Statistical Inference on Tooth Growth Dataset

Trent Parkinson

December 26, 2017

Overview

The project provides a basic analysis of the ToothGrowth data in the R datasets package. The data gives the length of the odontoblast (teeth) in each of 10 guinea pigs at three different dosage levels (0.5, 1, and 2 mg) with two supplements (Vitamin C and Orange Juice). The following will occur;

- Loads the ToothGrowth data and perform some basic exploratory data analyses.
- Provide a basic summary of the data.
- Use confidence intervals and t-tests to compare tooth growth by supp and dose.
- States conclusions and any assumptions made.

Setting up environment

Necessary libraries for loading, manipulating, and plotting. Reading the ToothGrowth dataset into a data.table.

```
library(data.table)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(printr)

data("ToothGrowth")
tooth_growth <- data.table(ToothGrowth)</pre>
```

Data Structure

```
str(tooth_growth)

## Classes 'data.table' and 'data.frame': 60 obs. of 3 variables:
## $ len : num  4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
## - attr(*, ".internal.selfref")=<externalptr>
head(tooth_growth)
```

len	supp	dose
4.2	VC	0.5
11.5	VC	0.5
7.3	VC	0.5
5.8	VC	0.5
6.4	VC	0.5
10.0	VC	0.5

Brief Summary

```
summary(tooth_growth)
```

len	supp	dose
Min.: 4.20	OJ:30	Min. :0.500
1st Qu.:13.07	VC:30	1st Qu.:0.500
Median $:19.25$	NA	Median $:1.000$
Mean : 18.81	NA	Mean $:1.167$
3rd Qu.:25.27	NA	3rd Qu.:2.000
Max. $:33.90$	NA	Max. $:2.000$

Visualizations

Setting the dose variable as factors to make the plotting and t-tests easier. Plotting a grid of box plots for all the different combinations of len as it depends on supp and dose.

```
tooth_growth$dose <- as.factor(tooth_growth$dose)</pre>
plot1 <- ggplot(data = tooth_growth, aes(x = dose, y = len)) +</pre>
    geom_boxplot(aes(fill = dose)) +
    facet_grid(.~supp) +
    theme(legend.position = "None") +
    xlab(" ") + ylab("Length")
plot2 <- ggplot(data = tooth_growth, aes(x = supp, y = len)) +</pre>
    geom_boxplot(aes(fill = supp)) +
    facet grid(.~dose) +
    theme(legend.position = "None") +
    xlab(" ") + ylab(" ")
plot3 <- ggplot(data = tooth_growth, aes(x = supp, y = len)) +</pre>
    geom_boxplot(aes(fill = supp)) +
    theme(legend.position = "None") +
    xlab("Supplement") + ylab(" ")
plot4 <- ggplot(data = tooth_growth, aes(x = dose, y = len)) +</pre>
    geom_boxplot(aes(fill = dose)) +
    theme(legend.position = "None") +
    xlab("Dosage (mg)") + ylab("Length")
grid.arrange(plot1, plot2, plot4, plot3, nrow = 2, ncol = 2)
```


Analysis

The goal of the project is to analyze the effect of the different supplements (Vitamin C and Orange Juice) at all of the dose levels (0.5, 1, 2 mg). The following is the code used to perform all the different combinations of t-tests. All of the test were performed using a 95% confidence level, with unequal variances assumed.

```
my_tests <- mapply(FUN = my.t.test,c(.5,.5,1.0),c(1.0,2.0,2.0),SIMPLIFY = FALSE)

d1 <- c(0.5,1.0,2.0,0.5,0.5,1.0,2.0,1.0,2.0)
d2 <- c(0.5,0.5,0.5,1.0,2.0,1.0,1.0,2.0,2.0)
supp_tests <- mapply(FUN = supp.t.test,rep("VC",9),d1,rep("OJ",9),d2,SIMPLIFY = FALSE)

d3 <- rep(c("OJ","VC"),each = 3)
d4 <- rep(c(1.0,2.0,2.0), times = 2)
d5 <- rep(c(0.5,0.5,1.0), times = 2)
same_supp_tests <- mapply(FUN = same_supp.t.test,d3,d4,d5,SIMPLIFY = FALSE)</pre>
```

