Package 'Mulcom'

September 30, 2010

2 harmonicMean

mulOptPars										 						 		
mulOptPlot										 						 		
mulParOpt .										 						 		
mulPerm										 						 		
mulScores .										 						 		
mulSSE										 						 		
samOptPars										 						 		

harmonicMean

MulCom Harmonic Mean

Description

Computes harmonic means across groups replicate Should not be called directly

Usage

Index

harmonicMean(index)

Arguments

index

a numeric vector with the groups labels of the samples. 0 are the control samples. Number must be progressive

16

Details

harmonicMean calculates harmonic means across groups replicate for the estimation of Mulcom Test

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

References

<claudio.isella@ircc.it>

mulCalc 3

mulCalc

MulCom Calculation

Description

Calculates MulCom test score for given m and t parameters

Usage

```
mulCalc(Mulcom_P, m, t)
```

Arguments

Mulcom_P an object of class MULCOM

m: a numeric value corresponding to log 2 ratio correction for MulCom Test

t: a numeric value corresponding to T values for MulCom Test

Details

mulCalc Calculate the Mulcom Score with m and t defined by the user

```
Mulcom_P: an object of class MULCOM_P
```

m: a number corresponding to log 2 ratio correction for MulCom Test

t: a number corresponding to T values for MulCom Test

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)</pre>
```

4 MULCOM-class

mulCAND

Identify the Mulcom candidate feature selection

Description

Identify the Mulcom candidate feature selection by the m and T defined by the user

Usage

```
mulCAND(eset, Mulcom_P, m, t, ese = "T")
```

Arguments

eset an AffyBatch

Mulcom_P an object of class MULCOM

m: a numeric vector corresponding to log 2 ratio correction
t: a numeric vector corresponding to the MulCom T values

ese True or False

Details

mulCAND Identify the Mulcom candidate feature selection by the m and T defined by the user

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

Examples

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)</pre>
```

MULCOM-class

Class MulCom

Description

This is a class representation MulCom test scores

Objects from the Class

Objects can be created using the function mulScores on ExpressionSet.

MULCOM_P-class 5

Slots

FC: Object of class numeric representing delta between all experimental groups and the reference groups

MSE_Corrected: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett's t-test

Author(s)

Claudio Isella

Examples

```
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)</pre>
```

MULCOM_P-class

Class MulCom Permutation

Description

This is a class representation MulCom test scores permutation

Objects from the Class

Objects can be created using the function mulScores on ExpressionSet.

Slots

- FC: Object of class numeric representing delta between all experimental groups and the reference groups
- MSE_Corrected: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett's t-test
- FCp: Object of class numeric representing delta between all experimental groups and the reference groups in permutated data
- MSE_Correctedp: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett's t-test in permutated data

Author(s)

Claudio Isella

```
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)</pre>
```

6 mulDELTA

mulDELTA

MulCom Delta

Description

Computes Delta for all the experimental points in the datasets in respect to control Should not be called directly

Usage

```
mulDELTA(vector, index)
```

Arguments

vector vector with data measurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number must be progressive

Details

muldelta An internal function that should not be called directly. It calculates differential expression in the groups defined in the index class vector, in respect to the 0 groups

Value

vector a numeric vector with data measurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number must be progressive

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_delta <- mulDELTA(exprs(Affy[1,]),Affy$Groups)</pre>
```

mulDiff 7

mulDiff	MulCom Test Differential analysis
---------	-----------------------------------

Description

Identify the differentially expressed features for a specific comparison with given m and t value

Usage

```
mulDiff(eset, Mulcom_P, m, t, ind)
```

Arguments

eset An ExpressionSet object from package affy	eset	An ExpressionSet	object from	package affy
--	------	------------------	-------------	--------------

Mulcom_P An object of class Mulcom_P

m the m values for the analysis

t the t values for the analysis

and index refeing to te comparison, should be numeric

Value

eset An ExpressionSet object from package affy

Mulcom_P An object of class Mulcom_P

m the m values for the analysis

t the t values for the analysis

ind and index refeing to te comparison, should be numeric

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)</pre>
```

8 mulMSE

mulFSG

MulCom False Significant Genes

Description

Calculate the False Significant Genes for m and t defined by the user

Usage

```
mulFSG(Mulcom_P, m, t)
```

Arguments

Mulcom_P an object of class MULCOM

m: a numeric value corresponding to log 2 ratio correction for MulCom Test

t: a numeric value corresponding to t values for MulCom Test

Details

mulfDR evaluate the False Significant genes on the Mulcom_P object according to specific m and t parameters. For each permutation it is calculated the number of positive genes. An estimation of the false called genes is evaluated with the median for each experimental subgroups

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

Examples

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)</pre>
```

mulMSE

MulCom Mean Square Error

Description

Computes Mean Square Error for all the experimental points in the datasets in respect to control Should not be called directly

Usage

```
mulMSE(vector, index, tmp = vector())
```

mulOpt 9

Arguments

vector a numeric vector with data mesurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number must be progressive

tmp a vector

Details

mulMSE An internal function that should not be called directly. It calculates within group means square error for the values defined in the x vector according to the index class vector

Value

vector a numeric vector with data measurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number must be progressive

tmp a vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

mulOpt *MulCom optimization*

Description

The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Usage

```
mulOpt(Mulcom_P, vm, vt)
```

Arguments

Mulcom_Pan object of class Mulcom_Pvma vector of m values to testvta vector of t values to test

Details

mulOpt The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

10 mulOptPars

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

Examples

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))</pre>
```

mulOptPars

MulCom Parameter Optimization

Description

Function to optimize Mulcom parameter for maximim nuber of genes with a user defined FDR

Usage

```
mulOptPars(opt, ind, ths)
```

Arguments

opt an MulCom optimization object ind index corresponding to the comparison

ths a threshold for the FDR optimization, default is 0.05

Details

mulOptPars MulCom optimization function to identify best parameters

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
#mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))
#optThs <- mulOptPars(mulcom_opt, 1, 0.05)</pre>
```

mulOptPlot 11

The state of the s	mulOptPlot	MulCom optimization Plot	
--	------------	--------------------------	--

Description

MulCom optimization Plot to identify best configuration paramters

Usage

```
mulOptPlot(M.Opt, ind, th, smooth = "NO")
```

Arguments

M.Opt an MulCom optimization object

ind index corresponding to the comparison to plot

th a threshold for the FDR plot

smooth indicates whether the FDR plot will show a significant threshold or will be con-

tinuous.

Details

```
mulOptPlot MulCom optimization Plot
```

Value

a numeric vector

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1))
mulOptPlot(mulcom_opt, 1, 0.05)</pre>
```

12 mulParOpt

mulParOpt	MulCom Parameters Optimization	

Description

MulCom parameter optimization function to identify best combination of t and m providing maximum number of genes at a given FDR

Usage

```
mulParOpt(perm, M.Opt, ind, th, image = "T")
```

Arguments

perm	a object with permutated MulCom Scores
M.Opt	an MulCom optimization object
ind	index corresponding to the comparison to plot

th a threshold for the FDR plot

image default = "T", indicates is print the MulCom optimization plot

Details

mulParOpt The function mulParOpt is designed to identify the optimal m and t values combination leading to the maximum number of differentially regulated genes satisfying an user define FDR threshold. In case of equal number of genes, the combination of m and t with the lower FDR will be prioritized. In case of both identical number of genes and FDR, the function will chose the highest t. The function optionally will define a graphical output to visually inspect the performance of the test at given m and t parameters for a certain comparison.

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1))
mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)</pre>
```

mulPerm 13

mulPerm	MulCom Permutation	
---------	--------------------	--

Description

Reiterate MulCom Test on permutated data to perform Montecarlo simulation

Usage

```
mulPerm(eset, index, np, seed)
```

Arguments

eset	An an AffyBatch object, each row of must correspond to a variable and each column to a sample.
index	a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.
np	a numeric values indicating the number of permutation to perform. It is set as default to 10
seed	set the seed of the permutaton, default is 1

Details

mulPerm

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

Examples

```
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)</pre>
```

MulCom Score Calculation	
	MulCom Score Calculation

Description

Computes the scores for the MulCom test. The function calculates the numerator and the denominator of the test without the parameters m and t

Usage

```
mulScores(eset, index)
```

14 mulSSE

Arguments

eset An an AffyBatch object, each row of must correspond to a variable and each

column to a sample.

index a numeric vector of length ncol(data) with the labels of the samples. 0 are the

reference samples.

Details

'mulScore' computes the scores for the MulCom test for multiple point profile. The Mulcom test is designed to compare each experimental mean with the control mean and it is derived from the "Dunnett's test". Dunnett's test controls the Experiment-wise Error Rate and is more powerful than tests designed to compare each mean with each other mean. The test is conducted by computing a modified t-test between each experimental group and the control group.

Value

An Object of class MULCOM from Mulcom package

Author(s)

```
Claudio Isella, <claudio.isella@ircc.it>
```

Examples

```
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)</pre>
```

mulssE

MulCom Sum of Square Error

Description

Computes sum of square errors for all the experimental points in the datasets Should not be called directly

Usage

```
mulsse(vec, index)
```

Arguments

vec a numeric vector with data measurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number should be progressive

samOptPars 15

Details

mulsse An internal function that should not be called directly. It calculates sum of square error in the groups defined in the index class vector.

Value

vec a numeric vector with data measurements

index a numeric vector with the labels of the samples. 0 are the control samples.

number must be progressive

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

samOptPars

sam Parameter Optimization

Description

Function to optimize Sam parameter for maximim nuber of genes with a user defined FDR

Usage

```
samOptPars(opt, ths)
```

Arguments

opt an Sam optimization object

ths a threshold for the FDR optimization

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Index

```
*Topic MulCom
                                           mulParOpt, 12
   harmonicMean, 2
                                           mulPerm, 13
   mulCalc, 3
                                           mulScores, 4, 5, 13
                                           mulsse, 14
   mulCAND, 4
   mulDELTA, 6
                                           samOptPars, 15
   mulDiff, 7
   mulFSG, 8
   mulMSE, 8
   mulOpt, 9
   mulOptPars, 10
   mulOptPlot, 11
   mulParOpt, 12
   mulPerm, 13
   mulScores, 13
   mulsse, 14
    samOptPars, 15
*Topic classes
   MULCOM-class, 4
   MULCOM_P-class, 5
AffyBatch, 4, 13, 14
class:MULCOM(MULCOM-class), 4
class:MULCOM_P (MULCOM_P-class), 5
harmonicMean, 2
mulCalc, 3
mulCAND, 4
MULCOM (MULCOM-class), 4
MULCOM-class, 4
MULCOM_P (MULCOM_P-class), 5
MULCOM_P-class, 5
mulDELTA, 6
mulDiff, 7
mulFSG, 8
mulMSE, 8
mulOpt, 9
mulOptPars, 10
mulOptPlot, 11
```