

Data Structure (IV)

Daniel Hsieh {QwertyPi} 2024-06-01

What we will cover today

- 1. Designing data structures for higher dimensional / complex data
 - Nesting data structures (2d Fenwick Trees and more)
- 2. Advanced Divide & Conquer techniques
- 3. Time Travelling with persistent data structures!
- 4. Practice problems:)

Tasks to cover together

Higher Dimensional / More Complex Data Structures:

M1952 – Rapping in HKOI

AP181 – New Home

T192 – Colorful Strip

11813 - Werewolf

- If you can solve all of them, feel free to stop listening :)
- (I recommend attempting from **top to bottom** on each slide)

Tasks to cover together

Advanced Divide & Conquer Techniques

APIO 2019 T3 – Street Lamps

M1953 – Sightseeing Trail

M1962 – Planar Game

- If you can solve all of them, feel free to stop listening:)
- (I recommend attempting from top to bottom on each slide)

Tasks to cover together

Persistent Data Structures

M1842 – Another RMQ APIO 2019 – Land of Rainbow Gold NOI 2018 – 归程

- If you can solve all of them, feel free to stop listening :)
- (I recommend attempting from **top to bottom** on each slide)

What you already know...

Range Queries

- Given an array of a[1...n]
- Support some operations
 - **Update**: Given $i, v \rightarrow \text{set a}[i]$ to v
 - **Sum** : Given $l, r \rightarrow \text{find } s = a[l] + ... + a[r]$

What you already know...

Range Queries

- Given an array of a[1...n]
- Support some operations
 - **Update**: Given $i, v \rightarrow \text{set } a[i] \text{ to } a[i] + v$
 - **Sum** : Given $l, r \rightarrow \text{find } s = a[l] + ... + a[r]$
- If you are here, you should be **very very familiar** with this

What you already know...

Range Queries

```
int a[n+5];
int range sum(int 1, int r) {
   int sum = 0;
   for (int i = 1; i <= r; ++i) {
       sum = sum + a[i];
   return sum;
void update(int i, int v) {
   a[i] = v;
   return;
```

A Graphical Representation

$$Sum(l=5, r=7) = -3 + 2 + 4 = 3$$

Solution

- Many solutions: Sparse Table, Segment Tree, **Fenwick**, BST, ...
- Let's focus on Fenwick Tree
 - **Update(i, v):** FenwickTree::update(i, v)
 - **Sum(l, r):** FenwickTree::query(r) FenwickTree::query(l-1)

```
5  template<typename T>
6  struct FenwickTree {
7     void update(int index, T value);
8     T guery(int index);
9     int sum(int l, int r) { return query(r) - query(l-1); }
10  };
```

2d Orthogonal Range Queries

- Given grid a[1...n, 1...m]
- Support some operations
 - **Update**: Given $r, c, v \rightarrow \text{set a}[r, c] \text{ to a}[r, c] + v$
 - **Sum** : Given $r_1, c_1 r_2, c_2$
 - \rightarrow find sum in rectangle enclosed by $(r_1, c_1), (r_2, c_2)$

<0(1), O(n^2)> solution

For simplicity, assume $\mathbf{n} = \mathbf{m}$

Notation:

- $\langle O(p), O(q) \rangle O(p)$ for update, O(q) for sum query
- You now have **10** seconds to come up with a <0(1), $O(n^2)$ solution :)

<O(log n), O(n log n)> solution

- We have: $<O(\log n)$, $O(\log n)>$ solution for each row
- Construct one Fenwick Tree for each row:
 - Build: fenwick_tree = FenwickTree<int, n>[n];
 - Query(r1, c1, r2, c2):
 - Iterate i=1 from r1 to r2 and add fenwick_tree[i]::sum(c1, c2)
 - Time: n * O(log n) = O(n log n)
 - Update(r, c, v):
 - Call fenwick_tree[r]::update(c, v)
 - Time: O(log n)

