

# PolarHT<sup>™</sup> HiPerFET Power MOSFET

IXFH 96N20P IXFT 96N20P IXFV 96N20P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode



| $V_{\scriptscriptstyle DSS}$ | = | 200 | V                      |
|------------------------------|---|-----|------------------------|
| I <sub>D25</sub>             | = | 96  | Α                      |
| R <sub>DS(on)</sub>          | ≤ | 24  | $\boldsymbol{m\Omega}$ |
| t <sub>rr</sub>              | ≤ | 200 | ns                     |

| Symbol                                                | Test Conditions                                                                                                          | Maximum Ratings             |                |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--|
| V <sub>DSS</sub>                                      | T <sub>J</sub> = 25° C to 150° C                                                                                         | 200                         | V              |  |
| <b>V</b> <sub>DGR</sub>                               | $T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$                                       | 200                         | V              |  |
| V <sub>GS</sub><br>V <sub>GSM</sub>                   | Continuous<br>Transient                                                                                                  | ±20<br>±30                  | V              |  |
| I <sub>D25</sub>                                      | T <sub>C</sub> = 25° C                                                                                                   | 96                          | А              |  |
| I <sub>D(RMS)</sub>                                   | External lead current limit                                                                                              | 75                          | Α              |  |
| I <sub>DM</sub>                                       | $T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$                                                                 | 225                         | А              |  |
| I <sub>AR</sub>                                       | T <sub>C</sub> = 25° C                                                                                                   | 60                          | А              |  |
| E <sub>AR</sub>                                       | T <sub>C</sub> =25°C                                                                                                     | 50                          | mJ             |  |
| E <sub>AS</sub>                                       | T <sub>C</sub> = 25° C                                                                                                   | 1.5                         | J              |  |
| dv/dt                                                 | $I_S \leq I_{DM}$ , di/dt $\leq 100$ A/ $\mu$ s, $V_{DD} \leq V_{DSS}$ ,<br>$T_J \leq 150^{\circ}$ C, $R_G = 4$ $\Omega$ | 10                          | V/ns           |  |
| P <sub>D</sub>                                        | T <sub>C</sub> =25°C                                                                                                     | 600                         | W              |  |
| T <sub>J</sub><br>T <sub>JM</sub><br>T <sub>stg</sub> |                                                                                                                          | -55 +175<br>175<br>-55 +150 | °C<br>°C<br>°C |  |
| T <sub>L</sub><br>T <sub>SOLD</sub>                   | 1.6 mm (0.062 in.) from case for 10 s<br>Plastic body for 10s                                                            | 300<br>260                  | °C             |  |
| M <sub>d</sub>                                        | Mounting torque (TO-247)                                                                                                 | 1.13/10                     | Nm/lb.in.      |  |
| Weight                                                | TO-220<br>TO-247<br>TO-268                                                                                               | 4<br>6<br>5                 | g<br>g<br>g    |  |

