Generation of synthetic tabular data using VAE

```
In [1]: |%load_ext watermark
                  %watermark -p tensorflow,pandas -z -v -n -m -w
                  Python implementation: CPython
                  Python version
                                                     : 3.10.5
                  IPython version
                                                               : 8.4.0
                  tensorflow: 2.9.1
                  pandas
                                     : 1.4.2
                  Compiler
                                            : MSC v.1929 64 bit (AMD64)
                                            : Windows
                  Release
                                            : 10
                  Machine
                                           : AMD64
                  Processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
                  CPU cores : 4
                  Architecture: 64bit
                  Watermark: 2.3.1
In [2]: import warnings
                  warnings.filterwarnings('ignore')
In [3]: #Calculating the computing time
                  import time
                  start = time.time()
                  import datetime
                  print("Start Time:" ,datetime.datetime.fromtimestamp(start).strftime('%Y-%m-%d %H:%M:%S'))
                  Start Time: 2022-08-03 01:10:51
In [4]: |import torch
                  import torch.nn as nn
                  import torch.nn.functional as F
                  from torch import nn, optim
                  from torch.autograd import Variable
                  import pandas as pd
                  import numpy as np
                  from sklearn import preprocessing
                  from sklearn.model_selection import train_test_split
                 path = r"C:\Users\Home\Jupyter\Datasets\creditcard.csv"
                  device = torch.device('cpu')
In [6]: | data_original = pd.read_csv(path, sep =",")
                  data_original = pd.DataFrame(data_original)
                  del data_original['Time']
                  data_original
Out[6]:
                                               V1
                                                                  V2
                                                                                                        V4
                                                                                                                           V5
                                                                                                                                                                                   V8
                                                                                                                                                                                                                        V10 ...
                                                                                                                                                                                                                                                                   V22
                                                                                                                                                                                                                                                                                      V23
                                                                                                                                                                                                                                                                                                         ٧
                                                                                                                                              V6
                                 -1.359807
                                                      -0.072781
                                                                           2.536347
                                                                                              1.378155 -0.338321
                                                                                                                                   0.462388
                                                                                                                                                      0.239599
                                                                                                                                                                         0.098698
                                                                                                                                                                                            0.363787
                                                                                                                                                                                                               0.090794 ... -0.018307
                                                                                                                                                                                                                                                           0.277838
                                                       0.266151 \quad 0.166480 \quad 0.448154 \quad 0.060018 \quad -0.082361 \quad -0.078803 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad \dots \quad -0.225775 \quad -0.638672 \quad 0.101288 \quad -0.3398672 \quad -0.082361 \quad -0.08
                                    1.191857
                                  -1.358354
                                                     -1.340163 1.773209 0.379780 -0.503198 1.800499
                                                                                                                                                    -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 -0.054952 ...
                                  -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 0.753074 ... -0.009431
                                  -11.881118 10.071785
                                                                        -9.834783 -2.066656
                                                                                                              -5.364473 -2.606837 -4.918215
                                                                                                                                                                         7.305334
                                                                                                                                                                                            1.914428
                                                                                                                                                                                                               4.356170 ...
                                                                                                                                                                                                                                        0.213454
                                                                                                                                                                                                                                                            0.111864
                                                                                                                                                                                                                                                                             1.014480 -0.5093
                                    -0.732789 -0.055080
                                                                                                                0.868229
                                                                                                                                 1.058415
                                                                                                                                                                                            0.584800 -0.975926 ...
