Detecting Recon Cyberattacks with Machine Learning

The objective of this project is to develop a model that can reliably predict the occurrence of Recon Cyberattacks in the context of the CICIOT 2023 dataset.

The idea is to specialize models to detect one kind of cyberattack, thus augmenting their performance, as the researchers also pledged:

"Finally, although we are focusing on 33 different attacks, future directions could also be tailored to address issues related to individual attacks or categories."

Neto, E.C.P.; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani, A.A. CICloT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment. Sensors 2023, 23, 5941. https://doi.org/10.3390/s23135941

The CICIOT Dataset

This dataset is the result of a research from the University of New Brunswick Centre for Cybersecurity.

It has extracted CSV features on network traffic across 105 Internet of Things (IoT) devices with 33 cyberattacks run on them. 7 types of attacks were run: distributed denial of service (DoS), denial of service (DoS), reconnaissance, web-based, brute-force, spoofing, and the Mirai botnet.

Link to Kaggle https://www.kaggle.com/datasets/madhavmalhotra/unb-cic-iot-dataset.

Data Dictionary

Feature	Data Type	Description
flow_duration	float64	Total duration of the network flow in seconds.
Header_Length	float64	The length of the packet header in bytes.
Protocol Type	float64	Numerical representation of the network protocol used.
Duration	float64	Time to live (TTL) in seconds
Rate	float64	The rate of packet transmission over the network in packets per second.
Srate	float64	The rate of outbound packets in the flow, indicating data sent from the source.
Drate	float64	The rate of inbound packets in the flow, indicating data received by the destination.
fin_flag_number	float64	Number of packets with the FIN flag set, indicating the end of data communication.
syn_flag_number	float64	Number of packets with the SYN flag set, used to initiate a TCP connection.
rst_flag_number	float64	Number of packets with the RST flag set, used to reset the connection.
psh_flag_number	float64	Number of packets with the PSH flag set, indicating the push function.
ack_flag_number	float64	Number of packets with the ACK flag set, used to acknowledge the receipt of packets.

ece_flag_number	float64	Number of packets with the ECE flag set, indicating Explicit Congestion Notification Echo.
cwr_flag_number	float64	Number of packets with the CWR flag set, used to signal congestion window reduced.
ack_count	float64	The total number of acknowledgment packets within the flow.
syn_count	float64	The total number of synchronization packets within the flow.
fin_count	float64	The total number of finish packets within the flow.
urg_count	float64	The total number of urgent packets within the flow.
rst_count	float64	The total number of reset packets within the flow.
НТТР	float64	Indicator of HTTP traffic (1 for HTTP traffic, 0 otherwise).
HTTPS	float64	Indicator of HTTPS traffic (1 for HTTPS traffic, 0 otherwise).
DNS	float64	Indicator of DNS traffic (1 for DNS traffic, 0 otherwise).
Telnet	float64	Indicator of Telnet traffic (1 for Telnet traffic, 0 otherwise).
SMTP	float64	Indicator of SMTP traffic (1 for SMTP traffic, 0 otherwise).
SSH	float64	Indicator of SSH traffic (1 for SSH traffic, 0 otherwise).
IRC	float64	Indicator of IRC traffic (1 for IRC traffic, 0 otherwise).
ТСР	float64	Indicator of TCP protocol usage (1 for TCP, 0 otherwise).
UDP	float64	Indicator of UDP protocol usage (1 for UDP, 0 otherwise).
DHCP	float64	Indicator of DHCP traffic (1 for DHCP traffic, 0 otherwise).
ARP	float64	Indicator of ARP traffic (1 for ARP traffic, 0 otherwise).
ICMP	float64	Indicator of ICMP traffic (1 for ICMP traffic, 0 otherwise).
IPv	float64	Indicator of IPv4 or IPv6 traffic (1 for IP traffic, 0 otherwise).
LLC	float64	Indicator of LLC traffic (1 for LLC traffic, 0 otherwise).
Tot sum	float64	The total size of the packets transferred in the flow.
Min	float64	The minimum size of packets in the flow.
Max	float64	The maximum size of packets in the flow.
AVG	float64	The average size of packets in the flow.
Std	float64	The standard deviation of packet sizes in the flow.
Tot size	float64	Total size of the flow in bytes.
IAT	float64	Inter-Arrival Time of the packets in the flow.
Number	float64	Total number of packets in the flow.
Magnitue	float64	A derived metric indicating the magnitude of the flow.
Radius	float64	A derived metric indicating the radius of the flow.

