

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

	Ano letivo 2023/2024	
Questão de Janeiro		
Nome do aluno:	N.º:	Turma:

1. Define, por uma condição, o domínio plano representado abaixo, incluindo a sua fronteira.

Resolução	

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

 Na figura, está representado, num referencial ortogonal e monométrico Oxyz, um sólido composto por dois prismas: um prisma quadrangular regular reto [OABCDIFE] e um prisma triangular reto [I]HGKF].

Sabe-se que:

- o plano *EDI* é paralelo ao plano coordenado *xOy*;
- $\overline{DH} = 2\overline{DI}$;
- os pontos A e C pertencem, respetivamente, aos eixos Ox e Oy;
- o vértice O do prisma quadrangular é a origem do referencial;
- o ponto *I* tem de coordenadas (2,2,3);
- o ponto F pertence à reta EG;
- os pontos J e K são os pontos médios, respetivamente, das arestas [IB] e [FC].
- **2.1.** Indica as coordenadas dos vértices C, J, K e G do sólido representado.
- 2.2. Escreve a equação reduzida da superfície esférica que circunscreve o prisma [OABCDIFE].
- 2.3. Escreve a equação do plano que é perpendicular ao eixo Ox e que passa no ponto médio de [GH].
- 2.4. Um plano definido pela condição y=k, com $k\in[0,2]$, divide o sólido da figura em dois sólidos tal que a medida do volume de um deles é a terça parte da medida do volume do outro. Determina o valor de k.

Mostra como chegaste à tua resposta.

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

3. Na figura estão representadas duas pirâmides quadrangulares regulares [ABCDE] e [FGHIE] iguais.

Sabe-se que:

- A, E e H são pontos colineares;
- $\overline{AB} = 4 cm$;
- o ponto *J* é a projeção ortogonal do ponto *E* no plano *ABC*;
- $\overline{JE} = 6 cm$.
- 3.1. Determina:
 - a) $B + \overrightarrow{EI}$
- c) $\overrightarrow{FH} \overrightarrow{AE}$
- **b)** $F (\overrightarrow{BE} \overrightarrow{GH})$
- d) $2\overrightarrow{AB} + \overrightarrow{BI}$

- a) Aplicando as propriedades das operações com vetores, prova que $\vec{u} = \overrightarrow{BI}$.
- **b)** Calcula $\|\vec{u}\|$.

Resolução:

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

Resolução

1.
$$\left[\left(x + \frac{1}{2} \right)^2 + y^2 \ge \frac{1}{4} \land \left(x + \frac{1}{2} \right)^2 + y^2 \le 1 \land y \ge 0 \right] \lor \left[(x - 1)^2 + y^2 \ge \frac{1}{4} \land (x - 1)^2 + y^2 \le 1 \land y \le 0 \right]$$

2.

2.1. Coordenadas dos vértices C, J, K e G do sólido representado:

$$C(0,2,0); J(2,2,\frac{3}{2}); K(0,2,\frac{3}{2}); G(0,4,3)$$

2.2. O centro S da superfície esférica tem de coordenadas $S\left(1,1,\frac{3}{2}\right)$.

O raio da superfície esférica é dado por:

$$d(A,S) = \sqrt{(2-1)^2 + (2-1)^2 + \left(0 - \frac{3}{2}\right)^2} = \sqrt{1 + 1 + \frac{9}{4}} = \frac{\sqrt{17}}{2}$$

Equação reduzida da superfície esférica que circunscreve o prisma [OABCDIFE]

$$(x-1)^2 + (y-1)^2 + \left(z - \frac{3}{2}\right)^2 = \frac{17}{4}$$

- 2.3. Equação do plano que é perpendicular ao eixo Ox e que passa no ponto médio de [GH]: x=1
- **2.4.** Um plano definido pela condição y = k, com $k \in [0,2]$, divide o sólido da figura em dois sólidos tal que a medida do volume de um deles é a terça parte da medida do volume do outro.

Fntão

$$\frac{1}{3} \times (2 \times k \times 3) = 2 \times (2 - k) \times 3 + \frac{\frac{3}{2} \times 2}{2} \times 2 \Leftrightarrow$$

$$\Leftrightarrow \frac{6k}{3} = 6 \times (2 - k) + 3 \Leftrightarrow 6k = 3 \times (12 - 6k + 3) \Leftrightarrow$$

$$\Leftrightarrow 6k = 3 \times (15 - 6k) \Leftrightarrow$$

$$\Leftrightarrow 6k = 45 - 18k \Leftrightarrow 24k = 45 \Leftrightarrow k = \frac{45}{24} \Leftrightarrow k = \frac{15}{8}$$

R.:
$$k = \frac{15}{8}$$

3.

3.1

a)
$$B + \overrightarrow{EI} = B + \overrightarrow{BE} = E$$

b)
$$F - (\overrightarrow{BE} - \overrightarrow{GH}) = F - (\overrightarrow{BE} + \overrightarrow{CB}) = F - \overrightarrow{CE} = F + \overrightarrow{EC} = F + \overrightarrow{FE} = E$$

c)
$$\overrightarrow{FH} - \overrightarrow{AE} = \overrightarrow{FH} + \overrightarrow{EA} = \overrightarrow{FH} + \overrightarrow{HE} = \overrightarrow{FE}$$

d)
$$2\overrightarrow{AB} + \overrightarrow{BI} = 2\overrightarrow{AB} + 2\overrightarrow{BE} = 2(\overrightarrow{AB} + \overrightarrow{BE}) = 2\overrightarrow{AE} = \overrightarrow{AH}$$

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

3.2

a)
$$\vec{u} = 2\overrightarrow{GH} + \overrightarrow{CF} = \overrightarrow{GH} + \overrightarrow{CF} + \overrightarrow{GH} = \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FI} = \overrightarrow{BI}$$
 c.q.m. b) $\|\vec{u}\| = \|\overrightarrow{BI}\|$

Seja $\overline{AJ} = \overline{JB} = x$, então pelo Teorema de Pitágoras

$$\overline{AB}^2 = \overline{AJ}^2 + \overline{JB}^2 \Leftrightarrow$$

$$\Leftrightarrow 4^2 = x^2 + x^2 \Leftrightarrow$$

$$\Leftrightarrow 2x^2 = 16 \Leftrightarrow$$

$$\Leftrightarrow x^2 = 8 \Leftrightarrow$$

$$\Leftrightarrow x = \pm \sqrt{8}$$

Como x > 0, então $x = \sqrt{8}$

Ou seja,
$$x = 2\sqrt{2} cm$$

Pelo Teorema de Pitágoras

$$\overline{EB}^2 = \overline{IB}^2 + \overline{IE}^2 \Leftrightarrow$$

$$\Leftrightarrow \overline{EB}^2 = \left(2\sqrt{2}\right)^2 + 6^2 \Leftrightarrow$$

$$\Leftrightarrow \overline{EB}^2 = 8 + 36 \Leftrightarrow$$

$$\Leftrightarrow \overline{EB}^2 = 44 \Leftrightarrow$$

$$\Leftrightarrow \overline{EB} = \pm \sqrt{44}$$

Como $\overline{EB} > 0$, então $\overline{EB} = \sqrt{44}$

Ou seja,
$$\overline{EB} = 2\sqrt{11} cm$$

Assim,
$$\|\vec{u}\| = \|\overrightarrow{BI}\| = 2 \times \|\overrightarrow{EB}\| = 2 \times 2\sqrt{11} = 4\sqrt{11}$$

R.:
$$\|\vec{u}\| = 4\sqrt{11} \ cm$$

