Introduction to Computer Graphics

Animation (1) –

May 19, 2016 Kenshi Takayama

Skeleton-based animation

- Simple
- Intuitive

• Low comp. cost

https://www.youtube.com/watch?v=DsoNab58QVA

Representing a pose using skeleton

Tree structure consisting of bones & joints

• Each bone holds relative rotation angle w.r.t. parent joint

 Whole body pose determined by the set of joint angles (Forward Kinematics)

Deeply related to robotics

Inverse Kinematics

 Find joint angles s.t. an end effector comes at a given goal position

- Typical workflow:
 - Quickly create pose using IK, fine adjustment using FK

https://www.youtube.com/watch?v=e1qnZ9rV_kw

Simple method to solve IK: Cyclic Coordinate Descent

- Change joint angles one by one
 - S.t. the end effector comes as close as possible to the goal position
 - Ordering is important! Leaf → root
- Easy to implement → Basic assignment
- More advanced
 - Jacobi method (directional constraint)
 - Minimizing elastic energy [Jacobson 12]

IK minimizing elastic energy

Ways to obtain/measure motion data

Optical motion capture

• Put markers on the actor, record video from many viewpoints (~48)

from Wikipedia

Mocap using inexpensive depth camera

Mocap designed for outdoor scene

Motion database

- http://mocap.cs.cmu.edu/
- 6 categories, 2605 in total
- Free for research purposes
 - Interpolation, recombination, analysis, search, etc.

Recombining motions

 Allow transition from one motion to another if poses are similar in certain frame

Generating motion through simulation

- For creatures unsuitable for mocap
 - Too dangerous, nonexistent, ...
- Natural motion respecting body shape
- Can interact with dynamic environment

https://www.youtube.com/watch?v=KF_a1c7zytw

Creating poses using special devices

Tangible and Modular Input Device for Character Articulation [Jacobson SIGGRAPH14] Rig Animation with a Tangible and Modular Input Device [Glauser SIGGRAPH16]

https://www.youtube.com/watch?v=vBX47JamMN0

Many topics about character motion

Interaction between multiple persons

Grasping motion

Crowd simulation

Path planning

Character motion synthesis by topology coordinates [Ho EG09]
Aggregate Dynamics for Dense Crowd Simulation [Narain SIGGRAPHAsia09]
Synthesis of Detailed Hand Manipulations Using Contact Sampling [Ye SIGGRAPH12]
Space-Time Planning with Parameterized Locomotion Controllers.[Levine TOG11]

Skinning

$$\mathbf{v}_i' = \mathrm{blend}(\langle w_{i,1}, \mathbf{T}_1 \rangle, \langle w_{i,2}, \mathbf{T}_2 \rangle, \dots)(\mathbf{v}_i)$$

- Input
 - Vertex positions
 - Transformation per bone
 - Weight from each bone to each vertex

$$\{\mathbf{v}_i\} \ i = 1, ..., n$$

 $\{\mathbf{T}_j\} \ j = 1, ..., m$
 $\{w_{i,j}\} \ i = 1, ..., n \ j = 1, ..., m$

- Output
 - Vertex positions after deformation

$$\{\mathbf{v}_i'\}\ i=1,...,n$$

- Main focus
 - How to define weights $\{w_{i,j}\}$
 - How to blend transformations

Simple way to define weights: painting

Automatic weight computation

• Define weight w_j as a smooth scalar field that takes 1 on the j-th bone and 0 on the other bones

- Minimize 1st-order derivative $\int_{\Omega} \|\nabla w_j\|^2 dA$ [Baran 07]
 - Approximate solution only on surface → easy & fast
- Minimize 2nd-order derivative $\int_{\Omega} (\Delta w_j)^2 dA$ [Jacobson 11]
 - Introduce inequality constraints $0 \le w_i \le 1$
 - Quadratic Programming over the volume → high-quality

Simple way to blend transformations: Linear **B**lend **S**kinning

• Represent rigid transformation \mathbf{T}_j as a 3×4 matrix consisting of rotation matrix $\mathbf{R}_j \in \mathbb{R}^{3\times3}$ and translation vector $\mathbf{t}_j \in \mathbb{R}^3$

$$\mathbf{v}_i' = \left(\sum_j w_{i,j}(\mathbf{R}_j \ \mathbf{t}_j)\right) \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$$

- Simple and fast
 - Implemented using vertex shader: send $\{\mathbf{v}_i\}$ & $\{w_{i,j}\}$ to GPU at initialization, send $\{\mathbf{T}_i\}$ to GPU at each frame

Standard method

Artifact of LBS: "candy wrapper" effect

- Linear combination of rigid transformation is not a rigid transformation!
 - Points around joint concentrate when twisted

Alternative to LBS: Dual Quaternion Skinning

- Idea
 - Quaternion (four numbers) → 3D rotation
 - Dual quaternion (two quaternions) → 3D rigid motion (rotation + translation)

Dual number & dual quaternion

- Dual number
 - Introduce dual unit ε & its arithmetic rule $\varepsilon^2 = 0$ (cf. imaginary unit i)
 - Dual number is sum of primal & dual components:

$$\hat{a} \coloneqq a_0 + \varepsilon a_{\varepsilon}$$

• Dual conjugate:

$$\bar{\hat{a}} = \overline{a_0 + \varepsilon a_{\varepsilon}} = a_0 - \varepsilon a_{\varepsilon}$$

$$a_0, a_{\varepsilon} \in \mathbb{R}$$

- Dual quaternion
 - Quaternion whose elements are dual numbers
 - Can be written using two quaternions

$$\widehat{\mathbf{q}} \coloneqq \mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}$$

• Dual conjugate:
$$\overline{\widehat{\mathbf{q}}} = \overline{\mathbf{q}_0 + \varepsilon \mathbf{q}_\varepsilon} = \mathbf{q}_0 - \varepsilon \mathbf{q}_\varepsilon$$

• Quaternion conjugate:
$$\hat{\mathbf{q}}^* = (\mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon})^* = \mathbf{q}_0^* + \varepsilon \mathbf{q}_{\varepsilon}^*$$

Arithmetic rules for dual number/quaternion

- For dual number $\hat{a} = a_0 + \varepsilon a_{\varepsilon}$:
 - Reciprocal

$$\frac{1}{\hat{a}} = \frac{1}{a_0} - \varepsilon \frac{a_\varepsilon}{a_0^2}$$

Square root

$$\sqrt{\hat{a}} = \sqrt{a_0} + \varepsilon \frac{a_{\varepsilon}}{2\sqrt{a_0}}$$

• Trigonometric

$$\sin \hat{a} = \sin a_0 + \varepsilon a_{\varepsilon} \cos a_0$$

 $\cos \hat{a} = \cos a_0 - \varepsilon a_{\varepsilon} \sin a_0$

Easily derived by combining usual arithmetic rules with new rule $\varepsilon^2=0$

From Taylor expansion

- For dual quaternion $\hat{\mathbf{q}} = \mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}$:
 - Norm

$$\|\widehat{\mathbf{q}}\| = \sqrt{\widehat{\mathbf{q}}^* \widehat{\mathbf{q}}} = \|\mathbf{q}_0\| + \varepsilon \frac{\langle \mathbf{q}_0, \mathbf{q}_{\varepsilon} \rangle}{\|\mathbf{q}_0\|}$$

• Inverse

$$\widehat{\mathbf{q}}^{-1} = \frac{\widehat{\mathbf{q}}^*}{\|\widehat{\mathbf{q}}\|^2}$$

• Unit dual quaternion satisfies $\|\widehat{\mathbf{q}}\| = 1$

•
$$\Leftrightarrow$$
 $\|\mathbf{q}_0\| = 1 \& \langle \mathbf{q}_0, \mathbf{q}_{\varepsilon} \rangle = 0$

Dot product as 4D vectors

Rigid transformation using dual quaternion

• Unit dual quaternion representing rigid motion of translation $\vec{\mathbf{t}} = (t_x, t_y, t_z)$ and rotation \mathbf{q}_0 (unit quaternion):

$$\widehat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$$

Note: 3D vector is considered as quaternion with zero real part

• Rigid transformation of 3D position $\vec{\mathbf{v}} = (v_x, v_y, v_z)$ using unit dual quaternion $\hat{\mathbf{q}}$:

$$\widehat{\mathbf{q}}(1+\varepsilon\overrightarrow{\mathbf{v}})\overline{\widehat{\mathbf{q}}^*}=1+\varepsilon\overrightarrow{\mathbf{v}'}$$

