TÍCH PHÂN

TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH MỨC 5-6 ĐIỂM Dạng. Sử dụng tính chất, bảng nguyên hàm cơ bản để tính tích phân

1.Định nghĩa: Cho hàm số y = f(x) liên tục trên K; a,b là hai phần tử bất kì thuộc K, F(x) là một nguyên hàm của f(x) trên K. Hiệu số F(b) - F(a) gọi là tích phân của của f(x) từ a đến b và được kí hiệu: $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a).$

2. Các tính chất của tích phân:

$$+ \int_{a}^{a} f(x) dx = 0$$

$$+ \int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Bảng nguyên hàm của một số hàm thường gặp

Dung nguyên nam cau mệt số nam thường gặp				
$\int x^{\alpha}.dx = \frac{x^{\alpha+1}}{\alpha+1} + C$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$			
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{ax+b} dx = \frac{1}{a} . \ln ax+b + C$			
$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$	$\int \frac{1}{\left(ax+b\right)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$			
$\int \sin x. dx = -\cos x + C$	$\int \sin(ax+b).dx = -\frac{1}{a}.\cos(ax+b) + C$			
$\int \cos x. dx = \sin x + C$	$\int \cos(ax+b).dx = \frac{1}{a}.\sin(ax+b) + C$			
$\int \frac{1}{\sin^2 x} . dx = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$			
$\int \frac{1}{\cos^2 x} . dx = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \cdot \tan(ax+b) + C$			
$\int e^x . dx = e^x + C$	$\int e^{ax+b}.dx = \frac{1}{a}.e^{ax+b} + C$			
$\int a^x . dx = \frac{a^x}{\ln a} + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$			

Nhân xét. Khi thay x bằng (ax+b) thì lấy nguyên hàm nhân kết quả thêm $\frac{1}{a}$.

[1;2] thỏa F(1) = -2 và F(2) = 4. Khi đó $\int f(x) dx$ bằng.

Câu 1. (Mã 101-2021-Lần 2) Cho f là hàm số liên tục trên [1;2]. Biết F là nguyên hàm của f trên

<u>A</u>. 6.

B. 2.

C. -6.

D. −2.

Lời giải

Chọn A

Theo định nghĩa tích phân ta có: $\int_{1}^{2} f(x) dx = F(2) - F(1) = 6.$

Câu 2. (Mã 102-2021-Lần 2) Cho f là hàm số liên tục trên đoạn [1;2]. Biết F là nguyên hàm của f

trên đoạn [1;2] thỏa mãn F(1) = -2 và F(2) = 3. Khi đó $\int_{-2}^{2} f(x) dx$ bằng

A. -5.

B. 1.

C. -1.

<u>D</u>. 5.

Lời giải

Chọn D

Ta có $\int_{1}^{2} f(x) dx = F(2) - F(1) = 3 - (-2) = 5$.

Câu 3. (Đề minh họa 2022) Nếu $\int_{2}^{5} f(x) dx = 3$ và $\int_{2}^{5} g(x) dx = -2$ thì $\int_{2}^{5} [f(x) + g(x)] dx$ bằng:

A. 5.

B. −5

C₃. 1

D. 3.

Lời giải

Chọn C

$$\int_{2}^{5} [f(x) + g(x)] dx = \int_{2}^{5} f(x) dx + \int_{2}^{5} g(x) dx = 3 - 2 = 1.$$

Câu 4. (Đề minh họa 2022) Nếu $\int_{2}^{5} f(x) dx = 2 \text{ thì } \int_{2}^{5} 3f(x) dx \text{ bằng}$

<u>**A**</u>. 6.

B. 3.

C. 18.

D. 2.

Lời giải

Chọn A

Ta có: $\int_{2}^{5} 3f(x) dx = 3 \int_{2}^{5} f(x) dx = 3.2 = 6$.

Câu 5. (Đề minh họa 2022) Nếu $\int_{1}^{3} f(x) dx = 2 \text{ thì } \int_{1}^{3} [f(x) + 2x] dx \text{ bằng}$

A. 20.

B. 10

C. 18.

D. 12.

Lời giải

Chọn B

Ta có $\int_{1}^{3} \left[f(x) + 2x \right] dx = \int_{1}^{3} f(x) dx + \int_{1}^{3} 2x dx = 2 + x^{2} \Big|_{1}^{3} = 2 + (9 - 1) = 10$.

Câu 6. (**Mã 101-2022**) Nếu $\int_{0}^{2} f(x) dx = 4$ thì $\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx$ bằng

A. 6.

R 8

C 4

D. 2.

Lời giải

Chon A

Ta có:
$$\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx = \frac{1}{2} \int_{0}^{2} f(x) dx + \int_{0}^{2} 2 dx = 2 + 4 = 6.$$

(Mã 101-2022) Nếu $\int_{-1}^{5} f(x) dx = -3 \text{ thì } \int_{5}^{-1} f(x) dx \text{ bằng}$

A. 5.

D. 3.

Lời giải

Chon A

Ta có:
$$\int_{5}^{-1} f(x) dx = -\int_{-1}^{5} f(x) dx = -(-3) = 3$$
.

(Mã 102 - 2022) Nếu $\int_{0}^{2} f(x) dx = 4$ thì $\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx$ bằng A. 2. $\underline{\mathbf{B}}$. 6. \mathbf{C} . 4.

D. 8.

Chon B

$$\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx = \frac{1}{2} \int_{0}^{2} f(x) dx + \int_{0}^{2} 2 dx = 2 + 4 = 6.$$

(**Mã 102 - 2022**) Nếu $\int_{-1}^{5} f(x) dx = -3$ thì $\int_{5}^{-1} f(x) dx$ bằng

A. 3.

C. 6.

D. 5.

Lời giải

$$\int_{5}^{-1} f(x) dx = -\int_{-1}^{5} f(x) dx = 3.$$

Câu 10. (**Mã 103 - 2022**) Nếu $\int_{0}^{3} f(x) dx = 6$ thì $\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx$ bằng?

<u>**A**</u>. 8 .

B. 5.

D. 6 .

Lời giải

Chon A

Ta có
$$\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx = \frac{1}{3} \int_{0}^{3} f(x) dx + \int_{0}^{3} 2 dx = \frac{1}{3} \cdot 6 + 6 = 8.$$

Câu 11. (**Mã 103 - 2022**) Nếu $\int_{-1}^{2} f(x) dx = 2$ và $\int_{2}^{5} f(x) dx = -5$ thì $\int_{-1}^{5} f(x) dx$ bằng

Lời giải

Chon B

Ta có
$$\int_{-1}^{5} f(x) dx = \int_{-1}^{2} f(x) dx + \int_{2}^{5} f(x) dx = 2 - 5 = -3$$
.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Câu 12. (Mã 104-2022) Nếu
$$\int_{-1}^{2} f(x) dx = 2$$
 và $\int_{2}^{5} f(x) dx = -5$ thì $\int_{-1}^{5} f(x) dx$ bằng A. 7. B. -3. C. -7. D. 4.

Lời giải

Chọn B

Ta có: $\int_{-1}^{5} f(x) dx = \int_{-1}^{2} f(x) dx + \int_{2}^{5} f(x) dx = 2 + (-5) = -3$.

Câu 13. (Mã 104-2022) Nếu $\int_{0}^{3} f(x) dx = 6$ thì $\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx$ bằng A. 6. B. 5. C. 9. D. 8.

Lời giải

Chọn D

Ta có $\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx = \frac{1}{3} \int_{0}^{3} f(x) dx + \int_{0}^{3} 2 dx = 2 + 6 = 8$.

Câu 14. (Mã 120-2021-Lần 2) Nếu $\int_{0}^{2} f(x) dx = 3$ thì $\int_{0}^{2} \left[4x - f(x) \right] dx$ bằng A. -2. B. 5. C. 14. D. 11.

Chọn B

Ta có $\int_{0}^{2} \left[4x - f(x) \right] dx = \int_{0}^{2} 4x dx - \int_{0}^{2} f(x) dx = 2x^{2} \int_{0}^{2} -3 = 8 - 3 = 5$

Câu 15. (Mã 111-2021-Lần 2) Nếu $\int_{0}^{2} f(x) dx = 3$ thì $\int_{0}^{2} \left[2x - f(x) \right] dx$ bằng A. 7. B. 10. C. 1. D. -2.

Ta có
$$\int_{0}^{2} \left[2x - f(x) \right] dx = \int_{0}^{2} 2x dx - \int_{0}^{2} f(x) dx = x^{2} \Big|_{0}^{2} - 3 = 4 - 3 = 1.$$

Câu 16. (Đề Minh Họa 2020 Lần 1) Nếu $\int_{1}^{2} f(x) dx = -2$ và $\int_{2}^{3} f(x) dx = 1$ thì $\int_{1}^{3} f(x) dx$ bằng

A. -3.

 $B_{*} - 1$

C.1

D. 3.

Lời giải

Chon B

Ta có
$$\int_{1}^{3} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx = -2 + 1 = -1.$$

Câu 17. (Đề Tham Khảo 2020 Lần 2) Nếu $\int_{0}^{1} f(x) dx = 4 \text{ thì } \int_{0}^{1} 2f(x) dx \text{ bằng}$

A. 16.

R. 4

C. 2

D. 8.

Lời giải

Chon D

Ta có:
$$\int_{0}^{1} 2f(x) dx = 2 \int_{0}^{1} f(x) dx = 2.4 = 8$$
.

Câu 18. (**Mã 101 - 2020 Lần 1**) Biết $\int_{1}^{3} f(x) dx = 3$. Giá trị của $\int_{1}^{3} 2f(x) dx$ bằng

A. 5.

B. 9.

<u>C</u>. 6

D. $\frac{3}{2}$.

Lời giải

Chọn C

Ta có:
$$\int_{1}^{3} 2f(x) dx = 2 \int_{1}^{3} f(x) dx = 2.3 = 6$$
.

Câu 19. (**Mã 101 - 2020 Lần 1**) Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{-\infty}^{2} \left[2 + f(x)\right] dx$ bằng

<u>A</u>. 5.

B. 3.

C. $\frac{13}{3}$.

D. $\frac{7}{3}$.

Lời giải

Chọn A

Ta có:
$$\int_{1}^{2} \left[2 + f(x)\right] dx = \left(2x + x^{2}\right) \Big|_{1}^{2} = 8 - 3 = 5$$

Câu 20. (**Mã 102 - 2020 Lần 1**) Biết $\int_{1}^{5} f(x) dx = 4$. Giá trị của $\int_{1}^{5} 3f(x) dx$ bằng

A. 7.

B. $\frac{4}{3}$.

C. 64

D. 12.

Lời giải

Chon D

Ta có
$$\int_{1}^{5} 3f(x) dx = 3 \int_{1}^{5} f(x) dx = 3.4 = 12.$$

Câu 21. (**Mã 102 - 2020 Lần 1**) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{0}^{2} (2+f(x)) dx$ bằng

A. $\frac{23}{4}$.

B. 7.

<u>C</u>. 9

D. $\frac{15}{4}$.

Lời giải

Chon C

Ta có
$$\int_{1}^{2} (2+f(x)) dx = \int_{1}^{2} 2dx + \int_{1}^{2} f(x) dx = 2x \Big|_{1}^{2} + F(x) \Big|_{1}^{2} = 2x \Big|_{1}^{2} + x^{3} \Big|_{1}^{2} = 9$$

Câu 22. (**Mã 103 - 2020 Lần 1**) Biết $\int_{1}^{2} f(x) dx = 2$. Giá trị của $\int_{1}^{3} 3f(x) dx$ bằng

A. 5.

B. 6.

C. $\frac{2}{3}$.

D. 8.

Lời giải

Chon B

Ta có:
$$\int_{1}^{2} 3f(x)dx = 3\int_{1}^{2} f(x)dx = 3.2 = 6$$
.

Câu 23. (**Mã 103 - 2020 Lần 1**) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{1}^{3} (1+f(x)) dx$ bằng

A. 20.

- **B.** 22.
- **C.** 26.

Lời giải

D. 28.

Chọn D

Ta có
$$\int_{1}^{3} [1 + f(x)] dx = [x + F(x)]_{1}^{3} = [x + x^{3}]_{1}^{3} = 30 - 2 = 28$$
.

Câu 24. (**Mã 104 - 2020 Lần 1**) Biết $\int_{2}^{3} f(x) dx = 6$. Giá trị của $\int_{2}^{3} 2f(x) dx$ bằng.

A. 36.

- **B.** 3.
- C 12
- **D.** 8.

Lời giải

Chọn C

Ta có:
$$\int_{2}^{3} 2f(x) dx = 2 \int_{2}^{3} f(x) dx = 12..$$

Câu 25. (**Mã 104 - 2020 Lần 1**) Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{1}^{3} [1+f(x)] dx$ bằng

<u>**A**</u>. 10.

B. 8

- C. $\frac{26}{3}$.
- **D.** $\frac{32}{3}$.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Ta có
$$\int_{1}^{3} [1 + f(x)] dx = (x + F(x)) \Big|_{1}^{3} = (x + x^{2}) \Big|_{1}^{3} = 12 - 2 = 10.$$

Câu 26. (**Mã 101 - 2020 Lần 2**) Biết $\int_{2}^{3} f(x) dx = 4$ và $\int_{2}^{3} g(x) dx = 1$. Khi đó: $\int_{2}^{3} [f(x) - g(x)] dx$ bằng:

- **A.** -3.
- **B.** 3

- C. 4.
- **D.** 5.

