Off-Policy Partial Feedback System Reward Estimation in Seznam.cz Web Search Engine

Pavel Procházka Seznam.cz pavel@prochazka.info

H2O Meetup 27.11.2019

Outline

Vertical Search Blending in Search Engine

Partial Feedback System Performance Evaluation

3 Vertical Search Blending Performance Evaluation

Outline

- Vertical Search Blending in Search Engine
- Partial Feedback System Performance Evaluation
- 3 Vertical Search Blending Performance Evaluation

Seznam.cz

- Internet portal
- Over 20 services like
 - web search engine
 - web advertisement
 - email
 - maps
 - news, tv
 - and many more

Vertical Search Blending

Goals of the Talk

- partial feedback system abstraction
- performance evaluation in partial feedback systems
- introduction of basic off-policy evaluation methods
- example application in vertical search blending problem
- off-policy evaluation in your application?

Similar Possible Applications

- spell checker^a
- recommender or advertising systems^b
- counterfactual learning to rank^c

[&]quot;Lihong Li et al. "Counterfactual estimation and optimization of click metrics in search engines: A case study". In: roceedings of the 24th International Conference on WWW. ACM. 2015, s. 929–934.

bAlexandre Gilotte et al. "Offline A/B Testing for Recommender Systems". In: Proceedings of the Eleventh ACM

Chorsten Joachims, Adith Swaminathan a Tobias Schnabel. "Unbiased learning-to-rank with biased feedback". In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM. 2017, s. 781–789.

Goals of the Talk

- partial feedback system abstraction
- performance evaluation in partial feedback systems
- introduction of basic off-policy evaluation methods
- example application in vertical search blending problem
- off-policy evaluation in your application?

Similar Possible Applications

- spell checker^a
- recommender or advertising systems^b
- counterfactual learning to rank^c

^aLihong Li et al. "Counterfactual estimation and optimization of click metrics in search engines: A case study". In: Proceedings of the 24th International Conference on WWW. ACM. 2015, s. 929–934.

^bAlexandre Gilotte et al. "Offline A/B Testing for Recommender Systems". In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. WSDM '18. Marina Del Rey, CA, USA: ACM, 2018.

^oThorsten Joachims, Adith Swaminathan a Tobias Schnabel. "Unbiased learning-to-rank with biased feedback". In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM. 2017, s. 781–789.

Outline

- Vertical Search Blending in Search Engine
- Partial Feedback System Performance Evaluation
- 3 Vertical Search Blending Performance Evaluation

Contextual Bandits in Partial Feedback Systems

- **context** $x \sim P(x)$ (e.g. query, user id, ...)
- **action** $y \sim \pi(y|x)$ (e.g. chosen vertical)
- reward function $\delta(x, y)$ (e.g. click only for given (x, y))
- policy quality criterion → expected reward maximization

$$R(\pi) = E_{x \sim P(x), y \sim \pi(y|x)} [\delta(x, y)]$$
$$= \sum_{x} \sum_{y} \delta(x, y) \pi(y|x) P(x)$$

- partial feedback no information about rewards for unseen actions
- assumption: stationary $\delta(x, y)$ and P(x)

Expected Reward Estimate

estimate bias:

$$\mathrm{E}\left[\hat{\pmb{R}}(\pi)
ight]-\pmb{R}(\pi)$$

estimate variance:

$$\operatorname{var}\left[\hat{R}(\pi)\right]$$

Online Evaluation - A/B Tests

- tested policy π_A deployment in production
- direct calculation

$$R(\pi_A) = E_{x \sim P(x), y \sim \pi_A(y|x)} [\delta(x, y)]$$

$$\stackrel{(MC)}{\approx} \frac{1}{N} \sum_{i=1}^{N} \delta_i$$

$$= \hat{R}^{AB}(\pi_A)$$

- pros:
 - logged data and stationary assumption not needed
 - reliable and straightforward (no restriction from partial feedback)
- cons:
 - typically takes a long time
 - potential credit loss when testing a bad policy
 - production run dedicated purely to the test needed
 - expensive and difficult to scale

Online Evaluation Example

$$\hat{R}^{AB}(\pi_A) = \frac{1}{N} \sum_{i=1}^{N} \delta_i = \frac{1}{6} (1 + 0 + 0 + 1 + 0 + 1) = 0.5$$

