Prediction using Unsupervised ML

The Sparks Foundation Task-2

By- Sourav Srivastav

Import Libraries.

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.cluster import KMeans
sns.set()
```

Import Dataset

In [2]:

```
iris = datasets.load_iris()
iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
iris_df.head()
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [6]:

```
iris_df.describe()
```

Out[6]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Plotting Graph

In [12]:

```
plt.figure(figsize=(9,6))
plt.plot(range(1, 11), wcss)
plt.title("The Elbow Method",fontsize =18)
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```


Plotting Clusters.

In [14]:

In [18]:

4.0 4.0 3.5 2.0

6.0 Sepal Length 7.0

7.5

8.0

Clusters for Iris Flowers

```
In [ ]:
```

4.5

5.0

5.5