Алгоритмы и модели вычислений. Домашнее задание № 6

Задача 1. Теорема Рейнгольда утверждает, что язык $UPATH = \{(G, s, t) |$ в неориентированном графе G есть неориентированный путь из s в $t\}$ лежит в \mathcal{L} . Опираясь на этот факт, докажите, что следующие языки лежат в \mathcal{L} :

- 1. $EVENCONN = \{G |$ неориентированный граф G имеет чётное число компонент связности $\}$;
- 2. $EDGEUCYCLE = \{(G, e) |$ в неориентированном графе G существует цикл, содержащий ребро $e\};$
- 3. $XOR2SAT = \{ \varphi \mid \varphi$ конъюнкция выражений вида $x_i \oplus x_j$, для которой есть выполняющий набор $\}$.
- **Решение**. 1. Для определения, лежит ли граф G в нашем языке EVENCONN, будем хранить в памяти всего 2 счётчика: счётчик текущей вершины num и бит, отвечающий за чётность числа компонент IsEven (изначально равен 1). Мы нумеруем все вершины графа и действуем следующим образом, пока num не пройдёт все вершины нашего графа.
 - Если из 1 вершины есть путь в вершину num (что мы проверяем за логарифмическую память по теореме Рейнгольда), то мы увеличиваем счётчик num: num = num + 1.
 - Если же из 1 вершины нет пути в вершину *num* (что мы проверяем за логарифмическую память по теореме Рейнгольда), то мы проверяем наличие пути из *num* в какую-нибудь из вершин с меньшим номером.
 - Если такая есть, то мы увеличиваем счётчик num: num = num + 1.
 - Если такой нет, то меняем значение IsEven на противоположное и увеличиваем счётчик num: num = num + 1.

Заметим, что в таком алгоритме бит IsEven меняет своё значение, только если текущая вершина не связана ребром ни с одной из ранее рассмотренных, то есть лежит в новой компоненте связности относительно найденных ранее алгоритмом. Таким образом, после окончания алгоритма $G \in EVENCOMM \Leftrightarrow IsEven = 1 \Rightarrow EVENCOMM \in \mathcal{L}$.

- 2. Для того, чтобы проверить принадлежность (G, e) к EDGEUCYCLE, где G = (V, E) рассмотрим граф $\tilde{G} = (V, \tilde{E})$, где \tilde{E} содержит все рёбра E, кроме e. Пусть e = (u, v), тогда, очевидно, $(G, e) \in EDGEUCYCLE \Leftrightarrow (\tilde{G}, u, v) \in UPATH$, что мы проверяем за логарифмическую память по теореме Рейнгольда, так что $EDGEUCYCLE \in \mathcal{L}$.
- 3. Сведём XOR2SAT к языку BIPARTITE, который лежит в \mathcal{L} , доказательство этого есть в конспекте. По формуле φ будем строить граф G=(V,E) следующим образом:

 $V = \{x_i \mid \text{переменная } x_i$ лежит в формуле $\varphi\}$, а вершины x_i и x_j будем соединять ребром тогда и только тогда, когда в формуле φ есть конъюнкт вида $x_i \oplus x_j$. Таким образом мы можем за логарифм от длины входа построить наш граф G: перебором всех переменных заполняем матрицу смежности.

Докажем, что $\varphi \in XOR2SAT \Leftrightarrow G \in BIPARTITE$:

- \Rightarrow : $\varphi \in XOR2SAT <math>\Rightarrow \varphi$ выполнима, то есть существует такой набор переменных, что в каждом конъюнкте вида $x_i \oplus x_j$ справедливо, что x_i и x_j принимают различные значения, так что если в φ есть конъюнкты $x_i \oplus x_j$ и $x_i \oplus x_k$, то $x_j = x_k$, а следовательно $x_j \oplus x_k = 0$ и такого конъюнкта в φ нет, то есть в нашем графе G x_j и x_k ребром соединены не будут, а следовательно в нашем графе нет треугольников, а циклов большей нечётной длины в графе быть не может в принципе, так что граф двудолен.
- \Leftarrow : G двудольный \Rightarrow примем все переменные одной доли равными 0, другой доли равными 1, тогда в каждом конъюнкте вида $x_i \oplus x_j$ справедливо, что x_i и x_j принимают различные значения, так что φ выполняется на этом наборе.

Таким образом мы доказали, что $XOR2SAT \leqslant_L BIPARTITE \land BIPARTITE \in \mathcal{L} \Rightarrow XOR2SAT \in \mathcal{L}$, что и требовалось.

 $3a\partial a$ ча 2. Докажите, что $2SAT \in \mathcal{NL}$.

Решение. Во-первых вспомним, что $x_i \vee x_j \Leftrightarrow \overline{x_i} \to x_j$. А во-вторых, что $\mathcal{NL} = co - \mathcal{NL}$ по Immerman—Szelepcsényi theorem. Тогда мы можем каждый из наших дизъюнктов переписать в виде импликации. Таким образом, в качестве сертификата для нашей машины Тьюринга возьмём цепь импликаций вида $x_i \to \ldots \to \overline{x_i} \to \ldots \to x_i$, наша МТ будет идти по цепочке и смотреть, есть ли каждая импликация в нашей исходной формуле. Докажем, что если такая цепь есть в нашей исходной формуле, то она невыполнима: от противного: пусть $x_i = 1$, тогда все последующие литералы в импликации также должны быть равными 1 (так как исходная формула равняется 1 на данном наборе переменных), но тогда получим импликацию $1 \to \overline{x_i} = 1 \to 0 = 0$ — противоречие, если же $x_i = 0$, то аналогично рассматривая вторую половину цепочки получаем импликацию $1 \to x_i = 1 \to 0 = 0$ — противоречие. Таким образом $2SAT \in co - \mathcal{NL} \Rightarrow 2SAT \in \mathcal{NL}$.