Lời giải

Chọn B

Ta có
$$\int_{2}^{3} [f(x) - g(x)] dx = \int_{2}^{3} f(x) dx - \int_{2}^{3} g(x) dx = 4 - 1 = 3$$

Câu 27. (**Mã 101 - 2020 Lần 2**) Biết $\int_{0}^{1} [f(x) + 2x] dx = 2$. Khi đó $\int_{0}^{1} f(x) dx$ bằng :

<u>A</u>. 1.

 \mathbf{R} $\mathbf{\Lambda}$

- C. 2.
- **D.** 0.

Lời giải

<u>C</u>họn <u>A</u>

Ta có

$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 2 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 2 \Leftrightarrow \int_{0}^{1} f(x) dx = 2 - x^{2} \Big|_{0}^{1} \Leftrightarrow \int_{0}^{1} f(x) dx = 2 - 1$$
$$\Leftrightarrow \int_{0}^{1} f(x) dx = 1$$

Câu 28. (**Mã 102 - 2020 Lần 2**) Biết $\frac{\int_{2}^{3} f(x) dx}{\text{và}} = 3$ và $\frac{\int_{2}^{3} g(x) dx}{\text{và}} = 1$. Khi đó $\frac{\int_{2}^{3} \left[f(x) + g(x) \right] dx}{\text{bằng}}$ bằng **A.** 4. **B.** 2. **C.** -2. **D.** 3. **Lời giải**

Chon A

Ta có:
$$\int_{2}^{3} [f(x) + g(x)] dx = \int_{2}^{3} f(x) dx + \int_{2}^{3} g(x) dx = 4$$
.

- **Câu 29.** (**Mã 102 2020 Lần 2**) Biết $\int_{0}^{1} [f(x) + 2x] dx = 3$. Khi đó $\int_{0}^{1} f(x) dx$ bằng
 - **A.** 1.

- **B.** 5
- **C.** 3.

D. 2.

Lời giải

Chọn D

Ta có
$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 3 \Leftrightarrow \int_{0}^{1} f(x) dx + 2 \int_{0}^{1} x dx = 3 \Leftrightarrow \int_{0}^{1} f(x) dx + 2 \cdot \frac{x^{2}}{2} \Big|_{0}^{1} = 3.$$
Suy ra $\int_{0}^{1} f(x) dx = 3 - x^{2} \Big|_{0}^{1} = 3 - (1 - 0) = 2.$

- **Câu 30.** (**Mã 103 2020 Lần 2**) Biết $\int_{1}^{2} f(x) dx = 3$ và $\int_{1}^{2} g(x) dx = 2$. Khi đó $\int_{1}^{2} [f(x) g(x)] dx$ bằng?
 - **A.** 6.

 \mathbf{R} 1

C. 5.

D. −1.

Lời giải

<u>C</u>họn <u>B</u>

Ta có:
$$\int_{1}^{2} [f(x) - g(x)] dx = \int_{1}^{2} f(x) dx - \int_{1}^{2} g(x) dx = 3 - 2 = 1.$$

- **Câu 31.** (**Mã 103 2020 Lần 2**) Biết $\int_0^1 [f(x) + 2x] dx = 4$. Khi đó $\int_0^1 f(x) dx$ bằng
 - <u>**A**</u>. 3.

B. 2

- **C.** 6.
- **D.** 4.

Lời giải

Chọn A

$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 4 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 4 \Leftrightarrow \int_{0}^{1} f(x) dx = 4 - 1 = 3$$

- **Câu 32.** (**Mã 104 2020 Lần 2**) Biết $\int_{1}^{2} f(x)dx = 2$ và $\int_{1}^{2} g(x)dx = 3$. Khi đó $\int_{1}^{2} [f(x) + g(x)]dx$ bằng
 - **A.** 1.

- **B**. 5.
- **C.** −1.
- **D.** 6.

Lời giải

Chọn D

Ta có:
$$\int_{1}^{2} [f(x) + g(x)] dx = \int_{1}^{2} f(x) dx + \int_{1}^{2} g(x) dx = 2 + 3 = 5.$$

Câu 33. (**Mã 104 - 2020 Lần 2**) Biết
$$\int_{0}^{1} [f(x) + 2x] dx = 5$$
. Khi đó $\int_{0}^{1} f(x) dx$ bằng

A. 7.

B. 3

C. 5

Lời giải

<u>D</u>. 4

Chon D

$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 5 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 5$$

$$\int_{0}^{1} f(x) dx + x^{2} \Big|_{0}^{1} = 5 \Leftrightarrow \int_{0}^{1} f(x) dx + 1 = 5 \Leftrightarrow \int_{0}^{1} f(x) dx = 4.122$$

Câu 34. (**Mã 103 - 2019**) Biết
$$\int_{1}^{2} f(x) dx = 2$$
 và $\int_{1}^{2} g(x) dx = 6$, khi đó $\int_{1}^{2} [f(x) - g(x)] dx$ bằng

A. 8.

R –4

C. 4

D. -8.

Lời giải

Chọn B

Ta có:
$$\int_{1}^{2} [f(x) - g(x)] dx = \int_{1}^{2} f(x) dx - \int_{1}^{2} g(x) dx = 2 - 6 = -4$$
.

Câu 35. (**Mã 102 - 2019**) Biết tích phân $\int_{0}^{1} f(x) dx = 3$ và $\int_{0}^{2} g(x) dx = -4$. Khi đó $\int_{0}^{1} [f(x) + g(x)] dx$

bằng

A. -7.

R 7

C. -1

D. 1.

Lời giải

Chọn C

Ta có
$$\int_{0}^{1} \left[f(x) + g(x) \right] dx = \int_{0}^{1} f(x) dx + \int_{0}^{1} g(x) dx = 3 + (-4) = -1.$$

Câu 36. (**Mã 104 - 2019**) Biết
$$\int_0^1 f(x) dx = 2 \text{ và } \int_0^1 g(x) dx = -4$$
, khi đó $\int_0^1 [f(x) + g(x)] dx$ bằng

A. 6.

B. -6

C = 2

D. 2.

Lời giải

Chon C

$$\int_0^1 \left[f(x) + g(x) \right] dx = \int_0^1 f(x) dx + \int_0^1 g(x) dx = 2 + (-4) = -2.$$

Câu 37. (**Mã 101 2019**) Biết
$$\int_{0}^{1} f(x) dx = -2 \text{ và } \int_{0}^{1} g(x) dx = 3$$
, khi đó $\int_{0}^{1} [f(x) - g(x)] dx$ bằng

A. -1.

R 1

C. −5.

D 5

Lời giải

<u>C</u>họn <u>C</u>

$$\int_{0}^{1} \left[f(x) - g(x) \right] dx = \int_{0}^{1} f(x) dx - \int_{0}^{1} g(x) dx = -2 - 3 = -5.$$

