Exercise 5.33 (Study of multidimensional Brownian motion) $B_t = (B_t^1, B_t^2, \cdots, B_t^N)$ を $x = (x_1, \cdots, x_N) (\in \mathbb{R}^N)$ スタートの N 次元 (\mathcal{F}_t) -BM とする.ここで N は 2 以上の整数とする.

1. $|B_t|^2$ は連続 semimartingale であり、 $|B_t|^2$ の martingale part が true martingale であることを示せ.

証明. ■

2.

$$\beta_t = \sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} dB_s^i$$

と定める(ただし $|B_s|=0$ のとき $\frac{B_s^i}{|B_s|}=0$ とする)。 β_t の定義に現れる確率積分の定義を正当化し、 さらに $(\beta_t)_{t>0}$ が 0 スタートの (\mathcal{F}_t) -BM であることを示せ.

証明. ■

3.

$$|B_t|^2 = |x|^2 + 2 \int_0^t |B_t| d\beta_s + Nt$$

が成り立つことを示せ.

証明. ■

4. 以降, $x \neq 0$ を仮定する. $\varepsilon \in (0,|x|), T_{\varepsilon} = \inf\{t \geq 0: |B_t| \leq \varepsilon\}$ とする. ここで任意の a > 0 に対し

$$f(a) = \begin{cases} \log a & (N = 2), \\ a^{2-N} & (N \ge 3) \end{cases}$$

と定める. $f(|B_{t \wedge T_s}|)$ が CLM となることを示せ.

証明.

5. $R > |x|, S_R = \inf\{t \ge 0 : |B_t| \ge R\}$ とする.

$$P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$$

となることを示せ. また $\varepsilon \to 0$ としたとき $P(T_\varepsilon < S_R) \to 0$ となることを確かめ, a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$ となることを示せ.

証明. ■

6. a.s. で任意の $t \ge 0$ に対し

$$|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}$$

となることを示せ.

証明. ■

7.	$N \geq 3$ を仮定する. a.s. で $t \to \infty$ としたとき $ B_t \to \infty$ となることを示せ(ヒント: $ B_t ^{2-N}$	が非負
	supermartingale であることを確かめよ).	

証明.

8. N=3 を仮定する. Gaussian density の形式を用いて,r.v. の族 $(|B_t|^{-1})_{t\geq 0}$ が L^2 -bdd. であることを確かめよ.また $(|B_t|^{-1})_{t\geq 0}$ が CLM であり,かつ true martingale でないことを示せ.

証明. ■