

Universidade do Minho

Escola de Ciências da Universidade do Minho Departamento de Informática

Mestrado em Matemática e Computação Mestrado Integrado em Engenharia Informática

Redes Neuronais Recorrentes para previsão do fluxo de tráfego rodoviário

Alunos:

Andreia Costa (PG37013) Henrique Faria (A82200) Paulo Barbosa (PG40160) Rui Teixeira (PG37021)

Docentes:

Bruno Fernandes Victor Alves

Unidade Curricular: Classificadores e Sistemas Conexionistas

Maio 2020

Conteúdo

1	Introdução	1
2	Dataset2.1 Preparação dos dados	. 2
3	Problema3.1 Resolução do Problema	. 12
4	Modelo 4.1 Avaliação do comportamento do modelo 4.1.1 Rua 1 4.1.2 Rua 2 4.1.3 Rua 3 4.1.4 Rua 4	. 16 . 19 . 22
5		28 . 28 . 31
6	Trabalhos Futuros	34

1 Introdução

A segurança rodoviária tem-se tornado num crescente ponto de preocupação da nossa sociedade. Uma primeira, e simples, explicação surge do número substancial de acidentes e mortes que se verificam nas estradas, dia após dia. Uma outra explicação poderá fundamentar-se na poluição atmosférica ou no grau de saturação que se verifica em determinadas zonas e ruas de várias cidades.

Uma das abordagens seguidas para combater estes problemas prende-se com a previsão do fluxo de tráfego rodoviário. Essa informação poderá depois ser utilizada para informar e auxiliar autoridades, condutores, pedestres e ciclistas. Numa fase inicial, a modelação do fluxo de tráfego rodoviário era efetuada recorrendo a modelos essencialmente estatísticos. Contudo, tem-se verificado uma crescente adoção de modelos de *Deep Learning*, em particular Redes Neuronais Recorrentes, para previsão do fluxo de tráfego, a curto e longo prazo, com resultados muito interessantes.

Assim, no contexto da componente prática de avaliação, da unidade curricular Classificadores e Sistemas Conexionistas, pretende-se conceber otimizar modelos de *Deep Learning*, em particular Redes Neuronais Recorrentes, para previsão do fluxo de tráfego, a curto e/ou longo prazo.

De modo a satisfazer os objetivos propostos, o presente trabalho começa por apresentar o modo como se procedeu ao tratamento de dados dos diversos datasets disponibilizados. De seguida, apresenta-se o problema que se pretende resolver.

Por fim, são apresentados os vários resultados obtidos para o modelo criado, e respetiva análise crítica.

2 Dataset

Aquando da apresentação do presente trabalho foram disponibilizados dados referentes a duas cidades: Braga e Porto, sendo que o grupo escolheu os dados relativos à cidade de Braga para trabalhar.

Os dados encontram-se distribuídos em 4 datasets:

- Traffic Flow Braga Until 20191231;
- Traffic Incidents Braga Until 20191231;
- Weather Braga Descriptions Until 20191231;
- Weather Braga Until 20191231.

Todos os datasets contêm dados relativos ao período entre 15 Janeiro 2019 e 31 Dezembro 2019.

2.1 Preparação dos dados

Após análise dos quatro datasets concluiu-se que, antes de se desenvolver o modelo para a previsão da feature speed_diff, era necessário fazer uma prévia preparação dos dados.

Começou-se por fazer um tratamento inicial do dataset Traffic_Incidents. Para isso, a cada incidente atribuiu-se os vários valores da coluna road_num, para que posteriormente fosse possível avaliar a distância entre os incidentes e as ruas em estudo e verificar de que forma estes incidentes afetam uma determinada rua.

Figura 1: Preparação do dataset Traffic_Incidentes.

De seguida, recorrendo à latitude e longitude dos diferentes acontecimentos, calculou-se a distância dos incidentes a cada uma das ruas, para perceber o raio de influência dos incidentes para as ruas em estudo, de modo, a ser possível, posteriormente, remover incidentes que se encontrem muito afastados das ruas em estudo. Para isso, recorreu-se à fórmula:

```
dist(A, B) = R*\arccos(sin(lat_A)*\sin(lat_B) + \cos(lat_A)*\cos(lat_B)*\cos(lon_A - lon_B)). onde,
```

- lat_A : latitude do ponto A;
- lat_B : latitude do ponto B;
- lon_A : longitude do ponto A;
- lon_B : longitude do ponto B;
- R: raio da Terra.

tendo-se implementado o seguinte código.

```
6 def distance(p1, n):
                  R = 6371.0
                  if n == 1:
                  lat2 = radians(41.548331)
                  lon2 = radians(-8.421298)
10
                  elif n == 2:
11
                  lat2 = radians(41.551356)
                  lon2 = radians(-8.420001)
                  elif n == 3:
                  lat2 = radians(41.546639)
                  lon2 = radians(-8.433517)
16
                  else:
17
                  lat2 = radians(41.508849)
18
                  lon2 = radians(-8.462299)
                  lat1, lon1 = radians(p1[0]), radians(p1[1])
20
                  dlon = lon2 - lon1
                  dlat = lat2 - lat1
                  a = \sin(dlat / 2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon / 2)**2 + \cos(lat1) * \sin(dlon / 2)**2 + \sin(dlo
                  c = 2 * atan2(sqrt(a), sqrt(1 - a))
                  distance = R * c
26 return distance
28 df['Distance'] = df.apply(lambda row: distance((row['latitude
                        '],row['longitude']), row['road_num']), axis=1)
```

Após calculadas todas as distâncias fez-se um tratamento estatístico, tendo-se obtido os seguintes resultados:

- max = 6313, 251;
- min = 0,0228;
- mean = 4,507;
- $standard\ deviation = 81,789.$

Através dos resultados obtidos é possível verificar que existem dados mal classificados, uma vez que, sendo os dados recolhidos referentes apenas à cidade de Braga era impossível que a distância máxima dos incidentes às ruas fosse de cerca de 6313 km. Fez-se um estudo desta informação e verificou-se que estes dados dizem respeito a uma cidade que não pertence a Braga.

Figura 2: Dado mal classificado.

Devido a este facto, optou-se por remover alguns dados do *dataset*. Uma vez que a distância é medida em linha reta utilizou-se como *threshold*, para remover dados, vários valores, nomeadamente, 0.5, 1 e 1.5.

Após feito este tratamento procedeu-se à preparação dos dados referentes aos restantes *datasets*, com o intuito de se obter, no final, um único *dataset*.

Começou-se por fazer o tratamento do dataset Weather_Descriptions_Braga, tendo-se removido as colunas: city_name, snow e cloudiness. A coluna snow apresentava apenas missing values, daí se ter optado pela sua remoção. Relativamente à coluna cloudiness, optou-se por fazer a remoção da mesma, uma vez que existe uma coluna que está diretamente relacionada com esta, a coluna cloud, pertencente ao dataset Weather_Braga, e que não apresenta missing values.

De seguida, procedeu-se à remoção das colunas city_name e precipitation do dataset Weather_Braga. A remoção da coluna precipitation deveu-se ao facto desta apenas apresentar um único valor, o 0.

De modo a unir o resultado da preparação dos dados feita para os datasets anteriores, recorreu-se ao nodo Joiner, e uniram-se os datasets por creation_date, tendo-se efetuado, de seguida, a extração da data e do tempo, tendo-se extraído: o mês como uma variável numérica, a hora, o dia do mês e o dia da semana.

Figura 3: Preparação dos datasets Weather_Descriptions_Braga e Weather_Braga.

De seguida, procedeu-se à preparação do $dataset\ Traffic_Flow_Braga$, procedendo-se à remoção das colunas $city_name$ e $road_name$, seguida da extração da data e hora, à semelhança do que foi feito para o dataset anterior.

O dataset Traffic_Flow_Braga tinha registos de 20 em 20 minutos e o dataset obtido anteriormente tinha registos de hora em hora, assim, de modo a unir o dataset com os dados relativos ao Weather, optou-se por agrupar os registos do dataset Traffic_Flow_Braga por hora, mês, dia e rua, recorrendo-se ao nodo GroupBy, tendo-se feito a média de todos os valores numéricos para as restantes colunas.

Assim, de modo a juntar este dataset ao obtido anteriormente, recorreu-se ao nodo Joiner, unindo-se os datasets por hora, dia do mês e mês, fazendo-se um Left Outer Join. Optou-se por fazer um Left Outer Join, uma vez que não se queriam as condições atmosféricas de registos em que não havia dados de tráfego.

Figura 4: Preparação do dataset Traffic_Flow_Braga.

Após a junção dos datasets, eliminou-se a coluna $creation_date$ e transformaram-se os valores "N/A", das colunas rain, thunderstorm e atmosphere, em $missing\ values$, recorrendo ao nodo $String\ Manipulation$. De seguida, quando não existiam valores na coluna rain atribuia-se o valor da coluna thunderstorm, uma vez que as labels da coluna thunderstorm faziam referência ao estado da chuva. De seguida, alteraram-se alguns dos valores (" $trovoada\ com\ chuva\ fraca$ " \rightarrow " $chuva\ fraca$ ", " $trovoada\ com\ chuva\ forte$ " \rightarrow " $chuva\ forte$ " e "trovoada" \rightarrow "chuva"), tendo-se removido, no final, a coluna thunderstorm. Por fim, eliminaram-se as colunas $sunrise\ e\ sunset$, uma vez que não se achou que estas colunas eram relevantes para prever o $speed_diff$.

Figura 5: Preparação dos dados.

Por fim, tratou-se o dataset Traffic_Incidents_Braga cuja feature Distance tinha apenas valores inferiores a 0.5 km. Recorrendo à coluna incident_date, procedeu-se à extração do dia, da hora e do mês e removeram-se colunas irrelevantes, nomeadamente, as colunas city_name, incident_date e cause_of_incident, uma vez que esta última apresentava maioritariamente missing values.

