

XNUCLEO 用户手册

产品概述

STM32 Xnucleo 开发平台为用户提供了一个经济、灵活和便捷的方式去实现更具创意的设想。 并能通过选择执行性能、电源功耗和资源特性等多种组合快速搭建原型。

得益于通用的 Arduino™和 ST Morpho 接口的支持,本产品可以搭配众多的 Shield,便于用户在开源平台上使用多种扩展。

STM32 Xnucleo 兼容并能直接运行 STM32 Nucleo 官方提供 STM32 综合 HAL 库和各种包装好的实验例子,并且可以直接兼容 Nucleo 的多种 Shield。用户可在 mbed.org 直接访问 STM32 Nucleo 相关的在线资源。

产品特性

- 使用 LQFP64 封装的 STM32 单片机;
- 两种可扩展资源:
 - Arduino Uno Revision 3 通用连接头;
 - STMicroelectronics Morpho 扩展连接头以访问所用的 STM32 的 IO 端口;
- 支持 mbed:
- 引出 SWD 接口,支持更多的下载/调试方式,如: ST-LINK/V2 (MINI), J-LINK-ARM, ULINK V2:
- 灵活的电源选择:
 - USB 电源;
 - 外部输入电源 VIN(6V<=VIN<=12V)来自 Arduino 和 ST Morpho connector 连接头,也可以通过 CN2 电源接头(6V~12V)输入;
 - 外部 5V 电源(E5V)来自 ST Morpho connector 连接头;
 - 外部+3.3V 电源来自 Arduino 或 ST Morpho connector 连接头;
- 7颗 LEDs:
 - 电源指示灯 PWR, FLASH LED, 串口接收指示灯 RX 和发送指示灯 TX;
- 两个按键:

- 分别为复位按键(RESET)和用户按键(USER);
- 外部高速晶体振荡器:
 - 8MHz 晶体振荡器;
- 外部低速晶体振荡器
 - 32.768KHz 晶体振荡器;
- USB 转虚拟串口;
- USB 接口(XNUCLEO-F030R8 没有 USB 接口)
- ICSP 接口(兼容 Arduino LEONARDO 的 shields),作为 SPI 接口使用;
- 综合 HAL 库和多个实验例子
- 支持广泛的集成开发环境(IDEs),包括 IAR,KEIL,基于 GCC 的 IDEs;

产品型号

表 1. Xnucleo 系列信息

型号	目标 MCU
XNUCLEO-F030R8	STM32F030R8T6
XNUCLEO-F103RB	STM32F103RBT6
XNUCLEO-F302R8	STM32F302R8T6
XNUCLEO-F401RE	STM32F401RET6
XNUCLEO-F411RE	STM32F411RET6

XNUCLEO-FXXXRY 含义如下:

- FXXX 为 STM32 MCU 产品线
- R 为管脚数 (R 意味着有 64 个管脚)
- Y为 FLASH 容量(8 为 64K,B 为 128K,C 为 256K)

目录

产品	品概述		1
产品	3特性		1
产品	라型号		2
1.	快速入门		5
	1.1. 安	安装开发工具	5
	1.1.1.	CP2102 虚拟串口驱动的安装	5
	1.1.2.	STM32 ST-LINK Utility 的安装	5
	1.1.3.	J-Link 驱动的安装	5
	1. 2. 启	自动出厂程序	5
	1.2.1.	硬件设置	5
	1.2.2.	查看程序现象	6
2.	硬件配置		6
	2.1. 供	共电设置	6
	2.1.1	USB 电源输入	6
	2.1.2	使用 CN2, VIN 或 E5V 作为外部电源	7
	2.1.3	外部电源输出	8
	2. 2. LI	ED 指示灯	8
	2.2.1	FLASH LED	8
	2.2.2	电源指示灯 PWR LED	8
	2.2.3	串口工作状态指示灯 LED	9
	2. 3. 接	安键	9
	2.3.1.	USER 键	9
	2.3.2.	RESET 键	9
	2. 4. JI	P2(IDD)跳线	9
	2.4.1.	JP2 ON	9
	2.4.2.	JP2 OFF	9