Off-policy Evaluation

- desired reward estimation for alternative tested policy π_A
- based on offline logged data by policy π_0
- pros
 - cheap and scalable no necessity for production deployment
 - possible to use the logged data for policy learning
- challenges
 - direct calculation of $\frac{1}{N} \sum_{i=1}^{N} \delta_i$ not possible due to partial feedback
 - validity issue sanity checks
- methods solving the missing feedback
 - direct method
 - inverse propensity score (IPS) estimator
 - self normalized IPS estimator
 - doubly robust estimator

Direct Reward Estimation

- train a reward predictor $\hat{\delta}(x, y)$
- estimate the reward as

$$R(\pi_{A}) = E_{x \sim P(x), y \sim \pi_{A}(y|x)} [\delta(x, y)]$$

$$\stackrel{(DM)}{\approx} E_{x \sim P(x), y \sim \pi_{A}(y|x)} [\hat{\delta}(x, y)]$$

$$\stackrel{(MC)}{\approx} \frac{1}{N} \sum_{i=1}^{N} \sum_{y} \pi_{A}(y|x_{i}) \hat{\delta}(x_{i}, y)$$

$$= \hat{R}^{DM}(\pi_{A})$$

- world model $\hat{\delta}(x, y)$ required
- no logging policy feedback needed data $\mathcal{D} = \{x_i\}_{i=1}^N$
- known to suffer from high bias

Direct Metod Evaluation Example

X	A(y)	$\pi_A(y x)$	$\hat{\delta}(x,y)$
"mars"	[pict, wiki, org]	[0, 1, 0]	[0.2, 0.1 , 0.3]
"H2O"	[pict, wiki, org]	[0, 0, 1]	[0.6, 0.7, 0.6]
"cancer"	[pict, wiki, org]	[0, 0, 1]	[0.2, 0.3, 0.8]
"shark"	[pict, wiki, org]	[0, 1, 0]	[0.1, 0.9 , 0.1]
"brexit"	[pict, wiki, org]	[1, 0, 0]	[0.1 , 0.2, 0.3]
"prague"	[pict, wiki, org]	[0, 1, 0]	[0.99, 0.9 , 0.99]

$$\hat{R}^{DM}(\pi_A) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y} \pi_A(y|x_i) \hat{\delta}_i(x_i, y)$$
$$= \frac{1}{6} (0.1 + 0.6 + 0.8 + 0.9 + 0.1 + 0.9) = 3.4/6$$

IPS Reward Estimation

• data $\mathcal{D} = \{x_i, y_i, \delta_i, \pi_{0,i}\}_{i=1}^N$, $\delta_i = \delta(y_i, x_i)$ and $\pi_{0,i} = \pi_0(y_i|x_i)$

$$R(\pi_{A}) = E_{x \sim P(x), y \sim \pi_{A}(y|x)}[\delta(x, y)]$$

$$\stackrel{(IPS)}{=} E_{x \sim P(x), y \sim \pi_{0}(y|x)} \left[\frac{\pi_{A}(y|x)}{\pi_{0}(y|x)} \delta(x, y) \right]$$

$$\stackrel{(MC)}{\approx} \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A, i}}{\pi_{0, i}} \delta_{i}$$

$$= \hat{R}^{IPS}(\pi_{A})$$

- no need for $\hat{\delta}(y,x)$ possible to estimate any logged feedback
- unbiased estimate typically with high variance
- ullet estimate variance upper bound proportional to $1/\min(\pi_0)$
 - logging policy exploration required for IPS valid evaluation
 - more data for complex systems

IPS Evaluation Example

X	A(y)	$\delta(x,y)$	$\pi_0(y x)$	$\pi_A(y x)$
"mars"	[pict., wiki, org]	1	[0.2, 0.3, 0.5]	[0 , 1, 0]
"H2O"	[pict, wiki, org]	0	[0.1, 0.8, 0.1]	[0, 0 , 1]
"cancer"	[pict, wiki, org]	0	[0.1, 0.2, 0.7]	[0, 0, 1]
"shark"	[pict, wiki, org]	1	[0.4, 0.4 , 0.2]	[0, 1, 0]
"brexit"	[pict, wiki, org]	0	[0.2, 0.2, 0.6]	[1, 0, 0]
"prague"	[pict, wiki, org]	1	[0.45, 0.01 , 0.54]	[0, 1, 0]

$$\hat{R}^{IPS}(\pi_A) = \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A,i}}{\pi_{0,i}} \delta_i$$
$$= \frac{1}{6} \left(\frac{1}{0.7} 0 + \frac{1}{0.4} 1 + \frac{1}{0.01} 1 \right) \approx 17.08$$

Off-Policy Evaluation Methods Properties

	Direct Method	IPS
approach	model the world	model the bias
bias	biased	unbiased
variance	typically low	high
data use from \mathcal{D}	only context $\{x_i\}_{i=1}^N$	use complete data
under/over fit	tends to under-fit on $\mathcal D$	tends to over-fit on ${\cal D}$
additional resources	$\hat{\delta}(x,y)$	_
improvements	DRO	SNIPS, DRO

Self Normalized Inverse Propensity Score Estimator

- motivation IPS with reduced variance
- idea^a norm (regularize) IPS with a constant C

$$\hat{R}^{\text{SNIPS}} = \frac{\hat{R}^{IPS}}{C}, \quad C = \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A,i}}{\pi_{0,i}}$$

- add small bias, but reduce variance
- possible to estimate any feedback metric (reward)
- no need for $\hat{\delta}(x, y)$
- sanity check^b: denominator $C = \frac{1}{N} \sum_{i=1}^{N} c_i \rightarrow 1$

^aAdith Swaminathan a Thorsten Joachims. "The self-normalized estimator for counterfactual learning". In: Advances in Neural Information Processing Systems. 2015, s. 3231–3239.

^bDamien Lefortier et al. "Large-scale Validation of Counterfactual Learning Methods: A Test-Bed". In: CoRR abs/1612.00367 (2016). arXiv: 1612.00367.

SNIPS Evaluation Example

X	A(y)	$\delta(x,y)$	$ \pi_0(y x)$	$\pi_A(y x)$
"mars"	[pict., wiki, org]	1	[0.2, 0.3, 0.5]	[0, 1, 0]
"H2O"	[pict, wiki, org]	0	[0.1, 0.8, 0.1]	[0, 0, 1]
"cancer"	[pict, wiki, org]	0	[0.1, 0.2, 0.7]	[0, 0, 1]
"shark"	[pict, wiki, org]	1	[0.4, 0.4 , 0.2]	[0, 1, 0]
"brexit"	[pict, wiki, org]	0	[0.2, 0.2, 0.6]	[1, 0, 0]
"prague"	[pict, wiki, org]	1	[0.45, 0.01 , 0.54]	[0, 1, 0]

$$C = \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A,i}}{\pi_{0,i}}$$

$$= \frac{1}{6} \left(\frac{1}{0.7} + \frac{1}{0.4} + \frac{1}{0.01} \right) \approx 17.32 \gg 1$$

$$\hat{R}^{\text{SNIPS}}(\pi_A) = \frac{\hat{R}^{IPS}(\pi_A)}{C} = \frac{17.08}{17.32} \approx 0.99$$

Doubly Robust Estimator

• motivation – fully utilize both \mathcal{D} and $\hat{\delta}(x, y)$

$$R(\pi_{A}) = E_{X \sim P(x), y \sim \pi_{A}(y|x)} [\delta(x, y)]$$

$$= E_{X \sim P(x), y \sim \pi_{A}(y|x)} [\delta(x, y) - \hat{\delta}(x, y) + \hat{\delta}(x, y)]$$

$$= \underbrace{E_{X \sim P(x), y \sim \pi_{A}(y|x)} [\hat{\delta}(x, y)]}_{\text{DirectMethod}}$$

$$+ \underbrace{E_{X \sim P(x), y \sim \pi_{A}(y|x)} [\delta(x, y) - \hat{\delta}(x, y)]}_{\text{IPS}}$$

$$\stackrel{(MC)}{\approx} \frac{1}{N} \sum_{i=1}^{N} \sum_{y} \pi_{A}(y|x_{i}) \hat{\delta}(x_{i}, y)$$

$$+ \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A}(y_{i}|x_{i})}{\pi_{0}(y_{i}|x_{i})} (\delta(x_{i}, y_{i}) - \hat{\delta}(x_{i}, y_{i}))$$

$$= \hat{R}^{DRO}(\pi_{A})$$

20/34

Doubly Robust Estimator

- use all available information^a both \mathcal{D} and $\hat{\delta}(x,y)$
- intuition

^aMiroslav Dudik, John Langford a Lihong Li. "Doubly Robust Policy Evaluation and Learning". In: *Proceedings of the 28th ICML*. ICML'11. Bellevue, Washington, USA: Omnipress, 2011, s. 1097–1104. ISBN: 978-1-4503-0619-5.

