بِسْمِ ٱللَّهِ ٱلرَّحْمٰنِ ٱلرَّحيمِ

درس: یادگیری ماشین

استاد : خانم دکتر زرین بال ماسوله

موضوع : normalization methods

دانشجو: فرزاد محسنی

مقطع: كارشناسي ارشد

رشته تحصیلی: مهندسی آیتی

کد دانشجویی:

دانشگاه : صنعتی امیرکبیر

سال تحصيلي: 1404-1403

normalization methods for data

Min-Max Scaling (Rescaling) 3	3
Z-Score Normalization (Standardization) 5	<u> </u>
Decimal Scaling S	3
Log Scaling (Log Transformation) 12	1
Robust Scaling 14	4
Max-Abs Scaling 1	2
Than 7100 County	_
L1 Normalization (Manhattan Scaling) 1	9
Unit Vector Scaling (L2 Normalization) 21	L
Mean Normalization 2	2
INICALI INOLIHIALIZALIOH Z.	3

Min-Max Scaling (Rescaling)

- مقیاس بندی داده ها بین یک بازه مشخص [0,1]
- نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - min و max را برای هر ویژگی (Feature) بدست می آوریم.
 - حالا استفاده از رابطه زیر:
 - نرمال کنیم. که میخواهیم نرمال کنیم: x
 - Min-Max مقدار نرمال شده داده پس از اعمال نرمال سازی: x'
 - مترین مقدار ویژگی در مجموعه داده : x_{min} \circ
 - داده داده : بیشترین مقدار ویژگی در مجموعه داده x_{max}

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Customer ID	Age	Purchase
P1	34	750,000
P2	51	250,000
Р3	45	1,200,000
P4	22	500,000

Customer ID	Age	normalized_Age
P4	22	$x' = \frac{22 - 22}{51 - 22} = 0$
P1	34	$x' = \frac{34 - 22}{51 - 22} = 0.41$
Р3	45	$x' = \frac{45 - 22}{51 - 22} = 0.79$
P2	51	$x' = \frac{51 - 22}{51 - 22} = 1$

Customer ID	Purchase	normalized_Purchase
P2	250,000	$x' = \frac{250000 - 250000}{1200000 - 250000} = 0$
P4	500,000	$x' = \frac{500000 - 250000}{1200000 - 250000} = 0.26$
P1	750,000	$x' = \frac{750000 - 250000}{1200000 - 250000} = 0.52$
Р3	1,200,000	$x' = \frac{1200000 - 250000}{1200000 - 250000} = 1$

Z-Score Normalization (Standardization)

- بعد از استاندارد سازی برای هر ویژگی (Feature) میانگین صفر و انحراف معیار یک می شود
 - نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - ، بدست می آوریم (Feature) بدست می آوریم (سیگما) را برای هر ویژگی $oldsymbol{\mu}$
 - حالا استفاده از رابطه زیر:
 - داده ای که می خواهیم نرمال کنیم: x \circ
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: x'
 - میانگین مقادیر ویژگی: μ \circ
 - 🔾 🗗 : انحراف معيار مقادير ويژگی

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_i-\mu)^2}$$

$$x' = \frac{x - \mu}{\sigma}$$

Customer ID	Age	Purchase
P1	34	750,000
P2	51	250,000
Р3	45	1,200,000
P4	22	500,000

$$\mu_{age} = \frac{34 + 51 + 45 + 22}{4} = 38.00$$

$$\mu_{purchase} = \frac{750000 + 250000 + 1200000 + 500000}{4} = 675000.00$$

$$\sigma_{age} = \sqrt{\frac{(34 - 38.00)^2 + (51 - 38.00)^2 + (45 - 38.00)^2 + (22 - 38.00)^2}{3}} = 12.78$$

$$\sigma_{purchase} = \sqrt{\frac{(750000 - 675000.00)^2 + (250000 - 675000.00)^2 + (1200000 - 675000.00)^2 + (500000 - 675000.00)^2}{3}} = 405174.86$$

