Capstone Project Mapxus

POI Collection and Brand Identification Enhancement in Indoor Map Production

Advisor

Mr. Baniel Cheung

Team '1der ' Members

Detian CHENG (May), Zhong DONG (Leonie), Yuxuan HU (Lucy), Shengbo JIANG (Will), TING Cheuk Lam (Natalie), Samuel MORAN, Yushuangzi ZHANG (Yuri)

Mapxus specializes in making indoor mapping smart and simple

DIGITAL MAPS

require 'Point-of-Interest' (POI) information.

POLINFORMATION

help users to navigate and find specific locations.

Collecting POI information can be a challenging task

Procedures to collect POI information should be

Accurate

Resource-efficient

Up-to-date

Matching business model requirements

Background

Current market practice for POI methods requires customers' own effort unlike Mapxus' approach

To better cater customers' needs and provide highly customized services to customers, companies would prefer having POI information collected, inputted and maintained by customers as customers own the most comprehensive and accurate information.

Mapxus, on the other hand, adopts a proactive approach to look for potential business opportunities.

Mapxus could work collaboratively with customers to get the most comprehensive and accurate information efficiently

Challenge

Lots of human effort is needed to capture, maintain and validate the POI information.

Standardize POI information from customers

List a clear set of requirements from customers on floor plan format and size, POI excel format etc.

Create CMS as Dashboard format

Utilize CMS as an efficient tool to monitor mall information, events, maintenance tasks and store updates.

Real time POI validation through brand name change detection

Based on Naver Labs' research on detecting store name changes in malls, attempt to integrate a cloud database to perform real-time updates for POI maintenance.

Analysis Mapxus' Current Practice

Mapxus currently uses the Cell Sketch (CS) Approach and tests the Brand Identification (B.I.) AI Approach for POI data production

Plaza Hollywood (2F, 3F)

Temple Mall South (UG, L1).

Both approaches have strengths and weaknesses

	CS Approach	B.I. Al Approach
Average Accuracy	96 % without site validation, 100 % with site validation	61.5 %
Time for Manual Work	16 hours	6.21 hours
Efficiency	Low: avg. 4 hours/floor	High: avg. 1.5 hours/floor
Information Completeness	Additional information available, including POI category	360° street view available
Feasibility	Low: only applicable to big shopping malls with official websites	High
Extensibility	Low: only applicable to locations that provide public POI information	High
Learning Difficulty	Low: learning the use of Cell Sketch and Site Validation app	Low: learning the use of 360 cameras and Visual Map Editor
	Accuracy, Information Completeness	Efficiency, Feasibility, Extensibility

Errors in the B.I. AI Approach are due to both internal and external factors

The 'pick out' algorithm is based on the output data from the B.I. AI algorithm

- The raw dataset consists of 4 csv files (Temple Mall South UG, L1; Plaza Hollywood 2F, 3F) with the same structure.
- There are 5,424 observations in total, the target variable is `BrandId`/ `Eng`, and the attributes used in the threshold analysis are `Winner`, `ModelConfidenceScore`, and `JWScore_ModelResult_MatchResult`.

Attribute Name	Description
`Winner`	The ID for a specific unit.
`ModelConfidenceScore`	The likelihood that the output of the machine learning model is correct and will satisfy user requests.
`JWScore_ModelResult_MatchResult`	A measurement on the similarity between two texts.

The following 'pick out' algorithm optimization and threshold analysis are based on the whole dataset.

The optimized algorithm picks the brand name with the largest JWScore instead of a random brand name

Current 'pick out' algorithm

- a. Filter out the predictions with JWScores that are smaller than threshold (ModelConfidenceScore > 0.1 and JWScore > 0.85)
- b. Pick the most frequently predicted brand name to determine the `Winner`
- c. Pick one brand name randomly out of all brand names with the same count

Our optimized approach

- a. Filter out the predictions with JWScores that are smaller than threshold
- b. Pick the most frequently predicted brand name to determine the `Winner`
- c. Out of all brand names with the same count, pick the prediction with the largest JWScore

Background Analysis **Exploration** Recommendations

15

Precision increases and recall rate drops as JW-threshold improves

Calculating Rule

- 1. Three metrics to measure the accuracy:
 - 1) Precision = #correct predictions / #filtered POI
 - 2) Recall Rate = #correct predictions / #total POI
 - 3) F1 Score = 2 * Precision * Recall Rate / (Precision + Recall Rate)

We use the F1 Score as the metric to decide on an optimal JW-threshold.

