Investigación Operativa

Segundo Cuatrimestre 2025

Práctica 2: Simplex

Ejercicio 1. Resolver gráficamente los siguientes problemas de programación lineal:

a) b)
$$\max z = 7x_1 + 8x_2$$
s.a: $4x_1 + x_2 \le 100$ $\min z = 3x_1 + 9x_2$

$$x_1 + x_2 \le 80$$
 s.a: $-5x_1 + 2x_2 \le 30$

$$x_1 \le 40$$
 $-3x_1 + x_2 \le 12$

$$x \ge 0$$

Ejercicio 2. Resuelva los siguientes problemas aplicando Simplex:

a) c)
$$\max z = 3x_1 - x_2 - 3x_3$$

$$\max x_1 + 3x_2 - x_3 + 2x_4 \le 2$$

$$2x_1 + x_2 - 4x_3 \le 1$$

$$-4x_2 + 2x_3 \le 10$$

$$x \ge 0$$
 d)
$$\min z = x_1 - 2x_3$$

$$s.a: -2x_1 + x_2 \le 4$$

$$-x_1 + 2x_2 \le 7$$

$$x_3 \ge -3$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \ge 3$$

$$x_2 \ge 0$$

$$x_3 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_3 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \ge 3$$

$$x_2 \ge 0$$

$$x_3 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_3 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \ge 3$$

$$x_2, x_3, x_4 \ge 0$$

Ejercicio 3. Resolver los modelos del ejercicio anterior utilizando SCIP.

Ejercicio 4. ¿Puede una variable que acaba de dejar la base volver a entrar en el siguiente paso del algoritmo Simplex?

Ejercicio 5. Supongamos que se ha resuelto un problema de programación lineal y se desea incorporar al planteo una nueva variable no negativa con sus correspondientes datos. ¿Cómo se puede proceder sin rehacer todos los cálculos?

Ejercicio 6. Resuelva los siguientes problemas de Programación Lineal utilizando el método simplex.

a) c)
$$\min z = -5x_1 - 7x_2 - 12x_3 + x_4$$

$$\sin z = 3x_1 - 2x_2 - 4x_3$$

$$\sin z = -2x_2 + x_3 \le 30$$

$$x \ge 0$$
 d)
$$x \ge 0$$
 d)
$$x \ge 0$$

$$x \ge 0$$

Ejercicio 7. Considere el siguiente problema de programación lineal:

$$\begin{aligned} & \min \quad z = -\frac{3}{4}x_1 + 150x_2 - \frac{1}{50}x_3 + 6x_4 \\ & s.a: \quad \frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 + x_5 &= 0 \\ & \quad \frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 + x_6 &= 0 \\ & \quad x_3 + x_7 &= 1 \\ & \quad x &\geq 0 \end{aligned}$$

- a) Verifique que si se usa como criterio elegir la variable con menor índice para entrar a la base cuando hay empate, entonces el algoritmo no termina.
- b) Verifique que $(\frac{1}{25},0,1,0,\frac{3}{100},0,0)$ es una solución óptima y que su valor en la función objetivo es $z_0=-\frac{1}{20}$.

Ejercicio 8. Halle todos los valores del parámetro α tales que las regiones definidas por las siguientes restricciones presenten vértices degenerados:

Ejercicio 9. Aplique el test de optimalidad para encontrar todos los valores del parámetro α tales que $x^* = (0, 1, 1, 3, 0, 0)^t$ sea una solución óptima del siguiente problema de programación lineal:

$$\begin{array}{llll} \min & z = -x_1 - \alpha^2 x_2 + 2x_3 - 2\alpha x_4 - 5x_5 + 10x_6 \\ s.a: & -2x_1 - x_2 + x_4 + 2x_6 & = & 2 \\ & & 2x_1 + x_2 + x_3 & = & 2 \\ & & -2x_1 - x_3 + x_4 + 2x_5 & = & 2 \\ & & x & > & 0 \end{array}$$

Ejercicio 10. El siguiente diccionario corresponde a alguna iteración del método simplex para un problema de minimización:

Hallar condiciones sobre a, b, \ldots, g para que se cumpla:

- a) la base actual es óptima.
- b) la base actual es la única base óptima.
- c) la base actual es óptima pero no única.
- d) el problema no está acotado.
- e) que x_4 entre en la base y el cambio en la función objetivo sea cero.

Ejercicio 11. Usar el método simplex (de dos fases o Método M) para resolver los siguientes problemas de programación lineal: