旋转魔方-运动姿态

www.AmoMcu.com

阿莫单片机 出品

2016-12-11 v1.1

目录

1,	要实现的功能	2
2,	开发环境	2
	2.1 硬件	2
	2.2 软件	2
3,	源码位置	3
4,	源码分析	4
	4.1 上电就广播	5
	4.2 按键上传······	
	4.3 mpu6050 加速度数据读取与上传	5
	4.4 蜂鸣器报警(LED2 闪)	8
	4.5 Android 源代码分析······	8
	技术支持与项目开发合作(TEL) 18588220515 QQ11940507 阿莫	1

	4.5.1 mpu6050 数据获取······	. 9
5,	连接设备	12
	5.1 用 GPIO 模拟 IIC 的接法······	12
	5.2 用硬件 IIC 的接法·····	12
6,	下载运行	13
	6.1 下载	13
7,	测试·····	13
8,	联系我们	14

1,要实现的功能

实现读取 mpu6050 数据, 发送到手机, android 手机上根据四元数变换成欧拉角,并 通过一个立方体进行姿态演示。

注意, 目前 CC254x 读取 mpu6050 数据有一些问题,导致数据缓慢,后面在优化解决。 目前代码与防丢器的代码是一样的,后面需要优化加速度功能。

2, 开发环境

2.1 硬件

- 1、1个开发板
- 2、 CC-Debugger 仿真器
- 3、 最好有一个 mpu6050 模块

2.2 软件

- 1, ble 协议栈, 版本: 1.3.2
- 2, IAR for 8051 开发环境,版本: 8.10
- Flash Programmer 固件烧写软件。
- 4、 amokeyfob.apk

3,源码位置

【1】您下载这个源码后,如下图所示(版本号和日期可能有所不同):

把 keyfob-Amomcu 复制到一个短路径,否则打开工程会出错。

例如以下:

打开工程(以 CC2541 工程为例):

打开后如下:

4,源码分析

实现旋转魔方的原理是: mpu6050 输出的欧拉角与四元数,手机实时读取该欧拉角与 四元数,实现数据到空间角度的运动变化图形呈现。

至于欧拉角与四元数,不在我们的讨论范围,下面部分将描述如何实现数据的采集与上 传。

4.1 上电就广播

```
00326: void KeyFobApp_Init( uint8 task_id )
    00327: {
    00328:
                  keyfobapp_TaskID = task_id;
    00329:
                  // Setup the GAP
VOID GAP_SetParamValue( TGAP_CONN_PAUSE_PERIPHERAL, DEFAULT_CONN_PAUSE_PERIPHERAL)
    00330:
    00332:
    00333:
                  // Setup the GAP Peripheral Role Profile
    00334:
    00335:
               ice doesn't start advertising until
    00336:
    00337:
                     /\!/ By setting this to zero, the device will go into the waiting state a /\!/ being discoverable for 30.72 second, and will not being advertising
    00338:
    00339:
                     \ensuremath{\hspace{0.6em}\prime\prime} until the enabler is set back to TRUE
    00340:
    00341:
                     uint16 gapRole_AdvertOffTime = 0;
    00342:
    00343: uint8 enable_update_request = DEFAULT_ENABLE_UPDATE_REQUEST;
00344: uint16 desired_min_interval = DEFAULT_DESIRED_MIN_CONN_INTERVAL;
00345: uint16 desired_max_interval = DEFAULT_DESIRED_MAX_CONN_INTERVAL;
Si-keyfob-cc254x Project <
File Name
Irtempservice.c (ble1.3.2\projects\ble\profiles\sensorprofile)
Irtempservice.h (ble1.3.2\projects\ble\profiles\sensorprofile)
```

4.2 按键上传

4.3 mpu6050 加速度数据读取与上传

Mpu6050 通过 iic 接口连接到 cc2540 或者 cc2541 单片机。

Mpu6050 驱动相关的文件如下:

如果你要修改模拟 io 口做 iic, 或者硬件 iic, 主要修改这两个文件实现适配即可。

在 keyfobdemo.c 中, 我们主要用 宏定义 SENSOR_MPU6050_DMP 括住了与 mpu6050 传感器相关的代码。

例如,mpu6050 初始化代码如下:

```
00438: #if defined( SENSOR_MPU6050_DMP )
          g_is_mpu6050_ok_flag = AnBT_DMP_MPU6050_Init();
                                                                          //6050DMP初始化
00439:
            \color{red} \textbf{if} (\texttt{g\_is\_mpu6050\_ok\_f1ag})
00440:
00441:
                HalledSet( (HAL_LED_3), HAL_LED_MODE_ON );
00442:
00443:
00444:
           else
00445:
           {
00446:
                HalledSet( (HAL_LED_3), HAL_LED_MODE_OFF );
00447:
00448: #endif
```

