Exercice 2

L'objectif de cet exercice est la manipulation des polynômes creux à une seule variable. Un polynôme creux est un polynôme dont certains coefficients sont nuls.

Un polynôme est construit à partir de monômes.

Un monôme est une expression de la forme ax^n ou a ($a \neq 0$) est le coefficient du monôme et $n(n\geq 0)$ son degré.

Un monôme est représenté par un dictionnaire à un élément dont la clé est le degré n et la valeur est le coefficient a.

<u>Exemple</u>: Le monôme $8x^2$ est représenté par le dictionnaire $\{2:8\}$.

Un polynôme creux est alors défini comme une association de monômes de degrés différents.

<u>Exemple</u>: Le polynôme $-x^4 + 8x^2 - 5x$ est représenté par le dictionnaire $\{2:8,1:-5,4:-1\}$.

Le dictionnaire $\{0:1,5:1,8:1\}$ représente le polynôme $x^8 + x^5 + 1$.

- 1. Ecrire une fonction, nommée degree, qui retourne le degré d'un polynôme.
- 2. Ecrire une fonction, nommée evaluer, qui retourne la valeur du polynôme pour un réel x0 donné.
- 3. Ecrire une fonction, nommée coeff, qui retourne le coefficient du monôme de degré i.
- Ecrire une fonction, nommée addition, qui retourne le polynôme somme de deux polynômes.
- 5. Ecrire une fonction, nommée **produit**, qui retourne le polynôme produit de deux polynômes.
- 6. Ecrire une fonction, nommée **affiche**, qui retourne la chaine représentant l'expression du polynôme ordonné par ordre décroissant.
 - Pour le polynôme représenté par $\{4:4,0:4,12:6,9:1,7:-1\}$, la chaine retournée est : (6*x**12+x**9-x**7+4*x**4+4)

7.	Ecrire	une	fonctio	n, no	mmée	primitive	qui	retourne	le	polynôme	représentant	1
						nstante d'i						
		••••		• • • • • • • • •			•••••	•••••				••••

Institut Supérieur d'Informatique et de Mathématiques de Monastir

IS IM M

RATTRAPAGE - S2 - 2023/2024

Filière : 1ère LFI	Mati Programma	Enseignant : Dr. A. BEN HMIDA SAKLY		
Date: 08/06/2024	Nbr de Crédits: 3	Coefficient: 1.5	Documents autorisés : Non	
Durée de l'examen : 1h30	Régime d'éva	aluation : MR	Nombre de pages : 08	
EX (50%) + DS (20%) + OR (5%) + TP (25%)		Nombre de pages : 00		
Nom & Prénom :			Matricule :	
Signature : Code confidentiel :			Classe: No Place:	

NOTE	Répondre directement sur les feuilles de l'examen / Note	
Exer	cice 1	
1.1.	Écrire une fonction paritysort qui prend en argument une liste d'entiers lis et qui renvoie	un
	liste contenant les valeurs de lis et tel que tous les nombres pairs se trouvent à gauche	
	nombres impairs.	
	Exemple:	
	lis=[1,2,3,4,5,6,8,10]	
	print(paritysort(lis)) affiche (par exemple) [2,4,6,8,10,1,3,5].	
		,
		•••
1.2.	Modifier la fonction pour que les valeurs ayant la même parité soient triées par ordre croissant	ıt.
	Exemple:	
	lis=[5,8,4,2,3,1,10,9,7]	
	print(paritysort(lis)) affiche [2,4,8,10,1,3,5,7,9]	

1.4. Écrire une fonction circulaire qui prend en argument deux listes d'entiers lis1 et lis2 et qui renvoie
True si lis2 est une permutation circulaire de lis1, et False sinon (ou si les listes n'ont pas la même
longueur).
Exemple:
lis1=[1,2,3,4,5] 2 lis2=[3,4,5,1,2] lis3=[3,5,4,1,2]
circulaire(lis1,lis2) = True
circulaire(lis1, lis3) = False