

Vorlesung Security by Design (SbD)

Prof. Dr. Hannes Federrath
Sicherheit in verteilten Systemen (SVS)
http://svs.informatik.uni-hamburg.de

Wegweiser durch die Vorlesung

- Kryptographie: Vertiefung
- Public Key Infrastructures (PKI)
- Sniffing, Spoofing, Denial of Service,
 Internet of Things and Security
- Mobile Security

Die bereitgestellten Kursmaterialen dienen ausschließlich dem persönlichen Gebrauch. Die Veröffentlichung, Vervielfältigung, Verbreitung oder Weitergabe, auch auszugsweise, ist nur mit schriftlicher Genehmigung des Verfassers erlaubt.

Organisatorisches

Hannes Federrath · Monina Schwarz · Pascal Wichmann Sicherheit in verteilten Systemen (SVS) http://svs.informatik.uni-hamburg.de

Ziele der vorlesungsbegleitenden Übungen

- Verständnisprobleme lösen
 - Offene Fragen der Vorlesung können im kleineren Kreis geklärt werden.
- Vertiefung und Anwendung des Vorlesungsstoffs
 - In der Vorlesung wird teilweise nur eine Auswahl des Stoffs präsentiert.
 - Bearbeitung von Aufgaben mit Bezug zur Vorlesung
 - Bearbeitung von Aufgaben, die über die Vorlesung hinausgehen
- Vorstellung und Diskussion der Lösungen innerhalb der Übungsgruppe
 - Wissenslücken können nur beseitigt werden, wenn sie bekannt sind.
 - Aktive Beteiligung ist notwendig und sinnvoll.
- Übungsstoff ist auch klausurrelevant!

Übungleistung

- Übungsleistung wird online in Moodle erbracht
 - https://lernen.min.uni-hamburg.de/course/
 - Security by Design WS20/21
 - Einloggen mit Kennung und Passwort der Uniseiten
 - Einschreibeschlüssel: virtuell2020

Bewertung

- Tests müssen mit mindestens 25% der Punkte bestanden werden
- Ergebnisse werden direkt angezeigt

Übungsaufgaben

- Übung bietet verschiedene Komponenten
 - Online-Test in Moodle: Einfaches Grundverständnis
 - Zweiwöchige Übungsblätter: Vertiefung der Inhalte
- Zeitplan für die Übungen
 - Freischaltung der Übungsblätter am Montag
 - Bearbeitungszeit je Blatt verschieden (in der Regel zwei Wochen)
 - Besprechungstermine auf dem Blatt angegeben

Übungstermine

- Durchführung
 - Während der Bearbeitungszeit: Konsultationstermine
 - Gelegenheit zum Stellen von Fragen
 - Nach Ablauf der Bearbeitungszeit: Gemeinsame Besprechung und Diskussion der Übungen
 - Hintergründe zu den Übungsaufgaben werden erklärt

Bearbeiten der Übungen hilft dabei, den Vorlesungsstoff besser zu verstehen.

- Es gibt zwei Übungsgruppen.
 - Termine für das Wintersemester 2020/21:
 - Montag 10-12 Uhr
 - Dienstag 16-18 Uhr
 - Konsultationstermin im Wintersemester 2020/21:
 - Dienstag 16-18 Uhr

Änderungen vorbehalten (siehe Moodle)

Klausur

- Formalia
 - 60 Minuten Dauer
 - mit Unterlagen (»open book«)
 - nicht-programmierbarer Taschenrechner erlaubt
- Inhalte
 - Inhalte der Vorlesung
 - Inhalte der Übung
- Klausurtermine zu finden unter
 - https://www.inf.uni-hamburg.de/studies/orga/dates.html
- Bitte prüfen Sie bei Bedarf die Barrierefreiheit des Zugangs zu den Räumen und nehmen frühzeitig Kontakt zu uns auf, sollten Sie hierbei Probleme feststellen.

Probeklausur

- Probeklausur wird an einem der letzten Vorlesungstermine angeboten
 - per Videokonferenz
 - 60 Minuten Bearbeitungsdauer
 - Besprechung direkt im Anschluss
- Inhalte
 - entspricht in Art und Aufbau einer tatsächlichen Klausur

Kommunikation zur Vorlesung und Übung

- Infos wo?
 - Vorlesungsfolien, Ankündigungen, Verschiebungen in STiNE und/oder im Moodle
 - Übungsblätter und Online-Tests in Moodle
- Fragen?
 - Zur Vorlesung: Prof. Dr. Hannes Federrath fragen
 - Zu den Übungen: Übungsleiter des Vertrauens fragen
 - Fragen Sie gerne auch per E-Mail!
- Zur Vorlesung und zur Übung angemeldet (in STiNE)?
 - Wenn nicht: umgehend nachholen!

Kryptographie: Vertiefung

Definition Konzelationssystem

- Seien
 - A und B Alphabete und K eine endliche Menge

- Klartext: $m \in A^n = M$

Schlüsseltext: $c \in B^I = C$

mit n, $I \in N$

I/n: Expansionsfaktor I/n=1 längentreue Chiffre

■ Dann ist eine Kryptofunktion eine Abbildung e: $A^n \times K \to B^l$ derart, dass die Abbildung e_k: $A^n \to B^l$ definiert durch e_k(m):=e(m,k) für alle k ∈ K injektiv ist.

- injektiv: f¹ ist rechtseindeutig
- rechtseindeutig (auch: partiell):
 ∀x.∀y.y':((f(x)=y ^ f(x)=y') → (y=y'))

- Für jedes e_k existiert eine Umkehrfunktion $d_{k'}$.
- Es gelten
 - $c=e_k(m)$ und $m=d_{k'}(c)$, d.h. $m=d_{k'}(e_k(m))$ oder
 - c=e(m,k) und m=d(c,k'), d.h. m=d(e(m,k),k')

injektive Abbildung

nicht-injektive Abbildung

Klassische Chiffren: Systematik

Transpositionschiffren

 Veränderung (Permutation) der Anordnung von Schriftzeichen

Substitutionschiffren

Systematische Ersetzung von Schriftzeichen

Produktchiffren

- Kombination von Transpositionen und Substitutionen
- Vorläufer der modernen symm. Kryptographie, bei denen Permutationen und Substitutionen (meist) iterativ angewendet werden

Klassische Chiffren: Konkrete Systeme

- Transpositionschiffren
 - Spalten-Transpositionen
 - freie Permutationen
- Substitutionschiffren
 - Schema von Polybios
 - Caesar-Chiffre
 - Vigenere-Chiffre
 - Vernam-Chiffre

- Skytala
 - ca. 2400 Jahre alte griechische Chiffre
 - Zylinder mit gewickeltem Papierstreifen, schreiben, abwickeln
 - Empfänger hat Zylinder mit gleichem Durchmesser

- Kryptanalyse
 - Heute: Durchprobieren (sehr kleiner Schlüsselraum)
 - Statistische Analyse (Bigramme)

- Skytala
 - ca. 2400 Jahre alte griechische Chiffre
 - Zylinder mit gewickeltem Papierstreifen, schreiben, abwickeln
 - Empfänger hat Zylinder mit gleichem Durchmesser

- Kryptanalyse
 - Heute: Durchprobieren (sehr kleiner Schlüsselraum)
 - Statistische Analyse (Bigramme)

Variante

zusätzlich die Spalten transponieren, d.h. deren Reihenfolge vertauschen bzw. permutieren

- Übungsaufgabe
 - Um welchen Faktor vergrößert sich der Schlüsselraum bei s Spalten?

Skytala: Statistische Kryptanalyse

- Vorgehen
 - Suche typ. Bigramme (z.B. EN, ER, CH, ...) und ermittle die Häufigkeit der Buchstabenabstände.
 Beispiel:
- Beispiel
 - Klartext: VERSCHLUESSELNMACHTGROSSENSPASS

```
- k=5 VERSCHL UESSELN MACHTGR OSSENSP ASSXYZX
```

Chiffretext: VUMOAEEASSRSCSSSSHEXCETNYHLGSZLNRPX

```
Bigramm Chiffretext Abstand/Häufigk.

EN: VUMOAEEASSRSCSSSSHEXCETNYHLGSZLNRPX: 2/1, 5/1, ...

ER: VUMOAEEASSRSCSSSSHEXCETNYHLGSZLNRPX: 5/1, 4/1, ...

EI: VUMOAEEASSRSCSSSSHEXCETNYHLGSZLNRPX: 0

CH: VUMOAEEASSRSCSSSSHEXCETNYHLGSZLNRPX: 5/2, ...
```

- Abstand 5 kommt am Häufigsten vor,
- teste, ob Text in 5 Zeilen sinnvoll -> gebrochen

Freie Permutationen

- Idee
 - Zeichen werden nach einer Vorschrift vertauscht
- Beispiel

Zyklenschreibweise: (1 12 7 6 8 11 3) (2 9) (4) (5 10 13)

- Übungsaufgabe
 - Schreiben Sie eine Skytala mit 4 Zeilen und 3 Spalten in Zyklenschreibweise.

Block-Transposition

Klartextzeichen in Blöcken fester Länge transponieren

- Übungsaufgabe
 - Größe des Schlüssels?

- Vorgehen: Rekonstruktion von Bi- und Trigrammen
- Beispiel: Chiffretext in vermuteter Sprache Deutsch; Test auf typ. Bi und Trigramme wie ER und SCH

Suche nach SCH im Chiffretext: CESVLRHEESUUSLLGANOSGMIHRSTU Feststellung: SCH passt Test auf Blocklänge 5: nicht in Block Test auf Blocklänge 6: Test auf Blocklänge 7: 1234567 1234567 1234567 1234567 <u>CESVLRH</u> <u>EESUUSL</u> <u>LGANOSG</u> <u>MIHRSTU</u> Transposition ergibt auch in den anderen Blöcken SCH SET. ALG HMU halbwegs sinnvolle Bi- und Suche nach ER im Chiffretext: CESVLRH EESUUSL LGANOSG MIHRSTU Trigramme ER ES GS IT Weiteres Probieren führt zu: CESVLRH EESUUSL LGANOSG MIHRSTU 5241736 5241736 5241736 5241736 VERSCHL UESSELU NGSALGO RITHMUS

(1 5 7 6 3 4) (2)

Entschlüsselungsschlüssel lautet:

Klassische Substitutionschiffren

- Monoalphabetische Substitution
 - Jedem Zeichen bzw. jeder Zeichenfolge über A ist eindeutig ein Zeichen bzw. eine Zeichenfolge über B zugeordnet.
- Polyalphabetische Substitution
 - Jedem Zeichen bzw. jeder Zeichenfolge über A ist eindeutig ein Zeichen bzw. eine Zeichenfolge über B₁, B₂, ...,B_n zugeordnet.
- Monographische Substitution
 - Es werden einzelne Zeichen ersetzt.
- Polygraphische Substitution
 - Es werden Zeichenfolgen ersetzt.

Schema von Polybios

- Def.
 - $A=\{A:Z\}$
 - $B=\{(i,j) \mid i,j \in \{1:5\}\}$
 - e/d:

Beispiel:

Chiffretext: 223515452315

Klartext:

- Eigenschaften
 - monoalphabetische/monographische Substitution
 - arbeitet »schlüssellos«
- Ableitungen
 - Tabelle mit Zeichen (Freimaurer-Chiffre, Friedhofschiffre)

Verschiebechiffre

- auch: Caesar-Chiffre
 - Caesar, röm. Kaiser und Feldherr (100-44 v.Chr)
- Def.
 - $A=B=\{A:Z\}$
 - $K={A:Z}$ oder allg. $K={0:n-1}$ mit $n \le card({A:Z})$
 - e: c=(m+k) mod n
 - d: $m=(c-k) \mod n$

Schlüssel

Klartext

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXY CDEFGHIJKLMNOPQRSTUVWXYZ DEFGHIJKLMNOPQRSTUVWXYZA E F G H I J K L M N O P Q R S T U V W X Y Z A B G H I J K L M N O P Q R S T U V W X Y Z A B C D E F HIJKLMNOPQRSTUVWXYZABCDEFG IJKLMNOPORSTUVWXYZAB J K L M N O P Q R S T U V W X Μ STUVWXYZABCDEFGHIJKLMNOPOR UVWXYZABCDEFGHIJKLMNOPQRST WXYZABCDEFGHIJKLMNOPQRSTUV XYZABCDEFGHIJKLMNOPQRSTUVW YZABCDEFGHIJKLMNOPQRSTUVWX ZABCDEFGHIJKLMNOPQRSTUVWXY

Verschiebechiffre

- auch: Caesar-Chiffre
 - Caesar, röm. Kaiser und Feldherr (100-44 v.Chr)
- Def.
 - $A=B=\{A:Z\}$
 - $K={A:Z}$ oder allg. $K={0:n-1}$ mit $n \le card({A:Z})$
 - e: c=(m+k) mod n
 - d: $m=(c-k) \mod n$
- Eigenschaften
 - monoalphabetische/monographische Substitution
 - additive Chiffre
 - Buchstabenhäufigkeiten bleiben erhalten und bilden Ansatz zur Kryptanalyse

»Historisches« Beispiel für Verschiebechiffre – Spiegel Plus

Quelle: http://andreas-zeller.blogspot.de/2016/06/spiegel-online-nutzt-unsichere-casar.html

Verschiebechiffre als Webanwendung

Vigenère-Chiffre

- nach: Blaise de Vigenère, 1586, französischer Kryptologe
- Idee
 - Gleiche Klartextzeichen auf unterschiedlichen Chiffretextzeichen abbilden, um Häufigkeitsanalyse zu erschweren (polyalphabetische Substitution)
- Def.
 - $A=B=\{A:Z\}$
 - $K=\{(k_1, k_2, k_3,...,k_r) \mid k_i \in \{A:Z\}, r \in \{1,2,...\}\}$
 - r: Periodenlänge des Schlüssels
 - e,d: für jedes k; analog Caesar-Chiffre

Beispiel: Verwendung des Vigenere-Tableaus

Schlüssel: HUGO

Klartext:

VIGENERECHIFFRE

Verschlüsselung:

VIGENERECHIFFRE HUGOHUGOHUG CCM...

Schlüssel

?

Entschlüsselung entsprechend

Klartext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z BCDEFGHIJKLMNOPQRSTUVW YZABCDEFGHIJKLMNOPQRSTUVWX ZABCDEFGHIJKLMNOPQRSTUVWXY

Vigenère-Chiffre

- Vigenère-Chiffre: Beispiel
 - VIGENERECHIFFRE = Klartext
 - HUGOHUGOHUGOHUG = Schlüssel mit r=4
 - CCM = Chiffretext
 - Kryptanalyse:
 - Periodenlänge ermitteln, dann weiter wie Caesar-Chiffre
- Variante: Autokey-Verfahren
 - Klartext als Teil des Schlüssels verwenden:
 - VIGENERECHIFFRE = Klartext
 - HUGOVIGENERECHI = Schlüssel

Beaufort-Chiffre

- nach: Francis Beaufort (1857)
 - jedoch bereits 1710 von Giovanni Sesti vorgeschlagen
 - Variante der Vigenère-Chiffre
 - involutorische Chiffre (e=d)

- Beispiel für die e=d-Eigenschaft
 - $c=(-1\cdot m+k) \mod n \quad und \quad m=(-1\cdot c+k) \mod n$
 - FED=m, k=3
 - FGA=c
 - FED=m

Chiffrieren nach Beaufort mit Vigenere-Tableau

Das Chiffretextzeichen zum Klartextzeichen *a* ist durch die Zeile gegeben, die das Schlüsselzeichen *z* in der Spalte *a* enthält. (Fumy, S. 53)

Schlüssel:

HUGO

Klartext:

VIGENERECHIFFRE

Schlüssel

Verschlüsselung: VIGENERECHIFFRE HUGOHUGOHUGOHUG

?

Entschlüsselung entsprechend

Klartext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z BCDEFGHIJKLMNOPQRSTUVW J K L M N O P O R S T U V HIJKLMNOPQRSTUVW X Y Z A B C D E F G H I J K L M N O P Q R S T U V W YZABCDEFGHIJKLMNOPQRSTUVWX ZABCDEFGHIJKLMNOPQRSTUVWXY

Vernam-Chiffre (One-Time-Pad)

- Def.
 - $A=B=\{A:Z\}$
 - $K=\{(k_1, k_2, k_3,...,k_l) \mid k_i \in \{A:Z\}, i=[1,l]\}$
 - Die k_i werden unabhängig und zufällig erzeugt
 - Der Schlüssel $k=(k_1, k_2, k_3,...,k_l)$ hat die gleiche Länge wie der Klartext $m=(a_1, a_2, a_3,...,a_l)$
 - e: c=(m+k) mod n (zeichenweise)
 - d: m=(c-k) mod n
- Beispiel
 - KRYPTOMACHTSPASS = Klartext
 - VABZEQTAWPNRTLKB = Schlüssel
- Kryptanalyse: unmöglich, da informationstheoretisch sicher

Vernam-Chiffre (One-Time-Pad)

- Informationstheoretisch sichere Verschlüsselung
 - Egal, was der Angreifer a priori an Information über den Klartext hat, er gewinnt durch die Beobachtung des Schlüsseltextes keine Information hinzu.

