IEEE POWER ENGINEERING SOCIETY Power System Analysis, Computing and Economics Committee

Subcommittee Chairs

Computer & Analytical Methods EDWIN LIU, Chair Nexant, Inc. 101, 2nd street, 11F San Francisco CA 94105 Vox: 415-369-1088 Fax: 415-369-0894

exliu@nexant.com

Distribution Systems Analysis SANDOVAL CARNEIRO, JR, Chair Dept. of Electrical Engineering Federal Univ. of Rio de Janeiro Rio de Janeiro, RJ, Brazil Vox: 55-21-25628025 Fax: 55-21-25628628 sandoval@coep.ufrj.br

Intelligent System Applications DAGMAR NIEBUR, Chair Department of ECE Drexel University 3141 Chestnut Street Philadelphia, PA 19104 Vox: (215) 895 6749 Fax: (215) 895 1695 niebur@cbis.ece.drexel.edu

Reliability, Risk & Probability Applications JAMES D. MCCALLEY, Chair Iowa State University Room 2210 Coover Hall Ames, Iowa 50011 Vox: 515-294-4844 Fax: 515-294-4263 jdm@iastate.edu

ROSS BALDICK, Chair ECE Dept., ENS 502 The University of Texas at Austin Austin, TX 78712 Vox: 512-471-5879 Fax: 512-471-5532 baldick@ece.utexas.edu

Systems Economics

Past Chair

JOANN V. STARON Nexant Inc/ PCA 1921 S. Alma School Road Suite 207 Mesa, AZ 85210 Vox: 480-345-7600 Fax: 480-345-7601 joann.staron@pca-corp.com

Chair MARTIN L. BAUGHMAN Professor Emeritus The University of Texas at Austin 5703 Painted Valley Drive Austin, TX 78759 Seattle, WA 98195

Vox: 512-345-8255 Fax: 512-345-9880 baughman@mail.utexas.edu

Vice Chair CHEN-CHING LIU Dept. of Electrical Eng. University of Washington Box 352500

Vox: 206-543-2198 Fax: 206-543-3842 liu@ee.washington.edu Secretary

ROGER C. DUGAN Sr. Consultant Electrotek Concepts, Inc. 408 N Cedar Bluff Rd Knoxville, TN 37923 Vox: 865-470-9222 Fax: 865-470-9223 r.dugan@ieee.org

Distribution System Analysis Subcommittee

IEEE Wye-Delta Center Tapped Transformer Test Feeder

Data and Solutions

Transformer Connections

- Ungrounded Wye-Delta
- Grounded Wye-Delta
- "Leading" Open Wye- Delta
- "Lagging" Open Wve-Delta

IEEE Four-Wire Delta Test Feeder

The system to be used in testing four wire delta transformer models is shown in Figure 1. This system is used to model the following transformer connections:

- Ungrounded wye-delta
- Grounded wye-delta
- Leading open wye-open delta
- Lagging open wye-open delta

Figure 1 – Four Wire Delta Test Feeder

Three-Phase Circuit:

The three-phase circuit to be analyzed for the ungrounded wye-delta connection is shown in Figure 2. The grounded wye-delta connection will have a connection from the primary transformer neutral to the distribution line grounded neutral. The "leading" open wye – open delta connection will ground the transformer primary neutral and remove the transformer on phase C. The "lagging" open wye – open delta connection will remove the transformer on phase B from the original connection.

Figure 2 – Three-Phase Circuit

Equivalent Source

Balanced line-to-ground voltages of 7200 volts with abc rotation.

Primary Line:

The primary line will be constructed using the pole configuration shown in Figure 3.

Figure 3 – Pole Configuration

Phase Conductors: 556,500 26/7 ACSR

GMR = 0.0313 ft., Resistance = 0.1859 Ω /mile, Diameter = 0.927 inch

Neutral Conductor: 4/0 6/1 ACSR

GMR = 0.00814 ft., Resistance = 0.492Ω /mile, Diameter = 0.563 inch

Length of line = 5 miles

Primitive four -wire impedance matrix:

$$zp = \begin{pmatrix} 0.2812 + 1.383j & 0.0953 + 0.7266j & 0.0953 + 0.8515j & 0.0953 + 0.7524j \\ 0.0953 + 0.7266j & 0.2812 + 1.383j & 0.0953 + 0.7802j & 0.0953 + 0.7674j \\ 0.0953 + 0.8515j & 0.0953 + 0.7802j & 0.2812 + 1.383j & 0.0953 + 0.7865j \\ 0.0953 + 0.7524j & 0.0953 + 0.7674j & 0.0953 + 0.7865j & 0.6873 + 1.5465j \end{pmatrix} \Omega/mile$$

Kron reduced equivalent three-wire impedance matrix:

$$\begin{split} z_{abc} = \begin{pmatrix} 0.3375 + \ 1.0478 j & 0.1535 + \ 0.3849 j & 0.1559 + \ 0.5017 j \rangle \\ 0.1535 + \ 0.3849 j & 0.3414 + \ 1.0348 j & 0.158 + \ 0.4236 j \\ 0.1559 + \ 0.5017 j & 0.158 + \ 0.4236 j & 0.3465 + \ 1.0179 j \end{pmatrix} & \Omega/\text{mile}_{\Omega} \end{split}$$

Secondary Line:

The secondary line is quadraplex cable as shown in Figure 4.

Figure 4 – Quadraplex Cable

Phase Conductor: 4/0 AA

GMR = 0.0158 ft., Resistance = $0.484 \Omega/\text{mile}$, Diameter = 0.522 inch

Neutral Conductor: 4/0 6/1 ACSR

GMR = 0.00814 ft., Resistance = 0.592Ω /mile, Diameter = 0.563 inch

Insulation Thickness = 0.2 inch Length of Secondary = 100 ft.

Four Wire Impedance Matrix:

$$zq = \begin{pmatrix} 0.5793 + 1.466j & 0.0953 + 1.2741j & 0.0953 + 1.2741j & 0.0953 + 1.3004j \\ 0.0953 + 1.2741j & 0.5793 + 1.466j & 0.0953 + 1.2741j & 0.0953 + 1.2251j \\ 0.0953 + 1.2741j & 0.0953 + 1.2741j & 0.5793 + 1.466j & 0.0953 + 1.3004j \\ 0.0953 + 1.3004j & 0.0953 + 1.2251j & 0.0953 + 1.3004j & 0.6873 + 1.5465j \end{pmatrix} \Omega /mile$$

Kron Reduced Equivalent Three-Wire Impedance Matrix:

$$z_{sec} = \begin{pmatrix} 0.8491 + 0.4984j & 0.3455 + 0.361j & 0.3651 + 0.3064j \\ 0.3455 + 0.361j & 0.8112 + 0.6044j & 0.3455 + 0.361j & \Omega/mile \\ 0.3651 + 0.3064j & 0.3455 + 0.361j & 0.8491 + 0.4984j \end{pmatrix}$$

Transformer Data

Power Transformers Phase A: 10 kVA, 7200-120/240, $Z_P = 0.016 + \text{j}0.014$ per-unit

Lighting Transformers Phase B &C: 25 kVA, 7200-120/240, $Z_L = 0.012 + j0.017$ per-unit

For an interlaced lighting transformer:

$$Z_A = 0.5 \cdot R_L + j0.8 \cdot X_L$$

 $Z_a = Z_b = R_L + j0.4 \cdot X_L$ per-unit

Impedances in Ohms per the circuit diagram of Figure 5:

$$Z_A = 12.4416 + j28.201$$

 $Z_a = Z_b = 0.006912 + j0.003917$ Ohms
 $Z_B = Z_C = 82.944 + j72.576$

The connection diagram for the three transformers connected in ungrounded wye-delta is shown in Figure 5.

Figure 5 – Transformer Connection Diagram

Load Data

Three-Phase Induction Motor:

25 Hp, 240 volt
$$Z_{stator} = 0.0774 + j0.1843$$

$$Z_{rotor} = 0.0908 + j0.1843$$
 Ohms
$$Z_{m} = 0 + j4.8384$$
 Slip = 0.035

Three-phase motor admittance and impedance matrices for slip = 0.035

$$YM_{abc} = \begin{pmatrix} 0.7452 - 0.4074j & -0.0999 - 0.0923j & 0.3547 + 0.4997j \\ 0.3547 + 0.4997j & 0.7452 - 0.4074j & -0.0999 - 0.0923j \\ -0.0999 - 0.0923j & 0.3547 + 0.4997j & 0.7452 - 0.4074j \end{pmatrix}$$

$$\begin{pmatrix} 1.0991 + 1.3888i & -0.9987 - 0.3165i & 0.8996 - 1.0723i \end{pmatrix}$$

$$ZM_{abc} = \begin{pmatrix} 1.0991 + 1.3888j & -0.9987 - 0.3165j & 0.8996 - 1.0723j \\ 0.8996 - 1.0723j & 1.0991 + 1.3888j & -0.9987 - 0.3165j & \Omega \\ -0.9987 - 0.3165j & 0.8996 - 1.0723j & 1.0991 + 1.3888j \end{pmatrix}$$

Lighting Loads:

 $SL_{an} = 3$ kVA at 0.95 lagging power factor

 $SL_{bn} = 5$ kVA at 0.85 lagging power factor

 $SL_{ab} = 10 \text{ kVA}$ at 0.90 lagging power factor

Ungrounded Wye-Delta Solution

Source LG Voltages

$$ES_{AG} = 7,200/0$$

 $ES_{BG} = 7,200/-120$ V
 $ES_{CG} = 7,200/120$

Primary Line Voltage Drops

$$v_A = 8.6057/47.57$$

 $v_B = 6.1279/-104.47$
 $v_C = 4.5188/174.26$ V
 $v_N = 0$

Transformer Primary LN Voltages

$$V_{AN} = 7,130.94/-0.08$$

 $V_{BN} = 7,228.90/-120.43$ V
 $V_{CN} = 7,226.22/120.42$

Source LL Voltages

$$ES_{AB} = 12,470.77/30$$

 $ES_{BC} = 12,470.77/-90$ V
 $ES_{CA} = 12,470.77/150$

End of Line LG Voltages

$$V_{AG} = 7,194.20/-0.05$$

 $V_{BG} = 7,194.10/-120.01$
 $V_{CG} = 7,197.36/119.97$

$$V_{AB} = 12,458.27/29.97$$

 $V_{BC} = 12,464.38/-90.01$ V
 $V_{CA} = 12,464.80/149.95$

$$V_{NG} = 63.3576/3.10$$
 V

Primary Windings Ideal Voltages

Primary Line, Neutral and Ground Currents

Secondary Line, Neutral and Ground

Single-Phase Load Voltages

$$I_A = 2.7513 / -29.37$$

 $VT_{AN} = 7,063.30 / -0.49$
 $VT_{BN} = 7,040.38 / -120.05$ V
 $I_C = 1.6112 / 113.29$ A
 $I_N = 0.0403 / -21.28$
 $I_G = 0.0403 / 158.72$

$$Vt_{an} = 117.72/-0.49$$
 $V_{an} = 117.14/-0.51$ $V_{nb} = 116.99/-0.48$ $V_{nb} = 234.68/-120.05$ A $V_{ab} = 234.68/-120.05$ $V_{bc} = 234.68/-120.05$ $V_{bc} = 234.68/-120.05$ $V_{ca} = 235.99/119.61$

<u>Transformer Secondary Winding Currents</u> <u>Currents</u>

$$I_{na} = 73.67/-26.59$$
 $I_{a} = 114.93/-41.32$ $I_{b} = 138.02/161.37$ $I_{cb} = 52.96/-175.76$ A $I_{c} = 58.91/55.09$ A $I_{ac} = 48.34/113.29$ $I_{g} = 8.69/-50.55$

$$v_a = 1.0321/-30.14$$

 $v_b = 1.5515/-172.65$
 $v_c = 0.4488/94.39$
 $v_n = 0$
 $VL_{an} = 116.24/-0.26$
 $VL_{nb} = 115.46/-0.59$ V
 $VL_{ab} = 231.70/-0.42$

$$IL_{an} = 25.81 / -18.45$$

 $IL_{nb} = 43.31 / -32.38$ A
 $IL_{ab} = 43.16 / -26.26$

Single-Phase Complex Powers

$$S_{an} = \frac{VL_{an} \cdot (IL_{an})}{1000}^{*} = 3.0 @ 0.95PF$$

$$S_{nb} = \frac{VL_{nb} \cdot (IL_{nb})}{1000}^{*} = 5.0 @ 0.85PF \quad kVA$$

$$S_{ab} = \frac{VL_{ab} \cdot (IL_{ab})}{1000}^{*} = 10.0 @ 0.90PF$$

Motor LL Voltages

$$VL_{ab} = 231.70/-0.42$$

 $VL_{bc} = 233.37/-119.81$ V
 $VL_{ca} = 234.70/119.53$

Motor Line Currents

$$IM_a = 54.65/-66.49$$

 $IM_b = 55.54/178.15$ A
 $IM_c = 58.91/55.09$

Transformer Operating kVAs

$$S_A = \frac{V_{AN} \cdot (I_A)^*}{1000} = 17.11 + j9.60 = 19.62 \text{_}kVA @ 0.87 \text{_}PF$$

$$S_B = \frac{V_{BN} \cdot (I_B)^*}{1000} = 7.26 + j10.50 = 12.76 \text{_}kVA @ 0.57 \text{_}PF$$

$$S_C = \frac{V_{CN} \cdot (I_C)^*}{1000} = 11.55 + j1.45 = 11.64 \text{_}kVA @ 0.99 \text{_}PF$$

INDUCTION MOTOR ANALYSIS

Stator Input Complex Power

$$S_{stator} = 18.83 + j12.79 _kVA$$

 $S_{stator} = 22.77 _kVA @ 0.8271 _PF$

Rotor Currents

$$Irotor_a = 45.89 / -38.29$$

 $Irotor_b = 48.63 / -154.15$ A
 $Irotor_c = 50.24 / 81.13$

Losses

$$Stator_{loss} = 738.65$$

 $Rotor_{loss} = 634.91$ W
 $Total_{loss} = 1,373.56$

Converted Shaft Power

$$P_{converted} = 17.46 _kW$$

 $P_{converted} = 23.40 _Hp$ kW

$$V_{unbalance=0.6671}$$
 $I_{unbalance} = 3.0525$
 $V_{unbalance} = 3.0525$

Grounded Wye-Delta Solution

Source LG Voltages

$$ES_{AG} = 7,200/0$$

 $ES_{BG} = 7,200/-120$ V
 $ES_{CG} = 7,200/120$

Primary Line Voltage Drops

$$v_A = 15.1049/38.92$$

 $v_B = 5.1143/-35.34$
 $v_C = 3.8637/68.05$ V
 $v_N = 0$

Transformer Primary LN Voltages

$$V_{AN} = 7,188.25 / -0.08$$

 $V_{BN} = 7,199.53 / -120.04$ V
 $V_{CN} = 7,197.62 / 120.02$

Source LL Voltages

$$ES_{AB} = 12,470.77/30$$

 $ES_{BC} = 12,470.77/-90$ V
 $ES_{CA} = 12,470.77/150$

End of Line LG Voltages

$$V_{AG} = 7,188.25/-0.08$$

 $V_{BG} = 7,199.53/-120.04$ V
 $V_{CG} = 7,197.62/120.02$

$$V_{AB} = 12,457.98/29.97$$

 $V_{BC} = 12,464.22/-90.01$ V
 $V_{CA} = 12,464.80/149.95$

$$V_{NG} = 0$$
 V

Primary Windings Ideal Voltages

Primary Line, Neutral and Ground Currents

Secondary Line, Neutral and Ground

Single-Phase Load Voltages

$$I_A = 3.3974 / -32.26$$

 $VT_{AN} = 7,101.69 / -0.55$
 $I_B = 1.3949 / -155.69$
 $VT_{BN} = 7,046.53 / -120.16$ V $I_C = 1.0480 / 99.22$ A
 $VT_{CN} = 7,089.46 / 119.70$ $I_N = 0.8621 / 153.32$
 $I_G = 1.1719 / 124.49$

$$Vt_{an} = 118.36/-0.55$$
 $Vt_{nb} = 118.36/-0.55$
 $Vt_{bc} = 234.88/-120.16$
 $Vt_{ca} = 236.32/119.70$
 $Vt_{an} = 117.62/-0.55$
 $Vt_{nb} = 117.48/-0.52$
 $Vt_{nb} = 235.10/-0.53$
 $Vt_{nb} = 234.88/-120.16$
 $Vt_{nb} = 236.32/119.70$

<u>Transformer Secondary Winding Currents</u> <u>Currents</u>

$$I_{na} = 92.89 / -30.34$$
 $I_{a} = 115.49 / -42.45$ $I_{b} = 137.78 / 161.09$ $I_{cb} = 41.85 / -155.69$ A $I_{c} = 31.44 / 99.22$ A $I_{g} = 8.68 / -50.60$

$$v_a = 1.0378/-30.23$$

 $v_b = 1.5485/-172.90$
 $v_c = 0.4468/95.11$
 $v_n = 0$
 $VL_{an} = 116.72/-0.29$
 $VL_{nb} = 115.95/-0.62$ V
 $VL_{ab} = 232.69/-0.46$

$$IL_{an} = 25.70 / -18.49$$

 $IL_{nb} = 43.12 / -32.41$ A
 $IL_{ab} = 42.98 / -26.30$

Single-Phase Complex Powers

$$S_{an} = \frac{VL_{an} \cdot (IL_{an})}{1000}^{*} = 3.0 @ 0.95PF$$

$$S_{nb} = \frac{VL_{nb} \cdot (IL_{nb})}{1000}^{*} = 5.0 @ 0.85PF \quad kVA$$

$$S_{ab} = \frac{VL_{ab} \cdot (IL_{ab})}{1000}^{*} = 10.0 @ 0.90PF$$

Motor LL Voltages

$$VL_{ab} = 232.69/-0.46$$

 $VL_{bc} = 233.58/-119.92$ V
 $VL_{ca} = 235.01/119.62$

Motor Line Currents

$$IM_a = 54.45 / -66.28$$

 $IM_b = 55.46 / 177.41$ A
 $IM_c = 58.52 / 55.56$

Transformer Operating kVAs

$$S_A = \frac{V_{AN} \cdot (I_A)^*}{1000} = 20.67 + j13.00 = 24.42 \text{_kVA} @ 0.85 \text{_PF}$$

$$S_B = \frac{V_{BN} \cdot (I_B)^*}{1000} = 8.16 + j5.85 = 10.04 \text{_kVA} @ 0.81 \text{_PF}$$

$$S_C = \frac{V_{CN} \cdot (I_C)^*}{1000} = 7.05 + j2.68 = 7.54 \text{_kVA} @ 0.93 \text{_PF}$$

INDUCTION MOTOR ANALYSIS

Stotor Input Complex Power

$$S_{stator} = 18.91 + j12.85 _kVA$$

 $S_{stator} = 22.86 _kVA @ 0.8272 _PF$

Rotor Currents

$$Irotor_a = 46.67/-38.46$$

 $Irotor_b = 48.26/-154.77$ A
 $Irotor_c = 50.10/81.84$

Losses

$$Stator_{loss} = 741.21$$

 $Rotor_{loss} = 636.97$ W
 $Total_{loss} = 1,378.18$

Converted Shaft Power

$$P_{converted} = 17.53 _{kW}$$

 $P_{converted} = 23.50 _{Hp}$ kW

$$V_{unbalance} = 0.5375$$
 $I_{unbalance} = 1.8197$

Leading Open Wye-Delta Solution

Source LG Voltages

$$ES_{AG} = 7,200/0$$

 $ES_{BG} = 7,200/-120$ V
 $ES_{CG} = 7,200/120$

Primary Line Voltage Drops

$$v_A = 23.3548/21.30$$

 $v_B = 14.10/-18.11$
 $v_C = 11.81/10.64$ V
 $v_N = 0$

Transformer Primary LN Voltages

$$V_{AN} = 7,178.25 / -0.07$$

 $V_{BN} = 7,202.92 / -120.11$ V
 $V_{CN} = 7,203.939$

Source LL Voltages

$$ES_{AB} = 12,470.77/30$$

 $ES_{BC} = 12,470.77/-90$ V
 $ES_{CA} = 12,470.77/150$

End of Line LG Voltages

$$V_{AG} = 7,178.25/-0.07$$

 $V_{BG} = 7,202.92/-120.11$ V
 $V_{CG} = 7,203.93/120.09$

$$V_{AB} = 12,457.10/29.97$$

 $V_{BC} = 12,464.20/-90.01$ V
 $V_{CA} = 12,465.13/149.95$

$$V_{NG} = 0$$
 V

Primary Windings Ideal Voltages

$$I_A = 4.1845 / -41.44$$

 $VT_{AN} = 7,061.39 / -0.51$
 $I_B = 1.845 / -127.42$
 $I_C = 0$ A
 $I_N = 2.1109 / 131.85$
 $I_G = 2.7298 / 102.88$

Primary Line, Neutral and Ground Currents

Secondary Line, Neutral

Single-Phase Load Voltages

Ground

Transformer Secondary Windings Ideal Voltages Transformer Secondary Terminal Voltages

$$Vt_{an} = 117.69 / -0.51$$
 $V_{an} = 116.78 / -0.42$ $V_{nb} = 117.69 / -0.51$ $V_{nb} = 234.51 / -121.03$ A $V_{bc} = 234.51 / -121.03$ $V_{ca} = 231.76 / 119.05$

<u>Transformer Secondary Winding Currents</u> <u>Currents</u>

$$I_{na} = 116.00 / -40.64$$
 $I_{a} = 116.01 / -40.64$ $I_{b} = 141.71 / 160.77$ $I_{cb} = 55.30 / -127.42$ A $I_{c} = 55.30 / -51.96$ $I_{g} = 8.87 / -49.96$

$$v_a = 1.0372/-28.49$$

 $v_b = 1.5893/-173.14$
 $v_c = 0.4032/93.07$
 $v_n = 0$
 $VL_{an} = 115.87/-0.18$
 $VL_{nb} = 115.06/-0.50$ V
 $VL_{ab} = 230.93/-0.34$

$$IL_{an} = 25.89 / -18.38$$

 $IL_{nb} = 43.45 / -32.29$ A
 $IL_{ab} = 43.30 / -26.18$

Single-Phase Complex Powers

$$S_{an} = \frac{VL_{an} \cdot (IL_{an})^{*}}{1000} = 3.0 @ 0.95PF$$

$$S_{nb} = \frac{VL_{nb} \cdot (IL_{nb})^{*}}{1000} = 5.0 @ 0.85PF \text{ kVA}$$

$$S_{ab} = \frac{VL_{ab} \cdot (IL_{ab})^{*}}{1000} = 10.0 @ 0.90PF$$

Motor LL Voltages

$$VL_{ab} = 230.93 / -0.34$$

 $VL_{bc} = 233.20 / -120.78$ V
 $VL_{ca} = 230.83 / 118.95$

Motor Line Currents

$$IM_a = 54.19/-63.01$$

 $IM_b = 58.36/175.71$ A
 $IM_c = 55.30/52.58$

Transformer Operating kVAs

$$S_A = \frac{V_{AN} \cdot (I_A)^*}{1000} = 22.54 + j19.85 = 30.04 \text{_kVA@0.75_PF}$$

$$S_B = \frac{V_{BN} \cdot (I_B)^*}{1000} = 13.17 + j1.69 = 13.28 \text{_kVA@0.99_PF}$$

INDUCTION MOTOR ANALYSIS

Stotor Input Complex Power

$$S_{stator} = 18.56 + j12.61 _kVA$$

 $S_{stator} = 22.43 _kVA @ 0.8271 _PF$

Rotor Currents

$$Irotor_a = 47.19 / -34.79$$

 $Irotor_b = 50.24 / -158.18$ A
 $Irotor_c = 46.27 / 80.19$

Losses

$$Stator_{loss} = 727.81$$

 $Rotor_{loss} = 625.57$ W
 $Total_{loss} = 1,353.38$

Converted Shaft Power

$$P_{converted} = 17.20 _{-}kW$$

 $P_{converted} = 23.06 _{-}Hp$ kW

$$V_{unbalance} = 0.7103$$

 $I_{unbalance} = 4.3100$

Lagging Open Wye-Delta Solution

Source LG Voltages

$$ES_{AG} = 7,200/0$$

 $ES_{BG} = 7,200/-120$ V
 $ES_{CG} = 7,200/120$

Primary Line Voltage Drops

$$v_A = 24.51/\underline{64.26}$$

 $v_B = 10.26/\underline{72.96}$
 $v_C = 16.36/\underline{90.38}$ V
 $v_N = 0$

Transformer Primary LN Voltages

$$V_{AN} = 7,189.39 / -0.18$$
 V $V_{CN} = 7,185.78 / 120.06$

Source LL Voltages

$$ES_{AB} = 12,470.77/30$$

 $ES_{BC} = 12,470.77/-90$ V
 $ES_{CA} = 12,470.77/150$

End of Line LG Voltages

$$V_{AG} = 7,189.39/-0.18$$

 $V_{BG} = 7,210.00/-119.98$ V
 $V_{CG} = 7,185.78/120.06$

$$V_{AB} = 12,458.03/29.97$$

 $V_{BC} = 12,464.22/-90.01$ V
 $V_{CA} = 12,464.32/149.95$

$$V_{NG} = 0$$
 V

Primary Windings Ideal Voltages

Primary Line, Neutral and Ground Currents

Neutral and

Ground

$$I_A = 4.2202/-19.26$$
 $I_B = 0$ $I_{C} = 1.8647/60.80$ A $I_{C} = 2.8708/169.27$

Transformer Secondary Windings Ideal Voltages Transformer Secondary Terminal Voltages

Secondary Line,

Single-Phase Load Voltages

$$Vt_{an} = 118.36 / -0.95$$
 $V_{an} = 117.44 / -1.05$ $V_{nb} = 118.36 / -0.95$ A $V_{ab} = 234.74 / -1.04$ V $Vt_{ca} = 233.02 / 120.59$ $V_{ca} = 233.02 / 120.59$

<u>Transformer Secondary Winding Currents</u> <u>Currents</u>

$$I_{na} = 118.61 / -16.77$$
 $I_{a} = 119.75 / -43.91$ $I_{b} = 134.81 / 158.55$ $I_{c} = 55.94 / 60.80$ A $I_{ac} = 55.94 / 60.80$ A $I_{g} = 8.79 / -52.63$

$$v_a = 1.0761/-31.40$$

 $v_b = 1.5204/-175.23$
 $v_c = 0.4456/103.16$
 $v_n = 0$
 $VL_{an} = 116.52/-0.79$
 $VL_{nb} = 115.95/-1.10$ V
 $VL_{ab} = 232.30/-0.94$

$$IL_{an} = 25.75 / -18.98$$

 $IL_{nb} = 43.18 / -32.89$ A
 $IL_{ab} = 43.05 / -26.79$

Single-Phase Complex Powers

$$S_{an} = \frac{VL_{an} \cdot (IL_{an})^*}{1000} = 3.0 @ 0.95PF$$

$$S_{nb} = \frac{VL_{nb} \cdot (IL_{nb})^*}{1000} = 5.0 @ 0.85PF \quad kVA$$

$$S_{ab} = \frac{VL_{ab} \cdot (IL_{ab})^*}{1000} = 10.0 @ 0.90PF$$

Motor LL Voltages

$$VL_{ab} = 232.30/-0.94$$

 $VL_{bc} = 226.91/-120.37$ V
 $VL_{ca} = 231.65/120.50$

Motor Line Currents

$$IM_a = 60.06/-66.97$$

 $IM_b = 51.20/172.76$ A
 $IM_c = 55.94/60.80$

Transformer Operating kVAs

$$S_A = \frac{V_{AN} \cdot (I_A)^*}{1000} = 28.67 + j9.92 = 30.34 \text{_}kVA @ 0.95 \text{_}PF$$

$$S_C = \frac{V_{CN} \cdot (I_C)^*}{1000} = 6.85 + j11.52 = 13.40 \text{ kVA} @ 0.51 \text{ PF}$$

INDUCTION MOTOR ANALYSIS

Stotor Input Complex Power

$$S_{stator} = 18.36 + j12.49 _kVA$$

 $S_{stator} = 22.21 _kVA @ 0.8268 _PF$

$$Irotor_a = 50.41/-41.89$$

 $Irotor_b = 42.67/-157.40$ A
 $Irotor_c = 50.09/87.85$

Losses

$$Stator_{OSS} = 724.45$$

 $Rotor_{OSS} = 623.74$ W
 $Total_{OSS} = 1,348.20$

$$\begin{aligned} & P_{converted} = 17.01 _kW \\ & P_{converted} = 22.80 _Hp \end{aligned} \text{ kW}$$

$$V_{unbalance} = 0.1.4663$$
 $I_{unbalance} = 8.1399$

