CS 6501 Natural Language Processing

Optimization for Deep Learning

Yangfeng Ji

November 7, 2019

Department of Computer Science University of Virginia

Overview

- 1. Stochastic Gradient Descent
- 2. Adaptive Learning Rates
- 3. Other Tricks
- 4. Learning via Optimization

Stochastic Gradient Descent

Warmup: Gradient of a 1-D Function

Warmup: Gradient of a 2-D Function

$$y = x_1^2 + 10x_2^2$$

Warmup: Vector Addition

The parallelogram law

Loss Function

Given a training set $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$, the loss function is defined as

$$\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(f(x^{(i)}; \theta), y^{(i)})$$
 (1)

where $L(\cdot, \cdot)$ is the loss function for a single example and θ denotes the parameters in f.

Some examples of $L(\cdot, \cdot)$

- ► Negative log-likelihood
- Cross entropy

SGD

To learn the parameter θ , we can compute the gradient with respect to one training example and then use stochastic gradient descent as

$$\boldsymbol{\theta}^{(t)} \leftarrow \boldsymbol{\theta}^{(t-1)} - \eta_t \cdot \boldsymbol{g}^{(t-1)} \tag{2}$$

where

- ▶ *t*: timestep
- $g^{(t-1)} = \nabla_{\theta} L(\theta^{(t-1)})$ is the gradient of the single-example loss L
- $ightharpoonup \eta_t$ is the learning rate

Learning Rate

The usual conditions on the learning rates are

$$\sum_{t=1}^{\infty} \eta_t = \infty \tag{3}$$

$$\sum_{t=1}^{\infty} \eta_t^2 \leq \infty \tag{4}$$

A simplest function that satisfies these conditions is

$$\eta_t = \frac{1}{t} \tag{5}$$

[Bottou, 1998]

SGD with Momentum

Given the loss function $L(\theta)$ to be minimized, SGD with momentum is given by

$$v^{(t)} = \mu v^{(t-1)} + g^{(t-1)} \tag{6}$$

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} - \eta_t \boldsymbol{v}^{(t)} \tag{7}$$

where

- $ightharpoonup \eta_t$ is still the learning rate
- ▶ $\mu \in [0, 1]$ is the momentum coefficient. Usually, $\mu = 0.99$ or 0.999.

Intuitive Explanation

The effect of momentum in SGD: reduce the fluctuation

Figure: Left: SGD without momentum. Right: SGD with momentum. (Credit: Genevieve B. Orr)

Note: the arrow show the opposite direction of the gradient

Another Example with Contour Plot

$$y = x_1^2 + 10x_2^2 (8)$$

$$\frac{\partial y}{\partial x_1} = 2x_1 \tag{9}$$

$$\frac{\partial y}{\partial x_1} = 2x_1 \tag{9}$$

$$\frac{\partial y}{\partial x_2} = 20x_2 \tag{10}$$

Note: the arrow show the opposite direction of the gradient

Another Example with Contour Plot (Cont.)

$$v^{(t)} = \mu v^{(t-1)} + g^{(t-1)} \tag{11}$$

Note: the arrow show the opposite direction of the gradient

Adaptive Learning Rates

Basic Idea

For neural networks, the motivation of picking a different learning rate for each θ_k (the k-th component of parameter θ) is not new [LeCun et al., 2012] (the article was originally published in 1998).

- ▶ The basic idea is to make sure that all θ_k 's converge roughly at the *same* speed.
- Depending on the *curvature* of the error surface, some θ_k 's may require a small learning rate in order to avoid divergence, while others may require a large learning rate in order to converge fast.

