CC2530/CC2540/CC2541 常用寄存器

1. 访问模式

符号	访问模式
11 2	奶門供瓜
R/W	可读写
R	只读
R0	读 0
R1	读1
W	只写
WO	写 0
W1	写 1
НО	硬件清除
Н1	硬件设置

2. 端口寄存器 (P0, P1, P2)

端 口	Bit 位	名称	初始 化	读 写	描述
P0	7:0	P0[7:0]	0XFF	R/W	端口 0,通用 I/O 端口,可以位寻 址。 XDATA (0x7080).
P1	7:0	P1[7:0]	0XFF	R/W	端口 1,通用 I/O 端口,可以位寻 址。 XDATA (0x7090).
P2	7:5		000	R0	未使用
P2	4:0	P2[4:0]	0x1F	R/W	端口 2,通用 I/O 端口,可以位寻 址。 XDATA (0x70A0).

3. 方向寄存器 (PODIR, P1DIR, P2DIR)

端口	Bit 位		初始 化	读 写	描述
PODIR	7:0	DIRPO_[7:0]	0x00	R/W	P0.7P0.0的方向(0:输入 1:输出)
P1DIR	7:0	DIRP1_[7:0]	0x00	R/W	P1.7P1.0的方向(0:输入 1:输出)
P2DIR	7:6	PRIP0[1:0]	00	R/W	端口 0 外设优先级控制,当 PERCFG 分配给一些 外设相同引脚的时候,这些位将确定优先级。 优先级从前到后如下: 00: USART 0,USART 1, Timer 1 01: USART 1, USART 0, Timer 1

					10: Timer 1 channels 0-1, USART	1,
					USART 0, Timer 1 channels 2-3	
					11: Timer 1 channels 2-3, USART	0,
					USART 1, Timer 1 channels 0-1	
P2DIR	5		0	R0	未使用	
P2DIR	4:0	DIRP2_[4:0]	00000	R/W	P2.4—P2.0的方向(0:输入 1:输出)	

4. 外设控制寄存器 (PERCFG)

端口	Bit 位	名称	初始化	读写	描述
PERCFG	7		0	R0	未使用
PERCFG	6	T1CFG	0	R/W	计时器 1 的 I/0 位置: 0: 位置 1 1: 位置 2
PERCFG	5	T3CFG	0	R/W	计时器 3 的 I/0 位置: 0: 位置 1 1: 位置 2
PERCFG	4	T4CFG	0	R/W	计时器 4 的 I/0 位置: 0: 位置 1 1: 位置 2
PERCFG	3:2		00	R/W	未使用
PERCFG	1	U1CFG	0	R/W	USART 1 的 I/O 位置: 0: 位置 1 1: 位置 2
PERCFG	0	U0CFG	0	R/W	USART 0的 I/0位置:0:位置1 1:位置2

5. 模拟外围 I/O 配置 (ADC 输入配置) (APCFG): Analog peripheral I/O configuration

端口	Bit 位	名称	初始 化	读 写	描述
APCFG	7:0	APCFG[7:0]	0x00		模拟外围 I/0 配置(ADC 输入配置),APCFG[7:0] 选择 P0.7—P0.0 作为模拟输入口。0:模拟输入 (ADC 输入)禁止 1:模拟输入(ACD 输入)使能

6. 功能选择寄存器 (POSEL, P1SEL, P2SEL)

端口	Bit 位	名称	初始 化	读 写	描述	
P0SEL	7:0	SELP0_[7:0]	0×00	R/W	P0.7P0.0 的功能选择(0:通用 I/0	1:

					外设功能)
P1SEL	7:0	SELP1_[7:0]	0x00	R/W	P1.7P1.0 的功能选择(0:通用 I/0 1: 外设功能)
P2SEL	7		0	R0	未使用
P2SEL	6	PRI3P1	0	R/W	端口1外设优先级控制,当PERCFG分配USARTO和USART1相同引脚的时候,这些位将确定优先级。0:USART 0 优先 1:USART 1 优先
P2SEL	5	PRI2P1	0	R/W	端口 1 外设优先级控制,当 PERCFG 分配 USART1 和 TIMER3 相同引脚的时候,这些位将确定优先 级。0: USART 1 优先 1: TIMER 3 优先
P2SEL	4	PRI1P1	0	R/W	端口1外设优先级控制,当PERCFG分配TIMER1和TIMER4相同引脚的时候,这些位将确定优先级。0:TIMER 1 优先 1:TIMER 4 优先
P2SEL	3	PRIOP1	0	R/W	端口1外设优先级控制,当PERCFG分配USARTO和TIMER1相同引脚的时候,这些位将确定优先级。0:USART 0 优先 1:TIMER 1 优先
P2SEL	2:0	SELP2_[2:0]	000	R/W	P2.2P2.0 的功能选择(0:通用 I/0 1: 外设功能)

7. 输入模式寄存器 (POINP, P1INP, P2INP)

端口	Bit 位	名称	初始化	读 写	描述
POINP	7:0	MDP0_[7:0]	0x00		P0.7P0.0的输入模式: 0: 上拉/下拉(具体看 PDUPO 设置) 1: 三态
P1INP	7:2	MDP1_[7:2]	000000		P1.7—P1.2的输入模式:0:上拉/下拉(具体看 PDUP1 设置) 1: 三态
P1INP	1:0		00	R0	未使用
P2INP	7	PDUP2	0	R/W	端口2上拉/下拉选择,对所有端口2引脚设置为上拉/下拉输入:0:上拉1:下拉
P2INP	6	PDUP1	0	R/W	端口1上拉/下拉选择,对所有端口1引脚设置为上拉/下拉输入:0:上拉1:下拉
P2INP	5	PDUP0	0	R/W	端口0上拉/下拉选择,对所有端口0引脚设

					置为上拉/下拉输入:0: 上拉 1: 下拉
P2IN	P4:0	MDP2_[4:0]	00000	I	P2.4—P2.0的输入模式: 0:上拉/下拉(具体看 PDUP2 设置) 1:三态

8. 中断状态标志寄存器 (POIFG, P1IFG, P2IFG)

端口	Bit 位	名称	初始 化	读/ 写	描述
POIFG	7:0	P0IF[7:0]	0x00		端口 0, 位 7 至位 0 输入中断状态标志。当某引脚上有中断请求未决信号时,其相应标志为设 1。
P1IFG	7:0	P1IF[7:0]	0x00		端口1,位7至位0输入中断状态标志。当某引脚上有中断请求未决信号时,其相应标志为设1。
P2IFG	7:5		000	R0	未使用
P2IFG	4:0	P2IF[4:0]	0x00		端口 2, 位 4 至位 0 输入中断状态标志。当某引脚上有中断请求未决信号时,其相应标志为设 1。

9. 端口中断控制(PICTL)(上升沿或下降沿)

端口	Bit 位	名称	初始 化	读 写	描述
PICTL	7	PADSC	0	R/W	强制引脚在输出模式。选择输出驱动能力,由 DVDD 引脚提供。0:最小驱动能力1:最大驱动能力
PICTL	6:4		000	R0	未使用
PICTL	3	P2ICON	0	R/W	端口 2, 引脚 4 至 0 输入模式下的中断配置,该位为端口 2 的 4-0 脚的输入选择中断请求条件。0:输入的上升沿引起中断 1:输入的下降沿引起中断
PICTL	2	P1ICONH	0	R/W	端口1,引脚7至4输入模式下的中断配置,该位为端口1的7-4脚的输入选择中断请求条件。0:输入的上升沿引起中断 1:输入的下降沿引起中断
PICTL	1	P1ICONL	0	R/W	端口1,引脚3至0输入模式下的中断配置,该位为端口1的3-0脚的输入选择中断请求条件。0:输入的上升沿引起中断 1:输入的下降沿引起中断

PICTL0	POICON	0	R/W	端口 0, 引脚 7 至 0 输入模式下的中断配置,该位为端口 0 的 7-0 脚的输入选择中断请求条件。0:输入的上升沿引起中断 1:输入的下降沿引起中断
--------	--------	---	-----	---

10. 中断屏蔽寄存器 (POIEN, P1IEN, P2IEN)

