# 택시운행분석 데이터셋 활용가이드

2015년 1월



## 목차

- 1. 개요
  - 1.1 데이터셋 구축 목적
  - 1.2 데이터셋의 활<del>용</del>
  - 1.3 데이터 처리 흐름도
  - 1.4 업데이트 주기
- 2. 데이터셋 설명
  - 2.1 파일 정보
  - 2.2 분석 자료
  - 2.3 데이터셋 예시
  - 2.4 용어 설명
  - 2.5 데이터셋 필드 설명
  - 2.6 파일 데이터 구성정보
- 3. 활용 방안
  - 3.1 데이터셋 활용 가이드
  - 3.2 Open API 활용 가이드
  - 3.3 활용 시나리오



#### 1.1 데이터셋 구축 목적

#### 택시 이용승객과 택시기사에게 정보 제공

- 서울 시민에게는 택시 타기 좋은 위치 정보
- 서울시 택시기사에게는 승객이 많은 위치 정보



### 1.2 데이터셋의 활용

'택시 타기 좋은 곳' 정보제공서비스, '승객 많은 곳' 정보제공서비스 등을 개발할 수 있도록 조건별 택시 승하차 정보 데이터셋 제공



데이터셋 다운로드 민간 서비스 개발 (포털사이트 업체, 내비게이션 업체, 개인 개발자 등) 서울시민 / 택시기사 서비스 이용



택시 타기 좋은 곳 & 승객 많은 곳 정보 획득



## 1.3 데이터 처리 흐름도



## 데이터셋

- Link ID
- 요일
- 시간대
- 날씨

- 목적지
- 승차횟수
- 하차횟수
- 공차운행횟수

### 1.4 업데이트 주기

한 달에 한번 (매월 말)

#### 2.1 파일 정보 (내역 → 6페이지)

| 분류               | 파일명                                    | 용량          |
|------------------|----------------------------------------|-------------|
| 데이터셋             | TaxiMatch_Link_Dataset_Full_YYYYMM.zip | ~500MB (압축) |
| 목적지 코드표          | Dest_Code_YYYYMM.mdb                   | ~1MB        |
| 표준노드링크 ID 맵핑 테이블 | KSLink_ID_MappingTable_YYYYMM.mdb      | ~20MB       |
| 활용가이드            | 택시운행분석_활용가이드_YYYYMM.pdf                | ~2MB        |
| 150M 링크정보        | Link_WGS84_Link_Info_150M.txt          | ~5MB        |
| 서울지역 도로링크 SHP    | Seoul_150M_Only.zip                    | ~4MB        |

#### 2.2 분석 자료

| 항목          | 분석자료                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 택시 운행분석 데이터 | 과거1년치 택시 운행 데이터를 분석에 활용하며, 2014년 9월 이전<br>은 법인택시만, 10월 이후는 개인택시도 포함하여 분석<br>(예: 2014.12 → 2013.12~ 2014.11 1년치데이터<br>2015.01 → 2014.01~ 2014.12 1년치데이터 ) |
| 표준노드링크      | http://nodelink.its.go.kr 의 최신 표준노드링크 사용 (현, 2014년 9월 10일 버전)                                                                                            |

#### 2.3 데이터셋 예시

| T_Link_ID | Day | Time | Weather | Dest <sup>주1)</sup> | CntOn    | CntOff   | CntEmp     |
|-----------|-----|------|---------|---------------------|----------|----------|------------|
| 링크ID      | 요일  | 시간대  | 날씨      | 목적지                 | 승차<br>횟수 | 하차<br>횟수 | 공차운행<br>횟수 |

#### **Primary Key**

T\_Link\_ID,Day,Time,Weather,Dest,CntOn,CntOff,CntEmp T10001,1,0,1,1114,512,0,0 T10001,1,0,1,1123,254,0,0 T10001,1,0,1,1168,312,0,0 T10001,1,0,1,,112,15685

주1) 목적지(Dest)는 승차지점이 아닌 하차지점의 행정구역(시군구)을 의미, 따라서 승차횟수에만 해당되며 하차횟수와 공차운행횟수의 경우는 Null



