Roteiro para Apresentação

João Vitor de O. Fraga January 19, 2025

Roteiro da Apresentação

1. Slide de Título

- Apresente-se: "Bom dia a todos. Meu nome é João Vitor de O. Fraga, estudante da Universidade Federal do Ceará."
- Introduza o tema: "Hoje apresentarei o Método Polinomial de Schelkunoff, uma abordagem poderosa para o design de padrões de radiação em arrays de antenas."
- Estrutura da apresentação: "Vamos começar com uma introdução, discutir princípios teóricos, explorar aplicações práticas, apresentar simulações e concluir com os benefícios do método."

2. Sumário

• Explique o sumário: "Esta apresentação abordará cinco tópicos principais: introdução, aplicações, princípios teóricos, simulação prática e conclusão."

3. Introdução

Contexto Histórico

- "O Método de Schelkunoff foi desenvolvido por Sergei Alexander Schelkunoff em 1943 [?], [?]."
- "Foi fundamental para o avanço de tecnologias de radar durante a Segunda Guerra Mundial [?]."
- "Baseia-se no uso de polinômios para controlar padrões de radiação em sistemas de antenas [?]."

Problemas e Objetivos

- Problemas: "Interferências e lóbulos laterais reduzem a eficiência de sistemas de antenas."
- Objetivos:
 - "Posicionar nulos nos padrões de radiação por meio de raízes polinomiais."
 - "Controlar lóbulos principais e laterais para personalizar padrões."
 - "Permitir ajustes finos para atender a requisitos específicos."

4. Conceito Fundamental

- "O fator de array pode ser representado como um polinômio onde as raízes correspondem aos nulos desejados."
- "Sua fórmula geral é $AF(\psi) = \sum_{n=1}^{N} a_n e^{j(n-1)\psi}$."
- "Os parâmetros incluem N, o número de elementos, e ψ , que depende do espaçamento d e do deslocamento de fase β ."

Exemplo de Array

- "Considere um array linear de 4 elementos com espaçamento $d=\frac{\lambda}{4}$."
- "O fator de array é dado por $AF(\psi) = 1 + z + z^2 + z^3$, que pode ser fatorado como (z-1)(z-j)(z+j)."
- Explique o gráfico: "O padrão de radiação apresenta lóbulos principais e nulos bem definidos."

5. Aplicações e Benefícios

Aplicações

- "Telecomunicações: Controle de interferências em redes celulares e Wi-Fi [?], [?]."
- "Radares: Suprime reflexões indesejadas para aumentar a precisão [?]."
- "Astronomia: Redução de interferências externas em radiotelescópios [?]."
- "Sistemas de Defesa: Otimização de antenas para vigilância e comunicações [?]."

Benefícios

- "Alta precisão no controle de lóbulos laterais e posicionamento de nulos."
- "Flexibilidade para diferentes configurações de antenas."
- "Eficiência energética com concentração no lóbulo principal."

6. Princípios Teóricos

Polinômios e Raízes

- "O fator de array pode ser representado como $AF(z)=\sum_{n=1}^N a_n z^{n-1},$ onde $z=e^{j\psi}$ [?], [?]."
- "Também pode ser fatorado como $AF(z)=a_N\prod_{k=1}^{N-1}(z-z_k)$, onde z_k são as raízes correspondentes aos nulos."

Região Visível e Invisível

- "O número complexo z é representado no círculo unitário |z|=1 [?], [?]."
- "A região visível está no intervalo $-90^{\circ} \leq \theta \leq 90^{\circ}$, dependendo do espaçamento d [?]."

7. Simulação

Algoritmo

• "Este pseudocódigo implementa o cálculo do fator de array e o posicionamento de nulos."

Resultados

- "Os parâmetros usados foram $N=4, d=\frac{\lambda}{4}$, com nulos em $\theta=[30^\circ, 90^\circ, 150^\circ]$."
- "O gráfico mostra lóbulos principais e nulos bem definidos, validando o método."

8. Conclusão

- "O Método de Schelkunoff oferece alta precisão no controle de padrões de radiação."
- "É amplamente aplicado em telecomunicações, radares e astronomia, conectando teoria à prática."
- "Obrigado pela atenção!"