Feuille 1 : Premiers pas

Exercice 1.1 Pour chacune des expressions suivantes, indiquer si elle est correcte; si c'est le cas donner sa valeur et son type. **Note.** La fonction <code>int_of_float</code> convertit un <code>float</code> en <code>int</code> (en supprimant sa partie décimale), et la fonction <code>float_of_int</code> convertit un <code>int</code> en <code>float</code>.

```
    1. 12 + 30
    2. 12.0 + 30
    3. 12.0 + 30.0
    4. int_of_float 12.5 + 30
    5. float_of_int 12 +. 30.0
```

Exercice 1.2 Donner la valeur de chacune des expressions booléenes suivantes :

```
1. 3 = 4 || 4 = 4

2. 3 = 4 && 4 = 4

3. not (3 = 4) && 4 = 4

4. not (3 = 4 || 4 = 4)
```

Exercice 1.3 Pour chacune des expressions suivantes, indiquer si elle est correcte; si c'est le cas donner sa valeur et son type.

```
1. 12 + 30 = 10 + 32
2. 12.0 + 30.0 = 10 + 32
3. 12.0 +. 30.0 = float_of_int (10 + 32)
4. 12.0 +. 30. = 42. && 3 + 4 = 4 + 4
5. 12.0 +. 30. = 42. && 3 + 4 != 4 + 4
6. 12.0 +. 30. = 42. || 3 + 4 = 4 + 4
7. 12.0 +. 30. = 42. && not (3 + 4 = 4 + 4)
8. int_of_string "12" + int_of_string "30"
9. int_of_string "12" + int_of_string "30" = 42
```

Exercice 1.4 Pour chacune des expressions suivantes, indiquer si elle est correcte; si c'est le cas, donner sa valeur et son type.

```
    let x = 12.0 in x +. 30.0
    let x = 12.0 in if x +. 30.0 = 42.0 then 42 else 0
    let x = 12.0 in if x +. 30.0 = 42.0 then "42" else 0
```

Exercice 1.5 Pour chacune des deux expressions mathématiques suivantes dépendant d'un nombre flottant f, écrire une expression OCaML permettant de la calculer en appelant une seule fois la racine carrée et le log. Pour cela, factoriser les calculs de $\ln f$, \sqrt{f} et $\ln sqrtf$ en utilisant des expressions let in .

$$(\sqrt{f} + \ln f) * (\sqrt{f} - 2 \ln f)$$

$$(\sqrt{f} + \ln \sqrt{f}) * (\sqrt{f} - 2 \ln \sqrt{f})$$

Exercice 1.6 Tester les fonctions de conversion float_of_int, int_of_float, int_of_char, char_of_int, string_of_int, string_of_bool,

Exercice 1.7 Donner l'expression d'une fonction anonyme qui double son argument. Donner un exemple d'appel de cette fonction.

Exercice 1.8 Indiquer, parmi les phrases suivantes **OCaML**, lesquelles sont :

- une expression; Dans ce cas, donner son type et sa valeur.
- une requête let (liaison variable valeur). Dans ce cas, donner le nom, le type et la valeur de la variable.
- une phrase incorrecte à cause d'une erreur de syntaxe. Dans ce cas, expliquer pourquoi la phrase est syntaxiquement incorrecte.
- une phrase incorrecte à cause d'une erreur de type. Dans ce cas, expliquer l'erreur de type.
- 1. let y = let x = 12.0 in x + .30.0
- 2. let y = let x = 12.0 in if x + .30.0 then 42 else 0
- 3. let x = 3 in let y = 4 in x + y
- 4. let z = let x = 3 in let y = 4 in x + y
- 5. let x = 3 in let y = 4

Exercice 1.9 Écrire une expression fonction d'une variable i qui retourne une chaîne de caractères : "positive" si i est strictement positif, "negative" si i est strictement négatif, "nul" sinon.

Exercice 1.10 Mêmes questions que pour l'exercice 1.8.

- 1. $fun x \rightarrow x$
- 2. (fun x -> x) 5
- 3. fun x -> x + 1
- 4. let f x y = x y in f (f 1 1) 1
- 5. let compose = fun f g \rightarrow fun x \rightarrow f (g x)
- 6. let compose f g = fun x \rightarrow f (g x)
- 7. let compose f g x = f (g x)
- 8. let compose = fun f g x \rightarrow f (g x)
- 9. let mystere =
 - let square = fun x -> x * x in

let compose = fun f g \rightarrow fun x \rightarrow f (g x) in compose square square

Exercice 1.11 Écrire une fonction qui prend en paramètres 3 float : a, b et c, et qui renvoie le nombre de solutions de l'équation $ax^2 + bx + c = 0$. Lorsque le nombre de solutions est infini (par exemple quand a = b = c = 0, la fonction renverra -1). Pour alléger le code, on pourra écrire une fonction discriminant prenant les trois paramètres a, b, c qui calcule le discriminant de l'équation.