	Harsh Patanwadia
	PAGE No. DATE / /
	Experiment No 2
	dim: - Inflementation of queue using Array for real-world
	application.
1	Objective: - To introduce the corcepts of data structure of analysis chrocedure.
	analysis chrocedure.
	To conceptualize lined data structure and its
	To conceptualize lines data structure and its implementation for various real time applications
	Theory
	1+1+++++
	Introduction to linear of non-linear data structure
	Linear data Structure - Organize data elements in linear fashion
-	and each element is attached one after other.
	Continous numery locations allocation
	100 10 200 20 300 30400
_	
	Examples - Array, stack, Overle, Lists
	Non-Linear Data structure - Organisation is not in a sequential fastion and its possible to attach a element to other several
	borning and it houghle to attach a element to other several
	data elements multiple relationship among them.
	Months mangae very and and and
-	Examples - Graph, True (2)
	yes - year
	$\mathcal{G} = \mathcal{G}$
	3 4 (1)
	(3)

Introduction to Queue -Queue is a linear structure which follows a particular order in which the operations are performed. The order is First in First out (FIFO). In a quell new elements are added to queve from one end called REAR end of elements are always removed from other end called FRONT end. REAR Thertion Operations in Queue Enqueue - dads as item in quine Dequeue - Removes an item in queue. Front - get the front item from queue. Reas gets the rear item from quie. Algorithm QINSERT (Q, F, R, N, Y). Given FSR pointers to front of
rear elements of green a chaving Neterients, elements y insertion in greened

If R \geq N then write ('Overflow') Frement rear pointer | R< R+1 [Irsut element] Q[R] < Y Is part pointer properly det?] then Fel Return

of green Q, element Y is to be deleted ther wite (Underflow')

Return (0) 2 [Delete element] Y < Q[F]
3 [Delete empty] then F = R \(\in \) ulse F < F+1 (increment front hainter)

4 [Return element] Return [Y] Example: - People standing in a railway reservation row for tickets - As such new person comes and stands at end of row and person after their reservation confirmation get out of now from front und. Lorchision: - Tearned how to implement queue using away. and Owne is used when things don't have to be processed in first in first out. Outcom: - Apply the concepts of queue for seal-world

