

Mikrocontroller MCB32

12C Bus: Anwendung Sensor BME280

MCB32 - Embedded Programmierung I2C und Sensor BME280

Version: 2107.01

Diese Dokumentation kann ohne Vorankündigung jederzeit angepasst, verbessert und erweitert werden. Wünsche und Fehler an:info@mcb32.ch

1 Inhalt

1	Inhalt	. 2
2	Gefahren Portbeschaltung	. 4
3	Details I2C / BME280 mit MCB32	
3.1 3.2	Beschreibung BME280	
3.3	Auflösung und Berechnung der Messwerte	
3.4	I2C Adresse des BME280	
3.5 3.6	Power ON (PON) BME280 und seine Betriebarten	
3.7	Register Map BME280	
4	Treiber	. 8
5	I2C Bus	. 9
5.1	Bit transfer	
5.2 5.3	Start and stop conditions	
5.4	Write Mode	10
5.5 5.5.1	Hardwarefunktionen MCB32	
5.5.2	2 x ADC Analog Digital Converter (03.3V, 8Bit Auflösung)	11
5.5.3 5.6	2 x DAC Digital Analog Converter (03.3V, 8Bit Auflösung)	
5.6.1	USART1 & USART2	
5.7	Interrupt Funktionen	
5.7.1 5.7.2	4 x Externe Interrupt Requests (Vereinfacht, jede pinNr nur lx)	
5.7.3	Interrupt Handler (ACHTUNG: die Namen/Bezeichner sind vorgeschrieben)	
6	Grafikprogrammierung	
6.1.1 6.1.2	Fonts	
6.1.3	Touch-Funktionen	15
6.1.4 6.2	Touchscreen Textfunktionen	
6.3		T (
	Musterprogramm für Grafikfunktionen	17
7		
7 7.1	Wusterprogramm für Grafikfunktionen Übung I2C Auftrag	18
-	Übung I2C Auftrag Anhang Grafikhardware	18 18 20
7.1 8 8.1	Übung I2C Auftrag Anhang Grafikhardware Hintergrund	18 18 20 20
7.1 8 8.1 8.2	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung	18 20 20 20
7.1 8 8.1 8.2	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code	18 20 20 20 21
7.1 8 8.1 8.2 9	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte	18 20 20 20 21
7.1 8 8.1 8.2	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code	18 20 20 20 21 21
7.1 8 8.1 8.2 9	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode	18 20 20 20 21 21 22
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, PO, P1	18 20 20 20 21 21 22 23 23
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11.1.1 11.1.1	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0	18 20 20 21 21 22 23 23 25
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11	Übung T2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0 Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library)	18 20 20 20 21 21 22 23 25 25 25
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11 11.1.1 11.1.2 11.1.3	Übung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0 Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25	18 20 20 20 21 21 22 23 25 25 25
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11.1.1 11.1.2 11.1.3 11.1.4	Übung I2C. Auftrag. Anhang Grafikhardware. Hintergrund. Hardwarenahe Beschreibung der Displayansteuerung. Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte. Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode. Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0 Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25 25 LED von Port P1 auf Board aktivieren	18 20 20 21 21 22 23 25 25 25
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11.1.1 11.1.2 11.1.3 11.1.4	Übung 12C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0 Button 1 / Tamper (Pin:PCl3); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25 25 LED von Port P1 auf Board aktivieren Übersicht über die Hardwarestruktur eines Pins	18 20 20 21 21 22 23 25 25 25 26 26
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.2 11.2.1	Übung I2C. Auftrag. Anhang Grafikhardware Hintergrund. Hardwarenahe Beschreibung der Displayansteuerung. Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte. Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode. Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0. Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25 25 LED von Port P1 auf Board aktivieren Übersicht über die Hardwarestruktur eines Pins Port PA Pin 07 Steckerbelegung für 10pol. Stecker PA[07]	18 20 20 21 21 22 23 25 25 25 26 26 27
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.2	Öbung I2C Auftrag Anhang Grafikhardware Hintergrund Hardwarenahe Beschreibung der Displayansteuerung Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0 Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25 25 LED von Port P1 auf Board aktivieren Übersicht über die Hardwarestruktur eines Pins Port PA Pin 07 Steckerbelegung für 10pol. Stecker PA[07] Original Belegung PA[07]	18 18 20 20 21 21 22 23 25 25 25 26 26 27
7.1 8 8.1 8.2 9 9.1 10 10.1.1 11 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.2 11.2.1	Übung I2C. Auftrag. Anhang Grafikhardware Hintergrund. Hardwarenahe Beschreibung der Displayansteuerung. Anhang: Umstellung von C51-Code auf ARM32-Code Wichtig für das Funktionieren neuer Projekte. Anhang Touchscreen Kontrolle am μC-Board MCB32 Touchscreen Kontrolle aus dem Quellcode. Anhang Anschlüsse am μC-Board MCB32 STLINK, Schalter, Potentiometer, P0, P1 Button 0 / Wakeup (Pin:PA0); nicht gedrückt PA_0=0. Button 1 / Tamper (Pin:PC13); nicht gedrückt PC_13=1 Potentiometer (PC4) // resp. P0_4 (Library) 25 25 LED von Port P1 auf Board aktivieren Übersicht über die Hardwarestruktur eines Pins Port PA Pin 07 Steckerbelegung für 10pol. Stecker PA[07]	18 20 20 21 21 22 23 25 25 25 26 26 27 27

I2C

14	Anhang: Port Pin Liste MCB32	30
15	Referenzen	32

2 Gefahren Portbeschaltung

Achtung: Die Ports des MCB32 dürfen nicht mit mehr als 3,3V beschaltet werden. Falsche Handhabung führt zur Zerstörung des Kontrollers. Mit einem geeigneten Treiberbaustein/ Levelshifter oder mit Schutzwiderständen kann dieses Problem umgangen werden.

3 Details I2C / BME280 mit MCB32

3.1 Beschreibung BME280

Der BME280 ist ein integrierter Umgebungssensor, der speziell für mobile Anwendungen entwickelt wurde, bei denen Größe und geringer Stromverbrauch wichtige Designbedingungen sind. Das Gerät kombiniert individuelle hochlineare und hochgenaue Sensoren für Druck, Feuchte und Temperatur in einem 8-poligen Metalgehäuse.

Niedrige Stromaufnahme (3,6 µA @1Hz), Langzeitstabilität und hohe EMV-Robustheit entwickelt sind weitere Merkmale. Der Feuchtigkeitssensor zeichnet sich durch eine extrem schnelle Reaktionszeit aus, die die Leistungsanforderungen für neuartige Anwendungen unterstützt, wie z.B.: Kontexterkennung und hohe Genauigkeit über einen weiten Temperaturbereich. Der Drucksensor ist ein absoluter barometrischer Drucksensor, der sich durch eine aussergewöhnlich hohe Genauigkeit und Auflösung bei sehr geringem Rauschen auszeichnet.

Der integrierte Temperatursensor wurde für sehr geringes Rauschen und hohe Auflösung optimiert. Es wird hauptsächlich zur Temperaturkompensation der Druck- und Feuchtesensoren eingesetzt und kann zur Messung der Umgebungstemperatur verwendet werden.

