ABSTRACT ALGEBRA — FINAL EXAM

ARDEN RASMUSSEN

1. Problem

Basic Concepts: For each of the following concepts of abstract algebra provide a definition and and example. When instructed provide a counterexample.

- (a). **Group.** A group is a set of elements G and an operation \star , expressed as (G, \star) , where
 - * is associative.
 - \star has an identity in G, that is to say there is some $1 \in G$ such that $1 \star a = a \star 1 = a \forall a \in G$.
 - Every element in G has an inverse with respect to \star , we can write this as $\forall a \in G \exists a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = 1$.
 - Optionally * may be commutative.

 $(\{0\},+)$ is a group.

- (b). **Ring.** A ring is a set of elements R, and a + and \cdot operators, expressed as $(R, +, \cdot)$, and
 - (R, +) is a commutative group.
 - · is associative.
 - \bullet · distributes over +.
 - · may or may not be commutative.
 - · may or may not have an identity.
 - Elements of R may or may not have an inverse with respect to \cdot .

 \mathbb{C} is a ring.

(c). **Integral domain.** An integral domain, is a ring $(R, +, \cdot)$ where there are no zero divisors, where $a \neq 0 \in R$ is called a zero divisor if there is some $b \neq 0 \in R$ such that $a \cdot b = 0$.

 \mathbb{Q} is an integral domain, \mathbb{C}' is not an integral domain

(d). **Euclidean domain.** A commutative ring with identity $(R, +, \cdot)$ that is an Integral domain, is called an Euclidean Domain if there exists a function

$$N: R \to \mathbb{N} \cup \{0\}$$

with respect to which R has division algorithm.

 $\mathbb{R}[X]$ is a euclidean domain, $\mathbb{R}[X,Y]$ is not a euclidean domain.

(e). **PID.** Integral Domains in which every ideal is principal are called principal ideal domains (PID)

 \mathbb{Z} is a PID, $\mathbb{R}[X,Y]$ is not a PID.

- 2
- (f). **UFD.** If $(R, +, \cdot)$ is a commutative integral domain with identity, in which every non-zero, non-unit
 - has a factorization in terms of irreducible
 - that factorization is unique up to permutations and associates

then $(R, +, \cdot)$ is a Unique Factorization Domain (UFD)

 $\mathbb{R}[X]$ is a UFD, $\mathbb{Z}[i\sqrt{5}]$ is not a UFD.

- (g). **Homomorphism.** A function $F: R \to S$ between two rings with identity is said to be a homomorphism if
 - $F(r_1 + r_2) = F(r_1) + F(r_2)$.
 - $F(r_1 \cdot r_2) = F(r_1) \cdot F(r_2)$.
 - F(1) = 1.

 $F: \mathbb{R}[X] \to \mathbb{R}$ given by $F: P(X) \to P(1)$ is a homomorphism. The function $F: \mathbb{Z}[i] \to \mathbb{Z}[2i]$ given by F(a+bi) = a+2bi is not a homomorphism.

(h). Kernel and Image. Given a homomorphism $F:R\to S$ then kernel and image are defined as the below.

$$\operatorname{Ker}(F) = \{r \in R | F(r) = 0\} \subseteq R$$
$$\operatorname{Im}(F) = \{s \in S | \exists r \in R, F(r) = s\} \subseteq S$$

The kernel an image of the homomorphism $F: \mathbb{R}[X] \to \mathbb{R}$ given by $F: P(X) \to P(1)$ are

$$\operatorname{Ker}(F) = (1 - X) \operatorname{Im}(F) = \mathbb{R}.$$

(i). **Isomorphism.** A homomorphism $F: R \to S$ is called an isomorphism if F is a bijection.

 $F: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}]$ given by $F(a+b\sqrt{2}) = a-b\sqrt{2}$ is an isomorphism.

- (j). **Ideal.** In $(R, +, \cdot)$ commutative integral domain with identity, $I \subseteq R$ is an ideal if
 - $i_1, i_2 \in I \to i_1 + i_2 \in I$
 - $r \in R, i \in I \rightarrow ri \in I$
 - (5) over \mathbb{Z} is an ideal.
- (k). **Prime ideal.** P ideal is called prime if $ab \rightarrow a \in P$ or $b \in P$.
- (3) over \mathbb{Z} , is a prime ideal. (6) over \mathbb{Z} , is not a prime ideal, as $3 \cdot 2 \in (6)$ but $3 \notin (6)$ and $2 \notin (6)$.
- (l). **Maximal ideal.** An ideal is called maximal if it is not contained in any proper ideal.

$$(1) I \subseteq \not X \subseteq R$$

(X,Y) is maximal over $\mathbb{R}[X,Y]$. (X) is not maximal over $\mathbb{R}[X,Y]$ as $(X)\subseteq (X,Y)$.

- (m). Quotient ring. Let R be a commutative ring with identity and an integral domain. Let I be an ideal of R. We define
 - the relation $\equiv \pmod{I}$ by $a \equiv b \pmod{I}$ if and only if $a b \in I$.
 - the set $R/I = \{[a] | a \in R\}.$
 - the operations +, · on R/I

$$[a] + [b] = [a + b]$$
 and $[a] \cdot [b] = [a \cdot b]$.

Then R/I is a quotient ring.

 $\mathbb{Z}/(3)$ is a quotient ring.

(n). **Field.** A field, is a ring $(R, +, \cdot)$ where every element of R has a multiplicative inverse.

 \mathbb{Q} is a field, but \mathbb{Z} is not.

(o). **Algebra over a field.** An algebra is a ring which also happens to be a vector space over some field of scalars.

 $\mathbb{R}_{m\times n}$ is an algebra, over the field of \mathbb{R} which act as the scalars.

(p). **Field extension.** Field extensions are given two fields $A \subseteq B$, B is an extension of A if they share the same operations?

CHECK THIS

 $\mathbb{Q}(\sqrt{2})$ is an extension of \mathbb{Q} .

2. Problem

<u>Classic constructions of Abstract Algebra — Universal Properties:</u> Recall the construction of the field of quotients of a commutative integral domain R, Let \equiv denote the equivalence relation on $R \times (R \setminus \{0\})$ given by

$$(a,b) \equiv (c,d) \longleftrightarrow \exists x,y \in R \setminus \{0\}, (ax,bx) = (cy,dy).$$

By the field of quotients of R we mean the set Q(R) a of equivalence classes

$$Q(X) = \{ [(a,b)] | a, b \in R, b \neq 0 \}$$

of \equiv together with operations

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
 and $[(a,b)] \cdot [(c,d)] = [(ac,bd)]$.

On homework you proved that Q(R) indeed is a field. In this problem I as you to prove the following theorem about the field of quotients.

(a). Show that there is an injective homomorphism $i: R \to \mathcal{Q}(R)$.

Claim: $i: R \to \mathcal{Q}(R)$ defined by i(r) = [(r,1)] is an injective homomorphism.

Proof. To show that i is a homomorphism, we first show that it presevers addition, and multiplication. Consider some $a, b \in R$, then

$$i(a + b) = [(a + b, 1)] = [(a, 1)] + [(b, 1)] = i(a) + i(b).$$

Thus i preserves addition. Now we consider

$$i(a \cdot b) = [(a \cdot b, 1)] = [(a, 1)] \cdot [(b, 1)] = i(a) \cdot i(b)$$

Thus i preserves multiplication. Now we verify that i(1) = 1.

$$i(1) = [(1,1)] = 1_{\mathcal{O}(R)}.$$

Thus i also preserves identity, and so we can conclude that it is indeed a homomorphism.

Now we will show that it is injective. Assume that it is not injective, that is to say there exists some $a, b \in R$ with i(a) = i(b). We express this as

$$[(a,1)] = [(b,1)].$$

From the definition of \equiv this means that there exists some $x,y\in R\setminus\{0\}$ such that

$$(ax, x) = (by, y).$$

From this it is clear that x = y, and so subsequently we find a = b, but this is a contradiction of our assumption. Thus we can conclude that i is injective.

(b). Suppose $\Gamma: R \to F$ is another injective homomorphism of R into a field F. Show that

$$\gamma: \mathcal{Q}(R) \to F$$
 defined by $\gamma([a,b]) = \Gamma(a) \cdot \Gamma(b)^{-1}$

is a (well-defined) homomorphism.

Claim: $\gamma: \mathcal{Q}(R) \to F$ defined by $\gamma([(a,b)]) = \Gamma(a) \cdot \Gamma(b)^{-1}$ is a well-defined homomorphism.

Proof. First we show that γ is a homomorphism. To show this, we demonstrate the preservation of addition, multiplication, and unit. Consider some $[(a,b)],[(c,d)] \in \mathcal{Q}(R)$.

$$\gamma([(a,b)] + [(c,d)]) = \gamma([(ad + bc,bd)]) = \Gamma(ad + bc) \cdot \Gamma(bd)^{-1}$$

Then since Γ is a homomorphism, we can rewrite this to be

$$\Gamma(ad)\Gamma(bd)^{-1} + \Gamma(bc)\Gamma(bd)^{-1} = \Gamma(a)\Gamma(b)^{-1}\Gamma(d)\Gamma(d)^{-1} + \Gamma(b)\Gamma(b)^{-1}\Gamma(c)\Gamma(d)^{-1}$$
$$= \Gamma(a)\Gamma(b)^{-1} + \Gamma(c)\Gamma(d)^{-1}$$
$$= \gamma([a,b]) + \gamma([c,d])$$

Then to demonstrate the preservation of multiplication, consider

$$\gamma([(a,b)]\cdot[(c,d)])=\gamma([(ac,bd)])=\Gamma(ac)\Gamma(bd)^{-1}$$

Again by the homomorphic nature of Γ we can rewrite this to be

$$\Gamma(a)\Gamma(b)^{-1}\Gamma(c)\Gamma(d)^{-1} = \gamma([(a,b)]) \cdot \gamma([(c,d)]).$$

Finally we show that 1 is preserved.

$$\gamma([(1,1)]) = \Gamma(1)\Gamma(1)^{-1} = 1$$

Thus it is clear that γ is a homomorphism.

Now we prove that γ is well defined. Consider [(a,b)] = [(c,d)], with some $x,y \in \mathbb{R} \setminus \{0\}$ such that (ax,bx) = (cy,dy). We notice that

$$\gamma([(a,b)]) = \gamma([(ax,bx)]) \text{ and } \gamma([(c,d)]) = \gamma([(cy,dy)]).$$

Now we compute

$$\gamma([(a,b)]) = \gamma([(ax,bx)]) = \Gamma(ax)\Gamma(bx)^{-1} = \Gamma(cy)\Gamma(dy)^{-1} = \gamma([(cy,dy)]) = \gamma([(c,d)])$$

And thus γ is well defined.

(c). Show that $\gamma \circ i = \Gamma$.

Proof. Consider our definition of γ and i, then we consider

$$\gamma \circ i = \gamma(i(r)) = \gamma(\lceil (r, 1) \rceil) = \Gamma(r)\Gamma(1)^{-1}$$

Since Γ is a homomorphism, then $\Gamma(1) = 1$ and $\Gamma(1)^{-1} = 1^{-1} = 1$. So we find

$$\Gamma(r)\Gamma(1)^{-1} = \Gamma(r).$$

Thus it becomes clear that $\gamma \circ i = \Gamma$.

3. Problem

Application of Number Theory: Let p be a prime number and consider the field $\mathbb{Z}/(p)$ of integers modulo p.

(a). Show that for all $[k] \neq [0]$ the mapping

$$x \mapsto [k] \cdot x$$

is a bijection from the set of nonzero element of $\mathbb{Z}/(p)$ to itself. Alternativly, argue that

$$[k], [2k], [3k], \dots, [(p-1)k]$$

is a permutation of $[1], [2], [3], \ldots, [(p-1)]$. Claim: $[k], [2k], \ldots, [(p-1)k]$ is a permutation of $[1], [2], \ldots, [(p-1)]$.

Proof. Without loss of generality we can assume that k < p. Because of the unique factorization of \mathbb{Z} , we know that for any α in $1, 2, \ldots, (p-1)$, then we know that the factorizations of $\alpha k = q_1 q_2 \cdots q_n r_1 r_2 \cdots r_m$, and since both k and α are less than p and so $p \notin q_1, q_2, \ldots, q_n, r_1, r_2, \ldots, r_m$, thus we know that $[\alpha k] \neq [0]$, so that means that for each $[\alpha k]$ is equal to some $[1], \ldots [(p-1)]$.

Each αk must be unique. We show this by contradiction. Consider some $\alpha, \beta \in \{1, 2, \dots, (p-1) \text{ with } [\alpha k] = [\beta k]$, then since $\mathbb Z$ is an euclidean domain, we know that we can cancel, so we rewrite this expression and cancel [k] from both sides, to find

$$[\alpha k] = [\beta k]$$
$$[\alpha][k] = [\beta][k]$$
$$[\alpha] = [\beta].$$

Thus each of the $[\alpha k]$ must be unique and can must also be one of $[1], [2], \ldots, [(p-1)]$. Since there are p terms in $[k], [2k], \ldots, [(p-1)k]$, and each is unique and can be expressed as equal to some $[1], [2], \ldots, [(p-1)]$ of wich there are only p to chose from, then each $[1], [2], \ldots, [(p-1)]$ must be mapped to. Thus $[k], [2k], \ldots, [(p-1)k]$ is a permutation of $[1], [2], \ldots, [(p-1)]$.

(b). Argue that for all $[k] \neq [0]$ we have $[k]^{p-1} = [1]$. *Claim:* For any $[k] \neq [0]$ we know $[k]^{p-1} = [1]$.

Proof. Consider from the previous problem, the product of the sequence of elements. That is we consider $[k][2k]\cdots[(p-1)k]$. From the previous problem, we know that this is equal to

$$[k][2k] \cdots [(p-1)k] = [1][2] \cdots [(p-1)]$$
$$[k]^{p-1}[1][2] \cdots [(p-1)] = [1][2] \cdots [(p-1)]$$

Then we use the ability to cancle values in fields, to find

$$[k]^{p-1} = [1]$$

(c). Factorize the polynomial $X^{p-1} - 1$ over $\mathbb{Z}/(p)$.

Let us consider p = 3, then $X^2 - 1$ over $\mathbb{Z}/(3)$, then we get (X - 1)(X + 1) = (X+1)(X+2), if we try $X^4 - 1$ over $\mathbb{Z}/(5)$ we get $(X-1)(X+1)(X^2+1) = (X-1)(X+1)(X^2-4) = (X-1)(X+1)(X-2)(X+2) = (X+1)(X+2)(X+3)(X+4)$. My guess is that it will be something like $(X+1)(X+2)\cdots(X+(p-1))$.

Claim: The factorization of the polynomal $X^{p-1} - 1$ over $\mathbb{Z}/(p)$ is given by $(X + 1)(X + 2) \cdots (X + (p-1))$.

Proof. Consider some polynomial $X^{p-1}-1$, we prove this somehow?

- (d). Based on the above prove the following two classic theorems of number theory: $GCD(k, p) = q \to k^{p-1} \equiv q \pmod{p}$ and $(p-1)! \equiv -1 \pmod{p}$.
- (e). Now let F denote any finite field and let |F| denote the number of elements of F generalize the above to prove

$$\alpha^{|F|-1} = 1$$

for all non-zero $\alpha \in F$. What, if anything, can you say about the product of all non-zero elements of F?

4. Problem

Advanced Topic: Recall the following

• For an ideal I of the polynomial ring $\mathbb{C}[X_1, X_2, \dots, X_n]$ we define

$$rad(I) = \{ P \in \mathbb{C}[X_1, X_2, \dots, X_n] | \exists k \in \mathbb{N}, p^k \in I \}$$

Here $\mathbb N$ denotes the set of positive integers. Recall that rad (I) was on the first midterm exam.

- An ideal I of $\mathbb{C}[X_1, X_2, \dots, X_n]$ is said to be <u>radical</u> if rad (I) = I.
- For an ideal I in the polynomial ring $\mathbb{C}[X_1,X_2,\ldots,X_n]$ we define

$$\mathscr{Z}(I) = \{ \alpha \in \mathbb{C}^n | \forall P \in I, P(\alpha) = 0 \}.$$

- Subsets $\mathbf{X} \subseteq \mathbb{C}^n$ of the form $\mathscr{Z}(I)$ are called algebraic sets.
- For an algebraic set **X** we define

$$\mathscr{I}(\mathbf{X}) = \{ P \in \mathbb{C}[X_1, X_2, \dots, X_n] | \forall \alpha \in \mathbf{X}, P(\alpha) = 0 \}.$$

• The Strong Nullstellensatz (due to David Hilbert) states that

$$\mathcal{J}(\mathcal{Z}(I)) = \operatorname{rad}(I)$$

for all ideals I of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

In this problem I ask you to prove the following.

- (a). Prove that for all algebraic sets X the set $\mathcal{J}(X)$ is
 - An ideal of $\mathbb{C}[X_1, X_2, \dots, X_n]$.
 - A radical ideal of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

Claim: All algebraic sets **X**, the set $\mathcal{J}(\mathbf{X})$ are radical ideals of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

Proof. Consider some algebraic set **X**. By the definition of algebraic set, then there must exist some ideal I, such that $\mathcal{Z}(I) = \mathbf{X}$. Then we consider

$$\mathscr{J}(\mathbf{X}) = \mathscr{J}(\mathscr{Z}(I))$$

Then by Strong nullstellensatz we know that $\mathscr{J}(\mathscr{Z}(I)) = \operatorname{rad}(I)$, and thus $\mathscr{J}(\mathbf{X}) = \operatorname{rad}(I)$. We conclude that for all algebraic sets \mathbf{X} , the set $\mathscr{J}(\mathbf{X})$ is an ideal of $\mathbb{C}[X_1, X_2, \ldots, X_n]$, since we know that $\operatorname{rad}(I)$ is an ideal.

To show that rad(I) is a radical ideal, we compute

$$\operatorname{rad}\left(\operatorname{rad}\left(I\right)\right) = \left\{P \in \mathbb{C}[X_{1}, X_{2}, \dots, X_{n}] | \exists k \in \mathbb{N}, P^{k} \in \operatorname{rad}\left(I\right)\right\}$$
$$= \left\{P \in \mathbb{C}[X_{1}, X_{2}, \dots, X_{n}] | \exists k, l \in \mathbb{N}, \left(P^{l}\right)^{k} \in I\right\}$$
$$= \left\{P \in \mathbb{C}[X_{1}, X_{2}, \dots, X_{n}] | \exists k \in \mathbb{N}, P^{k} \in I\right\}$$
$$= \operatorname{rad}\left(I\right).$$

Thus $\operatorname{rad}(\operatorname{rad}(I)) = \operatorname{rad}(I)$ and so we conclude that $\operatorname{rad}(I)$ is indeed a radical ideal. \Box

(b). Prove, through element chasing, that $\mathscr{Z}(I) = \mathscr{Z}(\mathrm{rad}\,(I))$ for all ideals I of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

Claim: $\mathscr{Z}(I) = \mathscr{Z}(\mathrm{rad}\,(I))$ for all ideals I of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

Proof. Consider some ideal I of $\mathbb{C}[X_1, X_2, \dots, X_n]$. Then we compute

$$\mathscr{Z}(\operatorname{rad}(I)) = \{\alpha \in \mathbb{C}^n | \forall P \in \operatorname{rad}(I), P(\alpha) = 0\}$$

$$= \{\alpha \in \mathbb{C}^n | \exists n \in \mathbb{N}, \forall P \in \mathbb{C}[X_1, X_2, \dots, X_n], P^n \in I, P(\alpha) = P^n(\alpha) = 0\}$$

$$= \{\alpha \in \mathbb{C}^n | \forall P \in I, P(\alpha) = 0\}$$

$$= \mathscr{Z}(I).$$

Thus $\mathscr{Z}(I) = \mathscr{Z}(\mathrm{rad}(I))$ for allideals I of $\mathbb{C}[X_1, X_2, \dots, X_n]$.

(c). Prove, through element chasing, that $\mathscr{Z}(\mathscr{J}(\mathbf{X})) = \mathbf{X}$ for all algebraic sets $\mathbf{X} \subseteq \mathbb{C}^n$.

Claim: For all algebraic sets $\mathbf{X} \subseteq \mathbb{C}^n$, $\mathscr{Z}(\mathscr{J}(\mathbf{X})) = \mathbf{X}$.

Proof. Consider some algebraic set \mathbf{X} , by the definition of algebraic set, there must exists some ideal I such that $\mathscr{Z}(I)\mathbf{X}$. Now we consider

$$\mathscr{Z}(\mathscr{J}(\mathbf{X})) = \mathscr{Z}(\mathscr{J}(\mathscr{Z}(I))).$$

Then by Strong Nullstellensatz, we know that $\mathcal{J}(\mathcal{Z}(I)) = \operatorname{rad}(I)$, so we can rewrite this expression to be

$$\mathscr{Z}(\mathrm{rad}\,(I)).$$

Then by the previous problem, we can notice that this can be expressed as

$$\mathscr{Z}(\operatorname{rad}(I)) = \mathscr{Z}(I).$$

And by our assumption, we find that this must be equal to X. Thus for any algebraic set X, $\mathscr{Z}(\mathscr{J}(X)) = X$.

(d). Prove that \mathscr{Z} is a bijection between the set of radical ideals of $\mathbb{C}[X_1, X_2, \dots, X_n]$ and the set of algebraic sets in \mathbb{C}^n .

Claim: \mathscr{Z} is a bijection between radical ideals of $\mathbb{C}[X_1, X_2, \dots, X_n]$ and algebraic sets in \mathbb{C}^n .

Proof. To show that \mathscr{Z} is a bijection, we must show that it is onto, and one-to-one. We will first show onto.

Consider some algebraic set \mathbf{X} , let us consider the ideal I given by $\mathcal{J}(\mathbf{X})$. Then we compute

$$\mathscr{Z}(I) = \mathscr{Z}(\mathscr{J}(\mathbf{X})).$$

Using the preivous problem, we see that this is equal to X. Thus for any algebraic set X, we can construct some radical ideal given by $\mathscr{J}(X)$ such that $\mathscr{Z}(I) = X$. We conclude that \mathscr{Z} is onto.

To prove one-to-one, consider some radical ideal $I, J \in \mathbb{C}[X_1, X_2, \dots, X_n]$, with $\mathscr{Z}(I) = \mathbf{X} = \mathscr{Z}(J)$. Next we consider $\mathscr{J}(\mathbf{X})$, then we apply Strong Nullstellensatz

$$\mathcal{J}(\mathcal{Z}(I)) = \mathcal{J}(\mathcal{Z}(J))$$

rad $(I) = \operatorname{rad}(J)$.

Then since I, J are radical ideals, we know that rad (I) = I, and rad (J) = J, so we can see that I = J. Thus \mathscr{Z} must be one to one.

Since \mathscr{Z} is both onto and one-to-one, we can conclude that it is a bijection between radical ideals of $\mathbb{C}[X_1, X_2, \dots, X_n]$ and algebraic sets in \mathbb{C}^n .