解:

(1)
$$a = 2 \text{ 时, } f(x) = \frac{x^2}{2^x}$$

$$f'(x) = \frac{2x \cdot 2^x - 2^x \cdot \ln 2 \cdot x^2}{2^{2x}}$$

$$= \frac{2 - x \ln 2}{2^x}$$
则 $f'(x) = \frac{2 - x \ln 2}{2^x}$
同号, 即:
$$x < \frac{2}{ln^2} \text{ 时, } f'(x) > 0$$

$$x > \frac{2}{ln^2} \text{ 时, } f'(x) < 0$$

$$x = \frac{2}{ln^2} \text{ 时, } f'(x) = 0$$
故, $x \in (0, \frac{2}{ln^2}] \text{ 时, } f(x)$ 单调递增
$$x \in [\frac{2}{ln^2}, +\infty) \text{ 时, } f(x) \text{ 单调递减}$$

(2) 显然
$$a > 0$$
 $f'(x) = ax^{a-1}a^{-x} + x^a(-\ln a)a^{-x}$ $= x^{a-1}a^{-x}(a-x\ln a)$ 考察函数得到: $f(a) = 1$ $a \ln a > 0$ 即 $a > 1$ 时,类似 (1),有: $x \in (0, \frac{a}{\ln a}]$ 时, $f(x)$ 单调递增 $x \in [\frac{a}{\ln a}, +\infty)$ 时, $f(x)$ 单调递减 若 $f(X)$ 与 $y = 1$ 有且仅有两个交点,则 $x = a$ 必然不是极值点即 $a \ln a \neq a \Rightarrow a \neq e$ $a \ln a \leqslant 0 \Rightarrow a \leqslant 1$ 时, $f(x)$ 单调递减,与题设不符故 a 的取值范围为 $(1, e) \cup (e, +\infty)$