

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
21 June 2001 (21.06.2001)

PCT

(10) International Publication Number  
**WO 01/43693 A2**

- (51) International Patent Classification<sup>7</sup>: A61K [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (21) International Application Number: PCT/US00/34162
- (22) International Filing Date: 15 December 2000 (15.12.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 60/172,442 17 December 1999 (17.12.1999) US
- (71) Applicant (*for all designated States except US*): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): SHIVER, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). LIANG, Xiaoping [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). FU, Tong-Ming
- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- Without international search report and to be republished upon receipt of that report.

[Continued on next page]

(54) Title: POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF



**WO 01/43693 A2**



(57) Abstract: Pharmaceutical compositions which comprise HIV Nef DNA vaccines are disclosed, along with the production and use of these DNA vaccines. The nef-based DNA vaccines of the invention are administered directly introduced into living vertebrate tissue, preferably humans, and express the HIV Nef protein or biologically relevant portions thereof, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The DNA molecules which comprise the open reading frame of these DNA vaccines are synthetic DNA molecules encoding codon optimized HIV-1 Nef and derivatives of optimized HIV-1 Nef, including nef modifications comprising amino terminal leader peptides, removal of the amino terminal myristylation site, and/or modification of the Nef dileucine motif. These modifications may effect wild type characteristics of Nef, such as myristylation and down regulation of host CD4.

**WO 01/43693 A2**



*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**TITLE OF THE INVENTION**

5    **POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1  
NEF AND MODIFIED HIV-1 NEF**

**CROSS-REFERENCE TO RELATED APPLICATIONS**

10      This application claims the benefit, under 35 U.S.C. §119(e), of U.S.  
provisional application 60/172,442, filed December 17, 1999.

**STATEMENT REGARDING FEDERALLY-SPONSORED R&D**

Not Applicable

15

**REFERENCE TO MICROFICHE APPENDIX**

Not Applicable

**FIELD OF THE INVENTION**

20      The present invention relates to HIV Nef polynucleotide pharmaceutical  
products, as well as the production and use thereof which, when directly introduced  
into living vertebrate tissue, preferably a mammalian host such as a human or a  
non-human mammal of commercial or domestic veterinary importance, express the  
HIV Nef protein or biologically relevant portions thereof within the animal, inducing  
25      a cellular immune response which specifically recognizes human immunodeficiency  
virus-1 (HIV-1). The polynucleotides of the present invention are synthetic DNA  
molecules encoding codon optimized HIV-1 Nef and derivatives of optimized HIV-1  
Nef, including nef mutants which effect wild type characteristics of Nef, such as  
myristylation and down regulation of host CD4. The polynucleotide vaccines of the  
30      present invention should offer a prophylactic advantage to previously uninfected  
individuals and/or provide a therapeutic effect by reducing viral load levels within an  
infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

## BACKGROUND OF THE INVENTION

Human Immunodeficiency Virus-1 (HIV-1) is the etiological agent of acquired human immune deficiency syndrome (AIDS) and related disorders. HIV-1 is an RNA virus of the Retroviridae family and exhibits the 5'LTR-gag-pol-env-

- 5 LTR 3' organization of all retroviruses. The integrated form of HIV-1, known as the provirus, is approximately 9.8 Kb in length. Each end of the viral genome contains flanking sequences known as long terminal repeats (LTRs). The HIV genes encode at least nine proteins and are divided into three classes; the major structural proteins (Gag, Pol, and Env), the regulatory proteins (Tat and Rev); and the accessory proteins
- 10 (Vpu, Vpr, Vif and Nef).

The *gag* gene encodes a 55-kilodalton (kDa) precursor protein (p55) which is expressed from the unspliced viral mRNA and is proteolytically processed by the HIV protease, a product of the *pol* gene. The mature p55 protein products are p17 (matrix), p24 (capsid), p9 (nucleocapsid) and p6.

- 15 The *pol* gene encodes proteins necessary for virus replication; a reverse transcriptase, a protease, integrase and RNase H. These viral proteins are expressed as a Gag-Pol fusion protein, a 160 kDa precursor protein which is generated via a ribosomal frame shifting. The viral encoded protease proteolytically cleaves the Pol polypeptide away from the Gag-Pol fusion and further cleaves the Pol polypeptide to the mature proteins which provide protease (Pro, P10), reverse transcriptase (RT, P50), integrase (IN, p31) and RNase H (RNase, p15) activities.

The *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity.

- 25 The *env* gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and then cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41). Gp120 and gp41 remain associated and are displayed on the viral particles and the surface of HIV-infected cells.

- 30 The *tat* gene encodes a long form and a short form of the Tat protein, a RNA binding protein which is a transcriptional transactivator essential for HIV-1 replication.

The *rev* gene encodes the 13 kDa Rev protein, a RNA binding protein. The Rev protein binds to a region of the viral RNA termed the Rev response element

(RRE). The Rev protein is promotes transfer of unspliced viral RNA from the nucleus to the cytoplasm. The Rev protein is required for HIV late gene expression and in turn, HIV replication.

Gp120 binds to the CD4/chemokine receptor present on the surface of helper T-lymphocytes, macrophages and other target cells in addition to other co-receptor molecules. X4 (macrophage tropic) virus show tropism for CD4/CXCR4 complexes while a R5 (T-cell line tropic) virus interacts with a CD4/CCR5 receptor complex. After gp120 binds to CD4, gp41 mediates the fusion event responsible for virus entry. The virus fuses with and enters the target cell, followed by reverse transcription of its single stranded RNA genome into the double-stranded DNA via a RNA dependent DNA polymerase. The viral DNA, known as provirus, enters the cell nucleus, where the viral DNA directs the production of new viral RNA within the nucleus, expression of early and late HIV viral proteins, and subsequently the production and cellular release of new virus particles. Recent advances in the ability to detect viral load within the host shows that the primary infection results in an extremely high generation and tissue distribution of the virus, followed by a steady state level of virus (albeit through a continual viral production and turnover during this phase), leading ultimately to another burst of virus load which leads to the onset of clinical AIDS. Productively infected cells have a half life of several days, whereas chronically or latently infected cells have a 3-week half life, followed by non-productively infected cells which have a long half life (over 100 days) but do not significantly contribute to day to day viral loads seen throughout the course of disease.

Destruction of CD4 helper T lymphocytes, which are critical to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of HIV infection. The loss of CD4 T-cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.

Effective treatment regimens for HIV-1 infected individuals have become available recently. However, these drugs will not have a significant impact on the disease in many parts of the world and they will have a minimal impact in halting the spread of infection within the human population. As is true of many other infectious diseases, a significant epidemiologic impact on the spread of HIV-1 infection will only occur subsequent to the development and introduction of an effective vaccine. There are a number of factors that have contributed to the lack of successful vaccine

development to date. As noted above, it is now apparent that in a chronically infected person there exists constant virus production in spite of the presence of anti-HIV-1 humoral and cellular immune responses and destruction of virally infected cells. As in the case of other infectious diseases, the outcome of disease is the result of a balance between the kinetics and the magnitude of the immune response and the pathogen replicative rate and accessibility to the immune response. Pre-existing immunity may be more successful with an acute infection than an evolving immune response can be with an established infection. A second factor is the considerable genetic variability of the virus. Although anti-HIV-1 antibodies exist that can neutralize HIV-1 infectivity in cell culture, these antibodies are generally virus isolate-specific in their activity. It has proven impossible to define serological groupings of HIV-1 using traditional methods. Rather, the virus seems to define a serological "continuum" so that individual neutralizing antibody responses, at best, are effective against only a handful of viral variants. Given this latter observation, it would be useful to identify immunogens and related delivery technologies that are likely to elicit anti-HIV-1 cellular immune responses. It is known that in order to generate CTL responses antigen must be synthesized within or introduced into cells, subsequently processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8<sup>+</sup> T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein. Activation of naive CD8<sup>+</sup> T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of costimulatory proteins. Optimal induction of CTL responses usually requires "help" in the form of cytokines from CD4<sup>+</sup> T lymphocytes which recognize antigen associated with MHC class II molecules via TCR and CD4 engagement.

As introduced above, the *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity. Zazopoulos and Haseltine (1992, *Proc. Natl. Acad. Sci.* 89: 6634-6638) disclose mutations to the HIV-1 *nef* gene which effect the rate of virus replication. The authors show that the *nef* open reading frame mutated to encode Ala-2 in place of Gly-2 inhibits myristylation of the protein and results in delayed viral replication rates

in Jurkat cells and PBMCs.

Kaminchik et al. (1991, *J. Virology* 65(2): 583-588) disclose an amino-terminal nef open reading frame mutated to encode Met-Ala-Ala in place of Met-Gly-Gly. The authors show that this mutant is deficient in myristylation.

5 Saksela et al. (1995, *EMBO J.* 14(3): 484-491) and Lee et al. (1995, *EMBO J.* 14(20): 5006-5015) show the importance of a proline rich motif in HIV-1 Nef which mediates binding to a SH3 domain of the Hck protein. The authors conclude that this motif is important in the enhancement of viral replication but not down-regulation of CD4 expression.

10 Calarota et al. (1998, *The Lancet* 351: 1320-1325) present human clinical data concerning immunization of three HIV infected individuals with a DNA plasmid expressing wild type Nef. The authors conclude that immunization with a Nef encoding DNA plasmid induced a cellular immune response in the three individuals. However, two of the three patients were on alternative therapies during the study, and  
15 15 the authors conclude that the CTL response was most likely a boost to a pre-existing CTL response. In addition, the viral load increased substantially in two of the three patients during the course of the study.

20 Tobery et al. (1997, *J. Exp. Med.* 185(5): 909-920) constructed two ubiquitin-nef (Ub-nef) fusion constructs, one which encoded the Nef initiating methionine and the other with an Arg residue at the amino terminus of the Nef open reading frame. The authors state that vaccinia- or plasmid-based immunization of mice with a Ub-nef construct containing an Arg residue at the amino terminus induces a Nef-specific CTL response. The authors suggest the expressed fusion protein is more efficiently presented to the MHC class I antigen presentation pathway, resulting in an improved  
25 25 cellular immune response.

Kim et al. (1997, *J. Immunol.* 158(2): 816-826) disclose that co-administration of a plasmid DNA construct expressing IL-12 with a plasmid construct expressing Nef results in an improved cellular immune response in mice when compared to inoculation with the Nef construct alone. The authors reported a reduction in the  
30 30 humoral response from the Nef / IL-12 co-administration as compared to administration of the plasmid construct expressing Nef alone.

Moynier et al. (1998, *Vaccine* 16(16): 1523-1530) show varying humoral responses in mice immunized with a DNA plasmid encoding Nef, depending upon the presence of absence of Freund's adjuvant. No data is disclosed regarding a cellular

immune response in mice vaccinated with the aforementioned DNA construct alone.

Hanna et al. (1998, *Cell* 95:163-175) suggest that wild type Nef may play a critical role in AIDS pathogenicity.

It would be of great import in the battle against AIDS to produce a

- 5 prophylactic- and/or therapeutic-based HIV vaccine which generates a strong cellular immune response against an HIV infection. The present invention addresses and meets this needs by disclosing a class of DNA vaccines based on host delivery and expression of the early HIV gene, *nef*.

## 10 SUMMARY OF THE INVENTION

The present invention relates to synthetic DNA molecules (also referred to herein as "polynucleotides") and associated DNA vaccines (also referred to herein as "polynucleotide vaccines") which elicit CTL responses upon administration to the host, such as a mammalian host and including primates and especially humans, as well as non-human mammals of commercial or domestic veterinary importance. The CTL-directed vaccines of the present invention should lower transmission rate to previously uninfected individuals and/or reduce levels of the viral loads within an infected individual, so as to prolong the asymptomatic phase of HIV-1 infection. In particular, the present invention relates to DNA vaccines which encode various forms of HIV-1 Nef, wherein administration, intracellular delivery and expression of the HIV-1 *nef* gene of interest elicits a host CTL and Th response. The preferred synthetic DNA molecules of the present invention encode codon optimized versions of wild type HIV-1 Nef, codon optimized versions of HIV-1 Nef fusion proteins, and codon optimized versions of HIV-1 Nef derivatives, including but not limited to *nef* modifications involving introduction of an amino-terminal leader sequence, removal of an amino-terminal myristylation site and/or introduction of dileucine motif mutations. The Nef-based fusion and modified proteins disclosed within this specification may possess altered trafficking and/or host cell function while retaining the ability to be properly presented to the host MHC I complex and in turn elicit a host CTL and Th response.

A particular embodiment of the present invention relates to a DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:1, while the expressed open

reading frame is disclosed herein as SEQ ID NO:2.

In another embodiment of the present invention, a codon optimized DNA molecule encoding a protein containing the human plasminogen activator (tpa) leader peptide fused with the NH<sub>2</sub>-terminus of the HIV-1 Nef polypeptide. The DNA

- 5 molecule which encodes this protein is disclosed herein as SEQ ID NO:3, while the expressed open reading frame is disclosed herein as SEQ ID NO:4.

In an additional embodiment, the present invention relates to a DNA molecule encoding optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and

- 10 substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175, herein described as opt nef (G2A,LLAA). The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, while the expressed open reading frame is disclosed herein as SEQ ID NO:6.

Another additional embodiment of the present invention relates to a DNA

- 15 molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA), comprises an open reading frame which encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfri), wherein Leu-174 and Leu-175 are substituted with Ala-174  
20 and Ala-175, herein referred to as opt tpanef (LLAA) is disclosed herein as SEQ ID NO:7, while the expressed open reading frame is disclosed herein as SEQ ID NO:8.

The present invention also relates to non-codon optimized versions of DNA molecules and associated DNA vaccines which encode the various wild type and modified forms of the HIV Nef protein disclosed herein. Partial or fully codon  
25 optimized DNA vaccine expression vector constructs are preferred, but it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Nef which are shown to promote a substantial cellular immune response subsequent to host administration.

- The DNA backbone of the DNA vaccines of the present invention are  
30 preferably DNA plasmid expression vectors. DNA plasmid expression vectors utilized in the present invention include but are not limited to constructs which comprise the cytomegalovirus promoter with the intron A sequence (CMV-intA) and a bovine growth hormone transcription termination sequence. In addition, the DNA plasmid vectors of the present invention preferably comprise an antibiotic resistance

marker, including but not limited to an ampicillin resistance gene, a neomycin resistance gene or any other pharmaceutically acceptable antibiotic resistance marker.

In addition, an appropriate polylinker cloning site and a prokaryotic origin of replication sequence are also preferred. Specific DNA vectors of the present

- 5 invention include but are not limited to V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), and any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID  
10 NO:19.

The present invention especially relates to a DNA vaccine and a pharmaceutically active vaccine composition which contains this DNA vaccine, and the use as a prophylactic and/or therapeutic vaccine for host immunization, preferably human host immunization, against an HIV infection or to combat an existing HIV

- 15 condition. These DNA vaccines are represented by codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins which are ligated within an appropriate DNA plasmid vector, with or without a nucleotide sequence encoding a functional leader peptide. DNA vaccines of the present invention relate in part to codon optimized DNA molecules encoding

- 20 HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins ligated in DNA vectors V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), or any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter,

- 25 including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:19. Especially preferred DNA vaccines of the present invention include codon optimized DNA vaccine constructs V1Jns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and V1Jns/(G2A,LLAA), as exemplified in Example Section 2.

- The present invention also relates to HIV Nef polynucleotide  
30 pharmaceutical products, as well as the production and use thereof, wherein the DNA vaccines are formulated with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention, namely by increasing a humoral response to inoculation. A preferred adjuvant is an aluminum phosphate-based adjuvant or a calcium phosphate based adjuvant,

with an aluminum phosphate adjuvant being especially preferred. Another preferred adjuvant is a non-ionic block copolymer, preferably comprising the blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. These adjuvanted forms comprising the DNA

5 vaccines disclosed herein are useful in increasing humoral responses to DNA vaccination without imparting a negative effect on an appropriate cellular immune response.

As used herein, a DNA vaccine or DNA polynucleotide vaccine or polynucleotide vaccine is a DNA molecule (i.e., "nucleic acid", "polynucleotide")

10 which contains essential regulatory elements such that upon introduction into a living, vertebrate cell, it is able to direct the cellular machinery to produce translation products encoded by the respective nef genes of the present invention.

#### BRIEF DESCRIPTION OF THE FIGURES

15 Figure 1A-B show a schematic representation of DNA vaccine expression vectors V1Jns (A) and V1Jns/tpa utilized for HIV-1 nef and HIV-1 modified nef constructs.

Figure 2A-B show a nucleotide sequence comparison between wild type nef(jrfl) and codon optimized nef. The wild type nef gene from the jrfl isolate

20 consists of 648 nucleotides capable of encoding a 216 amino acid polypeptide. WT, wild type sequence (SEQ ID NO:9); opt, codon-optimized sequence (contained within SEQ ID NO:1). The Nef amino acid sequence is shown in one-letter code (SEQ ID NO:2).

Figure 3A-C show nucleotide sequences at junctions between nef coding sequence and plasmid backbone of nef expression vectors V1Jns/nef (Figure 3A), V1Jns/nef(G2A,LLAA) (Figure 3B), V1Jns/tpanef (Figure 3C) and V1Jns/tpanef(LLAA) (Figure 3C, also). 5' and 3' flanking sequences of codon optimized nef or codon optimized nef mutant genes are indicated by bold/italic letters; nef and nef mutant coding sequences are indicated by plain letters. Also indicated (as underlined) are the restriction endonuclease sites involved in construction of respective nef expression vectors. V1Jns/tpanef and V1Jns/tpanef(LLAA) have identical sequences at the junctions.

Figure 4 shows a schematic presentation of nef and nef derivatives. Amino acid residues involved in Nef derivatives are presented. Glycine 2 and Leucine 174

and 175 are the sites involved in myristylation and dileucine motif, respectively. For both versions of the tpanef fusion genes, the putative leader peptide cleavage sites are indicated with “\*”, and a exogenous serine residue introduced during the construction of the mutants is underlined.

- 5       Figure 5 shows Western blot analysis of nef and modified nef proteins expressed in transfected 293 cells. 293 cells grown in 100 mm culture dish were transfected with respective codon optimized nef constructs. Sixty hours post transfection, supernatant and cells were collected separately and separated on 10% SDS-PAGE under reducing conditions. The proteins were transferred into a PVDF  
10 membrane and probed with a mixture of Gag mAb and Nef mAbs, both at 1:2000 dilution. The protein signals were detected with ECL. (A) cells transfected with V1Jns/gag only; (B) cells transfected with V1Jns/gag and V1Jns/nef; (C) cells transfected with V1Jns/gag and V1Jns/nef(G2A, LLAA); (D) cells transfected with V1Jns/gag and V1Jns/tpanef; (E) cells transfected with V1Jns/gag and  
15 V1Jns/tpanef(LLAA). The low case letter c and m represent medium and cellular fractions, respectively. M.W. = molecular weight marker.

Figure 6 shows an Elispot assay of cell-mediated responses to Nef peptides. Three strains of mice, Balb/c, C57BL/6 and C3H, were immunized with 50 mcg of V1Jns/nef (codon optimized) and boosted twice with a two-week interval. Two  
20 weeks following the final immunization, splenocytes were isolated and tested in an Elispot assay against respective Nef peptide pools. As a control, splenocytes were from non-immunized naive mice were tested in parallel. Nef peptide pool A consists of all 21 Nef peptides; Nef peptide pool B consists of 11 non-overlapping peptide started from residue 1; Nef peptide pool C consists of 10 non-overlapping peptides  
25 started from residue 11. SFC, INF-gamma secreting spot-forming cells.

Figure 7A-C show Nef-specific CD8 and CD4 epitope mapping. The immunization regime is as per Figure 6. Mouse splenocytes were isolated and fractionated into CD8<sup>+</sup> and CD8<sup>-</sup> cells using Miltenyi's magnetic cell separator. The resultant CD8<sup>+</sup> and CD8<sup>-</sup> cells were then tested in an Elispot assay against individual  
30 Nef peptides. SFC, INF-gamma secreting spot-forming cells. The mice strains tested are Balb/c mice (Figure 7A), C57BL/6 mice (Figure 7B), and C3H mice (Figure 7C).

Figure 8A-C show identification of a Nef CTL epitope. Splenocytes from nef immunized C57BL/6 mice were stimulated *in vitro* with peptide-pulsed, irradiated naïve splenocytes for 7 days. Following the *in vitro* stimulation, cells were harvested

and tested in a standard  $^{51}\text{Cr}$ -releasing assay using peptide pulsed EL-4 cells as targets. Open symbol, specific killings of EL-4 cells without peptide; solid symbol, specific killing of EL-4 cells with peptide. Panel A - peptide Nef 51-70; Panel B - peptide Nef 60-68, Panel C - peptide Nef 58-70.

5      Figure 9A-B shows a comparison of the immunogenicity of codon optimized DNA vaccine vectors expressing Nef and modified forms of Nef C57BL/6 mice, five per group, were immunized with 100 mcg of the indicated nef constructs. Fourteen days following immunization, splenocytes were collected and tested against the Nef CD8 (aa58-66) and CD4 (aa81-100) peptides. Identical immunization regimens were  
10     used for both experiments. In experiment 1 (Panel A), three codon optimized nef constructs were tested, namely, V1Jns/nef, V1Jns/tpanef(LLAA) and V1Jns/nef(G2A,LLAA), whereas in experiment 2 (Panel B) all four codon optimized nef constructs were tested. The data represent means plus standard deviation of 5 mice per group.

15

#### DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to synthetic DNA molecules (also referred to herein as "nucleic acid" molecules or "polynucleotides") and associated DNA vector vaccines (also referred to herein as "polynucleotide vaccines") which elicit CTL and  
20     humoral responses upon administration to the host, including primates and especially humans. In particular, the present invention relates to DNA vector vaccines which encode various forms of HIV-1 Nef, wherein administration, intracellular delivery and expression of the HIV-1 nef gene of interest elicits a host CTL and Th response. The synthetic DNA molecules of the present invention encode codon optimized  
25     versions of wild type HIV-1 Nef, codon optimized versions of HIV-1 Nef fusion proteins, and codon optimized versions of HIV-1 Nef derivatives, including but not limited to *nef* modifications involving introduction of an amino-terminal leader sequence, removal of an amino-terminal myristylation site and/or introduction of dileucine motif mutations. In some instances the Nef-based fusion and modified  
30     proteins disclosed within this specification possess altered trafficking and/or host cell function while retaining the ability to be properly presented to the host MHC I complex. Those skilled in the art will recognize that the use of nef genes from HIV-2 strains which express Nef proteins having analogous function to HIV-1 Nef would be expected to generate immune responses analogous to those described herein for

**HIV-1 constructs.**

In order to generate a CTL response, the immunogen must be synthesized within (MHC I presentation) or introduced into cells (MHC II presentation). For intracellular synthesized immunogens, the protein is expressed and then processed

- 5 into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8<sup>+</sup> T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR). Activation of naive CD8<sup>+</sup> T cells into activated effector or memory cells generally requires both
- 10 TCR engagement of antigen as described above as well as engagement of co-stimulatory proteins. Optimal induction of CTL responses usually requires "help" in the form of cytokines from CD4<sup>+</sup> T lymphocytes which recognize antigen associated with MHC class II molecules via TCR.

The HIV-1 genome employs predominantly uncommon codons compared to

- 15 highly expressed human genes. Therefore, the nef open reading frame has been synthetically manipulated using optimal codons for human expression. As noted above, a preferred embodiment of the present invention relates to DNA molecules which comprise a HIV-1 nef open reading frame, whether encoding full length nef or a modification or fusion as described herein, wherein the codon usage has been
- 20 optimized for expression in a mammal, especially a human.

