

2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 16

REVIEW Lecture 15:

Fourier Error Analysis

- Provide additional information to truncation error: indicates how well Fourier mode solution, i.e. wavenumber and phase speed, is represented
 - Effective wavenumber: $\left(\frac{\partial e^{ikx}}{\partial x}\right) = i k_{\text{eff}} e^{ikx_j}$ (for CDS, 2nd order, $k_{\text{eff}} = \frac{\sin(k\Delta x)}{\Delta x}$)
 - Effective wave speed (for linear convection eqn., $\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = 0$, integrating in time exactly):

$$\frac{df_k^{num.}}{dt} = -f_k^{num.}(t) c i k_{\text{eff}} \Rightarrow f_{\text{numerical}}(x,t) = \sum_{k=-\infty}^{\infty} f_k(0) e^{ikx-ik_{\text{eff}} t} = \sum_{k=-\infty}^{\infty} f_k(0) e^{ik(x-c_{\text{eff}} t)} \Rightarrow \frac{c_{\text{eff}}}{c} = \frac{\sigma_{\text{eff}}}{\sigma} = \frac{k_{\text{eff}}}{k}$$
(with $\sigma_{\text{eff}} = -ik_{\text{eff}} c =$

Stability

- Heuristic Method: trial and error
- Energy Method: Find a quantity, l_2 norm $\sum_{i} (\phi_j^n)^2$, and then aim to show that it remains bounded for all n.
 - Example: for $\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0$ we obtained $0 \le \frac{c \Delta t}{\Delta x} \le 1$
- Von Neumann Method (Introduction), also called Fourier Analysis Method/Stability

Outline for TODAY (Lecture 16): FINITE DIFFERENCES, Cont'd

- Fourier Analysis and Error Analysis
- Stability
 - Heuristic Method
 - Energy Method
 - Von Neumann Method (Introduction): 1st order linear convection/wave eqn
- Hyperbolic PDEs and Stability
 - Example: 2nd order wave equation and waves on a string
 - Effective numerical wave numbers and dispersion
 - CFL condition:
 - Definition
 - Examples: 1st order linear convection/wave eqn, 2nd order wave eqn
 - Other FD schemes
 - Von Neumann examples: 1st order linear convection/wave eqn
 - Tables of schemes for 1st order linear convection/wave eqn

References and Reading Assignments

- Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and Engineering. Section 4.5 on "Stability".
- Chapter 3 on "Finite Difference Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 3 on "Finite Difference Approximations" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"
- Chapter 29 and 30 on "Finite Difference: Elliptic and Parabolic equations" of "Chapra and Canale, Numerical Methods for Engineers, 2010/2006."

Von Neumann Stability

- Widely used procedure
- Assumes initial error can be represented as a Fourier Series and considers growth or decay of these errors
- In theoretical sense, applies only to periodic BC problems and to linear problems
 - Superposition of Fourier modes can then be used
- Again, use, $f(x,t) = \sum_{k=-\infty}^{\infty} f_k(t) \, e^{ikx}$ but for the error: $\varepsilon(x,t) = \sum_{\beta=-\infty}^{\infty} \varepsilon_{\beta}(t) \, e^{i\beta x}$ Being interested in error growth/decay, consider only one mode:

 $\varepsilon_{\beta}(t) e^{i\beta x} \approx e^{\gamma t} e^{i\beta x}$ where γ is in general complex and function of β : $\gamma = \gamma(\beta)$

• Strict Stability: for the error not to grow in time, $|e^{\gamma t}| \le 1 \quad \forall \gamma$

$$\left|e^{\gamma t}\right| \leq 1 \quad \forall \gamma$$

– in other words, for $t = n\Delta t$, the condition for strict stability can be written:

$$\left|e^{\gamma \Delta t}\right| \leq 1$$
 or for $\xi = e^{\gamma \Delta t}$, $\left|\xi\right| \leq 1$ von Neumann condition

Norm of amplification factor ξ smaller than 1

Evaluation of the Stability of a FD Scheme Von Neumann Example

• Consider again: $\left| \frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0 \right|$

$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0$$

A possible FD formula ("upwind" scheme) $\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} + c \frac{\phi_j^n - \phi_{j-1}^n}{\Delta x} = 0$

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} + c \frac{\phi_j^n - \phi_{j-1}^n}{\Delta x} = 0$$

 $(t = n\Delta t, x = j\Delta x)$ which can be rewritten:

$$(j\Delta x)$$
 which can be rewritten:
$$\phi_j^{n+1} = (1-\mu) \phi_j^n + \mu \phi_{j-1}^n \quad \text{with} \quad \mu = \frac{c \Delta t}{\Delta x}$$

Consider the Fourier error decomposition (one mode) and discretize it:

$$\varepsilon(x,t) = \varepsilon_{\beta}(t) e^{i\beta x} = e^{\gamma t} e^{i\beta x} \implies \varepsilon_{j}^{n} = e^{\gamma n\Delta t} e^{i\beta j\Delta x}$$

Insert it in the FD scheme, assuming the error mode satisfies the FD:

$$\varepsilon_{j}^{n+1} = (1-\mu) \, \varepsilon_{j}^{n} + \mu \, \varepsilon_{j-1}^{n} \quad \Rightarrow \quad e^{\gamma(n+1)\Delta t} e^{i\beta \, j\Delta x} = (1-\mu) \, e^{\gamma \, n\Delta t} e^{i\beta \, j\Delta x} + \mu \, e^{\gamma \, n\Delta t} e^{i\beta \, (j-1)\Delta x}$$

• Cancel the common term (which is $\varepsilon_i^n = e^{\gamma n \Delta t} e^{i\beta j \Delta x}$) and obtain:

$$e^{\gamma \Delta t} = (1 - \mu) + \mu e^{-i\beta \Delta x}$$

Evaluation of the Stability of a FD Scheme von Neumann Example

• The magnitude of $\xi = e^{\gamma \Delta t}$ is then obtained by multiplying ξ with its complex conjugate:

$$|\xi|^2 = \left((1-\mu) + \mu e^{-i\beta\Delta x}\right) \left((1-\mu) + \mu e^{i\beta\Delta x}\right) = 1 - 2\mu(1-\mu) \left(1 - \frac{e^{i\beta\Delta x} + e^{-i\beta\Delta x}}{2}\right)$$
Since
$$\frac{e^{i\beta\Delta x} + e^{-i\beta\Delta x}}{2} = \cos(\beta\Delta x) \quad \text{and} \quad 1 - \cos(\beta\Delta x) = 2\sin^2(\frac{\beta\Delta x}{2}) \quad \Rightarrow$$

$$|\xi|^2 = 1 - 2\mu(1-\mu) \left(1 - \cos(\beta\Delta x)\right) = 1 - 4\mu(1-\mu)\sin^2(\frac{\beta\Delta x}{2})$$

Thus, the strict von Neumann stability criterion gives

$$\left| \xi \right| \le 1 \iff \left| 1 - 4\mu (1 - \mu) \sin^2 \left(\frac{\beta \Delta x}{2} \right) \right| \le 1$$
Since $\sin^2 \left(\frac{\beta \Delta x}{2} \right) \ge 0 \quad \forall \beta \quad \left(\left(1 - \cos(\beta \Delta x) \right) \ge 0 \quad \forall \beta \right)$

we obtain the same result as for the energy method:

$$|\xi| \le 1 \iff \mu(1-\mu) \ge 0 \iff 0 \le \frac{c \Delta t}{\Delta x} \le 1 \qquad (\mu = \frac{c \Delta t}{\Delta x})$$

Equivalent to the CFL condition

Partial Differential Equations Hyperbolic PDE: $B^2 - 4 A C > 0$

Examples:

$$(1) \quad \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad \blacksquare$$

Wave equation, 2nd order

(2)
$$\frac{\partial u}{\partial t} \pm c \frac{\partial u}{\partial x} = 0$$

Sommerfeld Wave/radiation equation,

1st order

(3)
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{U} \cdot \nabla) \mathbf{u} = \mathbf{g}$$

Unsteady (linearized) inviscid convection (Wave equation first order)

$$(4) \quad (\mathbf{U} \cdot \nabla) \mathbf{u} = \mathbf{g}$$

Steady (linearized) inviscid convection

- Allows non-smooth solutions
- Information travels along characteristics, e.g.:

- For (3) above:
$$\frac{d \mathbf{x_c}}{dt} = \mathbf{U}(\mathbf{x_c}(t))$$

- For (4), along streamlines: $\frac{d \mathbf{x_c}}{ds} = \mathbf{U}$
- Domain of dependence of u(x,T) = "characteristic path"

• e.g., for (3), it is: $\mathbf{x}_c(t)$ for $0 \le t \le T$

Waves on a String

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \qquad 0 < x < L, \quad 0 < t < \infty$$

Initial Conditions

$$u(x,0) = f(x), 0 \le x \le L$$

$$u_t(x,0) = g(x), 0 < x < L$$

Boundary Conditions

$$u(0,t) = 0, , 0 < t < \infty$$

$$u(L,t) = 0, , 0 < t < \infty$$

Wave Solutions

$$u = \begin{cases} F(x - ct) & \text{Forward propagating wave} \\ G(x + ct) & \text{Backward propagating wave} \end{cases}$$

Typically Initial Value Problems in Time, Boundary Value Problems in Space Time-Marching Solutions: Explicit Schemes Generally Stable

Wave Equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \qquad 0 < x < L, \quad 0 < t < \infty$$

$$0 < x < L, \quad 0 < t < \infty$$

Discretization: h = L/n

$$h = L/n$$

$$k = T/m$$

$$x_i = (i-1)h, i = 2, ..., n-1$$

$$t_j = (j-1)k, j = 1, \dots, m$$

Finite Difference Representations

$$u_{tt}(x,t) = \frac{u(x_i,t_{j-1}) - 2u(x_i,t_j) + u(x_i,t_{j+1})}{k^2} + O(k^2)$$

$$u_{xx}(x,t) = \frac{u(x_{i-1},t_j) - 2u(x_i,t_j) + u(x_{i+1},t_j)}{h^2} + O(h^2)$$

$$u_{i,j} = u(x_i, t_j)$$

Finite Difference Representations

$$\frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

(from Lecture 12)

Introduce Dimensionless Wave Speed $C = \frac{ck}{h}$

Explicit Finite Difference Scheme

$$u_{i,j-1} - 2u_{i,j} + u_{i,j+1} = C^2(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

$$u_{i,j+1} = (2-2C^2)u_{i,j} + C^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}, i = 2, \dots n-1$$

Stability Requirement: $C = \frac{ck}{h} < 1$

$$C = \frac{c \Delta t}{\Delta x} < 1$$
 Courant-Friedrichs-Lewy condition (CFL condition)

$$c < \frac{\Delta x}{\Delta t}$$
 or $\Delta t < \frac{\Delta x}{c}$

Wave Equation d'Alembert's Solution

Wave Equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \qquad 0 < x < L, \quad 0 < t < \infty$$
Solution

$$u(x,t) = F(x-ct) + G(x+ct), 0 < x < L$$

Periodicity Properties

$$F(-z) = -F(z)$$

$$F(z+2L) = F(z)$$

$$G(-z) = -G(z)$$

$$G(z+2L) = G(z)$$

Proof

$$u_{xx}(x,t) = F''(x-ct) + G''(x+ct)$$

$$u_{tt}(x,t) = c^2 F''(x-ct) + c^2 G''(x+ct)$$

$$= c^2 u_{xx}(x,t)$$

Hyperbolic PDE Method of Characteristics

Explicit Finite Difference Scheme

$$u_{i,j-1} - 2u_{i,j} + u_{i,j+1} = C^2(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

$$u_{i,j+1} = (2 - 2C^2)u_{i,j} + C^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}, i = 2, \dots n-1$$

First 2 Rows known

$$u_{i,1} = u(x_i, 0)$$

$$u_{i,2} = u(x_i, k)$$

Characteristic Sampling

$$k = h/c \Rightarrow C = 1$$

Exact Discrete Solution

$$u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1}$$

Hyperbolic PDE Method of Characteristics

Let's proof the following FD scheme is an exact Discrete Solution

$$u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1}$$

D'Alembert's Solution

$$x_i - ct_j = (i-1)h - c(j-1)k$$

= $(i-1)h - (j-1)h$
= $(i-j)h$

$$x_i + ct_j = (i-1)h + c(j-1)k$$

= $(i-1)h + (j-1)h$
= $(i+j-2)h$

$$u_{i,j} = F((i-j)h) + G((i+j-2)h)$$

Proof

 $= u_{i,j+1}$

Start of Integration: Euler and Higher Order starts

1st order Euler Starter

But, second derivative in x at t = 0 is known from IC: $u_{xx}(x,0) = f''$

From Wave Equation

$$u_{tt}(x_i,0) = c^2 u_{xx}(x_i,0) = c^2 f_{xx}(x_i) = c^2 \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} + O(h^2)$$

Higher order Taylor Expansion

$$u(x,k) = u(x,0) + ku_t(x,0) + \frac{u_{tt}(x,0)k^2}{2} + O(k^3)$$

Higher Order Self Starter

$$u_{i,2} = u(x_i, k) = f_i + kg_i + \frac{c^2k^2}{2h^2}(f_{i-1} - 2f_i + f_{i+1}) + O(h^2k^2) + O(k^3)$$

$$= \left(1 - C^2\right)f_i + kg_i + \frac{C^2}{2}(f_{i+1} + f_{i-1})$$

Waves on a String

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$$

0 < x < L, $0 < t < \infty$

```
L=10:
T=10:
                  waveeq.m
c=1.5:
N=100:
                                            0.2
h=L/N:
M=400:
k=T/M:
                                            -0.2
C=c*k/h
Lf=0.5:
x=[0:h:L]';
t=[0:k:T];
%fx=['exp(-0.5*(' num2str(L/2) '-x).^2/(' num2str(Lf) ').^2)'];
%gx='0';
fx='exp(-0.5*(5-x).^2/0.5^2).*cos((x-5)*pi)';
gx='0'; %Zero first time derivative at t=0
f=inline(fx,'x');
g=inline(gx,'x');
n=length(x);
m=length(t);
u=zeros(n,m);
% Second order starter
u(2:n-1,1)=f(x(2:n-1));
for i=2:n-1
u(i,2) = (1-C^2)^*u(i,1) + k^*g(x(i)) + C^2^*(u(i-1,1)+u(i+1,1))/2;
end
% CDS: Iteration in time (j) and space (i)
for j=2:m-1
  for i=2:n-1
u(i,j+1)=(2-2*C^2)*u(i,j) + C^2*(u(i+1,j)+u(i-1,j)) - u(i,j-1);
  end
end
```

```
fx = exp(-0.5*(5-x).<sup>2</sup>/0.5<sup>2</sup>).*cos((x-5)*pi)

Initial condition
```



```
figure(1)
plot(x,f(x));
a=title(['fx = ' fx]);
set(a,'FontSize',16);

figure(2)
wavei(u',x,t);
a=xlabel('x');
set(a,'Fontsize',14);
a=ylabel('t');
set(a,'Fontsize',14);
a=title('Waves on String');
set(a,'Fontsize',16);
colormap;
```