| 10-268                                                                             |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                             | g                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                                                    | Characteristic Val                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |
| $V_{GS}$ = 0 V, $I_{D}$ = 250 $\mu A$                                              |                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                |
| $V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$                                            |                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                |
| $V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$                                               |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              | ±100                                                                                                                                                                                                                                                                                                          | nA                                                                                                                                                                                                                                                                                                                                                               |
| $V_{DS} = V_{DSS}$<br>$V_{GS} = 0 V$                                               | T <sub>J</sub> = 150° C                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              | 25<br>250                                                                                                                                                                                                                                                                                                     | μA<br>μA                                                                                                                                                                                                                                                                                                                                                         |
| $V_{GS}$ = 10 V, $I_{D}$ = 0.5 $I_{D25}$<br>Pulse test, t $\leq$ 300 $\mu$ s, duty | cycle d ≤ 2 %                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                                            | mΩ                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                    | Test Conditions<br>unless otherwise specified) $V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$ $V_{DS} = V_{GS}, \text{ I}_{D} = 4 \text{ mA}$ $V_{GS} = \pm 20 \text{ V}_{DC}, \text{ V}_{DS} = 0$ $V_{DS} = V_{DSS}$ $V_{GS} = 0 \text{ V}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.5 \text{ I}_{D25}$ | Test Conditions unless otherwise specified) $V_{GS} = 0 \text{ V, } I_D = 250  \mu\text{A}$ $V_{DS} = V_{GS}, I_D = 4 \text{ mA}$ $V_{GS} = \pm 20 \text{ V}_{DC}, V_{DS} = 0$ $V_{DS} = V_{DSS}$ $V_{GS} = 0 \text{ V}$ $T_J = 150 ^{\circ}\text{ C}$ | Test Conditions unless otherwise specified) $V_{GS} = 0 \text{ V}, \text{ I}_D = 250 \text{ μA}$ $V_{DS} = V_{GS}, \text{ I}_D = 4 \text{ mA}$ $V_{DS} = \pm 20 \text{ V}_{DC}, \text{ V}_{DS} = 0$ $V_{DS} = V_{DSS}, \text{ I}_D = 4 \text{ mA}$ $V_{DS} = 10 \text{ V}, \text{ I}_D = 150 \text{ C}$ $V_{CS} = 10 \text{ V}, \text{ I}_D = 150 \text{ C}$ | Test Conditions unless otherwise specified) $V_{GS} = 0 \text{ V}, \text{ I}_D = 250 \text{ μA}$ $V_{DS} = V_{GS}, \text{ I}_D = 4 \text{ mA}$ $V_{DS} = \pm 20 \text{ V}_{DC}, \text{ V}_{DS} = 0$ $V_{DS} = V_{DSS}, \text{ I}_D = 4 \text{ mA}$ $V_{DS} = 10 \text{ V}, \text{ I}_D = 0.5 \text{ I}_{D25}$ | Test Conditions unless otherwise specified)       Characteristic Value. $V_{GS} = 0 \text{ V}, I_D = 250 \text{ μA}$ 200 $V_{DS} = V_{GS}, I_D = 4 \text{ mA}$ 2.5       5.0 $V_{GS} = \pm 20 \text{ V}_{DC}, V_{DS} = 0$ $\pm 100$ $V_{DS} = V_{DSS}$ 25 $V_{GS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$ 25 $V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ I}_{D25}$ 24 |





### TO-268 (IXFT)



## PLUS220 (IXFV)



| G = Gate   | D = Drain   |
|------------|-------------|
| S = Source | TAB = Drain |

#### **Features**

- <sup>1</sup> Fast Intrinsic Diode
- <sup>1</sup> International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
  - easy to drive and to protect

#### **Advantages**

- <sup>1</sup> Easy to mount
- Space savings
- High power density



#### **Symbol Characteristic Values Test Conditions** (T<sub>1</sub> = 25° C, unless otherwise specified) Min. Typ. Max. $V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$ 52 S $\mathbf{g}_{\mathsf{fs}}$ Ciss 4800 рF $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ рF 1020 270 pF 28 ns t<sub>d(on)</sub> $V_{GS}$ = 10 V, $V_{DS}$ = 0.5 $V_{DSS}$ , $I_{D}$ = $I_{D25}$ 30 t, ns $R_c = 4 \Omega$ (External) 75 $\mathbf{t}_{\text{d(off)}}$ ns 30 t, ns $\boldsymbol{\mathsf{Q}_{\mathsf{g(on)}}}$ 145 nC $\mathbf{Q}_{\mathrm{gs}}$ $V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$ 30 nC $\mathbf{Q}_{\underline{\mathbf{g}\mathbf{d}}}$ 80 nC $\mathbf{R}_{\mathrm{thJC}}$ 0.25° C/W 0.21 (TO-247) ° C/W $R_{\text{thCS}}$

