Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра вычислительных методов и программирования

КОНТРОЛЬНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по курсу

«Теория вероятностей и математическая статистика» для студентов всех специальностей БГУИР дистанционной формы обучения

1.КОНТРОЛЬНЫЕ ЗАДАЧИ ТИПОВОГО РАСЧЕТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЗАДАЧА 1.

В задачах 1.1-1.5 подбрасываются две игральные кости.

- 1.1. Определить вероятность того, что сумма выпавших чисел равна восьми.
- 1.2. Определить вероятность того, что сумма выпавших чисел делится без остатка на шесть.
- 1.3. Определить вероятность того, что сумма выпавших чисел превышает 10.
 - 1.4. Определить вероятность того, что выпадут одинаковые числа.
 - 1.5. Определить вероятность того, что выпадут разные, но четные числа.
- 1.6. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что один из этих шаров белый, а другой черный.
- 1.7. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что оба шара будут одинакового цвета.
- 1.8. На десяти карточках написаны буквы A, A, A, M, M, T, T, E, И, К. После перестановки вынимают наугад одну карточку за другой и раскладывают их в том порядке, в каком они были вынуты. Найти вероятность того, что на карточках будет написано слово "математика".
- 1.9. Телефонный номер состоит из шести цифр, каждая из которых равновозможно принимает значения от 0 до 9. Найти вероятность того, что все цифры одинаковы.
- 1.10. Условие задачи 1.9. Вычислить вероятность того, что все цифры четные.
- 1.11. Условие задачи 1.9. Вычислить вероятность того, что номер не содержит цифры пять.
- 1.12. Условие задачи 1.9. Вычислить вероятность того, что все цифры различные и расположены в порядке возрастания (соседние цифры отличаются на 1).

В задачах 1.13-1.19 наудачу взяты два положительных числа x и y, причем $x \le 5, \ y \le 2$. Найти вероятность того, что $y+ax-b \le 0$ и $y-cx \le 0$.

1.13. a=1, b=5, c=1.

1.14. a=1, b=5, c=0,5.

1.15. a=1, b=5, c=0,25.

1.16. a=1, b=5, c=2.

1.17. a=2, b=10, c=2.

1.18. a=2, b=10, c=1.

- 1.19. a=2, b=10, c=0,5.
- В задачах 1.20-1.23 из колоды в 36 карт (6, 7, 8, 9, 10, В, Д, К, Т) наугад извлекаются три карты.
- 1.20. Определить вероятность того, что будут вытащены карты одной масти.
 - 1.21. Определить вероятность того, что будут вытащены три туза.
- 1.22. Определить вероятность того, что будут вытащены карты разных мастей.
 - 1.23. Определить вероятность того, что среди извлеченных карт не будет 9.
- 1.24. На плоскости проведены параллельные прямые, находящиеся друг от друга на расстоянии 8 см. Определить вероятность того, что наугад брошенный на эту плоскость круг радиусом 3 см не будет пересечен ни одной линией.
- 1.25. В урне пять белых и восемь черных шаров. Из урны вынимают наугад один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

В задачах 1.26-1.30 номер автомобиля содержит четыре цифры, каждая из которых равновозможно принимает значения от 0 до 9 (возможен номер 0000).

- 1.26. Определить вероятность того, что вторая цифра номера равна четырем.
- 1.27. Определить вероятность того, что номер содержит хотя бы одну цифру 0.
- 1.28. Определить вероятность того, что первые три цифры номера равны пяти.
 - 1.29. Определить вероятность того, что номер делится на 20.
 - 1.30. Определить вероятность того, что номер не содержит цифры 2.

ЗАДАЧА 2.

В задачах 2.1-2.30 приведены схемы соединения элементов, образующих цепь с одним входом и одним выходом. Предполагается, что отказы элементов являются независимыми в совокупности событиями. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Вероятности отказа элементов 1, 2, 3, 4, 5 соответственно равны $p_1=0,1$; $p_2=0,2$; $p_3=0,3$; $p_4=0,4$; $p_5=0,5$. Найти вероятность того, что сигнал пройдет со входа на выход.