Doubly Robust Evaluation Example

Х	A(y)	$\delta(x,y)$	$\pi_0(y x)$	$\pi_A(y x)$	$\hat{\delta}(x,y)$
"mars"	[pict., wiki, org]	1	[0.2, 0.3, 0.5]	[0, 1, 0]	[0.2, 0.1,0.3]
"H2O"	[pict, wiki, org]	0	[0.1, 0.8, 0.1]	[0, 0, 1]	[0.6, 0.7,0.6]
"cancer"	[pict, wiki, org]	0	[0.1, 0.2, 0.7]	[0, 0, 1]	[0.2, 0.3, 0.8]
"shark"	[pict, wiki, org]	1	[0.4, 0.4 , 0.2]	[0, 1, 0]	[0.1, 0.9 , 0.1]
"brexit"	[pict, wiki, org]	0	[0.2, 0.2, 0.6]	[1, 0, 0]	[0.1, 0.2, 0.3]
"prague"	[pict, wiki, org]	1	[0.45, 0.01 , 0.54]	[0, 1, 0]	[0.99, 0.9 , 0.99]

$$\hat{R}^{DRO}(\pi_A) = \hat{R}^{IPS}(\pi_A) + \hat{R}^{DM}(\pi_A) - \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{A,i}}{\pi_{0,i}} \hat{\delta}_i$$

$$= \hat{R}^{IPS}(\pi_A) + \hat{R}^{DM}(\pi_A) - \frac{1}{6} \left(\frac{1}{0.7} 0.8 + \frac{1}{0.4} 0.9 + \frac{1}{0.01} 0.9 \right)$$

$$\approx 2.32$$

Off-Policy Learning

- reward estimation as optimization objective
- direct method
 - train reward predictor for all possible actions
 - choose the action with the highest predicted reward
- IPS (counterfactual approach)^a
 - the best action selection → classification task
 - much easier task than regression
- doubly robust
- methods (IPS, DM, DRO) implemented in Vowpal Wabbit

```
vw -d train.dat --cb 4 --cb_type ips
```

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Logged-Contextual-Bandit-Example

^aThorsten Joachims a Adith Swaminathan. "SIGIR Tutorial on Counterfactual Evaluation and Learning for Search, Recommendation and Ad Placement". In: *Proceedings of the 39th International ACM SIGIR*. ACM, 2016.

Outline

- Vertical Search Blending in Search Engine
- Partial Feedback System Performance Evaluation
- 3 Vertical Search Blending Performance Evaluation

Per-Position Setup

- **context** $x \sim P(x)$ SERP features + results on positions above
- reward function $\delta(x, y)$ click
- **action** $y \sim \pi(y|x)$ chosen vertical at given position
- propensity directly logged by policy
- low number of actions expected reasonable propensity values
- not clear interpretation^a

^aPavel Prochazka et al. "Vertical Search Blending: A Real-world Counterfactual Dataset". In: Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR'19. Paris, France: ACM, 2019, s. 1237–1240. URL: http://doi.acm.org/10.1145/3331184.3331345.

Per-SERP Setup

- **context** $x \sim P(x)$ SERP features
- reward function $\delta(x, y)$ click, ndcg, . . .
- **action** $y \sim \pi(y|x)$ complete SERP composition
- **propensity** chain rule: $\pi_0(y|x) = \prod_{k=1}^K q_k$, q_k logged propensity for the k-th position
- SERP-length K: complexity-expressiveness trade-off unreliable estimate of target metric versus reliable estimate of partial metric

Counterfactual Framework Application

	Fixed position	Complete SERP		
action	result at given position a_k	SERP $\boldsymbol{b}_K = (a_1, \dots, a_K)$		
propensity q,π	$q_k := p(a_k a_1,\ldots,a_{k-1},\chi)$ = $p(a_k \mathbf{b}_{k-1},\chi)$	$\pi_K \coloneqq p(\boldsymbol{b}_K \chi) = \prod_{k=1}^K q_k$		
feedback δ	click at given position	click to SERP, NDCG, etc.		
context	SERP features χ and results on the first $k-1$ positions \boldsymbol{b}_{k-1}	SERP features χ		
number of actions	low – typically a few possible actions	increasing significantly with SERP length <i>K</i>		
reward interpretation	CTR at the first position, almost meaningless otherwise	expresses target SERP business metrics		
purpose	training models	evaluation of target metric		