#### Source-Drain Diode

Characteristic Values

(T<sub>1</sub> = 25° C, unless otherwise specified)

| Symb                          | ol | Test Conditions                                                                | Min. | Тур. | Max. |    |
|-------------------------------|----|--------------------------------------------------------------------------------|------|------|------|----|
| Is                            |    | $V_{GS} = 0 V$                                                                 |      |      | 96   | Α  |
| I <sub>sm</sub>               |    | Repetitive                                                                     |      |      | 240  | Α  |
| V <sub>SD</sub>               |    | $I_F = I_S$ , $V_{GS} = 0$ V,<br>Pulse test, t ≤300 $\mu$ s, duty cycle d≤ 2 % |      |      | 1.5  | V  |
| t <sub>rr</sub>               | )  | I <sub>F</sub> = 25 A                                                          |      | 120  | 200  | ns |
| $\mathbf{Q}_{_{\mathrm{RM}}}$ | }  | -di/dt = 100 A/μs                                                              |      | 0.7  |      | μС |
| I <sub>RM</sub>               | J  | $V_{R} = 100 \text{ V}, \ V_{GS} = 0 \text{ V}$                                |      | 7    |      | Α  |



| MYZ  | INCHES  |      | MILLIMETER |       |
|------|---------|------|------------|-------|
| 2114 | MIN     | MAX  | MIN        | MAX   |
| Α    | .169    | .185 | 4.30       | 4.70  |
| Α1   | .028    | .035 | 0.70       | 0.90  |
| A2   | .098    | .118 | 2.50       | 3.00  |
| Ь    | .035    | .047 | 0.90       | 1.20  |
| Ь1   | .080    | .095 | 2.03       | 2.41  |
| b2   | .054    | .064 | 1.37       | 1.63  |
| С    | .028    | .035 | 0.70       | 0.90  |
| D    | .551    | .591 | 14.00      | 15.00 |
| D1   | .512    | .539 | 13.00      | 13.70 |
| E    | .394    | .433 | 10.00      | 11.00 |
| E1   | .331    | .346 | 8.40       | 8.80  |
| е    | .100BSC |      | 2,54       | BSC   |
| L    | .512    | .551 | 13.00      | 14.00 |
| L1   | .118    | .138 | 3,00       | 3,50  |
| L2   | .035    | .051 | 0.90       | 1.30  |
| L3   | .047    | .059 | 1.20       | 1.50  |

#### TO-247 (IXFH) Outline



Terminals: 1 - Gate 2 - Drain 3 - Source TAB - Drain

| Dim.           | Millimeter |       | Inches |       |
|----------------|------------|-------|--------|-------|
|                | Min.       | Max.  | Min.   | Max.  |
| Α              | 4.7        | 5.3   | .185   | .209  |
| A,             | 2.2        | 2.54  | .087   | .102  |
| A <sub>2</sub> | 2.2        | 2.6   | .059   | .098  |
| b              | 1.0        | 1.4   | .040   | .055  |
| b <sub>1</sub> | 1.65       | 2.13  | .065   | .084  |
| b <sub>2</sub> | 2.87       | 3.12  | .113   | .123  |
| С              | .4         | .8    | .016   | .031  |
| D              | 20.80      | 21.46 | .819   | .845  |
| Е              | 15.75      | 16.26 | .610   | .640  |
| е              | 5.20       | 5.72  | 0.205  | 0.225 |
| L              | 19.81      | 20.32 | .780   | .800  |
| L1             |            | 4.50  |        | .177  |
| ØP             | 3.55       | 3.65  | .140   | .144  |
| Q              | 5.89       | 6.40  | 0.232  | 0.252 |
| R              | 4.32       | 5.49  | .170   | .216  |
| S              | 6.15       | BSC   | 242    | BSC   |





