Lip Reading Number Recognition

W251 Final Project Marcus Chen, Marcelo Scatolin Queiroz,

Sylvia Yang, Wei Wang

Github Repo

Background

- Lip Reading:
 - Definition
 - Challenges
 - Practical Applications:
 - Hearing Aids
 - Speech Recognition
 - Multi-talker
- Model Approach:
 - Word Level Recognition / Sentence Level Recognition (contextual understanding)
- Project Objectives:
 - LipNet for Digits 0-9!
 - Improve speech recognition in noisy environments
 - Combine with facial recognition techniques for password identification

LipNet

95.2%

Accuracy for word level prediction

Rich, Well Documented Code

GRID, STCNNs, RNNs, Bi-GRUs, CTC

GRID Corpus (2007)

- Original dataset for LipNet
- 34 speakers
- Each speaker produce 1000 sentences (64,000 possible comb.)
- Contains Digits and Other Words
- Hoping to improve the LipNet's performance on digit inference we decided to go with a new option.
- Training LipNet model on MODALITY Corpus using IBM Cloud Virtual Machines

Modality Corpus (2016)

- Vast vocabulary including digits
- Multi camera/mic array
- high-resolution (1080x1920 pixels at 100 fps) video streams
- 35 native and non-native english speakers
- Approx. 2.5 TB clipped to 790 MB

Modality Corpus

Codes	Goals	Effect	
raw_downloader.py	Improve time of downloading videos	Eliminate corrupted transcriptions	
file_clipper.py	Clip videos to process only where digits are spoken	790 MB of 5538 files saved to IBM Cloud	
modality_to_GRID_Conv erter.py	Dataset Adaptation to LipNet	75 Frozen Frames each file	
extract_mouth_batch.py	Clip for mouth movements only	100x50 pixels crop of mouth Train: 13 speakers (4170 files) Valid.: 4 speakers (1159 files)	

Data Processing

LipNet Architecture

Layer (type)	Output	Shap	е	Param #
the_input (InputLayer)	(None,	75,	100, 50, 3)	0
zero1 (ZeroPadding3D)	(None,	77,	104, 54, 3)	0
conv1 (Conv3D)	(None,	75,	50, 25, 32)	7232
batc1 (BatchNormalization)	(None,	75,	50, 25, 32)	128
actv1 (Activation)	(None,	75,	50, 25, 32)	0
spatial_dropout3d_1 (Spatial	(None,	75,	50, 25, 32)	0
max1 (MaxPooling3D)	(None,	75,	25, 12, 32)	0
zero2 (ZeroPadding3D)	(None,	77,	29, 16, 32)	0
conv2 (Conv3D)	(None,	75,	25, 12, 64)	153664
batc2 (BatchNormalization)	(None,	75,	25, 12, 64)	256
actv2 (Activation)	(None,	75,	25, 12, 64)	0
spatial_dropout3d_2 (Spatial	(None,	75,	25, 12, 64)	0
max2 (MaxPooling3D)	(None,	75,	12, 6, 64)	0
zero3 (ZeroPadding3D)	(None,	77,	14, 8, 64)	0
conv3 (Conv3D)	(None,	75,	12, 6, 96)	165984
batc3 (BatchNormalization)	(None,	75,	12, 6, 96)	384
actv3 (Activation)	(None,	75,	12, 6, 96)	0
spatial_dropout3d_3 (Spatial	(None,	75,	12, 6, 96)	0
max3 (MaxPooling3D)	(None,	75,	6, 3, 96)	0
time_distributed_1 (TimeDist	(None,	75,	1728)	0
bidirectional_1 (Bidirection	(None,	75,	512)	3048960
bidirectional_2 (Bidirection	(None,	75,	512)	1181184
dense1 (Dense)	(None,	75,	28)	14364
softmax (Activation)	(None,	75,	28)	0

Trainable params: 4,572,156.0 Trainable params: 4,571,772.0 Non-trainable params: 384.0

Implementation

LipNet

https://github.com/rizkiarm/LipNet

x86

Python 2.7

TF-GPU 1.0.1

Keras 2.0.2

TX2 (nvidia-docker)

ARM64

Python 3.7

TF-GPU 1.13.1

Keras 2.2.4

V100 (docker)

x86

Python 2.7

TF-GPU 1.0.1

Keras 2.0.2

Performance

Model Name	Epochs	Word Error Rate (WER)	Effect
Original LipNet	5000	11.4% for unseen speakers 4.8% for overlapped speakers	
Our W251 Model	300	12.5%	3 minutes per epoch
Pass et.al 2010	N/A	2%	
Stewart et. al 2014	N/A	30%	

Performance

loss and val_loss

Future Development

- Leverage Audio
 - Readily Available
 - Prepared script to handle audio tracks!
- Data Augmentation Tools
 - "Ground truth" generator script
- Adapting Other Datasets
- TX2
 - o scikit-video to opency
 - TX2 to detect, send to cloud and perform inference

References

- Assael, Y. M., Shillingford, B., Whiteson, S., & De Freitas, N. (2016). LIPNET: END-TO-END SENTENCE-LEVEL LIPREADING. Retrieved August 4, 2019, from https://arxiv.org/pdf/1611.01599v2.pdf.
- Adriana Fernandez-Lopez, Federico M. Sukno. (2018). Survey on automatic lip-reading in the era of deep learning. Retrieved July 27, 2019, from https://www.sciencedirect.com/science/article/pii/S0262885618301276
- LipNet github
- GRID dataset: http://spandh.dcs.shef.ac.uk/gridcorpus/
- MODALITY dataset: http://www.modality-corpus.org/