计算机组成原理

□5.1 用十六进制写出大写字母 "F"、小写字母 "a"和 星号 "*"的ASCII码。当最高位用作偶校验位时,写出它们的ASCII机内码字节。

解: 通过查ASCII编码表,可得

- □大写字母"F"的ASCII码为46H,当最高位用作偶校验位时,其ASCII机内码字节最高位为"1",46H+80H=C6H
- □同样,小写字母"a"的ASCII码为61H,机内码E1H
- □符号"*"的ASCII码为2AH,机内码为AAH

- □ 5.2 汉字"大"和"小"的国标区位码分别为2083和4801,要求
 - (1) 分别写出这两个字对应的国标码;
- (2) 若采用汉字两个字节的最高位均设为"1"的机内表示方案,分别写出这两个字的机内码形式。

□ 解:

(1) 在已知区位码的情况下,只要将区码和位码分别转换成十六进制表示,然后再分别加上20H即可得到国标码。

 $2083 \rightarrow (1453H + 2020H) = 3473H$

 $4801 \rightarrow (3001H+2020H) = 5021H$

则"大"字的国标码为3473H,"小"字的国标码为5021H。

(2) 当采用汉字两个字节的最高位均设为"1"的机内表示方案时,只要将国标码的两个字节分别加上80H即可得其机内码。

3473H + 8080H = B4F3H; 5021H + 8080H = D0A1H

则"大"字的机内码为B4F3H,"小"字的机内码为D0A1H。

- □ 5.3 用向量表示法,在32位字长的存储器中,用ASCII码分别按左→右(大端方式)和右→左(小端方式)的顺序表示下列字符串:
 - (1) WHAT IS THIS?
 - (2) THIS IS A DISK.
- □解:(1)左→右:

31 0 W H A T I S T H I S ? 右→左:

31 0
T A H W
S I
S I H T
?

(2) 方法同上。

- □ 5.4 用以下形式表示十进制数5862。
 - (1) 二进制数; (2) 8421码; (3) 余3码; (4) 2421码。

□ 解:

- (1) $(5862)_{10}$ = $(1\ 0110\ 1110\ 0110)_2$ =16E6H
- (2) $(5862)_{10} = (0101\ 1000\ 0110\ 0010)_{8421} = 5862H$
- (3) $(5862)_{10}$ = $(1000\ 1011\ 1001\ 0101)_{E3}$ =8B95H
- (4) $(5862)_{10}$ = $(1011\ 1110\ 1100\ 0010)_{2421}$ =BEC2H

□ 5.5 用前分隔数字串表示法、后嵌入数字串表示法和压缩的 十进制数串表示法表示下列十进制数,设存储器按字节编址

0

口解:

(1) 前分隔数字串表示: (ASCII码用十六进制表示,下同)

+1980:

2Bh 31h 39h 38h 30h

-76543:

2Dh 37h 36h 35h 34h 33h

+254:

2Bh 32h 35h 34h

-1992:

2Dh 31h 39h 39h 32h

(2) 后嵌入数字串表示:

+1980: 31h 39h 38h 30h

-76543: 37h 36h 35h 34h 73h

+254: 32h 35h 34h

-1992: 31h 39h 39h 72h

(3) 压缩十进制数串表示:

+1980: 0 1 9 8 0 Ch

-76543: 7 6 5 4 3 Dh

+254: 2 5 4 Ch

-1992: 0 1 9 9 2 Dh

- □ 5.6 有两位8421BCD码编码的十进制整数置于寄存器A中,可以通过一个加法器网络将其直接转换成二进制整数。试用半加器、全加器电路画出该加法器网络。
- □ 解: 算法分析:

设两位8421码
$$A = A_1A_2 = a_8 a_7 a_6 a_5 a_4 a_3 a_2 a_1$$

二进制数 $B = b_7 b_6 b_5 b_4 b_3 b_2 b_1$
则
$$B = A_1 \times 1010 + A_2 = A_1 \times 1000 + A_1 \times 10 + A_2$$
$$= a_8 a_7 a_6 a_5 000 + a_8 a_7 a_6 a_5 0 + a_4 a_3 a_2 a_1$$

□ 为了更加清楚起见,进一步用竖式表示相加关系如下:

□ 该竖式对应的加法网络电路图如下页。

□ 两位8421码—二进制整数转换加法网络电路图

□ 5.7 设X为整数, [X]_补=1, X₁X₂X₃X₄X₅, 若要求 X < -16, 试问 X₁~X₅ 应取何值?

□解: 若要X < -16,需 $X_1 = 0$, $X_2 \sim X_5$ 任意。

□注:负数绝对值大的反而小。

□ 5.8 已知数的补码表示,求数的原码与真值。

$$[X_1]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

□解:已知数的补码表示,数的原码与真值见下表:

补码 [X] _补	原 码 [X] _原	真 值
0 001 1010	同补码	同补码
1 001 1010	1 110 0110	-110 0110
1 111 0001	1 000 1111	-000 1111

□ 5.9 讨论若[X]_补>[Y]_补,是否有X>Y?

解:

- □ 若[X]_补>[Y]_补,不一定有X>Y。
- □ 当 X > 0、 Y > 0 时, $[X]_{\stackrel{}{h}} [Y]_{\stackrel{}{h}} = X Y$ 当 X < 0、 Y < 0 时, $[X]_{\stackrel{}{h}} - [Y]_{\stackrel{}{h}} = 2 + X - (2 + Y) = X - Y$ 所以, $[X]_{\stackrel{}{h}} > [Y]_{\stackrel{}{h}}$ 时, X > Y成立。
- □ 当X>0、 Y<0 时, X>Y, 但由于负数补码的符号位为 1, 则[X]_补<[Y]_补。
- □ 当X<0、 Y >0 时,有X < Y,但[X]_补>[Y]_补。

- □ 5.10 设[X]_补 = $a_0 . a_1 a_2 a_3 a_4 a_5 a_6$, 其中 a_i 取0或1, 若要X>-0.5, 求 a_0 , a_1 , a_2 ,, a_6 的取值。
- □解:根据补码结构特点知:
 - (1) a₀为符号位,因此可任取0或1;
 - (2) 当 a_0 =0时,为正数,必有X > -0.5,因此 $a_1 \sim a_6$ 可任取0或1;
 - (3) 当 a_0 =1时,为负数,必须有: a_1 =1, a_2 + a_3 + a_4 + a_5 + a_6 =1 (即 a_2 ~ a_6 不全为0),才满足X > -0.5的条件。
- □ 评注: 当X为负数,且X > -0.5时,其绝对值小于0.5,则据定义必有[X]_{*} > (1.5)₁₀。作此题需注意:
 - ① 负数的绝对值越小,补码值越大;
 - ② 临界值0.5不在题意要求的范围内,条件a₂~a₆不全为0就是为此而设。

□ 5.11 当十六进制数9AH,80H和FFH分别表示原码、补码、反码、移码和无符号数时,对应的十进制真值各为多少(设机器数采用一位符号位)?

□解: 真值和机器数的对应关系如下:

十六进制	真值	无符号数	原码	补码	反码	移码
9AH	二进制	1001 1010	-001 1010	-110 0110	-110 0101	001 1010
	十进制	154	-26	-102	-101	26
80H	二进制 十进制	1000 0000 128	- 000 0000 - 0	-1000 0000 -128	-111 1111 -127	000 0000
FFH	二进制	1111 1111	-111 1111	-000 0001	-000 0000	111 1111
	十进制	255	-127	-1	-0	127

口注意: 9AH、80H、FFH为机器数,本身含符号位。

- □5.12 设机器数字长为16位,写出下列各种情况下 它能表示的数的范围。机器数采用一位符号位, 答案均用十进制2的幂形式表示。
 - (1) 无符号整数;
 - (2) 原码表示的定点小数;
 - (3) 补码表示的定点小数;
 - (4)原码表示的定点整数;
 - (5) 补码表示的定点整数。

□解: 各种表示方法的数据范围如下:

- (1) 无符号整数: $0 \sim 2^{16} 1$, 即: $0 \sim 65535$;
- (2) 原码定点小数: (1 2-15) ~ 1 2-15
- (3) 补码定点小数: -1~1 2-15
- (4) 原码定点整数: (2¹⁵-1) ~2¹⁵-1 即: -32767 ~ 32767;
- (5) 补码定点整数: -215~215-1

即: -32768 ~ 32767;

注意:

- 1) 应写出可表示范围的上下限精确值(用≥或≤,不要用>或<);
 - 2) 不要用十进制小数表示,不直观不精确且无意义;
 - 3) 原码正、负域对称,补码正、负域不对称。

0

□ 5.13 设机器字长为8位(含一位符号位),分整数和 小数两种情况讨论真值X为何值时,[X]_补= [X]_原成立

口解: 当X为小数时,若 $X \ge 0$,则据定义有 $[X]_{i_{h}} = [X]_{i_{h}}$ 成立; 若X < 0,则当X = -1/2时, $[X]_{i_{h}} = [X]_{i_{h}}$ 成立。 当X为整数时,若 $X \ge 0$,则 $[X]_{i_{h}} = [X]_{i_{h}}$ 成立; 若X < 0,则当X = -64时, $[X]_{i_{h}} = [X]_{i_{h}}$ 成立。