- 3.1. На трех автоматических станках изготавливаются одинаковые детали. Известно, что 30% продукции производится первым станком, 25% вторым и 45% третьим. Вероятность изготовления детали, отвечающей стандарту, на первом станке равна 0,99, на втором 0,988 и на третьем 0,98. Изготовленные в течение дня на трех станках нерассортированные детали находятся на складе. Определить вероятность того, что взятая наугад деталь не соответствует стандарту.
- 3.2. Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2; 0,4; 0,6. При одновременном выстреле всех трех стрелков оказалось одно попадание. Определить вероятность того, что попал первый стрелок.
- 3.3. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго 0,5, для третьего 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
- 3.4. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,075, а на втором 0,09. Производительность второго автомата вдвое больше, чем первого. Найти вероятность того, что наугад взятая с конвейера деталь нестандартна.
- 3.5. На распределительной базе находятся электрические лампочки, изготовленные на двух заводах. Среди них 60% изготовлено на первом заводе и 40% на втором. Известно, что из каждых 100 лампочек, изготовленных на первом заводе, 90 соответствуют стандарту, а из 100 лампочек, изготовленных на втором заводе, соответствуют стандарту 80. Определить вероятность того, что взятая наугад лампочка с базы будет соответствовать стандарту.
- 3.6. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго 0,5, для третьего 0,4. В результате произведенных выстрелов в мишени оказалось две пробоины. Найти вероятность того, что в мишень попали второй и третий стрелки.
- 3.7. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго 0,5, для третьего 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.

- 3.8. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,86, второго 0,90, третьего 0,92, четвертого 0,95. Наблюдатель наугад включает один из локаторов. Какова вероятность обнаружения цели?
- 3.9. Среди шести винтовок пристреленными оказываются только две. Вероятность попадания из пристреленной винтовки равна 0,9, а из непристреленной 0,2. Выстрелом из одной наугад взятой винтовки цель поражена. Определить вероятность того, что взята пристреленная винтовка.
- 3.10. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй 30% и третий 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8, на втором 0,85 и на третьем 0,9. Определить вероятность того, что прибор, поступивший на производство, исправен.
- 3.11. Группа студентов состоит из пяти отличников, десяти хорошо успевающих и семи занимающихся слабо. Отличники на предстоящем экзамене могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена вызывается наугад один студент. Найти вероятность того, что студент получит хорошую или отличную оценку.
- 3.12. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.
- 3.13. В первой урне пять белых и 10 черных шаров, во второй три белых и семь черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар белый.
- 3.14. В тире имеется три ружья, вероятности попадания из которых соответственно равны 0,5; 0,7; 0,9. Определить вероятность попадания при одном выстреле, если ружье выбрано наугад.
- 3.15. Прибор состоит из трех блоков. Исправность каждого блока необходима для функционирования устройства. Отказы блоков независимы. Вероятности безотказной работы блоков соответственно равны 0,6; 0,7; 0,8. Определить вероятность того, что откажет два блока.

- 3.16. Условие задачи 3.15. Определить вероятность того, что откажет один блок.
- 3.17. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказал один блок.
- 3.18. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали два блока.
- 3.19. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали три блока.
- 3.20. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали второй и третий блоки.
- 3.21. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и второй блоки.
- 3.22. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и третий блоки.
- 3.23. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал третий блок.
- 3.24. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал первый блок.
- 3.25. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал второй блок.
- 3.26. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из выбранного наугад ящика вынули шар. Вычислить вероятность того, что шар белый.
- 3.27. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из каждого ящика вынули шар. Затем из этих трех шаров наугад взяли один шар. Вычислить вероятность того, что шар белый.
- 3.28. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй 30% и третий 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8, на втором 0,85 и на третьем 0,9. Прибор, поступивший на производство, оказался исправным. Определить вероятность того, что он изготовлен на втором заводе.
- 3.29. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго 0,5, для третьего 0,4. В результате произведенных выстрелов в мишени

оказалось две пробоины. Найти вероятность того, что в мишень попал второй стрелок.

3.30. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго - 0,5 и для третьего - 0,4. В результате произведенных выстрелов в мишени оказалась одна пробоина. Найти вероятность того, что в мишень попал первый стрелок.

ЗАДАЧА 4.

- 4.1. Вероятность изготовления стандартного изделия равна 0,95. Какова вероятность того, что среди десяти изделий не более одного нестандартного?
- 4.2. Вероятность попадания в мишень при одном выстреле равна 0,6. По мишени производится четыре независимых выстрела. Найти вероятность того, что будет хотя бы одно попадание в мишень.
- 4.3. Техническая система состоит из пяти узлов. Вероятность нарушения режима работы в течение времени t для каждого узла равна 0,2. Система выходит из строя, если нарушения режима работы произойдут не менее чем в трех узлах. Найти вероятность выхода из строя этой системы за время t, если нарушение режима работы для каждого узла не зависит от состояния работы в других узлах.
- 4.4. Игральную кость подбрасывают 12 раз. Чему равно наивероятнейшее число выпадений 6?
- 4.5. Вероятность изготовления изделия отличного качества равна 0,9. Изготовлено 50 изделий. Чему равны наивероятнейшее число изделий отличного качества и вероятность такого числа изделий отличного качества?
- 4.6. По данным технического контроля в среднем 2% изготавливаемых на заводе автоматических станков нуждается в дополнительной регулировке. Чему равна вероятность того, что из шести изготовленных станков четыре нуждаются в дополнительной регулировке?
- 4.7. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа этих требований будет от трех до пяти.
- 4.8. В мастерской имеется десять моторов. При существующем режиме работы вероятность того, что мотор в данный момент работает с полной нагрузкой, равна 0,8. Найти вероятность того, что в данный момент не менее восьми моторов работает с полной нагрузкой.

