Glossary of Z notation

Article i	n Information and Software Technology · May 1995	
DOI: 10.1016/0950-5849(95)90001-2		
CITATIONS		READS
4		4,439
1 author	:	
4.60	Jonathan Peter Bowen	
Val.	London South Bank University	
	565 PUBLICATIONS 7,926 CITATIONS	
	SEE PROFILE	

Glossary of Z notation

Names

a,b	identifiers
d,e	declarations (e.g., $a:A;b,:B$)
f,g	functions
m,n	numbers
p,q	predicates
s,t	sequences
x,y	expressions
A,B	sets
C,D	bags
Q,R	relations
S,T	schemas
X	schema text (e.g., d , $d \mid p$ or S)

Definitions

a == x	Abbreviated definition
$a ::= b \mid \dots$	Data type definition (or $a := b\langle\langle x \rangle\rangle $)
[a]	Introduction of a given set (or $[a,]$)
a_	Prefix operator
_ a	Postfix operator
a	Infix operator

Logic

true	Logical true constant
false	Logical false constant
$\neg p$	Logical negation
$p \wedge q$	Logical conjunction
$p \vee q$	Logical disjunction
$p \Rightarrow q$	Logical implication ($\neg p \lor q$)
$p \Leftrightarrow q$	$ \text{Logical equivalence } (p \Rightarrow q \ \land \ q \Rightarrow p) $
$\forall X \bullet q$	Universal quantification
$\exists X \bullet q$	Existential quantification
$\exists_1 X \bullet q$	Unique existential quantification
$\mathbf{let}\ a ==$	$x; \dots \bullet p$ Local definition

Sets and expressions

x = y	Equality of expressions
$x \neq y$	Inequality $(\neg (x = y))$
$x \in A$	Set membership
$x \notin A$	Non-membership ($\neg (x \in A)$)
Ø	Empty set
$A \subseteq B$	Set inclusion
$A \subset B$	Strict set inclusion ($A \subseteq B \land A \neq B$)
$\{x, y, \ldots\}$	Set of elements
$\{X \bullet x\}$	Set comprehension
$\lambda X \bullet x$	Lambda-expression – function
$\mu X \bullet x$	Mu-expression – unique value

let $a == x; \dots \bullet y$ Local definition		
if p then x else y Conditional expression		
(x, y, \ldots)	Ordered tuple	
$A \times B \times \dots$	Cartesian product	
$\mathbb{P} A$	Power set (set of subsets)	
$\mathbb{P}_1 A$	Non-empty power set	
$\mathbb{F} A$	Set of finite subsets	
$\mathbb{F}_1 A$	Non-empty set of finite subsets	
$A \cap B$	Set intersection	
$A \cup B$	Set union	
$A \setminus B$	Set difference	
$\bigcup A$	Generalized union of a set of sets	
$\bigcap A$	Generalized intersection of a set of sets	
first x	First element of an ordered pair	
$second \ x$	Second element of an ordered pair	
#A	Size of a finite set	

Relations

$A \longleftrightarrow B$	Relation ($\mathbb{P}(A \times B)$)
$a \mapsto b$	Maplet ((a, b))
$\operatorname{dom} R$	Domain of a relation
$\operatorname{ran}R$	Range of a relation
$\operatorname{id} A$	Identity relation
Q $;$ R	Forward relational composition
$Q \circ R$	Backward relational composition ($R {}^{\circ}_{ 9} Q$)
$A \triangleleft R$	Domain restriction
$A \triangleleft R$	Domain anti-restriction
$A \rhd R$	Range restriction
$A \triangleright R$	Range anti-restriction
R(A)	Relational image
$iter\ n\ R$	Relation composed n times
\mathbb{R}^n	Same as $iter n R$
R^{\sim}	Inverse of relation (R^{-1})
R^*	Reflexive-transitive closure
R^+	Irreflexive-transitive closure
$Q\oplus R$	Relational overriding ($(\operatorname{dom} R \vartriangleleft Q) \cup R$)
a R b	Infix relation

Functions

$A \longrightarrow B$	Partial functions
$A \longrightarrow B$	Total functions
$A \rightarrowtail B$	Partial injections
$A \rightarrowtail B$	Total injections
$A +\!$	Partial surjections
$A \longrightarrow B$	Total surjections
$A \rightarrowtail B$	Bijective functions
$A \twoheadrightarrow\!$	Finite partial functions
$A \rightarrowtail B$	Finite partial injections
f x	Function application (or $f(x)$)

Numbers

Z	Set of integers
N	Set of natural numbers $\{0, 1, 2,\}$
\mathbb{N}_1	Set of non-zero natural numbers $(\mathbb{N}\setminus\{0\})$
m + n	Addition
m-n	Subtraction
m*n	Multiplication
$m \; div \; n$	Division
$m \bmod n$	Modulo arithmetic
$m \leq n$	Less than or equal
m < n	Less than
$m \geq n$	Greater than or equal
m > n	Greater than
succ n	Successor function $\{0 \mapsto 1, 1 \mapsto 2,\}$
$m \dots n$	Number range
min A	Minimum of a set of numbers

Maximum of a set of numbers

Sequences

max A

$\operatorname{seq} A$	Set of finite sequences
$seq_1 A$	Set of non-empty finite sequences
iseq A	Set of finite injective sequences
$\langle \rangle$	Empty sequence
$\langle x, y, \ldots \rangle$	Sequence $\{1 \mapsto x, 2 \mapsto y,\}$
$s \widehat{} t$	Sequence concatenation
$^{\smallfrown}/s$	Distributed sequence concatenation
$head\ s$	First element of sequence ($s(1)$)
$tail\ s$	All but the head element of a sequence
$last\ s$	Last element of sequence ($s(\#s)$)
$front\ s$	All but the last element of a sequence
$rev\ s$	Reverse a sequence
squashf	Compact a function to a sequence
$A \mid s$	Sequence extraction ($squash(A \lhd s)$)
$s \mid A$	Sequence filtering ($squash(s > A)$)
s prefix t	Sequence prefix relation ($s \cap v = t$)
\boldsymbol{s} suffix \boldsymbol{t}	Sequence suffix relation ($u \cap s = t$)
s in t	Sequence segment relation ($u \cap s \cap v = t$)
$disjoint\ A$	Disjointness of an indexed family of sets
${\cal A}$ partition	B Partition an indexed family of sets

Bags

bag A	Set of bags or multisets $(A \longrightarrow \mathbb{N}_1)$
	Empty bag
$\llbracket x,y,\ldots rbracket$	Bag $\{x \mapsto 1, y \mapsto 1, \ldots\}$
$count\ C\ x$	Multiplicity of an element in a bag
$C \sharp x$	Same as $count C x$
$n \otimes C$	Bag scaling of multiplicity
$x \in C$	Bag membership
$C \sqsubseteq D$	Sub-bag relation
$C \uplus D$	Bag union

$C \cup D$	Bag difference
$items\ s$	Bag of elements in a sequence

Schema notation

Vertical schema. New lines denote ';' and '∧'. The schema

name and predicate part are optional. The schema may subsequently be referenced by name in the document.

Axiomatic definition.

The definitions may be non-unique. The predicate part is optional. The definitions apply globally in the document.

[a,...] Generic definition.

 $\frac{d}{p}$ The generic parameters are optional. The definitions must be unique. The definitions apply globally in the document.

S = [X] Horizontal schema

[T;...|...] Schema inclusion

z.a Component selection (given z:S)

 $\begin{array}{ll} \theta S & \text{Tuple of components} \\ \neg S & \text{Schema negation} \\ \text{pre } S & \text{Schema precondition} \end{array}$

 $S \wedge T$ Schema conjunction $S \vee T$ Schema disjunction

 $S \Rightarrow T$ Schema implication $S \Leftrightarrow T$ Schema equivalence

 $S \setminus (a, ...)$ Hiding of component(s) $S \upharpoonright T$ Projection of components $S \stackrel{\circ}{\circ} T$ Schema composition (S then T)

 $S \gg \ T \quad \text{ Schema piping (S outputs to T inputs)}$

S[a/b,...] Schema component renaming (b becomes a, etc.)

 $\forall \ X \bullet S$ Schema universal quantification $\exists \ X \bullet S$ Schema existential quantification

 $\exists_1 X \bullet S$ Schema unique existential quantification

Conventions

a?	Input to an operation
a!	Output from an operation
a	State component before an operation
a'	State component after an operation
S	State schema before an operation
S'	State schema after an operation
ΔS	Change of state (normally $S \wedge S'$)
ΞS	No change of state (normally $[S \wedge S' \theta S = \theta S']$)

Jonathan P. Bowen

Oxford University Computing Laboratory Wolfson Building, Parks Road, OXFORD OX1 3QD, UK Email: Jonathan.Bowen@comlab.ox.ac.uk