Preference Optimization for Combinatorial Optimization Problems

2025. 07. 04

임제원

I Introduction

- ✓ 지도학습, 강화학습을 포함하는 딥러닝은 데이터로부터 직접 휴리스틱을 학습하며 조합최적화를 해결
- ✓ 지도학습은 고품질의 해를 요구하며, 훈련 데이터 세트가 최적성을 보장하지 못할 수 있음
- ✓ 강화학습은 환경으로부터 보상 및 피드백을 획득하여 모델이 시행착오 방식으로 개선되지만 아래와 같은 어려움 존재
 - 1. Diminishing reward signals
 - : 정책이 개선되며 advantage value가 감소 -> vanishing gradients 및 느린 수렴
 - 2. Unconstrained action spaces
 - : 조합최적화 문제에서 제약이 없어, 행동공간이 매우 크므로 탐색이 어렵고 계산량이 너무 큼
 - 3. Additional inference time
 - : 빠르게 해를 추론하지만, 후처리 필요(local search 등) 이 과정에서 추가적인 계산 비용 발생
- ✓ Diminishing reward signals 및 비효율적인 탐색문제를 해결하기 위해 양적 보상 신호 → 질적 보상 신호로 변환
- ✓ 절대적인 보상 값보다는 생성된 해 간의 우월성에 초점을 맞추는 것을 제안
 - → 이 접근 방식은 학습 과정을 안정화시키며 선호도 신호가 보상의 규모에 둔감하여 이론적으로 최적성을 강조
- ✓ 추가적으로 inference time을 완화하기 위해 이러한 기술을 fine-tuning 과정에 통합하여 개선된 솔루션 학습

II Contribution

1. Preference-based Framework

: 정량적 보상 신호를 정성적 선호 신호로 변환하는 새로운 학습 프레임워크 제안 ex) reward가 A(500), B(498)이라면 수치로는 큰 차이가 없지만, A>B 라는 선호관계를 활용하여 안정된 학습 가능 reward scale에 의존하지 않아, 다양한 문제에서 robust한 학습이 가능함

2. Reparameterized Entropy-Regularized Objective

: reward 함수를 정책의 함수로 재매개변수화 하여 선호 신호와 직접 정렬되는 새로운 목적함수를 정의 ex) 1번에서의 A > B 정보를 활용하여 A가 B보다 나은 행동을 했다면 $\log \sigma \left(\alpha(\log \pi(A) - \log \pi(B)) \right)$ 로 A의 확률이 더 높아지도록 학습 $(\sigma: sigmoid, \pi(A): probability of A)$

3. Integration with Local Search

: Local Search를 후처리가 아니라, 훈련 과정에 통합하여 사용.

전체 모델 구조

Methodology

Entropy-Regularized Optimal Policy

$$\pi^*(au|x) = rac{1}{Z(x)} \exp\left(rac{1}{lpha} r(x, au)
ight)$$

au: 하나의 솔루션 (e.g., 하나의 TSP 투어 경로)

r(x, au): 해당 솔루션의 보상 (e.g., -투어 길이)

lpha: entropy 조절 계수 (작을수록 exploitation, 클수록 exploration)

Z(x): 정규화 상수 (partition function), 전체 trajectory의 확률이 1이 되도록 함

- ✔ Maximum Entropy Reinforcement Learning 프레임워크에서 유도됨
- ✓ 기존 정책 학습 목적함수에 entropy 항을 추가하여 탐색을 유도함
- → 좋은 솔루션에 더 높은 확률을 부여하되, 일정한 entropy를 유지하여 다양한 경로도 탐색하게끔 유도하는 정책

❖ Preference Probability via Policy Difference

$$p(au_1 \succ au_2 | x) = \sigma\left(lpha\left[\log \pi(au_1 | x) - \log \pi(au_2 | x)
ight]
ight)$$

 $\pi(au_1|x),\pi(au_2|x)$: 각각 솔루션 au_1, au_2 의 정책 확률

 $\log \pi(au)$: soft log-probability — reward function과 비례한 값

 $\sigma(z) = \frac{1}{1+e^{-z}}$: 시그모이드 함수 (확률화)

- ✔ Bradley-Terry (BT) 모델 기반의 쌍 선호 모델
- ✓ 누가 더 나은가? 를 정성적 비교로 모델링
- → POCO 논문의 핵심은 이 선호되는 trajectory 쪽의 확률을 최대화 하도록 정책을 학습시킨 것

Algorithm 1 Preference Optimization for COPs.

