	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}\alpha\beta$	$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1^{-}}^{\#1}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#2}$
$^{1}_{\dagger}$ †	3 t 1 t	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	0	0	0	0
² † αβ	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6k^2r_5+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$^{1}_{+}$ †	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$		$\frac{k^2 (6k^2 r_5 + t_1 + 4t_2)}{(1+k^2)^2 (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$_{1}^{*1}+^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$_{1}^{#2}+^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
$_{1}^{#1}$ $+^{\alpha}$	0	0	0	0	0	0	0
$\frac{*2}{1}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \uparrow^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

$\sigma_{2^{ ext{-}}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

_	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{\#2}\dagger$	0	0	0	0
$\omega_{0^{-}}^{\#1}$ †	0	0	0	t_2

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1}$ † $^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Lagrangian density

Source constraints	
SO(3) irreps	#
$r_{0+}^{\#2} == 0$	1
$\sigma_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	5
Γotal #:	16

(No massless particles)

Unitarity conditions