Machine learning foundations

Mitko Veta

Eindhoven University of Technology Department of Biomedical Engineering

2024

Learning goals

At the end of this lecture you will:

- Have an understanding of the goal of machine learning (ML) models.
- *Have a good understanding of basic mathematical concepts used in ML and be able to apply them in the design and implementation of ML methods.
- Have a good understanding of the basic principles of machine learning (ML) and be able to apply them in the analysis of ML methods.
- Be able to design good experimental setups for developing ML models.
- *Have a good understanding of the different evaluation measures for ML models.
- * Covered in video lectures

Overview

Topics covered in this lecture:

- 1. Gradient of a function
- Two simple machine learning models Linear model Nearest-neighbours model
- 3. Model capacity, underfitting and overfitting
- 4. Model selection
- 5. Bias and variance trade-off

Prelude: Gradient of a function

Materials:

- Chapters I.4 and I.5 from Goodfellow et al., Deep Learning
- ► Kolter et al., "Linear Algebra Review and Reference"

Gradient of a function

- ▶ Let $f : \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ be a function that takes $m \times n$ matrix \boldsymbol{A} as input and returns a real number (scalar).
- ▶ A **gradient** of *f* with respect to *A* is the matrix

$$\nabla_{\mathbf{A}}f(\mathbf{A}) = \begin{bmatrix} \frac{\partial f}{\partial A_{11}} & \frac{\partial f}{\partial A_{12}} & \cdots & \frac{\partial f}{\partial A_{1n}} \\ \frac{\partial f}{\partial A_{21}} & \frac{\partial f}{\partial A_{22}} & \cdots & \frac{\partial f}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial A_{m1}} & \frac{\partial f}{\partial A_{m2}} & \cdots & \frac{\partial f}{\partial A_{mn}} \end{bmatrix}$$

 \blacktriangleright i.e. an $m \times n$ matrix with

$$(\nabla_{\mathbf{A}}f(\mathbf{A}))_{ij}=\frac{\partial f}{\partial A_{ij}}$$

▶ The size of the gradient of **A** is the same as the size of A.

Gradient

▶ In the special (but more common) case when *A* is a vector we obtain the gradient

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_m} \end{bmatrix}$$

► In general to define a gradient we require that the function returns a **real** value.

Jacobian

- The Jacobian J_f is a generalization of the gradient for vector valued functions.
- Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function that takes n-dimensional vector \mathbf{x} as input and returns a m-dimensional vector as an output.
- ightharpoonup The Jacobian J_f is defined as

$$\boldsymbol{J_f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_p} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

▶ Note that for the special case of a scalar-valued function, the Jacobian is the transpose of the gradient.

Optimization

- Most machine learning methods involve some kind of optimization.
 - One exception is the k-Nearest neighbour classifier introduced later.
- Poptimization means minimizing or maximizing some function f(x), i.e. finding the values of x for which f(x) has a minimum or a maximum.
- ▶ Notation: $x^* = \operatorname{argmin} f(x)$

Gradient-based optimization

- The derivative tells us how to change x in order to make a small improvement of f(x).
- ▶ Therefore, derivatives can be useful in optimization.

Two simple machine learning models

Materials:

► Chapter 2.3 from Friedman et al., *The Elements of Statistical Learning*

Some notations

- We denote an input variable with the symbol x (scalar) or x (vector).
- ▶ The *i*-th component of a vector input x is denoted as x_i .
- Quantitative (numerical) outputs are denoted with y.
- ▶ Qualitative outputs are denoted with g (from group) and take values from a set G.
- Matrices are denoted with bold and uppercase letters \boldsymbol{X} for instance, a set of N input p-vectors \boldsymbol{x}_i $(1 \le i \le N)$ is "packed" in a $N \times p$ input matrix \boldsymbol{X} .
- ▶ Since by default vectors are assumed to be column vectors, the rows of \boldsymbol{X} are the transposes \boldsymbol{x}_i^T .

The learning task

- ▶ Given a value of the input vector \mathbf{x} make a good prediction of the output y, denoted as \hat{y} .
- ▶ Both y and \hat{y} should take values from the same numerical set.
- ▶ Similarly, g and \hat{g} should both take values from the same set \mathcal{G} .
- We suppose that we have available a set of measurements (x_i, y_i) or (x_i, g_i) $(1 \le i \le N)$ called **training data** (in matrix form: (X, y) and/or (X, g)).
- Our task is to construct a prediction rule based on the training data.

The learning task

Example:

- ▶ Variable values: Let g (and therefore also \hat{g}) be two valued (categorical), e.g. $\mathcal{G} = \{ \text{BLUE}, \text{ORANGE} \}.$
- ▶ Encoding of gs with ys: Then each class can be encoded binary, i.e., with $y \in \{0,1\}$, e.g., BLUE and ORANGE, would correspond to 0 and 1, respectively.
- ▶ **Predicted output values**: \hat{y} ranges over the interval $[-\infty, +\infty]$ (of which $\{0,1\}$ is a subset).
- ▶ **Prediction rule**: \hat{g} is assigned a (class label) BLUE if $\hat{y} < 0.5$ and ORANGE, otherwise.

Two simple approaches to prediction

- Linear model fit
 - strong assumptions about the structure of the decision boundary
- k-nearest neighbours
 - weak assumptions about the structure of the decision boundary

- Despite relative simplicity one of the most important statistical tools
- Input vector $\mathbf{x}^T = (x_1, x_2, \dots, x_p)$
- Output y predicted using the model

$$\hat{y} = \hat{w_0} + \sum_{j=1}^p x_j \hat{w_j}$$

- \hat{w}_i $(0 \le i \le p)$ are the parameters of the linear model
- In vector form

$$\hat{y} = \hat{\mathbf{w}}^T \mathbf{x} = \mathbf{x}^T \hat{\mathbf{w}}$$

using the fact that the scalar (inner) product of two vectors is a commutative operation.

- We assume that w_0 is in w and 1 is included in x.
- \hat{y} is a scalar, but in general can be a k-vector \hat{y} , in which case w becomes a $p \times k$ matrix of coefficients.

- There are many ways to fit a linear model to a training dataset.
- ► Least squares method
 - We need to find coefficients $\hat{w_i}$ which minimize the error estimated with the **residual sum of squares**

$$\mathsf{RSS}(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$

assuming N input-output pairs.

- ▶ RSS(w) is a quadratic function.
- A minimum always exists though not necessarily a unique one.

- ▶ We look for the solution \hat{w} using the matrix notation:
- ▶ $\mathbf{y} = [y_1, y_2, \dots, y_N]^T$ is the vector formed from the N output vectors and \mathbf{X} is an $N \times p$ matrix

$$\mathsf{RSS}(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

► To find the minimum we differentiate with respect to **w** which gives

$$-2\boldsymbol{X}^T(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w})$$

For details about the derivation check equations 4 and 5 in this document.

▶ To find the minimum our derivative must be **0**, hence:

$$X^{T}(y - Xw) = 0$$

 $X^{T}y - X^{T}Xw = 0$
 $X^{T}y = X^{T}Xw$

▶ If $\mathbf{X}^T \mathbf{X}$ is non-singular there exists a unique solution given by

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

 \triangleright For each input x_i there corresponds the fitted output

$$\hat{y}_i = \hat{y}_i(\mathbf{x}_i) = \hat{\mathbf{w}}^T \mathbf{x}_i$$

- ▶ This is called "making a prediction" for x_i .
- The entire fitted surface (hyperplane) is fully characterized by the parameter vector $\hat{\boldsymbol{w}}$.
- After fitting the model, we can "discard" the training dataset.

Example: Linear model fit by least squares

- Scatter plot (on next slide) of training data on a pair of inputs x_1 and x_2
- Output class variable g has two values BLUE and ORANGE.
- ► Linear regression model fitted with the response variable *y* coded as 0 for BLUE and 1 for ORANGE.
- Fitted values \hat{y} converted to a fitted class variable \hat{g} as

$$\hat{g} = \begin{cases} \text{BLUE} & \text{if } \hat{y} \le 0.5\\ \text{ORANGE} & \text{if } \hat{y} > 0.5 \end{cases}$$

Example: Linear model fit by least squares

Nearest-neighbours model

- In nearest-neignbour methods $\hat{y}(x)$ is determined based on the inputs (points) in the training set \mathcal{T} which are "closest" to the input x.
- k-nearest neighbour fit is defined as

$$\hat{y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

where $N_k(x)$ is the neighbourhood of x consisting of the k "closest" points to x.

- "Closeness" requires a definition of metrics.
- For the moment we assume Euclidian distance (each x is a point in the hyperspace).
- ► An average of the classes of the *k* closest points (but only for binary classification problem.

Back to the BLUE and ORANGE example

- We use the same training data as in the linear model example.
- New borderline between the classes generated with 15-nearest-neighbour model.
- Since ORANGE is encoded as $1 \hat{y}$ is the proportion of ORANGE points in the 15-neighbourhood.
- ► Class ORANGE assigned to x if $\hat{y}(x) > 0.5$ (majority is ORANGE).

15-Nearest neighbour classifier

Linear classifier vs. 15-Nearest neighbour

1-Nearest neighbour vs. 15-Nearest neighbour

Comparison of techniques

- ► At first sight it looks like k-NN has only one parameter, k versus p parameters (number of weights w_i) of the linear model.
- ▶ The **effective** number of parameters of k-NN is N/k which is in general bigger than p (N is the size of the training set).
- ► For instance, assume non-overlapping neighbourhoods
 - ▶ There will be N/k neighbourhoods.
 - ► To each neighbourhood there correspond one parameter (the mean of the elements of the neighbourhood).

Model capacity, underfitting and overfitting

Materials:

► Chapter I.5.2 from Goodfellow et al., *Deep Learning*

Linear regression

Generalization

- ► The central challenge in machine learning is to design an algorithm which will perform well on new data (different from the training set data).
- ► This ability is called **generalization**.
- ▶ **Training error** is the error computed on the training set.

Example: Linear regression

Previously, we trained the model by minimizing the training error

$$\frac{1}{m^{(\text{train})}} \left\| \boldsymbol{X}^{(\text{train})} \hat{\boldsymbol{w}} - \boldsymbol{y}^{(\text{train})} \right\|_{2}^{2}$$

▶ We would like actually to minimize the test error

$$\frac{1}{m^{(\text{test})}} \left\| \boldsymbol{X}^{(\text{test})} \hat{\boldsymbol{w}} - \boldsymbol{y}^{(\text{test})} \right\|_{2}^{2}$$

Statistical learning theory

- ➤ Statistical learning theory provides methods to mathematically reason about the performance on the test set although we can observe only the training set.
- This is possible under some assumptions about the data sets
 - ► The training and test data are generated by drawing from a probability distribution over data sets. We refer to that as data-generating process.
 - i.i.d. assumptions
 - Examples in each data sets are **independent** from each other.
 - The training data set and the test data set are identically distributed, i.e., drawn from the same probability distribution.

Model capacity

- ► A capacity of the model is its ability to fit a wide variety of functions.
- ► The capacity can be controlled by choosing its hypothesis space, i.e. the set of functions from which the learning algorithm is allowed to select the solution.
- Example: The linear regression algorithm has the set of all linear functions as its hypothesis space.

Polynomial regression

- ► The linear regression algorithm can be generalized to include all polynomial functions instead of just the linear ones.
- Moving to degree two to we obtain: $\hat{y} = b + w_1 x + w_2 x^2$.
 - ▶ This can be seen as adding a new feature x^2 .
 - In fact, we can generalize this approach to create all sorts of hypothesis spaces, e.g.: $\hat{y} = b + w_1 x + w_2 \sin(x) + w_3 \sqrt{x}$.
- ► The outuput is still a linear function of the parameters, so in principle it can be trained in the same way as the linear regression.

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as predictors

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as predictors

Generalization and capacity

- Simpler functions generalize more easily, but we still need to choose a sufficiently complex hypothesis (function) to obtain small training error.
- ► Typically training error decreases with the increase of the model capacity until an (asymptotic) value is reached.
- ► The generalization error is U-shaped with the capacity range split in an underfitting and an overfitting zone.

Generalization and capacity

Regularization

- ▶ In addition to increasing and decreasing of the hypothesis space, i.e., the capacity, we can influence the learning algorithm by giving preference to one solution over another in the hypothesis space.
- ► In case both functions are eligible we can define a condition to express preference about one of the functions.
- ► The unpreferred solution is chosen only if it gives significantly better performance with the training data.
- ▶ More on regularization in the next lecture.

Model selection

Materials:

► Chapter I.5.3 from Goodfellow et al., *Deep Learning*

Hyperparameters and validation sets

- ► **Hyperparameters** are settings that can be used to control the behaviour of the algorithm.
- ► In general, the hyperparameters are not modified by the learning algorithm itself.
- **Example**: In **polynomial regression** the degree of the polynomial is a **capacity** hyperparameter.
- ➤ A setting can be chosen to be hyperparameter when it is **difficult to optimize** or more often when its derivation from the training set **can lead to overfitting**.
 - Example: in polynomial regression we can always fit the data better with a higher degree polynomial.

Choice of training, validation, and test sets

- ► The **validation set** is used during training to predict the behaviour (generalization error) of the algorithm on new data, i.e., on the test set and to chose the hyperparameters.
- ▶ Ideally these two sets are disjoint.
- ▶ The validation set is chosen from the training data.
- ▶ The training data is split in two disjoint subsets.

Choice of training, validation, and test sets

Training

Used to find the optimal **parameters** of the model.

 \overline{w}

Validation

Used to find the optimal **model** (hyper-parameters).

 $f(\cdot)$

Test

Used to estimate the **performance** of the optimal model.

$$||\hat{y} - y||$$

Cross-validation

- ▶ Dividing the data set into disjoint training and test sets can result in a result in a too small validation and/or test set.
- ▶ In such cases all data is used to estimate the generalization error.
- We use procedures that repeat the training and testing on different randomly chosen subsets or splits of the original data set.
- ► The most common such procedure is the k-fold cross-validation.

Expectation (recap)

▶ The **expectation** or **expected** value of a function f(x) with respect to a probability distribution P(x) is the average value of f over all values x assuming they are drawn from P

$$\mathbb{E}_{\mathsf{x} \sim P}[f(\mathsf{x})] = \sum_{\mathsf{x}} P(\mathsf{x})f(\mathsf{x})$$

$$\mathbb{E}_{\mathsf{x} \sim P}[f(\mathsf{x})] = \int p(\mathsf{x})f(\mathsf{x})d\mathsf{x}$$

Variance (recap)

► The **variance** gives a measure of variation of the values of a random variable x

$$Var(f(x)) = \mathbb{E}[(f(x) - E[f(x)])^2]$$

Bias and variance trade-off

Materials:

► Chapter I.5.4 from Goodfellow et al., *Deep Learning*

Point estimation

- For efficient design of learning algorithms it is useful to have formal characterizations of notions like generalization, overfitting and underfitting.
- ▶ To this end we introduce some definitions.
- Point estimation is the attempt to provide the single "best" prediction of some quantity of interest.
- ➤ The quantity of interest can be a single parameter, parameter vector of some model, e.g., the weights **w** in the linear regression model.

Point estimation

- Given a parameter θ we denote its point estimate with $\hat{\theta}$.
- As usual, let $\{x^{(1)}, \dots, x^{(m)}\}$ be m independent and identically distributed (i.i.d.) data points.
- A point estimator or statistic is any function of the data

$$\hat{\boldsymbol{\theta}}_m = g(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}))$$

This definition is very general. For instance, that the value returned by g need not be close to the true value θ . Also g might return a value which is outside the values that θ is allowed to have.

Point estimation

- ightharpoonup Of course, a good estimator is still a function that returns values close to θ .
- ightharpoonup Since the data is drawn from a random process, point estimate $\hat{\theta}$ is considered to be a random variable and θ is fixed, but unknown parameter.

Bias

ightharpoonup A bias of an estimator $\hat{ heta}_m$ is defined as

$$\mathsf{bias}(\hat{m{ heta}}_m) = \mathbb{E}(\hat{m{ heta}}_m) - m{ heta}$$

where the expectation is over the data and θ is the true underlying value.

- An estimator $\hat{\theta}_m$ is **unbiased** if bias $(\hat{\theta}_m) = 0$. Note that this implies $\mathbb{E}(\hat{\theta}_m) = \theta$.
- $\hat{\theta}_m$ is asymptotically unbiased if $\lim_{m\to\infty} \text{bias}(\hat{\theta}_m) = 0$ (implying $\lim_{m\to\infty} \mathbb{E}(\hat{\theta}_m) = \theta$).

Example: Consider samples $\{x^{(1)}, \dots, x^{(m)}\}$ i.i.d distributed according to the Gaussian distribution

$$p(x^{(i)}; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{x^{(i)} - \mu}{\sigma^2}\right)$$

► The **sample mean** is a common estimator of the Gaussian mean parameter

$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x(i)$$

We compute the bias as expectation by substituting the Gaussian distribution in the formula

$$\begin{aligned} \operatorname{bias}(\mu_m) &= & \mathbb{E}[\mu_m] - \mu \\ &= & \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m x^{(i)}\right] - \mu \\ &= & \left(\frac{1}{m} \sum_{i=1}^m \mathbb{E}[x^{(i)}]\right) - \mu \\ &= & \left(\frac{1}{m} \sum_{i=1}^m \mu\right) - \mu \\ &= & \mu - \mu = 0 \end{aligned}$$

The sample mean is an unbiased estimator of Gaussian mean parameter.

- ► Example: Estimators of the variance of a Gaussian distribution
- We compare two different estimators of the variance σ^2 parameter
- Sample variance

$$\hat{\sigma}^2 = \frac{1}{m} \sum_{1}^{m} \left(x^{(i)} - \hat{\mu}_m \right)^2$$

where $\hat{\mu}$ is the sample mean.

▶ We are interested in computing

$$\mathsf{bias}(\hat{\sigma}_m^2) = \mathbb{E}[\hat{\sigma}_m^2] - \sigma^2$$

▶ First we evaluate $\mathbb{E}[\hat{\sigma}_m^2]$:

$$\mathbb{E}[\hat{\sigma}_m^2] = \mathbb{E}\left[\frac{1}{m}\sum_{1}^{m}\left(x^{(i)} - \hat{\mu}_m\right)^2\right] = \frac{m-1}{m}\sigma^2$$

Back to the bias

$$\mathsf{bias}(\hat{\sigma}_m^2) = \mathbb{E}[\hat{\sigma}_m^2] - \sigma^2 = \frac{m-1}{m}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{m}$$

▶ Therefore the sample variance is a **biased** estimator.

► The **unbiased variance estimator** is defined as

$$\tilde{\sigma}^2 = \frac{1}{m-1} \sum_{1}^{m} \left(x^{(i)} - \hat{\mu}_m \right)^2$$

Indeed

$$\mathbb{E}[\tilde{\sigma}_m^2] = \mathbb{E}\left[\frac{1}{m-1}\sum_{1}^{m}\left(x^{(i)} - \hat{\mu}_m\right)^2\right] = \frac{m-1}{m-1}\sigma^2 = \sigma^2$$

and the bias is 0.

Variance and standard error

- ▶ Another important feature of an estimator is its variance.
- The **variance** of an estimator is simple its statistical variance $Var(\hat{\theta})$ over the training set as a random variable.
- Alternatively we can compute the **standard error** (the square root of the variance) $SE(\hat{\theta})$.
- ► The variance or the standard error provide a measure how much the estimate would vary as we resample the data independently from the underlying data generating process.
- ▶ We would prefer a relatively low variance of the estimator.

Variance and standard error

▶ The standard error of the mean estimator is given as

$$SE(\hat{\mu}) = \sqrt{Var\left[\frac{1}{m}\sum_{i=1}^{m}x^{(i)}\right]} = \frac{\sigma}{\sqrt{m}}$$

where σ is the true variance of the distribution, i.e., the samples $x^{(i)}$.

- ▶ Neither the square root of the sample variance nor the square root of the unbiased estimator of the variance give an unbiased estimate of the standard deviation.
- Both approaches underestimate the true standard deviation.
- ▶ However, for large *m* the approximation works quite well.

Variance and standard error

- ▶ In machine learning the generalization error is estimated based on the sample mean of the error on the test set.
- ► The accuracy of the estimate depends on the number of the examples.
- ► From the statistical theory (central limit theorem) we know that the mean is distributed with normal distribution for which we can establish confidence intervals.
- ▶ For instance, the 95% confidence interval is given by

$$[\hat{\mu_m} - 1.96\mathsf{SE}(\hat{\mu}_m), \hat{\mu_m} + 1.96\mathsf{SE}(\hat{\mu}_m]$$

▶ Then we can say that algorithm A is better than algorithm B of the confidence upper bound for the error of A is less than the corresponding lower bound of B.

Trading off bias and variance to minimize mean squared error

- Bias and variance measure two different sources of error in an estimator.
- Bias measures the expected deviation with the true value of the estimator.
- Variance provides a measure of the deviation from the expected value of the estimator depending on the particular data sampling.

Trading off bias and variance to minimize mean squared error

- ▶ Often we need to make a trade-off between these two.
- ▶ The most common way to do this is via cross-validation.
- ► An alternative is to compare the **mean squared error** (MSE) of the estimates.

$$\mathsf{MSE} = \mathbb{E}[(\hat{\theta}_m - \theta)^2] = \mathsf{bias}(\hat{\theta}_m)^2 + \mathsf{Var}(\hat{\theta}_m)$$

► The smaller MSE the better - so minimizing both the bias and variance is always preferable.

Bias and variance

- Our original goal was to provide a mathematical support for the notions of capacity, underfitting, and overfitting.
- Indeed there is a close relationship between these three concepts and bias and variance.
- When generalization error is measured by MSE (and hence indirectly via bias and variance) increasing capacity tends to increase variance and decrease bias.
- ► Again the generalization as a function of capacity is given by an U-shaped curve.

Discussion

How will the estimated regression model change when one training data point is replaced with another one?

Bias and variance

In summary...

Important: introductory topics covered in video lecture

These topics are covered in the extended slide stack and video lecture (links in Cavas) and are exam material:

- Linear algebra
- Probability theory
- Maximum-likelihood estimation
- Supervised and unsupervised algorithms
- Ensambling

Acknowledgements

The slides for this lecture were prepared by Mitko Veta and Dragan Bošnacki.

Some of the slides are based on the accompanying lectures of Goodfellow et al., *Deep Learning*.

References

- Friedman, J., T. Hastie, and R. Tibshirani. *The Elements of Statistical Learning*. Springer series in statistics New York, 2001.
- Goodfellow, I., Y. Bengio, and A. Courville. *Deep Learning*. MIT Press, 2016.
- Kolter, Z. and C. Do. "Linear Algebra Review and Reference". In: (2015).