Fundamentos de Estrutura de Computadores

Prof. X.

INTRODUÇÃO

 O computador, por ser uma máquina eletrônica, só consegue processar duas informações: a presença ou ausência de energia.

Essas informações na Eletrônica Digital usam a base BINÁRIA para o processamento de seus sinais e por analogia podemos concluir que esta base é formada por apenas dois algarismos: 0 e 1.

Representação da Informação

Número binário no computador:
 bit [de "Binary digIT"] A unidade de informação.

 Uma quantidade computacional que pode tomar um de dois valores, tais como verdadeiro e falso ou 1 e 0, respectivamente (lógica positiva).

CONJUNTO BINÁRIO

DECIMAL	BINÁRIO
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

CONVERSÃO DE BASES DECIMAL PARA BINÁRIO

$$(23)_{10} = (10111)_2$$

$$(30)_{10} = (11110)_2$$

CONVERSÃO DE BASES BINÁRIO PARA DECIMAL

$$(47602)_{10} = 40000 + 7000 + 600 + 00 + 2 =$$

= $4x10^4 + 7x10^3 + 6x10^2 + 0x10^1 + 2x10^0$
 $(10010)_2 = 10000 + 0000 + 000 + 10 + 0 =$
= $1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 0x2^0 =$
= $1x16 + 0x8 + 0x4 + 1x2 + 0x1 = (18)_{10}$

OUTRO MÉTODO

1024	512	256	128	64	32	16	8	4	2	1
210	29	28	27	26	2 ⁵	24	2 ³	22	21	20

PARA SIMPLIFICAR:

ONDE POSSUI 1 SOMA ONDE POSSUI 0 NÃO SOMA SEMPRE BUSCAMOS O VALOR MAIOR QUE O NÚMERO MAIS PRÓXIMO. COMO É MAIOR, NÃO SOMA, INICIA-SE COM 0.

EX: 51₍₁₀₎

NESTE CASO O 64 É O NÚMERO MAIS PRÓXIMO MAIOR, ENTÃO 0 NA COLUNA DO 26

32 É MENOR, nesse caso vai 1

16 + 32 = 48, CONTINUA MENOR ENTÃO SOMA (COLOCA 1).

8 + 48 = 56, NÃO SOMA, POIS 56 É MAIOR QUE 51 (COLOCA 0).

4 + 48 = 52, TAMBÉM NÃO SOMA, POIS 52 TAMBÉM É MAIOR QUE 51 (COLOCA 0).

2 + 48 = 50, COMO 50 É MENOR SOMA (COLOCA 1).

1 + 48 = 49, COMO 49 É MENOR (COLOCA 1).

64	32	16	8	4	2	1
26	2 ⁵	24	2 ³	2 ²	21	20
0	1	1	0	0	1	1

 $51_{(10)} = 0110011_{(2)}$ OU SIMPLESMENTE 110011₍₂₎

NO CASO CONTRÁRIO SE TEMOS O VALOR BINÁRIO MAS QUEREMOS SABER O VALOR EM DECIMAL.

EX: 1100110₍₂₎

SIMPLESMENTE SOMAMOS ONDE POSSUI 1 NA COLUNA E IGNORAMOS ONDE POSSUI 0.

1024	512	256	128	64	32	16	8	4	2	1
210	29	28	27	26	2 ⁵	24	2 ³	2 ²	21	20
				1	1	0	0	1	1	0

SOMA-SE: $64 + 32 + 4 + 2 = 102_{(10)}$

LOGO, $1100110_{(2)} = 102_{(10)}$

Soma binária

- Soma de dois números binários é semelhante a soma decimal...
- Levar em consideração que só há dois números disponíveis (0,1)
- □ Regras das soma em base 2:

- \Box 0+0=0 0+1=1
- \Box 1+0=1 1+1=0, com "vai 1"

Exemplos soma binária

Exemplos soma binária

	1	1	1			1		Vai 1				1	1	1	1		
	1	0	0	1	1	0	1	Parcela 1		1	0	0	1	1	1	1	
+		1	1	1	0	0	1	Parcela 2	+	1	1	0	0	1	1	1	
1	0	0	0	0	1	1	0	_	1	0	1	1	0	1	1	0	

Subtração binária

- Subtração de dois números binários é semelhante a subtração decimal...
- Levar em consideração que só há dois números disponíveis (0,1)
- □ Regras da subtração em base 2:

Em decimal empresta 10, em binário, empresta 2

Exemplos subtração binária

				2	2		Empréstimo		1	1	2		1	2		
	1	0	1	1	0	1	Minuendo	1	0	0	0	1	0	0	0	1
_	1	0	0	1	1	1	subtraendo	-0	1	0	1	0	1	1	0	0
	0	0	0	1	1	0		0	0	1	1	0	0	1	0	1

				+1 +1	+1 +1		Empréstimo		+1 +1	+1 +1			+1 +1	+1 +1		
	1	0	1 0	1 0	0	1	Minuendo	1 0	0	0	0	1 0	0	0	0	1
_	1	0	0	1	1	1	subtraendo	-0	1	0	1	0	1	1	0	0
	0	0	0	1	1	0	-	0	0	1	1	0	0	1	0	1

Multiplicação binária

- Multiplicação de dois números binários é semelhante a multiplicação decimal...
- Levar em consideração que só há dois números disponíveis (0,1)
- Regras da multiplicação em base 2:

- □ Número X x 1 é o próprio número
- □ Número X x0 é zero

Exemplos multiplicação binária

			1	0	1	1
X				1	0	1
		1	1	0	1	1
		0	0	0	0	+
	1	0	1	1	+	+
	1	1	0	1	1	1
		1	1	1	0	0
	1	1	X		1	1
		1	1	1	0	0
	1	1	1	0	0	+
1	0	1	0	1	0	0

Multiplicando
Multiplicador

				1	1	1	1
	X			1	1	1	1
		1	1				
	1	1	1	1			
1	1	1	1	1	1		
				1	1	1	1
			1	1	1	1	+
		1	1	1	1	+	+
	1	1	1	1	+	+	+
1	1	1	0	0	0	0	1

Divisão Binária

- Divisão de dois números binários é semelhante a Divisão decimal...
- Levar em consideração que só há dois números disponíveis (0,1)
- □ Regras da divisão em base 2:

- 0 / 1 = 0
- $\Box 1 / 1 = 1$

Exemplos divisão binária