LOG8470 Méthodes formelles en fiabilité et sécurité

II. Analyse des réseaux de Petri

John Mullins

Dép. de génie informatique et de génie logiciel École Polytechnique de Montréal

John.Mullins@polymtl.ca

2018 - 2019

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- Les réseaux de Petri colorés

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- 6 Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- 6 Les réseaux de Petri colorés

Illustration : La réaction $2H_2 + O_2 \longrightarrow 2H_2O$

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- 6 Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- 6 Les réseaux de Petri colorés

Syntaxe

- Un réseau est un triplet N = (P, T, W) où :
 - P est un ensemble de places
 - *T* est un ensemble de transitions t.q. $P \cap T = \emptyset$
 - $W: P \times T \cup T \times P \rightarrow \mathbb{N}$ est une fonction de valuation des arcs
 - W(p,t) > 0: arc de $p \ge t$
 - W(t,p) > 0: arc de t à p
 - W(p, t) = W(t, p) = 0: sinon
- Un marquage de N est une fonction $M: P \to \mathbb{N}$
- $\mathcal{N} = (N, M_0)$ est un réseau de Petri si N est fini et M_0 est un marquage de N

Syntaxe

Soit $\mathcal{N} = (P, T, W, M_0)$, un réseau de Petri.

• pre : $P \times T \to \mathbb{N}$ la restriction de W à $P \times T$ (pre(p, t) = W(p, t))

$$^{ullet} t = \{ p \in P : \mathit{pre}(p,t) > 0 \}$$

est la pré-condition de $t \in T$:

• $post : P \times T \rightarrow \mathbb{N}$ la restriction de W à $T \times P$ (post(p, t) = W(t, p))

$$t^{\bullet} = \{ p \in P : post(p, t) > 0 \}$$

est la post-condition de $t \in T$

Sémantique

• Une transition t est tirable d'un marquage M ($M \xrightarrow{t}$) si

$$\forall_{p \in P} M(p) \ge pre(p, t)$$

• Si $M \xrightarrow{t}$ alors si t est tirée, M se transforme en M' $(M \xrightarrow{t} M')$:

$$\forall_{p \in P} M'(p) = M(p) - pre(p, t) + post(p, t)$$

• Pour $\sigma = t_1 t_2 \dots t_n \in T^*$, $M \xrightarrow{\sigma} M'$ si

$$M = M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \cdots \xrightarrow{t_n} M_n = M'$$

Si un tel σ existe, M' est accessible de M ($M' \in \mathcal{R}(N, M)$)

Sémantique

Le graphe d'accessibilité de $\mathcal{N} = (N, M_0)$:

- Sommets : $V = R(N, M_0)$
- Arcs étiquetées : $L: V \times V \rightarrow T$ t.q.

$$L(M, M') = t \operatorname{ssi} M \xrightarrow{t} M'$$

Exercice

Considérez le réseau de Petri suivant :

Construisez le graphe des marquages accessibles.

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- 6 Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- 6 Les réseaux de Petri colorés

Propriétés

Soit $\mathcal{N} = (P, T, W, M_0)$, un réseau de Petri.

- k-borné ssi $\forall M \in R(N, M_0), \forall p \in P, M(p) \leq k$
- borné ss'il existe $k \in \mathbb{N}$ t.q. \mathcal{N} est k-borné
- vivace ssi $\forall M \in R(N, M_0), \forall t \in T, \exists s \in T^*, M \xrightarrow{s} M' \xrightarrow{t}$
- quasi-vivace ssi $\forall t \in T, \exists M \in R(N, M_0) : M \xrightarrow{t}$
- pseudo-vivace (sans blocage) ssi $\forall M \in R(N, M_0), \exists t \in T : M \xrightarrow{t}$

Ni pseudo-vivace, ni quasi-vivace, ni vivace

Quasi-vivace mais ni pseudo-vivace, ni vivace

Pseudo-vivace, mais ni quasi-vivace, ni vivace

Pseudo-vivace et quasi-vivace, mais pas vivace

Pseudo-vivace, quasi-vivace et vivace

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- 6 Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- 6 Les réseaux de Petri colorés

Construction du graphe des marquages

```
S := \{M_0\}; // Ensemble des sommets
A: = \emptyset: // Ensemble des arcs
Répéter
   Pour chaque marquage M \in S Faire
          Pour chaque transition t telle que M \stackrel{t}{\longrightarrow} Faire
                 M' := M - (Pre(p, t))_{p \in P} + (Post(p, t))_{p \in P};
                 Si M' \notin S alors S := S \cup \{M'\};
                 A := A \cup \{M \xrightarrow{t} M'\};
          // Fin du Pour
   // Fin du Pour
Jusqu'à stabilisation de S
Retourner (S, A);
```

Graphe des marquages

Théorème

Un réseau de Petri est vivace ssi toute CFC terminale de $R(N, M_0)$ contient toutes les transitions $t \in T$.

