Fake News Research Project Final Report

Marian Longa, 08/09/2017

Supervisors: Axel Oehmichen, Miguel Molina-Solana Data Science Institute, Imperial College London

Introduction

• **Problem**: given the metadata about tweets related to the 2016 US election, implement a classifier to best categorize the tweets as "fake news" and "other type of news".

• Solution:

- 1. Go through the list of tweets and manually label each one as "fake news" or "other type of news" (also label each "fake" tweet as one of 5 "fake news" subcategories)
- 2. Use the tweet metadata to engineer base and derived features
- 3. Calculate which features best separate the "fake" and "other" news classes
- 4. Use subsets of those features to create different feature sets and test the classification performance of each feature set using logistic regression
- 5. Out of these, choose the feature set which obtains the highest classification score in logistic regression
- 6. Use this best feature set to train and test different types of classifiers, varying their hyperparameters and noting the corresponding classification scores
- 7. When the hyperparameters for each classifier model are optimized, compare the models and select the model with highest classification score

Feature engineering and selection

Feature selection method

- Download 23 tweet fields from tweet database:
 tweet_id, created_at, retweet_count, text, user_screen_name, user_verified, user_friends_count,
 user_followers_count, user_favourites_count, tweet_source, geo_coordinates, num_hashtags,
 num_mentions, num_urls, num_media, user_default_profile_image, user_description, user_listed_count,
 user_name, user_profile_use_background_image, user_default_profile, user_statuses_count,
 user_created_at (green denotes newly added features w.r.t. previous paper)
- Define 85 base + derived features (check character types, calculate per-unit-time quantities, determine trends from histograms)
- For each feature calculate:
 - the difference in mean $\Delta\mu$ between 'fake' and 'other' classes after scaling the feature data to $\mu=0$, $\sigma=1$
 - the p-value corresponding to a t-test performed on the unscaled 'fake' and 'other' classes
- Eliminate features with high p-value

'created_at_hour' related features

 $\Delta\mu$ = 0.122, p = 0.00166

 $\Delta\mu$ = -0.125, p = 0.00124

'created_at_weekday' related features

per-unit-time related features (log10)

 $\Delta\mu$ = -0.0247, p = 0.523

 $\Delta\mu$ = 0.0268, p = 0.489

 $\Delta\mu$ = 0.0830, p = 0.0320

 $\Delta\mu$ = 0.129, p = 0.000829

 $\Delta\mu$ = -0.126, p = 0.00111

 $\Delta\mu$ = -0.143, p = 0.000233

per-unit-time related features (log10)

 $\Delta\mu = 0.0680$, p = 0.0790

 $\Delta\mu$ = 0.0990, p = 0.0106

 $\Delta\mu$ = -0.0991, p = 0.0105

 $\Delta\mu$ = -0.132, p = 0.000680

 $\Delta\mu = 0.0767$, p = 0.0476

 $\Delta\mu$ = 0.115, p = 0.00291

text-related features

FEATURE

FEATURE	DIFF MEAN	P VALUE
text_num_caps_digits	0.32850846980519	7 0.0000000000000001817
text_num_caps_digits_exclam	0.32037628909185	4 0.0000000000000011032
text_num_caps	0.28434178408325	4 0.000000000018982640
text_num_caps_exclam	0.27639194149561	9 0.0000000000087281045
text_num_digits	0.27233724676713	7 0.0000000000186958317
text_num_swears	-0.11563927199591	4 0.00282836836204724000
text_num_nonstandard	0.06313337216835	4 0.10317168793059400000
text_num_nonstandard_extended	0.04855331263981	4 0.21011337294653800000
text_num_exclam	-0.00909481531089	7 0.81441095787411000000

user_description_num_exclam	0.150950653420117	0.00009675917875963300
user_description_num_caps_exclam	0.121901143581656	0.00164608597263901000
user_description_num_non_a_to_z	0.114943253249033	0.00299923689022872000
user_description_num_caps	0.114512461659785	0.00310965737703582000
user_description_num_non_a_to_z_non_digits	0.114507752043833	0.00311088476024148000
user_description_num_caps_with_num_nonstandard	0.114368994414807	0.00314724544039675000
user_description_num_nonstandard	0.084096404735919	0.02993281139725200000
user_description_num_nonstandard_extended	0.054021652644027	0.16318955311498100000
user_description_num_digits	0.039756151198316	0.30481632729323100000

