CSC 339 – Theory of Computation Spring 2022-2023

3. Deterministic Finite Automata

Outline

- Introduction
- Deterministic Finite Automata (DFA)
- Examples
- Languages accepted
- Formal definition
- Regular languages

Introduction

- An *automaton* (plural: *automata*) is a mathematical model of a computing device.
- Why build models?
 - Mathematical simplicity: easier to manipulate abstract models of computers than actual computers.
 - Large classes of real computers are just special cases of more general models.
- Goal:
 - Figure out in which cases we can build automata for particular languages.
- A *finite automaton* is a simple type of mathematical machine for determining whether a string is contained within some language.

Alphabet $\Sigma = \{a, b\}$

For every state, there is a transition for every symbol in the alphabet.

Language Accepted

Language accepted: $L = \{abba\}$

Language Accepted

To accept a string:

All the input string is scanned and the last state is accepting.

To reject a string:

All the input string is scanned and the last state is non-accepting.

Language Accepted

Language Accepted: $L = \{a^n b : n \ge 0\}$

Other Examples

Alphabet: $\Sigma = \{1\}$

Language accepted:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even} \}$$

= $\{\varepsilon, 11, 1111, 111111, ...\}$

Formal Definition

• Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

Set of States Q

Example:

Input Alphabet Σ

 $\mathcal{E} \not \in \Sigma$: the input alphabet does not contain \mathcal{E}

Example: $\Sigma = \{a,b\}$ a,b b a,b a,b

Set of Accepting States $F \subseteq Q$

Transition Function $\delta: Q \times \Sigma \to Q$

$$\delta(q, x) = q'$$

Describes the result of a transition from state q with symbol x

Extended Transition Function

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q,w) = q'$$

Describes the resulting state after scanning string w from state q

Special Case

For any state
$$q$$
: $\delta^*(q,\varepsilon) = q$

In general: $\delta^*(q, w) = q'$

implies that there is a walk of transitions

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

states may be repeated

Language Accepted by DFA

Language of DFA M:

It is denoted as L(M) and contains all the strings accepted by M

We say that a language L' is accepted (or recognized) by DFA M if L(M) = L'

- For a DFA $M = (Q, \Sigma, \delta, q_0, F)$
- Language accepted by *M*:

•
$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Language rejected by M:

$$\overline{L(M)} = \left\{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \right\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

 $L(M) = \{\varepsilon\}$

Language of the empty string

$$\Sigma = \{0,1\}$$

L(M)= {all binary strings containing substring 001}

$$\Sigma = \{0,1\}$$

 $L(M) = \{ \text{all binary strings without substring } 001 \}$

Regular Languages

Definition:

- A language L is regular if there is a DFA M that accepts it (L(M)=L)
- The languages accepted by all DFAs form the family of regular languages

Examples of Regular Languages

```
{abba} \{\varepsilon, ab, abba\}

\{a^nb: n \ge 0\} \{awa: w \in \{a,b\}^*\}

{all strings in \{a,b\}^* with prefix ab\}

{all binary strings without substring 001}

\{x: x \in \{1\}^* \text{ and } x \text{ is even}\}

{\} \{\varepsilon\} \{a,b\}^*
```

There exist automata that accept these languages

Examples of Non-Regular Languages

There exist languages that are not Regular:

$$L = \{a^n b^n : n \ge 0\}$$

ADDITION = {
$$x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k$$
}

There is no DFA that accepts these languages (proof: later class)

Readings

- Textbook:
 - Part 1, Section 1.1 (Finite Automata)