Debugging Outputs

- 2
- (c) Your cost function should be a number between 2200-2400
- (d) Final tempreture: 3.36K

The Schwefel function

```
import numpy as np
import pandas as pd
import numba
import matplotlib.pyplot as plt
numba.warnings.filterwarnings("ignore")
def Schwefel(X):
    dim=len(X)
    return 418.9829*dim-np.sum(X*np.sin(np.sqrt(np.abs(X))),axis=0)
```

Visualize a 2d function

```
In []:
    def plot_surface(func,x_min=-2,x_max=2,y_min=-2,y_max=2):
        a=np.linspace(x_min,x_max,100)
        b=np.linspace(y_min,y_max,100)
        x,y=np.meshgrid(a,b)
        z=func((x,y))
        fig=plt.figure()
        ax = fig.gca(projection='3d')
        ax.plot_surface(x,y,z)
```

Qestion 1 part a

```
In []:
    linear_cooling1 = np.linspace(3000,30,(3000-30)*2)
    linear_cooling2 = np.linspace(3000,10,(3000-10)*2)
    plt.plot(linear_cooling1)
    initial = np.array([400.0,400.0,400.0,400.0,400.0,400.0,400.0,400.0,400.0,400.0,400.0]
```



```
In []: import numba
         def SA(solution, evaluation, delta, boundary, cooling_schedule):
             """ Simulated Annealing for minimization
             solution: np.array. Initial guess of solution
             evaluation: func. Function to evaluate solution
             delta: float. Magnitude of random displacement
             boundary: array of int/float. [lowerbound,upperbound]
             cooling_schedule: np.array. An array of tempretures for simulated annealin
             best solution=solution.copy()
             lowest eval=evaluation(best solution)
             for idx,temp in enumerate(cooling_schedule):
                 if idx%500==0:
                      print("%d/%d
                                    temp:%f"%(idx,len(cooling schedule),temp))
                 for n in range(len(solution)):
                      trial=solution.copy()
                      trial[n]+=delta*(2*np.random.random()-1)
                      if trial[n]>=boundary[0] and trial[n]<=boundary[1]:</pre>
                          if np.exp(-(evaluation(trial)-evaluation(solution))/temp)>np.r
                              solution=trial
                              if evaluation(solution)<lowest eval:</pre>
                                  best_solution=solution.copy()
                                  lowest eval=evaluation(best solution)
             return {"solution":best_solution, "evaluation":lowest_eval}
         SA(initial, Schwefel, 0.5, [-500.0,500.0], linear_cooling2)
```

```
0/5980
                temp:3000.000000
        500/5980 temp:2749.958187
        1000/5980 temp:2499.916374
        1500/5980 temp:2249.874561
        2000/5980 temp:1999.832748
        2500/5980 temp:1749.790935
        3000/5980 temp:1499.749122
        3500/5980 temp:1249.707309
        4000/5980 temp:999.665496
        4500/5980 temp:749.623683
        5000/5980
                   temp:499.581870
        5500/5980
                   temp:249.540057
Out[]: {'solution': array([409.92200032, 422.89364451, 412.03130478, 400.89365856,
                382.27468065, 418.95898455, 433.01440276, 405.33740188,
                410.30543057, 418.43413549]),
         'evaluation': 311.23619487956466}
```

Results of cooling to 30k:

```
{'solution': array([401.95961952, 401.73384909, 399.77923077, 402.58062509, 398.20568883, 393.69259645, 400.08385456, 406.5751065, 401.87068183, 402.32257805]), 'evaluation': 505.67854948603235}
{'solution': array([398.19367804, 402.71537622, 402.29245314, 402.09846683, 398.84873886, 401.88885117, 402.03392677, 398.02615728, 403.84803147, 398.99766267]), 'evaluation': 498.6607704304565}
```

{'solution': array([396.24683702, 400.94075755, 399.68220039, 402.45384345, 403.36741374, 400.48218127, 401.13933858, 406.12415339, 398.05183186, 402.20182853]), 'evaluation': 493.31579366268033}

Results of cooling to 10k:

{'solution': array([404.39670429, 408.51932237, 401.29860695, 403.90097084, 405.86960325, 406.9867223, 406.0797239, 421.91470371, 402.7028205, 386.90141679]), 'evaluation': 394.0468481978796}

{'solution': array([408.2951065, 404.35795534, 399.38883255, 396.48701909, 398.33884911, 393.40359247, 404.03689135, 413.38134821, 401.78260699, 399.87631444]), 'evaluation': 479.54843193471834}

{'solution': array([397.0983453, 414.14925898, 407.01958924, 401.77358943, 404.63403286, 410.46927417, 406.78679262, 395.03358842, 400.42851645, 419.5898875]), 'evaluation': 349.32836491771513}

On average, better solutions are obtained from cooling to a lower temperature

Question 1 Part b

```
In []:
    logarithmic_cooling1 = np.array([])
    for i in range(6001):
        logarithmic_cooling1 = np.append(logarithmic_cooling1,(6000/(1+6000*np.loplt.plot(logarithmic_cooling1)

    logarithmic_cooling2 = np.array([])
    for i in range(6001):
        logarithmic_cooling2 = np.append(logarithmic_cooling2,(3000/(1+3000*np.loplt.plot(logarithmic_cooling2))
```

Out[]: [<matplotlib.lines.Line2D at 0x7f7a3acc8100>]


```
def SA(solution, evaluation, delta, boundary, cooling_schedule):
    """ Simulated Annealing for minimization
    solution: np.array. Initial guess of solution
```

```
evaluation: func. Function to evaluate solution
    delta: float. Magnitude of random displacement
   boundary: array of int/float. [lowerbound,upperbound]
    cooling_schedule: np.array. An array of tempretures for simulated annealin
   best solution=solution.copy()
    lowest eval=evaluation(best solution)
    for idx,temp in enumerate(cooling_schedule):
        if idx%500==0:
            print("%d/%d
                           temp:%f"%(idx,len(cooling_schedule),temp))
        for n in range(len(solution)):
            trial=solution.copy()
            trial[n]+=delta*(2*np.random.random()-1)
            if trial[n]>=boundary[0] and trial[n]<=boundary[1]:</pre>
                if np.exp(-(evaluation(trial)-evaluation(solution))/temp)>np.r
                    solution=trial
                    if evaluation(solution)<lowest eval:</pre>
                        best_solution=solution.copy()
                        lowest eval=evaluation(best solution)
    return {"solution":best solution, "evaluation":lowest eval}
SA(initial, Schwefel, 0.5, [-500.0, 500.0], logarithmic_cooling2)
```

```
0/6001
                temp:3000.000000
        500/6001
                  temp:415.707877
        1000/6001
                  temp:379.326466
        1500/6001 temp:360.842054
        2000/6001 temp:348.780336
        2500/6001 temp:339.964687
        3000/6001 temp:333.085339
        3500/6001 temp:327.482176
        4000/6001 temp:322.778491
        4500/6001 temp:318.740173
        5000/6001 temp:315.212364
        5500/6001 temp:312.087616
        6000/6001
                   temp:309.288509
Out[]: {'solution': array([404.11095893, 405.57347469, 405.30179787, 393.69514849,
                405.26888806, 405.88541661, 414.58332046, 415.12101214,
                407.57774999, 385.68359892]),
         'evaluation': 419.93072065387514}
```

Results with initial temperature of 6000k:

```
{'solution': array([410.65174856, 420.33424829, 408.16342106, 401.01755326, 410.41874023, 402.57349059, 394.80321195, 412.00031086, 410.30582654, 396.97093843]), 'evaluation': 314.9030902553077}

{'solution': array([411.09118894, 408.84039108, 406.73419803, 411.74630376, 426.98342836, 394.49921394, 414.99659845, 411.67969076, 406.67299525, 410.72714753]), 'evaluation': 209.09523720553761}

{'solution': array([420.97139186, 420.74145283, 402.71537012, 385.74316384, 417.33904163, 399.84789883, 396.19735922, 412.76173187, 412.8566653, 399.20549608]), 'evaluation': 390.86217888393}
```

Results with intial temperature of 3000k:

{'solution': array([390.00344074, 421.15700647, 433.5379708, 423.67024766, 411.19886594, 420.54256908, 420.85926799, 429.27645829, 405.86011888, 416.62559737]), 'evaluation': 185.8894200003233}

{'solution': array([403.97662781, 408.95918128, 397.16082029, 411.08906659, 406.05990034, 394.39803512, 405.1748975, 412.61899037, 410.43166142, 403.43692085]), 'evaluation': 338.6942017456463}

{'solution': array([408.06924782, 428.46455521, 400.68681417, 383.74369953, 396.03608294, 415.37470597, 409.79720893, 415.18983855, 419.55647374, 409.37347281]), 'evaluation': 354.48627510371716}

On average, both logarithmic cooling schedules lead to better solutions than linear cooling

Question 1 Part c

```
In []:
    linear_cooling1 = np.linspace(3000,30,3000)
    heating=np.append(linear_cooling1,np.linspace(linear_cooling1[-1],2300,200))
    heating=np.append(heating,np.linspace(heating[-1],200,2300))
    heating=np.append(heating,np.linspace(heating[-1],1000,100))
    schedule=np.append(heating,np.linspace(heating[-1],100,2300))
    plt.figure()
    plt.plot(schedule)
```

Out[]: [<matplotlib.lines.Line2D at 0x7f7a3accfbe0>]


```
def SA(solution, evaluation, delta, boundary, cooling_schedule):
    """ Simulated Annealing for minimization
    solution: np.array. Initial guess of solution
    evaluation: func. Function to evaluate solution
    delta: float. Magnitude of random displacement
    boundary: array of int/float. [lowerbound, upperbound]
    cooling_schedule: np.array. An array of tempretures for simulated annealin
    """
    best_solution=solution.copy()
    lowest_eval=evaluation(best_solution)
```

```
0/5600
                temp:3000.000000
        500/5600
                  temp:2504.834945
                  temp:2009.669890
        1000/5600
        1500/5600 temp:1514.504835
        2000/5600 temp:1019.339780
        2500/5600 temp:524.174725
        3000/5600 temp:30.000000
        3500/5600 temp:2025.967812
        4000/5600 temp:1569.247499
        4500/5600
                   temp:1112.527186
        5000/5600 temp:655.806873
        5500/5600
                  temp:200.000000
Out[]: {'solution': array([421.71141513, 418.36476996, 380.60976251, 415.66529137,
                417.95774491, 401.57406357, 409.00766093, 422.72338768,
                420.97440962, 388.2584955 1),
         'evaluation': 381.8520533628648}
```

Results of heating and cooling schedule:

```
{'solution': array([410.26658686, 399.30241289, 404.27520702, 412.39865061, 399.96141002, 408.58010571, 389.16993348, 413.53807862, 405.91184769, 386.68723041]), 'evaluation': 480.66399341508395}
```

{'solution': array([399.0088453, 408.13542331, 403.00331785, 391.27241485, 404.3833026, 397.61922611, 406.28683651, 399.35870841, 403.35910734, 401.22351143]), 'evaluation': 494.43808579542656}

{'solution': array([402.73716751, 408.80072617, 400.08274249, 400.14761476, 395.83010505, 405.28408989, 392.72808628, 407.60438496, 397.01760472, 403.67275408]), 'evaluation': 497.0578001261583}

This cooling and heating schedule seems to be doing worse than both linear and logarithmic cooling schedules for this particular function and set of hyperparameters.

Question 2 Part a

```
In [ ]:
```

```
import pandas as pd

df=pd.read_csv('~/Downloads/wines.csv')
df
```

Out[]:		Alcohol %	Malic Acid	Ash	Alkalinity	Mg	Phenols	Flavanoids	Phenols.1	Proantho- cyanins	Color intensity
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64
	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32
	2	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	1.98	5.20
	3	14.12	1.48	2.32	16.8	95	2.20	2.43	0.26	1.57	5.00
	4	13.75	1.73	2.41	16.0	89	2.60	2.76	0.29	1.81	5.60
	•••										
	173	13.40	4.60	2.86	25.0	112	1.98	0.96	0.27	1.11	8.50
	174	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20
	175	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30
	176	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20
	177	12.25	1.73	2.12	19.0	80	1.65	2.03	0.37	1.63	3.40

178 rows × 15 columns

```
In []:
    def normalise(df):
        df_n = df.drop(columns = ["Start assignment", "ranking"])
        df_n = (df_n - df_n.mean())/df_n.std()
        df_n = df_n.join(df["Start assignment"])
        df_n = df_n.join(df["ranking"])
        return df_n
    df_n = normalise(df)
    df_n
```

Out[]:		Alcohol %	Malic Acid	Ash	Alkalinity	Mg	Phenols	Flavanoids	Phenols.1
	0	1.514341	-0.560668	0.231400	-1.166303	1.908522	0.806722	1.031908	-0.657708
	1	0.294868	0.227053	1.835226	0.450674	1.278379	0.806722	0.661485	0.226158
	2	2.253415	-0.623328	-0.716315	-1.645408	-0.191954	0.806722	0.951817	-0.577356
	3	1.378844	-0.766550	-0.169557	-0.806975	-0.331985	-0.151973	0.401188	-0.818411
	4	0.923081	-0.542765	0.158499	-1.046527	-0.752080	0.487157	0.731565	-0.577356
	•••								
	173	0.491955	2.026281	1.798775	1.648436	0.858284	-0.503494	-1.070491	-0.738059
	174	0.331822	1.739837	-0.388260	0.151234	1.418411	-1.126646	-1.340800	0.547563
	175	0.208643	0.227053	0.012696	0.151234	1.418411	-1.030776	-1.350811	1.351077
	176	1.391162	1.578712	1.361368	1.498716	-0.261969	-0.391646	-1.270720	1.592131
	177	-0.924604	-0.542765	-0.898568	-0.148206	-1.382223	-1.030776	0.000731	0.065455

178 rows × 15 columns

Question 2 Part b

```
In []:
    df_n1 = df_n.loc[df["Start assignment"] == 1]
    df_n2 = df_n.loc[df["Start assignment"] == 2]
    df_n3 = df_n.loc[df["Start assignment"] == 3]
    centroid1 = df_n1.drop(columns = ["Start assignment", "ranking"]).mean()
    centroid2 = df_n1.drop(columns = ["Start assignment", "ranking"]).mean()
    centroid3 = df_n1.drop(columns = ["Start assignment", "ranking"]).mean()
    print(centroid1, centroid2, centroid3)
```

```
Alcohol %
                    -0.026247
Malic Acid
                   -0.022814
Ash
                     0.039092
Alkalinity
                   -0.011393
                     0.001194
Mg
Phenols
                     0.046102
Flavanoids
                   -0.014459
Phenols.1
                   -0.092477
Proantho-cyanins
                     0.015299
Color intensity
                   -0.122335
Hue
                     0.071956
OD280 315
                    -0.021072
Proline
                   -0.001085
dtype: float64 Alcohol %
                                   -0.026247
Malic Acid
                   -0.022814
Ash
                     0.039092
Alkalinity
                   -0.011393
                     0.001194
Mg
Phenols
                     0.046102
Flavanoids
                   -0.014459
Phenols.1
                   -0.092477
Proantho-cyanins
                     0.015299
Color intensity
                   -0.122335
Hue
                     0.071956
OD280 315
                   -0.021072
Proline
                   -0.001085
dtype: float64 Alcohol %
                                   -0.026247
Malic Acid
                   -0.022814
Ash
                     0.039092
Alkalinity
                   -0.011393
Mq
                     0.001194
Phenols
                     0.046102
Flavanoids
                   -0.014459
Phenols.1
                   -0.092477
Proantho-cyanins
                     0.015299
Color intensity
                   -0.122335
Hue
                     0.071956
OD280 315
                    -0.021072
Proline
                   -0.001085
dtype: float64
```

Question 2 Part c

```
def cost(rankings):
    df_n['trial'] = rankings.tolist()
    df_n1 = df_n.loc[df_n["trial"] == 1]
    df_n2 = df_n.loc[df_n["trial"] == 2]
    df_n3 = df_n.loc[df_n["trial"] == 3]
    centroid1 = df_n1.drop(columns = ["Start assignment","ranking", "trial"]).
    centroid2 = df_n1.drop(columns = ["Start assignment","ranking", "trial"]).
    centroid3 = df_n1.drop(columns = ["Start assignment","ranking", "trial"]).
    d1 = np.square((df_n1 - centroid1).drop(columns = ["Start assignment", "ranking", "trial"]).
    d2 = np.square((df_n2 - centroid2).drop(columns = ["Start assignment", "ranking", "trial"]).
    d3 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d2 = np.square((df_n3 - centroid3).drop(columns = ["Start assignment", "ranking", "trial"]).
    d1 = np.square((df_n3 - centroid3).drop(columns = ["Start assignmen
```

```
Out[]: 2307.1548828673654
```

Question 2 Part d

```
In [ ]:
         @numba.jit
         def simulated annealing(feats,ranks,centers,start temp,alpha,steps=10000):
             """ Simulated Annealing for clustering
             feats: pd.DataFrame. Normalized chemical descriptors
             ranks: np.array shape(178,). Initial assignment.
             centers: np.array shape (3,13). Fixed centers
             start temp: float. Initial tempreture
             alpha: float. Hyperparameter for geometric cooling
             steps: int.
             0.00
             best rank=ranks.copy()
             # Use your cost function to evaluate the current best rank
             new_eval = lowest_eval = cost(ranks)
             for step in (range(steps)):
                 # update tempture according to geometric cooling schedule
                 temp = (alpha**step)*start temp
                 if step == steps-1:
                     print('Final temperature:', temp)
                 if step%500==0:
                     print(step,temp,lowest_eval)
                 for n in range(len(ranks)):
                     trial=ranks.copy()
                     rand choice=np.random.randint(3)+1
                     trial[n]=rand choice
                     trialcost = cost(trial)
                     # How much does the cost function of trial and cost function of ra
                     diff = new eval - trialcost
                     # Metropolis acceptance criterion
                     if np.exp(-diff/temp)>=np.random.random():
                         ranks=trial
                         # update evaluation
                         new eval = trialcost
                         if new eval<lowest eval:</pre>
                              #update best rank and lowest eval
                             best rank = trial.copy()
                             lowest eval = new eval
             return best rank, lowest eval
         solution, lowest eval = simulated annealing(df n, df['Start assignment'].to nu
        0 500.0 2307.1548828673654
        500 303.18947243059233 2301.946531099956
        1000 183.84771238548186 2301.946531099956
        1500 111.48138185145105 2301.946531099956
        2000 67.59996269874972 2301.946531099956
        2500 40.9911940539233 2301.946531099956
        3000 24.85619699901808 2301.946531099956
        3500 15.07227450952633 2301.946531099956
        4000 9.139509913744707 2301.946531099956
        4500 5.542006378044853 2301.946531099956
        Final temperature: 3.3639198998326267
In [ ]:
         solutiony, lowest evaly = simulated annealing(df n, df['Start assignment'].to
         solutionz, lowest evalz = simulated annealing(df n, df['Start assignment'].to
```

```
0 500.0 2307.1548828673654
500 303.18947243059233 2303.032508028119
1000 183.84771238548186 2302.3912000539167
1500 111.48138185145105 2302.3912000539167
2000 67.59996269874972 2302.3912000539167
2500 40.9911940539233 2302.2591724210874
3000 24.85619699901808 2302.2591724210874
3500 15.07227450952633 2302.2591724210874
4000 9.139509913744707 2302.2591724210874
4500 5.542006378044853 2302.2591724210874
Final temperature: 3.3639198998326267
0 500.0 2307.1548828673654
500 303.18947243059233 2302.473446221185
1000 183.84771238548186 2302.227787973779
1500 111.48138185145105 2302.227787973779
2000 67.59996269874972 2302.227787973779
2500 40.9911940539233 2302.227787973779
3000 24.85619699901808 2302.227787973779
3500 15.07227450952633 2302.227787973779
4000 9.139509913744707 2302.227787973779
4500 5.542006378044853 2302.227787973779
Final temperature: 3.3639198998326267
```

To validate how good is your solution

```
In []:
         def validate(solution, df):
             """Prints out how many wines are corretly assigned to its cultivar
             solution: np.array shape(178,). Your solution.
             df: pd.DataFrame. Read-in of the wines.csv dataset
             # correct classification
             ranking = df['ranking'].values
             cluster 1 = list(df[df['ranking']==1].index)
             cluster_2 = list(df[df['ranking']==2].index)
             cluster 3 = list(df[df['ranking']==3].index)
             clusters =[cluster_1,cluster_2,cluster_3]
             for i in range(3):
                 scores=[]
                 for j in range(1,4):
                     sol j= [idx for idx,k in enumerate(solution) if k==j]
                     scores.append(len(np.intersect1d(sol j, clusters[i])))
                 print(f'Class {i+1} - cultivar {np.argmax(scores)+1}: {np.max(scores)}
         of {len(clusters[np.argmax(scores)])} are classified correctly')
         validate(solution, df)
         validate(solutiony, df)
         validate(solutionz, df)
```

```
Class 1 - cultivar 2: 22 out of 71 are classified correctly Class 2 - cultivar 3: 25 out of 48 are classified correctly Class 3 - cultivar 2: 19 out of 71 are classified correctly Class 1 - cultivar 1: 21 out of 59 are classified correctly Class 2 - cultivar 1: 27 out of 59 are classified correctly Class 3 - cultivar 3: 22 out of 48 are classified correctly Class 1 - cultivar 2: 22 out of 71 are classified correctly Class 2 - cultivar 1: 28 out of 59 are classified correctly Class 3 - cultivar 1: 18 out of 59 are classified correctly Class 3 - cultivar 1: 18 out of 59 are classified correctly
```

The algorithm did not seem to do better than randomly assigning each wine to a cluster

Qestion 2 Part e

```
def assign_ranks(feats,centers):
    """
    feats: pd.DataFrame. Normalized chemical descriptors
    centers: np.array shape (3,13). Position of centers
    """
    result=np.zeros(len(feats))
    for i in range(len(feats)):
        dist=np.zeros(3)
        for j in [0,1,2]:
            dist[j]=np.sum((feats[i] -centers[j,:])**2)
        result[i]=np.argmin(dist)+1
    return result
```

```
In [ ]:
         @numba.jit
         def simulated annealing 2(feats,ranks,centers,delta,start temp,alpha,steps=100
             """ Simulated Annealing for clustering
             feats: pd.DataFrame. Normalized chemical descriptors
             ranks: np.array shape(178,). Initial assignment.
             centers: np.array shape (3,13). Fixed centers
             start temp: float. Initial tempreture
             alpha: float. Hyperparameter for geometric cooling
             steps: int.
             ranks=np.array(ranks,dtype=int)
             best center=centers.copy()
             best rank=ranks.copy()
             # Use your cost function to evaluate the current best rank
             lowest eval = cost(ranks)
             for step in (range(steps)):
                 # update tempture according to geometric cooling schedule
                 temp = (alpha**step)*start temp
                 if step%500==0:
                     print(step,temp,lowest eval)
                 for n in range(len(ranks)):
                     trial center=centers.copy()
                     for i in range(len(trial center)):
                         trial center[i,:]+=delta*(2*np.random.random(trial center.shap
                     trial ranks = assign ranks(feats.drop(columns = ["Start assignment
                     new eval = cost(trial ranks)
                     diff = lowest eval - new eval
                     # Fill in Metropolis acceptance criterion
                     if np.exp(-diff/temp)>=np.random.random():
                         ranks=trial ranks
                         centers=trial center
                         # update evaluation
                         if new eval<lowest eval:</pre>
                             best center=centers.copy()
                             best rank=ranks.copy()
                             lowest eval=new eval
             return best rank, best center, lowest eval
         solution2x, centers2x, lowest eval2x = simulated annealing 2(df n, df['Start as
         solution2y, centers2y, lowest eval2y = simulated annealing 2(df n, df['Start as
```

```
solution2z, centers2z,lowest_eval2z = simulated_annealing_2(df_n, df['Start as
validate(solution2x, df)
validate(solution2y, df)
validate(solution2z, df)
```

```
0 500.0 2307.1548828673654
500 303.18947243059233 2307.1548828673654
1000 183.84771238548186 2303.948207163066
1500 111.48138185145105 2303.948207163066
2000 67.59996269874972 2302.7334376998274
2500 40.9911940539233 2301.0
3000 24.85619699901808 2301.0
3500 15.07227450952633 2301.0
4000 9.139509913744707 2301.0
4500 5.542006378044853 2301.0
0 500.0 2307.1548828673654
500 303.18947243059233 2307.1548828673654
1000 183.84771238548186 2307.1548828673654
1500 111.48138185145105 2307.1548828673654
2000 67.59996269874972 2307.1548828673654
2500 40.9911940539233 2307.1548828673654
3000 24.85619699901808 2307.1548828673654
3500 15.07227450952633 2307.1548828673654
4000 9.139509913744707 2301.0
4500 5.542006378044853 2301.0
0 500.0 2307.1548828673654
500 303.18947243059233 2307.1548828673654
1000 183.84771238548186 2307.1548828673654
1500 111.48138185145105 2307.1548828673654
2000 67.59996269874972 2307.1548828673654
2500 40.9911940539233 2307.1548828673654
3000 24.85619699901808 2307.1548828673654
3500 15.07227450952633 2301.1317660958575
4000 9.139509913744707 2301.0
4500 5.542006378044853 2301.0
Class 1 - cultivar 1: 59 out of 59 are classified correctly
Class 2 - cultivar 1: 71 out of 59 are classified correctly
Class 3 - cultivar 1: 48 out of 59 are classified correctly
Class 1 - cultivar 1: 59 out of 59 are classified correctly
Class 2 - cultivar 1: 71 out of 59 are classified correctly
Class 3 - cultivar 1: 48 out of 59 are classified correctly
Class 1 - cultivar 1: 59 out of 59 are classified correctly
Class 2 - cultivar 1: 71 out of 59 are classified correctly
Class 3 - cultivar 1: 48 out of 59 are classified correctly
```

Results over the three trials

0 500.0 2307.1548828673654 500 303.18947243059233 2307.1548828673654 1000 183.84771238548186 2303.948207163066 1500 111.48138185145105 2303.948207163066 2000 67.59996269874972 2302.7334376998274 2500 40.9911940539233 2301.0 3000 24.85619699901808 2301.0 3500 15.07227450952633 2301.0 4000 9.139509913744707 2301.0 4500 5.542006378044853 2301.0 0 500.0 2307.1548828673654 500 303.18947243059233 2307.1548828673654 1000 183.84771238548186 2307.1548828673654 1500 111.48138185145105 2307.1548828673654 2000 67.59996269874972 2307.1548828673654 2500 40.9911940539233 2307.1548828673654

3000 24.85619699901808 2307.1548828673654 3500 15.07227450952633 2307.1548828673654 4000 9.139509913744707 2301.0 4500 5.542006378044853 2301.0 0 500.0 2307.1548828673654 500 303.18947243059233 2307.1548828673654 1000 183.84771238548186 2307.1548828673654 1500 111.48138185145105 2307.1548828673654 2000 67.59996269874972 2307.1548828673654 2500 40.9911940539233 2307.1548828673654 3000 24.85619699901808 2307.1548828673654 3500 15.07227450952633 2301.1317660958575 4000 9.139509913744707 2301.0 4500 5.542006378044853 2301.0 Class 1 - cultivar 1: 59 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly Class 1 - cultivar 1: 48 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 2 - cultivar 1: 71 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly Class 3 - cultivar 1: 48 out of 59 are classified correctly

This algorithm did significantly better than the previous one and yielded about an 88% accuracy