Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Seweryn Tasior, WI, grupa 5

22.05.2025

1 Wprowadzenie

1.1 Zagadnienie

Celem ćwiczenia jest wykorzystanie metody Jacobiego do rozwiązywania układ liniowych w postaci macierzowej Ax=b

1.2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo, do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do obliczeń zastosowano funkcjonalności biblioteki numpy. Do inwersji macierzy zastosowano funkcje linalg.inv, a do liczenia iloczynów macierzy np.dot. Czas wykonywania otrzymano poprzez bibliotekę timeit. Dodatkowo użyłem np.linalg.norm do obliczania normy, do wydobycia przekątnych macierzy np.diag, a do obliczenia wartości własnych macierzy np.linalg.eigvals.

Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6-rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

2 Realizacja ćwiczenia

W ćwiczeniu zrealizowano macierze kwadratowe A o rozmiarach $n \times n$, według podanego wzoru:

$$\begin{cases} a_{i,i} = 8 \\ a_{i,j} = \frac{1}{|i-j|+5} & \text{dla} \quad i \neq j \end{cases}$$

W kolejnym kroku zaimplementowano algorytm Jacobiego, korzystając z biblioteki numpy dla szybszego działania. Dodano do niego kilka usprawnień, umożliwiających lepsze mierzenie czasu iteracji. Ustalono maksymalną liczbę iteracji na 100000.

Kolejno wyznaczono wartości promieni spektralnych dla różnych n i znaleziono takie, które są zbieżne. Wyniki zaprezentowano w tabeli i wykresie.

Następnie dla każdego n wyliczono wektor x jako dowolną n-elementową permutację ze zbioru $\{1, -1\}$, według powyższych wzorów utworzono macierz A, obliczono wektor b jako iloczyn A i x. Otrzymane b wraz z macierzą A, wykorzystano do obliczenia metodą Jacobiego wektora y

Podczas obliczeń metodą Jacobiego, oprócz wektora wyliczono, liczbę iteracji oraz czas na iterację dla obu kryteriów (residualnego i przyrostowego). Wyniki zaprezentowano w tabelach.

2.1 Wartości zmienne

Do obliczeń kryteriów stopu użyto 3 różnych wartości tolerancji $\epsilon \in \{10^{-3}, 10^{-7}, 10^{-15}\}$

Użyto dwóch wektorów początkowych: wektora zerowego i wektora jako losową permutację {-100,100}

Zmienna n w obliczeniach przyjmowała następujące zakresy wartości:

- $n \in \{1, 2, ..., 1000\}$, przy obliczaniu promienia spektralnego
- $n \in \{10, 25, 50, 100, 150, ..., 700, 739\}$, dla reszty obliczeń

Dla każdego n wyliczono wektor x jako dowolną n-elementową permutację ze zbioru $\{1, -1\}$

2.2 Błędy

Aby sprawdzić zaburzenia rozwiązań układów, porównano oba wektory x i y (zadany i otrzymany) za pomocą normy maksimum:

$$\sigma(x,y) = \max_{i=1,\dots,n} \{|x_i - y_i|\}$$

gdzie:

- $\bullet \ x_i-i$ -ta współrzędna zadanego wektora ${\bf x}$
- $\bullet \ y_i i\text{-ta}$ współrzędna obliczonego wektora ${\bf y}$

2.3 Promień spektralny

Aby obliczyć promień spektralny, należy najpierw obliczyć macierz iteracji. M_J wyznaczono ze wzoru:

$$M_J = -D^{-1}(A - D) (1)$$

Gdzie:

- D macierz diagonalna (zawierająca tylko elementy z przekątnej A),
- $\bullet \ A-D$ macierz A bez elementów diagonalnych
- D^{-1} macierz odwrotna do D

Promień spektralny $p(M_J)$ obliczono jako maksimum z wartości bezwzględnych wartości własnych macierzy iteracji:

$$p(M_J) = \max_{i=1,\dots,n} |\lambda_i| \tag{2}$$

Metoda Jacobiego jest zbieżna wtedy i tylko wtedy, gdy $p(M_J) < 1$.