Uma vez que a coluna *Distance* já inclui informação que permite relacionar a influência de um dado inicidente com as ruas em estudo, optou-se por remover as colunas: from_road, to_road, affected_roads, latitute e longitude.

Após tratado este dataset, e recorrendo ao nodo Joiner, uniu-se este dataset com o obtido anteriormente por hora, dia do mês, mês e $road_num$. Deste modo, uniram-se os 4 datasets iniciais num único.

Figura 6: Preparação do dataset resultante do tratamento do dataset Traffic_Incidents_Braga.

Após se ter apenas um dataset verificou-se que este continha 26 colunas, o que se achou serem demasiadas. Assim, de modo a tornar o dataset mais pequeno, recorreu-se ao nodo Rank Correlation e avaliou-se a correlação que existia entre as diferentes colunas, tendo-se removido as seguintes: free_flow_speed, current_travel_time, free_flow_travel_time, atmospheric_pressure, humidity, current_luminosity e magnitude_of_delay_desc. Deste modo, o dataset ficou apenas com 18 colunas.

Figura 7: Análise da correlação entre as diferentes features.

Aos valores *Undefined* da *feature descriptions* atribui-se o valor *Unknown Delay*, uma vez que estes têm significado semelhante.

De seguida, e tendo em conta que as colunas *atmosphere* e *rain* apresentam muitos *missing values*, procedeu-se ao tratamento dos mesmos.

Começou-se, então, por tratar os missing values da coluna atmosphere, uma vez que esta era a que apresentava menos missing values, tendo-se separado o dataset em dois, recorrendo ao nodo Rule-based Row Splitter. Um dataset apresenta a coluna atmosphere apenas com missing values e o outro apresenta a coluna atmosphere com os vários valores. De seguida, utilizaram-se Random Forest para fazer a previsão dos missing values.

Com o intuito de perceber quais os melhores parâmetros a utilizar efetuouse o tunning do modelo.

Figura 8: Tunning do modelo.

Após efetuado o tunning do modelo, concluiu-se que este apresentava melhores valores se fosse treinado com 60 árvores e usando como critério de split o Information~Gain, tendo-se uma accuracy de cerca 99,5%

Figura 9: Melhores parâmetros para construir o modelo.

Por fim, sabendo quais os melhores parâmetros, contruiu-se um novo modelo usando 100% dos dados para o treinar.

Figura 10: Previsão dos missing values da feature atmosphere.

Após feita a previsão dos *missing values* para a *feature atmosphere*, procedeuse à previsão dos *missing values* do atributo *rain*, tendo-se utilizado o mesmo esquema para obter os melhores parâmetros, tendo-se obtido uma *accuraccy* de cerca de 97, 8%.

Para finalizar o tratamento de dados, no *Knime*, recorrendo ao nodo *Duplicate Row Filter*, eliminaram-se linhas repetidas e efetuou-se o *Label Encoding* dos valores correspondentes às *features*: *Day of week (name)*, *description*, *incident_category_desc*, *atmosphere* e *rain*, uma vez que o objetivo é utilizar redes neuronais para prever o *speed_diff*, e estas apenas aceitam valores numéricos.

E de notar que, após feito todo este tratamento, existem colunas que apresentam $missing\ values$. No entanto, estes $missing\ values$ ocorrem nas colunas correspondentes aos incidentes, porque não houve incidentes naquela hora, numa distância inferior a 0.5 km. Estes $missing\ values$ foram substituídos por um valor default, -1.

Por fim, observou-se que existiam dias com horas repetidas, devido ao facto de para uma mesma hora existir mais do que um incidente. Assim, para que isto não acontecesse, recorreu-se ao nodo *GroupBy* para agrupar os incidentes, optando-se por ficar com o incidente que estava mais próximo da rua em estudo, ou seja, o incidente que apresentava na coluna *Distance* o valor mais baixo.

Figura 11: Tratamento final.

Após feito este tratamento, recorrendo ao nodo *Pie chart (local)* percebeuse que o *dataset* apresentava dias e horas em falta como, por exemplo, o mês de Março.

Figura 12: Dias em falta no dataset.

3 Problema

O objetivo do trabalho consiste em utilizar Redes Neuronais para fazer previsão do fluxo de tráfego rodoviário. Tendo em conta os dados disponibilizados, o grupo optou por fazer a previsão da feature speed_diff de uma dada rua, baseando-se nos 3 dias anteriores para prever o dia seguinte. Optou-se por fazer previsões para as ruas em separado, uma vez que se acredita que o fluxo de tráfego das ruas é distinto entre elas. Para isso, dividiu-se o dataset original em 4, sendo que cada dataset correspondia a uma determinada rua.

Uma vez que se trata de um problema de séries temporais, optou-se por implementar um modelo multistep e multivariate que utiliza LSTM's.

3.1 Resolução do Problema

Para resolver este problema era então necessário perceber quais os dias que estavam incompletos, ou seja, quais os dias que não tinham as 24 horas

preenchidas, procedendo-se à eliminação destes, com o intuito de se ter um dataset sem "buracos". Para isso, implementou-se o seguinte algoritmo:

```
i=0
for i in range(1,13):
    for j in range(1,32):
    L=df[(df['Month (number)']==i)&(df['Day of month']==j)].
        dropna()
    L1=L[['Month (number)','Day of month','Hour','road_num']]
    L1 = L1.drop_duplicates()
    indexNames = df[(df['Month (number)']==i)&(df['Day of month ']==j)].index
    if len(L1)<24:
    try:
        df.drop(indexNames, inplace=True)
    except:
    pass</pre>
```

Note-se que se verificou que nos dias em que havia horas em falta, normalmente o número de horas em falta era elevado, não se justificando a reconstrução dessas horas, recorrendo a métodos matemáticos, pelo que se optou por eliminar esses dias.

Visto que no final do capítulo 2.1 verificámos que existiam dias em falta e como se pretende que sejam dados ao modelo, como *input*, 3 dias para prever o próximo, quer garantir-se que, de facto, esses 4 dias são seguidos, ou seja, que os 3 dias dados como *input* mais o dia a prever sejam seguidos, evitando que ocorram situações em que o primeiro dia seja, por exemplo, 16 de Janeiro e o dia a prever seja 30 de Janeiro.

Assim, para ter a certeza que se treina o modelo com dias consecutivos, percorreu-se o dataset construindo blocos de 4 dias, para verificar se estes 4 dias são seguidos, calcula-se a diferença entre o último dia do bloco e o primeiro e verifica-se se é 4. Note-se, no entanto, que se para um dado bloco tivermos dias de meses distintos, esta diferença é negativa, sendo este problema corrigido dependendo do mês em causa.

Antes de se aplicar o seguinte algoritmo, ordenou-se o *dataset* por mês, dia e hora.

```
n_future = 24 # next 24 hours speed diff forecast
n_past = 24*3 # Past 3 days

x_train = []
y_train = []
label = df_1['speed_diff']

for i in range(0,len(df_1)-n_past-n_future+1):
    dias = df_1.iloc[i : i + n_past+24]
    mes = dias.iloc[0]['Month (number)']
```

```
dia_1 = dias.iloc[0]['Day of month']
    dia_4 = dias.iloc[24*3+1]['Day of month']
    if (mes == 4 or mes == 6 or mes == 9 or mes == 11) and (
     dia_4 - dia_1 == 3 or dia_4 - dia_1 == -29):
      x_train.append(df_1.iloc[i : i + n_past])
14
      y_train.append(label.iloc[i + n_past : i + n_past +
15
     n_future ])
    elif (mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes
     == 8 or mes == 10 or mes == 12) and (dia_4 - dia_1 == 3 or
      dia_4 - dia_1 == -28):
      x_train.append(df_1.iloc[i : i + n_past])
      y_train.append(label.iloc[i + n_past : i + n_past +
18
     n future 1)
    elif mes == 2 and (dia_4 - dia_1 == 3 or dia_4 - dia_1 ==
     -26):
      x_train.append(df_1.iloc[i : i + n_past])
20
      y_train.append(label.iloc[i + n_past : i + n_past +
     n_future ])
```

Sabendo-se que cada *input* é constituído por 3 dias seguidos, com as 24 horas completas e, portanto, as colunas *Month (number)*, *Day of month* e *Hour* já não são relevantes, tendo-se feito a remoção das mesmas. Além disso, removeram-se as colunas *Day of week (name)*, *incident_category_desc* e *Distance*. Esta última foi removida, uma vez que apenas serviu para saber quais os incidentes que deviam permanecer no *dataset*.

Após feito todo o tratamento acima mencionado, o *dataset* está pronto para ser aplicado a uma rede que permita prever a *feature speed_diff*.

4 Modelo

O problema que se pretende resolver é um problema de séries temporais, como já foi anteriormente referido. Deste modo, para prever a feature speed_diff optou-se por construir um modelo multistep e multivariate que utiliza LSTM's.

Tendo em conta que o objetivo é utilizar 3 dias para prever as 24 horas seguintes, utilizando 11 features, definiu-se como $input_shape = (24 * 3, 11)$.

Antes de se começar a treinar o modelo procedeu-se à normalização dos dados:

```
# Features normalization
2 scalers=[]
3 for i in range(11):
4 sc = MinMaxScaler(feature_range=(0,1))
5 x_train[:,i] = sc.fit_transform(x_train[:,i])
6 x_test[:,i] = sc.fit_transform(x_test[:,i])
```

```
7 scalers.append(sc)
8
9 # Labels normalization
10 sc1 = MinMaxScaler(feature_range=(0,1))
11 y_train = sc1.fit_transform(y_train)
12 y_test_n = sc1.fit_transform(y_test)
```

Uma vez que os dados estavam normalizados no intervalo [0, 1] recorreu-se à função de ativação sigmoid.

Relativamente às métricas utilizadas, utilizou-se como loss o mean square error e como métrica o root mean square error. Estas foram as métricas escolhidas, uma vez que o objetivo era penalizar erros grandes, e estas são as melhores métricas para o fazer.

Assim, recorrendo a técnicas de intuição e experimentação construiu-se o seguinte modelo:

```
model = Sequential()
model.add(CuDNNLSTM(units=24*3, return_sequences=True,
     input\_shape = (24*3,11))
3 model.add(Dropout(0.2))
4 model.add(CuDNNLSTM(24*3 , return_sequences=True))
5 model.add(Dropout(0.2))
6 model.add(CuDNNLSTM(24*3, return_sequences=True))
7 model.add(Dropout(0.2))
8 model.add(CuDNNLSTM(24*2))
9 model.add(Dropout(0.2))
model.add(Dense(24,activation='sigmoid'))
model.compile(optimizer='adam', loss='mean_squared_error',
     metrics=rmse)
checkpointer = ModelCheckpoint(filepath="best_weights.hdf5",
     monitor = 'val_loss', verbose=1, save_best_only=True)
13 callback = tf.keras.callbacks.EarlyStopping(monitor='loss',
     patience=30)
history=model.fit(x_train, y_train, validation_data=(x_test,
     y_test_n), epochs=1000, callbacks=[callback, checkpointer
     ])
```

Note-se que se recorreram a dois *callbacks*: um para garantir que se guardava o melhor modelo, que seria porteriormente usado para fazer previsões, e outro que permitia que o treino parasse, quando não houvesse uma melhor do valor de *loss* durante 30 épocas seguidas.

4.1 Avaliação do comportamento do modelo

Após construído o modelo, procedeu-se a um conjunto de testes, utilizando 200 dados de teste, com o intuito de ser possível avaliar o comportamento do mesmo.

Primeiro determinou-se, para os 200 dados de teste, o número de ocorrências de cada dia da semana. Para se perceber se o comportamento do modelo era o esperado procedeu-se à utilização de duas métricas de erro, a média dos erros e a diferença absoluta, com a seguinte expressão, respetivamente:

$$average_diff = \frac{\sum_{i} |\hat{y}_i - y_i|}{24}$$
, onde $i = 0, ..., 23$

$$max_{-}diff = max |\hat{y}_i - y_i|, \text{ onde } i = 0, ..., 23$$

Ambas as métricas de erro parecem ser úteis para perceber o comportamento do modelo. No entanto, a métrica max_diff apresenta melhores resultados para exemplos específicos. Considere-se um exemplo em que temos 23 valores a 0 e outro apresenta um speed_diff de 15 e, na previsão, o modelo acerta os 23 casos em que é o valor era 0, mas no caso em que o valor real era 15 o valor previsto foi 9. Então, neste caso, tem-se que average_diff = 0.25, o que nos dá um valor de erro baixo, induzindo-nos em erro ao acharmos que os valores previstos eram bons, o que não acontece, uma vez que o único valor que era difícil de prever o modelo erra por uma diferença de 6 km. Por outro lado, a métrica max_diff diz-nos que o erro é 6, o que permite concluir que o modelo não fez uma boa previsão para este exemplo.

4.1.1 Rua 1

Começou-se por treinar o modelo com 5045 dados da rua 1, e fazer a previsão para essa mesma rua. O modelo obtido apresentava $val_loss = 0.01047$.

Figura 13: Curvas de aprendizagem.

Observando a Figura 13, conclui-se que o modelo criado apresenta underfitting, uma vez que as curvas de aprendizagem são distintas uma da outra. Pode ainda referir-se que, apesar de existir underfitting, é provável que com o aumento do número de épocas não se observe uma convergência das curvas, uma vez que se verifica que ambas as curvas parecem ter estagnado, o que pode evidenciar que o modelo não está a aprender.

Figura 14: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Hora	Real	Previsto
0	0	0.88
1	0	0.73
2	6	3.37
3	2.33	1.10
4	0	0.023
5	0	0.00017
6	0	0.00014
7	0	0.012
8	0	0.00011
9	0	0.00021
10	0	7.70e-05
11	0	1.90e-06
12	0	0.00088
13	1.33	0.32
14	3.33	2.13
15	1.67	1.26
16	2.25	1.95
17	5.67	3.66
18	0	0.25
19	0	0.37
20	1.67	0.86
21	2	1.19
22	3.33	3.15
23	2.67	2.05

Tabela 1: Valores previstos e reais, durante 24 horas, para o mesmo dia representado no gráfico.

A Figura 14 e a tabela permitem comparar o valor previsto com o valor real, durante um período de 24 horas. Note-se que, para o dia apresentado, tem-se que:

- $average_diff = 0.56$;
- $max_diff = 2.63$.

Ora, através da análise do gráfico, e dos valores obtidos para as métricas de erro, observa-se que não existe uma grande discrepância entre o valor real e o valor previsto. Pelo que se pode considerar que, para este caso, o modelo construído faz boas previsões. É de notar que, neste caso, os valores previstos

são mais distintos dos valores reais às 3 e 4 da manhã, sendo normal que o modelo erre nestas horas, uma vez que não é comum que o valor do *speed_diff* seja mais elevado nestas, ou seja, pode inferir-se que este dia não representa os dias comuns.

Por fim, faça-se uma análise dos erros obtidos. Após calculados os diferentes valores do erro, obtiveram-se os seguinte resultados:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	0.45	2.69
Terça-Feira	32	0.67	3.34
Quarta-Feira	21	0.73	3.54
Quinta-Feira	28	0.87	3.57
Sexta-Feira	26	0.65	3.07
Sábado	40	0.83	3.82
Domingo	24	0.36	2.91

Tabela 2: Cálculo dos erros.

Tendo em conta os gráficos e os resultados apresentados nas tabelas, pode concluir-se que o modelo prevê a feature speed_diff para esta rua com sucesso.

4.1.2 Rua 2

Considerando os dados de treino da rua 2, treinou-se o modelo construído, com $val_loss = 0.00376$, obtendo-se os seguintes resultados.

Figura 15: Curvas de aprendizagem.

Analisando o gráfico, observa-se que, em relação ao apresentado para a rua 1, agora as curvas de aprendizagem estão mais próximas, sendo ainda possível observar-se que o modelo chegou ao seu limite de aprendizagem, uma vez que não se verifica um decréscimo da reta.

Figura 16: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Hora	Real	Previsto
0	2.33	3.6011205
1	3.67	3.05
2	1.33	0.98
3	0	0.056
4	1.33	0.00011
5	0	5.72e-07
6	0	1.04e-07
7	2	3.18e-08
8	4	0.00016
9	0	0.028
10	0	0.82
11	5.67	5.46
12	4	4.28
13	5.99	4.42
14	5	4.38
15	7.33	6.31
16	5.99	5.21
17	3.0	2.84
18	6.0	5.12
19	12.0	9.61
20	10.33	10.15
21	12.33	11.24
22	13.33	12.63
23	7.99	8.48

Tabela 3: Valores previstos e reais, durante 24 horas, para o mesmo dia representado no gráfico.

Analisando os resultados acima apresentados pode concluir-se, que para este exemplo, o modelo fez boas previsões. Estas conclusões são reforçadas pelos valores obtidos para as métricas de erro:

- average_diff= 0.87;
- $max_diff = 3.99$.

Por fim, faça-se uma análise dos erros obtidos. Após calculados os diferentes valores do erro, obtiveram-se os seguinte resultados:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	0.29	1.38
Terça-Feira	32	0.51	2.27
Quarta-Feira	21	0.42	1.70
Quinta-Feira	28	0.44	1.78
Sexta-Feira	26	0.48	2.04
Sábado	40	0.43	1.79
Domingo	24	0.36	1.80

Tabela 4: Cálculo dos erros.

Analisando os resultados dos erros observa-se que os valores obtidos são uniformes e semelhantes, ou seja, para esta rua, parece que o modelo prevê todos os dias com a mesma dificuldade, o que não se verificava no modelo da rua 1. Para o modelo da rua 1, verificou-se que este tinha mais dificuldade em prever Quintas-Feiras, do que Domingos.

4.1.3 Rua 3

Considerem-se agora os resultados obtidos pelo modelo treinado para a rua 3, com $val_loss = 0.00393$. Sabe-se que esta rua diz respeito à Rua do Caires, que corresponde a uma rua com bastante trânsito sendo, por isso, expectável grandes oscilações no valor da variável $speed_diff$, de uma hora para a outra.

Figura 17: Curvas de aprendizagem.

À semelhança do que foi observado no exemplo anterior também aqui se verifica a convergência das curvas de aprendizagem.

Figura 18: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Hora	Real	Previsto
0	0	0.032
1	0	0.062
2	0	0.00018
3	0	0.0030
4	0	0.039
5	0	8.88e-05
6	0	7.37e-05
7	0	0.00014
8	0	1.70e-05
9	0	0.0027
10	0	0.0095
11	5.67	4.22
12	26.33	26.01
13	0	0.90
14	0	0.087
15	3.67	0.23
16	0	1.52
17	20.33	18.17
18	12	9.13
19	7.99	8.30
20	13	11.78
21	14	12.65
22	18	14.31
23	3	5.16

Tabela 5: Valores previstos e reais, durante 24 horas, para o mesmo dia representado no gráfico.

Note-se que à hora 12 o $speed_diff$ real era de 26.33 e o modelo fez uma previsão de 26.00, à semelhança do que aconteceu para a hora 17. Note-se ainda que, $average_diff = 0.90$ e $max_diff = 3.67$. Ora, estes resultados realçam o excelente desempenho do modelo ao prever este dia.

Por fim, faça-se uma análise dos erros obtidos. Após calculados os diferentes valores do erro, obtiveram-se os seguinte resultados:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	1.11	5.10
Terça-Feira	32	1.26	5.21
Quarta-Feira	21	1.12	4.69
Quinta-Feira	28	1.34	5.52
Sexta-Feira	26	1.10	4.58
Sábado	40	1.25	4.77
Domingo	24	0.57	3.28

Tabela 6: Cálculo dos erros.

Apesar de se verificar, através do gráfico, que o modelo fez boas previsões, observa-se que os valores obtidos para os erros são mais elevados neste caso do que no caso dos modelos apresentados para as ruas 1 e 2. No entanto, basta olhar para o exemplo apresentado para verificar que esta rua apresenta valores para o speed_diff bastante elevados. De facto, para o exemplo apresentado o valor máximo para o speed_diff é de 26.33km/h e, por exemplo, para o caso da rua 1, o valor máximo do speed_diff é 5.67 km/k. Assim, é importante notar que o modelo da rua 3 tem que prever valores muito mais elevados do que o da rua 1. Ou seja, dados estes valores pode dizer-se que errar 1 km/h na rua 3 pode ser considerado um erro menor do que errar 0.5 km na rua 1, concluindo-se, assim que, embora os erros apresentados nesta tabela sejam mais elevados, o nosso espírito crítico, leva-nos a concluir que o modelo da rua 3 até pode ser considerado melhor que o da rua 1.

4.1.4 Rua 4

A presente secção pretende analisar os resultados obtidos com o modelo treinado para a rua 4, cujo $val_loss = 0.00295$. Note-se que, à semelhança da rua 3, esta é uma rua com bastante trânsito, sendo expectável obterem-se resultados semelhantes aos apresentados para essa rua.

Apresentam-se, de seguida, os valores obtidos pelo modelo treinado com os dados da rua 4.

Figura 19: Curvas de aprendizagem.

Tal como observado para os gráficos das curvas de aprendizagem dos modelos das ruas 2 e 3, também para o modelo obtido para a rua 4 se verifica que as curvas de aprendizagem estão a convergir.

Figura 20: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Hora	Real	Previsto
0	3.33	1.68
1	0	0.0036
2	0	3.93e-09
3	0	6.12e-05
4	0	6.24e-10
5	0	2.99e-06
6	0	2.35e-05
7	0	0.00030
8	0	7.29e-05
9	0	2.57e-05
10	0	0.023
11	3.33	3.079
12	14	13.12
13	19.67	15.99
14	12.0	13.00
15	17.33	17.28
16	23.67	21.83
17	14.67	13.33
18	17.67	16.40
19	24	22.02
20	26	24.60
21	28.33	25.15
22	29	29.30
23	23	21.18

Tabela 7: Valores previstos e reais, durante 24 horas, para o mesmo dia representado no gráfico.

Observando os resultados apresentados, e tendo em conta que $average_diff = 0.86$ e $max_diff = 3.67$, tiram-se conclusões semelhantes às obtidas para o exemplo apresentado para a rua 3.

Por fim, faça-se uma análise dos erros obtidos. Após calculados os diferentes valores do erro, obtiveram-se os seguinte resultados:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	0.64	4.36
Terça-Feira	32	1.07	5.17
Quarta-Feira	21	0.92	5.07
Quinta-Feira	28	1.19	5.74
Sexta-Feira	26	0.91	5.54
Sábado	40	0.96	4.30
Domingo	24	0.44	4.48

Tabela 8: Cálculo dos erros.

Apesar destas ruas serem ruas com muito trânsito é de notar que, a rua 4 apresenta valores de erro mais baixos do que os da rua anterior, isto pode ter em conta o facto de que a rua 3 em certos meses, por exemplo, Junho, Julho, Agosto, quando não há período escolar, esta apresenta um valor de trânsito muita mais baixo, o que faz com que o nosso dataset apresente valores de speed diff menores neste período. Ou seja, ao treinar o modelo com estes dados, conjetura-se que o modelo criado possa não ser tão preciso. Isto para concluir que a rua 4, sendo uma rua que apresenta o mesmo fluxo de trânsito durante um ano inteiro, uma das razões possíveis para os erros darem mais baixo para esta rua é o facto supramencionado.

5 Outros Resultados

O presente capítulo pretende analisar o comportamento dos modelos obtidos para as diferentes ruas, testando-os para outras ruas, e analisar o comportamento do modelo treinado com o dataset no qual não foram incluído os incidentes.

5.1 Dataset sem incidentes

Este subcapítulo pretende analisar o comportamento do modelo treinado com o dataset sem incidentes, para a rua 2, utilizando 8 features.

Figura 21: Curvas de aprendizagem.

Figura 22: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Hora	Real	Previsto
0	0	6.91e-08
1	0	2.56e-07
2	0	2.74e-07
3	0	2.088e-05
4	0	0.017
5	0	0.099
6	1.33	0.92
7	1.67	1.17
8	3.33	2.52
9	0	0.46
10	2.33	2.04
11	5.67	3.92
12	6	4.41
13	3.33	2.53
14	0	0.12
15	0	0.0020
16	0	3.96e-09
17	0	6.73e-08
18	0	1.24e-06
19	0	1.61e-07
20	0	1.25e-06
21	0	1.09e-09
22	0	5.44e-12
23	0	4.72e-05

Tabela 9: Valores previstos e reais, durante 24 horas, para o mesmo dia representado no gráfico.

Note-se que, para o exemplo considerado se tem $average_diff = 0.29$ e $max_diff = 1.75$.

Por fim, faça-se uma análise dos erros obtidos. Após calculados os diferentes valores do erro, obtiveram-se os seguinte resultados:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	0.86	3.08
Terça-Feira	32	0.82	3.096
Quarta-Feira	21	0.87	2.81
Quinta-Feira	28	0.87	2.97
Sexta-Feira	26	1.04	3.07
Sábado	40	0.53	2.39
Domingo	24	0.56	2.17

Tabela 10: Cálculo dos erros.

Analisando os resultados apresentados na tabela e comparando-os com os obtidos no subcapítulo 4.1.2, observa-se que estes são muito mais elevados, o que nos permite concluir que os dados relativos aos incidentes têm grande importância na previsão do $speed_diff$.

5.2 Usar modelo da rua 2 para fazer previsões para a rua 1

Decidiu-se testar o modelo da rua 2 na rua 1 uma vez que estas ruas são semelhantes. Note-se ainda que se optou por testar o comportamento do modelo treinado com a rua 2, uma vez que este era o que apresentava melhores resultados.

Veja-se o comportamento do modelo treinado com dados da rua 2, para fazer previsões para a rua 1.

De seguida, apresenta-se, graficamente, os resultados obtidos, para um dia de teste:

Figura 23: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Analisando o gráfico, conclui-se que o modelo não se comporta de modo ótimo. Note-se que, nas horas 22 e 23 existe uma grande discrepância nos valores.

Relativamente aos erros obtidos, foram os seguintes:

	Número de Ocurrências	Average Diff	Max Diff
Segunda-Feira	29	1.50	6.90
Terça-Feira	32	1.58	7.08
Quarta-Feira	21	1.56	7.75
Quinta-Feira	28	1.75	6.79
Sexta-Feira	26	1.84	7.66
Sábado	40	1.78	7.45
Domingo	24	1.77	7.91

Tabela 11: Cálculo dos erros.

Por fim, analisando o valor obtido para os erros observa-se que estes são superiores aos obtidos quando se usou o modelo treinado com a rua 2 para fazer a previsão da variável *speed_diff* para essa mesma rua.

5.3 Usar modelo da rua 1 para fazer previsões para a rua 3

O presente subcapítulo pretende avaliar o comportamento do modelo treinado para a rua 1 para prever o valor *speed_diff* para uma rua com características distintas desta rua como, por exemplo, a rua 3.

De seguida, apresenta-se, graficamente, os resultados obtidos, para um dia de teste:

Figura 24: Valores reais vs previstos, durante 24 horas, para um dia aleatório.

Relativamente aos erros obtidos, foram os seguintes:

	Número de ocurrências	Average Diff	Max Diff
Segundas	29	4.97	21.61
Terças	32	4.51	20.73
Quartas	21	4.85	18.83
Quintas	28	4.64	17.88
Sextas	26	4.00	15.85
Sábados	40	5.07	21.99
Domingos	24	3.64	13.07

Tabela 12: Cálculo dos erros.

Verificando os resultados, observam-se erros muito elevados. Isto deve-se ao facto do modelo prever valores de *speed_diff* baixos, uma vez que a rua 1 apresenta um baixo fluxo de trânsito valores baixos para a *speed_diff*, e a

rua 3 ser uma rua com bastante trânsito e apresentar valores de *speed_diff* bastantes elevados.

6 Trabalhos Futuros

Apresentaram-se, nos últimos capítulos alguns dos testes efetuados, e respetiva análise crítica. No entanto, existem muitos mais testes interessantes que poderiam ter sido realizados, nomeadamente:

- 1. Criar um modelo que fosse treinado com as ruas 1 e 2, uma vez que estas têm um fluxo de trânsito semelhante, simultaneamente, e verificar o seu comportamento na previsão da variável *speed_diff* das ruas 1 e 2, separadamente;
- 2. Fazer o mesmo estudo mencionado em (1), mas para as ruas 3 e 4, sugere-se usar estas ruas em simultâneo, uma vez que ambas apresentam um elevado fluxo de trânsito;
- 3. Treinar o modelo com todas as ruas e avaliar o seu desempenho;
- 4. Considerar o modelo treinado para a rua 4, uma vez que esta rua apresenta muito trânsito, e testá-lo para o *dataset* do Porto, uma cidade conhecida pelo seu elevado fluxo de trânsito;
- 5. Dado o facto da rua 3 ser uma rua cujo o trânsito depende muito do facto de ser, ou não, período letivo, e, portanto, apresentar muito menos trânsito durante os meses Junho, Julho e Agosto, talvez fosse interessante criar dois modelos: um modelo treinado sem os meses mencionados e outro considerando esses mesmo meses.