# Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Комп'ютерна логіка Лабораторна робота №4 "Мінімізація частково визначених функцій"

> Виконав: студент групи IB-71 Поляков М.С. Залікова книжка №7114 Перевірив Верба О.А.

Київ 2017р. **Тема**: "Мінімізація частково визначених функцій"

**Мета**: вивчення методів мінімізації частково визначених функцій, аналітичного одержання множини ТДНФ, дослідження параметрів комбінаційних схем.

## Загальне завдання:

- 1. Визначити свій варіант системи перемикальних функцій. Для цього необхідно одержати дев'ять молодших розрядів номера залікової книжки студента, представленого в двійковій системі числення  $(h_9,h_8,...,h_1)$ , а потім підставити  $h_i$  в таблицю
- 2. Виконати окремо мінімізацію кожної функції методом Вейча
- 3. Виконати спільну мінімізацію функцій методом Квайна
- 4. Виконати спільну мінімізацію заперечення функцій методом Квайна-Мак-Класки
- 5. Одержати представлення функцій у формі І-НЕ/І-НЕ і формі І-НЕ/І, число входів елементів не повинне перевищувати чотирьох
- 6. Представити комбінаційні схеми, що відповідають отриманим операторним формам. Оцінити можливість формування короткочасних помилкових сигналів в отриманих схемах. Показати способи усунення ризику збою в комбінаційних схемах.

## ХІД РОБОТИ

1. Обчислити номер лабораторної роботи: Номер моєї залікової книжки — 7114, або 1101111001010 у двійковій системі. Останні дев'ять розрядів — 111001010.

| X <sub>4</sub> | X <sub>3</sub> | X <sub>2</sub> | X <sub>1</sub> | $f_1$             | f <sub>2</sub>    | $f_3$             |
|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|
| 0              | 0              | 0              | 0              | 1                 | 1                 | 1                 |
| 0              | 0              | 0              | 1              | 1                 | 1                 | 0                 |
|                |                |                |                |                   |                   |                   |
| 0              | 0              | 1              | 0              | 1                 | 1                 | 1                 |
| 0              | 0              | 1              | 1              | 0                 | 0                 | 0                 |
| 0              | 1              | 0              | 0              | -                 | 0                 | 1                 |
| 0              | 1              | 0              | 1              | 0                 | 0                 | 0                 |
| 0              | 1              | 1              | 0              | 1                 | -                 | -                 |
| 0              | 1              | 1              | 1              | -                 | -                 | 1                 |
| 1              | 0              | 0              | 0              | 1                 | h <sub>4</sub> =1 | h <sub>7</sub> =1 |
| 1              | 0              | 0              | 1              | 0                 | 0                 | h <sub>8</sub> =1 |
| 1              | 0              | 1              | 0              | 0                 | 0                 | h <sub>9</sub> =1 |
| 1              | 0              | 1              | 1              | h <sub>1</sub> =0 | 0                 | 0                 |
| 1              | 1              | 0              | 0              | 1                 | -                 | 1                 |
| 1              | 1              | 0              | 1              | h <sub>2</sub> =1 | h₅=0              | 0                 |
| 1              | 1              | 1              | 0              | h <sub>3</sub> =0 | h <sub>6</sub> =0 | 0                 |
| 1              | 1              | 1              | 1              | 1                 | 1                 | 1                 |

2. Виконати окремо мінімізацію кожної функції методом Вейча:



Діаграма після обведення груп значень



Отже, маємо

$$f_1 = \overline{X_1} \, \overline{X_2} \, X_4 \vee \overline{X_1} \, \overline{X_4} \vee X_1 \, X_3 \, X_4 \vee X_2 \, X_3 \, \overline{X_4} \vee \overline{X_2} \, \overline{X_3} \, \overline{X_4}$$

$$f_2 = (\overline{x_2} \vee \overline{x_4} \vee x_1)(\overline{x_4} \vee \overline{x_1} \vee x_2)(x_4 \vee \overline{x_3})(\overline{x_1} \vee \overline{x_2} \vee x_3)$$

$$f_3 = x_4 \overline{x_1} \overline{x_2} \lor x_4 \overline{x_2} \overline{x_3} \lor \overline{x_1} \overline{x_3} \lor x_2 x_3 x_1 \lor x_3 \overline{x_4} \overline{x_1}$$

