EXPOSURE RATE CONSTANTS AND LEAD SHIELDING VALUES FOR OVER 1,100 RADIONUCLIDES

David S. Smith and Michael G. Stabin*

Abstract—The authors have assembled a compilation of exposure rate constants, f-factors, and lead shielding thicknesses for more than 1,100 radionuclides described in ICRP Publication 107. Physical data were taken from well established reference sources for mass-energy absorption coefficients in air, attenuation coefficients, and buildup factors in lead and other variables. The data agreed favorably for the most part with those of other investigators; thus this compilation provides an up-to-date and sizeable database of these data, which are of interest to many for routine calculations. Emissions were also segregated by emitting nuclide, and decay product emissions were emitted from the calculated coefficients, thus for the first time providing for the calculation of exposure rates from arbitrary mixtures of nuclides in arbitrary equilibrium states.

Health Phys. 102(3):271-291; 2012

Key words: gamma radiation, radiation protection, radionuclide, shielding

INTRODUCTION

EXPOSURE RATE constants and lead shielding thicknesses are needed by many for routine calculations in radiation safety, medical uses of radionuclides, and other applications. A number of compilations have been found to be useful, including the Radiological Health Handbook (USDHEW 1970), which included exposure rate constants from Jaeger et al. (1968), an article by Unger and Trubey (1982), and others. The goal of this work was to provide an updated and comprehensive list of such values, using data from the recent ICRP Publication 107 (ICRP 2009). Comparisons of the calculated values with those of other investigators are also provided. This compilation uses

(Manuscript accepted 29 August 2011) 0017-9078/12/0

Copyright © 2012 Health Physics Society

DOI: 10.1097/HP.0b013e318235153a

www.health-physics.com

newly released decay data for many radionuclides and traditional definitions of exposure rate constants, which can be related to absorbed dose or equivalent dose via well known relationships. Nuclide-specific *f*-factors for conversion between exposure rate in air and dose rate to tissue are also presented.

METHODS

The exposure rate constant Γ relates the activity of a point isotropic radiation source to the exposure rate in air at a given distance:

$$\dot{X} = \Gamma_{\delta} \frac{A}{d^2}, \tag{1}$$

where A is the source activity, d is distance to the source, and δ is a minimum cutoff energy, which determines the minimum energy photon that can contribute to the exposure. In this work, $\delta = 15 \text{ keV}$ is used. In terms of the decay spectrum of a nuclide, the exposure rate constant can be written as

$$\Gamma_{\delta} = \frac{1}{4\pi} \sum_{i} \left(\frac{\mu_{en}}{\rho} \right)_{i} Y_{i} E_{i}, \tag{2}$$

where $(\mu_{\rm en}/\rho)_i$ is the mass-energy absorption coefficient in air for photons of energy E_i emitted by the nuclide with yield Y_i . This equation will have units of exposure rate per unit activity at distance d when appropriate unit conversions and assumptions (e.g., about the amount of energy needed to produce an ion pair in air) are applied, as in this example from Stabin (2007) for 60 Co (considering just the two principal photons for demonstration purposes):

$$\begin{split} \Gamma &= \left[\left(1.17 \frac{MeV}{\gamma} \right) \left(1.0 \frac{\gamma}{dis} \right) (0.0035 \, m^{-1}) \, + \, \left(1.33 \frac{MeV}{\gamma} \right) \left(1.0 \frac{\gamma}{dis} \right) (0.0034 \, m^{-1}) \right] \\ &\times \, \frac{1}{4\pi} \frac{10^6 \, eV}{MeV} \frac{i.p.}{34 \, eV} \frac{1.6 \times 10^{-19} \, C}{i.p.} \frac{m^3}{1.293 \, kg} \frac{10^6 \, dis}{s - MBq} = 2.5 \times 10^{-12} \frac{(C/kg)m^2}{MBq \, s} \, \text{(3)} \end{split}$$

$$2.5 \times 10^{-12} \frac{(C/kg)m^2}{MBqs} \frac{37 MBq}{mCi} \frac{3,600 s}{h} \frac{R}{2.58 \times 10^{-4} C/kg} \frac{10^4 cm^2}{m^2} = 12.9 \frac{R cm^2}{mCi h}. \text{ (4)}$$

The nuclear decay data from ICRP Publication 107 were taken in electronic form and used to find the yield Y_i and

271

^{*}Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232-2675, and RAdiation Dose Assessment Resource (RADAR) Task Group of the Society of Nuclear Medicine.

The authors declare no conflict of interest.

For correspondence contact: Michael G. Stabin, Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232-2675, or email at michael.g.stabin@vanderbilt.edu.

energy E_i of all photon emissions of each nuclide. The authors included only gamma rays, x-rays, annihilation photons, and prompt and delayed photons of spontaneous fission given in ICRP 107 with energies of at least 15 keV and yields of at least 10^{-4} . Bremsstrahlung was neglected. All mass-energy absorption coefficients were obtained by log-log interpolation of Hubbell and Seltzer (1996).

Additionally, for nuclides that have no photon emissions themselves but are in secular equilibrium with photon-emitting products (e.g., \$^{137}Cs/^{137m}Ba), the decay schemes have been combined in selected cases with this being noted. In general the authors did NOT combine emissions for parent/progeny situations. This segregation of the emissions by the actual emitting nuclide allows more accurate determination of the exposure due to a complex mixture of nuclides. If the decay equilibrium of a mixture is known, the resulting exposure rate can be found by simple linear combination of the appropriate nuclides from Table 1 below. However, the lead shielding thicknesses cannot be combined easily for mixtures of nuclides.

The shielding requirements were calculated by energy-dependent attenuation of the exposure rates calculated here through varying thickness of pure lead. The broadbeam transmission, T(E,x), for photons of energy E through lead thickness E was modeled as exponential attenuation modified by an energy- and depth-dependent buildup factor:

$$T(E,x) = B(E,x) \exp[-\mu(E)x]. \tag{5}$$

Two recent works have calculated in detail the buildup curves for monoenergetic photons in lead (Shimizu et al. 2004; Kharrati et al. 2007), albeit in different energy ranges. Shimizu et al. (2004) present data for energies from 30 keV to 15 MeV; Kharrati et al. (2007) include data for 15 to 150 keV. (The lower limit of 15 keV for the buildup factors is the reason for the 15 keV lower cutoff on photon emissions in this effort.) Since the energy coverage overlaps between 30 and 150 keV between these two works, transmission values in the overlap region were averaged:

$$B(E,x) = \begin{cases} B_K(E,x) & : 15 \text{ keV} \le E < 30 \text{ keV} \\ \frac{B_K(E,x) + B_S(E,x)}{2} & : 30 \text{ keV} \le E \le 150 \text{ keV}, \\ \frac{2}{B_S(E,x)} & : E > 150 \text{ keV} \end{cases}$$
(6)

where the subscript K denotes data taken from Kharrati et al. and S denotes Shimizu et al. For the Shimizu et al. (2004) data, the buildup factors were taken directly from Table 4. For the Kharrati et al. (2007) data, the empirical fit given in their eqn (6) was used:

$$B_K(E_i, x) = \{ [1 + \beta(E)/\alpha(E)] e^{\alpha(E)\gamma(E)x} - \beta(E)/\alpha(E) \}^{-1/\gamma(E)},$$
(7)

where x is depth in units of 0.1 mm. The coefficients α , β , and γ were taken from the columns for dose from Table I of Kharrati et al.

Finally, the nuclide-specific *f*-factors (cGy/R) in Table 1 were calculated as spectrally averaged tissue-to-air stopping power ratios. The tissue model was based on the ICRU-44 soft tissue model, and the mass-energy absorption coefficients for it were obtained from Hubbell and Seltzer (1996).

RESULTS

A listing of the results for all nuclides is given in Table 1. The complete list in electronic form will be made available from the web site maintained by the RAdiation Dose Assessment Resource (RADAR) Task Group of the Society of Nuclear Medicine (www.doseinfo-radar.com).

DISCUSSION

Tables 2–4 show comparisons of the values in this report to those reported in the original Radiological Health Handbook (RHH; U.S. DHEW 1970), Unger and Trubey (1982), and Tschurlovits et al. (1992) for selected radionuclides. In converting the current values for comparison to dose rate, as in Tables 3 and 4, the calculated nuclidespecific f-factors in Table 1 were applied. Table 2 shows a comparison between these results and those of the RHH. The authors find good agreement except for 125 I, for which the value is listed as " \sim 0.7," but the nature of this difference is unknown due to the approximate nature of the RHH value provided and the age of the publication.

A comparison between the exposure rate constants calculated here and values of equivalent dose constants given in Unger and Trubey (1982) is given in Table 3. The current values are systematically lower than those of Unger and Trubey. This is likely due to differences in methodology. Unger and Trubey included emissions down to 10 keV and used a fitted function of dose rate per unit flux density to obtain their constants instead of using absorption coefficients directly. Contributions from emissions in the 10–15 keV range were neglected, as in practice these emissions almost never contribute to dose due to the rapid attenuation of photons at these energies and the frequent presence of encapsulating materials.

Table 4 shows comparisons of the current values to those of Tschurlovits et al. (1992). Agreement is quite good in many cases, but the current values are notably lower in several cases (¹³³Ba, ⁶⁷Ga, ¹⁶⁶Ho, ¹²³I, ¹²⁵I, ¹¹¹In, ^{99m}Tc, ²⁰¹Tl, and ⁶⁵Zn). As agreement is very good for most cases, and agreement with the RHH is good for all nuclides except for ¹²⁵I, some error in calculation or reporting in the Tschurlovits et al. work for these particular nuclides is suspected.

Finally, comparison of shielding values shows good agreement for many commonly used nuclides, but it is hard to make an extensive comparison because such data

Table 1. Exposure rate constants, f-factors, and lead shielding data developed in this work for all photon-emitting nuclides in the ICRP 107 nuclear decay data set.

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)					
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
Ac-223	2.33×10^{-14}	0.12	0.956	0.639	2.3	5.86	16.9	28.8	
Ac-224	3.57×10^{-13}	1.84	0.955	0.168	0.631	1.42	3.71	6.09	
Ac-225	2.45×10^{-14}	0.126	0.952	0.0698	0.459	1.21	9.26	22.1	
Ac-226	2.04×10^{-13}	1.05	0.957	0.284	0.932	1.92	4.95	13.2	
Ac-227	1.23×10^{-14}	0.0635	0.921	0.00676	0.0135	0.0225	0.048	0.098	
Ac-228	1.03×10^{-12}	5.31	0.958	7.86	18.6	32.7	69.4	109	
Ac-230	5.97×10^{-13}	3.08	0.957	11.1	25.3	44.1	91.1	138	
Ac-231	5.23×10^{-13}	2.7	0.960	0.894	2.36	4.6	11.1	18.5	
Ac-232	1.18×10^{-12}	6.11	0.959	14.1	29.1	48.7	97.7	145	
Ac-233	5.58×10^{-13}	2.88	0.965	5.19	9.93	15.9	30.5	44.7	
Ag-100m	2.95×10^{-12}	15.3	0.965	8.41	17.6	32.7	78.5	125	
Ag-100111	1.76×10^{-12}	9.1	0.962	5.48	12.2	23.3	62.7	108	
Ag-101 Ag-102m	1.70×10^{-12} 1.90×10^{-12}	9.83	0.962	11.8	26.6	47.8	101	152	
	3.55×10^{-12}	18.3		8.89	19.1	35.4	82.6	131	
kg-102			0.963						
Ag-103	1.09×10^{-12}	5.65	0.953	3.91	11.4	24.4	63.4	104	
Ag-104	3.07×10^{-12}	15.8	0.959	8.38	17.7	31	69.2	111	
kg-104m	1.94×10^{-12}	10	0.961	7.05	15.2	30.6	81.6	133	
rg-105	8.48×10^{-13}	4.38	0.947	1.19	4.37	10.8	36	66.3	
g-105m	1.75×10^{-15}	0.00904	0.942	0.178	2.3	5.71	26.9	56.5	
g-106	8.79×10^{-13}	4.54	0.958	4.12	8.69	14.5	28.8	44.6	
g-106m	3.21×10^{-12}	16.6	0.958	7.66	17	30.8	69	109	
.g-108	2.68×10^{-14}	0.138	0.949	3.6	9.34	16.7	35.2	54.1	
kg-108m	2.02×10^{-12}	10.4	0.956	5.08	11.1	19.2	39.7	60.2	
.g-109m	1.25×10^{-13}	0.644	0.924	0.0111	0.022	0.0372	0.205	1.15	
g-110	3.39×10^{-14}	0.175	0.963	7.11	13.6	21.8	41.7	61.8	
.g-110m	2.91×10^{-12}	15	0.965	10.3	20	33	69.2	109	
.g-111	2.91×10^{-14}	0.15	0.964	1.93	3.89	6.49	13.1	20.2	
g-111m	7.00×10^{-14}	0.361	0.923	0.0118	0.0241	0.0459	7.63	27	
g-112	6.95×10^{-13}	3.59	0.965	10.8	22.2	39.4	87.4	135	
g-113m	2.56×10^{-13}	1.32	0.960	2.56	6.05	12.3	32.2	53.1	
.g-113	7.83×10^{-14}	0.404	0.964	3.04	7.56	18.5	50.7	85.2	
g-114	2.62×10^{-13}	1.35	0.965	9.27	19.7	37	86.3	136	
g-115	4.71×10^{-13}	2.43	0.964	10.6	25.5	45.4	95	144	
ng-116	2.00×10^{-12}	10.3	0.964	13.3	28.2	49	101	153	
ng-117	1.20×10^{-12}	6.18	0.962	14.9	31.8	53.1	105	155	
ig-117	2.43×10^{-12}	12.6	0.964	7.22	16.3	31.4	76.9	125	
Al-26	2.60×10^{-12}	13.4	0.965	11.9	26.6	47	96.3	144	
1-28	1.62×10^{-12}	8.37	0.876	19.8	35.9	56.4	105	152	
1-28	1.34×10^{-12}	6.93	0.965	16.6	30.5	48.2	91.2	135	
	5.57×10^{-13}	2.87			2.52	7.01	28.5	55.6	
m-237	1.09×10^{-12}		0.955	0.508					
.m-238	1.09×10	5.65	0.956	7.29	17.8	31.6	67.4	106	
.m-239	4.91×10^{-13}	2.53	0.951	0.0306	0.334	1.09	4.53	8.47	
m-240	1.30×10^{-12}	6.73	0.954	7.89	18.6	31.6	62.7	92.9	
.m-241	1.45×10^{-13}	0.749	0.932	0.00974	0.0235	0.106	0.528	0.94	
.m-242	9.22×10^{-14}	0.476	0.937	0.01	0.0227	0.1	0.779	1.55	
.m-242m	7.60×10^{-14}	0.392	0.921	0.00758	0.0151	0.0252	0.0532	0.24	
.m-243	1.16×10^{-13}	0.597	0.944	0.0234	0.193	0.49	1.24	2.01	
.m-244	1.12×10^{-12}	5.78	0.950	5.24	13.8	24.3	49.9	75.4	
m-244m	5.09×10^{-14}	0.263	0.930	0.0174	3.57	18.3	52.5	85.1	
.m-245	5.28×10^{-14}	0.273	0.953	0.138	0.683	1.85	5.14	8.53	
.m-246	1.17×10^{-12}	6.02	0.949	2.21	9.09	18.4	40.9	63.1	
.m-246m	1.09×10^{-12}	5.6	0.959	11	21.8	35.6	69.8	104	
m-247	1.98×10^{-13}	1.02	0.955	0.267	1.08	2.71	7.01	11.3	
r-41	1.27×10^{-12}	6.58	0.965	16.1	29.6	46.6	86.8	126	
.r-43	1.47×10^{-12}	7.6	0.965	15	28.9	47.2	94.9	144	
.r-44	1.80×10^{-12}	9.29	0.965	16.8	32.9	53	101	148	
s-68	3.78×10^{-12}	19.5	0.965	9.93	20.9	37.2	82.5	129	
s-69	1.24×10^{-12}	6.42	0.965	5.28	10.5	18.1	51.2	98.7	
s-70	4.35×10^{-12}	22.5	0.965	10.5	21.8	37.9	81.2	126	
As-71	6.07×10^{-13}	3.13	0.965	3.76	9.27	17.5	46.3	81.3	
As-72	1.92×10^{-12}	9.9	0.965	7.11	14.2	24.7	58.1	102	
As-72 As-73	7.80×10^{-15}	0.0403	0.876	0.101	0.196	0.319	0.631	0.94	
As-73 As-74	8.38×10^{-13}	4.33						54	
15-/4	0.30 × 1U	4.33	0.965	5.87	11.2	18	35.4	34	
As-76	4.46×10^{-13}	2.3	0.965	7.37	14.7	26.1	64.6	108	

 Table 1. (Continued)

