Algoritmi in podatkovne strukture 1

Visokošolski strokovni študij Računalništvo in informatika

Jurij Mihelič, UniLj, FRI

Požrešna metoda

- Ideja metode
 - postopna gradnja končne rešitve
 - pričnemo s »prazno« delno rešitvijo
 - zaporedoma dopolnjujemo rešitev
 - na vsakem koraku izberemo v tistem trenutku najbolj obetaven način dopolnitve rešitve
 - npr. največje povečanje kriterijske funkcije
 - kratkovidnost pogleda
 - dokler ne dobimo končne rešitve

Menjava kovancev

Klasičen primer

- z evrskimi kovanci vrednosti
- 200, 100, 50, 20, 10, 5, 2, 1 centov
- sestavi skupno vrednost k centov
- uporabi čim manj kovancev
- Požrešna rešitev
 - po vrsti po padajoči vrednosti kovanca
 - izbiramo kovance dokler je skupna vrednost $\leq k$
- Ali požrešnost vedno deluje?
 - s kovanci vrednosti 10, 8, 1 eur in sestavi 17 eur

Požrešna metoda

- Slabosti požrešne metode
 - ne deluje vedno, v smislu,
 da ne najde optimalne rešitve
- Zakaj uporabiti požrešno metodo?
 - učinkovit algoritem
 - če deluje, ponavadi deluje zelo hitro
 - na vsakem koraku upoštevamo le trenutni scenarij, ne upoštevamo globalnega scenarija
 - težki problemi
 - včasih skoraj optimalna rešitev

Razporeditev datotek na trak

- Opis problema
 - dano množico datotek
 - vsaka datoteka ima neko dolžino
 - razporedi na trak
 - tako, da bo povprečni čas dostopa datoteke
 - vedno začnemo na začetku traku
 - najmanjši

Razporeditev datotek na trak

- Definicija problema
 - naloga
 - *n* datotek: 1, 2, ..., *n*
 - dolžine datotek: l₁, l₂, ..., l_n
 - dolžina $l(i) = l_i$
 - dopustna rešitev
 - zaporedje datotek: $s = (s_1, s_2, ..., s_n)$
 - cilj
 - najmanjši povprečni čas branja

$$t_i(s) = c \cdot \sum_{j=1}^{i} l(s_j) \qquad \overline{t}(s) = \frac{1}{n} \sum_{i=1}^{n} t_i(s)$$

Razporeditev datotek na trak

- Požrešni algoritem
 - izbira najkrajše datoteke

• dolžine datotek: $l_1 \le l_2 \le ... \le l_n$

- neurejene datoteke
 - dolžine datotek: l₁, l₂, ..., l_n

Razporeditev datotek na trakove

- Posplošitev prejšnjega problema
 - n datotek
 - m trakov
- Požrešni algoritem
 - izbira najkrajše datoteke
 - zapis na najmanj zaseden trak
 - datoteke torej zapisujemo na trakove po vrsti

Problem nahrbtnika

- Definicija problema
 - nahrbtnik prostornine V
 - n predmetov oštevilčenih od 1 do n

- c_i cena / vrednost predmeta $i, c_i > 0$
- v_i velikost predmeta i, $0 < v_i \le V$
- Poišči nabor predmetov
 - katerih skupna velikost
 ne presega prostornine nahrbtnika
 - katerih skupna vrednost je največja

Preprosti nahrbtnik

- Definicija problema
 - naloga
 - prostornina V, n predmetov, ki jih lahko režemo
 - vrednosti (c₁, c₂, ..., c_n)
 - velikosti (v₁, v₂, ..., v_n)
 - dopustna rešitev
 - deleži $(x_1, x_2, ..., x_n)$, kjer $0 \le x_i \le 1$
 - omejitev
 - katerih skupna velikost ne presega prostornine nahrbtnika

$$\sum_{i=1}^{n} x_i v_i \leq V$$

- cilj
 - katerih skupna vrednost je največja

$$\max_{i=1}^{n} x_{i} c_{i}$$

Preprosti nahrbtnik

- Požrešni algoritem
 - zaporedoma izbiramo predmete
 - upoštevamo omejitve
 - izberemo predmet po nekem kriteriju
 - primer
 - z različnimi kriteriji
 - kateri kriterij vodi do optimalnosti?
 - algoritem
 - zahtevnost
 - pravilnost