(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2004-80385 (P2004-80385A)

(43) 公開日 平成16年3月11日(2004.3.11)

(51) Int.C1.7

FΙ

テーマコード (参考)

HO4B 1/707

HO4J 13/00

D

5KO22

審査請求 未請求 請求項の数 11 OL (全 17 頁)

(21) 出願番号

特願2002-237944 (P2002-237944)

(22) 出願日

平成14年8月19日 (2002.8.19)

(71) 出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(74) 代理人 100090620

弁理士 工藤 宣幸

(72) 発明者 松野 和彦

東京都港区虎ノ門1丁目7番12号 沖電

気工業株式会社内

(72) 発明者 鹿嶋 正幸

東京都港区虎ノ門1丁目7番12号 沖電

気工業株式会社内

F ターム (参考) 5K022 EE02 EE13 EE14 EE22 EE36

(54) [発明の名称] CDMA送信装置、CDMA多重送信装置、CDMA受信装置及びCDMA通信システム

(57)【要約】

【課題】受信側での同期検出構成が簡易な又は受信側での同期検出処理が簡単な、CDMA送信装置、CDMA受信装置、CDMA通信システムを提供する。

【解決手段】各チャネルの送信側においては、拡散信号における自チャネルの同期用タイムスロットの期間の振幅を、他の期間の拡散信号の振幅より増大させて変調信号として出力する。受信側において、複数チャネルの変調信号が多重された多重信号と、自チャネルに割り当てられている拡散符号との相関を求めると、自チャネルの同期用タイムスロットの期間の振幅を増大させているので、相関信号に同期タイミングを明示する大きな値の部分が生じ、容易に同期タイミングを検出することができる。

【選択図】

図1

【特許請求の範囲】

【請求項1】

所定周期毎のかつ他チャネルとは異なるタイミングのタイムスロットが自チャネルの同期 用タイムスロットに割り当てられている、上記他チャネルの送信信号と同期している送信 信号を、自チャネルに割り当てられている拡散符号で拡散変調して拡散信号を出力する拡 散手段と、

上記拡散信号における自チャネルの同期用タイムスロットの期間の振幅を、他の期間の拡 散信号の振幅より増大させて変調信号として出力するパワー制御手段と を有することを特徴とするCDMA送信装置。

【請求項2】

同期用タイムスロットには同期ビットが挿入されており、上記変調信号における他チャネ ルの同期用タイムスロットの期間を無信号化する無信号化手段を有することを特徴とする 請求項1に記載のCDMA送信装置。

【請求項3】

上記パワー制御手段が上記無信号化手段を兼ね、他チャネルの同期用タイムスロットの期 間の信号入力又は信号出力を停止することにより無信号化を行うことを特徴とする請求項 2に記載のCDMA送信装置。

【請求項4】

上記拡散手段が上記無信号化手段を兼ね、他チャネルの同期用タイムスロットの期間での 拡散変調を停止することにより無信号化を行うことを特徴とする請求項2に記載のCDM A 送信装置。

【請求項5】

請求項1~4のいずれかに記載のCDMA送信装置を複数備えると共に、 上記各CDMA送信装置からの変調信号を重畳する多重手段とを備える ことを特徴とするCDMA多重送信装置。

【請求項6】

上記各CDMA送信装置に与える同期用タイムスロットの規定信号を形成するフレーム処 理手段を有することを特徴とする請求項5に記載のCDMA多重送信装置。

【請求項7】

上記フレーム処理手段は、各チャネルの送信信号本体に同期用ビットを追加して、上記各 CDMA送信装置に与える送信信号に形成することを特徴とする請求項6に記載のCDM A多重送信装置。

【請求項8】

請求項1~4のいずれかに記載の複数のCDMA送信装置が出力し、伝送路上で自動的に 多重された多重信号、又は、請求項5~7のいずれかに記載のCDMA多重送信装置が出 力した多重信号と、自チャネルに割り当てられている拡散符号との相関を求め、相関信号 を出力する相関手段と、

上記相関信号から出力された相関信号における、自チャネルの同期用タイムスロットに係 る正及び又は負に大きい相関値部分を弁別する同期タイミング検出手段と、

上記同期タイミング検出手段の出力に基づき、タイムスロット周期の再生クロックを形成 するクロック再生手段と、

上記相関信号又はそれを波形整形した信号を上記再生クロックでサンプリングして、送信 信号を再生するゲート手段と

を有することを特徴とするCDMA受信装置。

上記ゲート手段の出力信号から、同期ビットを除去するフレーム除去手段を有することを 特徴とする請求項8に記載のCDMA送信装置。

【請求項10】

請求項1~4のいずれかに記載の複数のCDMA送信装置と、請求項8又は9の複数のC DMA受信装置とを有することを特徴とするCDMA通信システム。

【請求項11】

請求項5~7のいずれかに記載のCDMA多重送信装置と、請求項8又は9の複数のCDMA受信装置とを有することを特徴とするCDMA通信システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、CDMA(Code Division Multiple Access;符号分割多元接続)送信装置、CDMA多重送信装置、CDMA受信装置及びCDMA通信システムに関し、例えば、光CDM(Code Division Multiple xing)技術とPON(Passive Optical Network)を用いた光アクセスシステムに適用し得るものである。

[0002]

【従来の技術】

CDMA方式には、各チャネル毎に同期を行う同期CDMA方式と、各チャネル毎の同期を行わない非同期CDMA方式とがあり、また、同期位置のずれをある程度許容する準同期CDMA方式がある。非同期CDMA方式や準同期CDMA方式を使用すると、符号の長さ(チップ数)に比べて、多重数を多く取ることができない。

[0003]

そのため、多重伝送を行うCDMA通信システムでは、チップ数と多重数とを同じにできる同期CDMA方式が適している。

[0004]

同期CDMA方式では、多重データの復調時に同期信号が必要となり、本来の伝送信号とは別にこの同期信号を送信している。

[0005]

また、無線通信システムなどの一部で使用されている同期 C D M A 方式においては、各チャネルの同期を行うために、2 つの符号(例えば、P N 符号と直交符号)を掛合わせて送信を行っており、そのうちの一方の符号(例えば、P N 符号)を同期用の信号として用いている。

[0006]

【発明が解決しようとする課題】

しかしながら、同期CDMA方式のCDMA通信システムの場合、受信側において、伝送信号を取り出すための逆拡散器に加え、同期信号を検出するための同期検出器が必要であり、ハードウェア構成の場合には、回路規模が大きくなり、ソフトウェア構成の場合には処理ステップなどが多大になるという課題がある。

[0007]

また、同期用の符号を含めた2つの符号を利用する同期CDMA方式のCDMA通信システムの場合にも、受信側において、各符号を検出する2個の相関器(例えばPN符号用及び直交符号用の相関器)が必要となり、ハードウェア構成の場合には、回路規模が大きくなり、ソフトウェア構成の場合には処理ステップなどが多大になるという課題がある。

[8000]

そのため、受信側での同期検出構成が簡易な又は受信側での同期検出処理が簡単な、CDMA送信装置、CDMA受信装置、CDMA多重送信装置及びCDMA通信システムが望まれている。

[0009]

【課題を解決するための手段】

かかる課題を解決するため、第1の本発明のCDMA送信装置は、所定周期毎のかつ他チャネルとは異なるタイミングのタイムスロットが自チャネルの同期用タイムスロットに割り当てられている、上記他チャネルの送信信号と同期している送信信号を、自チャネルに割り当てられている拡散符号で拡散変調して拡散信号を出力する拡散手段と、上記拡散信号における自チャネルの同期用タイムスロットの期間の振幅を、他の期間の拡散信号の振

20

30

40

幅より増大させて変調信号として出力するパワー制御手段とを有することを特徴とする。 [0010]

第2の本発明のCDMA多重送信装置は、第1の本発明のCDMA送信装置を複数備える と共に、その各CDMA送信装置からの変調信号を重畳する多重手段とを備えることを特 徴とする。

[0011]

第3の本発明のCDMA受信装置は、複数の第1の本発明のCDMA送信装置が出力し、 伝送路上で自動的に多重された多重信号、又は、第2の本発明のCDMA多重送信装置が 出力した多重信号と、自チャネルに割り当てられている拡散符号との相関を求め、相関信 号を出力する相関手段と、上記相関信号から出力された相関信号における、自チャネルの 同期用タイムスロットに係る正及び又は負に大きい相関値部分を弁別する同期タイミング 検出手段と、上記同期タイミング検出手段の出力に基づき、タイムスロット周期の再生ク ロックを形成するクロック再生手段と、上記相関信号又はそれを波形整形した信号を上記 再生クロックでサンプリングして、送信信号を再生するゲート手段とを有することを特徴 とする。

[0012]

第4の本発明のCDMA通信システムは、複数の第1の本発明のCDMA送信装置と、複 数の第3の本発明のCDMA受信装置とを有することを特徴とする。

[0013]

第5の本発明のCDMA通信システムは、第2の本発明のCDMA多重送信装置と、複数 20 の第3の本発明のCDMA受信装置とを有することを特徴とする。

[0014]

【発明の実施の形態】

(A)第1の実施形態

以下、本発明によるCDMA送信装置、CDMA受信装置、CDMA多重送信装置及びC **DMA通信システムの第1の実施形態を図面を参照しながら詳述する。**

[0015]

(A-1) 第1の実施形態の構成

図1は、第1の実施形態に係るCDMA通信システムの全体構成を示すと共に、CDMA 多重送信装置の内部構成を示すブロック図である。

[0016]

図1において、第1の実施形態のCDMA通信システム1は、Nチャネル対応(多重数N) の通信システムであり、CDMA多重送信装置2と、分配器3と、各チャネル用のCD MA受信装置4-1~4-Nとを有する。

[0017]

CDMA多重送信装置2は、各チャネル用のCDMA送信装置5-1~5-Nと、加算部 (多重部) 6とを有する。

[0018]

各チャネル用のCDMA送信装置5-1~5-Nはそれぞれ、入力された自チャネルの送 信信号を拡散処理して変調信号を形成するものである。加算部6は、各チャネルの変調信 号を加算して多重信号を形成するものである。

[0019]

このような多重信号が、CDMA多重送信装置2から出力される。なお、この第1の実施 形態は、有線伝送路を適用することを前提としており、そのため、分配器3が設けられて いる。分配器3は、多重信号をN個に分岐して各チャネル用のCDMA受信装置4-1~ 4-Nに分配するものである。

[0020]

各チャネル用のCDMA受信装置4-1~4-Nはそれぞれ、入力された多重信号を逆拡 散処理して、対応するCDMA送信装置5-1~5-Nが自己に送信しようとした送信信 号を得るものである。

30

[0021]

なお、CDMA多重送信装置2と、各チャネル用のCDMA受信装置4-1〜4-Nとの有線伝送路が光伝送路の場合には、図1や後述する図2では省略しているが、CDMA多重送信装置2の加算部6の後段には電気/光変換器が設けられ、各チャネル用のCDMA受信装置4-1〜4-Nの入力段には光/電気変換器が設けられる。

