# CS376 Computer Vision Lecture 7: Hough Transform



Qixing Huang Sep. 12<sup>th</sup> 2023



#### Review

- Image filters
- Edge detection
- Binary image analysis

Local analysis

- Texture
- Optical Flow

## Now: Fitting

Want to associate a model with observed features















[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Slide Credit: Kristen Grauman

## Many Applications

Vanishing point detection

Segmentation/Detection

- 3D Vision
  - Calibration
  - Structure-from-motion

## Fitting: Main Idea

Choose a parametric model to represent a set of features

- Correlated problems
  - What are the models
  - Association between models and features
  - How to optimize the models

# Case study: Line fitting

Why fit lines?
Line features are quite popular in natural images





# Difficulty of line fitting



- Incomplete edge detections
- How many lines
- Not all edges are lines
- Noise in detected edges

### Voting

Impossible to test all combinations of features to extract the models

- Let features vote for the models
  - Cycle through features, cast votes for model parameters
  - Usually each model should be low-dimensional
- Noise contribute less to the models

# Fitting lines: Hough transform

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?
- Hough Transform is a voting technique that can be used to answer all of these questions:
  - Record vote for each possible line on which each edge point lies
  - Look for lines that get many votes







#### **Basic Facts**

 Not all the votes are correct, but the correct ones form 'clusters'

Depend on the representations of the models

Depend on how we fit the models