Data wrangling/manipulation

Overview

Review and continuation of theories of hypothesis tests

Data wrangling/manipulation with dplyr

If there is time:

start on visualizing data using the grammar of graphics

Midterm exam

Homework 5 has been posted

 I strongly recommend you do the first two parts prior to next class

Midterm exam is on Thursday Octobter 10th in person during regular class time

- The exam is on paper
- If you have accommodations, please schedule to take your exam with SAS and let me know

A practice exam has been posted soon under the class 10 material

Midterm exam "cheat sheet"

You are allowed an exam "cheat sheet"

One page, double sided, that contains only code and equations

No code comments allowed

Cheat sheet must be on a regular 8.5 x 11 piece of paper

Your name on the upper left of both sides of the paper

Strongly recommend making a typed list of all functions discussed in class and on the homework

This will be useful beyond the exam

You must turn in your cheat sheet with the exam

• Failure to do so will result in a 20 point deduction

Plan for the semester

Questions about anything?

Very quick review

Just need to follow 5 steps!

Null distribution

t-statistic

Very quick review

To select the appropriate parametric test, focus on the parameters being tested in the null hypothesis

• E.g.,
$$H_0$$
: $\pi = 0.5$ H_0 : $\mu = 0.5$

$$H_0$$
: $\mu = 0.5$

$$H_0: \mu_T = \mu_C$$

$$H_0$$
: $\mu_T = \mu_C$ H_0 : $\mu_1 = \mu_2 = ... = \mu_k$

Parametric tests are derived from particular mathematical assumptions

- E.g., data from the two samples comes from normal populations with the same variance
- Some hypothesis tests are "robust" to violations of these assumptions
 - The robustness can be evaluated this through computer simulations

Very quick review: theories of hypothesis testing

Fisher (1890-1962)

Neyman (1894-1981)

Pearson (1895-1980)

p-value a strength of evidence

Use p-value to make a decision

Neyman-Pearson frequentist logic

Type I error: incorrectly rejecting the null hypothesis when it is true

If we were in a world where the null hypothesis was always true...

Then only $^{\sim}5\%$ of the time would we falsely report an effect (for $\alpha = 0.05$)

• i.e., we would only make type I errors 5% of the time

Null distribution

The null distribution is true but statistic landed here

Problems with the NP hypothesis tests

<u>Problem 1</u>: we are interested in the results of a specific experiment, not whether we are right most of the time

- E.g., 95% of these statements are true:
 - Joy can't smell Parkinson's disease, there is no difference in beer consumption across continents, Gingko has no benefits for your memory, ...

<u>Problem 2</u>: Arbitrary thresholds for alpha levels

• P-value = 0.051, we don't reject H_0

Problems with the NP hypothesis tests

<u>Problem 1</u>: we are interested in the results of a specific experiment, not whether we are right most of the time

- E.g., 95% of these statements are false:
 - Joy can't smell Parkinson's disease, there is no difference in beer consumption across continents, Gingko has no benefits for your memory, ...

<u>Problem 2</u>: Arbitrary thresholds for alpha levels

• P-value = 0.051, we don't reject H_0

<u>Problem 3</u>: running many tests can give rise to a high number of type I errors

Relationship between null and bootstrap distributions

Questions?

The tidyverse and dplyr

The 'tidyverse'

The tidyverse is set of R packages that operate 'tidy data'

• i.e., that operate on data frames (or tibbles)

Tidy data is data where:

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Messy data...

Messy data can be difficult to deal with

The 'tidyverse'

The packages share a common design philosophy

Most written by Hadley Wickham

dplyr: A grammar for data wrangling

Grammar: a set of components that can be combined to achieve a goal

dplyr is a package that has a set of verbs that are useful for transformations data:

- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. group_by()
- 6. summarize()

All these function take a data frame and other arguments and return a data frame

> library(dplyr) # load the dplyr package

Quick overview of the dplyr functions

1. filter()

The filter() function allows you to select a subset of rows in data frame

2. select()

The select() function allows you to select a subset of columns

3. mutate()

The mutate() function allows you to create new columns that are functions of existing columns

4. arrange()

The arrange() function arranges the rows based values in a column

arrange(desc()) arranges from largest to smallest

5. summarize()

The summarize() function reduces values in many rows into single values

6. The group_by() function

The group_by() function groups variables for future operations

• It works in conjunction with summarize() and mutate() to do split, apply, combine

The pipe operator

The pipe operator |> allows us to chain commands together

Let's try it out!

Homework 5: weather predictions

Assessing the accuracy and visualizing weather predictions

I recommend you get started soon

Next class: a grammar of graphics and ggplot