Input: problem set \mathcal{D} , number of training steps T, finetune steps $T_{\text{FT}} \geq 0$, batch size B, learning rate η , ground truth reward function r, number of local search iteration I_{LS} , initialized policy π_{θ} .

for
$$step = 1, \dots, T + T_{FT}$$
 do

//Sampling N solutions for each instance x_i

$$x_i \leftarrow \mathcal{D}, \quad \forall i \in \{1, \dots, B\}$$

$$\tau_i = \{\tau_i^1, \tau_i^2, \dots, \tau_i^N\} \leftarrow \pi_{\theta}(x_i), \ \forall i \in \{1, \dots, B\}$$

// Fine-tuning with LS for T_{FT} steps (Optional)

if step > T then

$$\{\hat{\tau}_i^1, \hat{\tau}_i^2, \dots, \hat{\tau}_i^N\} \leftarrow LocalSearch(\tau_i, r, I_{LS}), \ \forall i \ \tau_i \leftarrow \tau_i \cup \{\hat{\tau}_i^1, \hat{\tau}_i^2, \dots, \hat{\tau}_i^N\}$$

end if

//Calculate conflict-free preference labels via grounding reward function $r(x, \tau)$

$$y_{j,k}^i \leftarrow \mathbb{1}\left(r(x_i, \tau_i^j) > r(x_i, \tau_i^k)\right), \ \forall j, k$$

//Approximating the gradient according to Eq. 8

$$\nabla_{\theta} J(\theta) \leftarrow \frac{\alpha}{B|\tau_i|^2} \sum_{i=1}^{B} \sum_{j=1,k=1}^{|\tau_i|} \left[\left(g(\tau_i^j, \tau_i^k, x_i) - \frac{\alpha}{B|\tau_i|^2} \right) \right]$$

$$g(\tau_i^k, \tau_i^j, x_i) \nabla_\theta \log \pi_\theta(\tau_i^j \mid x_i)$$

$$\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$$

end for

Methodology - Example

- ✓ 2개의 시퀀스 τ_1, τ_2 가 존재한다고 가정
- ✓ 이 두 경로에 대해, 보상 값이 " $\tau_1 > \tau_2$ " 즉, τ_1 이 더 좋음
- \checkmark $\pi(\tau_1|x) = 0.3$, $\pi(\tau_2|x) = 0.4$ 로 모델은 오히려 **안 좋은 \tau_2를 더 높은 확률로 선택**하고 있는 상황

- \checkmark p(τ₁ > τ₂ | x) = σ(α[logπ(τ₁|x) logπ(τ₂|x)] = σ(α[log0.3 - log0.4]) \approx 0.36, 즉, "τ₁ > τ₂" 의 확률을 36%정도로 보고 있음 \rightarrow 잘못된 판단
- ✓ Loss 계산

 $L_{pref} = -[ylogp + (1-y)log(1-p)] = -log(0.36) \approx 1.02 \rightarrow 모델은 현재 예측이 잘못되었다는 신호를 받음$

✓ 이후 Loss가 0에 수렴하도록 모델 업데이트 후 $\pi(\tau_1|x) = 0.45$, $\pi(\tau_2|x) = 0.35$ (예시) 로 수정

Methodology - Code

```
각 TSP 문제 인스턴스 xi에 대해 POMO로 N=4개 솔루션 생성
생성된 솔루션들:
```

pomo0: 0→3→1→4→2→0 → 거리: 10.5, 보상: -10.5 pomo1: 0→1→3→2→4→0 → 거리: 8.2, 보상: -8.2 pomo2: 0→4→2→1→3→0 → 거리: 12.1, 보상: -12.1 pomo3: 0→2→4→3→1→0 → 거리: 9.8, 보상: -9.8

