LINEAR ALGEBRA Cliff Notes
- We'll work in R usually Cor on isomorphic space like R)
- We'll work in R usually Cor an isomorphic space like R) and use its vector space properties.
- Measure "size" wy a norm 11-11. Let V be a vector space
Def a norm 11:11:V -> R, (R, = non-negative B numbes)
Satisfies (1) x =0 iff x=0 F is a field, VX e F, x x = x · × , for us R or C
3 11×+y 11 ≤ 11×11+11y11 "triangle ineq." or " _ ineq."
- Measure "distance" w/ metric induced by norm
d (x,y) = 11x-y 11.
Fact: reverse Δ-ineq: 11×11 = 11×+y-y1 = 11×+y11 + 1/y11
x = x-y+y \leq x-y + y 50
50 (×+y 1 > 1×11- 1y) and ② 1 ×+y 1 > 1y 1- 1×11 by intechangy x, y
and 3 11 x7y 11 3 11y 11 - 11x 11 3y 11 - 11x 11
(3) × -y > 1 × - y (4) x -y > 1 y - ×
Ex: Enclidean num/metric, $\ x\ _2 = \sqrt{\hat{Z}(x_i)^2}$ for $x \in \mathbb{R}^n$
"distance as the crow flives"
Ex: Mchalanobois $ x = x^T V x$ for a matrix $\frac{V > 0}{pos. def}$.
pos. ole f.
EX: Taxi-cab/Manhatha distance (i.e. a. augus)
EX: Taxi-cab/Monhatton distance (i.e. e, norm) X = \(\sum X \)
1711, - 211,1
· · · · · · · · · · · · · · · · · · ·
Inner product: For a vector space (V, F), <., >: V×V -> F
is bi-linear (well, almost, it have C-number)
" Usually use Enclosed inner product <x, y=""> = xy = \(\int \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</x,>
which induces 11.112 (11x112 = <x, x="">)</x,>
Fact: 11.11p (p72) norms not induced by any time product

[2]
if V= C ⁿ , two options: () F=R, then output of <:; >> complex conjugate Complex conjugate Complex conjugate
complex conjugate Must be IR
complex conjugate T = transpose X means X C = T = U
x means x
Tadjoht (x,y > = x y
Positive definite matrix
A>O means Ais pd., meaning \text{\psi} \times \times \cdots
Usually we implicitly impose that A=A*
in which case A>O iff all externalus \; >0
in which case A>O iff all external us \; >0
and pos. semi-definite (psd) iff all >;≥0.
Recall a matrix is diagonalizable if $A = VDV^{-1}$
A= 01) not diagnostizable. Dologo.
If A is normal $(AA^{+}=A^{+}A) \rightarrow it$ is unitarily chargement zets $A = VDV^{-1} = VDV^{+}, V^{-1} = V^{+}$
$A = VDV^{-1} = VDV^{+}, V^{-1} = V^{+}$
If A is self-adjust /Hernitian $(A=A^*) \Rightarrow if is normal$ and $D_{ii}=\lambda_i \in IR$
Di=>i=>i
Matrix nous
· Frobenius / Hilbert-Schmidt All = = = < A, A >
c _j
where $(A, A) = fr(A^*A) = vec(A)^*vec(A)$ vec: $R^{m \times n} \rightarrow R^{m \times 1}$ inverses and adjoints of mat: $R^{m \times 1} \rightarrow R^{m \times n}$ each other
vec: R mxn -> R mn x1 inverses and adjoints of
met: IR mx) -> IR man I each other
* Operator norm
* Operator norm A := sup Ax ₆ = sup Ax ₆ A A ₆ = A ₆
Submultiplicative: 1 AxII = 11 x II a > 6

the most common operator norm is the "spectral norm"

using | | · | | = | | · | | = | | · | | (End-norm) 1) All 2 , usually written 11All 2 wjust 11All

in Mattab, norm (A) is spectral norm by default in Python, norm (A) is Frobenius norm by default ||Allz calculated no SVD: A=UZIV*

Zi=diag(0,,...,o,) then ||Allz= || 0 || m

11 All = 1101/2

If A is n×n, VAII2 requires O(n3) flops

11Allprequires O(n2) flops

In fihite dimensions (like R"), all norms are equivalent, which means for norms 11.11, 11.116, 7c, C>0 $\forall x \in \mathbb{R}^n$, $c ||x||_a \leq ||x||_b \leq C \cdot ||x||_a$

