ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE			KATEDRA F	YZIKY		
L	LABORATORNÍ CVIČENÍ Z FYZIKY					
^{Jméno} Mir	oslav	Tržil			Datum měření	16.11.2017
Stud. rok	2017	-2018	Ročník	Druhý	Datum odevzdání	30.11.2017
Stud. skupina	1-10	2-1021	Lab. skupina	9	Klasifikace	
Číslo úlohy 7		Název úlohy	Fraunl	noferuv ohyb svě	tla na štěrbin	ě a mřížce

1. Úkol měření

- Pro dvě šířky štěrbiny a dvě vlnové délky ověřit platnost vzorce pro Fraunhoferův ohyb světla na štěrbině
- Určit mřížkovou konstantu optické mřížky
- Pomocí mřížkové konstanty zjistit vlnovou délku laserového ukazovátka

2. Použité pomůcky

- Stínítko
- Zelený laser
 - o Vlnová délka λ_z=532 nm
- Červený laser
 - o Vlnová délka λ_c=632,8 nm
- Modrý laser
- Metr na optické lavici
 - o Velikost jednoho dílku 1 mm
 - o Měřeno I
- Pravítko na stínítku
 - o Velikost jednoho dílku 1 mm

3. Postup měření

- Paprsek laseru procházel skrz štěrbinu (nejdříve širší a pak užší), na stínítku vznikaly interferenční obrazce. Měřili jsme vzdálenost minim pro zelený a červený laser.
- Paprsek laseru procházel skrze optickou mřížkou, na stínítku vytvářel interferenční obrazce, měřili jsme vzdálenosti maxim.

4. Použité veličiny a konstanty

•	λ	vlnová délka	[nm]
•	1	vzdálenost stínítka od optické mřížky (štěrbiny)	[cm]
•	i	index	
•	У	vzdálenost středů minim pro štěrbinu nebo maxim pro mřížku	[mm]
•	b	šířka štěrbiny	[µm]
•	d	mřížková konstanta	[µm]

5. Naměřené hodnoty štěrbina

	I = 40	9 mm	l = 563 mm	
	štěrbina 0,01 mm	štěrbina 0,10 mm	štěrbina 0,10 mm	štěrbina 0,06 mm
i	y _{i cervena} [mm]	y _{i cervena} [mm]	y _{i zelena} [mm]	y _{i zelena} [mm]
1	3,0	2,0	2,9	7,0
2	8,0	3,5	6,5	1,3
3	11,0	5,0	9,9	2,0
4	14,0	7,0	13,5	2,7
5	-	-	16,5	3,3

6. Ohyb světla na štěrbině

• Pro ohyb na štěrbině pro minima platí

$$\sin \varphi_i = \frac{y_i}{\sqrt{y_i^2 + l^2}}$$

$$b \cdot \sin \varphi_i = i \cdot \lambda$$

• Z toho plyne

$$b = \frac{i \cdot \lambda}{\sin \varphi_m} = \frac{i \cdot \lambda \cdot \sqrt{y_i^2 + l^2}}{y_i}$$

Spočtené hodnoty

	I = 40	9 mm	I = 563 mm	
	štěrbina 0,01 mm	štěrbina 0,10 mm	štěrbina 0,10 mm	štěrbina 0,6 mm
i	b _{i cervena} [μm]	b _{i cervena} [μm]	b _{i zelena} [μm]	b _{i zelena} [μm]
1	86	129	103	428
2	65	148	92	461
3	71	155	91	449
4	74	148	89	444
5	-	-	91	454

Průměrné hodnoty

 Červený laser a štěrbina 10 μm 	b = 73,9 μm
 Červený laser a štěrbina 100 μm 	b = 145,1 μm
o Zelený laser a štěrbina 100 μm	b = 93,2 μm
o Zelený laser a štěrbina 600 μm	b = 447,1 μm

Statistická nejistota

$$u(b) = \sqrt{\frac{\sum_{i=1}^{4} (b_i - b)^2}{4(4-1)}}$$

3

 \circ Červený laser a štěrbina 10 μm u(b) = 4,55 μm \circ Červený laser a štěrbina 100 μm u(b) = 5,52 μm \circ Zelený laser a štěrbina 100 μm u(b) = 2,59 μm \circ Zelený laser a štěrbina 600 μm u(b) = 5,55 μm

7. Naměřené hodnoty mřížka

	l = 618 mm		
I	y _{i cervena} [mm]	y _{i zelena} [mm]	y _{i modra} [mm]
1	20,0	16,0	12,0
2	33,0	32,0	24,0
3	52,0	48,0	36,0
4	75,0	63,0	48,0

8. Ohyb světla na štěrbině

• Pro ohyb na štěrbině pro maxima platí

$$\sin \varphi_i = \frac{y_i}{\sqrt{y_i^2 + l^2}}$$

$$h \cdot \sin \varphi_i = i \cdot \lambda$$

• Z toho plyne

$$d = \frac{i \cdot \lambda}{\sin \varphi_m} = \frac{i \cdot \lambda \cdot \sqrt{y_i^2 + l^2}}{y_i}$$

Spočtené hodnoty

	l = 618 mm		
I	d _{i cervena} [μm]	d _{i zelena} [μm]	
1	19,6	24	
2	23,7	24	
3	22,6	25	
4	21,0	25	

- Průměrná hodnota mřížkové konstanty: $\bar{d}=23,2~\mu m$
- Nejistota měření

$$u(d) = \sqrt{\frac{\sum_{i=1}^{8} (d_i - \bar{d})^2}{8(8-1)}} = 1,19\mu m$$

- Mřížková konstanta $d = (23, 2 \pm 1, 19) \mu m$
- Z mřížkové konstanty lze dopočítat vlnovou délku modrého laseru

$$\lambda = \frac{d \cdot y_i}{i \cdot \sqrt{y_i^2 + l^2}}$$

I	y _i [mm]	λ _i [nm]
1	12,0	449,8
2	24,0	449,5
3	36,0	449,1
4	48,0	448,5

- Průměrná hodnota $\bar{\lambda} = 449,24 \, nm$
- Nejistota měření

$$u(\lambda) = \sqrt{\frac{\sum_{i=1}^{8} (\lambda_i - \bar{\lambda})^2}{8(8-1)}} = 0,64 \text{ nm}$$

• Vlnová délka modrého laseru: $\lambda = (449, 24 \pm 0, 64) \text{ nm}$

9. Výsledek

Šířka štěrbiny

o Červený laser a štěrbina 10 μm o Červený laser a štěrbina 100 μm o Zelený laser a štěrbina 100 μm o Zelený laser a štěrbina 600 μm b = (73,9 ± 4,55)μm b = (145,1 ± 5,52) μm b = (93,2 ± 2,59) μm b = (447,1 ± 5,55) μm

• Mřížková konstant $d = (23, 2 \pm 1, 19) \mu m$

• Vlnová délka modrého laseru: $\lambda = (449, 24 \pm 0, 64) \text{ nm}$

10. Závěr

Pro měření na štěrbině nám vyšly rozlišné výsledky pro šířku štěrbiny změřenou a
nastavenou. Tyto rozdíly mohly vzniknout špatným odečítáním hodnot ze stínítka, protože
bylo obtížné nastavit světlo tak, aby byla vidět minima a zároveň pravítko.

11. Použitá Literatura

- http://herodes.feld.cvut.cz/mereni/downloads/navody/tuht.pdf
- http://herodes.feld.cvut.cz/mereni/downloads/manualy/my65.pdf
- http://herodes.feld.cvut.cz/mereni/grafy-new/ukaz.php