(C) 2x + y = -5

(B) $(x + 3)^2 + (y + 12)^2 = 100$

(D) $(x-3)^2 + (y-12)^2 = 100$

Preparing for College Entrance Exams

Strategy for Success

(3, -1) and (-1, 7). (A) x + 2y = 7

equation of the circle is:

(A) $(x + 3)^2 + (y + 12)^2 = 25$

(C) $(x-3)^2 + (y-12)^2 = 25$

(D) 2x + y = 5

Try to work quickly and accurately on exam questions. Do not take time to double-check your answers unless you finish all the questions before the deadline. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

1. Find an equation of the perpendicular bisector of the segment joining

2. A circle has a diameter with endpoints (0, -8) and (-6, -16). An

(B) x - 2y = -5

(E) 2x - y = -1

Indicate	the	best	answer	by	writing	the	appropriate	letter.
THEFT	CIIC	200	LII JII CI	N 1	VV I I LAIII	LIIL	appropriate	ICILCI

	(E) $(x + 6)^2 + (y + 24)^2 = 100$
3.	The point $(\frac{1}{2}, -\frac{1}{2})$ lies on line t. Which of the following allow you to
	find an equation for t?
	I. slope of t is -3 II. x-intercept of t is 7 III. t is parallel to $4x - 5y = 7$
	(A) I only (B) III only (C) I and III only (D) II only (E) I, II, and III
4.	Given $A(-3, 5)$, $B(0, -4)$, $C(2, 5)$, and $D(-6, -1)$, find the intersection
	point of \overrightarrow{AB} and \overrightarrow{CD} .
	(A) (6, 23) (B) (2, -10) (C) (-2, 2) (D) (-18, 5) (E) cannot be determined
5.	What is the best name for quadrilateral WXYZ with vertices $W(-3, -2)$,
	X(-5,2), Y(1,5), and Z(3,1)?
	(A) isosceles trapezoid (B) parallelogram (C) rectangle
	(D) rhombus (E) square
6.	Two vertices of an isosceles right triangle are $(0, 0)$ and $(j, 0)$. The third
	vertex cannot be:
	(A) $(0, j)$ (B) $(0, -j)$ (C) (j, j) (D) $\left(\frac{j}{2}, \frac{j}{2}\right)$ (E) $\left(\frac{j}{2}, j\right)$
	(2, 2)
7.	What is the image of $(-2, 3)$ under reflection in the line $y = x$?
	(A) $(3, -2)$ (B) $(2, 3)$ (C) $(-2, -3)$ (D) $(2, -3)$ (E) $(-3, 2)$
8.	Find the preimage of $(0, 0)$ under $D_{P,\frac{1}{4}}$, where P is the point $(-1, 1)$.
	(A) $(-4, 4)$ (B) $(-\frac{3}{4}, \frac{3}{4})$ (C) $(-\frac{1}{4}, \frac{1}{4})$ (D) $(4, -4)$ (E) $(3, -3)$
9.	A regular pentagon does not have:
	(A) line symmetry (B) point symmetry (C) 360° rotational symmetry
	(D) 216° rotational symmetry (E) 72° rotational symmetry
10.	If <i>CDEF</i> is a square with vertices labeled counterclockwise, then \mathcal{R}_{C_1-450} : $\overline{CF} \rightarrow \frac{?}{}$.
	(A) \overline{FE} (B) \overline{ED} (C) \overline{CF} (D) \overline{CD} (E) none of these