Ютуб и выбор без возвращения

Опубликовал

sobodv

Автор или источник

sobopedia

Предмет

Математическая Статистика (/Subjects/Details?id=5)

Тема

Основные понятия математической статистики (/Topics/Details?id=26)

Раздел

Определение выборки и её основные характеристики (/SubTopics/Details?id=94)

Дата публикации

06.02.2020

Дата последней правки

06.02.2020

Последний вносивший правки

sobody

Рейтинг

Условие

Вася подписался на ютуб канал, на котором выложено 10 видео. Продолжительность самого раннего по дате ролика составляет 20 секунд, а каждого следующего - на 10 секунд дольше предыдущего. Каждый раз Вася с равной вероятностью просматривает одно из ранее не просмотренных видео.

- 1. Найдите математическое ожидание и дисперсию продолжительности первого из просмотренных Васей видео.
- 2. Найдите математическое ожидание и дисперсию продолжительности второго из просмотренных Васей видео. **Подсказка**: проверьте, совпадают ли распределения X_1 и X_2 .
- 3. Проверьте, совпадают ли распределения X_1 и X_6 , а также, можно ли утверждать, что $X_1, \cdots X_{10}$ одинаково распределены.
- 4. Проверьте, совпадают ли распределения случайных векторов (X_1, X_2) и (X_1, X_6) .
- 5. Вычислите математическое ожидание и дисперсию времени, которое затратит Вася на просмотр первых пяти видео.
- 6. Вася подписался еще на один канал, на котором выложено 6 видео. Из них 3 продолжительностью 120 секунд, 2 длятся по 60 секунд и еще одно 30 секунд. Он случайным образом решил просмотреть три разных видео с данного канала, выбирая каждое из них с равной вероятностью. Найдите математическое ожидание и дисперсию просмотренных Васей видео.

Решение

1. Через X_i обозначим дискретную случайную величину - продолжительность i-го из просмотренных Васей видео.

В итоге получаем, что (https://www.wolframalpha.com/input/?

i=%5Csum%5Climits_%7Bi%3D1%7D%5E%7B10%7D10*%28i%2B1%29*%5Cfrac%7B1%7D%7B10%7D):

$$E(X_1) = \sum_{i=1}^{10} 10*(i+1)*P(X_i = 10*(i+1)) = \sum_{i=1}^{10} 10*(i+1)*rac{1}{10} = 65$$

По аналогии имеем (https://www.wolframalpha.com/input/?

i=%5Csum%5Climits_%7Bi%3D1%7D%5E%7B10%7D%2810*%28i%2B1%29%29%5E2*%5Cfrac%7B1%7D%7B10%7D):

$$E(X_1^2) = \sum_{i=1}^{10} (10*(i+1))^2*rac{1}{10} = 5050$$

$$Var(X_1) = 825$$

2. Сперва отметим, что носители $R_{X^{(1)}}=\cdots=R_{X^{(10)}}$ совпадают, в связи с чем введем для них единое обозначение R_X .

Пусть $x,y\in R_X$. Обратим внимание, что:

$$P(X_2=x\cap X_1=y)=\left\{egin{array}{l} rac{1}{A_{10}^2}=rac{1}{90},$$
 если $x
eq y \ 0,$ в противном случае

Далее обратим внимание, что R_X включает в себя 10 элементов и воспользуемся формулой полной вероятности:

$$P(X_2=x) = \sum_{y \in R_X} P(X_2=x \cap X_1=y) = \sum_{y \in R_X: y
eq x} rac{1}{45} = 9 * rac{1}{90} = rac{1}{10}$$

Из полученного результата следует, что $E(X_2)=E(X_1)=65$ и $Var(X_2)=Var(X_1)=825$.

3. Пусть $x,y_1,\cdots,y_5\in R_X$, тогда:

$$P(X_6=x\cap X_1=y_1\cap\cdots\cap X_5=y_{i-1})=egin{cases} rac{1}{A_{10}^6},$$
 если $x
eq y_1
eq\cdots
eq y_5\ 0,$ в противном случае

Обратим внимание, что существует A_9^5 способов выбрать различные значения y_1, \cdots, y_5 , не совпадающие с x. Отсюда следует, что:

$$P(X_i=x) = \sum_{y_1 \in R_X} \sum_{y_2 \in R_X} \cdots \sum_{y_5 \in R_X} P(X_6=x \cap X_1 = y_1 \cap \cdots \cap X_5 = y_5) = A_9^5 * \frac{1}{A_{10}^6} = \frac{1}{10}$$

Отсюда следует, что распределения X_1 и X_6 совпадают. По аналогии можно показать, что распределение любого из X_i , где $i\in\{1,\cdots,10\}$, совпадает с распределением X_1 , а значит они совпадают по распределению и между собой.

4. Пусть $x_1, x_2, y_1, \cdots y_4 \in R_X$. Тогда по аналогии с предыдущим пунктом получаем, что:

$$egin{aligned} P(X_1 = x_1 \cap X_6 = x_2) &= \sum_{y_1 \in R_X} \sum_{y_2 \in R_X} \cdots \sum_{y_5 \in R_X} P((X_1 = x_1 \cap X_6 = x_2) \cap (X_2 = y_1 \cap \cdots \cap X_5 = y_4)) = \ &= A_8^4 * rac{1}{A_{10}^6} = rac{1}{90} = P(X_1 = x_1 \cap X_2 = x_2) \end{aligned}$$

По аналогии нетрудно доказать совпадение совместных распределений для любых случайных векторов одинаковой длины, составленных из различных случайных величин X_i .

5. Математическое ожидание составит:

$$E(X_1 + X_2 + X_3 + X_4 + X_5) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) = 65 * 5 = 325$$

Получить дисперсию несколько сложней. Во-первых отметим, что из полученного ранее результата следует, что для любых $i,j\in\{1,\cdots,n\}$, во-первых, $Var(X_i)=Var(X_1)=825$, а во-вторых $Cov(X_i,X_j)=Cov(X_1,X_2)$

Для нахождения данной ковариации воспользуемся **хитрой техникой**. Обратим внимание, что по свойству ковариации случайной величины с константой имеем $Cov(X_1,X_1+\cdots+X_{10})=Cov(X_1,650)=0$. Отсюда следует, что:

$$Cov(X_1, X_1 + \dots + X_{10}) = Cov(X_1, X_1) + \dots + Cov(X_1, X_{10}) = Var(X_1) + 9Cov(X_1, X_2) =$$

= $825 + 9Cov(X_1, X_2) = 0$

Решая данное равенство получаем, что $Cov(X_1,X_2)=\left(-rac{275}{3}
ight)$.

В итоге имеем:

$$Var(X_1 + X_2 + X_3 + X_4 + X_5) = Cov(X_1 + X_2 + X_3 + X_4 + X_5, X_1 + X_2 + X_3 + X_4 + X_5) = 5Var(X_1) + 5*4Cov(X_1, X_2) = 5*825 + 5*4*\left(-rac{275}{3}
ight) = rac{6875}{3}$$

6. Через Y_i обозначим длину видео просмотренного i-м, где $i \in \{1, \cdots 6\}$.

Покажем, что распределения Y_1 и Y_2 совпадают. Из условия следует, что видео бывают трех типов: длинные, средние и короткие. И, например, вероятность того, что $Y_2=120$ совпадает с тем, что вторым будет просмотрено длинное видео. Эта вероятность, в свою очередь, совпадает с вероятностью того, что при расстановке видео в случайном порядке длинное видео окажется на второй позиции. Поскольку вероятность нахождения длинного видео на каждой из позиций одинакова, то $P(Y_2=120)=P(Y_1=120)$. Аналогичным образом можно показать равенство и для всех остальных вероятностей, откуда следует совпадение распределений соответствующих случайных величин. Наконец, по аналогии можно показать, что совпадают совместные распределения любых случайных векторов одинаковой длины, состоящих из различных случайных величин Y_i .

Воспользуемся полученным результатом:

$$E(Y_1)=rac{3}{6}*120+rac{2}{6}*60+rac{1}{6}*30=85$$

$$E(Y_1^2)=rac{3}{6}*120^2+rac{2}{6}*60^2+rac{1}{6}*30^2=8550$$

$$Var(Y_1)=8550-85^2=1325$$

$$Cov(Y_1,Y_2)=-rac{Var(Y_1)}{6-1}=-rac{1325}{5}=-265$$

$$Var(Y_1+Y_2+Y_3)=3Var(Y_1)+3*2Cov(Y_1,Y_2)=3*1325-6*265=2385$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 – 2022 Sobopedia