

1. Como a > b, o inverso de a é menor que o inverso de b, pelo que a relação de ordem de ordem se mantêm para o dobro do inverso:

 $a > b \ \Rightarrow \ \frac{1}{a} < \frac{1}{b} \ \Rightarrow \ 2 \times \frac{1}{a} < 2 \times \frac{1}{b} \ \Leftrightarrow \ \frac{2}{a} < \frac{2}{b}$

(por exemplo, como 8>4, então $\frac{1}{8}<\frac{1}{4}$ e também $\frac{2}{8}<\frac{2}{4}$, ou seja $\frac{1}{4}<\frac{1}{2})$

Resposta: Opção B

Prova Final 3.º Ciclo – 2019, Época especial

2. Como x é uma aproximação de 3,6, com um erro inferior a 0,1, temos que 3,5 < x < 3,7, e como 5,3 < y < 5,5, vem que:

$$3.5 + 5.3 < x + y < 5.5 + 3.7 \Leftrightarrow 8.8 < x + y < 9.2$$

Resposta: Opção A

Prova Final 3.º Ciclo – 2018, Época especial

3. Como a > b, o valor médio entre a e b, é maior que b, e menor que a, ou seja:

$$b < \frac{a+b}{2} < a$$

Por outro lado, temos que:

$$a > b \Leftrightarrow -a < -b \Leftrightarrow -a + 1 < -b + 1 \Leftrightarrow 1 - a < 1 - b$$

Resposta: Opção B

Prova Final 3.º Ciclo - 2018, 2.ª fase

4. Temos que $3-\sqrt{7}\approx 0.35$, ou seja $0.3<3-\sqrt{7}<0.4$ Assim, sendo r, o erro cometido com a aproximação, vem que 0.3< r<0.4

Resposta: Opção C

Prova Final 3.º Ciclo - 2018, 1.ª fase

5. Como $3\pi \approx 9{,}4247$ então vem que $9{,}42 < 3\pi < 9{,}43$, pelo que, de entre as opções apresentadas, o número $9{,}43$ é a única aproximação de 3π com erro inferior a $0{,}01$, ou seja: $3\pi - 9{,}43 < 0{,}01$

Resposta: Opção C

Prova Final 3.º Ciclo – 2017, Época especial

6. Como $3\sqrt{2} \approx 4{,}24$, ou seja, $4 < 3\sqrt{2} < 5$ e a distância entre cada dois pontos consecutivos é 1, entãoo ponto de abcissa $a + 3\sqrt{2}$ está situado entre os pontos U e V, porque:

$$4 < 3\sqrt{2} < 5 \implies a + 4 < a + 3\sqrt{2} < a + 5$$

Resposta: [UV]

Prova Final 3.º Ciclo - 2017, 2.ª fase

7. Escolhendo para o valor de a um número negativo e para o valor de b um número com menor valor absoluto, podemos ilustrar que a afirmação é falsa, por exemplo:

Se
$$a = -2$$
 e $b = 1$, temos que $a < b$, porque $-2 < 1$, mas $a^2 > b^2$, porque $(-2)^2 > 1^1 \Leftrightarrow 4 > 1$

Prova Final 3.º Ciclo - 2017, 1.ª fase

- 8. Calculando a diferença entre $\sqrt[3]{14}$ e cada uma das opções apresentadas, arredondada às centésimas, temos que:
 - $\sqrt[3]{14} 2.2 \approx 0.21$
 - $\sqrt[3]{14} 2.3 \approx 0.11$
 - $2.5 \sqrt[3]{14} \approx 0.09$
 - $2.6 \sqrt[3]{14} \approx 0.19$

Desta forma temos que, de entre as opções apresentadas, a única aproximação com erro inferior a uma décima (0,1), de $\sqrt[3]{14}$, é 2,5

Resposta: Opção C

Prova Final 3.º Ciclo - 2016, 2.ª fase

9. Como q < r e -2 < 0 então $-2 \times q > -2 \times r$

Resposta: Opção B

Prova Final 3.º Ciclo - 2016, 1.ª fase

10. Como $\sqrt{5} + \sqrt{7} \approx 4,882$, então o valor aproximado, por excesso, a menos de uma centésima é

$$4.88 + 0.01 = 4.89$$

Teste Intermédio 9.º ano - 03.02.2010

11. Como o perímetro do triângulo [ABC] é

$$P_{[ABC]} = \overline{AB} + \overline{AC} + \overline{BC} = \sqrt{20} + 5 + 5 = \sqrt{20} + 10$$

E $\sqrt{20} \approx 4,47$, então temos que $P_{[ABC]} \approx 4,47 + 10 \approx 14,47$

Assim, $14.4 < P_{[ABC]} < 14.5$, ou seja um valor aproximado por defeito do perímetro do triângulo [ABC], a menos de 0.1, é 14.4 e o valor aproximado por excesso, a menos de 0.1, é 14.5

Exame Nacional 3.º Ciclo - 2005, 2.ª Chamada

mat.absolutamente.net

12. Como $\frac{256}{81} \approx 3,1605$; $\frac{22}{7} \approx 3,1426$; $\sqrt{10} \approx 3,1628$; $3 + \frac{1}{8} = 3,125$ e $\pi \approx 3,1416$, representando os valores na reta real, temos:

Assim, podemos verificar que o valor mais próximo de π é $\frac{22}{7}$

Resposta: Opção B

Prova de Aferição - 2004

13. Como a Rita obteve a segunda melhor marca, percorreu uma distância inferior ao João (que fez a melhor marca) e superior à Leonor (que ficou em 3º lugar), ou seja a distância que a Rita percorreu é um valor compreendido entre 2,95 km e 2,96 km.

Assim, um valor possível para a marca obtida pela Rita é:

$$2,955 \text{ km}$$
, (porque $2,95 < 2,955 < 2,96$)

Prova de Aferição – 2002