FIT5037 Network Security Assignment Total Marks 100 Dueten Spring Priday 第1号

1 Overview

The learning objective of the law of the standing on how to launch these attacks in practice. All tasks in this assignment call the law of the labs.

2 Submission Poli

You need to submit a lab **Proposition** File) to describe what you have done and what you have observed with screen shots whenever necessary; you also need to provide explanation or codes to the observations that are related to the tasks. In your report, you are expected to answer all the questions listed in this manual. Type of your report into pdf format (make sure it can be opened with Adobe Reader) and name it as the format: [Your Name] [Student ID]-FIT5037-Assignment, e.g., HarryPotter-12345678-FIT5037-Assignment.pdf.

All source code if required should be embedded in your poort. In addition, if a demonstration yideo is required, you should record your screen demonstration with your wice explanation and uplear the video to your Monash Google Drive. For video demonstration, you are required to say your name and student ID at the start of recording, showing face is mandatory. The shared URL of the video should be mentioned in your report wherever required You (In Issaely too you yould like to record videos, for example panopto (https://monash-panopto.aarnet.edu.au/) and Zoom. Note: the assignment is due on September 22nd, Friday, 11:55 PM.

Late submission penalty: Point declicity Rugal Tyou require a special consideration, the application should be submitted and notified at least three days in advance. Zero tolerance on plagiarism: If you are found cheating, penalties will be applied, i.e., a zero grade for the unit. The demonstration video is also used to detect/avoid plagiarism. University polices can be found at https://www.monash.edu/atulings/acaden/f/pprocess (againmic-integrity.

3 Environment Setup

In this section, you need to double check whether you have configured GNS3 correctly. We will be using the Week06 lab configuration, i.e., your GNS3 configuration should look like below:

Figure 1: GNS3 Config

Otherwise, if you don't have the VM ready, we refer you to Environment Setup in Week 01. It is recommended to perform lab tasks of Week06 before proceeding.

4 TCP Attacks – Using Scapy [40 Marks]

The Transmission Control Protocol (TCP) is a core protocol of the Internet protocol suite. It sits on top of the IP layer, and provided reliable and othered formulation than Between abdications running on networked computers. TCF is it a layer called Transport layer, which provides nost to-host communication services for applications. To achieve such reliable and order communication, TCP requires both ends of a communication to maintain a connection. Unfortunately, when TCP was developed, no security mechanism was by maintain a connection. Unfortunately, when TCP was developed, no connections, break connect to the provided service of the provided service in the provided service of the provided service in the provided

4.1 Task 1: TCP Research

In the stream of packets of the stream of the stream of packets of the stream of the stream of packets of the stream of the stream of the stream of packets of the stream of the stream of packets of the stream of the stream

It is possible for a third computer (aka attacker) to monitor the TCP packets on the connection and then send a "forged" packet containing a TCP reset copie of optimal points. The leaders is the forged packet must indicate, falsely, that it came from an endpoint, not the forger. This information includes the endpoint IP addresses and port numbers. Every field in the IP and TCP headers must be set to a convincing forged value for the fake reset to trick the endpoint into closing the TCP connection.

The idea is quite simple: to break up a TCP connection between A and B, the attacker just spoofs a TCP RST packet from A to B or from B to A.

Q1: Connect from Internal-client to Internal-Server using SSH (use apt install ssh if SSH is not installed), the username and password are same: msfadmin. Perform TCP RST attack, from Internal-Attacker workstation, on SSH service using Scapy (python-based) packet generator. Internal-Client terminal florideshow the toprotion is tempirated. Please submit your python code and the steps, along with video link showing that you have performed the attack. (Python code: 5 marks, explanation during recording demonstration: 5 marks)

Q2: Briefly explain the TCP RST attack and propose at least two theoretical countermeasures. You do not have to do any configuration/implementation for this task. (Explanation: 2.5 marks, countermeasures: 2.5 marks)

4.2 Task 2: TCP Session Hijacking Attacks [25 Marks]

Once a TCP client and server finish the three-way handshake protocol, a connection is established, and we call it a TCP session. From then on, both ends can send data to each other. Since a computer can have multiple concurrent TCP sessions with other computers, when it receives a packet, it needs to know which TCP session the packet belongs to. TCP uses four elements to make that decision, i.e., to uniquely identify a session: (1) source IP address, (2) destination IP address, (3) source port number, and (4) destination port number.

We call these four fields as the signature of a TCP session. As we have already learned, spoofing packets is not difficult. What if we spoof a TCP packet, whose signature matches that of an existing TCP session on the target machine? Will this packet be accepted by the target? Clearly, if the above four elements match with the signature of the session, the receiver cannot tell whether the packet comes from the real sender or an attacker, so it considers the packet as belonging to the session.

However, for the packet to be accepted, one more critical condition needs to be satisfied. It is the TCP sequence number. TCP is a connection-oriented protocol and treats data as a stream, so each octet in the TCP session has a unique sequence number, identifying its position in the stream. The TCP header

contains a 32-bit sequence number field, which contains the sequence number of the first octet in the payload. When the receiver gets a TCP packet, it places the TCP data (payload) in a buffer; where exactly the payload is placed inside the buffer depends on the sequence number. This pay, even if TCP packets arrive out of order, TCP can always about their that in the first correct order.

The objective of this task is to hijack an existing TCP connection (session) between client and server by injecting malicious contents into their session.

Q3: Connect TELNET

same: msfadmin. Write a

s

W cattacker vulnerable Of CS ls

Assignment Project Exam Help

Q4: Connect TELNET from Internal-Client to Internal-Server. The objective is to get a reverse shell from Internal-Server. Reverse shell is a shell process running on a remote machine, connecting back to the attacker's machine. We have emitting the details of everse shell and encourage students to research about it, you can start from here: https://hackernoon.com/reverse-shell-cf154dfee6bd. Write a python code, using Scapy, which can inject packets in TELNET communication and create a reverse shell from Internal-Server to Internal-Attacker (as seen in the screenshot below, in this case the Internal-Server's IP address is 1010 (0) 850. Subplicity by thou code and steps, along with video link showing that you have performed the attack. (Python code: 5 marks, explanation during recording demonstration: 5 marks)

nttps://tutorcs.com Loot@Internal-Attacker:~# nc -lvp 4444 Listening on 0.0.0.0 4444 Connection received on 10.10.10.197 49416

Figure 3: Receiving reverse shell

Q5: Connect SSH from Internal-Client to Internal-Server, the username and password are same: msfadmin. Perform same TCP hijacking attacks as you did for TELNET, i.e. make attacker directory in Internal-Server and create a reverse shell from Internal-Server to Internal-Attacker by hijacking SSH connection. If your attacks are successful, please submit python code and steps, along with video link showing that you have performed the attacks. If your attacks were unsuccessful, explain the reason in detail. (Python Code and Explanation during recording demonstration: 5 marks)

5 DNS Attacks – Using Scapy [60 Marks]

Domain Name System (DNS) is an essential component of the Internet infrastructure. It serves as the phone book for the Internet, so computers can look up for "telephone number" (i.e. IP addresses) from domain names. Without knowing the IP address, computers will not be able to communicate with one another. Due to its importance, the DNS infrastructure faces frequent attacks. In this section, you will explore the most primary attack on DNS. That is DNS cache poisoning by investigating both Local and Remote DNS cache poisoning attacks.

Due to the large number of computers and networks on the Internet, the domain namespace is organised in a hierarchical tree-like structure. Each node on the tree is called a domain or sub-domain when referencing to its parent node. The following figure depicts a part of the domain hierarchy.

The domain hierarchy tree the true of the domain namespace is organised, but that is not exactly how the domain name systems are organised according to zones. A DNS zone basica domain and sub-domains on the domain tree, and assign the management authority one is managed by an authority, while a domain does not indicate any authority information. The following figure depicts an example of the example.com domain.

Assume that example.com in the above figure is an international company, with branches all over the world, so the company's demain is further divided into multiple sub-domains, including usa.example.com, uk.example.com, and france.example.com. Inside US, the usa sub-domain is further divided into chicago, boston, and nyc subdomains.

Each DNS zone has at least one authoritative nameserver that publishes information about that zone. The goal of a DNS query is to eventually ask the authoritative DNS server for answers. That is why they are called authoritative because they provide the original and definitive answers to DNS queries, as opposed to obtaining the answers from other DNS servers.

With such arrangement, the root zone for example.com only needs to keep records of who the authority is for each of its subdomains. By doing this, it maintains the independence among the branches in different countries and enable the administrative right of those subdomains, so the branch in each country manages its own DNS information. For a given DNS query, if your local DNS server does not the answer, it will ask

other DNS servers on the Internet for answer via hierarchical authority servers. The following example demonstrates a dig (DNS query) for the domain www.example.net when sending the query directly to one of the root server (i.e. a.root-servers.net).

Directly send the guery to this server.

seed@ubuntu:~\$ dig @a.root-servers.net (Only a portion of ;; QUESTION SECTION: (the root does ; www.example.net. IN A not know the answer) ;; AUTHORITY SEC m.gtld-servers.net. net. NS NS 1.gtld-servers.net. net. NS k.gtld-servers.net. net. Go ask them! ;; ADDITIONAL SE m.gtld-servers.net k.gtld-servers.net 192.52.178.30

Figure 6: DIG to the root server

cstutores

There are four types of sections in a DNS response: question section, answer section, authority section, and additional section. From the above result, we can see that the root server does not know the answer (because the reply does not include an answer section, but it tells several authoritative nameservers for the net zone (the NS records in the action) along with the off active action and distinct action. If you continuously dig the domain www.example.net on one these authoritative nameservers, you will finally end up with the answer section showing the IP address of the machine hosting the website

for www.example.net. Email: tutorcs@163.com

When your local DNS server gets information from other DNS servers, it caches the information, so if the same information is needed, it will not waste time to ask again.

5.1 Task 3: Local DNS Attack targeting Authority Nameserver [20 Marks]

We recalled that a DNS response contains question section, answer section, authority section, and additional section. If we only target the answer section, the attack only affects one hostname (as we did in our Week06 lab "DNS Spothig Discks"). Itali Discussionally target the authority section by providing a fake NS record for the target domain in the authority section. If the fake NS record is cached, when the victim local DNS server tries to find any IP address in the target domain, it will send a request to the malicious nameserver specified in the fake NS record. Such an attack can affect all the hostnames in the target domain. In this task, you will explore how to target the authority server of example.net and manage to replace it with ns1.attacker.com and ns2.attacker.com.

Q6: Submit your python code and write comments in the code step by step to perform the DNS spoofing attack that modifies the authority server of example.net to be ns1.attacker.com and ns2.attacker.com. Use Internal-Client as victim and Internal-Attacker as the attacker machine. (Python code: 10 marks). If the attack works, you should see the result as in following figures for which the malicious authoritative servers are taken place.

Figure 7: Q6

Email: tutorcs@163.com

Q7: Provide your explanation in video demonstration to support your above DNS spoofing attack. (Explanation and attack's results: 5 marks, highlight Wireshark packet monitor in the video: 5 marks) 749389476

5.2 Task 4: Remote DNS Attack targeting Authority Server [40 Marks]

For this task, the attacker property of the server to Server LAN and configure its IP statically. The GNS3 configuration for this task should look like below:

Figure 8: GNS3 for Remote DNS Attacks

Configure static IP for DNS:

Now login to Internal-FW (username is 'admin', no password), and execute the following to disable NAT: ip firewall nat remove WeChat: cstutorcs

The previous local DNS attacks assume that the attacker and the DNS victim server are on the same LAN so that she can observe the DNS query message and reply with a forged DNS packet. When the attacker and the DNS server are not an Sister TAN capatitack property had been sixed to the attacker and the DNS query poisoning attack and see the DNS query. When the DNS victim server cannot resolve the DNS query, it will forward the DNS query packet to the forwarder DNS server (Google DNS server in our current setup). The DNS query is sent via a UDP packet where the UDP's source port is a 16-bit random number. In addition, the 16-bit transaction ID in the DNS header balso self-created by the DNS victim server. Hence, if the remote attacker wants to forge the DNS response, the forged packet must contain the correct values of these two numbers; otherwise, the reply will not be accepted.

Without being able to sniff the query packet the remote attacker can only guess these two numbers. The chance is one out of 2^{32} for each guess. If an attacker can send out 1000 spoofed responses, it may take several days to try up 2^{32} time. In contrast, it only takes few seconds to receive the correct packet response from the forwarder G_{q} G_{q}

The remote DNS attack had become an open problem until Dan Kaminsky came up with a simple solution in 2008. The attack is depicted in the following figure.

Figure 10: Kaminsky Attack

We choose a domain test.com as our targeted domain name in this task. When a client queries the DNS server for www.test.com, the attacker (Internal-Attacker) wants to cause the DNS server to use her DNS server (ns.attacker.com). The following step with reference to above figure describe the outline of the attack.

- 1. The attacker queries the DNS server for a non-existing name in test.com, for example $\mathbf{T}^{\text{dom name.}}$ xyz123.test.com, w
- 2. Since the mapping real esolved by the DNS server's cache, the server forwards the query to Google DN \Box me resolution.
- 3. In the meantime, the DNS server with many spoofed DNS responses, each trying a different transaction humber (hoping one guess is correct). In that forged response, not only th he IP resolution for the hostname xyz123.test.com, but for the domain test.com. also provides an author

Even if the response failed, the attacker would go back step one, and try another non-existing random name until the attacker succeeds.

4. Once the attack succeeds, when the client sends a DNS query to the poisoned DNS server for www.test.com, the nameserver returned by the DNS server will actually be set by the attacker.

To simplify and shorten the assessing in the content of the conten before doing the task.

- 1. Double check the IP addresses of the server, attacker and the attacker are not in the same AN (using identification of COII)
 - DNS: 10.10.5.53
 - Internal-Attacker 10-10.7049389476
 Internal-Client: 10.10.10.Y
- 2. In the DNS server's terminal, you can type the following command to configure DNS

```
nano /etc/bind/nanel.chr.optingtorcs.com
```

Then, you should configure the forwarder 8.8.8.8, enable recursion and fix the query source port of the DNS server (i.e. 33333). With this constraint, the attacker now only needs to guess the transactionID of the DNS packet when performing remote DNS attacks. You can review the following figure for the correct configuration of DNS server.

```
GNU nano 4.8
                                                                                                                                                                             /etc/bind/named.conf.options
               l
directory "/var/cache/bind";
                     If there is a firewall between you and nameservers you want to talk to, you may need to fix the firewall to allow multiple ports to talk. See http://www.kb.cert.org/vuls/id/800113
                    If your ISP provided one or more IP addresses for stable nameservers, you probably want to use them as forwarders. Uncomment the following block, and insert the addresses replacing the all-0's placeholder.
               forwarders
                                      {
8.8.8.8;
               forward only;
                     If BIND logs error messages about the root key being expired, you will need to update your keys. See https://www.isc.org/bind-keys
              query-source port 33333;
dnssec-validation no;
dump-file "/var/cache/bind/dumb.db";
auth-nxdomain no;
listen-on-v6 { any; };
```

Figure 11: DNS server config file

3. After making the changes in the above step, you should restart your DNS server by using the following command

/etc/init.d/named程序代写代做 CS编程辅导

4. Delete the DNS cache on the server using the below command. You need to run this command before starting the attack.

rndc flush

We provide you the remote

Late on Moodle that helps to perform the Kaminsky attack.

Q8: You need to complet shot of your Python c

 $te_dns.py$ to create 10000 dummy hostnames. (**The screen-5 marks**)

Q9: You need to complete Step 2 in the remote_dns.py to generate a random DNS query for each dummy hostnames. (The screens of your arthur science is the screens of the screen science is the screen of the scre

Q10: You need to complete Step 3 in the remote_drs.py to flood about 100 random forged response packets. Each packet has ASSIGNMENT Project Exam Help

- A randomly generated transaction ID for DNSpkt. (5 marks for code and screenshot)
- The malicious DNS terior 1 tackel to 15 Grade in the Darfest Muthority for the domain test.com when you construct DNSpkt. (5 marks for code and screenshot)
- Additional section showing no attacker 10.10.10.X. (5 marks for code and screens of 10.10.10.X.)

Q11: Provide your video The Provide video to your Monash Google Drive and embed its shared link to your report so that the teaching team can view and verify your works. In the video, you need to demonstrate following key points:

- Wireshark traffic captured on DNS server on eth1 shows the transactionID in DNS packet sent by DNS server to Google, and the correctly matched transaction ID in the forged packet sent by Internal-Attacker to the DNS server. (5 marks for step by step explanation of the attack using Wireshark in the demonstration video)
- Once the poisoning is completed, from Internal-Client's terminal use dig command to send a DNS query for the specific subdomain for which the attack was successful (e.g. in below screenshot it's snuy6.test.com). Do you get the attacker's IP?
- Now from the same terminal send a DNS query for test.com. If the attack was successful, the response should show ns.attacker.com in the authority section for the domain test.com. Was your attack successful? Explain in detail why or why not. (10 marks for your explanation during the demonstration video)


```
Croot@Internal Client:/# dig @10.10.5,53 NS test.com
                              @10.10.5.53 NS test.com
  <>>> DiG 9.16.1-Ubuntu <<>>
  (1 server found)
  global options: +cmd
  Got answer:
   flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 2
;; OPT PSEUDOGECTION:
; EDNS: version: 10 dlass: 14504665
 COOKIE: 2d76e3d55e57c2c20100000062e5b69ab7008eb5bc2611b8 (good)
  QUESTION SECTION:
 test.com.
;; ANSWER SECTION:
                         66103
                                         NS
test.com.
                                 ΙN
                                                 ns.attacker.com.
;; ADDITIONAL SECTION: /66111 CICS. GOM 10.10.10.199
  Query time: 4 msec
   SERVER: 10.10.5.53#53(10.10.5.53)
  WHEN: Sun Jul 31 08:54:18 AEST 2022
   MSG SIZE
             rcvd: 110
```

Figure 13: Internal-Client is answered from the poisoned cache.

6 Acknowledgement

Parts of this assignment and instructions are based on the SEED project (Developing Instructional Laboratory for Computer Security Education) https://seedsecuritylabs.org.