# Deterministic Optimization

Linear Optimization Modeling Network Flow Problems

#### **Andy Sun**

Assistant Professor
Stewart School of Industrial and Systems Engineering

Modeling using Linear Optimization

# Modeling using Linear Programs

#### **Learning Objectives**

- Construct linear programming models for a wide range of applications
- Solve LP models with CVX
- Recognize nonlinear problems that can be modeled as LPs

# This lesson: LP models via examples Part 1

- Ingredients of a linear optimization model
- A simple example

## Ingredients of a linear program

A Linear program (or a linear optimization model) is composed of:

· Variables:

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)$$

• A linear objective function:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n c_i x_i = c^{\top} x.$$

Linear constraints:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$
  $a_1^{\top}x \le b_1$   
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2$   $a_2^{\top}x \ge b_2$   
 $a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3$   $a_3^{\top}x = b_3$ 

## A Simple Example of LP

A simple example of a linear program is given below:

min 
$$x_1 - x_2$$
  
s.t.  $x_1 + x_2 \le 2$   
 $x_1 - 2x_2 \ge -2$   
 $x_1 \ge 0, x_2 \ge 0$ .

min 
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\top} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
s.t. 
$$x_1 + x_2 \le 2$$

$$x_1 - 2x_2 \ge -2$$

$$x_1 \ge 0, x_2 \ge 0.$$

To visualize the feasible region of this LP, we can draw the following picture: Optimal solution:

$$x^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



P: Polyhedron

### Summary

- To construct a linear program, we need to define variables, objective function, and constraints.
- The objective function must be a linear function of the variables.
- The constraints must be linear inequality or equality constraints.
- Simple LPs in 2-D can be drawn in pictures.