The Perils of Bilateral Sovereign Debt

Francisco Roldán IMF César Sosa-Padilla Notre Dame & NBER

September 2025

Official Sovereign Debt

- · A large share of sovereign borrowing takes the form of official debt
 - ... Multilaterals, development banks, other governments
- Emergence of new bilateral creditors outside the Paris Club

... with claims to seniority and sometimes opaque terms

Questions

- How does the presence of a large senior lender affect sovereign debt markets?
- What are its welfare implications for borrowing governments?

Official Sovereign Debt

- · A large share of sovereign borrowing takes the form of official debt
 - ... Multilaterals, development banks, other governments
- Emergence of new bilateral creditors **outside** the Paris Club

... with claims to seniority and sometimes opaque terms

Questions

- · How does the presence of a large senior lender affect sovereign debt markets?
- · What are its welfare implications for borrowing governments?

Evaluating Senior Official Creditors

Quantitative sovereign debt model with

- Competitive creditors in private markets (bondholders)
- Large bilateral lender
 - 1. Superior enforcement technology
 - Bargained borrowing terms (price and quantity)
 - 3. Short-maturity loans
- · Prime example: Central Bank swap lines (Horn et al., 2021)
 - ... also perhaps CB deposits, loans with non-monetary payment, IMF programs...
- Focus on the interaction between both funding sources
 - ... presence of bilateral lender affects government behavior in debt markets
 - ... outcomes in debt markets affect threat points in bargaining

Relational Overborrowing

Main findings

- · Bilateral loans have significant effects on equilibrium outcomes
 - ... provide funding when other sources dry up (e.g. because of default risk)
 - ... can also incentivize more risk-taking
- Bilateral loans induce relational overborrowing
 - · Surplus requires spreads spreads require risk
- Welfare losses from presence of bilateral creditor (for realistic bargaining weights)
- Relational overborrowing due to elasticity of bilateral terms to market debt
 - ... remains present in a model without bargaining
 - ... model with exogenous bilateral terms useful for optimal design

Relational Overborrowing

Main findings

- · Bilateral loans have significant effects on equilibrium outcomes
 - ... provide funding when other sources dry up (e.g. because of default risk)
 - ... can also incentivize more risk-taking
- Bilateral loans induce relational overborrowing
 - · Surplus requires spreads spreads require risk
- Welfare losses from presence of bilateral creditor (for realistic bargaining weights)
- · Relational overborrowing due to elasticity of bilateral terms to market debt
 - ... remains present in a model without bargaining
 - ... model with exogenous bilateral terms useful for optimal design

Literature

- · Sovereign debt/default with interactions from 'official' debt
 - ... senior debt (Hatchondo, Martinez & Önder 2017), senior debt with conditionality (Boz 2011, Fink & Scholl 2016), bailout agencies (Corsetti, Guimarães & Roubini 2006, Kirsch & Rühmkorf 2017, Roch & Uhlig 2018), official debt (Arellano & Barreto 2024, Liu, Liu & Yue 2025)
- Data on new official creditors
 - ... Horn, Reinhart & Trebesch 2021a, 2021b, Gelpern et al. 2021, Horn, Parks, Reinhart & Trebesch 2023
- · Central Bank swap lines
 - ... among advanced economies (Bahaj & Reis 2021, Cesa-Bianchi, Eguren-Martin & Ferrero 2022), data for emerging-market borrowers (Perks, Rao, Shin & Tokuoka 2021)

Environment

The government of a small open economy borrows from a monopolist and from markets

- Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the loan m each period
 - ... Involves a current transfer x and a new size m'
 - ... Loan is non-defaultable \implies Repaying m is the natural threat point

Environment

The government of a small open economy borrows from a monopolist and from markets

- · Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the loan m each period
 - ... Involves a current transfer x and a new size m'
 - \dots Loan is non-defaultable \implies Repaying m is the natural threat point
- · Should expect

- $x = \frac{1}{1+r}m' m$
- ... Implicit interest rate *r* to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

5

Timeline of Events

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get
$$q$$
, pay κ , $(1 - \delta)\kappa$, ... $(1 - \delta)^{s-1}\kappa$

Government enters first stage owing b in debt, m in loans, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) \left(\kappa + (1 - \delta) q(b'', b', m', z') \right) \mid z \right]$$

$$m' = m'(b', b, m, z)$$

$$b'' = b'(b', m', z')$$

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get
$$q$$
, pay κ , $(1 - \delta)\kappa$, ... $(1 - \delta)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in loans, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

 \cdot Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) (\kappa + (1 - \delta)q(b'', b', m', z')) \mid z \right]$$

$$m' = m'(b', b, m, z)$$

$$b'' = b'(b', m', z')$$

1

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get
$$q$$
, pay κ , $(1 - \delta)\kappa$, ... $(1 - \delta)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in loans, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

 \cdot Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b',b,m,z) = \beta_L \mathbb{E}\left[\left(1 - 1_{\mathcal{D}}(b',m',z')\right)\left(\kappa + (1-\delta)q(b'',b',m',z')\right) \mid z\right]$$

$$m' = m \left(b,m,z\right)$$
same sdf as monopolist
$$b'' = b'(b',m',z')$$

7

Bargaining Stage with Monopolist

• At state z, owing debt b bonds and m on the loan and having issued b'

$$\max_{x,m} \mathcal{L}_{R}(b',x,m,m',z)^{\theta} \times \mathcal{B}_{R}(b',b,x,m,m',z)^{1-\theta}$$
Lender surplus

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u(y(z) + B(b',b,m,z) + x) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b',b,m,z) - m) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\right]}_{\text{threat point}}$$

with
$$B(b', b, m, z) = q(b', b, m, z)(b' - (1 - \delta)b) - \kappa b$$

Bargaining Stage with Monopolist

• At state z, owing debt b bonds and m on the loan and having issued b'

$$\max_{x,m} \mathcal{L}_R(b',x,m,m',z)^{\theta} \times \mathcal{B}_R(b',b,x,m,m',z)^{1-\theta}$$

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u(y(z) + B(b',b,m,z) + x) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b',b,m,z) - m) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\right]}_{\text{threat point}}$$

with
$$B(b', b, m, z) = q(b', b, m, z)(b' - (1 - \delta)b) - \kappa b$$

• At state z, owing debt b bonds and m on the loan and having issued b'

$$\max_{x,m} \mathcal{L}_R(b',x,m,m',z)^{\theta} \times \mathcal{B}_R(b',b,x,m,m',z)^{1-\theta}$$

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u\big(y(z) + B(b',b,m,z) + x\big) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\big(u\big(y(z) + B(b',b,m,z) - m\big) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\big)}_{\text{threat point}}$$

with
$$B(\mathbf{b'}, \mathbf{b}, m, z) = q(\mathbf{b'}, \mathbf{b}, m, z)(\mathbf{b'} - (1 - \delta)\mathbf{b}) - \kappa \mathbf{b}$$

Loans

Quantitative Effects of Bilateral

Calibration

· Calibrate to Argentina with only market (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	δ	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	$\sigma_{\it z}$	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

· Calibrate to Argentina with only market (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	heta	0.5
Risk-free interest rate	r	0.01
Duration of debt	δ	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	$\sigma_{\it z}$	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Limiting Loans in Default

• Limited: entire loan must be repaid while in default $\Gamma(m) = 0$

	Only market	Unrestricted, $\theta = 0.5$	$\begin{array}{l} \textbf{Limited,} \\ \theta = \textbf{0.5} \end{array}$
Avg spread (bps)	714	2,105	1,038
Std spread (bps)	399	1,331	612
$\sigma(c)/\sigma(y)$ (%)	113	109	113
Debt to GDP (%)	22.5	21.2	22.5
Loan to GDP (%)	0	3.02	1.06
Loan spread (bps)	-	-429	536
Corr. loan & spreads (%)	-	67.5	71.1
Default frequency (%)	5.72	13	7.72
Welfare gains (rep)	-	-0.43%	-0.2%

Default Barriers with Loans

· Unrestricted: default barrier moves inward, Limited: marginal impact

Default Barriers with Loans

· Unrestricted: default barrier moves inward, Limited: marginal impact

If Limited loans help repay the debt,

Why are there **more** defaults with loans?

Debt Levels with Loans

Debt Levels with Loans

Debt Levels with Loans

Relational Overborrowing

$$\mathcal{B}_{R}(\boldsymbol{b'}, b, x, m, m', z) = u(y(z) + B(\boldsymbol{b'}, b, m, z) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{m'}, z') \mid z\right] - \left(u(y(z) + B(\boldsymbol{b'}, b, m, z) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{0}, z') \mid z\right]$$

- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point
 - After large revenues (high q, high b'), gov't flush with cash, strong in bargaining
 - · After bad issuance (low q or low b'), gov't weak in bargaining
- Strongly negative cross-elasticity of bilateral terms to market debt
 goes against market discipline of spreads

$$u'(c)\left(q+\frac{\partial q}{\partial b'}i+\frac{1}{1+r_b}\frac{\partial m'}{\partial b'}+\frac{\partial\frac{1}{1+r_b}}{\partial b'}m'\right)=\beta\mathbb{E}\left[u'(c)(1-\mathbb{I}_{\mathcal{D}})\left(\kappa+(1-\delta)q'+\ldots\right)\right]$$

Relational Overborrowing

$$\mathcal{B}_{R}(\boldsymbol{b'}, b, x, m, m', z) = u(y(z) + B(\boldsymbol{b'}, b, m, z) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{m'}, z') \mid z\right] - \left(u(y(z) + B(\boldsymbol{b'}, b, m, z) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{0}, z') \mid z\right]$$

- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point
 - After large revenues (high q, high b'), gov't flush with cash, strong in bargaining
 - After bad issuance (low q or low b'), gov't weak in bargaining
- Strongly negative cross-elasticity of bilateral terms to market debt
 - → goes against market discipline of spreads

$$u'(c)\left(q+\frac{\partial q}{\partial b'}i+\frac{1}{1+r_b}\frac{\partial m'}{\partial b'}+\frac{\partial\frac{1}{1+r_b}}{\partial b'}m'\right)=\beta\mathbb{E}\left[u'(c)(1-\mathbb{1}_{\mathcal{D}})\left(\kappa+(1-\delta)q'+\ldots\right)\right]$$

$$\mathcal{B}_{R}(\boldsymbol{b'}, b, x, m, m', z) = u(y(z) + B(\boldsymbol{b'}, b, m, z) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{m'}, z') \mid z\right] - \left(u(y(z) + B(\boldsymbol{b'}, b, m, z) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{0}, z') \mid z\right]$$

- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point
 - After large revenues (high q, high b'), gov't flush with cash, strong in bargaining
 - After bad issuance (low q or low b'), gov't weak in bargaining
- Strongly negative cross-elasticity of bilateral terms to market debt
 - \longrightarrow goes against market discipline of spreads

$$u'(c)\left(q+\frac{\partial q}{\partial b'}i+\frac{1}{1+r_b}\frac{\partial m'}{\partial b'}+\frac{\partial\frac{1}{1+r_b}}{\partial b'}m'\right)=\beta\mathbb{E}\left[u'(c)(1-\mathbb{1}_{\mathcal{D}})\left(\kappa+(1-\delta)q'+\ldots\right)\right]$$

Surplus on loan requires spreads > 0: monopolist provides incentives for risk taking

Welfare Effects of Bilateral Loans

Limited ≽ Unrestricted, but...

Programming the Large Lender

Possible rules

- · Bargaining over bilateral terms endogenously leads to punishment for deleveraging
- · Explore interest rate rules of the form

$$r(b',m') = \max\{r, \alpha_0 + \alpha_b b' + \alpha_m m'\}$$

- · Two versions
 - Risk-inducing rule: $\alpha_0 > 0, \alpha_b < 0, \alpha_m = 0$
 - Size-dependent (similar to surcharges): $\alpha_0 > 0, \alpha_b = 0, \alpha_m > 0$

Equilibrium with Exogenous Rules

	Only market	Size dependent <i>r</i>	Risk inducing <i>r</i>	$\begin{array}{l} \textbf{Limited,} \\ \theta = \texttt{0.5} \end{array}$
Avg spread (bps)	714	623	921	1,038
Std spread (bps)	399	315	552	612
$\sigma(c)/\sigma(y)$ (%)	113	115	115	113
Debt to GDP (%)	22.5	23.5	22.8	22.5
Loan to GDP (%)	0	0.71	0.972	1.06
Loan spread (bps)	-	682	1,264	536
Corr. loan & spreads (%)	-	62.5	48.1	71.1
Default frequency (%)	5.72	5.13	6.92	7.72
Welfare gains (rep)	-	0.21%	-0.079%	-0.2%

The Perils of Bilateral Sovereign Debt

- · Simple model with monopolist/fringe structure
 - ... example of situation where cross-elasticity emerges
- · Strong interaction between two markets for sovereign debt
 - ... cross-elasticity induces risk-taking, more defaults, welfare losses
 - ... even if bilateral loans are not used intensely on the equilibrium path
- · Cross-elasticity constitutes a simple test to assess welfare gains of new instruments
 - ... or a boost to the gains of fiscal rules, state-contingent debt...

· Further conditioning on default events lasting exactly two years

• With Limited: $\Gamma(m) = m$