3 Wyniki

3.1 Promień spektralny

Tabela 1: Promień spektralny macierzy iteracji w zależności od rozmiaru macierzy

n	Promień spektralny
10	1.39×10^{-1}
25	2.66×10^{-1}
50	3.90×10^{-1}
100	5.33×10^{-1}
150	6.23×10^{-1}
200	6.88×10^{-1}
250	7.40×10^{-1}
300	7.83×10^{-1}
350	8.20×10^{-1}
400	8.51×10^{-1}
450	8.80×10^{-1}
500	9.05×10^{-1}
550	9.28×10^{-1}
600	9.49×10^{-1}
650	9.69×10^{-1}
700	9.87×10^{-1}
739	9.99×10^{-1}

Rysunek 1: Wykres wartości promienia spektralnego

Po przeprowadzeniu obliczeń zauważono, że kolejne wartości rosną w sposób logarytmiczny. Wartość 1 promienia spektralnego przekroczono dla n=740

3.2 Obliczenia dla wektora zerowego

3.2.1 Porównanie ilości iteracji

Tabela 2: Liczba iteracji dla kryterium residualnego w zależności od rozmiaru macierzy

n		Colerancja	
	10^{-3}	10^{-7}	10^{-15}
10	1	1	1
25	1	1	2
50	1	2	4
100	1	4	10
150	2	9	23
200	5	18	45
250	3	18	50
300	21	59	100000
350	19	66	100000
400	32	89	100000
450	20	92	100000
500	41	133	100000
550	58	181	100000
600	65	241	100000
650	136	424	100000
700	205	888	100000
739	18800	69500	100000

Tabela 3: Liczba iteracji dla kryterium przyrostowego w zależności od rozmiaru macierzy

n		Folerancj	
	10^{-3}	10^{-7}	10^{-15}
10	1	1	1
25	1	1	1
50	1	1	3
100	1	3	9
150	1	7	20
200	3	15	40
250	1	15	45
300	12	50	125
350	9	55	148
400	19	77	191
450	7	76	220
500	20	112	297
550	30	153	400
600	25	201	554
650	71	359	936
700	51	734	2100
739	7330	58000	100000

W tabelach spostrzeżono następujące własności:

- Kryterium przyrostowe zreguły wymaga mniejszej ilości iteracji
- \bullet Wraz ze wzrostem n, dla niektórych wartości następowało zmniejszenie liczby iteracji

• Liczba iteracji dla niektórych macierzy przekracza maksymalną liczbę ustaloną na 10^5 , wynika to ze zbyt restrykcyjnego ϵ

3.2.2 Porównanie czasów wykonania iteracji Jacobiego

Tabela 4: Czas wszystkich iteracji w sekundach [s] dla kryterium residualnego w zależności od rozmiaru macierzy

Tolerancia ϵ n 10^{-7} 10^{-3} 10^{-15} 10 0 0 0 4.99×10^{-5} 25 0 1.21×10^{-4} 50 0 0 100 0 2×10^{-4} 0 3.34×10^{-4} 150 0 0 5×10^{-4} 1×10^{-3} 200 0 250 0 4.99×10^{-4} 1×10^{-3} 1×10^{-3} 2×10^{-3} 300 3.46 1×10^{-3} 3.13×10^{-3} 350 3.92 4.89×10^{-3} 400 2.09×10^{-3} 4.78 450 1×10^{-3} 5×10^{-3} 5.42 3.21×10^{-3} 9.71×10^{-3} 500 6.40 4.24×10^{-3} 1.31×10^{-2} 550 7.53 5.11×10^{-3} 2.15×10^{-2} 600 8.74 1.33×10^{-2} 4×10^{-2} 650 1.04×10^{1} 700 4.99×10^{-2} 2.14×10^{-1} 1.79×10^{1} 739 3.48 1.33×10^{1} 1.95×10^{1}

Tabela 5: Czas wszystkich iteracji w sekundach [s] dla kryterium przyrostowego w zależności od rozmiaru macierzy

n	Tolerancja ϵ		
	10^{-3}	10^{-7}	10^{-15}
10	0	2×10^{-5}	2×10^{-5}
25	5×10^{-5}	0	0
50	0	0	0
100	0	0	0
150	0	3.45×10^{-4}	3.33×10^{-4}
200	0	0	5×10^{-4}
250	0	5.02×10^{-4}	4.99×10^{-4}
300	0	9.98×10^{-4}	3×10^{-3}
350	0	1×10^{-3}	3.18×10^{-3}
400	5.07×10^{-4}	2.78×10^{-3}	5.51×10^{-3}
450	0	3.01×10^{-3}	6×10^{-3}
500	1×10^{-3}	3.53×10^{-3}	1×10^{-2}
550	1×10^{-3}	6.09×10^{-3}	1.56×10^{-2}
600	1.02×10^{-3}	9.40×10^{-3}	2.93×10^{-2}
650	3.60×10^{-3}	1.97×10^{-2}	4.84×10^{-2}
700	7.17×10^{-3}	9.50×10^{-2}	2.18×10^{-1}
739	7.59×10^{-1}	5.65	9.95

W powyższych tabelach spostrzeżono następujące własności:

- Kryterium przyrostowe zreguły jest szybsze około 20, 30 krotnie, ze względu na liczbę iteracji
- Dla kryterium residulanego przy najwęższej dokładności zauważono duży uskok czasowy pomiędzy n=250 i n=300, ze względu na duży wzrost liczby iteracji
- \bullet Sytuacja dla n=739 (krańcowego) się odwraca i to kryterium przyrostowe jest znacząco szybsze
- Dla niektórych macierzy pomimo usprawnień czas jest zerowy, ze względu na zbyt szybkie wykonanie, dla niewystaczająco dokładnej funkcji w bibliotece time. Również możliwą przyczyną były wykonane przez Numpy albo Python wewnętrzne optymalizacje

Tabela 6: Czas średni pojedynczej iteracji w sekundach [s] dla kryterium residualnego w zależności od rozmiaru macierzy

		m 1 ·	
$\mid n \mid$		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	0	0	0
25	0	0	0
50	0	8.52×10^{-5}	0
100	0	0	0
150	0	0	2.18×10^{-5}
200	2.00×10^{-4}	1.69×10^{-5}	1.78×10^{-5}
250	0	2.56×10^{-5}	2.42×10^{-5}
300	0	4.32×10^{-5}	2.96×10^{-5}
350	4.76×10^{-5}	3.22×10^{-5}	3.71×10^{-5}
400	4.60×10^{-5}	4.60×10^{-5}	4.27×10^{-5}
450	6.67×10^{-5}	4.91×10^{-5}	5.52×10^{-5}
500	6.46×10^{-5}	5.93×10^{-5}	6.38×10^{-5}
550	8.16×10^{-5}	7.50×10^{-5}	7.61×10^{-5}
600	7.35×10^{-5}	7.56×10^{-5}	8.50×10^{-5}
650	9.19×10^{-5}	8.70×10^{-5}	1.01×10^{-4}
700	2.44×10^{-4}	2.49×10^{-4}	2.23×10^{-4}
739	1.77×10^{-4}	1.84×10^{-4}	1.86×10^{-4}

Tabela 7: Czas średni pojedynczej iteracji w sekundach [s] dla kryterium przyrostowego w zależności od rozmiaru macierzy

		m 1 ·	
n		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	0	0	0
25	0	0	0
50	0	0	0
100	0	0	2.22×10^{-5}
150	0	0	0
200	0	0	1.36×10^{-5}
250	0	2.86×10^{-5}	1.05×10^{-5}
300	1.12×10^{-4}	2.14×10^{-5}	2.84×10^{-5}
350	0	2.03×10^{-5}	2.13×10^{-5}
400	5.89×10^{-5}	1.35×10^{-5}	2.65×10^{-5}
450	0	3.14×10^{-5}	2.86×10^{-5}
500	0	3.88×10^{-5}	3.01×10^{-5}
550	1.00×10^{-4}	4.53×10^{-5}	4.09×10^{-5}
600	3.57×10^{-5}	4.34×10^{-5}	4.18×10^{-5}
650	4.69×10^{-5}	4.69×10^{-5}	4.82×10^{-5}
700	2.50×10^{-4}	1.30×10^{-4}	1.29×10^{-4}
739	1.56×10^{-4}	9.55×10^{-5}	1.03×10^{-4}