Der BME280 unterstützt zudem unterschiedlichs-

BME280 Technical data [1]	
Package dimensions	8-Pin LGA with metal 2.5 x 2.5 x 0.93 mm ³
Operation range (full accuracy)	Pressure: 300 1100 hPa Temperature: -40 +85 °C
Supply voltage V_{DDIO} Supply voltage V_{DD}	1.2 3.6 V 1.7 3.6 V
Interface	I ² C and SPI
Average current consumption (typ.) (1Hz data refresh rate)	1.8 μA @ 1 Hz (H, T) 2.8 μA @ 1 Hz (P, T) 3.6 μA @ 1 Hz (H, P, T) T = temperature
Average current consumption in sleep mode	0.1 μΑ
Humidity sensor Response time ($\tau_{63\%}$) Accuracy tolerance Hysteresis	1 s ±3 % relative humidity ≤2 % relative humidity
Pressure sensor RMS Noise Sensitivity Er- ror	0.2 Pa (equiv. to 1.7 cm) ±0.25 % (equiv. to 1 m at 400 m height change)
Temperature coef- ficient offset	±1.5 Pa/K (equiv. to ±12.6 cm at 1 °C tem- perature change)

te Betriebsarten um das Gerät hinsichtlich Stromverbrauch, Auflösung und Filterleistung zu optimieren.

3.2 Kalibration

Der BME280 misst mit Hilfe eines AD-Wandlers seine Sensoren. Jedes Sensorelement verhält sich unterschiedlich und nichtlinear. Die Daten für die Kalibration der Messwerte sind im BME280 abgespeichert. Diese Daten müssen vor der Verarbeitung gelesen werden. Danach stehen sie für die Berechnung der Messwerte zur Verfügung. Es ist darauf zu achten, dass diese Kalibrier-Daten nach jedem Reset / PON gelesen werden. Damit werden immer die für den aktuellen Sensor gültigen Werte zur Berechnung der Messwerte verwendet.

Die tatsächlichen Druck- und die tatsächliche Temperatur-Werte müssen dann mit Hilfe dieses Satzes von Kalibrierparametern berechnet werden. Die empfohlene Berechnung erfolgt mit Festpunktarithmetik und ist Bosch Manual des BME280 beschrieben. Jedes Kompensationsword vom NVM (non volatile memory) ist 16Bit signed oder unsigned im 2er Komplement. Siehe Tabelle im Bosch Manual.

3.3 Auflösung und Berechnung der Messwerte

Die Auflösung beträgt für die Feuchte 16Bit, die Temperatur 20Bit und für den Luftdruck 20Bit. Die Berechnung der realen Messwerte (Temp, Hum, Press) passiert im Empfänger der Daten (uP, MCU oder PC usw). Die Berechnung basiert auf auf den Messwerten vom AD-Wandler, den Kalibrationsdaten aus dem Sensor und den Vorschriften (Algorithmen) welche Bosch angibt.

Soll ein Messwert nicht gelesen werden kann er übrsprungen werden (Skipped).

Das wird im Oversamplingregister angegeben (skipped):

Bsp: im ctrl_meas Register 0xF4 wird: osrs_p[2:0] =000 → der Druck wird nicht gemessen.

3.4 I2C Adresse des BME280

Der Sensor wird am MCB32 am I2C Bus mit 100kHz Clock (400kHz ist möglich) betrieben.

Die 7-Bit-Geräteadresse lautet 111011x (also 0x76, 0x77) welche nach links geshiftet im Sendebyte verpackt werden muss. Das letzte Bit ist durch den SDO-Wert (Leitung am BME280) definiert und kann während des Betriebs geändert werden. Das Verbinden von SDO mit GND führt zu der Slave-Adresse 1110110 (0x76); das Verbinden mit VDD führt zu der Slave-Adresse 1110111 (0x77). Der SDO-Pin kann nicht potentialfrei gelassen werden; wenn er potentialfrei bleibt, ist die I²C-Adresse undefiniert.

Siehe dazu nächstes Bild. (ACKS = Acknowledge by slave)

3.5 Power ON (PON) BME280 und seine Betriebarten

Die unterstützten Betriebsarten (Mode) sind in Bild 2 dargestellt. Nach PON ist der Sensor im Sleep Modus.

Wenn das Gerät eine Messung durchführt, wird die Ausführung von Befehlen für das Wechseln der

Betriebsart bis zum
Ende der aktuell laufenden Messperiode
verzögert. Weitere
"Moduswechselbefehle" oder andere
Schreibbefehle in das
Register ctrl_hum werden ignoriert, bis der
"Moduswechselbefehl"
ausgeführt wurde.

3.6 Betriebarten

Die Betriebsarten sind im Register 0xF4 abgelegt.

Register 0xF4		
mode[1:0]	Mode	
00	Sleep mode	
01	Forced mode	Single measure, Sensors goes Sleep after
10	Forced mode	measure.
11	Normal mode	Perpetual Mode based on Settings

Bosch empfiehlt ja nach Anwendung unterschiedliche Betriebsarten. Siehe folgende Tabelle.

	Wettermonitoring	Feuchte Messung	Haus (Indoor) Anwendung
Datenrate	tief 1/60Hz	tief 1Hz	hoch 25Hz
Mode	Forced or Normal 1 Sample /Min	Forced 1 Sample/s	Normal 25 Samples/s
T Standby			0.5ms
Filter IIR	OFF	OFF	ON filtercoeff16
Oversampling	press * 1	press * 0 (Skip)	press * 16
	temp * 1	temp * 1	temp * 2
	hum * 1	hum * 1	hum * 1
			dev.settings.osr_h = BME280_OVERSAMPLING_1X;
Sample Code for Setup:			dev.settings.osr_p = BME280_OVERSAMPLING_16X;
struct bme280_dev dev;			dev.settings.osr_t = BME280_OVERSAMPLING_2X;
			dev.settings.filter = BME280_FILTER_COEFF_16;
Current Consumption	0.16uA	2.9uA	633uA

3.7 Register Map BME280

Die folgende Tabelle gibt eine Übersicht über die verschiedenen Register des BME280.

BME 280 Sensor Register Tabelle										
Register Name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset state
hum Isb	0xFE				hı	um lsb<7:0	>			0x00
hum msb	0xFD				hu	m msb<7:0)>			0x80
temp xlsb	0xFC	te	emp xls	b<7:4>		0	0	0	0	0x00
temp_lsb	0xFB				te	mp lsb<7:0	>			0x00
temp msb	0xFA		temp_msb<7:0>				0x80			
press_xlsb	0xF9	р	ress xls	b<7:4>		0	0	0	0	0x00
press Isb	0xF8		press lsb<7:0>			0x00				
press msb	0xF7				pre	ess msb<7:	0>			0x80
config	0xF5	t	sb[2:0]			filter[2:0]			spi3w en[0]	0x00
ctrl meas	0xF4	os	rs t[2:0]			osrs p[2:0]	m	ode[1:0]	0x00
status	0xF3					measurin			im update[0	0x00
ctrl hum	0xF2		osrs h[2:0]				0x00			
calib26calib41	0xE10xF0		calibration data i			individual				
reset	0xE0	reset[7:0]			0x00					
id	0xD0		chip id[7:0]				0x60			
calib00calib25	0x880xA1				cal	ibration da	ta			individual

Register: Type:

	Reservierte Register sind nicht angegeben						
	Reserved	Calibration data	Control	Data	Status	Chip	Reset
	registers	Cambration data	registers	registers	registers	ID	Treset
ĺ	do not	read only	read / write	read only	read only	read	write
	change	read Offig	read / Write	read offiny	read offig	only	only

