Response Surface Methodology II

BIOE 498/598

3/8/2020

The Central Composite Design (CCD)

- 1. A 2^k factorial or a Resolution V 2^{k-p} fractional design allow estimation of the FO and TWI terms.
- 2. The axial points estimate the pure quadratic (PQ) terms.
- 3. Replicated center points estimate the model's precision.

Coding the CCD

You are optimizing protein expression levels in CHO cells by varying the serum concentration, casamino acid concentration, salt concentration, and the concentration of the induction molecule (IPTG).

You want to vary [IPTG] linearly over the range of 0.05 to 0.2 mM. What are the levels you would use in a CCD design?

$$\alpha = \sqrt[4]{F}$$

$$A = center(A) + \frac{range(A)}{2\alpha}[code]$$

Cement Workability Experiment

Run	x_1	x_2	x_3	Water/Cement	Black Liq.	SNF	y
1	-1	-1	-1	0.330	0.120	0.080	109.5
2	1	-1	-1	0.350	0.120	0.080	120.0
3	-1	1	-1	0.330	0.180	0.080	110.5
4	1	1	-1	0.350	0.180	0.080	124.5
5	-1	-1	1	0.330	0.120	0.120	117.0
6	1	-1	1	0.350	0.120	0.120	130.0
7	-1	1	1	0.330	0.180	0.120	121.0
8	1	1	1	0.350	0.180	0.120	132.0
9	0	0	0	0.340	0.150	0.100	117.0
10	0	0	0	0.340	0.150	0.100	117.0
11	0	0	0	0.340	0.150	0.100	115.0
12	-1.68	0	0	0.323	0.150	0.100	109.5
13	1.68	0	0	0.357	0.150	0.100	132.0
14	0	-1.68	0	0.340	0.100	0.100	120.0
15	0	1.68	0	0.340	0.200	0.100	121.0
16	0	0	-1.68	0.340	0.150	0.066	115.0
17	0	0	1.68	0.340	0.150	0.134	127.0
18	0	0	0	0.340	0.150	0.100	116.0
19	0	0	0	0.340	0.150	0.100	117.0
20	0	0	0	0.340	0.150	0.100	117.0

Correct number of center points (Box and Hunter 1957)

factors (k)	2	3	4	5	5 - 1	6	
factorial points	4	8	16	32	16	64	
axial points	4	6	8	10	10	12	
center points	5	6	7	10	6	15	
α	1.414	1.682	2.000	2.378	2.000	2.828	
factors (k)	6 - 1	7	7 - 1	8	8 - 1	8 - 2	
factors (k) factorial points	6 – 1 32	7 128	7 – 1 64	8 256	8 – 1 128	8 – 2 64	
		7 128 14	· -				
factorial points	32		64	256	128	64	

Two-stage RSM with a CCD

- 1. Run the factorial design and $\sim 1/2$ of the center points.
- 2. Fit a FO and TWI model

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \sum_{j=1}^i \beta_{ij} x_i x_j$$

- If the fit is "good enough", stop. Otherwise, you need a quadratic model.
- 4. Run the axial points and the rest of the center points.
- 5. Fit the full quadratic model with a blocking factor

$$y = \beta_0 + FO(x_1, \dots, x_k) + TWI(x_1, \dots, x_k) + \sum_{i=1}^k \beta_{ii} x_i^2 + \beta_{block} block$$

6. Optimize

Box-Behnken Design

- A CCD is the optimal RSM design (uniform precision, rotatable, can estimate curvature).
- However, it requires five levels per factor $(-\alpha, -1, 0, 1, \alpha)$.
- Five levels can be prohibitive if each level requires a separate prototype or large changes to processes.
- The Box-Behnken Design requires only three levels per factor (-1, 0, 1).

Box-Behnken Design

- A CCD is the optimal RSM $$
design (uniform precision,
rotatable, can estimate
curvature).

- However, it requires five levels per factor $(-\alpha, -1, 0, 1, \alpha)$.
- Five levels can be prohibitive if each level requires a separate prototype or large changes to processes.
- The Box-Behnken Design requires only three levels per factor (-1, 0, 1).

run	x_1	x_2	x_3
1	-1	-1	0
2	1	-1	0
3	-1	1	0
4	1	1	0
5	-1	0	-1
6	1	0	-1
7	-1	0	1
8	1	0	1
9	0	-1	-1
10	0	1	-1
11	0	-1	1
12	0	1	1
13	0	0	0
14	0	0	0
15	0	0	0

Box-Behnken Design — disadvantages

1. The BBD runs cannot be split into two blocks.

Figure 10.4 Graphical Representation of Three-Factor Box-Behnken Design

If you are sure your experiment requires quadratic terms, this is not a disadvantage.

Box-Behnken Design — disadvantages

2. The BBD is not rotatable and barely misses uniform precision.

Figure 10.5 Variance Dispersion Graph for Box-Behnken Design in Three Factors

Variance Dispersion Graph

Small Composite Designs — if runs really matter

A true CCD contains a 2^k factorial or resolution V 2^{k-p} fractional design.

A Small Composite Design (SCD) replaces these with a resolution III 2^{k-p} design.

Small Composite Designs — if runs really matter

A true CCD contains a 2^k factorial or resolution V 2^{k-p} fractional design.

A Small Composite Design (SCD) replaces these with a resolution III 2^{k-p} design.

The axial and center points make up for the lost factorial points and allow estimation of the FO and TWI terms.

You can also use a PB design or a custom fractional design for even fewer runs.

Small Composite Designs — disadvantages

2. The SCD is not rotatable and has uniform precision only to radius 0.8.

Figure 10.5 Variance Dispersion Graph for Box-Behnken Design in Three Factors

Variance Dispersion Graph

Estimates can be terrible beyond radius 1.

RSM design example 1: QSAR

We want to perform a Quantitative Structure Activity Relation (QSAR) analysis on hydroxyphenylureas.

 ${\bf Figure~10.12~~General~Structure~of~Hydroxyphenylure as}$

The response is oxygen free radical scavenging quantified by the binding constant. Factors are:

- Hydration energy (HE)
- ► Molecular dipole moment (DM_z)
- Symmetry index (S0K)

RSM design example 1: QSAR

Table 10.6	Library of	Substituted	Hydroxyphenylurea	Compounds
------------	------------	-------------	-------------------	-----------

Comp-						-	
ound	\mathbf{R}	R'	R''	R'''	$_{ m HE}$	DMz	S0K
1	Н	Н	Н	CH_3	-12.221	-0.162	64.138
2	$_{\mathrm{H}}$	H	$_{\mathrm{H}}$	CH_2Ph	-14.015	-0.068	88.547
3	H	H	$_{\rm H}$	$_{\mathrm{Ph}}$	-14.502	0.372	85.567
4	H	H	\mathbf{H}	$2CH_3OC_6H_4$	-14.893	1.035	96.053
5	$_{\rm H}$	OCH_3	\mathbf{H}	CH_3	-12.855	1.091	74.124
6	$_{\mathrm{H}}$	OCH_3	$_{\mathrm{H}}$	$\mathrm{CH_2Ph}$	-14.628	1.115	99.002
7	H	OCH_3	\mathbf{H}	$_{ m Ph}$	-15.123	1.554	96.053
8	$_{\rm H}$	OCH_3	\mathbf{H}	$2CH_3OC_6H_4$	-15.492	2.221	106.607
9	$_{\mathrm{H}}$	OC_2H_5	\mathbf{H}	CH_3	-11.813	1.219	77.02
10	$_{\rm H}$	OC_2H_5	\mathbf{H}	$\mathrm{CH_2Ph}$	-13.593	1.188	101.978
11	$_{\rm H}$	OC_2H_5	$_{\rm H}$	$_{ m Ph}$	-14.088	1.621	99.002
12	CH_3	OC_2H_5	H	$2CH_3OC_6H_4$	-14.46	2.266	109.535
13	CH_3	H	CH_3	CH_3	-8.519	-0.56	71.949
14	CH_3	H	CH_3	CH_2Ph	-10.287	-0.675	96.6
15	CH_3	H	CH_3	$_{ m Ph}$	-10.798	-0.134	96.62
16	CH_3	H	CH_3	$2CH_3OC_6H_4$	-11.167	0.418	104.047

RSM design example 1: QSAR

Table 10.6 Library of Substituted Hydroxyphenylurea Compounds	Table	10.6	Library	of	Substituted	Hudroxuphenulurea	Compounds
---	-------	------	---------	----	-------------	-------------------	-----------

Comp-							
ound	\mathbf{R}	R'	R''	R'''	$_{ m HE}$	DMz	S0K
1	Н	Н	Н	CH_3	-12.221	-0.162	64.138
2	$_{\mathrm{H}}$	$_{\mathrm{H}}$	\mathbf{H}	CH_2Ph	-14.015	-0.068	88.547
3	$_{\rm H}$	$_{\rm H}$	\mathbf{H}	Ph	-14.502	0.372	85.567
4	$_{\rm H}$	H	\mathbf{H}	$2CH_3OC_6H_4$	-14.893	1.035	96.053
5	$_{\rm H}$	OCH_3	\mathbf{H}	CH_3	-12.855	1.091	74.124
6	\mathbf{H}	OCH_3	\mathbf{H}	$\mathrm{CH_{2}Ph}$	-14.628	1.115	99.002
7	$_{\mathrm{H}}$	OCH_3	\mathbf{H}	Ph	-15.123	1.554	96.053
8	\mathbf{H}	OCH_3	\mathbf{H}	$2CH_3OC_6H_4$	-15.492	2.221	106.607
9	\mathbf{H}	OC_2H_5	\mathbf{H}	CH_3	-11.813	1.219	77.02
10	\mathbf{H}	OC_2H_5	\mathbf{H}	$\mathrm{CH_2Ph}$	-13.593	1.188	101.978
11	\mathbf{H}	OC_2H_5	\mathbf{H}	Ph	-14.088	1.621	99.002
12	CH_3	OC_2H_5	$_{\mathrm{H}}$	$2CH_3OC_6H_4$	-14.46	2.266	109.535
13	CH_3	$_{\mathrm{H}}$	CH_3	CH_3	-8.519	-0.56	71.949
14	CH_3	$_{\mathrm{H}}$	CH_3	$\mathrm{CH_2Ph}$	-10.287	-0.675	96.6
15	CH_3	$_{\rm H}$	CH_3	$_{ m Ph}$	-10.798	-0.134	96.62
16	CH_3	H	CH_3	$2CH_3OC_6H_4$	-11.167	0.418	104.047

structures \rightarrow physical parameters \rightarrow response

ightarrow optimal parameters ightarrow optimal structures

RSM design example 2: Tetracycline metabolism

We want to build a kinetic model of tetracycline metabolism with four parameters.

$$y = \gamma_1(x) = \gamma_0[e^{-k_1(x-t_0)} - e^{-k_2(x-t_0)}]$$

RSM design example 2: Tetracycline metabolism

We want to build a kinetic model of tetracycline metabolism with four parameters.

$$y = \gamma_1(x) = \gamma_0[e^{-k_1(x-t_0)} - e^{-k_2(x-t_0)}]$$

The input is the time (x) since the addition of the drug; however, we make the design optimal for the parameters.

We will come back to this example after break.