Numerical Fluid Mechanics

SSACHUSE / IS

Waves on a String, Longer simulation: Effects of dispersion and effective wavenumber/speed

```
L=10:
T=10:
                   waveeq.m
c=1.5:
N=100:
h=L/N:
M=400:
% Test: increase duration of simulation, to see effect of
%dispersion and effective wavenumber/speed (due to 2<sup>nd</sup> order)
%T=100:M=4000:
k=T/M:
C=c*k/h
Lf=0.5:
x=[0:h:L]';
t=[0:k:T];
%fx=['exp(-0.5*(' num2str(L/2) '-x).^2/(' num2str(Lf) ').^2)'];
%gx='0';
fx='exp(-0.5*(5-x).^2/0.5^2).*cos((x-5)*pi)';
gx='0';
f=inline(fx.'x'):
g=inline(gx,'x');
n=length(x);
m=length(t);
u=zeros(n,m);
%Second order starter
u(2:n-1,1)=f(x(2:n-1));
for i=2:n-1
u(i,2) = (1-C^2)^*u(i,1) + k^*g(x(i)) + C^2^*(u(i-1,1)+u(i+1,1))/2;
end
%CDS: Iteration in time (j) and space (i)
for j=2:m-1
  for i=2:n-1
u(i,j+1)=(2-2*C^2)*u(i,j) + C^2*(u(i+1,j)+u(i-1,j)) - u(i,j-1);
  end
end
```


Courant-Fredrichs-Lewy Condition (1920's)

- Basic idea: the solution of the Finite-Difference (FD) equation can not be independent of the (past) information that determines the solution of the corresponding PDE
- In other words: "Numerical domain of dependence of FD scheme must include the <u>mathematical domain of dependence of the</u> corresponding PDE"

CFL: Linear convection (Sommerfeld Eqn) Example

Determine domain of dependence of PDE and of FD scheme

• PDE:
$$\frac{\partial u(x,t)}{\partial t} + c \frac{\partial u(x,t)}{\partial x} = 0$$
 Characteristics: If $\frac{dx}{dt} = c \implies x = c \ t + \zeta$ and $du = 0 \implies u = \text{cst}$

Solution of the form: u(x,t) = F(x-ct)

• FD scheme. For our Upwind discretization, with $t = n\Delta t$, $x = j\Delta x$:

$$\frac{\phi_{j}^{n+1} - \phi_{j}^{n}}{\Delta t} + c \frac{\phi_{j}^{n} - \phi_{j-1}^{n}}{\Delta x} = 0$$

True solution

is outside of

numerical

domain of

influence

Slope of characteristic: $\frac{dt}{dx} = \frac{1}{c}$

Slope of Upwind scheme: $\frac{\Delta t}{\Delta x}$

=> CFL condition: $\frac{\Delta t}{\Delta x} \le \frac{1}{c}$

$$\frac{c \ \Delta t}{\Delta x} \le 1$$

is within numerical domain of

CFL satisfied

True solution

FIGURE 2.1. The influence of the time step on the relationship between the numerical domain of dependence of the upstream scheme (open circles) and the true domain of dependence of the advection equation (heavy dashed line): (a) unstable Δt , (b) stable Δt .

- © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Figure 2.1 from Durran,
- D. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 1998.

CFL: 2nd order Wave equation Example

Determine domain of dependence of PDE and of FD scheme

PDE, second order wave eqn example:

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \qquad 0 < x < L, \quad 0 < t < \infty$$

- As seen before: u(x,t) = F(x-ct) + G(x+ct) \Rightarrow slope of characteristics: $\frac{dt}{dx} = \pm \frac{1}{c}$
- FD scheme: discretize: $t = n\Delta t$, $x = j\Delta x$
 - CD scheme (CDS) in time and space (2nd order), explicit

$$\frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{\Delta t^2} = c^2 \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} \implies u_j^{n+1} = (2 - 2C^2)u_j^n + C^2(u_{j+1}^n + u_{j-1}^n) - u_j^{n-1} \quad \text{where } C = \frac{c\Delta t}{\Delta x}$$

– We obtain from the respective slopes:

$$\frac{c \Delta t}{\Delta x} \le 1$$

Full line case: CFL satisfied

Dotted lines case: c and Δt too big, Δx too small (CFL NOT satisfied)

CFL Condition: Some comments

- CFL is only a necessary condition for stability
- Other (sufficient) stability conditions are often more restrictive
 - For example: if $\frac{\partial u(x,t)}{\partial t} + c \frac{\partial u(x,t)}{\partial x} = 0$ is discretized as

$$\left(\frac{\partial u(x,t)}{\partial t}\right)_{\text{CD},2^{\text{nd}} \text{ order in } t} + c \left(\frac{\partial u(x,t)}{\partial x}\right)_{\text{CD},4^{\text{th}} \text{ order in } x} \approx 0$$

