Portfolio optimization with CVaR budgets

Kris Boudt* - Peter Carl - Brian G. Peterson

R/Finance 2010

April 16th, 2010

^{*}K.U.Leuven and Lessius

History

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

Risk budgets:

- Standard tool to quantify risk allocation;
- Previous research: non-normality return series, CVaR: PerformanceAnalytics.
- Instrument to adjust marginally portfolios;
- This research: Use of risk budgets as objective and/or constraint in portfolio allocation styles: PortfolioAnalytics;
- Collaborative: Peter Carl & Brian Peterson, David Ardia, Christophe Croux.

Motivation equity/bonds portfolio

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

■ Bender, Briand, Nielsen, Stefek (JPM, Winter 2010):

"Traditional approaches to structuring policy portfolios for strategic asset allocation have not provided the full potential of diversification.

Portfolios based on a 60/40 allocation between equities and bonds remain volatile and dominated by equity risk."

Minimum risk portfolios tend to be dominated by bond risk and have lower expected returns.

Motivation equity/bonds portfolio

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

■ Bender, Briand, Nielsen, Stefek (JPM, Winter 2010):

"Traditional approaches to structuring policy portfolios for strategic asset allocation have not provided the full potential of diversification. Portfolios based on a 60/40 allocation between equities and bonds remain volatile and dominated by equity risk."

- Minimum risk portfolios tend to be dominated by bond risk and have lower expected returns.
- Optimize the risk allocation directly in the portfolio strategy.
 Examples:
 - √ A 60/40 risk allocation portfolio or an equal-risk portfolio
 - √ The most risk diversified portfolio subject to return/risk targets.

 3 / 42

Outline

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

Risk budgets:

- Review on risk budgets;
- Use of risk budgets as objective and/or constraint in portfolio allocation styles.
- Illustrations:
 - ✓ Static bond-equity portfolio, R code (DEoptim, see also Guy Yollin's slides RFinance 2009);
 - √ Dynamic 4 assets.

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

A primer on risk budgets

VaR budget on 60/40 portfolio

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

Appendix

- > library(PortfolioAnalytics)
- > data(indexes)
- > head(indexes[,1:2])

US Bonds US Equities

VaR budget on 60/40 portfolio

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

```
> apply(indexes[,1:2],2,'mean')
    US Bonds US Equities
0.006916187 0.008238420
> apply(indexes[,1:2],2,'sd')
    US Bonds US Equities
0.01810161 0.04476569
```

VaR budget on 60/40 portfolio

```
Outline
```

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

```
> w6040 <- c(0.4,0.6)
 library(PerformanceAnalytics)
> VaR(R=indexes[,1:2], weights=w6040,
        portfolio_method="component")
$MVaR
[1,] 0.04336715
$contribution
                US Equities
     US Bonds
-0.0002303964
               0.0435975440
$pct_contrib_MVaR
              US Equities
    US Bonds
-0.005312695
              1.005312695
```

VaR budgets

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

■ Gouriéroux, Laurent and Scaillet (2000):

$$C_i \text{VaR} = -E[w_i r_i | r_p = -\text{VaR}]$$

- Estimation:
 - √ Simulation
 - ✓ Explicit formulae Cornish-Fisher estimator (Boudt, Peterson and Croux, 2008; Peterson and Boudt, 2008).

Outline

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

Pearson [2002, p.7]: "Value-at-risk has some well known limitations, and it may be that some other risk measures eventually supplants value-at-risk in the risk budgeting process."

CVaR:

- Coherent risk measure (most notably: subadditive);
- Less incentive to load on the tail risk below the VaR used.

CVaR budgets

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

- $\blacksquare C_i \text{CVaR} = w_i \frac{\partial \text{CVaR}(w)}{\partial w_i}$
- Scaillet (2002):

$$C_i$$
CVaR = $-E[w_i r_i | r_p \le -\text{VaR}]$

- Estimation:
 - √ Simulation
 - ✓ Explicit formulae Cornish-Fisher estimator (Boudt, Peterson and Croux, 2008).

CVaR budgets

```
Outline
```

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

```
> ES(R=indexes[,1:2], weights=w6040,
        portfolio_method="component")
+
$MES
[1,] 0.07725177
$contribution
              US Equities
    US Bonds
-0.001066194
              0.078317964
$pct_contrib_MES
   US Bonds US Equities
-0.01380155 1.01380155
```

CVaR in portfolio allocation

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

- As an objective: Minimum CVaR portfolio (E.g. Rockafellar and Uryasev, 2000)
- As a constraint: Min CVaR/SD portfolio under CVaR constraints (E.g. Alexander and Baptista, 2004, Krokhmal, Palmquist and Uryasev, 2002).
- Why? Better risk measure + convex function of portfolio weights (easier to optimize).

Min CVaR portfolio

```
Outline
```

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

```
> library(DEoptim)
> obj <- function(w) {</pre>
   if (sum(w) == 0) \{ w < -w + 1e-2 \}
+ w <- w / sum(w)
  ES(R=indexes[,1:2],weights = w)$MES
+ }
> out <- DEoptim(fn = obj, lower = rep(0, 2),</pre>
+ upper = rep(1, 2), DEoptim.control(itermax=50))
> wstar <- out$optim$bestmem</pre>
> wMinCVaR <- wstar / sum(wstar)</pre>
> print(wMinCVaR)
   US Bonds US Equities
0.96443348 0.03556652
```

CVaR budgets

```
Outline
```

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

```
> ES(R=indexes[,1:2], weights=wMinCVaR,
+ portfolio_method="component")
$MES
[1,] 0.01102894
$contribution
              US Equities
    US Bonds
0.0106366796 0.0003922610
$pct_contrib_MES
   US Bonds US Equities
0.96443349 0.03556651
```

CVaR budgets

Outline

A primer on risk budgets

VaR budget

CVaR budget

Min CVaR portfolio

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

	Weight	allocation	Risk	Risk allocation		
style	bond	equity	bond	equity		
60/40 weight	0.40	0.6	-0.01	1.01		
60/40 risk alloc	0.84	0.16	0.40	0.60		
Min CVaR Conc	0.86	0.14	0.50	0.50		
Min CVaR	0.96	0.04	0.96	0.04		

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

Appendix

CVaR budgets as objective or constraint in portfolio allocation

Traditional use

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

- Risk contribution $C_i \text{CVaR}(w) = w_i \frac{\partial \text{CVaR}(w)}{\partial w_i}$
- Litterman (1999): Hot Spots TM and hedges. Risk budgets as ex post instrument to adjust marginally portfolios.
- Keel and Ardia (2009):
 - 1. Only precise for infinitesimal changes, poor approximations for realistic reallocations.
 - 2. Assume changing a single position keeping fixed all other positions >< full investment constraint.

Proposal I: Risk budget constraints

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

Appendix

Avoid downside risk concentration by:

$$l_i \leq \%C_i \text{CVaR} \equiv \frac{C_i \text{CVaR}}{\text{CVaR}} \leq u_i$$

- Min CVaR portfolio with
 - √ 60/40 risk allocation constraint
 - √ equal risk allocation constraint.

60/40 risk allocation portfolio

```
Outline
```

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

```
> obj <- function(w) {</pre>
  if (sum(w) == 0) \{ w < -w + 1e-2 \}
  w \leftarrow w / sum(w)
  CVaR <- ES(R=indexes[,1:2], weights = w)
   tmp1 <- CVaR$MES</pre>
   tmp2 <- max(CVaR$pct_contrib_ES</pre>
             -c(0.405, 0.605), 0)
+
   tmp3 < - max(c(0.395, 0.595) -
             CVaR$pct_contrib_ES , 0)
+
  out <- tmp1 + 1e3 * tmp2 + 1e3 * tmp3
+ }
```

60/40 risk allocation portfolio

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

Appendix

```
> out <- DEoptim(fn = obj, lower = rep(0, 2),
```

- + upper = rep(1, 2), DEoptim.control(itermax=50))
- > wstar <- out\$optim\$bestmem</pre>
- > w6040riskalloc <- wstar / sum(wstar)</pre>
- > print(w6040riskalloc)

US Bonds US Equities

0.8382035 0.1617965

60/40 risk allocation portfolio

```
Outline
```

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

```
> ES(R=indexes[,1:2], weights=w6040riskalloc,
+ portfolio_method="component")
$MES
[1,] 0.01400341
$contribution
   US Bonds US Equities
0.005671224 0.008332185
$pct_contrib_MES
   US Bonds US Equities
  0.4049888
              0.5950112
```

Special case: Equal-risk portfolio

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

Appendix

■ Min CVaR with equal-risk constraint

$$%C_i \text{CVaR}(w) = 1/N \qquad (i = 1, \dots, N)$$

■ In this portfolio:

$$\frac{w_i}{w_i} = \frac{\partial \text{CVaR}/\partial w_j}{\partial \text{CVaR}/\partial w_i}.$$

Downweights "hot spots": positions for which a marginal

decrease in weight leads to a large reduction in CVaR.

Proposal II: Risk budget objective

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

Appendix

Avoid downside risk concentration by:

$$\min_{w} \max_{i} C_{i}\mathsf{CVaR}(w)$$

Proposal II: Risk budget objective

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

Appendix

Avoid downside risk concentration by:

$$\min_{w} \max_{i} C_{i} \mathsf{CVaR}(w)$$

Objective trades off Risk Minimization and Risk Diversification, since:

$$\max_{i} C_{i} \text{CVaR} = \text{CVaR} \max \{\%C_{1} \text{CVaR}, \dots, \%C_{N} \text{CVaR}\}$$

Relation with equal-risk portfolio

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

Appendix

If the set of equal-risk portfolios is non-empty and the minimum CVaR concentration portfolio has a unique optimum. Then the minimum CVaR concentration portfolio criterion is equivalent to:

$$\min_{w} \mathsf{CVaR}(w)$$
 $s.t. \% C_1 \mathsf{CVaR} = \ldots = \% C_N \mathsf{CVaR}$

But computationally more simple and has also a solution if there is no equal-risk portfolio.

Min CVaR Concentration portfolio

```
Outline
```

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

```
> obj <- function(w) {</pre>
  if (sum(w) == 0) \{ w < -w + 1e-2 \}
  w \leftarrow w / sum(w)
  CVaR <- ES(R=indexes[,1:2], weights = w)
  out <- max(CVaR$contribution)</pre>
+ }
> out <- DEoptim(fn = obj, lower = rep(0, 2),</pre>
  upper = rep(1, 2),DEoptim.control(itermax=50))
> wstar <- out$optim$bestmem</pre>
> wMinCVaRConc <- wstar / sum(wstar)</pre>
> print(wMinCVaRConc)
   US Bonds US Equities
0.8584465 0.1415535
```

Min CVaR Concentration portfolio

```
Outline
```

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

```
> ES(R=indexes[,1:2], weights=wMinCVaRConc,
+ portfolio_method="component")
$MES
[1,] 0.01315665
$contribution
   US Bonds US Equities
0.006578325 0.006578323
$pct_contrib_MES
   US Bonds US Equities
  0.5000001
              0.4999999
```

Overview portfolio allocations

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio

allocation

Conclusion

	Weight allocation			Risk allocation		
style	bond	equity	·	bond	equity	
60/40 weight	0.40	0.6		-0.01	1.01	
60/40 risk alloc	0.84	0.16		0.40	0.60	
Min CVaR Conc	0.86	0.14		0.50	0.50	
Min CVaR	0.96	0.04		0.96	0.04	

Adding a return target: Efficient frontier

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Risk budget constraints

Risk budget objective

Efficient Frontier

Dynamic portfolio allocation

Conclusion

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Dynamic strategies

Data

Conclusion

Appendix

Dynamic portfolio allocation

Dynamic investment strategies

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Dynamic strategies

Data

Conclusion

Appendix

■ We consider the following investment strategies, quarterly rebalancing, 4 assets:

- 1. Benchmark strategies:
 - √ "Equal Weight"
 - √ "Min CVaR"
 - ✓ "Min CVaR + 40% Position Limit"
 - √ "Min CVaR + EW return target"
- 2. Strategies that use CVaR budgets:
 - √ "Min CVaR + 40% Perc CVaR Alloc Limit"
 - √ "Min CVaR Conc"
 - √ "Min CVaR Conc + EW return target".

Summary statistics data:

4 assets: Merrill Lynch US bond, S&P 500, MSCI EAFE and S&P GSCI Real monthly returns Jan 1976-December 2009, total return indices

	US bond	S&P 500	MSCI EAFE	S&P GSCI
Mean (in %)	0.32	0.52	0.39	0.10
StdDev (in %)	1.86	4.46	4.98	5.50
Historical 95% CVaR (in %)	3.64	10.64	12.46	13.58

Quarterly rebalanced based on time-varying conditional moment estimates (EWMA mean, GARCH volatility, rolling 8 year correlation, coskewness and cokurtosis).

Weight allocation:

■ US bond ■ S&P 500 ■ EAFE ■ GSCI

CVaR allocation:

■ US bond ■ S&P 500 ■ EAFE ■ GSCI

Out of sample performance:

	Equal	Min CVaR				Min C	Min CVaR Conc	
	Weight		Position	CVaR Alloc	Return		Return	
			Limit	Limit	Target		Target	
Mean (in %)	0.40	0.44	0.43	0.43	0.47	0.43	0.43	
StdDev (in %)	2.85	1.38	2.41	1.64	1.74	1.85	2.02	
Hist 95% CVaR (in %)	6.95	2.72	5.78	3.49	3.59	4.11	4.52	
Portfolio turnover (in %)	1.27	2.30	3.10	2.70	4.50	1.82	4.45	

Portf. turnover
$$= \frac{1}{NT_*} \sum_{t=1}^{T_*-1} \left| w_{(i)t+1} - w_{(i)t+} \right|.$$

Out of sample cum performance, relative to min CVaR:

Drawdowns higher than 10% on portfolio strategies over the period January 1984-December 2009:

	Equal	Min CVaR				Min C	Min CVaR Conc	
	Weight		Position	CVaR Alloc	Return		Return	
			Limit	Limit	Target		Target	
Credit crisis*	0.47	0.10	0.37	0.18	0.14	0.24	0.24	
Dot-com bubble burst**	0.28		0.19			0.11	0.11	
Asian-Russian crisis***	0.13		0.12				0.11	
Black Monday****	0.11		0.13		0.12		0.12	

^{*} Dec 2007-Oct 2008 for the Min CVaR strategy, Nov 2007-Feb 2009 for all other styles.

^{**} Start: Sept 2000 for all styles. End: Jan 2002 for Min CVaR Conc styles, July 2002 for the Min CVaR with position limit style, September 2002 for all other styles.

^{***} Aug 1997-Aug 1998 for equal-weight strategy, Oct 1997-Aug 1998 for the Min CVaR + Return target and Nov 1997-Aug 1998 for the Min CVaR with position limit style.

^{****} Black Monday: Sept-November 1987.

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

Conclusion

Conclusion

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

Appendix

CVaR budgets are useful for:

- Ex post analysis of the portfolio risk allocation;
- And input in the portfolio allocation strategy through
 - √ minimum CVaR Concentration objective
 - √ and/or risk allocation constraints.

References

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio allocation

Conclusion

- Software: R packages DEoptim, PerformanceAnalytics and PortfolioAnalytics
- Related research papers:
 - With B. Peterson and C. Croux: Estimation and decomposition of downside risk for portfolios with non-normal returns. Journal of Risk, Winter 2008.
 - 2. With B. Peterson: Component VaR for a non-normal world. RISK, November 2008.
 - 3. With D. Ardia, P. Carl, K. Mullen and B. Peterson. DEoptim for non-convex portfolio optimization. SSRN.
 - With P. Carl and B. Peterson. Portfolio optimization with CVaR budgets.

Outline

A primer on risk budgets

CVaR budgets as objective or constraint in portfolio allocation

Dynamic portfolio

allocation

Conclusion

Appendix

$\%CVaR_{(1)} = f(w_{(1)})$ for bivariate normal portfolio:

