GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

IBRE DE LA ASIGNATUR		
	Visión por computadora	
2121.0		
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	280702	85

OBJETIVOS GENERALES DE LA ASIGNATURA

El alumno profundizara en los conceptos y metodologías tradicionales de la Visión por Computadora y sus aplicaciones para la solución de problemas reales. Además de investigar y entender las técnicas del procesamiento digital de imágenes y las aplicará a algún problema específico de visión por computadora.

TEMAS Y SUBTEMAS

- 1. Calibración de cámaras
- 1.1 Introducción
- 1.2 Aspectos básicos
- 1.3 Calibración con objetos 2D
- 1.4 Calibración con objetos 3D
- 1.5 Resolviendo la calibración con objetos 1D
- 1.6 Autocalibración
- 2. Geometría múltiple vista.
- 2.1 Introducción
- 2.2 Geometría proyectiva
- 2.3 Cálculo de tensores
- 2.4 Modelado de cámaras
- 2.5 Geometría de múltiple vista
- 2.6 Estructura y movimiento
- 2.7 Estimación de profundidad
- 2.8 Modelado visual
- 3. Técnicas de imágenes 3D.
- 3.1 Características de los sensores 3D
- 3.2 Triangulación
- 3.3 Sensores de tiempo de vuelo (TOF)
- 3.4 Interferometría óptica
- 4. Técnicas robustas para visión por computadora.
- 4.1 Robustez en tareas visuales
- 4.2 Modelos y problemas de estimación
- 4.3 Estimación de localización
- 4.4 Regresión robusta
- 5. Movimiento.
- 5.1 Flujo y correspondencia
- 5.2 Flujo óptico basado en estimación de movimiento
- 5.3 Correlación y matching
- 5.4 Modelado de campos de flujo

- Tópicos avanzados
- 6.1 Operadores morfológicos
- 6.2 Modelado probabilístico
- 6.3 Procesamiento de imágenes difuso
- 6.4 Procesamiento de imágenes usando redes neuronales

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro. Trabajos de investigación y/o prácticos. Lectura de artículos de interés en el área. Proyectos en los que se aplique lo visto en clase (a corto y mediano plazo). Exposición por parte del alumno de los proyectos realizados.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Instrumentos formales y prácticos de evaluación: exámenes parciales y examen final; Proyecto final, proyectos cortos usando en un lenguaje de programación orientado a objetos y/o software orientado a tratamiento numérico que involucren los conocimientos adquiridos de los temas impartidos.

BIBLIOGRAFÍA

Libros Básicos:

Emerging Topics in Computer Vision, Gerard Medioni and Sing Bing Kang, IMSC Press Multimedia Series,

Computer Vision: A Modern Approach, David A. Forsyth, Jean Ponce, 2002 Prentice Hall

Computer Vision: Three-Dimensional Data from Images, Reinhard Klette, Karsten Schluns and Andreas

Koschan, Springer, 1998, 1 edition

Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Cambridge University Press, 2 edición, 2004.

Algorithms for Image Processing and Computer Vision, J. R. Parker, Wiley, 2 edición, 2010.

Libros de Consulta:

Algorithm Collections for Digital Signal Processing Applications Using Matlab, E.S. Gopi, Springer, 2007 Computer Vision and Applications A Guide for Students and Practitioners, Bernd Jähne, Horst Haußecker, Academic Press, 2000.

OpenCV: Image Processing and Computer Vision Reference Manual, Intel, 2000.

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales de Doctorado en sistemas informáticos, sistemas computacionales o especialidad en visión por computadora.