Câu 38. (Đề Tham Khảo 2019) Cho
$$\int_{0}^{1} f(x) dx = 2$$
 và $\int_{0}^{1} g(x) dx = 5$, khi $\int_{0}^{1} [f(x) - 2g(x)] dx$ bằng **A.** -8 **B.** 1 **C.** -3 **D.** 12

Chọn A

Có
$$\int_{0}^{1} [f(x)-2g(x)] dx = \int_{0}^{1} f(x) dx - 2 \int_{0}^{1} g(x) dx = 2 - 2.5 = -8.$$

Câu 39. (THPT Ba Đình 2019) Khẳng định nào trong các khẳng định sau đúng với mọi hàm f, g liên tục trên K và a, b là các số bất kỳ thuộc K?

$$\underline{\mathbf{A}} \cdot \int_{a}^{b} [f(x) + 2g(x)] dx = \int_{a}^{b} f(x) dx + 2 \int_{a}^{b} g(x) dx . \quad \mathbf{B} \cdot \int_{a}^{b} \frac{f(x)}{g(x)} dx = \int_{a}^{b} \frac{f(x) dx}{g(x) dx} .$$

$$\mathbf{C} \cdot \int_{a}^{b} [f(x) \cdot g(x)] dx = \int_{a}^{b} f(x) dx . \quad \mathbf{D} \cdot \int_{a}^{b} f^{2}(x) dx = \left[\int_{a}^{b} f(x) dx \right]^{2} .$$

Theo tính chất tích phân ta có

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx; \int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx, \text{ v\'oi } k \in \mathbb{R}.$$

Câu 40. (**THPT Cẩm Giàng 2 2019**) Cho $\int_{-2}^{2} f(x) dx = 1$, $\int_{-2}^{4} f(t) dt = -4$. Tính $\int_{2}^{4} f(y) dy$. **A.** I = 5. **B.** I = -3. **C.** I = 3. **D.** I = -5

Ta có:
$$\int_{-2}^{4} f(t) dt = \int_{-2}^{4} f(x) dx$$
, $\int_{2}^{4} f(y) dy = \int_{2}^{4} f(x) dx$.

Khi đó:
$$\int_{2}^{2} f(x) dx + \int_{2}^{4} f(x) dx = \int_{2}^{4} f(x) dx$$
.

$$\Rightarrow \int_{2}^{4} f(x) dx = \int_{-2}^{4} f(x) dx - \int_{-2}^{2} f(x) dx = -4 - 1 = -5.$$

Vậy
$$\int_{2}^{4} f(y) dy = -5.$$

Câu 41. (THPT Cù Huy Cận -2019) Cho $\int_{0}^{2} f(x) dx = 3$ và $\int_{0}^{2} g(x) dx = 7$, khi đó $\int_{0}^{2} [f(x) + 3g(x)] dx$ bằng

A. 16.

B. −18.

D. 10.

$$\int_{0}^{2} \left[f(x) + 3g(x) \right] dx = \int_{0}^{2} f(x) dx + 3 \int_{0}^{2} g(x) dx = 3 + 3.7 = 24.$$

Câu 42. (THPT - YÊN Định Thanh Hóa 2019) Cho $\int_{1}^{1} f(x) dx = -1$; $\int_{1}^{3} f(x) dx = 5$. Tính $\int_{1}^{3} f(x) dx$

B. 4.

D. 5.

Lời giải

Ta có
$$\int_{0}^{3} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{3} f(x) dx \Rightarrow \int_{1}^{3} f(x) dx = \int_{0}^{3} f(x) dx - \int_{0}^{1} f(x) dx = 5 + 1 = 6$$

$$V_{ay} \int_{1}^{3} f(x) dx = 6$$

Câu 43. (THPT Quỳnh Lưu 3 Nghệ An 2019) Cho $\int_{1}^{2} f(x) dx = -3$ và $\int_{2}^{3} f(x) dx = 4$. Khi đó $\int_{1}^{3} f(x) dx$

bằng

A. 12.

- **B.** 7.

D. -12.

$$\int_{1}^{3} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx = -3 + 4 = 1.$$

Câu 44. Cho hàm số f(x) liên tục, có đạo hàm trên [-1;2], f(-1) = 8; f(2) = -1. Tích phân $\int_{-1}^{2} f'(x) dx$ băng

A. 1.

- **D.** 9.

Ta có
$$\int_{-1}^{2} f'(x) dx = f(x)|_{-1}^{2} = f(2) - f(-1) = -1 - 8 = -9.$$

Câu 45. (Sở Thanh Hóa - 2019) Cho hàm số f(x) liên tục trên R và có $\int_{a}^{x} f(x) dx = 9$; $\int_{a}^{x} f(x) dx = 4$. Tính $I = \int f(x) \mathrm{d}x.$

- **A.** I = 5.
- **B.** I = 36. **C.** $I = \frac{9}{4}$.
- **<u>D</u>**. I = 13.

Lời giải

Ta có:
$$I = \int_{0}^{4} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{4} f(x) dx = 9 + 4 = 13.$$

Câu 46. Cho $\int_{-1}^{0} f(x) dx = 3 \int_{0}^{3} f(x) dx = 3$. Tích phân $\int_{1}^{3} f(x) dx$ bằng

A. 6

D. 0

Có
$$\int_{-1}^{0} f(x) dx = 3$$
; $\int_{0}^{3} f(x) dx = 1$; $\int_{-1}^{3} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{3} f(x) dx = 3 + 1 = 4$

Câu 47. (Chuyên Nguyễn Trãi Hải Dương 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và $\int f(x) dx = 10$,

$$\int_{3}^{4} f(x) dx = 4$$
. Tích phân $\int_{0}^{3} f(x) dx$ bằng

A. 4.

Lời giải

Theo tính chất của tích phân, ta có: $\int_{0}^{3} f(x) dx + \int_{0}^{4} f(x) dx = \int_{0}^{4} f(x) dx.$

Suy ra:
$$\int_{0}^{3} f(x) dx = \int_{0}^{4} f(x) dx - \int_{3}^{4} f(x) dx = 10 - 4 = 6.$$

$$V_{ay} \int_{0}^{3} f(x) dx = 6.$$

Câu 48. (THPT Hoàng Hoa Thám Hưng Yên 2019) Nếu $F'(x) = \frac{1}{2x-1}$ và F(1) = 1 thì giá trị của F(4) bằng

A. ln 7.

<u>B</u>. $1 + \frac{1}{2} \ln 7$.

C. ln 3.

D. $1 + \ln 7$.

Ta có:
$$\int_{1}^{4} F'(x) dx = \int_{1}^{4} \frac{1}{2x - 1} dx = \frac{1}{2} \ln|2x - 1| \Big|_{1}^{4} = \frac{1}{2} \ln 7.$$

Lại có:
$$\int_{1}^{4} F'(x) dx = F(x)|_{1}^{4} = F(4) - F(1)$$
.

Suy ra
$$F(4)-F(1)=\frac{1}{2}\ln 7$$
. Do đó $F(4)=F(1)+\frac{1}{2}\ln 7=1+\frac{1}{2}\ln 7$.

Câu 49. (THPT Đoàn Thượng - Hải Dương -2019) Cho hàm số f(x) liên tục trên $\mathbb R$ thoả mãn

$$\int_{1}^{8} f(x) dx = 9, \int_{4}^{12} f(x) dx = 3, \int_{4}^{8} f(x) dx = 5.$$

Tính $I = \int_{1}^{12} f(x) dx$.

A. I = 17.

B. I = 1.

C. I = 11. **D.** I = 7.

Ta có:
$$I = \int_{1}^{12} f(x) dx = \int_{1}^{8} f(x) dx + \int_{8}^{12} f(x) dx = \int_{8}^{8} f(x) dx + \int_{4}^{12} f(x) dx - \int_{4}^{8} f(x) dx = 9 + 3 - 5 = 7$$
.

Câu 50. (THPT Quang Trung Đống Đa Hà Nội 2019) Cho hàm số f(x) liên tục trên [0;10] thỏa mãn

$$\int_{0}^{10} f(x) dx = 7, \int_{2}^{6} f(x) dx = 3. \text{ Tinh } P = \int_{0}^{2} f(x) dx + \int_{6}^{10} f(x) dx.$$

D. P = -6.

Ta có
$$\int_{0}^{10} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{6} f(x) dx + \int_{6}^{10} f(x) dx$$

Suy ra
$$\int_{0}^{2} f(x) dx + \int_{0}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{0}^{6} f(x) dx = 7 - 3 = 4$$
.

Câu 51. (Chuyên Lê Quý Đôn Điện Biên 2019) Cho f, g là hai hàm liên tục trên đoạn [1;3] thoả:

$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10, \int_{1}^{3} [2f(x) - g(x)] dx = 6. \text{ Tính } \int_{1}^{3} [f(x) + g(x)] dx.$$
A. 7. **B.** 6. **C.** 8. **D.** 9. **Lòi giải**

$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10 \Leftrightarrow \int_{1}^{3} f(x) dx + 3 \int_{1}^{3} g(x) dx = 10 \quad (1).$$

$$\int_{1}^{3} [2f(x) - g(x)] dx = 6 \Leftrightarrow 2 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 6 \quad (2).$$

$$\text{Đặt } X = \int_{1}^{3} f(x) dx, Y = \int_{1}^{3} g(x) dx.$$

$$\text{Từ (1) và (2) ta có hệ phương trình: } \begin{cases} X + 3Y = 10 \\ 2X - Y = 6 \end{cases} \Leftrightarrow \begin{cases} X = 4 \\ Y = 2 \end{cases}.$$

$$\text{Do đó ta được: } \int_{1}^{3} f(x) dx = 4 \text{ và } \int_{1}^{3} g(x) dx = 2.$$

$$\text{Vậy } \int_{1}^{3} [f(x) + g(x)] dx = 4 + 2 = 6.$$

Câu 52. (Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) liên tục trên đoạn [0;10] và $\int_{0}^{10} f(x) dx = 7$;

$$\int_{2}^{6} f(x)dx = 3. \text{ Tính } P = \int_{0}^{2} f(x)dx + \int_{6}^{10} f(x)dx.$$

$$\underline{\mathbf{A}}. P = 4 \qquad \mathbf{B}. P = 10 \qquad \mathbf{C}. P = 7$$

$$\underline{\mathbf{Lòi giải}}$$

$$\text{Ta có: } \int_{0}^{10} f(x)dx = \int_{0}^{2} f(x)dx + \int_{2}^{6} f(x)dx + \int_{6}^{10} f(x)dx.$$

$$\Rightarrow 7 = P + 3 \Rightarrow P = 4.$$

Câu 53. Cho f,g là hai hàm số liên tục trên [1;3] thỏa mãn điều kiện $\int_{1}^{3} [f(x)+3g(x)] dx=10$ đồng thời $\int_{1}^{3} [2f(x)-g(x)] dx=6$. Tính $\int_{1}^{3} [f(x)+g(x)] dx$.

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6 \cdot \text{Tinh} \int_{1}^{3} \left[f(x) + g(x) \right] dx \cdot$$

$$A. 9 \cdot \qquad B. 6 \cdot \qquad C. 7 \cdot \qquad D. 8 \cdot$$

$$L \text{Oi giải}$$

$$\text{Ta có: } \int_{1}^{3} \left[f(x) + 3g(x) \right] dx = 10 \Leftrightarrow \int_{1}^{3} f(x) dx + 3 \int_{1}^{3} g(x) dx = 10 \cdot$$

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6 \Leftrightarrow 2 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 6 \cdot$$

$$\text{Đặt } u = \int_{1}^{3} f(x) dx; v = \int_{1}^{3} g(x) dx \cdot$$

Ta được hệ phương trình:
$$\begin{cases} u + 3v = 10 \\ 2u - v = 6 \end{cases} \Leftrightarrow \begin{cases} u = 4 \\ v = 2 \end{cases} \Rightarrow \begin{cases} \int_{1}^{3} f(x) dx = 4 \\ \int_{1}^{3} g(x) dx = 2 \end{cases}$$

Vậy
$$\int_{1}^{3} \left[f(x) + g(x) \right] dx = 6.$$

Câu 54. (THPT Đông Sơn Thanh Hóa 2019) Cho f, g là hai hàm liên tục trên [1;3]

thỏa:
$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10 \text{ và } \int_{1}^{3} [2f(x) - g(x)] dx = 6. \text{ Tính } I = \int_{1}^{3} [f(x) + g(x)] dx.$$

Lời giải

Đặt
$$a = \int_{1}^{3} f(x) dx$$
 và $b = \int_{1}^{3} g(x) dx$.

Khi đó,
$$\int_{1}^{3} [f(x) + 3g(x)] dx = a + 3b$$
, $\int_{1}^{3} [2f(x) - g(x)] dx = 2a - b$.

Theo giả thiết, ta có
$$\begin{cases} a+3b=10 \\ 2a-b=6 \end{cases} \Leftrightarrow \begin{cases} a=4 \\ b=2 \end{cases}.$$

Vậy
$$I = a + b = 6$$
.

Câu 55. (**Mã 104 2017**) Cho
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = 5$$
. Tính $I = \int_{0}^{\frac{\pi}{2}} \left[f(x) + 2\sin x \right] dx = 5$.

A.
$$I = 7$$

B.
$$I = 5 + \frac{\pi}{2}$$
 C. $I = 3$

C.
$$I = 3$$

D.
$$I = 5 + \pi$$

Lời giải

Chọn A

Ta có

$$I = \int_{0}^{\frac{\pi}{2}} \left[f(x) + 2\sin x \right] dx = \int_{0}^{\frac{\pi}{2}} f(x) dx + 2 \int_{0}^{\frac{\pi}{2}} \sin x dx = \int_{0}^{\frac{\pi}{2}} f(x) dx - 2\cos x \Big|_{0}^{\frac{\pi}{2}} = 5 - 2(0 - 1) = 7.$$

Câu 56. (**Mã 110 2017**) Cho
$$\int_{-1}^{2} f(x) dx = 2$$
 và $\int_{-1}^{2} g(x) dx = -1$. Tính $I = \int_{-1}^{2} \left[x + 2f(x) - 3g(x) \right] dx$.

A.
$$I = \frac{17}{2}$$

B.
$$I = \frac{5}{2}$$

B.
$$I = \frac{5}{2}$$
 C. $I = \frac{7}{2}$ **D.** $I = \frac{11}{2}$

D.
$$I = \frac{11}{2}$$

Lời giải

Chọn A

Ta có:
$$I = \int_{-1}^{2} \left[x + 2f(x) - 3g(x) \right] dx = \frac{x^2}{2} \Big|_{-1}^{2} + 2 \int_{-1}^{2} f(x) dx - 3 \int_{-1}^{2} g(x) dx = \frac{3}{2} + 2.2 - 3(-1) = \frac{17}{2}.$$

Câu 57. (**THPT Hàm Rồng Thanh Hóa 2019**) Cho hai tích phân $\int_{-2}^{5} f(x) dx = 8$ và $\int_{5}^{-2} g(x) dx = 3$. Tính

$$I = \int_{-2}^{5} \left[f(x) - 4g(x) - 1 \right] dx$$

A. 13.

B. 27.

C. -11

D. 3.

Lời giả

$$I = \int_{-2}^{5} \left[f(x) - 4g(x) - 1 \right] dx = \int_{-2}^{5} f(x) dx - \int_{-2}^{5} 4g(x) dx - \int_{-2}^{5} dx = \int_{-2}^{5} f(x) dx - 4 \int_{-2}^{5} g(x) dx - \int_{-2}^{5} dx$$
$$= \int_{-2}^{5} f(x) dx + 4 \int_{5}^{-2} g(x) dx - \int_{-2}^{5} dx = 8 + 4.3 - x \Big|_{-2}^{5} = 8 + 4.3 - 7 = 13.$$

Câu 58. (Sở Bình Phước 2019) Cho $\int_{-1}^{2} f(x)dx = 2$ và $\int_{-1}^{2} g(x)dx = -1$, khi đó $\int_{-1}^{2} [x + 2f(x) + 3g(x)]dx$ bằng

$$\underline{\mathbf{A}} \cdot \frac{5}{2}$$

B. $\frac{7}{2}$

C. $\frac{17}{2}$

D. $\frac{11}{2}$

Lời giải

Chon A

Ta có
$$\int_{1}^{2} \left[x + 2f(x) + 3g(x) \right] dx = \int_{1}^{2} x dx + 2 \int_{1}^{2} f(x) dx + 3 \int_{1}^{2} g(x) dx = \frac{3}{2} + 4 - 3 = \frac{5}{2}$$

Câu 59. (Sở Phú Thọ 2019) Cho $\int_{0}^{2} f(x) dx = 3$, $\int_{0}^{2} g(x) dx = -1$ thì $\int_{0}^{2} [f(x) - 5g(x) + x] dx$ bằng:

A. 12.

B. 0

C. 8

D. 10

Lời giải

Chọn D

$$\int_{0}^{2} \left[f(x) - 5g(x) + x \right] dx = \int_{0}^{2} f(x) dx - 5 \int_{0}^{2} g(x) dx + \int_{0}^{2} x dx = 3 + 5 + 2 = 10$$

Câu 60. (Chuyên Lê Hồng Phong Nam Định 2019) Cho $\int_0^5 f(x) dx = -2$. Tích phân $\int_0^5 \left[4f(x) - 3x^2 \right] dx$ bằng

A. -140.

 $\mathbf{C.} - 120$

D. -133.

Lời giải

$$\int_{0}^{5} \left[4f(x) - 3x^{2} \right] dx = 4 \int_{0}^{5} f(x) dx - \int_{0}^{5} 3x^{2} dx = -8 - x^{3} \Big|_{0}^{5} = -8 - 125 = -133.$$

Câu 61. (Chuyên Lê Hồng Phong Nam Định -2019) Cho $\int_{1}^{2} \left[4f(x) - 2x \right] dx = 1$. Khi đó $\int_{1}^{2} f(x) dx$ bằng:

A. 1.

B. -3.

B. -130.

 C^{3}

D. −1.

Lời giải

Chọn A

$$\int_{1}^{2} \left[4f(x) - 2x \right] dx = 1 \Leftrightarrow 4\int_{1}^{2} f(x) dx - 2\int_{1}^{2} x dx = 1 \Leftrightarrow 4\int_{1}^{2} f(x) dx - 2 \cdot \frac{x^{2}}{2} \Big|_{1}^{2} = 1$$
$$\Leftrightarrow 4\int_{1}^{2} f(x) dx = 4 \Leftrightarrow \int_{1}^{2} f(x) dx = 1$$

- Câu 62. Cho $\int_{0}^{1} f(x) dx = 1 \text{ tích phân } \int_{0}^{1} (2f(x) 3x^{2}) dx \text{ bằng}$
 - **<u>A</u>.** 1.

D. -1.

Lời giải

$$\int_{0}^{1} (2f(x) - 3x^{2}) dx = 2 \int_{0}^{1} f(x) dx - 3 \int_{0}^{1} x^{2} dx = 2 - 1 = 1.$$

- Câu 63. (THPT Yên Phong 1 Bắc Ninh 2019) Tính tích phân $I = \int_{-1}^{0} (2x+1) dx$.
 - **A.** I = 0.
- **B.** I = 1.
- **C.** I = 2. **D.** $I = -\frac{1}{2}$.

Lời giải

$$I = \int_{1}^{0} (2x+1) dx = (x^{2} + x) \Big|_{-1}^{0} = 0 - 0 = 0.$$

- Câu 64. Tích phân $\int_{0}^{1} (3x+1)(x+3) dx$ bằng
 - **A.** 12.

- **D.** 6.

Ta có:
$$\int_{0}^{1} (3x+1)(x+3) dx = \int_{0}^{1} (3x^{2}+10x+3) dx = (x^{3}+5x^{2}+3x)\Big|_{0}^{1} = 9.$$

Vậy:
$$\int_{0}^{1} (3x+1)(x+3) dx = 9$$
.

