Introduction to Algorithms, Fall, 2023 Midterm Exam

Problem D Maximum Sum Path 2

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

You have been given a grid with dimensions $n \times m$, where each cell at coordinates (i, j) contains a number $a_{i,j}$, which may be positive, negative, or zero. Your journey begins at cell (1, 1), and your destination is cell (n, m). You begins with 0 points.

At each step in your journey from any cell (i, j), you have two choices for your next move:

- Move to cell (i, j + 1), earning $a_{i, j+1}$ points.
- Move to cell (i+1,j), earning $a_{i+1,j}$ points.

During your journey, you have the flexibility to select some cells in advance. These cells are called skipped cells. Upon reaching a skipped cell, your earned points remain unaffected. You're allowed to pre-select at most k skipped cells.

Your objective is to determine the maximum number of points you can accumulate upon reaching cell (n, m).

Input Format

The first line of the input contains three integers n, m and k. The i-th of the following n lines contains m integers $a_{i,1}, \ldots, a_{i,m}$, where $a_{i,j}$ denotes the number in the cell at coordinates (i,j).

Output Format

Determine the maximum number of points you can accumulate when you reach cell (n, m).

Technical Specification

- $1 \le n, m \le 200$
- $0 \le k \le 200$
- $-10^5 \le a_{i,j} \le 10^5$ for i = 1, 2, ..., n and j = 1, 2, ..., m

Scoring

- 1. (4 points) n = 1
- 2. (7 points) k = 0
- 3. (4 points) No additional constraints.

Introduction to Algorithms, Fall, 2023 Midterm Exam

Sample Input 1

3 3 0 1 100 3 -200 -200 -23 -1000 4 5

Sample Output 1

85

Sample Input 2

3 3 2 1 100 3 -200 -200 -23 -1000 4 5

Sample Output 2

109

Sample Input 3

4 5 5
-1 -2 -35 -4 -5
-10 -9 -8 -7 -6
-2 -23 -39 -42 -76
-29 -1 -3 -10 -11

Sample Output 3

-3