Mathematical Statistics2 Tutoring5

Seung Bong Jung

Seoul National University

November 1, 2021

Comparison of Estimators

Let X_1,\ldots,X_n be a random sample from a population with pdf $f(\cdot;\theta)$ for $\theta\in\Theta\subset\mathbb{R}^d$. Below, we write $X=(X_1,\ldots,X_n)$. How to compare different estimators of a parameter of interest, say $g(\theta)\in\mathbb{R}$.

• Loss function: $L(\cdot,\cdot):\Theta\times\mathcal{A}\to\mathbb{R}_+$, where $\mathcal{A}\subset\mathbb{R}$ is an action space for the estimation of $g(\theta)$ such that $L(\theta,g(\theta))=0$. For example,

$$L(\theta, a) = (a - g(\theta))^2, \quad L(\theta, a) = |a - g(\theta)|.$$

• Risk function: For an estimator $\delta(X)$ of $g(\theta)$,

$$R(\theta, \delta) = E_{\theta}L(\theta, \delta(X)).$$

In the case of the squared error loss, the risk $R(\theta,\delta)$ is the mean squared error of $\delta(X)$.

Difficulty with Uniform Comparison

- One would prefer δ_1 to δ_2 if $R(\theta, \delta_1) \leq R(\theta, \delta_2)$ for all $\theta \in \Theta$, and $R(\theta, \delta_1) < R(\theta, \delta_2)$ for some $\theta \in \Theta$.
- The difficulty is that there exists no estimator that is best in this sense. As if it exists, then $r(\theta, \delta_0) \stackrel{\theta \in \Theta}{=} 0$, which leads to a contradiction.

Optimal Estimation

• Restricted class of estimators: One may find an estimator δ_0 in the class of unbiased estimators of $g(\theta)$ such that

$$E_{\theta}(\delta_0(X) - g(\theta))^2 \le E_{\theta}(\delta(X) - g(\theta))^2$$
 for all $\theta \in \Theta$

for any unbiased estimator $\delta(X)$. If exists, such an estimator is called UMVUE (Uniformly Minimum Variance Unbiased Estimator).

• Global measures of performance: The estimator that minimizes the maximum risk $r(\delta) = \max_{\theta \in \Theta} R(\theta, \delta)$ is called a minimax estimator. The estimator that minimizes the average risk

$$r(\delta; \pi) = \int_{\Theta} R(\theta, \delta) \pi(\theta) d\theta$$

for a weight function π is called a Bayes estimator.

The Idea of Sufficiency

Suppose that we observe X_1 and X_2 that are i.i.d. Bernoulli(θ) random variables, where $0 < \theta < 1$.

• The distribution of $Y = X_1 + X_2$;

$$P_{\theta}(Y=0) = (1-\theta)^2, P_{\theta}(Y=1) = 2\theta(1-\theta), P_{\theta}(Y=2) = \theta^2.$$

- When we observe Y, we may produce (X_1^*, X_2^*) , without knowledge of the true θ , that has the same distribution of the original (X_1, X_2) , as follows:
 - (1) Put $(X_1^*,X_2^*)=(0,0)$ when Y=0; (2) put $(X_1^*,X_2^*)=(1,1)$ when Y=2; (3) conduct a randomized experiment and put $(X_1^*,X_2^*)=(1,0)$ and $(X_1^*,X_2^*)=(0,1)$, each with probability 1/2 when Y=1.
- Thus, for any estimator $\delta(X_1,X_2)$ of $g(\theta)$ one may find an estimator that depends only on Y rather than (X_1,X_2) but has the same risk as $\delta(X_1,X_2)$.

Sufficient Statistic

Let X_1,\ldots,X_n be a random sample from a population with pdf $f(\cdot;\theta)$ for $\theta\in\Theta\subset\mathbb{R}^d$. We write $X=(X_1,\ldots,X_n)$ below.

• Sufficient statistic for $\theta \in \Theta$: A statistic Y = u(X) is called a sufficient statistic if the conditional distribution of X given Y does not depend on $\theta \in \Theta$, i.e., if

$$P_{\theta_1}(X \in A|Y=y) \stackrel{\theta_1,\theta_2 \in \Theta}{\equiv} P_{\theta_2}(X \in A|Y=y)$$

for all A and for all y.

Factorization Theorem

A statistic Y=u(X) is a sufficient statistic for $\theta\in\Theta$ if and only if there exist functions f_1 and f_2 such that

$$\prod_{i=1}^n f(x_i; \theta) = f_1(u(x), \theta) \cdot f_2(x) \text{ for all } x \text{ and for all } \theta \in \Theta.$$

Sufficient Statistic: Examples

• $U(\theta_1 - \theta_2, \theta_1 + \theta_2)$, $\theta = (\theta_1, \theta_2) \in \mathbb{R} \times \mathbb{R}_+$ is a sufficient statistic: Assume n > 2.

$$\prod_{i=1}^{n} f(x_i; \theta) = (2\theta_2)^{-n} I_{(\theta_1 - \theta_2, \infty)}(x_{(1)}) I_{(-\infty, \theta_1 + \theta_2)}(x_{(n)}),$$

so that $Y=(X_{(1)},X_{(n)})$ is a sufficient statistic for $\theta\in\mathbb{R} imes\mathbb{R}_+.$

Sufficient Statistic: Examples

- Suppose that $(X_1,Y_1),\ldots,(X_n,Y_n)$ are random samples from the bivariate normal distribution with $E(X_1)=E(Y_1)=0$, $Var(X_1)=Var(Y_1)=1$, and $Cov(X_1,Y_1)=\theta$ for $\theta\in(-1,1)$. Then, the sufficient statistic for θ is given by $(\sum_{i=1}^n (X_i^2+Y_i^2),\sum_{i=1}^n X_iY_i)$.
- This is because

$$\prod_{i=1}^{n} f(x_i; \theta) \propto (1 - \theta^2)^{-n/2}$$

$$\exp\left(-\frac{1}{2\pi(1 - \theta^2)} \left(\sum_{i=1}^{n} X_i^2 - 2\theta \sum_{i=1}^{n} X_i Y_i + \sum_{i=1}^{n} Y_i^2\right)\right)$$

