# 1. 数据目录结构

```
# 人员标签
[1-80]
                                 # 多光谱
      multi/

— illum[1-3]/, normal/
                                 # 干扰 `1-3`, 无干扰
                                 # 位置 `1-7`
                                                           每个位置目录下包括四个照片目录
           - Multi [1-7] W1 1/
                                                 无眼镜
             L__ [1-4]/
                                                           每个目录下包括25张图片文件
                └─ [1-25].jpg
            - Multi_4_W1_6
                                 # 位置 `4`
                                                  墨镜
                                                           目录下包括四个照片目录
                                                           每个目录下包括25张图片文件
             L-- [1-4]/
                └─ [1-25].jpg
            - Multi [1-7] W1 5
                                 # 位置 `1-7`
                                                  眼镜
                                                           每个目录下包括25张图片文件, 部分人员无眼镜,即无该目录
             └─ [1-25].jpg
                                 # 可见光
      rab
                                 # 干扰 `1-3`, 无干扰
        - illum[1-3]/, normal/
                                 # 位置 `1-7`
                                                  无眼镜
                                                           每个位置目录下包括四张照片文件
           - RGB_[1-7]_W1_1/
             ___[1-4].jpg
           - RGB 4 W1 6/
                                 # 位置 `4`
                                                  墨镜
                                                           目录下包括四张照片文件
            └── [1-4].jpg
                                                           部分人员无眼镜,即无该图片
                                                  眼镜
                                 # 位置 `1-7`
          └─ RGB_[1-7]_W1_5.jpg
```

# 2. 实验

- 图片尺寸为(112//2, 96//2);
- 无直方图均衡化;
- 训练数据仅包含无眼镜数据;

#### 3.1 划分比例的确定

#### 确定在何种划分下进行实验,后续实验均以此结果为标准。

- 划分方式与上阶段一致,在每人的数据中,保留Multi与RGB同时检测出的图片路径,打乱后按一定比例划分;
- 本次实验划分时不做特殊处理,若需要其中指定条件的数据,可在RecognizeDataset中指定筛选条件condition;

#### 运行

```
python gen_split.py
[split_112x96_[0.10:0.70:0.20]_[1]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split 112x96 [0.10:0.70:0.20] [2]] n items: 3288, n train: 318, n valid: 2280, n test: 690, ratio: 0.097: 0.693:
0.210
[split_112x96_[0.10:0.70:0.20]_[3]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split_112x96_[0.10:0.70:0.20]_[4]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split 112x96 [0.10:0.70:0.20] [5]] n items: 3288, n train: 318, n valid: 2280, n test: 690, ratio: 0.097: 0.693:
0.210
[split_112x96_[0.10:0.70:0.20]_[6]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split_112x96_[0.10:0.70:0.20]_[7]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split 112x96 [0.10:0.70:0.20] [8]] n items: 3288, n train: 318, n valid: 2280, n test: 690, ratio: 0.097: 0.693:
0.210
[split_112x96_[0.10:0.70:0.20]_[9]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
[split_112x96_[0.10:0.70:0.20]_[10]] n_items: 3288, n_train: 318, n_valid: 2280, n_test: 690, ratio: 0.097: 0.693:
0.210
[split 112x96 [0.20:0.60:0.20] [1]] n items: 3288, n train: 636, n valid: 1962, n test: 690, ratio: 0.193: 0.597:
0.210
[split_112x96_[0.20:0.60:0.20]_[2]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
0.210
[split_112x96_[0.20:0.60:0.20]_[3]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
```

```
0.210
[split_112x96_[0.20:0.60:0.20]_[4]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
0.210
[split_112x96_[0.20:0.60:0.20]_[5]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
0.210
[split_112x96_[0.20:0.60:0.20]_[6]] n_items: 3288, n_train: 636, n_valid: 1962, n test: 690, ratio: 0.193: 0.597:
0.210
[split 112x96 [0.20:0.60:0.20] [7]] n items: 3288, n train: 636, n valid: 1962, n test: 690, ratio: 0.193: 0.597:
0 210
[split_112x96_[0.20:0.60:0.20]_[8]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
0.210
[split 112x96 [0.20:0.60:0.20] [9]] n items: 3288, n train: 636, n valid: 1962, n test: 690, ratio: 0.193: 0.597:
0.210
[split_112x96_[0.20:0.60:0.20]_[10]] n_items: 3288, n_train: 636, n_valid: 1962, n_test: 690, ratio: 0.193: 0.597:
0.210
[split 112x96 [0.30:0.50:0.20] [1]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.30:0.50:0.20] [2]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0 210
[split 112x96 [0.30:0.50:0.20] [3]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split_112x96_[0.30:0.50:0.20]_[4]] n_items: 3288, n_train: 954, n_valid: 1644, n_test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.30:0.50:0.20] [5]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.30:0.50:0.20] [6]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.30:0.50:0.20] [7]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split_112x96_[0.30:0.50:0.20]_[8]] n_items: 3288, n_train: 954, n_valid: 1644, n_test: 690, ratio: 0.290: 0.500:
0.210
[split_112x96_[0.30:0.50:0.20]_[9]] n_items: 3288, n_train: 954, n_valid: 1644, n_test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.30:0.50:0.20] [10]] n items: 3288, n train: 954, n valid: 1644, n test: 690, ratio: 0.290: 0.500:
0.210
[split 112x96 [0.40:0.40:0.20] [1]] n items: 3288, n train: 1272, n valid: 1272, n test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.40:0.40:0.20]_[2]] n_items: 3288, n_train: 1272, n_valid: 1272, n_test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.40:0.40:0.20]_[3]] n_items: 3288, n_train: 1272, n_valid: 1272, n_test: 744, ratio: 0.387: 0.387:
0.226
[split 112x96 [0.40:0.40:0.20] [4]] n items: 3288, n train: 1272, n valid: 1272, n test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.40:0.40:0.20]_[5]] n_items: 3288, n_train: 1272, n_valid: 1272, n_test: 744, ratio: 0.387: 0.387:
0.226
[split 112x96 [0.40:0.40:0.20] [6]] n items: 3288, n train: 1272, n valid: 1272, n test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.40:0.40:0.20]_[7]] n_items: 3288, n_train: 1272, n_valid: 1272, n_test: 744, ratio: 0.387: 0.387:
[split 112x96 [0.40:0.40:0.20] [8]] n items: 3288, n train: 1272, n valid: 1272, n test: 744, ratio: 0.387: 0.387:
0.226
[split 112x96 [0.40:0.40:0.20] [9]] n items: 3288, n train: 1272, n valid: 1272, n test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.40:0.40:0.20]_[10]] n_items: 3288, n_train: 1272, n_valid: 1272, n_test: 744, ratio: 0.387: 0.387:
0.226
[split_112x96_[0.50:0.30:0.20]_[1]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split 112x96 [0.50:0.30:0.20] [2]] n items: 3288, n train: 1644, n valid: 954, n test: 690, ratio: 0.500: 0.290:
0.210
[split 112x96 [0.50:0.30:0.20] [3]] n items: 3288, n train: 1644, n valid: 954, n test: 690, ratio: 0.500: 0.290:
0.210
[split_112x96_[0.50:0.30:0.20]_[4]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split 112x96 [0.50:0.30:0.20] [5]] n items: 3288, n train: 1644, n valid: 954, n test: 690, ratio: 0.500: 0.290:
0.210
[split_112x96_[0.50:0.30:0.20]_[6]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split_112x96_[0.50:0.30:0.20]_[7]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split 112x96 [0.50:0.30:0.20] [8]] n items: 3288, n train: 1644, n valid: 954, n test: 690, ratio: 0.500: 0.290:
0.210
[split_112x96_[0.50:0.30:0.20]_[9]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split_112x96_[0.50:0.30:0.20]_[10]] n_items: 3288, n_train: 1644, n_valid: 954, n_test: 690, ratio: 0.500: 0.290:
0.210
[split 112x96 [0.60:0.20:0.20] [1]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split 112x96 [0.60:0.20:0.20] [2]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split 112x96 [0.60:0.20:0.20] [3]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
```

```
[split_112x96_[0.60:0.20:0.20]_[4]] n_items: 3288, n_train: 1962, n_valid: 610, n_test: 716, ratio: 0.597: 0.186:
[split 112x96 [0.60:0.20:0.20] [5]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split 112x96 [0.60:0.20:0.20] [6]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split_112x96_[0.60:0.20:0.20]_[7]] n_items: 3288, n_train: 1962, n_valid: 610, n_test: 716, ratio: 0.597: 0.186:
0.218
[split_112x96_[0.60:0.20:0.20]_[8]] n_items: 3288, n_train: 1962, n_valid: 610, n_test: 716, ratio: 0.597: 0.186:
[split 112x96 [0.60:0.20:0.20] [9]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split 112x96 [0.60:0.20:0.20] [10]] n items: 3288, n train: 1962, n valid: 610, n test: 716, ratio: 0.597: 0.186:
0.218
[split 112x96 [0.70:0.10:0.20] [1]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split_112x96_[0.70:0.10:0.20]_[2]] n_items: 3288, n_train: 2280, n_valid: 292, n_test: 716, ratio: 0.693: 0.089:
[split 112x96 [0.70:0.10:0.20] [3]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split 112x96 [0.70:0.10:0.20] [4]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split_112x96_[0.70:0.10:0.20]_[5]] n_items: 3288, n_train: 2280, n_valid: 292, n_test: 716, ratio: 0.693: 0.089:
0.218
[split 112x96 [0.70:0.10:0.20] [6]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split 112x96 [0.70:0.10:0.20] [7]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split_112x96_[0.70:0.10:0.20]_[8]] n_items: 3288, n_train: 2280, n_valid: 292, n_test: 716, ratio: 0.693: 0.089:
0.218
[split 112x96 [0.70:0.10:0.20] [9]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split 112x96 [0.70:0.10:0.20] [10]] n items: 3288, n train: 2280, n valid: 292, n test: 716, ratio: 0.693: 0.089:
0.218
[split_112x96_[0.60:0.20:0.20]_[1]] n_items: 3796, n_train: 2263, n_valid: 704, n_test: 829, ratio: 0.596: 0.185:
0.218
[split 112x96 [0.70:0.10:0.20] [1]] n items: 3796, n train: 2633, n valid: 334, n test: 829, ratio: 0.694: 0.088:
0.218
```

