

QUIZ #5

John BROWN, st. #391245

- 1. D
- 2. C
- 3. E
- 4. A

Please send (in seven minutes) your answers as an email text

- to: <u>athul066@uottawa.ca</u>
- cc: stadnik@uottawa.ca

An Ideal Gas

- For gases, the interatomic forces within the gas are very weak
 - We can imagine these forces to be nonexistent
- Note that there is no equilibrium separation for the atoms
 - Thus, no "standard" volume at a given temperature

An Ideal Gas

- For a gas, the volume is entirely determined by the container holding the gas
- Equations involving gases will contain the volume, V, as a variable
 - This is instead of focusing on ΔV

An Ideal Gas

- It is useful to know how the volume, pressure and temperature of the gas of mass m are related
- The equation that interrelates these quantities is called the equation of state
 - These are generally quite complicated
 - If the gas is maintained at a low pressure, the equation of state becomes much easier
 - The equation of state can be determined from experimental results
 - This type of a low density gas is commonly referred to as an ideal gas
- The ideal gas model can be used to make predictions about the behavior of real gases at low pressures

- The amount of gas in a given volume is conveniently expressed in terms of the number of moles
- One mole of any substance is that amount of the substance that contains Avogadro's number of constituent particles
 - Avogadro's number $N_A = 6.022 \times 10^{23}$
 - The constituent particles can be atoms or molecules

Moles

- The number of moles can be determined from the mass of the substance: n = m/M
 - M is the molar mass of the substance
 - m is the mass of the sample
 - n is the number of moles

Ideal Gas Experiment

- Suppose an ideal gas is confined to cylindrical container
- The volume can be varied by means of a movable piston
- Assume the cylinder does not leak (the mass of the gas remains constant)
- Experiments determine a great deal of information about the gas

Gas Laws

- When a gas is kept at a constant temperature, its pressure is inversely proportional to its volume (Boyle's law) - demo (balloon in pumped enclosure)
- When a gas is kept at a constant pressure, its volume is directly proportional to its temperature (Charles law) – demo (LN poured on balloon)
- When the volume of the gas is kept constant, the pressure is directly proportional to the temperature (Guy-Lussac's law)

Ideal Gas Law

The equation of state for an ideal gas combines and summarizes the other gas laws

$$PV = nRT$$

- This is known as the ideal gas law
- R is a constant, called the Universal Gas Constant
 - $R = 8.314 \text{ J/mol} \cdot \text{K} = 0.08214 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$
- From this, you can determine (V = nRT/P) that 1 mole of any gas at atmospheric pressure and at 0°C is 22.4 L

Ideal Gas Law

- The ideal gas law is often expressed in terms of the total number of molecules, N, present in the sample
- $PV = nRT = (N/N_A)RT = Nk_BT$
 - $k_{\rm B}$ is Boltzmann's constant; $k_{\rm B} = R/N_{\rm A}$
 - $k_{\rm B} = 1.38 \times 10^{-23} \, \text{J/K}$
- It is common to call P, V, and T the thermodynamic variables of an ideal gas

Isothermal Expansion of an Idel Gas

- At right is a PV diagram of an isothermal expansion
- The curve is a hyperbola
- The equation of the curve is PV = nRT = constant
- The curve is called an isotherm

Isothermal Expansion

$$pV = nRT$$

- Because it is an ideal gas and the process is quasi-static, the ideal gas law is valid for each point of the path
- The work done by the gas in the expansion from state i to state f is

$$W = \int_{V_i}^{V_f} P dV = \int_{V_i}^{V_f} \frac{nRT}{V} dV = nRT \int_{V_i}^{V_f} \frac{dV}{V}$$
$$W = nRT \ln \left(\frac{V_f}{V_i}\right)$$

Isothermal Expansion

$$W = nRT \ln \left(\frac{V_f}{V_i}\right)$$

- Numerically, the work equals the area under the PV curve
 - The shaded area in the diagram
- If the gas expands, $V_f > V_i$ and the work done by the gas is positive
- If the gas is compressed, $V_f < V_f$ and the work done on the gas is negative

$$T = \text{constant} \rightarrow \Delta U = 0 \rightarrow Q = W$$

- 16-07 (Brownian Motion)
- 16-08 (Brownian Motion Simulation)

Macroscopic vs. Microscopic Descriptions

- So far we have dealt with macroscopic variables:
 - Pressure
 - Volume
 - Temperature
- These can be related to a description on a microscopic level
 - Matter is treated as a collection of molecules
 - Applying Newton's laws of motion in a statistical manner to a collection of particles provides a reasonable description of thermodynamic processes
- Pressure and temperature relate directly to molecular motion in a sample of gas

Ideal Gas Assumptions

 The number of molecules in the gas is large, and the average separation between the molecules is large compared with their

dimensions

- The molecules occupy a negligible volume within the container
- This is consistent with the macroscopic model where we assumed the molecules were point-like

Ideal Gas Assumptions

- The molecules obey Newton's laws of motion, but as a whole they move randomly
 - Any molecule can move in any direction with any speed
- The molecules interact only by short-range forces during elastic collisions
 - This is consistent with the macroscopic model, in which the molecules exert no long-range forces on each other
- The molecules make elastic collisions with the walls
 - These collisions lead to the macroscopic pressure on the walls of the container
- The gas under consideration is a pure substance
 - All molecules are identical

Ideal Gas Notes

- An ideal gas is often pictured as consisting of single atoms
- However, the behavior of molecular gases approximate that of ideal gases quite well
 - At low pressures
 - Molecular rotations and vibrations have no effect, on average, on the motions considered

- Assume a container is a cube
 - Edges are of length d
- Look at the motion of the molecule in terms of its velocity components
- Look at its momentum and the average force

One molecule of the gas moves with velocity $\overrightarrow{\mathbf{v}}$ on its way toward a collision with the wall.

- Assume perfectly elastic collisions with the walls of the container
- The molecule's velocity component perpendicular to the wall is reversed
 - The mass of the wall is much greater than the mass of the molecule
- The impulse from the wall causes a change in the molecule's momentum

$$\Delta p_{xi} = -m_0 v_{xi} - (m_0 v_{xi}) = -2m_0 v_{xi}$$

$$\overline{F}_{i,\text{on molecule}} \Delta t_{\text{collision}} = \Delta p_{xi} = -2m_0 v_{xi}$$

 The time interval between two collisions with the same wall is

$$\Delta t = \frac{2d}{v_{xi}}$$

$$\overline{F}_i \Delta t = -2m_0 v_{xi}$$

• F_i is the average force component over the time interval for the molecule to move across the cube and back

One molecule of the gas moves with velocity $\overrightarrow{\mathbf{v}}$ on its way toward a collision with the wall.

$$\Delta t = \frac{2d}{v_{xi}}$$

$$\overline{F}_i \Delta t = -2m_0 v_{xi}$$

$$\overline{F}_i = -\frac{2m_0 v_{xi}}{\Delta t} = -\frac{2m_0 v_{xi}^2}{2d} = -\frac{m_0 v_{xi}^2}{d}$$

Newton's third law:

$$\overline{F}_{i,\text{on wall}} = -\overline{F}_i = -\left(-\frac{m_0 v_{xi}^2}{d}\right) = \frac{m_0 v_{xi}^2}{d}$$

$$\overline{F} = \sum_{i=1}^{N} \frac{m_0 v_{xi}^2}{d} = \frac{m_0}{d} \sum_{i=1}^{N} v_{xi}^2$$

• For a very large number of molecules, $\overline{F} = F = \text{constant}$

$$F = \frac{m_0}{d} \sum_{i=1}^{N} v_{xi}^2$$

$$F = \frac{m_0}{d} \sum_{i=1}^{N} v_{xi}^2$$

$$\frac{\overline{v_x^2}}{v_x^2} = \frac{\sum_{i=1}^N v_{xi}^2}{N} \to \sum_{i=1}^N v_{xi}^2 = N \overline{v_x^2}$$

$$F = \frac{m_0}{d} N \overline{v_x^2}$$

$$v_i^2 = v_{xi}^2 + v_{yi}^2 + v_{zi}^2$$

The average value of v^2 for all the molecules:

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$$

The motion is isotropic $\rightarrow \overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$

$$\overline{v^2} = 3\overline{v_x^2}$$

$$F = \frac{1}{3}N\frac{m_0}{d}\overline{v^2}$$

$$F = \frac{1}{3}N\frac{m_0}{d}\overline{v^2}$$

$$P = \frac{F}{A} = \frac{F}{d^2} = \frac{1}{3} N \frac{m_0}{d^3} \overline{v^2} = \frac{1}{3} \left(\frac{N}{V}\right) m_0 \overline{v^2}$$

$$P = \frac{2}{3} \left(\frac{N}{V}\right) \left(\frac{1}{2} m_0 \overline{v^2}\right)$$

- The pressure is proportional to the number of molecules per unit volume (MV) and to the average translational kinetic energy of the molecules
- This equation also relates the macroscopic quantity of pressure with a microscopic quantity of the average value of the square of the molecular speed

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m_0 \overline{v^2} \right)$$

- One way to increase the pressure is to increase the number of molecules per unit volume (e.g., adding air to a tire)
- The pressure can also be increased by increasing the speed (kinetic energy) of the molecules
 - That can be accomplished by raising the temperature of the gas (e.g., continuous flexing of the tire as it moves along the road surface)

Molecular Interpretation of Temperature

$$PV = \frac{2}{3}N\left(\frac{1}{2}m_0\overline{v^2}\right)$$

$$PV = Nk_BT$$

$$T = \frac{2}{3k_B}\left(\frac{1}{2}m_0\overline{v^2}\right)$$

 The temperature is a direct measure of the average molecular kinetic energy

$$\frac{1}{2}m_0\overline{v^2} = \frac{3}{2}k_BT$$

■ The average translational kinetic energy per molecule is $\frac{3}{2}k_{\rm B}T$

Molecular Interpretation of Temperature

$$\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2} = \frac{1}{3}\overline{v^2}$$

$$\frac{1}{2}m_0\overline{v_x^2} = \frac{1}{2}k_BT \qquad \frac{1}{2}m_0\overline{v_y^2} = \frac{1}{2}k_BT \qquad \frac{1}{2}m_0\overline{v_z^2} = \frac{1}{2}k_BT$$

- Each translational degree of freedom contributes an equal amount to the energy of the gas, $\frac{1}{2}k_BT$
 - In general, a degree of freedom refers to an independent means by which a molecule can possess energy
- A generalization of this result is called the theorem of equipartition of energy

■ Each degree of freedom contributes $\frac{1}{2}k_BT$ to the energy of a system, where possible degrees of freedom are those associated with translation, rotation, and vibration of molecules

Total Kinetic Energy

- If we have a gas with only translational energy, this is the *internal energy* of the gas
- This tells us that the internal energy of an ideal gas depends only on the temperature

Root Mean Square (rms) Speed

- M is the molar mass and $M = m_0 N_A$
- At a given temperature, lighter molecules move faster, on the average, than heavier molecules
- Why is there no hydrogen in our atmosphere?

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

Some Root-Mean-Square (rms) Speeds

Gas	Molar Mass (g/mol)	at 20° C (m/s)	Gas	Molar Mass (g/mol)	$v_{ m rms}$ at $20^{\circ}{ m C~(m/s)}$
H_2	2.02	1902	NO	30.0	494
He	4.00	1352	O_2	32.0	478
H_2O	18.0	637	$\overline{\mathrm{CO}}_2$	44.0	408
Ne	20.2	602	SO_2	64.1	338
N_2 or CO	28.0	511			

Boltzmann Distribution Law

- The motion of molecules is extremely chaotic
- Any individual molecule is colliding with others at an enormous rate
 - Typically at a rate of a billion times per second
- We add the **number density** $n_{\nu}(E)$
 - This is called a distribution function
 - It is defined so that $n_V(E)dE$ is the number of molecules per unit volume with energy between E and E + dE

Boltzmann Distribution Law

- From statistical mechanics, the number density is $n_V(E) = n_0 e^{-E/k_BT}$
- This equation is known as the Boltzmann distribution law
- n_0 is defined such that $n_0 dE$ is the number of molecules per unit volume having energy between E = 0 and E = dE
- It states that the probability of finding the molecule in a particular energy state varies exponentially as the negative energy divided by k_R T

34

• A molecule with a speed ν passes through the slit in the first rotating disk. When the molecule reaches second rotating disk, the disk have rotated through the offset angle θ. If ν = ωx/θ, the molecule passes through the slit in the second rotating disk and reaches the detector. The disks function as a speed selector that passes only molecules within a certain narrow speed range (this range can be varied by changing ω). One can thus measure how many molecules lie within each of various speed ranges.

Distribution of Molecular Speeds

- gas molecules in thermal equilibrium is shown at right
- N_V is called the Maxwell-Boltzmann speed distribution function
- If N is the total number of molecules, the number of molecules with speeds between v and v + dv is dN = N_V dV

The number of molecules having speeds ranging from v to v + dv equals the area of the tan rectangle, $N_v dv$.

Maxwell-Boltzmann Speed Distribution Function

 N_{τ}

- The fraction of molecules with speeds between ν and $\nu + d\nu$ is $(N_{\nu}d\nu)/N$
- This fraction is also equal to the probability that a molecule has a speed in the range \(\nu\) and \(\nu+\) d\(\nu\)

$$N_{v} = 4\pi N \left(\frac{m_{0}}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-m_{0}v^{2}/2k_{B}T}$$

Note the appearance of the Boltzmann factor $e^{-E/k_{\rm B}T}$ with $E=\frac{1}{2}m_0v^2$

The number of molecules having speeds ranging from v to v + dv equals the area of the tan rectangle, $N_v dv$.

$$N_{v} = 4\pi N \left(\frac{m_{0}}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-m_{0}v^{2}/2k_{B}T}$$

$$\overline{v^2} = \frac{1}{N} \int_0^\infty v^2 N_v dv \qquad \text{Let } a = \frac{m_0}{2k_B T}$$

$$\overline{v^2} = \frac{\left(4N\pi^{-1/2}a^{3/2}\right)}{N} \int_0^\infty v^4 e^{-av^2} dv$$

$$\int_0^\infty x^m e^{-ax^2} dx = \frac{\Gamma[(m+1)/2]}{2a^{(m+1)/2}}$$

$$\Gamma\left(m + \frac{1}{2}\right) = \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m} \sqrt{\pi} \qquad m = 1,3,5, \dots$$

$$\int_0^\infty v^4 e^{-av^2} dv = \frac{\Gamma(5/2)}{2a^{5/2}} = \frac{\frac{3}{2^2} \sqrt{\pi}}{2a^{5/2}} = \frac{3\sqrt{\pi}}{8a^{5/2}}$$

$$\overline{v^2} = \frac{\left(4N\pi^{-1/2}a^{3/2}\right)}{N} \int_0^\infty v^4 e^{-av^2} dv$$

$$a = \frac{m_0}{2k_{\rm B}T}$$

$$\int_0^\infty v^4 e^{-av^2} dv = \frac{\Gamma(5/2)}{2a^{5/2}} = \frac{\frac{3}{2^2} \sqrt{\pi}}{2a^{5/2}} = \frac{3\sqrt{\pi}}{8a^{5/2}}$$

$$\overline{v^2} = (4\pi^{-1/2}a^{3/2})\frac{3\sqrt{\pi}}{8a^{5/2}} = \frac{3}{2a} = \frac{3k_BT}{m_0}$$

$$v_{\rm rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_{\rm B}T}{m_0}}$$

$$N_{v} = 4\pi N \left(\frac{m_{0}}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-m_{0}v^{2}/2k_{B}T}$$

$$v_{\text{avg}} = \frac{1}{N} \int_{0}^{\infty} v N_{v} dv$$
 Let $a = \frac{m_{0}}{2k_{\text{B}}T}$

$$v_{\text{avg}} = \frac{\left(4N\pi^{-1/2}a^{3/2}\right)}{N} \int_{0}^{\infty} v^{3}e^{-av^{2}} dv$$

$$\int_0^\infty x^m e^{-ax^2} dx = \frac{\Gamma[(m+1)/2]}{2a^{(m+1)/2}} \qquad \Gamma(n+1) = n! \quad \text{if } n = 0, 1, 2, \dots$$
$$\int_0^\infty v^3 e^{-av^2} dv = \frac{\Gamma(2)}{2a^2} = \frac{1}{2a^2}$$

$$v_{\text{avg}} = (4\pi^{-1/2}a^{3/2})\frac{1}{2a^2} = \frac{2\pi^{-1/2}}{a^{1/2}} = \sqrt{\frac{8k_{\text{B}}T}{\pi m_0}}$$

$$N_{v} = 4\pi N \left(\frac{m_{0}}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-m_{0}v^{2}/2k_{B}T}$$