4 Treiber

Bosch stellt eine vollständige Bibliothek für die Messung mit dem BME280 zur Verfügung. Diese Lib kann für das MCB32 einfach integriert werden.

```
1 ⊟/**
2 | * @file
                    BME280_I2C.c
rma / Cityline AG
 3
     * @autor
     * @date
                    2.4.2018
     * @version 1.1
     * @note
* @note
                    BME280 I2C Prototyp
                    BME280 chip from Bosch
 8
     * @note
                    Remapping of I2C bus: YES
                    default: PB6 - I2C1_SCL; PB7 - I2C1_SDA
remap: PB8 - I2C1_SCL; PB9 - I2C1_SDA
https://github.com/BoschSensortec/BME280_driver
10
     * @link
11
12
     * @note
13
14
    #include <stm32fl0x.h>
#include "TouchP0Pl.h"
15
                                                     // uC-Typ bei uVision4
                                                     // PO-,P1-,Touchscreen
16
     #include "i2c.h"
17
     #include "delays cz.h"
18
19
     #include <stdio.h>
                                                     // lib for sprintf
     #include <string.h>
     #include <stdlib.h>
     #include "global_directives.h"
#include ".\I2C_BME280\bme280_CZ.h"
22
                                                     // used for conditional compiling
23
                                                     // BOSCH Files from BOSCH Github
Bild 3: Einbindung BME280 Lib Bosch
```

5 12C Bus

Der I2C Bus ist ein 2 Leitungs- und 2 Wege-Bus für die Kommunikation zwischen verschiedenen Chips auf einem Bus. Die 2 Leitungen sind die SDA (serial data line) und die SCL Leitung (serial clock line). Beide Leitungen müssen mit einem Pull-Up Widerstand an VCC angeschlossen werden.

Ein Datentransfer kann nur durchgeführt, initiiert werden wenn der Bus nicht beschäftigt (Busy) ist.

5.1 Bit transfer

Ein Datenbit wird während einem Clockpuls transferiert. Die Daten auf der SDA Leitung müssen während der High-Phase des Clocks stabil bleiben um als Daten akzeptiert zu werden. Andernfalls werden die Änderungen als Kontrolsignale interpretiert.

Siehe Bild 1: Bit transfer

5.2 Start and stop conditions

Beide Leitungen (SDA, SCL) bleiben High wenn der Bus nicht beschäftigt ist. Ein High zu Low- Übergang (Transition) während dem der Clock High ist wird als START-Bedingung (start condition (S)) bezeichnet. Ein Low zu High-Übergang wird als Stop-Bedingung bezeichnet (stop condition (P)).

Siehe Bild 2: Definition der Start, Stop-Bedingung..

5.3 Acknowledge (ACK)

Die Anzahl der Datenbytes, welche zwischen einer Start und Stopp-Bedingung gesendet werden ist nicht limitiert. Jedes Byte wird von einem ACK abgeschlossen. Siehe Bild 3: Acknowledgment on the I2C-bus...

Das ACK Bit ist ein HIGH Pegel welcher vom Transmitter-Chip währenddem der Master einen geeigneten Clock Puls generiert.

Ein Slave-Empfänger, welcher adressiert wird, muss nach dem Empfang jedes Bytes ein ACK erzeugen.

Auch ein Master generiert ein ACK nach dem Empfang eines Bytes welches vom Slave Transmitter gesendet (clocked) wurde.

Der Chip, welcher das ACK-Signal erzeugt muss die SDA Leitung während dem ACK-Clock auf GND ziehen (pull down). DIE SDA Leitung muss während dem ACK-clock-pulse stabil sein.

Ein Master-Receiver muss das Ende der Daten gegenüber dem Transmitter signalisieren indem er nach dem Aussenden des letzten Bytes, welches vom Slave stammt, kein ACK erzeugt. In diesem Zustand muss der Transmitter die Datenleitung auf HIGH lassen um dem Master das Erzeugen der Stopp-Bedingung zu ermöglichen.

5.4 Write Mode

5.5 Hardwarefunktionen MCB32

Einfache Nutzung der integrierten, peripheren Funktionen des MCB32 ohne Registerkenntnisse. Zu beachten ist die Grundkonfiguration (Default nach Reset) der Ports:

- IN: floating 3.3v
- Out: Open Drain wegen Kurzschlussgefahr. Nicht 5 V tolerant

5.6 Serielle Schnittstellen [2]

2 Schnittstellen für die RS232-Datenübertragung sind als echte RS232 Leitungen vorhanden. Das heisst die Signale werden von einem Treiber auf die Standardpegel (+/-15V gebracht, **0**=+15V, **1**=-15V).

Die Baudraten sind nach einem Reset und einem USARTInit() nicht bei beiden Schnittstellen gleich (siehe unten). USART1 hat 19200Bd und USART2 hat 9600Bd.

Peripheriefunktionen:			Version und Stand: 2107.01
Funktion	Beschreibung / Beispiel	Para- meter	Hinweis zur Hardware
5.6.1 USART1 & USART2	2		
USART2 Universal Synchronous für Kommunikation mit default USART1 : 1920	TX-> PB6, RX <- PB7 (via Remapping) TX -> PD5, RX <- PD6 Asynchronous Receiver Tran PC; OBd, 1,8,1,n //PCLK2 mit 7 OBd, 1,8,1,n //PCLK1 mit 3 Nr: 1, 2 Einer von 2 USART IRQPrio: 0, 115 Interrupt Priorität;	smit	max (MCB32 nach Reset) max (MCB32 nach Reset) USART2 (an USB) TX PD5
USARTWrite (1/2, 'char'); char USARTRead (1 / 2);	Schreibt den Wert resp. das Zeichen 'CHAR' via USART1 oder 2 auf den seriellen Bus. (Ev. Delay zw. den Zeichen) USARTWrite(2, 'c'); // Sende Zeichen 'c' Wartet bis ein Zeichen an USART 1 oder 2 eintrifft und gibt Wert via Var. char zurück. c = USARTRead(2); // Warte auf Zeichen Gibt den Status des USART Kanales zurück. 1		USART1_ TX PA6 USART1_ IRQHandler USART1_ IRQHandler
char USARTtoRead (1/2);	= Zeichen eingetroffen. 0= kein Zeichen im Buffer. c = USARTtoRead(2); // 0/1 in c		
<pre>Beispiel: neue Baudrate für USARTInit(1,0); USARTInit(2,0); USART1->BRR = 0x1D4C;</pre>	USART 1 programmieren // Schalte USART1 mit 19200Bd ein // Schalte USART1 mit 9600Bd ein // USART1: 9600Bd @ 72MHz benötigt // siehe RefManual Page 792	(Defau	lt), ohne IR
	<u> </u>		

5.7 Interrupt Funktionen

Interrupt Quelle	Namen der Service-Routinen ISR	IRQClearFlag Bezeichner
Timer/Counter-IRQ:	TIM2_IRQHandler TIM5_IRQHandler	-> IRQClearFlag ("T2") ("T5")
USART-IRQ:	USART1_IRQHandler, USART2_IRQHandler	-> IRQClearFlag ("U1"), ("U2")
Ext. IRQ 04:	EXTIO_ IRQHandler EXTI4_IRQHandler	-> IRQClearFlag ("PA0") ("PE4")
Ext. IRQ 59:	EXTI9_5_ IRQHandler (gemeinsam)	-> IRQClearFlag ("PA5") ("PE9")
Ext. IRQ 1015:	EXTI15_10_ IRQHandler (gemeinsam)	-> IRQClearFlag ("PA10") ("PE15")

6 Grafikprogrammierung

6.1.1 Fonts

Es steht 1 Font zur Verfügung. Ein "7*11" ASCII Font.

Der Font kann in der Library "TouchGrafik.c" individuell erweitert werden.

Achtung: Die Bildschirmkoordinaten sind 0,0 und 319,239.