- One obtains from the CFL: $\frac{c \Delta t}{\Delta x} \le 2$

- Five grid-points stencil: (-1,8,0,-8,1) / 12
 See Taylor tables in egn sheet
- While a Von Neuman analysis leads: $\frac{c \Delta t}{\Delta x} \le 0.728$
- For equations that are not purely hyperbolic or that can change of type (e.g. as diffusion term increases), CFL condition can at times be violated locally for a short time, without leading to global instability further in time

von Neumann Examples

Forward in time (Euler), centered in space, Explicit

$$\frac{\phi_{j}^{n+1} - \phi_{j}^{n}}{\Delta t} + c \frac{\phi_{j+1}^{n} - \phi_{j-1}^{n}}{2\Delta x} = 0 \quad \Rightarrow \quad \phi_{j}^{n+1} = \phi_{j}^{n} - \frac{C}{2} (\phi_{j+1}^{n} - \phi_{j-1}^{n})$$

- Von Neumann: insert $\varepsilon(x,t) = \varepsilon_{\beta}(t) e^{i\beta x} = e^{\gamma t} e^{i\beta x} \Rightarrow \varepsilon_{j}^{n} = e^{\gamma n\Delta t} e^{i\beta j\Delta x}$

$$\Rightarrow \quad \varepsilon_{j}^{n+1} = \varepsilon_{j}^{n} - \frac{C}{2} \left(\varepsilon_{j+1}^{n} - \varepsilon_{j-1}^{n} \right) \quad \Rightarrow \quad e^{\gamma \Delta t} = 1 - \frac{C}{2} \left(e^{i\beta \Delta x} - e^{-i\beta \Delta x} \right) = 1 - Ci \sin(\beta \Delta x)$$

• Taking the norm:

$$\left|e^{\gamma t}\right|^2 = \left|\xi\right|^2 = \left(1 - Ci\sin(\beta\Delta x)\right)\left(1 + Ci\sin(\beta\Delta x)\right) = 1 + C^2\sin^2(\beta\Delta x) \ge 1 \text{ for } C \ne 0!$$

· Unconditionally Unstable

Implicit scheme (later)

Table showing various finite difference forms removed due to copyright restrictions. Please see Table 6.1 in Lapidus, L., and G. Pinder. *Numerical Solution of Partial Differential Equations in Science and Engineering*. Wiley-Interscience, 1982.

Partial Differential Equations Elliptic PDE

Laplace Operator

$$abla^2 \equiv u_{xx} + u_{yy}$$

Examples: $\nabla^2 u = 0$ $\nabla^2 u = g(x,y)$ Poisson Equation • Potential Flow with sources • Heat flow in plate $\nabla^2 u + f(x,y)u = 0$ Helmholtz equation – Vibration of plates $\mathbf{U} \cdot \nabla \mathbf{u} = \nu \, \nabla^2 \mathbf{u}$ Convection-Diffusion

- Smooth solutions ("diffusion effect")
- Very often, steady state problems
- Domain of dependence of u is the full domain D(x,y) => "global" solutions
- Finite difference, finite elements, boundary integral methods (Panel methods)

Partial Differential Equations Elliptic PDEs

$$0 \le x \le a$$
, $0 \le y \le b$;

Equidistant Sampling

$$h = a/(n-1)$$

$$h = b/(m-1)$$

Discretization

$$x_i = (i-1)h, i = 1, ..., n$$

$$y_j = (j-1)h, j = 1, \dots, m$$

Finite Differences

$$u_{xx}(x,t) = \frac{u(x_{i-1},y_j) - 2u(x_i,y_j) + u(x_{i+1},y_j)}{h^2} + O(h^2)$$

$$u_{yy}(x,t) = \frac{u(x_i,y_{j-1}) - 2u(x_i,y_j) + u(x_i,y_{j+1})}{h^2} + O(h^2)$$