$$\forall s \in S \exists const \in N \forall x \in X : |\{k \in K \mid k(x) = s\}| = const$$

Für alle Schlüsseltexte s existiert eine konstante Anzahl von Schlüsseln k, die jeweils alle Klartexte x derart verschlüsseln, dass aus x jeder Schlüsseltext entstehen kann. $N = \{1, 2, 3, ...\}$

»Hinter jedem Schlüsseltext kann sich jeder Klartext verbergen.«

Visuelle Kryptographie

- Symmetrisches Verfahren: Sender und Empfänger erzeugen sich Zufallsmuster aus zwei komplementären Basismustern:
 Zufallsmuster nur für genau eine Botschaft verwenden!
- Visuelle Botschaft:
 - Sender verwendet negiertes Muster f
 ür schwarze Bildpunkte
 - Für »weiße« Bildpunkte: keine Veränderung

Moderne Kryptosysteme

- Symmetrische Systeme
 - One-Time-Pad (mod 2)
 - Symmetrische Authentifikationscodes
 - DES (Data Encryption Standard)
 - IDEA (International Data Encryption Algorithm)
 - AES (Advanced Encryption Standard)
- Praktischer Einsatz
 - Betriebsarten von Blockchiffren
- Asymmetrische Systeme
 - Diffie-Hellman-Key-Exchange
 - ElGamal Kryptosystem
 - RSA zur Konzelation und Signatur
 - Blinde Signaturen mit RSA
 - Kryptosysteme auf Basis elliptischer Kurven

One-Time-Pad (mod 2)

- Jedes Schlüsselbit darf nur einmal verwendet werden
- Bits von K sind zufällig und unabhängig
- Schlüssel genauso lang wie Klartext

One-Time-Pad (mod 2)

- Jedes Schlüsselbit darf nur einmal verwendet werden
- Bits von K sind zufällig und unabhängig
- Schlüssel genauso lang wie Klartext

$$\begin{array}{cccc} X & \oplus & K & = & S \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

- Der Angreifer kann alle 4 Varianten durchrechnen, erhält dadurch aber keine zusätzliche Information über den Klartext.
- Die Wahrscheinlichkeit, ein Kartextbit richtig zu raten, verändert sich durch die Beobachtung des Schlüsseltextes nicht, sondern bleibt const = 0,5.

oder

H: Heads (Kopf)

T: Tails (Zahl)

x, MAC	H,0	H,1	T,0	T,1
00	Н	_	Т	_
01	Н	-	-	Т
10	_	Н	Т	_
11	_	Н	-	Т

 k
 K
 H
 T

 00
 0
 0
 0

 01
 0
 1
 1

 10
 1
 0
 MAC

H := "0" T := "1"

- Angriff 1: (blind)
 - Angreifer will T senden
 - erwischt richtigen MAC mit Wkt = 0,5
- Angriff 2: (sehend)
 - Angreifer will H,0 in T ändern
 - weiß: $k \in \{00,01\}$
 - wenn k = 00 war, muss er T,0 senden
 - wenn k = 01 war, muss er T,1 senden
 - Wkt. ist immernoch 0,5

H: Heads (Kopf)

T: Tails (Zahl)

informationstheoretisch sicher

Leseempfehlung: Baumann, Franz, Pfitzmann: Kryptographische Systeme. Springer Vieweg, 2014, S.
 182

- Erweiterung auf r-Bit MAC zur Senkung der Ratewahrscheinlichkeit
 - verwende pro Nachrichtenbit r Bit (r>1) für den MAC
 - Beispiel für r=2:

Anzahl der Ratenotwendigen wahr-Schlüsselbits pro r-Bit schein-Nachrichtenbit MAC lichkeit 1 1/2 1/4 2 3 1/8 6 1/16 8 4 2^{-r} 2·r

kX	Н	Т	
00 01 10 11	0 0 1 1	0 1 0 1	MAC

H: Heads (Kopf)

T: Tails (Zahl)

DES (Data Encryption Standard)

- Amerikanischer Verschlüsselungsstandard
 - 1977 vom National Bureau of Standards (NBS) der USA standardisiert
- Blockchiffre
 - operiert auf Blöcken von jeweils 64 Bit
- Feistel-Chiffre
 - iterierte Anwendung eines Verschlüsselungsschemas aus Permutationen, Substitutionen und Expansionen
- n=16 Runden
 - mit jeweils unterschiedlichen Teilschlüsseln Ki
- Schema ist selbstinvers
 - d.h. Entschlüsselung wie Verschlüsselung, jedoch umgekehrte Reihenfolge der Teilschlüssel

Gütekriterien für gute moderne symmetr. Chiffren

- Höchstmaß an
 - Vollständigkeit
 - Avalanche
 - Nichtlinearität
 - Korrelationsimmunität
- weitere Kriterien
 - gute Implementierbarkeit
 - Längentreue
 - Schnelligkeit

Gütekriterien

Vollständigkeit

- Def.: Eine Funktion F:{0,1}ⁿ-->{0,1}^m ist dann vollständig, wenn jedes Bit des Outputs von jedem Bit des Inputs abhängt.
- Beispiel:

$$y_1 = x_1x_2 + x_1x_3 + x_2x_3 + x_2 + x_3 + 1$$

$$y_2 = x_1x_2 + x_1x_3 + x_2x_3 + x_1 + x_3 + 1$$

$$y_3 = x_1x_2 + x_1x_3 + x_2x_3 + x_1 + x_2 + 1$$

Avalanche

- Def.: Eine Funktion F:{0,1}ⁿ-->{0,1}^m besitzt dann den Avalanche-Effekt, wenn die Änderung eines Input-Bits im Mittel die Hälfte aller Output-Bits ändert.
- Wird durch Änderung eines Input-Bits jedes Output-Bit mit einer Wahrscheinlichkeit von 50% verändert, so erfüllt F das strikte Avalanche-Kriterium.
- Satz: Erfüllt F das strikte Avalanche-Kriterium, so ist F stets vollständig.