Customer ID	normalized_Age	normalized _Purchase
P1	$\frac{34-38}{12.78}=-0.31$	$\frac{750000 - 675000}{405174.86} = 0.18$
P2	$\frac{51-38}{12.78}=1.01$	$\frac{250000 - 675000}{405174.86} = -1.04$
Р3	$\frac{45-38}{12.78}=0.54$	$\frac{1200000 - 675000}{405174.86} = 1.29$
P4	$\frac{22-38}{12.78} = -1.25$	$\frac{500000 - 675000}{405174.86} = -0.43$

$$\mu_{Z-Score_Age} = \frac{Z_1 + Z_2 + Z_3 + Z_4}{4} = 0$$

$$\mu_{Z-ScorePurchase} = \frac{Z_1 + Z_2 + Z_3 + Z_4}{4} = 0$$

$$\sigma_{Z-Score_Age} = \sqrt{\frac{(Z_1 - 0.0000000000)^2 + (Z_2 - 0.0000000000)^2 + (Z_3 - 0.0000000000)^2 + (Z_4 - 0.0000000000)^2}{3}} = 1$$

$$\sigma_{Z-ScorePurchase} = \sqrt{\frac{(Z_1 - 0.0000000000)^2 + (Z_2 - 0.0000000000)^2 + (Z_3 - 0.0000000000)^2 + (Z_4 - 0.0000000000)^2}{3}} = 1$$

Decimal Scaling

- بعد از استاندارد سازی برای هر ویژگی (Feature) تمام مقادیر در بازه (1,1−] یا (0,1) (بسته به این که داده منفی هم داریم یا نه) قرار می گیرند.
 - نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم $oldsymbol{\mathcal{X}}$
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\mathcal{X}}'$ \circ
- نظر بگیرید یعنی) (در مبنای 10) (ایر مبنای 10) بشمارید یعنی همان تعداد (یا اگر عدد اعشاری بود، قسمت بالاتر یا همان $[\cdot]$ را به عنوان $[\cdot]$ در نظر بگیرید یعنی)
 - به زبان ساده تر:
- اگر عددی دارای بخش صحیح باشد، تعداد ارقام بخش صحیح را مبنا قرار می دهیم
 - اگر همه مقادیر عددی دارای مقدار اعشار باشند (مانند 0.02، 0.1، 0.003)،

مقدار j بر اساس اولین رقم غیرصفر پس از ممیز انتخاب میشود

$$x'=\frac{x}{10^j}$$

P1	P2
-0.34	750,000,000,000
0.034	-250,000
-0.0034	1,200,000
0.00034	-500,000

$$P1 = [-0.34, 0.034, -0.0034, 0.00034]$$

- |-0.34| = 0.34
- |0.034| = 0.034
- |-0.0034| = 0.0034
- |0.00034| = 0.00034

Maximum absolute value: 0.34

$$P2 = [750,000,000,000 , -250,000 , 1,200,000 , -500,000]$$

- |750,000,000,000|=750,000,000,000
- |**-250,000**|**=250,000**
- |1,200,000|=1,200,000
- |-500,000|=500,000

Maximum absolute value: 750,000,000,000

Column	Maximum Absolute Value	j (Number of Digits)
P1	0.34	1 (اولین رقم مهم بعد از اعشار)
P2	750,000,000,000	12 (قسمت بدون اعشار 12 رقمی)

$$x'=\frac{x}{10^j}$$

P1	normalized_P1
-0.34	$x' = \frac{-0.34}{10^1} = -0.034$
0.034	$x' = \frac{-0.034}{10^1} = 0.0034$
-0.0034	$x' = \frac{-0.0034}{10^1} = -0.00034$
0.00034	$x' = \frac{-0.00034}{10^1} = 0.000034$

P2	normalized_P2
750,000,000,000	$x' = \frac{750,000,000,000}{10^{12}} = 0.75$
-250,000	$x' = \frac{-250,000}{10^{12}} = -0.000000025$
1,200,000	$x' = \frac{1,200,000}{10^{12}} = 0.0000012$
-500,000	$x' = \frac{-500,000}{10^{12}} = -0.00000005$

Log Scaling (Log Transformation)

- نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم: $oldsymbol{\mathcal{X}}$
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\mathcal{X}}'$ \circ
- یا پایه لگاریتم است (معمولاً از لگاریتم طبیعی $({f e})$ یا پایه ۱۰ استفاده میشود) $m{b}$
 - يايه e :
- اگر داده های شما شامل مقادیر بسیار بزرگ و بسیار کوچک است
 - اگر میخواهید دادهها را برای درک بهتر انسانها نمایش دهید
 - ا يايه 10:
 - اگر داده های شما دارای رشد یا کاهش نمایی هستند
 - اگر مدل های آماری یا احتمال را بررسی می کنید
- یک مقدار کوچک مثبت است که اضافه می شود تا از مشکلات ناشی از اعداد صفر یا منفی \mathbf{c} \mathbf{c} جلوگیری شود (لگاریتم برای مقادیر صفر و منفی تعریف نشده است)

$$x' = \log_b(x + c)$$

- $\bullet \ \ x' = \log_{10}(x+c)$
- $x' = \ln(x + c)$, $e(Euler's number) \approx 2.718$

مدیریت مقادیر منفی و صفر (اگر داده ها شامل مقدار صفر یا منفی باشند):

- چون لگاریتم برای مقادیر منفی و صفر تعریف نشده است، باید همه دادهها را شیفت کنیم تا مثبت شوند
 - \bullet : $\min n(X)$ کمترین مقدار موجود در ستون
 - ا: اضافه می شود تا تمام داده ها مثبت شوند $|\mathbf{mi} \ \mathbf{n}(X)| + \mathbf{1}$

$$x' = \log_{10}(x + |\min n(X)| + 1)$$

P1	P2
-0.34	750,000,000,000
0.034	250,000
-0.0034	1,200,000
0.00034	500,000

P1 = [-0.34, 0.034, -0.0034, 0.00034]

• Minimum value: (P1) = −0.34

• Shift value: |min(P1)| + 1 = 0.34 + 1 = 1.34

P1	normalized_P1
-0.34	$x' = \log_{10}(-0.34 + -0.34 + 1) = \log_{10}(1.00) = 0$
0.034	$x' = \log_{10}(0.034 + -0.34 + 1) = \log_{10}(1.374) = 0.138$
-0.0034	$x' = \log_{10}(-0.0034 + -0.34 + 1) = \log_{10}(1.3366) = 0.126$
0.00034	$x' = \log_{10}(0.00034 + -0.34 + 1) = \log_{10}(1.34034) = 0.127$

P2 = [750,000,000,000 , 250,000 , 1,200,000 , 500,000]

P2	normalized_P2
750,000,000,000	$x' = \log_{10}(750,000,000,000) = 11.87$
250,000	$x' = \log_{10}(250,000) = 5.39$
1,200,000	$x' = \log_{10}(1, 200, 000) = 6.07$
500,000	$x' = \log_{10}(500,000) = 5.69$

Robust Scaling

- مقیاس بندی مقاوم (Robust Scaling) یکی از روش های نرمال سازی ویژگیها است که در برابر مقاوم (Outliers) مقاوم است
 - نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم $oldsymbol{\mathcal{X}}$ \circ
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\mathcal{X}}'$ \circ
 - میانه (مرکز دادهها) را نشان می دهد : $\operatorname{median}(X)$ \circ
 - (Interquartile Range) بازه بین چارکی: IQR(X) \circ
- مقیاسی برای توزیع داده ها استفاده می شود و نشان می دهد که ۵۰٪ میانی داده ها (بین چارک اول و سوم) در چه محدوده ای قرار دارند
 - Q1 (چارک اول):
- مقدار ٪۲۵ پایین داده ها مرز بین ٪۲۵ کمترین مقادیر و ٪۷۵ بقیه
 - Q3 (چارک سوم):
 - مقدار ٪۷۵ پایین داده ها مرز بین ٪۷۵ کمترین مقادیر و ٪۲۵ بیشترین مقادیر
 - : IQR •
 - فاصله بین چارک اول و چارک سوم که محدوده ای برای بخش
 میانی داده ها را نشان می دهد
 - $IQR(X) = Q3 Q1 \quad \bullet$

$$x' = \frac{x - \text{median}(X)}{\text{IQR}(X)}$$

P1	P2
0.56	75
0.28	-70
-0.0006	80
0.32	0
-0.89	-500
0	

P1 = [0.56 , 0.28 , -0.0006 , 0.32 ,-0.89 ,0]

- مرتب سازی داده ها بترتیب صعودی
- o -0.89, -0.0006, 0, 0.28, 0.32, 0.56

• يافتن ميانه

o Median = $\frac{0+0.28}{2}$ = 0.14

- محاسبه چارک ها
- مقدار میانه از نیمه پایینی داده ها: چارک اول (Q1) o
 - **(** -0.89 , -0.0006 , 0):
 - Q1 = -0.0006
- مقدار میانه از نیمه بالایی دادهها: چارک سوم (Q3) o
 - **(** 0.28 , 0.32 , 0.56):
 - Q3 = 0.32

• محاسبه IQR

$$x' = \frac{x - 0.14}{0.3206}$$

P1	normalized_P1
0.56	$x' = \frac{0.56 - 0.14}{0.3206} = 1.31$
0.28	$x' = \frac{0.28 - 0.14}{0.3206} = 0.44$
-0.0006	$x' = \frac{-0.0006 - 0.14}{0.3206} = -0.44$
0.32	$x' = \frac{0.32 - 0.14}{0.3206} = 0.56$
-0.89	$x' = \frac{-0.89 - 0.14}{0.3206} = -3.21$
0	$x' = \frac{0 - 0.14}{0.3206} = -0.44$

$$P2 = [75, -70, 80, 0, -500]$$

- مرتب سازی داده ها بترتیب صعودی
- o -500, -70, 0, 75, 80

• يافتن ميانه

o Median = 0

- محاسبه چارک ها
- مقدار میانه از نیمه پایینی داده ها: چارک اول (Q1) o
 - **(-500,-70,0)**:
 - Q1 = -70
- مقدار میانه از نیمه بالایی دادهها: چارک سوم (Q3) o
 - **(**0,75,80):
 - Q3 = 75

• محاسبه IQR

o IQR = Q3 - Q1 = 75 - (-70) = 145

$$x'=\frac{x-0}{145}$$

P2	normalized_P2
75	$x' = \frac{75 - 0}{145} = 0.52$
-70	$x' = \frac{-70 - 0}{145} = -0.48$
80	$x' = \frac{80 - 0}{145} = 0.55$
0	$x' = \frac{0 - 0}{145} = 0.00$
-500	$x' = \frac{-500 - 0}{145} = -3.45$

Max-Abs Scaling

- نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - خروجی داده ها همیشه در بازه [1,1-] قرار دارد
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم: $oldsymbol{\mathcal{X}}$
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\chi}'$ \circ
 - بزرگ ترین مقدار مطلق در ویژگی است : $\max |X|$ \circ

$$x' = \frac{x}{\max |X|}$$

P1	normalized_P1
-50	$x' = \frac{-50}{100} = -0.50$
-20	$x' = \frac{-20}{100} = -0.2$
0	$x' = \frac{0}{100} = 0.00$
10	$x' = \frac{10}{100} = 0.10$
30	$x' = \frac{30}{100} = 0.30$
100	$x' = \frac{100}{100} = 1.00$

$$P1 = [-50, -20, 0, 10, 30, 100]$$

$$max|X| = 100$$

$$x' = \frac{x}{100}$$

L1 Normalization (Manhattan Scaling)

- نرمال سازی L1 که با نام مقیاس بندی منهتن (Manhattan Scaling) نیز شناخته می شود ، یک روش نرمال سازی ویژگی ها است که بردار داده ها را طوری مقیاس بندی می کند که نُرم L1 (مجموع قدرمطلق مقادیر) برابر ۱ شود
 - نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود
 - مجموع قدرمطلق مقادیر در بردار نرمال شده برابر ۱ می شود
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم \mathcal{X} \circ
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\chi}'$ \circ
 - ا نرم $\mathbf{L}\mathbf{1}$ (نرم منهتن) داده ها: $\|X\|_1$ \circ

