Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017878

International filing date: 01 December 2004 (01.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-403935

Filing date: 03 December 2003 (03.12.2003)

Date of receipt at the International Bureau: 04 February 2005 (04.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

03.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 3日

出 願 番 号 Application Number:

特願2003-403935

[ST. 10/C]:

[JP2003-403935]

出 願 人
Applicant(s):

株式会社カネカ

2005年 1月20日

1)1

【識別番号】

【氏名又は名称】

【代表者】 【手数料の表示】

> 【予納台帳番号】 【納付金額】

【提出物件の目録】

【物件名】 【物件名】

【物件名】 【物件名】

大阪府摂津市鳥飼西5-1-1

大阪府摂津市鳥飼西5-1-1

000000941

鐘淵化学工業株式会社

武田 正利

21,000円

特許請求の範囲 1 明細書 1 図面 1 要約書 1

005027

【請求項1】

下記一般式(1)、(2)、(3)で表される繰り返し単位を含有するイミド樹脂であり、当該イミド樹脂が正の配向複屈折を有することを特徴とするイミド樹脂。

【化1】

$$\begin{array}{ccccc}
R^2 & R^2 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^$$

(ここで、 R^1 および R^2 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^3 は、炭素数 $1\sim 1$ 8 のアルキル基、炭素数 $3\sim 1$ 2 のシクロアルキル基、または炭素数 $6\sim 1$ 0 のアリール基を示す。)

【化2】

$$\begin{array}{c}
R^4 \\
R^5 \\
m \\
C \\
O \\
R^6
\end{array}$$

(ここで、 R^4 および R^5 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^6 は、炭素数 $1\sim 1$ 8のアルキル基、炭素数 $3\sim 1$ 2のシクロアルキル基、または炭素数 $6\sim 1$ 0のアリール基を示す。)

(ここで、 R^7 は、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^8 は、炭素数 $6\sim 1$ 0 のアリール基を示す。)

【請求項2】

配向複屈折が 0.15×10^{-3} 以上であることを特徴とする、請求項1記載のイミド樹脂。

【請求項3】

光弾性係数が 1.0×1.0^{-12} c m²/N以下であることを特徴とする、請求項 $1 \sim 2$ 記載のイミド樹脂。

【請求項4】

ガラス転移温度が120℃以上であることを特徴とする請求項1~3記載のイミド樹脂・

【請求項5】

溶剤不在下にて、メタクリル酸メチル-スチレン共重合体に一級アミンを処理する方法 により製造することを特徴とする、請求項1~4に記載のイミド樹脂。

【請求項6】

溶剤存在下にて、メタクリル酸メチルースチレン共重合体に一級アミンを処理する方法 により製造することを特徴とする、請求項1~4に記載のイミド樹脂。

【請求項7】

請求項1~6に記載のイミド樹脂を主成分とする光学用樹脂組成物。

【請求項8】

請求項1~7記載のイミド樹脂を主成分とする光学用樹脂組成物からなる成形体。

【書類名】明細書

【発明の名称】イミド樹脂、およびそれを用いる光学用樹脂組成物、成形体 【技術分野】

[0001]

本発明は、透明性・耐熱性に優れ、さらに正の配向複屈折を有することを特徴とするイミド樹脂に関する。

【背景技術】

[0002]

近年、電子機器はますます小型化し、ノートパソコン、携帯電話、携帯情報端末に代表されるように、軽量・コンパクトという特長を生かし、多様な用途で用いられるようになってきている。一方、液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイの分野では画面の大型化に伴う重量増を抑制することも要求されている。

[0003]

上述のような電子機器をはじめとする、透明性が要求される用途においては、従来ガラスが使用されていた部材を透明性が良好な樹脂へ置き換える流れが進んでいる。

[0004]

ポリメタクリル酸メチルを代表とする種々の透明樹脂は、ガラスと比較して成形性、加工性が良好で、割れにくい、さらに軽量、安価という特徴などから、液晶ディスプレイや光ディスク、ピックアップレンズなどへの展開が検討され、一部実用化されている。

[0005]

自動車用ヘッドランプカバーや液晶ディスプレイ用部材など、用途の展開に従って、透明樹脂は透明性に加え、耐熱性も求められるようになっている。ポリメタクリル酸メチルやポリスチレンは透明性が良好であり、価格も比較的安価である特徴を有しているものの、耐熱性が低いため、このような用途においては適用範囲が制限される。

[0006]

ポリメタクリル酸メチルの耐熱性を改善する一つの方法として、メタクリル酸メチルとシクロヘキシルマレイミドを共重合させる方法が実用化されている。ただし、当該方法によれば、高価なモノマーであるシクロヘキシルマレイミドを用いるために、耐熱性を向上させようとするほど得られる共重合体が高価になるという課題がある。

[0007]

一方、押出機中、ポリメタクリル酸メチル(米国特許 4、246、374号)やメタクリル酸メチルースチレン共重合体(米国特許 4、727、117号、米国特許 4、954、574号、米国特許 5、004、777号、米国特許 5、264、483号)に一級アミンを処理することによりメタクリル酸メチル中のメチルエステル基をイミド化させてイミド系樹脂を得ることが提案されている。これらの樹脂は透明性や耐熱性が良好であると記載されている。特に、メタクリル酸メチルースチレン共重合体はイミド化の反応率に加え、共重合体ゆえにその組成比を任意に制御できるために、ポリメタクリル酸メチルを原料とするイミド系樹脂より幅広い特徴を有することが期待される。しかし、これらの先行技術には、イミド化されたメタクリル酸メチルースチレン共重合体の特徴に関する明確な記載はなされていない。特に、配向複屈折に関する記載もない。

[0008]

ポリマーは一般に押出成型時などにポリマー鎖が配向し、複屈折を生じることが多い。 ポリカーボネートや最近透明樹脂として多用されている環状オレフィン共重合体は正の複 屈折を有するものである。一方、ポリスチレンやメタクリル酸メチルは正の複屈折を有す るものである。複屈折はポリマーの一次構造により大きく影響を受ける。これらのポリマ ーの複屈折の制御は困難であり、用途に応じて適切な複屈折を選択することは容易ではな い。

【特許文献1】米国特許4、246、374号

【特許文献2】米国特許4、727、117号

【特許文献3】米国特許4、954、574号

【特許文献4】米国特許5、004、777号

【特許文献5】米国特許5、264、483号

【特許文献 5】特許 2 5 0 5 9 7 0 号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

従って、透明性、耐熱性に優れ、かつ配向複屈折の制御が可能で、安価な熱可塑性樹脂が求められていた。

【課題を解決するための手段】

[0010]

上記課題を解決するため、本発明者らは鋭意研究の結果、特定組成のメタクリル酸メチルースチレン共重合体に一級アミンを処理する方法により得られる、特定のイミド化の反応率を有するイミド樹脂が、製造が容易で、安価であり、透明性や耐熱性に優れ、配向複屈折の制御が可能であることを見出し、本発明に至った。

[0011]

すなわち、本発明は、下記一般式(1)、(2)、(3)で表される繰り返し単位を含有するイミド樹脂であり、当該イミド樹脂が正の配向複屈折を有することを特徴とするイミド樹脂(請求項1)、

[0012]

【化1】

$$\begin{array}{ccccc}
R^2 & R^2 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^2 & R^1 \\
\downarrow & R^2 & R^2 \\
\downarrow & R^3 & R^3
\end{array}$$

(ここで、 R^1 および R^2 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^3 は、炭素数 $1\sim 1$ 8 のアルキル基、炭素数 $3\sim 1$ 2 のシクロアルキル基、または炭素数 $6\sim 1$ 0 のアリール基を示す。)

[0013]

【化2】

(ここで、 R^4 および R^5 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^6 は、炭素数 $1\sim 1$ 8 のアルキル基、炭素数 $3\sim 1$ 2 のシクロアルキル基、または炭素数 $6\sim 1$ 0 のアリール基を示す。)

【0014】 【化3】

$$R^7$$
 R^8

(ここで、 R^7 は、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^8 は、炭素数 $6\sim 10$ のアリール基を示す。)

配向複屈折が 0.15×10^{-3} 以上であることを特徴とする、請求項1記載のイミド樹脂(請求項2)、

光弾性係数が 1.0×1.0^{-12} c m $^2/N$ 以下であることを特徴とする、請求項 $1 \sim 2$ 記載のイミド樹脂(請求項3)、

ガラス転移温度が 120 C以上であることを特徴とする請求項 $1\sim3$ 記載のイミド樹脂(請求項 4)、

溶剤不在下にて、メタクリル酸メチル-スチレン共重合体に一級アミンを処理する方法 により製造することを特徴とする、請求項1~4に記載のイミド樹脂(請求項5)、

溶剤存在下にて、メタクリル酸メチル-スチレン共重合体に一級アミンを処理する方法 により製造することを特徴とする、請求項1~4に記載のイミド樹脂(請求項6)、

出証特2004-3123031

【発明の効果】

[0015]

製造が容易で、安価であり、透明性や耐熱性に優れ、配向複屈折の制御が可能なイミド 樹脂を提供できる。また本発明のイミド樹脂を用いることにより、透明・耐熱が求められ る成形体への展開が可能であり、ガラス代替としても使用できる。

【発明を実施するための最良の形態】

[0016]

本発明は、下記一般式(1)、(2)、(3)で表される繰り返し単位を含有するイミ ド樹脂であり、当該イミド樹脂が正の配向複屈折を有するイミド樹脂に関することを特徴 とする。

【0017】 【化1】

$$\begin{array}{ccccc}
R^2 & R^2 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^$$

(ここで、 R^1 および R^2 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^3 は、炭素数 $1\sim 1$ 8のアルキル基、炭素数 $3\sim 1$ 2のシクロアルキル基、または炭素数 $6\sim 1$ 0のアリール基を示す。)

[0018]

【化2】

(ここで、 R^4 および R^5 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^6 は、炭素数 $1\sim 1$ 8 のアルキル基、炭素数 $3\sim 1$ 2 のシクロアルキル基、または炭素数 $6\sim 1$ 0 のアリール基を示す。)

【0019】 【化3】

$$R^7$$
 R^8

(ここで、 R^7 は、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^8 は、炭素数 $6\sim 1$ 0 のアリール基を示す。)

本発明の熱可塑性樹脂を構成する、第一の構成単位としては、下記一般式(1)で表されるグルタルイミド単位である。

[0020]

【化1】

$$\begin{array}{ccccc}
R^2 & R^2 \\
\downarrow & R^1 & R^1 & R^1 & R^1 \\
\downarrow & R^$$

(ここで、 R^1 および R^2 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^3 は、炭素数 $1\sim 1$ 8 のアルキル基、炭素数 $3\sim 1$ 2 のシクロアルキル基、または炭素数 $6\sim 1$ 0 のアリール基を示す。)

好ましいグルタルイミド単位としては、 R^1 、 R^2 が水素またはメチル基であり、 R^3 が水素、メチル基、またはシクロヘキシル基である。 R^1 がメチル基であり、 R^2 が水素であり、 R^3 がメチル基である場合が、特に好ましい。

該グルタルイミド単位は、単一の種類でもよく、 R^1 、 R^2 、 R^3 が異なる複数の種類を含んでいても構わない。

[0021]

本発明の熱可塑性樹脂を構成する、第二の構成単位としては、下記一般式(2)で表されるアクリル酸エステルまたはメタクリル酸エステル単位である。

[0022]

$$\begin{array}{c}
R^4 \\
R^5 \\
\\
C \\
C \\
C \\
R^6
\end{array}$$

(ここで、 R^4 および R^5 は、それぞれ独立に、水素または炭素数 $1\sim 8$ のアルキル基を示出証特2004-3123031

前記(メタ)アクリル酸系化合物もしくは(メタ)アクリル酸エステル系化合物には、特に限定がなく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。また、無水マレイン酸等の酸無水物またはそれらと炭素数 $1 \sim 2$ 0の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等の α , β -エチレン性不飽和カルボン酸などもイミド化可能であり、本発明に使用可能である。これらの中で、メタクリル酸メチルが特に好ましい。

[0023]

これら第二の構成単位は、単一の種類でもよく、 R^4 、 R^5 、 R^6 が異なる複数の種類を含んでいてもかまわない。

[0024]

本発明の熱可塑性樹脂を構成する、第三の構成単位としては、下記一般式(3)で表される芳香族ビニル単位である。

[0025]

【化3】

(ここで、 R^7 は、水素または炭素数 $1\sim 8$ のアルキル基を示し、 R^8 は、炭素数 $6\sim 10$ のアリール基を示す。)

好ましい芳香族ビニル構成単位としては、スチレン、αーメチルスチレン等が挙げられる。これらの中でスチレンが特に好ましい。

[0026]

これら第三の構成単位は、単一の種類でもよく、 R^7 、 R^8 が異なる複数の種類を含んでいてもかまわない。

[0027]

熱可塑性樹脂の、一般式(1)で表されるグルタルイミド単位の含有量は、熱可塑性樹脂の20重量%以上が好ましい。グルタルイミド単位の、好ましい含有量は、20重量%から95重量%であり、より好ましくは40~90重量%、さらに好ましくは、50~80重量%である。グルタルイミド単位がこの範囲より小さい場合、得られるイミド樹脂の耐熱性が不足したり、透明性が損なわれることがある。また、この範囲を超えると不必要に耐熱性が上がり成形しにくくなる他、得られる成形体の機械的強度は極端に脆くなり、また、透明性が損なわれることがある。

[0028]

熱可塑性樹脂の、一般式(3)で表される芳香族ビニル単位の含有量は、熱可塑性樹脂の総繰り返し単位を基準として、20重量%以上が好ましい。芳香族ビニル単位の、好ま

[0029]

本発明の熱可塑性樹脂には、必要に応じ、更に、第四の構成単位が共重合されていてもかまわない。第四の構成単位として、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、Nーメチルマレイミド、Nーフェニルマレイミド、Nーシクロヘキシルマレイミドなどのマレイミド系単量体を共重合してなる構成単位を用いることができる。これらは熱可塑性樹脂中に、直接共重合してあっても良く、グラフト共重合してあってもかまわない。

[0030]

本発明で用いることができるメタクリル酸メチルースチレン共重合体は、イミド化反応が可能な(メタ)アクリル酸系化合物もしくは(メタ)アクリル酸エステル系化合物の単独もしくはこれらの共重合体もしくは(メタ)アクリル酸系化合物もしくは(メタ)アクリル酸エステル系化合物、およびスチレン系化合物を必須として含んでいれば、リニアー(線状)ポリマーであっても、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマーであっても構わない。ブロックポリマーはA-B型、A-B-C型、A-B-A型、またはこれら以外のいずれのタイプのブロックポリマーであっても問題ない。コアシェルポリマーはただ一層のコアおよびただ一層のシェルのみからなるものであっても、それぞれが多層になっていても問題ない。

[0031]

本発明のイミド樹脂は、正の配向複屈折を有することを特徴としている。配向複屈折とは所定の温度、所定の延伸倍率で延伸した場合に発現する複屈折のことをいう。本明細書中では、特にことわりのない限り、イミド樹脂のガラス転移温度+500温度で、10090年した場合に発現する複屈折のことをいう。

[0032]

ここで配向複屈折は、延伸軸方向の屈折率(nx)と、それと直行する軸方向の屈折率(ny)から、次式

 $\triangle n = n x - n y$

で定義される。

[0033]

配向複屈折の値としては、 0.15×10^{-3} 以上であることが好ましい。配向複屈折が上記の範囲外の場合、正の配向複屈折を有益に利用できず、例えば、位相差フィルムとして用いても充分な位相差値が得られない。

[0034]

また、イミド樹脂は、 1×10^4 ないし 5×10^5 の重量平均分子量を有することが好ましい。重量平均分子量が上記の値以下の場合には、フィルムにした場合の機械的強度が不足し、上記の値以上の場合には、溶融時の粘度が高く、フィルムの生産性が低下することがある。

[0035]

熱可塑性樹脂のガラス転移温度は100 C以上であることが好ましく、120 C以上であることがより好ましく、130 C以上であることが更に好ましい。

[0036]

本発明の熱可塑性樹脂には、必要に応じて、他の熱可塑性樹脂を添加することができる

[0037]

本発明のイミド樹脂は光弾性係数が小さいことを特徴としている。本発明のイミド樹脂 出証特2004-3123031

[0038]

光弾性係数の絶対値が $2.0 \times 1.0^{-12} \, \text{m}^2 / \text{N}$ より大きい場合は、光漏れが起きやすくなり、特に高温高湿度環境下において、その傾向が著しくなる。

[0039]

光弾性係数とは、等方性の固体に外力を加えて応力(\triangle F)を起こさせると、一時的に 光学異方性を呈し、複屈折(\triangle n)を示すようになるが、その応力と複屈折の比を光弾性 係数(c)と呼び、次式

 $c = \triangle n / \triangle F$

で示される。

[0040]

[0041]

メタクリル酸メチルースチレン共重合体をイミド化剤によりイミド化すること自体はすでに公知の技術である。

[0042]

例えば、米国特許4,246,374号に記載されているように、押出機を用いて、溶融状態のメタクリル酸メチルースチレン共重合体にイミド化剤を添加することにより、メタクリル酸メチルースチレン共重合体が得られる。また、例えば、特許2505970号に記載されているように、メタクリル酸メチルースチレン共重合体を溶解できる、イミド化反応に対して非反応性溶媒を用いて、溶液状態のメタクリル酸メチルースチレン共重合体にイミド化剤を添加することによっても得られる。

[0043]

本発明のイミド樹脂は、押出機などを用いてもよく、バッチ式反応槽(圧力容器)などを用いてもよい。

[0044]

本発明に用いる押出機としては単軸押出機、二軸押出機あるいは多軸押出機があり、原料ポリマーに対するイミド化剤の混合を促進できる押出機として二軸押出機が好ましい。二軸押出機には非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、噛合い型異方向回転式が含まれる。二軸押出機の中では噛合い型同方向回転式が高速回転が可能であり、原料ポリマーに対するイミド化剤の混合を促進できるので好ましい。これらの押出機は単独で用いても、直列につないでも構わない。また、押出機には未反応のイミド化剤や副生物を除去するために大気圧以下に減圧可能なベントロを装着することが好ましい。

[0045]

押出機の代わりに、例えば住友重機械(株)製のバイボラックのような横型二軸反応装置やスーパーブレンドのような竪型二軸攪拌槽などの高粘度対応の反応装置も好適に使用できる。

[0046]

本発明に用いるバッチ式反応槽(圧力容器)は原料ポリマーを溶解した溶液を加熱、攪拌でき、イミド化剤を添加できる構造であれば特に制限ないが、反応の進行によりポリマー溶液の粘度が上昇することもあり、攪拌効率が良好なものがよい。例えば、住友重機械 (株) 製の攪拌槽マックスブレンドなどを例示することができる。

[0047]

本発明のイミド樹脂は、メタクリル酸メチルースチレン共重合体を溶解できる、イミド 化反応に対して非反応性溶媒を用いて、溶液状態のメタクリル酸メチルースチレン共重合 体にイミド化剤を添加することによっても得られる。

[0048]

[0049]

メタクリル酸メチルースチレン共重合体の非反応性溶媒に対する濃度は少ない方が製造 コストの面からは好ましく、固形分濃度として10~80%、特に20~70%が好まし い。

[0050]

本発明で使用されるイミド化剤はメタクリル酸メチルースチレン共重合体をイミド化することができれば特に制限されないが、例えば、メチルアミン、エチルアミン、n-プロピルアミン、i-プロピルアミン、n-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン等の脂肪族炭化水素基含有アミン、アニリン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有アミン、シクロヘキシルアミン等などの脂環式炭化水素基含有アミンが挙げられる。また、尿素、<math>1, 3-ジメチル尿素、<math>1, 3-ジエチル尿素、<math>1, 3-ジプロピル尿素の如き加熱によりこれらのアミンを発生する尿素系化合物を用いることもできる。これらのイミド化剤のうち、コスト、物性の面からメチルアミンが好ましい。

[0051]

イミド化剤の添加量は必要な物性を発現するためのイミド化率によって決定される。

[0052]

メタクリル酸メチルースチレン共重合体をイミド化剤によりイミド化する際にはイミド化を進行させ、かつ過剰な熱履歴による樹脂の分解、着色などを抑制するために、反応温度は $150\sim400$ \mathbb{C} の範囲で行う。 $180\sim320$ \mathbb{C} が好ましく、さらには $200\sim2$ 80 \mathbb{C} が好ましい。

[0053]

メタクリル酸メチルースチレン共重合体をイミド化剤によりイミド化する際には、一般に用いられる触媒、酸化防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止剤などを本発明の目的が損なわれない範囲で添加してもよい。

[0054]

本発明によるイミド樹脂は、高い引張強度および曲げ強度、耐溶剤性、熱安定性、良好な光学特性、耐候性などの特性を有している。

[0055]

本発明で得られるイミド樹脂はそれ自体で用いてもよく、または他の熱可塑性ポリマーとブレンドしても構わない。イミド樹脂単独、または他の熱可塑性ポリマーとブレンドは、射出成形、押出成形、ブロー成形、圧縮成形などのような各種プラスチック加工法によって様々な成形品に加工できる。また、塩化メチレンなどの本発明で得られるイミド樹脂を溶解する溶剤に溶解させ、得られるポリマー溶液を用いる流延法によっても成形可能である。

[0056]

成形加工の際には、一般に用いられる酸化防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止剤などを本発明の目的が損なわれない範囲で添加してもよい。

[0057]

本発明のイミド樹脂から得られる成形品は、例えば、カメラやVTR、プロジェクター用の撮影レンズやファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤーやDVDプレイヤー、MDプレイヤーなどの光ディスク用ピックアップ

【実施例】

[0058]

本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下の実施例および比較例で測定した物性の各測定方法はつぎのとおりである。

[0059]

(1) イミド化率の測定

生成物のペレットをそのまま用いて、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたスペクトルより、 $1720cm^{-1}$ のエステルカルボニル基に帰属される吸収強度と、 $1660cm^{-1}$ のイミドカルボニル基に帰属される吸収強度の比からイミド化率を求めた。ここで、イミド化率とは全カルボニル基中のイミドカルボニル基の占める割合をいう。

[0060]

(2) スチレン含有量

生成物10mgをCDC131gに溶解し、Varian社製NMR測定装置Gemini-300を用いて、室温に C^1H-NMR を測定した。得られたスペクトルより、芳香族プロトンに帰属される積分強度と脂肪族プロトンに帰属される積分強度の比から、スチレン含有量を決定した。

[0061]

(3) ガラス転移温度(Tg)

生成物10mgを用いて、示差走査熱量計(DSC、(株)島津製作所製DSC-50型)を用いて、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定した

[0062]

(4) 全光線透過率

イミド樹脂を塩化メチレンに溶解して(樹脂濃度 2.5 w t %)、PETフィルム上に塗布し、乾燥してフィルムを作成した。このフィルムから $5.0 \text{ mm} \times 5.0 \text{ mm}$ の試験片を切り出した。この試験片を、日本電色工業製濁度計 3.0.0 Aを用いて、温度 2.3 C ± 2 C、湿度 5.0 M ± 5.0 M において、JIS K7 1.0.5 に準じて測定した。

[0063]

- (5) 濁度
- (4)で得た試験片を、日本電色工業製濁度計 300 A を用いて、温度 23 C ± 2 C、湿度 50 % ± 5 % において、J I S K 7 1 3 6 に準じて測定した。

[0064]

- (6)配向複屈折
- (4) で作成したフィルムから、幅50mm、長さ150mmのサンプルを切り出し、延伸倍率100%で、ガラス転移温度より5 $\mathbb C$ 高い温度で、延伸フィルムを作成した。この1軸2倍延伸フィルムのTD方向の中央部から3.5cm×3.5cmの試験片を切り出した。この試験片を、王子計測機器製KOBRA-21ADHを用いて、温度23±2 $\mathbb C$ 、湿度50±5%において、波長590nm、入射角0 $\mathbb C$ で位相差を測定した。この位相差を、ミツトヨ製デジマティックインジケーターを用いて測定した試験片の厚みで割っ

た値を配向複屈折とした。

[0065]

(製造例1)

ポリメチルメタクリレートースチレン共重合体として、メチルメタクリレートとスチレンの仕込み重量比を90:10として塊状重合により重合した。このポリメチルメタクリレートースチレン共重合体を用い、イミド化剤としてモノメチルアミンを用いて、イミド化樹脂を製造した。使用した押出機は口径 $15\,\mathrm{mm}$ の噛合い型同方向回転式二軸押出機である。押出機の各温調ゾーンの設定温度を $230\,\mathrm{C}$ 、スクリュー回転数 $300\,\mathrm{rpm}$ 、ポリメチルメタクリレートースチレン共重合体を $1\,\mathrm{kg}$ \mathbb{Z} \mathbb{Z}

[0066]

得られたイミド樹脂のイミド化率、ガラス転位温度、スチレン含有量、全光線透過率、 濁度、配向複屈折を表1に記載する。

【表1】

	樹脂供給量 (kg/hr)	アミン量 (重量部)	イミド化率 (%)	T g (℃)	スチレン含有量 (%)
製造例1	1	4 0	7 0	160	10
比較製造例1	0.75	4 0	6 9	158	2 0

[0067]

(製造例2)

耐圧硝子(株)製TEM-V1000N(200mL耐圧容器)を用いて、トルエン100重量部/メチルアルコール10重量部に、製造例1重合した重合品100重量部を溶解させた。ドライアイス-メタノール混合溶液に反応容器を浸し、冷却した状態でモノメチルアミン40重量部を添加し、その後230℃で2.5時間反応させた。放冷後、反応混合物を塩化メチレンに溶解させ、メタノールを用いて沈殿させて生成物を回収した。

[0068]

得られたイミド樹脂のイミド化率は67%、ガラス転位温度は158 \mathbb{C} 、スチレン含有量は10%であった。

[0069]

(比較製造例1)

市販のポリメタクリル酸メチルースチレン共重合体として新日鐵化学(株)製工スチレンMS-800を用い、樹脂の供給量を0.75kg/hrとし、モノメチルアミンの供給量を40重量部とした以外は、樹脂製造例1と同様に行った。

[0070]

(実施例1)

製造例1で得られたイミド化樹脂によるフィルムの全光線透過率、濁度、配向複屈折を表2に示す。

【表2】

	全光線透過率 (%)	濁度 (%)	配向複屈折×10 ⁻³
実施例1	90.5	0.8	2. 571
実施例2	91.2	0.7	1. 562
比較例1	91.8	0.4	0.002

[0071]

(実施例2)

製造例2で得られたイミド化樹脂によるフィルムの全光線透過率、濁度、配向複屈折を表2に示す。

[0072]

(比較例1)

比較製造例1で得られたイミド化樹脂によるフィルムの全光線透過率、濁度、配向複屈 折を表2に示す。

【図面の簡単な説明】

[0073]

【図1】樹脂製造例1で得られたイミド樹脂のIRスペクトル

【書類名】図面【図1】

【要約】

【課題】 ポリマーは一般に押出成型時などにポリマー鎖が配向し、複屈折を生じることが多い。ポリカーボネートや最近透明樹脂として多用されている環状オレフィン共重合体は正の複屈折を有するものである。一方、ポリスチレンやメタクリル酸メチルは正の複屈折を有するものである。複屈折はポリマーの一次構造により大きく影響を受ける。これらのポリマーの複屈折の制御は困難であり、用途に応じて適切な複屈折を選択することは容易ではない。透明性、耐熱性に優れ、かつ配向複屈折の制御が可能で、安価な熱可塑性樹脂が求められていた。

【解決手段】 本発明者らは鋭意研究の結果、特定組成のメタクリル酸メチルースチレン 共重合体に一級アミンを処理する方法により得られる、特定のイミド化の反応率を有する イミド樹脂が、製造が容易で、安価であり、透明性や耐熱性に優れ、配向複屈折の制御が 可能であることを見出した。

【選択図】 なし

出願人履歴情報

識別番号

[000000941]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所 名

住 所

大阪府大阪市北区中之島3丁目2番4号

鐘淵化学工業株式会社

2. 変更年月日 [変更理由]

2004年 9月 1日

名称変更

大阪府大阪市北区中之島3丁目2番4号

氏 名 株式会社カネカ