

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/pisc

New approximation algorithms for solving graph coloring problem — An experimental approach[☆]

Raja Marappan^{a,*}, Gopalakrishnan Sethumadhavan^{a,*}, R.K. Srihari^b

Received 3 February 2016; accepted 11 April 2016 Available online 30 April 2016

KEYWORDS

Graph coloring; Chromatic number; Divide & conquer; Approximation Summary Some of the real world applications require the solution to graph coloring problem, an NP-hard combinatorial optimization problem. $\chi(G)$, the chromatic number of a graph G, the minimum number of colors required to color the vertex set V(G) with adjacent vertices assigned with different color can also be obtained using evolutionary methods. This paper exhibits two new approximation methods of solving graph coloring based on $\mu_{1/2}(G)$, the median of the degrees V(G). In the first method, a heuristic procedure is designed to color V(G) which works in two stages. In the first stage, to minimize the conflicting edges, the vertices of V(G) whose degrees are $\geq \mu_{1/2}(G)$ are colored. Then the remaining vertices are colored through a heuristic procedure. The second method is implemented using divide & conquer strategy. These new approximation algorithms are exhibited on some of the small, intermediate and large benchmark graphs and the results are compared. The proposed algorithms significantly reduce the computational complexity in obtaining the near optimal solution and also the results are found to be better than the existing approaches.

 \odot 2016 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

$\,\,^{\dot{}_{}}\,$ This article belongs to the special issue on Engineering and Material Sciences.

E-mail addresses: raja_csmath@cse.sastra.edu (R. Marappan), sgk@mca.sastra.edu (G. Sethumadhavan).

Introduction

The vertex set V(G) and edge set E(G) of a simple graph G with n vertices are V(G): $\{v_1, v_2, ..., v_n\}$ and E(G): $\{e_1, e_2, ..., e_m\}$ respectively such that each $e_k \in E(G)$ is uniquely mapped to disordered end vertices pair (v_j, v_i) . The adjacency matrix of G is A(G), an $n \times n$ symmetric binary matrix,

^a Department of Computer Applications, School of Computing, SASTRA University, Thanjavur, Tamilnadu, India

^b TATA Consultancy Services, Chennai, Tamilnadu, India

^{*} Corresponding authors.

Graph no	Graph (G)			Minimum color obtained in		
	Graph type	Instances	χ(G)	Existing method	Method 1	Method 2
1	queen5_5.col	n = 25; m = 320	5	5	5	5
2	queen6_6.col	n = 36; $m = 580$	7	7	7	7
3	queen7_7.col	n = 49; $m = 952$	7	7	7	7
4	queen8_8.col	n = 64; m = 1456	9	9	9	9
5	myciel5.col	n = 47; $m = 236$	6	6	6	6
6	myciel6.col	n = 95; $m = 755$	7	7	7	7
7	myciel4.col	n = 23; $m = 71$	5	5	5	5
8	myciel3.col	n = 11; $m = 20$	4	4	4	4
9	huck.col	n = 74; $m = 301$	11	11	11	11
10	jean.col	n = 80; $m = 254$	10	10	10	10
11	david.col	n = 87; $m = 406$	11	11	11	11
12	queen8_12.col	n = 96; $m = 2736$	12	12	15	12
13	gueen9_9.col	n = 81; $m = 2112$	10	10	11	10

where $A_{ji} = 1$ if v_j and v_i are adjacent such that $(v_j, v_i) \in E(G)$; $A_{ii} = 0$ when (v_i, v_i) is not in E(G). $\chi(G)$, minimum number of colors used to color V(G) with adjacent vertices are colored with different color, is called a graph coloring problem (GCP) (Méndez-Diaz and Zabala, 2006). Different methods were proposed to solve GCP (Hertz and Werra, 1987; Galinier and Hao, 1999; Marappan and Sethumadhavan, 2013; Sethumadhavan and Marappan, 2013; Marappan and Sethumadhavan, 2015a,b,c). This paper exhibits two new approximation methods to find $\chi(G)$. These approximation schemes are devised by combining the greedy and divide & conquer algorithmic design approaches. Greedy design strategy is applied to minimize the number of conflicting vertices. The first method (method 1) initially computes the median degree, $\mu_{1/2}(G)$ and colors all the vertices with degree $\geq \mu_{1/2}(G)$ and then colors the remaining vertices. The divide & conquer design strategy is applied to split V(G) into two smaller subsets viz. left and right. Initially the coloring procedure is called to the left subset while assigning colors to right the adjacency between the vertices present in the left to right is considered to avoid the conflicts (method 2). To minimize the number of conflicting edges and to minimize the computational time the subset which has more number of conflicting edges with the other subset is solved first independently. The conflicting edges of the other subset are solved concurrently based on the color assignment of other subset. Section 2 focuses on the new approximation methods; Experimental outcomes and evaluations with well known methods are presented in Section 3 and the conclusions are drawn in Section 4.

