Section A

-> 20160808

Example for solution of homogeneous system

Section B -> 20160809

$$2x_1 + 2x_2 - 3x_3 = 0$$

 $2x_1 + 4x_2 - 2x_3 = 0$

$$3x_1 + 6x_2 - 4x_3 = 0$$

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -2 \end{bmatrix} \xrightarrow{R_2 \rightarrow R_2 - 2R_1} \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & -2 \\ 3 & 6 & -4 \end{bmatrix} \xrightarrow{R_3 \rightarrow R_3 - 3R_1} \begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

This remembers to the system:

$$200$$

This remembers to the system:

 $21 + 2 \times 2 = 0$
 323

There is are prevariables

 323

We re- write it as: -

$$3C_3 = 0$$

$$3C_3 = 0$$

$$3C_3 = 0$$

We can treat Is an a parameter; by setting it to different values, we get different solur. I ni jinitely many

An example to illustrate Proposition 3. $A = \begin{bmatrix} 1 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 3 & 2 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 5 & 8 \end{bmatrix}$ $R_{3} \rightarrow R_{3} - 5R_{2}$, $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ Consponds to the system enique robition - necessarily the trivial

To be done in both sections on Wednesday 2016 0810

2016 MONSOON

MTH 100_

Examples for Non-Homogeneous System

3

Solve
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 7 \\ 9 \\ 30 \end{bmatrix}$

Work with augmented matrix [A: Te] =

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & 3 & 9 \\ 4 & 1 & 8 & 30 \end{bmatrix} \xrightarrow{R_2 \rightarrow R_3 \rightarrow R_3 \rightarrow R_1} 0 \xrightarrow{-1 & -1 & -5}$$

Consoponds to the system: $3c_1 = 1$ $2c_2 = 2$ $2c_2 = 3$

Unique Solution
$$\bar{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

No free variables

is a solu of the given non-homog hystem

is a solu. of associated homog, system

Check: Au = [1 2 4][1] = [3] = [5]

8 20 40][0] = [28] = [6

 $-\times-\times$ $-\times$

Another Exemple

· · · ·

Exemple 3:- Ax = 6 where A= [1 2 4 1 4 3 8 16 11 8 20 40 128

Here, the last now to of the form [0--0; b] with to the equation the O. X, + Ox2 + Ox3 = b \$\formallow\$ which is not possible. So this system is inconsistent

Proof of Observation 6: Suppose the non-homogeneous system A $\bar{x} = \bar{b}$ has at least one solution, say $\bar{u} \neq \bar{0}$.

Avedor \P is a solution of the system if and only if $\bar{y} = \bar{u} + \bar{v}$, where \bar{b} is a solution of \bar{b} undered homogeneous system $\bar{A} = \bar{0}$.

[=7] Suppose y is a solution of the superferm. Put $\overline{u} = \overline{y} - \overline{u}$.

Then $A\overline{u} = A(\overline{y} - \overline{u}) = A\overline{y} - A\overline{u}$ $= \overline{u} - \overline{u} = \overline{0}$.

system, and $\bar{y} = \bar{u} + \bar{v}$

Then $A(\bar{u} + \bar{u}) = A\bar{u} + A\bar{u}$ = $\bar{u} + \bar{v} = \bar{u}$.

Then $\bar{u} + \bar{v} = \bar{u}$.

non-homogeneous nystem

Summary for Non- Homogeneous System: A = 6

点

Associated Homogenoon System Ari=5

Non-Homogeneous System

Case 1: Unique Solution (trivial)

No free variable

Ironaintent OR Unique Solution

Case 2: Infinitely many solution

At least one free variable

Inconsistent

Infinitely Many solutions