✓ POMO Loss Function

```
def rl_loss_fn(self, reward, prob_list):
    advantage = reward - reward.float().mean(dim=1, keepdims=True)
    # shape: (batch, pomo)
    log_prob = prob_list.log().sum(dim=2)
    # size = (batch, pomo)
    loss = -advantage * log_prob # Minus Sign: To Increase REWARD
    # shape: (batch, pomo)
    loss_mean = loss.mean()
    return loss_mean
```

- ✓ 입력 보상: [-10.5, -8.2, -12.1, -9.8]
- ✔ Baseline: -10.15 (평균)
- ✓ Advantage: [-0.35, +1.95, -1.95, +0.35]
- ✓ 양수 → 평균보다 좋음 → 확률 증가
- ✓ 음수 → 평균보다 나쁨 → 확률 감소

Methodology - Code

✓ POCO Loss Function

```
def preference_among_pomo_loss_fn(self, reward, prob): # BT
    preference = reward[:, :, None] > reward[:, None, :]
    # shape: (batch, pomo, pomo)

log_prob = torch.log(prob).sum(2)
    log_prob_pair = log_prob[:, :, None] - log_prob[:, None, :]
    pf_log = torch.log(F.sigmoid(self.alpha * log_prob_pair))
    loss = -torch.mean(pf_log * preference)

return loss
```

Ш

Methodology - Code

```
PO LOSS GRADIENT 계산 과정 상세 설명
 성능 순위: pomo1 > pomo3 > pomo0 > pomo2
  확률 순위: pomo1 > pomo0 > pomo3 > pomo2
 문제: pomo3가 pomo0보다 성능 좋은데 확률이 낮음
STEP 1: 전체 쌍별 비교 (4x4 = 16개 쌍)
각 쌍에 대해 (예상 승률 - 실제 승률)을 계산
모든 쌍별 계산:
 pomo@ vs pomo1: 져야함, 예상@.49@ → pomo@ 감소 (-@.49@)
 pomo@ vs pomo2: 이겨야함, 예상@.528 → pomo@ 증가 (+@.472)
  pomo@ vs pomo3: 져야함, 예상@.512 → pomo@ 감소 (-@.512)
  pomo1 vs pomo0: 이겨야함, 예상0.510 → pomo1 증가 (+0.490)
  pomo1 vs pomo2: 이겨야함, 예상0.538 → pomo1 증가 (+0.462)
  pomo1 vs pomo3: 이겨야함, 예상0.522 → pomo1 증가 (+0.478)
  pomo2 vs pomo0: 져야함, 예상0.472 → pomo2 감소 (-0.472)
 pomo2 vs pomo1: 져야함, 예상0.462 → pomo2 감소 (-0.462)
 pomo2 vs pomo3: 져야함, 예상0.484 → pomo2 감소 (-0.484)
 pomo3 vs pomo0: 이겨야함, 예상0.488 → pomo3 증가 (+0.512)
  pomo3 vs pomo1: 져야함, 예상0.478 → pomo3 감소 (-0.478)
 pomo3 vs pomo2: 이겨야함, 예상0.516 → pomo3 증가 (+0.484)
 Bradley-Terry 모델로 현재 예상 승률 계산
g(\tau j, \tau k, xi) = sigmoid(\alpha \times (log \pi(\tau j|xi) - log \pi(\tau k|xi)))
현재 모델이 예상하는 승률 (α=0.05):
       p0 p1 p2 p3
 p0: 0.500 0.490 0.528 0.512
 p1: 0.510 0.500 0.538 0.522
  p2: 0.472 0.462 0.500 0.484
  p3: 0.488 0.478 0.516 0.500
```

```
STEP 2: 각 pomo별 총 gradient 효과
pomo0 총 gradient: -0.530
  이겨야 할 경우들:
   vs pomo2: +0.472
  져야 할 경우들:
   vs pomo1: -0.490
   vs pomo3: -0.512
pomo1 총 gradient: +1.429
  이겨야 할 경우들:
   vs pomo0: +0.490
   vs pomo2: +0.462
   vs pomo3: +0.478
pomo2 총 gradient: -1.418
  져야 할 경우들:
   vs pomo0: -0.472
   vs pomo1: -0.462
   vs pomo3: -0.484
pomo3 총 gradient: +0.519
  이겨야 할 경우들:
   vs pomo0: +0.512
   vs pomo2: +0.484
  져야 할 경우들:
   vs pomo1: -0.478
pomo@ 분석:
  이겨야 함: pomo2 (예상99.9% vs 실제100%) → +0.001
  져야 함: pomo1 (예상8.1% vs 실제0%) → -0.081
  져야 함: pomo3 (예상95.0% vs 실제0%) → -0.950
  총합: +0.001 - 0.081 - 0.950 = -1.030
  → pomo@ 확률 감소!
pomo3 분석:
  이겨야 함: pomo@ (예상5.0% vs 실제100%) → +0.95@
  이겨야 함: pomo2 (예상97.7% vs 실제100%) → +0.023
  져야 함: pomo1 (예상0.5% vs 실제0%) → -0.005
  총합: +0.950 + 0.023 - 0.005 = +0.968
  → pomo3 확률 대폭 증가!
```

```
업데이트 전 확률:
pomo0: 0.268
pomo1: 0.603
pomo2: 0.029
pomo3: 0.100

업데이트 후 확률:
pomo0: 0.303 (↑0.035)
pomo1: 0.560 (↓0.043)
pomo2: 0.035 (↑0.007)
pomo3: 0.102 (↑0.002)
```

