Population Based Training of Neural Networks

Max Jaderberg, Valentin Dalibard, Simon Osindero DeepMind

arXiv:1711.09846

Information & Intelligence System Lab.

Sang Heon Lee

lawlee1@naver.com

2019/01/11

Introduction

- Hyperparameter of Model
 - Hyperparameters must be properly tuned to fully unlock network performance
 - Tuning process is computationally expensive → Hyperparameter search methods
- Hyperparameter search methods
 - Parallel search
 - Training models with diff. hyperparameters in parallel, select the best one
 - Require a lot of computational resources
 - Sequential optimization
 - Using information obtained from earlier training runs
 - Require a lot of time

Introduction (Cont'd)

- Present simple hyperparameter searching methods
 - Bridges between parallel search and sequential optimization methods
 - Population Based Training (PBT)
 - Based on genetic algorithm
 - Information sharing across a population
 - Transfer **parameters** and **hyperparameters** between members of the population

Related Works

- Optimization : Exploitation vs. Exploration
 - Exploitation : choose the best point until now
 - Exploration : choose a new point to get more information
 - Trade-off relations : the proper control of these two behaviors is core

EXPLOITATION & EXPLORATION

Related Works (Cont'd)

- Sequential optimization : Bayesian Optimization
 - Utilize the information of previous trial points
 - Goal is finding $\mathbf{x}^* = \arg \max f(\mathbf{x})$
 - Approximate expensive function f using a probabilistic surrogate model

Algorithm 1 Bayesian optimization

- 1: **for** $n = 1, 2, \dots$ **do**
- select new \mathbf{x}_{n+1} by optimizing acquisition function α

$$\mathbf{x}_{n+1} = \underset{\mathbf{x}}{\operatorname{arg\,max}} \ \alpha(\mathbf{x}; \mathcal{D}_n)$$

- query objective function to obtain y_{n+1}
- augment data $\mathcal{D}_{n+1} = \{\mathcal{D}_n, (\mathbf{x}_{n+1}, y_{n+1})\}\$
- update statistical model
- 6: end for
- Require a lot of time to find the best solution

Related Works (Cont'd)

Parallel search : Random search

- Waste computation on bad hyperparameters
- Fails to utilize the information of history
- Hyperband (Li et al., 2016)
 - Allocate more budget to more promising hyperparameter configurations
 - Has same problem as random search

Proposed Method

- Start with random search
- Allow workers to share information
- Workers can **exploit** for model selection, and **explore** new hyperparameters
- Genetic algorithm acting on a timescale which allows gradient based learning

- Randomly initialize model weights
- Randomly initialize hyperparameters from a prior distribution

Population Based Training (PBT)

Allow training for enough steps

• Population Based Training (PBT)

Exploit

- Each workers compares its performance to the population. If bad, abandon it and replace the model and hyperparameter with better worker
- Binary tournament random two, better wins
- Truncation selection if in bottom 20%, replace with top 20%

- Explore
 - Mutate the hyperparameters that were replaced
 - **Perturb** randomly perturbed by a factor e.g. 1.2
 - Resample resampled from the initial prior distribution defined

- Step: perform steps of regular gradient-based training
- Exploit: if worker is bad, then replace it with better partial model
- Explore: mutate hyperparameters that replaced
- Repeat

- Combines model optimization and hyperparameter refinement
- Exploit can optimize for non-differentiable & expensive metrices
 - accuracy on test set, BLEU scores, human normalized performance, ...
- All workers benefit from the exploration luck

Experiments

- Apply PBT to 3 diff. learning problems
 - RL (Reinforcement Learning), MT (Machine Translation)
 GAN (Generative Adversarial Networks)
- 1. Deep Reinforcement Learning
 - Training of neural network agent with RL
 - Find a policy π to maximize expected episodic reward $E_{\pi}[R]$
 - 3 Tasks and models
 - DeepMind Lab, *UNREAL* (Jaderberg et al., 2016)
 - Atari games, *Feudal Networks* (Vezhnevets et al., 2017)
 - StarCraft 2, A3C baseline agents (Vinyals et al., 2017)

1. Deep Reinforcement Learning

- Hyperparameters
 - learning rate, entropy cost, unroll length, intrinsic reward cost
- Step
 - Step of gradient descent with RMSProp
- Eval
 - Last 10 episodic rewards
- Ready
 - between $10^6 \sim 10^7$ agent steps have elapsed
- Baseline
 - Random search with the same number of workers

1. Deep Reinforcement Learning

2. Machine Translation

- Transformer networks (Vaswani et al., 2017), English to German on WMT 2014
- 32 workers with 400*10³ steps
- Hyperparameters
 - learning rate, attention dropout, layer dropout, ReLU dropout rates
- Step: step of Adam
- Eval: **BLEU score** on WMT *newstest2012* dataset
- Exploit : binary tournament
- Explore : **perturb** (1.2 or 0.8)
- Baseline model : highly optimized hyperparameter values
 - Result of hand tuning and Bayesian Optimization

2. Machine Translation

- 3. Generative Adversarial Networks
 - Model: DCGAN (Radford et al., 2016) CIFAR trained
 - Hyperparameters
 - G's learning rate, D's learning rate
 - Eval
 - Inception score: IS(G) = exp (E_{x~p_g} D_{KL}(p(y|x) || p(y))) Good G → low of p(y|x), high of p(y) → high of IS(G)
 Outputs of pretrained CIFAR classifier
 - Exploit : **both** (binary tournament, truncation selection)
 - Explore : **perturb** (2.0 or 0.5)
 - 45 workers
 - Baseline model: Best among hand-design annealing strategies

3. Generative Adversarial Networks

GAN results

Ablation study

Conclusion

- Proposed Population Based Training (PBT)
 - Based on Genetic algorithm
 - Bridges between parallel search and sequential optimization methods
 - Optimize over weights and hyperparameters jointly
 - Improvements in accuracy, stability across a wide range of domains
 - Discovers an adaptive schedule rather than fixed set of hyperparameters