                                                                                                                                                                                                                                        0.214205
                                                                                                                                                                                                                                                           0.924384
                    284803
                                                                         2.035030 -0.738589
                                                                                                                                                    0.024330
                                                                                                                                                                         0.294869
                                                                                                                                                                                                                                                                              0.012463
                                                                                                                                                                                                                                                                                               -1.0162
                                                                                                                                                    -0.296827
                                                                                                                                                                                            0.432454 -0.484782 ...
                                                                                                                                                                                                                                        0.232045
                                                                                                                                                                                                                                                           0.578229 -0.037501
                    284804
                                     1.919565 -0.301254 -3.249640
                                                                                            -0.557828
                                                                                                                 2.630515
                                                                                                                                   3.031260
                                                                                                                                                                         0.708417
                                                                                              0.689799
                                                                                                                                   0.623708 -0.686180
                                                                                                                                                                                            0.392087 -0.399126 ...
                    284805
                                    -0.240440
                                                        0.530483
                                                                         0.702510
                                                                                                              -0.377961
                                                                                                                                                                         0.679145
                                                                                                                                                                                                                                        0.265245
                                                                                                                                                                                                                                                           0.800049 -0.163298
                                                                                                                                                                                                                                                                                                 0.1232
                                    -0.533413 -0.189733
                                                                         0.703337 -0.506271 -0.012546 -0.649617
                                                                                                                                                      1.577006 -0.414650
                                                                                                                                                                                            0.486180 -0.915427 ...
                                                                                                                                                                                                                                                                              0.376777
                                                                                                                                                                                                                                                                                                 0.0087
                  284807 rows × 30 columns
                 columns = data_original.columns
```

```
In [8]: | def load_and_standardize_data(path):
             df = pd.read_csv(path) # read in from csv
             del df['Time']
             df = df.values.reshape(-1, df.shape[1]).astype('float32')
             X_train, X_test = train_test_split(df, test_size=0.3, random_state=42) # randomly split
             # Standardize features by removing the mean and scaling to unit variance. z = (x - u) / s
             scaler = preprocessing.StandardScaler()
             X_train = scaler.fit_transform(X_train)
             X_test = scaler.transform(X_test)
             return X_train, X_test, scaler
In [9]: | from torch.utils.data import Dataset, DataLoader
         class DataBuilder(Dataset):
             def __init__(self, path, train=True):
                 self.X_train, self.X_test, self.standardizer = load_and_standardize_data(path)
                 if train:
                     self.x = torch.from_numpy(self.X_train)
                     self.len=self.x.shape[0]
                 else:
                     self.x = torch.from_numpy(self.X_test)
                     self.len=self.x.shape[0]
                 del self.X_train
                 del self.X_test
             def __getitem__(self,index):
                 return self.x[index]
             def __len__(self):
                 return self.len
In [10]: #Dataset
         data_set=DataBuilder(path)
         traindata_set=DataBuilder(path, train=True)
         testdata_set=DataBuilder(path, train=False)
         #Loader
         trainloader=DataLoader(dataset=traindata_set,batch_size=1024)
         testloader=DataLoader(dataset=testdata_set,batch_size=1024)
In [11]: type(trainloader.dataset.x), type(testloader.dataset.x)
Out[11]: (torch.Tensor, torch.Tensor)
In [12]: trainloader.dataset.x.shape, testloader.dataset.x.shape
Out[12]: (torch.Size([199364, 30]), torch.Size([85443, 30]))
In [13]: trainloader.dataset.x
Out[13]: tensor([[-1.1668, -0.2865, 0.5392, ..., -0.4486, -0.3397, -0.0423],
                 [-0.1592, -2.4354, -2.2454, \ldots, 0.3352, 4.2777, -0.0423],
                 [-0.9221, -0.3388, 1.4944, ..., 0.2675, -0.0534, -0.0423],
                 ...,
                 [-0.0740, 0.5967, 1.0054, ..., -0.5957, -0.3284, -0.0423],
                 [-1.5029, 1.4133, -1.6661, ..., 1.0198, -0.3397, -0.0423],
                 [0.6296, -0.4692, 0.2541, ..., 0.1172, 0.0936, -0.0423]])
```

VAE Model

```
super(Autoencoder,self).__init__()
                 self.linear1=nn.Linear(D_in,H)
                  self.lin_bn1 = nn.BatchNorm1d(num_features=H)
                 self.linear2=nn.Linear(H,H2)
                  self.lin_bn2 = nn.BatchNorm1d(num_features=H2)
                 self.linear3=nn.Linear(H2,H2)
                 self.lin_bn3 = nn.BatchNorm1d(num_features=H2)
                 # Latent vectors mu and sigma
                 self.fc1 = nn.Linear(H2, latent_dim)
                 self.bn1 = nn.BatchNorm1d(num_features=latent_dim)
                  self.fc21 = nn.Linear(latent_dim, latent_dim)
                 self.fc22 = nn.Linear(latent_dim, latent_dim)
                 # Sampling vector
                  self.fc3 = nn.Linear(latent_dim, latent_dim)
                  self.fc_bn3 = nn.BatchNorm1d(latent_dim)
                 self.fc4 = nn.Linear(latent_dim, H2)
                 self.fc_bn4 = nn.BatchNorm1d(H2)
                 # Decoder
                 self.linear4=nn.Linear(H2,H2)
                 self.lin_bn4 = nn.BatchNorm1d(num_features=H2)
                 self.linear5=nn.Linear(H2,H)
                 self.lin_bn5 = nn.BatchNorm1d(num_features=H)
                 self.linear6=nn.Linear(H,D_in)
                 self.lin_bn6 = nn.BatchNorm1d(num_features=D_in)
                 self.relu = nn.ReLU()
             def encode(self, x):
                 lin1 = self.relu(self.lin_bn1(self.linear1(x)))
                 lin2 = self.relu(self.lin_bn2(self.linear2(lin1)))
                 lin3 = self.relu(self.lin_bn3(self.linear3(lin2)))
                 fc1 = F.relu(self.bn1(self.fc1(lin3)))
                 r1 = self.fc21(fc1)
                  r2 = self.fc22(fc1)
                 return r1, r2
             def decode(self, z):
                 fc3 = self.relu(self.fc_bn3(self.fc3(z)))
                 fc4 = self.relu(self.fc_bn4(self.fc4(fc3)))
                 lin4 = self.relu(self.lin_bn4(self.linear4(fc4)))
                 lin5 = self.relu(self.lin_bn5(self.linear5(lin4)))
                  return self.lin_bn6(self.linear6(lin5))
             def reparameterize(self, mu, logvar):
                 if self.training:
                     std = logvar.mul(0.5).exp_()
                     eps = Variable(std.data.new(std.size()).normal_())
                     return eps.mul(std).add_(mu)
                 else:
                     return mu
             def forward(self, x):
                 mu, logvar = self.encode(x)
                 z = self.reparameterize(mu, logvar)
                 return self.decode(z), mu, logvar
        class customLoss(nn.Module):
             def __init__(self):
                 super(customLoss, self).__init__()
                  self.mse loss = nn.MSELoss(reduction="sum")
             def forward(self, x_recon, x, mu, logvar):
                  loss_MSE = self.mse_loss(x_recon, x)
                 loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) #Kullback-Leibler Divergence (KL-divergence)
                  return loss_MSE + loss_KLD
         #the KL loss is equivalent to the sum of all the KL divergences between the component Xi\sim N(\mu i, \sigma i^2) in X, and the standard normal[.
In [16]: D_in = data_set.x.shape[1]
         H = 50 \# layer 1
         H2 = 12 \# Layer 2
         model = Autoencoder(D_in, H, H2).to(device)
         optimizer = optim.Adam(model.parameters(), lr=1e-3) # LR = 0.001
         loss_mse = customLoss()
```

In [14]: class Autoencoder(nn.Module):

def __init__(self,D_in,H=50,H2=12,latent_dim=3):

```
In [17]: epochs = 2000
         log_interval = 50
         val_losses = []
         train losses = []
         test_losses = []
         Notes: When the Bernoulli distribution is modeled, the MSE or the binary cross-entropy could be used. When a normal distribution is modeled, the log-likelihood
         is often applied.
In [18]: | def train(epoch):
             model.train()
             train_loss = 0
             for batch_idx, data in enumerate(trainloader):
                 data = data.to(device)
                 optimizer.zero_grad()
                  reconstructed_data, mu, logvar = model(data)
                 loss = loss_mse(reconstructed_data, data, mu, logvar)
                 loss.backward()
                 train_loss += loss.item()
                 optimizer.step()
             if epoch % 100 == 0:
                 print('===> Epoch: {} Average training loss: {:.4f}'.format(
                     epoch, train_loss / len(trainloader.dataset)))
                 train_losses.append(train_loss / len(trainloader.dataset))
In [19]: def test(epoch):
             with torch.no_grad():
                 test_loss = 0
                 for batch_idx, data in enumerate(testloader):
                     data = data.to(device)
                     optimizer.zero_grad()
                     reconstructed_data, mu, logvar = model(data)
                     loss = loss_mse(reconstructed_data, data, mu, logvar)
                     test_loss += loss.item()
                     if epoch % 100 == 0:
                         print('===> Epoch: {} Average test loss: {:.4f}'.format(
                              epoch, test_loss / len(testloader.dataset)))
                     test_losses.append(test_loss / len(testloader.dataset))
In [20]: |train_start_time =time.time()
In [21]: for epoch in range(1, epochs + 1):
             train(epoch)
             test(epoch)
         ===> Epoch: 100 Average training loss: 19.8206
         ===> Epoch: 100 Average test loss: 0.2235
         ===> Epoch: 100 Average test loss: 0.4618
         ===> Epoch: 100 Average test loss: 0.6891
         ====> Epoch: 100 Average test loss: 0.9145
         ===> Epoch: 100 Average test loss: 1.1418
         ===> Epoch: 100 Average test loss: 1.3655
         ===> Epoch: 100 Average test loss: 1.6169
         ===> Epoch: 100 Average test loss: 1.8945
         ===> Epoch: 100 Average test loss: 2.1299
         ===> Epoch: 100 Average test loss: 2.3795
         ===> Epoch: 100 Average test loss: 2.6286
         ====> Epoch: 100 Average test loss: 2.8770
         ===> Epoch: 100 Average test loss: 3.1441
         ===> Epoch: 100 Average test loss: 3.4321
         ===> Epoch: 100 Average test loss: 3.6678
         ===> Epoch: 100 Average test loss: 3.9052
          ====> Epoch: 100 Average test loss: 4.1738
         ===> Epoch: 100 Average test loss: 4.3865
In [22]: train end time =time.time()
In [23]: train_time = train_end_time - train_start_time
         print("Total Training Time for",epochs, "epochs:", round(train_time) , "seconds")
         Total Training Time for 2000 epochs: 7762 seconds
In [24]: | scaler = trainloader.dataset.standardizer
In [25]: with torch.no_grad():
             for batch idx, data in enumerate(testloader):
                 data = data.to(device)
                 optimizer.zero_grad()
                  reconstructed_data, mu, logvar = model(data) # a vector of means, \mu, and another vector of standard deviations, \sigma.
```

```
In [26]: reconstructed_data.size()
Out[26]: torch.Size([451, 30])
In [27]: | sigma = torch.exp(logvar/2)
In [28]: |mu[1], sigma[1]
Out[28]: (tensor([-3.4837e-04, -1.1919e+00, -5.7458e-02]),
          tensor([1.0002, 0.1018, 0.1291]))
In [29]: mu.mean(axis=0)
Out[29]: tensor([ 0.0003, 0.0020, -0.0041])
In [30]: sigma.mean(axis=0)
Out[30]: tensor([1.0000, 0.1468, 0.2148])
In [31]: # sample z from q
         synthetic_data_size = 284807
         q = torch.distributions.Normal(mu.mean(axis=0), sigma.mean(axis=0))
         z = q.rsample(sample_shape=torch.Size([synthetic_data_size])) # q-->latent matrix | Sampling z in VAE
In [32]: | z.shape,z
Out[32]: (torch.Size([284807, 3]),
          tensor([[ 0.3545, 0.0731, 0.1653],
                 [-0.2588, 0.0064, -0.0070],
                 [ 0.8590, 0.0331, 0.0838],
                 [0.1314, 0.0511, -0.2231],
                  [-1.5953, -0.1105, 0.0707],
                  [-0.1516, 0.2999, 0.1075]]))
In [33]: with torch.no_grad():pred = model.decode(z).cpu().numpy()
         pred # predicted values
Out[33]: array([[-0.01484537, 0.25238967, 0.6424196, ..., 0.12296152,
                 -0.1916731 , 0.8117676 ],
                [0.55061555, -0.10713053, -0.4920885, ..., 0.04719353,
                -0.10092729, 0.7340698 ],
                [0.28929353, 0.00336981, -0.05528414, ..., 0.12634945,
                 -0.13681 , 0.7548218 ],
                [ 0.39189148, -0.2234497, -0.1039629, ..., 0.06050539, 
                -0.13704401, 0.71447754],
                [ 0.24216676, -0.01840353, -0.04524434, ..., 0.21961164, ]
                 -0.25507182, 0.83496094],
                [0.34177613, 0.08081293, -0.1050787, ..., -0.4050517,
                 -0.06141329, 0.6227417 ]], dtype=float32)
In [34]: | synthetic_data = scaler.inverse_transform(pred)
         synthetic_data.shape
Out[34]: (284807, 30)
```

