

Produktionsprogrammplanung

- ► Fokus auf das gesamte Produktprogramm (in ausreichend aggregierter Form) und die jeweiligen Produktionsstätten mit ihren logistischen Verflechtungen
- ▶ unternehmensweite (standort- und funktionsübergreifende) Koordination der erlös- und kostenwirksamen Entscheidungen für einen mittelfristigen Zeitraum
- ► **Abstimmung** der Vorstellungen des Absatz-, Beschaffungs- und Personalbereichs mit den Möglichkeiten und Erfordernissen der Produktion und der Logistik
- ► Berücksichtigung von

 - ▷ Beschäftigungsschwankungen, Arbeitszeitflexibilisierung

Jan Feb Mar Apr Mai Jun Jul Aug Sep Okt Nov Dez

Nachfrage

Nachfrage

Produktion

Synchronisation

(Günther/Tempelmeier (1991))

Synchronisation

(Günther/Tempelmeier (1991))

Synchronisation

(Günther/Tempelmeier (1991))

Nachfrage

Produktion

(Günther/Tempelmeier (1991))

Nachfrage Nachfrage

Produktion

(Günther/Tempelmeier (1991))

Nachfrage Nachfrage

Produktion

Planungsproblem bei gegebenen Nachfrageschwankungen:

- ► Ziel:
 - ▶ kostenminimale Glättung der Kapazitätsnutzung im Zeitablauf
 (= ,, Beschäftigungsglättung")
- ► Entscheidungsvariablen (primär): Produktionsmengen, Transportmengen, Beschaffungsmengen
- weitere Maßnahmen (sekundäre Entscheidungsvariablen):

 - > saisonbedingte Überstunden, Sonderschichten, Freischichten, Betriebsferien, Kurzarbeit
 - Stillegung von Betriebseinheiten, Personalbestandsanpassung
 - ▷ Fremdvergabe von Aufträgen, Lohnfertigung
- ▶ weitere Variablen: Lagerbestände, Fehlmengen

Entscheidungsrelevante Kosten

- variable Produktionskosten
- variable Beschaffungskosten
- ► Transportkosten
- Produktionsniveauänderungskosten
- Lagerkosten (Kapitalbindung)
- Lagerbetriebskosten
- ► Fehlmengenkosten

Planungsproblem in einer funktionsübergreifenden Perspektive:

- ► Einsatz des absatzpolitischen Instrumentariums zur **Steuerung der Nachfrage** (Anheizen in schwachen Perioden, Drosselung in nachfragestarken Perioden, Verlagerung von Nachfragemengen)
- ▶ Portfoliobildung durch Produktpolitik

Modelle zur Beschäftigungsglättung – Master Planning

Einstufige Ansätze

Grundmodell: Eine Fabrik

Annahmen:

- ▶ 1 Fabrik
- mehrere (End-)Produktgruppen ("Produkttypen")
- ► Planungshorizont: T Perioden [Wochen/Monate/Quartale]
- produkt- und periodenspezifische Nachfragemengen (keine explizite Modellierung der Nachfrager; der Distributionsprozess bleibt daher außerhalb der Betrachtung)
- ► Zielfunktion: Lagerkosten, Überstundenkosten

Indexmengen:

 \blacktriangleright \mathcal{K} ... die Menge der betrachteten Produkttypen

Variable:

- $ightharpoonup x_{kt}$... die Produktionsmenge für Produkt k in Periode t
- $ightharpoonup L_{kt}$... der Lagerbestand für Produkt k in Periode t
- $ightharpoonup U_t \dots$ die einzuplandende Zusatzkapazität (Überstunden) in Periode t

Daten:

- $ightharpoonup d_{kt} \dots$ die Nachfragemenge für Produkt k in Periode t
- $lackbox f_k^{\mathrm{P}}$... Produktionskoeffizient in bezug auf die personelle Kapazität
- $lackbox f_k^{
 m T}$... Produktionskoeffizient in bezug auf die technische Kapazität
- $lackbox b_t^{
 m T}$... die maximale technische Kapazität in Periode t
- $lackbox{}{} b_t^{
 m P}$... die maximale personelle Kapazität in Periode t
- $lackbox U_t^{
 m max}$... die maximale Zusatzkapazität in Periode t

Zielfunktionskoeffizienten:

- $ightharpoonup h_k$... Lagerkostensatz für Produkt k (GE pro ME und ZE)
- $ightharpoonup u_t \dots \ddot{\mathsf{U}}$ berstundenzuschlagssatz in Periode t (GE pro Kapazitätseinheit)

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} h_k \cdot L_{kt} + \sum_{t=1}^{T} u_t \cdot U_t$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \le U_t^{\max}$$

für alle t = 1, 2, ..., T

Beispiel II 3 Produkte, 12 Perioden

Produktspezifische Daten:

$Produkt\ k$	1	2	3
h_k	5.0	5.0	5.0
$f_k^{ m P}$	1.0	0.5	0.8
$f_k^{ m T}$	0.5	1.0	1.2
$L_k^{(0)}$	36	20	10

Periodenspezifische Daten:

Periode t	1	2	3	4	5	6	7	8	9	10	11	12
d_{1t}	100	90	60	150	10	50	100	250	60	40	100	180
d_{2t}	200	190	210	200	150	120	100	280	90	50	200	250
d_{3t}	10	140	10	150	100	200	90	50	190	80	90	150
u_t		6.0										
$b_t^{ m P}$		260										
$U_t^{ m max}$		100										
$b_t^{ m T}$		500										

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung:

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	295.5	500	260	260	0	100
4	411.5	500	260	260	23	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	260	260	32	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	204.5	500	206	260	0	100
11	352.0	500	260	260	0	100
12	487.5	500	260	260	100	100

Modellerweiterung: Bestandsrestriktionen

Beschäftigungsglättung: Bestandsrestriktionen

Beschäftigungsglättung: Bestandsrestriktionen

Annahmen:

- ▶ wie Grundmodell –
- produktbezogene Mindestbestände

$$L_{kt} \ge L_{kt}^{\min}$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

maximaler Gesamtbestand

$$\sum_{k \in \mathcal{K}} L_{kt} \le L_t^{\max}$$

$$(t=1,2,\ldots,T)$$

Beispiel II 3 Produkte, 12 Perioden

$$L_{\text{max}} = 70$$

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Bestandsrestriktionen):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	147	87	210	210	0	10	10	0
4	150	63	0	200	200	0	150	150	0
5	10	20	10	150	150	0	100	100	0
6	50	40	0	120	120	0	200	200	0
7	100	170	70	100	100	0	90	90	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	90	0	190	190	0
10	40	117	77	50	50	0	80	80	0
11	100	88	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Bestandsrestriktionen):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	130	70	210	210	0	10	10	0
4	150	80	0	200	200	0	150	150	0
5	10	20	10	150	150	0	100	100	0
6	50	40	0	120	120	0	200	200	0
7	100	170	70	100	100	0	90	90	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	90	0	190	190	0
10	40	110	70	50	50	0	80	80	0
11	100	95	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Bestandsrestriktionen):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	295.5	500	260	260	0	100
4	411.5	500	260	260	23	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	260	260	32	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	204.5	500	206	260	0	100
11	352.0	500	260	260	0	100
12	487.5	500	260	260	100	100

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Bestandsrestriktionen):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	U_t^{\max}
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	287.0	500	243	260	0	100
4	420.0	500	260	260	40	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	260	260	32	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	201.0	500	199	260	0	100
11	355.5	500	260	260	7	100
12	487.5	500	260	260	100	100

Modellerweiterung: Mindestzusatzkapazität (Diskretisierung)

Beschäftigungsglättung: Mindestzusatzkapazität

Annahmen:

- ▶ wie Grundmodell –

$$(t=1,2,\ldots,T)$$

– Modifikation Grundmodell –
 maximale Zusatzkapazität in Periode t

$$U_t \leq U_t^{\max} \cdot \gamma_t$$

$$(t = 1, 2, \dots, T)$$

ightharpoonup Wenn Zusatzkapazität, dann mindestens U_t^{\min} :

$$U_t \ge U_t^{\min} \cdot \gamma_t$$

$$(t = 1, 2, \dots, T)$$

Beispiel II 3 Produkte, 12 Perioden

- $L_{\text{max}} = 70$
- $V_{\min} = 50$

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Mindestzusatzkapazität):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	130	70	210	210	0	10	10	0
4	150	80	0	200	200	0	150	150	0
5	10	20	10	150	150	0	100	100	0
6	50	40	0	120	120	0	200	200	0
7	100	170	70	100	100	0	90	90	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	90	0	190	190	0
10	40	110	70	50	50	0	80	80	0
11	100	95	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Mindestzusatzkapazität):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	120	60	210	210	0	10	10	0
4	150	90	0	200	200	0	150	150	0
5	10	20	10	150	150	0	100	100	0
6	50	40	0	120	120	0	200	200	0
7	100	170	70	100	100	0	90	90	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	90	0	190	190	0
10	40	67	27	50	50	0	80	80	0
11	100	138	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Mindestzusatzkapazität):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	287.0	500	243	260	0	100
4	420.0	500	260	260	40	100
4 5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	260	260	32	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	201.0	500	199	260	0	100
11	355.5	500	260	260	7	100
12	487.5	500	260	260	100	100

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Mindestzusatzkapazität):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	U_t^{\max}
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	282.0	500	233	260	0	100
4	425.0	500	260	260	50	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	242	260	50	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	179.5	500	156	260	0	100
11	377.0	500	260	260	50	100
12	487.5	500	260	260	100	100

Modellerweiterung: Mindestproduktionsmengen (Diskretisierung)

Beschäftigungsglättung: Mindestproduktionsmengen

Annahmen:

- ▶ wie Grundmodell –

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

ightharpoonup Big-M-Methode

$$x_{kt} \leq M \cdot \chi_{kt}$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

ightharpoonup Wenn Produktion, dann mindestens X_k^{\min} :

$$x_{kt} \ge X_k^{\min} \cdot \chi_{kt}$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

Beispiel II 3 Produkte, 12 Perioden

- $L_{\text{max}} = 70$
- $V_{\min} = 50$
- $X_1^{\min} = 50, X_2^{\min} = 100, X_3^{\min} = 50$

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Mindestproduktionsmengen):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	120	60	210	210	0	10	10	0
4	150	90	0	200	200	0	150	150	0
5	10	20	10	150	150	0	100	100	0
6	50	40	0	120	120	0	200	200	0
7	100	170	70	100	100	0	90	90	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	90	0	190	190	0
10	40	67	27	50	50	0	80	80	0
11	100	138	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Mindestproduktionsmengen):

Periode t	d_{1t}	x_{1t}	L_{1t}	d_{2t}	x_{2t}	L_{2t}	d_{3t}	x_{3t}	L_{3t}
0			36			20			10
1	100	101	37	200	180	0	10	0	0
2	90	53	0	190	190	0	140	140	0
3	60	88	28	210	210	0	10	50	40
4	150	122	0	200	200	0	150	110	0
5	10	60	50	150	150	0	100	100	0
6	50	0	0	120	120	0	200	240	40
7	100	170	70	100	100	0	90	50	0
8	250	180	0	280	280	0	50	50	0
9	60	60	0	90	140	50	190	190	0
10	40	67	27	50	0	0	80	80	0
11	100	138	65	200	200	0	90	90	0
12	180	115	0	250	250	0	150	150	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Mindestproduktionsmengen):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	b_t^{T}	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	282.0	500	233	260	0	100
4	425.0	500	260	260	50	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	242	260	50	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	179.5	500	156	260	0	100
11	377.0	500	260	260	50	100
12	487.5	500	260	260	100	100

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Mindestproduktionsmengen):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	U_t^{\max}
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	314.0	500	233	260	0	100
4	393.0	500	260	260	50	100
5	300.0	500	215	260	0	100
6	408.0	500	252	260	0	100
7	245.0	500	260	260	0	100
8	430.0	500	260	260	100	100
9	398.0	500	232	260	50	100
10	129.5	500	131	260	0	100
11	377.0	500	260	260	50	100
12	487.5	500	260	260	100	100

Erweitertes Modell: Eine Fabrik, Fremdlieferanten (Make-or-Buy-Entscheidung)

Annahmen:

- ▶ wie Grundmodell –
- ► Erweiterung der Zielfunktion: Beschaffungskosten, variable Produktionskosten
 - c_k^{B} ... Fremdbezugskosten pro Mengeneinheit von Produkt k
 - $c_k^{
 m P}$... variable Produktionskosten (Materialkosten) von Produkt k
- produktspezifische Fremdlieferanten
 (keine explizite Modellierung der Lieferanten; der Beschaffungsprozess bleibt daher außerhalb der Betrachtung)
 - B_{kt} ... Beschaffungsmenge von Produkt k in Periode t

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{t=1}^T u_t \cdot U_t + \sum_{k \in \mathcal{K}} \sum_{t=1}^T c_k^{\mathrm{B}} \cdot B_{kt} + \sum_{k \in \mathcal{K}} \sum_{t=1}^T c_k^{\mathrm{P}} \cdot x_{kt}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} + B_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \le U_t^{\max}$$

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{t=1}^T u_t \cdot U_t + \sum_{k \in \mathcal{K}} \sum_{t=1}^T \left(c_k^{\mathrm{B}} - c_k^{\mathrm{P}} \right) \cdot B_{kt}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} + B_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \leq U_t^{\max}$$

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{t=1}^T u_t \cdot U_t + \sum_{k \in \mathcal{K}} \sum_{t=1}^T c_k^{\mathrm{B}'} \cdot B_{kt}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} + B_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \leq U_t^{\max}$$

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot L_{kt} + c_k^{\mathbf{B}'} \cdot B_{kt} \right) + \sum_{t=1}^{T} u_t \cdot U_t$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} + B_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \leq U_t^{\max}$$

Beispiel II 3 Produkte, 12 Perioden

$$ightharpoonup c_1^{B'} = 5, c_2^{B'} = 10, c_3^{B'} = 5$$

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Fremdbeschaffung):

Periode t	d_{1t}	x_{1t}	B_{1t}	L_{1t}	d_{2t}	x_{2t}	B_{2t}	L_{2t}	d_{3t}	x_{3t}	B_{3t}	L_{3t}
0				36				20				10
1	100	101	0	37	200	180	0	0	10	0	0	0
2	90	53	0	0	190	190	0	0	140	140	0	0
3	60	147	0	87	210	210	0	0	10	10	0	0
4	150	63	0	0	200	200	0	0	150	150	0	0
5	10	20	0	10	150	150	0	0	100	100	0	0
6	50	40	0	0	120	120	0	0	200	200	0	0
7	100	170	0	70	100	100	0	0	90	90	0	0
8	250	180	0	0	280	280	0	0	50	50	0	0
9	60	60	0	0	90	90	0	0	190	190	0	0
10	40	117	0	77	50	50	0	0	80	80	0	0
11	100	88	0	65	200	200	0	0	90	90	0	0
12	180	115	0	0	250	250	0	0	150	150	0	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Fremdbeschaffung):

Periode t	d_{1t}	x_{1t}	B_{1t}	L_{1t}	d_{2t}	x_{2t}	B_{2t}	L_{2t}	d_{3t}	x_{3t}	B_{3t}	L_{3t}
0				36				20				10
1	100	64	0	0	200	180	0	0	10	0	0	0
2	90	53	37	0	190	190	0	0	140	140	0	0
3	60	147	0	87	210	210	0	0	10	10	0	0
4	150	40	23	0	200	200	0	0	150	150	0	0
5	10	20	0	10	150	150	0	0	100	100	0	0
6	50	40	0	0	120	120	0	0	200	200	0	0
7	100	138	0	38	100	100	0	0	90	90	0	0
8	250	80	132	0	280	280	0	0	50	50	0	0
9	60	60	0	0	90	90	0	0	190	190	0	0
10	40	52	0	12	50	50	0	0	80	80	0	0
11	100	88	0	0	200	200	0	0	90	90	0	0
12	180	15	165	0	250	250	0	0	150	150	0	0

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (ohne Fremdbeschaffung):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	230.5	500	191	260	0	100
2	384.5	500	260	260	0	100
3	295.5	500	260	260	0	100
4	411.5	500	260	260	23	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	293.0	500	260	260	32	100
8	430.0	500	260	260	100	100
9	348.0	500	257	260	0	100
10	204.5	500	206	260	0	100
11	352.0	500	260	260	0	100
12	487.5	500	260	260	100	100

Beispiel II 3 Produkte, 12 Perioden

Optimale Lösung (mit Fremdbeschaffung):

Periode t	$\sum_{k=1}^{3} f_k^{\mathrm{T}} \cdot x_{kt}$	$b_t^{ m T}$	$\sum_{k=1}^{3} f_k^{\mathrm{P}} \cdot x_{kt}$	$b_t^{ m P}$	U_t	$U_t^{ m max}$
1	212.0	500	154	260	0	100
2	384.5	500	260	260	0	100
3	295.5	500	260	260	0	100
4	400.0	500	260	260	0	100
5	280.0	500	175	260	0	100
6	380.0	500	260	260	0	100
7	277.0	500	260	260	0	100
8	380.0	500	260	260	0	100
9	348.0	500	257	260	0	100
10	172.0	500	141	260	0	100
11	352.0	500	260	260	0	100
12	437.5	500	260	260	0	100

Erweitertes Modell (II): Mehrere Fabriken

Beschäftigungsglättung: Mehrere Fabriken

Beschäftigungsglättung: Mehrere Fabriken

Annahmen:

- ▶ wie Grundmodell –
- ightharpoonup mehrere Fabriken $s \in \mathcal{S}$
- ► fabrikspezifische Produktionsprogramme und Nachfrage

 \mathcal{K}_s ... Menge der in Fabrik s gefertigten Produkte

► Erweiterung der Zielfunktion: Transportkosten

 $c_k^{\mathrm{T}(si)}$... Transportkostensatz von Produkt k von Fabrik s nach i

 $T_{kt}^{\left(si
ight)}$... Transportmenge von Produkt k von s nach i in Periode t

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} h_k \cdot L_{kt} + \sum_{t=1}^{T} u_t \cdot U_t$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} f_k^{\mathrm{P}} \cdot x_{kt} - U_t \le b_t^{\mathrm{P}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \le U_t^{\max}$$

Beschäftigungsglättung: Mehrere Fabriken

$$\text{Minimiere } Z = \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}_s} \sum_{t=1}^T h_k^{(s)} \cdot L_{kt}^{(s)} + \sum_{t=1}^T u_t^{(s)} \cdot U_t^{(s)} \right) + \sum_{s \in \mathcal{S}} \sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{K}_s} \sum_{t=1}^T c_k^{\mathsf{T}(si)} \cdot T_{kt}^{(si)}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0}^{(s)} = L_{ks}^{(0)}$$

für alle $s \in \mathcal{S}, k \in \mathcal{K}_s$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1}^{(s)} + x_{kt}^{(s)} + \sum_{j \in \mathcal{S}} T_{kt}^{(js)} - \sum_{i \in \mathcal{S}} T_{kt}^{(si)} - L_{kt}^{(s)} = d_{kt}^{(s)} \qquad \forall s \in \mathcal{S}, k \in \mathcal{K}_s, t = 1, \dots, T$$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathrm{T}(s)} \cdot x_{kt}^{(s)} \le b_t^{\mathrm{T}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{P}(s)} \cdot x_{kt}^{(s)} - U_t^{(s)} \le b_t^{\mathbf{P}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t^{(s)} \le U_t^{\max(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Erweitertes Modell (II): Mehrere Fabriken, Fremdlieferanten

Beschäftigungsglättung: Mehrere Fabriken, Lieferanten

Beschäftigungsglättung: Mehrere Fabriken

$$\text{Minimiere } Z = \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}_s} \sum_{t=1}^T h_k^{(s)} \cdot L_{kt}^{(s)} + \sum_{t=1}^T u_t^{(s)} \cdot U_t^{(s)} \right) + \sum_{s \in \mathcal{S}} \sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{K}_s} \sum_{t=1}^T c_k^{\mathsf{T}(si)} \cdot T_{kt}^{(si)}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0}^{(s)} = L_{ks}^{(0)}$$

für alle $s \in \mathcal{S}, k \in \mathcal{K}_s$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1}^{(s)} + x_{kt}^{(s)} + \sum_{j \in \mathcal{S}} T_{kt}^{(js)} - \sum_{i \in \mathcal{S}} T_{kt}^{(si)} - L_{kt}^{(s)} = d_{kt}^{(s)} \qquad \forall s \in \mathcal{S}, k \in \mathcal{K}_s, t = 1, \dots, T$$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathrm{T}(s)} \cdot x_{kt}^{(s)} \le b_t^{\mathrm{T}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{P}(s)} \cdot x_{kt}^{(s)} - U_t^{(s)} \le b_t^{\mathbf{P}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t^{(s)} \le U_t^{\max(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Beschäftigungsglättung: Mehrere Fabriken, Lieferanten

$$Z = \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}_s} \sum_{t=1}^{T} \left(h_k^{(s)} L_{kt}^{(s)} + c_{ks}^{\mathrm{P}} x_{kt}^{(s)} + c_{ks}^{\mathrm{B}} B_{kt}^{(s)} \right) + \sum_{t=1}^{T} u_t^{(s)} U_t^{(s)} + \sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{K}_s} \sum_{t=1}^{T} c_k^{\mathrm{T}(si)} T_{kt}^{(si)} \right)$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0}^{(s)} = L_{ks}^{(0)}$$

für alle $s \in \mathcal{S}, k \in \mathcal{K}_s$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1}^{(s)} + x_{kt}^{(s)} + B_{kt}^{(s)} + \sum_{i \in \mathcal{S}} T_{kt}^{(js)} - \sum_{i \in \mathcal{S}} T_{kt}^{(si)} - L_{kt}^{(s)} = d_{kt}^{(s)}$$

 $\forall s, k, t$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{T}(s)} \cdot x_{kt}^{(s)} \le b_t^{\mathbf{T}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{P}(s)} \cdot x_{kt}^{(s)} - U_t^{(s)} \le b_t^{\mathbf{P}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t^{(s)} \le U_t^{\max(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Mehrstufige Ansätze

Beschäftigungsglättung: Mehrstufiger Ansatz

zusätzliche Annahme (zur Komplexitätsreduktion):

- ▶ feststehende eindeutige Zuordnung von (Vor-)Produkten zu Fabriken
 - ⇒ keine Nutzung von internen Ersatzkapazitäten

Beschäftigungsglättung: Mehrstufiger Ansatz

Annahmen:

- ▶ wie bisher –
- $oldsymbol{\triangleright}$ Direktbedarfskoeffizienten a_{kj} ... Anzahl Mengeneinheiten von Produkt k, die in eine Mengeneinheit von Produkt j eingehen
- ► Erweiterung Lagerbilanzgleichung -

$$L_{k,t-1} + x_{kt} - L_{kt} = d_{kt} + \sum_{j \in \mathcal{K}} a_{kj} \cdot x_{jt} \qquad \text{für alle } k \in \mathcal{K}, \ t \in \{1, \dots, T\}$$

Beschäftigungsglättung: Grundmodell AGGRPLAN

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{s \in \mathcal{S}} \sum_{t=1}^T u_t^{(s)} \cdot U_t^{(s)}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{P}} \cdot x_{kt} - U_t^{(s)} \le b_t^{\mathbf{P}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t^{(s)} \le U_t^{\max(s)}$$

für alle $s \in S$ und $t = 1, 2, \dots, T$

Beschäftigungsglättung: Mehrstufiger Ansatz

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{s \in \mathcal{S}} \sum_{t=1}^T u_t^{(s)} \cdot U_t^{(s)}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} - \sum_{j \in \mathcal{K}} a_{kj} \cdot x_{jt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathrm{T}} \cdot x_{kt} \le b_t^{\mathrm{T}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}_s} f_k^{\mathbf{P}} \cdot x_{kt} - U_t^{(s)} \le b_t^{\mathbf{P}(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t^{(s)} \le U_t^{\max(s)}$$

für alle $s \in \mathcal{S}$ und $t = 1, 2, \dots, T$

Ziele

- - (= ,, Hauptproduktionsprogrammplanung")
- ► Entscheidungsvariablen
 - ▶ Produktionsmengen

 - ▶ Lagerbestände
- Daten

 - ▶ Kapazitäten

(vgl. Günther/Tempelmeier (2016))

Kapazitierte Hauptproduktionsprogrammplanung

Modell HPPPLAN

Indexmengen:

- $ightharpoonup \mathcal{J}$... die Menge der zu betrachtenden Produktionssegmente
- $ightharpoonup \mathcal{K}$... die Menge der betrachteten Produkte

Variablen:

- $ightharpoonup x_{kt}$... die Produktionsmenge für Produkt k in Periode t
- $ightharpoonup L_{kt}$... der Lagerbestand für Produkt k in Periode t
- $ightharpoonup U_{jt}$... die Zusatzkapazität (Überstunden) in Segment j in Periode t

Daten:

- $ightharpoonup d_{kt}$... die Nachfragemenge für Produkt k in Periode t
- $ightharpoonup b_{jt} \dots$ die maximale Kapazität in Segment j in Periode t

(vgl. Günther/Tempelmeier (2016))

Kapazitätsbelastungsprofil

Vorlaufperiode	0	1	2
Endprodukt A			
Produktionssegment 1	1 (A)		
Produktionssegment 2		1+3=4 (C und D)	
Produktionssegment 3			
Endprodukt B			
Produktionssegment 1	2 (B)		_
Produktionssegment 2		3 (D)	
Produktionssegment 3		4 (E)	2+1=3 (F und G)

(Beispiel aus Günther/Tempelmeier (2007))

 f_{jkz} ... durch Produkt k verursachte Kapazitätsbelastung von Produktionssegment j in der Vorlaufperiode z (=,, Kapazitätsbelastungsfaktor")

Kapazitätsbeschränkung durch die knappe Kapzität in Periode t:

$$1 \cdot x_{\mathsf{A}t} + 2 \cdot x_{\mathsf{B}t} \le b_{\mathsf{1}t} + U_{\mathsf{1}t}$$

$$4 \cdot x_{A,t+1} + 3 \cdot x_{B,t+1} \le b_{2t} + U_{2t}$$

$$4 \cdot x_{\mathsf{B},t+1} + 3 \cdot x_{\mathsf{B},t+2} \le b_{\mathsf{3}t} + U_{\mathsf{3}t}$$

Modell HPPPLAN

Indexmengen:

- $ightharpoonup \mathcal{J}$... die Menge der zu betrachtenden Produktionssegmente
- $ightharpoonup \mathcal{K}$... die Menge der betrachteten Produkte

Variablen:

- $ightharpoonup x_{kt}$... die Produktionsmenge für Produkt k in Periode t
- $ightharpoonup L_{kt}$... der Lagerbestand für Produkt k in Periode t
- $ightharpoonup U_{jt}$... die Zusatzkapazität (Überstunden) in Segment j in Periode t

Daten:

- $ightharpoonup d_{kt}$... die Nachfragemenge für Produkt k in Periode t
- $ightharpoonup b_{jt} \dots$ die maximale Kapazität in Segment j in Periode t
- $ightharpoonup f_{jkz}$... die Kapazitätsbelastungsfaktoren
- $lackbox{} U^{\max}_{jt} \dots$ die maximale Zusatzkapazität in Segment j in Periode t

Modell HPPPLAN

Daten — Fortsetzung —:

- $ightharpoonup Z_k$... die für Produkt k zu berücksichtigende maximale Vorlaufzeit
- $ightharpoonup L_k^{(0)}$... der Anfangslagerbestand für Produkt k
- $ightharpoonup h_k \dots$ der Lagerkostensatz für Produkt k
- $ightharpoonup u_t$... der Kostensatz für Zusatzkapazität in Periode t

Modell HPPPLAN

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^T h_k \cdot L_{kt} + \sum_{t=1}^T \sum_{j \in \mathcal{J}} u_t \cdot U_{jt}$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$L_{k0} = L_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$L_{k,t-1} + x_{kt} - L_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare Kapazität in Segment j in Periode t:

$$\sum_{k \in \mathcal{K}} \sum_{z=0}^{Z_k} f_{jkz} \cdot x_{k,t+z} - U_{jt} \le b_{jt}$$

für alle $j \in \mathcal{J}, t = 1, 2, \dots, T$

Maximale Zusatzkapazität im Segment j in Periode t:

$$U_{jt} \leq U_{jt}^{\max}$$

für alle $j \in \mathcal{J}, t = 1, 2, \dots, T$

Hauptproduktionsprogrammplanung: Modell HPPLAN

Beispiel 2 Produkte, 8 Perioden

Nachfragemengen

Periode	1	2	3	4	5	6	7	8
Produkt								
А	_	45.00	30.00	10.00	0.00	50.00	10.00	0.00
В	_	_	25.00	30.00	25.00	30.00	20.00	0.00

weitere Daten

Normalkapazität:
$$b_{jt} = 100$$

$$ightharpoonup$$
 maximale Zusatzkapazität: $U_{jt}^{
m max}=100$

▶ Lagerkostensatz:
$$h_k = 40$$

$$ightharpoonup$$
 Überstundenzuschlag: $u_t=5$

$$(j = 1, 2, 3; t = 1, 2, \dots, 8)$$

$$(j = 1, 2, 3; t = 1, 2, \dots, 8)$$

$$(k \in \{A, B\})$$

$$(t = 1, 2, \dots, 8)$$

Hauptproduktionsprogrammplanung: Modell HPPLAN

Beispiel 2 Produkte, 8 Perioden

Nachfragemengen

Periode	1	2	3	4	5	6	7	8
Produkt								
Α	_	45.00	30.00	10.00	0.00	50.00	10.00	0.00
В	1	1	25.00	30.00	25.00	30.00	20.00	0.00

optimale Produktionsmengen

Periode	1	2	3	4	5	6	7	8
Produkt								
Α	_	47.50	27.50	31.25	31.25	27.50	10.00	20.00
В	_	_	30.00	25.00	25.00	30.00	20.00	10.00

Operative Produktionsplanung und -steuerung

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

Operative Produktionsplanung und -steuerung

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

Operative Produktionsplanung und -steuerung

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))