Set: A set is an unordered collection of objects, e.g., students in this class; air molecules in this room.

Element: The objects in a set are called the elements, or members of the set. $a \in A$ means that 'a' is an *element* of A (A is the set).

Table of set theory symbols

Symbol	Symbol Name	Meaning / definition	Example
{ }	set	a collection of elements	$A = \{3,7,9,14\},$ $B = \{9,14,28\}$
1	such that	so that	$A = \{x \mid x \in \mathbb{R}, \\ x < 0\}$
$A \cap B$	intersection	objects that belong to set A and set B	$A \cap B = \{9,14\}$
A∪B	union	objects that belong to set A or set B	$A \cup B = \{3,7,9,14,28\}$
A⊆B	subset	A is a subset of B. set A is included in set B.	$\{9,14,28\} \subseteq \{9,14,28\}$
A⊂B	proper subset / strict subset	A is a subset of B, but A is not equal to B.	$\{9,14\} \subset \{9,14,28\}$
A⊄B	not subset	set A is not a subset of set B	{9,66} ⊄ {9,14,28}
A⊇B	superset	A is a superset of B. set A includes set B	$\{9,14,28\} \supseteq \{9,14,28\}$
A⊃B	proper superset / strict superset	A is a superset of B, but B is not equal to A.	$\{9,14,28\} \supset \{9,14\}$
A⊅B	not superset	set A is not a superset of set B	$\{9,14,28\} \not\supset \{9,66\}$
2^{A}	power set	all subsets of A	
$\mathcal{P}(A)$	power set	all subsets of A	
A=B	equality	both sets have the same members	A={3,9,14}, B={3,9,14}, A=B
A^c	complement	all the objects that do not belong to set A	
$A\backslash B$	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},\ B = \{1,2,3\},\ A \setminus B = \{9,14\}$
A-B	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},\ B = \{1,2,3\},\ A - B = \{9,14\}$

Symbol	Symbol Name	Meaning / definition	Example
ΑΔΒ	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A Δ B = $\{1,2,9,14\}$
A⊖B	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A \ominus B = $\{1,2,9,14\}$
a∈A	element of	set membership	$A={3,9,14}, 3 \in A$
x∉A	not element of	no set membership	$A={3,9,14}, 1 \notin A$
(<i>a</i> , <i>b</i>)	ordered pair	collection of 2 elements	
$A \times B$	cartesian product	set of all ordered pairs from A and B	
A	cardinality	the number of elements of set A	A={3,9,14}, A =3
#A	cardinality	the number of elements of set A	A={3,9,14}, #A=3
\aleph_0	aleph-null	infinite cardinality of natural numbers set	
\aleph_1	aleph-one	cardinality of countable ordinal numbers set	
Ø	empty set	$\emptyset = \{\}$	$A = \emptyset$
\mathbb{U}	universal set	set of all possible values	
\mathbb{N}_0	natural numbers / whole numbers set (with zero)	$\mathbb{N}_0 = \{0,1,2,3,4,\}$	$0 \in \mathbb{N}_0$
\mathbb{N}_1	natural numbers / whole numbers set (without zero)	$\mathbb{N}_1 = \{1,2,3,4,5,\}$	$6 \in \mathbb{N}_1$
\mathbb{Z}	integer numbers set	$\mathbb{Z} = \{3,-2,-1,0,1,2,3,\}$	-6 ∈ ℤ
\mathbb{Q}	rational numbers set	$\mathbb{Q}=\{x\mid x=a/b, a,b\in\mathbb{Z}\}$	$2/6 \in \mathbb{Q}$
\mathbb{R}	real numbers set	$\mathbb{R} = \{x \mid -\infty < x < \infty\}$	$6.343434 \in \mathbb{R}$
\mathbb{C}	complex numbers set	$\mathbb{C} = \{z \mid z=a+bi, -\infty \le a \le \infty, -\infty \le b \le \infty\}$	$6+2i \in \mathbb{C}$

Some Important Sets

B = Boolean values = {true,false} N = natural numbers = $\{0,1,2,3.....\}$ $Z = integers = \{..., -3, -2, -1, 0, 1, 2, 3, 4,\}$ $Z_{+} = positive integers = \{1, 2, 3,\}$ R = set of real numbers $R_{+} = R_{>0} = set of positive real numbers$

C = set of complex numbers

Q = set of rational numbers