Algebra2

siriehn_nx Tsinghua University siriehn_nx@outlook.com February 26, 2024

6 特征值与特征向量(Eigenvalues & eigenvector)

6.1 特征值与特征向量:定义与性质

Definition 6.1.1 设 ϕ 是 V 上的一个线性变换,如果存在 $\lambda \in \mathbb{F}$ 以及一个非零向量 $\xi \in V$ 使得 $\phi(\xi) = \lambda \xi$,那么称 λ 是 ϕ 的一个特征值,并且称 ξ 是 ϕ 中属于 λ 的特征向量.

Example 6.1.2

- 1. $V = C^{\infty}(\mathbb{R})$ 实数集上无限次可微实函数构成的向量空间,考虑映射 $V \to V, f(x) \mapsto f'(x)$,它是 V 上的一个线性变换,对于任意 $\lambda \in \mathbb{F}$,都有 $\delta(e^{\lambda x} = \lambda e^{\lambda x})$ 因此,每个实数都是 δ 的一个特征值.
- 2. $V = \mathbb{F}[x]$,于是映射 $\phi: V \to V$, $f(x) \mapsto xf(x)$ 是 V 上的一个线性变换,设 λ 是 ϕ 的一个特征值,即存在一个非零多项式 g(x) 使得 $\phi(g(x)) = \lambda g(x)$,此时不存在 g(x),于是 ϕ 中没有特征值.
- 3. $V \in \mathbb{R}$ 上二维向量空间,且 $\{\varepsilon_1, \varepsilon_2\}$ 是 V 的一个基,考虑 V 上的线性变换 ϕ ,满足

$$\phi(\varepsilon_1) = \varepsilon_2, \phi(\varepsilon_2) = \varepsilon_1 \tag{6.1.1}$$

易见, $\varphi(\varepsilon_1 + \varepsilon_2) = \varepsilon_1 + \varepsilon_2$, $\Longrightarrow 1$ 是 ϕ 的特征值,且 $\varepsilon_1 + \varepsilon_2$ 是 ϕ 的属于 1 的特征向量,同理 $\phi(\varepsilon_1 - \varepsilon_2) = \varepsilon_2 - \varepsilon_1$.

4. 定义 V 上的线性变换 $\psi: \psi(\varepsilon_1) = \varepsilon_2, \psi(\varepsilon_2) = -\varepsilon_1$,假设 $\lambda \in \mathbb{R}$ 是 ψ 的一个特征值,且 $0 \neq \eta = a\varepsilon_1 + b\varepsilon_2$ 是 ψ 的属于 λ 的特征向量,即 $\psi(\eta) = \lambda a\varepsilon_1 + \lambda b\varepsilon_2$,那么得到 $\lambda^2 = -1$,因此 ψ 没有特征值.

Problem -

如何求一个线性变换的特征值与特征向量?

下面总假定 V 是有限维向量空间.

设 $\phi \in \mathcal{L}(V)$, $\{\alpha_1,...,\alpha_n\}$ 是 V 的一个基,且设 ϕ 的在这个基下表示矩阵为 $A=\left(a_{ij}\right) \in M_{n(\mathbb{F})}$ 即 $(\varphi(\alpha_1),...,\varphi(\alpha_n))=(\alpha_1,...,\alpha_n)A$.

设
$$\lambda \in \mathbb{F}$$
 且 $0 \neq \xi = \sum_{i=1}^n a_i \alpha_i \in V$,记 $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$ 则 $\phi(\xi)$ 在 $\{\alpha_1,...,\alpha_n\}$ 下的坐标向量是 $A\alpha$ 并

且 $\lambda \xi$ 在 $\{\alpha_1,...,\alpha_n\}$ 下的坐标向量是 $\lambda \alpha$,因此 $\varphi(\xi) = \lambda \xi \Leftrightarrow A\alpha = \lambda \alpha \Leftrightarrow (\lambda I_n - A)\alpha = 0$. 综上得到:

1. $\lambda \in \mathbb{F}$ 是 ϕ 中的特征值 \iff $\det(\lambda I_n - A) = 0$.

2. $0 \neq \xi \in V$ 是 ϕ 中的特征值 λ 的特征向量 \Longleftrightarrow 他的坐标向量是个齐次线性方程组 $(\lambda I_n - A) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$ 的一个解.

