Node Centrality

Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC)

Are all nodes "equal"? How to measure their importance?

Size proportional to degree: is this the only way?

Size proportional to betweenness

Pedro Ribeiro - Node Centrality

Size proportional to closeness

Pedro Ribeiro - Node Centrality

Why degree is not enough

Why degree is not enough

Stanford Social Web (ca. 1999)

network of personal homepages at Stanford

Pedro Ribeiro - Node Centrality

Different notions of centrality

Node Centrality measures "importance"

In each of the following networks, X has higher centrality than Y according to a particular measure

indegree

outdegree

betweenness

closeness

Node Degree

Let's put some numbers to it

Undirected degree:

e.g. nodes with more friends are more central.

Assumption: the connections that your friend has don't matter, it is what they can do directly that does (e.g. go have a beer with you, help you build a deck...)

Node Degree

Normalization:

divide degree by the max. possible, i.e. (N-1)

Node Degree

example financial trading networks

high in-centralization: one node buying from many others

low in-centralization: buying is more evenly distributed

What does degree not capture?

 In what ways does degree fail to capture centrality in the following graphs?

Brokerage not captured by degree

Brokerage: Concept

Brokerage: Concept

Capturing Brokerage

Betweenness Centrality:

intuition: how many **pairs of individuals** would have to go through you in order to reach one another in the **minimum number of hops**?

Betweenness: Definition

$$C_B(i) = \sum_{j < k} \frac{g_{jk}(i)}{g_{jk}}$$

Where:

 g_{jk} = the number of **shortest paths** connecting nodes j and k $g_{jk}(i)$ = the number that node i is on.

Usually normalized by:

$$C_B'(i) = \frac{C_B(i)}{(n-1)(n-2)/2}$$

number of pairs of vertices excluding the vertex itself

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)
 - note that there are no alternate paths for these pairs to take, so C gets full credit

- why do C and D each have betweenness 1?
- They are both on shortest paths for pairs (A,E), and (B,E), and so must share credit:
 - -1/2+1/2=1

Betweenness: Real Example

Social Network (facebook)

nodes are sized by degree, and colored by betweenness

Betweenness: Question

 Find a node that has high betweenness but low degree

Betweenness: Question

 Find a node that has low betweenness but high degree

Closeness Centrality

 What if it's not so important to have many direct friends?

Or be "between" others

 But one still wants to be in the "middle" of things, not too far from the center

Closeness Centrality

Need not be in brokerage position

Closeness: Definition

 Closeness is based on the length of the average shortest path between a node and all other nodes in the network

Closeness Centrality:

$$C_C(i) = \frac{1}{\sum_{j=1}^{N} d(i,j)}$$

Normalized Closeness Centrality:

$$C_{C}^{'}(i) = C_{C}(i) \times (n-1)$$

When graphs are big, the -1 can be discarded and we multiply by *n*

Closeness: Toy Networks

$$C'_{c}(A) = \left[\frac{\sum_{j=1}^{N} d(A,j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness: Toy Networks

Closeness: Question

 Find a node which has relatively high degree but low closeness

Closeness: Question

 Find a node which has low degree but high closeness

Closeness: unconnected graph

What if the graph is not connected?

$$C_C(i) = \frac{1}{\sum_{j=1}^{N} d(i,j)}$$

instead of *null*, we could also interpret it as 0 if *infinity* is the distance between unconnected nodes

Harmonic: Definition

 Replace the average distance with the harmonic mean of all distances

Harmonic Centrality:

$$C_{H}(i) = \sum_{j \neq i} \frac{1}{d(i,j)} = \sum_{d(i,j) < \infty, j \neq i} \frac{1}{d(i,j)}$$

- Strongly correlated to closeness centrality
- Naturally also accounts for nodes j that cannot reach i
- Can be applied to graphs that are not connected

Normalized Harmonic Centrality:

$$C'_{H}(i) = C_{H}(i)/(n-1)$$

Harmonic: Toy Networks

Closeness vs Harmonic

Closeness Centrality

$$C_C(i) = \frac{1}{\sum_{j=1}^{N} d(i,j)}$$

Harmonic Centrality

$$C_{H}(i) = \sum_{j \neq i} \frac{1}{d(i,j)}$$

Eigenvector Centrality

 How "central" you are depends on how "central" your neighbors are

Eigenvector Centrality

Eigenvector Centrality:

$$C_E(i) = \frac{1}{\lambda} \sum_{j=1}^n A_{ji} \times C_E(j)$$

where λ is a constant and A_{ij} the adjacency matrix (1 if (i,j) are connected, 0 otherwise)

