

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Relatividad Especial Diego Sarceño 201900109 2 de marzo de 2022

Tarea 4

1. Transformación Propia de Lorentz

Tomando la transformación propia de Lorentz $L_{+\uparrow}(\beta)$ aplicada al 4-vector

$$L_{+\uparrow}(\beta) \begin{pmatrix} t \\ \vec{r} \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma \beta^t \\ -\gamma \beta & I + \frac{\gamma-1}{\beta^2} \beta \beta^t \end{pmatrix} \begin{pmatrix} t \\ \vec{r} \end{pmatrix} = \begin{pmatrix} t \gamma - \gamma \vec{\beta}^t \vec{r} \\ -\gamma t \vec{\beta} + \vec{r} + \frac{\gamma-1}{\vec{\beta}^t} \vec{\beta} \Big(\vec{\beta}^t \vec{r} \Big) \end{pmatrix}.$$

Dado que $\vec{\beta}$ es un vector columna, el producto $\vec{\beta}^t \vec{r} = \vec{\beta} \cdot \vec{r}$, con esto, se obtienen las dos relaciones buscadas

$$\begin{cases}
t' = \gamma \left(t - \vec{\beta} \cdot \vec{r} \right) \\
\vec{r}' = -\gamma t \vec{\beta} + \vec{r} + \frac{\gamma - 1}{\vec{\beta}^t} \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \right)
\end{cases}$$
(1)

Para la segunda parte, sabiendo que $A^i=\begin{pmatrix}t^+\\\vec{0}\end{pmatrix}$, utilizando el resultado temporal de (1) y dado que $\vec{r}=\vec{0}$, entonces

$$t^{+} = \gamma t, \tag{2}$$

lo que implica que t^+ y t tienen el mismo signo.