PART 1: Sizing Chart

1 Create a testbench for NMOS transistor as shown below (we will use NMOS only in this lab). Use $W=10\mu m$ (we will understand why shortly) and $L=0.5\mu m$ (the same L selected before) .

2 SWEEP VGS FROM 0 TO $\approx VTH + 0.4V$ WITH 10MV STEP. SET VDS = VDD/2.

Vth for Nmos is ~ 441mv

We well sweep VGS from 0 to $\approx 0.4 + 0.441 = 0.841v$

3 COMPARE V*=2ID/gm and Vov=VGS-VTH by plotting them overlaid. Use the calculator to create expressions for V* and Vov. Export the expressions to adexl.

4 PLOT V* AND Vov OVERLAID VS VGS. MAKE SURE THE Y-AXIS OF BOTH CURVES HAS THE SAME RANGE.

5 On the V* and Vov chart locate the point at which V*=VQ*. Find the corresponding VovQ and VGSQ (Use V*=160 MV).

Vovq =160.225m && VGSq=601.22m

6 PLOT ID, gm, and gds vs VGS. Find their values at VGSQ. Let's name these values IDX, gmX, and gdsX.

IDX = 59.529 uA, gmX = 743.76 u, gdsX = 7.3202 u

7 CALCULATE **W**

$$Wnmos = \frac{10u * 15u}{59.529u} = 2.51978 \sim 2.52u$$

• Use $V^* = 160 \text{ mV}$ and ID = 15 uA.

8 calculate gmQ and gdsQ using ratio and proportion

$$gmq(nmos) = \frac{2.52u * 743.76u}{10u} = 187.42u$$
$$gdsq(nmos) = \frac{2.52u * 7.3202 u}{10u} = 1.844u$$

PART 2: CS Amplifier

OP ANALYSIS

1 Create a new cell and schematic. Construct the circuit shown below. Use $IB = \frac{20}{15} (15) \mu A$, $L = 0.5 \mu m$, W as selected in Part 1,

AND CL = 1pF. Use \

• Use V^* = 160 mV and ID = 15 uA.

2 Choose VB (the cascode device bias voltage) such that M2 has $VDS \approx V* + 100mV$ (you may sweep VB and plot VDS vs VB to Help you choose a good value for VB).

VB=934.248m

3 BIAS TRANSISTORS IN SATURATION

input resistance 1T DC and 1m AC

feedback resistance 1m DC and 1T AC

4 SIMULATE THE DC OP POINT OF THE ABOVE CS AND CASCODE AMPLIFIERS. REPORT A SNAPSHOT SHOWING THE FOLLOWING PARAMETERS FOR M1, M2 AND M3 IN ADDITION TO DC NODE VOLTAGES CLEARLY ANNOTATED

4.1 M1

lab3:lab3part2:1	ID_M1	15.01u	
lab3:lab3part2:1	VGS_M1	603.6m	
lab3:lab3part2:1	VDS_M1	603.6m	
lab3:lab3part2:1	VTH_M1	442.6m	
lab3:lab3part2:1	VDSAT_M1	127.1m	
lab3:lab3part2:1	GM_M1	187.3u	
lab3:lab3part2:1	GDS_M1	2.033u	
lab3:lab3part2:1	GMB_M1	51.14u	
lab3:lab3part2:1	CDB_M1	-2.076f	
lab3:lab3part2:1	CGD_M1	-1.191f	
lab3:lab3part2:1	CGS_M1	-9.007f	
lab3:lab3part2:1	CSB_M1	-4.46f	
lab3:lab3part2:1	Region_M1	2	

4.2 M2

lab3:lab3part2:1	ID_M2	15u		
lab3:lab3part2:1	VDS_M2	260m		
lab3:lab3part2:1	VTH_M2	445.1m		
lab3:lab3part2:1	VDSAT_M2	128.5m		
lab3:lab3part2:1	GM_M2	184.4u		
lab3:lab3part2:1	GDS_M2	3.926u		
lab3:lab3part2:1	GMB_M2	50.39u		
lab3:lab3part2:1	CDB_M2	-2.282f		
lab3:lab3part2:1	CGD_M2	-1.227f		
lab3:lab3part2:1	CGS_M2	-9.027f		
lab3:lab3part2:1	CSB_M2	-4.449f		
lab3:lab3part2:1	VGS_M2	608.2m		
lab3:lab3part2:1	Region_m2	2		

4.3 м3

lab3:lab3part2:1	ID M3	15u	
lab3:lab3part2:1	VGS_M3	674.3m	
lab3:lab3part2:1	VDS_M3	348.2m	
lab3:lab3part2:1	VTH_M3	520m	
lab3:lab3part2:1	VDSAT_M3	130.8m	
lab3:lab3part2:1	GM_M3	188.3u	
lab3:lab3part2:1	GDS_M3	2.797u	
lab3:lab3part2:1	GMB_M3	46.69u	
lab3:lab3part2:1	CDB_M3	-2.086f	
lab3:lab3part2:1	CGD_M3	-1.202f	
lab3:lab3part2:1	CGS_M3	-8.951f	
lab3:lab3part2:1	CSB_M3	-4.015f	
lab3:lab3part2:1	Region_M3	2	

5 CHECK THAT ALL TRANSISTORS OPERATE IN SATURATION.

..

Cadence Hint: The "region" meaning is as follows: (0 cut-off, 1 triode, 2 sat, 3 subth, and 4 breakdown).

Region is 2 in the three transistors, so they are all in saturation, or we can analysis it:

```
 \begin{split} &\text{M1:Vov} = \text{VGS} - \text{VTH} = 161 \text{mV} \text{ ,, VDS} = 603.6 \text{mV So: VDS} > \text{Vov (SAT)} \\ &\text{M2:Vov} = \text{VGS} - \text{VTH} = 163.1 \text{mV} \text{ ,, VDS} = 260 \text{mV So: VDS} > \text{Vov (SAT)} \\ &\text{M3:Vov} = \text{VGS} - \text{VTH} = 154.3 \text{mV} \text{ ,, VDS} = 348.2 \text{mV So: VDS} > \text{Vov (SAT)} \\ \end{aligned}
```

6 Do all transistors have the same vth? Why?

No, they don't have the same threshold voltage, because of body effect as they don't have the same V_{SB} .

7 What is the relation (\ll , <, =, >, \gg) between gm and gds?

gm >> gds

8 What is the relation (<<, <, =, >, >) between gm and gmb?

gm > gmb

9 What is the relation (\ll , <, =, >, \gg) between cgs and cgd?

CGS > CGD

10 What is the relation (\ll , <, =, >, \gg) between CSB and CDB?

CSB > CDB

WE TOOK ABSLUITE VALUES

AC ANALYSIS

1 CREATE A NEW SIMULATION CONFIGURATION. PERFORM AC ANALYSIS (1Hz:10GHz, LOGARITHMIC, 10POINTS/DECADE) TO SIMULATE GAIN AND BANDWIDTH.

2 Use calculator to create expressions for circuit parameters (DC gain, BW, GBW, and UGF) and export them to adexl.

lab3:lab3part2:1	dB20(VF("/VOUT1"))	<u>L</u>		
lab3:lab3part2:1	ymax(dB20(VF("/VOUT1")))	39.29		
lab3:lab3part2:1	ymax(mag(VF("/VOUT1")))	92.13		
lab3:lab3part2:1	bandwidth(VF("/VOUT1") 3 "I	322k		
lab3:lab3part2:1	gainBwProd(VF("/VOUT1"))	29.74M		
lab3:lab3part2:1	dB20(VF("/VOUT2"))	<u>~</u>		
lab3:lab3part2:1	ymax(dB20(VF("/VOUT2")))	72.03		
lab3:lab3part2:1	ymax(mag(VF("/VOUT2")))	3.993k		
lab3:lab3part2:1	bandwidth(VF("/VOUT2") 3 "I	7.211k		
lab3:lab3part2:1	gainBwProd(VF("/VOUT2"))	28.86M		
lab3:lab3part2:1	unityGainFreq(VF("/VOUT1"))	30M		
lab3:lab3part2:1	unityGainFreq(VF("/VOUT2"))	29.13M		

REPORT THE BODE PLOT (MAGNITUDE) OF CS AND CASCODE APPENDED ON THE SAME PLOT

4 Using small signal parameters from OP simulation, perform hand analysis to calculate DC gain, BW, and GBW of both circuits.

• Ignore any requirement in the lab regarding the "analytical" calculation of the frequency response parameters.

In CS : dc gain =gm*r0= $\frac{gm}{gds}$ = $\frac{187.3u}{2.033u}$ = 92. 13

In Cascode : dc gain = Rout * GM

ROUT= r03(1+(gm3+gmb3)*r02) =
$$\frac{1}{2.797u}$$
(1 + (188.3 u + 46.69 u) * $\frac{1}{3.926u}$) = 21.757 $\frac{1}{u}$

GM=- gm2=-184.4u

|Dc gain| = GM*ROUT= 184.4* 21.757 = 4012

5 REPORT A TABLE COMPARING THE DC GAIN, BW, UGF, AND GBW OF BOTH CIRCUITS FROM SIMULATION AND HAND ANALYSIS.

lab3:lab3part2:1	unityGainFreq(VF("/VOUT1"))	30M		
lab3:lab3part2:1	unityGainFreq(VF("/VOUT2"))	29.13M		

	Simulation		hand analysis.	
	CS	Cascode	CS	Cascode
DC GAIN	92.13	3993	92.13	4012
BW	322k	7.211k		
UGF	30M	29.13M		
GBW	29.74M	28.86M		

6 COMMENT ON THE RESULTS.

Dc gain in Cascode is much bigger than the gain in CS as it boosts Rout (Gm isn't boosted), and if we compared the hand analysis with the simulation results, we will see they are almost the same (error less than 1%).

Bw cs >> BW cascode, UGF cs > UGF cascode, GBW cs > GBW cascode.