אינטגרביליות

5202 בפברואר 22

הגדרות

1. אינטגרביליות

. פונקציה חסומה $f:[a,b] o \mathbb{R}$, $a < b \in \mathbb{R}$ יהיו

נאמר ש-**f אינטגרבילית ב**[a, b] אם"ם מתקיים $\int\limits_{b}^{a}f\left(x
ight)dx=\int\limits_{\underline{b}}^{\overline{a}}f\left(x
ight)dx=\int\limits_{\underline{b}}^{a}f\left(x
ight)d\left(x
ight)$ והוא יקרא האינטגרל [a, b]. של f במקרה זה נסמן את הערך הנ"ל f

2 שנוח

תהי $f:[a,b] o \mathbb{R}$ פונקציה חסומה.

 $\mathbb{R}^2 \mid x \in [a,b]\,,y \in [0,f\left(x
ight)]ig\}$ אם $\forall x \in [a,b] \mid f\left(x
ight) = \int\limits_{b}^{a} f\left(x
ight) dx \in \mathbb{R}^+$ אם $\forall x \in [a,b] \mid f\left(x
ight) = 0$ אם $\forall x \in [a,b] \mid f\left(x
ight) = 0$

$$\int\limits_a^a f\left(x
ight)dx = 0, \int\limits_a^b f\left(x
ight)dx = -\int\limits_b^a f\left(x
ight)dx$$
 נגדיר. $[a,b]$. נגדיר $[a,b]$ פונקציה אינטגרבילית ב $[a,b]$. נגדיר 3.

משפטים

1. תנאי דרבו לאינטגרביליות

U(f,P)-L(f,P)<arepsilon חסומה. אזי f אינטגרבילית ב[a,b]אם"ם לכל arepsilon>0 קיימת חלוקה אזי אינטגרבילית ב

כיוון להוכחה: למת החתכים לסכומי דרבו!

אזי העידון המשותף . $U\left(f,P_1\right)-L\left(f,P_2\right)<arepsilon$ שעבורן P_1,P_2 שעבורן ,arepsilon>0, אזי העידון המשותף C>0 אזי העידון המשותף $Q\stackrel{def}{=}P_1\cup P_2$

$$\forall P \in \left\{P_{1}, P_{2}\right\} \quad L\left(f, P\right) \leq L\left(f, Q\right) \leq U\left(f, Q\right) \leq U\left(f, P\right)$$

. ענדרש. 0
$$\leq U\left(f,Q\right)-L\left(f,Q\right)\leq U\left(f,P_{1}\right)-L\left(f,P_{2}\right) ולכן מתקיים$$

 $\sum_{i=1}^n \, \omega_i \, (x_i - x_{i-1}) < arepsilon$ שעבורה P שעבורה arepsilon > 0 אם לכל arepsilon > 0 קיימת חלוקה $f \, [a,b] o 0$ חסומה. אזי f אינטגרבילית ב[a,b] אם לכל מסקנה תהי

$$\forall P \quad U(f, P) - L(f, P) = \sum_{i=1}^{n} M_i (x_i - x_{i-1}) - \sum_{i=1}^{n} m_i (x_i - x_{i-1}) = \sum_{i=1}^{n} (M_i - m_i) (x_i - x_{i-1}) \stackrel{by}{=} \sum_{i=1}^{n} \omega_i (x_i - x_{i-1}) \stackrel{by}{=} \omega_i (f, P)$$

2. תוספת ללמת החתכים

יהיו שקולות שקולות ומקיימות ומקיימות לא ריקות שקולות: $\mathcal{L} \leq \mathcal{U}$ יהיו

$$\sup \mathcal{L} = \inf \mathcal{U} \iff$$

$$orall n\in\mathbb{N}$$
 $l_n\in\mathcal{L},u_n\in\mathcal{U}$ פר ש כרות $(u_n)_{n=1}^\infty,(\ell_n)_{n=1}^\infty$ כר ש $(u_n)_{n=1}^\infty$

אנ מסקנה יהיו (a,b) סדרת חלוקות של (a,b) אינטגרבילית ב(a,b) אינטגרבילית אינטגרבילית $f:[a,b] o \mathbb{R}$, $a < b \in \mathbb{R}$ אינטגרבילית ב $\lim_{n o \infty} \left(U\left(f,P_n\right) - L\left(f,P_n\right)\right) = 0$

3. משפט דרבו

יהיו [a,b] מתקיים קו [a,b] אזי לכל [a,b] חסומה. אזי לכל [a,b] קיימים [a,b] כך שלכל [a,b] חסומה. אזי לכל פיימים אזי לכל פיימים מ

$$\begin{cases} U\left(f,P\right) - \int_{a}^{\overline{b}} f\left(x\right) dx < \varepsilon & \Delta\left(P\right) < \delta_{1} \\ \int_{\underline{a}} f\left(x\right) d\left(x\right) - L\left(f,P\right) < \varepsilon & \Delta\left(P\right) < \delta_{2} \end{cases}$$

הוכחה סקיצה:

- $\left| ilde{P}
 ight| = k_1 \in \mathbb{N}$ נגדיר $U\left(f, ilde{P}
 ight) \int\limits_a^b f\left(x
 ight) dx < rac{arepsilon}{2}$ מהגדרת המקיים שניים \tilde{P} קיימת חלוקה $ilde{P}$ עבורה מתקיים
 - $0<\delta_1-rac{arepsilon}{2k_1(M-m+1)}$ נגדיר •
 - $\Delta P < \delta_1$ שמקיימת P •
 - . נסתכל על העידון המשותף $ilde{P} \cup ilde{P}$, ונאמר כי $P \cup ilde{P}$ מתקבלת מ- $P \cup ilde{P}$ נסתכל על העידון המשותף $P \cup ilde{P}$ נקודות.
 - $\{a,b\} \subseteq P \cap ilde{P}$ נשים לב שמתקיים $k < k_1$ נשים לב שמתקיים •
- $0.0 \leq U\left(f,P
 ight) U\left(f,P \cup ilde{P}
 ight) \leq k\left(M-m
 ight)\Delta P < k_1\left(M-m
 ight)\Delta P < k_1\left(M-m
 ight)\delta_1 < rac{arepsilon}{2}$ מתקיים
 - מכאן נקבל •

$$U\left(f,P\right) - \int_{a}^{\overline{b}} f\left(x\right) dx = U\left(f,P\right) - U\left(f,P \cup \tilde{P}\right) + U\left(f,P \cup \tilde{P}\right) - \int_{a}^{\overline{b}} f\left(x\right) dx < \frac{\varepsilon}{2} + U\left(f,\tilde{P}\right) - \int_{a}^{\overline{b}} f\left(x\right) dx < \varepsilon$$

 $\lim_{j o\infty}L\left(f,P_j
ight)=\int\limits_{\underline{a}}^{b}f\left(x
ight)dx$ וגם $\lim_{j o\infty}U\left(f,P_j
ight)=\int\limits_{a}^{\overline{b}}f\left(x
ight)dx$ א(מסקנה! לכל סדרת חלוקות P_j המקיימת $P_j=0$ המקיימת $P_j=0$ המקיים $P_j=0$ המקיים $P_j=0$ המקיים $P_j=0$ הוכחה למסקנה: $P_j=0$ קיים $P_j=0$ שעבורו לכל $P_j=0$ מתקיים $P_j=0$ ולכן עומדת בתנאי דרבו ומתקיים $P_j=0$ הוכחה למסקנה: $P_j=0$ הוכחה למסקנה: $P_j=0$ הוכחה למסקנה: $P_j=0$ הובחה למסקנה: $P_j=0$ הובחה למסקנה: $P_j=0$ הובחה למסקנה: $P_j=0$ המקיים לכל $P_j=0$ הובחה למסקנה: $P_j=0$ המקיים לכל $P_j=0$ המקיים לכל $P_j=0$ הובחה למסקנה: $P_j=0$ המקיים לכל $P_j=0$ המקיים

. ננדרש
$$J \quad U\left(f,P_{j}\right)-\int\limits_{a}^{\overline{b}}f\left(x\right)dx$$

4. אינטגרביליות בכל וריציאציה של קטע סגור

יים אז מתקיים בקטע. אז מתקיים . $f: [\min\left\{a,b,c
ight\}, \max\left\{a,b,c
ight\}]$ ותהי , $a,b,c \in \mathbb{R}$ יהיו

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

הוכחה ישירות מהגדרה 3

5. אינטגרביליות של פונקציה מונוטונית בקטע סגור

. תהי $\mathbb{R} o f: [a,b] o \mathbb{R}$ מונוטונית. אזי $f: [a,b] o \mathbb{R}$

סקיצת הוכחה מונוטוניות בקטע סגור \Rightarrow חסימות ע"י $f\left(a\right),f\left(b\right)$. אם קבועה-הוכחנו בעבר. לכן עולה\יורדת ואינה קבועה. (נניח בה"כ עולה לכן עולה $f\left(a\right),f\left(b\right)$

$$M_i-f\left(x_i
ight), m_i=f\left(x_{i-1}
ight)$$
, אזי $[x_{i-1},x_i]$, אזי לכן לכן לכן $AP<rac{arepsilon}{f(b)-f(a)}$ כך ש

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} M_{i} (x_{i} - x_{i-1}) - \sum_{i=1}^{n} m_{i} (x_{i} - x_{i-1}) = \sum_{i=1}^{n} f(x_{i}) (x_{i} - x_{i-1}) - \sum_{i=1}^{n} f(x_{i-1}) (x_{i} - x_{i-1})$$

$$\leq \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1})) \Delta P = \Delta P \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1})) =$$

$$\stackrel{telescopic}{=} \Delta P(f(b) - f(a)) < \varepsilon \frac{f(b) - f(a)}{f(b) - f(a)} = \varepsilon$$

f-שיבת להיות רציפה! f- אינה חייבת להיות רציפה!

6. אינטגרביליות של פונקציה רציפה בקטע סגור

[a,b]תהי $f:[a,b] o\mathbb{R}$ רציפה. אזי f אינטגרבילית ב

הוכחה

- . רציפה בקטע סגור ולכן מהמשפט הראשון של וויירשטראס היא חסומה f
 - . חסומה בקטע סגור ולכן ממשפט קנטור היא רבמ * ש.
- $orall t_1,t_2\in[a,b]\;|t_1-t_2|<\delta\Rightarrow|f\left(t_1
 ight)-f\left(t_2
 ight)|<arepsilon_1$ שמקיימת $\delta>0$ שמקיימת •
- . כלשהו $n\in\mathbb{N}$ עבור $AP<\delta$ תהא $AP<\delta$ חלוקה של $AP=\{x_0=a,x_1,\ldots,x_n=b\}$ תהא
 - $i \in [n]$ לכל $[x_i, x_{i-1}]$ רציפה ב[a, b] ולכן בפרט רציפה ל
- , ארך מינימלי ומקסימלי בכל קטע בחלוקה, $f\left(c_{i}
 ight)=M_{i},\,f\left(d_{i}
 ight)=m_{i}$ כך ש- c_{i},d_{i} כך ש- c_{i},d_{i} ערך מינימלי ומקסימלי בכל קטע בחלוקה.
 - $orall i\in [n] \quad |c_i-d_i|\leq |x_i-x_{i-1}|\leq \Delta P<\delta \Rightarrow f\left(c_i
 ight)-f\left(d_i
 ight)=|M_i-m_i|<arepsilon_1=rac{arepsilon}{b-a}$ על כן מתקיים
 - מכאן נקבל שמתקיים בהכרח

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (f(c_{i}) - f(d_{i})) (x_{i} - x_{i-1}) = \sum_{i=1}^{n} (M_{i} - m_{i}) (x_{i} - x_{i-1}) <$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{b - a} (x_{i} - x_{i-1}) = \frac{\varepsilon}{b - a} \sum_{i=1}^{n} x_{i} - x_{i-1} \xrightarrow{\substack{telescopic \\ sum}} \frac{\varepsilon(b - a)}{b - a} = \varepsilon$$

כנדרש [a,b], מקיימת את תנאי דרבו ועל כן אינטגרבילית ב[a,b], כנדרש •

$$[a,b]$$
אינטגרבילית ב- $[a,b]$. אינטגרבילית ב- $[a,b]$ אינטגרבילית ב- $[a,b]$ אינטגרבילית ב- $[-b,-a]$ איזי $g:[-b,-a] o g:[-b,-a]$ ומתקיים $[-b,-a]$ איזי g אינטגרבילית ב $[-b,-a]$ ומתקיים

8. האינטגרל של פונקציה אי שלילית עם מקטע חיובי הוא חיובי

 $\int\limits_{0}^{b}f\left(x
ight)dx\geq0$ תהי f אינטגרבילית ואי שלילית ב[a,b], ותהא $x_{0}\in\left[a,b
ight]$, שבה f רציפה וחיובית. אזי

רציפה, ועל כן קיימת $\delta_1>0$ שמקיימת f

$$\forall x \in (x_0 - \delta_1, x_0 + \delta_1) |f(x) - f(x_0)| < \frac{1}{2} f(x_0) \iff -\frac{1}{2} f(x_0) < f(x) - f(x_0) < \frac{1}{2} f(x_0) \iff f(x) > \frac{f(x_0)}{2} > 0 (*)$$

מתקיים $\delta \in (0,\delta_1)$ ועל כן אינטגרבילית בכל תת מקטע שלו. אזי עבור [a,b] ועל כן אינטגרבילית בל

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0} - \delta} f(x) dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx + \int_{x_{0} + \delta}^{b} f(x) dx \ge \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx$$

ולכן מתקיים (*) מתקיים $x \in (x_0 - \delta_1, x_0 + \delta_1)$ ולכן ובפרט לכל

$$\int_{a}^{b} f(x) dx \ge \int_{x_{0}-\delta}^{x_{0}+\delta} f(x) dx = \ge \int_{x_{0}-\delta}^{x_{0}+\delta} \left(f(x) + \frac{f(x_{0})}{2} - \frac{f(x_{0})}{2} \right) dx \stackrel{int \, nonotone}{=}$$

$$= \int_{x_{0}-\delta}^{x_{0}+\delta} f(x) - \frac{f(x_{0})}{2} dx + \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{f(x_{0})}{2} dx \stackrel{(*)}{>} \int_{x_{0}-\delta}^{x_{0}+\delta} f(x_{0}) > 2\delta f(x_{0}) > 0$$