Date Day LONSTRAINT SATISFACTION PROBLEM -> Graph Coloring Problem or we need to reduce this to CSP Vasiables: WA, NT, G, NSW, V, SA, T Domains : Diz & RediBlue , Green y Constraints: Adjacent regions must have cliff colors
eq: WA = NT 08 passe correctpains with duje (WA, NT) k light eg: WA 7 NT 08 (WA, NT) & { (red, green), (red, thue), (the red), (blue, red), (green, blue) (Stue, green) } Page No.

> Job Scheduling Problem

Us Consider the Problem of scheduling the assembly of cas. There are 15 tasks: Install andes (front & back), offin all four wheels (sight & left, front & back), tighten nuts for each wheel, affin hub caps and inspect final assembly.

Variables = & Anlex, Anles, Wheeler, Wh Nutser, Nutser, Nutser, Nutser, Caper, Caper, Caper, Cap 18, Anspect 3

- NOW WE DEPO

Nhow we stope

Whenever a task T. Locause before Tz & T. takes

time duration of to complete then,

T, + d. \leq Tz (constraint representation)

i) Ander have to be place before the wheels are put on 2 it takes 10 min to install an axel, then Anlex + 10 < Wheeler; Anlex + 10 < Wheeler

Ander + 10 < kheel is ; Anders + 10 < Wheel is

G presedence constraint

in For each wheel we must affix the wheel (Imin), then tighten the neits (2min) & finally attach the hubicab (1min) Wheel RF+1 < Nuts RF; Nuts RF+2 < Cap RF wheel es+1 < Nuts RB; Nuts RB+2 < Cap RB

in we have 4 workers to install wheels but they have to share one took that helps but the arche.

(Anlex+10 \ Anle B) or (Anlex+10 \ Anlex)
Gaignnetive constraint

EW) Anspection comes last à takes 3 min.

Sall tasks Vand their durations

v) Whole assembly to be done in 30 min

Domain = 9 0,1,2-. 334

130 is lige uni diga q k 3 min to inspection mein lagne hi hai

- · Variations in Variables
 - Variables having.
 - → Discrete, finite domains >> Map coloring, Scheduling with time limits, 8-Queens problem where domain for each queen is \$1-233
- -> Discrete, infinite domains >> set of integers or strings.

 Not time limits in job scheduling problem.
- → Continuous domains => Scheduling of experiments on
 the Hubble Telescope requires very precise timings of
 observation.
- · Variations en Constraints
 - → Unary constraint ⇒ Single variable is involved in mentioning
 the constraint like (Southwales ≠ green)
 - Binary constraint => Two variables are involved

 (NA + NT)

 more than
 - -> Higher Order Constraints => Constraint having asbitary no-of variables ((x,14,27, X < 4 < 2 or x 7 4 > 2)
- > Preference (soft) constraint > Constraint that is not necessary to Page No. Satisfy. But it is good if satisfied

-, Global Constraint => Constraint having arbitary no of variables

Alloliff (X, Y, Z), means X, Y, Z all must have all values

an cryparithmetic all de variable must have diff values

For Alloliff (F, T, U, W, R, O)

TWO

TWO

A Binary CSP is one with only many & binary constraints and constraints and constraint graph

-> Constraint Propagation:

Using the constraints to reduce the no-of legal ratues for a variable.

Ridomain values

Node Consistency: Agr. has graph hi node par unavy constraint satisfy hosha how to it means that mode variable is node-consistent.

eg: (SA ≠ green) so we now domain for SA is pred, blue?

A graph is node consistent if every variable in the graph is node consistent.

· Arc Consistent: A variable in a CSP is arc-consistent if every value in its domain satisfies binary constraint.

Assed Mable Asgress Baxed Bables Bagres - Eared has note par single versiable assignment leange Day - Age hum simple DPS (backbracking) se CSP bo solve leverge than it would be make nid leaf noder e or 'n' no of variables. -> 9 ske thosa kam kone we use single vastable assignment. And this DPS for CSP with single varsiable assignment is called backtracking Search > Nodes is high kam kashe bez esp er cumudative agr B ko phele red hojaye or phi A les uske bood green Ya Ako phele green ho or Boks bad mein redo Us se parq nhi pasta. -> Backtracking search to or improve time to luge one can by checking pMRV, degree heuristic - Which variable should be assigned next? (variable order) - In what order domains values should be bried/600 com me detect failure early? G. Forward checking > Arc consistency

Degree Heuristic -> MCV (Most constraining variable)

Date_ Day · Minimum Remaining Natures (MRV) (Variable Ordering) -> Choose variable with fenest legal mover. Co Agr WA ha red assign kirdia to now check he sabse kam domain values kis k paar bachi hai like NT -> blue, green, SA -> blue, green (boogi sab le boars)

Ab agy fie hofage to degree heuristic -> Most constraining variable

delchenge.

Greet variable involved in largest no-y constraints on other

to Choose one which has higher degree. unassigned variables assign SA > blue. so assign SA -> blue. His NT & paas cabse ham option hai le 1 so assign NT -> green · Least Lonstraining Nalue: (Value Ordering) Le est value choose kani hoù jo boagi unassinged vasiable Ro K Lye zyada se zyada options leave kre 4 Agr WA to red & then NT -> green now als humein agr Q Ko Color dena hai to him selfblue de salte hai. Het sed dia to SA le poarte aptions semaining agy blue dia 2 SA k paas O option senergo sour gre 0 - red.

6 Whenever we assign a value we need to figure out now · Forward Checking that which values are now not possible 4 keep brack of remaining legal values for unassigned voricibles. 4 Terminate search when any variable how no legal values. V SA NSW WA NT Q RBG \$86 RBG RBG RB G RBG &BG RBG RBG RBG RBG RAG R RBA RBG XBG RBG 2 R LBA (G) R BG RB (XBA) PBG RXX G 3 R ZBA iske saake colors Khatam So none vage is skep mein are consistency check where to failure detect hojata. bez ne detect failure & from this state.

· Arc Consistency

- Age hum constraints blu two unassigned vorsiables
but check restein har value assign kerne k board to
or jilli failure detect hojayega.

The check are consistency of graph thom we
can detect failures early.

Page No.____

Date
X -> Y (an axc X TO Y) is consistent if)
if for every value of of in X there is some
value of y in Y. there is some
mean agr et vastable mein blue assign terdia to doosre
mein green, red hona zaroori hai.
NSW SA
RB B
it is arc consist because SA methjo blue hai whee live NSW mein red choos les sakte hai
NSW SA
RB B
Not are consistent because Nsw mein ked 12 lige to SA mein blue hai lekn NSW mein jo blue hai weke lige SA mein koi color
value cont be assign.
Agy x k uyl 4 nhi hai to x lo semove
Rødengl.

Date	Day
e -> each arc takes Old2) to ch	neek (doosre element se
	compaire know the .
· AC-3 Algorithm	-B
(A) -	B 8×12,3,44
- Sabse phele tamome axcs Europy 42	B 9/12,3,44
la a mast property.	
	@ S.V. 213,43
Charles BXA BXC CXB AXB insexted	
ugain	
(A-B ko pup koenge or arc-consistency	Check krenge
\$ 4CB B \$ 1,2,3,43	
4 k lige B nein ko value nhi	
agr reist variable lei domain shrink hort doorse variable le scath ho or wo	Queue mein nhi hai
to Onem mein insert kirdenge.	
2 B-A B = A	
EX 213,43 F11.2139	
B shrink hoa or B kei C k sac queue main mojood hai.	ath arc how teken we
CB ki vo	alue shrink hoi or B E
(3) B-C (B) B <c (c)="" 12="" 500<br="" a="">4-B (D) 900 No est V</c>	th constraint how or
	-A mi insert koenge
3	1 144 1150

