(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-36425

(43)公開日 平成5年(1993)2月12日

技術表示箇所		FΙ	庁内整理番号	号	識別記		(51) Int.Cl. ⁵
			9062-4K	В		8/02	H 0 1 M
			8414-4K			3/12	C 2 5 D
			6919-4K			5/48	
			6919-4K	G		7/00	
			9062-4K			8/12	H 0 1 M
未請求 請求項の数3(全 4 頁)	審査請求	\$					
687	人 00000368	(71)出願人		35	特願平3-389	ļ.	(21) 出願番号
力株式会社	東京電力						
千代田区内幸町1丁目1番3号		平成3年(1991)2月12日				(22)出顧日	
文夫	者 梅村 文	(72)発明者					
調布市西つつじケ丘二丁目4番1号	東京都調]					
電力株式会社技術研究所内	東京電						
村田 幸雄	人 弁理士	(74)代理人					
		}					

(54) 【発明の名称】 固体電解質型燃料電池用合金セパレータ及びその製造

方法

(57)【要約】

【目的】本発明は、電気伝導性及び耐久性の優れた固体 電解質型燃料電池用合金セパレータを低コストで供給す る。

【構成】固体電解質と燃料極と空気極と、そしてセパレータとを備えてなる固体電解質型燃料電池に使用される合金セパレータにおいて、セパレータを耐熱合金で構成し、かつ該セパレータの燃料極面側にはNiメッキ層を、また空気極面側にはLaCrO₃層を湿式メッキ法を用いて設ける。

1

【特許請求の範囲】

【請求項1】 固体電解質と燃料極と空気極と、そして セパレータとを備えてなる固体電解質型燃料電池のセパ レータにおいて、セパレータを耐熱合金で構成し、かつ 該セパレータの燃料極面側にはニッケルメッキ層を、ま た空気極面側にはLaCrO3系メッキ層を湿式メッキ 処理で設けてなることを特徴とする固体電解質型燃料電 池用合金セパレータ。

【請求項2】 メッキ層の厚さが3~30 umであるこ とを特徴とする請求項1記載の固体電解質型燃料電池用 10 合命セパレータ。

【請求項3】 固体電解質と燃料極と空気極と、そして セパレータとを備えてなる固体電解質型燃料電池のセパ レータの製造方法において、セパレータを耐熱合金で構 成し、かつ該セパレータの燃料極面側に湿式メッキ法で ニッケルメッキ層を設け、また空気極面側には湿式法で 電析させたLaCr系メッキ層を酸化処理してLaCr O₃ 系メッキ層を設けてセパレータを製造することを特 徴とする固体電解質型燃料電池用合金セパレータの製造

【発明の詳細な説明】

[0 0 0 1]

【産業上の利用分野】本発明は固体電解質型燃料電池、 特に改善された固体電解質型燃料電池用合金セパレータ 及びその製造方法に関する。

[0002]

【従来の技術】従来より、水素のように酸化され易いガ スと、酸素のように酸化力のあるガスとを電気化学的反 応プロセスを経て反応させることにより、直流電力を得 るようにした各種燃料電池が開発されており、そのうち の一つにイオン性電気伝導を示す固体電解質を用いる固 体電解質型燃料電池 (Solid Oxide Fue I Cell)がある。該電池は、白金等の高価な貴金 属触媒を必要とせず、エネルギー変換効率が高く、石炭 化ガス等の低質燃料も使用できるなどの有利性がある。 また、該電池は固体のみで構成されているため、他のリ ン酸電解質型燃料電池や熔融炭酸塩型燃料電池のように 液体電解質を扱う不利点がなく、かつ800~1000 ℃の高い作動温度であるためこの廃熱を利用できるなど の利点がある。

