Skriftlig eksamen på økonomistudiet LINEÆRE MODELLER

Onsdag d.16 januar 2013.

(3 timers skriftlig eksamen. Alle sædvanlige hjælpemidler er tilladt, dvs. bøger, noter osv., men lommeregner og andre elektroniske hjælpemidler er ikke tilladt.)

Eksamenssproget er dansk.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2013V-1LM ex

Eksamen i Lineære Modeller

Onsdag d.16 januar 2013.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

I \mathbf{R}^4 er der givet vektorerne $u_1 = (1, 0, 1, 0), u_2 = (2, 2, 0, 4)$ og $u_3 = (-4, -6, 2, -12)$. Vi kalder span $\{u_1, u_2, u_3\} = U$.

- (1) Find en basis for U og angiv dimensionen af U.
- (2) Bestem koordinaterne for u_3 med hensyn til den fundne basis.
- (3) Lad en lineær afbildning $L: U \to U$ være givet ved $Lu_1 = u_2 + u_3$, $L(u_1 u_2) = u_1 u_3$. Bestem matricen hørende til L med hensyn til den fundne basis for i U.
- (4) Gør rede for, at L er invertibel.
- (5) Bestem Lu_3 og $L^{-1}u_3$.

Opgave 2.

Om en symmetrisk, 3×3 -matrix A, vides, at den har egenværdier a, b og c, med tilhørende egenvektorer (1, 1, 1), (0, 1, -1) og (-2, 1, 1).

- (1) Vis at egenvektorerne er indbyrdes ortogonale.
- (2) Bestem en af de mulige versioner af matricen A.
- (3) Bestem matricen f(A), hvor f er en reel funktion defineret på spektret for A.
- (4) Bestem determinanten for f(A).
- (5) Gør rede for, at matricen e^A er veldefineret, samt invertibel.

Opgave 3.

- (1) Beregn integralet $\int \cos^2(3x) \sin^2(2x) dx$.
- (2) Løs den komplekse ligning $2z^4 8z^3 + 10z^2 = 0$.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} (\frac{x^2 - 1}{2})^n.$$

- (1) Bestem de værdier af x for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (4) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.