Netzwerk-Traces mit Wireshark

zu 1.1b Welche IP-Adresse hat der Rechner, der Ihnen eine Antwort sendet?

Die IP lautet: 173.194.32.243

zu 1.1c Welche FTP Server Software läuft der Server Seite, der sich hinter dieser Adresse verbirgt? Es ist die Software "vsFTPd 2.0.7 - secure, fast, stable".

"Beschreiben Sie anschließend für die einzelnen Teilaufgaben jeweils, welche Protokolle Sie beobachtet haben und auf welcher Netzwerkschicht diese angeordnet sind."

Protokoll	Netzwerkschicht Internet Schichtenmodell			
a Aufruf der Webseite www.cs.hm.edu im Browser				
ARP, Address Resolution Protocol	Link			
DNS, Domain Name System	Application			
HTTP, Hypertext Transfer Protocol	Application			
ICMP, Internet Control Message Protocol	Internet			
IGMPv3, Internet Group Management Protocol	Internet			
TCP, Transmission Control Protocol	Transport			
TLSv1, Transport Layer Security	Transport			
TLSv1.2, Transport Layer Security	Transport			
b Netzwerk-Ping	auf www.google.com			
DNS	Application			
ICMP	Internet			
c Anzeige der Verzeichnisinhalte unter der FTP Adresse ftp://ftp.gwdg.de/pub/				
DNS	Application			
FTP, File Transfer Protocol	Application			
TCP	Transport			

Ein erster Netzwerkdienst

Welche Ausgabe finden Sie in Ihrer Ausgabe-Datei?

GET / HTTP/1.1

Host: localhost:8081 Connection: keep-alive Cache-Control: max-age=0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 X11; Linux i686 AppleWebKit/537.36 KHTML, like Gecko Ubuntu

Chromium/36.0.1985.125 Chrome/36.0.1985.125 Safari/537.36

Accept-Encoding: gzip,deflate,sdch

Accept-Language: de-DE,de;q=0.8,en-US;q=0.6,en;q=0.4

Aufgabe 2.1: HTTP Protokoll

a. Welche absolute URL fragt der Browser an?

http://a.fsdn.com/sd/topics/linux 64.png ergibt sich aus status line und header.

b. Kann der Browser damit umgehen, wenn er vom Server ein Reply empfängt, in welchem die Payload komprimiert ist?

Wenn das entsprechend im Header steht z.B. "Accept-Encoding: gzip"

c. Möchte der Browser eine persistente oder eine nicht-persistente Verbindung?

Er möchte eine persistente Verbindung, da im Header "Connection: keep-alive" angegeben ist.

d. Was bewirkt die Header-Zeile "If-None-Match:..."?

Die Zeile bewirkt, dass das Dokument nur neu ausgeliefert wird, wenn der ETag (Wert "1de519...d10") nicht zur aktuellen Version des Dokumentes passt.

e. Wie kann der Server – unter der Annahme, dass die Ressource noch existiert – die Anfrage beantworten? Geben Sie zwei Möglichkeiten an (Status Code und jeweils die vollständige HTTP-Response).

1. Möglichkeit

HTTP/1.1 200 OK

Last-Modified: Mon, 09 Mar 2015 23:54:27 GMT

ETag: "a02413-bf5-510e3c11bd2c0" Server: Apache/2.2.3 (CentOS) Content-Type: image/png Content-Length: 3061

Cache-Control: public, max-age=531228 Expires: Wed, 28 Oct 2015 12:09:54 GMT Date: Thu, 22 Oct 2015 08:36:06 GMT

Connection: keep-alive

2. Möglichkeit

HTTP/1.1 304 Not Modified Content-Type: image/png

Last-Modified: Mon, 09 Mar 2015 23:54:27 GMT

ETag: "a02413-bf5-510e3c11bd2c0" Cache-Control: public, max-age=871442 Expires: Sun, 01 Nov 2015 10:49:49 GMT Date: Thu, 22 Oct 2015 08:45:47 GMT

Connection: keep-alive

Stichpunktartige Erläuterung der Implementierung des Katzenservers

- 1. Dauerschleife, die den HTTP-Server startet, sobald auf Port 8082 etwas eingeht.
- 2. Dieser liest den HTTP-Request des Clients ein und leitet diesen nach Korrektur des Hostnamens und Löschen des gzip-Wertes im Header den Request an den Target-Host weiter.

