NAME:

CS 583 – Assignments 3 100 points

1. [25 pts] Here is a plate model.

- **a.** What probability distributions do we need to specify for this model?
- **b.** Draw an unrolled version of the Bayesian network, where there are three items of type Object1 and two items of Object2 type.

2. [25 pts] For the following linear chain, please calculate the requested probabilities using variable elimination. You can use any order you like. Show your work.

		Α	В	P(B A)	В	С	P(C B)	
Α	P(A)	Т	T	0.3	T	Т	0.9	
Т	0.4	T	F	0.7	Т	F	0.1	
F	0.6	F	T	0.8	F	T	0.4	
		F	F	0.2	F	F	0.6	
(A)			B			(C)		
\smile								

- a. [10 pts] P(C)
- **b.** [10 pts] P(C|A=t)
- **c. [5 pts]** P(C|A=t,B=t)
- 3. [25 pts] You are modeling the relationship between a set of N input vectors X1, . . . , XN and a set of N binary outcomes Y1, . . . , YN . We assume there is a single vector of parameters β which dictates the relationship between each input vector and its associated output variable. In this model, each output is drawn with Yn \sim Bernoulli(invLogit(Xn β)). Additionally, the vector β has a prior, given by $\beta \sim$ Normal(μ , Σ). This model is called Bayesian Logistic Regression. Draw its corresponding plate notation.
- **4. [25 pts]** For the following Bayesian network, perform variable elimination to compute P(E). Fill in the table.

Variable	All Factors	Participates	New Factor After *	New Factor After +
A				
В				
D				
C				