Iluminación global con *Radiosity* como un método de elementos finitos.

Contenido.

- Introducción.
- Demostración.
- El método de colocación en elementos finitos.
- Radiosity como un método de colocación.
- Calculo de los factores de forma.
- Solución del método.

Introducción.

Ecuación integral de iluminación global [6].

$$I(x,x')=g(x,x')[e(x,x')+\int_{S}\rho(x,x',x'')I(x',x'')dx'']$$

Existen dos formas generales de resolverla:

- Monte Carlo (Ray Tracing).
- Elementos Finitos (Radiosity).

Esta ecuación no modela todo fenómeno óptico posible. Fenómenos como la difracción, cáusticas y medios participantes no son contemplados.

Introducción.

Imágenes obtenidas con *Radiosity*.
Nótese la falta de efectos que dependen del punto de visión.

Introducción.

 Imágenes obtenidas con Ray Tracing.

Demostración.

El método de colocación en elementos finitos.

Ecuación de Fredholm de segunda clase:

$$b(t) = e(t) + \int_{\Gamma} k(x, t) b(t) dt = e(t) + (\Phi b)(x)$$

 b(t) es la incognita. Se aproxima como la combinación lineal:

$$\hat{b}(t) = \sum_{i=1}^{n} b_i W_i(t)$$

 bi son coeficientes indeterminados y W es un subconjunto finito de las funciones base de b(t) [2].

El método de colocación en elementos finitos.

 Se restringe el residual a 0 en n puntos de colocación x'i:

$$r(x_{i}') = \stackrel{\wedge}{b}(x_{i}') - (\Phi \stackrel{\wedge}{b})(x_{i}') - e(x_{i}') = 0$$

Evaluando b y reagrupando términos:

$$r(x_{i}^{'}) = \sum_{j=1}^{n} b_{j}(W_{j}(x_{i}^{'}) - (\Phi W_{j})(x_{i}^{'})) - e(x_{i}^{'}) = 0$$

$$r(x_{i}^{'}) = b_{j}(M_{ij} - K_{ij}) - e(x_{i}^{'}) = 0$$

El método de colocación en elementos finitos.

 La ecuación original puede entonces aproximarse como el sistema de ecuaciones lineales:

$$(M-K)b=e$$

- M y K son matrices nxn.
- Cuando los elementos son constantes y los puntos de colocación son los centros de los elementos, M es la matriz identidad [2].

Radiosity como un método de colocación.

- Suposiciones [1]:
 - La luz irradiada por cada elemento poligonal es constante (elementos constantes).
 - La luz irradiada y/o reflejada por un elemento es emitida igualmente en todas direcciones dentro del hemisferio centrado sobre el vector normal del elemento (todas las superficies son reflectores difusos lambertianos perfectos).

Radiosity como un método de colocación.

Radiosity sigue la siguiente ecuación [2]:

$$b(x) = e(x) + \int_{\Gamma} k(x, x') b(x') dx'$$

• El kernel de la ecuación es:

$$k(x, x') = \rho(x) \frac{\cos(\theta)\cos(\theta')}{\pi r^2} v(x, x') = \rho(x) F_{x, x'}$$

• El *kernel* representa la reflectividad del elemento multiplicado por el factor de forma entre los elementos diferenciales x y x'.

Radiosity como un método de colocación.

Como los elementos son constantes:

$$M = I$$

 La matriz K se relaciona con los factores de forma:

$$K_{ij} = \int_{\Gamma} k(x_i, x') W_j(x') dx'$$

K se discretiza como:

$$K_{ij} = \rho_i \hat{F}_{ij}$$

Cálculo de los factores de forma.

- Primero hay que determinar el valor de v(x, x') y luego hay que aproximar el factor de forma en si:
 - v(x,x') se evalua con ray casting.
 - Fij puede evaluarse punto-punto, punto-área o área-área [5]. Cuando se trata de factores de forma área-área, Fij se convierte en [1]:

$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{\cos(\theta_i)\cos(\theta_j)}{\pi r_{ij}^2} dA_i dA_j$$

Cálculo de los factores de forma.

- Propiedades de los factores de forma:
 - $F_{ij} = F_{ji} * (A_j / A_i).$
 - $F_{ii} = 0.$
 - La suma j = 1 hasta n de Fij = 1 para todo i.
- Fij área-área puede resolverse como la siguiente integral de linea (partiendo del teorema de Stokes) [1]:

$$F_{ij} = \frac{1}{2\pi A_i} \oint_{C_i} \oint_{C_i} \left[\ln(r) dx_i dx_j + \ln(r) dy_i dy_j + \ln(r) dz_i dz_j \right]$$

Cálculo de los factores de forma.

- FF := 0
- Por cada segmento de Ai.
 - Por cada segmento de Aj.
 - Evaluar In(r).
 - Calcular dxi, dxj, dyi, dyj, dzi, dzj la longitud de los segmentos j e i en los ejes X, Y y Z.
 - FF := FF + $\ln(r)$ * $(dx_i * dx_j + dy_i * dy_j + dz_i * dz_j)$.
- FF := FF / (2 * pi * Ai)

Solución del método.

- Escoger la base y el mallado.
 - Mallado constante.
- Aproximar la solución a la ecuación integral.
 - Colocación.
- Integrar los factores de forma.
 - Analítico (numérico) o semicubos.
- Resolver el sistema de ecuaciones.
 - Gauss-Seidel o refinamiento progresivo.

Solución del método.

Resolver el sistema [1]:

$$(I-K)b=e$$

$$\begin{bmatrix} 1 & -\rho_{1} \mathring{F}_{1,2} & \cdots & -\rho_{1} \mathring{F}_{1,n} \\ -\rho_{1} \mathring{F}_{1,2} & 1 & \cdots & -\rho_{2} \mathring{F}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{n} \mathring{F}_{n,1} & -\rho_{n} \mathring{F}_{n,2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} = \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{n} \end{bmatrix}$$

Referencias.

- 1. Goral, Cindy M. et al. (1984): Modeling the Interaction of Light Between Diffuse Surfaces. Computer Graphics.
- 2. Heckbert, Paul S. (1993): Finite Element Methods for Radiosity. Global Illumination Course. SIGGRAPH.
- 3. Cohen, Michael F. y Greenberg, Donald P. (1985): The Hemi-cube: A Radiosity solution for complex environments. SIGGRAPH.
- 4. Cohen, Michael F. et al. (1988): A Progressive Refinement Approach to Fast Radiosity Image Generation. Computer Graphics.
- 5. Hanrahan, Pat et al. (1991): A Rapid Hierarchical Radiosity Algorithm. Computer Graphics.
- 6. Kajiya, James T. (1986): The Rendering Equation. SIGGRAPH.