- 4.9. Вероятность появления события A в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события A по крайней мере два раза.
- 4.10. Вероятность появления события A в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события A семь или восемь раз.
- 4.11. Монету подбрасывают восемь раз. Чему равно наивероятнейшее число выпадений герба?
- 4.12. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,3. Произведено 12 бросков. Найти вероятность того, что будет 10 попаданий.
- 4.13. Определить вероятность того, что в семье, имеющей пять детей, будет три девочки и два мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.
- 4.14. Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?
- 4.15. В результате многолетних наблюдений установлено, что вероятность выпадения дождя 1 октября в данном городе равна 1/7. Определить наивероятнейшее число дождливых дней 1 октября в данном городе за 40 лет.
- 4.16. Имеется 20 ящиков однородных деталей. Вероятность того, что в одном взятом наудачу ящике детали окажутся стандартными, равна 0,75. Найти наивероятнейшее число ящиков, в которых все детали стандартные.
- 4.17. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет одно или два попадания.
- 4.18. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет три попадания.
- 4.19. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.20. При установившемся технологическом процессе 80% всей произведенной продукции оказывается продукцией высшего сорта. Найти наивероятнейшее число изделий высшего сорта в партии из 250 изделий.
- 4.21. Монету подбрасывают восемь раз. Какова вероятность того, что она четыре раза упадет гербом вверх?
- 4.22. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет 11 или 12 попаданий.

- 4.23. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы одно попадание в мишень.
- 4.24. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы пять попаданий в мишень.
- 4.25. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.26. Монету подбрасывают 100 раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.27. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,95. Произведено десять бросков. Найти вероятность того, что будет девять попаданий.
- 4.28. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет не менее 11 попаданий.
- 4.29. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа будет хотя бы одно требование.
- 4.30. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет шесть попаданий в мишень.

ЗАДАЧА 5.

В задачах 5.1-5.30 дискретная случайная величина X может принимать одно из пяти фиксированных значений х1, х2, х3, х4, х5 с вероятностями р1, р2, р3, р4, р5 соответственно (конкретные значения приведены в табл. 1.1). Вычислить математическое ожидание и дисперсию величины X. Рассчитать и построить график функции распределения.

Таблица 1.1

Вариант	x 1	x2	х3	x4	x 5	p1	p2	р3	p4	р5
5.1	1	2	3	4	5	0,2	0,2	0,2	0,2	0,2
5.2	1	2	3	4	5	0,1	0,2	0,3	0,2	0,2
5.3	1	2	3	4	5	0,4	0,1	0,1	0,3	0,1
5.4	1	2	3	4	5	0,3	0,3	0,1	0,1	0,2
5.5	-2	-1	1	3	7	0,2	0,2	0,2	0,2	0,2
5.6	-2	-1	1	3	7	0,1	0,3	0,2	0,2	0,2
5.7	-5	-2	0	1	2	0,5	0,1	0,1	0,2	0,1
5.8	-5	-2	0	1	2	0,1	0,2	0,1	0,3	0,3
5.9	0	1	2	3	4	0,2	0,2	0,2	0,2	0,2
5.10	0	1	2	3	4	0,3	0,2	0,1	0,2	0,2
5.11	0	1	2	3	4	0,1	0,2	0,3	0,4	0
5.12	-1	0	1	2	3	0,6	0,1	0,1	0,1	0,1
5.13	-1	0	1	2	3	0,3	0,2	0,1	0,1	0,3
5.14	3	4	5	6	7	0,1	0,2	0,3	0,4	0
5.15	3	4	5	6	7	0,5	0,1	0,1	0,1	0,2
5.16	-5	-4	-3	5	6	0,1	0,3	0,2	0,2	0,2
5.17	-2	0	2	4	9	0,3	0,2	0,1	0,1	0,3
5.18	-2	0	2	4	9	0,3	0,1	0,1	0,2	0,3
5.19	-2	0	2	4	9	0,15	0,15	0,2	0,4	0,1
5.20	5	6	7	8	9	0,1	0,1	0,1	0,1	0,6
5.21	1	4	7	8	9	0,3	0,15	0,25	0,15	0,15
5.22	1	4	7	8	9	0,2	0,2	0,2	0,2	0,2
5.23	-10	-4	0	4	10	0,2	0,2	0,2	0,2	0,2
5.24	-10	-4	0	4	10	0,3	0,1	0,2	0,1	0,3
5.25	2	4	6	8	10	0,1	0,2	0,3	0,35	0,05
5.26	2	4	6	8	10	0,7	0,1	0,1	0,05	0,05
5.27	2	4	6	8	10	0,2	0,3	0,05	0,25	0,2
5.28	1	4	5	7	8	0,6	0,1	0,1	0,05	0,15
5.29	1	4	5	7	8	0,3	0,3	0,1	0,15	0,15
5.30	5	6	7	9	12	0,05	0,15	0,2	0,4	0,2

ЗАДАЧА 6.

В задачах 6.1-6.30 (параметры заданий приведены в табл. 1.2) случайная величина X задана плотностью вероятности

$$f(x) = \begin{cases} 0, & x < a, & x > b, \\ \varphi(x,c), & a \le x \le b. \end{cases}$$

Определить константу C, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал $[\alpha,\beta]$.

Таблица 1.2

Вариант	$\varphi(\mathbf{x,c})$	a	b	α	β
6.1	$c \cdot x$	1	2	0,5	1,5
6.2	cx^{11}	0	1	0,5	1
6.3	cx^2	-1	1	0	0,5
6.4	cx^3	0	2	1	2
6.5	cx^4	0	1	-2	2
6.6	c	-2	2	-1	1
6.7	csin(x)	0	π	0	$\pi/2$
6.8	$c\sin(2x)$	0	$\pi/2$	$\pi/4$	π
6.9	$c\sin(3x)$	0	$\pi/3$	-1	π 1
6.10	$c \cdot \cos(x)$	$-\pi/2$	$\pi/2$	0	1
6.11	$c \cdot \cos(2x)$	0	$\pi/4$	0,5	1
6.12	c e ^{-x}	0	4	1	2
6.13	$c e^{-2x}$	0	∞	1	3
6.14	4 e ^{-cx}	0	∞	0	1
6.15	c x	-2	2	1,5	2
6.16	$c e^x$	0	1	0	0,5
6.17	$c x^5$	0	1	0,5	0,7
6.18	$c x^6$	0	2	1	2
6.19	$c x^7$	0	1	0	0,5
6.20	$c x^8$	-1	1	0	2
6.21	$c x^9$	0	1	0	0,25
6.22	$c x^{10}$	-1	1	-0,5	0,5
6.23	c/x	1	4	2	
6.24	c/x^2	1	2	1	1,5
6.25	c/x^3	1	2	1	1,5
6.26	c/x^4	1	3	1	2
6.27	c/x^5	1	2	1	1,5
6.28	c/x^6	1	2	0	1,5
6.29	c/x^6 c/x^7	1	2	1	2
6.30	c/x^8	1	2	1	3

ЗАДАЧА 7.

В задачах 7.1-7.30 (условия приведены в табл. 1.3) случайная величина X распределена равномерно на интервале [a,b]. Построить график случайной величины $Y=\varphi(X)$ и определить плотность вероятности g(y).

Таблица 1.3

Вариант	$\varphi(\times)$	a	b
7.1	x	-1	4
7.2	x-2	0	10
7.3	x +1	-3	2
7.4	x+1 + 2	-2	0
7.5	r^2	-4	1
7.6	r^3	-1	2
7.7	$\begin{vmatrix} x^3 \\ x^4 \end{vmatrix}$	-1	2
7.8	x^4	-2	1
7.9	<i>x</i> ⁵	-2	2
7.10	$ x^5 $	-2	1
7.11	2x	-4	6
7.12	2 x	-3	7
7.13	1/x	1	5
7.14	1/(x+5)	-4	6
7.15	$\sin(x)$	0	$0,75\pi$
7.16	$\sin(2x)$	0	$\pi/2$
7.17	$\sin(3x)$	π/6	$\pi/3$
7.18	$ \sin(x) $	-π/4	$\pi/2$
7.19	e^{x}	0	1
7.20	$e^{ x }$	-1	2
7.21	$1/x^{2}$	1	2
7.22	$\frac{1}{x^{1/3}}$	-1	8
7.23	$ x ^{1/3}$	-8	1
7.24	$\cos(x)$	-π/2	$\pi/3$
7.25	$\cos(2x)$	-π/6	$\pi/2$
7.26	$ \cos(x) $	0	1,5π
7.27	\sqrt{x}	0	4
7.28	$\sqrt{ x }$	-1	4
7.29	ln(x)	1	2
7.30	$ x ^{1/4}$	-1	16