The most probable speed v_{mp} is the speed at which the distribution curve reaches the peak: dN_{v}

$$4\pi N \left(\frac{m_0}{2\pi k_{\rm B}T}\right)^{3/2} e^{-m_0 v^2/2k_{\rm B}T} v \left(2 - \frac{2m_0 v^2}{2k_{\rm B}T}\right) = 0$$

■ Reject the solutions $\nu = 0$ and $\nu = \infty$ (they describe minimally probable speeds)

$$\left(2 - \frac{2m_0 v^2}{2k_B T}\right) = 0 \rightarrow v_{\rm mp} = \sqrt{\frac{2k_B T}{m_0}}$$

$$M = m_0 N_A$$

$$M = m_0 N_A$$
 $k_B = R/N_A$

$$v_{\rm rms} = \sqrt{\frac{3k_{\rm B}T}{m_0}} = 1.73 \sqrt{\frac{k_{\rm B}T}{m_0}} = 1.73 \sqrt{\frac{RT}{M}}$$

$$v_{\text{avg}} = \sqrt{\frac{8k_{\text{B}}T}{\pi m_0}} = 1.60 \sqrt{\frac{k_{\text{B}}T}{m_0}} = 1.60 \sqrt{\frac{RT}{M}}$$

$$v_{\rm mp} = \sqrt{\frac{2k_BT}{m_0}} = 1.41 \sqrt{\frac{k_BT}{m_0}} = 1.41 \sqrt{\frac{RT}{M}}$$

$$v_{\rm rms} > v_{\rm avg} > v_{\rm mp}$$

The number of molecules having speeds ranging from vto v + dv equals the area of the tan rectangle, $N_v dv$.

Speed Distribution Curves for Nitrogen, N₂

- The peak shifts to the right as T increases
 - This shows that the average speed increases with increasing temperature
- The asymmetric shape occurs because the lowest possible speed is 0 and the highest is infinity

$$N_{v} = 4\pi N \left(\frac{m_{0}}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-m_{0}v^{2}/2k_{B}T}$$

- The distribution of molecular speeds depends both on the mass and on temperature
- At a given temperature, the fraction of molecules with speeds exceeding a fixed value increases as the mass decreases
 - This explains why lighter molecules (H₂ and He) escape into space from the Earth's atmosphere more easily than heavier molecules
- The speed distribution for liquids is similar to that of gases

Evaporation

- Some molecules in the liquid are more energetic than others
- Some of the faster moving molecules penetrate the surface and leave the liquid
 - This occurs even before the boiling point is reached
- The molecules that escape are those that have enough energy to overcome the attractive forces of the molecules in the liquid phase
- The molecules left behind have lower kinetic energies
- Therefore, evaporation is a cooling process

Collision between Molecules

- A molecule moving through a gas collides with other molecules in a random fashion
- This behavior is sometimes referred to as a random-walk process
- The mean free path (the average distance between collisions) increases as the number of molecules per unit volume decreases

In a time *dt* a molecule with a radius *r* will collide with any other molecule within a cylindrical volume of radius 2*r* and length *vdt*

- When a molecule collides with another molecule, the distance between their centers is 2r
- The volume of the cylinder is $4\pi r^2 vdt$
- The number of collisions of <u>a molecule</u> with every molecule within the cylinder is $dN = 4\pi r^2 v dt (N/V)$
- The number of collisions *per unit time* is $\frac{dN}{dt} = \frac{4\pi r^2 vN}{V}$
- For <u>all molecules</u> moving at once

$$\frac{dN}{dt} = \frac{4\pi\sqrt{2}r^2vN}{V}$$

$$\frac{dN}{dt} = \frac{4\pi\sqrt{2}r^2vN}{V}$$

• The average time t_{mean} between collisions (*mean free time*) is

$$t_{\text{mean}} = \frac{v}{4\pi\sqrt{2}r^2vN}$$

- $4\pi\sqrt{2r^2vN}$ Frequency of collisions is $f = 1/t_{\text{mean}} = \frac{4\pi\sqrt{2}r^2vN}{V}$
- The mean free path λ is

$$\lambda = v t_{\text{mean}} = \frac{V}{4\pi\sqrt{2}r^2N}$$

$$PV = Nk_{\rm B}T \rightarrow \frac{V}{N} = \frac{k_{\rm B}T}{P}$$

$$\lambda = \frac{k_B T}{4\pi\sqrt{2}r^2 P} \qquad \qquad f = \frac{4\pi\sqrt{2}r^2 v P}{k_B T}$$

Example: N₂ molecules at 20°C and 1 atm, $r = 1 \times 10^{-10}$ m

$$\lambda = \frac{k_B T}{4\pi\sqrt{2}r^2 P} = 2.25 \times 10^{-7} \text{ m}$$

$$v_{\text{avg}} = \sqrt{\frac{8RT}{\pi M}} = 471 \text{ m/s}$$

$$f = \frac{4\pi\sqrt{2}r^2v_{\text{avg}}P}{k_{\text{B}}T} = 2.09 \times 10^9 \text{ s}^{-1}$$

The van der Waals Equation

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

- The ideal gas equation ignores 1)
 the volumes of the molecules and 2)
 the attractive forces between them
- The van der Waals equation another equation of state
- a and b are constants (different for different gases)
- CO_2 : $a = 0.364 \text{ J} \cdot \text{m}^3/\text{mol}^2$, $b = 4.27 \times 10^{-5} \text{ m}^3/\text{mol}$

An idealized model of a gas

A more realistic model of a gas

... and they exert forces on the container's walls.

PV Diagrams

Each curve represents pressure as a function of volume for an ideal gas at a single temperature.

Ideal Gas

- At temperature below $T_{\rm c}$ (critical temperature) the isotherms develop flat regions in which one can compress the material without increasing the pressure $p \rightarrow$
- Compressing a gas at a constant $T_2 \rightarrow$
- At temperature greater than T_c , no phase transition occurs

A Phase Diagram P(T)

- Only a single phase can exists at each point
- Two phases can coexist in phase equilibrium at the solid lines
- The fusion, vaporization, and sublimation curves; they meet at the triple point
- Heating a substance at a constant pressure P_a (melting and boiling) line (a)
- Heating a substance at a constant pressure P_s (sublimation) line (s)
- At any pressure less than the triple-point pressure (for CO₂, 5.1 atm), no liquid phase is possible (at normal atmospheric pressure, "dry ice" = solid CO₂ undergoes sublimation)
- Compression at a constant temperature T_b (vapor \rightarrow liquid \rightarrow solid) line (b)
- Compression at a constant temperature T_d (vapor \rightarrow solid) line (d)

A Phase Diagram P(T)

Critical Temperatures and Pressures			
	Critical Temperature		Critical Pressure
Substance	°C	K	(atm)
Water	374	647	218
CO ₂	31	304	72.8
Oxygen	-118	155	50
Nitrogen	-147	126	33.5
Hydrogen	-239.9	33.3	12.8
Helium	-267.9	5.3	2.3

C-111-1

- Critical point: critical pressure P_c and critical temperature T_c
- A gas at a pressure P > P_c does not separate into two phases when it is cooled at constant pressure (horizontal line above the critical point). Instead, its properties change gradually and continuously from those associated with a gas (low density, large compressibility) to those associated with a liquid (high density, small compressibility) without a phase transition
- Liquid-phase transitions at successively higher points at the vaporization curve: as one approaches the critical point, the *differences* in physical properties (e.g., density, compressibility, etc.) between the liquid and vapor become smaller.
 Exactly at the critical point they all become zero: the distinction between liquid and vapor disappears; film 15-11 (CO₂ Critical Point)

Phase Diagrams (for Water and Carbon Dioxide)

Demo: Regelation

 Films: 15-10 (Boiling Water under Reduced Pressure), 15-13 (Freezing by Boiling), 15-16 (Regelation), 15-18 (Sublimation of Carbon Dioxide)

■ M1-11, 12