In a particular embodiment of the present invention, a DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The nucleotide sequence of the codon optimized version of HIV-1 jfrl nef gene is disclosed herein as SEQ ID NO:1, as shown herein:

GATCTGCCAC CATGGCGGC AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA  
GGGAGAGGAT GAGGAGGGCC GAGCCCCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG  
CCGTGGCGT GGGCGCCGTG TCCAGGGACC TGGAGAAAGCA CGGCGCCATC ACCTCCTCCA  
ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGGAGGC CCAGGAGGAC GAGGAGGTGG  
25 GCTTCCCCGT GAGGCCAG GTGCCCTGA GGCCCAGTAC CTACAAGGGC GCCGTGGACC  
TGTCCCACCT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTCC CAGAAGAGGC  
AGGACATCCT GGACCTGTGG GTGTACCACA CCCAGGGCTA CTTCCCCGAC TGGCAGAACT  
30 ACACCCCGG CCCCGGCATC AGGTTCCCCC TGACCTTCGG CTGGTGCTTC AAGCTGGTGC  
CCGTGGAGCC CGAGAAGGTG GAGGAGGCCA ACGAGGGCGA GAACAACTGC CTGCTGCACC

CCATGTCCCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT  
CCAAGCTGGC CTTCCACCAC GTGCCAGGG AGCTGCACCC CGAGTACTAC AAGGACTGCT  
AAAGCCCCGGG C (SEQ ID NO:1).

- As can be discerned from comparing native to optimized codon usage in  
5 Figure 2A-B, the following codon usage for mammalian optimization is preferred:  
Met (ATG), Gly (GGC), Lys (AAG), Trp (TGG), Ser (TCC), Arg (AGG), Val (GTG),  
Pro (CCC), Thr (ACC), Glu (GAG); Leu (CTG), His (CAC), Ile (ATC), Asn (AAC),  
Cys (TGC), Ala (GCC), Gln (CAG), Phe (TTC) and Tyr (TAC). For an additional  
discussion relating to mammalian (human) codon optimization, see WO 97/31115  
10 (PCT/US97/02294), which is hereby incorporated by reference.

The open reading frame for SEQ ID NO:1 above comprises an initiating  
methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides  
660-662. The open reading frame of SEQ ID NO:1 provides for a 216 amino acid  
HIV-1 Nef protein expressed through utilization of a codon optimized DNA vaccine  
15 vector. The 216 amino acid HIV-1 Nef (jfrl) protein is disclosed herein as SEQ ID  
NO:2, and as follows:

Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val  
Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg  
Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu  
20 Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp  
Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val  
Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp  
Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His  
Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln  
25 Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg  
Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro  
Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His  
Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu  
Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu  
30 His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:2).

HIV-1 Nef is a 206 amino acid cytosolic protein which associates with the  
inner surface of the host cell plasma membrane through myristylation of Gly-2  
(Franchini et al., 1986, *Virology* 155: 593-599). While not all possible Nef functions  
have been elucidated, it has become clear that correct trafficking of Nef to the inner

plasma membrane promotes viral replication by altering the host intracellular environment to facilitate the early phase of the HIV-1 life cycle and by increasing the infectivity of progeny viral particles. In one aspect of the invention regarding codon-optimized, protein-modified polypeptides, either the DNA vaccine vector molecule or the HIV-1 nef construct is modified to contain a nucleotide sequence which encodes a heterologous leader peptide such that the amino terminal region of the expressed protein will contain the leader peptide. The diversity of function that typifies eukaryotic cells depends upon the structural differentiation of their membrane boundaries. To generate and maintain these structures, proteins must be transported from their site of synthesis in the endoplasmic reticulum to predetermined destinations throughout the cell. This requires that the trafficking proteins display sorting signals that are recognized by the molecular machinery responsible for route selection located at the access points to the main trafficking pathways. Sorting decisions for most proteins need to be made only once as they traverse their biosynthetic pathways since their final destination, the cellular location at which they perform their function, becomes their permanent residence. Maintenance of intracellular integrity depends in part on the selective sorting and accurate transport of proteins to their correct destinations. Defined sequence motifs exist in proteins which can act as 'address labels'. A number of sorting signals have been found associated with the cytoplasmic domains of membrane proteins. An effective induction of CTL responses often required sustained, high level endogenous expression of an antigen. In light of its diverse biological activities, vaccines composed of wild-type Nef could potentially have adverse effects on the host cells. As membrane-association via myristylation is an essential requirement for most of Nef's function, mutants lacking myristylation, by glycine-to-alanine change, change of the dileucine motif and/or by substitution with a tpa leader sequence as described herein, will be functionally defective, and therefore will have improved safety profile compared to wild-type Nef for use as an HIV-1 vaccine component.

In a preferred and exemplified embodiment of this portion of the invention, either the DNA vector or the HIV-1 nef nucleotide sequence is modified to include the human tissue-specific plasminogen activator (tPA) leader. As shown in Figure 1A-B for the DNA vector V1Jns, a DNA vector which may be utilized to practice the present invention may be modified by known recombinant DNA methodology to contain a leader signal peptide of interest, such that downstream

cloning of the modified HIV-1 protein of interest results in a nucleotide sequence which encodes a modified HIV-1 tPA/Nef protein. In the alternative, as noted above, insertion of a nucleotide sequence which encodes a leader peptide may be inserted into a DNA vector housing the open reading frame for the Nef protein of interest.

- 5      Regardless of the cloning strategy, the end result is a polynucleotide vaccine which comprises vector components for effective gene expression in conjunction with nucleotide sequences which encode a modified HIV-1 Nef protein of interest, including but not limited to a HIV-1 Nef protein which contains a leader peptide. The amino acid sequence of the human tPA leader utilized herein is as follows:
- 10     MDAMKRGGLCCVLLCGAVFVSPSEISS (SEQ ID NO:19).

It has been shown that myristylation of Gly-2 in conjunction with a dileucine motif in the carboxy region of the protein is essential for Nef-induced down regulation of CD4 (Aiken et al., 1994, *Cell* 76: 853-864) via endocytosis. It has also been shown that Nef expression promotes down regulation of MHC I (Schwartz et al.,

- 15     1996, *Nature Medicine* 2(3): 338-342) via endocytosis. The present invention relates in part to DNA vaccines which encode modified Nef proteins altered in trafficking and/or functional properties. The modifications introduced into the DNA vaccines of the present invention include but are not limited to additions, deletions or substitutions to the nef open reading frame which results in the expression of a
- 20     modified Nef protein which includes an amino terminal leader peptide, modification or deletion of the amino terminal myristylation site, and modification or deletion of the dileucine motif within the Nef protein and which alter function within the infected host cell. Therefore, a central theme of the DNA molecules and DNA vaccines of the present invention is (1) host administration and intracellular delivery of a codon
- 25     optimized nef-based DNA vector vaccine; (2) expression of a modified Nef protein which is immunogenic in terms of eliciting both CTL and Th responses; and, (3) inhibiting or at least altering known early viral functions of Nef which have been shown to promote HIV-1 replication and load within an infected host.

In another preferred and exemplified embodiment of the present invention, the nef coding region is altered, resulting in a DNA vaccine which expresses a modified Nef protein wherein the amino terminal Gly-2 myristylation residue is either deleted or modified to express alternate amino acid residues.

In another preferred and exemplified embodiment of the present invention, the nef coding region is altered, resulting in a DNA vaccine which expresses a modified

Nef protein wherein the dileucine motif is either deleted or modified to express alternate amino acid residues.

Therefore, the present invention relates to an isolated DNA molecule, regardless of codon usage, which expresses a wild type or modified Nef protein as described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion or substitution of Leu 174 and Leu 175 and/or inclusion of a leader sequence.

The present invention also relates to a substantially purified protein expressed from the DNA polynucleotide vaccines of the present invention, especially the purified proteins set forth below as SEQ ID NOs: 2, 4, 6, and 8. These purified proteins may be useful as protein-based HIV vaccines.

In a specific embodiment of the invention as it relates DNA vaccines encoding modified forms of HIV-1, an open reading frame which encodes a Nef protein which comprises a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl) is referred to herein as opt tpanef. The nucleotide sequence comprising the open reading frame of opt tpanef is disclosed herein as SEQ ID NO:3, as shown below:

CATGGATGCA ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT  
TTCGCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGGTCCACCG TGAGGGAGAG  
GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG  
15 CGTGGCGCC GTGTCCAGGG ACCTGGAGAA GCACGGCGCC ATCACCTCCT CCAACACCGC  
CGCCACCAAC CGCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC  
CGTGAGGCCCG CAGGTGCCCG TGAGGCCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA  
CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT  
CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC  
20 25 CGGCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGG  
GCCCGAGAAC GTGGAGGAGG CCAACGAGGG CGAGAACAAAC TGCCTGCTGC ACCCCATGTC  
CCAGCACGGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT  
GGCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGACTAC TACAAGGACT GCTAAAGCC  
(SEQ ID NO:3).

30 The open reading frame for SEQ ID NO:3 comprises an initiating methionine

residue at nucleotides 2-4 and a "TAA" stop codon from nucleotides 713-715. The open reading frame of SEQ ID NO:3 provides for a 237 amino acid HIV-1 Nef protein which comprises a tPA leader sequence fused to amino acids 6-216 of HIV-1 Nef, including the dileucine motif at amino acid residues 174 and 175. This 237

- 5 amino acid tPA/Nef (jfrl) fusion protein is disclosed herein as SEQ ID NO:4, and is shown as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly  
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro  
Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala  
Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val  
10 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala  
Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu  
Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr  
Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu  
15 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp  
Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro  
Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu  
Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn  
Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu  
20 Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His  
Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:4).

- Therefore, this exemplified Nef protein, Opt tPA-Nef, contains both a tPA leader sequence as well as deleting the myristylation site of Gly-2A DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human.

In another specific embodiment of the present invention, a DNA molecule is disclosed which encodes optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175. This open 30 reading frame is herein described as opt nef (G2A,LLAA) and is disclosed as SEQ ID NO:5, which comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662. The nucleotide sequence of this codon optimized version of HIV-1 jfrl nef gene with the above mentioned modifications is disclosed herein as SEQ ID NO:5, as follows:

GATCTGCCAC CATGGCCGGC AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA  
 GGGAGAGGAT GAGGAGGGCC GAGCCCGCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG  
 CCGTGGCGT GGGCGCCGTG TCCAGGGACC TGGAGAAGCA CGGCGCCATC ACCTCCTCCA  
 ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGGAGGC CCAGGAGGAC GAGGAGGTGG  
 5 GCTTCCCCGT GAGGCCAG GTGCCCTGA GGCCCAGTAC CTACAAGGGC GCCGTGGACC  
 TGTCCCACCTT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTCC CAGAAGAGGC  
 AGGACATCCT GGACCTGTGG GTGTACCA CCCAGGGCTA CTTCCCCGAC TGGCAGAACT  
 ACACCCCCGG CCCCGGCATC AGGTTCCCCC TGACCTTCGG CTGGTGCTTC AAGCTGGTGC  
 CCGTGGAGCC CGAGAAGGTG GAGGAGGCCA ACGAGGGCGA GAACAACGTC GCCGCCACC  
 10 CCATGTCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT  
 CCAAGCTGGC CTTCCACAC GTGGCCAGGG AGCTGCACCC CGAGTACTAC AAGGACTGCT  
 AAAGCCCGGG C (SEQ ID NO:5).

The open reading frame of SEQ ID NO:5 encodes Nef (G2A,LLAA), disclosed herein as SEQ ID NO:6, as follows:

15 Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val  
 Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg  
 Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu  
 Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp  
 Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val  
 20 Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp  
 Leu Ser His Phe Leu Lys Glu Lys Gly Leu Glu Gly Leu Ile His  
 Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln  
 Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg  
 Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro  
 25 Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Ala Ala His  
 Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu  
 Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu  
 His Pro Glu Tyr Tyr Lys Asp Cys Ser (SEQ ID NO:6).

An additional embodiment of the present invention relates to another DNA  
 30 molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation  
 site and dileucine motif have been deleted, as well as comprising a tPA leader peptide.  
 This DNA molecule, opt tpanef (LLAA) comprises an open reading frame which  
 encodes a Nef protein containing a tPA leader sequence fused to amino acid residue  
 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174

and Ala-175 (Ala-195 and Ala-196 in this tPA-based fusion protein). The nucleotide sequence comprising the open reading frame of opt tpanef (LLAA) is disclosed herein as SEQ ID NO:7, as shown below:

CATGGATGCA ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT  
 5 TTCGCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGTTCCACCG TGAGGGAGAG  
 GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG  
 CGTGGGCGCC GTGTCCAGGG ACCTGGAGAA GCACGGCGCC ATCACCTCCT CCAACACCGC  
 CGCCACCAAC GCCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC  
 CGTGAGGCC CAGGTGCCCT TGAGGCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA  
 10 CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT  
 CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC  
 CGGCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGGA  
 GCCCGAGAAG GTGGAGGAGG CCAACGAGGG CGAGAACAAAC TGCGCCGCC ACCCCATGTC  
 CCAGCACGGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT  
 15 GCCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGAGTAC TACAAGGACT GCTAAAGCCC  
 (SEQ ID NO:7).

The open reading frame of SEQ ID NO:7 encoding tPA-Nef (LLAA), disclosed herein as SEQ ID NO:8, is as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly  
 20 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro  
 Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala  
 Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val  
 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala  
 Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu  
 25 Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr  
 Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu  
 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp  
 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro  
 Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu  
 30 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn  
 Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu  
 Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His  
 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:8).

The present invention also relates in part to any DNA molecule, regardless of

- codon usage, which expresses a wild type or modified Nef protein as described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion of substitution of Leu 174 and Leu 175 and/or inclusion of a leader sequence. Therefore, partial or fully codon optimized DNA
- 5 vaccine expression vector constructs are preferred since such constructs should result in increased host expression. However, it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Nef which are shown to promote a substantial cellular immune response subsequent to host administration.
- 10 The DNA backbone of the DNA vaccines of the present invention are preferably DNA plasmid expression vectors. DNA plasmid expression vectors are well known in the art and the present DNA vector vaccines may be comprised of any such expression backbone which contains at least a promoter for RNA polymerase transcription, and a transcriptional terminator 3' to the HIV nef coding sequence. In
- 15 one preferred embodiment, the promoter is the Rous sarcoma virus (RSV) long terminal repeat (LTR) which is a strong transcriptional promoter. A more preferred promoter is the cytomegalovirus promoter with the intron A sequence (CMV-intA). A preferred transcriptional terminator is the bovine growth hormone terminator. In addition, to assist in large scale preparation of an HIV nef DNA vector vaccine, an
- 20 antibiotic resistance marker is also preferably included in the expression vector. Ampicillin resistance genes, neomycin resistance genes or any other pharmaceutically acceptable antibiotic resistance marker may be used. In a preferred embodiment of this invention, the antibiotic resistance gene encodes a gene product for neomycin resistance. Further, to aid in the high level production of the pharmaceutical by
- 25 fermentation in prokaryotic organisms, it is advantageous for the vector to contain an origin of replication and be of high copy number. Any of a number of commercially available prokaryotic cloning vectors provide these benefits. In a preferred embodiment of this invention, these functionalities are provided by the commercially available vectors known as pUC. It is desirable to remove non-essential DNA
- 30 sequences. Thus, the lacZ and lacI coding sequences of pUC are removed in one embodiment of the invention.

DNA expression vectors exemplified herein are also disclosed in PCT International Application No. PCT/US94/02751, International Publication No. WO 94/21797, hereby incorporated by reference. A first DNA expression vector

is the expression vector pnRSV, wherein the rous sarcoma virus (RSV) long terminal repeat (LTR) is used as the promoter. A second embodiment relates to plasmid V1, a mutated pBR322 vector into which the CMV promoter and the BGH transcriptional terminator is cloned. Another embodiment regarding DNA vector backbones relates

5 to plasmid V1J. Plasmid V1J is derived from plasmid V1 and removes promoter and transcription termination elements in order to place them within a more defined context, create a more compact vector, and to improve plasmid purification yields. Therefore, V1J also contains the CMVintA promoter and (BGH) transcription termination elements which control the expression of the HIV nef-based genes

10 disclosed herein. The backbone of V1J is provided by pUC18. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of minimum size. The entire *lac* operon was removed and the remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase, treated with calf intestinal alkaline phosphatase, and ligated to the

15 CMVintA/BGH element. In another DNA expression vector, the ampicillin resistance gene is removed from V1J and replaced with a neomycin resistance gene, to generate V1Jneo. A DNA expression vector specifically exemplified herein is V1Jns, which is the same as V1J except that a unique Sfi1 restriction site has been engineered into the single Kpn1 site at position 2114 of V1J-neo. The incidence of Sfi1 sites in human genomic DNA is very low (approximately 1 site per 100,000 bases). Thus, this vector allows careful monitoring for expression vector integration into host DNA, simply by Sfi1 digestion of extracted genomic DNA. Another DNA expression vector for use as the backbone to the HIV-1 nef-based DNA vaccines of the present invention is V1R. In this vector, as much non-essential DNA as possible is "trimmed" from the vector to

20 produce a highly compact vector. This vector is a derivative of V1Jns. This vector allows larger inserts to be used, with less concern that undesirable sequences are encoded and optimizes uptake by cells when the construct encoding specific influenza virus genes is introduced into surrounding tissue.

It will be evident upon review of the teaching within this specification that

30 numerous vector/Nef antigen constructs may be generated. While the exemplified constructs (V1Jns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and V1Jns/(G2A,LLAA) are preferred, any number of vector/Nef antigen combinations are within the scope of the present invention, especially wild type or modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion or substitution of Leu 174 and Leu 175

and/or inclusion of a leader sequence. Therefore, the present invention especially relates to DNA vaccines and a pharmaceutically active vaccine composition which contains this DNA vector vaccine, and the use as prophylactic and/or therapeutic vaccine for host immunization, preferably human host immunization, against an HIV infection or to combat an existing HIV condition. These DNA vaccines are represented by codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins which are ligated within an appropriate DNA plasmid vector, with or without a nucleotide sequence encoding a functional leader peptide. DNA vaccines of the present invention include but in no way are limited to codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins ligated in DNA vectors V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), or any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:19. Especially preferred DNA vaccines of the present invention include as V1Jns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and V1Jns/(G2A,LLAA), as exemplified in Example Section 2.

The DNA vector vaccines of the present invention may be formulated in any pharmaceutically effective formulation for host administration. Any such formulation may be, for example, a saline solution such as phosphate buffered saline (PBS). It will be useful to utilize pharmaceutically acceptable formulations which also provide long-term stability of the DNA vector vaccines of the present invention. During storage as a pharmaceutical entity, DNA plasmid vaccines undergo a physiochemical change in which the supercoiled plasmid converts to the open circular and linear form. A variety of storage conditions (low pH, high temperature, low ionic strength) can accelerate this process. Therefore, the removal and/or chelation of trace metal ions (with succinic or malic acid, or with chelators containing multiple phosphate ligands) from the DNA plasmid solution, from the formulation buffers or from the vials and closures, stabilizes the DNA plasmid from this degradation pathway during storage. In addition, inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, are useful to prevent damage of the DNA plasmid from free radical production that may still occur, even in apparently demetalated solutions. Furthermore, the buffer type, pH, salt concentration, light exposure, as well as the

- type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine. Therefore, formulations that will provide the highest stability of the DNA vaccine will be one that includes a demetalated solution containing a buffer (phosphate or bicarbonate) with a pH in the range of 7-8, a salt (NaCl, KCl or LiCl) in the range of 100-200 mM, a metal ion chelator (e.g., EDTA, diethylenetriaminepenta-acetic acid (DTPA), malate, inositol hexaphosphate, tripolyphosphate or polyphosphoric acid), a non-reducing free radical scavenger (e.g. ethanol, glycerol, methionine or dimethyl sulfoxide) and the highest appropriate DNA concentration in a sterile glass vial, packaged to protect the highly purified, nuclease free DNA from light. A particularly preferred formulation which will enhance long term stability of the DNA vector vaccines of the present invention would comprise a Tris-HCl buffer at a pH from about 8.0 to about 9.0; ethanol or glycerol at about 3% w/v; EDTA or DTPA in a concentration range up to about 5 mM; and NaCl at a concentration from about 50 mM to about 500 mM. The use of such stabilized DNA vector vaccines and various alternatives to this preferred formulation range is described in detail in PCT International Application No. PCT/US97/06655, PCT International Publication No. WO 97/40839, which is hereby incorporated by reference.
- The DNA vector vaccines of the present invention may, in addition to generating a strong CTL-based immune response, provide for a measurable humoral response subsequent immunization. This response may occur with or without the addition of adjuvant to the respective vaccine formulation. To this end, the DNA vector vaccines of the present invention may also be formulated with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention. A number of these adjuvants are known in the art and are available for use in a DNA vaccine, including but not limited to particle bombardment using DNA-coated gold beads, co-administration of DNA vaccines with plasmid DNA expressing cytokines, chemokines, or costimulatory molecules, formulation of DNA with cationic lipids or with experimental adjuvants such as saponin, monophosphoryl lipid A or other compounds which increase immunogenicity of the DNA vaccine. One preferred adjuvant for use in the DNA vector vaccines of the present invention are one or more forms of an aluminum phosphate-based adjuvant. Aluminum phosphate is known in the art for use with live, killed or subunit vaccines, but is only recently

disclosed as a useful adjuvant in DNA vaccine formulations. The artisan may alter the ratio of DNA to aluminum phosphate to provide for an optimal immune response. In addition, the aluminum phosphate-based adjuvant possesses a molar PO<sub>4</sub>/Al ratio of approximately 0.9, and may again be altered by the skilled artisan

5 to provide for an optimal immune response. An additional mineral-based adjuvant may be generated from one or more forms of a calcium phosphate. These mineral-based adjuvants are useful in increasing humoral responses to DNA vaccination without imparting a negative effect on an appropriate cellular immune response. Complete guidance for use of these mineral-based compounds for use

10 as DNA vaccines adjuvants are disclosed in PCT International Application No. PCT/US98/02414, PCT International Publication No. WO 98/35562, which are hereby incorporated by reference in their entirety. Another preferred adjuvant is a non-ionic block copolymer which shows adjuvant activity with DNA vaccines. The basic structure comprises blocks of polyoxyethylene (POE) and

15 polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. (1998, *Critical Reviews in Therapeutic Drug Carrier Systems* 15(2): 89-142) review a class of non-ionic block copolymers which show adjuvant activity. The basic structure comprises blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. *id.*, disclose

20 that certain POE-POP-POE block copolymers may be useful as adjuvants to an influenza protein-based vaccine, namely higher molecular weight POE-POP-POE block copolymers containing a central POP block having a molecular weight of over about 9000 daltons to about 20,000 daltons and flanking POE blocks which comprise up to about 20% of the total molecular weight of the copolymer (see also

25 U.S. Reissue Patent No. 36,665, U.S. Patent No. 5,567,859, U.S. Patent No. 5,691,387, U.S. Patent No. 5,696,298 and U.S. Patent No. 5,990,241, all issued to Emanuele, et al., regarding these POE-POP-POE block copolymers).

WO 96/04932 further discloses higher molecular weight POE/POP block copolymers which have surfactant characteristics and show biological efficacy as

30 vaccine adjuvants. The above cited references within this paragraph are hereby incorporated by reference in their entirety. It is therefore within the purview of the skilled artisan to utilize available adjuvants which may increase the immune response of the polynucleotide vaccines of the present invention in comparison to administration of a non-adjuvanted polynucleotide vaccine.

The DNA vector vaccines of the present invention are administered to the host by any means known in the art, such as enteral and parenteral routes. These routes of delivery include but are not limited to intramuscular injection, intraperitoneal injection, intravenous injection, inhalation or intranasal delivery, oral delivery, sublingual administration, subcutaneous administration, transdermal administration, transcutaneous administration, percutaneous administration or any form of particle bombardment, such as a biolistic device such as a "gene gun" or by any available needle-free injection device. The preferred methods of delivery of the HIV-1 Nef-based DNA vaccines disclosed herein are intramuscular injection and needle-free injection. An especially preferred method is intramuscular delivery.

The amount of expressible DNA to be introduced to a vaccine recipient will depend on the strength of the transcriptional and translational promoters used in the DNA construct, and on the immunogenicity of the expressed gene product. In general, an immunologically or prophylactically effective dose of about 1  $\mu$ g to 15 greater than about 20 mg, and preferably in doses from about 1 mg to about 5 mg is administered directly into muscle tissue. As noted above, subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, inhalation and oral delivery are also contemplated. It is also contemplated that booster vaccinations are to be 20 provided in a fashion which optimizes the overall immune response to the Nef-based DNA vector vaccines of the present invention.

