Line Calc

Applicazione per il calcolo delle Linee di Trasmissione

Andrea Argnani, Matteo Scardovi 19 Febbraio 2024

L'idea

L'idea per questa applicazione nasce dall'esame di Campi Elettromagnetici, in particolare dallo studio delle **linee di trasmissione**.

L'obiettivo è di fornire una serie di strumenti utili per calcolare parametri caratteristici e dimensionare adattatori di linea.

Tecnologie Utilizzate

Per lo sviluppo dell'applicazione sono state utilizzate diverse tecnologie:

- Android Studio: IDE ufficiale di Android
- Java, per la parte di backend
- XML, per la parte grafica

Funzionalità

- Conversione di numeri complessi da forma lineare a polare e viceversa
- Calcolo dei parametri secondari delle linee di trasmissione
- Calcolo disadattamento del carico
- Dimensionamento Adattatori a Stub
- Dimensionamento Adattatori a λ/4

Codice

Le varie activity si basano su un backbone comune, modificato secondo necessità.

L'acquisizione dei valori avviene attraverso la funzione getFromEditText.

Per i calcoli che riguardano i numeri complessi viene impiegata la libreria Complex.

```
private double getFromEditText(EditText et, Spinner sp){
   if(et.getText().toString().equals("")) {
      et.setText("0");
      return 0;
   } else{
      double val = Float.parseFloat(et.getText().toString());
      val *= Math.pow(10, (sp.getSelectedItemPosition()-3)*3);
      return val;
   }
}
```

Activity

Numeri Complessi

Conversione di un numero complesso da forma algebrica a forma polare e viceversa.

```
double fRealValue = fAmplitude * Math.cos(fPhase);
double fImaginalValue = fAmplitude * Math.sin(fPhase);

Complex c = new Complex(fRealValue, fImaginalValue);
double fAmplitude = c.abs();
double fPhase = c.arg();
```


Calcolatore Parametri Secondari

$$Z_0 = \sqrt{rac{R + j\omega L}{G + j\omega C}}$$

```
// Calcolo i parametri di trasmissione
Complex Zc, gamma;
Complex Z = new Complex(R, imaginary: omega * L);
Complex Y = new Complex(G, imaginary: omega * C);
Zc = Z.divide(Y);
Zc = Zc.sqrt();
```


Calcolatore Parametri Secondari

$$\alpha = \frac{1}{\sqrt{2}} \sqrt{\sqrt{(R^2 + \omega^2 L^2)(G^2 + \omega^2 C^2)} - (\omega^2 LC - RG)}$$

$$\beta = \frac{1}{\sqrt{2}} \sqrt{\sqrt{(R^2 + \omega^2 L^2)(G^2 + \omega^2 C^2)} + (\omega^2 LC - RG)}$$

```
double alfa = (R * R + omega * omega * L * L) * (G * G + omega * omega * C * C);
alfa = Math.sqrt(alfa);
double beta = alfa;
double ab = omega * omega * L * C - R * G;
alfa = alfa - ab;
beta = beta + ab;
alfa = Math.sqrt(alfa / 2);
beta = Math.sqrt(beta / 2);
```


Parametri di Disadattamento

$$\rho_L = \frac{Z_L - Z_C}{Z_L + Z_C}$$

ROS =
$$\frac{1 + |\rho_L|}{1 - |\rho_L|}$$

$$RL = -20 \log_{10} |\rho_L| = 20 \log_{10} \left(\frac{S+1}{S-1} \right)$$

Stub

Activity che serve per dimensionare gli Stub, componenti utili per migliorare il trasferimento di potenza portando il valore del ROS il più possibile vicino a 0.

Adattatori a λ/4


```
rho_L = ZL.subtract(Zc);
rho_L = rho_L.divide(Zc.add(ZL));
ROS = (1 + rho_L.abs())/(1 - rho_L.abs());
RadioButton r_min = findViewById(R.id.radioMin);
if(r_min.isChecked()) {
    Ra = Rc / Math.sqrt(ROS);
    L = (lambda/4)*(1 - rho_L.arg()/Math.PI);
}else{
    Ra = Rc * Math.sqrt(ROS);
    L = (-rho_L.arg()/(4*Math.PI))*lambda;
}
```


Impostazioni

Permettono il cambio di lingua, del tema e del numero di cifre significative

```
public void updatePreferenceTheme(SharedPreferences prefs) {
   String theme = prefs.getString( key: "theme", defValue: "light");
   if (theme.equals("light"))
        AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_NO);
   else if(theme.equals("dark"))
        AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_YES);
   else
        AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_FOLLOW_SYSTEM);
   recreate();
}
```


Tema Scuro vs Tema Chiaro

Grazie per l'attenzione

Codice Sorgente:

https://github.com/argnaan/LineCalc

APK:

https://github.com/argnaan/LineCalc/releases/download/tag/LineCalc0 2.apk