PCT/CN03/00522

证

明

REGID 0:6 AUG 2003

本证明之附件是向本局提交的下列专利申请副本

申 请 日: 2002 09 02

申 请 号: 02 1 36766.3

申请类别: 发明

发明创造名称: 一组合成抗菌肽

申 请 人: 上海高科联合生物技术研发有限公司

发明人或设计人: 黄青山

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国 国家知识产权局局长

2003 年 7 月 14 日

权 利 要 求 书

- 1. 一组合成抗菌肽, 其特征在于所述抗菌肽具有序列表中所列的氨基酸序列。
- 2. 根据权利要求 1 所述的合成抗菌肽,其特征在于所述抗菌肽还包括所述多肽中个别氨基酸的取代、环化、L-型氨基酸变为 D-型氨基酸、缺失或加入而得到的功能等同物多肽。
- 3. 根据权利要求 1 或 2 所述的合成抗菌肽,其特征在于所述抗菌肽含有 (A1-A2-A3-A4) (A1'-A2'-A3'-A4') 或 (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4") 的核心结构。
- 4. 根据权利要求 3 所述的合成抗菌肽, 其特征在于所述的 A1、A1、A1、A1为 Lys 或 Arg 中的一种。
- 5. 根据权利要求 3 所述的合成抗菌肽,其特征在于所述的 A2 、A2′、A2″为 G1y、A1a、Val、Leu、I1e 或 Phe 中的一种。
- 6. 根据权利要求 3 所述的合成抗菌肽, 其特征在于所述的 A3 、A3′、A3″为 Gly、A1a、Val、Leu、Ile 或 Phe 中的一种。
- 7. 根据权利要求 3 所述的合成抗菌肽, 其特征在于所述的 A4、A4′、A4″为 Lys 或 Arg 中的一种。
- 8. 根据权利要求 3 所述的合成抗菌肽,其特征在于所述的核心结构中(A1-A2-A3-A4)的氨基端连接有 11 个氨基酸。
- 9. 根据权利要求 8 所述的合成抗菌肽, 其特征在于所述的 11 个氨基酸中第 1, 3, 6, 7 位氨基酸为 Lys 或 Arg 中的一种。
- 10. 根据权利要求 8 所述的合成抗菌肽, 其特征在于所述的 11 个氨基酸中第 2 位 氨基酸为 Trp 或 Phe 中的一种。
- 11. 根据权利要求 8 所述的合成抗菌肽, 其特征在于所述的 11 个氨基酸中第 4, 5, 8, 9, 10, 11 位氨基酸为 Leu、Ile、Ala、Val 或 Gly 中的一种。
- 12. 权利要求 1 所述合成抗菌肽的制备方法, 其特征在于采用固相化学法合成。
- 13. 权利要求 1 所述合成抗菌肽的制备方法,其特征在于将编码所述抗菌肽的基因 克隆到载体上,然后进入宿主细胞中表达后获得所述抗菌肽。
- 14. 根据权利要求 13 所述合成抗菌肽的制备方法, 其特征在于所述的载体是质粒

或病毒中的一种。

- 15. 根据权利要求 13 所述合成抗菌肽的制备方法, 其特征在于所述的宿主细胞是原核细胞, 包括大肠杆菌、枯草芽孢杆菌。
- 16. 根据权利要求 13 所述合成抗菌肽的制备方法, 其特征在于所述的宿主细胞是 真核细胞, 包括酵母细胞、植物细胞、昆虫细胞和哺乳动物细胞。
- 17. 权利要求 1 或 2 所述合成抗菌肽的应用,其特征在于所述抗菌肽在制备治疗革 兰氏阳性菌、革兰氏阴性菌和真菌感染的药物中的应用。

说明书

一组合成抗菌肽

技术领域

本发明涉及一组合成抗菌肽、其制备方法及在制备治疗细菌、真菌感染的药物中的应用,该抗菌肽对革兰氏阳性菌、革兰氏阴性菌和真菌有显著的杀菌活性。 背景技术

抗菌肽是生物体经诱导产生的一种具有生物活性的小分子多肽,一般由 20-60 个氨基酸组成,分子量在 2000-7000D 左右。随着医学免疫学和分子生物学的迅速发展,抗菌肽的研究越来越成为生物技术与生物医药领域中的热门课题。至今为止,在许多动物(尤其是昆虫)、植物、微生物和人体上已发现了超过 200 多种抗菌肽,这类短肽不仅对细菌、真菌有广谱的杀菌作用,而且对病毒、原虫及癌细胞也有攻击作用。临床试验也表明,在机体感染病菌或可能导致病菌感染的情况下,抗菌肽能快速杀灭已侵入的病菌,并且能阻止病菌的继续侵染。

随着对抗菌肽一级结构和高级结构研究的不断深入,已有许多研究者对这些抗菌肽的结构和功能进行研究,发现在模拟膜的疏水环境下,分子中的α一螺旋度与其杀菌活性密切相关。另外研究结果表明抗菌肽是通过破坏膜的完整性使得细菌细胞膜渗漏而 杀 死 细 菌 (Nakajima Y. etal., J. Biol. Chem, 262:1665-1669; Zasloff M. Nature, 2002, 415:389-395)。因此有人试图通过增加分子中α一螺旋结构或提高多肽中含正电荷氨基酸的比例来寻找更强抗菌活性的多肽(Broth W. B. etal., Antimicrobial AgentsChemotherapy, 2001, 45:1894-1895; HongS. Y. etal., Peptides, 2001, 22:1669-1674)。

发明内容

本发明涉及一组合成抗菌肽,是在对天然抗菌肽的序列、结构分析的基础上设计合成的,它们的序列如下:

Arg Phe Arg Leu Val Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Leu Val Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Val Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Val Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Val Lys Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Val Lys Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Val Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Val Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Phe Lys Leu Val Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Phe Lys Lou Val Lys Lys lie Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Leu Phe Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Leu Phe Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Phe Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Phe Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Phe Lys Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Phe Lys Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Lys Leu Phe Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Lys Leu Phe Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Phe Lys Leu Phe Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Phe Lys Leu Phe Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Gly Val Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Gly Val Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Gly Val Lys Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Gly Val Lys Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Gly Val Lys Lys lle Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Gly Val Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Phe Arg Gly Val Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Phe Arg Gly Val Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Arg Ile Gly Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Arg Ile Gly Arg Arg Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Arg Ile Gly Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Arg Ile Gly Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Trp Arg Ile Gly Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Trp Arg Ile Gly Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Trp Lys Ile Gly Lys Lys Ile Val Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Trp Lys ile Gly Lys Lys Ile Vai Leu Ala (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Arg Leu Phe Arg Arg lle Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Arg Leu Phe Arg Arg Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Arg Leu Phe Lys Arg Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Arg Leu Phe Lys Arg Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Arg Leu Phe Lys Lys Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Arg Leu Phe Lys Lys Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Trp Lys Leu Phe Lys Lys lie Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Val Ile Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Val Ile Arg Arg Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Val Ile Arg Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Val Ile Arg Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Arg Phe Arg Val Ile Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Arg Phe Arg Val Ile Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

Lys Phe Lys Val Ile Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4')

Lys Phe Lys Val Ile Lys Lys Ile Leu Val Gly (A1-A2-A3-A4) (A1'-A2'-A3'-A4') (A1"-A2"-A3"-A4")

(A1-A2-A3-A4)(A1'-A2'-A3'-A4') 或(A1-A2-A3-A4)(A1'-A2'-A3'-A4')(A1"-A2"-A3"-A4")序列为抗菌肽序列的核心结构。其中 A1、 A1'、A1"为 Lys 或 Arg 中的一种, A2、A2"为 Gly、Ala、Val、Leu、Ile 或 Phe 中的一种, A3、A3'、A3"为 Gly、Ala、Val、Leu、Ile 或 Phe 中的一种, A4、A4"为 Lys 或 Arg 中的一种。(A1-A2-A3-A4)的氨基端连接有 11 个氨基酸, 11 个氨基酸中第 1, 3, 6, 7 位氨基酸为赖氨酸或精氨酸中的一种, 11 个氨基酸中第 2 位氨基酸为色氨酸或苯丙氨酸中的一种, 11 个氨基酸中第 4, 5, 8, 9, 10, 11 位氨基酸为亮氨酸、异亮氨酸、丙氨酸、缬氨酸或甘氨酸中的一种。

