LECTURE 27

We begin by explaining how to define x^r if r is a rational number and $x \ge 0$ is a real number. Write r = m/n where m and n are integers and n > 0. Define

$$x^r := (x^{\frac{1}{n}})^m = (x^m)^{\frac{1}{n}}.$$

Exercise: show that $(x^{\frac{1}{n}})^m = (x^m)^{\frac{1}{n}}$.

Thus we have a function which sends x to x^r (a priori this function is only defined for non-negative real numbers). We investigate the differentiability of this function. First we investigate the differentiability of the n-th root function $g: [0, \infty) \to [0, \infty)$ defined by $g(x) = x^{\frac{1}{n}}$. This function is inverse to the function $f: [0, \infty) \to [0, \infty)$ defined by $f(x) = x^n$. Observe that if x > 0 then $f'(x) = nx^{n-1} > 0$. Therefore the function $g: (0, \infty) \to (0, \infty)$ is differentiable, with

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{n(x^{\frac{1}{n}})^{n-1}} = \frac{1}{n}x^{\frac{1}{n}-1}$$

by the Inverse Function Theorem. It follows by the chain rule that the function $x \mapsto x^r$ is differentiable on $(0, \infty)$ with derivative

$$\frac{d}{dx}x^r = rx^{r-1}.$$

We return to our investigation of the natural logarithm function $\ln(x):(0,\infty)\to\mathbb{R}$. By the Chain Rule, we have

$$\frac{d}{dx}\ln(x^r) = \frac{1}{x^r}rx^{r-1} = \frac{r}{x}.$$

On the other hand

$$\frac{d}{dx}r\ln(x) = \frac{r}{x}.$$

Therefore by the first Corollary to the Mean Value Theorem, there is a constant c such that

$$\ln(x^r) - r \ln(x) = c$$

for all $x \in (0, \infty)$. Setting x = 1 we see that c = 0 and hence that

$$\ln(x^r) = r \ln(x).$$

Exercise: show that $\ln(xy) = \ln(x) + \ln(y)$ for all x, y > 0. (Let y be fixed and differentiate $\ln(xy)$.)

In particular we see that $\ln(2^n) = n \ln(2)$. We have $\ln(2) = \int_1^2 1/t \, dt \ge 1/2$ since $1/t \ge 1/2$ for $t \in [1, 2]$. Hence

$$\ln(2^n) \ge \frac{n}{2}.$$

Hence

$$\ln(2^{-n}) = -n\ln(2) \le -\frac{n}{2}.$$

We have seen that $\ln(x)$ is strictly increasing and continuous on $(0, \infty)$. Therefore the range of $\ln(x)$ is an open interval. Since the range is unbounded above and below we must have that $\ln((0,\infty)) = \mathbb{R}$. Thus

$$\ln: (0, \infty) \to \mathbb{R}$$

is 1-1, onto and continuous. Therefore the inverse function

$$\ln^{-1} \colon \mathbb{R} \to (0, \infty)$$

exists and is continuous. We denote

$$\exp(x) := \ln^{-1}(x).$$

Thus exp: $\mathbb{R} \to (0, \infty)$. Since $\ln(x) > 0$ for all x, we see, by the Inverse Function Theorem that $\exp(x)$ is differentiable for all x with

$$\frac{d}{dx}\exp(x) = (\ln^{-1})'(x) = \frac{1}{\ln'(\ln^{-1}(x))} = \ln^{-1}(x) = \exp(x).$$

We make some easy observations about the function $\exp(x)$:

- $\exp(x+y) = \exp(x)\exp(y)$ for all $x,y \in \mathbb{R}$ (let $x = \ln(a)$, $y = \ln(b)$ for a,b > 0, then $\exp(x+y) = \exp(\ln(a) + \ln(b)) = \exp(\ln(ab)) = ab = \exp(x)\exp(y)$).
- $\exp(x^r) = r \exp(x)$ for all $x \in \mathbb{R}$, $r \in \mathbb{Q}$ (exercise).
- $\exp(0) = 1$.

Define $e := \exp(1)$. Let b > 0 and write $b = \exp(a)$ for some $a \in \mathbb{R}$. Then

$$b^r = \exp(a)^r = \exp(ra) = \exp(r\ln(b)).$$

Notice that the right hand side is well defined even if r is irrational. This leads to the following definition: if b > 0 and $x \in \mathbb{R}$ we define

$$b^x = \exp(x \ln(b)).$$

In particular

$$e^x = \exp(x).$$

By the Chain Rule, we see that

$$\frac{d}{dx}b^x = b^x \ln(b).$$

Taylor Polynomials

Suppose f is an n-times differentiable function, differentiable on an open interval I containing x_0 . The statement that f is n-times differentiable means that

$$f'(x), f''(x), f^{(3)}(x) := f'''(x), \dots, f^{(n)}(x)$$

all exist for $x \in I$.

The *n*-th Taylor polynomial of f at x_0 is defined to be

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Example: Let f(x) = 1/x and let $x_0 = 1$. Then f is differentiable to arbitraruly high orders on an open interval containing x_0 . We have

$$f'(x) = -x^{-2}, f''(x) = 2x^{-3}, f'''(x) = -3!x^{-4}, \dots, f^{(n)}(x) = (-1)^n n! x^{-n-1}.$$

Therefore the *n*-th Taylor polynomial for f at $x_0 = 1$ is

$$p_n(x) = 1 - (x - 1) + (x - 1)^2 - \dots + (-1)^n (x - 1)^n.$$