Réseaux de Petri non-bornés : graphe de couverture

- La racine est étiquetée par M₀
- Soit $\cdot \xrightarrow{t} M$ t.q.

John Mullins (Professeur)

 $\exists M': M' < M \text{ et } M' \text{ déjà visité depuis } M_0$

alors

$$M(p) = \begin{cases} \omega & \text{si } M'(p) < M(p) \\ \text{règles usuelles étendues sinon} \end{cases}$$

• $\omega = \omega + n = n + \omega = \omega - n$ et $n < \omega < \omega$

Graphe de couverture $C(N, M_0)$

- M est couvert par M' si $M \le M'$
- Tout sommet $M \in R(N, M_0)$ est couvert par un sommet $M' \in C(N, M_0)$
- La réciproque n'est pas vraie

• Tout sommet $M' \in C(N, M_0)$ couvre un sommet $M \in R(N, M_0)$

Graphe de couverture $C(N, M_0)$

Théorème

- Un réseau de Petri est quasi-vivace ssi ttes les transitions apparaissent $C(N, M_0)$
- \odot Si $C(N, M_0)$ contient une CFC terminale qui ne contient pas toutes les transitions alors le RdP n'est pas vivace
- Si C(N, M₀) contient un sommet sans successeur alors le RdP admet un blocage

Exemple

- Version 1 sans blocage
- Version 2 avec blocage

Où en sommes nous?

Que peut-on faire exactement avec les GA et les GC?

- Calculer l'accessibilité dans le GA (si le calcul se termine)
- Surapproximer l'accessibilité dans le GC (dans le cas infini)
- Vérifier
 - Les 3 vivacité dans le GA (si le calcul se termine)
 - Critères nécessaires mais pas suffisant dans le GC
 - \odot des spécifications LTL dans $R(N, M_0)$

Le problème

Comment obtenir de l'information exacte sans calculer $R(N, M_0)$?

L'objectif

Se concentrer sur la structure du réseau

La méthodologie : L'algèbre linéaire

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- 6 Les réseaux de Petri colorés

$$Pre = \left(\begin{array}{ccc} 5 & 1 & 5 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

$$\textit{Post} = \left(\begin{array}{ccc} 0 & 0 & 4 \\ 2 & 2 & 0 \\ 0 & 3 & 0 \end{array} \right)$$

$$C = \begin{pmatrix} -5 & -1 & -1 \\ 2 & -1 & 0 \\ 0 & 3 & -5 \end{pmatrix} \quad M_0 = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

• t_b est tirable de M_0 : $Pre(_, t_b) \le M_0$

$$\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \le \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

• $M' = M_0 + Post(-, t_b) + Pre(-, t_b) = M_0 + C(-, t_b)$

$$M' = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} + \begin{pmatrix} -5 & -1 & -1 \\ 2 & -1 & 0 \\ 0 & 3 & -5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

Équation fondamentale

Soit $s = t_1 t_2 \dots t_n$ tirable de M alors

$$M' = M + C\overline{s}$$

avec $\overline{s}: T \to \mathbb{N}$ (Vecteur caractéristique) où $\overline{s}(t) = \text{le nombre d'occurrences de } t \text{ dans } s.$

Exemple

Soit
$$M = \begin{pmatrix} 8 \\ 3 \\ 2 \end{pmatrix}$$
. $s = t_b t_c t_a t_b$ est tirable de M

$$M' = \begin{pmatrix} 8 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} -5 & -1 & -1 \\ 2 & -1 & 0 \\ 0 & 3 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Définition

Un invariant de place est une solution de l'équation

$$X^{\top}\cdot C=0$$

Propriété essentielle

- s, une séquence tirable de transitions
- i^{\top} , un invariant de place

$$\begin{array}{ccc}
M \xrightarrow{S} M' & \Leftrightarrow & M' = M + C \cdot \overline{S} \\
\Leftrightarrow & i^{\top} \cdot M' = i^{\top} \cdot M + \underbrace{i^{\top} \cdot C}_{=(0,0,\dots,0)} \cdot \overline{S} \\
\Leftrightarrow & i^{\top} \cdot M' = i^{\top} \cdot M
\end{array}$$

Exemple

$$i_1^{\top} = (0, 1, 0, 1, 1)$$

$$M(p_2) + M(p_4) + M(p_5) = M_0(p_2) + M_0(p_4) + M_0(p_5) = 1$$

$$i_2^{\top} = (1,0,0,1,0)$$

$$M(p_1) + M(p_4) = M_0(p_1) + M_0(p_4) = 1$$

$$i_3^{\top} = (0,0,1,0,1)$$

$$M(p_3) + M(p_5) = M_0(p_3) + M_0(p_5) = 1$$

Propriété de bornitude

S'il existe un invariant de place i^{\top} tel que $i^{\top}(p) > 0$ pour toute place p alors le réseau est borné.

Démonstration

$$\begin{array}{ll} \textit{M} \text{ est accessible} & \Rightarrow & i^\top \cdot \textit{M} = \iota^\top \cdot \textit{M}_0 \\ & \Rightarrow & i^\top(\textit{p}) \cdot \textit{M}(\textit{p}) \leq i^\top \cdot \textit{M} = i^\top \cdot \textit{M}_0, \text{pour tout } \textit{p} \\ & \Rightarrow & \textit{M}(\textit{p}) \leq \frac{i^\top \cdot \textit{M}_0}{i^\top(\textit{p})}, \text{pour tout } \textit{p} \end{array}$$

Exemple

 $i_1^{\top} + i_2^{\top} + i_3^{\top} = (1, 1, 1, 2, 2)$ assure la bornitude du réseau.

Définition

Un invariant de transition est une solution de l'équation

$$C \cdot X = 0$$

Propriété essentielle

 $M \xrightarrow{s} M'$ alors M = M' ssi \overline{s} est un invariant de transitions car

$$M + C \cdot \overline{s} = M'$$

Exemple

$$j_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, j_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, j_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

Calcul des invariants : Méthode du pivot de Gauss

Exemple : Le problème des n philosophes (n = 4)

Exemple : Le problème des n philosophes (n = 3)

Exemple : Montrer que le réseau est sans blocage

	C							P-invariants						
	a ₁	a ₂	a 3	<i>b</i> ₁	b_2	<i>b</i> ₃		11	i ₂	İз	<i>i</i> ₄	<i>İ</i> 5	<i>i</i> ₆	
th ₁	-1			1			1	1						
th_2		-1			1		1		1					
th_3			-1			1	1			1				
e_1	1			-1				1			1	1		
e_2		1			-1				1			1	1	
e_3			1,			-1				1	1		1	
f_1	-1		-1	1_		1	, 1				1			
f_2	-1	-1		1	1_		1					1		
f_3		-1	/ 1		1	1	1						1	

FIGURE: La matrice C et une base des solutions du système $X^{\top} \cdot C = 0$

Exemple : Montrer que le réseau est sans blocage

				M_0	P-invariants								
	a ₁	a_2	a_3	<i>b</i> ₁	b_2	b_3		<i>i</i> ₁	i ₂	iз	i ₄	<i>i</i> 5	<i>i</i> ₆
th ₁	-1			1			1	1					
th ₂		-1			1		1		1				
th_3			-1			1	1			1			
e ₁	1			-1				1			1	1	
e_2		1			-1				1			1	1
e_3			1			-1				1	1		1
f_1	-1		-1	1		1	1				1		
f_2	-1	-1		1	1		1					1	
f_3		-1	-1		1	1	1						1

Soit $M \in R(N, M_0)$ quelconque

- \bigcirc Si $\exists_{1 < i < 3} M(e_i) \neq 0$ alors $M \xrightarrow{b_i}$
- Si $\forall_{1 \leq i \leq 3} M(e_i) = 0$ alors $M \xrightarrow{a_1}$ i.e. $M(th_1) \neq 0$, $M(f_1) \neq 0 \neq M(f_2)$ $i_1^{\top} M = M(th_1) + M(e_1) = 1 = i_1^{\top} M_0$ et donc $M(th_1) = 1$
 - $\mathbf{Q} \quad i_4^{\mathsf{T}} \cdot M = M(e_1) + M(e_3) + M(f_1) = 1 = i_4^{\mathsf{T}} \cdot M_0 \text{ et donc } M(f_1) = 1$

 - $\mathbf{i}_5^{\mathsf{T}} \cdot M = M(e_1) + M(e_2) + M(f_2) = 1 = i_5^{\mathsf{T}} \cdot M_0 \text{ et donc } M(f_2) = 1$
- Si $\forall_{1 \le i \le 3} M(e_i) = 0$ alors $M \xrightarrow{a_2}$ et $M \xrightarrow{a_3}$ De la même façon

On a montré l'absence de famine!

