浮点数笔记

apl

2025年3月26日

目录

1	编码		1
	1.1	传统小数的二进制表示	1
	1.2	编码浮点数	1
	1.3	浮点数 IEEE 754 标准	2
	1.4	举例:一个微型的浮点数编码系统	4
	1.5	需要关注的数字	4
_	\— <i>&</i> &		_
2	运算		5
	2.1	几种舍入模式	5
	2.2	浮点数运算	5
	2.3	C 语言中的浮点数	6
	2.4	精确度	6

1 编码

1.1 传统小数的二进制表示

在二进制中,小数点左侧每一位的权重为 2^i ,右侧为 $\frac{1}{2^i}$ (位置计数法),一个二进制数 b 可以表示为 $b=\sum\limits_{i=-n}^m 2^i \times b_i$ 。例如: $5\frac{3}{4}=101.11_2$ $2\frac{7}{8}=010.111_2$

图 1 小数的二进制表示

并且,除以 2 可通过逻辑右移实现,乘以 2 可通过左移实现。像 $0.11111\cdots_2$ 这样的数字十分接近但小于 1,可表示为 $1.0-\varepsilon$ 。同时,并非所有有理数都能精确地用有限位二进制小数表示,例如 $\frac{1}{3}=0.0101010101[01]\cdots_2$,只能精确表示 $\frac{x}{2^k}$ 这种形式的数字。

1.2 编码浮点数

1.2.1 浮点数的表示

浮点数的表示形式为 $(-1)^s \times M \times 2^E$, 其中:

- 符号位 s 决定了数字的正负。
- 尾数 *M* 通常在 [1.0, 2.0) 或 [0.0, 1.0)。
- 阶码 E 是浮点数的权重,为 2 的 E 次幂。

图 2 浮点数编码

编码方式为: 最高位是符号位 s, exp 编码后得到 E (exp $\neq E$), frac 编码后得到 M (frac $\neq M$)。

1.2.2 几种精度的浮点数

常见的浮点数精度有:

精度类型	总位数	符号位	exp 位数	frac 位数
单精度	32 位	1位	8位	23 位
双精度	64 位	1位	11 位	52 位
扩展精度(仅 Intel 支持)	80 位	1位	15 位	63 或 64 位

表 1: 不同精度浮点数的位宽分布

1 编码 3

1.3 浮点数 IEEE 754 标准

1.3.1 规格化数

当 $\exp \neq 000 \cdots 0$ 且 $\exp \neq 111 \cdots 1$ 时:

- 尾数编码为包含一个隐式前置的 1,即 $M = 1.x_1x_2...$,其中 $x_1x_2...$ 为 frac 域的各位的编码。
- 阶码为一个有偏置的指数, E = Exp-Bias, Exp 为 exp 域无符号数编码值, $\text{bias} = 2^{k-1} 1$, $k \neq \text{Exp}$ 的位宽。
- 例如,对于单精度浮点数,bias = 127 (Exp: $1\cdots 254$, $E: -126\cdots 127$); 双精度浮点数,bias = 1023 (Exp: $1\cdots 2046$, $E: -1022\cdots 1023$)。隐式前置的整数 1 始终存在,因此在 frac 中不需要包含。

以 float f = 15213.0 为例:

$$f = 15213_{10} = 11011011011010000000000_2$$

 $= 1.1101101101101101_2 \times 2^{13}$
尾数 $M = 1.1101101101101101_2$
frac = 11011011011010000000000_2
阶码 $E = 13$,
Bias = $2^{k-1} - 1 = 127$ $(k = 8)$,
Exp = $140 = 10001100_2$

1.3.2 非规格化数

- 阶码 E = -Bias + 1 (而不是 E = 0 Bias).
- 尾数编码为包含一个隐式前置的 0, 即 $M=0.x_1x_2\cdots$ 。
- $\pm \exp = 000 \cdots 0$, $\pm \ker = 000 \cdots 0$ 时,表示 0,要注意 ± 0 和 ± 0 的区别。
- 当 $\exp = 000 \cdots 0$,且 $\operatorname{frac} \neq 000 \cdots 0$ 时,表示非常接近于 0.0 的数字,这些数字是等间 距的。

1.3.3 特殊值

当 $\exp = 111 \cdots 1$ 时:

• 当 $\exp = 111 \cdots 1$ 且 $\operatorname{frac} = 000 \cdots 0$ 时,表示无穷 ∞ ,意味着运算出现了溢出,有正向溢出和负向溢出,例如 $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$ 。

2 运算 4

• 当 $\exp = 111 \cdots 1$ 且 $\operatorname{frac} \neq 000 \cdots 0$ 时,表示不是一个数字 (NaN),表示数值无法确定,例如 $-1, \infty - \infty, \infty \times 0$ 。

1.3.4 IEEE 编码的特殊属性

- 1. 浮点数 0 和整数 0 编码相同, 所有位都为 0
- 2. 几乎可以用无符号整数比较的方法实现浮点数的比较运算,但首先要比较符号位,同时要考虑 -0 = 0 和 NaN 的问题 (NaN 比其他值都大)

1.3.5 总结

单精度浮点数可分为以下几类:

- 1. 规格化数: exp ≠ 0000000 且 exp ≠ 111111111.
- 2. 非规格化数: $\exp = 00000000$, $\operatorname{frac} \neq 0000000$.

