Prediction Using Supervised ML

In [33]:

```
# Importing all libraries required in this notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

In [34]:

```
# Reading data from remote link
url = "http://bit.ly/w-data"
data = pd.read_csv(url)
print("Data imported successfully")
data.head()
```

Data imported successfully

Out[34]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

In [35]:

```
data.describe()
```

Out[35]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [36]:

```
print(data.isnull().sum())
```

Hours 0 Scores 0 dtype: int64

In [37]:

```
data.drop_duplicates(inplace=True)
```

In [40]:

```
# Removing outliers using IQR method

Q1 = data.quantile(0.25)
Q3 = data.quantile(0.75)
IQR = Q3 - Q1
data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis=1)]
```

In [41]:

```
data.describe()
```

Out[41]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

Visualising the relationship between the study hours and the scores

```
In [42]:
```

```
plt.scatter(data['Hours'], data['Scores'])
plt.xlabel('Hours')
plt.ylabel('Scores')
plt.title('Study Hours vs. Exam Scores')
plt.show()
    70
    60
    50
    40
    30
    20
                 2
                        3
                                                       7
                                4
                                        5
                                               6
                                                                      9
                                       Hours
```

In [12]:

```
X = data[['Hours']]
y = data['Scores']
```

In [13]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

In [43]:

```
# Created a linear regression model
model = LinearRegression()

# Fit the model to the training data
model.fit(X_train, y_train)
```

Out[43]:

LinearRegression()

In [17]:

```
# Predict the scores for the test set
y_pred = model.predict(X_test)
```

In [18]:

```
# Plot the predicted scores
plt.scatter(X_test, y_test)
plt.plot(X_test, y_pred, color='red')
plt.xlabel('Hours')
plt.ylabel('Scores')
plt.title('Study Hours vs. Exam Scores (Predicted)')
plt.show()
```

Study Hours vs. Exam Scores (Predicted)

Evaluation of Model

In [44]:

```
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
```

In [45]:

```
print('Mean Absolute Error:', mae)
print('Mean Squared Error:', mse)
print('R-squared:', r2)
```

Mean Absolute Error: 3.9207511902099244 Mean Squared Error: 18.943211722315272

R-squared: 0.9678055545167994

Input and Output

In [46]:

```
hours = float(input('Enter the number of study hours: '))
predicted_score = model.predict([[hours]])
print('Predicted Score:', predicted_score[0])
```

```
Enter the number of study hours: 9.25
Predicted Score: 92.38611528261494
C:\Users\kajal\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarnin
g: X does not have valid feature names, but LinearRegression was fitted wi
th feature names
  warnings.warn(
```

Predicted Score will be 92.38 if student studies for 9.25hrs/day

```
In [ ]:
```