[0022]

各チャネル用のCDMA送信装置5-n(nは1~N)は、同様な構成を有し、それぞれ、拡散部7-n及びパワー制御部8-nを有する。パワー制御部8-nは、1入力3出力セレクタ10-n、増幅器11-n及び加算器12-nを有する。

[0023]

各チャネル用のCDMA送信装置5-nには、そのチャネルの伝送信号(データ系列)の所定周期毎に同期ビットが挿入された入力信号が入力される。あるタイミングの同期ビットが、第1チャネル(CH1)に関するものであれば、次に挿入されている同期ビットが、第2チャネル(CH2)に関するものであり、その次に挿入されている同期ビットが、第3チャネル(CH3)に関するものであり、以下、同様である(図3(A)参照)。従って、同一チャネルに係る同期ビットは、N個毎に表れる。また、全てのチャネル(CH1~CHN)について、第nチャネルの同期ビットが表れるタイミングは同じになっている。

[0024]

CDMA送信装置5-nにおける拡散部7-nは、上述のような入力信号に対し、自チャネルに割り当てられている拡散符号を用いて拡散処理するものである。拡散部7-nとしては、例えば、イクスクルーシブオア回路を適用でき、入力信号が「1」のタイムスロットでは拡散符号をそのまま出力し、入力信号が「0」のタイムスロットでは拡散符号を反転して出力する。なお、入力信号における1ビット期間を「タイムスロット」と呼んでおり、拡散符号における1符号期間を「チップ期間」と呼ぶこととしている。

[0025]

ここで、拡散符号としては、例えば、自己相関特性及び相互相関特性が共に良い、直交 PN符号などの符号を適用する。拡散符号は、例えば、入力信号の1タイムスロット期間を、16チップ期間又は32チップ期間とするものであり、入力信号における各タイムスロット毎に繰り返し適用されるものである。

[0026]

拡散部7-nから出力された拡散信号は、1入力3出力セレクタ10-nに入力される。セレクタ10-nの第1の出力端子は加算器12-nに接続され、セレクタ10-nの第2の出力端子は開放されており、セレクタ10-nの第3の出力端子は増幅器11-nに接続されている。セレクタ10-nは、セレクタ制御信号(図示せず)に基づき、上述した同期ビット期間以外の期間では第1の出力端子を選択し、自チャネルの同期ビット期間では第3の出力端子を選択し、他チャネルの同期ビット期間では第2の出力端子を選択する。

[0027]

増幅器11-nは、セレクタ10-nの第3の出力端子から出力された信号、言い換えると、そのチャネルの同期ビット期間の拡散信号を、所定のゲインで増幅して加算器12nに与えるものである。

[0028]

加算器 12-nは、セレクタ 10-nの第 1の出力端子から出力された信号と、増幅器 1-n から出力された信号とを加算し、その加算信号を、そのチャネルの変調信号として、上述した加算部(多重部) 6に出力するものである。

[0029]

上述したように、セレクタ10-nは、同期ビット期間以外の期間(送信信号本体の期間)では第1の出力端子を選択し、自チャネルの同期ビット期間では第3の出力端子を選択しているので、加算器12-nは信号を時分割多重していることになる。また、セレクタ

10

30

10-nは、他チャネルの同期ビット期間では開放されている第2の出力端子を選択して いるので、この期間では、加算器12-nからは何らの信号を出力されない。

[0030]

以上のように、パワー制御部8-nは、拡散部7-nからの拡散信号が、自チャネルの同 期ビット期間にあるときには、パワーを増大させ、他チャネルの同期ビット期間にあると きには出力を停止させ、送信信号本体の期間ではパワーを増大させることなく、出力させ るパワー制御を行っているものである。

[0031]

図2は、第nチャネルのCDMA受信装置4-nの内部構成を示すブロック図である。な お、各チャネルのCDMA受信装置4-1~4-Nの内部構成は同様である。

10

[0032]

図2において、CDMA受信装置4-nは、マッチドフィルタ20-n、第1のリミッタ 21-n、ゲート回路22-n、第2のリミッタ23-n及びクロック再生部24-nを 有する。

[0033]

CDMA多重送信装置2から送出され、分配器3によって分岐された多重信号が、当該C DMA受信装置4-nに到達し、マッチドフィルタ20-nに入力される。

[0034]

マッチドフィルタ20-nは、入力された多重信号に対して、自チャネルに割り当てられ ている拡散符号(同一チャネルの上述した拡散部7-nが使用しているものと同一)を用 いて逆拡散処理を行って相関信号を得るものである。

[0035]

ここで、相関信号は、送信側が送信しようとした信号が「1」のタイムスロット期間の位 相に拡散符号の位相が合致したときには大きな正相関値をとり、送信側が送信しようとし た信号が「0」のタイムスロット期間の位相に拡散符号の位相が合致したときには大きな 負相関値(相関が負相関ということであり、相関信号のダイナミックレンジの取り方によ っては正値のこともある)をとる。相関信号が大きな値をとるのは、概ね1チップ期間で ある。また、上述のように、自チャネルの同期ビット期間に係る拡散信号の送信パワーは 、他の期間よりかなり大きくされているので、その期間に係る1チップ期間の相関信号も 、一段と大きな正相関値をとる。また、大きな正相関値部分や大きな負相関値部分を除け ³⁰ ば、拡散符号とのマッチングがとれないので、相関信号は、相関はないレベルの値をとる

