

로봇 시스템 통합 예제 테스트 프로젝트 기술 문서 V1.0

1 목차

1	예제 테스트	프로젝트 프로그램 선택 및 실행3	
	1.1	시작 화면	3
	1.2	예제 프로그램 "AAA_WSEX 및 AAA_WSEX_V"	4
	1.3	프로그램 시작하기	5
2	프로그램 설	g정/교육	9
	2.1 UFran	ne 설정 - 일반9	
	2.2	트레이 참조 위치	10
3	로봇 설정 .		11
	3.1	UTOOL / TCP 설정	11
	3.2	탑재체 설정	11
	3.3	DCS 설정	12
	3.3.1 DCS	도구 모델	
	3.3.2 DCS	안전 지대	13
4	등록 목록		14
	4.1	숫자 레지스터	14
	4.2	위치 레지스터	16
	4.3	I/O 목록	18
5	프로그램 서	I부 정보	19
	5.1	프로그램 목록	19

1 예제 테스트 프로젝트 프로그램 선택 및 실행

1.1 시작 화면

로봇 컨트롤러가 켜지면 다음과 같은 시작 지침이 표시됩니다.

1.2 예제 프로그램 "AAA WSEX 및 AAA WSEX V"

WS 예제 테스트 프로젝트에는 2가지 주요 프로그램이 있습니다.

- 프로그램 "AAA_WSEX"는 iRVision이 없는 예시 프로그램입니다.
- 프로그램 "AAA_WSEX_V"는 iRVision이 없는 예제 프로그램입니다.

두 프로그램 모두 동일한 기본 순서를 따릅니다.

- 1) 입력 트레이에서 실린더를 선택합니다.
 - a. AAA_WSEX는 고정된 위치를 사용합니다.
 - b. AAA_WSEX_V는 iRVision을 사용합니다.
- 2) 척에 로드하고 시뮬레이션된 가공 사이클을 기다립니다.
- 3) 실린더를 디버링 도구로 가져가세요
- 4) 조립 트레이의 실린더에 링을 조립합니다.
- 5) 링이 있는지 확인하세요.
 - a. AAA_WSEX는 마이크로 스위치를 사용합니다.
 - b. AAA_WSEX_V는 iRVision을 사용합니다.
- 6) 조립된 부품을 OK 또는 NOK 출력 트레이에 넣으세요.

1.3 프로그램 시작

프로그램을 시작하려면 다음 단계를 따르세요.

- a. 로봇은 'AUTO' 모드여야 하며 모든 E-Stop이 해제되어야 하며 셀 도어('울타리')가 닫혀 있어야 합니다.
- b. 로봇이 오류 상태에 있어서는 안 됩니다. 로봇이 오류 상태를 보이면 "RESET" 키를 누르세요. 펜던트를 학습시켜 오류를 재설정해 보세요.
- c. "AAA_WSEX" 프로그램을 선택하고 컨트롤러 전면에 있는 '사이클 시작' 버튼을 누르세요. (티치 펜던트 활성화 스위치는 OFF 상태여야 하며, 자동/T1/T2 스위치는 '자동' 위치에 있어야 합니다.)

d. AAA_DEMO 프로그램은 HOME 위치에서 시작될 것으로 예상됩니다.

집에서 로봇

집에 없는 로봇

로봇이 HOME 위치에 없는 경우 다음 화면이 나타납니다.

적절한 작업을 선택하고 'ENTER'를 누르세요.

옵션 2의 경우 계속하다 ["] 선택되었습니다 , 그러면 확인 화면이 표시됩니다.

프로그램이 시작되기 전에 화면에 부품이 올바른 시작 위치에 있는지 확인하라는 메시지가 표시됩니다.

부품이 표시된 위치에 있는지 확인한 후 "계속"을 누르세요.

f) 프로그램이 실행 중일 때 상태 화면이 표시됩니다.

