# Convolution Neural Net 이론

모두의연구소 Rubato Lab. 소준섭



# CNN 탄생 배경



마침내 1989년 제프리힌트교수하러서 박사후 과정을 밟고있던 얀러분이 요슈아 벤지오와 함께 네오코그니트론, 볼츠만 머신, 백 프로퍼게이션을 결합하여 CNN을 완성함으로써 딥러니의 획기적인 건환점을 마련하였습니다.





### **CNN Architecture**



- 이미지와 같은 공간적인 특징을 가지는 고차원 데이터 처리를 위한 Neural Net
- 각 필터가 가중치를 가지며 Filter 단위로 파라미터를 공유하는 특징이 있다.



### **CNN Architecture**





▶ ImageNet challenge를 반복하며 다양한 모델들이 개발되었다.



### Convolution

(a) 원래 영상과 여러 가지 마스크들

<u>이미지에 필터를 이동시키며</u> <u>연산해 결과를 얻는 연산 방법</u>



|  | _ | _ |
|--|---|---|
|  |   | _ |

박스 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

.0000 .0000 .0002 .0000 .0000 .0000 .0113 .0837 .0113 .0000 .0002 .0837 .6187 .0837 .0002 .0000 .0113 .0837 .0113 .0000

.0000 .0000 .0002 .0000 .0000

가우시안

|    | 샤프닝 |    |
|----|-----|----|
| 0  | -1  | 0  |
| -1 | 5   | -1 |
| 0  | -1  | 0  |

diversit

| , Ann | 7774 | A1 | 1      |
|-------|------|----|--------|
| Gagin | 344  | 예. | $\sim$ |
|       | 0    | -  |        |

| 1  | 1  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -1 | -1 |

| 4 | 구직 에기 | 긱  |
|---|-------|----|
| 1 | 0     | -1 |
| 1 | 0     | -1 |

0

|             |       | 7.6   |       |       |  |  |
|-------------|-------|-------|-------|-------|--|--|
| .0304 .0501 |       | 0     | 0     | 0     |  |  |
| .0501       | .1771 | .0519 | 0     | 0     |  |  |
| 0           | .0519 | .1771 | .0519 | 0     |  |  |
| 0           | 0     | .0519 | .1771 | .0501 |  |  |
| 0           | 0     | 0     | .0501 | .0304 |  |  |

ㅁ서







> 샤프닝







> 모션

30 00

> 수평 에지

각 필더가 가중치를 가지며, 입력된 데이터와 연산된다.

| <b>1</b> <sub>×1</sub> | <b>1</b> <sub>×0</sub> | 1,  | 0 | 0 |
|------------------------|------------------------|-----|---|---|
| 0,0                    | 1,                     | 1,0 | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,0                    | 1,  | 1 | 1 |
| 0                      | 0                      | 1   | 1 | 0 |
| 0                      | 1                      | 1   | 0 | 0 |

4

**Image** 

Convolved Feature



### **Convolution with stride**

stride의 크기에 따라 필터가 이동하는 크기가 정해진다.

| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |
| 2 | 3 | 0 | 1 | 2 | 3 | 0 |
| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |



스트라이드 : 2



• filter size, stride의 크기에 따라 output size가 달라진다.



### **Convolution with stride**

N

NxN Image, FxF Filter

|   | F |  |  |
|---|---|--|--|
|   |   |  |  |
| F |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |

$$O = (N-F)/Stride + 1$$

예시 1) 7x7 Image, 3x3 Filter, Stride 1인 경우

$$5 = (7-3)/1 + 1$$

따라서, 5x5 Output 생성

예시 2) 7x7 Image, 3x3 Filter, Stride 2인 경우

$$3 = (7-3)/2 + 1$$

따라서, 3x3 Output 생성



# **Convolution with padding**

상하좌우로 1 픽셀 씩 Padding



7x7 Image, Padding 1, 3x3 Filter, Stride 1인 경우 Output의 크기는 얼마일까?

$$O = (N-F)/Stride + 1$$

$$7 = (9-3)/1 + 1$$

크기가 유지될 수 있음

$$O = ((N+2*P)-F)/Stride + 1 P : Padding$$

$$P = \frac{((O-1) * Stride - (N-F))}{2}$$



# Convolution with padding

#### 7x7 image, stride=1 일때 Same size를 위한 padding

3x3 Filter



5x5 Filter





$$P = ((7 - 1) * 1 - (7 - 3))/2$$
= (6 - 4)/2
= 1

$$\mathbf{P} = ((7-1) * 1 - (7-3))/2 
= (6-4)/2 
= 1$$

$$\mathbf{P} = ((7-1) * 1 - (7-5))/2 
= (6-2)/2 
= 2$$

$$\mathbf{P} = ((7-1) * 1 - (7-7))/2 
= (6-0)/2 
= 3$$

$$\mathbf{P} = ((7-1) * 1 - (7-7))/3$$

$$= (6-0)/2$$

$$= 3$$



### 32x32x3 image



[Width] x [Height] x [Depth]



### 32x32x3 image



Image와 Filter의 Depth가 동일해야 Convolution 연산을 할 수 있다.



### 뉴런의 관점을 생각해보자!





Local Connectivity를 갖는 뉴런





• 모든 pixel에 대해 convolution을 하면 activation map이 한 개 생성됨

따라서, activation map은 28x28 뉴런 sheet이다.

- 1. 각 뉴런은 입력의 작은 영역에 연결
- 2. 모든 뉴런은 파라미터를 공유함

"5x5 filter" -> "5x5 receptive field for each neuron"





서로 다른 filter 별로 activation map이 생성된다.





- 여러 Filter를 사용해서 다양한 feature를 학습할 수 있도록 함
- Activation map은 filter 개수만큼 depth를 갖게 됨

N 개의 5x5x3 filter 적용 후





• Activation map의 depth와 동일해야 함

• 따라서, 이전 layer filter 개수와 동일









- 각 Layer 별로 convolution을 수행하고 activation function을 수행
  비선형 연산을 통해 복잡한 분류 및 이미지 처리 연산을 수행







# **Convolution NN Transpose**

#### Convolution의 역연산으로 Upsampling을 진행



주어진 이미지의 한 픽셀을 생성된
 Conv Transpose filter를 이용해 Upsampling

| A  | Α | В | С | D   | E   | F | G | Н | 1 | J        | K    | L         | M | N | 0 | Р | Q   | R   | S | Т | U | ٧ |
|----|---|---|---|-----|-----|---|---|---|---|----------|------|-----------|---|---|---|---|-----|-----|---|---|---|---|
| 1  |   |   |   |     |     |   |   |   |   |          |      |           |   |   |   |   |     |     |   |   |   |   |
| 2  |   |   |   | Inp | out |   |   |   |   | <u>k</u> | (ern | <u>el</u> |   |   |   |   | Out | put |   |   |   |   |
| 3  |   |   |   |     |     |   |   |   |   |          |      |           |   |   |   |   |     |     |   |   |   |   |
| 4  |   |   |   |     |     |   |   |   |   |          |      |           |   |   |   | 1 | 2   | 3   | 3 | 2 | 1 |   |
| 5  |   |   | 1 | 1   | 1   | 1 |   |   |   | 1        | 1    | 1         |   |   |   | 2 | 4   | 6   | 6 | 4 | 2 |   |
| 6  |   |   | 1 | 1   | 1   | 1 |   |   |   | 1        | 1    | 1         |   |   |   | 3 | 6   | 9   | 9 | 6 | 3 |   |
| 7  |   |   | 1 | 1   | 1   | 1 |   |   |   | 1        | 1    | 1         |   |   |   | 3 | 6   | 9   | 9 | 6 | 3 |   |
| 8  |   |   | 1 | 1   | 1   | 1 |   |   |   |          |      |           |   |   |   | 2 | 4   | 6   | 6 | 4 | 2 |   |
| 9  |   |   |   |     |     |   |   |   |   |          |      |           |   |   |   | 1 | 2   | 3   | 3 | 2 | 1 |   |
| 10 |   |   |   |     |     |   |   |   |   |          |      |           |   |   |   |   |     |     |   |   |   |   |



# CNN 가정사항



모델에 대한 믿음(Belief)을 파라미터의 사전 분포(Prior)로 표현

#### **Weak Prior**

- 높은 엔트로피를 갖는 분포
- Gaussian with high variance
- 데이터에 의해 파라미터가 자유롭게 변화함

#### **Strong Prior**

- 낮은 엔트로피를 갖는 분포
- Gaussian with low variance
- 파라미터를 결정할 때 사전 분포의 영향력이 매우 큼

#### **Infinitely Strong Prior**

- 일부 파라미터의 확률이 zero
- 데이터에 상관없이 확률이 zero인 파라미터는 사용할 수 없음



# **CNN** as infinitely strong prior

### Convolution as infinitely strong prior



- 계층 별로 가중치에 Infinitely Strong Prior를 적용
- Receptive Field 이외의 가중치는 0
- 모든 Hidden Unit에 대해 동일한 파라미터 사용

#### Convolution의 infinitely strong prior에 따라 다음 세가지 성질을 갖게 됨

- Sparse Interaction
- Parameter Sharing
- Equivariant

딥러닝의 성능을 향상시키는 중요한 아이디어!



# **Sparse Interaction**

#### **Full Connectivity**



- Output은 모든 input에 연결됨
- Parameter  $\uparrow$ :  $O(m \times n)$
- m : input 개수 - n : output 개수

### **Sparse Connectivity**



Receptive Field

- Output에 연결된 input이 제한적
- Parameter  $\hat{\gamma}: O(k \times n)$
- k : output과 연결된 connection 수
- n : output 개수

메모리 및 계산 절약, 통계적 효율 향상



# **Parameter Sharing**

### **No Parameter Sharing**



- 각 파라미터는 한번만 사용됨
- Parameter  $\hat{\neg}: O(m \times n)$
- m : input 개수 - n : output 개수

### **Parameter Sharing**



- 모든 파라미터가 재사용됨
- Parameter  $\uparrow$ : O(k)
- k : 각 output이 갖는 connection 수
- n : output 개수



# **Equivariance**



Input이 이동한 만큼 output도 이동하는 성질

$$f(g(x)) = g(f(x))$$

g: Translation

f: Convolution

- Parameter Sharing으로 나타나는 효과
- Convolution은 scale, rotation에 대해서는 equivariant하지 않음



# **Parameter Sharing**

Input의 여러 위치에 동일한 패턴의 정보를 처리할 때 유용

### **Edge Detection**

320





Kernel

Convolution:  $[319 \times 280] \times 3 = 267,960$  float point operations



약 60,000 배 이상 계산 효율성 향상

행렬 연산 : [320 x 280] x [319 x 280] = 약 16,000,000 float point operations



# Pooling as infinitely strong prior



Input에 조금의 변화가 있어도 Pooling은 동일한 결과를 얻을 수 있게 해 줌

Pooling의 Infinitely Strong Prior에 따라 Invariance to Local Translations을 갖게 됨



### **Invariance to Local Translation**



Input이 조금 이동해도 output은 바뀌지 않는 성질

$$f(x) = f(g(x))$$

g: Translation

f : Pooling

"특징의 정확한 위치 보다 특징의 존재에 대해 더 관심이 있을 때 유용한 성질."



# 참고자료

- 밑바닥부터 시작하는 딥러닝 1, 2 http://www.yes24.com/Product/Goods/34970929?Acode=101 http://www.yes24.com/Product/Goods/72173703

- 모두를 위한 딥러닝 시즌2
<a href="https://www.edwith.org/boostcourse-dl-tensorflow/joinLectures/22150">https://www.edwith.org/boostcourse-dl-tensorflow/joinLectures/22150</a>

- 모두의 연구소 이일구, 윤성진님(CRAS Lab) 강의 자료 <a href="https://github.com/ilguyi">https://github.com/ilguyi</a>

