Security Engineering and DevSecOps from an Industry Perspective

Presented by: Shanelle lleto November 18, 2021

Every company has an organizational structure...

Four Key Types of Organizational Structure...

Roles in Cybersecurity... **SENIOR MANAGEMENT Deputy CISO Security Director** Security Engineering And Asset **MID LEVEL Incident Response** Crypographers Ethical Hacker **Security Analyst** Penetration Tester **Security Engineers** Forensic Expert Security Consultants Incident Responder **Vulnurability Assessor ENTRY Security Specialists Security Administrator**

Activity: Case Study

- Your company, Fictionary, is a famous localized bookstore that specializes in acquiring "special" books, ranging from rare pre-first edition versions to unpublished novels.
- Fictionary has just acquired digital rights to these books, and wants to release an online shopping platform to widen their network and boost their sales.

Activity: Case Study

- The tech team has no idea where to start for this online shopping platform and turns to you to help divide tasks and responsibilities...
 - Determine what departments/roles are needed for the project
 - Determine what each department/roles function will be

Role/Department	Responsibilities

Security - The *Traditional* Way

Introducing **DevSecOps**

- DevSecOps Development
 Security and Operations
- An approach to culture, automation and platform design that integrates security as a shared responsibility throughout the entire IT lifecycle
- Brings together people, process, and technology

Benefits and **Challenges**

- Benefits include...
 - Speed and rapid delivery
 - Quality and reliability
 - Improved collaboration
 - Security (Shift left)
- Challenges include...
 - General resistance to change and culture
 - Organizational/IT department and job changes
 - Integration, usage, and cost of tools and platforms
 - Resource and talent

DevSecOps - A Closer Look

Step 1: Plan

Define business value and gather requirements

- Determine methodology (ie Agile vs Waterfall) and processes (ie Scrum vs Kanban) if not in place
- Create Agile board which includes user stories in a backlog
- Decide Agile ceremonies (ie Planning, Backlog Refinement, Review, Retrospective)
- Documentation, architecture diagrams, or proof of concepts

Potential Tools

 Jira, Trello, Git, Confluence, MS Docs, LucidChart

Step 1: Plan

- Security focuses at this stage...
 - Threat modelling to view the application through the lens of a potential attacker
 - Methodologies include STRIDE, DREAD, OWASP
 - Four Question Framework:
 - What are we working on?
 - What can go wrong?
 - What are we going to do about it?
 - Did we do a good job?
 - Benefits include...
 - Detects problems early in the software development life cycle (SDLC)
 - Prioritize threats, mitigation efforts, and budgeting and lowers risk
 - Identifies and eliminates single points of failure and design flaws
 - Improve organization's security posture
- Potential <u>Tools</u>
 - o IriusRisk, MS Threat Modeling Tool, Cairis

Step 2: Code

- Software engineers design, develop, and review code
 - Design and develop code
 - Create code repository and determine branching structure
 - Push code to repo and review with others
- Potential Tools
 - GitHub, GitLab, Bitbucket, Stash, Azure DevOps

Step 2: Code

- Security focuses at this stage...
 - IDE security plug-ins for lightweight static analysis checking within an integrated development environment before pushing code to repo
 - Pre-commit hooks provides Git hook scripts that enable identification issues before submitting code for code review
 - Peer reviews using pull request process to detect uncovered defects, bugs, or issues
 - Secure coding standards some coding standards include...
 - Input validation and output encoding
 - Authentication and password management
 - Session management and access control
 - Cryptographic practices and data protection
 - Error handling and logging
 - Communication security (HTTPS, TLS)
 - System Configuration
 - Database Security
 - File Management
 - Memory Management

Step 2: Code

- Security focuses at this stage...
 - Software Component Analysis (SCA) or Dependency management ensure that third-party libraries and dependencies are secure and their up-to-date versions are installed from reliable sources
 - Black Duck SCA
 - WhiteSource
 - JFrog Xray
 - Snyk
 - Static application security testing (SAST) assessing code quality and style and debugging source code before it is run; some tools include...
 - Veracode
 - SonarQube
 - Fortify
 - Checkmarx
- (Other) Potential *Tools*
 - Gerrit, Phabricator, SpotBugs, PMD, CheckStyle, Find Security Bugs

