অনুশীলনী - ৯.২

একনজরে প্রয়োজনীয় সূত্রাবলি

- $1. \quad x = \log_a N$ হলে, $a^x = N$ অথবা, $x = \log_a N$ হলে $a^x = N$
- 5. $\log_a b = \frac{1}{\log_b a}$ অথবা, $\log_b a = \frac{1}{\log_a b}$

 $2. \quad \log_a MN = \log_a M + \log_a N$

6. $\log_a a = 1$

3. $\log_a \frac{M}{N} = \log_a M - \log_a N$

7. $\log_a 1 = 0$

 $4. \quad \log_a M^r = r \log_a M$

ফাংশনের ডোমেন ও রেঞ্জ নির্ণয়

y=f(x) ফাংশনের (x,y) ক্রমজোড়গুলোর x এর মানকে ডোমেন এবং y এর মানকে রেঞ্জ বলে। সহজভাবে বলতে, y=f(x) ফাংশনটি

- i. x এর যে সকল বাস্তব মানের জন্য সংজ্ঞায়িত তাই ফাংশনের ডোমেন।
- ii. আর x এর সকল মানের জন্য y বা f(x) এর যে বাস্তব মান পাওয়া যায় তাই ফাংশনের রেঞ্জ। নিম্নে উদাহরণের সাহায্যে ব্যাখ্যা করা হলো:
- (a) f(x) = x ফাংশনের ক্ষেত্রে
 - i. ফাংশনটি x এর সকল বাস্তব মানের জন্য সংজ্ঞায়িত। অতএব, ফাংশনের ডোমেন = R বা $(-\infty, \infty)$
- ii. ভোমেনের (x) প্রতিটি উপাদান থেকে যে প্রতিচ্ছবি / ইমেজ পাওয়া যায় তা বাস্তব সংখ্যার সেট নির্দেশ করে । \therefore ফাংশনের রেঞ্জ $= \mathbf{R}$ (b) $f(x) = x^2$ ফাংশনের ক্ষেত্রে
 - i. ফাংশনটি x এর সকল বাস্তব মানের জন্য সংজ্ঞায়িত। অতএব, ফাংশনের ডোমেন = R বা $(-\infty, \infty)$
 - ii. x এর সকল বাস্তব মানের (ধনাত্মক, অঋণাত্মক) জন্য f(x) এর মান অঋণাত্মক সংখ্যা অর্থাৎ কখনোই শূন্য থেকে ছোট হবে না। অতএব, ফাংশনের রেঞ্জ $=\{f(x)\in R: f(x)\geq 0\}$

যেসব রাশি বা সংখ্যার বাস্তব মান পাওয়া যায় না:

- i. কোনো ঋণাত্মক সংখ্যার বর্গমূলের মান বাস্তব সংখ্যা নয়। যেমন: √−2 , √−3 , √−5 , √−9 , √−16 ইত্যাদির মান বাস্তব সংখ্যা নয়। সুতরাং বর্গমূলের ভেতরে অবস্থানকারী সংখ্যা বা রাশিকে অবশ্যই অঋণাত্মক হতে হবে।
- ii. কোনো সংখ্যা বা রাশিকে শূন্য দ্বারা ভাগ করলে বাস্তব মান পাওয়া যায় না। যেমন: $\frac{2}{0}=\infty, \frac{x}{0}=\infty, \frac{-1}{0}=\infty, \frac{2x+3}{0}=\infty$

ডোমেন ও রেঞ্জ প্রকাশে বন্ধনীর ব্যবহার

কোনো ফাংশনের ডোমেন ও রেঞ্জকে সাধারণত ব্যবধি আকারে প্রকাশ করা হয়। ব্যবধিতে প্রথম বন্ধনী '()' এবং তৃতীয় বন্ধনী '[]' কিংবা উভয়টি যুগপংভাবে ব্যবহার করা হয়। এক্ষেত্রে তৃতীয় বন্ধনী দ্বারা, অন্তর্ভুক্তি এবং প্রথম বন্ধনী দ্বারা অন্তর্ভুক্তি নয় এমন সংখ্যা নির্দেশ করে। তয় বন্ধনী: ৩য় বন্ধনী '[]' দ্বারা কোনো ব্যবধি আবদ্ধ হলে ব্যবধির সবগুলো সংখ্যাই এর অন্তর্ভুক্ত।

- যেমন: i. [0, 1] এর অর্থ হলো ব্যবধিতে 0 থেকে 1 পর্যন্ত সকল বাস্তব সংখ্যাই ব্যবধির অন্তর্ভুক্ত।
 - $ii. \quad [-1, \, 1]$ এর অর্থ হলো ব্যবধিতে -1 থেকে 1 পর্যন্ত সকল বাস্তব সংখ্যাই ব্যবধির অন্তর্ভুক্ত।

১ম বন্ধনী: ১ম বন্ধনী দ্বারা '()' কোনো ব্যবধি আবদ্ধ হলে ব্যবধির ১ম ও শেষ অর্থাৎ দুই প্রান্তের সংখ্যাটি বাদে ব্যবধির মধ্যবর্তী সকল বাস্তব সংখ্যাই এর অন্তর্ভুক্ত।

উদাহরণঃ (i) (0,1) এর অর্থ হলো ব্যবধির ১ম ও শেষ সংখ্যা অর্থাৎ 0 ও 1 ছাড়া এদের মধ্যবর্তী সকল সংখ্যাই ব্যবধির অন্তর্ভুক্ত।

(ii) (-1,1) এর অর্থ হলো ব্যবধির ১ম ও শেষ সংখ্যা অর্থাৎ -1 ও 1 ছাড়া এদের মধ্যবর্তী সকল সংখ্যাই ব্যবধির অন্তর্ভুক্ত ।

১ম ও ৩য় বন্ধনীর যুগপৎ ব্যবহার: কোনো ব্যবধিতে ১ম ও ৩য় বন্ধনী যুগপৎভাবে ব্যবহৃত হতে পারে এক্ষেত্রে মনে রাখবে -

- (i) ১ম বন্ধনী চিহ্ন দ্বারা আবদ্ধ শুধুই প্রান্তিক সংখ্যাটি ব্যবধির অন্তর্ভুক্ত নয়।
- (ii) ৩য় বন্ধনীর চিহ্ন দ্বারা আবদ্ধ প্রান্তিক সংখ্যাটি ব্যবধির অন্তর্ভুক্ত।

উদাহরণ: [0,1) ব্যবধিতে 0 অন্তর্ভুক্ত কিন্তু 1 ব্যবধির অন্তর্ভুক্ত নয়।

(0, 1] ব্যবধিতে 0 অন্তর্ভুক্ত নয় কিন্তু 1 অন্তর্ভুক্ত।

- জেনে নাও: i. অসীম নির্দেশক প্রতীক '∞' সর্বদা প্রথম বন্ধনী দ্বারা আবদ্ধ হয়, কখনোই '∞' প্রতীককে তৃতীয় বন্ধনী দ্বারা আবদ্ধ করা যাবে না। উদাহরণ: $(0,\infty), [0,\infty), (-\infty,0), (-\infty,1], (-\infty,\infty)$ ইত্যাদি।
 - ii. প্রথম বন্ধনীকে খোলা ব্যবধি এবং তৃতীয় বন্ধনীকে বন্ধ ব্যবধি বলা হয়।
 - iii. অনেক সময় খোলা ব্যবধিতে প্রথম বন্ধনীর পরিবর্তে] বা [প্রতীক ব্যবহার করা হয়।

এ ব্যাপারে বিস্তারিত বুঝার জন্য 'অনুশীলনী-৬.১' এর 'অনুশীলনীর ব্যবচ্ছেদ' দ্রষ্টব্য।

সূচকীয় ফাংশন

সংজ্ঞা: সূচক ও ভিত্তি সংবলিত রাশিকে সূচকীয় রাশি বলা হয়। সূচকীয় ফাংশনকে $f(x)=a^x$ দ্বারা সংজ্ঞায়িত করা হয় যেখানে $x\in R, a>0$ এবং $a\neq 1$ **উদহারণ:** $y=2^x,\ 10^x,\ e^x$ ইত্যাদি সূচকীয় ফাংশন।

 $y = a(b)^x$ সূচকীয় ফাংশন হবে যদি

শর্ত-1:
$$a \neq 0$$
 হয়
শর্ত-2: $b > 1$ হয়।

ডোমেন ও রেঞ্জ:

i. সূচকীয় ফাংশন $(a^x, 2^x, 10^x, e^x)$ সাধারণত x এর সকল বাস্তব মানের জন্য সংজ্ঞায়িত তাই ডোমেন = R বা $(-\infty, \infty)$

ii. x এর মান ধনাত্মক বা ঋণাত্মক যাই হোকনা কেন সর্বদা y>0 \therefore রেঞ্জ $=(0,\infty)$

সূচকীয় ফাংশনের বিপরীত ফাংশনঃ

মনেকরি,
$$y = f(x) = a^x$$

তাহলে $x = f^{-1}(y)$
আবার, $y = a^x$
বা, $x = \log_a y$
বা, $f^{-1}(y) = \log_a y$
 $\therefore f^{-1}(x) = \log_a x$

 $f(x)=a^x$ ফাংশনের বিপরীত ফাংশন হলো: $f^{-1}(x)=\log_a x$ যার ভোমেন ও রেঞ্জ যথাক্রমে মূল ফাংশনের রেঞ্জ ও ভোমেন সেট।

<u>Technique</u>: যেকোনো ফাংশনের লেখচিত্র থেকে y=x রেখঅর সাপেক্ষে তার প্রতিসম চিত্রই হলো বিপরীত ফাংশনের লেখচিত্র।

লগারিদমিক ফাংশন

সংজ্ঞা: লগারিদমিক ফাংশন $f(x) = \log_a x$ দ্বারা সংজ্ঞায়িত যেখানে $a>0, a \neq 1$ ।

উদাহরণ: $f(x) = \log_3 x$, $\ln x$, $\log_{10} x$ ইত্যাদি।

ডোমেন ও রেঞ্জ: ঋণাত্মক সংখ্যার লগারিদমের বাস্তব মান নেই অর্থাৎ লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত। তাই লগারিদমিক ফাংশনের $(\log_3 x, \ln x, \log_{10}, \log_a x)$ ডোমেন সাধারণত শূন্য থেকে বড় সকল ধনাত্মক সংখ্যা। ∴ ডোমেন = $(0, \infty)$

x এর সকল ধনাত্মক মানের জন্য লগারিদমিক ফাংশনের মান ধনাত্মক, ঋণাত্মক কিংবা শূন্যসহ যেকোনো বাস্তব সংখ্যা হতে পারে। তাই রেঞ্জ $=(-\infty,\infty)$

পরমমান ফাংশন

পরমমান (Absolute Value): যেকোনো বাস্তব সংখ্যা x এর মান শূন্য, ধনাত্মক বা ঋণত্মক কিন্তু x এর পরমমান (|x|) সমসময়ই শূন্য বা শূন্য থেকে বড় ধনাত্মক সংখ্যা।

উদাহরণ:
$$|3| = 3$$
; $|-3| = -(-3) = 3$

পরমমান ফাংশন (Absolute Value Function): যদি $x \in R$ হয়, তবে -

$$y = f(x) = |x| =$$

$$\begin{cases} x \text{ যখন } x \ge 0 \\ -x \text{ যখন } x < 0 \end{cases}$$

কে পরমমান ফাংশন বলা হয়।

ডোমেন ও রেঞ্জ:

সাধারণত x এর সকল বাস্তব মানের জন্য সংজ্ঞায়িত \therefore ডোমেন = R বা $(-\infty, \infty)$

কিন্তু পরমমান সবসময়ই শূন্য বা ধনাতাক সংখ্যা অর্থাৎ সকল $x\in R$ এর জন্য $y\geq 0$ \therefore রেঞ্জ $=[0,\infty)$

অবচেতন মনে আমরা যা ভুল করে থাকিঃ i) $\log_a(M+N) = \log_a M + \log_a N$

ii)
$$\log_a(M-N) = \log_a M - \log_a N$$

iii)
$$\log_a(MN) = \log_a M \cdot \log_a N$$

iv)
$$\log_a \left(\frac{M}{N} \right) = \frac{\log_a M}{\log_a N}$$

মনে রাখবে:

- লগারিদম ভিত্তি কখনও ঋণাত্মক হয় না। উদাহরণ: log_x 25 = 2 হলে লগারিদমের সংজ্ঞানুসারে, x² = 25 হলে x = 5 [∵ x = -5 গ্রহণযোগ্য নয়]
- শূন্য বা ঋণাত্মক সংখ্যার লগের বাস্তব মান নেই। উদাহরণ: log 0; log(−2), log (−9) ... ইত্যাদি সংখ্যার লগারিদমের বাস্তব মান নেই।
- লগারিদমের ভিত্তির উল্লেখ না থাকলে বীজগাণিতীয় রাশির ক্ষেত্রে e কে এবং সংখ্যার ক্ষেত্রে 10 কে ভিত্তি ধরা হয়। উদাহরণ: $\log x$ বলতে বুঝায় $\log_e x$ এবং $\log 25$ বলতে বুঝায় $\log_{10} 25$ ।
- ullet যেকোনো ফাংশন f(x) ও তাপর বিপরীত ফাংশন $f^{-1}(x)$ এর লেখচিত্র সর্বদাই y=x রেখার সাপেক্ষে প্রতিসম।

অনুশীলনীর সমাধান

$$\left\{\left(x^{rac{1}{a}}
ight)^{rac{a^2-b^2}{a-b}}
ight\}^{rac{a}{a+b}}$$
 এর সরল মান কোনটি?

উত্তর: (ঘ)

ব্যাখ্যা:
$$\left\{ \left(x^{\frac{1}{a}} \right)^{\frac{a^2 - b^2}{a - b}} \right\}^{\frac{a}{a + b}}$$

$$= \left(x^{\frac{1}{a}} \right)^{\frac{a^2 - b^2}{a - b}} \times \frac{a}{a + b} = \left(x^{\frac{1}{a}} \right)^{\frac{a^2 - b^2}{a^2 - b^2}} \times a = \left(x^{\frac{1}{a}} \right)^a = x$$

ই যদি a,b,p>0 এবং $a\neq 1,b\neq 1$ হয়, তবে

i. $\log_a p = \log_b p \times \log_a b$

ii. $\log_a \sqrt{a} \times \log_b \sqrt{b} \times \log_c \sqrt{c}$ এর মান 2 iii. $x^{\log_a y} = y^{\log_a x}$

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক?

(ক) i ও ii খে) ii ও iii

(গ) i ও iii (ঘ) i, ii ও iii

(ঘ) x

উত্তর: (গ)

য়াখ্যা: i. সূত্রমতে,
$$\log_a p = \log_b p \times \log_a b$$

ii. $\log_a \sqrt{a} \times \log_b \sqrt{b} \times \log_c \sqrt{c}$
 $= \log_a a^{\frac{1}{2}} \times \log_b b^{\frac{1}{2}} \times \log_c c^{\frac{1}{2}}$
 $= \frac{1}{2} \log_a a \times \frac{1}{2} \log_b b \times \frac{1}{2} \log_c c$
 $= \frac{1}{2} (1) \times \frac{1}{2} (1) \times \frac{1}{2} (1)$ [:: $\log_a x = 1$]
 $= \frac{1}{8}$

iii. ধরি, $\log_a y = m$, $\log_a x = n$ $\therefore a^m = y, a^n = x$ $(a^m)^n = y^n$ এবং $(a^n)^m = x^m$ বা, $a^{mn} = y^n$ বা, $a^{mn} = x^m$ $\therefore x^m = y^n$ $\Rightarrow x^{\log_a y} = y^{\log_a x}$ ∴ (iii) নং সঠিক।

৩ - ৫ নং প্রশ্নের উত্তর দাও যখন $x, y, z \neq 0$ এবং $a^x = b^y = c^z$

ত কোনটি সঠিক?

 $(\bar{a}) a = b^z$

 $(\forall) \ a = c^{\frac{z}{v}} \qquad (\forall) \ a = c^{\frac{z}{x}} \ (\forall) \ a \neq \frac{b^2}{c}$

উত্তরঃ (গ)

ব্যাখ্যা: দেওয়া আছে, $a^x = c^z$

 $\therefore a = c^{\frac{z}{x}}$

8 নিচের কোনটি ac এর সমান?

 $(\overline{\Phi}) b^{x} . b^{z}$

 $(\forall) b^x . b^y$

(গ) b^{x} + y

(ঘ) $b^{\frac{z}{y} + \frac{y}{z}}$

ব্যাখ্যা: দেওয়া আছে, $a^x = b^y$ $\therefore a = b^x$

আবার, $c^z = b^y : c = b^z$

তি $b^2 = ac$ হলে নিচের কোনটি সঠিক?

 $(\bar{p}) \frac{1}{r} + \frac{1}{r} = \frac{2}{r}$

 $(4) \frac{1}{x} + \frac{1}{y} = \frac{2}{z}$

 $(\mathfrak{I})\frac{1}{y} + \frac{1}{z} = \frac{2}{x}$

 $(\forall) \frac{1}{x} + \frac{1}{v} = \frac{z}{2}$

ব্যাখ্যা: দেওয়া আছে, $a^x = b^y$ বা, $a = b^x$

আবার, $c^z = b^y$: $c = b^z$

এখন, $b^2 = ac = b^x$. $b^z = b^{x+\frac{y}{z}}$

বা, $2 = \frac{y}{x} + \frac{y}{z}$

৬ দেখাও যে,

 $(\overline{\phi}) \log_k \left(\frac{a^n}{b^n}\right) + \log_k \left(\frac{b^n}{c^n}\right) + \log_k \left(\frac{c^n}{a^n}\right) = 0$

 $(\forall) \log_k(ab) \log_k\left(\frac{a}{b}\right) + \log_k(bc) \log_k\left(\frac{b}{c}\right) + \log_k(ca) \log_k\left(\frac{c}{a}\right) = 0$

 $(\mathfrak{I}) \log_{\sqrt{a}} b \times \log_{\sqrt{b}} c \times \log_{\sqrt{c}} a = 8$

 $(\overline{\mathbf{q}}) \, \log_a \log_a \left(a^{a^b} \right) = b$

 $\log_k \left(\frac{a^n}{b^n} \right) + \log_k \left(\frac{b^n}{c^n} \right) + \log_k \left(\frac{c^n}{a^n} \right) = 0$

বামপক্ষ = $\log_k \left(\frac{a^n}{b^n}\right) + \log_k \left(\frac{b^n}{c^n}\right) + \log_k \left(\frac{c^n}{a^n}\right)$ $= \log_k \left(\frac{a^n}{b^n} \cdot \frac{b^n}{c^n} \cdot \frac{c^n}{a^n} \right)$

 $= \log_k 1$

 $=\log_k k^0$

=0= ডানপক্ষ (দেখানো হলো)

(ক) এর দিতীয় পদ্ধতি

বামপক্ষ = $\log_k \left(\frac{a^n}{b^n}\right) + \log_k \left(\frac{b^n}{c^n}\right) + \log_k \left(\frac{c^n}{a^n}\right)$ $= \log_k a^n - \log_k b^n + \log_k b^n - \log_k c^n + \log_k c^n - \log_k a^n$ = 0

= ডানপক্ষ

া
$$\log_k(ab)\log_k\left(\frac{a}{b}\right) + \log_k(bc)\log_k\left(\frac{b}{c}\right) + \log_k(ca)\log_k\left(\frac{c}{a}\right) = 0$$
বামপক্ষ = $\log_k(ab)\log_k\left(\frac{a}{b}\right) + \log_k(bc)\log_k\left(\frac{b}{c}\right) +$

$$\log_k(ca)\log_k\left(\frac{c}{a}\right)$$
= $\left\{(\log_k a + \log_k b).(lob_k a - \log_k b)\right\} +$

$$\left\{(\log_k b + \log_k c).(\log_k b - \log_k c)\right\} +$$

$$\left\{(\log_k c + \log_k a).(\log_k c - \log_k a)\right\}$$
= $(\log_k a)^2 - (\log_k b)^2 + (\log_k b)^2 - (\log_k c)^2 +$

$$(\log_k c)^2 - (\log_k a)^2$$
= $0 =$ ছানপক্ষ (দেখানো হলো)

া
$$\log_{\sqrt{a}}b \times \log_{\sqrt{b}}c \times \log_{\sqrt{c}}a = 8$$
বামপক্ষ = $\log_{\sqrt{a}}b \times \log_{\sqrt{b}}c \times \log_{\sqrt{c}}a$

= $\log_{\sqrt{a}}\left(\sqrt{b}\right)^2 + \log_{\sqrt{b}}\left(\sqrt{c}\right)^2 + \log_{\sqrt{c}}\left(\sqrt{a}\right)^2$

= $2\log_{\sqrt{a}}\sqrt{b} \times 2\log_{\sqrt{b}}\sqrt{c} \times 2\log_{\sqrt{c}}\sqrt{a}$

= $8\left(\log_{\sqrt{a}}\sqrt{b} \times \log_{\sqrt{b}}\sqrt{c} \times \log_{\sqrt{c}}\sqrt{a}\right)$

= $8\left(\log_{\sqrt{a}}\sqrt{b} \times \log_{\sqrt{b}}\sqrt{a}\right)$ [$\because \log_{a}p = \log_{a}b \times \log_{a}p$]

= $8 \times \log_{\sqrt{a}}\sqrt{a}$

= $8 \times 1 = 8 = \text{wing}$ (দেখানো হলো)

া
$$\log_a \log_a \log_a \left(a^{a^b}\right) = b$$
 $\log_a \log_a \log_a \left(a^{a^b}\right)$ $\log_a a \log_a \log_a \left(a^{a^b}\right)$ $\log_a a \log_a \log_a \left(a^{a^b}\right)$ $\log_a a \left[\because \log_a p^r = r \log_a p\right]$ $(i), (ii) ও (iii) গং সমীকরণ যোগ $\log_a a^a + \log_k b^b + \log_k c^c = p$ বা, $\log_k (a^a . b^b . c^c) = 0$ বা, $\log_k (a^a . b^b . c^c) = \log_k 1$ $\therefore a^a . b^b . c^c = 1$ (দেখানো হলো)$

$$= \log_a \log_a \left(a^{a^b}\right).1$$
 [$\because \log_a a = 1$]
 $= \log_a (a^b) \log_a a$
 $= \log_a a$
 $= b.\log_a a = b.1 = b =$ ডানপক্ষ (দেখানো হলো)

ি ক) যদি $\dfrac{\log_k a}{b-c}=\dfrac{\log_k b}{c-a}=\dfrac{\log_k c}{a-b}$ হয়, তবে দেখাও যে, $a^ab^bc^c=1$

সমাধান: ধরি,
$$\frac{\log_k a}{b-c} = \frac{\log_k b}{c-a} = \frac{\log_k c}{a-b} = p$$
 $\therefore \frac{\log_k a}{b-c} = p$

বা, $\log_k a = p(b-c)$

বা, $a\log_k a = ap(b-c)$

ভিজয়পক্ষে a ঘারা গুণ করে]

বা, $\log_k a = p(ab-ac)$ (i)

আবার, $\frac{\log_k b}{c-a} = p$

বা, $\log_k b = p(c-a)$

বা, $\log_k b = p(c-a)$

বা, $\log_k b = p(bc-ab)$ (ii)

এবং $\frac{\log_k c}{a-b} = p$

বা, $\log_k c = p(a-b)$

বা, $c\log_k c = p(a-b)$

বা, $\log_k c = p(a-b)$

তা, $c\log_k c = p(a-b)$

তা, $c\log_k$

♦♦ অনুশীলনীর ৭(ক) নং প্রশ্নের আলোকে সৃজনশীল প্রশ্নোত্তর ♦♦

$$a,b,c\in R:$$
 যেখানে $a=1+3^{\frac{1}{3}}+3^{\frac{2}{3}}$ এবং $\frac{\log_k a}{b-c}=\frac{\log_k b}{c-a}=\frac{\log_k c}{a-b}$ ক. দেখাও যে, $\log_a\log_a\log_a(a^{a^a})=b$ খ. দেখাও যে, $a^3-3a^2-6a-4=0$ গ. $a^a.b^b.c^c$ এর মান নির্ণয় কর।

নিজে নিজে চেষ্ট কর। (গ) 1

ি খ) যদি
$$\frac{\log_k a}{y-z} = \frac{\log_k b}{z-x} = \frac{\log_k c}{x-y}$$
 হয়, তবে দেখাও যে,

(১) $a^{y+z}b^{z+x}c^{x+y} = 1$

(২) $a^{y^2+yz+z^2}.b^{z^2+zx+x^2}.c^{x^2+xy+y^2} = 1$

সমাধানঃ

কৈওয়া আছে,
$$\frac{\log_k a}{y-z} = \frac{\log_k b}{z-x} = \frac{\log_k c}{x-y} = m$$
 (ধরি)
$$\therefore \frac{\log_k a}{y-z} = m$$
বা, $\log_k a = m(y-z)$
বা, $(y+z)\log_k a = m(y-z)$ [উভয়পক্ষে $(y+z)$ দ্বারা গুণ করে]
$$\therefore \log_k a^{(y+z)} = m(y^2-z^2) \dots \dots \dots (i)$$
আবার, $\frac{\log_k b}{z-x} = m$
বা, $\log_k b = m(z-x)$

ধরি,
$$\frac{\log_k a}{y-z} = m$$

$$\frac{\log_k a}{y-z} = \frac{\log_k b}{z-x} = \frac{\log_k c}{x-y} = m$$
বা, $\log_k a = m(y-z)$
বা, $(y^2 + yz + z^2) \log_k a = m(y-z)(y^2 + yz + z^2)$
বা, $\log_k a^{(y^2 + yz + z^2)} = m(y^3 - z^3) \dots \dots (i)$
আবার, $\frac{\log_k b}{z-x} = m$
বা, $\log_k b = m(z-x)$
বা, $(z^2 + zx + x^2) \log_k b = m(z-x) (z^2 + zx + x^2)$
বা, $\log_k b^{(z^2 + zx + x^2)} = m(z^3 - x^3) \dots \dots (ii)$

এবং,
$$\frac{\log_k c}{x-y} = m$$
বা, $\log_k c = m(x-y)$
বা, $(x^2 + xy + y^2) \log_k c = m(x-y) (x^2 + xy + y^2)$
 $\therefore \log_k c^{(x^2 + xy + y^2)} = m(x^3 - y^3) \dots \dots \dots (iii)$
(i), (ii) ও (iii) নং সমীকরণ যোগ করে পাই,
$$\log_k a^{y^2 + yz + z^2} + \log_k b^{z^2 + zx + x^2} + \log_k c^{x^2 + xy + y^2} = m(y^3 - z^3 + z^3 - x^3 + x^3 - y^3)$$
বা, $\log_k (a^{y^2 + yz + z^2}, b^{z^2 + zx + x^2}, c^{x^2 + xy + y^2}) = 0$
 $\therefore a^{y^2 + yz + z^2}, b^{z^2 + zx + x^2}, c^{x^2 + xy + y^2} = k^0 = 1$ (দেখানো হলো)

♦♦ অনুশীলনীর ৭(খ)নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

$$\frac{\log_k p}{y-z} = \frac{\log_k q}{z-x} = \frac{\log_k r}{x-y}$$
ক. প্রমাণ কর যে, $pqr = 1$
খ. p^{y+z} . q^{z+x} . $r^{x+y} = 1$
গ. $p^{y^2+yz+z^2}$. $q^{z^2+zx+x^2}$. $r^{x^2+xy+y^2} = 1$

নিজে নিজে চেষ্ট কর।

ি (গ) যদি
$$\frac{\log_k(1+x)}{\log_k x}=2$$
 হয়, তবে দেখাও যে, $x=\frac{1+\sqrt{5}}{2}$

সমাধান:দেওয়া আছে,
$$\frac{\log_k(1+x)}{\log_k x} = 2$$
বা, $\log_k(1+x) = 2\log_k x$
বা, $\log_k(1+x) = \log_k x^2$
বা, $1+x=x^2$
বা, $x^2-x-1=0$
বা, $x=\frac{-(-1)\pm\sqrt{(-1)^2-4.(-1).1}}{2}$
বা, $x=\frac{1\pm\sqrt{1+4}}{2}$
বা, $x=\frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$
যেহেতু $\frac{1-\sqrt{5}}{2} < 0$ তাই $x=\frac{1-\sqrt{5}}{2} < 0$ গ্রহণযোগ্য নয়, কার্যা x গ্রে প্রাধ্যায়ক মানের জন্ম নিয়ম গ্রে কোনো বাজর মান কৌ x

কারণ x এর ঋণাত্মক মানের জন্য $\log x$ এর কোনো বাস্তব মান নেই।

$$\therefore x = \frac{1 + \sqrt{5}}{2}$$
 (দেখানো হলো)

ি (ঘ) দেখাও যে,
$$\log_k \frac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}=2\log_k \left(x-\sqrt{x^2-1}\right)$$

সমাধান: বামপক্ষ =
$$\log_k \frac{x - \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}$$

$$= \log_k \frac{\left(x - \sqrt{x^2 - 1}\right)\left(x - \sqrt{x^2 - 1}\right)}{\left(x + \sqrt{x^2 - 1}\right)\left(x - \sqrt{x^2 - 1}\right)}$$
[লব ও হরকে $(x - \sqrt{x^2 - 1})$ দ্বারা গুণ করে]

$$= \log_k \frac{\left(x - \sqrt{x^2 - 1}\right)^2}{\left(x\right)^2 - \left(\sqrt{x^2 - 1}\right)^2}$$
 $= \log_k \frac{\left(x - \sqrt{x^2 - 1}\right)^2}{x^2 - x^2 + 1}$
 $= \log_k \left(x - \sqrt{x^2 - 1}\right)^2$
 $= 2\log_k \left(x - \sqrt{x^2 - 1}\right) =$ ডানপক্ষ (দেখানো হলো)

ি (ঙ) যদি
$$a^{3-x}$$
 $b^{5x}=a^{5+x}$ b^{3x} হয়, তবে দেখাও যে, $x\log_k\left(\frac{b}{a}\right)=\log_k a$

সমাধান: দেওয়া আছে,
$$a^{3-x}b^{5x} = a^{5+x}b^{3x}$$
বা, $\frac{b^{5x}}{b^{3x}} = \frac{a^{5+x}}{a^{3-x}}$
বা, $b^{5x-3x} = a^{5+x-3+x}$
বা, $b^{2x} = a^{2+2x}$
বা, $b^{2x} = a^2 \cdot a^{2x}$
বা, $\frac{b^{2x}}{a^{2x}} = a^2$
বা, $\left(\frac{b}{a}\right)^{2x} = (a)^2$
বা, $\log_k\left(\frac{b}{a}\right)^{2x} = \log_k(a)^2$ [উভয়পক্ষে \log_k নিয়ে]
বা, $2x\log_k\left(\frac{b}{a}\right) = \log_k a$ (দেখানো হলো)

\P (চ) যদি $xy^{a-1}=p, xy^{b-1}=q, xy^{c-1}=r$ হয়, তবে দেখাও যে, $(b-c)\log_k p+(c-a)\log_k q+(a-b)\log_k r=0$

সমাধান:দেওয়া আছে, $xy^{a-1}=p$, $xy^{b-1}=q$, $xy^{c-1}=r$ বামপক্ষ $=(b-c)\log_k p+(c-a)\log_k q+(a-b)\log_k r$ $=\log_k p^{b-c}+\log_k q^{c-a}+\log_k r^{a-b}$ $=\log_k (xy^{a-1})^{b-c}+\log_k (xy^{b-1})^{c-a}+\log_k (xy^{c-1})^{a-b}$ [p,q ও r এর মান বসিয়ে] $=\log_k x^{b-c}+\log_k y^{ab-ac-b+c}+\log_k x^{c-a}+\log_k y^{bc-ab-c+a}+\log_k x^{a-b}+\log_k y^{ac-bc-a+b}$ $=(\log_k x^{b-c}+\log_k x^{c-a}+\log_k x^{a-b})+(\log_k y^{ab-ac-b+c}+\log_k y^{bc-ab-c+a}+\log_k y^{bc-ab-c+a}+\log_k y^{ac-bc-a+b})$ $=\log_k (x^{b-c}, x^{c-a}, x^{a-b})+\log_k (y^{ab-ac-b+c}, y^{bc-ab-ca-c+a}, y^{ac-bc-ab+b})$ $=\log_k (x^{b-c}, x^{c-a}, x^{a-b})+\log_k (y^{ab-ac-b+c}, y^{bc-ab-ca-c+a}, y^{ac-bc-ab+b})$ $=\log_k (x^{b-c+c-a+a-b})+\log_k (y^{ab-ac-b+c+bc-ab-c+a+ac-bc-a+b})$ $=\log_k x^0+\log_k y^0$ $=\log_k 1+\log_k 1$ =0+0=0

$begin{align*} begin{align*} b$

$$p = xy^{a-1}, q = xy^{b-1}, r = xy^{c-1}$$
ক. $a^b = b^a$ হলে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{a}{b}} = a^{\frac{a}{b}-1}$

খ. প্রমাণ কর যে, $(b+a)\log\frac{p}{q}+(c+b)\log\frac{q}{r}+(a+c)\log\frac{r}{p}=0$

গ. $(b-c)\log p + (c-a)\log q + (a-b)\log r$ এর মান নির্ণয় কর।

নিজে নিজে চেষ্ট কর। (\mathfrak{I}) 0

্ৰি (ছ) যদি $\frac{ab \log_k(ab)}{a+b} = \frac{bc \log_k(bc)}{b+c} = \frac{ca \log_k(ca)}{c+a}$ হয়, তবে দেখাও যে, $a^a = b^b = c^c$

সমাধান: ধরি,
$$\frac{ab \log_k(ab)}{a+b} = \frac{bc \log_k(bc)}{b+c} = \frac{ca \log_k(ca)}{c+a} = m$$
তাহলে, $ab \log_k(ab) = m(a+b)$
বা, $\log_k(ab) = \frac{m(a+b)}{ab}$
বা, $\log_k(ab) = m\left(\frac{1}{a} + \frac{1}{b}\right) \dots \dots \dots (i)$
অনুরূপভাবে, $\log_k(bc) = m\left(\frac{1}{b} + \frac{1}{c}\right) \dots \dots \dots (ii)$
 $\log_k(ca) = m\left(\frac{1}{c} + \frac{1}{a}\right) \dots \dots \dots (iii)$
(i), (ii) ও (iii) নং যোগ করে পাই, $\log_k ab + \log_k bc + \log_k ca = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{c} + \frac{1}{c} + \frac{1}{a}\right)$
বা, $\log_k(ab.bc.ca) = 2m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
বা, $\log_k(abc)^2 = 2m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 $\therefore \log_k(abc) = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 $\therefore \log_k(abc) = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 $\therefore \log_k(abc) = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 $\log_k(abc) = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 $\log_k(abc) - \log_k(abc) = m\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - m\left(\frac{1}{a} + \frac{1}{b}\right)$
বা, $\log_k\left(\frac{abc}{ab}\right) = m\left(\frac{1}{c}\right)$

বা,
$$\log_k c = \frac{m}{c}$$
বা, $c \log_k c = m$
বা, $\log_k c^c = m \dots \dots (v)$
(iv) নং থেকে (ii) নং বিয়োগ করে পাই,
$$\log_k (abc) - \log_k (bc) = m \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - m \left(\frac{1}{b} + \frac{1}{c}\right)$$
বা, $\log_k \left(\frac{abc}{bc}\right) = m \cdot \frac{1}{a}$
বা, $\log_k a = \frac{m}{a}$
বা, $\log_k a = m$
বা, $\log_k a = m$
বা, $\log_k a = m \dots (vi)$
আবার, (iv) নং থেকে (iii) নং বিয়োগ করে পাই,
$$\log_k (abc) - \log_k (ca) = m \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - m \left(\frac{1}{c} + \frac{1}{a}\right)$$
বা, $\log_k \left(\frac{abc}{ca}\right) = m \cdot \frac{1}{b}$
বা, $\log_k b = m$

$$\therefore \log_k b = m$$

$$\therefore \log_k b = m \dots (vii)$$
(v), (vi) ও (vii) নং সমীকরণ তুলনা করে পাই,
$$\log_k c^c = \log_k a^a = \log b^b$$

$$\therefore a^a = b^b = c^c \quad (দেখানো হলো)$$

ৰি জে যদি
$$\frac{x(y+z-x)}{\log_k x} = \frac{y(z+x-y)}{\log_k y} = \frac{z(x+y-z)}{\log_k z}$$
 হয়, তবে দেখাও যে, x^y $y^x = y^z$ $z^y = z^x$ x^z

(iv), (v) ও (vi) নং সমীকরণ তুলনা করে পাই, $x^{\nu}.y^{x}=y^{z}.z^{\nu}=z^{x}.x^{z}$ (দেখানো হলো)

চ্চ লেখচিত্র অঙ্কন করঃ

(
$$\overline{\Phi}$$
) $y = 3^x$ ($\overline{\Psi}$) $y = -3^x$ ($\underline{\Psi}$) $y = 3^{-x+1}$

$$(\mathfrak{I}) y = 3^{x+1}$$
$$(\mathfrak{I}) y = 3^{x-1}$$

সমাধান:

ক প্রদত্ত ফাংশন: $y=3^x$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

x	-2	- 1	0	1	2
$y = 3^{x}$	0.11	0.33	1	3	9

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। x-অক্ষ বরবার ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের তিন বাহুর দৈর্ঘ্যকে একক ধরে (-2, 0.11), (-1, 0.33), (0, 1), (1, 3), (2, 9) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

♦♦ অনুশীলনীর ৮(ক)নং প্রশ্নের আলোকে সৃজনশীল প্রশ্নোত্তর ♦♦

দেওয়া আছে, y = 3^x

- क. প্রদত্ত ফাংশনটির ডোমেন ও রেঞ্জ নির্ণয় কর।
- थ. ফाংশনটির লেখচিত্র অঙ্কন কর।
- গ. ফাংশনটির বিপরীত ফাংশন নির্ণয় কর এবং তা এক-এক কিনা নির্ধারণ কর।

নিজে নিজে চেষ্ট কর।

খ প্রদত্ত ফাংশন: $y = -3^x$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	– 1	0	1	2
$y=-3^x$	- 0.33	- 1	- 3	-9

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। x-অক্ষ বরবার ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের তিন বাহুর দৈর্ঘ্যকে একক ধরে (-1,-0.33), (0,-1), (1,-3), (2,-9) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

গ প্রদত্ত ফাংশন: $v = 3^{x+1}$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	- 2	- 1	0	1	2
$y = 3^{x+1}$	0.33	1	3	9	27

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। x-অক্ষ বরবার ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে (-2,0.33),(-1,1),(0,3),(1,9),(2,27) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

য প্রদত্ত ফাংশন: $y = -3^{x+1}$

প্রদন্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	-2	- 1	0	1	2
$y = -3^{x+1}$	-0.33	- 1	- 3	-9	-27

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। x-অক্ষ বরবার ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে (-2, -0.33), (-1, -1), (0, -3), (1, -9), (2, -27) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

ঙ প্রদত্ত ফাংশন: $v = 3^{-x+1}$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

x	- 2	- 1	0	1	2
$y = 3^{-x+1}$	27	9	3	1	0.33

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি । x-অক্ষ বরাবর ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে (-2, 27), (-1, 9), (0, 3), (1, 1), (2, 0.33) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি ।

চ প্রদত্ত ফাংশন: $y = 3^{x-1}$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	- 1	0	1	2
$y=3^x$	0.11	0.33	1	3

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। ছক কাগজের উভয় অক্ষের ক্ষুদ্রতম বর্গের নয় বাহুর দৈর্ঘ্যকে একক ধরে (-1,0.11),(0,33),(1,1),(2,3) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

িচা নিচের ফাংশনের বিপরীত ফাংশন লিখ এবং লেখচিত্র অঙ্কন করে ডোমেন ও রেঞ্জ নির্ণয় কর। $(\overline{\Phi}) y = 1 - 2^x$ $(\mathfrak{I}) y = x^2, x > 0$ $(\forall) \ y = \log_{10} x$

সমাধানঃ

🖸 বিপরীত ফাংশন নির্ণয়:

ধরি,
$$y = f(x) = 1 - 2^x$$
তাহলে, $y = f(x)$
 $\therefore x = f^{-1}(y)$
আবার, $y = 1 - 2^x$
বা, $2^x = 1 - y$
বা, $x = \log_2(1 - y)$
বা, $f^{-1}(y) = \log_2(1 - y)$
 $\therefore f^{-1}(x) = \log_2(1 - x)$

 \therefore প্রদত্ত ফাংশনের বিপরীত ফাংশন হলো: $f^{-1}(x) = \log_2(1-x)$ লেখচিত্র অঙ্কনঃ

প্রদত্ত ফাংশন, $y = 1 - 2^x$

লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G 1 110 CH -11	46 14 91 D A	, 41() 4.	1 11 106 114	911 1 11 69	14 114
Y (0, 0) X (2, -3)	\boldsymbol{x}	-2	- 1	0	1	2
(-1, 0.5) $(-2, 0.75)$ $(0, 0)$ $(1, -1)$ $(2, -3)$	у	0.75	0.5	0	- 1	- 3
	X	(-2, 0.75	(0, 0)) (1, -1) (1, -1) (1, -1)	(2, -3)	

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। ছক কাগজের ক্ষুদ্রতম বর্গের চার বাহুর দৈর্ঘ্যকে একক ধরে (-2, 0.75), (-1, 0.5), (0, 0), (1, -1) (2, -3) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশটির লেখচিত্র অঙ্কন করি।

ডোমেন ও রেঞ্জ নির্ণয়:

প্রদত্ত ফাংশনটি χ সকল বাস্তব মানের জন্য সংজ্ঞায়িত।

$$\therefore$$
 ডোমেন, $D_f=(-\infty,\infty)$ লেখচিত্র থেকে দেখা যায় যে, যখন $x=0, y=1-2^0=1-1=0$ যখন $x\to -\infty$ তখন $y\to 1$ যখন $x\to \infty$ তখন $y\to -\infty$ \therefore 1 থেকে ছোট সকল বাস্তব সংখ্যাই y এর মান।

🖂 লক্ষণীয়: পাঠ্যবইয়ের উত্তরে ভুল রয়েছে।

বিপরীত ফাংশন নির্ণয়:

রেঞ্জ, $R_f = (-\infty, 1)$

প্রদত্ত ফাংশন, $y = \log_{10} x$

$$\therefore x = 10^{y}$$

প্রদত্ত ফাংশনের বিপরীত ফাংশন $x=10^y$

লেখচিত্র অঙ্কন:

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	0.5	1	2	3	4	5	10
y	-0.3	0	0.3	0.5	0.6	0.7	1

মনেকরি, ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ এবং O মূলবিন্দু। ছক কাগজের x-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর দশ বাহুর দৈর্ঘ্যকে একক ধরে (0.5, -0.3), (1, 0), (2, 0.3), (3, 0.5),(4, 0.6), (5, 0.7), (10, 1) বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীল ভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

ডোমেন ও রেঞ্জ নির্ণয়: যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয় এবং শূন্যতে অসংজ্ঞায়িত।

∴ ডোমেন,
$$D_f=(0,\infty)$$

আবার, লেখচিত্র হতে দেখা যায়,
যখন, $x\to 0$ তখন $y\to -\infty$
যখন $x\to \infty$ তখন $y\to \infty$
∴ রেঞ্জ $R_f=(-\infty,+\infty)$

বিপরীত ফাংশন নির্ণয়:

প্রদান্ত ফাংশন,
$$y=x^2$$
, $x>0$
ধরি, $y=f(x)=x^2$
তাহলে, $y=f(x)$
 $\therefore x=f^{-1}(y)$
আবার, $x^2=y$

আবার,
$$x=y$$
 বা, $x=\sqrt{y}$; $[x>0$ হওয়ায় x এর ঋণাত্মক মান গ্রহণযোগ্য নয়] বা, $f^{-1}(y)=\sqrt{y}$

$$\therefore f^{-1}(x) = \sqrt{x} ; x > 0$$

লেখচিত্র অঙ্কন: প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং vএর মান গুলোর তালিকা তৈরি করি:

মনেকরি, ছক কাগজের XOX' বরাবর y-অক্ষে এবং O মূলবিন্দু। ছক কাগজে x-অক্ষ বরাবর ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে $(1,\ 1),\ (2,\ 4),\ (3,\ 9)\ (4,\ 16)$ বিন্দুগুলো স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি ।

ডোমেন ও রেঞ্জ নির্ণয়:

যেহেতু $y=x^2,\,x>0$ সেহেতু 0 ব্যতীত সকল বাস্তব মানের জন্য ফাংশনটি সংজ্ঞায়িত।

$$\therefore$$
 ডোমেন $D_f = (0, \infty)$

আবার, x>0 এর জন্য y এর মান 0 থেকে বড় সকল বাস্তব সংখ্যা। রেঞ্জ $R_f = (0, \infty)$

$f(x) = \ln(x-2)$ ফাংশনটির ডোমেন D_f এবং রেঞ্জ R_f নির্ণয় কর।

সমাধান: আমরা জানি, লগারিদম শুধু ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত।

$$\therefore f(x) = \ln (x-2)$$
 এর মান বাস্তব হবে যদি

$$x-2>0$$
 বা, $x>2$ হয়।

$$\therefore$$
 ডোমেন $D_f = (2, \infty)$

আবার ধরি,
$$y = f(x) = \ln(x-2)$$

বা,
$$e^{v} = x - 2$$

বা,
$$x - 2 = e^{y}$$

বা,
$$x = e^{v} + 2$$

বা, y এর সকল বাস্তব মানের জন্য e^{y} বাস্তব, ফলে $x = e^{y} + 2$ বাস্তব।

Ans: $D_f = (2, \infty), R_f = R$

$f(x) = \ln rac{1-x}{1+x}$ ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর।

<u>সমাধান</u>: ডোমেন নির্ণয়: প্রদত্ত ফাংশন $f(x) = \ln \frac{1-x}{1+x}$

যেহেতু লগারিদম শুধু ধনাত্মক বাস্তুব মানের জন্য সংজ্ঞায়িত হয়,

তাই
$$\ln \frac{1-x}{1+x}$$
 এর মান সংজ্ঞায়িত হবে যদি $\frac{1-x}{1+x} > 0$ হয়।

এখন,
$$\frac{1-x}{1+x} > 0$$

বা,
$$\frac{x-1}{x+1}$$
 < 0 [উভয়পক্ষে -1 দ্বারা ভাগ করে]

এখন, $\frac{x-1}{x+1} < 0$ হবে যদি এবং কেবল যদি (x-1) ও (x+1) এর একটি ধনাত্মক ও অপরটি ঋণাত্মক হয়।

লক্ষ করি:

	x+1 এর চিহ্ন	x-1 এর চিহ্ন
x < - 1 হলে	_	1
-1 < x < 1 হলে	+	-
x > 1 হলে	+	+

দেখা যাচেছ, -1 < x < 1 হলে (x+1) ধনাত্মক ও (x-1) ঋণাত্মক হয়। \therefore ডোমেন = $\{x : x \in R; -1 < x < 1\}$

=(-1, 1)

ডোমেন নির্ণয় বিকল্প পদ্ধতিঃ

যেহেতু লগারিদম শুধু ধনাত্মক বাস্তুব মানের জন্য সংজ্ঞায়িত হয়,

তাই
$$\ln \frac{1-x}{1+x}$$
 এর মান সংজ্ঞায়িত হবে যদি $\frac{1-x}{1+x} > 0$ হয়।

এখন, $\frac{1-x}{1+x}>0$ হবে যদি (1-x) ও (1+x) উভয়ই ধনাত্মক অথবা উভয়ই ঋণাত্মক হয়।

লক্ষ করি:

	1 − <i>x</i> এর চিহ্ন	1 + x এর চিহ্ন
x < -1 হলে	+	_
-1 < x < 1 হলে	+	+
<i>x</i> > 1 হলে	-	+

যেহেতু -1 < x < 1 হলে, (1 - x) ও (1 + x) উভয়ই ধনাত্মক হয়, ∴ ডোমেন = $\{x : x \in R; -1 < x < 1\} = (-1, 1)$

রেঞ্জ নির্ণয়:
$$y = \ln \frac{1-x}{1+x}$$

বা,
$$e^{y} = \frac{1-x}{1+x}$$

বা,
$$1 - x = e^{y} + xe$$

বা,
$$1 - x = e^{y} + xe^{y}$$

বা, $xe^{y} + e^{y} = 1 - x$

$$a = 1 - e^{v}$$

বা,
$$xe^{y} + x = 1 - e^{y}$$

বা, $x(e^{y} + 1) = 1 - e^{y}$
বা, $x = \frac{1 - e^{y}}{1 + e^{y}}$

y এর সকল বাস্তব মানের জন্য x এর মান বাস্তব হয়।

 \therefore প্রদত্ত ফাংশনের রেঞ্জ, $R_f = R$

Ans: $D_f = (-1, 1)$ এবং $R_f = R$

📣 বি.দ্র: অঙ্কটির সমাধান ভালোভাবে বোঝার জন্য পাঠ্যবই-২১৫ পৃষ্ঠার কাজের সমাধান অংশ দেখে নাও।

<u>১২</u> ডোমেন এবং রেঞ্জ উল্লেখসহ লেখচিত্র অঙ্কন কর।

(ক)
$$f(x) = |x|$$
, যখন $-5 \le x \le 5$

(খ)
$$f(x) = x + |x|$$
, যখন $-2 \le x \le 2$

(গ)
$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{যখন } x \neq 0 \\ 0, & \text{যখন } x = 0 \end{cases}$$

সমাধানঃ

তামেন ও রেঞ্জ নির্ণয়ः

দেওয়া আছে, f(x) = |x|, যখন $-5 \le x \le 5$

x এর প্রদত্ত সীমার মধ্যে f(x) এর সর্বদা বাস্তব মান পাওয়া যায়।

$$D_{f} = -5 \le x \le 5 = [-5, 5]$$

∴
$$D_f = -5 \le x \le 5 = [-5, 5]$$

আবার, $x = -5$ এর জন্য $f(-5) = |-5| = 5$

$$x = 0$$
 এর জন্য $f(0) = |0| = 0$

$$x = 5$$
 এর জন্য $f(5) = |5| = 5$

যেহেতু $-5 \le x \le 5$ ব্যবধিতে

$$f(x)$$
 এর মান হবে $0 \le f(x) \le 5 = [0, 5]$

∴ রেঞ্জ
$$R_f$$
= [0, 5]

লেখচিত্র অঙ্কন:

ধরি,
$$y = f(x) = |x|$$

-5 থেকে 5এর মধ্যে x এর কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর মান নিম্নের ছকে দেখানো হলো:

• 1							
x	- 5	- 3	- 1	0	1	3	5
ν	5	3	1	0	1	3	5

এখন ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 2 বর্গঘর =1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 2 বর্গঘর = 1 একক ধরে (x, y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে যুক্ত করে y=f(x) এর লেখচিত্র পাওয়া যায়।

যা নিম্নে দেখানো হলো:

এখানে $-2 \le x \le 2$ সীমার মধ্যে x এর প্রতিটি বাস্তব মানের জন্য f(x) এর প্রতিচ্ছবি রয়েছে।

 \therefore ফাংশনের ডোমেন, $D_f = [-2, 2]$

যখন
$$x = -2$$
 তখন $f(-2) = -2 + |-2| = -2 + 2 = 0$

যখন $\chi = 0$ তখন f(0) = 0 + |0| = 0

যখন
$$x = 2$$
 তখন $f(2) = 2 + |2| = 2 + 2 = 4$

 \therefore [-2, 2] ব্যবধিতে f(x) এর মান [0, 4] ব্যবধিতে বিস্তৃত। সুতরাং ফাংশনের রেঞ্জ, $R_f = [0, 4]$

লেখচিত্র অঙ্কন:

প্রদত্ত ফাংশন f(x) = x + |x| যখন $-2 \le x \le 2$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য χ এবং γ এর মানগুলো তালিকা তৈরি করি:

I	x	-2	- 1	0	1	2
	y	0	0	0	2	4

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর v-অক্ষ এবং O মূলবিন্দু। ছক কাগজের ক্ষুদ্রতম বর্গের তিন বাহুর দৈর্ঘ্যকে একক ধরে, (-2, 0), (-1, 0), (0, 0), (1, 2) ও (2, 4) বিন্দুগুলো ছক কাগজে স্থাপন করে ফাংশনটির লেখচিত্র অঙ্কন করি।

গ প্ৰদত্ত ফাংশন
$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

এখানে x এর প্রতিটি বাস্তব মানের জন্য f(x) এর প্রতিচ্ছবি রয়েছে বলে ফাংশনের ডোমেন হলো বাস্তব সংখ্যার সেট R

$$\therefore$$
 ডোমেন $D_f = R$

যখন
$$x = 0$$
 তখন $f(x) = 0$

যখন
$$x > 0$$
 তখন $f(x) = \frac{x}{x} = 1$

যখন
$$x < 0$$
 তখন $f(x) = \frac{-x}{x} = -1$

সুতরাং ফাংশনের রেঞ্জ হলো, $R_f = \{-1,0,1\}$

লেখচিত্র অঙ্কন:

ধরি,
$$y = f(x) = \begin{cases} \frac{|x|}{x}, & \text{যখন } x \neq 0 \\ 0, & \text{যখন } x = 0 \end{cases}$$

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

х	- 3	- 1	0	1	3
у	- 1	- 1	0	1	1

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ এবং O মূলবিন্দু। ছক কাগজের ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক ধরে বিন্দুগুলো ছক কাগজে স্থাপন করে ফাংশনটির লেখচিত্র অঙ্কন করি।

্বা বি.দ্র: x=0 বিন্দুতে ফাংশনটি বিচ্ছিন্ন।

্রিত দেওয়া আছে,
$$2^{2x}.2^{y-1}=64...(i)$$
 এবং $6^x.\frac{6^{y-2}}{3}=72...(ii)$

- ক. (i) ও (ii) কে x ও y চলকবিশিষ্ট সরল সমীকরণে পরিণত কর।
- খ. সমীকরণদ্বয় সমাধান করে শুদ্ধতা যাচাই কর।
- গ. $x \cdot g \cdot y$ মান যদি কোন চতুর্ভুজের সন্নিহিত বাহুর দৈর্ঘ্য হয় (যেখানে বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 90°) তবে চতুর্ভুজটি আয়ত না বর্গ উল্লেখ কর এবং এর ক্ষেত্রফল ও কর্ণের দৈর্ঘ্য নির্ণয় কর।

সমাধানঃ

ক দেওয়া আছে,
$$2^{2x}.2^{y-1} = 64 \dots (i)$$

$$6^x \cdot \frac{6^{y-2}}{3} = 72 \dots \dots (ii)$$

(i) নং হতে পাই.
$$2^{2x+y-1}=2^6$$

বা,
$$2x + y - 1 = 6$$

$$\therefore 2x + y = 7 \dots \dots (iii)$$

(ii) নং হতে পাই,
$$6^x \cdot \frac{6^{y-2}}{3} = 72$$

বা,
$$6^{x+y-2} = 3 \times 72 = 216$$

বা, $6^{x+y-2} = 6^3$

$$41, 6^{x+y-2} = 6^3$$

বা,
$$x + y - 2 = 3$$

$$\therefore x + y = 5 \dots \dots \text{ (iv)}$$

.. x ও y চকলবিশিষ্ট সরল সমীকরণদ্বয় **হলো**:

$$2x + y = 7$$
 এবং $x + y = 5$

খ 'ক' হতে পাই, $2x + y = 7 \dots (i)$

$$x + y = 5 \dots \dots (ii)$$

(i) হতে (ii) নং বিয়োগ করে পাই,

$$2x + y - (x + y) = 7 - 5$$

$$\therefore x = 2$$

x এর মান (i) নং এ বসিয়ে পাই

$$\therefore (i) \Rightarrow 2.2 + y - 7 = 0$$
$$\Rightarrow y = 7 - 4 = 3$$

∴ নির্ণেয় সমাধান, (x, y) = (2, 3)

শুদ্ধি পরীক্ষাঃ

x = 2, y = 3 এর জন্য,

উদ্দীপকে (i) নং সমীকরণের

বামপক্ষ =
$$2^{2.2}.2^{3-1}$$

= $2^4.2^2 = 16.4 = 64$ = ডানপক্ষ

উদ্দীপকে (ii) নং সমীকরণের বামপক্ষ =
$$6^x \cdot \frac{6^{y-2}}{3} = 6^2 \cdot \frac{6^{3-2}}{3} = 36 \cdot \frac{6}{3} = 72 = ভানপক্ষ : (x, y) = (2, 3) এব জন্ম সমীকরণের শুদ্ধতা যাচাই করা হা$$

(x,y) = (2,3) এর জন্য সমীকরণদ্বয়ের শুদ্ধতা যাচাই করা হলো।

গ প্রশ্নমতে, ABCD চতুর্ভুজের দুটি

সন্নিহিত বাহু,
$$AB = y = 3$$

$$AD = y = 3$$
$$AD = x = 2$$

যেহেতু চতুর্ভুজটির সন্নিহিত বাহদ্বয় সমান নয় $(AB \neq AD)$ এবং বাহুদ্বয়ের অন্তর্ভুক্ত কোণ $\angle BAD = 90^\circ$

সুতরাং ABCD একটি চতুর্ভুজটি একটি আয়ত।

$$\therefore$$
 ক্ষেত্রফল = $(AB \times AD)$ বর্গএকক

$$=(3\times2)$$
 বৰ্গ একক $=6$ বৰ্গএকক (Ans.)

