- 86. Recorde a relação de equivalência σ , em \mathbb{N}^2 , do exercício 67 (definida por $(x, y) \sigma(x', y') \Leftrightarrow$ y = y').
 - a) A relação de \mathbb{N}^2/σ para \mathbb{N} constituída por todos os pares $([(x,y)]_{\sigma}, x+y)$, com $x,y\in\mathbb{N}$, é funcional?
 - b) Existe uma função $f: \mathbb{N}^2/\sigma \to \mathbb{N}$? (Ou: esta função está bem definida?) $[(x,y)]_{\sigma} \mapsto 2y$
- 87. Seja $g: \mathbb{R} \to \mathbb{R}$ uma função definida por $g(x) = x^2 1$. Determine

- a) $g(\{-1,0,1\})$ b) $g(]-\infty,0[)$ c) $g(\mathbb{R})$ d) $g^{-1}(\{0\})$ e) $g^{-1}(]-\infty,0[)$
- 88. Considere as seguintes funções

Determine:

- a) f(]-1,2]) b) $f(\mathbb{R}_{0}^{+})$
- c) $f^{-1}(\{0,1,2\})$ d) $f^{-1}([0,1])$

- e) $g(\{4,6,9\})$ f) $g(\{x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} : x = 3y\})$ g) $g^{-1}(\{2\})$ h) $g^{-1}(\{3,4,5\})$
- 89. Sejam f, g e h as funções de \mathbb{N}_0 para \mathbb{N}_0 definidas por

$$f(n) = n + 1$$
, $g(n) = 2n$ e $h(n) = \begin{cases} 0 & \text{se } n \text{ \'e par} \\ 1 & \text{se } n \text{ \'e impar} \end{cases}$.

Determine

- a) $f \circ f$ b) $f \circ g$ c) $g \circ f$ d) $g \circ h$ e) $f \circ (g \circ h)$

- 90. Sejam $f: A \to B$, $g: B \to C$ e $h: C \to D$ funções. Mostre que $f \circ (g \circ h) = (f \circ g) \circ h$.
- 91. Para cada $n \in \mathbb{Z}$, seja $f_n : \mathbb{Z} \to \mathbb{Z}$ a função definida por $f_n(x) = nx$. Indique todos os valores de *n* para os quais
 - a) f_n é injetiva;
 - b) f_n é sobrejetiva.
- 92. Considere as funções seguintes:

$$f_1: \mathbb{N} \rightarrow \mathbb{N}$$
 $x \mapsto x+1$

$$f_1: \mathbb{N} \longrightarrow \mathbb{N}$$
 $f_2: \mathbb{Z} \longrightarrow \mathbb{Z}$ $x \mapsto x+1$ $x \mapsto x+1$

$$f_3: \mathbb{Z} \to \mathbb{N}$$
$$x \mapsto |x|+1$$

$$f_4: \mathbb{N} \longrightarrow \mathbb{N}$$

 $x \mapsto \operatorname{mdc}(x, 6)$

$$\begin{array}{ccccc} f_4: \mathbb{N} & \to & \mathbb{N} & & f_5: \mathbb{Z} & \to & \mathbb{N} \\ x & \mapsto & \mathrm{mdc}\,(x,6) & & x & \mapsto & \left\{ \begin{array}{cccc} -2x & \mathrm{se}\,\, x < 0 \\ 2x + 1 & \mathrm{se}\,\, x \geq 0 \end{array} \right. \end{array}$$

- a) Diga, justificando, quais destas funções são
 - i) injetivas.
- ii) sobrejetivas.
- b) Para cada função bijetiva, determine a respetiva função inversa.
- 93. Seja $f: A \to B$ uma função. Mostre que:
 - a) f é injetiva se e só se para cada $X \subseteq A$ se tem $X = f^{-1}(f(X))$.
 - b) f é sobrejetiva se e só se para cada $Y \subseteq B$ se tem $f(f^{-1}(Y)) = Y$.
 - c) $f(X \cap Y) = f(X) \cap f(Y)$ para quaisquer $X, Y \in \mathcal{P}(A)$ se e só se f é injetiva.

14

- 94. Sejam A, B, C conjuntos e $f: A \rightarrow B$ e $g: B \rightarrow C$ funções. Mostre que
 - a) se f e g são injetivas, então $g \circ f$ é injetiva.
 - b) se f e g são sobrejetivas, então $g \circ f$ é sobrejetiva.
 - c) se f e g são bijetivas, então $g \circ f$ é bijetiva e $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 95. Sejam A, B, C conjuntos e f, h_1 , $h_2:A\to B$ e g, k_1 , $k_2:B\to C$ funções. Mostre que
 - a) se g é injetiva e $g \circ h_1 = g \circ h_2$, então $h_1 = h_2$.
 - b) se f é sobrejetiva e $k_1 \circ f = k_2 \circ f$, então $k_1 = k_2$.
- 96. Sejam $A \in B$ conjuntos e $f: A \to B \in g: B \to A$ funções tais que $f \circ g = id_B$. Mostre que
 - a) *f* é sobrejetiva.
 - b) g é injetiva.
 - c) g é sobrejetiva se e só se f é injetiva.
- 97. Em cada caso diga, justificando, se os conjuntos indicados são equipotentes.
 - a) {1, 2, 5, 8} e {azul, verde, amarelo}.
 - b) $\{1, 3, 5, 7\}$ e $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$.
 - c) $2\mathbb{N} \in 3\mathbb{Z}$. [Nota: $2\mathbb{N} = \{2n \mid n \in \mathbb{N}\}; 3\mathbb{Z} = \{3n \mid n \in \mathbb{Z}\}$]
- 98. Sejam A, B, C, D conjuntos. Prove que
 - a) se $A \sim B$, então $\mathcal{P}(A) \sim \mathcal{P}(B)$.
 - b) $A \times B \sim B \times A$.
 - c) se $A \sim C$ e $B \sim D$, então $A \times B \sim C \times D$.
- 99. Sejam A um conjunto e $\{0,1\}^A$ o conjunto de todas as funções de A em $\{0,1\}$. Para cada subconjunto B de A, considere a função

$$\chi_B: A \to \{0,1\}$$

$$x \mapsto \begin{cases} 1 & \text{se } x \in B \\ 0 & \text{se } x \notin B \end{cases},$$

chamada função característica de B em A.

- a) Mostre que
 - i) para quaisquer $B, C \subseteq A$, se $\chi_B = \chi_C$, então B = C.
 - ii) para cada função $f: A \to \{0,1\}$, se $B_f = \{x \in A \mid f(x) = 1\}$, então tem-se $f = \chi_{B_f}$.
- b) Conclua que $\mathcal{P}(A) \sim \{0,1\}^A$.
- 100. Sejam B um conjunto e $B^{\{1,2\}}$ o conjunto de todas as funções de $\{1,2\}$ para B. Mostre que $B^{\{1,2\}} \sim B \times B$.