BELIEFS: STATE UNCERTAINTY

AA228/CS238 DECISION MAKING UNDER UNCERTAINTY¹

ROBERT MOSS
STANFORD UNIVERSITY

mossr@cs.stanford.edu November 9, 2021

¹ Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making. MIT Press, 2022.

CONTENT OUTLINE

- Introduction to POMDPs
- Belief representations
- Algorithms to update beliefs (discrete/continuous)
- Interactive Julia notebooks:
 - Crying baby POMDP (from scratch)
 - Crying baby POMDP (using POMDPs.jl)
 - Kalman filtering
 - Particle filtering

POMDPS AND BELIEFS

• A POMDP² is an MDP with state uncertainty

MDP:
$$\langle S, A, T, R, \gamma \rangle$$

POMDP: $\langle S, A, \mathcal{O}, T, R, \mathcal{O}, \gamma \rangle$

- The agent receives an *observation* of the current state rather than the true state (potentially imperfect observations)
- Using past observations, the agent builds a belief of their underlying state
 - Which can be represented by a probability distribution over true states
- Remember, a POMDP is a problem formulation and not an algorithm
 - A POMDP formulation enables the use of solution methods, i.e. algorithms.

²Partially observable Markov decision process. "Partially observable" is key in understanding beliefs.

OBSERVATION SPACE

- The agent receives an observation o, which belongs to some observation space \mathcal{O}
- The probability of observing o given action a and next state s' is: $O(o \mid a, s')$
 - If \mathcal{O} is continuous, then $O(o \mid a, s')$ is a probability density

DYNAMIC DECISION NETWORK FOR POMDPS

Figure: A dynamic decision network for the POMDP problem formulation.

BELIEF REPRESENTATION

Beliefs can be represented in different ways:

- **Parametric**: The belief distribution is represented by a set of parameters for a fixed distribution family
 - E.g., Categorical distribution³ or multivariate normal (Gaussian) distribution
- Non-parametric: The belief distribution is represented by particles (or points sampled from the state space)

Depending on the representation, different algorithms can be used to update beliefs.

³A probability mass is assigned to each discrete category.

ALGORITHMS FOR UPDATING BELIEFS

Various algorithms can update the current belief:

- If the state space is *discrete* (or certain linear Gaussian assumptions are met), then we can perform *exact belief updates*:⁴
 - Recursive Bayesian estimation (i.e. discrete state filter)
 - Kalman filter
- Otherwise, we can use approximations based on linearization or sampling:
 - Extended Kalman filter
 - Unscented Kalman filter
 - Particle filter
 - Particle filter with rejection
 - Injection particle filter
 - Adaptive injection particle filter

⁴Meaning we arrive at an analytical solution without approximations.

BELIEF INITIALIZATION

Before any actions or observations, we start with an initial belief distribution

- We can encode prior knowledge in the initial distribution
- Generally want to use diffuse (i.e. spread out) initial distributions to avoid over confidence in the absence of information
 - In non-parametric representations, a diffuse initial prior may cause difficulties
 - Thus, we may wait until an informative observation is make to initialize beliefs

EXAMPLE: LANDMARK BELIEF INITIALIZATION

Figure: Localization of an autonomous car using a landmark (Example 19.1).

Making a range r and bearing θ observation, we initialize our belief around the landmark.

Belief Inference

- To infer the unknown belief distribution, we use recursive Bayesian estimation
 - Updates belief estimate recursively over time
 - Markov assumption: Only requires the current state, action, and observation
- Let b(s) represent the probability⁵ assigned to state s
 - A particular belief b belongs to a belief space $\mathcal B$ (containing all possible beliefs)
- For finite state and observation spaces, we can use a discrete state filter to perform exact inference

⁵or probability density for continuous state spaces

Belief Vector

- In the finite state case, we can represent beliefs using a categorical distribution⁶
 - Represented as a belief vector **b** of length |S|, therefore $\mathcal{B} \subset \mathbb{R}^{|S|}$
 - Sometimes \mathcal{B} is referred to as a probability simplex or belief simplex⁷
- The belief vector **b** must be strictly non-negative and sum to one:

$$b(s) \ge 0$$
 for all $s \in \mathcal{S}$ $\sum_{s} b(s) = 1$

• In vector notation:

$$\mathbf{b} \ge \mathbf{0} \qquad \mathbf{1}^{\mathsf{T}} \mathbf{b} = 1$$

• In Julia syntax:

$$all(b \ge 0) \&\& sum(b) \approx 1$$

⁶A probability mass is assigned to each discrete state.