Covariance	float64	The covariance of packet sizes in the flow.
Variance	float64	The variance of packet sizes in the flow.
Weight	float64	A weight metric related to the flow.
label	object	Categorical label of the traffic type.

Simplified Data Features Overview

Communication Patterns

- **Duration Measures:** These features tell us how long a communication takes place. It's like timing a phone call to see if it's a quick hello or a long conversation.
- `flow_duration`, `Duration`
- **Transmission Rates:** These are like the speed of conversation, telling us how fast data is being sent and received.
- `Rate`, `Srate`, `Drate`

Traffic Signs

- Flag Counts: Just like flags used in sports to indicate different events, these counts tell us how many times certain types of network "signals" occur.
- `fin_flag_number`, `syn_flag_number`, `rst_flag_number`, etc.
- Packet Counts: These give us the total number of "letters" sent and received during the communication.
- `ack_count`, `syn_count`, `fin_count`, etc.

Communication Types

- **Protocol Indicators:** These indicate the method of communication being used, similar to different social media platforms like email or instant messaging.
- `HTTP`, `HTTPS`, `DNS`, `Telnet`, etc.

Conversation Statistics

- Size Measures: These features measure the "volume" of the conversation, or how much information is being exchanged.
- `Tot sum`, `Min`, `Max`, `AVG`, `Std`, `Tot size`
- **Timing Measures:** These tell us about the timing between exchanges, like the pauses between sentences in a conversation.
- `IAT` (Inter-Arrival Time)

Interaction Complexity

- **Complexity Metrics:** These are advanced measures that summarize the overall complexity and pattern of the communication.
- `Magnitue`, `Radius`, `Covariance`, `Variance`, `Weight`

Nature of Traffic

- Traffic Category: This is the label that tells us whether the communication is regular and expected (`BenignTraffic`) or potentially suspicious (`ReconAttack`).
- `label`

Directory Structure

The current directory contains the following items:

- The notebooks representing three different stages of the project
 - Cybersec_eda.ipynb contains initial data exploration and EDA
 - Cybersec_binary_modelling.ipynb contains EDA refinement and binary classification modelling
 - Cybersec_multiclass_modelling.ipynb contains multiclass classification modelling, inference details and final considerationsbinary
- Pipeline_adaboost.pkl contains the binary classification (first-stage) model.
- Gridsearch_xgboost contains the multiclassification (second-stage) model.
- Deployment.py contains the final inference file where the two stage model actually makes predictions on sample of the test data.

Process description

The main steps of the project are described in the diagram below:

- First I collected the data from CCIOT 2023, filter it for Recon Attacks only and preprocess it for interpretability and efficiency.
- Secondly I performed EDA.
- Then I experimented different pipelines to understand the effectiveness of different types of preprocessing steps and models for the binary classification (identifying cyberattacks from benign traffic).
- Subsequently I performed cross validation and hyperparameter tuning. The output model ('pipeline_adaboost') is saved in the directory. However, Random Forest as defined in the notebook could also be employed. I encourage further exploration in the optimization of these two models.
- After that I turned to multiclass problem and developed a two staged-model with adaboost being the binary classifier and XG Boost the multiclass one.
- The output was saved in the directory ('gridsearch_xgboost').
- Finally, a guideline for inference of the two staged model is provided in *deployment.py*.

Notes

- In Sprint 2 notebook there are cells encapsulated with triple quotations. This is because the time of execution of the cell is very long.
- I deliberately didn't apply feature selection steps that could make inference process less intuitive. The plan is in fact to apply another modelling layer to better predict device-based attacks.