

>> مرور جبر کارشناسی

تعریف ۱ - نیم گروه

فرض کنید S مجموعهای ناتهی باشد و یک عمل دوتایی \cdot روی S را در نظر بگیرید. اگر این عمل شرکتپذیر باشد یعنی:

$$\forall a, b, c \in S \quad (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

آنگاه S را همراه با عمل \cdot یک نیم گروه a مینامیم.

^aSemigroup

تعریف ۲- گروه

فرض کنید مجموعه ناتهی G همراه با عمل دوتایی \cdot در شرایط زیر صدق کند:

$$\forall a, b, c \in G \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$\exists e \in G \ \forall a \in G \ a \cdot e = e \cdot a = a$$
 (وجود عنصر همانی)

$$\forall a \in G \; \exists b \in G \quad a \cdot b = b \cdot a = e \quad (وجود عنصر وارون)$$

در این صورت (G,\cdot) را یک گروه مینامیم.

ملاحظه

ab مىنويسيم $a\cdot b$ غالبا بجاى

تعریف ۳ - گروه آبلی

اگر به ازای هر $a,b \in G$ داشته باشیم:

$$a\cdot b=b\cdot a$$

گروه را آبلی یا جابجایی مینامیم.

تعریف ۴ - زیرگروه

H اگر (G,\cdot) یک گروه باشد و $G\subseteq H$ زیرمجموعهای ناتهی از G باشد که خودش نیز تحت عمل G یک گروه باشد، آنگاه G را یک **زیرگروه** G مینامیم و مینویسیم:

 $H \leq G$

قضیه ۱ - محک فشرده

:زیرمجموعه ناتهی $H\subseteq G$ زیرگروه G است اگر و تنها اگر

$$\forall a, b \in H \quad a \cdot b^{-1} \in H$$

جبر پیشرفته دکتر خسروی

جزوه

مثال ١

همان ($\mathbb{Z},+$)، گروه اعداد صحیح با عمل جمع را در نظر بگیرید. زیرمجموعه ی $\mathbb{Z}=\{2k\mid k\in\mathbb{Z}\}$ یعنی اعداد زوج، با همان عمل جمع، یک زیرگروه از \mathbb{Z} است، بنابراین:

$$(2\mathbb{Z},+) \le (\mathbb{Z},+)$$

اثبات. برای اثبات اینکه $(2\mathbb{Z},+)$ زیرگروه است، از محک فشرده استفاده می کنیم: باید نشان دهیم اگر $a,b\in 2\mathbb{Z}$ باشند، آنگاه $a-b\in 2\mathbb{Z}$

ازآنجا که a=2m و b=2n و مازای a=2m آنگاه:

$$a - b = 2m - 2n = 2(m - n)$$

 $.a-b\in 2\mathbb{Z}$ که چون $m-n\in \mathbb{Z}$

. بنابراین، $2\mathbb{Z} + (-b) \in a + (-b)$ و با استفاده از محک فشرده نتیجه می گیریم که $a + (-b) \in 2\mathbb{Z}$ است

مثال ۲

عمل عمل $n\mathbb{Z}=\{nk\mid k\in\mathbb{Z}\}$ ، مجموعه $n\in\mathbb{N}$ ، مجموعه وا در نظر بگیرید. برای هر $n\mathbb{Z}=\{nk\mid k\in\mathbb{Z}\}$ با همان عمل جمع، زیرگروه \mathbb{Z} است:

$$(n\mathbb{Z},+) \le (\mathbb{Z},+)$$

 $k,l\in\mathbb{Z}$ بس: b=nl ،a=nk داریم ، $a,b\in n\mathbb{Z}$ بن

$$a - b = nk - nl = n(k - l) \in n\mathbb{Z}$$

بنابراین، \mathbb{Z} تحت تفاضل بسته است و زیرگروه \mathbb{Z} میباشد.

مثال ٣

.گروه نیست (\mathbb{N}, \times)

 $2 \times x = 1$ زیرا برای مثال عدد $\mathbb N$ عضو معکوسی نسبت به ضرب در $\mathbb N$ ندارد. یعنی عدد طبیعیای وجود ندارد که $2 \in \mathbb N$ زیرا برآورده کند.

بنابراین، شرط وجود عنصر معکوس برای همه اعضا برقرار نیست و (\mathbb{N}, \times) گروه نیست.

تعریف ۵

برای هر میدان F، مجموعه
ی F^* به صورت زیر تعریف میشود:

$$F^* = F \setminus \{0\}$$

یعنی مجموعه یتمام اعضای ناصفر F. این مجموعه تحت عمل ضرب، یک گروه تشکیل میدهد.

به طور خاص:

- اعداد گویا ناصفر $\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$ •
- اعداد حقیقی ناصفر: $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$
- اصفر تاصفر : $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$

هر یک از این مجموعهها با عمل ضرب، یک گروه ضربی میسازند.