Step 3: Build

- Compile and package the source code into one desired format
 - Manages software builds and versions for fast deployment
 - Use of automated tools to help compile and package code for future releases to production
- Potential Tools
 - Docker, Ansible, Puppet, Chef, Gradle, Maven,
 JFrog Artifactory

Step 3: Build

- Security focuses at this stage...
 - Cloud/containerization configuration validation and infrastructure scanning create policies within service providers, scan containers, or use security tools for infrastructure utilizing infrastructure as code (IaC)
 - Secure pipelines security controls for pipelines
 - Pipeline set of automated processes and tools that allow both developers and operations professionals to build, test, and deploy software into a production environment; allows for both continuous integration and continuous delivery/deployment
 - Automating (security) tests tools can be plugged into existing CI/CD pipeline to automate testing
- Potential Tools
 - OWASP Dependency-Check, SonarQube, SourceClear, Retire.js, Checkmarx, Synk

Step 4: Test

- Implement testing tools in workflow to ensure best development quality
 - Various types of testing (ie integration, UI, security)
 that can be manual or automated
- Potential Tools
 - JUnit, Codeception, Selenium, Vagrant

TESTING

Step 4: Test

- Security focuses at this stage...
 - Dynamic application security testing (DAST) web application security test that actively investigates running application with penetration tests to detect possible vulnerabilities; some tools include
 - Netsparker
 - Acunetix
 - AppScan
 - Rapid 7
 - Other data validation and security tests ie SQL injection, application security testing, authentication, access control, etc
- (Other) Potential Tools
 - BDD Automated Security Tests, JBroFuzz, Boofuzz, OWASP ZAP, IBM AppScan, SecApp suite

Step 5: Release

- Code has passed all testing and continuous integration is achieved; application is ready to be deployed
- Potential Tools
 - Ansible, Puppet, HashiCorp, Terraform,
 Chef, Docker, Kubernetes

Step 5: Release

• Security focuses at this stage...

...well kinda*

Step 5: Release

- Security focuses at this stage...
 - Audit working with cyber security to review compliance with standards
 - o Fixing zero-day vulnerabilities unknown security vulnerabilities or software flaw

Step 6: Deploy

- Operation team is deploying application or new features into production and continuous delivery is achieved
 - Goes through all environments applicable (DEV, TEST/CERT, PROD, DR)
 - Usually automated, but can potentially have some manual steps for testing depending on application
- Potential Tools
 - Puppet, Chef, Ansible, Jenkins,
 Kubernetes, OpenShift, OpenShift,
 Docker

Step 6: Deploy

- Security focuses at this stage...
 - Continue configuration and infrastructure scanning- scale across multiple environments and automate dynamically using infrastructure as code
 - Runtime verification extract information from a running system in order to determine whether it performs as expected
 - Automate security updates configure pipeline to eliminate the need for admins to manually patch for known vulnerabilities
- Potential <u>Tools</u>
 - Osquery, Falco, Tripwire

Step 7 and 8: Operate and Monitor

- Continues to maintain a scalable infrastructure and check security issues and performance
 - Collect various information about issues from a specific software release in production
 - Log management and intrusion detection or prevention system (IDS/IPS)
- Potential Tools
 - New Relic, Datadog, Grafana,
 Wireshark, Splunk

Step 7 and 8: Operate and Monitor

- Security focuses at this stage...
 - Penetration testing or other security testing* tests on endpoints to uncover vulnerabilities, fuzz testing, port scanning, network security analysis, etc
 - Actionable intelligence integrate alerts and telemetry into IT service management platform (ITSM)
 - Feedback loops create process to find and flag risks and vulnerabilities that require investigation and potential resolution at any stage

Step 9: Repeat!

- Respond and record attacks and threats, if applicable
- Bug fixes/hot fixes and new features for future sprints
- Vertical or horizontal infrastructure scaling to accommodate technical or business requirements
- AUTOMATION!

Questions?

Thank you!