## 2.4 용어 설명



|   | 상태               | 승차 | 하차 | 공차운행 | 실차운행 |
|---|------------------|----|----|------|------|
| 1 | 실차운행             |    |    |      | 1    |
| 2 | 공차운행             |    |    | 1    |      |
| 3 | 실차운행 → 하차 → 공차운행 |    | 1  | 1    | 1    |
| 4 | 공차운행 → 승차 → 실차운행 | 1  |    | 1    | 1    |

• 승차 : 공차 상태로 있다가 손님을 태운 시점의 상태

• 하차 : 실차 상태로 있다고 손님이 내린 시점의 상태

• 공차운행 : 공차 상태로 주행 (정지상태 포함)

• 실차운행 : 실차 상태로 주행 (정지상태 포함)



2.5 데이터셋 필드 설명 (TaxiMach\_Link\_Dataset\_Full\_YYYYMM.zip)

| T_Link_ID                                          | 해당지점의 링                      | ∃ ID                      |                        |         |       |                        |
|----------------------------------------------------|------------------------------|---------------------------|------------------------|---------|-------|------------------------|
| Day                                                | 일(1) 월(2                     | ) 화(3)                    | 수(4)                   | 목(5)    | 금(6)  | 토(7)                   |
| <b>Time</b><br>(24시간/ 30분 단위<br>⇒ 48개)             | <b>00</b><br>(00시~00시30분) (0 | <b>01</b><br>0시 30분 ~01시) | <b>02</b><br>(01시~01시3 | :0분)    | (23)  | <b>47</b><br>시30분~24시) |
| Weather                                            | 맑음(1)                        | 비(2)                      |                        | 눈(3)    | 정보    | 없음(-1)                 |
| Dest                                               | 하차지점의 시                      | 군구코드 *                    | 승차횟수가                  | 입력된 레코! | 드만 해당 |                        |
| CntOn                                              | 승차횟수                         |                           |                        |         |       |                        |
| CntOff                                             | 하차횟수                         |                           |                        |         |       |                        |
| CntEmp                                             | 공차운행횟수                       |                           |                        |         |       |                        |
| ※ <del>목</del> 적지 코드                               | _<br>_ (Dest_Code_Y          | YYYMM.md                  | <b>b</b> )             |         |       |                        |
| SiGunGu_cd                                         | Dest(하차지점                    | !)의 시군구 :                 | 코드                     |         |       | <del>\</del>           |
| SiGunGu_name                                       | Dest(하차지점                    | i)의 시군구명                  | <b>.</b>               |         |       |                        |
| ※ 표준노드링크 ID 맵핑 (KSLink_ID_MappingTable_YYYYMM,mdb) |                              |                           |                        |         |       |                        |

T\_Link\_ID 표준노드링크를 150m로 분할한 후 재부여한 ID

Link\_ID 표준노드링크 ID



### 2.6 파일 데이터 구성정보

| 150M 링크정보<br>(Link_WGS84_Link_Info<br>_150M.txt) |           |  |
|--------------------------------------------------|-----------|--|
| T_LINK_ID                                        | 150M 링크ID |  |
| X_MAX                                            | X좌표 끝점    |  |
| Y_MAX                                            | Y좌표 끝점    |  |
| X_MIN                                            | X좌표 시작점   |  |
| Y_MIN                                            | Y좌표 시작점   |  |
| X_PART                                           | 파트X좌표     |  |
| Y_PART                                           | 파트Y좌표     |  |

택시운행분석 데이터 (TaxiMatch\_Link\_Dataset\_Fu II\_YYYYMM.zip) T LINK ID 150M 링크ID DAY 요일 TIME 시간 WEATHER 날씨 DEST 목적지 CNT\_ON 승차건수 CNT\_OFF 하차건수 CNT\_EMP 공차건수

표준노드링크 ID 맵핑 테이블 (KSLink\_ID\_MappingTable \_YYYYMM.mdb) LINK\_ID 링크ID T\_LINK\_ID 150M 링크ID

목적지코드표 (Dest\_Code\_YYYYMM.mdb)

SIGunGu\_Cd 시군구코드 SIGunGu\_Cd 시군구명



#### 3.1 데이터셋 활용 가이드

1) 데이터 다운로드 및 공간 매핑



- ① 서울열린데이터광장(<u>http://data.seoul.go.kr</u>)에서 데이터셋을 다운받아 DB화한다.
  - 메뉴: Dataset > Dataset 목록
- ② 지능형교통체계관리시스템 표준노드링크 자료실(<a href="http://nodelink.its.go.kr">http://nodelink.its.go.kr</a>) 에서 표준노드링크를 다운받는다.
  - 메뉴 : 표준노드/링크 자료실
- ③ 다운받은 데이터셋의 LinkID와 표준노드링크의 LinkID를 매핑한다.



#### 2) 데이터 추출 및 가공



필요 조건 사용자 입력 및 기기 정보 활용 
 가장 가까운

 Link 추출



소. 조건별 합계

- √ 요일
- ✓ 시간대
- ✓ 날씨
- ✔ 목적지
- ① 주요 조건(위치, 요일, 시간대), 기타 조건(날씨, 목적지) 등 필요한 조건을 사용자가 직접 입력하거나 기기로부터 정보를 받아온다.
- ② 현재위치 또는 원하는 위치에서 가장 가까운 Link를 LinkID 목록에서 가져온다.
- ③ 데이터셋에서 원하는 조건에 해당하는 데이터를 검색해서 가져온다.
- ④ 데이터셋의 데이터는 LinkID별 > 요일별 > 시간대별로 세분화되어 있기 때문에 원하는 조건에 맞게 데이터를 가공한다.



#### 3) 서비스별 활용 데이터 예시

**승객 중심의 서비스의 경우** (빈 택시가 있을 가능성이 높은 위치 안내)

공차운행횟수에서 승차횟수를 뺀 수치를 활용

택시기사 중심의 서비스의 경우 (손님을 태울 가능성이 높은 위치 안내)

승차횟수 수치 활용

#### 4) 지도 표출 예시



※ 색상 표현단계는 도로간 우선순위 구별을 위해 5단계 이상이 권장됨



## 3.2 Open API 활용 가이드

1) 요청주소

http://openAPI.seoul.go.kr:8088

#### 2) 요청인자

| 변수명     | 타입          | 변수설명                           | 값설명                                                   |
|---------|-------------|--------------------------------|-------------------------------------------------------|
| KEY     | STRING(필수)  | 인증키                            | OpenAPI 에서 발급된 인증키                                    |
| TYPE    | STRING(필수)  | 요청파일타입                         | xml : xml, xml파일 : xmlf,<br>엑셀파일 : xls, json파일 : json |
| SERVICE | STRING(필수)  | 서비스명                           | ListTaxiDrivingDataset                                |
| X_LOC   | INTEGER(필수) | 검색할 X 좌표                       | 정수 입력                                                 |
| Y_LOC   | INTEGER(필수) | 검색할 Y 좌표                       | 정수 입력                                                 |
| DAY     | STRING(필수)  | 요일                             | 문자형 입력                                                |
| TIME    | STRING(필수)  | 시간(30분간격)                      | 문자형 입력                                                |
| WEATHER | STRING(필수)  | 날씨<br>(-1:날씨정보없음 1:맑음 2:비 3:눈) | 문자형 입력                                                |

## 3. 활용 방안

#### 3) 출력 값

| NO | 출력명       | 출력 설명                                                                                  |
|----|-----------|----------------------------------------------------------------------------------------|
| 1  | T_LINK_ID | 입력좌표의 반경100미터내의 150m기준 링크ID<br>Ex) T_180743                                            |
| 2  | X_PART    | 해당링크의 파트X좌표(링크에서 나누어진 파트의 X좌표)<br>Ex) 127.0336730^127.0335211^127.0334246^127.0333606^ |
| 3  | Y_PART    | 해당링크의 파트Y좌표(링크에서 나누어진 파트의 Y좌표)<br>Ex) 37.5291603^37.5287213^37.5282681^37.5278763^     |
| 4  | DAY       | 요일                                                                                     |
| 5  | TIME      | 시간(30분간격)                                                                              |
| 6  | WEATHER   | 날씨 (-1:날씨정보없음 1:맑음 2:비 3:눈)                                                            |
| 7  | DEST      | 목적지                                                                                    |
| 8  | CNT_ON    | 승차건수                                                                                   |
| 9  | CNT_OFF   | 하차건수                                                                                   |
| 10 | CNT_EMP   | 공차건수                                                                                   |

※ T\_LINK\_ID,X\_PART, Y\_PART 설명

 $T_LINK_ID => A \sim D(T_180743)$ 

파트는 T\_LINK\_ID 의 세부화된 여러 개의 위치정보 각 ''' 기호마다 하나의 파트위치정보

파트 A지점의 좌표 127.0336730, 37.5291603 파트 B지점의 좌표 127.0335211, 37.5287213 파트 C지점의 좌표 127.0334246, 37.5282681 파트 C지점의 좌표 127.0333606, 37.5278763





## 3. 활용 방안

#### 4) 에러 및 정보메세지

| 에러값       | 에러설명                                                                            |
|-----------|---------------------------------------------------------------------------------|
| INFO-000  | 정상 처리되었습니다                                                                      |
| ERROR-300 | 필수 값이 누락되어 있습니다.<br>요청인자를 참고 하십시오.                                              |
| INFO-100  | 인증키가 유효하지 않습니다.<br>인증키가 없는 경우, 열린 데이터 광장 홈페이지에서 인증키를 신청하십시오.                    |
| ERROR-301 | 파일타입 값이 누락 혹은 유효하지 않습니다.<br>요청인자 중 TYPE을 확인하십시오.                                |
| ERROR-310 | 해당하는 서비스를 찾을 수 없습니다.<br>요청인자 중 SERVICE를 확인하십시오.                                 |
| ERROR-331 | 요청시작위치 값을 확인하십시오.<br>요청인자 중 START_INDEX를 확인하십시오.                                |
| ERROR-332 | 요청종료위치 값을 확인하십시오.<br>요청인자 중 END_INDEX를 확인하십시오.                                  |
| ERROR-333 | 요청위치 값의 타입이 유효하지 않습니다.<br>요청위치 값은 정수를 입력하세요.                                    |
| ERROR-334 | 요청종료위치 보다 요청시작위치가 더 큽니다.<br>요청시작조회건수는 정수를 입력하세요.                                |
| ERROR-335 | 샘플데이터(샘플키:sample) 는 한번에 최대 5건을 넘을 수 없습니다.<br>요청시작위치와 요청종료위치 값은 1 ~ 5 사이만 가능합니다. |
| ERROR-336 | 데이터요청은 한번에 최대 1000건을 넘을 수 없습니다.<br>요청종료위치에서 요청시작위치를 뺀 값이 1000을 넘지 않도록 수정하세요.    |
| ERROR-500 | 서버 오류입니다.<br>지속적으로 발생시 열린 데이터 광장으로 문의(Q&A) 바랍니다.                                |
| ERROR-600 | 데이터베이스 연결 오류입니다.<br>지속적으로 발생시 열린 데이터 광장으로 문의(Q&A) 바랍니다.                         |
| ERROR-601 | SQL 문장 오류 입니다.<br>지속적으로 발생시 열린 데이터 광장으로 문의(Q&A) 바랍니다.                           |
| INFO-200  | 해당하는 데이터가 없습니다.                                                                 |



### 3.3 활용 시나리오

1) 승객 입장 서비스 제공

• 스마트폰 앱을 활용하여 서울시민에게 택시 잡기 쉬운 곳 등의 정보 제공



- 2) 택시기사 입장 서비스 제공
  - 스마트폰 앱과 내비게이션을 활용하여 택시기사에게 승객 많은 곳 등의 정보 제공



