AM216 Stochastic Differential Equations

Lecture 05 Copyright by Hongyun Wang, UCSC

List of topics in this lecture

- Non-dimensionalization, advantage of working with $\frac{dW(t)}{\sqrt{dt}}$
- Gambler's ruin, Case 2: a biased game
- White noise dW/dt is not a regular function in the conventional sense
- Interpretation of the delta function: taking the limit after operations
- Fourier transform (FT), properties of FT

Recap

Properties of W(t):

- $dW = O(\sqrt{dt})$,
- Arclength of W(t) over finite time is infinity
- Ito's lemma: $(dW)^2$ can be replaced with dt.

The Gambler's ruin problem (Continued)

Case 2: a biased game

$$dX = -mdt + dW$$
, $m < 0$

It is a biased game: $E_{dW}(dX) = -mdt < 0$; on average, you are losing money.

Before we solve case 2, let us study scaling and non-dimensionalization, which is a key component in modeling, analysis and simulations.

Scaling and non-dimensionalization

We look at the dimensions of various physical quantities

[X] = \$, X and dX have the dimension of money

[t] = time, t and dt have the dimension of time

$$E(W^2) = t$$

==>
$$[W]=[\sqrt{t}]=\sqrt{\text{time}}$$
, W and dW have the dimension of $\sqrt{\text{time}}$

The original physical equation of case 1 (before non-dimensionalization) should be

$$dX = \sqrt{\sigma^2} \ dW$$

where the dimension of σ is

$$[\sigma] = \frac{[dX]}{[dW]} = \frac{\$}{\sqrt{\text{time}}}.$$

The original physical equation of case 2 is

$$dX = -mdt + \sqrt{\sigma^2} \, dW \tag{E01}$$

where

$$[X] = \$$$
, $[dt] = \text{time}$, $[m] = \frac{\$}{\text{time}}$, $[\sigma] = \frac{\$}{\sqrt{\text{time}}}$, $[dW] = \sqrt{\text{time}}$

We re-write the physical equation as

$$dX = -mdt + \sqrt{\sigma^2 dt} \frac{dW(t)}{\sqrt{dt}}$$
 (E02)

Advantage of working with $\frac{dW(t)}{\sqrt{dt}}$

$$dW(t) \sim N(0, dt) = \sqrt{dt} N(0, 1)$$

==>
$$\frac{dW(t)}{\sqrt{dt}} \sim N(0,1)$$
 is dimensionless and independent of dt and t .

This property is especially useful in non-dimensionalization!

Caution:
$$\frac{dW(t)}{\sqrt{dt}}$$
 is not $\frac{dW(t)}{dt}$, which we will discuss later.

Notation for dimensionless

$$\left\lceil \frac{X}{\$} \right\rceil$$
 = one, $\left\lceil \frac{dW}{\sqrt{dt}} \right\rceil$ = one

<u>Caution:</u> "one" means <u>"dimensionless"</u>. It does not mean numerical value 1.

$$\frac{\$8}{\$} = 8$$
, $\left[\frac{\$8}{\$}\right] = \text{one}$

Objectives of non-dimensionalizing (E02)

AM216 Stochastic Differential Equations

- A dimensionless equation
- Getting rid of parameter σ .

Scales for various physical quantities

<u>Time scale:</u> $[t_0]$ = time

In this problem, we select the time scale t_0 , for example, $t_0 = 1$ minute.

Money scale: $\left[\sqrt{\sigma^2 t_0}\right] = \$$

The money scale is derived from the given σ and the selected time scale t_0 .

Non-dimensional quantities

Non-dimensional time: $t_{ND} = \frac{t}{t_0}$

Non-dimensional money: $X_{ND} = \frac{X}{\sqrt{\sigma^2 t_0}}$

Non-dimensional equation

Start with the physical equation: $dX = -mdt + \sqrt{\sigma^2 dt} \frac{dW(t)}{\sqrt{dt}}$

We write all physical quantities in terms of non-dimensional quantities and then substitute into the physical equation

$$t = t_0 t_{ND}$$
, $X = \sqrt{\sigma^2 t_0} X_{ND}$

$$dt = t_0 dt_{ND}$$
, $dX = \sqrt{\sigma^2 t_0} dX_{ND}$, $\frac{dW(t)}{\sqrt{dt}} = \frac{dW(t_{ND})}{\sqrt{dt}}$

Recall $\frac{dW(t)}{\sqrt{dt}} \sim N(0,1)$ is dimensionless and independent of dt and t.

