DENEY-2 BJT VE MOSFET'İN DC ÖZELLİKLERİNİN ÇIKARTILMASI

DENEYİN AMACI: Bipolar jonksiyonlu transistör (BJT) ve MOS transistörün DC (doğru akımda) çalışma bölgelerindeki akım-gerilim ilişkilerinin teorik ve pratik olarak kavranması.

ÖN HAZIRLIK

Deneye gelmeden önce temiz bir kâğıda aşağıdakilerin yazılması istenmektedir;

- ✓ BJT (npn) için $V_{CE}-I_C$ grafiğinin çizilmesi ve grafikteki değişik çalışma bölgelerinin belirtilmesi
- $\checkmark~$ İleri yönde çalışan bir BJT (npn) için $V_{\rm \it BE} \ln(I_{\rm \it C})~$ grafiğinin çizilmesi
- ✓ NMOS için $V_{DS}-I_{D}$ grafiğinin çizilmesi ve grafikteki değişik çalışma bölgelerinin belirtilmesi
- ✓ NMOS için $V_{GS} I_D$ grafiğinin çizilmesi ve V_m değerinin kabaca grafikte gösterilmesi.

GÖZDEN GEÇİRİLMESİ FAYDALI KONULAR

- ✓ BJT ve MOSFET'in çalışma bölgeleri
- ✓ BJT ve MOSFET'in fiziksel yapıları arasındaki farklar

KULLANILACAK MALZEMELER

- ✓ 1 Adet Güç kaynaklı deney tahtası (1 adet sabit 5V ve 1 adet ayarlanabilir (0 15V) DC gerilim kaynağı, ve 1 adet standart breadboard)
- ✓ 2 Adet Multimetre (standart DC ölçümler için)
- ✓ 1 Adet Değişken direnç kutusu (1k Ω 1 M Ω)
- \checkmark 1 Adet 10 kΩ direnç
- ✓ 1 Adet BC238 NPN Transistör
- ✓ 1 Adet CD4007 UB CMOS inverter
- ✓ Yeterli sayıda kablo ve tel.

1. BJT ELEMAN DAVRANIŞININ İNCELENMESİ

Bir npn bipolar jonksiyonlu transistörün baz-emetör ve baz-kollektör gerilimleri değerlendirildiğinde, sahip olabileceği 4 farklı çalışma rejimi Şekil-2.1'de gösterildiği gibidir. Aslında bir akım kontrol elemanı olan BJT, kuvvetlendirici olarak kullanıldığı uygulamalarda ileri yönde (aktif) çalışma bölgesinde kalacak şekilde kutuplanır. Şekil-2.1'den anlaşılacağı üzere bu bölgede $V_{\rm BE}>0$ ve $V_{\rm BC}<0$ olmalı, yani baz-emetör jonksiyonu geçirme, baz-kollektör jonksiyonu tıkama yönünde kutuplanmalıdır. Bir anahtar elemanı olarak kullanıldığı uygulamalarda (dijital) ise çalışma bölgeleri doyma (anahtar kapalı) ve kesimdir (anahtar açık). Şekil-2.1 üzerinde bu çalışma bölgeleri gösterilmiştir.

Şekil-2.1 npn BJT'nin çalışma bölgeleri ve devre sembolü.

Deney-2.1: Önce transistörün ileri yönde çalışmasını inceleyelim. $V_{\it BE}>0~{
m ve}$ $V_{\it BC}<0$ olduğu bu durum için kollektör akımının

$$I_C \cong I_S e^{V_{BE}/V_T} \tag{2.1}$$

$$I_C = \beta_F I_B \tag{2.2}$$

şeklinde ifade edildiğini biliyoruz. Transistörün ileri yönde çalışmasına ilişkin bu iki temel karakteristiği elde edebilmek için Şekil-2.1'deki, elektronik devrelerde en çok

uygulaması olan, ortak emetörlü konfigürasyonu, R_3 direncini kısa devre ederek ve V_C gerilim değerini 5 V seçerek kurunuz.

Devredeki R_1 direncinin değiştirilmesiyle farklı I_B ve/veya V_{BE} değerleri oluşturulabilir. Ayarlanabilir R_1 direncini değiştirerek, $I_C - V_{BE}$ ve $I_C - I_B$ değişim karakteristiklerini elde etmeye yeter sayıda ölçüm yapınız. Bulduğunuz ölçüm sonuçlarını, R_2 üzerinden akan akım (I_B) değerlerini de hesaplayarak Ek-A'daki tabloya ve eksen takımlarına işleyiniz.

Şekil-2.2 Ortak emetörlü konfigürasyon

Deney-2.2: Şimdi de transistörü ters yönde ve doymada çalıştırarak gerekli ölçümleri yapalım. İleri yönde çalışma için seçtiğimiz değişik R_1 değerlerinden ortalama bir değer seçelim ve bu değer için daha önceden bulduğumuz sonuçları (Ek-A'daki tablo içinden) Ek-B'ye işleyelim.

Aynı düzenekte emetör ve kollektörün yerlerini değiştirerek transistörün ters yönde çalışmasını sağlayalım ve gerekli ölçümleri yaparak Ek-B'ye işleyelim.

Şimdi R_1 direncini kısa devre edip, değişken direnci R_3 olarak (1k Ω) devreye ekleyelim. Bu sayede transistörü ($V_{\it CB}$ <0 yaparak) doymalı bölgede çalıştıralım. Gerekli ölçümleri yaparak Ek-B'ye işleyelim.

Üç değişik bölge (ileri yön, ters yön ve doyma) için bulduğunuz β değerlerinin arasındaki farkın nedenini tartışınız.

2. MOSFET ELEMAN DAVRANIŞININ İNCELENMESİ

Bir NMOS transistörün devre sembolü Şekil-2.3'de gösterildigi gibidir ve aslında 4 uçlu (D, G, S, B) bir elemandır. BJT'nin aksine, savak ve kaynak birbirinin tamamen simetriğidir.

Şekil-2.3 NMOS'un devre sembolü

Bir MOSFET'in savak (D) akımının, eşik gerilimi (V_T), geçit-kaynak gerilimi (V_{GS}) ve savak-kaynak gerilimine (V_{DS}) bağlı olarak üç farklı bölgede incelendiğini biliyoruz. Bir NMOS için bu rejimler ve bu rejimlere ilişkin savak akımları,

1)
$$V_{GS} - V_{tn} < 0$$
 için **kesim**: $I_D = 0$ (2.3)

2)
$$V_{GS} - V_{tn} > V_{DS}$$
 için **doymasız:** $I_D = k_n \left[(V_{GS} - V_{tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right] (1 + \lambda_n V_{DS})$ (2.4)

3)
$$V_{GS} - V_{tn} < V_{DS}$$
 için **doymalı:** $I_D = \frac{k_n}{2} (V_{GS} - V_{tn})^2 (1 + \lambda_n V_{DS})$ (2.5)

olarak belirlidir.

Deney-2.3: Önce Şekil-2.4'deki düzeneği kurunuz. V_G =10V, V_D =5V seçerek, R₂ direncini 100kΩ'dan başlamak üzere kademe kademe azaltarak, V_{GS} – I_D karakteristiğini belirleyecek yeterli sayıda ölçüm yapınız. Ölçtüğünüz değerleri Ek-C'deki tabloya ve eksen takımına işleyiniz.

Şekil-2.4 Ortak kaynaklı konfigürasyon.

Deney-2.4: Şimdi de V_G =5V, R₂=100kΩ olarak seçelim. R₂ sabit olduğundan V_{GS} değeri sabit olacaktır. Değişken gerilim kaynağı yardımıyla, V_D gerilimini 0 – 10V arası değiştirerek $V_{DS} - I_D$ karakteristiğini elde etmeye çalışınız. Bulduğunuz değerleri Ek-D'deki tabloya ve eksen takımına işleyiniz.

Deney-2.5: Şekil-2.5'deki düzeneği oluşturarak üç farklı V_{SB} değeri ($V_{SB} = V_{R_1}$) seçiniz. Sırasıyla R_1 =0 (kısadevre), 1k ve 2.2k değerleri için V_D 'yi degiştirerek I_D akımını 1 mA de sabit tutmaya çalışınız ve I_D = 1 mA için V_{GS} değerlerini ölçerek Ek-E'deki tabloya işleyiniz. Transistörün üç farklı durum için aynı akımı akıtmasına rağmen V_{GS} değerlerinin neden farklı çıktığını tartışınız.

Aşağıdaki denklemde gösterildiği gibi kaynak-taban jonksiyonuna uygulanan farklı tıkama yönü gerilimi (V_{SB}) değerleri için eşik geriliminin değeri değişir.

Şekil-2.5 Diyot bağlı NMOS'un oluşturduğu konfigürasyon.

Deneyi yaptıran Araş	ş. Gör.:	Grup No:
Oda No:	e-mail:	Tarih :

ÖLÇME SONUÇLARINI İŞLEME KISMI

EK-A (DENEY-2.1)

 $V_{\it CE} =$

R_1	$V_{_{BE}}$	I_{C}	V_{R2}	$I_{\scriptscriptstyle B}$	β

EK-B (DENEY-2.2)

	$V_{_{BE}}$	V_{CE}	$I_{\scriptscriptstyle B}$	I_C	β
İleri Yönde Çalışma					
Ters Yönde Çalışma					
Doyma					

EK-C (DENEY-2.3)

$$V_{DS} =$$

V_{GS}	I_D										
		Ī	7								
		│	$I_{\mathcal{D}}$: : -	:	::				:	:
			:								
		1 🗇									
] -								<u></u>	
] _									
] [Ť		Ť	П	Ť	Ť	Ť	<u>.</u>	

EK-D (DENEY-2.4)

$$V_{GS} =$$

V_{DS}	I_D

Ek-E (DENEY-2.5)

$$I_D =$$

V_{SB}	V_{GS}

EK-BİLGİLER

