

School of Computer Science and Engineering

Winter 2020-21

Prepared for:

Image Processing
(CSE-4019) – PROJECT COMPONENT

Quality analysis and classification of Rice Grains

TEAM MEMBERS:

Malla Jyotsna Sree Mahima-18BCE0912
Pavan Siddharth E-18BCE0044
Preetham Lekkala-18BCE0854

ACKNOWLEDGEMENT

We would like to express our gratitude to VIT University for granting me the oppurtunity of carrying

out the project during the Winter Semester 20-21.

We would like to express my gratitude to my faculty Dr. Swathi J.N for her invaluable guidance

and advice during the ongoing of the project and for always being available whenever we needed

help.

We would like to express gratitude towards Vellore Institute of Technology and all the fellow

students in our class there who all made the learning very fruitful. We was able to learn new

concepts and gained the exposure to implement the concepts in the real world.

We also express gratitude towards all those who have directly or indirectly contributed to the

successful completion of the project.

Place: Vellore

Date: 28.05.21

1. EXECUTIVE SUMMARY

In this project, we take processing, enhancement and analysis of digital images as a way to determine the quality of different rice samples. Image is processed in spatial domain. Image reduction, image enhancement, and image increment, object recognition in spatial domain is applied on grain by grain of different samples of rice to determine its size, colour and quality as whole to grade the grain of rice. Grain quality evaluation is done manually but it is relative, time consuming, may be varying the results costly. The evaluation of the rice grains on the basic grain size and shape using image processing edge detection algorithm is used to find the region of boundaries in each grain. We find the endpoints of each grains and after we measure the length and breadth of rice grains. The performance of Image Processing reduces the time of operation.

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
	CHAPTERS	
1.	Executive Summary	7
2.	Introduction	8
	2.1 Objective	8
	2.2 Motivation	9
	2.3 Background	9
3.	Literature Review	9
4.	Project Description and Goals	12
5.	Technical Specifications	14
6.	Design Approach	16
	6.1 Materials and Methods	16
	6.2 Codes and Standards	16
	6.3 Constrains , Alternatives and Tradeoffs	
7.	Schedule Tasks and Milestones	17
8.	Project Demonstration	22
9.	Cost Analysis	23
10.	Results and Discussion	23

2. INTRODUCTION

Rice is favorable and high consumed cereal grain in Asian countries. It can be easily found all over the world. Many values added products are produced by using rice for human beings. In the rice market, key determinant of milled rice is quality. The quality measurement becomes more important with the import and export trade. Rice samples contain different dispensable objects like paddy, chaff, damaged grains, weed seeds, stones etc. Rice quality is varying according to these impurity content.

The main purpose of the proposed method is, to offer an alternative way for quality control and analysis which reduce the required effort, cost and time. Image processing is significant and advanced technological area where important developments have been made.

In agricultural and farming production quality control and analysis of manufactured goods is vital. Quality of grain is analyzed visually by veteran person and technician. But the effect of such measurement is changing in results and prolonged. The excellence and quality also influenced by the mood and atmosphere of technician; so to overcome the shortcoming occurred due to conventional methods advanced technique i.e. Image processing technique is projected, to Maintaining the Integrity of the Specifications.

Image processing manipulates image for performing some operations on targeted image to get an improved and desirable image. And extort some valuable information from input image. Nowadays, image processing is hastily growing technologies. All types of data have to go through three general phases while using DIP technique which are preprocessing, enhancement, and display, information extraction.

2.1 OBJECTIVE

Use of image processing algorithms to analyse grains quality by its size. To analysis and classify the quality of rice grains.

2.2 MOTIVATION

In this study, the image processing algorithms are developed to segment and identify rice grains. use of image processing algorithm is an efficient method to analyze grains quality by its size. The paper presents a solution of grading and evaluation of rice grains on the basis of grain size and shape using image processing techniques. Specifically, edge detection algorithm is used to find out the region of boundaries of each grain. In thistechnique we find the endpoints of each grain and after using caliper we can measure the length and breadth of rice. This method requires minimum time and it is low in cost.

The conventional methods used for grain shape and size measurement are grain shape tester, dial micrometer and graphical method, but these methods are very lengthy. In above equipment we can measure breadth and length of one grain at a time. The result of this methods is also lengthy and costly and higher possibility of human errors, so it requires high accuracy to assure customers need as well as to conquer restrictions of manual.

Many studies that consider the morphological features of grains such as its area, shape etc. have already been performed. However, the shapes and sizes of the different varieties are too varied to generalize a common formula for the classification of all varieties of rice. In this paper, Fourier features are also extracted from grain images in addition to the spatial features to arrive at an improved accuracy for classification.

2.3 BACKGROUND

The Agricultural industry on the whole is very vast and ancient. Quality assessment of grains is a very big challenge since time immemorial. The project presents a solution for quality evaluation and grading of rice grains using image processing techniques. Commercially the grading of rice is done according to the size of the grain (full, half or broken). The food grains quality is rapidly assessed through visual inspection by human inspectors. The decision-making capabilities of human-inspectors are subjected to external influences such as fatigue, vengeance, bias etc. With the help of image processing techniques, we can overcome that and which are also a non-destructive and

cost-effective techniques. Here we also discuss the procedure used to obtain the percentage quality of rice grains. Rice quality is nothing but the combination of physical and chemical characteristics. Grain size and shape, chalkiness, whiteness, milling degree, bulk density and moisture content are some physical characteristics, gelatinization temperature and gel consistency are chemical characteristics of rice.