本发明一组合成抗菌肽还包括以上所述多肽中个别氨基酸的取代、环化、L-型氨基酸变为 D-型氨基酸、缺失或加入而得到的功能等同物的多肽。

本发明提供的一组合成抗菌肽,其制备方法可以是固相化学法,也可以将抗菌肽的 编码基因克隆到载体上,然后在宿主细胞中表达后获得。其中表达载体可以是质粒或 病毒中的一种,宿主细胞可以是原核细胞,包括大肠杆菌、枯草芽孢杆菌等,宿主细 胞也可以是真核细胞、包括酵母细胞、植物细胞、昆虫细胞和哺乳动物细胞等。制备 的抗菌肽可通过质谱鉴定。

为了深入研究本发明这类生物学活性抗菌肽的结构与功能关系,利用美国应用系统生物公司生产的 Pioneer 多肽合成仪制备一组多肽,以进行研究。下面以制备的具有下列氨基酸序列的 GK-1,GK-2 和 GK-3 抗菌肽作为举例来进行叙述:

GK-1:

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Lys Arg Gly Leu Arg Lys Leu Leu Lys

GK-2:

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Arg Arg Leu Leu Arg Arg Leu Leu Arg

GK-3:

Arg Trp Arg Leu Phe Lys Arg Ile Gly Ile Gly Arg Leu Lys Arg Gly Leu Arg

利用 96 孔板法检测多肽的杀菌活性 (In Yup Park etc; FEBS Letters; 437(1998)258-262) 以预先合成的天然抗菌肽 buforin II, cecropin A1 为对照,进行杀菌活性检测。结果表明本发明合成抗菌肽的杀菌活性强于所述两种天然抗菌肽的杀菌活性。

同样对多肽中氨基酸缺失、环化衍生物的抗菌肽功能等同物也进行了制备与生物 活性测定,测定结果显示这些多肽的杀菌活性也基本上强于上述的天然抗菌肽的杀菌 活性。

抗菌肽在高效杀菌的同时也有可能作用于高等有机体包括人体细胞,因为抗菌肽的作用方式都是在细胞膜上穿孔使得细胞发生渗漏死亡。所以把抗菌肽能否使红细胞发生渗漏作为其是否有毒性的一个标准,如果抗菌肽能使红细胞中的血红蛋白发生渗漏,就可以通过检测 OD₄₉₀ 值确定毒性的大小。因此本发明还检测了合成抗菌肽对人体红细胞的溶血活性,实验表明,抗菌肽溶血率值很低,证实本发明合成抗菌肽的溶血毒性极小。

此外,又对本发明合成抗菌肽进行动物体内急性毒性试验,证明合成抗菌肽无毒性作用。又进行合成抗菌肽对小白鼠急性感染金黄色葡萄球菌的抑制作用的试验,表明合成抗菌肽对金黄色葡萄球菌感染有显著的抑制作用。

本发明提供一组新的人工设计合成的抗菌肽。可方便地采用固相化学法制备或将编码抗菌肽的基因克隆到载体上,然后进入宿主细胞中表达后获得。该合成抗菌肽对革兰氏阴性菌、革兰氏阳性菌、真菌具有广谱杀伤活性,并较天然抗菌肽有更强的杀菌活性,但对动、植物细胞无任何毒害作用。并通过抗菌肽对金黄色葡萄球菌急性感染杀菌活性的小鼠试验显示合成抗菌肽给予 0.25mg/kg 剂量,就能达到 100%杀菌抑制率,

而作为杀灭金黄色葡萄球菌特效药的万古霉素要给予 4.0mg/kg 剂量才能达到 100%的杀菌抑制率,表明本发明合成抗菌肽对金黄色葡萄球菌急性感染有很显著的杀菌效果,因此本发明合成抗菌肽可应用于制备治疗革兰氏阳性菌、革兰氏阴性菌和真菌感染引起的疾病的药物。

附图说明

图 1 是抗菌肽 GK-2 的质谱图。

具体实施方式

实施例 1 抗菌肽的制备及分离纯化

按上述序列制备 GK-1, GK-2 和 GK-3, 同时制备 cecropin A1 和 buforin II 作为对照。

cecropin A1 的序列(参见 Morishima, I., etc, Comp. Biochem. Physiol., 1990, B 95 (3), 551-554):

Arg Trp Lys Leu Phe Lys Lys Ile Glu Lys Val Gly Arg Asn Val Arg Asp Gly Leu Ile Lys Ala Gly Pro Ala Ile Ala Val Ile Gly Gln Ala Lys Ser Leu buforin II的序列(参见 Park, C.B., Biochem. Biophys. Res. Commun. 1996, 218 (1), 408-413)