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)				
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
As-78	1.32×10^{-12}	6.83	0.965	11.2	22.7	39.2	84.5	131
As-79	3.67×10^{-14}	0.19	0.965	5.44	12	22.3	49.9	77.3
At-204	2.56×10^{-12}	13.2	0.963	5.72	11.6	19.5	41.1	64.7
At-205	1.21×10^{-12}	6.24	0.960	7.72	16.6	29.9	70.3	115
At-206	2.67×10^{-12}	13.8	0.963	6.54	13.9	24.9	59.5	102
At-207	2.06×10^{-12}	10.6	0.961	9.81	20.9	36.7	81.2	128
At-208	3.18×10^{-12}	16.4	0.962	8.88	18.2	31.5	71.4	117
At-209	2.46×10^{-12}	12.7	0.961	7.67	15.9	27	57.8	93.6
At-210	2.95×10^{-12}	15.2	0.962	13.8	27.8	45.2	87.3	129
At-211	4.15×10^{-14}	0.214	0.951	0.175	0.461	0.96	16.1	37.1
At-215	1.83×10^{-16}	0.000946	0.876	3.22	6.19	9.97	19.3	28.4
At-216	2.57×10^{-15}	0.0133	0.953	0.338	0.849	2.12	6.9	12
At-217	2.43×10^{-16}	0.00126	0.962	1.75	4.17	10.4	28	45
At-220	4.85×10^{-13}	2.5	0.964	1.95	4.62	10.2	28.3	47.6
Au-186	1.58×10^{-12}	8.15	0.962	5.69	13.2	25.8	66.8	112
Au-187	1.05×10^{-12}	5.44	0.956	10.8	24.3	42.7	89.1	135
Au-190	2.18×10^{-12}	11.3	0.960	12	28.5	50	103	155
Au-191	6.36×10^{-13}	3.28	0.956	3.17	8.07	15.8	39.3	68.7
Au-192	1.83×10^{-12}	9.43	0.959	12.2	28.2	48.8	99.3	149
u-193	1.69×10^{-13}	0.871	0.950	0.505	1.54	4.29	17	35.9
Au-193m	2.03×10^{-13}	1.05	0.960	1.02	2.04	3.37	6.68	9.99
Au-194	1.03×10^{-12}	5.31	0.958	8.23	22.4	41.4	88.4	135
Au-195	7.93×10^{-14}	0.409	0.947	0.19	0.375	0.623	1.3	1.95
Au-195m	2.07×10^{-13}	1.07	0.960	1.06	2.12	3.5	6.95	10.4
Au-196	5.11×10^{-13}	2.64	0.957	2.04	4.31	7.28	15.3	28
Au-196m	2.34×10^{-13}	1.21	0.955	0.447	0.927	1.73	5.35	10.4
Au-198	4.46×10^{-13}	2.3	0.965	3.35	6.47	10.5	21.2	35.9
Au-198m	5.25×10^{-13}	2.71	0.959	0.634	1.36	2.53	7.23	13.3
Au-199	9.13×10^{-14}	0.471	0.959	0.483	0.9	1.47	3.18	5.22
Au-200	2.80×10^{-13}	1.45	0.965	9.66	22.8	39.5	79.6	118
Au-200m	2.15×10^{-12}	11.1	0.964	4.32	9.96	18.1	40.1	63.3
Au-201	3.77×10^{-14}	0.195	0.960	4.74	9.87	16.6	33.8	51.7
Au-202	1.80×10^{-13}	0.93	0.965	8.73	19.4	34.6	72.8	111
Ba-124	7.09×10^{-13}	3.66	0.947	4.11	11	22.2	56.6	93.2
3a-126	7.13×10^{-13}	3.68	0.946	4.45	13.5	26.8	61.5	96.9
3a-127	8.49×10^{-13}	4.38	0.953	4.7	10.2	18.8	56.7	105
3a-128	1.68×10^{-13}	0.868	0.929	0.0436	0.24	1.83	5.99	10.6
Ba-129	4.38×10^{-13}	2.26	0.943	3	8.82	18.5	60.1	107
3a-129m	1.75×10^{-12}	9.06	0.954	7.26	17.6	32.6	72.4	113
3a-131	6.38×10^{-13}	3.29	0.946	1.8	5.78	11.8	30	56.2
3a-131m	1.28×10^{-13}	0.659	0.942	0.0644	0.202	0.465	1.16	1.82
3a-133	5.89×10^{-13}	3.04	0.943	0.819	2.84	5.65	12.7	19.9
3a-133m	1.37×10^{-13}	0.707	0.932	0.0693	0.849	2.5	6.49	10.4
3a-135m	1.28×10^{-13}	0.663	0.931	0.0605	0.637	2.15	5.85	9.51
3a-137m	6.64×10^{-13}	3.43	0.962	7.19	13.7	21.8	41.5	60.7
Ba-139	4.91×10^{-14}	0.254	0.957	0.496	1.04	2.44	46.1	88.9
3a-140	2.21×10^{-13}	1.14	0.953	3.46	8.01	13.9	28.6	43
3a-141	9.67×10^{-13}	4.99	0.963	5.72	15.7	31.6	74.4	118
3a-142	1.11×10^{-12}	5.75	0.959	9.43	20.8	35.1	70.3	105
Be-7	5.54×10^{-14}	0.286	0.876	4.35	8.33	13.4	25.6	37.7
Bi-197	1.76×10^{-12}	9.07	0.961	10.4	21.5	36.4	75.6	116
3i-200	2.60×10^{-12}	13.4	0.962	6.06	14	26.4	59.1	90.9
3i-201	1.73×10^{-12}	8.92	0.960	12.8	25.5	42.2	85.5	130
3i-202	2.90×10^{-12}	15	0.962	8.41	17.9	31.3	67.9	109
3i-203	2.35×10^{-12}	12.1	0.961	13.5	26.8	44.5	90.4	137
3i-204	3.02×10^{-12}	15.6	0.962	9.99	20.8	35.1	73.1	114
3i-205	1.66×10^{-12}	8.58	0.960	13.1	26.6	44.7	91.2	137
3i-206	3.41×10^{-12}	17.6	0.962	9.35	19.5	33.7	73.6	117
3i-207	1.61×10^{-12}	8.33	0.961	9.28	19.1	32.9	69.7	108
3i-208	2.15×10^{-12}	11.1	0.959	21.4	39.5	62.5	117	170
3i-210m	2.77×10^{-13}	1.43	0.963	1.56	3.23	6.09	21.7	40.8
3i-211	5.13×10^{-14}	0.265	0.962	2.19	4.35	7.12	14	20.7
3i-212	1.08×10^{-13}	0.556	0.961	10.3	20.6	34.8	76.2	120
3i-213	1.41×10^{-13}	0.728	0.963	3.75	7.42	12.4	29.4	59.6
Bi-214	1.45×10^{-12}	7.48	0.965	13.4	26.9	45.1	91.8	138
3i-215	2.69×10^{-13}	1.39	0.962	3.62	10.6	24.3	60.6	97.7
Bi-216	8.20×10^{-13}	4.23	0.965	4.88	9.48	15.4	30.4	45.3
3k-245	3.88×10^{-13}	2	0.953	0.0927	0.515	1.58	6.33	13.8

 Table 1. (Continued)

	Exposure rat	e constant			Lead attenu	ation thickr	nesses (mm P	b)
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Bk-246	1.10×10^{-12}	5.66	0.953	6.47	16.1	27.9	57.5	87.8
Bk-247	1.88×10^{-13}	0.969	0.956	0.377	1.15	2.51	6.08	9.62
Bk-248m	1.40×10^{-13}	0.723	0.944	0.0219	0.585	6.17	22.2	37.4
Bk-250	1.04×10^{-12}	5.39	0.957	10.8	21.8	35.3	67.6	98.9
Bk-251	3.46×10^{-13}	1.78	0.944	0.0117	0.0382	0.334	1.25	2.39
Br-72	3.09×10^{-12}	15.9	0.965	8.73	18.4	33.2	75.6	121
Br-73	1.57×10^{-12}	8.12	0.963	5.29	10.7	18.3	42.5	73.9
Br-74	4.10×10^{-12}	21.2	0.964	12.2	27.2	49	104	159
Br-74m	$4.01 \times 10^{-12} \\ 1.31 \times 10^{-12}$	20.7	0.965	10.1	21.7	40.3	92.6	145
Br-75	1.31×10 2.70×10^{-12}	6.77 14	0.965	3.9	8.4	14.8	34.2	63.4
Br-76 Br-76m	5.76×10^{-14}	0.297	0.965 0.930	10.3 0.0917	22.8 0.214	42.6 2.84	94.8 22.4	146 43.9
Br-77	3.76×10 3.41×10^{-13}	1.76	0.930	3.61	8.64	15.8	36.4	61.1
Br-77m	1.29×10^{-14}	0.0665	0.903	0.248	0.442	0.697	1.48	1.74
Br-78	1.15×10^{-12}	5.93	0.965	5.09	9.73	15.6	30.5	47.5
Br-80	8.36×10^{-14}	0.431	0.965	6.28	12	19.4	38.4	60
Br-80m	4.97×10^{-14}	0.257	0.923	0.23	0.0741	0.121	0.239	0.364
Br-82m	2.94×10^{-15}	0.0152	0.949	8.72	17.4	28.7	59.4	95.3
Br-82	2.80×10^{-12}	14.4	0.965	9.56	18.8	31.7	67.9	107
Br-83	7.61×10^{-15}	0.0393	0.965	5.26	10.0	16	30.7	45.1
Br-84m	2.82×10^{-12}	14.5	0.965	11.5	24.1	40.8	83	125
Br-84	1.56×10^{-12}	8.07	0.964	16.6	31.8	52.1	105	157
Br-85	6.87×10^{-14}	0.355	0.965	11.4	21.9	35.5	72.8	114
C-10	1.92×10^{-12}	9.94	0.965	6.08	11.8	19.4	39.5	60.7
C-11	1.13×10^{-12}	5.86	0.876	4.95	9.46	15.1	28.9	42.5
Ca-47	1.05×10^{-12}	5.43	0.965	15.1	28.5	45.2	85.5	124
Ca-49	2.41×10^{-12}	12.4	0.961	22.4	40.9	64.5	121	176
Cd-101	2.64×10^{-12}	13.6	0.959	8.8	20.6	38.7	86	133
Cd-102	1.13×10^{-12}	5.84	0.951	3.94	10	20.3	55.8	94.3
Cd-103	2.23×10^{-12}	11.5	0.954	10.7	25	44.7	94.1	143
Cd-104	5.94×10^{-13}	3.07	0.937	0.0395	3.8	12.8	33.9	54.6
Cd-105	1.47×10^{-12}	7.57	0.952	8.77	21.6	40.4	88.7	136
Cd-107	3.94×10^{-13}	2.03	0.922	0.0112	0.0222	0.038	2	23.5
Cd-109	3.66×10^{-13}	1.89	0.922	0.0109	0.0213	0.0353	0.0805	0.74
Cd-111m	4.16×10^{-13}	2.15	0.954	0.455	1.29	2.46	5.43	8.38
Cd-113m	2.11×10^{-16}	0.00109	0.936	0.0227	0.419	1.86	5.41	8.9
Cd-115	2.24×10^{-13}	1.16	0.961	4.52	9.14	15	29.2	43.2
Cd-115m	3.40×10^{-14}	0.175	0.965	12.5	23.8	38.2	74.2	111
Cd-117	1.10×10^{-12}	5.68	0.963	11.2	24.9	42.2	84.9	127
Cd-117m	1.96×10^{-12}	10.1	0.965	15.3	29.8	48.8	97	145
Cd-119	1.57×10^{-12}	8.1	0.964	14.1	29.5	49	97.2	145
Cd-119m	2.22×10^{-12}	11.5	0.964	15	29.3	47.9	95.2	143
Ce-130	6.31×10^{-13}	3.26	0.945	2.51	9.57	22	55.9	90.8
Ce-131	1.79×10^{-12}	9.25	0.957	6.35	14.6	28.8	71	115
Ce-132	3.69×10^{-13}	1.91	0.947	0.407	1.21	3.04	14.7	30.2
Ce-133	7.21×10^{-13}	3.72	0.944	2.51	7.16	13	27.3	41.2
Ce-133m	1.89×10^{-12}	9.78	0.951	7.86	18.8	35.5	80.1	125
Ce-134	1.12×10^{-13}	0.579	0.923	0.0316	0.0609	0.102	0.322	3.71
Ce-135	9.83×10^{-13}	5.08	0.951	3.72	9.97	19.3	45.7	76.8
Ce-137	1.25×10^{-13}	0.645	0.923	0.0366	0.0775	0.361	13.3	31.6
Ce-137m	1.14×10^{-13}	0.59	0.930	0.0697	0.615	2.6	23.2	49.6
Ce-139	2.46×10^{-13}	1.27	0.943	0.141	0.532	1.05	2.3	3.53
Ce-141	8.78×10^{-14}	0.453	0.953	0.249	0.577	0.981	1.96	2.93
Ce-143	3.58×10^{-13}	1.85	0.944	1.78	5.16	12.9	36.4	61.6
Ce-144	2.61×10^{-14}	0.135	0.945	0.123	0.372	0.709	1.53	2.36
Ce-145	9.57×10^{-13}	4.94	0.946	6.22	14.3	25.2	54.5	86.9
Cf-244	2.66×10^{-14}	0.137	0.921	0.00779	0.0155	0.0259	0.0527	0.081
Cf-246	1.83×10^{-14}	0.0947	0.921	0.0078	0.0156	0.026	0.0536	0.094
Cf-247	5.74×10^{-13}	2.96	0.938	0.00948	0.0224	0.16	1.8	11
Cf-248	2.20×10^{-14}	0.114	0.921	0.00781	0.0156	0.026	0.0539	0.101
Cf-249	4.15×10^{-13}	2.14	0.959	2.02	4.61	7.97	16.4	25.1
Cf-250	2.50×10^{-14}	0.129	0.929	0.0205	4.94	20.8	67.4	116
Cf-251	2.36×10^{-13}	1.22	0.951	0.0425	0.366	0.965	3.44	6.99
Cf-252	4.48×10^{-13}	2.31	0.960	11.5	25.5	44.7	94.9	146
Cf-253	$1.01 \times 10^{-13} \\ 1.59 \times 10^{-11}$	0.522	0.921	0.00761	0.0154	0.0261	0.0582	0.147
Cf-254		82.3	0.963	12.3	26.4	45.7	96	147

 Table 1. (Continued)

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)					
Nuclide	$\overline{\text{C m}^2 / \text{kg MBq s}}$	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
C1-34	1.14×10^{-12}	5.87	0.876	4.95	9.46	15.1	28.9	42.5	
Cl-34m	1.94×10^{-12}	10	0.965	12.3	27.9	49.5	103	155	
C1-36	1.58×10^{-16}	0.000816	0.876	4.95	9.46	15.1	28.9	42.5	
C1-38	1.28×10^{-12}	6.6	0.965	20.4	37.1	58.2	109	158	
C1-39	1.43×10^{-12}	7.37	0.965	14.8	29.1	46.9	89.3	131	
Cl-40	3.42×10^{-12}	17.7	0.964	19.6	36.4	57.7	110	163	
Cm-238	1.69×10^{-13}	0.87	0.951	0.0252	0.179	0.452	1.15	1.78	
Cm-239	3.74×10^{-13}	1.93	0.956	0.191	0.585	1.18	2.88	5.32	
Cm-240	3.48×10^{-14}	0.179	0.921	0.00732	0.0146	0.0242	0.0489	0.0776	
Cm-241	7.61×10^{-13}	3.93	0.953	1.18	4.9	10.1	22.7	35.9	
Cm-242	3.12×10^{-14}	0.161	0.921	0.00732	0.0146	0.0242	0.0488	0.077	
Cm-243	2.64×10^{-13}	1.36	0.951	0.042	0.527	1.69	5.37	9.3	
Cm-244	2.67×10^{-14}	0.138	0.921	0.00732	0.0146	0.0241	0.0487	0.076	
Cm-245	2.39×10^{-13}	1.23	0.950	0.0219	0.182	0.507	1.55	2.79	
Cm-246	2.28×10^{-14}	0.118	0.922	0.00833	0.0176	0.0376	30.9	73.6	
Cm-247	3.50×10^{-13}	1.81	0.964	2.95	5.85	9.58	18.8	27.9	
Cm-248	$1.26 \times 10^{-12} \\ 2.26 \times 10^{-14}$	6.51	0.962	12	26	45.3	95.6	146	
Cm-249	2.26×10^{-11}	0.117	0.961	5.14	10.9	18.3	36.4	54.3	
Cm-250	1.26×10^{-11}	65	0.963	12.3	26.5	45.8	96.1	147	
Cm-251	1.54×10^{-13}	0.797	0.956	3.01	8.16	15.2	36.2	63.3	
Co-54m	$4.07 \times 10^{-12} \\ 2.12 \times 10^{-12}$	21	0.965	9.46	20.9	37.2	77.8	117	
Co-55	3.46×10^{-12}	11	0.965	8.06	16.8	29.9	66.4	105	
Co-56	1.09×10^{-13}	17.9	0.965	14.5	28.2	46.7	95.5	146	
Co-57	1.09×10^{-12} 1.05×10^{-12}	0.563	0.961	0.298	0.533	0.85	2.39	24	
Co-58	1.03×10 1.23×10^{-16}	5.44 0.000636	0.965	8.85	17	27.5 0.0473	53.7	80.3	
Co-58m	1.23×10^{-12} 2.50×10^{-12}		0.876	0.0161	0.0299		0.09	0.133	
Co-60	4.59×10^{-15}	12.9	0.965 0.942	15.6	28.8	45.3	84.7	123	
Co-60m	1.02×10^{-13}	0.0237		8.27	23.2	40.7	82.1	122	
Co-61	1.02×10^{-12} 1.54×10^{-12}	0.525 7.94	0.946	0.69	8.35	21	50.2	78	
Co-62	2.63×10^{-12}	13.6	0.965	16.3	30.2	48	93.2	140	
Co-62m	4.50×10^{-13}		0.965	15.9	29.4	46.7	89.9	135	
Cr-48 Cr-49	1.15×10^{-12}	2.32 5.95	0.963 0.962	1.26 4.39	3.05 8.92	5.47 14.6	12.6	23.6	
Cr-49 Cr-51	3.44×10^{-14}	0.178	0.962	1.92	3.74	6.07	28.6 11.8	43.1 17.5	
Cr-55	5.38×10^{-16}	0.178	0.876	18.3	33.4	52.5	97.5	17.3	
Cr-56	1.97×10^{-13}	1.02	0.943	0.0331	0.17	0.576	1.58	2.58	
Cs-121	1.37×10^{-12} 1.31×10^{-12}	6.76	0.962	4.78	9.75	16.6	40.3	77.6	
Cs-121 Cs-121m	1.31×10^{-12} 1.33×10^{-12}	6.86	0.961	4.78	9.73	16.6	42	78.4	
Cs-121111 Cs-123	1.25×10^{-12}	6.47	0.957	4.85	10.2	17.7	43.8	79.9	
Cs-123	1.23×10^{-12} 1.28×10^{-12}	6.59	0.964	5.06	10.2	17.7	47.6	95.1	
Cs-124 Cs-125	8.92×10^{-13}	4.61	0.953	4.79	10.1	18.2	52	99.8	
Cs-125	1.29×10^{-12}	6.64	0.963	4.87	9.72	16.7	43.9	88	
Cs-120 Cs-127	5.84×10^{-13}	3.01	0.945	2.24	5.93	11.3	33.4	70.7	
Cs-127	1.02×10^{-12}	5.24	0.960	4.7	9.34	15.6	35.7	74.9	
Cs-128 Cs-129	4.61×10^{-13}	2.38	0.937	0.915	3.69	7.62	19	35.3	
Cs-129 Cs-130m	1.87×10^{-13}	0.963	0.932	0.0369	0.0905	0.391	5.13	20.5	
Cs-130III	6.15×10^{-13}	3.18	0.952	4.3	9.06	15.3	34.9	74.7	
Cs-131	1.31×10^{-13}	0.679	0.921	0.0262	0.0481	0.0765	0.15	0.226	
Cs-131	8.90×10^{-13}	4.6	0.947	5.9	12.6	21.1	42.5	66.6	
Cs-134	1.70×10^{-12}	8.76	0.965	8.04	15.4	25.1	50.9	79.5	
Cs-134m	6.55×10^{-14}	0.338	0.933	0.0392	0.0941	0.345	1.11	1.88	
Cs-135m	1.73×10^{-12}	8.91	0.965	9.82	18.5	29.2	55	80.2	
Cs-135III	2.25×10^{-12}	11.6	0.963	10.1	20.5	33.8	66.7	99.9	
Cs-137†	6.64×10^{-13}	3.43	0.962	7.19	13.7	21.8	41.5	60.7	
Cs-1377 Cs-138m	4.72×10^{-13}	2.44	0.946	7.32	20.6	39	82.8	125	
Cs-138	2.27×10^{-12}	11.7	0.965	14.9	29.5	48.3	95.2	142	
Cs-139	2.79×10^{-13}	1.44	0.965	17.	32.2	51.8	101	150	
Cs-140	1.64×10^{-12}	8.45	0.965	14.6	29.7	50.1	101	153	
Cu-57	1.26×10^{-12}	6.48	0.965	5.4	10.5	17.6	43.1	82.5	
Cu-57 Cu-59	1.20×10 1.57×10^{-12}	8.1	0.965	6.08	12.3	22.3	58.2	98.4	
Cu-59	3.83×10^{-12}	19.8	0.965	12.1	25.8	44.6	92.2	140	
Cu-61	9.06×10^{-13}	4.68	0.965	5.2	10.3	44.6 17.4	40.7	74.7	
	9.06×10^{-12} 1.12×10^{-12}	4.68 5.78	0.965	5.2 4.98	9.52	17.4	40.7 29.7	46.3	
Cu-62	1.12×10 2.04×10^{-13}	5.78 1.05	0.965 0.965	4.98 5.11	9.52 9.81	15.3 16	29.7 34.5	46.3 68.3	
Cu-64	2.04×10^{-13} 1.02×10^{-13}								
Cu-66	1.02×10^{-12}	0.525	0.965	12.9 0.544	24.1 1.06	37.9 1.76	71 4.16	103 10.1	
Cn 67	1 11 \(\tau \) 10 \(\tau \)								
Cu-67 Cu-69	$1.11 \times 10^{-13} \\ 5.53 \times 10^{-13}$	0.574 2.86	0.962 0.965	11.4	22	35.8	70.8	10.1	

 Table 1. (Continued)

	Exposure rat	e constant		Lead attenuation thicknesses (mm Pb)					
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
Dy-149	1.67×10^{-12}	8.63	0.951	11.1	23.6	40.6	85.4	131	
Dy-150	3.27×10^{-13}	1.69	0.949	2.48	5.38	9.06	18.1	27	
Dy-151	1.45×10^{-12}	7.5	0.953	8.84	20	35.7	77.4	120	
Dy-152	3.32×10^{-13}	1.71	0.949	0.792	1.83	3.16	6.46	9.73	
Dy-153	9.68×10^{-13}	5	0.945	5.36	15.6	31.3	72.4	114	
Dy-155	7.25×10^{-13}	3.74	0.949	5	15.8	31	69.9	110	
Dy-157	4.09×10^{-13}	2.11	0.948	1.41	3.31	5.78	12.2	20.8	
Dy-159	8.58×10^{-14}	0.443	0.929	0.066	0.128	0.213	0.439	0.69	
Dy-165m	2.23×10^{-14}	0.115	0.941	0.672	4.21	9.78	23.7	37.4	
Dy-165	3.06×10^{-14}	0.158	0.944	2.25	7.65	16.3	40.4	68.1	
Dy-166	6.09×10^{-14}	0.315	0.936	0.105	0.255	0.823	8.9	18.3	
Dy-167	5.86×10^{-13}	3.03	0.959	3.46	8.6	16.2	37.7	65.3	
Dy-168	4.40×10^{-13}	2.27	0.955	3.02	7.43	13.4	29.1	46	
Er-154	1.77×10^{-13}	0.914	0.930	0.0479	0.199	4.16	18.6	32.3	
Er-156	1.25×10^{-13}	0.647	0.930	0.0653	0.156	0.452	6.69	14.7	
Er-159	1.03×10^{-12}	5.31	0.952	7.57	16.8	31	74.1	120	
Er-161	1.07×10^{-12}	5.52	0.950	9.12	19.1	31.9	65.7	102	
	6.52×10^{-14}			0.0795			3.78	38.2	
Er-163	6.32×10 6.19×10^{-14}	0.336	0.931		0.157	0.266			
Er-165	1.02×10^{-13}	0.319	0.931	0.0776	0.151	0.25	0.508	0.78	
Er-167m	1.02×10^{-13}	0.526	0.955	0.651	1.33	2.2	4.39	6.57	
Er-171	4.03×10^{-13}	2.08	0.956	1.42	3.28	5.99	21.6	48	
Er-172	5.80×10^{-13}	3	0.952	4.14	8.95	15.5	32.9	50.3	
Er-173	8.75×10^{-13}	4.52	0.957	5.25	15.2	27	55.2	82.5	
Es-249	7.26×10^{-13}	3.75	0.951	0.474	4.01	11.6	40.3	71.1	
Es-250	2.54×10^{-12}	13.1	0.944	0.259	5.16	16.4	43.3	69	
Es-250m	8.56×10^{-13}	4.42	0.949	3.5	14.5	29.2	65.3	102	
Es-251	4.86×10^{-13}	2.51	0.941	0.0101	0.0253	0.209	0.998	1.89	
Es-253	1.33×10^{-14}	0.0686	0.922	0.0073	0.0148	0.0258	1.61	10.4	
Es-254	4.42×10^{-13}	2.28	0.921	0.00709	0.0143	0.0242	0.0608	2.87	
Es-254m	6.68×10^{-13}	3.45	0.951	4.74	11.6	20	40.7	62.1	
Es-256	6.45×10^{-14}	0.333	0.921	0.00813	0.0164	0.0278	0.0598	0.10	
Eu-142	1.30×10^{-12}	6.71	0.964	5.85	11.6	20.4	58.6	107	
Eu-142m	3.70×10^{-12}	19.1	0.964	7.95	16	27.3	59	93.3	
Eu-143	1.20×10^{-12}	6.21	0.961	6.59	13.7	26.6	71.7	119	
Eu-144	1.18×10^{-12}	6.11	0.963	5.84	11.6	21.1	63	110	
Eu-145	1.33×10^{-12}	6.89	0.950	11.4	23.3	39.4	83.9	130	
Eu-146	2.54×10^{-12}	13.1	0.957	9.31	18.8	32.6	74.3	120	
Eu-147	5.50×10^{-13}	2.84	0.944	4.85	14.1	26.5	58.6	92	
Eu-148	2.44×10^{-12}	12.6	0.958	7.14	14.6	25.9	62.1	104	
Eu-149	1.21×10^{-13}	0.626	0.930	0.0844	0.546	3.08	12.7	26.2	
Eu-150	1.73×10^{-12}	8.92	0.957	4.68	10.6	20.7	53.9	91.7	
	5.73×10^{-14}	0.296		3.41	8.44		58.4	101	
Eu-150m	1.25×10^{-12}	6.44	0.947	9.52	21.5	19.3 36.7	75.1	114	
Eu-152	3.26×10^{-13}		0.952						
Eu-152m	8.52×10^{-14}	1.68	0.949	9.31	19.4	32	63.4	95.7	
Eu-152n	8.52×10^{-12} 1.30×10^{-12}	0.44	0.948	0.133	0.294	0.537	1.2	1.2	
Eu-154	1.30 × 10 1.02 × 10 ⁻¹³	6.69	0.959	11.2	22.5	37.1	74.3	112	
Eu-154m	1.02×10^{-13}	0.524	0.940	0.0809	0.214	0.439	1.08	1.61	
Eu-155	6.80×10^{-14}	0.351	0.947	0.162	0.396	0.764	1.75	2.87	
Eu-156	1.20×10^{-12}	6.21	0.961	14.6	28.4	46.5	93.1	140	
Eu-157	3.49×10^{-13}	1.8	0.944	2.53	6.34	12.1	30.3	52.5	
Eu-158	1.33×10^{-12}	6.87	0.959	12.4	23.9	38.9	78.5	121	
Eu-159	3.69×10^{-13}	1.9	0.940	3.77	12.5	24.5	57.9	95	
F-17	1.14×10^{-12}	5.86	0.965	4.96	9.46	15.1	29	42.5	
F-18	1.10×10^{-12}	5.68	0.876	4.95	9.46	15.1	28.9	42.5	
Fe-52	7.97×10^{-13}	4.12	0.965	3.5	8.1	13.9	28.8	48.9	
Fe-53	1.30×10^{-12}	6.72	0.965	4.67	9.09	15	32.6	72.1	
Fe-53m	3.09×10^{-12}	16	0.965	13	25	40.9	82.4	125	
Fe-59	1.20×10^{-12}	6.2	0.965	14.7	27.3	43.1	80.9	118	
Fe-61	1.39×10^{-12}	7.18	0.965	13.7	26.7	43.1	84.4	127	
Fe-62	5.63×10^{-13}	2.91	0.876	4.88	9.33	14.9	28.6	41.9	
Fm-251	3.97×10^{-13}	2.05	0.946	0.0213	0.388	4.78	32.7	63.3	
Fm-252	3.63×10^{-14}	0.187	0.921	0.00744	0.0149	0.0251	0.0535	0.10	
Fm-253	4.37×10^{-13}	2.25	0.935	0.00744	0.0216	0.104	1.44	5.43	
Fm-254	4.22×10^{-14}	0.218	0.933	0.00947	0.0210	4.87	47.6	95	
Fm-255	3.85×10^{-13}	1.99	0.924	0.00998	0.0243	0.0243	0.0551	93 0.45	
	1.18×10^{-11}	60.9	0.921	12.2	26.2	45.5	95.6	146	
Fm-256									

 Table 1. (Continued)

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)				
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Fm-257	4.87×10^{-13}	2.51	0.943	0.0141	0.119	1.06	32.8	81.9
Fr-212	1.17×10^{-12}	6.06	0.961	10.4	23.3	39.4	78.4	116
Fr-219	3.83×10^{-15}	0.0198	0.963	2.67	5.7	10.1	22.7	36.2
r-220	1.39×10^{-14}	0.0719	0.951	0.1	0.404	0.889	3.84	11.2
Fr-221	3.06×10^{-14}	0.158	0.962	0.769	1.52	2.57	6.14	14.1
r-222	2.92×10^{-13}	1.51	0.956	0.356	1.54	7.97	45.8	82.7
Fr-223	1.53×10^{-13}	0.788	0.937	0.0172	0.158	1.13	20.2	45.4
Fr-224	6.12×10^{-13}	3.16	0.960	7.55	20.4	37.1	79.5	122
Fr-227	5.55×10^{-13}	2.86	0.956	2.78	8.37	16.9	46.1	84.7
3a-64	3.23×10^{-12}	16.7	0.965	10.9	23.8	43	94.6	147
Ga-65	1.26×10^{-12}	6.53	0.963	4.95	10.1	17.1	39.9	75.6
Ga-66	2.24×10^{-12}	11.6	0.965	12.8	27.7	48.7	103	156
Ga-67	1.55×10^{-13}	0.803	0.961	0.861	2.23	4.8	13.9	34
Ga-68	1.05×10^{-12}	5.43	0.965	5.12	9.84	16	33.8	61.7
Ga-70	7.52×10^{-15}	0.0388	0.965	11.9	23.1	37.1	70.2	102
Ga-72	2.60×10^{-12}	13.4	0.965	14	27.4	46	96.2	147
Ga-73	3.75×10^{-13}	1.94	0.962	2.14	4.54	9.6	35.5	64
Ga-74	2.93×10^{-12}	15.1	0.965	14.3	29.4	50.1	102	153
Gd-142	1.13×10^{-12}	5.83	0.958	6.14	13.3	25.8	68.3	113
Gd-143m	2.27×10^{-12}	11.7	0.958	6.54	15.1	29.2	71.6	116
Gd-144	9.43×10^{-13}	4.87	0.955	7.13	15.9	33	85.1	137
Gd-145m	7.58×10^{-13}	3.91	0.960	7.34	14.4	23.4	45.2	66.5
Gd-145	2.27×10^{-12}	11.7	0.956	14.8	30.5	51.1	101	151
Gd-146	3.36×10^{-13}	1.73	0.941	0.128	0.328	0.692	1.79	6.12
Gd-147	1.53×10^{-12}	7.92	0.954	5.89	14.8	27.5	61	96.9
Gd-149	6.16×10^{-13}	3.18	0.948	2.23	6.84	16	41.3	67.1
Gd-151	1.24×10^{-13}	0.639	0.932	0.0839	0.257	1.09	4.54	9.27
Gd-153	1.64×10^{-13}	0.847	0.936	0.0783	0.172	0.349	1.01	1.58
Gd-159	6.62×10^{-14}	0.342	0.942	1.38	3.73	6.79	14.6	23.5
Gd-162	4.65×10^{-13}	2.4	0.963	3.37	6.58	10.7	20.9	31
Ge-66	7.50×10^{-13}	3.87	0.958	3.62	8.2	15.3	42.5	82
Ge-67	1.52×10^{-12}	7.84	0.965	5.37	11.4	21.1	59.5	106
Ge-69	9.98×10^{-13}	5.15	0.965	9.4	19.4	33.4	70.1	108
Ge-75	3.71×10^{-14}	0.192	0.965	1.27	2.49	4.29	12.8	28
Ge-77	1.13×10^{-12}	5.82	0.965	4.92	13.2	26.9	66.5	109
Ge-78	2.96×10^{-13}	1.53	0.965	1.37	2.64	4.27	8.35	12.4
Hf-167	6.84×10^{-13}	3.53	0.957	3.2	7.02	12.4	26.2	39.8
Hf-169	7.19×10^{-13}	3.71	0.954	3.99	8.22	13.6	26.8	39.8
Hf-170	4.83×10^{-13}	2.49	0.950	2.58	7.91	15.1	32.9	50.9
Hf-172	1.83×10^{-13}	0.943	0.938	0.0552	0.178	0.368	0.977	1.75
Hf-173	4.15×10^{-13}	2.14	0.952	0.639	2.35	6.03	32.9	64.7
Hf-175	3.94×10^{-13}	2.04	0.950	1.62	3.73	6.43	13.2	20.1
Hf-177m	2.44×10^{-12}	12.6	0.959	1.5	3.5	7.12	21.7	39.4
Hf-178m	2.43×10^{-12}	12.5	0.961	2.78	6.57	12.1	26.7	41.7
Hf-179m	9.92×10^{-13}	5.12	0.957	1.79	4.52	8.53	19	29.7
Hf-180m	1.07×10^{-12}	5.54	0.959	2.08	4.81	8.84	19.7	31.1
Hf-181	5.78×10^{-13}	2.98	0.960	3.22	7.13	12.2	24.7	37
Hf-182	2.53×10^{-13}	1.3	0.961	1.13	2.29	3.8	7.55	11.3
Hf-182m	9.85×10^{-13}	5.08	0.956	3.59	9.28	18.9	46.5	74.7
Hf-183	8.36×10^{-13}	4.32	0.957	7.31	15.2	25.9	54.1	86.9
Hf-184	2.50×10^{-13}	1.29	0.954	0.817	2.44	5.13	11.8	18.3
Hg-190	1.91×10^{-13}	0.985	0.954	0.323	0.644	1.16	9.36	27.9
Hg-191m	1.54×10^{-12}	7.97	0.960	5.96	15.4	30.6	72.9	116
Hg-192	2.79×10^{-13}	1.44	0.954	0.722	1.84	3.52	8.05	13.9
Hg-193	8.43×10^{-13}	4.35	0.956	8.92	21.1	37.4	80.3	125
Ig-193m	1.06×10^{-12}	5.46	0.958	7.99	18.8	34.5	76	118
Hg-195	2.04×10^{-13}	1.05	0.950	4.25	13	24.8	55.4	87.6
Hg-195m	2.10×10^{-13}	1.08	0.955	1.66	4.69	11.9	37.4	71.4
Hg-197	6.76×10^{-14}	0.349	0.947	0.216	0.431	0.727	1.59	2.88
Hg-197m	8.94×10^{-14}	0.461	0.955	0.359	0.746	1.6	5.57	9.65
Hg-199m	1.79×10^{-13}	0.926	0.956	0.602	1.5	4.32	12.2	20
Hg-203	2.52×10^{-13}	1.3	0.963	1.32	2.6	4.25	8.35	12.4
Hg-205	5.04×10^{-15}	0.026	0.961	0.719	1.37	2.25	4.81	11.1
Hg-206	1.30×10^{-13}	0.672	0.961	1.96	4.11	7.72	24.5	43.7
Hg-207	2.58×10^{-12}	13.3	0.964	14	28.6	47.3	93.9	140
Ho-150	2.07×10^{-12}	10.7	0.964	6.8	13.4	22.5	47	72.5
Ho-153	1.13×10^{-12}	5.84	0.957	4.61	10.7	20.5	52.9	89.3
Ho-153m	1.18×10^{-12}	6.08	0.957	4.22	9.43	17	41.6	73.8

 Table 1. (Continued)

