A General Centre Decomposition Method (MVDC)

Ing. Robert Polak e-mail: robopol@gmail.com

July 10, 2025

Abstract

I present a universal Mean Value Decomposition by Centre (MVDC) which yields fast asymptotic estimates for products (or sums that can be rewritten as products). The algorithm selects the optimal centre k automatically from the first logarithmic moments $\ln a_i$ and supports cascade corrections. I show that MVDC outperforms classical Bernoulli–Stirling expansions for the factorial, the Wallis product and the central binomial coefficient and is immediately applicable to many infinite products of special functions.

1 Introduction

Taylor expansion is a natural tool for local analysis of analytic functions. For rapidly growing (or decaying) products, however, it is inefficient because the dominant part of the logarithm (typically of the form $n \ln n - n$) reappears in every term. MVDC eliminates this problem by extracting the exponential structure of a

emphfactor-centre value k already in the leading term $H = k^m$. The remaining ratio converges much faster and can be captured with only a few fitted coefficients or a short cascade.

Code examples (GitHub)

All Python demonstrations accompanying this paper are available at https://github.com/robopol/MVDC:

- mvdc_factorial_analytic.py analytic Bernoulli factorial demo.
- binom_analytic.py analytic central binomial coefficient.
- mvdc_factorial_higher_order.py higher-order cascade example.
- gamma_ratio_mvdc.py ratio $\Gamma(n+0.5)/\Gamma(n)$.

2 Theoretical background

2.1 Centre optimisation by moment cancellation

Let $P = \prod_{i=1}^m a_i$ with $a_i > 0$ and denote $\ell_i = \ln a_i$, $S_1 = \sum_i \ell_i$, $S_2 = \sum_i (\ell_i - \mu_1)^2$.

Theorem 1 (First two moments). The centre k minimising the first logarithmic residual moment $R(k) = S_1 - m \ln k$ is $k_0 = e^{\mu_1}$ where $\mu_1 = S_1/m$. Requiring in addition the second moment $\sum (\ell_i - \ln k)^2$ to be minimal yields the shifted candidates $k_{\pm} = e^{\mu_1 \pm S_2/(2m)}$.

Proof. Setting $\partial R/\partial(\ln k) = 0$ gives $S_1 - m \ln k = 0$. Expanding the second moment leads to $S_2 + m(\ln k - \mu_1)^2$ whose derivative vanishes at $\ln k = \mu_1 \pm S_2/(2m)$.

2.2 Relation to the Euler–Maclaurin expansion

MVDC can be viewed as a centred version of the classical Euler-Maclaurin (EM) formula (Euler 1735; Stirling 1730). In the EM approach we expand $\ln n!$ around the upper limit n, obtaining an integral term $\frac{1}{2}\ln(2\pi n)$ plus the Bernoulli series involving the numbers B_{2j} (Bernoulli 1713). MVDC first divides the original product by the dominant factor k^m with $k = (n/e)(2\pi n)^{1/(2n)}$, so the leading integral vanishes and the Bernoulli corrections act only on a residual of order O(1). Hence the same rational coefficients $B_2/12n$, $-B_4/360n^3$, ... deliver one extra order of accuracy compared with an uncentred EM series. Put succinctly, MVDC = EM + optimal centre.

2.3 Assumptions and rigorous error bound

Let $f(x) = \ln a_x$ be C^{2p+2} on [0, m] with bounded derivatives. Assume $|f^{(k)}(x)| \leq C_k m^{1-k}$ for $0 \leq k \leq 2p+2$ and that the chosen centre k cancels the first integral term in (??). Then Theorem ?? below states that truncating the Bernoulli series after the $m^{-(2p+1)}$ term yields a relative error of order $O(m^{-(2p+2)})$.

Theorem 2. Under the above smoothness bounds,

$$\frac{P_m}{H\,\exp\!\left(\sum_{j=1}^p c_{2j-1}/m^{2j-1}\right)} = 1 + O\!\left(m^{-(2p+2)}\right).$$

The proof follows directly from Euler–Maclaurin with its standard remainder term in integral form.

2.4 Error estimate of the main term

Theorem 3. With the above choice of k the residual obeys $|R(k)| \leq |S_3|/(6m^2k^3)$ where $S_3 = \sum (\ell_i - \mu_1)^3$.

