Lógica y Programación

Introducción

2025c1

Docentes

► **Teóricas:** Cristian Sottile

► **Prácticas:** Ariel Silva

Email docentes

lds-doc-lyp@listas.unq.edu.ar

Lista de mail

lds-est-lyp@listas.unq.edu.ar

Bibliografía

- ► Michael Huth y Mark Ryan, Logic in computer science. Modelling and Reasoning about Systems, Cambridge University Press, 2004.
- Dirk Van Dalen, Logic and Structure, Series Universitext, Springer, 4th edition, 2008.
- ▶ Steve Reeves y Michael Clarke, Logic for computer science, Addison-Wesley, 1990.
- Michael Genesereth y Eric Kao (Synthesis Lectures on Computer Science), Introduction to Logic, Morgan & Claypool Publishers, 2012.

Por qué estudiar lógica

- Queremos lenguajes para modelar situaciones
- Queremos poder razonar y argumentar
- Queremos poder hacer esto formalmente
- y vamos a entender más sobre la computación y sus raíces

Sección 1

Lógica proposicional

símbolos

$$\neg \ , \ \land \ , \ \lor \ , \ \rightarrow \ , \ \leftrightarrow \ , \ \textbf{(,)}$$

símbolos

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p$$
, q , r , ...

símbolos

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p, q, r, \dots$$

- fórmulas
 - combinaciones apropiadas de símbolos y variables proposicionales
 - Ejemplo de combinación inapropiada: $(\land p(($

Fórmulas

1. cualquier variable proposicional es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula
- 5. si ϕ y ψ son fórmulas, $(\phi \rightarrow \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula
- 5. si ϕ y ψ son fórmulas, $(\phi \rightarrow \psi)$ es una fórmula
- 6. si ϕ y ψ son fórmulas, $(\phi \leftrightarrow \psi)$ es una fórmula
- Las fórmulas son un ejemplo de un conjunto inductivo
- Vienen provistos de
 - Esquema de prueba para probar propiedades sobre ellos (inducción estructural)
 - Esquema de recursión para definir funciones sobre el conjunto (recursión estructural)
- No es tema primario del curso, pero lo veremos de pasada

Lógica proposicional - sintaxis

Ejemplos

$$((p \land q) \rightarrow r) \quad (p \lor p)$$

¿Y estas expresiones son fórmulas?

$$p(\land q), \neg p$$

- Convenciones de notación.
 - ▶ Precedencia: \land y \lor ligan más fuerte que \rightarrow y \leftrightarrow , \neg liga más fuerte que el los demás
 - Omisión de paréntesis más externos y los de negaciones

Semántica clásica

- Consiste en asignarle valores de verdad a las fórmulas
- ► El conjunto de valores de verdad es

$$\{\mathsf{T},\mathsf{F}\}$$

- Dos enfoques para darle semántica a las fórmulas de PROP
 - 1. Tablas de verdad
 - 2. Valuaciones
- Son equivalentes

ϕ	$(\neg \phi)$
T	
F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
T	F	F
F	T	F
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
T	F	F
F	T	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
T	F	F
F	T	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

φ	1/2	$(\phi \lor \psi)$
T	T	T
Ť	F	Ť
F	÷	•
F	F	
Г	Г	

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
•	•	•

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	
F	F	

ϕ	$(\neg \phi)$
T	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т

ϕ	ψ	$(\phi \to \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	

ϕ	$(\neg \phi)$
T	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	$(\neg \phi)$
T	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
	F	F

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi o \psi)$
Т	Т	Т
Т	F	F
F	Т	Т

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	T	Т

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	
F	F	

ϕ	$(\neg \phi)$
T	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \lor \psi)$	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
•	•	•	

ϕ	ψ	$(\phi \leftrightarrow \psi)$
T	Т	Т
Т	F	F
F	Т	F
F	F	

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
T	T	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
	F	

ϕ	ψ	$(\phi \lor \psi)$	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
	F	F	

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	-

р	q	r	$(p \land q)$	$((p \land q) \to r)$
T	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

р	q	r	$(p \land q)$	$((p \land q) \to r)$
T	Т	Т	Т	
Т	Т	F	Т	
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

р	q	r	$(p \land q)$	$((p \land q) \to r)$
T	Т	Т	Т	Т
Т	Т	F	Т	
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

р	q	r	$(p \land q)$	$((p \land q) \to r)$
T	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

р	q	r	$(p \land q)$	$((p \land q) \to r)$
T	Т	Т	Т	Т
T	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Solución 1:

 $p = \mathsf{Juan}$ está cursando

q= Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \wedge q) \rightarrow r$$

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Solución 1:

 $p = \mathsf{Juan}$ está cursando

q= Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \wedge q) \rightarrow r$$

Solución 2:

p = Juan está cursando

q= Juan conoce a alguien

r= Juan tiene grupo

$$(p \land \neg q) \rightarrow \neg r$$

Valuaciones

- ▶ Una valuación es una función $v: \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$ que asigna valores de verdad a las variables proposicionales
- ▶ Una valuación satisface una proposición ϕ si $v \models \phi$ donde:

Tautologías y satisfactibilidad

Dadas fórmulas ϕ y ψ

lacktriangledown ϕ es lógicamente equivalente a ψ cuando $v \models \phi$ sii $v \models \psi$ para toda valuación v

Una fórmula ϕ es

- ightharpoonup una tautología si $v \models \phi$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models \phi$
- insatisfactible si no es satisfactible

Un conjunto de fórmulas S es

- **satisfactible** si existe una valuación ν tal que para todo $\phi \in S$, se tiene $\nu \models \phi$
- insatisfactible si no es satisfactible

Ejemplos

Tautologías

- ightharpoonup p
- $ightharpoonup \neg \neg p
 ightharpoonup p$
- $\blacktriangleright (p \to q) \leftrightarrow (\neg q \to \neg p)$

Fórmulas insatisfactibles

- $\blacktriangleright (\neg p \lor q) \land (\neg p \lor \neg q) \land p$
- $\blacktriangleright (p \to q) \land p \land \neg q$

Tautologías e insatisfactibilidad

Teorema

Una fórmula ϕ es una tautología sii $\neg \phi$ es insatisfactible

Demostración.

- \rightarrow . Si ϕ es tautología, para toda valuación v, $v \models \phi$. Entonces, $v \not\models \neg \phi$ (i.e. v no satisface $\neg \phi$).
- \leftarrow . Si $\neg \phi$ es insatisfactible, para toda valuación v, $v \not\models \neg \phi$. Luego $v \models \phi$.

Observación

Este resultado sugiere un método indirecto para probar que una fórmula ϕ es una tautología, a saber probar que $\neg \phi$ es insatisfactible

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
v_1	Т	Т	Т		
<i>v</i> ₂	Т	Т	F		
<i>V</i> 3	Т	F	Т		
<i>V</i> 4	Т	F	F		
<i>V</i> ₅	F	Т	Т		
<i>v</i> ₆	F	Т	F		
<i>V</i> 7	F	F	Т		
<i>v</i> ₈	F	F	F		

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
v_1	Т	Т	Т	Т	
<i>V</i> ₂	Т	Т	F	Т	
<i>V</i> 3	Т	F	Т	F	
<i>V</i> 4	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> ₈	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
v_1	Т	Т	Т	Т	Т
v_2	Т	Т	F	Т	
<i>V</i> 3	Т	F	Т	F	
<i>V</i> 4	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> ₈	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
v_1	Т	Т	Т	Т	Т
<i>v</i> ₂	Т	Т	F	Т	F
<i>V</i> 3	Т	F	Т	F	
<i>V</i> 4	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> ₈	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
v_1	Т	Т	Т	Т	Т
v_2	Т	Т	F	Т	F
<i>V</i> 3	Т	F	Т	F	Т
<i>V</i> 4	Т	F	F	F	Т
<i>V</i> 5	F	Т	Т	F	Т
<i>v</i> ₆	F	Т	F	F	Т
<i>V</i> 7	F	F	Т	F	Т
<i>v</i> ₈	F	F	F	F	Т

Semántica trivaluada

- Supongamos que contamos con un símbolo relacional == que nos permite comparar números reales
- > ¡Valor de verdad de las siguientes fórmulas?

$$1 == 1$$
 $(1+1) == 2$ $0.5 == 2/4$

► ¿Y esta?

$$1/0 == 2$$

Semántica trivaluada

Pasos para determinar si $e_1 == e_2$ es verdadero o falso

- 1. Obtener el número real r_1 denotado por e_1
- 2. Obtener el número real r_2 denotado por e_2
- 3. Comparar r_1 con r_2 para determinar si son iguales o no Consideremos

$$1/0 == 2$$

Semántica trivaluada

Pasos para determinar si $e_1 == e_2$ es verdadero o falso

- 1. Obtener el número real r_1 denotado por e_1
- 2. Obtener el número real r_2 denotado por e_2
- 3. Comparar r_1 con r_2 para determinar si son iguales o no

Consideremos

$$1/0 == 2$$

- ► Trabado en paso 1
- Expresión 1/0 no denota ningún número
- ightharpoonup 1/0 == 2 no es ni verdadera ni falsa porque no contamos con los números a comparar
- ▶ Le damos un valor especial: ⊥ (indefinido)

Semántica trivaluada - ejemplo en Gobstones

```
function esFin()
     Sacar(Azul)
     return (True)
program
     if (esFin() && False)
        { Poner(Rojo) }
       else
        { Poner(Azul) }
 ¿Qué hace?
```

Semántica trivaluada - ejemplo en Gobstones

```
function esFin()
     Sacar(Azul)
     return (True)
program
     if (esFin() && False)
        { Poner(Rojo) }
       else
        { Poner(Azul) }
 ¿Qué hace?
 ▶ ¡Qué valor tiene esFin() && False?
```

Orden de evaluación

- ► En semántica trivaluada el orden de evaluación es importante
- ▶ Si $p \land q$ se evalúa de izquierda derecha la tabla de \land es:

р	q	$p \wedge q$
F	F	F
F	Т	F
T	F	F
T	Т	Т
F	\perp	F
Т	\perp	\perp
1	F	\perp
1	Т	\perp
上	\perp	丄

▶ Otras opciones: (1) de derecha a izquierda o (2) paralela.

Evaluaciones alternativas de la conjunción

▶ Otras opciones: (1) de derecha a izquierda o (2) paralela.

p	q	$p \wedge q$	
F	F	F	
F	Т	F	
Т	F	F	
Т	Т	Т	
F	\perp		
Т	\perp	上	
\perp	F	F	
\perp	Т		
\perp	\perp	上	

z) paraicia.					
p	q	$p \wedge q$			
F	F	F			
F	Т	F			
T	F	F			
T	Т	Т			
F	上	上			
T	上	上			
上	F	上			
	Т	上			
\perp	上	上			

► Correlación con circuito corto y circuito largo

Sección 2

Forma normal conjuntiva

Forma normal conjuntiva (FNC)

- ▶ Un Literal es una variable proposicional p o su negación $\neg p$
- ▶ Una fórmula ϕ está en FNC si es una conjunción

$$\psi_1 \wedge \ldots \wedge \psi_k$$

donde cada ψ_i es una disyunción

$$\chi_{i,1} \vee \ldots \vee \chi_{i,n_i}$$

y cada $\chi_{i,i}$ es un literal

Una FNC es una "conjunción de disyunciones de literales"

$$\blacktriangleright (p \lor q) \land (p \lor \neg q)$$

- ▶ $(p \lor q) \land (p \lor \neg q)$ está en FNC
- $\blacktriangleright (p \lor q) \land (p \lor \neg \neg q)$

- ▶ $(p \lor q) \land (p \lor \neg q)$ está en FNC
- ▶ $(p \lor q) \land (p \lor \neg \neg q)$ no está en FNC
- $ightharpoonup (p \land q) \lor p$

- ▶ $(p \lor q) \land (p \lor \neg q)$ está en FNC
- ▶ $(p \lor q) \land (p \lor \neg \neg q)$ no está en FNC
- \blacktriangleright $(p \land q) \lor p$ no está en FNC

Pasar a FNC

¿Podemos transformar cualquier fórmula a FNC?

Pasar a FNC

¿Podemos transformar cualquier fórmula a FNC?

Teorema

Para toda fórmula ϕ puede hallarse una fórmula ϕ' en FNC que es lógicamente equivalente a ϕ .

- ► Sí, en cuatro pasos de conversión.
 - 1. Eliminar el sí y sólo sí.
 - 2. Eliminar la implicación.
 - 3. Pasar a forma normal negada.
 - 4. Pasar a forma normal conjuntiva.

Eliminar el sí y sólo sí

Lema

Toda fórmula es lógicamente equivalente a otra en la que no aparece el conectivo \leftrightarrow .

Demostración.

- Se aplica exahustivamente la equivalencia lógica que existe entre $\phi \leftrightarrow \psi$ y $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$.
- ▶ Reemplazando cada ocurrencia de $\phi \leftrightarrow \psi$ por $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
- ► La fórmula queda escrita en términos de \rightarrow , \land , \lor , \neg

Eliminar la implicación

Lema

Toda fórmula es lógicamente equivalente a otra en la que no aparece el conectivo \rightarrow .

Demostración.

- Se aplica exahustivamente la equivalencia lógica que existe entre $\phi \to \psi$ y $\neg \phi \lor \psi$
- ▶ Reemplazando cada ocurrencia de $\phi \rightarrow \psi$ por $\neg \phi \lor \psi$
- ► La fórmula queda escrita en términos de ∧, ∨, ¬

Forma normal negada

El conjunto de fórmulas en forma normal negada (NNF) se define como:

- 1. p y $\neg p$ están en NNF para toda variable proposicional p.
- 2. Si $\phi, \psi \in NNF$, entonces $(\phi \lor \psi), (\phi \land \psi) \in NNF$.
- Este es otro ejemplo de un conjunto inductivo

Forma normal negada

Lema

Toda fórmula es lógicamente equivalente a otra en NNF.

Demostración.

Se aplican exahustivamente las equivalencias lógicas que existen entre

$$\neg(\phi \land \psi) \quad y \quad \neg\phi \lor \neg\psi
\neg(\phi \lor \psi) \quad y \quad \neg\phi \land \neg\psi
\neg\neg\phi \quad y \quad \phi$$

$$\neg((p \lor q) \land (q \to p))$$

Pasar NNF a FNC

Dada ϕ en NNF, definimos una función que denota la FNC de ϕ :

$$FNC(\phi)$$

Recordar que en NNF las negaciones aparecen sólo delante de variables proposicionales

Pasar NNF a FNC

Dada ϕ en NNF, definimos una función que denota la FNC de ϕ :

$$FNC(\phi)$$

Recordar que en NNF las negaciones aparecen sólo delante de variables proposicionales

- No. Sólo vale si ϕ_1 y ϕ_2 son disjunciones de literales.
- Sino, una contiene una conjunción. Ej. $FNC(\phi_1) = \xi_1 \wedge \xi_2$
- Podemos utilizar la ley distributiva

$$\psi \lor (\xi_1 \land \xi_2)$$
 sii $(\psi \lor \xi_1) \land (\psi \lor \xi_2)$
 $(\xi_1 \land \xi_2) \lor \psi$ sii $(\xi_1 \lor \psi) \land (\xi_2 \lor \psi)$

Notación conjuntista para FNC

Considerar la FNC (recordar que cada $\chi_{i,j}$ es una literal)

$$\underbrace{\left(\chi_{1,1}\vee\ldots\vee\chi_{1,n_1}\right)}_{\phi_1}\wedge\ldots\wedge\underbrace{\left(\chi_{k,1}\vee\ldots\vee\chi_{k,n_k}\right)}_{\phi_k}$$

- ▶ Dado que tanto ∨ como ∧
 - 1. son conmutativos: $(\phi \lor \psi)$ sii $(\psi \lor \phi)$
 - 2. son asociativos: $((\phi \lor \psi) \lor \chi)$ sii $(\phi \lor (\psi \lor \chi))$
 - 3. son idempotentes: $(\phi \lor \phi)$ sii ϕ

Podemos asumir que

- 1. Cada ϕ_i es distinta
- 2. Cada $\chi_{i,j}$ dentro de cada ϕ_i también

Notación conjuntista para FNC

Consecuentemente para una FNC podemos usar la notación

$$\{C_1,\ldots,C_n\}$$

donde cada C_i es un conjunto de literales

$$\{\chi_{i1},\ldots,\chi_{im_i}\}$$

Es decir

$$\{\{\chi_{11},\ldots,\chi_{1m_1}\},\ldots,\{\chi_{n1},\ldots,\chi_{nm_n}\}\}$$

Ejemplo

La FNC $(p \lor q) \land (p \lor \neg q)$ se anota

$$\{\{p,q\},\{p,\neg q\}\}$$