Results for t-test

The following code takes all of the t-test results from the previous section and places them in a data.frame for easier readability, and quicker viewing. Note that all values have been rounded to four decimal places.

```
t table <- list(OJvsVC)</pre>
t_table <- append(t_table,my_tests)</pre>
t_table <- append(t_table,same_supp_tests)</pre>
t_table <- append(t_table,supp_tests)</pre>
t.stat = c(); df = c(); lower.CL = c(); upper.CL = c()
p.value = c(); mean.A = c(); mean.B = c()
rnames <- c("VC vs OJ",
            "1.0 vs 0.5","2.0 vs 0.5","2.0 vs 1.0",
            "OJ-1.0 vs 0.5", "OJ-2.0 vs 0.5", "OJ-2.0 vs 1.0",
            "VC-1.0 vs 0.5", "VC-2.0 vs 0.5", "VC-2.0 vs 1.0",
            "VC-0.5 vs OJ-0.5", "VC-1.0 vs OJ-0.5", "VC-2.0 vs OJ-0.5",
            "VC-0.5 vs OJ-1.0", "VC-0.5 vs OJ-2.0", "VC-1.0 vs OJ-1.0",
            "VC-2.0 vs OJ-1.0", "VC-1.0 vs OJ-2.0", "VC-2.0 vs OJ-2.0")
for (i in 1:19) {
    t.stat <- append(t.stat,c(t_table[[i]]$statistic))</pre>
    df <- append(df,c(t_table[[i]]$parameter))</pre>
    lower.CL <- append(lower.CL,c(t_table[[i]]$conf.int[1]))</pre>
    upper.CL <- append(upper.CL,c(t_table[[i]]$conf.int[2]))</pre>
    p.value <- append(p.value,c(t_table[[i]]$p.value))</pre>
    mean.B <- append(mean.B,c(t_table[[i]]$estimate[1]))</pre>
    mean.A <- append(mean.A,c(t_table[[i]]$estimate[2]))</pre>
}
mean.diff <- mean.A - mean.B
t_results <- data.frame("t.stat" = t.stat, "df" = df,
                       "lower.CL" = lower.CL, "upper.CL" = upper.CL,
                       "p.value" = p.value, "mean.A" = mean.A,
                       "mean.B" = mean.B, "mean.diff" = mean.diff,
                       row.names = rnames)
knitr::kable(round(t_results,4), caption = "Welch Two Sample t-test Results")
```

Welch Two Sample t-test Results

	t.stat	df	lower.CL	upper.CL	p.value	mean.A	mean.B	mean.diff
VC vs OJ	1.9153	55.3094	-0.1710	7.5710	0.0606	16.9633	20.6633	-3.700
1.0 vs 0.5	-6.4766	37.9864	-11.9838	-6.2762	0.0000	19.7350	10.6050	9.130
2.0 vs 0.5	-11.7990	36.8826	-18.1562	-12.8338	0.0000	26.1000	10.6050	15.495
2.0 vs 1.0	-4.9005	37.1011	-8.9965	-3.7335	0.0000	26.1000	19.7350	6.365
OJ-1.0 vs 0.5	-5.0486	17.6983	-13.4156	-5.5244	0.0001	22.7000	13.2300	9.470
OJ-2.0 vs 0.5	-7.8170	14.6678	-16.3352	-9.3248	0.0000	26.0600	13.2300	12.830
OJ-2.0 vs 1.0	-2.2478	15.8424	-6.5314	-0.1886	0.0392	26.0600	22.7000	3.360
VC-1.0 vs 0.5	-7.4634	17.8624	-11.2657	-6.3143	0.0000	16.7700	7.9800	8.790
VC-2.0 vs 0.5	-10.3878	14.3271	-21.9015	-14.4185	0.0000	26.1400	7.9800	18.160
VC-2.0 vs 1.0	-5.4698	13.6000	-13.0543	-5.6857	0.0001	26.1400	16.7700	9.370
VC-0.5 vs $OJ-0.5$	3.1697	14.9688	1.7191	8.7809	0.0064	7.9800	13.2300	-5.250
VC-1.0 vs OJ-0.5	-2.1864	14.1997	-7.0081	-0.0719	0.0460	16.7700	13.2300	3.540
VC-2.0 vs $OJ-0.5$	-6.2325	17.9048	-17.2635	-8.5565	0.0000	26.1400	13.2300	12.910
VC-0.5 vs $OJ-1.0$	9.7401	16.1408	11.5185	17.9215	0.0000	7.9800	22.7000	-14.720
VC-0.5 vs $OJ-2.0$	14.9665	17.9793	15.5418	20.6182	0.0000	7.9800	26.0600	-18.080
VC-1.0 vs OJ-1.0	4.0328	15.3577	2.8021	9.0579	0.0010	16.7700	22.7000	-5.930
VC-2.0 vs $OJ-1.0$	-1.7574	17.2972	-7.5643	0.6843	0.0965	26.1400	22.7000	3.440
VC-1.0 vs $OJ-2.0$	8.0325	17.9476	6.8597	11.7203	0.0000	16.7700	26.0600	-9.290
VC-2.0 vs $OJ-2.0$	-0.0461	14.0398	-3.7981	3.6381	0.9639	26.1400	26.0600	0.080

Conclusions for t-test

Therefore the tests failed to reject the null-hypothesis (difference in means is equal to zero) in three of the cases. Since all test were held on a 95% confidence level, any values with a p-value greater than 0.05 or the confidence intervals contains the value zero will fail to reject. The results are,

- VC vs OJ, p-value of 0.0606
- VC-2.0 vs OJ-1.0, p-value of 0.0965
- VC-2.0 vs OJ-2.0, p-value of 0.9639

Final Conclusions

Based on the analysis performed we can conclude that as **dose** levels increase the tooth growth also increases. We can also conclude at the lower dose levels there is a statistical difference in the means of the 0.5 and 1.0 mg dose levels for OJ and VC with OJ being more effective on tooth growth, but at 2.0 mg OJ and VC has no significant difference.

Further study could be conducted to see if higher dosages (above 2.0 mg) would be more effective for VC or OJ. The mean of OJ seems to be decreasing at a higher rate than VC and can be seen in the difference of means for the dose levels. VC may be more effective than OJ at higher levels.

These assumptions are based on the following:

- The sample is representative of the population
- Independent variables were randomly assigned
- The distribution of the means is normal