AIRE HUMEDO

1

UNIDAD 13: AIRE HÚMEDO

- 13.A. Mezcla de aire y agua. Análisis del sistema aire vapor de agua: humedad absoluta, máxima, relativa y grado de saturación. Entalpía del aire húmedo. Punto de rocío. Mezclas de corrientes de aire húmedo.
- *13.B. Temperaturas Cálculo y Medición.* Temperatura de Rocío. Temperatura de Saturación. Temperatura de Bulbo Seco. Temperatura de Bulbo Húmedo. Psicrómetro. Temperatura de Saturación Adiabática.
- *13.C. Tablas y Diagramas.* Tablas de aire húmedo. Diagrama Psicométrico. Diagrama entálpico. Procesos con aire húmedo.

Termodinamica - F Ing - UNCuyo

AIRE HUMEDO

- El aire húmedo es una mezcla de aire seco y vapor de agua.
- El aire seco es una mezcla de gases, cuya composición química es:

Nitrógeno 78,08%
 Oxígeno 20,95%
 Argón 0,93%
 CO₂, CO, SO₂, SO₃, ... 0,03%

0,01%

Termodinamica - F Ing - UNCuyo

Otros

3

AIRE HUMEDO

> El Peso Molar del aire húmedo se calcula:

 O_2 Ar CO_2

PMa.s. = $0.78084 \cdot 28 + 0.209476 \cdot 32 + 0.00934 \cdot 39.9 + 0.0003 \cdot 44.01$

PMa.s. = 28.95 kg / kmol

- ➤ El vapor de agua a presiones muy bajas (< 0,1 bar) se comporta prácticamente como un gas ideal.
- El vapor de agua dentro del aire húmedo se encuentra a muy bajas P, por lo que asumiremos su comportamiento como gas ideal.
- Su peso molecular es de 18 kg / kmol.

Termodinamica - F Ing - UNCuyo

AIRE HUMEDO

Mezcla de aire seco y agua en estado de vapor.

Grados de libertad:

$$Z = C + 2 - F$$

C: cantidad de componentes = 2 F: n° de fases = 1

Z = 3

Se deben fijar 3 propiedades para definir el estado de equilibrio de la mezcla de gases.

PRESIONES PARCIALES

- > Aire húmedo es una mezcla de 2 gases:
 - Aire: ocupa un volumen ejerce una presión *Pa*
 - Vapor de agua: ocupa un volumen → ejerce una presión Pv
- > La presión total a la cual está sometida esa mezcla:

$$P_{total} = Pa + Pv$$

- **Pa:** presión parcial del aire
- **Pv:** presión parcial del vapor
- P total = 1 Atm (generalmente)

Termodinamica - F Ing - UNCuyo

- Las presiones parciales son proporcionales a las masas.
 - Pa: presión parcial proporcional a la Masa de aire
 - Pv: presión parcial proporcional a la Masa Vapor de Agua
- > Presión de vapor saturado (P vs)

Es la presión que ejerce la máxima cantidad de vapor de agua que puede contener el Aire Húmedo en determinadas condiciones de Temperatura y Presión Total.

Termodinamica - F Ing - UNCuyo

90

100

2021

69.999

101.300

-

$P_{total} = P_{a} + P_{vs}$ Relación Presiones aire húmedo Presión Saturación Presión aire seco Presión atmosférica Temp °C kPa kPa kPa 101.3 10 1.228 100.07 20 2.343 98.96 101.3 4.254 97.05 101.3 30 40 93.91 101.3 7.393 50 12.354 88.95 101.3 19.930 60 81.37 101.3 101.3 70 31.148 70.15 80 47.304 101.3 54.00

31.30

0.00

101.3

101.3

ECUACION PARA GASES IDEALES $P * V = m * R_P * T$ Donde: V: Volumen P: Presión m: Masa Rp: Constante Particular de los Gases T: Temperatura [°K] > Las constantes particulares: R aire seco Ra = 0.287 KJ /kg °K R vapor Rv = 0.461 KJ /kg °K

HUMEDAD ABSOLUTA (X)

$$X = \frac{m_{v}}{m_{as}} = \frac{P \text{ vapor } R \text{ aire}}{P \text{ aire}} = 0.622 \frac{P \text{ vapor}}{P \text{ aire}}$$

$$P \text{ total } = P \text{ aire} + P \text{ vapor}$$

$$P \text{ aire} = P - P \text{ vapor}$$

$$X = 0.622 \frac{P \text{ vapor}}{P - P \text{ vapor}} = 0.622 \frac{P \text{ vapor}}{P - P \text{ vapor}}$$

$$Aire: R \text{ vapor } = 0.461 \text{ KJ / Kg } ^{\circ}K$$

$$R \text{ aire} = 0.2870 \text{ KJ / Kg } ^{\circ}K$$

$$R \text{ Peso Molar } PM \text{ vap} = 18 \text{ Kg / Kmol}$$

$$PM \text{ aire} = 28.95 \text{ Kg / Kmol}$$

$$PM \text{ aire} = 28.95 \text{ Kg / Kmol}$$

$$Termodinamica - F \ln g - UNCuyo 2021$$

HUMEDAD DE SATURACIÓN (Xs)

Aire saturado: la presión parcial del vapor de agua que contiene es igual a la presión de vapor del agua saturada pura a la misma temperatura del aire.

En otras palabras es la "Máxima cantidad de agua que puede contener el Aire Húmedo en determinadas condiciones de Presión y Temperatura".

La humedad absoluta era:

$$X = 0.622 \frac{P \text{ vapor}}{P - P \text{ vapor}} = 0.622 \frac{P \text{ vapor}}{P - P \text{ vapor}}$$

Reemplazando la Presión de vapor por la Presión de Saturacion, la "*humedad de saturación*" será:

$$Xs = 0.622 \frac{P \text{ vapor sat}}{P - P \text{ vapor sat}} = 0.622 \frac{P \text{ vs}}{P - P \text{ vs}}$$

Relación entre el vapor de agua contenido en una determinada cantidad de aire y el que éste contendría si estuviese saturado a una determinada temperatura.

$$P_{
m V}$$
 $HR \circ arPhi_{=}$
 $P_{
m Vs}$

Pv: Presión parcial del vapor de agua existente en el aire húmedo

Pvs: Presión de saturación a la misma temperatura

Termodinamica - F Ing - UNCuyo

202

			-							- T	na
Temperatura de un them- ómetro seco					(en	os then °C) ecifica					
°C	0	1	2	3	4	5	6	7	8	9	
0	100	82	64	47	31	14					
1	100	83	66	60	34	18					
2	100	84	68	52	37	22					
3	100	84	69	54	40	25	12				
4	100	85	70	56	42	28	18				
3	100	86	72	58	45	32	19	7			
6	100	86	73	60	47	-35	23	11			
7	100	87	75	61	49	37	26	14			
8	100	87	75	62	51	40	29	18	7		
9	100	- 88	76	64	53	42	31	21	11		
10	100	88	77	65	55	44	34	24 26	14	5	
12	100	89	78	68	57	48	38	29	20	11	
13	100	89	79	69	59	40	40	31	23	14	
14	100	90	79	70	60	51	42	33	25	17	
15	100	90	80	71	61	53	44	36	27	20	
16	100	90	31	71	62	54	46	37	30	22	
17	100	90	81	72	63	56	47	39	32	24	
18	100	91	82	73	65	56	49	41	34	27	
19	100	91	82	74	65	58	50	43	36	29	
20	100	91	83	74	66	59	51	44	37	31	
21	100	91	83	75	67	60	52	45	39	32	
22	100	92	83	75	68	61	54	47	40	34	
23	100	92	84	76	69	62	55	48	42	36	
24	100	92	84	77	70	62	56	49	43	37	
25	100	92	85	77	70	63	57	51	44	39	
26	100	92	85	78	71	64	58	51	45	40	
27	100	93	85	78	71	65	59	53	47	41	
28	100	93	86	79	72	65	59	53	48	42	
29	100	93	86	79	72	66	60	54	49	43	
30	100	93	86	79	73	67	61	55	50	44	19

RELACIÓN ENTRE

GRADO DE SATURACIÓN Y HUMEDAD RELATIVA

GS =
$$\frac{X}{X_s} = \frac{0.622 * \frac{P_v}{P - P_v}}{0.622 * \frac{P_{vs}}{P - P_{vs}}} = \frac{P_v}{P_{vs}} * \frac{(P - P_{vs})}{(P - P_v)}$$

Por ser Pv y Pvs << P:

$$GS = \frac{X}{X_s} = \frac{P_v}{P_{vs}} * [\approx 1] = HR$$

La Humedad Relativa es prácticamente igual al Grado de Saturación para las condiciones atmosféricas

ENTALPÍA DEL AIRE HÚMEDO

La entalpía de una mezcla de aire y vapor de agua es la suma de las entalpías del aire seco y la del vapor de agua.

Se considera como estado de referencia (0 °C y 1 atm): agua líquida y aire seco

Una mezcla de aire-vapor, con x kg de agua, a una temperatura de t °C y 1 atm, la entalpía puede calcularse como:

$$H$$
 ah = H aire + H vapor [kJ]

$$h$$
 ah = C_p aire * T + X * (h_{L-V} + C_p vapor * T) [kJ / kg aire seco]

Pueden aceptarse como valores medios constantes:

Cp aire : calor específico del aire

= 0.24 kcal/(kg°C) o 1 kJ/(kg°C)

Cp vapor: calor específico del vapor

= $0.45 \text{ kcal/(kg}^{\circ}\text{C}) \text{ o } 1.88 \text{ kJ/(kg}^{\circ}\text{C}),$

ro = **h**_{L-V} **o** : calor latente de vaporización [T=0°C]

= 2500 kJ/kg o 597 kcal/kg

	APÉND	ICE A • 1.	TABLAS Y FIG	URAS SUPL	EMENTARIA:	S (UNIDADES	S SD			945	
Table A 10							, 0.,			545	
	Propiedad					a					
(v, m-/kg	u, kJ/kg; h	arconcentaco.	CONTRACTOR OF THE	10000000	Occupation a					000000000000000000000000000000000000000	
		-	específico	1	interna		Entalpía	1	Enti	100000000	
Temp., °C T	Pres., bar P	Líquido sat. v _f × 10 ³	Vapor sat. v _e	Líquido sat. u _f	Vapor sat. u _g	Líquido sat. h _f	Evap.	Vapor sat. h _e	Líquido sat. s _f	Vapor sat. s _x	
0	0,00611	1,0002	206,278	-0,03	2.375,4	-0,02	2.501,4	2.501,3	0,0001	9,1565	
4	0,00813	1,0001	157,232	16,77	2.380,9	16,78	2.491,9	2.508,7	0,0610	9,0514	
.5 6	0,00872	1,0001	147,120	20,97	2.382,3	20,98	2.489,6	2.510,6	0,0761	9,0257	
- 6 - 8	0,00935	1,0001	137,734	25.19 33.59	2.383,6	25,20 33,60	2.487,2	2.512,4	0,0912	9,0003 8,9501	
10	0.01228										
11	0.01228	1,0004	106,379 99,857	42,00 46,20	2.389,2	42,01 46,20	2,477,7	2.519,8	0,1510	8,9008 8,8765	
12	0.01402	1,0005	93,784	50,41	2.391.9	50,41	2.473,0	2.523,4	0,1806	8,8524	
13	0,01497	1,0007	88,124	54,60	2.393,3	54,60	2.470.7	2,525,3	0,1953	8,8285	
14	0.01598	1,0008	82,848	58,79	2.394,7	58,80	2.468,3	2.527,1	0,2099	8,8048	
15	0,01705	1,0009	77,926	62,99	2.396,1	62.99	2,465,9	2.528,9	0,2245	8,7814	
16	0,01818	1,0011	73,333	67,18	2.397,4	67,19	2.463,6	2.530,8	0,2390	8,7582	
17	0.01938	1,0012	69,044	71,38	2,398,8	71,38	2,461,2	2.532,6	0,2535	8,7351	
18	0,02064	1,0014	65,038	75,57	2.400,2	75,58	2,458,8	2.534,4	0,2679	8,7123	
19	0,02198	1,0016	61,293	79.76	2.401,6	79,77	2.456,5	2.536,2	0,2823	8,6897	
20	0,02339	1,0018	57,791	83,95	2,402,9	83,96	2.454,1	2.538.1	0.2966	8,6672	
21	0,02487	1,0020	54,514	88,14	2,404,3	88,14	2,451,8	2.539,9	0,3109	8,6450	
22 23	0,02645	1,0022	51,447 48,574	92,32	2.405,7	92,33	2.449,4	2.541,7	0,3251	8,6229	
24	0,02810	1,0024	45,883	96,51	2,407,0	96,52	2.447,0	2.543,5 2.545,4	0,3393	8,6011 8,5794	
										5600000	
25 26	0,03169	1,0029	43,360 40,994	104,88	2.409,8	104,89	2.442,3	2.547,2	0,3674	8,5580 8,5367	
26 27	0,03363	1,0032	40,994 38,774	113,25	2.411.1	113,25	2.439.9	2.549,0	0,3814	8,5367 8,5156	
28	0,03782	1,0037	36,690	117,42	2.413.9	117,43	2.435.2	2.552,6	0,4093	8,4946	
29	0,04008	1,0040	34,733	121,60	2.415,2	121,61	2,432,8	2.554,5	0,4231	8,4739	
30)	0,04246	1,0043	32.894	125.78	2.416,6	125,79	2.430.5	2.556,3	0,4369	8,4533	
31	0,04496	1,0046	31,165	129,96	2.418,0	129,97	2.428.1	2.558,1	0,4507	8,4329	
32	0.04759	1,0050	29,540	134,14	2,419,3	134,15	2.425.7	2.559,9	0.4644	8,4127	
33	0,05034	1,0053	28,011	138,32	2.420,7	138,33	2.423,4	2.561,7	0,4781	8,3927	
34	0,05324	1,0056	26,571	142,50	2.422,0	142,50	2,421,0	2.563,5	0,4917	8,3728	
35	0,05628	1,0060	25,216	146,67	2.423,4	146,68	2.418,6	2.565,3	0,5053	8,3531	
36	0,05947	1,0063	23,940	150,85	2.424,7	150,86	2.416,2	2.567,1	0,5188	8,3336	
38	0,06632	1,0071	21,602	159,20	2,427,4	159,21	2.411,5	2.570,7	0,5458	8,2950	
40 45	0,07384	1,0078	19,523 15,258	167,56	2,430,1	167,57	2.406,7	2.574,3	0,5725	8,2570 8,1648	

		Volumen	olumen específico		Energía interna		Entalpía			opía
Temp., °C T	Pres., bar P	Líquido sat. $v_f \times 10^3$	Vapor sat. v _e	Líquido sat. u _f	Vapor sat. u _s	Líquido sat. h _f	Evap.	Vapor sat. h _e	Líquido sat.	Vapor sat.
50	0,1235	1,0121	12,032	209,32	2.443,5	209,33	2.382,7	2.592,1	0,7038	8,0763
55	0,1576	1,0146	9,568	230,21	2,450,1	230,23	2.370,7	2.600,9	0,7679	7,9913
60	0.1994	1,0172	7,671	251,11	2.456,6	251,13	2.358,5	2,609,6	0,8312	7,9096
65	0,2503	1,0199	6,197	272,02	2.463,1	272,06	2.346,2	2.618,3	0,8935	7,8310
70	0,3119	1,0228	5,042	292,95	2.469,6	292.98	2.333,8	2.626,8	0,9549	7,7553
					2,475.9	313,93	2.321.4	2.635.3	1,0155	7,6824
75	0,3858	1,0259	4,131	313,90					1,0153	7,6824
80	0,4739	1,0291	3,407	334,86	2.482,2	334,91	2.308,8	2.643,7	1,1343	7,5445
85	0,5783	1,0325	2,828	355,84	2.488.4	355,90	2.296,0			7,3445
90	0,7014	1,0360	2,361	376,85	2.494,5	376,92	2.283,2	2.660,1	1,1925	
95	0,8455	1,0397	1,982	397,88	2.500,6	397,96	2.270,2	2.668,1	1,2500	7,4159
100	1.0133	1,0435	1,673	418.94	2.506,5	419,04	2.257,0	2.676,1	1,3069	7,3549
110	1,433	1,0516	1,210	461,14	2.518,1	461,30	2.230,2	2.691,5	1,4185	7,2387
120	1,985	1,0603	0.8919	503,50	2,529,3	503,71	2.202,6	2.706,3	1,5276	7,1296
130	2,701	1.0697	0,6685	546,02	2.539,9	546,31	2.174,2	2.720,5	1,6344	7.0269
140	3,613	1,0797	0,5089	588,74	2.550,0	589,13	2.144,7	2.733,9	1,7391	6,9299
					4.550.5	c22.20	2	2,746,5	1,8418	6,8379
150	4,758	1,0905	0,3928	631,68	2.559,5	632,20 675,55	2.114,3	2.746,5	1,8418	6,7502
160	6,178	1,1020	0,3071	674,86	2.568,4					CONTRACTOR
170	7,917	1.1143	0,2428	718,33	2.576,5	719,21	2.049,5	2.768,7	2,0419	6,6663
180	10,02	1,1274	0,1941	762,09	2.583,7	763,22	2.015,0	2.778,2	2,1396	6,5857
190	12,54	1,1414	0,1565	806,19	2.590,0	807,62	1.978,8	2.786,4	2,2359	6,5079
200	15,54	1,1565	0,1274	850,65	2.595,3	852,45	1.940,7	2.793,2	2,3309	6,4323
210	19,06	1,1726	0.1044	895,53	2.599,5	897,76	1.900,7	2.798,5	2,4248	6,3585
220	23,18	1,1900	0,08619	940,87	2.602,4	943,62	1.858,5	2.802,1	2,5178	6,2861
230	27,95	1,2088	0,07158	986,74	2.603,9	990,12	1.813,8	2.804,0	2,6099	6,2146
240	33,44	1,2291	0,05976	1.033,2	2.604,0	1.037,3	1.766,5	2.803,8	2,7015	6,1437
250	39,73	1,2512	0,05013	1.080,4	2.602,4	1.085.4	1.716.2	2.801.5	2,7927	6,0730
250		1,2755	0,03013	1.128.4	2.599.0	1.134,4	1.662,5	2.796,6	2,8838	6,0019
	46,88	1,2/55	0,04221	1.177.4	2.593,7	1.134,4	1.605,2	2.789,7	2,9751	5,9301
270	54,99	E HOLDER STORTER	HISTORY STREET,	1.177,4	2.586,1	1.236,0	1.543,6	2.779,6	3,0668	5,8571
280	64,12	1,3321	0,03017	1.278,9	2.586,1	1.289,1	1.343,6	2.766,2	3,1594	5,7821
290	74,36	1,3656	0,02557	1.2/8.9	2.576,0	1,289,1	1.477.1			
300	85,81	1,4036	0,02167	1.332,0	2.563,0	1.344,0	1.404,9	2.749,0	3,2534	5,7045
320	112,7	1,4988	0,01549	1.444.6	2.525,5	1.461,5	1.238,6	2.700,1	3,4480	5,5362
340	145,9	1,6379	0,01080	1.570,3	2.464,6	1.594,2	1.027.9	2.622,0	3,6594	5,3357
360	186,5	1,8925	0,006945	1.725,2	2.351,5	1.760,5	720,5	2.481,0	3,9147	5,0526
374,14	220,9	3,155	0,003155	2.029,6	2.029,6	2.099,3	0	2.099,3	4,4298	4,4298

PUNTO DE ROCIO

> Temperatura de rocío:

Es la Temperatura a la cual aparece la primer gota de agua líquida cuando disminuye la temperatura del aire húmedo manteniendo la humedad absoluta constante.

Si continúa el enfriamiento, sigue la condensación del vapor de agua, separándose del aire húmedo.

Temperatura _{——→} enfriamiento a humedad absoluta constante x = ctte. Rocío

Diferente al concepto de Saturación

Saturación — humidificación a Temperatura constante T = ctte

			PROPIED/	DES AIRE	HUMEDO A	APRESION.	ATMOSFEE	RICA				
Temperatura	Humedad	,	volumen específic	olumen específico		Entalpía del aire		Er.	talpía vapor satur	Presión	Temperatura	
Saturación	específica									Saturación	saturación	
ts	Ws	va	vas	VS	ha	has	hs	hf	hfg	hg	ps	ts
°C	kgv/kga	m3/kg	m3/kg	m3/kg	kJ/kg	kJ/kg	kJ/kg	(kJ/kg)	(kJ/kg)	(kJ/kg)	kPa	℃
0	0.00378	0.7740	0.0047	0.7787	0.00	9.44	9.44	0.0	2,501.0	2,501.0	0.6112	0
1	0.00406	0.7768	0.0051	0.7819	1.01	10.16	11.17	4.2	2,499.0	2,503.0	0.6571	1
2	0.00437	0.7796	0.0055	0.7851	2.01	10.93	12.95	8.4	2,496.0	2,505.0	0.7060	2
3	0.00469	0.7825	0.0059	0.7884	3.02	11.75	14.77	12.6	2,494.0	2,506.0	0.7581	3
4	0.00504	0.7853	0.0064	0.7917	4.03	12.63	16.66	16.8	2,491.0	2,508.0	0.8135	4
5	0.00540	0.7881	0.0068	0.7950	5.03	13.56	18.60	21.0	2,489.0	2,510.0	0.8725	5
6	0.00580	0.7910	0.0074	0.7983	6.04	14.56	20.60	25.2	2,487.0	2,512.0	0.9353	6
7	0.00621	0.7938	0.0079	0.8017	7.04	15.62	22.66	29.4	2,484.0	2,514.0	1.0020	7
8	0.00666	0.7966	0.0085	0.8052	8.05	16.75	24.80	33.6	2,482.0	2,516.0	1.0729	8
9	0.00713	0.7995	0.0092	0.8086	9.06	17.95	27.01	37.8	2,480.0	2,517.0	1.1482	9
10	0.00763	0.8023	0.0098	0.8121	10.06	19.23	29.29	42.0	2,477.0	2,519.0	1.2281	10
11	0.00817	0.8051	0.0106	0.8157	11.07	20.59	31.66	46.2	2,475.0	2.521.0	1.3129	11
12	0.00873	0.8080	0.0113	0.8193	12.08	22.03	34.11	50.4	2,472.0	2.523.0	1.4027	12
13	0.00934	0.8108	0.0122	0.8230	13.08	23.57	36.65	54.6	2.470.0	2.525.0	1.4980	13
14	0.00997	0.8136	0.0130	0.8267	14.09	25.20	39.29	58.8	2,468.0	2.527.0	1.5989	14
15	0.01065	0.8165	0.0140	0.8304	15.10	26.93	42.03	63.0	2,465.0	2,528.0	1.7057	15
16	0.01137	0.8193	0.0150	0.8343	16.10	28.77	44.87	67.2	2,463.0	2,530.0	1.8187	16
17	0.01213	0.8221	0.0160	0.8382	17.11	30.72	47.83	71.4	2,461.0	2,532.0	1,9382	17
18	0.01294	0.8250	0.0172	0.8421	18.12	32.79	50.90	75.5	2,458.0	2,534.0	2.0646	18
19	0.01380	0.8278	0.0184	0.8462	19.12	34.98	54.10	79.7	2,456.0	2,536.0	2.1981	19
20	0.01470	0.8306	0.0196	0.8503	20.13	37.31	57.44	83.9	2,454.0	2,537.0	2.3392	20
21	0.01566	0.8335	0.0210	0.8545	21.14	39.77	60.90	88.1	2,451.0	2,539.0	2.4881	21
22	0.01668	0.8363	0.0210	0.8587	22.14	42.38	64.52	92.3	2,449.0	2,535.0	2.6452	22
23	0.01005	0.8391	0.0224	0.8631	23.15	45.14	68.29	96.5	2,446.0	2,541.0	2.8110	23
24	0.01773	0.8420	0.0256	0.8675	24.16	48.07	72.22	100.7	2,444.0	2,545.0	2.9857	24
25	0.02009	0.8448	0.0233	0.8721	25.16	51.16	76.33	104.8	2,442.0	2,547.0	3.1698	25
26	0.02009	0.8476	0.0273	0.8767	26.17	54.44	80.61	109.0	2,439.0	2,547.0	3.3638	26
27	0.02130	0.8505	0.0291	0.8815	27.18	57.91	85.08	113.2	2,437.0	2,540.0	3.5680	27
28	0.02271	0.8533	0.0310	0.8864	28.18	61.57	89.76	117.4	2,437.0	2,550.0	3.7830	32 28
29	0.02413	0.8533	0.0353	0.8804	29.19	65.45	94.64	121.6	2,430.0	2,552.0	4.0091	32 28
29	0.02003	0.8361	0.0353	0.8914	29.19	00.40	94.04	121.0	2,432.0	2,004.0	4.0091	