The basic idea of **AdaGrad** is to modify the learning rate η for θ_k by using the history of $\partial_{\theta_k} L$

$$\theta_k^{(t)} = \theta_k^{(t-1)} - \frac{\eta_0}{\sqrt{G_{k,k}^{(t-1)} + \epsilon}} g_k^{(t-1)}$$
(12)

The basic idea of **AdaGrad** is to modify the learning rate η for θ_k by using the history of $\partial_{\theta_k} L$

$$\theta_k^{(t)} = \theta_k^{(t-1)} - \frac{\eta_0}{\sqrt{G_{k,k}^{(t-1)} + \epsilon}} g_k^{(t-1)}$$
(12)

where

• $g_k^{(t-1)} = [\nabla_{\theta} L(\theta^{(t-1)})]_k$ is the k-th component of $\nabla_{\theta} L(\theta^{(t-1)})$

The basic idea of **AdaGrad** is to modify the learning rate η for θ_k by using the history of $\partial_{\theta_k} L$

$$\theta_k^{(t)} = \theta_k^{(t-1)} - \frac{\eta_0}{\sqrt{G_{k,k}^{(t-1)} + \epsilon}} g_k^{(t-1)}$$
(12)

where

- $\mathbf{g}_k^{(t-1)} = [\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{(t-1)})]_k$ is the k-th component of $\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{(t-1)})$
- $G_{k,k}^{(t-1)} = \sum_{i=1}^{t-1} (g_k^{(i)})^2$

The basic idea of **AdaGrad** is to modify the learning rate η for θ_k by using the history of $\partial_{\theta_k} L$

$$\theta_k^{(t)} = \theta_k^{(t-1)} - \frac{\eta_0}{\sqrt{G_{k,k}^{(t-1)} + \epsilon}} g_k^{(t-1)}$$
(12)

where

- $g_k^{(t-1)} = [\nabla_{\theta} L(\theta^{(t-1)})]_k$ is the *k*-th component of $\nabla_{\theta} L(\theta^{(t-1)})$
- $G_{k,k}^{(t-1)} = \sum_{i=1}^{t-1} (g_k^{(i)})^2$
- $ightharpoonup \eta_0$ is the initial learning rate
- $ightharpoonup \epsilon$ is a smoothing parameter usually with order 10^{-6}

AdaGrad: Intuitive Explanation

$$\theta_k^{(t)} = \theta_k^{(t-1)} - \frac{\eta_0}{\sqrt{G_{k,k}^{(t-1)} + \epsilon}} g_k^{(t-1)}$$
(13)

RMSProp

RMSProp uses a moving average over the past gradients

$$\boldsymbol{\theta}_{k}^{(t)} = \boldsymbol{\theta}_{k}^{(t-1)} - \frac{\eta_{0}}{\sqrt{\boldsymbol{r}_{k}^{(t)} + \epsilon}} \boldsymbol{g}_{k}^{(t-1)}$$
(14)

where

$$\boldsymbol{r}_{k}^{(t)} = \rho \boldsymbol{r}_{k}^{(t-1)} + (1 - \rho)[\boldsymbol{g}_{k}^{(t-1)}]^{2} \tag{15}$$

and $\rho \in (0,1)$

[Hinton et al., 2012]

Adam

$$v_k^{(t)} = \mu v_k^{(t-1)} + (1-\mu)g_k^{(t-1)}$$
 (16)

$$r_k^{(t)} = \rho r_k^{(t-1)} + (1-\rho)[g_k^{(t-1)}]^2$$
 (17)

$$\hat{v}_k^{(t)} = \frac{v_k^{(t)}}{1 - \mu^t} \tag{18}$$

$$\hat{r}_k^{(t)} = \frac{r_k^{(t)}}{1 - \rho^t} \tag{19}$$

$$\boldsymbol{\theta}_{k}^{(t)} = \boldsymbol{\theta}_{k}^{(t-1)} - \eta_{0} \frac{\hat{\boldsymbol{v}}_{k}^{(t)}}{\sqrt{\hat{\boldsymbol{r}}_{k}^{(t)} + \epsilon}}$$

$$(20)$$

The default values of μ and ρ are 0.9 and 0.999 respectively.

How to Choose a Optimization Algorithm?

- ▶ User's familiarity with the algorithms [Goodfellow et al., 2016]
- ► Start from SGD first (my opinion)

Other Tricks

Other Tricks

- 1. Shuffle training examples in each epoch
- 2. Normalize inputs
- 3. Initialization

Further Reference

Learning via Optimization

Expected Loss

For a distribution of \mathfrak{D} over (x, y), where x denotes the input and y is the corresponding output/label.

The ideal prediction function is the one that minimize the expected loss $E(f) = \int_{\mathbb{S}^n} L(f(x), y)$

$$f^* = \underset{f}{\operatorname{argmin}} E(f) \tag{21}$$

where $L(\cdot, \cdot)$ is the loss function.

However, D is unknown.

Empirical Loss

Instead of minimizing the expected loss in Equation 21, which is also impossible, we can minimize the empirical loss

$$E_n(f) = \frac{1}{n} \sum_{i=1}^n L(f(\mathbf{x}^{(i)}), y^{(i)}), \tag{22}$$

as

$$f_n = \underset{f}{\operatorname{argmin}} E_n(f) \tag{23}$$

where $\{(x^{(i)}, y^{(i)})\}_{i=1}^n \sim \mathfrak{D}$ is the training set.

Question

How far from f_n to f^*

Question

How far from f_n to f^*

Three steps in machine learning

- 1. collect data
- 2. design a model
- 3. optimize an objective function

Question

How far from f_n to f^*

Three steps in machine learning

- 1. collect data: Do we have enough data?
- 2. design a model: *Does the model have enough data?*
- 3. optimize an objective function: *Is the objective fully optimized?*

Errors (the difference between f_n and f^*) can be introduced in any of these three steps.

Approximation Error

Due to the model design: since we do not know the actual f^* , our starting point with all learnable function class \mathcal{F} is predefined, such as logistic regression models or neural network models

$$f^* = \underset{f}{\operatorname{argmin}} E(f) \tag{24}$$

$$f_{\mathcal{F}}^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} E(f)$$
 (25)

Estimation Error

Due to the data collection: we can only have finite number of training examples and we have no idea about the real data distribution \mathfrak{D}

$$f_{\mathcal{F}}^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} E(f)$$
 (26)

$$f_n = \underset{f \in \mathcal{F}}{\operatorname{argmin}} E_n(f)$$
 (27)

Optimization Error

Due to the limited power of optimization methods

$$f_n = \operatorname{argmin} f \in \mathcal{F}E_n(f)$$
 (28)

Error Decomposition

$$\underbrace{E[E(f_{\mathscr{F}}^*) - E(f^*)]}_{\text{approximation error}} + \underbrace{E[E(f_n) - E(f_{\mathscr{F}}^*)]}_{\text{estimation error}} + \underbrace{E[E(\hat{f_n}) - E(f_n)]}_{\text{optimization error}}$$

[Bottou, 2012, Sec. 18.3.1]

For a given machine learning problem,

- ▶ there is no way to know the oracle function f^* or $f_{\mathscr{F}}^*$, and
- ▶ it is difficult to get f_n , especially when \mathcal{F} is a collection of deep neural networks

But it is useful to think about this decomposition.

For example, in the context of neural network learning,

- to reduce the approximation error is the motivation to design your neural network model carefully;
- to reduce the estimation error is the reason we should have enough data;
- to reduce the optimization error is why we need to know the optimization algorithms.

Summary

1. Stochastic Gradient Descent

- 2. Adaptive Learning Rates
- 3. Other Tricks
- 4. Learning via Optimization

Reference

Bottou, L. (1998).

Online learning and stochastic approximations.

On-line learning in neural networks, 17(9):142.

Stochastic gradient descent tricks.

In Neural networks: Tricks of the trade, pages 421-436. Springer.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016).

Deep Learning, volume 1.

MIT press Cambridge.

Hinton, G., Srivastava, N., and Swersky, K. (2012).

Neural networks for machine learning lecture 6a overview of mini-batch gradient descent.

Kearns, M. J., Schapire, R. E., and Sellie, L. M. (1994).

Toward efficient agnostic learning.

Machine Learning, 17(2-3):115-141.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012).

Efficient backprop.

In Neural networks: Tricks of the trade, pages 9-48. Springer.

Reddi, S. J., Kale, S., and Kumar, S. (2018).

On the convergence of adam and beyond.

In ICLR.