The Problem's statement:

5. Scheduling with types to minimize the makespan.

Input: An integer number of (identical) machines $m \geq 2$. A set of n jobs $J = \{1, 2, ..., n\}$, where every job j has an integer processing time $p_j > 0$ and a positive integer type $t_j \in \{1, 2, 3, ..., 7\}$.

Goal: Find a partition of the jobs of to the machines, J_1, J_2, \ldots, J_m , such that every subset has jobs of at most three types (for any i there are three values $k_{i_1}, k_{i_2}, k_{i_3} \in \{1, 2, 3, \ldots, 7\}$, such that if $j \in J_i$, then $t_j \in \{k_{i_1}, k_{i_2}, k_{i_3}\}$).

Objective: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

Input i:

m=2 machines.

j	1	2	3	4	5	6	7	8	9
p_{j}	5	9	9	6	10	3	3	10	7
$\overline{t_j}$	1	3	1	1	2	1	2	4	4

^{*}Note: sum on all processing times is 62, so 62/2=31 is a lower bound

Bad Solution:

$$m_1 = \{1, 2, 6\}, time = 5 + 9 + 3 = 17$$

$$m_2 = \{3, 4, 5, 7, 8, 9\}, \text{ time } = 9+6+10+3+10+17 = 45$$

Objective function =
$$max\{17, 45\} = 45$$

<u>So-so solution:</u> (view all jobs belonging to the same type as one super-job, and arbitrarily place types 1,2 together, and 3,4,5 on the other machine)

$$m_1 = \{2, 8, 9\}, \text{ time} = 9+10+7 = 26$$

$$m_2 = \{1, 3, 4, 5, 6, 7\}, \text{ time} = 5+9+6+10+3+3 = 36$$

Objective function =
$$max\{26, 36\} = 36$$

Optimal solution:

$$m_1 = \{1, 9, 8, 2\}, \text{ time} = 5+7+10+9 = 31$$

$$m_2 = \{3, 6, 4, 5, 7\}, \text{ time} = 9+3+6+10+3 = 31$$

Objective function =
$$max{31,31} = 31$$

Invalid solution:

$$m_1 = \{1, 4, 8, 7, 2\}^*, \text{ time} = 5+6+10+3+9 = 33$$

*(but this machine has **4** different types, therefore the solution is not valid!)

$$m_2 = \{3, 6, 9, 5\}$$
, time = $9+3+7+10 = 29$

^{*5} types instead of 7.

Input ii:

m=3 machines

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
p_j	4	5	10	13	3	7	8	9	13	8	16	8	7	2	4	5	8	11	9
t_j	1	5	3	3	4	2	1	4	3	5	3	2	5	1	3	4	2	1	1

^{*}Note: sum on all processing times is 150, so 150/3=50 is a lower bound

Bad Solution:

$$\begin{split} m_1 &= \text{\{1,7,14,18,19,6,12,17,3,4,9,11,15\}, time} = 4+8+2+11+9+7+8+8+10+13+13+16+4 = \textbf{113} \\ m_2 &= \text{\{5,8,16\}, time} = 3+9+5 = \textbf{17} \\ m_3 &= \text{\{2,10,13\}, time} = 5+8+7 = \textbf{20} \end{split}$$

Objective function =
$$max\{113, 17, 20\} = 45$$

So-so solution:

$$\begin{split} m_1 &= \{3,4,9,11,15\}, \text{ time} = 10+13+13+16+4 = 56 \\ m_2 &= \{6,12,17,2,10,13\}, \text{ time} = 7+8+8+5+8+7 = 43 \\ m_3 &= \{5,8,16,1,7,14,18,19\}, \text{ time} = 3+9+5+4+8+2+11+9 = 51 \\ &\qquad \qquad \textit{Objective function} = \max\{56,43,51\} = 56 \end{split}$$

Optimal/near optimal solution:

$$\begin{split} m_1 &= \{3,9,11,15,6\}, \text{ time} = 10+13+16+4+7 = 50 \\ m_2 &= \{12,17,2,10,13,4\}, \text{ time} = 8+8+5+8+7+13 = 49 \\ m_3 &= \{5,8,16,1,7,14,18,19\}, \text{ time} = 3+9+5+4+8+2+11+9 = 51 \\ &\qquad \qquad \textit{Objective function} = \max\{50,49,51\} = 51 \end{split}$$

Invalid solution:

$$m_1 = \{3,9,11,15,6\}$$
, time = $10+13+16+4+7=50$
 $m_2 = \{12,17,2,13,4,19\}^*$, time = $8+8+5+7+13+9=50$
*(but this machine has 4 different types, therefore the solution is not valid!)
 $m_3 = \{5,8,16,1,7,14,18,10\}$, time = $3+9+5+4+8+2+11+8=50$