==>
$$\sqrt{\sigma^2 t_0} dX_{ND} = -mt_0 dt_{ND} + \sqrt{\sigma^2 t_0 dt_{ND}} \frac{dW(t_{ND})}{\sqrt{dt_{ND}}}$$

Divide the equation by $\sqrt{\sigma^2 t_{_0}}$, we obtain

$$dX_{\rm ND} = -m \frac{t_0}{\sqrt{\sigma^2 t_0}} dt_{\rm ND} + \sqrt{dt_{\rm ND}} \frac{dW(t_{\rm ND})}{\sqrt{dt_{\rm ND}}}$$

Re-writing it in terms of dW, we arrive at the dimensionless equation

$$dX_{ND} = -m_{ND}dt_{ND} + dW(t_{ND}), \qquad m_{ND} \equiv m\sqrt{\frac{t_0}{\sigma^2}}$$

Once we have the dimensionless equation, we can drop the subscript "ND" and revert back to the simple notation (X, t, C, m).

$$dX = -mdt + dW$$

Summary

When we work with the dimensionless equation, dX = -mdt + dW,

we need to keep in mind that

$$X = \frac{X_{\text{phy}}}{\sqrt{\sigma^2 t_0}}, \qquad C = \frac{C_{\text{phy}}}{\sqrt{\sigma^2 t_0}}, \qquad t = \frac{t_{\text{phy}}}{t_0}, \qquad m = m_{\text{phy}}\sqrt{\frac{t_0}{\sigma^2}}$$

where the subscript phy denotes the physical quantity before non-dimensionalization.

Solutions of case 2

For the biased game, we again study the two questions.

Question #1: How long can you play?

Question #2: What is the chance that you break the bank?

Answer to Question #2

The strategy we use is the same as that in case 1.

Let
$$u(x) = \Pr(A \mid X(0) = x)$$
, $A = \{X(t) \text{ hits C before 0}\}$

Strategy:

Find a boundary value problem (BVP) governing u(x).

Boundary condition:

$$u(C) = 1$$
 and $u(0) = 0$.

<u>Differential equation:</u>

Start with $X(0) = x \in (0, C)$. After a small time step, X(dt) has the expression

$$X(dt) = x + dX$$
, $dX = -m dt + dW$

We need to calculate moments of dX.

$$E_{dW}(dX) = E_{dW}(-mdt + dW) = -mdt$$

$$E_{dW}((dX)^2) = E_{dW}((-mdt)^2 + 2(-mdt)dW + (dW)^2) = dt + o(dt)$$

For a fixed $x \in (0, \mathbb{C})$, when dt is small enough (depending on x), we have

$$u(x) = E_{dW}(u(x+dX)) + o(dt)$$
 (The law of total probability)

$$=E_{dW}\left(u(x)+u_{x}dX+\frac{1}{2}u_{xx}(dX)^{2}\right)+o(dt)$$

(This is where we need moments of dX.)

$$= u(x) - u_x m dt + \frac{1}{2} u_{xx} dt + o(dt)$$

Divide by dt and then take the limit as $dt \rightarrow 0$, we obtain a 2nd order ODE for u(x)

$$u_{yy} - 2mu_{y} = 0$$

Function u(x) satisfies the boundary value problem (BVP)

$$\begin{cases} u_{xx} - 2mu_x = 0 & \text{differential equation} \\ u(0) = 0, \ u(C) = 1 & \text{boundary conditions} \end{cases}$$

Solution of the BVP:

$$u(x) = \frac{e^{-2mC}(e^{2mx} - 1)}{1 - e^{-2mC}}$$
 (homework problem)

When mC is moderately large (for example, $mC \ge 5$), we have

$$u(x) = \frac{e^{-2mC}(e^{2mx} - 1)}{1 - e^{-2mC}} \approx e^{-2mC}(e^{2mx} - 1)$$

which decays exponentially with the factor e^{-2mC} .

Comparison of fair game vs biased game

We look at u(C/2), the probability of breaking the bank when you and the casino start with the same amount of cash, (C/2).

Fair game:
$$u(x) = x/C = \Rightarrow u\left(\frac{C}{2}\right) = \frac{1}{2}$$

Biased game:
$$u\left(\frac{C}{2}\right) \approx e^{-2mC} \left(e^{2mC/2} - 1\right) \approx e^{-mC}$$

which decays exponentially with mC.

For example,
$$mC = 5$$
 ==> $e^{-mC} = e^{-5} = 0.0067$.

Answer to Question #1

Let
$$T(x) = E(Z | X(0) = x)$$
, $Z = (\text{time from 0 until } X(t) = C \text{ or } X(t) = 0)$.

Strategy:

Find a boundary value problem (BVP) governing T(x).

Boundary condition:

$$T(C) = 0$$
 and $T(0) = 0$.

<u>Differential equation:</u>

Start with $X(0) = x \in (0, C)$. After a small time step, X(dt) has the expression

$$X(dt) = x + dX$$
, $dX = -m dt + dW$

The moments of *dX* are

$$E_{dW}(dX) = -mdt$$
, $E_{dW}((dX)^2) = dt + o(dt)$

For a fixed $x \in (0, \mathbb{C})$, when dt is small enough (depending on x), we have

$$T(x) = dt + E_{dW}(T(x+dX)) + o(dt)$$
 (The law of total expectation)

$$= dt + E_{dW} \left(T(x) + T_{X} dX + \frac{1}{2} T_{XX} (dX)^{2} \right) + o(dt)$$

(This is where we need moments of dX.)

$$= dt + T(x) - T_x m dt + \frac{1}{2} T_{xx} dt + o(dt)$$

Divide by dt and then take the limit as $dt \rightarrow 0$, we obtain an ODE for T(x)

$$T_{yy} - 2mT_{y} = -2$$

Function T(x) satisfies the boundary value problem (BVP)

$$\begin{cases} T_{xx} - 2mT_x = -2 & \text{differential equation} \\ T(0) = 0, T(C) = 0 & \text{boundary conditions} \end{cases}$$

The solution of the BVP:

$$T(x) = \frac{x}{m} - \frac{C}{m} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right)$$
 (homework problem)

When mC is moderately large (for example, $mC \ge 5$), we have

$$T(x) = \frac{x}{m} \cdot \left(1 - \frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1}\right)\right) \approx \frac{x}{m} \quad \text{for } x \le \frac{C}{2}$$

Here we have used $\frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right) << 1$, which is derived in Appendix A.

The result, $T(x) \approx x/m$, is consistent with the intuitive picture that if your cash decreases with speed m, then your initial cash x will last a time period of (x/m).

Meaning of $mC \ge 5$ in terms of physical quantities:

$$m = m_{\text{phy}} \sqrt{\frac{t_0}{\sigma^2}}$$
, $C = \frac{C_{\text{phy}}}{\sqrt{\sigma^2 t_0}}$, $x = \frac{x_{\text{phy}}}{\sqrt{\sigma^2 t_0}}$

$$==> mC = \frac{m_{\rm phy}C_{\rm phy}}{\sigma^2}$$

$$mC \ge 5$$
 corresponds to $\frac{m_{\text{phy}}C_{\text{phy}}}{\sigma^2} \ge 5$.

An example (with physical parameters)

Consider a biased game with physical parameters below.

$$\sigma = 5 \frac{\$}{\sqrt{\min}}, \quad m_{\text{phy}} = 0.25 \frac{\$}{\min}$$

$$C_{\text{phy}} = 1000\$$$
, $x_{\text{phy}} = 500\$$

The scales are

$$t_0 = 1 \text{ min (we select } t_0), \qquad \sqrt{\sigma^2 t_0} = 5$$
\$

The dimensionless quantities are

$$m = m_{\text{phy}} \sqrt{\frac{t_0}{\sigma^2}} = 0.05$$
, $C = \frac{C_{\text{phy}}}{\sqrt{\sigma^2 t_0}} = 200$, $mC = 10$

$$x = \frac{x_{\text{phy}}}{\sqrt{\sigma^2 t_0}} = 100, \quad mx = 5$$

Since mC = 10, the approximate expressions for u(x) and T(x) are valid.

Probability of breaking the bank:

$$u(x) \approx e^{-2mC} (e^{2mx} - 1) = e^{-20} (e^{10} - 1) \approx e^{-10} = 4.54 \times 10^{-5}$$

The chance of breaking the bank is virtually zero even though you and the casino start with the same amount \$500.

Average time until the end of game:

$$T(x) \approx \frac{x}{m} = \frac{100}{0.05} = 2000$$

The physical time until the end of game is

$$T_{\rm phy} = T t_0 = 2000 \text{ minutes.}$$

White noise
$$\frac{dW}{dt}$$

Consider the stochastic differential equation (SDE)

$$dX = -mdt + dW$$

We write the "formal" derivative of *X* as

$$\frac{dX}{dt} = -m + \frac{dW}{dt}$$

Recall that in SDE, dt is finite until we take the limit as $dt \rightarrow 0$.

