Deep Learning

Objetivos

- Keras + Tensorflow
- Conceptos de ANN
- Imágenes
- Google Colab
- Kaggle
- CNN

Regresión Lineal como Neurona

$$F(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + 1 \cdot b$$

Regresión Logística como Neurona

Redes Neuronales Densas

ANN

- Aproximadores universales.
- Transformación sucesiva de los datos para generar representaciones que facilitan la resolución del problema.
- Importancia de activaciones No Lineales.

Activaciones

 Le dan mayor flexibilidad a las representaciones creadas por la red en las capas ocultas.

Conceptos ANN

- Datos Normalizados
- Entrenamiento Backpropagation
- Loss Function
- Learning Rate
- Batch Size
- Epochs
- Activaciones

Train Targets

- Batch = Lote ~ N Observaciones para actualizar W.
- Epoch = Iteración ~ N Veces que se repite el proceso.
- Learning Rate = Magnitud de actualización de W.

Keras

- Layers https://keras.io/api/layers/
- Loss Function https://keras.io/api/losses/
- Metrics https://keras.io/api/metrics/
- Optimizers https://keras.io/api/optimizers/

Colab + Kaggle

kaggle

https://www.kaggle.com/

https://colab.research.google.com/

Scenes Dataset

Usamos un subset de datos de 5000 observaciones y predecimos 4 de las 6 clases presentes.

Computer Vision Tasks

Convoluciones

- En Imágenes tenemos una alta dimensionalidad (gran cantidad de pixeles)
 que se traducen a grandes cantidad de parámetros en DNN.
- En Imágenes hay patrones que se repiten que son invariantes a traslación.

 Buscamos una mejor manera de detectar variables en imágenes, donde es importante la espacialidad pero no la posición.

Convolución

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

	6	
3		
200		

Max Pooling

Convolución + Max Pooling

Convolución + Max Pooling

CNN

- Aplicando Convoluciones:
 - Detectamos patrones locales (las DNN aprenden patrones globales)
 - Detectamos patrones invariantes a traslación: Si el mismo patrón aparece en otro lugar de la imagen será detectado.
 - Aprendemos patrones jerárquicos.
 - Requiere menor cantidad de parámetros.

CNN

Overfitting

- Cuando la redes neuronales tienen grandes cantidades de parámetros y datos de entrenamiento limitados pueden ajustarse demasiado a esos datos, memorizando el entrenamiento.
- Tendrán menor performance en datos nunca vistos.
- Soluciones:
 - Regularización (Dropout)
 - Data Augmentation
 - Early Stopping

Regularization - Dropout

 Se apagan neuronas de una capa de manera aleatoria durante el entrenamiento.

(a) Standard Neural Net

(b) After applying dropout.

Data Augmentation

 En imágenes, hacer cambios aleatorios no altera su sentido. Podemos introducir cambios aleatorios en el input del modelo durante el entrenamiento para que en cada iteración el modelo nunca vea 2 veces la misma imagen.

Early Stopping

• Frenamos el entrenamiento en la iteración de mejor resultado en validación.

Medimos el error de entrenamiento (azul) y de validación (rojo) durante el entrenamiento del modelo.

Frenamos el entrenamiento cuando el error de validación deja de mejorar.

Transfer Learning

 Es el método de aprovechar los parámetros entrenados de una red y reutilizarlos en un problema diferente, cambiando las últimas capas.

Transfer Learning

- Podemos aprovechar los parámetros de las capas convolucionales de redes ya entrenadas.
- Estas capas ya deberían captar características y patrones básicos en las imágenes.

Control de Predicciones

 Al ser modelos menos interpretables, es importante controlar los datos de entrenamiento y evaluar las predicciones para detectar sesgos.

Control de Predicciones

(a) Husky classified as wolf

(b) Explanation