3.4 Images and inverse images

Exercise 3.4.1

Let $f: X \to Y$ be a bijective function, and let $f^{-1}: Y \to X$ be its inverse. Let V be any subset of Y. Prove that the forward image of V under f^{-1} is the same set as the inverse image of V under f; thus the fact that both sets are denoted by $f^{-1}(V)$ will not lead to any inconsistency.

Answer:

Proof. Scratchpad:

Exercise 3.4.2

Let $f: X \to Y$ be a function from one set X to another set Y, let S be a subset of X, and let U be a subset of Y.

i. What, in general, can one say about $f^{-1}(f(S))$ and S?

Answer:

Proof. Scratchpad:

ii. What about $f(f^{-1}(U))$ and U?

Answer:

Proof. Scratchpad:

iii. What about $f^{-1}(f(f^{-1}(U)))$ and $f^{-1}(U)$?

Answer:

Proof. Scratchpad:

Exercise 3.4.3

Proof. Scratchpad:

Let A, B be two subsets of a set X , and let $f: X \to Y$ be a function. Show that	
i. $f(A \cap B) \subseteq f(A) \cap f(B)$,	
Proof. Scratchpad:	_
ii. $f(A) \setminus f(B) \subseteq f(A \setminus B)$,	
Proof. Scratchpad:	
iii. $f(A \cup B) = f(A) \cup f(B)$.	
Proof. Scratchpad:	
For the first two statements, is it true that the \subseteq relation can be improved to $=$?	
Answer:	
Proof.	
Exercise 3.4.5	
Let $f: X \to Y$ be a function from one set X to another set Y .	
i. Show that $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective.	
Proof. Scratchpad:	
ii. Show that $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.	

Exercise 3.4.9

Show that if β and β' are two elements of a set I, and to each $\alpha \in I$ we assign a set A_{α} , then

$$\{x\in A_\beta: x\in A_\alpha \text{ for all }\alpha\in I\}=\{x\in A_{\beta'}: x\in A_\alpha \text{ for all }\alpha\in I\},$$

and so the definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Proof. Scratchpad:

Also explain why (3.4) is true.

Proof. Scratchpad:

Exercise 3.4.10

Suppose that I and J are two sets, and for all $\alpha \in I \cup J$ let A_{α} be a set. Show that

$$\bigcup_{\alpha \in I} A_{\alpha} \cup \bigcup_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in I \cup J} A_{\alpha}.$$

Proof. Scratchpad:

If I and J are non-empty, show that

$$\bigcap_{\alpha \in I} A_{\alpha} \cap \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in I \cup J} A_{\alpha}.$$

Proof. Scratchpad: