 1/60

Verification of Compliance

Report No.: RF-A340-1010-040

Equipment under Test : Game-Bike

Model No. : 39800

FCC ID : YY8GAMEBIKE39800

Applicant : Chen-Chang Health Technology Marketing Co., Ltd

Address : No.32, Ln. 197, Shenlin S. Rd., Daya Township, Taichung

County 428, Taiwan (R.O.C.)

: 47 CFR part 15, Subpart C Applicable Standards

Date of Testing : October 23 ~ October 25, 2010

Deviation : N/A

Condition of Test Sample : Engineering Sample

We, Central Research Technology Co., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY

(Cathy Chen/ Technical Manager)

APPROVED BY

(Tsun-Yu Shih/General Manager)

CENTRAL RESEARCH TECHNOLOGY CO.

FAX.: 886-2-25984546

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

Page : 2/60

Contents

1	General Description	5
1.1	General Description of EUT	5
1.2	Test Methodology	5
1.3	Applied standards	6
1.4	The Support Units	9
1.5	Layout of the Setup	9
1.6	Test Capability	10
1.7	Measurement Uncertainty	12
2	Maximum Peak Output Power	13
2.1	Applied standard	13
2.2	Test Instruments	13
2.3	Measurement Procedure	14
2.4	Test configuration	15
2.5	Test Data	16
3	6dB Bandwidth Measurement	20
3.1	Applied standard	20
3.2	Test Instruments	20
3.3	Test Procedures	21
3.4	Test Configurations	21
3.5	Test Results	22
4	Bandedge Measurement	24
4.1	Applied standard	24
4.2	Test Instruments	24
4.3	Measurement Procedure	25
4.4	Test configuration	26
4.5	Test Data	27
5	Radiated Emission Measurement	35
5.1	Applied standard	35
5.2	Test Instruments	35
5.3	Measurement Procedure	37
5.4	Test configuration	38
5.5	Test Data	39
6	Peak Power Spectral Density Measurement	51

FCC Test Report

8.3

FCC 1	est Report	Report No.: RF-A340-1010-040
6.1	Applied Standard	51
6.2	Test Instruments	51
6.3	Test Procedures	52
6.4	Test Configurations	52
6.5	Test Results	53
7	Conducted Emission Measurement	55
7.1	Applied standard	55
7.2	Test Instruments	55
7.3	Measurement Procedure	56
7.4	Test configuration	57
7.5	Test Data	58
8	Antenna Requirement	60
8.1	Applied standard	60
8.2	Antenna Information	60

Attachment 1 – Photographs of the Test Configurations

Attachment 2 - External Photographs of EUT

Attachment 3 -Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment under Test : Game-Bike

Model No. : 39800 Power in : 6Vdc

Test Voltage : 120Vac/ 60Hz to the adaptor

Adapter Specification : Model No. : TAD48-0601000DU

> Input : 120Vac/60Hz

Report No.: RF-A340-1010-040

Page : 5/60

Output : 6Vdc 1000mA

Channel Numbers : 77

Frequency Range : 2404~2480MHz

Channel space 1MHz : GFSK Modulation

: Print Antenna 0 dBi Antenna Spec

Function Description

The EUT is used to transmit command only. Please refer to the user's manual for the details.

Perform the function of EUT continuously by executing the test program supplied by manufacturer.

1.2 Test Methodology

For this EUT, both conducted and radiated emissions were performed according to the procrdures illustrated in ANSI C63.4:2003 and other required measurements were illustrated in separate sections of this test report for detail.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

FAX.: 886-2-25984546

(1) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Report No.: RF-A340-1010-040

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MH2)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(2) Radiated Emission Requirement

For intentional device, according to §15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
960 – 1610	3	500	54.0
above 1610	3	500	54.0

Note 1- The lower limit shall apply at the transition frequency.

(3) 100kHz Bandedge

According to 15.247(c), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11 Lane 41 Fushuen St. Jungshan Chiu, Tai

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(4) 6dB Bandwidth

According to 15.247(a)(2), the minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RF-A340-1010-040

(5) Maximun Peak Output Power

According to 15.247(b)(3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

(6) Antenna Required

According to 15.247(b)(4) and (c)(1), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(7) Power Spectrum Density

According to 15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

CENTRAL RESEARCH TECHNOLOGY CO. Page: 7/60

(8) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

 $^{^{1}}$ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

² Above 38.6

1.4 The Support Units

No.	Equipment	Model No./ Serial No.	Brand	Power Line	Supported by lab.
1.	Notebook	LATITUDE D400/ 5FL891S	DELL	1.8m	V

1.5 Layout of the Setup

EUT (Transmitter)

Connecting Cables

No.	Cable	Length	Shielded	Core	Supported by lab.	Note
a.	USB cable	0.6m	>		>	

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it. The peripherals other than EUT was connected in normally standing by situation.

For line conducted emission, only measurement of TX/RX operated, for the digital circuits portion also function normally whenever TX or RX is operated. For radiated emission, measurement of radiated emission from digital circuit is performed with lowest channel, middle channel, and highest channel by transmitting mode.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 9/60

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4:2003.

Report No.: RF-A340-1010-040

Test Room	Type of Test Room	Descriptions
TR1	10m semi-anechoic chamber	Complying with the NSA requirements in
IKI	(23m×14m×9m)	documents CISPR 22 and ANSI
TD44	3m semi-anechoic chamber	C63.4:2003. For the radiated emission
TR11	$(9m \times 6m \times 6m)$	measurement.
TR13	Toot Site	For the RF conducted emission
11(15	Test Site	measurement.
TR5	Shielding Room	For the conducted emission measurement.
IRS	(8m×5m×4m)	For the conducted emission measurement.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 10/60

Page : 11/60

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C.	TAF	0905	ISO/IEC 17025
	(Taiwan)	IAF	0903	130/1EC 17023
Accreditation			SL2-IN-E-0033,	
Certificate	R.O.C.		SL2-IS-E-0033,	
		BSMI	SL2-R1/R2-E-0033,	ISO/IEC 17025
	(Taiwan)		SL2-A1-E-0033	
			SL2-L1-E-0033	
	USA	FCC	474046, TW1053	Test facility list
	USA		474040, 1 1 1 1055	& NSA Data
Site Filing	Canada	IC	4699A-1,-3	Test facility list
Document	Cariaua	10	4099A-1,-3	& NSA Data
	lonon	VCCI	R-1527,C-1609,T-131,T-1441	Test facility list
	Japan	VCCI	,G-10	& NSA Data
Authorization	Germany	TUV	10021687-2010	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Report No.: RF-A340-1010-040

Page : 12/60

Test Item	Measurement Uncertainty		
Peak Output Power	1.1dB		
Radiated Emission: (30MHz~200MHz)	Horizontal 2.8dB; Vertical 3.5 dB		
Radiated Emission: (200MHz~1GHz)	Horizontal 3.4dB; Vertical 2.8dB		
Radiated Emission: (1GHz~18GHz)	Horizontal 2.5dB ; Vertical 2.4dB		
Radiated Emission: (18GHz~26.5GHz)	Horizontal 4.0dB;Vertical 3.9dB		
Line Conducted Emission	ESH2-Z5	3.1dB	
Line Conducted Emission	ENV 4200	2.8dB	

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 13/60

Maximum Peak Output Power

Result: Pass

2.1 **Applied standard**

According to 15.247(b)(3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt

Filed strength tranfers to peak output power is as below:

Note:

P: output power (W) E: Field strength (V/m)

D : measurement distance = 3m G : EUT antenna gain = 0dBi

Transfer:

$$P(dBm) = E(dBuV/m) - 90 + 20log3 - 10log30 - 0$$

= $E(dBuV/m) - 90 + 9.54 - 14.77 - 0$
= $E(dBuV/m) - 95.23$

2.2 **Test Instruments**

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date
Spectrum Analyzer	Agilent	E4407B/ MY45106795	2010/5/3	2011/5/3
Antenna	EMCO	3117/57416	2010/3/4	2011/3/4
RF Cable	N/A	N/A/C0081	2010/10/21	2011/4/21
Semi - anechoic Chamber	ETS.LINDGREN	TR11/ 906-A	2010/4/19	2011/4/19

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

CENTRAL RESEARCH TECHNOLOGY CO.

TEL.: 886-2-25984542 FAX.: 886-2-25984546

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 14/60

Instrument Setting

RBW	VBW	Detector	Trace	Comment
1MHz	3MHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature: 24°C Relative Humidity: 54%

2.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine higher emission level and record it.
- g. Then measure peak output power found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. Set the spectrum detector to be Peak or Average to find out the maximum level occurred.
- i. Record test result and compare the maximum level with the required limit.
- j. Change the receiving antenna to another polarization to measure radiated emission by following step e. to i. again.

CENTRAL RESEARCH TECHNOLOGY CO.

Test configuration 2.4

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.5 Test Data

Test Mode : Continuous Transmitting Tester : Jacky

Operating Frequency (MHz)	Polarization	Reading Data (dBuV)	Correction Factor (dB/m)	Emission (dBuV/m)	Peak output power (dBm)	Limit (dBm)	Margin (dB)
2404	Vertical	89.51	-2.33	87.18	-8.05	30	38.05
2404	Horizontal	89.03	-2.33	86.7	-8.53	30	38.53
2442	Vertical	88.01	-2.34	85.67	-9.56	30	39.56
2442	Horizontal	90.21	-2.34	87.87	-7.36	30	37.36
2480	Vertical	84.29	-2.34	81.95	-13.28	30	43.28
2480	Horizontal	85.42	-2.34	83.08	-12.15	30	42.15

Note:

- 1. Correction Factor (dB) = Antenna factor + Cable Loss
- 2. Emission (dBuV/m) = Reading Data + Correction Factor
- 3.Peak output power (dBm) = Emission 95.23(see section 2.1)
- 4. Margin (dB) = Limit Peak output power

2404MHz- Vertical

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 17/60

2404MHz- Horizontal

2442MHz- Vertical

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 18/60

2442MHz- Horizontal

2480MHz- Vertical

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 19/60

2480MHz- Horizontal

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3 6dB Bandwidth Measurement

Test Result: PASS

3.1 Applied standard

According to 15.247(a)(2), the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date	
Spectrum Analyzer	Agilent	E4405B/ MY45106706	2010/3/25	2011/3/24	
Test Site	N.A.	TR13	NCR	NCR	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
100KHz	300KHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 24° C Relative Humidity : 54%

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Report No.: RF-A340-1010-040

Page: 21/60

3.3 Test Procedures

- 1. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- 2. A software provided by client enabled the EUT to transmit data at low, middle and high channel frequencies individually.
- 3. Measure the 6 dB bandwidth and compare with the required limit.

3.4 Test Configurations

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.5 Test Results

Test Mode : Transmitter Tester :

Operating Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
2404	0.510	0.5
2442	0.506	0.5
2480	0.508	0.5

2404MHz

#Kes DW I	ยย KHZ		#ADM 200 KHZ	אeep כ ms (סאב pts)
Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.404006 GHz	-27.19 dBm
2R	(1)	Freq	2.403892 GHz	-33.62 dBm
2∆	(1)	Freq	510 kHz	-0.317 dB

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 22/60

2442MHz

2480MHz

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 24/60

4 Bandedge Measurement

Result: Pass

4.1 Applied standard

According to 15.247(c),in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

4.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date
Spectrum Analyzer	Agilent	E4407B/ MY45106795	2010/5/3	2011/5/3
Antenna	EMCO	3117/57408	2010/3/4	2011/3/4
Pre-amplifier	MITEQ	JS4-00101800-28-5 A/742309	2009/12/21	2010/12/21
RF Cable	N/A	N/A/C0081	2010/10/21	2011/4/21
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2010/4/19	2011/4/19

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 25/60

Instrument Setting

RBW	VBW	Detector	Trace	Comment
100kHz	100kHz	Peak	Maxhold	100kHz Bandedge
1MHz	3MHz	Peak	Maxhold	Radiated Measurement, Peak
1MHz	10Hz	Peak	Maxhold	Radiated Measurement, Average

Climatic Condition

Ambient Temperature : 24°C Relative Humidity: 54%

4.3 **Measurement Procedure**

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- g. Then measure bandedge found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. Record test result and compare the maximum level with the required limit.
- i. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.

Test configuration 4.4

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4.5 Test Data

100kHz Bandedge Measurement

Test Mode : Continuous Transmitting Tester : Jacky

Operating Frequency (MHz)	Antenna Polarization	Frequency (MHz)	Main Frequency Emission Data (dBuV/m)	Bandedge Emission Data (dBuV/m)	Attenuation (dB)	Limit (dB)	Margin (dB)
2404	V	2393.3	82.76	44.35	38.41	20	18.41
2404	Н	2393.3	85.14	45.75	39.39	20	19.39
2480	V	2483.5	86.30	45.58	40.72	20	20.72
2480	Н	2507.3	85.20	45.60	39.60	20	19.60

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier
- 2. Attenuation (dB) = Main Frequency Emission Data Bandedge Emission Data
- 3. Margin(dB) = Attenuation Limit

2404MHz - Vertical

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Report No.: RF-A340-1010-040

2404MHz -Horizontal

2480MHz - Vertical

b

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2480MHz - Horizontal

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Measurement

Test Mode : Continuous Transmitting Tester : Jacky

Operating Frequency	Antenna Polarization	Frequency (MHz)	Da	ding ata suV)	ta Correction Factor		Factor (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(MHz)		, ,	PK.	AV.	(dB/m)	PK.	AV.	PK.	AV.	PK.	AV.	
2404	V	2389.50	56.57	42.03	-2.37	54.20	39.66	74	54	19.8	14.34	
2404	Н	2389.80	57.60	42.03	-2.37	55.23	39.66	74	54	18.77	14.34	
2480	V	2483.5	60.84	42.48	-2.34	58.50	40.14	74	54	15.50	13.86	
2480	Н	2483.5	63.35	43.01	-2.34	61.01	40.67	74	54	12.99	13.33	

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier
- 2. Emission (dBuV/m) = Reading Data + Correction Factor
- 3. Margin(dB) = Limit Emission

2404MHz, V Polarization - PK.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2404MHz, V Polarization - AV.

2404MHz, H Polarization - PK.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 32/60

2404MHz, H Polarization - AV.

2480MHz, V Polarization - PK.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 33/60

2480MHz, V Polarization - AV.

2480MHz, H Polarization - PK.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 34/60

2480MHz, H Polarization - AV.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 35/60

5 Radiated Emission Measurement

Result: Pass

5.1 Applied standard

According to 15.247(c),in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

5.2 Test Instruments

Test Site and	Manufacturar	Model No./	Last	Calibration	
Equipment	Manufacturer Serial No.		Calibration Date	Due Date	
Test Receiver	R&S	ESCI/100019	2010/5/18	2011/5/18	
Spectrum Analyzer	Agilent	E4407B/ MY45106795	2010/5/3	2011/5/3	
Broadband Antenna	EMCO	3142C/52088	2010/5/17	2011/5/17	
Antenna	EMCO	3117/57408	2010/3/4	2011/3/4	
Antenna	EMCO	3116/58959	2010/1/31	2011/1/31	
Pre-amplifier	MITEQ	JS4-00101800-28-5 A /742229	2009/12/14	2010/12/14	
Pre-amplifier	MITEQ	AMF-4D-005180-24- 10P/742309	2009/12/21	2010/12/21	
Pre-amplifier	Mini Circuit	ZKL-2/004	2010/2/5	2011/2/5	
RF Cable	N/A	N/A/C0080	2010/8/6	2011/2/6	
RF Cable	N/A	N/A/C0081	2010/10/21	2011/4/21	
Semi - anechoic Chamber	Ι ΙΡ11/ ϤΠΑ-Δ		2010/4/19	2011/4/19	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	3MHz	Peak	Maxhold	Above 1GHz, Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz, Average

Report No.: RF-A340-1010-040

Climatic Condition

Ambient Temperature: 24°C Relative Humidity: 54%

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 36/60

FCC Test Report

Measurement Procedure 5.3

The EUT was set up per the test configuration figured in the next section of this chapter to

Report No.: RF-A340-1010-040

Page: 37/60

simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle

and highest channel frequencies individually.

c. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8

meters above the reference ground plane in the semi-anechoic chamber. If the EUT is

floor-standing equipment, it was placed on a non-conducted support with a height of 12

millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT was set 3m away from the interference receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the

Maximum-peak detector.

Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4

meters above the reference ground plane continuously to determine at least six frequencies

associated with higher emission levels and record them.

g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT

and positioning the receiving antenna height to determine the maximum level.

h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak

per CISPR 16-1 to find out the maximum level occurred.

For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or

Average to find out the maximum level occurred, if any.

i. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving

antenna and compare the maximum level with the required limit.

k. Change the receiving antenna to another polarization to measure radiated emission by

following step e. to j. again.

I. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise,

accurate Q.P. value will be measured and presented.

m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise,

accurate A.V. value will be measured and presented.

FAX.: 886-2-25984546

TEL.: 886-2-25984542

5.4 Test configuration

Radiated Emission Measurement below 1000MHz

Radiated Emission Measurement above 1000MHz

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 38/60

Page: 39/60

5.5 Test Data

Radiated Emission Measurement below 1000MHz

Test Mode : 2404MHz, Continuous Transmitting

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2404MHz, Continuous Transmitting

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

4

5

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier

44.99

34.55

33.03

40.00 -14.83

46.00 -23.27

46.00 -23.82

31.91 46.00 -23.07

--- HORIZONTAL Peak

--- HORIZONTAL Peak

--- HORIZONTAL Peak

--- HORIZONTAL Peak

Page: 40/60

2. Emission Level (dBuV/m) = Reading Data + Correction Factor

25.17 -19.82

22.73 -11.82

22.18 -10.85

22.93 -8.98

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

76.440

313.300

339.900

Page: 41/60

Test Mode : 2442MHz, Continuous Transmitting

Polarization: Vertical: Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 42/60

Test Mode : 2442MHz, Continuous Transmitting

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 43/60

Test Model : 2480MHz, Continuous Transmitting

Polarization : Vertical Frequency Range : 30MHz~1000MHz

				Keau	пппп	OAST	MILC	rante		
	Freq	Level	Factor	Level	Line	Limit	Pos	Pos	Pol/Phase	Remark
	мн	dBuV/m	dB/m	dBuV	dBuV/m	dB		deg		
1	48.090	30.27	-17.18	47.45	40.00	-9.73			VERTICAL	Peak
2 @	53.490	30.89	-18.31	49.20	40.00	-9. 11			VERTICAL	Peak
3	64.290	29.87	-19.49	49.36	40.00	-10.13	110	135	VERTICAL	QP
4	339.900	23.22	-10.85	34.07	46.00	-22.78			VERTICAL	Peak
5	346.900	21.89	-10.60	32.49	46.00	-24.11			VERTICAL	Peak
6	387.500	22.19	-9.45	31.64	46.00	-23.81			VERTICAL	Peak

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 44/60

Test Model : 2480MHz, Continuous Transmitting

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

5

6

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement above 1000MHz

Test Model : 2404MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

3

4

1. Emission Level (dBuV/m) = Reading Value + Correction Factor.

59.08 -33.15 92.23

4808.175 31.78 -33.15 64.93 54.00 -22.22

- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

74.00 -14.92

115

115

158 VERTICAL

158 VERTICAL

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4808.175

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Peak

Average

Page: 46/60

Test Model : 2404MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11 Lane 41 Fushuen St. Jungshan Chiu, Taine

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 47/60

Test Model : 2442MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 48/60

Test Model : 2442MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 49/60

Test Model : 2480MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 50/60

Test Model : 2480MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 13GHz to 25GHz, so the graphs are omitted above 13GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Report No.: RF-A340-1010-040

Page : 51/60

6 Peak Power Spectral Density Measurement

Test Result: PASS

6.1 Applied Standard

According to 15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Filed strength tranfers to peak output power is as below:

Note:

P : output power (W) E : Field strength (V/m)

D : measurement distance = 3m G : EUT antenna gain = 0dBi

Transfer:

$$P(dBm) = E(dBuV/m) - 90 + 20log3 - 10log30 - 0$$

= E(dBuV/m) - 90 + 9.54 - 14.77 - 0
= E(dBuV/m) - 95.23

6.2 Test Instruments

As section 2.2

Instrument Setting

RBW	VBW	Detector	Trace	Comment
3kHz	10kHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 24°C Relative Humidity : 54%

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

6.3 Test Procedures

As section 2.3

6.4 Test Configurations

As section 2.4

Page : 52/60

6.5 Test Results

Test Mode : Continuous Transmitting Tester : Jacky

Operating Frequency (MHz)	Reading Data (dBuV/m)	Correction Factor (dB)	Emission (dBuV/m)	Peak Power Spectral Density (dBm)	Limit (dBm)	Margin (dBm)
2404	78.17	-2.33	75.84	-19.39	8	27.39
2442	77.49	-2.34	75.15	-20.08	8	28.08
2480	78.79	-2.34	76.45	-18.78	8	26.78

Note:

- 1. Correction Factor (dB) = Antenna factor + Cable Loss r
- 2. Emission (dBuV/m) = Reading Data + Correction Factor
- 3. Peak Power Spectral Density (dBm) = Emission 95.23(see section 6.1)
- 4. Margin (dB) = Limit –Peak Power Spectral Density

2404MHz

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2442MHz

2480MHz

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 55/60

7 Conducted Emission Measurement

Result: Pass

7.1 Applied standard

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
r requericy or Emission (Wiriz)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

7.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date	
Test Receiver R&S		ESCS 30/836858/021 2010/1/12		2011/1/12	
LISN	R&S	ESH2-Z5/836613/001	2010/5/26	2011/5/26	
2 nd LISN	R&S	ENV4200/833209/010	2010/1/12	2011/1/12	
50Ω terminator	N/A	N/A/001	2010/8/26	2011/8/26	
RF Switch	N/A	RSU28/338965/002	2010/8/23	2011/8/23	
RF Cable	N/A	N/A/C0052 ~ 56	2010/8/23	2011/8/23	
Test Software Audix		e3/ Ver. 5.2004-2-19k	NCR	NCR	
shielded room	ETS LINDGREN	TR5/15353-F	NCR	NCR	

Note:

1. The calibrations are traceable to NML/ROC.

2. NCR: No Calibration Required.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Instrument Setting

IF BW	Measurement Time	Detector	Trace	Comment
9kHz	1 second	Quasi-Peak / Average	Maxhold	

Climatic Condition

Ambient Temperature : 24°C; Relative Humidity : 53%

7.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane and 0.4 meters from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane.
- c. Connect the EUT's power source to the appropriate power mains through the LISN.
- d. All the other peripherals are connected to the 2nd LISN, if any.
- e. The LISN was placed 0.8 meters from the EUT and at least 0.8 meters from other units and other metal planes.
- f. Measure the conducted emissions on each power line (Neutral Line and Line 1 Hot side) of the EUT's power source by using the test receiver connected to the coupling RF output port of LISN.
- g. Rapidly scan the signal from 150kHz to 30MHz by using the receiver through the Maximum-Peak detector to determine those frequencies associated with higher emission levels for each measured line.
- h. Then measure the maximum level of conducted disturbance for each frequency found from step g. by using the receiver through the Quasi-Peak and Average detectors per CISPR 16-1.
- i. Record the level for each frequency and compare with the required limit.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

7.4 Test configuration

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

7.5 Test Data

Test Mode : Continuous Transmitting, 2404MHz

Frequency Range : 150kHz~30MHz Phase : Line

Tester : CDC

Note:

- 1. Emission Level = Reading Data + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. P.K., Q.P. and AV. are abbreviation of peak, quasi-peak and average respectively.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : Continuous Transmitting, 2404MHz

Frequency Range : 150kHz~30MHz Phase : Neutral

Tester : CDC

Note:

- 1. Emission Level = Reading Data + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. P.K., Q.P. and AV. are abbreviation of peak, quasi-peak and average respectively.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

8 Antenna Requirement

8.1 Applied standard

According to 15.247(4) and (c)(1), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

8.2 Antenna Information

This antenna's relative information as follow:

Brand	Model	Frequency Range (MHz)	Gain (dBi)	Comment
N/A	CN2K0759	2400 ~ 2500	0	

Antenna Position:

8.3 Result

Gain of the antenn is less than 6dBi.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Attachment 1 Photographs of the Test Configurations

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Report No.: RF-A340-1010-040

Radiated Emission Measurement

Conducted Emission Measurement

Attachment 2 External Photographs of EUT

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.
TEL.: 886-2-25984542
FAX:: 886-2-25984546

Adaptor

Attachment 3 Internal Photographs of EUT

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Report No.: RF-A340-1010-040

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX:: 886-2-25984546

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546