Equivalent + the same. Only means they induce the Same topology

Open sets: UER" is open if V xeU, 7 Ero s.t. the open ball B(x) & U complement

Closed set: FER? closed if Fe is open or, equil., if it is sequentially closed (X) = F Xn -> x => x eF. "Contains its limit points"

Compact: since in Rn, means closed and bounded o, equi, if (x) = K, K compact, then I a conveyed subseq. of (x) u) limit in K

More misc. nots:
A symmetric matrix X is positive semi-definite (X70)
iff J matrix G st. X=GGT (~ GG* if @)
(if X>0, then G is square + invertible and called
the Challesky factor of X)
">" induces a partial order on 5", called the
">" induces a partial order on 5°, called the "Loewner order" not all elements comparable
not all elements comparable
(but if they are, then acts nicely, e.g. A>B B>C → A>C etc.)
M7B B>C → A≥C etc.)
to say A > B means A-B > 0
/ LC O had a name to an 2
If A has eigenvalues λ_i and B has eigenvalues σ_i . then $A-B$ doesn't necessarily have eigenvalues $\lambda_i-\sigma_i$.
the A-R doesn't necessarily have expansative &:-T.
A IS AUGIT. MECESSITING NAVY
trace
tr(A) = 2 A: is sun of diagonal entring
= Zi x; Sum of eigenvalues
tr(ABC) = tr(BCA) = tr(CAB) "cyclic papery"
tacks:
· Compute tr(ATB), A,B \(\mathbb{R}^{\text{nx}}
BAD: Si) compute C=ATB O(n3) flups (2) find tr(C) O(n) flups
(2) find tr(c) O(n) flops
BETTER: tr (ATB) = <a, b=""> = < VEC(A), VEC(B) 7</a,>
T Vec(A) Tvec(B)
O(n²) f(ops
· Comprete All , A is n xn
RAD: IAIL = V tr (ATA) so compute ATA O(n3)
BAD: Find SUD of A, MAIL = ZIT,2 O(ns)
6000: =\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

· Fancier trick. Let A be low-rank, A = UVT m A = mu + v For simplicity, let it be rank 1 and Sque: K=1, m=n Suppose Bis sparse, nxn Compute 11 A-BII - efficiently O(n2), and also O(n2) memory Naive: \(\frac{57}{11} \left(A_{ij} - B_{ij} \right)^2 Better: (3) (3) (3) (1) (A-B) = ||A-B||_F = ||A||_F + ||B||_F - 2 + (A^TB) 1 All = 1 uv 1 = + ((ur) uv) = $tr(vu^{7}uv^{7})$) yelle = $tr(u^{7}uv^{7}v) = u^{7}uv^{7}v$ $\stackrel{\sim}{\in}\mathbb{R}$, costs O(n) to convents $\sqrt{\frac{1}{2}}$ (3) ||B|| 2 costs nn2(B) to compute (hopefully < O(n2)) (3) tr(A'B)= tr((uv) TB) = tr(vuTB) = tr(u7Br) compark w= BV (sporse matrix-vector multiply) in noz(B) time, tr(uTw) = nTw So O(n+m2(B)) time and memory. Matrix inversion lemma (ie. Sherman-Morrison-Woodburg) Easy (=quick) to invert a low-rank perturbation of a matrix for which you already know the $(A+uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1+VA^{-1}u}$ and see wikipedia for generalizations Basically exploiting the Schur Complement

· Hölder's inequality	Hölder Conjugats
<x,y> ≤ x p y q</x,y>	•
· · · · · · · · · · · · · · · · · · ·	. 0
eg., p=q=2	Cauchy - Schwar &"
-eg. p=1, 9	2 = 60 or viù-vesa
· Norms, inner products are continuous	
Q lim It x_11 = It lim x_11	if lim Kn exists
2 lim (a, x, > = <a, lim)<="" td=""><th>Kn7 if lim xn exists</th></a,>	Kn7 if lim xn exists
·If $x_n \rightarrow x$ and $y_n \rightarrow y$, then	
lim < xn, yn > = <x, y=""></x,>	
	yn) bondul, i'e. llynll = M 4n
lin <x,y,>= lim</x,y,>	<xn-x,y,> + 1/m <x,y,></x,y,></xn-x,y,>
- HMK	-x,y,>/ - <x,y></x,y>
= lin (<x,< td=""><th>·×,y,> via O via 2</th></x,<>	·×,y,> via O via 2
≤ lim 11 x	
	· ·
	· 1×~-x(1 =0