3. LITERATURE REVIEW

			<u>Year</u>	of				Future
SL.	Title of	<u>Author</u>	<u>Publi</u>	<u>icati</u>	Datase	Methodology	Pros and	<u>work</u>
NO	<u>Paper</u>	<u>s</u>	<u>on</u>		t Used	Proposed	<u>Cons</u>	<u>possible</u>
1	Rice	Namita	2017	2nd	RGB	Classifying rice	Pros :Canny	A future
	Quality	Patel,Ha	IEEE		IMAGE	grains into three	edge	extension to
	Analysis	rdik	Intern	ationa		categories small	detection is	this work is to
	Based	Jayswal,					used which	11 7
	on	Amit	Confe			seed and long	-	
		Thakkar				seed based on		
	Attribut		Trend			the parameters:	1	•
	es		Electr			area, major axis		
	Using		Inform Comn			length,minor axis	ons:But the	classification
	Image Processi		tion	iumca		length;eccentrici		of seeds. Possibility of
			Techn	ology		ty.Methodology	_ •	•
	ng Techniq		, Ma	•				parameters
	ue.		20,	2017,		preprocessing of		•
	ac.		India	2017,		image(conversio		classification.
						n from rgb to		
							dust which	
						then to	can also be	
						binary),morphol	present in	
						ogical	the rice	
						operations(dilati	grains is also	
						on and	not	
						erosion),edge	considered.	
						detection,object	_	
						measurement,	precise	
						classification of	_ •	
						rice grains	difficult.	

2	Identific	Mr.	Internationa	640	X	A model of	Pros :Unkno	Explicitly
	ation	V.S.Kol	1 Journal of	480		quality grade	wn rice	categorizing
	And	kure,Ms.	Recent	JPEG		testing and	grain	the rice
	Quality	B.N.Sha	Trends in	image		identification is	features can	grains quality
	Testing	ikh	Engineering			built which is	be known	by
	Of Rice		& Research			based on	using the	classifiying
	Grains		(IJRTER)			appearance	image	them into
	Using		(2017).			features such as	processing	groups.Also
	Image					area, major axis	model	rice grains
	Processi					length, minor	combined	can contain
	ng And					axis length,	with neural	dust which
	Neural					aspect ratio, the	networks. <u>C</u>	has its own
	network					morphological	ons: Explicit	features.Dust
						and color with	y the rice	can also be
						technology of	grains have	used for
						computer image	not been	classification.
						processing and	classified	
						neural	into	
						network.The	categories to	
						work process	distingush	
						system consists	them based	
						of image	on the	
						preprocessing,i	features	
						mage	extracted	
						segementation,	using the	
						image feature	model.Notic	
						extraction(color,	ing the	
						area, major	precise	
						axis,minor axis	quality is	
						length,aspect	difficult.	
						ratio),neural		
						network		

3 Rice Nagoda, 2018 IEEE 3966 x Rice sample **Pros:**The For further Sample Nadeesh 13th 2976 is a combination proposed research. Segment a, and Internationa two of full rice, method stone ation Lochand 1 images. broken rice, provides identification and aka Conference One is damaged rice, better results accuracy can Classific Ranathu on than manual be improved the rice paddy, Industrial grains and and by specially ation nga stones foreign objects.. traditional Using and image designing Information with A rice sample methods. further Image Processi **Systems** backgro need to classify Because it is validation accurate and step in the and (ICIIS), pp. und. ng these six groups cost Support 179-184. Second approach. "Rice IEEE, 2018. image is in order to effective. identify rice This Sample the backgro quality. This approach Segment ation und paper requires less and image. provides an time than Classific to manual approach ation separate and process and Using classify objects also it gives of rice better **Image** sample based on algorithmic Processi ng and color and texture efficiency Support features with the because of help of light weighted image processing and algorithms machine and feature learning vectors techniques. The utilized. methodology Cons:But consists of Gray the stone object scale conversion. identificatio noise reduction, n gives less binarization, accuracy. morphological operations applied on the acquired images. Contours of the objects are estimated by

				using contour detection.		
4	ent of quality of rice grain using	Internationa l Conference on Communica tion, Computing and Digital Systems (C-CODE),pp. 265-270.	grain images from HP Scan jet G2410 with black backgro und. Then	processing algorithm to grade the rice on the basis of length, width, area and area of chalky and also worked on the color detection on the rice grain.Methodolo gy consists of image	concluded that some rice are better on the basis of their length, some are better on the basis of their width while some can be termed good in quality on the basis of their area and area of the	also be added to grade the overall quality of the

						grain .	
5	Cost Solution For Rice For Rice For Aller For Rice For Aller For A	Syed Farooq, Halima Tamil, Razia Jamil, Tqra Torij,	Internationa 1 Multi- topic Conference (INMIC), pp. 1-6. IEEE, 2017.	grains were scanned using HP Scanjet G3110 scanner with a resolutio n of 300 dpi.It contains total of 8 images obtained by placing the rice grains on the	parameters including width, length, area, number of large, medium, small and broken rice. In recent years, there has been an increasing trend in automation of rice quality parameters. State of Art Software named Satake RSQI10A Grain Scanner is being used in this regard in various rice mills in Pakistan including Amir Rice Mill. The main aim of this paper is to provide a low cost software product that mimics all the	re provides a low cost solution for rice industry by imitating the state of art Satake RSQI10A Grain Scanner that is being extensively used in rice industry of Pakistan including Amir Rice Mill Sheikhupura . The accurate results and low cost of our software add more confidence in its future use as a replacement	directions could be to apply machine learning algorithms and techniques to intelligently classify different types (nations) of rice including Basmati,

					functionalities of this state of art software.		
6	er Vision Approac	Gunjan Mukherj ee, Arpitam Chatterj ee	Internationa l Conference on Research	images collecte d from	based on PCA	Neural networks. So, it can be more precise under difficult circumstanc es. Cons: Needs quality images and also high processing machines.	classification using classifiers, more robust feature extraction, inclusion of

					raw rice bran are ranging from (16~18%)		
7	and Identific ation of Rice Granule s Using	Nikhade , More Hemlata , M. Krunali, and S. T. Khot	Communica tion Engineering	samples of Basmati rice grains collecte d from stores	Network Pattern Recognition Tool . System is based on features extraction from rice particles. Features which extracted from image of rice	hm is light weighted and more efficient in terms of time complexity. Cons:It detects stones with same dimension	needs to use more features like colour and brightness to differentiate between stones and rice grains that have similar
8	Rice Grain Classific ation using Fourier Transfor m and Morphol ogical Features	_	Science and Technology	work was collecte	Fast Fourier transforms and Morphological Features. Also, both spatial and frequency-based features are also used. Study was able to achieve remarkable accuracy as it	two layers of classificatio n one is naive Bayes tree and second is sequential minimal optimization . Cons: Images suffer from number of	enhanced by making use of photographic images for classification as the current system suffers from a number of environmenta

					spatial features.	al constraints.	
9	Quality Analysis Using	hree Mahale, Prof. Sapana	Internationa l Conference for Convergenc e of Technology - 2017	380 JPEG Images	background for image acquisition. Image is acquired and stored for further analysis. In first pre-processing step image registration takes place and noise is removed from the image by using filter. Shrinkage algorithm is	minimum time; cost is less and gives better results compared with manual results or traditional methods. Co ns: Classific ation is done only based on length/bread th ratio and sometimes this might not give the expected results.	number of parameters are to be measured by image processing techniques. Expansion on this work can target to design such a system which can classify rice grains on the basis of each parameter

				measured. In the fifth step of the algorithm rice is classified according to its size and shape		
10 Standar dization for Export Quality of Oreochr omis niloticus and Chanos chanos based on Quality Index Method using Integrat ed Image Processi ng Algorith ms	za L. Valiente , Danielle Jaye Agron	Received July 15, 2019, accepted July 29, 2020, date of publication August 27, 2020, date of current version August 26, 2020	and Tilapia typical fish	The prototype design concept is shown, the major components of the prototype are Conveyor Belt, Illumination, and Camera. The conveyor belt is used to transport the sample fish along. A camera is fixed mounted above and located at the middle of the conveyor ramp to capture images of the fish, the images will be send to the computer to be analyzed in MATLAB image processing. A	research provided the fish farmers and sellers an efficient way to verify and ensure for consumers that the fishes are of high quality. The study yield 97% accuracy based on International Standards.	sensory assessment would provide the necessary guidelines in developing such progress and also help

					~~~		
					GUI display		
					must be released		
					after a few		
					seconds, the		
					quality		
					assessment		
					procedure is		
					done on the		
					sample and the		
					result of whether		
					it passed the		
					standards will be		
					noted then it		
					would be moved		
					to the desired		
					container, the		
					Bangus sample		
					is separated to a		
					different bin		
					container from		
					Tilapia samples		
11	DoFP-	MAEN	Received	f 225	The proposed	Experiments	To study the
	ML: A	TAKRU	July 13,	DoFP	system uses	on real data	possibility of
	Machine	RI1	2020,	images	Machine	showed that	using the
	Learnin	, (Senior	accepted	for 5	Learning	the	proposed
	g	Member	July 31,	five	Systems namely,	proposed	system on
	Approac	, IEEE),	2020, date	apples.	Support Vector	DoFP-ML	other fruits
	h to	ABUBA	of	80% of	Regression	system is	and
		KAR	publication		(SVR) and	capable of	vegetables,
	Quality	ABUBA	August 17,	dataset	Gaussian	estimating	with the aim
	Monitor	KAR	2020, date	(180	Process	the age	of
	ing		of current	images	Regression	of apples	generalizing
	Using a		version	correspo	(GPR),	with an	it into a
	DoFP		August 26,	nding to	to estimate the	accuracy of	comprehensi
	Polariza		2020	four	age of apples	-	_
	tion			apples)	and determine if	_	invasive and
	Image			is	they are fit for	Polarization	nondestructiv
	Sensor			utilized			e solution for
				to train	even before the		
				and			the shelf life
				validate	appears on the		of food items.
				the	fruit. Initially,	_	This will help
				system	the		big stores to
				зузил	uic		org stores to

					1		1	_
				_	reconstructed		properly	
				fold	images namely,		manage the	
				cross	Degree of Linear			od
				validatio	Polarization		items.	
				n	(DoLP) and			
				method	Angle of			
					Polarization			
					(AoP), are			
					generated from			
					the polarization			
					image and their			
					respective			
					correlations			
					with the actual			
					age of apples (in			
					days) are			
					established.			
12	Assessm	Engr.	2017	Rice	Apply	The main	.For further	
		Zahida	Internationa		Morphology		research, t	
		Parveen,		8	Opening, Apply	1	moisture	
	of Rice		Conference		Morphology	are better on		he
	Grain	Muham	on		Erosion and	the basis of		
	using	mad	Communica		Reconstruction,	their	also be	u
	Optical	Anzar	tion,		Apply	length, some		to
	and	Alam	Computing		Morphology	are better on		he
	Image	7 Huin	and Digital		Closing	the basis of	•	110
	Processi		Systems (C-		Operation, Appl			he
	ng		CODE)			while some		110
	Techniq		CODE)		Maxima-	can be	rice grain.	
	ue				Transform,	termed good		
	uc				Superimposed	in quality on		
					Regional	the basis of		
					Maxima on the	their area		
					Original Original	and		
					Image,Compute			
					the Area of Chalky.	chalky. However the		
					Charky.			
						main con is		
						it is not		
						essential		
						that all		
						features can		
						be present in		

					the rice grain .	
i () () () () ()	Quality	Proceedings of the Third Internationa 1 Conference on Trends in Electronics and Informatics (ICOEI 2019)	type of defect in orange	image is given to the system.Apply Pre-Processing task of using Median Filter .Hybrid Segmentation method (Color + K means) is apply on Image. After that Color, Shape and Texture Feature is extract and given to the Classifier classify the image and give	observed that the SVM classificatio n result changes when we change training/testi ng Ratio. So making theory is used for combining features and combine color and cluster based	two or more classification system would give batter output for fruit industry.

						for other fruits	
14	Grain		Internationa		-		The results of
	Quality	Sharma,		grains	starts before the		1 1
	Detectio		Conference		customer	automated	can me made
	•	D.	on			in food	into an
	using	Sawant	Intelligent		food grains. It's		
	Image		Computing		an initial process	_	
	Processi		and Control			effective	that farmers
	ng		Systems		industries.	solution.	can access
	for		ICICCS		Henceforth, the		
	public		2017		cost is decided	· ·	in mobile for
	distribut ionAn				for each type of grain. In this		machine
	Automat				system, images		
	ed				of wheat and rice	_	
	Tomato					found are	models.
	Quality				. * .	more	
	Grading				camera and then		
	using				it's given to the		
	Clusteri				image		
	ng based				processing unit.		
	Support				All these food		
	Vector				grains are run		
	Machine				along a		
					conveyor belt		
					and the images		
					are captured		
					randomly of		
					different		
					samples.		

15	Fruit	Flordeli	Proceedings	Apple	different types	Experimenta	Further work
			of the Third		of diseases of	-	
			Internationa				consideration
	ation		1	samples	namely, Rot,		
	and	, Danielle	Conference		Scab and Blotch		
	Identific		on		in order to verify		
	ation		Computing		and validate the	, ,	features
	using	arti	Methodolog		given approach.		to enhance
		Manjra	ies and			identificatio	
	Processi	-	Communica		disease	n and	the proposed
	ng		tion		recognition and	classificatio	
			(ICCMC			n of apple	
			2019)			fruit	
			ŕ			diseases.	
					experimentally	Based on	
					approved the	our	
					importance of	experiments	
					clustering	, the more	
					method (K-	precise	
					means clustering	outcome for	
					algorithm) used	the	
					for the	classificatio	
					segmentation of	n of	
					disease and for	apple fruit	
					training and	disease has	
					classification	been	
					multi-class	achieved.	
					support vector	96.07%	
					machine is used	average	
					as a classifier.	classificatio	
						n accuracy	
						achieved by	
						using	
						ISADH+GL	
						CM and	
						96.29%	
						average	
						classificatio	
						n accuracy	
						achieved by	
						using	
						ISADH+CL	
						BP+ZM	

			features combination	
		ı		

#### 4. PROJECT DESCRIPTION AND GOALS

#### 4.1 DESIGN APPROACH

The image processing technique is used for counting the number of rice seeds and classifies them on the basis of length, breadth and length - breadth ratio. Length is the average length of rice grain while breadth is the average breadth of rice grain and length-breadth ratio is calculated as: L/B = [(Average length of rice grain)/(average breadth of rice)]*10. In first pre-processing step image registration takes place and noise is removed from the image by using filter. Shrinkage algorithm used for segmenting the touching kernels which is second step. In third step we perform edge detection to find out the region of boundaries. In fourth step rice seed measurement is done and in the same step length, breadth and length-breadth is also measured. In the fifth step of the algorithm rice is classified according to its size and shape.

#### **METHODS:**

Image pre-processing –

Filter is applied to remove noise which occurs during the acquisition of image. Filter also sharpens the image. Threshold algorithm is used to segment the rice grains from the black background.

Shrinkage morphological operation-

Erosion is applied to separate the touching features of rice grains without losing the integrity of single feature. Dilation process follows erosion process. The goal of dilation is to grow the eroded features to their original shape without re-joining the separated features.

• Edge detection

Edge detection helps to find out the region of boundaries of rice grains. We use canny algorithm to detect the edges.

Object measurement

Measurement indicates the count of rice grains. After getting the count of rice grains, edge detection algorithms applied on the image and outcome of the applied algorithm is we get endpoint values of each grain. We use calliper to join the endpoints and measure the value of length and breadth of each grain. After getting the value of length and breadth we can calculate length-breadth ratio.

#### Object classification

Classification requires all standard, measured and calculated results. The standard database for rice size and shape measurement is referred from laboratory manual on rice grain quality, Directorate of Rice Research, Rajendra nagar, Hyderabad. The classification of rice grains as per the standard database is shown in following tables. Table below indicates classification of rice grains on the basis of length and length- breadth ratio:

<u>SLENDER</u>	Aspect ratio>=3 and aspect ratio<3.5
MEDIUM	Aspect ratio>=2.1 and aspect ratio<3
BOLD .	Aspect ratio>=1.1 and aspect ratio<2.1
ROUND	Aspect ratio>=0.9 and aspect ratio<1
DUST	Aspect ratio>3.5

## 4.2 SYSTEM ARCHITECTURE DESIGN



#### 4.3 CODES AND STANDARDS

#RICE_QUALITY_DETECTION_USING_IMAGE_PROCESSING AND DATA

**VIZUALIZATION** 

**#IMPORTING DATASETS** 

import dash

import dash_core_components as dcc

import dash_html_components as html

import plotly.graph_objects as go

from plotly import subplots

import pandas as pd

import plotly.express as px

import numpy as np

from dash.dependencies import Input, Output, State

import cv2

import PIL.Image as image

from io import BytesIO

import base64

from matplotlib import pyplot as plt

 $app = dash.Dash(\underline{\quad}name\underline{\quad})$ 

#project explanation

text1="""

Rice is favorable and high consumed cereal grain in Asian countries.

It can be easily found all over the world. Many value added products are produced by using rice for human beings.

In the rice market, key determinant of milled rice is quality. The quality measurement becomes more important with

the import and export trade. Rice samples contain different dispensable objects like paddy, chaff, damaged grains, weed seeds, stones etc.

Rice quality is varying according to these impurity content.

" " "

text2="""

The main purpose of the proposed method is, to offer an alternative way for quality control and analysis which reduce the required effort,

cost and time. Image processing is significant and advanced technological area where important developments have been made.

" " "

text3="""

In agricultural and farming production quality control and analysis of manufactured goods is vital.

Quality of grain is analyzed visually by veteran person and technician. But the effect of such measurement is changing in results and prolonged.

The excellence and quality also influenced by the mood and atmosphere of technician; so to overcome the shortcoming occurred due to conventional methods advanced technique i.e.

Image processing technique is projected, to Maintaining the Integrity of the Specifications.

** ** **

text4="""

Image processing manipulates image for performing some operations on targeted image to get an improved and desirable image.

And extort some valuable information from input image. Nowadays, image processing is hastily growing technologies.

All types of data have to go through three general phases while using digital image processing technique which are pre-processing, enhancement, and display, information extraction.

,, ,, ,,

text5="""

The Agricultural industry on the whole is very vast and ancient. Quality assessment of grains is a very big challenge since time immemorial.

The project presents a solution for quality evaluation and grading of rice grains using image processing techniques.

Commercially the grading of rice is done according to the size of the grain (full, half or broken). The food grains quality are rapidly assessed through visual inspection by human inspectors.

The decision making capabilities of human-inspectors are subjected to external influences such as fatigue, vengeance, bias etc.

With the help of image processing techniques we can overcome that and which are also a non-destructive and cost-effective techniques.

Here we also discuss the procedure used to obtain the percentage quality of rice grains.

Rice quality is nothing but the combination of physical and chemical characteristics.

Grain size and shape, chalkiness, whiteness, milling degree, bulk density and moisture content are some physical characteristics, gelatinization temperature and gel consistency are chemical characteristics of rice.

```
"""
```

```
text6="""
```

Many studies that consider the morphological features of grains such as its area, shape etc. have already been performed.

However, the shapes and sizes of the different varieties are too varied to generalize a common formula for the classification of all varieties of rice.

```
" " "
```

```
#classification of rice particals
def get_classification(ratio):
  ratio =round(ratio,1)
  toret=""
  if(ratio>=3 and ratio<3.5):
     toret="Slender"
  elif(ratio>=2.1 and ratio<3):
     toret="Medium"
  elif(ratio>=1.1 and ratio<2.1):
     toret="Bold"
  elif(ratio>0.9 and ratio<=1):
     toret="Round"
  else:
     toret="Dust"
  return toret
#initialisig the values
classification = {"Slender":0, "Medium":0, "Bold":0, "Round":0, "Dust":0}
```

```
avg = {"Slender":0, "Medium":0, "Bold":0, "Round":0, "Dust":0}
#load in greyscale mode
from IPython.display import display, Image
img = cv2.imread("rice.png",0)
display(Image(filename='rice.png'))
#histogram part of the image
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('rice.png',0)
hist,bins = np.histogram(img.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()
plt.plot(cdf_normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
#plt.show()
```

```
#convert into binary
# 160 - threshold, 255 - value to assign, THRESH_BINARY_INV - Inverse binary
ret,binary = cv2.threshold(img,160,255,cv2.THRESH_BINARY)
#averaging filter
kernel = np.ones((5,5),np.float32)/9
dst = cv2.filter2D(binary,-1,kernel)
# -1 : depth of the destination image
kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
#erosion
erosion = cv2.erode(dst,kernel2,iterations = 1)
#dilation
dilation = cv2.dilate(erosion,kernel2,iterations = 1)
#edge detection
edges = cv2.Canny(dilation, 100, 200)
#size detection
                             cv2.findContours(erosion,
contours,
            hierarchy
                                                         cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
print("No. of rice grains=",len(contours))
total_ar=0
```

```
#counting impurities
for cnt in contours:
  x,y,w,h = cv2.boundingRect(cnt)
  aspect_ratio = float(w)/h
  if(aspect_ratio<1):</pre>
     aspect_ratio=1/aspect_ratio
  #print(round(aspect_ratio,2),get_classification(aspect_ratio))
  classification[get_classification(aspect_ratio)] += 1
  if get_classification(aspect_ratio) != "Dust":
     total_ar+=aspect_ratio
  if get_classification(aspect_ratio) != "Dust":
     avg[get_classification(aspect_ratio)] += aspect_ratio
#getting the average value
avg_ar=total_ar/len(contours)
#setting the values for classification of rice
if classification['Slender']!=0:
  avg['Slender'] = avg['Slender']/classification['Slender']
if classification['Medium']!=0:
  avg['Medium'] = avg['Medium']/classification['Medium']
if classification['Bold']!=0:
  avg['Bold'] = avg['Bold']/classification['Bold']
if classification['Round']!=0:
  avg['Round'] = avg['Round']/classification['Round']
```

```
#saving different types of images
cv2.imwrite("img.jpg", img)
cv2.imwrite("binary.jpg", binary)
cv2.imwrite("dst.jpg", dst)
cv2.imwrite("erosion.jpg", erosion)
cv2.imwrite("dilation.jpg", dilation)
cv2.imwrite("edges.jpg", edges)
#histogram part for the edge part of the image
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('edges.jpg',0)
hist,bins = np.histogram(img.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()
plt.plot(cdf_normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
```

```
#plt.show()
#converting rgb to bgr
def readb64(base64_string):
  sbuf = BytesIO()
  sbuf.write(base64.b64decode(base64_string))
  pimg = image.open(sbuf)
  return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
#updating the image
def update_image(pic):
  img = readb64(pic)
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  classification1 = {"Slender":0, "Medium":0, "Bold":0, "Round":0, "Dust":0}
  avg1 = {"Slender":0, "Medium":0, "Bold":0, "Round":0, "Dust":0}
  #convert into binary
  ret, binary = cv2.threshold(img, 160, 255, cv2.THRESH_BINARY)# 160 - threshold,
255 - value to assign, THRESH_BINARY_INV - Inverse binary
  #averaging filter
  kernel = np.ones((5,5),np.float32)/9
  dst = cv2.filter2D(binary, -1, kernel) # -1 : depth of the destination image
  kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
  #erosion
```

```
erosion = cv2.erode(dst,kernel2,iterations = 1)
  #dilation
  dilation = cv2.dilate(erosion,kernel2,iterations = 1)
  #edge detection
  edges = cv2.Canny(dilation, 100, 200)
  ### Size detection
              hierarchy = cv2.findContours(erosion, cv2.RETR_EXTERNAL,
  contours,
cv2.CHAIN_APPROX_SIMPLE)
  #print("No. of rice grains=",len(contours))
  total_ar1=0
  for cnt in contours:
    x,y,w,h = cv2.boundingRect(cnt)
    aspect_ratio = float(w)/h
    if(aspect_ratio<1):
       aspect_ratio=1/aspect_ratio
    print(round(aspect_ratio,2),get_classification(aspect_ratio))
    classification1[get_classification(aspect_ratio)] += 1
    if get_classification(aspect_ratio) != "Dust":
       total_ar1+=aspect_ratio
    if get_classification(aspect_ratio) != "Dust":
       avg1[get_classification(aspect_ratio)] += aspect_ratio
  avg_ar1=total_ar1/len(contours)
```

```
if classification1['Slender']!=0:
    avg1['Slender'] = avg1['Slender']/classification1['Slender']
  if classification1['Medium']!=0:
    avg1['Medium'] = avg1['Medium']/classification1['Medium']
  if classification1['Bold']!=0:
    avg1['Bold'] = avg1['Bold']/classification1['Bold']
  if classification1['Round']!=0:
    avg1['Round'] = avg1['Round']/classification1['Round']
  cv2.imwrite("img1.jpg", img)
  cv2.imwrite("binary1.jpg", binary)
  cv2.imwrite("dst1.jpg", dst)
  cv2.imwrite("erosion1.jpg", erosion)
  cv2.imwrite("dilation1.jpg", dilation)
  cv2.imwrite("edges1.jpg", edges)
  return classification1,avg1,avg_ar1
#displaying image
def get_image(path):
  img=image.open(path)
  # Constants
  img\_width = 710
  img_height = 550
  scale\_factor = 0.5
  fig = go.Figure()
```

```
fig.add_trace(
  go.Scatter(
    x=[0, img_width * scale_factor],
     y=[0, img_height * scale_factor],
     mode="markers",
     marker_opacity=0
  )
)
fig.update_xaxes(
  visible=False,
  range=[0, img_width * scale_factor]
)
fig.update_yaxes(
  visible=False,
  range=[0, img_height * scale_factor],
  scaleanchor="x"
)
fig.add_layout_image(
  dict(
     x=0,
     sizex=img_width * scale_factor,
    y=img_height * scale_factor,
     sizey=img_height * scale_factor,
     xref="x",
     yref="y",
```

```
opacity=1.0,
       layer="below",
       sizing="stretch",
       source=img)
  )
  fig.update_layout(
     width=img_width * scale_factor,
     height=img_height * scale_factor,
    margin={"1": 0, "r": 0, "t": 0, "b": 0},
  )
  fig.show(config={'doubleClick': 'reset'})
  return fig
#average aspect vs classification plot
def get_plot1(classification = classification, avg = avg, avg_ar = avg_ar):
                    subplots.make_subplots(rows=1,cols=1,specs=[[{"type":"bar"}]],
  fig
shared_xaxes=True)
  print(list(classification.keys()))
  print(list(classification.values()))
  plot1
                go.Bar(x=list(classification.keys()), y=list(classification.values()),
name="Particles")
  plot2 = go.Bar(x=list(avg.keys()), y=list(avg.values()), name="Avg. Aspect Ratio")
  fig.add_trace(plot1,1,1)
  fig.add_trace(plot2,1,1)
  fig.add_shape(
```

```
type="line",
     x0=0,
     y0=round(avg_ar,2),
    x1=5,
    y1=round(avg_ar,2),
    line=dict(
       color="LightSeaGreen",
       width=4,
       dash="dashdot",
    ),
  )
  fig.update_layout(
     width = 600,
     height = 350,
    margin = {"l": 5, "r": 5, "t": 30, "b": 5},
     title = "Average Aspect Ratio Vs Classification",
    template = "plotly_dark"
  )
  return fig
#quality annalysis
def get_plot2(classification = classification):
  fig = subplots.make_subplots(rows=1,cols=1,specs=[[{"type":"pie"}]])
  rice = sum(list(classification.values())) - classification['Dust']
  dust = classification['Dust']
```

```
values = [rice, dust]
  labels = ["Rice", "Dust"]
  plot1 = go.Pie(labels=labels, values=values, hole=.3)
  fig.add_trace(plot1,1,1)
  fig.update_layout(
     width = 600,
     height = 350,
     margin = {"1": 65, "r": 5, "t": 60, "b": 50},
     title = "Quality Analysis",
     template = "plotly_dark"
  )
  return fig
#
app.layout = html.Div([
       html.Div([
               html.Div([
                      html.Img(
                              src="logo.jpg",
