Continuous Optimization (Chapter 7: MML Book)

Latex macros

Recall geometry of a derivative

Definition (Directional derivative)

Directional dervivative of a function $f(\mathbf{x}):\mathbb{R}^n o \mathbb{R}$ with respect to a given vector $\mathbf{u} \in \mathbb{R}$ is defined as

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\epsilon o 0} rac{f(\mathbf{x} + \epsilon \mathbf{u}) - f(\mathbf{x})}{\epsilon}$$

Ref Khan Academy

Ref

Libretexts/12%3A_Functions_of_Several_Variables/12.06%3A_Directional_Derivatives

Vector calculus chain rule (a theorem)

Given a function composition $\mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{h}(\mathbf{x})) = (\mathbf{g} \circ \mathbf{h})(\mathbf{x})$ where $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{g}: \mathbb{R}^m \to \mathbb{R}^p$ and $\mathbf{h}: \mathbb{R}^m \to \mathbb{R}^p$

$$rac{ackslash \mathbf{pf}}{ackslash \mathbf{px}} = rac{ackslash \mathbf{pf}}{ackslash \mathbf{ph}} rac{ackslash \mathbf{ph}}{ackslash \mathbf{px}}$$

or denoting the derivatives as Jacobian matrices we have,

$$\mathcal{J}_{\mathbf{x}}\mathbf{f} = \mathcal{J}_{\mathbf{h}}[\mathbf{f}]\mathcal{J}_{\mathbf{x}}[\mathbf{h}]$$

Theorem (Directional derivative is gradient dot product with the direction)

Express the trajectory in the direction ${f u}$ as a function of time t as

$$g(t) = x + tu$$

Note that the Jacobian of $\mathbf{g}(t)$ wrt t is simply \mathbf{u} ,

$$\mathcal{J}_t \mathbf{g}(t) = \mathbf{u}$$

Recall the definition of directional derivative,

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\epsilon o 0} rac{f(\mathbf{x} + \epsilon \mathbf{u}) - f(\mathbf{x})}{\epsilon}.$$

Compare it with the derivative of $f(\mathbf{g}(t))$ with respect to t at t=0

$$rac{igl| \mathbf{p} f(\mathbf{g}(t))}{igr| \mathbf{p} t} = \lim_{\epsilon o 0} rac{f(\mathbf{x} + (t+\epsilon)\mathbf{u}) - f(\mathbf{x} + t\mathbf{u})}{\epsilon} \Big|_{t=0}.$$

$$rac{igl| \mathbf{p} f(\mathbf{g}(t))}{igr| \mathbf{p} t} = \lim_{\epsilon o 0} rac{f(\mathbf{x} + \epsilon \mathbf{u}) - f(\mathbf{x})}{\epsilon} = D_{\mathbf{u}} f(\mathbf{x}).$$

We can compute $\frac{\mathbf{p}f(\mathbf{g}(t))}{\mathbf{p}t}$ by chain rule,

$$D_{\mathbf{u}}f(\mathbf{x}) = \mathcal{J}_t f(\mathbf{g}(t)) = \mathcal{J}_{\mathbf{x}}f(\mathbf{x})\mathcal{J}_t \mathbf{g} =
abla_{\mathbf{x}}^ op f(\mathbf{x})\mathbf{u}$$

Theorem: The direction of stepest ascent and descent

Let $\hat{\mathbf{u}}$ be of unit magnitude. The directional derivative represents how the function changes in the direction $\hat{\mathbf{u}}$.

$$D_{\hat{\mathbf{u}}}f(\mathbf{x}) = \nabla_{\mathbf{x}}^{\top}f(\mathbf{x})\hat{\mathbf{u}} = \|\nabla_{\mathbf{x}}f(\mathbf{x})\|\cos(\theta),$$

where θ is the angle between $\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\hat{\mathbf{u}}$. The change is maximum when $\theta=0$ and $\cos(\theta)=1$ and the change is minimum when $\theta=180^\circ$ and $\cos(\theta)=-1$.

In other words the function f increases the most (stepest ascent) when $\hat{\mathbf{u}} \propto \nabla_{\mathbf{x}} f(\mathbf{x})$ and decreases the most (steepest descent) when $\hat{\mathbf{u}} \propto -\nabla_{\mathbf{x}} f(\mathbf{x})$.