New approximation methods

Notions, variables, data structures and procedures

The following notions, variables, data structures and procedures are used in the proposed methods:

1. Median degree $\mu_{1/2}(G)$: The degree $d(v_i)$ of v_i is the number of e_i 's incident onto v_i .

$$\mu_{1/2}(G) = \text{Median}\{d(V_i)|V_i \in V(G), \quad 1 \leq i \leq n\}$$

2. mincolor: A variable to store a possible minimum integer value.

Fig. 1 (a) Flowchart for method 1 (b) Flowchart for method 2. (C) Two level divide & Conquer on Method 1 (Method 2).

386 R. Marappan et al.

Graph no Graph type Instances χ(G) Existing method Method 1 Method 2 14 mycle7, col n = 191; m = 2300 8 8 8 8 8 15 games120,col n = 120; m = 638 9 9 9 9 9 16 milles250,col n = 128; m = 387 8 </th <th>Table 2</th> <th colspan="7">Table 2 Computation of near optimal solution on intermediate graphs ($100 \le n < 500$).</th>	Table 2	Table 2 Computation of near optimal solution on intermediate graphs ($100 \le n < 500$).						
14 myciel7.col	Graph no	Graph (G)			Minimum color obtained in			
15		Graph type	Instances	χ(G)	Existing method	Method 1	Method 2	
16 miles 250.col n = 128; m = 387 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 17 anna.col n = 138; m = 493 11 11 11 11 11 11 11 11 11 11 11 11 11	14	myciel7.col	n = 191; m = 2360	8	8	8	8	
17 anna.col	15	games120.col	n = 120; $m = 638$	9	9	9	9	
18 queen10.10.col n = 100; m = 2940 11 11 14 11 19 queen11.21.col n = 196; m = 8372 14 14 20 16 21 queen15.15.col n = 196; m = 8372 14 14 20 16 21 queen16.16.col n = 225; m = 10360 15 15 20 16 22 queen16.16.col n = 225; m = 10360 15 15 20 16 22 queen16.11.col n = 121; m = 3960 11 11 18 11 24 queen13.13.col n = 169; m = 6656 13 13 19 14 25 miles500.col n = 128; m = 4226 31 31 32 31 27 miles1000.col n = 128; m = 4226 31 31 32 31 28 miles1500.col n = 128; m = 4032 42 42 42 48 43 28 miles1500.col n = 128; m = 4324 40 42 42 <td< td=""><td>16</td><td>miles250.col</td><td>n = 128; $m = 387$</td><td>8</td><td>8</td><td>8</td><td>8</td></td<>	16	miles250.col	n = 128; $m = 387$	8	8	8	8	
19	17	anna.col	n = 138; $m = 493$	11	11	11	11	
20 queent4_14_col n = 196; m = 8372 14 14 20 16 21 queent15_15_col n = 225; m = 10360 15 15 20 16 22 queent6_16_col n = 256; m = 10260 16 16 6 22 17 23 queent3_13_col n = 169; m = 6656 13 13 19 14 25 miles500_col n = 128; m = 1170 20 20 22 20 26 miles750_col n = 128; m = 10396 31 31 32 31 27 miles1500_col n = 128; m = 6432 42 42 48 43 28 miles1500_col n = 128; m = 10396 73 73 78 76 29 zeroin.1.2_col n = 211; m = 4100 49 49 51 49 30 zeroin.1.3_col n = 206; m = 3540 30 30 30 30 31 zeroin.1.3_col n = 188; m = 3885 31 31 32 <t< td=""><td>18</td><td>queen10_10.col</td><td>n = 100; $m = 2940$</td><td>11</td><td>11</td><td>14</td><td>11</td></t<>	18	queen10_10.col	n = 100; $m = 2940$	11	11	14	11	
21 queen15.15.col n = 225; m = 10360 15 15 20 16 22 queen16.16.col n = 256; m = 12640 16 16 22 17 23 queen13.13.col n = 121; m = 3960 11 11 18 11 24 queen13.13.col n = 169; m = 6656 13 13 19 14 25 miles500.col n = 128; m = 1170 20 20 22 20 26 miles750.col n = 128; m = 6432 42 42 48 43 27 miles1000.col n = 128; m = 10396 73 73 78 76 29 zeroin.i.1.col n = 211; m = 3541 30 30 30 30 30 zeroin.i.2.col n = 211; m = 3541 30 30 30 30 31 zeroin.i.2.col n = 211; m = 3541 30 30 30 30 32 mulsol.i.1.col n = 206; m = 3540 30 30 30 30	19	queen12_12.col	n = 144; m = 5192	12	12	18	13	
22 queen16.16.col n = 256; m = 12640 16 16 22 17 23 queen11.11.col n = 121; m = 3960 11 11 18 11 24 queen13.13.col n = 169; m = 6656 13 13 19 14 25 miles500.col n = 128; m = 1170 20 20 22 20 26 miles750.col n = 128; m = 4226 31 31 32 31 27 miles1000.col n = 128; m = 6432 42 42 48 43 28 miles1500.col n = 121; m = 400 49 49 51 49 29 zeroin.i.1.col n = 211; m = 400 49 49 51 49 30 zeroin.i.2.col n = 211; m = 3541 30 30 30 30 31 zeroin.i.2.col n = 181; m = 3940 30 30 30 30 31 zeroin.i.2.col n = 188; m = 3845 31 31 31 32 31<	20	queen14_14.col	n = 196; m = 8372	14	14	20	16	
23	21	queen15_15.col	n = 225; $m = 10360$	15	15	20	16	
24 queen13.13.col n=169; m=6656 13 13 19 14 25 miles500.col n=128; m=4170 20 20 22 20 26 miles750.col n=128; m=4226 31 31 32 31 27 miles1000.col n=128; m=6432 42 42 48 43 28 miles1500.col n=128; m=6432 42 42 48 43 28 miles1500.col n=121; m=10396 73 73 78 76 29 zeroin.i.1.col n=211; m=4100 49 49 51 49 30 zeroin.i.2.col n=211; m=3541 30 30 30 30 31 zeroin.i.2.col n=206; m=3540 30 30 30 30 32 mulsol.i.3.col n=188; m=3885 31 31 31 32 31 34 mulsol.i.4.col n=185; m=3946 31 31 31 32 31 <trr< td=""><td>22</td><td>queen16_16.col</td><td>n = 256; $m = 12640$</td><td>16</td><td>16</td><td>22</td><td>17</td></trr<>	22	queen16_16.col	n = 256; $m = 12640$	16	16	22	17	
25 miles500.col n=128; m=1170 20 20 22 20 26 miles750.col n=128; m=4226 31 31 32 31 27 miles1000.col n=128; m=6432 42 42 48 43 28 miles1500.col n=128; m=10396 73 73 78 76 29 zeroin.i.1.col n=211; m=4100 49 49 51 49 30 zeroin.i.2.col n=211; m=3541 30 30 30 30 31 zeroin.i.3.col n=206; m=3540 30 30 30 30 31 zeroin.i.3.col n=188; m=3840 30 30 30 30 32 mulsol.i.2.col n=184; m=3916 31 31 32 31 34 mulsol.i.3.col n=184; m=3916 31 31 32 31 35 mulsol.i.3.col n=185; m=3946 31 31 32 31 36 mulsol	23	queen11_11.col	n = 121; $m = 3960$	11	11	18	11	
26 miles750.col n = 128; m = 4226 31 31 32 31 27 miles1000.col n = 128; m = 6432 42 42 42 48 43 28 miles1500.col n = 128; m = 6432 42 42 42 48 43 29 zeroin.i.1.col n = 211; m = 4100 49 49 51 49 30 zeroin.i.3.col n = 201; m = 3541 30 30 30 30 30 31 zeroin.i.3.col n = 206; m = 3540 30 30 30 30 30 32 mulsol.i.3.col n = 197; m = 3925 49 49 50 49 33 mulsol.i.3.col n = 184; m = 3885 31 31 31 32 31 34 mulsol.i.3.col n = 185; m = 3946 31 31 32 31 35 mulsol.i.3.col n = 185; m = 3973 31 31 32 31 36 mulsol.i.5.col n = 185; m = 39	24	queen13_13.col	n = 169; $m = 6656$	13	13	19	14	
27 miles1000.col n=128; m=6432 42 42 42 48 43 28 miles1500.col n=128; m=10396 73 73 78 76 29 zeroin.i.1.col n=211; m=4100 49 49 51 49 30 zeroin.i.2.col n=211; m=3541 30 30 30 30 31 zeroin.i.3.col n=206; m=3540 30 30 30 30 32 mulsol.i.1.col n=197; m=3925 49 49 50 49 33 mulsol.i.2.col n=188; m=3885 31 31 32 31 34 mulsol.i.4.col n=185; m=3946 31 31 32 31 35 mulsol.i.4.col n=185; m=3946 31 31 32 31 36 mulsol.i.5.col n=186; m=3973 31 31 32 31 37 le450.5a.col n=450; m=5714 5 11 12 9 38 <td>25</td> <td>miles500.col</td> <td>n = 128; $m = 1170$</td> <td>20</td> <td>20</td> <td>22</td> <td>20</td>	25	miles500.col	n = 128; $m = 1170$	20	20	22	20	
28 miles1500.col n = 128; m = 10396 73 73 78 76 29 zeroin.i.1.col n = 211; m = 4100 49 49 51 49 30 zeroin.i.2.col n = 211; m = 3541 30 30 30 30 31 zeroin.i.3.col n = 206; m = 3540 30 30 30 30 32 mulsol.i.1.col n = 197; m = 3925 49 49 50 49 33 mulsol.i.2.col n = 188; m = 3885 31 31 32 31 34 mulsol.i.3.col n = 184; m = 3916 31 31 32 31 35 mulsol.i.4.col n = 185; m = 3946 31 31 32 31 36 mulsol.i.5.col n = 186; m = 3973 31 31 32 31 37 le450_5b.col n = 450; m = 5714 5 11 12 9 38 le450_5b.col n = 450; m = 5734 5 11 12 9 <t< td=""><td>26</td><td>miles750.col</td><td>n = 128; $m = 4226$</td><td>31</td><td>31</td><td>32</td><td>31</td></t<>	26	miles750.col	n = 128; $m = 4226$	31	31	32	31	
29 zeroin.i.1.col n=211; m=4100 49 49 49 51 49 30 zeroin.i.2.col n=211; m=3541 30 30 30 30 31 zeroin.i.3.col n=206; m=3540 30 30 30 30 32 mulsol.i.1.col n=197; m=3925 49 49 50 49 33 mulsol.i.2.col n=188; m=3885 31 31 32 31 34 mulsol.i.3.col n=184; m=3916 31 31 32 31 35 mulsol.i.4.col n=185; m=3946 31 31 32 31 36 mulsol.i.5.col n=186; m=3973 31 31 32 31 37 le450.5a.col n=450; m=5714 5 11 12 9 38 le450.5b.col n=450; m=5734 5 11 12 9 39 le450.5b.col n=450; m=9803 5 5 13 10 40	27	miles1000.col	n = 128; $m = 6432$	42	42	48	43	
30 zeroin.i.2.col n = 211; m = 3541 30 30 30 30 31 zeroin.i.3.col n = 206; m = 3540 30 30 30 30 32 mulsol.i.1.col n = 197; m = 3925 49 49 50 49 33 mulsol.i.2.col n = 188; m = 3885 31 31 32 31 34 mulsol.i.3.col n = 184; m = 3916 31 31 33 31 35 mulsol.i.4.col n = 185; m = 3946 31 31 32 31 36 mulsol.i.5.col n = 186; m = 3973 31 31 32 31 37 le450.5a.col n = 450; m = 5774 5 11 12 9 38 le450.5b.col n = 450; m = 5734 5 11 12 9 39 le450.5b.col n = 450; m = 9803 5 5 13 10 40 le450.15b.col n = 450; m = 8169 15 15 24 20	28	miles1500.col	n = 128; $m = 10396$	73	73	78	76	
31 zeroin.i.3.col $n = 206$; $m = 3540$ 30 30 30 30 32 mulsol.i.1.col $n = 197$; $m = 3925$ 49 49 50 49 33 mulsol.i.2.col $n = 188$; $m = 3885$ 31 31 32 31 34 mulsol.i.3.col $n = 184$; $m = 3916$ 31 31 33 31 35 mulsol.i.4.col $n = 185$; $m = 3946$ 31 31 32 31 36 mulsol.i.5.col $n = 186$; $m = 3973$ 31 31 32 31 37 le450.5a.col $n = 450$; $m = 5714$ 5 11 12 9 38 le450.5b.col $n = 450$; $m = 5734$ 5 11 12 9 39 le450.5c.col $n = 450$; $m = 9803$ 5 5 13 10 40 le450.5d.col $n = 450$; $m = 9757$ 5 5 13 11 41 le450.15b.col $n = 450$; $m = 16750$ 15 15 24 20 42 le450.15b.col $n = 450$; $m = 16750$ 15	29	zeroin.i.1.col	n = 211; $m = 4100$	49	49	51	49	
32 mulsol.i.1.col n=197; m=3925 49 49 50 49 33 mulsol.i.2.col n=188; m=3885 31 31 32 31 34 mulsol.i.3.col n=184; m=3916 31 31 33 31 35 mulsol.i.5.col n=185; m=3946 31 31 32 31 36 mulsol.i.5.col n=186; m=3973 31 31 32 31 37 le450_5a.col n=450; m=5714 5 11 12 9 38 le450_5b.col n=450; m=5734 5 11 12 9 39 le450_5b.col n=450; m=9803 5 5 13 10 40 le450_5b.col n=450; m=9757 5 5 13 11 41 le450_15b.col n=450; m=8169 15 15 24 20 42 le450_15b.col n=450; m=16680 15 15 25 22 43 le450_25a.col	30	zeroin.i.2.col	n = 211; $m = 3541$	30	30	30	30	
33 mulsol.i.2.col	31	zeroin.i.3.col	n = 206; $m = 3540$	30	30	30	30	
34 mulsol.i.3.col $n=184$; $m=3916$ 31 31 32 33 31 35 mulsol.i.4.col $n=185$; $m=3946$ 31 31 32 31 32 31 36 mulsol.i.5.col $n=186$; $m=3973$ 31 31 32 31 32 31 37 le450.5a.col $n=450$; $m=5714$ 5 11 12 9 38 le450.5b.col $n=450$; $m=5734$ 5 11 12 9 9 14 12 9 14 14 14 31 25 14 14 14 30 5 51 15 15 15 15 15 15 15 15 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	32	mulsol.i.1.col	n = 197; $m = 3925$	49	49	50	49	
35 mulsol.i.4.col n=185; m=3946 31 31 31 32 31 36 mulsol.i.5.col n=186; m=3973 31 31 32 31 37 le450_5a.col n=450; m=5714 5 11 12 9 38 le450_5b.col n=450; m=5734 5 11 12 9 39 le450_5c.col n=450; m=9803 5 5 13 10 40 le450_5d.col n=450; m=9803 5 5 13 11 41 le450_15b.col n=450; m=8169 15 15 24 20 42 le450_15c.col n=450; m=16680 15 15 25 22 43 le450_15d.col n=450; m=16750 15 15 25 21 44 le450_25a.col n=450; m=8260 25 25 38 30 45 le450_25b.col n=450; m=8263 25 25 38 30 46 le450_25b.col n=450; m=8263 25 34 40 32 47 le450_25d.col n=450; m=17425 25 34 40 31 48 school1.col n=385; m=19095 14 14 31 25 49 school1.sol n=352; m=14612 14 14 30 23 50 fpsol2.i.1.col n=496; m=11654 65 65 70 65 51 fpsol2.i.2.col n=451; m=8691 30 30 35	33	mulsol.i.2.col	n = 188; $m = 3885$	31	31	32	31	
36 mulsol.i.5.col n=186; m=3973 31 31 32 31 37 le450.5a.col n=450; m=5714 5 11 12 9 38 le450.5b.col n=450; m=5734 5 11 12 9 39 le450.5b.col n=450; m=9803 5 5 13 10 40 le450.5d.col n=450; m=9757 5 5 13 11 41 le450.15b.col n=450; m=8169 15 15 24 20 42 le450.15c.col n=450; m=16680 15 15 25 22 43 le450.15d.col n=450; m=16680 15 15 25 22 43 le450.25a.col n=450; m=16750 15 15 25 22 44 le450.25a.col n=450; m=8260 25 25 38 30 45 le450.25a.col n=450; m=8263 25 25 38 29 46 le450.25c.col n=450; m=17343 25 34 40 32 47 le450.25d.col n=385; m=19095 14 14 31 25 48 school1.col n=385; m=19095 14 14 <	34	mulsol.i.3.col	n = 184; $m = 3916$	31	31	33	31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	mulsol.i.4.col	n = 185; m = 3946	31	31	32	31	
38 le450_5b.col n=450; m=5734 5 11 12 9 39 le450_5c.col n=450; m=9803 5 5 13 10 40 le450_5d.col n=450; m=9757 5 5 13 11 41 le450_15b.col n=450; m=8169 15 15 24 20 42 le450_15c.col n=450; m=16680 15 15 25 22 43 le450_15d.col n=450; m=16750 15 15 25 21 44 le450_25a.col n=450; m=8260 25 25 38 30 45 le450_25b.col n=450; m=8263 25 25 38 29 46 le450_25c.col n=450; m=17343 25 34 40 32 47 le450_25d.col n=450; m=17425 25 34 40 31 48 school1.col n=385; m=19095 14 14 31 25 49 school1.nsh.col n=352; m=14612 14 14 30 23 50	36	mulsol.i.5.col	n = 186; $m = 3973$	31	31	32	31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	le450_5a.col	n = 450; $m = 5714$	5	11	12	9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	le450_5b.col	n = 450; $m = 5734$	5	11	12	9	
41 le450_15b.col $n = 450$; $m = 8169$ 15 15 24 20 42 le450_15c.col $n = 450$; $m = 16680$ 15 15 25 22 43 le450_15d.col $n = 450$; $m = 16750$ 15 15 25 21 44 le450_25a.col $n = 450$; $m = 8260$ 25 25 38 30 45 le450_25b.col $n = 450$; $m = 8263$ 25 25 38 29 46 le450_25c.col $n = 450$; $m = 17343$ 25 34 40 32 47 le450_25d.col $n = 450$; $m = 17425$ 25 34 40 31 48 school1.col $n = 385$; $m = 19095$ 14 14 31 25 49 school1.nsh.col $n = 352$; $m = 14612$ 14 14 30 23 50 fpsol2.i.1.col $n = 496$; $m = 11654$ 65 65 65 70 65 51 fpsol2.i.2.col $n = 451$; $m = 8691$ 30 30 35 30	39	le450_5c.col	n = 450; $m = 9803$	5	5	13	10	
42 le450_15c.col $n = 450$; $m = 16680$ 15 15 25 22 43 le450_15d.col $n = 450$; $m = 16750$ 15 15 25 21 44 le450_25a.col $n = 450$; $m = 8260$ 25 25 38 30 45 le450_25b.col $n = 450$; $m = 8263$ 25 25 38 29 46 le450_25c.col $n = 450$; $m = 17343$ 25 34 40 32 47 le450_25d.col $n = 450$; $m = 17425$ 25 34 40 31 48 school1.col $n = 385$; $m = 19095$ 14 14 31 25 49 school1.nsh.col $n = 352$; $m = 14612$ 14 14 30 23 50 fpsol2.i.1.col $n = 496$; $m = 11654$ 65 65 70 65 51 fpsol2.i.2.col $n = 451$; $m = 8691$ 30 30 35 30	40	le450_5d.col	n = 450; $m = 9757$	5	5	13	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	le450_15b.col	n = 450; $m = 8169$	15	15	24	20	
44 le450_25a.col $n = 450$; $m = 8260$ 25 25 38 30 45 le450_25b.col $n = 450$; $m = 8263$ 25 25 38 29 46 le450_25c.col $n = 450$; $m = 17343$ 25 34 40 32 47 le450_25d.col $n = 450$; $m = 17425$ 25 34 40 31 48 school1.col $n = 385$; $m = 19095$ 14 14 31 25 49 school1.nsh.col $n = 352$; $m = 14612$ 14 14 30 23 50 fpsol2.i.1.col $n = 496$; $m = 11654$ 65 65 70 65 51 fpsol2.i.2.col $n = 451$; $m = 8691$ 30 30 35 30	42	le450_15c.col	n = 450; $m = 16680$	15	15	25	22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	le450_15d.col	n = 450; $m = 16750$	15	15	25	21	
46 le450_25c.col n=450; m=17343 25 34 40 32 47 le450_25d.col n=450; m=17425 25 34 40 31 48 school1.col n=385; m=19095 14 14 31 25 49 school1_nsh.col n=352; m=14612 14 14 30 23 50 fpsol2.i.1.col n=496; m=11654 65 65 70 65 51 fpsol2.i.2.col n=451; m=8691 30 30 35 30	44	le450_25a.col	n = 450; $m = 8260$	25	25	38	30	
47 le450_25d.col n=450; m=17425 25 34 40 31 48 school1.col n=385; m=19095 14 14 31 25 49 school1_nsh.col n=352; m=14612 14 14 30 23 50 fpsol2.i.1.col n=496; m=11654 65 65 70 65 51 fpsol2.i.2.col n=451; m=8691 30 30 35 30	45	le450_25b.col	n = 450; $m = 8263$	25	25	38	29	
48 school1.col n = 385; m = 19095 14 14 31 25 49 school1_nsh.col n = 352; m = 14612 14 14 30 23 50 fpsol2.i.1.col n = 496; m = 11654 65 65 70 65 51 fpsol2.i.2.col n = 451; m = 8691 30 30 35 30	46	le450_25c.col	n = 450; $m = 17343$	25	34	40	32	
49 school1_nsh.col n = 352; m = 14612 14 14 30 23 50 fpsol2.i.1.col n = 496; m = 11654 65 65 70 65 51 fpsol2.i.2.col n = 451; m = 8691 30 30 35 30	47	le450_25d.col	n = 450; $m = 17425$	25	34	40	31	
50 fpsol2.i.1.col n = 496; m = 11654 65 65 70 65 51 fpsol2.i.2.col n = 451; m = 8691 30 30 35 30	48	school1.col	n = 385; $m = 19095$	14	14	31	25	
51 fpsol2.i.2.col n = 451; m = 8691 30 30 35	49	school1_nsh.col	n = 352; $m = 14612$	14	14	30	23	
	50	fpsol2.i.1.col	n = 496; $m = 11654$	65	65	70	65	
	51	fpsol2.i.2.col	n = 451; m = 8691	30	30	35	30	
	52	fpsol2.i.3.col	n = 425; m = 8688	30	30	34	31	

Table 3	Computation of near op	mputation of near optimal solution on large graphs ($n \geq 500$).						
Graph no	Graph (G)			Minimum color obtained in				
	Graph type	Instances	χ(G)	Existing method	Method 1	Method 2		
53	homer.col	n = 561; m = 1629	13	13	13	13		
54	inithx.i.1.col	n = 864; m = 18707	54	54	54	54		
55	inithx.i.2.col	n = 645; $m = 13979$	31	31	31	31		
56	inithx.i.3.col	n = 621: $m = 13969$	31	31	31	31		

- 3. color[]: color[i] will hold the color value of the *i*th vertex.
- SetGreedyColor(i): A procedure which sets a color to vertex i.
- 5. Conflicting vertices: Two adjacent vertices *i* and *j* are said to be conflicting iff color[*i*] = color[*j*].
- 6. Conflict function f(G): This function assigns the total number of conflicting vertices in V(G).
- 7. Split (S): Set $S = \{1, 2, 3, ..., n\}$ is split into two subsets S_1 and S_n as follows:

$$\begin{split} S_{l} &= \left\{1,2,3,\ldots,\frac{n}{2}\right\} \, \& \, S_{r} = \left\{\frac{n}{2}+1,\frac{n}{2}+2,\ldots,n\right\} \\ &\text{with} \quad \left|S_{l}\right| = \frac{n}{2} \, \& \, \left|S_{r}\right| = \frac{n}{2} \quad \text{when } n \, \text{is odd.} \end{split}$$

$$S_{l} = \left\{1, 2, 3, ..., n/2\right\} \& S_{r} = \left\{\frac{n}{2} + 1, \frac{n}{2} + 2, ..., n\right\}$$
with $\left|S_{l}\right| = \left|S_{r}\right| = \frac{n}{2}$ when n is even.

Greedy and heuristics (Method 1)

This iterative method is evolved from the greedy design strategy with heuristics; by initializing mincolor as 3 and $\operatorname{color}[i] = 0$ for $1 \le i \le n$.

Case 1: SetGreedyColor(i), a heuristic procedure is called on all the vertices whose degree $\geq \mu_{1/2}$ (G), a greedy approach as follows:i. Choose a vertex i such that $\operatorname{color}[i] = 0$ and degree (i) $\geq \mu_{1/2}$ (G).ii. For j = 1 to mincolor do

Boolean t = false; For k = 1 to n do If $(A_{ik} = 1)$ then (color[k] ==j) then t = false; break;Else t = true;

If (t = true) then color[i] = j; break; ii. Repeat Steps i and ii for other vertices whose degree $\geq \mu_{1/2}$

Case 2: For all the vertices whose degree $<\mu_{1/2}$ (G), call SetGreedyColor (i). Compute f(G). If $f(G) \neq 0$ set mincolor = mincolor + 1; repeat case 1 and case 2 until f(G) = 0. This greedy procedure assigns color[i] in [1,mincolor] \forall 1 \leq i \leq n. The flowchart is shown in Fig. 1(a).

