reduce to integer subset sum (counting version).

Let U be the range of a[i], $\sigma = \sum_{i=1}^{n} a[i]$, and the subset sum we want is $t = \frac{\sigma - S}{2}$. $S \le \sigma \le nU$. 1. DP. f[i][j] denote the number of ways for the first i integers sum up to j. $O(nt) = O(n^2U)$.

- 2. $O(n + t \log t)$ randomized and succeed w.h.p. [1]. (assume the output fits in a word, we do not need mod p in that paper.

deterministic: $\tilde{O}(\sqrt{nt})$ [3], $\tilde{O}(\min{\{\sqrt{nt}, t^{4/3}, \sigma\}})$ [2].

for the decision version of subset sum, O(nU) [4], based on balancing.

References

- [1] Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm for subset sum. arXiv preprint arXiv:1807.11597, 2018.
- [2] Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1062-1072. SIAM, 2017.
- [3] Konstantinos Koiliaris and Chao Xu. Subset sum made simple. 2018.
- [4] David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms, 33(1):1-14, 1999.