Flash Speicher

HAW Hamburg

Fach: Informatik 2 Prof: Prof. Edeler Datum: 20.01.2017

Name: Shiwam Arora

Matrikel Nr: 2270256

Flash Speicher:

- digitale Bausteine
- Gruppe der EEPROM (Electrically Erasable Programmable Read-only Memory)
- Flash-EEPROM
- Speichertechnik
- schnell
- wiederverwendbar
- geringer Energieverbrauch
- permanenter Speicher, ohne Energiezufuhr
- blockweise beschreiben und löschen (64, 128, 256, 1024, ... Byte)

Produzenten: Einsatz:
> Samsung > Handy
> Toshiba > USB-Stick
> Western Digital / San Disk > Speicherkarte

> SSD

> BIOS Speicher im PC

Architektur:

NOR-Flash

NAND-Flash

MLC (Multi Level Cell)

TLC (Tripple Level Cell)

NOR-Flash:

- > Speicherzellen Parallel verschaltet
- > Architektur erfordert mehr Platz
- > komplizierte Fertigung
- > fehlerfrei
- > teuer
- > direkter Zugriff auf Speicherzelle
 - -> kurze Zugriffszeit, schnelle Lesezeit
- > schreiben und löschen nur Blockweise möglich
- > mehr Schreib- und Löschzugriffe
- > Einsatz in Microcontroller, BIOS für PC

NAND-Flash

- > Speicherzellen in einer Reihenschaltung
- > 2/5 des Flächenbedarfs vom NOR-Flash
- > einfache Fertigung
- > kostengünstig
- > mehr Speicherplatz als NOR-Flash
- > lesen, schreiben und löschen nur in Blöcken
- > Einsatz in SSD, USB-Stick, Handy, etc.
- > beschädigte Speicherblöcke ab Werk

	SLC	MLC	TLC
Bit pro Zelle	1 Bit	2 Bit	3 Bit
speicherbare Zustände	2 (2^1)	4 (2^2)	8 (2^3)
Lebensdauer	ca. 100.000 Schreibvorgänge	ca. 3.000 Schreibvorgänge	ca. 1.000 Schreibvorgänge
Fehlerrate	sehr niedrig	mittel	hoch
Geschwindigkeit	sehr hoch	niedrig	niedrig
Stromverbrauch	sehr niedrig	hoch	hoch
Kosten	hoch	niedrig	niedrig

Warum geht eine Speicherzelle kaputt?

- > Floating-Gate wird mit einer Spannung von 10-18 Volt geladen (Schreibzugriff)
- > Oxidschicht (Isolation) wird überwunden
- > Oxidschicht wird bei jedem Schreibzugriff beschädigt
- >Oxidschicht isoliert nicht mehr
 - -> Elektronen können nicht mehr im Floating-Gate gehalten werden
 - -> Speicherzelle wird unbrauchbar

Vorteile von Flash-Speicher

- > Daten bleiben ohne Energiequelle gespeichert
- > geringer Energieverbrauch
- > geringe Wärmeentwicklung
- > geräuschlos
- > unempfindlich gegen Erschütterungen, Magnetfelder und Luftfeuchtigkeit
- > kurze Zugriffszeit
- > schnelle Lese- und Schreibgeschwindigkeit
- > einfaches Auslesen des Speichers
- > kleine Bauformate möglich
- > Lange Haltbarkeit der Daten, da keine mechanischen Verschleißteile

Nachteile von Flash-Speicher

- > hoher Preis
- > begrenzte Schreib- bzw. Löschvorgänge
- > Speicher muss gelöscht werden um neu beschrieben zu werden
 - -> beschleunigt Abbau der Isolierschicht
- > nur Blockweise beschreib- und löschbar
- > eigener Controller wird für Ansteuerung benötigt

Funktionsweise:

- > Speicherzelle besteht aus speziellem Feldeffekttansistor
 - -> Floating-Gate-Transistor
- > Floating-Gate ist gegen Drain. Source und Control-Gate mit einer Oxidschicht isoliert
- > Oxidschicht verhindert das Abfließen der Ladung
- > permanente Speicherung von Daten in Form von Elektronischer Ladung

Floating-Gate laden (schreiben):

- > Hohe positive Spannung am Control-Gate >10 Volt
- > Tunnel zwischen Drain und Source öffnet sich
- > Drain und Source übertragen Elektronen in das Floating-Gate
- > Floating-Gate speichert die Elektronen

Floating-Gate entladen (löschen):

- > hohe negative Spannung am Control-Gate >-10 Volt
- > Tunnel zwischen Drain und Source öffnet sich
- > Floating-Gate überträgt Spannung an Source und Drain durch den Tunnel
- > Floating-Gate verliert gespeicherte Elektronen
- > Oxidschicht nimmt Schaden an