1,

T =

4×5 table

	h0_1	h0_4	h0_7	h1_0	h1_5
N=230	0.71933	0.65985	0.63569	0.61338	0.56134
N=384	0.6875	0.6875	0.66667	0.66146	0.60417
N=537	0.55844	0.64502	0.7013	0.61472	0.54545
N=691	0.63636	0.77922	0.63636	0.7013	0.46753

Figure 1: output/psB-1-a.png

- 2. In general, It appears that a lower h value yields a better accuracy. It isn't as clear with the N value as there is some weird behavior such as N=691 and h=0.4 giving the highest accuracy. There does not appear to be a trend based on N alone.
- 3. This approach has the potential to be much more accurate than the approach used in project 6 if one could find the best combination of N and h values. This approach was a bit more complex to implement as the equations are a bit more complicated. These values may be lower than expected due to some issues I had with the classification equation.