- 2. Precision, Recall Rate, and F1 Score are all calculated for the whole dataset.
- 3. To tune the JW-threshold, the *ModelConfidenceScore* threshold is set to 0.1.
- 4. POI data with unknown ground truth is dropped when calculating the accuracy.

The F1 Score has a maximum at a JW-threshold of 0.85

Calculating Rule

- 1. Three metrics to measure the accuracy:
 - 1) Precision = #correct predictions / #filtered POI
 - 2) Recall Rate = #correct predictions / #total POI
 - 3) F1 Score = 2 * Precision * Recall Rate / (Precision + Recall Rate)

We use the F1 Score as the metric to decide on an optimal JW-threshold.

- 2. Precision, Recall Rate, and F1 Score are all calculated for the whole dataset.
- 3. To tune the JW-threshold, the *ModelConfidenceScore* threshold is set to 0.1.
- 4. POI data with unknown ground truth is dropped when calculating the accuracy.

Optimal JW-threshold:

0.85

Accuracy gain with optimized algorithm:

2.52%

Expanded reference brand list and yielded prediction accuracy of ~90% for pure English OCR text and ~30% for text containing Chinese

Challenge

Prediction performance in the current process (besides OCR) relies on the completeness of the reference brand list, but there are always unseen or less popular brands not included in the list.

Expanding the brand list

Expand the existing reference brand list using web scraping

Web scraped from Google Maps shop names from a list of ~1,000 malls in Hong Kong.

- Retrieved 33,731 shop names.
- After a complete data cleaning process, approx. 27,000 unique brand names are expected to be obtained.

Brand name prediction

Predict a most likely brand from raw OCR text

Takes in a raw OCR text, we have written a function called brand_autocorrect that will output 5 suggested results for the most likely brand¹ based on Jaro-Winkler distance measures.

Accuracy analysis

Analyze how accurate the function predicts the most likely brand

The function along with the expanded brand list predicts the most likely brand on a set of simulated OCR data with overall accuracy² of:

- 91% for raw OCR text with **English** letters only (88% of filtered OCR text³); and
- 29% for raw OCR text containing Chinese characters (12% of filtered OCR text³).

 $^{^{1}}$ Most likely brand was the result from the 'Pick out' algorithm defined in the threshold analysis.

² 'Overall accuracy': for how many OCR texts in the simulated data does the correct brand name appear in one of the five corrections suggested by the brand_autocorrect function.
³ Raw OCR text from Mapxus raw results for Temple Mall South and Plaza Hollywood with Jaro-Winkler distance greater than 0.85 and model confidence score greater than 0.1.

Expanded reference brand list and yielded prediction accuracy of ~90% for pure English OCR text and ~30% for text containing Chinese

Challenge

Prediction performance in the current process (besides OCR) relies on the completeness of the reference brand list, but there are always unseen or less popular brands not included in the list.

Expanding the brand list
Expand the existing reference brand
list using web scraping

Web scraped from Google Maps shop names from a list of ~1,000 malls in Hong Kong.

- Retrieved 33,731 shop names.
- After a complete data cleaning process, approx. 27,000 unique brand names are expected to be obtained.

- 1. Query for shops in a specific mall
- 2. Scrape all the **shop names** in the results

Clean out non-shop names and branch and mall information in the shop name list.

Temple Mall South
Temple Mall North

ABOUTHAI 阿布泰國生活百貨- 黄大仙店

LIFE@HOME

OPTICAL 88 聽覺護理中心 (黃大仙)

Fung Tak Shopping Centre

YVES ROCHER 黄大仙店 Temple Mall South

Prediction performance in the current process (besides OCR) relies on the completeness of the reference brand list, but there are always unseen or less popular brands not included in the list.

Brand name prediction

Predict a most likely brand from raw OCR text

Takes in a raw OCR text, we have written a function called brand_autocorrect that will output 5 suggested results for the most likely brand¹ based on Jaro-Winkler distance measures.

Note 1: 'Most likely brand' was the final predicted brand name from the 'Pick out' algorithm defined in the 'Final Prediction Optimization' section.

Expanded reference brand list and yielded prediction accuracy of ~90% for pure English OCR text and ~30% for text containing Chinese

Challenge

Prediction performance in the current process (besides OCR) relies on the completeness of the reference brand list, but there are always unseen or less popular brands not included in the list.

Input containing

Innut with

Note 2: 'Overall accuracy' refers to 'One of the 5 suggested results' row of the result.

Note 3: 'Filtered OCR text' refers to raw OCR text from Mapxus raw results for Temple Mall South and Plaza Hollywood in the 'raw results' files, after filtering for Jaro-Winkler distance greater than 0.85 and model confidence score greater than 0.1. This would include 567 (88%) pure English raw OCR text and 75 (12%) raw OCR text containing Chinese characters. For more information, please see 'Notes on OCR data simulation' slide in the Appendix.

Correct brand name appearing in	English letters only	Chinese characters
One of the 5 suggested results	90.59%	29.33%
1st suggested result	85.22%	22.67%
2nd suggested result	41.60%	8.00%
3rd suggested result	18.93%	6.67%
4th suggested result	7.84%	8.00%
5th suggested result	2.05%	1.33%
Size of data (incl. simulated and original data)	11,792	75

Accuracy analysis

Analyze how accurate the function predicts the most likely brand

The function along with the expanded brand list predicts the most likely brand on a set of simulated OCR data with overall accuracy² of:

- 91% for raw OCR text with English letters only (88% of filtered OCR text³); and
- 29% for raw OCR text containing **Chinese** characters (12% of filtered OCR text³).

Web scraping is fast and extensible; data cleaning and validation would be the next step

- Data cleaning takes a long time due to the large variety of name formats in the scraped results
- Formatting the scraped brand list into the reference brand list (i.e. having both the English and Chinese names) will also take a large amount of time

Explore the possibility of combining the optimized 'pick out' algorithm, threshold analysis, and brand name prediction.

Extensions

23

Strengths

- Using web scraping to retrieve shop names is fast, and it is not limited to shops in malls (e.g. MTR stations)
- We can also scrape on other websites (e.g. yelp.com or openrice.com) for these shop informations to further expand the reference brand list

Next steps

- Optimize algorithm for automating data cleaning and processing
- Data validation checking the completeness and accuracy of the scraped information in greater detail

Recommendations Exploration Recommendations

Using web scraping to retrieve shop numbers and floors for faster Cell Sketch POI input is achievable

We suggested using web scraping to obtain an csv file of shop names and shop positions which can be imported directly into Cell Sketch for POI input. This method is robust and can be used for any shop name and any mall as long as they are listed on the internet.

- Improve algorithm in extracting shop position information.
- Perform validation on scraped results.
- Perform scraping on other websites (e.g. yelp.com) to improve completeness of results.

25

• Adjust code to scrape other information, e.g. categories and opening times.

Context & Ideas

Information Retrieval

Results

Due to time constraints we were only able to finish

Using the expanded brand list, we scraped the shops' addresses from openrice.com and Google Maps, and then obtained the shop number and shop floor for each shop.

- Due to time constraints we were only able to finish 32% of all the scraping.
- After cleaning all the scraped results, 72% retrieved valid addresses, from which 73% were able to retrieve shop numbers or shop floors.

Mapxus can improve its current POI collection process

Improve B.I. AI accuracy

- Use expanded brand list for a better matching performance
- Apply new 'Pick out' algorithm for an immediate accuracy improvement

Use web scraping method

- The web scraping method is time efficient
- Can be used for all malls and buildings that are searchable online
- Potential to scrape additional information

Create a CMS system

- Create own database that stores all POI information
- Enable customers to manage their own POI data via standardized CMS interface, or integrate customer's CMS
- Use data for real-time POI validation solution for a convenient maintenance

Thanks for you attention!

Summary

Section	Content				
Background	 Identified 2 challenges of Mapxus: efficiency of POI collection procedures and accuracy of B.I.; Investigated 13 competitors and offered a market overview on their POI collection, input and maintenance methods. 				
Analysis	 Conducted experiments on producing POI data in both CS approach and B.I. AI approach; Analyzed and compared current CS and B.I. AI approach in 7 aspects. 				
Exploration	 Optimized the 'pick out' algorithm and performed threshold analysis; Explored using web scraping to expand the brand list and tested the accuracy of using these results for brand name prediction; Explored using web scraping to collect POI information for Cell Sketch input. 				
Recommendation	 Improve B.I. accuracy by using expanded brand list or the optimized 'pick out' algorithm; Utilize web scraping algorithm for time efficient solution that works for all malls with an online presence; Create a POI database and co-manager it with customers. 				

Web scraping - Shop/restaurant names

Shop/restaurant names in all malls in Hong Kong

- We retrieved a list of malls in English (131 malls) and in Chinese (853 malls) from Wikipedia.
- For all the malls on the two lists, we searched on Google map using queries either shops in "<mall>" or restaurants in "<mall>", and scraped the names of all the results.
- In the end we retrieved 33,731 shop names.

Data cleaning (in progress)

- We will clean out non-shop names in the shop name list (e.g. names of malls, shopping centers, hotels, description of shops).
- We will also clean out branch and mall information included in the scraped shop names.
- Due to time limits we were not able to fully clean all the scraped data. For the purpose of exploration, we used a half-preprocessed list of 7,962 brand names, and these are used and fed into the brand autocorrect function.

Temple Mall South

Temple Mall North

ABOUTHAI 阿布泰國生活百貨- 黃大仙店

LIFE@HOME

OPTICAL 88 聽覺護理中心 (黃大仙)

Fung Tak Shopping Centre

YVES ROCHER 黃大仙店 Temple Mall South

Next step: Brand name prediction

Imperial Diamond

No reviews

Jewelry store · Shop UG43A, Temple Mall South

Open · Closes 6PM · 2698 6998

In-store shopping

Cherry

 $4.0 \star \star \star \star \star \star \star (1)$

Bedding store · No. G12K, G/F, Temple Mall South

Temporarily closed · 2799 6725

Life@HOME -Wong Tai Sin

No reviews

Home goods store · Shop No. 126, Level 1 Temple Mall South, 103 Ching

Tak St

Open · Closes 9PM · 2634 0922

In-store shopping

Showing results 1 - 20

Brand name prediction

brand_autocorrect function

This function takes in the raw OCR text (Input column), and will output 5 suggestions for the correct brand name (Correction column) ranked from the highest to lowest Jaro-Winkler distance between the OCR text input and the brand name (JW_Similarity column).

Demonstrations

not entirely cleaned

Example 1: output for simulated OCR text input in English (Correct brand name not in the reference brand list previously)

Chinese OCR text - not working so well

	_autocorrect(input_word)			
	Corre	ection	Input	JW_Similarity
2244	Mint & Basil Thai Vietnamese & Indian Cui	sine	屈&&	0.569444
2843		K & L	屈&&	0.55556
4096		K&Y	屈&&	0.55556
3785	Correct result ←	屈臣氏	屈&&	0.555556

Example 2: output for simulated OCR text input in Chinese

Next step: accuracy analysis of this function's outputs on an simulated set of OCR input

Accuracy of brand_autocorrect function on simulated data

How well do the outputs of the brand_autocorrect function match the most likely brand (result from "pick out" algorithm)?

Correct brand name appearing in	Input with English letters only	Input containing Chinese characters]
One of the 5 suggested results	90.59%	29.33%	ľ
1st suggested result	85.22%	22.67%	(
2nd suggested result	41.60%	8.00%	1
3rd suggested result	18.93%	6.67%	
4th suggested result	7.84%	8.00%	
5th suggested result	2.05%	1.33%	
Size of data	11,792	75	

Note 1: the correct result might appear in multiple suggested results (see example below).

Note 2: if this function outputs only one prediction for the most counted brand, then it would be the 1st suggested result (Correction1 column in the example below).

This column is retrieved from the threshold analysis for the most counted branded with JWScore > 0.85. Each Correction is compared with this column to calculate its accuracy.

Illustration on calculation

Winner	Input	brand_id	Correction1	JWSim1	Correction2	JWSim2	Correction3	JWSim3	Correction4	JWSim4	Correction5	JWSim5	Most_counted_brand
540272	jurliqe	AA0530	Jurlique	0.975	Jurlique	0.975	Juice	0.832381	Juice Lab	0.770476	joli	0.753571	Jurlique
		1	\				↓ ·		↓				
	\	Co	rrect brand n	ame Co	orrect brand r	name Co	orrect brand r	name Co	orrect brand n	name (Correct brand	name	Correct brand name in

Correct brand name in the 1st suggested result:

Correct brand name in the 2nd suggested result: ✔

Correct brand name in the 3rd suggested result: X

Correct brand name in the 4th suggested result: X

Correct brand name in the 5th suggested result: X

Correct brand name in one of the 5 suggested result: ✓

Notes on OCR data simulation

Why we need to simulate data

- To test our brand_autocorrect function defined on the previous slide, we need data of the raw OCR text and their corresponding matched correct brand names.
- We first took in all the ModelResult and MatchResult from the 4 raw results files provided by Mapxus.
- After filtering for ModelConfidenceScore > 0.1 and JWScore > 0.85, it has 567 pure English raw OCR text and 75 raw OCR text containing Chinese characters, which we felt are not enough.

How we simulate data

- Three types of edit actions are performed on the English OCR text:
 - 1) Randomly deleting 1~10 characters
 - 2) Randomly inserting 1~10 characters
 - 3) Randomly replacing 1~10 characters
- Filtering for rows with JWScore > 0.85 and removing duplicated items, we have 11,792 records to test the accuracy of the function.
- No edits are performed on the remaining 75 raw OCR text that contains Chinese characters.

Next step: <u>accuracy</u> analysis

Cell Sketch POI Input from Web Scraping

- We explored the possibility to use web scraping to obtain a table of shop name as well as shop positions.
 We decided to use web scraping again to scrape the addresses of shops in malls.
- Using the <u>expanded brand list we scraped previously</u>, we will search all the restaurants from openrice.com and shops from Google Maps (we use these two websites because they can be used for every mall and they are considered to be containing relatively up-to-date and complete information), retrieve their addresses, then obtain the shop number and shop floor for each shop.

Restaurant information - from openrice (in progress)

Shop_name	Mall_name	Address	Shop_no	Shop_floor
Pho le	apm	Shop 19, 4/F, apm Millennium City 5, Kwun Tong	Shop 19	4/F
E-pai	apm	Shop 20-21, 4/F, apm Millennium City 5, 418 Kw	Shop 20-21	4/F
Italian Tomato Cafe	apm	Shop L5-6, 5/F, apm Millennium City 5, 418 Kwu	Shop L5-6	5/F
Honjin	apm	Shop 23, 4/F, apm Millennium City 5, 418 Kwun	Shop 23	4/F

Example: restaurants in apm and their shop positions

Shop information - from google search (in progress)

Shop_name	Mall_name	Address	Shop_no	Shop_floor
THE ONE JEWELLERY	Amoy Plaza	Shop S118A, 2/F, Amoy Plaza Phase I, 77 Ngau T	Shop S118A	2/F
CD warehouse	Amoy Plaza	Shop S57-58, 2/F, Amoy Plaza Phase I, 77 Ngau	Shop S57-58	2/F
Mannings	Amoy Plaza	Shop G183-185, G/F, Amoy Plaza Phase II, 77 Ng	Shop G183-185	G/F
百蕙	Amoy Plaza	Shop G112, G/F, Amoy Plaza Phase I, 77 Ngau Ta	Shop G112	G/F

Example: shops in Amoy Plaza and their shop positions

Industry Overview

Investigation on 13 competitors in the indoor positioning and indoor navigation industry

- 1) POI-related Information
- 2) Technology
- 3) Business-related Information

Industry Size

In 2017, the global indoor positioning and indoor navigation market was valued at \$2642 million with the **expected growth to \$43,511 million by 2025**, growing at a 42% compound annual growth rate from 2018 to 2025.

POI-related Information

Next 2) Technology 3) Business-related Information

POI Collection

POI collection are mainly done by customers and companies do not have access to customers' private data unless upon request

POI Input

POI collection are mainly done by customers, accounting for more than 80% among the methods

POI Maintenance

POI information are mainly maintained by customers through providers' own content management system (CMS) either in backend platform or dashboard

Technology

Next 3) Business-related Information

Technology Platform/Interface

Companies normally provide a dashboard for POI input and other functionalities, API would be the second most common option

Positioning Technology Availability

Among all 13 companies, 10 companies include indoor positioning technology as their services

Positioning Technology

Companies with positioning technology usually utilise proximity and trilateration positioning technology. To highlight, for "Others" section, geomagnetic field, Robotics and AI, and a mix of technologies are utilized by specific companies like IndoorAtlas and Mapsted.

Technology Requirements

Companies utilising proximity and/or trilateration positioning technology would usually requires hardware and anchors, especially the commonly used BLE beacons

Business-related Information

Applications

All companies provide navigation and mapping services. Both iOFFICE and Ubitrack focus on asset and personnel tracking solely. Specifically, for "Others" section, a majority of companies use geofencing for 1) marketing, and 2) manage crowd control.

Within navigation and mapping

Around 70% of companies would provide both navigation and mapping. Zenrin and Cheetah Mobile only focus on navigation whereas Azure Maps and Esri ArcGIS Indoors only focus on mapping.

Monetization

Companies mainly charge customers by product or by module or per hardware units. It is also a common practice that companies charge customers with a combination of two or three components.