 $3a\partial aua$ 3. Докажите, \mathcal{NL} -полноту языка 2SAT.

Решение. Сведём к 2SAT $co - \mathcal{NL}$ -полный язык \overline{PATH} . Так как $co - \mathcal{NL} = \mathcal{NL}$, то язык \overline{PATH} также является \mathcal{NL} -полным языком. Построим КНФ следующим образом: (имеем тройку (G, s, t), как элемент \overline{PATH}). Заведём по одной переменной для каждой из вершин, внесём в нашу формулу дизъюнкты s и \overline{t} . А для $(x, y) \in E$ внесём в формулу дизъюнкт $\overline{x} \vee y$. Докажем теперь, что пути из s в t нет \Leftrightarrow КНФ выполнима.

• \Rightarrow : возьмём все вершины, которые достигаются из вершины s и пометим соответствующие им переменные, как истинные, а все остальные, как ложные. s=1,t=0. Тогда

в нашем графе нет рёбер, которые идут от вершины с соответствующей ей переменной, равной 1 к вершине с соответствующей ей переменной, равной 0. От противного: если есть ребро (u,v), где u=1,v=0, то существует путь $s\to\ldots\to u\to v$, то есть v достижима из s. Тогда все дизъюнкты вида $\overline{x}\vee y$, равно как s и \overline{t} обращаются в 1, следовательно КНФ обращается в 1 на этом наборе \Rightarrow выполнима.

• \Leftarrow : КНФ выполнима \Rightarrow существует набор, на котором формула обращается в 1, возьмём его. Допустим, что в КНФ был дизъюнкт $\overline{x} \lor y$. Он обращается в 1, так что не может быть такого, чтобы x был равен 1, а y обращался в 0. Таким образом, можно построить достижимые из s вершины равно как в предыдущем пункте: все вершины, достижимые из s обращаются в 1 (так как если $(s,u) \in E$, то есть дизъюнкт $\overline{s} \lor u = 1$, где $s = 0 \Rightarrow u = 1$. Но так как КНФ выполнима, то $\overline{t} = 1$, то есть t = 0 — недостижимая из s вершина

Таким образом мы построили сводимость $\overline{PATH} \leqslant_L 2SAT$, следовательно 2SAT также является \mathcal{NL} -полным языком.

 ${\it 3adaua}$ 4. Докажите, что класс P/poly не изменится, если в качестве размера вместо числа вершин брать число рёбер.

Pemerue. P/poly — класс языков, распознающихся семейством схем полиномиального размера (где размер есть число вершин в минимального схеме). Докажем, что если брать тут в качестве размера число рёбер, то класс не изменится:

- возьмём схему, распознающую язык и имеющую полиномиальный размер в смысле вершин: пусть этот размер есть f(n) = poly(n). Так как всего в этой схеме рёбер $\leq f(n) \cdot f(n) = poly(n)$, то язык также распознаётся схемой с полиномиальным размером в смысле рёбер.
- возьмём схему, распознающую язык и имеющую полиномиальный размер в смысле рёбер: пусть этот размер есть f(n) = poly(n). Так в нашей схеме $\leqslant n$ изолированных вершин (их не может быть больше, чем входных переменных), а остальных вершин не может быть больше общего числа рёбер, то всего вершин $\leqslant n + f(n) = poly(n)$. Таким образом этот язык также распознаётся схемой с полиномиальным размером в смысле вершин.

Таким образом мы доказали, что язык распознаётся семейством схем полиномиального размера в смысле вершин ⇔ язык распознаётся семейством схем полиномиального размера в смысле рёбер. То есть эти классы действительно совпадают.

 ${\it 3adaua}$ 5. Докажите, что класс P/poly не зависит от того, какая входящая степень разрешена для вершин типов \wedge и \vee .

Решение. Пусть теперь разрешённая входящая степень есть N, обозначим получившийся класс как P/poly - N. Докажем, что на самом деле P/poly = P/poly - N:

- $P/poly \subseteq P/poly N$: верно, так как, очевидно, мы можем не обращать внимание на увеличение входящей степени и продолжать пользоваться схемами, где в каждую вершину вида \wedge и \vee входит не больше двух рёбер.
- $P/poly N \subseteq P/poly$: развернём каждую из вершин вида \land и \lor «слева-направо», как показано ниже:

Изначально имеем следующую схему:

Разворачиваем «слева-направо»:

Таким образом можно видеть, что если у нас была схема на m вершинах, причём m=poly(n), то после такого эквивалентного преобразования мы получаем схему $c\leqslant N\cdot poly(m)\leqslant m\cdot poly(poly(n))=poly(n)$ вершин. Таким образом размер остаётся полиномиальным, то есть $P/poly-N\subseteq P/poly$, чего нам и не хватало для доказательства того, что P/poly=P/poly-N.