Thr Arg Ser Ser Arg Ala Gly Leu Gln Phe Pro Val Gly Arg Val His Arg Leu Leu Arg Lys

本实施例采用固相化学法合成,所用仪器为美国应用生物系统公司生产的 Pioneer 多肽合成仪。合成的多肽经过高浓度的 TFA 剪切后,用反向柱纯化,纯化后的多肽通过质谱鉴定。具体试验步骤如下:

1、抗菌肽的制备(以制备 0.1mmol 量的 GK-2 为例)

以下所有制备抗菌肽的试剂均购于美国应用生物系统公司。

制备的 GK-2 多肽序列为

N- Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Arg Arg Leu Leu Arg -C

制备从 C 端到 N 端逐个进行,由合成仪自动控制。首先称量 0.1mmol 的结合了第一个氨基酸即 Arg 的树脂(购于美国应用生物系统公司),装柱,再用 20%哌啶二甲基甲酰胺溶液脱保护,二甲基甲酰胺清洗, 9-笏甲氧羰基(Fmoc)保护的游离氨基酸溶解

于碳二亚胺(DCC), 羟基苯并三唑(HOBt)/二异丙基乙基胺(DIPEA) ,溶解后的溶 液在柱上循环偶合反应 30 分钟, 二甲基甲酰胺清洗重复以上脱保护到偶合反应步骤 直到制备结束(具体操作步骤见 pioneer 多肽合成仪操作指南)。

制备后的多肽经如下步骤剪切:

取下反应后的树脂, 加入 B 型剪切液 (88%三氟乙酸,5%苯酚,5%水,2%三异丙基 硅烷), 室温反应 2 小时, 过滤 , 滤出液中加入 10 倍体积的预冷无水乙醚, 4000 转 /分钟离心 10 分钟, 收集沉淀并室温干燥。

2、抗菌肽纯化

称量一定量干燥后的多肽, 溶于 0.1% 三氟乙酸, 样品处理后经反向柱分离(洗 脱液为含 80%乙氰的 0.1% 三氟乙酸),收集洗脱峰。

3、抗菌肽的鉴定

如图 1 所示,制备的抗菌肽 GK-2 经过质谱分析,GK-2 在质谱图中显示的分子量 计算如下: (1) $734.8 \times 4 = 2939.2$, 2939.2 - 4 = 2935.2

- (2) $979.1 \times 3 = 2937.3$, 2937.3 3 = 2934.3
- $(3) 1468 \times 2 = 2936, 2936 2 = 2934$

计算出 GK-2 的分子量为 2934。由多肽序列计算出的理论值为 2932.74。证明制备的多 肽即为设计的 GK-2 抗菌肽。鉴定合格的抗菌肽产物备用。

抗菌肽 GK-1 和 GK-3, 天然抗菌肽 cecropin A1 和 buforin II 可以采用类似于 GK-2 抗菌肽的制备方法制备。

实施例 2 抗菌肽 GK-1 基因在大肠杆菌中的表达

首先设计合成编码抗菌肽的GK-1基因,将其克隆到pGEX-4T1载体上(购自Amersham Pharmcia Biotech 公司), 然后转化大肠杆菌 JM109, 经 IPTG 诱导表达 GST-GK-1 融合 蛋白, 再经凝血酶切割后, 得抗菌肽 GK-1。

实施例中使用的 ATP, IPTG,T。多聚核苷酸激酶、T。DNA 连接酶,Klenow 酶、限制 性内切酶除特别指明外均为 BIOLAB 公司产品,割胶回收试剂盒为上海生工公司产品, 寡聚核苷酸为上海生工生物工程技术服务有限公司合成。凝血酶剪切试剂盒购于 SIGMA 公司。

有关 DNA 的分离、纯化、PCR 扩增、酶解、质粒转化宿主菌、片段回收、连接等分 子克隆操作均按照 J. 沙姆布鲁克等编著的《分子克隆实验指南》进行。大肠杆菌 JM109

培养在液体或固体的 LB 培养基中。

采用大肠杆菌偏爱的密码子设计编码优选抗菌肽 GK-1 基因的 DNA 序列, 序列如下。在抗菌肽 GK-1 基因的 5′端引入酶切位点 BamHI(GGATCC), 在 3′端加上终止密码子(TAG), 所得构建基因的长度为 78bp。

