

# 浙江大学爱丁堡大学联合学院 ZJU-UoE Institute

## Lecture 10 - Machine learning in image analysis

Nicola Romanò - nicola.romano@ed.ac.uk

#### Plan for the next weeks

- Week 8 Traditional ML approaches in image analysis
- Week 9 Convolutional neural networks (CNN)
- Week 10 CNN architectures
- Week 11 Practical aspects of using CNNs.

#### Learning objectives

- Describe use cases for machine learning in image analysis
- Describe the different types of machine learning algorithms
- Use Python to implement supervised and unsupervised ML algorithms for image analysis





#### How can machine learning help?

Some example tasks that can be solved through ML

· Classification of images



ISIC melanoma classification competition. Many different solutions, including neural networks, support vector machines, deep learning...

#### How can machine learning help?

Some example tasks that can be solved through ML

- · Classification of images
- Classification of pixels (segmentation)



Cao et al. 2019, Classification of glomerular basament membrane using Random Forests.

#### How can machine learning help?

Some example tasks that can be solved through ML

- · Classification of images
- Classification of pixels (segmentation)
- "Prediction" of images



Wu et al., 2019 - Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning

# The general process



# Supervised vs unsupervised ML

# Unsupervised



# Supervised vs unsupervised ML





## **Supervised vs unsupervised ML**





# Unsupervised learning

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).

### **Unsupervised learning**

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).

k-means for segmentation (see Lecture 7)



#### **Unsupervised learning**

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).



Bhaskar et al, 2019

Dimensionality reduction methods map  $Y = f(x_1, x_2, ..., x_n)$  to  $Y = f(DR_1, ..., DR_m)$  with m < n.

They include linear transformations, such as PCA (principal component analysis), and nonlinear transformations, such as t-SNE (t-distributed stochastic neighbor embedding) or UMAP (uniform manifold approximation).

#### A simple example...

Let's use t-SNE to classify handwritten digits!

We are going to use the UCI digits dataset, by E. Alpaydin and C. Kaynak, containing 1797 8x8 images of handwritten digits from 0 to 9.

It's a simple yet large dataset useful for quick image analysis tests!





## **Supervised learning**

Many different supervised learning algorithms have been used for image analysis.

#### Commonly used:

- · Logistic regression
- Support vector machines (SVM)
- · Random forests (RF)
- Neural networks (Lecture 11)
- Convolutional neural networks (Lectures 12 and beyond)

## Supervised learning algorithms - Logistic regression



Logistic regression is a simple supervised learning algorithm that is used to predict the class of a given data point.

It is mostly used to predict binary outcomes but can be extended to multi-class classification (multinomial logistic regression).

## Supervised learning algorithms - support vector machines



A support vector machine (SVM) uses a linear decision boundary to classify data points. It determines the optimal hyperplane that separates the data points into two classes.

#### **Random forest**



Random forest is an ensemble method for classification and regression.

It classifies samples using many binary trees, fitted on various sub-samples of the dataset. A majority votes from these trees decides the outcome. This improves prediction accuracy and controls over-fitting.

#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



In ML, we often describe this in terms of bias and variance errors.

#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



In ML, we often describe this in terms of bias and variance errors.

- Bias derives from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).
- **Variance** derives from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the random noise in the training data (overfitting).

(Adapted from Wikipedia)

#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



#### **Data splitting**

In order to avoid overfitting we can split our dataset in three parts:

- Training set used to train the model
- **Validation set** used to estimate model performance during training or while tuning the model hyperparameters. Especially important for neural network.
- Test set used to test the trained model



#### The training process



We will explore this more in details in the upcoming lectures!

#### Supervised learning handwritten digits

We will use the handwritten digits dataset again, but this time we will train a supervised model (SVM) to predict the class of the digit.

A selection from the 64-dimensional digits dataset