Vertical Search Blending Induced Sanity Check

N examples

$$R_k^{\text{CTR}} = rac{S_1 + S_2 + \dots + S_k}{N} o \text{sanity check: } \hat{R}_1^{\text{CTR}} \leq \hat{R}_2^{\text{CTR}} \leq \dots \leq \hat{R}_K^{\text{CTR}}$$

Evaluation Setup

- training DM, DRO, IPS using Vowpal Wabbit in per position setup
- per-position SERP composition
- evaluation SNIPS estimate of trained models + logging and random policies
- sanity checks non-decreasing CTR, $C \rightarrow 1$
- evaluated metrics CTR, average NDCG
- trade-off parameter K

Result - SNIPS Estimates of Metrics on SERP

Policy	K=1			K=2		K=3			
	С	\hat{R}_1^{CTR}	$\hat{R}_1^{ ext{NDCG}}$	С	\hat{R}_2^{CTR}	$\hat{R}_2^{ ext{NDCG}}$	С	$\hat{R}_3^{ ext{CTR}}$	$\hat{R}_3^{ m NDCG}$
DM	0.922	0.435	0.382	1.046	0.523	0.435	3.646	$0.487 < \hat{R}_2^{CTR}$	0.360
DR	0.837	0.445	0.393	0.902	0.535	0.449	2.971	$0.487 < \hat{R}_2^{ ilde{C}TR}$	0.364
IPS	0.020	0.408	0.343	0.013	0.639	0.509	0.015	$0.632 < \hat{R}_2^{\rm CTR}$	0.493
Random	0.480	0.404	0.351	0.406	0.474	0.377	0.626	0.499	0.368
Logging	1.000	0.433	0.379	1.000	0.526	0.434	1.000	0.571	0.458
YM	?	?	?	?	?	?	?	?	?

Concluding Remarks

- off policy evaluation as viable alternative / complement to A/B testing
- policy evaluation is not for free
 - A/B testing
 - needed randomization (exploration) of logging policy
- validity issue and importance of sanity checks
- outlined off-policy learning
- vertical search blending data-set available at

https://github.com/seznam/vertical-search-blending-dataset

References

Miroslav Dudik, John Langford a Lihong Li. "Doubly Robust Policy Evaluation and Learning". In: *Proceedings of the 28th ICML*, ICML'11. Bellevue, Washington, USA: Omnipress, 2011, s. 1097–1104, ISBN: 978-1-4503-0619-5.

Alexandre Gilotte et al. "Offline A/B Testing for Recommender Systems". In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. WSDM '18. Marina Del Rey, CA, USA: ACM, 2018.

Thorsten Joachims a Adith Swaminathan. "SIGIR Tutorial on Counterfactual Evaluation and Learning for Search, Recommendation and Ad Placement". In: *Proceedings of the 39th International ACM SIGIR*. ACM, 2016.

Thorsten Joachims, Adith Swaminathan a Tobias Schnabel. "Unbiased learning-to-rank with biased feedback". In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM. 2017, s. 781–789.

Damien Lefortier et al. "Large-scale Validation of Counterfactual Learning Methods: A Test-Bed". In: CoRR abs/1612.00367 (2016). arXiv: 1612.00367.

Lihong Li et al. "Counterfactual estimation and optimization of click metrics in search engines: A case study". In: Proceedings of the 24th International Conference on WWW. ACM. 2015, s. 929–934.

Pavel Prochazka et al. "Vertical Search Blending: A Real-world Counterfactual Dataset". In: Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR'19. Paris, France: ACM, 2019, s. 1237–1240. URL: http://doi.acm.org/10.1145/3331184.3331345.

Adith Swaminathan a Thorsten Joachims. "The self-normalized estimator for counterfactual learning". In: Advances in Neural Information Processing Systems. 2015, s. 3231–3239.

https://kariera.seznam.cz/

Thanks for attention

Comments & Questions?