Topology

August bergquist

December 22, 2022

12.5 If α , α' , β , β' , are paths in a space X such that $\alpha \sim \alpha'$ and $\beta \sim \beta'$, and $\alpha(1) = \beta(0)$, then $\beta \sim \alpha' \beta'$.

 proof

For path equivalence to even make sense in this context, we will have to verify that $\alpha \cdot \beta(0) = \alpha' \cdot \beta'(0)$ and $\alpha \cdot \beta(1) = \alpha' \cdot \beta'(1)$. This is pretty much trivial, as by definition of the concatenation of paths and construction of α, α', β and $\beta', \alpha \cdot \beta(0) = \alpha(0) = \alpha'(0) = \alpha' \cdot \beta'(0)$ and $\alpha \cdot \beta(1) = \beta(2-1) = \beta(1) = \beta'(1) = \beta'(2-1) - \alpha' \cdot \beta'(1)$.

By definition of path equivalences, there exists homotopies H_{α} and H_{β} from α to α' and from β to β' respectively. We must construct a homotopy from $\alpha \cdot \beta$ to $\alpha' \cdot \beta'$. Consider the function $H:[0,1]^2 \to X$ defined

$$H(s,t) = \begin{cases} H_{\alpha}(2s,t) & 0 \le s \le 1/2 \\ H_{\beta}(2s-1,t) & 1/2 \le s \le 1 \end{cases}.$$

First, we will show that H is continuous. Since H_{α} and H_{β} are both continuous functions from $[0,1]^2$ to X, all that we need to show is that they agree at s=1/2. For the first case of the definition of H, we have $H(1/2,t)=H_{\alpha}(2(1/2),t)=H_{\alpha}(1,t)$. Since H_{α} is a homotopy from α to α' , it follows by definition of a homotopy that $H_{\alpha}(1,t)=\alpha(1)$. Furthermore, by the second definition, $H(1/2,t)=H_{\beta}(2(1/2)-1,t)=H_{\beta}(0,t)$ for all $t\in[0,1]$. Also, since H_{β} is a homotopy from β to β' , it follows that $H_{\beta}(0,t)=\beta(0)$. Furthermore, by construction $\beta(0)=\alpha(1)$. So both of the piecewise definitions of H agree on their overlap.

We must now show that the remaining requirements of a homotopy from $\alpha\beta$ to $\alpha' \cdot \beta'$ are met.

• First, we must show that $H(s,0) = \alpha' \cdot \beta'(s)$ for all $s \in [0,1]$. By our definition of H, we have

$$H(s,0) = \begin{cases} H_{\alpha}(2s,0) & 0 \le s \le 1/2 \\ H_{\beta}(2s-1,0) & 1/2 \le s \le 1 \end{cases}.$$

Furthermore, by construction of H_{α} as a homotopy from α to α' (I'm getting tired of writing this sentence lol), $H_{\alpha}(2s,0) = \alpha(2s)$ for all whenever $2s \in [0,1]$ (which is true whenever $0 \le s \le 1/2$). Similarly, $H_{\beta}(2s-1,0) = \beta(2s-1)$ whenever $2s-1 \in [0,1]$ (which happens if and only if $1/2 \le s \le 1$). Hence, substituting back into H(s,0), we have

$$H(s,0) = \begin{cases} \alpha(2s) & 0 \le s \le 1/2 \\ \beta(2s-1) & 1/2 \le s \le 1 \end{cases}.$$

This is just the definition of $\alpha \cdot \beta$, hence $H(s,0) = \alpha \cdot \beta(s)$ for all $s \in [0,1]$.

• Now we want to show that $H(s,1) = \alpha' \cdot \beta'(s)$ for all $s \in [0,1]$. Plugging in t=1, we have

$$H(s,1) = \begin{cases} H_{\alpha}(2s,1) & 0 \le s \le 1/2 \\ H_{\beta}(2s-1,1) & 1/2 \le s \le 1/2 \end{cases}.$$

Similar to as before, we recall that by definition of a homotopy from α to α' , $H_{\alpha}(2s, 1) = \alpha'(2s)$ whenever $2s \in [0, 1]$ (which, as we have already pointed out, happens when $0 \le s \le 1/2$). Similarly, since H_{β} is a homotopy from β to β' , $H_{\beta}(2s - 1, 1) = \beta'(2s - 1)$ whenever $2s - 1 \in [0, 1]$ (which, as we have noted, happens when $1/2 \le s \le 1$). Hence

$$H(s,1) = \begin{cases} \alpha'(2s) & 0 \le s \le 1/2 \\ \beta'(2s-1) & 1/2 \le s \le 1 \end{cases}.$$

This is just the definition of $\alpha' \cdot \beta'$ over the domain [0,1], hence $H(s,1) = \alpha' \cdot \beta'(s)$ for all $s \in [0,1]$.

