

## SRM Institute of Science and Technology Kattankulathur

## DEPARTMENT OF MATHEMATICS

## THEMATICS



## 18MAB101T Calculus and Linear Algebra

|     |                                                                                                                                                | UNIT - IV                                                                                                                                                                                |                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|     |                                                                                                                                                | Tutorial Sheet −1                                                                                                                                                                        | Answers                                                       |
| 1.  | Find the radius of the curve $y = e^x$ at $(0, 1)$                                                                                             |                                                                                                                                                                                          | $\rho = 2\sqrt{2}$                                            |
| 2.  | Find the radius of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ on the curve $\rho = 1/\sqrt{2}$ $\sqrt{x} + \sqrt{y} = 1$ . |                                                                                                                                                                                          |                                                               |
| 3.  | Show that the radius of curvature at any point of the catenary $\rho = C$ $y = c \cosh(x/c)$ is $y^2/c$ . Also find $\rho$ at $(0, c)$ .       |                                                                                                                                                                                          |                                                               |
| 4.  | Find the radius of curvature at the point (c, c) on the curve $xy = c^2$ $\rho = c\sqrt{2}$                                                    |                                                                                                                                                                                          |                                                               |
| 5.  | Find $\rho$ at an                                                                                                                              | y point $P(at^2, 2at)$ on the parabola $y^2 = 4ax$ .                                                                                                                                     | $\rho = 2a(1+t^2)^{3/2}$                                      |
| 6.  | Find the radio of the curve                                                                                                                    | its of curvature at any point $x = a\cos^3 \theta$ , $y = a\sin^3 \theta$<br>$x^{2/3} + y^{2/3} = a^{2/3}$ . Also show that $\rho^3 = 27axy$ .                                           | $\rho = 3a\sin 2\theta / 2$                                   |
| 7.  | $x = ae^{\theta} (\sin \theta)$                                                                                                                | he radius of curvature at any point of the curve $(y - \cos \theta)$ , $y = ae^{\theta}(\sin \theta + \cos \theta)$ is twice the r distance of the tangent at the point from the origin. |                                                               |
| 8.  |                                                                                                                                                | the radius of curvature at any point of the cycloid $\theta$ ), $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$ .                                                                 |                                                               |
| 9.  | bisected by the                                                                                                                                | $(\theta)$ , $y = a(1 - \cos \theta)$ to its centre of curvature is the line $y = 2a$ .                                                                                                  | S                                                             |
| 10. | Find the circ point $\left(\frac{a}{4}, \frac{a}{4}\right)$                                                                                    | le of curvature of the curvature $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the                                                                                                                 | $(x - \frac{3a}{4})^2 + (y - \frac{3a}{4})^2 = \frac{a^2}{2}$ |