Algebraic Number Theory

Exercise sheet 6

Solutions should be submitted online before 1.06.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 6.1. (3 points) Let K be a number field. Recall that the formula $\tau(x,y) = \operatorname{Tr}_{K/\mathbb{Q}}(xy)$ defines a non-degenerate symmetric bilinear form on K considered as \mathbb{Q} -vector space. Assume that K has r_1 real embeddings and r_2 pairs of complex-conjugate embeddings into \mathbb{C} (so that $r_1 + 2r_2 = [K : \mathbb{Q}]$). Express the signature of τ in terms of r_1 and r_2 . Hint: recall that $K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ as an \mathbb{R} -algebra. Find the signature of the trace form separately for every factor.

Exercise 6.2. (2+2 points) Let $K=\mathbb{Q}(\sqrt{-17})$. Find the norms of the following ideals in \mathfrak{o}_K :

1.
$$\mathfrak{p} = (3, 2 + \sqrt{-17})$$

2.
$$q = (2\sqrt{-17})$$

Exercise 6.3. (3 + 3 + 3 points) Let $K = \mathbb{Q}(\sqrt{-10})$.

- 1. Prove that $(2) = \mathfrak{p}^2$ for some prime ideal $\mathfrak{p} \subset \mathfrak{o}_K$ and find the generators of \mathfrak{p} explicitly. Hint: consider the quotient $\mathfrak{o}_K/(2)$ and use Chinese Remainder Theorem.
- 2. Prove that the ideal \mathfrak{p} defined above is not principal. Deduce that the order of $[\mathfrak{p}]$ in $\mathrm{Cl}(K)$ is two. Hint: assuming that \mathfrak{p} is principal consider the norm of its generator and get a contradiction.
- 3. Prove that the ideal (3) is prime in \mathfrak{o}_K . Using Minkowski's bound, deduce that $\mathrm{Cl}(K)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.