The aforementioned polynucleotides, when directly introduced into a vertebrate *in vivo*, express the respective HIV-1 Nef protein within the animal and in turn induce a cytotoxic T lymphocyte (CTL) response within the host to the expressed 25 Nef antigen. To this end, the present invention also relates to methods of using the HIV-1 Nef-based polynucleotide vaccines of the present invention to provide effective immunoprophylaxis, to prevent establishment of an HIV-1 infection following exposure to this virus, or as a post-HIV infection therapeutic vaccine to mitigate the acute HIV-1 infection so as to result in the establishment of a lower virus 30 load with beneficial long term consequences. As noted above, the present invention contemplates a method of administration or use of the DNA nef-based vaccines of the present invention using any of the known routes of introducing polynucleotides into living tissue to induce expression of proteins.

Therefore, the present invention provides for methods of using a DNA nef-

based vaccine utilizing the various parameters disclosed herein as well as any additional parameters known in the art, which, upon introduction into mammalian tissue induces *in vivo*, intracellular expression of these DNA nef-based vaccines. This intracellular expression of the Nef-based immunogen induces a CTL and humoral  
5 response which provides a substantial level of protection against an existing HIV-1 infection or provides a substantial level of protection against a future infection in a presently uninfected host.

The following examples are provided to illustrate the present invention without, however, limiting the same hereto.

10

#### EXAMPLE 1 Vaccine Vectors

*V1* – Vaccine vector V1 was constructed from pCMVIE-AKI-DHFR (Whang et al., 1987, *J. Virol.* 61: 1796). The AKI and DHFR genes were removed by cutting  
15 the vector with EcoRI and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deleted internal SacI site [at 1855 as numbered in Chapman, et al., (1991, *Nuc. Acids Res.* 19: 3979)]. The template used for the PCR reactions was pCMVintA-Lux, made by ligating the HindIII and NheI fragment from pCMV6a120 (see Chapman et al., *ibid.*), which  
20 includes hCMV-IE1 enhancer/promoter and intron A, into the HindIII and XbaI sites of pBL3 to generate pCMVIntBL. The 1881 base pair luciferase gene fragment (HindIII-SmaI Klenow filled-in) from RSV-Lux (de Wet et al., 1987, *Mol. Cell Biol.* 7: 725) was ligated into the SalI site of pCMVIntBL, which was Klenow filled-in and phosphatase treated. The primers that spanned intron A are: 5' primer:  
25 5'-CTATATAAGCAGAGCTCGTTAG-3' (SEQ ID NO:10); 3' primer:  
5'-GTAGCAAAGATCTAAGGACGGTGACTGCAG-3' (SEQ ID NO:11). The primers used to remove the SacI site are: sense primer, 5'-GTATGTGTCTG AAAATGACC GTGGAGATTGGGCTCGCAC-3' (SEQ ID NO:12) and the antisense primer, 5'-GTGCGAGCCAATCTCCACGCTCATTTCAGAC  
30 ACATAC-3' (SEQ ID NO:13). The PCR fragment was cut with Sac I and Bgl II and inserted into the vector which had been cut with the same enzymes.

*V1J* – Vaccine vector V1J was generated to remove the promoter and transcription termination elements from vector V1 in order to place them within a more defined context, create a more compact vector, and to improve plasmid

purification yields. V1J is derived from vectors V1 and pUC18, a commercially available plasmid. V1 was digested with SspI and EcoRI restriction enzymes producing two fragments of DNA. The smaller of these fragments, containing the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination elements which control the expression of heterologous genes, was purified from an agarose electrophoresis gel. The ends of this DNA fragment were then "blunted" using the T4 DNA polymerase enzyme in order to facilitate its ligation to another "blunt-ended" DNA fragment. pUC18 was chosen to provide the "backbone" of the expression vector. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of small size. The entire *lac* operon was removed from this vector by partial digestion with the HaeII restriction enzyme. The remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element described above. Plasmids exhibiting either of two possible orientations of the promoter elements within the pUC backbone were obtained. One of these plasmids gave much higher yields of DNA in *E. coli* and was designated V1J. This vector's structure was verified by sequence analysis of the junction regions and was subsequently demonstrated to give comparable or higher expression of heterologous genes compared with V1. The nucleotide sequence of V1J is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA  
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG  
TTGGCGGGTG TCAGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC  
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG  
25 CTATTGGCCA TTGCATACTG TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG  
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC  
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCCGCGTT ACATAACTTA CGGTAAATGG  
CCCAGCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC  
CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC  
30 TGCCCACCTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA  
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCCTAC  
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA  
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA  
CGTCAATGGG AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA

CTCCGCCCA TTGACGCAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG  
AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA  
TAGAACACAC CGGGACCGAT CCAGCCTCCG CGGCCGGAA CGGTGCATTG GAACCGGGAT  
TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCTTGGC  
5 TTCTTATGCA TGCTATACTG TTTTGGCTT GGGGTCTATA CACCCCGCT TCCTCATGTT  
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC  
CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT  
TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTAC  
AGGATGGGT CTCATTATT ATTACAAAT TCACATATAC AACACCACCG TCCCCAGTGC  
10 CCGCAGTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTTCGG  
ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCCTC  
CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAACCA GTGGAGGCCA GACTTAGGCA  
CAGCACGATG CCCACCACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC  
TGAAAATGAG CTCGGGGAGC GGGCTGCAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC  
15 GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACCTC  
CGTTGGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCCGC  
GCGGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCTTCCA TGGGTCTTTT  
CTGCAGTCAC CGTCCTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTGGCC  
CCTCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA  
20 ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTC TATTCTGGG GGTGGGGTGG  
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG  
GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCTGGGCC AGAAAGAAC  
AGGCACATCC CCTTCTCTGT GACACACCC GTCCACGCC CTGGTTCTTA GTTCCAGCCC  
CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC  
25 TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG  
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAGAGGGA GAGAAAATGC CTCCAACATG  
TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG  
CGCTCGGTG TGCGCTGCG GCGAGCGGT AACTGCTCACT CAAAGGCGGT AATACGGTTA  
TCCACAGAAT CAGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC  
30 AGGAACCGTA AAAAGGCCGC GTTGTGGCG TTTTCCATA GGCTCCGCC CCCTGACGAG  
CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATA  
CAGGCCTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCCT GCCGCTTACC  
GGATACCTGT CGGCCTTCT CCCTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT  
AGGTATCTCA GTTCGGGTGA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC

GTTCAGCCCC ACCGCTGCAC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA  
 CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA  
 GGCAGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA  
 TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTTTGA  
 5 TCCGGCAAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA GCAGATTACG  
 CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGTC TGACGCTCAG  
 TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT TATCAAAAAG GATCTTCACC  
 TAGATCCTTT TAAATTAAAA ATGAAGTTT AAATCAATCT AAAGTATATA TGAGTAAACT  
 TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGCTATTT  
 10 CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATAACG GGAGGGCTTA  
 CCATCTGGCC CCAGTGCTGC AATGATAACG CGAGACCCAC GCTCACCGGC TCCAGATTTA  
 TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCTGC AACTTTATCC  
 GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT  
 AGTTTGCAGCA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTCACGCTC GTCGTTGGT  
 15 ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCAG TTACATGATC CCCCATGTTG  
 TGCAAAAAAG CGGTTAGCTC CTTGGTCCCT CCGATCGTTG TCAGAAGTAA GTGGCCGCA  
 GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT GCCATCCGTA  
 AGATGCTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGCGG  
 CGACCGAGTT GCTCTTGCCTT GGCAGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT  
 20 TTAAAAGTGC TCATCATTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG GATCTTACCG  
 CTGTTGAGAT CCAGTTCGAT GTAACCCACT CGTGCACCCA ACTGATCTTC AGCATCTTT  
 ACTTTCACCA GCGTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC AAAAAAGGGA  
 ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC TTTTCAATA TTATTGAAGC  
 ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTG AATGTATTAA GAAAAATAAA  
 25 CAAATAGGGG TTCCGCGCAC ATTTCGGCA AAAGTGCCAC CTGACGTCTA AGAAACCATT  
 ATTATCATGA CATTAAACCTA TAAAAATAGG CGTATCACGA GGCCCTTTCG TC (SEQ ID  
 NO:14).

*V1Jneo* – Construction of vaccine vector V1Jneo expression vector involved removal of the *amp<sup>r</sup>* gene and insertion of the *kan<sup>r</sup>* gene (neomycin phosphotransferase). The *amp<sup>r</sup>* gene from the pUC backbone of V1J was removed by digestion with *Ssp*I and *Eam*1105I restriction enzymes. The remaining plasmid was purified by agarose gel electrophoresis, blunt-ended with T4 DNA polymerase, and then treated with calf intestinal alkaline phosphatase. The commercially available *kan<sup>r</sup>* gene, derived from transposon 903 and contained within the pUC4K plasmid,

was excised using the PstI restriction enzyme, purified by agarose gel electrophoresis, and blunt-ended with T4 DNA polymerase. This fragment was ligated with the V1J backbone and plasmids with the kan<sup>r</sup> gene in either orientation were derived which were designated as V1Jneo #'s 1 and 3. Each of these plasmids was confirmed by 5 restriction enzyme digestion analysis, DNA sequencing of the junction regions, and was shown to produce similar quantities of plasmid as V1J. Expression of heterologous gene products was also comparable to V1J for these V1Jneo vectors. V1Jneo#3, referred to as V1Jneo hereafter, was selected which contains the kan<sup>r</sup> gene in the same orientation as the amp<sup>r</sup> gene in V1J as the expression construct and 10 provides resistance to neomycin, kanamycin and G418. The nucleotide sequence of V1Jneo is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA  
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG  
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC  
15 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG  
CTATTGGCCA TTGCATACTGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG  
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC  
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG  
CCC GCCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC  
20 CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC  
TGCCCACCTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA  
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCTAC  
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA  
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATT CCAAGTCTCC ACCCCATTGA  
25 CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA  
CTCCGCCCA TTGACGCAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG  
AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA  
TAGAACACAC CGGGACCGAT CCAGCCTCCG CGGCCGGAA CGGTGCATTG GAACGCGGAT  
TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCTTGGC  
30 TTCTTATGCA TGCTATACTG TTTTTGGCTT GGGGTCTATA CACCCCGCT TCCTCATGTT  
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC  
CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT  
TTATTGGCTA TATGCCAATA CACTGTCCCT CAGAGACTGA CACGGACTCT GTATTTTAC  
AGGATGGGTT CTCATTTATT ATTTACAAAT TCACATATAAC AACACCACCG TCCCCAGTGC

CCGCAGTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTTCGG  
ACATGGGCTC TTCTCCGGTA GCGGC GGAGC TTCTACATCC GAGCCCTGCT CCCATGCCTC  
CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAACCA GTGGAGGCCA GACTTAGGCA  
CAGCACGATG CCCACCACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC  
5 TGAAAATGAG CTCGGGGAGC GGGCTTGAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC  
GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACCTCC  
CGTTGCGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCCGC  
GCGGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCTTCCA TGGGTCTTTT  
CTGCAGTCAC CGTCCTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTGTTGCC  
10 CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA  
ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG  
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG  
GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCCTGGGCC AGAAAGAAC  
AGGCACATCC CCTTCTCTGT GACACACCCCT GTCCACGCCCT GTGGTTCTTA GTTCCAGCCC  
15 CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC  
TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG  
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAAGAGGG AAGAAAATGC CTCCAACATG  
TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG  
CGCTCGGTG TTGGCTGCG GCGAGCGGT AAGCTCACT CAAAGCGGT AATACGGTTA  
20 TCCACAGAAT CAGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC  
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC CCCTGACGAG  
CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC  
CAGGC GTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCCT GCCGCTTACC  
GGATA CCTGT CGCCTTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT  
25 AGGTATCTCA GTTCGGTGT A GGTGCTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCC  
GTTCA GCGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA  
CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA TTAGCAGAGC GAGGTATGTA  
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA  
TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA  
30 TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG  
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGTC TGACGCTCAG  
TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT TATCAAAAG GATCTTCACC  
TAGATCCTTT TAAATTAAA ATGAAGTTT AAATCAATCT AAAGTATATA TGAGTAAACT  
TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGTCTATT

CGTTCATCCA TAGTTGCCTG ACTCCGGGGG GGGGGGGCGC TGAGGTCTGC CTCGTGAAGA  
 AGGTGTTGCT GACTCATACC AGGCCTGAAT CGCCCCATCA TCCAGCCAGA AAGTGAGGGA  
 GCCACGGTTG ATGAGAGCTT TGTTGTAGGT GGACCAGTTG GTGATTTGA ACTTTTGCTT  
 TGCCACGGAA CGGTCTGCGT TGTCGGGAAG ATCGTGATC TGATCCTCA ACTCAGCAAA  
 5 AGTTCGATTT ATTCAACAAA GCCGCCGTCC CGTCAAGTCA GCGTAATGCT CTGCCAGTGT  
 TACAACCAAT TAACCAATTG TGATTAGAAA AACTCATCGA GCATCAAATG AAACTGCAAT  
 TTATTCAAT CAGGATTATC AATACCATAT TTTGAAAAA GCCGTTTCTG TAATGAAGGA  
 GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG  
 ACTCGTCAA CATCAATACA ACCTATTAAAT TTCCCCTCGT CAAAATAAG GTTATCAAGT  
 10 GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAAAAGCTT ATGCATTCT  
 TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC  
 AAACCGTTAT TCATTCTGTA TTGCGCCTGA GCGAGACGAA ATACCGATC GCTGTTAAA  
 GGACAAATTAC AACAGGAAT CGAATGCAAC CGGCGCAGGA ACACTGCCAG CGCATCAACA  
 ATATTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTT CCCGGGGATC  
 15 GCAGTGGTGA GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA  
 GGCATAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG  
 CTACCTTGC CATGTTTCAG AAACAACCTCT GGCGCATCGG GCTTCCCATA CAATCGATAG  
 ATTGTCGCAC CTGATTGCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA  
 TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA  
 20 ACACCCCTG TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATTT  
 TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CGTGGCTTTC CCCCCCCCCC  
 CATTATTGAA GCATTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT  
 TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC  
 TAAGAAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT  
 25 CGTC (SEQ ID NO:15).

*V1Jns* - The expression vector V1Jns was generated by adding an SfiI site to V1Jneo to facilitate integration studies. A commercially available 13 base pair SfiI linker (New England BioLabs) was added at the KpnI site within the BGH sequence of the vector. V1Jneo was linearized with KpnI, gel purified, blunted by T4 DNA polymerase, and ligated to the blunt SfiI linker. Clonal isolates were chosen by restriction mapping and verified by sequencing through the linker. The new vector was designated V1Jns. Expression of heterologous genes in V1Jns (with SfiI) was comparable to expression of the same genes in V1Jneo (with KpnI).

The nucleotide sequence of V1Jns is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA  
 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG  
 TTGGCGGGTG TCAGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC  
 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG  
 5 CTATGGCCA TTGCATACTGT TGTATCCATA TCATAATATG TACATTATA TTGGCTCATG  
 TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC  
 GGGGTCACTTA GTTCATAGCC CATATATGGA GTTCCCGTTC ACATAACTTA CGGTAAATGG  
 CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC  
 CATACTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC  
 10 TGCCCACCTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA  
 TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCTAC  
 TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA  
 CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATT CCAAGTCTCC ACCCCATTGA  
 CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA  
 15 CTCCGCCCA TTGACGCCAA TGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG  
 AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA  
 TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT  
 TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGACTC TATAGGCACA CCCCTTGCC  
 TCTTATGCAT GCTATACTGT TTTTGGCTTG GGGCCTATAC ACCCCCGCTT CCTTATGCTA  
 20 TAGGTGATGG TATAGCTTAG CCTATAGGTG TGGGTTATTG ACCATTATTG ACCACTCCCC  
 TATTGGTGAC GATACTTCC ATTACTAAC CATAACATGG CTCTTGCCA CAACTATCTC  
 TATTGGCTAT ATGCCAATAC TCTGTCCTTC AGAGACTGAC ACGGACTCTG TATTTTACA  
 GGATGGGGTC CCATTTATTA TTTACAAATT CACATATACA ACAACGCCGT CCCCCGTGCC  
 CGCAGTTTT ATTAAACATA GCGTGGGATC TCCACGCGAA TCTCGGGTAC GTGTTCCGGA  
 25 CATGGGCTCT TCTCCGGTAG CGGCGGAGCT TCCACATCCG AGCCCTGGTC CCATGCCTCC  
 AGCGGCTCAT GGTCGCTCGG CAGCTCCTTG CTCTAACAG TGGAGGCCAG ACTTAGGCAC  
 AGCACAAATGC CCACCAACAC CAGTGTGCCG CACAAGGCCG TGGCGGTAGG GTATGTGTCT  
 GAAAATGAGC GTGGAGATTG GGCTCGCACG GCTGACGCAG ATGGAAGACT TAAGGCAGCG  
 GCAGAAGAAG ATGCAGGCAG CTGAGTTGTT GTATTCTGAT AAGAGTCAGA GGTAACCTCC  
 30 GTTGGCGGTGC TGTTAACGGT GGAGGGCAGT GTAGTCTGAG CAGTACTCGT TGCTGCCGCG  
 CGCGCCACCA GACATAATAG CTGACAGACT AACAGACTGT TCCTTCCAT GGGTCTTTTC  
 TGCAGTCACC GTCCTTAGAT CTGCTGTGCC TTCTAGTTGC CAGCCATCTG TTGTTGCC  
 CTCCCCCGTG CCTTCCTTGA CCCTGGAAGG TGCCACTCCC ACTGTCCTTT CCTAATAAAA  
 TGAGGAAATT GCATCGCATT GTCTGAGTAG GTGTCATTCT ATTCTGGGGG GTGGGGTGGG

GCAGGACAGC AAGGGGGAGG ATTGGGAAGA CAATAGCAGG CATGCTGGGG ATGCGGTGGG  
CTCTATGGCC GCTGCGGCCA GGTGCTGAAG AATTGACCCG GTTCCTCCTG GGCCAGAAAG  
AAGCAGGCAC ATCCCCTTCT CTGTGACACA CCCTGTCCAC GCCCCTGGTT CTTAGTTCCA  
GCCCCACTCA TAGGACACTC ATAGCTCAGG AGGGCTCCGC CTTCAATCCC ACCCGCTAAA  
5 GTACTTGGAG CGGTCTCTCC CTCCCTCATC AGCCCACCAA ACCAAACCTA GCCTCCAAGA  
GTGGGAAGAA ATTAAAGCAA GATAGGCTAT TAAGTGCAGA GGGAGAGAAA ATGCCTCCAA  
CATGTGAGGA AGTAATGAGA GAAATCATAG AATTCTTCC GCTTCCTCCG TCACTGACTC  
GCTGCGCTCG GTCGTTCCGC TGCGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG  
GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGAAAA  
10 GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCCCTGA  
CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG  
ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCCTCT CCTGTTCCGA CCCTGCCGCT  
TACCGGATAC CTGTCGGCCT TTCTCCCTTC GGGAAAGCGTG GCGCTTCTC ATAGCTCACG  
CTGTAGGTAT CTCAGTTCGG TGTAGGTCTG TCGCTCCAAG CTGGGCTGTG TGCACGAACC  
15 CCCCCTTCAG CCCGACCGCT GCGCCTTATC CGGTAACATAT CGTCTTGAGT CCAACCCGGT  
AAGACACGAC TTATGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA  
TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC  
AGTATTTGGT ATCTGCCCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC  
TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTT TTTGTTGCA AGCAGCAGAT  
20 TACGCCAGA AAAAAGGAT CTCAAGAAGA TCCTTGATC TTTTCTACGG GGTCTGACGC  
TCAGTGGAAC GAAAATCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT  
CACCTAGATC CTTTAAATT AAAAATGAAG TTTAAATCA ATCTAAAGTA TATATGAGTA  
AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT  
ATTTCGTTCA TCCATAGTTG CCTGACTCCG GGGGGGGGG CGCTGAGGTC TGCCTCGTGA  
25 AGAAGGTGTT GCTGACTCAT ACCAGGCCTG AATGCCCTA TCATCCAGCC AGAAAGTGAG  
GGAGCCACGG TTGATGAGAG CTTTGTGTA GGTGGACCAG TTGGTGATTT TGAACTTTG  
CTTTGCCACG GAACGGCTG CGTTGTCGGG AAGATGCGTG ATCTGATCCT TCAACTCAGC  
AAAAGTTCGA TTTATTCAAC AAAGCCGCCG TCCCGTCAAG TCAGCGTAAT GCTCTGCCAG  
TGTTACAACC AATTAACCAA TTCTGATTAG AAAAATCAT CGAGCATCAA ATGAAACTGC  
30 AATTTATTCA TATCAGGATT ATCAATACCA TATTTTGAA AAAGCCGTTT CTGTAATGAA  
GGAGAAAAT CACCGAGGCA GTTCCATAGG ATGGCAAGAT CCTGGTATCG GTCTGCCGATT  
CCGACTCGTC CAACATCAAT ACAACCTATT AATTCCCT CGTAAAAAT AAGGTTATCA  
AGTGAGAAAT CACCATGAGT GACGACTGAA TCCGGTGAGA ATGGCAAAAG CTTATGCATT  
TCTTTCCAGA CTTGTTCAAC AGGCCAGCCA TTACGCTCGT CATAAAATC ACTCGCATCA

ACCAAACCGT TATTCATTG TGATTGCC TGAGCGAGAC GAAATACGCG ATCGCTGTTA  
 AAAGGACAAT TACAAACAGG AATCGAATGC AACCGGGCGCA GGAACACTGC CAGCGCATCA  
 ACAATATTTT CACCTGAATC AGGATATTCT TCTAATACCT GGAATGCTGT TTTCCCGGGG  
 ATCGCAGTGG TGAGTAACCA TGCATCATCA GGAGTACGGA TAAAATGCTT GATGGTCGGA  
 5 AGAGGCATAA ATTCCGTCAG CCAGTTAGT CTGACCACATCT CATCTGTAAC ATCATTGGCA  
 ACGCTACCTT TGCCATGTTT CAGAAACAAC TCTGGCGCAT CGGGCTTCCC ATACAATCGA  
 TAGATTGTCG CACCTGATTG CCCGACATTA TCGCGAGCCC ATTTATACCC ATATAAATCA  
 GCATCCATGT TGGAATTAA TCGCGGCCTC GAGCAAGACG TTTCCGTTG AATATGGCTC  
 ATAACACCCC TTGTATTACT GTTTATGTAA GCAGACAGTT TTATTGTTCA TGATGATATA  
 10 TTTTTATCTT GTGCAATGTA ACATCAGAGA TTTTGAGACA CAACGTGGCT TTCCCCCCCC  
 CCCCATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT  
 ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT GCCACCTGAC  
 GTCTAAGAAA CCATTATTAT CATGACATTA ACCTATAAAA ATAGGGTAT CACGAGGGCC  
 TTTCGTC (SEQ ID NO:16).

15 The underlined nucleotides of SEQ ID NO:16 represent the SfiI site introduced into the Kpn 1 site of V1Jneo.

*V1Jns-tPA* – The vaccine vector V1Jns-tPA was constructed in order to fuse an heterologous leader peptide sequence to the nef DNA constructs of the present invention. More specifically, the vaccine vector V1Jns was modified to include the 20 human tissue-specific plasminogen activator (tPA) leader. As an exemplification, but by no means a limitation of generating a nef DNA construct comprising an amino-terminal leader sequence, plasmid V1Jneo was modified to include the human tissue-specific plasminogen activator (tPA) leader. Two synthetic complementary oligomers were annealed and then ligated into V1Jneo which had been BglII digested. The 25 sense and antisense oligomers were 5' GATCACCATGGATGCAATGAAGAGAG GGCTCTGCTGTGCTGCTGTGGAGCAGTCTCGTTGCCAG CGA-3' (SEQ ID NO:17); and, 5'-GATCTCGCTGGCGAAACGAAGACTGC TCCACACAGCAGCACACAGCAGAGCCCTCTTCATTGCATCCAT GGT-3' (SEQ ID NO:18). The Kozak sequence is underlined in the sense oligomer.  
 30 These oligomers have overhanging bases compatible for ligation to BglII-cleaved sequences. After ligation the upstream BglII site is destroyed while the downstream BglII is retained for subsequent ligations. Both the junction sites as well as the entire tPA leader sequence were verified by DNA sequencing. Additionally, in order to conform with V1Jns (=V1Jneo with an SfiI site), an SfiI restriction site was placed at

the KpnI site within the BGH terminator region of V1Jneo-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker (catalogue #1138, New England Biolabs), resulting in V1Jns-tPA. This modification was verified by restriction digestion and agarose gel electrophoresis.

5 The V1Jns-tpa vector nucleotide sequence is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA  
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG  
TTGGCGGGTG TCAGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC  
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG  
10 CTATTGGCCA TTGCATACTGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG  
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC  
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCCGCGTT ACATAACTTA CGGTAAATGG  
CCCCTGCG TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC  
CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC  
15 TGCCCACCTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA  
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCTAC  
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA  
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA  
CGTCAATGGG AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA  
20 CTCCGCCCA TTGACGCAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG  
AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA  
TAGAACACAC CGGGACCGAT CCAGCCTCCG CGGCCGGAA CGGTGCATTG GAACGGGAT  
TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGACTC TATAGGCACA CCCCTTTGGC  
TCTTATGCAT GCTATACTGT TTTGGCTTG GGGCCTATAC ACCCCCCGCTT CCTTATGCTA  
25 TAGGTGATGG TATAGCTTAG CCTATAGGTG TGGGTTATTG ACCATTATTG ACCACTCCCC  
TATTGGTGAC GATACTTTCC ATTACTAAC CATAACATGG CTCTTGCCA CAACTATCTC  
TATTGGCTAT ATGCCAATAC TCTGTCCTTC AGAGACTGAC ACGGACTCTG TATTTTACA  
GGATGGGGTC CCATTTATTA TTTACAAATT CACATATACA ACAACGCCGT CCCCCGTGCC  
CGCAGTTTTT ATTAAACATA GCGTGGGATC TCCACCGCAA TCTCGGGTAC GTGTTCCGGA  
30 CATGGGCTCT TCTCCGGTAG CGGCGGAGCT TCCACATCCG AGCCCTGGTC CCATGCCTCC  
AGCGGCTCAT GGTCGCTCGG CAGCTCCTTG CTCTAACAG TGGAGGCCAG ACTTAGGCAC  
AGCACAAATGC CCACCAACAC CAGTGTGCCG CACAAGGCCG TGGCGGTAGG GTATGTGTCT  
GAAAATGAGC GTGGAGATTG GGCTCGCAG GCTGACGCAG ATGGAAGACT TAAGGCAGCG  
GCAGAAGAAG ATGCAGGCAG CTGAGTTGTT GTATTCTGAT AAGAGTCAGA GGTAACCTCC

5 GTTGCAGGTGC TGTTAACGGT GGAGGGCAGT GTAGTCTGAG CAGTACTCGT TGCTGCCCG  
CGCGCCACCA GACATAATAG CTGACAGACT AACAGACTGT TCCTTCCAT GGGTCTTTTC  
TGCAGTCACC GTCCTTAGAT CACCATGGAT GCAATGAAGA GAGGGCTCTG CTGTGTGCTG  
CTGCTGTGTG GAGCAGTCTT CGTTCGCCC AGCGAGATCT GCTGTGCCTT CTAGTTGCCA  
10 GCCATCTGTT GTTTGCCCT CCCCCGTGCC TTCCCTGACC CTGGAAGGTG CCACTCCAC  
TGTCCCTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT  
TCTGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA  
TGCTGGGGAT GCGGTGGGCT CTATGGCCGC TGCGGCCAGG TGCTGAAGAA TTGACCCGGT  
TCCTCCTGGG CCAGAAAGAA GCAGGCACAT CCCCTCTCT GTGACACACC CTGTCCACGC  
15 CCCTGGTTCT TAGTTCCAGC CCCACTCATA GGACACTCAT AGTCAGGAG GGCTCCGCCT  
TCAATCCAC CCGCTAAAGT ACTTGGAGCG GTCTCTCCCT CCCTCATCAG CCCACCAAAC  
CAAACCTAGC CTCCAAGAGT GGGAAAGAAAT TAAAGCAAGA TAGGCTATTA AGTGCAGAGG  
GAGAGAAAAT GCCTCCAACA TGTGAGGAAG TAATGAGAGA AATCATAGAA TTTCTTCCGC  
TTCCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA  
20 CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGAT AACGCAGGAA AGAACATGTG  
AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTCCA  
TAGGCTCCGC CCCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA  
CCCGACAGGA CTATAAAAGAT ACCAGGCCTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC  
TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTCGG GAAGCGTGGC  
25 GCTTCTCAT AGTCACGCT GTAGGTATCT CAGTCGGTG TAGTCGTTG GCTCCAAGCT  
GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAATATCG  
TCTTGAGTCC AACCCGGTAA GACACGACTT ATGCCACTG GCAGCAGCCA CTGGTAACAG  
GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA  
CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCCTCTG CTGAAGCCAG TTACCTTCGG  
30 AAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAACCACC GCTGGTAGCG GTGGTTTTTT  
TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT  
TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG  
ATTATCAAAA AGGATCTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT  
CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCACC  
TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC TGACTCGGGG GGGGGGGGCG  
CTGAGGTCTG CCTCGTGAAG AAGGTGTTGC TGACTCATAAC CAGGCCTGAA TCGCCCCATC  
ATCCAGCCAG AAAGTGAGGG AGCCACGGTT GATGAGAGCT TTGTTGTAGG TGGACCAGTT  
GGTGATTTG AACTTTGCT TTGCCACGGA ACGGTCTGCG TTGTGGGAA GATGCGTGAT  
CTGATCCTTC AACTCAGCAA AAGTCGATT TATTCAACAA AGCCGCCGTC CCGTCAAGTC

AGCGTAATGC TCTGCCAGTG TTACAACCAA TTAACCAATT CTGATTAGAA AACTCATCG  
AGCATCAAAT GAAACTGCAA TTTATTCTATA TCAGGATTAT CAATACCATA TTTTGAAAA  
AGCCGTTCT GTAATGAAGG AGAAAACCTCA CCGAGGCAGT TCCATAGGAT GGCAAGATCC  
TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA TTTCCCCTCG  
5 TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC CGGTGAGAAT  
GGCAAAAGCT TATGCATTTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT ACGCTCGTCA  
TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCTG ATTGCCCTG AGCGAGACGA  
AATACCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA CCGGCGCAGG  
AACACTGCCA GCGCATCAAC AATATTTCA CCTGAATCAG GATATTCTTC TAATACCTGG  
10 AATGCTGTTT TCCCGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG AGTACGGATA  
AAATGCTTGA TGGTCGGAAG AGGCATAAAAT TCCGTCAGCC AGTTTAGTCT GACCATCTCA  
TCTGTAACAT CATTGGCAAC GCTACCTTG CCATGTTCA GAAACAACTC TGGCGCATCG  
GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC GCGAGCCCAT  
TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAAC GCGGCCTCGA GCAAGACGTT  
15 TCCC GTT GAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC AGACAGTTT  
ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT TTGAGACACA  
ACGTGGCTTT CCCCCCCCCC CCATTATTGA AGCATTATC AGGGTTATTG TCTCATGAGC  
GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTCCC  
CGAAAAGTGC CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAT  
20 AGGCGTATCA CGAGGCCCTT TCGTC (SEQ ID NO:9).

The underlined nucleotides of SEQ ID NO:9 represent the SfiI site introduced into the Kpn I site of V1Jneo while the underlined/italicized nucleotides represent the human tPA leader sequence.

VIR – Vaccine vector V1R was constructed to obtain a minimum-sized  
25 vaccine vector without unneeded DNA sequences, which still retained the overall  
optimized heterologous gene expression characteristics and high plasmid yields that  
V1J and V1Jns afford. It was determined that (1) regions within the pUC backbone  
comprising the *E. coli* origin of replication could be removed without affecting  
plasmid yield from bacteria; (2) the 3'-region of the *kan<sup>r</sup>* gene following the  
30 kanamycin open reading frame could be removed if a bacterial terminator was  
inserted in its place; and, (3) ~300 bp from the 3'- half of the BGH terminator could  
be removed without affecting its regulatory function (following the original KpnI  
restriction enzyme site within the BGH element). V1R was constructed by using PCR  
to synthesize three segments of DNA from V1Jns representing the CMVintA

promoter/BGH terminator, origin of replication, and kanamycin resistance elements, respectively. Restriction enzymes unique for each segment were added to each segment end using the PCR oligomers: SspI and XhoI for CMVintA/BGH; EcoRV and BamHI for the *kan* r gene; and, BclI and SalI for the *ori* r. These enzyme sites  
5 were chosen because they allow directional ligation of each of the PCR-derived DNA segments with subsequent loss of each site: EcoRV and SspI leave blunt-ended DNAs which are compatible for ligation while BamHI and BclI leave complementary overhangs as do SalI and XhoI. After obtaining these segments by PCR each segment was digested with the appropriate restriction enzymes indicated above and then  
10 ligated together in a single reaction mixture containing all three DNA segments. The 5'-end of the *ori* r was designed to include the T2 rho independent terminator sequence that is normally found in this region so that it could provide termination information for the kanamycin resistance gene. The ligated product was confirmed by restriction enzyme digestion (>8 enzymes) as well as by DNA sequencing of the  
15 ligation junctions. DNA plasmid yields and heterologous expression using viral genes within V1R appear similar to V1Jns. The net reduction in vector size achieved was 1346 bp (V1Jns = 4.86 kb; V1R = 3.52 kb). PCR oligomer sequences used to synthesize V1R (restriction enzyme sites are underlined and identified in brackets following sequence) are as follows: (1) 5'-GGTACAAAATATTGGCTATTGGC  
20 CATTGCATAACG-3' (SEQ ID NO:20) [SspI]; (2) 5'-CCACATCTCGAGGAA CCGGGTCAATTCTTCAGCACC-3' (SEQ ID NO:21) [XhoI] (for CMVintA/BGH segment); (3) 5'-GGTACAGATATCGGAAAGCCACGTTGTG TCTAAAATC-3' (SEQ ID NO:22) [EcoRV]; (4) 5'-CACATGGATCCGTAATGCTCTGCCAGTGT TACAACC-3' (SEQ ID NO:23) [BamHI], (for kanamycin resistance gene segment)  
25 (5) 5'-GGTACATG ATCACGTAGAAAAGATCAAAGGATCTTCTTG-3' (SEQ ID NO:24) [BclI]; (6) 5'-CCACATGTCGACCCGTAAAAAGGCCGCGTTGCTGG-3' (SEQ ID NO:25): [SalI], (for *E. coli* origin of replication).

The nucleotide sequence of vector V1R is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCG GAGACGGTCA  
30 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG CTATTGGCCA TTGCATAACGT TGTATCCATA TCATAATATG TACATTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC

GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCCGCGTT ACATAACTTA CGGTAAATGG  
CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC  
CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC  
TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA  
5 TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCTAC  
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA  
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA  
CGTCAATGGG AGTTTGTTTT GGCAACAAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA  
CTCCGCCCA TTGACGCAAAGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG  
10 AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA  
TAGAACAGAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT  
TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCCTTGGC  
TTCTTATGCA TGCTATACTG TTTTTGGCTT GGGGTCTATA CACCCCCGCT TCCTCATGTT  
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC  
15 CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT  
TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTAC  
AGGATGGGT CTCATTTATT ATTTACAAAT TCACATATAC AACACCACCG TCCCCAGTGC  
CCGCAGTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTGGGTA CGTGTCCGG  
ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCC  
20 CAGCGACTCA TGGTCGCTCG GCAGCTCCCTT GCTCCTAACCA GTGGAGGCCA GACTTAGGCA  
CAGCACGATG CCCACCACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC  
TGAAAATGAG CTCGGGGAGC GGGCTTGCAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC  
GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACCTCC  
CGTTGCGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCC  
25 GCGCGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCTTCCA TGGGTCTTTT  
CTGCAGTCAC CGTCCTTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTGTTGCC  
CCTCCCCGT GCCTTCCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA  
ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG  
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG  
30 GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTTC CTCCTGGGCC AGAAAGAAC  
AGGCACATCC CCTTCTCTGT GACACACCT GTCCACGCC CTGGTTCTTA GTTCCAGGCC  
CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCCTTC AATCCCACCC GCTAAAGTAC  
TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG  
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAGAGGGAA GAGAAAATGC CTCCAACATG

TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCGCTT CCTCGCTCAC TGACTCGCTG  
CGCTCGGTGCG TTCCGGCTGCG GCGAGCGGTA TCAGCTCACT CAAAGGC GGTA AATACGGTTA  
TCCACAGAAT CAGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC  
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC CCCTGACGAG  
5 CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC  
CAGGGCTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCCT GCCGCTTAC  
GGATACCTGT CCGCCTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT  
AGGTATCTCA GTTCGGTGTGTA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC  
GTTCAAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA  
10 CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA TTAGCAGAGC GAGGTATGTA  
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA  
TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTTTGA  
TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA GCAGATTACG  
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATTTTCTACGGGTC TGACGCTCAG  
15 TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT TATCAAAAG GATCTTCACC  
TAGATCCTTT TAAATTAAAA ATGAAGTTT AAATCAATCT AAAGTATATA TGAGTAAACT  
TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGTCTATT  
CGTTCATCCA TAGTTGCCTG ACTCCGGGGG GGGGGGGCGC TGAGGTCTGC CTCGTGAAGA  
AGGTGTTGCT GACTCATACC AGGCCTGAAT CGCCCCATCA TCCAGCCAGA AAGTGAGGGA  
20 GCCACGGTTG ATGAGAGCTT TGTGTAGGT GGACCAGTTG GTGATTTGA ACTTTGCTT  
TGCCACGGAA CGGTCTGCGT TGTCGGGAAG ATGCGTGATC TGATCCTTCA ACTCAGCAAA  
AGTTGATTT ATTCAACAAA GCCGCCGTCC CGTCAAGTCA GCGTAATGCT CTGCCAGTGT  
TACAACCAAT TAACCAATTG TGATTAGAAA AACTCATCGA GCATCAAATG AACTGCAAT  
TTATTCAAT CAGGATTATC AATACCATAA TTTGAAAAA GCCGTTCTG TAATGAAGGA  
25 GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG  
ACTCGTCCAA CATCAATACA ACCTATTAAT TTCCCTCGT CAAAATAAG GTTATCAAGT  
GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAAAAGCTT ATGCATTCT  
TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC  
AAACCGTTAT TCATTGCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAA  
30 GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA AACTGCCAG CGCATCAACA  
ATATTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTT CCCGGGGATC  
GCAGTGGTGA GTAACCAGTC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA  
GGCATAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG  
CTACCTTCAG CATGTTTCAG AAACAACCTCT GGCGCATCGG GCTTCCCATA CAATCGATAG

ATTGTCGCAC CTGATTGCC GACATTATCG CGAGCCCATT TATAACCCATA TAAATCAGCA  
TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTGAAT ATGGCTCATA  
ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATTT  
TTATCTTGTG CAATGTAACA TCAGAGATT TGAGACACAA CGTGGCTTTC CCCCCCCCCC  
5 CATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT  
TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC  
TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT  
CGTC (SEQ ID NO:26).

10

## EXAMPLE 2

### Codon Optimized HIV-1 Nef and HIV-1 Nef Derivatives as DNA Vector Vaccines

*HIV-1 Nef Vaccine Vectors* - Codon optimized nef gene coding for wt Nef protein of HIV-1 jrf1 isolate was assembled from complementary, overlapping synthetic oligonucleotides by polymerase chain reaction (PCR). The PCR primers used were designed in such that a BglII site was included in the extension of 5' primer and an SrfI site and a BglII site in the extension of 3' primer. The PCR product was digested with BglII and cloned into BglII site of a human cytomeglovirus early promoter-based expression vector, V1Jns (Figure 1A). The proper orientation of nef fragment in the context of the expression cassette was determined by asymmetric restriction mapping. The resultant plasmid is V1Jns/nef. The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/nef are shown in Figure 3A.

The mutant nef (G2A,LLAA) was also made from synthetic oligonucleotides. To assist in cloning, a PstI site and an SrfI site were included in the extensions of 5' and 3' PCR primers, respectively. The PCR product was digested with PstI and SrfI, and cloned into the PstI and SrfI sites of V1Jns/nef, replacing the original nef with nef(G2A,LLAA) fragment. This resulted in V1Jns/nef(G2A,LLAA). The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/nef (G2A,LLAA) are shown in Figure 3B.

To construct the expression vector containing human tissue plasminogen activator leader peptide and the nef fusion gene, i.e., V1Jns/tPAnef, a truncated nef gene fragment, lacking the coding sequence for the five amino terminal residues, was first amplified by PCR using V1Jns/nef as template. Both 5' and 3' PCR primers used in this reaction contained a BglII extension. The PCR amplified fragment was then digested with BglII and cloned into BglII site of the expression vector, V1Jns/tpa

(Figure 1B). The ligation of the 3' end of tpa leader peptide coding sequence to the 5' end of the nef PCR product restored the BglII site and yielded an in-frame fusion of the two genes. The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/tPAnef are shown in Figure 3C.

5 Construction of V1Jns/tpanef(LLAA) was carried out by replacing the BsU36-SacII fragment of V1Jns/tpanef, which contains the 3' half of the nef gene and part of the vector backbone, with the BsU36-SacII fragment from V1Jns/nef(G2A,LLAA). The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/tpanef (LLAA) are shown in Figure 3C.

10 All the nef constructs were verified by sequencing. The amino acid junctions of these constructs is shown schematically in Figure 4.

Transfection and protein expression - 293 cells (adenovirus transformed human embryonic kidney cell line 293) grown at approximately 30% confluence in minimum essential medium (MEM; GIBCO, Grand Island, MD) supplemented with  
15 10% fetal bovine serum (FBS; GIBCO) in a 100 mm culture dish, were transfected with 4 ug gag expression vector, V1Jns/gag, or a mixture of 4 ug gag expression vector and 4 ug nef expression vector by Lipofectin following manufacturer's protocol (GIBCO). Twelve hours post-transfection, cells were washed once with 10 ml of serum-free medium, Opti-MEM I (GIBCO) and replenished with 5 ml of Opti-MEM.  
20 Following an additional 60 hr incubation, culture supernatants and cells were collected separately and used for Western blot analysis.

Western blot analysis - Fifty microliter of samples were separated on a 10% SDS-polyacrylamide gel (SDS-PAGE) under reducing conditions. The proteins were blotted onto a piece of PVDF membrane, and reacted to a mixture of gag mAb (#18; 25 Intracel, Cambridge, MA) and Nef mAbs (aa64-68, aa195-201; Advanced Biotechnologies, Columbia, MD), both at 1:2000 dilution, and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (Zymed, San Francisco, CA). The protein bands were visualized by ECL Western blotting detection reagents, according to the manufacturer's protocol (Amersham, Arlington Heights, IL).

30 Enzyme-linked immunosorbent assay (ELISA) - 96-well Immulon II, round-bottom plates were coated with 50 ul of Nef protein at the concentration of 2ug/ml in bicarbonate buffer, pH 9.8., per well at 4°C overnight. Plates were washed three times with PBS containing 0.05% Tween-20 (PBST), and blocked with 5% skim milk in PBST (milk-PBST) at 24°C for 2 hr, and then incubated with serial dilutions of

testing samples in milk-PBST at 24°C for 2 hr. Plates were washed with PBST three times, and added with 50 ul of HRP-conjugated goat anti-mouse IgG (Zymed) per well and incubated at 24°C for 1 hr. This was followed by three washes, and the addition of 100 ul of 1 mg/ml ABTS [(2,2'-amino-di-(3-ethylbenzthiozoline sulfonate)] (KPL, Gaithersburg, MD) per well. After 1 hr at 24°C, plates were read at a wavelength of 405nm using an ELISA plate reader.

5           *Enzyme-linked spot assay (Elispot)* - Nitrocellulose membrane-backed 96 well plates (MSHA plates; Millipore, Bedford, MA) were coated with 50 ul of rat anti-mouse IFN-gamma mAb, capture antibody, (R4-6A2; PharMingen, San Diego, CA) at 10 a concentration of 5ug/ml in PBS per well at 4°C overnight. Plates were washed three times with PBST and blocked with 10% FBS in RPMI-1640 (FBS-RPMI) at 37°C in a CO<sub>2</sub> incubator for 2 to 4 hrs. Splenocytes were suspended in RPMI-1640 with 10% FBS at 4 x 10<sup>6</sup> cells per ml. 100 ul cells were added to each well and plates were incubated at 37°C for 20 hrs. Each sample was tested in triplicate wells. After 15 incubation, plates were rinsed briefly with distilled water and washed three times with PBST. Fifty ul of biotinylated rat anti-mouse IFN-γ mAb, detecting antibody (XMG1.2; PharMingen), diluted in 1% BSA in PBST at a concentration of 2 ug/ml was then added to each well. Plates were incubated at 24°C for 2 hr, followed by washes with PBST. Fifty ul of streptavidin-conjugated alkaline phosphatase (KPL) at 20 a dilution of 1:1000 in FBS-RPMI was added to each well. The plates were incubated at 24C for an additional one hr. Following extensive wash with BPST, 100ul BCIT/NBT substrate (KPL) was added for 15 min, and color reaction was stopped by washing the plate with tap water. Plates were air-dried and spots were counted using a dissection microscope.

25           *Cytotoxic T cell (CTL) assay* - Splenocytes from immunized mouse were co-cultured with syngenic peptide-pulsed, irradiated naive splenocytes for 7 days. EL-4 cells were incubated at 37°C for 1 hr with or without 20ug/ml of a designated peptide in the presence of sodium 51Cr-chromate and used as target cells. For the assay, 10<sup>4</sup> target cells were added to a 96-well plate along with different numbers of splenocytes 30 cells. Plates were incubated at 37°C for 4 hr. After incubation, supernatants were collected and counted in a Wallac gamma-counter. Specific lysis was calculated as ([experimental release - spontaneous release]/maximum release- spontaneous release]) x 100%. Spontaneous release was determined by incubating target cells in

medium alone, and maximum release was determined by incubating target cells in 2.5% TritonX-100. The assay was performed with triplicate samples.

*Animal experiments* - Female mice (Charles River Laboratories, Wilmington, MA), 6 to 10 weeks old, were injected in quadriceps with 100 ul of DNA in PBS.

- 5 Two weeks after immunization, spleens from individual mice were collected and used for CTL and Elispot assays.

*Results (DNA Vector Vaccine Construction)* - The exemplified Nef protein sequence is based on HIV-1 clade B jrfl isolate. A codon-optimized nef gene was chosen for vaccine construction and for use as the parental gene for other exemplified constructs. Figure 2A-B show the comparison of coding sequence of wt nef(jrfl) and the codon optimized nef(jrfl). Two forms of myristylation site mutations were constructed; one contains a Gly2Ala change and the other a human tissue plasminogen activator (tpa) leader sequence was fused to sixth residue, Ser, of Nef (tpanef). The dileucine motif mutation was made by introducing both Leu174Ala and 10 Leu175Ala changes. Figure 4 shows the schematic depiction of the Nef and Nef mutants. For *in vitro* expression and *in vivo* immunogenicity studies, the nef genes were cloned into expression vector, V1Jns. The resultant plasmids containing wt nef, tpanef, tpanef with dileucine motif mutation, and nef mutant with the Gly2Ala 15 myristylation site and dileucine motif mutations were named as V1Jns/nef, V1Jns(tpanef), V1Jns(tpanef(LLAA)) and V1Jns(G2A,LLAA), respectively.

*Results - Expression and Western blotting analysis* - To evaluate the expression of the codon optimized nef constructs, adenovirus-transformed human kidney 293 cells were cotransfected with individual nef plasmids and a gag expression vector, V1Jns/gag. 72 hours post transfection, cells and medium were collected 20 separately and analyzed by Western blotting, using both Nef- and Gag-specific mAbs. The results are shown in Figure 5. Cells transfected with V1Jns/gag only revealed a single distinct band of approximately 55 Kd, whereas the cells cotransfected with gag and nef plasmids revealed, in addition to the 55 Kd band, a major 30 Kd band and several minor bands. This pattern is consistent with that the 55 Kd species represents 25 Gag polypeptide and the 30 Kd and other minor species are the Nef-related products. Therefore, all the nef constructs were expressed in the transfected cells. When measured against the relatively constant Gag signal as a reference, four nef genes seem to be expressed at different levels, with the following descending order, tpanef, nef, tpanef(LLAA) and nef(G2A, LLAA). With the exception of nef(G2A,LLAA),

products of nef, tpanef, tpanef(LLAA) could be detected in both cellular and medium fractions.

