Intervals, Transformations, and Slope Solution (version 76)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5, -2) \cup (3, 5)$
Negative	$(-2,3) \cup (5,7)$
Increasing	$(-5, -4) \cup (0, 4)$
Decreasing	$(-4,0) \cup (4,7)$
Domain	(-5,7)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 76)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=35$ and $x_2=75$. Express your answer as a reduced fraction.

$$\frac{g(75) - g(35)}{75 - 35} = \frac{80 - 55}{75 - 35} = \frac{25}{40}$$

The greatest common factor of 25 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{8}$$

2