IDAES Unit Model - NAWI ProteusLib Nanofiltration

1) Model specifications and general *notes*:

i. Model dimensionality: 0D model

ii. Model dynamics: Steady-state only

iii. Valid phases:
Single liquid phase only
iv. Notes:
Modified from RO unit model

2) List all required unit model sets:

v. Set description:Timevi. Set symbol: $t \in T$ vii. Pyomo notation:t

viii. Pyomo set declaration: flowsheet().config.time

i. Set description: Components

ii. Set symbol: $j \in J$ iii. Pyomo notation: $j \in J$

iv. Pyomo set declaration: config.property_package.component_list

3) List all required unit model *parameters*:

i. Parameter description: Water permeability coefficient

ii. Parameter symbol: A_t iii. Pyomo notation: A

iv. Parameter indices: Time (t)
v. Parameter initial value: 3.77e-11
vi. Parameter bounds: [1e-18, 1e-6]
vii. Parameter unit: m/(Pa-s)

viii. Parameter data source: [Nair et al. (2018), ESNA membranes for Water]

ix. Note: $10.52 \text{ L/(m}^2\text{-h-bar)} =$

10.52/(1,000x100,000x3,600) m/(Pa-s)

i. Parameter description: Salt permeability coefficient

ii. Parameter symbol: B_t iii. Pyomo notation: B

iv. Parameter indices: Time (t)v. Parameter initial value: 4.724e-5vi. Parameter bounds: [1e-11, 1e-5]

vii. Parameter unit: m/s

viii. Parameter data source: [Nair et al. (2018), ESNA membranes for Na+/Cl-]

ix. Note: Assume permeability coefficients for Na+/Cl- are

additive for NaCl

i. Parameter description: Pure water density

ii. Parameter symbol: ρ^{H20}

iii. Pyomo notation: dens_H2O

iv. Parameter indices: --v. Parameter initial value: 1,000
vi. Parameter bounds: [1, 1e6]
vii. Parameter unit: kg/m³

viii. Parameter data source: Common knowledge

i. Parameter description: Reflection coefficient

ii. Parameter symbol: σ iii. Pyomo notation: sigma
iv. Parameter indices: --v. Parameter initial value: 0.28
vi. Parameter bounds: ---

vii. Parameter unit: --- (dimensionless)

viii. Parameter data source: Nair et al. (2018), ESNA membranes for Na+/Cl-x. Note: Assume reflection coefficients for Na+/Cl- are

Assume reflection coefficients for Na+/Ci- are

additive for NaCl

4) List all required unit model decision variables:

i. Variable description: Flux at feed inlet

ii. Variable symbol: $J_{t,i}^{in}$

iii. Pyomo notation: flux_mass_comp_in iv. Variable indices: Time (t), Component (j)

v. Variable initial value: 1e-3

vi. Variable bounds: [1e-8, 1e6] vii. Variable unit: kg / (m² x s)

i. Variable description: Flux at feed outlet

ii. Variable symbol: $J_{t,j}^{out}$

iii. Pyomo notation: flux_mass_comp_out iv. Variable indices: Time (t), Component (j)

v. Variable initial value: 1e-3

vi. Variable bounds: [1e-8, 1e6] vii. Variable unit: kg / (m² x s)

i. Variable description: Membrane area

ii. Variable symbol: x^A iii. Pyomo notation: area

iv. Variable indices: --v. Variable initial value: 1

vi. Variable bounds: [1e-8, 1e6]

vii. Variable unit: m²

i. Variable description: Average concentration at feed inlet

ii. Variable symbol: \bar{c}_t^{in}

iii. Pyomo notation: avg_concentration_in

iv. Variable indices: Time (t)v. Variable initial value: 1e-3

vi. Variable bounds: [1e-8, 1e6] vii. Variable unit: kg/m³

i. Variable description: Average concentration at feed outlet

ii. Variable symbol: \bar{c}_t^{out}

iii. Pyomo notation: avg_concentration_out

iv. Variable indices: Time (t)
v. Variable initial value: 1e-3
vi. Variable bounds: [1e-8, 1e6]
vii. Variable unit: kg/m³