#### 在当前目录下,生成文件夹split,其目录结构如下

```
split

split_112x96_[比例]_[划分计数]

note.txt

test_Multi.txt

test_RGB.txt

train_Multi.txt

train_RGB.txt

valid_Multi.txt

valid_RGB.txt
```

其中比例形式为训练集:验证集:测试集,划分计数为1~5。

- 各比例下进行10次随机划分,依次在比例为以下情况时进行实验;
- 统计各情况下10次准确率、损失值,并计算均值;
- 做出曲线;

```
cd Ecust/louishsu/recognize_stage_2
python
>>> from main_update_config import main_3_1
>>> main_3_1() # 训练、测试
>>> main_3_1(True) # 输出文件到`images`
```

Multi

| 0.70: 0.10:      | 0.60: 0.20: 0.2    | 0.50: 0.30: 0.2    | 0.40: 0.40: 0.2    | 0.30: 0.50: 0.2    | 0.20:<br>0.60:<br>0.2 | 0.10: 0.70: 0.2      | count/<br>比例 |
|------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|----------------------|--------------|
| 0.79             | 0.7676999999999999 | 0.7694             | 0.7552             | 0.7484000000000001 | 0.5371                | 0.4006               | 1            |
| 0.83             | 0.8101999999999999 | 0.7576999999999999 | 0.7995             | 0.8131             | 0.6689                | 0.4252               | 2            |
| 0.80             | 0.7826000000000001 | 0.8344             | 0.8008             | 0.6829000000000001 | 0.3985                | 0.258                | 3            |
| 0.80             | 0.779899999999999  | 0.8291             | 0.7943000000000001 | 0.7687999999999999 | 0.5896                | 0.4705               | 4            |
| 0.82             | 0.7745000000000001 | 0.8089             | 0.7656000000000001 | 0.6675             | 0.7003                | 0.1323               | 5            |
| 0.82             | 0.8125             | 0.7737             | 0.7917000000000001 | 0.8184999999999999 | 0.5909                | 0.4901               | 6            |
| 0.79             | 0.8332999999999999 | 0.7559999999999999 | 0.7448             | 0.6990000000000001 | 0.2672                | 0.2898               | 7            |
| 0.79             | 0.8139             | 0.7857999999999999 | 0.802099999999999  | 0.6645             | 0.667                 | 0.3766               | 8            |
| 0.74             | 0.7354999999999999 | 0.8426             | 0.7148             | 0.7884             | 0.6491                | 0.32799999999999996  | 9            |
| 0.80             | 0.8025             | 0.7876000000000001 | 0.7513             | 0.6864             | 0.5136                | 0.166200000000000001 | 10           |
| 0.80353000000000 | 0.7912600000000001 | 0.7945200000000001 | 0.7720100000000001 | 0.73375            | 0.55822               | 0.33372999999999997  | average      |

loss

| count/比<br>例 | 0.10: 0.70: 0.2    | 0.20: 0.60: 0.2     | 0.30: 0.50: 0.2     | 0.40: 0.40: 0.2    | 0.50: 0.30:<br>0.2 | 0.60: 0.20:<br>0.2 | 0.70: 0.10:<br>0.2 |
|--------------|--------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
| 1            | 2.3718             | 2.0779              | 1.3379              | 2.1081             | 2.6441             | 2.8747             | 3.0128             |
| 2            | 6.6673             | 2.1367              | 1.1372              | 1.8289             | 2.1626             | 2.6618             | 2.4152             |
| 3            | 3.0074             | 2.4302              | 2.3166              | 1.3939             | 0.8713             | 2.0165             | 4.1716             |
| 4            | 2.3501             | 1.5925              | 1.9336              | 1.6408             | 1.44               | 2.9868             | 1.7143             |
| 5            | 3.2784             | 1.2898              | 3.5962              | 2.2687             | 3.0388             | 3.4168             | 1.6621             |
| 6            | 2.4617             | 3.5302              | 1.08                | 1.0784             | 2.4738             | 1.8175             | 2.3089             |
| 7            | 2.9264             | 2.3548              | 2.1615              | 2.2002             | 3.2647             | 1.3199             | 3.1627             |
| 8            | 2.9193             | 1.5234              | 1.8949              | 1.7263             | 2.839              | 1.9334             | 3.1996             |
| 9            | 2.6655             | 2.0709              | 1.4401              | 2.7989             | 1.1731             | 7.6346             | 3.8065             |
| 10           | 3.2275             | 2.1809              | 2.4369              | 1.8952             | 1.6318             | 1.5055             | 1.9831             |
| average      | 3.1875400000000003 | 2.11873000000000002 | 1.93349000000000002 | 1.8939400000000002 | 2.15392            | 2.81675            | 2.74368            |



作图如下

RGB

| count/<br>比例 | 0.10: 0.70: 0.2    | 0.20: 0.60: 0.2     | 0.30: 0.50: 0.2     | 0.40: 0.40: 0.2    | 0.50: 0.30: 0.2    | 0.60: 0.20: 0.2    |     |
|--------------|--------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-----|
| 1            | 0.1818             | 0.4540999999999995  | 0.5390999999999999  | 0.5625             | 0.6692             | 0.6807             | 0.  |
| 2            | 0.2159             | 0.2992              | 0.5455              | 0.6758             | 0.7004             | 0.7038             |     |
| 3            | 0.0604             | 0.2398999999999999  | 0.5533              | 0.6536             | 0.6578             | 0.7111             |     |
| 4            | 0.163              | 0.3651              | 0.45880000000000004 | 0.6354             | 0.6901999999999999 | 0.696099999999999  |     |
| 5            | 0.2164             | 0.35340000000000005 | 0.5215              | 0.654899999999999  | 0.6461             | 0.7301000000000001 | 0.  |
| 6            | 0.0682             | 0.3643              | 0.4797999999999995  | 0.6445000000000001 | 0.6561             | 0.7437             | 0.  |
| 7            | 0.1349             | 0.1378              | 0.5306000000000001  | 0.6263000000000001 | 0.6826000000000001 | 0.74               | 0.0 |
| 8            | 0.1943             | 0.4485              | 0.5466              | 0.569              | 0.7151000000000001 | 0.6644             | 0.  |
| 9            | 0.1830999999999998 | 0.2525              | 0.5215              | 0.5104             | 0.6959000000000001 | 0.672999999999999  | 0.  |
| 10           | 0.2352             | 0.307               | 0.25730000000000003 | 0.649699999999999  | 0.7413             | 0.7432             |     |
| average      | 0.16532            | 0.32218             | 0.4953999999999995  | 0.6182099999999999 | 0.68547            | 0.70861            | 0.  |

loss

| count/比例 | 0.10: 0.70: 0.2 | 0.20: 0.60: 0.2 | 0.30: 0.50: 0.2 | 0.40: 0.40: 0.2    | 0.50: 0.30: 0.2    | 0.60: 0.20: 0.2 | 0.70: 0.10: 0.2 |
|----------|-----------------|-----------------|-----------------|--------------------|--------------------|-----------------|-----------------|
| 1        | 3.6142          | 2.8417          | 3.9562          | 2.9158             | 2.2525             | 2.6159          | 3.2815          |
| 2        | 3.6711          | 3.6685          | 3.2148          | 2.2747             | 3.75               | 2.6284          | 2.7587          |
| 3        | 4.1017          | 3.215           | 4.7634          | 3.1522             | 4.2158             | 2.0402          | 2.2698          |
| 4        | 3.2395          | 3.1684          | 3.6697          | 3.3027             | 2.25               | 3.2328          | 2.5595          |
| 5        | 3.3954          | 3.6957          | 4.3968          | 2.3015             | 4.0876             | 2.6041          | 2.8131          |
| 6        | 3.7656          | 4.4258          | 2.9159          | 2.5114             | 3.9602             | 2.2778          | 4.0425          |
| 7        | 3.5288          | 3.5039          | 3.1417          | 4.694              | 3.1303             | 2.8276          | 2.2502          |
| 8        | 3.4957          | 4.4873          | 2.9926          | 3.9175             | 2.4448             | 2.8804          | 3.8945          |
| 9        | 3.6652          | 3.2843          | 3.8952          | 2.2691             | 3.2769             | 2.3225          | 2.9258          |
| 10       | 3.2807          | 3.6312          | 2.8551          | 3.0446             | 2.6778             | 1.9933          | 2.433           |
| average  | 3.57579         | 3.59218         | 3.58014         | 3.0383500000000003 | 3.2045900000000005 | 2.5423          | 2.92286         |



作图如下

可知比例为0.60: 0.20: 0.2时,效果最佳。

# 3.2 波段对比实验

- 根据实验3.1得到的最优划分,在10次随机划分进行实验;
- 依次选择单个波段的数据进行实验;
- 统计各情况下10次准确率、损失值,并计算均值;
- 做出曲线;

```
cd Ecust/louishsu/recognize_stage_2
python
>>> from main_update_config import main_3_2
>>> main_3_2() # 训练、测试
>>> main_3_2(True) # 输出文件到`images`
```

