Zahlenbasen Umwandlung – in Theorie und Praxis

Alexander Hermann

25. April 2016

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung		9
	1.1	Zahler	ndarstellung	9
		1.1.1		10
	1.2	Hier n	nögliche Zahlen	10
2	Um	wandlı	ıngen	11
	2.1	Umwa	ndlung von Zahlen der Basis b in das Zahlensystem der	
		Basis	10	11
		2.1.1	Allgemeine Formel zur Wandlung von Basis b zu Basis	
			10	11
		2.1.2	Berechnungsablauf	11
	2.2	Umwa	ndlung von Zahlen der Basis 10 in das Zahlensystem der	
		Basis	b	13
		2.2.1	Allgemeine Formel zur Wandlung von Basis 10 zu Basis \boldsymbol{b}	13
		2.2.2	Berechnungsablauf	14
\mathbf{A}	Beis	spiele		17
	A.1	Umwa	ndlung ins Dezimalsystem	17
		A.1.1	Beispiel der Zahlenbasis $b_1 = 2 \dots \dots \dots$	17
		A.1.2	Beispiel der Zahlenbasis $b_1 = 8$	18
		A.1.3	Beispiel der Zahlenbasis $b_1 = 16 \dots \dots \dots$	19
	A.2	Umrec	chnung vom Dezimalsystem in andere Zahlensysteme	20
		A.2.1	Beispiel der Zahlenbasis $b_2 = 2$	20
		A.2.2	Beispiel der Zahlenbasis $b_2 = 3$	22
		A.2.3	Beispiel der Zahlenbasis $b_2 = 8$	23
В	Um	setzun	g in Programmiersprachen	25
	B.1		Codierung	25

Listings

B.1	PHP Interface der Zahlenbasis	25
B.2	PHP Implementierung der Zahlenbasis	26

6 LISTINGS

Abbildungsverzeichnis

2.1	Struktogramm Umwandlung in das Dezimalsystem	12
2.2	Struktogramm Berechnung des Character-Werts	13
2.3	Struktogramm Berechnung des Zwischenergebnisses	14
2.4	Struktogramm Umwandlung vom Dezimalsystem	15
2.5	Struktogramm Umwandlung einer Zahl in einen Character-Wert	16

Kapitel 1

Einleitung

Zahlen in verschiedenen Zahlenbasen werden im Wesentlichen für eine Vorvereinfachung zur menschlichen Kommunikation bzw. zur Umschreibung mit maschinellen Automatisierungen verwendet. Bei der Ausführung von Software auf reiner Hardware-Ebene läuft alles letztendlich rein binär¹ ab.

Da wir Menschen es gewohnt sind im Dezimalsystem² zu rechnen – was möglicherweise daran liegt, dass der Mensch zehn Finger hat – und auch dafür ausgebildet wurden, ist es im Allgemeinen einfacher, auf dieser Basis zu rechnen.

1.1 Zahlendarstellung

In vielen Programmiersprachen werden die Zahlensysteme binär, octal, dezimal und hexadezimal im Programmiercode zur Vereinfachung bzw. zur korrekten Interpretation durch den Compiler unterschiedlich eingegeben.

• binär: 0b101110

• octal: 0c576302

• dezimal: 964

• hexadezimal: 0xAFFE09

Da hier aber generell alle möglichen Zahlensysteme verwendet werden, bzw. die verallgemeinerte Form der Umrechnung erklärt werden soll, werden im

 $^{^{1}}$ auf der Basis b=2

²Basis b = 10

Folgenden Zahlen eines bestimmten Zahlensystems der Basis \boldsymbol{b} wie folgt dargestellt:

bxv

Wobei b für die entsprechende Basis steht, x zur Markierung immer als \mathbf{x} verwendet wird und v der Wert im entsprechenden Zahlensystem ist.