- **Câu 65.** (KTNL GV Thọt Lý Thái Tổ -2019) Giá trị của $\int \sin x dx$ bằng
 - **A.** 0.

C. -1.

Lời giải

+ Tính được
$$\int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \left| \frac{\pi}{2} = 1 \right|.$$

- Câu 66. (KTNL GV Bắc Giang 2019) Tính tích phân $I = \int (2x+1)dx$
 - **A.** I = 5.
- **B.** I = 6.

Ta có
$$I = \int_{0}^{2} (2x+1)dx = (x^{2}+x)|_{0}^{2} = 4+2=6$$
.

Câu 67. Với a,b là các tham số thực. Giá trị tích phân $\int_{a}^{b} (3x^2 - 2ax - 1) dx$ bằng

$$\underline{\mathbf{A}} \cdot b^3 - b^2 a - b$$
.

B.
$$b^3 + b^2 a + b$$

A.
$$b^3 - b^2 a - b$$
. **B.** $b^3 + b^2 a + b$. **C.** $b^3 - ba^2 - b$. **D.** $3b^2 - 2ab - 1$. **Lòi giải**

D.
$$3b^2 - 2ab - 1$$
.

Ta có
$$\int_{0}^{b} (3x^{2} - 2ax - 1) dx = (x^{3} - ax^{2} - x)\Big|_{0}^{b} = b^{3} - ab^{2} - b.$$

Câu 68. (THPT An Lão Hải Phòng 2019) Giả sử $I = \int_{-4}^{4} \sin 3x dx = a + b \frac{\sqrt{2}}{2} (a, b \in \mathbb{Q})$. Khi đó giá trị của a-b là

A.
$$-\frac{1}{6}$$

B.
$$-\frac{1}{6}$$

C.
$$-\frac{3}{10}$$

D.
$$\frac{1}{5}$$

Lời giải

Chọn B

Ta có
$$\int_{0}^{\frac{\pi}{4}} \sin 3x dx = -\frac{1}{3} \cos 3x \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{3} + \frac{1}{3} \frac{\sqrt{2}}{2}$$
. Suy ra $a = b = \frac{1}{3} \Rightarrow a - b = 0$.

Câu 69. (Chuyên Nguyễn Tất Thành Yên Bái 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và

$$\int_{0}^{2} (f(x) + 3x^{2}) dx = 10. \text{ Tính } \int_{0}^{2} f(x) dx.$$

Lời giải

Ta có:

$$\int_{0}^{2} (f(x) + 3x^{2}) dx = 10 \iff \int_{0}^{2} f(x) dx + \int_{0}^{2} 3x^{2} dx = 10 \iff \int_{0}^{2} f(x) dx = 10 - \int_{0}^{2} 3x^{2} dx$$
$$\iff \int_{0}^{2} f(x) dx = 10 - x^{3} \Big|_{0}^{2} \iff \int_{0}^{2} f(x) dx = 10 - 8 = 2.$$

Câu 70. (Chuyên Nguyễn Trãi Hải Dương 2019) Cho $\int_{0}^{\infty} (3x^2 - 2x + 1) dx = 6$. Giá trị của tham số m thuộc

khoảng nào sau đây?

A.
$$(-1;2)$$
.

B.
$$(-\infty;0)$$
.

$$\mathbf{C}$$
. $(0;4)$.

D.
$$(-3;1)$$
.

Lời giải

Ta có:
$$\int_{0}^{m} (3x^{2} - 2x + 1) dx = 6 \iff (x^{3} - x^{2} + x) \Big|_{0}^{m} = 6 \iff m^{3} - m^{2} + m - 6 = 0 \iff m = 2.$$

Vây $m \in (0;4)$.

Câu 71. (**Mã 104 2018**)
$$\int_{1}^{2} \frac{dx}{2x+3}$$
 bằng

A.
$$\frac{1}{2} \ln 35$$

B.
$$\ln \frac{7}{5}$$

C.
$$\frac{1}{2} \ln \frac{7}{5}$$

D.
$$2 \ln \frac{7}{5}$$

Chọn C

Ta có
$$\int_{1}^{2} \frac{dx}{2x+3} = \frac{1}{2} \ln |2x+3|^{2} = \frac{1}{2} (\ln 7 - \ln 5) = \frac{1}{2} \ln \frac{7}{5}$$
.

Câu 72. (**Mã 103 2018**) $\int_{1}^{2} \frac{dx}{3x-2}$ bằng

B.
$$\frac{1}{3} \ln 2$$

C.
$$\frac{2}{3} \ln 2$$

Lời giải

Chon C

Ta có
$$\int_{1}^{2} \frac{dx}{3x-2} = \frac{1}{3} \ln |3x-2|_{1}^{2} = \frac{1}{3} (\ln 4 - \ln 1) = \frac{2}{3} \ln 2$$
.

Câu 73. (Đề Tham Khảo 2018) Tích phân $\int_{0}^{2} \frac{dx}{x+3}$ bằng

A.
$$\frac{2}{15}$$

B.
$$\frac{16}{225}$$

C.
$$\log \frac{5}{3}$$

D.
$$\ln \frac{5}{3}$$

Lời giải

Chon D

$$\int_{0}^{2} \frac{dx}{x+3} = \ln|x+3| \Big|_{0}^{2} = \ln \frac{5}{3}$$

Câu 74. (**Mã 105 2017**) Cho $\int_{a}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = a \ln 2 + b \ln 3$ với a, b là các số nguyên. Mệnh đề nào dưới đây đúng?

A.
$$a + 2b = 0$$

B.
$$a + b = 2$$

C.
$$a-2b=0$$
 D. $a+b=-2$

D.
$$a + b = -2$$

Lời giải

$$\int_{0}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = \left[\ln|x+1| - \ln|x+2| \right]_{0}^{1} = 2 \ln 2 - \ln 3; \text{ do d\'o } a = 2; b = -1$$

Câu 75. (THPT An Lão Hải Phòng 2019) Tính tích phân $I = \int_{1}^{\infty} \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$

$$\underline{\mathbf{A}}$$
. $I = \frac{1}{e}$

B.
$$I = \frac{1}{e} + 1$$

C.
$$I = 1$$

D.
$$I = e$$

Lời giải

Chọn A

$$I = \int_{1}^{e} \left(\frac{1}{x} - \frac{1}{x^2} \right) dx = \left(\ln|x| + \frac{1}{x} \right) \Big|_{1}^{e} = \frac{1}{e}.$$

Câu 76. (THPT Hùng Vương Bình Phước 2019) Tính tích phân $I = \int_{3}^{3} \frac{dx}{x+2}$.