Multi

| count/<br>波段索<br>引 | 1                  | 2                  | 3                  |              | 4          |           |           | 5        |             | 6      |        |    |      |     |       |
|--------------------|--------------------|--------------------|--------------------|--------------|------------|-----------|-----------|----------|-------------|--------|--------|----|------|-----|-------|
| 1                  | 0.7409             | 0.7857999999999999 | 0.7029000000000001 |              | 0.7536     |           | 0.732     | 28       | 0.7         | 111    | 0.719  |    |      |     |       |
| 2                  | 0.7772             | 0.7731             | 0.7554000000000001 |              | 0.7269     | 0.736     |           | 0.7369   |             | 0.7369 |        | 69 | 0.75 | 514 | 0.723 |
| 3                  | 0.769899999999999  | 0.7459             | 0.7695000000000001 | 0.7101000000 | 000001     |           | 0.695     | 57       | 0.7         | 188    | 0.784  |    |      |     |       |
| 4                  | 0.8007             | 0.7704000000000001 | 0.7219             | 0.7242000000 | 000001     |           | 0.751     | 4        | 0.76        | 609    |        |    |      |     |       |
| 5                  | 0.7803             | 0.7454999999999999 | 0.789899999999999  | 0.7698999999 | 999999     |           | 0.763     | 31 0.797 | 9999999999  | 999    | 0.775  |    |      |     |       |
| 6                  | 0.7695000000000001 | 0.7459             | 0.7432             |              | 0.7731     |           | 0.741     | 8 0.770  | 40000000000 | 001    |        |    |      |     |       |
| 7                  | 0.7835             | 0.745              | 0.779              |              | 0.7722     | 0.7251000 | 000000000 | )1       | 0.7         | 779    | 0.774  |    |      |     |       |
| 8                  | 0.7409             | 0.7785             | 0.7432             | 0.7251000000 | 000001     |           | 0.76      | 69       | 0.77        | 722    |        |    |      |     |       |
| 9                  | 0.6581             | 0.7242000000000001 | 0.6875             |              | 0.6875     |           | 0.694     | 7 0.744  | 5999999999  | 999    |        |    |      |     |       |
| 10                 | 0.7745000000000001 | 0.7568             | 0.7418             | 0.7254999999 | 999999     |           | 0.743     | 32       | 0.76        | 618    | 0.7570 |    |      |     |       |
| average            | 0.75955            | 0.7571100000000001 | 0.74343            | 0.7368100000 | 000001     |           | 0.7353    | 37       | 0.756       | 682    | 0.754  |    |      |     |       |
| loss               |                    |                    |                    |              |            |           |           |          |             |        |        |    |      |     |       |
| count/<br>波段索<br>引 | 1                  | 2                  | 3                  | 4            |            | 5         | 6         | 7        | 8           |        |        |    |      |     |       |
| 1                  | 2.9452             | 1.4351             | 3.8633             | 1.9228       |            | 2.539     | 4.0876    | 3.394    | 1.7999      |        |        |    |      |     |       |
| 2                  | 2.0732             | 1.4822             | 3.2696             | 3.4992       |            | 2.2891    | 2.9177    | 2.9923   | 2.7876      |        |        |    |      |     |       |
| 3                  | 2.8884             | 2.3649             | 3.4166             | 5.9688       |            | 3.8212    | 3.0442    | 1.4914   | 3.8162      |        |        |    |      |     |       |
| 4                  | 1.3822             | 1.3343             | 2.6002             | 2.0379       |            | 1.9259    | 1.8043    | 4.0927   | 3.716       |        | ,      |    |      |     |       |
| 5                  | 1.8806             | 3.2492             | 1.644              | 2.7095       |            | 3.4961    | 1.29      | 2.0561   | 4.014       |        |        |    |      |     |       |
| 6                  | 2.0634             | 2.9833             | 4.3027             | 2.6582       |            | 2.8026    | 2.3729    | 1.6878   | 1.7946      |        |        |    |      |     |       |
| 7                  | 1.745              | 3.7133             | 1.9942             | 2.7104       |            | 3.0444    | 3.2471    | 2.0583   | 1.6839      |        |        |    |      |     |       |
| 8                  | 2.9668             | 4.2357             | 4.2446             | 3.634        |            | 3.9498    | 2.2532    | 3.5688   | 1.5291      |        |        |    |      |     |       |
| 9                  | 3.4596             | 3.5435             | 4.3141             | 5.4512       |            | 3.9814    | 3.2206    | 2.3985   | 1.8396      |        |        |    |      |     |       |
| 10                 | 1.5873             | 2.0245             | 2.6835             | 4.2544       |            | 3.6469    | 2.9594    | 2.9079   | 1.3507      |        |        |    |      |     |       |
| average            | 2.2991699999999993 | 2.6366000000000005 | 3.233279999999999  | 3.48464 3.1  | 1496399999 | 999998    | 2.7197    | 2.66478  | 2.43316     | 2.661  | 196000 |    |      |     |       |



作图如下

RGB

acc

| count/波段索引 | R                  | G                   | В                  |
|------------|--------------------|---------------------|--------------------|
| 1          | 0.6526000000000001 | 0.6277              | 0.5987             |
| 2          | 0.6363             | 0.64760000000000001 | 0.63               |
| 3          | 0.6635             | 0.6875              | 0.5888             |
| 4          | 0.6463             | 0.6639              | 0.6178             |
| 5          | 0.6716             | 0.6934              | 0.6154999999999999 |
| 6          | 0.6820999999999999 | 0.6779999999999999  | 0.6024             |
| 7          | 0.6354             | 0.6345000000000001  | 0.5307999999999999 |
| 8          | 0.6716             | 0.6766              | 0.6051             |
| 9          | 0.5516             | 0.5168              | 0.4828             |
| 10         | 0.6893             | 0.6123              | 0.5870000000000001 |
| average    | 0.6500299999999999 | 0.64383             | 0.58589            |

| count/波段索引 | R       | G                  | В                  |
|------------|---------|--------------------|--------------------|
| 1          | 3.9056  | 4.0734             | 3.3863             |
| 2          | 2.4498  | 5.407              | 3.1798             |
| 3          | 3.2465  | 2.4015             | 3.8811             |
| 4          | 3.2172  | 3.1898             | 3.0433             |
| 5          | 3.0879  | 2.6543             | 2.7891             |
| 6          | 3.0725  | 4.0427             | 5.0278             |
| 7          | 4.4006  | 2.6794             | 4.2385             |
| 8          | 2.6314  | 2.6057             | 3.0677             |
| 9          | 4.1661  | 3.0054             | 4.7026             |
| 10         | 2.3592  | 2.7287             | 4.0279             |
| average    | 3.25368 | 3.2787899999999994 | 3.7344100000000005 |



#### 作图如下

#### 根据图3.2.1.1,按准确率将波段排序,降序排序如下:

```
Generating tables and figures [Multi]...

Best: [19 16 18 11 12 8 15 24 21 9 14 20 13 23 25 22 1 2 6 10 7 17 3 4

5]

Generating tables and figures [RGB]...

Best: [1 2 3]
```

## 3.3 波段组合实验

## 该部分实验仅针对多光谱数据。

- 根据实验3.1得到的最优划分,在10次随机划分进行实验;
- 根据实验3.2得到的最优排序,依次选择最前1, 2, ..., 25个波段进行组合实验;
- 统计各情况下10次准确率、损失值,并计算均值;
- 做出曲线;

```
cd Ecust/louishsu/recognize_stage_2
python
>>> from main_update_config import main_3_3
>>> main_3_3() # 训练、测试
>>> main_3_3(True) # 输出文件到`images`
```

#### acc

| count/<br>组合数 | 1                  | 2                  | 3                  | 4                   | 5                  | 6                  |        |
|---------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------|
| 1             | 0.7337             | 0.7785             | 0.8161             | 0.7870999999999999  | 0.7165             | 0.7082999999999999 | _      |
| 2             | 0.7541             | 0.7803             | 0.7409             | 0.7798999999999999  | 0.7989             | 0.7953             |        |
| 3             | 0.7812             | 0.7495             | 0.755              | 0.7879999999999999  | 0.7698999999999999 | 0.7826000000000001 |        |
| 4             | 0.7278             | 0.7745000000000001 | 0.7432             | 0.7722              | 0.7948000000000001 | 0.7894             | 0.6920 |
| 5             | 0.7591             | 0.7713             | 0.8273999999999999 | 0.79170000000000001 | 0.7985             | 0.8134             |        |
| 6             | 0.8216             | 0.8265             | 0.7772             | 0.8057              | 0.7885             | 0.7781             |        |
| 7             | 0.7885             | 0.7870999999999999 | 0.7822             | 0.7748999999999999  | 0.8062             | 0.7395999999999999 |        |
| 8             | 0.7745000000000001 | 0.7582             | 0.7473000000000001 | 0.7554000000000001  | 0.7857999999999999 | 0.7920999999999999 | 0.8029 |
| 9             | 0.7079000000000001 | 0.7486             | 0.7554000000000001 | 0.7404999999999999  | 0.7541             | 0.7254999999999999 |        |
| 10            | 0.7659             | 0.7704000000000001 | 0.769899999999999  | 0.7976000000000001  | 0.802999999999999  | 0.8207             |        |
| average       | 0.76143            | 0.7744899999999999 | 0.77146            | 0.7792999999999999  | 0.78162            | 0.7745000000000001 |        |

| count/<br>组合数 | 1       | 2                   | 3       | 4       | 5                  | 6                  | 7       | 8       | 9       |             |
|---------------|---------|---------------------|---------|---------|--------------------|--------------------|---------|---------|---------|-------------|
| 1             | 3.6619  | 2.2344              | 1.1798  | 1.776   | 2.3069             | 3.4993             | 3.2046  | 1.7534  | 2.3381  |             |
| 2             | 2.9751  | 2.1791              | 3.8339  | 1.8028  | 1.6325             | 2.023              | 1.1427  | 1.2631  | 2.721   |             |
| 3             | 1.714   | 3.4419              | 2.7812  | 1.5916  | 2.919              | 1.5375             | 1.5247  | 2.8913  | 2.7758  |             |
| 4             | 4.2083  | 1.3992              | 3.1122  | 1.3307  | 1.8772             | 2.3611             | 3.118   | 2.3379  | 2.3343  |             |
| 5             | 2.681   | 3.9318              | 1.0927  | 2.6015  | 1.2245             | 1.2366             | 1.515   | 1.9868  | 1.9413  |             |
| 6             | 1.8958  | 1.2503              | 3.7739  | 1.1704  | 1.6931             | 1.6547             | 1.3614  | 1.3449  | 2.2773  |             |
| 7             | 2.2808  | 1.9102              | 1.6562  | 1.9065  | 2.0429             | 4.8658             | 2.762   | 1.7852  | 1.6392  |             |
| 8             | 3.8273  | 2.8483              | 2.5196  | 2.4858  | 1.8062             | 2.3312             | 1.9497  | 2.1118  | 3.0084  |             |
| 9             | 4.526   | 2.777               | 2.6239  | 1.6267  | 2.511              | 3.7836             | 1.8118  | 3.2146  | 1.7378  |             |
| 10            | 1.9175  | 1.728               | 2.3607  | 1.7867  | 1.4646             | 1.5428             | 1.3819  | 2.0063  | 2.3154  |             |
| average       | 2.96877 | 2.37002000000000002 | 2.49341 | 1.80787 | 1.9477900000000001 | 2.4835599999999998 | 1.97718 | 2.06953 | 2.30886 | 1.976500000 |



作图如下

# 3.4 光谱分辨率实验

## 该部分实验仅针对多光谱数据。

- 根据实验3.1得到的最优划分,在10次随机划分进行实验;
- 依次选择步长为1, 2, ..., 25, 进行组合波段实验
- 统计各情况下10次准确率、损失值,并计算均值;
- 做出曲线;

```
cd Ecust/louishsu/recognize_stage_2
python
>>> from main_update_config import main_3_4
>>> main_3_4() # 训练、测试
>>> main_3_4(True) # 输出文件到`images`
```

| count/<br>波段步<br>长 | 1                  | 2                  | 3                   | 4                  | 5                  | 6                  |        |
|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------|
| 1                  | 0.7676999999999999 | 0.7704000000000001 | 0.7722              | 0.7757999999999999 | 0.8234             | 0.7681             |        |
| 2                  | 0.8101999999999999 | 0.7763             | 0.81700000000000001 | 0.8342             | 0.784              | 0.7857999999999999 |        |
| 3                  | 0.7826000000000001 | 0.7776000000000001 | 0.7731              | 0.7686             | 0.7817000000000001 | 0.7663             | 0.781  |
| 4                  | 0.779899999999999  | 0.7445999999999999 | 0.8057              | 0.7717             | 0.7541             | 0.8098000000000001 | 0.7820 |

| count/<br>波段步<br>长 | 1                  | 2                  | 3                   | 4                  | 5                  | 6                  |  |
|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--|
| 5                  | 0.7745000000000001 | 0.812              | 0.7676999999999999  | 0.7926000000000001 | 0.7903             | 0.8070999999999999 |  |
| 6                  | 0.8125             | 0.8043             | 0.84510000000000001 | 0.8243             | 0.8382999999999999 | 0.802099999999999  |  |
| 7                  | 0.8332999999999999 | 0.7998000000000001 | 0.81700000000000001 | 0.8184             | 0.8034             | 0.8201999999999999 |  |
| 8                  | 0.8139             | 0.7745000000000001 | 0.8003              | 0.7807999999999999 | 0.7831             | 0.7559             |  |
| 9                  | 0.7354999999999999 | 0.7717             | 0.7622              | 0.7572             | 0.7345999999999999 | 0.769899999999999  |  |
| 10                 | 0.8025             | 0.8243             | 0.7879999999999999  | 0.774              | 0.7944             | 0.787999999999999  |  |
| average            | 0.7912600000000001 | 0.78555            | 0.79483             | 0.78976            | 0.7887299999999999 | 0.78732            |  |

loss

| count/<br>波段步<br>长 | 1       | 2       | 3      | 4       | 5                  | 6       | 7                  | 8       | 9                  |              |
|--------------------|---------|---------|--------|---------|--------------------|---------|--------------------|---------|--------------------|--------------|
| 1                  | 2.8747  | 2.5731  | 2.1413 | 2.4978  | 1.4107             | 1.7715  | 3.2493             | 2.9355  | 2.7843             |              |
| 2                  | 2.6618  | 3.0102  | 1.6403 | 0.9742  | 3.3383             | 1.3847  | 1.1297             | 1.2503  | 3.2395             |              |
| 3                  | 2.0165  | 2.364   | 2.2061 | 2.0468  | 2.4577             | 2.2395  | 1.569              | 2.8127  | 2.8835             |              |
| 4                  | 2.9868  | 1.658   | 1.1303 | 2.1253  | 3.2853             | 1.2613  | 2.4636             | 1.1008  | 1.4131             |              |
| 5                  | 3.4168  | 1.3092  | 2.3833 | 2.1405  | 1.4407             | 1.4102  | 3.319              | 2.4371  | 1.5933             |              |
| 6                  | 1.8175  | 1.4857  | 1.5948 | 1.1917  | 1.8515             | 1.929   | 1.401              | 1.8587  | 1.6191             |              |
| 7                  | 1.3199  | 2.0748  | 1.868  | 1.4674  | 4.4796             | 1.5883  | 1.6094             | 3.5604  | 1.3852             |              |
| 8                  | 1.9334  | 3.4124  | 2.413  | 3.4342  | 2.177              | 3.7755  | 2.4625             | 2.4185  | 2.4337             |              |
| 9                  | 7.6346  | 1.8191  | 1.6851 | 2.3358  | 2.1432             | 1.8685  | 1.2552             | 1.894   | 2.3579             |              |
| 10                 | 1.5055  | 1.42    | 1.6778 | 4.0444  | 2.724              | 2.7427  | 1.5251             | 1.1146  | 3.2828             |              |
| average            | 2.81675 | 2.11265 | 1.874  | 2.22581 | 2.5307999999999997 | 1.99712 | 1.9983799999999996 | 2.13826 | 2.2992399999999997 | 2.3256000000 |



