#### HAMMING GRAPH REPRESENTATION

#### DOMINIC VAN DER ZYPEN

ABSTRACT. Graph embeddings deal with injective maps from a given simple, undirected graph G = (V, E) into a metric space, such as  $\mathbb{R}^n$  with the Euclidean metric. This concept is widely studied in computer science, see [1], but also offers attractive research in pure graph theory [2]. In this note we show that any graph can be embedded into a particularly simple metric space:  $\{0,1\}^n$  with the Hamming distance, for large enough n.

# 1. The Hamming Graph H(n, k)

We construct graph on the vertex set  $\{0,1\}^n$  where n is a positive integer. For  $x,y \in \{0,1\}^n$  the Hamming distance of x,y is the cardinality of the set

$$\{i \in \{0, ..., n-1\} : x(i) \neq y(i)\}.$$

That is, we count the positions on which x and y do not agree.

Fix a positive integer  $k \leq n$ . Two distinct elements of  $\{0,1\}^n$  form an edge if their Hamming distance is at most k (so they are in some sense "close" to each other). We denote the resulting graph on  $\{0,1\}^n$  by H(n,k).

We say that a finite graph G = (V, E) is Hamming-representable if there are positive integers  $k \leq n$  such that G is isomorphic to an induced subgraph of H(n, k).

As an easy example, we show that the following 3-point graph can be embedded into H(2,1):



The solution is best shown in the following picture, where it is easily seen that points connected with an edge have Hamming distance 1 and points not connected have Hamming distance 2:



As a further example, note that H(n,n) is isomorphic to  $K_{2^n}$ , the complete graph on  $2^n$  vertices.

Some notation: By  $\operatorname{Mat}(\{0,1\}, n \times m)$  we denote the set of  $n \times m$ -matrices with entries in  $\{0,1\}$ . We identify  $\operatorname{Mat}(\{0,1\}, n \times m)$  with  $\{0,1\}^{nm}$  via the canonical bijection.

#### 2. The Result

**Proposition 2.1.** Every finite graph G = (V, E) is Hamming-representable.

*Proof.* We embed G into  $H(|E| \cdot (|V| - 1), \ 2|E| - 2)$ . To each vertex v of G, we will associate an  $|E| \times (|V| - 1)$  matrix  $M_v$  with rows indexed by the edges of G. There will be a single 1 in each row, with all other entries in that row equal to 0.

If  $v \in e$ , then the 1 in row e of  $M_v$  will be in the first column. If not, we will place a 1 in one of the other |V| - 2 columns, so that each of the non-endpoints of e gets a 1 in a different position of row e.

If v and w are not joined by an edge, the Hamming distance between  $M_v$  and  $M_w$  is 2|E| because they have no 1's in common; if they are joined, then the Hamming distance is 2|E|-2.

### 3. Possible use cases

Representing graphs as subgraphs of some H(n,k) can be useful in applications in computer science: the Hamming distance is computed by bitwise XOR, the fastest operation a CPU can do. So given two vertices represented by n-bit strings, it can be very quickly determined whether they form an edge (i.e. whether their Hamming distance is smaller than the limit given in k).

Moreover, for some graphs G = (V, E) with |V| = n we can represent the graph using bit strings of length  $\mathcal{O}(\log n)$ , making this technique potentially interesting for memory management.

### 4. Open questions

We define the *Hamming dimension* of a graph G = (V, E) to be the minimum positive integer n such that there is  $k \leq n$  such that G can be embedded into some induced subgraph of H(n, k), and denote this by  $\dim(G)$  Questions:

- (1) If G = (V, E) is a graph with n = |V|, do we necessarily have  $\dim(G) \leq n$ ? If not, can we at least acheive for  $\dim(G)$  to be  $\mathcal{O}(|E|\log|V|)$ ?
- (2) Given graphs G, H what is  $\dim(G \times H)$  in terms of  $\dim(G), \dim(H)$ , where  $G \times H$  denotes the categorical product?
- (3) How (if at all) does  $\dim(G)$  relate to the chromatic number  $\chi(G)$ ?

## 5. Acknowledgement

I am grateful to Prof. David Speyer of the University of Michigan, Ann Arbor, USA, for the construction used in the proof of Proposition 2.1.

#### References

- [1] Palash Goyal, Emilio Ferrara, Graph Embedding Techniques, Applications, and Performance: A Survey, https://arxiv.org/abs/1705.02801
- [2] Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang, A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications, https://arxiv.org/abs/1709.07604

SWISS ARMED FORCES, CH-3003 BERN, SWITZERLAND

E-mail address: dominic.zypen@gmail.com