IE708

June 27, 2019

- 0.1 IE708 Projeto Final
- 0.1.1 Samuel Borges Ferreira Gomes | RA: 261663
- 0.1.2 Prof. Michel Daoud Yacoub
- 0.1.3 2019.1

Parte 1. Nessa primeira parte, encontramemos a probabilidade de *outage* (probabilidade da SNR do sinal recebido seja menor ou igual a um *threshold*) para o esquema de diversidade *Pure Selection* da distribuição $\kappa - \mu$.

Para o *Pure Selection*, a probabilidade de *outage* é dada por $P_{out}(\gamma) = F_{\gamma}(\gamma)^{M}$, onde M é o número de ramos de diversidade, e $F_{\gamma}(\gamma)$ é a distribuição acumulada (CDF), dada por: $F_{\gamma}(\gamma) = 1 - Q_{\mu}(\sqrt{2\kappa\mu}, \sqrt{2(1+\kappa)\mu 10^{\frac{\gamma m}{10}}})$.

- $Q_{\nu}(a,b) = \frac{1}{a^{\nu-1}} \int_{b}^{\infty} x^{\nu} \exp\left(\frac{-(x^2+a^2)}{2}\right) I_{\nu-1}(ax) dx$ representa a função generalizada Marcum-O:
- $I_{\nu}(\cdot)$ a função modificada de *Bessel* do primeiro tipo e ordem ν ;
- $\gamma_m = \frac{\gamma}{\bar{\gamma}}$ a razão entre a SNR instantânea γ e a SNR/bit média do sistema $\bar{\gamma}$.

Os plots foram feitos no *software* **Wolfram Mathematica 11.2.0.0** (ver arquivo parte1.nb), com as seguintes características: * κ fixo igual a 2 * μ variando de 1 a 4

```
In [1]: %matplotlib inline
from IPython.display import Image
from IPython.display import display
x = Image(filename='fig1.png')
y = Image(filename='fig2.png')
z = Image(filename='fig3.png')
k = Image(filename='fig4.png')
display(x, y, z, k)
```


É importante notar que o primeiro dos plots acima representa a curva da **distribuição Rice** ($\kappa=2$ e $\mu=1$).

A seguir, mostraremos as curvas (ainda o arquivo parte1.nb) para $\mu=2$ fixo, e κ variando de 0 a 3.

