APELLIDO Y NOMBRE:

<u>Nota</u>: el examen se aprueba con una nota de 4 (o mayor) que equivale a un mínimo de **45 puntos**.

Datos útiles:

•
$$|g| = 9.8 \ m/s^2$$

- 1. Dos masas m_1 y m_2 se encuentran en sendos planos inclinados, sin rozamiento y unidos por una cuerda sin masa e inextensible tal como se indica en la figura.
 - (a) (5 pts.) Represente las fuerzas que intervienen sobre cada masa en sus respectivos diagramas de cuerpo aislado.
 - (b) (12.5 pts.) Calcule los vectores aceleraciones de las masas. Además, indique hacia dónde se moverá el sistema para el caso particular en que las masas sean idénticas.
 - (c) (12.5 pts.) ¿Qué relación debe haber entre las masas para que el sistema permanezca en equilibrio y no deslice?. ¿Cuánto valen las tensiones de la cuerda en este caso?.

- 2. En la figura se muestran tres partículas, dos con carga +q y una con carga +2q. Las partículas con carga +q se encuentras separadas de la partícula con carga +2q por una distancia a. Calcule:
 - (a) (10 pts.) El campo eléctrico \vec{E} (dirección y magnitud) en el punto P.
 - (b) (10 pts.) El potencial V en el punto P.
 - (c) (10 pts.) ¿Qué puede comentar sobre las contribuciones que hacen las partículas con carga +q al campo eléctrico y al potencial en el punto P?.

- **3.** (20 pts.) Dentro de un recipiente ideal que no tiene perdida de calor con el ambiente, se tienen 5 kg de hielo a -20 °C. ¿Qué cantidad de calor hay que entregarle al hielo para transformarlo en vapor a 100 °C?.
- **4.** (20 pts.) Una partícula de masa m y carga q ingresa con una velocidad \vec{v} a un solenoide de longitud l y que genera un campo \vec{B} a lo largo de su eje de simetría axial. Al ingresar al solenoide, el vector velocidad es paralelo al eje de simetría axial. Si $m=10^{-31}$ kg, $q=10^{-19}$ C, $v=10^6$ m/s, l=10 cm y B=0.1 T, calcule el ángulo de desviación en la trayectoria de la partícula al emerger del solenoide.

Prob. 1	Prob. 2	Prob. 3	Prob. 4	Puntos totales (0-100)	Nota final