Dirichlet BC

Partial Differential Equations Elliptic PDE

Discretized Laplace Equation

$$\nabla^2 u = \frac{u(x_{i-1}, y_j) + u(x_i, y_{j-1}) - 4u(x_i, y_j) + u(x_{i+1}, y_j) + u(x_i, y_{j+1})}{h^2} = 0$$

$$u_{i,j} = u(x_i, t_j)$$

Finite Difference Scheme

$$u_{i+1,j} + u_{i-1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = 0$$

Boundary Conditions

$$u(x_1, y_j) = u_{1,j}, 2 \le j \le m-1$$

$$u(x_n, y_j) = u_{n,j}, \ 2 \le j \le m - 1$$

$$u(x_i, y_1) = u_{i,1}, 2 \le j \le n-1$$

$$u(x_i, y_n) = u_{i,n}, 2 \le j \le n-1$$

Global Solution Required

Elliptic PDEs Laplace Equation, Global Solvers

Dirichlet BC

Leads to Ax = b, with A block-tridiagonal:

$$A = tri \{ I, T, I \}$$

Ellipticic PDEs Neumann Boundary Conditions

Neumann (Derivative) Boundary Condition

Finite Difference Scheme

$$u_{n+1,j} + u_{n-1,j} + u_{n,j+1} + u_{n,j-1} - 4u_{n,j} = 0$$

Derivative Finite Difference at BC

$$rac{u_{n+1,j} - u_{n-1,j}}{2h} \simeq u_x(x_n, y_j)$$
 $u(0,y) = g_I(y_j)$

$$u_{n+1,j} = u_{n-1,j} + 2hu_x(x_n, y_j)$$

Boundary Finite Difference Scheme

$$u_{n-1,j} + 2\Delta x \frac{\partial u}{\partial x}\Big|_{n} + u_{n-1,j} + u_{n,j+1} + u_{n,j-1} - 4u_{n,j} = 0$$

Leads to a factor 2 (a matrix 2 I in A) for points along boundary

Elliptic PDEs Iterative Schemes: Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Finite Difference Scheme

$$u_{i+1,j}^{k} + u_{i-1,j}^{k} + u_{i,j+1}^{k} + u_{i,j-1}^{k} - 4u_{i,j}^{k+1} = 0$$

Liebman Iterative Scheme (Jacobi/Gauss-Seidel)

$$u_{i,j}^{k+1} = u_{i,j}^k + r_{i,j}^k$$

$$r_{i,j} = r_{i,j}^k = \frac{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k}{4}$$

SOR Iterative Scheme, Jacobi

$$u_{i,j}^{k+1} = u_{i,j}^k + \omega r_{i,j}^k$$

$$= u_{i,j}^k + \omega \frac{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k}{4}$$

$$= (1 - \omega) u_{i,j}^k + \omega \frac{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j+1}^k + u_{i,j-1}^k}{4}$$

Optimal SOR

$$\omega = \frac{4}{2 + \sqrt{4 - \left[\cos\left(\frac{\pi}{n-1}\right) + \cos\left(\frac{\pi}{m-1}\right)\right]^2}}$$

Elliptic PDE: Poisson Equation

$$\nabla^2 u = g(x, y)$$

$$g_{i,j} = g(x_i, y_j)$$

SOR Iterative Scheme, with Jacobi

$$u_{i,j}^{k+1} = u_{i,j}^k + \omega r_{i,j}^k$$

$$= u_{i,j}^k + \omega \frac{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k - h^2 g_{i,j}}{4}$$

$$= (1 - \omega) u_{i,j}^k + \omega \frac{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j+1}^k - h^2 g_{i,j}}{4}$$