1.4 举例:一个微型的浮点数编码系统

以 8 位浮点数编码为例,最高位为符号位,接下来是 4 位 exp, 偏置 Bias 为 7, 最后 3 位 是 frac,与 IEEE 规范具有相同的形式,有规格化数、非规格化数,以及 0、NaN 和无穷的编码。

s	exp	frac	E	值
0	0000	000	-6	0
0	0000	001	-6	$\frac{1}{8} \times \frac{1}{64} = \frac{1}{512}$ (最接近 0)
:	•	•	•	i:
0	1111	000	n/a	\inf

表 2: 8 位浮点数编码示例

1.5 需要关注的数字

不同类型的浮点数有一些特殊的数字:

2 运算

2.1 几种舍入模式

常见的舍入模式有:

描述	exp	frac	单精度值(十进制)	双精度值(十进制)
零	00 · · · 00	$0\cdots00$	0.0	0.0
最小非规格化数	00 · · · 00	$0 \cdots 01$	$2^{-23} \times 2^{-126}$	$2^{-52} \times 2^{-1022}$
最大非规格化数	00 · · · 00	$1 \cdots 11$	$(1-\varepsilon)\times 2^{-126}$	$(1-\varepsilon)\times 2^{-1022}$
最小规格化数	00 · · · 01	$0\cdots00$	1×2^{-126}	1×2^{-1022}
_	$01 \cdots 11$	$0\cdots00$	1.0	1.0
最大规格化数	11 · · · 10	$1 \cdots 11$	$(2-\varepsilon)\times 2^{127}$	$(2 - \varepsilon) \times 2^{1023}$

表 3: 不同精度浮点数的特殊值

- 1. 向下舍入: 舍入结果接近但不会大于实际结果。
- 2. 向上舍入: 舍入结果接近但不会小于实际结果。
- 3. 向 0 舍入: 舍入结果向 0 的方向靠近,如果为正数,舍入结果不大于实际结果;如果为负数,舍入结果不小于实际结果。
- 4. 向偶数舍入: 浮点数运算默认的舍入模式,其他的舍入模式都会统计偏差,一组正数的总和将始终被高估或低估。

向偶数舍入适用于舍入至小数点后任何位置,当数字正好处在四舍五入的中间时,向最低位为 偶数的方向舍入。例如:

 值		
1.2349999	1.23	比中间值小,四舍
1.2350001	1.24	比中间值大,五入
1.2350000	1.24	中间,向上舍入(偶数方向)
1.2450000	1.24	中间,向下舍入(偶数方向)

表 4: 向偶数舍入示例

在二进制数中,偶数方向意味着舍入后最后一位为0,中间意味着待舍入的部分为100…2。

2.2 浮点数运算

浮点数运算的基本思想是先计算出精确的值,然后将结果调整至目标的精度。如果阶码值 过大,可能会导致溢出,可能会进行舍入以满足尾数的位宽。例如:

$$x +^f y = \text{Round}(x + y)$$

 $x \times^f y = \text{Round}(x \times y)$

2.2.1 浮点数乘法

对于浮点数 $(-1)^{s_1}M_12^{E_1} \times (-1)^{s_2}M_22^{E_2}$:

2 运算 6

- 精确结果: $M_1 \times M_2$, 阶码 $E = E_1 + E_2$, 符号位 $s = s_1^{s_2}$.
- 修正: 如果 $M \ge 2$,右移 M,并增大 E 的值; 如果 E 超出范围,发生溢出; 对 M 进行舍入以满足 frac 的位宽精度要求。在实际实现中,尾数相乘的细节较为繁琐。

2.2.2 浮点数加法

对于浮点数 $(-1)^{s_1}M_12^{E_1} + (-1)^{s_2}M_22^{E_2}$ (假设 $E_1 > E_2$):

- 精确结果: $(-1)^s M_2^E$, 其中符号位 s 和尾数 M 是有符号数对齐后相加的结果,阶码 $E=E_2$ 。
- 修正: 如果 $M \ge 2$,右移 M,并增大 E 的值; 如果 M < 1,左移 M k 位,然后 E 减去 k; 如果 E 超出范围,发生溢出;对 M 进行舍入以满足 frac 的位宽精度要求。

2.3 C 语言中的浮点数

C 语言标准确保支持两种精度的浮点数,即 float (单精度)和 double (双精度)。在进行类型转换时:

- double/float 转 int: 截断尾数部分,向 0 舍入。标准中未定义越界和 NaN 的情况,通常设置为 T_{Min} 和 T_{Max} 。
- int 转 double: 只要 int 的位宽小于等于 53 位,就能精确转换。
- int 转 float: 会根据舍入模式进行舍入。

以下是一些 C 语言中浮点数操作的示例(假设 d 和 f 分别是 float 和 double 且不是 NaN 和无穷):

表达式	结果
x == (int)(float) x	否:有效数字为24位
<pre>x == (int)(double) x</pre>	是:有效数字为53位
f == (float)(double) f	是:提高精度
d == (float) d	否: 丢失精度
f == -(-f)	是: 仅改变符号位
2/3 == 2/3.0	否: $2/3 == 0$
if(d < 0.0) ((d*2) < 0.0)	是
d * d >= 0.0	是
(d + f) - d == f	否:不满足结合律

表 5: C 语言中浮点数操作示例结果

2 运算 7

2.4 精确度