Условие дифференцируемости функции в точке

Условию непрерывности функции f(x)в точке a можно дать следующее определение: $\lim_{\Delta x \to 0} \Delta f = \lim_{\Delta x \to 0} (f(a + \Delta x) - f(a)) = 0$, где $\Delta x = x - a$ называется приращением аргумента, а $\Delta f = f(x) - f(a)$ называется соответствующим приращением функции. В связи с этим возникает вопрос о сравнении малых величин Δx и Δf при стремлении Δx к нулю.

Функция f(x) называется дифференцируемой в точке a, если существует такая константа A, что $\Delta f = A\Delta x + \alpha$ при достаточно малых значениях Δx , где $\alpha = o(\Delta x)$ — величина более высокого порядка малости по сравнению с Δx .

Из определения следует, что функция, дифференцируемая в точке, является непрерывной в этой точке. Более того, следует, что величина Δx не может быть величиной большего порядка малости, чем Δf , в противном случае величина A была бы не константой, а бесконечной величиной.

В случае дифференцируемости функции в точке соответствующая константа A имеет свое название: она называется **производной** функции f(x) в точке a и обозначается f'(a). Из определения также очевидно, что производная определяется с помощью предельного перехода следующим образом:

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Условие дифференцируемости имеет важные геометрический и физический смыслы.

Задача о проведении касательной к кривой

Пусть заданная кривая является графиком непрерывной функции $y = f(x), x \in [a,b]$. Требуется провести касательную к этой кривой в точке $c \in (a,b)$.

Заметим, что **касательная** — это прямая, получающаяся в пределе из хорд, проходящих через точки (c, f(c)) и $(c + \Delta x, f(c + \Delta x))$, когда $\Delta x \rightarrow 0$.

Уравнение хорды – прямой, проходящей через две заданные различные точки,

– имеет вид:
$$\frac{x-c}{(c+\Delta x)-c} = \frac{y-f(c)}{f(c+\Delta x)-f(c)}$$
 или

 $y = f(c) + \frac{f(c + \Delta x) - f(c)}{\Delta x}(x - c)$. Делая предельный переход при $\Delta x \rightarrow 0$, получим предельное значение углового коэффициента хорд – угловой коэффициент касательной: $k = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$. На рисунке касательная

представлена пунктиром. Итак, $k = tg\alpha$, где α – угол, образованный касательной с положительным направлением оси ОХ.

Таким образом, уравнение касательной в точке (c, f(c)) имеет вид $y = f(c) + f'(c) \cdot (x - c)$.

Очевидно, что существуют непрерывные кривые, в некоторых точках которых провести касательную невозможно.

Возникает вопрос: какое условие нужно наложить на функцию f(x) в окрестности точки c, чтобы в соответствующей точке можно было провести касательную к графику этой функции. Существование касательной означает, что равны пределы отношения $\frac{f(c+\Delta x)-f(c)}{\Delta x}$ при $\Delta x \to 0 \pm 0$, то есть, что существует $\lim_{\Delta x \to 0} \frac{f(c+\Delta x)-f(c)}{\Delta x} = f'(c)$. Это значит, что

существует
$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c)$$
. Это значит, что

 $f(c+\Delta x)-f(c)=f'(c)\Delta x+\Delta x\cdot a$, где $a\to 0$ при $\Delta x\to 0$. Следовательно, $\Delta x \cdot a = \alpha$ – величина более высокого порядка малости по сравнению с Δx . Таким образом, для того, чтобы можно было провести касательную к кривой $y = f(x), x \in [a,b]$ в точке (c, f(c)) необходимо и достаточно, чтобы функция f(x) была дифференцируема в точке c.

Задача о вычислении мгновенной скорости

Предположим, что мы следим за прямолинейным движением точки, пройденный путь которой в зависимости от времени выражается формулой S(t). Чтобы вычислить среднюю скорость движения точки на участке $[t_0,t_0+\Delta t]$, достаточно получить значение $\frac{S(t_0+\Delta t)-S(t_0)}{\Delta t}$. Если теперь устремить Δt к нулю, мы получим, что отрезок выродится в точку, а средняя скорость по отрезку при существовании предела $\lim_{\Delta t \to 0} \frac{S(t_0+\Delta t)-S(t_0)}{\Delta t}$ превратится в мгновенную скорость в точке t_0 . Таким образом, производная функции S(t), представляющей зависимость пути от времени, представляет мгновенную скорость в соответствующей точке.

Итак, геометрическим смыслом производной $f'(x_0)$ является тангенс угла наклона касательной к кривой y=f(x) в точке $(x_0,f(x_0))$, физическим смыслом производной $f'(x_0)$ является скорость в момент $x=x_0$, когда зависимость длины пути y от скорости x задается функцией y=f(x).

Дифференциал

Как было сказано выше, в случае дифференцируемости функции в точке второе слагаемое α в выражении приращения функции $\Delta f = f'(x_0)\Delta x + \alpha$ величина более высокого порядка малости, чем величина Δx , а следовательно – в случае, когда $f'(x_0) \neq 0$, – и чем величина $f'(x_0)\Delta x$. Другими словами, первое слагаемое в выражении приращения функции представляет основную часть приращения функции. Называют его дифференциалом функции y = f(x) в точке x_0 и обозначают $df(x_0) = f'(x_0)\Delta x$. В целях единообразия и для того, чтобы подчеркнуть, что Δx — бесконечно малая величина, приращение аргумента Δx в этой формуле обозначают dx. Тогда df = f'(x)dx, откуда следует второе обозначение производной $f'(x) = \frac{df}{dx}$. Связь между приращением функции и ее дифференциалом изображена на рисунке 1.

Примеры получения производных

Применяя замечательные пределы и их следствия, получим

1.
$$\sin' a = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2\sin \frac{x - a}{2} \cdot \cos \frac{x + a}{2}}{x - a} =$$

$$= \lim_{x \to a \to 0} \frac{\sin \frac{x - a}{2}}{\frac{x - a}{2}} \lim_{x \to a} \cos \frac{x + a}{2} = \cos a;$$

2.
$$\cos' a = \lim_{x \to a} \frac{\cos x - \cos a}{x - a} = \lim_{x \to a} \frac{-2\sin\frac{x - a}{2} \cdot \sin\frac{x + a}{2}}{x - a} =$$

$$= -\lim_{x \to a \to 0} \frac{\sin\frac{x - a}{2}}{\frac{x - a}{2}} \lim_{x \to a} \sin\frac{x + a}{2} = -\sin a;$$

3.
$$(e^x)'_{|a} = \lim_{x \to a} \frac{e^x - e^a}{x - a} = \lim_{x \to a} \frac{e^a(e^{x - a} - 1)}{x - a} = e^a \lim_{x \to a \to 0} \frac{(e^{x - a} - 1)}{x - a} = e^a;$$

4.
$$\ln a = \lim_{x \to a} \frac{\ln x - \ln a}{x - a} = \lim_{x \to a} \frac{\ln \frac{x}{a}}{x - a} = \lim_{x \to a} \frac{\ln (1 + \frac{x - a}{a})}{x - a} = \frac{1}{a} \lim_{x \to a \to 0} \frac{\ln (1 + \frac{x - a}{a})}{\frac{x - a}{a}} = \frac{1}{a};$$

5.
$$(x^{\alpha})'_{|a} = \lim_{x \to a} \frac{x^{\alpha} - a^{\alpha}}{x - a} = a^{\alpha} \lim_{x \to a} \frac{(\frac{x}{a})^{\alpha} - 1}{x - a} = a^{\alpha} \lim_{x \to a} \frac{(\frac{x - a}{a} + 1)^{\alpha} - 1}{x - a} = a^{\alpha} \lim_{x \to a} \frac{(\frac{x - a}{a} + 1)^{\alpha} - 1}{x - a} = a^{\alpha-1} \lim_{x \to a \to 0} \frac{(\frac{x - a}{a} + 1)^{\alpha} - 1}{\frac{x - a}{a}} = \alpha a^{\alpha - 1}.$$

Производные и арифметические операции над функциями

Из условия дифференцируемости и из свойств пределов функций следуют свойства производных.

- 1. Пусть функции f(x) и g(x) дифференцируемы в точке a . Тогда функция f(x)+g(x) дифференцируема в точке a , причем (f(x)+g(x))'=f'(x)+g'(x) .
- 2. Пусть функция f(x) дифференцируема в точке a , $k \in \mathbb{R}$. Тогда функция $k \cdot f(x)$ дифференцируема в точке a , причем $(k \cdot f(x))' = k \cdot f'(x)$
- 3. Пусть функции f(x) и g(x) дифференцируемы в точке a . Тогда функция $f(x)\cdot g(x)$ дифференцируема в точке a , причем $(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$.
- 4. Пусть функции f(x) и g(x) дифференцируемы в точке a , $g(a) \neq 0$. Тогда функция $\frac{f(x)}{g(x)}$ дифференцируема в точке a , причем $(\frac{f(x)}{g(x)})' = \frac{f'(x) \cdot g(x) f(x)g'(x)}{g^2(x)}$.

Покажем, как доказывается свойство 3. Обозначим $h(x) = f(x) \cdot g(x)$. Имеем

$$\Delta h = f(x) \cdot g(x) - f(a) \cdot g(a) = (f(x) - f(a)) \cdot g(x) + f(a) \cdot (g(x) - g(a)) =$$

$$= \Delta f \cdot g(x) + \Delta g \cdot f(a) = (f'(a)\Delta x + \alpha) \cdot g(x) + (g'(a)\Delta x + \beta) \cdot f(a) =$$

$$= (f'(a)\Delta x + \alpha) \cdot (g(a) + \Delta g) + (g'(a)\Delta x + \beta) \cdot f(a),$$

где α и β — величины более высокого порядка малости, чем Δx . Раскрывая скобки и собирая коэффициенты при Δx , получим следующее представление:

$$\Delta h = (f'(a) \cdot g(a) + g'(a) \cdot f(a)) \cdot \Delta x + f'(a) \cdot \Delta x \cdot \Delta g + \alpha \cdot g(a) + \alpha \cdot \Delta g + \beta \cdot f(a) =$$

$$= (f'(a) \cdot g(a) + g'(a) \cdot f(a)) \cdot \Delta x + \gamma,$$

где γ — величина более высокого порядка малости, чем Δx . В соответствии с условием дифференцируемости и выражением производной свойство 3 доказано.

Упражнение. В качестве приложения свойства 4 докажите равенства:

$$tg'a = \frac{1}{\cos^2 a}, \ ctg'a = -\frac{1}{\sin^2 a}.$$