*Mapping of Nef-specific CD8 and CD4 epitopes in mice* – There was no information available with respect to the properties of Nef(jrfI) in eliciting cell-mediated immune responses in mice. Therefore, to characterize immunogenicity of Nef and Nef mutants exemplified herein, CD8 and CD4 epitopes were mapped. An overlapping set of overlapping nef peptides that encompass the entire 216 aa Nef polypeptide were generated. A total 21 peptides were made, which include twenty 20mers and one 16mer. Three strains of mice, Balb/c, C3H and C57BL/6, were immunized with plasmid V1Jns/Nef; splenocytes from immunized and naive mice were isolated and assessed for Nef specific INF-gamma secreting cells (SFC) by the Elispot assay. Figure 6 shows where Elispot assays were performed against separate pools of the Nef peptides. All three strains of immunized mice responded to the Nef plasmid immunization; each developed positive Nef peptide-specific INF- $\gamma$  SFCs.

Based on this, further studies were carried out with fractionated CD8 and CD4 cells against individual peptides. The results are shown in Figure 7A-C. In Balb/c mice (Figure 7A), four Nef peptides, namely, aa11-30, aa61-80, aa191-210 and aa200-216, were found to be able to induce significant numbers of CD4 SFCs. In C57BL/6 mice (Figure 7B), only one peptide, i.e., aa81-100, elicited significant numbers of CD4 SFCs. Compared to Balb/c and C57BL/6 mice, C3H mice (Figure 7C) showed no dominant CD4 SFC responses with particular peptides; instead, there were modest number of SFCs in response to an array of peptides, including aa21-40, aa31-50, aa121-140 aa131-150, aa181-200 and aa191-210. With respect to CD8 cells, significant SFC responses were detected with a single peptide, i.e., aa51-70, in C57BL/6 mice only.

The results from Elispot assay suggested that Nef peptide aa51-70 contained an H-2b restricted CD8 cell epitope. In order to ascertain whether this CD8 epitope also represents the cytotoxic T cell (CTL) epitope, a conventional CTL assay was carried out. The peptide aa51-70 (Figure 8A) induced low level of specific killings only. Peptides longer than 9 amino acids of a typical CTL epitope often have lower binding affinity to MHC class I molecule. It was contemplated that the low specific killings observed with peptide aa51-70 could be potentially resulted from the low binding affinity of this 20 amino acid peptide. Therefore, two shortened peptides, namely, aa60-68 and aa58-70, were synthesized and tested in CTL assays. While the

peptide aa60-68 failed to elicit any specific killings (Figure 8B), the peptide aa58-70 exhibited a drastic increase of specific killing as compared to its longer counterpart, peptide aa61-80 (Figure 8C). For example, the percentage of specific killings induced by peptide aa58-70 at an effector/target ratio of 5 to 1 was comparable to that induced  
 5 by peptide aa51-80 at an effector/target ratio of 45. Thus, between peptide aa58-70 and peptide aa51-70, the former was almost ten-fold more effective in terms of inducing Nef-specific killing. The results from CTL assay therefore confirmed that the CD8 epitope detected by the Elispot assay was indeed a CTL epitope. To further map the minimum amino acid sequence for the Nef CTL epitope, additional 5  
 10 peptides were synthesized and analyzed by Elispot assay, which mapped the CTL epitope to Nef aa58-66, as shown in Table 1.

TABLE I

| Nef peptides** |               | INF- $\gamma$ SFC*/10 <sup>6</sup> splenocytes |
|----------------|---------------|------------------------------------------------|
| Nef58-70       | TAATNADCAWLEA | 85                                             |
| Nef59-69       | AATNADCAWLE   | 1                                              |
| Nef58-68       | TAATNADCAWL   | 69                                             |
| Nef58-67       | TAATNADCAW    | 66                                             |
| Nef58-66       | TAATNADCA     | 92                                             |
| Medium         |               | 1                                              |

\* Average of duplicate samples.

15 \*\* Amino acid sequence of all peptides contained within SEQ ID NO:2.

*Results (Evaluation of Immunogenicity of nef Mutants in Mice) -* Having identified H-2b restricted CTL and CD4 cell epitopes, the immunogenicity of the different codon optimized nef constructs in C57BL/6 mice was examined. This was 5 performed in two separate experiments with identical immunization regimens. The first experiment involved nef, tpanef(LLAA) and nef(G2A,LLAA) and the second experiment involved nef, tpanef, tpanef(LLAA) and nef(G2A,LLAA). Mice were immunized with plasmids containing these respective codon optimized nef genes. Two weeks post immunization, splenocytes from individual mice were isolated and 10 analyzed by Elispot assay for Nef-specific CD8 and CD4 IFN-gamma SFCs using Nef peptide aa58-66 and aa81-100, respectively. The results are shown in Figure 9A-B. In the experiment 1 (Figure 9A), among the three groups tested, the mice receiving the codon optimized tpanef(LLAA) construct developed the highest CD8 and CD4 cell responses; comparing between tpanef(LLAA) and the nef, the former elicited 15 about 40-fold higher CD8 SFCs and 10-fold higher CD4 SFCs. In contrast to tpanef(LLAA), nef(G2A,LLAA) mutant was poorly immunogenic; mice receiving this mutant had barely detectable CD8 and CD4 SFCS, under conditions tested. Similar response profiles between the three mutants were also observed in the experiment 2 (Figure 9B), except that the overall CD8 response of mice receiving 20 tpanef(LLAA) was approximately 10-fold higher in experiment 2 than that observed in experiment 1. The tPAnef mutant showed comparable responses as that of tpanef(LLAA). The results therefore showed that both codon optimized tpanef and tpanef(LLAA) had significantly enhanced immunogenicity.

*Results (Evaluation of Immunogenicity of nef Mutants in Rhesus Monkeys) -* 25 Monkeys were immunized with 5 mg of indicated codon optimized plasmids at week 0, 4, and 8. Four weeks after each immunization , peripheral blood mononuclear cells were collected and tested for Nef-specific INF-gamma secreting cells as described for the mice studies in this Example section. The results are shown in Table 2. As with the mouse study, tpanef(LLAA) shows significantly enhanced 30 immunogenicity when compared to tPAnef.

TABLE 2

| Vaccine                | Animal No. | Nef specific INF-gamma secreting cells/million PBMC |     |            |     |            |     |
|------------------------|------------|-----------------------------------------------------|-----|------------|-----|------------|-----|
|                        |            | Week 0                                              |     | Week 4     |     | Week 8     |     |
|                        |            | Medium nef                                          | nef | Medium nef | nef | Medium nef | nef |
| VIJns-TpaNef<br>(LLAA) | 1          | 74                                                  | 39  | 30         | 208 | 6          | 148 |
|                        | 2          | 1                                                   | 3   | 28         | 45  | 13         | 44  |
|                        | 3          | 5                                                   | 5   | 14         | 45  | 11         | 11  |
| VIJns-nef              | 1          | 0                                                   | 1   | 24         | 33  | 16         | 43  |
|                        | 2          | 28                                                  | 9   | 31         | 35  | 13         | 34  |
|                        | 3          | 1                                                   | 0   | 16         | 31  | 18         | 38  |
| Control                | 1          | 1                                                   | 3   | 16         | 33  | 16         | 16  |
|                        |            |                                                     |     |            |     | 18         | 13  |

Monkeys were immunized with 5 mg of indicated plasmids at week 0, 4 and 8.

5 Four weeks after each immunization, peripheral blood mononuclear cells were collected and tested for the Nef-specific IFN-gamma secreting cells.

A codon-optimized nef gene coding for HIV-1 jrfl isolate Nef polypeptide was synthesized. The resultant synthetic nef gene was well expressed in the *in vitro* 10 transfected cells. Using this synthetic gene as parental molecule, nef mutants involving myristylation site and dileucine motif mutations were constructed. Two forms of myristylation site mutation were made, one involving a single Gly2Ala change and the other by fusing human plasminogen activator(tpa) leader peptide with the N-terminus of Nef polypeptide. The dileucine motif mutation was generated by 15 Leu174Ala and Leu175Ala changes. The resultant nef constructs were named as nef, tpanef, tpanef(LLAA) and nef(G2A,LLAA). The addition of tpa leader peptide sequence resulted in significantly increased expression of the nef gene *in vitro*; in contrast, either Gly2Ala mutation or dileucine mutation reduced the nef gene

expression. In an effort to characterize immunogenicity of nef and nef mutants, experiments were carried out to map nef CTL and Th epitopes in mice. A single CTL epitope and a dominant Th epitope, both restricted by H-2b, were identified. Consequently, C57BL/6 mice were immunized with different nef constructs by DNA 5 immunization means, and splenocytes from immunized mice were determined for Nef-specific CTL and Th responses using Elispot assay and the defined T cell epitopes. The results showed that tpanef and tpanef(LLAA) were significantly more immunogenic than nef in terms of eliciting both CTL and Th responses.

Therefore, these aforementioned polynucleotides, when directly introduced 10 into a vertebrate *in vivo*, including mammals such as primates and humans, should express the respective HIV-1 Nef protein within the animal and in turn induce at least a cytotoxic T lymphocyte (CTL) response within the host to the expressed Nef antigen.

The present invention is not to be limited in scope by the specific 15 embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

**WHAT IS CLAIMED IS:**

1. A pharmaceutically acceptable DNA vaccine, which comprises:
  - (a) a DNA expression vector; and,
  - 5 (b) a DNA molecule containing a codon optimized open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to a host the Nef protein or immunogenic Nef derivative is expressed and generates an immune response which provides a substantial level of protection against HIV-1 infection.
- 10 2. A DNA vaccine of claim 1 wherein the DNA molecule encodes wild type Nef.
- 15 3. A DNA vaccine of claim 2 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:1.
4. The DNA vaccine of claim 3 which is V1Jns-opt nef (jrfl).
5. A DNA vaccine of claim 2 wherein the DNA molecule expresses a wild type Nef protein which comprises the amino acid sequence as set forth in SEQ 20 ID NO:2.
- 25 6. A DNA vaccine of claim 1 wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a leader peptide.
7. A DNA vaccine of claim 6 wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.
- 30 8. A DNA vaccine of claim 7 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:3.
9. The DNA vaccine of claim 8 which is V1Jns-opt tpanef.

10. A DNA vaccine of claim 7 wherein the DNA molecule expresses an immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:4.

5

11. A DNA vaccine of claim 6 wherein the DNA molecule encodes an immunogenic Nef derivative modified at the dileucine motif of amino acid residue 174 and amino acid residue 175.

10

12. A DNA vaccine of claim 11 wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.

15

13. A DNA vaccine of claim 12 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:7.

14. The DNA vaccine of claim 13 which is V1Jns-opt tpanef (LLAA).

20

15. A DNA vaccine of claim 11 wherein the DNA molecule expresses an immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:8.

25

16. A DNA vaccine of claim 11 wherein the DNA molecule encodes a Nef protein where the glycine residue of amino acid residue 2 of Nef is modified to encode for an amino acid residue other the glycine.

17. A DNA vaccine of claim 16 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:5.

30

18. A DNA vaccine of claim 17 which is V1Jns-opt nef (G2A LLAA).

19. A DNA vaccine of claim 16 wherein the DNA molecule expresses an immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:6.

20. A DNA vaccine of claim 1 which further comprises an adjuvant.
21. A DNA vaccine of claim 20 whrerein the adjuvant is selected from the  
5 group consisting of alumunum phosphate, calcium phosphate and a non-ionic block copolymer.
22. A pharmaceutically acceptable DNA vaccine, which comprises:
  - (a) a DNA expression vector; and,
  - 10 (b) a DNA molecule containing an open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to a host the Nef protein or immunogenic Nef derivative is expressed and generates an immune response which provides a substantial level of protection against HIV-1 infection.
- 15 23. The DNA vaccine of claim 22wherein the DNA molecule expresses a wild type Nef protein which comprises the amino acid sequence as set forth in the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8.
- 20 24. A DNA vaccine of claim 22 which further comprises an adjuvant.
- 25 25. A DNA vaccine of claim 23 whrerein the adjuvant is selected from the group consisting of alumunum phosphate, calcium phosphate and a non-ionic block copolymer.
- 30 26. A method for inducing a cell mediated immune (CTL) response against infection or disease caused by virulent strains of HIV which comprises administering into the tissue of a vertebrate host a pharmaceutically acceptable DNA vaccine composition which comprises a DNA expression vector and a DNA molecule containing a codon optimized open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to the vertebrate host the Nef protein or immunogenic Nef derivative is expressed and generates the cell-mediated immune (CTL) response.

27. The method of claim 26 wherein the vertebrate host is a human.

28. The method of claim 26 wherein the DNA vaccine is selected from the group consisting of V1Jns-opt nef (jrfl), V1Jns-opt tpanef, V1Jns-opt tpanef (LLAA),  
5 and V1Jns-opt nef (G2A LLAA).

29. A substantially purified protein which comprises an amino acid sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

1/10



FIG. 1B



FIG. 1A

2/10

|     |                                                                                          |      |
|-----|------------------------------------------------------------------------------------------|------|
| WT  | - ATG GGT GGC AAG TGG TCA AAA CGT AGT GTG CCT GGA TGG TCT                                | -42  |
| OPT | - ATG GGC GGC AAG TGG TCC AAG AGG TCC GTG CCC GGC TGG TCC<br>M G G K W S K R S V P G W S | -14  |
| WT  | - ACT GTA AGG GAA AGA ATG AGA CGA GCT GAG CCA GCA GCA GAT<br>                            | -84  |
| OPT | - ACC GTG AGG GAG AGG ATG AGG AGG GCC GAG CCC GCC GCC GAC<br>T V R E R M R R A E P A A D | -28  |
| WT  | - AGG GTG AGA CGA ACT GAG CCA GCA GCA GTA GGG GTG GGA GCA<br>                            | -126 |
| OPT | - AGG GTG AGG AGG ACC GAG CCC GCC GCC GTG GGC GTG GGC GCC<br>R V R R T E P A A V G V G A | -42  |
| WT  | - GTA TCT CGA GAC CTG GAA AAA CAT GGA GCA ATC ACA AGT AGC<br>                            | -168 |
| OPT | - GTG TCC AGG GAC CTG GAG AAG CAC GGC GCC ATC ACC TCC TCC<br>V S R D L E K H G A I T S S | -56  |
| WT  | - AAT ACA GCA GCT ACC AAT GCT GAT TGT GCC TGG CTA GAA GCA<br>                            | -210 |
| OPT | - AAC ACC GCC GCC ACC AAC GCC GAC TGC GCC TGG CTG GAG GCC<br>N T A A T N A D C A W L E A | -70  |
| WT  | - CAA GAG GAT GAG GAA GTG GGT TTT CCA GTC AGA CCT CAG GTA<br>                            | -252 |
| OPT | - CAG GAG GAC GAG GAG GTG GGC TTC CCC GTG AGG CCC CAG GTG<br>Q E D E E V G F P V R P Q V | -84  |
| WT  | - CCT TTA AGA CCA ATG ACT TAC AAG GGA GCT GTA GAT CTT AGC<br>                            | -294 |
| OPT | - CCC CTG AGG CCC ATG ACC TAC AAG GGC GCC GTG GAC CTG TCC<br>P L R P M T Y K G A V D L S | -98  |
| WT  | - CAC TTT TTA AAA GAA AAG GGG GGA CTG GAA GGG CTA ATT CAC<br>                            | -336 |
| OPT | - CAC TTC CTG AAG GAG AAG GGC GGC CTG GAG GGC CTG ATC CAC<br>H F L K E K G G L E G L I H | -112 |
| WT  | - TCA CAG AAA AGA CAA GAT ATC CTT GAT CTG TGG GTC TAC CAC<br>                            | -378 |
| OPT | - TCC CAG AAG AGG CAG GAC ATC CTG GAC CTG TGG GTG TAC CAC<br>S Q K R Q D I L D L W V Y H | -126 |
| WT  | - ACA CAA GGC TAC TTC CCT GAT TGG CAG AAC TAC ACA CCA GGG<br>                            | -420 |
| OPT | - ACC CAG GGC TAC TTC CCC GAC TGG CAG AAC TAC ACC CCC GGC<br>T Q G Y F P D W Q N Y T P G | -140 |

FIG.2A

3/10

|     |                                                                                           |      |
|-----|-------------------------------------------------------------------------------------------|------|
| WT  | - CCA GGA ATC AGA TTT CCA TTG ACC TTT GGA TGG TGC TTC AAG<br>                             | -462 |
| OPT | - CCC GGC ATC AGG TTC CCC CTG ACC TTC GGC TGG TGC TTC AAG<br>P G I R F P L T F G W C F K  | -154 |
| WT  | - CTA GTA CCA GTT GAG CCA GAA AAG GTA GAA GAG GCC AAT GAA<br>                             | -504 |
| OPT | - CTG GTG CCC GTG GAG CCC GAG AAG GTG GAG GAG GCC AAC GAG<br>L V P V E P E K V E E A N E  | -168 |
| WT  | - GGA GAG AAC AAC TGC TTG TTA CAC CCT ATG AGC CAG CAT GGG<br>                             | -546 |
| OPT | - GGC GAG AAC AAC TGC CTG CTG CAC CCC ATG TCC CAG CAC GGC<br>G E N N C L L H P M S Q H G  | -182 |
| WT  | - ATA GAG GAC CCG GAG AAG GAA GTG TTA GAG TGG AGG TTT GAC<br>                             | -588 |
| OPT | - ATC GAG GAC CCC GAG AAG GAG GTG CTG GAG TGG AGG TTC GAC<br>I E D P E K E V L E W R F D  | -196 |
| WT  | - AGC AAG CTA GCA TTT CAT CAC GTG GCC CGA GAG CTG CAT CCG<br>                             | -630 |
| OPT | - TCC AAG CTG GCC TTC CAC CAC GTG GCC AGG GAG CTG CAC CCC<br>S K L A F H H V A R E L H P  | -210 |
| WT  | - GAG TAC TAC AAG GAC TGC TGA (SEQ ID NO:30)                                              | -651 |
| OPT | - GAG TAC TAC AAG GAC TGC TAA (contained within SEQ ID NO:1)<br>E Y Y K D C (SEQ ID NO:2) | -216 |

## FIG.2B

4/10

V1Jns/nef      *PstI*  
~~CATGGGTCTTTCAGTCACCGTCCTTGAGATCTGCCACC~~ ATG GGC AAG TGG TCC AAG AGG TCC GTG CCC . . .  
 M    G    G    K    W    S    K    R    S    V    P

..... CAC CCC GAG TAC TAC AAG GAC TGC TAA *BgIII*  
 H    P    E    Y    K    D    C \* *SrfI* *BgIII* ~~AGCCGGCAGATCTGCTGTGCTTAGTTGCCAGC~~ (SEQ ID NO:27)  
 (contained within SEQ ID NO:2)

**FIG.3A**

V1Jns/nef (G2A, LLAA)

..... *PstI*  
~~CATGGGTCTTTCAGTCACCGTCCTTGAGATCTGCCACC~~ ATG GGC AAG TGG TCC AAG AGG TCC GTG CCC . . .  
 M    A    G    K    W    S    K    R    S    V    P

..... CAC CCC GAG TAC TAC AAG GAC TGC TAA *BgIII*  
 H    P    E    Y    K    D    C \* *SrfI* *BgIII* ~~AGCCGGCAGATCTGCTGTGCTTAGTTGCCAGC~~ (SEQ ID NO:28)  
 (contained within SEQ ID NO:6)

**FIG.3B**

V1Jns/tpanef &amp; V1Jns/tpanef(LLAA)

..... *PstI*  
~~CATGGGTCTTTCAGTCACCGTCCTTGAGATCTGCCACC~~ ATG GAT GCA ATG AAG AGA GGG CTC TGC TGT GTG  
 M    D    A    M    K    R    G    L    C    C    V

..... CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GAG *AIC* TCC AAG AGG TCC GTG CCC . . .  
 L    L    C    G    A    V    F    S    P    S    K    R    S    V    P

..... CAC CCC GAG TAC TAC AAG GAC TGC TAA *BgIII*  
 H    P    E    Y    K    D    C \* *SrfI* *BgIII* ~~AGCCGGCAGATCTGCTGTGCTTAGTTGCCAGC~~ (SEQ ID NO:29)  
 (contained within SEQ ID NO:8)

**FIG.3C**

5/10



FIG. 4

6/10



FIG.5

7/10



FIG. 6

8/10



FIG.7A PEPTIDES



FIG.7B PEPTIDES



FIG.7C PEPTIDES

SUBSTITUTE SHEET (RULE 26)



FIG.8C



FIG.8B



FIG.8A

SUBSTITUTE SHEET (RULE 26)

10/10

FIG. 9B  
ANTIGENSFIG. 9A  
ANTIGENS

## SEQUENCE LISTING

&lt;110&gt; APPLICANT: Merck &amp; Co., Inc.

<120> TITLE: POLYNUCLEOTIDE VACCINES EXPRESSING CODON  
OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF

&lt;130&gt; DOCKET/FILE REFERENCE: 20602Y

&lt;160&gt; NUMBER OF SEQUENCES: 30

&lt;170&gt; SOFTWARE: FastSEQ for Windows Version 4.0

&lt;210&gt; SEQ ID NO:1

&lt;211&gt; LENGTH: 671

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM: Human Immunodeficiency Virus - 1

&lt;220&gt; FEATURE:

&lt;221&gt; NAME/KEY: CDS

&lt;222&gt; LOCATION: (12)...(662)

&lt;400&gt; SEQ ID NO:1

|                                                                  |    |
|------------------------------------------------------------------|----|
| gatctgccac c atg ggc ggc aag tgg tcc aag agg tcc gtg ccc ggc tgg | 50 |
| Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp              |    |
| 1 5 10                                                           |    |

|                                                                 |    |
|-----------------------------------------------------------------|----|
| tcc acc gtg agg gag agg atg agg agg gcc gag ccc gcc gcc gac agg | 98 |
| Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg |    |
| 15 20 25                                                        |    |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| gtg agg agg acc gag ccc gcc gtg ggc gtg ggc gcc gtg tcc agg     | 146 |
| Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg |     |
| 30 35 40 45                                                     |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| gac ctg gag aag cac ggc atc acc tcc tcc aac acc gcc gcc acc     | 194 |
| Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr |     |
| 50 55 60                                                        |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| aac gcc gac tgc gcc tgg ctg gag gcc cag gag gac gag gag gtg ggc | 242 |
| Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly |     |
| 65 70 75                                                        |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| ttc ccc gtg agg ccc cag gtg ccc ctg agg ccc atg acc tac aag ggc | 290 |
| Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly |     |
| 80 85 90                                                        |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| gcc gtg gac ctg tcc cac ttc ctg aag gag aag ggc ggc ctg gag ggc | 338 |
| Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly |     |
| 95 100 105                                                      |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| ctg atc cac tcc cag aag agg cag gac atc ctg gac ctg tgg gtg tac | 386 |
| Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr |     |
| 110 115 120 125                                                 |     |

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| cac acc cag ggc tac ttc ccc gac tgg cag aac tac acc ccc ggc ccc | 434 |
| His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro |     |

130

135

140

|                                                                                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ggc atc agg ttc ccc ctg acc ttc ggc tgg tgc ttc aag ctg gtg ccc<br>Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro<br>145 150 155     | 482 |
| gtg gag ccc gag aag gtg gag gag gcc aac gag ggc gag aac aac tgc<br>Val Glu Pro Glu Lys Val Glu Ala Asn Glu Gly Glu Asn Asn Cys<br>160 165 170         | 530 |
| ctg ctg cac ccc atg tcc cag cac ggc atc gag gac ccc gag aag gag<br>Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu<br>175 180 185     | 578 |
| gtg ctg gag tgg agg ttc gac tcc aag ctg gcc ttc cac ccc gtg gcc<br>Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala<br>190 195 200 205 | 626 |
| agg gag ctg cac ccc gag tac tac aag gac tgc taa agccgggc<br>Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys *<br>210 215                                  | 671 |

&lt;210&gt; SEQ ID NO:2

&lt;211&gt; LENGTH: 216

&lt;212&gt; TYPE: PRT

&lt;213&gt; ORGANISM: Human Immunodeficiency Virus - 1

&lt;400&gt; SEQ ID NO:2

|                                                                                    |
|------------------------------------------------------------------------------------|
| Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val<br>1 5 10 15       |
| Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg<br>20 25 30        |
| Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu<br>35 40 45        |
| Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp<br>50 55 60        |
| Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val<br>65 70 75 80     |
| Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp<br>85 90 95        |
| Leu Ser His Phe Leu Lys Glu Lys Gly Leu Glu Gly Leu Ile His<br>100 105 110         |
| Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln<br>115 120 125     |
| Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg<br>130 135 140     |
| Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro<br>145 150 155 160 |
| Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His<br>165 170 175     |
| Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu<br>180 185 190     |
| Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu<br>195 200 205     |
| His Pro Glu Tyr Tyr Lys Asp Cys<br>210 215                                         |

&lt;210&gt; SEQ ID NO:3

&lt;211&gt; LENGTH: 719

<212> TYPE: DNA  
 <213> ORGANISM: Human Immunodeficiency Virus - 1  
  
 <220> FEATURE:  
 <221> NAME/KEY: CDS  
 <222> LOCATION: (2)...(715)  
  
 <400> SEQ ID NO:3

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| c atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg ctg ttt gga   | 49  |
| Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly     |     |
| 1 5 10 15                                                           |     |
| <br>gca gtc ttc gtt tcg ccc agc gag atc tcc tcc aag agg tcc gtg ccc | 97  |
| Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro     |     |
| 20 25 30                                                            |     |
| <br>ggc tgg tcc acc gtg agg gag agg atg agg agg gcc gag ccc gcc gcc | 145 |
| Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala     |     |
| 35 40 45                                                            |     |
| <br>gac agg gtg agg agg acc gag ccc gcc gcc gtg ggc gtg ggc gcc gtg | 193 |
| Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val     |     |
| 50 55 60                                                            |     |
| <br>tcc agg gac ctg gag aag cac ggc gcc atc acc tcc tcc aac acc gcc | 241 |
| Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala     |     |
| 65 70 75 80                                                         |     |
| <br>gcc acc aac gcc gac tgc gcc tgg ctg gag gcc cag gag gac gag gag | 289 |
| Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu     |     |
| 85 90 95                                                            |     |
| <br>gtg ggc ttc ccc gtg agg ccc cag gtg ccc ctg agg ccc atg acc tac | 337 |
| Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr     |     |
| 100 105 110                                                         |     |
| <br>aag ggc gcc gtg gac ctg tcc cac ttc ctg aag gag aag ggc ggc ctg | 385 |
| Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu     |     |
| 115 120 125                                                         |     |
| <br>gag ggc ctg atc cac tcc cag aag agg cag gac atc ctg gac ctg tgg | 433 |
| Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp     |     |
| 130 135 140                                                         |     |
| <br>gtg tac cac acc cag ggc tac ttc ccc gac tgg cag aac tac acc ccc | 481 |
| Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro     |     |
| 145 150 155 160                                                     |     |
| <br>ggc ccc ggc atc agg ttc ccc ctg acc ttc ggc tgg tgc ttc aag ctg | 529 |
| Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu     |     |
| 165 170 175                                                         |     |
| <br>gtg ccc gtg gag ccc gag aag gtg gag gag gcc aac gag ggc gag aac | 577 |
| Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn     |     |
| 180 185 190                                                         |     |
| <br>aac tgc ctg ctg cac ccc atg tcc cag cac ggc atc gag gac ccc gag | 625 |
| Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu     |     |
| 195 200 205                                                         |     |
| <br>aag gag gtg ctg gag tgg agg ttc gac tcc aag ctg gcc ttc cac cac | 673 |

Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His  
 210 215 220  
 gtg gcc agg gag ctg cac ccc gag tac tac aag gac tgc taa 715  
 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys \*  
 225 230 235  
 agcc 719

<210> SEQ ID NO:4  
 <211> LENGTH: 237  
 <212> TYPE: PRT  
 <213> ORGANISM:Human Immunodeficiency Virus - 1

<400> SEQ ID NO:4  
 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly  
 1 5 10 15  
 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro  
 20 25 30  
 Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala  
 35 40 45  
 Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val  
 50 55 60  
 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala  
 65 70 75 80  
 Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu  
 85 90 95  
 Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr  
 100 105 110  
 Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu  
 115 120 125  
 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp  
 130 135 140  
 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro  
 145 150 155 160  
 Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu  
 165 170 175  
 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn  
 180 185 190  
 Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu  
 195 200 205  
 Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His  
 210 215 220  
 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys  
 225 230 235

<210> SEQ ID NO:5  
 <211> LENGTH: 671  
 <212> TYPE: DNA  
 <213> ORGANISM:Human Immunodeficiency Virus - 1

<220> FEATURE:  
 <221> NAME/KEY: CDS  
 <222> LOCATION: (12)...(662)

<400> SEQ ID NO:5  
 gatctgccac c atg gcc ggc aag tgg tcc aag agg tcc gtg ccc ggc tgg 50  
 Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp  
 1 5 10  
 tcc acc gtg agg gag agg atg agg agg gcc gag ccc gcc gcc gac agg  
 98

|     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|
| Ser | Thr | Val | Arg | Glu | Arg | Met | Arg | Arg | Ala | Glu | Pro | Ala        | Ala | Asp | Arg |     |
| 15  |     |     |     |     |     | 20  |     |     |     | 25  |     |            |     |     |     |     |
| gtg | agg | agg | acc | gag | ccc | gcc | gtg | ggc | gtg | ggc | gcc | gtg        | tcc | agg |     | 146 |
| Val | Arg | Arg | Thr | Glu | Pro | Ala | Ala | Val | Gly | Val | Gly | Ala        | Val | Ser | Arg |     |
| 30  |     |     |     |     |     | 35  |     |     | 40  |     |     |            |     | 45  |     |     |
| gac | ctg | gag | aag | cac | ggc | gcc | atc | acc | tcc | tcc | aac | acc        | gcc | acc |     | 194 |
| Asp | Leu | Glu | Lys | His | Gly | Ala | Ile | Thr | Ser | Ser | Asn | Thr        | Ala | Ala | Thr |     |
|     |     |     |     |     |     |     | 50  |     | 55  |     | 60  |            |     |     |     |     |
| aac | gcc | gac | tgc | gcc | tgg | ctg | gag | gcc | cag | gag | gac | gag        | gag | gtg | ggc | 242 |
| Asn | Ala | Asp | Cys | Ala | Trp | Leu | Glu | Ala | Gln | Glu | Asp | Glu        | Glu | Val | Gly |     |
|     |     |     |     |     |     | 65  |     | 70  |     | 75  |     |            |     |     |     |     |
| ttc | ccc | gtg | agg | ccc | cag | gtg | ccc | ctg | agg | ccc | atg | acc        | tac | aag | ggc | 290 |
| Phe | Pro | Val | Arg | Pro | Gln | Val | Pro | Leu | Arg | Pro | Met | Thr        | Tyr | Lys | Gly |     |
|     |     |     |     |     |     | 80  |     | 85  |     | 90  |     |            |     |     |     |     |
| gcc | gtg | gac | ctg | tcc | cac | ttc | ctg | aag | gag | aag | ggc | ggc        | ctg | gag | ggc | 338 |
| Ala | Val | Asp | Leu | Ser | His | Phe | Leu | Lys | Glu | Lys | Gly | Gly        | Gly | Leu | Glu | Gly |
|     |     |     |     |     |     | 95  |     | 100 |     | 105 |     |            |     |     |     |     |
| ctg | atc | cac | tcc | cag | aag | agg | cag | gac | atc | ctg | gac | ctg        | tgg | gtg | tac | 386 |
| Leu | Ile | His | Ser | Gln | Lys | Arg | Gln | Asp | Ile | Leu | Asp | Leu        | Trp | Val | Tyr |     |
|     |     |     |     |     |     | 110 |     | 115 |     | 120 |     | 125        |     |     |     |     |
| cac | acc | cag | ggc | tac | ttc | ccc | gac | tgg | cag | aac | tac | acc        | ccc | ggc | ccc | 434 |
| His | Thr | Gln | Gly | Tyr | Phe | Pro | Asp | Trp | Gln | Asn | Tyr | Thr        | Pro | Gly | Pro |     |
|     |     |     |     |     |     | 130 |     | 135 |     | 140 |     |            |     |     |     |     |
| ggc | atc | agg | ttc | ccc | ctg | acc | ttc | ggc | tgg | tgc | ttc | aag        | ctg | gtg | ccc | 482 |
| Gly | Ile | Arg | Phe | Pro | Leu | Thr | Phe | Gly | Trp | Cys | Phe | Lys        | Leu | Val | Pro |     |
|     |     |     |     |     |     | 145 |     | 150 |     | 155 |     |            |     |     |     |     |
| gtg | gag | ccc | gag | aag | gtg | gag | gag | gcc | aac | gag | ggc | gag        | aac | aac | tgc | 530 |
| Val | Glu | Pro | Glu | Lys | Val | Glu | Glu | Ala | Asn | Glu | Gly | Glu        | Asn | Asn | Cys |     |
|     |     |     |     |     |     | 160 |     | 165 |     | 170 |     |            |     |     |     |     |
| gcc | gcc | cac | ccc | atg | tcc | cag | cac | ggc | atc | gag | gac | ccc        | gag | aag | gag | 578 |
| Ala | Ala | His | Pro | Met | Ser | Gln | His | Gly | Ile | Glu | Asp | Pro        | Glu | Lys | Glu |     |
|     |     |     |     |     |     | 175 |     | 180 |     | 185 |     |            |     |     |     |     |
| gtg | ctg | gag | tgg | agg | ttc | gac | tcc | aag | ctg | gcc | ttc | cac        | cac | gtg | gcc | 626 |
| Val | Leu | Glu | Trp | Arg | Phe | Asp | Ser | Lys | Leu | Ala | Phe | His        | His | Val | Ala |     |
|     |     |     |     |     |     | 190 |     | 195 |     | 200 |     | 205        |     |     |     |     |
| agg | gag | ctg | cac | ccc | gag | tac | tac | aag | gac | tgc | taa | agccccgggc |     |     |     | 671 |
| Arg | Glu | Leu | His | Pro | Glu | Tyr | Tyr | Lys | Asp | Cys | *   |            |     |     |     |     |
|     |     |     |     |     |     | 210 |     | 215 |     |     |     |            |     |     |     |     |

<210> SEQ ID NO:6  
<211> LENGTH: 217  
<212> TYPE: PRT  
<213> ORGANISM: Human Immunodeficiency Virus - 1

<400> SEQ ID NO:6  
Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val

|     |     |     |     |
|-----|-----|-----|-----|
| 1   | 5   | 10  | 15  |
| Arg | Glu | Arg | Met |
| Arg | Met | Arg | Arg |
| Ala | Glu | Pro | Ala |
| Ala | Asp | Arg | Val |
| Arg | Arg |     |     |
| 20  | 25  | 30  |     |
| Thr | Glu | Pro | Ala |
| Ala | Ala | Val | Gly |
| Val | Gly | Ala | Val |
| Ser | Arg | Asp | Leu |
| Glu |     |     |     |
| 35  | 40  | 45  |     |
| Lys | His | Gly | Ala |
| Ile | Thr | Ser | Ser |
| Asn | Thr | Ala | Ala |
| Thr | Asn | Ala | Asp |
| 50  | 55  | 60  |     |
| Cys | Ala | Trp | Leu |
| Glu | Ala | Gln | Glu |
| Asp | Glu | Glu | Val |
| Gly | Phe | Pro | Val |
| 65  | 70  | 75  | 80  |
| Arg | Pro | Gln | Val |
| Pro | Leu | Arg | Pro |
| Met | Thr | Tyr | Lys |
| Asp | Gly | Ala | Val |
| 85  | 90  | 95  |     |
| Leu | Ser | His | Phe |
| Leu | Lys | Glu | Lys |
| Gly | Gly | Leu | Glu |
| Gly | Leu | Ile | His |
| 100 | 105 | 110 |     |
| Ser | Gln | Lys | Arg |
| Gln | Asp | Ile | Leu |
| Asp | Leu | Trp | Val |
| 115 | 120 | 125 |     |
| Gly | Tyr | Phe | Pro |
| Pro | Asp | Trp | Gln |
| Asn | Tyr | Thr | Pro |
| Gly | Pro | Gly | Ile |
| 130 | 135 | 140 |     |
| Phe | Pro | Leu | Thr |
| Phe | Gly | Trp | Cys |
| Cys | Phe | Lys | Leu |
| 145 | 150 | 155 | 160 |
| Glu | Lys | Val | Glu |
| Glu | Ala | Asn | Glu |
| Gly | Gly | Glu | Asn |
| 165 | 170 | 175 |     |
| Pro | Met | Ser | Gln |
| Gly | Ile | Glu | Asp |
| 180 | 185 | 190 |     |
| Trp | Arg | Phe | Asp |
| Ser | Lys | Leu | Ala |
| Phe | His | His | Val |
| 195 | 200 | 205 |     |
| His | Pro | Glu | Tyr |
| Pro | Tyr | Lys | Asp |
| 210 | 215 |     |     |

&lt;210&gt; SEQ ID NO:7

&lt;211&gt; LENGTH: 720

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM: Human Immunodeficiency Virus - 1

&lt;220&gt; FEATURE:

&lt;221&gt; NAME/KEY: CDS

&lt;222&gt; LOCATION: (2)...(715)

&lt;400&gt; SEQ ID NO:7

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| c   | atg | gat | gca | atg | aag | aga | ggg | ctc | tgc | tgt | gtg | ctg | ctg | tgt | gga |
| Met | Asp | Ala | Met | Lys | Arg | Gly | Leu | Cys | Cys | Val | Leu | Leu | Cys | Gly |     |
| 1   | 5   |     |     |     |     |     | 10  |     |     |     |     | 15  |     |     | 49  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gca | gtc | ttc | gtt | tcg | ccc | agc | gag | atc | tcc | tcc | aag | agg | tcc | gtg | ccc |
| Ala | Val | Phe | Val | Ser | Pro | Ser | Glu | Ile | Ser | Ser | Lys | Arg | Ser | Val | Pro |
| 20  | 25  |     |     |     |     |     |     |     |     | 30  |     |     |     |     | 97  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ggc | tgg | tcc | acc | gtg | agg | gag | atg | agg | agg | gcc | gag | ccc | gcc | gcc |     |
| Gly | Trp | Ser | Thr | Val | Arg | Glu | Arg | Met | Arg | Arg | Ala | Glu | Pro | Ala | Ala |
| 35  | 40  |     |     |     |     |     |     |     | 45  |     |     |     |     |     | 145 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gac | agg | gtg | agg | agg | acc | gag | ccc | gcc | gcc | gtg | ggc | gtg | ggc | gcc | gtg |
| Asp | Arg | Val | Arg | Arg | Thr | Glu | Pro | Ala | Ala | Val | Gly | Val | Gly | Ala | Val |
| 50  | 55  |     |     |     |     |     |     |     | 60  |     |     |     |     |     | 193 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tcc | agg | gac | ctg | gag | aag | cac | ggc | gcc | atc | acc | tcc | tcc | aac | acc | gcc |
| Ser | Arg | Asp | Leu | Glu | Lys | His | Gly | Ala | Ile | Thr | Ser | Ser | Asn | Thr | Ala |
| 65  | 70  |     |     |     |     |     |     |     | 75  |     |     |     | 80  |     | 241 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gcc | acc | aac | gcc | gac | tgc | gcc | tgg | ctg | gag | gcc | cag | gag | gac | gag | gag |
| Ala | Thr | Asn | Ala | Asp | Cys | Ala | Trp | Leu | Glu | Ala | Gln | Glu | Asp | Glu | Glu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 289 |

| 85                                                                                                                                        | 90  | 95  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| gtg ggc ttc ccc gtg agg ccc cag gtg ccc ctg agg ccc atg acc tac<br>Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr<br>100 | 105 | 110 | 337 |
| aag ggc gcc gtg gac ctg tcc cac ttc ctg aag gag aag ggc ggc ctg<br>Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu<br>115 | 120 | 125 | 385 |
| gag ggc ctg atc cac tcc cag aag agg cag gac atc ctg gac ctg tgg<br>Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp<br>130 | 135 | 140 | 433 |
| gtg tac cac acc cag ggc tac ttc ccc gac tgg cag aac tac acc ccc<br>Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro<br>145 | 150 | 155 | 481 |
| ggc ccc ggc atc agg ttc ccc ctg acc ttc ggc tgg tgc ttc aag ctg<br>Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu<br>165 | 170 | 175 | 529 |
| gtg ccc gtg gag ccc gag aag gtg gag gag gcc aac gag ggc gag aac<br>Val Pro Val Glu Pro Glu Lys Val Glu Ala Asn Glu Gly Glu Asn<br>180     | 185 | 190 | 577 |
| aac tgc gcc gcc cac ccc atg tcc cag cac ggc atc gag gac ccc gag<br>Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu<br>195 | 200 | 205 | 625 |
| aag gag gtg ctg gag tgg agg ttc gac tcc aag ctg gcc ttc cac cac<br>Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His<br>210 | 215 | 220 | 673 |
| gtg gcc agg gag ctg cac ccc gag tac tac aag gac tgc taa<br>Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys *                          | 225 | 230 | 715 |
| 235                                                                                                                                       |     |     |     |
| agcccc                                                                                                                                    |     |     | 720 |
| <210> SEQ ID NO:8                                                                                                                         |     |     |     |
| <211> LENGTH: 237                                                                                                                         |     |     |     |
| <212> TYPE: PRT                                                                                                                           |     |     |     |
| <213> ORGANISM: Human Immunodeficiency Virus - 1                                                                                          |     |     |     |
| <400> SEQ ID NO:8                                                                                                                         |     |     |     |
| Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly                                                                           |     |     |     |
| 1                                                                                                                                         | 5   | 10  | 15  |
| Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro                                                                           |     |     |     |
| 20                                                                                                                                        | 25  | 30  |     |
| Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala                                                                           |     |     |     |
| 35                                                                                                                                        | 40  | 45  |     |
| Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val                                                                           |     |     |     |
| 50                                                                                                                                        | 55  | 60  |     |
| Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala                                                                           |     |     |     |
| 65                                                                                                                                        | 70  | 75  | 80  |
| Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu                                                                           |     |     |     |
| 85                                                                                                                                        | 90  | 95  |     |
| Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr                                                                           |     |     |     |
| 100                                                                                                                                       | 105 | 110 |     |

Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu  
 115 120 125  
 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp  
 130 135 140  
 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro  
 145 150 155 160  
 Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu  
 165 170 175  
 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn  
 180 185 190  
 Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu  
 195 200 205  
 Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His  
 210 215 220  
 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys  
 225 230 235

&lt;210&gt; SEQ ID NO:9

&lt;211&gt; LENGTH: 4945

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM: E. coli

&lt;400&gt; SEQ ID NO:9

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| tcgcgcgttt  | cggatgac    | ggtaaaaacc  | tctgacacat  | gcagctcccg  | gagacggtca  | 60   |
| cagttgtct   | gtaagcggat  | gccgggagca  | gacaagcccc  | tcagggcgcg  | tcagcgggtg  | 120  |
| ttggcgggtg  | tcggggctgg  | cttaactatg  | cgccatcaga  | gcagattgtt  | ctgagagtgc  | 180  |
| accatatgcg  | gtgtgaaata  | ccgcacagat  | gcgttaaggag | aaaataccgc  | atcagattgg  | 240  |
| ctattggcca  | ttgcatacgt  | tgtatccata  | tcataatatg  | tacattata   | ttggctcatg  | 300  |
| tccaaacatta | ccgcccattt  | gacattgatt  | attgactagt  | tattaatagt  | aatcaattac  | 360  |
| ggggtcattt  | gttcatagcc  | catatatgga  | gttccgcgtt  | acataactt   | cggtaatgg   | 420  |
| cccgccctggc | tgaccgcccc  | acgacccccc  | cccattgacg  | tcaataatga  | cgtatgttcc  | 480  |
| catagtaacg  | ccaataggga  | ctttccattt  | acgtcaatgg  | gtggagtatt  | tacggtaaac  | 540  |
| tgcccacttg  | gcagtacatc  | aagtgtatca  | tatgccaagt  | acgcccccta  | ttgacgtcaa  | 600  |
| tgacggtaaa  | tggccgcct   | ggcattatgc  | ccagttacatg | accttatggg  | actttctac   | 660  |
| ttggcagttac | atctacgtat  | tagtcatcgc  | tattaccatg  | gtgatgcgtt  | tttggcagta  | 720  |
| catcaatggg  | cgtggatagc  | ggtttactc   | acggggattt  | ccaaagtctcc | acccattga   | 780  |
| cgtcaatggg  | agtttttttt  | ggcacaaaaa  | tcaacgggac  | tttccaaaat  | gtcgtaacaa  | 840  |
| ctccgccccca | ttgacgcaaa  | tggcggtag   | gcgtgtacgg  | tggaggtct   | atataaggcag | 900  |
| agctcggtta  | gtgaaccgtc  | agatcgctg   | gagacgccc   | ccacgctttt  | ttgacctcca  | 960  |
| tagaagacac  | cgggaccgtat | ccagcctccg  | cggccgggaa  | cgtgtcattt  | gaacgcggat  | 1020 |
| tccccgtgcc  | aagagtgtacg | taagtaccgc  | ctataacttc  | tataggcaca  | cccctttggc  | 1080 |
| tcttatgtat  | gtctatactgt | ttttggcttg  | gggcctatac  | accccccgtt  | ccttatgtca  | 1140 |
| taggtgatgg  | tatacgcttag | cctataggtt  | tgggttattt  | accattatgg  | accactcccc  | 1200 |
| tattgggtac  | gatactttcc  | attactaatc  | cataacatgg  | ctctttgcctt | caactatctc  | 1260 |
| tattggctat  | atgccaatac  | tctgtcccttc | agagactgtac | acggactctt  | tatTTTACA   | 1320 |
| ggatggggtc  | ccattttata  | tttacaaatt  | cacatataca  | acaacgccc   | ccccctgtcc  | 1380 |
| cgcagttttt  | attaaacata  | gcgtgggatc  | tccacgcgaa  | tctcggttac  | gtgttccgga  | 1440 |
| catgggctct  | tctccggtag  | cggcggagct  | tccacatccg  | agccctggc   | ccatgcctcc  | 1500 |
| agcggctcat  | ggtcgctcgg  | cagctccctt  | ctccttaacag | tggaggccag  | acttaggcac  | 1560 |
| agcacaatgc  | ccaccaccac  | cagtgtccg   | cacaaggccg  | tggcggtagg  | gtatgttct   | 1620 |
| gaaaatgagc  | gtggagattt  | ggctcgacg   | gctgacgcag  | atggaagact  | taaggcagcg  | 1680 |
| gcagaagaag  | atgcaggcag  | ctgagggtt   | gtattctgtat | aagagtcaaa  | ggtaactccc  | 1740 |
| gttgcgggtc  | tgttaacggt  | ggagggcagt  | gtagtcttgc  | cagtacttgt  | tgctgcccgc  | 1800 |
| cgcgccacca  | gacataatag  | ctgacagact  | aacagactgt  | tcctttccat  | gggtcttttc  | 1860 |
| tgcagtccacc | gtccttagat  | caccatggat  | gcaatgaaga  | gagggctctg  | ctgtgtgctg  | 1920 |
| ctgctgtgtt  | gaggcgttcc  | cggtttcc    | agcggatct   | gctgtgcctt  | ctagttgcctt | 1980 |
| gccatctgtt  | gtttggccctt | ccccctgtcc  | ttccttgacc  | ctggaaagggt | ccactcccac  | 2040 |
| tgtcccttcc  | taataaaatg  | aggaaattgc  | atgcattgt   | ctgagtaggt  | gtcattctat  | 2100 |
| tctgggggtt  | gggttggggc  | aggacagcaa  | gggggaggat  | tggaaagaca  | atagcaggca  | 2160 |
| tgctggggat  | gcggtgggct  | ctatggccgc  | tgccggccagg | tgctgaagaa  | ttgacccgg   | 2220 |
| tcctcctggg  | ccagaaagaa  | gcaggcacat  | cccccttctt  | gtgacacacc  | ctgtccacgc  | 2280 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ccctggttct tagtccagc cccactcata ggacactcat agtcaggag ggctccgcct     | 2340 |
| tcaatcccac ccgtaaaagt acttgagcg gtctccct ccctcatcag cccaccaaac      | 2400 |
| caaaccttagc ctccaagagt gggaaagaaat taaagcaaga taggctatta agtgcagagg | 2460 |
| gagagaaaat gcctccaaca tgtgaggaag taatgagaga aatcatagaa ttcttcgc     | 2520 |
| ttcctcgctc actgactcgc tgcgctcggt cgttcggtc cgccgagcgg tatcagctca    | 2580 |
| ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg    | 2640 |
| agaaaaggc cagaaaaagg ccaggaaccg taaaaaggcc gcgttgcgtgg cgccccca     | 2700 |
| taggctccgc cccctgacg agcatcacaa aaatcgacgc tcaagtcaaa ggtggcgaaa    | 2760 |
| cccgacagga ctataaagat accaggcggt tccccctgga agctccctcg tgcgctctcc   | 2820 |
| tgttccgacc ctgccgctta ccggataacct gtccgcctt ctcccttcgg gaagcgtggc   | 2880 |
| gtttctcat agtcacgat gtaggtatct cagttcggtg taggtcggtc gctccaagct     | 2940 |
| gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatcg gtaactatcg    | 3000 |
| tcttgagtcc aaccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag    | 3060 |
| gattagcaga gcgaggtatg taggcgggtc tacagagttc ttgaagtgg ggcctaacta    | 3120 |
| cggctacact agaagaacag tattttgtat ctgcgctctg ctgaagccag ttaccttcgg   | 3180 |
| aaaaagagtt ggtagcttt gatccggcaa acaaaccacc gctggtagcg gtggttttt     | 3240 |
| tgttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt    | 3300 |
| ttctacgggg tctgacgctc agtggAACGA aaactcacgt taagggatt tggcatgag     | 3360 |
| attatcaaaa agatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat    | 3420 |
| ctaaagtata tatagataaa cttggctga cagttacaa tgcttaatca gtgaggcacc     | 3480 |
| tatctcagcg atctgtctat ttgcgtcatc catagttgcc tgactcgggg gggggggcgc   | 3540 |
| ctgaggtctg cctcgtgaag aagggtttgc tgactcatac caggcctgaa tcgccccatc   | 3600 |
| atccagccag aaagtgggg agccacgggt gatgagagct ttgttgttagg tggaccagtt   | 3660 |
| ggtgattttg aacttttgc ttgccacggc acggctcggt ttgtcgggaa gatgcgtgat    | 3720 |
| ctgatccttc aactcagcaa aagttcgatt tattcaacaa agccgcgcgc ccgtcaagtc   | 3780 |
| agcgtaatgc tctgccagt ttacaaccaa ttaaccaatt ctgatttagaa aaactcatcg   | 3840 |
| agcatcaaatt gaaactgcaa ttatttcata tcaggattat caataccata ttttggaaa   | 3900 |
| agccgtttct gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc   | 3960 |
| tggtatcggt ctgcgattcc gactcgtcca acatcaatac aacctattaa ttccccctcg   | 4020 |
| tcaaaaataa ggttatcaag tgagaaaatca ccatgagtga cgactgaatc cggtgagaat  | 4080 |
| ggcaaaaagct tatgcatttc ttccagact tttcaacag gccagccatt acgctcgatca   | 4140 |
| tcaaaaatcac tcgcataac caaaccgtt ttcatcgat attgcgcctg agcgagacga     | 4200 |
| aatacgcgat cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg   | 4260 |
| aacactgcca gcgcataac aatattttca cctgaatcag gatatttttc taatacctgg    | 4320 |
| aatgctgtt tccggggat cgcagtgggt agtaaccatg catcatcagg agtacggata     | 4380 |
| aaatgcttga tggtcggaag aggataaat tccgtcagcc agtttagtct gaccatctca    | 4440 |
| tctgtacat cattggcaac gctaccttt ccattttca gaaacaactc tggcgcatcg      | 4500 |
| ggcttcccat acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagccat    | 4560 |
| ttatacccat ataaatcagc atccatgtt gatatataatc gcccgcctcg gcaagacgtt   | 4620 |
| tcccgttcaa tatggctcat aacacccctt gtattactgt ttatgtaaatc agacagttt   | 4680 |
| attgttcatg atgatataatt ttatcttgc gcaatgtaaatc atcagagatt ttgagacaca | 4740 |
| acgtggctt ccccccccccc ccattattga agcattatc agggttatgg tctcatgagc    | 4800 |
| gatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacattccc     | 4860 |
| cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac ctataaaaat   | 4920 |
| aggcgatata cgaggccctt tcgtc                                         | 4945 |

&lt;210&gt; SEQ ID NO:10

&lt;211&gt; LENGTH: 23

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM:Artificial Sequence

&lt;220&gt; FEATURE:

&lt;223&gt; OTHER INFORMATION: oligonucleotide

&lt;400&gt; SEQ ID NO:10

ctatataaagc agagctcggt tag

23

&lt;210&gt; SEQ ID NO:11

&lt;211&gt; LENGTH: 30

<212> TYPE: DNA  
 <213> ORGANISM:Artificial Sequence  
  
 <220> FEATURE:  
 <223> OTHER INFORMATION: oligonucleotide  
  
 <400> SEQ ID NO:11  
 gtagcaaaga tcttaaggacg gtgactgcag 30

<210> SEQ ID NO:12  
 <211> LENGTH: 39  
 <212> TYPE: DNA  
 <213> ORGANISM:Artificial Sequence  
  
 <220> FEATURE:  
 <223> OTHER INFORMATION: oligonucleotide  
  
 <400> SEQ ID NO:12  
 gtagtgcgtct gaaaatgagc gtggagattg ggctcgcac 39

<210> SEQ ID NO:13  
 <211> LENGTH: 39  
 <212> TYPE: DNA  
 <213> ORGANISM:Artificial Sequence  
  
 <220> FEATURE:  
 <223> OTHER INFORMATION: oligonucleotide  
  
 <400> SEQ ID NO:13  
 gtgcgagccc aatctccacg ctcattttca gacacatac 39

<210> SEQ ID NO:14  
 <211> LENGTH: 4432  
 <212> TYPE: DNA  
 <213> ORGANISM:E. coli

<400> SEQ ID NO:14  
 tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggta 60  
 cagcttgcgtct gtaagcggat gcccggagca gacaagcccg tcagggcgcg tcagcgggtg 120  
 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc 180  
 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg 240  
 ctattggcca ttgcatacgt tgtatccata tcataatatg tacattata ttggctcatg 300  
 tccaaacatta ccgcacatgtt gacattgatt attgactagt tattaatagt aatcaattac 360  
 ggggtcatta gttcatagcc catatatggc gttccgcgtt acataactta cggtaaatgg 420  
 cccgcctggc tgaccgccta acgaccccg cccattgacg tcaataatga cgtatgttcc 480  
 catagtaacg ccaataggga ctttccattt acgtcaatgg gtggagtatt tacggtaaac 540  
 tgcccacttg gcagttacatc aagtgtatca tatgccaatgt acgcccccta ttgacgtcaa 600  
 tgacggtaaa tggccgcctt ggcatttatgc ccagtacatg accttatggg actttcttac 660  
 ttggcagttac atctacgtat tagtcatcgc tattaccatg gtatgcgtt tttggcagta 720  
 catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 780  
 cgtcaatggg agtttgtttt ggcacccaaa tcaacggac tttccaaaat gtcgtacaa 840  
 ctccgcgccta ttgacgcataa tggccgttag gcgtgtacgg tgggaggtct atataagcag 900  
 agctcggtta gtgaaccgtc agatcgctg gagacgccat ccacgctgtt ttgacctcca 960  
 tagaagacac cgggaccgtt ccagcctccg cggccggaa cgggtcattt gaacgcggat 1020  
 tccccgtgcc aagagtgtacg taagtaccgc ctatagatgc tataggccca ccccccttggc 1080  
 ttcttatgca tgctatactg tttttggctt ggggtctata caccccccgtt tcctcatgtt 1140  
 atagggtatg gtatagctt gcctataatgt gtgggttatt gaccattatt gaccactccc 1200  
 ctattgggtt cgtatcttc cattactaat ccataacatg gctctttgcc acaactctt 1260  
 ttattggctt tatgccaata cactgtcctt cagagactga cacggactct gtatttttac 1320  
 aggatgggtt ctcatttttattt atttacaaat tcacatatac aacaccacccg tccccagtgc 1380  
 ccgcagttt tattaaacat aacgtggat ctccacgcga atctcggtt cgttccgg 1440

|                                                                     |      |
|---------------------------------------------------------------------|------|
| acatgggctc ttctccggta gcggcgagc ttctacatcc gagccctgct cccatgcctc    | 1500 |
| cagcgactca tggtcgctcg gcagctcctt gctcctaaca gtggaggcca gacttaggca   | 1560 |
| cagcacgatg cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc   | 1620 |
| tgaaaatgag ctcggggagc gggcttgac cgctgacgca tttggaaagac ttaaggcagc   | 1680 |
| ggcagaagaa gatgcaggca gctgagttgt tggttctga taagagtca aggttaactcc    | 1740 |
| cggtgcggtg ctgttaacgg tggagggcag tggtagtctga gcagttactcg ttgctgccgc | 1800 |
| gcccgcacc agacataata gctgacagac taacagactg ttcccttcca tgggtctttt    | 1860 |
| ctgcagtcac cgtcctttaga tctgctgtgc cttctagttg ccagccatct gttgtttgcc  | 1920 |
| cctccccgt gccttccttg acccttggaa gtgccactcc cactgtccctt tcctaataaaa  | 1980 |
| atgagggaaat tgcatcgcat tgtctgagta ggtgtcattt tattctgggg ggtgggggtgg | 2040 |
| ggcagcacag caagggggag gattgggaa gacaatagcag gcatgctggg gatgcgggtgg  | 2100 |
| gctctatggg taccagggtg ctgaagaatt gaccgcgttc ctcctggggcc agaaagaagc  | 2160 |
| aggcacatcc ccttctctgt gacacaccct gtccacgccc ctgggtctta gttccagccc   | 2220 |
| cactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac   | 2280 |
| ttggagcggt ctctccctcc ctcatcagcc caccaaacc aaccttagcct ccaagagtgg   | 2340 |
| gaagaaaatta aagcaagata ggcttattaa tgcaagggga gagaaaaatgc ctccaacatg | 2400 |
| tgaggaagta atgagagaaa tcatagaatt tcttcgcctt cctcgctcac tgactcgctg   | 2460 |
| cgctcggtcg ttccggctgca gcgagcgta tcagctcact caaaggcggt aatacggtta   | 2520 |
| tccacagaat cagggataaa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc   | 2580 |
| aggaaccgta aaaaggccgc gttgtggcg ttttccata ggctccgccc ccctgacgag     | 2640 |
| catcacaaaa atcgacgctc aagtcaagagg tggcgaaacc cgacaggact ataaagatac  | 2700 |
| caggcggttc ccccttggaa gtccttcgtg cgctctcctg ttccgaccct gccgcttacc   | 2760 |
| ggataacctgt cgccttttc cccttcggga agcgtggcgc tttctcaatg ctcacgctgt   | 2820 |
| aggtatctca gttcggtgtt ggtcggtcgc tccaagctgg gctgtgtgca cgaacccccc   | 2880 |
| gttcagcccg accgctgcgc cttatccggta aactatcgta ttgagtccaa cccggtaaga  | 2940 |
| cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgtt   | 3000 |
| ggcgggtgcta cagagttctt gaagttggg cctaactacg gctacactag aaggacagta   | 3060 |
| tttggtatct ggcgtctgtc gaagccagtt accttcggaa aaagagttgg tagctcttga   | 3120 |
| tccggcaaac aaaccaccgc tggtagcggt ggttttttgg tttcaagca gcagattacg    | 3180 |
| cgcagaaaaa aaggatctca agaagatctt ttgatcttt ctacggggc tgacgctcag     | 3240 |
| tggAACGAAA actcacgttta agggattttt gtcgttgcgt tatcaaaaaag gatttcacc  | 3300 |
| tagatcctt taaattaaaa atgaagttt aaatcaatct aaagtatata tgagtaaact     | 3360 |
| tggtctgaca gttaccaatg cttaatcgtt gaggcaccta tctcagcgtat ctgtctattt  | 3420 |
| cgttcatcca tagttgcctg actccccgtc gtgttagataa ctacgatacg ggagggctta  | 3480 |
| ccatctggcc ccagtgtcgc aatgataccg cgagacccac gctcaccggc tccagatcta   | 3540 |
| tcagcaataa accagccagc cggaaggggcc gagcgcagaa gtggctctgc aactttatcc  | 3600 |
| gcctccatcc agtctattaa ttgttgcgg gaagcttagag taagtagttc gccagttaat   | 3660 |
| agtttgcgc acgttgttgc cattgtaca ggcgttgc ggttgcgttgc tgacgctcgt      | 3720 |
| atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgtatcc cccatgttg  | 3780 |
| tgcaaaaaaa cggtagctc ttccggctt ccgtatgttgc tcagaagtaa gttggccgca    | 3840 |
| gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgt    | 3900 |
| agatgctttt ctgtgactgg tgagttactca accaagtcat tctgagaata gtgtatgcgg  | 3960 |
| cgaccgagtt gctcttgcgc ggcgtcaata cgggataata cccgcgcaca tagcagaact   | 4020 |
| ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg   | 4080 |
| ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgtatctc agcatcttt    | 4140 |
| actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgcgc aaaaaaggaa    | 4200 |
| ataagggcga cacggaaatg ttgaataactc atactcttcc ttttcaata ttattgaagc   | 4260 |
| atttatcagg gttattgtct catgagcgaa tacatattt aatgtatttta gaaaaataaaa  | 4320 |
| caaatacgaaa ttccgcgcac atttcccaaa aaagtgcac ctgacgtcta agaaaccatt   | 4380 |
| attatcatga cattaaccta taaaaatagg cgtatcacga ggccctttcg tc           | 4432 |

&lt;210&gt; SEQ ID NO:15

&lt;211&gt; LENGTH: 4864

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM:E. coli

&lt;400&gt; SEQ ID NO:15

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| tcgcgcgttt cgggtatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca  | 60  |
| cagcttgcgtc gtaagcggt gcccggagca gacaaggcccg tcagggcgcg tcagcgggtg | 120 |
| ttggcggttg tcggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc  | 180 |
| accatatgcg gtgtgaaata ccgcacagat gcgttggagaaaataccgc atcagattgg    | 240 |

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ctattggcca  | ttgcatacgt  | tgtatccata  | tcataatatg  | tacatttata  | ttggctcatg  | 300  |
| tccaaacatta | ccggcatgtt  | gacattgatt  | attgactagt  | tattaatagt  | aatcaattac  | 360  |
| ggggtcatta  | gttcatagcc  | catatatgga  | gttccgcgtt  | acataactta  | cggtaatgg   | 420  |
| cccgccctggc | tgaccgccc   | acgaccccc   | cccattgacg  | tcaataatga  | cgtatgtcc   | 480  |
| catagtaacg  | ccaataggga  | cttccattg   | acgtcaatgg  | gtggagttt   | tacggtaaac  | 540  |
| tgcccacttg  | gcagttacatc | aagtgtatca  | tatgccaagt  | acgcccccta  | ttgacgtcaa  | 600  |
| tgacggtaaa  | tggccgcct   | ggcattatgc  | ccagttacatg | accttatggg  | actttcctac  | 660  |
| ttggcagttac | atctacgtat  | tagtcatcgc  | tattaccatg  | gtgatgcgtt  | tttggcagta  | 720  |
| catcaatggg  | cgtggatagc  | ggtttgactc  | acggggattt  | ccaagtctcc  | acccattga   | 780  |
| cgtcaatggg  | agtttgtttt  | ggcacaaaaa  | tcaacggac   | tttccaaaat  | gtcgtaacaa  | 840  |
| ctccgccc    | ttgacgcaa   | tggcggtag   | gcgtgtacgg  | tgggaggct   | atataaggcag | 900  |
| agctcgaaa   | gtgaaccgtc  | agatcgctg   | gagacgccc   | ccacgctgtt  | ttgacctcca  | 960  |
| tagaagacac  | cgggaccgat  | ccagcctccg  | cggccggaa   | cgtgcattt   | gaacgcggat  | 1020 |
| tccccgtgcc  | aagagtgcg   | taagtaccgc  | ctataagatc  | tataggccca  | cccccttggc  | 1080 |
| ttcttatgca  | tgctatactg  | ttttggctt   | ggggtctata  | caccccgct   | tcctcatgtt  | 1140 |
| atagggtatg  | gtatagctt   | gcctataagg  | gtgggttatt  | gaccattatt  | gaccactccc  | 1200 |
| ctattggta   | cgatactttc  | cattactaat  | ccataacatg  | gctcttgc    | acaactctct  | 1260 |
| ttattggta   | tatgccaata  | cactgtcctt  | cagagactga  | cacggactt   | gtattttac   | 1320 |
| aggatgggt   | ctcattttt   | atttacaaaat | tcacatatac  | aacaccaccc  | tcccagtc    | 1380 |
| ccgcagttt   | tatcaaacat  | aacgtggat   | ctccacgcga  | atctcggtt   | cgttccgg    | 1440 |
| acatgggctc  | ttctccggta  | gcggcggagc  | ttctacatcc  | gagccctgt   | cccatgcctc  | 1500 |
| cagcgactca  | tggcgctcg   | gcagtcctt   | gctcttaaca  | gtggaggcca  | gacttaggca  | 1560 |
| cagcacgatg  | cccaccacca  | ccagtgcc    | gcacaaggcc  | gtggcggtt   | ggtatgttc   | 1620 |
| tgaaaatgag  | ctcggggagc  | gggcttgcac  | cgctgacgca  | tttggaaagac | ttaaggcagc  | 1680 |
| ggcagaagaa  | gatgcaggca  | gctgagttt   | tgtgttctga  | taagagtca   | aggttaactcc | 1740 |
| cgttcggtt   | ctgttaacgg  | tggagggcag  | tgtgtctga   | gcagttactcg | ttgctgccc   | 1800 |
| gcgcgccacc  | agacataata  | gctgacagac  | taacagactg  | ttcccttcca  | tgggtctttt  | 1860 |
| ctgcagtcc   | cgtccttaga  | tctgtgtc    | cttctagtt   | ccagccatct  | gttgtttgc   | 1920 |
| cctcccccgt  | gccttcctt   | acccttggaa  | gtgccactcc  | cactgtcctt  | tcctaataaa  | 1980 |
| atgagaaat   | tgcattcgat  | tgtctgagta  | gggttcattt  | tattctgggg  | gggggggtgg  | 2040 |
| ggcagcacag  | caagggggag  | gattggaaag  | acaatagcag  | gcatgctgg   | gatgcgggtt  | 2100 |
| gctctatggg  | tacccagggt  | ctgaagaatt  | gaccgggtt   | ctccctggcc  | agaaagaagc  | 2160 |
| aggcacatcc  | cctctctgt   | gacacaccct  | gtccacgccc  | ctgggttctt  | gttccagccc  | 2220 |
| cactcatagg  | acactcatag  | ctcaggaggg  | ctccgccttc  | aatcccaccc  | gctaaagtac  | 2280 |
| ttggagcggt  | ctctccctcc  | ctcatcagcc  | caccggatcc  | aaacctggct  | ccaagagtgg  | 2340 |
| gaagaaat    | aagcaagata  | ggcttattaa  | tgcagaggga  | gagaaaatgc  | ctccaaacatg | 2400 |
| tgaggaagta  | atgagagaaa  | tcatagaatt  | tcttcgcctt  | cctcgctcac  | tgactcgctg  | 2460 |
| cgctcggtcg  | ttcggctgcg  | gcgagcggt   | tcaagtcact  | caaaggcggt  | aatacggtt   | 2520 |
| tccacagaat  | cagggataa   | cgcaggaaag  | aacatgttgc  | caaaaggcca  | gcaaaaggcc  | 2580 |
| aggaaccgta  | aaaaggccgc  | gttgcggcg   | ttttccata   | ggctccgccc  | ccctgacgag  | 2640 |
| catcacaaaa  | atcgacgctc  | aagttagagg  | tggcgaaacc  | cgacaggact  | ataaaagatac | 2700 |
| caggcggtt   | cccttggaa   | ctccctcg    | cgctctctgt  | ttccgaccct  | gccgcttacc  | 2760 |
| gataacctgt  | ccgcctttt   | cccttggga   | agcgtggcgc  | tttctcaatg  | ctcacgctgt  | 2820 |
| aggtatctca  | gttcgggtt   | ggtcggtcg   | tccaaagctgg | gctgtgtca   | cgaacccccc  | 2880 |
| gttcagcccg  | accgtgcgc   | tttacccgg   | aactatcg    | ttgagttccaa | cccggttaga  | 2940 |
| cacgacttat  | cgccacttggc | agcagccact  | ggttacagga  | ttagcagagc  | gaggtatgt   | 3000 |
| ggcggtgcta  | cagagtctt   | gaagtgggtt  | cctaactacg  | gctacactag  | aaggacagta  | 3060 |
| tttggtatct  | gcgtctgt    | gaagccagtt  | accttggaa   | aaagagttgg  | tagcttctt   | 3120 |
| tccggcaaa   | aaaccaccgc  | tggtagcggt  | ggttttttt   | tttgcagggca | gcagattacg  | 3180 |
| cgcagaaaaa  | aaggatctca  | agaagatctt  | ttgatctttt  | ctacggggc   | tgacgctcag  | 3240 |
| tggAACGAAA  | actcacgtt   | agggatttt   | gtcatgagat  | tatcaaaaag  | gatcttacc   | 3300 |
| tagatcctt   | taaattaaaa  | atgaagttt   | aatcaatct   | aaagtatata  | tgagtaaact  | 3360 |
| tggtctgaca  | gttaccaatg  | cttaatcgt   | gaggcaccta  | tctcagcgat  | ctgtcttattt | 3420 |
| cgttcatcca  | tagttgcctg  | actccgggg   | ggggggggcgc | tgaggtctgc  | ctcgtaaga   | 3480 |
| aggtgttgct  | gactcatacc  | aggcctgaat  | cgccccatca  | tccagccaga  | aagtgggg    | 3540 |
| gccacgggtt  | atgagagctt  | tgtttaggt   | ggaccagtt   | gtgattttga  | acttttgc    | 3600 |
| tgccacggaa  | cggctgcgt   | tgtcggtt    | atgcgtgatc  | tgatccttca  | actcagcaaa  | 3660 |
| agttcgattt  | atccaacaaa  | gccgcccgtcc | cgtcaagtca  | gcgtatgtt   | ctgcccgtgt  | 3720 |
| tacaaccaat  | taaccaattc  | tgattagaaa  | aactcatcga  | gcatcaaata  | aaactgcaat  | 3780 |
| ttattcatat  | caggattatc  | aataccat    | ttttgaaaaaa | gccgtttctg  | taatgaagga  | 3840 |
| aaaaactcac  | cgaggcagtt  | ccataggatg  | gcaagatcct  | ggtatcggtc  | tgcgattcc   | 3900 |

|             |             |             |            |             |             |      |
|-------------|-------------|-------------|------------|-------------|-------------|------|
| actcgccaa   | catcaataaca | acctattaaat | ttccccctcg | caaaaataag  | gttatcaagt  | 3960 |
| gagaaatcac  | catgagtgac  | gactgaatcc  | ggtgagaatg | gcaaaaagctt | atgcatttct  | 4020 |
| ttccagactt  | gttcaacagg  | ccagccatta  | cgctcgcat  | caaaatcact  | cgcataacc   | 4080 |
| aaaccgttat  | tcattcgtga  | ttgcgcctga  | gcgagacgaa | atacgcgatc  | gctgttaaaa  | 4140 |
| ggacaattac  | aaacaggaat  | cgaatgcaac  | cggcgcagga | acactgcccag | cgcataaca   | 4200 |
| atattttcac  | ctgaatcagg  | atattctct   | aatacctgga | atgctgttt   | cccgggatc   | 4260 |
| gcagtggtga  | gtaaccatgc  | atcatcagga  | gtacggataa | aatgcttgat  | ggtcggaaga  | 4320 |
| ggcataaaatt | ccgtcagcca  | gtttagtctg  | accatctcat | ctgtAACATC  | attggcaacg  | 4380 |
| ctaccttgc   | catgtttcag  | aaacaactct  | ggcgcatcgg | gcttcccata  | caatcgatag  | 4440 |
| attgtcgcac  | ctgattgccc  | gacattatcg  | cgagcccatt | tataccata   | taaatcagca  | 4500 |
| tccatgttgg  | aatttaatcg  | cggcctcgag  | caagacgttt | cccgttgaat  | atggctata   | 4560 |
| acacccccttg | tattactgtt  | tatgtaagca  | gacagttta  | ttgttcatga  | tgatataattt | 4620 |
| ttatcttgc   | caatgtaaaca | tcagagattt  | tgagacacaa | cgtggcttcc  | cccccccccc  | 4680 |
| cattattgaa  | gcatttatca  | gggttattgt  | ctcatgagcg | gatacatatt  | tgaatgtatt  | 4740 |
| tagaaaaata  | aacaaatagg  | ggtccgcgc   | acattttccc | gaaaagtgcc  | acctgacgtc  | 4800 |
| taagaaacca  | ttattatcat  | gacattaacc  | tataaaaata | ggcgtatcac  | gaggcccttt  | 4860 |
| cgtc        |             |             |            |             |             | 4864 |

