Multivariable Calculus

HECHEN HU

October 23, 2017

Contents

1	Vec	$ ext{tors in } \mathbb{R}^n ext{ Space} ag{1}$			
	1.1	Definition and Properties			
	1.2	Addition/Subtraction			
	1.3	Scalar Multiplication			
	1.4	Dot Product			
	1.5	Direction Angles\Cosines			
	1.6	Orthogonal Projections			
	1.7	Cross Product			
	1.8	Scalar triple product			
2	Lines and Planes 5				
	2.1	Equations of Lines			
	2.2	Equations of Planes			
	2.3	Angle between Planes			
	2.4	Distance			
3	Quadric Surfaces 7				
	3.1	Traces			
	3.2	Type of Quadric Surfaces			
4	Cal	culus of Vector-Valued Functions 9			
	4.1	Orientation/Direction of its graph			
	4.2	Domain and Natural Domain 9			
	4.3	Radius Vector/Position Vector			
	4.4	Vector Form of A Line Segment			
	4.5	Calculus of Vector-Valued Functions			
	4.6	Arc Length			
	4.7	Arc Length as A Parameter			
	4.8	Unit Tangent, Normal, and Binormal Vectors			
	49	Curvature 15			

iv CONTENTS

1

Vectors in \mathbb{R}^n Space

1.1 Definition and Properties

Vector is a geometrical object that has both magnitude and direction. Examples include force and velocity.

Properties in in *n*th dimension vector space for Euclidean vector where e_i is the basis vector for the *i*th axis(for convenience we will us **i**, **j**, **k** denote the basis vector in a 3-d space):

1.2 Addition/Subtraction

$$\mathbf{a} \pm \mathbf{b} = \sum_{i=1}^{n} (a_i \pm b_i) e_i \tag{1.1}$$

1.3 Scalar Multiplication

$$k\mathbf{a} = \sum_{i=1}^{n} ka_i.e._i \tag{1.2}$$

1.4 Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i * b_i$$
$$= \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta \tag{1.3}$$

(Result is a scalar) Dot product has the following properties:

- (a) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ (Commutative)
- (b) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (Distributive)
- (c) $k(\mathbf{a} \cdot \mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (k\mathbf{b})$ (Associative)
- $(d) \quad \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2$
- (e) $\mathbf{0} \cdot \mathbf{a} = 0$

1.5 Direction Angles\Cosines

The directional angles α , β and γ between the vector \mathbf{v} and basis vectors \mathbf{i} , \mathbf{j} , \mathbf{k} in a 3-d space satisfy the following equations:

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{\|\mathbf{v}\| \|\mathbf{i}\|} = \frac{v_1}{\|\mathbf{v}\|} \tag{1.4}$$

$$\cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{\|\mathbf{v}\| \|\mathbf{j}\|} = \frac{v_2}{\|\mathbf{v}\|}$$
 (1.5)

$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{\|\mathbf{v}\| \|\mathbf{k}\|} = \frac{v_3}{\|\mathbf{v}\|} \tag{1.6}$$

According to their definitions we can also see that:

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = \frac{v_{1}^{2} + v_{1}^{2} + v_{1}^{2}}{\sqrt{v_{1}^{2} + v_{1}^{2} + v_{1}^{2}}}$$

$$= 1 \tag{1.7}$$

1.6 Orthogonal Projections

The orthogonal projection of \mathbf{v} on an arbitrary non-zero vector \mathbf{b} can be written as:

$$proj_{\mathbf{b}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b} \tag{1.8}$$

Moreover, we can see that $\mathbf{v} - proj_{\mathbf{b}}\mathbf{v}$ is the vector component of \mathbf{v} orthogonal to \mathbf{b} .

