

Fundamentals of Data Engineering

Trainer: Pradnyaa S. Dindorkar

BigData => section B => 5 questions

1day ->

2day

3day -> Q1 10 4day -> Q2 10 5 day -> End module 20

per - requistes

1: appln dev / programming

2: Database

3: networking

4: OS - Linux

PG-DBDA

Introduction -syllabus

Big Data Fundamentals

Evolution of Data Enggineering | V's: Volume, Velocity, Variety, Veracity, Value

Databases

RDBMS - ACID, SQL (basic concept only) | NoSQL - BASE, CAP theorem

Data warehouse - OLAP vs OLTP

Data cleansing, Data transformations and Data modelling | Data warehouse vs Data mart

Data Engineering Life Cycle

- Source → Ingestion → Storage → Transformation → Serving
- Ingestion: ETL vs ELT
- Storage: Distributed storage, Storage services | Processing: Batch vs Stream

Cloud computing fundamentals

Virtualization, Scaling, Elasticity, Cloud service models, Vendors

Big Data Technologies

- Frameworks: Hadoop, Hive, Spark, Kafka
- Applications and Job profiles.

Data Engineering at a Glance

Database &

Warehouse

@1970 RDBMS KB

Relational DBMS CRUD

@1990 = DWH

@ 1980

Internet & **DotCom**

1991-1995

Mb+ GB

@2000 data burst

@1998

NoSQL Database

CRUD

4+2

1 - CPU

MPP &

Big Data Tech

@2003 TB+PB

Cloud Computing

rent

@2010

Big Data characteristics

Types of Data

2008=FB

RDBMS

- Every enterprise application need to manage data.
- RDBMS is relational DBMS than manages <u>structured data</u>.
- Data is organized into tables, rows and columns. Tables are related to each other.
- All enterprise RDBMS follow serverclient architecture, have built-in relational capabilities, fully ACID transactions, based on Codd's rules.
 - DB2, Oracle, MS-SQL, MySQL, Postgre-SQL, MS-Access, SQLite, etc.

SQL – Structured Query language

- RDBMS data is processed with SQL queries.
- ANSI standardised in 1986 and ISO Standardization in 1987.
- Five major categories:
 - DDL: Data Definition Language e.g. CREATE, ALTER, DROP, RENAME.
 - CREATE TABLE student(roll INT, name CHAR(40), batchid INT);
 - DML: Data Manipulation Language e.g. INSERT, UPDATE, DELETE.
 - INSERT INTO student VALUES(1, 'Ravi', 3);
 - UPDATE student SET name='Ravee' WHERE roll=1;
 - DELETE FROM student WHERE roll=1;
 - DQL: Data Query Language e.g. SELECT.
 - SELECT * FROM student;
 - DCL: Data Control Language e.g. CREATE USER, GRANT, REVOKE.
 - TCL: Transaction Control Language e.g. SAVEPOINT, COMMIT, ROLLBACK.

Transaction characteristics- ACID

Atomic

Transaction = > Set of DML queries executed as a single Unit

i:e either all queries in Transaction are successful or all queries in Transaction are discarded

Consistent => same result shown to all the clients

Isolated => sevaral Transaction executed simultaneously without affecting each other

Durable=> all changes are saves permanetly

Scaling

 Scalability is the ability of a system to expand to meet your business needs.

 Scalability describes a elasticity of the system, ability to adapt to change and demand.

Good scalability ensures the quality of your service.

Vertical Scaling

Vertical scaling describes adding more resources to your current machines.

- ✓ increase memory in the system
- ✓ expanding storage by adding hard drives
- ✓ upgrading the CPUs.
- ✓ upgrading network speed.

Horizontal Scaling

1PC (CPU: 1, RAM:2G)

2 PC (CPU: 1, RAM:2G)

3 PC (CPU: 1, RAM:2G)

✓ adding a new computer to a distributed software application

@2006-7

- Stands for Not Only SQL (beyond sql)
- Manages structured and semi-structured data.
- Prioritizes high performance, high availability and scalability
- Designed for Horizontal scaling. Reliable, fault tolerant, Better performance/Speed.
- No declarative query language
- Uses: Huge data (TBs), Many Read/Write ops, Scalable, Flexible schema.
- Don't use if: Need high consistency, Multiple relations
- BASE transactions and Based on CAP Theorem

CAP Theorem (brewer's th)

- Consistency Data is consistent after operation.
 After an update operation, all clients see the same data.
- Availability System is always on (i.e. service guarantee), no downtime.
- Partition Tolerance System continues to function even the communication among the servers is unreliable.

FaceBook

BASE

BA = Basically Available system running 24 X 7

S => Soft state

Data is auto transferrd to all nodes in cluster

E => Eventual consistency same data visible to all cilent Eventually

Q: 1. ROLLBACK is ______ type command .

- A. DCL
- B. TCL
- C. DDL
- D. DDD

Q: 1. ROLLBACK is ______ type command .

- A. DCL
- B. TCL
- C. DDL
- D. DDD

Q: 1. _____ command is used to delete table.

- A. FREE
- B. DELEET
- C. DROP
- D. RELISED

Q: 1. _____ command is used to delete table.

- A. FREE
- B. DELEET
- C. DROP
- D. RELISED

Q: 1. Which one is not in v's of Big Data?

- A. Variety
- B. Velocity
- C. Volatile
- D. volume

Q: 1. Which one is not in v's of Big Data?

A. Variety -> Data can be unstructured, semi-structured or structured

B. Velocity -> Data generated with high speed

C. Volatile

D. volume -> Hugh amount of data

Veracity in Big data means_____.

- A. The data is generated with high speed
- B. The data is huge
- C. The data is reliable and trustworthy
- D. The data management

Veracity in Big data means______.

- A. The data is generated with high speed -> Velocity
- B. The data is huge -> volume
- C. The data is reliable and trustworthy -> Veracity
- D. The data management -> database

In RDBMS data is stored in ______.

- A. document
- B. tables
- C. collection
- D. keys

In RDBMS data is stored in ______.

- A. document
- B. tables
- C. collection
- D. keys

_____ introduced the NoSQL concept in 1998.

- A. Cassandra
- B. Devid Sam
- C. CarloStrozzi
- D. E.F. CODD

_____ introduced the NoSQL concept in 1998.

- A. Cassandra
- B. Devid Sam
- C. CarloStrozzi
- D. E.F. CODD

Thank you!