                              style={"height": "40px", "width": "40px", "border-
radius":"20px"}
                      )
              ],style={"float":"left","padding" : "5px 0 5px 50px"}),
               html.Div(
                      children="Classification and Quality Analysis of Rice",
```

```
style={"float":"left","padding" : "10px 0 10px 10px","font-
size": "17px", "font-weight": "600"}
              ),
              html.Div([
                     html.Div([html.A("Home",href="#home")],
style={"float":"left","padding":"0 10px 0 10px","align-items": "center","font-size":
"15px", "font-weight" :"600"}),
                     html.Div([html.A("About Project",href="#about-project")],
style={"float":"left","padding":"0 10px 0 10px","align-items": "center","font-size":
"15px", "font-weight":"600"}),
                     html.Div([html.A("About
                                                           Us",href="#about-us")],
style={"float":"left","padding":"0 10px 0 10px","align-items": "center","font-size":
"15px", "font-weight":"600"}),
                     html.Div([html.A("Source
                                                          Code",href="#bottom")],
style={"float":"left","padding":"0 10px 0 10px","align-items": "center","font-size":
"15px", "font-weight":"600"}),
              ],style={"float":"right", "padding": "10px 50px 10px 0px"})
       ],className="nav"),
       html.Div([],style={"height":"50px"},id="home"),
       html.Div([
              html.H1(children="Visualisation
                                                  of
                                                        Results",
                                                                      style={"text-
align":"center", "margin":"0", "padding-bottom": "20px", "color": "whitesmoke"}),
              html.Div([
                     html.Div([
                            dcc.Graph(figure=get_plot1(),id="graph1"),
```

```
html.P("Original
                                                                               Image",
style={"margin":"0","padding-bottom":"10px"})
                      ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px" }),
                      html.Div([
                              dcc.Graph(figure=get_plot2(),id="graph2"),
                              html.P("Binary Image", style={"margin":"0","padding-
bottom":"10px"})
                      ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px" }),
               ], style = {"display": "flex", "justify-content": "center", "align-items":
"center", "text-align": "center" }),
               html.Div([]),
               html.Div([
                      html.Div([
                              dcc.Upload([
                                      'Drag and Drop or ',
                                     html.A('Select a File')
                              ],
                              style={
                                      'width': '100%',
                                      'height': '60px',
                                      'lineHeight': '60px',
                                      'borderWidth': '1px',
                                      'borderStyle': 'dashed',
```

```
'borderRadius': '5px',
                                    'textAlign': 'center'
                             }, id="upload-image"),
                     ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px"}),
              ], style = {"display": "flex", "justify-content": "center", "align-items":
"center", "text-align":"center", "width": "100%"})
       ],style = {"color":"black", "padding" : "20px 0 20px 0", "color" :
"whitesmoke"},id='plots'),
       html.Div([
              html.H1(children="Images",
                                                        style={"text-align":"center",
"margin":"0", "padding-bottom": "20px"}),
              html.Div([
                     html.Div([
                             dcc.Graph(figure=get_image("img.jpg"),id="img"),
                             html.P("Original
                                                                            Image",
style={"margin":"0","padding-bottom":"10px"})
                     ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px" }),
                     html.Div([
       dcc.Graph(figure=get_image("binary.jpg"),id="binary"),
                             html.P("Binary Image", style={"margin":"0","padding-
bottom":"10px"})
```

```
], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px"}),
                     html.Div([
                             dcc.Graph(figure=get_image("dst.jpg"),id="dst"),
                             html.P("Dust Image", style={"margin":"0","padding-
bottom":"10px"})
                     ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding":"0 20px 0 20px"})
              ], style = {"display": "flex", "justify-content": "center", "align-items":
"center", "text-align": "center" }),
              html.Div([]),
              html.Div([
                     html.Div([
       dcc.Graph(figure=get_image("erosion.jpg"),id="erosion"),
                             html.P("Erosion",
                                                      style={"margin":"0","padding-
bottom":"10px"})
                     ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px" }),
                     html.Div([
       dcc.Graph(figure=get_image("dilation.jpg"),id="dilation"),
                             html.P("Dilation",
                                                      style={"margin":"0","padding-
bottom":"10px"})
```

```
], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding": "0 20px 0 20px" }),
                      html.Div([
                             dcc.Graph(figure=get_image("edges.jpg"),id="edges"),
                             html.P("Edge
                                                                          Detection",
style={"margin":"0","padding-bottom":"10px"})
                      ], style = {"display": "block", "justify-content": "center", "align-
items": "center", "padding":"0 20px 0 20px"})
              ], style = {"display": "flex", "justify-content": "center", "align-items":
"center", "text-align": "center" })
       ],style = {"color":"black", "background-color" : "lightsteelblue", "border-
radius": "40px 40px 40px 40px", "padding": "20px 0 20px 0"},id='images'),
       html.Div([
              html.H1(children="About Project", style={"text-align":"center"}),
              html.P(children=text1),
              html.P(children=text2),
              html.P(children=text3),
              html.P(children=text4),
              html.P(children=text5),
              html.P(children=text6),
       ],style = {"color":"white", "padding":"10px 50px 10px 50px"},id="about-
project")
])
#app callback
```

```
@app.callback([Output('img', 'figure'),
                        Output('binary', 'figure'),
                        Output('dst', 'figure'),
                        Output('erosion', 'figure'),
                        Output('dilation', 'figure'),
                        Output('edges', 'figure'),
                        Output('graph1', 'figure'),
                        Output('graph2', 'figure')],
                       [Input('upload-image', 'contents')])
#updating the outputs
def update_output(list_of_contents):
       if list_of_contents is not None:
              ind = str(list_of_contents).find(",")
              cla,av,av_ar = update_image(list_of_contents[ind:])
                            get_image("img1.jpg"),
                                                           get_image("binary1.jpg"),
              return
                          get_image("erosion1.jpg"),
                                                          get_image("dilation1.jpg"),
get_image("dst1.jpg"),
get_image("edges1.jpg"), get_plot1(cla, av, av_ar), get_plot2(cla)
       else:
                             get_image("img.jpg"),
                                                            get_image("binary.jpg"),
              return
                           get_image("erosion.jpg"),
get_image("dst.jpg"),
                                                           get_image("dilation.jpg"),
get_image("edges.jpg"), get_plot1(), get_plot2()
#hosting the website
if __name__ == '__main__':app.run_server(debug=False)
```

## 5. SCHEDULE TASKS AND MILETSTONES

## **Gantt Chart**



# 6. PROJECT DEMONSTRATION

# **INPUT IMAGE**



## HISTOGRAM BEFORE PROCESSING



The binary form of image





The erosion form of image



The dialation form of image



The edges form of image





#### 7. PROJECT COST ANALYSIS

This project aims in reducing the total amount of physical labour required to classify rice grains and to analyse the rice grains based on their quality. Machine Learning and Python Flask have been used to achieve the objectives of this project.

At the end of the project we are successful in developing a website which can take input in the form of rice images and classify the rice grains and as well as determine the quality of the rice grains.

This is an efficient approach and as well as a cost-efficient approach.

# 8. RESULTS AND DISCUSSION











Grouped Bar chart – Used for Classification purpose

- Blue Bar indicates the Number of Rice grains.
- Red Bar indicates Average Aspect Ratio.

Pie chart – Used for Quality Analysis purpose

- Blue Section indicates percentage of Rice grains in the given sample.
- Red Section indicates percentage of Dust in the given sample.

In this project, we are classifying the rice grain sample taken into various categories and also analysing its quality based on its aspect ratio, so it is not possible to compare with other works. Existing works only detect the rice grains, or calculate number of rice grains in the given sample but our work helps to analyse the quality of rice sample and classify them into particular category.

Quality of grains in the samples should be nearly 100% accurate and it should be suitable to grade large quality of grains efficiently, which otherwise will consume lot of time in manual analysis, this feature will be able to save lot of time & human effort

The image analysis algorithms are applied on image in which rice grains are randomly placed and spread in one layer. If the error occurs like touching kernels shrinkage operation works efficiently for separating the connecting part from point touching kernels. Edge detection is performed to find out the region of boundaries and endpoints of each grain; and then after that using calliper length and breadth can be measured. After getting the values for length and breadth, length-breadth ratio is to be calculated. In this study, the image processing algorithms are developed to segment and identify rice grains. use of image processing algorithm is an efficient method to analyse grains quality by its size. The main benefit of proposed method is it requires minimum time; cost is less and gives better results compared with manual results or traditional methods. We have successfully executed all the steps proposed. Last two steps include calculating the size of the grains and then classifying them according to the Table provided.