• $\overrightarrow{\mathbf{v}'}$: 3D position after transformation

Rigid transformation using dual quaternion

•
$$\hat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$$

•
$$\hat{\mathbf{q}}(1 + \varepsilon \vec{\mathbf{v}})\overline{\hat{\mathbf{q}}^*} = \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)(1 + \varepsilon \vec{\mathbf{v}})\left(\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(\mathbf{q}_0^* + \varepsilon \vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \mathbf{q}_0\mathbf{q}_0^* + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\mathbf{q}_0^* + \varepsilon \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0\mathbf{q}_0^*\vec{\mathbf{t}}$$

$$= 1 + \varepsilon(\vec{\mathbf{t}} + \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^*)$$

3D position $\vec{\mathbf{v}}$ rotated by quaternion \mathbf{q}_0

$$((0+\vec{\mathbf{t}})\mathbf{q}_0)^* = \mathbf{q}_0^*(0+\vec{\mathbf{t}})^*$$
$$= -\mathbf{q}_0^*\vec{\mathbf{t}}$$

$$\|\mathbf{q}_0\|^2 = 1$$

Rigid transformation as "screw motion"

- Any rigid motion is uniquely described as screw motion
 - (Up to antipodality)

Screw motion & dual quaternion

• Unit dual quaternion $\hat{\mathbf{q}}$ can be written as:

$$\widehat{\mathbf{q}} = \cos\frac{\widehat{\theta}}{2} + \widehat{\mathbf{s}}\sin\frac{\widehat{\theta}}{2}$$

•
$$\hat{\theta} = \theta_0 + \varepsilon \theta_{\varepsilon}$$

•
$$\hat{\mathbf{s}} = \overrightarrow{\mathbf{s}_0} + \varepsilon \overrightarrow{\mathbf{s}_\varepsilon}$$

$$\theta_0, \theta_{\varepsilon}$$
 : real number

$$\overrightarrow{\mathbf{s}_0}$$
, $\overrightarrow{\mathbf{s}_{\varepsilon}}$: unit 3D vector

- Geometric meaning
 - $\overrightarrow{s_0}$: direction of rotation axis
 - θ_0 : amount of rotation
 - θ_{ε} : amount of translation parallel to $\overrightarrow{\mathbf{s}_0}$
 - $\overrightarrow{\mathbf{s}_{\varepsilon}}$: when rotation axis passes through $\overrightarrow{\mathbf{r}}$, it satisfies $\overrightarrow{\mathbf{s}_{\varepsilon}} = \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{s}_{0}}$

Interpolating two rigid transformations

Linear interpolation + normalization (nlerp)

nlerp(
$$\widehat{\mathbf{q}}_1$$
, $\widehat{\mathbf{q}}_2$, t) :=
$$\frac{(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2}{\|(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2\|}$$

• Note: $\hat{\mathbf{q}} & -\hat{\mathbf{q}}$ represent same transformation with opposite path

• If 4D dot product of non-dual components of $\hat{\mathbf{q}}_1$ & $\hat{\mathbf{q}}_2$ is negative, use $-\hat{\mathbf{q}}_2$ in the interpolation

Blending rigid motions using dual quaternion

blend(
$$\langle w_1, \widehat{\mathbf{q}}_1 \rangle$$
, $\langle w_2, \widehat{\mathbf{q}}_2 \rangle$, ...) :=
$$\frac{w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots}{\|w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots\|}$$

- Akin to blending rotations using quaternion
- Same input format as LBS & low computational cost
- Standard feature in many commercial CG packages

122 FPS

Artifact of DQS: "bulging" effect

Produces ball-like shape around the joint when bended

Overcoming DQS's drawback

After deforming using DQS, offset vertices along normals [Kim14]

Limitation of DQS: Cannot represent rotation by more than 360°

Skinning for avoiding self-intersections

Make use of implicit functions

https://www.youtube.com/watch?v=RHySGlqEgyk

Other deformation mechanisms than skinning

Unified point/cage/skeleton handles [Jacobson 11]

BlendShape

https://www.youtube.com/watch?v=P9fqm8vgdB8

https://www.youtube.com/watch?v=BFPAIU8hwQ4

References

- http://en.wikipedia.org/wiki/Motion_capture
- http://skinning.org/
- http://mukai-lab.org/category/library/legacy