Prova escrita de Física Quântica I

Segunda prova

25-06-2013

1. (4 pts)

Considere o Hamiltoniano do oscilador harmónico, dado por

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 \kappa^2$$
 (1)

Considere agora a função de onda

$$\psi(x) = Ae^{-\beta x^2} \,. \tag{2}$$

Determine A e β de modo a $\psi(x)$ ser uma função própria normalizada do oscilador harmónico. Encontre o valor próprio associado a $\psi(x)$.

2. (4 pts)

Prove que para um operador hermítico A se tem a identidade

$$\int_{-\infty}^{\infty} dx \phi^*(x) A \psi(x) = \int_{-\infty}^{\infty} dx [A \phi(x)]^* \psi(x), \qquad (3)$$

onde $\phi(x)$ e $\psi(x)$ são duas funções de onda.

3. (4 pts)

Considere a identidade

$$e^{\alpha a + \beta a^{\dagger} = e^{\beta a^{\dagger}} e^{\alpha a}} e^{\alpha b/2}, \tag{4}$$

onde os operadores a e a^{\dagger} são os operadores de aniquilação e criação do oscilador harmónico, definidos como

$$a = \sqrt{\frac{m\omega}{2\hbar}}x + i\frac{p}{\sqrt{2m\omega\hbar}}, \qquad (5)$$

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}x - i\frac{p}{\sqrt{2m\omega\hbar}}.$$
 (6)

- (a) Calcule o comutador $[a, a^{\dagger}]$.
- (b) Calcule o elemento de matriz $\langle 0|e^{kx}|0\rangle$, onde $|0\rangle$ é o estado fundamental do oscilador harmónico e k é um dado número de onda.

4. (4 pts)

Considere as relações

$$L_{\pm}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m\pm 1)}|l,m\pm 1\rangle, \qquad (7)$$

onde L_+ é o operador escada de subida e L_- é o operador escada de descida.

- (a) Encontre a representação matricial de L_x e L_y para l=1/2.
- (b) Considere uma partícula no estado de momento angular descrito pelo spinor

$$|\psi\rangle = \begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix} \tag{8}$$

Calcule a probabilidade de encontrar a partícula no estado de próprio de $L_y = \hbar/2$.

- (c) Se a partícula for descrita pelo Hamiltoniano $H=\hbar\omega L_z$, determine a evolução temporal do estado $|\psi\rangle$.
- (d) Calcule a probabilidade de encontrar a partícula nos estados de próprios de $L_y=\pm\hbar/2$ no tempo t.
- 5. (4 pts) Considere que um electrão no átomo de hidrogénio se encontra no estado

$$\psi(r,\theta,\phi) = aR_{1,0}(r)Y_{0,0}(\theta,\phi) + bR_{2,1}(r)Y_{1,0}(\theta,\phi),$$
(9)

onde a e b são constantes, $R_{n,l}(r)$ representa a função de onda radial do estado (n,l) e $Y_{l,m}(\theta,\phi)$ representa o harmónico esférico (l,m).

- (a) Normalize o estado $\psi(r, \theta, \phi)$.
- (b) Calcule o valor médio da energia.
- (c) Calcule o valor médio de L^2 .
- (d) Calcule o valor médio de L_x .
- (e) Diga se o estado próprio $\phi(r,\theta,\phi)=R_{3,3}(r)Y_{3,-2}$ de um electrão no átomo de hidrogénio pode existir. Justifique a resposta.