- Now we must show that $H(0,t) = \alpha \cdot \beta(0)$ for all $t \in [0,1]$. By construction of H, and since the only first piecewise condition on the definition of H is satisfied by s = 0, we have $H(s,1) = H_{\alpha}(2(0),t) = H_{\alpha}(0,t)$. But since H_{α} is a homotopy from α to α' , it follows by definition of a homotopy that $H_{\alpha}(0,t) = \alpha(0)$ for all for all $t \in [0,1]$. Furthermore, by definition of the concatenation of paths, $\alpha(0) = \alpha \cdot \beta(0)$ for all $t \in [0,1]$, hence $H(0,t) = \alpha \cdot \beta(0) = \alpha' \cdot \beta'(0)$.
- Finally, we must show that $H(1,t) = \alpha \cdot \beta(1) = \alpha' \cdot \beta'(1)$. Since s = 1 only satisfies the second requirements for the second case of the definition of H, we know that $H(1,t) = H_{\beta}(2(1) 1, t) = H_{\beta}(1, t)$. Moreover, since H_{β} is a homotopy from β to β' , we know that $H_{\beta}(1,t) = \beta'(1) = \beta(1)$. Finally, by definition of the concatenation of paths, $H_{\beta}(1,t) = \beta(1) = \alpha \cdot \beta(1) = \alpha' \cdot \beta'(1)$, which is our desired result.

Having shown that H meets all of the requirements for being a homotopy from $\alpha \cdot \beta$ to $\alpha' \cdot \beta'$, it follows that

Exercise 12.4 Let α and β be paths in \mathbb{R} such that $\alpha(0) = \beta(0)$ and $\alpha(1) = \beta(1)$. Show that $\alpha \sim \beta$.

proof Consider the function $H:[0,1]^2\to\mathbb{R}$, defined $H(s,t)=(1-t)\alpha(s)+t\beta(s)$ for all $(s,t\in[0,1]^2)$. We will show that H is a homotopy from α to β .

First, we notice that since α and β are continuous functions of s, and since (1-t) and t are continuous functions of t (in \mathbb{R}_{std}), and since the product and sum of continuous real functions is always continuous, $H(s,t) = (1-t)\alpha(s) + t\beta(s)$ really is continuous. It remains to be shown that H meets the other requirements for a homotopy.

- First, we must verify that $H(s,0) = \alpha(s)$ for every $s \in [0,1]$. By our definition of H, $H(s,0) = (1-0)\alpha(s) + (0)\beta(s) = \alpha(s)$ for all $s \in [0,1]$, which is the desired result.
- Now we must show that $H(s,1) = \beta(s)$ for all $s \in [0,1]$. By our definition of H we have $H(s,1) = (1-1)\alpha(s) + (1)\beta(s) = \beta(s)$ for all $s \in [0,1]$, which is our desired result.
- Now we must show that $H(0,t) = \alpha(0)$ for all $t \in [0,1]$. Recall that $\alpha(0) = \beta(0)$. Hence by our definition of H we have $H(0,t) = (1-t)\alpha(0) + t\beta(0) = \alpha(0) t\alpha(0) + t\alpha(0) = \alpha(0) = \beta(0)$ for all $t \in [0,1]$, which is our desired result.
- Finally, we must show that $H(1,t) = \alpha(1) = \beta(1)$. Recall that $\alpha(1) = \beta(1)$, hence by definition of H, we have $H(1,t) = (1-t)\alpha(1) + t\beta(1) = \alpha(1) t\alpha(1) + t\beta(1) = \alpha(1) = \alpha(1) t\alpha(1) + t\alpha(1) = \alpha(1) = \beta(1)$.

Having shown that H meets all of the requirements for being a homotopy from α to β , it follows that $\alpha \sim \beta$. Q.E.D.