2.6 Applications of Matrix Operations

Least Squares Regression Analysis

Consider the points (1,1), (2,2), (3,4), (4,4), (5,6) in the xy-plane. We want to determine a line that best "fits" these points, i.e. that comes as close as possible to passing through them. Let's try the following two linear function models:

Model 1: f(x) = 0.5 + x					Model 2: $f(x) = 1.2x$			
х	i	y_i	$f(x_i)$	$[y_i - f(x_i)]^2$	x_i	y_i	$f(x_i)$	$[y_i - f(x_i)]^2$
1		1	1.5	$(-0.5)^2$	1	1	1.2	$(-0.2)^2$
2	!	2	2.5	$(-0.5)^2$	2	2	2.4	$(-0.4)^2$
3	,	4	3.5	$(+0.5)^2$	3	4	3.6	$(+0.4)^2$
4		4	4.5	$(-0.5)^2$	4	4	4.8	$(-0.8)^2$
5		6	5.5	$(+0.5)^2$	5	6	6.0	$(0.0)^2$
Sum			1.25	Sum			1.00	

To measure the accuracy of these models, we calculate the sum of "squared error" $(y_i - f(x_i))^2$ between the y-coordinates y_i of the given points and the function values $f(x_i)$ at the corresponding x-coordinates x_i of the points.

We see that model 2: f(x) = 1.2x better fits the points, because it has a sum of squared error that is smaller than model 1: f(x) = 0.5 + x. (But, we'll see that f(x) = 1.2x isn't the best fit.)

In general, consider n points $(x_1, y_1), ..., (x_n, y_n)$ on the xy-plane. We want to find a linear function $f(x) = a_0 + a_1 x$ that best fits these points. Let $e_i = y_i - f(x_i)$ be the error between their y-coordinates y_i and the function values $f(x_i)$ at their x-coordinates, for i = 1, ..., n. This gives a linear system:

$$y_1 = f(x_1) + e_1 = (a_0 + a_1x_1) + e_1$$

 \vdots
 $y_n = f(x_n) + e_n = (a_0 + a_1x_n) + e_n$

which is expressed in matrix form as Y = XA + E, where:

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \qquad X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \qquad A = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}, \qquad E = \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

The linear function that best fits the given points is the one that minimizes the sum of squared error:

$$E^{T}E = \sum_{i=1}^{n} (e_{i})^{2} = (y_{1} - f(x_{1}))^{2} + \dots + (y_{n} - f(x_{n}))^{2}$$

It turns out that the solution A for the coefficients of the linear function f is given by the formula:

$$A = (X^T X)^{-1} X^T Y$$

Then $f(x) = a_0 + a_1 x$ is called the *least squares regression line* for the given points.

Example. Let's find the least squares regression line $f(x) = a_0 + a_1 x$ for the points (1,1), (2,2), (3,4), (4,4), (5,6).

$$\operatorname{Let} X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 4 \\ 6 \end{pmatrix}, \text{ and } A = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}. \text{ Then } X^T X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 5 & 15 \\ 15 & 55 \end{pmatrix},$$

$$(X^{T}X)^{-1} = \frac{1}{50} \begin{pmatrix} 55 & -15 \\ -15 & 5 \end{pmatrix}, \qquad X^{T}Y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 17 \\ 63 \end{pmatrix}$$

So, we get:
$$A = (X^T X)^{-1} X^T Y = \frac{1}{50} {55 \choose -15} {17 \choose 63} = \frac{1}{50} {-10 \choose 60} = {-1/5 \choose 6/5}^{\frac{1}{5}}$$
Therefore, the least squares regression line is $f(x) = -\frac{1}{5} + \frac{6}{5}x$.

Exercise. Find the least squares regression line $f(x) = a_0 + a_1 x$ for the following points:

Cryptography

We can use a matrix and its inverse to encrypt and decrypt messages as follows. Assign a blank space and each letter of the alphabet to a number a_i :

$$\underline{} = a_0$$
, $A = a_1$, $B = a_2$, $C = a_3$, ..., $X = a_{24}$, $Y = a_{25}$, $Z = a_{26}$

Choose a $n \times n$ invertible matrix A. Write a word message and convert each letter to a number according to the assignment above (using the blank space to separate words). Partition the numerical message into $1 \times n$ row matrices. Then:

- Multiply each $1 \times n$ row matrix on the right by A to form encoded $1 \times n$ row matrices (encryption).
- Multiply each encoded $1 \times n$ row matrix on the right by A^{-1} to get the decoded numerical message (decryption).

$$\vec{x}A = \vec{y}$$
 (encryption) $\Leftrightarrow \vec{x} = \vec{y}A^{-1}$ (decryption)

In this section, we will use the following letter assignment for simplicity:

$$= 0, A = 1, B = 2, C = 3, ..., X = 24, Y = 25, Z = 26$$

Example. Use
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4 \end{pmatrix}$$
 to encrypt and decrypt the word message:

MEET ME AT HOME

Convert each letter to a number: 13 5 5 20 0 13 5 0 1 20 0 8 15 13 5

Partition the numerical message into 1×3 row matrices:

$$(13 \ 5 \ 5)(20 \ 0 \ 13)(5 \ 0 \ 1)(20 \ 0 \ 8)(15 \ 13 \ 5)$$

Multiply each of these on the right by A:

$$(20 \quad 0 \quad 8) \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4 \end{pmatrix} = (28 \quad -48 \quad 8)$$

$$(15 \quad 13 \quad 5) \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4 \end{pmatrix} = (7 \quad -22 \quad 49)$$

Altogether, these form the encrypted message:

$$(13 -26 21)(33 -53 -12)(6 -11 6)(28 -48 8)(7 -22 49)$$

Note: We can remove the matrix partitions to express this as:

$$13 - 26 \ 21 \ 33 - 53 - 12 \ 6 - 11 \ 6 \ 28 - 48 \ 8 \ 7 - 22 \ 49$$

To decrypt this message, we need the inverse of A:

$$(A|I_3) = \begin{pmatrix} 1 & -2 & 2 & 1 & 0 & 0 \\ -1 & 1 & 3 & 0 & 1 & 0 \\ 1 & -1 & -4 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 + R_2 \to R_2} \xrightarrow{R_2} \begin{pmatrix} 1 & -2 & 2 & 1 & 0 & 0 \\ 0 & -1 & 5 & 1 & 1 & 0 \\ 0 & 1 & -6 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + R_1 \to R_1} \xrightarrow{R_3 \to R_3} \begin{pmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 5 & 1 & 1 & 0 \\ 0 & 1 & -6 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + R_2 \to R_2} \begin{pmatrix} 1 & 0 & -10 & -1 & 0 & 2 \\ 0 & 0 & 1 & -6 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2} \begin{pmatrix} 1 & 0 & -10 & -1 & 0 & 2 \\ 0 & 0 & 1 & -6 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_3}$$

$$\begin{pmatrix} 1 & 0 & -10 & -1 & 0 & 2 \\ 0 & 1 & -6 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} 10R_3 + R_1 \to R_1 \begin{pmatrix} 1 & 0 & 0 & -1 & -10 & -8 \\ 0 & 1 & 0 & -1 & -6 & -5 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} = (I_3 | A^{-1})$$

Then we multiply each encoded 1×3 matrix on the right by A^{-1} :

$$(13 -26 21) \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = (13 5 5)$$

$$(33 -53 -12) \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = (20 0 13)$$

$$(6 -11 6) \begin{pmatrix} -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = (5 0 1)$$

$$(28 -48 8) \begin{pmatrix} -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = (20 0 8)$$

$$(7 -22 49) \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = (15 13 5)$$

This gives back the original message:

Exercise. Decode the message 22 39 20 40 78 135 20 40 using the encoding matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$

Practice Problems:

Use A^{-1} to decode the message.

$$3. A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$

11 21 64 112 25 50 29 53 23 46 40 75 55 92

$$5. A = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -1 & -4 & -7 \end{pmatrix}$$

13 19 10 -1 -33 -77 3 -2 -14 4 1 -9 -5 -25 -47 4 1 -9

Find the least squares regression line for the given points.

15.

17.