∴ কর্ণের দৈর্ঘ্য =
$$\sqrt{AB^2 + BC^2}$$
 একক = $\sqrt{3^2 + 2^2}$ একক

$$=\sqrt{9+4}$$
 একক $=\sqrt{13}$ একক (Ans.)

<u>১৪</u> দেওয়া আছে, $y=2^x$

ক. প্রদত্ত ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর।

- খ. ফাংশনটির লেখচিত্র অঙ্কন কর এবং এর বৈশিষ্ট্যগুলি লিখ।
- গ. ফাংশনটির বিপরীত ফাংশন নির্ণয় করে এটি এক-এক কিনা তা নির্ধারণ কর এবং বিপরীত ফাংশনটির লেখচিত্র আঁক।

সমাধানঃ

ক দেওয়া আছে, $v=2^x$

এখানে, χ এর সকল বাস্তব মানের জন্য ফাংশনটির বাস্তব মান পাওয়া যায়।

 \therefore প্রদত্ত ফাংশনের ডোমেন = $(-\infty, \infty)$

আবার, x এর সকল বাস্তব মানের জন্য f(x) > 0

 \therefore ফাংশনের রেঞ্জ $= (0, \infty)$

 $v=2^x$ সমীকরণের x এর কয়েকটি মানের জন্য v এর সংশ্লিষ্ট মানগুলোর তালিকা তৈরি করি:

x	- 2	- 1	0	1	2
$y=2^x$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4

ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। উভয় অক্ষের ক্ষুদ্রতম 4 বর্গঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে যুক্ত করে y = f(x) এর লেখচিত্র পাওয়া যায়।

বৈশিষ্ট্য:

i. লেখচিত্র y অক্ষকে একটিমাত্র বিন্দুতে ছেদ করে।

 $ii. \; x$ এর সকল বাস্তব মানের জন্য y>0 হওয়ার ফাংশনের লেখচিত্র কখনো χ অক্ষকে স্পর্শ বা ছেদ করে না।

iii. ফাংশনের লেখের বিস্তৃতি χ অক্ষের ধনাত্মক দিকে অবস্থিত।

iv. y অক্ষের ডানদিকে ফাংশনের লেখ অসীম বিস্তৃত।

v. ফাংশনের লেখচিত্র কোনো অক্ষের সাপেক্ষে প্রতিসম নয়।

গ বিপরীত ফাংশন নির্ণয়:

ধরি,
$$y = f(x) = 2^x$$

তাহলে
$$x = f^{-1}(y)$$

আবার,
$$y=2^x$$

বা,
$$x = \log_2 y$$

বা,
$$f^{-1}(y) = \log_2 y$$

$$\therefore f^{-1}(x) = \log_2 x$$

∴প্রদত্ত ফাংশনের বিপরীত ফাংশন, $f^{-1}(x) = \log_2 x$

এক-এক কি-না নির্ধারণ:

ধরি, $x_1 \in R$ এবং $x_2 \in R$

তাহলে, $f^{-1}(x)$ এক-এক হবে যদি এবং কেবল যদি

$$f^{-1}(x_1) = f^{-1}(x_2)$$
 হয়।

এখন,
$$f^{-1}(x_1) = f^{-1}(x_2)$$

বা,
$$\log_2 x_1 = \log_2 x_2$$

$$\therefore x_1 = x_2$$

∴ বিপরীত ফাংশনটি এক-এক।

লেখচিত্ৰ অঙ্কন (১ম পদ্ধতি):

 $y = \log_2 x$ ফাংশনটির লেখচিত্র অঙ্কন করেত হবে।

 $y = \log_2 x$ সমীকরণের x এর কয়েকটি মানের জন্য y এর সংশ্লিষ্ট মানগুলোর তালিকা তৈরি করি:

x	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4
У	-2	- 1	0	1	2

ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। উভয় অক্ষের ক্ষুদ্রতম 4 বর্গঘর = 1 একক ধরে (x, y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে যুক্ত করে y=f(x) এর লেখচিত্র পাওয়া যায়।

লেখচিত্ৰ অঙ্কন (২য় পদ্ধতি):

যেহেতু $y=\log_2 x$ হলো $y=2^x$ এর বিপরীত ফাংশন। তাই y=x রেখার সাপেক্ষে $y=2^x$ ফাংশনের লেখের প্রতিসম চিত্রই হবে $y=\log_2 x$ লেখ। নিম্নে চিত্রের মাধ্যমে তা দেখানো হলো:

্রেজেনে রাখা ভালো: f(x) ও $f^{-1}(x)$ এর লেখচিত্র সর্বদাই y=x রেখার সাপেক্ষে প্রতিসম। প্রতিসমতা বোঝার জন্য সাধারণ গণিতের অধ্যায়-১৪ ভালোভাবে পড়ে নাও।

তিটো
$$f(x) = 3^{2x+2}$$
 এবং $g(x) = 27^{x+1}$
ক. $f(x)$ এর ডোমেন নির্ণয় কর।
খ. $f(x) + g(x) = 36$ হলে, x এর মান নির্ণয় কর।

গ. $q(x)=rac{g(x)}{f(x)}$ হলে, q(x) এর লেখচিত্র অঙ্কন করে লেখচিত্র থেকে ডোমেন এবং রেঞ্জ নির্ণয় কর।

<u>সমাধান</u>:

দেওয়া আছে, $f(x) = 3^{2x+2}$ x এর যেকোনো বাস্তব মানের জন্য f(x) সংজ্ঞায়িত \therefore প্রদত্ত ফাংশনের ডোমেন, $D_f = R$

0 [যা বাস্তব নয় বলে গ্রহণযোগ্য নয়]

তাহলে, y = 1বা, $3^x = 1$ বা, $3^x = 3^0$ $\therefore x = 0$

গ দেওয়া আছে, $q(x)=\dfrac{g(x)}{f(x)}$ $=\dfrac{27^{x+1}}{3^{2x+2}}$ $=\dfrac{3}{3^{2x+2}}=3^{3x+3-2x-2}=3^{x+1}$

 $\therefore q(x) = 3^{x+1}$ এর লেখচিত্র নিম্নে অঙ্কন করা হলো:

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা তৈরি করি:

$y = 3^{x+1}$ 0.33 1 3 9 27	7
(2, 27) (1, 9) (-1, 1) (0, 3). (-2, 0.33) O	

ছক কাগজের XOX' বরাবর x-অক্ষ এবং YOY' বরাবর y-অক্ষ আঁকি। x-অক্ষ বরবার ক্ষুদ্রতম বর্গের পাঁচ বাহুর দৈর্ঘ্যকে একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে $(-2,0.33),\ (-1,1),\ (0,3),\ (1,9),\ (2,27)$ বিন্দুগুলো ছক কাগজে স্থাপন করি এবং সাবলীলভাবে যোগ করে ফাংশনটির লেখচিত্র অঙ্কন করি।

লেখচিত্র হতে ডোমেন ও রেঞ্জ নির্ণয়:

লেখচিত্র হতে দেখা যায় x এর মান ধনাত্মক ও ঋণাত্মক উভয়দিকে অসীমে বিস্তৃত।

 \therefore ফাংশনের ডোমেন = $(-\infty, \infty)$

আবার, q(x), এর লেখচিত্র সম্পূর্ণরূপে x অক্ষের অর্ধ-উপরিতলে অবস্থিত অর্থাৎ q(x) এর মান সর্বদাই শূন্য থেকে বড় যেকোনো ধনাত্মক বাস্তব।

 \therefore প্রদত্ত ফাংশনের রেঞ্জ $=(0,\infty)$

পাঠ্যবইয়ের কাজের সমাধান

কাজ

>পাঠ্যবই পৃষ্ঠা-২১১

ক) যদি $\dfrac{\log a}{b-c}=\dfrac{\log b}{c-a}=\dfrac{\log c}{a-b}$ তাহলে $a^a.b^b.c^c$ এর মান নির্ণয় কর।

সমাধান: ধরি,
$$\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = m$$

$$\therefore \log a = m (b - c)$$

বা,
$$a \log a = ma (b-c)$$
; [উভয় পক্ষকে a দারা গুণ করে]

$$\therefore \log a^a = ma (b-c) \dots \dots \dots (i)$$

এখন,
$$\log b = m(c-a)$$

বা,
$$b \log b = mb(c-a)$$
; [উভয় পক্ষকে b দ্বারা গুণ করে]

$$\therefore \log b^b = mb(c-a) \dots \dots \dots (ii)$$

এবং
$$\log c = m(a-b)$$

বা,
$$c \log c = mc(a-b)$$
; [উভয় পক্ষকে c দ্বারা গুণ করে]

$$\therefore \log c^c = mc (a - b) \dots \dots (iii)$$

$$\log a^a + \log b^b + \log c^c = m(ab - ac + bc - ab + ac - bc)$$

বা,
$$\log(a^a b^b c^c) = 0$$

$$\therefore a^a b^b c^c = 1$$
 (Ans.)

খ) যদি a, b, c পরপর তিনটি ধনাত্মক অখণ্ড সংখ্যা হয়, তবে প্রমাণ কর যে, $\log(1 + ac) = 2 \log b$

সমাধান: a,b,c পরপর তিনটি ধনাত্মক অখণ্ড সংখ্যা

ধরি,
$$a < b < c$$

∴
$$a = b - 1$$
 এবং $c = b + 1$

$$\therefore \frac{a}{b-1} = \frac{b+1}{c}; \quad \left[\therefore \frac{a}{b-1} = \frac{a}{a} = \frac{b+1}{c} = \frac{c}{c} = 1 \right]$$

বা,
$$ac = (b+1)(b-1)$$

বা,
$$ac = b^2 - 1$$

বা,
$$ac + 1 = b^2$$

বা,
$$\log(ac+1) = \log b^2$$
 [উভয় পাশে \log নিয়ে]

$$\therefore \log(ac+1) = 2 \log b$$
 (প্রমাণিত)

গ) যদি
$$a^2 + b^2 = 7ab$$
 হয়, তবে দেখাও যে,
$$\log\left(\frac{a+b}{3}\right) = \frac{1}{2}\log(ab) = \frac{1}{2}(\log a + \log b)$$

সমাধান: দেওয়া আছে,
$$a^2 + b^2 = 7ab$$

বা,
$$a^2 + b^2 + 2ab = 7ab + 2ab$$
 [উভয়পক্ষে $2ab$ যোগ করে]

বা,
$$(a+b)^2 = 9ab$$

বা,
$$\frac{(a+b)^2}{9} = ab$$

বা,
$$\left(\frac{a+b}{2}\right)^2 = ab$$

$$\exists t, \log \left(\frac{a+b}{3} \right)^2 = \log(ab) = (\log a + \log b)$$

ৰা,
$$2\log\left(\frac{a+b}{3}\right) = \log(ab)$$

$$\therefore \log\left(\frac{a+b}{3}\right) = \frac{1}{2}\log(ab) = \frac{1}{2}(\log a + \log b)$$

$$[\because \log{(M \times N)} = \log{M} + \log{N}]$$

$$\therefore \log\left(\frac{a+b}{3}\right) = \frac{1}{2}\log(ab) = \frac{1}{2}\left(\log{a} + \log{b}\right)$$
 (দেখানো হলো)

ঘ) যদি
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
 তবে দেখাও যে, $\frac{x}{y} + \frac{y}{x} = 7$

সমাধান: দেওয়া আছে,
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2} (\log x + \log y)$$

বা,
$$2\log\left(\frac{x+y}{3}\right) = \log x + \log y$$

বা,
$$\log\left(\frac{x+y}{3}\right)^2 = \log(xy)$$

বা,
$$\left(\frac{x+y}{3}\right)^2 = xy$$

$$4x + \frac{(x+y)^2}{2} = xy$$

बा,
$$x^2 + y^2 + 2xy = 9xy$$

बा, $x^2 + y^2 = 9xy - 2xy$
बा, $x^2 + y^2 = 7xy$

বা,
$$x^2 + y^2 = 9xy - 2x$$

$$41, x^2 + y^2 = 7xy$$

বা,
$$\frac{x + y}{x} = 7$$

at
$$\frac{x^2}{x^2} + \frac{y^2}{y^2} = 7$$

$$at, \frac{x}{xy} + \frac{y}{xy} = 7$$

$$\therefore \frac{x}{v} + \frac{y}{x} = 7 \quad \text{(children)}$$

♦♦ পাঠ্যবই পৃষ্ঠ-২০৫ অনুশীলনমূলক কাজ (গ ও ঘ) নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

$$p=1+log_a(bc),\ q=1+log_b(ca),\ r=1+log_c(ab)$$
 এবং $x^2+y^2=7xy$. ক. p^{-1} এর মান নির্ণয় কর।

খ. দেখাও যে,
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$$

গ. প্রমাণ কর যে,
$$log\left(\frac{x+y}{3}\right) = \frac{1}{2}(log \ x + log \ y)$$

নিজে নিজে চেষ্ট কর। $(\overline{\Phi}) \log_{abc} a$

ঙ) যদি
$$x=1+\log_a(bc), y=1+\log_b(ca)$$
 এবং $z=1+\log_c(ab)$ হয়, তবে প্রমাণ কর যে, $xyz=xy+yz+zx$

সমাধান: দেওয়া আছে,
$$x = 1 + \log_a(bc)$$

বা,
$$x = \log_a a + \log_a (bc)$$

বা,
$$x = \log_a(abc)$$

বা,
$$a^x = abc$$

বা,
$$a = (abc)^{\frac{1}{x}}$$
 (i)

অনুরূপভাবে দেখানো যায়,
$$b=\left(abc\right)^{\frac{1}{y}}...$$
 ... (ii)

এবং,
$$c = (abc)^{\frac{1}{z}} \dots \dots \dots (iii)$$

বা, 2p = 2

 $\therefore x = 1$ (Ans.)

