- 2. Юревич Е.И. Основы робототехники. Л.: Машиностроение. Ленинградское отделение, 1985.
- 3. Корсункий В.А., Машков К.Ю., Наумов В.Н. Выбор критериев и классификация мобильных робототехнических систем на колесном и гусеничном ходу: Учебное пособие. М.: МГТУ им. Н. Э. Баумана, 2014.
- 4. Корягин А. В. Образовательная робототехника Lego WeDo: Сборник методических рекомендаций и практикумов. М.: ДМК Пресс, 2016.
- 5. Хиросэ Ш. Бионические роботы. Змееподобные мобильные роботы и манипуляторы / Шигео Хиросэ. М.: Институт компьютерных исследований, 2014.
- 6. Тывес Л.И. Механизмы робототехники. Концепция развязок в кинематике, динамике и планировании движений. М.: СИНТЕГ, 2014.
- 7. Потапова Р.К. Речевое управление роботом. Лингвистика и современные автоматизированные системы. М.: Гостехиздат, 2012.
- 8. Краснова С.А. Блочный синтез систем управления роботами-манипуляторами в условиях неопределенности. М.: Мир, 2014.
- 9. Информационные системы виртуальной реальности в мехатронике и робототехнике. Учебное пособие / Γ .В. Алферов и др. M.: Издательство СПбГУ, 2009.

УДК 004.85 doi:10.18720/SPBPU/2/id23-500

Хаммасова Луиза Шамилевна ¹, студент магистратуры; **Нестеров Сергей Александрович** ², доцент, канд. техн. наук, доцент

РАСПОЗНАВАНИЕ СПАМ-СООБЩЕНИЙ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

^{1, 2} Россия, Санкт-Петербург,

Санкт-Петербургский политехнический университет Петра Великого, hammasova.lsh@edu.spbstu.ru, 2 nesterov@spbstu.ru

Аннотация. В работе решается задача классификации текстов с целью обнаружения спама. Использованы различные алгоритмы машинного обучения и подходы к предобработке входных данных: нормализация исходных данных путем разделения текста по униграммам и триграммам, векторизация в соответствии с моделями «мешка» слов и ТF-IDF. В качестве программных средств для решения поставленной задачи выбраны Python и Weka. Полученные модели машинного обучения, протестированные на данных, независимых от обучающих наборов, дают высокую точность.

Ключевые слова: машинное обучение, методы классификации, спам, векторы признаков, текст на естественном языке, Python, Weka.

Luiza S. Khammasova¹, Master's Student; Sergey A. Nesterov²,

Candidate of Technical Sciences, Associate Professor

RECOGNITION OF SPAM MESSAGES USING MACHINE LEARNING METHODS

^{1, 2} Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia, ¹ hammasova.lsh@edu.spbstu.ru, ² nesterov@spbstu.ru

Abstract. The paper describes the solution of the problem of text classification for spam detection. Various machine learning algorithms and approaches to preprocessing the input data were used: normalization of the initial data by dividing the text into unigrams and trigrams, vectorization using "bag of words" and TF-IDF models. Python and Weka were chosen as software tools for solving the problem. The machine learning models were tested on new data and provided high accuracy.

Keywords: machine learning, classification methods, spam, feature vectors, natural language text, Python, Weka.

Введение

По данным Лаборатории Касперского [1] каждый год спам занимает примерно половину объема всего мирового почтового трафика. Сначала спам рассылался напрямую на единичные адреса пользователей, и его было легко блокировать. Со временем появились сложные системы массовой рассылки и высокоскоростные интернет-каналы, которые позволили быстро и дешево осуществлять рассылку спама.

В связи с этим были разработаны различные методы распознавания спам-сообщений. Обнаружение спама в электронной почте может быть выполнено как с использованием методов машинного обучения, так и с помощью других средств [2]. В представляемой работе используется подход, основанный на использовании алгоритмов машинного обучения для классификации текстов.

1. Постановка задачи и используемые алгоритмы

Пусть $L=\{L_1,\ldots,L_m\}$ — множество писем электронной почты с метками (обычное письмо или спам), а $U=\{U_1,\ldots,U_n\}$ — неразмеченное множество писем, где U_i соответствует i-му письму. Предполагается, что элементы L и U отличны друг от друга. Письмо представляется в виде вектора признаков, размерность которого равна размеру словаря V, $x_i=(x_{i1},x_{i2},\ldots,x_{i|v|})$, где $x_{ij}=1$, если i-е письмо содержит j-е слово и $x_{ij}=0$ — иначе. На этих данных строится фильтр F: $U \rightarrow \{1,0\}$, который классифицирует письмо как спам или реальное письмо.

Для классификации текстов в работе использовались следующие алгоритмы:

- -упрощенный алгоритм Байеса [4] вероятностный классификатор, основанный на теории Байеса с допущением о независимости признаков;
- метод опорных векторов (англ. support vector machine, SVM) [5], который строит в n-мерном пространстве признаков такую гиперплоскость, чтобы она разделяла объекты выборки наиболее точно;
- метод k ближайших соседей (англ. k-nearest neighbors, kNN) [6], суть которого заключается в том, что находятся k соседей, которые наиболее близко расположены к рассматриваемому объекту с неизвестной меткой. Далее новый объект относят тому классу, который является наиболее распространённым среди k соседей;
- многослойный персептрон (англ. multilayer perceptron, MLP) [7] один из вариантов нейронной сети прямого распространения. Под процессом обучения нейронной сети понимается поиск таких значений весов и порогов сети, которые минимизирую ошибку. На основе собранных исторических данных веса и пороговые значения корректируются автоматически. В процессе корректировки происходит расчет ошибки путем вычисления выходных сигналов и сравнения их с целевыми.

2. Обзор данных и предобработка текста

В работе использовался набор данных Spam Email, опубликованный на платформе Kaggle [3]. В нем содержится 86,6 % реальных сообщений (4825 строк) и 13,4 % спама (747 строк), эти два вида сообщений перемешаны между собой. Для работы алгоритмов классификации требуется произвести нормализацию и векторизацию исходных сообщений, для чего использовался язык программирования Python и программная библиотека NLTK.

Нормализация текста включает в себя следующие действия:

- 1) приведение всех документов к нижнему регистру;
- 2) удаление слов, не содержащих смысловой информации;
- 3) удаление знаков пунктуации;
- 4) разбиение документов на токены; в работе для сравнения используются униграммы (токен состоит из одного слова) и триграммы (токен состоит из трех слов);
- 5) лемматизация текста, иными словами, приведение слова к начальной форме, учитывая морфологию слова.

Алгоритмы машинного обучения не имеют функционала для работы с текстом на естественных языках. По этой причине текст должен быть преобразован в числовые векторы. Распространенным методом извлечения признаков из текста является формирование множества, элементами которого являются отдельные слова, встречающиеся в тексте.

В качестве входных данных модели векторизации принимают токенизированные текстовые данные, над ними могут производиться не все этапы нормализации. В случае использования «мешка» слов [9] вместо

токена обозначена его частота использования в отдельном документе. В случае TF-IDF — подсчитывается важность каждого токена в документах [9]. В работе используются следующие вариации векторизации:

- 1) модель «мешка слов», документы разбиты на униграммы (первый вариант);
- 2) модель «мешка слов», документы разбиты на триграммы (второй вариант);
- 3) модель TF-IDF, документы разбиты на униграммы (третий вариант);
- 4) модель TF-IDF, документы разбиты на триграммы (четвертый вариант).

3. Полученные результаты

Обучение проводилось на 70 % данных для всех алгоритмов классификации. Распределение происходило следующим образом: тренировочному набору соответствует первые 70 % документов, остальные 30 % документов относятся к тестовому набору.

Подбор параметров алгоритмов осуществлялся методом перебора. В итоге были использованы следующие параметры:

- в качестве классификатора для реализации алгоритма Байеса взят «MultinomialNB»;
 - для алгоритма SVM использовалась линейная функция ядра;
 - в алгоритме KNN для обучения было выбрано 3 «соседа»;
- в MLP было 2 скрытых слоя по 2 нейрона, функция активации скрытого слоя «logistic», функция оптимизации весов «adam», постоянная скорость обучения.

В таблицах 1 и 2 представлены лучшие результаты для каждого метода, полученные с использованием Python с библиотекой Scikit-learn и WEKA соответственно. Для оценки моделей использовались следующие показатели (используются общепринятые англоязычные названия, т. к. перевод на русский может внести неоднозначность) [9]: accuracy, recall, precision, F1-score, specificity, time.

Результаты тестирования моделей, созданных на Python

т езультаты тестирования моделей, созданных на т успои							
Метод и харак-	Accuracy	Recall	Precision	F1_score	Specificity	Time	
теристика							
Метод Байеса,	0.967	0.973	<u>0.988</u>	0.98	<u>0.93</u>	<u>3.1s</u>	
«мешок» слов,							
униграммы							
SVM, «мешок»	0.972	0.992	0.976	<u>0.984</u>	0.847	17.2s	
слов, униграммы							
KNN, TF-IDF,	0.949	0.983	0.959	0.971	0.738	5s	
униграммы							
MLP, «мешок»	0.971	0.987	0.978	0.982	0.856	67.29s	
слов, униграммы							

Таблица 1

Результаты тестирования моделей, Weka

Метод и харак- теристика	Accuracy	Recall	Precision	F1_score	Specificity	Time
Метод Байеса, «мешок» слов,	0.964	0.97	<u>0.985</u>	0.979	<u>0.985</u>	<u>0.65s</u>
униграммы						
SVM, «мешок»	0.982	0.996	0.984	0.99	0.984	1.3s
слов,						
униграммы						
KNN, «мешок»	0.951	0.987	0.947	0.967	0.947	83.27s
слов,						
униграммы						
MLP, «мешок»	0.963	0.994	0.981	0.987	0.985	23.46s
слов,						
униграммы						

В таблицах 1 и 2 в столбце "time" указано суммарное время обучения и тестирования модели. Из полученных результатов следует, что модели, обученные на данных с унарной токенизацией, производят классификацию точнее, а обучение производится быстрее. Скорость работы связана с тем, что в наборах с унарной токенизацией меньше элементов, поэтому параметр времени не учитывался при сравнении моделей, построенных на данных с разным содержанием токенов.

4. Тестирование на новых данных и анализ результатов

Дополнительно было произведено тестирование моделей классификации с добавлением новых данных, не входящих в первоначальный набор текстовых сообщений. Данный набор взят с платформы Kaggle [8]. Из набора были выбраны первые 2000 строк, документы были нормализованы и преобразованы в векторы признаков аналогично основному набору. После добавления новых документов общее их количество составило 7555. После нормализации и удаления документов, полностью состоящих из стоп-слов, количество документов составило 6833.

Тестирование проводилось для тех сочетаний алгоритмов, параметров и методов предобработки, которые показали лучшие результаты на предыдущей проверке для языка Python. В таблице 3 отображены значения метрик для каждого случая.

Тестирование на новых данных показало эффективность рассмотренных моделей классификации. Метод опорных векторов показал наилучшие результаты. При этом скорость работы у него не такая высокая, как у методов Байеса или KNN.

Результаты классификации на новых данных

Метод и харак- теристика	Accuracy	Recall	Precision	F1_score	Specificity	Time
Метод Байеса, «мешок» слов, униграммы	0.985	0.989	0.993	0.99	0.958	<u>4.4s</u>
SVM, «мешок» слов, униграммы	0.996	<u>0.999</u>	<u>0.996</u>	0.998	0.974	28.8s
KNN, TF-IDF, униграммы	0.994	0.998	0.995	0.996	0.968	6.4s
MLP, «мешок» слов, униграммы	0.989	0.993	0.992	0.993	0.951	84.69s

Таким образом, если требуется высокая скорость обучения, стоит выбирать один из следующих методов: полиномиальный метод Байеса или KNN. Если обучение моделей производится редко или есть потребность в очень высокой точности классификации, стоит использовать метод опорных векторов.

В исследовании Н. Сутта, З. Лю, Х. Чжан [10] было проведено сравнение методов SVM, KNN, Байеса и других методов для выявления наиболее точных классификаторов. В указанной публикации для анализа тоже использовались два набора данных: первый состоял из одного набора сообщений, второй — из двух разных. Данные были представлены в виде векторов признаков по схеме TF-IDF, использовались униграммы, биграммы и триграммы. Наибольшая точность была достигнута при обучении модели SVM с линейной функцией ядра на втором виде набора данных, с токенизацией при n=1 и n=2. Точность (англ. ассигасу) модели SVM ≈ 0.99 . KNN показал точность меньше, при этом максимальная точность достигается при использовании биграмм. Классификатор, построенный по модели Байеса, показал худший результат по всем проверенным n-граммам практически среди всех моделей, проверенных в работе.

Результаты анализа, произведенного в исследовании [10], близки к тем, что были получены в представляемой работе: высокие точности достигаются при обучении на данных, состоящих из разных наборов сообщений, в обоих случаях SVM показывает более высокую точность по сравнению с другими алгоритмами. В работе Н. Сутта, З. Лю, Х. Чжан модели, обученные на n-граммах (при n > 1), показывали высокие результаты, что может быть объяснено большим объемом использованного набора данных (более 100 тысяч сообщений).

Заключение

В работе были построены классификаторы для определения спама в текстовых сообщениях. В качестве предварительной обработки текстов были проведены нормализация данных и представление полученных документов в векторы признаков по схемам «мешка» слов и ТF-IDF.

В работе была выявлена неэффективность обучения на данных с триграммной токенизацией. Это связано с относительно небольшим набором данных для обучения. Словосочетания, состоящие из нескольких слов, встречаются реже в предложениях, чем отдельно взятые слова.

Ко второй проблеме можно отнести скорость обучения и тестирования моделей. При увеличении объема данных время, затрачиваемое на обучение модели классификации, будет увеличиваться. В таком случае требуется использовать программные реализации на языках с высокой скоростью работы. В работе были рассмотрены реализации на двух языках: Python и Java (Weka). Скорость выполнения классификации на Java выше, чем на Python. Следовательно, если требуется высокая скорость обучения и классификации, лучше использовать Java.

Высокой точности удалось достичь при обучении модели SVM на документах, разбитых на униграммы и с векторизацией «мешка слов» в Weka и Python: значения меры F1 равны 0.984 и 0.99 соответственно, что является неплохим результатом. После добавления новых документов для тестирования, значения точностей и других метрик моделей возросли. Мера F1 модели SVM стала равна 0.998.

Список литературы

- 1. Отчеты по спаму и фишингу | SecureList. [Электронный ресурс]. URL: https://securelist.ru/category/spam-and-phishing-reports/ (дата обращения: 06.11.2022).
- 2. Мироненко А. Н. Метод распознавания спам-сообщений на основе анализа заголовка письма // МСиМ. 2010. №1 (21). URL: https://cyberleninka.ru/article/n/metod-raspoznavaniya-spam-soobscheniy-na-osnove-analiza-zagolovka-pisma (дата обращения: 06.11.2022).
- 3. Spam Email | Kaggle [Электронный ресурс]. URL: https://www.kaggle.com/mfaisalqureshi/spam-email?select=spam.csv (дата обращения: 06.11.2022).
- 4. Вьюгин В. В. Математические основы теории машинного обучения и прогнозирования. М.: МЦМНО, 2013. 387 с.
- 5. Журавлев Ю.И., Рязанов В.В., Сенько О.В. Распознавание. Математические методы. Программная система. Практические применения. М.: Изд-во ФАЗИС, $2005-157~\rm c.$
- 6. Метод ближайших соседей. machinelearning.ru. [Электронный ресурс]. URL: http://www.machinelearning.ru/wiki/index.php?title=KNN (дата обращения: 06.11.2022).
- 7. Raschka S., Mirjalili V. Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Mumbai: Packt Publishibg, 2019 848 p.
- 8. SMS Spam Collection | Kaggle [Электронный ресурс]. URL: https://www.kaggle.com/datasets/assumewisely/sms-spam-collection (дата обращения: 06.11.2022).

- 9. Мюллер А., Гвидо С. Введение в машинное обучение с помощью Python. СПб: Альфа-книга, 2017. 480 с.
- 10. Sutta N., Liu Z., Zhang X. A study of machine learning algorithms on email spam classification // CATA 2020. EPiC Series in Computing. Vol. 69. Pp. 170–179. URL: https://doi.org/10.29007/qshd.

УДК 004.852, 004.62 doi:10.18720/SPBPU/2/id23-501

> Гальченко Юлия Вадимовна ¹, студент магистратуры; Нестеров Сергей Александрович ², доцент, канд. техн. наук, доцент

КЛАССИФИКАЦИЯ ТЕКСТОВ ПО ТОНАЛЬНОСТИ МЕТОДАМИ МАШИННОГО ОБУЧЕНИЯ

^{1, 2} Россия, Санкт-Петербург, Санкт-Петербургский политехнический университет Петра Великого, ¹ artyuhova.yuv@edu.spbstu.ru, ² nesterov@spbstu.ru

Анномация. В данной статье рассмотрены существующие методы классификации текстов по тональности, создана модель нейронной сети, которая успешно решает поставленную задачу классификации. Нейросеть была обучена на наборах данных, которые включают отзывы о различных услугах и местах, а также рецензии на фильмы. Полученная модель нейросети показала высокий результат в задаче классификации текстов по тональности на тестовых данных.

Ключевые слова: классификация, машинное обучение, нейронные сети, сеть LSTM, методы классификации текстов, тональность текста, интеллектуальный анализ данных.

Yuliia V. Galchenko ¹,
Master's Student;
Sergey A. Nesterov ²,
Associate Professor, PhD in Technical Sciences

SENTIMENT ANALYSIS WITH MACHINE LEARNING METHODS

1, 2 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia, 1 artyuhova.yuv@edu.spbstu.ru, 2 nesterov@spbstu.ru

Abstract. In this article, the existing methods for sentiment analysis were considered, a neural network model that successfully solves the task of classification was created. The neural network was trained on datasets that include reviews of various services and