Lecture 11 Sequences and Summations

Topics:

- 1. Sequences and their Summation
- 2. Recurrence Relations

Sequences

Definition: A sequence is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1, 2, 3, ...\}$) to a set S. We use the notation an to denote the image of the integer n. We call a_n a term of the sequence.

Example: Consider the sequence $\{a_n\}$, where

$$a_n = 1 / n$$
.

The list of the terms of this sequence, beginning with a₁, namely,

$$a_1, a_2, a_3, a_4, \dots,$$

starts with 1, 1/2, 1/3, 1/4,

Sequences: Geometric Progression

Definition: A geometric progression is a sequence of the form

 $a, ar, ar^2, \ldots, ar^n, \ldots$

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function $f(x) = ar^x$.

Sequences: Geometric Progression

Example: The sequences $\{b_n\}$ with $b_n = (-1)^n$, $\{c_n\}$ with $c_n = 2 \cdot 5^n$, and $\{d_n\}$ with $d_n = 6 \cdot (1/3)^n$ are geometric progressions with initial term and common ratio equal to 1 and -1; 2 and 5; and 6 and 1/3, respectively, if we start at n = 0. The list of terms $b_0, b_1, b_2, b_3, b_4, \dots$ begins with

the list of terms c₀,c₁,c₂,c₃,c₄,...begins with

and the list of terms d₀,d₁,d₂,d₃,d₄,...begins with

6, 2, 2/3, 2/9, 2/27,....

Sequences: Arithmetic Progression

Definition: An Arithmetic Progression is a sequence of the form a,a +d,a+2d,...,a+nd,...

where the initial term a and the common difference d are real numbers.

Sequences: Arithmetic Progression

Example: The sequences $\{s_n\}$ with $s_n = -1 + 4n$ and $\{t_n\}$ with $t_n = 7 - 3n$ are both arithmetic progressions with initial terms and common differences equal to -1 and 4, and 7 and -3, respectively, if we start at n = 0. The list of terms s_0 , s_1 , s_2 , s_3 , ... begins with

-1, 3, 7, 11, ..., and the list of terms t_0 , t_1 , t_2 , t_3 ,, ... begins with 7, 4, 1,-2,

Sequences of the form a_1, a_2, \ldots, a_n are often used in computer science. These finite sequences are also called *strings*. This string is also denoted by $a_1 a_2 \ldots a_n$. The length of a string is the number of terms in this string. The empty string, denoted by λ , is the string that has no terms. The *empty string* has length zero. For example, The string abcd is a string of length four.

Recurrence Relations

Definition: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses an in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively define a sequence.)

Recurrence Relations

Example: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1, 2, 3, ..., and suppose that $a_0 = 2$. What are $a_1, a_2,$ and a_3 ?

Solution: We see from the recurrence relation that $a_1 = a_0 + 3 = 2 + 3 = 5$.

It then follows that $a_2 = 5 + 3 = 8$

and
$$a_3 = 8 + 3 = 11$$
.

Recurrence Relations: Fibonacci sequence

Definition: The Fibonacci sequence, f_0 , f_1 , f_2 , ..., is defined by the initial conditions $f_0 = 0$, $f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for $n = 2, 3, 4, \dots$

Recurrence Relations: Fibonacci sequence

Example: Find the Fibonacci numbers f_2 , f_3 , f_4 , f_5 , and f_6 .

<u>Solution:</u> The recurrence relation for the Fibonacci sequence tells us that we find successive terms by adding the previous two terms. Because the initial conditions tell us that $f_0 = 0$ and $f_1 = 1$, using the recurrence relation in the definition we find that,

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

= 3 + 2 = 5

$$f_3 = f_2 + f_1 = 1 + 1 = 2$$
 $f_6 = f_5 + f_4 = 5 + 3 = 6$

$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

Recurrence Relations: Compound Interest

Example: Suppose that a person deposits \$10,000 in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?

