ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 8 POLARIZAÇÃO E AMPLIFICADOR COM MOSFET

1- OBJETIVO

Verificar o ponto quiescente do MOSFET (V_{DSQ}, V_{GSQ} I_{DQ}) na polarização de circuitos amplificadores com transistor de efeito de campo de metal óxido (MOSFET) e seu funcionamento com sinais alternados aplicados na entrada.

2- INTRODUÇÃO TEÓRICA

Os transistores de efeito de campo de acordo com a tecnologia de fabricação se classificam em MOS (Metal Óxido Silício) conhecidos como MOSFETs e os de Junção (J), denominados JFET. Os transistores do tipo MOSFET também são denominados de transistores FET de "Gate" isolado (IGJET).

Na introdução teórica da experiência 7 foram abordadas sucintamente aa características dos MOSFETs

Da mesma maneira que no uso de transistores BJT em amplificadores de sinal, os MOSFETs podem ser usados de forma similar, conforme mostra o circuito da figura abaixo.

A qualidade do circuito de polarização, também nos circuitos com MOSFET, é medida em função estabilidade do ponto médio do ponto quiescente.

Os fatores que perturbam esta estabilidade também são os mesmos:

- A grande variedade nos parâmetros do transistor,
- A temperatura.

A realimentação negativa proporcionada pela resistência R_S contribui para a estabilidade do ponto quiescente. O princípio da superposição também é adotado na análise do circuito, uma vez que as fontes de tensão contínua (V_{DD}) e de sinal (V_{sinal}) são independentes. Analisando-se o circuito de corrente contínua obtém-se o ponto quiescente. Analisando-se o circuito de pequenos sinais obtém-se o ganho.

2.1- Circuito de Polarização

O circuito de polarização está assinalado no circuito em preto, sendo composto por V_{DD}, R_D, R_S, R₁ e R₂.

2.2- Ganhos

Os ganhos são dados pela relação das variações do sinal de saída 1 (v_0) pela variação do sinal de entrada (v_{sinal}) . Os capacitores devem se comportar como curtos-circuitos para sinais variantes no tempo na frequência do sinal de entrada. Vale ressaltar que o valor do ganho é condicionado à reprodução do sinal de entrada na saída do amplificador, ou seja, pelo menos teoricamente a sinal de saída não deverá sofrer distorção em relação ao de entrada.

3- PARTE EXPERIMENTAL

O transistor MOSFET de junção a ser empregado nos experimentos é o 2N 7000 (tabela abaixo).

^{* 1557} Pairchild Semicenducter Corporation

2N7000.SAM Rev. A1

3.1- Circuito de Polarização

3.1.1- Monte o circuito abaixo.

OBS.: Faça as ligações de forma a garantir que não haja curtos-circuitos entre terminais. Use jumper se necessário.

3.1.2- Alimente o circuito com a tensão indicada e meça as tensões e a corrente abaixo:

$$V_D =$$
 $V_S =$ $V_G =$

$$V_{DSQ} =$$
 $I_{DQ} =$

3.2- Amplificador

3.2.1- Monte o circuito abaixo (veja que você não precisa remontar o circuito de polarização)

OBS.: Observe a polaridade dos capacitores eletrolíticos conforme indicado no desenho.

3.2.2- Capture as formas de onda nos canais CH1 e CH2 do osciloscópio com a chave SW aberta.

3.2.3- Calcule o ganho de tensão do amplificador
$$\Delta V_{\rm SAÍDA}/\Delta V_{\rm ENTRADA:}$$
 $\frac{\Delta V_{\it SAÍDA}}{\Delta V_{\it ENTRADA}}=$

3.2.4- Capture as formas de onda nos canais CH1 e CH2 do osciloscópio com a chave SW fechada.

3.2.5- Calcule o ganho de tensão do amplificador
$$\Delta V_{SAÍDA}/\Delta V_{ENTRADA}$$
: $\frac{\Delta V_{SAÍDA}}{\Delta V_{ENTRADA}}=$

3.2.6- Abra a chave SW e retire o capacitor de 100 µF ligado entre a fonte e a terra e meça de novo o ganho:

$$\frac{\Delta V_{SAÍDA}}{\Delta V_{ENTRADA}} = \underline{\hspace{1cm}}$$