(i) × (ii) × (iii) করে পাই,
$$abc = (abc)^{x} . (abc)^{y} . (abc)^{\frac{1}{z}}$$
বা, $(abc)^{1} = (abc)^{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$
বা, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$
বা, $\frac{yz + zx + xy}{xyz} = 1$
 $\therefore xyz = xy + yz + zx$ (প্রমাণিত)

- চ) (১) যদি $2\log_8(A) = p$, $2\log_2(2A) = q$ এবং q-p=4 হয়, তবে A এর মান নির্ণয় কর।
 - (২) যদি $\log x^y = 6$ এবং $\log 14x^{8y} = 3$ হয়, তবে x এর মান নির্ণয় কর।

সমাধান:

বা,
$$\log_8 A = p$$
বা, $\log_8 A^2 = p$
বা, $A^2 = 8^p$ [$\log_a N = x$ হলে $a^x = N$ হয়]
$$\therefore A^2 = 2^{3p} \dots \dots \dots (i)$$
আবার, $2\log_2 2A = q$
বা, $\log_2 (2A)^2 = q$
বা, $(2A)^2 = 2^q$
বা, $A^2 = \frac{2^q}{2^2}$

$$\therefore A^2 = 2^{q-2} \dots \dots (ii)$$
এবং $q-p=4$

$$\therefore q=4+p\dots \dots (iii)$$
(i) ও (ii) নং হতে পাই,
$$2^{3p} = 2^{q-2}$$
বা, $3p=q-2$
বা, $3p=q-2$

কাজ

ক) নি	চর ছকে ব	বৰ্ণিত সূচৰ	ক ফাংশন	লেখ:									
(2)	x	-2	- 1	0	1	2	(২)	x	- 1	0	1	2	3
	у	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4		У	- 3	0	3	6	9
(७)	х	1	2	3	4	5	(8)	х	-3	-2	-1	0	1
	y	4	16	64	256	1024		y	0	1	2	3	4
(4)	х	-2	- 1	0	1	2	(৬)	х	1	2	3	4	5
	у	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25		у	5	10	15	20	25

<u>সমাধান</u>:

١ د	x	-2	- 1	0	1	
	у	$\frac{1}{4} = 2^{-2}$	$\frac{1}{2} = 2^{-1}$	$1 = 2^0$	$2 = 2^{1}$	

টেবিল-১ এ বর্ণিত (x, y) ক্রমজোড়ের মানগুলো $y = 2^x$ দ্বারা বর্ণনা করা যায়।

२ ।	х	- 1	0	1	2	3
	у	$-3 = 3 \times -1$	$0 = 3 \times 0$	3=3×1	$6 = 3 \times 2$	$9 = 3 \times 3$

টেবিল-২ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো y=3x দ্বারা বর্ণনা করা যায়।

9	х	1	2	3	4	5
	у	$4 = 4^{1}$	$16=4^2$	$64 = 4^3$	256=4 ⁴	1024=45

>পাঠ্যবই পৃষ্ঠা-২১২

টেবিল-৩ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো $y=4^x$ দ্বারা বর্ণনা করা যায়।

8	х	- 3	-2	- 1	0	1
	У	=-3+3	1=-2+3	2 = -1 + 3	3 = 0 + 3	4 = 1 + 3

টেবিল–৪ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো y=x+3 দ্বারা বর্ণনা করা যায়।

& I	х	-2	- 1	0	1	2
	У	$\frac{1}{25} = 5^{-2}$	$\frac{1}{5} = 5^{-1}$	$1 = 5^0$	5 ¹	$25 = 5^2$

টেবিল-৫ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো $y=5^x$ দ্বারা বর্ণনা করা যায়।

৬।	х	1	2	3	4	5
	У	$5 = 5^{1}$	$10 = 5 \times 2$	$15 = 5 \times 3$	$20 = 5 \times 4$	$25 = 5 \times 5$

টেবিল-৬ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো y=5x দ্বারা বর্ণনা করা যায়, যেখানে x বাস্তব সংখ্যা।

এখন, সূচক ফাংশনের সংজ্ঞা হতে আমরা জানি, সূচক ফাংশন হলো $f(x) = a^x$ আকারের ফাংশন যা সকল বাস্তব সংখ্যা x এর জন্য সংজ্ঞায়িত, যেখানে a>0 এবং $a\neq 1$ ।

তাহলে আমরা বলতে পারি, টেবিল-১, টেবিল-৩ ও টেবিল-৫ এর ক্রমজোড়গুলো যথাক্রমে সূচক ফাংশন $y=2^x, y=4^x$ ও $y=5^x$ দ্বারা সংজ্ঞায়িত।

(3)
$$y = -3^x$$

(8) $y = 5 - x$

$$(x) y = 3x$$

(a)
$$y = -2x - 3$$

(a)
$$y = x^2 + 1$$

$$(\mathfrak{b}) y = 3x^2$$

সমাধান

 $y=a^x$ সূচক ফাংশন হবে যদি a>0 এবং $a\neq 1$ হয়। উল্লেখ্য যে, সূচক ফাংশনে চলক ঘাতরূপে বিদ্যমান থাকবে।

১। $y=-3^x$ হলো সূচক ফাংশন। কারণ এটি সূচক ফাংশনের সকল শর্ত পূরণ করে।

জনে রাখা ভালো: (i) $y = (-3)^x$; (ii) $y = 1^x$; (iii) $y = (-1)^x$; (iv) $y = 0^x$ কোনোটিই সূচক ফাংশন নয়।

বিস্তারিত: অনুশীলনীর ব্যবচ্ছেদ দ্রষ্টব্য।

- ২। y=3x ফাংশনটি সূচকীয় ফাংশন নয়, কারণ এতে চলক ঘাতরূপে বিদ্যমান নেই।
- ৩। y=-2x-3 ফাংশনটি সূচকীয় ফাংশন নয়, কারণ এতে চলক ঘাতরূপে বিদ্যমান নেই।
- 8। y=5-x ফাংশনটি সূচকীয় ফাংশন নয়, কারণ এতে চলক ঘাতরূপে বিদ্যমান নেই।
- **৫**। $y=x^2+1$ ফাংশনটি সূচকীয় ফাংশন নয়, কারণ এতে চলক ঘাতরূপে বিদ্যমান নেই।
- **৬**। $y=3x^2$ ফাংশনটি সূচকীয় ফাংশন নয়, কারণ এতে চলক ঘাতরূপে বিদ্যমান নেই।
 - \therefore প্রদত্ত ফাংশগুলোর মধ্যে $y=-3^x$ একমাত্র সূচক ফাংশন।

কাজ

>পাঠ্যবই পৃষ্ঠা-২১৩

লেখচিত্র অঙ্কন কর, যেখানে – 3 ≤ x ≤ 3.

ক)
$$y = 2^{-x}$$
 খ) $y = 4^{x}$ গ) $y = 2^{\frac{x}{2}}$ ঘ) $y = \left(\frac{3}{2}\right)^{x}$

সমাধানঃ

$$y = 2^{-x}$$

ধরি,
$$y = f(x) = 2^{-x}$$

x এর -3 থেকে 3 এর মধ্যে কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর মান নিচের ছকে দেখানো হলো:

х	- 3	-2	-1	0	1	2	3
у	8	4	2	1	0.5	0.25	0.125

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x অক্ষের ক্ষুদ্রতম বর্গের প্রতি 5 বাহুর দৈর্ঘ্যকে 1 একক এবং y অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি 2 বাহুর দৈর্ঘ্যকে 1 একক ধরে $(x,\ y)$ বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়। যা নিম্নে দেখানো হলো-

 $y = 4^x$

ধরি,
$$y = f(x) = 4^x$$

প্রদত্ত ফাংশন f(x) এর লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

Ī	х	- 3	-0.5	0	0.5	1	2	3
ſ	у	0.0156	0.5	1	2	4	16	64

'ক' এর প্রাপ্ত বিন্দুগুলো ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরারব ক্ষুদ্রতম বর্গের প্রতি 5 বাহুর দৈর্ঘ্যকে 1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি 1 বাহুর দৈর্ঘ্যকে 1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়। যা নিয়ে দেখানো হলো-

$$y = 2^{\frac{x}{2}}$$

ধরি,
$$y = f(x) = 2^{\frac{x}{2}}$$

x এর -3 থেকে 3 এর মধ্যে কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর মান নিয়ের ছকে দেখানো হলো-

x	- 3	-2	-1	0	1	2	3
y	0.35	0.5	0.70	1	1.41	2	2.82

'ক' এর প্রাপ্ত বিন্দুগুলো ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x ও y অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি 5 বাহুর দৈর্ঘ্যকে 1 একক ধরে $(x,\ y)$ বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

$y = \left(\frac{3}{2}\right)^x$

ধরি,
$$y = f(x) = \left(\frac{3}{2}\right)^x$$

-3 থেকে 3 এর মধ্যে x এর কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর নিমের ছকে দেখানো হলো-

X	- 3	-2	- 1	0	1	2	3
y	0.29	0.44	0.66	1	1.5	2.25	3.375

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁক। x ও y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি 5 বাহুর দৈর্ঘ্যকে 1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়। যা নিমে দেখানো হলো-

কাজ

>পাঠ্যবই পৃষ্ঠা-২১৪

নিচের ফাংশনগুলোর লেখচিত্র অঙ্কন কর এবং এদের বিপরীত ফাংশন নির্ণয় কর।

$$\overline{\Phi}$$
) $y = 3x + 2$

$$\forall y = x^2 + 3, x \ge 0 \quad \forall y = x^3 - 1$$

$$\forall y = \frac{4}{x}$$

ঙ)
$$y = 3x$$

$$\overline{b}) y = \frac{2x+1}{x-1}$$

ছ)
$$v = 2^{-x}$$

জ)
$$y=4^x$$

সমাধান:

y = 3x + 2

ধরি,
$$y = f(x) = 3x + 2$$

f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

x	- 3	-2	- 1	0	1	2
у	-7	-4	- 1	2	5	8

ছক কাগজে মানগুলো স্থাপন করলে নিমুরূপ লেখচিত্র পাওয়া যায়-

বিপরীত ফাংশন নির্ণয়:

মনেকরি,
$$y = f(x) = 3x + 2$$

তাহলে,
$$y = f(x)$$

$$\therefore x = f^{-1}(y) \dots \dots (i)$$

এবং
$$y = 3x + 2$$

বা,
$$y = 3x + 2$$

বা,
$$y - 2 = 3x$$

বা,
$$x = \frac{y-2}{3}$$

বা,
$$f^{-1}(y) = \frac{y-2}{3}$$
 [(i) নং হতে x এর মান বসিয়ে]

$$\therefore f^{-1}(x) = \frac{x-2}{3}$$

সমাধান (দ্বিতীয় পদ্ধতি)

বিপরীত ফাংশন নির্ণয়:

ধরি,
$$f(x) = 3x + 2$$

$$x$$
 এর পরিবর্তে $f^{-1}(x)$ বসিয়ে পাই,

$$f(f^{-1}(x)) = 3 \cdot f^{-1}(x) + 2$$

$$41, x = 3.f^{-1}(x) + 2$$

বা,
$$3.f^{-1}(x) = x - 2$$

$$\therefore f^{-1}(x) = \frac{x-2}{3}$$

বি.দ্র: বিপরীত ফাংশন নির্ণয়ে একাধিক পদ্ধতি অনুশীলনী-১.২ এর অঙ্কে প্রয়োগ করা হয়েছে। এটি আবার ভালোভাবে দেখে নাও।

$y = x^2 + 3$; $x \ge 0$ ধরি, $y = f(x) = x^2 + 3$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

х	0	1	2	3
у	3	4	7	12

ছক কাগজে মানগুলো স্থাপন করলে নিমুরূপ লেখচিত্র পাওয়া যায়-

বিপরীত ফাংশন নির্ণয়:

$$y = f(x) = x^2 + 3$$
; $x \ge 0$

এখন,
$$y = x^2 + 3$$

বা,
$$x^2 = y - 3$$

বিপরীত ফাংশন $f^{-1}: y \to x$ যেখানে $x = \sqrt{y-3}$

বা,
$$f^1: y \to \sqrt{y-3}$$

y এর স্থলে x স্থাপন করে পাই,

$$\therefore f^{-1}: x \to \sqrt{x-3}$$

$$\therefore f^{-1}(x) = \sqrt{x-3}$$
সমাধান (দ্বিতীয় পদ্ধতি)

মনেকরি, $y = f(x) = x^2 + 3$

তাহলে,
$$y = f(x)$$

$$\therefore x = f^{-1}(y) \dots \dots (i)$$

আবার,
$$y = x^2 + 3$$

বা,
$$y = x^2 + 3$$

বা,
$$x^2 = y - 3$$

বা,
$$f^{-1}(y) = \sqrt{y-3}$$
 [(i) নং হতে x এর মান বসিয়ে]
$$\therefore f^{-1}(x) = \sqrt{x-3}$$

$$y = x^3 - 1$$

ধরি,
$$y = f(x) = x^3 - 1$$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

х	- 3	-2	- 1	0	1	2	3
y	-28	-9	-2	- 1	0	7	26

ছক কাগজে মানগুলো স্থাপন করলে নিম্নরূপ লেখচিত্র পাওয়া যায়-

বিপরীত ফাংশন নির্ণয়:

মনেকরি,
$$y = f(x) = x^3 - 1$$

তাহলে,
$$y = f(x)$$

বা,
$$x = f^{-1}(y)$$
(i)
আবার, $y = x^3 - 1$
বা, $x^3 = y + 1$

বা,
$$x^3 = y + 1$$

বা,
$$x = (y+1)^{\frac{1}{3}}$$

বা,
$$x = (y+1)^{\frac{1}{3}}$$

বা, $f^{-1}(y) = (y+1)^{\frac{1}{3}}$ [(i) নং হতে x এর মান বসিয়ে]
 $\therefore f^{-1}(x) = (x+1)^{\frac{1}{3}}$

$$f^{-1}(x) = (x+1)^{\frac{1}{3}}$$

সমাধান (দ্বিতীয় পদ্ধতি)

ধরি,
$$f(x) = x^3 - 1$$
 x পরিবর্তে $f^{-1}(x)$ বসিয়ে পাই,
 $f(f^{-1}(x)) = f(f^{-1}(x))^3 - 1$
বা, $x = (f^{-1}(x))^3 = x + 1$

বা,
$$x = (f^{-1}(x))^3 - 1$$

বা $(f^{-1}(x))^3 = x + 1$

$$f^{-1}(x) = (x+1)^{\frac{1}{3}}$$

$$y = \frac{4}{x}$$

ধরি,
$$y = f(x) = \frac{4}{x}$$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

х	– 4	-2	- 1	-0.5	0	0.5	1	2	4
ν	-1	-2	– 4	- 8	অসংজ্ঞায়িত	- 8	4	2	1

ছ্ক কাগজে মানগুলো স্থাপন করলে নিম্নুরূপ লেখচিত্র পাওয়া যায়-প্রাপ্ত বিন্দুগুলো ছক কাগজে সুবিধামত χ -অক্ষ XOX' এবং γ -অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর = 1 একক এবং y-অক্ষ বরাবর ক্ষদ্রতম 2 বর্গ ঘর = 1 একক ধরে (x, y)বিন্দুগুলো পাতন করি। বিন্দুগুলোকে বক্ররেখায় যুক্ত করে y=f(x)এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

মনেকরি,
$$y = f(x) = \frac{4}{x}$$
তাহলে, $y = f(x)$

$$\therefore x = f^{-1}(y) \dots \dots \dots \dots (i)$$
আবার, $y = \frac{4}{x}$

$$বা, $x = \frac{4}{y}$

$$1, f^{-1}(y) = \frac{4}{y}$$

$$f^{-1}(x) = \frac{4}{x}; x \neq 0$$
সমাধান (দ্বিতীয় পদ্ধতি)$$

ধরি,
$$f(x) = \frac{4}{x}$$
 x এর পরিবর্তে $f^{-1}(x)$ বসিয়ে পাই,
$$f(f^{-1}(x)) = \frac{4}{f^{-1}(x)}$$
বা, $x = \frac{4}{f^{-1}(x)}$

$$\therefore f^{-1}(x) = \frac{4}{x}; x \neq 0$$

েজনে নাও: ফাংশনটি থেকে দেখা যায় যে, x এর মান শূন্য হলে বিপরীত ফাংশনটি অসংজ্ঞায়িত হয়। সুতরাং $x \neq 0$ অর্থাৎ বিপরীত ফাংশনটির মান কখনও শূন্য হবে না। x এর ঋণাত্মক মান শূন্যের কাছাকাছি হলে বিপরীত ফাংশনটির সর্বোচ্চ মান পাওয়া যায়। আবার x এর ঋণাত্মক মান শূন্যের বিপরীত ফাংশনটির ডোমেন = $(-\infty,0)\cup(0,\infty)$ এবং ফাংশনটি রেঞ্জ = $(-\infty,0)\cup(0,\infty)$ । ক্যাংশনটি x=0 এর জন্য অসংজ্ঞায়িত বিধায় f(x) এর লেখ কখনই y অক্ষকে বা x=0 রেখাকে কখনই স্পর্শ বা ছেদ করেনা।

ঙ
$$y = 3x$$

ধরি, $y = f(x) = 3x$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

x	- 2	- 1	0	1	2
У	- 6	- 3	0	3	6

ছক কাগজে মানগুলো স্থাপন করলে নিমুরূপ লেখচিত্র পাওয়া যায়-

বিপরীত ফাংশন নির্ণয়:

মনেকরি,
$$y = f(x) = 3x$$

তাহলে, $y = f(x)$
 $\therefore x = f^{-1}(y) \dots \dots \dots (i)$
আবার, $y = 3x$

বা,
$$x = \frac{y}{3}$$

বা,
$$f^{-1}(y) = \frac{y}{3}$$

$$\therefore f^{-1}(x) = \frac{x}{3}$$

সমাধান (দ্বিতীয় পদ্ধতি)

ধরি,
$$f(x) = 3x$$

x এর পরিবর্তে $f^{-1}(x)$ বসিয়ে পাই,

$$f(f^{-1}(x)) = 3 f^{-1}(x)$$

বা,
$$x = 3.f^{-1}(x)$$

$$\therefore f^{-1}(x) = \frac{x}{3}$$

$$y = \frac{2x+1}{x-1}$$

ধরি,
$$y = f(x) = \frac{2x+1}{x-1}$$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

ĺ	х	-2	- 1	0	0.5	1	1.5	2	3	4	5
ĺ	у	1	0.5	- 1	-4	অসংজ্ঞায়িত	8	5	3.5	3	2.75

প্রাপ্ত বিন্দুগুলো ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম y-অক্ষ বরাবর ক্ষুদ্রতমাকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

 \therefore ফাংশনটি x=1 এর জন্য অসংজ্ঞায়িত

$$\therefore$$
 ডোমেন $D = R - \{1\}$

মনেকরি,
$$y = f(x) = \frac{2x+1}{x-1}$$

তাহলে,
$$y = f(x)$$

$$\therefore x = f^{-1}(y) \dots \dots (i)$$

আবার,
$$y = \frac{2x+1}{x-1}$$

বা,
$$xy - y = 2x + 1$$

বা,
$$xy - 2x = 1 + y$$

বা,
$$x(y-2) = y+1$$

বা,
$$x = \frac{y+1}{y-2}$$

বা,
$$f^{-1}(y) = \frac{y+1}{y-2}$$

$$\therefore f^{-1}(x) = \frac{x+1}{x-2}; x \neq 2$$
সমাধান (দ্বিতীয় পদ্ধতি)

ধরি,
$$f(x) = \frac{2x+1}{x-1}$$

 x এর পরিবর্তে $f^{-1}(x)$ বসিয়ে পাই,

$$f(f^{-1}(x)) = \frac{2 \cdot f^{-1}(x) + 1}{f^{-1}(x) - 1}$$

$$\text{II}, x = \frac{2f^{-1}(x) + 1}{f^{-1}(x) - 1}$$

$$\text{II}, x(f^{-1}(x) - 1) = 2f^{-1}(x) + 1$$

$$\text{II}, x(f^{-1}(x) - 2f^{-1}(x) = 1 + x$$

$$\text{II}, f^{-1}(x)(x - 2) = x + 1$$

$$a = \frac{2f^{-1}(x) + 1}{e^{-1}(x)}$$

বা,
$$x(f^{-1}(x)-1)=2f^{-1}(x)+1$$

$$\exists f, x.f^{-1}(x) - 2f^{-1}(x) = 1 + 3$$

বা,
$$f^{-1}(x)(x-2) = x+1$$

$$f^{-1}(x) = \frac{x+1}{x-2}; x \neq 2$$

$v = 2^{-x}$ ধরি, $y = f(x) = 2^{-x}$

প্রদত্ত ফাংশন f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

		., -,,	, ,,,,,					
Ī	х	-4	- 3	-2	- 1	0	1	2
Ī	у	16	8	4	2	1	0.5	0.25

ছক কাগজে মানগুলো স্থাপন করলে নিমুরূপ লেখচিত্র পাওয়া যায়-

বিপরীত ফাংশন নির্ণয়:

মনেকরি,
$$y = f(x) = 2^{-x}$$

তাহলে,
$$f(x) = y$$

$$\therefore x = f^{-1}(y)$$
which is $x = f^{-1}(y)$

$$x - y = 0$$

আবাব $2^{-x} = 1$

বা,
$$-x = \log_2 y$$

বা, $x = -\log_2 y$

ৰা,
$$x = -\log_2 y$$

ৰা, $x = \log_2 y - 1$

$$\exists 1, x = \log_2(\frac{1}{v})$$

$$\int_{-2}^{2} (y)$$

বা,
$$f^{-1}(y) = \log_2\left(\frac{1}{y}\right)$$

$$\therefore f^{-1}(x) = \log_2\left(\frac{1}{x}\right)$$

বি.দু: f(x) = 2^{-x} এর বিপরীত ফাংশনগুলো হলো

(i)
$$f^{-1}(x) = -\log_2 x$$

$$(ii) f^{-1}(x) = \log_2\left(\frac{1}{x}\right)$$

$$(iii) f^{-1}(x) = \frac{\log x}{\log 2}$$

$$y = 4^x$$

ধরি,
$$y = f(x) = 4^x$$

প্রদত্ত ফাংশন f(x) এর লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তার্লিকা প্রস্তুত করি।

х	-0.5	0	0.5	1	2
v	0.5	1	2	4	16

ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর = 1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 1 বর্গ ঘর = 1 একক ধরে (x, y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে v = f(x) এর লেখ পাওঁয়া যায়। যা নিমে দেখানো হলো-

মনেকরি,
$$y = f(x) = 4^x$$
তাহলে $y = f(x)$

$$\therefore x = f^{-1}(y) \dots \dots \dots (i)$$
আবার, $y = 4^x$
বা, $x = \log_4 y$
বা, $f^{-1}(y) = \log_4 y$

$$\therefore f^{-1}(x) = \log_4 x$$

কাজ

নিচের ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় কর:

$$\forall y = \ln \frac{3+x}{3-x}$$

$$\forall y = \ln \frac{5+x}{5-x}$$

যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয়।

$$\therefore \frac{2+x}{2-x} > 0 \text{ হবে যদি (i) } 2+x>0 \text{ এবং } 2-x>0 \text{ হয়}$$
 অথবা, (ii) $2+x<0$ এবং $2-x<0$ হয়

(i) নং হতে পাই,
$$x>-2$$
 এবং $-x>-2$ বা, $x>-2$ এবং $x<2$

ে ডোমেন =
$$\{x: -2 < x\} \cap \{x: x < 2\}$$

= $(-2, \infty) \cap (-\infty, 2)$
= $(-2, 2)$
(ii) নং হতে পাই, $x < -2$ এবং $-x < -2$

(ii) নং হতে পাই,
$$x < -2$$
 এবং $-x < -2$
বা, $x < -2$ এবং $x > 2$

$$\therefore \text{ (bith } = \{x: x < -2\} \cap \{x: x > 2\}$$

$$= (-\infty, -2) \cap (2, \infty)$$

$$= \emptyset$$

 \therefore প্রদত্ত ফাংশনের ডোমেন $D_f{=}$ ${
m (i)}$ ও ${
m (ii)}$ এ প্রাপ্ত ডোমেনর সংযোগ $=(-2,2)\cup\emptyset=(-2,2)$

রেঞ্জ নির্ণয়:

ধরি,
$$y = f(x) = \ln \frac{2+x}{2-x}$$

বা,
$$e^v = \frac{2+x}{2-x}$$

বা
$$2 + r = 2e^{y} - re^{y}$$

at
$$x(1+e^{y}) = 2(e^{y}-1)$$

बा,
$$2 + x = 2e^{y} - xe^{y}$$

बा, $x(1 + e^{y}) = 2(e^{y} - 1)$
बा, $x = \frac{2(e^{y} - 1)}{e^{y} + 1}$

y এর সকল বাস্তব মানের জন্য x-এর মান বাস্তব হয়।

 \therefore প্রদত্ত ফাংশনের $R_f = \mathbf{R}$

Ans: ডোমেন $D_f = (-2, 2)$ এবং রেঞ্জ $R_f = \mathbf{R}$

বিকল্প পদ্ধতিতে ডোমেন নির্ণয়:

$$y = \ln \frac{2+x}{2-x}$$

 $y=\lnrac{2+x}{2-x}$ যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয়।

অতএব ফাংশনটি সংজ্ঞায়িত হবে যদি $\dfrac{2+x}{2-x}>0$ হয়

বা,
$$-\frac{2+x}{x-2} > 0$$

$$\therefore \frac{x+2}{x-2} < 0 \ [উভয়পক্ষকে - 1 দ্বারা গুণ করে]$$

এখন $\frac{x+2}{x-2}$ < 0 হবে যদি এবং কেবল যদি (x+2) ও (x-2)রাশিদ্বয়ের একটি ধনাতাক ও অপরটি ঋণাতাক হয়।

1 1 1101		
শৰ্ত	x + 2 এর চিহ্ন	<i>x</i> – 2 এর চিহ্ন
x < -2	_	_
-2 < x < 2	+	_
x > 2	+	+

 $\therefore -2 < x < 2$ শর্তে y এর বাস্তব মান পাওয়া যায়

∴ ফাংশনের ডোমেন (-2, 2)

♠ বি.দ্র: আরও বিকল্প পদ্ধতিতে ডোমেন নির্ণয়ের জন্য অনুশীলনীর ১১নং প্রশ্নের সমাধান দেখ।

$$y = \ln \frac{3+x}{3-x}$$

যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয়।

$$\therefore \frac{3+x}{3-x} > 0$$
 হবে যদি (i) $3+x > 0$ এবং $3-x > 0$ হয়

অথবা, (ii)
$$3 + x < 0$$
 এবং $3 - x < 0$ হয়

(i) নং হতে পাই,
$$x > -3$$
 এবং $-x > -3$
বা, $x > -3$ এবং $x < 3$

:. (b) The second
$$\{x: -3 < x\} \cap \{x: x < 3\}$$

= $(-3, \infty) \cap (-\infty, 3)$
= $(-3, 3)$

$$=(-3,3)$$
 (ii) নং হতে পাই, $x<-3$ এবং $-x<-3$

ৰা,
$$x < -3$$
 এবং $x > 3$
 \therefore ডোমেন = $\{x : x < -3\} \cap \{x : x > 3\}$
= $(-3, \infty) \cap (3, \infty)$

 \therefore প্রদত্ত ফাংশনের ডোমেন D_f = (i) ও (ii) এ প্রাপ্ত ডোমেনর সংযোগ $= (-3,3) \cup \emptyset = (-3,3)$

রেঞ্জ নির্ণয়:

ধরি,
$$y = f(x) = \ln \frac{3+x}{3-x}$$

বা,
$$e^{y} = \frac{3+x}{3-x}$$

$$3 + x = 3e^y - xe^y$$

at
$$x(1 + e^y) = 3(e^y - 1)$$

ৰা,
$$3 + x = 3e^{y} - xe^{y}$$

ৰা, $x(1 + e^{y}) = 3(e^{y} - 1)$
ৰা, $x = \frac{3(e^{y} - 1)}{e^{y} + 1}$

y এর সকল বাস্তব মানের জন্য x-এর মান বাস্তব হয়।

 \therefore প্রদত্ত ফাংশনের $R_f=m{R}$

Ans: ডোমেন $D_f = (-3, 3)$ এবং রেঞ্জ $R_f = R$

বিকল্প পদ্ধতিতে ডোমেন ও রেঞ্জ নির্ণয়:

$$y = \ln \frac{3+x}{3-x}$$

যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত

হয়। অতএব ফাংশনটি সংজ্ঞায়িত হবে যদি $\dfrac{3+x}{3-x}>0$ হয়

$$\overline{1}, -\frac{3+x}{x-3} > 0$$

$$\therefore \frac{x+3}{x-3} < 0$$

এখন $\frac{x+3}{x-3} < 0$ হবে যদি এবং কেবল যদি (x+3) ও (x-3) রাশিদ্বয়ের একটি ধনাতাক ও অপরটি ঋণাতাক হয়।

শত	<i>x</i> + 3 এর চিহ্ন	x-3 এর চিহ্ন
x < -3	_	-
-3 < x < 3	+	_
x > 3	+	+

 $\therefore -3 < x < 3$ শর্তে y এর বাস্তব মান পাওয়া যায়

 \therefore ফাংশনের ডোমেন (-3, 3)রেঞ্জ নির্ণয়:

$$y = f(x) = \ln \frac{3+x}{3-x}$$

বা, $e^y = \frac{3+x}{3-x}$
বা, $3+x = 3e^y - xe^y$
বা, $x(1+e^y) = 3(e^y - 1)$
বা, $x = \frac{3(e^y - 1)}{e^y + 1}$
 y এর সকল বাস্তব মানের জন্য x এর মান বাস্তব হয়।

 \therefore প্রদত্ত ফাংশনের রেঞ্জ R_f = R $extbf{Ans:}$ ডোমেন D_f = (-3,3) ; রেঞ্জ R_f = R

$$y = \ln \frac{4+x}{4-x}$$

গ $y=\ln \frac{4+x}{4-x}$ যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত

হয়। অতএব ফাংশনটি সংজ্ঞায়িত হবে যদি $\frac{4+x}{4-x} > 0$ হয়

এখন $\frac{x+4}{x-4} < 0$ হবে যদি এবং কেবল যদি (x+4) ও (x-4) এর একটি ধনাত্মক ও অপরটি ঋণাত্মক হয়।

লক্ষ করি:

শত	x + 4 এর চিহ্ন	x−4 এর চিহ্ন
x < -4	-	-
-4 < x < 4	+	_
x > 4	+	+

 $\therefore -4 < x < 4$ শর্তে y এর বাস্তব মান পাওয়া যায়

∴
$$-4 < x < 4$$
 শতে y এর বাস্তব মা
∴ ফাংশনের ডোমেন $(-4, 4)$

রেঞ্জ নির্ণয়: $y = \ln \frac{4+x}{4-x}$

বা, $e^y = \frac{4+x}{4-x}$

বা, $4+x = 4e^y - xe^y$

বা, $x(1+e^y) = 4(e^y - 1)$

বা, $x = \frac{4(e^y - 1)}{e^y + 1}$
 y এর সকল বাস্তব মানের জন্ম x এর ম

y এর সকল বাস্তব মানের জন্য x এর মান বাস্তব হয়।

 $\dot{}$ প্রদত্ত ফাংশনের রেঞ্জ R_f = R f Ans: ডোমেন D_f = (-4,4) ; রেঞ্জ R_f = R

ত্ম $y = \ln \frac{5+x}{5-x}$ যেহেতু লগারিদম শুধুমাত্র ধনাতাক বাস্তব সুংখ্যার জন্য সংজ্ঞায়িত

হয়। অতএব ফাংশনটি সংজ্ঞায়িত হবে যদি $\dfrac{5+x}{5-x}>0$ হয়

$$\exists 1, -\frac{5+x}{x-5} > 0$$

$$\therefore \frac{x+5}{x-5} < 0$$

এখন $\frac{x+5}{x-5}$ < 0 হবে যদি এবং কেবল যদি (x+5) ও (x-5)এর একটি ধনাতাক ও অপরটি ঋণাতাক হয়।

লক্ষ করি:

শৰ্ত	<i>x</i> + 5 এর চিহ্ন	x-5 এর চিহ্ন
x < -5	_	_
-5 < x < 5	+	_
x > 5	+	+

 $\therefore -5 < x < 5$ শর্তে y এর বাস্তব মান পাওয়া যায়

∴ ফাংশনের ডোমেন (-5, 5)

রেঞ্জ নির্ণয়:
$$y = \ln \frac{5+x}{5-x}$$
 বা, $e^v = \frac{5+x}{5-x}$ বা, $5+x=5e^v-xe^v$ বা, $x(1+e^v)=5(e^v-1)$ বা, $x=\frac{5(e^v-1)}{e^v+1}$

y এর সকল বাস্তব মানের জন্য x এর মান বাস্তব হয়।

 \therefore প্রদত্ত ফাংশনের রেঞ্জ $R_f = R$

 ${f Ans}:$ ডোমেন $D_f = (-5,\,5)~;~R_f = R$

নিচের ফাংশনগুলোর লেখচিত্র অঙ্কন কর এবং ডোমেন ও রেঞ্জ নির্ণয় কর: $(\mathfrak{F}) f(x) = 2^{x} \quad (\mathfrak{F}) f(x) = \left(\frac{1}{2}\right)^{x} \quad (\mathfrak{F}) f(x) = e^{x}, \ 2 < e < 3$ $(\forall) f(x) = e^{-x}, 2 < e < 3$ $(\mathfrak{G}) f(x) = 3^x$

সমাধানঃ

ক লেখচিত্ৰ অঙ্কনঃ

ধরি,
$$y = f(x) = 2^x$$

x এর কয়েকটি মান নিয়ে সংশ্লিষ্ট v এর মান নিমের ছকে দেখানো হলো-

		-				
х	- 1	0	1	2	3	4
$y=2^x$	0.5	1	2	4	8	16

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY'আঁকি । x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর = 1 একক এবং y-অক্ষ, বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

ডোমেন ও রেঞ্জ নির্ণয়:

 χ এর সকল বাস্তব মানের জন্য প্রদত্ত ফাংশনটি সংজ্ঞায়িত হবে।

∴ ফাংশনের ডোমেন $D_f = R$

আবার, x = 0 হলে $f(x) = 2^0 = 1 > 0$

$$x \to -\infty$$
 হলে $f(x) \to 2^{-\infty} = \frac{1}{2^{\infty}} = \frac{1}{\infty} = 0$

$$x \to \infty$$
 হলে $f(x) \to 2^{\infty} = \infty$

ডোমেনের অন্তর্ভুক্ত x এর সকল মানের জন্য f(x) এর মান $(0,\infty)$ ব্যবধিতে অবস্থিত।

 \therefore ফাংশনের রেঞ্জ $R_f = (0, \infty)$

খ লেখচিত্র অঙ্কনঃ

ধরি,
$$y = f(x) = \left(\frac{1}{2}\right)^x$$

 χ এর কয়েকটি মান নিচে সংশ্লিষ্ট γ এর মান নিম্নের ছকে দেখানো হলো-

X	0	-1	-2	- 3	-4
у	1	2	4	8	16

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁক। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর =1 একক এবং y-অক্ষ, বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে y=f(x) এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

ডোমেন ও রেঞ্জ নির্ণয়:

🗴 এর সকল বাস্তব মানের জন্য প্রদত্ত ফাংশনটি সংজ্ঞায়িত

 \therefore ফাংশনের ডোমেন $D_f = R$

আবার,
$$x \to \infty$$
 হলে $f(x) \to \left(\frac{1}{2}\right)^{\infty} = \infty$

$$x \to -\infty$$
 হলে $f(x) \to \left(\frac{1}{2}\right)^{-\infty} = \frac{1}{\infty} = 0$

 $\therefore x$ এর সকল মানের জন্য $f\!(x)$ এর মান $(0,\infty)$ ব্যবধিতে অবস্থিত।

 \therefore ফাংশনের রেঞ্জ R_f = $(0,\infty)$

গ $f(x) = e^x$, 2 < e < 3লেখচিত্র অঙ্কনঃ

ধরি,
$$y = f(x) = e^x$$
,

 χ এর কয়েকটি মান নিয়ে সংশ্লিষ্ট ν এর মান নিচের ছকে দেখানো হলো-

•	n - 1 1 1 1 1 1	7-10 -41-11-	164 11/040	y 44 41.	1 1-16021 26	ור ויט ייר	6-11 4 6-11-
	x	- 2	- 1	0	1	2	3
	ν	0.14	0.36	1	2.71	7.4	20.08

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর =1 একক এবং y-অক্ষ

বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক ধরে বিন্দুগুলো পাতন করে সাবলীলভাবে যুক্ত করে $f(x)=e^x$ এর লেখ পাওয়া যায়। যা নিমে দেখানো হলো–

ডোমেন ও রেঞ্জ নির্ণয়:

🗴 এর সকল বাস্তব মানের জন্য প্রদত্ত ফাংশনটি সংজ্ঞায়িত।

 \therefore ফাংশনের ডোমেন $D_f = R$

লক্ষ করি: x যখন $-\infty$ এর কাছাকাছি হয় তখন f(x) এর মান শূন্যের কাছাকাছি হয় কিন্তু y এর মান কখনই শূন্য হবে না এবং x এর ধনাত্মক মান বৃদ্ধির সাথে সাথে f(x) মান বৃদ্ধি পায়।

 \therefore ফাংশনের রেঞ্জ $R_f = (0, \infty)$

$$f(x) = e^{-x}, 2 < e < 3$$

ধরি, $y = f(x) = e^{-x}$

 χ এর কয়েকটি মান নিয়ে সংশ্লিষ্ট ν এর মান নিম্নের ছকে দেখানো হলো-

•				<i>y</i>			• (•
ſ	х	2	1	0	- 1	-2	- 3
ſ	у	0.14	0.36	1	2.71	7.4	20.08

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর =1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক ধরে বিন্দুগুলো পাতন করে সাবলীলভাবে যুক্ত করে $f(x)=e^{-x}$ এর লেখ পাওয়া যায়। যা নিম্নে দেখানো হলো-

ডোমেন ও রেঞ্জ নির্ণয়:

x এর সকল বাস্তব মানের জন্য ফাংশন f(x) সংজ্ঞায়িত।

 \therefore ফাংশনটির ডোমেন $D_f = R$

আবার,
$$x = 0$$
 হলে $f(x) = e^0 = 1 > 0$

$$x \to \infty \text{ even } f(x) \to e^{-\infty} = \frac{1}{e^{\infty}} = 0$$

$$x \to -\infty$$
 হলে $f(x) \to e^{-(-\infty)} = e^{\infty} = \infty$

সকল $x \in R$ এর জন্য $f(x) \in (0,\infty)$

 \therefore প্রদত্ত ফাংশনের রেঞ্জ $(0,\infty)$

$f(x) = 3^x$

ধরি,
$$y = f(x) = 3^x$$

 χ এর কয়েকটি মান নিয়ে সংশ্লিষ্ট γ এর মান নিমের ছকে দেখানো হলো-

Г	х	-2	- 1	0	1	2	3
	у	0.11	0.33	1	3	9	27

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 5 বর্গ ঘর =1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখায় যুক্ত করে $f(x)=3^x$ এর লেখ পাওয়া যায়।

যা নিম্নে দেখানো হলো-

ডোমেন ও রেঞ্জ নির্ণয়: x এর সকল বাস্তব মানের জন্য প্রদত্ত ফাংশন f(x) সংজ্ঞায়িত।

$$\therefore$$
 ফাংশনটির ডোমেন D_f = R

আবার,
$$x = 0$$
 হলে $f(x) = 3^0 = 1 > 0$

$$x \to \infty$$
 হলে $f(x) \to 3^{\infty} = \infty$

$$x \to -\infty$$
 হলে $f(x) \to 3^{-\infty} = \frac{1}{3^{\infty}} = \frac{1}{\infty} = 0$

 $\therefore x$ সকল বাস্তব মানের জন্য f(x) এর মান $(0,\infty)$ ব্যবধিতে অবস্থিত। ফাংশনের রেঞ্জ $=(0,\infty)$

 \therefore প্রদত্ত ফাংশনের রেঞ্জ R_f = $(0,\infty)$

কাজ

>পাঠ্যবই পৃষ্ঠা-২২০

	বৈলে উদ্ভে । অঙ্কন ক		хву	এর ম	ান নিয়ে	<i>y</i> =	log ₁₀	₀ x এর
x	0.5	1	2	3	4	5	10	12
y	-0.3	0	0.3	0.5	0.6	0.7	1	1.07

সমাধান: $y = \log_{10} x$ এর লেখচিত্র অঙ্কন:

ধরি,
$$y = f(x) = \log_{10} x$$

x এর 0.5 থেকে 12 এর মধ্যে কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর মান নিম্নের ছকে দেখানো হলো-

Ī	х	0.5	1	2	3	4	5	10	12
Ī	у	-0.3	0	0.3	0.5	0.60	0.70	1	1.07

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি। x-অক্ষ বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 10 বর্গ ঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি। বিন্দুগুলোকে সহজভাবে বক্ররেখার যুক্ত করে y=f(x) এর লেখ পাওয়া যায়। যা নিমে দেখানো হলো-

খ) $y = \log_{e} x$ এর লেখচিত্র অঙ্কনের জন্য (ক) এর ন্যায় $x \circ y$ এর মান নিয়ে টেবিল তৈরি কর এবং লেখচিত্র আঁক।

সমাধান: $y = \log_e x$ এর লেখচিত্র অঙ্কন:

ধরি,
$$y = f(x) = \log_e x$$

x এর 0.5 থেকে 12 এর মধ্যে কয়েকটি মান নিয়ে সংশ্লিষ্ট y এর মান নিয়ের টেবিলে দেখানো হলো-

х	0.5	1	2	3	4	5	10	12
У	- 0.7	0	0.7	1.1	1.4	1.6	2.3	2.5

এখন, ছক কাগজে সুবিধামত x-অক্ষ XOX' এবং y-অক্ষ YOY' আঁকি । x-অক্ষ বরাবর ক্ষুদ্রতম 1 বর্গ ঘর =1 একক এবং y-অক্ষ বরাবর ক্ষুদ্রতম 10 বর্গ ঘর =1 একক ধরে (x,y) বিন্দুগুলো পাতন করি । বিন্দুগুলোকে সহজভাবে বক্ররেখার যুক্ত করে y=f(x)= এর লেখ পাওয়া যায় । যা নিম্নে দেখানো হলো-

ৰ্ঞা বি.দ্র: যেহেতু লগারিদম শুধু ধনাত্মক বাস্তব মানের জন্য সংজ্ঞায়িত। তাই $y=\log_e x$ ফাংশনে x এর মান কখনও ঋণাত্মক হবে না ।