如何做一个精彩的学术报告

车万翔

哈尔滨工业大学

社会计算与信息检索研究中心

2019-10-18

思考题

- 为什么做学术报告?
 - 为了展示自己的工作
 - 论文像产品,报告则是广告
 - 为了更好地交流
 - 帮助理清思路
- 选择题: 做怎样的学术报告?
 - 让听众明白我的论文中的技术细节 🗙
 - 引起听众的兴趣,愿意深入阅读我的论文 ✓
 - 将我所知的一切相关内容都告诉听众 🔀
 - 向听众显示我非常聪明
 - 让听众觉得来听报告很值得 ✓

听众模型

理想中的听众

- 领域专家
- 了解你的前期工作
- 已经读过你的论文
- 对于你的工作非常感兴趣

现实中的听众

- 来自其他领域
- 根本不了解到你的工作
- 这个时段没什么事情,恰巧发现这屋子有空座

幻灯片内容如何呈现?

幻灯片内容如何呈现?

动机

You have **two minutes** to engage your audience before they start to doze. -- Simon Peyton Jones in *How to give a great research talk*

- 问题是什么? 它为什么有趣?
- 之前的方法有什么问题?
- 我们的方法如何解决了这个问题?
- 核心创新点用不超过25个字描述
 - 屠呦呦: 提取出青蒿素,有效降低疟疾患者死亡率(18字)
 - 袁隆平: 杂交水稻育种, 把水稻亩产从300公斤提升到900公斤(20字)
 - 刘永坦: 发明海地波超视距雷达,能在沿海5000公里内发现隐形战机(25字)

方法部分:

多用例子

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010.
Painless Unsupervised Learning with Features,第28到54页

方法部分: 反例

Transition	Current State	Resulting State	Description
DROP	$[\sigma s_0, \ \delta, \ b_0 eta, \ A]$	$[\sigma s_0, \ \delta, \ \beta, \ A]$	pops out the word that doesn't convey any semantics (e.g., function words and punctuations).
MERGE	$ [\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{b}_1 \overline{\beta}, A] $	$[\sigma[s_0, \overline{\delta}, \overline{b_0}_b_1[\beta, \overline{A}]]$	concatenates a sequence of words into a span, which can be derived as a named entity (name) or date-entity.
CONFIRM(C)	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{A}]$	$[\sigma[s_0, \overline{\delta}, \overline{c}]\beta, \overline{A}]$	derives the first element of the buffer (a word or span) into a concept c.
ENTITY(c)	$ [\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{A}] $	$[\sigma]_{s_0}, \overline{\delta}, \overline{c}]_{\beta}, \overline{A} \cup \overline{\text{relations}}(c)]$	a special form of CONFIRM that derives the first element into an entity and builds the internal entity AMR fragment.
NEW(c)	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, \overline{A}]$	$[\sigma[s_0, \overline{\delta}, \overline{c}]b_0 \overline{\beta}, A] =$	generates a new concept c and pushes it to the front of the buffer.
LEFT(r)	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \xleftarrow{r} b_0\}]$	links a relation r between the top
RIGHT(r)	$[\sigma \mathtt{s}_0,\;\delta,\;\mathtt{b}_0 eta,\;A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \xrightarrow{r} b_0\}]$	concepts on the stack and the buffer.
CACHE	$-[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{A}]$	$[\sigma, \overline{s_0}[\delta, \overline{b_0} \overline{\beta}, \overline{A}]$	passes the top concept of the stack onto the deque.
SHIFT	$-[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, \overline{A}]$	$[\sigma s_0 \overline{\delta} b_0, [], \overline{\beta}, \overline{A}]$	shifts the first concept of the buffer onto the stack along with those on the deque.
REDUCE	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{A}]$	$[\sigma, \overline{\delta}, \overline{b}_0]\beta, \overline{A}]$	pops the top concept of the stack.

方法部分: 避免大量文字

35 13/25

四、泛在智慧环境下的系统软件智能化机理

- ·传统基于规则的系统软件策略机制(例如调度机制、缓存机制、内存管理机制等)已经不能够匹配不断演进的硬件与应用
- · 系统软件智能化: 将感知、规划、决策、行动各模块有机合, 突破规则策略机制的限制, 学习获得新环境下的智能策略
- -IBM: Milepost GCC是机器学习编译器,能智能的优化程序,因此能缩短开发时间,同时又能提升性能。对IBM System p服务器的初步试验显示,嵌入式软件性能平均提高了18%[7]
- Google: 将机器学习运用在数据库系统中,对于真实数据的索引性, 神经网络建立的索引可以比传统的缓存优化 B 树索引方法提高 70% 的 原,同时存储空间还能节省一个数量级[8]

实验部分:图比表格好

LDC2014T12 Experiments alignment F-score

Aligner	Alignment F1 (on hand-align)	Oracle's Smatch (on dev. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

parser improvements

model	newswire	all
JAMR parser: Word,	POS, NER, DEP	1
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR parser: Word,	POS, NER, DE	P
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

信息元素的易理解程度

用例子与图来描述方法和实验

结论部分:新的展现形式

设计原则

• 亲密性: 相关的元素应该组织到一起

■ 重复: 相同的内容达到形式的统一

• 对比: 如果两项不完全相同,就应使之截然不同

• 对齐: 使元素之间产生关联, 有关联的都应对齐

根据设计原则做幻灯片

Challenges and Contribution

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

加入空行提高相关 元素的**亲密性**

Challenges and Contribution

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

Challenges and Contribution

Challenges

- · deriving an optimal alignment in ambiguous situations.
- recalling more semantically matched word-concept pair withoutharming the alignment precision.
- tuning the alignment with downstream parser learning.

Contribution

an enhanced aligner tuned by transition-based oracle parser

相同内容使用相同样式即提高了**一致性**又形成了必要的**对比**

避免不对齐

```
Input: An AMR graph with a set of graph fragments C;
                                                                                      a sentence W; a set of matching rules P_M; and
                                                                                      a set of updating rules Pu.
                                                                              Output: a set of alignments A.
Our aligner algorithm
                                                                            2 \ \ A<sub>c</sub> ← ∅;
                                                                            3 for \rho_M \in P_M do
                                                                                   for w_{s,e} \leftarrow spans(W) do
                                                                                       for c \in C do
                                                                                             if \rho_M(c, w_{s,e}) then

    Enhancing aligner with

                                                                                              A_c \leftarrow A_c \cup (s, e, \mathsf{nil});
            rich semantic resources
                                                                            8 updated ← true ;
                                                                            9 while updated is true do
10 updated ← false;

    Producing multiple

                                                                                   for \rho_U \in P_U do
            alignments
                                                                                       for c, c' \in C \times C do
                                                                           12
                                                                                             for (s, e, d) \in A'_c do
                                                                           13
                                                                                                 if \rho_U(c, w_{s,e}) \land (s, e, c') \notin A_c then A_c \leftarrow A_c \cup (s, e, c');
                                                                           15
                                                                           16
                                                                                                      updated ← true;
                                                                          18 for (a_1,...,a_c) \in \textit{CartesianProduct}(A_1,...,A_{|C|}) do 19 | legal \leftarrow true;
                                                                                   for a \in (a_1, ..., a_c) do (s, e, c') \leftarrow a;
                                                                                        (s',e',d) \leftarrow a_{c'};
                                                                                        if s \neq s' \land e \neq e' then
                                                                                         legal ← false ;
                                                                                   if legal then
                                                                                    A \leftarrow A \cup (a_1, ..., a_c);
```

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

Anghei	Angiment	Ofacie 8	Siliatell
	(on hand-align)	(on dev. o	dataset)
JAMR	90.6	91.	7
Our	95.2	94.	7
model	1	newswire	all
JAMR pa	rser: Word, POS	, NER, DEP	
+ JAM	R aligner	71.3	65.9
+ Our aligner		73.1	67.6
CAMR p	arser: Word, PO	S, NER, DEI	b
+ JAM	R aligner	68.4	64.6
	aligner	68.8	65.1

Aligner Alignment F1 Oracle's Smatch

model	newswire	all
Our single parser: Work	donly	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Work	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

Angher	Angimenti	Oracic s c	maten
	(on hand-align)	(on dev. d	ataset)
JAMR	90.6	91.7	7
Our	95.2	94.7	7
		~~~~	
model	ne	ewswire	all
JAMR pa	rser: Word, POS,	NER, DEP	
+ JAM	R aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR p	arser: Word, POS,	NER, DEP	
+ JAM	R aligner	68.4	64.6
			65.1

Aligner Alignment F1 Oracle's Smatch

model	newswire	all
Our single parser: Word	donly	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Word	i, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

### "乱"的解法:重新组织内容

#### Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

Aligner	Alignment F1 (on hand-align)	Oracle's (on dev.	
JAMR	90.6	91.	
Our	95.2	94.	7
model	1	newswire	all
JAMR pa	rser: Word, POS	, NER, DEP	6
+ JAM	R aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR p	arser: Word, POS	S, NER, DE	P
+ JAM	R aligner	68.4	64.6
+ Our	aligner	68.8	65.1

model	newswire	all
Our single parser: Word	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Word	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

#### LDC2014T12 Experiments

alignment F-score

Aligner	Alignment F1 (on hand-align)	Oracle's Smatch (on dev. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

parser improvements

model	newswire	all
JAMR parser: Word,	POS, NER, DEF	)
+ JAMR aligner	71.3	65.
+ Our aligner	73.1	67.
CAMR parser: Word,	POS, NER, DE	P
+ JAMR aligner	68.4	64.
+ Our aligner	68.8	65.

# 其它注意事项

- 不要在报告开始列大纲
  - 没有任何信息量
  - 无聊且浪费时间
- 不要罗列相关工作
  - 融入其它部分
- 不要罗列技术细节
  - 只会让听众昏昏欲睡
- 内容持续更新
  - 可以加入刚从其他报告中得到新的信息

### 演讲中最重要的武器

### ■热情!

- 如果你对自己的工作都不兴奋, 听众更不会感兴趣
- 热情还能使你更放松
- 太紧张了怎么办?
  - 演讲之前深呼吸,或者去一下洗手间
  - 将开场白写下来(不建议写全部notes)
  - 来回走动或者使用一些肢体动作

# 其它注意事项

- 报告前
  - 提前测试好设备
  - 用U盘、网盘等备份slides
- 报告中
  - 面对听众,不能只盯着屏幕
  - 和听众有眼神的交流
  - 声音洪亮, 有顿挫
  - 恰当运用动画
  - 控制好时间
- 报告后
  - 诚实回答观众的提问, 不要避重就轻
  - 仔细倾听问题, 不要打断对方
  - 分享幻灯片

### 总结

- 做学术报告的目的
- 幻灯片的内容和形式
  - 清晰阐述文章动机非常重要
  - 模型部分有取舍,用好图和例子
  - "结论"也有新思路
  - 四项设计的基本原则
- 演讲中的注意事项
  - 热情最重要
- 提高方法
  - 多学习其他人的报告
  - 多练习,任何topic



### 参考资料

- Simon Peyton Jones. How to give a great research talk
  - <a href="https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/">https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/</a>
- 刘洋. 机器翻译学术论文写作方法与技巧
  - http://nlp.csai.tsinghua.edu.cn/~ly/talks/cwmt14_tut.pdf