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)					
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
Ho-154m	2.68×10^{-12}	13.8	0.962	4.68	10	18.9	49.8	85.3	
Ho-154	2.02×10^{-12}	10.4	0.962	5.78	12.9	25.2	64.8	108	
Io-155	6.74×10^{-13}	3.48	0.949	4.22	11.1	24	68.5	116	
To-156	2.16×10^{-12}	11.2	0.958	7.79	18.8	35.7	81.8	129	
Io-157	6.69×10^{-13}	3.45	0.946	2.6	8.13	19.3	53.1	89.8	
Io-157 Io-159	4.49×10^{-13}	2.32	0.945	0.604	3.04	11.4	40.6	69.9	
	1.84×10^{-12}	9.52							
Ho-160	1.64×10 1.62×10^{-13}		0.954	8.79	17.7	29.3	58.5	88.3	
Io-161	1.62×10^{-13}	0.837	0.929	0.0335	0.0841	0.187	0.675	6.71	
Io-162	2.00×10^{-13}	1.03	0.936	3.18	12.3	28.1	69.7	110	
Io-162m	6.07×10^{-13}	3.14	0.946	7.25	19.9	35.2	72.3	109	
Io-164	4.88×10^{-14}	0.252	0.931	0.0764	0.151	0.257	0.631	1.25	
Io-164m	7.87×10^{-14}	0.406	0.930	0.0701	0.141	0.24	0.514	0.82	
Io-166	3.10×10^{-14}	0.16	0.942	5.68	20.6	39.3	83.4	126	
Io-166m	1.75×10^{-12}	9.05	0.961	6.42	14.2	24.3	49.8	76.6	
Io-167	4.02×10^{-13}	2.08	0.959	1.99	4.13	7.03	15.1	26.2	
Io-168	9.38×10^{-13}	4.84	0.961	9.16	17.8	29.1	59.1	95.2	
Io-168m	1.03×10^{-14}	0.0531	0.931	0.0777	0.152	0.25	0.51	0.79	
Io-108III Io-170	1.80×10^{-12}	9.28	0.959	9.45	19.8	32.8	64.5	96.3	
	1.80×10 4.09×10^{-12}								
-118m	4.09×10^{-12}	21.1	0.964	7.31	14.8	25.7	59.2	96.5	
-118	2.19×10^{-12}	11.3	0.964	6.6	13.2	23.7	61.6	106	
-119	1.08×10^{-12}	5.56	0.958	3.1	7.76	14.6	37.3	74	
-120	2.65×10^{-12}	13.7	0.962	9.31	20.9	40.3	92.3	144	
-120m	3.75×10^{-12}	19.4	0.963	7.74	16	29.6	73.8	121	
-121	5.69×10^{-13}	2.94	0.948	1	3.73	10.5	32.3	64.8	
-122	1.09×10^{-12}	5.65	0.962	5.01	9.86	16.3	36.2	76.2	
-123	3.46×10^{-13}	1.78	0.942	0.0667	0.442	1.12	11.1	27.1	
124	1.28×10^{-12}	6.59	0.953	7.2	15.9	30.5	76.5	124	
125	3.38×10^{-13}	1.75	0.921	0.0211	0.039	0.0623	0.124	0.19	
	5.57×10^{-13}								
-126	5.57×10^{-14}	2.88	0.950	3.98	9.57	17.5	39	62.7	
-128	8.53×10^{-14}	0.44	0.953	3.24	7.07	12.2	28.2	53.9	
-129	1.34×10^{-13}	0.692	0.922	0.0269	0.0499	0.0805	0.166	0.27	
-130m	1.48×10^{-13}	0.766	0.943	3.87	9.47	17.5	49.4	95.3	
-130	2.34×10^{-12}	12.1	0.965	7.01	13.7	22.8	47.8	77.4	
-131	4.26×10^{-13}	2.2	0.963	2.74	5.59	9.93	25.9	45.3	
-132	2.42×10^{-12}	12.5	0.965	8.93	17.4	28.9	62.3	102	
-132m	4.42×10^{-13}	2.28	0.949	4.94	11.9	20.6	42.3	64	
-133	6.71×10^{-13}	3.47	0.965	6.05	11.9	20.3	48.5	84.1	
-134m	4.48×10^{-13}	2.31	0.943	0.595	2.16	4.99	30.6	58	
	2.73×10^{-12}								
-134	2.73×10	14.1	0.965	10.6	20.6	33.8	69.5	109	
-135	1.56×10^{-12}	8.04	0.965	14.9	28.6	46.1	89.4	133	
n-103	2.81×10^{-12}	14.5	0.964	8.32	18.4	35	83.3	134	
n-105	2.09×10^{-12}	10.8	0.961	6.82	15.3	29.7	75.3	124	
n-106	3.88×10^{-12}	20	0.964	7.92	16	27.3	59	93.8	
n-106m	2.84×10^{-12}	14.7	0.964	8.84	19.1	37.1	89	140	
n-107	1.68×10^{-12}	8.67	0.957	7.46	18.9	37.5	86.8	136	
1-108	4.25×10^{-12}	22	0.961	9.44	19.8	34.1	73.1	115	
n-108m	2.69×10^{-12}	13.9	0.960	10.4	23.8	44.3	98.1	151	
1-100111	8.95×10^{-13}	4.62	0.949	2.6	10.7	24.8	64.8	107	
1-109 1-109m	6.83×10^{-13}	3.53	0.949	6.99	13.4	21.3	40.6	59.4	
	3.55×10^{-12}								
n-110		18.3	0.958	8.58	17.3	28.7	58.4	90.4	
n-110m	1.76×10^{-12}	9.08	0.961	6.55	13.4	24.2	67.1	119	
n-111	6.70×10^{-13}	3.46	0.951	0.257	0.95	1.96	4.82	7.77	
n-111m	5.49×10^{-13}	2.83	0.961	4.99	9.84	15.9	30.8	45.3	
n-112	3.74×10^{-13}	1.93	0.950	3.46	8.34	14.6	31.7	56.4	
n-112m	1.97×10^{-13}	1.02	0.929	0.018	0.0371	0.114	1.29	2.4	
n-113m	3.59×10^{-13}	1.85	0.953	1.98	4.8	8.36	17.1	25.6	
n-114	3.40×10^{-15}	0.0175	0.937	5.86	18.3	35.2	76.1	115	
n-114m	1.89×10^{-13}	0.977	0.937	0.0473	1.6	8.81	29.7	50.5	
	2.74×10^{-13}								
n-115m	2.74×10^{-12}	1.42	0.946	0.74	2.69	5.29	11.6	18	
n-116m	2.45×10^{-12}	12.6	0.965	14.6	28.1	45.3	88	131	
n-117	7.76×10^{-13}	4.01	0.962	3.87	9.02	15.4	31	46.1	
n-117m	1.54×10^{-13}	0.793	0.948	0.334	1.57	3.82	9.61	16.2	
n-118m	2.85×10^{-12}	14.7	0.965	12.9	24.7	40	78.1	117	
n-118	7.82×10^{-14}	0.404	0.965	14.6	27.6	44	83.9	123	
	8.85×10^{-13}	4.57	0.959	8.31	16.3	26.1	50.1	73.7	
n-119			0.919	071	10	Z0.1	.)(). 1		

 Table 1. (Continued)

	Exposure rat	te constant			Lead attenu	ation thickr	nesses (mm I	Pb)
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
In-121	9.85×10^{-13}	5.09	0.965	10.8	20.5	32.7	62	90.4
In-121m	1.62×10^{-13}	0.839	0.930	0.0375	2.35	18.1	60.1	106
Ir-180	1.73×10^{-12}	8.92	0.962	5.32	11.7	20.9	47.4	76.8
Ir-182	1.50×10^{-12}	7.77	0.961	5.3	12.4	23.7	58.5	96.9
Ir-183	1.18×10^{-12}	6.11	0.955	8.93	21.9	40.2	87.7	135
Ir-184	$2.01 \times 10^{-12} \\ 8.29 \times 10^{-13}$	10.4 4.28	0.960	7.64	18.5	34.5	77.6	123
Ir-185 Ir-186	8.29×10^{-12} 1.69×10^{-12}	4.28 8.73	0.952 0.959	10.7 7	26 17.6	45.6 34.1	93.4 80.1	140 128
Ir-186 Ir-186m	1.09×10 1.26×10^{-12}	6.52	0.958	9.83	21	34.1	82.9	131
Ir-180III	3.52×10^{-13}	1.82	0.950	4.85	12.7	24	53.9	83.8
Ir-188	1.95×10^{-12}	10.1	0.958	14.9	30.7	51.2	102	151
Ir-189	8.02×10^{-14}	0.414	0.945	0.243	0.569	1.42	4.45	7.76
Ir-190	1.61×10^{-12}	8.3	0.960	4.26	9.43	16.7	38	65.3
Ir-190n	6.04×10^{-14}	0.312	0.943	0.166	0.345	0.609	1.68	3.67
Ir-191m	7.04×10^{-14}	0.364	0.950	0.227	0.438	0.715	1.44	2.19
Ir-192	8.91×10^{-13}	4.6	0.964	2.67	5.68	10.5	25.3	42.1
Ir-192m	2.45×10^{-17}	0.000127	0.876	0.117	0.228	0.374	0.739	1.11
Ir-192n	5.90×10^{-16}	0.00305	0.946	0.221	0.447	0.776	1.75	2.8
Ir-193m	3.03×10^{-16} 9.55×10^{-14}	0.00156	0.944	0.172	0.341	0.565	1.15	1.79
Ir-194 Ir-194m	9.55×10 2.57×10^{-12}	0.493 13.3	0.964 0.965	3.7 4.47	9.28 9.38	22.5 16.3	60.3 35.2	99.5 56.1
Ir-194III Ir-195	5.73×10^{-14}	0.296	0.963	0.211	0.43	0.775	2.33	4.55
Ir-195 Ir-195m	4.05×10^{-13}	2.09	0.958	2.69	6.45	12.6	31.7	52.4
Ir-196	2.49×10^{-13}	1.28	0.964	5.49	13	25.3	60	98.6
Ir-196m	2.71×10^{-12}	14	0.964	4.43	9.09	15.9	36.8	65.3
K-38	2.99×10^{-12}	15.5	0.965	12.1	27.7	49.6	103	153
K-40	1.51×10^{-13}	0.779	0.965	17.6	32.3	50.8	94.7	137
K-42	2.65×10^{-13}	1.37	0.965	18.2	33.3	52.3	97.4	141
K-43	1.06×10^{-12}	5.48	0.965	4.62	9.62	16.8	36.5	58.8
K-44	2.17×10^{-12}	11.2	0.965	17.2	32.4	52	102	152
K-45	1.68×10^{-12}	8.68	0.965	16.8	32.9	53.1	102	150
K-46	2.48×10^{-12}	12.8	0.964	18.7	34.5	54.7	105	157
Kr-74	$1.15 \times 10^{-12} \\ 1.39 \times 10^{-12}$	5.94	0.963	3.95	8.5	14.5	29.9	48.1
Kr-75 Kr-76	1.39×10 4.61×10^{-13}	7.15 2.38	0.964 0.960	4.72 2.15	9.9 4.79	17.3 9.34	45.4 27.8	87 54.6
Kr-70 Kr-77	1.12×10^{-12}	5.78	0.964	3.99	8.59	14.5	30	52.1
Kr-79	2.71×10^{-13}	1.4	0.965	3.9	8.8	16.2	40.3	72.4
Kr-81	8.71×10^{-16}	0.0045	0.876	1.35	2.58	4.18	8.15	12.1
Kr-81m	1.28×10^{-13}	0.658	0.876	0.675	1.22	1.93	3.68	5.43
Kr-83m	8.00×10^{-17}	0.000413	0.876	0.0271	0.0515	0.0833	0.163	0.244
Kr-85	2.48×10^{-15}	0.0128	0.876	5	9.54	15.3	29.2	42.8
Kr-85m	1.53×10^{-13}	0.79	0.964	0.626	1.27	2.81	8.17	13.5
Kr-87	7.38×10^{-13}	3.81	0.965	10.9	26.7	48.1	101	154
Kr-88	1.74×10^{-12}	8.97	0.964	18.1	34.8	56.1	108	159
Kr-89	1.79×10^{-12}	9.25	0.965	13.8	28.4	48.2	99.1	150
La-128	3.03×10^{-12}	15.7	0.964	6.55	14.5	27.5	66.7	109
La-129	$1.06 \times 10^{-12} \\ 2.39 \times 10^{-12}$	5.48 12.3	0.957 0.962	3.91 6.44	8.74 14.2	15.7 27.5	41.1	81.1
La-130 La-131	8.11×10^{-13}	4.19	0.962	2.95	7.35	14	70.1 40.3	117 83
La-131 La-132	2.08×10^{-12}	10.7	0.959	7.72	17.3	34.7	84.6	135
La-132 La-132m	7.77×10^{-13}	4.01	0.953	4.42	10.9	20.6	49.1	79.5
La-133	2.57×10^{-13}	1.33	0.933	1.32	5.88	13.1	34.9	64.6
La-134	8.25×10^{-13}	4.26	0.958	4.84	9.64	16	36.7	77.9
La-135	1.30×10^{-13}	0.672	0.923	0.0329	0.0685	0.19	15.6	36.7
La-136	5.09×10^{-13}	2.63	0.948	4.08	8.9	15.2	33.5	62.1
La-137	1.15×10^{-13}	0.593	0.922	0.0283	0.054	0.0881	0.177	0.272
La-138	1.27×10^{-12}	6.55	0.953	14.2	27.7	45.1	87.8	129
La-140	2.26×10^{-12}	11.7	0.965	13.7	28.1	46.8	93.2	138
La-141	2.51×10^{-14}	0.13	0.965	17	31.2	49.3	92.4	135
La-142	2.12×10^{-12}	10.9	0.964	16.5	32.6	53.8	107	158
La-143	2.53×10^{-13} 1.16×10^{-12}	1.31	0.965	14.2	28.2	47 32.5	95.4 78.3	144
Lu-165	1.16×10^{-12} 1.69×10^{-12}	5.98 8.74	0.953 0.952	6.43	16 26.3	32.5 45.5	78.3 93.2	124 140
Lu-167 Lu-169	1.69×10 1.34×10^{-12}	8.74 6.91	0.952 0.951	11.6 11.8	26.3	45.5 41.5	93.2 83.4	140 126
Lu-169 Lu-170	1.34×10 2.36×10^{-12}	12.2	0.951	16.8	32.3	52.2	83.4 102	152
Lu-170 Lu-171m	3.56×10^{-16}	0.00184	0.940	0.137	0.28	0.487	1.08	1.73
Lu-171111 Lu-171	7.80×10^{-13}	4.03	0.945	5.87	13.7	23.3	46.9	70.8

 Table 1. (Continued)

	Exposure rat				Lead attenu	ation thickn	nesses (mm P	b)
Nuclide		R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Lu-173	2.15×10^{-13}	1.11	0.941	0.262	1.09	3.2	16.4	34.8
Lu-174	1.30×10^{-13}	0.673	0.937	2.81	15.4	32.7	72.5	110
Lu-174m	7.66×10^{-14}	0.395	0.936	0.128	0.289	1.18	33	65.4
Lu-176	5.05×10^{-13}	2.61	0.960	1.16	2.54	4.58	9.97	15.4
Lu-176m	1.41×10^{-14}	0.073	0.946	0.145	0.294	0.527	1.16	1.16
Lu-177	$3.52 \times 10^{-14} 1.06 \times 10^{-12}$	0.181	0.957	0.542	1.19	2.11	4.7	8.46
Lu-177m	1.06×10 1.23×10^{-13}	5.47	0.957	1.15	2.88	5.93	14.7	23.9
Lu-178 Lu-178m	1.23×10 1.12×10^{-12}	0.635 5.8	0.955 0.959	14.5 1.82	28.6 4.24	46.1 7.79	87.8	128 27.1
Lu-178111 Lu-179	3.00×10^{-14}	0.155	0.939	0.907	1.82	3.5	17.3 27.7	57.1
Lu-179 Lu-180	1.54×10^{-12}	7.95	0.962	11	23.9	40.3	80.1	119
Lu-180 Lu-181	6.24×10^{-13}	3.22	0.957	5.09	11.8	20.7	43.8	67.5
Mg-27	9.48×10^{-13}	4.89	0.965	11	20.5	32.6	61.8	90.8
Mg-28	1.48×10^{-12}	7.64	0.951	11.3	24.2	40.7	81	120
Mn-50m	4.80×10^{-12}	24.8	0.965	10.5	21.5	36.9	77.4	119
Mn-51	1.11×10^{-12}	5.73	0.965	4.97	9.5	15.2	29.4	44.8
Mn-52	3.56×10^{-12}	18.4	0.965	11.9	23.4	38.8	79	119
Mn-52m	2.47×10^{-12}	12.8	0.965	9.6	21.3	38.9	82.6	125
Mn-54	8.97×10^{-13}	4.63	0.876	10.1	19	29.9	56.3	81.9
Mn-56	1.65×10^{-12}	8.54	0.965	14.1	27	44.7	92.7	141
Mn-57	9.87×10^{-14}	0.51	0.963	5.83	14.4	27.2	66	110
Mn-58m	2.40×10^{-12}	12.4	0.965	13	25.3	41.7	84.7	129
Mo-101	1.50×10^{-12}	7.74	0.964	11.4	24	41.2	86.1	131
Mo-102	2.07×10^{-14}	0.107	0.962	0.582	1.25	2.27	6.1	12.7
Mo-89	1.34×10^{-12}	6.92	0.965	5.65	11.2	19.4	52.5	97.9
Mo-90	1.40×10^{-12}	7.23	0.952	0.879	4.73	13.8	48.9	88.6
Mo-91m	1.48×10^{-12}	7.65	0.964	8.42	18	33.1	75.7	118
Mo-91	1.11×10^{-12}	5.72	0.965	4.88	9.49	15.4	32	65.1
Mo-93	3.99×10^{-13}	2.06	0.921	0.00673	0.0134	0.0221	0.0439	0.0622
Mo-93m	$2.46 \times 10^{-12} \\ 1.78 \times 10^{-13}$	12.7	0.962	11	23.9	41.2	85.2	128
Mo-99	1.78×10 1.13×10^{-12}	0.917	0.959	5.83	13.7	23.4	46.8	69.5
N-13 N-16	2.76×10^{-12}	5.86 14.2	0.876 0.949	4.95 21.7	9.46 39	15.1 61.5	28.9 117	42.5 171
Na-22	2.70×10^{-12} 2.29×10^{-12}	11.8	0.949	9.2	19.9	35.7	75.8	114
Na-22	3.53×10^{-12}	18.2	0.964	19.9	36.8	58.1	111	162
Nb-87	1.62×10^{-12}	8.39	0.960	2.47	6.92	12.7	26.6	40.2
Nb-88m	4.34×10^{-12}	22.4	0.965	8.65	18.5	33	72.3	114
Nb-88	4.77×10^{-12}	24.6	0.962	7.54	16.6	29.7	63.9	98.1
Nb-89	1.48×10^{-12}	7.65	0.962	7.01	15.7	32.8	84.7	137
Nb-89m	1.54×10^{-12}	7.93	0.963	4.71	9.42	15.5	32.2	55.9
Nb-90	4.25×10^{-12}	21.9	0.960	12.7	28.1	48.4	99.2	149
Nb-91	4.37×10^{-13}	2.26	0.921	0.00657	0.0131	0.0218	0.0482	9.59
Nb-91m	3.63×10^{-13}	1.87	0.923	0.00779	0.0165	0.0383	37.1	75.3
Nb-92	2.03×10^{-12}	10.5	0.955	5.91	14.4	25.6	54.6	83.4
Nb-92m	1.45×10^{-12}	7.48	0.948	6.03	16.7	29.4	60	90.6
Nb-93m	7.12×10^{-14}	0.368	0.921	0.00673	0.0134	0.0221	0.0439	0.0622
Nb-94m	2.74×10^{-13}	1.42	0.921	0.00696	0.014	0.0241	8.39	37.8
Nb-94	1.68×10^{-12}	8.69	0.965	9.36	17.6	28.1	54	79.8
Nb-95	8.31×10^{-13}	4.29	0.965	9.03	17	26.8	50.6	73.6
Nb-95m	3.32×10^{-13}	1.71	0.938	0.0101	0.0295	0.929	3.76	7.43
Nb-96	$2.63 \times 10^{-12} \\ 7.31 \times 10^{-13}$	13.6	0.965	9.31	18.5	30.9	63.5	97.4
Nb-97	2.92×10^{-12}	3.77	0.965	7.38	14	22.3	43.1	65.9
Nb-98m Nb-99	2.92×10^{-13} 3.89×10^{-13}	15.1	0.965	11	21.6 0.218	36.1	77.3	122
Nb-99 Nb-99m	3.89×10^{-13} 7.15×10^{-13}	2.01 3.69	0.952 0.960	0.0222 14.2	30.4	0.565 51.6	1.42 104	2.24 156
Nd-134	6.42×10^{-13}	3.32	0.960	2	50.4 6.45	13.8	38	68.3
Nd-134 Nd-135	1.44×10^{-12}	7.43	0.955	3.92	8.84	15.8	42.9	85.5
Nd-135	3.98×10^{-13}	2.05	0.938	1.02	6.28	14.8	40.9	73
Nd-137	1.32×10^{-12}	6.83	0.950	6.54	15	28.7	70.8	116
Nd-137	1.16×10^{-13}	0.597	0.926	0.0468	0.104	0.697	6.69	13.5
Nd-139	5.34×10^{-13}	2.76	0.947	4.73	10.6	19.8	52.2	90
Nd-139m	1.75×10^{-12}	9.06	0.951	8.79	18.5	31.4	66.7	107
Nd-140	9.77×10^{-14}	0.504	0.923	0.0374	0.0719	0.118	0.239	0.369
		0.765		0.0934	3.78	13.7	49.2	86.8
Nd-141	1.48×10^{-3}	0.703	0.927	0.02.34			49.4	00.0
Nd-141 Nd-141m	$ \begin{array}{r} 1.48 \times 10^{-13} \\ 7.60 \times 10^{-13} \\ 1.80 \times 10^{-13} \end{array} $	3.92	0.927 0.963	8.76	16.6	26.2	49.6	72.3

