ЗАДАНИЕ ПО МАТЕМАТИКЕ

Вариант 17061 для 6 класса

Решение

Задача 1

Пять фиксиков собрали для утилизации отработанные энергосберегающие лампочки. Каждый из них подсчитал, сколько собрали все остальные (взятые вместе, без считающего). У первого вышло 25 лампочек, у второго – 30, у третьего – 45, у четвертого – 33, а у пятого – 27. Сколько всего энергосберегающих лампочек собрали все пятеро?

Решение.

Первый считает количества у 2-го, 3-го, 4-го и 5-го.

Второй считает количества у 1-го, 3-го, 4-го и 5-го и т.д.

Если сложить все полученные суммы вместе, то вклад каждого (из пятерых участников) будет учтен 4 раза. Поэтому общая сумма

$$S = \frac{25 + 30 + 45 + 33 + 27}{4} = 40.$$

Ответ: 40.

Задача 2

Целой частью [x] числа x называется наибольшее целое m такое, что $m \le x$. Например, [-4/3] = -2, $[\pi] = 3$, [2] = 2. Решите в целых числах уравнение

$$\left[\frac{x}{2}\right] + \left[\frac{x+1}{2}\right] = 2x + 4.$$

Решение.

Рассмотрим левую часть при числах x разной четности.

Если x четное, то

$$\left\lceil \frac{x}{2} \right\rceil = \frac{x}{2}, \quad \left\lceil \frac{x+1}{2} \right\rceil = \frac{x}{2},$$

следовательно

$$\left\lceil \frac{x}{2} \right\rceil + \left\lceil \frac{x+1}{2} \right\rceil = x.$$

Если x нечетное, то

$$\left\lceil \frac{x}{2} \right\rceil = \frac{x-1}{2}, \quad \left\lceil \frac{x+1}{2} \right\rceil = \frac{x+1}{2},$$

следовательно

$$\left\lceil \frac{x}{2} \right\rceil + \left\lceil \frac{x+1}{2} \right\rceil = x.$$

Таким образом, левая часть уравнения всегда равна x b заданное уравнение эквивалентно

$$x = 2x + 4,$$

которое имеет решение x = -4.

Ответ. x = -4.

Задача 3

От электростанции отходит несколько линий электропередачи. Все линии, кроме трех, ведут в город Π . Все, кроме трех, ведут в поселок B. Все линии, ведущие не в Π и не в B, ведут на подземные секретные объекты. Какое минимальное и какое максимальное количество линий может отходить от электростанции?

Решение

1) Каждая линия может вести в один из трех пунктов: П, Б или X (секретный объект). Все линии, кроме трех, ведут в П, следовательно, в Б и X суммарно идет 3 линии. Все линии, кроме трех, ведут в Б, следовательно, в П и X сумарно идет 3 линии.

Поскольку хотя бы одна линия должна идти в каждый пункт, то в X может идти 1 или 2 линии. Разберем эти случаи по очереди.

- 2) Пусть в X идет 1 линия. Тогда в Π идет 2, а в Ξ тоже 2. Всего получается 5 линий, все условия соблюдены.
- 3) Пусть в X идет 2 линии. Тогда в Π идет 1, а в B тоже 1. Всего получается 4 линии, все условия также соблюдены.

Других вариантов быть не может.

Ответ: минимальное количество линий -4, максимальное -5.

Задача 4

Элементы 1, 2, 3, 4, 5, 6 электросхемы располагаются в узлах плоской клетчатой решетки, образованной одинаковыми квадратами. Надо соединить проводниками пары элементов 1-2, 1-3, 1-4, 2-5, 2-6, 3-5, 3-6 и 4-5. Каждый проводник должен проходить по линиям решетки, он может содержать несколько ребер квадратов, составляющих решетку, и если изгибается, то только под прямыми углами. По каждой стороне квадрата может проходить только один проводник, пересекаться проводники не должны. Найдите наименьшее число клеток решетки, содержащее такую схему.

Решение

очень трудно формализовать, поэтому приведем рисунок электросхемы, занимающий наименьшее количество клеток.

Ответ: 6.

Задача 5

Охотник Пулька для своей собаки Бульки заказал на АлиЭкспресс три куля собачьего корма. Наутро после доставки один куль оказался съеден. Под подозрение попали Торопыжка, Пончик и Сиропчик. Незнайке удалось установить следующее.

Если Торопыжка не ел корм, то Пончик тоже не ел, а Сиропчик ел.

Если Пончик ел, то Сиропчик тоже ел, а Торопыжка нет.

Если Сиропчик ел, то Пончик тоже ел, а Торопыжка нет.

Помогите Незнайке выяснить, кто же съел за ночь целый куль собачьего корма (либо покажите, что информации для этого недостаточно).

Решение.

Занумеруем утверждения (1), (2), (3).

Если Пончик ел, то из (2) и (1) следует, что Пончик не ел. Противоречие говорит о ложности посылки, следовательно, Пончик не ел.

Если Сиропчик ел, то из (3) следует, что Пончик ел, а из (3) и (1) следует, что Пончик не ел. Таким образом, Сиропчик не ел.

Комбинация Торопыжка ел, Пончик – нет, Сиропчик – нет не противоречит ни одному из утверждений. Следовательно, все съел один Торопыжка.

ИЛИ Составим таблицу всех вариантов

	Пончик	Сиропчик	Торопыжка	
1	ел	ел	ел	невозможно в силу (2)
2	ел	ел	нет	невозможно в силу (1)
3	ел	нет	ел	невозможно в силу (2)
4	ел	нет	нет	невозможно в силу (1)
5	нет	ел	ел	невозможно в силу (3)
6	нет	ел	нет	невозможно в силу (3)
7	нет	нет	ел	
8	нет	нет	нет	невозможно в силу (1)

Ответ. Торопыжка все съел, а Пончик и Сиропчик не ели.