1.7 Cross Product

$$\mathbf{a} \times \mathbf{b} = det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
$$= (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$
$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \mathbf{n}$$
(1.9)

(**n** is the vector that perpendicular to both **a** and **b** and its direction is decided by the right hand rule in a right-handed coordinate system.)
(Result is a vector that is orthogonal to both **a** and **b**)

At the same time, we can see that

$$\mathbf{i} \times \mathbf{j} = \mathbf{k} \quad \mathbf{j} \times \mathbf{i} = -\mathbf{k} \tag{1.10}$$

$$\mathbf{j} \times \mathbf{k} = \mathbf{i} \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i} \tag{1.11}$$

$$\mathbf{k} \times \mathbf{i} = \mathbf{j} \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j} \tag{1.12}$$

What's more, the area A of the parallelogram that has ${\bf a}$ and ${\bf b}$ as adjacent sides is:

$$A = \|\mathbf{a} \times \mathbf{b}\| \tag{1.13}$$

Thus, $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ if \mathbf{a} and \mathbf{b} are parallel vectors. More useful properties of cross product:

- (a) $a \times b = -b \times a$ (Anti Commutative)
- (b) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ (Distributive)
- (c) $(b+c) \times a = b \times a + c \times a$
- (d) $k(a \times b) = (ka) \times b = a \times (kb)$ (Associative)
- (e) $\mathbf{a} \times \mathbf{0} = \mathbf{0} \times \mathbf{a} = \mathbf{0}$
- $(f) \quad \mathbf{a} \cdot \mathbf{a} = 0$

1.8 Scalar triple product

$$(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}) = det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 (1.14)

If we switch two rows of this matrix, the product will be multiplied by -1.

The absolute value of scalar triple product will give us the volume of the parallelepiped that has \mathbf{a} , \mathbf{b} , \mathbf{c} as adjacent edges. Therefore, $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ iff they lie on the same plane.

Lines and Planes

2.1 Equations of Lines

The line in 3-d space that passes through the point $P_0(x_0, y_0, z_0)$ and is parallel to the non-zero vector $\mathbf{v} = \langle a, b, c \rangle = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ has equations:

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$ (Parametric) (2.1)

$$l = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$
 (Vector) (2.2)

If two lines doesn't intercept or parallel to each other in a 3-d space, they are skew.

2.2 Equations of Planes

Definition: A vector perpendicular to a plane is called a **normal** to that plane.

A plane which passing through $P_0(x_0, y_0, z_0)$ and having $n = \langle a, b, c \rangle$ as its normal has equations:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 (Point - Normal form)
(2.3)

$$ax + by + cz + d = 0$$
 $(d = -ax_0 - by_0 - cz_0)(General form)$

$$(2.4)$$

2.3 Angle between Planes

For two planes that have $\mathbf{n_1}$ and $\mathbf{n_2}$ as its normal, the acute angle between them $\boldsymbol{\theta}$ can be obtained from the following equation:

$$\cos \theta = \frac{|\mathbf{n_1} \cdot \mathbf{n_2}|}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \tag{2.5}$$

2.4 Distance

The distance D between a point $P_0(x_0,y_0,z_0)$ and the plane ax+by+cz+d=0 is:

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
 (2.6)

3

Quadric Surfaces

3.1 Traces

To help graphing a complex surface in a 3-d space, we obtain traces, or the curves(mesh lines) formed by cutting this surface with well-chosen planes. Usually, surfaces are built up from traces in planes that are parallel to the coordinate planes.

3.2 Type of Quadric Surfaces

Name	Equation	Figure
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	
Hyperboloid of two sheets	$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	
Elliptic cone	$z^2=rac{x^2}{a^2}+rac{y^2}{b^2}$	
Elliptic paraboloid	$z=rac{x^2}{a^2}+rac{y^2}{b^2}$	
Hyperbolic paraboloid	$z=rac{y^2}{b^2}-rac{x^2}{a^2}$	

4

Calculus of Vector-Valued Functions

4.1 Orientation/Direction of its graph

The direction a graph of a vector-valued function goes when its parameter, t, increases is called the *orientation* or *direction of increasing parameter*.

4.2 Domain and Natural Domain

The domain of a vector-valued function is the set of all allowable values of t. The natural domain of a vector-valued function is the intersection of its component functions' domain.

4.3 Radius Vector/Position Vector

If a function can be expressed as $F(t) = \langle f(t), g(t), h(t) \rangle$, then the position vector of it at t = k is $\langle f(k), g(k), h(k) \rangle$.

4.4 Vector Form of A Line Segment

For two vectors $\mathbf{r_0}$ and $\mathbf{r_1}$ that has its initial point at origin, the line passes through the terminal points of them can be written as:

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) \tag{4.1}$$

And this is called the two-point vector form o a line.

4.5 Calculus of Vector-Valued Functions

The Calculus of vector-valued functions in 2-d and 3-d space is similar to "normal" functions:just apply each operator to its component functions and "sum" them up. The definition of integrable, differentiable and continuous is also similar:each property requires its component functions have the corresponding property.

The tangent line of the graph at point $\mathbf{r}(t_0)$:

$$\mathbf{r} = \mathbf{t_0} + t\mathbf{r}'(t_0) \tag{4.2}$$

For the dot product and cross product, which are unique to vector-valued functions, the derivative is defined as following:

$$\frac{d}{dt}[\mathbf{r}_1(t)\cdot\mathbf{r}_2(t)] = \mathbf{r}_1(t)\cdot\frac{d\mathbf{r}_2}{dt} + \frac{d\mathbf{r}_1}{dt}\cdot\mathbf{r}_2(t)$$
(4.3)

$$\frac{d}{dt}[\mathbf{r}_1(t) \times \mathbf{r}_2(t)] = \mathbf{r}_1(t) \times \frac{d\mathbf{r}_2}{dt} + \frac{d\mathbf{r}_1}{dt} \times \mathbf{r}_2(t)$$
(4.4)

In 2-d space, the tangent line to a circle is perpendicular to the radius at the point of tangency. Similarly, in for a vector-valued function, if $||\mathbf{r}(t)||$ is constant for all t, then:

$$\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0 \tag{4.5}$$

that is, $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal for all t.

4.6 Arc Length

In a 2-d space, the arc length L of a parametric curve $x=x(t),y=y(t),(a\leq t\leq b)$ can be given as:

$$L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \tag{4.6}$$

Lemma. In a 2-d space, the arc length \mathbf{L} of a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ that itself and its derivative is continuous on $[\mathbf{a}, \mathbf{b}]$ is:

$$L = \int ds \tag{4.7}$$

where

$$ds = \sqrt{1 + (rac{dy}{dx})^2} dx \quad if \quad y = f(x), a \le x \le b$$
 $ds = \sqrt{1 + (rac{dx}{dy})^2} dy \quad if \quad x = g(y), c \le y \le d$

Proof. As we can see in the figure below, the arc length is the sum of distance between n consecutive points when $n \to \infty$

Arc Length \boldsymbol{L} can be written as:

$$L = \lim_{n o \infty} \sum_{i=1}^n \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}$$

Additionally, we can see that

$$\sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2} = \sqrt{\Delta x^2 + \Delta y_i^2}$$

According to Mean Value Theorem, there exists an \bar{x} such that

$$\Delta y_i = f'(\bar{x_i})\Delta x$$

Thus

$$\begin{split} \sqrt{\Delta x^2 + \Delta y_i^2} &= \sqrt{\Delta x^2 + \Delta y_i^2} \\ &= \sqrt{\Delta x^2 + (f'(\bar{x_i})\Delta x)^2} \\ &= \sqrt{1 + [f'(\bar{x_i})]^2} \Delta x \end{split}$$

The exact length of the given curve is

$$egin{aligned} L &= \lim_{n o \infty} \sum_{i=1}^n \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2} \ &= \lim_{n o \infty} \sum_{i=1}^n \sqrt{1 + [f'(ar{x_i})]^2} \Delta x \ &= \int_a^b \sqrt{1 + [f'(x)]^2} dx \ &= \int_a^b \sqrt{1 + (rac{dy}{dx})^2} dx \end{aligned}$$

Now we can prove Theorem (4.6):

Proof. Recall that x = x(t), y = y(t), therefore

$$\begin{split} L &= \int_a^b \sqrt{1 + (\frac{dy}{dx})^2} dx \\ &= \int_a^b \sqrt{1 + \frac{(\frac{dy}{dt})^2}{(\frac{dx}{dt})^2}} \frac{dx}{dt} dt \\ &= \int_a^b \sqrt{1 + \frac{(\frac{dy}{dt})^2}{(\frac{dx}{dt})^2}} \frac{dx}{dt} dt \\ &= \int_a^b \frac{1}{|\frac{dx}{dt}|} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \frac{dx}{dt} dt \end{split}$$

If we assume that $\frac{dx}{dt} \geq 0$, then

$$L = \int_a^b \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

Analogously, the arc length L of a smoothly parametrized function(have a continuously turning tangent vector) in 3-d space is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$
$$= \int_{a}^{b} \left\| \frac{d\mathbf{r}}{dt} \right\| dt \tag{4.8}$$

4.7 Arc Length as A Parameter

Sometime it would be more convenient to replace t with s, which is the length of arc measured along the curve from some fixed reference point. There are three steps:

Step 1. Select an reference point.

Step 2. Choose one direction from the reference point as the positive direction.

Step 3. Change the length s to a "signed" length, which means s is positive if s "moves along the curve" to its positive direction.

Note that there are infinitely many different arc length parameterizations.

Theorem 4.7.1. Chain Rule Let $\mathbf{r}(t)$ be a vector-valued function in 2-d/3-d space that is differentiable with respect to \mathbf{t} . If $\mathbf{t} = \mathbf{g}(\tau)$ is a change of parameter in which \mathbf{g} is differentiable with respect to $\boldsymbol{\tau}$, then $\mathbf{r}(\mathbf{g}(\tau))$ is differentiable with respect to $\boldsymbol{\tau}$ and

$$\frac{d\mathbf{r}}{d\tau} = \frac{d\mathbf{r}}{dt}\frac{dt}{d\tau} \tag{4.9}$$

A change in parameter is smooth if $\mathbf{r}(g(\tau))$ is smooth and $\mathbf{r}(t)$ is smooth. For all τ , $\frac{dt}{d\tau} > \mathbf{0}$ is called a positive change of parameter while $\frac{dt}{d\tau} < \mathbf{0}$ is called a negative change of parameter.

Theorem 4.7.2. Let C be the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-d or 3-d space, and let $\mathbf{r}(t_0)$ be any point on C. Then the following formula defines a positive change of parameter from \mathbf{t} to \mathbf{s} , where \mathbf{s} is an arc length parameter having $\mathbf{r}(t_0)$ as its reference point:

$$s = \int_{t_0}^t \left\| \frac{d\mathbf{r}}{du} \right\| du \tag{4.10}$$

Theorem 4.7.3. If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-d or 3-d space, where \mathbf{t} is a general parameter, and if \mathbf{s} is the arc length parameter for C defined by **Theorem 2**, then for every value of \mathbf{t} the tangent vector has length

$$\left\| \frac{dr}{dt} \right\| = \frac{ds}{dt} \tag{4.11}$$

Proof. This can be derived from applying the Fundamental Theorem of Calculus to Theorem 2. $\hfill\Box$

Theorem 4.7.4. If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-d or 3-d space, where \mathbf{s} is the arc length parameter, then for every value of \mathbf{s} the tangent vector to C has length

$$\left\| \frac{dr}{ds} \right\| = 1 \tag{4.12}$$

Proof. Let t = s in Theorem 3.

Theorem 4.7.5. If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-d or 3-d space, and if

$$\left\| \frac{dr}{dt} \right\| = 1 \tag{4.13}$$

for every value of t, then t is an arc length parameter that has its reference point at the point on C where t = 0.

Proof. The formula

$$s = \int_0^t \left\| rac{d\mathbf{r}}{du}
ight\| du$$

defines an arc length parameter for C with reference point $\mathbf{r}(0)$. Note that

$$\left\| rac{dr}{dt}
ight\| = 1$$

by hypothesis. Thus the formula can be rewrite as

$$s = \int_0^t du = t - 0 = t$$

4.8 Unit Tangent, Normal, and Binormal Vectors

Definition. The unit tangent of a smooth vector-valued function $\mathbf{r}(t)$ in 2-d space or 3-d space that points in the direction of increasing parameter can be expressed as:

$$\mathrm{T}(t) = rac{\mathrm{r}'(t)}{\|\mathrm{r}'(t)\|}$$

and it's called the unit tangent vector to C at t.

Recall that if a vector-valued function $\mathbf{r}(t)$ has constant norm, then $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal. Because $\mathbf{T}(t)$ has constant norm 1, so $\mathbf{T}(t)$ and $\mathbf{T}'(t)$ are orthogonal. This implies that $\mathbf{T}'(t)$ is perpendicular to the tangent line to C at t, so we say that $\mathbf{T}'(t)$ is normal to C at t. If $\mathbf{T}'(t) \neq 0$, then

$$\mathbf{N}(t) = rac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

П

4.9. CURVATURE 15

is the principle unit normal vector, or simply unit normal vector to C at t and points in the same direction as T'(t).

The unit normal vector always points toward the concave side of \boldsymbol{C} in 2-d space.

According to **Theorem 4.7.4**, $\|\mathbf{r}'(t)\| = 1$. Thus

$$T(s) = r'(s)$$

and consequently

$$\mathbf{N}(s) = \frac{\mathbf{r}''(s)}{\|\mathbf{r}''(s)\|}$$

Definition. The binormal vector to C at t can be defined as

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$
$$= \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}$$

that is, the cross product of its unit tangent vector and unit normal vector and the direction of binormal vector is determined by the right-hand rule. $\|\mathbf{B}(t)\| = 1$ since $\|\mathbf{T}(t) \times \mathbf{N}(t)\| = \|\mathbf{T}(t)\| \|\mathbf{N}(t)\| \sin(\pi/2) = 1$.

In terms of arc length parameteriation, it can be expressed as

$$\mathbf{B}(s) = \frac{\mathbf{r}'(s) \times \mathbf{r}''(s)}{\|\mathbf{r}''(s)\|}$$

Together with unit tangent vector and unit normal vector, the binormal vector define three mutually perpendicular planes that point through that point – the **TB**-plane (called the *rectifying plane*), the **TN**-plane (called the *osculating plane*), and the **NB**-plane (called the *normal plane*). The coordinate system(right-hand) system determined by these three vectors is called the **TNB**-frame.

4.9 Curvature

Definition. If C is a smooth curve in 2-d space or 3-d space that is parametrized by arc length, then the *curvature* of C, denoted by $\kappa = \kappa(s)$, is defined by

$$\kappa(s) = \left\| \frac{d\mathbf{T}}{ds} \right\| = \|\mathbf{r}''(s)\|$$

Theorem 4.9.1. If $\mathbf{r}(t)$ is a smooth vector-valued function in 2-d space or 3-d space, then for each value of \mathbf{t} at which $\mathbf{T}(t)$ and $\mathbf{r''}(t)$ exist, the curvature κ can be expressed as

$$egin{aligned} \kappa(t) &= rac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} \ &= rac{\|\mathbf{r}'(t) imes \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} \end{aligned}$$