5.1.2	Grafikfunktio	nen [3]		
	Funktion	Beschreibung	Parameter	Beispiel
Init	TouchScreen ()	Touchscreen ohne POP1 für Text, Grafik, Peripherie	-	<pre>InitTouchScreen();</pre>
InitTo	uchPOP1 ("0/1");	Neben dem Displaywird auch der Komfort für PO und P1 initialisiert. Für Schulübungen mit Bitmanipulation. Siehe Fehler! Verweisquelle konnte nicht gefunden werden. betreff SysTick_Handler().	Siehe Kapitel 10	Der Befehl: InitTouchP0P1("1"); schaltet P0,P1 ein →
set	ScreenDir (DIR)	Setzt die Schreibrichtung des Displays	HOR und VER	<pre>setScreenDir (HOR); setScreenDir (VER);</pre>
chai	r getScreenDir()	Gibt die Schreibrichtung zurück	HOR=0 und VER=1	<pre>if(getScreenDir()==VER) {clearScreen (BLUE);}</pre>
clea	arScreen (color)	Löscht den Bildschirm mit der angegeben Farbe. Funktioniert nur mit Einstellung setScreen- Dir(VER).	long color	clearScreen(BLACK);
	АСН	TUNG: Bildschirm-Koordinaten fangen bei 0,0 an	und ender	n bei 319,239.
plo	tDot (X,Y,color)	Zeichnet ein DOT an der Stelle X,Y mit der Farbe color. a,b,c unsigned int.		plotDot(120,120,WHITE);
Circle	(X,Y,Radius, Tick, Color, Fill)	Zeichnet einen Kreis an der Stelle X,Y mit dem Radius r. Die Kreislinie wird mit der Dicke "Tick: 0100" gezeichnet wenn Fill 0 ist. Wenn Fill =1 angegeben ist, so wird der Kreis gefüllt.	div	circle(50,80,20,2,GREEN,0);
(h,k,r)	ellipse k,ry,tick,color, fill)	h und k beschreiben den Mittelpunkt der Ellipse. rx und ry die Radien, Tick, Color und Fill wie beim Kreis,		
x1,y1,x	rectan <2,y2,tick,color, fill)	Zeichnet ein Rechteck von x1,y1 zu x2,y2.		rectan(100,150,140,180,1, RED,1);
plo	tFilledRect dx,dy,color)	Gefülltes Rechteck von x1, y1 nach x1+dx, y1+dy mit Farbe color		<pre>plotFilledRect (10, 20, 50, 6 RED);</pre>
textxy	(String,x,y,For_col, Back_Col)	Schreibt an der Stelle x,y, mit der Farbe For_col und der Hintergrund-Farbe den String.		textxy(" MCB32 Lib Version:", 2, 32, BLACK, YELLOW);
	line ,x2,y2,thick,color)	Zeichne Linie von X1,y1 nach x2,y2 mit der Dicke und der Farbe		line(5,110,315,110,2,WHITE);

Grafikfunktionen:		Version und Stand: 2107.01		
6.1.3 Touch-Funk	tionen			
getTSCxy ()	Erfasst die x/y - Werte der berührten Position.	<pre>getTSCxy();</pre>		
getTSCx ()	Gibt die x-Position der letzten Erfassung zurück.	xPos = getTSCx();		
getTSCy ()	Gibt die y-Position der letzten Erfassung zurück.	<pre>yPos = getTSCy();</pre>		
getTSCtouched ()	Touchscreenberührung: Rückgabe 0 / 1 0: unberührt 1: während Berührung Bemerkung: getTSCxy() je nach Fall zuerst ausführen.	<pre>if (getTSCtouched ()) { }</pre>		

6.1.4 Touchscreen Textfunktionen

vertikal, 20 Zeilen à 30 Zeichen

```
horizontal, 15 Zeilen à 40 Zeichen
```

```
0: Text-, Variablenausgaben
1: ------
Variablenwerte dezimal:
0, -444, 1234567890

Variablenwerte binär:
1, 8, 16 Bit

32-Bit:
1111'1000'1111'1000:1111'1000'1111'1000
13:
14:
```

Funktion	Beschreibung	Beispiel
InitTouchScreen ();	Initialisiert den Touchscreen ohne POP1 für Text, Grafik und Peripherie	<pre>InitTouchScreen ();</pre>
<pre>setTextcolor (long color);</pre>	Farbwechsel für nachfolgenden Text	<pre>setTextcolor (WHITE);</pre>
print (char *txt);	Schreibt Text hinter die letzte Position	<pre>print ("Text");</pre>
<pre>printLn (char *txt);</pre>	Schreibt Zeile hinter die letzte Position und springt an den nächste Zeilenanfang	<pre>printLn ("Text"); printLn ("");</pre>
<pre>printAt (char n, char *txt);</pre>	Schreibt Text an den Anfang der Zeile mit Nummer n	<pre>printAt (12, "Text");</pre>
<pre>printBin (char n, long num);</pre>	Konstanten- und Variablenwerte im Binär- code wie 1111'0000 mit der Bitanzahl n	<pre>printBin (8, 250); printBin (32, variable);</pre>
<pre>printHex (char n, long num);</pre>	Konstanten- und Variablenwerte im Hex- code wie 0xFF00123E mit der Bitanzahl n	<pre>printHex (8, 250); printHex (32, variable);</pre>
printDec (char form long num);	Ganzzahlige Werte aller Typen mit Feldlänge und Vorzeichen in form - vorgegebene Feldlänge für Typ unsigned - vorgegebene Feldlänge mit Vorzeichen - wertabhängige Feldlänge, Typ unsigned - wertabhängige Feldlänge mit Vorzeichen da zu kurze Feldlängen erweitert werden	<pre>printDec (12, variable); printDec (-8, 123456); printDec (1, variable); printDec (-1, -123456);</pre>

6.2 Farbliste

Die nebenstehende Farbliste zeigt die vordefinierten Farben. Weitere Farben müssen gemäss dem Muster:

RRRR `RGGG`GGB `BBBB zusammengestellt werden.

Der 16 Bit Farbcode hat 32 Rot-, 64 Grün- und 32 Blauanteile

in Bit: 5 Bit R, 6 Bit G, 5 Bit B RRRR 'RGGG' GGGB' BBBB

Mischbeispiel:

long sattgrün = 63<<5; 0000'0111'1110'0000 long hellgrün = 15<<11 + 63<<5 + 15; 0111'1111'1110'1111

Die genauere Beschreibung befindet sich im ILI 9341 Manual.

Name	Color #	
#define no_bg	0x0001	// No Color Back Ground
#define BLACK	0x0000	// No color back Ground
#define WHITE	0xFFFF	
#define RED	0x8000	
#define GREEN	0x0400	
#define DARK_GREEN	0x1C03	// weber
#define BLUE	0x0010	// Webei
#define YELLOW	0xFFF0	
#define DARK_YELLOW	0x8403	// weber
#define CYAN	0x0410	// Webei
#define MAGENTA	0x8010	
#define BROWN	0xFC00	
#define OLIVE		
#define OLIVE	0x8400	
#define BRIGHT_RED	0xF800	
#define BRIGHT_GREEN	0x07E0	
#define BRIGHT_BLUE	0x001F	
#define BRIGHT_YELLOW	0xFFE0	
#define BRIGHT_CYAN	0x07FF	
#define BRIGHT_MAGENTA	0xF81F	
#define LIGHT_GRAY	0x8410	
#define LIGHT_BLUE	0x841F	
#define LIGHT_GREEN	0x87F0	
#define LIGHT_CYAN	0x87FF	
#define LIGHT_RED	0xFC10	
#define LIGHT_MAGENTA	0xFC1F	
. 1 5 0.007 00.07	0.4700	
#define DARK_GRAY	0x4208	
#define GRAY0	0xE71C	
#define GRAY1	0xC618	
#define GRAY2	0xA514	
#define GRAY3	0x630C	
#define GRAY4	0x4208	
#define GRAY5	0x2104	
#define GRAY6	0x3186	
#define BLUE0	0x1086	
#define BLUE1	0x3188	
#define BLUE2	0x4314	
#define BLUE3	0x861C	
#define CYANO	0x3D34	
#define CYAN1	0x1DF7	
#define GREENO	0x0200	
#define GREEN1	0x0200	

6.3 Musterprogramm für Grafikfunktionen

Das folgende Programm zeigt die Möglichkeiten der Library.

(Änderungen jederzeit möglich. Siehe Dokumentation.)

```
/** @file grafikfunkionen_1.c
   @brief Zeigt die grundlegenden Grafikfunktionen Version I von MCB3;
#include <stm32f10x.h>
                                                         // Mikrocontrollertyp
#include "TouchP0P1.h"
                                                         // P0/P1,8Bit,Touchscreen und Grafik
#include <math.h>
                                                         // lib für Sinus
#define PI 3.14159f
                                                         // Konstante PI
                  ************Implementation**********
int main(void)
                                                         // Hauptprogramm
{
   long t;
                                                         // Verzoegerungsvariable
   float rad;
   unsigned char uc val, color toggle=0;
                                                         // Hilfsvariablen;
                                                         // Option: Zeige Lib Version an
   char LIBVer[]=dMCB32 LibVersion;
                                                         // Init. der Display Hardware
   InitTouchScreen();
   setScreenDir (HOR);
                                                         // setze Richtung Display. 0,0 bei Resettaster
   textxy(" MCB32 Lib Version:", 2, 32, BLACK, YELLOW);
   textxy(LIBVer, 160, 32, WHITE, BLACK);
   printAt(2,"---
                                                         // Schreibe auf der 2ten Zeile den Text
   circle(50,80,20,2,GREEN,0);
                                                         // Zeichne Kreis
   ellipse(100, 80, 10,20,1,YELLOW,1);
                                                         // Zeichne Ellipse
   rectan(100,150,140,180,1,BRIGHT_RED,1);
                                                         // Zeichne Rechteck
   line(5,110,315,110,2,WHITE);
                                                         // Zeichne Linie
   for(uc_va1 =0;uc_va1<80;uc_va1++){</pre>
                                                         // Zeichne mit plotDot() ein Muster
      for (t=0; t<100;t++){
        plotDot(140+uc_va1+t,115+t,uc_va1*t*8);
      }
   }
   for (t=0; t<180;t++){}
                                                         // zeichne Sinus mit plotDot
      rad = 4*t * PI / 180;
                                                         // Berechnen des Bogenmaßwinkels
      plotDot(10+t,(210+12*sin((double)(rad))),WHITE);
   plotFilledRect ( 300, 20, 10, 10, RED );
                                                         // zeichne ein gefülltes Rechteck
   GPIOInit("PEH",00000000);
   GPIOE->CRH &= 0x000000000;
                                                         // Konfiguriere GPIOE für
               = 0x2222222;
   GPIOE->CRH
                                                         // General purpose output push-pull, 2MHz
   while(1){
     getTSCxy();  // initialisiert Touch, liest die Werte für getTSCx() und getTSCy() ein.
printAt(8, "TSC:");
     if(getTSCx() <= 320){printDec(5, getTSCx());}</pre>
                                                     // grenze Bereich für Rückgabewerte ein und gib sie aus.
     if(getTSCy() <= 320){printDec(5, getTSCy());}</pre>
     printAt(13, ""); printBin(1,getTSCtouched());
                                                         // Schreibe Berührungsstatus auf den Screen
     uc_va1 = getTSCtouched();
                                                         // Hole Touchwert 0,1 Debugging
     GPIOPutByte("PEH",getTSCtouched());
                                                         // zeige via LED ob Touch gedrückt wurde
      if(uc va1==1){
      for (t=0; t<220;t++){
           rad = 4*t * PI / 180;
                                                         // Berechnen des Bogenmaßwinkels
           if(color_toggle==0) {
                 plotDot(10+t,(210+12*sin((double)(rad))),BRIGHT BLUE);
           } else {
                 plotDot(10+t,(210+12*sin((double)(rad))),WHITE);
     }
     color_toggle=color_toggle^0x01; // Toggle Color für den nächsten SInus. Spielerei
   }
 }
}
```

Miniska Sta Versiona 1450-H01002-R

7 Übung I2C

7.1 Auftrag

Nehmen Sie das Programm mit einem MCB32 in Betrieb und laden Sie die richtige Lib.

- Alle Antworten direkt im Code. Bilder in einem Wordfile.
- Neben den unten aufgeführten Fragen hat es auch Fragen im Code, welche beantwortet werden müssen.

I2C

- Je mehr sie dokumentieren umso besser die Note.

Schliessen Sie danach einen I2C-Expander an das MCB32 an:

1. Welchen Port müssen Sie nehmen. Woher nehmen Sie die Speisung?

Studieren Sie das Datenblatt sowie den Expander um herauszufinden welches die richtige Adresse für den I2C-Expander ist.

2. Adresse? Und Beschreibung des Vorgehens für das Herausfinden.

Wenn die Schaltung funktioniert machen Sie Messungen mit dem Logianalyzer. Konfigurieren Sie den Analyzer so, dass er I2C direkt dekodiert und Ihnen die Daten in HEX anzeigt. Speichern Sie die Messungen in einem Wordfile mit Beschreibung pro Bild.

- 3. Erläutere alle wichtigen I2C Kommandos im Code mit Messung
- 4. Beschreibe den Code (ausser bei Printstatements) vollständig, was macht welche Zeile usw.

5. Programmiere, wenn die SW kommentiert und alle Messungen erledigt sind, ein Lauflicht auf dem I2C Expander. Schliessen Sie externe LEDS an oder machen Sie Messungen mit dem LogikAnalyzer um die Funktion zu zeigen.

I2C

8 Anhang Grafikhardware

8.1 Hintergrund

Der MCB32 Kit arbeitet mit einem TFT –LCD Color Grafik Display 320x240Pixel (3.2") und einer Touch-Sensor (Folie). Der Grafik-Display wird über einen Chip ILI9341 angesteuert und der der Touch-Sensor über einen ADS7846. Beide Chips kommunizieren via die SPI Schnittstelle mit dem ARM-Prozessor resp. der Library.

Der ILI9341 Chip steuert den eigentlichen Bildschirm an. Der Chip hat 720 Source-Ausgänge und 320 Gate-Ausgänge um die einzelnen Dots (Pixels) ein und auszuschalten. Zudem können 172,8KByte RAM genutzt werden.

Der Chip wird über ein spezielles 9Bit SPI Interface angesteuert. Das heisst der Datentransfer ist beschränkt durch die serielle Datenübertragungsrate. Mehr Informationen zum Chip unter:

http://www.adafruit.com/datasheets/ILI9341.pdf oder andere Quellen.