⁷Simplex being the generalization of a triangle to arbitrary dimensions.

DISCRETE STATE FILTER: UPDATING BELIEFS

A *filter* is a process that remove noise from data.⁸

Due to the independence assumptions, if an agent with belief b takes an action a and receives an observation o, then the new belief b' becomes:

$$\begin{split} b'(s') &= P(s' \mid b, a, o) \\ &\propto P(o \mid b, a, s') P(s' \mid b, a) & \text{(Bayes' rule)} \\ &\propto O(o \mid a, s') P(s' \mid b, a) & \text{(observation definition)} \\ &\propto O(o \mid a, s') \sum_{s} P(s' \mid b, a, s) P(s \mid b, a) & \text{(law of total probability)} \\ &\propto O(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s) & \text{(state transition model)} \end{split}$$

⁸Often used in signal processing, effectively "filtering" out the noise.

⁹For finite/discrete state and observation spaces.

UPDATING BELIEFS: DERIVATION EXPLAINED

$$b'(s') = P(s' \mid b, a, o) \qquad \text{(probability of being in state } s')$$

$$\propto P(o \mid b, a, s') P(s' \mid b, a) \qquad \text{(Bayes' rule, dropping normalization)}$$

$$\propto O(o \mid a, s') P(s' \mid b, a) \qquad \text{(observation model def., } o \text{ independent of } b)$$

$$\propto O(o \mid a, s') \sum_{s} P(s' \mid b, a, s) P(s \mid b, a) \qquad \text{(law of total probability)}$$

$$\propto O(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s) \qquad \text{(state transition model, belief def.)}$$

Exact belief updating: $b'(s') \propto O(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s)$

¹⁰Then normalize so beliefs sum to one.

EXAMPLE: CRYING BABY PROBLEM

Figure: The crying baby POMDP.

• A simple POMDP with 2 states, 3 actions, and 2 observations:

$$S = \{\text{hungry, sated}\}\$$
 $A = \{\text{feed, sing, ignore}\}\$
 $O = \{\text{crying, quiet}\}\$

- See Pluto notebook:
 - crying_baby_problem.html

KALMAN FILTER

To update beliefs with *continuous* state spaces, we integrate instead of sum:

$$b'(s') \propto O(o \mid a, s') \int T(s' \mid s, a)b(s) ds$$

A Kalman filter assumes that T and O are linear-Gaussian and b is Gaussian:

$$T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_s \mathbf{s} + \mathbf{T}_a \mathbf{a}, \ \Sigma_s)$$
$$O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_s \mathbf{s}', \ \Sigma_o)$$
$$b(\mathbf{s}) = \mathcal{N}(\mathbf{s} \mid \mathbf{\mu}_b, \ \Sigma_b)$$

See Pluto notebook: StateEstimation.jl/kalman_filter.html

PARTICLE FILTER

- Particle filters represent the belief states as a collection of states.
- Each state in the approximated belief is called a particle.
- Useful in problems with large discrete states spaces or continuous problems not well approximated by linear-Gaussian dynamics.

Algorithm 1 Particle filter algorithm.

$$\begin{array}{ll} \textbf{function} \ \ \text{ParticleFilter}(\mathbf{s}, T, O, a, o) \\ \mathbf{s}' \sim T(\mathbf{s}, a) & \rhd \ \text{next states} \\ \mathbf{w} \leftarrow O(o \mid \mathbf{s}', a) & \rhd \ \text{weights} \\ \text{particles} \sim \text{SetCategorical}\left(\mathbf{s}', \frac{\mathbf{w}}{\sum_i w_i}\right) & \rhd \ \text{sample with normalized weights} \\ \mathbf{return} \ \ \text{particles} & \end{array}$$

See Pluto notebook: StateEstimation.jl/particle_filter.html

PARTICLE FILTER VARIANTS

Particle filter with rejection:

- Used in problems with discrete observations.
- Any sampled observation that does not equal the true observation is rejected.
- Problem of particle deprivation: lack of particles near the true state. 11

Injection particle filter:

• Inject random particles to protect against particle deprivation.

Adaptive injection particle filter:

• Inject particles adaptively based on a ratio of two exponentially moving averages of the mean particle weights (using *fast* and *slow* moving averages).

See Pluto notebook: StateEstimation.jl/particle_filter.html

¹¹Due to low particle coverage given the stochastic nature of resampling.

QUESTIONS

Any questions?

 $(feel\ free\ to\ post\ on\ Ed\ or\ email\ me:\ mossr@cs.stanford.edu)$

REFERENCES

Kochenderfer, Mykel J., Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making. MIT Press, 2022.