	2. 5.	USAF	RT 通信	9
	2.5.1	l.	设置跳线将目标 MCU 连接到串口	9
	2.5.2	2.	设置跳线实现 MCU 与 shield 或扩展板的通信	10
	2. 6.	ADC	或 I2C 通信	11
	2. 7.	SPI	接口	11
	2. 8.	USB	接口	12
	2. 9.	锡材	乔	12
	2. 10.	扩展	€连接头	12
3.	mbed 基子	F stw	//32 Xnucleo 平台的使用	15
	3. 1.	使用	月 mbed 编译和下载工程	15
	3.1.1	l.	编译工程	15
	3.1.2	2.	下载工程	15
	3. 2.	从m	nbed 中导出基于 Ke i I 的工程	16
4.	外围模块	そ例程		17
	4. 1.	外围	引模块和与 Xnuc l eo 的接线方式	17
	4. 2.	例程	呈现象说明	19
	4.2.1	l.	数据显示方式:	19
	122)	反馈的数据令♡	20

1. 快速入门

1.1. 安装开发工具

1.1.1. CP2102 虚拟串口驱动的安装

STM32 Xnucleo 板载了基于 CP2102 的 USB TO UART 接口(下文简称为串口),方便用户调试代码。用户需要安装 CP2102 驱动程序才能正常工作。

运行安装程序: .\Xnucleo \tools\CP2102 driver\PreInstaller.exe

安装完成后,将 XNucleo 的 USB TO UART 接口连接到电脑上,可在"设备管理器"中查看到设备 CP210x USB to UART Bridge Controller,则说明驱动安装成功。

1.1.2. STM32 ST-LINK UTILITY 的安装

运行安装程序: .\Xnucleo user\tools\STM32 ST-LINK Utility\STM32 ST-LINK Utility_v3.4.0.exe。(具体安装和使用方法,请参考 ST 官方的说明文档: .\Xnucleo user\tools\STM32 ST-LINK Utility\Readme\STLINK Utility.PDF。用户也可以到 ST 官方下载最新的安装程序。)

安装完成后,将 ST-LINK/V2 (mini)模块连接到电脑上,可在"设备管理器"中查看到设备 STMicroelectronics STLink dongle,则说明驱动安装成功。

1.1.3. J-LINK 驱动的安装

运行安装程序: .\Xnucleo user\tools\JLinkARM\Setup_JLinkARM_V415e.exe。

安装完成后,将 J-Link 仿真器连接到电脑上,可在"设备管理器"中查看到设备 J-Link driver,则说明驱动安装成功。

1.2. 启动出厂程序

按照以下顺序配置 STM32 Xnucleo, 并且启动演示例程:

1.2.1. 硬件设置

- 1) 设置板载跳线
 - JP3 选择 U5V
 - JP2 置为 ON

- 2) 接入电源
 - 使用 USB 电源时,连接 Xnucleo 板载 USB 到 PC。
 - 使用外部电源时,连接 Xnucleo 电源座 CN2 到 6~12V 电源适配器。
- 3) 连接 ST-LINK/V2 (mini)到 Xnucleo 的 SWD 接口

注意:如果先连接 ST-LINK/V2 (mini)到 SWD 接口,再连接 USB 电源或外部电源,可能会导致 ST-LINK/V2 (mini)初始化失败。

1.2.2. 查看程序现象

每按一次 USER 按键, USER LED 的闪烁频率由从快切换到慢,或者由慢切换到快。

2. 硬件配置

2.1. 供电设置

STM32 Xnucleo 可以通过 USB 供电,也可以用过外部电源供电。

可由以下位置供电:

- 位于 CN6 或者 CN7 的 VIN (6V~12V)
- E5V (5V) 或者 +3V3 电源引脚
- CN2 电源接头(7V~12V)

其中 VIN (7V~12V), E5V (5V), +3V3 和 CN2 是通过使用一个外部的电源设备对 Xnucleo 进行供电。

2.1.1 USB 电源输入

Xnucleo 的所有部分以及 Shield,在接上 ST-LINK/V2 (MINI)之后,均可由 ST-LINK/V2 (MINI)的 USB 接口,从 PC 主机获得供电。

如果用户使用 ST-LINK/V2 (MINI)对 Xnucleo 供电的情况下:在 ST-LINK/V2 (mini)对外输出 3.3V 时,则 ST-LINK/V2 (mini)对应输出的最大电流为 150mA。在 ST-LINK/V2 (mini)对外输出 5V 时,则 ST-LINK/V2 (mini)对应输出的最大电流为 300mA。在这种情况下,只能强制使用外部电源,将在下一节介绍。

Xnucleo 板载的所有器件和扩展板也可以使用自带的 USB 接口供电(U5V)。但应该注意,如果 Xnucleo 需求超过 300mA 的电流,可能对 USB 有损害。当使用 USB 对 Xnucleo 供电时,必须通过 JP3 设置跳线选择 U5V。如表 2. 电源相关跳线所示。

