Grupo Simétrico

José Antônio O. Freitas

MAT-UnB

22 de outubro de 2020

Dada uma função $f: A \rightarrow A$, sabemos que f possui inversa

Dada uma função $f: A \to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Dada uma função $f:A\to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

Dada uma função $f:A\to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$\mathcal{S} = \{f \colon A \to A$$

Dada uma função $f:A\to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f : A \rightarrow A \mid f \text{ \'e bijetora}\}.$$

Dada uma função $f: A \to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f : A \rightarrow A \mid f \text{ \'e bijetora}\}.$$

Em ${\mathcal S}$ vamos considerar a composição de funções \circ .

Dada uma função $f:A\to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f : A \rightarrow A \mid f \text{ \'e bijetora}\}.$$

Em ${\mathcal S}$ vamos considerar a composição de funções \circ .

Como $id: A \rightarrow A$ tal que id(x) = x para todo $x \in A$

Dada uma função $f: A \rightarrow A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f : A \rightarrow A \mid f \text{ \'e bijetora}\}.$$

Em ${\mathcal S}$ vamos considerar a composição de funções \circ .

Como $id:A \to A$ tal que id(x)=x para todo $x \in A$ é uma função bijetora

Dada uma função $f:A\to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f \colon A \to A \mid f \text{ \'e bijetora}\}.$$

Em ${\mathcal S}$ vamos considerar a composição de funções \circ .

Como $id:A\to A$ tal que id(x)=x para todo $x\in A$ é uma função bijetora então $id\in\mathcal{S}$

Dada uma função $f: A \to A$, sabemos que f possui inversa se, e somente se, f é bijetora.

Assim considere o conjunto

$$S = \{f \colon A \to A \mid f \text{ \'e bijetora}\}.$$

Em ${\mathcal S}$ vamos considerar a composição de funções \circ .

Como $id: A \to A$ tal que id(x) = x para todo $x \in A$ é uma função bijetora então $id \in S$ e com isso $S \neq \emptyset$.

Dadas f, $g \in \mathcal{S}$

Dadas f, $g \in \mathcal{S}$ como f e g são bijetoras,

Dadas $f, g \in \mathcal{S}$ como $f \in g$ são bijetoras, então $f \circ g$ é bijetora

Dadas f, $g \in \mathcal{S}$ como f e g são bijetoras, então $f \circ g$ é bijetora e daí $f \circ g \in \mathcal{S}$.

Dadas f, $g \in \mathcal{S}$ como f e g são bijetoras, então $f \circ g$ é bijetora e daí $f \circ g \in \mathcal{S}$. Isto é,

Dadas f, $g \in \mathcal{S}$ como f e g são bijetoras, então $f \circ g$ é bijetora e daí $f \circ g \in \mathcal{S}$. Isto é, a composição de funções

Agora, sejam f, g e $h \in \mathcal{S}$.

$$[(f\circ g)$$

$$[(f\circ g)\circ h$$

$$[(f\circ g)\circ h](x)$$

$$[(f\circ g)\circ h](x)=(f\circ g)$$

$$[(f\circ g)\circ h](x)=(f\circ g)(h(x))$$

$$[(f\circ g)\circ h](x)=(f\circ g)(h(x))=f(g(h(x)))$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)]$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x)$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f(g(h(x)))$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x))$$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Agora, sejam f, g e $h \in S$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g)$

Agora, sejam f, g e $h \in S$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h$

Agora, sejam f, g e $h \in S$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

 $\mathsf{Logo}\ (f \circ g) \circ h = f \circ$

Agora, sejam f, g e $h \in S$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

f∘ id

3 / 13

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f$$

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

Agora, sejam f, g e $h \in S$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

onde $id: A \rightarrow A$

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

onde $id: A \rightarrow A$ é tal que id(x) = x,

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

onde $id: A \rightarrow A$ é tal que id(x) = x, para todo $x \in A$.

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

onde $id: A \rightarrow A$ é tal que id(x) = x, para todo $x \in A$. Logo id é o elemento neutro da composição.

3 / 13

Agora, sejam f, g e $h \in \mathcal{S}$. Para todo $x \in A$ temos

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$

$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

Logo $(f \circ g) \circ h = f \circ (g \circ h)$.

Agora, para toda $f \in \mathcal{S}$

$$f \circ id = f = id \circ f$$
,

onde $id: A \rightarrow A$ é tal que id(x) = x, para todo $x \in A$. Logo id é o elemento neutro da composição.

3 / 13

Finalmente,

Finalmente, para toda $f \in \mathcal{S}$,

Finalmente, para toda $f \in \mathcal{S}$, como f é bijetora

$$f \circ g = id$$

$$f \circ g = id = g \circ f$$
.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\mathcal S}$

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\mathcal S}$ possui inverso.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\mathcal S}$ possui inverso.

Portanto (\mathcal{S}, \circ)

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\mathcal S}$ possui inverso.

Portanto (S, \circ) é um grupo.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\mathcal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular em que A é um conjunto finito.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular em que A é um conjunto finito.

Nessa situação podemos supor que $A\subseteq \mathbb{N}$

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular em que A é um conjunto finito.

Nessa situação podemos supor que $A\subseteq\mathbb{N}$ para simplificar a notação.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular em que A é um conjunto finito.

Nessa situação podemos supor que $A\subseteq \mathbb{N}$ para simplificar a notação.

Vamos ver como é o conjunto ${\mathcal S}$ com essa hipótese.

$$f \circ g = id = g \circ f$$
.

Logo todo elemento de ${\cal S}$ possui inverso.

Portanto (S, \circ) é um grupo. Além disso, em geral, esse grupo não é comutativo.

Vamos considerar agora o caso particular em que A é um conjunto finito.

Nessa situação podemos supor que $A\subseteq\mathbb{N}$ para simplificar a notação.

Vamos ver como é o conjunto ${\mathcal S}$ com essa hipótese.

Se
$$A = \{1\}$$
,

Se $A = \{1\}$, então só existe uma função $f: A \rightarrow A$

$$f\colon \{1\}\to \{1\}$$

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id.

5/13

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso \mathcal{S}

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso $\mathcal{S} = \mathcal{S}_1$

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso $\mathcal{S} = \mathcal{S}_1 = \{id\}$

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso $S = S_1 = \{id\}$ e (S_1, \circ) é um grupo,

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso $S = S_1 = \{id\}$ e (S_1, \circ) é um grupo, e nesse caso comutativo.

$$f: \{1\} \to \{1\}$$

 $f(1) = 1.$

Ou seja, f é a função a identidade id. Nesse caso $S = S_1 = \{id\}$ e (S_1, \circ) é um grupo, e nesse caso comutativo.

Se $A=\{1,2\}$

 $id: A \rightarrow A$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \rightarrow A$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

 $f(1) = 2$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

Assim $\mathcal S$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

Assim $S = S_2$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

Assim
$$S = S_2 = \{id,$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

Assim
$$S = S_2 = \{id, f\}$$

$$id: A \to A$$
 $f: A \to A$ $id(1) = 1$ $f(1) = 2$ $id(2) = 2$ $f(2) = 1$

Assim $S = S_2 = \{id, f\}$ e (S_2, \circ) é um grupo.

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$f: A \to A$$

$$f(1) = 2$$

$$f(2) = 1$$

Assim $S = S_2 = \{id, f\}$ e (S_2, \circ) é um grupo.

0	id	f
id		
f		

$$id: A \rightarrow A$$
 $f: A \rightarrow A$ $id(1) = 1$ $f(1) = 2$ $id(2) = 2$ $f(2) = 1$

Assim $S = S_2 = \{id, f\}$ e (S_2, \circ) é um grupo.

0	id	f
id		
f		

Além disso, da tabela acima vemos que esse grupo é comutativo.

Agora, seja $A = \{1, 2, 3\}.$

7/13

 $id: A \rightarrow A$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$\mathit{id}:A\to A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

$$id(3) = 3$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

$$id(3) = 3$$

$$id: A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$id:A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$id: A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

 $f_2:A\to A$

$$id:A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

$$id: A \rightarrow A$$
$$id(1) = 1$$
$$id(2) = 2$$
$$id(3) = 3$$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$
 $f_1(3) = 3$

$$f_2: A \to A$$
$$f_2(1) = 3$$

$$id:A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

$$f_2:A\to A$$

$$f_2(1) = 3$$

$$f_2(2) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

$$f_2:A\to A$$

$$f_2(1) = 3$$

$$f_2(2) = 2$$

$$f_2(3) = 1$$

$$id:A\rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_1:A\to A$$

$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

$$f_2:A\to A$$

$$f_2(1) = 3$$

$$f_2(2) = 2$$

$$f_2(3)=1$$

$$f_3:A\to A$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$
 $id(3) = 3$

$$f_1:A\to A$$
$$f_1(1)=2$$

$$f_1(2) = 1$$

 $f_1(3) = 3$

$$f_2:A\to A$$

$$f_2(1) = 3$$

 $f_2(2) = 2$

$$f_{2}(3) = 1$$

$$f_3:A\to A$$

$$f_3(1) = 1$$

$$id: A \to A$$

 $id(1) = 1$
 $id(2) = 2$
 $id(3) = 3$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$
 $f_1(3) = 3$

$$f_2:A\to A$$

$$f_2(1) = 3$$

 $f_2(2) = 2$

$$f_2(3) = 1$$

$$f_3: A \to A$$

 $f_3(1) = 1$
 $f_3(2) = 3$

$$id: A \to A$$
 $f_2: A \to A$
 $id(1) = 1$ $f_2(1) = 3$
 $id(2) = 2$ $f_2(2) = 2$
 $id(3) = 3$ $f_2(3) = 1$

$$f_1: A \to A$$
 $f_3: A \to A$ $f_1(1) = 2$ $f_3(1) = 1$ $f_1(2) = 1$ $f_3(2) = 3$ $f_3(3) = 2$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$f_2: A \rightarrow A$$

 $f_2(1) = 3$

$$f_4:A\to A$$

$$id(2) = 2$$

$$f_2(2) = 2$$

$$id(3) = 3$$

$$f_2(3)=1$$

$$f_1:A\to A$$

$$f_3:A\to A$$

$$f_1(1) = 2$$

$$f_3(1) = 1$$

$$f_1(2) = 1$$

$$f_3(2) = 3$$

$$f_1(3) = 3$$

$$f_3(3) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

 $id(3) = 3$

$$f_1: A \rightarrow A$$

 $f_1(1) = 2$

$$f_1(2) = 1$$

$$f_1(3) =$$

$$f_1(3) = 3$$

$$f_2:A\to A$$

$$f_2(1) = 3$$

$$f_2(2) = 2$$

 $f_2(3) = 1$

$$f_3:A\to A$$

$$f_3(1)=1$$

$$f_3(2) = 3$$

$$f_3(3)=2$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$id(2) = 2$$

 $id(3) = 3$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$

$$f_1(3) = 3$$

$$f_2: A \rightarrow A$$

 $f_2(1) = 3$

$$f_2(2) = 2$$

 $f_2(3) = 1$

$$f_3:A\to A$$

 $f_3(1)=1$

$$f_3(2) = 3$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

 $f_4(2) = 3$

$$f_3(3) = 2$$

$$id: A \rightarrow A$$

$$id(1) = 1$$

$$id(2) = 2$$

$$id(3) = 3$$

$$f_2: A \to A$$

 $f_2(1) = 3$
 $f_2(2) = 2$
 $f_2(3) = 1$

$$f_4: A \to A$$

 $f_4(1) = 2$
 $f_4(2) = 3$
 $f_4(3) = 1$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$
 $f_1(3) = 3$

$$f_3: A \to A$$

 $f_3(1) = 1$
 $f_3(2) = 3$
 $f_3(3) = 2$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$id(2) = 2$$

 $id(3) = 3$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$

$$f_1(3) = 3$$

$$f_2: A \to A$$
$$f_2(1) = 3$$

$$f_2(2) = 2$$

 $f_2(3) = 1$

$$f_3:A\to A$$

$$f_3(1) = 1$$

$$f_3(2) = 3$$

$$f_3(3) = 2$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

 $f_4(2) = 3$

$$f_4(3) = 1$$

$$f_5:A\to A$$

$$id: A \rightarrow A$$

 $id(1) = 1$

$$id(2) = 2$$

 $id(3) = 3$

$$f_1: A \to A$$
$$f_1(1) = 2$$

$$f_1(2) = 1$$

$$f_1(3) = 3$$

$$f_2:A\to A$$

$$f_2(1) = 3$$

$$f_2(2) = 2$$

 $f_2(3) = 1$

$$f_3:A\to A$$

$$f_3(1) = 1$$

$$f_3(2) = 3$$

$$f_3(3) = 2$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

 $f_4(2) = 3$

$$f_4(3) = 1$$

$$f_5:A\to A$$

$$f_5(1)=3$$

$$id: A \rightarrow A$$

 $id(1) = 1$
 $id(2) = 2$

$$id(3) = 3$$

$$f_1: A \to A$$

$$f_2(1) = 2$$

$$f_1(1) = 2$$

 $f_1(2) = 1$

$$f_1(3) = 3$$

$$f_2: A \rightarrow A$$

 $f_2(1) = 3$

$$f_2(2) = 2$$

 $f_2(3) = 1$

$$f_3:A\to A$$
$$f_3(1)=1$$

$$f_3(2) = 3$$

$$f_3(3) = 2$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

 $f_4(2) = 3$

$$f_4(3) = 1$$

$$f_5:A\to A$$

$$f_5(1) = 3$$

$$f_5(2) = 1$$

$$id: A \to A$$

 $id(1) = 1$
 $id(2) = 2$
 $id(3) = 3$

$$f_1: A \to A$$

 $f_1(1) = 2$
 $f_1(2) = 1$

$$f_1(2) = 1$$

 $f_1(3) = 3$

$$f_2: A \to A$$

 $f_2(1) = 3$
 $f_2(2) = 2$

$$f_2(3)=1$$

$$f_3: A \to A$$

 $f_3(1) = 1$
 $f_3(2) = 3$

$$f_3(3) = 2$$

$$f_4:A\to A$$

$$f_4(1) = 2$$

 $f_4(2) = 3$

$$f_4(3) = 1$$

$$f_5: A \rightarrow A$$

 $f_5(1) = 3$

$$f_5(2) = 1$$

$$f_5(3) = 2$$

Logo $S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1)$$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1))$$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2)$$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

 $(f_4 \circ f_1)(1)$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

 $(f_4 \circ f_1)(1) = f_4(f_1(1))$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

 $(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2)$

Logo
$$S = S_3 = \{id, f_1, f_2, f_3, f_4, f_5\}$$
 e (S_3, \circ) é um grupo.

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

$$\mathsf{dai}\ (\mathit{f}_{1} \circ \mathit{f}_{4})(1)$$

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

$$\mathsf{dai}\; (\mathit{f}_{1} \circ \mathit{f}_{4})(1) \neq (\mathit{f}_{4} \circ \mathit{f}_{1})(1)$$

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí
$$(f_1\circ f_4)(1)
eq (f_4\circ f_1)(1)$$
 , isto é,

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí
$$(f_1\circ f_4)(1)
eq (f_4\circ f_1)(1)$$
 , isto é, $f_1\circ f_4$

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí
$$(f_1\circ f_4)(1) \neq (f_4\circ f_1)(1)$$
 , isto é, $f_1\circ f_4 \neq f_4\circ f_1$.

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1\circ f_4)(1)\neq (f_4\circ f_1)(1)$, isto é, $f_1\circ f_4\neq f_4\circ f_1$. Portanto o grupo (S_3,\circ)

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Note que em S_2

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Note que em S_2 temos 2 = 2! elementos

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Note que em S_2 temos 2 = 2! elementos e em S_3

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Note que em S_2 temos 2=2! elementos e em S_3 temos 6=3! elementos.

Nesse caso temos

$$(f_1 \circ f_4)(1) = f_1(f_4(1)) = f_1(2) = 1$$

$$(f_4 \circ f_1)(1) = f_4(f_1(1)) = f_4(2) = 3$$

daí $(f_1 \circ f_4)(1) \neq (f_4 \circ f_1)(1)$, isto é, $f_1 \circ f_4 \neq f_4 \circ f_1$. Portanto o grupo (S_3, \circ) não é comutativo.

Note que em S_2 temos 2=2! elementos e em S_3 temos 6=3! elementos.

De modo geral,

De modo geral, se $A = \{1, 2, 3, ..., n\}$

De modo geral, se $A = \{1, 2, 3, ..., n\}$ então existem exatamente n!

9/13

Assim o grupo (S_n, \circ)

Assim o grupo (S_n, \circ) possui n! elementos.

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \geqslant 3$, então

9/13

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \ge 3$, então S_n é um grupo não comutativo.

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \geqslant 3$, então S_n é um grupo não comutativo.

Definição

O grupo S_n é chamado de

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \geqslant 3$, então S_n é um grupo não comutativo.

Definição

O grupo S_n é chamado de **grupo simétrico**

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \geqslant 3$, então S_n é um grupo não comutativo.

Definição

O grupo S_n é chamado de **grupo simétrico** ou **grupo de permutações**

Assim o grupo (S_n, \circ) possui n! elementos.

Se $n \geqslant 3$, então S_n é um grupo não comutativo.

Definição

O grupo S_n é chamado de **grupo simétrico** ou **grupo de permutações** em $A = \{1, 2, 3, ..., n\}$.

Um modo de representar os elementos de S_n é o seguinte:

Um modo de representar os elementos de S_n é o seguinte: vamos representar as funções $f \in S_n$

Um modo de representar os elementos de S_n é o seguinte: vamos representar as funções $f \in S_n$ na forma de uma matriz contendo 2 linhas

Um modo de representar os elementos de S_n é o seguinte: vamos representar as funções $f \in S_n$ na forma de uma matriz contendo 2 linhas e n colunas.

Um modo de representar os elementos de S_n é o seguinte: vamos representar as funções $f \in S_n$ na forma de uma matriz contendo 2 linhas e n colunas. A primeira linha é o domínio da função

f =

$$f = \begin{pmatrix} 1 & 2 & 3 & \dots & n \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ f(1) & & & & \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ f(1) & f(2) & & & \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ f(1) & f(2) & f(3) & & \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ f(1) & f(2) & f(3) & \dots & \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ f(1) & f(2) & f(3) & \cdots & f(n) \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ f(1) & f(2) & f(3) & \cdots & f(n) \end{pmatrix}.$$

$$id = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 $f_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & & \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & & \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & & \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Assim a composição $f_3 \circ f_4$ pode ser determinada da seguinte forma:

$$f_3 \circ f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Assim a composição $f_3 \circ f_4$ pode ser determinada da seguinte forma:

$$f_3 \circ f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

A composição $f_4 \circ f_5$ é:

$$f_4 \circ f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

A composição $f_4 \circ f_5$ é:

$$f_4 \circ f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$