第十二次课

- 在下次课之前完成下列视频. 合计 53 分钟.
- 68. 二次型的概念(11分钟)
- 69. 线性变换与二次型的标准形(12分钟)
- 70. 正交变换法化二次型的标准形(9分钟)
- 71. 二次型的规范形(17分钟)
- 72. 二次型的有定性(11分钟)
- 73. 利用顺序主子式判断有定性(9分钟)
 - 看视频的同时记好笔记.
 - 看线性代数教材 P153-P173 的内容.

课堂上将分组讨论6.3, 6.4, 6.6, 6.7, 6.9, 6.11, 6.12,6.13, 6.14, 6.15, 6.16, 6,19, 6.24, 6.26, 6.29.

● 组长安排组员整理一份课堂讨论题目解答, 写上日期, 下 次课交上来.

●每位同学在课堂讨论完成以后在课下独立完成以下全部 作业.

例 6.1 设 A 与 B 合同. 证明:

- (1) r(A) = r(B).
- (2) |A| 与 |B| 同为正, 或同为负, 或同为 0.
- (3) 设 A 可逆. 则 B 可逆且 A^{-1} 与 B^{-1} 合同.

例
$$6.2$$
 设 A 与 B 合同, C 与 D 合同. 证明: $\begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$ 与 $\begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$ 合同.

例 6.3 设 $f(x_1, x_2, x_3) = (x_1 - 2x_3)^2 - 3x_2^2$. 通过换元:

 $\begin{cases} y_1 = x_1 - 2x_3 \\ y_2 = x_2 \end{cases}$ 可以得到 $f(x_1, x_2, x_3) = y_1^2 - 3y_2^2$. 问: 这里

的换元是否是非退化线性替换?若不是,请写出正确的非退化线性替换.

例 6.4 举例说明: 当 A 与 B 合同时, 不一定有: $A \sim B$; 当 $A \sim B$ 时不一定有 A 与 B 合同.

例 6.5 设 A 与 B 都是 n 阶实对称阵. 证明: 如果 $A \sim B$ 则 A 与 B 合同.

例 6.6 设二次型 $f(x_1, x_2, x_3)$ 的矩阵 **A** 可逆. 证明:

- (1) 如果 $d_1y_1^2 + d_2y_2^2 + d_3y_3^2$ 是 $f(x_1, x_2, x_3)$ 的一个标准型,则 $\frac{1}{d_1}y_1^2 + \frac{1}{d_2}y_2^2 + \frac{1}{d_3}y_3^2$ 是二次型 $g(x_1, x_2, x_3) = \boldsymbol{x}^T \boldsymbol{A}^{-1} \boldsymbol{x}$ 的一个标准型.
- (2) 二次型 $h(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A}^2 \mathbf{x}$ 的规范型为 $y_1^2 + y_2^2 + y_3^2$.

例 6.7 设 3 元实二次型 $q(x_1, x_2, x_3)$ 的矩阵是 **A**. 方阵 **B** 的

特征多项式为
$$f(\lambda) = (\lambda - 1)(\lambda + 2)^2$$
, 且 \mathbf{B} 与 \mathbf{A} 合同. 证明: 对任意 $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ 都有:
$$-2(x_1^2 + x_2^2 + x_3^2) \leq \mathbf{x}^T \mathbf{B} \mathbf{x} \leq (x_1^2 + x_2^2 + x_3^2).$$

$$-2(x_1^2 + x_2^2 + x_3^2) \le \boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x} \le (x_1^2 + x_2^2 + x_3^2).$$

例 6.8 用配方法求二次型

$$f(x_1, x_2, x_3) = x_2^2 + x_3^2 - 2x_1x_2 + 4x_2x_3$$
的标准型.

例 6.9 设
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & -3 \\ 1 & -2 & -2 \\ -3 & -2 & 2 \end{pmatrix}$$
. 用合同变换求可逆阵 \mathbf{C} 使

得 $C^T A C$ 为对角阵, 并求 A 的正惯性指数和负惯性指数.

例 6.10 用正交变换求二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 2x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$
的标准型, 并求 $f(x_1, x_2, x_3)$ 的正惯性指数和负惯性指数.

例 6.11 二次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$ 的秩为 _____.

例 6.12 己知实二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ 经正交变换 $x = \mathbf{P}y$ 可化成标准形 $f = 6y_1^2$, 则 a =

例 6.13 已知二次型 $f(x_1, x_2, x_3) = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$.

- (1) 写出二次型 f 的矩阵表达式;
- (2) 用正交变换把二次型 f 化为标准形, 并写出相应的正交矩阵.

例 6.14 设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
.