DIFF MEAN

P VALUE

FEATURE	DIFF MEAN	P VALUE
user_screen_name_has_caps_digits	0.262285988688136	0.0000000001178100595
user_screen_name_num_caps_digits	0.225172500229789	0.0000000588121100628
user_screen_name_has_caps_digits_underscores	0.220518463593140	0.0000001201798678693
user_screen_name_num_caps_digits_underscores	0.216318353886877	0.00000002262544180715
user_screen_name_has_caps	0.206996667603478	0.00000008838704498429
user_screen_name_num_caps	0.177737513482832	0.00000439979639098320
user_screen_name_num_caps_underscores	0.168496131447383	0.00001346469570402120
user_screen_name_has_caps_underscores	0.161481492528789	0.00003033387736915430
user_screen_name_has_digits	0.155118614476325	0.00006165950921821620
user_screen_name_num_digits	0.133110918511019	0.00058745594493451000
user_screen_name_num_digits_underscores	0.110560873515159	0.00430932407291492000
user_screen_name_num_weird_chars	0.110560873515159	0.00430932407291492000
user_screen_name_has_digits_underscores	0.060639335522454	0.11751832452650200000
user_screen_name_has_weird_chars	0.060639335522454	0.11751832452650200000
user_screen_name_has_underscores	-0.028897507148646	0.45574730213312300000
user_screen_name_num_underscores	-0.027552309134123	0.47699401643818400000

FEATURE	DIFF MEAN	P VALUE
user_name_has_weird_chars	0.094534681286187	7 0.01466390719685070000
user_name_has_underscores	0.089929887442158	3 0.02025241432449590000
user_name_has_digits_underscores	0.085898104988500	0.02658832483519980000
user_name_has_nonprintable_chars	0.068094032521295	0.07878999542386130000
user_name_has_caps_digits	0.053377805119681	0.16826434210917700000
user_name_has_caps	0.045822150476645	0.23690878845441800000
user_name_num_digits_underscores	0.043565275499711	0.26080589854854900000
user_name_num_weird_chars	0.042632887635448	3 0.27114939598233300000
user_name_num_nonprintable_chars	0.041769560980110	0.28097418974511000000
user_name_has_caps_underscores	0.040632640844963	3 0.29427702016733700000
user_name_has_caps_digits_underscores	0.039421456149658	3 0.30890613237491100000
user_name_num_digits	0.036001457629479	0.35276549231467300000
user_name_num_underscores	0.033341590172670	0.38946950124127400000
user_name_has_digits	0.022438616439895	0.56248580648111200000
user_name_num_caps_digits_underscores	0.021013635357653	3 0.58756178677826800000
user_name_num_caps_underscores	0.015661773926583	0.68603906159413600000
user_name_num_caps_digits	0.009008668192290	0.81613728320399300000
user_name_num_caps	0.002906504401600	0.94020082866916800000

All features

		_
FEATURE	DIFF MEAN I	VALUE
user_verified	-0.334862652593959	0.00000000000000000430
text_num_caps_digits	0.328508469805197	0.0000000000000001817
text_num_caps_digits_exclam	0.320376289091854	0.0000000000000011032
text_num_caps	0.284341784083254	0.0000000000018982640
text_num_caps_exclam	0.276391941495619	0.00000000000087281045
text_num_digits	0.272337246767137	0.0000000000186958317
user_screen_name_has_caps_digits	0.262285988688136	0.0000000001178100595
user_screen_name_num_caps_digits	0.225172500229789	0.00000000588121100628
user_screen_name_has_caps_digits_underscores	0.220518463593140	0.0000001201798678693
user_screen_name_num_caps_digits_underscores	0.216318353886877	0.00000002262544180715
user_screen_name_has_caps	0.206996667603478	0.00000008838704498429
num_urls_is_nonzero	0.193751829686201	0.00000055546626709527
num_urls	0.192759060318776	0.00000063457724714638
user_screen_name_num_caps	0.177737513482832	0.00000439979639098320
created_at_weekday_sun_mon_tue	0.176202799872474	0.00000531821008238821
user_screen_name_num_caps_underscores	0.168496131447383	0.00001346469570402120
user_screen_name_has_caps_underscores	0.161481492528789	0.00003033387736915430
user_screen_name_has_digits	0.155118614476325	0.00006165950921821620
user_description_num_exclam	0.150950653420117	0.00009675917875963300
user_followers_count_per_day	-0.142513168885046	0.00023286248761311800
user_screen_name_num_digits	0.133110918511019	0.00058745594493451000
user_listed_count_per_day	-0.131571815531587	0.00067990384942370200
user_friends_count_per_day	0.129452328814406	0.00082945532326780700
user_followers_count	-0.126288845970021	0.00111016076037015000
num_media	-0.126018499508719	0.00113783067671653000
created_at_hour_18_to_00	-0.125111745368415	0.00123535800778445000
num_media_is_nonzero	-0.125054182010775	0.00124180263026520000
user_description_num_caps_exclam	0.121901143581656	0.00164608597263901000
created_at_hour_08_to_17	0.121817302581855	0.00165832748771026000
text_num_swears	-0.115639271995914	0.00282836836204724000
user_statuses_count_per_day	0.115292888911431	0.00291226034527856000
user_description_num_non_a_to_z	0.114943253249033	0.00299923689022872000
user_description_num_caps	0.114512461659785	0.00310965737703582000
user_description_num_non_a_to_z_non_digits	0.114507752043833	0.00311088476024148000
user_description_num_caps_with_num_nonstandard	0.114368994414807	0.00314724544039675000
user_profile_use_background_image	0.110840963665571	0.00421215183874502000
user_screen_name_num_digits_underscores	0.110560873515159	0.00430932407291492000
user_screen_name_num_weird_chars	0.110560873515159	0.00430932407291492000

user_listed_count	-0.099054697681362	0.01054790630598750000
user_favourites_count_per_day	0.098958024473082	0.01062387878845050000
user_name_has_weird_chars	0.094534681286187	0.01466390719685070000
user_name_has_underscores	0.089929887442158	0.02025241432449590000
user_name_has_digits_underscores	0.085898104988500	0.02658832483519980000
user_description_num_nonstandard	0.084096404735919	0.02993281139725200000
user_friends_count	0.083044103896057	0.03204874419941480000
user_default_profile	0.080376062248807	0.03799576178479910000
created_at_hour_of_week	-0.079448339664958	0.04027251939954340000
user_created_at_delta	-0.078195521824918	0.04352982368808180000
user_statuses_count	0.076734653944410	0.04760632681384590000
created_at_weekday	-0.074366010607228	0.05489567292437250000
user_name_has_nonprintable_chars	0.068094032521295	0.07878999542386130000
user_favourites_count	0.068046610466555	0.07899865235454690000
num_mentions	0.064822633303216	0.09427154344597160000
text_num_nonstandard	0.063133372168354	0.10317168793059400000
tweet_id	0.063049950829170	0.10362794925576800000
user_screen_name_has_digits_underscores	0.060639335522454	0.11751832452650200000
user_screen_name_has_weird_chars	0.060639335522454	0.11751832452650200000
user_description_num_nonstandard_extended	0.054021652644027	0.16318955311498100000
user_name_has_caps_digits	0.053377805119681	0.16826434210917700000
num_mentions_is_more_than_2	0.052343384253203	0.17666424979961500000
text_num_nonstandard_extended	0.048553312639814	0.21011337294653800000
user_name_has_caps	0.045822150476645	0.23690878845441800000
created_at_hour	-0.045140846024975	0.24395385387751200000
user_name_num_digits_underscores	0.043565275499711	0.26080589854854900000
user_name_num_weird_chars	0.042632887635448	0.27114939598233300000
user_name_num_nonprintable_chars	0.041769560980110	0.28097418974511000000
user_name_has_caps_underscores	0.040632640844963	0.29427702016733700000
user_description_num_digits	0.039756151198316	0.30481632729323100000
user_name_has_caps_digits_underscores	0.039421456149658	0.30890613237491100000
num_hashtags_is_nonzero	0.037645605063081	0.33121019136142000000
user_name_num_digits	0.036001457629479	0.35276549231467300000
user_name_num_underscores	0.033341590172670	0.38946950124127400000
geo_coordinates	0.029147327335745	0.45186097138484200000
num_hashtags	0.029147327335745	0.45186097138484200000
user_screen_name_has_underscores	-0.028897507148646	0.45574730213312300000
user_screen_name_num_underscores	-0.027552309134123	0.47699401643818400000
retweet_count_per_day	0.026792257249070	0.48923423972190300000
retweet_count	-0.024747089874719	0.52299328861291900000
user_name_has_digits	0.022438616439895	0.56248580648111200000
user_name_num_caps_digits_underscores	0.021013635357653	0.58756178677826800000
user_name_num_caps_underscores	0.015661773926583	0.68603906159413600000
user_default_profile_image	0.014059915293107	0.71668622458125300000
text_num_exclam	-0.009094815310897	0.81441095787411000000
user_name_num_caps_digits	0.009008668192290	0.81613728320399300000
user_name_num_caps	0.002906504401600	0.94020082866916800000

Model performance evaluation

Evaluation method

- Use the same feature set for evaluation of all models \rightarrow consistency in results
- Use K-fold cross-validation (k=5) \rightarrow decrease variance of model scores
- **Upsample minority class** ('fake news') to 1:1 during training, while keeping original class proportions (~1:8) for testing → if there was no upsampling, the classifier would learn to classify all data as 'other news' to maximize accuracy
- Test *logistic regression, SVM, KNN, random forest* models with different hyperparameters and note the results → use grid search to loop through relevant ranges for hyperparameters
- For each model note the model parameters which maximize the ROC AUC score (maximizing accuracy causes all data to be classified as 'other news' due to imbalanced data set, therefore accuracy is not a good metric here)

Logistic Regression – testing method

- Use logistic regression model with *liblinear* solver and *l1* penalty
- Run logistic regression with different feature sets, note resulting performances
- Choose the feature set with high ROC AUC value and reasonable features included (don't include all features since this may cause overfitting)

Logistic Regression – results

results are sorted by mean ROC AUC score

footuura ook					mean_f1_sco n			and the Falmer	TD
feature_set	cy_score	c_score	on_score	score	re N	M IN	ean_cm_FP m	ean_cm_FN me	ean_cm_TP
features_extended_some_multiple	0.62232262	7 0.656842461	0.195162758	0.608326967	0.295385728	640.4	385.2	60	93.2
features_extended_some_single	0.615196504	0.653507112	0.193286013	0.614854427	0.293944347	631	394.6	59	94.2
features_extended_some_multiple_without_text_num_swears	0.622322196	0.651971269	0.192110256	0.592640693	0.290029959	642.8	382.8	62.4	90.8
features_extended_some_multiple_without_biasing_features	0.62435465	0.651012711	0.192117706	0.587394958	0.289382631	646	379.6	63.2	90
features_extended_all_reduced	0.631823648	3 0.650918979	0.196633277	0.592717087	0.295247988	654	371.6	62.4	90.8
features_extended_all	0.63334892	7 0.648506836	0.197754208	0.594015788	0.296644288	655.6	370	62.2	91
features_extended_some_single_without_biasing_features	0.614515947	7 0.648401415	0.191212703	0.604371446	0.290262392	631.8	393.8	60.6	92.6
features_extended_few_multiple	0.614175526	5 0.639212461	0.184805381	0.576911977	0.279832426	635.6	390	64.8	88.4
features_extended_few_single	0.603828348	3 0.638716343	0.177606619	0.565164248	0.270145401	625.2	400.4	66.6	86.6
features_basic_some	0.624547883	L 0.596672056	0.171323113	0.480256345	0.249697647	662.6	363	79.6	73.6
features_basic_all	0.622330393	L 0.592582537	0.169846611	0.48424582	0.250343994	659.4	366.2	79	74.2
features_basic_few	0.61538383	0.58801292	0.170008974	0.486800781	0.247907816	650.8	374.8	78.6	74.6

features_extended_some_multiple has the highest ROC AUC score but text_num_swears wasn't a good feature → choose features_extended_some_multiple_without_text_num_swears instead for details on which features are included in which feature set, please see the source of models.py file

Logistic regression – chosen feature set

• features_extended_some_multiple_without_text_num_swears feature set contains the following features:

```
user_verified

text_num_caps

text_num_digits

user_screen_name_has_caps

user_screen_name_has_digits

num_urls_is_nonzero

user_description_num_exclam

user_followers_count_per_day

user_listed_count_per_day
```

```
user_followers_count
user_statuses_count_per_day
user_description_num_caps
user_favourites_count_per_day
user_name_has_weird_chars
user_default_profile
created_at_weekday_sun_mon_tue
created_at_hour_08_to_17
user_friends_count_per_day
```

```
num_media
created_at_hour_18_to_00
user_profile_use_background_image
created_at_weekday
user_listed_count
created_at_hour
user_friends_count
user_created_at_delta
user_statuses_count
```

• The same feature set is used for training SVM, KNN, Random Forests

SVM – testing method

- Determine performances of SVM model with different hyperparameters using grid search:
 - Kernel ∈ {linear, polynomial, RBF, sigmoid}
 - Polynomial: degree $\in \{2, 3, 4, 5\}$
 - RBF: gamma \subseteq {?}
 - Maximum number of iterations $= \{1, 5\} * 10^{1}, 2, 3, 4, 5, 6\}$
 - $C = \{1, 5\} * 10^{-15}, -14, ..., 14, 15\}$

SVM – results

results are sorted by mean ROC AUC score

				mean_accurac ı	mean_roc_au ı	mean_precisi	mean_recall_s	mean_f1_scor				
kernel	max_iter poly_o	degree C	'	y_score (c_score (on_score	core	е	mean_cm_TN me	an_cm_FP	mean_cm_FN m	nean_cm_TP
linear	100000	0	1.00E-12	0.467594389	0.568646156	0.110392233	0.566114931	0.166113391	464.2	561.4	66.4	86.8
linear	5000000	0	5.00E-11	0.538071355	0.565076114	0.139573531	0.484475002	0.189029666	560	465.6	79	74.2
linear	500000	0	1.00E-12	0.393067042	0.563481675	0.137912132	0.678533232	0.213361743	359.2	666.4	49.2	104
linear	1000000	0	1.00E-12	0.393067042	0.562555564	0.137912132	0.678533232	0.213361743	359.2	666.4	49.2	104
linear	5000000	0	1.00E-12	0.393067042	0.562555564	0.137912132	0.678533232	0.213361743	359.2	666.4	49.2	104
linear	5000000	0	5.00E-12	0.48993346	0.561898114	0.142832409	0.567625838	0.20084771	490.4	535.2	66.2	87
linear	500000	0	5.00E-13	0.225155471	0.561176437	0.134262577	0.909905781	0.233963356	126	899.6	13.8	139.4
linear	5000	0	1.00E-14	0.1409936	0.560792897	0.131291594	0.998692811	0.232072698	13.2	1012.4	0.2	153
linear	10000	0	1.00E-13	0.294977365	0.560208623	0.105879402	0.796078431	0.186894117	225.6	800	31.2	122
linear	5000000	0	5.00E-13	0.225155471	0.558144738	0.134262577	0.909905781	0.233963356	126	899.6	13.8	139.4
linear	10000	0	5.00E-14	0.352140305	0.558007325	0.105653283	0.71517698	0.184102455	305.4	720.2	43.6	109.6

showing first 11 out of 5208 results

SVM – graphs

ROC AUC score vs log10(maximum number of iterations)

KNN – testing method

- Use K nearest neighbours model with $k \in \{1, 2, ..., 199, 200\}$
- Determine for which k the ROC AUC score is maximised

KNN – results

results are sorted by mean ROC AUC score

	nean accuracy n	nean roc auc n	nean procision p	nean recall ce					
					mean_f1_score m	ean_cm_TN m	ean_cm_FP m	nean_cm_FN m	ean_cm_TP
147	0.626736892	0.651695297	0.193487404	0.591460827	0.291542832	648.2	377.4	62.6	90.6
148	0.634371634	0.651618482	0.196732336	0.588846448	0.294884886	657.6	368	63	90.2
146	0.635220243	0.651606691	0.195335752	0.579704609	0.292156503	660	365.6	64.4	88.8
149	0.627415001	0.651155166	0.194895783	0.596672608	0.293778749	648.2	377.4	61.8	91.4
145	0.629111355	0.651019064	0.194449911	0.590136661	0.292473619	651.2	374.4	62.8	90.4
150	0.636408841	0.65096015	0.197294279	0.58622358	0.29519591	660.4	365.2	63.4	89.8
130	0.631992421	0.650926866	0.190302579	0.562728122	0.284347345	658.8	366.8	67	86.2
126	0.631484667	0.650878184	0.190220352	0.564043799	0.284417103	658	367.6	66.8	86.4
155	0.629619973	0.650802431	0.194451533	0.588837959	0.292308793	652	373.6	63	90.2
10	0.641667536	0.613180275	0.187246933	0.526135303	0.276128915	675.8	349.8	72.6	80.6
9	0.604852777	0.610886	0.17684494	0.558764112	0.26855781	627.4	398.2	67.6	85.6
6	0.68459449	0.605680388	0.186846178	0.426924709	0.259864136	741.6	284	87.8	65.4
8	0.649475941	0.604930561	0.185388081	0.501358119	0.270540613	688.8	336.8	76.4	76.8
7	0.632847793	0.604576374	0.18197415	0.523546388	0.269947098	665.8	359.8	73	80.2
5	0.674753049	0.604214471	0.185392004	0.443909685	0.261487639	727.4	298.2	85.2	68
4	0.737359718	0.600826355	0.205092487	0.355122655	0.259885785	814.8	210.8	98.8	54.4
3	0.733117539	0.585738487	0.202611979	0.359018759	0.258905428	809.2	216.4	98.2	55
2	0.804720639	0.578425738	0.235930246	0.225914608	0.230637165	914	111.6	118.6	34.6
1	0.804381368	0.558911046	0.236117732	0.227221798	0.231429117	913.4	112.2	118.4	34.8

showing first 9 and last 10 results out of 200

KNN performance

Random Forest – testing method

- Determine performances of Random Forest model with different hyperparameters using grid search:
 - Number of estimators (trees) \subseteq {1, 2, ..., 50}
 - Maximum tree depth \subseteq {unlimited, 1, 2, 3, ..., 50}
 - Minimum number of samples required in a leaf $\in \{1, 2, ..., 25\}$
 - Maximum number of features to use when looking for a split $\in \{\sqrt{n}, \log_2 n, 0.5 n, n\}$

Random Forest – results

results are sorted by mean ROC AUC score

	min_sa	mples	mean_accura n	nean_roc_au ı	mean_precisi	mean_recall_	mean_f1_sco				
n_estimators max	x_depth _leaf	max_	_features cy_score c	_score (on_score	score	re	mean_cm_TN mea	n_cm_FP mea	an_cm_FN mea	n_cm_TP
49	8	12	sqrt 0.738544288	0.7119453	0.257725739	0.539156269	0.348556925	788	237.6	70.6	82.6
48	8	12	sqrt 0.739223548	0.711868295	0.259080159	0.541770648	0.350353495	788.4	237.2	70.2	83
50	8	12	sqrt 0.738885141	0.711830041	0.258341597	0.540471946	0.349410962	788.2	237.4	70.4	82.8
42	8	12	sqrt 0.738374796	0.71165972	0.25703447	0.5352347	0.34703612	788.4	237.2	71.2	82
41	8	12	sqrt 0.735999613	0.71155856	0.25447047	0.533935999	0.344456996	785.8	239.8	71.4	81.8
44	8	12	sqrt 0.738544144	0.711412076	0.257473007	0.53654189	0.347796489	788.4	237.2	71	82.2
47	8	12	sqrt 0.739222397	0.711326597	0.258337936	0.539156269	0.349101734	788.8	236.8	70.6	82.6
43	8	12	sqrt 0.740919182	0.711210194	0.260333402	0.539156269	0.350885531	790.8	234.8	70.6	82.6
46	8	12	sqrt 0.739223836	0.711100421	0.257837675	0.53654189	0.348090207	789.2	236.4	71	82.2
39	8	12	sqrt 0.736339316	0.711016406	0.255730053	0.539164757	0.346745453	785.4	240.2	70.6	82.6
50	10	15	log2 0.762299857	0.710971439	0.266111063	0.471267295	0.340122542	826.4	199.2	81	72.2
50	9	17	log2 0.751612397	0.710956638	0.269200335	0.531313131	0.35729071	804.6	221	71.8	81.4
49	9	17	log2 0.75110306	0.710885468	0.267104693	0.52479416	0.353986003	805	220.6	72.8	80.4
40	8	12	sqrt 0.737526619	0.710829466	0.257542747	0.541779136	0.348939529	786.4	239.2	70.2	83

Random Forest – graphs

ROC AUC score vs number of estimators

ROC AUC score vs maximum tree depth (zero depth = unlimited depth)

ROC AUC score vs number of estimators and maximum tree depth

Best model

best results for each model are sorted by mean ROC AUC score

					mean_accura	mean_roc_a	mean_precisi	mean_recall_	mean_f1_sco	mean_cm_T		mean_cm_F	
model	n	nodel-specific h	nyperparametei	'S	cy_score	uc_score	on_score	score	re	N	mean_cm_FP	N	mean_cm_TP
	n_estimators	max_depth	min_samples_ leaf	max_features									
random forest	49	8	12	sqrt	0.738544288	0.711945300	0.257725739	0.539156269	0.348556925	788.0	237.6	70.6	82.6
	feature_set												
logistic	features_exter	nded_some_mu	ultiple_without_	text_num_swe									
regression		a	irs		0.622322196	0.651971269	0.192110256	0.592640693	0.290029959	642.8	382.8	62.4	90.8
	n_neighbors												
KNN	147				0.626736892	0.651695297	0.193487404	0.591460827	0.291542832	648.2	377.4	62.6	90.6
	kernel	max_iter	poly_degree	С									
SVM	linear	100000	N/A	1.00E-12	0.467594389	0.568646156	0.110392233	0.566114931	0.166113391	464.2	561.4	66.4	86.8

- best model: Random Forest (n=49, depth=8, min_samples_leaf=12, max_features=sqrt)
 with ROC AUC = 71.2%, accuracy = 73.9%, precision = 25.8%, recall 53.9%

Future work

- Manually label more tweets and rerun the pipelines with more data
- Perform analysis using also the 5 subcategories of fake news
- Try new classification models
 - neural networks, naive Bayes?