	Exposure rat	e constant			Lead attenu	ation thickr	nesses (mm I	Pb)
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Nd-149	4.11×10^{-13}	2.12	0.956	1.7	4.93	11.6	31.4	54.6
Nd-151	8.86×10^{-13}	4.57	0.959	7.92	18.9	33.4	71.1	110
Nd-152	2.13×10^{-13}	1.1	0.957	1.04	2.52	4.98	18.6	35.5
Ne-19	1.14×10^{-12}	5.86	0.965	4.95	9.46	15.1	28.9	42.5
Ne-24	5.99×10^{-13}	3.09	0.965	4.69	9.19	15.4	35.6	61.7
Ni-56	1.81×10^{-12}	9.35	0.965	7.46	16.3	28.3	62.1	101
Ni-57	1.92×10^{-12}	9.93	0.965	12.5	26.4	44.7	89.3	133
Ni-65	5.49×10^{-13}	2.83	0.965	15.7	29.7	47.3	90	132
Np-232	1.50×10^{-12}	7.75	0.957	4.63	13.5	25.3	54.2	83.8
Np-232 Np-233	1.94×10^{-13}	1	0.951	0.023	0.197	0.554	6.25	20.2
Np-233	1.94×10 1.24×10^{-12}	6.4			26.6	45.1	89.7	
1	1.24×10 1.04×10^{-13}		0.955	11.9				133
Np-235	1.04 × 10 5.72 × 10 ⁻¹³	0.538	0.922	0.007	0.0139	0.0233	0.051	0.44
Np-236	5.72×10^{-13}	2.95	0.944	0.0119	0.0389	0.356	1.42	3.06
Np-236m	1.22×10^{-13}	0.628	0.949	0.0188	0.177	0.703	18.4	38
Np-237	2.32×10^{-13}	1.2	0.932	0.0091	0.0206	0.0552	0.983	2.31
Np-238	7.12×10^{-13}	3.67	0.954	9.96	20.9	34.3	66.4	97.5
Np-239	3.32×10^{-13}	1.72	0.952	0.0674	0.552	1.77	6.01	10.9
Np-240	1.39×10^{-12}	7.19	0.954	5.14	13.7	25.4	55.7	86.2
Np-240m	4.30×10^{-13}	2.22	0.953	4.95	12.2	23	58.6	100
Np-241	7.92×10^{-14}	0.409	0.951	0.0318	0.307	1.06	17.6	42.3
Np-242	2.78×10^{-13}	1.44	0.960	12.6	25.4	42.7	88.2	134
Np-242m	1.26×10^{-12}	6.49	0.952	5.4	14.8	26.3	54.3	81.8
O-14	3.07×10^{-12}	15.9	0.965	12.4	28.3	50.5	104	156
0-15	1.14×10^{-12}	5.86	0.876	4.95	9.46	15.1	28.9	42.5
O-19	9.22×10^{-13}	4.76	0.965	11.9	26.5	44.2	86.3	127
Os-180	1.80×10^{-13}	0.929	0.942	0.321	3.31	10.8	31.6	52.3
Os-181	1.41×10^{-12}	7.29	0.956	9.03	20.6	36	77.5	122
Os-181	4.66×10^{-13}	2.4	0.954	2.46	6.78	12.5	26.5	40.1
	6.69×10^{-13}							
Os-183	1.04×10^{-12}	3.46	0.953	2.55	6.36	13.8	46.6	83
Os-183m		5.35	0.955	12.4	24.1	38.7	73.7	108
Os-185	7.55×10^{-13}	3.9	0.955	6.89	13.7	22.4	44.5	67.7
Os-190m	1.74×10^{-12}	8.97	0.964	4.11	8.87	15.4	32.3	49.4
Os-191	7.82×10^{-14}	0.404	0.950	0.227	0.438	0.715	1.44	2.19
Os-191m	6.03×10^{-15}	0.0311	0.943	0.162	0.32	0.531	1.09	1.69
Os-193	7.05×10^{-14}	0.364	0.955	2	5.45	10.5	24.1	38.9
Os-194	5.24×10^{-15}	0.027	0.927	0.0582	0.112	0.184	0.382	0.70
Os-196	8.54×10^{-14}	0.441	0.956	1.91	5.17	10.4	26.1	43.2
P-30	1.14×10^{-12}	5.87	0.965	4.96	9.47	15.2	29.2	44
Pa-227	1.03×10^{-13}	0.533	0.940	0.00952	0.0237	0.174	0.836	1.45
Pa-228	1.73×10^{-12}	8.94	0.955	5.73	16	30.4	68.9	111
Pa-229	1.85×10^{-13}	0.953	0.948	0.0143	0.0662	0.321	1.03	1.34
Pa-230	9.04×10^{-13}	4.67	0.954	5	14.3	26.6	56.9	86.2
Pa-231	2.41×10^{-13}	1.24	0.931	0.00972	0.0247	0.761	6.21	11.8
Pa-231	1.15×10^{-12}	5.96	0.957	7.05	16.4	28.5	58.3	87.4
Pa-232	3.83×10^{-13}	1.98	0.953	0.304	1.86	4.31		
	3.83 × 10 1.92 × 10 ⁻¹²		*****				10.6	17.6
Pa-234	$1.83 \times 10^{-12} \\ 1.58 \times 10^{-14}$	9.44	0.956	6.33	16	28.8	62.5	100
Pa-234m		0.0816	0.958	9.33	19.9	33.3	67.1	103
Pa-236	1.01×10^{-12}	5.24	0.958	9.68	21.8	39.2	86.6	134
Pa-237	6.63×10^{-13}	3.42	0.965	8.53	16.8	27.6	54.9	82.3
Pb-194	1.10×10^{-12}	5.66	0.958	8.39	20.2	36.8	80.3	124
Pb-195m	1.77×10^{-12}	9.16	0.961	5.39	12.2	23	53.9	88.9
Pb-196	5.19×10^{-13}	2.68	0.957	2.37	6.61	13.8	36.4	63.7
Pb-197	1.53×10^{-12}	7.91	0.960	9.92	22.7	40.1	85.6	132
Pb-197m	1.25×10^{-12}	6.43	0.960	4.87	11.7	23.3	57.5	96.2
Pb-198	4.58×10^{-13}	2.36	0.957	1.87	4.95	11.5	35.9	61.8
Pb-199	1.05×10^{-12}	5.4	0.959	8.66	21.4	38.8	83.3	128
Pb-200	2.01×10^{-13}	1.04	0.954	0.49	1.21	3.33	14.7	28.8
b-201	7.98×10^{-13}	4.12	0.959	4.26	11.2	23.9	57.1	91.5
Pb-201m	4.00×10^{-13}	2.07	0.960	6.35	12.5	20.1	38.7	56.8
2b-202m	2.14×10^{-12}	11.1	0.964	7.85	16.3	27.8	56.9	85.8
2b-202111 Pb-203	3.24×10^{-13}	1.68	0.957	1.08	2.45	4.4	11.6	28.2
	3.24×10^{-12} 2.20×10^{-12}							
Pb-204m		11.4	0.965	8.89	18.3	30.3	59.1	86.9
Pb-210	1.79×10^{-14}	0.0923	0.926	0.00875	0.0211	0.073	0.288	0.50
Pb-211	6.97×10^{-14}	0.36	0.964	6.25	13.5	23.8	50.4	76.9
Pb-212	1.53×10^{-13}	0.792	0.958	0.756	1.64	2.88	6.37	11.1
Pb-214	2.78×10^{-13}	1.43	0.961	1.88	4.09	7.48	23.1	47.6
Pd-100	5.94×10^{-13}	3.07	0.935	0.0106	0.0251	0.164	1.08	2.04
Pd-101	8.49×10^{-13}	4.38	0.935	0.0336	3.71	12.6	44.1	81.8

 Table 1. (Continued)

	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)					
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
Pd-103	2.73×10^{-13}	1.41	0.921	0.00811	0.0161	0.0267	0.054	0.0865	
Pd-109m	2.03×10^{-13}	1.05	0.950	0.143	0.683	1.39	3.11	4.81	
Pd-109	1.26×10^{-13}	0.649	0.924	0.0112	0.0222	0.0378	0.362	9.3	
Pd-111	5.09×10^{-14}	0.263	0.959	8.13	18.2	33.1	74.5	116	
Pd-112	1.39×10^{-13}	0.718	0.876	0.00716	0.0142	0.0235	0.0466	0.0697	
Pd-114	2.95×10^{-14}	0.152	0.960	0.689	1.73	3.56	10	17.1	
Pd-96	1.74×10^{-12}	8.98	0.957	5.98	13.8	25.1	57.8	94.3	
Pd-97	2.49×10^{-12}	12.9	0.962	8.16	19.3	37.2	85.8	135	
Pd-98	7.55×10^{-13}	3.9	0.945	0.517	6.35	16.3	42.9	72.7	
Pd-99	1.49×10^{-12}	7.69	0.958	5.42	13.6	27.9	73.5	121	
Pm-136	2.98×10^{-12}	15.4	0.964	5.86	12.2	21.3	47.1	74.8	
Pm-137m	1.98×10^{-12}	10.2	0.958	4.57	10.5	19.9	52.3	89.7	
Pm-139	1.05×10^{-12}	5.4	0.960	5.11	10.3	18	50.9	97.3	
Pm-140m	3.28×10^{-12}	16.9	0.963	7.7	16.1	28	60.1	94.1	
Pm-140	1.16×10^{-12}	6.01	0.964	5.33	10.4	17.5	42.2	80.9	
Pm-141	8.18×10^{-13}	4.22	0.955	5.87	12.4	23.3	64.4	109	
Pm-142	9.55×10^{-13}	4.93	0.961	5.15	10.1	17	44.4	90.6	
Pm-143	4.03×10^{-13}	2.08	0.938	5.69	13.5	23	45.9	68	
Pm-144	1.78×10^{-12}	9.2	0.955	6.34	12.6	20.6	40.5	60.2	
Pm-145	9.23×10^{-14}	0.476	0.925	0.0418	0.0813	0.136	0.321	0.85	
Pm-146	8.64×10^{-13}	4.46	0.953	5.52	11.7	20.2	42.5	64.6	
Pm-148	5.83×10^{-13}	3.01	0.965	12.1	24.5	41.4	84.2	126	
Pm-148m	2.18×10^{-12}	11.3	0.964	6.68	13.3	22.3	47.3	75	
Pm-149	1.28×10^{-14}	0.0659	0.962	1.96	4.31	10.3	36.4	62.5	
Pm-150	1.49×10^{-12}	7.68	0.965	10.5	23.4	40.1	82.9	127	
Pm-151	3.68×10^{-13}	1.9	0.955	2.3	6.18	13.7	36.4	60	
Pm-152m	1.56×10^{-12}	8.07	0.960	8.38	21	37	77.6	119	
2m-152m	2.96×10^{-13}	1.53	0.957	10.3	21.6	36.7	78.1	123	
Pm-153	1.02×10^{-13}	0.527	0.946	0.176	0.589	1.93	18	39.3	
2m-154	1.02×10 1.71×10^{-12}	8.82	0.958	15.7	30.3	49.4	98	39.3 147	
Pm-154m	1.71×10 1.81×10^{-12}	9.34	0.958	11.3	24.9	42.7	87.1	131	
	1.69×10^{-12}	8.73	0.960	10.6	21.9	36.7	75.9	118	
Po-203 Po-204	1.09×10 1.26×10^{-12}	6.49			15.9	28.1	58.6	89	
	1.20×10 1.64×10^{-12}	8.49 8.49	0.957	6.35					
Po-205	1.64×10 1.30×10^{-12}		0.960	10.9	21.9	36.2	74.7	117	
Po-206		6.69	0.959	6.42	15.4	27.7	59.3	91	
Po-207	1.36×10^{-12}	7.01	0.960	9.86	20.1	33.3	66.9	102	
Po-209	6.44×10^{-15}	0.0332	0.960	5.83	15.8	27.8	56.4	83.9	
Po-211	8.81×10^{-15}	0.0455	0.965	8.61	16.7	27.5	55	82.5	
Po-212m	6.75×10^{-14}	0.349	0.964	17.4	35.1	57.8	113	166	
Po-214	8.95×10^{-17}	0.000462	0.876	9.67	18.2	28.6	53.9	78.4	
Po-215	1.95×10^{-16}	0.00101	0.876	3.7	7.1	11.4	22	32.4	
Pr-134	3.40×10^{-12}	17.5	0.963	6.12	13.3	24.8	61.7	106	
Pr-134m	2.41×10^{-12}	12.4	0.963	7.09	15.7	32.1	80.9	130	
Pr-135	1.02×10^{-12}	5.26	0.952	4.13	9.45	17.6	51.8	98.5	
Pr-136	2.27×10^{-12}	11.7	0.961	7.31	15.4	29.7	76.7	126	
Pr-137	4.57×10^{-13}	2.36	0.945	4.3		18.2	51.4	95.3	
Pr-138	9.22×10^{-13}	4.76	0.961	4.93	9.65	15.8	33.6	65.9	
Pr-138m	2.70×10^{-12}	14	0.958	8.24	17.8	30.4	62.5	95.6	
Pr-139	2.10×10^{-13}	1.08	0.931	1.28	6.37	14.2	47.5	91.8	
Pr-140	6.43×10^{-13}	3.32	0.954	4.47	9.07	15	31	58	
Pr-142	5.48×10^{-14}	0.283	0.965	18.6	33.8	53.2	98.9	143	
Pr-144	2.72×10^{-14}	0.14	0.965	14.2	28.5	48.5	99.7	150	
Pr-144m	4.00×10^{-14}	0.206	0.924	0.0405	0.0809	0.151	23.2	67.1	
Pr-145	1.93×10^{-14}	0.0994	0.953	9.14	18.3	30.3	61.2	92.6	
Pr-146	1.00×10^{-12}	5.18	0.965	11	24.4	42.9	90	137	
Pr-147	5.86×10^{-13}	3.02	0.943	4.51	12.8	26.3	65.6	107	
Pr-148	9.94×10^{-13}	5.13	0.964	9.44	22.4	39.8	85.3	132	
Pr-148m	1.01×10^{-12}	5.21	0.964	4.29	10.1	20.4	54.1	94.8	
Pt-184	7.61×10^{-13}	3.93	0.954	2.01	6.74	14.2	33.7	54.2	
Pt-186	7.40×10^{-13}	3.82	0.955	5.82	12.6	21	41.6	61.6	
Pt-187	6.49×10^{-13}	3.35	0.953	4.19	11.7	23.2	55.1	89.3	
Pt-188	2.09×10^{-13}	1.08	0.951	0.617	1.78	4.94	14.8	25.1	
Pt-189	5.11×10^{-13}	2.64	0.952	4.06	11.1	21.5	53.5	92.8	
Pt-191	3.11×10^{-13} 3.12×10^{-13}	1.61	0.950	1.56	5.2	10.6	25.2	40.3	
Pt-193m	1.04×10^{-14}	0.0535	0.945	0.188	0.373	0.62	1.27	1.99	
1 (1 / 2)111	7.24×10^{-14}	0.374	0.947	0.186	0.375	0.63	1.35	2.18	

 Table 1. (Continued)

