Kernel methods for classification

I. Santamaría, S. Van Vaerenbergh

GTAS, Universidad de Cantabria

26 de enero de 2022

Master Universitario Oficial Data Science

Contents

Statistical Learning

Statistical Learning

Kernel Methods

Introduction

Linear SVM

Introduction
Optimization problem

Non-linear SVM

Formulation Kernels Implementation

Extensions

Extensions

Conclusions

Conclusions

An example

Statistical Learning

•000

3 classifiers trained over the dataset shown in the figure

Which one will perfom better over a different **test** dataset? There is a tradeoff between:

- ► Training error / test error (generalization error, aka out-of-sample error)
- ► Bias/variance of the model/classifier

Statistical Learning Theory places these ideas in a mathematical framework, characterizing the properties of learning machines

Statistical Learning

Statistical Learning

0000

► Supervised binary classification problem

$$f(\mathbf{x}): \mathcal{X} \to \{\pm 1\}$$

► Training dataset: $(\mathcal{X}, \mathcal{Y}) = \{(\mathbf{x}_i, y_i)\}$

- ► Loss function: $I(\mathbf{x}, y, f)$ (e.g., $I(\mathbf{x}, y, f) = \frac{1}{2} |f(\mathbf{x}) y|$)
- ► A good classifier should minimize the risk or test error

$$R[f] = \int \frac{1}{2} |f(\mathbf{x}) - y| dP(\mathbf{x}, y)$$

► As we are only given the training data, we can minimize only the empirical risk or training error

$$R_{emp}[f] = \sum_{i=1}^{n} \frac{1}{2} |f(\mathbf{x}_i) - y_i|$$

► The test error can be bounded as

$$R[f] \leq R_{emp}[f] + \phi(f)$$

where $\phi(f)$ is a capacity term that measures the complexity of the set of functions from which f is chosen

▶ It is imperative to restrict the set of functions $f(\mathbf{x})$

Statistical Learning

0000

Structural Risk Minimization o Regularized Empirical Risk Minimization: To minimize a regularized version of the training error

minimize
$$R_{emp}[f] + \lambda \Omega(f)$$
,

where $\Omega(f)$ measures the complexity of the classifier (learning machine) and λ is the regularization parameter

- \blacktriangleright $\lambda \uparrow$ Simple models/class. boundaries
- \triangleright $\lambda \downarrow$ More complex models/class. boundaries (overfitting risk)

Typically λ is estimated by cross-validation

Statistical Learning

0000

Introducción

Statistical Learning

- ► Many machine learning algorithms (still) need a suitable feature space to perform satisfactorily
- ► Dimensionality reduction techniques (PCA/LDA) are routinely used in many applications

$$\mathbf{x}_i \in \mathcal{R}^d \longrightarrow \mathbf{W} \mathbf{x}_i \in \mathcal{R}^r, \qquad r < d$$

 Kernel methods follow a different approach: map the data to a higher dimensionality space

$$\mathbf{x}_i \in \mathcal{R}^d \longrightarrow \Phi(\mathbf{x}_i) \in \mathcal{R}^r, \qquad r >> d$$

Why?

- ► Let's consider a simple binary 1D classification problem
- ► Training dataset: { -4, -3,-1, 0, 1, 3, 4 }

 \bullet $\Phi(x) = [x, x^2]^T$ produces a linearly separable problem in a 2D feature space

- ▶ In practice, there is no need to know the mapping $\Phi(\mathbf{x})$ explicitly
- ► We just need its kernel function

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \left\langle \boldsymbol{\Phi}(\boldsymbol{x}), \boldsymbol{\Phi}(\boldsymbol{x}') \right\rangle = \boldsymbol{\Phi}(\boldsymbol{x})^T \boldsymbol{\Phi}(\boldsymbol{x}')$$

► Kernel methods obtain a linear solution in the feature space, which becomes a nonlinear solution in the input space

Support Vector Machine (SVM)

- The Support Vector Machine SVM is the most popular kernel machine for classification
- It solves a linear classification problem in the feature space applying the SRM principle

$$\min_{f(\cdot) \in \mathcal{F}} \quad \sum_{i=1}^{n} \frac{1}{2} |f(\mathbf{x}_i) - y_i| + \lambda \Omega(f)$$

Let's start with the linear SVM working in the input space

$$ightharpoonup f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
: Optimal Hyperplane

Statistical Learning

- ▶ Binary classification problem: $\{(\mathbf{x}_i, y_i = \pm 1)\}$
- ► Linear classifier: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$

► Linearly separable data: $y_i(\mathbf{w}^T\mathbf{x} + b) \ge 0$, i = 1, ..., n

- ▶ Binary classification problem: $\{(\mathbf{x}_i, y_i = \pm 1)\}$
- ► Linear classifier: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$
- ► Linearly separable data: $y_i(\mathbf{w}^T\mathbf{x} + b) \ge 0$, i = 1, ..., n

- ▶ Binary classification problem: $\{(\mathbf{x}_i, y_i = \pm 1)\}$
- ► Linear classifier: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$
- ► Linearly separable data: $y_i(\mathbf{w}^T\mathbf{x} + b) \ge 0$, i = 1, ..., n

- ▶ Binary classification problem: $\{(\mathbf{x}_i, y_i = \pm 1)\}$
- ► Linear classifier: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$
- ► Linearly separable data: $y_i(\mathbf{w}^T\mathbf{x} + b) \ge 0$, i = 1, ..., n

Scale w and b so that the closest points to the hyperplane satisfy:

$$|\mathbf{w}^T\mathbf{x} + b| = 1 \implies y_i(\mathbf{w}^T\mathbf{x} + b) \ge 1, \ \forall i$$

► The optimal hyperplane maximizes the margin

Statistical Learning

► The support vectors $\mathbf{w}^T \mathbf{x}_j + b = \pm 1$ determine the optimal, or maximum margin, hyperplane

It is a **convex** problem \rightarrow the solution is unique

Solution

Statistical Learning

► The Lagrangian is

$$\mathcal{L}(\mathbf{w}, \mathbf{b}, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left(\mathbf{w}^T \mathbf{x}_i + \mathbf{b} \right) \right)$$

- ► Strong duality ⇒ KKT optimality
 - 1. The optimal hyperplane is a linear combination of the input patterns

$$\nabla \mathcal{L}_{\mathbf{w}}(\mathbf{w}, b, \alpha) = \mathbf{w} + \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0 \Rightarrow \boxed{\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}}$$

2. The optimal hyperplane only depends on a few (closest) patterns: the support vectors

$$\alpha_i (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) = 0, \forall i \Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

3. The bias b can be found from any support vector

Substituting $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ in the Lagrangian, we obtain the **dual problem**, which is the problem we actually solve

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j} - \sum_{i} \alpha_{i}$$
s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0,$$

$$\alpha_{i} \geq 0, \quad \forall i$$

Defining $\alpha = (\alpha_1, \dots, \alpha_n)^T$, $\mathbf{1} = (1, \dots, 1)^T$, $\mathbf{Y} = \text{diag}(y_1, \dots, y_n)$ and the $n \times n$ matrix \mathbf{K} with elements $k(i, j) = \mathbf{x}_i^T \mathbf{x}_i = \langle \mathbf{x}_i, \mathbf{x}_i \rangle$, the problem can be written as

QP (Quadratic Programming) Problem

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T}\mathbf{Y}\mathbf{K}\mathbf{Y}\alpha - \mathbf{1}^{T}\alpha$$
s.t.
$$\alpha^{T}\mathbf{y} = 0,$$

$$\alpha > 0$$

Soft-margin SVM

- ► We introduce **slack variables** into the optimization problem to allow for classification errors: *ξ*_i
- ▶ Regularization parameter C → penalty
- ► Still a QP problem

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_{i}$$
s.t. $y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) \ge 1 - \xi_{i}, \forall i$

$$\xi_{i} \ge 0 \qquad \forall i$$

Non-linear SVM

Statistical Learning

- The input patterns are mapped to a higher dimensionality (probably ∞) feature space: $\mathbf{x}_i \to \Phi(\mathbf{x}_i)$
- We solve a linear SVM problem in the feature space
- ► Optimal hyperplane in the feature space

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

Same dual problem

$$\min_{\alpha} \quad \frac{1}{2} \alpha^T \mathbf{Y} \mathbf{K} \mathbf{Y} \alpha - \mathbf{1}^T \alpha$$
s.t.
$$\alpha^T \mathbf{y} = 0,$$

$$0 < \alpha < C$$

but now the $n \times n$ kernel matrix **K** has elements

$$k(i,j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_i) \rangle$$

► A linear classifier in the feature space

$$f(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) + b$$

- ▶ But a nonlinear classifier in the input space
- ► The decision function can be expressed in terms of the kernel function

$$f(\mathbf{x}) = \underbrace{\left(\sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})\right)^{T}}_{\mathbf{w}^{T}} \Phi(\mathbf{x}) + b$$
$$= \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})^{T} \Phi(\mathbf{x}) + b = \sum_{i} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$

► This is the kernel trick!

Example: polynomial kernel

- ► Consider a problem with 2D patterns $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- And the following polynomial mapping to a feature 3D space

$$\Phi(\mathbf{x}) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{bmatrix}$$

► The corresponding kernel function is

$$k(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = \Phi(\mathbf{x})^T \Phi(\mathbf{y}) =$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 y_1 x_2 y_2$$

Kernel functions

Statistical Learning

Mercer Theorem (informal statement)

Any function $k(\cdot,\cdot)$ that produces a positive definite kernel matrix ${\bf K}$ for any training dataset

$$\mathbf{x}^T \mathbf{K} \mathbf{x} \geq 0, \quad \forall \mathbf{x},$$

induces an inner product in a Hilbert space (feature space). That is.

$$k(\mathbf{x}_i, \mathbf{x}_i) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_i) \rangle = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i)$$

- ▶ Note that the mapping $\Phi(x)$ does not have to be known
- ► As long as we choose a positive definite kernel ⇒ QP dual problem

Kernels

Statistical Learning

Linear

$$k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

Polynomial (parameters p y c)

$$k(\mathbf{x}_i, \mathbf{x}_j) = \left(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j + c\right)^p$$

▶ Gaussian (parameter σ^2 , or $\gamma = \frac{1}{2\sigma^2}$)

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

- \blacktriangleright Let $k_1(\mathbf{x}, \mathbf{y})$ and $k_2(\mathbf{x}, \mathbf{y})$ be kernels, then the following functions are also kernels
 - 1. $k_1(\mathbf{x}, \mathbf{y}) + k_2(\mathbf{x}, \mathbf{y})$
 - 2. $k_1(\mathbf{x}, \mathbf{y})k_2(\mathbf{x}, \mathbf{y})$
 - 3. $\exp(k_1({\bf x},{\bf y}))$
- ► The sigmoid function $(\mathbf{x}^T\mathbf{y} + b)$ is not a valid kernel

String kernel

Statistical Learning

It is also possible to define kernel functions over non-vectorial or non-Euclidean spaces (e.g., text strings)

► Given two sequences

s = statistics

t = computation

► Generate all substrings of a given length (e.g., 3)

 $s \rightarrow \{sta, tat, ati, tis, ist, sti, tic, ics\}$

 $t \rightarrow \{\textit{com}, \textit{omp}, \textit{mpu}, \textit{put}, \textit{uta}, \textit{tat}, \textit{ati}, \textit{tio}, \textit{ion}\}$

 A string kernel can defined counting the number of common substrings

$$k(s, t) = 2$$

Other kernels can be defined over structured data: text (bag of words), graphs, times series, etc

Kernel matrix

Statistical Learning

The input to any kernel method is the kernel matrix

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \ddots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & k(\mathbf{x}_n, \mathbf{x}_2) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

- ► It is a Gramian matrix: matrix of inner products
- \blacktriangleright $k(\mathbf{x}_i, \mathbf{x}_i)$ measures the similarity between patterns
- ▶ $n \times n$ matrix: storage and computational complexities when $n \uparrow \uparrow$

The Gaussian kernel

Statistical Learning

► The Gaussian kernel is an inner product in an infinite-dimensional feature space

$$k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x})^T \Phi(\mathbf{y}) = e^{-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}}$$

► The distance between $\Phi(\mathbf{x})$ and $\Phi(\mathbf{y})$ is

$$d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) = \|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\| = \sqrt{2\left(1 - e^{-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}}\right)}$$
$$= \sqrt{2\left(1 - k(\mathbf{x}, \mathbf{y})\right)}$$

Example 1D, $\sigma^2 = 1$

Example 2D

$$\sigma^{2} = 0, 2$$

$$\sigma^{2} = 0.5$$

$$\sigma^2 = 1$$

- $ightharpoonup \sigma^2 \downarrow \downarrow$ local distance: all points beyond a given radius are at the same distance (equally far apart)
- $ightharpoonup \sigma^2 \uparrow \uparrow \text{ global distance: like a linear kernel}$

Hyperparameters

Statistical Learning

SVM with Gaussian kernel

$$\min_{\alpha} \quad \frac{1}{2} \alpha^T \mathbf{Y} \mathbf{K} \mathbf{Y} \alpha - \mathbf{1}^T \alpha$$
s.t.
$$\alpha^T \mathbf{y} = 0, \qquad k(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x} - \mathbf{y}\|^2}$$

$$0 < \alpha < C$$

where
$$\gamma = \frac{1}{2\sigma^2}$$

- \triangleright Choosing suitable hyperparameters γ and C is essential to get good performance
- Typically, there are selected by cross-validation

Regularization parameter: C

- C establishes a compromise between training error and model complexity
- ► C \ simple model, large training error, smooth decision boundary
- ► C↑ complex model, small training error, non-smooth decision boundary, overfitting risk

Example

Statistical Learning

C = 0.001

C = 0.01

C= 100

Conclusions

Kernel size: γ

- ► The kernel size γ (a.k.a. bandwidth) controls how fast $k(\mathbf{x}, \mathbf{y}) \rightarrow 0$ as a function of the pairwise distance
- ► Recall that the SVM decision function for a new pattern **x** is

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b \underset{C_{0}}{\overset{C_{1}}{\geqslant}} 0$$

- $ightharpoonup \gamma \downarrow$ large overlap among Gaussians, smooth decision boundary
- $ightharpoonup \gamma \uparrow$ all patterns tend to be orthogonal to each other overfitting

Example

$$\gamma = 0.001$$

$$\gamma = 0.01$$

$$\gamma = 100$$

Kernel comparison

Statistical Learning

Linear C= 1

Gaussian $C=1, \gamma=10$

Polynomial C= 1, order= 10

SVM solvers

- ► QP problem → Interior Point Methods
 - 1. Memory requirements for **K**: $\mathcal{O}(n^2)$
 - 2. Slow convergence, computational complexity $\mathcal{O}(n^3)$
- ► More efficient (and scalable) algorithms exist
- Sequential Minimal Optimization (SMO): it solves a sequence of smaller subproblems
- ► LIBSVM:
 - ► Standard SVM package
 - ► It applies a version of SMO
 - ► Interfaces in R, Matlab, Python,...

Multi-class SVM

Statistical Learning

- Standard methodology: One-Versus-All
- ► For a problem with K classes we solve K independent binary problems
- Each SVM is trained to separate one class from the others
- ▶ With a new test pattern, **x**, the k-th SVM outputs a score

$$f^{k}(\mathbf{x}) = \sum_{i} \alpha_{i}^{k} y_{i}^{k} k(\mathbf{x}_{i}^{k}, \mathbf{x}) + b^{k}, \qquad k = 1, \dots, K$$

► The class finally assigned to **x** is the one providing a highest score

$$k^* = \underset{k}{\operatorname{argmax}} f^k(\mathbf{x})$$

One-class SVM

- ► Goal: to find an SVM that encloses most of the data
- ► Outlier/Novelty detection
- We can separate normal data from outliers in the feature space through
 - ► A hyperplane (see figure)
 - ► A hypersphere

One-class SVM

$$\min_{\mathbf{w},\xi_{i},\rho} \quad \frac{1}{2} ||\mathbf{w}||^{2} + \frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i} - \rho$$
s.t.
$$\mathbf{w}^{T} \Phi(\mathbf{x}_{i}) \geq \rho - \xi_{i}, \quad \forall i$$

$$\xi_{i} \geq 0 \quad \forall i$$

- ► Dual problem equivalent to that of a conventional SVM
- ▶ The parameter ν characterizes the solution $\rightarrow \nu$ -SVM
 - ► An upper bound on the fraction of outliers
 - ► A lower bound on the fraction of support vectors

Example

Statistical Learning

▶ ν -SVM, Gaussian kernel, $\gamma = 0.1$, $\nu = 0.1$

error train: 22/200 ; errors novel regular: 2/40 ; errors novel abnormal: 0/40

Conclusions

- ► SVM: one of the most popular learning machines
- ▶ Derived from the Structural Risk Minimization principle
- ▶ QP problem: unique minimum, well-defined problem
- ► A kernel (measuring the similarity between patterns)+ regularization parameter + hyperparameters
- Sparse solution: it admits an expansion in terms of a few patterns (support vectors)
- ► Still competitive results in a number of applications

