第五章 常微分方程初值问题数值解法

本章的数值解法,它不是求方程的解的解析表达式或近似表达式,<u>而是直接求</u>一系列离散点 x_i ($i = 1, 2, \cdots$) 上的解值 $y(x_i)$ 的近似值 y_i . 利用计算机解微分方程主要使用数值方法.

一、内容要点

本章给出形式如

$$\begin{cases} \frac{dy}{dx} = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

的初值问题的数值解法,这里假定 f(x, y)满足解的存在唯一性定理的条件.

• 局部截断误差

设 $y_n = y(x_n)$, 则称 $y(x_{n+1}) - y_{n+1}$ 为方法的局部截断误差.

• 方法的阶数

若数值方法的局部截断误差为 $O(h^{p+1})$,则称这种方法为p阶方法,这里p为非负整数.

(一)单步法

- 1. Euler 方法及其改进形式
 - (1) Euler 方法

$$y_{n+1} = y_n + hf(x_n, y_n) \quad (n = 0, 1, 2, \dots)$$
 (5-1)

它是显格式,该方法的局部截断误差为 $O(h^2)$,是一阶方法.

(2) 梯形公式(改进的 Euler 方法)

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})] \quad (n = 0, 1, 2, \dots)$$
 (5-2)

它是一个隐格式,局部截断误差为 $\underline{O(h^3)}$,是<u>二阶</u>方法. 运用它常采用下面的迭代格式

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] \\ (k = 0, 1, 2, \dots; n = 0, 1, 2, \dots) \end{cases}$$
(5-3)

它是二阶方法

(3) Euler 预报 一校正系统

若迭代公式(5-3)只迭代一步,则该方法称为 Euler 预报一校正系统,即

$$\begin{cases}
\overline{y}_{n+1} = y_n + hf(x_n, y_n) \\
y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \\
(n = 0, 1, 2, \cdots)
\end{cases}$$
(5-4)

2. Runge-Kutta 方法

显式 Runge-Kutta 方法的一般形式为

$$\begin{cases} y_{n+1} = y_n + h \sum_{i=1}^m w_i K_i \\ K_1 = f(x_n, y_n) \\ K_i = f(x_n + \alpha_i h, y_n + h \sum_{j=1}^{i-1} \beta_{ij} k_j) & (i = 2, 3, \dots, m) \end{cases}$$

$$(n = 0, 1, 2, \dots)$$

其中 $w_i(i=1,2,\cdots,m)$, α_i , $\beta_{ij}(i=2,3,\cdots,m)$ 均为待定参数, 随着 m 取不同的正整数, 便可得到各阶显式 Runge-Kutta 公式.

特别地, 二阶 Runge-Kutta 公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_1 + K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h, y_n + hK_1) \end{cases}$$

$$n = (0, 1, 2, \dots)$$

就是改进的 Euler 公式.

在实际应用中,最常用的标准四阶 Runge-Kutta 公式.

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) \\ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$

$$(5-5)$$

3. Taylor 展开的方法

4. 单步法的收敛性与稳定性

收敛性与稳定性从不同的角度描述了数值方法的可靠性,只有既收敛又稳定的方法,才能提供比较可靠的计算结果.下面给出单步法的收敛性与稳定性.

(1) 单步法的收敛性

若某数值方法对任意固定的节点 $x_n = x_0 + nh$ $(n = 0, 1, 2, \cdots)$, 当 $h \to 0$ (且 $n \to \infty$) 时,有 $y_n \to y(x_n)$,则称该方法是收敛的.

定理 5. 1 若 1° 单步法 $y_{n+1}=y_n+h\varphi(x_n,y_n,h)$ 中的增量函数 $\varphi(x,y,h)$ 在区域 $a\leq x\leq b$, $-\infty< y<+\infty$, $0\leq h\leq h_0$ 上连续,并且关于 y 满足 Lipschitz 条件

$$|\varphi(x, y_1, h) - \varphi(x, y_2, h)| \le L|y_1 - y_2|, \quad (L > 0)$$

- 2° 方法的局部截断误差 $y(x_{n+1}) y_{n+1} = 0(h^{p+1})$, $(n = 1, 2, \dots)$;
- 3°初始值是精确的,即 $y(a) = y_0$,

则 1°方法的整体截断误差为 $O(h^p)$;

- 2° 当 $p \ge 1$ 时,方法是收敛的.
- (2) 单步法的稳定性

设用某一数值方法计算 y_n 时,所得到的实际计算结果为 \tilde{y}_n ,且由误差 $\delta_n = y_n - \tilde{y}_n$ 引起以后各点处 $y_m(m>n)$ 的误差为 δ_m ,如果总有 $\left|\delta_m\right| \leq \left|\delta_n\right|$,则称该数值方法是绝对稳定的.

一个数值方法用于解试验方程 $\frac{dy}{dx} = \lambda y$ (其中 λ 为常数, 当 λ 是复数时,

 $Re(\lambda) < 0$), 若在 $\mu = \lambda h$ 平面中的某个区域 R 中方法都是绝对稳定的, 而在域 R

外,方法是不稳定的,则称区域 R 是该数值方法的绝对稳定域.

(二) 线性多步法

1. 一般公式

$$y_{n+1} = \sum_{k=0}^{r} \alpha_k y_{n-k} + h \sum_{k=-1}^{r} \beta_k f_{n-k}$$
 (5-6)

其中 α_k , β_k 为常数, $f_i = f(x_i, y_i)$. 若 $\beta_{-1} \neq 0$,则(5-6)是隐格式;若 $\beta_{-1} = 0$,则(5-6)是显格式.

2. Adams 显式(外推)公式

当取 r+1 个点 $x_{n-r}, x_{n-r+1}, \cdots, x_n$ 及已知值 $f_{n-r}, f_{n-r+1}, \cdots, f_n$ 时,可得 Adams 显式公式

$$y_{n+1} = y_n + h \sum_{k=0}^{r} \beta_k f_{n-k}$$

最常用的是四步 Adams 显式(外推)公式:

$$y_{n+1} = y_n + \frac{h}{24} [55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}]$$
 (5-7)

四步 Adams 显式(外推)公式的局部截断误差为 $\frac{251}{720}h^5y^{(5)}(\xi_n)$,它是一个四阶方法,也称为四阶 Adams 显式(外推)公式.

3. Adams 隐式(内插)公式

如果取 r+1 个点 $x_{n+1}, x_n, \dots, x_{n-r+1}$ 及对应的函数值 $f_{n+1}, f_n, \dots, f_{n-r+1}$,则可得 Adams 隐式(内插)公式:

$$y_{n+1} = y_n + h \sum_{k=0}^{r} \beta_{k-1}^* f_{n-k+1}$$

常用的是四步 Adams 隐式公式

$$y_{n+1} = y_n + \frac{h}{24} [9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}]$$
 (5-8)

四步 Adams 隐式公式的局部截断误差为 $-\frac{19}{720}h^5y^{(5)}(\xi_n)$,它是一个四阶方法,也称为四阶 Adams 隐式公式.

实际中常常把四阶 Adams 外推公式 (5-7) 和内插公式 (5-8) 联合使用,构成四阶 Adams 预报一校正系统

$$\begin{cases} \overline{y}_{n+1} = y_n + \frac{h}{24} [55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}] \\ y_{n+1} = y_n + \frac{h}{24} [9\overline{f}_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}] \end{cases}$$

其中 $\overline{f}_{n+1} = f(x_{n+1}, \overline{y}_{n+1})$.

二、题型分析与解题方法

例 1 用 Euler 方法求解问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -y + x + 1 & 0 \le x \le 1\\ y(0) = 1 \end{cases}$$

取 h=0.1

解 设 f(x,y) = -y + x + 1 $x_0 = 0$, $y_0 = 1$, $x_n = x_0 + nh = 0.1n$ $(n=0,1,\cdots,10)$ Euler 格式为

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + 0.1(-y_n + x_n + 1)$$

由 $y_0=1$ 出发,按上面公式的计算结果并与精确解 y(x)进行比较,如表所示

	1	*	
χ_n	y_n	$y(x_{n+1})$	$ y(x_n)-y_n $
0	1.000 000	1.000 000	0
0.1	1.000 000	1.004 837	0.004 837
0.2	1.010 000	1.018 731	0.008 731
0.3	1.029 000	1.040 818	0.011 818
0.4	1.056 100	1.070 320	0.014 220
0.5	1.090 490	1.106 531	0.016 041
0.6	1.131 441	1.148 812	0.017 371
0.7	1.178 297	1.196 585	0.018 288
0.8	1.230 467	1.249 329	0.018 862
0.9	1.287 420	1.306 570	0.019 150
1.0	1.348 678	1.367 879	0.019 201

由表可看出,随着 x_n 的的增大,误差只有轻微增长,所以本题取 h=0.1 的 Euler 方法是数值稳定的算法.

例 2 利用 Euler 方法计算积分

$$\int_0^x e^{t^2} dt$$

在点 x=0.5, 1, 1.5, 2 处的数值解.

分析 采用数值积分法无疑可以求此定积分的近似值. 另外,通过求导,可以 把该积分问题化为微分问题.

解 令 $y(x) = \int_0^x e^{t^2} dt$,则有等价的问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x^2} \\ y(0) = 0 \end{cases}$$

对此一阶常微分方程初值问题,取步长 h=0.5,设 $f(x,y)=e^{x^2}, x_0=0, y_0=0,$ $x_n=x_0+nh=nh$ (n=0,1,3,4).

由 Euler 格式

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + 0.5e^{x_n^2}$$

从 $y_0=0$ 出发计算 $\int_0^x e^{t^2} dt$ 的数值解如表

x_n	0.5	1.0	1.5	2.0
y_n	0.500 000	1.142 013	2.501 154	7.245 022

例 3 用改进的 Euler 法 (梯形公式)解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = 8 - 3y & 1 \le x \le 2\\ y(1) = 2 \end{cases}$$

取步长 h=0.2, 小数点值至少保留 5 位.

解 设 f(x,y)=8-3y, $x_0=1$, $y_0=2$, $x_n=x_0+nh=1+0.2n$ $(n=0,1,\cdots,5)$ 梯形公式为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

于是

$$y_{n+1} = y_n + \frac{0.2}{2} [8 - 3y_n + 8 - 3y_{n+1}]$$

整理得显格式

$$y_{n+1} = \frac{7}{13} y_n + \frac{16}{13}$$

由 yo=2 出发, 计算结果如表所示

χ_n	Уn	χ_n	Уn
1	2	1.6	2.562 59
1.2	2.307 69	1.8	2.610 62
1.4	2.473 37	2.0	2.636 49

例 4 用改进的 Euler 法计算积分

$$y = \int_0^x e^{-t^2} dt$$

在 x=0.5, 0.75, 1 时的近似值(至少保留 6 位小数).

分析 采用数值积分法无疑可以求近似值. 另外,通过求导,可以把该积分问题化为微分问题.

解 令
$$y(x) = \int_0^x e^{-t^2} dt$$
,则有等价问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x^2} \\ y(0) = 0 \end{cases}$$

对此常微分方程初值问题,依本题特点,可采用步长 h=0.25,设 f(x,y)

$$=e^{-x^2}$$
, $x_0 = 0$, $y_0 = 0$, $x_n = x_0 + nh = 0.25n$ $(n=0,1,\dots,4)$

改进的 Euler 格式 (梯形公式) 为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

代入 $f(x,y) = e^{-x^2}$ 有

$$y_{n+1} = y_n + \frac{h}{2} (e^{-x_n^2} + e^{-x_{n+1}^2})$$

由 $y_0 = 0$ 出发, 计算 $\int_0^x e^{-t^2} dt$ 的数值解如下表

χ_n	Уn	χ_n	Уn
0	0	0.75	0.625 776
0.25	0.242 427	1.00	0.742 984
0.50	0.457 203		

例 5 用 Euler 预报一校正格式求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} + y + y^2 \sin x = 0\\ y(1) = 1 \end{cases}$$

要求取步长 h=0.2, 计算 y(1.2)及 y(1.4)的近似值, 小数点后至少保留 5 位.

解 设
$$f(x, y) = -y - y^2 \sin x$$
, $x_0 = 1$, $y_0 = 1$, $x_n = x_0 + nh = 1 + 0.2n$

Euler 预报一校正格式为

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

于是有

$$\begin{cases} \overline{y}_{n+1} = y_n - 0.2(y_n + y_n^2 \sin x_n) \\ y_{n+1} = y_n - 0.1(y_n + y_n^2 \sin x_n + \overline{y}_{n+1} + \overline{y}_{n+1}^2 \sin x_{n+1}) \end{cases}$$

由 $y_0 = 1$ 计算得

$$\begin{cases} \overline{y}_1 = 0.631706 \\ y(1.2) \approx y_1 = 0.715489 \end{cases} \begin{cases} \overline{y}_2 = 0.476965 \\ y(1.4) \approx y_2 = 0.526112 \end{cases}$$

例 6 写出用反复迭代的 Euler 预报一校正法求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0\\ y(0) = 1 \end{cases}$$

的计算公式, 并取步长 h=0.1, 求 y(0.2)的近似值, 要求迭代误差不超过 10^{-5} .

解 设 f(x,y) = -y , $x_0 = 0$, $y_0 = 1$, $x_n = 0.1n$. 反复迭代的欧拉预报一校正格式为

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] \\ (k = 0, 1, 2, \dots; n = 0, 1, 2 \dots) \end{cases}$$

于是有

$$\begin{cases} y_{n+1}^{(0)} = 0.9 y_n \\ y_{n+1}^{(k+1)} = 0.95 y_n - 0.05 y_{n+1}^{(k)} \end{cases}$$

由 $y(0) = y_0 = 1$ 计算有

$$y_1^{(0)} = 0.9, \quad y_1^{(1)} = 0.905, \quad y_1^{(2)} = 0.90475, \quad y_1^{(3)} = 0.9047625, \quad y_1^{(4)} = 0.904761875$$

因
$$\left|y_1^{(4)} - y_1^{(3)}\right| = 6.25 \times 10^{-7} < 10^{-5}$$
,于是取

$$y(0.1) \approx y_1 = y_1^{(4)} = 0.904761875$$

 $y_2^{(0)} = 0.814286$, $y_2^{(1)} = 0.818810$, $y_2^{(3)} = 0.818583$, $y_2^{(4)} = 0.818595$, $y_2^{(5)} = 0.818594$

因
$$|y_2^{(5)} - y_2^{(4)}| = 10^{-6} < 10^{-5}$$
,故取

$$y(0.2) \approx y_2 = y_2^{(5)} = 0.818594$$

例 7 取步长 h=0.4,写出用标准四阶 Runge-Kutta 方法求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = x\sin(x+y) & 1 \le x \le 9\\ y(1) = 0 \end{cases}$$

的计算公式,并计算 y(1.8)的近似值,小数点后至少保留 6 位.

解 设
$$f(x, y) = x \sin(x + y)$$
, $x_0 = 1$, $y_0 = 0$, $x_n = x_0 + nh = 1 + 0.4n$ $(n = 0, 1, 2, \dots, 20)$

标准四阶 Runge-Kutta 公式为

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) \\ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$

代入 $f(x, y) = x \sin(x + y)$ 有

$$\begin{cases} y_{n+1} = y_n + \frac{0.4}{6} (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = (1 + 0.4n) \sin(1 + 0.4n + y_n) \\ K_2 = (1.2 + 0.4n) \sin(1.2 + 0.4n + y_n + 0.2K_1) \\ K_3 = (1.2 + 0.4n) \sin(1.2 + 0.4n + y_n + 0.2K_2) \\ K_4 = (1.4 + 0.4n) \sin(1.4 + 0.4n + y_n + 0.4K_3) \end{cases}$$

由 y₀=1, 计算得

$$y(1.4) \approx 0.460389$$

 $y(1.8) \approx 0.911704$

例 8 用下列方法求初值问题

$$\begin{cases} \frac{dy}{dx} = \frac{2}{3}xy^{-2} & x \in [0, 1.2] \\ y(0) = 1 \end{cases}$$

的数值解,并将计算结果与准确解 $y = \sqrt[3]{1+x^2}$ 进行比较:

- (1) Euler 法 (取 *h*=0.1);
- (2) Euler 预报—校正格式 (取 h=0.2);
- (3) 标准四阶 Runge-Kutta 公式 (h=0.4).

解 记
$$f(x, y) = \frac{2x}{3y^2}$$
, $x_0=0$, $y_0=1$

(1)
$$h = 0.1$$
, $x_n = nh$ $(n = 0,1,2,\dots,12)$

Euler 公式为

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + \frac{0.2x_n}{3y_n^2}$$

由 y0=1 出发, 计算结果列表如下

n	χ_n	y_n	$y(x_n)$	$ y(x_n)-y_n $
0	0.0	1	1	0
1	0.1	1	1.003 322	0.003 322
2	0.2	1.006 667	1.013 159	0.006 492
3	0.3	1.019 824	1.029 142	0.009 318
4	0.4	1.039 054	1.050 718	0.011 664
5	0.5	1.063 754	1.077 217	0.013 463
6	0.6	1.093 211	1.107 932	0.014 720
7	0.7	1.126 681	1.142 165	0.015 483
8	0.8	1.163 444	1.179 274	0.015 830
9	0.9	1.202 845	1.218 689	0.015 844
10	1.0	1.244 314	1.259 921	0.015 606
11	1.1	1.287 372	1.302 559	0.015 187
12	1.2	1.331 620	1.346 263	0.014 643

(2)
$$h = 0.2$$
, $x_n = nh$, $(n = 0,1,2,\dots,6)$

Euler 预报一校正格式

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

由 y₀=1 出发, 计算结果列于下表

n	x_n	y_n	$\overline{\mathcal{Y}}_{n+1}$	\mathcal{Y}_{n+1}	$ y(x_n)-y_n $
0	0	1	1	1.013 333	0
1	0.2	1.013 333	1.039 303	1.051 006	1.74×10^{-4}
2	0.4	1.051 006	1.099 288	1.108 248	2.88×10^{-4}
3	0.6	1.108 248	1.173 383	1.179 552	3.16×10^{-4}
4	0.8	1.179 552	1.256 216	1.260 130	2.78×10^{-4}
5	1.0	1.260 130	1.344 097	1.346 395	2.09×10^{-4}
6	1.2	1.346 395			1.33×10^{-4}

(3)
$$h = 0.4$$
, $x_n = nh$ $(n = 0,1,2,3)$

标准四阶 Runge-Kutta 公式

$$\begin{cases} y_{n+1} = y_n + \frac{0.4}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) = \frac{2x_n}{3y_n^2} \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) = \frac{2(x_n + 0.2)}{3(y_n + 0.2K_1)^2} \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) = \frac{2(x_n + 0.2)}{3(y_n + 0.2K_2)^2} \\ K_4 = f(x_n + h, y_n + hK_3) = \frac{2(x_n + 0.4)}{3(y_n + 0.4K_3)} \end{cases}$$

由 y0=1 出发, 计算结果列于下表

n	<i>X</i> _n	y_n	K_1	K_2	K_3	K_4	$ y(x_n)-y_n $
0	0	1	0	0.133 333	0.126 497	0.241 599	0
1	0.4	1.050 751	0.241 529	0.331 146	0.320 604	0.383 687	3.34×10^{-5}
2	0.8	1.179 332	0.383 466	0.422 583	0.417 368	0.441 387	5.83×10^{-5}
3	1.2	1.346 315					5.29×10^{-5}

就本题所讨论的初值问题,三种算法的计算量基本相同,精度以标准四阶Runge-Kutta 公式最高, Euler 预报一校正格式次之, Euler 法最低.

例 9 初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = ax + b\\ y(0) = 0 \end{cases}$$

有精确解 $y(x) = \frac{1}{2}ax^2 + bx$,若 $x_n = nh$, y_n 是用 Euler 法得到的 y(x)在 $x = x_n$ 处的 近似值. 证明: $y(x_n) - y_n = \frac{1}{2}ahx_n$.

分析 本题精确解已知,利用 Euler 法求出 y_n ,便可证得结果. 证 Euler 格式为

$$y_{n+1} = y_n + hf(x_n, y_n)$$

代入 f(x, y) = ax + b, 则

$$y_{n+1} = y_n + h(ax_n + b)$$

由
$$y(0) = y_0 = 0$$
 得

$$y_1 = y_0 + h(ax_0 + b) = bh$$

$$y_2 = y_1 + h(ax_1 + b) = 2bh + ahx_1$$

$$y_3 = y_2 + h(ax_2 + b) = 3bh + ah(x_1 + x_2)$$

$$\vdots$$

$$y_n = y_{n-1} + h(ax_{n-1} + bh) = nbh + ah(x_1 + x_2 + \dots + x_{n-1})$$

因 $x_n=nh$, 于是

$$y_n = nbh + ah^2[1 + 2 + \dots + (n-1)]$$
$$= nbh + ah^2 \frac{(n-1)n}{2} = \frac{1}{2}ax_n x_{n-1} + bx_n$$

所以

$$y(x_n) - y_n = \frac{1}{2}a(x_n - x_{n-1})x_n = \frac{1}{2}ahx_n$$

例 10 对初值问题

$$\begin{cases} \frac{dy}{dx} + y = 0, & x > 0\\ y(0) = 1 \end{cases}$$

试证明: (1) 用 Euler 预报一校正格式所求近似解为

$$y_i = (1 - h + \frac{h^2}{2})^i$$
 $(i = 0, 1, 2, \dots)$

(2) 对固定的 $x_n = nh$, 当 $h \to 0$ 时 y_n 趋近于准确解.

分析 精确解为 $y(x) = e^{-x}$,对固定的 $x_n = nh$ 要证明 $\lim_{h \to 0} y_n = e^{-x_n}$ 应考虑到应用

极限 $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.

证 设
$$f(x, y) = -y$$
, $x_0 = 0$, $y_0 = 1$, $x_i = ih$ $(i = 0, 1, 2, \cdots)$

Euler 预报一校正格式为

$$\begin{cases} \overline{y}_{i+1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \overline{y}_{i+1})] \end{cases}$$

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

即

$$y_{i+1} = y_i + \frac{h}{2}[-y_i - y_i + hy_i]$$

从而

$$y_{i+1} = (1 - h + \frac{h^2}{2})y_i$$

递推可得

$$y_i = (1 - h + \frac{h^2}{2})^i y_0 = (1 - h + \frac{h^2}{2})^i \quad (i = 0, 1, 2, \dots)$$

(2) 问题的精确解为 $y(x) = e^{-x}$

$$\lim_{h \to 0} y_n = \lim_{h \to 0} (1 - h + \frac{h^2}{2})^n = \lim_{h \to 0} (1 + \frac{h^2}{2} - h)^{\frac{1}{\frac{h^2}{2} - h}(\frac{h^2}{2} - h)n}$$

$$= \lim_{h \to 0} (1 + \frac{h^2}{2} - h)^{\frac{\frac{1}{h^2} - (\frac{h}{2} - 1)x_n}{2}}$$

应用极限

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

得

$$\lim_{n\to 0} y_n = e^{-x_n} = y(x_n)$$

例 11 初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = ax + b & x > 0\\ y(0) = 0 \end{cases}$$

有解 $y(x) = \frac{1}{2}ax^2 + bx$. 试证明: Euler 预报一校正格式能准确地解上述问题.

分析 本题应利用 Euler 预根—校正格式来证明 $y_n = y(x_n)$

解 记
$$f(x, y) = ax + b$$
, $x_0 = 0$, $y_0 = 0$, $x_i = ih$ $(i = 0, 1, 2, \dots)$

Euler 预报一校正格式为

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

= $y_i + \frac{h}{2} [(ax_i + b) + (ax_{i+1} + b)]$ $(i = 0, 1, 2, \dots)$

上式的两边对i从0到n-1求和并利用 $y_0=0$ 得

$$y_n = \sum_{i=0}^{n-1} \frac{h}{2} [(ax_i + b) + (ax_{i+1} + b)]$$

$$= \frac{ah}{2} \sum_{i=0}^{n-1} (x_i + x_{i+1}) + bnh$$

$$= \frac{ah^2}{2} \sum_{i=0}^{n-1} [i + (i+1)] + bnh$$

$$= \frac{ah^2}{2} [\frac{1}{2} n(n-1) + \frac{1}{2} n(n+1)] + bnh$$

$$= \frac{1}{2} a(nh)^2 + bnh$$

$$= \frac{1}{2} ax_n^2 + bx_n = y(x_n)$$

因而 Euler 预报一校正格式能精确解上述问题.

例 12 对初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0\\ y(0) = 1 \end{cases}$$

证明: (1) 用梯形公式求得的近似解为 $y_n = \left(\frac{2-h}{2+h}\right)^n$.

(2) 当步长 $h \rightarrow 0$ 时, y_n 收敛于精确解.

分析 类似于例 10,利用极限 $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.

证 梯形公式为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

代入 f(x,y) = -y 有

$$y_{n+1} = y_n + \frac{h}{2}(-y_n - y_{n+1})$$

整理成显式公式有

$$y_{n+1} = \left(\frac{2-h}{2+h}\right) y_n = \left(\frac{2-h}{2+h}\right)^2 y_{n-1} = \dots = \left(\frac{2-h}{2+h}\right)^{n+1} y_0$$

因为
$$y_0=1$$
,于是 $y_n = \left(\frac{2-h}{2+h}\right)^n$.

此初值问题的精确解为 $y(x) = e^{-x}$. 利用极限

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

得

$$\lim_{h \to 0} \left(\frac{2 - h}{2 + h} \right)^n = \lim_{h \to 0} \frac{(1 - \frac{h}{2})^n}{(1 + \frac{h}{2})^n} = \lim_{h \to 0} \frac{(1 - \frac{h}{2})^{(-\frac{2}{h})(-\frac{x_n}{2})}}{(1 + \frac{h}{2})^{(\frac{2}{h})(\frac{x_n}{2})}} = \frac{e^{-\frac{x_n}{2}}}{e^{\frac{x_n}{2}}} = e^{-x_n}$$

即当 $h \to 0$ 时, y_n 收敛于精确解 $y(x_n)$.

例 13 考虑求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = \eta \end{cases}$$

的如下反复校正或迭代形式

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] \\ (k = 0, 1, 2, \dots; n = 0, 1, 2, \dots N) \end{cases}$$

如果 $|f_y'(x,y)| \le L$,且 $\frac{hL}{2} < 1$,则对任意 $n \ge 1$,上述格式关于k 的迭代是收敛的,试证明之.

分析 由已知条件来证明迭代格式收敛,应考虑利用微分中值定理.

证 设 y_{n+1} 满足如下方程

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

由所给格式与其相减有

$$\begin{aligned} \left| y_{n+1}^{(k+1)} - y_{n+1} \right| &= \left| \frac{h}{2} f(x_{n+1}, y_{n+1}^{(k)}) - \frac{h}{2} f(x_{n+1}, y_{n+1}) \right| \\ &= \left| \frac{h}{2} f_y'(x_{n+1}, \xi_n^{(k)}) (y_{n+1}^{(k)} - y_{n+1}) \right| \\ &\leq \frac{hL}{2} \left| y_{n+1}^{(k)} - y_{n+1} \right| \end{aligned}$$

反复递推有

$$\left| y_{n+1}^{(k+1)} - y_{n+1} \right| \le \left(\frac{hL}{2} \right)^{k+1} \left| y_{n+1}^{(0)} - y_{n+1} \right|$$

由于非负数 $\frac{hL}{2}$ < 1,故当 $k \to \infty$ 时 $y_{n+1}^{(k+1)} \to y_{n+1}$.

例 14 用如下反复迭代格式

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] \\ (k = 0, 1, 2, \dots; \quad n = 0, 1, 2, \dots N) \end{cases}$$

求解初值问题.

$$\begin{cases} \frac{dy}{dx} e^x \sin(xy) & 0 \le x \le 1\\ y(0) = 1 \end{cases}$$

时,如何选取步长h,使上述格式关于k的迭代收敛.

分析 本题应利用例 13 的结果.

解 设 $f(x,y) = e^x \sin(xy)$,故 $|f_y'(x,y)| = |e^x x \cos(xy)| \le |e^x x| \le e \ (0 \le x \le 1)$,于是由例 13 可知,当 $\frac{he}{2} < 1$,即 $h < \frac{2}{e}$ 时,上述格式关于 k 的迭代是收敛的.

例 15 设 f(x,y) 关于 y 满足 Lipschtz 条件: 对任意的 $\bar{y} \in R$, $\tilde{y} \in R$ 有

$$|f(x,\overline{y}) - f(x,\widetilde{y})| \le L|y - \widetilde{y}| \tag{1}$$

其中 L 称为 Lipschitz 常数,对后退 Euler 公式

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$
 (2)

进行迭代求解

$$\begin{cases} y_{n+1}^{(0)} = y_n \\ y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)}) & (k = 0, 1, 2, \dots) \end{cases}$$
 (3)

证明: 当h满足h \square 1时,此迭代过程是收敛的.

分析 Cauchy 序列是收敛序列,若能证明迭代产生的序列 $\left\{y_{n+1}^{(k)}\right\}_{k=0}^{\infty}$ 是 Cauchy 序列,则能证明本题的结论.

证 首先证明 $\left\{y_{n+1}^{(k)}\right\}_{k=0}^{\infty}$ 是 Cauchy 序列

由

$$\begin{aligned} y_{n+1}^{(k+1)} - y_{n+1}^{(k)} &= [y_n + hf(x_{n+1}, y_{n+1}^{(k)})] - [y_n - hf(x_{n+1}, y_{n+1}^{(k-1)})] \\ &= h[f(x_{n+1}, y_{n+1}^{(k)}) - f(x_{n+1}, y_{n+1}^{(k-1)})] \end{aligned}$$

得

$$\begin{aligned} \left| y_{n+1}^{(k+1)} - y_{n+1}^{(k)} \right| &= h \left| f(x_{n+1}, y_{n+1}^{(k)}) - f(x_{n+1}, y_{n+1}^{(k-1)}) \right| \\ &\leq h L \left| y_{n+1}^{(k)} - y_{n+1}^{(k-1)} \right| \quad (k = 1, 2, 3, \cdots) \end{aligned}$$

递推得

$$\left| y_{n+1}^{(k+1)} - y_{n+1}^{(k)} \right| \le (hL)^k \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| \quad (k = 1, 2, 3, \dots)$$

对任意的 l, m(l > m) 有

$$\begin{aligned} \left| y_{n+1}^{(l)} - y_{n+1}^{(m)} \right| &= \left| y_{n+1}^{(l)} - y_{n+1}^{(l-1)} + y_{n+1}^{(l-1)} - y_{n+1}^{(l-2)} + \dots + y_{n+1}^{(m+1)} - y_{n+1}^{(m)} \right| \\ &\leq \left| y_{n+1}^{(l)} - y_{n+1}^{(l-1)} \right| + \left| y_{n+1}^{(l-1)} - y_{n+1}^{(l-2)} \right| + \dots + \left| y_{n+1}^{(m+1)} - y_{n+1}^{(m)} \right| \\ &\leq (hL)^{l-1} \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| + (hL)^{l-2} \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| + (hL)^{m} \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| \\ &= \left[(hL)^{l-1} + (hL)^{l-2} + \dots + (hL)^{m} \right] \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| \\ &\leq \frac{(hL)^{m}}{1 - (hL)} \left| y_{n+1}^{(1)} - y_{n+1}^{(0)} \right| \end{aligned}$$

因为 $h \square 1$,所以任给 $\varepsilon > 0$,存在 N,当 $l > m \ge N$ 时

$$\left|y_{n+1}^{(l)} - y_{n+1}^{(m)}\right| < \varepsilon$$

因而 $\left\{y_{n+1}^{(k)}\right\}_{k=0}^{\infty}$ 是 Cauchy 序列,从而 $\lim_{k\to\infty}y_{n+1}^{(k)}$ 存在,设其值为 y^* ,在(3)的两边令 $k\to\infty$,则得

$$y^* = y_i + hf(x_{i+1}, y^*)$$

因而

$$\lim_{k \to \infty} y_{i+1}^{(k)} = y^* = y_{i+1}$$

例 16 考虑中点方法

$$y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$$

- (1) 证明它是二阶方法;
- (2) 通过计算初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -y & 0 \le x \le 3.0\\ y(0) = 1 \end{cases}$$

说明中点方法是不稳定的. 取步长 h=0.25,用 Euler 法求 y_1 ,问题准确解是 $y(x)=e^{-x}$.

分析 借助于 Taylor 展开,证明方法的局部截断误差为 $O(h^3)$

解 (1) 设
$$y(x_n) = y_n$$
, $y(x_{n-1}) = y_{n-1}$, 局部截断误差为
$$y(x_{n+1}) - y_{n+1} = y(x_{n+1}) - [y(x_{n-1}) + 2hf(x_n, y(x_n))]$$
$$= y(x_{n+1}) - y(x_{n-1}) - 2hy'(x_n)$$
$$= \left[y(x_n) + hy'(x_n) + \frac{h^2}{2!} y''(x_n) + \frac{h^3}{3!} y'''(\xi_n) \right]$$
$$- \left[y(x_n) - hy'(x_n) + \frac{h^2}{2!} y''(x_n) - \frac{h^3}{3!} y'''(\eta_n) \right] - 2hy'(x_n)$$
$$= \frac{1}{6} (y'''(\xi_n) + y'''(\eta_n))h^3$$

其中 $\xi_n \in (x_n, x_{n+1})$, $\eta_n \in (x_{n-1}, x_n)$. 因而中点公式是一个二阶方法.

(2)
$$\frac{1}{12} f(x, y) = -y, \quad x_0 = 0, \quad y_0 = 1, \quad h=0.25, \quad x_n = nh \quad (n=0, 1, 2, \dots, 12)$$

$$y_0 = 1$$

$$y_1 = y_0 - hy_0 = (1 - h)y_0 = 0.75$$

$$y_{n+1} = y_{n-1} - 2hy_n = -0.5y_n + y_{n-1} \quad (n = 1, 2, \dots, 11)$$

利用中点方法计算结果列于下表. 由表可见了当 $n \ge 8$ 时解 y_n 出现振荡现象,且解 y_n 越来越偏移 $y(x_n)$. 因而中点方法是不稳定的.

n	χ_n	Уn	$y(x_n)$	$ y(x_n)-y_n $
0	0.00	1	1	0
1	0.25	0.75	0.778 800 8	0.028 800 8
2	0.50	0.625	0.606 530 7	0.013 469 3
3	0.75	0.437 5	0.472 366 6	0.034 866 6
4	1.00	0.460 25	0.367 879 4	0.038 370 6
5	1.25	0.234 375	0.286 504 8	0.052 129 8
6	1.50	0.289 062 5	0.223 130 2	0.065 932 3
7	1.75	0.089 843 8	0.173 773 9	0.083 930 1
8	2.00	0.244 140 6	0.135 335 3	0.108 805 3
9	2.25	-0.032 226 6	0.105 399 2	0.137 625 1
10	2.50	0.260 253 9	0.082 085 0	0.178 168 9
11	2.75	-0.162 353 5	0.063 279	0.168 746 19
12	3.00	0.341 430 7	0.049 707 1	0.291 723 5

例 17 讨论梯形公式求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -\lambda y\\ y(0) = a \end{cases}$$

的稳定性(这里 $\lambda > 0$ 为实数).

分析 所谓讨论稳定性,实际上就是讨论当对步长 h 作什么样的限制时梯形公式是稳定的.

解 因为 $f(x,y) = -\lambda y$, 故梯形公式为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
$$y_{n+1} = y_n + \frac{h}{2} (-\lambda y_n - \lambda y_{n+1})$$

整理成显格式为

$$y_{n+1} = \left(\frac{2-\lambda h}{2+\lambda h}\right) y_n = \left(\frac{2-\lambda h}{2+\lambda h}\right)^2 y_{n-1} = \dots = \left(\frac{2-\lambda h}{2+\lambda h}\right)^{n+1} y_0$$

设初值 y_0 有小扰动 δ_0 , 于是有

$$y_{n+1} + \delta_{n+1} = \left(\frac{2 - \lambda h}{2 + \lambda h}\right)^{n+1} (y_0 + \delta_0)$$

与上式相减,则

$$\delta_{n+1} = \left(\frac{2 - \lambda h}{2 + \lambda h}\right)^{n+1} \delta_0$$

显然,对任意步长 h>0,都有 $\left|\frac{2-\lambda h}{2+\lambda h}\right| \leq 1$,从而

$$\left|\delta_{n+1}\right| \le \left|\delta_0\right|, \quad (n=1,2,\cdots)$$

即梯形公式对任意步长 h>0 是稳定的,也说梯形公式是无条件稳定的.

例 18 讨论求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -\lambda y\\ y(0) = a \end{cases}$$

的二阶中点公式

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n))$$

的稳定性 $(\lambda > 0$ 为实数).

分析 同上题一样,本题主要是要讨论当步长 h 在什么范围内时所给公式稳定. 解 因 $f(x,y) = -\lambda y$,所以中点公式为

$$y_{n+1} = y_n + h[-\lambda(y_n + \frac{h}{2}(-\lambda y_n))]$$

$$y_{n+1} = (1 - \overline{h} + \frac{1}{2}\overline{h}^2)y_n = \dots = (1 - \overline{h} + \frac{1}{2}\overline{h}^2)^{n+1}y_0$$

设初值有小扰动 δ_0 ,则

$$y_{n+1} + \delta_{n+1} = (1 - \bar{h} + \frac{1}{2}\bar{h}^2)^{n+1}(y_0 + \delta_0)$$

与上式相减有

$$\delta_{n+1} = (1 - \overline{h} + \frac{1}{2} \overline{h}^2)^{n+1} \delta_0$$

显然当且仅当 $\left|1-\bar{h}+\frac{1}{2}\bar{h}^2\right| \le 1$ 时 $\left|\delta_{n+1}\right| \le \left|\delta_0\right|$, 即所给格式关于初值稳定.解

$$\left|1 - \overline{h} + \frac{1}{2}\overline{h}^2\right| \le 1\overline{q}$$

$$\overline{h} \le 2$$
 \mathbb{P} $h \le \frac{2}{\lambda}$

所以当步长 $h \leq \frac{2}{\lambda}$ 时二阶中点公式关于初值稳定,它是有条件稳定的.

例 19 证明:对初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) & a \le x \le b\\ y(a) = y_0 \end{cases}$$

当方程的右端函数 f(x,y) 在其定义域上关于 y 满足 Lipschitz 条件时,标准四阶 Runge-Rutta 方法是收敛的.

分析 利用已知条件和标准四阶 Runge-Rutta 公式验证标准四阶 Runge-Rutta 公式的增量函数 $\varphi(x,y,h)$ 关于 y 满足 Lipschitz 条件,从而由判别单步法收敛定理得出标准四阶 Runge-Rutta 方法收敛.

证 四阶标准 Range-Kutta 公式为

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6} [K_1 + 2K_2 + 2K_3 + K_4] \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2} K_1) \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2} K_2) \\ K_4 = f(x_n + h, y_n + h K_3) \end{cases}$$

显然 Runge-Rutta 方法的增量函数

$$\varphi(x, y, h) = \frac{1}{6} [K_1(x, y, h) + 2K_2(x, y, h) + 2K_3(x, y, h) + K_4(x, y, h)]$$

其中

$$K_1(x, y, h) = f(x, y)$$

$$K_2(x, y, h) = f(x + \frac{h}{2}, y + \frac{h}{2}K_1(x, y, h))$$

$$K_3(x, y, h) = f(x + \frac{h}{2}, y + \frac{h}{2}K_2(x, y, h))$$

$$K_4(x, y, h) = f(x + h, y + hK_3(x, y, h))$$

由于 f(x, y) 关于 y 满足 Lipschitz 条件, 从而

$$\begin{aligned} & \left| K_{1}(x, y, h) - K_{1}(x, y^{*}, h) \right| = \left| f(x, y) - f(x, y^{*}) \right| \leq L \left| y - y^{*} \right| \\ & \left| K_{2}(x, y, h) - K_{2}(x, y^{*}, h) \right| \\ & = \left| f(x + \frac{h}{2}, y + \frac{h}{2} K_{1}(x, y, h)) - f(x + \frac{h}{2}, y^{*} + \frac{h}{2} K_{1}(x, y^{*}, h)) \right| \\ & \leq L \left| y + \frac{h}{2} K_{1}(x, y, h) - (y^{*} + \frac{h}{2} K_{1}(x, y^{*}, h)) \right| \\ & \leq L \left| y - y^{*} \right| + \frac{1}{2} h L \left| y - y^{*} \right| \\ & = L (1 + \frac{1}{2} h L) \left| y - y^{*} \right| \end{aligned}$$

同理可得以下不等式

$$\left| K_3(x, y, h) - K_3(x, y^*, h) \right| \le L[(1 + \frac{1}{2}hL) + \frac{1}{4}(hL)^2] \left| y - y^* \right|$$

$$\left| K_4(x, y, h) - K_4(x, y^*, h) \right| \le L[1 + hL + \frac{1}{2}(hL)^2 + \frac{1}{4}(hL)^3] \left| y - y^* \right|$$

于是作为 $K_i(i=1,2,3,4)$ 线性组合的 $\varphi(x,y,h)$ 在 $a \le x \le b$, $-\infty < y < +\infty$, $0 \le h \le h_0$ 上有

$$\left| \varphi(x, y, h) - \varphi(x, y^*, h) \right| \le L \left[1 + \frac{1}{2} h_0 L + \frac{1}{6} (h_0 L)^2 + \frac{1}{24} (h_0 L^3) \right] \left| y - y^* \right| = \overline{L} \left| y - y^* \right|$$

即 $\varphi(x,y,h)$ 关于 y 满足 Lipschitz 条件, 其 Lipschitz 常数为

$$\overline{L} = L\left[1 + \frac{1}{2}h_0L + \frac{1}{6}(h_0L)^2 + \frac{1}{24}(h_0L)^3\right]$$

例 20 验证公式

$$y_{n+1} = y_n + h\varphi(x_n, y_n, h)$$

是二阶 Runge-Kutta 方法,这里

$$\varphi(x, y, h) = \frac{1}{2} [f(x, y) + f(x + h, y + hf(x, y))]$$

若 L_0 是 f 关于 y 的 Lipschitz 常数,验证

$$L = L_0 (1 + \frac{h}{2} L_0)$$

是 φ 关于y的 Lipschitz 常数.

分析 一个数值方法是不是二阶 Runge-Kutta 方法,关键是它是否属于二阶 Runge-Kutta 方法一般形式的特殊情形.

解 二阶 R-K 方法的一般式为

$$\begin{cases} y_{n+1} = y_n + h(w_1 K_1 + w_2 K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \alpha_2 h, y_n + h\beta_{21} K_1) \end{cases}$$
 (1)

经 Taylor 展开,可推得(1)中的参数 $w_1, w_2, \alpha_2, \beta_{21}$ 应满足方程组

$$\begin{cases} w_1 + w_2 = 1 \\ w_2 \alpha_2 = \frac{1}{2} \\ w_2 \beta_{21} = \frac{1}{2} \end{cases}$$

本题中的公式可写成

$$\begin{cases} y_{n+1} = y_n + h(\frac{1}{2}K_1 + \frac{1}{2}K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h, y + hK_1) \end{cases}$$

它对应于公式(1)中的 $w_1 = w_2 = \frac{1}{2}$, $\alpha_2 = \beta_{21} = 1$. 故它是二阶 Runge-Kutta 方法.

对任意
$$x, y^* \in R$$
,因为

$$\left| \varphi(x, y, h) - \varphi(x, y^*, h) \right|$$

$$= \frac{1}{2} \left| [f(x,y) + f(x+h,y+hf(x,y))] - [f(x,y^*) + f(x+h,y^*+hf(x,y^*))] \right|$$

$$\leq \frac{1}{2} \left| f(x,y) - f(x,y^*) \right| + \frac{1}{2} \left| f(x+h,y+hf(x,y)) - f(x+h,y^*+hf(x,y^*)) \right|$$
(2)

而已知 L_0 是 f 关于 y 的 Lipschitz 常数, 所以有

$$|f(x, y) - f(x, y^*)| \le L_0 |y - y^*|$$

又

$$\begin{aligned} \left| f(x+h, y+hf(x, y)) - f(x+h, y^* + hf(x, y^*)) \right| \\ &= \left| f(x+h, y+hf(x, y)) - f(x+h, y^* + hf(x, y)) \right| \\ &+ f(x+h, y^* + hf(x, y)) - f(x+h, y^* + hf(x, y^*)) \right| \\ &\leq L_0 \left| y - y^* \right| + L_0 h \left| f(x, y) - f(x, y^*) \right| \\ &\leq L_0 \left| y - y^* \right| + L_0 h L_0 \left| y - y^* \right| \\ &= (L_0 + L_0^2 h) \left| y - y^* \right| \end{aligned}$$

代入式 (2), 得

$$\left| \phi(x, y, h) - \phi(x, y^*, h) \right| \le \left(\frac{1}{2} L_0 + \frac{1}{2} (L_0 + L_0^2 h) \right) \left| y - y^* \right| = L_0 \left(1 + \frac{h}{2} L_0 \right) \left| y - y^* \right|$$

$$\Leftrightarrow L = L_0 \left(1 + \frac{h}{2} L_0 \right),$$

则有

$$|\phi(x, y, h) - \phi(x, y^*, h)| \le L|y - y^*|$$

即已证得若 L_0 是 f 关于 y 的 Lipschitz 常数,则 $L = L_0(1 + \frac{h}{2}L_0)$ 是 ϕ 关于 y 的 Lipschitz 常数.

例 21 证明:如下 Runge-Kutta 公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_2 + K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + th, y_n + thK_1) \\ K_3 = f(x_n + (1-t)h, y_n + (1-t)hK_1) \end{cases}$$

对任意参数 t 是二阶公式.

分析 本题所求解的初值问题为 $y' = f(x, y), y(x_0) = y_0$. 为建立一个数值公式并指明其阶数,Taylor 展开法是最常用的方法. 观察本题特点,除了用到一元函数的 Taylor 展开外,还要将 K_2 和 K_3 中的 f在 (x_n, y_n) 点进行二元函数的 Taylor 展开,以便于整理讨论.

证 由一元函数的 Taylor 展开有

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + \frac{y'''(\xi_n)}{3!}h^3$$
因为 $y' = f(x, y), \quad y'' = f'_x(x, y) + f'_y(x, y)f(x, y),$ 所以
$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n)) + \frac{h^2}{2}[f'_x(x_n, y(x_n))] + \frac{y'''(\xi_n)}{3!}h^3$$

$$+ f'_y(x_n, y(x_n))f(x_n, y(x_n))] + \frac{y'''(\xi_n)}{3!}h^3$$
(1)

又由二元函数的 Taylor 展开有

$$K_2 = f(x_n, y_n) + thf_x'(x_n, y_n) + thf_y'(x_n, y_n) f(x_n, y_n) + O(h^2)$$

$$K_3 = f(x_n, y_n) + (1 - t)hf_x'(x_n, y_n) + (1 - t)hf_y'(x_n, y_n) f(x_n, y_n) + O(h^2)$$

相加则有

$$K_2 + K_3 = 2f(x_n, y_n) + hf'_x(x_n, y_n) + hf'_y(x_n, y_n)f(x_n, y_n) + O(h^2)$$

代入所给公式有

$$y_{n+1} = y_n + \frac{h}{2}(K_2 + K_3)$$

$$= y_n + hf(x_n, y_n) + \frac{h^2}{2} [f'_x(x_n, y_n) + f'_y(x_n, y_n)f(x_n, y_n)] + O(h^3)$$

为考虑局部截断误差,设 $y_n = y(x_n)$,于是上式成为

$$y_{n+1} = y_n + hf(x_n, y(x_n)) + \frac{h^2}{2} [f'_x(x_n, y(x_n)) + f'_y(x_n, y(x_n)) f(x_n, y(x_n)) + O(h^3)]$$
(2)

比较式(1)与式(2)则知局部截断误差为

$$y(x_{n+1}) - y_{n+1} = O(h^3)$$

所以本题所给 Runge-Kutta 公式对任意参数 t 是二阶公式.

例 22 用二阶 Taylor 展开法求初值问题

$$\begin{cases} \frac{dy}{dx} = x^2 + y^2\\ y(1) = 1 \end{cases}$$

的解在 x=1.5 时的近似值(取步长 h=0.25,小数点后至少保留 5 位).

解 二阶 Taylor 展开公式为

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + O(h^3)$$

因 $y' = x^2 + y^2$, $y'' = 2x + 2yy' = 2x + 2y(x^2 + y^2)$, 代入上式并略去高阶项 $O(h^3)$ 则得近似求解公式

$$y_{n+1} = y_n + h(x_n^2 + y_n^2) + \frac{h^2}{2} [2x_n + 2y_n(x_n^2 + y_n^2)]$$

由 $y(1) = y_0 = 1$ 计算得

$$y(1.25) \approx y_1 = 1.68750$$

 $y(1.50) \approx y_2 = 3.333298$

例 23 试建立解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的如下数值算法

$$y_{n+1} = y_{n-1} + \frac{h}{3}(f_{n+1} + 4f_n + f_{n-1})$$

其中 $f_i = f(x_i, y_i)$ (i = n-1, n, n+1).

分析 数值积分法是建立求解该初值问题计算格式的常用方法之一.

解 初值问题显然等价于如下积分问题

$$y(x) = y(x_{n-1}) + \int_{x_{n-1}}^{x} f(x, y(x)) dx$$

固定 $x = x_{n+1}$ 有

$$y(x_{n+1}) = y(x_{n-1}) + \int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) dx$$

采用 Simpson 求积公式则有

$$y(x_{n+1}) \approx y(x_{n-1}) + \frac{2h}{6} [f(x_{n+1}, y(x_{n+1})) + 4f(x_n, y(x_n)) + f(x_{n-1}, y(x_{n-1}))]$$

从而得到数值方法

$$y_{n+1} = y_{n-1} + \frac{h}{3} [f(x_{n+1}, y_{n+1}) + 4f(x_n, y_n) + f(x_{n-1}, y_{n-1})]$$

例 24 试建立求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的如下数值格式

$$y_{n+1} = y_n + \frac{h}{2}(3f_n - f_{n-1})$$

其中 $f_n = f(x_n, y_n)$, $f_{n-1} = f(x_{n-1}, y_{n-1})$, 并说明这是几阶格式.

分析 除上题中的数值积分法外, Taylor 展开法是建立数值格式的最重要方法, 也是最本质的方法.

解 由 Taylor 展开式有

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + \frac{y'''(\xi_n)}{3!}h^3$$
 (1)

再把 $f(x_{n-1}, y(x_{n-1})) = y'(x_{n-1})$ 在 x_n 点 Taylor 展开有

$$y'(x_{n-1}) = y'(x_n) + y''(x_n)(-h) + \frac{y'''(\eta_n)}{2!}(-h)^2$$

于是

$$y(x_n) + \frac{h}{2} [3y'(x_n) - y'(x_{n-1})]$$

$$= y(x_n) + \frac{h}{2} [3y'(x_n) - (y'(x_n) - hy''(x_n) + \frac{h^2}{2} y'''(\eta_n))]$$

$$= y(x_n) + hy'(x_n) + \frac{h^2}{2} y''(x_n) - \frac{h^3}{4} y'''(\eta_n)$$

与式(1)右端比较有

$$y(x_{n+1}) = y(x_n) + \frac{h}{2} [3y'(x_n) - y'(x_{n-1})] + O(h^3)$$
 (2)

由式 (2) 略去 $O(h^3)$, 则得欲建立格式

$$y_{n+1} = y_n + \frac{h}{2} [3f(x_n, y_n) - f(x_{n-1}, y_{n-1})]$$

为考虑局部截断误差,设 $y(x_n) = y_n$, $y(x_{n-1}) = y_{n-1}$,于是所建立格式可写为

$$y_{n+1} = y(x_n) + \frac{h}{2} [3y'(x_n) - y'(x_{n-1})]$$
 (3)

从而局部截断误差

$$y(x_{n+1}) - y_{n+1} = O(h^3)$$

它是二阶格式.

例 25 设有求解常微分方程初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的如下线性二步显格式

$$y_{n+1} = \alpha_0 y_n + \alpha_1 y_{n-1} + h(\beta_0 f_n + \beta_1 f_{n-1})$$

其中 $f_n = f(x_n, y_n)$, $f_{n-1} = f(x_{n-1}, y_{n-1})$. 试确定参数 $\alpha_0, \alpha_1, \beta_0$ 和 β_1 , 使该格式成为三阶格式.

分析 确定参数以使所讨论格式具有一定阶数,通常主要是通过 Taylor 展开有关函数,经整理后比较 h 幂的系数以列出求参数的等式.

解 由 Taylor 展开有

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + \frac{y'''(x_n)}{3!}h^3 + \frac{y^{(4)}(\xi_n)}{4!}h^4$$
 (1)

为考虑局部截断误差,设 $y_n = y(x_n)$, $y_{n-1} = y(x_{n-1})$,于是所给格式可写为

$$y_{n+1} = \alpha_0 y(x_n) + \alpha_1 y(x_{n-1}) + h(\beta_0 f(x_n, y(x_n)) + \beta_1 f(x_{n-1}, y(x_{n-1}))$$

= $\alpha_0 y(x_n) + \alpha_1 y(x_{n-1}) + h(\beta_0 y'(x_n) + \beta_1 y'(x_{n-1}))$ (2)

分别将 $y(x_{n-1})$, $y'(x_{n-1})$ 在 x_n 处 Taylor 展开有

$$y(x_{n-1}) = y(x_n) - y'(x_n)h + \frac{y''(x_n)}{2!}h^2 - \frac{y'''(x_n)}{3!}h^3 + \frac{y^{(4)}(\eta_n)}{4!}h^4$$

$$y'(x_{n-1}) = y'(x_n) - y''(x_n)h + \frac{y'''(x_n)}{2!}h^2 - \frac{y^{(4)}(\xi_n)}{3!}h^3$$

代入式(2)整理后有

$$y_{n+1} = (\alpha_0 + \alpha_1)y(x_n) + (-\alpha_1 + \beta_0 + \beta_1)hy'(x_n) + (\frac{\alpha_1}{2} - \beta_1)h^2y''(x_n)$$

$$+ (-\alpha_1 + 3\beta_1)\frac{h^3}{3!}y'''(x_n) + \frac{\alpha_1h^4}{4!}y^{(4)}(\eta_n) - \frac{\beta_1h^4}{3!}y^{(4)}(\xi_n)$$
(3)

比较式(1)与(3)h的同次幂系数使有

$$\begin{cases} h^{0}: \alpha_{0} + \alpha_{1} = 1 \\ h^{1}: -\alpha_{1} + \beta_{0} + \beta_{1} = 1 \end{cases}$$

$$h^{2}: \alpha_{1} - 2\beta_{1} = 1$$

$$h^{3}: -\alpha_{1} + 3\beta_{1} = 1$$

$$(4)$$

解方程组(4)有 $\alpha_0=-4$, $\alpha_1=5$, $\beta_0=4$, $\beta_1=2$,此时式(1)与式(3)相减有

$$y(x_{n+1}) - y_{n+1} = \frac{5h^4}{4!} y^{(4)}(\eta_n) - \frac{2h^4}{3!} y^{(4)}(\xi_n) = O(h^4)$$

即所给格式是三阶格式, 具体为

$$y_{n+1} = -4y_n + 5y_{n-1} + h(4f_n + 2f_{n-1})$$

例 26 试推导求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(xy) \\ y(x_0) = y_0 \end{cases}$$

的如下数值格式

$$y_{n+1} = y_n + hf(x_n y_n) + \frac{h^2}{2} f'(x_n y_n) [y_n + x_n f(x_n y_n)] \quad (n = 0, 1, 2, \dots)$$

并说明它是多少阶格式.

分析 Taylor 展开是建立数值格式并推导其局部截断误差的重要方法.

解 由 Taylor 展开有

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + \frac{y'''(\xi_n)}{3!}h^3$$

因为 y' = f(xy), y'' = f'(xy)(y + xy') = f'(xy)(y + xf(xy))于是上式成为

$$y(x_{n+1}) = y(x_n) + hf(x_n y(x_n)) + \frac{h^2}{2} f'(x_n y(x_n))(y(x_n) + x_n f(x_n y(x_n))) + \frac{y'''(\xi_n)}{3!} h^3$$

由上述式子中舍掉局部截断误差 $\frac{y'''(\xi_n)}{3!}h^3$ 便得数值格式

$$y_{n+1} = y_n + hf(x_n y_n) + \frac{h^2}{2} f'(x_n y_n) (y_n + x_n f(x_n y_n))$$

为考虑局部截断误差,设 $y_n = y(x_n)$,于是

$$y(x_{n+1}) - y_{n+1} = \frac{y'''(\xi_n)}{3!}h^3 = O(h^3)$$

所以所给数值格式是二阶格式.

例 27 求系数 a, b, c 和 d 使数值计算公式

$$y_{n+1} = ay_{n-1} + h(by'_{n+1} + cy'_n + dy'_{n-1})$$

有
$$y(x_{n+1}) - y_n = O(h^5)$$

分析 本题利用有关函数 Taylor 展开, 经整理后比较 h 幂的系数来确定参数 a, b, c, d.

解 设
$$y_{n-1} = y(x_{n-1}), y'_n = y'(x_n), y'_{n-1} = y'(x_{n-1}), y'_{n+1} = y'(x_{n+1})$$

则

$$y_{n+1} = ay_{n-1} + h(by'_{n+1} + cy'_n + dy'_{n-1})$$

= $ay(x_n - h) + bhy'(x_n + h) + chy'(x_n) + dhy'(x_n - h)$

都在 x_n 处作 Taylor 展开到 $y^{(4)}(x)$, 即

$$y_{n+1} = a[y(x_n) - hy'(x_n) + \frac{1}{2!}h^2y''(x_n) - \frac{1}{3!}h^3y'''(x_n)$$

$$+ \frac{1}{4!}h^4y^{(4)}(x_n)] + b[hy'(x_n) + h^2y''(x_n)$$

$$+ \frac{1}{2!}h^3y'''(x_n) + \frac{1}{3!}h^4y^{(4)}(x_n)] + chy'(x_n)$$

$$+ d[hy'(x_n) - h^2y''(x_n) + \frac{1}{2!}h^3y'''(x_n)$$

$$- \frac{1}{3!}h^4y^{(4)}(x_n)] + O(h^5)$$

再接h作升幂排列,即

$$y_{n+1} = ay(x_n) + (-a+b+c+d)hy'(x_n) + \frac{1}{2!}h^2(a+2b-2d)y''(x_n)$$

$$+ \frac{1}{3!}h^3(-a+3b+3d)y'''(x_n) + \frac{1}{4!}h^4(a+4b-4d)y^{(4)}(x_n) + O(h^5)$$
 而 $y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{1}{2!}h^2y''(x_n) + \frac{1}{3!}h^3y'''(x_n) + \frac{1}{4!}y^{(4)}(x_n) + O(h^5)$ 要使 $y(x_{n+1}) - y_{n+1} = O(h^5)$,比较 h 的同次幂系数,必有

$$\begin{cases} h^{0}: a = 1 \\ h^{1}: -a + b + c + d = 1 \\ h^{2}: a + 2b - 2d = 1 \\ h^{3}: -a + 3b + 3d = 1 \\ h^{4}: a + 4b - 4d = 1 \end{cases}$$

$$\begin{cases} a = 1 \\ b = \frac{1}{3} \\ c = \frac{4}{3} \\ d = \frac{1}{3} \end{cases}$$

例 28 证明: 预报一校正公式

$$\begin{cases} y_{n+1}^{(p)} = y_n + \frac{h}{2} [3f(x_n, y_n) - f(x_{n-1}, y_{n-1})] \\ y_{n+1} = y_n + \frac{h}{12} [5f(x_{n+1}, y_{n+1}^{(p)}) + 8f(x_n, y_n) - f(x_{n-1}, y_{n-1})] \end{cases}$$
(1)

是一个三阶的方法.

分析 本题仍基于 Taylor 展开的方法.

证 将(1)代入(2)得

$$y_{n+1} = y_n + \frac{h}{12} \left[5f(x_{n+1}, y_n + \frac{h}{2}(3f(x_n, y_n) - f(x_{n-1}, y_{n-1}))) + 8f(x_n, y_n) - f(x_{n-1}, y_{n-1}) \right]$$

所以预报一校正公式(1)~(2)实际上是一个 2 步的显式公式. 设 $y(x_{n-1}) = y_{n-1}$, $y(x_n) = y_n$ 其局部截断误差为

$$\begin{split} R_{n+1} &= y(x_{n+1}) - y_{n+1} = y(x_{n+1}) - y(x_n) - \frac{h}{12} [5f(x_{n+1}, y(x_n) + \frac{h}{2}(3f(x_n, y(x_n)) \\ &- f(x_{n-1}, y(x_{n-1})))) + 8f(x_n, y(x_n)) - f(x_{n-1}, y(x_{n-1}))] \\ &= y(x_{n+1}) - y(x_n) - \frac{h}{12} [5f(x_{n+1}, y(x_n) + \frac{h}{2}(3y'(x_n) \\ &- y'(x_{n-1}))) + 8y'(x_n) - y'(x_{n-1})] \\ &= y(x_{n+1}) - y(x_n) - \frac{h}{12} [5f(x_{n+1}, y(x_{n+1})) + 8y'(x_n) - y'(x_{n-1})] \\ &+ \frac{5h}{12} [f(x_{n+1}, y(x_{n+1})) - f(x_{n+1}, y(x_n) + \frac{h}{2}(3y'(x_n) - y'(x_{n-1})))] \end{split}$$

$$= y(x_{n+1}) - y(x_n) - \frac{h}{12} [5y'(x_{n+1}) + 8y'(x_n) - y'(x_{n-1})]$$

$$+ \frac{5h}{12} f'_y(x_{n+1}, \eta_n) [y(x_{n+1}) - (y(x_n) + \frac{h}{2} (3y'(x_n) - y'(x_{n-1})))]$$

其中 η_n 介于 $y(x_{n+1})$ 与 $y(x_n)+\frac{h}{2}[3y'(x_n)-y'(x_{n-1})]$ 之间.

记

$$R_{n+1}^{(1)} = y(x_{n+1}) - [y(x_n) + \frac{h}{2}(3y'(x_n) - y'(x_{n-1}))]$$

$$R_{n+1}^{(2)} = y(x_{n+1}) - y(x_n) - \frac{h}{12}[5y'(x_{n+1}) + 8y'(x_n) - y'(x_{n-1})]$$

则

$$R_{n+1} = R_{n+1}^{(2)} + \frac{5h}{12} f_y'(x_{n+1}, \eta_n) R_{n+1}^{(1)}$$
(3)

易知 $R_{n+1}^{(1)}$ 和 $R_{n+2}^{(2)}$ 分别为预测公式(1)和校正公式(2)的局部截断误差.

$$R_{n+1}^{(1)} = y(x_{n+1}) - y(x_n) - \frac{h}{2}(3y'(x_n) - y'(x_{n-1}))$$

$$= hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4) - \frac{3}{2}hy'(x_n)$$

$$+ \frac{h}{2}[y'(x_n) - hy''(x_n) + \frac{h^2}{2}y'''(x_n) + O(h^3)]$$

$$= \frac{5}{12}h^3y'''(x_n) + O(h^4)$$
(4)

$$R_{n+1}^{(2)} = y(x_{n+1}) - y(x_n) - \frac{5}{12}hy'(x_{n+1}) - \frac{2}{3}hy'(x_n) + \frac{1}{12}hy'(x_{n-1})$$

$$= hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + \frac{h^4}{24}y^{(4)}(x_n) + O(h^5)$$

$$- \frac{5}{12}h[y'(x_n) + hy''(x_n) + \frac{h^2}{2}y'''(x_n) + \frac{h^3}{6}y^{(4)}(x_n) + O(h^4)]$$

$$- \frac{2}{3}hy'(x_n) + \frac{1}{12}h[y'(x_n) - hy''(x_n) + \frac{h^2}{2}y'''(x_n)$$

$$- \frac{h^3}{6}y^{(4)}(x_n) + O(h^4)]$$

$$= -\frac{1}{24}h^4y^{(4)}(x_n) + O(h^5)$$
(5)

将(4)和(5)代入(3)得

$$\begin{split} R_{n+1} &= -\frac{1}{24} h^4 y^{(4)}(x_n) + O(h^5) + \frac{5h}{12} \left[\frac{5}{12} h^3 y'''(x_n) + O(h^4) \right] f_y'(x_{n+1}, \eta_n) \\ &= \left[-\frac{1}{24} y^{(4)}(x_n) + \frac{25}{144} y'''(x_n) f_y'(x_{n+1}, \eta_n) \right] h^4 + O(h^5) \end{split}$$

因而预报一校正公式(1)~(2)是一个三阶方法.

例 29 给定常微分方程初值问题

$$\begin{cases} \frac{dy}{dx} = \frac{2}{3}xy^{-2}, & x \in [0, 1.2] \\ y(0) = 1 \end{cases}$$
 (1)

- (1) 用四阶 Adams 显式公式计算,并与精确解比较. 取 h=0.1.
- (2) 用四阶 Adams 预报一校正公式计算,并与精确解相比较. 取 h=0.1.

解 记
$$f(x, y) = \frac{2}{3}xy^{-2}$$
, $h = 0.1$, $x_n = nh$ $(n = 0, 1, 2, \dots, 12)$

用经典的 Runge-Kutta 公式提供初始值 y_1 , y_2 , y_3 , 计算公式如下:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) = \frac{2x_n}{3y_n^2} \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) = \frac{2(x_n + 0.05)}{3(y_n + 0.05K_1)^2} \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) = \frac{2(x_n + 0.05)}{3(y_n + 0.05K_2)^2} \\ K_4 = f(x_n + h, y_n + hK_3) = \frac{2(x_n + 0.1)}{3(y_n + 0.1K_3)^2} \\ (n = 0, 1, 2) \end{cases}$$

计算可得 $y_0 = 1$, $y_1 = 1.003322$, $y_2 = 1.013159$, $y_3 = 1.029143$, 此外,
(1) 的精确解为 $y(x) = \sqrt[3]{1+x^2}$.

(1) 四阶 Adams 显式公式为

$$y_{n+1} = y_n + \frac{h}{24} [55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}]$$
 $(n = 3, 4, 5, \dots, 11)$

计算结果列表如下

n	χ_n	Уn	$y(x_n)$	$ y(x_n)-y_n $
4	0.4	1.050 695	1.050 718	0.000 023
5	0.5	1.077 171	1.077 217	0.000 046
6	0.6	1.107 865	1.107 932	0.000 066
7	0.7	1.142 086	1.142 165	0.000 079
8	0.8	1.179 190	1.179 274	0.000 084
9	0.9	1.128 606	1.218 689	0.000 084
10	1.0	1.259 842	1.259 921	0.000 079
11	1.1	1.302 487	1.302 559	0.000 072
12	1.2	1.346 199	1.346 263	0.000 065

(2) 四阶阿当姆斯预报一校正公式为

$$\begin{cases}
\overline{y}_{n+1} = y_n + \frac{h}{24} [55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}] \\
y_{n+1} = y_n + \frac{h}{24} [9\overline{f}_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}]
\end{cases} (n = 3, 4, 5, \dots 11)$$

计算结果列表如下

n	χ_n	y_n	$y(x_n)$	$ y(x_n)-y_n $
4	0.4	1.050 720	1.050 718	0.000 002
5	0.5	1.077 222	1.077 217	0.000 005
6	0.6	1.107 938	1.107 932	0.000 006
7	0.7	1.142 172	1.142 165	0.000 007
8	0.8	1.179 281	1.179 274	0.000 007
9	0.9	1.218 696	1.218 689	0.000 007
10	1.0	1.259 928	1.259 921	0.000 007
11	1.1	1.302 565	1.302 559	0.000 006
12	1.2	1.346 268	1.346 263	0.000 005

三、综合复习题

1. 用 Euler 方法计算初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 100y^2\\ y(0) = 0 \end{cases}$$

的解函数 y(x)在 x=0.3 时的近似值(取步长 h=0.1,小数点后至少保留 4 位).

2. 用 Euler 方法求

$$y(x) = \int_0^x e^{-t^2} dt$$

在 x=0.5, 1.0, 1.5, 2.0 处的近似值.

3. 用 Euler 预报一校正格式解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = 10x(1-y) & 0 \le x \le 1\\ y(0) = 0 \end{cases}$$

取 h=0.1, 保留 6 位有效数字, 并与精确解 $y(x)=1-e^{-5x^2}$ 相比较.

4. 取步长 h=0.2, 用标准四阶 Runge-Kutta 方法求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = x + y & 0 \le x \le 1\\ y(0) = 1 \end{cases}$$

并将计算结果与精确解比较.

5. 分别用 Euler 方法,改进的 Euler 方法和标准四阶 Runge-Kutta 公式求解初值问题

$$\begin{cases} \frac{dy}{dx} = y - \frac{2x}{y} & 0 \le x \le 1\\ y(0) = 0 \end{cases}$$

取步长 h=0.2.

6. 对初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -10y\\ y(x_0) = y_0 \end{cases}$$

讨论绝对稳定性对步长 h 的限制.

7. 试推证求解初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的格式

$$y_{n+1} = y_n + \frac{h}{4} [y'_n + 3f(x_n + \frac{2}{3}h, y_n + \frac{2}{3}hf(x_n, y_n))]$$

是二阶精度的,这里 $y'_n = f(x_n, y_n)$.

8. 求系数 a、b, 使求解常微分方程初值问题的数值解公式

$$y_{n+1} = y_n + h(ay'_n + by'_{n-1})$$

的局部截断误差为 $y(x_{n+1}) - y_{n+1} = O(h^3)$.

9. 分别用四阶 Adams 显式和隐式公式求初值问题

$$\begin{cases} \frac{dy}{dx} = -y + x + 1, & 0 \le x \le 1\\ y(0) = 1 \end{cases}$$

的数值解, 取步长 h=0.1.

10. (1) 叙述解常微分方程初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的某个单步法按步长 h 绝对稳定的概念.

(2) 求二阶 Runge-Kutta 方法

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_1 + K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h, y_n + hK_1) \end{cases}$$

的绝对稳定区域.

- (3) 证明: L上述方法的局部截断误差是 $O(h^3)$.
- 11. 证明: 求解公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{4}(K_1 + 3K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{3}, y_n + \frac{h}{3}K_1) \\ K_3 = f(x_n + \frac{2}{3}h, y_n + \frac{2h}{3}K_2) \end{cases}$$

是一个三阶方法.

12. 试求系数 a, b, c, 使 3 步公式

$$y_{n+1} = y_{n-2} + h(af_n + bf_{n-1} + cf_{n-2})$$

的阶数尽可能高,并写出其局部截断误差.

四、复习题答案

1.
$$y(0.1) \approx y_1 = 0.0000$$
, $y(0.2) \approx y_2 = 0.0010$, $y(0.3) \approx y_3 = 0.0050$

2.
$$y(0.5) \approx y_1 = 0.5$$
, $y(1.0) \approx y_2 = 0.88940$, $y(1.5) \approx y_3 = 1.07334$
 $y(2.0) \approx y_4 = 1.126040$

3. 如表

n	χ_n	y_n	\overline{y}_{n+1}	\mathcal{Y}_{n+1}	$y(x_n)$	$ y(x_n)-y_n $
0	0	0	0	0.05	0	0
1	0.1	0.05	0.145	0.183	0.487 71	0.001 229
2	0.2	0.183	0.346 4	0.362 740	0.181 269	0.001 731
3	0.3	0.362 740	0.553 918	0.547 545	0.362 372	0.003 700
4	0.4	0.547 545	0.728 527	0.705 905	0.550 671	0.003 126
5	0.5	0.705 905	0.852 952	0.823 543	0.713 495	0.007 591
6	0.6	0.823 543	0.929 417	0.901 184	0.834 701	0.011 159
7	0.7	0.901 184	0.970 355	0.947 628	0.913 706	0.012 522
8	0.8	0.947 628	0.989 526	0.973 290	0.959 238	0.011 611
9	0.9	0.973 290	0.997 329	0.986 645	0.982 578	0.009 288
10	1.0	0.986 645			0.993 262	0.006 617

4. 如表

n	0	1	2	3	4	5
χ_n	0	0.2	0.4	0.6	0.8	1.0
y_n	1	1.242 8	1.583 635 9	2.044 212 9	2.651 041 7	3.436 502 3
$y(x_n)$	1	1.242 8	1.583 64	2.044 24	2.651 08	3.436 56

6.
$$0 < h \le 0.2$$

8.
$$a = \frac{3}{2}, b = -\frac{1}{2}$$

9. 如表

χ_n	阿达姆斯显式法		阿达姆斯隐式法	
	y_n	$ y(x_n)-y_n $	y_n	$ y(x_n)-y_n $
0.3	初值		1.040 818	2.146×10^{-7}
0.4	1.070 323	2.874×10^{-6}	1.070 320	3.846×10^{-7}
0.5	1.106 536	4.816×10^{-6}	1.06 530	5.213×10^{-7}
0.6	1.148 819	6.772×10^{-6}	1.148 811	6.285×10^{-7}
0.7	1.196 594	8.090×10^{-6}	1.196 585	7.106×10^{-7}
0.8	1.249 338	9.192×10^{-6}	1.249 328	7.714×10^{-7}
0.9	1.306 580	9.954×10^{-6}	1.306 569	8.141×10^{-7}
1.0	1.367 890	1.052×10^{-5}	1.367 879	8.418×10^{-7}

10. (2) 绝对稳定区域是
$$\left|1+h\lambda+\frac{1}{2}(h\lambda)^2\right|<1$$

12.
$$a = \frac{9}{4}$$
, $b = 0$, $c = \frac{3}{4}$ 时, 公式的阶数最大, 其值为 3, 局部截断误差为

$$y(x_{n+1}) - y_{n+1} = \frac{3}{8}h^4y^4(x_n) + O(h^5) = O(h^4).$$