Chap 1.040 Limits as x goes to Negative Infinity or Infinity

We previously discussed how to evaluate limits as x goes to infinity or as x goes to negative infinity using a graphing approach.

However, we can discuss how to evaluate these types of limits without using a graphing approach every time.

To discuss how to do this, we will look at some graphs.

It is NOT important to know the numbers of the scenarios that follow.

Scenario 1

Suppose
$$y = a^x$$
, $0 < a < 1$

For example, suppose
$$y = \left(\frac{1}{2}\right)^x$$

Scenario 2

Suppose
$$y = a^x$$
, $a > 1$

For example, suppose
$$y = 2^x$$

Scenario 3

Suppose
$$y = a^x$$
, $a = 1$

Scenario 4

Suppose
$$y = x^a$$
, $a > 0$

For example, suppose
$$y = x^{\frac{1}{2}}$$
 or $y = x^2$

Scenario 5

Suppose
$$y = x^a$$
, $a < 0$

For example, suppose
$$y = x^{\frac{-1}{2}}$$
 or $y = x^{-2}$

Scenario 6

Suppose
$$y = a^x$$
, $a = 0$

Example 1

Evaluate
$$\lim_{x \to -\infty} \frac{6^x}{7^x}$$

Example 2

Evaluate
$$\lim_{x \to \infty} \frac{6^x}{7^x}$$

Limits of Rational Functions as x goes to Infinity or x goes to Negative Infinity

When we are evaluating a limit as x goes to infinity or to negative infinity of a rational function (i.e., polynomial over polynomial), we can use the following approach.

- 1. Determine the degree of the numerator and the degree of the denominator. Factor x^n from both the numerator and denominator where n is either the greater of those two values or the lesser of those two values. If the degree of both numerator and denominator is the same, then n is equal to that degree. (Factor the same term from both numerator and denominator). Cancel out like factors.
- 2. Determine the limit of each term of the numerator and add those limits. Determine the limit of each term of the denominator and add those limits.
 - a) a numerator with a limit that's finite over a denominator growing without bound produces a limit of 0
 - b) a numerator with a limit that's finite over a denominator with a limit that's finite produces a limit equal to the quotient of those limits.
 - c) a numerator with a limit that's finite over a denominator that is infinitesimally small produces a limit of infinity or negative infinity.
 - d) a numerator growing without bound over a denominator that's finite or infinitesimally small produces a limit of infinity or negative infinity.
 - e) a numerator that's infinitesimally small over a denominator that's finite or growing without bound produces a limit of 0

Example 3

Evaluate
$$\lim_{x \to \infty} \frac{5x^2 + 2x + 1}{3x + 4}$$

Example 4

Evaluate
$$\lim_{x \to -\infty} \frac{-6x^3 - 3x + 1}{2x^3 + 5x^2 - 10x + 5}$$

Example 5

Evaluate
$$\lim_{x \to \infty} \frac{2x^2 + x - 9}{6x^5 - 4x^4 - 8x}$$

Example 6

Evaluate
$$\lim_{x \to \infty} \frac{3x-4}{\sqrt{x^2-3}}$$

Example 7

Evaluate
$$\lim_{x \to -\infty} \frac{3x-4}{\sqrt{x^2-3}}$$