Lecture 10: Characteristic Functions

1. Definition of characteristic functions

- 1.1 Complex random variables
- 1.2 Definition and basic properties of characteristic functions
- 1.3 Examples
- 1.4 Inversion formulas

2. Applications

- 2.1 Characteristic function for sum of independent random variables
- 2.2 Characteristic functions and moments of random variables
- 2.3 Continuity theorem
- 2.4 Weak law of large numbers
- 2.5 Central Limit theorem
- 2.6 Law of small numbers

1. Definition of characteristic function

1.1 Complex random variables

(1) Complex numbers has a form u = a + ib where a, b are real numbers and i is so-called imaginary unit which has a property $i^2 = -1$.

- (2) The summation of complex numbers u = a+ib and v = c+id is performed according the rule u + v = (a + c) + i(b + d) and the multiplication as uv = (ac bd) + i(ad + bc).
- (3) For a complex number u = a + ib, the conjugate complex number is defined as $\bar{u} = a ib$ and the norm is defined by the formula $|u|^2 = u\bar{u} = a^2 + b^2$; |uv| = |u||v|; $|u + v| \le |u| + |v|$.
- (4) The basic role in what follows plays the formula

$$e^{it} = \cos t + i \sin t, \ t \in R_1.$$
Note that $|e^{it}| = \sqrt{\cos^2 t + \sin^2 t} = 1.$

A complex random variable is defined as Z = X + iY where $X = X(\omega)$ and $Y = Y(\omega)$ are usual real-valued random variables defined on some probability space $< \Omega, \mathcal{F}, P >$.

The distribution of a complex random variable Z is determined by the distribution of the random vector (X, Y).

The expectation of the complex random variable Z = X + iY is defined as the complex number EZ = EX + iEY.

Two complex random variables $Z_1 = X_1 + iY_1$ and $Z_2 = X_2 + iY_2$ are independent if the random vectors (X_1, Y_1) and (X_2, Y_2) are independent.

(5) The product of two complex random variables $Z_1Z_2 = (X_1X_2 - Y_1Y_2) + i(X_1Y_2 + Y_1X_2)$ then $EZ_1Z_2 = E(X_1X_2 - Y_1Y_2) + iE(X_1Y_2 + Y_1X_2)$. If the random variables Z_1 and Z_2 are independent, then

$$EZ_1Z_2 = EZ_1EZ_2.$$

 $EZ_1Z_2 = E(X_1X_2 - Y_1Y_2) + iE(X_1Y_2 + Y_1X_2) = (EX_1EX_2 - EY_1EY_2) + i(EX_1EY_2 + EY_1EX_2) = EZ_1EZ_2.$

(6) If $|X| \leq M$ then $|EX| \leq M$.

Let X = Y + iZ, then $|EX|^2 = |EY + iEZ|^2 = (EY)^2 + (EZ)^2 \le EY^2 + EZ^2 = E|X|^2 \le M^2$.

 $(7) |EX| \le E|X|.$

1.2 Definition and basic properties of characteristic functions

Definition 10.1. Let X be a random variable with the distribution $F_X(A)$ and the distribution function $F_X(x)$. The characteristic function of the random variable X (distribution $F_X(A)$ and the distribution function $F_X(x)$) is called the complex-valued function $\phi_X(t)$ defined on a real line as function of t by the formula,

$$\phi_X(t) = E \exp\{itX\} = \int_{-\infty}^{\infty} e^{itx} F_X(dx)$$

 $= E\cos tX + iE\sin tX = \int_{-\infty}^{\infty} \cos tx F_X(dx) + i\int_{-\infty}^{\infty} \sin tx F_X(dx).$

(1) If X is a discrete random variable with the discrete distribution $p_X(x_n) = P(X = x_n), n = 0, 1, ... (\sum_n p_X(x_n) = 1)$, then

$$\phi_X(t) = E \exp\{itX\} = \sum_n e^{itx_n} p_X(x_n).$$

(2) If X is a continuous random variable with the probability density function $f_X(x)$, then

$$\phi_X(t) = E \exp\{itX\} = \int_{\infty}^{\infty} e^{itx} f_X(x) dx,$$

where the integration the Riemann integration is performed if the density $f_X(x)$ is Riemann integrable (otherwise the Lebesgue integration should be used).