In [35]: synthetic_data = pd.DataFrame(synthetic_data, columns = columns)
synthetic_data.head(20)

Out[35]:

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	 V21	V22	V23	V24	
0	-0.030602	0.418624	0.974931	0.959757	0.009973	-0.054692	0.210411	0.153848	-0.031649	-0.204386	 0.048854	0.233896	0.003994	0.098860	(
1	1.078240	-0.181012	-0.743187	0.049971	0.209390	-0.585835	0.195955	-0.052234	0.586924	-0.260113	 0.163829	0.502646	-0.036751	-0.125002	C
2	0.565800	0.003289	-0.081683	0.265607	0.115479	-0.445406	0.182086	0.002341	0.396881	-0.324847	 0.108658	0.387974	-0.033867	0.024618	C
3	-2.505154	2.268930	-0.394400	-0.123339	0.344359	2.294253	-4.728662	-8.792536	-0.793346	-0.956390	 -2.942264	0.728317	-0.690392	-0.094305	-(
4	-0.203337	-0.591250	-1.266944	-1.418267	3.827471	4.260494	-1.546661	-0.275008	0.469770	-0.612009	 -0.722724	-0.154449	0.144457	1.132957	C
5	-0.254810	-0.273160	0.939553	-1.238551	-0.408545	-0.170572	-0.136938	0.152519	-0.641571	0.018446	 0.207197	0.422584	0.008617	0.188607	C
6	0.769540	-1.551693	0.259168	-2.112123	-0.436174	1.075957	-1.338953	0.329851	-1.596198	1.129621	 -0.148317	-0.100204	0.052451	0.086733	-C
7	-0.235930	-0.230763	0.753444	-0.175164	0.090774	0.502533	-0.105852	0.547952	0.108082	-0.351145	 -0.051436	-0.102162	-0.032319	-0.273030	-(
8	0.276898	-0.173869	0.556815	-0.946122	-0.763508	-0.628725	-0.225931	0.036170	-0.544115	0.052018	 0.124275	0.291242	0.069427	0.155563	C
9	0.486398	0.168587	-0.121543	0.361280	0.338876	-0.205306	0.188836	0.119312	0.150753	-0.206046	 0.112486	0.392031	-0.052190	-0.089536	(
10	-0.171381	0.484090	0.550623	0.193778	0.243152	0.007093	0.203905	0.230649	-0.130176	-0.311636	 -0.132071	-0.068611	-0.027779	0.057731	C
11	-6.169681	5.213397	-3.933545	-1.165274	-2.042171	-1.396624	-1.254021	3.117203	1.681513	1.794170	 -0.170428	-0.119136	0.542279	-0.142010	C
12	0.417158	0.073372	0.164471	0.373113	0.073615	-0.374493	0.167984	0.026645	0.320808	-0.327854	 0.089980	0.348221	-0.016977	0.059511	C
13	0.408577	-0.018702	-0.150884	-0.118539	0.079073	-0.907186	0.104593	-0.056970	0.161179	-0.264482	 -0.203062	-0.384461	0.194066	0.103146	-(
14	0.174266	0.231572	0.456944	0.706086	0.264000	-0.156053	0.201073	0.153719	-0.005376	-0.186889	 0.103170	0.314029	-0.053101	0.010881	C
15	1.262154	-0.768404	-0.425106	-0.362269	-0.137982	-0.228964	-0.266408	0.068544	-0.202482	0.403123	 0.079689	0.118653	0.002588	-0.384218	-(
16	-5.867027	2.678400	0.780549	-2.096145	3.519388	-0.447244	5.570286	-4.728125	6.809417	9.524776	 -1.617824	-0.437543	-0.045833	-0.114836	-(
17	0.700190	0.235111	-0.067197	2.023877	1.099232	2.189086	-0.178510	0.675691	-0.377686	0.664753	 0.280321	0.631397	-0.095442	-0.568869	-(
18	0.366020	0.726324	-0.660009	0.017941	0.453604	-0.992755	0.577518	-0.040847	0.098313	-0.693667	 -0.063734	-0.102689	0.085543	0.120883	-(
19	0.759007	-1.471549	0.164099	-2.121075	-0.267988	1.312158	-1.359754	0.371628	-1.529812	1.080820	 -0.123667	-0.063948	0.040006	0.156312	-(

20 rows × 30 columns

284807 284807

First two components of PCA


```
In [54]: VAE_Synthetic_Data = datetime.datetime.now().strftime("VAE_Synthetic_Data %d-%m-%Y(%H.%M Hrs).csv")
synthetic_data.to_csv(VAE_Synthetic_Data)
```

```
In [39]: end = time.time()
  total_time = end - start
  print("End Time:" ,datetime.datetime.fromtimestamp(end).strftime('%Y-%m-%d %H:%M:%S'))
  print("Total Run Time:", round(total_time/3600) , "Hours")
End Time: 2022-08-03 19:19:05
```

End Time: 2022-08-03 19:19:05
Total Run Time: 18 Hours

+===========================++

Notes:

https://harvard-iacs.github.io/2019-CS109B/labs/lab10/VAE/ (https://harvard-iacs.github.io/2019-CS109B/labs/lab10/VAE/)

https://jhui.github.io/2017/03/06/Variational-autoencoders/ (https://jhui.github.io/2017/03/06/Variational-autoencoders/)

https://medium.com/@olivia.liang032/how-to-measure-statistical-similarity-on-tabular-data-demonstrated-using-synthetic-data-66a1aa60084d (https://medium.com/@olivia.liang032/how-to-measure-statistical-similarity-on-tabular-data-demonstrated-using-synthetic-data-66a1aa60084d)

https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b (https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b)

It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high.

https://colab.research.google.com/github/tvhahn/Manufacturing-Data-Science-with-Python/blob/master/Metal%20Machining/1.B_building-vae.ipynb#scrollTo=t6mNH0b6RnlU (https://colab.research.google.com/github/tvhahn/Manufacturing-Data-Science-with-Python/blob/master/Metal%20Machining/1.B_building-vae.ipynb#scrollTo=t6mNH0b6RnlU)

In []: