"Machine Learning estadístico para interfaces Cerebro-Computadora"

MODULO III - parte III

Dra Victoria Peterson

vpeterson@santafe-conicet.gov.ar

Nov 2023

Desafíos de ML en BCI

Desafíos de ML en BCI

Motivación

La matrices de covarianza espaciales

Fuente: pyRiemann

Motivación

La matrices de covarianza espaciales

Fuente: pyRiemann

¿Podré trabajar directamente en el espacio de las matrices de covarianza?

Definiciones-preliminares

Variedad (Manifold) de Riemannian

Una variedad de Riemannian es una variedad diferenciable en el cual el plano tangente en cada punto es un espacio Euclideo.

Fuente: [Congedo et al., 2017]

Definiciones-preliminares

Definiciones

 $S(p) = \{ \mathbf{S} \in M(p), \mathbf{S}^T = \mathbf{S} \}$, es el espacio de todas las matrices $p \times p$ simétricas en un espacio de matrices cuadradas.

 $Q(p) = \{ \mathbf{Q} \in S(p), \mathbf{Q} > 0 \}$, es el conjunto de matrices $p \times p$ simétricas definidas-positivas (SPD).

Definiciones-preliminares

Definiciones

 $S(p) = \{ \mathbf{S} \in M(p), \mathbf{S}^T = \mathbf{S} \}$, es el espacio de todas las matrices $p \times p$ simétricas en un espacio de matrices cuadradas.

 $Q(p) = \{ \mathbf{Q} \in S(p), \mathbf{Q} > 0 \}$, es el conjunto de matrices $p \times p$ simétricas definidas-positivas (SPD).

Las matrices de covarianza Σ son SPD

Definiciones-preliminares

Definiciones

 $S(p) = \{ \mathbf{S} \in M(p), \mathbf{S}^T = \mathbf{S} \}$, es el espacio de todas las matrices $p \times p$ simétricas en un espacio de matrices cuadradas.

 $Q(p) = \{ \mathbf{Q} \in S(p), \mathbf{Q} > 0 \}$, es el conjunto de matrices $p \times p$ simétricas definidas-positivas (SPD).

Distancia de Riemmannian

$$\delta_R(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \|Log(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_2)\|_F = \left(\sum_{j=1}^p \log^2 \sigma_j\right)^{\frac{1}{2}}, \text{ donde } \sigma_j = eigen(\mathbf{\Sigma}_1^{-1}\mathbf{\Sigma}_2)$$
Propied a dest

- Propiedades:
 - $\delta_R(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \delta_R(\mathbf{\Sigma}_2, \mathbf{\Sigma}_1).$
 - $\delta_R(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \delta_R(\mathbf{\Sigma}_1^{-1}, \mathbf{\Sigma}_2^{-1}).$
 - $\delta_R(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \delta_R(\mathbf{W}^T \mathbf{\Sigma}_1 \mathbf{W}, \mathbf{W}^T \mathbf{\Sigma}_2 \mathbf{W})$, siendo \mathbf{W} una matriz $p \times p$ invertible.

Definiciones-preliminares

Media aritmética

$$\bar{\boldsymbol{\Sigma}}_a = \mathrm{arg\,min}_{\boldsymbol{\Sigma} \in Q(p)} \sum_{i=1}^n \delta_E^2(\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_i) = \frac{1}{n} \sum_{i=1}^n \boldsymbol{\Sigma}_i.$$

Media de Reimannian

$$\bar{\Sigma}_R = \operatorname{argmin}_{\Sigma \in Q(p)} \sum_{i=1}^n \delta_R^2(\Sigma, \Sigma_i).$$

Geodésica

En el espacio de Riemannian de matrices SPD, se define como geodésica $\gamma(t)$, con $t \in [0,1]$ a la distancia más corta entre dos puntos Σ_1 y Σ_2 ,

$$\gamma(t) = \boldsymbol{\Sigma}_1^{1/2} \left(\boldsymbol{\Sigma}_1^{-1/2} \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{-1/2} \right)^t \boldsymbol{\Sigma}_1^{1/2},$$

donde para cualquier matriz **A** diagonalizable $\mathbf{A}^t = \mathbf{U}\mathbf{D}^t\mathbf{U}^{-1}$

Definiciones-preliminares

Media aritmética

$$\bar{\boldsymbol{\Sigma}}_a = \operatorname{arg\,min}_{\boldsymbol{\Sigma} \in Q(p)} \sum_{i=1}^n \delta_E^2(\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_i) = \frac{1}{n} \sum_{i=1}^n \boldsymbol{\Sigma}_i.$$

Media de Reimannian

 $\bar{\Sigma}_R = \operatorname{argmin}_{\Sigma \in Q(p)} \sum_{i=1}^n \delta_R^2(\Sigma, \Sigma_i).$

No tiene solución explícita. Debe hallarse mediante algoritmos iterativos.

Geodésica

En el espacio de Riemannian de matrices SPD, se define como geodésica $\gamma(t)$, con $t \in [0,1]$ a la distancia más corta entre dos puntos Σ_1 y Σ_2 ,

$$\gamma(t) = \mathbf{\Sigma}_1^{1/2} \left(\mathbf{\Sigma}_1^{-1/2} \mathbf{\Sigma}_2 \mathbf{\Sigma}_1^{-1/2} \right)^t \mathbf{\Sigma}_1^{1/2},$$

donde para cualquier matriz **A** diagonalizable $\mathbf{A}^t = \mathbf{U}\mathbf{D}^t\mathbf{U}^{-1}$

√. Peterson

Definiciones-preliminares

Media aritmética

$$\begin{split} \bar{\Sigma}_{a} &= \operatorname{arg\,min}_{\Sigma \in Q(p)} \sum_{i=1}^{n} \delta_{E}^{2}(\Sigma, \Sigma_{i}) = \frac{1}{n} \sum_{i=1}^{n} \Sigma_{i}. \\ \text{Recordar cálculo } \Sigma_{C} \text{ en CSP.} \end{split}$$

Media de Reimannian

$$\bar{\Sigma}_R = \operatorname{argmin}_{\Sigma \in Q(p)} \sum_{i=1}^n \delta_R^2(\Sigma, \Sigma_i).$$

No tiene solución explícita. Debe hallarse mediante algoritmos iterativos.

Geodésica

En el espacio de Riemannian de matrices SPD, se define como geodésica $\gamma(t)$, con $t \in [0,1]$ a la distancia más corta entre dos puntos Σ_1 y Σ_2 ,

$$\gamma(t) = \mathbf{\Sigma}_1^{1/2} \left(\mathbf{\Sigma}_1^{-1/2} \mathbf{\Sigma}_2 \mathbf{\Sigma}_1^{-1/2} \right)^t \mathbf{\Sigma}_1^{1/2},$$

donde para cualquier matriz **A** diagonalizable $\mathbf{A}^t = \mathbf{U}\mathbf{D}^t\mathbf{U}^{-1}$

Peterson CURSO SML-BCI: M3c

Espacio tangente

Fuente: [Barachant et al., 2010]

$$Log_{\Sigma}: \Sigma(n) \rightarrow S(n)$$

$$Exp_{\mathbf{S}}: \mathbf{S}(n) \to \mathbf{\Sigma}(n)$$

Espacio tangente

Fuente: [Barachant et al., 2010]

$$Log_{\Sigma}\left(\Sigma_{i}\right)=S_{i}$$

$$Exp_{\mathbf{S}}(\mathbf{S}_i) = \mathbf{\Sigma}_i$$

Espacio tangente

Fuente: [Barachant et al., 2010]

$$Log_{\Sigma}(\Sigma_i) = \Sigma^{1/2} Log(\Sigma^{-1/2} \Sigma_i \Sigma^{-1/2}) \Sigma^{1/2}$$

$$Exp_{S}(S_i) = \Sigma^{1/2} Exp(\Sigma^{-1/2} S_i \Sigma^{-1/2}) \Sigma^{1/2}$$

Distancia mínima a la media Riemannian (MDM)

Distancia mínima a la media Riemannian (MDM)

Algorithm 1 Minimum Distance to Riemannian Mean

Input: a set of trials X_i of K different known classes.

Input: X an EEG trial of unknown class.

Input: $\mathfrak{I}^{(k)}$ the set of indices of the trials corresponding to the k-th condition. Output: \hat{k} the estimated class of test trial \mathbf{X} .

- 1: Compute SCMs of X_i to obtain P_i , (1).
- 2: Compute SCM of X to obtain P, (1).
- 3: for k=1 to K do
- 4: $\mathbf{P}_{\mathfrak{G}}^{(k)} = \mathfrak{G}\left(\mathbf{P}_{i}, i \in \mathfrak{I}^{(k)}\right), (10).$
- 5: end for
- 6: $\hat{k} = \arg\min_{k} \delta_{R}(\mathbf{P}, \mathbf{P}_{\mathfrak{G}}^{(k)}),$ (4).
- 7: return \hat{k}

Invarianza a la transformación

Fuente: [Congedo et al., 2017]

Desafíos de ML en BCI

Desafíos de ML en BCI

Variabilidad entre sesiones

Cross-session BCI

Variabilidad entre sesiones

Cross-session BCI

Domain adaptation, domain invariant, model robustness

Variabilidad entre sujetos

Cross-subjects BCI

Variabilidad entre sujetos

Cross-subjects BCI

Transfer learning, zero-training, minimal-recalibration

Un sistema co-adaptativo

Considering the user within the loop

Un sistema co-adaptativo

Considering the user within the loop

Feedback, model adaptability, illiteracy

Neuroética

Fuente: [Cabrera and Weber, 2023]

Y muuucho más

Fuente: REVISTA KNOWABLE

Bibliografía utilizada I

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2010). Riemannian geometry applied to bci classification. In *International Conference on Latent Variable Analysis and Signal Separation*, pages 629–636. Springer.

Cabrera, L. Y. and Weber, D. J. (2023). Rethinking the ethical priorities for brain-computer interfaces. *Nature Electronics*, 6(2):99-101.

Congedo, M., Barachant, A., and Bhatia, R. (2017). Riemannian geometry for eeg-based brain-computer interfaces; a primer and a review. *Brain-Computer Interfaces*, 4(3):155–174.