(with a small rearrangement) this can we rewritten in vector notation as in the eigenvector equation

$$Ax = \lambda x$$

where x is the eigenvector, and its i-th component is the centrality of node i

In general, there will be many different eigenvalues λ for which a non-zero eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure

Bonacich eigenvector centrality

also known as Bonacich Power Centrality

$$c_i(\beta) = \sum_{j} (\alpha + \beta c_j) A_{ji}$$

- α is a normalization constant
- ullet determines how important the centrality of your neighbors is
- A is the adjacency matrix (can be weighted)

Bonacich eigenvector centrality

also known as Bonacich Power Centrality

small β → high attenuation only your immediate friends matter, and their importance is factored in only a bit

high β → low attenuation global network structure matters (your friends, your friends' of friends etc.)

 β = 0 yields simple degree centrality

$$c_i(\beta) = \sum_{j} (\alpha)$$

Eigenvector Variants

 There are other variants of eigenvector centrality, such as:

PageRank

(normalized eigen vector + random jumps)
 [we will talk in detail about that later]

Katz Centrality

(connections with distant neighbors are penalized)

$$C_{ ext{Katz}}(i) = \sum_{k=1}^{\infty} \sum_{j=1}^{n} lpha^k (A^k)_{ji}$$

Centrality in Directed Networks

Degree:

in and out centrality

Betweenness:

- Consider only directed paths: $C_B(i) = \sum_{j \neq k} \frac{g_{jk}(i)}{g_{ik}}$

When normalizing take care of ordered pairs

$$C_{B}^{'}(i) = \frac{C_{B}(i)}{(n-1)(n-2)} - \frac{number of ordered pairs is 2x the number of unordered}{(n-1)(n-2)}$$

Closeness

- Consider only directed paths
- Eigenvector (already prepared)

Centrality in Weighted Networks

Degree:

Sum weights (non-weighted equals weight=1 for all edges)

Betweenness and Closeness:

- Consider weighted distance

Eigenvector

Consider weighted adjacency matrix

Node Centralities: Conclusion

 There are other node centrality metrics, but these are the "quintessential"

Finding Dominant Nodes Using Graphlets

David Aparício^(⊠), Pedro Ribeiro, Fernando Silva, and Jorge Silva

CRACS & INESC-TEC and the Department of Computer Science, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal {daparicio,pribeiro,fds}@dcc.fc.up.pt, jorge.m.silva@inesctec.pt

$$D(o) = \left(\lambda \times \sum_{o_i \in \mathcal{I}(o)} \beta^{k-d(o,o_i)}\right) - \left((1-\lambda) \times \sum_{o_j \in \mathcal{S}(o)} \beta^{k-d(o_j,o)}\right)$$

A subgraph-based ranking system for professional tennis players

David Aparício, Pedro Ribeiro and Fernando Silva

- Which one to use depends on what you want to achieve or measure
 - Worry about understanding the concepts
 - They enlarge your graph vocabulary

Node Centralities: Conclusion

Node Centralities: Conclusion

All (major) network analysis packages provide them:

8. Centrality Measures

- 8.1. igraph_closeness Closeness centrality calculations for some vertices.
- ${\bf 8.2.\ igraph_harmonic_centrality -- Harmonic\ centrality\ for\ some\ vertices.}$
- 8.3. igraph_betweenness Betweenness centrality of some vertices.
- 8.4. igraph_edge_betweenness Betweenness centrality of the edges.
- $8.5. igraph_pagerank_algo_t PageRank algorithm implementation \\ 8.6. igraph_pagerank Calculates the Google PageRank for the$
- specified vertices.

 8.7. igraph_personalized_pagerank Calculates the personalized
- Google PageRank for the specified vertices.
 8.8. igraph_personalized_pagerank_vs Calculates the personalized
- Google PageRank for the specified vertices.
- 8.9. igraph_constraint Burt's constraint scores.
- $8.10.\ igraph_maxdegree$ The maximum degree in a graph (or set of vertices).
- 8.11. igraph_strength Strength of the vertices, weighted vertex degree in other words.
- 8.12. igraph_eigenvector_centrality Eigenvector centrality of the vertices

• Also all (major) network analysis and visualization platforms:

