

HT67F50 使用 SIM SPI Mode 之用法

文件編碼: AN0252T

簡介

HT67F50 內建有一個 Serial Interface Module 模組 (包括 SPI 和 ${
m I}^2$ C 兩種總線模式) 和一個具有獨立 SPI 功能模組 SPIA,本文以 HT67F50 爲母體,介紹使用 SPI 進行資料傳輸的方法和注意事項。

SPI Interface

SPI (Serial Peripheral Interface) 是一個全雙工串列資料傳輸器,最初由摩托羅拉設計,其允許多種設備通過 SPI 總線進行相互通信。設備之間通過主/從技術,只有主機能夠發起資料的傳遞。一個簡單的四線信號總線被用來進行所有的通信,這四線信號線與普通的 I/O 埠共用。

SIM 模組中的 SPI

SIM SPI 介面是一個全雙工的串列資料連接,串列介面功能有 4 根基本信號線,包含 SDO (串列資料輸出),SDI (串列資料輸入),SCK (串列時鐘)和 SCS (從元件選擇),這 4 根基本信號線系統默認與 PC1、PC0、PA7、PA6 I/O 共用,具體可由暫存器 PRM0 的 SIMPS1、SIMPS0 位元控制改變共用的 I/O Pin。注意的是,從機選擇線的條件是由 SIMC2 控制暫存器內的 CSEN 位元決定的。如果 CSEN 被置位, SCS 線有效,但如果 CSEN 被清零,那麼 SCS 線將處於浮空狀態。下面的時序圖描述了 SPI 總線的主模式和從模式下的時序協定。

SPI Master Mode Timing

SPI Slave Mode Timing - CKEG=0

Note: For SPI slave mode, if SIMEN=1 and CSEN=0, SPI is always enabled and ignores the $\overline{\text{SCS}}$ level.

SPI Slave Mode Timing - CKEG=1

獨立 SPI 模組 SPIA

SPIA 介面是一個全雙工的串列資料連接,串列介面功能有 4 根基本信號線,包含 SDOA (串列資料輸出)、SDIA (串列資料輸入)、SCKA (串列時鐘) 和 SCSA (從元件選擇),這 4 根基本信號線分別與 PA3~PA0 I/O 共用。注意的是,從機選擇線的條件是由 SPIAC1 控制暫存器內的 SACSEN 位元決定的。如果 SACSEN 被置位, SCSA 線有效,但如果 SACSEN 被清零,那麼 SCSA 線將處於浮空狀態。下面的時序圖描述了 SPIA 總線的主模式和從模式下的時序協定。

SPIA Master Mode Timing

SPIA Slave Mode Timing - SACKEG=0

SPIA Slave Mode Timing - SACKEG=1

Operation Declaration

SIM 模組中的 SPI

SIM 中的 SPI 的介面與 I/O 功能和 I²C 共用腳位,系統默認 SDO 與 PC1 共用,SDI 與 PC0 共用 (I²C 模式下,此引腳爲 SDA),SCK 與 PA7 共用 (I²C 模式下,此引腳爲 SCK), \overline{SCS} 與 PA6 共用。可通過改變暫存器 PRM0 的 SIMPS1、SIMPS0 控制位元狀態來改變共用的 I/O Pin,具體如下所示:

PRM0 Register

Bit	7	6	5	4	3	2	1	0
Name	C1XPS1	C1XPS0	C0XPS1	C0XPS0	SIMPS1	SIMPS0	PCKPS1	PCKPS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 3~2 SIMPS1, SIMPS0: SIM Pin Remapping Control

00: SDO on PC1; SDI/SDA on PC0; SCK/SCL on PA7; SCSB on PA6 01: SDO on PC5; SDI/SDA on PC4; SCK/SCL on PC3; SCSB on PC2 10: SDO on PG5; SDI/SDA on PG4; SCK/SCL on PG3; SCSB on PG2

11: Undefined

Bit 1~0 PCKPS1, PCKPS0: PCK and PINTB Pin Remapping Control

00: PCK on PA5; PINTB on PA4 01: PCK on PC1; PINTB on PC0 10: PCK on PG1; PINTB on PG0

11: Undefined

打開 SPI 功能,你必須首先將配置選項的 SIM Function 選擇爲 Enable,然後設定好 SIMCO 和 SIMC2 暫存器値。

HT67F50 與 SIM SPI 功能相關的暫存器一共有 3 個。它們是 SIMD、SIMC0、SIMC2。 SIMD 暫存器被用來儲存馬上要傳輸或者剛接收到的資料。它是和 I²C 共用的,在 HT67F50 SIM 模組中,SPI 與 I²C 只能二選其一。要把資料寫入 SPI 總線,資料必須要放入 SIMD 暫存器才能被得到傳輸。相應的在資料從 SPI 總線接收到後,也只能從 SIMD 暫存器中讀出資料。總之,任何通過 SPI 總線進行傳送和接受的資料都必須通過 SIMD 暫存器。

SIMD Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	×	×	X	×	×	×	×	×

"x" unknow

SIMC0 暫存器也是 SPI 和 I^2 C 共用的,它被用來打開或者關閉串列介面功能,設置 SPI 總線 資料傳輸的時鐘頻率。

SIMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	SIM2	SIM1	SIM0	PCKEN	PCKP1	PCKP0	SIMEN	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
POR	1	1	1	0	0	0	0	_

- SIMEN:這一個 bit 在總體上控制 SPI 介面的開與關,當 SIMEN 位元被清爲 0 時,將關閉掉 SPI 介面功能。SDI、SDO、SCK 與 SCS 將會處於浮空狀態,此時,SPI 工作電流將變爲一個極小值。當這一位變爲 1 時,SPI 功能將打開。當然,必須要先在配置選項中打開 SIM 功能,這一位元才會有效。要注意到地方是,當 SIMEN 位元從 0 變爲 1 時,此時 SPI 的控制暫存器將會變爲無法預測的值,因此,每當 SIMEN 位元從 0 變爲 1 時,應用程式必須要重新初始化 SPI 的控制暫存器。
- SIMO~SIM2:這幾位元用來設定 SIM 功能的操作模式,也就是選擇 I²C 功能或者選擇 SPI 功能。如果選擇了 SPI 功能,還將選擇主/從模式、主機的時鐘頻率,時鐘可以選擇爲系統時鐘,也可以來源於 TMO CCRP Match 的二除頻。如果選擇從模式,將不用選擇時鐘,它的時鐘由它的主機提供。具體情況由下圖所示:

SIM2, SIM1, SIM0: SIM Operating Mode Control

000: SPI master mode; SPI clock is $f_{\text{SYS}}/4$

001: SPI master mode; SPI clock is f_{SYS}/16

010: SPI master mode; SPI clock is f_{SYS}/64

011: SPI master mode; SPI clock is f_{TBC}

100: SPI master mode; SPI clock is TM0 CCRP match frequency/2

101: SPI slave mode

110: I2C slave mode

111: Unused mode

PCKEN、PCKP1、PCKP0 這三個暫存器用於控制外圍時鐘輸出。此週邊設備時鐘輸出引腳 PCLK 系統默認與 I/O 引腳 (PA6) 共用,具體可由 PRM0 暫存器的 PCKPS1、PCKPS0 位元控制,如下所示:

Bit 1~0 PCKPS1, PCKPS0: PCK and PINTB Pin Remapping Control

00: PCK on PA5; PINTB on PA4

01: PCK on PC1; PINTB on PC0

10: PCK on PG1; PINTB on PG0

11: Undefined

• PCKEN:這個位元在總體上控制外圍時鐘輸出的開與關。

• PCKP0、PCKP1:選擇外圍時鐘輸出的時鐘來源,如下表:

PCKP1, PCKP0: Select PCK output pin frequency

00: f_{SYS}

01: $f_{SYS}/4$

10: $f_{SYS}/8$

11: TM0 CCRP match frequency/2

SIMC2 暫存器是 SPI 和 I²C 共用的。I²C 模式下,此暫存器 I²C 串列通訊的位址暫存器 SIMA; SPI 模式下,此暫存器為 SPI 串列通訊的控制暫存器。

SIMC2 Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	CKPOLB	CKEG	MLS	CSEN	WCOL	TRF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

- TRF: 傳送/接收完成旗標位元,當傳送或者接收完成後,它將自動的設定爲1。需要軟體 清除。
- WCOL:主/從模式下,若正在發送資料或接收資料,寫入 SIMD 暫存器將會設定 WCOL 位元,且寫入資料被忽略。WCOL 功能可由配置選項打開或者關閉。WCOL 由硬體設定 位元,軟體清除為 0。
- CSEN: 串列介面片選功能打開/關閉。若 CSEN=1, SCS 片選功能有效。主模式下,在 SCK 信號輸出前先輸出 SCS 片選信號;而在從模式下,接收到 SCS 信號前(後),資料傳輸被關閉(打開)。若 CSEN=0, SCS 引腳處於浮空狀態,選片功能失效,此時可在外部對 SCS 引腳 Pull-High 以實現片選功能。CSEN 功能可由配置選項打開或者關閉。
- MLS: MSB 或 LSB 選擇位元。也就是傳輸時高位元優先或者低位元優先。
- CKEG 和 CKPOLB:這兩位元在資料傳輸前必須進行設定,否則,一個錯誤的時鐘源會被產生。CKPOLB 位元決定時鐘線的基本狀態,當這一位元爲高時,時鐘線在不活動的狀態下將爲低,反之爲高。CKEG 位元決定時鐘線有效時的時鐘源類型,它將依賴於CKPOLB 的值,下面是這 2 位元組合起來的情況。

CKPOLB	CKEG	SCK Clock Signal		
0	0	High Base Level Active Rising Edge		
0	1	High Base Level Active Falling Edge		
1	0	Low Base Level Active Falling Edge		
1	1	Low Base Level Active Rising Edge		

獨立 SPI 模組 SPIA

SPIA 的介面與 I/O 功能共用腳位,SDOA 與 PA3 共用,SDIA 與 PA2 共用,SCKA 與 PA1 共用, SCSA 與 PA0 共用。打開 SPIA 功能你必須首先將配置選項的 SPI1 選擇為 Enable,然後設定好 SPIAC0 和 SPIAC1 暫存器值。

與 SPIA 功能相關的暫存器一共有 3 個。它們是 SPIAD、SPIACO、SPIAC1,這些暫存器與 SIM SPI 相關的控制暫存器相對應,如下表所示:

SIM SPI		SPIA
暫存器名稱		暫存器名稱
SIMD	\rightarrow	SPIAD
SIMC0	\rightarrow	SPIAC0
SIMC2	\rightarrow	SPIAC1

與 SIM SPI 控制暫存器不同的是,SPIA 的控制暫存器是獨立的,與 I²C 的控制無關。 SPIAD 暫存器被用來儲存馬上要傳輸或者剛接收到的資料。SPIA 總線進行傳送和接受的資料都必須通過 SPIAD 暫存器。

SPIAD Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	x	х	X	X	Х	X	Х	Х

[&]quot;x" unknown

SPIACO 暫存器用來打開或者關閉串列介面功能,設定 SPIA 總線資料傳輸的時鐘頻率。

SPIACO Register

Bit	7	6	5	4	3	2	1	0
Name	SASPI2	SASPI1	SASPI0	_	_	_	SPIAEN	_
R/W	R/W	R/W	R/W	_	_	_	R/W	_
POR	1	1	1	0	0	0	0	0

- SPIAEN:這一個 Bit 在總體上控制 SPIA 介面的開與關,當 SPIAEN 位元被清為 0 時,將關閉掉 SPIA 介面功能。與 SIM SPI 的控制 Bit SIMEN 相當。
- SASPI2~SASPI0:這幾位元用來設定 SPIA 功能的操作模式,選擇主/從模式、主機的時鐘 頻率,時鐘可以選擇爲系統時鐘,也可以來源於計時器。如果選擇從模式,將不用選擇 時鐘,它的時鐘由它的主機提供。具體情況由下圖所示:

SASPI2~SASPI0: Master/Slave Clock Select

 $\begin{array}{l} 000: SPIA \ master, \ f_{SYS}/4 \\ 001: SPIA \ master, \ f_{SYS}/16 \\ 010: SPIA \ master, \ f_{SYS}/64 \end{array}$

011 : SPIA master, f_{SUB}

100 : SPIA master, TP0 CCRP match frequency/2 (PFD)

101: SPIA slave

SPIAC1 為 SPIA 串列通訊的控制暫存器。

SPIAC1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	SACKPOL	SACKEG	SAMLS	SACSEN	SAWCOL	SATRF
R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

- SATRF: 傳送/接收完成旗標位元,當傳送或者接收完成後,它將自動的設定 1。需要軟體清除。
- SAWCOL: 主/從模式下,若正在發送資料或接收資料,寫 SPIAD 暫存器將會設定位元 SAWCOL,且寫入資料被忽略。SAWCOL功能可由配置選項打開或者關閉。SAWCOL由 硬體設定位元,軟體清除為0。
- SACSEN: 串列介面片選功能打開/關閉。若 SACSEN=1, SCSA 片選功能有效。主模式下,在 SCK 信號輸出前先輸出 SCSA 片選信號;而在從模式下,接收到 SCSA 信號前(後),資料傳輸被關閉(打開)。若 SACSEN=0, SCSA 引腳處於浮空狀態,選片功能失效,此時可在外部對 SCSA 引腳 Pull-High 以實現片選功能。SACSEN 功能可由配置選項打開或者關閉。
- SAMLS: MSB 或 LSB 選擇位元。也就是傳輸時高位元優先或者低位元優先。

SACKEG和SACKPOL:這兩位元在資料傳輸前必須進行設定,否則,一個錯誤的時鐘源會被產生。SACKPOL位元決定時鐘線的基本狀態,當這一位元為高時,時鐘線在不活動的狀態下將爲低,反之爲高。SACKEG位元決定時鐘線有效時的時鐘源類型,它將依賴於SACKPOL的值,下面是這2位元組合起來的情況。

SACKPOL	SACKEG	SCK Clock Signal		
0	0	High Base Level Active Rising Edge		
0	1	High Base Level Active Falling Edge		
1	0	Low Base Level Active Falling Edge		
1	1	Low Base Level Active Rising Edge		

S/W Flowchart

SIM SPI 傳輸控制的流程圖如下:

SPI Transfer Control Flowchart

SPIA 傳輸控制的流程圖如下:

SPIA Transfer Control Flowchart

SIM SPI 操作

在主/從機模式下,所有的通信都通過使用 SPI 匯流排得以實現。時序圖顯示了基本的總線操作。SPI 傳輸過程中,主機在輸出 SCK 信號前,通過傳輸一個 SCS 信號選擇從機,當 CSEN=0, SCS 引腳需外部 Pull-High,如 SPI Master Mode Timing 圖所示。從模式在 SCS =1 時,SDO 爲 浮空, SCS =0 時,SDO 有效。從模式下,若 CSEN=0,不管 SCS 狀態如何(爲高準位或爲低準位),只要 SIMEN=1,SPI 就處於有效狀態。SIMCO 暫存器的 SIMEN 位必須設定位元,其可以將 SDI 引腳設成浮空狀態並且將 SDO 引腳設定高位元。在從模式下,SCK 引腳將處於浮空狀態。如果 SIMEN 位元清除爲零,那麼總線將被禁止,並且 SCS 、SDI、SDO 和 SCK 將全都處於浮空狀態。在主模式下,主機將始終產生時鐘信號。在資料被寫入 SIMD 暫存器後,將啓動時鐘和資料的傳遞。在從模式下,資料的傳遞和接受將通過接收來自外部主機設備的時鐘信號來啓動。下面的步驟顯示了在主/從模式下資料傳遞遵循的順序。

主模式

步驟1

設定 SIMCO 控制暫存器的 SIMO~SIM2 位元來選擇主模式和串列傳輸速率。

● 歩驟 2

設定 CSEN 並利用 MLS 來選擇資料從高位元還是低位元開始,從機必須保持一致。

步驟3

設定 SIMCO 控制暫存器的 SIMEN 位元來打開 SPI。

● 步驟 4

將欲傳出資料寫入 SIMD,檢查 WCOL:WCOL=1 \rightarrow 發生衝突錯誤,並跳至步驟 4。 WCOL=0 \rightarrow 跳至步驟 5。

● 步驟 5

輸出 CLK 信號和 SIMD 資料信號 \rightarrow 使用 SDO 引腳輸出資料 \rightarrow 跳至步驟 6。

• 步驟 6

檢查 TRF 或等待 SPI 串列總線中斷。

● 步驟7

從 SIMD 暫存器讀取資料。

● 步驟 8

清除 TRF。

● 步驟 9

返回步驟4。

從模式

步驟1

設定的 SIM0~SIM2 位元為 101 來選擇從模式。

步驟 2

設定 CSEN 並利用 MLS 來選擇資料從高位元還是低位元開始,主機必須保持一致。

步驟3

設定 SIMCO 控制暫存器的 SIMEN 位元來打開 SPI 介面。

● 步驟 4

將資料寫入 SIMD,檢查 WCOL:WCOL=1 → 發生衝突錯誤,並跳至步驟 4。 WCOL=0 → 跳至步驟 5

• 步驟 5

等待主機時鐘和 \overline{SCS} 信號 \rightarrow 使用 SDO 引腳輸出資料 \rightarrow 跳至步驟 6。

檢查 TRF 或等待 SPI 串列總線中斷。

● 步驟7

從 SIMD 暫存器讀取資料。

• 步驟 8

清除 TRF。

● 步驟 9

返回步驟4。

SPIA 操作

SPIA 操作與 SIM SPI 的操作類似,這裡不再說明。

SPI 配置選項

一些配置選項必須通過設備的程式來設定後用作 SPI 介面功能。SIM SPI 有一個配置選項用來在 SIMC2 暫存器使能 WCOL 的操作和寫衝突位元;另一個配置選項用來禁止或使能 SIMC0 暫存器中的 CSEN 位元。如果配置選項禁止 CSEN 位元,那麼 CSEN 將不能用來影響 SPI 匯流排所有的控制。SIMC2 暫存器的 WCOL 位元用來在資料傳送中提示寫入衝突錯誤。當資料傳遞操作中出現寫 SIMD 暫存器的現象時,WCOL 位元會提示資料衝突並且防止繼續進行寫入操作。WCOL 位元將通過硬體被設定位元,但必須通過用戶應用程式來清除爲零。WCOL 位元的全部功能可以通過配置選項來禁止或打開。

同理,使用 SPIA 時,需相應地使能對應的配置選線。

程式注意事項

使用 SIM SPI 時,應注意共用引腳的設定,例如使用系統默認 SPI 的 4 根通訊引腳中的 SDI、SDO 與 PCO、PC1 共用,同時與 TP1BO、TP1B1 共用,可設定 TP1BIPS~TP1BOPS=11 使得 TP1BO、TP1B1 與 PD4、PD3 共用,繼而實現 SPI 資料傳輸功能。使用 SPIA 時,設定 COSEL=0、COOS=1,繼而實現 SPIA 的資料傳輸。

程式説明

本範例中,利用 2 塊 HT67F50 IC 分別使用 SIM SPI 和 SPIA 設定爲主機和從機進行 SPI 全雙工傳輸。主從機選擇受 I/O 控制如下:

I/O ;	伏態		I/O 狀態			
HT67F50 SIM-SPI	HT67F50 SPIA	主從機模式傳輸狀態	HT67F50 SIM-SPI or SPIA			
PB7	PB7		PE Port	PF Port		
1	0	SIM SPI 爲主機,SPIA 爲從幾	發送數據輸入端	接收數據輸出端		
0	1	SIM SPI 為從幾,SPIA 為主幾	發送數據輸入端	接收數據輸出端		

本範例由主程式以及 SPI 的服務程式 2部分組成,在主程式中,會對 MCU 進行初始化操作,主要是對 SPI 的相關暫存器進行初始化操作。

SPI 的服務程式 spi_Transmission 副程式中,會將 PE 中的資料發送到 SPI 總線,會將從 SPI 總線上接收到的資料保存到 PF 中輸出,用戶可以自行修改;SPIA 的服務程式 spia_Transmission 副程式中,會將 PE 中的資料發送到 SPIA 總線,會將從 SPIA 總線上接收到的資料保存到 PF 中輸出,用戶可以自行修改。

配置選項中,要使用 SIM SPI 總線,必須打開 SIM Function、WOCL 和 CSEN。要使用 SPIA 總線,必須打開 SPI1、SPI1 WOCL 和 SPI1 CSEN。其他選項由用戶使用情況決定。

程式範例

SIM SPI 主/從機輸入/輸出程式

Configuration Option:

OSC: HIRC, Filter OFF Internal RC: 4M@Vdd= 5V

SIM Function: SIM enable(SPI/I²C)

SPI S/W WCOL: Enable
SPI S/W CSEN: Enable

;other option select by user. 程式代碼及說明:見附件。

與之相對應 SPIA 的主/從機輸入/輸出程式

Configuration Option:

OSC: HIRC, Filter OFF
Internal RC: 4M@Vdd= 5V
SPI1: Enable
SPI1 WCOL: Enable
SPI1 CSEN: Enable

;other option select by user. 程式代碼及說明:見附件。

Conclusions

本文講解了 HT67F50 的 SPI 相關的操作與注意事項,使用範例利用 HT67F50 SIM SPI 與 HT67F50 SPIA 分別設定為主機和從機進行 SPI 全雙工傳輸正常。用戶可以在自己的程式中直接插入相應的 IP,根據自己的需要按照附件程式說明自行修改。附件為 HT67F50的 SIM SPI 和 SPIA 的使用程式。