<u>Topic 5 – Trigonometry (Textbook)</u>

Exercise 10A

2) Find the maximum value and the minimum value of each of the following functions. In each case, give the least positive values of x at which they occur.

(a)
$$2 + \sin x^0$$

(b)
$$7 - 4\cos x^{6}$$

(c)
$$5 + 8\cos 2x^{\circ}$$

(d)
$$\frac{8}{3-\sin x^{\alpha}}$$

(e)
$$9 + \sin(4x - 20)^{\circ}$$

(b)
$$7 - 4\cos x^{\circ}$$
 (c) $5 + 8\cos 2x^{\circ}$
(e) $9 + \sin(4x - 20)^{\circ}$ (f) $\frac{30}{11 - 5\cos(\frac{1}{2}x - 45)^{\circ}}$

5 Without using a calculator, write down the exact values of the following.

Nithout using a calculator, write down the smallest positive angle which satisfies the following equations.

(a)
$$\cos \theta^{\circ} = \frac{1}{2}$$

(b)
$$\sin \phi^{\circ} = -\frac{1}{2}\sqrt{3}$$

(c)
$$\tan \theta^{\circ} = -\sqrt{3}$$

(d)
$$\cos \theta^{\circ} = \frac{1}{2} \sqrt{3}$$

(a)
$$\cos \theta^{\circ} = \frac{1}{2}$$
 (b) $\sin \phi^{\circ} = -\frac{1}{2}\sqrt{3}$ (c) $\tan \theta^{\circ} = -\sqrt{3}$ (d) $\cos \theta^{\circ} = \frac{1}{2}\sqrt{3}$ (e) $\tan \theta^{\circ} = \frac{1}{3}\sqrt{3}$ (f) $\tan \phi^{\circ} = -1$ (g) $\sin \theta^{\circ} = -\frac{1}{2}$ (h) $\cos \theta^{\circ} = 0$

(f)
$$\tan \phi^{\circ} = -1$$

(g)
$$\sin \theta^{\circ} = -\frac{1}{2}$$

(h)
$$\cos \theta^{\circ} = 0$$

Exercise 10C

1 Find, correct to 1 decimal place, the two smallest positive values of θ which satisfy each of the following equations.

(a)
$$\sin \theta^{\circ} = 0.1$$

(b)
$$\sin \theta^{\circ} = -0.84$$
 (c) $\sin \theta^{\circ} = 0.951$

(c)
$$\sin \theta^{\circ} = 0.95$$

(d)
$$\cos \theta^{\circ} = 0.8$$

(e)
$$\cos \theta^{\circ} = -0.84$$

(d)
$$\cos \theta^{\circ} = 0.8$$
 (e) $\cos \theta^{\circ} = -0.84$ (f) $\cos \theta^{\circ} = \sqrt{\frac{2}{3}}$

(g)
$$\tan \theta^{\circ} = 4$$

(g)
$$\tan \theta^{\circ} = 4$$
 (h) $\tan \theta^{\circ} = -0.32$ (i) $\tan \theta^{\circ} = 0.11$

(i)
$$\tan \theta^{\circ} = 0.11$$

(j)
$$\sin(180 + \theta)^{\circ} = 0.4$$

(j)
$$\sin(180 + \theta)^{\circ} = 0.4$$
 (k) $\cos(90 - \theta)^{\circ} = -0.571$ (l) $\tan(90 - \theta)^{\circ} = -3$

(1)
$$\tan(90 - \theta)^{\circ} = -3$$

(m)
$$\sin(2\theta + 60)^\circ = 0.3584$$
 (n) $\sin(30 - \theta)^\circ = 0.5$ (o) $\cos(3\theta - 120)^\circ = 0$

(n)
$$\sin(30 - \theta)^{\circ} = 0.5$$

(o)
$$\cos(3\theta - 120)^\circ = 0$$

2 Find all values of θ in the interval $-180 \le \theta \le 180$ which satisfy each of the following equations, giving your answers correct to 1 decimal place where appropriate.

(a)
$$\sin \theta^{\circ} = 0.8$$

(b)
$$\cos \theta^{\circ} = 0.25$$

(c)
$$\tan \theta^{\circ} = 2$$

(d)
$$\sin \theta^{\circ} = -0.67$$

(e)
$$\cos \theta^{\circ} = -0.12$$

(f)
$$4 \tan \theta^{\circ} + 3 = 0$$

(g)
$$4\sin\theta^{\circ} = 5\cos\theta^{\circ}$$

(h)
$$2\sin\theta^{\circ} = \frac{1}{\sin\theta^{\circ}}$$

(i)
$$2\sin\theta^{\circ} = \tan\theta^{\circ}$$

3 Find all the solutions in the interval $0 < \theta \le 360$ of each of the following equations.

(a)
$$\cos 2\theta^{\circ} = \frac{1}{3}$$

(b)
$$\tan 3\theta^{\circ} = 2$$

(e) $\tan 2\theta^{\circ} = 0.4$

(c)
$$\sin 2\theta^{\circ} = -0.6$$

(d)
$$\cos 4\theta^{\circ} = -\frac{1}{4}$$

(e)
$$\tan 2\theta^{\circ} = 0.4$$

(f)
$$\sin 3\theta^{\circ} = -0.42$$

4 Find the roots in the interval -180 ≤ x ≤ 180 of each of the following equations.

(a)
$$\cos 3x^{\circ} = \frac{2}{3}$$

(b)
$$\tan 2x^{\circ} = -3$$

(c)
$$\sin 3x^{\circ} = -0.2$$

(d)
$$\cos 2x^{\circ} = 0.246$$

(e)
$$\tan 5x^{\circ} = 0.8$$

(f)
$$\sin 2x^{\circ} = -0.39$$

7 Find, to 1 decimal place, all values of z in the interval $-180 \le z \le 180$ satisfying

(a)
$$\sin z^{\circ} = -0.16$$
.

(b)
$$\cos z^{\circ}(1 + \sin z^{\circ}) = 0$$
, (c) $(1 - \tan z^{\circ})\sin z^{\circ} = 0$,

(c)
$$(1 - \tan z^{\circ}) \sin z^{\circ} = 0$$

(d)
$$\sin 2z^{\circ} = 0.23$$
,

(e)
$$\cos(45-z)^\circ = 0.832$$
, (f) $\tan(3z-17)^\circ = 3$.

(f)
$$\tan(3z-17)^{\circ} = 3$$
.

8 Find all values of θ in the interval $0 \le \theta \le 360$ for which

(a)
$$\sin 2\theta^{\circ} = \cos 36^{\circ}$$
, (b) $\cos 5\theta^{\circ} = \sin 70^{\circ}$,

(b)
$$\cos 5\theta^{\circ} = \sin 70^{\circ}$$

(c)
$$\tan 3\theta^{\circ} = \tan 60^{\circ}$$
.

9 Find all values of θ in the interval $0 \le \theta \le 180$ for which $2 \sin \theta^{\circ} \cos \theta^{\circ} = \frac{1}{2} \tan \theta^{\circ}$.

Exercise 10D

- 2 (a) Given that angle A is obtuse and that $\sin A^{\circ} = \frac{5}{14}\sqrt{3}$, find the exact value of $\cos A^{\circ}$.
 - (b) Given that 180 < B < 360 and that $\tan B^{\circ} = -\frac{21}{20}$, find the exact value of $\cos B^{\circ}$.
 - (c) Find all possible values of sin C° for which cos C° = 1/2.
 - (d) Find the values of D for which -180 < D < 180 and $\tan D^{\circ} = 5 \sin D^{\circ}$.

3 Use $\tan \theta^{\circ} \equiv \frac{\sin \theta^{\circ}}{\cos \theta^{\circ}}$, $\cos \theta^{\circ} \neq 0$, and $\cos^2 \theta^{\circ} + \sin^2 \theta^{\circ} \equiv 1$ to establish the following.

(a)
$$\frac{1}{\sin \theta^{\circ}} - \frac{1}{\tan \theta^{\circ}} = \frac{1 - \cos \theta^{\circ}}{\sin \theta^{\circ}}$$

(b)
$$\frac{\sin^2 \theta^{\circ}}{1 - \cos \theta^{\circ}} = 1 + \cos \theta^{\circ}$$

(c)
$$\frac{1}{\cos \theta^{\circ}} + \tan \theta^{\circ} \equiv \frac{\cos \theta^{\circ}}{1 - \sin \theta^{\circ}}$$

(d)
$$\frac{\tan \theta^{\circ} \sin \theta^{\circ}}{1 - \cos \theta^{\circ}} \equiv 1 + \frac{1}{\cos \theta^{\circ}}$$

4 Solve the following equations for θ , giving all the roots in the interval $0 \le \theta \le 360$ correct to the nearest 0.1.

(a)
$$4\sin^2\theta^{\circ} - 1 = 0$$

(b)
$$\sin^2 \theta^\circ + 2\cos^2 \theta^\circ = 2$$

(c)
$$10\sin^2\theta^\circ - 5\cos^2\theta^\circ + 2 = 4\sin\theta^\circ$$

(d)
$$4\sin^2\theta^{\circ}\cos\theta^{\circ} = \tan^2\theta^{\circ}$$

5 Find all values of
$$\theta$$
, $-180 < \theta < 180$, for which $2 \tan \theta^{\circ} - 3 = \frac{2}{\tan \theta^{\circ}}$.

Miscellaneous exercise 10

10 Prove the following identities.

(a)
$$\frac{1}{\sin \theta^{\circ}} - \sin \theta^{\circ} \equiv \frac{\cos \theta^{\circ}}{\tan \theta^{\circ}}$$

(b)
$$\frac{1-\sin\theta^{\circ}}{\cos\theta^{\circ}} \equiv \frac{\cos\theta^{\circ}}{1+\sin\theta^{\circ}}$$

(c)
$$\frac{1}{\tan \theta^{\circ}} + \tan \theta^{\circ} \equiv \frac{1}{\sin \theta^{\circ} \cos \theta^{\circ}}$$

(d)
$$\frac{1 - 2\sin^2\theta^{\circ}}{\cos\theta^{\circ} + \sin\theta^{\circ}} \equiv \cos\theta^{\circ} - \sin\theta^{\circ}$$

11 For each of the following functions, determine the maximum and minimum values of y and the least positive values of x at which these occur.

(a)
$$y = 1 + \cos 2x^\circ$$

(b)
$$y = 5 - 4\sin(x + 30)^{\circ}$$

(c)
$$y = 29 - 20\sin(3x - 45)^\circ$$

(d)
$$y = 8 - 3\cos^2 x^\circ$$

(e)
$$y = \frac{12}{3 + \cos x^{\circ}}$$

(f)
$$y = \frac{60}{1 + \sin^2(2x - 15)^\circ}$$

12 Solve the following equations for θ , giving solutions in the interval $0 \le \theta \le 360$.

(a)
$$\sin \theta^{\circ} = \tan \theta^{\circ}$$

(b)
$$2-2\cos^2\theta^\circ = \sin\theta^\circ$$

(c)
$$\tan^2 \theta^\circ - 2 \tan \theta^\circ = 1$$

(d)
$$\sin 2\theta^{\circ} - \sqrt{3}\cos 2\theta^{\circ} = 0$$