明細書

有機電解質キャパシタ

技術分野

本発明は、エネルギー密度が高く、かつ、パワー密度も高い有機電解質キャパシタに関する。

背景技術

近年、導電性高分子、遷移金属酸化物等を正極とし、負極にリチウム金属あるいはリチウム合金を用いた二次電池が、そのエネルギー密度が高いことから、Ni-Cd電池、鉛電池に代わる電池として提案されている。

しかしながら、これらの二次電池は、繰り返し充放電を行うと、正極あるいは負極の 劣化による容量低下が大きく、実用には問題が残されている。特に、負極の劣化は、デ ントライトと呼ばれる針状のリチウム金属の生成を伴い、充放電の繰り返しにより終局 的にはデントライトがセパレータを貫通し、電池内部でショートを引き起こし、場合に よっては電池が破裂する等、安全面においても問題が生じることがあった。

そこで、上記の問題点を解決すべく、グラファイト等の炭素材料を負極に用い、正極にLiCoO₂等のリチウム含有金属酸化物を用いた電池が提案されている。この電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムイオンを供給し、更に放電では負極からリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であり、負極に金属リチウムを使用せずリチウムイオンのみが充放電に関与することから、リチウムイオン二次電池と呼ばれ、金属リチウムを用いるリチウム電池とは区別されている。この電池は、高電圧及び高容量を有することを特長としている。

近年、環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンエネルギーの貯蔵システムや、電力の負荷平準化を目的とした分散型電源、あるいはガソリン車にかわる電気自動車用あるいはハイブリッド電気自動車用の電源(メイン電源と補助電源)の開発が盛んに行われている。

また、自動車の電装設備の電源としては、これまで鉛電池が用いられていたが、最近ではパワーウインドーや I T関連機器の搭載などが充実してきたこともあり、これらの用途においてもエネルギー密度、出力密度の高い新しい電源が求められるようになってきている。

こうした蓄電装置あるいは駆動電源としては、上述のリチウムイオン二次電池や電気 二重層キャパシタが注目されている。しかしながら、リチウムイオン電池はエネルギー 密度は高いものの出力特性、安全性やサイクル寿命には問題を残している。

一方、電気二重層キャパシタは、ICやLSIのメモリーバックアップ用電源として広く利用されている電子部品であり、一充電当たりの放電容量は電池に比べて小さいものの、瞬時の充放電特性に優れ、数万サイクル以上の充放電にも耐えるという、リチウムイオン電池やニッケル水素電池にはない高い出力特性とメンテナンスフリー性を備えている。

電気二重層キャパシタはこうした利点を有してはいるが、一般的な電気二重層キャパシタのエネルギー密度は3~4Wh/1程度で、リチウムイオン電池に比べて二桁程度小さいため、電気自動車用途などの高エネルギー密度が要求される駆動電源としては、未だ実用化レベルに到達していないのが現状である。電気自動車用途を考えた場合、実用化には6~10Wh/1、普及させるには20Wh/1のエネルギー密度が必要であるといわれている。

こうした高エネルギー密度、高出力特性を要する用途に対応する蓄電装置としては、 近年、ハイブリットキャパシタと呼ばれる蓄電装置が注目されている。

ハイブリットキャパシタ関連としては、リチウムイオンを吸蔵、脱離しうる炭素材料に、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電気二重層キャパシタが提案されている(例えば、特開平8-107048号公報の第2頁第2欄38行~第2頁第2欄47行 参照)。

また、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウム金属と合金を形成しない多孔質集電体に担持させた負極を有する上限電圧が4Vの電気二重層キャパシタが提案されている(例えば、特開平9-55342号公報の第7頁第11欄24行~第7頁第11欄28行 参照)。

さらには、活性炭粉末を含む分極性電極材料にステンレス鋼繊維の集電体が混在状態

で組み合わしたものを正極に、リチウムイオンを吸蔵、脱離しうる炭素材料に、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料に多孔質金属又は繊維状金属の集電体を組み合わしたものを負極とした電気二重層キャパシタが提案されている(例えば、特開平9-232190号公報の第4頁第6欄1行~第4頁第6欄10行 参照)。

さらに、正極の自然電位がLi/Li+を対極として、0.5V以上2.6V以下である炭素質物質からなる分極性電極であり、負極が、金属リチウム、リチウム金属を含有する合金及びリチウムイオンが可逆的に吸蔵、脱離しうる物質に予めリチウムイオンを吸蔵させた物質から選ばれる少なくとも一つ以上の物質からなる電気二重層キャパシタが提案されている(例えば、特開平<math>11-297578号公報の第3頁第4欄16行参照)。

これらの提案はいずれも負極にリチウムイオンを予め担持させることにより、負極電位を下げてセルの耐電圧を上げたものであるが、コイン電池のように一対の正極、負極が対向したセル構成のものであり、電極を捲回した円筒型電池や、複数枚の電極を積層した角型電池のような大型セルでの具体的な実施例は示されていない。

大型セルにおいて予めリチウムイオンを負極に担持させる方法が開示されているが、いずれも担持させるのに時間を要すこと、均一性に問題がある等、工業化に課題を残している (例えば、特開平8-162159号公報の第4頁第6欄10行~第4頁第6欄45行、特開平8-255633号公報の第4頁第5欄33行~第5頁第7欄29行、特開平10-144295号公報の第2頁第2欄4行~第2頁第2欄34行、或は特開平8-102333号公報の第3頁第3欄2行~第3頁第3欄37行 参照)。

一方、正極集電体および負極集電体がそれぞれ表裏に貫通する孔を備え、負極活物質がリチウムイオンを可逆的に担持可能であり、負極由来のリチウムイオンが負極あるいは正極と対向して配置されたリチウム極と電気化学的接触により担持される有機電解質電池が提案されている(例えば、特願平10-531811号公報の第11頁4行~第12頁27行 参照)。

該発明においては、電極集電体に表裏面を貫通する孔を設けることにより、リチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるため、積層枚数の多いセル構成の蓄電装置においても、当該貫通孔を通じて、リチウム極近傍に配置され

た負極だけでなくリチウム極から離れて配置された負極にもリチウムイオンを電気化 学的に担持させることが可能となる。

負極活物質は、リチウムイオンを可逆的に担持できるものであればいろいろな物質が 用いられており、例えば天然黒鉛、人造黒鉛などのグラファイト、コークス、ピッチ、 熱硬化性樹脂、ヤシ殻や樹木などを出発原料とする種々の炭素材料、炭素繊維、ポリア セン系物質、錫酸化物、珪素酸化物等を用いることが知られている。負極活物質として、 芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が 0.50~ 0.05であるポリアセン系骨格構造を有する不溶不融性基体を、好適に用いることが できる(例えば、特公平1-44212号公報の特許請求の範囲、請求項1~請求項2 2、或は特公平3-24024号公報の特許請求の範囲、請求項1~請求項8 参照)。

発明の開示

上述のように、リチウムイオンを吸蔵、脱離しうる炭素材料等に予めリチウムイオンを吸蔵させた負極は、電気二重層キャパシタに用いられる活性炭よりも電位が卑になるので、正極活性炭と組み合わせたセルの耐電圧は向上し、また負極の容量は活性炭に比較し非常に大きいためエネルギー密度が高くなる。

しかしながら、リチウムイオンを含む電解液は電導度が低いことや、負極においてリチウムイオンの吸蔵・脱離反応が遅い等の問題により高い電流密度での放電は困難となっていた。特に充電状態よりも放電状態の内部抵抗が大きくなることが放電特性低下の原因と考えられる。

したがって、本発明の目的は、充放電において内部抵抗変化の小さく、高エネルギー 密度、高出力を有した有機電解質キャパシタを提供することにある。

本発明者等は前記課題を解決すべく鋭意検討した結果、有機電解質キャパシタを充電状態から充電電圧の半分の電圧まで 1 ± 0.25 時間かけて放電した際のセル容量をa (mAh)、充電状態の負極を1.5V (Li/Li+)まで放電させた時の容量を完全負極容量b (mAh) とした時に、 $0.05 \le a/b \le 0.3$ となるよう正極活物質と負極活物質の比率を制御することにより、内部抵抗が低く、また充放電における内部抵抗変化が小さく、かつリチウムイオンの移動が容易で出力密度の高い高性能な有機電解質キャパシタを得ることができることを見出し、本発明を完成させたものである。

すなわち、本発明は以下の通りである。

- 〔1〕 正極、負極、並びに、リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、正極がリチウムイオンおよびアニオンを可逆的に担持可能であるとともに、負極がリチウムイオンを可逆的に担持可能であり、該有機電解質キャパシタを充電状態から充電電圧の半分の電圧まで 1 ± 0.25 時間かけて放電した際のセル容量をa (mAh)、充電状態の負極を1.5V(Li/Li+)まで放電させた時の容量を完全負極容量b (mAh)とした時に、 $0.05 \le a/b \le 0.3$ となるよう正極活物質と負極活物質の比率が制御されていることを特徴とする有機電解質キャパシタである。
- [2] 前記負極および/又は正極には予めリチウムイオンが担持されている、[1] に記載の有機電解質キャパシタである。
- [3] 負極活物質の単位重量当たりの静電容量が、正極活物質の単位重量当たりの静電容量の3倍以上であり、かつ、正極活物質重量が負極活物質重量よりも大きい、[1] または[2]記載の有機電解質キャパシタである。
- [4]前記有機電解質キャパシタが正極集電体および負極集電体を備え、各集電体は表 裏面に貫通する孔を有しており、負極および/又は正極に対向して配置されたリチウム 極との電気化学的接触により負極および/又は正極にリチウムイオンが担持される、
 - [1]~〔3〕に記載の有機電解質キャパシタである。

ここで、「0.05≦a/b≦0.3となるよう正極活物質と負極活物質の比率が制御されていること」としたのは、セルの出力特性を制御するために、負極のリチウムイオン放出能力(ここでは完全負極容量b)に対して、任意に負極容量(ここではセル容量aに相当)を設定することが必要不可欠だからである。

ここで、「負極活物質の単位重量当たりの静電容量が、正極活物質の単位重量当たり の静電容量の3倍以上であり、かつ、正極活物質重量が負極活物質重量よりも大きい」

としたのは、正極活物質重量と負極活物質重量の比率を変化させることによりセルの放電容量は一定でも、エネルギー密度が変化するためである。つまり、単位重量当りの静電容量の大きな負極活物質重量の比率を下げることによりエネルギー密度は大きくなり、逆に負極活物質重量の比率を上げることにより、エネルギー密度が小さくなることを見出したのである。

発明の効果

以上説明したように、本発明の有機電解質キャパシタは、正極、負極、並びに、リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、正極がリチウムイオンおよびアニオンを可逆的に担持可能であるとともに、負極がリチウムイオンを可逆的に担持可能であり、該有機電解質キャパシタを充電状態から充電電圧の半分の電圧まで 1 ± 0 . 25時間かけて放電した際のセル容量をa(mAh)、充電状態の負極を1.5 V(Li/Li+) まで放電させた時の容量を完全負極容量b(mAh) とした時に、 $0.05 \le a/b \le 0.3$ となるよう正極活物質と負極活物質の比率を制御することにより、高電圧、高エネルギー密度を有しながら、高い出力特性を有した有機電解質キャパシタを実現したものである。

電極の厚み等によってもセルの内部抵抗が変化するため出力特性の絶対値は変化するものの、本願の実施例においては、放電時間が1±0.25時間になるような電流にて放電した時のセル容量に対して、その100倍の電流で放電した時のセル容量が50%以上保持するという結果が得られた。中でも実施例3のように、負極活物質の単位重量当たりの静電容量が、正極活物質の単位重量当たりの静電容量の3倍以上であり、かつ、正極活物質重量が負極活物質重量よりも大きい場合は、特にエネルギー密度も大きくなり好適である。

かかる特徴を有する本発明の有機電解質キャパシタは、電気自動車、ハイブリッド電気自動車、燃料電池車などの駆動用蓄電源または補助用蓄電源として極めて有効である。また、電動自転車、電動スクータ、電動車椅子などの駆動用蓄電源や補助用蓄電源などとしても好適に用いられる。更に、これらのキャパシタは、ソーラーエネルギーの蓄電装置、風力発電の蓄電装置などの各種エネルギーの貯蔵装置として、あるいは、無停電電源装置、家庭用電気器具の蓄電源などとしても、好適に用いることができる。

図面の簡単な説明

図1は、外装容器としてラミネートフィルムを用いた場合の有機電解質キャパシタの 内部構造を示す斜視図である。有機電解質キャパシタの内部構造は実線で、有機電解質 キャパシタの外装容器は破線で記載してある。

図2は、図1の平面図である。

図3は、図2のI-I´断面図である。

図4は、図2のII-II′断面図である。

図5は、電極が形成された電極集電体(正極集電体1a、負極集電体2a)の拡大平面図を示す。図5は、電極集電体としてエキスパンドメタルを用いた例であり、点線で囲まれた部分が貫通孔である。

図 6 は、図 5 の I-I 所面図を示す。図 6 に示すように、エキスパンドメタル(正極集電体 1 a、負極集電体 2 a)の貫通孔は、導電性材料 1 b、2 bによって閉塞されており、正極 1 および負極 2 は、この貫通孔を塞がれたエキスパンドメタル上の導電層の上に形成される。

図7は、電極集電体の一例を示す。図7(a)は、気孔率38%のエキスパンドメタル、図7(b)は気孔率37%の金属網、図7(c)は気孔率34%パンチングメタルの例である。図7(c)の例では、電極集電体の貫通孔は丸状であるが、貫通孔の形状はこれに限定されるものではなく、例えば、図7(d)に示す四角状(気孔率45%)、図7(e)に示す十文字状(気孔率35%)等、適宜設定できる。

図8は、三極積層ユニットの層構成の第1の例を示す断面図である。

図9は、三極積層ユニットの層構成の第2の例を示す断面図である。

図10は、三極積層ユニットの層構成の第3の例を示す断面図である。

図11は、電極積層ユニットの一例を示す展開斜視図である。

図12は、電極積層ユニットの一例を示す展開斜視図である。

各図に付された符号の説明を以下に行う。1は正極、1 a は正極集電体、1 c は正極端子、2 は負極、2 a は負極集電体、2 c は負極端子、3 はセパレータ、4 及び5 はラミネートフィルム、6 は電極積層ユニット、7 はリチウム極、7 a はリチウム極集電体、8 は三極積層ユニット、9 a 及び9 b は導線A,B,及びC熱融着部、A,は端子接続部、B,は端子溶接部を示す。

発明を実施するための最良の形態

本発明の有機電解質キャパシタは、正極、負極、並びに、リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、正極がリチウムイオンおよびアニオンを可逆的に担持可能であるとともに、負極がリチウムイオンを可逆的に担持可能であり、該有機電解質キャパシタを充電状態から充電電圧の半分の電圧まで 1 ± 0.25 時間かけて放電した際のセル容量をa(mAh)、充電状態の負極を1.5V(Li/Li+)まで放電させた時の負極容量をb(mAh)とした時に、 $0.05 \le a/b \le 0.30$ となるよう正極活物質と負極活物質の比率が制御されていることを特徴とする有機電解質キャパシタである。

本発明においては、負極および/又は正極には予めリチウムイオンが担持されていることが好ましく、また、正極および負極集電体には表裏面に貫通する孔を有しており、 負極および/又は正極に対向して配置されたリチウム極との電気化学的接触により負極および/又は正極にリチウムイオンを担持する方法が工業的に最適である。

まず、本発明の有機電解質キャパシタの内部構造から説明する。図1は、外装容器としてラミネートフィルムを用いた場合の一例として、本発明の有機電解質キャパシタの内部構造を示す斜視図である。図1においては、有機電解質キャパシタの内部構造は実線で、有機電解質キャパシタの外装容器は破線で記載してある。図2は図1の平面図であり、図3は図2のI-I 断面図であり、図4は図2のII-II 断面図である。

図1に示す本発明の有機電解質キャパシタは、ラミネートフィルムの内部に正極1、 負極2、リチウム極7及びを積層した三極積層ユニットを設置し、リチウムイオンを移 送可能な電解液を注液した後に2枚のラミネートフィルム4、5を熱融着等により封止 した構成となっている。本発明において、「正極」とは放電の際に電流が流出し、充電 の際に電流が流入する側の極、「負極」とは放電の際に電流が流入し、充電の際に電流 が流出する側の極を意味する。

図1に示すように、正極集電体1 a上に成形された正極1と負極集電体2 a上に成形された負極2とは、互いに直接接しないようセパレータ3を介し積層され、電極積層ユニット6を形成している。電極積層ユニット6の上部には、リチウム極集電体7 aの片面にリチウム金属を圧着して貼り付けたリチウム極7がセパレータ3を介して設置さ

れ、三極積層ユニットを形成している。

本発明の一例としては、電極集電体(正極集電体1a、負極集電体2a)及びリチウム極集電体7aは、それぞれが表裏面を貫通する孔(図1では図示せず)を備えており、当該貫通孔は導電性材料により閉塞されても、その導電性材料により閉塞された状態の貫通孔部を通してリチウムイオンは自由に各極間を移動できる。

図5に、電極が形成された電極集電体(正極集電体 1 a、負極集電体 2 a)の拡大平面図を示す。図5は、電極集電体としてエキスパンドメタルを用いた例であり、点線で囲まれた部分が貫通孔である。図6に図5のI-I 断面図を示す。図6に示すように、エキスパンドメタル(正極集電体 1 a、負極集電体 2 a)の貫通孔は、導電性材料 1 b、2 bによって閉塞されており、正極 1 および負極 2 は、この貫通孔を塞がれたエキスパンドメタル上の導電層の上に形成される。

電池組立て時、電解液を注入すると、すべての負極2とリチウム極7が電気化学的に接触し、リチウム極7から電解液中に溶出したリチウムイオンは、リチウム極集電体7 a、正極集電体1 a、負極集電体2 a の貫通孔を通じてスムーズにすべての負極2に担持される。

図3において、電極積層ユニット6は、各4層の正極1および負極2を有するが、電 極積層ユニットの構造は特に限定されず、少なくとも1層の正極及び負極を備えていれ ば、正極、負極の層数に特に限定はない。

リチウム極7は、電極積層ユニット6の上部に配置され三極積層ユニット8を形成しているが、リチウム極7の位置、層数、形状はこれに限定されない。ただし、スムーズにリチウムを担持するためには、リチウム極7を負極あるいは正極に対向させて配置することが好ましい。例えば、負極2上に直接リチウム極7を貼り付けてもよい。リチウム極7を直接負極2上に貼り付けた場合、隣接する負極には直接リチウムイオンが担持されるが、それ以外の隣接していない負極には少なくとも1層以上の電極集電体を貫通してリチウムイオンが担持されることになる。

リチウム極7は、負極2にリチウムイオンを供給するために設けられている。したがって、目的とする負極の静電容量が得られるだけの量があればよい。また、リチウムイオンの供給は、負極だけでなく正極に供給、あるいは正極と負極の両極に供給しても効果は得られるが、正極、負極のリチウムイオン吸蔵能力、安定性等を勘案して適宜量を

調整するのが好適である。

リチウム極7はリチウムイオンを放出して、序々に減少していく。このため、リチウム極集電体7aとして、ステンレスメッシュ等の導電性多孔体を用い、リチウム極7の少なくとも一部をリチウム極集電体の気孔部に充填して配置することが好ましい。これにより、リチウム極7から電極へとリチウムイオンが担持されても、リチウム極の消失による電極間に生じる隙間が少なくなり、リチウムイオンが電極活物質にスムーズに担持されることとなる。

図1に示す本発明の有機電解質キャパシタでは、正極1、負極2、リチウム極7がそれぞれ直接接触しないよう、各極の間にはセパレータ3が設けられている。セル内部にはリチウムイオンを移送可能な電解質が充填されており、各極を隔てるセパレータ3にも電解質が含浸されている。電解質は、通常溶媒に溶かして液状で用いられ、セパレータ3にも含浸されるが、セパレータ3を用いない場合等では、正極1、負極2をそれぞれ直接接触させないため、また、電解質の漏液を防止するため、電解質をゲル状または固体状にして用いることもできる。

図2に示すように、各正極集電体1aは端子接続部A'となる引き出し部を有しており、各正極集電体1aの端子溶接部A'(2枚)と正極端子1cとは溶接されている。また、各負極集電体2a及びリチウム極集電体7aは、端子接続部B'となる引き出し部を有しており、各負極集電体2aの端子溶接部B'(3枚)とリチウム極集電体7aの端子溶接部B'(1枚)を束ねて、負極端子2cに溶接されている。

ラミネートフィルム 4 および 5 の封止は正極端子 1 c、負極端子 2 c を挟み込んだ状態で行われ、正極端子 1 c および負極端子 2 c は、ラミネートフィルム 4、5 にそれぞれ図 2 に示す熱融着部 A、Bにて熱融着されている。すなわち、図 2 の例では、有機電解質キャパシタは、ラミネートフィルム 4、5 と各端子との熱融着部 A、B、および、ラミネートフィルム 4 と 5 との熱融着部 Cにて封止されている。従って、ラミネートフィルム 4 と 5 の間から電池の外部へ正極端子 1 c、負極端子 2 c が出ており、正極 1 は正極端子 1 c を通じて、負極 2 およびリチウム極 7 は負極端子 2 c を通じてそれぞれ外部回路と接続可能な状態となっている。

正極端子1 c および負極端子2 c の形状、サイズは特に限定されないが、限られたセル容積内において充分気密性がとれる範囲で、できるだけ厚く、巾が広い方が端子の抵

抗が小さくなり好ましい。各端子の形状、サイズは目的とするセルの特性に応じて適宜 選定することが好適である。

以下、本発明の有機電解質キャパシタについて、

[A] 正極集電体及び負極集電体、[B] 導電性材料、[C] 負極、[D] 正極、[E] リチウム極、[F] 電解質、[G] 外装容器、[H] 有機電解質キャパシタの原理、[I] 有機電解質キャパシタの製造方法、の順に詳細に説明する。

[A] 正極集電体及び負極集電体

正極集電体および負極集電体としては、一般に有機電解質電池などの用途で提案されている種々の材質を用いることができ、正極集電体にはアルミニウム、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いることができ、箔状、ネット状等各種形状のものを用いることができる。特に負極および/又は正極に予めリチウムイオンを担持させるためには、表裏面を貫通する孔を備えたものが好ましく、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。また、集電体上には導電層を形成させることが内部抵抗を低減させることができ好適である。

更に好ましくは、電極を形成する前に、当該電極集電体の貫通孔を、脱落しにくい導電性材料を用いて少なくとも一部を閉塞することにより、電極の生産性を向上させるとともに、電極の脱落によるキャパシタの信頼性低下の問題を解決し、更には、集電体を含む電極の厚さを薄くして、高エネルギー密度、高出力密度を実現するものである。

電極集電体の厚さは、正極、負極が同じ厚さでもよいが、材質が異なる場合、比重の 重い方を薄くする方がセル容積当たりの重量を低減する上での効果が大きい。本発明に おいて、正極集電体としてアルミニウム、負極集電体として銅を用いた場合、負極集電 体を正極集電体より薄くすることが、より好ましい。

電極集電体の貫通孔の形態、数等は、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって 閉塞し易いように、適宜設定することができる。

この電極集電体の気孔率は、{1-(集電体重量/集電体真比重)/(集電体見かけ体積)}の比を百分率に換算して得られるものと定義する。本発明用いる電極集電体の気孔率は、通常、10~79%、好ましくは20~60%、さらに好ましくは30~5

0%、最も好ましくは、35~45%である。

電極集電体の気孔率が高い場合には、負極にリチウムイオンを担持させるのに要する時間が短く、リチウムイオンの担持むらも生じにくいが、集電体の強度は低下し、皺や切れが発生しやすい。また、貫通孔に導電性材料を保持させることが困難となり、導電性材料の脱落、電極の切れ等により、電極製造歩留まりが低下する等の問題が生じる。

一方、気孔率が低い場合には、負極にリチウムイオンを担持させるのに要する時間が 長くなり生産効率の低下およびセル特性のバラツキ増大などの問題が発生するが、集電 体の強度は高くなり、活物質の脱落も起こりにくいため電極歩留まりは高くなる。電極 集電体の気孔率や孔径は、電池の構造(積層タイプや捲回タイプなど)や生産性を考慮 し、上述の範囲で適宜選定することが望ましい。

図7に、電極集電体の一例を示す。図7(a)は、気孔率38%のエキスパンドメタル、図7(b)は気孔率37%の金属網、図7(c)は気孔率34%パンチングメタルの例である。図7(c)の例では、電極集電体の貫通孔は丸状であるが、貫通孔の形状はこれに限定されるものではなく、例えば、図7(d)に示す四角状(気孔率45%)、図7(e)に示す十文字状(気孔率35%)等、適宜設定できる。

[B] 導電性材料

上述の電極集電体表面に塗工する導電性材料としては、貫通孔から脱落しにくく、貫通 孔が塞がれた状態でもリチウムイオンが当該導電性材料中を透過して移動できる材料 であればよく、その他は特に限定するものではない。

このような導電性材料は、主として導電材とバインダー樹脂とからなる。導電材、バインダー樹脂の種類、組成等は、適宜設定することができる。

このような導電性材料に用いる導電材としては、例えば、後述の負極活物質として使用可能である天然黒鉛または人造黒鉛などのグラファイト、コークス系、ピッチ系、樹脂系、植物系などの種々の炭素材料、アセチレンブラック、ケッチェンブラック等のカーボンブラック類、ポリアセン系物質、錫酸化物、珪素酸化物等を例示できる。また、金属ニッケル等の金属粉末を用いてもよい。このうち、特に好ましい導電材としては、グラファイトやアセチレンブラック、ケッチェンブラック等を挙げることができる。

また、導電性材料に用いるバインダー樹脂としては、例えば、後述の有機系電解液に 不溶のものであればよく、水を分散媒もしくは溶剤として用いる水系樹脂あるいは、ア

ルコールやN-メチルピロリドン等の有機溶剤を分散媒もしくは溶剤として用いる非水系樹脂を用いることができる。例えばSBR等のゴム系バインダー樹脂、カルボキシメチルセルロース系樹脂などは水系樹脂であり、フェノール樹脂やメラミン樹脂は組成により水系樹脂としても非水系樹脂としても用いることができる。

また、アクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂などは、エマルジョン化することにより、水系樹脂として用いることができる。一方、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリイミド樹脂、ポリアミド・イミド共重合樹脂は非水系樹脂の代表的な例である。これらのうちでも、非水系のポリアミドイミド樹脂を用いると、導電性材料が電極集電体に密着し、貫通孔から脱落しにくくなるので、特に好ましい。また、非水系バインダーを用いた導電層の上に後述の水系バインダーを用いた電極層を形成すると、電極層の塗工性、接着性性が良好で、均質性、信頼性に優れた電極を得ることができる。

[C] 負極

本発明の有機電解質キャパシタにおいて、負極は、リチウムイオンを可逆的に担持できる負極活物質を含有する。本発明における負極活物質層は、負極活物質に、必要に応じて導電材、バインダー樹脂等を加えて成形したものである。

本発明に用いる負極活物質は、リチウムイオンを可逆的に担持できるものであれば特に限定するものではなく、例えば天然黒鉛、人造黒鉛などのグラファイト、コークス、ピッチ、熱硬化性樹脂、ヤシ殻や樹木などを出発原料とする種々の炭素材料、炭素繊維、ポリアセン系物質、錫酸化物、珪素酸化物等を用いることができる。

リチウムイオンはそのイオン直径が小さいことから負極活物質としては、上記材料を 特定の条件で炭化、加工などの処理を行い、リチウムイオンの移送が効率的に行えるよ うに構造制御されたものが特に好ましい。

なかでもポリアセン系有機半導体 (PAS) は、アモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化がないためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対して等方的な分子構造 (高次構造)であるため急速充電、急速放電にも優れた特性を有することから負極活物質として特に好適である。本発明においては負極活物質として、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が 0.50~0.05であるポリアセン系骨格構

造を有する不溶不融性基体を用いることが好ましい。

ここで芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物 を意味する。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等の如き、いわゆるフェノール類を好適に用いることができる。

また、上記芳香族系縮合ポリマーとしては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリン等で置換した変成芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変成芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。

上記アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、フルフラール等のアルデヒドを使用することができ、これらの中でもホルムアルデヒドが好適である。また、フェノールホルムアルデヒド縮合物としては、ノボラック型またはレゾール型あるいはこれらの混合物のいずれであってもよい。

上記不溶不融性基体は、上記芳香族系ポリマーを熱処理することにより得られるものであり、前述のポリアセン系骨格構造を有する不溶不融性基体を用いることができる。

本発明に用いる不溶不融性基体は、X線回折($CuK\alpha$)によれば、メイン・ピークの位置は 2θ で表して 24°以下に存在し、また該メイン・ピークの他に $41\sim46$ °の間にプロードな他のピークが存在するものである。すなわち、上記不溶不融性基体は、 芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造をとると示唆され、リチウムイオンを安定にドーピングすることができることから、 本発明の有機電解質キャパシタ用活物質として有用である。