3.2.3 Porównanie błędów ($\sigma(x,y)$ - wartości norm maksimum)

Tabela 8: Błędy dla kryterium residualnego w zależności od rozmiaru macierzy

n		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	5.55×10^{-17}	5.55×10^{-17}	5.55×10^{-17}
25	8.33×10^{-17}	8.33×10^{-17}	5.55×10^{-17}
50	1.66×10^{-8}	1.36×10^{-12}	8.33×10^{-17}
100	4.04×10^{-6}	3.21×10^{-10}	2.50×10^{-16}
150	4.35×10^{-5}	2.08×10^{-9}	1.67×10^{-16}
200	4.71×10^{-5}	2.85×10^{-9}	2.50×10^{-16}
250	3.93×10^{-5}	4.69×10^{-9}	2.22×10^{-16}
300	4.76×10^{-5}	4.37×10^{-9}	3.33×10^{-16}
350	5.49×10^{-5}	4.76×10^{-9}	1.94×10^{-16}
400	5.45×10^{-5}	5.68×10^{-9}	4.16×10^{-16}
450	5.69×10^{-5}	5.57×10^{-9}	2.50×10^{-16}
500	5.53×10^{-5}	5.70×10^{-9}	3.05×10^{-16}
550	5.69×10^{-5}	5.85×10^{-9}	3.05×10^{-16}
600	5.83×10^{-5}	5.97×10^{-9}	3.33×10^{-16}
650	6.02×10^{-5}	6.11×10^{-9}	3.89×10^{-16}
700	6.16×10^{-5}	6.17×10^{-9}	3.05×10^{-16}
739	6.25×10^{-5}	6.25×10^{-9}	2.45×10^{-11}

Tabela 9: Błędy dla kryterium przyrostowego w zależności od rozmiaru macierzy

n		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	5.55×10^{-17}	5.55×10^{-17}	5.55×10^{-17}
25	8.33×10^{-17}	8.33×10^{-17}	8.33×10^{-17}
50	1.66×10^{-8}	1.66×10^{-8}	1.67×10^{-16}
100	4.04×10^{-6}	7.47×10^{-9}	2.78×10^{-16}
150	1.80×10^{-4}	3.56×10^{-8}	4.44×10^{-16}
200	2.10×10^{-4}	2.68×10^{-8}	4.44×10^{-16}
250	1.53×10^{-4}	2.86×10^{-8}	5.55×10^{-16}
300	4.31×10^{-4}	3.95×10^{-8}	7.49×10^{-16}
350	4.09×10^{-4}	4.25×10^{-8}	5.55×10^{-16}
400	4.41×10^{-4}	3.92×10^{-8}	8.33×10^{-16}
450	3.69×10^{-4}	4.34×10^{-8}	6.38×10^{-16}
500	4.49×10^{-4}	4.63×10^{-8}	7.08×10^{-16}
550	4.60×10^{-4}	4.73×10^{-8}	7.22×10^{-16}
600	4.71×10^{-4}	4.82×10^{-8}	7.22×10^{-16}
650	4.80×10^{-4}	4.87×10^{-8}	7.22×10^{-16}
700	4.91×10^{-4}	4.92×10^{-8}	8.05×10^{-16}
739	5×10^{-4}	5×10^{-8}	2.45×10^{-11}

W tabelach spostrzeżono następujące własności:

- Wartości norm są porównywalne dla obydwóch kryteriów
- $\bullet\,$ Dla małych wartości nbłędy są podobne niezależnie od tolerancji
- \bullet Błędy przy dwóch pierwszych dokładnościach po dużym spadku pomiędzy n=25 i n=100 dla kolejnych wartości utrzymują się na stabilny poziomie.
- Dla najmniejszej tolerancji następuje duży spadek wartości normy

3.3 Obliczenia dla wektora początkowego z losowymi permutacjami { -100,100}

3.3.1 Porównanie ilości iteracji

Tabela 10: Liczba iteracji dla kryterium residualnego w zależności od rozmiaru macierzy

n	r	Folerancja	ϵ
	10^{-3}	10^{-7}	10^{-15}
10	2	6	16
25	6	13	27
50	10	20	39
100	15	29	60
150	21	40	82
200	25	50	103
250	35	66	100000
300	44	81	100000
350	60	106	100000
400	70	127	100000
450	89	161	100000
500	103	195	100000
550	120	244	100000
600	165	342	100000
650	292	581	100000
700	886	1569	100000
739	61362	100000	100000

Tabela 11: Liczba iteracji dla kryterium przyrostowego w zależności od rozmiaru macierzy

n		<u>Folerancja</u>	
	10^{-3}	10^{-7}	10^{-15}
10	1	5	15
25	4	11	25
50	8	17	37
100	11	26	55
150	16	36	75
200	20	44	94
250	28	59	120
300	35	73	148
350	50	96	189
400	57	114	228
450	73	145	288
500	82	174	359
550	93	216	463
600	125	302	655
650	227	516	1093
700	732	1415	2781
739	49914	100000	100000

W tabelach spostrzeżono następujące własności:

- Kryterium przyrostowe zreguły wymaga mniejszej ilości iteracji
- ullet Wraz ze wzrostem n, dla niektórych wartości następowało zmniejszenie liczby iteracji
- Liczba iteracji dla niektórych macierzy przekracza maksymalną liczbę ustaloną na 10^5 , wynika to ze zbyt restrykcyjnego ϵ

3.3.2 Porównanie czasów wykonania iteracji Jacobiego

Tabela 12: Czas średni pojedynczej iteracji w sekundach [s] dla kryterium residualnego w zależności od rozmiaru macierzy

n		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	0	0	0
25	0	7.71×10^{-5}	0
50	0	0	0
100	0	0	1.96×10^{-5}
150	0	0	1.22×10^{-5}
200	4.05×10^{-5}	2.00×10^{-5}	1.96×10^{-5}
250	0	3.15×10^{-5}	2.46×10^{-5}
300	2.29×10^{-5}	2.73×10^{-5}	3.14×10^{-5}
350	5.01×10^{-5}	3.77×10^{-5}	3.97×10^{-5}
400	4.29×10^{-5}	4.33×10^{-5}	4.51×10^{-5}
450	4.90×10^{-5}	5.45×10^{-5}	5.44×10^{-5}
500	5.83×10^{-5}	5.64×10^{-5}	6.12×10^{-5}
550	6.67×10^{-5}	6.78×10^{-5}	7.57×10^{-5}
600	7.88×10^{-5}	7.61×10^{-5}	8.36×10^{-5}
650	8.74×10^{-5}	8.81×10^{-5}	9.97×10^{-5}
700	1.72×10^{-4}	1.82×10^{-4}	1.73×10^{-4}
739	1.82×10^{-4}	1.91×10^{-4}	1.93×10^{-4}

Tabela 13: Czas średni pojedynczej iteracji w sekundach [s] dla kryterium przyrostowego w zależności od rozmiaru macierzy

n		Tolerancja ϵ	
	10^{-3}	10^{-7}	10^{-15}
10	0	0	0
25	0	0	0
50	1.34×10^{-4}	0	0
100	0	3.88×10^{-5}	0
150	0	0	1.33×10^{-5}
200	0	0	1.08×10^{-5}
250	3.60×10^{-5}	2.14×10^{-5}	8.42×10^{-6}
300	3.53×10^{-5}	6.92×10^{-6}	2.03×10^{-5}
350	3.96×10^{-5}	2.29×10^{-5}	2.65×10^{-5}
400	3.52×10^{-5}	1.75×10^{-5}	2.63×10^{-5}
450	2.85×10^{-5}	2.76×10^{-5}	3.47×10^{-5}
500	3.66×10^{-5}	2.94×10^{-5}	3.78×10^{-5}
550	4.30×10^{-5}	3.71×10^{-5}	3.82×10^{-5}
600	4.80×10^{-5}	4.36×10^{-5}	5.48×10^{-5}
650	4.77×10^{-5}	4.94×10^{-5}	5.89×10^{-5}
700	9.00×10^{-5}	9.67×10^{-5}	9.15×10^{-5}
739	9.57×10^{-5}	9.66×10^{-5}	1.01×10^{-4}

