River	Description	Climate	CO ₂ µgCL ⁻¹	FCO_2 gCO_2	CH ₄ µgC L ⁻¹	$\mathrm{FCH_4}^*$ $\mathrm{gCO_2eq}$	$ m N_2O$ $ m \mu gN~L^{-1}$	$\mathrm{FN_2O^{**}}$ $\mathrm{gCO_2eq}$	${{ m F_{total}}^{***}}$ g ${ m CO_2eq}$	Reference	
Saigon River (Vietnam)	Dominated by urban, 10M inhabitants	Tropical	3174	35.56	5.89	0.64	3.03	8.79	45.0	This study	
Adyar River, India	Dominated by urban, 8M inhabitants	Tropical	NA	NA	756	28.3	0.42	0.13	NA	Rajkumar et al. 2008	
Zambezi River, Africa	Mainly mining, industrial and agricultural activities	Tropical	3600	12.4	11.2	1.36	0.33	NA	NA	Teodoru et al. 2015	
Saribas rivers, Malaysia	Non-urban, dominated by oil palm plantations	Tropical	NA	13.7	0.75	0.08	0.23	0.03	13.9	Müller et al. 2016	
Nanfei River, China	Dominated by urban, 10M inhabitants	Subtropical	8052	39.6	66	3.14	5.7	2.24	45.0	Zhang et al. 2021	
Shark River estuary, USA	Mangrove-dominated estuary	Subtropical	NA	4.048	NA	0.03	NA	0.03	4.1	Reithmaier et al. 2020	
Guadalete Estuary, Spain	Receive discharge of urban effluents and agriculture crop	Mediterranean	NA	NA	5.7	0.22	3.84	1.22	NA	Burgos et al. 2015	
Bay of Cádiz (SW Spain)	A tidal creek receiving waters of fish farm	Mediterranean	864	5.5	0.59	0.04	0.384	0.56	6.1	Ferrón et al. 2007	
Lower Seine River, France	Heavily urbanized and industrialized	Temperate	2500	NA	2.75	NA	2.5	NA	NA	Marescaux et al. 2018	
Duliujian River, China	Natural river	Warm temperate	480	0.56	1.2	0.12	0.001	0.36	1.0	Hu et al. 2018	
Po River, Italy	Nitrate pollution. Intensive farming, 16M inhabitants	Continental temperate	5483	22.7	2.54	0.28	4.69	22.35	45.3	Laini et al. 2011	
* CH_4 flux in $gCO_2eq/m2/d = FCH_4$ gCH_4 $m^2d^{-1}x$ 28						* F_{total} is total CO_2 equivalent flux = $FCO_2 + FCH_4 + FN_2O$					
** N ₂ O flux in go	$CO_2eq/m2/d = FN_2O gN_2C$	0 m ² d ⁻¹ x 298		NA	NA is not available						