EXERCICES — CHAPITRE 3

Exercice 1 - Déterminer la nature des séries suivantes et préciser leur somme en cas de convergence.

- $1. \sum_{n\geqslant 0} \frac{1}{2^n}$
- $2. \sum_{n\geqslant 1} 2^n$
- 3. $\sum_{n \ge 1} \left(\frac{1}{2}\right)^n$
- 4. $\sum_{n\geqslant 0} n$
- 5. $\sum_{n\geq 0} 0.01$
- 6. $\sum_{n>0} \left(\frac{3}{2}\right)^n$
- 7. $\sum_{n\geq 0} \frac{1}{3^n}$

- $8. \sum_{n\geqslant 0} \frac{5}{3^n}$
- 9. $\sum_{n \ge 0} \frac{5}{3^n} + \frac{3}{4^n}$
- 10. $\sum_{n \geqslant 0} \frac{1}{5^n}$
- 11. $\sum_{n>0} \frac{-1}{3^n}$
- 12. $\sum_{n\geqslant 0} \frac{5}{4^{n+2}}$
- 13. $\sum_{n\geqslant 2} \frac{3}{4^n}$
- 14. $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{2n}$

- 15. $\sum_{n\geq 0} \frac{2^n}{7^{n+1}}$
- 16. $\sum_{n \ge 0} \frac{1}{n!}$
- 17. $\sum_{n \ge 0} \frac{-5^{n+1}}{n!}$
- 18. $\sum_{n \ge 1} \frac{2^n}{n!}$
- 19. $\sum_{n\geq 0} \frac{2}{3^n n!}$
- 20. $\sum_{n \ge 0} (-1)^n \frac{2^n}{(n+1)!}$

Exercice 2 -

- 1. Le but de cette question est de montrer que la série $\sum_{n>1} \frac{1}{n} \frac{1}{n+1}$ converge et de déterminer sa somme.
 - (a) Calculer $\sum_{k=1}^{3} \frac{1}{k} \frac{1}{k+1}$, $\sum_{k=1}^{4} \frac{1}{k} \frac{1}{k+1}$ et $\sum_{k=1}^{5} \frac{1}{k} \frac{1}{k+1}$.
 - (b) Montrer que pour tout $n \in \mathbb{N}^*$

$$\sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = 1 - \frac{1}{n+1}.$$

- (c) Conclure.
- 2. À l'aide d'un raisonnement similaire à celui effectué dans la question 1., démontrer que la série $\sum_{n\geq 1} \frac{1}{(n+1)(n+2)}$ converge et déterminer sa somme.

Indication: Commencer par vérifier qu'il existe deux réels a et b tels que pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{(n+1)(n+2)} = \frac{a}{n+1} + \frac{b}{n+2}.$$

3. À l'aide d'un raisonnement similaire à celui effectué dans la question 1., démontrer que la série $\sum_{n>1} \frac{1}{n(n+1)(n+2)}$ converge et déterminer sa somme.

Indication: Commencer par vérifier qu'il existe trois réels a, b et c tels que $\forall n \in \mathbb{N}^*$,

$$\frac{1}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}.$$

Exercice 3 – En calculant les sommes partielles, déterminer si les séries suivantes sont convergentes.

- 1. $\sum_{n \ge 2} \ln \left(1 \frac{1}{n} \right)$ 2. $\sum_{n \ge 2} \frac{\ln \left(1 + \frac{1}{n} \right)}{\ln(n) \ln(n+1)}$ 3. $\sum_{n \ge 2} \ln \left(1 \frac{1}{n^2} \right)$

ECT2

Exercice 4 – Soit $(u_n)_{n\geqslant 2}$ la suite définie pour tout $n\geqslant 2$ par

$$u_n = \frac{n}{n^2 - 1}.$$

- 1. Montrer que pour tout $n \ge 2$, $u_n \ge \frac{1}{n}$.
- 2. En déduire que la série $\sum_{n \ge 2} u_n$ diverge. (<u>Rappel</u> : la série harmonique $\sum_{n \ge 1} \frac{1}{n}$ diverge.)

Exercice 5 – Pour tout $n \ge 3$, on pose $S_n = \sum_{k=2}^n \frac{5}{4^k \ln(k)}$.

1. Montrer que pour tout $n \ge 3$,

$$0\leqslant \frac{5}{4^n\ln(n)}\leqslant \frac{5}{4^n}.$$

2. En déduire que pour tout $n \ge 3$,

$$0 \le \sum_{k=3}^{n} \frac{5}{4^k \ln(k)} \le \frac{5}{48} \left(1 - \frac{1}{4^{n-2}} \right).$$

- 3. En déduire que la suite $(S_n)_{n \ge 3}$ est majorée.
- 4. Étudier la monotonie de la suite $(S_n)_{n\geq 3}$
- 5. En déduire que la série $\sum_{n>3} \frac{5}{4^n \ln(n)}$ converge et que

$$0 \leqslant \sum_{k=3}^{+\infty} \frac{5}{4^k \ln(k)} \leqslant \frac{5}{48}.$$

Exercice 6 – Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1. Vérifier que pour tout $k \ge 2$, on a l'encadrement

$$\frac{1}{k} - \frac{1}{k+1} \leqslant \frac{1}{k^2} \leqslant \frac{1}{k-1} - \frac{1}{k}.$$

2. En déduire que pour tout $n \ge 2$, on a l'encadrement

$$\frac{3}{2} - \frac{1}{n+1} \leqslant S_n \leqslant 2 - \frac{1}{n}.$$

- 3. En déduire que la suite $(S_n)_{n \ge 1}$ est majorée.
- 4. Étudier la monotonie de la suite $(S_n)_{n \ge 1}$.
- 5. En déduire que la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge et que

$$\frac{3}{2} \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^2} \leqslant 2.$$

Exercice 7 – On considère la série numérique $\sum_{n\geqslant 1}\frac{1}{\sqrt{n}}$, et pour tout entier $n\in\mathbb{N}$, on note S_n sa n-ième somme partielle.

1. Montrer que

$$\forall k \in \mathbb{N}^*, \quad \sqrt{k+1} - \sqrt{k} \leqslant \frac{1}{\sqrt{k}}.$$

<u>Indication</u>: Multiplier par l'expression conjuguée $\sqrt{k+1} + \sqrt{k}$.

2. En déduire que

$$\forall n \in \mathbb{N}^*, \quad \sqrt{n+1}-1 \leqslant S_n.$$

3. La série $\sum_{n\geqslant 1} \frac{1}{\sqrt{n}}$ est-elle convergente?

Exercice 8 – Pour $n \ge 1$, on pose $S_n = \sum_{k=2}^{n} \frac{4k^3}{3k^4 - 1}$.

- 1. Montrer que pour tout $k \ge 1$, $\frac{4k^3}{3k^4 1} \ge \frac{4}{3k}$.
- 2. En déduire que la série $\sum_{n\geqslant 1} \frac{4n^3}{3n^4-1}$ est divergente.

Exercice 9 – Le but de cet exercice est de prouver que la série $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n}$ converge mais ne converge pas absolument.

- 1. Pour tout n de \mathbb{N}^* , on pose $S_n = \sum_{k=1}^n \frac{1}{k}$.
 - (a) Soit k un élément de \mathbb{N}^* . Justifier que l'on a

$$\forall t \in [k, k+1], \quad \frac{1}{t} \leqslant \frac{1}{k}.$$

(b) En déduire par intégration que pour tout k de \mathbb{N}^* , on a

$$\ln(k+1) - \ln(k) \leqslant \frac{1}{k}.$$

(c) En déduire par sommation que

$$\forall n \in \mathbb{N}^*$$
, $\ln(n+1) \leqslant S_n$.

- (d) Justifier que la série $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n}$ ne converge pas absolument.
- 2. Pour tout n de \mathbb{N}^* , on pose $T_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.
 - (a) Soit $n \in \mathbb{N}^*$ et $t \in [0, 1]$. Calculer $\sum_{k=1}^{n} (-t)^{k-1}$.
 - (b) En déduire que l'on a pour tout n de \mathbb{N}^* ,

$$T_n = \ln(2) - (-1)^n \int_0^1 \frac{t^n}{1+t} dt.$$

(c) Montrer à l'aide du théorème des gendarmes que l'on a

$$\lim_{n \to +\infty} \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t = 0.$$

(d) En déduire que

$$\lim_{n \to +\infty} \left((-1)^n \int_0^1 \frac{t^n}{1+t} \, dt \right) = 0.$$

(e) Justifier que la série $\sum_{n\geqslant 1}\frac{(-1)^{n_1}}{n}$ converge et que sa somme est donnée par

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln(2).$$