3.3.3 Porównanie błędów ($\sigma(x,y)$ - wartości norm maksimum)

Tabela 14: Błędy dla kryterium residualnego w zależności od rozmiaru macierzy

Tolerancja ϵ n 10^{-3} 10^{-15} 10^{-7} 1.17×10^{-9} 10 3.16×10^{-6} 2.78×10^{-17} 25 9.63×10^{-6} 9.09×10^{-10} 6.94×10^{-17} 1.69×10^{-5} 1.39×10^{-9} 1.53×10^{-16} 50 4.16×10^{-9} 1.39×10^{-16} 2.78×10^{-5} 100 3.83×10^{-9} 1.94×10^{-16} 3.11×10^{-5} 150 3.98×10^{-9} 1.94×10^{-16} 4.53×10^{-5} 200 2.22×10^{-16} 250 4.97×10^{-5} 4.41×10^{-9} 4.61×10^{-5} 5.40×10^{-9} 2.22×10^{-16} 300 5.52×10^{-9} 2.50×10^{-16} 350 5.22×10^{-5} 2.64×10^{-16} 4.96×10^{-5} 5.17×10^{-9} 400 3.05×10^{-16} 5.53×10^{-5} 5.41×10^{-9} 450 5.83×10^{-9} 2.91×10^{-16} 500 5.66×10^{-5} 4.72×10^{-16} 5.96×10^{-5} 5.69×10^{-9} 550 6.03×10^{-5} 5.86×10^{-9} 3.33×10^{-16} 600 6.03×10^{-9} 3.33×10^{-16} 6.14×10^{-5} 650 3.61×10^{-16} 6.16×10^{-9} 6.15×10^{-5} 700 739 6.25×10^{-5} 5.60×10^{-8} 5.60×10^{-8}

Tabela 15: Błędy dla kryterium przyrostowego w zależności od rozmiaru macierzy

n	Tolerancja ϵ		
	10^{-3}	10^{-7}	10^{-15}
10	2.28×10^{-5}	8.44×10^{-9}	4.16×10^{-17}
25	1.36×10^{-4}	1.28×10^{-8}	1.67×10^{-16}
50	1.11×10^{-4}	2.33×10^{-8}	2.50×10^{-16}
100	3.45×10^{-4}	2.74×10^{-8}	4.72×10^{-16}
150	3.32×10^{-4}	2.55×10^{-8}	4.44×10^{-16}
200	2.93×10^{-4}	3.74×10^{-8}	5.00×10^{-16}
250	4.08×10^{-4}	3.62×10^{-8}	6.11×10^{-16}
300	4.17×10^{-4}	3.82×10^{-8}	6.11×10^{-16}
350	3.82×10^{-4}	4.04×10^{-8}	5.55×10^{-16}
400	4.02×10^{-4}	4.19×10^{-8}	6.66×10^{-16}
450	4.30×10^{-4}	4.21×10^{-8}	6.94×10^{-16}
500	4.60×10^{-4}	4.74×10^{-8}	7.22×10^{-16}
550	4.48×10^{-4}	4.60×10^{-8}	9.16×10^{-16}
600	4.87×10^{-4}	4.73×10^{-8}	6.94×10^{-16}
650	4.89×10^{-4}	4.81×10^{-8}	8.05×10^{-16}
700	4.91×10^{-4}	4.91×10^{-8}	8.33×10^{-16}
739	5.00×10^{-4}	5.60×10^{-8}	5.60×10^{-8}