- 3. Die Antwort des Target-Host wird nun bearbeitet. Alle Bilder der Seite werden mit einem Katzenbild ersetzt und "you" bzw. "You" wird durch den Satz "you, admirer of cats and all things feline :-)" ersetzt.
- 4. Anschließend wird der Response an den ursprünglichen Client ausgegeben.

Screenshots

Ursachen und Hintergründe der Krisen

Syrien-Gespräche in Wien

Kooperationen mit der vhb

- The MMIX Supplement
- Contributing
 - Development Proposals
 - Bug Reports
- Resources
 - Sources
 - Documentation
 - Win32 Executables
 - Linux 32 Bit Binaries
 - MAC OSX Executables
 - MMIXVD the <u>Visual</u> <u>Debugger</u>
 - Patches, Extensions & Tools
- Examples
- Links
- Virtual Motherboard
- Other Material
- MMIX at Munich
 University of Applied
 Sciences
- Impressum

This site is devoted to MMIX and MMIXware.

The following message from Donald Knuth gives a good introduction to MMIX.

A Message From Don Knuth, 01 September 2011

Welcome to all lovers of clean (or nearly clean) hardware design!

During the 1990s I spent considerable time designing a computer that would be representative of modern machines, yet easy to learn. Several of the leading experts in the field gave me considerable help with the design. The result was MMIX — "A RISC computer for the new millennium". In 1999 I completed the preliminary software to support basic MMIX programming and the simulation of many versions of the architecture. During the subsequent twelve years, ... (read more ...)

After MMIXware, as described in <u>Volume 1 Fascicle 1 of TAOCP</u>, was finally frozen in September 2011, this site, hosted by the <u>MMIX group at Munich University of Applied Sciences</u>, coordinates the future development of MMIXware. We provide here a collection of materials for all those that work with MMIX, study MMIX, engage in the further development of MMIX, use MMIX, or just want to find out what MMIX is.

News

MMIXware

The new edition of MMIXware, A RISC Computer for the Third Millennium, Lecture Notes in Computer Science, Volume 1750, is now in print

It documents Version 1 of MMIX, and it corresponds to the programs of mmix-20131017.tgz. Version 1 is permanently frozen, and "bug-free by definition."

Of course this does not preclude future developments.

MMIX Home Page

Documentation, Sources, Binaries, Links, Examples, Contributions

Content

- Home
- A Message from Donald Knuth
- Getting Started
- The MMIX Supplement
- Contributing
 - Development Proposals
 - Bug Reports
- Resources
 - Sources
 - Documentation
 - Win32 Executables
 - Linux 32 Bit Binaries
 - MAC OSX Executables
 - MMIXVD the <u>Visual</u> <u>Debugger</u>
 - Patches, Extensions & Tools
- Examples
- Links
- Virtual Motherboard
- Other Material
- MMIX at Munich
 University of Applied
 Sciences
- Impressum

MMIX Documentation, Sources, Binaries, Examples, Links, Projects, Proposals

Introduction

This site is devoted to MMIX and MMIXware.

The following message from Donald Knuth gives a good introduction to MMIX.

A Message From Don Knuth, 01 September 2011

Welcome to all lovers of clean (or nearly clean) hardware design!

During the 1990s I spent considerable time designing a computer that would be representative of modern machines, yet easy to learn. Several of the leading experts in the field gave me considerable help with the design. The result was MMIX — "A RISC computer for the new millennium". In 1999 I completed the preliminary software to support basic MMIX programming and the simulation of many versions of the architecture. During the subsequent twelve years, ... (read more ...)

After MMIXware, as described in <u>Volume 1 Fascicle 1 of TAOCP</u>, was finally frozen in September 2011, this site, hosted by the <u>MMIX group at Munich University of Applied Sciences</u>, coordinates the future development of MMIXware. We provide here a collection of materials for all those that work with MMIX, study MMIX, engage in the further development of MMIX, use MMIX, or just want to find out what MMIX is.

News

MMIXware

The new edition of MMIXware, A RISC Computer for the Third Millennium, Lecture Notes in Computer Science, Volume 1750, is now in print

It documents Version 1 of MMIX, and it corresponds to the programs of mmix-20131017.tgz. Version 1 is permanently frozen, and "bug-free by definition"

Of course this does not preclude future developments.

Aufgabe 3.1: Messung der Round Trip Time mit ping

a) Messen der RTT mit Hilfe von ping. Geben Sie zu den Zeiten Mittelwerte und Varianz an. Geben Sie zu Ihren Messungen genügend Informationen an, so dass man sie reproduzieren könnte.

Die folgenden Werte sind unter den Folgenden Bedingungen entstanden:

- WLAN (SSID LRZ)
- VPN
- Linux Mint 17.1
- IPv4

Host	Zeiten [ms]	Anzahl	Mittelwert	Varianz
www.cs.hm.edu	2,79; 4,00; 25,0; 17,4; 4,04; 4,08; 19,7; 3,78; 4,01; 4,02; 4,09; 3,27; 18,8; 14,8; 3,93	15	8,936	7,506
www.denic.de	11.3; 11.1; 12.5; 10.9; 12.3; 12.2; 12.3; 13.1; 68.7; 16.6; 11.0; 12.4; 12.3; 10.9; 12.4;	15	16,050	14,147
www.www.fr	28.4; 28.4; 28.2; 28.3; 28.8; 33.4; 28.6; 48.1; 29.2; 40.5; 30.1; 28.8; 28.4; 29.0; 28.6;	15	31,168	5,486
www.ietf.org	14.7; 15.2; 16.2; 16.2; 71.3; 14.9; 14.9; 16.1; 24.7; 16.1; 15.9; 14.9; 16.0; 16.2; 17.1;	15	20,068	13,904
www.iana.org	160; 161; 159; 196; 160; 161; 161; 161; 206; 161; 161; 161; 275; 161; 167;	15	174,614	30,251
www.google.de	36.2; 36.0; 51.8; 78.1; 38.3; 101; 79.7; 39.6; 37.1; 35.8; 37.1; 40.0; 35.8; 37.1; 37.2;	15	48,139	20,141

Was beobachten Sie und wie erklären Sie das beobachtete Verhalten?

Je weiter der Serverstandort entfernt (Anzahl der Knoten) ist, desto größer die RRT.

b) Welche Arten von Verzögerung im Bereich der Netzwerke werden generell unterschieden? Was messen Sie mit ping?

- Verarbeitungsverzögerung (processing delay)
- Warteschlangenverzögerung (queuing delay)
- Übertragungsverzögerung (transmission delay)
- Ausbreitungsverzögerung (propagation delay)
- Gesamtverzögerung (total nodal delay)

Mit Ping wird die RTT gemessen.

c) Gehen Sie davon aus, dass Sie zu einem Rechner A eine RTT von 12 ms und zu einem Rechner B eine RTT von 27 ms gemessen haben. Welche Aussage macht dieses Messergebnis hinsichtlich des zu erwartenden maximalen Durchsatzes (in MBit/s) zu A oder B?

Die Verbindung A kann einen höheren Maximaldurchsatz besitzen, da der theoretische (TCP) Durchsatz u.a. durch RTT und Paketverlustverhältnis begrenzt wird (vgl.

Aufgabe 3.2: Verzögerungen bei Kommunikation über Zwischenstationen

Vorbedingungen und -überlegungen:

- Lichtgeschwindigkeit beträgt 299 792 458 m/s also ca. 300 000 000 m/s = 300 000 km/s.
- Warteschlangenverzögerung ist in diesem Fall 0
- Datenweiterleitung per Store-and-Forward Prinzip

R = 384 kbit/s = 384'000 bit/s D = 3,3km = 3300m		R = 2 Mbit/s = 2'000'000 bit/s D = 98.000km = 98.000.000m		R = 100 Mbit/s = 100'000'000 bit/s, D = 25m	
Funkverbindung \Rightarrow Signalgeschw. $s = 3 \cdot 10^8 \frac{m}{s}$	Glasfaserverbindung $\Rightarrow s = 2 \cdot 10^8 \frac{m}{s}$	Funk	Glasfaser	Funk	Glasfaser
a) Welche Länge (in Metern) hat ein Byte (=8 bit) auf den jeweiligen Medien? $L\ddot{a}nge = \frac{Signalgeschwindigkeit*Paketlänge}{Ubertragungsrate} = \frac{s*L}{R}$					
$\frac{3\cdot10^8\frac{m}{s}\cdot8bit}{384000\frac{bit}{s}} = 6250m$	4166,7m	1200m	800m	24m	16m
b) Welche Ende-zu-Ende Verzögerung erfährt eine Übertragung von 64 Byte (z.B. VolP Paket).					

b) Welche Ende-zu-Ende Verzögerung erfährt eine Übertragung von 64 Byte (z.B. VolP Paket), welche eine Übertragung von 10MB (10x1024x1024 Byte, z.B. Multimediadaten) wenn diese jeweils in Form eines einzigen Paketes übertragen werden?

 $d_{nodal} = d_{proc} + d_{queue} + \frac{L}{R} + \frac{D}{s}$ mit $d_{queue} = 0$ (laut Angabe) $\Rightarrow d_{nodal} = d_{proc} + \frac{L}{R} + \frac{D}{s}$

Weil die Daten nach dem Store-and-Forward-Prinzip weitergeleitet werden ist $d_{proc} = \frac{L}{R}$

$$\Rightarrow d_{nodal} = d_{proc} + \frac{L}{R} + \frac{D}{s} = \frac{L}{R} + \frac{L}{R} + \frac{D}{s} = 2\frac{L}{R} + \frac{D}{s}$$

64 Byte: $2\frac{L}{R} + \frac{D}{s}$	0,002683166s	0,3271786667s	0,490512s	0,000010323s	0,000010365s
$=2\frac{64.8bit}{384000\frac{bit}{s}}$					
$+\frac{3300m}{3\cdot10^8\frac{m}{s}}$					
=0,002677666s					
10MB: 436,9066777s	436,9066832s	84,21274667s	84,37608s	1,677721683s	1,677721725s

c) Welche Ende-zu-Ende Verzögerung erfährt die Übertragung von 10MB, wenn die Übertragung in Pakete von 1kB (1024 Byte) aufgeteilt wird?

Diesmal rechnen wir die Verzögerung für ein 1kB-Paket aus und multiplizieren das mit 10*1024=10240 um auf die 10 MB zukommen: $d_{nodal} = 10240 \ (2\frac{1024*8bit}{R} + \frac{D}{s})$

437,0193	31s	437,07563s	3428,95275s	5101,4861s	1,678574933s	1,6790016s
,		·	,	,	,	·

d) Jetzt wird die Verbindung zwischen R1 und R2 durch eine Glasfaserverbindung ersetzt. Sie hat eine Länge von 1.000km und eine Datenrate von 1Gbit/s (10^9 bit/s). Berechnen Sie die Ende-zu-Ende Verzögerung für 10MB Daten bei Aufteilung auf Pakete der Größe 1kB.

D = 10^6m, R=10^9 bit/s, L = 10MB = 10240 x 1kB = 10240 x (1024x8) bit, nur Glasfaser
$$\Rightarrow s = 2 \cdot 10^8 \frac{m}{s}$$

 $d_{nodal} = 10240 \left(2\frac{1024 \cdot 8bit}{R} + \frac{D}{s}\right) = 10240 \left(2\frac{1024 \cdot 8bit}{10^9 \frac{bit}{s}} + \frac{10^6 m}{2 \cdot 10^8 \frac{m}{s}}\right) = 51,36777216s$

e) Die Knoten R1 und R2 werden auf nun von Store-and-Forward auf Cut-Through umgestellt: Bereits wenn die ersten 40 Byte mit der Header Information empfangen wurden, kann der Knoten mit dem Weiterleiten der Daten beginnen. (Alle weiteren Parameter bleiben wie in der vorhergehenden Teilaufgabe beschrieben.) Um wie viel verringert sich die Ende-zu-Ende Verzögerung durch diese Maßnahme?

$$d_{proc} = \frac{40 \text{ Byte}}{1 \frac{CDH}{s}} = \frac{40 \cdot 8 \text{ bit}}{10^9 \frac{bit}{s}} = 0,04 \cdot 10^{-6} s$$

$$d_{nodal} = d_{proc} + \frac{L}{R} + \frac{D}{s}$$

$$d_{nodal} = 0,04 \cdot 10^{-6} + \frac{8 (10 \cdot 1024 - 40)}{10^9} + \frac{10^6}{2 \cdot 10^8} = 0,08660004 s$$

Aufgabe 3.3: HTTP-Performance

Angaben laut Text:

- 1. HTML: 12,5 kB mit 10 Bilden auf demselben Server mit ebenfalls je 12,5 kB
- 2. RTT 250 ms
- 3. Netzwerkverbindung mit R = 100 MBit/s
- 4. GET Anfrage nicht berücksichtigen, HTML + Bilder schon ⇒ sowohl die Ausbreitungsverzögerung als auch die Übertragungsverzögerung müssen in diesem Fall berücksichtigt werden.
- 5. Aufbau TCP-Verbindung: 1 RTT
- a) Unter der Annahme, dass nicht-persistente HTTP-Verbindungen genutzt werden und keine Verbindungen parallel geöffnet sind: Wie groß ist die Antwortzeit in diesem Beispiel, d.h. wie viel Zeit vergeht zwischen dem Absenden des GET-Requests durch den Browser bis zur Anzeige der Webseite inklusive der Bilder im Browser? Geben Sie die einzelnen Teilverzögerungen mit an.

Begründung	Summe
Der Aufbau der TCP-Verbindung benötigt 1 RTT und fällt bei jeder Anfrage an, da es sich um eine nicht-persistente HTTP-Verbindung handelt.	11 ms
Die Ausbreitungsverzögerung wird berechnet durch Distanz/Signalgeschwindigkeit. => Eine andere Möglichkeit diese zu berechnen wurde auch nach intensiver recherche nicht gefunden. Es liegt die Vermutung nahe, dass der RTT dazu benötigt wird. => Aufgrund dessen wurde der RTT * 11 genommen.	2750ms
Die Übertragungsverzögerung ergibt sich aus den 12,5kB und der Übertragungsrate R: $d_{propb} = \frac{L}{R} = \frac{12,5 \cdot 1024 \cdot 8 \ bit}{100 \cdot 1024 \cdot 1024 \cdot 1024 \cdot 8} = 0,9765625 \cdot 10^{-3} s = 0,9765625 ms \Rightarrow 11 \cdot 0,9765625 ms = 10,742188 ms$	10,74ms
Ergebnis	2771,74ms

- b) Wie groß ist die Antwortzeit, wenn weiterhin nicht-persistente HTTP-Verbindungen genutzt werden aber der Browser beliebig viele Verbindungen gleichzeitig zum Server öffnen darf? Die Antwortzeit beträgt dann 1 + 250 + 0,98 = 251,98ms
- c) Nehmen Sie jetzt an, dass persistente HTTP-Verbindungen genutzt werden, wie es ab HTTP1.1 in der Regel der Fall ist. Wie groß ist die Antwortzeit, wenn keine Verbindungen parallel geöffnet werden?

Wie in Teilaufgabe a nur abzüglich von 10ms, weil die Verbindung nur einmal aufgebaut wird, also: 2761,74ms.

d) Auf welchen Wert verringert sich die Antwortzeit, wenn zusätzlich zu den in c) genannten Bedingungen noch Pipelining genutzt wird?

Die Antwortzeit verringert sich nicht, weil die Verbindung persistent ist, also eh schon eine TCP-Verbindung steht.

Aufgabe 3.4: Schichtenmodell

- a) Worin unterscheidet sich das Internet-Schichtenmodell vom ISO/OSI Schichtenmodell?

 Anstatt 7 OSI-Schichten gibt es nur 5 Schichten. Die Anwendungs-/Darstellungs- und Kommunikationsschicht werden zur Anwendungsschicht zusammengefasst.
- b) Ein Design-Prinzip in Internet lautet, dass man Funktionalität möglichst auf höheren Schichten auf den Endsystemen realisieren sollte, statt sie auf niedrigeren Schichten innerhalb des Netzes umzusetzen. Warum ist dies sinnvoll?
 - 1. Je höher die Schicht, desto mehr grundlegende Übertragungtechniken wurden bereits implementiert.
 - 2. Keine Modifikation von innenliegenden Netzkomponenten (Packet Switches).
- c) Gehen Sie von folgender Situation aus: Sie haben eine Netzwerkanwendung entwickelt, welche Daten zuverlässig mit einem entfernten System austauscht. Als Schicht 2 kommt ein Protokoll zum Einsatz, welches die zuverlässige Übertragung auf Schicht 2 garantiert.

 Können Sie in diesem Fall zur Reduzierung des Overheads ein einfaches, unzuverlässiges

 Transportprotokoll (z. B. UDB) einsetzen ehne die Zuverlässigkeit der Übertragung zu gefährden?

Transportprotokoll (z.B. UDP) einsetzen ohne die Zuverlässigkeit der Übertragung zu gefährden? Begründen Sie Ihre Antwort.

Nein, weil Transportprotokolle (z.B. UDP) in Schicht 3 stattfinden und diese hier nicht zum Zuge kämen.