SC201 Lecture 13

Optimization (_____)

< _____ (Moving Averages)>

 $Vt = \beta Vt-1 + (1-\beta)Xt$

____=

___=

(a) SGD with ____

 $W = W - \alpha \frac{dL}{dW} + \dots$

 \rightarrow W = W- α where

設 $\beta = 0.9$ (1) $W = W - \alpha$

(2) $W = W - \alpha$:

(h) $W = W - \alpha$

(b) SGD with _____

→ Update depend on _____

=____

 $W = W - \alpha Vt$ where $Vt = \underline{\hspace{1cm}}$

(c) _____(Adaptive Gradient)

• _____ the learning on

axis

• _____ the learning on

axis

t	$\frac{dL}{dW}$	A new
1	1	
2	1	
3	5	

(d) _____& ___

Adagrad learning rate may be close to _____

 \rightarrow ____ where Vt = ____

(e) _____ + ____

Recipe for Training NN

(1) Data Preprocessing

(2) Weight Initialization

(3) Normalization Layer

(4) Hyperparameter Tuning

(5) Optimization

(6)

(Prevent from _____

① _____

Full Loss +

L2 Regularization =

L1 Regularization =

Loss

Dropout

$$K1 = np.dot(W1.T, X) + B1$$

$$A1 = np.maximum(0, K1)$$

$$K2 = np.dot(W2.T, A1) + B2$$

$$A2 = np.maximum(0, K2)$$

Computer Vision (CNN)

Detect Edges

Effective Receptive Field

● Convolve 後的 _____ 都是原圖 _____ 的特徵

(Covolve 愈 ____次,特徵愈____)

- 一律使用 ______格子在Convole後變少,怎麼辦? → ______

Detect edges on RGB

green-channel blue-channel

red-channel

Kernel2: Get all-channel edges

Kernel1: Get red-channel edges

red-channel

Input	Filter	Padding	Stride	Output

若使用8個3x3x3的filters, padding=1, stride=1,

對3x32x32的RGB影像convolve, output = _____

