Your Name:

Please circle your discussion group (2 pt)

1 Gan Yinliang B416	4 Zhang Jinghao B425	7 Loigen Sodian B416		
2 Zhang Junwei B424	5 Xu Hang B419			
3 Ke Wentao B419	6 Huang Nuoer B410			

•

- You will have one hour for the exam.
- No notes, books or electronics during the exam.
- Do not open this test booklet until a proctor says start.
- For all free response questions, show work that justifies your answer.
- Raise your hand if you have a clarification question.
- Scratch paper is provided. You can ask for more if needed.
- Do not leave early: this disturbs others. If you finish your test early, check your work or just relax.
- Quit working when the test ends and hand your test booklet to proctors.

Question	1	2	3	4	5	6	7	8	9	Total
Points	12	14	25	7	8	10	6	10	6	98
Score										

- 1. (12 points, 3 points each) Determine whether the statement is true or false. Circle the right answer.
 - (a) If $\sum a_n$ is divergent, then $\sum |a_n|$ is divergent. (True or False)
 - (b) If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_n+b_n\}$ is divergent. (True or False)
 - (c) If $\{a_n\}$ is decreasing and $a_n>0$ for all n, then $\{a_n\}$ is convergent. (True or False)
 - (d) If $f(n) = a_n$, $\lim_{n \to \infty} a_n = L$ then $\lim_{n \to \infty} f(x) = L$. (True or False)

- 2. (14 pts) Use integral test to test the following series.
- (a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

(b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

- 3. (25 pts) Please choose proper series test to decide whether the series is convergent or divergent. Justify your answer.
- (a) $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$

(b) $\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$

(c)
$$\sum_{n=1}^{\infty} \frac{\sqrt{4^n + n^2}}{3^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{3 + (\ln n + 5)^8}{n^2 + 6n + \sin n}$$

(e)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

4. (7 pts) Find a function
$$f(x)$$
 whose arc length $L(x)$ from $(1, \frac{1}{2})$ to $(x, f(x)), x > 1$, is $\frac{1}{2}x^2 + \frac{1}{4}\ln x$

5. (8 pts) Determine whether the following series are absolutely convergent, conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n^3(2^{-3n})}{n^4+1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln 3n}$$

6. (10 pts) A trough with a trapezoidal cross-section, as shown in the figure, contains vegetable oil with density $1000 \, kg/m^3$. Find the hydrostatic force on one end of the trough if it is completely full of oil. ($g \approx 10 \, m/s^2$)

7. (6 pts) Let $\{b_n\}$ be a sequence of positive umbers that converges to $\frac{1}{2}$. Determine

whether the given series $\sum_{n=1}^{\infty} \frac{b_n^n \cos n\pi}{n}$ is absolutely convergent.

- 8. (10 pts) $y = \sqrt[3]{x}$, $1 \le x \le 8$ is rotated about the x-axis. Set up, but do not evaluate, an integral for the area of the resulting surface.
- (a) by integrating with respect to x

(b) by integrating with respect to y

- 9. (6 pts) (a) Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ by using the first 2 terms.
- (b) Estimate the maximum error in this approximation.