[0036]

マッチドフィルタ20-nからの相関信号は、第1のリミッタ21-n及び第2のリミッ タ23-nに与えられる。

[0037]

第1のリミッタ21-n及び第2のリミッタ23-nはそれぞれ、マッチドフィルタ20 -nからの相関信号における所定レベル(閾値)以上の波形を取り出すものであり、第2 のリミッタ23-nの所定レベルは、第1のリミッタ21-nの所定レベルより大きくな っている。

[0038]

第2のリミッタ23-nは、自チャネルの同期ビット期間に関係して現れる、かなり大き な正相関値部分だけを相関信号から取り出すためにリミット処理を行うものであり、言い 換えると、同期ビットの情報を検出して(取り出して)いるものであり、その出力信号は 、クロック再生部24-nに与えられる。

[0039]

クロック再生部24-nは、第2のリミッタ23-nの出力信号から、タイムスロット周 期で、しかも、相関信号において、大きな正相関値(「1」に対応)又は大きな負相関値 (「0」に対応)をとる期間(期間の長さは概ね1チップ期間)に同期したクロックを再 生してゲート回路22-nにゲート制御信号として与えるものである。すなわち、クロッ 50

ク再生部24-nは、自チャネルの同期ビット周期の第2のリミッタ23-nの出力信号 を、k+1 (kは相前後する同期ビット間に存在する送信信号のビット(タイムスロット)数である)倍だけ周波数逓倍してクロックを再生する。クロック再生部24-nには、 例えば、k+1倍だけ周波数逓倍するPLL回路構成を適用することができる。

[0040]

第1のリミッタ21-nは、マッチドフィルタ20-nからの相関信号の大きな正相関値 部分などをパルス状に波形整形し、送信信号本体の情報を取り出すものである。なお、第 1のリミッタ21-nに代え、スライサを適用して、相関信号における大きな負相関値部 分もパルス状に波形整形するようにしても良い。第1のリミッタ21-nからの出力信号 がゲート回路22-nに与えられる。

[0041]

ゲート回路22-nは、第1のリミッタ21-nからの出力信号を、クロック再生部24 -nからのクロックに基づいて、通過処理し(サンプリングし)、第1のリミッタ21nからの出力信号における大きな正相関値部分及び負相関値部分の値をタイムスロット期 間全体に引き延ばし、「1」及び「0」でなるデータ系列に変換するものである。ゲート 回路22-nとしては、Dフリップフロップを適用できる。

[0042]

ゲート回路22-nからの出力信号には、同期ビット期間における論理値を含まれている が、これを適宜除去することにより、同一チャネルのCDMA送信装置5-nが送信しよ うとする信号を再生することができる。

[0043]

(A-2) 第1の実施形態の動作

次に、第1の実施形態のCDMA通信システムの動作を、図3及び図4の各部タイミング チャートをも参照しながら説明する。ここで、図3は、CDMA多重送信装置2の各部タ イミングチャートであり、図4は、CDMA受信装置4-nの各部タイミングチャートで ある。

[0044]

各チャネルのCDMA送信装置5-1~5-Nには、図3(A)に第1チャネルCH1に ついて示すように、送信信号本体に対し、所定周期毎に、同期ビットs1、s2、…が挿 入された送信信号が与えられる。図3(A)において、同期ビットs1が第1チャネルC H1の同期ビットを表し、同期ビットs2~SNが他チャネルの同期ビットを表している 。また、図3は、同期ビットs1~SNが論理「1」の場合を示している。同期ビットs 1~SNは、全てのチャネルの送信信号で同期している。

[0045]

各チャネルの拡散部7-nにおいては、入力された送信信号を、図3(B)に第1チャネ ルCH1について示すような、そのチャネルに割り当てられている拡散符号列を用いて拡 散変調して拡散信号を出力する。図3(C)には、図3(A)に示す送信信号を図3(B)に示す拡散符号列で拡散変調して得た、第1チャネルCH1についての拡散信号を示し ている。

[0046]

拡散信号は、パワー制御部8-nに与えられ、このパワー制御部8-nによって、拡散信 号におけるそのチャネルの同期ビット期間は大きく増幅され、他チャネルの同期ビット期 間は無信号化され、そのチャネルの変調信号として出力される。図3(D)は、第1チャ ネルCH1についての変調信号を示している。なお、パワー制御部8-n内の動作の説明 は省略する。

[0047]

また、図3 (E1) ~ (EN) は、各チャネルCH1~CHNの変調信号を示しており、 図3(D)に比較して時間軸を縮小している。なお、各変調信号は、当然に、自チャネル の同期ビット期間や送信信号本体の期間で拡散符号に応じた論理の変化があるが、図3(E1)~(EN)においては、その期間での論理の変化を省略して示している。むしろ、

10

20

図3 (E1) ~ (EN) は、主として、適用されているパワー面で示している。 【0048】

各チャネルの変調信号は加算部(多重部)6に与えられ、この加算部(多重部)6によって重畳(多重)され、多重信号として、CDMA多重送信装置2から出力される。図3(F)は、多重信号を示している。

[0049]

各チャネルからの変調信号は、他チャネルの同期ビット期間では無信号化されているので、多重信号における各同期ビット期間は、各チャネルの同期ビットをそのチャネルの拡散符号で拡散変調したものが順次表れ、言い換えると、多重信号における各同期ビット期間にはそれぞれ、ある1チャネルの同期情報だけとなっている(重畳されていない)。

[0050]

