Parameter estimation for Hidden Markov Models Likelihood inference

Likelihood estimation methods with particle filtering

- Some algorithms
 - Likelihood methods
 - optimisation based
 - gradient based
 - expectation maximisation
 - offline or online
 - we will focus on offline methods
 - only sketch on-line ones to give very basic idea

Maximum Likelihood based methods

▶ Off-line case: Estimate of θ^* as the maximizing argument of the marginal likelihood of the observed data:

$$\widehat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ \ell_{T}(\theta) \tag{1}$$

where

$$\ell_{T}(\theta) = \log p_{\theta}(y_{0:T}). \tag{2}$$

- Online case:
 - use a recursive method
 - let θ_n be the estimate of the model parameter after n-1 observations
 - update the estimate to θ_{n+1} after receiving the new data y_n .

Offline Maximum Likelihood based methods

Off-line case:

ightharpoonup Estimate of θ^* as:

$$\widehat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg \, max}} \ \widehat{\ell}_{T}(\theta) \tag{3}$$

where

$$\hat{\ell}_T(\theta) = \log \widehat{p_{\theta}(y_{0:T})}.$$

- ► Can use direct optimisation
 - ightharpoonup grid on θ , BFGS, or other popular optimisation methods
- ▶ is difficult due to variance of $\hat{p}_{\theta}(y_{0:T})$

On the Monte Carlo variance of $p_{\theta}(y_{0:T})$

Recall, SMC results in unbiased estimation of the marginal likelihood

$$\mathbb{E}_{N}[\hat{p}_{\theta}\left(y_{0:T}\right)] = p_{\theta}\left(y_{0:T}\right)$$

Loosely speaking

$$\hat{p}_{\theta}\left(y_{0:T}\right) = p_{\theta}\left(y_{0:T}\right) + \mathcal{V}$$

with V some non-trivial zero mean noise depending on T, N and model.

- recall $\widehat{p}_{\theta}\left(y_{0:n}\right)$ has a relative (non-asymptotic) variance that increases linearly with n
- The monte carlo variability is quite an issue for finding maximum over θ

Note that

$$\mathbb{E}_{N}[\hat{p}_{\theta}\left(y_{0:T}\right)] = p_{\theta}\left(y_{0:T}\right)$$

implies that

$$\mathbb{E}_{N}[\log \hat{p}_{\theta}\left(y_{0:T}\right)] \neq \log p_{\theta}\left(y_{0:T}\right)$$

- ► So $\log \hat{p}_{\theta}(y_{0:T})$ is a biased estimator.
- Can we correct for the bias?

Can use bias correction based on Taylor series

$$\log(Z) = \log Z' + \frac{1}{Z'}(Z - Z') - \frac{1}{2Z'^2}(Z - Z')^2 + \mathcal{O}(Z^3)$$

Let Z' = E[Z] then ignoring higher order terms

$$\mathbb{E}\left[\log(Z)\right] \approx \log \mathbb{E}[Z] - \frac{1}{2\mathbb{E}[Z]^2} \mathbb{V}ar[Z]$$

▶ What we have is $Z = \hat{Z} = \hat{p}_{\theta}(y_{0:T})$ and $Z' = p_{\theta}(y_{0:T})$

$$\mathbb{E}\left[\log \ \hat{p}_{\theta}\left(y_{0:T}\right)\right] = \log p_{\theta}\left(y_{0:T}\right) - \frac{\mathbb{V}ar\left[\hat{p}_{\theta}\left(y_{0:T}\right)\right]}{2p_{\theta}\left(y_{0:T}\right)^{2}}$$

- ▶ Bias reduction requires estimating $Var\left[\hat{p}_{\theta}\left(y_{0:T}\right)\right]$
 - ► Lee & Whiteley 2018
- Other possibility
 - use multiple runs
- Suppose $\frac{\mathbb{V}ar[\hat{p}_{\theta}(y_{0:T})]}{2p_{\theta}(y_{0:T})^2} \approx \frac{(\hat{W}_T 1)}{2N}$

▶ We get then

$$E\left[\log \ \hat{p}_{\theta}\left(y_{0:T}\right)\right] = \log \ \hat{p}_{\theta}\left(y_{0:T}\right) - \frac{\left(\hat{W} - 1\right)}{2N}$$

So can use

$$\widehat{p_{\theta}(y_{0:T})} = \log \widehat{p_{\theta}(y_{0:T})} + \frac{\widehat{W} - 1}{2N}$$

as a bias reduced estimator for $\ell_{\mathcal{T}}$

Optimising $\log p_{\theta}(y_{0:T})$ w.r.t θ

- ▶ Still $\hat{\ell}_T(\theta) = \log \widehat{p_{\theta}(y_{0:T})}$ will exhibit
 - quite a bit of variance
 - ightharpoonup is discontinuous function w.r.t θ
- This can make finding maximum difficult
- Potential remedies:
 - ightharpoonup smooth the approximation as a function of heta
 - use a different resampling scheme (Pitt 02, Lee 10)
 - try to reduce the variance with multiple runs

Expectation Maximisation

- Expectation Maximization (EM) algorithm is a very popular alternative procedure for maximizing $\ell_T(\theta)$.
- \blacktriangleright At iteration k+1, we set

$$\theta_{k+1} = \arg\max_{\theta} \ Q(\theta_k, \theta)$$
 (4)

where

$$Q(\theta_k, \theta) = \int \log p_{\theta}(x_{0:T}, y_{0:T}) \ p_{\theta_k}(x_{0:T}|y_{0:T}) dx_{0:T}.$$
 (5)

The sequence $\{\ell_T(\theta_k)\}_{k\geq 0}$ generated by this algorithm is non-decreasing.

Expectation Maximisation

- ▶ In particular if $p_{\theta}(x_{0:T}, y_{0:T})$ belongs to the exponential family, then the EM consists of computing a n_s -dimensional summary statistic like S_n^{θ}
- ▶ the maximizing argument of $Q(\theta_k, \theta)$ can be characterized explicitly through a suitable function $\Lambda : \mathbb{R}^{n_s} \to \Theta$, i.e.

$$\theta_{k+1} = \Lambda \left(\mathcal{S}_T^{\theta_k} \right). \tag{6}$$

ightharpoonup Particle implementation consists of computing $\mathcal{S}_n^{ heta_k}$

Additive functionals \mathcal{S}_n^{θ}

 \triangleright S_n^{θ} is an additive functional

$$S_n^{\theta} = \int \left[\sum_{k=0}^n s_k (x_k, x_{k-1}) \right] p_{\theta} (x_{0:n} | y_{0:n}) dx_{0:n}, \tag{7}$$

Theory tells that the asymptotic variance of the SMC estimate

$$\widehat{\mathcal{S}_n^{\theta}} = \int \left[\sum_{k=0}^n \mathsf{s}_k \left(\mathsf{x}_k, \mathsf{x}_{k-1} \right) \right] \widehat{p}_{\theta} \left(\left. \mathsf{d} \mathsf{x}_{0:n} \right| \mathsf{y}_{0:n} \right), \tag{8}$$

satisfies

$$\mathbb{V}\left(\widehat{\mathcal{S}_n^{\theta}}\right) \ge D_{\theta} \frac{n^2}{N}.\tag{9}$$

even with exponential filter stability.

▶ This motivates the use of dedicated smoothing algorithms

Gradient ascent

The log-likelihood may be maximized with the following steepest ascent algorithm: at iteration k+1

$$\theta_{k+1} = \theta_k + \gamma_{k+1} |\nabla_{\theta} \ell_T(\theta)|_{\theta = \theta_k}, \qquad (10)$$

- ▶ $\{\gamma_k\}_{k\geq 1}$ needs to satisfy $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$.
 - could also use Hessian but omitted for simplicity
- ▶ To obtain the *score* vector $\nabla_{\theta}\ell_{T}(\theta)$ we can use Fisher's identity Fisher identity

$$\nabla_{\theta} \log p_{\theta}(y_{0:n}) = \int \nabla_{\theta} \log p_{\theta}(x_{0:n}, y_{0:n}) p_{\theta}(x_{0:n} | y_{0:n}) dx_{0:n}$$

▶ The latter is of the form of S_n^{θ} again.

Gradient ascent

We have

$$\nabla_{\theta} \log p_{\theta} (x_{0:n}, y_{0:n}) = \nabla_{\theta} \log \prod_{p=0}^{n} f_{\theta} (x_{p}|x_{p-1}) g_{\theta} (y_{p}|x_{p})$$

$$= \sum_{p=0}^{n} (\nabla \log f_{\theta} (x_{p}|x_{p-1}) + \nabla \log g_{\theta} (y_{p}|x_{p}))$$

Define:

$$s_p(x_{p-1:p}) = \nabla \log f_{\theta}(x_p|x_{p-1}) + \nabla \log g_{\theta}(y_p|x_p).$$

 $\triangleright \nabla_{\theta} \log p_{\theta}(y_{0:n})$ is of the form of \mathcal{S}_{n}^{θ} again.

Smoothing algorithms

- We are essentially interested in designing better particle approximations for $\{p_{\theta}(x_n|y_{0:T})\}_{n=0}^T$
- ► Some popular approaches
 - fixed lag smoothing
 - forward filtering backward sampling
 - forward filtering backward smoothing

Discussion

- ▶ Both FFBSa and FFBSm have computational cost is prop. to N²T operations in total
- Assuming exponential forgetting of HMM:
 - \mathcal{S}_n^{θ} based on the fixed-lag approximation has an asymptotic variance with rate n/N with a non-vanishing (as $N \to \infty$) bias proportional to n and a constant decreasing exponentially fast with L.
 - The asymptotic bias and variance of the particle estimate of S_n^{θ} computed using FFBSa/m satisfy:

$$\left| \mathbb{E} \left(\widehat{\mathcal{S}}_{n}^{\theta} \right) - \mathcal{S}_{n}^{\theta} \right| \leq F_{\theta} \frac{n}{N}, \ \mathbb{V} \left(\widehat{\mathcal{S}}_{n}^{\theta} \right) \leq H_{\theta} \frac{n}{N}. \tag{11}$$

Discussion

- ▶ To compute \widehat{S}_n^{θ} one can implement with cost N^2T
 - 1. simple particle filter with N^2 particles
 - 2. FFBS particle filter with N particles
- ► Then
 - Case 1: suffers from path degeneracy
 - \triangleright bias of order T/N^2
 - \triangleright variance at least of order T^2/N^2
 - Case 2: more expensive
 - \triangleright bias of order T/N
 - ightharpoonup variance of order T/N

Numerical example

Figure: Estimating smoothed additive functionals: Empirical bias of the estimate of S_n^{θ} (top panel), empirical variance (middle panel) and mean squared error (bottom panel) for the estimate of S_n^{θ}/\sqrt{n} .

Numerical example

Figure: EM: Boxplots of $\hat{\theta}_n$ for $n \geq 5 \times 10^4$ using 100 realizations of the algorithms.

- On-line/ Forwards only extensions for EM and gradient methods do exist.
 - Poyiadjis, Doucet, Singh 11 Particle approximations of the score and observed information matrix...
 - ► Cappe 09 Online sequential Monte Carlo EM algorithm
 - Del Moral, Doucet, Singh 09 Forward Smoothing using Sequential Monte Carlo
 - Olsson and Westerborn 17 Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm

For gradient method:

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \nabla \log p_{\theta_{\mathbf{0}:n}}(y_n | y_{0:n-1})$$

where $\nabla \log p_{\theta_{0:n}}(y_n|y_{0:n-1})$ is defined as

$$\nabla \log p_{\theta_{\mathbf{0}:n}}(y_n|y_{0:n-1}) = \nabla \log p_{\theta_{\mathbf{0}:n-1},\theta_n}(y_{0:n}) - \nabla \log p_{\theta_{\mathbf{0}:n-1}}(y_{0:n-1}),$$

- ► The notation $\nabla \log p_{\theta_{0:n}}(y_{0:n})$ corresponds to a 'time-varying' score
 - which is computed with a filter using the parameter θ_p at time p < n.
- ▶ Using Fisher's identity to compute this 'time-varying' score, then we have for $1 \le p \le n$

$$s_{p}(x_{p-1:p}) = \nabla \log f_{\theta_{p}}(x_{p}|x_{p-1}) + \nabla \log g_{\theta_{p}}(y_{p}|x_{p}).$$

In offline EM maximisation can be rewritten as

$$\theta_{k+1} = \Lambda \left(T^{-1} \mathcal{S}_T^{\theta_k} \right).$$

So for on-line EM can use Robbins-Monro averaging

$$S_{\theta_{0:n}} = \gamma_{n+1} \int s_n(x_{n-1:n}) p_{\theta_{0:n}}(x_{n-1}, x_n | y_{0:n}) dx_{n-1:n}$$

$$+ (1 - \gamma_{n+1}) \sum_{k=0}^{n} \left(\prod_{i=k+2}^{n} (1 - \gamma_i) \right) \gamma_{k+1}$$

$$\times \int s_k(x_{k-1:k}) p_{\theta_{0:k}}(x_{k-1:k} | y_{0:k}) dx_{k-1:k},$$

Then use standard maximization step is used as in the batch version:

$$\theta_{n+1} = \Lambda \left(\mathcal{S}_{\theta_{0:n}} \right).$$

► There is also a forward only implementation of FFBSm (Del Moral et. al. 2009)

Discussion

- On-line and offline parameter estimation drops down to computing smoothed integrals of additive functions
- Fair comparisons
 - either use standard algorithm (with $\mathcal{O}(N)$ cost) or dedicated smoothing algorithms (with $\mathcal{O}(N^2)$ cost)
- ▶ With the exception of on-line gradient methods when the same computational cost is used:
 - the first choice suffers from the variance
 - the second suffers from the bias
 - both give similar MSE
- ▶ PaRiS implements $\mathcal{O}(N^2)$ methods with less computational cost

Discussion

- Parameter estimation for HMMs is a challenging and exciting topic
- ▶ We have seen effective methods for:
 - low dimensional θ, X_n, Y_n
- ► We have not covered:
 - ► SMC², Particle Gibbs, Long/tall data, high dimensions, ...
- Review:
 - https://arxiv.org/pdf/1412.8695.pdf