

An Independent Research Project in Partial Fulfilment of the Requirements for the Degree MSc Environmental Data Science and Machine Learning

Georgia Ray

## Table of contents

01

Background

The Problem Facing Voluntary Carbon Market

03

Post-Processing & Results

Custom Models and other post-processing steps for final predictions

02

ITC Delineation and Species Segmentation



Using a custom SEDD and fine-tuned DeepForest Model

04

Discussion

Implications of the Research, Future Work, & Limitations

# **01**Background



Carbon offset credit



CO<sub>2</sub> Sequestration

Reforestation of Preventative Deforestation Funded to generate credit **Carbon Credit** 



**GHG Emissions** 

Permitted sources buy credit to meet regulatory requirements or voluntary net zero goals

\*Visualization inspired by similar chart from Blue Sky Analytics



## Fast Facts About the Voluntary Carbon Market



#### 70%

Amount of global, vegetationbased carbon storage attributed to forests

#### 4.7 million ha

Forest land was lost per year; equating over the studied 10-yearperiod to approximately the whole of Kenya

#### \$410 million

The cost of inaccurate carbon accounting of forests in California alone



## Study Area and Groundtruth

Used the ReforesTree Database provided by Reierson et al. for the purpose of developing Machine Learning solutions to the problem of carbon accounting:

- Six agroforestry carbon offsetting sites in the central coastal region of Ecuador
- Each site approximately 0.5 ha
- Dry tropical forest type
- Mavic 2 Pro drone with a resolution of 2cm per pixel
- Hand-gathered groundtruth measurements in Diameter at Breast Height (DBH), Aboveground Biomass (AGB), species type, and more

| Species<br>Name | Total ITCs | Percent ITCs |  |
|-----------------|------------|--------------|--|
| Cacao           | 2021       | 43.54%       |  |
| Musacea         | 1504       | 32.41%       |  |
| Guaba           | 597        | 12.87%       |  |
| Other           | 428        | 9.22%        |  |
| Mango           | 89%        | 1.92%        |  |





## SEDD Model – A Combined Encoder and Two Decoders

#### Shared Encoder

- ResNet18 (He et al., 2015) with 7x7 convolutions, max pooling, and 3x3 convolutional layers for feature extraction.
- Pre-trained on ImageNet, fully connected layers were removed, deeper layers fine-tuned.

#### Semantic Decoder

- DeepLabv3 decoder (Chen et al., 2018) using Atrous Spatial Pyramid Pooling (ASPP).
- 3x3 and 1x1 convolutions, batch normalization, and softmax activation to produce probability map.
- Loss calculated using Partial
   Weighted Categorical Focal Loss.

#### Distance Decoder

- 3x3 convolution, ReLU activation, and dropout (rate 0.65) to reduce overfitting.
- A 1x1 convolution refines the feature map, followed by a sigmoid activation to output normalized pixel distances (0-1).
- Loss calculated as MSE.

Final Loss

Combination of Semantic and Distance loss; either 1:1 or 2:1 favoring Semantic (termed S-SEDD model); S-SEDD model uses masking in semantic segmentation and DS-SEDD model does not.













Background

Musacea

Guaba Cacao Mango Otra Variedad





Flora Pluas RGB\_9

## Post-Processing Pipeline



SEDD Results – **Species Identification** 



DeepForest Results – ITC

Delineation



Combined ITC and Species
Prediction map



Diameter Model uses species and bounding box information to predict DBH



Five Custom
Allometric
Statistical Models
Predict AGB from
DBH and Species
Classification



## Diameter Model - XGBoost



## Custom Allometric Models R<sup>2</sup> Values

|         | Log Log | Linear | Exponential | Logarithmic | Polynomial | GAM  |
|---------|---------|--------|-------------|-------------|------------|------|
| Musacea | 1.0     | 0.99   | 0.99        | 0.97        | 1.0        | 1.0  |
| Cacao   | 1.0     | 0.99   | 0.98        | 0.95        | 1.0        | 1.0  |
| Guaba   | 1.0     | 0.97   | 0.98        | 0.93        | 1.0        | 1.0  |
| Mango   | 1.0     | 1.0    | 1.0         | 0.99        | 1.0        | 1.0  |
| Other   | 0.87    | 0.86   | 0.92        | 0.71        | 0.93       | 0.98 |



## Species Matching Results (DS-SEDD Model)

|              | Actual Carbon | Predicted Carbon | Absolute<br>Difference | Relative Difference |
|--------------|---------------|------------------|------------------------|---------------------|
| Test Tile 1  | 46.16         | 36.73            | 9.43                   | 0.2                 |
| Test Tile 2  | 16.6          | 15.84            | 0.77                   | 0.05                |
| Test Tile 3  | 6.64          | 6.74             | 0.09                   | 0.01                |
| Test Tile 4  | 104.34        | 94.44            | 9.91                   | 0.09                |
| Test Tile 5  | 88.1          | 68.13            | 19.97                  | 0.23                |
| Test Tile 6  | 157.86        | 131.07           | 26.79                  | 0.17                |
| Test Tile 7  | 93.55         | 71.39            | 22.16                  | 0.24                |
| Test Tile 8  | 16.69         | 20.84            | 4.16                   | 0.25                |
| Test Tile 9  | 87.63         | 113.82           | 26.19                  | 0.3                 |
| Test Tile 10 | 134.21        | 147.01           | 12.8                   | 0.1                 |
| Test Tile 11 | 168.7         | 171.92           | 3.23                   | 0.02                |
| Test Tile 12 | 17.85         | 18.28            | 0.42                   | 0.02                |
| Test Tile 13 | 16.29         | 24.13            | 7.84                   | 0.48                |
| Test Tile 14 | 0.53          | 2.95             | 2.42                   | 4.6                 |
| Test Tile 15 | 106.47        | 99.9             | 6.57                   | 0.06                |
| Test Tile 16 | 160.42        | 166.26           | 5.84                   | 0.04                |
| Total        | 1222.04       | 1189.45          | 32.59                  | 0.02                |



### Discussion & Comparison of Results

- Challenge comparing to non-ITC research.
  - Relative error comparisons used to avoid data leakage.
- 2% relative error across test set; outperforms or matches previous methods, including those requiring more data (e.g., manually collected DBH and species metrics).
- The approach is lightweight, relying only on RGB imagery, showing that deep learning and statistical models can accurately estimate individual tree-level carbon sequestration from aerial images.

| Site<br>Number | GFW<br>2019 | Spawn<br>2020 | Santoro<br>2021 | Reierson<br>2022 |
|----------------|-------------|---------------|-----------------|------------------|
| 1              | 10.3        | 9.5           | 0.75            | 0.13             |
| 2              | 5.6         | 5.8           | 0.2             | 0.46             |
| 3              | 1.5         | 2.3           | 0.9             | 0.5              |
| 4              | 0.8         | 15.4          | 1.4             | 0.27             |
| 5              | 4.2         | 4.1           | 0.0             | 0.27             |
| 6              | 1.5         | 1.91          | 0.33            | 0.25             |
| Total          | 4.0         | 5.25          | 0.34            | 0.02             |





## Limitations & Future Work

#### Data Accessibility

RGB aerial data was chosen for its availability in lower-income areas, though using multispectral or LiDAR data could improve DBH approximation.

### Scalability Challenge

High-performance computing (HPC) requirements for model evaluation limit scalability; future work may focus on a more efficient model for less powerful infrastructure.

## Sparse and Unbalanced Data

Future Efforts could explore more techniques to remedy this.



### Resources

- Introduction to Voluntary Carbon Market, *Blue Sky Analytics*, <a href="https://blueskyhq.io/blog/introduction-to-voluntary-carbon-markets">https://blueskyhq.io/blog/introduction-to-voluntary-carbon-markets</a>
- LA ROSA, L. E. C., SOTHE, C., FEITOSA, R. Q., DE ALMEIDA, C. M., SCHIMALSKI, M. B. & OLIVEIRA, D. A. B. 2021. Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 179, 35-49.
- WEINSTEIN, B. G., MARCONI, S., AUBRY-KIENTZ, M., VINCENT, G., SENYONDO, H. & WHITE, E. P. 2020. DeepForest: A Python package for RGB deep learning tree crown delineation. Methods in Ecology and Evolution, 11, 1743-1751.
- HE, K., ZHANG, X., REN, S. & SUN, J. 2015. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
- REIERSEN, G., DAO, D., LÜTJENS, B., KLEMMER, K., AMARA, K., STEINEGGER, A., ZHANG, C. & ZHU, X. 2022. ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 12119-12125.
- CHEN, L. C., PAPANDREOU, G., KOKKINOS, I., MURPHY, K. & YUILLE, A. L. 2018. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848.