| INCHES   |                                                                                    | MILLIMETERS                                                                                                                                                                   |                                                                                                                                                                                                                                                               |
|----------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIN      | MAX                                                                                | MIN                                                                                                                                                                           | MAX                                                                                                                                                                                                                                                           |
| .193     | .201                                                                               | 4.90                                                                                                                                                                          | 5.10                                                                                                                                                                                                                                                          |
| .106     | .114                                                                               | 2.70                                                                                                                                                                          | 2.90                                                                                                                                                                                                                                                          |
| .001     | .010                                                                               | 0.02                                                                                                                                                                          | 0.25                                                                                                                                                                                                                                                          |
| .045     | .057                                                                               | 1.15                                                                                                                                                                          | 1.45                                                                                                                                                                                                                                                          |
| .075     | .083                                                                               | 1.90                                                                                                                                                                          | 2.10                                                                                                                                                                                                                                                          |
| .016     | .026                                                                               | 0.40                                                                                                                                                                          | 0.65                                                                                                                                                                                                                                                          |
| .057     | .063                                                                               | 1.45                                                                                                                                                                          | 1.60                                                                                                                                                                                                                                                          |
| .543     | .551                                                                               | 13.80                                                                                                                                                                         | 14.00                                                                                                                                                                                                                                                         |
| .488     | .500                                                                               | 12.40                                                                                                                                                                         | 12.70                                                                                                                                                                                                                                                         |
| .624     | .632                                                                               | 15.85                                                                                                                                                                         | 16.05                                                                                                                                                                                                                                                         |
| .524     | .535                                                                               | 13.30                                                                                                                                                                         | 13.60                                                                                                                                                                                                                                                         |
| .215 BSC |                                                                                    | 5.45 BSC                                                                                                                                                                      |                                                                                                                                                                                                                                                               |
| .736     | .752                                                                               | 18.70                                                                                                                                                                         | 19.10                                                                                                                                                                                                                                                         |
| .094     | .106                                                                               | 2.40                                                                                                                                                                          | 2.70                                                                                                                                                                                                                                                          |
| .047     | .055                                                                               | 1.20                                                                                                                                                                          | 1.40                                                                                                                                                                                                                                                          |
| .039     | .045                                                                               | 1.00                                                                                                                                                                          | 1.15                                                                                                                                                                                                                                                          |
| .010 BSC |                                                                                    | 0.25 BSC                                                                                                                                                                      |                                                                                                                                                                                                                                                               |
| .150     | .161                                                                               | 3.80                                                                                                                                                                          | 4.10                                                                                                                                                                                                                                                          |
|          | MIN 193 .106 .001 .045 .075 .016 .057 .543 .488 .624 .215 .736 .094 .047 .039 .010 | MIN MAX 193 201 .106 .114 .001 .010 .045 .057 .075 .083 .016 .026 .057 .063 .543 .551 .488 .500 .624 .632 .524 .535 .215 BSC .736 .752 .094 .106 .047 .055 .039 .045 .010 BSC | MIN MAX MIN 193 201 4.90 .106 .114 2.70 .001 .010 0.02 .045 .057 1.15 .075 .083 1.90 .016 .026 0.40 .057 .063 1.45 .543 .551 13.80 .488 .500 12.40 .624 .632 15.85 .524 .535 13.30 .215 BSC 5.45 .736 .752 18.70 .094 .106 2.40 .047 .055 1.20 .039 .045 1.00 |

IXYS reserves the right to change limits, test conditions, and dimensions.



Fig. 1. Output Characteristics



Fig. 3. Output Characteristics @ 150°C



Fig. 5. R<sub>DS(on)</sub> Normalized to



Fig. 2. Extended Output Characteristics



Fig. 4.  $R_{DS(on)}$  Normalized to 0.5  $I_{D25}$  Value vs. Junction Temperature



Fig. 6. Drain Current vs. Case
Temperature





4.5

5

5.5

Fig. 7. Input Admittance

160
140
120
80
100
80
T<sub>J</sub> = 150°C
40
25°C
-40°C
20
0

Fig. 9. Source Current vs. Source-To-Drain Voltage

7.5

8

8.5

6.5

V<sub>GS</sub> - Volts



Fig. 11. Capacitance



Fig. 8. Transconductance



Fig. 10. Gate Charge



Fig. 12. Forward-Bias Safe Operating Area







Fig. 13. Maximum Transient Thermal Resistance

