

TEORIA DOS GRAFOS

Prof^a Laura Pacifico

2025 | SETEMBRO

Árvore Geradora (Spanning Tree)

Árvore Geradora (Spanning Tree)

Uma árvore geradora de um grafo G é um subgrafo gerador **conexo** e **acícliclo** (sem ciclos).

A árvore geradora de um Grafo G contém exatamente os mesmo vértices de G, e |N|-1 arestas (onde |N| é a Ordem de G).

A figura ao lado representa 11 diferentes árvores geradoras do grafo em 1.

Como obter uma árvore geradora de G?

Procedimento:

- 1. Se G não possui circuitos, G é sua própria árvore geradora.
- 2. Se G possui circuitos, retire uma aresta do circuito. O subgrafo resultante é conexo.
- 3. Se existirem mais circuitos, repita a operação até retirar uma aresta do último circuito do grafo.
- 4. O subgrafo resultante é conexo, sem circuitos e possui todos os vértices de G. Portanto é uma árvore geradora de G.

Exemplo

Liste 8 árvores geradoras do grafo abaixo

Exemplo

Liste todas as 8 árvores geradoras do grafo abaixo

Árvore Geradora Mínima (AGM)

A árvore geradora mínima (T_{min}) é a árvore geradora de menor custo, dentre todas as possíveis em G.

O custo de uma árvore geradora T de um grafo ponderado G é dado pelo somatório dos custos das arestas de T.

 T_{max} é a árvore geradora de maior custo em G.

(1) Grafo G

(2) Árvore geradora mínima

(3) Árvore geradora máxima

FIGURA 3.10 Árvore geradora mínima e máxima

Só existe uma única árvore geradora mínima para um grafo conexo?

Só existe uma única árvore geradora mínima para um grafo conexo?

O Teorema da Matriz-Árvore.

Seja G um grafo e L(G) a sua matriz laplaciana. Seja u um vértice arbitrário de G. Seja L(G)u o menor principal de L(G) retirando-se a linha e a coluna correspondente ao vértice u, então det(L(G)u) é igual ao número de árvores geradoras de G.

Onde o Laplaciano de um grafo, é uma representação matricial calculada a partir da matriz de adjacência (A) e da matriz de graus (D) através da fórmula L = D - A

Algoritmos de Solução de Árvore Geradora Mínima

- Principais trabalhos publicados na tabela ao lado
- Veremos em detalhe:
 - Kruskal (1956)
 - Prim (1957)

Trabalho	Técnica Utilizada	Complexidade
iorůvka (1926)	União de conjuntos disjuntos	O(mlag n)
ruskal (1956)	União de conjuntos disjuntos e heapsort	O(mlag n)
rim (1957 <u>)</u>	Seleção de arestas	O(n:)
ohnson (1975)	Algoritmo de Prim implementado com d—Heap	$O(nd \log_d n + m \log_d n)$
ao (1975)	Algoritmo de Borůvka implementado utilizando heaps e seleção	O(mlag log n)
heriton & Tarjan (1976)	Algoritmo de Borůvka com fila duplamente ligada, heap e união de conjuntos disjuntos	O(mlog log n)
abow et al. (1986)	Heap de Fibonacci com pacotes e união de conjuntos disjuntos	O(mlog β(m, n)) (a)
redman & Tarjan (1987)	Algoritmo de Prim implementado com heap de Fibonacci	O(n log n + m)
redman & Tarjan (1987)	Algoritmo de Borůvka implementado com heap de Fibonacci	O(m β(m, n))
arger (1993)	Aleatorização	O(n log n + m)
arger et al. (1995)	Aleatorização, recursão e verificação de tempo linear	O(m) (b)
hazelle (1997)	Heap com particularidades de movimentação (soft heap)	O(ma(m,n) loga(m,n)) (c)
ettie (1999 <u>)</u>	Divisão do problema em subproblemas e procedimentos de retração e extensão	O(ma(m,n))
hazelle (2000a)	Aperfeiçoamento da técnica em soft heap	O(ma(m,n)loga(m,n))
ettie (1999 <u>)</u>	Divisão do problema em subproblemas e procedimentos de retração e extensão	O(ma(m,n))
hazelle (2000a)	Aperfeiçoamento da técnica em soft heap	O(ma(m,n)loga(m,n))
hazelle (2000b)	Aperfeiçoamento da técnica em soft heap	O(ma(m, n))
Pettie & Ramachandran 2002)	Aperfeiçoamento do trabalho Pettie (1999)	Entre Ω(m) e O(ma(m,n)) (d)
Pettie & Ramachandran 2008)	Aleatorização	O(m) (b)

- Proposto por Robert Clay Prim em 1957.
- Algoritmo:
- Escolha um vértice S para iniciar o subgrafo
 - enquanto houver vértices que não estão no subgrafo
 - selecione uma aresta segura (aresta conectada ao subgrafo e com menor custo dentre todas as arestas conectadas so subgrafo)
 - insira a aresta segura e seu vértice no subgrafo


```
Prim
Ler G = (N, M) e D = [d_{ij}] a matriz de pesos de G
   Escolha qualquer vértice i \in N
   T \leftarrow \{i\}
   V \leftarrow N \setminus \{i\}
   T_{min} \leftarrow \emptyset
 -Enquanto T \neq N Faça
         Encontrar a aresta (j, k) \in M tal que j \in T, k \in V e d_{jk} é mínimo
          T \leftarrow T \cup \{k\}
          T_{Min} \leftarrow T_{Min} \cup (j,k)
 Fim_Enquanto
   Escrever T<sub>Min</sub> {o conjunto das arestas da árvore geradora mínima}
```


- 1. Escolha qualquer vértice para começar (pode ser aleatório).
- 2.A partir dele, sempre procure a **aresta mais barata** que conecta um vértice já escolhido com um vértice que ainda não foi escolhido.
- 3.Inclua esse novo vértice e a aresta no conjunto.
- 4. Repita até que todos os vértices estejam conectados.

Alg

Custo total =
$$4 + 8 + 1 + 2 + 4 + 2 + 7 + 9 = 37$$
.

C.e.s.A.R sch∞l

- Encontre a árvore geradora mínima do grafo ao lado usando Prim a partir do vértice A.
- Qual o vértice incluído na quarta iteração do algoritmo?
- Qual o valor do custo da AGM?

Dúvidas?

Laura Alves Pacifico
laps@cesar.school
Slack: Laura Pacifico