Can FPT be Applied to the Interference Minimization Problem?

Stephane Durocher durocher@cs.umanitoba.ca

University of Manitoba
Department of Computer Science

July 10, 2018

Interference Minimization Problem

- A network must be connected for communication to be possible.
- Lower interference results in fewer collisions.

Problem Definition

Given a set of wireless nodes represented by a set of points $P \subseteq \mathbb{R}^d$, assign a radius of transmission to each node in P such that the resulting communication graph is connected and the maximum interference is minimized.

(Equivalent) Problem Definition

Given a set of wireless nodes represented by a set of points $P \subseteq \mathbb{R}^d$, define a connected graph G on P such that such that the maximum interference is minimized in the induced communication graph.

Previous Work

Let OPT(P) denote the minimum interference attainable over all connected graphs on P.

- von Rickenbach, Schmid, Wattenhofer, & Zollinger 2005
 - $\mathsf{OPT}(P) \in \mathcal{O}(\sqrt{n})$
 - $\forall n, \exists P \subseteq \mathbb{R}$ such that |P| = n and $\mathsf{OPT}(P) \in \Omega(\sqrt{n})$.
 - Even in 1D, the MST (nearest-neighbour path) does not necessarily minimize the maximum interference.
 - $O(\sqrt[4]{n})$ -approximation algorithm in 1D
- Complexity in 2D: Buchin 2008
 - NP-complete in 2D
- 2D Algorithms:
 - Halldórsson & Tokuyama 2006: $O\left(\sqrt{n}\right)$ -interference algorithm
 - Halldórsson & Tokuyama 2006: $O(\log \lambda)$ -interference algorithm, where $\lambda=$ ratio of further to nearest pair distance
 - Tan et al. 2011: $n^{O(OPT(P))}$ -time exact algorithm

von Rickenbach et al. 2005

Denote this graph by HUBS(P).

Lemma [von Rickenbach et al. 2005]

$$\mathsf{OPT}(P) \in \Omega\left(\sqrt{\mathsf{inter}(\mathsf{MST}(P))}\right).$$

Algorithm A_{1D} [von Rickenbach et al. 2005]

Input: a set of *n* points $P \subseteq \mathbb{R}$

- Measure inter(MST(P)).
- If inter(MST(P)) $\leq \sqrt{n}$, then return MST(P).
- If inter(MST(P)) > \sqrt{n} , then return HUBS(P).

Algorithm A_{1D} provides a $O(\sqrt[4]{n})$ -approximation.

Open Problems

Question 1

In 1D, can an optimal solution be found in polynomial time?

- Is the problem NP-hard?
- Buchin's 2D hardness reduction does not apply in 1D.
- Consider solving specific instances (e.g., when the distance between adjacent points is 1, 2, or 4).

1-2-4 Example

MST(P) is not necessarily optimal even when distances between adjacent points in P are restricted to $\{1, 2, 4\}$.

Open Problems

Question 2

Does there exist a good FPT algorithm to solve interference minimization in 1D?

possible parameterizations:

- Let k = # of distinct lengths between neighbouring points.
 - k = 3 when the lengths are in $\{1, 2, 4\}$.
 - straightforward when $k \le 2$
- Let $k = \mathsf{OPT}(P)$.

Open Problems

Question 3

In 2D, what approximation factor can be guaranteed?

- Is an $O(\sqrt[4]{n})$ approximation algorithm possible in 2D?
- Is a PTAS or O(1)-approximation algorithm possible?
- What are good FPT parameters in 2D?

References

Buchin. Minimizing the Maximum Interference is Hard. arXiv:0802.2134v1. 2008.

Devroye & Morin. A Note on Interference in Random Networks. arXiv:1202.5945v3. 2012.

Durocher & Mehrpour. Interference Minimization in k-Connected Wireless Networks. Stephane Durocher and Sahar Mehrpour. CCCG. 2017.

Khabbazian, Durocher, Haghnegahdar, & Kuhn. Bounding Interference in Wireless Ad Hoc Networks with Nodes in Random Position. IEEE/ACM Trans. Net. 2015.

Halldórsson & Tokuyama. Minimizing Interference of a Wireless Ad-Hoc Network in a Plane. AlgoSensors. 2006.

Korman. Minimizing Interference in Ad-Hoc Networks with Bounded Communication Radius. ISAAC. 2011.

Kranakis, Krizanc, Morin, Narayanan, & Stacho. A Tight Bound on the Maximum Interference of Random Sensors in the Highway Model. arXiv:1007.2120v1. 2010.

von Rickenbach, Schmid, Wattenhofer, & Zollinger. A Robust Interference Model for Wireless Ad-Hoc Networks. IEEE IPDPS. 2005.

von Rickenbach, Wattenhofer, & Zollinger. Algorithmic Models of Interference in Wireless Ad Hoc and Sensor Networks. IEEE/ACM Trans. Net. 2009.

Tan, Lou, Lau, Wang, & Chen. Minimizing Interference for the Highway Model. SOFSEM 2011.