Developing a mathematical model to understand mechanisms governing antibiotic-persistent MRSA infection

Tsuyoshi Mikkaichi, Ph.D. Alexander Hoffmann, Ph.D.

Signaling Systems Lab University of California, Los Angeles

> Jan. 31, 2018 U01 Site visit

What is antibiotic-persistent MRSA bacteremia (APMB)?

- > Staphylococcus aureus (SA) bacteremia is a common, potentially life-threatening bloodstream infection.
- ➤ Many of the infectious strains are methicillin-resistant (MRSA).
- For up to 30% of patients infected by MRSA, even gold-standard anti-MRSA antibiotics, such as vancomycin or daptomycin, also fail.
- ➤ Hence MRSA infectious are classified as "Resolving" or "Persistent"
 - Antibiotic-Persistent MRSA Bacteremia (APMB): positive blood culture after 5 days of therapy
 - ➤ <u>Antibiotic-Resolving MRSA Bacteremia (ARMB):</u> negative blood cultures within 4 days of therapy

MRSA Persistence: Intersection of Systems

Innate immune systems could play a role, as macrophages and neutrophils are key to eliminate SA, but even APMB patients have high titers of specific antibody and circulating T cells, and vaccine efforts have been unsuccessful.

Antibiotics availability could play a **role**, but there is no difference in antibiotics plasma concentrations between patient with "persistent" and "resolving" MRSA.

Project Goal:

Develop a mathematical model of MRSA infection to identify mechanisms that may determine "persistent" and "resolving" pathogeneses.

Aim 1: Develop a model to explore the MRSA – antibiotic interaction: in vitro studies

Aim 2: Develop a model to explore the MRSA – antibiotic – immunity interaction: *in vivo* studies

Aim 3: Develop a multi-compartment model of MRSA infection

Project Goal:

Develop a mathematical model of MRSA infection to identify mechanisms that may determine "persistent" and "resolving" pathogeneses.

Aim 1: Develop a model to explore the MRSA – antibiotic interaction: in vitro studies

Aim 2: Develop a model to explore the MRSA – antibiotic – immunity interaction: *in vivo* studies

Aim 3: Develop a multi-compartment model of MRSA infection

Even in vitro: Persistence is distinct from tolerance and resistance

In contrast to resistance and tolerance, which are attributes of whole bacterial populations, persistence is due to an inherent heterogeneity in bacterial populations; normal and persister cells.

Persister cells:

a subpopulation of slow-growing and decreased susceptibility to killing by antibiotics

Harms, A. Science (80). 354, aaf4268 (2016).

Nat Rev Microbiol. 2017,15(8):453-464.

Simple model (ver 1) to recapitulate in vitro data

Simple model (ver 1) to recapitulate in vitro data

$$\frac{dN}{dt} = -sw_{N2P}N + sw_{P2N}P + g_N(1 - 0.95Van)\left(1 - \frac{N + P}{SAmax}\right)N - d_{Van}VanN$$

$$\frac{dP}{dt} = sw_{N2P} N - sw_{P2N} P + g_P (1 - 0.95 Van) \left(1 - \frac{N + P}{SAmax}\right) P$$

Simulated in vitro SA killing by vancomycin

Conclusion: the switch rate between persister to normal MRSA is critical in determining persistence *in vitro*.

Project Goal:

Develop a mathematical model of MRSA infection to identify mechanisms that may determine "persistent" and "resolving" pathogeneses.

Aim 1: Develop a model to explore the MRSA – antibiotic interaction: in vitro studies

Aim 2: Develop a model to explore the MRSA – antibiotic – immunity interaction: *in vivo* studies

Aim 3: Develop a multi-compartment model of MRSA infection

Simple model (ver 2) to recapitulate in vivo data

decreased susceptibility to

decreased susceptibility to

antibiotics

immune killing

$$\frac{dN}{dt} = -sw_{N2P}N + sw_{P2N}P + g_N(1 - 0.95Van)\left(1 - \frac{N+P}{SAmax}\right)N - d_{Van}VanN - c_N\left(\frac{1}{1+aT^h}\right)ImN$$

$$\frac{dP}{dt} = sw_{N2P}N - sw_{P2N}P + g_P(1 - 0.95Van)\left(1 - \frac{N+P}{SAmax}\right)P - c_P\left(\frac{1}{1+aT^h}\right)ImP$$

Features of the mathematical model ver 2

The inference is that the immune system is effective when presented with small numbers but it can be saturated.

$$\begin{aligned} \textit{Kill of SAn By Immune} \\ &= \textit{kdeath_SAn_ByImmune} \cdot \frac{1}{1 + a \cdot \textit{SAtotal}^{hill}} \cdot \textit{ImmuneCell} \cdot \textit{SAn} \end{aligned}$$

A minimum Inoculum dose is required to establish an infection

(even in absence of antibiotics)

Simulating MRSA Infection and Antibiotic Treatment with model ver 2

Event functions:

- MRSA start to grow at 2h post-inoculation.
- When SAnormal reach 10⁴ CFU/AU, antibiotic is administered for 21 days.
- 24h after final antibiotic administration, SAnormal starts to grow again

With a picked set of parameter values the model recapitulates resolving and persistent MRSA

Inoculum dose = 10³ CFU/AU

Parameter values picked for simulating resolving and persistent MRSA

We picked parameters that imply that persistent MRSA is less susceptible to immune killing.

Identify parameter sets that recapitulate resolving vs persistent MRSA: Ensemble simulation

Ensemble Modeling

Inoculum dosed ependency in vivo growth of MRSA without antibiotics

3. Extract parameter sets which meet criteria 2

MRSA should NOT growth under conditions where:

- 1. SAn= 10^2 cfu/au
- 2. Without Antibiotic treatment

Criteria: SAn at 72h less than 0.1 cfu/au

4. Divide parameter sets into "Resolving" and "Persistent"

Number of antibiotics administrations for 4000h (=ca.170 days)

1: Resolving

>2: Persistent

Ensemble Modeling

1. Generate 10,000 parameter sets

10,000

8,537

671

 log-uniformly distribute except for "hill"

2. Extract parameter sets which meet criteria 1

3. Extract parameter sets which meet criteria 2

R: 590 • Divide parameter sets into P: 79 • "Resolving" and "Persistent" <SA related>

f_growth: ratio of growth

ksw_n2p

f_switch: ratio of switch rate

<Fixed parameters>

Kgrowth_n

Antibiotics: growth inhibition and kill

<Immune system related>

kdeath_SAn_ByImmune

а

hill

f_deathByImmune: ratio of killing rate

MRSA should growth under conditions where:

1. $SAn = 10^3$ (Inoculum dose = 10^3 CFU/AU)

2. Without Antibiotic treatment

Criteria: SAn at 72h more than 10^4 cfu/au

MRSA should NOT growth under conditions where:

1. SAn= 10^2 cfu/au

2. Without Antibiotic treatment

Criteria: SAn at 72h less than 0.1 cfu/au

Number of antibiotics administrations for 4000h (=ca.170 days)

1: Resolving

>2: Persistent

18

Parameter distributions

Classification tree: "Resolving" and "Persistent"

True Positive "Resolving" = 97.8% True Positive "Persistent" = 86.1% (same dataset)

zscore(log(parameter value))

Distinguishing parameters between resolving and persistent: "growth rate" and "death rate" of persister cells

What did we learn about the potential mechanisms of persistence?

Persisters in "persistent/nonresolving" infections (APMB) have

- > Higher growth and
- > decreased susceptibility to immune elimination than in "resolving" infections (ARMB).

How might this be possible?

Persisters in "persistent/nonresolving" infections (APMB) have

- > Higher growth and
- ➤ decreased susceptibility to immune elimination than in "resolving" infections (ARMB).

Hypothesis:

- 1. The bug, specifically the persistors, found in APMB patients, have higher growth and immune evasion mechanisms.
- 2. In APMB patients the persistors are more likely to grow intra-cellularly, i.e. are evading immune surveillance and grow better.
- This might mean that APMB patients' host cells are better at supporting intra-cellular growth.

SA is able to live and replicate in immune and non-immune cells

SA is able to live and replicated in primary human M-CSF-derived macrophages.

Flannagan, R. S., Heit, B. & Heinrichs, D. E. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell. Microbiol. 18, 514–535 (2016).

SA is able to escape from macrophage (THP-1)

SA in endothelial cells (EA-hy296)

Rollin, G. et al. Intracellular survival of Staphylococcus aureus in endothelial cells: A matter of growth or persistence. Front. Microbiol. 8, 1354 (2017).

Target cells of intracellular SA

- macrophage
- neutrophils
- dendric cells
- epithelial cells
- endothelial cells etc.

How might this be possible?

Persisters in "persistent/nonresolving" infections (APMB) have

- Higher growth and
- ➤ decreased susceptibility to immune elimination than in "resolving" infections (ARMB).

Hypothesis:

2. In APMB patients the persistors are more likely to grow intra-cellularly, i.e. are evading immune surveillance and grow better.

This might mean that APMB patients' host cells are better at supporting intra-cellular growth.

How?

- Lower resistance to bacterial invasion
- Enhanced resistance to cell death
- Provide conditions for growth (nutrients)

Project Goal:

Develop a mathematical model of MRSA infection to identify mechanisms that may determine "persistent" and "resolving" pathogeneses.

Aim 1: Develop a model to explore the MRSA – antibiotic interaction: in vitro studies

Aim 2: Develop a model to explore the MRSA – antibiotic – immunity interaction: *in vivo* studies

Aim 3: Develop a multi-compartment model of MRSA infection

A multi-compartment Model

Based on the current results, I will add more mechanistic features to the model with blood compartment to capture the persistent bacteremia.

- Mathematical model for host-tuberculosis immune response model will be helpful.
 - Tuberculosis is a typical intracellular bacteria

Palsson, S. et al. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst. Biol. 7, 95 (2013).

acknowledgement

