CK0048 - MÉTODOS NUMÉRICOS II

Tarefa 19: Método das Diferenças Finitas

Gabriel Camurça Fernandes de Sousa - 420549

Lívia Belizario Rocha - 418304

Faça o que se pede.

1. Resolver o PVC1 com N=8. Compare os seus resultados com aqueles apresentados em (13), montando uma tabela com os valores obtidos e os erros relativos à solução exata.

PVC1:
$$\begin{cases} \frac{d^2 y(x)}{dx^2} - y(x) = 0\\ y(0) = 0\\ y(1) = 1. \end{cases}$$

- Divisão do Domínio

Para N = 8,

$$\Delta x = \frac{1}{8} = 0.125$$

Figura 1. Divisão do domínio [0, 1] em oito partes iguais com nós nas posições i

- Versão discreta da ED do PVC

Usando a filosofia central, as derivadas que aparecem na ED do PVC aplicada no nó i ficam

$$\frac{d^2 y(x_i)}{dx^2} - y(x_i) \approx \frac{1}{(\Delta x)^2} [y(x_{i-1}) - 2y(x_i) + y(x_{i+1})] - y(x_i)
= \frac{1}{(\Delta x)^2} y(x_{i-1}) - \left(\frac{2}{(\Delta x)^2} + 1\right) y(x_i) + \frac{1}{(\Delta x)^2} y(x_{i+1}).$$

- Aplicação da versão discreta da ED do PVC nos nós do domínio.

Célula esquerda = Célula direita =
$$\frac{1}{(\Delta x)^2} = \frac{1}{(\frac{1}{8})^2} = 64$$

Célula central = $-(\frac{2}{(\Delta x)^2} + 1) = -(\frac{2}{(\frac{1}{8})^2} + 1) = -129$

A aplicação da máscara sobre os nós das incógnitas gera as seguintes equações:

$$64 y(0.) - 129 y_1 + 64 y_2 = 0$$

$$64 y_1 - 129 y_2 + 64 y_3 = 0$$

$$64 y_2 - 129 y_3 + 64 y_4 = 0$$

$$64 y_3 - 129 y_4 + 64 y_5 = 0$$

$$64 y_4 - 129 y_5 + 64 y_6 = 0$$

$$64 y_5 - 129 y_6 + 64 y_7 = 0$$

$$64 y_6 - 129 y_7 + 64 y(1.) = 0$$

Os valores de y(0.) e y(1.) são especificados nas condições contorno, portanto:

$$-129 y_1 + 64 y_2 = 0$$

$$64 y_1 - 129 y_2 + 64 y_3 = 0$$

$$64 y_2 - 129 y_3 + 64 y_4 = 0$$

$$64 y_3 - 129 y_4 + 64 y_5 = 0$$

$$64 y_4 - 129 y_5 + 64 y_6 = 0$$

$$64 y_5 - 129 y_6 + 64 y_7 = 0$$

$$64 y_6 - 129 y_7 = -64$$

A fim de encontrar o vetor solução do sistema, podemos reescrevê-lo assim :

1	-129.0000	64.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	64.0000	-129.0000	64.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
١	0.0000	64.0000	-129.0000	64.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ı	0.0000	0.0000	64.0000	-129.0000	64.0000	0.0000	0.0000	0.0000	0.0000
ı	0.0000	0.0000	0.0000	64.0000	-129.0000	64.0000	0.0000	0.0000	0.0000
ı	0.0000	0.0000	0.0000	0.0000	64.0000	-129.0000	64.0000	0.0000	0.0000
ı	0.0000	0.0000	0.0000	0.0000	0.0000	64.0000	-129.0000	64.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	64.0000	-129.0000	-64.0000

- Resolução do sistema de equações algébricas.

Resolvendo o sistema, temos os seguintes valores discretos e aproximados da função y(x)

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix} = \begin{bmatrix} 0.0910 \\ 0.1834 \\ 0.2787 \\ 0.3783 \\ 0.4838 \\ 0.5969 \\ 0.7193 \\ 0.8530 \end{bmatrix}$$

*Erro relativo à solução exata obtida pela equação fornecida $\frac{1}{e^{-1}-e}(e^{-x}-e^x)$

y _i	Valor Obtido	Erro Relativo
y ₁	0.1067	0.0005438229773959
y ₂	0.215	0.0002213963320694
y ₃	0.3267	0.0002270210232090
У ₄	0.4435	0.0002041894362187
y ₅	0.5672	0.0001227959142972

У ₆	0.6998	0.0001082961435946		
y ₇	0.8433	0.00004.0895586899		

2. Resolver o PVC2 com N=8 nas duas direções e usando f(x, y)=4. Compare seus resultados com aqueles apresentados em (19), montando uma tabela com os valores obtidos e os erros relativos aos valores obtidos com N=8.

PVC2:
$$\begin{cases} \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = f(x,y) \\ u(x,0) = 0: borda \ inferior \\ u(x,1) = 0: borda \ superior \\ u(0,y) = 0: borda \ esquerda \\ u(1,y) = 0: borda \ direita \end{cases}$$

- Divisão do Domínio

Para
$$N = 8$$
,

$$\Delta x = \frac{1}{8} = 0.125$$
 $\Delta y = \frac{1}{8} = 0.125$

Figura 1. Partição do domínio quadrado em uma grade regular de espaçamento igual a 0.125.

Versão discreta da ED do PVC

Usando a filosofia central, as derivadas que aparecem na ED do PVC aplicada no nó (x_i, y_i) ficam

$$\frac{\partial^{2}u(x_{i},y_{j})}{\partial x^{2}} \approx \frac{1}{(\Delta x)^{2}} \left[u(x_{i-1},y_{j}) - 2u(x_{i},y_{j}) + u(x_{i+1},y_{j}) \right] \\
= \frac{1}{(\Delta x)^{2}} u(x_{i-1},y_{j}) - \frac{2}{(\Delta x)^{2}} u(x_{i},y_{j}) + \frac{1}{(\Delta x)^{2}} u(x_{i+1},y_{j}).$$

$$\frac{\partial^{2}u(x_{i},y_{j})}{\partial y^{2}} \approx \frac{1}{(\Delta y)^{2}} \left[u(x_{i},y_{j-1}) - 2u(x_{i},y_{j}) + u(x_{i},y_{j+1}) \right] \\
= \frac{1}{(\Delta y)^{2}} u(x_{i},y_{j-1}) - \frac{2}{(\Delta y)^{2}} u(x_{i},y_{j}) + \frac{1}{(\Delta y)^{2}} u(x_{i},y_{j+1}).$$

$$\frac{\partial^{2}u(x_{i},y_{j})}{\partial x^{2}} + \frac{\partial^{2}u(x_{i},y_{j})}{\partial y^{2}} \approx \frac{1}{(\Delta x)^{2}} u(x_{i-1},y_{j}) - \frac{2}{(\Delta x)^{2}} u(x_{i},y_{j}) + \frac{1}{(\Delta x)^{2}} u(x_{i+1},y_{j}) + \frac{1}{(\Delta y)^{2}} u(x_{i},y_{j+1}) - \frac{2}{(\Delta y)^{2}} u(x_{i},y_{j}) + \frac{1}{(\Delta y)^{2}} u(x_{i},y_{j+1})$$

- Aplicação da versão discreta da ED do PVC nos nós do domínio.

Célula esquerda = Célula direita =
$$\frac{1}{(\Delta x)^2} = \frac{1}{(\frac{1}{8})^2} = 64$$

Célula superior = Célula inferior =
$$\frac{1}{(\Delta y)^2} = \frac{1}{(\frac{1}{8})^2} = 64$$

Célula central = $-2(\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2}) = -2(\frac{1}{(\frac{1}{8})^2} + \frac{1}{(\frac{1}{8})^2}) = -256$

Podemos então formar o sistema que representa todos os pontos definidos. Organizando de outra forma, podemos separar os coeficientes do sistema em uma matriz e multiplicá-la por outra com os valores desconhecidos $(u_1, ..., u_{49})$ e igualar à matriz de resultados.

Matriz de coeficientes:

Matriz de variáveis:

Matriz de Resultados:

_1_1	4
<u></u>	4
<u>.</u> 3	4
1 4	4
ī 5	4
ı 6	4
1_4 1_5 1_6 1_7	4
_8 8	4
19	4
1 10	4
<u>_</u> 11	4
<u>1</u> 12	4
ı 13	4
1_14	4
<u>_</u> 15	4
_16	4
1 17	4
1 8	4
ı_19	4
1_20	4
1 21	4 4 4
1_22	4
ı_23	4
1 24	4
25	4
1_26	4
1 27	4
1_28	4
1 29	4
ı 30	4
ı_31	4
J_32	4
	4
	4
ı_35	4
ı_36	4
ı_37	4
ı_38	4
ı_39	4
ı_40	4
ı_41	4
1_42	4
1_43	4
1_44	4
1_45	4
<u>1_46</u>	4
1_47	4
ı_48	4
ı_49	4

Resolvendo o sistema, temos os seguintes valores discretos e aproximados da função u(x,y), isto é

u 1 = -0.07111672794117646u 2 = -0.11098345588235295 u 3 = -0.13166360294117646 u 4 = -0.1380974264705882u 5 = -0.13166360294117646u 6 = -0.11098345588235295 $u_7 = -0.07111672794117647$ u 8 = -0.11098345588235294u 9 = -0.17865349264705882u 10 = -0.21507352941176472 u_11 = -0.226562500000000000 u 12 = -0.21507352941176472 u 13 = -0.17865349264705882u 14 = -0.11098345588235294 $u_15 = -0.13166360294117646$ u 16 = -0.2150735294117647 u 17 = -0.26091452205882354u 18 = -0.27550551470588236 u 19 = -0.26091452205882354u 20 = -0.21507352941176477u 21 = -0.1316636029411765u_22 = -0.13809742647058823 u 23 = -0.226562499999999997u 24 = -0.27550551470588236u 25 = -0.29113051470588236 $u_26 = -0.27550551470588236$ u 27 = -0.226562500000000000 $u_28 = -0.13809742647058823$ $u_29 = -0.1316636029411765$ u 30 = -0.21507352941176472 u 31 = -0.2609145220588235u 32 = -0.27550551470588236 $u_33 = -0.2609145220588236$ $u_34 = -0.21507352941176475$ $u_35 = -0.13166360294117646$ u 36 = -0.11098345588235294 $u_37 = -0.17865349264705882$ u 38 = -0.21507352941176466 u 39 = -0.226562499999999997u 40 = -0.2150735294117647 u 41 = -0.1786534926470588 u 42 = -0.1109834558823529u 43 = -0.07111672794117645 u 44 = -0.11098345588235291u = -0.13166360294117643 $u \ 46 = -0.1380974264705882$ u 47 = -0.13166360294117643 $u_48 = -0.11098345588235292$ u 49 = -0.07111672794117646 Olhando para os pontos originais para N=4 como mostrado no arquivo da aula "2020_Aula#27" podemos fazer as comparações, mostradas na tabela:

y _i	Valor Exato	Valor Obtido	Erro Relativo
u ₁	-0.171875	-0.17865349264 70588	0.037942122186 49516
U ₂	-0.21875	-0.22656250000 0000	0.034482758620 68989
u_3	-0.171875	-0.17865349264 70588	0.037942122186 49516
$u_{\scriptscriptstyle{4}}$	-0.21875	-0.2265624999 99999	0.034482758620 68954
U ₅	-0.28125	-0.291130514705 88236	0.033938437253 3544
U ₆	-0.21875	-0.22656250000 0000	0.034482758620 68989
u ₇	-0.171875	-0.17865349264 70588	0.037942122186 49516
u ₈	-0.21875	-0.2265624999 99999	0.034482758620 68954
U ₉	-0.171875	-0.17865349264 70588	0.037942122186 49501