HYPOTHESIS

- UTKARSH KULSHRESTHA

Hypothesis Testing

- Developing Null and Alternative Hypotheses
- Type I and Type II Errors
- Population Mean: σ Known
- Population Mean: σ Unknown
- Population Proportion
- Hypothesis Testing and Decision Making
- Calculating the Probability of Type II Errors
- Determining the Sample Size for a Hypothesis Test About a Population mean

Hypothesis Testing

- Hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected.
- The <u>null hypothesis</u>, denoted by H_0 , is a tentative assumption about a population parameter.
- The <u>alternative hypothesis</u>, denoted by $H_{a'}$ is the opposite of what is stated in the null hypothesis.
- The hypothesis testing procedure uses data from a sample to test the two competing statements indicated by H_0 and H_a .

- It is not always obvious how the null and alternative
- hypotheses should be formulated.
 Care must be taken to structure the hypotheses appropriately so that the test conclusion provides the information the researcher wants.
- The context of the situation is very important in determining how the hypotheses should be stated.
- In some cases it is easier to identify the alternative hypothesis first. In other cases the null is easier.
- Correct hypothesis formulation will take practice.

- Alternative Hypothesis as a Research Hypothesis
- Many applications of hypothesis testing involve an attempt to gather evidence in support of a research hypothesis.
- In such cases, it is often best to begin with the alternative hypothesis and make it the conclusion that the researcher hopes to support.
- The conclusion that the research hypothesis is true is made if the sample data provide sufficient evidence to show that the null hypothesis can be rejected.

- Alternative Hypothesis as a Research Hypothesis
- Example:

 A new teaching method is developed that is believed to be better than the current method.
- Alternative Hypothesis:
 The new teaching method is better.
- Null Hypothesis:

 The new method is no better than the old method.

- Alternative Hypothesis as a Research Hypothesis
- Example:

 A new sales force bonus plan is developed in an attempt to increase sales.
- Alternative Hypothesis:
 The new bonus plan increase sales.
- Null Hypothesis:
 The new bonus plan does not increase sales.

- Alternative Hypothesis as a Research Hypothesis
- Example:

A new drug is developed with the goal of lowering

blood pressure more than the existing drug.

- Alternative Hypothesis:
 - The new drug lowers blood pressure more than the existing drug.
- Null Hypothesis:

The new drug does not lower blood pressure more

than the existing drug.

- Null Hypothesis as an Assumption to be Challenged
- We might begin with a belief or assumption that a statement about the value of a population parameter is true.
- We then using a hypothesis test to challenge the assumption and determine if there is statistical evidence to conclude that the assumption is incorrect.
- In these situations, it is helpful to develop the null hypothesis first.

- Null Hypothesis as an Assumption to be Challenged
- Example:
 The label on a soft drink bottle states that it contains 67.6 fluid ounces.
- Null Hypothesis: The label is correct. $\mu \ge 67.6$ ounces.
- Alternative Hypothesis: The label is incorrect. μ < 67.6 ounces.

Summary of Forms for Null and Alternative Hypotheses about a Population Mean

- The equality part of the hypotheses always appears in the null hypothesis.
- In general, a hypothesis test about the value of a population mean μ must take one of the following three forms (where μ_0 is the hypothesized value of the population mean).

$$H_0: \mu \ge \mu_0$$
 $H_0: \mu \le \mu_0$ $H_0: \mu = \mu_0$ $H_a: \mu < \mu_0$ $H_a: \mu > \mu_0$ $H_a: \mu \ne \mu_0$ One-tailed (lower-tail) One-tailed (upper-tail)

Null and Alternative Hypotheses

- Example: Metro EMS
- A major west coast city provides one of the most comprehensive emergency medical services in the world. Operating in a multiple hospital system with approximately 20 mobile medical units, the service goal is to respond to medical emergencies with a mean time of 12 minutes or less.
- The director of medical services wants to formulate a hypothesis test that could use a sample of emergency response times to determine whether or not the service goal of 12 minutes or less is being achieved.

Null and Alternative Hypotheses

$$H_0: \mu \le 12$$

The emergency service is meeting the response goal; no follow-up action is necessary.

$$H_{a}: \mu > 12$$

The emergency service is not meeting the response goal; appropriate follow-up action is necessary.

where: μ = mean response time for the population of medical emergency requests

Type I Error

- Because hypothesis tests are based on sample data, we must allow for the possibility of errors.
- A Type I error is rejecting H_0 when it is true.
- The probability of making a Type I error when the null hypothesis is true as an equality is called the <u>level of significance</u>.
- Applications of hypothesis testing that only control the Type I error are often called <u>significance tests</u>.

Type II Error

- A Type II error is accepting H_0 when it is false.
- It is difficult to control for the probability of making a Type II error.
- Statisticians avoid the risk of making a Type II error by using "do not reject H_0 " and not "accept H_0 ".

Type I and Type II Errors

p-Value Approach toOne-Tailed Hypothesis Testing

- The <u>p-value</u> is the probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis.
- If the p-value is less than or equal to the level of significance α , the value of the test statistic is in the rejection region.
- Reject H_0 if the p-value $\leq \alpha$.

Suggested Guidelines for Interpreting *p*-Values

- Less than .01 Overwhelming evidence to conclude H_a is true.
- Between .01 and .05

 Strong evidence to conclude H_a is true.
- Between .05 and .10

 Weak evidence to conclude H_a is true.
- Greater than .10 Insufficient evidence to conclude H_a is true.

Lower-Tailed Test About a Population Mean: σ Known

Upper-Tailed Test About a Population Mean: σ Known

Critical Value Approach to One-Tailed Hypothesis Testing

- The test statistic z has a standard normal probability distribution.
- We can use the standard normal probability distribution table to find the z-value with an area of α in the lower (or upper) tail of the distribution.
- The value of the test statistic that established the boundary of the rejection region is called the <u>critical value</u> for the test.
- The rejection rule is:
 - Lower tail: Reject H_0 if $z \leq -z_a$
 - Upper tail: Reject H_0 if $z \ge z_{\alpha}$

Lower-Tailed Test About a Population Mean: σ Known

Critical Value Approach

Upper-Tailed Test About a Population Mean: σ Known

Critical Value Approach

Steps of Hypothesis Testing

- Step 1. Develop the null and alternative hypotheses.
- Step 2. Specify the level of significance α .
- Step 3. Collect the sample data and compute the value of the test statistic.

p-Value Approach

- Step 4. Use the value of the test statistic to compute the *p*-value.
- Step 5. Reject H_0 if p-value $\leq \alpha$.

Steps of Hypothesis Testing

Critical Value Approach

- Step 4. Use the level of significance to determine the critical value and the rejection rule.
- Step 5. Use the value of the test statistic and the rejection rule to determine whether to reject H_0 .

One-Tailed Tests About a Population Mean: σ Known

- Example: Metro EMS
 - The response times for a random sample of 40 medical emergencies were tabulated. The sample mean is 13.25 minutes. The population standard deviation is believed to be 3.2 minutes.
 - The EMS director wants to perform a hypothesis test, with a .05 level of significance, to determine whether the service goal of 12 minutes or less is being achieved.

One-Tailed Tests About a Population Mean: <u>σ Known</u>

- *p* -Value and Critical Value Approaches
 - 1. Develop the hypotheses. H_0 : $\mu \le 12$ H_2 : $\mu > 12$
 - 2. Specify the level of significance. $\alpha = .05$
 - 3. Compute the value of the test statistic.

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} = \frac{13.25 - 12}{3.2 / \sqrt{40}} = 2.47$$

One-Tailed Tests About a Population Mean: σ Known

- *p* –Value Approach
 - 4. Compute the p -value.

For
$$z = 2.47$$
, cumulative probability = .9932.
 p -value = 1 - .9932 = 0.0068

5. Determine whether to reject H_0 .

Because p-value = .0068 $\leq \alpha$ = .05, we reject H_0 .

There is sufficient statistical evidence to infer that Metro EMS is <u>not</u> meeting the response goal of 12 minutes.

One-Tailed Tests About a Population Mean: σ Known

• *p* –Value Approach

One-Tailed Tests About a Population Mean: σ Known

- Critical Value Approach
 - 4. Determine the critical value and rejection rule.

For
$$\alpha = .05$$
, $z_{.05} = 1.645$
Reject H_0 if $z \ge 1.645$

5. Determine whether to reject H_0 .

Because $2.47 \ge 1.645$, we reject H_0 .

There is sufficient statistical evidence to infer that Metro EMS is <u>not</u> meeting the response goal of 12 minutes.

p-Value Approach to Two-Tailed Hypothesis Testing

- Compute the p-value using the following three steps:
- 1. Compute the value of the test statistic z.
- 2. If z is in the upper tail (z > 0), compute the probability that z is greater than or equal to the value of the test statistic. If z is in the lower tail (z < 0), compute the probability that z is less than or equal to the value of the test statistic.
- ▶ 3. Double the tail area obtained in step 2 to obtain the *p* -value.
- The rejection rule: Reject H_0 if the p-value $\leq \alpha$.

Critical Value Approach to

Two-Tailed Hypothesis Testing
The critical values will occur

- in both the lower and upper tails of the standard
- normal curve distribution table to find $z_{\alpha/2}$ (the z-value with an area of $\alpha/2$ in the upper tail of the distribution).
- The rejection rule is:

Reject
$$H_0$$
 if $z \le -z_{\alpha/2}$ or $z \ge z_{\alpha/2}$.

