MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2014-15

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A <u>desistência</u> só é possível após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- 1) [1,8] Seja o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\} \subset \mathbb{R}^4$, em que $\vec{u}_1 = (1, k, 0, 1)$, $\vec{u}_2 = (1, k, -k, 1)$ e $\vec{u}_3 = (0, k+1, k, k+1)$. Obtenha os valores de k, de modo que U seja um conjunto linearmente independente.
- **2)** [**6,2**] Seja o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, tal que $\vec{a} = (1, 3, -2, 2)$, $\vec{b} = (0, 2, 1, 3)$ e $\vec{c} = (1, 2, 0, 3)$, e o subespaço de \mathbb{R}^4 , $T = \{(x, y, z, w) \in \mathbb{R}^4 : x + y w = 0\}$. Calcule:
 - a) O subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido e conclua em relação à sua dimensão. Justifique a resposta.
 - **b**) Uma base ortogonal, W, para o subespaço T que inclua um elemento de S.
 - c) Uma base, V, para o espaço \mathbb{R}^4 que contenha o maior número possível de elementos de S.
- 3) [1,2] Considere os conjuntos de vetores do espaço \mathbb{R}^n , $\mathbf{U} = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_r\}$ e $\mathbf{V} = \{\vec{u}_1, \vec{u}_2, ..., \vec{v}_t, \vec{v}_1, \vec{v}_2, ..., \vec{v}_t\}$. Mostre que $L(\mathbf{U}) = L(\mathbf{V})$, se $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_t\} \subset L(\mathbf{U})$.

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

GRUPO II

- **4)** [2,5] Seja o conjunto ortogonal $S = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$, tal que $||\vec{a}|| = \sqrt{3}$ e $||\vec{b}|| = \sqrt{6}$. Considere ainda os vetores $\vec{c} = 2\vec{a} \vec{b}$ e $\vec{d} = \vec{a} \times \vec{b} 3\vec{c}$. Determine:
 - a) A norma do vetor \vec{d} .
 - **b**) O ângulo entre os vetores \vec{c} e \vec{d} .
 - c) A norma do vetor $(\vec{c} \times \vec{a}) \times \vec{b}$.
- 5) [1,3] Sejam as retas $r = L(P, \vec{a})$ e $s = L(Q, \vec{c})$ do espaço \mathbb{R}^3 . Recorrendo às propriedades dos produtos vetorial e misto, estabeleça condições necessárias e suficientes para que as retas dadas sejam concorrentes. Justifique a resposta.
- 6) [7,0] Considere a reta $r: X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (0,1,0) e $\vec{a} = (1,-1,1)$, o plano M: x y = 1 e o ponto S = (1,1,2).
 - a) Calcule a distância do ponto S à reta r e o ângulo que esta reta faz com M.
 - **b**) Seja I o ponto do plano $M_1: x+y-z=3$ mais próximo de S. Obtenha a reta, h, que passa em I, é concorrente com r e é paralela ao plano M.
 - c) Determine os planos que contêm a reta r e fazem um ângulo de 60° com M.