$$x' = \frac{x}{\parallel X \parallel_1}$$

$$||X||_1 = |x_1| + |x_2| + \cdots + |x_n|$$

P1	normalized_P1
-52	$x' = \frac{-52}{109.45} = -0.4751$
-0.25	$x' = \frac{-0.25}{109.45} = -0.0023$
0	$x' = \frac{0}{109.45} = 0$
32	$x' = \frac{32}{109.45} = 0.2924$
25.2	$x' = \frac{25.2}{109.45} = 0.2302$

$$P1 = [-52, -0.25, 0, 32, 25.2]$$

- $||X||_1 = |-52| + |-0.25| + |0| + |32| + |25.2| = 52 + 0.25 + 0 + 32 + 25.2 = 109.45$
- $\bullet \quad \chi' = \frac{x}{109.45}$

$$|-0.4751| + |-0.0023| + |0| + |0.2924| + |0.2302| = 1$$

Unit Vector Scaling (L2 Normalization)

- مقیاس بندی بردار واحد (L2 Normalization) یک روش نرمال سازی ویژگیها است که یک بردار را به گونهای تبدیل می کند که نرم L2 (یا نرم اقلیدسی) آن برابر ۱ شود
 - نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود.
 - مجموع مربع مقادير نرمال شده برابر ١ مي شود
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم: $oldsymbol{\mathcal{X}}$ \circ
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\chi}'$ \circ
 - نرم L2 (نرم اقلیدسی) داده ها $X\parallel_2$ \circ

$$x' = \frac{x}{\parallel X \parallel_2}$$

$$||X||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

P1	normalized_P1
-52	$x' = \frac{-52}{66.025} = -0.787$
-0.25	$x' = \frac{-0.25}{66.025} = -0.0038$
0	$x' = \frac{0}{66.025} = 0$
32	$x' = \frac{32}{66.025} = 0.484$
25.2	$x' = \frac{25.2}{66.025} = 0.382$

$$P1 = [-52, -0.25, 0, 32, 25.2]$$

$$\parallel X \parallel_2 = \sqrt{(-52)^2 + (-0.25)^2 + (0)^2 + (32)^2 + (25.2)^2} = \sqrt{4363.1025} = 66.025$$

$$x' = \frac{x}{\|X\|_2} = \frac{x}{66.025}$$

$$(-0.787)^2 + (-0.0038)^2 + (0)^2 + (0.484)^2 + (0.382)^2 = 1$$

Mean Normalization

- نرمال سازی برای هر ویژگی (Feature) به صورت جداگانه باید انجام شود
 - نرمالسازی میانگین باعث میشود که مقادیر حول صفر متمرکز شوند
- دادههای نرمال شده در بازه [-1,1] قرار می گیرند (اگر داده ها متقارن باشند)
 - حالا استفاده از رابطه زیر:
 - مقدار اصلی داده ای که میخواهیم نرمال کنیم: $oldsymbol{\mathcal{X}}$
 - مقدار نرمال شده داده پس از اعمال نرمال سازی: $oldsymbol{\chi}'$ \circ
 - ویژگی: μ \circ
 - ویژگی: x_{max} \circ
 - ویژگی: x_{min} \circ

$$x' = \frac{x - \mu}{x_{max} - x_{min}}$$

P1	normalized_P1
-52	$x' = \frac{-52 - 1.99}{84} = -0.641$
-0.25	$x' = \frac{-0.25 - 1.99}{84} = -0.027$
0	$x' = \frac{0 - 1.99}{84} = -0.024$
32	$x' = \frac{32 - 1.99}{84} = 0.357$
25.2	$x' = \frac{25.2 - 1.99}{84} = 0.276$

$$P1 = [-52, -0.25, 0, 32, 25.2]$$

•
$$\mu = \frac{-52 + (-0.25) + 0 + 32 + 25.2}{5} = \frac{4.95}{5} = 1.99$$

$$\bullet \quad x' = \frac{x - 1.99}{x_{max} - x_{min}}$$

•
$$x_{max} = 32$$
, $x_{min} = -52$

$$\bullet \ \frac{x-1.99}{32-(-52)} = \frac{x-1.99}{84}$$