【0003】該固体電解質型燃料電池には、平板型や円 筒型のものがあり、例えば平板型の固体電解質型燃料電 池の構成は、その単電池が図1に示すごとく、固体電解 質(例えば2 r O2) 板3を一対の燃料極1と空気極2 で挟持し、更にこれらを一対の多数の長溝付きセパレー タ4、4'で挟持してなり、そしてこれら単電池は直列 に接続されて集合電池とされ、実用的な電力の供給を可 能化する。 そしてこれら各単位電池は、単位電池間で 上記直列接続のための電気的な接続機能と各電極板への 反応ガス(燃料ガス及び空気)の供給通路を形成する機 50 かつ電気的な接続機能の低下も阻止できることを見いだ

能とを兼ね備えた導電性のセパレータ4を介して積層さ れている。

【0004】一般に、電解質板3は電解質の安定化ジル コニア等の焼結体であり、燃料極(アノード)1はニツ ケル多孔質焼結体よりなり、空気極(カソード) 2はペ ロプスカイト酸化物焼結体を主体とするものであって、 燃料板1とセパレータ4との間に燃料である水素が導入 され、また空気極2とセパレータ4'との間に酸素、空 気等が導入され、下記反応により、起電力が生成する。 空気極(電解質界面での反応): O₂ + 4 e → 2 O⁻²

燃料極(電解質界面での反応): 2 H2 + 2 O-2 → 2H₂O+4e

【0005】セパレータ4、4'は通常、セラミックあ るいは耐熱合金で構成され、互いに直交して設けられ、 該セパレータ4、4'の対向面には多数の長溝からなる 燃料又は空気の通路が形成され、それらに燃料又は空気 が分流供給される。セパレータ4、4'の材質として は、LaCrO3、Mg添加LaCrO2、Sr添加La CrOs等のLaCrOs系セラミックあるいは例えば、 Fe-Cr系、Fe-Cr-Ni系、Ni-Cr系、N i-Cr-Mo系、Fe-Al系、Fe-Cr-Al系 等の耐熱合金の使用が試みられている。

[0006]

【発明が解決しようとする課題】上記セパレータは、前 述のごとく単位電池間で電気的な接続機能と各電極板へ の燃料及び空気の供給通路を形成する機能を備える必要 から、良電気電導性が要求され、また空気と燃料ガスと の混合を阻止することが要求されている。しかしなが ら、前記耐熱合金セパレータは、1000℃付近の高温 で使用されるため、空気極側では母金属(鉄、ニッケル 等)を主体とする酸化物と共に合金元素を主体とする酸 化物膜(Cr2O3、Al2O3、SiO2等)の両方が 形成される。また燃料側には合金元素を主体とする酸化 物 (Cr₂O₃、Al₂O₃、SiO₂等) の膜が形成さ れる。その結果電気電導性が低下し、単位電池間の電気 的な接続機能が損なわれてしまう。また、空気極側では 厚い皮膜が形成されるためにセル(空気極/電解質/燃 料極)を破壊してしまう。

【0007】そこで、これら膜の形成を阻止して電気電 導性の低下を回避するため、溶射法やスラリーコーティ ング法等により、LaCrO3系、LaMnO3系、La CoO3系のコーティングを施すことが検討されたが、 これらの方法では緻密な膜の形成が困難であり、セパレ ータの酸化防止にはあまり役立たなかった。

[00008]

【課題を解決するための手段】本発明者は上記セパレー 夕の電気的な接続機能の低下を阻止すべく、研究の結 果、セパレータにある種の金属又は金属酸化物を湿式メ ッキすることにより、セパレータの酸化防止に役立ち、

2

した。すなわち本発明は、固体電解質と燃料極と空気極 と、そしてセパレータからなる固体電解質型燃料電池の セパレータにおいて、セパレータ4、4'を耐熱合金で 構成し、かつ該セパレータの燃料極1面側にはニッケル メッキ層4aを、また空気極2面側にはLaCrO3系 メッキ層4bを湿式法を適用することにより設けてなる ことを特徴とする固体電解質型燃料電池用合金セパレー タ、及び固体電解質と燃料板と空気極と、そしてセパレ ータとを備えてなる固体電解質型燃料電池のセパレータ の製造方法において、セパレータを耐熱合金で構成し、 かつ該セパレータの燃料極面側に湿式メッキ法でニッケ ルメッキ層を設け、また空気極面側には湿式法で電析さ せたLaCr系メッキ層を酸化処理してLaCrOs系 メッキ層を設けてセパレータを製造することを特徴とす る固体電解質型燃料電池用合金セパレータの製造方法で ある。

【0009】本発明において、耐熱合金としては、Fe-Cr系、Fe-Cr-Ni系、Ni-Cr系、Ni-Cr系、Ni-Cr系、Fe-Al系又はFe-Cr-Al系等が挙げられる。メッキ層として、燃料極1面側にNiメ 20ッキ層4aを施した理由は、耐熱合金元素が酸化され、Cr2OzやAl2Oz等の高抵抗皮膜が形成されないようにするためであり、また空気極2面側にLaCrOz層4bを形成させた理由は、LaCr2Ozは電気伝導性が良好で、かつ耐酸化性にも優れ、Cr2OzやAl2Oz等の高抵抗皮膜の形成を防止するからである。

【0010】上記本発明において、メッキ層の厚さは3~30 μ mが好ましく、そのメッキ法は湿式電気メッキ法により燃料極側にはニッケルメッキを形成する。また空気極側のLaCrO $_3$ 層はLaCrメッキを施した後 30 に実運転酸化処理を行うことにより形成することができる。メッキ層の厚さが3 μ mより薄いと、酸化防止の効果が薄く、また30 μ mを越えると電気抵抗が増大することになる。よって厚さは3~30 μ mで、電気的な接続機能の低下を充分に阻止することができる。

【0011】なお、上記ニッケルメッキの代わりにコバルトメッキを施しても良結果が得られる。LaCrOa系としては、LaCrOaのほか、Lao.。Mgo. CrOa、Lao.。Sro.1CrOa等が好ましく、同様に湿式メッキ法で形成できる。

【0012】セパレータの断面構造としては、何えば図2の(A)に示すごとき、燃料極面側と空気極面側の各長隣を表裏に設けてなる一体型、また図2の(B)に図示するごとき、燃料極側部材と空気極側部材の中間に耐熱合金をサンドウィッチに挟持した3分割型、さらに図2(C)に示す燃料極面側薄板と、空気極面側薄板とで構成する2分割型等が挙げられる。なお、図中4aはN

i メッキ層、4 bはLa C r O₃ メッキ層を表す。 【0 0 1 3】

【0014】こうして得られた合金セバレータを固体電解質型燃料電池に使用したときの出力特性の経時変化を図3に示した。また同図にはメッキ層を設けていない合金セバレータを使用したときの出力特性の経時変化も示した。同図からみて、メッキを施していない合金セバレータを使用した場合に比較して、本実施例のメッキ処理をした合金セバレータの場合のほうが、長時間運転による性能低下の程度が少ないことが解る。運転後の合金セバレータを観察すると、実施例のメッキ処理したセバレータはあまり変化していないが、無処理のものには厚い酸化皮膜が形成されていた。実施例のメッキ処理材の性能低下が少ない理由は、酸化膜の形成が抑制され、電気抵抗の増加が少なかったためである。

[0015]

【発明の効果】上述のとおり、本発明の合金セパレータ は低コストで電気的な接続機能の低下のないものであ り、該セパレータを有する固体電解質型燃料電池は連続 使用による性能低下のない優れものとなる。

【図面の簡単な説明】

【図1】固体電解質型燃料電池の単電池の分解斜視説明 図。

【図2】本発明実施例の平板型固体電解質型燃料電池の 各種セパレータの断面構造図。

【図3】実施例の合金セパレータ及びメッキ処理を施していない合金セパレータを固体電解質型燃料電池に使用したときの出力特性の経時変化を示すグラフ図。

40 【符号の説明】

1:燃料極,

2:空気極,

3:固体電解質板,

4, 4':セパレータ、

4a:Niメッキ層,

4b:LaCrO₃メッキ層