Gütekriterien

Linearität

- Def.: Eine Funktion F: $\{0,1\}^n$ --> $\{0,1\}^m$ ist dann linear, wenn jedes Output-Bit y_j linear von den Input-Bits x_i abhängt.
- Wenn wenigstens ein Output-Bit linear von den Input-Bits abhängt, bezeichnet man F als partiell linear.
- Beispiel: (siehe Vollständigkeit)

X_{dez}	$X_3 X_2 X_1$	$y_3 y_2 y_1$	Y_{dez}
0	0 0 0	1 1 1	7
1	0 0 1	0 0 1	1
2	0 1 0	0 1 0	2
3	0 1 1	0 1 1	3
4	1 0 0	1 0 0	4
5	1 0 1	1 0 1	5
6	1 1 0	1 1 0	6
7	1 1 1	0 0 0	0

Gütekriterien

Korrelationsimmunität

- Sei $f(x_1,...,x_n)$ eine boolesche Funktion in n Variablen.
- f ist dann k-korrelationsimmun, wenn man aus Kenntnis einer beliebigen Menge von k
 Eingangswerten keine Informationen über den resultierenden Ausgangswert erhalten kann und umgekehrt.

Bedeutung:

• Jede Teilmenge der Output-Vektoren, die Rückschlüsse auf Teilmengen der Input-Vektoren zulässt, verringert den Aufwand für das vollständige Durchsuchen des Schlüsselraumes.

Feistel-Prinzip (1 Runde)

Verschlüsselung

Entschlüsselung

$$L_1 = R_0 \tag{1}$$

$$R_1 = f(R_0) \oplus L_0 \tag{2}$$

$$L'_1 = R_1 \tag{3}$$

$$R'_1 = L_1 \tag{4}$$

$$L'_0 = R'_1$$
 (5)

$$R'_0 = f(R'_1) \oplus L'_1$$
 (6)

Funktion F kann Einwegfunktion sein

Feistel-Prinzip (n Runden)

DES (Data Encryption Standard)

Symmetrische Blockchiffre

- $M \in \{0,1\}^{64}$, $K \in \{0,1\}^{56}$
- Feistel-Chiffre
- n = 16 Runden
- Schlüssel besteht aus 56 Bit + 8 Paritätsbits
- Teilschlüssel K1...16 (jeweils 48 Bit) werden aus einem 56-Bit Schlüssel gewonnen
- Vor der ersten und nach der letzten Runde durchläuft der Datenblock eine Permutation IP bzw. IP⁻¹, die kryptographisch irrelevant ist.

DES (Data Encryption Standard)

• Funktion $F(K_i, R_{i-1})$

- Expansionsabbildung von 32 auf 48 Bit
- 8 S-Boxen, jede S-Box: 6-Bit-Input, 4-Bit-Output
- 32-Bit-Permutation

Teilschlüsselgenerierung

- Permuted Choice 1 (Schlüsselpermutation)
- Zyklische Schiebeoperationen auf Registern C und D in Abhängigkeit der Rundennummer
- Permuted Choice 2 (Schlüsselauswahl 48 aus 56 Bit)

DES: IP

DES: IP-1

DES: Expansion E

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11 12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21 22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1

DES: S-Boxen S1 bis S8


```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1: 0: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
   1: 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
   2: 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
   3: 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S2: 0: 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
   1: 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
   2: 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
   3: 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S3: 0: 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
   1: 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
   2: 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
   3: 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S4: 0: 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
   1: 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
   2: 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
   3: 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S5: 0: 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
   1: 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
   2: 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
   3: 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S6: 0: 12  1 10 15  9  2  6  8  0 13  3  4 14  7  5 11
   1: 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
   2: 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
   3: 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S7: 0: 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
   1: 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
   2: 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
   3: 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
88: 0: 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
   1: 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
   2: 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
   3: 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
```

DES: Permutation P

 16
 7
 20
 21
 29
 12
 28
 17
 1
 15
 23
 26
 5
 18
 31
 10

 2
 8
 24
 14
 32
 27
 3
 9
 19
 13
 30
 6
 22
 11
 4
 25

DES: PC1

Externer Schlüssel

DES: Shifts bei Chiffrierung und Dechiffrierung


```
Anzahl der Shifts bei der Chiffrierung bzw. Deciffrierung
Rundennummer: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Links-Shifts: 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 (Ver)
Rechts-Shifts: 0 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 (Ent)
```

DES: PC2


```
Schlüsselauswahl (Permuted Choice 2, PC2)
14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32
```

Eigenschaften des DES

- Der DES ist vollständig: Jedes Output-Bit hängt von jedem Input-Bit ab.
- Der DES ist derart komplex, dass keinerlei analytische Abhängigkeit zwischen Input und Output oder Schlüssel und Output feststellbar ist.
- Der DES ist invariant gegenüber Komplementbildung, d.h.

$$\overline{DES(K, M)} = DES(\overline{K}, \overline{M})$$

Vier der 2⁵⁶ Schlüssel sind schwach, d.h. DES(K, DES(K, M)) = M.

Externer Schlüssel						ssel	L		C-Register	D-Register
	01	01	01	01	01	01	01	01	0000000	0000000
	1F	1F	1F	1F	0E	0E	0E	0E	0000000	FFFFFFF
	ΕO	ΕO	ΕO	ΕO	F1	F1	F1	F1	FFFFFFF	0000000
	FE	FE	FE	FE	FE	FE	FE	FE	FFFFFFF	FFFFFFF

Kritikpunkte

- Designkriterien wurden nicht offengelegt (inzwischen bekannt)
- nur ineffizient in Software implementierbar (wg. Permutationen)
- wirksame Schlüssellänge heute viel zu gering (56 Bit)
 - Ausweg: 3-DES (Triple-DES)
 - Verbesserung der Sicherheit durch 3-fache Anwendung

C = DES(K1, DES(K2, DES(K1, M)))

Möglicher Angriff bei 2-DES

Ausgangssituation

- Known-plaintext-attack
 - 1. Verschlüssle M für alle möglichen K_a und speichere die Schlüsseltexte v_i in einer Tabelle: v_i = E(M, K_{a_i})

Möglicher Angriff bei 2-DES

2. Entschlüssle C für alle möglichen K_b und speichere die Klartexte w_j ebenfalls in einer Tabelle: $w_j = D(C, K_{b_j})$

- 3. Falls $v_i == w_j$ für ein bestimmtes Paar i und j, sind K_{a_i} und K_{b_j} die gesuchten Schlüssel, ggf. Probe mit weiteren M/C-Paaren machen!
- Aufwand
 - $-2^{56} + 2^{56} = 2 \cdot 2^{56} = 2^{57}$
 - Sicherheitsgewinn wäre nur 1 Bit

- Symmetrische Blockchiffre mit $M \in \{0,1\}^{64}$, $K \in \{0,1\}^{128}$
- Operationen:

- bitweise Addition mod 2
- + Addition mod 2¹⁶
- Multiplikation mod 2¹⁶ + 1 (0 durch 2¹⁶ dargestellt)

- Ablauf
 - M wird in vier 16-Bit-Operanden m₁ ... m₄ zerlegt.
 - Es werden i=1...8 Runden durchlaufen.
 - Aus K werden sechs 16-Bit-Operanden k_{i,1} ... k_{i,6}.erzeugt.
- Teilschlüsselgenerierung
 - K → $k_{1.1}$... $k_{1.6}$, $k_{2.1}$, $k_{2.2}$ (K wird in 8 Teile zerlegt.)
 - shiftLeft(K, 25) \rightarrow k_{2,3} ... k_{2,6}, k_{3,1} ... k_{3,4}
 - shiftLeft(K, 25) \rightarrow k_{3,5}, k_{3,6}, k_{4,1} ... k_{4,6}
 - u.s.w
 - Nach jeder Erzeugung zyklische Linksverschiebung von K um 25 Bitstellen.

International Data Encryption Algorithm (IDEA)

1. Runde, selbstinvers, insg. 8 Runden

- (+) bitweise Addition mod 2
- + Addition mod 2¹⁶
- Multiplikation mod 2¹⁶ + 1
 (0 wird durch 2¹⁶ dargestellt)

International Data Encryption Algorithm (IDEA)

Entschlüsselung

- k_i sei Teilschlüssel zum Verschlüsseln in Runde j
- d_i sei Teilschlüssel zum Entschlüsseln in Runde j
- $-r_{max}$ sei Rundenzahl (hier $r_{max} = 8$)

$$\begin{array}{lll} - & z = r_{max} + 2 \\ & d_{j,1} = (k_{z-j,1})^{-1} \bmod 2^{16} + 1 & \text{mit } 1 \leq j \leq r_{max} + 1 \\ & d_{j,4} = (k_{z-j,4})^{-1} \bmod 2^{16} + 1 & \text{mit } 1 \leq j \leq r_{max} + 1 \\ & d_{j,2} = (k_{z-j,2})^{-1} \bmod 2^{16} & \text{mit } j = 1, \ j = r_{max} + 1 \\ & d_{j,2} = (k_{z-j,3})^{-1} \bmod 2^{16} & \text{mit } 1 < j < r_{max} + 1 \\ & d_{j,3} = (k_{z-j,3})^{-1} \bmod 2^{16} & \text{mit } j = 1, \ j = r_{max} + 1 \\ & d_{j,3} = (k_{z-j,2})^{-1} \bmod 2^{16} & \text{mit } 1 < j < r_{max} + 1 \\ & d_{j,5} = (k_{z-(j+1),5}) & \text{mit } 1 \leq j \leq r_{max} + 1 \\ & d_{i,6} = (k_{z-(j+1),6}) & \text{mit } 1 \leq j \leq r_{max} + 1 \end{array}$$

International Data Encryption Algorithm (IDEA)

Designkriterien/Eigenschaften

- Mischen verschiedenartiger Grundoperationen soll hohe Komplexität bereits nach wenigen Runden erreichen
- Grundoperationen bewusst »inkompatibel« gewählt (erfüllen z.B. in keiner Kombination ein Distributiv- oder Assoziativgesetz)
- hoher Grad an Immunität gegenüber differentieller Kryptanalyse (nach vier Runden immun)
- bereits nach 1 Runde bzgl. der Inputbits vollständig, nach 2 Runden vollständig bzgl. der Schlüsselbits

Praktischer Einsatz

- sehr gut in Hard- und Software implementierbar
- sehr effizient
- Für kommerzielle Anwendungen fallen Lizenzgebühren an.

Advanced Encryption Algorithm (AES)

- Nachfolger des DES
 - Januar 1997 vom National Institute of Standards and Technology (NIST) als Nachfolger für DES initiiert
 - öffentliche internationale Ausschreibung
- Neue Blockchiffre sollte folgende Kriterien erfüllen:
 - symmetrische Blockchiffre mit einer Blockgröße von 128 Bit und variabler Schlüssellänge von 128,
 192 und 256 Bit.
 - AES soll für mindestens 30 Jahre Sicherheit bieten.
 - Weder Algorithmus noch Implementierung dürfen patentiert sein.
- August 1998 wurden 15 Kandidaten der Öffentlichkeit zur Begutachtung vorgelegt.

