Relightable & Animatable Neural Avatars

1. 1erminology

World Space: Coordinate landscape independent of camera orientation, instead I a world origin.

Screen Space: Coordinates ance mapped to a 2D image, Svom a cameva orientation.

Canonical Space: Coordinates mapped to a specific pose

Signed distance function (SDF): distance from point to neavest surgace of human, positive if outside.

2. Objective

Given Sparse-View or monocular Video of a human performer, Create an avatar that 5:

- · Animerable: We can put into New poses
- * Relightable: Will have correct light emitted under new lighting conditions (background, position)

3. Hierarchical Distance Query

For each point $x \in \mathbb{R}^3$, we wish to compute its SDF.

- a) Coarse distance quevy
 - · Creates initial SDF using KNN
- b) Inverse warping
 - · Iransjorm world space -> Canonical space Using Linear Blend Skinning
- C) Fine distance quary
 - . MLP to correct the SDF based on which pase the human had
- d) Smooth distance brending
 - · Combine Coouse & fine distances
 - on edges, take coalse SDF since very similar to line.

Geometry

Our renderer needs: Surgace point X:

Surface Normal No

Light Visibility $V(x_s, \omega_i)$

Which can be easily found from the SDF....

- a)take a ray r(t)= 0+td
- b) march along it until find SDF=0 $\Rightarrow x_s$
- e) Compute surface normal off $\frac{3 \text{ SDF}}{3 \times 6}$

5. Reflectance (emitted epiour of each vertex)

Microfacet BRDF model Ro(Xo, Wi, Wo, no)

where R_s = reflectance at vertex s

Xs = Vertex & position

W:= Ineomina light source direction

W. = Outgoing (towards camera) light direction

No = Surface normal of Xs

Within BRDF, 3 2 MLPs:

• $A(x^{\circ})$ computes albedo (neutral Colour) $\alpha = (r, q, b)$

X"= canonical space of Xs

· (x") computes roughness (Shininess) XEIR

hen BRDF maps 0, 8 to an output colour for vertex X:

<u>Light</u> Probe

- · A 3D Specce containing a number of light paths from sources & reflections
- · 10 approximate lighting at a point Xs, take lighting from these nearby light rays

· Copture light directions & how wide the light in that direction is

by using Distance Field Soft Shadow model.

Rendering

Lets five camera vays in the required direction & take the light emitted from the fivet point of human intersection. The light emitted:

 $L_{o} = \sum_{\omega_{i}} L_{s}(\omega_{i}) \cdot R_{s}(x_{s}, \omega_{i}, \omega_{o}, \Omega_{s}) \cdot V_{s}(x_{s}, \omega_{i}) \cdot \Omega_{s} \cdot \omega_{i} \cdot \Delta \omega_{i}$ $= Sum \quad \text{over all incoming ($->$ human$) light Sources, the convergending emitted light}$

Lo = Output colour of human surface point X_s Ls = light source direction at X_s Vs = indicates if light from direction W_t reaches X_s (or if blocked) $\Delta W_t = W_t dth$ of incoming light beam

Loss

- The difference between the estimated avatar in a pase in certain lighting to ground truth (from the training video)
- · Some additional regularisation