A.
$$I = -\frac{21}{100}$$
.

$$\underline{\mathbf{B}}. I = \ln \frac{5}{2}.$$

C.
$$I = \log \frac{5}{2}$$
. D. $I = \frac{4581}{5000}$

D.
$$I = \frac{4581}{5000}$$

Lời giải

$$I = \int_{0}^{3} \frac{\mathrm{d}x}{x+2} = \ln(x+2)\Big|_{0}^{3} = \ln 5 - \ln 2 = \ln \frac{5}{2}.$$

Câu 77. (THPT Đoàn Thượng - Hải Dương - 2019) $\int_{1}^{2} \frac{dx}{3x-2}$ bằng

$$\underline{\mathbf{B}} \cdot \frac{2}{3} \ln 2$$
.

D.
$$\frac{1}{3} \ln 2$$
.

Lời giải

Ta có:
$$\int_{1}^{2} \frac{dx}{3x-2} = \frac{1}{3} \ln |3x-2| \Big|_{1}^{2} = \frac{2}{3} \ln 2.$$

Câu 78. Tính tích phân $I = \int_{-\infty}^{2} \frac{x-1}{x} dx$.

A.
$$I = 1 - \ln 2$$
. **B.** $I = \frac{7}{4}$.

B.
$$I = \frac{7}{4}$$
.

C.
$$I = 1 + \ln 2$$
. **D.** $I = 2 \ln 2$.

D.
$$I = 2 \ln 2$$
.

Ta có
$$I = \int_{1}^{2} \frac{x-1}{x} dx = \int_{1}^{2} \left(1 - \frac{1}{x}\right) dx = \left(x - \ln|x|\right)\Big|_{1}^{2} = \left(2 - \ln 2\right) - \left(1 - \ln 1\right) = 1 - \ln 2$$
.

Câu 79. Biết $\int_{-\infty}^{3} \frac{x+2}{x} dx = a+b \ln c$, với $a,b,c \in \mathbb{Z},c < 9$. Tính tổng S = a+b+c.

$$\underline{\mathbf{A}}$$
. $S=7$

B.
$$S = 5$$

C.
$$S = 8$$
.

D.
$$S = 6$$
.

Ta có
$$\int_{1}^{3} \frac{x+2}{x} dx = \int_{1}^{3} \left(1 + \frac{2}{x}\right) dx = \int_{1}^{3} \frac{2}{x} dx = 2 + 2 \ln |x|_{1}^{3} = 2 + 2 \ln 3.$$

Do đó $a = 2, b = 2, c = 3 \Rightarrow S = 7.$

Câu 80. (**Mã 110 2017**) Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{\ln x}{x}$. Tính: I = F(e) - F(1)?

A.
$$I = \frac{1}{2}$$

B.
$$I = \frac{1}{e}$$
 C. $I = 1$

C.
$$I = 1$$

$$\mathbf{D.}\ I = e$$

Lời giải

Chọn A

Theo định nghĩa tích phân: $I = F(e) - F(1) = \int_{1}^{e} f(x) dx = \int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \ln x d (\ln x) = \frac{\ln^2 x}{2} \Big|_{1}^{e} = \frac{1}{2}$.

Câu 81. (**Mã 102 2018**) $\int_{1}^{1} e^{3x+1} dx$ bằng

A.
$$\frac{1}{3}(e^4 + e)$$
 B. $e^3 - e$ **C.** $\frac{1}{3}(e^4 - e)$ **D.** $e^4 - e$

B.
$$e^{3} - e^{3}$$

C.
$$\frac{1}{3}(e^4 - e)$$

D.
$$e^4 - e$$

$$\int_{0}^{1} e^{3x+1} dx = \frac{1}{3} \int_{0}^{1} e^{3x+1} d(3x+1) = \frac{1}{3} e^{3x+1} \Big|_{0}^{1} = \frac{1}{3} (e^{4} - e).$$

Câu 82. (**Mã 101 2018**) $\int_{1}^{2} e^{3x-1} dx$ bằng

A.
$$\frac{1}{3}(e^5 + e^2)$$
 B. $\frac{1}{3}(e^5 - e^2)$ **C.** $\frac{1}{3}e^5 - e^2$ **D.** $e^5 - e^2$

B.
$$\frac{1}{3} (e^5 - e^2)$$

C.
$$\frac{1}{3}e^5 - e^5$$

D.
$$e^5 - e^2$$

Lời giải

Chon B

Ta có
$$\int_{1}^{2} e^{3x-1} dx = \frac{1}{3} e^{3x-1} \Big|_{1}^{2} = \frac{1}{3} (e^{5} - e^{2}).$$

Câu 83. (**Mã 123 2017**) Cho $\int_{0}^{6} f(x)dx = 12$. Tính $I = \int_{0}^{2} f(3x)dx$.

A.
$$I = 5$$

B.
$$I = 36$$

C.
$$I = 4$$

D.
$$I = 6$$

Lời giải

Chọn C

Ta có:
$$I = \int_{0}^{2} f(3x)dx = \frac{1}{3} \int_{0}^{2} f(3x)d3x = \frac{1}{3} \int_{0}^{6} f(t)dt = \frac{1}{3}.12 = 4.$$

Câu 84. (**Chuyên Lê Hồng Phong Nam Định 2019**) Tích phân $I = \int_{0}^{1} \frac{1}{x+1} dx$ có giá trị bằng

A.
$$\ln 2 - 1$$
.

$$\mathbf{B}_{\bullet} - \ln 2$$
.

D.
$$1 - \ln 2$$
.

Lời giải

Chon C

Cách 1: Ta có: $I = \int_{0}^{1} \frac{1}{x+1} dx = \int_{0}^{1} \frac{d(x+1)}{x+1} = \ln|x+1|_{0}^{1} = \ln 2 - \ln 1 = \ln 2$. Chọn đáp án **C.**

Câu 85. (THPT Hoàng Hoa Thám Hưng Yên -2019) Tính $K = \int_{2}^{3} \frac{x}{x^2 - 1} dx$.

A.
$$K = \ln 2$$
.

B.
$$K = \frac{1}{2} \ln \frac{8}{3}$$
. **C.** $K = 2 \ln 2$. **D.** $K = \ln \frac{8}{3}$.

C.
$$K = 2 \ln 2$$
.

D.
$$K = \ln \frac{8}{3}$$
.

$$K = \int_{2}^{3} \frac{x}{x^{2} - 1} dx = \frac{1}{2} \int_{2}^{3} \frac{1}{x^{2} - 1} d(x^{2} - 1) = \frac{1}{2} \ln|x^{2} - 1| \begin{vmatrix} 3 \\ 2 \end{vmatrix} = \frac{1}{2} \ln \frac{8}{3}$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vr	Blog:	Nguyễn B	são Virong:	https://www.	.nbv.edu.vn/
--	-------	----------	-------------	--------------	--------------

Theo dõi Fanpage: Nguyễn Bảo Vương & https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/