COMPUTATIONAL MICROMAGNETICS WITH

https://tinyurl.com/solskymag22-ubermag

¹University of Southampton, Southampton, United Kingdom

²Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

³Imperial College, London, United Kingdom

MOTIVATION: MICROMAGNETIC RESEARCH ENVIRONMENT UBERMAG

- Micromagnetic simulations are important
- Vision: simplify micromagnetic research
 - focus on the researchers and their time
 - make research faster & more convenient
 - and more re-producible and re-usable
 - build on existing micromagnetic simulators (OOMMF, mumax3)
 - Consider only finite difference micromagnetic solvers

WHAT CAN BE DONE WITH UBERMAG? USAGE EXAMPLES

-1.00

100

-100

x (nm)

Domain wall skyrmion conversion

-50

 $x (M(m)^{-1})$

50

π/2

Angle (rad.)

3π/2

2π

SEPARATION OF CONCERNS IN UBERMAG

WHAT IS UBERMAG - WORKFLOW CHART

THIS WORKSHOP — MANY CONCEPTS AND LITTLE TIME

- Rapid tour involving
 - Ubermag concepts
 - Jupyter Notebook (executable document hosted in browser)
 - Python (a programming language)
 - Computational micromagnetics and experimental magnetism
- Can only provide an introduction and overview
- ▶ But: questions are welcome any time let's make this interactive!

WORKSHOP MATERIALS — SLIDES, EXAMPLES, POINTERS

https://tinyurl.com/solskymag22-ubermag

- Outline today
 - Welcome (Hans Fangohr)
 - Small Ubermag example from scratch: vortex (Martin Lang)
 - Application examples Ubermag (Sam Holt)
 - Closing (Hans Fangohr)

SURVIVED UBERMAG WORKSHOP - FURTHER RESOURCES

- Ubermag home page (https://ubermag.github.io/) provides
 - Getting started tutorials
 - Variety of examples (see list at the right)
 - Github Help issues
 - Mailing list "ubermag-users"
 - Ubermag team at this meeting

Workshop materials:

https://tinyurl.com/solskymag22-ubermag

Examples

The notebooks show in this section are all tailored to phosolve them using Ubermag. If you are new to ubermag you started which will give a gentle introduction into all the putry to be concise and only cover one use case. For a most features please refer to the Package documentation and

Standard problem 3

Standard problem 4

Standard problem 5

FMR standard problem

Deriving energy values

Calculating a stray field using an airbox method

Skyrmion in a disk

Field operations 2

Simulation at finite temperature

Fixed subregions

Hysteresis simulations

Multiple energy terms of the same class

Negative exchange energy constant

Periodic boundary conditions

RKKY energy term

Sine-hysteresis

Both spatially and time varying field

Spatially varying parameters 1

Spatially varying parameters 2

Time-varying field

Time-dependent fields and currents

DISCUSSION UBERMAG DESIGN

- Ubermag is embedded [1] in Python programming language
 - Full power of Python language available
 - Access to growing set of data analysis libraries

- Modular design of Ubermag
 - Can use components independently; for example mag2exp

DISCUSSION UBERMAG DESIGN

- Ubermag is embedded in Jupyter notebook [2]:
 Mixing simulation and analysis commands with output and annotation:
 - Supports better reproducibility and re-usability [3]
 - Zero-install tutorials / demos / reproducible publications using "Binder" (<u>Example: vortex</u>). Need only web browser locally.
- [2] Marijan Beg etal. Ubermag: IEEE TransMag, vol. 58, no. 2, pp. 1-5, Art no. 7300205, https://doi.org/10.1109/TMAG.2021.3078896 (2022)
- [3] Marijan Beg etal, Computing in Science & Engineering 23, 36-46, https://doi.org/10.1109/MCSE.2021.3052101 (2021)

AVOID DUPLICATION

micromagneticmodel

- energy equation
- dynamics equation

problem definition

discretisedfield

- sample shape
- discretization
- initial magnetization

numerical solving

oommfc

numerical solving with OOMMF

mumax3c

numerical solving with Mumax³

mag2exp

simulation of experimental measurements

micromagneticdata

analysis of spatially resolved data

ubermagtable

analysis of scalar data (e.g. average magnetization)

MACHINE READABLE DEFINITION OF PHYSICS PROBLEM

micromagneticmodel

- energy equation
- dynamics equation

problem definition

discretisedfield

- sample shape
- discretization
- initial magnetization

AVOID DUPLICATION

numerical solving

oommfc

numerical solving with OOMMF

mumax3c

numerical solving with Mumax³

mag2exp

simulation of experimental measurements

data analysis

micromagneticdata

analysis of spatially resolved data

ubermagtable

analysis of scalar data (e.g. average magnetization)

MACHINE READABLE DEFINITION OF PHYSICS PROBLEM

micromagneticmodel

- energy equation
- dynamics equation

problem definition

discretisedfield

- sample shape
- discretization
- initial magnetization

AVOID DUPLICATION

numerical solving

oommfc

numerical solving with OOMMF

mumax3c

numerical solving with Mumax³

mag2exp

simulation of experimental measurements

micromagneticdata

analysis of spatially resolved data

ubermagtable

analysis of scalar data (e.g. average magnetization)

AUTOMATIC TRANSLATION FOR COMPUTATIONAL BACKENDS

MACHINE READABLE DEFINITION OF PHYSICS PROBLEM

micromagneticmodel

- energy equation
- dynamics equation

problem definition

discretisedfield

- sample shape
- discretization
- initial magnetization

AVOID DUPLICATION

numerical solving

oommfc

numerical solving with OOMMF

mumax3c

numerical solving with Mumax³

SIMULATION OF EXPERIMENTAL MEASUREMENTS

mag2exp

simulation of experimental measurements

data analysis

analysis of spatially resolved data

ubermagtable

analysis of scalar data (e.g. average magnetization)

AUTOMATIC TRANSLATION FOR COMPUTATIONAL BACKENDS

MACHINE READABLE DEFINITION OF PHYSICS PROBLEM

micromagneticmodel

- energy equation
- dynamics equation

AVOID DUPLICATION

SIMULATION OF EXPERIMENTAL MEASUREMENTS

mag2exp

simulation of experimental measurements

EXECUTABLE NOTEBOOK DOCUMENT <-> WORKFLOW

problem definition

numerical solving

data analysis

micromagneticdata

analysis of spatially resolved data

- sample shape
- discretization
- initial magnetization

oommfc

numerical solving with OOMMF

mumax3c

numerical solving with Mumax³

ubermagtable

analysis of scalar data (e.g. average magnetization)

AUTOMATIC TRANSLATION FOR COMPUTATIONAL BACKENDS

GET INVOLVED?

- Opportunities for joint work, for example:
 - Tailor Ubermag for your research problem
 - Integrate your simulation engine into Ubermag framework
 - Make your research more reproducible &
 - Contribute to open source tools used by the community

Get in touch for exploration of options (hans.fangohr@mpsd.mpg.de)

ACKNOWLEDGEMENTS

- Ryan A. Pepper, Thomas Kluyver, James Loudon,
 Thomas Hicken, David Cortés Ortuño, Jeroen Mulkers,
 Jonathan Leliaert
- Financial support
 - ▶ EPSRC Programme grant on Skyrmionics (EP/N032128/1)
 - ▶ Horizon 2020 European Research Infrastructure OpenDreamKit project (Project ID 676541).
 - Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) Project No. G098917N

Workshop materials: https://tinyurl.com/solskymag22-ubermag

Contact: hans.fangohr@mpsd.mpg.de

RELEVANT REFERENCES

- Ubermag references:
 - Marijan Beg, Ryan A. Pepper, Hans Fangohr, *User interfaces for computational science: a domain specific language for OOMMF embedded in Python*, AIP Advances 7, 056025, https://doi.org/10.1063/1.4977225 (2017)
 - Marijan Beg, Martin Lang and Hans Fangohr, *Ubermag: Toward More Effective Micromagnetic Workflows*, IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-5, Feb. 2022, Art no. 7300205, https://doi.org/10.1109/
 TMAG.2021.3078896 (2022)
- Publications relating to Jupyter Notebooks for science:
 - ▶ Hans Fangohr, Marijan Beg, etal, *Data exploration and analysis with Jupyter notebooks*, Proceedings of the 17th International Conference on Accelerator and Large Experimental Physics Control Systems ICALEPCS2019, TUCPR02, https://jacow.org/icalepcs2019/papers/tucpr02.pdf (2020)
 - Marijan Beg, Juliette Belin, Thomas Kluyver, Alexander Konovalov, Min Ragan-Kelley, Nicolas Thiery, Hans Fangohr *Using Jupyter for reproducible scientific workflows*, Computing in Science & Engineering 23, 36-46, https://doi.org/10.1109/MCSE.2021.3052101 (2021)