1.1.1 Beispiel dazu

Ähnlich wie oben:

• binär: 2x101110

• octal: 8x576302

• dezimal: 10x964

• hexadezimal: 16xAFFE09

Wäre das alles, wäre es wohl kaum nötig eine zusätzliche Darstellung zu verwenden. Aber an eher seltenen Zahlensystemen, ist eine generalisierte Darstellung dann doch vorteilhaft:

• ternär: 3x211201

• quinär: 5x402314

• tridezimal 13x5A9C0B3

• oktovigesimal 28xNOR70KRANK

• hexatridezimal: 36xGIRAFFE0Z6A

1.2 Hier mögliche Zahlen

Es gibt auch durchaus Umwandlungsmethoden, um Reale Zahlen umzurechnen. Hier wird aber nur mit Natürlichen Zahlen gearbeitet.

Kapitel 2

Umwandlungen

2.1 Umwandlung von Zahlen der Basis b in das Zahlensystem der Basis 10

2.1.1 Allgemeine Formel zur Wandlung von Basis b zu Basis 10

Diese Formel ist für Zahlenbasen der Basis b=2 bis Basis $b=36^1$ mit den Ziffern 0 bis 9 und den Buchstaben A bis Z möglich. Die Formel setzt sich zusammen aus der Basis b, der Stellenposition² s und dem angezeigten Wert w. Wenn der Wert ein Buchstabe ist, ist der Wert gleich Buchstabenstelle bu_s im Alphabet +9 $w = bu_s + 9$ ansonsten der Zahlenwert w = w. Die Anzahl der maximalen Zeichen ist der Basiswert.³ Im "normalen", dezimalen Merke: das er-Zahlensystem von 0 bis 9 ist die 10 bereits zweistellig.

ste Zeichen ist immer 0!

$$x_s = b^{s-1} * w (2.1)$$

Die Ergebnisse der einzelnen Stellen werden summiert.

2.1.2Berechnungsablauf

Der Berechnungsablauf kann wie in dem, in Abbildung 2.1 dargestellten Struktogramm dargestellt werden. Die meisten Programmiersprachen haben vordefinierte Funktionen zur Längenberechnung von string -Variablen; ebenso gibt es Funktionen um an bestimmten Stellen eines Strings einzelne Zeichen

¹Basis 36 bei ASCII; bei UTF-8 auch größer

²von rechts nach links

³Deswegen ist 2 auch die kleinstmögliche Zahlenbasis, weil bei nur einem Zeichen kein Unterschied mehr möglich ist.

Umwandlung von Basis b in Basis 10.	
Parameter:	
b {Eine int Variable, die die zu benutzende Zahlenbasis angibt.}	
q {Eine string Variable, die die zu übersetzende Zahl der Zahlenbasis b enthält.}	
lokale Variablen:	
step {Eine int Variable, die den aktuellen Schritt anzeigt.}	
result {Eine int Variable, die das Endergebnis beinhaltet.}	
charW {Eine char Variable für einen einzelnen Stellenwert des Eingabewerts q .}	
intW {Eine int Variable, die den Integer-Wert des aktuellen Stellenwerts charW darstellt.}	
laenge {Eine int Variable für die Länge des Quell-Strings	
q.} z {Eine int Variable als Zähler.}	
Länge von q abfragen	
laenge zurückgeben	$\overline{}$
result = 0	
step = laenge - 1	
z = 0	
step > 0	
Character von q an Stelle step abfragen	
charW zurückgeben	$\overline{}$
charW ist eine Zahl	
WAHR FALSCH	
intW = intwert(charW) Wert des Characters ausrechnen	-
intW zurückgeben	\geq
step = step - 1	
Zwischenergebnis intW an Zähler z und Basis b berechnen.	
intW zurückgeben	$\overline{}$
result = result + intW	
z = z + 1	
result zurückgeben	

Abbildung 2.1: Struktogramm Umwandlung in das Dezimalsystem

Berechnung des Character-Werts	
Parameter	:
С	{Eine char Variable, die den auszuwertenden Cha-
	racter angibt.
lokale Varia	ablen:
result	{Eine int Variable, die das Endergebnis beinhal-
	tet.}
z	{Eine int Variable als Zwischenwert.}
Lese den A	SCII oder UTF-8 Wert des Parameters c aus und
schreibe es	in das Zwischenergebnis $\ z$.
result = z	+ 9 – erste Buchstaben position
result zuri	ickgeben

Abbildung 2.2: Struktogramm Berechnung des Character-Werts

abzurufen. Damit entfällt die genauere Beschreibung der Längenabfrage und der Stellenabfrage. Was hier noch fehlt, ist die Berechnung des Character-Werts, dies wird im Struktogramm in Abbildung 2.2 dargestellt, falls es sich nicht um eine Zahl handelt, so wie die Berechnung des Zwischenergebnisses, welches im Struktogramm in Abbildung 2.3 dargestellt wird.

2.2 Umwandlung von Zahlen der Basis 10 in das Zahlensystem der Basis b

Eine der Anleitungen fand ich im Web⁴. Die umzurechnende Zahl z wird durch die Basis b geteilt; der Quotient q wird zur erneuten Rechnung verwendet; der jeweilige Rest r wird mit 10 hoch dem Rechenschritt s multipliziert; der erste Rechenschritt ist s=0. Es wird so häufig gerechnet, bis der Quotient 0 ist.

2.2.1 Allgemeine Formel zur Wandlung von Basis 10 zu Basis b

In dieser Formel wird der Quotient des vorherigen Rechenschritts als das Zwischenergebnis s_n bezeichnet, wobei n die Nummer des Rechenschritts ist. Die Zählung der Rechenschritte fängt mit 0 an. Also ist für die erste Stelle

⁴http://www.arndt-bruenner.de [Brü15]

Berechnung des Zwischenergebnisses		
Parameter:		
b	{Eine int Variable, die die zu benutzende Zahlen-	
	basis angibt.	
W	{Eine int Variable, die den Eingabewert angibt.}	
р	{Eine int Variable, die die zu benutzende Stellen-	
	position enthält.}	
lokale Vari	ablen:	
Z	{Eine int Variable als Zähler.}	
result	{Eine int Variable für das Endergebnis}	
z = 0		
$\operatorname{result} = 1$		
z < p		
result	= result * b	
z = z	+1	
result = re	sult * w	
result zur	ückgeben	

Abbildung 2.3: Struktogramm Berechnung des Zwischenergebnisses

 s_0 die umzuwandel
nde Zahlzder Basis bzu verwenden.

$$\frac{s_n}{h} = q_n; r_n \tag{2.2}$$

2.2.2 Berechnungsablauf

Nach dem ersten Rechenschritt (wenn der Quotient $q \neq 0$ ist), $n \geq 1$ gilt:

$$s_n = q_{n-1} \tag{2.3}$$

Das Gesamtergebnis g ergibt sich wie folgt, wenn die Zielbasis b < 10 ist:

$$g = r_0 * 10^0 + r_1 * 10^1 \dots + r_n * 10^n$$
(2.4)

Wenn die Zielbasis b>10 ist, müssen die einzelnen Zeichendarstellungen der Reste r_n rückwärts in eine Zeichenfolge zusammengesetzt werden. Das Ganze ist auch im Struktogramm in Abbildung 2.4 dargestellt. Die Umwandlung einer Zahl >9 läuft ähnlich wie im Struktogramm in Abbildung 2.2; nur umgekehrt. Siehe dazu das Struktogramm in Abbildung 2.5

Abbildung 2.4: Struktogramm Umwandlung vom Dezimalsystem

Berechnung eines Character-Werts	
Parameter:	
x {Eine int Variable, die den auszuwertenden wert	
angibt.}	
lokale Variablen:	
result {Eine char Variable, die das Endergebnis beinhal-	
tet.}	
z {Eine int Variable als Zwischenwert.}	
Lese den ASCII oder UTF-8 Wert des Buchstabens A aus und	
schreibe es in das Zwischenergebnis z .	
result = x - 9 + z	
result zurückgeben	

Abbildung 2.5: Struktogramm Umwandlung einer Zahl in einen Character-Wert

Anhang A

Beispiele

A.1 Umwandlung ins Dezimalsystem

Beispiele der Umrechnung von der Zahlenbasis $b_1=x$ in die Zahlenbasis $b_2=10$.

A.1.1 Beispiel der Zahlenbasis $b_1 = 2$

Im Binärsystem gibt es die zwei Zeichen 0 und 1.

Beispiel 1

Die Binärzahl 2x100 wird wie folgt nach Formel 2.1 umgerechnet: von rechts nach links:

1. An Stelle s = 1:

$$x_1 = 2^0 * 0 = 1 * 0 = 0$$

2. An Stelle s = 2:

$$x_2 = 2^1 * 0 = 2 * 0 = 0$$

3. An Stelle s = 3:

$$x_3 = 2^2 * 1 = 4 * 1 = 4$$

Die Summierung von x_1 bis x_3 ist:

$$0 + 0 + 4 = 4$$

Beispiel 2

Die Binärzahl 2x110101 wird wie folgt nach Formel 2.1 umgerechnet: von rechts nach links:

1. An Stelle s = 1:

$$x_1 = 2^0 * 1 = 1 * 1 = 1$$

2. An Stelle s = 2:

$$x_2 = 2^1 * 0 = 2 * 0 = 0$$

3. An Stelle s = 3:

$$x_3 = 2^2 * 1 = 4 * 1 = 4$$

4. An Stelle s = 4:

$$x_4 = 2^3 * 0 = 8 * 0 = 0$$

5. An Stelle s = 5:

$$x_5 = 2^4 * 1 = 16 * 1 = 16$$

6. An Stelle s = 6:

$$x_6 = 2^5 * 1 = 32 * 1 = 32$$

.

Die Summierung von x_1 bis x_6 ist:

$$1 + 0 + 4 + 0 + 16 + 32 = 53$$

A.1.2 Beispiel der Zahlenbasis $b_1 = 8$

Im Oktalsystem gibt es acht Zeichen von 0 bis 7.

Beispiel 1

Die Oktalzahl 8x70 wird wie folgt nach Formel 2.1 umgerechnet: von rechts nach links:

1. An Stelle s = 1:

$$x_1 = 8^0 * 0 = 1 * 0 = 0$$

2. An Stelle s = 2:

$$x_2 = 8^1 * 7 = 8 * 7 = 56$$

Die Summierung von x_1 bis x_2 ist:

$$0 + 56 = 56$$

A.1.3 Beispiel der Zahlenbasis $b_1 = 16$

Im Hexadezimalsystem gibt es sechzehn Zeichen von 0 bis F.

Beispiel 1

Die Hexadezimalzahl 16xD4 wird wie folgt nach Formel 2.1 von rechts nach links umgerechnet:

1. An Stelle s = 1:

$$x_1 = 16^0 * 4 = 1 * 4 = 4$$

2. An Stelle s = 2:

$$x_2 = 16^1 * (4+9) = 16 * 13 = 208$$

Die Summierung von x_1 bis x_2 ist:

$$4 + 208 = 212$$

Beispiel 2

Die Hexadezimalzahl 16xAFFE wird wie folgt nach Formel 2.1 von rechts nach links umgerechnet:

1. An Stelle s = 1:

$$x_1 = 16^0 * (5+9) = 1 * 14 = 14$$

2. An Stelle s = 2:

$$x_2 = 16^1 * (6+9) = 16 * 15 = 240$$

3. An Stelle s = 3:

$$x_3 = 16^2 * (6+9) = 256 * 15 = 3840$$

4. An Stelle s = 4:

$$x_4 = 16^3 * (1+9) = 4096 * 10 = 40960$$

Die Summierung von x_1 bis x_4 ist:

$$14 + 240 + 3840 + 40960 = 45054$$

A.2 Umrechnung vom Dezimalsystem in andere Zahlensysteme

Beispiele der Umrechnung von der Zahlenbasis $b_1=10$ in die Zahlenbasis $b_2=x$.

A.2.1 Beispiel der Zahlenbasis $b_2 = 2$

Die Zahlenbasis nennt sich Binär.

Beispiel 1

Die Dezimalzahl z=13 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0 = z}{2} = \frac{13}{2} = q_0 = 6; r_0 = 1$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{2} = \frac{6}{2} = q_1 = 3; r_1 = 0$$

3. An Stelle 3: n = 2:

$$\frac{s_2 = q_1}{2} = \frac{3}{2} = q_2 = 1; r_2 = 1$$

4. An Stelle 4: n = 3:

$$\frac{s_3 = q_2}{2} = \frac{1}{2} = q_3 = 0; r_3 = 1$$

5. Gesamtergebnis g der Basis b=2:

$$g = r_0 * 10^0 + r_1 * 10^1 + r_2 * 10^2 + r_3 * 10^3$$

$$g = 1 * 1 + 0 * 10 + 1 * 100 + 1 * 1000 = 1101$$

10x13 = 2x1101

A.2. UMRECHNUNG VOM DEZIMALSYSTEM IN ANDERE ZAHLENSYSTEME21

Beispiel 2

Die Dezimalzahl z = 141 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0 = z}{2} = \frac{141}{2} = q_0 = 70; r_0 = 1$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{2} = \frac{70}{2} = q_1 = 35; r_1 = 0$$

3. An Stelle 3: n = 2:

$$\frac{s_2 = q_1}{2} = \frac{35}{2} = q_2 = 17; r_2 = 1$$

4. An Stelle 4: n = 3:

$$\frac{s_3 = q_2}{2} = \frac{17}{2} = q_3 = 8; r_3 = 1$$

5. An Stelle 5: n = 4:

$$\frac{s_4 = q_3}{2} = \frac{8}{2} = q_4 = 4; r_4 = 0$$

6. An Stelle 6: n = 5:

$$\frac{s_5 = q_4}{2} = \frac{4}{2} = q_5 = 2; r_5 = 0$$

7. An Stelle 7: n = 6:

$$\frac{s_6 = q_5}{2} = \frac{2}{2} = q_6 = 1; r_5 = 0$$

8. An Stelle 8: n = 7:

$$\frac{s_6 = q_6}{2} = \frac{1}{2} = q_6 = 0; r_6 = 1$$

9. Gesamtergebnis q der Basis b = 2:

$$g = r_0 * 10^0 + r_1 * 10^1 + r_2 * 10^2 + r_3 * 10^3 + r_4 * 10^4$$
$$+ r_5 * 10^5 + r_6 * 10^6$$
$$g = 1 * 1 + 0 * 10 + 1 * 100 + 1 * 1000 + 0 * 10000$$
$$+ 0 * 1000000 + 1 * 10000000$$
$$= 10001101$$

10x141 = 2x10001101

A.2.2 Beispiel der Zahlenbasis $b_2 = 3$

Die Zahlenbasis nennt sich **Ternär**.

Beispiel 1

Die Dezimalzahl z=13 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0 = z}{3} = \frac{13}{3} = q_0 = 4; r_0 = 1$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{3} = \frac{4}{3} = q_1 = 1; r_1 = 1$$

3. An Stelle 3: n = 2:

$$\frac{s_2 = q_1}{3} = \frac{1}{3} = q_2 = 0; r_2 = 1$$

4. Gesamtergebnis q der Basis b = 3:

$$g = r_0 * 10^0 + r_1 * 10^1 + r_2 * 10^2$$

$$g = 1*1 + 1*10 + 1*100 = 111$$

10x13 = 3x111

Beispiel 2

Die Dezimalzahl z = 141 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0=z}{3}=\frac{141}{3}=q_0=47; r_0=0$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{3} = \frac{47}{3} = q_1 = 15; r_1 = 2$$

