# Estratégia para Segmentação de Tecidos Cerebrais, e o uso de Aprendizado de Máquina para validação dos resultados

Guilherme Seidyo Imai Aldeia

Universidade Federal do ABC

Santo André/SP 2019

# Índice

- Introdução
- Processamento
- Metodologia
- 4 Resultados e discussão

### Introdução

Visão computacional: técnicas que tem como entrada uma imagem, e como saída alguma informação obtida à partir dessa imagem.

Para a neurociência, que teve várias revoluções nas técnicas de neuroimagem, podemos utilizar a visão computacional como uma ferramenta auxiliar no processo de análise dessas imagens.

#### Neuroimagens

Uma técnica famosa é a ressonância magnética funcional (fMRI):

 Tem como resultado uma imagem de 4 dimensões: as primeiras três são (x, y, z) as coordenadas de cada ponto no espaço tridimensional; e a quarta uma série temporal, obtida através da coleta de várias imagens no tempo.

Imagens de três dimensões são compostas por *voxels*, um cubo de volume mínimo que compõe a imagem final. Um voxel é análogo ao píxel em imagens de duas dimensões.

## Imagens de ressonância magnética



#### Imagens de ressonância magnética

Em uma imagem de ressonância temos 3 tecidos:

- Massa branca conexões dos neurônios, coloração devido à bainha de mielina;
- Massa cinzenta corpos celulares dos neurônios;
- Líquido cefalorraquidiano produzido pelo plexo coroide, localizado principalmente nos ventrículos laterais, circula no espaço interno do sistema nervoso central e preenche os ventrículos.

Introdução Processamento Metodologia Resultados e discussão

#### Motivação e proposta

Pacientes esquizofrênicos tem diferenças estruturais no cérebro: aumento do volume dos ventrículos laterais, e desvio na relação entre massa branca e massa cinzenta.

#### Motivação

Podemos aplicar usar a visão computacional para separar as massas branca e cinzenta, e então calcular a relação entre elas, buscando associar essa relação ao diagnóstico.

#### Proposta

Criar uma *pipeline* de pré-processamento de imagens de ressonância (focando apenas no aspecto estrutural), e utilizar os dados processados em modelos de aprendizado de máquina para medir a qualidade do processamento.

#### Dados

As imagens utilizadas nesse projeto tem origem do site openneuro, e não foram pré processadas. Temos 4 tipos possíveis de classificação:

- Indivíduo esquizofrênico;
- Irmão/Irmã do esquizofrênico;
- Indivíduo saudável;
- Irmão/Irmã do saudável.

# Índice

- Introdução
- Processamento
- Metodologia
- 4 Resultados e discussão

#### Considerações

O processamento aplicado às imagens deve apresentar como saída a segmentação da massa branca e massa cinzenta, de forma que possam ser feitas comparações entre os indivíduos.

#### Atenção!

Como as imagens possuem 3 dimensões, operações de processamento de imagens devem ser aplicadas nas 3 dimensões.

Quando alguma operação for referida, ela foi aplicada percorrendo cada eixo, sendo que a entrada de cada aplicação era a saída da aplicação anterior.

## Carregamento do arquivo

O primeiro passo é abrir o arquivo de ressonância (extensão **.nii.gz**, que pode ser lida utilizando a biblioteca *nibabel*), e normalizar os níveis de cinza para a escala [0, 255].



Vemos que é necessário aplicar uma rotação em todas as fatias da imagem para que a cabeça fique na orientação natural.

## Carregamento do arquivo



### Skull stripping e corte da imagem

Precisamos isolar o cérebro (skull stripping). Utilizamos a biblioteca deepBrain, que implementa uma rede neural para retornar uma máscara com as regiões do cérebro.

Depois, cortamos as bordas com *voxels* nulos, e aplicamos um filtro para borrar a imagem (*spatial smoothing*).

Imagem após aplicar a rotação, *skull stripping*, corte de bordas e *spatial smoothing* 



# Skull stripping e corte da imagem



## Determinação das regiões

Para fazer a segmentação, será utilizado o método de limiar (threshold). Para imagens onde o histograma apresenta duas regiões, é possível utilizar o método de **Otsu**, mas no nosso caso não temos dois picos evidentes.



## Determinação das regiões

A determinação das regiões então será feita da seguinte forma:

- 1 Calcular histograma da imagem inteira (considerando 3 dimensões);
- 2 Descartar o nível de brilho 0 (não considerar o fundo);
- 3 Filtrar a curva do histograma com um filtro de média móvel (passa baixa) para suavização;
- 4 Executar uma técnica de detecção de picos para encontrar os picos da imagem — assumimos que o nível de menor valor corresponde à massa cinzenta, e o nível de maior valor à massa branca.

## Determinação das regiões

Dentro de cada tecido existe uma variação pequena nos níveis de brilho, de forma que uma margem será considerada para cada um.

- Massa branca [pico margem, 255];
- Massa cinzenta [pico margem, pico + margem];
- Líquor [0, pico margem].

Essa estratégia é boa pois não faz o uso de um limiar fixo, mas a margem é fixada pois experimentos preliminares mostraram que a discrepância entre as quantidades de massas é muito maior quando a margem é selecionada de forma dinâmica.

As imagens são segmentadas dentro dos intervalos, e uma quarta imagem é feita contendo a intersecção entre todas as imagens e descartada em cada uma.

A separação dos tecidos não pode ser feita localmente, considerando cada fatia ao longo de um eixo, pois nem todas as fatias podem apresentar os 3 tecidos que estão sendo segmentados.

Segmentação da massa branca, após excluir as regiões de intersecção com as outras massas segmentadas



#### Corte da imagem anterior ampliado



Segmentação da massa cinzenta, após excluir as regiões de intersecção com as outras massas segmentadas



#### Corte da imagem anterior ampliado



Segmentação do líquor, após excluir as regiões de intersecção com as outras massas segmentadas



# Corte da imagem anterior ampliado

# Índice

- Introdução
- Processamento
- Metodologia
- 4 Resultados e discussão

#### Validação do processamento

Uso do *K-nearest-neighbors* (KNN) e o *Support vector machine* (SVM) para avaliar o desempenho do método, tentando predizer esquizofrenia utilizando as massas segmentadas. As bases são divididas em treino e teste na proporção 80/20.

Como não se pode afirmar nada sobre os irmãos dos esquizofrênicos, uma classificação sem essa classe será feita, excluindo também os irmãos do controle para balancear a quantidade de indivíduos saudáveis e esquizofrênicos na base de dados.

# Índice

- Introdução
- Processamento
- Metodologia
- A Resultados e discussão

#### Resultados

O melhor resultado obtido foi pelo KNN no caso em que os irmãos são descartados da base de dados.

| KNN        | white-gray | white | gray  | csf   |
|------------|------------|-------|-------|-------|
| Com irmãos | 0.210      | 0.105 | 0.368 | 0.157 |
| Sem irmãos | 0.875      | 0.625 | 0.500 | 0.625 |

| SVM        | white-gray | white | gray  | csf   |
|------------|------------|-------|-------|-------|
| Com irmãos | 0.368      | 0.368 | 0.368 | 0.368 |
| Sem irmãos | 0.750      | 0.500 | 0.500 | 0.500 |

#### Discussão

- Quando os irmãos são utilizados, os dois classificadores não conseguem atingir uma acurácia maior que 0.368;
- Quando são utilizados apenas pacientes esquizofrênicos e controle, a acurácia é sempre maior ou igual que 0.5 para qualquer tecido que seja utilizado como atributo. O que apresenta maior acurácia é quando utilizamos a relação entre massa branca/massa cinzenta como atributo, obtendo uma acurácia de 0.875.

De forma geral, os modelos apresentam dados interessantes mas devemos tomar cuidado ao interpretá-los ou tirar conclusões.