Answer Key:

FINAL EXAM, VERSION 3 CSci 127: Introduction to Computer Science Hunter College, City University of New York

	20 December 2021
1.	(a) Given the quote in the code below, fill in the code to produce the Output on the right:
	quote = ' "My life is my message." Mahatma Gandhi'
	i. print(quote[])
	Answer Key:
	-14:
	ii. print(quote[2:4].
	Answer Key:
	lower()
	<pre>print("This quote has", end=" ") iii. print(quote.count(), "period")</pre>
	Answer Key:
	count('.')
	<pre>(b) Fill in the code below to produce the Output on the right: numbers = "10 / 11 / 12 / 13 / 14" i. num_list = numbers. Answer Key: split(' / ')</pre>
	for n in num_list :
	ii. print()
	Answer Kov.

int(n)%2

(c) Consider the following shell commands:

\$ 1s

avg.py images logarithm.py logo.png reds.png

- i. What is the output for:
 - \$ ls | grep log

Answer Key:

logarithm.py logo.png

- ii. What is the output for:
 - \$ mkdir images/colors
 - \$ mv logo.png images
 - \$ mv reds.png images/colors
 - \$ cd images
 - \$ ls

Answer Key:

colors logo.png

iii. What is the output for:

\$ cd ../

\$ ls *.py

Answer Key:

avg.py logarithm.py

2. (a) Select the color corresponding to the rgb values below:

Answer Key:

- i. rgb = (255, 0, 255)
 - \square black \square red
- $\hfill\square$ white
- \square gray

 \mathbf{X} purple

ii. rgb = "#000000"

 \mathbf{X} black

 \square red

 \square white

 \square gray

□ purple

iii.	rgb = (0.5,	0.5, 0.5)	
	\square black	\square red	□ v

 \square white

 \mathbf{X} gray

□ purple

iv. Select the SMALLEST Binary number:

□ 110100

 \square 011101

 $\Box 101000$

X 000111

 $\Box 101010$

v. What is the Hexadecimal number equivalent to decimal 15?

 \mathbf{X} 0F

 \square 99

 \square A0

 \square FF

 \square C3

(b) Given the list names below, fill in the code to produce the Output on the right:

i. Answer Key:

for i in range(3):
print(names[i], end=" ")

Output:

aida mandy diana

ii. Answer Key:

for j in range(1, 6, 2):
 print(names[j], end=" ")

Output:

mandy roziena lola

Answer Key:

Output:

Answer Key:

plt.show()

Output:

3. (a) What is the value (True/False):

in1 = True
i. in2 = False
 out = not in1 and in2

Answer Key:

out = False

in1 = True
in2 = False
i.
in3 = in1 or not in2
out = not(in1 or not in2) and not in3

Answer Key:

out = False

in1 = True

in2 = False

in3 = False

Answer Key:

out = True

(b) Draw a circuit that implements the logical expression:

(in1 or in2) or not(in1 and not in2)

Answer Key:

(c) Fill in the circuit with the gate-symbol or gate-name that implements the logical expression:

(not(not in1 or in2) and (not(in2 and in3) or not in3)

4. Consider the following functions:

```
def count(items, ch):
   count = 0
   for i in range(len(items)):
      if compare(items[i], ch):
        count += 1
   return count
```

```
def compare(i, c):
    return i == c

def main():
    chars = ['a','a','b','c','b','b','c','c']
    print(count(chars, 'a'))
```

(a) What are the formal parameters for compare()?

Answer Key: i, c

(b) What are the actual parameters for count()?

Answer Key: chars, 'a'

(c) How many calls are made to compare() after calling main()?

Answer Key: 8

(d) What is the output after calling main()?

Output:

Answer Key:

2

5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers (think like an image without the color channel), as well as an input number n. The program outputs the index (row, col) of the first occurrence of n in the array.

Libraries:

Answer Key: numpy Input:						
Answer Key: The input file and Output:	d number n					
Answer Key: The index of n Design Pattern:						
Answer Key: X Search Principal Mechanisms (select	☐ Find Min all that apply):	□ Find Max	□ Find All			
-, -	lit() X inp	ut()				
Process (as a concise and precise LIST OF STEPS / pseudocode): (Assume libraries have already been imported.)						

- (a) Ask the user for input file name
- (b) Load the data into a numpy array, call it grid
- (c) Ask the user for number to search for and store it in n
- (d) Set variables row and col to -1
- (e) Use a nested loop to consider every number in grid looping for rows in outer loop and columns in inner loop
 - i. if the current number (the number at grid[current_row, current_column] == n, set row to current_row and set col to current_column
- (f) Return row and col. If row and col are -1, it indicates the number was not found in the grid
- 6. Consider the open_restaurants.csv dataset for restaurant reopening applications under Phase Two of the New York Forward Plan to place outdoor seating in front of their business on the sidewalk and/or roadway. Each row in the dataset corresponds to an application. A snapshot of the data is given in the image below:

Seating Interest	Restaurant Name	Borough	Sidewalk Area	Roadway Area	Approved for Sidewalk Seating	Approved for Roadway Seating
sidewalk	HUNGRY GHOST	Manhattan	200	640	yes	no
both	Prince Laban&Chinese rest	Queens	144	144	yes	yes
sidewalk	Philly Pretzel Factory	Brooklyn	6500	920	yes	no
both	BICKLES TO GO	Bronx	100	160	yes	yes
roadway	STARBUCKS	Manhattan	160	160	no	yes
roadway	OVENLY	Brooklyn	40	168	no	yes
sidewalk	LE PAIN QUOTIDIEN	Manhattan	105	280	yes	no
both	Le Pain Quotidien GCW	Manhattan	90	240	yes	yes
both	Asian Kabab and Curry	Brooklyn	60	60	yes	yes

Fill in the Python program below:

Answer Key:

```
#Import the libraries for data frames
import pandas as pd

#Prompt user for input file name:
csvFile = input('Enter CSV file name: ')

#Read input data into data frame:
df = pd.read_csv(csvFile)

#Print the 5 restaurant names with most applications
#Each row is an application, count the number of rows
# per Restaurant Name and print the top 5
print(df['Restaurant Name'].value_counts()[:5])

#Group the data by Borough to extract applications in Brooklyn
#use groupby and get_group
brooklyn = df.groupby('Borough').get_group('Brooklyn')

#Print the average sidewalk area in Brooklyn
print(brooklyn['Sidewalk Area'].mean())
```

7. Consider the Python program below to display the first n squares. **Fill-in the functions** based on the comments and the overall program. Pay attention to the sample output in the comments in-order to implement the function correctly.

```
def print_n_squares(n):
    for i in range(1,n+1):
        print(i, '**2 =', i**2)

Answer Key:

def validate_input(num):
    while(num < 1):
        print("Please enter a positive number.")
        num = int(input("How many squared numbers to display? "))
    return num

# Display numbers squared
def main():
    i = int(input("How many squared numbers to display? "))
    i = validate(i)

#print first n squares
    print_n_squares(i)</pre>
```

8. (a) What does the MIPS program below print:

Answer Key:

Hello!

(b) Modify the program to print out Hell!

Shade in the box for each line or line-pair that needs to be changed and rewrite the instruction below. If the line needs to be deleted, write Delete.

```
# Print Hell!
ADDI $sp, $sp, -6
ADDI $t0, $zero, 72 # H
SB $t0, 0($sp)
ADDI $t0, $zero, 101 # e
SB $t0, 1($sp)
ADDI $t0, $zero, 108 # 1
SB $t0, 2($sp)
ADDI $t0, $zero, 108 # 1
SB $t0, 3($sp)
ADDI $t0, $zero, 33 # !
SB $t0, 4($sp)
```

```
ADDI $t0, $zero, 0 # (null)
SB $t0, 5($sp)

ADDI $v0, $zero, 4 # 4 is for print string
ADDI $a0, $sp, 0
syscall # print to the log
```

(c) Modify the MIPS program below to count from 20 to 5, down by 5. Shade in the box for each line that needs to be changed and rewrite the instruction below.

Answer Key:

```
ADDI $s0, $zero, 20 #set s0 to 20
ADDI $s1, $zero, 5 #set s1 to 5
ADDI $s2, $zero, 5 #use to compare for branching
AGAIN: SUB $s0, $s0, $s1
BEQ $s0, $s2, DONE
J AGAIN
DONE: #To break out of the loop
```

(d) After the modification, how many times is the line labeled AGAIN: executed?

Answer Key:

3 times.

9. Fill in the C++ programs below to produce the Output on the right.

(a) Answer Key:

```
#include <iostream>
        using namespace std;
        int main()
            int count = 20;
            int num = 10;
    (b)
            while(count >=0 && num
                cout << count << " " << num << endl;</pre>
                count -= 2;
                num -= 5;
            }
            return 0;
        }
        Answer Key:
        num >= 1
        or
        num > 0
#include <iostream>
        using namespace std;
        int main(){
            for (int i = 10;
        Answer Key:
          i > 5
          or
          i >= 6
                 cout << "Keep going!" << endl;</pre>
            }
            return 0;
        }
10. (a) Translate the following python program into a complete C++ program:
        for i in range(2,13,2):
          for j in range(10,i,-3):
            print(i, j)
        Answer Key:
        #include <iostream>
```

```
using namespace std;
int main(){
    for(int i = 2; i < 13; i+=2){
        for(int j = 10; j > i; j-=3){
            cout << i << " " << j << endl;
        }
    }
    return 0;
}</pre>
```

- (b) Write a **complete C++ program** that asks the user for an amount and outputs the interest as follows:
 - "5%" if the amount is less than \$500
 - "8%" if the amount is in range [\$500, \$2000]
 - "10%" otherwise

```
//include library and namespace
#include <iostream>
using namespace std;
//function signature
int main(){
    //declare variables
    float amount;
    //obtain input
    cout << "Please enter a dollar amount: ";</pre>
    cin >> amount;
    //output interest
    if(amount < 500)
        cout << "5%" << endl;</pre>
    else if(amount <= 2000)</pre>
        cout << "8%" << endl;</pre>
    else
        cout << "10%" << endl;</pre>
    return 0;
}
```