Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №7 ПРОВЕРКА ГИПОТЕЗЫ О ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ. МЕТОД ХИ-КВАДРАТ.

Студент группы 3630102/70301

Камянский Д.В.

Преподаватель

Баженов А. Н.

Содержание

1.	. Список таблиц	. 3					
2.	. Постановка задачи	. 4					
3. Теория							
	3.1. Метод максимального правдоподобия	. 4					
	3.2. Критерий согласия Пирсона	. 4					
4.	. Реализация	. 5					
5.	. Результаты	. 5					
	5.1. Метод максимального правдоподобия	. 5					
	5.2. Критерий Пирсона	. 5					
	5.3. Проверка гипотезы о нормальности для распределения Лапласа	. 6					
6.	. Выводы	. 6					
7.	. Список литературы	. 6					
8.	. Приложения	. 6					

1 Список таблиц

1	Таблица вычислений χ^2	5
2	Таблица вычислений χ^2	6

2 Постановка задачи

Необходимо сгенерировать выборку объемом 100 элементов для нормального распределения N(x;0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x, \mathring{\mu}, \mathring{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ . В качестве ровня значимости взять $\alpha=0,05$. Привести таблицу вычислений χ^2 .

3 Теория

3.1 Метод максимального правдоподобия

Метод максимального правдоподобия – метод оценивания неизвестного параметра путём максимимзации функции правдоподобия.

$$\hat{\theta}_{\text{MII}} = argmax \mathbf{L}(x_1, x_2, \dots, x_n, \theta) \tag{1}$$

Где **L** это функция правдоподобия, которая представляет собой совместную плотность вероятности независимых случайных величин X_1, x_2, \ldots, x_n и является функцией неизвестного параметра θ

$$\mathbf{L} = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \dots \cdot f(x_n, \theta) \tag{2}$$

Оценкой максимального правдоподобия будем называть такое значение $\hat{\theta}_{\text{MH}}$ из множества допустимых значений параметра θ , для которого функция правдоподобия принимает максимальное значение при заданных x_1, x_2, \ldots, x_n .

Тогда при оценивании математического ожидания m и дисперсии σ^2 нормального распределения $N(m,\sigma)$ получим:

$$\ln(\mathbf{L}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - m)^2$$
(3)

Отсюда находятся выражения для оценок m и σ^2 :

$$\begin{cases}
 m = \bar{x} \\
 \sigma^2 = s^2
\end{cases}$$
(4)

3.2 Критерий согласия Пирсона

Разобьём генеральную совокупность на k неперсекающихся подмножеств $\Delta_1, \Delta_2, \ldots, \Delta_k, \ \Delta_i = (a_i, a_{i+1}], \ p_i = P(X \in \Delta_i), \ i = 1, 2, \ldots, k$ – вероятность того, что точка попала в iый промежуток.

Так как генеральная совокупность это \mathbb{R} , то крайние промежутки будут бесконечными: $\Delta_1 = (-\infty, a_1], \ \Delta_k = (a_k, \infty), \ p_i = F(a_i) - F(a_{i-1})$

 n_i – частота попадания выборочных элементов в $\Delta_i,\ i$ = $1,2,\ldots,k$.

В случае справедливости гипотезы H_0 относительно частоты $\frac{n_i}{n}$ при больших n должны быть близки к p_i , значит в качестве меры имеет смысл взять:

$$Z = \sum_{i=1}^{k} \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 \tag{5}$$

Тогда

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$
 (6)

Для выполнения гипотезы H_0 должны выполняться следующие условия:

$$\chi_B^2 < \chi_{1-\alpha}^2(k-1) \tag{7}$$

где $\chi^2_{1-\alpha}(k-1)$ – квантиль распределения χ^2 с k-1 степенями свободы порядка $1-\alpha$, где α заданный уровень значимости.

4 Реализация

Работы была выполнена на языке Python 3.8.2 Для генерации выборок использовался модуль . Для генерации выборок и обработки функции распределения использовалась библиотека scipy.stats.

5 Результаты

5.1 Метод максимального правдоподобия

При подсчете оценок параметров закона нормального распределения методом максимального правдоподобия были получены следующие значения:

$$\hat{m}_{\rm MII} = 0.090527 \\ \hat{\sigma}_{\rm MII}^2 = 0.963167$$
 (8)

5.2 Критерий Пирсона

Таблица 1: Таблица вычислений χ^2

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.0]$	15	0.1288	0.3501
2	(-1.0, -0.5)	10	0.1411	1.1988
3	(-0.5, 0.0)	24	0.1927	1.1634
4	(0.0, 0.5)	19	0.2021	0.0721
5	(0.5, 1.0)	13	0.1629	0.6626
6	$(1.0,\infty)$	19	0.1725	0.1771
Σ		100	1	3.6241

$$\chi_B^2 = 3.6241$$

5.3 Проверка гипотезы о нормальности для распределения Лапласа

Размер выборки n=25 для распределения Лапласа

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}\tag{9}$$

$$\hat{m}_{\rm M\Pi} = 0.198045
\hat{\sigma}_{\rm M\Pi}^2 = 0.656187$$
(10)

Таблица 2: Таблица вычислений χ^2

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.0]$	1	0.0339	0.027
2	(-1.0, 0.0)	12	0.3475	1.2641
3	(0.0, 1.0)	8	0.5078	1.7359
4	$(1.0, \infty)$	4	0.1108	0.5454

$$\chi_B^2 = 3.5725$$

6 Выводы

Табличное значение квантиля $\chi^2_{1-\alpha}(k-1)=\chi^2_{0.95}(5)=11.0705$. Полученное значение критерия согласия Пирсона для нормального распределения $\chi^2_B=3.6241<\chi^2_{0.95}(5)$, следовательно основная гипотеза H_0 на исходной выборке не может быть отвергнута на уровне значимости $\alpha=0.05$.. Для распределения Лапласа полученное значение критерия Пирсона $\chi^2_B=3.5725<\chi^2_{0.95}(3)=7.8147$ означает что из полученной выборки мы не можем отвергнуть гипотезу H_0 о нормальности исходного распределения. Такой результат легко объясним низким размером выборки, так как интервалы в которых мы оцениваем распределение получаются слишком большими, на которых распределение Лапласа очень схоже с нормальным.

7 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [3] Таблица значений χ^2 http://statsoft.ru/home/textbook/modules/sttable.html#chi

8 Приложения

Код лаборатрной: https://github.com/dkamianskii/MatStatLabs/tree/master/Lab7