JUN 3 0 2006

PTO/SB/21 (09-04) Approved for use through 07/31/2006. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE he Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Application Number FRADIM Filing Date TRANSMITTAL First Named Inventor **FORM** Art Unit Examiner Name Irakli 🗀 (to be used for all correspondence after initial filing) Attorney Docket Number Total Number of Pages in This Submission **ENCLOSURES** (Check all that apply) After Allowance Communication to TC Drawing(s) Fee Transmittal Form Appeal Communication to Board Licensing-related Papers of Appeals and Interferences Fee Attached Appeal Communication to TC (Appeal Notice, Brief, Reply Brief) Petition Amendment/Reply Petition to Convert to a Proprietary Information After Final Provisional Application Power of Attorney, Revocation Status Letter Change of Correspondence Address Affidavits/declaration(s) Other Enclosure(s) (please Identify Terminal Disclaimer below): **Extension of Time Request** Request for Refund Express Abandonment Request CD, Number of CD(s)_ Information Disclosure Statement Landscape Table on CD Certified Copy of Priority Remarks Document(s) Reply to Missing Parts/ Incomplete Application Reply to Missing Parts under 37 CFR 1.52 or 1.53 SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT Firm Name Signature Printed name Reg. No. Date CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below:

Signature

Typed or printed name

Date

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

Appl. No. : 10/600,904

Applicants : Robert Sigurd Nelson, William Bert Nelson

Filing Date : June 20, 2003 Examiner : Irakli Kiknadze

Art Unit : 2882

Title : DEVICE AND SYSTEM FOR IMPROVED IMAGING IN NUCLEAR

MEDICINE AND MAMMOGRAPHY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

June 27, 2006

AMENDMENT

Dear Mr. Kiknadze:

In response to the Final Office Action of 06/15/2006 and our phone conversation of 06/27/2006, please amend claims 57, 58 of application 10/600,904 as follows:

IN THE CLAIMS

57. (Canceled) A method of calibrating a radiation detection system comprising: providing a known radiation source distribution that emits radiation, wherein the source is chosen from the group consisting of a uniform point-like source, a line-like source, a spherical source, a rod-like source, a collimated spot source, a slit source, a slot source, a grid pattern source, a planar flood field, and a shaped three-dimensional flood field,

measuring the level of radiation emitted from the source that is detected by the detection system, and

calibrating the detection system by evaluating the detected radiation and balancing the system based upon the detected radiation.