i. Variable description: Average component mass flux

ii. Variable symbol: $J_{t,j}^{Avg}$

iii. Pyomo notation: flux_mass_comp_avg
iv. Variable indices: Time (t), Component (j)

v. Variable initial value: --vi. Variable bounds: ---

vii. Variable unit: $kg/(m^2 x s)$

5) List all utilized unit model (IDAES-internal) decision *variables*:

i. Variable description: Mass transfer to permeate

ii. Variable symbol: $M_{t,j}^P$

iii. Pyomo notation: properties_permeate[t].mass_transfer_comp[j]

iv. Variable indices: Time (t), Component (j)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: kg/s

viii. Note: IDAES-internal variable

i. Variable description: Feed pressure

ii. Variable symbol: P_t^F

iii. Pyomo notation: feed_side.properties_in[t].pressure

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Permeate pressure

ii. Variable symbol: P_t^P

iii. Pyomo notation: properties_permeate[t].pressure

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Brine pressure

ii. Variable symbol: P_t^B

iii. Pyomo notation: feed_side.properties_out[t].pressure

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Feed osmotic pressure

ii. Variable symbol: π_t^F

iii. Pyomo notation: feed_side.properties_in[t].pressure_osm

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Permeate osmotic pressure

ii. Variable symbol: π_t^P

iii. Pyomo notation: properties_permeate[t].pressure_osm

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Brine osmotic pressure

ii. Variable symbol: π_t^B

iii. Pyomo notation: feed_side.properties_out[t].pressure_osm

iv. Variable indices: Time (t)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: Pa

viii. Note: IDAES-internal variable

i. Variable description: Feed concentration

ii. Variable symbol: $C_{t,j}^F$

iii. Pyomo notation: feed_side.properties_in[t].conc_mass_comp[j]

iv. Variable indices: Time (t), Component (j)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: kg/m³

viii. Note: IDAES-internal variable

i. Variable description: Permeate concentration

ii. Variable symbol: $C_{t,j}^P$

iii. Pyomo notation: properties_permeate[t].conc_mass_comp[j]

iv. Variable indices: Time (t), Component (j)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: kg/m³

viii. Note: IDAES-internal variable

i. Variable description: Brine concentration

ii. Variable symbol: $C_{t,i}^B$

iii. Pyomo notation: feed_side.properties_out[t].conc_mass_comp[j]

iv. Variable indices: Time (t), Component (j)

v. Variable initial value: --vi. Variable bounds: --vii. Variable unit: kg/m³

viii. Note: IDAES-internal variable

6) List all required unit model *performance equations*:

i. Constraint description: Average flux ii. Constraint validity: $\forall t \in T, j \in J$

iii. Symbolic constraint: $J_{t,j}^{Avg} = 0.5 \cdot \left(J_{t,j}^{in} + J_{t,j}^{out}\right)$

iv. Pyomo constraint: flux_mass_comp_avg[t,j] = 0.5 *

(flus_mass_comp_in[t,j] +
flux_mass_comp_out[t,j]

v. Constraint source: [adopted from RO unit model]

i. Constraint description: Permeate mass flow

ii. Constraint validity: $\forall t \in T, j \in J$

iii.	Symbolic constraint:	$M_{t,j}^P = x^A \cdot J_{t,j}^{Avg}$
------	----------------------	---------------------------------------

iv. Pyomo constraint: mass_transfer_comp[t, j] = area *

flux mass comp avg[t,i] =

[adopted from RO unit model] v. Constraint source:

i. Constraint description: Inlet water flux Constraint validity: $\forall t \in T, j \in \{H20\}$

 $J_{t,i}^{in} = A_t \cdot \rho^{H2O} \cdot (P_t^F - P_t^P) - \sigma \cdot (\pi_t^F - \pi_t^P)$ iii. Symbolic constraint:

flux_mass_comp_in[t,j] = A[t] * dens_H2O * iv. Pyomo constraint:

(feed_side.properties_in[t].pressure -

properties permeate[t].pressure) - sigma * (feed_side.properties_in[t].pressure_osm properties_permeate[t].pressure_osm)

v. Constraint source: Wang et al. (2014)

i. Constraint description: Inlet salt flux ii. Constraint validity: $\forall t \in T, j \in \{NaCl\}$

 $J_{t,j}^{in} = B_t \cdot \left(C_{t,j}^F - C_{t,j}^P \right) + (1 - \sigma) \cdot J_{t,j}^{in} \cdot \frac{1}{\rho_{H20}} \cdot \bar{c}_t^{in}$ Symbolic constraint:

flux_mass_comp_in[t,j] = B[t] * iv. Pyomo constraint:

(feed_side.properties_in[t].conc_mass_comp[j] properties_permeate[t].conc_mass_comp[j]) + (1 - sigma) * flux_mass+comp_in[t,j] * 1/dens H2O * avg concentration in

v. Constraint source: Wang et al. (2014)

i. Constraint description: Outlet water flux $\forall t \in T, j \in \{H20\}$ ii. Constraint validity:

 $J_{t,i}^{out} = A_t \cdot \rho^{H2O} \cdot (P_t^B - P_t^P) - \sigma \cdot (\pi_t^B - \pi_t^P)$ iii. Symbolic constraint:

iv. Pyomo constraint: flux mass comp out[t,i] = A[t] * dens H2O *

(feed side.properties out[t].pressure properties_permeate[t].pressure) - sigma * (feed_side.properties_out[t].pressure_osm properties_permeate[t].pressure_osm)

v. Constraint source: Wang et al. (2014)

i. Constraint description: Outlet salt flux $\forall t \in T, j \in \{NaCl\}$ ii. Constraint validity:

 $J_{t,j}^{in} = B_t \cdot \left(C_{t,j}^F - C_{t,j}^P \right) + (1 - \sigma) \cdot J_{t,j}^{out} \cdot \frac{1}{\rho_{H20}} \cdot \bar{c}_t^{out}$ Symbolic constraint: iii.

flux mass comp out[t,i] = B[t] * iv. Pyomo constraint:

(feed_side.properties_out[t].conc_mass_comp[j] properties_permeate[t].conc_mass_comp[j]) + (1 - sigma) * flux mass+comp out[t,j] *

1/dens_H2O * avg_concentration_out

Wang et al. (2014) v. Constraint source:

i. Constraint description: Average inlet concentration

ii. Constraint validity: $\forall t \in T, j \in \{NaCl\}$

iii. Symbolic constraint: $\bar{c}_t^{in} = \left(C_{t,j}^F \cdot C_{t,j}^P \cdot \left(C_{t,j}^F + C_{t,j}^P\right)/2\right)^{1/3}$

iv. Pyomo constraint b.avg_concentration_in[t] ==

(feed_side.properties_in[t].conc_mass_comp[j]
* properties.permeate[t].conc_mass_comp[j] *
(feed_side.properties_in[t].conc_mass_comp[j]
+ properties.permeate[t].conc_mass_comp[j])/2)**

(1/3)

v. Constraint source: Bruggen (2013)

vi. Note: The original average concentration expression

 $\bar{c}_t^{in} = \left(C_{t,j}^F - C_{t,j}^P\right) / \ln\left(C_{t,j}^F / C_{t,j}^P\right)$

is approximated for numerical robustness

i. Constraint description: Average outlet concentration

ii. Constraint validity: $\forall t \in T, j \in \{NaCl\}$

iii. Symbolic constraint: $\bar{c}_t^{out} = \left(C_{t,j}^B \cdot C_{t,j}^P \cdot \left(C_{t,j}^B + C_{t,j}^P\right)/2\right)^{1/3}$

iv. Pyomo constraint: b.avg_concentration_out[t] ==

(feed_side.properties_out[t].conc_mass_comp[j] *

properties.permeate[t].conc_mass_comp[j] *
(feed_side.properties_out[t].conc_mass_comp[j]
+ properties.permeate[t].conc_mass_comp[j])/2)**

(1/3)

v. Constraint source: Bruggen (2013)

vi. Note: The original average concentration expression

 $\bar{c}_t^{out} = (C_{t,j}^B - C_{t,j}^P) / ln(C_{t,j}^B / C_{t,j}^P)$

is approximated for numerical robustness

An editable version of this file can be found under the following link.