This iterative method is evolved by applying the divide & conquer strategy in method 1; by initializing mincolor as 3 and color[i] = 0 for $1 \le i \le n$. This procedure is as follows:

- i. Call Split(V(G)) which partitions V(G) into two subsets $V_{l}(G), V_{r}(G).$
- ii. Call Split($V_{l}(G)$) and Split($V_{r}(G)$) when n > 100 that partitions $V_1(G)$ and $V_r(G)$ into pairs of two subsets $V_{ll}(G)$ & $V_{lr}(G)$ and $V_{rl}(G)$ & $V_{rr}(G)$, respectively.
- iii. Compute the number of conflicting edges from $V_l(G)$ to $V_r(G)$ and from $V_r(G)$ to $V_l(G)$.
- iv. Solve $(V_l(G), V_r(G))$ and $(V_{lr}(G), V_{rr}(G))$ in concurrence with one another using case 1 and case 2 of method 1 by solving the subset with more conflicting edges first.

Now compute f(G). If $f(G) \neq 0$ or color[i] > mincolor $(1 \le i \le n)$ set mincolor = mincolor + 1; repeat steps iii and iv until f(G) = 0. The flowchart for method 2 is shown in Fig. 1(b).

Experimental results and comparisons

The experiments are conducted on benchmark graphs using Intel Xeon Workstation with 256 GB DDR3 in Windows 8 Professional OS under JDK 1.8.0 environment. The devised methods are compared with some of the existing methods (Méndez-Diaz and Zabala, 2006; Hertz and Werra, 1987; Galinier and Hao, 1999) and the minimum color obtained is tabulated in Tables 1-3 respectively; and the following inferences are obtained.

- 1. The approximation methods find solution for most of the benchmark graphs in reduced computational complexi-
- 2. Method 2 significantly reduces the complexity and obtained the near optimal solution for most graphs compared to method 1.

Conclusion

New approximation methods to find $\chi(G)$ using greedy and divide & conquer strategies are presented in this paper. The methods are based on the median degree $\mu_{1/2}(G)$. The devised methods are evaluated using benchmark graphs and near optimal solution are obtained; and optimal solution is obtained for most of the graphs. The divide & conquer strategy is performed well for most graphs compared to method 1.

Acknowledgement

The authors would like to acknowledge the support rendered by the management of SASTRA University by the way of providing necessary infrastructure and financial support for this research. The authors would like to thank Gary Lewandowski, and Michael Trick for their support rendered in http://mat.gsia.cmu.edu/COLOR/instances.html to accessing the graph coloring instances available in DIMACS which are the main breeding source of this research.

References

Galinier, P., Hao, J.-K., 1999. Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3 3, 379-397.

Hertz, A., Werra, D.E., 1987. Using tabu search techniques for graph coloring. Computing 39 (4), 345-351.

Marappan, R., Sethumadhavan, G., 2013. A new genetic algorithm for graph coloring. In: CIMSim2013, 5th International Conference on Computational Intelligence, Modelling and Simulation, Seoul, South Korea, pp. 49-54.

Marappan, R., Sethumadhavan, G., 2015a. Solution to graph coloring problem using heuristics and recursive backtracking. Int. J. Appl. Eng. Res. 10 (10), 25939-25944, ISSN 0973-4562.

Marappan, R., Sethumadhavan, G., 2015b. Solution to graph coloring problem using evolutionary optimization through symmetry breaking approach. Int. J. Appl. Eng. Res. 10 (10), 26573-26580, ISSN 0973-4562.

Marappan, R., Sethumadhavan, G., 2015c. Solving graph coloring problem for large graphs. Glob. J. Pure Appl. Math. 11 (4), 2487-2494.

Méndez-Diaz, I., Zabala, P., 2006. A branch-and-cut algorithm for graph coloring. Discrete Appl. Math. 154 (5), 826-847.

Sethumadhavan, G., Marappan, R., 2013. A Genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research, 26-28 December, India, pp. 350-355.