Class 16: AWS Mini Project

Aparajita Pranjal 5/26/23

Downstream Analysis

Importing files:

```
library(tximport)
downloads_folder <- "~/Downloads" # Path to the "Downloads" folder</pre>
# Get the list of folders matching the pattern in the "Downloads" folder
folders <- list.files(downloads_folder, pattern = "SRR21568*", full.names = TRUE)</pre>
# Extract the sample names from the folder names
samples <- sub("_quant", "", basename(folders))</pre>
# Create file paths for the abundance.h5 files in each folder
files <- file.path(folders, "abundance.h5")</pre>
# Set the names of the files using the sample names
names(files) <- samples</pre>
txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
```

1 2 3 4

Summary of data:

```
head(txi.kallisto$counts)
```

SRR2156848 SRR2156849 SRR2156850 SRR2156851 ENST00000539570 0.00000 ENST00000576455 0 2.62037 0 ENST00000510508 0 0.00000 0 ENST00000474471 0 1 1.00000 0 ENST00000381700 0.00000 0 0 0.00000 ENST00000445946

```
colSums(txi.kallisto$counts)
```

```
SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

Filtering the samples with no reads:

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]

keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

PCA

```
pca <- prcomp(t(x), scale=TRUE)
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	183.6379	177.3605	171.3020	1e+00
${\tt Proportion} \ {\tt of} \ {\tt Variance}$	0.3568	0.3328	0.3104	1e-05
Cumulative Proportion	0.3568	0.6895	1.0000	1e+00

Plotting results:

Using ggplot:

```
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC2, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +</pre>
```

```
theme_bw()
```



```
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC3, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```



```
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC2, PC3, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```


OPTIONAL: Differential-expression analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':
rowMedians

The following objects are masked from 'package:matrixStats': anyMissing, rowMedians

Warning: replacing previous import 'S4Arrays::read_block' by 'DelayedArray::read_block' when loading 'SummarizedExperiment'

```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre>
  rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
  dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                    sampleTable,
                                    ~condition)
using counts and average transcript lengths from tximport
  # dds is now ready for DESeq() see our previous classes on this
  dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
```

log2 fold change (MLE): condition treatment vs control

Wald test p-value: condition treatment vs control

NA

DataFrame with 6 rows and 6 columns

ENST00000445946

Datarramo wrom o	TOWN GILL	O OOLUMIID			
	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENST00000539570	0.000000	NA	NA	NA	NA
ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				
ENST00000510508	NA				
ENST00000474471	NA				
ENST00000381700	NA				