Protocolo IP

- .Transmissão de datagramas sem conexão;
- .Não confiável;
- .Função de Roteamento;
- Define a unidade básica da transferência de dados;
- .Facilidade de fragmentação e remontagem de pacotes;
- .Controle de erros somente sobre seu cabeçalho;
- identificação da importância do datagrama e do nível de confiabilidade exigido;
- .Campo especial indicando qual protocolo de transporte a ser utilizado no nível superior;
- .Descarte e controle de tempo de vida dos pacotes.

CABEÇALHO

ÁREA DE DADOS

0 34 78 15 16 31

versão	IHL	tipo de serviço	comprimento total		
identificação			flags	offset de	fragmento
tempo d	e vida	protocolo	checksum do cabeçalho		
endereço de origem					
endereço de destino					
opções padding				padding	

-todos os campos do cabeçalho são de tamanho fixo, c/ exceção dos campos OPÇÕES e PADDING

Figura 2 - formato do datagrama IP

34

Protocolo IP Datagrama IP

78 31 tipo de serviço IHL comprimento total versão identificação flass offset de fragmento te -> IHL - Internet Header Length: indica o tamanho do cabeçalho em nº. de palavras de 32 bits, indicando o início do campo de dados օրբսեն dados

15 16

Figura 2 - formato do datagrama IP

0 34 78 1516 31

tipo de serviço HLcomprimento versão total offset de fragmento identificação. flags → Tipo de Serviço (TOS): (8 bits) especifica a qualidade do serviço que deve ser prestado pelas redes por onde passar o datagrama na teoria, podem ser especificados o Retardo, Desempenho, Confiabilidade, etc na prática, os roteadores não processam estes parâmetros, ignorando este campo

0 34 78 15 16 31

versão IHL tipo de serviço comprimento total

- Comprimento Total (16 bits):
- header + dados
 - -composto de 16 bits: tamanho máximo do datagrama é 65.535 bytes
 - todos computadores na Internet devem estar preparados para aceitar datagramas de 576 bytes.

rigura 2 - ionniaio do datagrama ir

Figura 2 - formato do datagrama IP

.Cada tecnologia de rede possui um tamanho de pacote diferente:

. Ethernet: 1500 octetos

Arpanet: 1000 octetos

. X.25: 128 octetos

Os datagramas permanecem fragmentados até o destino final

identificação flag offset

- Identificação (16 bits)
 - contém o número que identifica o datagrama;
 - Este campo é copiado nos headers dos fragmentos para permitir ao destinatário saber a qual datagrama original os fragmentos pertencem..

4

Protocolo IP Fragmentação

•Fragment offset (13 bits):

- indica a posição do fragmento no datagrama original, numerando a partir do 0 (zero)
- um datagrama original de 1400 octetos, segmentado em 3 partes:
 - 1a) fragment offset = 0;
 - 2a) fragment offset = 600;
 - 3a) fragment offset = 1200;

.flags (3 bits):

- cada um com uma função específica
 - bit 0 (DF don't fragment): quando setado, significa que o datagrama não pode ser fragmentado
 - bit 1 (MF more fragments): setado significa que existem mais fragmentos
 - . Bit 2 (Reserved)

um datagrama original c/ 1400 octetos p/ trafegar
 em uma rede c/ Maximum Transfer Unit - MTU = 620

200 octetos

header	dados	dados	dados
IP	600 octetos	600 octetos	200 octetos
header	dados	1º fragmen	to (offset 0)
IP	600 octetos	MF = 1	
header	dados	2º fragmento (offset 60¢	
IP	600 octetos	MF = 1	
header	dados	3º fragmen	to (offset 1200

- os fragmentos serão encaminhados até o destino de maneira independente, sendo remontados, apenas ao concluir a viagem, no destino;
- as redes de maior MTU encontradas, após a fragmentação do datagrama, serão sub-utilizadas em sua capacidade de vazão de dados;
- .o destinatário após receber o 1º fragmento (independente de qual seja) inicializa um temporizador p/ aguardar a finalização do datagrama;
- se ocorrer time-out antes da chegada de todos os fragmentos, o datagrama é descartado;
- sendo assim, a fragmentação aumenta a probabilidade de perda de um datagrama.

0 34 78 15 16 31

versão	${ m IHL}$	tipo de serviço	comprimento total	
identificação			flags	offset de fragmento
tempo de	vida	protocolo	checksum do cabeçalho	

- → Tempo de vida (8 bits): indica o tempo máximo que o datagrama pode trafegar na rede
 - este tempo é decrementado em cada gateway de acordo c/ o tempo gasto p/ processá-lo
 - quando o campo atinge valor = 0 seg, o datagrama é descartado (evita loop infinito)

Figura 2 - formato do datagrama IP

Figura 2 - formato do datagrama IP

0 34 78 15 16 3

versão	IHL	tipo de serviço	comprimento total	
identificação			flags	offset de fragmento
tempo de vida		protocolo	checksum do cabeçalho	

Checksum (16 bits): é utilizado p/ garantir a integridade dos dados que constituem o cabeçalho do datagrama, cabe ao nível de transporte garantir a integridade dos dados

Figura 2 - formato do datagrama IP

4

Figura 2 - formato do datagrama IP

7Ω

34

Opções: tamanho variável e não é obrigatório - usado para testes e depuração da rede - classe (controle, indicação de erros, medição e testes) - n. da opção (identificam as funções auxiliares) padding opções dados

15 16

31

Figura 2 - formato do datagrama IP

4

Figura 2 - formato do datagrama IP