然后启动一个定时器

KFD ACCEL MPU6050 READ EVT

该定时器,的调用如下:

```
00549:
           return (events ^ KFD_ACCEL_READ_EVT);
         } ? end if events&KFD_ACCEL_READ... ?
00552: #if defined( SENSOR_MPU6050_DMP
           if (events & KFD_ACCEL_MPU6050_READ_EVT)
00554:
             events &= "KFD_ACCEL_MPU6050_READ_EVT;
00556:
             KeyFobDemo_mpu6050Read(); // 读取mpu6050数据到全局变量
00558:
             if(g_is_mpu6050_timer_flag)
00559:
               osal_start_timerEx( keyfobapp_TaskID, KFD_ACCEL_MPU6050_READ_EVT, ACC
00561:
00562:
00563: #endif
```

每隔 10ms (ACCEL_MPU6050_READ_PERIOD 定义), 读取一次 mpu6050 的 dmp 输出,并保存到全局变量中, 全局变量如下:

```
static short mpu6050_gyro[3] = \{0,0,0\};
static short mpu6050_accel[3] = \{0,0,0\};
static short mpu6050_quat[4] = \{0,0,0,0\};//四元数存放数组
```

对应读取的函数如下:

```
01231:
                      mpu6050_gyro[0] = gyro[0];
                      mpu6050_gyro[1] = gyro[1];
mpu6050_gyro[2] = gyro[2];
01232:
01233:
01234:
01235:
                      mpu6050_accel[0] = accel[0];
mpu6050_accel[1] = accel[1];
01236:
01237:
                     mpu6050_accel[2] = accel[2];
01238:
01239:
                    q0=quat[0] >> 16;
                     q1=quat[1] >> 16;
q2=quat[2] >> 16;
01240:
01241:
01242:
                     q3=quat[3] >> 16;
01243:
01244:
                      //四元数存放数组
01245:
                      mpu6050_quat[0] = q0;
01246:
                      mpu6050_quat[1] = q1;
01247:
                      mpu6050_quat[2] = q2;
                      mpu6050_quat[3] = q3;
```

,如果手机 app 连接上我们开发板后,手机上的 app 启动读取函数(4.5 节有介绍),触发 keyfobdemo.c 中的函数如下:

```
01286: static uint8 KeyFobDemo_accelReadCB( uint16 param, void *value )
01287: {
01288
           uint8 len = ACCEL_MPU6050_OUT_LEN;
01289:
           if (param == ACCEL_MPU6050_OUT_UUID)
01290:
01291:
           {
01292:
               // 未启动则要先启动
01293:
               if(FALSE == g_is_mpu6050_timer_flag)
01294:
01295:
                     //osal_start_timerEx( keyfobapp_TaskID, KFD_ACCEL_MPU6050_READ_EVT
01296:
                    osal_start_timerEx( keyfobapp_TaskID, KFD_ACCEL_MPU6050_READ_E
01297:
                     //osal_start_reload_timer( keyfobapp_TaskID, KFD_ACCEL_MPU6050_REA
01298:
                     g_is_mpu6050_timer_flag = TRUE;
01299:
               }
01301:
               HalLedSet(HAL_LED_2, HAL_LED_MODE_ON);
01302:
01303:
              len = ACCEL_MPU6050_OUT_LEN;
```

注意该函数

static uint8 KeyFobDemo_accelReadCB(uint16 param, void *value)

其返回的是数据长度 (为 20 个字节),也就是 void *value 的有效长度,而 value 相当于一个数组的首地址,该数组存放的是欧拉角与四元数等数据。

数据经过处理如下:

总结如下:

- 1, 初始化 mpu6050.
- 开始 ble 广播,此时读取 mpu6050 的定时器也可以不启动,如本例程就没有启动。
- 3, 手机 app 连接开发板,连接后第一次读取 mpu6050 数据时,启动定时器(读取 mpu6050 的定时器)KFD_ACCEL_MPU6050_READ_EVT, 这是一个 10ms 的重复调用的定时器,每间隔 10ms 读取一次 mpu6050 的数据存放到全局变量中,方便以后手机 app 读取最新的数据。实测发现每隔 100ms,手机 app 读取一次数据。

4.4 蜂鸣器报警 (LED2 闪)

4.5 Android 源代码分析

Apk 与对应的源代码如下:

用 eclipse 导入下图;

4.5.1 mpu6050 数据获取

启动 app 后并连接开发板后, 将执行以下文件 Mpu3DActivity.java 中的函数:

函数 Constans.*mBluetoothLeService*.readCharacteristic(characteristic) 就是启动一个读取操作,读取开发板上 20 个字节的数据,格式如 4.3 节描述。

然后,读取到数据后,会触发回调函数:

private final BroadcastReceiver mGattUpdateReceiver = new BroadcastReceiver() 的 public void onReceive(Context context, Intent intent)

```
日每
                                                                     return false;
AmoAma
                                                                    return super.onKeyDown(keyCode, event);
AmoBleGFPT
AmoBleTool
AmoCC3200Video
                                                     private final BroadcastReceiver mGattUpdateReceiver = new BroadcastReceiver()
AmoHeartRate
AmoKeyfob
                                                          public void onReceive(Context context, Intent intent) {
    final String action = intent.getAction();
    MyLog. i(TAG, "action1 = " + action);
    if (BluetoothLeService. ACTION DATA, AVAILABLE.equals(action)) {
        byte []data = intent.getByteArrayExtra(BluetoothLeService. EXTRA_DATA);
    }
}
Android 4.3
Android Private Libraries
# src
D # com.amo.keyfob
                                                                    getblePacket(data);
Dame com.amo.keyfob.logs
com.amo.keyfob.model
                                                                       mustans. moluetoothLeService.readCharacteristic(characteristic)
▶ ■ BluetoothLeService.java
▶ Æ com.amo.keyfob.ui
▲ # com.amo.keyfob.ui.mpu6050
                                                     };
   D Lube.java
   D CubeRenderer.java
   private void getblePacket(byte[] packet) {
   Mpu3DActivity.java
                                                                          data.len='
     (I) Render java
   Dutils.java
```

getblePacket(data);该函数处理读取到的20个字节数据,并显示图形,如下图:

如上图:

getblePacket(byte[] packet)中的 packet 是数组,共20个字节;

其中都是 16 位表示,高位在后: packet[0]~packet[1] 是加速度的 ax packet[2]~packet[3] 是加速度的 ay

packet[4]~packet[5] 是加速度的 az

packet[6]~packet[7] 是陀螺仪的 gx packet[8]~packet[9] 是陀螺仪的 gy packet[10]~packet[11] 是陀螺仪的 gz

packet[12]~packet[19] 是 mpu6050 的 dmp 输出的四元数

代码内 float[] q = new float [4]; 后面 q 出来的就是四元数。

后面计算出欧拉角是:

float []data = new float[3];

最后,根据欧拉角调用一个立方体显示: mGLSurfaceView.onMpu6050Sensor(data[2], data[1], data[0]);

处理完成 图形之后,又马上执行一次读数据 的函数: Constans.*mBluetoothLeService*.readCharacteristic(characteristic) 下一次又能读取数据了。

总结: android app 读取数据流程如下:

- 1, Constans.mBluetoothLeService.readCharacteristic(characteristic), 启动读函数
- 2, 读取到数据,则执行: **private final** BroadcastReceiver mGattUpdateReceiver = **new** BroadcastReceiver()

的 **public void** onReceive(Context context, Intent intent)

然后在该函数中执行 getblePacket(data), 实现数据处理与图形显示。

然后再执行 Constans.mBluetoothLeService.readCharacteristic(characteristic) ,启动读函数

```
是一个循环呀.....readCharacteristic ->
onReceive ->
getblePacket ->
readCharacteristic ->
```

5,连接设备

5.1 用 GPIO 模拟 IIC 的接法

适合 cc2540 与 cc2541 芯片, 直接把 mpu6050 模块插入到开发板的 P21 座子上即可,如下图:

5.2 用硬件 IIC 的接法

仅适合 cc2541 芯片 (cc2540 芯片没有硬件 iic 功能), 需要用杜邦线接线,接线如下图:

6,下载运行

6.1 下载

请参考《BLE入门与提高教程》。

7, 测试

见视频演示:

用 CC254x 实现的旋转魔方视频演示(目前存在一点问题、反应不灵敏):

http://cloud.video.taobao.com/play/u/51731980/p/1/e/6/t/1/30385925.mp4

在我们 CC26x0 平台上的反应是灵敏的,见以下视频:

http://cloud.video.taobao.com/play/u/51731980/p/1/e/6/t/1/29791787.mp4

8, 联系我们

QQ群: 257318688 QQ: 11940507

Tel: 18588220515 阿莫

网站支持: <u>www.AmoMcu.com</u> 阿莫单片机社区网

淘宝店铺: http://amomcu.taobao.com

公司地址: 深圳市宝安区宝安电子数码城 4 楼 4F10