Definition 6.1.3 设 $A \in M_{n(\mathbb{F})}$ 如果 $\lambda \in \mathbb{F}$ 与 $0 \neq \eta \in \mathbb{F}^n$ 满足 $A\eta = \lambda \eta$ 那么称 λ 是 A 的一个特征 值,且称 η 是 A 的属于 λ 的特征向量.

Definition 6.1.4 设 $A = (a_{ij} \in M_{n(\mathbb{F})})$ 称行列式

$$\det(xI_n - A) = \begin{vmatrix} x - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & x - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & x - a(nn) \end{vmatrix}$$
(6.1.2)

是 A 的特征多项式 (characteristic polynomial), 记作 $C_A(x)$ 或 C(x).

特征多项式的基本性质:

- 1. $C_A(x)$ 是一个 n 次首一多项式.
- 2. $\lambda \in \mathbb{F}$ 是 A 的特征值 $\iff \lambda$ 是 $C_A(x)$ 的根,特别地,A 的特征值的个数不超过 n.
- 3. 记 $C_A(x) = x^n a_1 x^{n-1} + \ldots + (-1)^i x^{n-i} + \ldots + (-1)^n a_n$,于是 a_i 等于 A 所有 i 阶主子式的和 $= \sum_{1 \leq k_1 < \ldots < k_i \leq n} \begin{vmatrix} a_{k_1 k_1} & \ldots & a_{k_1 k_n} \\ \vdots & \ddots & \vdots \\ a_{k_n k_1} & \ldots & a_{k_n k_n} \end{vmatrix}$
- 4. 设 $A,B\in M_{n(\mathbb{F})}$ 是相似的,即存在一个可逆矩阵 $P\in M_{n(\mathbb{F})}$,使得 $B=P^{-1}BP$,于是 $C_B(x)=|xI_n-B|=|xI_n-P^{-1}AP|=|P^{-1}(xI_n-A)P|=|xI_n-A|=C_A(x)$

Definition 6.1.5 设 V 是一个有限维向量空间,且 $\phi \in \mathcal{V}$,称 ϕ 的任意给定基下的矩阵 A 的特征多项式 $C_A(x)$ 为 ϕ 特征多项式,亦记作 $C_{\phi}(x)$.

 $\mathcal{L}(V) \ni \phi, \lambda$ 是 ϕ 的一个特征向量,设 $\xi, \eta \in V$ 都是 φ 的属于 λ 的特征向量,则对于 $\forall a, b \in \mathbb{F}$,有 $\phi(a\xi + b\eta) = a\phi(\xi) + b\phi(\eta)$,于是

$$\begin{split} V_{\lambda} &= \{\alpha \in V \,|\, \phi(\alpha) = \lambda \alpha \} \\ &= \{\phi \text{ 中的属于特征至 } \lambda \text{ 的特征向量} \} \cup \{0 \} \\ &= \operatorname{Ker}(\lambda \operatorname{id}_v - \phi) \end{split} \tag{6.1.3}$$

是 V 的子空间,且是 ϕ 的不变子空间.

Example 6.1.6

1.
$$A = \begin{pmatrix} A_1 & * & \dots & * \\ 0 & A_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_s \end{pmatrix}$$
是分块上三角阵, $A_i \in M_{n_i}(\mathbb{F}), i = 1, 2, \dots, s$. 于是 $C_A(x) = \prod_{i=1}^s C_{A_i}(x)$.

2. 求
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$$
 的特征值和特征向量.

2. 求
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$$
 的特征值和特征向量.
$$C_{A(x)} = \det(xI_3 - A) = \begin{vmatrix} x - 3 & -1 & 1 \\ -2 & x - 2 & 1 \\ -2 & -2 & x \end{vmatrix} = (x - 1)(x - 2)^2 \Longrightarrow \lambda_1 = 1, \lambda_2 = 2$$

后面解方程组得到 λ_1 的特征向量为 $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, λ_2 的特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

3.
$$n \ge 0, V = F[x]_n = \{f(x) = a_0 + a_1x + \dots + a_nx^n \mid a_0, a_1, \dots, a_n \in \mathbb{F}\}$$

定义
$$\sigma: V \to V, f(x) \mapsto f'(x) (\sigma \in \mathcal{L}(V))$$
,于是 σ 在基 $\left\{\frac{x^i}{i!}\right\}$ 的矩阵为

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} \Longrightarrow C_{\varphi}(x) = C_A(x) = x^{n+1} = 0, \ \text{则 } 0 \ \text{是 } \varphi$$
 唯一的特征值,且 $V_0 = \mathbb{F}$.