作图如下

# 3.5 鲁棒性实验

- 根据实验3.1得到的最优划分,在10次随机划分进行实验;
- 选用全部波段进行实验;
- 统计10次实验中,改变条件得到表格;
- 做出曲线

cd Ecust/louishsu/recognize\_stage\_2
python
>>> from main\_update\_config import main\_3\_5

### 3.5.1 干扰种类

统计无干扰、干扰1、干扰2、干扰3下,每次实验的准确率、损失

#### 仅包含position=4

#### Multi

acc

| normal             | illum3              | illum2              | illum1              | count/光照 |
|--------------------|---------------------|---------------------|---------------------|----------|
| 0.523809552192688  | 0.5319148898124695  | 0.44186046719551086 | 0.5789473652839661  | 1        |
| 0.5116279125213623 | 0.6170212626457214  | 0.6666666665348816  | 0.5853658318519592  | 2        |
| 0.3888888955116272 | 0.7021276354789734  | 0.4864864945411682  | 0.6341463327407837  | 3        |
| 0.5957446694374084 | 0.5                 | 0.5777778029441833  | 0.54347825050354    | 4        |
| 0.6170212626457214 | 0.6000000238418579  | 0.7096773982048035  | 0.6341463327407837  | 5        |
| 0.5111111402511597 | 0.5581395626068115  | 0.6666666665348816  | 0.6428571343421936  | 6        |
| 0.7027027010917664 | 0.5428571701049805  | 0.7307692170143127  | 0.66666666865348816 | 7        |
| 0.574999988079071  | 0.5384615659713745  | 0.6000000238418579  | 0.5853658318519592  | 8        |
| 0.4722222089767456 | 0.47999998927116394 | 0.39534884691238403 | 0.4736842215061188  | 9        |
| 0.5675675868988037 | 0.6153846383094788  | 0.6052631735801697  | 0.5897436141967773  | 10       |
| 0.5465695917606354 | 0.5685906738042832  | 0.5880516797304154  | 0.5934401601552963  | average  |

| count/光照 | illum1             | illum2             | illum3             | normal             |
|----------|--------------------|--------------------|--------------------|--------------------|
| 1        | 6.167959690093994  | 9.065533638000488  | 5.434017658233643  | 6.919863700866699  |
| 2        | 5.824125289916992  | 5.772226810455322  | 8.19789981842041   | 10.900633811950684 |
| 3        | 4.807382583618164  | 3.9915144443511963 | 3.1928367614746094 | 8.285655975341797  |
| 4        | 7.459294319152832  | 8.04859733581543   | 9.044753074645996  | 7.6262712478637695 |
| 5        | 6.844326972961426  | 6.010092735290527  | 7.844810485839844  | 7.7738447189331055 |
| 6        | 4.546628475189209  | 3.2557802200317383 | 4.394327640533447  | 6.726580619812012  |
| 7        | 2.4725871086120605 | 2.0936903953552246 | 4.3624420166015625 | 3.5121984481811523 |
| 8        | 5.848727703094482  | 4.576180458068848  | 7.189635276794434  | 4.7397613525390625 |
| 9        | 21.53187370300293  | 23.862991333007812 | 21.625051498413086 | 24.50809097290039  |
| 10       | 3.3292295932769775 | 3.5280873775482178 | 3.004720449447632  | 3.4214606285095215 |
| average  | 6.883213543891907  | 7.02046947479248   | 7.429049468040466  | 8.441436147689819  |



作图如下

### RGB

acc

| count/光照 | illum1              | illum2              | illum3              | normal             |
|----------|---------------------|---------------------|---------------------|--------------------|
| 1        | 0.42105263471603394 | 0.41860464215278625 | 0.5319148898124695  | 0.523809552192688  |
| 2        | 0.46341463923454285 | 0.4523809552192688  | 0.5531914830207825  | 0.4651162922382355 |
| 3        | 0.5121951103210449  | 0.4864864945411682  | 0.7021276354789734  | 0.4444444477558136 |
| 4        | 0.41304346919059753 | 0.5777778029441833  | 0.47826087474823    | 0.5531914830207825 |
| 5        | 0.6585366129875183  | 0.6451612710952759  | 0.6000000238418579  | 0.5744680762290955 |
| 6        | 0.6785714030265808  | 0.5641025900840759  | 0.604651153087616   | 0.4444444477558136 |
| 7        | 0.6428571343421936  | 0.6346153616905212  | 0.4571428596973419  | 0.4864864945411682 |
| 8        | 0.46341463923454285 | 0.5                 | 0.43589743971824646 | 0.5249999761581421 |
| 9        | 0.44736841320991516 | 0.3488371968269348  | 0.41999998688697815 | 0.5                |
| 10       | 0.5128205418586731  | 0.6315789222717285  | 0.6410256624221802  | 0.5945945978164673 |
| average  | 0.5213274598121643  | 0.5259545236825943  | 0.5424212008714676  | 0.5111555367708206 |

| count/光照 | illum1            | illum2             | illum3             | normal            |
|----------|-------------------|--------------------|--------------------|-------------------|
| 1        | 5.125059127807617 | 6.356663227081299  | 4.351160049438477  | 5.395039081573486 |
| 2        | 8.10213565826416  | 6.4781951904296875 | 5.138296127319336  | 8.736297607421875 |
| 3        | 5.447436332702637 | 4.896655559539795  | 2.9816572666168213 | 6.670717239379883 |
| 4        | 8.497601509094238 | 5.763704299926758  | 6.337241172790527  | 6.002443790435791 |
| 5        | 7.847358703613281 | 5.984066486358643  | 6.456955909729004  | 8.204849243164062 |
| 6        | 5.684070110321045 | 5.115353107452393  | 4.7767157554626465 | 7.005745887756348 |
| 7        | 7.572367191314697 | 5.922027111053467  | 8.232109069824219  | 6.721381664276123 |
| 8        | 7.258645534515381 | 4.098363399505615  | 6.035258769989014  | 4.308747291564941 |
| 9        | 6.122344017028809 | 6.690638542175293  | 6.1424031257629395 | 4.622540473937988 |
| 10       | 6.353581428527832 | 5.328865051269531  | 4.515578269958496  | 3.126558303833008 |
| average  | 6.80105996131897  | 5.663453197479248  | 5.496737551689148  | 6.07943205833435  |



作图如下

## 3.5.2 偏转角度

统计各角度下,每次实验的准确率、损失

## 仅包含glass\_type=1

Multi

acc

| count/<br>位置 | 1                  | 2                  | 3                  | 4                 | 5                  | 6                  |         |
|--------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|---------|
| 1            | 0.939393937587738  | 0.984375           | 1.0                | 1.0               | 1.0                | 1.0                | 0.9692  |
| 2            | 0.95652174949646   | 0.96875            | 1.0                | 1.0               | 1.0                | 0.9852941036224365 | 0.97530 |
| 3            | 0.953125           | 0.9838709831237793 | 0.9696969985961914 | 0.98591548204422  | 0.9736841917037964 | 1.0                | 0.9166  |
| 4            | 0.9428571462631226 | 1.0                | 1.0                | 1.0               | 1.0                | 0.984375           | 0.92592 |
| 5            | 0.9142857193946838 | 0.9833333492279053 | 1.0                | 1.0               | 0.9718309640884399 | 0.9855072498321533 | 0.9016  |
| 6            | 0.9577465057373047 | 0.9866666793823242 | 1.0                | 1.0               | 1.0                | 1.0                | 0.9718  |
| 7            | 0.8970588445663452 | 0.9878048896789551 | 0.984375           | 1.0               | 1.0                | 0.9729729890823364 | 0.8965  |
| 8            | 0.9753086566925049 | 0.984375           | 1.0                | 1.0               | 0.96875            | 1.0                | 0.931   |
| 9            | 0.9642857313156128 | 1.0                | 0.9871794581413269 | 1.0               | 0.96875            | 0.9571428298950195 | 0.9142  |
| 10           | 0.9104477763175964 | 0.9677419066429138 | 1.0                | 1.0               | 1.0                | 1.0                | 0.9090! |
| average      | 0.9411031067371368 | 0.9846917808055877 | 0.9941251456737519 | 0.998591548204422 | 0.9883015155792236 | 0.9885292172431945 | 0.93120 |

| count/<br>位置 | 1                   | 2                     | 3                     | 4                      | 5                     |              |
|--------------|---------------------|-----------------------|-----------------------|------------------------|-----------------------|--------------|
| 1            | 0.2647956311702728  | 0.11220697313547134   | 0.0005198473809286952 | 0.00019686477025970817 | 0.0012118930462747812 | 0.0045175915 |
| 2            | 0.19952116906642914 | 0.3436585068702698    | 0.0014830699656158686 | 0.0010761530138552189  | 0.0006774560897611082 | 0.103070095  |
| 3            | 0.21327011287212372 | 0.17944999039173126   | 0.16181431710720062   | 0.07604364305734634    | 0.12488047778606415   | 0.0144031010 |
| 4            | 0.405721515417099   | 0.0063661192543804646 | 0.01213095709681511   | 0.015631509944796562   | 0.010623011738061905  | 0.060541901  |
| 5            | 0.23947837948799133 | 0.07228357344865799   | 0.001707955147139728  | 0.0014011701568961143  | 0.13789717853069305   | 0.015001314  |
| 6            | 0.48720642924308777 | 0.050129249691963196  | 0.009497841820120811  | 0.0004697312251664698  | 0.0005212312680669129 | 0.0083125857 |
| 7            | 0.6097179651260376  | 0.0352129228413105    | 0.08140107989311218   | 0.006668490823358297   | 0.007627331186085939  | 0.10874262   |
| 8            | 0.22077946364879608 | 0.06379980593919754   | 0.0018850984051823616 | 0.002226400887593627   | 0.10084619373083115   | 0.0088099185 |
| 9            | 0.17031720280647278 | 0.01697951927781105   | 0.022051319479942322  | 0.017060549929738045   | 0.07615628838539124   | 0.162010595  |

| count/<br>位置 | 1                   | 2                   | 3                    | 4                    | 5                    |              |
|--------------|---------------------|---------------------|----------------------|----------------------|----------------------|--------------|
| 10           | 0.44112566113471985 | 0.17642581462860107 | 0.005186810158193111 | 0.012150727212429047 | 0.004698488395661116 | 0.0059830686 |
| average      | 0.325193352997303   | 0.10565124754793942 | 0.02976782964542508  | 0.013292524102143943 | 0.04651395501568913  | 0.0491392796 |



作图如下

#### RGB

acc

| count/<br>位置 | 1                  | 2                  | 3                  | 4                  | 5                  | 6                  |       |
|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------|
| 1            | 0.8030303120613098 | 0.921875           | 0.9868420958518982 | 1.0                | 0.9841269850730896 | 0.9090909361839294 | 0.692 |
| 2            | 0.695652186870575  | 0.875              | 0.949999988079071  | 0.9402984976768494 | 1.0                | 0.9264705777168274 | 0.703 |
| 3            | 0.734375           | 0.9677419066429138 | 1.0                | 0.9577465057373047 | 0.9473684430122375 | 0.8732394576072693 | 0.597 |
| 4            | 0.7285714149475098 | 0.9677419066429138 | 0.9545454382896423 | 1.0                | 0.9864864945411682 | 0.875              | 0.740 |
| 5            | 0.6857143044471741 | 0.949999988079071  | 0.9767441749572754 | 1.0                | 0.9718309640884399 | 0.8840579986572266 | 0.655 |
| 6            | 0.7323943376541138 | 0.9866666793823242 | 0.98591548204422   | 0.9857142567634583 | 0.9841269850730896 | 0.9459459185600281 | 0.732 |
| 7            | 0.8382353186607361 | 0.9512194991111755 | 0.984375           | 0.9868420958518982 | 1.0                | 0.8918918967247009 | 0.672 |
| 8            | 0.6419752836227417 | 0.90625            | 0.9189189076423645 | 0.939393937587738  | 0.921875           | 0.9200000166893005 | 0.657 |
| 9            | 0.7678571343421936 | 0.9444444179534912 | 0.9358974099159241 | 0.9538461565971375 | 0.890625           | 0.8714285492897034 | 0.699 |
| 10           | 0.8208954930305481 | 0.9677419066429138 | 0.9538461565971375 | 1.0                | 0.9624999761581421 | 0.949999988079071  | 0.727 |
| average      | 0.7448700785636901 | 0.9438681304454803 | 0.9647084653377533 | 0.9763841450214386 | 0.9648939847946167 | 0.9047125339508056 | 0.687 |

| count/<br>位置 | 1                  | 2                   | 3                    | 4                     | 5                    |                    |
|--------------|--------------------|---------------------|----------------------|-----------------------|----------------------|--------------------|
| 1            | 1.2264301776885986 | 0.3491330146789551  | 0.10285498946905136  | 0.0025564602110534906 | 0.02868545986711979  | 0.50880604982376   |
| 2            | 1.8658058643341064 | 0.3265154957771301  | 0.2757793068885803   | 0.3573332726955414    | 0.02098148502409458  | 0.52393108606338   |
| 3            | 1.238227128982544  | 0.1969119906425476  | 0.027931980788707733 | 0.23020172119140625   | 0.27826428413391113  | 0.3225256800651550 |
| 4            | 2.19581937789917   | 0.11124242097139359 | 0.34367549419403076  | 0.012284818105399609  | 0.1216413676738739   | 1.936202406883239  |
| 5            | 1.250413179397583  | 0.16681309044361115 | 0.0887828916311264   | 0.019520483911037445  | 0.22390423715114594  | 0.637633085250854  |
| 6            | 1.2753628492355347 | 0.04450066015124321 | 0.0369686596095562   | 0.03906931355595589   | 0.08222836256027222  | 0.2431388497352    |
| 7            | 0.6716129183769226 | 0.10529304295778275 | 0.08982066810131073  | 0.17038173973560333   | 0.013117115944623947 | 0.417627066373825  |
| 8            | 2.755402088165283  | 0.8193526268005371  | 0.4291169047355652   | 0.13713611662387848   | 0.17468750476837158  | 1.170883536338806  |
| 9            | 1.0878218412399292 | 0.1987869143486023  | 0.22993454337120056  | 0.14500126242637634   | 0.44310736656188965  | 0.626678168773651  |

|      | unt/<br>位置 | 1                  | 2                   | 3                   | 4                    | 5                   |                    |
|------|------------|--------------------|---------------------|---------------------|----------------------|---------------------|--------------------|
|      | 10         | 0.9402564764022827 | 0.12287456542253494 | 0.19714957475662231 | 0.010987506248056889 | 0.22931131720542908 | 0.2170491665601730 |
| aver | rage       | 1.4507151901721955 | 0.2441423822194338  | 0.18220150135457516 | 0.1124472694704309   | 0.16159285008907318 | 0.660447509586811  |



作图如下

### 3.5.3 遮挡实验

统计无眼镜、近视眼镜、太阳镜下,每次实验的准确率、损失

### Multi

acc

| count/眼镜 | 1                  | 5                   | 6                   |
|----------|--------------------|---------------------|---------------------|
| 1        | 0.9851064085960388 | 0.4727272689342499  | 0.1111111119389534  |
| 2        | 0.9832985401153564 | 0.5849056839942932  | 0.1794871836900711  |
| 3        | 0.9688796401023865 | 0.5207100510597229  | 0.0923076942563057  |
| 4        | 0.9808510541915894 | 0.5246913433074951  | 0.1547619104385376  |
| 5        | 0.9678714871406555 | 0.39393940567970276 | 0.15094339847564697 |
| 6        | 0.9878787994384766 | 0.5432098507881165  | 0.10169491171836853 |
| 7        | 0.9657947421073914 | 0.6174496412277222  | 0.3285714387893677  |
| 8        | 0.9798792600631714 | 0.5298013091087341  | 0.1764705926179886  |
| 9        | 0.9705263376235962 | 0.3687500059604645  | 0.03703703731298447 |
| 10       | 0.9713114500045776 | 0.5301204919815063  | 0.19354838132858276 |
| average  | 0.976139771938324  | 0.5086305052042007  | 0.15259336605668067 |

| count/眼镜 | 1                   | 5                  | 6                  |
|----------|---------------------|--------------------|--------------------|
| 1        | 0.07731112837791443 | 5.79047966003418   | 13.081746101379395 |
| 2        | 0.09622308611869812 | 3.9061903953552246 | 16.375572204589844 |
| 3        | 0.16708935797214508 | 4.087160587310791  | 10.415313720703125 |
| 4        | 0.11849125474691391 | 4.715012550354004  | 16.08338165283203  |
| 5        | 0.09431734681129456 | 8.550827026367188  | 18.573633193969727 |
| 6        | 0.12857681512832642 | 3.4494059085845947 | 11.361750602722168 |
| 7        | 0.15613850951194763 | 2.8390541076660156 | 6.624544143676758  |
| 8        | 0.10699232667684555 | 4.0081071853637695 | 11.241830825805664 |

| 6                  | 5                  | 1                   | count/眼镜 |
|--------------------|--------------------|---------------------|----------|
| 43.34785079956055  | 12.741271018981934 | 0.12091128528118134 | 9        |
| 7.248566150665283  | 3.2280917167663574 | 0.1890537142753601  | 10       |
| 15.435418939590454 | 5.331560015678406  | 0.12551048249006272 | average  |



作图如下

### RGB

acc

| count/眼镜 | 1                  | 5                   | 6                    |
|----------|--------------------|---------------------|----------------------|
| 1        | 0.9021276831626892 | 0.3757575750350952  | 0.06172839552164078  |
| 2        | 0.8643006086349487 | 0.5345911979675293  | 0.05128205195069313  |
| 3        | 0.8672199249267578 | 0.5325443744659424  | 0.03076923079788685  |
| 4        | 0.8999999761581421 | 0.4444444477558136  | 0.0476190485060215   |
| 5        | 0.8835341334342957 | 0.4848484992980957  | 0.07547169923782349  |
| 6        | 0.9070706963539124 | 0.5                 | 0.06779661029577255  |
| 7        | 0.9114688038825989 | 0.449664443731308   | 0.11428571492433548  |
| 8        | 0.8370221257209778 | 0.3708609342575073  | 0.029411764815449715 |
| 9        | 0.8694736957550049 | 0.38749998807907104 | 0.02469135820865631  |
| 10       | 0.9139344096183777 | 0.46385541558265686 | 0.14516128599643707  |
| average  | 0.8856152057647705 | 0.45440668761730196 | 0.06482171602547168  |

| count/眼镜 | 1                   | 5                  | 6                  |
|----------|---------------------|--------------------|--------------------|
| 1        | 0.5824151635169983  | 4.70402717590332   | 9.97917652130127   |
| 2        | 0.6875079274177551  | 2.651108503341675  | 14.849656105041504 |
| 3        | 0.5678960680961609  | 2.671276807785034  | 11.261957168579102 |
| 4        | 0.8487849831581116  | 4.4232635498046875 | 13.403159141540527 |
| 5        | 0.5499852299690247  | 3.1266775131225586 | 20.022212982177734 |
| 6        | 0.5622195601463318  | 3.1061513423919678 | 13.873363494873047 |
| 7        | 0.40106916427612305 | 5.132781505584717  | 15.550905227661133 |
| 8        | 1.2949384450912476  | 4.516125202178955  | 11.175697326660156 |
| 9        | 0.561680793762207   | 3.097285747528076  | 11.630659103393555 |
| 10       | 0.40594759583473206 | 2.9248738288879395 | 11.442842483520508 |

 count/眼镜
 1
 5
 6

 average
 0.6462444931268692
 3.635357117652893
 13.318962955474854



作图如下