Minimal Sufficient Statistic

- There are many sufficient statistics for a given model. As an extreme example, $X=(X_1,\ldots,X_n)$ itself is also a sufficient statistic. As another example, consider the case where X_1,X_2,X_3 are i.i.d. Bernoulli (θ) random variables and $\theta\in(0,1)$. For latter model, sufficient statistics include (X_1,X_2,X_3) , (X_1+X_2,X_3) , (X_1+X_2,X_3) , (X_1+X_2,X_3) , and (X_1+X_2,X_3) .
- Minimal sufficient statistic: A sufficient statistic is called a minimal sufficient statistic (MSS) if it is a function of any sufficient statistic.

Properties of Sufficient Statistic

- Any statistic that is a 1-1 function of a sufficient statistic for $\theta \in \Theta$ is also a sufficient statistic for $\theta \in \Theta$.
- Any statistic that is a 1-1 function of MSS is also an MSS.
- MLE and SS: The unique MLE of θ , when it exists, is a function of any sufficient statistic for $\theta \in \Theta$.
- Existence of MSS: If the MLE of $\theta \in \Theta$ is unique and it is a sufficient statistic for $\theta \in \Theta$, then it is a minimal sufficient statistic for $\theta \in \Theta$.
- Suppose that there exists $\theta_0 \in \Theta$ such that $\operatorname{supp}(f(\cdot;\theta)) \subset \operatorname{supp}(f(\cdot;\theta_0))$ for all $\theta \in \Theta$. Then, the statistic T(X), as a function defined on Θ in such a way that $T(X)(\theta) = \prod_{i=1}^n (f(X_i;\theta)/f(X_i;\theta_0))$, is an MSS.

Characterization of Minimal Sufficiency

- Suppose that $f_{\theta}(\cdot)$ is pdf with $\theta \in \Theta \subset \mathbb{R}^d$. Let $X = (X_1, \dots, X_n)$ be random samples from the distribution with pdf $f_{\theta}(\cdot)$ and assume that T(X) and T(Y) a sufficient statistic for θ .
- Then, T(X) is a minimal sufficient statistic for θ if and only if

$$\frac{\prod_{i=1}^n f_\theta(x_i)}{\prod_{i=1}^n f_\theta(y_i)}$$
 is independent of $\theta \Leftrightarrow T(X) = T(Y)$

for another random samples $Y = (Y_1, \dots, Y_n)$ from f_{θ} .

• The proof follows from factorization theorem.

MSS: Examples

Let X_1,\ldots,X_n $(n\geq 2)$ be a random sample from $U(\theta_1-\theta_2,\theta_1+\theta_2)$, $\theta=(\theta_1,\theta_2)\in\mathbb{R}\times\mathbb{R}_+$. For this model, $Y=(X_{(1)},X_{(n)})$ is an MSS. *Proof*: The sufficiency was established before. Let the model is reparametrized by $\eta=(\eta_1,\eta_2)$, where $\eta_1=\theta_1-\theta_2$ and $\eta_2=\theta_1+\theta_2$. Then,

$$\prod_{i=1}^{n} f(x_i; \eta) = (\eta_2 - \eta_1)^{-n} I_{(-\infty, x_{(1)}]}(\eta_1) I_{[x_{(n)}, \infty)}(\eta_2).$$

Clearly, $(\hat{\eta}_1,\hat{\eta}_2)=(X_{(1)},X_{(n)})$ is the unique MLE, so that $(\hat{\theta}_1,\hat{\theta}_2)$ defined by

$$\hat{\theta}_1 = (X_{(1)} + X_{(n)})/2, \quad \hat{\theta}_2 = (X_{(n)} - X_{(1)})/2$$

is the unique MLE of $(\theta_1,\theta_2)=((\eta_1+\eta_2)/2,(\eta_2-\eta_1)/2)$. Since $(\hat{\theta}_1,\hat{\theta}_2)$ is a 1-1 function of the SS $(X_{(1)},X_{(n)})$, it is also an SS and thus an MSS. This establishes that $(X_{(1)},X_{(n)})$ is an MSS since it is a 1-1 function of $(\hat{\theta}_1,\hat{\theta}_2)$.

MSS: Examples

- Suppose that $(X_1,Y_1),\ldots,(X_n,Y_n)$ are random samples from the bivariate normal distribution with $E(X_1)=E(Y_1)=0$, $Var(X_1)=Var(Y_1)=1$, and $Cov(X_1,Y_1)=\theta$ for $\theta\in(-1,1)$. Then, the minimal sufficient statistic for θ is given by $(\sum_{i=1}^n(X_i^2+Y_i^2),\sum_{i=1}^nX_iY_i)$.
- The sufficiency was established before. Let $\eta_1(\theta) = -\frac{1}{2}(1-\theta^2)$ and $\eta_2(\theta) = \theta/(1-\theta^2)$. Define a map $\eta:\Theta\to\mathbb{R}^2$ by $\eta(\theta) = (\eta_1(\theta),\eta_2(\theta))$, where $\Theta=(-1,1)$. By characterization of minimal sufficiency, it suffices to show that the set of all differences $\eta(\theta_0) \eta(\theta_1)$ for $\theta_0,\theta_1\in\Theta$, denoted by $\eta(\Theta)\ominus\eta(\Theta)$, spans \mathbb{R}^2 .