<O(log n), O(n log n)> solution

Does this ring a bell?

```
FenwickTree<int> tree[n+5];
14
15
     int orthogonal range sum(int r1, int c1, int r2, int c2) {
17
         int sum = 0;
18
         for (int i = r1; i <= r2; ++i) {
             sum = sum + tree[i].sum(c1, c2);
19
21
         return sum;
22
23
24
     void update(int r, int c, int v) {
25
         return tree[r].update(c, v);
26
```

<O(log n), O(n log n)> solution

Reminder: 1d query

```
int a[n+5];
int range_sum(int 1, int r) {
    int sum = 0;
    for (int i = 1; i <= r; ++i) {
        sum = sum + a[i];
    return sum;
void update(int i, int v) {
    a[i] = v;
    return;
```

Let's try a Fenwick Tree of Fenwick Tree!

List of Fenwick Tree for previous examples

Sum(r1=1, c1=5, r2=2, c2=7)
1. Find
$$\frac{1}{1}$$
+ $\frac{2}{1}$

tree[i]

1	→	3	3	1	3	-3	-1	4	4	tree[1]
2	→	3	3	1	3	-3	-1	4	4	tree[2]
3	→	3	3	1	3	-3	-1	4	4	tree[3]

1 + 2
$$\longrightarrow$$
 6 6 2 6 -6 -2 8 8

Sum(r1=1, c1=5, r2=2, c2=7)
2. Query
$$\frac{1}{1+2}$$

Query
$$(7) = 8 + -2 + 6 = 12$$

I'm not going to show how I get these indexes

Sum(r1=1, c1=5, r2=2, c2=7)
2. Query
$$\frac{1}{1+2}$$

1 + 2
$$\longrightarrow$$
 6 6 2 6 -6 -2 8 8

Query
$$(7) = 8 + -2 + 6 = 12$$

Query $(5-1) = Query(4) = 6$

Sum(r1=1, c1=5, r2=2, c2=7)
2. Query
$$\frac{1}{1+2}$$

Query
$$(7) = 8 + -2 + 6 = 12$$

Query $(5-1) = Query(4) = 6$

$$Sum = Query(7) - Query(4) = 12 - 6 = 6$$

Sum(r1=1, c1=5, r2=2, c2=7)
2. Query
$$\frac{1}{1+2}$$

Query
$$(7) = 8 + -2 + 6 = 12$$

Query $(5-1) = Query(4) = 6$

$$Sum = Query(7) - Query(4) = 12 - 6 = 6$$

Check your answer:)


```
FenwickTree<int> tree[n+5];
FenwickTree<int> tree_query(int r) {
   FenwickTree<int> sum;
    for (int i = r; i > 0; i -= i & (-i)) {
        sum = sum + tree[i];
   return sum;
int orthogonal range sum(int r1, int c1, int r2, int c2) {
   return (tree_query(r2) - tree_query(r1 - 1)).sum(c1, c2);
void update(int r, int c, int v) {
    for (int i = r; i \le n; i += i & (-i)) {
        tree[i].update(i, v);
```

$A < O(log^2 n), O(log^2 n) > solution$

Reminder: **Most** of the cells in the Fenwick Tree is **untouched**!

- Idea: Sum the O(log n) cells you care about

Don't have to calculate these!!

$A < O(log^2 n), O(log^2 n) > solution$

```
FenwickTree<int> tree[n+5];
int tree query(int r, int c1, int c2) {
   int sum = 0;
    for (int i = r; i > 0; i -= i & (-i)) {
       sum = sum += tree[i].sum(c1, c2);
    return sum;
int orthogonal_range_sum(int r1, int c1, int r2, int c2) {
   return tree query(r2, c1, c2) - tree_query(r1 - 1, c1, c2);
void update(int r, int c, int v) {
    for (int i = r; i <= n; i += i & (-i)) {
        tree[i].update(i, v);
```

A more compact solution

This is **not** 2d Fenwick Tree you typically find online.

What you typically find:

- Query returns sum in the rectangle bounded by (1, 1) and (r, c)
- This follows the exact same principle we discussed
 - Exact code left as practice for the readers

```
struct TwoDimFenwickTree {
   int update(int r, int c, int v);
   int guery(int r, int c);
}
```

A more compact solution

Sum can be found using Principle of Inclusion & Exclusion (PIE)

- Same technique from 2d Partial Sum
- You should be very very familiar with this as well

```
struct TwoDimFenwickTree {
   int update(int r, int c, int v);
   int query(int r, int c);
   int sum(int r1, int c1, int r2, int c2) {
      return query(r2, c2) - query(r1-1, c2) - query(r2, c1-1) + query(r1, c1);
   }
}
```

Generalization

Recipe for designing DS for higher dimensional data

- 1. Find recurring query patterns
- 2. Nest data structures
- 3. Remove unnecessary access

Generalization

A test for you: Derive and argument why each of them is useful

- 1. 3d Fenwick Tree?
- 2. 2d Segment Tree?
- 3. Segment tree of sets?
- 4. 2d Binary Search Trees?

Some Tips for Higher Dimensional DS task

- 1. Most problems don't give you the entire grid
- Often gives a set of q operations on a large imaginary grid (10 $^5 * 10^5$)
- You **don't** use **most** of the tree nodes

E.g.

Orthogonal Range query on a $10^5 * 10^5$ grid of 0 s

- **Q** operations of **update / sum**

You only work on Q * log^2(10^5) cells

- 1. Most problems don't give you the entire grid
- Often gives a set of q operations on a large imaginary grid (10 $^5 * 10^5$)
- You **don't** use **most** of the tree nodes
- Dynamically allocate tree node only when you need one!
- Use coordinate compression

- 2. Orthogonal Range Query is an absolute beast!
 - Try transforming data format into orthogonal range queries!
 - Querying this rhombus? \rightarrow Try rotating by 45°
 - Now solve M1952!

- Segment Tree is (probably) all you need!
- Don't be limited to addition!
- Segment Trees support any **associative** operations
 - **Associative**: x * (y * z) = (x * y) * z
- Try T192, M1839
- You should know this very well now but it only gets more fun in higher dimension!

- Don't be limited to Geometry!
 Higher dimensional DS can be very useful for:
 - Obscurely formatted tasks
 - DP optimizations
- Basically anywhere that seems to involve more than 1 index
- Try AP181

Break Time!

- **10** mins break :)

Into the realm of parallel algorithm

- We have mostly algorithms running on a single machine
- Modern machines have multiple (4? 8?) cores
- Wasting a lot of computation power :(

Modern Computer Architecture

Graphcore IPU (1472 cores)

Consumer Multicore CPU (4 cores)

Some easily parallelizable programs

Parallel Min-Finding

```
def find_min(a: list):
    n = len(a) // 2
    spawn thread1 running find_min(a[n...])
    result = find_min(a[...n])
    wait for thread1 to terminate
    result = min(result, thread1.result)
    return result
```

- Assuming you have infinite core, this runs in logarithmic time :)

Some hard-to-parallelize programs

Applying function f to an integer a by n times

```
int apply_f(f: int -> int, a: int, n: int) {
    for (int i = 1; i <= n; ++i) {
        a = f(a);
    }
    return a;
}</pre>
```

```
apply_f(fun x -> x + 1, 2, 3) = (((2+1)+1)+1) = 5
```

- Data is dependent on previous computation -> hard to parallelize

Designing easily parallelizable programs

Some thoughts

Data sharing / dependeny -> bad : (

One very simple strategy:

- Observe **common pattern**: Given some batch of data, compute statistics
- Rearrange and split data into segments that are **easy to compute**
- The result of the function calls are **easy to combine**
- See Min-Finding

Designing easily parallelizable programs

We can easily refactor programs to be friendlier for parallelization Sorting Network:

- Horizontal Line: Input
- Vertical Lines: Comparison

- Hard to split computation for bubble sort

Sorting network for bubble sort

Designing easily parallelizable programs

Bitonic sorter

- By rewiring the network carefully, you can go very far
- Easy to parallelize, and sometime easier implementation
- Similar techniques in IOI'21 bit-shift register (interactive)

Advanced Divide-and-Conquer

A recurring theme in competitive programming:

- Given a batch of data / operations
- Calculate the result of each operation
- Divide-and-conquer unlocks new classes of batch / offline processing techniques

Example:

Given an array of 2d pairs $a[n] = \{(x1, y1), (x2, y2), (x3, y3), \}$

For each $1 \le i \le n$:

- Find the number of j < i such that $x_i \le x_i$ and $y_i \le y_i$
- For simplicity write $(x1, y1) \le (x2, y2)$ if $x1 \le x2$ and $y1 \le y2$

Thinking the problem geometrically

Oh this is easy, use a 2d segment tree

To make your life harder:

- Make it 3d
- Put some max/min in the operations so that 3d fenwick doesn't work
- **Takeaway**:

 Just a **toy** problem for teaching

Rearranging data...

- 1. Let's first sort the elements in **ascending** order of \mathbf{x}
- (2, 3), (1, 1), (5, 4), (6, 3), (8, 1), (7, 5), (5, 8), (3, 7)
- (1, 1), (2, 3), (3, 7), (5, 4), (5, 8), (6, 3), (7, 5), (8, 1)

Splitting the data...

- left = (1, 1), (2, 3), (3, 7), (5, 4)
- right = (5, 8), (6, 3), (7, 5), (8, 1)

Now assume we are able to calculate the **contribution** within the **segment**

i.e. for (7, 5), we identify $(6, 3) \le (7, 5)$ but no other

All that remains is combining results...

- left = (1, 1), (2, 3), (3, 7), (5, 4)
- right = (5, 8), (6, 3), (7, 5), (8, 1)

Observation:

- 1. The points in the **left** segment contribute to the **right**
- 2. The points in the **right** segment does **not** contribute to the **left**
- 3. All points in **left** segment has x <= those on the **right**

Combining results...

We can reduce the problem to:

Given a fixed set, **S**, of **y-coordinate** (in the **left** segment)

For each element i on the **right** segment:

Find #element (e) in S such that e <= α[i].y

Why this works: We don't have to worry about the x-coordinate anymore

-
$$left = (1, 1), (2, 3), (3, 7), (5, 4)$$

right =
$$(5, 8)$$
, $(6, 3)$, $(7, 5)$, $(8, 1)$

-
$$S = \{1, 3, 7, 4\}$$

- left = (1, 1), (2, 3), (3, 7), (5, 4)

right = **(5, 8)**, (6, 3), (7, 5), (8, 1)

- $S = \{1, 3, 7, 4\}$
- For point (5, 8) on the right
 - 4 elements in **S** are smaller than **8**
 - Corresponding to: (1, 1), (2, 3), (3, 7), (5, 4)

-
$$left = (1, 1), (2, 3), (3, 7), (5, 4)$$

-
$$S = \{1, 3, 7, 4\}$$

- For point (6, 3) on the right
 - 2 elements in **S** are smaller than **3**
 - Corresponding to: (1, 1), (2, 3)

-
$$left = (1, 1), (2, 3), (3, 7), (5, 4)$$

-
$$S = \{1, 3, 7, 4\}$$

- How to compute the query on S?
- 1d Segment Tree / Fenwick Tree

Back to our **assumptions...**

-
$$left = (1, 1), (2, 3), (3, 7), (5, 4)$$

- right = (5, 8), (6, 3), (7, 5), (8, 1)

Now assume we are able to calculate the **contribution** within the **segment**

Back to our **assumptions...**

- left = (1, 1), (2, 3), (3, 7), (5, 4)
- right = (5, 8), (6, 3), (7, 5), (8, 1)

Now assume we are able to calculate the **contribution** within the **segment**

- We don't quite have to **care** about this

Claim: As long as the combiner is correct, the entire algorithm is correct

Why?

- By Induction :)

Claim: As long as the combiner is correct, the entire algorithm is correct

Why?

- By Induction :)
- Leaf node:
- 0 contribution within segment

- Leaf node + 1:
- All contributions within children is
- All contributions across children is

For an array of size 5

- Leaf node + 2:
- All contributions within children is counted

- All contributions across children is accounted for (by combiner)
- Ok you should see where this is going

- Useful techniques for dimension reduction via rearranging + D&C
- 3 steps:
 - 1. Rearrange
 - 2. Split
 - 3. Combine

We haven't covered any **offline processing** techniques yet?

APIO 2019 – Street Lamps (modified)

Given an **n**-bit array initialized with all 0's i.e. a = [0, 0, ...]

For each of the next **Q** time unit, perform **one** operation (aka perform **Q** operations)

- 1. toggle $i \rightarrow a[i] = a[i] \times a$
- 2. query | r →
 Count the #unit of time before the query where in a[l]=a[l+1]=...=a[r]=1
 (i.e. all elements between | and r are all 1's)

APIO 2019 – Street Lamps (modified)

Example:

n = 5

toggle 3

toggle 1

toggle 4

toggle 3

query 3 4

toggle 3

APIO 2019 – Street Lamps (modified)

Time is just another dimension you can manipulate

General hints:

- Try to rewrite out relations as tuple ordering, e.g.

$$(x1, y1) \le (x2, y2)$$
 if $x1 \le x2$ and $y1 \le y2$

- Think Geometrically! Draw diagrams!
- We'll come back later if time permits

APIO 2019 – Street Lamps (modified)

Time is just another dimension you can manipulate

More specific hints:

- What can you arrange?
- Is life easier if all **toggles** happen **before queries**
- You will need **BOTH** CDQ and 2d Fenwick Trees :)

Q&A + Break Time!

- **20** mins break:)
- Try working on Street Lamps

Playing with time...

Given an array of \mathbf{n} elements $a[n] = \{a1, a2, ..., an\}$ Perform \mathbf{Q} operations:

- 1. Update i, $v \rightarrow set a[i] = v$
- 2. Query t $I r \rightarrow For$ the array **a** after **t** operations, find the sum from **I** to **r**?

Example:

$$\alpha = \{3, 0, 1, -1, -3, 2, 4, -2\}$$

update 5 0 update 7 -2 query 1 5 7

This would be **very easy without** the time element

Can we still view **old** copies of the data structure **after update?**

This would be **very easy without** the time element

- Just use a simple 1d segment tree

Can we still view **old** copies of the data structure **after update?**

Observe that only a small amount of nodes change per update On the creation of a new "**version**"

Observe that only a small amount of nodes change per update On the creation of a new "**version**"

Observe that only a small amount of nodes change per update On the creation of a new "**version**"

Observe that only a small amount of nodes change per update On the creation of a new "**version**"

Different level of persistence

Partially Persistence:

- **Modify** newest version, access old version

Fully Persistence:

- Modify newest version, branch from old version
- A "tree" of timeline :)
- Persistent Segment Tree falls here

Different level of persistence

Confluently Persistence:

- Fully Persistence
- Can I merge two timelines?

Retroactive Data Structure:

- Oh I made a mistake in a past update
- => Modify past operations
- Changes reflect in the newest version!
- **Real** time travel?

Persistence Practice Problem

M1842 - Another RMQ APIO 2019 - Land of Rainbow Gold NOI 2018 - 归程