Elliptic PDE: Poisson Equation

$$\nabla^2 u = g(x, y)$$

$$g_{i,j} = g(x_i, y_j)$$

SOR Iterative Scheme, with Gauss-Seidel

$$u_{i,j}^{k+1} = u_{i,j}^{k} + \omega r_{i,j}^{k}$$

$$= u_{i,j}^{k} + \omega \frac{u_{i+1,j}^{k} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k} + u_{i,j-1}^{k+1} - 4u_{i,j}^{k} - h^{2}g_{i,j}}{4}$$

$$= (1 - \omega) u_{i,j}^{k} + \omega \frac{u_{i+1,j}^{k} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k} + u_{i,j-1}^{k+1} - h^{2}g_{i,j}}{4}$$

Laplace Equation

Steady Heat diffusion (with source: Poisson eqn)

```
Lx=1;
Lv=1;
N=10;
h=Lx/N;
M=floor(Lv/Lx*N);
niter=20;
eps=1e-6;
x=[0:h:Lx]';
y=[0:h:Ly];
f1x='4*x-4*x.^2';
%f1x='0'
f2x = '0';
q1x = '0';
a2x = '0'i
vxv='0';
f1=inline(f1x,'x');
f2=inline(f2x,'x');
g1=inline(g1x,'y');
q2=inline(q2x,'y');
vf=inline(vxy,'x','y');
n=length(x);
m=length(y);
u=zeros(n,m);
u(2:n-1,1)=f1(x(2:n-1));
u(2:n-1,m)=f2(x(2:n-1));
u(1,1:m)=g1(y);
u(n,1:m)=q2(y);
for i=1:n
    for i=1:m
        v(i,j) = vf(x(i),y(j));
    end
end
```

duct.m

```
u = mean(u(1,:)) + mean(u(n,:)) + mean(u(:,1)) + mean(u(:,m));
u(2:n-1,2:m-1)=u 0*ones(n-2,m-2);
omega=4/(2+sqrt(4-(cos(pi/(n-1))+cos(pi/(m-1)))^2))
for k=1:niter
    u old=u;
    for i=2:n-1
        for j=2:m-1
            u(i,j) = (1-omega) * u(i,j)
+omega*(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)-h^2*v(i,j))/4;
    end
    r=abs(u-u_old)/max(max(abs(u)));
    if (max(max(r)) < eps)
        break;
    end
end
figure(3)
surf(y,x,u);
shading interp;
a=ylabel('x');
set(a,'Fontsize',14);
a=xlabel('y');
set(a,'Fontsize',14);
a=title(['Poisson Equation - v = ' vxy]);
set(a,'Fontsize',16);
```

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = g(x, y)$$
 BCs: $u(x, 0, t) = f(x) = 4x - 4x^2$
Three other BCs are null

Helmholtz Equation

$$\nabla^2 u + f(x, y)u = g(x, y)$$

$$f_{i,j} = f(x_i, y_j)$$

$$g_{i,j} = g(x_i, y_j)$$

SOR Iterative Scheme

$$u_{i,j}^{k+1} = u_{i,j}^{k} + \omega r_{i,j}^{k}$$

$$= u_{i,j}^{k} + \omega \frac{u_{i+1,j}^{k} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k} + u_{i,j-1}^{k+1} - (4 - \underline{h^{2} f_{i,j}}) u_{i,j}^{k} - h^{2} g_{i,j}}{(4 - h^{2} f_{i,j})}$$

$$= (1 - \omega) u_{i,j}^{k} + \omega \frac{u_{i+1,j}^{k} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k} + u_{i,j-1}^{k+1} - h^{2} g_{i,j}}{(4 - h^{2} f_{i,j})}$$

Elliptic PDE's Higher Order Finite Differences

CD, 4th order (see tables eqn sheet)

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{\text{CD 4th order}} = \frac{-u_{i+2,j}^k + 16 u_{i+1,j}^k + 30 u_{i,j}^k + 16 u_{i-1,j}^k - u_{i-2,j}^k}{12h^2}$$

The resulting 9 point "cross" stencil is more challenging computationally (boundary, etc)

 $u(0,y)=g_I(y)$

Use more compact scheme instead

Square stencil (see figure):

- Use Taylor series, then cancel the terms so as to get a 4th order scheme
- · Leads to:

2.29 Numerical Fluid Mechanics

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.