高等代数第七章练习题

一 填空题

- 1. 线性空间V 中,固定 $\alpha \in V$,定义 $\sigma \xi = \xi + \alpha (\forall \xi \in V)$,若 $\sigma \in V$ 的一个线性变换,则 $\alpha = \underline{\hspace{1cm}}$.
- 2. 取 σ 是线性空间 $P[x]_3$ 的微分变换,即 $\sigma f(x) = f'(x)$,则 $(\sigma^2 + \sigma)(x^2 + x) =$ _______.
- 3. 若线性空间V 的线性变换 σ , τ 在V 的一组基 ε_1 , ε_2 ,…, ε_n 下的矩阵分别为A,B,则 σ^2 + $\sigma\tau$ + τ^2 在此组基下的矩阵为______.
- 5. 设n 阶阵 $A = (a_{ij})$ 可逆, $\sum_{j=1}^{n} a_{ij} = a \neq 0 (\forall i = 1, 2, \dots, n)$,则 A^{-1} 的一个特征值为______.
- 6. 设 $A = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 3 & -1 \\ -4 & b & a \end{pmatrix}$ 有特征值 $\lambda_1 = \lambda_2 = 1, \lambda_3 = 5,$ 则 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}.$
- 7. 已知0是方阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & a \end{pmatrix}$ 的特征值,则 $a = ______, A$ 的所有特征值是______.
- 8. 已知 $\alpha = (1,1,-1)^T$ 是矩阵 $A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & x \end{pmatrix}$ 的一个特征向量,则 $x = \underline{\qquad}$.
- 9. 设 $g(\lambda)$ 是 λ 的多项式,若 3 阶矩阵 A 与 $\begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$ 相似,则矩阵 A 的多项式 g(A) 的行列式

|g(A)|=______,g(A)的三个特征值为_____,_____.

- 10. 设A 是 3 阶矩阵,知X 是 A 的属于 λ 的一个特征向量,取可逆阵P, $P^{-1}AP$ 的属于特征值 λ 的一个特征向量为______.
- 11. 若 λ 是可逆矩阵 A 的特征值,则 $A^* + 2E$ 有特征值为_____.
- 12. 设n阶方阵A的n个特征值为 $0,1,2,\cdots,n-1$,矩阵B与A相似,则行列式|B+E|=_____.
- 13. 设A是秩为2的3阶实对称矩阵,且 $A^2+5A=0$,则A的全部特征值为_____.
- 14. 若 3 阶 方 阵 A 满足 |E-A|=|E+A|=|A|=0 ,则 A 的迹 trA=______,|A|=______.
- 15. 设A为 3 阶方阵,已知|A+E|=|A+2E|=|A+3E|=0,其中E为 3 阶单位矩阵,则|A+4E|=__.
- 16. λ_0 是 n 阶阵 A 的一个 s 重特征值,若 A 能相似对角化,则属于 λ_0 的线性无关的特征向量的个数为____.

- 17. 线性空间 $P[x]_n$ 中,微分变换 σ (即 $\sigma f(x) = f'(x)$)的秩为______,零度为_____.
- 18. n 阶阵 A ,秩为 r ,对 $\xi \in F^n$,令 $\sigma(\xi) = A\xi$, σ 是线性变换,则 $\dim \operatorname{Im}(\sigma) = _____$, $\dim \ker(\sigma) = _____$.

19. 设
$$A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \in P^{2\times 2}, c \neq 0$$
,则 $A \in P$ 上可相似对角化的充要条件是______.

20. 设
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
,已知 A 与矩阵 B 相似,则秩 $r(AB - A) =$ _____.

22. 已知
$$A = \begin{pmatrix} 7 & 4 & -1 \\ t & 7 & -1 \\ -4 & -4 & x \end{pmatrix}$$
与 $B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 12 \end{pmatrix}$ 相似,则 $t = \underline{\qquad}, x = \underline{\qquad}$.

23.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
的最小多项式为______; $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 的特征多项式为______,最小多项式为_____.

- 24. $f(\lambda)$ 是线性变换 σ 的特征多项式, λ_0 是 $f(\lambda)$ 的 s 重根. $V_{\lambda_0} = \{\xi \mid \sigma \xi = \lambda_0 \xi\}$ 是 σ 的属于 λ_0 的特征子 空间,如果 V_{λ_0} 是 t 维空间,那么 t ____ s .
- 25. σ 是 n 维线性空间 V 上的线性变换, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 V 的一组基, $\sigma(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) A$,则子空间 σV 的维数与矩阵 A 的秩 r(A) 的关系是______.

二 计算题

- 1 取 P^3 的线性变换 $\sigma(a,b,c) = (2a-b,b+c,a)$,
 - (1) 求 σ 在基 ε_1 = (1,0,0), ε_2 = (0,1,0), ε_3 = (0,0,1) 下的矩阵;
 - (2) $\bar{x} \sigma \bar{c} \pm \eta_1 = (1,0,0), \eta_2 = (1,1,0), \eta_3 = (1,1,1)$ 下的矩阵;
 - (3) 求向量 $\alpha = (1,2,3)$ 的像 $\sigma \alpha$ 分别在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 和 η_1, η_2, η_3 下的坐标.

2. (I):
$$f_1 = 1 + 2x^2$$
, $f_2 = x + 2x^2$, $f_3 = 1 + 2x + 5x^2$, 与(II): $g_1 = 1 - x$, $g_2 = 1 + x^2$, $g_3 = x + 2x^2$ 是 $P[x]_3$ 的两组基,线性变换 σ : $\sigma(f_1) = 2 + x^2$, $\sigma(f_2) = x$, $\sigma(f_3) = 1 + x + x^2$.

- (1) 求基 f_1, f_2, f_3 到基 g_1, g_2, g_3 的过渡矩阵P. (2) 求 σ 在基 g_1, g_2, g_3 下的矩阵A.
- (3) 设 $f = 1 + 2x + 3x^2$,求 f 在 σ 下的像 $\sigma(f)$.
- 3. 设 A 是 3 阶阵, α_1 , α_2 , α_3 是线性无关的 3 维列向量,且 $A\alpha_1 = 4\alpha_1 4\alpha_2 + 3\alpha_3$, $A\alpha_2 = -6\alpha_1 \alpha_2 + \alpha_3$, $A\alpha_3 = 0$,求矩阵 A 的特征值和对应的特征向量.

- 4. 设 σ 是线性空间 $P[x]_3$ 的一个线性变换,在基 $1, x, x^2$ 的矩阵为 $A = \begin{pmatrix} 3 & -2 & 3 \\ 2 & -2 & 6 \\ -1 & 2 & -1 \end{pmatrix}$
 - (1) 证明 σ 是一个可逆线性变换,求 σ^{-1} 在基 $1,x,x^2$ 的矩阵.
 - (2) σ 是否可以相似对角化,若可以,求一组基,使得 σ 关于此组基的矩阵是对角阵.

5. 给出
$$n$$
阶方阵 $A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$ 可相似对角化的条件.

- 6. 若矩阵 $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$ 相似于对角阵 D, (1) 求a; (2) 求可逆阵 P, 使得 $P^{-1}AP = D$.
- 7. 设 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似,求a,b的值;求可逆矩阵,使 $P^{-1}AP = B$.
- 8. 判断矩阵 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 5 \\ 0 & 1 & 2 \end{pmatrix}$ 与 $B = \begin{pmatrix} 3 & 1 & 0 \\ 7 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 是否相似,若相似,求可逆矩阵 P,使得 $P^{-1}AP = B$.
- 9. 设 $A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$, 求 A^k (利用特征值和特征向量).
- 10. 设矩阵 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, (1) 求 A 的最小多项式;
 - (2) A 能否相似对角化?若可以,求可逆矩阵 P,使得 $P^{-1}AP$ 为对角矩阵,若不能说明理由.
- 11. 在线性空间 P^3 中,定义线性变换 $\sigma(a,b,c) = (a+2b-c,b+c,a+b-2c)$,求 σ 的值域与核.
- 12. $\sigma(x_1, x_2, x_3) = (0, x_2, 0)$ 是 P^3 上的一个线性变换,求 $\sigma^{-1}(0)$ 和 σP^3 的一组基.
- 13. σ 是 \mathbf{R}^2 的一个线性变换,在标准基下的矩阵是 $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$
- (1) 证明 σ 的不变子空间只能为 \mathbf{R}^2 与 $\{0\}$;
- (2) 若 τ 是 \mathbf{C}^2 的一个线性变换,在标准基下的矩阵是 \mathbf{A} ,证明 τ 有一维不变子空间.

三 证明题:

- 1. 设 σ 是线性空间V 的一个线性变换,且满足 $\sigma^2 = id$ (单位变换),
 - (1) 证明 σ 的特征值为1或者-1;
 - (2) 证明 $V = V_1 \oplus V_{-1}$,其中 $V_1 = \{\alpha \in V \mid \sigma\alpha = \alpha\}, V_{-1} = \{\alpha \in V \mid \sigma\alpha = -\alpha\}$;
 - (3) 证明存在V 的一组基,使得 σ 在此组基下的矩阵为对角阵.
- 2. 设 σ 为数域P 上的n 维线性空间V 上的一个线性变换,且 $\sigma^2 = \sigma$,证明:
 - (1) σ 的特征值是0或1; .
 - (2) $V = V_1 \oplus V_0$,其中 V_1, V_0 分别为 σ 的特征值1与0对应的特征子空间.

3. 设
$$n$$
 阶方阵 $N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$,证明 N 与其转置 N^T 相似.

4. 设数域
$$P$$
 上的矩阵 $A = \begin{pmatrix} b & c & a \\ c & a & b \\ a & b & c \end{pmatrix}$, $B = \begin{pmatrix} c & a & b \\ a & b & c \\ b & c & a \end{pmatrix}$, $C = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$, 证明 A, B, C 彼此相似.

- 5. 设 σ 是数域P 上的n 维线性空间V 的一个线性变换. $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是V 中的m 个向量. 证明:如果 $\sigma\alpha_1,\sigma\alpha_2,\cdots,\sigma\alpha_m$ 线性无关,则 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 也线性无关.
- 6. 设 $A, B \to n$ 阶实方阵, $A \in A$ 有 n 个互异特征值,证明 $AB = BA \Leftrightarrow A$ 的特征向量是 B 的特征向量.
- 7. 设 A, B 为 n 阶方阵,且 A + B + AB = 0,
 - (1) 证明 A 与 B 的特征向量是公共的;
 - (2) 证明 A 相似于对角阵当且仅当 B 相似于对角阵;
 - (3) 证明 r(A) = r(B).
- 8. V 是 n 维线性空间, $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m$ 是线性变换 σ 的特征子空间 V_{λ_0} 的一组基,将它扩充为 V 的一组基 $\varepsilon_1, \cdots, \varepsilon_m, \varepsilon_{m+1}, \cdots, \varepsilon_n$,
 - (1) 求 σ 在 $\varepsilon_1, \dots, \varepsilon_m, \varepsilon_{m+1}, \dots, \varepsilon_n$ 下的矩阵;
 - (2) 证明 $\dim V_{\lambda_0} \leq \lambda_0$ 的代数重数(即 λ_0 作为特征多项式的根的重数).