Matrices circulantes módulo potencias de primos

El problema

Dado un vector $\alpha \in \mathbb{Z}^d$, $d = p^n$, queremos caracterizar los $\beta \in \mathbb{Z}^d$, tales que

$$\mathsf{C}_{\alpha}\,\beta \equiv 0 \pmod{d} \,\,, \tag{1}$$

donde C_{α} es la matriz circulante asociada al vector α : si $\alpha = (\alpha_0, \ldots, \alpha_{d-1})$, entonces

$$\mathsf{C}_{\alpha} = \begin{bmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_{d-1} \\ \alpha_{d-1} & \alpha_0 & \cdots & \alpha_{d-2} \\ \vdots & \vdots & & \vdots \\ \alpha_1 & \alpha_2 & \cdots & \alpha_0 \end{bmatrix} . \tag{2}$$

La suma de las coordenadas de α saltando de a t lugares es una suma de la forma:

$$\sum_{r} \alpha_{i+rt}$$

donde $0 \le i < t \text{ y } 0 \le r < d/t$. En general, suponemos que $t = p^k$ con $k \le n$. La conjetura es que, si las sumas de las coordenadas de α saltando de a p no son todas cero módulo p, entonces todo β que cumple (1) (que está en el núcleo de C_{α} módulo p^n), verifica que la suma de sus coordenadas es congruente a cero módulo d, es decir,

$$\sum_{j} \beta_{j} \equiv 0 \pmod{d} . \tag{3}$$

Podemos reformular el problema en términos de polinomios. Sea $d=p^n$ una potencia arbitraria de un primo p. Dado $\alpha=(\alpha_0,\ldots,\alpha_{d-1})\in\mathbb{Z}^d$, definimos un polinomio de grado d-1 asociado, $f_{\alpha}\in\mathbb{Z}[X]$, por:

$$f_{\alpha} = \alpha_0 + \alpha_1 X + \dots + \alpha_{d-1} X^{d-1}$$
 (4)

Tenemos un isomorfismo de Z-módulos:

$$\mathbb{Z}^d \simeq \mathbb{Z}[X]/\langle X^d - 1 \rangle , \qquad (5)$$

dado por $\alpha \mapsto f_{\alpha}$. Vía este isomorfismo, la transformación \mathbb{Z} -lineal C_{α} se corresponde con multiplicar por f_{α} , es decir,

$$f_{\mathsf{C}_{\alpha}\,\beta} \equiv f_{\alpha} f_{\beta} \pmod{X^d-1}$$
 .

Por otro lado, la operación dada por sumar coordenadas saltando de a p se corresponde con pasar del cociente por $X^d - 1$ al cociente por $X^p - 1$; como p|d, se deduce que $X^p - 1|X^d - 1$ y esta operación está definida. Expresado de otra manera, el siguiente diagrama conmuta:

$$\mathbb{Z}^{d} \longrightarrow \mathbb{Z}[X]/\langle X^{d} - 1 \rangle
\downarrow \qquad \qquad \downarrow \qquad ,
\mathbb{Z}^{p} \longrightarrow \mathbb{Z}[X]/\langle X^{p} - 1 \rangle$$

donde:

- la flecha horizontal superior es el isomorfismo (5),
- la flecha horizontal inferior es el isomorfismo análogo con n=1,
- \bullet la flecha vertical izquierda es la operación de sumar coordenadas saltando de a p y
- la flecha vertical derecha es el paso al cociente.

Similarmente, la operación de sumar todas las coordenadas se corresponde con pasar al cociente por X-1. Finalmente, condiciones de divisibilidad sobre las coordenadas de un vector α se traducen en exactamente las mismas condiciones de divisibilidad sobre los coeficientes del polinomio asociado:

$$\alpha \equiv 0 \pmod{p^l} \quad \Leftrightarrow \quad f_{\alpha} = 0 \quad \text{en} \quad \frac{\left(\mathbb{Z}/p^l\mathbb{Z}\right)[X]}{\langle X^d - 1 \rangle} \quad \Leftrightarrow \quad f_{\alpha} \in \left\langle X^d - 1, p^l \right\rangle \subset \mathbb{Z}[X] \ .$$

En definitiva,

$$\mathsf{C}_{\alpha} \beta \equiv 0 \pmod{d} \quad \Leftrightarrow \quad f_{\alpha} f_{\beta} = 0 \quad \text{en} \quad \frac{\left(\mathbb{Z}/d\mathbb{Z}\right)[X]}{\langle X^d - 1 \rangle} \quad \Leftrightarrow \quad f_{\alpha} f_{\beta} \in \langle X^d - 1, d \rangle .$$

La conjetura se puede reformular de la siguiente manera: si $f_{\alpha} \in \mathbb{Z}[X]$ y $f_{\alpha} \notin \langle X^p - 1, p \rangle$, entonces $f_{\alpha} f_{\beta} \in \langle X^d - 1, d \rangle$ implica $f_{\beta} \in \langle X - 1, d \rangle$.

Notación

Para que el argumento sea más claro, introducimos algo de notación. Dado $\alpha \in \mathbb{Z}^d$, definimos $S_k(\alpha) \in \mathbb{Z}^{p^k}$ como el vector cuya coordenada i está dada por:

$$\mathsf{S}_k(\alpha)_i = \sum_r \alpha_{i+rp^k} , \qquad (6)$$

donde $0 \le r < d/p^k$. Esencialmente la misma fórmula define una aplicación \mathbb{Z} -lineal

$$\mathsf{S}_k\,:\,\mathbb{Z}^{p^n}\, o\,\mathbb{Z}^{p^k}$$

siempre que $n \ge k$. Cualquiera sea el dominio denotaremos esta operación por S_k . Para todo k, el siguiente diagrama conmuta:

$$\begin{array}{c|c} \mathbb{Z}^{p^k} & \stackrel{\sim}{\longrightarrow} & \frac{\mathbb{Z}[X]}{\left\langle X^{p^k} - 1 \right\rangle} \\ \\ \mathsf{S}_{k-1} & & & \downarrow \\ & & \downarrow \\ \\ \mathbb{Z}^{p^{k-1}} & \stackrel{\sim}{\longrightarrow} & \frac{\mathbb{Z}[X]}{\left\langle X^{p^k-1} - 1 \right\rangle} \\ \end{array}$$

Como $S_{k-1}S_k = S_{k-1}$ para todo k, recuperamos inductivamente el diagrama conmutativo de la sección anterior. La conmutatividad del diagrama equivale a

$$f_{\mathsf{S}_k(\alpha)} \equiv f_{\alpha} \pmod{X^{p^k} - 1}$$
 (7)

En consecuencia, por (7), el siguiente diagrama conmuta:

es decir, dado que multiplicar por un elemento en un anillo pasa a un cociente como multiplicar por la clase del elemento y que C_{α} está dada por multiplicar por f_{α} , se deduce que

$$S_k(C_\alpha \beta) = C_{S_k(\alpha)} S_k(\beta) , \qquad (8)$$

para todo $k \leq n$.

Por otro lado, tenemos las aplicaciones dadas por reducir coordenadas módulo una potencia p^l del primo p. Dado $l \geq 0$, el siguiente diagrama también conmuta:

$$\frac{\mathbb{Z}[X]}{\langle X^{p^k} - 1 \rangle} \longrightarrow \frac{\left(\mathbb{Z}/p^l \mathbb{Z}\right) \left[X\right]}{\langle X^{p^k} - 1 \rangle}
f_{\alpha} \qquad \qquad \qquad \downarrow \overline{f_{\alpha}} \qquad ,
\frac{\mathbb{Z}[X]}{\langle X^{p^k} - 1 \rangle} \longrightarrow \frac{\left(\mathbb{Z}/p^l \mathbb{Z}\right) \left[X\right]}{\langle X^{p^k} - 1 \rangle}$$

donde $\overline{f_{\alpha}}$ denota la clase de f_{α} reduciendo coordenadas módulo p^l . En términos de la matriz circulante, si $\overline{\mathsf{C}_{\alpha}}$ denota la matriz que se obtiene reduciendo las coordenadas de C_{α} módulo p^l , entonces

$$\overline{\mathsf{C}_{\alpha}\,\beta} \,=\, \overline{\mathsf{C}_{\alpha}\,\overline{\beta}} \;. \tag{9}$$

En relación a las distintas sumas de coordenadas,

$$\overline{\mathsf{S}_k(\alpha)} = \mathsf{S}_k(\overline{\alpha}) , \qquad (10)$$

pues ambas operaciones consisten en tomar cocientes: el diagrama

conmuta.

¿Solución?

Proposición. Sean p primo $n \ge 1$ y $d = p^n$. Dado $\alpha \in \mathbb{Z}^d$ tal que $\mathsf{S}_1(\alpha) \not\equiv 0 \pmod{p}$, si $\beta \in \mathbb{Z}^d$ es solución de (1), entonces $\mathsf{S}_0(\beta) \equiv 0 \pmod{d}$.

Demostración. Que β sea solución de (1) equivale a que $f_{\alpha}f_{\beta} \in \langle X^{p^n} - 1, p^n \rangle$. La condición $\mathsf{S}_1(\alpha) \not\equiv 0 \pmod{p}$ equivale a que $f_{\alpha} \not\in \langle X^p - 1, p \rangle$. Supongamos que $\mathsf{C}_{\alpha} \beta \equiv 0 \pmod{p^n}$. Si reducimos coeficientes módulo p,

$$(X-1)^{p^n} \mid \overline{f_{\alpha}} \overline{f_{\beta}} \quad y \quad (X-1)^p \nmid \overline{f_{\alpha}} ,$$

en $(\mathbb{Z}/p\mathbb{Z})[X]$. Pero $\mathbb{Z}/p\mathbb{Z}$ es un cuerpo y el anillo de polinomios es un DFU. En particular, $(X-1)^{p^n-p+1}$ divide a $\overline{f_\beta}$. Es decir,

$$f_{\beta} \in \langle (X-1)^{p^n-p+1}, p \rangle \subset \langle (X-1)^{p^{n-1}}, p \rangle = \langle X^{p^{n-1}} - 1, p \rangle.$$

Si n=1, esto quiere decir que $f_{\beta} \in \langle X-1, p \rangle$, que es justamente el resultado que queremos demostrar, en este caso particular. En general, esto quiere decir que

$$\mathsf{S}_{n-1}(\beta) \equiv 0 \pmod{p} \,, \tag{11}$$

es decir, las coordenadas de $\mathsf{S}_{n-1}(\beta) \in \mathbb{Z}^{p^{n-1}}$ son todas múltiplos de p. Supongamos, inductivamente, que el resultado es cierto para n-1. Si

$$C_{\alpha} \beta = p^n \delta \equiv 0 \pmod{p^n}$$

y $\tilde{\beta} \in \mathbb{Z}^{p^{n-1}}$ cumple que

$$\mathsf{S}_{n-1}(\beta) = p\,\tilde{\beta} \;,$$

entonces, por (8),

$$p\,\mathsf{C}_{\mathsf{S}_{n-1}(\alpha)}(\tilde{\beta})\,=\,p^n\,\delta$$

У

$$\mathsf{C}_{\mathsf{S}_{n-1}(\alpha)}(\tilde{\beta}) \equiv 0 \pmod{p^{n-1}}$$
.

Como $\mathsf{S}_1\,\mathsf{S}_{n-1}(\alpha)=\mathsf{S}_1(\alpha)$, aplicamos la hipótesis inductiva y concluimos que $\mathsf{S}_0(\tilde{\beta})\equiv 0\,(\mathsf{mod}\,p^{n-1})$. Pero, entonces

$$\mathsf{S}_0(\beta) \,=\, \mathsf{S}_0(\mathsf{S}_{n-1}(\beta)) \,=\, p\,\mathsf{S}_0(\tilde{\beta}) \,\equiv\, 0 \pmod{p^n} \;.$$