□ 5.14 设机器数字长为8位(含1位符号位),对下列各机器数算术左移一位、两位,算术右移一位、两位,并讨论结果是否正确。

```
[x_1]_{\bar{\mathbb{R}}} = 0.001 \ 1010; \quad [x_2]_{\bar{\mathbb{R}}} = 1.110 \ 1000 \ [y_1]_{\dot{\mathbb{R}}} = 0.101 \ 0100; \quad [y_2]_{\dot{\mathbb{R}}} = 1.110 \ 1000 \ [z_1]_{\bar{\mathbb{R}}} = 1.010 \ 1111; \quad [z_2]_{\bar{\mathbb{R}}} = 1.110 \ 1000
```


□ 解: 算术左移一位:

```
[x<sub>1</sub>]<sub>原</sub>=0.0110100; 正确
    [y_1]_{i}=0.0101000; 溢出 (丢1) 出错
    [z<sub>1</sub>]<sub>反</sub>=1.1011111; 溢出 (丢0) 出错
算术左移两位:
    [x<sub>1</sub>]<sub>原</sub>=0.1101000; 正确
    [y_1]_{i}=0.1010000; 溢出 (丢10) 出错
    [z<sub>1</sub>]辰=1.01111111; 溢出 (丢01) 出错
算术右移一位:
    [x<sub>1</sub>]<sub>原</sub>=0.0001101; 正确
    [y_1]_{k}=0.0101010; 正确
    [z_1]_{rec}=1.10101111; 正确
算术右移两位:
    [x<sub>1</sub>]<sub>原</sub>=0.000 0110 (10); 产生误差
    [y_1]_{*k}=0.001\ 0101; 正确
    [\mathbf{z}_1]_{\overline{\mathbb{p}}} = 1.110\ 1011; 正确
```


□ 解: 算术左移一位:

```
[x<sub>2</sub>]<sub>原</sub>=1.1010000; 溢出(丢1)出错
     [y_2]_{kh}=1.1010000; 正确
     [\mathbf{z}_2]_{\overline{\wp}}=1.1010001; 正确
算术左移两位:
     [x<sub>2</sub>]<sub>原</sub>=1.0100000; 溢出 (丢11) 出错
     [y_2]_{kh}=1.0100000; 正确
     [\mathbf{z}_2]_{\mathbf{p}}=1.0100011; 正确
算术右移一位:
     [x<sub>2</sub>]<sub>原</sub>=1.011 0100; 正确
     [y_2]_{i}=1.111\ 0100; 正确
     [z<sub>2</sub>]辰=1.111 0100(0); 产生误差
算术右移两位:
     [x<sub>2</sub>]<sub>原</sub>=1.001 1010; 正确
```

[y₂]_补=1.111 1010; 正确

 $[\mathbf{z}_2]_{\mathbf{p}}$ =1.111 1010(00); 产生误差

□ 5.15 设带符号数[Y]_原=[Y]_反=[Y]_补=1,011 0010,分别对这个8位字长的机器数进行算术左移一位、二位,算术右移一位、二位,逻辑左移一位、二位,逻辑右移一位、二位的操作,比较两种移位运算的区别,并分析结果的真值变化、误差及溢出情况。

□解: 机器数移位结果如下:

注:表中"误差*"表示误差的绝对值。

[Y]_原=1,0110010移位结果及分析

移位操作	溢出值	符号位	$[Y]_{ar{\mathbb{R}}}$	丢掉值	十进制	结果分析
 移位前		1	011 0010		-50	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	001 1001	0	-25	 无误差,正确
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	000 1100	10	-12	误差*=1/2,基本正确
逻辑左移1位	0	0	110 0100		+100	 溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-100	 无溢出,正确
逻辑左移2位	1	1	100 1000		-72	溢出出错,正确值=-200
算术左移2位	1	1	100 1000		-72	溢出出错,正确值=-200

[Y]反=1,0110010移位结果及分析

移位操作	溢出值	符号位	$[Y]_{oldsymbol{oldsymbol{eta}}}$	丢掉值	十进制 真值	结果分析
移位前		1	011 0010		-77	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	101 1001	0	-38	误差*=1/2,基本正确
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	110 1100	10	-19	无误差,正确
逻辑左移1位	0	0	110 0100		+100	溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-27	溢出出错,正确值=-155
逻辑左移2位	01	1	100 1000		-55	溢出出错,正确值=-311
算术左移2位	01	1	100 1000		-55	溢出出错,正确值=-311

[Y]_补=1,0110010移位结果及分析

移位操作	溢出值	符号位	$[Y]_{ otan}$	丢掉值	十进制	结果分析
移位前		1	011 0010		-78	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	101 1001	0	-39	无误差,正确
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	110 1100	10	-20	误差*=1/2,基本正确
逻辑左移1位	0	0	110 0100		+100	溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-28	溢出出错,正确值=-156
逻辑左移2位	01	1	100 1000		-56	溢出出错,正确值=-312
算术左移2位	01	1	100 1000		-56	溢出出错,正确值=-312

- □ 5.16 设 X_1 =0.01 1100 0010, Y_1 =-0.01 1100 0010; X_2 =0.01 1100 1100, Y_2 =-0.01 1100 1100; X_3 =0.01 1100 0101; Y_3 =-0.01 1100 0101
- □分别用原码和补码表示,如果只要求8位字长,请采用截断法、恒置1法和0舍1入法对每一个操作数进行舍入,并对舍入结果进行比较。
- □解: 先将真值X₁~X₃、Y₁~Y₃表示成机器码形式,再进行舍入。为方便比较,舍入结果用表格列出。注意相同下标的X_i、Y_i互为相反数,LSB*则表示误差方向是相对于最低有效位LSB的绝对值而言,正误差使绝对值增大,负误差使绝对值缩小。

不同舍入方法的比较

舍入前(11位)	舍入后(8位)	丢掉位	结果真值	误差分析
$[X_1]_{\mathbb{R}} = [X_1]_{\mathbb{A}} = X_1$ =0.011 1000 010	截断=0舍1入 =0.011 1000 (舍) 恒置1=0.011 1001 (入)	010	0.011 1 0.011 1001	-1/4LSB* +3/4LSB*
[Y ₁] _原 =1.011 1000 010	截断=0舍1入 =1.011 1000 (舍) 恒置1=1.011 1001 (入)	010	-0.011 1 -0.011 1001	-1/4LSB* +3/4LSB*
$[Y_1]_{\not=\downarrow}$ =1.100 0111 110	截断=恒置1 =1.100 0111 (入) 0舍1入=1.1001000 (舍)	110	-0.011 1001 -0.011 1	+3/4LSB* -1/4LSB*
$[X_2]_{\text{ff}} = [X_2]_{\text{iff}} = X_2$ =0.011 1001 100	截断=恒置1 =0.011 1001 (舍) 0舍1入=0.011 1010 (入)	100	0.011 1001 0.011 101	-1/2LSB* +1/2LSB*
[Y ₂] _原 =1.011 1001 100	截断=恒置1 =1.011 1001 (舍) 0舍1入=1.011 1010 (入)	100	-0.011 1001 -0.011 101	-1/2LSB* +1/2LSB*
[Y ₂] _* =1.100 0110 100	截断=0舍1入 =1.100 0110 (舍) 恒置1=1.100 0111 (舍)	100	-0.011 101 -0.011 1001	+1/2LSB* -1/2LSB*
$[X_3]_{\text{fi}} = [X_3]_{\text{ij}} = X_3$ =0.011 1000 101	截断=0.011 1000 (舍) 恒置1=0舍1入 =0.011 1001 (入)	101	0.011 1 0.011 1001	-5/8LSB* +3/8LSB*
[Y ₃] _原 =1.011 1000 101	截断=1.011 1000 (舍) 恒置1=0舍1入 =1.011 1001 (入)	101	-0.011 1 -0.011 1001	-5/8LSB* +3/8LSB*
$[Y_3]_{\not=\downarrow}=1.100\ 0111\ 011$	截断=恒置1=0舍1入 =1.1000111(入)	011	-0.011 1001	+3/8LSB*

- □ 5.17 设机器数字长为8位(含1位符号位),用补码加减运算规则计算下列各题,并指出是否溢出。
 - (1) X = -17/32, Y = 19/64, $\Re X Y$;
 - (2) X = -21/32, Y = -67/128, $\Re X + Y$;
 - (3) X = 97, Y = -54, $Rac{1}{2}X-Y$;
 - (4) X = 118, Y = -36, RX+Y.

第五章 5.17 (1)

(1)
$$X = -17/32 = (-0.100 \ 0100)_2$$

 $Y = 19/64 = (0.010 \ 0110)_2$
 $[X]_{\frac{1}{2}} = 1.011 \ 1100$
 $[Y]_{\frac{1}{2}} = 0.010 \ 0110$, $[-Y]_{\frac{1}{2}} = 1.101 \ 1010$

$$X-Y = (-0.110 \ 1010)_2 = -53/64$$

第五章 5.17 (2)

(2)
$$X = -21/32 = (-0.101\ 0100)_2$$

 $Y = -67/128 = (-0.100\ 0011)_2$
 $[X]_{\nmid h} = 1.010\ 1100$
 $[Y]_{\nmid h} = 1.011\ 1101$

$$X+Y = (-1.001\ 0111)_2 = -151/128$$

第五章 5.17 (3)

(3)
$$X = 97 = (110\ 0001)_2$$

 $Y = -54 = (-11\ 0110)_2$
 $[X]_{\frac{1}{2}} = 0,110\ 0001$
 $[Y]_{\frac{1}{2}} = 1,100\ 1010$, $[-Y]_{\frac{1}{2}} = 0,011\ 0110$

$$X-Y = (+1001\ 0111)_2 = 151$$

第五章 5.17 (4)

(4)
$$X = 118 = (111\ 0110)_2$$

 $Y = -36 = (-10\ 0100)_2$
 $[X]_{\frac{1}{2}} = 0,111\ 0110$
 $[Y]_{\frac{1}{2}} = 1,101\ 1100$

$$[X+Y]_{N}=0$$
, 111 0110
+ 1, 101 1100
0, 101 0010—无溢出

$$X+Y = (+101\ 0010)_2 = 82$$

- □ 注意: ① 单符号位运算要用单符号位的判溢出方法;
 - ② 结果的真值形式上要和原始数据一致。

- □ 5.18 用原码一位乘法和补码一位乘比较法、两位乘比较法 计算X×Y。
 - (1) X = 0.110 111, Y = -0.101 110;
 - (2) $X = -0.010 \ 111$, $Y = -0.010 \ 101$;
- □ 解:
- □ 先将数据转换成所需的机器数,然后计算,最后结果转换成真值。
 - (1) $[X]_{\mathbb{R}} = X = 0.1101111, [Y]_{\mathbb{R}} = 1.1011110$ $X^* = 0.1101111, Y^* = 0.1011110$ $X_0 = 0, Y_0 = 1, Z_0 = X_0 \oplus Y_0 = 0 \oplus 1 = 1$ $X^* \times Y^* = 0.100 111 100 010$ $[X \times Y]_{\mathbb{R}} = 1.100 111 100 010$ $X \times Y = -0.100 111 100 010$

第五章 5.18(1) 原码一位乘

	部分	积			- ,	数Y	*	
	0.000	000	.1	0	1	1	1	<u>0</u> —— +0
$\rightarrow 1$	0.000	$0\ 0\ 0$	0	.1	0	1	1	<u>1</u> ——+X*
+	0.110	111						
	0.110	111						
$\rightarrow 1$	0.011	011	1	0	.1	0	1	<u>1</u> +X*
+	0.110	111						
	1.010	010				1		
$\rightarrow 1$	0.101	001	0	1	0	. 1	0	<u>1</u> +X*
	0.110	111						
	1.100	000						
$\rightarrow 1$	0.110	$0\ 0\ 0$	0	0	1	0	.1	$0 \longrightarrow +0$ $1 \longrightarrow X^*$
→1	0.011	$0\ 0\ 0$	0	0	0	1	0	. <u>1</u> —— X*
+	0.110	111						
	1.001	111						
$\rightarrow 1$	0.100	111	1	0	0	0	1	0

第五章 5.18 (1) 补码乘


```
 \begin{array}{ll} [X]_{\not\uparrow h} = X = 0.110111 \\ [Y]_{\not\uparrow h} & = 1.010010 \\ [-X]_{\not\uparrow h} & = 1.001001 \\ [2X]_{\not\uparrow h} & = 01.101110 \\ [-2X]_{\not\uparrow h} & = 10.010010 \end{array}
```

$$[X \times Y]_{\uparrow \uparrow} = 1.011 \ 000 \ 011 \ 110 \ 0$$

 $X \times Y = -0.100 \ 111 \ 100 \ 010 \ 0$

补码一位乘、两位乘运算过程如下:

第五章 5.18 (1) 补码一位乘

	部分积	乘数[Y] _补 Y _n Y _{n+1}
	00.000 000	$1.0 \ 1 \ 0 \ 0 \ 1 \ 0 \+0$
$\rightarrow 1$	00.000 000	$0 \ 1.0 \ 1 \ 0 \ 0 \ \underline{1} \ \underline{0}$
+	11.001 001	+[-X] _{ネト}
	11.001 001	
$\rightarrow 1$	11.100 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+	00.110 111	$+[\mathbf{X}]_{\lambda}$
	00.011 011	
→1	00.001 101	1 1 0 1 .0 1 0+0
$\rightarrow 1$	00.000 110	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+	11.001 001	+[-X] _{ネト}
	11.001 111	
→ 1	11.100 111	$1 \ 1 \ 1 \ 1 \ 0 \ 1 . \underline{0} \ \underline{1}$
+	00.110 111	+[X] _{≱k}
	00.011 110	
$\rightarrow 1$	00.001 111	$0 \ 1 \ 1 \ 1 \ 1 \ 0 \ \underline{1 \ .0}$
+	11.001 001	+[-X] _{ネト}
	11.011 000	0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1

第五章 5.18 (1) 补码两位乘法

	部分积		孠	美数[Y	/] _补	$Y_{n-1}Y_nY_{n+1}$	
	000.000	000	11	.01	0 0	100	
+	110.010	010				+[-2X] _{ネト}	
	110.010	010					
$\rightarrow 2$	111.100	100	10	11.	.0 1	0 0 1	
+	000.110	111	第五章	f 5 1 Q		$+[X]_{ eq h}$	
	000.011	011	N Tr 4	3.10			
$\rightarrow 2$	000.000	110	11	1 0	1 1	. <u>0 1 0</u>	
+	000.110	111				+[X] _{ネト}	
	000.111	101				_	
$\rightarrow 2$	000.001	111	0 1	1 1	1 0	11.0	
+	111.001	001				+[-X]补	
	111.011	000	01	1 1	1 0	0 0 清0	
结	果同补码一位	拉乘, X·	Y = -0.	100 1	111 10	00 010 00	

Science

第五章 5.18 (2)

第五章 5.18 (2) 原码一位乘

部分积	乘数Y*
0.000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+ 0.010 111	
0.010 111	
$\rightarrow 1$ 0.001 011	1 $0 1 0 1 0 - +0$
$\rightarrow 1$ 0.000 101	1 1 .0 1 0 $\underline{1}$ +X*
+ 0.010 111	
$0.011\ 100$	
$\rightarrow 1$ 0.001 110	$0 \ 1 \ 1 \ \underline{0} \ + 0$
$\rightarrow 1$ 0.000 111	$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & \underline{1} & + X^* \end{bmatrix}$
+ 0.010 111	
0.011 110	
$\rightarrow 1$ 0.001 111	0 0 0 1 1 .0 +0
$\rightarrow 1$ 0.000 111	1 0 0 0 1 1

第五章 5.18 (2) 补码一位乘

	部分科	₹]	乘	数[]	Y] _{ネト}			$\mathbf{Y}_{\mathbf{n}}$	\mathbf{Y}_{n+1}	
	00.000	000				1		1	1	0	
+	00.010	111							+[-	$[\mathbf{X}]_{ otan}$	
	00.010	111								• •	_
$\rightarrow 1$	00.001	011	1	1.	. 1	0	1	0	1	<u>1</u>	- + 0
$\rightarrow 1$	00.000	101	1	1	1.	. 1	0	1	0	<u>1</u>	
+	11.101	001							+[]	X] _{ネト}	
	11.101	110									
$\rightarrow 1$	11.110	111	0	1	1	1	. 1	0	1	0	
+	00.010	111							+[-	$[\mathbf{X}]_{ eq h}$	
	00.001	110									
$\rightarrow 1$	00.000	111	0	0	1	1	1.	. 1	0	<u>1</u>	
+	11.101	001							+[]	X] ≱⊦	
	11.110	000								•	
$\rightarrow 1$	11.111	000	0	0	0	1	1	1	. 1	0	
+	00.010	111							+[-]	X] _{≱⊦}	
	00.001	111								••	
$\rightarrow 1$	00.000	111	1	0	0	0	1	1	1	<u>.1</u> —	- + 0
									清(

第五章 5.18 (2) 补码两位乘

	部分积	乘数 $Y_{n-1}Y_nY_{n+1}$
	$0\ 0\ 0\ .\ 0\ 0\ 0\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+	000.010 111	+[-X] _*
	000.010 111	
$\rightarrow 2$	$0\ 0\ 0\ .\ 0\ 0\ 0\ 1\ 0\ 1$	11 1 1.1 0 <u>1 0 1</u>
+	000.010 111	+[-X] _{ネト}
	000.011 100	
$\rightarrow 2$	000.000 111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	000.010 111	+[- X] _{ネト}
	000.011 110	
$\rightarrow 2$	000.000 111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		+ 0 ,清 0
	姓田 国 从	V V V 0 000 111 100 011 00

结果同补码一位乘, X×Y=0.000 111 100 011 00

- □ 5.19 用原码加减交替除法和补码加减交替除法计算X÷Y。
 - (1) X=-0.10101, Y=0.11011;
 - (2) X=13/32, Y=-27/32.

□ 解:

(1) $[X]_{\bar{\mathbb{R}}} = 1.101 \ 01$, $X^* = 0.101 \ 01$ $Y^* = [Y]_{\bar{\mathbb{R}}} = Y = 0.110 \ 11$ $[-Y^*]_{\bar{\mathbb{A}}} = 1.001 \ 01$ $Q_0 = X_0 \oplus Y_0 = 1 \oplus 0 = 1$

> $X*\div Y*=0.110\ 00$, $[X\div Y]_{\mathbb{R}}=1.110\ 00$ $X\div Y=-0.110\ 00$,

R*=0.110 00×2⁻⁵=0.000 001 100 0 计算过程如下:

被除数/余数	商
0.101 01	0.000 00
+ 1.001 01	试减,+[-Y*] _补
1.110 10	
$1 \leftarrow 1.10100$	0.
+ 0.110 11	R<0, +Y*
0.011 11	
$1 \leftarrow 0.11110$	0.1
+ 1.001 01	$\mathbf{R}>0$, $+[-\mathbf{Y}^*]_{rac{1}{2}ackslash}$
0.000 11	
$1 \leftarrow 0.00110$	0.11
$\underline{\hspace{1cm}} + \hspace{1cm} 1.001 \hspace{1cm} 0.1$	$R>0, +[-Y^*]_{2b}$
1.010 11	11
$1 \leftarrow 0.10110$	0.1 10
+ 0.110 11	R<0, +Y*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1 \leftarrow 1.00010$	0.1 1 0 0
+ 0.110 11	R<0, +Y*
1.111 01	1← 0.1 1 0 0 0
+ 0.110 11	R<0 , + Y *(恢复余数)
0.110 00	

第五章 5.19 (1) 补码加减金替除法 Science

$$X = -0.101 \ 01, \ Y = 0.110 \ 11$$
 $[X]_{\dot{\uparrow} |} = 1.010 \ 11$
 $[Y]_{\dot{\uparrow} |} = y = 0.110 \ 11$
 $[-Y]_{\dot{\uparrow} |} = 1.001 \ 01$

$$[X \div Y]_{\nmid \mid} = 1.001 \ 11$$

 $X \div Y = -0.110 \ 01$
 $[R]_{\nmid \mid} = 1.010 \ 00$
 $R = -0.000 \ 001 \ 100 \ 0$

运算过程如下:

第五章 5.19 (1) 补码加减金替除法

被除数/余数	商
11.010 11	0.000 00
+ 00.110 11	试减,X、Y异号,+[Y] _补
00.001 10	,,
$1 \leftarrow 00.01100$	1.
+ 11.001 01	R、Y同号,+[-Y] _补
11.10001	,,
1 ← 11.000 10	1.0
+ 00.110 11	R、Y异号, +[Y] _补
11.111 01	
1 ← 11.110 10	1.0 0
+ 00.110 11	R、Y异号, +[Y] _补
00.101 01	
$1 \leftarrow 01.01010$	1.001
+ 11.001 01	R、Y同号, +[-y] _补
00.011 11	
$1 \leftarrow 00.11110$	1.0 011
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	R、Y同号,+[-Y] _补
00.00011	1←1.0 0111 — 恒置1
+ 11.001 01	R、X异号,恢复余数
11.01000	且R、Y同号,+[-Y] _补
注、福署1引λ涅羊	,,

第五章 5.19 (2)

$$\begin{array}{|c|c|c|c|c|c|}\hline & X=13/32=(0.011 & 01)_2\\ & Y=-27/32=(-0.110 & 11)_2\\ & X^*=[X]_{\bar{\mathbb{R}}}=X=0. & 011 & 01\\ & [Y]_{\bar{\mathbb{R}}}=1.110 & 11\\ & Y^*=0.110 & 11\\ & [-Y^*]_{\bar{\mathbb{A}}}=1.001 & 01\\ & Q_0=X_0\oplus Y_0=0\oplus 1=1\\ & X^*\div Y^*=0.011 & 11\\ & [X\div Y]_{\bar{\mathbb{R}}}=1.011 & 11\\ & X\div Y=(-0.011 & 11)_2=-15/32\\ & R^*=0.010 & 11\times 2^{-5}=0.000 & 000 & 101 & 1\\ \hline \end{array}$$

运算过程如下:

第五章 5.19 (2) 原码加减交替除法

被除数/余数	商
0.011 01	0.000 00
+ 1.00101	试减,+[-Y*] _补
1.100 10	
$1 \leftarrow 1.00100$	0.
+ 0.110 11	R<0, +Y*
1.111 11	
1 ← 1.111 10	0.0
+ 0.110 11	R<0, +Y*
0.110 01	
$1 \leftarrow 1.10010$	0.0 1
+ 1.001 01	$R>0$, $+[-Y^*]_{ eqh}$
0 1 0 1 1 1	
$0.101\ 11$	
$0.101 \ 11$ $1 \leftarrow 1.011 \ 10$	0.011
* * - *	0.011 R>0, +[-Y*] _ネ ,
1← 1.011 10	
$1 \leftarrow \begin{array}{c} 1.011 & 10 \\ + & 1.001 & 01 \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R>0, +[-Y*] _≱ ,
$ \begin{array}{c} 1 \leftarrow & 1.011 & 10 \\ + & 1.001 & 01 \\ \hline & 0.100 & 11 \\ 1 \leftarrow & 1.001 & 10 \end{array} $	R>0, +[-Y*] _{₹}}

第五章 5.19 (2) 补码加减金替除法 Science

$$X=13/32=(0.011 \ 01)_2$$

 $Y=-27/32=(-0.110 \ 11)_2$
 $[X]_{\nmid h}=x=0.011 \ 01$
 $[Y]_{\nmid h}=1.001 \ 01$
 $[-Y]_{\nmid h}=0.110 \ 11$

$$[X \div Y]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray$$

运算过程如下:

第五章 5.19 (2) 补码加减交替除法

被除数(余数)	商
00.011 01	0.00000
+ 11.001 01	试减,X、Y异号,+[Y] _¾
11.100 10	
$1 \leftarrow 11.00100$	1.
+ 00.110 11	R、Y同号,+[-Y] _补
11.111 11	,,
1← 11.111 1 0	1.1
+ 00.110 11	R、Y同号,+[-Y] _补
00.11001	,,
$1 \leftarrow 01.10010$	1.1 0
+ 11.001 01	R、Y异号,+[Y] _补
00.101 11	,,
$1 \leftarrow 01.01110$	1.100
000000000000000000000000000000000000	R、Y异号, +[Y] _补
00.100 11	,
$1 \leftarrow 01.00110$	1.1 000
+ 11.001 01	R、Y异号,+[Y] _补
00.010 11	1←1.1 0001 — 恒置1
	R、X同号,结束
	I .

□ 5.20 设机器字长为16位(含1位符号位),若一次移位需1μs,一次加法需1μs,试问原码一位乘法、补码一位乘法、原码加减交替除法和补码加减交替除法最多各需多少时间?

□解:

原码一位乘最多需时= $1\mu s \times 15$ (加)+ $1\mu s \times 15$ (移位)= $30\mu s$ 补码一位乘最多需时= $1\mu s \times 16 + 1\mu s \times 15 = 31\mu s$ 原码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$ 补码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$

□ 5.21 分别用8421码加法和余3码加法求57+48=? 316+258=? 要求 列出竖式计算过程。

解: $(57)_{BCD} = 0101$, 0111; $(48)_{BCD} = 0100$, 1000 $(57)_{E3} = 1000$, 1010; $(48)_{E3} = 0111$, 1011 $(316)_{BCD} = 0011$, 0001, 0110; $(258)_{BCD} = 0010$, 0101, 1000 $(316)_{E3} = 0110$, 0100, 1001; $(258)_{E3} = 0101$, 1000, 1011

- □ 为清楚起见,这里将各位BCD码之间用逗号隔开。
- □ 加法过程如下:

□ 57+48的8421码加法过程:

□ 57+48的余3码加法过程:

□ 316+258的8421码加法过程:

□ 316+258的余3码加法过程:

- □ 5.22 用预加6方案设计一位8421码加法单元,并以设计好的加法单元为模块,进一步设计一个4位的8421码加法器。
- □ 解: 预加6方案一位8421码加法器算法分析:
 - ① 相加前,对其中一个加数预加6;
 - ② 做二进制加法;
 - ③ 十进制进位自动产生;
 - ④ 有进位时,不修正;
 - ⑤ 无进位时,减6修正(+1010)。
- □ 一位8421码加法单元线路见下页: (采用MSI芯片74LS283设计)

一位预加6方案8421码加法单元线路图

□ 用一位8421码加法器作基本加法单元,4位8421码加 法器线路如下:

- □ 5.23 (1) 设计一个一位的余3码加法器,并分析其修正规律;
 - (2) 用8位并行二进制加法器实现2位余3码加法,试提出你的方案。
- □ 解:
- □ (1) 由一位余3码加法和的修正关系表可得:
 - 一位余3码加法修正规律:无进位,-3 (+1101) 修正;
 - 有进位,+3 (+0011) 修正。

一位余3码加法器结构:

由两级4位二进制加法器组成,第一级常规的二进制加法器实现二进制加法,第二级简化的二进制加法器实现+3、-3修正,加减3的控制由第一级加法器的进位信号完成。线路实现既可采用SSI加法器件,也可采用MSI芯片。设计方案如下:

方案一: 采用SSI全加器构成, 线路见下页。

第五章 5.23 (1) SSI设计

采用SSI全加器设计方案的线路图

第五章 5.23 (1) MSI设计

□ 方案二:采用4位先行进位二进制加法器MSI芯片构成 (74LS283,也可选其他MSI加法器),线路如下:

第五章 5.23 (2)

- □ (2) 2位余3码加法实现方案:用两个一位余3码加法器作为加法单元,采用较简单的串行进位方式,构成2位余3码加法线路 (也可采用其他进位方式,进位原理与n位二进制加法器基本一样)。此方法也适用于n位余3码加法器的构成。线路结构如下:
 - $S_{(i+1)3\sim 0}$ $S_{i3\sim 0}$

□ 5.24 有下列16位字长的逻辑数 (八进制表示):

$$A = 000 \ 377$$
; $B = 123 \ 456$; $C = 054 \ 321$ 。
试计算: $X_1 = (B \oplus C) \cdot A$;
 $X_2 = /(/B \cdot /C) + A$;
 $X_3 = (A \oplus B) + /(A \cdot C)$;
 $X_4 = (A \oplus B) \oplus C$;

□ 解:

$$X_1=000$$
 377;
 $X_2=177$ 777;
 $X_3=177$ 777;
 $X_4=177$ 400

- □ 5.25 设4位二进制加法器进位信号为 $C_4C_3C_2C_1$, 最低位进位输入为 C_0 ; 输入数据为 $A_3A_2A_1A_0$ 和 $B_3B_2B_1B_0$; 进位生成函数为 $g_3g_2g_1g_0$, 进位传递函数为 $p_3p_2p_1p_0$; 请分别按下述两种方式写出 $C_4C_3C_2C_1$ 的逻辑表达式:
 - (1) 串行进位方式; (2) 并行进位方式。

□ 解:

(1) 串行进位方式: (2) 并行进位方式:

$$\begin{array}{ll} C_1 = g_0 + p_0 C_0; & C_1 = g_0 + p_0 C_0 \\ C_2 = g_1 + p_1 C_1; & C_2 = g_1 + p_1 g_0 + p_1 p_0 C_0 \\ C_3 = g_2 + p_2 C_2; & C_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0 \end{array}$$

$$C_4 = g_3 + p_3 C_3$$
; $C_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0$

□ 5.26 设机器字长为32位,用与非门和与或非门设计一个并行加法器(假设与非门的延迟时间为10ns,与或非门的延迟时间为15ns),要求完成32位加法时间不得超过0.2μs。画出进位线路逻辑框图及加法器逻辑框图。

□解: 首先根据题意要求选择进位方案:

1) 若采用串行进位链(行波进位),则在g_i、p_i函数的基础上,实现32位进位需要的时间为:

T=2ty×32=64ty=64×10=640ns=0.64μs 不满足0.2μs的加法时间限制,不能用。 (设1ty=10ns)

2) 若采用成组先行-级联进位方式,则在g_i、p_i的基础上,4位一组分组,小组内部先行进位,小组间串行进位,则32位进位需:

 $T=2.5ty\times8$ $=20ty=20\times10=200ns=0.2\mu s$

刚好满足0.2µs加法时间的限制。

考虑到一次加法除进位时间外,还需 g_i 、 p_i 函数的产生时间、和的产生时间(最高位和)等因素,故此进位方案仍不适用。

结论: 若采用成组先行-级联进位, 小组规模需在6位以上较为合适。即:

T=2.5ty×6组=15ty=15×10=150ns= 0.15 μ s

除进位外还有<mark>50ns</mark>(约5ty)左右的时间供加法开销,较充裕。

3) 若采用二级先行-级联进位方式,4位一小组,4小组为一大组分组。小组内部先行进位,小组间即大组内也先行进位,大组间串行进位,则32位进位需:

T=2.5ty×4级=10ty= $10\times10=100$ ns

完全满足0.2μs的加法时间限制,可以使用。 进位线路及加法器逻辑框图如下页。

32位二级先行-级联进位线路

注:为讨论方便,上述电路忽略门电路扇入系数的影响。另外,一个完整的加法器还应考虑g_i、p_i产生电路、 求和电路等。

32位加法器逻辑框图:图中进位电路可选上述两种方案之一

- □ 5.27 设机器字长为16位,分别按4、4、4、4和3、5、3、5分组后,
- (1) 画出两种分组方案的成组先行-级联进位线路框图, 并比较哪种方案运算速度快。
- (2) 画出两种分组方案的二级先行进位线路框图,并对这两种方案的速度进行比较。
- (3) 用74181和74182画出成组先行-级联进位和二级先行进位的并行进位线路框图。

解:

(1) 4-4-4-4分组的16位成组先行-级联进位线路框图见下页。

第五章 5.27 (1) 4-4-4-4分组

4-4-4-4分组16位成组先行-级联进位线路框图

口 4-4-4-4分组16位成组先行-级联进位线路最长进位延迟

时间为: 2.5t_y×4=10t_y

第五章 5.27 (1) 3-5-3-5分组

3-5-3-5分组16位成组先行-级联进位线路框图

□ 运算速度比较: 4-4-4-4分组的进位时间=2.5ty×4=10ty; 3-5-3-5分组的进位时间=2.5ty×4=10ty;

两种分组方案最长加法时间相同。

- 口 结论: 成组先行-级联进位的最长进位时间只与组数有关,与组内位数无关。
- 口注:为便于比较,3-5-3-5分组忽略扇入影响。

第五章 5.27 (2) 4-4-4-4分组

4-4-4-4分组16位二级先行进位线路框图

□ 4-4-4-4分组16位二级先行进位线路最长进位延迟时间为: 2.5t_y×3=7.5t_y

第五章 5.27 (2) 3-5-3-5分组

3-5-3-5分组16位二级先行进位线路框图

口 3-5-3-5分组16位二级先行进位线路最长进位延迟时间为:

 $2.5t_{y} \times 3 = 7.5t_{y}$

第五章 5.27 (2)

□ 运算速度比较:

4-4-4-4分组的进位时间=2.5ty×3=7.5ty; 3-5-3-5分组的进位时间=2.5ty×3=7.5ty; 两种分组方案最长加法时间相同。

口 结论: 二级先行进位的最长进位时间只与组数和级数有关,与组内位数无关。

第五章 5.27 (3)

□ 16位成组先行-级联进位加法器逻辑图(正逻辑)

□ 16位二级先行进位加法器逻辑图(正逻辑)

□ 图中,设与进位无关或不用的引脚省略不画。

第五章 5.27 注意

- □ 181芯片正、负逻辑引脚的表示方法;
- □ 为强调可比性, 3-5-3-5分组时不考虑扇入影响;
- □ 181芯片只有最高、最低两个进位输入/输出端,组内进位无引脚;
- □ 181为4位片,无法3-5-3-5分组,只能4-4-4-4分组;
- □ 成组先行-级联进位只用到181,使用182的一般是二级以上先行进位;
- □ 成组先行-级联进位是并行进位和串行进位技术的结合; 注意在位数较少时, 二级以上进位可以采用全先行进位技术实现; 位数较多时, 可采用二级并行进位和串行进位技术结合实现(二级先行-级联进位)。

- □ 5.28 假设某机字长为32位,加法器的输入数据为ai、bi,第1级进位函数为gi、pi,第2级进位函数为Gi、Pi,第3级进位函数为Gi*、Pi*,进位信号为Ci,其中i=0,1,2,……,从低位到高位递增。
 - (1) 请写出gi、pi的原理性逻辑表达式;
- (2) 假设第1级为四位分组,加法器采用二级先行-级联进位方案,请写出C4、G0、P0的原理性逻辑表达式。
 - (3) 请用74181和74182为该机设计一个并行加法器。

コ 解答:

- (1) $g_i = a_i b_i$; $p_i = a_i \oplus b_i$ (或 $a_i + b_i$), i = 0, 1, ..., 31
- (2) $C_4=g_3+p_3g_2+p_3p_2g_1+p_3p_2p_1g_0+p_3p_2p_1p_0C_0$; $G_0=g_3+p_3g_2+p_3p_2g_1+p_3p_2p_1g_0$; $P_0=p_3p_2p_1p_0$
- (3) 可以采用二级先行-级联进位方案,如下图:

也可以采用三级全先行进位方案,如下图:

32位加法器逻辑框图如下:图中进位电路可选上述两种方案之一。

- □ 5.29 浮点数的格式为: 阶码6位(含1位阶符), 尾数10位(含1位数符)。按下列要求分别写出正数和负数的表示范围,答案均用2的幂形式的十进制真值表示。
 - (1) 阶原尾原非规格化数;
 - (2) 阶移尾补规格化数;
 - (3) 按照(2)的格式,写出-27/1024和7.375的浮点机器数。
- □解: (1) 据题意画出该浮点数格式:

第五章 5.29 (1)

- □ 当采用阶原尾原非规格化数时,
 - ○最小负数=0,11111;1.11111111
 - ○最大正数=0,11111;0.11111111
 - ○则表示范围为:

$$-2^{31} \times (1-2^{-9}) \sim 2^{31} \times (1-2^{-9})$$

第五章 5.29 (2)

- (2) 当采用阶移尾补规格化数时,
 - ○最小正数=0,00000;0.10000000
 - ○最大正数=1,11111;0.11111111
 - ○其对应的正数真值范围为:

$$2^{-32} \times 2^{-1} \sim 2^{31} \times (1-2^{-9})$$

- ○最小负数=1,11111;1.000 000 000
- ○最大负数=0,00000;1.011111111
- ○其对应的负数真值范围为 2³¹×(-1)~-2⁻³²×(2⁻¹+2⁻⁹)
- □注意:原码正、负域对称,补码正、负域不对称。浮点补码规格化尾数范围满足条件:数符⊕MSB位=1

第五章 5.29 (3)

- (3) 首先将十进制数-27/1024和7.375转换为二进制:
 - \bigcirc -27/1024 =(-0.000 001 101 1)₂ = 2⁻⁵ ×(-0.110 11)₂
 - \bigcirc 7.375=(111.011)₂ =2³ ×(0.111 011)₂
 - 再写成浮点机器数形式:
 - -27/1024的阶移尾补规格化数=0,11011;1.001 010 000
 - 7.375的阶移尾补规格化数=1,00011;0.111011000
- 注: 以上浮点数也可采用如下格式:

1	1	5	9
数符	阶符	阶 码	尾数

- □此时只要将上述答案中的数符位移到最前面即可。
- 口注意: 机器数末位的0不能省。

- □ 5.30(1) 将十进制数138.75 转换成32位的IEEE754短浮点数格式,并 用十六进制缩写表示。
 - (2) 将IEEE754短浮点数C1B7 0000H转换成对应的十进制真值。
- □ 解:
- □ (1) 首先把十进制真值转换成符合IEEE754标准要求的二进制规格化 真值形式: (138.75)₁₀ =(10001010.11)₂=1.0001 0101 1×2¹¹¹

然后计算阶码的移码(=偏置常数+阶码真值)

E=+127+7=11111111+111=10000110

写成短浮点数格式

S=0, E=1000 0110, 隐藏位=1.

