Theoretische Informatik

Lucien Perret, Jil Zerndt May 2024

Alphabete, Wörter, Sprachen

Alphabete sind endliche, nichtleere Mengen von Symbolen.

- $\Sigma = \{a, b, c\}$ Mengen von drei Symbolen
- $\Sigma_{\text{Bool}} = \{0, 1\}$ Boolsches Alphabet

Keine Alphabete

• $\mathbb{N}, \mathbb{R}, \mathbb{Z}$ usw. (unendliche Mächtigkeit)

Wort ist eine endliche Folge von Symbolen eines bestimmten Alphabets.

- abc Wort über dem Alphabet Σ_{lat} (oder über $\Sigma = \{a, b, c\}$)
- 100111 Wort über dem Alphabet $\{0,1\}$
- ε Leeres Wort (über jedem Alphabet)

Schreibweisen $|\omega| = \text{Länge eines Wortes}$

- |100111| = 6
- $|\varepsilon| = 0$

 $|\omega|_x =$ Häufigkeit eines Symbols x in einem Wort

- $|100111|_1 = 4$
- $|\varepsilon|_0 = 0$
- $|\varepsilon|_{\varepsilon} = 1$

 $\omega^R =$ Spiegelwort/Reflection zu ω

- $(abc)^R = cba$
- $(100111)^R = 111001$
- $\varepsilon^R = \varepsilon$

Teilwort (Infix) v ist ein Teilwort (Infix) von ω ist, wenn man ω als $\omega = xvy$.

$$\omega \neq v \rightarrow$$
 Echtes Teilwort

- Teilwörter von abba $\varepsilon, a, b, ab, abb, bb, bba, abba, ba$
- Präfixe von abba ε , a, ab, abb, abba
- Suffixe von abba $\varepsilon, a, ba, bba, abba$

Mengen von Wörtern $\Sigma^k=$ Die Menge aller Wörter der Länge küber einem Alphabet Σ

- $\Sigma = \{a, b, c\}$ $\Sigma^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
- $\Sigma = \{0,1\}$ $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\Sigma^0 = \{\varepsilon\}$
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cdots$ Kleensche Hülle

• $\Sigma^+ = \underbrace{\Sigma^1}_2 \cup \underbrace{\Sigma^3}_8 \dots = \Sigma^* \setminus \{\varepsilon\}$ Positive Hülle

Konkatenation = Verkettung von zwei beliebigen Wörtern x und y

$$x \circ y = xy := (x_1, x_2 \dots x_n, y_1, y_2 \dots y_m)$$

Wortpotenzen Sei x ein Wort über einem Alphabet Σ .

- $x^0 = \varepsilon$
- $x^{n+1} = x^n \circ x = x^n x$
- bbababababababababab = $b^2(ab)^4ba^3(ab)^2$

Sprache über einem Alphabet $\Sigma=$ Eine Teilmenge $L\subseteq \Sigma^*$ von Wörtern.

- $\Sigma_1 \subseteq \Sigma_2 \wedge L$ Sprache über $\Sigma_1 \to L$ Sprache über Σ_2
- Σ^* Sprache über jedem Alphabet Σ
- {}= Ø ist die leere Sprache

Konkatenation von zwei Sprachen $A \subset \Sigma^*$ und $B \subset \Gamma^*$

$$AB = \{ uv \mid u \in A \text{ und } v \in B \}$$

Die Kleenesche Hülle A^* einer Sprache $A = \{\varepsilon\} \cup A \cup AA \cup AAA \cup \dots$

Reguläre Ausdrücke

Reguläre Ausdrücke sind Wörter, die Sprachen beschreiben.

Die Sprache RA_{Σ} der Regulären Ausdrücke über einem Alphabet Σ ist wie folgt definiert:

- $\emptyset, \epsilon \in RA_{\Sigma}$
- $\Sigma \subset RA_{\Sigma}$
- $R \in RA_{\Sigma} \Rightarrow (R^*) \in RA_{\Sigma}$
- $R, S \in RA_{\Sigma} \Rightarrow (RS) \in RA_{\Sigma}$
- $R, S \in RA_{\Sigma} \Rightarrow (R \mid S) \in RA_{\Sigma}$

Für jeden regulären Ausdruck $R \in RA_{\Sigma}$ definieren wir die Sprache L(R) von R wie folgt:

- Leere Sprache: $L(\emptyset) = \emptyset$
- Sprache, die nur das leere Wort enthält: $L(\varepsilon) = \{\varepsilon\}$
- Beschreibt die Sprache $\{a\}$: $L(a) = \{a\} \quad \forall a \in \Sigma$
- Kombiniert die Wörter von R: $L(R^*) = L(R)^*$
- Verkettung von Wörtern (R = prefix): $L(RS) = L(R) \circ L(S)$
- Wörter die in R oder S beschrieben werden: $L(R \mid S) = L(R) \cup L(S)$

Reguläre Sprache

Eine Sprache A über dem Alphabet Σ heisst regulär, falls

- A=L(R) für einen regulären Ausdruck $R\in RA_{\Sigma}$ gilt. Beispiele
- $R_1 = a^*b$ $L(R_1) = \{b, ab, aab, aaab, ...\}$
- $R_2 = (aa)^*b^*aba$ $L(R_2) = \{aba, baba, aaaba, aababa, \ldots\}$
- $R_3 = (a \mid ab)^* \quad L(R_3) = \{\varepsilon, a, ab, aa, abab, \ldots\}$
- $L(R_1)$: Menge der ganzen Zahlen in Dezimaldarstellung
- $((-\mid \varepsilon)(1,2,3,4,5,6,7,8,9)(0,1,2,3,4,5,6,7,8,9)\mid 0).0$

Eigenschaften und Konventionen Die Menge RA_{Σ} über dem Alphabet Σ ist eine Sprache über dem Alphabet

$$\{\emptyset, \epsilon, *, (), , |\} \cup \Sigma$$

Priorisierung von Operatoren

- (1) *= Wiederholung \rightarrow (2) Konkatenation \rightarrow (3) |= Oder Beispiele
- $(aa)^*b^*aba = (aa)^*b^*aba$
- (ab)|(ba) = ab|ba
- a(b(ba))|b = abba|b

Erweiterte Syntax

- $R^+ = R(R^*)$
- $R? = (R \mid \epsilon)$
- $[R_1, \ldots, R_k] = R_1 |R_2| \ldots |R_k|$

Endliche Automaten

Endliche Automaten entsprechen Maschinen, die Entscheidungsprobleme lösen.

- Links nach rechts
- Keinen Speicher
- Keine Variablen
- Speichert aktuellen Zustand
- Ausgabe über akzeptierende Zustände

DEA Ein deterministischer endlicher Automat (DEA) ist ein 5-Tupel $M=(Q,\Sigma,\delta,q_0,F)$

- Q endliche Menge von Zuständen
- Σ endliches Eingabealphabet
- $\delta: Q \times \Sigma \to Q$ Übergangsfunktion
- $q_0 \in Q$ Startzustand

DEA Funktionen

 $M=(Q,\Sigma,\delta,q_0,F)$ ein EA. **Konfiguration** von M auf ω ist ein Element aus $Q\times \Sigma^*$.

- Startkonfiguration von M auf ω $\{q_0, \omega\} \in \{q_0\} \times \Sigma^*$
- Endkonfiguration (q_n, ε)

Berechnungsschritt \vdash_M von M

$$(q,\omega)\vdash_M (p,x)$$

Berechnung ist eine endliche Folge von Berechnungsschritten

$$(q_a, \omega_1\omega_2 \dots \omega_n) \vdash_M \dots \vdash_M (q_e, \omega_j \dots \omega_n) \to (q_a, \omega_1\omega_2 \dots \omega_n) \vdash_M^* (q_e, \omega_j \dots \omega_n)$$

Beispiel DEA (eindeutig)

• Sprache: $L(M) = \{1x1 \mid x \in \{0\}^*\}$

Konfiguration

- Startkonfiguration auf $\omega = 101 \rightarrow (q_0, 101)$
- Endkonfiguration auf $\omega = 101 \rightarrow (q_2, \varepsilon)$

Berechnung

- $\omega = 101 \rightarrow (q_0, 101) \vdash_M (q_1, 01) \vdash_M (q_1, 1) \vdash_M (q_2, \varepsilon) \rightarrow \text{akzeptierend}$
- $\omega = 10 \rightarrow (q_0, 10) \vdash_M (q_1, 0) \vdash_M (q_1, \varepsilon) \rightarrow \text{verwerfend}$

Nichtdeterministischer endlicher Automat (NEA)

Der einzige Unterschied zum DEA besteht in der Übergangsfunktion δ

• Übergangsfunktion $\delta: Q \times \Sigma \to P(Q)$

Ein ε -NEA erlaubt zusätzlich noch ε -Übergänge.

NEA (nicht eindeutig)

• Sprache: $L(M) = \{x01 \mid x \in \{0,1\}^*\}$

• Äquivalenter NEA

Teilmengenkonstruktion

Jeder NEA kann in einen DEA umgewandelt werden. (gleichmächtig)

- 1. $Q_{NEA} \rightarrow P(Q_{NEA}) = Q_{DEA}$ (Potenzmenge)
- 2. Verbinden mit Vereinigung aller möglichen Zielzustände
- 3. Nicht erreichbare Zustände eliminieren
- 4. Enthält akzeptierenden Zustand = $F_{NEA} \rightarrow$ akzeptierend

↓	q	$\delta(q,0)$	$\delta(q,1)$
0	ø	Ø	
	$A = \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
1	$- \{q_1\}$	Ø	{q₂}
4	{q₂}	Ø	<u>Ø</u>
	$B = \{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
	$C = \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
2	$-\{q_1,q_2\}$	Ø	{q₂}
3	$\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
	0, 1		

Reguläre Sprachen

Äquvivalente Mechanismen

- Akzeptierender Mechanismus DEA, NEA, $\varepsilon\textsc{-NEA}$
- Beschreibender Mechanismus RA

Äquivalenz DEA und RA

- Es gibt einen DEA, der die Sprache Lakzeptiert
- Es gibt einen RA, der die Sprache L akzeptiert.

Abschlusseigenschaften regulärer Sprachen

Seien L_1 und L_2 zwei reguläre Sprachen über $\Sigma.$ Dann ist die Vereinigung \dots regulär.

$$L_1 \cup L_2 = \left\{ \omega \mid \omega \in L_1 \lor \omega \in L_2 \right\}$$

Sei Leine reguläre Sprache über $\Sigma.$ Dann ist auch das Komplement ... regulär.

$$\bar{L} = \Sigma^* - L = \left\{ \omega \in \Sigma^* \mid \omega \notin L \right\}$$

- Schnitt: $L_1 \cap L_2 = \{ \omega \mid \omega \in L_1 \land \omega \in L_2 \}$
- Differenz: $L_1 L_2 = \{ \omega \mid \omega \in L_1 \land \omega \notin L_2 \}$
- Konkatenation:

 $L_1 \cdot L_2 = L_1 L_2 = \{ \omega = \omega_1 \omega_2 \mid \omega_1 \in L_1 \land \omega_1 \in L_2 \}$

• Kleenesche Hülle:

 $L^* = \left\{ \omega = \omega_1 \omega_2 \dots \omega_n \mid \omega_i \in L \text{ für alle } i \in \{1, 2, \dots, n\} \right\}$

Zustandsklasse

Jedes Wort landet in einem Zustand

$$\Sigma^* = \bigcup_{p \in Q} [p]$$

Kein Wort landet nach dem Lesen in zwei Zuständen

$$[p] \cap [q] = \emptyset$$
, für alle $p \neq q, p, q \in Q$

Nach dem Lesen von ω landet man im Zustand p.

