

Fig. 3

Fig. 6

Fig. 10

ELECTRICAL SPECIFICATIONS

RETURN LOSS (dB)	OUTPUT Max.	18 20	17.5 18	88	100	17
	INPUT TYP.	16 16	20	19	16 0	19 20
NOE) Max.	0.3	0.4	0.4	0.4	0.8
AMPLIT UNBAL	(dB) TYP.	0.1	0.25	0.25	0.25	0.6
PHASE UNBALANCE	Degrees) J. MAX.	2020	nn	44	വവ	မမ
	(Degr TYP.	1.0	 	2.5	2.0	3.5
(AR)	MAX.	15 18	17 20	17 20	17 20	17 20
ISOLAT (AR)	TYP.	20 22	23	23 25	27	21 23
ON LOSS	3.0 dB MAX.	0.8 0.9	0.8	0.0 0.0	0.0 0.0	1.0
INSERTIC (d	ABOVÈ TYP.	0.5	0.5	0.5	0.5	0.5
FREQUENCY (MHz)		800-1175 875-1125	1100–1450 1200–1375	1425–1900 1550–1800	1850–2200 1900–2100	2225–2700 2325–2600
POWER SPLITTER MODEL		_	2	2	4	5

Fig. 11