NAME:

Midterm 1 Answers

August 25, 2015

Instructions: Do all the problems on **both sides** of each page. Show all your work and box your answers. If you get stuck on a problem, skip it and come back to it at the end.

- 1. (a) \vec{b} is not a linear combination of $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.
 - (b) The set is not linearly independent. There are many valid justifications. For example, 3 linearly independent vectors in \mathbb{R}^3 must span \mathbb{R}^3 , but $b \notin \operatorname{Span}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.
 - (c) $\{\vec{a}_1, \vec{a}_2, \vec{b}\}$ is a linearly independent set. Using a theorem, we just have to check that each vector is not in the span of the ones coming before it. $\vec{a}_2 \notin \operatorname{Span}\{\vec{a}_1\}$ since it's not a multiple and $\vec{b} \notin \operatorname{Span}\{\vec{a}_1, \vec{a}_2\}$ by part (a).
- 2. Yes.

3.

$$\vec{x} = x_2 \begin{bmatrix} -2\\1\\0\\0\\0\\0 \end{bmatrix} + x_3 \begin{bmatrix} -3\\0\\1\\0\\0\\0 \end{bmatrix} + x_5 \begin{bmatrix} 1\\0\\0\\-1\\1\\0 \end{bmatrix}$$

- 4. (a) $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 0 \end{bmatrix}$
 - (b) $AB = \begin{bmatrix} 5 & 3 & 7 \\ 7 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix}$
 - (c) $S \circ T$ is not invertible. There are valid justifications. For example, the matrix isn't invertible (its rows are clearly linearly dependent).
 - (d) $BA = \begin{bmatrix} 4 & 3 \\ 7 & 5 \end{bmatrix}$
 - (e) Yes, it is invertible. The matrix for $(T \circ S)^{-1}$ is $\left[\begin{smallmatrix} -5 & 3 \\ 7 & -4 \end{smallmatrix} \right]$
- 5. No. Four vector in \mathbb{R}^3 will always form a linearly dependent set.
- 6. $A^{-1} = \begin{bmatrix} 4 & -3 & -3 \\ 2 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$
- 7. No. It contains the zero vector.
- 8. (a) No. Many possible justifications.
 - (b) Many possible correct answers.
- 9. $A^8 = \begin{bmatrix} 1 & -255 & -255 \\ 255 & 511 & 255 \\ -255 & -255 & 1 \end{bmatrix}$