习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

《软件分析与验证》 第二次书面作业讲解

谢兴宇

清华大学

2020 年 4 月

Contents

习题课贰

简答题 皮亚诺公理 答疑

1 简答题

2 皮亚诺公理

3 答疑

Contents

习题课贰

简答题

1 简答题

2 皮亚诺公理

3 答疑

第一题

习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

题目

用下划线标出下列公式中所有自由的"变元出现"。

$$\forall x. (f(x) \land (\exists y. g(x, y, z))) \land (\exists z. g(x, y, z))$$

简答题 皮亚诺公理 答疑

题目

用下划线标出下列公式中所有自由的"变元出现"。

$$\forall x. (f(x) \land (\exists y. g(x, y, z))) \land (\exists z. g(x, y, z))$$

出现:被置于某个公式的某个位置。

一阶逻辑连接词优先级:

$$``\neg">``\wedge">``\vee">``\rightarrow">``\leftrightarrow">``\forall"=``\exists"$$

题目

用下划线标出下列公式中所有自由的"变元出现"。

$$\forall x. (f(x) \land (\exists y. g(x, y, z))) \land (\exists z. g(x, y, z))$$

出现:被置于某个公式的某个位置。

一阶逻辑连接词优先级:

$$``\neg">``\wedge">``\vee">``\rightarrow">``\leftrightarrow">``\forall"=``\exists"$$

答案:

$$\forall x. (f(x) \land (\exists y. g(x, y, \underline{z}))) \land (\exists z. g(x, y, z))$$

第二题

习题课贰

简答题 皮亚诺公理

题目

下列哪些问题或理论是可判定的?

- 1 命题逻辑公式的有效性
- 2 一阶逻辑公式的有效性
- T_{E}
- $_{4}$ $T_{\mathbb{N}}$
- 5 T_A 的无量词片段

第二题

习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

有效性的判定

- 命题逻辑: 枚举每一个命题变元所取真值
- ☑ 一阶逻辑: Turing & Church
- 3 T_E : 任一 T_E 中的公式自是一阶逻辑; 任一 FOL 中的公式,将 = 换成另一个新谓词,便可得到一个等价的 T_E 中的公式。故(T_E 可判定)当且仅当(FOL 可判定)。
- $I_{\mathbb{N}}$: Presburger
- T_A 的无量词片段: 枚举公式中数组、下标和取值均有限, 故枚举(数组,下标)的值即可

可判定性: 总结

习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

Theory	Description	Full	QFF
FOL	一阶逻辑	no	yes
T_E	带等词的一阶逻辑	no	yes
T_{PA}	Peano 算术	no	no
$\mathcal{T}_{\mathbb{N}}$	Presburger 算 术	yes	yes
$\mathcal{T}_{\mathbb{Z}}$	线性整数	yes	yes
T_{A}	数组	no	yes

表:理论和其无量词片段的可判定性

第三题

习题课贰 谢兴字

简答题 皮亚诺公理 答疑

题目

请举出一个不是同余关系(congruence relation)的等价关系

题目

请举出一个不是同余关系(congruence relation)的等价关系

定义: 给定集合 S 和 S 上的函数集 F, 若二元关系 R 满足: 对于函数集 F 中的任意函数 f, 记 f 的元数为 n, 在 S 中任 取 $s_1, \dots s_n, t_1, \dots, t_n$,

若
$$s_1Rt_1, \dots, s_nRt_n$$
, 则 $f(s_1, \dots, s_n) = f(t_1, \dots, t_n)$

,则称 R 是一个同余关系。

第三题

习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

题目

请举出一个不是同余关系(congruence relation)的等价关系

定义: 给定集合 S 和 S 上的函数集 F, 若二元关系 R 满足: 对于函数集 F 中的任意函数 f, 记 f 的元数为 n, 在 S 中任取 $s_1, \dots s_n, t_1, \dots, t_n$,

若
$$s_1Rt_1, \dots, s_nRt_n$$
, 则 $f(s_1, \dots, s_n) = f(t_1, \dots, t_n)$

, 则称 *R* 是一个**同余关系**。

参考答案:考虑 \mathbb{Z} 和其上的二元关系 $≡_2$

$$m \equiv_2 n \text{ iff } m \equiv n \pmod{2}$$

和函数 $f(m) := \lfloor \frac{m}{2} \rfloor$, 则 \equiv_2 对于函数集 $\{f\}$ 而言不是同余关系。

第四题

习题课贰

简答题 皮亚诺公理 答疑

题目

找到两个不同的等价关系,使得其中一个 refine 另一个。

第四题

习题课贰 谢兴字

简答题 皮亚诺公理 答疑

题目

找到两个不同的等价关系,使得其中一个 refine 另一个。

给定两个集合 S 上的二元关系 R_1 和 R_2 ,对于任意的 $s_1, s_2 \in S$ 使得 $s_1 R_1 s_2$,都有 $s_1 R_2 s_2$,我们便称 R_1 refines R_2 。

第四题

习题课贰 谢兴宇

简答题 皮亚诺公理 答疑

题目

找到两个不同的等价关系,使得其中一个 refine 另一个。

给定两个集合 S 上的二元关系 R_1 和 R_2 ,对于任意的 $s_1, s_2 \in S$ 使得 $s_1R_1s_2$,都有 $s_1R_2s_2$,我们便称 R_1 refines R_2 。 参考答案: 取 $S \coloneqq \{0,1\}$,S 上的两个二元关系 $R_1 \coloneqq \{\langle 0,0 \rangle, \langle 1,1 \rangle\}$, $R_2 \coloneqq \{\langle 0,0 \rangle, \langle 0,1 \rangle, \langle 1,0 \rangle, \langle 1,1 \rangle\}$,则 R_1 refines R_2 。

习题课贰

简答题 皮亚诺公理 答疑

Problem

In the congruence closure algorithm, subterms of a formula are represented by DAGs. Which term does the figure represents? Write it out in a formulaic way.

题目

在同余闭包算法中,一个公 式的所有子项可以被表示为 一个有向无环图。请写出右 图表示的项。

图: Subterms of a term

习题课贰 谢兴宇

简答题 皮亚诺公理 子项关系可以用一个特殊的 DAG 来表示:

- 每一个节点上都有一个标记,零 出度节点标有一个变元、常元或 零元函数,非零出度节点标有一 个非零元函数。
- 同一个节点的出边是有序的。
- 不同零出度节点的标记不同;不同的非零出度节点,或者标记不同,或者出边的数量不同,或者第;条出边的终点不同。

图: Subterms of a term

习题课贰 谢兴字

简答题 皮亚诺公理 答疑 每一个节点与一个子项——对应、按逆拓扑序来定义:

- 标有变元或常元的节点 所对应的子项便是其自 身的标记。
- 标有函数符的节点所对应的子项是,将其被标记的函数(依序作用于其每一条出边的终点对应的子项)得到的子项。

图: Subterms of a term

习题课贰

简答题 皮亚诺公理

6: z

5: *y* 4: *x*

 $3: \quad \textit{f}(x,y)$

 $2: \quad \textit{f}(\textit{f}(\textit{x},\textit{y}),\textit{y})$

 $1: \quad \textit{f}(\textit{f}(\textit{f}(\textit{x},\textit{y}),\textit{y}),\textit{z})$

答案: f(f(f(x,y),y),z)

图: Subterms of a term

习题课贰 谢兴字

简答题 皮亚诺公理 答疑

题目

右图是一个同余闭包算法 执行过程中的 DAG, 虚线 表示一次合并操作。从图中 你能推断出哪些同余类?

同余闭包算法

习题课贰

简答题 皮亚诺公理 Step 1. 找到 CNF F 中的所有子项,记其为 S_F 。

Step 2. 初始时,每个子项都属于一个仅包含其自身的同余类,s 所在的同余类记为 [s]。

Step 3. 据 F 中形如 s = t 的原子公式合并 [s] 和 [t]。 Step 4. **(function congruence)** 检查公式中出现的所 有函数符 f,若以下条件成立:

- $f(s_1,\cdots,s_n)=f(t_1,\cdots,t_n)$
- $[f(s_1,\cdots,s_n)] = [f(t_1,\cdots,t_n)]$
- $[s_1] = [t_1], \cdots, [s_n] = [t_n]$
- $f(s_1,\cdots,s_n), f(t_1,\cdots,t_n) \in S_F$

,则将 $[f(s_1,\cdots,s_n)]$ 与 $[f(t_1,\cdots,t_n)]$ 合并。不断重 复此步骤直到找不到新的同余类合并。

Step 5. 若 F 中有形如 $\neg s = t$ 的原子公式,但 $[s] \neq [t]$,说明 F 不可满足。

习题课贰

谢兴与

简答题 皮亚诺公理

习题课贰

谢兴宇

简答题 皮亚诺公理

习题课贰

谢兴宇

简答题

皮亚诺公理 ^{签跽}

习题课贰

谢兴宇

简答题 皮亚诺公理

习题课贰

简答题 皮亚诺公理

最终,我们找到了两 个同余类:

 $\{x, f(x), f(f(f(x))))\}$ $\{f(x), f(f(f(x)))\}$

Contents

习题课贰

简答题 皮亚诺公理

1 简答题

2 皮亚诺公理

3 答疑

题目大意

习题课贰

简答题 皮亚诺公理 答疑

用 Dafny 证明定义

```
1 datatype Nat = Zero | Succ(n: Nat)
```

满足 Peano 算术中除归纳公理外的其他公理。

Peano 算术

习题课贰

间答题 皮亚诺公理 答疑 历史: 1860 年代 Hermann Grassmann 首次发现了公理化自然数的巨大潜能, 1889 年 Dedekind 和 Peano 完成了后续工作。

Peano 算术

习题课贰

简答题

皮亚诺公理

历史: 1860 年代 Hermann Grassmann 首次发现了公理化自然数的巨大潜能, 1889 年 Dedekind 和 Peano 完成了后续工作。

 $\Sigma_{PA}: \{0, 1, +, \times, =\}$

■ *Zero*:
$$\forall x$$
. $\neg (x+1=0)$

• Additive identity:
$$\forall x. \ x + 0 = x$$

■ Times zero:
$$\forall x. \ x \times 0 = 0$$

■ Successor:
$$\forall x, y. (x+1=y+1) \rightarrow x=y$$

■ *Plus successor*:
$$\forall x, y. \ x + (y+1) = (x+y) + 1$$

■ Times successor:
$$\forall x, y. \ x \times (y+1) = x \times y + x$$

■ *Induction*:
$$\forall F.(F[0] \land (\forall x.F[x] \rightarrow F[x+1])) \rightarrow \forall x.F[x]$$

Peano 算术

习题课贰

简答题

皮亚诺公理

历史: 1860 年代 Hermann Grassmann 首次发现了公理化自然数的巨大潜能,1889 年 Dedekind 和 Peano 完成了后续工作。

 $\Sigma_{PA}: \{0, 1, +, \times, =\}$

■ *Zero*: $\forall x$. $\neg (x+1=0)$

• Additive identity: $\forall x. \ x + 0 = x$

■ *Times zero*: $\forall x. \ x \times 0 = 0$

■ Successor: $\forall x, y. (x+1=y+1) \rightarrow x=y$

■ *Plus successor*: $\forall x, y. \ x + (y+1) = (x+y) + 1$

■ Times successor: $\forall x, y. \ x \times (y+1) = x \times y + x$

■ *Induction*: $\forall F.(F[0] \land (\forall x.F[x] \rightarrow F[x+1])) \rightarrow \forall x.F[x]$

然而有"非标准模型"满足上述公理,如果想真正刻画"自然数",还需要:

$$\forall x.x = 0 \lor (\bigvee_{n \in \text{dom}(PA)} x = \underbrace{1 + 1 + \dots + 1}_{n \text{ many}})$$

Dafny

习题课贰 谢兴宇 简答题 皮亚诺公理

```
1 datatype Nat = Zero | Succ(n: Nat)
2 function one(): Nat { Succ(Zero) }
3 function add(x: Nat, y: Nat): Nat {
4 match(x) {
case Zero => y
case Succ(n) => Succ(add(n, y))
8 }
9 function mult(x: Nat, y: Nat): Nat {
10 match(x) {
case Zero => Zero
case Succ(n) => add(mult(n, y), y)
13 }
14 }
```

一个证明思路

习题课贰

简答题 皮亚诺公理 *Zero*: $\forall x$. $\neg(x+1=0)$, Trivial

Additive identity: $\forall x. \ x+0=x$, 对 x 归纳

Times zero: $\forall x. \ x \times 0 = 0$, 对 x 归纳

Successor: $\forall x, y. \ (x+1=y+1) \rightarrow x=y$, Trivial

Plus successor: $\forall x, y. \ x + (y+1) = (x+y) + 1$, 对 x 归纳

Times successor: $\forall x, y. \ x \times (y+1) = x \times y + x$

先证明

$$\forall x, y.x + y = y + x$$

和

$$\forall x, y, z.(x+y) + z = (x+z) + y$$

Contents

习题课贰

谢兴宇

间合规 皮亚诺公理 答疑

1 简答题

2 皮亚诺公理

3 答疑

答疑环节

习题课贰

简答题

皮亚诺公理 答疑

欢迎提问!