&lt;210&gt; SEQ ID NO:16

&lt;211&gt; LENGTH: 4867

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM: E. coli

&lt;400&gt; SEQ ID NO:16

|             |             |             |             |             |            |      |
|-------------|-------------|-------------|-------------|-------------|------------|------|
| tcgcgcgttt  | cggtgatgac  | ggtggaaacc  | tctgacacat  | gcagctcccg  | gagacggtca | 60   |
| cagcttgtct  | gtaagcggat  | gccgggagca  | gacaagcccg  | tcagggcgcg  | tcagcgggtg | 120  |
| ttggcgggtg  | tcggggctgg  | cttaactatg  | cgccatcaga  | gcagattgt   | ctgagagtgc | 180  |
| accatatgcg  | gtgtgaaata  | ccgcacagat  | gcgttaaggag | aaaataaccgc | atcagattgg | 240  |
| ctattggcca  | ttgcatacgt  | tgtatccata  | tcataatatg  | tacattata   | ttggctcatg | 300  |
| tccaacatta  | ccgcacatgtt | gacattgatt  | attgactagt  | tattaatagt  | aatcaattac | 360  |
| ggggtcatta  | gttcatagcc  | catatatgga  | gttccgcgtt  | acataacta   | cggtaaatgg | 420  |
| ccgcctggc   | tgaccgcaca  | acgacccccc  | cccattgacg  | tcaataatga  | cgtatgttcc | 480  |
| catagtaacg  | ccaataggga  | ctttccattg  | acgtcaatgg  | gtggagtatt  | tacggtaaac | 540  |
| tgcccacttg  | gcagtacatc  | aagtgtatca  | tatgccaagt  | acgcccccta  | ttgacgtcaa | 600  |
| tgacggtaaa  | tggccgcct   | ggcattatgc  | ccagtagatc  | accttatgg   | actttctac  | 660  |
| ttggcagtac  | atctacgtat  | tagtcatcgc  | tattaccatg  | gtgatgcgtt  | tttggcagta | 720  |
| catcaatggg  | cgtggatagc  | ggtttactc   | acggggattt  | ccaaagtctcc | acccattga  | 780  |
| cgtcaatggg  | agtttgtttt  | ggcacaaaaa  | tcaacggac   | tttccaaaat  | gtcgtaacaa | 840  |
| ctccgcucca  | ttgacgcaaa  | tggccgtag   | gcgtgtacgg  | tggaggtct   | atataagcag | 900  |
| agctcggtta  | gtgaaccgtc  | agatgcctg   | gagacgcac   | ccacgcttt   | ttgacctcca | 960  |
| tagaagacac  | cgggaccgat  | ccagccctcg  | cggccggaa   | cggtcattt   | gaacgcggat | 1020 |
| tccccgtgcc  | aagagtgacg  | taagtaccgc  | ctatagactc  | tataggcaca  | cccctttggc | 1080 |
| tcttatgoat  | gctatactgt  | ttttggcttg  | gggcctatac  | accccccgtt  | ccttatgcta | 1140 |
| taggtgatgg  | tatagcttag  | cctatagggt  | tgggttattt  | accattattt  | accactcccc | 1200 |
| tattgggtac  | gatactttcc  | attactaatac | cataacatgg  | ctctttgc    | caactatctc | 1260 |
| tattggctat  | atgccaataac | tctgtcccttc | agagactgac  | acggactctg  | tatTTTACA  | 1320 |
| ggatggggtc  | ccatttatta  | tttacaaatt  | cacatataca  | acaacgcgt   | cccccggtcc | 1380 |
| cgcagttttt  | attaaacata  | gcgtggatc   | tccacgcgaa  | tctcgggtac  | gtgtccgga  | 1440 |
| catgggctct  | tctccggtag  | cggcggagct  | tccacatccg  | agccctggc   | ccatgcctcc | 1500 |
| agcggctcat  | ggtcgctcgg  | cagctccctt  | ctcctaacag  | tggaggccag  | acttaggcac | 1560 |
| agcacaatgc  | ccaccaccac  | cagtgtccg   | cacaaggccg  | tggcggtagg  | gtatgtgtct | 1620 |
| gaaaatgagc  | gtggagattt  | ggctcgacg   | gctgacgcag  | atggaagact  | taaggcagcg | 1680 |
| gcagaagaag  | atgcaggcag  | ctgagggtt   | gtattctgtat | aagagtca    | ggtaactccc | 1740 |
| gttgcgggtc  | tgttaacgg   | ggagggcagt  | gtagtctgag  | cagtactcg   | tgctccgcg  | 1800 |
| cgcgccacca  | gacataatag  | ctgacagact  | aacagactgt  | tcctttccat  | gggtcttttc | 1860 |
| tgcagtccacc | gtccttagat  | ctgtgtgc    | ttcttagtgc  | cagccatctg  | ttgtttgc   | 1920 |
| ctccccctgt  | ccttccttga  | ccctgaaagg  | tgccactccc  | actgtccctt  | cctaataaaa | 1980 |
| tgaggaaatt  | gatcgccatt  | gtctgagtag  | gtgtcattt   | attctgggg   | gtgggggg   | 2040 |
| gcaggacacg  | aaggggggagg | attggaaaga  | caatagcagg  | catgctgggg  | atgcgggtgg | 2100 |
| ctctatggcc  | gctgcggcca  | ggtgctgaag  | aattgacccg  | gttcctcc    | ggccagaaag | 2160 |
| aaggcaggcac | atccccctct  | ctgtgacaca  | ccctgtccac  | gcccctgg    | cttagttcca | 2220 |

|             |             |            |             |             |             |      |
|-------------|-------------|------------|-------------|-------------|-------------|------|
| gccccactca  | taggacactc  | atagctcagg | agggctccgc  | cttcaatccc  | accgcctaaa  | 2280 |
| gtacttgag   | cggctctc    | ctccctcatc | agcccaccaa  | accaaaccct  | gcctccaaga  | 2340 |
| gtgggaagaa  | attaaagcaa  | gataggctat | taagtgcaga  | gggagagaaaa | atgcctccaa  | 2400 |
| catgtgagga  | agtaatgaga  | gaaatcatag | aatttcttcc  | gcttcctcgc  | tcactgactc  | 2460 |
| gctgcgc     | gtcggtcggc  | tgcggcgagc | ggtatcagct  | cactcaaagg  | cggtatcacg  | 2520 |
| gttatccaca  | gaatcagggg  | ataacgcagg | aaagaacatg  | ttagcaaaag  | gccagcaaaa  | 2580 |
| ggccaggaac  | cgtaaaaagg  | ccgcgttgct | ggcggttttc  | cataggctcc  | gccccctga   | 2640 |
| cgagcatcac  | aaaaatcgac  | gctcaagtca | gaggtggcga  | aacccgacag  | gactataaag  | 2700 |
| ataccaggcg  | tttccccctg  | gaagctccct | cgtgcgtct   | cctgttccga  | ccctgcccgt  | 2760 |
| taccggatac  | ctgtccgcct  | ttctcccttc | ggaaagcgtg  | gchgcttctc  | atagctcacg  | 2820 |
| ctgttaggtat | ctcagttcgg  | tgttaggtcg | tcgctccaag  | ctgggctgtg  | tgcacgaacc  | 2880 |
| ccccgttcag  | cccgaccgct  | gcmccttac  | cggttaactat | cgtctttagt  | ccaaacccggt | 2940 |
| aagacacgac  | ttatcgccac  | tggcagcagc | cactggtaac  | aggattagca  | gagcgaggt   | 3000 |
| tgttaggcgt  | gctacagagt  | tcttgaagt  | gtggcctaac  | tacggctaca  | ctagaagaac  | 3060 |
| agtattttgt  | atctgcgtc   | tgctgaagcc | agttaccc    | ggaaaaaagag | tttgttagctc | 3120 |
| ttgatccggc  | aaacaaaacca | ccgctggtag | cggtggttt   | tttgttgc    | agcagcagat  | 3180 |
| tacgcgcaga  | aaaaaaaggat | ctcaagaaga | tcctttgatc  | tttctacgg   | ggctgtacgc  | 3240 |
| tcagtggAAC  | gaaaactcac  | gttaaggat  | tttggtcatg  | agattatcaa  | aaaggatctt  | 3300 |
| cacctagatc  | cttttaaatt  | aaaaatgaag | ttttaatca   | atctaaagta  | tatatgagta  | 3360 |
| aacttggct   | gacagttacc  | aatgcctaat | cagtgaggca  | cctatctca   | cgatctgtct  | 3420 |
| atttcgttca  | tccatagtt   | cctgactcgg | gggggggggg  | cgctgaggc   | tgcctcgtga  | 3480 |
| agaaggtgtt  | gctgactcat  | accaggcctg | aatcgcccc   | tcatccagcc  | agaaagttag  | 3540 |
| ggagccacgg  | ttgatgagag  | ctttgttga  | ggtggaccag  | tttgttgc    | tgaactttt   | 3600 |
| ctttgccacg  | gaacggctcg  | cggtgtcggg | aagatgcgtg  | atctgatct   | tcaactcage  | 3660 |
| aaaagttcga  | tttattcaac  | aaagccccc  | tcccgtaag   | tcagcgtaat  | gctctccag   | 3720 |
| tgttacaacc  | aattaaccaa  | ttctgattag | aaaaactcat  | cgagcatcaa  | atgaaactgc  | 3780 |
| aatttattca  | tatcaggatt  | atcaatacca | tattttgc    | aaagccgtt   | ctgtatgaa   | 3840 |
| ggagaaaaact | caccgaggca  | gttccatagg | atggcaagat  | cctggtatcg  | gtctgcgatt  | 3900 |
| ccgactcg    | caacatcaat  | acaacctatt | aatttccct   | cgtaaaaat   | aaggttatca  | 3960 |
| agtgagaaat  | caccatgag   | gacgactgaa | tccggtgaga  | atggaaaaag  | cttgcatt    | 4020 |
| tctttccaga  | cttgcacac   | aggccagcca | ttacgctcgt  | cataaaaatc  | actcgcatca  | 4080 |
| acccaaaccgt | tattcattcg  | tgattgcgc  | tgagcgagac  | gaaatacgcg  | atcgctgtt   | 4140 |
| aaaggacaat  | tacaaacagg  | aatcgaatgc | aaccggcgca  | ggaacactgc  | cagcgcatca  | 4200 |
| acaatattt   | cacctgaatc  | aggatattct | tctaataacct | ggaatgctgt  | tttccgggg   | 4260 |
| atcgcagtg   | tgagtaacca  | tgcacatca  | ggagtaacg   | taaaatgc    | tatggtcgga  | 4320 |
| agaggcataa  | attccgtcag  | ccagtttagt | ctgaccatct  | catctgtac   | atcattggca  | 4380 |
| acgctacc    | tgcacatgtt  | cagaaacaac | tctggcgc    | cggtttccc   | atacaatcg   | 4440 |
| tagattgtcg  | cacctgattt  | cccgacatta | tcgcgagccc  | attatacc    | atataatca   | 4500 |
| gcatccatgt  | tggaaattaa  | tcgcggcctc | gagcaagacg  | tttccgtt    | aatatggctc  | 4560 |
| ataacacccc  | ttgttattact | gtttatgtaa | gcagacagtt  | ttattgttca  | tgtatgatata | 4620 |
| tttttatctt  | gtgcaatgt   | acatcagaga | ttttgagaca  | caacgtggc   | ttcccccccc  | 4680 |
| ccccattatt  | gaagcattta  | tcagggttat | tgtctcatga  | gcccatacat  | atttgaatgt  | 4740 |
| atttagaaaa  | ataaacaaat  | aggggttccg | cgcacatttc  | cccgaaaagt  | gccacctgac  | 4800 |
| gtctaagaaa  | ccattattat  | catgacatta | acctataaaa  | ataggcgtat  | cacgaggccc  | 4860 |
| tttcgtc     |             |            |             |             |             | 4867 |

&lt;210&gt; SEQ ID NO:17

&lt;211&gt; LENGTH: 78

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM:Artificial Sequence

&lt;220&gt; FEATURE:

&lt;223&gt; OTHER INFORMATION: oligonucleotide

&lt;400&gt; SEQ ID NO:17

gatcaccatg gatgcaatga agagaggct ctgctgtgt ctgctgtgt gtggaggcgt  
cttcgttgc cccagcga

60

78

&lt;210&gt; SEQ ID NO:18

&lt;211&gt; LENGTH: 78

<212> TYPE: DNA  
<213> ORGANISM:Artificial Sequence

<220> FEATURE:  
<223> OTHER INFORMATION: oligonucleotide

<400> SEQ ID NO:18  
gatctcgctg ggcgaaacga agactgctcc acacagcagc agcacacagc agagccctct 60  
cttcattgca tccatggt 78

<210> SEQ ID NO:19  
<211> LENGTH: 27  
<212> TYPE: PRT  
<213> ORGANISM:Homo sapien

<400> SEQ ID NO:19  
Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly  
1 5 10 15  
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser  
20 25

<210> SEQ ID NO:20  
<211> LENGTH: 33  
<212> TYPE: DNA  
<213> ORGANISM:Artificial Sequence

<220> FEATURE:  
<223> OTHER INFORMATION: oligonucleotide

<400> SEQ ID NO:20  
ggtacaaaata ttggctattt gccattgtcat acg 33

<210> SEQ ID NO:21  
<211> LENGTH: 36  
<212> TYPE: DNA  
<213> ORGANISM:Artificial Sequence

<220> FEATURE:  
<223> OTHER INFORMATION: oligonucleotide

<400> SEQ ID NO:21  
ccacatctcg aggaaccggg tcaatttttc agcacc 36

<210> SEQ ID NO:22  
<211> LENGTH: 38  
<212> TYPE: DNA  
<213> ORGANISM:Artificial Sequence

<220> FEATURE:  
<223> OTHER INFORMATION: oligonucleotide

<400> SEQ ID NO:22  
ggtacagata tcggaaagcc acgttgtgtc tcaaaaatc 38

<210> SEQ ID NO:23  
<211> LENGTH: 36  
<212> TYPE: DNA  
<213> ORGANISM:Artificial Sequence

<220> FEATURE:  
<223> OTHER INFORMATION: oligonucleotide



|                                                                     |      |
|---------------------------------------------------------------------|------|
| cgttgcggtg ctgttaacgg tggagggcag ttagtctga gcagtactcg ttgctgccgc    | 1800 |
| gcgcgccacc agacataata gctgacagac taacagactg ttccttcca tgggtcttt     | 1860 |
| ctgcagtcac cgcccttaga tctgctgtgc cttctagtt ccagccatct gttgttgcc     | 1920 |
| cctccccgt gccttcctt acccttggaa gtgccactcc cactgtcctt tcctaataaaa    | 1980 |
| atgagggaaat tgcatcgcat tgtctgagta ggtgtcattc tattctgggg gttgggggtgg | 2040 |
| ggcagcacag caagggggag gattggaaag acaatagcag gcatgctggg gatgcgggtgg  | 2100 |
| gctctatggg taccagggtg ctgaagaatt gacccggttc ctccctggcc agaaaagaagc  | 2160 |
| aggcacatcc ccttctctgt gacacaccct gtccacgccc ctggttctta gttccagccc   | 2220 |
| caactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac  | 2280 |
| ttggagcggt ctctccctcc ctcatcagcc caccaaacc aacctagct ccaagagtgg     | 2340 |
| gaagaaaatta aagcaagata ggctattaag tgcagaggaa gagaaaatgc ctccaacatg  | 2400 |
| tgagggaaat atgagagaaa tcatagaatt tcttccgctt ctcgcctac tgactcgctg    | 2460 |
| cgctcggtcg ttccggctgca gcgagcggtt tcaagctact caaaggcggt aatacggtta  | 2520 |
| tccacagaat caggggataa cgccaggaaag aacatgtgag caaaaggcca gaaaaaggcc  | 2580 |
| aggaaccgta aaaaggccgc gttgctggcg ttttccata ggctccgccc ccctgacgag    | 2640 |
| catcacaaaa atcgacgctc aagttaggg tggcgaaacc cgacaggact ataaagatac    | 2700 |
| caggcggttc ccccttggaa ctccctcggt cgctctctgt ttccgaccct gcccgttacc   | 2760 |
| ggataacctgt ccgcctttcc cccttcggaa agcgtggcgc tttctcaatg ctcacgctgt  | 2820 |
| aggtatctca gttcggtgtt ggtcggtcg tccaaagctgg gctgtgtgca cgaacccccc   | 2880 |
| gttcagcccg accgctgca cttatccggt aactatcgct ttgagtccaa cccggtaaga    | 2940 |
| cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gagttatgt    | 3000 |
| ggcgggtgcta cagagttctt gaagtgggtt cctaactacg gctacactag aaggacagta  | 3060 |
| tttggtatct ggcgtctgtt gaagccagtt accttcggaa aaagagttgg tagctcttga   | 3120 |
| tccggcaaac aaaccaccgc tggtagcggt ggtttttttgg tttgcaagca gcagattacg  | 3180 |
| cgccagaaaa aaggatctca agaagatctt ttgatctttt ctacggggc tgacgctcag    | 3240 |
| tggAACGAAA actcacgtt agggattttt gtcatgagat tatcaaaaag gatcttcacc    | 3300 |
| tagatccctt taaattaaaa atgaagttt aaatcaatct aaagtatata tgagtaaact    | 3360 |
| tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgt ctgtctattt    | 3420 |
| cgttcatcca tagttgcctg actccggggg gggggggcgc tgaggctgc ctcgtgaaga    | 3480 |
| aggtgttgc gactcatacc aggctgaat cgcccccattca tccagccaga aagtggggaa   | 3540 |
| gccacgggtt atgagagctt tggtaggtt ggaccagttt gtgattttga acttttgctt    | 3600 |
| tgccacggaa cggctcggt tgcgggaaatg atgcgtgatc tgatccttca actcagcaaa   | 3660 |
| agttcgattt attcaacaaa gcccgggtcc cgtcaagtca gctaatgtct ctggcagtgt   | 3720 |
| tacaaccaat taaccaattt tgattagaaa aactcatcga gcatcaaattt aaactgcaat  | 3780 |
| ttattcatat caggattattt aataccatat ttttggaaaa gccgtttctg taatgaagga  | 3840 |
| gaaaactcac cgaggcagtt ccataggatg gcaagatctt ggtatcggtc tgcgattccg   | 3900 |
| actcgtccaa catcaataca acctattttt ttcccctgt caaaaataag gttatcaagt    | 3960 |
| gagaaatcac catgagtgac gactgaatcc ggtgagaatg gcaaaagctt atgcatttct   | 4020 |
| ttccagactt gttcaacagg ccagccattt cgctcgatcat caaaatactt cgcataacc   | 4080 |
| aaaccgttat tcattcgta ttgcgcctga gcgagacgaa atacgcgtatc gctgttaaaa   | 4140 |
| ggacaattac aaacaggaat cgaatgcaac cggcgcagga acactgccaat cgcataaca   | 4200 |
| atattttcac ctgaatcagg atattttctt aataccatggaa atgctgtttt cccggggatc | 4260 |
| gcagtgggtga gtaaccatgc atcatcagga gtacggataa aatgcttgc ggtcgaaaga   | 4320 |
| ggcataaatt cggtcagcca gtttagtctg accatctcat ctgttaacatc attggcaacg  | 4380 |
| ctaccttgc catgtttcag aaacaactctt ggcgcattt gcttccatca caatcgatag    | 4440 |
| attgtcgac ctgattggcc gacattatcg cgagccattt tataccatca taaatcgca     | 4500 |
| tccatgtgg aattttatcg cggccctcgag caagacgtttt cccgttgaat atggctcata  | 4560 |
| acaccccttg tattactgtt tatgtaaatca gacagtttta ttgttcatga tgatatattt  | 4620 |
| ttatcttgtt caatgtaaaca tcagagattt tgagacacaa cgtggcttc cccccc       | 4680 |
| cattatttggaa gcatttatca gggattttt gtcatgagcg gatacatatt tgaatgtatt  | 4740 |
| tagaaaaata aacaaatagg gttccgcgc acatccccca gaaaagtgc acctgacgtc     | 4800 |
| taagaaacca ttattatcat gacattaacc tataaaaaata ggcgtatcac gaggccctt   | 4860 |
| cgtc                                                                | 4864 |

&lt;210&gt; SEQ ID NO:27

&lt;211&gt; LENGTH: 139

&lt;212&gt; TYPE: DNA

&lt;213&gt; ORGANISM:E. coli / HIV-1

&lt;400&gt; SEQ ID NO:27

catgggtctt ttctgcgttc accgtccttg agatctgcca ccatggcgcc caagtggtcc

60

aagaggatccg tgccccaccc cgagtactac aaggactgct aaagcccgaa cagatctgct 120  
 gtgccttcta gttgccagc 139

<210> SEQ ID NO:28  
 <211> LENGTH: 139  
 <212> TYPE: DNA  
 <213> ORGANISM:E. coli / HIV-1

<400> SEQ ID NO:28  
 catgggtctt ttctgcagtc accgtccttg agatctgcca ccatggccgg caagtggtcc 60  
 aagaggatccg tgccccaccc cgagtactac aaggactgct aaagcccgaa cagatctgct 120  
 gtgccttcta gttgccagc 139

<210> SEQ ID NO:29  
 <211> LENGTH: 203  
 <212> TYPE: DNA  
 <213> ORGANISM:E. coli / HIV-1

<400> SEQ ID NO:29  
 catgggtctt ttctgcagtc accgtcctta tatctagatc accatggatg caatgaagag 60  
 agggctctgc tgggtgtctgc tgctgtgtgg agcagtcattc gtttcgcggca gcggatctc 120  
 ctccaaaggagg tccgtgcggcc acccccggta ctacaaggac tgctaaagcc cggccggatc 180  
 tgctgtgcct tctagttgcc agc 203

<210> SEQ ID NO:30  
 <211> LENGTH: 651  
 <212> TYPE: DNA  
 <213> ORGANISM:Human Immunodeficiency Virus - 1

<400> SEQ ID NO:30  
 atgggtggca agtggtcaaa acgttagtgtg cctggatggc ctactgttaag ggaaaagaatg 60  
 agacggactg agccagcagc agatagggtg agacgaactg agccagcagc agtaggggtg 120  
 ggagcagtat ctcgagacct ggaaaaacat ggagcaatca caagtagcaa tacagcagct 180  
 accaatgctg attgtgcctg gctagaagca caagaggatg aggaagtggg tttccagtc 240  
 agacccctcagg tacctttaag accaatgact tacaagggag ctgttagatct tagccacttt 300  
 taaaaagaaa aggggggact ggaagggcta attcactcac agaaaagaca agatatcctt 360  
 gatctgtggg tctaccacac acaaggctac ttccctgatt ggcagaacta cacaccagg 420  
 ccaggaatca gatttcatt gacctttgga tggtgcttca agctagtaacc agttgagccaa 480  
 gaaaaggtag aagaggccaa tgaaggagag aacaactgct ttttacaccc tatgagccag 540  
 catggatag aggacccgga gaaggaagtg ttagagtggaa gtttgacag caagctagca 600  
 tttcatcacg tggcccgaga gctgcattccg gactactaca aggactgctg a 651