(3) In the latter case the characteristic function is also known as the Fourier transform for function $f_X(x)$.

Theorem 10.1. The characteristic function $\phi_X(t)$ of a random variable X possesses the following basic properties:

- (1) $\phi_X(t)$ is a continuous function in $t \in R_1$;
- (2) $\phi_X(0) = 1$
- (3) $\phi_X(t)$ is positively defined function, i.e., a quadratic form $\sum_{1 \leq j,l \leq n} c_j \bar{c}_l \phi_X(t_j t_l) \geq 0$ for any complex numbers c_1, \ldots, c_n and real t_1, \ldots, t_n and $n \geq 1$.

(a)
$$|\phi_X(t+h) - \phi_X(t)| \le |Ee^{i(t+h)X} - Ee^{itX}| = |Ee^{itX}(e^{ihX} - 1)| \le E|e^{itX}(e^{ihX} - 1)| = E|e^{ihX} - 1|.$$

(b) $|e^{ihx} - 1| \le 2$ and also $|e^{ihx} - 1| \le |hx|$. Choose A > 0 and get the following estimates

$$E|e^{ihX} - 1| \le \int_{|x| > A} |e^{ihx} - 1| F_X(dx) + \int_{-A}^A |e^{ihx} - 1| F_X(dx)$$
$$2 \int_{|x| > A} F_X(dx) + \int_{-A}^A |hx| F_X(dx)$$
$$\le 2P(|X| \ge A) + hAP(|X| \le A) \le 2P(|X| \ge A) + hA.$$

(c) Choose an arbitrary $\varepsilon > 0$. Then choose A so large that $2P(|X| \ge A) \le \frac{\varepsilon}{2}$ and then h so small that $hA \le \frac{\varepsilon}{2}$. Then the expression on the right hand side in the estimate given in (b) will be less or equal ε .

(d)
$$\phi_X(0) = Ee^{i0X} = E1 = 1$$
.

(e) To prove (3) we get

$$\sum_{1 \le j, l \le n} c_j \bar{c}_l \phi_X(t_j - t_l) = \sum_{1 \le j, l \le n} c_j \bar{c}_l E e^{i(t_j - t_l)X}$$

$$= E \sum_{1 \le j \le n} c_j e^{it_j X} \overline{\sum_{1 \le j \le n} c_j e^{it_j X}} = E |\sum_{1 \le j \le n} c_j e^{it_j X}|^2 \ge 0.$$

Theorem 10.2 (Bochner)**. A complex-valued function $\phi(t)$ defined on a real line is a characteristic function of some random variable X, i.e., can be represented in the form $\phi(t) = Ee^{itX} = \int_{-\infty}^{\infty} e^{itx} F_X(dx), t \in R_1$ if and only if it possesses the properties (1) - (3) formulated in Theorem 1.

An additional properties of characteristic functions are:

- (4) $|\phi_X(t)| \le 1$ for any $t \in R_1$;
- (5) $\phi_{a+bX}(t) = e^{iat}\phi_X(bt);$
- (6) $|e^{itX}| \equiv 1$ and, thus, $|\phi_X(t)| = |Ee^{itX}| \le 1$;
- (7) $\phi_{a+bX}(t) = Ee^{it(a+bX)} = e^{iat}Ee^{itbX} = e^{iat}\phi_X(bt);$

1.3 Examples

- (a) If $X \equiv a$ where a = const, then $\phi_X(t) = e^{iat}$.
- (1) Binomial random variable.

$$X = B(m, p), m = 1, 2, ..., 0 \le p \le 1;$$

 $p_X(n) = C_m^n p^n (1 - p)^{m-n}, n = 0, 1, ..., m;$
 $\phi_X(t) = (pe^{it} + (1 - p))^m.$

(2) Poisson random variable.

$$X = \mathcal{P}(\lambda), \lambda > 0;$$

$$p_X(n) = \frac{\lambda^n}{n!} e^{-\lambda}, n = 0, 1, \dots;$$

$$\phi_X(t) = e^{\lambda(e^{it} - 1)}.$$

(3) Normal random variable.

$$X = N(m, \sigma^{2}), m \in R_{1}, \sigma^{2} > 0;$$

$$f_{X}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}}, x \in R_{1};$$

$$\phi_{X}(t) = e^{-\frac{t^{2}}{2}}$$

$$Y = m + \sigma X;$$

$$f_Y(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in R_1$$

$$\phi_Y(t) = e^{iat - \frac{\sigma^2 t^2}{2}}$$

(4) Gamma random variable.

$$\begin{split} X &= Gamma(\alpha,\beta), \alpha, \beta > 0; \\ f_X(x) &= \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}, x \geq 0 \text{ where } \Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x}; \\ \phi_X(t) &= (\frac{1}{1-i\beta t})^\alpha. \end{split}$$

1.4 Inversion formulas

F(A) and G(A) are probability measures on a real line; $\phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx)$ and $\psi(t) = \int_{-\infty}^{\infty} e^{itx} G(dx)$ are their characteristic functions.

Lemma 10.1 (Parseval identity). The following so-called Parseval identity takes place,

$$\int_{-\infty}^{\infty} e^{-ity} \phi(t) G(dt) = \int_{-\infty}^{\infty} \psi(x - y) F(dx).$$

(a) The following equality follows from the definition of a characteristic function,

$$e^{-ity}\phi(t) = \int_{-\infty}^{\infty} e^{it(x-y)} F(dx)$$

(b) Integrating it with respect to the measure G(A) and using Fubinni theorem we get,

$$\int_{-\infty}^{\infty} e^{-ity} \phi(t) G(dt) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{it(x-y)} F(dx) \right] G(dt)$$
$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{it(x-y)} G(dt) \right] F(dx) = \int_{-\infty}^{\infty} \psi(x-y) F(dx).$$

Theorem 10.3 (inversion). Different characteristic function correspond to different distributions and vise versa.

This theorem is a corollary of the inversion formula given below.

Theorem 10.4. Let F(x) be a distribution function and C_F is the set of all point of continuity of this distribution function. Let also $\phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx)$ be the characteristic function that corresponds to this distribution function. The following inversion formula takes place

$$F(z) = \lim_{\sigma^2 \to 0} \frac{1}{2\pi} \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} e^{-ity} \phi(t) e^{-\frac{t^2 \sigma^2}{2}} dt \right] dy, \ z \in C_F.$$

(a) Let G(A) is a normal distribution with parameters m=0 and $\frac{1}{\sigma^2}$. Then Parseval identity takes the following form

$$\int_{-\infty}^{\infty} e^{-ity} \phi(t) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{2\sigma^2}} F(dx),$$

or equivalently

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-x)^2}{2\sigma^2}} F(dx).$$

(b) Integrating with respect to the Lebesgue measure (Riemann integration can be used!) over the interval $(-\infty, z]$ we get

$$\frac{1}{2\pi} \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} e^{-ity} \phi(t) e^{-\frac{t^{2}\sigma^{2}}{2}} dt \right] dy = \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-x)^{2}}{2\sigma^{2}}} F(dx) \right] dy
= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-y)^{2}}{2\sigma^{2}}} dy \right] F(dx) = P(N(0, \sigma^{2}) + X \le z),$$

where $N(0, \sigma^2)$ is a normal random variable with parameters 0 and σ^2 independent of the random variable X.

(c) If $\sigma^2 \to 0$ then the random variables $N(0, \sigma^2)$ converge in probability to 0 $(P(|N(0, \sigma^2)| \ge \varepsilon) \to 0$ for any $\varepsilon > 0)$ and, in

sequel, the random variables $N(0, \sigma^2) + X$ weakly converge to the random variable X that is $P(N(0, \sigma^2) + X \leq z) \to P(X \leq z)$ as $\sigma^2 \to 0$ for any point z that is a point of continuity for the distribution function of the random variable X.

Theorem 10.5. Let F(x) be a distribution function and $\phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx)$ be the characteristic function that corresponds to this distribution function. Let $\phi(t)$ is absolutely integrable at real line, i.e., $\int_{-\infty}^{\infty} |\phi(t)| dt < \infty$. Then the distribution function F(x) has a bounded continuous probability density function f(y) and the following inversion formula takes place

$$f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) dt, \ y \in R_1.$$

(a) The proof can be accomplished by passing $\sigma^2 \to 0$ in the Parseval identity

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-x)^2}{2\sigma^2}} F(dx).$$

(b) Both expressions on the left and right hand sides of the above identity represent the probability density function $f_{\sigma}(y)$ for the distribution function $F_{\sigma}(y)$ of random variable $N(0, \sigma^2) + X$.

(c)
$$F_{\sigma}(\cdot) \Rightarrow F(\cdot)$$
 as $\sigma \to 0$.

(d) From the left hand side expression in the above identity, we see that.

$$f_{\sigma}(y) \to f(y) \text{ as } \sigma \to 0.$$

- (e) Note that $f_{\sigma}(y)$ and f(y) are bounded continuous functions;
- (f) It follows from (c), (d) and (e) that for any x' < x''

$$F_{\sigma}(x'') - F_{\sigma}(x') = \int_{x'}^{x''} f_{\sigma}(y) dy \to \int_{x'}^{x''} f(y) dy$$

(g) But, if x', x'' are continuity point of F(x) that

$$F_{\sigma}(x'') - F_{\sigma}(x') \to F(x'') - F(x')$$
 as $\sigma \to 0$.

(h) Thus,

$$F(x'') - F(x') = \int_{x'}^{x''} f(y)dy,$$

i.e., indeed, f(y) is a probability density of the distribution function F(x).

2. Applications

2. Applications

2.1 Characteristic function for sum of independent random variables

Lemma 10.2. If a random variable $X = X_1 + \cdots + X_n$ is a sum of independent random variables X_1, \ldots, X_n then

$$\phi_X(t) = \phi_{X_1}(t) \times \cdots \times \phi_{X_n}(t).$$

$$\phi_X(t) = Ee^{it(X_1 + \cdots X_n)} = E \prod_{k=1}^n e^{itX_k} = \prod_{k=1}^n Ee^{itX_k}.$$

Examples

(1) Let random variables $X_k = N(m_k, \sigma_k^2), k = 1, ..., n$ be independent normal random variables. In this case $X = X_1 + \cdots + X_n$ is also a normal random variable with parameters $m = m_1 + \cdots + m_n$ and $\sigma^2 = \sigma_1^2 + \cdots + \sigma_n^2$.

$$\phi_X(t) = \prod_{k=1}^n e^{itm_k - \frac{\sigma_k^2 t^2}{2}} = e^{itm - \frac{\sigma^2 t^2}{2}}.$$

(2) Let random variables $X_k = \mathcal{P}(\lambda_k), k = 1, ..., n$ be independent Poissonian random variables. In this case $X = X_1 + ... + X_n$ is also a Poissonian random variable with parameters $\lambda = \lambda_1 + ... + \lambda_n$.

$$\phi_X(t) = \prod_{k=1}^n e^{\lambda_k(e^{it}-1)} = e^{\lambda(e^{it}-1)}.$$

2.2 Characteristic functions and moments of random variables

Theorem 10.6. Let X be a random variable such that $E|X|^n = \int_{-\infty}^{\infty} |x|^n F_X(dx) < \infty$ for some $n \geq 1$. Then, there exist n-th continuous derivatives for the characteristic function $\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} F_X(dx)$ for all $t \in R_1$ given by the formula,

$$\phi_X^{(k)}(t) = i^k \int_{-\infty}^{\infty} x^k e^{itx} F_X(dx), \ k = 1, \dots, n,$$

and, therefore, the following formula takes place

$$EX^k = i^{-k}\phi_X^{(k)}(0), k = 1, \dots, n.$$

 $(1) \frac{\phi_X(t+h) - \phi_X(t)}{h} = \int_{-\infty}^{\infty} e^{itx} \frac{e^{ihx} - 1}{h} F_X(dx);$ $(2) \left| \frac{e^{ihx} - 1}{h} \right| \le |x| \text{ that let to perform the limit transition in the}$ above relation as $h \to 0$ using also that $\frac{e^{ihx}-1}{h} \to ix$ as $h \to 0$;

(3) In general case, the formula for $\phi_X^{(k)}(t)$ can be proved by induction.

Examples

(1) Let $X = N(m, \sigma^2)$ be a normal random variable. $\phi_X(t) = e^{itm - \frac{\sigma^2 t^2}{2}}$ and, therefore,

(1) $\phi_X'(t) = (im - \sigma^2 t)e^{itm - \frac{\sigma^2 t^2}{2}}$ and $EX = i^{-1}\phi_X'(0) = m$. (2) $\phi_X''(t) = -\sigma^2 e^{itm - \frac{\sigma^2 t^2}{2}} + (im - \sigma^2 t)^2 e^{itm - \frac{\sigma^2 t^2}{2}}$ and $EX^2 = i^{-2}\phi_X''(0) = \sigma^2 + m^2$.

(2) Let random variables $X = \mathcal{P}(\lambda)$ be a Poissonian random variable. Then $\phi_X(t) = e^{\lambda(e^{it}-1)}$ and, therefore,

(1) $\phi_X'(t) = i\lambda e^{it} e^{\lambda(e^{it}-1)}$ and, thus, $EX = i^{-1}\phi_X'(0) = \lambda$. (2) $\phi_X''(t) = i^2\lambda e^{it} e^{\lambda(e^{it}-1)} + i^2\lambda^2 e^{2it} e^{\lambda(e^{it}-1)}$ and $EX^2 = i^{-2}\phi_X''(0) = i^2\lambda e^{it} e^{\lambda(e^{it}-1)} + i^2\lambda^2 e^{2it} e^{\lambda(e^{it}-1)}$

2.3 Continuity theorem

 $X_n, n = 0, 1, \dots$ is a sequence of random variables with distribution functions, respectively, $F_n(x)$, n = 0, 1, ...;

 $\phi_n(t) = Ee^{itX_n} = \int_{-\infty}^{\infty} e^{itx} F_n(dx), n = 0, 1, \dots$ are the corresponding characteristic functions;

 C_F denotes the set of continuity points for a distribution function F(x).

Theorem 10.7 (continuity)**. Distribution functions $F_n \Rightarrow F_0$ as $n \to \infty$ if and only if the corresponding characteristic functions $\phi_n(t) \to \phi_0(t)$ as $n \to \infty$ for every $t \in R_1$.

- (a) Let $F_n \Rightarrow F_0$ as $n \to \infty$.
- (b) Then by Helly theorem, for every $t \in R_1$,

$$\phi_n(t) = \int_{-\infty}^{\infty} e^{itx} F_n(dx) \to \int_{-\infty}^{\infty} e^{itx} F_0(dx) = \phi_0(t) \text{ as } n \to \infty.$$

- (c) Let $\phi_n(t) \to \phi_0(t)$ as $n \to \infty, t \in R_1$.
- (d) As was proved in Lecture 9 using Cantor diagonal method, for any subsequence $n_k \to \infty$ as $k \to \infty$, one can select a subsequence $n'_r = n_{k_r} \to \infty$ as $r \to \infty$ such that

$$F_{n'_r}(x) \to F(x)$$
 as $n \to \infty, x \in C_F$,

where F(x) is proper or improper distribution function (non-decreasing, continuous from the right and such that $0 \le F(-\infty) \le F(\infty) \le 1$).

(e) Let us write down the Parseval identity

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi_{n'_r}(t) e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-x)^2}{2\sigma^2}} F_{n'_r}(dx).$$

(f) By passing to the limit as $r \to \infty$ in the above identity and takin into account (c), and Lebesque theorem, and the fact that $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-x)^2}{2\sigma^2}} \to 0$ as $x \to \pm \infty$, we get

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi_0(t) e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(y-x)^2}{2\sigma^2}} F(dx).$$

(g) By multiplying both part in (f) by $\sqrt{2\pi}\sigma$ and taking y=0, we get

$$\int_{-\infty}^{\infty} \phi_0(t) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{t^2 \sigma^2}{2}} dt = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} F(dx) \le F(+\infty) - F(-\infty).$$

(g) By passing to the limit as $\sigma \to 0$ in the above equality and taking into account that (a) $\int_{-\infty}^{\infty} \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{t^2\sigma^2}{2}} dt = 1$, (b) $\frac{\sigma}{\sqrt{2\pi}} e^{-\frac{t^2\sigma^2}{2}} \to 0$ as $\sigma \to \infty$, for $t \neq 0$, and (c) $\phi(t)$ is continuous in zero and $\phi(0) = 1$, we get,

$$1 = \lim_{\sigma \to \infty} \int_{-\infty}^{\infty} \phi_0(t) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{t^2 \sigma^2}{2}} dt \le F(+\infty) - F(-\infty).$$

- (h) This, $F(+\infty) F(-\infty) = 1$, i.e., the distribution F(x) is a proper distribution.
- (i) In this case, the weak convergence $F_{n'_r} \Rightarrow F$ as $n \to \infty$ implies by the first part of the theorem that

$$\phi_{n'_r}(t) \to \phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx) \text{ as } n \to \infty, \ t \in R_1.$$

(j) This relation together with (c) implies that

$$\phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx) = \phi_0(t), t \in R_1.$$

- (k) Therefore due to one-to-one correspondence between characteristic functions and distribution functions $F(x) \equiv F_0(x)$.
- (l) Therefore, by the subsequence definition of the weak convergence $F_n \Rightarrow F_0$ as $n \to \infty$.

Theorem 10.8* (continuity). Distribution functions $F_n(x)$ weakly converge to some distribution function F(x) if and only if the corresponding characteristic functions $\phi_n(t)$ converge pointwise (for every $t \in R_1$) to some continuous function $\phi(t)$. In this case, $\phi(t)$ is the characteristic function for the distribution function F(x).

2.2 Weak law of large numbers (LLN)

 $<\Omega, \mathcal{F}, P>$ is a probability space; $X_n, n=0,1,2,\ldots$ are independent identically distributed (i.i.d.)

⁽a) Let $\phi_n(t) \to \phi(t)$ as $n \to \infty$ for every $t \in R_1$. Then $\phi(0) = 1$;

⁽b) $\phi(t)$ is positively defined since functions $\phi_n(t)$ possess these properties.

⁽c) Since $\phi(t)$ is also continuous, the properties (a)-(c) pointed in Theorem 10.1 hold and, therefore, $\phi(t)$ is a characteristic function for some distribution function F(x). Then $F_n(x)$ weakly converge to F(x) by Theorem 10.7.

random variables defined on a probability space $\langle \Omega, \mathcal{F}, P \rangle$.

Theorem 10.9 (weak LLN). If $E|X_1| < \infty$, $EX_1 = a$, then random variables

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{d} a \text{ as } n \to \infty.$$

(a) Let $\phi(t) = Ee^{itX_1}$, $\phi_n(t) = Ee^{it\overline{X}_n}$ be the corresponding characteristic functions. Then $\phi_n(t) = (\phi(\frac{t}{n}))^n$.

(b) Since $E|X_1| < \infty$, there exists the continuous first derivative $\phi'(t)$ and, therefore, Taylor expansion for $\phi(t)$ in point t = 0 can be written down that is $\phi(t) = 1 + \phi'(0)t + o(t)$

(c) Since $\phi'(0) = iEX_1 = ia$, the above Taylor expansion can be re-written. in the following form $\phi(t) = 1 + iat + o(t)$.

(d) Therefore, $\phi_n(t) = (\phi(\frac{t}{n}))^n = (1 + ia\frac{t}{n} + o(\frac{t}{n}))^n$.

(e) If $u_n \to 0$ and $v_n \to \infty$ then $\lim_{n \to \infty} (1 + u_n)^{v_n}$ exists if and only if there exists $\lim_{n \to \infty} u_n v_n = w$ and, in this case, $\lim_{n \to \infty} (1 + u_n)^{v_n} = e^w$.

(f) Using this fact, we get $\lim_{n\to\infty} \phi_n(t) = \lim_{n\to\infty} (1 + ia\frac{t}{n} + o(\frac{t}{n}))^n = e^{iat}$, for every $t \in R_1$.

(g) Thus by the continuity theorem for characteristic functions $\overline{X}_n \stackrel{d}{\longrightarrow} a$ as $n \to \infty$.

10.10 Central Limit Theorem (CLT)

 $<\Omega, \mathcal{F}, P>$ is a probability space;

 $X_n, n = 0, 1, 2, \dots$ are independent identically distributed (i.i.d.)

random variables defined on a probability space $<\Omega,\mathcal{F},P>$; Z=N(0,1) is standard normal random variable with the distribution function $F(x)=\frac{1}{\sqrt{n}\sigma}\int_{-\infty}^x e^{-\frac{y^2}{2}}dy, -\infty < x < \infty.$

Theorem 10.10 (CLT). If $E|X_1|^2 < \infty$, $EX_1 = a$, $VarX_1 = \sigma^2 > 0$, then random variables

$$Z_n = \frac{X_1 + \dots + X_n - an}{\sqrt{n}\sigma} \xrightarrow{d} Z \text{ as } n \to \infty.$$

(1) Since, the limit distribution F(x) is continuous, the above relation means that $P(Z_n \leq x) \to F(x)$ as $n \to \infty$ for every $-\infty < x < \infty$.

(a) Let introduce random variables $Y_n = \frac{X_n - a}{\sigma}$, n = 1, 2, ..., then $Z_n = \frac{X_1 + \cdots + X_n - an}{\sqrt{n}\sigma} = \frac{Y_1 + \cdots + Y_n}{\sqrt{n}}$.

(b) Let $\psi(t) = Ee^{itY_1}, \psi_n(t) = Ee^{it\overline{Z}_n}$. Then $\psi_n(t) = (\psi(t/\sqrt{n}))^n$.

(c) If $E|X_1|^2 < \infty$ then $E|Y_1|^2 < \infty$ and, moreover, $EY_1 = \sigma^{-1}(EX_1 - a) = 0, E(Y_1)^2 = \sigma^{-2}E(X_1 - a)^2 = 1.$

(d) Since $E|Y_1|^2 < \infty$, there exist the continuous second derivative $\psi''(t)$ and, therefore, Taylor expansion for $\psi(t)$ in point t=0 can be written down that is $\psi(t) = 1 + \psi'(0)t + \frac{1}{2}\psi''(0)t^2 + o(t^2)$.

(e) Since $\psi'(0) = iEY_1 = 0$ and $\psi''(0) = i^2E(Y_1)^2 = -1$, the above Taylor expansion can be re-written in the following form $\psi(t) = 1 - \frac{1}{2}t^2 + o(t^2)$.

(f) Therefore, $\psi_n(t) = (\psi(\frac{t}{\sqrt{n}}))^n = (1 - \frac{t^2}{2n} + o(\frac{t^2}{n}))^n$.

(g) Using the above formula, we get $\lim_{n\to\infty} \psi_n(t) = \lim_{n\to\infty} (1-\frac{t^2}{2n} + o(\frac{t^2}{n}))^n = e^{-\frac{t^2}{2}}$, for every $t \in R_1$.

(h) Thus by the continuity theorem for characteristic functions $Z_n \stackrel{d}{\longrightarrow} Z$ as $n \to \infty$.

2.6 Law of small numbers

Let $X_{n,k}$, k = 1, 2, ... are i.i.d. Bernoulli random variables defined on a probability space $\langle \Omega_n, \mathcal{F}_n, P_n \rangle$ and taking values 1 and 0, respectively, with probabilities p_n and $1 - p_n$, where $0 \leq p_n \leq 1$.

 $N(\lambda) = \mathcal{P}(\lambda)$ is a Poissonian random variable with parameter λ , i.e., $P(N(\lambda) = r) = \frac{\lambda^r}{r!} e^{-\lambda}, r = 0, 1, \dots$

Theorem 10.11 (LSN). If $0 < p_n \cdot n \to \lambda < \infty$, then random variables

$$N_n = X_{n,1} + \cdots + X_{n,n} \xrightarrow{d} N(\lambda) \text{ as } n \to \infty.$$

- (1) The random variable N_n is the number of successes in n Bernoulli trials.
- (2) The random variables $N_n = X_{n,1} + \cdots + X_{n,n}, n = 1, 2, \dots$ are determined by series of random variables

$$X_{1,1}$$

$$X_{2,1}, X_{2,2}$$

$$X_{3,1}, X_{3,2}, X_{3,3}$$

.

This representation gave the name to this type of models. as so-called *triangle array mode*.

(a) Let $\phi_n(t) = Ee^{itN_n}$ The characteristic function $Ee^{itX_{n,1}} = p_ne^{it} + 1 - p_n$ and, thus, the characteristic function $\phi_n(t) = Ee^{itN_n} = (p_ne^{it} + 1 - p_n)^n$.

(b) Using the above formula, we get $\phi_n(t) = (p_n e^{it} + 1 - p_n)^n \sim e^{p_n(e^{it}-1)n} \to e^{\lambda(e^{it}-1)}$ as $n \to \infty$, for every $t \in R_1$.

(c) Thus by the continuity theorem for characteristic functions $N_n \xrightarrow{d} N(\lambda)$ as $n \to \infty$.

LN Problems

1. What is the characteristic function of random variable X which takes value -1 and 1 with probability $\frac{1}{2}$.

2. Prove that the function $\cos^n t$ is a characteristic function for every $n = 1, 2, \ldots$

3. Let X is a uniformly distributed random variable on the interval [a, b]. Please find the characteristic function of the random variable X.

4. Let f(x) is a probability density for a random variable X. Prove that the characteristic function is a real-valued function if f(x) is a symmetric function, i.e. $f(x) = f(-x), x \ge 0$.

5. Let random variables X_1 and X_2 are independent and have gamma distributions s parameters α_1 , β and α_2 , β , respectively. Prove that the random variable $Y = X_1 + X_2$ also has gamma distribution with parameters α_1 , $+\alpha_2$, β .

- **6**. Let X has a geometrical distribution with parameter p. Find EX and VarX using characteristic functions.
- 7.Let X_n are geometrical random variables with discrete distribution $p_{X_n}(k) = p_n(1-p_n)^{k-1}, k=1,2,\ldots$, where $0 < p_n \to 0$ as $n \to \infty$. Prove that $p_n X_n \stackrel{d}{\longrightarrow} X$ as $n \to \infty$, where X = Exp(1) is an exponential random variable with parameter 1.