Tutoraggio mercoledì 21 dicembre: Coniche

Correggeremo il seguente esercizio:

Esercizio 1. Dal Tutoraggio del 20 dicembre, Es. 1 della prova scritta del 20/02/2023 (trovate il testo nella pagina seguente).

Svolgere i seguenti esercizi, la cui soluzione verrà commentata in aula:

Esercizio 2. Riconoscere la conica

$$3x^2 + 2\sqrt{3}xy + y^2 - 4x + 4y\sqrt{3} + 4 = 0$$

Esercizio 3. Riconoscere le seguenti coniche:

1.
$$3x^2 - 3y^2 - 8xy - 10\sqrt{5}y - 10 = 0$$
.

2.
$$(x+y-1)(2x-y-3)=0$$
.

3.
$$(3x - 2y + 1)^2$$
.

4.
$$\frac{(x+y-1)^2}{4} + (x-y+1)^2 = 1$$
.

GEOMETRIA E ALGEBRA LINEARE 1

Prova scritta del 20/02/2023

Proff. L. Mari e T. Pacini

ESERCIZIO 1 (16 pt.)

Nello spazio $\mathbb{R}_3[x]$ dei polinomi di grado al più tre a coefficienti reali, si consideri l'endomorfismo f dato, nella base $\mathscr{B} = \{1, x, x^2, x^3\}$, da

$$f(1) = 1 + 3x^3,$$
 $f(x) = 4x + 2x^2,$
 $f(x^2) = 1 + 4x^2 + kx^3,$ $f(x^3) = 3 + x^3$

con $k \in \mathbb{R}$.

- (i) (2pt). Determinare la matrice rappresentativa di f nella base \mathscr{B} .
- (ii) (4pt). Stabilire per quali valori di k l'endomorfismo f è diagonalizzabile. Le matrici rappresentative di f per k = 1 e per k = -1 sono simili?

Per le prossime domande, si ponga k=1. Definiamo inoltre il prodotto scalare · tramite

$$(a_0 + a_1x + a_2x^2 + a_3x^3) \cdot (b_0 + b_1x + b_2x^2 + b_3x^3) = a_0b_0 + a_1b_1 + a_2b_2 + a_3b_3.$$

- (iii) (4pt). Sia $H = \mathcal{L}(1+x^2, x+x^3)$. Determinare i sottospazi f(H) ed $f^{-1}(H)$. Stabilire se sono tra loro supplementari in $\mathbb{R}_3[x]$.
- (iv) (3pt). Sia π la proiezione ortogonale suH. Determinare se l'applicazione

$$\pi \circ f : H \to H$$

è un isomorfismo.

(v) (3pt). Stabilire se esistono sottospazi invarianti Z,W per f che siano di dimensione 2 e supplementari.

(Suggerimento: ragionare sulla dimensione dell'autospazio associato a $\lambda = 4$).