

Universidade Federal de Viçosa Departamento de Engenharia Elétrica

Especialização em Inteligência Artificial e Computacional

ELT576 - Processamento Inteligente de Sinais

Atividade Prática: Convolução

1 Introdução

Esta atividade prática refere-se à convolução. Vamos usar a convolução para alterar sinais de acordo com a resposta ao impulso de sistemas. A convolução empregada necessariamente é a discreta, pelo fato de se trabalharmos aqui com sistemas computacionais discretizados. Para plotar ou reproduzir um sinal discretizado, é necessário especificar o incremento temporal Ts (em segundos) entre as amostras. Assim, a frequência de amostragem para tocar um sinal sonoro é definida por Fs=1/Ts. Quando se carrega um arquivo de áudio para dentro do computador, geralmente a frequência de amostragem também é carregada. Caso seja necessário ajustar as abscissas dos gráficos, é necessário definir um vetor de tempo discreto, por exemplo t=[0:Ts:Tfim], onde Tfim é número de pontos do sinal (N) menos 1(N-1), multiplicado por Fs.

2 Comandos úteis

Esta atividade prática pode ser realizada com o auxílio das bibliotecas para Python listadas abaixo:

numpy np.concatenate para montar os vetores

np.linspace para montar os vetores com tamanhos definidos

np.convolve para realizar as convoluções

IPython.display Audio para tocar áudios

scipy io.loadmat para carregar os arquivos .mat

signal.convolve2d para realizar as convoluções de dados 2D (imagens)

opencv2 cv2.imread para carregar imagens

cv2.imshow para plotar imagens

cv2.cvtColor para converter cores de imagens (rgb → grayscale)

matplotlib.pyplot plt.stem para plotar sinais discretos

3 Roteiro

3.1 Desafio 1: Convolução de sinais simulados

A função conv é usada para convoluir duas funções discretas x[n] e h[n]. Ela assume que o incremento temporal é o mesmo em ambos sinais. O resultado da convolução tem tamanho igual à soma dos tamanhos de cada sinal menos um ponto (L1 + L2 - 1).

Figura 1: Processo de formação e de representação de uma imagem discreta.

- 1. Um sistema linear invariante no tempo é completamente descrito por sua resposta ao impulso. Por exemplo, considere o sistema com resposta ao impulso h = [1 zeros(1,20) 0.5 zeros(1,10)];. Crie um script usando o editor e plote essa resposta ao impulso.
- 2. Considere a seguinte entrada no sistema $x = [0 \ 1:10 \ ones(1,5)*5 \ zeros(1,10)];$. Plote esta entrada.
- 3. Convolua x e h, i.e., y = conv(x,h); Use o comando subplot para mostrar a resposta ao impulso, a entrada e a saída.

3.2 Desafio 2: Resposta ao impulso quadrado

Faça o download do arquivo trumpet.mat no PVAnet Moodle ou no GitHub da disciplina, carregue-o usando o comando load e plote-o. O sinal está em trumpet.y e a frequência de amostragem em trumpet.Fs. Crie uma resposta ao impulso quadrada h2 = [ones(1,50)/50zeros(1,20)];. Gere um novo sinal y2 convoluindo trumpet com h2. Olhe e ouça os sinais.

Como o sinal convoluído soa? Mais suave estridente ou mais abafado? Um sistema que possui resposta ao impulso de acordo com h2 é um filtro passa-baixa. Como a entrada é constituída de várias componentes de frequência diferentes - veremos mais sobre isso no próximo módulo - as componentes de alta-frequência da entrada são atenuadas ao se realizar a convolução com sistemas do tipo de h2. O que acontece se alterar o número de uns e zeros de h2?

3.3 Desafio 3: Realce de imagens lunares

Uma imagem representa um sinal bidimensional. A Figura 1 mostra o processo de formação e representação da uma imagem digital de um objeto qualquer na cena de observação.

A convolução pode ser usada para atenuar ou realçar características. Para verificar, faça o download da imagem "lua.jpg" no PVAnet Moodle e carregue no computador usando o comando I = imread('lua.jpg') e exiba a imagem usando $imshow(I, [0\ 255])$.

Faça um realce nos detalhes da imagem. Para isto, use o kernel (descrito por um filtro de Laplace) dado por

$$F = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

e faça a convolução desse kernel com a imagem I usando conv2. Por fim, faça a soma da imagem convoluída com a imagem original.

Discuta os resultados de cada etapa do processamento da imagem lunar e quais as características foram realçadas.

3.4 Desafio 4: Que filtro é esse?

Faça o download da imagem "texto.jpg" no PVA
net Moddle, carregue-a e utilize um kernel ${\cal F}$ para convoluir. Utilize

$$F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 9 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Discuta o resultado e pesquise sobre esse tipo de filtro.