Franklin & Marshall College - Physics and Astronomy Department AST 312: Solar System Astrophysics

F. Crawford

Spring 2014 Course Schedule

Dates	Topics
Tue Jan 14 Thu Jan 16	Overview; Module 1 — Non-inertial Reference Frames Module 1 — Tides
Tue Jan 21 Thu Jan 23	Module 1 — Tidal Locking; Io Module 1 — Lagrange Points; Roche Limit; Trojans
Tue Jan 28 Thu Jan 30	Module 2 — Planetary Atmospheres; Opacity; Mean Free Path; Albedo Module 2 — Greenhouse Effect
Tue Feb 4 Thu Feb 6	Module 2 — Scale Height; Atmospheric Escape Module 2 — Fluid Statics and Dynamics; Coriolis Force
Tue Feb 11 Thu Feb 13	 Module 3 – Planetary Composition; Hydrostatic Equilibrium; Ideal Gas; Polytropic Spheres; Planet Size Module 3 – Gas Giant Interiors; Temperature and Cooling of Interiors; Virial Theorem
Tue Feb 18 Thu Feb 20	 Module 3 – Phases of Matter; Terrestrial and Gas Planet Structure Module 4 – Planetary Seismology; Harmonic Oscillator; Stress and Strain; Elastic Moduli
Tue Feb 25 Thu Feb 27	 Module 4 – Elastic Waves in Solids; Refraction Module 4 – P and S Seismic Waves; Navier Equation
Tue Mar 4 Thu Mar 6	 Module 4 - P and S Seismic Waves; Planetary Interiors Module 4 - Angular Momentum; Moment of Inertia; Oblateness; Two-Component Interior Model
Tue Mar 11 Thu Mar 13	Spring Break - no class Spring Break - no class
Tue Mar 18 Thu Mar 20	Module 5 — Magnetic Fields; Magnetospheres; Dynamos Module 5 — Magnetospheres; Magnetic Pressure
Tue Mar 25 Thu Mar 27	 Module 5 - Auroras; Earth's Field; Van Allen Belts; Radiation Dosimetry Module 5 - Jupiter and Io System; Io Flux Tube and Plasma Torus
Tue Apr 1 Thu Apr 3	Module 6 – Solar Wind; Parker Model Module 6 – Alfvén Waves; Magnetized Plasmas
Tue Apr 8 Thu Apr 10	Module 6 — Comet Tails; Radiation Pressure Independent Project Presentations
Tue Apr 15 Thu Apr 17	Independent Project Presentations Independent Project Presentations
Tue Apr 22 Thu Apr 24	Independent Project Presentations Independent Project Presentations; Wrap Up

Assigned readings for each module and the due dates for assigned problems are provided in each assignment.

The final exam will be a take-home exam during the week of final exams.