

SCUOLA DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Informatica

Illuminant maps analysis for image splicing detection

Lorenzo Cioni

Anno Accademico 2015/2016

Introduction

This method is based on *T. Carvalho*, *V. Schetinger et al.* works presented in [1] and [2].

Main goal: finding image inconsistencies based on illuminant estimation in order to determine if an image has been tampered or not.

Illuminant Maps estimation

For the Illuminant Maps estimation, two different techniques are used:

- 1. A statistical-based approach using Generalized Grayworld Estimate (GGE) algorithm.
- A physics-based approach using Inverse-Intensity Chromaticity (IIC) method.

2.1 Generalized Greyworld Estimate (GGE)

Generalized Greyworld Estimate is proposed in [2] as a combination of the *Grey-World* and *Grey-Edge methods* aimed to evaluate **color constancy**.

The main premise behind it is that in a normal well color balanced photo, the **average** of all the colors is a neutral gray. Therefore, it assumes that the *Minkowski norm* of the derivative of the reflectance in a scene is **achromatic**.

$$k\mathbf{e}^{n,p,\sigma} = \left(\int \left| \frac{\vartheta^n \mathbf{f}^{\sigma}(\mathbf{x})}{\vartheta \mathbf{x}^n} \right|^p d\mathbf{x} \right)^{\frac{1}{p}} \tag{1}$$

where \mathbf{x} denotes a pixel coordinate, k is a scale factor, $|\cdot|$ is the absolute value operator, ϑ the partial differential operator, \mathbf{f}^{σ} is the observed intensities at position \mathbf{x} , smoothed by a Gaussian kernel σ , p is the *Minkowski norm*, and n is the derivative order.

Generalized Greyworld Estimate (GGE)

The illuminant estimation of (1) is a framework for low-level based illuminant estimation based on three variables:

- 1. The order *n* of the image structure.
- 2. The Minkowski norm *p* which determines the relative weights of the multiple measurements from which the final illuminant color is estimated.
- 3. The scale of the local measurements as denoted by σ .

Advantages:

- the Minkowski norm of RGB values or derivatives can be computed extremely fast
- the method does not require an image database taken under a known light source

Inverse-Intensity Chromaticity (IIC)

Extension of the **dichromatic reflectance model**, which states that the amount of light reflected from a point, **x**, of a dielectric, non-uniform material is a linear combination of diffuse reflection and specular reflection.

Given an image taken with a **RGB camera**, the response $I_c(\mathbf{x})$ for each color filter $c \in \{R, G, B\}$ is

$$I_c(\mathbf{x}) = m_d(\mathbf{x})B_c(\mathbf{x}) + m_s(\mathbf{x})G_c(\mathbf{x})$$

where m_d and m_s are geometric parameters of diffuse and specular reflection.

Let $\Delta_c(\mathbf{x})$ and $\Gamma_c(\mathbf{x})$ be the diffuse and **specular chromaticity**: $\Delta_c(\mathbf{x}) = \frac{B_c(\mathbf{x})}{\sum_{iin\{R,G,B\}} B_i(\mathbf{x})} \text{ and } \Gamma_c(\mathbf{x}) = \frac{G_c(\mathbf{x})}{\sum_{iin\{R,G,B\}} G_i(\mathbf{x})}$

Inverse-Intensity Chromaticity (IIC)

In this model, the intensity $I_c(\mathbf{x})$ and the chromaticity $\sigma_c(\mathbf{x})$ of a color channel $c \in \{R, G, B\}$ at pixel position \mathbf{x} are related by

$$\sigma_c(\mathbf{x}) = p_c(\mathbf{x}) \frac{1}{\sum_{i \in \{R,G,B\}} I_i(\mathbf{x})} + \Gamma_c(\mathbf{x})$$
 (2)

where $p_c(\mathbf{x}) = w_d(\mathbf{x}) \sum_i B_i(\mathbf{x}) (\Delta_c(\mathbf{x}) - \Gamma_c(\mathbf{x}))$

The *domain* of the line is determined by $\frac{1}{\sum_i I_i(\mathbf{x})}$ and the *range* is given by $0 \le \sigma_c \le 1$. Domain and range together form the **inverse-intensity chromaticity (IIC)** space.

7 di 18

Riferimenti bibliografici

- [1] T. Carvalho, et al. *Illuminant-Based Transformed Spaces for Image Forensics*. IEEE Transactions on Information Forensics and Security 11.4 (2016): 720-733.
- [2] V. Schetinger et al. Exploring Statistical Differences Between Illuminant Estimation Methods for Exposing Digital Forgeries; 2016.
- [3] J. van de Weijer, Th. Gevers, A. Gijsenij, Edge-Based Color Constancy, IEEE Trans. Image Processing, accepted 2007.
- [4] C. Riess and E. Angelopoulou. 2010. Scene illumination as an indicator of image manipulation. In Proceedings of the 12th international conference on Information hiding, Berlin, Heidelberg, 66-80.