Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе №6 «Слежение и компенсация» по дисциплине «Теория автоматического управления»

Выполнил: студенты гр. R3238

Курчавый В.В.

Преподаватель: Перегудин А.А., ассистент фак. СУиР

- 1. Цель работы. Исследование задач слежения и компенсации.
- 2. Материалы работ.

Задание 1. Компенсирующий регулятор по состоянию.

Объект:

$$\dot{x} = \begin{bmatrix} 10 & 7 & 8 \\ 2 & 15 & 10 \\ 3 & 11 & 12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u + \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} w$$

Генератор внешних воздействий:

$$\dot{w} = \begin{bmatrix} 0.5 & 2 & 0 & 0 \\ -2 & 0.5 & 0 & 0 \\ 0 & 0 & 0.3 & 1 \\ 0 & 0 & -1 & 0.3 \end{bmatrix} w$$

Регулируемый выход:

$$z = [1 \ 1 \ 1]x$$

Управляющее воздействие:

$$u = K_1 x + K_2 w$$

Спектр матриц A_1 и A_2 :

$$\lambda(A_1) = \{26, 8, 3\} \not\subset \mathbb{C}_-$$

$$\lambda(A_2) = \{0.5 \pm 2i, 0.3 \pm i\} \subset \overline{\mathbb{C}_+}$$

Пара (A_1, B_1) – стабилизируема.

Синтез компенсирующего регулятора:

Синтез модального регулятора (feedback):

$$K_1 = \begin{bmatrix} -9.4491 & -4.1637 & -7.0745 \end{bmatrix}$$

$$\lambda(A_1 + B_1 K_1) = \{-1, -0.5 \pm i\} \subset \mathbb{C}_-$$

Поиск K₂ (feedforward):

```
cvx_begin sdp
    variable P2(3,4)
    variable Y2(1,4)
    P2*A2 - A1*P2 == B1*Y2 + B2;
    C2*P2 + D2 == 0;
    cvx_end
    K2 = Y2 - K1*P2
```

$$K_2 = \begin{bmatrix} -0.9032 & -0.8698 & -0.8182 & -0.4461 \end{bmatrix}$$

Figure 1. Вектор состояния.

Figure 2. Управляющее воздействие.

Figure 3. Внешний сигнал.

Figure 4. Регулируемый выход.

Из графика видно, что $\lim_{t\to\infty}z(t)$ = 0. Таким образом, регулятор компенсирует внешние воздействия, задаваемые генератором.

Поиск матрицы наблюдаемости системы относительно вектора состояния (x, w) и её ранга:

Система в матричной форме относительно вектора состояния (x, w):

1.
$$u = K_1 x + K_2 w$$
:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 + B_1 K_1 & B_2 + B_1 K_2 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}, \qquad z = \begin{bmatrix} C_2 & D_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

Матрица наблюдаемости O и её ранг:

rank(0) = 7.

2.
$$u = 0$$
:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}, \qquad z = \begin{bmatrix} C_2 & D_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

Матрица наблюдаемости $\it O$ и её ранг:

1.0e+08 *

0.0000	0.0000	0.0000	0	0	0 0	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0001	0.0003	0.0002	0.0000	0.0000	0.0001	0.0001
0.0019	0.0066	0.0057	0.0005	0.0011	0.0014	0.0020
0.0490	0.1749	0.1493	0.0123	0.0279	0.0372	0.0531
1.2879	4.6080	3.9321	0.3235	0.7358	0.9795	1.3986

$$rank(0) = 7.$$

Таким образом, при замыкании компенсирующим регулятором система является полностью наблюдаемой, как и при незамкнутом регуляторе.

Задание 2. Следящий регулятор по состоянию.

Объект и генератор из прошлого задания. За исключением $B_2=0$.