通过 DNA 合成仪直接合成该核苷酸片断。首先用 PCR 方法对基因进行扩增。设计一对引物: 5'-CCTAGGTTTACCT-3'和 3'-CCGCCTGCTGAA-5'。PCR 反应条件如下: 94 °C, 30 秒; 45 °C, 45 秒; 72 °C, 30 秒; 反应 30 个循环。PCR 反应后将该片断经过 K1enow 酶补平后用 BamHI 酶切,酶切片断经过割胶回收后(割胶回收操作参照试剂盒操作说明)与 pGEX-4T1 载体的 BamHI 和 SmaI 的双酶切片断连接后转化大肠杆菌 JM109, 转化子通过 SmaI 酶切鉴定、筛选。转化子经过 IPTG 诱导表达 GST-GK-1 融合蛋白。融合蛋白用GST 亲合柱纯化后经凝血酶切割后得到抗菌肽 GK-1,具体操作参照试剂盒操作说明。

GK-1 蛋白序列:

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Lys Arg Gly Leu Arg Lys Leu Leu Lys

编码 GK-1 的核苷酸序列:

GGATCCAAATGGAAACTGTTTAAAAAAATTGGCATTGGCCGCCTGCTGAA

ACGCGGCCTGCGCAAGCTGCTGAAATAG

实施例3 抗菌肽GK-1基因在酵母细胞中的表达

本实施例中使用的 ATP, IPTG, T₄ 多聚核苷酸激酶、T₄DNA 连接酶, Klenow 酶、限制性内切酶除特别指明外均为 BIOLAB 公司产品,割胶回收试剂盒为上海生工公司产品,寡聚核苷酸为上海生工生物工程技术服务有限公司合成。凝血酶剪切试剂盒购于 SIGMA 公司。

设计合成编码抗菌肽的 GK-1 基因, 经过 BamHI 酶切与编码 GST 的 DNA 序列连接, 后将其连接到质粒 pBluescriptSKII (购自美国 Stratagene 公司)中, 转化大肠杆菌 DH5α(购自武汉大学菌种保藏中心),提取质粒经过测序证明序列正确后,质粒经过EcoRI, XhoI 酶切后连接到 pPIC9 载体(购自美国 Invitrogen 公司)中, 后转化毕氏酵母菌株 KM71 (购自美国 Invitrogen 公司), 甲醇诱导表达融合蛋白 GST-GK-1。

有关 DNA 的分离、纯化、PCR 扩增、酶解、质粒转化宿主菌、片段回收、连接等分

子克隆操作均按照 J. 沙姆布鲁克等编著的《分子克隆实验指南》进行。毕氏酵母菌株 KM71 培养在液体或固体的 BMGY 培养基中,甲醇诱导表达融合蛋白 GST-GK-1 时酵母菌 株培养在 BMMY 培养基中,每隔 24 小时补加甲醇至终浓度为 1%。

采用酵母菌偏爱的密码子设计编码优选抗菌肽 GK-1 及 GST 的 DNA 序列,序列如下。在抗菌肽 GK-1 基因的 5'端引入酶切位点 BamHI (GGATCC),在 3'端加上终止密码子 (TAG)及 EcoRI 酶切位点 (GAATCC),所得构建基因的长度为 84bp,同时在 GK-1 基因前段接编码 GST 的 DNA 序列,同时在 GST 的 DNA 序列的 5'端加了一个 XhoI 酶切位点。

GK-1 核苷酸片断的制备:通过 DNA 合成仪直接合成编码 GK-1 核苷酸片断。然后用 PCR 方法对基因进行扩增。设计一对引物 5'CCTAGGTTTACCT3'和 5'AAGTCGTCCGCC 3'。 PCR 反应条件如下: 94 ℃, 30 秒; 45 ℃, 45 秒; 72 ℃, 30 秒; 反应 35 个循环。

编码 GST 的 DNA 序列的的制备:设计一对引物

- 5' -CTCGAGATGTCCCCTATACTAGGTT-3'
- 5' CAGTGCTACGCCGGCGAG -3'