	Exposure rat	te constant			Lead attenu	ation thickn	esses (mm P	b)
Nuclide	$\overline{\text{C m}^2 / \text{kg MBq s}}$	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Pt-197	2.23×10^{-14}	0.115	0.952	0.355	0.732	1.32	3.28	5.95
Pt-197m	8.36×10^{-14}	0.432	0.949	0.754	2.55	5.19	11.8	18.3
Pt-199	2.17×10^{-13}	1.12	0.963	4.43	9.65	16.9	38.1	63.5
Pt-200	5.85×10^{-14}	0.302	0.951	0.413	1.04	2.53	9.26	18.8
Pu-232	1.38×10^{-13}	0.712	0.951	0.0213	0.151	0.415	1.12	1.63
Pu-234	1.63×10^{-13}	0.84	0.950	0.0185	0.126	0.391	1.09	1.63
Pu-235	2.36×10^{-13}	1.22	0.948	0.0178	0.136	0.506	18.6	46
Pu-236	4.04×10^{-14}	0.209	0.921	0.00694	0.0138	0.0229	0.0465	0.0788
Pu-237	1.73×10^{-13}	0.891	0.945	0.0126	0.0419	0.278	0.95	1.61
Pu-238	3.71×10^{-14}	0.192	0.921	0.00693	0.0138	0.0228	0.0459	0.0683
Pu-239	1.53×10^{-14}	0.079	0.921	0.00694	0.0138	0.0229	0.0466	0.082
Pu-240	3.50×10^{-14}	0.181	0.921	0.00693	0.0138	0.0228	0.046	0.0683
Pu-242	3.00×10^{-14}	0.155	0.921	0.00693	0.0138	0.0228	0.046	0.0683
Pu-243	5.66×10^{-14}	0.292	0.946	0.0181	0.23	0.804	6.26	14.4
Pu-244	4.27×10^{-14}	0.22	0.935	0.0526	8.67	26.7	75.4	125
Pu-245	4.68×10^{-13}	2.42	0.960	4.05	10.7	21.4	49.9	78.9
Pu-246	2.64×10^{-13}	1.36	0.947	0.0637	0.42	1.17	3.51	5.99
Ra-219	1.84×10^{-13}	0.95	0.962	1.76	3.77	6.75	20.8	43.5
Ra-220	5.18×10^{-15}	0.0267	0.965	4.12	7.89	12.7	24.4	35.8
Ra-221	4.76×10^{-14}	0.246	0.956	0.211	0.584	1.14	6.38	17.8
Ra-222	9.86×10^{-15}	0.0509	0.965	1.94	3.8	6.18	12.1	17.9
Ra-223	1.49×10^{-13}	0.77	0.958	0.69	1.92	4.22	12.2	23.8
Ra-224	1.08×10^{-14}	0.0557	0.963	0.952	1.83	2.98	5.84	8.69
Ra-225	8.04×10^{-14}	0.415	0.924	0.0119	0.0347	0.0904	0.237	0.384
Ra-226	7.63×10^{-15}	0.0394	0.962	0.555	1.06	1.72	3.36	5
Ra-227	3.43×10^{-13}	1.77	0.944	0.0394	1.81	5.82	21.4	41.1
Ra-228	9.43×10^{-14}	0.487	0.921	0.00651	0.0129	0.0213	0.0425	0.0593
Ra-230	1.24×10^{-13}	0.638	0.952	0.362	2.19	6.73	18.9	31
Rb-77	1.67×10^{-12}	8.63	0.962	5.48	11.3	20.3	53.7	97.4
Rb-78m	3.28×10^{-12}	16.9	0.965	8.44	18.5	35.4	83.6	132
Rb-78	3.66×10^{-12}	18.9	0.965	11.2	26.2	48.4	104	158
Rb-79	1.57×10^{-12}	8.09	0.965	4.87	10	17.1	40.3	79
Rb-80	1.32×10^{-12}	6.82	0.965	5.21	9.99	16.1	31.8	50.3
Rb-81	5.55×10^{-13}	2.86	0.965	4.96	9.69	16.2	37.9	71.6
Rb-81m	2.86×10^{-14}	0.148	0.954	3.46	9.85	20.2	56.9	99.2
Rb-82	1.23×10^{-12}	6.33	0.965	5.3	10.2	16.8	35.5	61.5
Rb-82m	3.09×10^{-12}	16	0.965	9.24	18.4	31.3	67.6	107
Rb-83	5.38×10^{-13}	2.78	0.965	5.28	10.1	16.1	31.2	46.7
Rb-84	9.73×10^{-13}	5.02	0.965	8.47	16.8	27.9	56.7	87.1
Rb-84m	4.08×10^{-13}	2.11	0.965	1.76	4.12	8.58	20.3	31.8
Rb-86m	6.06×10^{-13}	3.13	0.876	5.68	10.8	17.2	32.8	48
Rb-86	9.60×10^{-14}	0.495	0.876	13.5	25	39.3	73.5	106
Rb-88	5.85×10^{-13}	3.02	0.965	17.5	33.1	53.2	103	152
Rb-89	2.15×10^{-12}	11.1	0.965	15.6	29.4	47.5	94.4	143
Rb-90	1.61×10^{-12}	8.3	0.962	17.9	34.2	56.1	112	167
Rb-90m	2.89×10^{-12}	14.9	0.964	16	30.8	50.9	104	157
Re-178	$1.62 \times 10^{-12} \\ 1.12 \times 10^{-12}$	8.38	0.958	9.56	22.7	42.3	94.5	147
Re-179	1.12×10^{-12} 1.27×10^{-12}	5.78	0.957	5.64	15	32.3	78.4	124
Re-180		6.56	0.956	9.47	19.1	31.4	62.8	97.1
Re-181	8.63×10^{-13}	4.46	0.954	4.26	10.7	22.6	56.2	92.2
Re-182	1.83×10^{-12}	9.43	0.955	7.5	20.9	37.1	75.7	113
Re-182m	1.23×10^{-12}	6.36	0.952	12.2	25	41.1	80.6	120
Re-183	$1.64 \times 10^{-13} \\ 9.51 \times 10^{-13}$	0.847	0.945	0.248	0.592	1.34	5.27	10.8
Re-184	9.51×10 4.00×10^{-13}	4.91	0.954	9.13	18.3	29.7	57.3	84.5
Re-184m	4.00×10 1.99×10^{-14}	2.06	0.953	3.7	12.1	24.3	54.4	84.3
Re-186	1.99×10 1.93×10^{-14}	0.103	0.952	0.268	0.53	0.918	9.97	32.9
Re-186m	1.93×10	0.0997	0.937	0.103	0.219	0.386	0.844	1.43
Re-188	6.11×10^{-14} 6.95×10^{-14}	0.316	0.960	2.54	9.98	21.7	56.6	96.9 1.75
Re-188m	6.95×10^{-14} 5.70×10^{-14}	0.359	0.945	0.171	0.332	0.552	1.19	1.75
Re-189	5.70×10^{-12} 1.44×10^{-12}	0.294	0.960	1	2.27	5.5	20.2	35.6
Re-190	1.44×10^{-12} 1.00×10^{-12}	7.45 5.17	0.964	4.98	11.3	20.7	49.2	84.3
Re-190m		5.17	0.961	4.51	10.2	18.6	45.3	79.6
Rh-100m	3.95×10^{-13}	2.04	0.925	0.0106	0.0244	1.14	34.2	80.6
Rh-100	2.92×10^{-12}	15.1	0.956	10.9	25.1	44.8	94.6	144
Rh-101	6.22×10^{-13}	3.21	0.949	0.0331	0.502	1.42	5.54	11.5
Rh-101m	6.06×10^{-13}	3.13	0.945	0.125	1.86	4.39	12.6	26.3
Rh-102 Rh-102m	$7.43 \times 10^{-13} \\ 2.63 \times 10^{-12}$	3.83	0.951	3.11	8.05	15.1	40	75.2
	2.62×10^{-14}	13.6	0.957	6.27	13.9	24.8	55	87

 Table 1. (Continued)

Nuclide	a 2 11 15	2						
	$C m^2 / kg MBq s$	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Rh-103m	2.91×10^{-14}	0.15	0.921	0.00813	0.0162	0.0269	0.0549	0.092
Rh-104	1.46×10^{-14}	0.0755	0.960	5.21	10.7	18.1	40.5	74.2
Rh-104m	3.01×10^{-13}	1.56	0.927	0.00995	0.0221	0.0581	0.436	7.83
Rh-105	8.51×10^{-14}	0.44	0.964	1.83	3.61	5.9	11.6	17.3
Rh-106	2.24×10^{-13}	1.15	0.965	6.29	12.3	21	49.8	87.7
Rh-106m	3.00×10^{-12}	15.5	0.965	8.97	18.7	32.8	71.6	112
Rh-107	3.45×10^{-13}	1.78	0.964	2.03	4.14	7.34	20.9	41.8
Rh-108	3.52×10^{-13}	1.82	0.965	4.55	9	15.2	33.3	55.2
Rh-109	3.57×10^{-13}	1.84	0.960	1.54	3.53	6.43	16.6	41.4
Rh-94	3.82×10^{-12}	19.7	0.965	10.3	22.2	39.3	83.9	129
Rh-95	2.68×10^{-12}	13.8	0.963	9.54	20.6	36.9	81.7	129
Rh-95m	9.06×10^{-13}	4.68	0.962	7.45	15.7	31.5	86.9	143
Rh-96	4.25×10^{-12}	21.9	0.964	8.39	17	29.6	68.4	113
Rh-96m	1.43×10^{-12}	7.37	0.958	8.54	19	34.9	80.4	128
Rh-97	1.67×10^{-12}	8.6	0.960	5.42	11.9	23.4	64.8	112
Rh-97m	2.30×10^{-12}	11.9	0.956	10.8	26.1	46.6	97.8	148
Rh-98	1.99×10^{-12}	10.3	0.964	6.39	12.7	22.1	58.3	106
Rh-99	1.03×10^{-12}	5.31	0.945	1.01	5.13	12.3	39.3	78.6
Rh-99m	9.83×10^{-13}	5.08	0.950	2.43	7.65	18.9	55.2	93.1
Rn-207	1.07×10^{-12}	5.52	0.962	5.23	11.8	21.8	51.1	86.8
Rn-209	1.24×10^{-12}	6.42	0.961	6.98	16.2	31	74.8	123
Rn-210	6.60×10^{-14}	0.341	0.960	5.83	13.4	24.1	53.3	84.3
Rn-211	1.96×10^{-12}	10.1	0.962	9.92	20.5	35	73.3	112
Rn-211	3.70×10^{-16}	0.00191	0.876	7.72	14.5	23	43.6	63.7
Rn-218	8.36×10^{-16}	0.00432	0.876	6.62	12.5	19.9	37.8	55.3
Rn-219	6.33×10^{-14}	0.327	0.964	1.85	3.94	7.18	16.4	26.1
Rn-220	6.96×10^{-16}	0.00359	0.876	5.57	10.6	16.9	32.2	47.2
Rn-222	4.31×10^{-16}	0.00339	0.876	4.94	9.43	15.1	28.9	42.4
	3.79×10^{-13}	1.96		5.83	13.2	23.9		93.2
Rn-223	5.79×10 5.56×10^{-13}		0.960				56.2	
Ru-103	8.59×10^{-13}	2.87 4.44	0.965	4.79	9.23	14.8	28.8	42.9
Ru-105	3.64×10^{-13}		0.961	5.85	12.7	21.9	45.6	71.1
Ru-107	8.58×10^{-14}	1.88	0.964	8.02	18.4	32.9	72	114
Ru-108		0.443	0.956	0.257	0.656	1.15	2.34	3.54
Ru-92	2.80×10^{-12}	14.4	0.954	2.7	9.85	24	68.5	115
Ru-94	9.00×10^{-13}	4.65	0.947	1.59	5.99	15.5	44.1	71.8
Ru-95	1.59×10^{-12}	8.2	0.955	5.14	14.4	29.2	69.3	111
Ru-97	5.95×10^{-13}	3.07	0.946	0.0233	0.689	1.93	7.6	22.8
S-37	2.24×10^{-12}	11.6	0.962	22.4	41	64.7	121	176
S-38	1.50×10^{-12}	7.76	0.965	20.7	37.5	58.9	110	158
Sb-111	1.67×10^{-12}	8.64	0.962	4.89	10.4	18.3	45.5	80
Sb-113	1.47×10^{-12}	7.59	0.961	4.73	9.66	16.6	42.2	82.8
Sb-114	2.80×10^{-12}	14.4	0.963	10.1	21.8	38.3	80.5	122
Sb-115	1.11×10^{-12}	5.74	0.955	4.1	8.73	14.8	33.8	70.8
Sb-116	2.38×10^{-12}	12.3	0.959	11	23.8	41.2	85.5	131
Sb-116m	3.46×10^{-12}	17.8	0.956	9.53	21	36.2	74.1	112
Sb-117	3.98×10^{-13}	2.05	0.943		0.475		19.9	50.8
Sb-118	9.40×10^{-13}	4.85	0.960	4.78	9.6	16	36.6	71.7
Sb-118m	3.02×10^{-12}	15.6	0.950	9.82	22.4	37.8	74.8	111
Sb-119	2.64×10^{-13}	1.36	0.921	0.0165	0.0308	0.049	0.0955	0.144
Sb-120	6.14×10^{-13}	3.17	0.950	3.59	8.37	14.6	32.8	62.1
Sb-120m	2.77×10^{-12}	14.3	0.954	10.2	22.3	37.1	72.5	107
Sb-122m	2.50×10^{-13}	1.29	0.932	0.025	0.0552	0.178	0.746	1.42
Sb-122	4.97×10^{-13}	2.57	0.964	6.02	11.6	18.8	39.1	66.9
Sb-124	1.85×10^{-12}	9.57	0.965	11.7	24.1	42.2	89.5	136
Sb-124m	4.87×10^{-13}	2.51	0.965	6.21	11.9	19.2	37.9	58
Sb-125	5.87×10^{-13}	3.03	0.948	3.22	8.04	14.6	31.9	49.5
Sb-126	3.02×10^{-12}	15.6	0.965	7.09	14	23	46.3	71.7
Sb-126m	1.70×10^{-12}	8.79	0.965	6.35	12.6	21	42.4	65.3
Sb-127	7.68×10^{-13}	3.96	0.963	6.21	12.7	21.4	44.1	68.6
Sb-128	3.36×10^{-12}	17.4	0.965	7.51	15.1	25.1	51.8	82.8
Sb-128m	2.07×10^{-12}	10.7	0.965	7.27	15.1	25.1	50	76.6
Sb-129	1.51×10^{-12}	7.81	0.965	10.9	21.6	36.1	76.1	119
Sb-130m	2.87×10^{-12}	14.8	0.964	10.1	19.8	32.2	64.7	101
Sb-130111	3.48×10^{-12}	18	0.964	8.41	17.8	30.3	64.4	104
	J.TU ∧ 1U	10	0.704	0.71	17.0	50.5	UT.T	104
Sb-130	2.08×10^{-12}	10.8	0.965	12.5	24.7	41	85.1	131

 Table 1. (Continued)

	Exposure rate constant			Lead attenuation thicknesses (mm Pb)				
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Sc-42m	4.30×10^{-12}	22.2	0.965	10.1	22.5	40	83.1	125
Sc-43	1.09×10^{-12}	5.65	0.965	4.7	9.08	14.7	28.5	42.2
Sc-44	2.26×10^{-12}	11.7	0.965	8.49	18	32.1	68.8	105
Sc-44m	2.89×10^{-13}	1.49	0.965	1.63	3.44	8.43	45.4	80.3
Sc-46 Sc-47	$2.09 \times 10^{-12} \\ 1.03 \times 10^{-13}$	10.8 0.534	0.965 0.876	12.5 0.492	23.4 0.86	37 1.33	70.4 2.47	103 3.61
Sc-47 Sc-48	3.43×10^{-12}	0.334 17.7	0.876	13.9	25.9	41	77.9	115
Sc-49	9.57×10^{-16}	0.00494	0.965	19.6	35.5	55.8	104	150
Sc-50	3.19×10^{-12}	16.5	0.965	13.7	27.2	44.8	88	131
Se-70	7.95×10^{-13}	4.11	0.958	3.86	8.07	13.7	29.8	58.7
Se-71	1.72×10^{-12}	8.88	0.965	6.26	13	23.8	59.7	101
Se-72	5.13×10^{-14}	0.265	0.876	0.068	0.131	0.214	0.423	0.633
Se-73	1.20×10^{-12}	6.2	0.960	3.71	7.65	13.1	28.3	49.1
Se-73m	2.88×10^{-13}	1.49	0.964	4.81	9.57	15.9	34.6	61.8
Se-75	3.93×10^{-13}	2.03	0.963	0.985	2.29	4.32	11.3	20.3
Se-77m	8.23×10^{-14}	0.425	0.876	0.502	0.881	1.36	2.54	3.71
Se-79m	7.96×10^{-15}	0.0411	0.876	0.23	0.406	0.672	1.4	1.4
Se-81	8.60×10^{-15}	0.0444	0.965	3.54	9.13	18.4	42.9	67.8
Se-81m Se-83m	$1.20 \times 10^{-14} \\ 9.87 \times 10^{-13}$	0.0621 5.1	0.959 0.965	0.251 12.4	0.45 24.9	0.745 41.6	1.67 85.9	5.29 132
Se-83111 Se-83	2.65×10^{-12}	13.7	0.965	9.64	24.9	39	85.9 85.2	132
Se-84	4.65×10^{-13}	2.4	0.965	3.3	6.36	10.3	20	29.7
Si-31	8.84×10^{-16}	0.00456	0.876	15.9	29.2	45.9	85.5	124
Sm-139	1.59×10^{-12}	8.18	0.961	5.07	11.1	20.7	57.5	104
Sm-140	6.43×10^{-13}	3.32	0.948	5.59	14	28.2	68.9	110
Sm-141	1.52×10^{-12}	7.82	0.959	6.16	13.5	27.7	72.5	118
Sm-141m	2.08×10^{-12}	10.7	0.958	7.36	16.8	31.2	72.2	116
Sm-142	1.69×10^{-13}	0.875	0.932	1.08	5.66	12.2	31.9	65.7
Sm-143	6.10×10^{-13}	3.15	0.953	4.79	9.8	16.7	41.8	81
Sm-143m	7.48×10^{-13}	3.86	0.962	8.71	16.5	26.1	49.4	72
Sm-145	1.62×10^{-13}	0.837	0.926	0.0475	0.0933	0.158	0.385	0.78
Sm-151	$1.19 \times 10^{-16} \\ 9.32 \times 10^{-14}$	0.000614	0.876	0.0093	0.0183	0.0298	0.0584	0.0868
Sm-153	9.32×10 1.05×10^{-13}	0.481 0.541	0.938	0.0876	0.204	0.432	1.67	17.6 53.5
Sm-155 Sm-156	1.03×10 1.30×10^{-13}	0.673	0.953 0.953	0.232 0.477	0.5 1.11	1.13 2.07	16.4 5.23	9.21
Sm-150	4.37×10^{-13}	2.26	0.958	2.77	10.7	26	66.1	106
Sn-106	1.51×10^{-12}	7.81	0.953	4.29	11.4	23.1	57	92.6
Sn-108	9.78×10^{-13}	5.05	0.951	1.65	5.28	12	35.6	66.3
Sn-109	2.34×10^{-12}	12.1	0.953	12.4	26.5	44.8	91.2	138
Sn-110	5.24×10^{-13}	2.7	0.946	0.337	1.64	3.4	7.69	11.9
Sn-111	6.66×10^{-13}	3.44	0.947	4.43	11.2	23.5	68	115
Sn-113	2.34×10^{-13}	1.21	0.922	0.0153	0.0294	0.0494	1.4	4.68
Sn-113m	1.47×10^{-13}	0.759	0.921	0.017	0.0317	0.0506	0.102	0.336
Sn-117m	3.27×10^{-13}	1.69	0.945	0.0567	0.374	0.864	2.01	3.14
Sn-119m	1.74×10^{-13}	0.898	0.921	0.0159	0.0298	0.0475	0.0924	0.14
Sn-121m	4.25×10^{-14} 7.06×10^{-15}	0.219	0.921	0.0197	0.0367	0.0592	0.124	0.213
Sn-123 Sn-123m	1.59×10^{-13}	0.0364 0.823	0.965 0.959	13.6 0.385	25.2 0.767	39.6 1.25	74.1 2.47	107 4.9
Sn-125m	3.78×10^{-13}	1.95	0.964	2.21	4.43	7.72	36	79.6
Sn-125m	3.41×10^{-13}	1.76	0.965	12.7	24.4	39.5	78.9	122
Sn-126	1.46×10^{-13}	0.753	0.940	0.0271	0.0937	0.494	1.62	2.77
Sn-127m	6.15×10^{-13}	3.18	0.965	5.8	11.7	22.2	63.6	107
Sn-127	1.93×10^{-12}	9.99	0.964	11.9	24	40	82.4	128
Sn-128	9.98×10^{-13}	5.15	0.940	1.6	6.12	12.4	28.8	46.6
Sn-129	1.07×10^{-12}	5.51	0.965	9.07	18	30.8	69.6	112
Sn-130	1.13×10^{-12}	5.81	0.954	4.15	11.8	21.7	46.2	70.3
Sn-130m	1.00×10^{-12}	5.16	0.953	8.74	19.7	34.4	74.6	117
Sr-79	1.32×10^{-12}	6.8	0.961	4.33	8.78	14.5	28.5	42.4
Sr-80	4.79×10^{-13}	2.47	0.965	4.98	10.1	16.7	33	49.2
Sr-81	1.51×10^{-12}	7.78	0.965	4.73	9.84	17	41	76
Sr-82	5.77×10^{-15}	0.0298	0.921	0.00633	0.0125	0.0207	0.0412	0.0617
Sr-83	8.79×10^{-13} 5.53×10^{-13}	4.54	0.964	6.82	14.3	25.6	60.8	102
Sr-85 Sr 85m	5.53×10^{-13} 2.23×10^{-13}	2.86	0.965	4.93	9.47 1.67	15.2	29.1	42.8
Sr-85m Sr-87m	3.62×10^{-13}	1.15 1.87	0.964 0.964	0.875 2.81	1.67 5.53	2.73 8.99	5.41 17.5	8.43 25.9
Sr-8/m Sr-91	7.48×10^{-13}	3.86	0.964 0.965	10.7	20.4	8.99 33.1	17.5 65.6	25.9 98.9
Sr-91 Sr-92	1.31×10^{-12}	6.77	0.965	16.3	30.4	33.1 48	90	130
Sr-93	2.30×10^{-12}	11.9	0.965	10.7	22	38.2	83.3	131

 Table 1. (Continued)

Exposure rate constant				Lead attenuation thicknesses (mm Pb)				
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Sr-94	1.39×10^{-12}	7.16	0.965	16.8	31.1	49.2	92.5	134
Ta-170	1.16×10^{-12}	5.98	0.960	5.33	11.1	19.5	46.6	78.7
Га-172	1.75×10^{-12}	9.04	0.958	8.76	20	35.7	76.5	118
Га-173	6.06×10^{-13}	3.13	0.948	6.56	17	32.9	76.3	121
Га-174	9.98×10^{-13}	5.15	0.956	6.54	16.7	33.4	79.3	127
Ta-175	1.12×10^{-12}	5.78	0.951	9.53	23.4	41.3	85.8	130
Га-176	2.13×10^{-12}	11	0.955	15.3	30	48.9	95.9	143
Ta-177	7.72×10^{-14}	0.398	0.940	0.165	0.374	1.98	30.9	62.3
Ta-178	1.31×10^{-13}	0.678	0.941	2.03	12.5	29.6	71.6	112
Ta-178m	1.25×10^{-12}	6.44	0.956	1.7	4.06	7.53	16.9	26.6
Ta-179	2.98×10^{-14}	0.154	0.937	0.118	0.232	0.384	0.783	1.22
Ta-180	5.60×10^{-14}	0.289	0.939	0.125	0.245	0.408	0.871	1.32
Ta-182	1.31×10^{-12}	6.75	0.957	12.8	25.4	41.1	78.5	115
Ta-182m	2.67×10^{-13}	1.38	0.952	0.405	0.879	1.65	5.86	11.7
Ta-183	3.09×10^{-13}	1.6	0.952	0.663	1.78	3.68	9.67	16.5
Ta-184	$1.68 \times 10^{-12} \\ 1.55 \times 10^{-13}$	8.67 0.801	0.962	5.06	12.6	24.2	54.4	84.9
Ta-185	1.53×10^{-12} 1.52×10^{-12}		0.954	0.56	1.35	4.45	28.4	58.2
a-186 b-146	3.56×10^{-12}	7.86 18.4	0.963 0.963	4.85	11.6 26.4	21 45.1	47.5 91.7	79.2 138
ъ-146 ъ-147m	1.89×10^{-12}	9.75	0.965	12.5 13.5	27.9	46.6	91.7	138
b-147111 b-147	2.26×10^{-12}	9.73 11.7	0.957	10.5	27.9	37.8	92.3 78.9	122
ъ-147 ъ-148m	3.42×10^{-12}	17.7	0.957	7.31	15	25.6	78.9 54.1	87.1
b-148111	2.42×10^{-12}	12.5	0.961	9.21	19.4	35.2	82.4	132
b-149m	1.52×10^{-12}	7.84	0.956	7.71	15.4	25.6	52.5	83.5
b-149111	1.41×10^{-12}	7.27	0.955	8.09	19.1	35.3	80.9	129
b-150m	2.80×10^{-12}	14.5	0.960	5.84	11.8	19.8	40.8	63
b-150iii	2.35×10^{-12}	12.2	0.957	11.2	24.3	43.8	95.8	147
b-151	1.11×10^{-12}	5.71	0.951	3.82	9.99	20.3	54.4	95
b-151m	1.03×10^{-13}	0.534	0.940	2.47	7.66	16.6	42.1	67.7
b-152m	8.60×10^{-13}	4.44	0.952	2.58	6.64	14.9	45.1	79.3
b-152	1.52×10^{-12}	7.84	0.955	7.95	19.8	38.3	87.3	137
7b-153	3.91×10^{-13}	2.02	0.944	1.38	6.27	17.3	46.9	77.1
b-154	2.15×10^{-12}	11.1	0.952	15.3	30.7	50.8	101	152
b-155	2.26×10^{-13}	1.17	0.942	0.178	0.623	1.73	8.31	19
b-156	2.04×10^{-12}	10.5	0.954	8.96	20.7	36.8	77.5	118
Ъ-156m	5.75×10^{-14}	0.297	0.876	0.0839	0.163	0.266	0.525	0.78
Ъ-156n	5.98×10^{-15}	0.0309	0.933	0.0743	0.15	0.268	0.849	1.16
b-157	9.67×10^{-15}	0.0499	0.927	0.0598	0.116	0.191	0.388	0.6
b-158	8.83×10^{-13}	4.56	0.947	9.65	19.9	32.5	63.1	93
b-160	1.18×10^{-12}	6.09	0.960	10.5	21.6	35.5	69.8	104
b-161	1.11×10^{-13}	0.571	0.930	0.0283	0.0707	0.187	0.857	8.15
b-162	1.18×10^{-12}	6.1	0.962	6.88	16.2	27.6	55.3	83
Ъ-163	8.72×10^{-13}	4.5	0.963	3.48	7.21	12.6	28	46
Ъ-164	2.52×10^{-12}	13	0.962	9.26	19.8	34.9	77.6	123
b-165	8.32×10^{-13}	4.3	0.963	14.1	27.7	45.1	87.4	129
c-101	3.70×10^{-13}	1.91	0.964	2.02	4.19	7.71	23.2	43.8
c-102m	2.44×10^{-12}	12.6	0.965	11.4	24.6	43.4	91.7	140
Cc-102	8.48×10^{-14}	0.438	0.965	7.35	15.8	30.2	73.8	121
Cc-104	2.14×10^{-12}	11.1	0.965	11.3	26.2	46.2	96.8	147
c-105	8.86×10^{-13}	4.57	0.959	5.49	15.5	32	77.9	125
Cc-91	2.45×10^{-12}	12.6	0.964	9.7	22.2	42.1	93.7	144
c-91m	$1.58 \times 10^{-12} \\ 4.03 \times 10^{-12}$	8.13	0.965	5.45	10.7	18.4	49.7	92.2
c-92	4.03×10^{-12} 1.86×10^{-12}	20.8	0.963	8.1	18.9	35.5	80.5	125
c-93	1.86×10^{-12} 9.97×10^{-13}	9.63	0.951	11.6	26.2	44.4	87.8	130
c-93m c-94	9.97×10 3.20×10^{-12}	5.15	0.955	8.47	24.5	47.2	102	155
c-94 c-94m	3.20×10 2.15×10^{-12}	16.5 11.1	0.959	8.03 7.96	16.6	27.6	55 71.9	83.9 120
.c-94m .c-95	1.23×10^{-12}	6.35	0.962 0.948	7.96 4.62	16.9 13.2	30.5 23.5	71.9 48.8	74.3
c-95 c-95m	1.23×10 1.11×10^{-12}	5.71	0.948	2.23	9.3	23.5 19.6	48.8 45.6	71.9
c-95m c-96	3.06×10^{-12}	15.8	0.951	2.23 8.26	9.3 17.2	28.3	45.6 55.6	83.3
.c-96 C-96m	2.19×10^{-13}	1.13	0.937	8.26 0.0114	0.0389	28.3 10.7	55.6 45.2	83.3
c-96111 c-97	3.64×10^{-13}	1.13	0.928	0.0114	0.0389	0.0228	0.0453	0.06
c-97 c-97m	2.51×10^{-13}	1.3	0.921	0.00093	0.0138	0.0228	0.0433	0.00
гс-97m Гс-98	1.55×10^{-12}	7.99	0.921	7.96	15	23.9	45.6	67
	1.55 ^ 10	1.77	0.303	1.50	1.0	43.7	₩3.0	U/
Гс-99m	1.54×10^{-13}	0.795	0.959	0.234	0.535	0.905	1.8	2.7

 Table 1. (Continued)

-	Exposure rat	te constant		Lead attenuation thicknesses (mm Pb)				
Nuclide	$\overline{\text{C m}^2 / \text{kg MBq s}}$	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Te-114	1.51×10^{-12}	7.8	0.948	7.63	19.5	37.1	83.2	129
Te-115	2.39×10^{-12}	12.3	0.962	8.72	19.1	34.7	76.5	119
Te-115m	2.73×10^{-12}	14.1	0.961	9.99	21.5	38.1	83	129
Te-116	3.83×10^{-13}	1.98	0.931	0.0288	0.0761	3.15	26	53.3
Te-117	$1.69 \times 10^{-12} 1.88 \times 10^{-13}$	8.73 0.971	0.954	9.09	20	36.5	84	133
Te-118 Te-119	1.88×10^{-13} 9.96×10^{-13}	0.971 5.14	0.921 0.947	0.019 5.72	0.0352 13	0.0559 23	0.109 55.4	0.165 99.1
Te-119	1.69×10^{-12}	8.73	0.953	9.85	22.9	39	78.6	119
Te-121	8.14×10^{-13}	4.2	0.946	3.61	8.95	15.6	31.7	47.5
Te-121m	3.32×10^{-13}	1.71	0.948	0.415	1.39	3.6	38.5	73.3
Te-123	3.09×10^{-16}	0.00159	0.921	0.0188	0.0346	0.0548	0.106	0.159
Te-123m	2.40×10^{-13}	1.24	0.948	0.14	0.521	1	2.15	3.28
Te-125m	2.79×10^{-13}	1.44	0.921	0.0212	0.0392	0.0628	0.127	0.216
Te-127	5.55×10^{-15}	0.0287	0.961	2.94	5.99	9.9	19.6	29.2
Te-127m	8.67×10^{-14}	0.448	0.921	0.021	0.039	0.0623	0.131	1.39
Te-129 Te-129m	1.01×10^{-13} 9.62×10^{-14}	0.523 0.497	0.939 0.927	1.67 0.048	5.98 3.7	12.7 13.3	38.5 35.5	71.8 57.3
Te-129III	4.57×10^{-13}	2.36	0.960	4.26	11.8	13.3 24	55.5 58.1	92.7
Te-131m	1.57×10^{-12}	8.1	0.960	9.21	19.2	32.5	68.3	108
Te-132	3.73×10^{-13}	1.93	0.944	0.262	1.04	2.08	4.66	7.21
Te-133	1.22×10^{-12}	6.29	0.964	8.46	20.8	38.1	83.9	131
Te-133m	1.97×10^{-12}	10.2	0.961	9.82	20.4	34.6	73.8	117
Te-134	9.94×10^{-13}	5.13	0.958	4.32	10.9	19.8	43.1	66.5
Th-223	1.57×10^{-13}	0.81	0.951	0.0218	0.219	0.636	3.11	8.92
Th-224	3.37×10^{-14}	0.174	0.958	0.338	0.998	2.27	10.6	20.1
Th-226	$3.51 \times 10^{-14} \\ 3.07 \times 10^{-13}$	0.181	0.944	0.0103	0.0308	0.409	2.62	5.43
Th-227 Th-228	3.07×10^{-14} 3.71×10^{-14}	1.58 0.192	0.947 0.930	0.0224 0.00706	0.735 0.0146	2.31 0.0276	7.04 1.08	12.5 3.03
Th-229	3.16×10^{-13}	1.63	0.945	0.00700	0.0140	0.0270	1.92	3.97
Th-230	3.05×10^{-14}	0.157	0.923	0.00658	0.0132	0.0222	0.0691	0.968
Th-231	2.69×10^{-13}	1.39	0.927	0.00822	0.0173	0.0326	0.523	1.53
Th-232	2.78×10^{-14}	0.143	0.922	0.00654	0.013	0.0218	0.0513	0.51
Th-233	7.01×10^{-14}	0.362	0.945	0.247	3.89	11.4	32.5	55.8
Th-234	3.98×10^{-14}	0.206	0.941	0.0106	0.029	0.208	0.82	1.3
Th-235	6.01×10^{-14}	0.31	0.963	5.91	12.5	21.6	45.1	69.2
Th-236	$5.63 \times 10^{-14} $ 1.35×10^{-13}	0.29 0.698	0.953 0.948	0.518 0.222	3.85	10.9 0.742	29.7 1.53	48.9 2.35
Ti-44 Ti-45	9.68×10^{-13}	5	0.948	4.97	0.443 9.49	15.2	29.3	2.33 44.5
Ti-43	3.99×10^{-13}	2.06	0.965	2.53	5.28	11.4	40.8	69.8
Ti-52	2.25×10^{-13}	1.16	0.955	0.0579	0.297	0.595	1.33	2.11
Tl-190	1.41×10^{-12}	7.29	0.963	5.06	10.2	17.9	46.3	83.2
Tl-190m	2.67×10^{-12}	13.8	0.963	6.01	12.4	21.8	50.2	84.6
Tl-194	1.00×10^{-12}	5.17	0.961	4.71	9.58	16.5	38.9	68.5
Tl-194m	2.73×10^{-12}	14.1	0.962	5.95	12.4	21.4	48.6	86.3
TI-195	1.19×10^{-12}	6.16	0.957	12.1	25.7	44	91.3	139
TI-196 TI-197	1.86×10^{-12} 4.69×10^{-13}	9.59 2.42	0.961 0.954	9.55 5.93	22.8 15.3	42 30.2	90.5 71.1	138 112
Tl-197	1.96×10^{-12}	10.1	0.960	11.2	25.5	30.2 44.7	92.7	140
Tl-198m	1.32×10^{-12}	6.84	0.961	4.52	9.8	17	36.3	58.7
Tl-199	2.59×10^{-13}	1.33	0.954	1.46	4.88	11.9	38.2	69.1
T1-200	1.36×10^{-12}	7	0.960	7.56	18.9	34.7	74.6	114
T1-201	8.72×10^{-14}	0.45	0.949	0.258	0.52	0.887	1.94	3.1
T1-202	5.06×10^{-13}	2.61	0.957	3.14	6.59	11	21.8	32.9
T1-204	1.14×10^{-15}	0.0059	0.948	0.215	0.428	0.714	1.47	2.3
Tl-206m	2.59×10^{-12} 4.47×10^{-17}	13.4	0.964	5.62	13.3	24.5	55.3	86.7
T1-206 T1-207	4.47×10 2.48×10^{-15}	0.000231 0.0128	0.949 0.876	0.233 11	0.459 20.6	0.755 32.4	1.5 60.8	2.26 88.3
T1-207	2.94×10^{-12}	15.2	0.964	15.5	32.4	54.9	110	163
T1-208	2.09×10^{-12}	10.8	0.963	11.9	26.8	46	92	136
Tl-210	2.74×10^{-12}	14.2	0.965	11.9	24.6	41.8	88	136
Tm-161	1.33×10^{-12}	6.88	0.946	8.35	22.5	41.9	89.6	136
Tm-162	1.87×10^{-12}	9.65	0.956	11.3	24.8	43.7	93.1	143
Tm-163	1.36×10^{-12}	7	0.948	10.5	24.1	41.6	84.5	127
Tm-164	8.24×10^{-13}	4.25	0.954	6.79	14.8	29.3	75.2	122
Tm-165	6.29×10^{-13}	3.24	0.948	2.81	8.65	19.8	52.4	87.9
Tm-166	$1.96 \times 10^{-12} \\ 1.75 \times 10^{-13}$	10.1	0.954	12.5	25.9	44	91.2	139
Tm-167 Tm-168	1.75×10^{-12} 1.35×10^{-12}	0.903 6.98	0.942 0.955	0.32 6.38	1.04 14.5	2.23 24.9	12.1 51.2	26.8 78.5
1111-100	1.55 ^ 10	0.70	0.333	0.56	17.3	∠ + .₹	31.2	10.3

 Table 1. (Continued)

	Exposure rat				Lead attenuation thicknesses (mm Pb)			
Nuclide		R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL
Tm-170	4.34×10^{-15}	0.0224	0.943	0.157	0.354	0.7	1.72	2.77
Tm-171	7.81×10^{-16}	0.00403	0.936	0.107	0.212	0.357	0.765	1.24
Tm-172	4.64×10^{-13}	2.4	0.958	15.6	29.8	47.7	90.9	133
Tm-173	4.31×10^{-13}	2.23	0.962	3.13	6.1	9.9	19.4	28.8
Tm-174	1.88×10^{-12}	9.71	0.962	5.14	14.3	27.9	61	93.4
Tm-175	1.17×10^{-12}	6.02	0.962	7.47	15.8	27.9	61.6	97.6
Tm-176	$1.92 \times 10^{-12} \\ 2.24 \times 10^{-13}$	9.9	0.961	10.9	24.7	42.7	90	139
U-227	2.24×10^{-14} 4.31×10^{-14}	1.16	0.953	0.0789	0.697	1.95	5.67	10.1
U-228	4.81×10 4.85×10^{-14}	0.222	0.933	0.00797 0.00693	0.017	0.0413	1.57	4.32
U-230 U-231	4.83×10 4.33×10^{-13}	0.25 2.23	0.924 0.939	0.00693	0.014 0.0241	0.0242 0.126	0.462 0.869	2.39 1.82
U-231 U-232	4.53×10^{-14} 4.53×10^{-14}	0.234	0.939	0.0161	0.0241	0.120	0.869	0.398
U-232 U-233	2.09×10^{-14}	0.108	0.921	0.00672	0.0134	0.0223	0.0488	0.235
U-234	4.11×10^{-14}	0.212	0.921	0.0067	0.0134	0.0224	0.0465	0.238
U-235	2.64×10^{-13}	1.36	0.957	0.208	0.692	1.35	3.13	5.36
U-236	3.72×10^{-14}	0.192	0.921	0.00669	0.0133	0.022	0.0453	0.119
U-237	3.72×10^{-13} 3.21×10^{-13}	1.66	0.946	0.0234	0.0133	0.816	3.51	8.27
U-238	2.99×10^{-14}	0.154	0.921	0.00669	0.0133	0.022	0.0451	0.101
U-239	9.12×10^{-14}	0.471	0.944	0.0439	0.36	1.82	28.2	54.7
U-240	8.71×10^{-14}	0.449	0.928	0.00787	0.0163	0.0306	0.577	1.99
U-242	5.27×10^{-14}	0.272	0.949	1.61	6.13	13	29.7	46
V-47	1.10×10^{-12}	5.7	0.965	4.99	9.53	15.3	30.1	50.3
V-48	3.00×10^{-12}	15.5	0.965	11.7	23.5	39	77.6	116
V-50	1.37×10^{-12}	7.05	0.965	17.1	32	50.8	96.2	140
V-52	1.40×10^{-12}	7.21	0.965	17.5	32	50.2	93.5	135
V-53	1.08×10^{-12}	5.57	0.965	12.9	24.1	38.1	71.9	105
W-177	9.68×10^{-13}	5	0.953	4.86	13.3	26.3	60.2	94.1
W-178	1.72×10^{-14}	0.0888	0.939	0.128	0.252	0.417	0.85	1.32
W-179	8.56×10^{-14}	0.442	0.936	0.0668	0.175	0.338	0.769	1.24
W-179m	5.92×10^{-14}	0.305	0.944	0.251	0.631	1.53	4.08	6.78
W-181	4.58×10^{-14}	0.236	0.939	0.128	0.252	0.417	0.853	1.33
W-185m	2.47×10^{-14}	0.127	0.950	0.27	0.565	1.02	2.35	3.79
W-185	4.47×10^{-17}	0.000231	0.948	0.206	0.398	0.655	1.35	2.11
W-187	4.89×10^{-13}	2.52	0.958	5.79	11.9	19.8	40.3	61.1
W-188	1.95×10^{-15}	0.0101	0.958	1.13	2.4	4.13	8.67	13.3
W-190	1.50×10^{-13}	0.776	0.949	0.276	0.572	0.999	2.12	3.25
Xe-120	6.94×10^{-13}	3.59	0.937	1.03	6.67	16.4	42.4	69.7
Xe-121	1.54×10^{-12}	7.96	0.955	7.68	18.6	37.7	89.7	141
Xe-122	2.09×10^{-13}	1.08	0.928	0.0352	0.116	2.39	10.1	18.3
Xe-123	7.88×10^{-13}	4.07	0.949	3.88	11.6	25.7	69.3	115
Xe-125	4.65×10^{-13}	2.4	0.941	0.23	1.3	4.41	32.6	65.7
Xe-127	4.42×10^{-13}	2.28	0.946	0.3	1.14	2.72	10	17.9
Xe-127m	2.38×10^{-13}	1.23	0.948	0.15	0.465	0.907	2.15	3.46
Xe-129m	2.42×10^{-13}	1.25	0.923	0.0283	0.0536	0.0938	1.27	3.22
Xe-131m	1.01×10^{-13}	0.521	0.923	0.0276	0.0516	0.0875	0.745	1.98
Xe-133	1.10×10^{-13}	0.568	0.935	0.0379	0.0982	0.4	1.35	2.29
Xe-133m	1.24×10^{-13}	0.639	0.928	0.0369	0.0924	0.92	3.63	6.31
Xe-135	2.67×10^{-13}	1.38	0.963	1.16	2.32	4.19	18.3	36.9
Xe-135m	4.92×10^{-13}	2.54	0.959	4.85	9.56	15.5	29.9	44
Xe-137	2.01×10^{-13}	1.04	0.965	5.1	10.4	20.5	65	113
Xe-138	1.06×10^{-12}	5.46	0.963	13.1	29.7	50.6	101	150
Y-81	$1.31 \times 10^{-12} \\ 1.51 \times 10^{-12}$	6.77	0.963	4.16	8.61	14.2	28	41.5
Y-83	9.39×10^{-13}	7.82	0.961	5.57	11.4	20.5	55.8	101
Y-83m	9.39×10^{-12} 4.22×10^{-12}	4.85	0.965	3.7	7.93	13.5	27.1	40.6
Y-84m Y-85	4.22×10 1.21×10^{-12}	21.8 6.26	0.965 0.965	9.26 5.1	18.7 9.97	31.8 16.4	67.3 35.6	106 62
1-85 Y-85m	1.21×10 1.38×10^{-12}	7.13	0.963	7.59	16.8	33.1	81.5	130
Y-85m Y-86	3.66×10^{-12}	18.9	0.964	7.39 11.1	22.9	39.3	83.2	130
1-80 Y-86m	2.26×10^{-13}	1.17	0.963	0.943	1.9	4.23	85.2 35.6	70.6
Y-80m Y-87	5.47×10^{-13}	2.82	0.964	3.8	7.92	13.1	25.8	38.1
Y-87m	3.48×10^{-13}	1.8	0.962	3.8 2.69	5.32	8.7	17.3	26.3
Y-88	2.62×10^{-12}	13.5	0.963	15.8	30.3	49.3	97.5	145
1-88 Y-89m	9.57×10^{-13}	4.94	0.965	13.8	20.8	49.3 32.9	97.3 61.7	89.5
1-07111				2.54	6.42	32.9 11.6	24.1	89.5 36.5
$V_{-}00m$	601 > 111							
Y-90m Y-91	$6.91 \times 10^{-13} \\ 3.16 \times 10^{-15}$	3.57 0.0163	0.965 0.876	15.1	27.8	43.8	81.7	118

290

-	Exposure rate constant			Lead attenuation thicknesses (mm Pb)					
Nuclide	C m ² / kg MBq s	R cm ² / mCi h	f-factor (cGy/R)	HVL	QVL	TVL	CVL	MVL	
Y-92	2.60×10^{-13}	1.34	0.965	11.7	22.8	37.4	75.2	115	
Y-93	9.45×10^{-14}	0.488	0.965	10.2	24.7	43.4	91.3	139	
Y-94	7.93×10^{-13}	4.09	0.965	12	22.9	37.2	75.8	119	
Y-95	9.61×10^{-13}	4.96	0.964	18.4	34.7	55.7	109	161	
Yb-162	2.74×10^{-13}	1.41	0.948	0.65	3.54	11.4	31.2	51.6	
Yb-163	7.72×10^{-13}	3.99	0.951	7.34	16.6	31.3	73.9	118	
Yb-164	7.25×10^{-14}	0.374	0.934	0.13	0.328	3.85	23.6	47.3	
Yb-165	3.75×10^{-13}	1.93	0.942	3.65	12.2	26.1	64.2	103	
Yb-166	1.15×10^{-13}	0.593	0.935	0.102	0.206	0.362	1.01	1.97	
Yb-167	2.95×10^{-13}	1.53	0.944	0.194	0.468	1.32	30.5	68.4	
Yb-169	3.75×10^{-13}	1.94	0.943	0.242	0.678	1.64	5.71	11	
Yb-175	4.27×10^{-14}	0.22	0.957	2.03	4.57	8.04	16.9	25.8	
Yb-177	1.99×10^{-13}	1.03	0.956	9.16	21.5	36.5	72.7	108	
Yb-178	4.22×10^{-14}	0.218	0.962	2.61	5.14	8.42	16.7	25	
Yb-179	1.08×10^{-12}	5.55	0.963	5.73	11.4	18.8	38.1	59.7	
Zn-60	1.69×10^{-12}	8.73	0.963	5.26	10.4	17.1	34.6	53.4	
Zn-61	1.62×10^{-12}	8.34	0.965	6.55	13.4	26.1	73.9	123	
Zn-62	5.01×10^{-13}	2.59	0.956	4.9	9.97	16.4	32.7	49.7	
Zn-63	1.21×10^{-12}	6.24	0.965	5.38	10.4	17.3	39.5	74.6	
Zn-65	5.94×10^{-13}	3.07	0.965	13.5	25.4	40.2	75.5	110	
Zn-69m	4.62×10^{-13}	2.38	0.965	3.7	7.1	11.4	22	32.4	
Zn-71	3.40×10^{-13}	1.76	0.965	6.55	13.5	24.2	56.6	93.3	
Zn-71m	1.71×10^{-12}	8.83	0.965	5.16	10.5	18.5	44.8	80.5	
Zn-72	1.88×10^{-13}	0.97	0.959	0.243	0.589	1.04	2.26	3.78	
Zr-85	1.61×10^{-12}	8.31	0.965	5.29	10.5	18.6	53	97.5	
Zr-86	4.35×10^{-13}	2.25	0.953	0.55	1.71	3.7	19.5	37.6	
Zr-87	1.03×10^{-12}	5.31	0.965	5.31	10.4	17.4	44	85.7	
Zr-88	4.82×10^{-13}	2.49	0.961	2.47	5.28	8.86	17.6	26.3	
Zr-89	1.28×10^{-12}	6.59	0.963	9.02	18.1	29.9	59.5	89.5	
Zr-89m	7.10×10^{-13}	3.66	0.964	6.71	13.3	22.8	57.2	101	
Zr-95	7.98×10^{-13}	4.12	0.965	8.62	16.2	25.7	48.5	70.7	

Health Physics

simply do not exist for most nuclides, and decay product emissions have been omitted from what is reported here. Thus the shielding values should be used, as with the exposure rate constants, by combining the appropriate entries with regard to their proportion in a particular equilibrium situation. The notable discrepancies are easily explained by the improved treatment of bremsstrahlung in Shimizu et al. 2004. Photon buildup factors are extremely dependent on bremsstrahlung at shallow depths and high energies (e.g., Shimizu et al. 2004, Fig. 5). For example, if the current value of the HVL of ⁶⁰Co is compared, 15.6 mm Pb is found, while the commonly used value is

Table 2. Comparison of selected exposure rate constants from this work and those from the 1970 Radiological Health Handbook.

	Exposure		
	This work	Radiological Health Handbook	Ratio
Ba-133	3.0	2.4	1.27
C-11	5.86	5.9	0.993
Cs-137	3.43	3.3	1.04
Co-60	12.9	13.2	0.977
Ga-67	0.80	1.1	0.730
Ga-72	13.4	11.6	1.16
I-125	1.75	0.7	2.5
I-131	2.2	2.2	1.00
Ir-192	4.6	4.8	0.958
Zn-65	3.07	2.7	1.14

12.5 mm Pb. The majority of its emissions are at 1.17 and 1.33 MeV, which would be highly sensitive to a change in the treatment of bremsstrahlung. Low-energy emitters

Table 3. Comparison of selected exposure rate constants from this work and dose constants from Unger and Trubey (1982).

	Exposure rate con	stant (mSv m ² / MBq h)	
	This work	Unger and Trubey	Ratio
Al-26	3.52×10^{-4}	4.00×10^{-4}	0.880
Al-28	2.19×10^{-4}	2.36×10^{-4}	0.929
Ar-41	1.72×10^{-4}	1.88×10^{-4}	0.916
Au-195m	2.74×10^{-5}	4.13×10^{-5}	0.663
Ba-133	7.72×10^{-5}	1.23×10^{-4}	0.628
C-11	1.54×10^{-4}	1.91×10^{-4}	0.804
Cs-137	8.90×10^{-5}	1.02×10^{-4}	0.872
Co-60	3.38×10^{-4}	5.15×10^{-4}	0.657
F-18	1.49×10^{-4}	1.85×10^{-4}	0.805
Ga-67	2.08×10^{-5}	3.00×10^{-5}	0.694
Ga-72	3.51×10^{-4}	3.90×10^{-4}	0.901
Ho-166	4.08×10^{-6}	6.26×10^{-6}	0.651
I-123	4.54×10^{-5}	7.48×10^{-5}	0.607
I-125	4.54×10^{-5}	7.43×10^{-5}	0.584
I-131	5.65×10^{-5}	7.64×10^{-5}	0.739
In-111	8.88×10^{-5}	1.36×10^{-4}	0.653
Ir-192	1.19×10^{-4}	1.60×10^{-4}	0.746
N-13	1.53×10^{-4}	1.91×10^{-4}	0.801
O-15	1.54×10^{-4}	1.91×10^{-4}	0.805
Tc-99m	2.06×10^{-5}	3.32×10^{-5}	0.621
T1-201	1.16×10^{-5}	2.37×10^{-5}	0.488
Zn-65	1.08×10^{-4}	8.92×10^{-5}	1.21

 $[\]dagger$ Data based on emissions of progeny Ba-137m.

Table 4. Comparison of selected exposure rate constants from this work and dose constants from Tschurlovits et al. (1992).

	Exposure rate con	stant (mSv m ² / MBq h)	
	This work	Tschurlovits et al.	Ratio
Al-26	3.52×10^{-4}	3.82×10^{-4}	0.921
A1-28	2.19×10^{-4}	2.00×10^{-4}	1.10
Ar-41	1.72×10^{-4}	1.57×10^{-4}	1.10
Ba-133	7.72×10^{-5}	2.74×10^{-4}	0.282
C-11	1.53×10^{-4}	1.39×10^{-4}	1.10
Cs-137	8.90×10^{-5}	8.87×10^{-5}	1.00
Co-60	3.38×10^{-4}	3.08×10^{-4}	1.10
F-18	1.49×10^{-4}	1.37×10^{-4}	1.09
Ga-67	2.08×10^{-5}	3.10×10^{-4}	0.06
Ho-166	4.07×10^{-6}	4.15×10^{-5}	0.098
I-123	4.54×10^{-5}	1.69×10^{-4}	0.269
I-125	4.34×10^{-5}	2.52×10^{-4}	0.172
I-131	5.65×10^{-5}	5.93×10^{-5}	0.953
In-111	8.88×10^{-5}	2.22×10^{-4}	0.400
Ir-192	1.19×10^{-4}	1.23×10^{-4}	0.97
N-13	1.53×10^{-4}	1.39×10^{-4}	1.10
O-15	1.54×10^{-4}	1.39×10^{-4}	1.10
Tc-99m	2.06×10^{-5}	3.60×10^{-5}	0.573
T1-201	1.16×10^{-5}	1.05×10^{-4}	0.110
Zn-65	1.0×10^{-4}	1.98×10^{-4}	0.545

with no significant decay products are extremely close to commonly accepted values (0.021 mm Pb for ¹²⁵I and 0.026 mm Pb for ¹³¹Cs).

CONCLUSION

The authors have calculated exposure rate constants, nuclide-specific *f*-factors, and lead shielding thicknesses for most of the more than 1,100 radionuclides described in ICRP Publication 107. This compilation adds to the literature on this important practical area of radiation pro-

tection, using up-to-date radionuclide decay and radiation attenuation data. Agreement with previous works in this area is generally good, with a few exceptions.

REFERENCES

Hubbell JH, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg, MD: National Institute of Standards and Technology; 1996.

International Commission on Radiological Protection. ICRP Publication 107: Nuclear decay data for dosimetric calculations. New York: Elsevier; 2009.

Jaeger RG, Blizard EP, Chilton AB. Engineering compendium on radiation shielding: volume 1: shielding fundamentals and methods. New York: Springer; 1968.

Kharrati H, Agrebi A, Karaoui M-K. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities. Med Phys 34:1398–1404; 2007.

Shimizu A, Onda T, Sakamoto Y. Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding, (III) Generation of an improved data set. J Nucl Sci Technol 41:413–424; 2004.

Stabin MG. Radiation protection and dosimetry: an introduction to health physics. New York: Springer; 2007.

Tschurlovits M, Leitner A, Daverda G. Dose rate constants for new dose quantities. Radiat Protect Dosim 42:77–82; 1992.

Unger LM, Trubey DK. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment. Oak Ridge, TN: Oak Ridge National Laboratory; ORNL/ RSIC-45/R1; 1982.

United States Department of Health, Education and Welfare. Radiological health handbook. Rockville, MD: Bureau of Radiological Health, United States Department of Health, Education and Welfare; 1970.