Регулируемый выход:

$$z = [1 \ 1 \ 1]x + [1 \ -2 \ -1 \ -1]w$$

Синтез регулятора аналогичен синтезу регулятора из прошлого задания.

$$K_1 = \begin{bmatrix} -9.4491 & -4.1637 & -7.0745 \end{bmatrix}$$

$$K_2 = \begin{bmatrix} 0.2602 & -0.0176 & -0.0515 & -0.008 \end{bmatrix}$$

Figure 5. Вектор состояния.

Figure 6. Управляющее воздействие.

Figure 7. Внешние возмущения.

Figure 8. Регулируемый выход.

Figure 9. C2x u -D2w.

Из графика видно, что $\lim_{t\to\infty}z(t)$ = 0. Таким образом, регулятор действует таким образом, что $C_2x\to D_2w$, $t\to\infty$.

Система в матричной форме относительно вектора состояния (x, w):

1.
$$u = K_1 x + K_2 w$$
:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 + B_1 K_1 & B_2 + B_1 K_2 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}, \qquad z = \begin{bmatrix} C_2 & D_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

Матрица наблюдаемости O и её ранг:

```
    1.0000
    1.0000
    1.0000
    -2.0000
    -1.0000
    -1.0000

    -41.6944
    8.0178
    -12.4470
    6.0612
    0.8942
    0.3910
    -1.3488

    157.0417
    -46.1986
    42.9518
    -15.1506
    13.6802
    4.7110
    0.4982

    -221.5208
    73.1071
    -59.1478
    15.4134
    -26.8724
    -9.0517
    3.2882

    141.8160
    -52.2897
    37.2128
    -4.3146
    21.8466
    7.0149
    -6.0115

    18.4878
    -2.1634
    4.9672
    -7.1128
    -0.3305
    0.4477
    4.0018

    -79.1606
    30.5947
    -19.7284
    4.6667
    -14.9033
    -5.3644
    1.4121
```

rank(0) = 5.

1.
$$u = 0$$
:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}, \qquad z = \begin{bmatrix} C_2 & D_2 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

Матрица наблюдаемости $\mathcal O$ и её ранг:

1.0e+08 *

```
      0.0000
      0.0000
      0.0000
      -0.0000
      -0.0000
      -0.0000

      0.0000
      0.0000
      0.0000
      0.0000
      0.0000
      0.0000
      -0.0000

      0.0000
      0.0000
      0.0000
      0.0000
      0.0000
      0.0000
      0.0000

      0.0001
      0.0003
      0.0002
      -0.0000
      0.0000
      0.0000
      0.0000

      0.0019
      0.0066
      0.0057
      -0.0000
      -0.0000
      -0.0000
      -0.0000

      0.0490
      0.1749
      0.1493
      0.0000
      -0.0000
      -0.0000
      -0.0000

      1.2879
      4.6080
      3.9321
      0.0000
      0.0000
      -0.0000
      -0.0000
```

rank(0) = 7.

Таким образом, при замыкании компенсирующим регулятором некоторые собственные числа будут не наблюдаемы (будет потеряна некоторая информация об расширенном векторе состояния, нельзя будет восстановить расширенный вектор состояния по выходу). А при нулевом входном воздействии система будет полностью наблюдаемой.

Задание 3. Регулятор по выходу при различных у и z.

Расширенный объект:

$$\begin{cases} \dot{x} = A_1 x + B_1 u + B_2 w \\ \dot{w} = A_2 w \end{cases}$$

Измеряемый выход:

$$y = C_1 x + D_1 w$$

Регулируемый выход:

$$z = C_2 x + D_2 w$$

Расширенный наблюдатель:

$$\begin{cases} \dot{\hat{x}} = A_1 \hat{x} + B_1 u + B_2 \hat{w} + L_1 (\hat{y} - y) \\ \dot{\hat{w}} = A_2 \hat{w} + L_2 (\hat{y} - y) \\ \hat{y} = C_1 \hat{x} + D_1 \hat{w} \end{cases}$$

Регулятор:

$$u = K_1 \hat{x} + K_2 \hat{x}$$

Значения матриц:

$$A_{1} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}, B_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 5 & 0 \\ -5 & 0 & 0 \\ 0 & 0 & 0.01 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, D_{1} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, D_{2} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$$

$$\lambda(A_2) = \{0.5 \pm 2i, 0.3 \pm i\} \subset \overline{\mathbb{C}_+}$$

Пара (A_1, B_1) – стабилизируема.

Пара ([
$$C_1$$
 D_1] $\begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix}$) — обнаруживаема.

Поиск K_1 :

 $K_1 = \begin{bmatrix} -1.9853 & -0.4412 & 0.4265 \end{bmatrix}$

```
% find observers
  g = [
     -1.5 00000;
     0 -1 1 0 0 0;
     0 -1 -1 0 0 0;
     0 00-0.500;
     0 0 0 0 -2 2;
     0 0 0 0 -2 -2
     ];
  c = [C1 D1];
  a = [A1 B2; zeros(3,3) A2];
  y = [-1; -1; -1; -1; -1; -1];
  % check if pair (g, y) is controllable to count I
  rank(a)
  rank(ctrb(g, y))
  cvx begin sdp
     variable p(6,6)
     g*p - p*a == y*c;
  cvx end
  I = inv(p)*y;
  L1 = I(1:3)
  L2 = I(4:6)
L_1 = \begin{bmatrix} -2.2048 \\ -1.1918 \\ -0.6209 \end{bmatrix}, \quad L_2 = \begin{bmatrix} -2.8501 \\ -1.3341 \\ -0.2489 \end{bmatrix}
Поиск K_2:
 % find K2
 cvx begin sdp
    variable P2(3,3)
    variable Y2(1,3)
    P2*A2 - A1*P2 == B1*Y2 + B2;
    C2*P2 + D2 == 0;
 cvx end
 K2 = Y2 - K1*P2
```

Поиск L_1 и L_2 :

$$K_2 = [-1.7375 \quad 1.2010 \quad -1.6364]$$

Форма вход-состояние-выход регулятора:

$$\begin{bmatrix} \dot{\hat{\chi}} \\ \dot{\widehat{W}} \end{bmatrix} = \begin{bmatrix} A_1 + B_1 K_1 + L_1 C_1 & B_2 + B_1 K_2 + L_1 D_1 \\ L_2 C_1 & A_2 + L_2 D_1 \end{bmatrix} \begin{bmatrix} \hat{\chi} \\ \widehat{W} \end{bmatrix} + \begin{bmatrix} -L_1 \\ -L_2 \end{bmatrix} y$$

Собственные числа регулятора:

$$\begin{split} \sigma\left(\begin{bmatrix} A_1+B_1K_1+L_1C_1 & B_2+B_1K_2+L_1D_1\\ L_2C_1 & A_2+L_2D_1 \end{bmatrix}\right)\\ &=\{-5.8394,-1.9238\pm2.2664i,-0.2414\pm0.9466i,0.1698\} \end{split}$$

Figure 10. Управляющее воздействие.

Figure 11. Вектор состояния.

Figure 12. Внешние возмущения.

Figure 13. Регулируемый выход.

Все собственные числа генератора внешних возмущений почти совпадают с некоторыми числами регулятора.

Из графика видно, что $\lim_{t \to \infty} z(t)$ = 0.

Задание 4. Регулятор по выходу при одинаковых у и z.

Регулируемый выход:

$$z = C_2 x + D_2 w$$

Расширенный наблюдатель:

$$\begin{cases} \dot{\hat{x}} = A_1 \hat{x} + B_1 u + B_2 \hat{w} + L_1 (\hat{y} - y) \\ \dot{\hat{w}} = A_2 \hat{w} + L_2 (\hat{y} - y) \\ \hat{y} = C_1 \hat{x} + D_1 \hat{w} \end{cases}$$

Регулятор:

$$u = K_1 \hat{x} + K_2 \hat{x}$$

Значения матриц:

$$A_{1} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}, B_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 5 & 0 \\ -5 & 0 & 0 \\ 0 & 0 & 0.01 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, D_{1} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, D_2 = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$$

$$\lambda(A_2) = \{0.5 \pm 2i, 0.3 \pm i\} \subset \overline{\mathbb{C}_+}$$

Пара (A_1, B_1) – стабилизируема.

Пара ([
$$C_1 D_1$$
] $\begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix}$) — обнаруживаема.

Поиск K_1 , K_2 , L_1 , L_2 как в предыдущем задании:

$$K_1 = \begin{bmatrix} -1.9853 & -0.4412 & 0.4265 \end{bmatrix}$$

$$K_2 = \begin{bmatrix} -1.7375 & 1.2010 & -1.6364 \end{bmatrix}$$

$$L_1 = \begin{bmatrix} -1.1953 \\ -2.1777 \\ 0.1221 \end{bmatrix}$$

$$L_2 = \begin{bmatrix} 0.9169 \\ 2.7919 \\ 0.0503 \end{bmatrix}$$

Форма вход-состояние-выход регулятора:

$$\begin{bmatrix} \dot{\hat{\chi}} \\ \dot{\hat{\psi}} \end{bmatrix} = \begin{bmatrix} A_1 + B_1 K_1 + L_1 C_1 & B_2 + B_1 K_2 + L_1 D_1 \\ L_2 C_1 & A_2 + L_2 D_1 \end{bmatrix} \begin{bmatrix} \hat{\chi} \\ \hat{\psi} \end{bmatrix} + \begin{bmatrix} -L_1 \\ -L_2 \end{bmatrix} y$$

Собственные числа регулятора:

$$\sigma\left(\begin{bmatrix}A_1+B_1K_1+L_1C_1 & B_2+B_1K_2+L_1D_1\\ L_2C_1 & A_2+L_2D_1\end{bmatrix}\right)=\{-8.6027,\pm 5i,-1.5352,0.128,0.01\}$$

Figure 14. Управляющее воздействие.

Figure 15. Вектор состояния.

Figure 16. Регулируемый выход.

Figure 17. Внешнее воздействие.

Все собственные числа генератора внешних возмущений совпадают с некоторыми числами регулятора. Оценка внешнего возмущения покомпонентно сходится к внешнему возмущению.

Из графика видно, что $\lim_{t\to\infty}z(t)$ = 0.

Задание 5. Тележка и меандр.

Система:

$$\begin{cases} \dot{x} = A_1 x + B_1 u + B_2 w \\ y = C_1 x + D_1 w \\ z = C_2 x + D_2 w \end{cases}$$

Регулятор:

$$u = K_1 x + K_2 w$$

Тележка:

Формирование генератора внешних условий:

$$g_{ideal} = \frac{4A}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)ft)}{2k-1} = \frac{4A}{\pi} \left(\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \cdots \right)$$

$$f = 2\pi\omega$$

A=2, $f=rac{1}{2\pi}$ и три члена ряда из Фурье:

$$g_{ideal} = \frac{8}{\pi} \left(\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) \right)$$

 $\dot{w} = A_2 w$:

$$A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & -5 & 0 \end{bmatrix}, w(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

 $w(t) = [\sin(t) \cos(t) \sin(3t) \cos(3t) \sin(5t) \sin(5t)]^T$

$$D_2 = \begin{bmatrix} \frac{8}{\pi} & 0 & \frac{8}{3\pi} & 0 & \frac{8}{5\pi} & 0 \end{bmatrix}$$

Результаты вычислений:

K1 =

-8 -4

>> K2

K2 =

17.8254 10.1859 -0.8488 10.1859 -8.6580 10.1859

>> L1

L1 =

-0.0570

-0.0040

>> L2

L2 =

-0.0242

0.6655

-4.3746

5.5055

-6.4442

-9.0376

Figure 18. Регулируемый выход.

Figure 19. Вектор состояния.

Figure 20. Вектор выхода.

Figure 21. Слежение.

3. Выводы: в ходе лабораторной работы были синтезированы следящие и компенсирующие регуляторы по выходу и по состоянию.