Advanced Encryption Algorithm (AES)

- August 1999 wurden die 5 Finalisten vorgestellt:
 - MARS IBM
 - RC6 RSA Labs
 - Rijndael Joan Daemen (Proton World Intl.), Vincent Rijmen (Katholieke Universiteit Leuven, Belgien)
 - Serpent Ross Anderson (Univ of Cambridge), Eli Biham (Technion), Lars Knudsen (UC San Diego)
 - Twofish Bruce Schneider, John Kelsey, Niels Ferguson (Counterpane Internet Security), Doug
 Whiting (Hi/fn, Inc.), David Wagner (UC Berkeley), Chris Hall (Princeton Univ.)
- Oktober 2000:
 - Rijndael wird ausgewählt.
- Begründung für Rijndael
 - Beste Kombination von Sicherheit, Leistungsfähigkeit, Effizienz und Implementierbarkeit sowohl in Software als auch in Hardware.

- Rijndael (sprich: Rein-dahl)
 - Blockchiffre
 - keine Feistel-Chiffre, arbeitet aber in Runden
 - Rundentransformation besteht aus drei invertierbaren Transformationen.
 - variable Blocklänge und variable Schlüssellänge, jeweils unabhängig wählbar aus {128 Bit, 192 Bit,
 256 Bit}.
 - Blockbreite {Nachrichtenblock, Schlüssel} in Bit
 = {Nb, Nk} · 8 Bit · 4 rows
 - Beispiel: Nb = 6 und Nk = 4

State						
a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}	
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	

Cipher Key							
k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}				
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}				
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}				
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}				

Rundenzahl Nr ist eine Funktion von Nb und NK

Nr	Nb=4	Nb=6	Nb=8
Nk=4	10	12	14
Nk=6	12	12	14
Nk=8	14	14	14

```
Rijndael(State,CipherKey) {
    KeyExpansion(CipherKey,ExpandedKey);
    AddRoundKey(State,ExpandedKey);
    For(i=1;i<Nr;i++)
        Round(State,ExpandedKey+Nb*i); // Pointer !
    FinalRound(State,ExpandedKey+Nb*Nr); // Pointer !
}</pre>
```

Rundentransformationen

```
Round(State,RoundKey) {
    ByteSub(State);
    ShiftRow(State);
    MixColumn(State);
    AddRoundKey(State,RoundKey);
FinalRound(State, RoundKey) {
    // wie Round, aber ohne MixColumn
    ByteSub(State);
    ShiftRow(State);
    AddRoundKey(State,RoundKey);
```

- ByteSub
 - operiert auf jedem Byte von State unabhängig
 - ist eine S-Box-Transformation
 - 1. berechne das Multiplikative Inverse in GF(28)
 - 2. berechne:

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \\ Y_6 \\ Y_7 \end{bmatrix} = \begin{bmatrix} 10001111 \\ 11000111 \\ 111100011 \\ 11111000 \\ 011111100 \\ 001111110 \\ 000111111 \\ 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- Umkehroperation: Inverse Tabelle und anschließend Berechnung des Multiplikativen Inversen in GF(28)
- ByteSub kann als Tabelle vorberechnet werden.

- ByteSub
 - ByteSub kann als Tabelle vorberechnet werden:

Input unteres Halbbyte

Input oberes Halbbyte

```
63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
   CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
   B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
    04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
    09 83 2C 1A 1B 6E 5A AO 52 3B D6 B3 29 E3 2F 84
5
    53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
   D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
    51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
   CD OC 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9
    60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
   E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
   E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
В
   BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
C
    70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
Ε
   E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F
    8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
```

Darstellung in Hexadezimalzahlen

ByteSub

substituiert die Bytes von State unabhänig voneinander

a _{0,0}	a _{0,1}	a _{0.2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}

ShiftRow

Anzahl der zyklischen Linksshifts in Abhängigkeit von Nb

	row 0	row 1	row 2	row 3
Nb=4	0	1	2	3
Nb=6	0	1	2	3
Nb=8	0	1	3	4

Beispiel: Nb=6

row 0: no shift

row 1: 1 shift

row 2: 2 shift

row 3: 3 shift

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	a _{1,0}
a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a _{2,0}	a _{2,1}
a _{3,3}	a _{3,4}	a _{3,5}	a _{3,0}	a _{3,1}	a _{3,2}

vorher

nachher

MixColumn

- operiert auf allen Spalten von State
- Berechne in GF(28):

$$b(x) = a(x) \otimes c(x) \mod x^4 + 1$$

mit $c(x) = '03' x^3 + '01' x^2 + '01' x + '02'$

– d.h.

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}

b _{0,0}	b _{0,1}	b _{0,2}	b _{0,3}	b _{0,4}	b _{0,5}
b _{1,0}	b _{1,1}	b _{1,2}	b _{1,3}	b _{1,4}	b _{1,5}
b _{2,0}	b _{2,1}	b _{2,2}	b _{2,3}	b _{2,4}	b _{2,5}
b _{3,0}	b _{3,1}	b _{3,2}	b _{3,3}	b _{3,4}	b _{3,5}

MixColumn

Inverse Operation:

$$a(x) = b(x) \otimes d(x) \mod x^4 + 1$$

 $mit d(x) = '0B' x^3 + '0D' x^2 + '09' x + '0E',$
 $da ('03' x^3 + '01' x^2 + '01' x + '02') \otimes d(x) = '01'$
(neutrales Element bzgl. Multiplikation)

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}

b _{0,0}	b _{0,1}	b _{0,2}	b _{0,3}	b _{0,4}	b _{0,5}
b _{1,0}	b _{1,1}	b _{1,2}	b _{1,3}	b _{1,4}	b _{1,5}
b _{2,0}	b _{2,1}	b _{2,2}	b _{2,3}	b _{2,4}	b _{2,5}
b _{3,0}	b _{3,1}	b _{3,2}	b _{3,3}	b _{3,4}	b _{3,5}