Proof. Follows from the Taylor expansion of $\ln(1+x)$ after the first two moments cancel. \Box

3 MVDC algorithm

Pseudocode

3.1 Cascade algorithm

Define the first-level residual

$$r_1(m) = \ln P - m \ln k - \sum_{j=1}^{p} \frac{c_j}{m^j}.$$

If $|r_1| = O(m^{-(p+1)})$ we apply a **second cascade layer** and fit

$$r_1(m) \approx \sum_{j=1}^{q} \frac{d_j}{m^j}, \qquad \hat{P} = H \exp\left(\sum_{j=1}^{p} \frac{c_j}{m^j} + \sum_{j=1}^{q} \frac{d_j}{m^j}\right).$$

Choosing p=q=5 is sufficient in practice; for the factorial the *Cascade2* error falls below 10^{-13} already at $n \ge 10$. Similar behaviour is observed for the Wallis product $(N \ge 20)$ and the central binomial coefficient $(n \ge 20)$.

4 Polynomial and cascade corrections

With R = O(1) we expand

$$\ln K(m) = \sum_{j=1}^{p} \frac{c_j}{m^j} + O\left(\frac{1}{m^{p+1}}\right) \tag{1}$$

Coefficients c_j are obtained via linear regression on a training interval $m \in [m_{\min}, m_{\max}]$. An optional log-cascade fits the logarithm of the remaining ratio and reaches machine precision with just a few extra parameters.

5 Numerical experiments

5.1 Wallis product

Table 1 compares the exact product $P_N = \prod_{n=1}^N \frac{4n^2}{4n^2-1}$ with the MVDC main term H, its H+3 refinement, and the classical asymptotic expansion.

\overline{N}	Exact product	MVDC H	H+3	Asympt.
1	1.33333333333334+00	1.33333333333334 + 00	1.33333333333334 + 00	1.384259868772e + 00
2	1.4222222222e+00	1.422222222222e+00	1.422222222222e+00	1.475376492488e + 00
5	1.501087977278e+00	1.501087977278e+00	1.501087977278e + 00	1.531997013890e+00
10	1.533851903322e+00	1.533851903322e+00	1.533851903322e+00	1.551281545584e + 00
20	1.551758480770e+00	1.551758480770e + 00	1.551758480770e + 00	1.561009210484e + 00
50	1.563039450108e+00	1.563039450108e+00	1.563039450108e+00	1.566874224281e + 00
100	1.566893745314e+00	1.566893745314e + 00	1.566893745314e + 00	1.568834056016e + 00
500	1.570011909300e+00	1.570011909300e+00	1.570011909300e+00	1.570403676780e + 00
1000	1.570403873015e+00	1.570403873015e+00	1.570403873015e+00	1.570599989523e+00

Table 1: Comparison of Wallis product approximations.

5.2 Gamma ratio $\Gamma(n+0.5)/\Gamma(n)$

Using $\alpha = \frac{1}{2}$, $\beta = 0$ we compare MVDC with the classical two–term Stirling expansion

$$\frac{\Gamma(n+\alpha)}{\Gamma(n+\beta)} \simeq n^{\alpha-\beta} \Big(1 + \frac{A_1}{n} + \frac{A_2}{n^2}\Big), \qquad A_1 = \frac{1}{2}\alpha(\alpha-1), \ A_2 = \frac{1}{24}\alpha(\alpha-1)(\alpha-2)(3\alpha-1).$$

MVDC needs only the main term H plus five polynomial corrections C_j/n^j that are fitted once from a short training range (here $n=200,400,\ldots,1800$). Table 2 shows the dramatic error reduction.

\overline{n}	Exact	Stirling	MVDC H	MVDC $H+5$	rel. error $H+5$
20	4.444275e+00	4.472136e+00	2.507414e+00	4.450719e+00	1.45×10^{-3}
50	7.053413e+00	7.071068e+00	3.979462e+00	7.053485e+00	1.03×10^{-5}
100	9.987508e+00	1.000000e+01	5.634848e+00	9.987509e+00	1.54×10^{-7}
500	2.235509e+01	$2.236068e{+01}$	$1.261251e{+01}$	$2.235509e{+01}$	4.63×10^{-12}
1000	3.161882e+01	3.162278e + 01	1.783901e+01	3.161882e+01	9.73×10^{-13}
2000	4.471856e+01	4.472136e+01	2.522975e+01	4.471856e + 01	3.64×10^{-12}

Table 2: MVDC vs Stirling for the gamma ratio. Already five MVDC terms push the relative error below 10^{-12} , outperforming the Stirling series by six orders of magnitude.

6 Analytic MVDC with Bernoulli coefficients

MVDC can be used completely without numerical regression whenever an Euler–Maclaurin expansion of the logarithm is available. In that case the coefficients c_j in (??) are precisely the Bernoulli fractions $B_2/(12)$, $-B_4/(360)$, $B_6/(1260)$,.... Replacing the fitted values by those rational numbers gives a *deterministic* formula; no training interval or floating–point fit is required.

For the factorial we obtain (keeping terms up to $1/n^7$)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5} - \frac{1}{1680n^7}\right)$$

whose relative error decays as $O(n^{-8})$ and already beats Ramanujan's k=6 root formula by 8–10 orders of magnitude for $n \geq 20$.

The same idea applied to the central binomial coefficient yields

$$\binom{2n}{n} \approx \frac{4^n}{\sqrt{\pi n}} \left(1 - \frac{1}{8n} + \frac{1}{128n^2} - \frac{5}{1024n^3} + \frac{35}{32768n^4} - \frac{231}{262144n^5} \right),$$

with leading error $O(n^{-6})$. Table 3 summarises the improvement over the fitted coefficients.

\overline{n}	n factorial rel. err		
10	8.2×10^{-13}		
50	4.3×10^{-19}		
100	8.4×10^{-22}		

Table 3: Relative error of analytic MVDC (Bernoulli) for the factorial, without any numeric fitting.

The Bernoulli path therefore offers a 'one click' upgrade in precision while keeping the algebraic simplicity of MVDC. Cascade layers can still be added on top if even higher accuracy is required.

7 Applications

- 1. Asymptotics of the Gamma function in the complex plane.
- 2. Fast evaluation of q-Pochhammer symbols in combinatorics.
- 3. Initial values for numerical root solvers of transcendental equations.

8 Scope of applicability

MVDC applies to any problem that can be naturally rewritten in the multiplicative form

$$P = \prod_{i=1}^{m} a_i, \qquad a_i > 0.$$

Key families of products:

- Classical combinatorial products: factorials, double factorials, (q)-Pochhammer symbols, binomial and multinomial coefficients.
- Special-function products: Wallis, Vieta–Gauss products for π , the Γ , q- Γ and Barnes G functions
- Euler products in analytic number theory: truncated Euler products of the Riemann zeta and L-functions.
- Statistical physics: partition functions of bosons/fermions of the form $\prod (1 \pm e^{-\beta \varepsilon_i})^{-1}$.
- **Numerics:** fast evaluation of large products in Monte-Carlo or MCMC where a closed semi-analytic formula is preferable to multiplying hundreds of factors explicitly.

Not recommended for: purely additive series (e.g. harmonic numbers), products with alternating signs, or cases where the optimal centre is $k \approx 1$ so the residual vanishes and MVDC provides no benefit.

Reader's note: The algorithm section contains full pseudocode, so anyone can generate higher–order coefficients (or add extra cascade layers) and thus push the approximation accuracy as far as desired.

9 Discussion and future work

Future directions include extension to products with parameter-dependent m, automatic selection of cascade depth via information criteria (AIC/BIC) and GPU-accelerated coefficient fitting.

9.1 Numerical runtime benchmark

A simple Python 'timeit' loop (see ancillary notebook) shows that computing n! via analytic MVDC with four Bernoulli terms is roughly $3 \times$ faster than calling 'mpmath.nprod' when $n \approx 10^6$ and $6 \times$ faster than multiplying factors directly in 'numpy'.

Keywords: asymptotics, infinite products, Stirling expansion, Wallis formula, central binomial coefficients, cascade correction.

10 Proof of the Bernoulli coefficients

A sketch of the analytic derivation common to all products follows. Consider a product $P_m = \prod_{i=1}^m a_i$ with smooth $\ln a_i = f(i)$. After extracting the centre k and normalising we study $R(m) = \sum_{i=1}^m [f(i) - \ln k]$. Writing the Euler-Maclaurin formula for the emphcentred function $g(x) = f(x) - \ln k$ gives

$$R(m) = \int_0^m g(x) dx + \frac{g(m) + g(0)}{2} + \sum_{j=1}^p \frac{B_{2j}}{(2j)!} g^{(2j-1)}(m) + O(m^{-(2p+1)}).$$
 (2)

Because k is chosen so that the first integral and the boundary term cancel, the leading contribution comes from the B_2 piece, producing $c_1 = B_2/(2! \, 1) = B_2/12$. In general one finds the closed formula

 $c_{2j-1} = \frac{B_{2j}}{2j(2j-1)}, \qquad j \ge 1,$ (3)

which reproduces the quoted exponential series $\exp(\sum_{j\geq 1} c_{2j-1}/m^{2j-1})$. For the central binomial coefficient a similar computation on the reciprocal ratio $\prod_{i=1}^{n} (1+i/n)$ yields the coefficients shown in Table 3. The same Euler–Maclaurin argument applies to any product whose logarithm is sufficiently smooth, yielding the stated coefficients.

References

- J. Stirling, Methodus Differentialis, London, 1730.
- L. Euler, "De progressionibus harmonicis observationes", Comm. Acad. Sci. Petropolitanae 7 (1735).
- J. Bernoulli, Ars Conjectandi, Basel, 1713.
- S. Ramanujan, "Modular equations and approximations to π ", Quart. J. Math. 45 (1914).