Dự Đoán Khả Năng Sống Sót Thảm Họa Titanic Bằng Machine Learning

- Nguyễn Tuấn Đạt, Châu Hải Đăng, Trần Đại Thắng -

Problem Review

Thuộc dạng bài toán phân lớp (Classification)

Input:

- Dữ liệu hành khách gồm thông tin cá nhân và vé tàu từ **Kaggle Titanic Dataset**.

Output:

- Khả năng sống sót của của hành khách (0 hay 1).

Notice:

- Tập dữ liệu bị thiếu, mất mát và nhiễu. Cần tiền xử lí và phân tích đặc trưng.

Dataset

Source:

- Kaggle – Titanic: Machine Learning from Disaster.

https://www.kaggle.com/competitions/titanic/data

https://www.kaggic.com/competitions/titame/data					
Embarked	Bến khởi hành	Parch	Cha mẹ, Con cái	SibSp	Anh, chị, em và họ hàng
PClass	Hạng khoa	Fare	Giá vé	PassengerId	Mã hành khách
Age	Tuổi	Sex	Giới tính	Survived	Sống sót
Name	Tên	Cabin	Số cabin	Ticket	Mã vé

- Gồm 891 bộ train và 418 bô test.
- Tỉ lệ phân lớp của tập train xấp xỉ 1:2

Propose Method

Exploring Data Analysis

	Đáng chú ý				
	Fare	Mật độ outlier dày			
ı	Age	đặc			
	Sibps	Mật thiết với và có			
	Parch	thể xử lí chung			
ı					

Thuộc tính	Thiếu	Tỉ lệ
Cabin	687	77.1%
Age	177	~20%
Embark	2	0.22%

Phương Thức xử li

Preprocessing

Đặc trưng

Missing Datas:

Thuộc tính	Phương Thức xử lí	
Cabin	Chuyển tất cả dữ liệu thiếu về unknown.	
Age	Median.	
Embark	Mode.	

Skrewness Reduction:

Standardization

$$z = \frac{x - \mu}{\sigma}$$

$$\mu = \text{Mean}$$

$$\sigma = \text{Standard Deviation}$$

Áp dụng phân phối chuẩn cho việc chuẩn hóa dữ liêu.

Feature Engineering:

		į
PassengerID	Đặc trưng không hữu dụng drop.	
Name	Trích xuất đặc trưng thành - Title. Loại bỏ name và One-hot Title	
Age	Trích xuất ra đặc trưng IsChild và IsMother.	į
SibSp, Parch	Trích xuất đặc trưng thành FamilySize và loại bỏ đặc trưng cũ.	
Ticket	Trích xuất đặc trưng thành Prefix Ticket phân loại vé. Và drop Ticket.	į
Embarked, PClass, Cabin, Sex, Ticket Prefix	One-Hot.	

Model Training

Proposed model:

- Support Vector Machine (SVM) Classifier.

Evaluating Method:

 K-Fold Cross validation và kaggle submition score.

Tuning Method:

- Kết hợp giữa K-Fold và GridSearch Cho các hyperparameters của các model.

Model Evaluating

Best Of Interest
Selected
SVM
for fine tuned

SVM CV Results:
Accuracy: 0.8384
F1 Score: 0.7717
ROC AUC: 0.8732

Fine tuned SVM

Có tăng tiến trong việc phân biệt người sống sót.

Baseline models

Result

Best Model:

- Support Vector Machine (SVM) of exp4.

Kaggle result:

