

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Course Name:	Elements of Electrical and Electronics Engineering	Semester:	I
Date of Performance:	12-09-23	Batch No:	C5_3
Faculty Name:		Roll No:	16010123325 (53)
Faculty Sign & Date:		Grade/Marks:	/ 25

Experiment No: 3

Title: Thevenin's Theorem & Norton's Theorem.

Aim and Objective of the Experiment:

- To Verify for Thevenin's Theorem for the circuit
- To Verify Norton Theorem for the Circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

EEEE Semester: I Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Task 1: Circuit Diagram to measure R_{TH}/R_{N} :

Task 2: Circuit Diagram to measure V_{TH}:

EEEE Semester: I Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Task 3: Circuit Diagram to measure Isc:

Stepwise-Procedure:

Thevenin's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set 10V and measure open circuit voltage V_{Th} across load terminals A and B.
- 3. Replace all voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 4. Draw Thevenin's equivalent circuit and determine the value of load current from it.
- 5. Verify the results theoretically.

Norton's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set the voltages 10V
- 3. Remove the load resistance and measure the short circuit current I_{SC} through A and B terminals.
 4. Replace all the voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 5. Draw Norton's equivalent circuit and determine the value of load current.
- 6. Verify the results theoretically

EEEE Semester: I Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Sample Calculations:

Sample Calculations:
V11 ->
-470I, -330I, +10=0 -> I, =0.0125A
-220 Ez -47 Ez-10=0-7 Ez=-0.037A
$VA_8 = 330 I_1 + 220 I_2$ = $4.125 - 8.14$ = $-4.015V$
Rm = -> Rx -> 470 113302 -> 193.8751 Ry -> 47112201 -> 38.7261 Rx = Fx try = 232.6011
$I_{N} = -7$ $-470I_{1} - 330(I_{1} - I_{3}) + 10 = 0$ $-800I_{1} + 330I_{3} = -10$ $\therefore 80I_{1} - 33I_{3} = 19 - (I)$
$-47I_{z} - 10 - 220(I_{z} - I_{z}) = 0$ $-267I_{z} + 220I_{z} = 10(II)$
330 I, - 550[3+220]2=0 :- 3+, +22 I 2 - 55[3=0
IN= I3 = -0.018A

Learnt and verified Thevenin's Theorem & Norton's Theorem

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Observation Table:

	V _{TH} (V)	$R_{\mathrm{TH}} / R_{\mathrm{N}} \ (\Omega)$	I _N (mA)	I _L (mA)
Theoretical value	4.1	232.6	0.017	12.6
Practical value	4.15	228	0.015	12

Draw Thevenin's Equivalent circuit

Draw Norton's Equivalent circuit

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Concl	lusion:
Conc	iusiuii.

We learned the practical application of Thevenin's and Norton's theorems and also got to connec	et
and verify the correct values of voltages, currents and resistances.	

Signature of faculty in-charge with Date:

EEEE Semester: I Academic Year: 2023-24