Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Licenciatura en Ciencias de la Computación

Álgebra y Geometría Analítica II (2015)

El principio de inducción fuerte

1. Sea a_n la sucesión definida recursivamente por

$$a_1 = 1,$$
 $a_2 = 2,$ $a_3 = 3,$ $a_n = a_{n-1} + a_{n-2} + a_{n-3}, n \ge 4.$

Probar que $a_n \leq 3^n$ para todo $n \in \mathbb{N}$.

2. Observemos que los enteros 14, 15 y 16 se pueden escribir como sumas de 3's y 8's de la siguiente forma

$$14 = 3 + 3 + 8,$$

 $15 = 3 + 3 + 3 + 3 + 3 + 3,$
 $16 = 8 + 8.$

Probar que, en realidad, todo entero $n \ge 14$ se puede escribir como una suma de 3's y 8's.

- 3. Probar que todo número natural $n \geq 2$ puede expresarse como producto de números primos. (Recordar que un entero $p \in \mathbb{Z}$ se dice *primo* si $p \neq \pm 1$ y sus únicos divisores son ± 1 y $\pm p$.)
- 4. Consideremos la sucesión de Fibonacci

$$F_0 = 0,$$
 $F_1 = 1,$ $F_n = F_{n-1} + F_{n-2}, n \ge 2.$

Probar que

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

Ayuda: los números $\frac{1\pm\sqrt{5}}{2}$ son las soluciones de la ecuación $x^2-x-1=0$.

5. Los números de Lucas se definen recursivamente por

$$L_0 = 2,$$
 $L_1 = 1,$ $L_n = L_{n-1} + L_{n-2}, n \ge 2.$

a) Probar que $L_n = F_{n-1} + F_{n+1}$ para todo $n \in \mathbb{N}$.

b) Concluir que
$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$
.