			PROPIEDA	DES AIRE	HUMEDO A	PRESION	ATMOSFER	RICA				
emperatura	Humedad	v	volumen específic	0		Entalpía del aire		Er	ntalpía vapor satur	Presión Saturación	Temperatur	
Saturación	específica Ws	va		vas vs		has	hs	hf	Lf-		ha	saturaci ts
°C	kgv/kga	m3/kg	m3/kg	m3/kg	ha kJ/kg	kJ/kg	kJ/kg	(kJ/kg)	hfg (kJ/kg)	(kJ/kg)	ps kPa	°C
_												
30	0.02722	0.8590	0.0376	0.8966	30.20	69.55	99.75	125.7	2,430.0	2,556.0	4.2469	30
31	0.02889	0.8618	0.0400	0.9018	31.20	73.89	105.09	129.9	2,427.0	2,557.0	4.4969	31
32	0.03066	0.8646	0.0426	0.9073	32.21	78.48	110.69	134.1	2,425.0	2,559.0	4.7596	32
33 34	0.03254 0.03451	0.8675 0.8703	0.0454 0.0483	0.9128 0.9186	33.22 34.22	83.32 88.44	116.54 122.66	138.3 142.5	2,423.0 2.420.0	2,561.0 2.563.0	5.0354 5.3251	33 34
35	0.03451	0.8731	0.0463	0.9166	35.23	93.85	122.00	142.5	2,420.0	2,565.0	5.6291	35
36	0.03880	0.8731	0.0514	0.9245	35.23	93.85	129.08	150.8	2,418.0	2,565.0	5.6291	36
37	0.03880	0.8788	0.0546	0.9306	36.24	105.61	135.81	150.8	2,416.0	2,568.0	6.2824	36
38	0.04112	0.8816	0.05618	0.9309	38.25	112.00	150.25	159.2	2,411.0	2,570.0	6.6330	38
39	0.04617	0.8845	0.0657	0.9501	39.26	118.74	158.00	163.4	2,411.0	2,572.0	7.0003	39
40	0.04891	0.8873	0.0698	0.9571	40.26	125.87	166.14	167.5	2,406.0	2.574.0	7.3851	40
41	0.05180	0.8901	0.0741	0.9643	41.27	133.40	174 68	171.7	2 404 0	2.575.0	7.7880	41
42	0.05485	0.8930	0.0741	0.9717	42.28	141.36	183.64	175.9	2,401.0	2,577.0	8.2098	42
43	0.05808	0.8958	0.0836	0.9795	43.28	149.78	193.06	180.1	2.399.0	2,579.0	8.6511	43
44	0.06148	0.8986	0.0888	0.9875	44.29	158.67	202.96	184.3	2.396.0	2.581.0	9.1127	44
45	0.06508	0.9015	0.0943	0.9958	45.30	168.07	213.36	188.4	2.394.0	2.582.0	9.5953	45
46	0.06888	0.9043	0.1001	1.0045	46.31	178.00	224.31	192.6	2.392.0	2.584.0	10.0998	46
47	0.07290	0.9071	0.1063	1.0135	47.31	188.51	235.82	196.8	2,389.0	2,586.0	10.6269	47
48	0.07714	0.9100	0.1129	1.0228	48.32	199.63	247.94	201.0	2,387.0	2,588.0	11.1775	48
49	0.08163	0.9128	0.1198	1.0326	49.33	211.39	260.71	205.2	2,384.0	2,590.0	11.7524	49
50	0.08638	0.9156	0.1272	1.0428	50.33	223.83	274.16	209.3	2,382.0	2,591.0	12.3525	50
51	0.09140	0.9185	0.1350	1.0534	51.34	237.01	288.35	213.5	2,380.0	2,593.0	12.9786	51
52	0.09671	0.9213	0.1433	1.0646	52.35	250.96	303.31	217.7	2,377.0	2,595.0	13.6318	52
53	0.10234	0.9241	0.1521	1.0762	53.35	265.74	319.09	221.9	2,375.0	2,597.0	14.3129	53
54	0.10830	0.9270	0.1614	1.0884	54.36	281.41	335.77	226.1	2,372.0	2,598.0	15.0229	54
55	0.11462	0.9298	0.1713	1.1012	55.37	298.03	353.39	230.3	2,370.0	2,600.0	15.7628	55
56	0.12132	0.9326	0.1819	1.1146	56.38	315.65	372.03	234.4	2,367.0	2,602.0	16.5337	56
57	0.12842	0.9355	0.1932	1.1286	57.38	334.37	391.75	238.6	2,365.0	2,604.0	17.3365	57
58	0.13597	0.9383	0.2051	1.1434	58.39	354.25	412.64	242.8	2,363.0	2,605.0	18.1723	58
59	0.14399	0.9411	0.2179	1.1590	59.40	375.39	434.79	247.0	2,360.0	2,607.0	19.0422	59
60	0.15251	0.9440	0.2315	1.1754	60.40	397.87	458.28	251.2	2,358.0	2,609.0	19.9474	60
61	0.16158	0.9468	0.2460	1.1928	61.41	421.82	483.23	255.4	2,355.0	2,611.0	20.8889	61
62	0.17123	0.9496	0.2614	1.2111	62.42	447.33	509.74	259.6	2,353.0	2,612.0	21.8680	62
63	0.18153	0.9525	0.2780	1.2305	63.43	474.54	537.96	263.7	2,350.0	2,614.0	22.8859	63
64	0.19252	0.9553	0.2957	1.2510	64.43	503.60	568.03	267.9	2,348.0	2,616.0	23.9437	64
65	0.20426	0.9581	0.3147	1.2728	65.44	534.66	600.10	272.1	2,345.0	2,618.0	25.0427	65
66 67	0.21681 0.23026	0.9610 0.9638	0.3350 0.3568	1.2960 1.3206	66.45 67.45	567.90 603.52	634.35 670.98	276.3 280.5	2,343.0 2.340.0	2,619.0 2.621.0	26.1843 27.3697	66 33 67