KeyExpansion für Nk<=6: KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)]){ for(i = 0; i < Nk; i++) W[i] = (Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3]);for(i = Nk; i < Nb * (Nr + 1); i++) { temp = W[i - 1];if (i % Nk == 0) temp = ByteSub(RotByte(temp)) ^ Rcon[i / Nk]; $W[i] = W[i - Nk] ^ temp;$ für Nk >6: KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)]) { for(i = 0; i < Nk; i++) W[i] = (kev[4*i], kev[4*i+1], kev[4*i+2], kev[4*i+3]);for(i = Nk; i < Nb * (Nr + 1); i++) { temp = W[i - 1]; if (i % Nk == 0) temp = ByteSub(RotByte(temp)) ^ Rcon[i / Nk]; else if (i % Nk == 4) temp = ByteSub(temp); $W[i] = W[i - Nk] ^ temp;$

- RotByte: zyklische Schiebeoperation (byteweise links)
- ByteSub (wie bei Rundentransformation)
- Rcon[i] = (RC[i], 0x00, 0x00, 0x00) mit

```
RC[1] = 1

RC[i] = 2 \cdot RC[i-1] für i>1 und RC[i-1] < 0x80

RC[i] = 2 \cdot RC[i-1] XOR 0x11 für i>1 und RC[i-1] > 0x80
```

```
i 1 2 3 4 5 6 7 8 9 10 (dez) RC[i] 01 02 04 08 10 20 40 80 1B 36 (hex)
```

- RoundKey Selection
 - fortlaufende Auswahl
 - Beispiel für Nb = 6 und Nk = 4:

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 ...

Round Key 0

Round Key 1

Electronic Code Book (ECB)

Cipher Block Chaining (CBC)

ECB und CBC im visuellen Vergleich

CBC zur Authentifikation (auch: CBCAuth, CBC-MAC)

Nur anwenden auf Nachrichten fester Länge, da ansonsten Length Extension Attack möglich

Counter Mode

IV stets zufällig wählen!

CCM (Counter with CBC-MAC)

- CCM als Kombination von CBC-MAC und Counter Mode
- angewendet bei WPA2 mit AES als Blockchiffre und |MAC|=64Bit

Output Feedback (OFB)

Cipher Feedback (CFB)

CFB hat heute eher historische Bedeutung.

Fehlerfortpflanzung

Modus	Vorteile	Nachteile
ЕСВ	 Direktzugriff möglich keine Fehlerfortpflanzung bei additiven Fehlern 	 Fehlerfortpflanzung in alle nachfolgenden Blöcke bei Synchronisationsfehlern unerkennbare additive Veränderungen möglich gezieltes Einfügen und Entfernen von Blöcken möglich gleiche Klartextblöcke liefern gleiche Chiffretextblöcke Codebuchanalyse möglich
СВС	 gleiche Klartextblöcke liefern unterschiedliche Chiffretextblöcke Manipulationen sind erkennbar (CBC-Auth) Kryptanalyse erschwert gegenüber ECB-Modus 	 Fehlerfortpflanzung in alle nachfolgenden Blöcke bei Synchronisationsfehlern Fehlerfortpflanzung in den Folgeblock bei additiven Fehlern kein Direktzugriff möglich
OFB, Counter	keine Fehlerfortpflanzung bei additiven Fehlern	 Fehlerfortpflanzung in alle nachfolgenden Bits bei Synchronisationsfehlern unerkennbare additive Veränderungen möglich kein Direktzugriff möglich (nur OFB)
CFB	 Schlüsselstrom abhängig von Klartextstrom Kryptanalyse erschwert gegenüber OFB-Modus Manipulationen sind erkennbar selbstsynchronisierender Modus 	 Fehlerfortpflanzung in den Folgeblock bei additiven Fehlern kein Direktzugriff möglich

Konstruktionen aus einer symmetrischen Blockchiffre

Pseudozufallszahlengenerator

Konstruktionen aus einer symmetrischen Blockchiffre

Hashfunktion

Aus Sicherheitsgründen sollte die Schlüssellänge nicht wesentlich länger sein als die Blocklänge

Unsichere Konstruktion von MACs aus Hashfunktionen

Häufig verwendet, aber bei Verwendung von iterierten Hashfunktionen wie MD5, SHA-1, SHA-256/512 unsicher:
 MAC = h (K | M)

Angreifer berechnet ohne Kenntnis von K: h(K | M | M')

Aufgrund der iterierten Anwendung einer (internen) Struktur von h lässt sich mit einem M' »weiterrechnen« und so ein gültiger MAC erzeugen.

Unter https://github.com/iagox86/hash_extender und https://github.com/bwall/HashPump sind Beispielimplementierungen für die Length Extension Attack zu finden.

(Un)sichere Konstruktion von MACs aus Hashfunktionen

- Naive, aber u.U. bereits sichere Abhilfe:
 - K nicht nur M voranstellen, sondern auch M nachstellen:

$$MAC = h(K || M || K)$$

- Length Extension Attack sowohl am Anfang als auch am Ende von M wird erschwert
- Restproblem:

Zumindest für MAC = $h(M \mid K)$ wurde gezeigt, dass, wenn ein Angreifer eine Kollision für zwei ungleiche Nachrichten M1 und M2 mit h(M1)=h(M2) findet, dann auch für $h(M1 \mid K) = h(M2 \mid K)$ leicht eine Kollision konstruiert werden kann.

M. Bellare, R. Canetti, H. Krawczyk: Keying hash functions for message authentication. Proc. Crypto 96, LNCS 1109, Springer, 1996, 1-15

Sichere Konstruktion von MACs aus Hashfunktionen: HMAC

(Keyed)-Hash MAC (HMAC):

$$MAC = h((K \oplus opad) || h((K \oplus ipad) || M))$$
 mit ipad=0x36...0x36 und opad=0x5c...5c nach RFC 2104

