

Cammini minimi tra tutte le coppie

Dato un grafo (orientato o non orientato) G = (V,E,W) con funzione di peso $w: E \to \mathbf{R}$, trovare per ogni coppia di vertici $u,v \in V$ il minimo peso di un cammino da u a v.

Verrà calcolata anche una matrice di predecessori $\Pi(\pi_{uv})$ dove π_{uv} è NIL se u=v o se non c'è un cammino da u a v, altrimenti è un predecessore di v su di un cammino minimo da u.

Il sottografo indotto dall'i-esima riga della matrice Π sarà un albero di cammini minimi con radice in i.

Vittorio Maniezzo - Universita di Bologna

Algoritmo di Floyd-Warshall

E' un algoritmo di programmazione dinamica, può gestire archi di peso negativo ma si assume che non ci siano cicli negativi.

Idea:

 $d_{s,t}(i)$: cammino minimo da s a t contenente solo i vertici intermedi $v_1, ..., v_i$

$$d_{s,t}(0) = w(s,t)$$

Vittorio Maniezzo - Universita di Bologna

3

Δ


```
Algoritmo di Floyd-Warshall

Floyd-Warshall(W)

n=rows[W]
D(\theta)=W

for k=1 to n do

for j=1 to n do

d_{ij}(k)=\min(d_{ij}(k-1),\ d_{ik}(k-1)+d_{kj}(k-1))

return D(n)
```


	D(0)					$\Pi^{(0)}$					
0	3	8	∞	-4			1	1		1	
∞	0	∞	1	7					2	2	
∞	4	0	∞	∞			3				
2	∞	-5	0	∞		4		4			
∞	∞	∞	6	0					5		

		D	(2)					$\Pi^{(2)}$			
()	3	8	4	-4			1	1	2	1
0	0	0	∞	1	7					2	2
0	0	4	0	5	11			3		2	2
2	2	5	-5	0	-2		4	1	4		1
0	•	∞	∞	6	0					5	

D(4) Π(4)	
D(4)	
0 3 -1 4 -4 1 4 2	1
3 0 -4 1 -1 4 4 2	1
7 4 0 5 3 4 3 2	1
2 -1 -5 0 -2 4 3 4	1
8 5 1 6 0 4 3 4 5	

Stampa dei cammini Stampa di un cammino fra una coppia di nodi: Print-all-pairs-shortest-path(Π ,i,j) if (i=j) then STAMPA i else if π_{ij} = NIL then STAMPA "Non esiste il cammino" else Print-all-pairs-shortest-path(Π ,i, π_{ij}) STAMPA j