端口	Bit 位	名称	初始 化	读 写	描述
POIEN	7:0	P0_[7:0]IEN	0x00	R/W	端口 0, 位 7 至位 0 中断使能。0: 中断禁止 1: 中断使能
P1IEN	7:0	P1_[7:0]IEN	0x00	R/W	端口 1, 位 7 至位 0 中断使能。0: 中断禁止 1: 中断使能
P2IEN	7:6		00	R0	未使用
P2IEN	5	DPIEN	0	R/W	USB D+ 中断使能。
P2IEN	4:0	P2_[4:0]IEN	00000	R/W	端口 2, 位 4 至位 0 中断使能。0: 中断禁止 1: 中断使能

11. 串口和 SPI 相关

11.1.UOCSR (0x86) -USART 0 控制和状态

Bit 位	名称	初始化	读写	描述		
7	MODE	0	IR/W	USART 模式选择: 0:SPI 模式 1:UART 模式		
6	RE	0	R/W	UART 接收器使能。注意在 UART 完全配置之前不使能接收。 0:禁用接收器 1:接收器使能		
5	SLAVE	0	IR/W	SPI 主或者从模式选择. 0:SPI 主模式 1:SPI 从模式		
4	FE	0		0 UART 帧错误状态. 0: 无帧错误检测 1:字节收到不正确停止位级别		
3	ERR	0		UART 奇偶错误状态. 0:无奇偶错误检测 1:字节收到奇偶错误		
2	RX_BYTE	0	R/WO	接收字节状态。URAT 模式和 SPI 从模式。当读 UODBUF 该		

				位自动清除,通过写 0 清除它,这样有效丢弃 UODBUF 中的数据 。0:没有收到字节 1:准备好接收字节
1	TX_BYTE	0	R/WO	传送字节状态。URAT 模式和 SPI 主模式. 0:字节没有被传送 3:写到数据缓存寄存器的最后字节被传送
0	ACTIVE	0		USART 传送/接收主动状态、在 SPI 从模式下该位等于从模 式选择。0:USART 空闲 1:在传送或者接收模式 USART 忙碌

11. 2. UOUCR (0xC4) - USART 0 UART 控制

Bit 位	名称	初 始 化	读写	描述
7	FLUSH	0	R0/W1	清除单元。当设置时,该事件将会立即停止当前操作并且 返回单元的空闲状态。
6	FLOW	0	R/W	UART 硬件流使能。用 RTS 和 CTS 引脚选择硬件流控制的使用。0:流控制禁止. 1:流控制使能.
5	D9	0	R/W	UART 奇偶校验位。当使能奇偶校验,写入 D9 的值决定发送的第9位的值,如果收到的第9位不匹配收到字节的奇偶校验,接收时报告 ERR。如果奇偶校验使能,那么该位设置以下奇偶校验级别。0:奇校验1:偶校验.
4	BIT9	0	R/W	UART 9位数据使能。当该位是1时, 使能奇偶校验位传输(即第9位)。如果通过PARITY使能奇偶校验,第9位的内容是通过D9给出的。0:8位传送 1:9位传送
3	PARITY	0	R/W	UART 奇偶校验使能。除了为奇偶校验设置该位用于计算,必须使能 9 位模式。0:禁用奇偶校验 1:奇偶校验使能
2	SPB	0	R/W	UART 停止位的位数。选择要传送的停止位的位数. 0:1 位停 止位 1:2 位停止位
1	ST0P	1	R/W	UART 停止位的电平必须不同于开始位的电平. 0:停止位低电平 电平 1:停止位高电平
0	START	0	R/W	UART 起始位电平。闲置线的极性采用选择的起始位级别的 电平的相反的电平。0:起始位低电平 1:起始位高电平

11.3. UOGCR (0xC5) - USART 0 通用控制

Bit 位	名称	初始化	读写	描述
7	CP0L	0	IR/W	SPI 的时钟极性. 0: 负时钟极性 1: 正时钟极性
6	СРНА	0	R/W	SPI 时钟相位. 0:当 SCK 从 CPOL 倒置到 CPOL 时数据输出到 MOSI,并且当 SCK 从 CPOL 倒置到 CPOL 时数据输入抽样到 MISO。1:当 SCK 从 CPOL 倒置到 CPOL 时数据输出到 MOSI,并且当 SCK 从 CPOL 倒置到 CPOL 时数据输入抽样到 MISO。
5	ORDER	0	R/W	传送位顺序. 0:LSB 先传送 1:MSB 先传送
4:0	BAUD_E[4:0]	0	0000	R/W 波特率指数值。BAUD_E 和 BAUD_M 决定 了 UART 波特率 和 SPI 的主 SCK 时