빨간색과 녹색 램프는 로봇이 현재 셀의 어느 스테이션에서 작업하고 있는지를 보여주며, 처리 중인 부품 번호도 표시됩니다.

2 프로그램 설정/교육

로봇 동작은 모두 "사용자 프레임"을 기준으로 학습되므로 트레이 위치가 변경되더라도 전체 프로그램을 다시 학습할 필요가 없고 프레임만 다시 학습하면 됩니다.

2.1 UFrame 설정 - 일반

사용자 프레임 수정은 메뉴>설정>프레임 기능을 사용하여 수행됩니다.

문서 제목: Worldskills 예제 테스트 프로젝트 기술 문서

2.2 트레이 참조 위치

모든 프레임은 동일한 방식으로 학습되었으며, 실린더는 그리퍼에 고정되어 부품 위치 플레이트의 구멍 위에 중앙에 위치했습니다.

- 1) 오리엔트 원점
- 2) X 방향점
- 3) Y 방향점
- 4) 실린더가 부품 위치 지정기의 상단 표면에 닿았을 때 감지하기 위한 얇은 카드/종이 조각

문서 제목: Worldskills 예제 테스트 프로젝트 기술 문서

20 페이지 중 10 페이지

3 로봇 설정

3.1 UTOOL / TCP 설정

슈크 그리퍼의 간단한 모양과 장착으로 인해 Z축 방향으로 105mm 오프셋이 있는 간단한 TCP로 충분합니다.

3.2 페이로드 설정

이 애플리케이션의 탑재량은 매우 낮습니다. 따라서 0.5kg의 탑재량 하나만 설정되었습니다.

3.3 DCS 설정

DCS(Dual Check Safety)는 로봇이 실수로 셀 벽에 부딪히는 것을 방지하기 위해 사용되었습니다. 이를 위해서는 도구 모델과 안전 구역 설정이 필요합니다.

3.3.1 DCS 도구 모델.

하나의 "Line_seg" 유형 모델을 사용하는 간단한 DCS 모델이 사용되었습니다.

자세한 내용은 DCS 매뉴얼을 참조하세요.

3.3.2 DCS 안전 지대

대각선을 사용하여 직육면체 영역을 정의하고 직육면체 내부의 한 지점에서 시작하여 안전한 직육면체 내부로 이어지는 간단한 DCS 직교 위치 확인 영역이 설정되었습니다. 셀의 "왼쪽 위"에서 "오른쪽 아래"까지 – 아래 스크린샷 참조 - 여기서

로봇이나 도구가 이 구역의 가장자리에 가까워지면 로봇은 멈춥니다.

자세한 내용은 DCS 매뉴얼을 참조하세요.

4 레지스터 목록

4.1 숫자 레지스터

레지스터는 셀 작업을 제어하기 위한 설정을 저장하는 데 사용되며, 프로그램에서 내부적으로 사용됩니다.

댓글 등록		설명	기본값
35	WS TP 루프	10개 부분을 모두 처리하기 위해 메인 프로그램 루프를 제 어하는 데 사용됩니다.	1에서 10까지
36	부분 OK NOK	마이크로스위치의 결과를 저장하는 데 사용됩니다. 또는 iRVision 링 체크	1 = 괜찮음 0 = 노르웨이 크로네
37	시력 검사	iRVision Check에서 사용됨(R[36]에 복사됨)	1 = 괜찮음 0 = 노르웨이 크로네
40	입력 용지함 개수	입력 트레이에 사용할 PR[]에 대한 인덱스	50 > 60
41	Assy 트레이 Cnt	조립 트레이에 사용할 PR[]에 대한 인덱스	70 > 80
42	Out OK 트레이 개수	OK 출력 트레이에 사용할 PR[]에 대한 인덱스	90 > 100
43	출력 NOK 트레이 개수	NOK 출력 트레이에 사용할 PR[] 인덱스	110 > 120
44	HMI 카운터	HMI에 표시할 부품 번호	1에서 10까지
46	디버링 속도	디버링 동작에 사용할 속도(mm/s)	50
47	디버링 반경	디버링 동작 위치를 계산하는 데 사용할 반경(mm)	20
48	디버링 깊이	디버링 동작 위치 계산에 사용할 깊이(mm)	5
50	그립 딜레이	슈크 그리퍼가 열리거나 닫히는 시간(초)	0.5
51	임시 HMI R[]	HMI 설정을 위한 임시 레지스터	-
52	조립 지연	조립 시 실린더를 링에 삽입한 후 대기하는 시간(초)	0.5

댓글 등록		설명	기본값
54	척 펄스	가공 시뮬레이션 중 빨간색 LED가 켜지거나 꺼지는 시간	.5
2		(초)	
55	척 카운터	세다	-
56	척Lmt	Chuck 시뮬레이션을 위한 On/Off 사이클 수	2
58	ADL 속도	접근 및 선형 속도(mm/s)	200
		출발 움직임	
59	제이 SPd	조인트 에어 컷 모션에 대한 조인트 속도(%)	25
60	조립 속도	선형 조립 모션 100에 대한 속도(mm/s)	
133	HMIMIM	연결된 iPendant 컨트롤을 통해 HMI 디스플레이	1/0
134	HMI 어셈블리	를 제어하기 위해 1/0으로 설정할 레지스터	
135	HMI 척		
136	HMI 디버링		
137	HMI 마이크로		
138	HMI 정상		
139	нмі пок		

4.2 위치 레지스터 위치 레지스터

는 위치를 저장하는 데 사용됩니다.

등록하다 45 첫 앱 접근, 적재, 하역, 척 출발 위치 46 첫 로드 47 첫 뎁 입력 용지함 1 입력 트레이 실린더 위치	
46 석로드 47 척데 50 입력 용지함 1 입력 트레이 실린더 위치	
46 석로드 47 척데 50 입력 용지함 1 입력 트레이 실린더 위치	
50 입력 용지함 1 입력 트레이 실린더 위치	
59 입력 용지함 10	
60 입력 트레이 앱 위 위치를 기준으로 접근, 선택, 출발 위치	
61 입력 용지함 선택	
62 입력 용지함 Dep	
70 조립 트레이 1 조립 트레이 실린더 위치	
79 조립 트레이 10	
80 Assy Tray 앱 접근, 밀기(=조립), 위쪽을 기준으로 한 출발 위치	
81 Assy Tray Push 위치	
82 Assy Tray Dep	
90 확인 트레이 1 출력 OK 트레이 실린더 위치	
-	
99 확인 트레이 10	
100 OK 트레이 앱 위 위치를 기준으로 접근, 선택, 출발 위치	
101 OK 트레이 위치	
102 OK 트레이 뎁	

110	NOK 트레이 1	출력 nOK 트레이 실린더 위치
-	-	
119	NOK 트레이 10	
120	NOK 트레이 앱	위 위치를 기준으로 접근, 선택, 출발 위치
121	NOK 트레이 플레이스	
122	NOK 트레이 뎁	
129	디버링 앱	디버링 작업을 위한 위치
130	디버링 1	
131	디버링 2	
132	디버링 3	
133	디버링 4	

4.3 I/O 목록

RO[]	논평	설명	
7 8	^{오픈 그리퍼} 클로즈 그리퍼	그리퍼 제어 - 보완으로 설정	

하다[]	논평	설명
101	홈 신호	Ref Pos에 연결됨
103	척 클로즈	척 제어 - 보완으로 설정
104	척 오픈	
105	빨간색 LED	기계가 사용 중
106	녹색 LED	기계 없음
107	디버링 켜짐	디버링 도구 제어

DI[]	논평	설명
101	마이크로스위치	

5 프로그램 세부 정보

5.1 프로그램 목록

프로그램	논평	설명
	WC 에테 TD	
AAA_WSEX	WS 예제 TP	메인 WS 예제 테스트 프로젝트 프로그램
		- 조립 검사를 위한 마이크로스위치 사용
AAA_WSEX	WS Ex TP 비전	메인 WS 예제 테스트 프로젝트 프로그램
		– iRVision을 사용하여 피킹 및 조립 확인
AA_홈	집으로 이사하다	이 프로그램은 로봇을 홈 위치로 이동시킵니다.
		이는 조인트 정의 위치를 사용하므로 UFrame 또는 UTool 설정
		과 무관합니다.
전원 공급_WS	전원 켜기 메시지	WS 예제 프로젝트에 대한 메시지
WS_ASSY	푸시 어시 트레이	조립 트레이의 링에 실린더 삽입
WS_CHK	시작 확인 확인	HMI를 표시하고 시작할 수 있는지 확인하세요
WS_척	L/UL 추클	척 로드/언로드 및 가공 시뮬레이션
WS_COPY_PR	설정 유틸리티	PR[]을 복사하는 유틸리티(이를 나열하는 것은 선택 사항)
WS_디버링	디버링 파트	오프셋을 계산하고 버링 도구 주위로 부품을 이동합니다.
WS_INIT_R	초기화 디스플레이 R[]	HMI 디스플레이를 위한 레지스터 초기화
WS_IRVPICK	1부를 받으세요	iRVision을 사용하여 입력 트레이에서 부품 찾기 및 선택
WS_픡인	트레이에 넣기	iRVision 없이 입력 트레이에서 부품 선택
WS_PL_NOK	NOK 트레이를 놓으세요	NOK 트레이에 부품을 놓으세요
WS_PL_OK	OK 트레이를 놓으세요	부품을 OK 트레이에 넣으세요
GETDATA	PC 데이터 가져오기	사전 정의된 시스템 프로그램 - 이 애플리케이션에서는 사용
		되지 않음
GRP_GRIP	그립 토트	슈크 그리퍼가 달린 프로그램 투 그립 토트백
그룹_상대방	릴리스 토트	슈크 그리퍼가 달린 토트백 출시 프로그램
그룹_토그	iRV 캘리브 시작	그리퍼 상태 간 전환
IRV_CALSTART	부품 비전을 얻으세요	iRVision 로봇 생성 그리드 시작 위치
		교정

프로그램	논평	설명
IRV_CHK_CONV 체크 컨	비어 토트백	컨베이어 끝에서 토트의 방향을 확인하고 값을 레지스터에 반환합니다.
IRV_CHK_PAL	Chk 팔레트 토트	팔레트에 있는 토트 위치 확인 - 높이가 다르고 팔레트 제거 순서가 고정되어 있기 때문에 팔레트 위치당 하나의 비전 프로세스가 사용된다는 점에 유의하세요.
리스트메뉴	목록 메뉴 매크로	'메뉴 유틸리티' 옵션으로 설치된 매크로입니다. 이 매크로는 사용자에게 3가지 선택 사항을 표시하는 데 사용됩니다. 로봇이 집에 없어요
오퍼메뉴	입력 메뉴 매크로	'메뉴 유틸리티' 옵션으로 설치된 매크로입니다. 이 매크로는 이 응용 프로그램에서 사용되지 않습니다.
프롬프트톡	프롬프트 상자 확인	'메뉴 유틸리티' 옵션으로 설치된 매크로입니다. 이 매크로는 이 응용 프로그램에서 사용되지 않습니다.
프롬프틴	프롬프트 상자 YN	'메뉴 유틸리티' 옵션으로 설치된 매크로입니다. 이 매크로는 로봇이 HOME에 없을 때 사용자의 선택을 확인하는 데 사용됩니 다.
요청메뉴 데이터 전송 센데브트 SENDSYSV 통계 페이지	PC 메뉴 요청 PC 데이터 보내기 PC 이벤트 보내기 PC 시스템 변수 보내기 StatusMenu 매크로	미리 정의된 시스템 프로그램 - 이 애플리케이션에서는 사용 되지 않음