2004~2005 学年第一学期《高等数学》期末考试试题 A 卷(216 学时)

一、填空题: (4×5分)

1、设
$$f(x) = \begin{cases} \frac{a(1-\cos x)}{x^2} & x > 0\\ 4 & x = 0$$
 连续,则常数 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}\\ \frac{b\sin x + \int_0^x e^t dt}{x} & x < 0 \end{cases}$

2、设
$$\sum_{n=1}^{\infty} a_n x^n$$
 的收敛半径为 3,则 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$ 的收敛半径 $R=$ _____

3、已知
$$f(x) = x(1-x)(2-x)\cdots(2005-x)$$
,则 $f'(0) =$ _____

4、级数
$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$
 的和 $S =$ ______

二、选择题: (4×4分)

1、函数
$$f(x) = (x^2 - x - 2)|x^3 - x|$$
 不可导点的个数是_____

- \mathbf{B}_{λ} 1 \mathbf{C}_{λ} 2

2、设周期函数
$$f(x)$$
 在 $(-\infty, +\infty)$ 内可导, 其周期为 4,且 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,

则曲线 y = f(x) 在点 (5, f(5)) 处的切线的斜率为_____

3、对于常数
$$k > 0$$
 , 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \tan \left(\frac{1}{n} + \frac{k}{n^2} \right)$ ______

- A、绝对收敛 B、条件收敛 C、发散 D、收敛性与k 的取值相关

4、设函数
$$f(x)$$
 有任意阶导数且 $f'(x) = f^2(x)$, 则 $f^{(n)}(x) = \underline{\qquad} (n > 2)$.

- **A.** $n! f^{n+1}(x)$ **B.** $n f^{n+1}(x)$ **C.** $f^{2n}(x)$ **D.** $n! f^{2n}(x)$

三、计算下列各题: (6×6分)

1、求极限:
$$\lim_{x\to 0} \frac{\arctan x - x}{\ln(1+2x^3)}$$

2、设
$$y = \tan 2x + 2^{\sin x}$$
, 求: $dy|_{x=\frac{\pi}{2}}$

3、设函数
$$y = y(x)$$
 由方程 $e^y + 6xy + x^2 - 1 = 0$ 确定, 求: $y'(0)$

4、已知
$$f(x) = \frac{e^x + e^{-x}}{2}$$
,计算不定积分:
$$\int \left(\frac{f'(x)}{f(x)} + \frac{f(x)}{f'(x)}\right) dx$$

5、设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t^3 + 9t \\ y = t^2 - 2t \end{cases}$$
 确定,求曲线 $y = y(x)$ 的下凸区间。

6、计算定积分:
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$$

四、(5分)设广义积分
$$\int_1^{+\infty} f^2(x) dx$$
 收敛,证明广义积分 $\int_1^{+\infty} \frac{f(x)}{x} dx$ 绝对收敛。

五、 $(6 \ \beta)$ 求曲线 $y = \ln x$ $(2 \le x \le 6)$ 的一条切线,使得该切线与直线 x = 2, x = 6 及曲线 $y = \ln x$ 所围成的图形面积 A 为最小。

六、 $(6\, eta)$ 将曲线 $y=\frac{\sqrt{x}}{1+x^2}$ 绕 x 轴旋转得一旋转体,它在点 x=0 与 $x=\xi$ $(\xi>0)$ 之间的体积记作 $V(\xi)$,问 a 等于何值时,能使 $V(a)=\frac{1}{2}\lim_{\xi\to +\infty}V(\xi)$?

七、(5分)设0 < a < 1,证明: $f(x) = \sin \frac{1}{x}$ 在(a,1)内一致连续。

八、(6 分)设 f(x) 在区间 [-1,0] 上二次可导,且 f(-1)=0,又 $g(x)=\left[\sin\pi(x+1)\right]f(x)$ 证明:在区间 (-1,0) 内至少存在一点 c,使得 g''(c)=0。