- (1) 已知 A 的一个特征值为 3, 试求 y;
- (2) 求可逆矩阵 P, 使得 $(AP)^T(AP)$ 为对角矩阵.

例 6.15 设二次型

 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2bx_2x_3 + 2x_1x_3$ 经正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化为 $f = y_2^2 + 2y_3^2$, 其中 $\mathbf{x} = (x_1, x_2, x_3)^T$ 和 $\mathbf{y} = (y_1, y_2, y_3)^T$ 是三维列向量, \mathbf{P} 是 3 阶正交矩阵. 试求 a, b 的取值. **例 6.16** 设 **A** 为 n 阶实对称矩阵, $r(\mathbf{A}) = n$, A_{ij} 是 **A** = (a_{ij}) 中元素 a_{ij} 的代数余子式 $(i, j = 1, 2, \dots, n)$. 二次型 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n \frac{A_{ij}}{|\mathbf{A}|} x_i x_j$.

- (1) 记 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$. 把 $f(x_1, x_2, \dots, x_n)$ 写出矩阵形式, 并证明二次型 $f(\mathbf{x})$ 的矩阵为 \mathbf{A}^{-1} ;
- (2) 二次型 $g(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 与 $f(\mathbf{x})$ 的规范形是否相同? 并说明理由.

例 6.17 二次型 $f(x_1, x_2, x_3) = (x_1 - 2x_2 + 3x_3)^2$ 是否是正定的? 说明理由.

例 6.18 设二次型 $f(x_1, x_2, x_3)$ 是正定的. 证明: 对任意正数 a, 二次型 $af(x_1, x_2, x_3)$ 也是正定的.

例 6.19 判断二次型

$$f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + 6x_3^2 - 2x_1x_2 - 2x_1x_3$$

是否正定.

例 6.20 设 A 是任意实对称阵. 证明: $A^2 + A + 2I_n$ 是正定阵.

例 6.21 设 A 是正定阵. 证明: A 可逆, 且 A^{-1} 也是正定阵.

例 6.22 设 A 是 n 阶正定阵. 证明: 对任意非负数 a 都有: $A + aI_n$ 可逆.

例 6.23 设二次型 $f(x_1, x_2, x_3, x_4)$ 是正定的且其矩阵为 $A = (a_{ij})$. 设 B 是由 A 的第二、三、四行和第二、三、四列所构成的子矩阵. 证明: B 也是正定的.

例 6.24 如果二次型 $f(x_1, \dots, x_n)$ 的值域是 $[0, +\infty)$, 则称 $f(x_1, \dots$ 是半正定的. 设二次型 $f(x_1, x_2, x_3)$ 是半正定的. 且其矩阵是

 \boldsymbol{A} .

- (1) 证明: $|A| \ge 0$.
- (2) 设 B 是正定的 3 阶方阵. 证明: |A + B| > 0.

例 6.25 如果二次型 $f(x_1,\dots,x_n)$ 的值域是 $(-\infty,0]$, 且, 只有当 $x_1 = \dots = x_n = 0$ 时才有 $f(x_1,\dots,x_n) = 0$, 则称 $f(x_1,\dots,x_n)$ 是负定的. 设 $f(x_1,x_2,x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, 其中, \mathbf{A} 是 3 阶实对称阵, Δ_1 , Δ_2 , Δ_3 是 \mathbf{A} 的顺序主子式. 证明: $f(x_1,x_2,x_3)$ 是负定的 $\Leftrightarrow \Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$.

例 6.26 求实数 a 的取值范围, 使得二次型

 $f(x_1, x_2, x_3) = ax_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 + 2ax_1x_3 + 2x_2x_3$ 是正定的. **例 6.27** 已知二次型 $f = x_1^2 + 4x_2^2 + 4x_3^2 + 2\lambda x_1 x_2 - 2x_1 x_3 + 4x_2 x_3$, f 为正定二次型,求 λ 取值范围.

例 6.28 设 \boldsymbol{A} 为 $m \times n$ 实矩阵, \boldsymbol{E} 为 n 阶单位矩阵. 已知矩阵 $\boldsymbol{B} = \lambda \boldsymbol{E} + \boldsymbol{A}^T \boldsymbol{A}$. 试证: 当 $\lambda > 0$ 时, 矩阵 \boldsymbol{B} 为正定矩阵.

例 6.29 设有 n 元实二次型 $f(x_1, x_2, \dots, x_n) = (x_1 + a_1 x_2)^2 + (x_2 + a_2 x_3)^2 + \dots + (x_{n-1} + a_{n-1} x_n)^2 + (x_n + a_n x_1)^2$, 其中 a_i ($i = 1, 2, \dots, n$) 为实数. 试问: 当 a_1, a_2, \dots, a_n 满足何种条件时, 二次型为正定二次型.