All Rights Reserved

Monte Carlo Tree Search (MCTS)

• An exhaustive "full" tree search would solve the decision problem

Example: Tic-Tac-Toc

- Maximum of 9 steps
- Maximum of 9 nodes

Pseudo-code for full search tree on tic-tac-toc

• Generates a tree of 9 layers with 549,946 leaf nodes

All Rights Reserved

Tic-Tac-Toc full tree

Monte Carlo Tree Search (MCTS)

Core idea:

- An exhaustive "full" tree search would solve the decision problem
 - (except that it is computationally prohibitive)
- Expand tree only up to a few layers (steps)
- Identify only the more valuable nodes to sample, criteria being
 - [exploitation] known to give higher estimated reward, or
 - [exploration] higher uncertainty of the upper reward bound
- Given the resources (e.g. time), sample and refine the estimated value of each move
- Finally, choose the move with the highest refined estimated value

Monte Carlo Tree Search (MCTS)

Core idea:

- An exhaustive "full" tree search would solve the decision problem
 - (except that it is computationally prohibitive)
- Expand tree only up to a few layers (steps)
- Identify only the more valuable nodes to sample, criteria being
 - [exploitation] known to give higher estimated reward, or
 - [exploration] higher uncertainty of the upper reward bound
- Given the resources (e.g. time), sample and refine the estimated value of each move
- Finally, choose the move with the highest refined estimated value

Components

- 1. Estimator on the reward
- 2. Estimator on the upper reward uncertainty bound
- 3. A way to sample and refine the estimated value

Monte Carlo Tree Search (MCTS)

Estimator of reward

The reward estimator updates as simulation proceeds, and usually takes the form of

$$Q(s,a) = \frac{w(s,a)}{n(s,a)}$$

where s is current state, a is the move action, w(s, a) is the winning count and n(s, a) is the observation count.

Estimator of uncertainty bound

- This purpose of this term is to encourage sampling on less visited nodes.
- It should scales with total number of samples N, and inversely with current node visit count n_i , e.g. $\mu(s,a) = c \frac{N^a}{n^\beta(s,a)}; N = \sum_b n(s,b)$
- A commonly used expression is $\mu(s,a) = c\sqrt{\frac{\log N}{n(s,a)}}$
- it is possible to use improve the estimator by assigning a *prior* on this bound *if we have some knowledge on the context* (s, a).

A way to sample and refine the estimated value

- Usually the expression of uncertainty bound is unchanged $\mu(s,a)^{\text{new}} = \mu(s,a)^{\text{old}}$
- Estimation of reward is updated with a simulation
 - simulate the final outcome (win/loss) after choosing the move

$$Q^{\text{new}}(s, a) = \frac{w(s, a) + v}{n(s, a) + 1}; v = \begin{cases} 1 & \text{if win} \\ 0 & \text{if loss} \end{cases}$$

■ In case without any prior knowledge, a "rollout" (random playout of the game) can be used for the simulation

Monte Carlo Tree Search (MCTS)

Vanilla implementation

1. At every iteration we compute UCT for every move a of the current state s as

$$U(s,a) = Q(s,a) + \mu(s,a) = \frac{w(s,a)}{n(s,a)} + \mu(s,a)$$

2. We then **select** the move a_t that maximizes the U(s, a) and transverse to the next (leaf) node s_L .

$$a_t = \underset{a}{\operatorname{argmax}} U(s, a)$$

- 3. (We may optionally expand the leaf node. The number of level expansion is called the "depth" of the tree)
- 4. Start a **simulation** from s_L until end state
- 5. Q(s,a) (and hence U(s,a)) value is updated by **backpropagation** through the node trail based on the simulation outcome v

$$Q^{\text{new}}(s, a) = \frac{w(s, a) + v}{n(s, a) + 1}; v = \begin{cases} 1 & \text{if win} \\ 0 & \text{if loss} \end{cases}$$

6. Repeat the process as resources allow

Monte Carlo Tree Search (MCTS)

Schematic diagram for MCTS

AlphaZero

There are two opportunities for function approximator in MCTS algorithm:

- 1. Estimator of uncertainty bound $\mu(s, a)$
- 2. Simulation v(s)

Estimator of uncertainty bound

• AlphaZero uses the expression:

$$\mu(s,a) = \frac{c\sqrt{N}}{1 + n(s,a)} \cdot \boxed{P(s,a)}$$

- The first term encourages sampling on less visited nodes
- The second term is a *prior* modifier of the action selection

A way to sample and refine the estimated value

- In AlphaZero, the final outcome is directly predicted from a neural network
 - No explicit simulation is performed
 - O (explicit simulation was performed in AlphaGo implementation)

$$Q^{\text{new}}(s, a) = \frac{w(s, a) + \boxed{v(s)}}{n(s, a) + 1}$$

The boxed terms are obtained from a neural network

AlphaZero

AlphaGo networks

- In AlphaGo implementation, two neural networks were built:
 - \blacksquare P(s, a) is obtained from a "policy network"
 - $\blacksquare v(s)$ is obtained from a "value network"
- Policy network net_{policy} takes the current game state (19x19=361* positions with 3 possible values {black, white, empty}) as input, and computes a 362 (=361 positions + pass) real-valued vector as output.
- Value network netvalue takes the same input and computes a real-value vector as output.

$$S = \{0, 1, -1\}$$

 $\operatorname{net}_{\operatorname{policy}}: S^{361} \to R^{362}$

 $\text{net}_{\text{value}}: S^{361} \to R$

AlphaZero network

- In AlphaZero implementation, the two networks are merged into one.
- The network takes the same input, but output a 363 real-valued vector (361 positions + pass + value output)

$$\mathsf{net}_{\mathsf{zero}}: S^{361} \to R^{363}$$

 The loss function *l* combines mean-squared error from value network and cross-entropy losses from policy network

$$l = (z - v)^2 - \pi^T \log P + c||\theta||^2$$

where (z, π) are the actual outcome and probability of moves from training data respectively

(* in actual implementation, 7 steps are used in order to resolve the three-way knot scenario in Go)

AlphaZero

Reinforcement Learning

- MCTS algorithm could generate gameplays by self-play
- Gameplays are then utilized as training data

AlphaZero

Other details

- Artificially encourage more explorations
 - Stochastic policy with temperature control
 - Dirichlet prior
- Symmetry
 - Rotational and reflection invariance are utilized
- Neural network model succession
 - A new network is pitched against its successor
 - New network takes over if winning rate > threshold (55% in AlphaZero)
- Asynchronous
 - self-play, neural network training and model succession are performed in parallel
- Hardware / Distributed computing
- ...