表 2. 电源相关跳线

跳线	描述
	当使用 USB 供电时,必须跳线选择 U5V (默认设置)
JP3	
	当使用 CN2,VIN 或 E5V 必须跳线选择 E5V
	3 2 1 A

2.1.2 使用 CN2, VIN 或 E5V 作为外部电源

CN2, VIN 或 E5V 可以被用作为外部电源以防 Xnucleo 和扩展板的负载电流超过 USB 允许电流。在使用时,必须先连接好外部电源,然后再连接 USB 或 ST-LINK/V2 (mini)。这个过程确保 Xnucleo 正常工作。

表 3. 外部电源参数

电源名	对应管脚	电压范围	最大电流	使用限制	
	CN2			输入电流与输入电压有关:	
CN2				当 CN2/VIN = 7V 时,	
				输入电流为 800mA。	
VIN		6V~12V	800mA	当 6V <cn2 td="" vin(<或=")9V" 时,<=""></cn2>	
	CN6 的 8 脚			输入电流为 450mA	
	CN7 的 24 脚			当 9V <cn2 td="" vin(<或=")12V" 时,<=""></cn2>	
				输入电流为 250mA	
E5V	CN7的6脚	4.75V~5.25V	500mA		

注意: 当 Xnucleo 使用外部供电时,必须遵守以下步骤:

- 1) JP3 选择 U5V;
- 2) 连接外部电源到 CN2, VIN 或 E5V;
- 3) 接通外部电源, CN2, VIN: 6V~12V, E5V: 5V;

- 4) 观察 PWR LED 为常亮;
- 5) 连接 PC 与 Xnucleo USB 或 ST-LINK/V2 (mini);

如果不遵守以上步骤,而先接通 USB 或 ST-LINK/V2 (mini)可能会出现如下问题:

当 Xnucleo 需求的电流超过 300mA 时,可能会对 USB 有损害。或者输入电流会被 USB 口限制在 300mA 以内,可能导致 Xnucleo 无法正常工作。

2.1.3 外部电源输出

- 通过 CN2, VIN 或 E5V 对 Xnucleo 供+5V 电压时, Xnucleo 板载管脚 CN6 的 5 脚或 CN7 的 18 脚可对 Arduino shield 和扩展板供电。在这种情况下,最大输入电流应该遵守表 3 的说明。
- 通过 CN2, VIN 或 E5V 对 Xnucleo 供+3.3V 电压时, CN6 的 4 脚或 CN7 的 12 脚和 16 脚也可用作电源输出,最大输出电流被限制于稳压器的最大电流输出能力(最大 500mA)。

2.2. LED 指示灯

Xnucleo 板载的 LED 用于指示 Xnucleo 工作状态的信息。

2.2.1 FLASH LED

表 4. LED 和 MCU 引脚对应关系

FLASH LED	MCU PIN
LED1	D13(PA5/PB13)
LED2	PC9
LED3	PC8
LED4	PC5

通过设置 JP7 可连接各个 LED。对于 XNUCLEO-F302R8, 其 PB13 脚需连接到 D13。而对于其他 XNUCLEO,则需要将 PA5 连接到 D13。当 IO 输出高电平,FLASH LED 常亮;反之,FLASH LED 熄灭。

2.2.2 电源指示灯 PWR LED

该指示灯为红色。指示 Xnucleo 供电是否正常, +5V 电源有效。

2.2.3 串口工作状态指示灯 LED

TX 指示灯为绿色,RX 指示灯为蓝色。TX 闪烁,指示 MCU 正在向 PC 发送信息。RX 闪烁,指示 MCU 正在接收电脑返回信息。

2.3. 按键

2.3.1. USER 键

通过设置 JP6 为 ON, USER 按键连接到目标 MCU 的 PC13 脚。

2.3.2. RESET 键

RESET 键连接到目标 MCU 的 NRST, 用于复位目标 MCU。

2.4. JP2(IDD)跳线

2.4.1. JP2 ON

STM32 单片机被供电(默认)。

2.4.2. JP2 OFF

STM32 单片机不被供电。移除该跳线之后,用户可以在该跳线两端的管脚之间串联一个电流表,用以测量 STM32 单片机的功耗。

2.5. USART 通信

STM32 单片机的 PA2 和 PA3 是 USART2 接口,可以通过设置相关的跳线选择和虚拟串口、Morpho 或者 Arduino 连接头相连。

2.5.1. 设置跳线将目标 MCU 连接到串口

通过设置跳线(参考表 6. JP4 引脚连接)

- JP4 的 RX/PA3 和 TXD 连接
- JP4 的 TX/PA2 和 RXD 连接

2.5.2. 设置跳线实现 MCU 与 SHIELD 或扩展板的通信

如果目标 MCU 需要和 shield 或扩展板 (CN9 的 RX/D0 和 TX/D1) 通信,则需要设置跳线 (参 考表 6. JP4 引脚连接):

- JP4 的 RX/PA3 和 RX/D0 连接
- JP4 的 TX/PA2 和 TX/D1 连接

在这种情况下,可以连接另一个 USART(视目标 MCU 而定)到虚拟串口,需要按照以下方式连接:

- JP4 的 TX/PC10/PC6 连接 RXD
- JP4 的 RX/PC11/PC7 连接 TXD

其中, NUCLEO-F030R8 的连接方式:

- JP4 的 TX/PA9 连接 RXD
- JP4 的 RX/PA10 连接 TXD

注意:用户需根据实际需求,参考表 5. USART 的相关引脚和跳线选择合适的 USART,并做相应的硬件配置,该列表中的 USART 在 mbed 中无效,即 mbed 中没有定义该表中的 USART,只定义了 USART2(PA2, PA3),因此,使用 mbed 中与 USART 相关的 API(如: printf)时,只能选择 USART2(PA2, PA3)与虚拟串口或 CN9 的 RX/D0,TX/D1 连接。

表 5. USART 的相关引脚和跳线

型号\引脚	PC6,PC7	PC10,PC11	PA9,PA10	SB70,SB71	SB72,SB73
XNUCLEO	无	无	USART1	于 山	₽166
-F030R8			OSANTI	无此项	
XNUCLEO	Ŧ.	LICARTO	USART1	ON	OFF
-F103RB	无	USART3	(未使用)	ON	OFF
XNUCLEO	エ	USART3	USART1	011	OFF
-F302R8	无	USAKIS	(未使用)	ON	OFF
XNUCLEO	USART6	无	USART1	OFF	ON
-F401RE	USAKTO	儿	(未使用)	OFF	ON

表 6. JP4 引脚连接表

А	В	С	D
ARDUINO PORT	MCU PIN	CP2102 PIN	MCU PIN
RX/D0	RX/PA3	TXD	RX/PC11/PC7
TX/D1	TX/PA2	RXD	TX/PC10/PC6

表 7. NUCLEO-F030R8 JP4 引脚连接表

А	В	С	D
ARDUINO PORT	MCU PIN	CP2102 PIN	MCU PIN
RX/D0	RX/PA3	TXD	RX/PA10
TX/D1	TX/PA2	RXD	TX/PA9

2.6. ADC 或 12C 通信

通过设置 JP5 的跳线可以选择 ADC 或 I2C 连接到 Arduino 或 Morpho。

其中:

- JP5 的 A4 和 A5 是对应连接到 Arduino 的 A4 和 A5 (CN8 的 5, 6 脚) 或 Morpho CN7 的 36, 38 脚
- JP5 的 SDA/PB9 和 SCL/PB8 脚对应 STM32 MCU 的外设 I2C
- JP5 的 PC1/ADC 和 PC0/ADC 脚对应 STM32 MCU 的外设 ADC

表 8. JP5 引脚连接表

А	В	С
MCU PIN	ARDUINO PORT	MCU PIN
SCL/PB8	A5	PCO/ADC
SDA/PB9	A4	PC1/ADC

2.7. SPI 接口

Arduino 的 D11, D12, D13 为 SPI 接口。其中 XNUCLEO-F302R8 的 PB13,PB14,PB15 分别和 D13, D12, D11 相连。其它 XNUCLEO 的 PA5,PA6,PA7 分别和 D13, D12, D11 相连。

2.8. USB接口

除 XNUCLEO-F030R8 之外,其他 XNUCLEO 预留了一个 USB 接口。通过设置 JP1 为 ON,可以 使能 USB 接口。

2.9. 锡桥

表 9. 锡桥

锡桥	状态	描述	
ON		IOREF 连接到 3.3V	
SB74	OFF	IOREF 悬空	
CD7F	ON	IOREF 连接到 5V	
SB75	OFF	IOREF 悬空	
SB45	ON	STM32 单片机的 VBAT 或 VLCD 连接到 VDD	
(VBAT/VLCD)	OFF	STM32 单片机的 VBAT 或 VLCD 不连接 VDD	
SB57 (VREF+)	ON	STM32 单片机的 VREF+被连接到 VDD	
	OFF	STM32 单片机的 VREF+不连接 VDD,由 CN10 的 7 脚提供电源	