<u>Solution</u>: To solve this problem, let P_n denote the amount in the account after n years. Because the amount in the account after n years equals the amount in the account after n-1 years plus interest for the nth year, we see that the sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$. We can use an iterative approach to find a formula for P_n . Note that

$$P_1 = (1.11)P_0$$

$$P_2 = (1.11)P_1 = (1.11)^2P_0$$

$$P_3 = (1.11)P_2 = (1.11)^3P_0$$

:

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0.$$

Recurrence Relations: Compound Interest

When we insert the initial condition $P_0 = 10,000$, the formula $P_n = (1.11)^n 10,000$ is obtained.

Inserting n = 30 into the formula $P_n = (1.11)^n 10,000$ shows that after 30 years the account contains

 $P_{30} = (1.11)^{30}10,000 = $228,922.97.$

Special Integer Sequences

Example 1: Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 1/4, 1/8, 1/16 (b) 1, 3, 5, 7, 9 (c) 1, -1, 1, -1, 1.

<u>Solution:</u> (a) We recognize that the denominators are powers of 2. The sequence with $a_n = 1/2^n$, n = 0, 1, 2, ... is a possible match. This proposed sequence is a geometric progression with a = 1 and r = 1/2.

- (b) We note that each term is obtained by adding 2 to the previous term. The sequence with $a_n = 2n + 1$, n = 0, 1, 2, ... is a possible match. This proposed sequence is an arithmetic progression with a = 1 and d = 2.
- (c) The terms alternate between 1 and -1. The sequence with $a_n = (-1)^n$, n = 0, 1, 2... is a possible match. This proposed sequence is a geometric progression with a = 1 and r = -1.

Special Integer Sequences

Example 2: How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

<u>Solution:</u> In this sequence, the integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and the integer 4 appears four times. A reasonable rule for generating this sequence is that the integer *n* appears exactly *n* times, so the next five terms of the sequence would all be 5, the following six terms would all be 6, and so on. The sequence generated this way is a possible match.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation notation. We begin by describing the notation used to express the sum of the terms

$$a_m, a_{m+1}, \ldots, a_n$$

from the sequence $\{a_n\}$. We use the notation

$$\sum_{j=m}^{n} a_j, \qquad \sum_{j=m}^{n} a_j, \qquad \text{or} \qquad \sum_{m \le j \le n} a_j$$

(read as the sum from j = m to j = n of a_i) to represent

$$a_m + a_{m+1} + ... + a_n$$

Summations

Here, the variable *j* is called the index of summation, and the choice of the letter *j* as the variable is arbitrary; that is, we could have used any other letter, such as *i* or *k*. Or, in notation,

$$\sum_{j=m}^{n} a_{j} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}.$$

Sum of terms of a geometric progression

Theorem:

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

Sum of terms of a geometric progression

Proof: Let
$$S_n = \sum_{i=0}^n ar^i$$
.

To compute S, first multiply both sides of the equality by r and then manipulate the resulting sum as follows:

$$rS_n = r\sum_{j=0}^n ar^j$$
 substituting summation formula for S

$$= \sum_{j=0}^n ar^{j+1}$$
 by the distributive property
$$= \sum_{k=1}^{n+1} ar^k$$
 shifting the index of summation, with $k = j+1$

$$= \left(\sum_{k=0}^n ar^k\right) + (ar^{n+1} - a)$$
 removing $k = n+1$ term and adding $k = 0$ term
$$= S_n + (ar^{n+1} - a)$$
 substituting S for summation formula

Sum of terms of a geometric progression

From these equalities, we see that

$$rS_n = S_n + (ar^{n+1} - a).$$

Solving for S_n shows that if $r \neq 1$, then

$$S_n = \frac{ar^{n+1} - a}{r - 1}.$$

If r = 1, then the $S_n = \sum_{j=0}^n ar^j = \sum_{j=0}^n a = (n+1)a$.