## Math 342W/642/742W

Recitation - Day #17 (4.10.25)

## I. Trees

(i) What is a *tree*?

A tree is a data structure made up of n nodes (vertices) and n-1 edges. The trees of interest will be rooted trees, where one node is the root/ancestor to all other nodes known as child nodes. These trees will provide a hierarchical structure for our models fitting data.

- (ii) What is the tree-method are we interested in for machine learning? The tree-method of interest is known as *decision* trees.
- (iii) What tree-based algorithm will we be implementing?

CART – First introduced by Breiman in 1984.

- (iv) What are the two types of trees we will be considering?
  - Classification Trees:  $\mathcal{Y} = \{C_1, C_2, \dots, C_k\}$
  - Regression Trees:  $\mathcal{Y} = \mathbb{R}$
- (v) What is being done to the predictor/feature space with this tree-based method?

  We are stratifying/segmenting/splitting the predictor/feature space into a discrete number of simple region ("rectangles") based upon simple decision rules.
- (vi) What are the advantages of tree-based models over the linear based models we have seen?
  - simple to build, construct, and explain,
  - binary tree representation mimics/mirrors human-decision making
  - hierarchical structure can be visualized
  - can take care of qualitative predictors without creating "dummy" variables
- (vii) What are the disadvantages of tree-based models when compared with linear based models?
  - predictive accuracy may not be as good as linear models
  - suspectible to overfitting

## II. Regression Trees

(i) What is the candidate set of functions  $\mathcal{H}$  for regression trees? Compare that with the candidate set for the linear regression model and the logistic regression model.

| Model               | Candidate set $\mathcal{H}$                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Regression Trees    | $\left\{ \sum_{m=1}^{M} c_m \cdot \mathbb{1}_{x \in R_m} \mid c_m \in \mathbb{R}, R_1, \dots, R_m \text{ are partitions of feature space} \right\}$ |
| Linear Regression   | $\left\{\sum_{i=1}^p w_i x_i + w_0 \;\middle \; oldsymbol{w} \in \mathbb{R}^{p+1} ight\}$                                                           |
| Logistic Regression | $\left\{rac{1}{1+e^{-oldsymbol{w}\cdotoldsymbol{x}}}\;\middle \;oldsymbol{w}\in\mathbb{R}^{p+1} ight\}$                                            |

- (ii) How are the "splits" of the training data made?

  The "splits" are made orthogonal with respect to the axes.
- (iii) After each split is made, what is computed? Calculate SSE for each node. Assign  $\hat{y} = \bar{y}$  of the responses in the nodes.

$$SSE_{node} = \sum_{i \in node} (y_i - \bar{y}_{node})^2$$

(iv) What are loss/objective function that we are trying to minimize to find the "best split"?

$$SSE_{weighted} = \frac{n_L}{n_L + n_R} \cdot SSE_L + \frac{n_R}{n_L + n_R} \cdot SSE_R$$

- (v) What type of algorithm is CART described as?
  CART is a greedy algorithm because it makes a locally optimal split at each iteration but may not be globally optimal.
- (vi) Give a pictorial example of a regression tree and a partitioned feature space.



Regression Tree



Partitioned feature space

Figures are from *The Elements of Statistical Learning* by Hastie, Tibshirani, Friedman.