Here $\lim_{dt\to 0} \frac{dW}{dt}$ does not exist in the conventional sense.

Key strategy: We take the limit AFTER its interactions with other entities.

The short story of white noise

1)
$$Z(t) \equiv \frac{dW}{dt} = \frac{1}{\sqrt{dt}} \cdot \frac{dW}{\sqrt{dt}}, \quad \frac{dW}{\sqrt{dt}} \sim N(0,1)$$

Z(t) diverges to $\pm \infty$ as $dt \rightarrow 0$. Z(t) is not a regular function.

2)
$$E(Z(t)Z(s)) = \delta(t-s)$$

3)
$$\int e^{-i2\pi\xi t} E(Z(t)Z(0))dt = 1$$

4) Z(t) is a white noise (we will clarify what that means).

Before we discuss the details in the $\underline{long\ story\ of\ white\ noise}$, we review some of the mathematical tools/methods we will use.

Mathematical preparations

<u>Delta function</u> (Dirac's delta function):

Definition 1:

Consider the limit of a boxcar function.

$$\lim_{d\to 0}\Pi_d(x)$$

where
$$\Pi_d(x) = \begin{cases} \frac{1}{d}, & \text{for } x \in \left(\frac{-d}{2}, \frac{d}{2}\right) \\ 0, & \text{otherwise} \end{cases}$$

This limit does not exist in the conventional sense.

However, for any smooth function g(x), we have

$$\lim_{d\to 0} \int \Pi_d(x)g(x)dx = g(0)$$

We "formally" denote $\lim_{d\to 0} \Pi_d(x)$ by $\delta(t)$.

$$\delta(x) = \lim_{d \to 0} \Pi_d(x)$$

 $\delta(x)$ "formally" satisfies

$$\int \delta(x)g(x)dx = g(0) \qquad \text{for all smooth functions } g(x).$$

The true meaning of the LHS is
$$\int \delta(x)g(x)dx \xrightarrow{\text{Defined as}} \lim_{d\to 0} \int \Pi_d(x)g(x)dx$$

The <u>key strategy</u> in making sense of $\lim_{d\to 0} \Pi_d(x)$ is that we take the limit AFTER integrating $\Pi_d(x)$ with smooth function g(x).

Definition 2:

In a similar way, we can define $\delta(x)$ as the limit of a normal distribution

$$\delta(x) = \lim_{\sigma \to 0} \rho_{N(0,\sigma^2)}(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$

These two definitions are equivalent. We use whichever is convenient.

Remark:

Both definitions are based on the probability density of a scaled random variable with the multiplier converging to zero.

Definition 1:
$$\delta(x) = \lim_{\sigma \to 0} \rho_{\sigma X}(x)$$
, $X \sim \text{uniform}\left(\frac{-1}{2}, \frac{1}{2}\right)$

Definition 2:
$$\delta(x) = \lim_{\sigma \to 0} \rho_{\sigma X}(x)$$
, $X \sim N(0,1)$

Fourier transform (FT):

Forward transform:

$$\underbrace{\hat{y}(\xi)}_{\text{Notation}} \equiv \underbrace{F[y(t)]}_{\text{Operator notation}} \equiv \int_{-\infty}^{+\infty} \exp(-i2\pi\xi t) y(t) dt$$

Inverse transform:

$$y(t) = F^{-1}[\hat{y}(\xi)] \equiv \int_{-\infty}^{+\infty} \exp(i2\pi\xi t) \hat{y}(\xi) d\xi$$

Remark: There are several versions of FT. They are all equivalent by a scaling.

Alternative FT 1:
$$F[y(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp(-i\omega t) y(t) dt$$

Alternative FT 2:
$$F[y(t)] = \int_{0}^{+\infty} \exp(-i\omega t)y(t)dt$$

Properties of Fourier transform:

1) Fourier transform of a normal PDF

$$F\left[\rho_{N(0,\sigma^2)}(t)\right] = F\left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-t^2}{2\sigma^2}\right)\right] = \exp\left(-2\pi^2\sigma^2\xi^2\right)$$

Proof:

Use the characteristic function (CF) of a normal RV we derived in Lecture 3. Then use the connection between the CF and the Fourier transform of PDF.

2) Fourier transform of the delta function

$$F[\delta(t)] = 1$$

Proof: We view the delta function as the limit of normal distribution

$$\delta(t) = \lim_{\sigma \to 0} \rho_{N(0,\sigma^2)}(t)$$

We apply the Fourier transform and then take the limit as $\sigma \rightarrow 0.$

$$F\left[\delta(t)\right] = \lim_{\sigma \to 0} F\left[\rho_{N(0,\sigma^2)}(t)\right] = \lim_{\sigma \to 0} \exp\left(-2\pi^2 \sigma^2 \xi^2\right) = 1$$

3) Fourier transform of $y(t) \equiv 1$

$$F[1] = \delta(\xi)$$

<u>Proof:</u> $F[1] = \int_{-\infty}^{+\infty} \exp(-i2\pi\xi t) dt$ does not converge in the conventional sense!

We view 1 as the limit of

$$1 = \lim_{\sigma \to \infty} \exp\left(\frac{-t^2}{2\sigma^2}\right)$$

We apply the Fourier transform and then take the limit as $\sigma \to \infty$.

$$F[1] = \lim_{\sigma \to \infty} F\left[\exp\left(\frac{-t^2}{2\sigma^2}\right)\right], \quad \rho_{N(0,\sigma^2)}(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-t^2}{2\sigma^2}\right)$$

$$= \lim_{\sigma \to \infty} \sqrt{2\pi\sigma^2} F\left[\rho_{N(0,\sigma^2)}(t)\right] = \lim_{\sigma \to \infty} \sqrt{2\pi\sigma^2} \exp\left(-2\pi^2\sigma^2\xi^2\right)$$

$$= \lim_{\sigma \to \infty} \frac{1}{\sqrt{2\pi\left(\frac{1}{4\pi^2\sigma^2}\right)}} \exp\left(\frac{-\xi^2}{2\left(\frac{1}{4\pi^2\sigma^2}\right)}\right) = \lim_{\sigma \to \infty} \rho_{N(0,\sigma^2)}(\xi)$$

$$= \lim_{\sigma \to \infty} \rho_{N(0,\sigma^2)}(\xi) = \delta(\xi)$$

Key observation:

If an operator acting on the limit of a function is invalid in the conventional sense, we can try to <u>make sense</u> of it by <u>delaying taking the limit</u>. That is, we first apply the operator and then we take the limit afterwards. That is why in the discussion of stochastic differential equations, *dt* is finite until we take the limit at the end.

Example:

"Formally" we can conveniently write

$$\int \underbrace{\lim_{\sigma \to 0} \rho_{N(0,\sigma^2)}(t)}_{\text{Not a regular function}} g(t) dt = \int \delta(t) g(t) dt = g(0)$$

The true mathematical meaning is

$$\lim_{\sigma \to 0} \int \rho_{N(0,\sigma^2)}(t)g(t)dt = g(0)$$

which makes sense and is mathematically rigorous.

Appendix A

<u>Theorem:</u> When mC is moderately large and $x \le C/2$, we have

$$\frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right) << 1$$

Proof: We first introduce a lemma.

<u>Lemma:</u> Function $f(s) = \frac{e^s - 1}{s}$ increases monotonically for s > 0.

Proof:

$$\frac{e^{s}-1}{s} = \frac{1}{s} \left(\sum_{n=0}^{\infty} \frac{1}{n!} s^{n} - 1 \right) = \sum_{n=1}^{\infty} \frac{1}{n!} s^{n-1}$$

Each term in the summation is positive, and increases monotonically for s > 0.

End of proof

Apply the lemma to $\frac{e^{2mx}-1}{x}$ for $x \le C/2$, we get

$$\frac{e^{2mx} - 1}{x} = 2m \cdot \underbrace{\frac{(e^{2mx} - 1)}{2mx}}_{f(2mx)} \le 2m \cdot \underbrace{\frac{(e^{2mC/2} - 1)}{2mC/2}}_{f(2mC/2)} = \frac{2(e^{mC} - 1)}{C}$$

Using this inequality, we write $\frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right)$ as

$$\frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right) = \frac{C}{(e^{2mC} - 1)} \left(\frac{e^{2mx} - 1}{x} \right) \le \frac{C}{(e^{2mC} - 1)} \frac{2(e^{mC} - 1)}{C}$$

$$= \frac{2(e^{mC} - 1)}{(e^{2mC} - 1)} = \frac{2}{e^{mC} + 1} \approx 2e^{-mC} <<1 \qquad \text{for moderately large } mC$$

Therefore, we conclude $\frac{C}{x} \left(\frac{e^{2mx} - 1}{e^{2mC} - 1} \right) << 1$ when mC is moderately large and $x \le C/2$.