

N 85 - 29555

CONTAMINATION CONTROL FOR
INCREASED CREW PRODUCTIVITY

FEBRUARY 29, 1984

Space Station Task Force
Human Productivity Group
NASA Ames Research Center
Moffett Field, CA 94035

D.B. Heppner
C.W. Miller

SCOPE OF PRESENTATION

- Contaminant Sources and Loading - Air/Water
- Contaminant Control - Air
- Contaminant Control - Water
- Other Factors Affecting Productivity
- Issues

SPACE STATION CONTAMINANT SOURCES — AIR

CONTAMINANT	SOURCE	LOADING
Metabolic Products: CO ₂ , NH ₃ , CO, H ₂ S, H ₂ , CH ₄ , Organic Acids, Mercaptans, Bacteriological Contaminants.	Crew & Animal	Continuous
Wide Variety of Alcohols, Aldehydes, Aromatics, Esters, Ethers, Chlorocarbons, Fluorocarbons, Halocarbons, Hydrocarbons, Ketones, Acids.	Subsystems & Payloads	Continuous & Periodic
CO, CO ₂ , Hydrocarbons, Aromatics, Acid Gases, Oxides of N ₂ , SO ₂ , NH ₃ , Alcohols, Formaldehyde.	Emergencies – Spills, Equipment Failures, Fire	Short Term, High Rate

SPACE STATION CONTAMINANT SOURCES — WATER

<u>Water Source</u>	Quantity Per Person-Day (lb)	Suspended Solids (PPM)		Dissolved Solids (PPM)		<u>Total (PPM)</u>	Urea (PPM)	<u>Micro- Organism</u>
		Inorganics (PPM)	Organics (PPM)	Inorganics (PPM)	Organics (PPM)			
Fuel Cell Condensate	As required	0 ^(a)	10 to 424	0 ^(a)	10 to 424	0	No	
without SDAS	7.15 ^(e,f,g,h)	0 ^(b)	12 ^(b)	4 ^(b)	16 ^(b)	No		
with SDAS	14.15 ^(d,e,f,g,h)	10 to 600 ^(a)	20 to 350 ^(a)	25 to 87 ^(a)	45 to 450 ^(a)	No 0 to 5 ^(a)	Yes ^(b)	Yes
Shower	5 ^{(f),8(g,h)}	160 ⁽ⁱ⁾ 650 ⁽ⁱ⁾	90 ⁽ⁱ⁾ 270 ⁽ⁱ⁾	1,030 ⁽ⁱ⁾ 800 ⁽ⁱ⁾	1,120 ⁽ⁱ⁾ 1,070 ⁽ⁱ⁾	15 ⁽ⁱ⁾	Yes	
Handwash	7 ^{(i),4(g,h)}	110 ⁽ⁱ⁾	60 ⁽ⁱ⁾	1,020 ⁽ⁱ⁾	1,080 ⁽ⁱ⁾	260 ⁽ⁱ⁾	Yes	
Laundry	27.5 ^(g,h)	210 ⁽ⁱ⁾	180 ⁽ⁱ⁾	1,010 ⁽ⁱ⁾	1,190 ⁽ⁱ⁾	10 ⁽ⁱ⁾	Yes	
Dish Wash		9,000 ⁽ⁱ⁾	580 ⁽ⁱ⁾	500 ⁽ⁱ⁾	1,080 ⁽ⁱ⁾	5 ⁽ⁱ⁾	Yes	
CO ₂ Reduction Water	1.80							
EVA Wastewater (lb/8 hr EVA)	9.68 ^(i,g,h)							
Urine	3.31 ^(i,g,h)							
Urinal Flush	1.09 ^(i,g,h)							
Fecal Water	Not Identified							
<u>Standard</u>								
Wash Water Standard ^(i,j)								
Potable Water Standard ^(i,j)								
Potable Water Standard ^(m)								

(a) References noted in ()

CONTAMINANT LOADING PROFILE (TYPICAL)

Contaminant Loading

CONTAMINANT CONTROL — AIR

- CO₂ Removal
 - SDAS vs. EDC
 - EDC vs. LiOH
- H₂O Removal
 - Water Vapor Electrolysis
 - Condensing Heat Exchanger
 - Desiccant
- Trace Contaminant Control
 - Normal, Loading Removal
 - High Contaminant Loading Removal
- Microbial
 - Surface Wipe

REGENERATIVE CO₂ REMOVAL

COMPARISON ELECTROCHEMICAL VS STEAM DESORBED AMINE^(a)

PRIOR COMPARISONS

Year	Organization	CO ₂ Removal System Selected
1970	Ham. Std.	EDC equiv. wt. less than half IR-45 amine. Also cited amine problems; bed expansion/contraction, steam/CO ₂ separation, steam generation, long term degradation.
1971	Rockwell	EDC selected over amine based on weight, power and heat rejection ($\frac{1}{3}$ other techniques) and ideally integrates with fuel cell and propulsion system. Selected EDC for SSP.
1972	NASA JSC/ Ham. Std.	EDC selected over amine based on lower weight, volume and power. Selected EDC for RLSE.
1973	McDonnell Douglas	EDC selected over amine based on weight, power and heat rejection ($\frac{1}{3}$ other techniques) and ideally integrates with fuel cell and propulsion system. Selected EDC for Space Operations Center.
1976	NASA	
1979	NASA JSC	

3-83

COMPARISON RESULTS		Comments	
Category	EDC	SDAS	
Fixed Hardware Wt., lb	92	139	All components incl. in both
Power Wt. Penalty, lb	49	577	461 of 577 for steam gen. & heat loss
Heat Rej. Wt. Penalty, lb	145	394	EDC rejects heat to liquid, amine to air
Subtotal	286	1,110	Amine 3.6 times greater than EDC
O ₂ Generation Penalty, lb	309	0	EDC integrates with H ₂ , O ₂ & H ₂ O utilities
Humidity Control Penalty, lb	102	770	Amine dumps 8 x H ₂ O vapor into cabin
Water Processing Penalty, lb	27	206	Cabin condensate processing penalty
Total Eg. Wt., lb	724	2,086	Difference even greater as pCO ₂ spec-dec.
Operation Cont. or Cyclic Vary CO ₂ Removal Rate	Either	Cyclic	Amine continuously cycles cabin RH, T
Maintainability	Yes	No	EDC tolerates crew changes
Humidifier Load, lb H ₂ O/day			EDC maintainable at lower level
Water Recov. Sys. Load, H ₂ O/day			
Noise	Negl.	Large	On/off amine compressor noisy

ASSUMPTIONS

1. 4-Person Subsystem
2. 2.2 lb CO₂/Person Day
3. Inlet pCO₂ = 3.0 mm Hg
4. Flight Prototype Level
5. Spares Not Included
6. Penalties, lb/W
- Power: 0.71 (AC)
0.59 (DC)
- Heat Rej: 0.18 (Liq.)
0.44 (Air)

a. Details found in Life Systems' TR-604, 7/11/83, and SAE Paper No. 831120.

**REGENERATIVE vs. NON REGENERATIVE CO₂ REMOVAL
COMPARISON OF ELECTROCHEMICAL vs. LITHIUM
HYDROXIDE**

	<u>EDC</u>	<u>LiOH</u>
Weight	724 lbs(1)	3600 lbs(2)
Volume	2.4 ft ³	100 ft ³
Power	0.14 kW	0.03 kW
Crew Time	0	105 hrs.(3)
Resupply Weight	0	1523 lbs
Resupply Volume	0	51.3 ft ³

(1) Weight includes penalty for power, heat rejection, O₂ generation, humidity control, and water processing.

(2) Weight includes penalty for power.

(3) Crew time was calculated assuming changing seven canisters per day requiring ten minutes to locate canister, log out, remove exhausted canister, install new canister and stow old canister.

WATER VAPOR REMOVAL — SYSTEMS CONSIDERATION

Water Vapor Loading

	lb/man-day
Metabolic	4.02
Hygiene	0.94
Food Preparation	0.06
Experiments	1.00
Laundry	0.13
Sub-Total	<u>6.15</u>
EDC	1.00
Total	<u>7.15</u>

Heat Exchangers Required 1 per Module

1 per Module plus
1 per SDAS

Water Vapor Loading

	lb/man-day
Metabolic	4.02
Hygiene	0.94
Food Preparation	0.06
Experiments	1.00
Laundry	0.13
Sub-Total	<u>6.15</u>
SDAS	8.00
Total	<u>14.15</u>

CONTAMINANT CONTROL TECHNIQUES EVALUATED BY LIFE SYSTEMS

- Catalytic Oxidation
- Corona Discharge
- Regenerative Adsorption
- Thermal Decomposition
- Laser Decomposition
- Combustion
- Chemical Decomposition
- Microwave/Plasma Decomposition
- Membranes

BASELINE SEQUENTIAL CATALYTIC OXIDATION CONCEPT

- (a) Some agent breakdown will occur during heatup. Potentially installing a portion of the absorber material upstream of the first bed will further improve longevity.
- (b) First catalyst bed expected to provide alternate decomposition modes even after primary mode (oxidation) is destroyed.

CORONA DISCHARGE REACTOR/ POST-TREAT CONCEPT

FOCUS OF CORONA DISCHARGE INVESTIGATIONS

- Available Data
 - Very Little Data Available
 - Currently Existing Laboratory Reactors Not Amenable to Scaleup
 - Post-Treat Concept Not Explored to Date
- Focus of Present Work
 - Design Lab Scale Breadboard Reactor Compatible With Scaleup
 - Expand Data Base Considerably
 - Improve Process Performance
 - Investigate Post-Treat Concept(s)

**TRACE CONTAMINANT CONTROL SUBSYSTEM
FOR NORMAL LOADING REMOVAL**

**TRACE CONTAMINANT CONTROL
FOR HIGH LOADING REMOVAL**

TCCS SIZING FOR SPACE STATION

Subsystem	High Loading Canister	
	Normal	High Loading Catalytic Oxidation
Weight, lb	105	TBD
Power, W (continuous)	165	140
Volume, ft ³	8.3	0.8
<hr/> Resupply (90 days)		
Weight, lb	250	TBD
Volume, ft ³	9.8	TBD

CONTAMINANT CONTROL — WATER

- Biocide Addition
- Microbial Checkvalve
- UV/Ozonation
- Phase Change Water Recovery
- Filtration Water Recovery
- Open Loop Regenerative Fuel Cell

WATER CONTAMINANT CONTROL OPTIONS

<u>Sources</u>	<u>Treatment</u>	<u>Quality</u>
Fuel Cell	Biocide Addition	Potable
Condensate CO ₂ Reduction EVA CO ₂ Reduction	Multifiltration, Biocide Addition	Potable
Shower Handwash	Filtration Water Recovery, Microbial Check Valve, Biocide Addition	Reuse
Laundry Dishwash Urine Urine Flush	Phase Change Water Recovery, Multifiltration, Biocide Addition	Reuse
Reuse	UV/Ozonation, Biocide Addition	Potable
Reuse	Open Loop Regenerative Fuel Cell, Biocide Addition	Potable

ORIGINAL PAGE IS
OF POOR QUALITY

**PHASE CHANGE WATER RECOVERY —
VAPOR COMPRESSION DISTILLATION SUBSYSTEM**

BIOCIDE ADDITION AND MONITORING UNIT

ORIGINAL PAGE IS
OF POOR QUALITY.

**OPEN LOOP REGENERATIVE FUEL CELL —
FOR SECONDARY WATER TREATMENT**

OTHER FACTORS AFFECTING PRODUCTIVITY

- Automation
 - Subsystem Interaction
 - Man in Loop
- Mechanical Integration
 - Subsystem
 - System
- Crew Time
 - LiOH
 - TCCS Cannister Design

SPACE STATION AUTOMATION CONCEPT

SUBSYSTEM INTEGRATION

Trace Contaminant Control Subsystem

Sensors

Description	Qty	Subsystem Symbol
Speed Sensor for Fixed Carbon Blower	1	S1
Speed Sensor for Regen Carbon Blower	1	S2
Regen. Carbon Bed Temperature	2	H1
Catalytic Oxidizer Temperature 3	2	H2
Total	6	

Actuators

Description	Qty	Symbol
Blower, Cabin Air Blower, Cat. Oxid. Blower, Cat. Oxid. Heater, Regen. Carbon Heater, Cat. Oxid. Valves, Carbon Bed Isolation Valve, Vacuum Total	1	B1
	1	H32
	1	H1
	1	H2
	2	V1,V2
	1	V3
Total	7	

MECHANICAL ENGINEERING INTEGRATION

MECHANICAL COMPONENTS INTEGRATION PROGRAM

Sponsored By:
 Ames, Lewis,
 JSC: Crew & Power,
 Life Systems

PURPOSE: Save Money By
 1. Decreasing Subsystem Complexity
 2. Decreasing Wt., Vol., Power,...
 3. Increasing Reliability

STATUS:
 • 5 - Completed
 • 1 - In Development
 • 3 - Planned

Avg. Results	% Red.
No. Components	83
Power	68
Weight	83
Volume	83
No. Connections	64

No.	Mechanical Integration	Units Produced	Testing Hours	Cycles
1	3-Fluids Pressure Controller	7	15,000	11,800
2	Coolant Control Assembly	7	11,500	8,600
3	Fluids Control Assembly (EDC)	3	20,000	14,000
4	Fluids Control Assembly (SFE)	8	2,400	1,000
5	2-Fluids Pressure Controller	1	0	0

3-101

- 18 Components → 1
- 7 - Two-way Valves
- 2 - Check Valves
- 4 - Filters
- 3 - Orifices
- 2 - Press. Trans.
- 24 W → 2
- 11.4 lb → 4
- 400 in² → 200

Assembled: 4.8 x 3.0 x 3.5 in

Next Steps:

1. Applicability of Super Plastics
 - Injection Molding To Save \$
 - Considerably Lighter Weight
2. Increase Maintainability
 - Onboard Replacement Unit

12 YEARS OF CONTINUOUS INTEGRATED ARS EXPERIENCE

	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Air Revitalization System Development	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Capa- City
Lab. Breadboard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Lab. Breadboard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
Flight Breadboard (EAFRS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Lab. Breadboard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
Flight Breadboard (ARX-1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
ARS Prototype (IARS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Flight Experiment Mockup	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
Engineering Model	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Flight Demonstration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

= Subsystems no longer retained as separate entities.

1.5x2.8x15 Ft

- CO₂ Removal
- O₂ Generation
- Dehumidification

2.3x3.2x3.7 Ft

- CO₂ Removal
- O₂ Generation
- Dehumidification

2.0x2.8x1.1 Ft

- CO₂ Removal
- O₂ Generation
- Dehumidification

Result: Life Systems Has In-depth Knowledge Of:

- ARS Functional & Component Performances
- Process Dynamics
- Water Handling: Feed & Condensate

Result: Life Systems Has In-depth Knowledge Of:

- Interactions Between Controllers
- Importance of Simplifying
- Software Requirement & Development Times

ALSO: WE ARE INTEGRATING THE SFE AND SHUTTLE ORBITER FUEL CELL INTO RFCS BREADBOARD

CONTAMINANT CONTROL TECHNIQUE AFFECTS CREW PRODUCTIVITY

LiOH Canister
Storage (90 Days)

Logistics Module

Crew Time Rqrd.

10 min/Canister
7 Canister/Day
105 hr/90 Days

CANISTER OPTIONS VS. CREW TIME

Multiple Canisters
With Common
Manifold

Canister With
1 Clamp

Canister With
2 Clamps

ISSUES REGARDING CONTAMINATION CONTROL

- Sources — Space Station Design and Selection of Materials and Subsystems
- Loading — Multiple Capacity Equipment for Normal and High Loading
- Control Techniques — Additional Studies, Evaluation and Testing
- Productivity Factors — Automation, Mechanical Integration, Crew Time