Two-Tailed Tests About a Population Mean: σ Known

- Example: Glow Toothpaste
- The production line for Glow toothpaste is designed to fill tubes with a mean weight of 6 oz. Periodically, a sample of 30 tubes will be selected in order to check the filling process.
- Quality assurance procedures call for the continuation of the filling process if the sample results are consistent with the assumption that the mean filling weight for the population of toothpaste tubes is 6 oz.; otherwise the process will be adjusted.

Two-Tailed Tests About a Population Mean: σ Known

- Example: Glow Toothpaste
- Assume that a sample of 30 toothpaste tubes provides a sample mean of 6.1 oz. The population standard deviation is believed to be 0.2 oz.
- Perform a hypothesis test, at the .03 level of significance, to help determine whether the filling process should continue operating or be stopped and corrected.

Two-Tailed Tests About a Population Mean: σ Known

- *p* -Value and Critical Value Approaches
 - 1. Determine the hypotheses.

$$H_0$$
: $\mu = 6$
 H_a : $\mu \neq 6$

2. Specify the level of significance. $\alpha = .03$

3. Compute the value of the test statistic.

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{6.1 - 6}{.2 / \sqrt{30}} = 2.74$$

Two-Tailed Tests About a Population Mean: σ Known

- *p* –Value Approach
 - 4. Compute the p –value.

For
$$z = 2.74$$
, cumulative probability = .9969
 p -value = $2(1 - .9969) = .0062$

5. Determine whether to reject H_0 .

Because p-value = .0062 $\leq \alpha$ = .03, we reject H_0 . There is sufficient statistical evidence to infer that the alternative hypothesis is true (i.e. the mean filling weight is not 6 ounces).

Two-Tailed Tests About a Population Mean: σ Known

■ *p*-Value Approach

Two-Tailed Tests About a Population Mean: σ Known

- Critical Value Approach
 - 4. Determine the critical value and rejection rule.

For
$$\alpha/2 = .03/2 = .015$$
, $z_{.015} = 2.17$
Reject H_0 if $z \le -2.17$ or $z \ge 2.17$

5. Determine whether to reject H_0 .

Because $2.74 \ge 2.17$, we reject H_0 . There is sufficient statistical evidence to infer that the alternative hypothesis is true (i.e. the mean filling weight is not 6 ounces).

Two-Tailed Tests About a Population Mean: σ Known

Critical Value Approach

Confidence Interval Approach to Two-Tailed Tests About a Population Mean

- Select a simple random sample from the population and use the value of the sample mean \bar{x} to develop the confidence interval for the population mean μ . (Confidence intervals are covered in Chapter 8.)
- If the confidence interval contains the hypothesized value μ_0 , do not reject H_0 . Otherwise, reject H_0 . (Actually, H_0 should be rejected if μ_0 happens to be equal to one of the end points of the confidence interval.)

Confidence Interval Approach to Two-Tailed Tests About a Population Mean

The 97% confidence interval for μ is

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 6.1 \pm 2.17 (.2/\sqrt{30}) = 6.1 \pm .07924$$
or 6.02076 to 6.17924

Because the hypothesized value for the population mean, $\mu_0 = 6$, is not in this interval, the hypothesis-testing conclusion is that the null hypothesis, H_0 : $\mu = 6$, can be rejected.

Tests About a Population Mean: σ Unknown

• Test Statistic

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

This test statistic has a t distribution with n - 1 degrees of freedom.

Tests About a Population Mean: σ Unknown

• Rejection Rule: *p*-Value Approach

Reject
$$H_0$$
 if p -value $\leq \alpha$

Rejection Rule: Critical Value Approach

H₀:
$$\mu \ge \mu_0$$
 Reject H_0 if $t \le -t_\alpha$

H₀:
$$\mu = \mu_0$$
 Reject H_0 if $t \le -t_{\alpha/2}$ or $t \ge t_{\alpha/2}$

p -Values and the *t* Distribution

- The format of the *t* distribution table provided in most statistics textbooks does not have sufficient detail to determine the exact *p*-value for a hypothesis test.
- However, we can still use the t distribution table to identify a <u>range</u> for the p-value.
- An advantage of computer software packages is that the computer output will provide the *p*-value for the *t* distribution.

Example: Highway Patrol

- One-Tailed Test About a Population Mean: σ Unknown
- A State Highway Patrol periodically samples vehicle speeds at various locations on a particular roadway. The sample of vehicle speeds is used to test the hypothesis H_0 : $\mu \le 65$.
- The locations where H_0 is rejected are deemed the best locations for radar traps. At Location F, a sample of 64 vehicles shows a mean speed of 66.2 mph with a standard deviation of 4.2 mph. Use α = .05 to test the hypothesis.

- *p* -Value and Critical Value Approaches
 - 1. Determine the hypotheses. H_0 : $\mu \le 65$ H_2 : $\mu > 65$
 - 2. Specify the level of significance. $\alpha = .05$
 - Compute the value of the test statistic.

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{66.2 - 65}{4.2 / \sqrt{64}} = 2.286$$

- *p* –Value Approach
 - 4. Compute the p –value.

```
For t = 2.286, the p-value must be less than .025 (for t = 1.998) and greater than .01 (for t = 2.387). 0.01 < p-value < .025
```

5. Determine whether to reject H_0 .

Because *p*-value $\leq \alpha = .05$, we reject H_0 .

We are at least 95% confident that the mean speed of vehicles at Location F is greater than 65 mph.

- Critical Value Approach
 - 4. Determine the critical value and rejection rule.

For
$$\alpha = .05$$
 and d.f. = $64 - 1 = 63$, $t_{.05} = 1.669$
Reject H_0 if $t \ge 1.669$

5. Determine whether to reject H_0 .

Because $2.286 \ge 1.669$, we reject H_0 .

We are at least 95% confident that the mean speed of vehicles at Location F is greater than 65 mph. Location F is a good candidate for a radar trap.

A Summary of Forms for Null and Alternative Hypotheses About a Population Proportion

The equality part of the hypotheses always appears in the null hypothesis

In the null hypothesis. In general, a hypothesis test about the value of a population proportion p must take one of the following three forms (where p_0 is the hypothesized

value of the population proportion).

One-tailed (lower tail)

One-tailed (upper tail)

 $H_0: p = p_0$ $H_a: p \neq p_0$

Two-tailed

Tests About a Population Proportion

• Test Statistic

$$z = \frac{\overline{p} - p_0}{\sigma_p}$$

where:

$$\sigma_{\bar{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$$

assuming $np \ge 5$ and $n(1 - p) \ge 5$

Tests About a Population Proportion

- Rejection Rule: p –Value Approach

 Reject H_0 if p –value $\leq \alpha$
- Rejection Rule: Critical Value Approach

 - H_0 : $p \ge p_0$ Reject H_0 if $z \le -z_\alpha$

- Example: National Safety Council (NSC)
- For a Christmas and New Year's week, the National Safety Council estimated that 500 people would be killed and 25,000 injured on the nation's roads. The NSC claimed that 50% of the accidents would be caused by drunk driving.

A sample of 120 accidents showed that 67 were caused by drunk driving. Use these data to test the NSC's claim with $\alpha = .05$.

- *p* -Value and Critical Value Approaches
 - 1. Determine the hypotheses.

$$H_0: p = .5$$

 $H_a: p \neq .5$

2. Specify the level of significance.

$$\alpha = .05$$

3. Compute the value of the test statistic.

a common error is using
$$\overline{p}$$
 in this formula

$$\sigma_p = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{.5(1-.5)}{120}} = .045644$$

$$z = \frac{\overline{p} - p_0}{\sigma_{\overline{p}}} = \frac{(67/120) - .5}{.045644} = 1.28$$

- *p*-Value Approach
 - 4. Compute the p -value.

For
$$z = 1.28$$
, cumulative probability = .8997 p -value = $2(1 - .8997) = .2006$

5. Determine whether to reject H_0 .

Because *p*-value = .2006 > α = .05, we cannot reject H_0 .

- Critical Value Approach
 - 4. Determine the criticals value and rejection rule.

For
$$\alpha/2 = .05/2 = .025$$
, $z_{.025} = 1.96$
Reject H_0 if $z \le -1.96$ or $z \ge 1.96$

5. Determine whether to reject H_0 .

Because 1.278 > -1.96 and < 1.96, we cannot reject H_0 .

Hypothesis Testing and Decision Making

- In many decision-making situations the decision maker may want, and in some cases may be forced, to take action with both the conclusion do not reject H_0 and the conclusion reject H_0 .
- In such situations, it is recommended that the hypothesis-testing procedure be extended to include consideration of making a Type II error.

Determining the Sample Size for a Hypothesis Test About a Population Mean

- The specified level of significance determines the probability of making a Type I error.
- By controlling the sample size, the probability of making a Type II error is controlled.

Relationship Among α , β , and n

- Once two of the three values are known, the other can be computed.
- For a given level of significance α , increasing the sample size n will reduce β .
- For a given sample size n, decreasing α will increase β , whereas increasing α will decrease β .

THANK YOU!!!!

ANY QUESTIONS ?????