Business Model

We determine their business model based on how they generate value from customers.

Mapping service provider and SDK provider could not be totally separable as companies target different customer segments.

Mapping service provider	SDK provider	Middleman	Workplace management service provider	Robotics and AIoT		
➤ MappedIn	> MappedIn	> Proximi	> iOFFICE	> Cheetah Mobile		
> Mapsted	> Mapsted		> Ubitrack			
> Navigine	> Navigine					
> Zenrin	> Infsoft					
> Ubitrack	> IndoorAtlas					
Cisco DNA Spaces +	> Azure Maps					
МаzeМар	➤ Esri ArcGIS Indoors					
> Infsoft						
> Cheetah Mobile						

Target clients

60% of companies cover both private indoor spaces and public indoor spaces, It can be seen that most of the indoor spaces require indoor mapping, positioning and navigation services nowadays.

Private indoor spaces	Public indoor spaces	Outdoor spaces
➤ Navigine	➤ Navigine	> Azure Maps
≻ Proximi	≻ Proximi	> Zenrin
➤ Cisco DNA Spaces + MazeMap	➤ Cisco DNA Spaces + MazeMap	> Ubitrack
≻ iOFFICE	➤ iOFFICE	
➤ IndoorAtlas	➤ IndoorAtlas	
> Infsoft	> Infsoft	
> Zenrin	> Zenrin	
➤ MappedIn	➤ MappedIn	
➤ Azure Maps	> Mapsted	
➤ Esri ArcGIS Indoors	➤ Cheetah Mobile	
➤ Ubitrack		

POI Collection, Input and Maintenance

- 1) Standardised POI information from customers
- 2) Creating Content Management System (CMS) as
 Dashboard
- 3) Exploration to proceed B.I. AI Approach from POI collection to POI maintenance

Mapsted emergency maintenance example

Example for POI collection standardisation (Proximi)

- 1. Architectural floor plans (PDF or CAD) for all the buildings and floors of the venue
- 2. Information on ceiling height. If the architecture is very complex, it is suggested to include a section drawing
- 3. An Excel list of all the rooms/areas that should be included in the wayfinding setup as Points of Interests detailing their name (as it should be shown in the application, separately in all the languages), area type (e.g. office/restaurant) and the identification code on the floor plans.
- 4. An Excel list of all the other Points of Interests that should be shown in the application, such as first aid kits, detailing their name, POI type and exact location on the floor plans.
- 5. Any photos, descriptions, links, or other materials that should be displayed on the application about the Points of Interests. Photos should be sized between 480p (480x800px) to 720p (720x1280px), and they should be in JPG or PNG format.
- 6. UI design or information on customer's brand and wishes

Example of CMS features (Mapsted)

Mapsted utilises the CMS to let customers themselves to quickly add properties, upload floor plans, and customise interactive maps. Customers are allowed to make changes in real-time with Manage-Dashboard, Manage-Branding and Manage - Maintenance.

	Manage-Dashboard	Manage-Branding			Manage-Maintenance		
1. 2. 3. 4.	Add and customise new properties Upload and organise floor plans Set working and holiday hours for properties Select authentication permissions for visitors and staff	 1. 2. 3. 4. 	Colours, logos, and fonts Property layers, including parking, accessibility and dining options Layers including parks, pathways and washrooms Map style including classic, light mode and dark mode	to elev and acce kee	POI asset tags Authentication permissions Emergency response planning was property management teams mark points of interest, like rators as closed for maintenance, set desired levels of property ess for contract workers and help p visitors safe during emergencies ch allows customers to control		

Naver Labs POI change detection

Naver Labs concept: https://www.youtube.com/watch?v=UWna1WRoVcU

Naver Labs POI change detection demo:

https://www.youtube.com/watch?v=496hNzgk4kU

Naver Labs self-updating map demo:

https://www.youtube.com/watch?v=QK YV65OOnw

Positioning

- Filtered layer and integrate customer request for different targeted users
- 2) Geofencing
- 3) Setting up an API that integrate hardware and software

Time Consumed for Manual Work

Time Consumed for Manual Work

Overall, for the two test buildings, the B.I. approach has about 9.8 hours (588 minutes) less time consumed for manual work and improved the efficiency by 61%.

Unit: hours	Plaza Hollywood	Temple Mall South	Total	Avg hours/floor
CS	10.5	5.5	16	4
B.I.	3.88	2.33	6.21	1.5
Total	14.38	7.83		