تعریف ۶

است: n imes n با درایههایی از $M_n(F)$ مجموعهی تمام ماتریسهای n imes n با درایههایی از $M_n(F)$ است:

$$M_n(F) = \{ A = (a_{ij}) \mid 1 \le i, j \le n, \ a_{ij} \in F \}$$

روی $M_n(F)$ میتوان اعمال مختلفی تعریف کرد، مانند جمع ماتریسی و ضرب ماتریسی. معمولاً $(M_n(F),+)$ یک گروه آبلی است (نسبت به جمع ماتریسی) و $(M_n(F),+)$ یک نیم گروه است (نسبت به ضرب ماتریسی، ولی بسته به F و G ممکن است گروه نباشد زیرا ماتریسهای ناتبدیل وارون ندارند).

 a Field

مثال ۴

در ادامه چند مثال از زیرگروهها آورده شده است:

$$(\mathbb{Z},+) \leq (\mathbb{Q},+)$$
 $(\mathbb{Q},+) \leq (\mathbb{R},+)$
 $(\mathbb{Q}^*,\cdot) \leq (\mathbb{R}^*,\cdot)$
 $(M_n(\mathbb{Q}),+) \leq (M_n(\mathbb{R}),+)$
 $(\mathbb{C},+)$ (گروه ضربی اعداد مختلط ناصفر) (\mathbb{C}^*,\cdot)

 $(M_n(\mathbb{C}),+)$ (گروه ماتریسهای $n \times n$ مختلط با جمع)

تعریف ۷

برای عدد صحیح $2 \geq n$ ، مجموعه یباقیماندههای صحیح پیمانهای را به صورت زیر تعریف می *ک*نیم:

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

که در آن \overline{a} نمایانگر کلاس پیمانهای a نسبت به n است، یعنی:

$$\overline{a} = \{ b \in \mathbb{Z} \mid b \equiv a \pmod{n} \}$$

عمل جمع روی \mathbb{Z}_n به صورت زیر تعریف میشود:

$$\overline{i} + \overline{j} := \overline{i+j}$$

به این ترتیب، $(\mathbb{Z}_n,+)$ یک گروه آبلی متناهی است.

اثبات خوش تعریف بودن عمل جمع. فرض کنید $\overline{i}=\overline{i'}$ و $\overline{i}=\overline{i'}$ آنگاه به ازای $k,\ell\in\mathbb{Z}$ داریم:

$$i=i'+kn$$
 $j=j'+\ell n$

بنابراين:

$$i+j=i'+j'+(k+\ell)n \Rightarrow i+j \equiv i'+j' \pmod{n}$$

يعنى:

$$\overline{i+j} = \overline{i'+j'}$$

پس:

$$\overline{i} + \overline{j} = \overline{i+j} = \overline{i'+j'} = \overline{i'} + \overline{j'}$$

بنابراین، عمل جمع خوشتعریف است.

تعریف ۸زیرگروه نرمال

(یرگروه N از گروه G را **نرمال** گویند اگر

$$\forall g \in G \quad gNg^{-1} \subseteq N$$

که معادل است با:

$$gNg^{-1} = \{gng^{-1} \mid n \in N\} \subseteq N$$

 $N \subseteq G$ در این صورت مینویسیم

مثال ۵

تمام زیرگروههای آبلی نرمال هستند.

جبر پیشرفته دکتر خسروی

جزوه

مثال ۶

. گروه دیهدرال $D_n = \langle a,b \mid a^n = b^2 = e, \; bab^{-1} = a^{-1} \rangle$ را در نظر بگیرید

اعضای این گروه عبارتاند از:

$$\{e, a, a^2, \dots, a^{n-1}, b, ab, a^2b, \dots, a^{n-1}b\}$$

زیرگروه مولد a که برابر است با:

$$\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}\$$

یک زیرگروه نرمال در D_n است، یعنی:

 $\langle a \rangle \le D_n$

 $a^k \in \langle a \rangle$ برای هر $b\langle a \rangle b^{-1} \subseteq \langle a \rangle$ داریم: اثبات. کافی است نشان دهیم که

$$ba^kb^{-1} = (bab^{-1})^k = (a^{-1})^k = a^{-k} \in \langle a \rangle$$

 $\langle a \rangle$ پس $\langle a \rangle$ و از آنجا که D_n توسط a و a تولید شده، برای همه عناصر $g \in D_n$ داریم $g \in D_n$ بنابراین، $g \in D_n$

قضیه ۲

 $H \subseteq G$ اگر $H \subseteq G$ و $H \subseteq G$ آنگاه $H \subseteq G$

.gH=H=Hg باشد، آنگاه $g\in H$ باشد، آنگاه و $G\setminus H$ و $G\setminus H$ و اگر $G\setminus H$ و اگر $G\setminus H$ باشد، آنگاه و اگر و اثنان و اگر مال است.

تعریف ۹همدستهٔ راست

اگر $G \leq G$ و $G \in G$ ، همدستهٔ راست H نسبت به g به صورت زیر تعریف میشود:

$$Hg = \{hg \mid h \in H\}$$