

SCHOOL OF MECHANICAL ENGINEERING CONTINUOUS ASSESSMENT TEST - 41

WINTER SEMESTER 2022-2023

Program Name & Branch: B. Tech (Mechanical Engineering)

Course Code: BMEE207L

Course Name: Kinematics and Dynamics of Machines

Faculty Name(s): Deepa A, Niranjana Behera, Senthilauthan N. Sridharan K & Venkatesan S

Class Number(s): VL2022230501012, VL2022230500994, VL2022230500998, VL20222305010

VL2022230501014

Exam Duration: 90 minutes

Maximum Macks: 50

No	Question	Mark
	Design a cam of an oil engine to raise a valve by 50 mm through 120° of the cam revolution. During the raise of the valve, the follower follows S.H.M motion during the first 60° and Uniform acceleration and deceleration during the next 60°. The diameter of the roller is 20mm and minimum radius of the cam is 25mm.	10
	Synthesize a four-bar mechanism is used to transfer electricity to the main transformer of the electric locomotives. Assume suitable data	10
	Design 20° involute gears to avoid interference of module 4mm and addendum 1.23 module in such a way that when they mesh with each other the velocity ratio is 2.5. The pinion gear rotates at 150 rpm.	10
	In an epi-cyclic gear train as shown in the figure, the number of teeth on gears A and D is 42 and 82. When Gear A makes one revolution clockwise and D makes half revolution counterclockwise, determine the number of revolutions made by the arm which holds both the pinion gears. Arm	10
	C D	
	A vertical petrol engine of 100mm diameter and 120mm stroke has a	

SCHOOL OF MECHANICAL ENGINEERING

CONTINUOUS ASSESSMENT TEST - II

WINTERSEMESTER 2022-2023

Programme Name & Branch: B.Tech- Automotive, Mechanical, Manufacturing Engineering

Course Code& Name: BMEE204 and Fluid Mechanics and Machines

Faculty Name(s):Dr. Anuj Kumar, Dr. Immanuel Selwyn Raj A, Dr. Sekarapandian N, Dr. Sreeja Sadasivan,

Class Number(s): VL2022230501045, VL2022230501046, VL2022230501047, VL2022230501049

Exam Duration:90 minutes

Maximum Marks: 5 x 10=50M

Q.No	Question
χ.	Two venturimeter of different area ratio are connected at different locations at the same pipe and
<i>Y</i>	shirted manorificies are used to measure pressure heads. The second venturimeter of once retire
	registers a pressure head 6h and the first one registers 1.5h. Find the area ratio of the first
	venturimeter. Assume that the C_d value is same for both the venturimeters.
2/	The viscous fluid flows in 12 cm pipe such that its velocity measured 2 cm away from the pipe
	wall is 0.98 m/s. Consider the flow is laminar and determine:
	(a) centre line velocity
	(b) maximum shear stress
	flow rate
	pressure head for a pipe length of 350 mm
	Also, draw the shear stress and velocity profile
1 /	, , , , , , , , , , , , , , , , , , ,
3/	An oil of density 900 kg/m ³ flowing through an elbow makes a 155° turn before being
	discitation, as shown in rig.2. The elevation difference between the content of t
	sections is 0.4 m and the inlet velocity is 7 m/s. If the pipe diameter at the entrance and exit are
1	350 mm and 100 mm,
	a) Determine the gage pressure at the pipe entrance, assuming the pressure at the exit is
Y	atmospheric.
	Neglecting the weight of fluid and elbow, find the total force needed to hold the pipe in place.
ľ	o o o o o o o o o o o o o o o o o o o
1	
	⇒
1	Fig.1
- 1	

The air flow rate in a pipe at 18°C is 11 m³/min. A thick filter is being tested for losses. The upstream pressure is measured as 130 kPa. Find the loss coefficient K_L of the filter by using the water manometer reading?

Fig. 2

The wall shear stress τ_w for flow in a narrow annular gap between a fixed and a rotating cylinder is a function of density ρ , viscosity μ , angular velocity Ω , outer radius R, and gap width Δr . Using Buckingham's method, determine the functional relationship for the dependent wall shear stress τ_w .

SCHOOL OF MECHANICAL ENGINEERING CONTINUOUS ASSESSMENT TEST – II WINTER SEMESTER 2022-2023 (Seniors)

Programme Name & Branch: B.Tech- Automotive, Mechanical, Manufacturing Engineering

Course Code

: BMEE204L

Course Name

: Fluid Mechanics and Machines

Class Number(s)

: VL2022230500741, VL2022230501042, VL2022230501040

VL2022230501043, VL2022230500747

Faculty Members

: Dr. Mohamed Ibrahim M, Dr. Deepakkumar R, Dr. Abinash

Mohanta, Dr. Aruna Kumar Behura Dr. Praveen Kumar G

Exam Duration: 90 minutes

Maximum Marks: 50

General instruction(s):

(i) Assume if any values are need with proper justifications

Q.No	Question	
1.	In the R-block hostel, a vertical venturimeter is fixed to measure the flowrate of water to the overhead tank. The vertical venturimeter has an inlet and throat diameter of 200 mm and 75 mm, respectively. The pressure connection at the throat is 150 mm above that at the inlet. The pressure loss is 0.5 m between inlet to throat. If the actual rate of flow is 50 litres/s and the coefficient of discharge is 0.96, calculate (i) the pressure difference between inlet and throat in N/m², and Calculate the difference of pressure between main and throat in meters if it is measured by two different U-tube manometers ii) mercury manometer iii) manometer with fluid specific gravity of 3.	Marks 10
	The library block's air conditioning system receives chilled water from the SJT Annexe using the circular pipe of 0.3 m³/s of water earrying capacity. At front of the library block, in the horizontal position the pipe of 200 mm diameter is decreased to 150 mm diameter with bend angle of 120°. The pressure at inlet to the bend is 300 kPa.	10

Determine the magnitude and direction of the force exerted by the bend, if 10% of the exit kinetic energy is lost in the bend.

In the shuttle bus, SAE 10 oil is used for engine cooling system. The oil viscosity 0.02 poise and specific gravity 0.8 is flowing through 50 mm diameter pipe and length 500 m at the rate of 0.19 lit./sec. Determine:

10

10

- (i) Centre-line velocity.
- (ii) Pressure gradient,
- (iii) Wall shear stress,
- (iv) Power required to maintain the flow and
- (v) Comment on the fluid flow regime.

In the Anna auditorium, the cooling air from the air-conditioning system enters the auditorium through a rectangular duct. Air ($\rho = 1.2 \text{ kg/m}^3 \text{ and } \gamma = 1.5 \text{ X} \cdot 10^{-5} \text{ m}^2/\text{s}$) flows at a rate of 2.5 m³/s in a 30 cm X 60 cm steel rectangular duct (roughness value for steel, $k = 4.6 \text{ X} \cdot 10^{-5} \text{ m}$). What is the pressure drop i) front of the hall at 10 m of the duct and ii) the rear end of the hall at 50 m of the duct? Use Moody's chart.

The wall shear stress τ_w in a boundary layer is assumed to be a function of stream velocity U, boundary layer thickness δ , local turbulence velocity u', density ρ , and local pressure gradient dp/dx. Write the dimensionless parameters.