1. Part A - Numerical Method

The one dimensional steady state transport equation

$$U\frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) + Q$$

can be discretized with central differences as

$$U\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} - \underbrace{\frac{\left(\Gamma\frac{\partial\phi}{\partial x}\right)_{i+1/2} - \left(\Gamma\frac{\partial\phi}{\partial x}\right)_{i-1/2}}{\Delta x}}_{b} = Q_{i}.$$
 (1)

Ben Wilfong

Username: bwilfong3

The first derivatives in the numerator of b can be written as

$$\left(\Gamma \frac{\partial \phi}{\partial x}\right)_{i+1/2} = \Gamma_{i+1/2} \frac{\phi_{i+1} - \phi_i}{\Delta x} \quad \text{and} \quad \left(\Gamma \frac{\partial \phi}{\partial x}\right)_{i-1/2} = \Gamma_{i-1/2} \frac{\phi_i - \phi_{i-1}}{\Delta x}.$$
(2)

Substituting eq. (2) into eq. (1) and rearanging gives

$$U \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} - \frac{\Gamma_{i+1/2} \frac{\phi_{i+1} - \phi_{i}}{\Delta x} - \Gamma_{i-1/2} \frac{\phi_{i} - \phi_{i-1}}{\Delta x}}{\Delta x} = Q_{i}$$

$$U \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} - \frac{\Gamma_{i+1/2} \phi_{i+1} - (\Gamma_{i+1/2} + \Gamma_{i-1/2}) \phi_{i} + \Gamma_{i-1/2} \phi_{i-1}}{(\Delta x)^{2}} = Q_{i}$$

$$\left(\frac{U}{2\Delta x} - \frac{\Gamma_{i+1/2}}{(\Delta x)^{2}}\right) \phi_{i+1} + \left(\frac{\Gamma_{i+1/2} + \Gamma_{i-1/2}}{(\Delta x)^{2}}\right) \phi_{i} - \left(\frac{U}{2\Delta x} + \frac{\Gamma_{i-1/2}}{(\Delta x)^{2}}\right) \phi_{i-1} = Q_{i}.$$
(3)

Equation (3) can be cast as the system of linear equations

$$\underbrace{\begin{bmatrix} 1 \\ -\left(\frac{U}{2\Delta x} + \frac{\Gamma_{1/2}}{(\Delta x)^2}\right) & \frac{\Gamma_{3/2} + \Gamma_{1/2}}{(\Delta x)^2} & \frac{U}{2\Delta x} - \frac{\Gamma_{3/2}}{(\Delta x)^2} \\ \vdots & \vdots & \\ -\left(\frac{U}{2\Delta x} + \frac{\Gamma_{N-3/2}}{(\Delta x)^2}\right) & \frac{\Gamma_{N-1/2} + \Gamma_{N-3/2}}{(\Delta x)^2} & \frac{U}{2\Delta x} - \frac{\Gamma_{i-1/2}}{(\Delta x)^2} \\ & 1 \end{bmatrix}}_{\Phi} \underbrace{\begin{pmatrix} \phi_0 \\ \phi_1 \\ \vdots \\ \phi_{N-1} \\ \phi_N \end{pmatrix}}_{\Phi} = \underbrace{\begin{pmatrix} 1 \\ Q_1 \\ \vdots \\ Q_{N-1} \\ 0 \end{pmatrix}}_{b}$$

for a discretization at $\{x_0, x_1, \dots x_N\} = \{0, \Delta x, 2\Delta x, \dots, N\Delta x\}$. The boundary conditions are given by $\phi_{-1/2} = 1$ and $\phi_{N+1/2} = 0$.

For the cases in which U, Γ , and Q are constant, the solution is found via the following steps:

- (1) Populate the matrix A
- (2) Populate the vector b
- (3) Solve $A\Phi = b$ for the vector Φ using TDMA

When U, Γ , or Q depend on the value of ϕ the problem becomes nonlinear and an iterative approach must be taken. For nonlinear problems, the solution is found via the following steps:

- (1) Make an initial guess for the vector $\Phi^{(0)}$
- (2) Calculate $U(\Phi^{(n)})$, $\Gamma(\Phi^{(n)})$, and $Q(\Phi^{(n)})$
- (3) Populate the matrix A
- (4) Populate the vector b
- (5) Solve $A\Phi^{(n+1)} = b$ for the vector $\Phi^{(n+1)}$ using TDMA
- (6) Repeat steps 2 though 5 until convergence

For this problem I will use a discretization of $\phi(x) = 1 - x/L$ as an initial guess.

Page 1 of 2

Username: bwilfong3

- 2. Part B Linear Problems
- 3. Part C Non-linear Problems