

deeplearning.ai

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Porometrs:
$$(n^{(1)}, n^{(2)})$$
 $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)}$

Formulas for computing derivatives

Formal bobadquin;

$$S_{CIJ} = P_{CIJ}(S_{CIJ}) = e(S_{CIJ})$$

$$S_{LSJ} = P_{LSJ}(S_{LSJ}) = e(S_{LSJ})$$

$$S_{LSJ} = P_{LSJ}(S_{LSJ}) = e(S_{LSJ})$$

$$S_{LSJ} = P_{LSJ}(S_{LSJ}) = e(S_{LSJ})$$

Back propagation:

$$\begin{aligned}
&\mathcal{L}^{[2]} = \mathcal{A}^{[2]} - \mathcal{L} \\
&\mathcal{L}^{[1]} = \mathcal{A}^{[2]} - \mathcal{L}^{[1]} \\
&\mathcal{L}^{[1]} = \mathcal{L}^{[2]} - \mathcal{L}^{[1]} \\
&\mathcal{L}^{[1]} = \mathcal{L}^{[2]} - \mathcal{L}^{[1]} \\
&\mathcal{L}^{[1]} = \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[1]} = \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[2]} = \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[2]} = \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[2]} - \mathcal{L}^{[2]} - \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[2]} - \mathcal{L}^{[2]} - \mathcal{L}^{[2]} \\
&\mathcal{L}^{[2]} - \mathcal{$$

Andrew Ng