8.2 Hardwarenahe Beschreibung der Displayansteuerung

Verbindung Display TFT320x240 mit dem ARM: via GPIO Pins und SPI3 (9Bit)						
Pin	Pin Beschreibung		Port ARM			
CS	Chipselect	CS#	PC8 (Out)			
SCL	Clock	SPI3:SCK3	PC10 (Clk)			
SDO	Data Out to ARM	SPI3:MISO3	PC11 (Inp)			
SDI	Data IN from ARM	SPI3:MOSI3	PC12 (Out)			
BL	IRQ to ARM	GPIO: IRQ	PD7 (Out)			

CS Chipselect CS# PE6 (Out) DCLK Clock SPI:SCK PE7 (Clk) DOUT Data Out to ARM SPI:MISO PE4 (Inp) DIN Data IN from ARM SPI:MOSI PE5 (Out) PENIRO IRO to ARM GPIO: IRO PE3 (Inp)	Pin ADS7846 Beschreibung		Funktion	Port ARM	
DOUT Data Out to ARM SPI:MISO PE4 (Inp) DIN Data IN from ARM SPI:MOSI PE5 (Out)	CS	Chipselect	CS#	PE6 (Out)	
DIN Data IN from ARM SPI:MOSI PE5 (Out)	DCLK	Clock	SPI:SCK	PE7 (Clk)	
	DOUT	Data Out to ARM	SPI:MISO	PE4 (Inp)	
PENIRO IRO to ARM GPIO: IRO PE3 (Inn)	DIN	Data IN from ARM	SPI:MOSI	PE5 (Out)	
1 21 (mp)	PENIRQ	IRQ to ARM	GPIO: IRQ	PE3 (Inp)	

9 Anhang: Umstellung von C51-Code auf ARM32-Code

```
Umstellung von C51-Code auf ARM32-Code
* Datei:
               C51toARM32.c / 14.1.14 / Version 1.0
* Ersteller:
              R. Weber (BSU); E. Malacarne (TBZ)
             Die wichtigsten Umstellungen sind in den Kommentaren dokumentiert
* Funktion:
                                                               neue #includes
#include <stm32f10x.h>
                             // Mikrocontrollertyp
#include " TouchP0P1.h"
                             // P0-, P1-Definition
                             // P0 = Input, P1= Output PE[15-8]
// Input und Outputbits an Ports benennen
                                                               Keine sfr und
#define Start P0 0
                            // Start = Input Port0[0]
                                                               sbit mehr!
#define Alarm P1 7
        bTemp = 0;
                             // 'Bit'-Variablentyp char
char
                             // Zeitvariable
long t;
                             // Hauptprog.,ohne return bei Keil
int main ( void )
                                                               Main verlangt int
                                                             InitTouchPOP1 ("0"),,
  InitTouchP0P1 ("1");
                             // Touchscreen aktiv,
                             // horizontal gedreht
                                                             wenn nur P0,P1 und
                                                             ohne Touchscreen
                             // LSB rechts
 while(1)
                             // Endlos-schleife
 {
                             // Bitverarbeitung wie bisher
   P1 0
                   0;
                             // Zuweisung, Invertierung,
   Alarm
                   1;
   bTemp =
                             // &, &&, |, ||, ^, ! , ==, !=
             ! Start;
   while ( P1 < 100 )
                            // Byteverarbeitung wie bisher
     P1 += 2;
                            // Kurzformen wie bisher
   P1 = P0 & 0x0F;
                            // Maskierungen wie bisher
   for(t=120000; t>0; t--);
                                           Verzögerung 10ms
                                                               Verzögerung
  }
                                                               vom Typ long mit
                                                               Wert 12 / μs
}
```

9.1 Wichtig für das Funktionieren neuer Projekte

Wichtig: Bei der Erstellung eines neuen Projektes im Schulbereich, also Vorbereitung für 8Bit-Programme "Elektroniker" mit Port PO, P1 und Touchscreen ist folgendes zu beachten.

Kopieren Sie in jedes neue Projektverzeichnis diesen zwei Dateien:

TouchPOP1.h (REV C oder REV D)TouchPOP1.lib (REV C oder REV D)

10 Anhang Touchscreen Kontrolle am μC-Board MCB32

Beschreibung der Touchscreen Oberfläche mit P0 (=Eingabe-) und P1 (Ausgabe-Port)

10.1.1 Touchscreen Kontrolle aus dem Quellcode

Der Projekt-Ordner muss TouchPOP1.h und TouchPOP1.lib enthalten: Im Projekt-Manager sind die Quelldatei.c und die Lib "TouchPOP1.lib" aufzunehmen.

11 Anhang Anschlüsse am µC-Board MCB32

11.1.1 STLINK, Schalter, Potentiometer, P0, P1

Digitale Ein- und Ausgaben am μC-Board MCB32. ACHTUNG mit Potentiometer (Pot)


```
// In TouchPOP1.h definierte Pin-Bezeichnungen PA_0 .. PD_11, ohne Bezeichner wie Button .. !
                                              // Bitwert 1/0, aktiv low, prellt wenig
char
      Button0
                     = PA_0;
char
      Button1
                     = PC_13;
                                              // Bitwert 0/1, aktiv high
char
      Stick
                     = PD_High;
                                              // als Byte 0xF8 open, aktiv low, alle entprellt
char
      StickSelect
                     = PD 15
                                              // Bitwert
                                                           1/0; Bytewert
                                                                            0x80
char
      StickDown
                     = PD 14;
                                              //
                                                           1/0;
                                                                            0x40
char
      StickLeft
                     = PD 13;
                                              //
                                                           1/0;
                                                                            0x20
char
      StickUp
                     = PD_12;
                                              //
                                                           1/0;
                                                                            0x10
char StickRight
                            = PD_11;
                                              //
                                                           1/0;
                                                                            0x08
```

Button 0 / Wakeup (Pin:PAO); nicht gedrückt PA_0=0 11.1.2

11.1.3 Button 1 / Tamper (Pin:PC13); nicht gedrückt PC 13=1

11.1.4 Potentiometer (PC4) // resp. PO 4 (Library)

Wenn der Port PC4 als Analog-Input (AD-Wandler) geschaltet ist kann mit dem Potentiometer eine Spannung von 0 .. 3.3V an den gelegt werden.

11.1.5 LED von Port P1 auf Board aktivieren

Mit den folgenden Befehlen wird Port PE[8..15] so gesetzt, dass die LEDs auf dem Board parallel zu dem Display auch aktiv angesteuert werden. Damit leuchten die LEDs gleich wie auf dem Display.

Achtung: im Falle, dass der Port GPIO im Mode Output-Push-Pull betrieben wird, dürfen keine externen Quellen oder Lasten ohne genaueres Wissen über die Vorgänge rund um den Port angeschlossen werden. Der Prozessor kann Schaden nehmen.

Siehe Beispiel Code weiter unten.

```
GPIOE->CRH &= 0x00000000; // Configure the GPIOE for GPIOE->CRH |= 0x222222222; // General purpose output push-pull, 2MHz
```

```
int main (void)
                                // Hauptprogramm
⊟ {
                                // Verzögerungsvariable
   long t:
   InitTouchPOP1("1");
                                // PO,P1 auf Touchscreen ON
                  &= 0x00000000; // Configure the GPIOE for
     GPIOE->CRH
     GPIOE->CRH
                   |= 0x22222222; // General purpose output push-pull, 2MHz
   P1=0x00;
                                // Zaehlung nullen
   while (1)
                                // Endlosschlaufe
     if(P0_0)
                                // Zählung nur mit PO_0 = 1
       if(!P0_1) P1++;
                                // Zählung aufwärts, wenn PO_1 = 0
       else P1--;
                                // Zählung abwärts, wenn P0_1 = 1
     for(t=0;t<1200000;t++);
                                // Zählverzögerung ca. 100msek
```

11.1.6 Übersicht über die Hardwarestruktur eines Pins

11.2 Port PA Pin 0..7

Im folgenden Abschnitt wird Port PA als Stellvertreter für die anderen Ports erklärt.

Steckerbelegung für 10pol. Stecker PA[0..7]

Die Belegung des 10poligen Steckers sieht wie oben am Beispiel des Steckers PAL abgebildet aus. Die roten Zahlen definieren die Adern des Flachbandkabels. Rote Ader = Pin1, daneben Ader 2 = Pin2 usw. .