Klasse
$$[q_0] = \left\{ \omega \in \{0, 1\}^* ||\omega|_0 \mod (3) = 1 \right\}$$

Von M akzeptierte Sprache

$$L(M) = \bigcup_{p \in F} [p]$$

$$L(M) = \left\{ \forall \omega \in \{0, 1\}^* | |\omega|_0 \mod (3) = 1 \right\}$$

Kontextfreie Grammatiken

Kontextfreie Grammatik

Eine Kontext Freie Grammatik G(KFG) ist ein 4-Tupel (N,Σ,P,A) mit

- N ist das Alphabet der Nichtterminale (Variablen)
- Σ ist das Alphabet der Terminale
- P ist eine endliche Menge von Produktionen mit der Form $X \to \beta$

Mit Kopf $X \in N$ und Rumpf $\beta \in (N \cup \Sigma)^*$

• A ist das Startsymbol, wobei $A \in N$

Ein Wort $\beta \in (N \cup \Sigma)^*$ nennen wir Satzform.

Seien α, β und γ Satzformen und $A \rightarrow \gamma$ eine Produktion.

- Ableitungsschritt mit Produktion $A \to \gamma$ $\alpha A\beta \to \alpha \gamma\beta$
- Ableitung Folge von Ableitungsschritten $\alpha \to \cdots \to \omega$

Ableitungsbaum

Eine Ableitung kann als Ableitungsbaum / Parsebaum dargestellt werden. KGF G_1 für die Sprache $\left\{0^n1^m\mid n,m\in N\right\}$

- $G_1 = \{\{A, B, C\}, \{0, 1\}, P, A\}$
- $P = \{A \to BC, B \to 0B | 0 | \varepsilon, C \to 1C | 1 | \varepsilon\}$

Ableitung von $\omega_1 = 011$

• $A \rightarrow BC \rightarrow 0AA \rightarrow 01C \rightarrow 011 \rightarrow \ldots \rightarrow 011$

Mehrdeutigkeit

Eine KFG nennen wir mehrdeutig, wenn es ein Wort gibt, das mehrere Ableitungsbäume besitzt.

Mehrdeutigkeiten eliminieren:

- Korrekte Klammerung vom Benutzer erzwingen
- Grammatik anpassen
- Den Produktionen einen Vorrang vergeben

KFG für Sprache L

Jede reguläre Sprache kann durch eine kontextfreie Grammatik beschrieben werden. Sei L eine reguläre Sprache. Dann gibt es einen DEA $M=(Q,\Sigma,\delta,q_0,F)$ mit L(M)=L

Dann können wir einen KFG für L wie folgt bauen:

- Für jeden Zustand q_i gibt es ein Nichtterminal Q_i
- Für jede Transition $\delta\left(q_i,a\right)=q_j$ erstellen wir die Produktion $Q_i\to aQ_j$
- Für jeden akzeptierenden Zustand $q_i \in F$ erstellen wir die Produktion $Q_i \to \varepsilon$
- Das Nichtterminal Q_0 wird zum Startsymbol A.

Kellerautomaten

Kellerautomaten haben einen «Speicher». PDA = Push Down Automat.

Ein deterministischer Kellerautomat KA ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \$, F)$$

- Menge von Zuständen: Q
- Alphabet der Eingabe: Σ
- Alphabet des Kellers: Γ
- Übergangsfunktion: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to Q \times \Gamma^*$
- Anfangszustand: $q_0 \in Q$
- Symbol vom Alphabet des Kellers: $\$ \in \Gamma$
- Akzeptierende Zustände: $F \subseteq Q$

Zusätzliche Einschränkungen für DKAs

Für jeden Zustand q und alle Symbole x, b gilt, wenn $\delta(q, b, c)$ definiert ist, dann ist $\delta(q, \varepsilon, x)$ undefiniert.

Ein Übergang $\delta(q, b, c) = (p, \omega)$ wird graphisch dargestellt

$$q - b, c/\omega \longrightarrow p$$

Berechnungsschritte

Ein Berechnungsschritt $\delta(q, b, c) = (p, \omega)$ wird wie folgt interpretiert

- q = Aktueller Zustand
- b = Symbol der Eingabe
- c = Symbol wird entfernt
- $\omega = \text{Wort auf Stack geschrieben}$
- p =Neuer Zustand

Sprache eines Kellerautomaten Die Sprache L(M) des Kellerautomaten M ist definiert durch

$$L(M) = \left\{ \omega \in \Sigma^* \mid \left(q_0, \omega, \$ \right) \vdash^* (q, \varepsilon, \gamma) \text{ für ein } q \in F \text{ und ein } \gamma \in \Gamma^* \right\}$$

Elemente von L(M) werden von M akzeptierte Wörter genannt.

Kellerautomat für eine Sprache erstellen

Ein Kellerautomat für die kontextfreie Sprache $\{0^n1^n \mid n>0\}$

- 0,0/00 Read 0 Add 0 (00-0)=0
- 0.\$/0\$ Read 0 Add 0 (\$0 \$) = 0
- $1,0/\varepsilon$ Read 1 Remove 0 Read $(\varepsilon 0) = -0$
- ε , \$/\$ Read ε (\$ \$) = ε

• $\omega_1 = 011 : (q_0, 011, \$) \vdash (q_1, 11, 0\$) \vdash (q_1, 1, \$) \rightarrow \omega_1 \text{ verwer-fond}$

Das Zeichen \$ zeigt an, dass der «Stack» leer ist.

NKA: Übergangsfunktion

• $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to P(Q \times \Gamma^*)$

Kellerautomat für die Sprache $\{\omega\omega^R \mid \omega \in \{0,1\}^*\}$

Turingmaschinen

Turingmaschinen (TM)

- Einen Lese- / Schreib-Kopf
- Ein unendliches Band von Zellen

Eine deterministischer Turing-Maschine TM ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$$

- Menge von Zuständen: Q
- Alphabet der Eingabe: Σ
- Bandalphabet: Γ und $\Sigma \subset \Gamma$
- Übergangsfunktion: $\delta: Q \times \Gamma \to Q \times \Gamma \times D, D = \{L, R\}$
- Anfangszustand: $q_0 \in Q$
- Akzeptierende Zustände: $F \subseteq Q$
- Leerzeichen \sqcup , mit $\mu \in \Gamma$ und $\mu \notin \Sigma$

Sie bildet das 2-Tupel (q, X) auf das Tripel (p, Y, D)

- $q, p \in Q$ und $X, Y \in \Gamma$
- D = Direction
- X = Read
- Y = Overwrite

$$q - X/Y, D \rightarrow p$$

Band

- Unterteilt in einzelne Zellen mit jeweils einem beliebigen Symbol
- Beinhaltet zu Beginn die Eingabe, d.h. ein endliches Wort aus Σ^* . Alle anderen Zellen enthalten das besondere Symbol 4 .

Konfiguration einer Turing-Maschine M ist durch die folgenden Angaben eindeutig spezifiziert

- Zustand der Zustandssteuerung
- Position des Lese- / Schreibkopfes
- Bandinhalt

Semi-Unendliches Band

Das Band der Turingmaschine ist nur in eine Richtung unendlich. Jede Sprache L die von einer TM T akzeptiert wird, wird auch von einer TM mit semi-unendlichem Band akzeptiert.

Mehrere Stacks

Jede Sprache L die von einer TM T akzeptiert wird, wird auch von einer 2Stack-Maschine S akzeptiert.

Zähler-Maschinen

Eine Zähler-Maschine (Counter Machine) mit k Zählern entspricht einer k Stack-Maschine mit dem Unterschied, dass die Stacks durch einfache Zähler ersetzt werden.

Jede Sprache L die von einer TM T akzeptiert wird, wird auch von einer 2Zähler-Maschine Z mit 2 Zählern akzeptiert.

TM mit Speicher

In der endlichen Zustandssteuerung einer TM können ausser dem SteuerZustand zusätzlich endlich viele Daten-Zustände gespeichert werden.

Mehrere Spuren

- Das Band der TM setzt sich aus mehreren «Spuren» zusammen.
- Jede Spur kann ein Symbol des Bandalphabets speichern.

Mehrere Bänder

- TM mit endlich vielen Bändern und Lese- / Schreibköpfen
- Jeder Lese- / Schreibkopf kann unabhängig auf ein Band zugreifen

Mehrband-Maschine

Spezifizieren Sie eine TM M_4 , welche die Subtraktion von zwei natürlichen Zahlen $(a - b, \text{ mit } a \ge b)$ realisiert.

Beispiel: 4-2=2

	ispici. 4 2 = 2		1	l	2	3	4	5	6	7	8	9
1	q_0 0000100 \vdash	0 / 0. P.P.)	0	0	0	1	0	0		
2		<i>0</i> ⊔ / ⊔ 0, <i>RR</i>										
1	⊔ <i>q</i> ₀ 000100 ⊢	011 /11 0 PP		Ī	0	0	0	1	0	0		
2	0 <i>q</i> ₀ ⊔ ⊢	<i>0</i> ⊔ / ⊔ <i>0 , RR</i>	()								
1	⊔⊔ <i>q</i> ₀ 00100 ⊢	0 / 0. P.P.				0	0	1	0	0		
2	00 <i>q</i> ₀ ⊔ ⊢	<i>0</i> ⊔ / ⊔ 0 , <i>RR</i>	()	0							
1	⊔⊔⊔ <i>q</i> ₀ 0100 ⊢	0 / 0. P.P.					0	1	0	0		
2	000 <i>q</i> ₀ ⊔ ⊢	<i>0</i> ⊔ / ⊔ <i>0 , RR</i>	()	0	0						
1	⊔⊔⊔⊔ <i>q</i> ₀ 100 ⊢	1 / DI						1	0	0		
2	0000q ₀ ⊔ ⊢	<i>1</i> ⊔ / ⊔⊔ , <i>RL</i>	()	0	0	0					
1	⊔⊔⊔⊔⊔ <i>q</i> ₁ 00 ⊢	00 /1111 PI							0	0		
2	000 <i>q</i> ₁ 0 ⊢	00/⊔⊔, <i>RL</i>	()	0	0	0					
1	⊔⊔⊔⊔⊔⊔ <i>q</i> ₁ 0 ⊢	00 / PI								0		
2	00 <i>q</i> ₁ 0 ⊢	00/⊔⊔, <i>RL</i>	()	0	0						
1	⊔⊔⊔⊔⊔⊔ q_1	0 (0 P.P.										
2	0 <i>q</i> ₁ 0 ⊢	⊔ 0/⊔ 0, RR)	0							
1	\Box											
2	00 <i>q</i> ₂ ⊔ ⊢		()	0							

Berechnungsmodelle

Turing-berechenbar

Jedes algorithmisch lösbare Berechnungsproblem kann von einer Turing-Maschine gelöst werden.

• Computer und Turing-Maschinen sind äquivalent.

Turing-berechenbare Funktion: Turing-Maschine $T=(Q,\Sigma,\Gamma,\delta,q_0,\sqcup,F)$

$$T: \Sigma^* \to \delta^*$$

$$T(\omega) = \begin{cases} u & \text{falls T auf } \omega \in \Sigma^* \text{ angesetzt, nach endlich vielen} \\ & \text{Schritten mit u auf dem Band anhält} \\ \uparrow & \text{falls T bei Input } \omega \in \Sigma^* \text{ nicht hält} \end{cases}$$

Primitiv rekursive Grundfunktionen

Für jedes $n\in\mathbb{N}$ und jede Konstante $k\in\mathbb{N}$ die n-stellige konstante Funktion:

$$c_k^n = \mathbb{N}^n \to \mathbb{N} \text{ mit } c_k^n(x_1, ..., x_n) = k$$

Nachfolgerfunktion:

$$\eta: \mathbb{N} \to \mathbb{N} \text{ mit } \eta(x) = x+1$$

Für jedes $n \in \mathbb{N}$ und jedes 1 < k < n die n-stellige Projektion auf die k-te Komponente:

$$\pi_k^n: \mathbb{N}^n \to \mathbb{N} \text{ mit } \pi_k^n(x_1,...,x_k,...,x_n) = k$$

n = Anzahl der Argumente, k = Position des Arguments

Loop (primitiv-rekursiv)

- Zuweisungen: x = y + c und x = y c
- Sequenzen: P und $Q \to P$; Q
- Schleifen: $P \to \text{Loop } x \text{ do } P \text{ until End}$

Addition von natürlichen Zahlen Add(x, y) = x + y

LOOP x1 D0

$$x2 = x2 + 1$$

END
 $x0 = x2 + 0$

While (Turing vollständig)

Erweiterung deer Sprache Loop

• While $x_i > 0$ do ... until End

Multiplikation von natürlichen Zahlen Mul(x, y) = x * y

GoTo (Turing vollständig)

- Zuweisungen: $x_i = x_j + c$ und $x_i = x_j c$
- Sprunganweisung: IF $x_i = c$ THEN GOTO L_k ELSE GOTO L_t or simple: GOTO L_k
- Schleifen: WHILE $x_i > 0$ DO ... HALT

Case distinction

Entscheidbarkeit

Entscheidbarkeit

- Ein Problem ist entscheidbar, wenn es einen Algorithmus gibt, der für jede Eingabe eine Antwort liefert.
- Ein Problem ist semi-entscheidbar, wenn es einen Algorithmus gibt, der für jede Eingabe eine Antwort liefert, falls die Antwort ia ist.

Eine Sprache $A \subset \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch \bar{A} semi-entscheidbar ist.

• \bar{A} steht für das Komplement von A in Σ^* : $\bar{A} = \Sigma^* \backslash A = \{\omega \in \Sigma^* \mid \omega \notin A\}$

Entscheidbarkeit und Turingmaschinen Eine Sprache $A \subset \Sigma^*$ heisst entscheidbar, wenn eine TM T existiert, die sich wie folgt verhält:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält mit Bandinhalt «0» (Nein) an Äquivalente Aussagen:
- $A \subset \Sigma^*$ ist entscheidbar
- Es existiert eine TM, die das Entscheidungsproblem $T(\Sigma, A)$ löst
- Es existiert ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert → Entscheidungsverfahren für A

Semi-Entscheidbarkeit Turingmaschinen

Eine Sprache $A\subset \Sigma^*$ heisst semi-entscheidbar, wenn eine TM T existiert, die sich wie folgt verhält:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält nie an

Äquivalente Aussagen

- $A \subset \Sigma^*$ ist semi-entscheidbar
- $A \subset \Sigma^*$ ist rekursiv aufzählbar
- Es gibt eine TM, die zum Entscheidungsproblem $T(\Sigma, A)$ nur die positiven («Ja») Antworten liefert und sonst gar keine Antwort
- Es gibt ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert und bei Eingabe von Wörtern die nicht zu A gehören nicht terminiert

Reduzierbarkeit

Eine Sprache $A\subset \Sigma^*$ heisst auf eine Sprache $B\subset \Gamma^*$ reduzierbar, wenn es eine totale, Turing-berechenbare Funktion $F:\Sigma^*\to \Gamma^*$ gibt, so dass für alle $\omega\in \Sigma^*$

$$\omega \in A \Leftrightarrow F(\omega) \in B$$

- $A \leq B$ A ist reduzierbar auf B
- $A \leq B$ und $B \leq C \rightarrow A \leq C$

Halteproblem

Das allgemeine Halteproblem H ist die Sprache (# = Delimiter)

• $H := \{ \omega \# x \in \{0, 1, \#\}^* \mid T_\omega \text{ angesetzt auf } x \text{ hält } \}$

Sprachen der Halteprobleme (HP): leeres HPH_0 und spezielles HP H_0

- $H_0 := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf das leere Band hält } \}$
- $H_S := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf } \omega \text{ hält } \}$

 H_0, H_S und H sind semi-entscheidbar.

Komplexitätstheorie

Quantitative Gesetze und Grenzen der algorithmischen Informationsverarbeitung

- Zeitkomplexität: Laufzeit des besten Programms, welches das Problem löst
- Platzkomplexität: Speicherplatz des besten Programms
- Beschreibungskomplexität: Länge des kürzesten Programms

Zeitbedarf Der Zeitbedarf von M auf Eingaben der Länge $n \in \mathbb{N}$ im schlechtesten Fall definiert als

$$\operatorname{Time}_{M}(n) = \max \left\{ \operatorname{Time}_{M}(\omega) || \omega |= n \right\}$$

Sei M eine TM, die immer hält und sei $\omega \in \Sigma^*$. Der Zeitbedarf von M auf der Eingabe ω ist

- Time $_{M}(\omega)=$ Anzahl von Konfigurationsübergängen in der Berechnung von M auf ω

P vs NP Klassifizierung von Problemen

Ein Problem U heisst in Polynomzeit lösbar, wenn es eine obere Schranke $O(n^c)$ gibt für eine Konstante $c \geq 1$.

- $P \doteq \text{L\"osung finden in Polynomzeit}$
- $NP \doteq \text{L\"osung verifizieren in Polynomzeit}$

NP-schwer

Eine Sprache L heisst NP-schwer, falls für alle Sprachen

$$L' \in NP$$
 gilt, dass $L' \preccurlyeq_p L$

Eine Sprache Lheisst NP-vollständig, falls $L \in NP$ und L ist NP-schwer.

Verifikation

Polynomzeit-Verifizierer: Überprüft die einzelnen Eingaben in einem Problem

Zeuge: Informationen einer gültigen Eingabe

Asymptotische Komplexitätsmessung O-Notation (Landau Symbole)

- $f \in O(g)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $c \in \mathbb{N}$, so dass für alle $n \geq n_0$ gilt
 - $-f(n) \le c \cdot g(n)f$ wächst asymptotisch nicht schneller als g
- $f \in \Omega(g)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $d \in \mathbb{N}$, so dass für alle $n \geq n_0$ gilt
 - $-f(n) \ge \frac{1}{d} \cdot g(n)f$ wächst asymptotisch mindestens so schnell wie g
- $f \in \Theta(g)$: Es gilt $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$
 - f und q sind asymptotisch gleich

Schranken für die Zeitkomplexität von U

• O(f(n)) ist eine obere Schranke, falls

Eine TM existiert, die U löst und eine Zeitkomplexität in O(f(n)) hat.

• $\Omega(g(n))$ ist eine untere Schranke, falls

Für alle TM M, die U lösen, gilt dass Time_M $(n) \in \Omega(g(n))$

Rechenregeln

- Konstante Vorfaktoren c ignorieren $(c \in O(1))$.
- Bei Polynomen ist nur die höchste Potenz entscheidend:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \in O(n^k)$$

- Die O-Notation ist transitiv.
- $f(n) \in O(g(n)) \land g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$
- O(n) 7n+4
- $O(n^3)$ $25n^2 + n^3 + 100n$
- $O(n^2 \cdot \log(n))$ $n^2 + n \cdot n \cdot (\log(n)) + 20n^2 + 50n \cdot 100$
- $O(2^n)$ $10^{20} + 3n^3 + 2^n + 2^{10} \cdot 2^{30}$

Übersicht wichtigste Laufzeiten TODO: Tabelle mit Laufzeiten

Übersicht -

