データ構造とアルゴリズム (第12回)

グラフのアルゴリズム(3)

グラフ上のs-tフロー

- □ 始点(s)と終点(t)を持つ連結な重みつき有向グラフ
 - □ 始点は蛇口,終点は排水口
 - □ 各辺は水道管(向き,容量付き)

- □ フロー:水道管を破裂させないようなsからtへの 水の流し方
- □ 流量:sからtへと流れる(単位時間当たりの)の量

グラフ上のs-tフロー

- □ 始点(s)と終点(t)を持つ重みつき有向グラフ
 - □ 始点は蛇口,終点は排水口

各辺について 流量/容量 の形式で書くのが一般的

s-tフロー:形式的な定義

□ 入力:ネットワーク(V, E, c, s, t)

□ (*V*, *E*) 連結有向グラフ

□ $c: E \to \mathbb{R}^+$ 容量関数 (授業では非負の整数のみ考える)

s, t (∈ V) 始点(source)と終点(sink)

 \Box フロー: 辺への流量割り当て関数 $f: E \to \mathbb{R}$

■ただし以下の条件を満たす必要がある

(条件1) $\forall v \in V \setminus \{s, t\} : \sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) = 0$

(条件2) $\forall e \in E$: $0 \le f(e) \le c(e)$

s-tフロー:形式的な定義

□ 入力:ネットワーク(V, E, c, s, t)

連結有向グラフ \square (V, E)

 $\Box c: E \to \mathbb{R}^+$ 容量関数 (授業では非負の整数のみ考える)

始点(source)と終点(sink) \square s, t ($\in V$)

□ フロー: 辺への流量割り当

s,tを除き,各頂点において 流入量=流出量

□ただし以下の条件を満た

(条件1) $\forall v \in V \setminus \{s, t\} : \sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) = 0$

(フロー保存則)

(条件2) $\forall e \in E: 0 \le f(e) \le c(e)$ (容量制約)

フロー:確認

□ 条件1

s-tフロー:形式的な定義

入力:ネットワーク(V,E,c,s,t)

連結有向グラフ

始点(source)と終点(shift)の整数のみ考える)

条件1) $\forall v \in V \setminus \{s,t\}: \sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) =$
• $\partial^+(v), \partial^-(v): v$ から出る(に入る)辺の集合

条件2については、どの辺に ついても流量<容量であるので 明らかに成り立っている

クイズ:これはフローか?

s-tフローの流量

流入=2

流出=1+1+0

- □ フローの流量: sから"正味"出ていく流量
 - ■より正確には「sから出ていく流量-sへ入る流量」

流入=1

流出=1

- ■実際にはs,t以外はすべてフロー保存則が成り立つので「t に(正味)入る流量」としても同じである
- □ フローfの流量を|f|で表す
 - **o** すなわち, $|f| = \sum_{e \in \partial^+(s)} f(e) \sum_{e \in \partial^-(s)} f(e)$

最大フロー問題

- □ 自然な問題として 「流量最大のフロー*f* を求めよ」を定義できる
 - 最大フロー問題(maximum flow problem)
- □ 最小全域木問題と同じく,最適化問題の一種
 - ■特に,線形計画法(Linear Programming:LP)と呼ばれる問題の一種

s-tカット

- ュネットワーク(V, E, c, s, t)のs-tカット(S, T)
 - $s \in S, t \in T$ を満たすVの分割 $(S \cup T = V, S \cap T = \emptyset)$
 - 実際のところ, Sを決めたら $T = V \setminus S$ と自動的に 決まるので,Sだけで定義する場合もある

直感的な観察

- □太さが変わる管に水を流すことを考える
 - ■最もくびれているところが最大流量を決める

■ グラフにおける「くびれ」の概念は何か?

s-tカット

□ s-tカットSの容量:s-tカットセット中の辺の容量の和

$$\kappa(S) = \sum_{e=(v,w): v \in S, w \in T} c(e)$$

補題

任意のs-tフローの流量≤任意のs-tカットの容量

■ 証明は省略するが、直感的にはほぼ明らかであろう

s-tカットの例

□ クイズ:赤線のs-tカットの容量はいくらだろうか?

補題の意味するところ

- 流量xのフローfを発見
- -

fは最大,Sは最小

- 2. 容量xのカットSを発見
 - なぜなら、補題より、任意のフローの流量は Sの容量、すなわちx以下($|f| \le x$)
 - なぜなら、補題より、任意のカットの容量は fの 流量以上、 すなわちx以上($\kappa(S) \ge x$)

最大フロー最小カット定理

このようなf,Sの対は必ず存在する (そして,それらは各々最大フロー・最小カットである)

定理(最大フロー最小カット定理)

最大s-tフローの流量=最小s-tカットの容量

■ Ford-Fulkersonの定理とも呼ばれる

定理の証明

証明

- □ 証明は構成的に示す、具体的には以下の2つを示す
 - 1. あるフローを構成するアルゴリズムA
 - 2. アルゴリズムAの出力fに対し,流量|f|となるカットSが必ず構成できる
- 補題から、このアルゴリズムは最大フローを 求めるアルゴリズムであることがわかる
- □ と同時に、最大フロー最小カット定理の証明にも なっている

証明:アルゴリズムAの構成

与えられたフローに対して、流量をさらに増やせるかどうかを判定する方法を検討してみる

証明:アルゴリズムAの構成

- □ 増加道
 - それに沿って0より大きいフローを流すことで 流量を上げられるs-tパス

証明:アルゴリズムAの構成

□ 増加道がない場合は最大フローか?

証明:アルゴリズムAの構成

□ 増加道がない場合は最大フローか?

証明:アルゴリズムAの構成

□ 増加道がない場合は最大フローか?

→逆流によりフロー量を増やせる

証明:アルゴリズムAの構成

□ 増加道がない場合は最大フローか?

→逆流によりフロー量を増やせる

残余グラフと増加道

(V, E, c, s, t)上のフローfに対する 残余グラフ(residual graph) (V, E_f, c_f, s, t)

$$\blacksquare E_f = E_f^+ \cup E_f^-$$

$$E_f^+ = \{e | e \in E, f(e) < c(e)\}$$

$$\mathbf{E}_f^- = \{\bar{e} | e \in E, f(e) > 0\}$$
 \bar{e} は e の逆向き辺

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E_f \\ f(e) & \text{if } e \in E_f \end{cases}$$

□ fの残余ネットワークにおけるs-tパスを 増加道と呼ぶ(これが真の定義)

残余グラフの例

□ 最初のフローに対する残余グラフ

アルゴリズムA

- □ Ford-Fulkersonのアルゴリズム:
 - 1. 残余グラフを構成する
 - 2. 残余グラフ上におけるs-tパス(増加道)を一つ見つける
 - 発見できなければアルゴリズム終了
 - 発見したs-tパスの上での辺重みの最小値cに対し, パスに沿ってフローをcだけ流す (すなわち, パス中の辺に 対応するネットワークの辺の流量をcだけ増加させる)
 - 3. 残余グラフを更新して、2に戻る

アルゴリズム終了時の例

最大フローであることの証明

最大フローであることの証明

最大フローであることの証明

最大フローであることの証明

□ 前述の議論から、以下のことが分かる

残余グラフにおいてsから到達可能な頂点集合がなす カットをSとすると、その容量はフロー量に等しい

■ S側から $V \setminus S$ 側へとカットセット中の辺を通って送られた流れは一切S側へと「返却」されていない →全量がtで吸収されている。すなわち $|f| = \kappa(S)$

Ford-Fulkersonのアルゴリズムの実現と マッチングへの応用

Ford-Fulkersonのアルゴリズム

- 1. 残余グラフを構成する
- 残余グラフ上におけるs-tパス(増加道)を一つ 見つける(BFS or DFS)
 - 発見できなければアルゴリズム終了
 - 発見したs-tパスの上での辺重みの最小値cに対し, パスに沿ってフローをcだけ流す (すなわち, パス中の辺に対応する ネットワークの辺の流量をcだけ増加させる)
- 3. 残余グラフを更新して, 2に戻る

残余グラフの隣接リストに対する工夫(1)

辺の追加,削除の代わりに「容量0の辺」を用いるBFS or DFS実行時「容量0」の辺はないものとして扱う

実装上の工夫

- 通常アルゴリズムは「フロー量」は管理しないで 残余グラフのみ管理する
 - ■最終的なフローは残余グラフから計算できる
- 残余グラフの更新は、ゼロから作り直すのではなく 更新のあったところだけ変更する
 - ■見つけたs-tパスに沿って更新する
- □ パスの発見から残余グラフの更新まで(詳細)
 - 1. sを始点とした(有向)全域木Tを計算する
 - 2. T上のs-tパスに沿って,容量の最小値を求める
 - 3. T上のs-tパスに沿って,残余グラフを更新する
 - 逆辺を(隣接リスト中で)効率良く見つける必要あり

残余グラフの隣接リストに対する工夫(2)

□ 各辺に「逆辺へのポインタ」の情報を付加する

残余グラフ更新アルゴリズム

工夫(1),(2)を取り入れると,辺数kの増加道に対する 残余グラフの更新が0(k)時間で終わる

```
T = bfs(s) or dfs(s) // 有向全域木を構成 (T[0, n-1]: 幅優先木を記録する配列) v = t; cmin = \infty while(v \neq s) { cmin = min(cmin, c(T[v], v)) 容量最小値の発見 cmin = min(cmin, c(T[v], v)) cmin = min(cmin, c(T[v], v) cmin = min(cmin, c(T[v], v)) cmin = min(cmin, c(T[v], v) cmin = min(cmin, c(T[v], v)) cmin = min
```

実行時間

- 残余グラフの構成:0(m)
- □ パスの発見: 0(m)時間
- 残余グラフの更新: 0(m)時間
- **→** *O*(*m*|*f*|)時間
- □ パス発見の反復回数: 0(最大流量)
 - 整数フローの場合 (1回で少なくとも1増加するため)
- 注意:|f|はmやnの多項式では収まらない可能性がある (弱多項式時間アルゴリズム)

実行時間

- BFSを使った場合の反復回数:0(mn)
 - □フロー量によらない

(証明は略)

- □ トータル0(m²n)時間
 - ■実用的にはもっと速いことも多い
 - ■強多項式時間アルゴリズム

実行時間が問題中の最大値によらない

- このアルゴリズムはEdmonds-Karpのアルゴリズムと呼ばれる
- もう少し工夫してO(n²m)にすることもできる

(重みなし) 最大マッチング

- □ マッチング(matching):端点を共有しない辺集合
- □ 重みなし最大マッチング問題
 - 辺数最大のマッチングを求める

(最大マッチング)

2部グラフの最大マッチング

- □ 割当て問題(Assignment problem)
 - e.g. 希望割り当て問題
 - n₁人の新入社員/n₁個の配属部署
 - 各部署には1人づつ社員を配属
 - ■各社員は就職部署を指定

最大フローへの帰着

□ 2部グラフの最大マッチングは最大s-tフローを用いて 解ける

最大フローへの帰着

□ 2部グラフの最大マッチングは最大s-tフローを用いて解ける

容量1の有向辺にする (容量はすべて等しいので省略)

最大フローへの帰着

□ 2部グラフの最大マッチングは最大s-tフローを用いて解ける

s,tに相当するスーパーノードを追加して 各頂点に辺を引く(容量は1)

最大フローへの帰着

□ 2部グラフの最大マッチングは最大s-tフローを用いて 解ける

s,tに相当するスーパーノードを追加して 各頂点に辺を引く(容量は1)

最大フローへの帰着

□ 疑問:こんなことは起こらないか?

■ 0.5だけ流れるとか 0.5

■答え:起こらない(起こさないようにできる)

最大フローへの帰着

□ 2部グラフの最大マッチングは最大c+フローを用いて 解ける において飽和する辺は 最大マッチング

s,tに相当するスーパーノードを追加して 各頂点に辺を引く(容量は1)

フロー整数性定理

定理(フロー整数性定理)

全ての辺容量が整数のネットワークはすべての辺の 流量が整数の最大フローを持つ

- □ 証明はFord-Fulkersonのアルゴリズムからほぼ明らか
 - 辺容量が整数で、流量がすべて整数のフローから 得られる残余グラフの辺重みはすべて整数
 - →増加道により増やされる流量もやはり整数
 - →アルゴリズムの実行中フローの整数性を保ち続ける

フロー整数性定理のご利益

- □ 「必ず整数の解が手に入る」のは、組み合わせ的な 問題を解くときの強力な武器になる
 - 組み合わせ的な問題:何らかの(部分)集合を 答えとして取るような問題
 - マッチング: (端点を共有しない)辺の部分集合
 - ■このような問題では

「流量が1の辺」=「対応する要素を取る」 「飽和している辺」=「対応する要素を取る」

のような関係性に基づく帰着を使って問題を 解くことがあり、フロー整数性定理はそのため重要な ツールになる