Chapitre 3 : Généralités sur les vecteurs

Définition: Vecteurs

Toute translation du plan est associée à un **vecteur**, qui représente le déplacement des points occasionné par la translation. Un vecteur est entièrement déterminé par :

- Sa direction.
- Son sens.
- Sa longueur, qu'on appelle sa norme.

Exemple

Sur la figure ci-contre, le triangle \mathcal{T}' est l'image du triangle \mathcal{T} par la translation de vecteur \vec{v} .

Définition : Égalité de vecteurs

Deux vecteurs sont **égaux** si ils ont la même direction, le même sens et la même norme. Dans ce cas, ils correspondent à la même translation.

Exemple

Les vecteurs \vec{v}_1 et \vec{v}_2 sont $\acute{e}gaux$.

Les vecteurs $\vec{v}_{\rm 1}$ et $\vec{v}_{\rm 2}$ sont $\it différents$: leur $\it direction$ n'est pas la même.

Les vecteurs $\vec{v}_{\rm 1}$ et $\vec{v}_{\rm 2}$ sont $\it différents$: leur $\rm \underline{sens}$ n'est pas le même.

Les vecteurs $\vec{v}_{\rm 1}$ et $\vec{v}_{\rm 2}$ sont $\it différents$: leur norme n'est pas la même.

Définition: Vecteur nul

Il n'y a qu'un seul vecteur dont la norme est 0. On l'appelle le **vecteur nul**, et on le note $\vec{0}$.

Définition: Vecteurs opposés

Si deux vecteurs ont la même direction, la même norme, mais des sens différents, on dit qu'ils sont **opposés**.

Vocabulaire

Si une translation de vecteur \vec{u} envoie le point A sur le point B, on peut appeller le vecteur de cette translation $\overline{\rm AB}$ On dit alors que $\overline{\rm AB}$ est un **représentant** de \vec{u} .

Définition: Somme de vecteurs

Soient deux vecteurs \vec{u} et \vec{v} . Si on enchaîne les translations correspondant à \vec{u} et à \vec{v} , on obtient une nouvelle translation.

Le vecteur qui lui est associé est appelé la **somme de** \vec{u} **et de** \vec{v} . On la note $[\vec{u} + \vec{v}]$

Exemple

Remarque

L'ordre de la somme n'importe pas : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Définition: Soustraction de vecteurs

Soustraire un vecteur revient à additionner son opposé :

$$\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{DC}$$

Définition: Multiplication de vecteurs

Lorsqu'on multiplie un vecteur $ec{u}$ par un nombre réel, on obtient un vecteur qui a :

- La même direction que \vec{u} .
- La même sens que \vec{u} si x est positif, le sens opposé sinon.
- La norme de \vec{u} multipliée par |x|.

Exemple

X

B

Ici $\overrightarrow{AC} = 2 \times \overrightarrow{AB}$. Inversement, $\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC}$.

Propriété : Relation de Chasles

Soient A, B et C trois points. On a

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$