Problem 6.2 Scheduling CS Classes with Constraint Propagation

Answer:

Considering previous binary CSP constraint graph with variables and their respective domain, it looks like,

1. If we choose most constrained variable, in this case C_1 , then assign $C_1 = A$ and run arc-consistency for updating domains,

Similarly choose C_5 and check further,

Then finally, choose C_3 and check further,

Therefore, running arc-consistency, the binary CSP can discard unnecessary values of all domains or update domains such a way that it can obtain to its solution, which is as follows,

$$C_1 = A, C_2 = C, C_3 = B, C_4 = A, C_5 = C$$

2. Considering above binary CSP constraint graph, all optimal cutsets for the CSP will be, By discarding \mathcal{C}_3 ,

By discarding C_5 ,