3. An Stelle 3: n = 2:

$$\frac{s_2 = q_1}{3} = \frac{15}{3} = q_2 = 5; r_2 = 0$$

A.2. UMRECHNUNG VOM DEZIMALSYSTEM IN ANDERE ZAHLENSYSTEME23

4. An Stelle 4: n = 3:

$$\frac{s_3 = q_2}{3} = \frac{5}{3} = q_3 = 1; r_3 = 2$$

5. An Stelle 5: n = 4:

$$\frac{s_4 = q_3}{3} = \frac{1}{3} = q_4 = 0; r_4 = 1$$

6. Gesamtergebnis g der Basis b = 3:

$$g = r_0 * 10^0 + r_1 * 10^1 + r_2 * 10^2 + r_3 * 10^3 + r_4 * 10^4$$
$$g = 0 * 1 + 2 * 10 + 0 * 100 + 2 * 1000 + 1 * 10000$$
$$= 12020$$

10x141 = 3x12020

A.2.3 Beispiel der Zahlenbasis $b_2 = 8$

Die Zahlenbasis nennt sich Oktal.

Beispiel 1

Die Dezimalzahl z = 13 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0 = z}{8} = \frac{13}{8} = q_0 = 1; r_0 = 5$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{8} = \frac{1}{8} = q_1 = 0; r_1 = 1$$

3. Gesamtergebnis g der Basis b = 8:

$$g = r_0 * 10^0 + r_1 * 10^1$$

$$q = 5 * 1 + 1 * 10 = 15$$

10x13 = 8x15

Beispiel 2

Die Dezimalzahl z=141 wird wie folgt nach Formel 2.2 umgerechnet:

1. An Stelle 1: n = 0:

$$\frac{s_0 = z}{8} = \frac{141}{8} = q_0 = 17; r_0 = 5$$

2. An Stelle 2: n = 1:

$$\frac{s_1 = q_0}{8} = \frac{17}{8} = q_1 = 2; r_1 = 1$$

3. An Stelle 3: n = 2:

$$\frac{s_2 = q_1}{8} = \frac{2}{8} = q_2 = 0; r_2 = 2$$

4. Gesamtergebnis g der Basis b = 8:

$$g = r_0 * 10^0 + r_1 * 10^1 + r_2 * 10^2$$
$$g = 5 * 1 + 1 * 10 + 2 * 100$$
$$= 215$$

$$10x141 = 8x215$$

Anhang B

Umsetzung in Programmiersprachen

B.1 PHP-Codierung

Angesehen werden kann die Umsetzung in PHP 5.x unter http://demo.hermann-bsd.de/zahlensysteme/¹

Zuerst als abstraktes Interface fuer die Definition von Zahlenbasen

Listing B.1: PHP Interface der Zahlenbasis

```
namespace ahbsd\Zahlensysteme
      * Interface fuer grundlegende Funktionen, der Basis eines
      * Zahlensystems.
      * @author A. Hermann
      * @copy Copyright © 2016
      * Alexander Hermann - Beratung, Software, Design
      * Zahlensysteme
10
      * @version 1.0
   interface IBase
15
16
        * Gibt die Bezeichnung zurueck.
         * @return string
18
19
         function GetName();
         * Gibt das Zahlensystem als Integer zurueck.
23
          * Oreturn int Zahlensystem-Basis
```

¹Einiges funktioniert da noch nicht...

```
25
         function GetSystem();
28
          * Gibt das hoechstmoegliche Zeichen zurueck.
29
         * @return char hoechstmoegliches Zeichen
30
31
         function GetMaxSign();
32
          * Gibt das Zeichen der Basis fuer den Wert $x zurueck.
35
          * @param int $x Wert x
36
         * @return char Zeichen der Basis fuer den Wert x
38
39
         function GetSign($x);
      }
40
41 }
```

Implementierung des Interfaces:

Listing B.2: PHP Implementierung der Zahlenbasis

```
namespace ahbsd\Zahlensysteme
1
2
   {
     /**
      * Basis eines Zahlensystems.
4
      * @author A. Hermann
6
      * @copy Copyright © 2016 Alexander Hermann - Beratung, Software,
7
      * Zahlensysteme
8
9
10
      * @version 1.0
11
12
      */
     class Base implements IBase
13
14
15
       * Konstante, die die ASCII (und UTF-8) Position von 'A' speichert.
16
      * @var int
*/
17
18
      const A_POS_UTF8 = 65;
19
21
       * System-Name
22
23
       * @var string
24
25
      private $systemName;
27
        * System als Integer-Zahl. Maximale Anzahl an Zeichen.
28
29
        * @var int
30
31
       private $systemInt;
32
                    gliches Zeichen.
        * Hoechstm
35
36
37
        * @var char
38
```

```
private $maxSign;
39
41
        * Konstruktor
42
43
         * @param int $system Zahlensystem-Basis (Maximale Anzahl an Zeichen)
44
45
         * @param string $name (Optional) Bezeichnung des Zahlensystems
46
        public function __construct($system, $name="")
47
          $this->systemInt=intval($system);
49
          $this->systemName=$name;
50
          if ($name == "")
52
53
            $this->systemName = sprintf("Basis %1\$s", intval($system));
54
55
          $tmp = A_POS_UTF8 - 11 + intval($system);
56
          if ($system <= 10)
58
59
            $this->maxSign = $system - 1;
60
61
          }
62
          else
63
            $this->maxSign = mb_convert_encoding('&#' . $tmp . ';', 'UTF-8',
                'HTML-ENTITIES');
         }
65
        }
66
68
        * (non-PHPdoc)
69
        * @see \ahbsd\Zahlensysteme\IBase::GetSign()
70
71
        public function GetSign($x)
72
73
          tmp = 65-11+intval(x+1);
          $result = $x;
75
77
          if(intval($x) >= 10 || intval($x) < 0)</pre>
78
79
            $result = mb_convert_encoding('&#' . $tmp . ';', 'UTF-8', 'HTML-
                ENTITIES');
          }
80
         return $result;
82
83
        /**
85
86
        * (non-PHPdoc)
         * @see \ahbsd\Zahlensysteme\IBase::GetName()
87
88
89
        public function GetName()
90
91
         return $this->systemName;
92
94
        * (non-PHPdoc)
95
        * @see \ahbsd\Zahlensysteme\IBase::GetSystem()
96
        public function GetSystem()
98
```

```
99
100
          return $this->systemInt;
101
103
         * (non-PHPdoc)
104
105
         * @see \ahbsd\Zahlensysteme\IBase::GetMaxSign()
106
         public function GetMaxSign()
107
108
          return $this->maxSign;
109
110
112
113
         * Statische Funktion zur Umwandlung einer Zahl aus dem Dezimalsystem
              in eine
         * Zahl des Zahlensystems bX.
114
115
         * @param int $b10 Umzuwandelnde Zahl aus dem Dezimalsystem.
116
          * @param int $bX Zahlensystem in das b10 umgewandelt werden soll.
117
          * Cparam bool $rechenweg (Optional) Gibt an, ob der Rechenweg angezeigt werden soll oder nicht; ohne Angabe standardmaessig
118
              FALSE.
          * @return string Ergebnis in Basis bX
119
         */
120
         public static function Base10toBaseX($b10, $bX, $rechenweg=false)
121
122
           $targetBase = new Base(intval($bX));
123
           $result = array();
124
           $restArray = array();
125
126
           $rOut = "";
           $quotient = intval($b10);
128
129
           $rest = 0;
           $cnt = 0;
130
           if ($rechenweg)
132
133
             echo "\n<!-- start Rechenweg -->\n";
134
135
             echo "Rechenweg:\n";
136
           while (intval($quotient) != 0)
138
139
             $rest = $quotient % $bX;
140
             if ($rechenweg) echo "$quotient : $bX = " . intval($quotient /
141
                 bX) . " Rest $rest [" . $targetBase->GetSign($rest) . "]\n";
             $restArray[] = $rest;
142
             $quotient = intval($quotient / $bX);
143
144
           if ($rechenweg) echo "----\n";
145
           $cnt = count($restArray);
146
           for ($i = 0; $i < $cnt; $i++)
148
149
150
             $result[$cnt - ($i + 1)] = $targetBase->GetSign($restArray[$i]);
151
           for ($i=0; $i < $cnt; $i++)
153
154
155
             $rOut .= $result[$i];
156
```

```
if ($rechenweg)
159
                                 printf("Das Ergebnis der Umwandlung von %1\$s der Basis 10 in die
160
                                 %2\$s ist '%3\$s'\n", $b10, $targetBase->GetName(), $rOut);
echo "<!-- ende Rechenweg -->\n\n";
161
162
                           return $rOut;
163
164
166
167
                         * @param string $bxVal Der Wert der Basis $bX
168
                         \ast @param int $bX Die Quell Basis.
169
170
                         * @param bool $rechenweg Gibt an, ob der Rechenweg ausgegeben werden
                                    soll,
171
                                   oder nicht.
                         * Creturn int Der Wert $bxVal umgerechnet in Basis 10.
172
173
                      public static function BaseXtoBase10($bxVal, $bX, $rechenweg=false)
174
175
                           $sourceBase = new Base(intval($bX));
176
177
                           $step = strlen($bxVal) - 1;
                           $result = 0;
178
                           $z = 0:
179
                           $curCarCorrect = false;
180
                           $intW = 0;
181
                           if ($rechenweg)
183
184
                                    echo "\n<!-- start Rechenweg -->\n";
185
                                    echo "Rechenweg:\n";
186
187
                           while ($step >= 0) {
189
                                    $charW = $bxVal[$step];
190
                                    $tmpIntVal = intval($charW, 10);
193
                                    $curCarCorrect = ('' . $tmpIntVal . ''==$charW);
                                    if ($rechenveg) printf("%3\$s) Zeichen '%1\$s' an Stelle %2\$s "
195
                                               , $charW, $step, $z+1);
                                    if ($curCarCorrect) {
197
                                            $intW = $tmpIntVal;
198
                                    }
199
200
                                    else {
                                            // CharWert Umrechnung
201
                                            $tmp2 = ord($charW);
202
                                            $intW = intval($tmp2) - 65 + 10; // A_POS_UTF8;
204
                                            if ($rechenweg) printf("= (int) %1\$s", $intW);
206
207
                                    if ($rechenweg) echo "\n";
209
211
                                    tmpR = 1;
                                    for ($i = 0; $i < $z; $i++) {</pre>
213
                                            tmpR = tmpR * tmpR * tmpR * tmpR = tmpR * tmpR + tmpR = tmpR * tmpR + 
215
```

```
if ($rechenveg) printf("%1\s^%2\s=%3\s\n%3\s * %4\s = ",
                  $bX, $z, $tmpR, $intW);
              $tmpR = $tmpR * $intW;
219
             if ($rechenweg) echo $tmpR . "\n\n";
221
             $step--;
223
              $result += $tmpR;
224
              $z++;
225
          }
^{226}
          if ($rechenweg)
228
          {
229
             \textbf{printf("Das Ergebnis der Umwandlung von '%1\$s' der %2\$s in die
230
                  Basis 10 ist 3\s\n", $bxVal, $sourceBase->GetName(),
              echo "<!-- ende Rechenweg -->\n\n";
231
          }
^{232}
          return $result;
234
        }
^{235}
236
      }
237 }
```

Literaturverzeichnis

 $[\mbox{Br$\ddot{u}$15]} \ \mbox{Br$\ddot{u}$nner, Arndt:} \ \mbox{\it Umrechnung von Zahlensystemen}, \ 12 \ 2015.$

Index

```
binär, 9, 10
Binärsystem, 9
dezimal, 9-11
Hardware, 9
hexadezimal, 9, 10
hexatridezimal, 10
octal, 9, 10
oktovigesimal, 10
quinär, 10
Software, 9
ternär, 10
tridezimal, 10
Zahlen, 9, 10
   -basen, 9, 11
    -system, 10, 11
    -systeme, 9
    -wert, 11
Ziffern, 11
```