Marquage d'accueil

Definition (Marquage d'accueil)

Un réseau de Petri $\mathcal{N}=(N,M_0)$ admet un marquage d'accueil s'il existe $M_a\in R(N,M_0)$ t.q.

$$\forall M \in R(N, M_0) \exists s \in T^* : M \xrightarrow{s} M_a.$$

 M_a est appelé marquage d'accueil.

Proposition

Si $\mathcal{N} = (N, M_0)$ est quasi-vivace et admet M_0 comme marquage d'accueil alors \mathcal{N} est vivace

Lemme de monotonicité

Soit
$$\mathcal{N}=(N,M_0)$$
 et $s\in T^*$. Si $M_1\overset{s}{\longrightarrow} M_2 (=M_1+\Delta)$ et $M_1'\geq M_1$ alors

$$\exists M_2' (= M_2 + \Delta) \geq M_2 : M_1' \stackrel{s}{\longrightarrow} M_2'$$

Norme

Definition (Norme)

 $\mu: R(N, M_0) \to \mathbb{N}$ est une norme pour M_a si pour tout $M \in R(N, M_0)$,

- $\mu(M) = 0 \text{ ssi } M = M_a$
- ② Si $\mu(M) > 0$ alors

 $\exists s \in T^* : M \xrightarrow{t} M' \text{ et } \mu(M') < \mu(M)$

Normes et marquage d'accueil

Keller 1969

Si $M_a \in R(N, M_0)$ alors les propositions suivantes sont équivalentes :

- Il existe une norme pour Ma;
- \bigcirc M_a est un marquage d'accueil de (N, M_0) .

Méthode de preuve que M_a est un marquage d'accueil

- **1** Trouver μ
- Calculer les invariants de place
- **③** Trouver la séquence s qui réduit μ , i.e. qui se rapproche de M_a

Application de la méthode : Contrôleur de robots

Pour usiner un objet :

- Acquérir un robot pour déplacer l'objet (t1)
- Prendre une machine pour usiner (t2): libère le robot

Une fois l'objet usiné :

- Acquérir un robot pour déplacer l'objet (t3) : libère la machine
- 2 Délivrer l'objet (t4) : libère le robot

Application de la méthode : Contrôleur de robots

Invariants de place

$$M(start) + M(p12) + M(p13) + M(p14) = x$$

 $M(machines) + M(p13) = m$
 $M(robots) + M(p12) + M(p14) = r$

On pose:

$$\mu(M) = 3M(p12) + 2M(p13) + M(p14)$$

On montre que μ est une norme pour M_0

 $\Rightarrow \mathcal{N}$ est vivace.

Application de la méthode : Contrôleur de robots

Le cas $\mu(M) > 0$

$$\mu(M) = 3M(p12) + 2M(p13) + M(p14)$$

$$start + p12 + p13 + p14 = x$$
 (1)

$$machines + p13 = m$$
 (2)

$$robots + p12 + p14 = r$$
 (3)

Cas possibles:

- $M(\rho 14) > 0$: Tirer t_4 décroît μ
- M(p14) = 0 < M(p12) :
 - si t2 tirable, μ décroît
 - sinon M(machines) = 0, M(p13) = m, par (2)
 - si t3 tirable, μ décroît
 - sinon M(p12) + M(p14) = r, par (3) et puisque M(p14) = 0 alors M(p12) = r!!
 - Pour éviter ce cas où M(start) = x m r, il faut imposer x < m + r pour avoir un M_a .
- M(p14) = M(p12) = 0 et M(p13) > 0:

$$M(robots) = r \Rightarrow M \xrightarrow{t3}$$

et dans ce cas μ décroît?

Conclusion

Sous la contrainte

$$x < m + r$$

la fonction μ donnée par

$$\mu(M) = 3M(p12) + 2M(p13) + M(p14)$$

définie une norme pour M_0

 $\Rightarrow M_0$ est un marquage d'accueil

$$\Rightarrow$$
 (N, M_0) est vivace

Plan de la partie II

- Approche informelle
- Formalisation du modèle
- Propriétés du comportement
- Vérification des propriétés
- 6 Analyse structurelle
 - Représentation matricielle
 - Invariants
 - Vérification de la sûreté
 - Vérification de la vivacité
- Les réseaux de Petri colorés

Motivation

Exemple (2 clients, 1 serveur)

Modèle trop abstrait du client-serveur

Modèle raffiné du client-serveur

Motivation

Exemple (2 clients, 1 serveur)

Les multi-ensembles

Un multi-ensemble sur un ensemble *A* est un ensemble dans lequel chaque élément a un ordre de multiplicité.

Definition

Soit A un ensemble fini appelé domaine. Un multi-ensemble sur A est une application de A dans \mathbb{N} .

- Exemple : $E = \{\{a; a; b; b; b; c\}\}$.
- $\mathcal{M}(A)$: Ensemble des multi-ensembles sur A
- Représentation de $\mathcal{M}(A)$: $E = \sum_{a \in A} E(a) \cdot a$
- $(\mathcal{M}(A), +)$: (E + F)(a) = E(a) + F(a), pour tout $a \in A$
- $(\mathcal{M}(A), \leq)$: $E \leq F$ ssi $\forall a \in A, E(a) \leq F(a)$

Syntaxe des réseaux de Petri colorés

Definition

Un réseau coloré est un tuple (ClrSet, P, T, Clr, pre, post) où :

- ClrSet est un ensemble fini de couleurs ;
- P est un ensemble de places;
- T est un ensemble de transitions;
- **5** *pre* est une fonction définie sur $P \times T$:

$$pre(p, t) : Clr(t) \rightarrow \mathcal{M}(Clr(p))$$

o post est une fonction définie sur $P \times T$:

$$post(p, t) : Clr(t) \rightarrow \mathcal{M}(Clr(p))$$

Syntaxe des réseaux de Petri colorés (2)

Definition

Un marquage est une application M définie sur $P: M(p) \in \mathcal{M}(Clr(p))$

Example (Généralisation du modèle coloré du client-serveur)

Syntaxe des réseaux de Petri colorés (3)

Example (Généralisation du modèle coloré du client-serveur (2))

$$post = \begin{pmatrix} 0 & \langle x \rangle & 0 & 0 \\ \langle x \rangle & 0 & 0 & 0 \\ 0 & 0 & \langle x \rangle & 0 \\ \langle x \rangle & 0 & 0 & 0 \\ 0 & 0 & \langle y \rangle & 0 \\ 0 & 0 & 0 & \langle x, y \rangle \end{pmatrix} \quad \Longrightarrow$$

$$post(p,t_3)(x,y) = \begin{cases} y & \text{si } p = p_5 \\ x & \text{si } p = p_3 \\ 0 & \text{sinon} \end{cases}$$

Syntaxe des réseaux de Petri colorés (4)

Example (Généralisation du modèle coloré du client-serveur (3))

$$M_0 = \left(egin{array}{c} \langle 1 \rangle + \langle 2 \rangle \\ 0 \\ 0 \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \\ 0 \end{array}
ight)$$

Sémantique des réseaux de Petri colorés

Definition (Tirabilité d'une transition)

 $t \in T$ est *tirable pour* $c \in Clr(t)$ depuis un marquage M si les jetons nécessaires franchir t selon c sont disponibles dans M:

$$\forall p \in P, M(p) \geq pre(p, t)(c)$$

et on note $M \stackrel{(t,c)}{\longrightarrow}$.

Sémantique des réseaux de Petri colorés (2)

Example (Le client-serveur coloré)

$$M_0 = \left(egin{array}{c} \langle 1
angle + \langle 2
angle \ 0 \ 0 \ 0 \ \langle a
angle + \langle b
angle + \langle c
angle \ 0 \ 0 \ 0 \ \end{array}
ight) \geq \left(egin{array}{c} \langle x
angle \ 0 \ 0 \ 0 \ 0 \ 0 \ \end{array}
ight)$$

$$M_0 = \left(egin{array}{c} \langle 1 \rangle + \langle 2 \rangle \\ 0 \\ 0 \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \\ 0 \end{array}
ight)
ot \geq \left(egin{array}{c} 0 \\ \langle x \rangle \\ \langle x \rangle \\ 0 \\ 0 \\ 0 \end{array}
ight)$$

Sémantique des réseaux de Petri colorés (3)

Example (Le client-serveur coloré (2))

$$M_{0} = \begin{pmatrix} \langle 1 \rangle + \langle 2 \rangle \\ 0 \\ 0 \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \end{pmatrix} \not\geq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \langle x, y \rangle \end{pmatrix} \not\Rightarrow \begin{pmatrix} p_{1} \\ \langle 1, 2 \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{1}} \begin{pmatrix} p_{1} \\ \langle 1, 2 \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{1}} \begin{pmatrix} p_{1} \\ \langle 1, 2 \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{1}} \begin{pmatrix} p_{1} \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{2}} \begin{pmatrix} p_{1} \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{3}} \begin{pmatrix} p_{1} \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \\ \langle x \rangle \end{pmatrix} \xrightarrow{p_{3}} \begin{pmatrix} p_{1} \\ \langle x \rangle$$

$$M_0 = \left(egin{array}{c} \langle 1
angle + \langle 2
angle \ 0 \ 0 \ \langle a
angle + \langle b
angle + \langle c
angle \ \end{pmatrix}
ot \geq \left(egin{array}{c} 0 \ 0 \ \langle x
angle \ \langle y
angle \ 0 \ \end{pmatrix}$$

Sémantique des réseaux de Petri colorés (4)

Definition (Franchissement d'une transition)

Lorsque $M \xrightarrow{(t,c)}$, un nouveau marquage M' est atteint :

$$\forall p \in P, M'(p) = M(p) + C(p, t)(c)$$

Le franchissement d'une transition t selon c depuis un marquage M vers un marquage M' est noté $M^{\underbrace{(t,c)}}M'$.

Sémantique des réseaux de Petri colorés (4)

Example (Le client-serveur coloré)

$$M_{0} = \begin{pmatrix} \langle 1 \rangle + \langle 2 \rangle \\ 0 \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \\ 0 \end{pmatrix} \xrightarrow{(t_{1}, <1 >)} \begin{pmatrix} \langle 2 \rangle \\ \langle 1 \rangle \\ 0 \\ \langle 1 \rangle \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \end{pmatrix} = M_{1}$$

Sémantique des réseaux de Petri colorés (5)

Definition (Marquage accessible)

Un marquage M' est accessible à partir d'un marquage M s'il existe une séquence de tirs

$$M = M_1 \overset{(t_1,c_1)}{\longrightarrow} M_2 \overset{(t_2,c_2)}{\longrightarrow} \cdots \overset{(t_{n-1},c_{n-1})}{\longrightarrow} M_n = M'.$$

(noté:

$$M \xrightarrow{s} M'$$

où $s = (t_1, c_1)(t_2, c_2) \dots (t_{n-1}, c_{n-1})$). Un marquage est *accessible* s'il est accessible à partir d'un marquage initial M_0 fixé.

Sémantique des réseaux de Petri colorés (6)

Example (Le client-serveur coloré)

$$M_{0} = \begin{pmatrix} \langle 1 \rangle + \langle 2 \rangle \\ 0 \\ 0 \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \end{pmatrix} \xrightarrow{(t_{1}, <1>)} \begin{pmatrix} \langle 2 \rangle \\ \langle 1 \rangle \\ 0 \\ \langle a \rangle + \langle b \rangle + \langle c \rangle \end{pmatrix} \xrightarrow{(t_{4}, <1, b>)} \begin{pmatrix} \langle 2 \rangle \\ \langle 1 \rangle \\ 0 \\ 0 \\ \langle a \rangle + \langle c \rangle \end{pmatrix}$$

Sémantique des réseaux de Petri colorés (6)

Definition (Graphe d'accessibilité de de $\mathcal{N} = (N, M_0)$)

- Sommets : $V = R(N, M_0)$
- Arcs étiquetées : $L: V \times V \rightarrow T$ t.q.

$$L(M, M') = t \operatorname{ssi} M \xrightarrow{(t,c)} M'$$

Analyse des réseaux de Petri colorés

• Les propriétés de $R(N, M_0)$ se formulent de la même manière :

Example

Un réseau est borné s'il existe un entier k tel que pour tout $M \in R(N, M_0)$ et pour tout $p \in P$, la valeur de M(p) est bornée par k:

$$\exists_{k \in \mathbb{N}} \forall_{M} \forall_{p \in P} \forall_{c \in Clr(p)} (M \in R(N, M_0) \to M(p)(c) \leq k)$$

- Les algorithmes d'analyse de R(N, M₀) s'étendent aux RdP colorés.
- Les algorithmes d'analyse structurelle des RdP s'étendent à plusieurs classes de RdP colorés.

Illustration : Le dîner des philosophes

où
$$g(ph_i) = \begin{cases} f_i + f_1 & \text{si } i = 3 \\ f_i + f_{i+1} & \text{sinon} \end{cases}$$

Quelle est la matrice C du réseau?

