

FIG. 1

FIG. 3

TYPICAL DRAW-THRU UNIT

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION,
METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT
EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC
PHONE: 954-454-3650

3 / 35

TRADITIONAL FAN PERFORMANCE CURVES

FIG. 5

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION,
METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT
EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC
PHONE: 954-454-3550

FIG. 6

TYPICAL WIDE OPEN CURVE FOR AN FC FAN

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION,
METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT
EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC

PHONE: 954-454-3650

WIDE OPEN AND SYSTEM CURVES JUXTAPOSED

FIG. 7
KNOWN PRIME MOVER WOC

UNKNOWN TOTAL SYSTEM ATTACHED

FIG. 7A

TERMINAL OR IN-LINE DEVICE WOC

3

UNKNOWN SUB-SYSTEM ATTACHED

9 / 35

0 DEGREES OR
100% OPEN

PRIMARY OR TERMINAL HEAT EXCHANGE

**FIG. 8
AIR TO WATER**

**FIG. 8A
WATER TO WATER**

**FIG. 8B
AIR TO AIR**

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION, METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC
PHONE: 954-454-3550

8

ENTERING AND LEAVING AIR TEMPERATURES IN COUNTER FLOW EXCHANGER

AIR-GAS-FLUIDS TO SAME FLUIDS TO FLUIDS GASES TO GASES FLUIDS TO GASES, VICE VERSA MIXTURES TO MIXTURES (ALL OF THE ABOVE)

*VARIATIONS WOULD INCLUDE THE FOLLOWING IN ANY ARRANGEMENT, FORM, NUMBER, OR COMBINATION:

CHW/HW TEMP. (IN/OUT)
WETBULB SENSORS
AIR IN/OUT (TOTAL HEAT)
DRYBULB SENSORS (SENSIBLE ONLY)

FIG. 9

MAIN PANEL DISPLAY

6

*TOTAL STATIC PRESSURE AS WITH TRADITIONAL PERFORMANCE CURVES, WHERE TP=SP
OP - OPERATING POINT (CENTER)

*TOTAL STATIC PRESSURE AS WITH TRADITIONAL PERFORMANCE CURVES, WHERE TP=SP
OP - OPERATING POINT (CENTER)

6

*TOTAL STATIC PRESSURE AS WITH TRADITIONAL PERFORMANCE CURVES, WHERE TP=SP
OP - OPERATING POINT (CENTER)

FIG. 10 3-PART SYSTEM CURVES VIEWED INDEPENDENTLY

6

TO DETERMINE ACTUAL OP, CURVES MUST BE VIEWED IN THE CONTEXT OF A KNOWN PRIME MOVER OR PASSIVE DEVICE.

Vp

15 / 35

THE RIGHT DEPICTS X/Y COORDINATE POINTS AS MAY BE DETERMINED BY AFFINITY LAWS. THEY WOULD BEGIN FROM A KNOWN STARTING POINT, FOR EXAMPLE A MEASURED PRESSURE READING, OR A DESIGN OP ESTABLISHED BY AN ENGINEER THROUGH REFERENCE MATERIALS. THE UNKNOWNS (REMAINDER OF THE CURVE) MAY BE PLOTTED AS GOVERNED BY AFFINITY LAWS.

TP

FIG. 11

TERMINAL DEVICE (WOC) WIDE OPEN CURVE

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION,
METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT
EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC

PHONE: 854-454-3550

CURVE RIDING AND OP DEVIATION

FIG. 12

PRIME MOVER CHANGES

ROTATIONAL SPEED

SECONDARY MOVER

SERIES OR PARALLEL
OPERATION

FIG. 12A

SYSTEM CHANGES

TP SP V_p

FIG. 13

SENSOR LOGIC

DUCT CROSS-SECTIONAL EQUAL AREA TRAVERSE

TOTAL IMPACT SENSORS

STATIC ONLY SENSORS

VELOCITY ONLY SENSORS

TP-SP, AS WITH PITOT TUBE

PRIME MOVER SENSOR LOGIC

19 / 35

FIG. 14

FIG. 14A

FIG. 14B

20 / 35

MOVER SENSOR LOGIC IN SERIES OR PARALLEL OPERATION

FIG. 14C

SERIES OPERATION

ONE OR MORE PRIMARY MOVERS IN SERIES OR PARALLEL
AUGMENT EITHER SP OR V_p, RESPECTIVELY, AS SHOWN.

FIG. 14D

PARALLEL OPERATION

21 / 35

TERMINAL DEVICE SENSOR LOGIC

FIG. 15A

FIG. 15B

22 / 35

TERMINAL DEVICE SENSOR LOGIC WITH SECONDARY MOVER

FIG. 15C
SERIES OPERATION

ONE OR MORE SECONDARY MOVERS IN SERIES OR PARALLEL
AUGMENT EITHER SP OR Vp, RESPECTIVELY, AS SHOWN.

FIG. 15D
PARALLEL OPERATION

DUAL DAMPER CONTROL IN SERIES AND PARALLEL

PRIMARY DAMPER CONTROLS STATIC PRESSURE
AND TOTAL PRESSURE FROM PRIME MOVER IN TANDEM
WITH MOTOR/DRIVE SPEED CONTROL.

FIG. 16

SECONDARY DAMPER CONTROLS FLOW RATE
DOWNSTREAM AFTER DESIRED TOTAL POWER
IS ADJUSTED.

LONG RUNS, MINIMAL FITTINGS

PARALLEL DAMPER AND FLOW
SOURCE PROVIDES CUMULATIVE
VELOCITY TO TRAVERSE FITTING
AND DIRECTIONAL LOSSES

FIG. 16A

PRIMARY DAMPER PROVIDES
CRITICAL RUN LEVERAGE IN
TANDEM WITH MOTOR/DRIVE
SPEED CONTROL.

7

EXCESSIVE BENDS AND FITTINGS

LEAKAGE TESTER

SP LEVEL ADJUSTED TO
DUCTWORK RATING TO
PERFORM STANDARD
TEST FOR GIVEN SECTION

FIG. 17

VP CURVE LEVEL OFF INDICATES
LEAKAGE AMOUNT PER SURFACE
AREA OF DUCT

FIG. 17A MAINTAIN THIS LEVEL

OUTLETS/INLETS AND OTHER
JOINTS MAY BE CAPPED IN A
NEW OR EXISTING SYSTEM THAT
HAS ALREADY BEEN FITTED. THIS
MAY BE VIEWED AS A TOTAL OR
TERMINAL SYSTEM WITH ITS OWN
PRE-ESTABLISHED CURVE. LEAKAGE
(INCREASES) FROM A FIRMLY
ESTABLISHED OPERATING POINT.
SEE FIG. 12, 12A, OP DEVIATION.

24 / 35

25 / 35

VOLUME OF A GIVEN VESSEL OR ENCLOSURE

FIG. 18

PRIME MOVER AND FLOW METERING
DEVICE WITH KNOWN CHARACTERISTICS
AS ESTABLISHED BY SAME METHOD

VECTORIAL DISPLAY

FIG. 19

VECTORIAL ANALYSIS - TOTAL SYSTEM TO SUB-SYSTEM

TOTAL SYSTEM OP

FIG. 19A

TERMINAL BRANCH OP

27 / 35

SHOWN HERE, A CORRELATIVE EFFECT BETWEEN A TOTAL SYSTEM AND ITS SUB-BRANCH AS THE CHANGE IN ONE AFFECTS THE OTHER, EITHER ADVERSELY OR BENEFICIALLY. THE VECTATIONAL ANALYSIS PROVIDES A "BARE BONES" DEPICTION OF EACH SPECIFIC CHANGE EFFECTED IN ONE OR THE OTHER SYSTEM. FOR EXAMPLE, THERE WAS AN X INCREASE IN BHP WHEN A DAMPER WAS CLOSED IN THE SUB-BRANCH.

SWITCH TO OR FROM MAIN
VECTORIAL DISPLAY SCREEN
REFER TO FIG. 9

INV. TITLE: FULLY ARTICULATED AND COMPREHENSIVE AIR AND FLUID DISTRIBUTION,
METERING, AND CONTROL METHOD AND APPARATUS FOR PRIMARY MOVERS, HEAT
EXCHANGERS, AND TERMINAL FLOW DEVICES.

INV. NAME: DANIEL STANIMIROVIC
PHONE: 954-454-3550

FIG. 20

SYSTEM DIVERSITY

INDEPENDENT SYSTEM CURVES (PRESSURE / HEAD)

