Multidimensional Array

"Array of Array"

Prerequisite: Array

Until now, we've used 1-dimensional array

Until now, we've used 1-dimensional array


```
int arr[2][5];
```

A 2-d array

```
int arr[2][5];
```


A 2-d array

How will it look like?

```
int arr[4][3];
```

int arr[4][3];


```
int arr[4][3];
```

How can we access this element?

- Row?
- Column?


```
int arr[4][3];
arr[0][0] = 10;
How about this element?
    - Row?
    - Column?
```

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
```

10	20	

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
arr[0][2] = 30;
```

10	20	30

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
arr[0][2] = 30;
```

10	20	30

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
arr[0][2] = 30;
arr[1][0] = 40;
```

10	20	30
40		

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
arr[0][2] = 30;
arr[1][0] = 40;
    Column
```

Column 0 1 2 10 20 30 40

```
int arr[4][3];
arr[0][0] = 10;
arr[0][1] = 20;
arr[0][2] = 30;
arr[1][0] = 40;
   Row
```


int arr[4][3];

Task(a): Use for loop to take input from user and populate the 2-d array.

Task(b): print the 2-d matrix into console.

Initialization

Column
0 1 2
0 1 2
Row 2 3

};

Initialization

int
$$arr[4][3] = \{ \{ 10, 20, 30 \}, \}$$

};

		Column					
	Ī	0	1	2			
	0	10	20	30			
David	1						
Row	2						
	3						

Initialization

		Column					
	·	0	1	2			
	0	10	20	30			
Daw	1	40	50	60			
Row	2						
	3						

Initialization

		Column					
	·	0	1	2			
Row	0	10	20	30			
	1	40	50	60			
	2	70	80	90			
	3						

Initialization

```
int arr[4][3] = \{ \{ 10, 20, 30 \}, \}
                      { 40, 50, 60 },
                      { 70, 80, 90 },
                      { 15, 20, 25 } };
                     Column
                    0
                         1
                              2
                   10
                        20
                             30
                   40
                        50
                             60
            Row
                   70
                        80
                             90
                   15
                             25
                        20
```

Task 1

Initialize the following matrix. Multiply all by 10. Print it.

	Column							
	0	0 1 2						
0	1	2	3					
Row 1	4	5	6					
2	7	8	9					

Task 2

Initialize the following two matrix. Add them. Print the resultant matrix.

		Colu	ımn				Colu	ımn	
	0	1	2	3		0	1	2	3
0	1	2	3	4	0	12	11	10	9
Row 1	5	6	7	8	Row 1	8	7	6	5
2	9	10	11	12	2	4	3	2	1

Task 3

Multiply the following two matrices. Print the resultant matrix.

		Column						
	-	0	0 1 2 3					
	0	1	2	3	4			
Row	1	5	6	7	8			
	2	9	10	11	12			