このような多重信号は、分配器 3 によって N 分岐され、全てのチャネルの C D M A 受信装置 $4-1\sim4-N$ に到達する。

[0051]

図4 (A) は、図3 (F) に示す多重信号を書き直したものであり、図4 (B) は、図4 (A) に示す多重信号をその時間軸を伸長して示したものである。

[0052]

[0053]

図4 (A) 及び図4 (B) に示す多重信号が到来した、各チャネルのCDMA受信装置 4-nにおいては、初段のマッチドフィルタ 20-nによって、受信した多重信号に対するそのチャネルに割り当てられている拡散符号系列との逆拡散(相関処理)がなされ、相関信号が出力される。なお、図4 (C1) は、第1チャネルCH1の相関信号を示し、図4 (C2) は、第1チャネルCH1の相関信号を示している。なお、図4 (C1) 及び図 4-n0 (C2) において、ハッチ部分は無相関部分(値の不定部分)を示している。

第1チャネルCH1の拡散符号と多重信号とのマッチングにおいては、第1チャネルCH1の同期ビット期間s1でマッチングがとれ、しかも、その期間s1の信号パワー(振幅)が大きいので、非常に大きな正相関値部分が生じ、伝送信号本体の各タイムスロット期間ではそれぞれ、拡散符号とマッチする期間が生じるが、信号パワーが通常レベルであり、しかも、他チャネルの信号も多重されているので、第1チャネルCH1の同期ビット期間s1の相関より弱い、正相関値部分又は負相関値部分が生じ、他チャネルの同期ビット期間s2~sNは、第1チャネルCH1の拡散符号の成分を含まないので、無相関値となる。他のチャネルについても同様である。このような相関信号が第1及び第2のリミッタ21-n及び23-nに与えられる。

[0054]

なお、正相関値部分又は負相関値部分の時間幅は、ほぼ1チップ期間であり、すなわち、1タイムスロット期間(=拡散符号の1周期)/1タイムスロット期間当たりのチップ数(=拡散符号のチップ長)である。

[0055]

第2のリミッタ23-nにおいては、そのリミッタに係る所定レベル(閾値)以上の相関信号波形が取り出される。この取り出された後の信号は、図4(D1)に第1チャネルCH1について示す、図4(D2)に第2チャネルCH2について示すように、そのチャネルに係る同期ビット期間での大きな正相関値部分だけを切り出したものとなっている。第2のリミッタ23-nの出力から、クロック再生部24-nによって、クロックが再生され、ゲート回路22-nに与えられる。図4(E1)は、第1チャネルCH1について得られたクロックを示し、図4(E2)は、第2チャネルCH2について得られたクロックを示している。

[0056]

一方、第1のリミッタ21-nにおいては、リミット処理により、マッチドフィルタ20-nからの相関信号から、送信信号本体の情報を取り出されてゲート回路22-nに与えられ、上述した再生クロックによってゲート(サンプリング)され、タイムスロット期間

30

10

รก

毎に論理「1」又は「0」をとるデータ系列に変換されて出力される。

[0057]

図4 (F1) は、第1チャネルCH1に関する第1のリミッタ21-1からの出力を示し、図4 (F2) は、第2チャネルCH2に関する第1のリミッタ21-2からの出力を示している。また、図4 (G1) は、第1チャネルCH1に関するゲート回路22-1からの出力を示し、図4 (G2) は、第2チャネルCH2に関するゲート回路22-2からの出力を示している。

[0058]

ゲート回路22-nからの出力信号には、周期的な同期ビットが含まれているので、後段の回路で除去する必要がある。

[0059]

なお、CDMA受信装置 $4-1\sim4-N$ は、受信した同期信号に同期させて、CDMA多重送信装置 $2\sim0$ データ送信を行うことにより、逆方向 ~0 送信も、ACDMA受信装置 $4-1\sim4-N$ で同期させて行うことができる。

[0060]

(A-3) 第1の実施形態の効果

以上のように、上記第1の実施形態によれば、各CDMA送信装置が自チャネルの同期ビット期間での拡散信号のパワーを増大させて送信させ、各CDMA受信装置でのその期間での相関信号レベルを大きくするようにしたので、同期専用に適用するマッチドフィルタなどを不要とでき、構成を簡易なものとすることができる。また、DSPなどを適用してソフトウェア処理するとしても処理を簡単なものとすることができる。

[0061]

また、第2のリミッタは、同期検出回路を構成しているものとなるが、同期検出用の要素はこのリミッタだけであり、ハードウェア構成の簡易化及び又はソフトウェア処理の簡単化を実現できている。

[0062]

(B) 第2の実施形態

次に、本発明によるCDMA送信装置、CDMA受信装置、CDMA多重送信装置及びCDMA通信システムの第2の実施形態を、第1の実施形態との相違を中心に、図面を参照しながら説明する。

[0063]

(B-1) 第2の実施形態の構成

図5は、第2の実施形態のCDMA多重送信装置の内部構成を示すブロック図であり、図6は、そのフレーム処理回路の内部構成を示すブロック図である。

[0064]

第2の実施形態のCDMA多重送信装置2Aは、図5に示すように、第1の実施形態のCDMA多重送信装置2の構成にさらに、図6に示す詳細構成を有するフレーム処理回路9を有するものである。

[0065]

第1の実施形態では、CDMA多重送信装置への入力信号の形成方法や、セレクタ10-nへのセレクタ制御信号の形成方法が任意であるとして説明を省略していたが、第2の実施形態では、それらの形成を実行するフレーム処理回路9を有する。なお、第1の実施形態においては、例えば、各チャネルの送信処理系が、GPS受信機などの高精度の時計を有し、各々独立して、同期ビットの挿入処理を行っても良いものである。

[0066]

フレーム処理回路9は、各チャネルのCDMA送信装置 $5-1\sim5-N$ の共通の入力段に設けられているものである。フレーム処理回路9は、各チャネルの送信しようとするデータ信号のそれぞれに対する同期ビットの挿入処理を行って送信信号を形成して、各チャネルのCDMA送信装置 $5-1\sim5-N$ のセレクタ $10-1\sim10-N$ に与えるセレクタ制御信号を形成してセ

10

30

_

レクタ10-1~10-Nに与えるものである。

[0067]

なお、この明細書においては、同期ビットが挿入されるデータ信号の周期をフレームと呼んでいる。

[0068]

フレーム処理回路9は、各チャネル対応のバッファメモリ部30-1~30-N、同期信号クロック発生回路31及びセレクタ制御信号発生回路32を有する。

[0069]

各バッファメモリ部30-1~30-Nは、それぞれいわゆるFIFOメモリを中心として構成されたものであり、自チャネルのデータ信号を全チャネルに共通な書込みクロックに基づいて書き込むと共に、同期信号クロック発生回路31からの同期信号クロックに基づいて読み出し、また、同期信号クロック発生回路31からの同期信号クロックに基づいて、読出しデータ系列に、所定周期(同期ビット周期)毎に同期ビットを挿入して出力するものである。

[0070]

以下では、データ信号に対する同期ビットの挿入は、データ信号の時間圧縮を伴うように 説明するが、バッファメモリ部30-1~30-Nの容量などによっては、データ信号を 時間圧縮しないで挿入するようにしても良い。

[0071]

同期信号クロック発生回路31は、上述した読出しクロック及び同期信号クロックを、書込みクロックに同期して形成するものである。例えば、データ信号のMビット毎に同期ビットを挿入する場合であれば、読出しクロックとして、書込みクロックの(M+1)/M倍の速度を有するものを形成し、また、M+1個の読出しクロック毎に、1個の読出しクロック期間と同一のパルス幅を有する同期信号クロックを形成する。同期信号クロックは、全チャネルのバッファメモリ部30-1~30-Nに与えられるだけでなく、セレクタ制御信号発生回路32にも与えられる。

[0072]

セレクタ制御信号発生回路32は、同期信号クロックに基づいて、各チャネルのセレクタ10-1~10-Nに与えるセレクタ制御信号を発生するものである。第1チャネルCH1~第NチャネルCHNのセレクタ制御信号は、同期信号クロック以外の期間では、セレクタ10-1~10-Nの第1の出力端子を選択させるものである。ある同期信号クロックに基づき、第1チャネルCH1のセレクタ制御信号がセレクタ10-1の第3の出力端子(増幅器への端子)を選択させるタイミングでは、第2チャネルCH2~第NチャネルCHNのセレクタ制御信号がセレクタ10-2~10-Nの第2の出力端子(無信号化端子)を選択させるようにし、次の同期信号クロックの発生時には、第2チャネルCH2のセレクタ制御信号がセレクタ10-2の第3の出力端子(増幅器への端子)を選択させ、第1チャネルCH1、第3チャネルCH3~第NチャネルCHNのセレクタ制御信号がセレクタ10-1、10-3~10-Nの第2の出力端子(無信号化端子)を選択させるようにし、以下、同様に、同期信号クロックの発生毎に、第3の出力端子(増幅器への端子)を選択させる1個のセレクタ制御信号を巡回変化させる。

[0073]

図7は、第2の実施形態のCDMA受信装置の内部構成を示すブロック図であり、図8は、そのフレーム除去回路の内部構成を示すブロック図である。

[0074]

第2の実施形態の各チャネルのCDMA受信装置4-nAは、図7に示すように、第1の実施形態のCDMA受信装置4-nの構成に加え、フレーム除去回路25-nを有する。

[0075]

フレーム除去回路 25-n は、図 8 に示すように、バッファメモリ部 40、同期信号復元回路 41 及び読出しクロック生成回路 42 を有する。

[0076]

30

バッファメモリ部40-nは、ゲート回路22-nから出力された信号(復調信号)をク ロック再生部24-nから出力された再生クロックで書き込むと共に、読出しクロック生 成回路42-nから出力されたそれより低速の読出しクロックで読出して速度変換すると 共に、同期信号復元回路41-nからの復元同期信号に基づいて、復調信号が同期ビット 期間の場合のときに書込みを停止して、自バッファメモリ部40-nからの出力信号(受 信信号)には同期ビットが存在しなくするものである。

[0077]

同期信号復元回路41-nは、第2のリミッタ23-nからの出力信号(同期ビットの検 出信号)から、復調信号における同期ビット期間を示す同期信号を復元し、バッファメモ リ部40-nに与えるものである。

[0078]

読出しクロック生成回路42-nは、クロック再生部24-nから出力された再生クロッ ク(書込みクロック)及び同期信号復元回路41-nから出力された同期信号に基づいて 、バッファメモリ部40-nに与える読出しクロックを形成するものである。例えば、復 調信号が、M+1ビット毎に1個の同期ビットが挿入されたものである場合であれば、読 出しクロックとして、書込みクロックのM/(M+1)倍の速度を有するものを形成する 。なお、バッファメモリ部40-nの容量によっては、書込みクロック及び読出しクロッ クの速度が同じであっても、復調信号から同期ビットを除去することができる。

[0079]

なお、バッファメモリ部40-nから出力された信号(受信信号)は、同期ビットが除去 20 された単なるデータ系列であって、フレームという切れ目がないものとなる。

[0080]

上述したフレーム処理回路9や各チャネルのフレーム除去回路25-1~25-N以外の 構成は、第1の実施形態と同様であり、その機能説明は省略する。

[0081]

(B-2) 第2の実施形態の動作

次に、第2の実施形態において追加されたフレーム処理回路9やフレーム除去回路25nの動作を、この順で説明する。

[0082]

図9は、フレーム処理回路9におけるあるバッファメモリ部30-nの処理イメージを示 ³⁰ すタイミングチャートである。

[0083]

バッファメモリ部30-nに入力されたデータ信号の形式は任意であっても良く、図9(A) に示すような複数のパケットpkt. 1~pkt. 4が間欠的、非連続に生じるもの でも良い。

[0084]

このようなデータ信号が、図9(D)に示す同期信号クロックに基づいて、図9(B)に 示すような所定ビット数(フレーム)毎に分割されたと同様に、バッファメモリ部30ー nで処理される。バッファメモリ部30-nでは、書込みクロック及び読出しクロックの 速度差に応じ、図9 (C)に示すように、バッファメモリ部30-nから出力される送信 信号におけるデータ信号部分(フレーム)は当初のものに比較して時間圧縮され、この時 間圧縮によってできた時間部分に、同期ビット(論理「1」)が挿入される。同期ビット の挿入位置も、図9(D)に示す同期信号クロックに基づいて定まる。

図9では、ある1チャネルについて示したが、各チャネルのデータ信号に対しても、フレ ーム処理回路9は同様の処理を行う。

[0086]

図10(A)は、同期信号クロックを示し、図10(B1)~図10(BN)はそれぞれ 、各チャネルCH1~CHNのバッファメモリ部30-1~30-Nから出力された送信 信号を示している。

[0087]

図10(C1)~図10(CN)はそれぞれ、図10(A)に示す同期信号クロックに基 づいて、セレクタ制御信号発生回路32が形成した、各チャネルCH1~CHNのセレク タ制御信号を示している。図10(C1)~図10(CN)に示すセレクタ制御信号にお いて、「s」は、セレクタ10-1~10-Nへの入力信号を増幅器11-1~11-N に与えることを指示する(第3の出力端子を指示する)同期ビットセレクト信号であり、 「n」は、セレクタ10-1~10-Nへの入力信号を無信号化することを指示する(第 2の出力端子を指示する)無信号セレクト信号であり、「d」は、セレクタ10-1~1 0-Nへの入力信号を直接加算器12-1~12-Nに与えることを指示する(第1の出 力端子を指示する)データ信号セレクト信号である。

[0088]

同期ビットセレクト信号sの位置は、全てのチャネルCH1~CHNのセレクタ制御信号 で巡回的に変化しており、これにより、第1の実施形態で説明したような多重信号を形成 することができるようになっている。

[0089]

図11は、第1チャネルCH1のフレーム除去回路25-1における処理イメージを示す タイミングチャートである。他のチャネルCH2~CHNのフレーム除去回路25-2~ **25-Nも同様な処理を行う。**

[0090]

フレーム除去回路 2 5 - 1 には、図 1 1 (A)に示す第 2 のリミッタ 2 3 - 1 の出力信号 20 と、図示は省略しているが、クロック再生部24-nが出力した再生クロックと、図11 (C) に示すゲート回路22-nが出力した復調信号とが入力される。

[0091]

フレーム除去回路25-1においては、同期信号復元回路41-1によって、第2のリミ ッタ23-1の出力信号から、それに同期した、各同期ビット期間で有意な論理レベルを とる、図11(B)に示す復元同期信号が形成される。この復元同期信号は、図11(C)に示す復調信号における同期ビット期間を規定するものとなっている。

[0092]

フレーム除去回路25-1のバッファメモリ部40-nは、図示しないクロック再生部2 4-nが出力した再生クロックを書き込むと共に、読出しクロック生成回路 4 2-1が形 成した図示しない読出しクロックで読み出すことを通じて、復調信号におけるデータ信号 を時間軸伸長し、また、復調信号における同期ビットを除去する。同期ビットの除去は、 書込みを実行しないことで除去するものであっても良く、書込みは行うが読出しを実行し ないことで除去するものであっても良い。

[0093]

図11は、連続しているデータ信号を受信する場合を示したが、図12に示すような、複 数のパケットpkt.1~pkt.4が間欠的、非連続に生じているようなデータ信号を 受信する場合にも、フレーム除去回路25-nは同様に動作する。

[0094]

(B-3) 第2の実施形態の効果

第2の実施形態によっても、第1の実施形態と同様な効果を奏することができる。第2の 実施形態によれば、フレーム処理回路及びフレーム除去回路を設けているので、フレーム 概念を導入した処理を行うことができる。

[0095]

(C) 他の実施形態

上記各実施形態の説明においても種々変形実施形態に言及したが、さらに、以下に例示す るような変形実施形態を挙げることができる。

[0096]

上記各実施形態においては、CDMA送信装置5-nからの変調信号における他チャネル の同期ビット期間の無信号化をセレクタ10-nの端子選択で行うものを示したが、他チ

ャネルの同期ビット期間では、拡散部フーnへの拡散符号列の供給を停止することで行う ようにしても良い。

[0097]

また、上記各実施形態においては、CDMA送信装置が、自チャネルの同期ビット期間で の拡散信号と、送信信号本体(データ信号部分)の拡散信号との振幅の相違を、同期ビッ ト期間での拡散信号を増幅することで形成するものを示したが、他の方法によって形成す るようにしても良い。例えば、送信信号本体(データ信号部分)の拡散信号に対する減衰 処理で形成するようにしても良く、また、同期ビット期間での拡散信号と送信信号本体(データ信号部分)の拡散信号とを共に増幅するが、その利得の相違で形成するようにして も良い。

[0098]

さらに、上記各実施形態においては、CDMA送信装置5-nのパワー制御部8-nが入 力段にセレクタ10-nを備えるものを示したが、図13に示すように出力段側にセレク タを備える構成であっても良い。

[0099]

さらにまた、上記各実施形態においては、CDMA受信装置4-nが第1のリミッタ21 -nを有するものを示したが、ゲート回路22-nのダイナミックレンジによっては、第 1のリミッタ21-nを省略するようにしても良い。

[0100]

また、上記各実施形態においては、CDMA送信装置5-nのパワー制御部8-nが、他 20 チャネルの同期ビット期間の拡散信号を無信号化するものを示したが、無信号化すること なく、変調信号に含めるようにしても良い。この場合、自チャネルの同期ビット期間での 拡散信号と、送信信号本体(データ信号部分)及び他チャネルの同期ビット期間の拡散信 号との振幅の相違を、上記実施形態以上に大きくとることが好ましい。

[0101]

さらに、上記各実施形態においては、同期ビットを送信信号に盛り込むものを示したが、 同期ビットを省略し、送信信号に関し同期検出に利用する期間だけを、上記各実施形態の 自チャネルの同期ビット期間のように定め(この期間には送信信号本体を構成するビット 値が挿入されている)、その期間での拡散信号の振幅を、他の期間の拡散信号の振幅より 十分に大きくして、同期タイミングを受信側に伝えるようにしても良い。この場合も、マ ッチドフィルタから、その期間の相関値が他の期間より十分に大きい相関信号が出力され るので、同期タイミングを捉えることができる。この場合、その同期に用いる期間の送信 信号本体の論理値によって、相関信号が、大きな正の相関値をとることもあれば、大きな 負の相関値をとることもあるので、第2のリミッタとしては、正負双方向に対応したもの を適用することを要する。

[0102]

上記各実施形態においては、拡散処理が1段のものを示したが、拡散処理を2段以上行う ものに対しても、本発明を適用することができる。この場合、いずれの拡散符号も、同期 に利用する必要はない。

[0103]

また、上記各実施形態においては、本発明を、有線伝送路のCDMA通信システムに適用 した場合を示したが、無線伝送路のCDMA通信システムに本発明を適用することができ る。この場合において、各チャネルのCDMA送信装置が離間して設けられ、無線回線上 で多重されるものであっても良い。但し、各チャネルのCDMA送信装置がそれぞれ、高 精度の絶対時計を有して同期送信を行うことを要する。

[0104]

【発明の効果】

以上のように、本発明によれば、受信側での同期検出構成が簡易な又は受信側での同期検 出処理が簡単な、CDMA送信装置、CDMA受信装置、CDMA多重送信装置及びCD MA通信システムを提供できる。

10

【図面の簡単な説明】

- 【図1】第1の実施形態に係るCDMA通信システムの全体構成と、CDMA多重送信装置の内部構成を示すブロック図である。
- 【図2】第1の実施形態のCDMA受信装置の内部構成を示すブロック図である。
- 【図3】第1の実施形態のCDMA多重送信装置の各部タイミングチャートである。
- 【図4】第1の実施形態のCDMA受信装置の各部タイミングチャートである。
- 【図5】第2の実施形態のCDMA多重送信装置の内部構成を示すブロック図である。
- 【図6】第2の実施形態のフレーム処理回路の内部構成を示すブロック図である。
- 【図7】第2の実施形態のCDMA受信装置の内部構成を示すブロック図である。
- 【図8】第2の実施形態のフレーム除去回路の内部構成を示すブロック図である。
- 【図9】第2の実施形態のフレーム処理回路の各部タイミングチャート(1)である。
- 【図10】第2の実施形態のフレーム処理回路の各部タイミングチャート(2)である。
- 【図11】第2の実施形態のフレーム除去回路の各部タイミングチャート(1)である。
- 【図12】第2の実施形態のフレーム除去回路の各部タイミングチャート(2)である。
- 【図13】パワー制御部の他の構成例を示すブロック図である。

【符号の説明】

1…CDMA通信システム1、2…CDMA多重送信装置、3…分配器、4-1~4-N …CDMA受信装置、5-1~5-N…CDMA送信装置、6…加算部(多重部)、7-1~7-N…拡散部、8-1~8-N…パワー制御部、9…フレーム処理回路、10-1~10-N…セレクタ、11-1~11-N…増幅器、12-1~12-N…加算器、マッチドフィルタ20-1~20-N…マッチドフィルタ、21-1~21-N…第1のリミッタ、22-1~22-N…ゲート回路、23-1~23-N…第2のリミッタ、24-1~24-N…クロック再生部、25-1~25-N…フレーム除去回路、30-1~30-N…バッファメモリ部、31…同期信号クロック発生回路、32…セレクタ制御信号発生回路、40-1~40-N…バッファメモリ部、41-1~41-N…同期信号復元回路、42-1~42-N…読出しクロック生成回路。

【図1】

[図2]

【図3】

【図4】

[図5]

【図8】

【図9】

【図6】

【図7】

【図10】

【図11】

【図12】

【図13】