また、上記負極活物質に、必要に応じてアセチレンブラック、ケッチェンブラック、 黒鉛等の炭素系物質や金属粉末等の導電材を適宜加えてもよい。

本発明における負極活物質層は、上記の炭素材料やPAS等の負極活物質を含有し、 粉末状、粒状、短繊維状等の成形しやすい形状にある負極活物質をバインダー樹脂で成 形したものであることが好ましい。このバインダー樹脂としては、例えば、後述の有機 系電解液に不溶のものであればよく、水を分散媒もしくは溶剤として用いる水系樹脂あ るいは、アルコールやNーメチルピロリドン等の有機溶剤を分散媒もしくは溶剤として

用いる非水系樹脂を用いることができる。例えばSBR等のゴム系バインダー樹脂、カルボキシメチルセルロース系樹脂は水系樹脂であり、フェノール樹脂やメラミン樹脂は組成により水系樹脂としても非水系樹脂としても用いることができる。

また、アクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂などは、エマルジョン化することにより、水系樹脂として用いることができる。一方、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリイミド樹脂、ポリアミド・イミド共重合樹脂は非水系樹脂の代表的な例である。

これらの中でもフッ素系、水系のSBR系樹脂、アクリル系樹脂、非水系のフッ素系 樹脂が好ましい。

負極活物質層の厚さは、セルのエネルギー密度を確保できるように正極活物質層との厚さのバランスで設計されるが、負極活物質層の厚さを薄く出来る程、活物質の有効活用が可能になり、出力密度を向上させることができる。一方、活物質層が薄くなり過ぎると、セルのエネルギー密度が低下してしまうため好ましくなく、工業的生産性も考慮すると、本発明では、上記負極活物質層の厚さは片面で、通常、 $15\sim100~\mu\,\mathrm{m}$ 、好ましくは $20\sim80~\mu\,\mathrm{m}$ である。

バインダー樹脂の混合比は、上記活物質に対して重量基準で $1\sim20\%$ 、好ましくは $2\sim10\%$ 、特に好ましくは $2\sim5\%$ である。

[D] 正極

本発明の有機電解質キャパシタにおいて、正極は、リチウムイオンおよび/又は、例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる正極活物質を含有する。

上記正極活物質としては、リチウムイオンおよび/又はアニオンを可逆的に担持できるものであれば特には限定されず、例えばコークス、ピッチ、樹脂やヤシ殻、おがくずなどの植物などを出発原料とし、水蒸気、二酸化炭素や水酸化カリウムなどを用いて賦活した各種活性炭や導電性高分子、ポリアセン系物質、細孔直径2.0~50nmのメソポアが顕著に発達したメソポアカーボン等を用いることができる。

本発明における正極活物質層は、上記正極活物質に、必要に応じて導電材、バインダー樹脂等を加えて成形したものであり、導電材、バインダー樹脂の種類、組成等は、適宜設定することができる。

上記導電材としては、例えば活性炭、アセチレンブラック、ケッチェンブラック等のカーボンブラック類、黒鉛等の炭素系物質を好適に用いることができる。この導電材の混合比は、上記活物質の電気伝導度、電極形状等により異なるが、活物質に対して2~40%の割合で加えることが好ましい。

このバインダー樹脂としては、例えば、後述の有機系電解液に不溶のものであればよく、水を分散媒もしくは溶剤として用いる水系樹脂あるいは、アルコールやNーメチルピロリドン等の有機溶剤を分散媒もしくは溶剤として用いる非水系樹脂を用いることができる。例えばSBR等のゴム系バインダー樹脂、カルボキシメチルセルロース系樹脂は水系樹脂であり、フェノール樹脂やメラミン樹脂は組成により水系樹脂としても非水系樹脂としても用いることができる。

また、アクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂などは、エマルジョン化することにより、水系樹脂として用いることができる。一方、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリイミド樹脂、ポリアミド・イミド共重合樹脂は非水系樹脂の代表的な例である。

これらの中でもフッ素系、水系のSBR系樹脂、アクリル系樹脂、非水系のフッ素系 樹脂が好ましい。

バインダー樹脂の混合比は、上記活物質に対して重量基準で $1\sim20\%$ 、好ましくは $2\sim10\%$ 、特に好ましくは $2\sim5\%$ である。

本発明において、正極電極層の厚さは、片面で、通常、 $30\sim150\,\mu\mathrm{m}$ 、 好ましくは $60\sim100\,\mu\mathrm{m}$ である。

正極活物質層の厚さは、セルのエネルギー密度を確保できるように負極活物質層との厚さのバランスで設計されるが、正極活物質層の厚さを薄く出来る程、活物質の有効活用が可能になり、出力密度を向上させることができるが、活物質層が薄くなり過ぎると、セルのエネルギー密度が低下してしまうため好ましくなく、工業的生産性も考慮すると、本発明では、上記正極活物質層の厚さを好適に用いることができる。

[E] リチウム極

本発明の有機電解質キャパシタの一例としては、リチウムイオン供給源として、有機 電解質キャパシタ内部に予めリチウム極7を配置する。リチウム極としては、リチウム 金属あるいはリチウムーアルミニウム合金のように、少なくともリチウム金属を含有し、

リチウムイオンを供給することのできる物質を用いる。

有機電解質キャパシタ内部に配置させるリチウム極の量(リチウム金属等のリチウムイオンを供給することのできる物質の重量)は所定の負極の静電容量が得られるだけの量があれば充分であるが、それ以上の量を配置させた場合はリチウム極7から所定量だけ担持させた後、リチウム極7を有機電解質キャパシタ内部に残しておいても良い(静電容量の定義については後述する)。ただし、安全性を考慮すれば必要量のみ配置し、全量を負極および/又は正極に担持させた方が好適である。

本発明においては、リチウム極を、導電性多孔体からなるリチウム極集電体上に形成することが好ましいが、リチウム極集電体は用いなくてもよい。ここで、リチウム極集電体となる導電性多孔体としては、、ステンレスメッシュ等のリチウム極と反応しない金属多孔体を用いることが好ましい。

リチウム極集電体としてステンレスメッシュ等の導電性多孔体を用いる場合、リチウム極の少なくとも一部がリチウム極集電体の気孔部に埋め込まれていることが好ましい。好ましくは、導電性多孔体の気孔部にリチウム極の80%以上を充填して配置する。これにより、リチウムイオンが負極に担持された後も、リチウム極の消失によって電極間に生じる隙間が少なくなり、有機電解質キャパシタの信頼性をより確実に保持することができる。

リチウム極を形成したリチウム極集電体は、負極又は正極に対向するように配置することが好ましい。例えば図8においては、リチウム極集電体7aにリチウム金属を圧着したリチウム極7は、正極1、セパレータ3及び負極2を順次積層した電極積層ユニット6の下部に配置され三極積層ユニット8が形成されている。図9は、三極積層ユニット8の他の層構成を示している。また、図9においては、リチウム極集電体7aにリチウム金属を圧着したリチウム極7を、電極積層ユニット6の上部及び下部にそれぞれ配置し三極積層ユニット8を形成している。更に図10に示す他の例では、リチウム極7を2つの電極積層ユニット6の真中に配置し三極積層ユニット8を形成している。このように配置することで、リチウムイオンを負極にスムーズに担持させることができる。

リチウム極を形成したリチウム極集電体は、電極積層ユニットの断面方向に配置し、 負極端子および/又は正極端子とリチウム極端子を短絡させて負極活物質および/又 は正極活物質にリチウムイオンを担持させることも可能であるが、この場合負極および

/又は正極の幅が長いと電極内での担持むらが大きくなる可能性があるので、セル構成、 電極サイズ等を考慮し配置するリチウム極の位置を適宜選択しなければならない。

本発明の有機電解質キャパシタにおいては、負極および/又は正極に担持させるリチウム極を特定位置に局所的に配置することにより、セル設計上の自由度及び量産性の向上を可能とするとともに、優れた充放電特性を付与できる。

[F] 電解質

本発明の有機電解質キャパシタに用いる電解質としては、リチウムイオンを移送可能な電解質を用いる。このような電解質は、通常液状であってセパレータに含浸される。セパレータとしては、電解液あるいは電極活物質等に対して耐久性のある連通気孔を有する電子伝導性のない多孔体等を用いることができる。また、ゲル状または固体状の電解質を用いることもできるが、この場合はセパレータを用いない場合もあり、漏液防止としても効果がある。

リチウムイオンを移送可能な電解質としては、高電圧でも電気分解を起こさず、リチウムイオンが安定に存在できるという観点から、例えば $LiClO_4$ 、 $LiAsF_6$ 、 $LiBF_4$ 、 $LiPF_6$ 、 $Li(C_2F_5SO_2)_2$ N等のリチウム塩を好適に用いることができる。その場合には、リチウム塩を溶解させる溶媒としては非プロトン性有機溶媒を用いることが好ましい。

この非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。

上記の電解質及び溶媒は、充分に脱水された状態で混合され、電解質とするのであるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも 0.1 + 1 以上とすることが好ましく、 $0.5 \sim 1.5 + 1$ の範囲内とすることが特に更に好ましい。

[G] 外装容器

本発明の有機電解質キャパシタの外装容器の材質は特に限定されず、一般に電池またはキャパシタに用いられている種々の材質を用いることができ、鉄、アルミニウム等の金

属材料、プラスチック材料、あるいはそれらを積層した複合材料等を使用できる。また、外装容器の形状も特に限定されず、円筒型や角型など、用途に応じて適宜選択することができる。有機電解質キャパシタの小型化、軽量化の観点からは、アルミニウムとナイロン、ポリプロピレンなどの高分子材料とのラミネートフィルムを用いたフィルム型の外装容器を用いることが好ましい。

つまり、ラミネートフィルムの封止は正極端子、負極端子を挟み込んだ状態で融着させるという簡便な方法でなされるのである。ただし、封止を充分な状態とするため、端子には上述のような薄い金属箔を用いたり、端子表面に予めシーラントフィルムを貼る等の工夫をすることが好ましい。

図1では、外装容器としてラミネートフィルム4、5を用い、ラミネートフィルム5 に三極積層ユニットの厚み分の深絞りを施しているが、ラミネートフィルム4、5のいずれか、または両方に深絞りを施して構わない。図1においては、ラミネートフィルムとして2枚一組のものを用い、それらを内容物を覆うようにして重ね、重ねた外周部をヒートシールすることにより、内容物を密封している。

本発明では、図1で用いたようなシート状フィルムに限定されず、筒状や袋状に予め 成型済みのフィルム部材を用いても良い。筒状成型フィルム部材を用いる場合は、相対 向する2辺をヒートシールすることによって内容物が密封されるし、袋状のフィルム部 材を用いる場合には開口している一辺をヒートシールすることによって、内容物が密封 される。

[H] 本発明の有機電解質キャパシタの原理

従来の電気二重層キャパシタでは、通常、正極、負極に同じ活物質(主に活性炭)を

ほぼ同量用いている。正極、負極に用いている活物質はセル組立時にはLi/Li+電位基準で約3Vの電位を有しており、充電することにより正極表面にはアニオンが電気二重層を形成して正極電位は上昇し、一方負極表面にはカチオンが電気二重層を形成して電位が下降することになる。

逆に放電時には正極からアニオンが、負極からはカチオンがそれぞれ電解液中に放出され電位はそれぞれ下降、上昇し、3 V近傍に戻ってくる。つまり、正極、負極の充放電カーブの形は3 Vを境にほぼ線対称になっており、正極の電位変化量と負極の電位変化量はほぼ同じである。また、正極はほぼアニオンのみ、負極はほぼカチオンのみの出入りとなっている。

一方、本発明の有機電解質キャパシタでは、正極にはリチウムイオンおよび/又はアニオンを可逆的に担持可能な活物質を用いることが好ましい。これには従来の電気二重層キャパシタの正極、負極に用いられている活性炭も含まれる。また、負極にはリチウムイオンを可逆的に担持可能な活物質を用いており、これにはリチウムイオン二次電池に一般的に用いられている黒鉛等の炭素材料も含まれる。

本発明の有機電解質キャパシタは充電状態から充電電圧の半分の電圧まで 1 ± 0.2 5時間かけて放電した際のセル容量をa (mAh)、充電状態の負極を1.5 V (Li /Li+) まで放電させた時の負極容量をb (mAh) とした時に、 $0.05 \le a$ / $b \le 0.3$ となるよう正極活物質と負極活物質の比率が制御された設計となっている。

ここで、本発明においては、静電容量、容量については次のように定義する。セルの 静電容量とはセルの放電カーブの傾きを示し単位はF(ファラッド)、セルの単位重量 当たりの静電容量とはセルの静電容量をセル内に充填している正極活物質重量と負極 活物質重量の合計重量にて割った値であり、単位はF/g、正極の静電容量とは正極の 放電カーブの傾きを示し単位はF、正極の単位重量当たりの静電容量とは正極の静電容量をセル内に充填している正極活物質重量にて割った値であり、単位はF/g、負極の 静電容量とは負極の放電カーブの傾きを示し単位はF、負極の単位重量当たりの静電容量とは負極の静電容量をセル内に充填している負極活物質重量にて割った値であり、単位はF/gである。

更にセル容量とはセルの放電開始電圧と放電終了電圧の差、すなわち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1 Cは1秒間に1 Aの電流が

流れたときの電荷量であるので本特許においては換算してmAh表示することとした。 正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と 正極の静電容量の積であり単位はCまたはmAh、同様に負極容量とは放電開始時の負 極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量の積であり単 位はCまたはmAhである。これらセル容量と正極容量、負極容量は一致する。

また、セルの放電容量は流す電流密度によって変化し、一般的には大きな電流密度にて放電すると容量は小さくなり、小さな電流密度にて放電すると容量は大きくなる。そこで本願においては充電状態から充電電圧の半分の電圧まで1±0.25時間かけて放電できる電流にて放電した際の容量をセル容量a(mAh)と定義した。

ここで、充電電圧とは、放電容量を得るために設定した電圧である。

通常、市販されているリチウムイオン二次電池は4.2 Vまで充電し約3 Vまで放電される設計となっている。この時負極は $0.5\sim1.0$ V程度まで放電されている。一般的にリチウムイオン二次電池に使用されている負極は1.5 V以上には容量を有していないので、本願においては、充電状態のセルから取り出した負極を1.5 V(Li/Li+)まで放電させた時の容量を完全負極容量b(mAh)と定義した。

本発明の有機電解質キャパシタにおいては、上述のセル容量 a (mAh) と完全負極容量 b (mAh) に、 $0.05 \le a/b \le 0.3$ となるよう正極活物質と負極活物質の比率が制御された設計となっている。これにより高い出力特性が得られるのである。

ここで、正極活物質と負極活物質の比率とは、正極活物質の重量を負極活物質の重量で割った値である。

リチウムイオン二次電池においては、用いる電極活物質にもよるが、ほぼa=b(すなわち、a/b=1)となるのが一般的である。つまり、リチウムイオン二次電池では、a/b=0.05とは放電深度が5%、a/b=0.3とは放電深度が30%に相当する。おそらくリチウムイオン二次電池でもその範囲内での放電においては高い出力が得られると思われる。

一方、本願においては、充電状態から充電電圧の半分の電圧まで 1 ± 0.25 時間かけて放電できる電流にて放電した際の容量をセル容量 a(mAh) と定義しており、この充放電条件において正極活物質と負極活物質の比率を適切に制御することにより $0.05 \le a/b \le 0.3$ となり、高い出力特性を有した有機電解質キャパシタが得られる

のである。

ここで、a/b<0.05の場合、出力特性は高いものの、エネルギー密度が低下してしまう。また、a/b>0.3の場合、高エネルギー密度が得られるが、出力特性が低下する。

上記設計を行う上で、負極および/又は正極に予めリチウムイオンを担持させることにより、 $0.05 \le a/b \le 0.3$ を達成させるための正極活物質と負極活物質の比率の巾が広がり好適である。

更に、負極活物質の単位重量当たりの静電容量が、正極活物質の単位重量当たりの静電容量の3倍以上であり、かつ、正極活物質重量が負極活物質重量よりも大きい場合、高いエネルギー密度が得られ好適である。

本発明の有機電解質キャパシタの一例では、負極容量として必要な容量を得るために 所定量のリチウムイオンを予め負極に担持させた時点で、正極電位が約3Vであるのに 対して負極電位は3Vよりも低くなる。

キャパシタの充電電圧をどこまで高められるかは、正極電位によりほぼ決定される。 すなわち、正極電位が高くなれば電解液の酸化分解が起こるため、そこが限界電位とな る。通常のセル構成を有するキャパシタに比較して、リチウムイオンを予め担持させた 構成の本発明のキャパシタでは、負極電位が低いため正極電位と負極電位の差を大きく とることができ、従来の電気二重層キャパシタの耐電圧が2.3~2.7 V程度である のに対し本発明の構成では3.6~4.1 V程度と3 V以上に高く設定でき、エネルギ 一密度を向上させることができる。

また、負極電位が低いことによる正極の容量増大も可能になる。即ち、負極電位が低いことにより正極の放電における電位変化量を大きくすることが可能となる。具体的には放電末期の正極電位を3Vを下回る値、例えば2Vまで下げることも可能となる。これは、正極では、3V放電までは主にアニオンの放出が起こり、3V以下ではリチウムイオンのドーピングが起こって電位が低下しているためである。

従来の電気二重層キャパシタでは放電時に正極電位は約3Vまでしか電位が下がらないが、これはその時点で負極電位も3Vとなり、セル電圧が0Vになるためである。すなわち、正極電位が2Vまで低下できる本発明の構成は3Vまでしか低下できない従来の電気二重層キャパシタの構成より高容量にできる。

[[] 有機電解質キャパシタの製造方法

以下、本発明の有機電解質キャパシタの製造方法の一例を示す。まず、電極集電体の貫通孔を導電性材料で塞ぐ。電極集電体の貫通孔を導電性材料で塞ぐ手法は特に限定されず、ダイ方式、ディッピング方式、スプレー方式などの塗工法や、グラビア、スクリーン、転写などの印刷法など公知の手法を用いることができる。

次に、貫通孔を導電性材料で塞がれた電極集電体上に、正極、負極を形成する。正極は、正極活物質をバインダー樹脂と混合してスラリーとし、正極集電体上にコーティングして乾燥させることにより形成する。負極も同様に、負極活物質をバインダー樹脂と混合してスラリーとし、負集電体上にコーティングして乾燥させることにより形成する。

リチウム極は、リチウム金属を導電性多孔体からなるリチウム極集電体上に圧着することにより形成する。リチウム極集電体の厚さは $10\sim200\mu$ m程度、リチウム金属の厚さは使用する負極活物質量にもよるが、一般的には $50\sim300\mu$ m程度である。

電極は乾燥させた後、有機電解質キャパシタの外装容器のサイズにあわせた幅にカットする。巻き込み型構造の電極積層ユニットを作成する場合は、リボン状にカットする。この際、端子溶接部として引き出し部を有する形状にカットしてもよい。

ついで、電極を形成した電極集電体を、正極と負極とが互いに直接接触しないように セパレータを挟み込みながら、三極積層ユニットを組み立てる。図11、12は電極積 層ユニットの展開図であり、端子溶接部の形状と積層方向を示す。図11は、正極の端 子溶接部と負極の端子溶接部がそれぞれ逆の一辺から出ている例、図12は、正極の端 子溶接部と負極の端子溶接部が同一辺から出ている例である。ただし、正極と負極の端 子の方向はこの2種類に限定されるものではない。

組み立てた三極積層ユニットの正極集電体の端子溶接部と正極端子、負極集電体およびリチウム極集電体の端子溶接部と負極端子とをそれぞれ超音波溶接等により溶接する。

外部端子と溶接した三極積層ユニットを外装容器の内部へ設置し、電解質注入口を残して熱融着等により外装容器を閉じる。この際、外部端子は、外部回路と接続できるよう、少なくとも一部を外装容器の外部に露出させた状態とする。外装容器の電解質注入口から電解質を注入し、外装容器内部に電解質で充填した後、電解質注入口を熱融着等により閉じ、外装容器を完全に封止することにより、本発明の有機電解質キャパシタが

得られる。

電解液を注入すると、すべての負極とリチウム極が電気化学的に接触し、リチウム極から電解液中に溶出したリチウムイオンは時間の経過とともに、次第に負極に移動し、負極に担持される。負極へのリチウムイオンの担持に当たっては、負極へのリチウムイオンの浸入により生じるひずみで負極の変形が発生し、負極の平坦性が損なわれないように、外部から力を加えて拘束しておくような工夫をすることが好ましい。

特に、フィルム型電池では、外装容器からの接圧が円筒型や角型電池のような金属ケースを用いた電池より弱いので、外部からの圧力を加えて正極、負極の平坦性をとることによりセル自身の歪みもなくなり、セル性能が向上し、好ましい。

以下具体的な実施例により詳細を説明する。

(実施例)

(実施例1)

(負極PASスラリーの製造法)

厚さ $0.5 \, \mathrm{mm}$ のフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で $5.00\,\mathrm{C}$ まで $5.0\,\mathrm{C}$ / 時間の速度で、更に $1.0\,\mathrm{C}$ / 時間の速度で $6.50\,\mathrm{C}$ まで昇温し、熱処理し、PASを合成した。かくして得られた PAS板をボールミルで粉砕することにより、平均粒子径が $7\,\mu\,\mathrm{m}$ の PAS粉体を得た。この PAS粉体の H/C比は $0.2\,\mathrm{C}$ であった。

次に、上記PAS粉体92重量部、アセチレンブラック粉体4重量部、SBR4重量部、カルボキシメチルセルロース3.2重量部、イオン交換水120重量部となる組成にて充分混合することによりスラリーを得た。

(負極の単位重量当たりの静電容量測定)

該スラリーを厚さ 18μ mの銅箔片面に固形分にして約7mg/cm²程度になるよう塗工し、乾燥、プレス後PAS負極を得た。上記負極を 1.5×2.0 cm²サイズに切り出し、評価用負極とした。負極と、対極として 1.5×2.0 cm²サイズ、厚み 250μ mの金属リチウムを、厚さ 50μ mのポリエチレン製不織布をセパレーターとして介し模擬セルを2セル組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1モル/1の濃度にLi PF 6 を溶解した溶液を用いた。

1 セルを充電電流 1 mAにて負極活物質重量に対して 4 0 0 mA h/g分のリチウムイオンを充電し、その後 1 mAにて 1. 5 Vまで放電を行った。放電開始後 1 分後の負極の電位から 0. 2 V電位変化する間の放電時間より負極の単位重量当たりの静電容量を求めたところ、6 5 2 F/gであった。

同様に残り1セルに充電電流1 mAにて負極活物質重量に対して500 mAh/g分のリチウムイオンを充電し、その後1 mAにて1.5 Vまで放電を行った。放電開始後1分後の負極の電位から0.2 V電位変化する間の放電時間より負極の単位重量当たりの静電容量を求めたところ、748 F/gであった。

(正極活性炭スラリーの製造法)

ヤシ殻を原料とし、電気炉中に入れ窒素気流下で 50 $^{\circ}$ $^{\circ}$

上記活性炭粉末92重量部、アセチレンブラック粉体4重量部、SBR4重量部、カルボキシメチルセルロース1重量部、イオン交換水150重量部となる組成にて充分混合することによりスラリーを得た。

(正極の単位重量当たりの静電容量測定)

該スラリーをカーボン系導電塗料をコーティングした厚さ 20μ mのアルミニウム 箱片面に固形分にして約 $7mg/cm^2$ 程度になるよう塗工し、乾燥、プレス後正極 を得た。

上記正極を1. 5×2 . 0 c m 2 サイズに 3 枚切り出し、一枚を正極、もう一枚を 負極と参照極とした。正極、負極を厚さ 5 0 μ mの紙製不織布をセパレーターとして介 しキャパシタの模擬セルを組んだ。正極電解液としては、プロピレンカーボネートに、 1 モル/ 1 の濃度にトリエチルメチルアンモニウム・テトラフルオロボレート(T E M A・B F 4)を溶解した溶液を用いた。

充電電流 $10\,\mathrm{mA}$ にて $2.5\,\mathrm{V}$ まで充電しその後定電圧充電を行い、総充電時間 1 時間の後、 $1\,\mathrm{mA}$ にて $0\,\mathrm{V}$ まで放電を行った。 $2.0\,\mathrm{V}\sim 1.5\,\mathrm{V}$ 間の放電時間よりセルの単位重量当たりの静電容量を求めたところ $2\,\mathrm{2}\,\mathrm{F/g}$ であった。また、参照極と正極の電位差より同様に正極の単位重量当たりの静電容量も求めたところ $8\,\mathrm{8}\,\mathrm{F/g}$ であ

った。

(負極1の製造法)

厚さ32 μ m (気孔率50%) の銅製エキスパンドメタル (日本金属工業株式会社製) 両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製: EB-815) をスプレー方式にてコーティングし、乾燥することにより導電層が形成された負極用集電体を得た。全体の厚み (集電体厚みと導電層厚みの合計) は49 μ mであり貫通孔はほぼ導電塗料により閉塞された。上記負極のスラリーをロールコーターにて該負極集電体の両面に成形し、プレス後負極全体の厚さ (両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計) が155 μ mの負極1を得た。

(正極1の製造法)

厚さ35 μ m (気孔率50%)のアルミニウム製エキスパンドメタル (日本金属工業株式会社製)両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製:EB-815)をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み (集電体厚みと導電層厚みの合計)は52 μ mであり貫通孔はほぼ導電塗料により閉塞された。上記正極のスラリーをロールコーターにて該正極集電体の両面に成形し、プレス後正極全体の厚さ (両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が214 μ mの正極1を得た。

(セルの作成)

厚さ 155μ mの負極1、厚さ 214μ mの正極1を図11に示すような形状で電極面積がそれぞれ、 5.0×8.0 cm 2 になるようにカットし、セパレータとして厚さ 30μ mのセルロース/レーヨン混合不織布を用いて、図11に示したように正極集電体、負極集電体の接続端子との溶接部(以下「接続端子溶接部」という)がそれぞれ反対側になるよう配置し、セルの厚みが約4mmになるよう積層したところ、正極、負極の枚数はいずれも各8枚となった。

最上部と最下部はセパレータを配置させて4辺をテープ止めして電極積層ユニットを得た。負極活物質重量に対して400mAh/g分のリチウム金属としては、厚さ 140μ mのリチウム金属箔を厚さ 80μ mのステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。負極(8枚)とリチウム金属を圧着したステンレス網はそれぞれ溶接し、接触させ電極積層ユニットを得た。ま

た、正極活物質重量は負極活物質重量の0.97倍である。

上記電極積層ユニットの正極集電体の端子溶接部(8枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのアルミニウム製正極端子を重ねて超音波溶接した。同様に負極集電体の端子溶接部(8枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのニッケル製負極端子を重ねて超音波溶接し、縦102mm、横52mm、深さ2mmに深絞りした外装フィルム2枚(トータル4mmのスペース)の内部へ設置した。外装ラミネートフィルムの端子部2辺と他の1辺を熱融着した後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/1の濃度にLiPF。を溶解した溶液を真空含浸させた後、残り1辺を減圧下にて熱融着し、真空封止を行うことによりフィルム型キャパシタを3セル組立てた(セル厚みは4.0mm)。

(セルの特性評価)

14日間室温にて放置後、1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに650F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は7.41となる。

セル容量の評価後、1 セルは1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量りは8枚の放電容量の合計で497mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は57mAhであった。結果を表1に示す。

表1

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量 a	量b	密度	放電容量	率	
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
実施例1	105	497	14.0	5 7	54	0.21

(実施例2)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 188μ mとなるように塗工された負極2と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 209μ mとなるように塗工された正極2を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。

正極、負極の枚数は各8枚であり、セルの厚みは4.3mmであった。また、負極活物質重量に対して400mAh/g分のリチウム金属としては、厚さ180 μ mのリチウム金属箔を厚さ80 μ mのステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。また、正極活物質重量は負極活物質重量の0.72倍である。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに650F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は7.41となる。

また、残った2セルを1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.8 Vになるまで放電した。この3.6 V-1.8 Vの

サイクルを繰り返し、3回目の放電容量は2セルの平均で104mAhであった(放電時間は1.04時間)。また、セルの縦長さを100mm、横長さを500mmとした時のエネルギー密度は13.1Wh/1000mm、

セル容量の評価後、1 セルは 1 0 0 0 mAの定電流でセル電圧が 3.6 Vになるまで充電し、その後 3.6 Vの定電圧を印加する定電流 - 定電圧充電を 1 時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて 3 極セルを試作し、100 mAの定電流にて負極電位が 1.5 Vになるまで放電したところ、完全負極容量 b は 8 枚の放電容量の合計で 7 0 6 mA h であった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は59mAhであった。結果を表2に示す。

表 2

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量a	量b	密度·	放電容量	率	
	(mAh)	(mAh)	(Wh/l	(mAh)	(%)	
実施例2	104	706	13.1	5 9	5 7	0.15

(実施例3)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 137μ mとなるように塗工された負極3と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 219μ mとなるように塗工された正極3を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。

正極、負極の枚数は各8枚であり、セルの厚みは3.9mmであった。また、負極活物質重量に対して400mAh/g分のリチウム金属としては、厚さ 110μ mのリチウム金属箔を厚さ 80μ mのステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。また、正極活物質重量は負極活物質重量

の1.21倍である。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに650F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は7.41となる。

また、残った2セルを1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.8 Vになるまで放電した。

この3.6 V-1.8 Vのサイクルを繰り返し、3回目の放電容量は2セルの平均で105mAhであった(放電時間は1.05mB)。また、セルの縦長さを100mm、横長さを50mmとした時のエネルギー密度は15.7Wh/1であった。

セル容量の評価後、1 セルは1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量りは8 枚の放電容量の合計で401mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は55mAhであった。結果を表3に示す。

表3

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量a	量b	密度	放電容量	率	
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
実施例3	105	401	14.5	5 5	52	0.26

(比較例1)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 116μ mとなるように塗工された負極4と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 227μ mとなるように塗工された正極4を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。正極、負極の枚数は88枚であり、セルの厚みは3.8mmであった。

また、負極活物質重量に対して400mAh/g分のリチウム金属としては、厚さ $90\mu\text{m}$ のリチウム金属箔を厚さ $80\mu\text{m}$ のステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。また、正極活物質重量は負極活物質重量01.666倍である。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに650F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は7.41となる。

また、残った 2 セルを 1 0 0 0 mAの定電流でセル電圧が 3. 6 Vになるまで充電し、その後 3. 6 Vの定電圧を印加する定電流 - 定電圧充電を 1 時間行った。次いで、 1 0 0 mAの定電流でセル電圧が 1. 8 Vになるまで放電した。この 3. 6 V - 1. 8 Vのサイクルを繰り返し、 3 回目の放電容量は 2 セルの平均で 1 0 6 mAhであった(放電時間は 1. 0 6 時間)。

セル容量の評価後、1 セルは1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量 bは8枚の放電容量の合計で298mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8Vになるまで放電した。この時の放電容量は49mAhであっ

た。結果を表4に示す。

表4

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量a	量b	密度	放電容量	率	·
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
比較例1	106	298	16.4	4 9	4 6	0.36
			·			

(比較例2)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 101μ mとなるように塗工された負極5と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 241μ mとなるように塗工された正極5を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。正極、負極の枚数は4000円の厚みは400円の厚みは400円のであった。

また、負極活物質重量に対して400mAh/g分のリチウム金属としては、厚さ $70\mu\text{m}$ のリチウム金属箔を厚さ $80\mu\text{m}$ のステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。また、正極活物質重量は負極活物質重量02.33倍である。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに650F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は7.41となる。

また、残った2セルを1000mAの定電流でセル電圧が3.6 Vになるまで充電し、 その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、10 0mAの定電流でセル電圧が1.8 Vになるまで放電した。

この3.6 V-1.8 Vのサイクルを繰り返し、3回目の放電容量は2 セルの平均で105 mAhであった(放電時間は1.05 mB)。また、セルの縦長さを100 mm、横長さを50 mmとした時のエネルギー密度は16.5 Wh/1であった。

セル容量の評価後、1セルは1000mAの定電流でセル電圧が3.6 Vになるまで

充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。 次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3 極セルを試作し、 100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量

bは8枚の放電容量の合計で222mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は41mAhであった。結果を表5に示す。

表5

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量a	量b	密度	放電容量	率	
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
比較例2	105	222	15.3	41	3 9	0.47
					_ •	

(実施例4)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 233μ mとなるように塗工された負極6と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 205μ mとなるように塗工された正極6を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。正極、負極の枚数は88枚であり、セルの厚みは4.7mmであった。

また、負極活物質重量に対して $500 \, \text{mAh/g}$ 分のリチウム金属としては、厚さ $150 \, \mu \, \text{m}$ のリチウム金属箔を厚さ $80 \, \mu \, \text{m}$ のステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの上下に $2 \, \text{枚配置した}$ 。また、正極活物質重量は負極活物質重量の $0.53 \, \text{倍である}$ 。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに748F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単

位重量当たりの静電容量比は8.50となる。

また、残った2セルを1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.8 Vになるまで放電した。

この3.6 V-1.8 Vのサイクルを繰り返し、3回目の放電容量は2セルの平均で102mAhであった(放電時間は1.02時間)。また、セルの縦長さを100mm、横長さを50mmとした時のエネルギー密度は12.4Wh/1であった。

セル容量の評価後、1 セルは1000mAの定電流でセル電圧が3.6 Vになるまで 充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、ア ルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。 次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、 100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量 bは8枚の放電容量の合計で1098mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は61mAhであった。結果を表6に示す。

表 6

	100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
	時のセル容量a	量b	密度	放電容量	率	
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
実施例4	102	1098	12.4	6 1	6 0	0.09

(実施例5)

(負極難黒鉛化炭素スラリーの製造法)

平均粒子径 20μ mの粒状フェノール樹脂 (カネボウ株式会社製:ベルパールR 800)を電気炉にて窒素ガス雰囲気中で 50∞ 一時間の昇温速度で 600∞ まで昇温し、該温度で 5 時間保持した後、更に 80∞ 一時間の昇温速度で 1200∞ まで昇温し、該

温度で10時間保持した後冷却し、難黒鉛化炭素試料を作製した。

かくして得られた試料をボールミルで粉砕することにより粒径を調整し、平均粒子径 が $15\,\mu\,\mathrm{m}$ の難黒鉛化炭素粉末を得た。該粉末のBET法による比表面積値は $8\,\mathrm{m}^{\,2}$ /gであった。

該難黒鉛化炭素粉末92重量部、アセチレンブラック粉体4重量部、SBR4重量部、カルボキシメチルセルロース1.2重量部、イオン交換水120重量部となる組成にて充分混合することによりスラリーを得た。

(負極の単位重量当たりの静電容量測定)

該負極難黒鉛化炭素スラリーを厚さ 18μ mの銅箔片面に固形分にして約 7 mg/ cm^2 程度になるよう塗工し、乾燥、プレス後難黒鉛化炭素負極を得た。上記負極を 1.5×2.0 cm² サイズに 4 枚切り出し、評価用負極とした。

負極と、対極として1. 5×2 . 0 cm 2 サイズ、厚み2 0 0 μ mの金属リチウムを、厚さ5 0 μ mのポリエチレン製不織布をセパレーターとして介し模擬セルを組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1 モル/1 の濃度にLiPF。を溶解した溶液を用いた。

充電電流 $1 \, \text{mA}$ にて負極活物質重量に対して $4 \, 0 \, 0 \, \text{mA} \, \text{h/g}$ のリチウムイオンを充電し、その後 $1 \, \text{mA}$ にて 1. $5 \, \text{V}$ まで放電を行った。放電開始後 $1 \, \text{分後の負極の電位から } 0$. $2 \, \text{V}$ 電位変化する間の放電時間より負極の単位重量当たりの静電容量を求めたところ、 $8 \, 4 \, 2 \, 6 \, \text{F/g}$ であった。

(負極7の製造法)

厚さ32 μ m (気孔率50%) の銅製エキスパンドメタル (日本金属工業株式会社製) 両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製: EB-815) をスプレー方式にてコーティングし、乾燥することにより導電層が形成された負極用集電体を得た。

全体の厚み (集電体厚みと導電層厚みの合計) は49 μmであり貫通孔はほぼ導電塗料により閉塞された。上記難黒鉛化炭素スラリーをロールコーターにて該負極集電体の両面に成形し、プレス後負極全体の厚さ (両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計) が168 μmの負極7を得た。

(セルの作成)

厚さ168 μ mの該負極7と、実施例1と同様にプレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が197 μ mとなるように塗工された正極7を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。正極、負極の枚数は各8枚であり、セルの厚みは4.0 μ mであった。

また、負極活物質重量に対して $400 \, \text{mAh/g}$ 分のリチウム金属としては、厚さ $150 \, \mu \, \text{m}$ のリチウム金属箔を厚さ $80 \, \mu \, \text{m}$ のステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの最外部に $1 \, \text{枚配置した}$ 。また、正極活物質重量は負極活物質重量 $00.78 \, \text{倍である}$ 。

(セルの特性評価)

14日間室温にて放置後、1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに8420F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は95.8となる。

また、残った2セルを1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.8 Vになるまで放電した。

この3.6 V-1.8 Vのサイクルを繰り返し、3回目の放電容量は2セルの平均で107mAhであった(放電時間は1.07時間)。また、セルの縦長さを100mm、横長さを50mmとした時のエネルギー密度は14.4Wh/1であった。

セル容量の評価後、1 セルは1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流 - 定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量

100mAの定電流にて負極電位が1.5Vになるまで放電したところ、完全負極容量 bは8枚の放電容量の合計で927mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6 Vになるまで充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8 Vになるまで放電した。この時の放電容量は68mAhであった。結果を表7に示す。

表 7

·	100mA放電	完全負極容	エネルギー	1 0 A	容量保持	a/b
	時のセル容量a	量b	密度	放電容量	率	
	(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
実施例 5	107	927	14.4	6 8	64	0.12

(比較例3)

プレス後負極全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が 453μ mとなるように塗工された負極8と、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が 200μ mとなるように塗工された正極8を用いる以外は実施例1と同様にフィルム型キャパシタを3セル組立てた。

正極、負極の枚数は各 8 枚であり、セルの厚みは 6.7 mmであった。また、負極活物質重量に対して 500mAh/g 分のリチウム金属としては、厚さ 255μ mのリチウム金属箔を厚さ 80μ mのステンレス網に圧着したものを用い、負極と対向するように電極積層ユニットの上下に 2 枚配置した。また、正極活物質重量は負極活物質重量の 0.23 倍である。

(セルの特性評価)

14日間室温にて放置後、それぞれ1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに748F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極活物質と正極活物質の単位重量当たりの静電容量比は8.50となる。

セル容量の評価後、1セルは1000mAの定電流でセル電圧が3.6Vになるまで

充電し、その後3.6 Vの定電圧を印加する定電流-定電圧充電を1時間行った後、アルゴンボックス内にて正極と負極が短絡しないように分解し、8 枚の負極を取り出した。次いで、各負極を作用極、対極と参照極にリチウム金属を用いて3極セルを試作し、100mAの定電流にて負極電位が1.5 Vになるまで放電したところ、完全負極容量 b は8 枚の放電容量の合計で2625mAhであった。

残り1セルについては1000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流-定電圧充電を1時間行った後、10Aの定電流でセル電圧が1.8Vになるまで放電した。この時の放電容量は56mAhであった。結果を表8に示す。

表8

		100mA放電	完全負極容	エネルギー	10A	容量保持	a/b
		時のセル容量a	量b	密度	放電容量	率	
		(mAh)	(mAh)	(Wh/1)	(mAh)	(%)	
比朝	交例 3	103	2625	8. 3	5 6	54	0.04
		•					

比較例3のように0.05>a/bでは、10A放電での容量保持率は高いものの、 負極の厚みが厚くなりエネルギー密度が大きく低下した。

請 求 の 範 囲

- 1. 正極、負極、並びに、リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、正極がリチウムイオンおよびアニオンを可逆的に担持可能であるとともに、負極がリチウムイオンを可逆的に担持可能であり、該有機電解質キャパシタを充電状態から充電電圧の半分の電圧まで1±0.25時間かけて放電した際のセル容量をa(mAh)、充電状態の負極を1.5 V(Li/Li+)まで放電させた時の容量を完全負極容量b(mAh)とした時に、0.05≦a/b≦0.3となるよう正極活物質と負極活物質の比率が制御されていることを特徴とする有機電解質キャパシタ。
- 2. 前記負極および/又は正極に予めリチウムイオンが担持されている、請求の範囲 1 項に記載の有機電解質キャパシタ。
- 3. 負極活物質の単位重量当たりの静電容量が、正極活物質の単位重量当たりの静電容量の3倍以上であり、かつ、正極活物質重量が負極活物質重量よりも大きい、請求の範囲1項又は請求の範囲2項に記載の有機電解質キャパシタ。
- 4. 前記有機電解質キャパシタが正極集電体および負極集電体を備え、各集電体は表裏面に貫通する孔を有しており、負極および/又は正極に対向して配置されたリチウム極との電気化学的接触により負極および/又は正極にリチウムイオンが担持される、請求の範囲1~3項の何れかに記載の有機電解質キャパシタ。

図 1

図 2

図3

図4

図 7

PCT/JP2004/014550 WO 2005/031773

図12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/014550

		101/012	1004/014330	
A. CLASSIFIC Int.Cl ⁷	ATION OF SUBJECT MATTER H01G9/058, H01M10/40		,	
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SE				
Minimum docum	nentation searched (classification system followed by cla	ssification symbols)		
Int.CI	H01G9/058, H01M10/40			
Documentation s	searched other than minimum documentation to the exter			
		roku Jitsuyo Shinan Koho	1994-2004	
Kokai J:	itsuyo Shinan Koho 1971-2004 Ji	tsuyo Shinan Toroku Koho	1996-2004	
Electronic data t	pase consulted during the international search (name of d	lata base and, where practicable, search t	erms used)	
C. DOCUMEN	VTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Х	JP 2000-306609 A (Asahi Glas		1,3	
Y	02 November, 2000 (02.11.00),		2,4	
1	Full text; all drawings & EP 0973180 A2 & US	6294292 B1		
	& EP 09/3100 A2	0294292 BI		
х	JP 11-054383 A (Asahi Glass	Co., Ltd.),	1-3	
Y	26 February, 1999 (26.02.99),		4	
	Full text; all drawings			
	(Family: none)			
l x	JP 64-014882 A (Mitsubishi G	as Chemical	1-3	
Y	Co., Inc.),		4	
	19 January, 1989 (19.01.89),			
Ĭ	Page 3, upper left column, li	ne 14 to page 4,		
	upper left column, line 8 (Family: none)			
ì	(ramity. none)			
	L		<u></u>	
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.		
•	Speaker entergraves of extend a commencer.			
to be of part	ticular relevance	the principle or theory underlying the	invention	
filing date	cation or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be cons	idered to involve an inventive	
cited to est	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	step when the document is taken alon "Y" document of particular relevance; the	claimed invention cannot be	
special reas	on (as specified)	considered to involve an inventive combined with one or more other suc	step when the document is	
	eferring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than	being obvious to a person skilled in the		
the priority date claimed "&" document member of the same patent family				
Data of the catu	l completion of the intermetional georgh	Date of mailing of the international sea	irch renort	
	al completion of the international search ember, 2004 (22.12.04)	11 January, 2005 (
== ===		1	-	
Name and maili	ng address of the ISA/	Authorized officer		
	se Patent Office			
		Malankana Na		
Facsimile No.		Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/014550

DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
JP 60-182670 A (Toray Industries, Inc.), 18 September, 1985 (18.09.85), Page 2, lower right column, line 17 to page 3, upper left column, line 12 (Family: none)	1,3 2,4
JP 09-055342 A (Asahi Glass Co., Ltd.), 25 February, 1997 (25.02.97), Full text; all drawings & US 5953204 A1 & DE 19548005 A1	1-3
JP 09-232190 A (Asahi Glass Co., Ltd.), 05 September, 1997 (05.09.97), Par. Nos. [0044] to [0047]; Full text; all drawings (Family: none)	1-3
JP 11-297578 A (Mitsubishi Chemical Corp.), 29 October, 1999 (29.10.99), Full text; all drawings (Family: none)	1-3
<pre>JP 08-107048 A (Asahi Glass Co., Ltd.), 23 April, 1996 (23.04.96), Full text; all drawings (Family: none)</pre>	1-3
WO 98/33227 A (Kanebo, Ltd.), 30 July, 1998 (30.07.98), Full text; all drawings & EP 0964468 A1 & US 6461769 B1	4
	<pre>JP 60-182670 A (Toray Industries, Inc.), 18 September, 1985 (18.09.85), Page 2, lower right column, line 17 to page 3, upper left column, line 12 (Family: none) JP 09-055342 A (Asahi Glass Co., Ltd.), 25 February, 1997 (25.02.97), Full text; all drawings & US 5953204 A1</pre>

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl ⁷ H01G 9/058, H01M 10/40					
	•		,		
B 調杏を行	った分野				
調査を行った最	B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC))				
Int. Cl	H01G 9/058, H01M 10/	4 0			
<u></u>					
	最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年				
	R公報 1922 1990年 用新案公報 1971-2004年	•			
日本国登録実用	月新案公報 1994-2-004年				
日本国実用新第	2 登録公報 1996-2004年	· · · · · · · · · · · · · · · · · · ·			
国際調査で使用	した電子データベース(データベースの名称、	調査に使用した用語)			
	•				
) and)), we doth	· · · · · · · · · · · · · · · · · · ·			
C. 関連する 引用文献の	と認められる文献		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号		
x	JP 2000-306609 A(旭	硝子株式会社)2000.11.02,全	1, 3		
Y .	文,全図&EP 0973180 A2	&US 6294292 B1	2, 4		
X	JP 11-054383 A(旭硝子	株式会社) 1999.02.26, 全文, 全	1-3		
Y	図(ファミリーなし)		4		
\mathbf{x}	JP 64-014882 A(三菱瓦	斯化学株式会社)1989 01 19.	1-3		
Y	第3頁左上欄第14行-第4頁左上欄第87		4		
_	No Standard Master - 1				
\\					
X C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。 		
* 引用文献の	ウカテゴリー	の日の後に公表された文献			
「A」特に関連	草のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表			
し もの 原際出廊	賃日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、? の理解のために引用するもの	発明の原理又は理論		
	以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明				
	「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以				
	(は他の特別な理由を確立するために引用する 型由を付す)	上の文献との、当業者にとって			
「〇」口頭によ	「O」口頭による開示、使用、展示等に言及する文献よって進歩性がないと考えられるもの				
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了	国際調査を完了した日 22 12 2004 国際調査報告の発送日 11.1.2005				
22. 12. 2004					
国際調査機関の	0名称及びあて先	特許庁審査官(権限のある職員)	5R 9375		
日本国	国特許庁(ISA/JP)	桑原 清			
	郵便番号100-8915 B千代田区霞が関三丁目4番3号	 電話番号	内線 3565		
水 水和	P11V円に限が関一1日4年3万		1 1/04 0 0 0 0		

国際調査報告

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 60-182670 A(東レ株式会社)1985.09.18,第2頁右下欄第17行-第3頁左上欄第12行(ファミリーなし)	1, 3 2, 4
X Y	JP 09-055342 A(旭硝子株式会社)1997.02.25,全文,全 図&US 5953204 A1&DE 19548005 A1	1-3 4
X Y	JP 09-232190 A(旭硝子株式会社)1997.09.05,第[004 4]-[0047]段落,全文,全図(ファミリーなし)	1-3 4
X Y	JP 11-297578 A(三菱化学株式会社)1999.10.29,全文,全図(ファミリーなし)	1-3 4
X Y	JP 08-107048 A(旭硝子株式会社)1996.04.23,全文,全図(ファミリーなし)	1-3 4
Y,	WO 98/33227 A(鐘紡株式会社)1998.07.30,全文,全図&EP 0964468 A1&US 6461769 B1	4
		·

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.