Comentarios de las Actividades

Bloque 3 Actividad 3

1. La ley de la Gravitación Universal habla de que toda partícula en el universo atrae a otra partícula con una fuerza que es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellas (Gutiérrez, 2010).

Comentarios de las Actividades

2.

a)

Datos	Fórmula y despejes	Sustitución
$F_G = \displayskip 2$; $m_T = 5.98 \times 10^{24} \text{ kg}$ $m_L = 7.35 \times 10^{22} \text{ kg}$ $r = 3.8 \times 10^8 \text{ m}$ $G = 6.67 \times 10^{-11}$ Nm^2/kg^2	$F_{\rm G} = \frac{\rm m_2}{2}$	$F_{G} = \left(6.67 \times 10 - \frac{\text{m}^{2}}{\text{kg}^{2}}\right) \frac{\left(5.98 \times 10^{24} \text{ kg}\right) (7.35 \times 10 - \text{kg})}{(3.8 \times 10^{8} \text{ m})^{2}}$ $F_{G} = 2 \times 10^{20} \text{ N}$

Resultado: $F_G = 2 \times 10^{20} \text{N}$

b) Respuesta libre.

c)

Datos	Fórmula y despejes	Sustitución
$r = \frac{1}{6}$? $m_T = 5.98 \times 10^{24} \text{ kg}$ $m_L = 2 \times 10^{30} \text{ kg}$ $FG = 3.6 \times 10N^{22}$ $G = 6.67 \times 10^{-11}$ Nm^2/kg^2	$F_{G} = \frac{m_{2}}{2}$ $F_{G}r^{2} = Gm$ $r^{2} = \frac{Gm m}{F_{G}}$ $r = \sqrt{\frac{m_{2}}{F_{G}}}$	$r = \sqrt{\frac{(6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2)(5.98 \times 10^{24} \text{kg})(2 \times 10^{30} \text{ kg})}{3.6 \times 10^{22} \text{ Nm}^2/\text{kg}^2}}$ $r = 1.49 \times 10^{11} \text{ m}$

Resultado: $r = 1.49 \times 10^{11} \text{ m}$

d)

Datos	Fórmula y despejes	Sustitución
$m_1 = 60 \text{ kg}$ r = 3.5 m $F_G = 6.5 \times 10^{-7} \text{ N}$ $G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}$ $m_2 = \cdot ?$	$F_{G} = G \frac{m_{1}m_{2}}{r^{2}}$ $F_{G}f^{2} = Gm_{1}m_{2}$ $\frac{F_{G}r^{2}}{Gm_{1}} = m_{2}$	$m_2 = \frac{(6.5 \times 10^{-7} \text{ N})(3.5 \text{ m})^2}{\left(6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}\right)(60 \text{ kg})}$ $m_2 = 1989.6 \text{ kg}$

Resultado: m²= 1989.6 kg