WHAT IS CLAIMED IS:

1. A dye-forming coupler represented by formula (I):

formula (I)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an $-(R_1)_r-(R_4)_m$ group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent:

wherein,

when R_A represents an $-(R_1)_r-(R_4)_m$ group, R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_1 s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m

represents an integer of 1 to 30, and R_4s may be the same or different independently, or R4s may be combined together to form a multiple bond, or alternatively R4s may bond with each other to form a ring, when m is 2 or more; and the $-(R_1)_r-(R_4)_m$ group does not represent a straight-chain alkyl group.

2. The dye-forming coupler as claimed in claim 1, wherein the dye-forming coupler represented by formula (I) is represented by formula (IA):

formula (IA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_{11} represents an aryl group or a heterocyclic group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

- 3. The dye-forming coupler as claimed in claim 2, wherein, in the dye-forming coupler represented by formula (IA), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring.
- 4. The dye-forming coupler as claimed in claim 1, wherein the dye-forming coupler represented by formula (I) is represented by formula (IB):

formula (IB)

wherein O represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and Rls may be the same or different independently, when r is 2 or more; substituent except for hydrogen atom; represents a a represents an integer of 1 to 30, and R_4s may be the same or different independently, or R4s may be combined together to form a multiple bond, or alternatively R_4s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and the $-(R_1)_r-(R_4)_m$ group does not represent a straight-chain alkyl group.

- 5. The dye-forming coupler as claimed in claim 4, wherein, in the dye-forming coupler represented by formula (IB), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring; and R4 is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or arylsulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, a cyano group, an alkoxy group and an aryloxy group.
- 6. The dye-forming coupler as claimed in claim 4, wherein, in the dye-forming coupler represented by formula (IB), at least one R_4 bonds with a carbon atom at at sleast one α to δ -positions in the $(R_1)_r$.

7. An azomethine dye compound represented by formula (II):

formula (II)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an - $(R_1)_r$ - $(R_4)_m$ group; X represents an aryl group; wherein,

when R_A represents an $-(R_1)_r-(R_4)_m$ group, R_1 represents a methylene group, a methine group, orcarbon a represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4s may be the same or different independently, or R4s may be combine together to form a multiple bond, or alternatively R4s may bond with each other to form a ring, when m is 2 or more; and the $-(R_1)_r - (R_4)_m$ group does not represent a straight-chain alkyl group; R₅ and R₆ each represent a hydrogen atom or a substituent, or R₅ and R₆ may bond with each other to form a ring; R7 represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R₇s may be the same or different independently, or R_7 s may bond with each other to form a

condensed ring, n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, n is 1 or more.

8. The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIA):

formula (IIA)

$$\begin{array}{c|c}
 & R_{11} \\
 & N \\
 & R_{5}
\end{array}$$

$$\begin{array}{c|c}
 & R_{11} \\
 & N \\
 & R_{6}
\end{array}$$

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_{11} represents an aryl group or a heterocyclic group; X represents an aryl group; R_5 and R_6 each represent a hydrogen atom or a substituent, or R_5 and R_6 may bond with each other to form a ring; R_7 represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R_7 s may be the same or different independently, or R_7 s may bond with each other to form a condensed ring, when n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, when n is 1 or more.

BEST AVAILABLE COPY

- 9. The azomethine dye compound as claimed in claim 8, wherein, in the azomethine dye compound represented by formula (IIA), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring.
- 10. The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIB):

$$Q = N = 0$$
 $N = 0$
 $N = 0$

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_1 s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4 s may be the same or different independently, or R_4 s may be combined together to form a multiple bond, or alternatively R_4 s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; and the $-(R_1)_{r-}(R_4)_{m}$ group does not represent a straight-chain alkyl group; R_5 and R_6 each represent a hydrogen atom or a substituent, or R_5 and R_6 may bond with each other to form a ring; R_7 represents a hydrogen atom or a substituent; n

represents 0 (zero) or an integer of 1 to 4, with the proviso that R_7s may be the same or different independently, or R_7s may bond with each other to form a condensed ring, when n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, when n is 1 or more.

- 11. The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring; and R_4 is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or aryl-sulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, a cyano group, an alkoxy group and an aryloxy group.
- 12. The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), at least one R4 bonds with a carbon atom at at least one α to δ -positions in the $(R_1)_r$.
- 13. The dye-forming coupler as claimed in claim 1, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

ڊ ڇ 14. The azomethine dye compound as claimed in claim 7, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

15. A compound represented by formula (I):

formula (I)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an - $(R_1)_r$ - $(R_4)_m$ group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent:

wherein,

when R_A represents an $-(R_1)_r-(R_4)_m$ group, R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_1 s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m

represents an integer of 1 to 30, and R_4s may be the same or different independently, or R4s may be combined together to form a multiple bond, or alternatively R4s may bond with each other to form a ring, when m is 2 or more; and the $-(R_1)_r-(R_4)_m$ group does not represent a straight-chain alkyl group.

16. The compound as claimed in claim 15, wherein the compound represented by formula (I) is represented by formula (IA):

formula (IA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_{11} represents an aryl group or a heterocyclic group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

17. The compound as claimed in claim 16, wherein, in the compound represented by formula (IA), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring.

BEST AVAILABLE COPY

18. The compound as claimed in claim 15, wherein the compound represented by formula (I) is represented by formula (IB):

formula (IB)

$$Q = \begin{pmatrix} (R_1)_r - (R_4)_m \\ 0 \\ N - X \\ + H \end{pmatrix}$$

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R1s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4 s may be the same or different independently, or R_4 s may be combined together to form a multiple bond, or alternatively R_4 s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and the $-(R_1)_r-(R_4)_m$ group does not represent a straight-chain alkyl group.

19. The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring; and R4 is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkylor arylsulfonylamino group, a carbamoyl group, an acyl group, a sulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an aryloxycarbonyl group, an alkylthio group, an

arylthio group, a cyano group, an alkoxy group and an aryloxy group.

- 20. The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), at least one R_4 bonds with a carbon atom at at least one α to δ -positions in the $(R_1)_{\rm r}$.
- 21. The compound as claimed in claim 15, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.