Types of Functions

Piecewise Functions

Notation

$$f(x) = \begin{cases} \text{function, condition} \\ \vdots \\ \text{function, condition} \end{cases}$$

$$f(x) = \begin{cases} x, & [0,2) \\ \frac{1}{2}x, & (2,6] \\ \frac{3}{5}x, & (6,9] \\ -x, & (9,15] \end{cases}$$

Absolute Value

Even and Odd

A function f(x) is called:

Even: If $\forall x \in D$ we have f(-x) = f(x)

Odd: If $\forall x \in D$ we have f(-x) = -f(x)

Neither:

Symmetries:

Even:

Odd:

Neither:

Increasing Decreasing

Definition:

A function f(x) on an inteval I is called:

Increasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) < f(b)$

Decreasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) > f(b)$

"Parent" Functions

Translation of functions

Shifts:

$$\underline{\qquad}: f(x) \to f(x+c)$$

 $: f(x) \to f(x) + c$

Stretching and reflection:

For 1 < c

 $\underline{\qquad}: f(x) \to f(\frac{1}{c}x)$

 $\underline{\qquad} : f(x) \to f(-x)$

Function Arithmetic

$$(f+g)(x) = f(x) + g(x)$$

$$(f - g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

If we let
$$f(x) = x^2$$
 and $g(x) = 4x^3$

$$(f+g)(x) = \underline{\hspace{1cm}}$$

$$(f-g)(x) = \underline{\hspace{1cm}}$$

$$(f \cdot g)(x) = \underline{\hspace{1cm}}$$

$$\left(\frac{f}{g}\right)(x) = \underline{\qquad}$$

Domain

Addition, multiplication $+ - \cdot$

The domain of f+g, f-g, and $f\cdot g$ is the intersection of the domains of f and g. In other words, f+g, f-g, and $f\cdot g$ are defined wherever both f and g are defined.

Division

For $\frac{f}{g}$, the domain is the intersection of the domains of f and g excluding x where g(x) is 0.

Function Composition

We let f(x) and g(x) be two functions with "compatable" domain and codomain

the compostion of f(x) and g(x) written

$$(f \circ g)(x)$$

is defined to be

$$f\left(g\left(x\right)\right)$$

Let
$$f(x) = x^2$$
 and $g(x) = \sqrt{x} = \underline{\hspace{1cm}}$

$$(f \circ g)(x) =$$

$$(g \circ f)(x) =$$

Let
$$f(x) = x^2$$
 and $g(x) = x + 1$

$$(f \circ g)(x) =$$

$$\left(g\circ f\right)\left(x\right)=$$

Domain

The domain of $f \circ g$ is all x in the domain of g so that g(x) is in the domain of f.

Note:

The easiest way to find the domain is usually to write an expression for $(f \circ g)(x)$ and find its domain without simplifying.

Let $f: \mathbb{R} \to \mathbb{R}$ where $f: x \mapsto \frac{1}{x}$, and $g: (0, \infty) \to \mathbb{R}$ where $g: x \mapsto x^2$.

Find the domain of $(f \circ g)(x)$:

Note:

This is one of the most important skills you NEED to have for calculus 1.

Easy problems > hard problems

further

2 Easy problems > a hard problem

1:1 (Injective)

Formally:

A function f is said to be injective if for $a, b \in D$, with f(a) = f(b) then a = b.

Inverse Functions

Identity Function

We the function $f:D\to D$ with $x\mapsto x$ the "Identity" function

$$f(x) = x$$

$$id_D(x) = x$$

Inverting a function

Let $f:D\to R$ be an injective function. Then $g:R\to D$ is an inverse of f if

$$(f \circ g)(r) = r$$

and

$$\left(g\circ f\right)\left(d\right)=d$$

we write g as f^{-1} .

Tests for injectivity

Let $f:A\to B$

I Algebraic

- 1. Proving something is NOT injective, find a counterexample: find $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$ BUT $x_1 \neq x_2$
- 2. Proving something is injective: Find a contradiction:
 - (a) Assume $3x_1, x_2 \in A, x_1 \neq x_2$ but $f(x_1) = f(x_2)$
 - (b) Write $f(x_1) = f(x_0)$
 - (c) Simplify until you find a contradiction.

II Graphical

- 1. Horizontal line test
 - (a) Graph the function
 - (b) Run a Horizontal line across the graph.

Finding an Inverse

1. Algebraic:

- (a) Verify f is injective.
- (b) write f(x) as y
- (c) exchange x and y
- (d) solve for x
- (e) exchange x and y
- (f) write y as f^{-1}

Example:

$$f(x) = e^x$$

$$f(x) = \frac{x+1}{x-1}$$

2. Geometric:

- (a) Graph f
- (b) Verify f is injective.
- (c) Reflect f across id_D

