

MAX32674C AlgoHub SensorHub – Developers Guide

Rev 0.3; 08/21

Abstract

The MAX32674C may be commanded to be an algorithm hub or a sensor hub which can provide processed data for the measurement of SpO₂ and heart rate. This document provides step-by-step instructions that enable a host processor to communicate with the MAX32674C.

Maxim Integrated Page 1 of 77

Table of Contents

lr	trod	uction	5
1		AlgoHub, SensorHub Configurations	6
1.	.1	AlgoHub Configuration	6
1.	2	SensorHub Configuration	6
	1.3	When to use AlgoHub configuration or SensorHub configuration	7
	2	Reset	8
	2.1	Reset to Bootloader or Application Mode	8
	2.2	Reset to an Unsupported State	9
	3	AlgoHubSensorHub Handshaking: I2C and MFIO pin	.10
	4	AlgoHubSensorHub I2C Communications	.10
	4.1	MAX32674C I2C Bit Transfer Process.	.12
	4.2	Read Status Byte	.12
	4.3	AlgoHub Mode: PPG, Accel Sampling Rates Settings	.13
	4.4	Down-Sampling Host Accel Data	.14
	4.5	AlgoHubSensorHub I2C Command Response Definitions	.14
5		Configuring the AlgoHub and Reading Processed Data	.43
5	.1	AlgoHub Output FIFO Format	.43
5	2	AlgoHub AEC Normal Algorithm Report Configuration and Batched Processing	.44
5	.3	AlgoHub, AGC and Normal Algorithm Report Configuration	.50
5	4	Configuration for AlgoHub Normal Algorithm Report when Host Implements AEC/AGC	.53
5	.5	AlgoHub Processing Response Duration	.55
6		Configuring the SensorHub and Reading Processed Data	.56
6	.1	I2C SensorHub Output FIFO Format	.56
6	2	SensorHub, AEC aqnd Normal Algorithm Report Configuration	.57
6	.3	SensorHub, AGC and Normal Algorithm Report	.59
6	4	SensorHub, PPG Raw Data Report	.61
	7	Configuring a New MAX32674C	.63
8		Application .msbl Programming Sequence	.65
9		SpO ₂ Coefficients for Final Form Factor	.73
1)	APIs for Sleep, Shutdown	.73

11	MAX32674C Processing Capabilities	73
12	Heart Rate Algorithm Perfomance	74
13	SpO2 Algorithm Perfomance	75
14	References	76
Revi	ision History	77
Lis	t of Figures	
Figu	re 1. AlgoHub Architecture diagram for MAXREFDES104# health-sensing platform	6
Figu	re 2. SensorHub Architecture diagram for MAXREFDES104# health-sensing platform	7
Figu	re 3 Entering bootloader mode using the RSTN pin and the MFIO GPIO pin	8
Figu	re 4 Entering application mode using the RSTN pin and MFIO pin	9
Figu	re 5 Entering application mode by timing out from Bootloader mode	9
Figu	re 6. I2C and MFIO pin: host uses MFIO for enabling host communications	10
Figu	re 7. Example I ² C, MFIO example command response	11
Figu	re 9. Sequence to enter bootloader mode	65
Figu	re 10. Page number byte 0x44 from the .msbl file	65
Figu	re 11. Initialization vector bytes 0x28 to 0x32 from the .msbl file	65
Figu	re 12. Authentication bytes 0x34 to 0x43 from the .msbl file	66
Figu	re 13. Send page bytes 0x4C to 0x205B from the .msbl file	66
Figu	re 14. Sequence to enter application mode	69
Figu	re 15. Sequence to enter bootloader mode	70
Figu	re 16. Sequence to enter application mode	72

Maxim Integrated Page 3 of 77

List of Tables

Table 1. Read Status Byte	12
Table 2. AlgoHubSensorHub I2C Command Response Definitions	14
Table 3. AlgoHub Output FIFO Format	43
Table 4. Host Commands—AlgoHub AEC and Read Normal Algorithm Report	45
Table 5. Host Commands—Batched Processing AlgoHub AEC and Read Normal Algorithm Report	47
Table 6. Host Commands—AlgoHub AGC and Read Normal Algorithm Report	50
Table 7. Host Commands—AlgoHub AlgoHub Normal Algorithm Report when Host Impleme AEC/AGC	
Table 8. SensorHub Sample Counter Byte Output FIFO Format	56
Table 9. SensorHub SensorData Output FIFO Format	56
Table 10. SensorHub Algorithm Data Output FIFO Format	56
Table 11. Host Commands—SensorHub, AEC and Read Normal Algorithm Report	58
Table 12. Host Commands—SensorHub AGC and Read Normal Algorithm Report	60
Table 13. Host Commands—PPG Raw Data Report	62
Table 14. SensorHub PPG Raw Data Output FIFO Format	63
Table 15. Configure the MFIO pin and Save the Configuration	63
Table 16. Annotated I ² C Trace for Flashing the Application	65
Table 17. Annotated I ² C Trace for Flashing the Application using the Partial Page Writing Command	70
Table 18. Sleep, Shutdown I ² C Message Protocol Definitions	73
Table 19. Heart Rate Algorithm Perfomance	74
Table 20, SnO2 Algorithm Perfomance	75

Maxim Integrated Page 4 of 77

Introduction

MAX32674C (AlgoHubSensorHub) may be used as either algorithm hub (AlgoHub) or a sensor hub (SensorHub) which provides the following innovative features:

- Biometric heart rate, SpO2 algorithm (Wearable Algorithm Suite (WAS)) was developed by a team of machine learning, data scientist, algorithm experts.
- OTA update compatibility allows the AlgoHubSensorHub to receive the latest algorithm .msbl file.
- Low-powered AlgoHubSensorHub utilizes deep sleep when idle.
- Faster time to market; development time cut by at least six months.
- Reference design includes a host processor and PC GUI app which allows for wrist-band evaluation.

NOTE: The instructions in this document are compatible with the MAX32674C firmware .msbl version 50.2.4+ (MAX86176). The initial stock of MAXREFDES104 comes populated with MAX32670 which has been programmed with the bootloader so that it behaves as a MAX32674C; The orderable part for MAX32670 does not include with the bootloader and customers should order the MAX32674C part which includes the bootloader. The MAX32674C part does not include the application .msbl algorithm - The latest .msbl must be OTA or flashed to the MAX32674C.

When using the MAXREFDES104, the following three software and firmware must all be updated using the latest and same software release package. Please refer to the MAXREFDES104 User Guide for detailed software, firmware installation procedure.

- 1. Flash the micro board **.bin** file using drag & drop to the DAPLINK folder.
- 2. Flash the algorithm .msbl file to MAX32674C using the provided batch file.
- 3. Install the MAXREFDE104 PC GUI using the .msi file.

Maxim Integrated Page 5 of 77

1 AlgoHub, SensorHub Configurations

The hardware and firmware for the MAX32674C may be configured in the AlgoHub or SensorHub configurations.

1.1 AlgoHub Configuration

In the AlgoHub configuration, the MAX32666 host is connected to the MAX86176 AFE and the LIS2DS accelerometer. The host drivers are responsible for the setting of the AFE, accel registers and for retrieving the PPG, accel data. After the MAX32674C has been initialized to AlgoHub mode via I2C commands, the host pipes in the PPG, accel data to the MAX32674C algorithms and the MAX32674C provides heart rate and SpO2 data to the host. The MAX32674C is power optimized to deep sleep when it is idle. By using the combined ECG, PPG MAX86176 IC, the host processor can retrieve time synchronized ECG and PPG data.

Figure 1. AlgoHub Architecture diagram for MAXREFDES104# health-sensing platform.

1.2 SensorHub Configuration

Maxim Integrated Page 6 of 77

In the SensorHub configuration, the MAX32674C is connected to the MAX86176 AFE and the LIS2DS accelerometer. After the MAX32674C has been initialized to SensorHub mode via I2C commands, then the MAX32674C drivers will handle the AFE, accel register settings and retrieve the PPG, accel data. The MAX32674C algorithms processes the raw data to provide heart rate and SpO2 data to the host. The MAX32674C is power optimized to deep sleep when it is idle.

Figure 2. SensorHub Architecture diagram for MAXREFDES104# health-sensing platform.

1.3 When to use AlgoHub configuration or SensorHub configuration

The AlgoHub configuration should be used when the system requirements require that ECG and PPG run simultaneously or when it is required to have accel, ECG and PPG data time synchronized. The AlgoHub mode requires more host integration effort for AFE, accel register settings and for piping in the PPG and accel data to the MAX32674C and for creating the host code which responds to the AlgoHub algorithm requests to update the PPG register settings of the AFE. The total system power will be more for AlgoHub configuration since there will be more host to SensorHub communications and the host must handle the dynamic management of the PPG AFE and accel sensors.

Maxim Integrated Page 7 of 77

The SensorHub configuration should be used when the system requirements do not require that ECG and PPG run simultaneously – ECG and PPG are run in stand-alone modes. The SensorHub mode requires less host integration effort since the MAX32674C includes the drivers to retrieve the PPG, accel data from the MAX86175 and LIS2DS12. The total system power will be less for SensorHub configuration since there will be less host to SensorHub communications and the dynamic management of the PPG AFE and the accel is off-loaded to the power optimized MAX32674C. ECG is currently not demonstrated in SensorHub configuration.

2 Reset

2.1 Reset to Bootloader or Application Mode

Two GPIO pins from the host are needed to control the RSTN and multifunction input/output (MFIO) pins.

To enter Bootloader mode:

- Set the RSTN pin low.
- While RSTN is low, set the MFIO pin to low and set either SWDCLK or UARTO_RX to high. (Do this at least 1ms before the RSTN pin is set to high.)
- After the 10ms has elapsed, set the RSTN pin to high.
- After an additional 50ms has elapsed, the AlgoHubSensorHub is in Bootloader mode.

Figure 3 Entering bootloader mode using the RSTN pin and the MFIO GPIO pin.

To enter Application mode:

- Set the RSTN pin low.
- While RSTN is low, set the MFIO pin to high and set either SWDCLK or UARTO_RX to high. (Do this at least 1ms before the RSTN pin is set to high.).
- After the 10ms has elapsed, set the RSTN pin to high
- After an additional 50ms has elapsed, the AlgoHubSensorHub is in Application mode and the application performs its initialization of the application software.

Maxim Integrated Page 8 of 77

- After approximately 1.5 second from when the RSTN pin was set to high, the application completes the initialization, and the device is ready to accept I²C commands.
- Set the ACCEL_CS_N pin to low.

Figure 4 Entering application mode using the RSTN pin and MFIO pin.

To enter Application mode by timing out from Bootloader mode:

- Set the RSTN pin low.
- While RSTN is low, set the MFIO pin to low and set either SWDCLK or UARTO_RX to high. (Do this at least 1ms before the RSTN pin is set to high.)
- After the 10ms has elapsed, set the RSTN pin to high.
- After an additional 50ms has elapsed, the AlgoHubSensorHub is in Bootloader mode.
- If no I2C commands are sent to the AlgoHubSensorHub within the next 1s, then the AlgoHubSensorHub will automatically switch to application mode.

Figure 5 Entering application mode by timing out from Bootloader mode.

2.2 Reset to an Unsupported State

Maxim Integrated Page 9 of 77

Do not set P0.1 (ACC_INT) and P0.8 (ACC_CS) both low when powering up or exiting reset – doing so will cause the MAX32674C to enter an unsupported state. Set either or both P0.1, P0.8 to high when powering up or exiting reset.

3 AlgoHubSensorHub Handshaking: I2C and MFIO pin

Normally, when the AlgoHubSensorHub is idle, it switches to deep sleep mode to save power. An external interrupt-like sensor, host MFIO, or RTC alarm forces the AlgoHubSensorHub to wake up.

The host is required to wake up the AlgoHubSensorHub prior to any I²C communication by:

- Setting the MFIO pin to low at least 300µs before the beginning of an I²C transaction to wake the AlgoHubSensorHub.
- Keeping the MFIO pin low during the I²C transaction.
- Setting MFIO to high after the end of I²C communication to allow the AlgoHubSensorHub to switch back to deep sleep.

Figure 6. I2C and MFIO pin: host uses MFIO for enabling host communications.

4 AlgoHubSensorHub I2C Communications

A host uses the I²C bus to communicate with the AlgoHubSensorHub (slave) using a series of commands. The default CMD_DELAY is 2ms. The I²C data rate 400Kbps has been tested; the 1000Kbps data rate has not been tested.

Slave WriteAddress and Slave ReadAddress are set to 0xAA and 0xAB, respectively.

A generic write command includes the following fields:

Slave_WriteAddress(1 byte)|Command_Family(1 byte)|[Index byte]|[Write
byte]|[additional command byte(s)]

A generic response includes the following fields:

Slave_ReadAddress(1 byte)|Read Status Byte|Value (multiple bytes)

Maxim Integrated Page 10 of 77

Figure 7. Example I²C, MFIO example command response.

Maxim Integrated Page 11 of 77

4.1 MAX32674C I2C Bit Transfer Process.

The read status byte is an indicator of success (0x00) or failure, as detailed in the following table.

The defined bit transfer process is described below. It is recommended that I²C GPIO 'bit-bang' software be implemented on the host if the host MCU I²C hardware/HAL is not compatible with AlgoHubSensorHub protocol.

Both SDA and SCL signals are open-drain circuits. Each has an external pullup resistor that ensures each circuit is high when idle. The I²C specification states that during data transfer, the SDA line can change state only when SCL is low, and that SDA is stable and able to be read when SCL is high. Typical I²C write/read transactions are shown below.

Figure 8. I2C Write/Read data transfer from host microcontroller.

The read status byte is an indicator of the success or failure of the Write Transaction. The read status byte must be accessed after each write transaction to the device. This ensures that write transaction processing is understood and any errors in the device command handling can be corrected. The value of the read status byte is summarized in the next table.

4.2 Read Status Byte

The read status byte is an indicator of success (0x00) or failure, as detailed in the following table.

Table 1. Read Status Byte

Maxim Integrated Page 12 of 77

STATUS BYTE VALUE	DESCRIPTION			
0x00	Application mode: The write transaction was successful.			
0x01	Illegal Family Byte and/or Index Byte was used. Verify that the Family Byte, Index Byte are valid for the host command sent.			
0x02	Illegal Index Byte and/or Write Byte was used. Verify that the Index Byte and Write Byte(s) are valid for the host command sent.			
0x03	Incorrect number of bytes sent for the requested Family Byte. Verify that the correct number of bytes are sent for the host command.			
0x04	Illegal configuration value was attempted to be set. Verify that the Family Byte, Index Byte, and Write Byte are correct.			
0x05	Not used in application mode. (In bootloader: Device is busy. Insert delay and resend the host command.)			
0x80	Not used. General error while receiving/flashing a page during the bootloader sequence. Not used.			
0x81	Bootloader checksum error while decrypting/checking page data. Verify that the keyed .msbl file is compatible with MAX32674C.			
0x82	Bootloader authorization error. Verify that the keyed .msbl file is compatible with MAX32674C.			
0x83	Bootloader detected that the application is not valid.			
0x84	Bootloader: application program was not erased before trying to flash a new one.			
0xAA	Bootloader mode: The write transaction was successful.			
0xAB	Bootloader: partial page data received; there is still more page data.			
0xFE	Device is busy. Try again. Increase the delay before the command and increase the CMD_DELAY.			
0Xff	Unknown error. The AlgoHubSensorHub is in deep sleep unless the host sets the MFIO pin low 300us before during the I ² C communications. When switching to bootloader mode, allow 50ms for initialization. When switching to application mode, allow 1.5s for initialization.			
NAK	NAK received. AlgoHubSensorHub was busy. Resend command after 1ms with a maximum of five retries. If this issue persists, then empty the FIFO by reading all the data. Verify that the hardware I2C/MFIO rise times, voltage levels, and grounding are correct. Verify that the MFIO line fall time is clean; increase the MFIO pin low time to wake to 300us			

4.3 AlgoHub Mode: PPG, Accel Sampling Rates Settings

The AlgoHub algorithm accepts 25 Hz data.

The host should configure the PPG sampling rates according to the AFE request when using AEC mode.

If AEC mode is not used, then the host should configure the PPG sampling rates to the following:

- PPG 25 Hz sampling rate, sample averaging of 1.
- PPG 100 Hz sampling rate, sample averaging of 4. Host should switch to this rate when running, jogging activity has been detected. Host should use one way hysteresis to filter switching back to 25 Hz, sample average of 1.

The host should configure the Accel sampling rates to the following:

25 Hz sampling rate (do not use LIS2DS12 low precision setting - it is too noisy). If 25
Hz is not available, the host should down-sample the higher frequency to 25 Hz with
linear interpolation.

Maxim Integrated Page 13 of 77

4.4 Down-Sampling Host Accel Data

Example code for down-sampling may be found on the web:

https://stackoverflow.com/questions/31836598/subsampling-an-array-of-numbers

To test, down-sample 5Hz to 4 Hz:

```
o[0] = i[0]

o[1] = .75*i[1] + .25*i[2]

o[2] = .5*i[2] + .5*i[3]

o[3] = .25*i[3] + .75*i[4] ...
```

4.5 AlgoHubSensorHub I2C Command Response Definitions

The table below defines the I²C command response message protocol for the AlgoHubSensorHub. (not listed in this table is the first byte of the response is always the Read Status byte)

Table 2. AlgoHubSensorHub I2C Command Response Definitions

FAMILY BYTE	INDEX BYTE	WRITE BYTE(S)	DESCRIPTION	RESPONSE BYTES
0x00	0x00	-	Read sensor AlgoHubSensorHub status.	Err0[0]: 0 = No error; 1 = Sensor communication problem Err1[0]: Not used Err2[0]: Not used DataRdyInt[3]: 0 = FIFO below threshold; 1 = FIFO filled to threshold or above. FifoOutOvrInt[4]: 0 = No FIFO overflow; 1 = AlgoHubSensorHub output FIFO overflowed, data lost. FifoInOvrInt[5]: 0 = No FIFO overflow; 1 = AlgoHubSensorHub Input FIFO overflowed, data lost.
0x01	0x00	ox00: Exit bootloader mode, enter application mode. (CMD_DELAY = 1.5s) ox01: Shutdown the MAX32674C. Restart by power cycling or pulsing RSTN (application mode)	Set the device operating mode.	

Maxim Integrated Page 14 of 77

		0x08: Enter bootloader mode (if commanded within the first 20ms afer reset)		
0x02	0x00	-	Read the device operating mode.	0x00: Application operating mode. 0x02: Reset. 0x08: Bootloader operating mode.
0x10	0x00	oxoo: (no data) oxo1: Sensor Data oxo2: Algorithm Data oxo3: Sensor Data and Algorithm Data oxo4: (no data) oxo5: Sample Counter byte, Sensor Data oxo6: Sample Counter byte, Algorithm Data oxo7: Sample Counter byte, Algorithm Data oxo7: Sample Counter byte, Algorithm Data oxo7: Sample Counter byte, Sensor Data and Algorithm Data	Set the output format of the AlgoHubSensorHub.	
0x10	0x01	0x01 to 0xFF: Sensor Hub Interrupt Threshold for FIFO.	Set the threshold for the FIFO interrupt bit. The bit DataRdyInt of the AlgoHubSensorHub status byte is set when this threshold is reached.	-
0x11	0x01	-	Read the threshold for the FIFO interrupt bit. The bit DataRdyInt of the AlgoHubSensorHub status byte is set when this threshold is reached.	0x01 to 0xFF : AlgoHubSensorHub Interrupt Threshold for FIFO.
able0x1 0	0x02	0x01 to 0xFF: lsb is 40ms. N, where a samples report is generated once every N samples.	Set the samples report period (e.g., a value of 25 means a samples report is generated once every 25 samples).	-
0x11	0x02	-	Read the samples report period (e.g., a value of 25 means a samples report is generated once every 25 samples).	0x01 (default) to 0xFF: Isb is 40ms. N, where a samples report is

Maxim Integrated Page 15 of 77

				generated once every N samples.
0x10	0x03	0x02 to 0xFF: New I ² C address (8-bit I ² C write address)	Change I ² C address of the MAX32674C	-
0x10	0x04	0x00 to 0xFF: Counter	Set the AlgoHubSensorHub counter.	-
0x11	0x04	-	Read the AlgoHubSensorHub counter.	0x00 to 0xFF : Counter
0x11	0x05	-	Read PPG output FIFO samples report size	Number of bytes in the PPG samples report
0x12	0x00	-	Get the number of samples available in the output FIFO	Number of samples available in the FIFO.
0x12	0x01 (CMD_ DELAY = 5ms)	-	Read data stored in output FIFO.	Samples Report from Output FIFO. The internal FIFO read pointer increments once the sample size bytes have been read. See Samples Report Table for more details.
0x14 AlgoHub	0x00	AlgoHub Input Frame 1 AlgoHub Input Frame 2 AlgoHub Input Frame N-1 AlgoHub Input Frame N N: [1 to 25] CMD_DELAY = 16ms	Write AlgoHub input frame data to the AlgoHub input FIFO. AlgoHub Input Frame (24 Bytes) Content: PPG1: 3 byte PPG value: [MSB LSB] for WHRM HR Channel 1 PPG2: 3 byte PPG value: [MSB LSB] for WHRM HR Channel 2 PPG3: 3 byte PPG value: [MSB LSB] for SpO2 IR Channel PPG4: 3 byte PPG value: [MSB LSB] for SpO2 Red Channel PPG5: 3 byte PPG value: [MSB LSB] for N/A PPG6: 3 byte PPG value: [MSB LSB] for N/A Accelerometer set to ±8g: ACCLX: 2-byte accel X value (2's complement .001g): [MSB LSB] ACCLY: 2-byte accel Y value (2's complement .001g): [MSB LSB]	mmnn is the ppg, accel number of bytes received (16-bit unsigned)s

Maxim Integrated Page 16 of 77

			ACCLZ: 2-byte accel Z value (2's complement .001g): [MSB LSB]	
0x42 Sensor Hub	0x04		Read the attributes of the accelerometer.	Number of bytes in a word for this sensor, Number of registers available for this sensor.
0x42 Sensor Hub	0x06		Read the attributes of the MAX86176.	Number of bytes in a word for this sensor, Number of registers available for this sensor.
0x40 Sensor Hub	0x04	[reg_addr] [reg value]	Write a value to a writable accelerometer sensor register.	
0x41 Sensor Hub	0x04	[reg_addr]	Read accelerometer sensor register.	Register value (byte)
0x40 Sensor Hub	0x06	[reg_addr] [reg value]	Write a value to a writable MAX86176 register.	
0x41 Sensor Hub	0x06	[reg_addr]	Read the value of a MAX86176 register.	Register value (byte)
0x44 Sensor Hub	0x04	0x00, 0x00: Disable sensor hub accelerometer , CMD_DELAY = 50ms 0x01, 0x00: Enable sensor hub accelerometer CMD_DELAY = 50ms	Write the enable/disable the accelerometer.	-
0x44 Sensor Hub	0x06	0x00: Disable, CMD_DELAY = 200ms 0x01, 0x00: Enable Raw Data, CMD_DELAY = 500ms	Write the enable/disable the MAX86176 AFE.	-
0x44 AlgoHub	0x07	0x00, 0x01: Disable WAS AlgoHub, external sensor input, CMD_DELAY = 200ms. 0x01, 0x01: Enable WAS AlgoHub, enable external sensor input.	Enable/Disable Wearable Algorithm Suite AlgoHub.	-

Maxim Integrated Page 17 of 77

		CMD DELAY		
		= 500ms		
0x46 for write. AlgoHub	0x07	0x00 [A_MSB A_LSB] [B_MSB B_LSB] [C_MSB C_LSB]	Write SpO ₂ calibration coefficients (12 bytes comprised of three 32-bit signed values, scaled up by 100,000)	-
0x47 for read. AlgoHub	0x07	0x00	Read SpO ₂ calibration coefficients (12 bytes comprised of three 32-bit signed values, scaled up by 100,000) Default: 0xFFF9482C FFE3792B 00A8E9A4 A = -4.4027606 (0xFFF9482C) B = -18.695252 (0x FFE3792) C = 110.6986082 (0x00A8E9A4)	32-bit signed integer A, 32-bit signed integer B, 32-bit signed integer C Values scaled up by 100,000
0x46 for write. AlgoHub	0x07	0x01 [MSB LSB]	Write SpO ₂ motion-detection period (unsigned 16-bit int, seconds). The algorithm will consider the state to be motionless if the motion is below the threshold for this duration of time.	-
0x47 for read. AlgoHub	0x07	0x01	Read SpO ₂ motion-detection period. The algorithm will consider the state to be motionless if the motion is below the threshold for this duration of time. Default: 0x0002	MSB of period, LSB of period (16-bit unsigned integer, seconds)
0x46 for write. AlgoHub	0x07	0x02 [MSB LSB]	Write SpO ₂ motion-detection threshold (signed 32-bit int, equal to 10 ⁵ x milli-g threshold value)	-
0x47 for read. AlgoHub	0x07	0x02	Read SpO ₂ motion-detection threshold (signed 32-bit int, equal to 10 ⁵ x milli-g threshold value) Default: 0x01C9C380 (0.3g)	4 bytes (32-bit signed integers which are the milli-g motion threshold times 100,000)
0x46 for write. AlgoHub	0x07	0x03 [byte]	Write SpO2 AGC Timeout (sec) .	
0x47 for read. AlgoHub	0x07	0x03	Read SpO2 AGC Timeout (sec) . Default: 0x1E	SpO2 AGC Timeout (8-bit unsigned, seconds)
0x46 for write. AlgoHub	0x07	0x04	Write the timeout duration for SpO2 measurement in seconds (1 byte).	-
0x47 for read. AlgoHub	0x07	0x04	Read the timeout duration for SpO2 measurement in seconds. Default: 0x78	SpO ₂ algorithm timeout (8-bit unsigned, seconds)
0x46 for write. AlgoHub	0x07	0x05 [byte]	Write initial HR algorithm value (8-bit unsigned).	-

Maxim Integrated Page 18 of 77

			1	<u> </u>
0x47 for	0x07	0x05		
read.	UXU/	CUXU	Pood initial HP algorithm value	Initial heart rate (9 hit
			Read initial HR algorithm value. Default: 0x3C	Initial heart rate (8-bit
AlgoHub			Default. 0x3C	unsigned)
0x46 for	0x07			
write.	UXU1			
AlgoHub		0x06 [MSB]	Write height (16 bit uneigned em)	
Algoriub		[LSB]	Write height (16-bit unsigned, cm).	-
0x47 for	0x07			
read.	UXU1		Read height.	Height
AlgoHub		0x06	Default: 0x00AF	(16-bit unsigned, cm)
Algoriub			Delault. 0x00AF	(10-bit drisigned, citi)
0x46 for	0x07			
write.	UXU1			
AlgoHub		0x07 [MSB]	Write weight (16-bit unsigned, kg).	_
Algoriub		[LSB]	write weight (10-bit unsigned, kg).	_
0x47 for	0x07			
read.	0.07		Read weight.	Weight
AlgoHub		0x07	Default: 0x004E	(16-bit unsigned, kg)
Aigoriab			Delault. 0x004E	(10 bit drisighted, kg)
0x46 for	0x07			
write.	0.07			
AlgoHub		0x08 [byte]	Write age (8-bit unsigned, years).	
Algoriub		oxoo [byte]	write age (o-bit difsiglied, years).	
0x47 for	0x07			
read.	OXO1		Read age.	Age (8-bit unsigned,
AlgoHub		0x08	Default: 0x1E	years)
7 (190) 100			Boladit. OXTE	yoursy
0x46 for	0x07		144 % I	
write.			Write gender.	
AlgoHub		0x09 [byte]	Byte:	
			0x00 : Male	
			0x01: Female	
0x47 for	0x07			Candar
read.		000	Dood gooder	Gender
AlgoHub		0x09	Read gender	0x00: Male (default)
				0x01: Female
0x46 for	0x07		Set the algorithm operation mode (can be	
write.			switched in runtime):	
AlgoHub			0x00: Continuous HRM + Continuous	
		0,000 [0]00	SpO ₂ (default).	
		0x0A [algo	0x01: Continuous HRM + One-Shot SpO ₂	
		operation	0x02: Continuous HRM	-
		mode byte]	0x03: Sampled HRM	
			0x04: Sampled HRM + One-Shot SpO ₂	
			0x05 : Activity Tracking ONLY	
			0x06 : SpO ₂ Calibration Data Collection	
0x47 for	0x07			0x00: Continuous HRM,
read.				continuous SpO ₂ (default)
AlgoHub		0x0A	Read the algorithm operation mode.	0x01 : Continuous HRM,
		UNUM		one-shot SpO ₂
				0x02: Continuous HRM
				0x03: Sampled HRM

Maxim Integrated Page 19 of 77

				0x04: Sampled HRM, one- shot SpO ₂ 0x05: Activity tracking only 0x06: SpO ₂ calibration
0x46 for write. AlgoHub	0x07	0x0B [byte]	Write the enable/disable AEC byte: 0x00: Disable 0x01: Enable	-
0x47 for read. AlgoHub	0x07	0x0B	Read the enable/disable AEC.	0x00: Disabled 0x01: Enabled (default)
0x46 for write. AlgoHub	0x07	0x0C [byte]	Write the Skin Contact Detection (SCD) algorithm enable 0x00 : Disable 0x01 : Enable	-
0x47 for read. AlgoHub	0x07	0x0C	Read the Skin Contact Detection (SCD) algorithm enable	0x00: Disable 0x01: Enable (default)
0x46 for write. AlgoHub	0x07	0x0D [MSB] [LSB]	Write adjusted target PD current period (16-bit unsigned, seconds)	-
0x47 for read. AlgoHub	0x07	0x0D	Read adjusted target PD current period in seconds. Default: 0x0708	Adjusted target PD current period (16-bit unsigned, seconds)
0x46 for write. AlgoHub	0x07	0x0E [byte]	Write HR motion magnitude threshold (16-bit unsigned, 0.001g)	-
0x47 for read. AlgoHub	0x07	0x0E [MSB] [LSB]	Read HR motion magnitude threshold. Default: 0x0032 (0.05g)	[MSB] [LSB] motion magnitude threshold (16-bit unsigned, 0.001g)
0x46 for write. AlgoHub	0x07	0x0F [MSB] [LSB]	Write minimum PD current (16-bit unsigned, 0.1uA).	-
0x47 for read. AlgoHub	0x07	0x0F	Read minimum PD current. Default: 0x0032	Minimum PD current (16- bit unsigned, 0.1uA)
0x46 for write. AlgoHub	0x07	0x10 [MSB] [LSB]	Write initial PD current (16-bit unsigned, 0.1uA). This sets the target PD current you would like AEC algorithm to maintain initially. It does not correspond to any register. Once you set what PD current you need, algorithm will calculate the appropriate LED current.	-

Maxim Integrated Page 20 of 77

0x47 for	0x07			
read. AlgoHub	3,01	0x10	Read initial PD current. Default: 0x0064	Initial PD current (16-bit unsigned, 0.1uA)
0x46 for write. AlgoHub	0x07	0x11 [MSB] [LSB]	Write target PD current (16-bit unsigned, 0.1uA). Applicable only if Auto Target PD Current Calculation is enabled.	
0x47 for read. AlgoHub	0x07	0x11	Read target PD current. Default: 0x0064	Target PD current (16-bit unsigned, 0.1uA)
0x46 for write. AlgoHub	0x07	0x12 [byte]	Write enable/disable automatic calculation of target PD current. byte: 0x00: Disable 0x01: Enable	-
0x47 for read. AlgoHub	0x07	0x12	Read enable/disable automatic calculation of target PD current	0x00: Disable 0x01: Enable (default)
0x46 for write. AlgoHub	0x07	0x13 [byte1 byte 2]	Write minimum AFE integration time. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs	-
0x47 for read. AlgoHub	0x07	0x13	Read minimum AFE integration time.	Minimum AFE integration time for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 14.8µs (default) 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs
0x46 for write. AlgoHub	0x07	0x14 [byte1 byte2]	Write minimum sampling rate and averaging. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	-
0x47 for read. AlgoHub	0x07	0x14	Read minimum sampling rate and averaging.	Minimum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9]

Maxim Integrated Page 21 of 77

	I	1	T	T
				byteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16
0x46 for write. AlgoHub	0x07	0x15 [byte1 byte2]	Write maximum integration time: 0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00 : 14.8μs 0x01 : 29.4μs 0x02 : 58.7μs 0x03 : 117.3μs	-
0x47 for read. AlgoHub	0x07	0x15	Read maximum integration time:	Maximum integration time for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs (default)
0x46 for write. AlgoHub	0x07	0x16 [byte1 byte 2]	Write maximum sampling rate and averaging: byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	-
0x47 for read. AlgoHub	0x07	0x16	Read maximum sampling rate and averaging.	Maximum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16 (default)
0x46 for write. AlgoHub	0x07	0x17 0xWX, 0xYZ	Write slot and PD configuration for the two HR inputs to the WHRM algorithm. 0xWX, 0xYZ: WX is input 1 of the WHRM algorithm. W (MS nibble of WX):	-

Maxim Integrated Page 22 of 77

			W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is input 2 of the WHRM algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used.	
0x47 for read. AlgoHub	0x07	0x17	Read Slot and PD configuration for the two HR inputs to the WHRM algorithm.	OxWX, 0xYZ Default: 0x0001 WX is input 1 of the WHRM algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is input 2 of the WHRM algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot 10 X = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used.

Maxim Integrated Page 23 of 77

0x46 for write. AlgoHub	0x07	0x18 0xWX 0xYZ	Write Slot and PD configuration for the IR, red inputs to the WSpO2 algorithm. 0xWX, 0xYZ: WX is the LED/PD used for IR for the WSpO2 algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is the LED/PD used for red for the WSpO2 algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2	-
0x47 for read. AlgoHub	0x07	0x18	Z = 3 for PD not used Read Slot and PD configuration for the IR, red inputs to the WSpO2 algorithm.	OxWX, 0xYZ Default: 0x1020 WX is the LED/PD used for IR for the WSpO2 algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is the LED/PD used for red for the WSpO2 algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1

Maxim Integrated Page 24 of 77

			T	V 4 for Olot 0
0x46 for	0x07		Write initial AFE integration time.	Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used
write.	UXU/		byte1:	
AlgoHub		0x1A [byte1 byte2]	0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 14.8μs 0x01: 29.4μs 0x02: 58.7μs 0x03: 117.3μs	-
0x47 for read. AlgoHub	0x07			Initial AFE integration time for each PPG measurement 1 to 9. [byte1 to byte9]
		0x1A	Read initial AFE integration time.	byteN: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs (default)
0x46 for write. AlgoHub	0x07		Write initial sampling rate and averaging. 0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	
		0x1B [byte1 byte2]	byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	
0x47 for read. AlgoHub	0x07			Minimum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9]
		0x1B	Read minimum sampling rate and averaging.	byteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 (default) 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16
0x46 for	0x07		Write maximum DAC offset.	
write. AlgoHub		0x1C [byte1 byte2]	byte1: 0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	-

Maxim Integrated Page 25 of 77

			byte: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	
0x47 for read. AlgoHub	0x07	0x1C	Read maximum DAC offset .	Maximum DAC offset for each PPG measurement 1 to 9. [byte1 to byte9]
		OXIC		ByteN: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA (default)
0x46 for	0x07		Write minimum LED current.	
write. AlgoHub		0x1D [byte1 MSB LSB]	byte1: 0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	-
			MSB LSB: 16-bit unsigned, lsb=0.1mA	
0x47 for read. AlgoHub	0x07	0x1D	Read minimum LED current .	Minimum LED current for each PPG measurement 1 to 9. [MSBLSB_1 to MSBLSB_9]
				MSBLSB_N: 16-bit unsigned, lsb 0.1mA
0x46 for write.	0x07		Write maximum LED current. byte1:	
AlgoHub		0x1E [byte1 MSB LSB]	0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	-
			MSB LSB: 16-bit unsigned, lsb=0.1mA	
0x47 for read. AlgoHub	0x07	0x1E	Read maximum LED current .	Maximum LED current for each PPG measurement 1 to 9. [MSBLSB_1 to MSBLSB_9]
				MSBLSB_N: 16-bit unsigned, lsb 0.1mA
0x46 for write. AlgoHub	0x07	0x1F [byte1	Write minimum LED current step that the algorithm can increase/decrease with each measurement. byte1: 0x00 to 0x08: PPG measurement 1 to 9.	-
		MSB LSB]	(1: Green, 2: IR, 3: red, N/A, N/A) MSB LSB:	
			16-bit unsigned, lsb=0.1mA	
0x47 for read. AlgoHub	0x07	0x1F	Read minimum LED current step that the algorithm can increase/decrease with each measurement.	Minimum LED current step for each PPG measurement 1 to 9.

Maxim Integrated Page 26 of 77

				[MSBLSB_1 to MSBLSB_9]
				MSBLSB_N: 16-bit unsigned, lsb 0.1mA
0x46 for write. AlgoHub	0x07	0x20 [byte1 byte 2]	Write HR master channel selection option for each measurement. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: PD1 selected as master channel. 0x01: PD2 selected as master channel. 0x02: master channel selected automatically.	-
0x47 for read. AlgoHub	0x07			HR master channel selection for each PPG measurement 1 to 9. [byte1 to byte9]
		0x20	Read HR master channel selection option for each measurement .	byteN: 0x00: PD1 selected as master channel. 0x01: PD2 selected as master channel. 0x02: master channel selected automatically.
0x46 for write. AlgoHub	0x07	0x21 [byte1 byte2]	Write full scale PD current. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 4 uA 0x01: 8 uA 0x02: 16 uA 0x03: 32 uA	-
0x47 for read. AlgoHub	0x07			Full scale PD current for each PPG measurement 1 to 9. [byte1 to byte9]
		0x21	Read full scale PD current.	byteN: 0x00: 4 uA 0x01: 8 uA 0x02: 16 uA 0x03: 32 uA
0x46 for write. AlgoHub	0x07	0x22 [byte]	Write AFE type. byte: 0x00: AFE that allows independent integration time and sampling average settings for different measurements, e.g., MAX86171. 0x01: AFE that uses shared integration time and sampling average settings for different measurements, e.g., MAX86141	-
0x47 for read. AlgoHub	0x07	0x22	Read AFE type.	AFE type. 0x00 : AFE that allows independent integration

Maxim Integrated Page 27 of 77

				time and sampling average settings for different measurements, e.g., MAX86171. (default) 0x01 : AFE that uses shared integration time and sampling average settings for different measurements, e.g., MAX86141
0x46 for write. AlgoHub	0x07	0x23 [byte1 byte2]	Write DAC offset for PD channel 1. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	-
0x47 for read. AlgoHub	0x07	0x23	Read DAC offset for PD channel 1.	DAC offset for PD channel 1 for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 0 uA (default) 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
0x46 for write. AlgoHub	0x07	0x24 [byte1 byte2]	Write DAC offset for PD channel 2. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	-
0x47 for read. AlgoHub	0x07	0x24	Read DAC offset for PD channel 2.	DAC offset for PD channel 2 for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 0 uA (default) 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
0x46 for write. AlgoHub	0x07	0x25 [byte1 [MSB LSB]	Write initial LED current. (16-bit unsigned, lsb = 0.1mA) byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	-

Maxim Integrated Page 28 of 77

0x47 for read. AlgoHub	0x07	0x25	Read initial LED current.	Initial LED current for each PPG measurement 1 to 9. [MSB1 LSB1 to MSB9 LSB9] MSBn LSBn: Initial LED current. (16-bit unsigned, lsb = 0.1mA)
0x46 for write. AlgoHub	0x07	0x26 CMD_DELAY = 25ms	Reset AFE and algorithm to the default settings below: 0x50 0x07 0x00: A=-4.4027606, B=18.695252, C= 110.6986082 0x50 0x07 0x0A: 0x00 0x50 0x07 0x06: 0xAF 0x50 0x07 0x07: 0xE4 0x50 0x07 0x13: 0x00 0x50 0x07 0x15: 0x03 0x50 0x07 0x1C: 0x03	-
0x47 for read. AlgoHub	0x07	0x27 (CMD_DELAY = 5 ms)	Read algorithm AFE settings requests.	[byte1 byte2 byte3 byte4 byte5] byte1, byte2: bit 15: 0: No LED current update request 1: LED current update requested bits 14-0: LED current (15-bit unsigned, 0.1mA) byte3: bit 7: 0: No integration time update requested bits 6-0: AFE integration time: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs byte4: bit 7: 0: No sampling rate update requested bits 6-0: Sampling rate and averaging. 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 8

Maxim Integrated Page 29 of 77

				0x04 : 400sps, avg = 16
				byte5: DAC offset bit 7: 0: No DAC offset update request 1: DAC offset update requested 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
0x46 for write. AlgoHub	0x07	0x28 (CMD_DELAY = 5 ms)	Clear algorithm AFE settings request flag. This command is sent after the host has honored the algorithm AFE requests.	-
0x50 for write. Sensor Hub	0x08	0x00 [A_MSB A_LSB] [B_MSB B_LSB] [C_MSB C_LSB]	Write SpO ₂ calibration coefficients (12 bytes comprised of three 32-bit signed values, scaled up by 100,000)	-
0x51 for read. Sensor Hub	0x08	0x00	Read SpO ₂ calibration coefficients (12 bytes comprised of three 32-bit signed values, scaled up by 100,000) Default: 0xFFF9482C FFE3792B 00A8E9A4 A = -4.4027606 (0xFFF9482C) B = -18.695252 (0x FFE3792) C = 110.6986082 (0x00A8E9A4)	32-bit signed integer A, 32-bit signed integer B, 32-bit signed integer C Values scaled up by 100,000
0x50 for write. Sensor Hub	0x08	0x01 [MSB LSB]	Write SpO ₂ motion-detection period (unsigned 16-bit int, seconds). The algorithm will consider the state to be motionless if the motion is below the threshold for this duration of time.	-
0x51 for read. Sensor Hub	0x08	0x01	Read SpO ₂ motion-detection period. The algorithm will consider the state to be motionless if the motion is below the threshold for this duration of time. Default: 0x0002	MSB of period, LSB of period (16-bit unsigned integer, seconds)
0x50 for write. Sensor Hub	0x08	0x02 [MSB LSB]	Write SpO ₂ motion-detection threshold (signed 32-bit int, equal to 10 ⁵ x milli-g threshold value)	-
0x51 for read. Sensor Hub	0x08 0x08	0x02	Read SpO ₂ motion-detection threshold (signed 32-bit int, equal to 10 ⁵ x milli-g threshold value) Default: 0x01C9C380 (0.3g)	4 bytes (32-bit signed integers which are the milli-g motion threshold times 100,000)
0x50 for write. Sensor Hub	UXUG	0x03 [byte]	Write SpO2 AGC Timeout (sec) .	

Maxim Integrated Page 30 of 77

0x51 for	0x08		Read SpO2 AGC Timeout (sec) .	SpO2 AGC Timeout (8-bit
read. Sensor Hub		0x03	Default: 0x1E	unsigned, seconds)
0x50 for write. Sensor Hub	0x08	0x04	Write the timeout duration for SpO2 measurement in seconds (1 byte).	-
0x51 for read. Sensor Hub	0x08	0x04	Read the timeout duration for SpO2 measurement in seconds. Default: 0x78	SpO ₂ algorithm timeout (8-bit unsigned, seconds)
0x50 for write. Sensor Hub	0x08	0x05 [byte]	Write initial HR algorithm value (8-bit unsigned).	-
0x51 for read. Sensor Hub	0x08	0x05	Read initial HR algorithm value. Default: 0x3C	Initial heart rate (8-bit unsigned)
0x50 for write. Sensor Hub	0x08	0x06 [MSB] [LSB]	Write height (16-bit unsigned, cm).	-
0x51 for read. Sensor Hub	0x08	0x06	Read height. Default: 0x00AF	Height (16-bit unsigned, cm)
0x50 for write. Sensor Hub	0x08	0x07 [MSB] [LSB]	Write weight (16-bit unsigned, kg).	-
0x51 for read. Sensor Hub	0x08	0x07	Read weight. Default: 0x004E	Weight (16-bit unsigned, kg)
0x50 for write. Sensor Hub	0x08	0x08 [byte]	Write age (8-bit unsigned, years).	
0x51 for read. Sensor Hub	0x08	0x08	Read age. Default: 0x1E	Age (8-bit unsigned, years)
0x50 for write Sensor Hub	0x08	0x09 [byte]	Write gender. Byte: 0x00: Male 0x01: Female	
0x51 for read Sensor Hub	0x08	0x09	Read gender	Gender 0x00: Male (default) 0x01: Female

Maxim Integrated Page 31 of 77

0x50 for write. Sensor Hub	0x08	0x0A [algo operation mode byte]	Set the algorithm operation mode (can be switched in runtime): 0x00: Continuous HRM + Continuous SpO2 (default). 0x01: Continuous HRM + One-Shot SpO2 0x02: Continuous HRM 0x03: Sampled HRM 0x04: Sampled HRM + One-Shot SpO2 0x05: Activity Tracking ONLY 0x06: SpO2 Calibration Data Collection	-
0x51 for read. Sensor Hub	0x08	0x0A	Read the algorithm operation mode.	0x00: Continuous HRM, continuous SpO ₂ (default) 0x01: Continuous HRM, one-shot SpO ₂ 0x02: Continuous HRM 0x03: Sampled HRM 0x04: Sampled HRM, one-shot SpO ₂ 0x05: Activity tracking only 0x06: SpO ₂ calibration
0x50 for write. Sensor Hub	0x08	0x0B [byte]	Write the enable/disable AEC byte: 0x00: Disable 0x01: Enable	-
0x51 for read. Sensor Hub	0x08	0x0B	Read the enable/disable AEC.	0x00: Disabled 0x01: Enabled (default)
0x50 for write. Sensor Hub	0x08	0x0C [byte]	Write the Skin Contact Detection (SCD) algorithm enable 0x00: Disable 0x01: Enable	-
0x51 for read. Sensor Hub	0x08	0x0C	Read the Skin Contact Detection (SCD) algorithm enable	0x00: Disable 0x01: Enable (default)
0x50 for write. Sensor Hub	0x08	0x0D [MSB] [LSB]	Write adjusted target PD current period (16-bit unsigned, seconds)	-
0x51 for read. Sensor Hub	0x08	0x0D	Read adjusted target PD current period in seconds. Default: 0x0708	Adjusted target PD current period (16-bit unsigned, seconds)
0x50 for write. Sensor Hub	0x08	0x0E [byte]	Write HR motion magnitude threshold (16-bit unsigned, 0.001g)	-
0x51 for read. Sensor Hub	0x08	0x0E [MSB] [LSB]	Read HR motion magnitude threshold. Default: 0x0032 (0.05g)	[MSB] [LSB] motion magnitude threshold (16-bit unsigned, 0.001g)
0x50 for write.	0x08	0x0F [MSB] [LSB]	Write minimum PD current (16-bit unsigned, 0.1uA).	-

Maxim Integrated Page 32 of 77

Concer	1	T		
Sensor Hub				
0x51 for read. Sensor Hub	0x08	0x0F	Read minimum PD current. Default: 0x0032	Minimum PD current (16- bit unsigned, 0.1uA)
0x50 for write. Sensor Hub	0x08	0x10 [MSB] [LSB]	Write initial PD current (16-bit unsigned, 0.1uA). This sets the target PD current you would like AEC algorithm to maintain initially. It does not correspond to any register. Once you set what PD current you need, algorithm will calculate the appropriate LED current.	-
0x51 for read. Sensor Hub	0x08	0x10	Read initial PD current. Default: 0x0064	Initial PD current (16-bit unsigned, 0.1uA)
0x50 for write. Sensor Hub	0x08	0x11 [MSB] [LSB]	Write target PD current (16-bit unsigned, 0.1uA). Applicable only if Auto Target PD Current Calculation is enabled.	
0x51 for read. Sensor Hub	0x08	0x11	Read target PD current. Default: 0x0064	Target PD current (16-bit unsigned, 0.1uA)
0x50 for write. Sensor Hub	0x08	0x12 [byte]	Write enable/disable automatic calculation of target PD current. byte: 0x00: Disable 0x01: Enable	-
0x51 for read. Sensor Hub	0x08	0x12	Read enable/disable automatic calculation of target PD current	0x00: Disable 0x01: Enable (default)
0x50 for write. Sensor Hub	0x08	0x13 [byte1 byte2]	Write minimum AFE integration time. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs	-
0x51 for read. Sensor Hub	0x08	0x13	Read minimum AFE integration time.	Minimum AFE integration time for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 14.8µs (default) 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs
0x50 for write.	0x08	0x14 [byte1 byte2]	Write minimum sampling rate and averaging.	-

Maxim Integrated Page 33 of 77

Sensor Hub			byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	
0x51 for read. Sensor Hub	0x08	0x14	Read minimum sampling rate and averaging.	Minimum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16
0x50 for write. Sensor Hub	0x08	0x15 [byte1 byte2]	Write maximum integration time: byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 14.8μs 0x01: 29.4μs 0x02: 58.7μs 0x03: 117.3μs	-
0x51 for read. Sensor Hub	0x08	0x15	Read maximum integration time:	Maximum integration time for each PPG measurement 1 to 9. [byte1 to byte9] byteN: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs (default)
0x50 for write. Sensor Hub	0x08	0x16 [byte1 byte2]	Write maximum sampling rate and averaging: byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	
0x51 for read. Sensor Hub	0x08	0x16	Read maximum sampling rate and averaging:	Maximum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9]

Maxim Integrated Page 34 of 77

				byteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16 (default)
0x50 for write. Sensor Hub	0x08	0x17 0xWX, 0xYZ	Write slot and PD configuration for the two HR inputs to the WHRM algorithm. 0xWX, 0xYZ: WX is input 1 of the WHRM algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is input 2 of the WHRM algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used.	-
0x51 for read. Sensor Hub	0x08	0x17	Read Slot and PD configuration for the two HR inputs to the WHRM algorithm.	OxWX, 0xYZ Default: 0x0001 WX is input 1 of the WHRM algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used.

Maxim Integrated Page 35 of 77

				YZ is input 2 of the WHRM algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used.
0x50 for write. Sensor Hub	0x08	0x18 0xWX 0xYZ	Write Slot and PD configuration for the IR, red inputs to the WSpO2 algorithm. 0xWX, 0xYZ: WX is the LED/PD used for IR for the WSpO2 algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3 W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is the LED/PD used for red for the WSpO2 algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2 Z = 3 for PD not used	
0x51 for read. Sensor Hub	0x08	0x18	Read Slot and PD configuration for the IR, red inputs to the WSpO2 algorithm.	0xWX, 0xYZ Default: 0x1020 WX is the LED/PD used for IR for the WSpO ₂ algorithm. W (MS nibble of WX): W = 0 for Slot 1 W = 1 for Slot 2 W = 2 for Slot 3

Maxim Integrated Page 36 of 77

				W = 3 for Slot 4 W = 4 for Slot 5 W = 5 for Slot 6 W = 7 for Slot not used X (LS nibble of WX): X = 0 for PD1 X = 1 for PD2 X = 3 for PD not used. YZ is the LED/PD used for red for the WSpO ₂ algorithm. Y (MS nibble of YZ): Y = 0 for Slot 1 Y = 1 for Slot 2 Y = 2 for Slot 3 Y = 3 for Slot 4 Y = 4 for Slot 5 Y = 5 for Slot 6 Y = 7 for Slot not used Z (LS nibble of YZ): Z = 0 for PD1 Z = 1 for PD2
0x50 for write.	0x08		Write LED driver and MUX configuration. byte1:	Z = 3 for PD not used
Sensor Hub			0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	
		0x19 [byte1 WX]	W (MS nibble of WX): W = 0 for LED Driver B will fire LED1 W = 1 for LED Driver B will fire LED2 W = 2 for LED Driver B will fire LED3 W = 3 for LED Driver B will fire LED4 W = 4 for LED Driver B will fire LED5 W = 5 for LED Driver B will fire LED6	
			X (LS nibble of WX): X = 0 for LED Driver A will fire LED1 X = 1 for LED Driver A will fire LED2 X = 2 for LED Driver A will fire LED3 X = 3 for LED Driver A will fire LED4 X = 4 for LED Driver A will fire LED5 X = 5 for LED Driver A will fire LED6	
0x51 for read. Sensor Hub	0x08			LED driver and MUX configuration for each PPG measurement 1 to 9. [WX1 to WX9]
		0x19	Read LED driver and MUX .	W (MS nibble of WX_N): W = 0 for LED Driver B will fire LED1 W = 1 for LED Driver B will fire LED2 W = 2 for LED Driver B will fire LED3

Maxim Integrated Page 37 of 77

	ı	1		
				W = 3 for LED Driver B will fire LED4 W = 4 for LED Driver B will fire LED5 W = 5 for LED Driver B will fire LED6
				X (LS nibble of WX_N): X = 0 for LED Driver A will fire LED1 X = 1 for LED Driver A will fire LED2 X = 2 for LED Driver A will fire LED3 X = 3 for LED Driver A will fire LED4 X = 4 for LED Driver A will fire LED5 X = 5 for LED Driver A will fire LED5
0x50 for write. Sensor Hub	0x08	0x1A [byte1 byte2]	Write initial AFE integration time. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 14.8μs 0x01: 29.4μs 0x02: 58.7μs 0x03: 117.3μs	-
0x51 for read. Sensor Hub	0x08	0x1A	Read initial AFE integration time.	Initial AFE integration time for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs (default)
0x50 for write. Sensor Hub	0x08	0x1B [byte1 byte2]	Write initial sampling rate and averaging. 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16	
0x51 for read. Sensor Hub	0x08	0x1B	Read minimum sampling rate and averaging.	Minimum sampling rate and averaging for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2

Maxim Integrated Page 38 of 77

				0x02 : 100sps, avg = 4 (default) 0x03 : 200sps, avg = 8 0x04 : 400sps, avg = 16
0x50 for write. Sensor Hub	0x08	0x1C [byte1 byte2]	Write maximum DAC offset. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	-
0x51 for read. Sensor Hub	0x08	0x1C	Read maximum DAC offset .	Maximum DAC offset for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA (default)
0x50 for write. Sensor Hub	0x08	0x1D [byte1 MSB LSB]	Write minimum LED current. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) MSB LSB: 16-bit unsigned, lsb=0.1mA	-
0x51 for read. Sensor Hub	0x08	0x1D	Read minimum LED current .	Minimum LED current for each PPG measurement 1 to 9. [MSBLSB_1 to MSBLSB_9] MSBLSB_N: 16-bit unsigned, lsb 0.1mA
0x50 for write. Sensor Hub	0x08	0x1E [byte1 MSB LSB]	Write maximum LED current. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) MSB LSB: 16-bit unsigned, lsb=0.1mA	-
0x51 for read. Sensor Hub	0x08	0x1E	Read maximum LED current .	Maximum LED current for each PPG measurement 1 to 9. [MSBLSB_1 to MSBLSB_9] MSBLSB_N: 16-bit unsigned, lsb 0.1mA
0x50 for write.	0x08	0x1F [byte1 MSB LSB]	Write minimum LED current step that the algorithm can increase/decrease with each measurement.	-

Maxim Integrated Page 39 of 77

Sensor			byte1:	
Hub			0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	
			MSB LSB: 16-bit unsigned, lsb=0.1mA	
0x51 for read. Sensor Hub	0x08	0x1F	Read minimum LED current step that the algorithm can increase/decrease with each measurement.	Minimum LED current step for each PPG measurement 1 to 9. [MSBLSB_1 to MSBLSB_9] MSBLSB_N:
				16-bit unsigned, lsb 0.1mA
0x50 for write. Sensor Hub	0x08	0x20 [byte1 byte 2]	Write HR master channel selection option for each measurement. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: PD1 selected as master channel. 0x01: PD2 selected as master channel. 0x02: master channel selected automatically.	-
0x51 for read. Sensor Hub	0x08			HR master channel selection for each PPG measurement 1 to 9. [byte1 to byte9]
		0x20	Read HR master channel selection option for each measurement .	byteN: 0x00: PD1 selected as master channel. 0x01: PD2 selected as master channel. 0x02: master channel selected automatically.
0x50 for write. Sensor Hub	0x08	0x21 [byte1 byte2]	Write full scale PD current. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2: 0x00: 4 uA 0x01: 8 uA 0x02: 16 uA 0x03: 32 uA	-
0x51 for read. Sensor Hub	0x08	0x21	Read full scale PD current.	Full scale PD current for each PPG measurement 1 to 9. [byte1 to byte9]
		UXZI		byteN: 0x00: 4 uA 0x01: 8 uA 0x02: 16 uA 0x03: 32 uA
0x50 for write.	0x08	0x23 [byte1 byte2]	Write DAC offset for PD channel 1. byte1:	-

Maxim Integrated Page 40 of 77

Sensor Hub			0x00 to 0x08 : PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte2:	
			0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	
0x51 for read. Sensor Hub	0x08	0x23	Read DAC offset for PD channel 1.	DAC offset for PD channel 1 for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 0 uA (default) 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
0x50 for write. Sensor Hub	0x08	0x24 [byte1 byte2]	Write DAC offset for PD channel 2. byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A) byte: 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA	-
0x51 for read. Sensor Hub	0x08	0x24	Read DAC offset for PD channel 2.	DAC offset for PD channel 2 for each PPG measurement 1 to 9. [byte1 to byte9] ByteN: 0x00: 0 uA (default) 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
0x50 for write. Sensor Hub	0x08	0x25 [byte1 [MSB LSB]	Write initial LED current. (16-bit unsigned, lsb = 0.1mA) byte1: 0x00 to 0x08: PPG measurement 1 to 9. (1: Green, 2: IR, 3: red, N/A, N/A)	-
0x51 for read. Sensor Hub	0x08	0x25	Read initial LED current.	Initial LED current for each PPG measurement 1 to 9. [MSB1 LSB1 to MSB9 LSB9] MSBn LSBn: Initial LED current. (16-bit unsigned, lsb = 0.1mA)
0x52 Sensor Hub	0x08	0x00: Disable (CMD_DELAY = 200ms) 0x01: Enable Normal	Write enable/disable the Wearable Algorithm Suite (WHRM+WSpO ₂) algorithm, SensorHub.	

Maxim Integrated Page 41 of 77

	1			1
		Algorithm Report (CMD_DELAY = 500ms)		
0x54 for write	[byte]	-	byte: 0x00: MAX32674C releases sensor SPI bus to Host. AlgoHub mode. 0x01: sensor SPI bus controlled by MAX32674C. SensorHub mode.	-
0x80 Bootloa der	0x00	Use bytes 0x28 to 0x32 from the .msbl file as the IV bytes.	Bootloader mode flash the application .msbl: Set the initialization vector (IV) bytes.	-
0x80 Bootloa der	0x01	Use bytes 0x34 to 0x43 from the .msbl file.	Bootloader mode flash the application .msbl: Set the authentication bytes.	-
0x80 Bootloa der	0x02	0x00, Number of pages located at byte 0x44 from the .msbl file.	Bootloader mode flash the application .msbl: Set the number of pages to flash.	-
0x80 Bootloa der	0x03	- (CMD_DELAY = 1400ms)	Bootloader mode flash the application .msbl: Erase the application flash memory.	-
0x80 Bootloa der	0x04	The first page is specified by byte 0x4C from the .msbl file. The total bytes for each message protocol are the page size plus 16 bytes of CRC. (CMD_DELAY = 680ms)	Bootloader mode flash the application .msbl: Send the page values. Each page sent includes 16 CRC bytes for that page, so there are 8208 bytes per page sent in the payload of the message.	-
0x80 Bootloa der	0x06	[MSB] [LSB]	Bootloader mode flash the application .msbl: Size of the partial page if using partial page writing (16-bit unsigned, range 1 to 8208)	-
0x81 Bootloa der	0x00	-	Bootloader mode: Get bootloader version.	Major version byte, Minor version byte, Revision byte
0x81 Bootloa der	0x01	-	Bootloader mode flash the application .msbl: Get the page size in bytes.	Upper byte of page size, Lower byte of page size
0x81 Bootloa der	0x02	-	Get unique serial number (USN).	USN: 24 bytes
0x82 Bootloa der	0x00 (CMD_ DELAY		Save bootloader configurations. Write this command after changes are made to any of the Bootloader	

Maxim Integrated Page 42 of 77

Configur ation	= 300ms)		Configuration settings. The device should be restarted for the new configuration to be active.	
0x82 Bootloa der Configur ation	0x01	0x00	Ox01 Configure the device to check the state of the MFIO GPIO pin to decide if entering bootloader mode or application mode on after a reset.	
0x82 Bootloa der Configur ation	0x01	0x01	x00 Configure the MFIO pin to be P0.0	
0x82 Bootloa der Configur ation	0x01	0x20	Ox00 Configure the MFIO pin the be use active-low for bootloader mode. The device enters bootloader mode if the MFIO GPIO pin is held low during power-on or during a RSTN device pin cycle.	
0xFF	0x03		Read the AlgoHubSensorHub version.	Major version byte, Minor version byte, Revision byte

5 Configuring the AlgoHub and Reading Processed Data

5.1 AlgoHub Output FIFO Format

The algorithm output FIFO format for AlgoHub is listed below (The initial response byte, "Read Status Byte" is not shown) . The algorithm outputs 24 bytes to the output FIFO.

Table 3. AlgoHub Output FIFO Format

DATA ITEM	# OF BYTE S (MSB FIRST)	DESCRIPTION
PPG	PPG1	0,0,0
AFE Settings Request Flag, Algorithm operation mode	1	bit 8: 0: no AFE settings request flag 1: AFE settings request flag set; Host to issue the command 0x47 0x07 0x27 to read the AFE requested settings and then issue 0x47 0x07 0x28 when the request has been honored. bits 6 to 0: Algorithm operation mode: 0: Continuous HRM and Continuous SpO ₂ 1: Continuous HRM and One-Shot SpO ₂ 2: Continuous HRM 3: Sampled HRM 4: Sampled HRM and One-Shot SpO ₂ 5: Activity tracking 6: SpO ₂ Calibration Data Collection
HR	2	10x Calculated heart rate
HR confidence	1	Calculated confidence level in %

Maxim Integrated Page 43 of 77

RR	2	10x RR – inter-beat interval in ms
KK		Only shows a nonzero value when a new value is calculated.
RR	1	Calculated confidence level of RR in %
confidence	I	Only shows a nonzero value when a new value is calculated.
Activity class	1	Activity class: 0: Rest 1: Other 2: Walk 3: Run 4: Bike
R	2	1000x Calculated SpO ₂ R value
SpO ₂ confidence	1	Calculated SpO ₂ confidence level in %
SpO ₂	2	10x Calculated SpO ₂ %
SpO ₂ percent complete	1	Calculation progress in percenate in one-shot mode of algorithm. In continuous mode, it is reported as zero and only jumps to 100 when the SpO ₂ value is updated.
SpO ₂ low signal quality flag	1	Shows the low quality of the PPG signal: 0: Good quality 1: Low quality
SpO ₂ motion60012 00 flag	1	Shows excessive motion: 0: No motion 1: Excessive motion
SpO ₂ low PI flag	1	Shows the low perfusion index (PI) of the PPG signal: 0: Normal PI 1: Low PI
SpO ₂ unreliable R flag	1	Shows the reliability of R: 0: Reliable 1: Unreliable
SpO ₂ state	1	Reported status of the SpO ₂ algorithm: 0: LED adjustment 1: Computation 2: Success 3: Timeout
SCD state	1	Skin contact state: 0: Undetected 1: Off skin 2: On some subject 3: On skin
Algorithm status	1	Algorithm return status: 0: Success 1: Null pointer error 2: Instance already initialized 3: Uninitialized instance 4: AFE controller error 5: Error, not categorized 6: Incompatible internal library error

5.2 AlgoHub AEC Normal Algorithm Report Configuration and Batched Processing

Automatic Exposure Control (AEC) is Maxim's gain control algorithm that is superior to AGC. The AEC algorithm optimally maintains the best SNR range and power optimization. The targeted SNR range is maintained regardless of skin color or ambient temperature within the limits of the LED currents configurations; The AEC dynamically manages the appropriate register settings for sampling rate, LED current, pulse width and integration time.

Maxim Integrated Page 44 of 77

For AlgoHub mode, the host is responsible for initializing the AFE, accel registers and informing the AlgoHub of the AFE initialization settings and for updating the AFE registers when the AFE request flag is set.

In the example below, both the AEC and SCD are enabled. The sequence of commands is shown in the table below.

Table 4. Host Commands—AlgoHub AEC and Read Normal Algorithm Report

T G	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host i	nitializes the AlgoHub ar	nd starts the algorithm using following commands:	
	1.1	AA 02 00 (optional)	Read the operating mode	AB 00 00 application mode
	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for MAX32674C (x.y.z)	AB 00 32 YY ZZ
	1.3	AA 54 00	MAX32674C releases sensor SPI bus to Host. AlgoHub mode.	AB 00
	1.4	AA 10 01 01	Set the AlgoHub interrupt threshold.	AB 00
	1.5	AA 46 07 0B 01	Enable AEC	AB 00
	1.6	AA 46 07 12 01	Enable automatic PD calculation	AB 00
	1.7	AA 46 07 1A 00 03	Set PPG measurement 1 AFE integration time to 117.3us	AB 00
	1.8	AA 46 07 1A 01 03	Set PPG measurement 2 AFE integration time to 117.3us	AB 00
	1.9	AA 46 07 1A 02 03	Set PPG measurement 3 AFE integration time to 117.3us	AB 00
_	1.10	AA 46 07 1B 00 01	Set PPG measurement 1 AFE sampling rate to 50sps, averaging to 2	AB 00
N H L	1.11	AA 46 07 1B 01 04	Set PPG measurement 2 AFE sampling rate to 400sps, averaging to 16	AB 00
START ALGORITHM	1.12	AA 46 07 1B 02 04	Set PPG measurement 3 AFE sampling rate to 400sps, averaging to 16	AB 00
₽	1.13	AA 46 07 0F 00 7D	Set minimum PD current to 12.5uA	AB 00
-	1.14	AA 46 07 10 01 38	Set initial PD current to 31.2uA	AB 00
A A	1.15	AA 46 07 0D 07 08	Set the adjusted target PD current period to 1800s	AB 00
Ĕ	1.16	AA 46 07 0E 00 32	Set the HR motion magnitude threshold to 0.05g.	AB 00
0,	1.17	AA 46 07 23 00 00	Set the DAC offset for PD channel 1 for PPG measurement 1	AB 00
	1.18	AA 46 07 24 00 00	Set the DAC offset for PD channel 2 for PPG measurement 1	AB 00
	1.19	AA 46 07 1C 00 00	Set the maximum DAC offset for PPG measurement 1 to 0	AB 00
	1.20	AA 46 07 23 01 00	Set the DAC offset for PD channel 1 for PPG measurement 2	AB 00
	1.21	AA 46 07 24 01 00	Set the DAC offset for PD channel 2 for PPG measurement 2	AB 00
	1.22	AA 46 07 23 02 00	Set the DAC offset for PD channel 3 for PPG measurement 1	AB 00
	1.23	AA 46 07 24 02 00	Set the DAC offset for PD channel 2 for PPG measurement 3	AB 00
	1.24	AA 46 07 11 01 38	Set target PD current to 31.2uA	AB 00
	1.25	AA 46 07 0C 01	Enable SCD	AB 00
	1.26	AA 46 07 25 00 00 64	Set initial LED current to 10mA for PPG measurement 1	AB 00

Maxim Integrated Page 45 of 77

	1.27	AA 46 07 25 01 00 C8	Set initial LED current to 20mA for PPG measurement 2	AB 00
	1.28	AA 46 07 25 02 00 C8	Set initial LED current to 20mA for PPG measurement 3	AB 00
	1.29	AA 10 00 03	Set the output of the AlgoHub to sensor and algorithm.	AB 00
	1.30	AA 44 07 01 01 (CMD_DELAY =		AB 00
	11	500ms)	Enable Wearable Algorithm Suite AlgoHub	
		epeats the following con		1
	2.1	AA 14 00 [PPG1 PPG2 PPG3 PPG4	Write LEDPPG, accel data to the algorithm input FIFO.	AB 00 mm nn
		PPG5 PPG6 ACCLX ACCLY ACCLZ]	PPG1: 3 bytes [MSB LSB] WHRM HR Channel 1 (green1) PPG2: 3 bytes [MSB LSB] WHRM HR Channel 2	mmnn is the ppg, accl number of bytes
		(CMD_DELAY = 16	(green2)	received (16-bit unsigned)
		ms)	PPG3: 3 bytes [MSB LSB] SpO2 IR Channel (IR) PPG4: 3 bytes [MSB LSB] SpO2 IR Channel (red)	
			PPG5: 3 bytes [MSB LSB] PPG6: 3 bytes [MSB LSB]	
			Accelerometer set to ±8g: ACCLX: 2 byte accel X value (2's	
			complement .001g): [MSB LSB] ACCLY: 2 byte accel Y value (2's	
FIFC			complement .001g): [MSB LSB] ACCLZ: 2 byte accel Z value (2's	
T)			complement .001g): [MSB LSB]	
E		Delay for 20 msec		
100	2.2	AA 00 00	Read the AlgoHub status byte: Bit 0: Sensor comm error	AB 00 08
RT II			Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt)	
SAMPLES REPORT IN OUTPUT FIFO			Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt)	
SR			Bit 6: AlgoHub busy (DevBusy) Bit 7: Reserved	
PLE	0.0	A A 40 04	If DataRdyInt is set, proceed to the next step.	AD 00 IN Al
SAM	2.3	AA 12 01 (CMD_DELAY = 5	Read the data stored in the FIFO. The format of the samples report is shown in the normal algorithm	AB 00 [Normal Algorithm Report]
G		ms)	report table.	
Z			ed if the AFE settings request flag is set	
READING	2.4	AA 47 07 27 (CMD_DELAY = 5 ms)	Read algorithm AFE settings requests.	[byte1 byte2 byte3 byte4 byte5]
		5)		byte1, byte2: bit 15:
				0: No LED current update request
				1: LED current update requested
				bits 14-0:
				LED current (15-bit unsigned, 0.1mA)
				byte3: bit 7:
				0: No integration time
				update request

Maxim Integrated Page 46 of 77

				1: Integration time update requested bits 6-0: AFE integration time: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs
				byte4: bit 7: 0: No sampling rate update request 1: Sampling rate update requested bits 6-0: Sampling rate and averaging. 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16
				byte5: DAC offset bit 7: 0: No DAC offset update request 1: DAC offset update requested 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA
	2.5	AA 47 07 28 (CMD_DELAY = 5 ms)	Clear algorithm AFE settings request flag. This command is sent after the host has honored the algorithm AFE requests.	AB 00 08
	Host of	disables sensors and alg		
STOP	3.1	AA 44 07 00 01 (CMD_DELAY = 200ms)	Disable the WAS algorithm.	AB 00
S	3.2	AA 46 26 (CMD_DELAY = 25ms)	Reset the AFE settings of the WAS algorithm.	AB 00

The example below illustrates how the host may utilize batch processing to communicate with the AlgoHub at a 1s rate. The sequence of commands is shown in the table below.

Table 5. Host Commands—Batched Processing AlgoHub AEC and Read Normal Algorithm Report

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
무o	Host initializes the AlgoHub and starts the algorithm using following commands:			
STAF		AA 02 00 (optional)	Read the operating mode	AB 00 00 application mode

Maxim Integrated Page 47 of 77

			_	,
	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for	AB 00 32 YY ZZ
			MAX32674C (x.y.z)	
	1.3	AA 54 00	MAX32674C releases sensor SPI bus to Host.	AB 00
			AlgoHub mode.	
	1.4	AA 10 01 01	Set the AlgoHub interrupt threshold.	AB 00
	1.5	AA 46 07 0B 01	Enable AEC	AB 00
	1.6	AA 46 07 12 01	Enable automatic PD calculation	AB 00
	1.7	AA 46 07 1A 00 03	Set PPG measurement 1 AFE integration time to	AB 00
			117.3us	
	1.8	AA 46 07 1A 01 03	Set PPG measurement 2 AFE integration time to 117.3us	AB 00
	1.9	AA 46 07 1A 02 03	Set PPG measurement 3 AFE integration time to 117.3us	AB 00
•	1.10	AA 46 07 1B 00 01	Set PPG measurement 1 AFE sampling rate to	AB 00
			50sps, averaging to 2	
	1.11	AA 46 07 1B 01 04	Set PPG measurement 2 AFE sampling rate to	AB 00
			400sps, averaging to 16	
	1.12	AA 46 07 1B 02 04	Set PPG measurement 3 AFE sampling rate to	AB 00
			400sps, averaging to 16	
	1.13	AA 46 07 0F 00 7D	Set minimum PD current to 12.5uA	AB 00
	1.14	AA 46 07 10 01 38	Set initial PD current to 31.2uA	AB 00
	1.15	AA 46 07 0D 07 08	Set the adjusted target PD current period to 1800s	AB 00
	1.16	AA 46 07 0E 00 32	Set the HR motion magnitude threshold to 0.05g.	AB 00
	1.17		Set the DAC offset for PD channel 1 for PPG	AB 00
		AA 46 07 23 00 00	measurement 1	
	1.18		Set the DAC offset for PD channel 2 for PPG	AB 00
		AA 46 07 24 00 00	measurement 1	
	1.19		Set the maximum DAC offset for PPG measurement	AB 00
	4.00	AA 46 07 1C 00 00	1 to 0	15.00
	1.20	A A 4C 07 22 04 00	Set the DAC offset for PD channel 1 for PPG	AB 00
	1.21	AA 46 07 23 01 00	measurement 2 Set the DAC offset for PD channel 2 for PPG	AB 00
	1.21	AA 46 07 24 01 00	measurement 2	AB 00
	1.22	744 40 07 24 01 00	Set the DAC offset for PD channel 3 for PPG	AB 00
	1.22	AA 46 07 23 02 00	measurement 1	7.B 00
	1.23	7.0.10 01 20 02 00	Set the DAC offset for PD channel 2 for PPG	AB 00
	0	AA 46 07 24 02 00	measurement 3	7.2 00
	1.24	AA 46 07 11 01 38	Set target PD current to 31.2uA	AB 00
		AA 46 07 0C 01	Enable SCD	AB 00
	1.26		Set initial LED current to 10mA for PPG	AB 00
		AA 46 07 25 00 00 64	measurement 1	
	1.27	AA 46 07 25 01 00	Set initial LED current to 20mA for PPG	AB 00
		C8	measurement 2	
	1.28	AA 46 07 25 02 00	Set initial LED current to 20mA for PPG	AB 00
		C8	measurement 3	
	1.29		Set the output of the AlgoHub to sensor and	AB 00
	1.00	AA 10 00 03	algorithm.	15.00
	1.30	AA 44 07 01 01		AB 00
		(CMD_DELAY = 500ms)	Enable Wearable Algorithm Cuite Algollub	
	Hoot	epeats the following con	Enable Wearable Algorithm Suite AlgoHub	
45.46		AA 14 00 [PPG1	Write LEDPPG, accel data to the algorithm input	AB 00 mm nn
READING SAMPLES	۷.۱	PPG2 PPG3 PPG4	FIFO.	AD 00 IIIII IIII
		PPG5 PPG6 ACCLX	PPG1: 3 bytes [LSB MSB]	mmnn is the ppg, accl
MΣ		ACCLY ACCLZ	PPG2: 3 bytes [LSB MSB]	number of bytes
SA		,	PPG3: 3 bytes [LSB MSB]	received (16-bit
			PPG4: 3 bytes [LSB MSB]	unsigned)
				. ,

Maxim Integrated Page 48 of 77

25 [ppg, accel inp	ut PPG5: 3 bytes [LSB MSB]	
frames] (max 25)	PPG6: 3 bytes [LSB MSB]	
(CMD_DELAY = 5	Accelerometer set to ±8g:	
ms)	ACCLX: 2 byte accel X value (2's	
	complement .001g): [LSB MSB]	
	ACCLY: 2 byte accel Y value (2's	
	complement .001g): [LSB MSB]	
	ACCLZ: 2 byte accel Z value (2's	
	complement .001g): [LSB MSB]	
Delay for Algellub		
	Processing – See "AlgoHub Response Duration"	1.5.00.00
2.2 AA 00 00	Read the AlgoHub status byte:	AB 00 08
	Bit 0: Sensor comm error	
	Bits 1 and 2: Reserved	
	Bit 3: FIFO filled to threshold (DataRdyInt)	
	Bit 4: Output FIFO overflow (FifoOutOvrInt)	
	Bit 5: Input FIFO overflow (FifoInOverInt)	
	Bit 6: AlgoHub busy (DevBusy)	
	Bit 7: Reserved	
	If DataRdyInt is set, proceed to the next step.	
2.3 AA 12 00	Get the number of samples (nn) in the FIFO.	AB 00 nn
2.4 AA 12 00	Read the FIFO data for nn samples report. The	AB 00 nn*[Normal
	format of the samples report is shown in the normal	
(CMD_DELAY = 5		Algorithm Report]
ms)	algorithm report table.	
	anded if the AFE settings request flag is set	
2.5 AA 47 07 27	Read algorithm AFE settings requests.	[byte1 byte2 byte3 byte4
(CMD_DELAY = 5		byte5]
ms)		
		byte1, byte2:
		bit 15:
		0: No LED current
		update request
		1: LED current update
		requested
		bits 14-0:
		LED current (15-bit
		unsigned, 0.1mA)
		unsigned, 0. miA)
		1. (.0
		byte3:
		bit 7:
		0: No integration time
		update request
		1: Integration time
		update requested
		bits 6-0:
		AFE integration time:
		0x00 : 14.8μs
		0x01 : 29.4µs
		0x01 : 23.4μs 0x02 : 58.7μs
		0x03 : 117.3μs
		υλυ3. 117.3μ8
		huto 4.
		byte4:
		bit 7:
		0: No sampling rate
		update request
		1: Sampling rate update

Maxim Integrated Page 49 of 77

	2.6	AA 47 07 28 (CMD_DELAY = 5	Clear algorithm AFE settings request flag. This command is sent after the host has honored the	Sampling rate and averaging. 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16 byte5: DAC offset bit 7: 0: No DAC offset update request 1: DAC offset update requested 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA AB 00 08
	Host o	ms) disables sensors and alg	algorithm AFE requests.	
STOP	3.1	AA 44 07 00 01 (CMD_DELAY = 200ms)	Disable the WAS algorithm.	AB 00
S	3.2	AA 46 26 (CMD_DELAY = 25ms)	Reset the AFE settings of the WAS algorithm.	AB 00

5.3 AlgoHub, AGC and Normal Algorithm Report Configuration

The Automatic Gain Control (AGC) may be enabled by enabling AEC and disabling automatic PD calculation. The sequence of commands for enabling AGC is shown in the table below.

Table 6. Host Commands—AlgoHub AGC and Read Normal Algorithm Report

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host i	nitializes the AlgoHub an	nd starts the algorithm using following commands:	
_	1.1	AA 02 00 (optional)	Read the operating mode	AB 00 00 application mode
ALGORITHM	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for MAX32674C (x.y.z)	AB 00 32 YY ZZ
GOR	1.3	AA 54 00	MAX32674C releases sensor SPI bus to Host. AlgoHub mode.	AB 00
₩	1.4	AA 10 01 01	Set the AlgoHub interrupt threshold.	AB 00
7	1.5	AA 46 07 0B 01	Enable AEC	AB 00
A A	1.6	AA 46 07 12 00	Disable automatic PD calculation	AB 00
START	1.7	AA 46 07 1A 00 03	Set PPG measurement 1 AFE integration time to 117.3us	AB 00
	1.8	AA 46 07 1A 01 03	Set PPG measurement 2 AFE integration time to 117.3us	AB 00

Maxim Integrated Page 50 of 77

	1.9	AA 46 07 1A 02 03	Set PPG measurement 3 AFE integration time to 117.3us	AB 00
	1.10	AA 46 07 1B 00 01	Set PPG measurement 1 AFE sampling rate to 50sps, averaging to 2	AB 00
	1.11	AA 46 07 1B 01 04	Set PPG measurement 2 AFE sampling rate to 400sps, averaging to 16	AB 00
	1.12	AA 46 07 1B 02 04	Set PPG measurement 3 AFE sampling rate to 400sps, averaging to 16	AB 00
	1.13	AA 46 07 0F 00 7D	Set minimum PD current to 12.5uA	AB 00
	1.14	AA 46 07 10 01 38	Set initial PD current to 31.2uA	AB 00
	1.15	AA 46 07 0D 07 08	Set the adjusted target PD current period to 1800s	AB 00
	1.16	AA 46 07 0E 00 32	Set the HR motion magnitude threshold to 0.05g.	AB 00
	1.17	AA 46 07 23 00 00	Set the DAC offset for PD channel 1 for PPG measurement 1	AB 00
	1.18	AA 46 07 24 00 00	Set the DAC offset for PD channel 2 for PPG measurement 1	AB 00
	1.19	AA 46 07 1C 00 00	Set the maximum DAC offset for PPG measurement 1 to 0	AB 00
	1.20	AA 46 07 23 01 00	Set the DAC offset for PD channel 1 for PPG measurement 2	AB 00
	1.21	AA 46 07 24 01 00	Set the DAC offset for PD channel 2 for PPG measurement 2	AB 00
	1.22	AA 46 07 23 02 00	Set the DAC offset for PD channel 3 for PPG measurement 1	AB 00
	1.23	AA 46 07 24 02 00	Set the DAC offset for PD channel 2 for PPG measurement 3	AB 00
	1.24	AA 46 07 11 01 38	Set target PD current to 31.2uA	AB 00
	1.25	AA 46 07 0C 01	Enable SCD	AB 00
	1.26	AA 46 07 25 00 00 64	Set initial LED current to 10mA for PPG measurement 1	AB 00
	1.27	AA 46 07 25 01 00 C8	Set initial LED current to 20mA for PPG measurement 2	AB 00
	1.28	AA 46 07 25 02 00 C8	Set initial LED current to 20mA for PPG measurement 3	AB 00
	1.29	AA 10 00 03	Set the output of the AlgoHub to sensor and algorithm.	AB 00
	1.30	AA 44 07 01 01 (CMD_DELAY =		AB 00
		500ms)	Enable Wearable Algorithm Suite AlgoHub	
7		epeats the following com		
READING SAMPLES REPORT IN OUTPUT FIFO	2.1	AA 14 00 [PPG1 PPG2 PPG3 PPG4 PPG5 PPG6 ACCLX ACCLY ACCLZ] (CMD_DELAY = 16 ms)	Write LEDPPG, accel data to the algorithm input FIFO. PPG1: 3 bytes [MSB LSB] WHRM HR Channel 1 (green1) PPG2: 3 bytes [MSB LSB] WHRM HR Channel 2 (green2) PPG3: 3 bytes [MSB LSB] SpO2 IR Channel (IR) PPG4: 3 bytes [MSB LSB] SpO2 IR Channel (red) PPG5: 3 bytes [MSB LSB] PPG6: 3 bytes [MSB LSB]	AB 00 mm nn mmnn is the ppg, accl number of bytes received (16-bit unsigned)
READING SAMPL			Accelerometer set to ±8g: ACCLX: 2 byte accel X value (2's complement .001g): [MSB LSB] ACCLY: 2 byte accel Y value (2's complement .001g): [MSB LSB] ACCLZ: 2 byte accel Z value (2's complement .001g): [MSB LSB] CCLZ: 2 byte accel Z value (2's complement .001g): [MSB LSB]	

Maxim Integrated Page 51 of 77

	Delay for 20 msec		
2.2	AA 00 00	Read the AlgoHub status byte: Bit 0: Sensor comm error Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: AlgoHub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to the next step.	AB 00 08
2.3	AA 12 01 (CMD_DELAY = 5 ms)	Read the data stored in the FIFO. The format of the samples report is shown in the normal algorithm report table.	AB 00 [Normal Algorithm Report]
2.4	2.4, 2.5 are commands AA 47 07 27 (CMD_DELAY = 5 ms)	red if the AFE settings request flag is set Read algorithm AFE settings requests.	[byte1 byte2 byte3 byte4 byte5] byte1, byte2: bit 15: 0: No LED current update requested bits 14-0: LED current (15-bit unsigned, 0.1mA) byte3: bit 7: 0: No integration time update requested bits 6-0: AFE integration time:

Maxim Integrated Page 52 of 77

ſ	·				0: No DAC offset update
ı					request
					1: DAC offset update
					requested
					0x00 : 0 uA
					0x01 : 8 uA
					0x02 : 16 uA
					0x03 : 24 uA
		2.5	AA 47 07 28	Clear algorithm AFE settings request flag. This	AB 00 08
			(CMD_DELAY = 5	command is sent after the host has honored the	
			ms)	algorithm AFE requests.	
Ī		Host o	disables sensors and alg	orithm:	
		3.1	AA 44 07 00 01	Disable the WAS algorithm.	AB 00
	٥		(CMD_DELAY =	-	
	STOP		200ms)		
	S	3.2	AA 46 26	Reset the AFE settings of the WAS algorithm.	AB 00
ı			(CMD_DELAY =		
			25ms)		

5.4 Configuration for AlgoHub Normal Algorithm Report when Host Implements AEC/AGC

If the system requirements does not need the algohub to handle AEC/AGC and if the host firmware has implemented the AEC/AGC code, then the algohub may disable the algohub AEC (which also disables algohub AGC) and configure the algohub per the following table.

Table 7. Host Commands—AlgoHub AlgoHub Normal Algorithm Report when Host Implements AEC/AGC

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host i	nitializes the AlgoHub ar	nd starts the algorithm using following commands:	•
	1.1	AA 02 00 (optional)	Read the operating mode	AB 00 00 application mode
	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for MAX32674C (x.y.z)	AB 00 32 YY ZZ
Σ	1.3	AA 54 00	MAX32674C releases sensor SPI bus to Host. AlgoHub mode.	AB 00
돈	1.4	AA 10 01 01	Set the AlgoHub interrupt threshold.	AB 00
Ъ	1.5	AA 46 07 0B 00	Enable AEC	AB 00
Ö	1.6	AA 46 07 0C 01	Enable SCD	AB 00
ALGORITHM	1.7	AA 46 07 25 00 00 64	Set initial LED current to 10mA for PPG measurement 1	AB 00
START	1.8	AA 46 07 25 01 00 C8	Set initial LED current to 20mA for PPG measurement 2	AB 00
S	1.9	AA 46 07 25 02 00 C8	Set initial LED current to 20mA for PPG measurement 3	AB 00
	1.10	AA 10 00 03	Set the output of the AlgoHub to sensor and algorithm.	AB 00
	1.11	AA 44 07 01 01 (CMD_DELAY =		AB 00
	llast:	500ms)	Enable Wearable Algorithm Suite AlgoHub	
EADI NG		epeats the following com		1 A D 00
REAI NG	2.1	AA 14 00 [PPG1 PPG2 PPG3 PPG4	Write LEDPPG, accel data to the algorithm input FIFO.	AB 00 mm nn

Maxim Integrated Page 53 of 77

PPG5 PPG6 ACCLX	PPG1: 3 bytes [MSB LSB] WHRM HR Channel 1	mmnn is the ppg, accl
ACCLY ACCLZ] (CMD_DELAY = 16 ms)	(green1) (or if green is not used, then use (IR)) PPG2: 3 bytes [MSB LSB] WHRM HR Channel 2 (green2) (or if green is not used, then use (IR)) PPG3: 3 bytes [MSB LSB] SpO2 IR Channel (IR) PPG4: 3 bytes [MSB LSB] SpO2 IR Channel (red) PPG5: 3 bytes [MSB LSB] PPG6: 3 bytes [MSB LSB] Accelerometer set to ±8g: ACCLX: 2 byte accel X value (2's complement .001g): [MSB LSB] ACCLY: 2 byte accel Y value (2's complement .001g): [MSB LSB] ACCLZ: 2 byte accel Z value (2's complement .001g): [MSB LSB]	number of bytes received (16-bit unsigned)
AA 00 00	Read the AlgoHub status byte: Bit 0: Sensor comm error Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: AlgoHub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to the next step.	AB 00 08
AA 12 01 (CMD_DELAY = 5 ms)	Read the data stored in the FIFO. The format of the samples report is shown in the normal algorithm report table.	AB 00 [Normal Algorithm Report]
AA 47 07 27 (CMD_DELAY = 5 ms)	Read algorithm AFE settings requests.	[byte1 byte2 byte3 byte4 byte5] byte1, byte2: bit 15: 0: No LED current update request 1: LED current update requested bits 14-0: LED current (15-bit unsigned, 0.1mA) byte3: bit 7: 0: No integration time update request 1: Integration time update request 1: Integration time update requested bits 6-0: AFE integration time: 0x00: 14.8µs 0x01: 29.4µs 0x02: 58.7µs 0x03: 117.3µs byte4: bit 7:
	ACCLY ACCLZ] (CMD_DELAY = 16 ms) Delay for 20 msec AA 00 00 AA 12 01 (CMD_DELAY = 5 ms) 2.4, 2.5 are commande AA 47 07 27 (CMD_DELAY = 5	ACCLY ACCLZ] (green1) (or if green is not used, then use (IR)) PPG2: 3 bytes [MSB LSB] WHRM HR Channel 2 (green2) (or if green is not used, then use (IR)) PPG3: 3 bytes [MSB LSB] SpO2 IR Channel (IR) PPG4: 3 bytes [MSB LSB] SpO2 IR Channel (red) PPG5: 3 bytes [MSB LSB] PPG6: 3 bytes [MSB LSB] Accelerometer set to ±8g: ACCLX: 2 byte accel X value (2's complement .001g): [MSB LSB] ACCLY: 2 byte accel Y value (2's complement .001g): [MSB LSB] ACCLZ: 2 byte accel Z value (2's complement .001g): [MSB LSB] ACCLZ: 2 byte accel Z value (2's complement .001g): [MSB LSB] Belay for 20 msec AA 00 00 Read the AlgoHub status byte: Bit 0: Sensor comm error Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: AlgoHub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to the next step. AA 12 01 (CMD_DELAY = 5 ms) Read the AFE settings request flag is set Read algorithm AFE settings requests.

Maxim Integrated Page 54 of 77

	2.5	AA 47 07 28	Clear algorithm AFE settings request flag. This	0: No sampling rate update request 1: Sampling rate update requested bits 6-0: Sampling rate and averaging. 0x00: 25sps, avg = 1 0x01: 50sps, avg = 2 0x02: 100sps, avg = 4 0x03: 200sps, avg = 8 0x04: 400sps, avg = 16 byte5: DAC offset bit 7: 0: No DAC offset update request 1: DAC offset update requested 0x00: 0 uA 0x01: 8 uA 0x02: 16 uA 0x03: 24 uA AB 00 08
	2.0	(CMD_DELAY = 5 ms)	command is sent after the host has honored the algorithm AFE requests.	AB 00 00
	Host	disables sensors and alg		1
STOP	3.1	AA 44 07 00 01 (CMD_DELAY = 200ms)	Disable the WAS algorithm.	AB 00
	3.2	AA 46 26 (CMD_DELAY = 25ms)	Reset the AFE settings of the WAS algorithm.	AB 00

5.5 AlgoHub Processing Response Duration

AlgoHub response duration depends on number of sample frames pushed to AlgoHub input FIFO in a single transaction. The CMD_DELAY between the data feed command and the status byte is 5ms. The maximum number of sample frames that may be sent in one command is 25 per period. The AlgoHub processing time response time can be calculated as:

Wait duration for AlgoHub Results = 4ms + 2ms * (# input frames in transaction)

For example, for 25 input samples, the wait time for 25 AlgoHub results is 4 + 25*2 = 54ms.

Maxim Integrated Page 55 of 77

6 Configuring the SensorHub and Reading Processed Data

6.1 I2C SensorHub Output FIFO Format

The SensorHub output FIFO may contain Sample Counter byte and/or Sensor Data, and/or Algorithm Data. The inclusion of these three categories of output data is controlled by the "Set the output format of the sensor hub", 0x10 0x00 command and the formats are listed below (The initial response byte, "Read Status Byte" is not shown).

Table 8. SensorHub Sample Counter Byte Output FIFO Format

DATA ITEM	# OF BYTE S (MSB FIRST)	DESCRIPTION
Sample Counter byte	1	Counter which cycles from 0-0xFF.

Table 9. SensorHub SensorData Output FIFO Format

DATA SOURCE (24 bytes)	DATA ITEM	# OF BYTES (MSB FIRST)	DESCRIPTION
	PPG1 (PD1)	3	Green1
MA V96176	PPG2 (PD1)	3	IR LED counts
MAX86176 PPG Data	PPG3 (PD1)	3	Red LED counts
(18 Bytes)	PPG4 (PD2)	3	Green2
(16 Bytes)	PPG5 (PD2)	3	N/A
	PPG6 (PD2)	3	N/A
Accelerometer	accelX	2	Two's complement. lsb = 0.001g
(6 Bytes)*	accelY	2	Two's complement. lsb = 0.001g
(o Bytes)	accelZ	2	Two's complement. lsb = 0.001g

Table 10. SensorHub Algorithm Data Output FIFO Format

DATA ITEM (20 bytes)	# OF BYTE S (MSB FIRST)	DESCRIPTION
Algorithm operation mode	1	Algorithm operation mode: 0: Continuous HRM and Continuous SpO ₂ 1: Continuous HRM and One-Shot SpO ₂ 2: Continuous HRM 3: Sampled HRM 4: Sampled HRM and One-Shot SpO ₂ 5: Activity tracking 6: SpO ₂ Calibration Data Collection
HR	2	10x Calculated heart rate
HR confidence	1	Calculated confidence level in %
RR	2	10x RR – inter-beat interval in ms Only shows a nonzero value when a new value is calculated.
RR confidence	1	Calculated confidence level of RR in % Only shows a nonzero value when a new value is calculated.
Activity class	1	Activity class: 0: Rest

Maxim Integrated Page 56 of 77

		1: Other
		2: Walk
		3: Run
		4: Bike
R	2	1000x Calculated SpO ₂ R value
SpO ₂ confidence	1	Calculated SpO ₂ confidence level in %
SpO ₂	2	10x Calculated SpO ₂ %
SpO ₂ percent complete	1	Calculation progress in percentage in one-shot mode of algorithm. In continuous mode, it is reported as zero and only jumps to 100 when the SpO ₂ value is updated.
SpO ₂ low signal quality flag	1	Shows the low quality of the PPG signal: 0: Good quality 1: Low quality
SpO ₂ motion flag	1	Shows excessive motion: 0: No motion 1: Excessive motion
SpO ₂ low PI flag	1	Shows the low perfusion index (PI) of the PPG signal: 0: Normal PI 1: Low PI
SpO ₂ unreliable R flag	1	Shows the reliability of R: 0: Reliable 1: Unreliable
SpO ₂ state	1	Reported status of the SpO ₂ algorithm: 0: LED adjustment 1: Computation 2: Success 3: Timeout
SCD state	1	Skin contact state: 0: Undetected 1: Off skin 2: On some subject 3: On skin

6.2 SensorHub, AEC aqnd Normal Algorithm Report Configuration

Automatic Exposure Control (AEC) is Maxim's gain control algorithm that is superior to AGC. The AEC algorithm optimally maintains the best SNR range and power optimization. The targeted SNR range is maintained regardless of skin color or ambient temperature within the limits of the LED currents configurations; The AEC dynamically manages the appropriate register settings for sampling rate, LED current, pulse width and integration time.

In the example below, both the MAX32674C is configured to SensorHub mode with AEC, SCD enabled. The sequence of commands is shown in the table below.

Maxim Integrated Page 57 of 77

Table 11. Host Commands—SensorHub, AEC and Read Normal

Algorithm Report

	#	HOST COMMAND	COMMAND DESCRIPTION	RESPONSE (HEX)
	11 4	(HEX)		` '
	1.1	nitializes SensorHub and	d starts the algorithm using following commands: Host sets SPIO CSACC N (P0.8) to high	T
	1.1		Host initiates "Reset to Application Mode" sequence	
		nitializas tha CanaarHub		
	1.3	AA 02 00 (optional)	and starts the algorithm using following commands: Read the operating mode	AB 00 00
	1.5	AA 02 00 (Optional)	Nead the operating mode	application mode
	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for	AB 00 32 YY ZZ
	1.2	700 (optional)	MAX32674C (x.y.z)	715 00 02 11 22
	1.3	AA 10 01 01	Set the SensorHub interrupt threshold.	AB 00
	1.4	AA 54 01	MAX32674C releases sensor SPI bus to	AB 00
			MAX32674C. SensorHub mode.	1.2.00
	1.5	AA 40 06 1E 1F	Write 0x1F to MAX86176 register 0x1E	AB 00
	1.6	AA 40 06 1D 05	Write 0x05 to MAX86176 register 0x1D	AB 00
	1.7	AA 40 06 11 07	Write 0x07 to MAX86176 register 0x11	AB 00
	1.8	AA 40 06 12 04	Write 0x04 to MAX86176 register 0x12	AB 00
	1.9	AA 40 06 90 02	Write 0x90 to MAX86176 register 0x90	AB 00
	1.10	AA 50 08 0B 01	Enable AEC	AB 00
	1.11	AA 50 08 12 01	Enable automatic PD calculation	AB 00
	1.12	AA 50 08 1A 00 03	Set PPG measurement 1 AFE integration time to 117.3us	AB 00
₹	1.13	AA 50 08 1A 01 03	Set PPG measurement 2 AFE integration time to 117.3us	AB 00
ORITI	1.14	AA 50 08 1A 02 03	Set PPG measurement 3 AFE integration time to 117.3us	AB 00
ALGO	1.15	AA 50 08 1B 00 01	Set PPG measurement 1 AFE sampling rate to 50sps, averaging to 2	AB 00
START ALGORITHM	1.16	AA 50 08 1B 01 04	Set PPG measurement 2 AFE sampling rate to 400sps, averaging to 16	AB 00
ST,	1.17	AA 50 08 1B 02 04	Set PPG measurement 3 AFE sampling rate to 400sps, averaging to 16	AB 00
	1.18	AA 50 08 0F 00 7D	Set minimum PD current to 12.5uA	AB 00
	1.19	AA 50 08 10 01 38	Set initial PD current to 31.2uA	AB 00
	1.20	AA 50 08 0D 07 08	Set the adjusted target PD current period to 1800s	AB 00
	1.21	AA 50 08 0E 00 32	Set the HR motion magnitude threshold to 0.05g.	AB 00
	1.22	AA 50 08 23 00 00	Set the DAC offset for PD channel 1 for PPG measurement 1	AB 00
	1.23	AA 50 08 24 00 00	Set the DAC offset for PD channel 2 for PPG measurement 1	AB 00
	1.24	AA 50 08 1C 00 00	Set the maximum DAC offset for PPG measurement 1 to 0	AB 00
	1.25	AA 50 08 23 01 00	Set the DAC offset for PD channel 1 for PPG measurement 2	AB 00
	1.26	AA 50 08 24 01 00	Set the DAC offset for PD channel 2 for PPG measurement 2	AB 00
	1.27	AA 50 08 23 02 00	Set the DAC offset for PD channel 3 for PPG measurement 1	AB 00
	1.28	AA 50 08 24 02 00	Set the DAC offset for PD channel 2 for PPG measurement 3	AB 00
	1.29	AA 50 08 25 00 00 64	Set initial LED current to 10mA for PPG measurement 1	AB 00

Maxim Integrated Page 58 of 77

	1.30	AA 50 08 25 01 00 C8	Set initial LED current to 20mA for PPG measurement 2	AB 00
	1.31	AA 50 08 25 02 00 C8	Set initial LED current to 20mA for PPG measurement 3	AB 00
	1.32	AA 50 08 11 01 38	Set target PD current to 31.2uA	AB 00
	1.33	AA 50 08 11 01 38	Enable SCD	AB 00
	1.34	AA 50 08 0C 01	Set the output format to Sample Counter byte,	AB 00
	1.34	AA 10 00 07	Sensor Data and Algorithm	AB 00
	1.35	AA 40 06 10 01	Write 0x01 to MAX86176 register 0x10	AB 00
	1.36	AA 40 06 10 01 AA 40 06 10 02	Write 0x02 to MAX86176 register 0x10	AB 00
	1.37	AA 40 06 15 1E	Write 0x15 to MAX86176 register 0x16	AB 00
	1.38	AA 40 06 13 12 AA 40 06 18 80	Write 0x18 to MAX86176 register 0x80	AB 00
	1.39	AA 40 06 19 9F	Write 0x19 to MAX86176 register 0x9F	AB 00
	1.40	AA 40 06 13 3F	Write 0x14 to MAX86176 register 0x3F	AB 00
	1.41	AA 40 06 1C 20	Write 0x1C to MAX86176 register 0x20	AB 00
	1.42	AA 40 06 10 20 AA 40 06 1D 05	Write 0x10 to MAX86176 register 0x20	AB 00
	1.42	AA 40 06 1D 05	Write 0x1E to MAX86176 register 0x05	AB 00
	1.43	AA 40 06 1E 1F AA 40 06 86 40	Write 0x1E to MAX86176 register 0x1F Write 0x86 to MAX86176 register 0x40	AB 00
	1.44	AA 44 04 01 00	ville uxou tu iviAxou i/o register ux4u	AB 00
	1.45	(CMD_DELAY =		AB 00
		(CMD_DELAT = 50ms)	Enable the accelerometer.	
	1.46	AA 44 06 01 00	Enable the accelerometer.	AB 00
	1.40	(CMD_DELAY =		AB 00
		500ms)	Enable MAX86176 AFE.	
	1.47	AA 52 08 01	LITABLE WAXOUTTO ALL.	AB 00
	1.47	(CMD_DELAY =	Write enable/disable the Wearable Algorithm Suite	AB 00
		500ms)	(WHRM+WSpO ₂) algorithm, SensorHub	
	1.48	AA 41 00 FF	Read register FF (PART_ID) of MAX86176	AB 00 [39]
	1.10	(optional)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	712 00 [00]
	1.49	AA 41 04 0F	Read register 0F (WHO_AM_I) of LIS2DS12	AB 00 [43]
		(accel data is	3 (= = /	
		required LIS2DS12I)		
	Host r	epeats the following com	nmands every 40ms	
SIL	2.1	AA 00 00	Read the sensor hub status byte:	AB 00 08
7.5			Bit 0: Sensor comm error	
₩ 5			Bits 1 and 2: Reserved	
N S			Bit 3: FIFO filled to threshold (DataRdyInt)	
# S ≥			Bit 4: Output FIFO overflow (FifoOutOvrInt)	
ING SAMPLES RT IN OUTPUT			Bit 5: Input FIFO overflow (FifoInOverInt)	
READ! REPOR		1 1 10 01	If DataRdyInt is set, proceed to the next step.	ABoot
EF EF	2.2	AA 12 01	Described by the FIFO	AB 00 [sample counter
~~			Read the data stored in the FIFO	byte] [sensor data]
	Llest	diaablaa aanaara arabaha	o vith mu	[algorithm data]
		disables sensors and alg	orithm: Disable the accelerometer.	AB 00
	3.1		Disable the accelerometer.	AB 00
		(CMD_DELAY = 50ms)		
<u>C</u>	3.2	AA 44 06 00	Disable the MAX86176 AFE.	AB 00
STOP	3.2	(CMD DELAY =	DISADIE ITIE IVIAAOUTTO AFE.	AD 00
S		(CMD_DELAT = 200ms)		
	3.2	AA 52 08 00	Disable the Wearable Algorithm Suite	AB 00
	0.2	(CMD_DELAY =	(WHRM+WSpO2) algorithm	7.15 00
		200ms)	(
		_001110/		

6.3 SensorHub, AGC and Normal Algorithm Report

Maxim Integrated Page 59 of 77

The Automatic Gain Control (AGC) may be enabled by enabling AEC and disabling automatic PD calculation. The sequence of commands for enabling AGC is shown in the table below.

Table 12. Host Commands—SensorHub AGC and Read Normal

Algo	rithr	n Report	
	#	HOST COMMAND	COMMAND DESCRIPTION

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host i	nitializes the AlgoHub ar	nd starts the algorithm using following commands:	
	1.1	AA 02 00 (optional)	Read the operating mode	AB 00 00 application mode
	1.2 AA FF 03 (optional)		Read the AlgoHubSensorHub version for MAX32674C (x.y.z)	AB 00 32 YY ZZ
	1.3	AA 10 01 01	Set the AlgoHub interrupt threshold.	AB 00
	1.4	AA 54 01	MAX32674C releases sensor SPI bus to MAX32674C. SensorHub mode.	AB 00
	1.5	AA 40 06 1E 1F	Write 0x1F to MAX86176 register 0x1E	AB 00
	1.6	AA 40 06 1D 05	Write 0x05 to MAX86176 register 0x1D	AB 00
	1.7	AA 40 06 11 07	Write 0x07 to MAX86176 register 0x11	AB 00
	1.8	AA 40 06 12 04	Write 0x04 to MAX86176 register 0x12	AB 00
	1.9	AA 40 06 90 02	Write 0x90 to MAX86176 register 0x90	AB 00
	1.10	AA 50 08 0B 01	Enable AEC	AB 00
	1.11	AA 50 08 12 00	Disable automatic PD calculation	AB 00
	1.12	AA 50 08 1A 00 03	Set PPG measurement 1 AFE integration time to 117.3us	AB 00
	1.13	AA 50 08 1A 01 03	Set PPG measurement 2 AFE integration time to 117.3us	AB 00
Ξ	1.14	AA 50 08 1A 02 03	Set PPG measurement 3 AFE integration time to 117.3us	AB 00
ORI	1.15	AA 50 08 1B 00 01	Set PPG measurement 1 AFE sampling rate to 50sps, averaging to 2	AB 00
ALG	1.16	AA 50 08 1B 01 04	Set PPG measurement 2 AFE sampling rate to 400sps, averaging to 16	AB 00
START ALGORITHM	1.17	AA 50 08 1B 02 04	Set PPG measurement 3 AFE sampling rate to 400sps, averaging to 16	AB 00
ပ	1.18	AA 50 08 0F 00 7D	Set minimum PD current to 12.5uA	AB 00
	1.19	AA 50 08 10 01 38	Set initial PD current to 31.2uA	AB 00
		AA 50 08 0D 07 08	Set the adjusted target PD current period to 1800s	AB 00
	1.21	AA 50 08 0E 00 32	Set the HR motion magnitude threshold to 0.05g.	AB 00
	1.22	AA 50 08 23 00 00	Set the DAC offset for PD channel 1 for PPG measurement 1	AB 00
	1.23	AA 50 08 24 00 00	Set the DAC offset for PD channel 2 for PPG measurement 1	AB 00
	1.24	AA 50 08 1C 00 00	Set the maximum DAC offset for PPG measurement 1 to 0	AB 00
	1.25	AA 50 08 23 01 00	Set the DAC offset for PD channel 1 for PPG measurement 2	AB 00
	1.26	AA 50 08 24 01 00	Set the DAC offset for PD channel 2 for PPG measurement 2	AB 00
	1.27	AA 50 08 23 02 00	Set the DAC offset for PD channel 3 for PPG measurement 1	AB 00
	1.28	AA 50 08 24 02 00	Set the DAC offset for PD channel 2 for PPG measurement 3	AB 00
	1.29	AA 50 08 25 00 00 64	Set initial LED current to 10mA for PPG measurement 1	AB 00

Maxim Integrated Page 60 of 77

	1.30	AA 50 08 25 01 00 C8	Set initial LED current to 20mA for PPG measurement 2	AB 00
	1.31	AA 50 08 25 02 00 C8	Set initial LED current to 20mA for PPG measurement 3	AB 00
	1.32	AA 50 08 11 01 38	Set target PD current to 31.2uA	AB 00
	1.33	AA 50 08 0C 01	Enable SCD	AB 00
	1.34	7.0.00 00 00 01	Set the output format to Sample Counter byte,	AB 00
	1.01	AA 10 00 07	Sensor Data and Algorithm	7.2 00
	1.35	AA 40 06 10 01	Write 0x01 to MAX86176 register 0x10	AB 00
	1.36	AA 40 06 10 02	Write 0x02 to MAX86176 register 0x10	AB 00
	1.37	AA 40 06 15 1E	Write 0x15 to MAX86176 register 0x1E	AB 00
	1.38	AA 40 06 18 80	Write 0x18 to MAX86176 register 0x80	AB 00
	1.39	AA 40 06 19 9F	Write 0x19 to MAX86176 register 0x9F	AB 00
	1.40	AA 40 06 1A 3F	Write 0x1A to MAX86176 register 0x3F	AB 00
	1.41	AA 40 06 1C 20	Write 0x1C to MAX86176 register 0x20	AB 00
	1.42	AA 40 06 1D 05	Write 0x1D to MAX86176 register 0x05	AB 00
	1.43	AA 40 06 1E 1F	Write 0x1E to MAX86176 register 0x1F	AB 00
	1.44	AA 40 06 12 11 AA 40 06 86 40	Write 0x86 to MAX86176 register 0x40	AB 00
	1.45	AA 44 04 01 00	TTHE GROOT OF INFORMATION TO TOURISH ON TO	AB 00
	110	(CMD_DELAY =		7.5 00
		50ms)	Enable the accelerometer.	
	1.46	AA 44 06 01 00	Enable the accordinates.	AB 00
	1.40	(CMD_DELAY =		AB 00
		500ms)	Enable MAX86176 AFE.	
	1.47	AA 52 08 01		AB 00
		(CMD_DELAY =	Write enable/disable the Wearable Algorithm Suite	7.2 00
		500ms)	(WHRM+WSpO ₂) algorithm, SensorHub	
	1.48	AA 41 00 FF (optional)	Read register FF (PART_ID) of MAX86176	AB 00 [39]
	1.49	AA 41 04 0F (accel data is	Read register 0F (WHO_AM_I) of LIS2DS12	AB 00 [43]
		required LIS2DS12I)		
_		epeats the following com		
ING SAMPLES RT IN OUTPUT	2.1	AA 00 00	Read the sensor hub status byte:	AB 00 08
그			Bit 0: Sensor comm error	
			Bits 1 and 2: Reserved	
SA			Bit 3: FIFO filled to threshold (DataRdyInt)	
ິ ອີ =			Bit 4: Output FIFO overflow (FifoOutOvrInt)	
ŽΖ			Bit 5: Input FIFO overflow (FifoInOverInt)	
READ!	2.2	AA 12 01	If DataRdyInt is set, proceed to the next step.	AB 00 [sample counter
当道	2.2	AA 12 01	Read the data stored in the FIFO	byte] [sensor data]
II IZ			Nead the data stored in the FIFO	[algorithm data]
	Host	l disables sensors and alg	orithm:	Taigontiini dataj
	3.1	AA 44 04 00	Disable the accelerometer.	AB 00
	0.1	(CMD_DELAY =	Disable the accoloration.	7.5 00
		50ms)		
STOP	3.2	AA 44 06 00	Disable the MAX86176 AFE.	AB 00
T	0.2	(CMD DELAY =	Disable the Michelland To At E.	, 13 00
ဟ		200ms)		
	3.2	AA 52 08 00	Disable the Wearable Algorithm Suite	AB 00
	U. <u> </u>	(CMD_DELAY =	(WHRM+WSpO2) algorithm	
		200ms)		
		/		

6.4 SensorHub, PPG Raw Data Report

Maxim Integrated Page 61 of 77

The host may configure the SensorHub to ouput raw rata (no algorithm) by enabling the AFE. The table below lists the set of commands that are needed to obtain the PPG raw data.

Table 13. Host Commands—PPG Raw Data Report

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host	initializes the SensorHub	and AFE for raw data report:	
	1.1	AA 02 00 (optional)	Read the operating mode	AB 00 00
				application mode
	1.2	AA FF 03 (optional)	Read the AlgoHubSensorHub version for MAX32674C (x.y.z)	AB 00 32 YY ZZ
	1.3	AA 54 01	MAX32674C releases sensor SPI bus to MAX32674C. SensorHub mode.	AB 00
	1.4	AA 40 06 10 01	Write 0x01 to MAX86176 register 0x10	AB 00
	1.5	AA 40 06 10 01	Write 0x02 to MAX86176 register 0x10	AB 00
	1.6	AA 40 06 11 07	Write 0x07 to MAX86176 register 0x11	AB 00
	1.7	AA 40 06 12 04	Write 0x04 to MAX86176 register 0x12	AB 00
	1.8	AA 40 06 14 55	Write 0x55 to MAX86176 register 0x14	AB 00
	1.9	AA 40 06 15 19	Write 0x19 to MAX86176 register 0x15	AB 00
	1.10	AA 40 06 18 80	Write 0x80 to MAX86176 register 0x18	AB 00
	1.11	AA 40 06 19 9F	Write 0x9F to MAX86176 register 0x19	AB 00
	1.12	AA 40 06 1A 3F	Write 0x3F to MAX86176 register 0x1A	AB 00
	1.13		Write 0x20 to MAX86176 register 0x1C,	AB 00
		AA 40 06 1C 20	FR_CLK_SEL = 1, 32.786kHz	
	1.14	AA 40 06 1D 05	Write 0x05 to MAX86176 register 0x1D	AB 00
ALGORITHM	1.15		Write 0x1F to MAX86176 register 0x1E. FR_CLK_DIV = 0x51F. PPG_FR = PPG_FR_CLK/FR_CLK_DIV =	AB 00
ပု		AA 40 06 1E 1F	32768/1311 = 25 Hz	
	1.16	AA 40 06 20 08	Write 0x08 to MAX86176 register 0x20	AB 00
START	1.17	AA 40 06 21 18	Write 0x18 to MAX86176 register 0x21	AB 00
₹	1.18	AA 40 06 22 3F	Write 0x3F to MAX86176 register 0x22	AB 00
S	1.19	AA 40 06 23 50	Write 0x50 to MAX86176 register 0x23	AB 00
	1.20	AA 40 06 24 08	Write 0x08 to MAX86176 register 0x24	AB 00
	1.21	AA 40 06 25 14	Write 0x14 to MAX86176 register 0x25	AB 00
	1.22		Write 0x00 to MAX86176 register 0x26	AB 00
	1.23	AA 40 06 28 01	Write 0x01 to MAX86176 register 0x28	AB 00
	1.24		Write 0x1A to MAX86176 register 0x29	AB 00
	1.25		Write 0x3F to MAX86176 register 0x2A	AB 00
	1.26		Write 0x50 to MAX86176 register 0x2B	AB 00
	1.27		Write 0x01 to MAX86176 register 0x2C	AB 00
	1.28	AA 40 06 2D 28	Write 0x28 to MAX86176 register 0x2D	AB 00
	1.29	AA 40 06 2E 00	Write 0x09 to MAX86176 register 0x2E	AB 00
	1.30		Write 0x02 to MAX86176 register 0x30	AB 00
	1.31		Write 0x1A to MAX86176 register 0x31	AB 00
	1.32		Write 0x3F to MAX86176 register 0x32	AB 00
	1.33		Write 0x50 to MAX86176 register 0x33	AB 00
	1.34		Write 0x01 to MAX86176 register 0x34	AB 00
	1.35	AA 40 06 35 28	Write 0x28 to MAX86176 register 0x35	AB 00
	1.36	AA 40 06 36 00	Write 0x00 to MAX86176 register 0x36	AB 00
	1.37	AA 40 06 86 40	Write 0x40 to MAX86176 register 0x86	AB 00
		AA 44 06 01 00	Enable MAX86176 AFE.	AB 00

Maxim Integrated Page 62 of 77

		(CMD_DELAY = 500ms)		
		epeats the following com	nmands every 40ms	
58	Z. I	AA 12 00	Read the number of samples available.	AB 00 01
READIN	2.2	AA 12 01	Read the data stored in the FIFO	AB 00 ([sample counter byte] [raw data])x(number of samples)
	Host of	disables sensors and alg	orithm:	
STOP	3.1	AA 44 06 00 (CMD_DELAY =	Disable the MAX86176 AFE.	AB 00
		200ms)		

The SensorHub PPG raw data output FIFO format is listed below. The Type is defined in Table 12 of the MAX86176 Datasheet.

Table 14. SensorHub PPG Raw Data Output FIFO Format

DATA SOURCE (24 bytes)	DATA ITEM	# OF BYTES (MSB FIRST)	DESCRIPTION
	Green (PD1)	3	[23:20]Type [19:0]: Green1
MAY96176	Green (PD2)	3	[23:20]Type [19:0]: Green2
MAX86176 PPG Data	IR (PD1)	3	[23:20]Type [19:0]: IR1
(18 Bytes)	IR (PD2)	3	[23:20]Type [19:0]: IR2
(10 Dytes)	Red (PD1)	3	[23:20]Type [19:0]: Red1
	Red (PD2)	3	[23:20]Type [19:0]: Red2

7 Configuring a New MAX32674C

The MAX32674C is not pre-programmed with the application algorithm. See the section "Application .msbl Programming Sequence" to flash the latest .msbl application algorithm to the MAX32674.

The default settings for the MFIO pin must be configured once before the .msbl is flashed. The table below configures and saves the MFIO pin to P0.0.

Table 15. Configure the MFIO pin and Save the Configuration

	#	HOST COMMAND (HEX)	COMMAND DESCRIPTION	RESPONSE (HEX)
	Host	must initialize the factory	fresh MAX32674C once.	
_	1.0		Reset to bootloader mode	
N N	1.1	AA 01 08	Stay in bootloader mode. This command must be	AB AA
			sent within 20ms after reset.	
MFIO	1.2	AA 02 00 (optional)	Read the operating mode	AB AA 08
				bootloader mode
뿓	1.3	AA 82 01 00 01	Configure bootloader to use the MFIO pin to	AB AA
			determine if the device enters bootloader or	
8			application mode after a reset.	
5	1.4	AA 82 01 01 00	Configure the MFIO pin to P0.0	AB AA
CONFIGURE	1.5	AA 82 01 02 00	Configure the MFIO pin to active low for bootloader	AB AA
Z			mode.	
ပ္ပ	1.6	AA 82 00	Save the configuration	AB AA
		(CMD_DELAY =		
		300ms)		

Maxim Integrated Page 63 of 77

	1.7	Reset (see the next section on how to reset)	The MAX32674C must be reset to store the configure	
--	-----	--	--	--

Maxim Integrated Page 64 of 77

8 Application .msbl Programming Sequence

To program the MAX32674C application .msbl, the host microprocessor places the MAX32674C into bootloader mode and the host may implement the software to flash the .msbl file (I2C, MFIO, RSTN lines are connected between the host and the MAX32674C). The MAX32674C uses the 8-bit slave address of 0xAA. Each page sent includes 16 CRC bytes for that page, so there are 8208 bytes per page sent in the payload of the message. The number of pages is located at address 0x44 in the .msbl file. Values for the number of pages, initialization vector, authorization bytes and page contents, might be different for the latest .msbl, but the locations of these values in the .msbl file remain the same; The example below used the data from the v50.1.0 .msbl file. There are additional bytes in the .msbl past the last page; these are the file checksum bytes. Since the bootloader uses the commands listed below and it does not accept files, the file checksum bytes are not used by the bootloader.

Table 16. Annotated I²C Trace for Flashing the Application **RESPONSE HOST** COMMAND READ DESCRIPTION COMMAND **DESCRIPTION** MAX32674C RESPONSE Sequence the MAX32674C to enter bootloader mode. ' Figure 9. Sequence to enter bootloader mode. Read mode. 0xAA 0x02 0xAB 0xAA No error. Mode is bootloader. $0x00^{\dagger}$ 80x0 0xAA 0x81 Read bootloader 0xAB 0xAA No error. Page size is 8192. 0x01[†] page size. 0x20 0x00 0xAA 0x80 0x02 Bootloader flash. Set 0xAB 0xAA No error. 0x00 0x21* the "number of pages" to 33 based on the value at byte 0x44 from the application .msbl file. 00000044 ba 46 34 2b 21 00 00 20 04 00 00 00 c7 f4 20 8b Figure 10. Page number byte 0x44 from the .msbl file. 00x0 08x0 AAx0 Bootloader flash. Set 0xAB 0xAA No error. 0x8E 0XA2 the initialization 0x9D 0x1A 0xE2 vector bytes to the 0x8F 0x7F 0x25 0x28 to 0x32 values 0x5E 0x0B from the .msbl file. 0x91* 00000020 00 00 00 00 00 00 00 00 8e a2 9d la e2 8f 7f 25 5e 0b 91 00 0d e8 f8 12 7e 2e 8e d8 Figure 11. Initialization vector bytes 0x28 to 0x32 from the .msbl file. 0xAA 0x80 0x01 Bootloader flash, Set 0xAB 0xAA No error. 0x0D 0xE8 0xF8 the authentication 0x12 0x7E 0x2E bytes to the 0x34 to 0x8E 0xD8 0xA9 0x43 values from the 0xA3 0xF1 0x60 .msbl file. 0xBA 0x46 0x34 0x2B*

Maxim Integrated Page 65 of 77

00000030 5e 0b 91 0			
00000043 ba 46 34 21			5110
	tication bytes 0x34 to 0x4		
0xAA 0x80	Bootloader flash.	0xAB 0xAA	No error.
0x03*	Erase application.		
(CMD_DELAY =			
1400ms)	Destinate dest	0.400.44	Necessaria
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xC7 0xF4 0x20	Send page bytes		
0xD4 0x75	0x4C to 0x205B from		
0xBF*	the .msbl file (8028		
(CMD_DELAY =	bytes).		
680ms)	<u> </u>		
	21 00 00 20 04 00 00 00 E 26 84 a7 9a b9 45 ce 8a	c7 f4 20 8b	
	b c5 3b ef 49 11 35 bb 06		
	a 74 4b 02 f6 98 d4 75 bf		
	age bytes 0x4C to 0x205		ile.
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x03 0x2A 0xC6	Send page bytes		
0xA8 0xEE	0x205C to 0x406B		
0xFC*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)			
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x39 0x43 0x5B	Send page bytes		
0x12 0x3E	0x406C to 0x607B		
0x1B*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)			
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x39 0xAC 0xB8	Send page bytes		
0x14 0x6F	0x607C to 0x808B		
0x13*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)			
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xAA 0xF3 0x95	Send page bytes		
0x53 0x08	0x808C to 0xA09B		
0xEA*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)			
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xB1 0xBF 0x28	Send page bytes		
0x89 0x86	0xA09C to 0xC0AB		
0x35*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	D (1 1 ")	0.450	
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x56 0x26 0x44	Send page bytes		
0x72 0x1D	0xC0AC to 0xE0BB		
0x74*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	Destination 1	0.400.44	N
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x95 0x25 0x5E	Send page bytes		

Maxim Integrated Page 66 of 77

0x43 0xF0	0xE0BC to 0x100CB		
0x7F*	from the .msbl file.		
(CMD_DELAY =			
680ms)			
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x94 0xEC	Send page bytes		
0xEC 0x0B	0x100CC to 0x120DB		
0x37 0x95*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	,		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xA6 0xEA 0x53	Send page bytes		
0xC2 0x26	0x120DC to 0x140EB		
0x87*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	(00_0 29.00).		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x01 0x87 0x1D	Send page bytes	0,0 10 0,0 0 1	110 01101.
0xBE 0xFF	0x140EC to 0x160FB		
0xEC*	from the .msbl file		
(CMD DELAY =	(8028 bytes).		
680ms)	(0020 bytes).		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xEA 0x65 0xD6	Send page bytes	OXAD OXAA	No ciror.
0x63 0xCF	0x160FC to 0x1810B		
0x5F*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	(0020 bytes).		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x4F 0x7E 0xEF	Send page bytes	OXAD OXAA	No error.
0x26 0x3D	0x1810C to 0x1A11B		
0x47*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	(0020 bytes).		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0xF0 0x64 0x3D	Send page bytes		TWO OTTOIL
0xAA 0x65	0x1A11C to 0x1C12B		
0x47*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	(0020 bytes).		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
0x54 0xDF 0xAB	Send page bytes		TWO OTTOIL
0xA4 0xA9	0x1C12C to 0x1E13B		
0xE5*	from the .msbl file		
(CMD_DELAY =	(8028 bytes).		
680ms)	(0020 bytes).		
	: :B0 0x0A 0xA5 0xA6 0	<u>Ι</u> ν24 Ων40*	

0xAA 0x80 0x04 0xB0 0x0A 0xA5 ... 0xA6 0x24 0xA8*

CALL CACC CAC L CABC CACA LOW IO CAC IC CAE L CAC IC							
(CMD_DELAY =	0xAB 0xAA	No error.					
680ms)Bootloader							
flash. Send page							
bytes 0x1E13C to							
0x2014B from the							
.msbl file (8028							
bytes).							

Maxim Integrated Page 67 of 77

0xAA 0x80 0x04 0xE6 0x8E 0x35 0x25 0x11 0xD4* (CMD_DELAY = 680ms)*	Bootloader flash. Send page bytes 0x2014C to 0x2215B from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0xA0 0x88 0x34 0x40 0x82 0x2E* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2215C to 0x2416B from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0xD5 0x2F 0xAC 0xAC 0xCE 0x69* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2416C to 0x2617B from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0x06 0x6C 0xF9 0x9B 0xF2 0x91* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2617C to 0x2818B from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 01Bx 0xAD 0x09 0xD3 0x7B 0xE6* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2818C to 0x2A19B from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0xF3 0x08 0x6A 0x9C 0x46 0x31* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2A19C to 0x2C1AB from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0x1E 0xCE 0x62 0x99 0x60 0xC0* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2C1AC to 0x2E1BB from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0xEF 0x61 0x8D 0xD9 0x40 0x92* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x2E1BC to 0x301CB from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0xA0 0x25 0x37 0xA7 0x15 0xAA* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x301CC to 0x321DB from the .msbl file (8028 bytes).	0xAB 0xAA	No error.

Maxim Integrated Page 68 of 77

0xAA 0x80 0x04 0xF4 0xB0 0x84 0x41 0x8B 0x6A* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x321DC to 0x341EB from the .msbl file (8028 bytes).	0xAB 0xAA	No error.
0xAA 0x80 0x04 0x7D 0x02 0x6E 0x87 0x83 0x70* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x341EC to 0x361FB from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0x1E 0x8D 0x35 0x18 0x19 0xD8* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x361FC to 0x3820B from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0xEE 0x60 0xBA 0x5C 0x27 0x13* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x3820C to 0x3A21B from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0x58 0xF0 0xE9 0xAF 0x7E 0x79* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x3A21C to 0x3C22B from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0xD3 0x6F 0x26 0x30 0xCB 0x5C* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x3C22C to 0x3E23B from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0x8F 0xAA 0xB6 0xF6 0x66 0xEF* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x3E23C to 0x4024B from the .msbl file (8028 bytes).		No error.
0xAA 0x80 0x04 0x8A 0x0B 0xD3 0xE2 0x24 0x74* (CMD_DELAY = 680ms)	Bootloader flash. Send page bytes 0x4024C to 0x4225B from the .msbl file (8028 bytes).		No error.
RSTN MHO10 0 10 20 30	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

Figure 14. Sequence to enter application mode.

Alternately, the MAX32674C can be commanded to application mode.

Page 69 of 77 Maxim Integrated

0xAA 0x01 0x00	Set mode to 0x00 for	0xAB 0xAA	No error.
$0x00^{\dagger}$ (CMD DELAY =	application mode.		
1.5s)			
0xAA 0x02	Read mode.	0xAB 0xAA	No errors. Mode is application.
0x00+		0x00	

^{*}Mandatory

For host micros that have limited RAM or limited I2C message sizes, the AlgoHub allows for the pages to be loaded with among several messages. The table below illustrates how to flash an .msbl file which has 5 pages using the partial page writing. In this example, the partial page size is set to 4000 bytes.

Table 17. Annotated I²C Trace for Flashing the Application using the Partial Page Writing Command

HOST	COMMAND	READ	RESPONSE						
COMMAND	DESCRIPTION	MAX32674C	DESCRIPTION						
		RESPONSE							
Sequence the MA	X32674C to enter bootlo	ader mode. *							
RSTN S									
MFIO S									
-10 0 10 20 30 40 50ms									
	DEVICE IS NOW IN BOOTLOADER MODE								
	to enter bootloader mode.								
0xAA 0x02	Read mode.	0xAB 0xAA	No error. Mode is bootloader.						
0x00 [†]	5 11 11 1	0x08	N. B. I. I. A.A.						
0xAA 0x81	Read bootloader	0xAB 0xAA	No error. Page size is 8192.						
0x01 [†] 0xAA 0x80 0x02	page size. Bootloader flash. Set	0x20 0x00 0xAB 0xAA	No error.						
0x00 0x05*	the "number of	OXAD OXAA	No error.						
Choo choo	pages" to 5 based on								
	the value at byte 0x44								
	from the application								
	.msbl file.								
0xAA 0x80 0x00	Bootloader flash. Set	0xAB 0xAA	No error.						
[11 bytes]*	the initialization								
	vector bytes to the 0x28 to 0x32 values								
	from the .msbl file.								
0xAA 0x80 0x01	Bootloader flash. Set	0xAB 0xAA	No error.						
[16 bytes]*	the authentication								
	bytes to the 0x34 to								
	0x43 values from the								
000 000 005	.msbl file.	0AD 0AA	No. agree						
0x80 0x06 0x0F 0xA0*	Set partial page load size as 4000	0xAB 0xAA	No error.						
UAAU	(0x0FA0)								
0xAA 0x80	Bootloader flash.	0xAB 0xAA	No error.						
0x03*	Erase application.								
(CMD_DELAY =									
1400ms)									

Maxim Integrated Page 70 of 77

[†]Recommended

0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send first partial bytes of the first page, 0x4C to 0xFEB from the .msbl file.	0xAB 0xAA	o error.
0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send second partial bytes of the first page, <i>0xFEC to 0x1F8B</i> from the .msbl file.	0xAB 0xAA	No error.
0xAA 0x80 0x04 [208 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send the remaining partial page bytes of the first page, Ox1F8C to 0x205B from the .msbl file	0xAB 0xAA	No error.
0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send first partial bytes of the second page, 0x205C to 0x2FFB from the .msbl file.	0xAB 0xAA	No error.
0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send second partial bytes of the second page, 0x2FFC to 0x3F9B from the .msbl file.	0xAB 0xAA	No error.
0xAA 0x80 0x04 [208 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send the remaining partial page bytes of the second page, 0x3F9C to 0x406B from the .msbl file	0xAB 0xAA	No error.
0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send first partial bytes of the third page, 0x406C to 0x500B from the .msbl file.	0xAB 0xAA	No error.
0xAA 0x80 0x04 [4000 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send second partial bytes of the third page, 0x500C to 0x5FAB from the .msbl file.	0xAB 0xAA	No error.
0xAA 0x80 0x04 [208 bytes]* (CMD_DELAY = 680ms)	Bootloader flash. Send the remaining partial page bytes of the third page, Ox5FAC to 0x607B from the .msbl file	0xAB 0xAA	No error.
0xAA 0x80 0x04 [4000 bytes]*	Bootloader flash. Send first partial	0xAB 0xAA	No error.

Maxim Integrated Page 71 of 77

(CMD DELAY =	bytes of the fourth		
680ms)	page, 0x607C to		
,	0x701B from the		
	.msbl file.		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
[4000 bytes]*	Send second partial		
(CMD_DELAY =	bytes of the fourth		
680ms)	page, 0x701C to		
	0x7FBB from the		
0xAA 0x80 0x04	.msbl file. Bootloader flash.	0xAB 0xAA	No error.
[208 bytes]*	Send the remaining	UXAD UXAA	NO error.
(CMD_DELAY =	partial page bytes of		
680ms)	the fourth page,		
	0x7FBC to 0x808B		
	from the .msbl file		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
[4000 bytes]*	Send first partial		
(CMD_DELAY =	bytes of the last page,		
680ms)	0x808C to 0x902B		
044 000 004	from the .msbl file.	040 044	No amon
0xAA 0x80 0x04 [4000 bytes]*	Bootloader flash. Send second partial	0xAB 0xAA	No error.
(CMD_DELAY =	bytes of the last page,		
680ms)	0x902C to 0x9FCB		
	from the .msbl file.		
0xAA 0x80 0x04	Bootloader flash.	0xAB 0xAA	No error.
[208 bytes]*	Send the remaining		
(CMD_DELAY =	partial page bytes of		
680ms)	the last page,		
	0x9FCC to 0xA09B		
	from the .msbl file		
RSTN			
	2 2		
MFIO	2 2 💹		
-10 0 10 20 3	0 40 50ms 1.5s		

N.J.IN		_					5	2
MFIO								5 💹
	-10	0	10	20	30	40	50ms ♦	1.5s ↑
							ICE IS NOW IN CATION MODE	APPLICATION INITIALIZATION IS COMPLETE AND DEVICE IS READY TO RESPOND TO I ² C COMMANDS

Figure 16. Sequence to enter application mode.

Alternately, the MAX32674C can be commanded to application mode. [†]							
0xAA 0x01 0x00	Set mode to 0x00 for	0xAB 0xAA	No error.				
0x00 [†]	application mode.						
(CMD_DELAY =	(CMD_DELAY =						
1.5s)							
0xAA 0x02	Read mode.	0xAB 0xAA	No errors. Mode is application.				
0x00+		0x00					

^{*}Mandatory

Page 72 of 77 Maxim Integrated

[†]Recommended

9 SpO₂ Coefficients for Final Form Factor

Due to variations in the physical design and optical cover lens of the final product, a calibration data collection procedure for SpO_2 is required to be performed once in a controlled environment. This procedure is important to ensure the quality of the SpO_2 calculation. This step is typically performed in a standard lab using the final form factor (with cover lens) with a reference SpO_2 device to determine three SpO_2 calibration coefficients: a, b, and c. The details of the SpO_2 calibration data collection and SpO_2 coefficient derivation procedure are described in the **Guidelines for SpO_2 Measurement Using the Maxim MAX32664 Sensor Hub** application note.

Once the three SpO₂ calibrations coefficients are obtained, they need to be loaded to the sensor hub every time prior to starting the algorithm.

The SpO₂ calibrations coefficients need to be converted to a 32-bit integer format using the following:

- $A_{int32} = round (10^5 x a)$
- $B_{int32} = round (10^5 x b)$
- $C_{int32} = round (10^5 x c)$

The SpO₂ calibration coefficients may be stored in the host flash separately and loaded to the sensor hub after every reset.

10 APIs for Sleep, Shutdown

Summarized below are the commands and methods to place the MAX32674C, AFE, accelerometer into sleep or shutdown.

Table 18. Sleep, Shutdown I²C Message Protocol Definitions

COMMAND NAME	HOST COMMAND TO MAX32674C	DESCRIPTION	
MAX32674C sleeps when idle and MFIO is low		MAX32674C uses deep-sleep for low-powered mode when idle and MFIO low.	
MAX32674C shutdown	0xAA 0x01 0x00 0x01	Place the MAX32674C into shutdown. Restart by power cycling or pulsing RSTN.	
MAX32674C hard reset	Use MFIO and RSTN pins according to section 2.		
WDT in MAX32674C		Not implemented.	
MAX86176 AFE reset. Use AFE write register command. SensorHub.	0xAA 0x40 0x06 0x10 0x01	Write 0x01 to MAX86176 register 0x10 (System Configuration) to put the reset the MAX86176.	
MAX86176 AFE shutdown. Use AFE write register command. SensorHub.	0xAA 0x40 0x06 0x10 0x02	Write 0x02 to MAX86176 register 0x10 (System Configuration) to put the MAX86176 into shutdown (SHDN) mode.	
LIS2DS12 wake on activity or wake on double/single tap. Use accel write register command. SensorHub.	0xAA 0x40 0x04 [reg_addr] [value]	See AN4748 LIS2DS12 for register settings. Accel interrupt pin can be connected to the host GPIO.	

11 MAX32674C Processing Capabilities

The MAX32674C IC hardware is the same as the MAX32670.

MIPS: Arm Cortex-M4 with FPU: 1.27 Dhrystone MIPS/MHz

Maxim Integrated Page 73 of 77

RAM: 160KB SRAM

• Flash: 384KB Flash Memory with Error Correction

• CPU Frequency: 100MHz

12 Heart Rate Algorithm Perfomance

Table 19. Heart Rate Algorithm Perfomance

	Wearable Heart Rate Monitoring – WHRM				
Category	Features	Specifications			
Algorithm	Measurement principle:	Optical PPG signal from wrist, 3D Axis Accelerometer			
	Measurement range:	HR: [30 240] BPM Cadence (steps per minute): [90 360]			
	Measurement accuracy: Reference measurement device: Average response time	HR: Accuracy Definition -> within +/-10% error band vs. reference (chest strap) Resting: 94 – 100% Walking: 93 - 99% Biking: 91 - 97% Running: 91 - 97% Daily Life: 90 - 100% Step counting: Accuracy Definition: 100% – (Absolute Percent Error) Treadmill walking: 89 – 95% Treadmill running: 86 – 92% Outdoor walking: 80 – 90% Activity Classification: Accuracy Definition: 100% – (Absolute Percent Error) Rest: 87 - 93% Treadmill walking: 93 - 99% Treadmill walking: 93 - 99% Outdoor walking: 91 - 97% Outdoor biking: 80 - 90% Energy consumption Kcal: calculated according to ACSM & ADA HR: ECG based chest strap IBI: ECG based chest strap (sampling rate min 1kHz) 25Hz, first response time 15sec			
	Average response time Inputs:	Single/Multiple Channel PPG signal			
	Built-in features:	3-axis accelerometer signals Activity Classifier Built-in Step Counter Motion compensation of PPG for accurate HR estimation Inter-beat interval estimator Energy expenditure estimation			
Measurement Positions	Wrist, Ear, Finger, Chest, Abdomen	Sports and daily life activities			
Sensor & Signal Requirements	LED requirements:	Please refer to "Reference Design Document" for details			
	Perfusion index range:	Minimum AC to calculate HR is 20nA with average 0.8% PI			
	Sampling rate:	25 Hz			
Calibration	Calibration:	Algorithm activity classifier is tuned for the sensor placement on wrist, a calibration might be required to train algorithm to improve its performance for another body location.			

Maxim Integrated Page 74 of 77

13 SpO2 Algorithm Perfomance

Table 20. SpO2 Algorithm Perfomance

SpO ₂ on Wrist				
Category	Features	Specifications		
	Measurement principle:	Optical PPG signal from wrist		
	Measurement range:	70 – 100% SpO2		
	Measurement accuracy:	RMSE ≤ 3.5% as required by FDA for reflective mode pulse oximeters		
	Clinical test:	Certified calibration lab		
	Measurement time:	30 – 60 sec, on-demand operations, one shot		
Algorithm	Inputs:	Red and Infrared PPG signals 3-axis accelerometer signals		
	Built-in features:	Precise motion detector Automatic AFE setting adjustment for optimum PPG quality Signal conditioning Signal selection according to signal quality for discarding noisy signal portions Adjustable time-out duration Adjustable confidence threshold		
	Standing:	Arm is kept horizontal at the level of heart; palm is facing the floor		
Measurement Positions	Sitting	Arms are placed on a table Arms are crossed, arm with wristwatch is above the other arm		
	Lying down:	Arms are horizontal		
Sensor &	LED requirements:	Center wavelength shift ≤ ±5nm LED full width at half maximum (FWHM) ≤ 20nm		
Signal	Perfusion index range:	PI ≥ 0.05%		
Requirements	Sampling rate:	25 Hz		
	Optical layout design:	Please refer to "Design Guide for SpO2 Measurement"		
Calibration	Calibration lab:	Lab calibration is required for wearable's finished industrial design. Please refer to lab calibration procedure guide "Design Guide for SpO2 Measurement"		

Maxim Integrated Page 75 of 77

14 References

MAXREFDES104# website files (Design Files, Firmware, Software, User Guide, Sample Host Code):

MAXREFDES104#: Wrist-Based SpO2, HR, ECG, temperature Health Sensor Platform

Frequently Asked Questions: Maxim Support Center

Validation and Performance of a Wearable Heart rate Monitoring Algorithm

Guidelines For Spo2 Measurement

Maxim Integrated Page 76 of 77

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0.01	01/21	Initial release	
0.02	5/21	Added section 1.1-1.3, 2-4, 6-10, figure 2, 7, 9-16, table 5-10. Updated section 1-5, figure 1, table 2, 7.	all
0.03	8/21	Added section 2.2, 5.4, 6.4, 7 table 7, 13, 14, 15. Updated section 1.3, 2.1, figures 1-5,8, table 1, 2, 11, 16, 17	all

©2021 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners.

Maxim Integrated Page 77 of 77