Lemma 6.1.7 (Schur's Lemma) 设
$$A=\left(a_{ij}\right)\in M_{n(\mathbb{F})}$$
 且 $C_A(x)=(x-\lambda_1)(x-\lambda_2)...(x-\lambda_n)$,其中 $\lambda_1,...,\lambda_n\in\mathbb{F}$,则存在 n 阶可逆矩阵 $P\in M_{n(\mathbb{F})}$ 使得 $P^{-1}AP=A=\begin{pmatrix} \lambda_1 & * & ... & * \\ 0 & \lambda_2 & ... & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \lambda_n \end{pmatrix}$.

Proof-

对于 n 使用数学归纳法

设 $n \ge 2$,且假设定理对于 n-1 成立.

设
$$A=\left(a_{ij}\right)\in M_{n(\mathbb{F})}$$
 且 $C_A(x)=\prod^n(x-\lambda_i)$ 取 $\alpha_1\in\mathbb{F}^n$ 是属于 λ_1 的特征向量,

则
$$A\alpha_1 = \lambda_1 \alpha_1$$
,将 α_1 扩展成 \mathbb{F}^n 的一个基, $\{\alpha_1, ..., \alpha_n\}$,记 $P_1 = (\alpha_1, ..., \alpha_n)$,则 $P_2 = (\alpha_1, ..., \alpha_n)$,则 $P_3 = (\alpha_1, ..., \alpha_n)$,则 $P_4 = (\alpha_1, ..., \alpha_n)$

设
$$A = (a_{ij}) \in M_{n(\mathbb{F})}$$
 且 $C_A(x) = \prod_{i=1} (x - \lambda_i)$ 取 $\alpha_1 \in \mathbb{F}^n$ 是属于 λ_1 的特征向量,则 $A\alpha_1 = \lambda_1\alpha_1$,将 α_1 扩展成 \mathbb{F}^n 的一个基, $\{\alpha_1, ..., \alpha_n\}$,记 $P_1 = (\alpha_1, ..., \alpha_n)$,则 P_1 可逆,并且 $AP_1 = A(\alpha_1, ..., \alpha_n) = (\alpha_1, ..., \alpha_n)$ $\begin{pmatrix} \lambda_1 & * & ... & * \\ 0 & b_{1,1} & ... & b_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n-1,1} & ... & b_{n-1,n-1} \end{pmatrix} = P_1 \begin{pmatrix} \lambda_1 & * \\ 0 & B \end{pmatrix}$ 其中

$$B=b_{ij}\in M_{n-1}(\mathbb{F})\; \mathbb{H}\; P_1^{-1}AP_1=\binom{\lambda_1\;\;*}{0\;\;B}.$$

$$\prod_{i=1}^{n} (x - \lambda_i) = C_A(x) = C_{P^{-1}AP}(x) = (x - \lambda_1)C_B(x)$$
根据归纳假设,存在可逆矩阵 Q ,
$$Q^{-1}BQ = \begin{pmatrix} \lambda_2 & * & \dots & * \\ 0 & \lambda_3 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \end{pmatrix}$$

$$Q^{-1}BQ = \begin{pmatrix} \lambda_2 & * & \dots & * \\ 0 & \lambda_3 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$\diamondsuit P = P_1 \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \in M_n(\mathbb{F}) \Longrightarrow P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & Q^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ 0 & B_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}, \square$$

Corollary 6.1.8 设 $\dim_{\mathbb{F}} V = n, \phi \in \mathcal{L}(V)$ 且 $C_{\phi}(x) = \prod_{i=1}^{n} (x - \lambda_{i})(\lambda_{i} \in \mathbb{F})$,则存在一个基 $\{\varepsilon_{1}, ..., \varepsilon_{n}\}$ 使得 ϕ 在这个基下表示矩阵为:

$$P = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
(6.1.4)

Example 6.1.9 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R}), C_A(x) = x^2 + 1$,则不存在可逆矩阵 $P \in M_2(\mathbb{R})$ 使得其相似于上三角矩阵.

Corollary 6.1.10

- 1. 任意一个 n 阶复矩阵都相似于上三角阵.
- 2. $\phi \in \mathbb{R}$ 维复向量空间 V 上的一个基使得 ϕ 在这个基下的矩阵是上三角矩阵.

设 $A \in M_{n(\mathbb{F})}$ 且 α 是 A 的属于 λ 的特征值,即 $A\alpha = \lambda \alpha$,即对于任意 $k \geq 1$, $A^k \alpha = \lambda^k \alpha$,即 λ^k 是 A^k 的特征值.

更一般地,设 $p(x) = \sum_{i=0}^m a_i x^i \in \mathbb{F}[x]$,则 α 是 p(A) 的属于特征值 $p(\lambda)$ 的特征向量.

Proposition 6.1.11 设 $A\in M_n(\mathbb{F})$ 且 $p(x)\in \mathbb{F}[x]$ 满足 p(A)=0,若 λ 是 A 的特征值,则 $p(\lambda)=0$.

Proposition 6.1.12 设 $A=\left(a_{ij}\right)\in M_{n(\mathbb{F})}$ 且 $\lambda_1,...,\lambda_n$ 是 A 的所有特征值,即 $C_A(x)=\prod_{i=1}^{n(x-\lambda_i)}$

- 1. 对于任意 $f(x) \in \mathbb{F}[x], f(\lambda_1), ..., f(\lambda_n)$ 是 f(A) 所有特征值.
- 2. 若 A 可逆,则 $\lambda_1^{-1},...,\lambda_n^{-1}$ 是 A^{-1} 的所有特征值.

Proof-

由 Schur's Lemma 知,存在可逆矩阵

$$P \in M_n(\mathbb{F}), \text{ s.t. } P^{-1}AP = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$\implies \forall k \ge 1, P^{-1}A^kP = \begin{pmatrix} \lambda_1^k & * & \dots & * \\ 0 & \lambda_2^k & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{pmatrix}$$

$$\implies P^{-1}f(A)P = f(P^{-1}AP)$$

Immer mit den einstellungen Beispielen anfangen.

- David Hilbert

Definition 6.2.1 (对角化)

设 $\dim_{\mathbb{F}} V = n, \varphi \in \mathcal{L}(V)$

- 1. 设 ϕ 是 \mathbb{F} 上的有限维向量空间,如果存在 V 的一个基使得 ϕ 在这个基下表示矩阵是对角阵,则称 ϕ 是可对角化的.
- 2. 称一个 n 阶矩阵 $A \in M_{n(\mathbb{F})}$ 是可对角化的,若存在可逆矩阵 $P \in M_{n(\mathbb{F})}$ 使得 $P^{-1}AP$ 是一个对角阵.

根据定义, $\phi \in \mathcal{L}(V)$ 可对角化当且仅当 ϕ 在 V 的任意一个基下的矩阵是可对角化的.

Proposition 6.2.2

- 1. 设 dim $V = n, \varphi \in \mathcal{L}(V)$,则 ϕ 是可对角化的当且仅当 ϕ 有 n 个无关的特征向量 ($\iff V$ 有一个 由 ϕ 的特征向量构造的基).
- 2. 设 $A \in M_{n(\mathbb{F})}$ 则 A 可对角化当且仅当 A 有 n 个无关的特征向量.

Proof

1.
$$(\phi(\alpha_1),...,\phi(\alpha_n)) = (\alpha_1,...,\alpha_n) \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \Longleftrightarrow \varphi(\alpha_i) = \lambda_1 \alpha_i, i = 1,...,n$$

2. 设 A 可对角化,存在可逆矩阵 P 使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \Longrightarrow AP = P \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \ \ \mbox{$\Bar{$\Bar{\mathbb{Z}}$}$} \ \ P = \alpha_1, \dots, \alpha_n \ \mbox{$\Bar{\mathbb{Z}}$} \ \ \mbox{$\Bar{\mathbb{Z}}$} \ \ \alpha_1, \dots, \alpha_n \ \mbox{$\Bar{\mathbb{Z}}$} \ \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \ \mbox{$\Bar{\mathbb{Z}$}$} \mbox{$$$

线性无关,并且 $A\alpha_i = \lambda_i \alpha_i$,则找到了 n 个线性无关的特征列向量.

反过来的证明是类似的.