注: 所有出现在 STM32 Xnucleo 板上的其他锡桥都是用于配置一些 IO 和电源脚,以兼容支持的 STM 32 单片机的特性和引出脚。

2.10. 扩展连接头

本节的图片用于说明不同型号的 STM32 Xnucleo 板载接口对应的外设分配。

图 1. XNUCLEO-F030R8

图 2. XNUCLEO-F103RB

图 3. XNUCLEO-F302RC

图 4. XNUCLEO-F401RE

图 5. XNUCLEO-F411RE

3. MBED 基于 STM32 XNUCLEO 平台的使用

Xnucleo 完全兼容和并且可以直接运行对应 Nucleo 的示例程序。因此,用户可以根据 STM32 Nucleo 的应用来开发 STM32 Xnucleo 的应用。Xnucleo 与 Nucleo 的对应关系下表所示:

 Xnucleo
 Nucleo

 XNUCLEO-F030R8
 NUCLEO-F030R8

 XNUCLEO-F103RB
 NUCLEO-F103RB

 XNUCLEO-F302RC
 NUCLEO-F302R8

 XNUCLEO-F401RE
 NUCLEO-F401RE

 XNUCLEO-F411RE
 NUCLEO-F411RE

表 10. Xnucleo 与 Nucleo 的对应关系表

本手册操作都是以 XNUCLEO-F103RB 为例。用户在配置环境的时候可能会有一些不同,应根据实际情况操作。

3.1. 使用 MBED 编译和下载工程

mbed 的使用说明请参阅官方文档。由于篇幅所限,部分操作步骤可能略过。

3.1.1. 编译工程

打开 mbed 软件,以 XNUCLEO-F103RB 为例,任意打开一个工程,例如 Nucleo_printf。点击 Compile 进行编译。如果工程没有任何错误,则等待 Compile Output 提示 Success!,并且生成 Nucleo_printf_NUCLEO_F103RB.bin 的文件。这个文件位于指定的文件保存路径(这个路径可以更改)。

3.1.2. 下载工程

- 1) 运行 STM32 ST-LINK Utility,依次点击 file->Open file。打开 Nucleo_printf_NUCLEO_F103RB.bin 文件。
- 2) 将板载的 USB TO UART 接口连接到电脑的 USB 口,并且连接 ST-LINK/V2 (mini), JP5 选择 U5V, 根据 **2.5 USART 通信**的要求设置 JP4, 并按照以下格式配置串口。

表 11. 串口配置

波特率	115200	
数据位	8	
停止位	1	
奇偶校验	无	

3) 下载工程之后, 串口接收到的信息如下:

Hello World!

This program runs since 1 seconds.

This program runs since 2 seconds.

This program runs since 3 seconds.

This program runs since 4 seconds.

This program runs since 5 seconds.

...

此时,USER LED 以 0.5Hz 的频率闪烁,TX LED 闪烁提示 STM32 Xnucleo 正在向 PC 发送信息。

3.2. 从 MBED 中导出基于 KEIL 的工程

mbed 不能直接仿真或在线调试,但它提供了"导入工程"和"导出工程"的功能,只要将 mbed 工程导出为 Keil 工程后,就可以正常仿真调试了。

利用导出功能,还可以导出 mbed 库文件,该文件包括 STM32 单片机的 HAL 库。在 Keli 环境下,用户能直接使用或修改 mbed 库并且可以将其移植到其他的应用中。

操作方法如下:

在 mbed 中,打开需要导出的工程。右击左边 Program Workspace 框中的工程文件名,依次 选择 Nucleo_printf->Export Program。如下图所示:

图 6. 导出为 Keil 工程

在弹出窗口的 Export Toolchain 下拉菜单中,选择导出工程的类型为 Keil μVision 即可。将 mbed 工程导出为 Keil 工程之后,就可以使用 Keil 的仿真调试功能了。具体操作方法,请参 阅 Keil 相关的手册。

4. 外围模块例程说明

Xnucleo 提供了一个基于 Waveshare 的 I/O Expansion Shield、0.96 寸 OLED 和舒适款传感器的综合演示例程。按照表 12. 传感器和与 XNUCLEO 的接线方式把传感器对应接到 I/O Expansion Shield 上。

4.1. 外围模块和与 XNUCLEO 的接线方式

表 12. 传感器和与 XNUCLEO 的接线方式

传感器	引	XNUCLEO-F0	XNUCLEO-F1	XNUCLEO-F3	XNUCLEO-F4	XNUCLEO-F4
1女心奋	脚	30R8	03RB	02R8	01RE	11RE
Temperature-Hu	DO	PB3/D3	DD2/D2	PB3/D3	PB3/D3	PB3/D3
midity Sensor	UT	PB3/D3	PB3/D3	PB3/D3	PB3/D3	PB3/D3
Rotation Sensor	SIA	PB4/D5	PB4/D5	PB4/D5	PB4/D5	PB4/D5
	SIB	PB5/D4	PB5/D4	PB5/D4	PB5/D4	PB5/D4
	SW	PB10/D6	PB10/D6	PB10/D6	PB10/D6	PB10/D6
Color Sensor	LED	3.3V	3.3V	3.3V	3.3V	3.3V
	ΟU	PC7/D9	PA1/A1	PA1/A1	PA1/A1	PA1/A1
	Т	FC//D9	rai/Ai	rai/Ai	rai/Ai	rai/Ai

	S3	PA9/D8	PA9/D8	PA9/D8	PA9/D8	PA9/D8
	S2	PA8/D7	PA8/D7	PA8/D7	PA8/D7	PA8/D7
	S1	NC	NC	NC	NC	NC
	S0	NC	NC	NC	NC	NC
UV Sensor						
Water Sensor	AO UT	PA4/A2	PA4/A2	PA4/A2	PA4/A2	PA4/A2
Moisture Sensor						
Tilt Sensor						
Laser Sensor						
Gas Sensor	DO UT	PA10/D2	PA10/D2	PA10/D2	PA10/D2	PA10/D2
Sound Sensor						
Flame Sensor						
Hall Sensor						
Metal Sensor						
Infrared Reflective Sensor						
0.96inch OLED	DIN	PA7/D11	PA7/D11	PB15/D11	PA7/D11	PA7/D11
	CLK	PA5/D13	PA5/D13	PB13/D13	PA5/D13	PA5/D13
	CS	PB8/A5	PB8/A5	PB8/A5	PB8/A5	PB8/A5
	D/C	PB9/A4	PB9/A4	PB9/A4	PB9/A4	PB9/A4
	RES	PBO/A3	PBO/A3	PBO/A3	PBO/A3	PBO/A3

注意:

- 以上所有传感器的电源 VCC 和 GND 分别接在 IO Expansion Shied 的 VCC 和 GND,具体的连接方法请参考 IO Expansion Shied 用户手册。
- 部分传感器只引出了 AOUT 或 DOUT 中的一个,那么 IO Expansion Shied 多出的预留引脚不用接。且每次只能接一个传感器。

4.2. 例程现象说明

XNUCLEO 板载的 LED1 每 2 秒闪烁一次,指示程序正在运行。

4.2.1. 数据显示方式:

该例程使用 OLED 和串口打印(串口每 500 ms 向 PC 打印信息)两种方式显示模块反馈的信息。例如:

图 7. OLED 显示传感器参数

同时串口对应输出:

/*----*/

T:23 C H:34

D:3868 A:3.116 S:OFF

Rot:227 SW:52

R:20 G:6 B:105

RTC:12:1:4 KEY:10

/*----*/

4.2.2. 反馈的数据含义

表 13. 各符号含义表

符号	含义	备注	
Т	温度	单位: 摄氏度	
Н	湿度	空气湿度百分比(%)	
D	AD 转换值	12BIT 的电压值,根据实验校准,可等比换算为实际值	
А	DA 转换值	电压值	
S	状态	ON 为开启,OFF 为关闭	
Rot	旋转编码器旋	正转计数加一递增,反转减一递减,最小计数值为0;最大计数值为255	
	转计数		
SW	按下旋转编码	支持短按(单击),双击,长按和连发	
	器的计数		
R	红色值	根据 RGB 值可知实际颜色,参考 Color Sensor 用户手册	
G	绿色值	根据 RGB 值可知实际颜色,参考 Color Sensor 用户手册	
В	蓝色值	根据 RGB 值可知实际颜色,参考 Color Sensor 用户手册	
RTC	实时时钟值	RTC 输出时间数据	
KEY	Xnucleo 用户按	使用方式和旋转编码器的 SW 的使用方式一样	
	键计数		