SATURACIÓN ADIABATICA: Balance de Energía

$$h_{ent} + (x_{sal} - x_{ent}) h_{agua} = h_{sal} \left[\frac{KJ}{Kg} \right]_{aire seco}$$

donde:

 $h_e = C_{pa} * T_e + X_e * (h_{L-V} + C_{pv} * T_e)$ Entalpia de entrada

 $h_s = C_{pa} * T_s + X_s * (h_{L-V} + C_{pv} * T_s)$ Entalpia de salida

Entalpia del agua $h_w = (X_s - X_e)^* C_{p lig} ^* T_s$

Termodinamica - F Ing - UNCuyo

SATURACIÓN ADIABATICA

$$h_{e} \approx h_{s}$$

$$C_{pa} * T_{e} + X_{e} * (h_{LV} + C_{pv} * T_{e}) = C_{pa} * T_{s} + X_{s} * (h_{LV} + C_{pv} * T_{s})$$

Sacando factor común Te y Ts:

$$T_{e}^{*} (C_{pa} + X_{e}^{*} C_{pv}) = T_{s}^{*} (C_{pa} + X_{s}^{*} C_{pv}) + (X_{s}^{*} - X_{e}^{*})^{*} h_{LV}$$

$$(C_{pa} >>> X_{e}^{*} C_{pv}) \cdot \cdot (C_{pa} + X_{e}^{*} C_{pv}) \cong C_{pa}$$

$$(C_{pa} >>> X_{s}^{*} C_{pv}) \cdot \cdot (C_{pa} + X_{s}^{*} C_{pv}) \cong C_{pa}$$

$$T_{e}^{*}(C_{pa}) = T_{s}^{*}(C_{pa}) + (X_{s} - X_{e})^{*}(h_{LV})$$

$$(T_e - T_s) * C_{pa} = (X_s - X_e) * h_{LV}$$

$$T_s = T_e - \frac{h_{L-V}}{C_{ne}} * (X_s - X_e)$$
TEMPERATURA DE SATURACIÓN ADIABATICA

```
hent + (Xsal- Xent) * hWsal = hsal
h = cp_a * T + X * (h_{LV\_0^nc} + cp_v * T) \qquad h_{V\_T^nc} \approx (h_{LV\_0^nc} + cp_v * T)
cp_a * Tent + Xent * hVent + (Xsal- Xent) * hWsal = cp_a * Tsal + Xsal * hVsal
cp_a * (Tent - Tsal) + Xent * (hVent - hWsal) = Xsal * (hVsal - hWsal)
(hVsal - hWsal) = h_{LVsal}
cp_a * (Tent - Tsal) + Xent * (hVent - hWsal) = Xsal * h_{LVsal}
Si consideramos el cálculo de la Temperatura de bulbo húmedo:
Tent = Tbs \qquad y \qquad Tsal = Tbh
HRsal = 1 \qquad "el aire húmedo sale saturado"
cp_a * (Tbs - Tbh) + Xent * (hVent - hWsal) = Xsal * h_{LVsal}
T_{bh} = T_{bs} - \frac{X_{sal} * h_{LVsal} - X_{ent} * (h_{vent} - h_{wsal})}{cp_{aire}}
```


TEMPERATURA DE BULBO HUMEDO
$$dQ_{evap} = h_{L-V} * dW \qquad \text{Calor requerido por la evaporación del agua}$$

$$\text{Agua evaporada} \qquad \qquad \sigma = \text{constante proporcion alidad} \left[\frac{Kg}{m^2 * h}\right]$$

$$\text{S = superficie intercambio paño } \left[m^2\right]$$

$$\tau = \text{tiempo } \left[h\right]$$

$$K = \text{Transmitan cia} \left[\frac{Kcal}{m^2 * \circ C}\right]$$
 Reemplazando:
$$dQ_{evap} = h_{L-V} * \sigma * S * (X_S - X) \, \text{d} \tau$$

$$\text{Calor extraído del aire y transferido por conductividad hacia el paño húmedo}$$

$$dQ_{aire} = K * S * \left(T - T_{bh}\right) \, \text{d} \tau$$

$$dQ_{evap} = dQ_{cond} \qquad \text{Equilibrio térmico}$$

$$\text{Termodinamica - F lng - UNCuyo} \qquad \text{2021}$$

COMPARACION ENTRE LA Thh Y LA Tsat adiab.

Temperatura de bulbo húmedo

$$T_{bh} = T - \frac{h_{L-V} * \sigma}{K} * (X_S - X)$$

Temperatura de saturación adiabática

$$T_{\rm s} = T_{\rm e} - \frac{h_{\rm L-V}}{C_{\rm pa}} * (X_{\rm S} - X_{\rm e})$$

Lewis demostró la siguiente igualdad para el aire húmedo en condiciones atmosféricas:

$$\frac{C_{pa} * \sigma}{K} = 1 \qquad \frac{\sigma}{K} = \frac{1}{C_{pa}}$$

despejando:

$$T_s \cong T_{bh}$$

Se demuestra que la Temperatura de Saturación Adiabática es similar a la Temperatura de Bulbo Húmedo

Mezcla de corrientes
Entalpía de la mezcla
$$h_m = C_p * T_m + X_m \cdot (C_V * T_m + h_{LV}) \text{ KJ/hora * kg as } \text{ Kcal/hora * kg as } \text{ Temperatura de la mezcla}$$

$$T_m = \frac{h_m - h_{LV} * X_m}{C_p + X_m * C_V} \text{ oC } \text{ C}$$