В задачах 8.1-8.30 (конкретные параметры приведены в табл. 1.4) двухмерный случайный вектор (X, Y) равномерно распределен внутри выделенной жирными прямыми линиями на рис. 1.1 области B. Двухмерная плотность вероятности f(x,y) одинакова для любой точки этой области B:

$$f(x,y) = \begin{cases} c, & (x,y) \in B, \\ 0, & \text{иначе.} \end{cases}$$

Вычислить коэффициент корреляции между величинами Х и Ү.

Рис. 1.1

Таблица 1.4

Вариант	x1	x2	х3	x4	x5	x6	y1	y2
8.1	0	0	1	1	1	1	1	2
8.2	0	2	2	2	2	2	1	2
8.3	0	0	1	0	1	2	1	2
8.4	0	2	4	4	4	4	1	2
8.5	0	0	3	2	3	4	1	2
8.6	0	2	5	6	5	4	1	2
8.7	2	0	5	4	5	6	1	2
8.8	0	0	2	2	4	4	1	2
8.9	0	0	1	2	1	0	1	2
8.10	0	0	4	4	2	2	1	2
8.11	0	2	3	2	3	4	1	2
8.12	0	2	5	4	5	6	1	2
8.13	0	2	4	2	4	6	1	2
8.14	0	4	5	4	5	6	1	2
8.15	0	2	2	4	2	0	1	2
8.16	0	0	5	4	5	6	1	2
8.17	0	0	4	4	4	4	1	2
8.18	0	4	4	4	4	4	1	2
8.19	0	0	2	0	2	4	1	2
8.20	0	2	6	6	6	6	1	2
8.21	0	0	4	2	4	6	1	2
8.22	0	0	4	4	4	6	1	2
8.23	0	0	2	4	2	0	1	2
8.24	0	0	6	6	4	4	1	2
8.25	0	4	6	4	6	8	1	2
8.26	0	4	7	6	7	8	1	2
8.27	0	2	6	4	6	8	1	2
8.28	0	2	4	4	6	6	1	2
8.29	0	2	4	4	5	6	1	2
8.30	0	2	5	4	6	7	1	2

2. КОНТРОЛЬНЫЕ ЗАДАЧИ ТИПОВОГО РАСЧЕТА ПО МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

ЗАДАЧА 9.

По выборке одномерной случайной величины:

- получить вариационный ряд;
- построить на масштабно-координатной бумаге формата A4 график эмпирической функции распределения $F^*(x)$;
 - построить гистограмму равноинтервальным способом;
 - построить гистограмму равновероятностным способом;
 - вычислить точечные оценки математического ожидания и дисперсии;
- вычислить интервальные оценки математического ожидания и дисперсии $(\gamma=0.95);$
- выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия согласия χ^2 и критерия Колмогорова ($\alpha = 0.05$).

ЗАДАЧА 10.

По выборке двухмерной случайной величины:

- вычислить точечную оценку коэффициента корреляции;
- вычислить интервальную оценку коэффициента корреляции ($\gamma = 0.95$);
- проверить гипотезу об отсутствии корреляционной зависимости;
- вычислить оценки параметров a_0 и a_1 линии регрессии $\overline{y}(x) = \hat{a}_0 + \hat{a}_1 x$;
- построить диаграмму рассеивания и линию регрессии.

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ТИПОВОГО РАСЧЕТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

Типовой расчет (ТР) включает в себя 10 задач (8 задач по теории вероятностей и 2 задачи по математической статистике). Задания по типовому расчету формируются специальной программой Gen_Var.exe и содержат варианты задач по теории вероятностей, выборку одномерной случайной величины объемом 100 значений для задачи 9 и выборку двумерной случайной величины объемом 50 значений для задачи 10. Контроль выполнения типового расчета осуществляется в трех точках:

- 1) На пятом занятии должны быть решены задачи $TP c 1 \div 4$.
- 2) На десятом занятии должны быть решены задачи $TP c 1 \div 8$.
- 3) На последнем занятии должны быть решены все задачи ТР.

Краткие теоретические сведения, примеры решения типовых задач, все необходимые справочные таблицы и список литературы приведены в "Методические пособия для практических занятий".