Example 6.2.3

- 1. $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, A 有唯一的特征值 $\lambda = 0$, 并且 A 的属于 $\lambda = 0$ 的特征向量为 $\begin{pmatrix} a \\ 0 \end{pmatrix}$ $(0 \neq a \in \mathbb{F})$, 于是这个矩阵不可对角化.
- 2. $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $C_A(x) = x^2 + 1$,将 A 看作 $\mathbb R$ 上的矩阵,它不可对角化.将 A 看作 $\mathbb C$ 上的矩阵,则有两个特征值 i 与 -i,并且 $\begin{pmatrix} i \\ 1 \end{pmatrix}$, $\begin{pmatrix} i \\ -1 \end{pmatrix}$ 是 A 分别属于 i 和 -1 的特征值.令 $P = \begin{pmatrix} i & i \\ 1 & -1 \end{pmatrix}$, $P^{-1}AP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$

Theorem 6.2.4 设 dim $V = n, \varphi \in \mathcal{L}(V), \lambda_1, ..., \lambda_t \in \mathbb{F}$ 的互补相同的特征值,若 $\xi_1, ..., \xi_t$ 分别是属于 ϕ 属于特征值 $\lambda_1, ..., \lambda_n$ 的特征向量,则 $\xi_1, ..., \xi_t$ 线性无关.

证明是简单,不再赘述.

Corollary 6.2.5

- 1. 设 dim V = n 且 $\phi \in \mathcal{L}V$, 若 ϕ 中有 n 个互补相同的特征值,则 ϕ 可对角化.
- 2. $\lambda \in \phi$ 的特征向量 $\longrightarrow V_{\lambda} = \text{Ker}(\lambda I_n A]$
- 3. 设 $V=n, \phi \in \mathcal{L}(V), \lambda_1, ...\lambda_t$,是互不相同的特征值,则 $V_{\lambda_1}+...+\dim V_{\lambda_t}=V_{\lambda_1}\times V_{\lambda_0}\times...\times V_{\lambda_t},$ 特别的 $\sum \dim_{\lambda_i} \leq \dim V$

Theorem 6.2.6 设 $\dim_{\mathbb{F}}V=n, \phi\in\mathcal{L}(V)$, 且 $\lambda_1,...,\lambda_t\in\mathbb{F}$ 是 ϕ 中所有互不相同的特征值,则 ϕ 可对角化,当且仅当 $V=V_{\lambda_1}\times...\times V_{\lambda_t}$

- Proof -

"⇒"设 ϕ 可对角化,取 $\xi_1,...,\xi_n$ 是 ϕ 的线性无关的特征向量.

•
$$\xi_1, ..., \xi_{s_1} \in V_{\lambda_1}$$

•
$$\xi_{s_1+1}, ..., \xi_{s_2} \in V_{\lambda_2}$$

• ...

•
$$\xi_{\sum_{i=1}^{t-1} s_i + 1}, ..., \xi_t \in V_{\lambda_t}$$

其中 $s_1 + \ldots + s_t = n$,而由于 $s_i \leq \dim V_{\lambda_i}$

于是
$$n = \sum_{\{i=1\}}^t s_i \le \sum_{i=1}^t V \dim V_{\lambda_i} = n$$

" \leftarrow ",取 V 的基 $\left\{\xi_{i_1},...,\xi\left(i_{s_i}\right)\right\}$,其中 $s_i=\dim V_{\lambda_i}$,则 $\xi_{11},...,\xi_{1s_i},\xi_{21},...,\xi(t,s_t)$ 是 V 的一个基,于是 ϕ 可对角化.

Definition 6.2.7 设 $\dim_V = n, \varphi \in \mathcal{L}(V)$ 是 ϕ 中的特征值,称 $\dim V_{\lambda(\lambda)}$ 是 λ 的几何重数 (geometroc),称 λ 作为 $C_{\varphi}(X)$ 的根的重数为代数重数(deynamic mathiplicity).

Example 6.2.8 $V = \mathbb{F}[x]_n, \delta V \longrightarrow V, f(x) \mapsto f'(x)$,这表明几何重数为 1,代数重数 有n+1 个.

Lemma 6.2.9 设 $V = n, \phi(\lambda)$ 且 λ 是其中 ϕ 的一个特征值,则

$$\lambda$$
 几何重数 $\leq \lambda$ 代数重数 (6.2.5)

Proof

记 $s = \dim V_{\lambda}$ 取 V_{λ} 的一组基 $\{\xi_1, ..., \xi_s\}$ 将其扩充为 V 的一个基 $\{\xi_1, ..., \xi_n\}$,于是有 $(\phi(\xi_1), ..., \phi(\xi_s), ..., \phi(\xi_n)) = (\xi_1, ..., \xi_s, ..., \xi_n) \begin{pmatrix} \lambda I_s & C \\ 0 & B \end{pmatrix} \Longrightarrow C_{\phi}(x) = (x - \lambda)^s C_B(x).$

Theorem 6.2.10 设 $\dim_{\mathbb{F}} V = n$ 且 $\phi \in \mathcal{L}(V)$ 则 ϕ 可对角化当且仅当下面两个条件满足:

1.
$$C_{\phi}(x) = \prod_{i=1}^{t} (x - \lambda_i)^{s_i}$$
,其中 $\lambda_1, ..., \lambda_t$ 互不相同, $s_1, ..., s_t \ge 1$.

2. 对于 $1 \leq i \leq t$,有 $s_i = \dim \operatorname{Ker}(\lambda_i \operatorname{id}_V - \phi)$.

Proof

"⇒" 设 ϕ 可对角化,则 $V=V_{\lambda_1}\times ...\times V_{\lambda_t}$,其中 $\lambda_1,...,\lambda_t$ 是所有互不相同的特征值.

对于
$$1 \leq i = t$$
 取 V_{λ_i} 的一个基 $\left\{ \xi_{i_1}, ..., \xi_{i_{s_i}} \right\}$ 其中 $s_i = \dim V_{\lambda_i}$.

于是 ϕ 在 V 的基 $\left\{ \xi_{i_1}, ..., \xi_{i_{s_i}} \middle| 1 \leq i \leq t \right\}$ 下的矩阵为 $A = \begin{pmatrix} \lambda_1 I_{s_1} & 0 & ... & 0 \\ 0 & \lambda_2 I_{s_2} & ... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \lambda_n I_{s_n} \end{pmatrix}$

$$\implies C_{\phi}(x) = C_A(x) = \prod_{i=1}^t (x - \lambda_i)^{s_i} \text{ 并且 } \lambda_i \text{ 的代数重数} = s_i = \dim V_{(\lambda)_i}$$
" \iff $n = \sum_{\{i=1\}}^t s_i = \dim V_{\lambda_1} + ... + \dim V_{\lambda_t} \implies V = V_{\lambda_1} \times ... \times V_{\lambda_t}$

Problem

设 $A \in M_{n(\mathbb{F})}$ 判断 A 是否可对角化的步骤

- 1. 计算 $C_A(x) = \det(xI_n A)$
- 2. 求 $C_A(x)$ 的所有复根,若存在一个不在 \mathbb{F} 的根,则不可对角化.
- 3. 设 $C_A(x)$ 在 \mathbb{F} 中有 n 个根,若存在一个 A 的特征值 $\lambda \in \mathbb{F}$,使得 λ 的几何重数 $<\lambda$ 的代数重数则 A 不可对角化.
- 3. 设 $C_A(x)$ 在 \mathbb{F} 中有 n 个根,若存在一个 A 的特征值 $\lambda \in \mathbb{F}$,使得 λ 的几何重数 $<\lambda$ 的代数重数则 A 不可对角化.

34 设 $C_A(x)$ 在 \mathbb{F} 中有 n 个根,若对于所有 A 的特征值 $\lambda \in \mathbb{F}$,使得 λ 的几何重数 = λ 的代数重数则 A 可对角化.

设 $\lambda_1,...,\lambda_t$ 是 A 的所有互不相同的特征值,取 V_{λ_i} 的一个基 $\left\{\xi_{i_1},...,\xi_{i_{s_i}}\right\}$,并且记 $P = \begin{pmatrix} \xi_{1_1},...,\xi_{1_{s_1}},...,\xi_{t_1},...,\xi_{t_{s_t}} \end{pmatrix} \in M_{n(\mathbb{F})}$ $\begin{pmatrix} \lambda_1 I_{s_1} & 0 & ... & 0 \\ 0 & \lambda_1 I_{s_1} & 0 & ... & 0 \end{pmatrix}$

则有
$$P^{-1}AP=egin{pmatrix} \lambda_1I_{s_1} & 0 & \dots & 0 \\ 0 & \lambda_2I_{s_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_nI_{s_n} \end{pmatrix}.$$