Table 1: Experiment results on TSP and CVRP. Gap is evaluated on 10k instances and Times are summation of them.

_		Algorithm	TSP						CVRP					
	Solver		N = 20		N = 50		N = 100		N = 20		N = 50		N = 100	
			Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time	Gap	Time
Heuristic	Concorde	-	0.00%	13m	0.00%	21.5m	0.00%	1.2h	-	-	-	-	-	-
	LKH3	-	0.00%	28s	0.00%	4.3m	0.00%	15.6m	0.00		0.18%	2h	0.55%	
	HGS	-	-	-	-	-	-	-	0.00%	1h	0.00%	3h	0.00%	5h
Neural Solvers	AM (Kool et al., 2019)	RF	0.28%	0.1s	1.66%	1s	3.40%	2s	4.40%	0.1s	6.02%	1s	7.69%	3s
		PO	0.33%	0.1s	1.56%	1s	2.86%	2s	4.60%	0.1s	5.65%	1s	6.82%	3s
	Pointerformer (Jin et al., 2023)	RF	0.00%	6s	0.02%	12s	0.15%	1m	-	-	-	-	-	
		PO	0.00%	6s	0.01%	12s	0.06%	1m	-	-	-	-	-	-
	Sym-NCO (Kim et al., 2022)	RF	0.01%	1s	0.16%	2s	0.39%	8s	0.72%	1s	1.31%	4s	2.07%	16s
		PO	$\boldsymbol{0.00\%}$	1s	0.08%	2s	0.28%	8s	0.63%	1s	1.20%	4s	1.88%	16s
		RF	0.01%	1s	0.04%	15s	0.15%	1m	0.37%	1s	0.94%	5s	1.76%	3.3m
	POMO (Kwon et al., 2020)	PO	$\boldsymbol{0.00\%}$	1s	0.02%	15s	0.07%	1m	0.16%	1s	0.68%	5 s	1.37%	3.3m
		PO+Finetune	0.00%	1s	0.00%	15s	0.03%	1m	0.08%	1s	0.53%	5s	1.19%	3.3m

