

Lesson Preview

- Defining diagnosis
- Data and hypothesis spaces
- Mapping data to hypotheses

- Two views of diagnosis

Patient:

A: Normal

B: High C: Low

D: Normal

E: Normal

F: Normal G: Normal

H: Low

What illness (or set of illnesses) would you use to diagnose this patient?

Illnesses:

- Alphaitis: Elevated A, Reduced C, Elevated F
- O Betatosis: Elevated B, Reduced C, Elevated E, Reduced H
- OGammanoma: Elevated D, Elevated E, Elevated F
- Deltacol: Elevated B, Reduced C
- Epsicusus: Reduced H
- Zetad: Elevated B, Reduced C, Reduced E, Reduced F
- Etaemia: Elevated A, Reduced D, Reduced H
- Thetadesis: Elevated B, Reduced C, Reduced H
- Iotalgia: Elevated A, Reduced E, Elevated F, Elevated G
- Kappacide: Reduced A, Reduced F, Reduced G
- Lambdacrite: Reduced A, Reduced E, Reduced F, Reduced G
- Mutension: Elevated A, Elevated G

Diagnosis: To determine what is wrong with a malfunctioning device.

Diagnosis: To determine what is wrong with a malfunctioning device.

Data Space	Hypothesis Space
D_1	H_1
D_2	H_2
D_3	H_3
D_4	H_4
D_5	H_5
D_6	H_6
D_7	H_7
D_8	H_8
D_9	H_9
D ₁₀	H ₁₀
D ₁₁	H ₁₁
D ₁₂	H ₁₂
$\overset{\cdots}{D_{N}}$	H_{N}

Problem #1: One data point, multiple hypotheses.

Problem #2: One hypothesis, multiple sets of data.

Problem #3: Multiple hypotheses, multiple sets of data.

Problem #4: Mutually exclusive hypotheses.

Problem #5: Interacting data points.

But D_5 and D_9 cancel each other out.

Deduction: Given the rule and the cause, deduce the effect.

Induction: Given a cause and an effect, induce a rule.

Abduction: Given a rule and an effect, abduce a cause.

Patient:

A: Normal

B: High

C: Low

D: Normal

E: Normal F: Normal

G: Normal

H: Low

What illness (or set of illnesses) would you use to diagnose this patient?

Illnesses:

- Alphaitis: Elevated A, Reduced C, Elevated F
- Betatosis: Elevated B, Reduced C, Elevated E, Reduced H
- Gammanoma: Elevated D, Elevated E, Elevated F
- Deltacol: Elevated B, Reduced C
- Epsicusus: Reduced H
- Zetad: Elevated B, Reduced C, Reduced E, Reduced F
- Etaemia: Elevated A, Reduced D, Reduced H
- Thetadesis: Elevated B, Reduced C, Reduced H
- Iotalgia: Elevated A, Reduced E, Elevated F, Elevated G
- Kappacide: Reduced A, Reduced F, Reduced G
- Lambdacrite: Reduced A, Reduced E, Reduced F, Reduced G

Criteria for Choosing Hypotheses

1. Hypotheses must cover as much of the data as possible.

Criteria for Choosing Hypotheses

- 1. Hypotheses must cover as much of the data as possible.
- 2. The smallest number of hypotheses ought to be used.

Criteria for Choosing Hypotheses

- 1. Hypotheses must cover as much of the data as possible.
- 2. The smallest number of hypotheses ought to be used.
- 3. Some hypotheses may be more likely than others.

Patient:

A: Normal

B: High

C: Low

D: Normal E: Normal

F: Low

G: Normal

H: Low

What illness (or set of illnesses) would you use to diagnose this patient?

Illnesses:

- Alphaitis: Elevated A, Reduced C, Elevated F
- Betatosis: Elevated B, Reduced C, Elevated E, Reduced H
- Gammanoma: Elevated D, Elevated E, Elevated F
- Deltacol: Elevated B, Reduced C
- Epsicusus: Reduced H
- Zetad: Elevated B, Reduced C, Reduced E, Reduced F
- Etaemia: Elevated A, Reduced D, Reduced H
- Thetadesis: Elevated B, Reduced C, Reduced H
- Iotalgia: Elevated A, Reduced E, Elevated F, Elevated G
- Kappacide: Reduced A, Reduced F, Reduced G
- Lambdacrite: Reduced A, Reduced E, Reduced F, Reduced G
- Mutension: Elevated A, Elevated G

Refine

What constraints dictated the design of this chair?

<u>Assignment</u>

How would you use diagnosis to design an agent that could answer Raven's progressive matrices?

To recap...

- Defining diagnosis
- Process of diagnosis
- Diagnosis as classification
- Diagnosis as abduction