Epreuve "Thermochimie Equilibre chimique". Session Février 2016 Filière SMPC S1

A- Thermochimie:

On considère l'équilibre suivant, réalisé entre des gaz supposés parfaits, sous une pression constante d'une atmosphère.

$$H_2O(g) + CO(g)$$
 \longrightarrow $H_2(g) + CO_2(g)$

- 1) Calculer la variation de l'enthalpie libre ΔG_r^0 relative à cet équilibre à T=298 K et déduire dans quel sens la réaction évolue dans ces conditions de température et de pression.
- 2) Calculer les variations de l'enthalpie ΔH⁰₂₉₈ et de l'entropie ΔS⁰₂₉₈. Que peut-on déduire à partir de ces valeurs numériques ?

On considère que les grandeurs $\Delta \mathbf{H_r}^0$ et $\Delta \mathbf{S_r}^0$ sont constantes et n'évoluent pas en fonction de la température.

- 3) Donner l'expression de la variation de l'enthalpie libre $\Delta G_r^0(T)$ en fonction de la température et déterminer la valeur de la température T_{eq} pour laquelle la réaction évolue vers un état d'équilibre.
- 4) Déduire l'intervalle de température pour lequel la réaction évolue sous une pression de 1 atm. dans le sens (1) de même l'intervalle pour lequel la réaction évolue dans le sens (2).

Données thermodynamiques sous la pression d'une atmosphère à la température T = 298 K

0	$H_2O(g)$	CO (g)	H ₂ (g)	CO ₂ (g)
$\Delta \mathbf{G_f}^0(\mathbf{kJ} \mathbf{mol}^1)$	- 228,59	- 137,27	0,00	- 394,38
$\Delta \mathbf{H}^0_{\mathbf{f}}(\mathbf{k}\mathbf{J} \mathbf{mol}^{-1})$	- 241,83	- 110,52	0,00	- 393,51
S ⁰ (J mol ⁻¹ K ⁻¹)	150,86	235,62	130,46	213,60

B- Equilibre chimique:

Cette réaction de conversion de H_2O vapeur en H_2 gaz a été réalisée à T=673 K dans une enceinte fermée de volume V=2,76 litres. On introduit dans cette enceinte n_0 moles d'un mélange gazeux composé de 40 % en H_2O vapeur et de 60 % en $H_$

- 1) Décrire l'influence de la pression totale du mélange sur l'évolution de l'équilibre étudié.
- 2) Calculer la variance de ce système
- 3) Calculer le nombre initial de moles du mélange n₀, et déduire le nombre initial de moles pour chacun des réactifs H₂O et CO.
- 4) Lorsque l'équilibre est atteint, calculer le nombre final de moles du mélange \mathbf{n}_{eq} .
- 5) Sachant qu'à l'équilibre et à cette température T=673~K, 87% de H_2O vapeur a été transformé en H_2 et CO_2 . Calculer la valeur de \mathbf{x}_{eq} .
- 6) , Donner l'expression de la constante d'équilibre \mathbf{K}_p en fonction de \mathbf{x}_{eq} , et calculer sa valeur..

 $R = 8,314 \text{ J.K}^{-1}.\text{mole}^{-1} = 0,082 \text{ atm. L. K}^{-1}.\text{mole}^{-1}.$