Пред<u>ставлення функцій в формі</u> І-НЕ/І-НЕ та І-НЕ/І:

$$f_1 = \overline{\overline{x_1} \overline{x_2} \overline{x_4}} \wedge \overline{\overline{x_1}} \overline{\overline{x_4}} \wedge \overline{x_1} \overline{x_3} \overline{x_4} \wedge \overline{x_2} \overline{x_3} \overline{x_4} \wedge \overline{\overline{x_2}} \overline{x_3} \overline{x_4} \quad \text{- I-HE/I-HE}$$

$$f_2 = \underbrace{(x_2 x_4 \overline{x_1})} \wedge \underbrace{(x_4 x_1 \overline{x_2})} \wedge \underbrace{\overline{x_4} x_3} \wedge \underbrace{x_1 x_2 \overline{x_3}} - I - HE/I$$

$$f_3 = \overline{\overline{x_4}\overline{x_1}\overline{x_2}} \wedge \overline{x_4}\overline{x_2}\overline{x_3} \wedge \overline{x_2}\overline{x_3}\overline{x_1} \wedge \overline{\overline{x_1}}\overline{\overline{x_3}} \wedge \overline{x_3}\overline{x_4}\overline{x_1} \quad \text{- I-HE/I-HE}$$

3. Виконати спільну мінімізацію функцій методом Квайна:

Етапи склеювання:



Етапи поглинання:



Для результату цих операцій будуємо таблицю покриття:

| Конституенти та                                            |   |   |   |   | f | 1 | _ | _  |    |    |   |   |   | f | 2 |   |    |    |   |   |   |   | f | 3 |   |    |    |    |
|------------------------------------------------------------|---|---|---|---|---|---|---|----|----|----|---|---|---|---|---|---|----|----|---|---|---|---|---|---|---|----|----|----|
| Імпліканти                                                 | 0 | 1 | 2 | 4 | 6 | 7 | 8 | 12 | 13 | 15 | 0 | 1 | 2 | 6 | 7 | 8 | 12 | 15 | 0 | 2 | 4 | 6 | 7 | 8 | 9 | 10 | 12 | 15 |
| $\overline{x_4} x_3 \overline{x_2} \overline{x_1} \{1,3\}$ |   |   |   | + |   |   |   |    |    |    |   |   |   |   |   |   |    |    |   |   | + |   |   |   |   |    |    |    |
| $x_4 \overline{x_3} x_2 \overline{x_1} \{3\}$              |   |   |   |   |   |   |   |    |    |    |   |   |   |   |   |   |    |    |   |   |   |   |   |   |   | +  |    |    |
| $x_4 x_3 \overline{x_2} \overline{x_1} \{1,2,3\}$          |   |   |   |   |   |   |   | +  |    |    |   |   |   |   |   |   | +  |    |   |   |   |   |   |   |   |    | +  |    |
| $\overline{X_4}\overline{X_3}\overline{X_2}\{1,2\}$        | + | + |   |   |   |   |   |    |    |    | + | + |   |   |   |   |    |    |   |   |   |   |   |   |   |    |    |    |
| $\overline{x_4}\overline{x_3}\overline{x_1}\{1,2,3\}$      | + |   | + |   |   |   |   |    |    |    | + |   | + |   |   |   |    |    | + | + |   |   |   |   |   |    |    |    |
| $\overline{x_3}\overline{x_2}\overline{x_1}\{1,2,3\}$      | + |   |   |   |   |   | + |    |    |    | + |   |   |   |   | + |    |    | + |   |   |   |   | + |   |    |    |    |
| $\overline{x_4}x_3x_2\{1,2,3\}$                            |   |   |   |   | + | + |   |    |    |    |   |   |   | + | + |   |    |    |   |   |   | + | + |   |   |    |    |    |
| $x_3 x_2 x_1 \{1,2,3\}$                                    |   |   |   |   |   | + |   |    |    | +  |   |   |   |   | + |   |    | +  |   |   |   |   | + |   |   |    |    | +  |
| $x_4\overline{x_3}\overline{x_2}\{3\}$                     |   |   |   |   |   |   |   |    |    |    |   |   |   |   |   |   |    |    |   |   |   |   |   | + | + |    |    |    |
| $x_4 x_3 \overline{x_2} \{1\}$                             |   |   |   |   |   |   |   | +  | +  |    |   |   |   |   |   |   |    |    |   |   |   |   |   |   |   |    |    |    |
| $\overline{x_4}\overline{x_1}\{1,3\}$                      | + |   |   | + | + |   |   |    |    |    |   |   |   |   |   |   |    |    | + |   | + | + |   |   |   |    |    |    |

| $\overline{x_3}\overline{x_1}\{3\}$   |   |  |   |   |   |   |   |   |   |  |  |  |  | + | + |   |  |   | + |   |
|---------------------------------------|---|--|---|---|---|---|---|---|---|--|--|--|--|---|---|---|--|---|---|---|
| $\overline{X_4}X_3\{1\}$              |   |  | + | + | + |   |   |   |   |  |  |  |  |   |   |   |  |   |   |   |
| $\overline{x_2}\overline{x_1}\{1,3\}$ | + |  | + |   |   | + | + |   |   |  |  |  |  | + |   | + |  | + |   | + |
| $x_3 x_1 \{1\}$                       |   |  |   |   | + |   |   | + | + |  |  |  |  |   |   |   |  |   |   |   |

Далі оберемо ТДНФ функцій та випишемо МДНФ:

 $f_1 = \overline{X_4} X_3 \overline{X_2} \overline{X_1} \lor X_4 X_3 \overline{X_2} \overline{X_1} \lor \overline{X_4} \overline{X_3} \overline{X_2} \lor \overline{X_4} \overline{X_3} \overline{X_1} \lor \overline{X_3} \overline{X_2} \overline{X_1} \lor \overline{X_4} X_3 X_2 \lor X_3 X_2 X_1 \lor X_3 X_1$  $f_2 = x_4 x_3 \overline{x_2} \overline{x_1} \vee \overline{x_4} \overline{x_3} \overline{x_2} \vee \overline{x_4} \overline{x_3} \overline{x_1} \vee \overline{x_3} \overline{x_2} \overline{x_1} \vee \overline{x_4} x_3 x_2 \vee x_3 x_2 x_1$ 

 $f_3 = \overline{X_4} X_3 \overline{X_2} \overline{X_1} \vee X_4 X_3 \overline{X_2} \overline{X_1} \vee \overline{X_4} \overline{X_3} \overline{X_1} \vee \overline{X_3} \overline{X_2} \overline{X_1} \vee \overline{X_4} X_3 X_2 \vee X_3 X_2 X_1 \vee X_4 \overline{X_3} \overline{X_2} \vee \overline{X_3} \overline{X_1}$ 

4. Мінімізація заперечень функцій методом Квайна-Мак-Класки:

## Етапи склеювання:

0001 {3} 010X {2} 0100 {2} 101X {1,2} 0011 {1,2,3} 00X1 {3} 1010 {1,2} 1X10 {1,2} 0101 {1,2,3} 1X01 {2} 1001 {1,2} 0X01 {3} 1011 {1,2,3} X101 {2,3} 1101 {2,3} X011 {1,2,3} 1110 {1,2,3}

Етапи поглинання: 0001 {3} 010X {2} <del>0100 {2}</del> 101X {1,2} 0011 {1,2,3} 00X1 {3} 1010 {1,2} 1X10 {1,2} 0101 {1,2,3} 1X01 {2} 1001 {1,2} 0X01 {3} <del>1011 {1,2,3}</del> X101 {2,3} <del>1101 {2,3}</del> X011 {1,2,3} 1110 {1,2,3}

Побудуємо таблицю покриття функцій:

| Конституенти та |   |   | Ī | 1  | _  |    |   |   |   | Ī | 2  |    |    |    |   |   | Ī | 3  |    |    |
|-----------------|---|---|---|----|----|----|---|---|---|---|----|----|----|----|---|---|---|----|----|----|
| імпліканти      | 3 | 5 | 9 | 10 | 11 | 14 | 3 | 4 | 5 | 9 | 10 | 11 | 13 | 14 | 1 | 3 | 5 | 11 | 13 | 14 |
| 0101 {1,2,3}    |   | + |   |    |    |    |   |   | + |   |    |    |    |    |   |   | + |    |    |    |
| 1001 {1,2}      |   |   | + |    |    |    |   |   |   | + |    |    |    |    |   |   |   |    |    |    |
| 1110 {1,2,3}    |   |   |   |    |    | +  |   |   |   |   |    |    |    | +  |   |   |   |    |    | +  |
| 010X {2}        |   |   |   |    |    |    |   | + | + |   |    |    |    |    |   |   |   |    |    |    |
| 101X {1,2}      |   |   |   | +  | +  |    |   |   |   |   | +  | +  |    |    |   |   |   |    |    |    |
| 00X1 {3}        |   |   |   |    |    |    |   |   |   |   |    |    |    |    | + | + |   |    |    |    |
| 1X10 {1,2}      |   |   |   | +  |    | +  |   |   |   |   | +  |    |    | +  |   |   |   |    |    |    |
| 1X01 {2}        |   |   |   |    |    |    |   |   |   | + |    |    | +  |    |   |   |   |    |    |    |

| 0X01 {3}     |   |  |   |   |   |  |   |   | + |   | + |   |   |  |
|--------------|---|--|---|---|---|--|---|---|---|---|---|---|---|--|
| X101 {2,3}   |   |  |   |   | + |  |   | + |   |   | + |   | + |  |
| X011 {1,2,3} | + |  | + | + |   |  | + |   |   | + |   | + |   |  |

## Маємо такі МДНФ:

 $\overline{f_1}$  = 0101 \leftrightarrow 1001 \leftrightarrow 1110 \leftrightarrow 101 X \leftrightarrow X 011

 $\overline{f_2}$ =0101 $\lor$ 1001 $\lor$ 1110 $\lor$ 010 $X\lor$ 101 $X\lor$ X101 $\lor$ X 011

 $\overline{f_3} = 0101 \lor 1110 \lor 0 X 01 \lor X 101 \lor X 011$ 

5. Одержимо представлення отриманих МДНФ у формах І-НЕ/І-НЕ та І-НЕ/І:

$$\overline{f_1} = \overline{(\overline{x_4} \, \overline{x_3} \, \overline{x_2} \, x_1) \wedge (\overline{x_4} \, \overline{x_3} \, \overline{x_2} \, x_1) \wedge (\overline{x_4} \, \overline{x_3} \, \overline{x_2} \, \overline{x_1})} \wedge \overline{x_4} \, \overline{x_3} \, \overline{x_2} \wedge \overline{\overline{x_3}} \, x_2 x_1$$

$$\overline{f_2} = \overline{(\overline{x_4} x_3 \overline{x_2} x_1) \wedge (\overline{x_4} \overline{x_3} \overline{x_2} x_1) \wedge (\overline{x_4} x_3 \overline{x_2} \overline{x_1}) \wedge (\overline{x_4} \overline{x_3} \overline{x_2})} \wedge \overline{x_4} \overline{x_3} \overline{x_2} \wedge \overline{x_3} \overline{x_2} x_1 \wedge \overline{x_3} \overline{x_2} x_1$$

$$\overline{f_3} = \overline{(\overline{x_4} x_3 \overline{x_2} x_1) \wedge (\overline{x_4} x_3 \overline{x_2} \overline{x_1}) \wedge (\overline{x_4} \overline{x_2} \overline{x_1})} \wedge \overline{x_3} \overline{x_2} \overline{x_1} \wedge \overline{\overline{x_3}} \overline{x_2} \overline{x_1}$$

6. Побудуємо комбінаційні схеми:



7. Знаходження та усунення короткочасних помилкових сигналів: При тестуванні схеми за допомогою часової діаграми можливо знайти збої в роботі схеми. Приклад збою на виході F3:



Такі типи збою можна виправити, додавши повторювач з елементом "АБО", щоб подовшити сигнал F3. Таким чином (а також за допомогою повторювача з елементом "I") можна усунути усі інші помилкові сигнали на виходах.

## **ВИСНОВОК**

Я вивчив методів мінімізації частково визначених функцій, аналітичного одержання множини ТДНФ, дослідження параметрів комбінаційних схем.