钟频率。

11. 4. UOBUF (0xC1) - USART 0 接收/传送数据缓存

Bit 位	名称	初始 化	读 写	描述
7:0	DATA[7:0]	0x00	IR / W	USART 接收和传送数据。 当写这个寄存器的时候数据被写到内部,传送数据寄存

器。当读取该寄存器的时候,数据来自内部读取的数据寄存器。

11.5. UOBAUD (0xC2) - USART 0 波特率控制

Bit 位	名称	初始 化	读 写	描述	
7:0	BAUD_M[7:0]	0x00		波特率小数部分的值。 BAUD_E 和 BAUI UART 的波特率和 SPI 的主 SCK	D_M 决定了

时钟频率。

12. 时钟相关

12.1.CLKCONCMD (0xC6) - 时钟控制命令

Bi t	名称	初始	读写	描述		
<u>位</u> 7	OSC32K	1	R/W	32kHz 时钟振荡器选择。设置该位只能发起一个时钟源改变。CLKCONSTA. OSC32K 反映当前的设置。当要改变该位必须选择 16MHz RCOSC 作为系统时钟。 0:32 kHz XOSC 1:32 kHz RCOSC		
6	OSC	1	R/ W	系统时钟 源选择 。设置该位只能发起一个时钟源改变。CLKCONSTA. OSC 反映当前的设置。 0:32 MHz XOSC 1:16 MHz RCOSC		
5: 3	TICKSPD[2:0]	000	R/ W	定时器标记输出设置。不能高于通过 OSC 位设置的系统时钟设置。000:32 MHz 001:16 MHz 010:8 MHz 011:4 MHz 100:2 MHz 101:1 MHz 110:500 kHz 111:250 kHz 注意 CLKCONCMD. TICKSPD 可以设置为任意值,但是结果受 CLKCONCMD. OSC 设置的限制,即如果 CLKCONCMD. OSC=1 且 CLKCONCMD. TICKSPD=000,CLKCONCMD. TICKSPD 读出 001 且实际 TICKSPD 是 16 MHz。		
2: 0	CLKSPD	000	R/ W	际 TICKSPD 是 16 MHz。 时钟速度。不能高于通过 OSC 位设置的系统时钟设置。表示当前系统时钟频率。000:32MHz 001:16MHz 010:8MHz 011:4MHz 100:2MHz 101:1MHz 110:500 kHz 111:250 kHz 注意 CLKCONCMD. CLKSPD 可以设置为任意值,但是结果受 CLKCONCMD. OSC 设置的限制,即如果 CLKCONCMD. OSC=1 且 CLKCONCMD. CLKSPD=000 , CLKCONCMD. CLKSPD 读出 001 且实际 CLKSPD 是 16MHz。还要注意调试器不能和一个划分过的系统时钟一起工作。当运行调试器,当 CLKCONCMD. OSC=0,CLKCONCMD. CLKSPD 的值必须设置为 000,或当 CLKCONCMD. OSC=1 设置为 001。		

12. 2. CLKCONSTA (0x9E) - 时钟控制状态

Bit 位	名称	初始化	读 写	描述
7	OSC32K	1	R	当前选择的 32 kHz 时钟 源。0:32kHz XOSC 1:32kHz RCOSC
6	OSC	1 R 当前选择的系统时 钟。0:32MHz XOSC 1:16MHz RCOSC		
5:3	TICKSPD[2:0]	001		当前设置的定时器标记输出。 000:32MHz 001:16MHz 010:8MHz 011:4MHz 100:2MHz 101:1MHz 110:500kHz 111:250 kHz
2:0	CLKSPD	001		当前时钟速度。000:32MHz 001:16MHz 010:8MHz 011:4MHz 100:2MHz 101:1MHz 110:500kHz 111:250kHz