M=.0001 0101 1000 0000 0000 000 (23位)

则 (138.75)10的短浮点数机器码为:

□ 对应的十六进制缩写为: 430A C000H

□ (2) 首先把十六进制缩写展开成二进制机器码形式,并分离出符号 位、阶码和尾数部分

- □ 则 S=1, E=1000 0011, 隐藏位=1. M=. 011 0111 0000 0000 0000 0000 (23位)
- □ 计算出阶码的真值(即移码一偏置常数)1000 0011 -111 1111=100
- □ 写出此数的规格化二进制真值形式: -1. 011 0111×2100
- □ 进一步去掉指数项: -1.0110111×2¹⁰⁰=-10110.111
- □ 转换成十进制真值: (-1011 0.111)2=(-22.875)₁₀

- □ 5.31 设浮点数字长为32位, 欲表示-6万~6万的十进制数, 在保证数的最大精度条件下,除阶符、数符各取一位外,阶码和尾数各取几位?按这样分配,该浮点数溢出的条件是什么?
- □解: 若要保证数的最大精度,应取阶的基=2。 若要表示±6万间的十进制数,由于32768 (2¹⁵) < 6 万 <65536 (2¹⁶),则:阶码除阶符外还应取5位(向上 取2的幂)。

故: 尾数位数=32-1-1-5=25位

按此格式,该浮点数上溢的条件为: 阶码≥32

该浮点数格式如下:

1	5	1	25
阶符	阶 值	数符	尾数

□ 5.32 对于尾数为40位的浮点数(不包括符号位在内) ,若采用不同的机器数表示,试问当尾数左规或右规 时,最多移位次数各为多少?

□解:

□对于尾数为40位的浮点数,若采用原码表示,当尾数左规时,最多移位39次;反码表示时情况同原码;若采用补码表示,当尾数左规时,正数最多移位39次,同原码;负数最多移位40次。当尾数右规时,不论采用何种码制,均只需右移1次。

- □ 5.33 按机器补码浮点运算步骤计算[X±Y]_补
 - (1) $X=2^{-0.11}\times 0.101 \ 100$, $Y=2^{-0.10}\times (-0.011 \ 100)$
 - (2) $X = 2^{101} \times (-0.100 \ 101)$, $Y = 2^{100} \times (-0.001 \ 111)$

解:设检测0步骤省略。

(1) 先将X、Y转换成浮点机器数形式:

```
[X]_{\nmid h} = 1, 101; 0.101 100
[Y]_{\nmid h} = 1, 110; 1.100 100 = 1, 101; 1.001 000
```

第五章 5.33 (1)

1) 对阶:

$$[\Delta E]_{\dot{\uparrow}_1} = [Ex]_{\dot{\uparrow}_1} + [-Ey]_{\dot{\uparrow}_1} = 11$$
, $101 + 00$, $011 = 00$, 000 $[\Delta E]_{\dot{\uparrow}_1} = 0$, $Ex = Ey$ 无需对阶

2) 尾数相加减:

$$[Mx]_{\nmid h} + [My]_{\nmid h} = 00.101 100$$

$$+ 11.001 000$$

$$11.110 100$$

$$[Mx]_{\nmid h} + [-My]_{\nmid h} = 00.101 100$$

$$+ 00.111 000$$

$$01.100 100$$

第五章 5.33 (1)

3) 结果规格化:

- 4) 舍入: 无
- 5) 溢出: 无

则:
$$X+Y=2^{-101}\times$$
 (-0.110 000)
 $X-Y=2^{-010}\times 0.110$ 010

第五章 5.33 (2)

(2) $X=2^{101}\times$ (-0.100 101), $Y=2^{100}\times$ (-0.001 111) $[X]_{\frac{1}{2}}=0$, 101; 1.011 011, $[Y]_{\frac{1}{2}}=0$, 100; 1.110 001 = 0, 010; 1.000 100

1) 对阶:

[
$$\Delta E$$
]_补=[Ex]_补+[- Ey]_补=00,101+11,110=00,011
[ΔE]_补>0,应 Ey 向 Ex 对齐,则:
[Ey]_补+011=00,010+00,011=00,101
[ΔE]_补+[-011]_补=00,011+11,101=00,000=0
至此, Ey = Ex ,对阶毕。
[Y]_补=0,101;1.111 000(100)

2) 尾数运算:

$$[Mx]_{\nmid h} + [My]_{\nmid h} = 11.011 \quad 011$$

$$+ 11.111 \quad 000 \quad (100)$$

$$11.010 \quad 011 \quad (100)$$

$$[\mathbf{Mx}]_{\nmid h} + [-\mathbf{My}]_{\nmid h} = 1 \ 1 \ . \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ (100)$$
$$+ \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ (100)$$
$$1 \ 1 \ . \ 1 \ 0 \ 0 \ 1 \ 0 \ (100)$$

第五章 5.33 (2)

3) 结果规格化:

```
[X+Y]<sub>补</sub>=00,101; 11.010 011(100)
已是规格化数。
[X-Y]<sub>补</sub>=00,101; 11.100 010(100)=00,100; 11.000 101(00)
(左规1次, 阶码减1, 尾数左移1位)
```

4) 舍入:

$$[X+Y]_{\stackrel{}{\uparrow}}=00,101; 11.010 011 (舍) [X-Y]_{\stackrel{}{\downarrow}}=00,100; 11.000 101 (舍)$$

5) 溢出: 无

则:
$$X+Y=2^{101}\times$$
 (-0.101 101)
 $X-Y=2^{100}\times$ (-0.111 011)

第五章 5.33--- 非规格化解法

- □ 6.48 按机器补码浮点运算步骤计算[X±Y]_补
 - (1) $X=2^{-0.11}\times 0.101 \ 100$, $Y=2^{-0.10}\times (-0.011 \ 100)$
 - (2) $X = 2^{101} \times (-0.100 \ 101)$, $Y = 2^{100} \times (-0.001 \ 111)$

解:设检测0步骤省略。

(1) 先将X、Y转换成浮点机器数形式:

 $[X]_{3}=1$, 101; 0.101 100

 $[Y]_{3}=1$, 110; 1.100 100

第五章 5.33 (1) ---- 非规格化

1) 对阶:

[
$$\Delta E$$
]_补=[Ex]_补+[- Ey]_补=11,101+00,010=11,111
[ΔE]_补<0,应 Ex 向 Ey 对齐,则:
[Ex]_补+1=11,101+00,001=11,110
[ΔE]_补+1=11,111+00,001=00,000=0
至此, $Ex=Ey$,对阶毕。
[X]_补=1,110;0.010 110(0)

2) 尾数相加减:

$$[Mx]_{\nmid \mid} + [My]_{\nmid \mid} = 0 \ 0 \ . \ 0 \ 1 \ 0 \ 1 \ 10(0)$$

$$+ 1 \ 1 \ . \ 1 \ 0 \ 1 \ 0 \ 0$$

$$1 \ 1 \ . \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$$

$$[Mx]_{\nmid \mid} + [-My]_{\nmid \mid} = 0 \ 0 \ . \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$$

$$+ 0 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ 0$$

$$0 \ 0 \ . \ 1 \ 1 \ 0 \ 0 \ 0$$

第五章 5.33 (1) ---- 非规格化___

3) 结果规格化:

- 4) 舍入: 舍
- 5) 溢出: 无

则:
$$X+Y=2^{-101}\times$$
 (-0.110 000)
 $X-Y=2^{-010}\times 0.110$ 010

第五章 5.33 (2) ---- 非规格化___

(2)
$$X=2^{101}\times$$
 (-0.100 101), $Y=2^{100}\times$ (-0.001 111)
[$X]_{\frac{1}{2}h}=0$, 101; 1.011 011, [$Y]_{\frac{1}{2}h}=0$, 100; 1.110 001

1) 对阶:

[
$$\Delta E$$
]_补=[Ex]_补+[- Ey]_补=00,101+11,100=00,001
[ΔE]_补>0,应 Ey 向 Ex 对齐,则:
[Ey]_补+1=00,100+00,001=00,101
[ΔE]_补+[-1]_补=00,001+11,111=00,000=0
至此, Ey = Ex ,对阶毕。
[Y]_补=0,101;1.111 000(1)

2) 尾数运算:

$$[Mx]_{\begin{subarray}{ll} [Mx]_{\begin{subarray}{ll} \begin{subarray}{ll} [Mx]_{\begin{subarray}{ll} \begin{subarray}{ll} \begin{subarray}{ll} + 11.111 & 011 &$$

$$[Mx]_{\nmid h} + [-My]_{\nmid h} = 11.011 011 + 00.000 111 (1) 11.100 010 (1)$$

第五章 5.33 (2) ---- 非规格化___

3) 结果规格化:

4) 舍入:

5) 溢出: 无

则:
$$X+Y=2^{101}\times$$
 (-0.101 101) $X-Y=2^{100}\times$ (-0.111 011)

口5.34 设浮点数阶码取3位,尾数取6位(均不包括符号位),要求阶码用移码运算,尾数用原码运算,计算X×Y和X÷Y,且结果保留1倍字长。

- (1) $X=2^{100}\times 0.100 \ 111$, $Y=2^{011}\times (-0.101 \ 011)$
- (2) $X=2^{101}\times(-0.101\ 101)$, $Y=2^{001}\times(-0.111\ 100)$

解:设检测0步骤省略。

(1) 先将X、Y转换成机器数形式:

[X]_{阶移屋原}=1,100; 0.100 111

[Y]_{阶移屋原}=1,011; 1.101 011

1) 阶码相加减:

 $[Ex]_{8}+[Ey]_{4}=01,100+00,011=01,111$ (无溢出) $[Ex]_{8}+[-Ey]_{4}=01,100+11,101=01,001$ (无溢出)

第五章 5.34 (1)

2) 尾数相乘除:

○尾数相乘:

```
\begin{split} [Mx]_{\text{$\not$\scalebox{$|$}}} = &0.100\ 111\ , \quad [My]_{\text{$\not$\scalebox{$|$}}} = &1.101\ 011 \\ Mx^* = &0.100\ 111\ , \quad My^* = &0.101\ 011 \\ Mx_0 = &0\ , \quad My_0 = &1\ , \quad Mp_0 = &Mx_0 \oplus My_0 = &0 \oplus 1 = 1 \\ Mx^* \times &My^* = &0.011\ 010\ 001\ 101 \\ [Mx \times &My]_{\text{$\not$\scalebox{$|$}}} = &1.011\ 010\ 001\ 101 \\ [P]_{\text{$\not$\scalebox{$\not$\scalebox{$|$}}}} = &1.111\ ; \quad 1.011\ 010\ 001\ 101 \end{split}
```

○ 尾数相除:

$$\begin{aligned} & [-My^*]_{\grave{\uparrow}_1} = 1.010\ 101 \\ & Mx^* \div My^* = 0.111\ 010,\ [Mx \div My]_{\bar{\mathbb{P}}} = 1.111\ 010 \\ & r^* = 0.000\ 010 \times 2^{-6} = 0.000\ 000\ 000\ 010 \\ & [Q]_{\breve{\mathbb{P}}} = [X \div Y]_{\grave{\mathbb{P}}} \& \mathbb{R}_{\bar{\mathbb{P}}} = 01,001;\ 1.\ 111\ 010 \end{aligned}$$

运算过程如下:

第五章 5.34(1) 原码一位乘法

	部分	积			乘	数Y	*	
	0.000	$0\ 0\ 0$.1	0	1	0	1	<u>1</u> —— + X *
+	0.100	111						
	0.100	111						
$\rightarrow 1$	0.010	011	1	.1	0	1	0	<u>1</u> ——+X*
+	0.100	111						
	0.111	010			•			
$\rightarrow 1$	0.011	101	0	1	.1	0	1	<u>0</u> +0
$\rightarrow 1$	0.001	110	1	0	1	.1	0	<u>1</u> —— +X*
+	0.100	111						
	0.110	101						
$\rightarrow 1$	0.011	$0\ 1\ 0$	1	1	0			<u>0</u> —— +0
$\rightarrow 1$	0.001	101	0	1	1	0	1.	. <u>1</u> +X*
+	0.100	111						
	0.110	100						
$\rightarrow 1$	0.011	010	0	0	1	1	0	1
			I					1

第五章 5.34 (1)原码加减变替除该 Science Computer Technology

**************************************	37:
被除数(余数)	商
$00.100\ 111$	0.000000
+ 11.010 101	试减, +[-My*] _补
11.111 100	r<0,商0
$1 \leftarrow 11.111 000$	0.
+ 00.101 011	$+\mathbf{M}\mathbf{y}^{f{*}}$
00.100 011	r>0,商1
$1 \leftarrow 01.000110$	0.1
+ 11.010 101	+[- M y*] _{ネト}
00.011 011	+[-My*] _补 r>0,商1
$1 \leftarrow 00.110110$	0.1 1
+ 11.010 101	+[- M y*] _{ネト}
$00.001 \ 011$	r>0,商1
$1 \leftarrow 00.0101110$	0.11 <mark>1</mark>
+ 11.010 101	+[-My*] _补 r<0,商0
11.101 011	r<0,商0
$1 \leftarrow 11.0101110$	0.1 110
+ 00.101 011	+M y*
00.000 001	r>0,商1
$1 \leftarrow 00.000010$	0.1 1 1 0 1
+ 11.010 101	+[-My*] _补 1← 0.1 1 1 0 1 0, r<0, 商0
11.010 111	1←0.111 010, r<0, 商0
+ 00.101 011	(恢复余数),+ M y*_
00.000 010	

第五章 5.34 (1)

3) 结果规格化:

4) 舍入:

$$[P]_{\mathscr{P}}=[X\times Y]_{\text{阶移尾原}}=01,110; 1.110\ 100\ 011\ 010 =01,110; 1.110\ 100\ (舍)$$
 $[Q]_{\mathscr{P}}=[X\div Y]_{\text{阶移尾原}}=01,001; 1.111\ 010\ (不变)$

5) 判溢出:无

则

$$X \times Y = 2^{110} \times (-0.110 \ 100)$$

 $X \div Y = 2^{001} \times (-0.111 \ 010)$

第五章 5.34 (2)

(2) $X=2^{101}\times(-0.101\ 101)$, $Y=2^{001}\times(-0.111\ 100)$

[X]_{阶移尾原}=1, 101; 1.101 101

[Y]_{阶移尾原}=1, 001; 1.111 100

1) 阶码相加减:

$$[Ex]_{8}+[Ey]_{4}=01$$
, $101+00$, $001=01$, 110 (无溢出) $[Ex]_{8}+[-Ey]_{4}=01$, $101+11$, $111=01$, 100 (无溢出)

- 2) 尾数相乘除:
 - ○尾数相乘:

$$\begin{split} [Mx]_{\text{\mathbb{R}}}=&1.101\ 101,\ \ [My]_{\text{\mathbb{R}}}=&1.111\ 100\\ Mx^*=&0.101\ 101,\ \ My^*=&0.111\ 100\\ Mx_0=&1,\ My_0=&1,\ Mp_0=&Mx_0\oplus My_0=&1\oplus 1=&0 \end{split}$$

第五章 5.34 (2) ——尾数相乘除

○ 尾数相乘:

$$Mx* \times My* = 0.101 \ 010 \ 001 \ 100$$
 $[Mx \times My]_{\bar{\mathbb{F}}} = 0.101 \ 010 \ 001 \ 100$
 $[P]_{\underline{\mathscr{F}}} = [X \times Y]_{\underline{\mathsf{M}} \times \underline{\mathsf{K}} = 0} = 01,110; \ 0.101 \ 010 \ 001 \ 100$

○ 尾数相除:

$$[-My^*]_{\uparrow h} = 1.000 \ 100$$
 $Mx^* \div My^* = [Mx \div My]_{\cal{B}} = 0.110 \ 000$
 $r^* = 0.000 \ 000 \times 2^{-6} = 0.000 \ 000 \ 000 \ 000 = 0$
 $[Q]_{\cal{B}} = [X \div Y]_{\cal{B}} = 01,100; \ 0.110 \ 000$

○ 运算过程如下:

第五章 5.34(2) 原码一位乘法

部分积	乘数Y*
0.000 000	$1 \ 1 \ 1 \ 1 \ 0 \ \underline{0} - + 0$
$\rightarrow 1$ 0.000 000	$0 \ .1 \ 1 \ 1 \ 0 \longrightarrow +0$
$\rightarrow 1$ 0.000 000	$0 \ 0 \ 1 \ 1 \ 1 \ \underline{1} - X^*$
+ 0.101101	
0.101101	
$\rightarrow 1$ 0.010110	1 0 0 .1 1 $\underline{1}$ + X^*
+ 0.101101	
1.000 011	
$\rightarrow 1$ 0.100001	1 1 0 0 .1 $\underline{1}$ + X^*
+ 0.101101	
1.001110	
$\rightarrow 1 0.100111$	$0 \ 1 \ 1 \ 0 \ 0 \ .\underline{1} - + X^*$
+ 0.101101	
1.010100	
$\rightarrow 1$ 0.101010	$0 \ 0 \ 1 \ 1 \ 0 \ 0$
	ļ

第五章 5.34 (2)原码加减妥替除法 Science

被除数(余数)	商
00.101 101	0.000000
+ 11.000 100	试减,+[-Mv*]¾
11.110 001	r<0,商0
$1 \leftarrow 11.100010$	0.
+ 00.111 100	+ My *
00.011 110	r>0,商1
$1 \leftarrow 00.111100$	0.1
+ 11.000 100	+[-My*] _≵ ,
00.000 000	r>0,商1
$1 \leftarrow 00.000000$	0.1 1
+ 11.000 100	+[-My*] _{ネト}
11.000 100	r<0,商0
$1 \leftarrow 10.001000$	0.110
+ 00.111 100	$+\mathbf{M}\mathbf{y}^{*}$
11.000 100	r<0,商0
$1 \leftarrow 10.001000$	0.1 10 <mark>0</mark>
+ 00.111 100	$+\mathbf{M}\mathbf{y}^*$
11.000 100	r<0,商0
$1 \leftarrow 10.001000$	0.1 1 0 0 0
+ 00.111 100	+My*
11.000 100	1←0.110 000, r<0, 商0
+ 00.111 100	恢复余数,+My*
00.000 000	

第五章 5.34 (2)

- 3) 结果规格化: 已是规格化数。
- 4) 舍入:

$$[P]_{\scalebox{0.101 010 001 100}} = [X \times Y]_{\scalebox{0.101 010 001 100}} = 01,110; 0.101 010 001 100 = 01,110; 0.101 010 (舍) [Q]_{\scalebox{0.101 010 000}} = [X \div Y]_{\scalebox{0.100 000}} = 01,100; 0.110 000 (不变)$$

5) 判溢出:无

则 $X \times Y = 2^{110} \times 0.101 \ 010$ $X \div Y = 2^{100} \times 0.110 \ 000$

注:由于加减爱替除法算法中缺少对部分余数判 "0"的步骤,因此算法运行中的某一步已除尽时,算法不会自动停止,而是继续按既定步数运行完。

□ 5.35 设数的阶码3位,尾数6位,均不含符号位; 阶码用移码表示, 尾数用补码表示; 阶的基为2。用浮点算法计算 X+Y、X-Y、X×Y、X÷Y, 结果要求为规格化数。

己知: $X=2^{-2}\times 11/16$; $Y=2^{3}\times$ (-15/16)

□解:为判溢出方便,阶符和尾符均采用双符号位,先将X、Y转换成浮点规格化格式(如果仅作为练习,原始数据也可直接转换,不要求一定为规格化形式,运算完后再规格化):

 $[X]_{\text{M}8} = 00$, 110; 00.101 100 $[Y]_{\text{M}8} = 01$, 011; 11.000 100

□ 为便于讨论,设阶码用E表示,尾数用M表示。

第五章 5.35 浮点加减法

1. 浮点加减法:

(1) 对阶:

求阶差: $[\Delta E]_{8}=[E_{x}]_{8}+[-E_{y}]_{+}=00\ 110+11\ 101=00\ 011$ $[\Delta E]_{8}<0$, $E_{x}<E_{y}$, $\Delta E=-5$, E_{x} 向 E_{y} 对齐。 M_{x} 右移5位。每右移一次, $E_{x}+1$,直到 $E_{x}=E_{y}$ 为止。

对阶后: [X]_{阶移屋补}=01, 011; 00.000 001 (01100)

(2) 尾数运算:

$$\begin{split} [M_{+}]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarr$$

第五章 5.35 浮点加减法

(3) 结果规格化:

设尾数的高三位为 $M_sM_0.M_{MSB}.....$

加法时: $M_0 \oplus M_{MSB} = 1 \oplus 0 = 1$;

减法时: M₀⊕M_{MSB}=0⊕1=1;

则: [M+],、[M-], 已是规格化数,不需再规格化。

(4) 舍入:

采用0舍1入法

[X+Y]_{阶移尾补}=01, 011; 11.000 101 (舍)

[X-Y]_{阶移尾补}=01, 011; 00.111 101 (舍)

(5) 溢出判断:

由于 $[X+Y]_{N8}$ [X-Y]N8 [X-Y]N8 [X-Y]N8 [X-Y]

则: $X+Y=2^3\times$ (-59/64) ; $X-Y=2^3\times61/64$

第五章 5.35 浮点乘法

2. 浮点乘法:

(1) 阶码相加:

$$[E_x]_{8} = [E_x]_{8} + [E_v]_{4} = 00\ 110 + 00\ 011 = 01\ 001$$
—无溢出

(2) 尾数相乘:

采用补码两位乘比较法,有:

机器运算步骤如下:

第五章 5.35 浮点乘法

部分积	乘数 $Y_{n-1}Y_nY_{n+1}$
0 0 0. 0 0 0 0 0	1 1. 0 0 0 1 <u>0 0 0</u> —+0
\rightarrow 2 0 0 0.0 0 0 0 0	0 0 1 1.0 0 0 1 0
+ 0 0 0 . 1 0 1 1 0 0	$+[\mathbf{M}_{\mathbf{x}}]_{ eq h}$
$0\ 0\ 0\ .\ 1\ 0\ 1\ 1\ 0\ 0$	
$\rightarrow 2$ 0 0 0. 0 0 1 0 1 1	$0 \ 0 \ 0 \ 1 \ 1. \ 0 \ 0 \ -+0$
$\rightarrow 2$ 0 0 0. 0 0 0 1 0	$1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \underline{1 \ 1.0}$
+ 1 1 1.0 1 0 1 0 0	$+[-\mathbf{M}_{\mathbf{x}}]_{ eq h}$
1 1 1. 0 1 0 1 1 0	$1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \underline{0} \ \underline{0}$
	清0

第五章 5.35 浮点除法

(3) 结果规格化:

 $M_0 \oplus M_{MSB} = 1 \oplus 0 = 1$, $[M_{\times}]_{\wedge}$ 已是规格化数。

(4) 舍入: 采用0舍1入法

[X×Y]_{阶移尾补}=01,001;11.010111(入)

(5) 判溢出:

由于[X×Y]_{阶移尾补}的阶码未溢出,故结果无溢出。

则: $X \times Y = 2^1 \times (-41/64)$

3. 浮点除法:

(1) 阶码相减:

 $[E_{\div}]_{8} = [E_{x}]_{8} + [-E_{v}]_{4} = 00\ 110 + 11\ 101 = 00\ 011$ ——无溢出

(2) 尾数相除:

采用补码加减交替除法,由于满足X*<Y*条件,除法过程无溢出。

 $[M_x]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$

[M_÷]_补=1.010 001, 余数忽略。

若考虑余数还要进行一次恢复余数操作。机器运算步骤如下:

第五章 5.35 浮点除法

被除数[M _x] _补 /余数[M _r] _补	商q
00.101100	0.000000
+ 11 .000100	X、Y异号,+[M _v] _补
11 .110000	•
$\leftarrow 1 11 .100000$	1. —— R、Y同号,商1
+ 00 .111100	$+ [-\mathbf{M}_{\mathbf{v}}]_{ eq h}$
00.011100	<u> </u>
$\leftarrow 1 00 .111000$	1.0 —— R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
11 .111100	*
$\leftarrow 1 11 .111000$	1.01 —— R、Y同号,商1
+ 00 .111100	$+[-\mathbf{M}_{\mathbf{v}}]_{ eq h}$
00 .110100	
$\leftarrow 1 01 .101000$	1.0 1 0 R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
00 .101100	, ii
$\leftarrow 1 \qquad 0 \ 1 \ 1 \ 0 \ 0 \ 0$	1.0 1 0 0 R、Y异号,商0
+ 11 000100	$+[\mathbf{M_v}]_{ eq h}$
00 .011100	
$\leftarrow 1 00 .1 \ 11 \ 000$	1.0 1 0 0 0 R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
$11.111100 \leftarrow 1$	1.010001 — 恒置1

第五章 5.35 浮点除法

(3) 结果规格化:

M₀ ⊕ M_{MSB}=1 ⊕ 0= 1, [M_÷]_补已是规格化数。

(4) 舍入:

由于尾数除法采用了恒置1法舍入,故不用再进行其他舍入操作。 (若采用0舍1入法舍入,可多求几位商作为保护位。)

 $[X \div Y]_{\text{M} \otimes \text{Re}} = 00, 011; 11.010 001$

(5) 判溢出:

由于[X÷Y]_{阶移尾补}的阶码无溢出,故结果无溢出。

则: $X \div Y = 2^{-5} \times (-47/64)$

□ 评注: 浮点运算与定点运算的主要区别在运算步骤上,每一步的具体操作方法基本以定点算法为基础; 阶码运算与尾数运算分别进行, 溢出判断以阶码溢出为标志,尾数溢出可通过规格化操作进行调整。浮点运算时舍入问题比较突出,为尽量减少精度损失,一般设有若干保护位,因此本题在运算过程中保留多余位,直到舍入操作时才对保留位进行处理。注意最后结果按题意要求用浮点真值表示, 真值的形式要与原始数据一致。

□ 5.36 假定在一个 8 位字长的计算机中,定点整数用单字长表示,其中带符号整数用补码表示(符号占1位);浮点数用双字长表示,阶码为8位移码(包括1位符号位),尾数用8位原码(包括1位符号位)。运行如下类 C 程序段:

```
int x1 = -124;
int x2 = 116;
unsigned int y1 = x1;
float f1 = x1;
int z1 = x1 + x2;
int z2 = x1 - x2;
```

- □ 请问:
- □ (1)执行上述程序段后,所有变量的值在该计算机内的数据表示形 式各是多少?所有变量的值对应的十进制形式各是多少?
- □ (2)在该计算机中,无符号整数、带符号整数和规格化浮点数的表示范围各是什么? (要求用十进制2的幂形式表示)
- 🗖 (3)执行上述程序段后,哪些运算语句的执行结果发生了溢出?

□ 解:

- (1) 执行上述程序段后,变量
 - x1值的十进制表示形式: -124
 - x1值的机内表示形式: 1,000 0100
 - x2值的十进制表示形式: 116
 - x2值的机内表示形式: 0,111 0100
 - y1 值的十进制表示形式: 132
 - y1 值的机内表示形式: 1000 0100
 - f1 值的十进制表示形式: -124.0
 - f1 值的机内表示形式: 1,000 0111;1.111 1100
 - z1值的十进制表示形式: -8
 - z1值的机内表示形式: 1,111 1000
 - z2值的十进制表示形式: 16
 - z2值的机内表示形式: 0,001 0000

(2) 无符号整数表示范围: 0~28-1

带符号整数表示范围: -2⁷~2⁷-1

规格化浮点数表示范围:

$$-(1-2^{-7})\times 2^{127}\sim -2^{-1}\times 2^{-128}, 0, 2^{-1}\times 2^{-128}\sim (1-2^{-7})\times 2^{127}$$

(3) 执行上述程序段后,语句int z2 = x1-x2 的执行结果发生了溢出

课为测试

□ 用补码一位乘法计算X×Y。 X= -0.010101, Y= -0.111101