	Solver		FFSP20			FFSP50		FFSP100			
	Solvei	MS.↓	.↓ Gap Tim		MS.↓	Gap	Time	MS.↓	Gap	Time	
	CPLEX (60s)*	46.4	84.13%	17h		×			×		
Heuristic	CPLEX (600s)*	36.6	45.24%	167h		×			×		
	Random	47.8	89.68%	1m	93.2	88.28%	2m	167.2	87.42%	3m	
	Shortest Job First	31.3	24.21%	40s	57.0	15.15%	1m	99.3	11.33%	2m	
	Genetic Algorithm	30.6	21.43%	7h	56.4	13.94%	16h	98.7	10.65%	29h	
	Particle Swarm Opt.	29.1	15.48%	13h	55.1	11.31%	26h	97.3	9.09%	48h	
rer	MatNet (RF)	27.3	8.33%	8s	51.5	4.04%	14s	91.5	2.58%	27s	
Solver	MatNet (PO)	27.0	7.14%	8s	51.3	3.64%	14s	91.1	2.13%	27s	
E	MatNet (RF+Aug.)	25.4	0.79%	3m	49.6	0.20%	8m	89.7	0.56%	23m	
Neural	MatNet (PO+Aug.)	25.2	0.00%	3m	49.5	0.00%	8m	89.2	0.00%	23m	

			TSPLi	b		CVRPLib				
Solver	Paradigm	(0, 200] Gap	(200, 1002] Gap	Total Gap	Time	(0, 200] Gap	(200, 1000] Gap	Total Gap	Time	
LKH3	Heuristic	0.00%	0.00%	0.00%	24s	0.36%	1.18%	1.00%	16m	
HGS	Heuristic	-	-	-	-	0.01%	0.13%	0.11%	16m	
NeuroLKH (Xin et al., 2021b)	Heuristic+SL	0.00%	0.00%	0.00%	24s	0.47%	1.16%	0.88%	16m	
POMO (Kwon et al., 2020)		3.07%	13.35%	7.45%	0.41s	5.26%	11.82%	10.37%	0.80s	
Sym-NCO (Kim et al., 2022)	Neural Solver+RL	2.88%	15.35%	8.29%	0.34s	9.99%	27.09%	23.32%	0.87s	
Omni-POMO (Zhou et al., 2023)	Neurai Soiver+KL	1.74%	7.47%	4.16%	0.34s	5.04%	6.95%	6.52%	0.75s	
Pointerformer (Jin et al., 2023)		2.31%	11.47%	6.32%	0.24s	-	-	-	-	
LEHD (Luo et al., 2023)		2.03%	3.12%	2.50%	1.28s	11.11%	12.73%	12.25%	1.67s	
BQ-NCO (Drakulic et al., 2023)	Name Calman CI	1.62%	2.39%	2.22%	2.85s	10.60%	10.97%	10.89%	3.36s	
DIFUSCO (Sun & Yang, 2023)	Neural Solver+SL	1.84%	10.83%	5.77%	30.68s	-	-	-	_	
T2TCO (Li et al., 2023)		1.87%	9.72%	5.30%	30.82s	-	-	-	-	
ELG (RF) (Gao et al., 2024)	Manual Calman : DI	1.12%	5.90%	3.08%	0.63s	4.51%	6.46%	6.03%	1.90s	
ELG (PO)	Neural Solver+RL	1.04%	5.84%	3.00%	0.63s	4.39%	6.37%	5.94%	1.90s	

Experiment

V Conclusion

- ✓ POCO는 기존 강화학습 기반 조합최적화의 한계였던 보상 신호 축소 문제와 탐색 비효율성을 해결하고자, 정량적 보상을 정성적 선호 신호로 변환하는 새로운 학습 프레임워크를 제안함.
- ✓ 이 방식은 보상 스케일에 영향을 받지 않으면서도 항상 더 나은 솔루션을 강조하도록 정책을 안정적으로 학습시킴.
- ✔ 로컬 서치 기법을 학습 과정에 통합함으로써 추론 시간을 증가시키지 않으면서도 해의 품질을 향상시킬 수 있도록 설계함.
- ✓ TSP, CVRP, FFSP 등 다양한 문제에서 기존 RL보다 더 빠르게 수렴하고 더 높은 품질의 해를 도출함을 실험적으로 입증함.
- ✔ POCO는 향후, 보상 설계가 어려운 문제나 다목적 최적화 문제에도 확장 가능성이 높은 일반적인 최적화 프레임워크로 활용될 수 있음.