PH20016 PROBLEM SHEET 1

BASICS AND PARTICLE DECAY

The aims of this problem sheet are to give you practice of:

- Using conservation laws to analyse the results from typical experiments
- Applying the decay laws to problems in particle physics and nuclear physics.
- Using some of the units and dimensions encountered in nuclear and particle physics.

(a) $\pi^- \rightarrow \mu^- + ?$

missing neutrinos.

- (b) $\mu^{-} \rightarrow e^{-} + ? + ?$
- 2.. Classify the following experimentally observed processes as strong or weak interactions, giving your reasons.
 - (a) $\Lambda^0 + p \rightarrow K^- + p + p$ stray: (obs) $\mu^+ \rightarrow \mu^+ + \nu_\mu$ which import
- Estimate the kinetic energy gained by a grain of sand dropping from rest through 1 millimetre in the Earth's gravitational field. Calculate the answer in Joules and MeV.
- 4. A radioactive sample contains 2×10^9 nuclei of ${}^{11}_6C$, which has a half life of 20.4 minutes. Calculate:
 - (i) The decay constant (λ) for ${}_{6}^{11}C$;
 - (ii) The initial activity (decay rate) of the sample;
 - (iii) The number of radioactive nuclei remaining after 8 hours;
 - (iv) The activity after 8 hours;
 - (v) The mean lifetime $(1/\lambda)$ of a ${}^{11}_{6}C$ nucleus.
- Suppose you started out with a million muons (μ) at rest. How many would still exist 2.2×10^{-5} s later?
- The strengths of radioactive sources were often measured in Curies (Ci). One Curie is 3.7×10^{10} decays per second.
 - (i) The Curie was originally defined as the number of disintegrations per second in 1 gram of natural radium (226 Ra). What is the half-life of radium?
 - (ii) What mass of ${}^{60}Co$ is contained in a 10 μ Ci source if the half-life of ${}^{60}Co$ is 5.27 years? [1.58 x 10³ years; 8.8 × 10⁻¹² Kg]

NB: The SI unit for activity is the Becquerel (Bq), equal to one decay per second.

Radioactive ^{14}C is constantly generated in the upper atmosphere by interactions of cosmic rays with nitrogen, so that the ratio of ^{14}C to ^{12}C in living organisms is equal to 1.3×10^{-12} . After death the ^{14}C is not replaced. Hence the number of ^{14}C decays

PH20016 PROBLEM SHEET 1

in an organic sample may be used to estimate how long the material has been dead. The half-life of ^{14}C is 5730 years.

A sample of wood from an ancient shelter is analysed for its 14 C content and gives 2.1 decays per minute. A similar sample from a recently cut tree of the same type gives 5.3 decays per minute. What is the age of the sample?

[7,650 years]

- 8. The nuclear radius has been found to follow the semi-empirical relation $R = R_0 A^{1/3}$, where $R_0 = 1.33$ fermi, and A is the mass number. Start by expressing the volume of the nucleus as a function of A (assuming it is a sphere). How does it vary for elements ${}_{6}^{12}C$, ${}_{3}^{6}Li$, ${}_{6}^{14}C$ and ${}_{95}^{241}Am$ (in fm³)? What can you deduce concerning the density of the nucleus (in SI units)?
- 9. In some Grand Unified Theories (GUTS), the proton is unstable and the half-life of the proton is predicted to be of the order of 10^{31} years. In a detector consisting of a $10m \times 10m \times 10m$ tank of water, how many protons would be expected to decay per day if this theory is correct?
- Muons have a mean lifetime of 2.2×10^{-6} s. If a muon in free space has a kinetic energy of 1 MeV, show that it will travel a mean distance of 90 m before it decays. The rest mass of a muon is 105.7 MeV/c^2 . [Hint: is the muon relativistic?]

<u>**NB**</u>: all questions in these Problems Sheets have appeared in one form or another in previous exams. This is why Problems Classes are useful [©]