11.2.2 Original Belegung PA[0..7]

Die Original Pin-Belegung von Stecker PA[0...7] ist wie in der nebenstehenden Tabelle. Einerseits zeigt die Tabelle die Funktion wie sie im Chip vorgesehen ist und die auf dem MCB32 dann ausgeführte Funktion.

Dies alles ist obsolet wenn die Funktionen nicht verwendet werden. Der Port kann dann als IO eingesetzt werden.

Pin	STM32F107VC Funktion	MCB32 Module/Device	
PA0	Wakeup	Switch Wakeup	
PA1	RMII_REF_CLK	Ethernet LAN	
PA2	RMII_MDIO	Ethernet LAN	
PA3	-	-	
PA4	-	-	
PA5	SPI1_SCK	SD Card CLK	
PA6	SPI1_MISO	SD Card DAT0	
PA7	SPI1_MOSI	SD Card CMD	

12 Anhang: Interrupt Vektorliste und Servicefunktionsaufrufe

Position	Priority	Type of priority	Acronym	Description	Address	
	-	-	-	Reserved	0x0000_0000	
	-3	fixed	NMI	Reset Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000_0004 0x0000_0008	
	-1	fixed	HardFault	All class of fault	0x0000_000C	
	0	settable	MemManage	Memory management	0x0000_0010	
	1	settable	BusFault	Pre-fetch fault, memory access fault	0x0000_0014	
	2	settable	UsageFault	Undefined instruction or illegal state	0x0000_0018	
			Reserved	0x0000 001C -	0x0000 002B	
	3	settable	SVCall	System service call via SWI instr	0x0000_002C	
	4	settable	Debug Monitor	Debug Monitor Reserved	0x0000_0030 0x0000_0034	
	5	settable	PendSV	Pendable request for system service	0x0000_0034	
	6	settable	SysTick	System tick timer	0x0000_003C	
0	7	settable	WWDG	Window Watchdog interrupt	0x0000_0040	
1	8	settable	PVD	PVD through EXTI Line detection	0x0000 0044	
2	9	settable	TAMPER	Tamper interrupt	0x0000_0048	
3	10	settable	RTC	RTC global interrupt	0x0000_004C	
4	11	settable	FLASH	Flash global interrupt	0x0000_0050	
5	12	settable	RCC	RCC global interrupt	0x0000_0054	
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000_0058	
7	14	settable	EXTI1	EXTLLine3 interrupt	0x0000_005C	
9	15	settable settable	EXTI2 EXTI3	EXTI Line2 interrupt EXTI Line3 interrupt	0x0000_0060	
10	17	settable	EXTI4	EXTI Line3 interrupt EXTI Line4 interrupt	0x0000_0064 0x0000_0068	
11	18	settable	DMA1_Channel1	DMA1 Channel1 global interrupt	0x0000_006C	
12	19	settable	DMA1_Channel2	DMA1 Channel2 global interrupt	0x0000_0070	
13	20	settable	DMA1_Channel3	DMA1 Channel3 global interrupt	0x0000_0074	
14	21	settable	DMA1_Channel4	DMA1 Channel4 global interrupt	0x0000_0078	
15	22	settable	DMA1_Channel5	DMA1 Channel5 global interrupt	0x0000_007C	
16	23	settable	DMA1_Channel6	DMA1 Channel6 global interrupt	0x0000_0080	
17	24	settable	DMA1_Channel7	DMA1 Channel7 global interrupt	0x0000_0084	
18	25	settable	ADC1_2	ADC1 and ADC2 global interrupt	0x0000_0088	
19	26	settable	CAN1_TX	CAN1 TX interrupts	0x0000_008C	
20	27	settable	CAN1_RX0	CAN1 RX0 interrupts	0x0000_0090	
21	28	settable	CAN1_RX1	CAN1 CCF interrupt	0x0000_0094 0x0000 0098	
23	30	settable	EXTI9_5	CAN1 SCE interrupt EXTI Line[9:5] interrupts	0x0000_0096	
24	31	settable	TIM1_BRK	TIM1 Break interrupt	0x0000_00A0	
25	32	settable	TIM1_UP	TIM1 Update interrupt	0x0000_00A4	
26	33	settable	TIM1_TRG_COM	TIM1 Trigger and Commutation	0x0000_00A8	
27	34	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000_00AC	
28	35	settable	TIM2	TIM2 global interrupt	0x0000_00B0	
29	36	settable	TIM3	TIM3 global interrupt	0x0000_00B4	
30	37	settable	TIM4	TIM4 global interrupt	0x0000_00B8	
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000_00BC	
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000_00C0	
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000_00C4	
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000_00C8	
35	42	settable settable	SPI1 SPI2	SPI1 global interrupt	0x0000_00CC	
36	43	settable	USART1	SPI2 global interrupt USART1 global interrupt	0x0000_00D0	
38	45	settable	USART2	USART2 global interrupt	0x0000_00D4	
39	46	settable	USART3	USART3 global interrupt	0x0000_00DC	
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0	
41	48	settable	RTCAlarm	RTC alarm through EXTI line inte	0x0000_00E4	
42	49	settable	OTG_FS_WKUP	USB On-The-Go FS Wakeup	0x0000 00E8	
	_	_	Reserved	0x0000_00EC -	0x0000_0104	
50	57	settable	TIM5	TIM5 global interrupt	0x0000_0108	
51	58	settable	SPI3	SPI3 global interrupt	0x0000_010C	
52	59	settable	UART4	UART4 global interrupt	0x0000_0110	
53	60	settable	UART5	UART5 global interrupt	0x0000_0114	
54	61	settable	TIM6	TIM6 global interrupt	0x0000_0118	
55	62	settable	TIM7	TIM7 global interrupt	0x0000_011C	
56	63	settable	DMA2_Channel1	DMA2 Channel1 global interrupt	0x0000_0120	
57	64	settable	DMA2_Channel2	DMA2 Channel2 global interrupt	0x0000_0124	

void	EXTIO_	_IRQHandler(void)
	_	Handler
		andler
		RQHandler
		andler
		QHandler
		andler
		QHandler
EXT	11_IR	QHandler
EXT!	12_IR	QHandler QHandler
		QHandler
DMA1	L_Cha	nnel1_IRQHandler
DMA.	Cna	nnell ikQHandler
DMA1	L_Cha	nnel3_IRQHandler
DMA1	L_Cha	nnel4_IRQHandler
DMA1	L_Cha	nnel5_IRQHandler nnel6_IRQHandler
DMA1	L_Cha	nnel6_IRQHandler
		nnel7_IRQHandler
ADC1	L_2_I	RQHandler
CAN1	TX	IRQHandler
		_IRQHandler
		_IRQHandler
CAN1	_SCE	_IRQHandler
EXT1	19_5_	IRQHandler
TIM	BRK	_IRQHandler
TIM	L_UP_	IRQHandler _COM_IRQHandler
TIM	L_TRG	_COM_IRQHandler
		IRQHandler
TIM2	_IRQ	Handler
TIM:	BIRO	Handler
		Handler
I2C1	L_EV_	IRQHandler
I2C1	L_ER_	IRQHandler IRQHandler
I2C2	EV_	IRQHandler
		IRQHandler
SPI1	L_IRQ	Handler
SPI	_IRQ	Handler
		RQHandler
USAF	RT2_I	RQHandler
USAF	RT3_I	RQHandler O_IRQHandler
EXT1	115_1	O_IRQHandler
RTCA	larm	IRQHandler
		UP IRQHandler
		Handler
		Handler
UART	4_IRC	(Handler
UART	5_IRC	(Handler
TIM6	IRQE	Handler
TIM7	IRQE	Handler nnel1_IRQHandler nnel2_IRQHandler
DMA2	Char	nell IROHandler
DMA 2	Char	nel2 IDOHandler
DMAG	_Char	nel3 IRQHandler
	_	nnel4_IRQHandler
	_	nnel5_IRQHandler
		andler
ETH	WKUP	IRQHandler
CAN2	TX I	RQHandler
		IRQHandler
		IRQHandler
CANS	SCF	IRQHandler
		RQHandler
~~~_		XIIGITAL



I2C



#### 13 Anhang: SysTick Timer

Alle Cortex-M Prozessoren enthalten einen 24bit Timer, mit dem man die Systemzeit misst. Der Timer zählt die Taktimpulse des Prozessors herunter und löst bei jedem Überlauf (0) einen Interrupt SysTick Handler() aus welcher die gewünschten Schritte vornimmt. Das heisst der SysTick interruptfähig muss gemacht werden.

Da es sich um einen Interrupt handelt, muss auch eine zugehörige Serviceroutine geschrieben werden, die bei **Keil** einen festgelegten Namen hat:

```
void SysTick_Handler(void)
// SysTick Interrupt Handler
     //...Insert function here }
```

Der Funktionsaufruf SysTick_Config(SystemCoreClock/1000)

```
#include <stdint.h>
#include "stm32f1xx.h"
uint32_t SystemCoreClock=8000000;
volatile uint32_t systick_count=0;
// Interrupt handler
void SysTick_Handler(void)
  systick_count++;
int main(void)
  // Initialize the timer: 1ms interval
  SysTick_Config(SystemCoreClock/1000);
  // Delay 2 seconds
  uint32 t start=systick count;
  while (systick count-start<2000);</pre>
}
```

im Beispiel sorgt dafür, dass jede Millisekunde ein SysTick Interrupt ausgelöst wird.

#### 14 Anhang: Port Pin Liste MCB32

Die Nachfolgende Liste beschreibt die einzelnen Ports. Es ist zu beachten, dass für Versuche nur die Pins mit der Bezeichnung Free xx benutzt werden sollen um die anderen, besetzten Funktionen nicht zu stören. Bei Abweichungen von dieser Regel ist jeder Benutzer verantwortlich für die Hardware- und Softwarefunktion. Port



PE8..15 (LEDs 0..7) kann auch als GPIO benutzt werden. Die LEDs sind via einen Treiber vom Port isoliert.

Bild Links: Portnummerierung von PAL

PBH PEH PB 15..8 PE 15..8 PA_7..0 Pin1 PBH• PAL • PEH PDH PCL PD_15..8 PC_7..0 PEL PAH PE_7..0 PA_15..8 PDL PBL PDLAnordung 10pol PD_7..0 PB_7..0

Achtung: Alle Ports dürfen nicht mit mehr als 3,3V beschaltet werden. Falsche Handhabung führt zur Zerstörung des Kontrollers. Die Garantie geht dabei verloren.

Pin	Function	Devices	Pin	Function	Devices
PA0	Wakeup	Switch Wakeup	PA8	MCO	Ethernet LAN
PA1	RMII_REF_CLK	Ethernet LAN	PA9	FS_VBUS	USB OTG/Device
PA2	RMII_MDIO	Ethernet LAN	PA10	FS_ID	USB OTG
PA3	Free_1.	-	PA11	FS_DM	USB Data HOST/OTG/Device
PA4	Free_2.	_	PA12	FS_DP	
PA5	SPI1_SCK	SD Card CLK	PA13	JTAG_TMS	JTAG
PA6	SPI1_MISO	SD Card DAT0	PA14	JTAG_TCLK	JTAG
PA7	SPI1_MOSI	SD Card CMD	PA15	JTAG_TDI	JTAG

	١
мсв32	ľ
	١

Pin	Function	Devices	Pin	Function	Devices	]
PB0	Free_3.	-	PB8	I2C1_SCL	24C01,STMPE811	
PB1	Free_4.	-	PB9	I2C1_SDA	24C01,STMPE811	1
PB2	BOOT1	Jumper BOOT1	PB10	Free_5.	-	1
PB3	JTAG_TDO	JTAG	PB11	RMII_TXEN	Ethernet LAN	1
PB4	JTAG_TRST	JTAG	PB12	RMII_TXD0	Ethernet LAN	1
PB5	Free_6.	-	PB13	RMII_TXD1	Ethernet LAN	
PB6	USART1_TX	UART1	PB14	Free_7.	-	1
PB7	USART1_RX	UART1	PB15	Free_8.	-	1
Pin	Function	Devices	Pin	Function	Devices	1
PC0	Free_9.	_	PC8	GPIO Out	GLCD CS#	
PC1	RMII_MDC	Ethernet LAN	PC9	HOST_EN	USB HOST/OTG	1
PC2	Free_10.	_	PC10	SPI3_SCK	GLCD WR#/SCL	
PC3	Free_11.	_	PC11	SPI3_MISO	GLCD SDO	1
PC4	ADC14	Volume VR1	PC12	SPI3_MOSI	GLCD SDI	1
PC5	GPIO Out	SD Card / CD(CS#)	PC13	Tamper	Switch Tamper	
PC6	Free_12.	_	PC14	OSC32_IN	RTC X-TAL	1
PC7	Free_13.	-	PC15	OSC32_OUT	RTC X-TAL	
Pin	Function	Devices	Pin	Function	Devices	]
PD0	Free_14.	_	PD8	RMII_CRS_DV	Ethernet LAN	
PD1	Free_15.	_	PD9	RMII_RXD0	Ethernet LAN	
PD2	Free_16.	_	PD10	RMII_RXD1	Ethernet LAN	
PD3	Free_17.	_	PD11	GPIO Input	Joy Switch Up	-
PD4	Free_18.	_	PD12	GPIO Input	Joy Switch Left	1
PD5	USART2_TX	UART2(ISP)	PD13	GPIO Input	Joy Switch Down	1
PD6	USART2_RX	UART2(ISP)	PD14	GPIO Input	Joy Switch Right	
PD7	GPIO Out	GLCD BL LED	PD15	GPIO Input	Joy Switch Sel- ect	
Pin	Function	Devices	Pin	Function	Devices	]
PE0	Free_19.	_	PE8	GPIO Out/Free_21	LED0	
PE1	USB_OVRCR	USB HOST/OTG	PE9	GPIO Out/Free_22	LED1	0.71
PE2	Free_20.	-	PE10	GPIO Out/Free_23	LED2	J ( )
PE3	GPIO Input	ADS7846 PEN#	PE11	GPIO Out/Free_24	LED3 PA0	2 PA1
PE4	GPIO Input	ADS7846 DOUT	PE12	GPIO Out/Free_25	LED4	
PE5	GPIO Out	ADS7846 DIN	PE13	GPIO Out/Free_26	LED5	PA7
PE6	GPIO Out	ADS7846 CS#	PE14	GPIO Out/Free_27	LED6 +3V3	10 GND
PE7	GPIO Out	ADS7846 DCLK	PE15	GPIO Out/Free_28	LED7	



#### 15 Referenzen

- [1] Bosch, «Datenblatt / Datasheet Bosch BME280».
- [2] ST, «ARM_STM_Reference manual_V2014_REV15,» ST, 2014.
- [3] R. Weber, «Projektvorlagen (div) MCB32,» 2013ff.
- [4] J. Yiu, The definitive Guide to ARM Cortex-M3 and M4 Processors, 3 Hrsg., Bd. 1, Elsevier, Hrsg., Oxford: Elsevier, 2014.
- [5] R. Jesse, Arm Cortex M3 Mikrocontroller. Einstieg und Praxis, 1 Hrsg., www.mitp.de, Hrsg., Heidelberg: Hütigh Jehle Rehm GmbH, 2014.