用以上引物扩增 pGEX-4T1 载体。 PCR 反应条件如下: 94℃, 30 秒; 45℃, 45 秒; 72℃, 60 秒; 反应 30 个循环。

扩增片段与质粒的连接:将 GK-1 的 PCR 扩增片断经过 Klenow 酶补平后用 BamHI 和 EcoRI 酶切,酶切片断经过割胶回收后 (割胶回收操作参照试剂盒操作说明)与编码 GST 的 DNA 扩增序列的 BamHI 和 XhoI 酶切回收片段以及 pBluescriptSKII 的 XhoI 和 EcoRI 酶切回收片段连接。连接产物转化大肠杆菌 DH $_{5\alpha}$,转化子经过抗性、蓝白斑、酶切鉴定后,进一步经过测序确定表达序列正确。提取质粒经 XhoI 和 EcoRI 酶切回收小片段,与 pPIC9 的 XhoI 和 EcoRI 酶切连接构建成表达质粒 pPIC9-gst-gk1,转化大肠杆菌 DH $_{5\alpha}$ 后 经 氨 苄 青 霉 素 抗 性 筛 选 转 化 子 。 按 文 献 报 道 的 方 法 (Clare JJ, etc.,Gene, 1991, 105: 205-212) 制备毕氏酵母 KM71 的感受态细胞,并将 SacI 单酶切的线性化重组质粒 pPIC9-gst-gk1 经电转化导入感受态细胞,电转化的条件为 1.5KV,22.5uF。将电转化的酵母细胞涂板于 YPD 平板,30℃培养两天后,筛选表达融合蛋白的阳性克隆。

转化子经过甲醇诱导表达 GST-GK-1 融合蛋白。融合蛋白用 GST 亲合柱纯化后经凝血酶切割后得到抗菌肽 GK-1,具体操作参照试剂盒操作说明。

GST-GK-1融合蛋白序列:

Leu Glu Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro Thr Arg Leu Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys Leu The Gln Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser Lys Asp Phe Glu The Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys The Tyr Leu Asn Gly Asp His Val The His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp Val Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu Val Cys Phe Lys Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr Leu Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala The Phe Gly Gly Gly Asp His Pro Pro Lys Ser Asp Leu Val Pro Arg Gly Ser Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Lys Arg Gly Leu Arg Lys Leu Leu Lys

GST-GK-1核苷酸序列:

TTAGAAATGTCTCCTATTTTAGGTTATTGGAAAATTAAAGGTTTAGTTCAACCTACTCGTTTATTATTAGAATATTTAGAAGAAAAA
TATGAAGAACATTTATATGAACGTGATGAAGGTGATAAATGGCGTAATAAAAAAATTTGAATTAGGTTTAGAATTTCCTAATTTACCT
TATTATATTGATGGTGATGTTAAATTAACTCAATCTATGGCTATTATTCGTTATATTGCTGATAAACATAATATGTTAGGTGGTTGT
CCTAAAGAACGTGCTGAAATTTCTATGTTAGAAGGTGCTGTTTTAGATATTCGTTATGGTGTTTCTCGTATTGCTTATTCTAAAGAT
TTTGAAACTTTAAAAAGTTGATTTTTTATCTAAATTACCTGAAATGTTAAAAAATGTTTGAAGATCGTTTATGTCATAAAAACTTATTTA
AATGGTGATCATGTTACTCATCCTGATTTTATGTTATATGATGCTTTAGATGTTTTTATATATTGGATCCTATGTGTTTAGATGCT
TTTCCTAAATTAGTTTGTTTTAAAAAAACGTATTGAAGCTATTCCTCCAAATTGATAAATATTTAAAAATCTTCTAAATATATTGCTTGG
CCTTTACAAGGTTGGCAAGCTACTTTTGGTGGTGGTGATCATCCTCCTAAATCTGATTTAAAAATCTTCTAAATTATTAAAATGGAAATTA
TTTAAAAAAAATTGGTATTGGTCGTTTTATTAAAAACGTGGTTTACGTAAATTATTAAAATTGAGAAATTT

实施例 4 合成抗菌肽的杀菌活性检测

以下实施例中所使用的各种菌株购于中国生物制品检定所。

采用 96 孔板法对合成抗菌肽的杀菌活性进行检测,并用固相化学法合成的抗菌肽 cecropin A1 和 buforin II 作为对照,以评价本发明中作为举例的三条抗菌肽 GK-1, GK-2 和 GK-3 的杀菌活性。

按以下步骤进行测定抗菌肽的杀菌活性:

菌种复苏,接种斜面 37℃培养过夜,挑菌于普通 LB 培养基中,37℃培养过夜,稀释菌液使菌浓度为 10⁴-10℃FU/ml,按每孔 100ul 菌液接种于 96 孔板中,将多肽以一定比例稀释后,每孔中加入 10ul,将 96 孔板置于 37℃培养过夜,酶标仪检测 0D₆₂₀ 值 (In Yup Park etc;FEBS Letters; 437(1998) 258-262)。检测结果见表 1。

含有抗菌肽的细菌的生长浓度(OD₆₂₀)与不加抗菌肽的细菌的生长浓度的比值大于90%时的抗菌肽浓度即为最小抑菌浓度(最小抑菌浓度(MIC)定义为显著抑制细菌生长的最低的浓度)。

表 1 五种抗菌肽对不同细菌的抗菌活性最小抑菌浓度 (MIC) 的比较

	菌株名称	几种抗菌肽的最小抑菌浓度(ug/ml)				
	四体石物	cecropin Al	buforin II	GK-1	GK-2	GK-3
革	金黄色葡萄球菌 CMCC26003	16	4	0.4	0. 2	0.5
兰	枯草杆菌 DB430	12	6	4	4	5
氏	短小芽孢杆菌 CMCC63202	50	6	0.5	1	0.8
阳 性	溶壁微球菌 S1.634	50	8	1.0	0.8	1. 2
菌	藤黄微球菌 CMCC28001	30	8	2	4	3
革	大肠杆菌 ATCC8099	20	16	1	0. 5	1.6
氏	肺炎克雷伯氏菌 CMCC46117	16	20	2	0. 8	2
阴 性	乙型副伤寒沙门氏菌 CMCC50094	12	14	. 4	1	6
菌	绿脓杆菌 CMCC10104	18	20 .	10	12	1. 8
真	白色念珠菌 ATCC10231	50	30	8	10	11
菌	啤酒酵母 ATCC9736	50	20	14	12	12

上表中的的最小抑菌浓度值越小,则代表抗菌能力越强。

实施例 5 抗菌肽功能等同物——缺失、环化衍生物的杀菌活性检测

设计合成抗菌肽功能等同物: 缺失 GK-19 及环化 GK-20 衍生物,合成方法见美国应用生物系统公司 (Applied Biosystems) pioneer 多肽合成仪操作指南。合成产物经过分离纯化(同实施例 1)后,检测了衍生物的最小抑菌浓度,杀菌活性检测同实施例 4,检测结果见表 2。缺失 GK-19、环化 GK-20 衍生物的序列如下:

GK-19:

Arg Phe Lys Leu Phe Lys Lys Ile Pro Arg Leu Leu Arg Arg Gly Leu Arg Lys Val Leu Lys GK-20:

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Arg Leu Leu Lys Arg Gly Leu Arg Lys Leu Leu Lys

表 2 抗菌肽功能等同物 GK-19 和 GK-20 对不同细菌的最小抑菌浓度 (MIC)

		抗菌肽的最小抑菌浓度			
	菌株名称	(ug/ml)			
		GK-19	GK-20		
革	金黄色葡萄球菌 CMCC26003	1.0	0.8		
兰	枯草杆菌 DB430	2	2		
氏	短小芽孢杆菌 CMCC63202	10	6		
阳性	溶壁微球菌 S1.634	4	2		
菌	藤黄徹球菌 CMCC28001	10	4		
革	大肠杆菌 ATCC8099	2	8		
兰	肺炎克雷伯氏菌 CMCC46117	2	10		
氏阴	乙型副伤寒沙门氏菌 CMCC50094	1	8		
性菌	绿脓杆菌 CMCC10104	4	10		
真	白色念珠菌 ATCC10231	16	18		
菌	啤酒酵母 ATCC9736	12	20		

上表中的的最小抑菌浓度值越小,则代表抗菌能力越强。

实施例 6 体外溶血活性检测

本实施例用于检测合成抗菌肽对人体红细胞是否具有溶血活性,并用固相化学法合成的抗菌肽 cecropin Al 和 buforinII 作为对照。使用的的血样取于正常人血。

合成抗菌肽溶血活性的检测步骤是:

4%的新鲜红细胞悬液在 414nm 下血红蛋白的释放来检测的。人红细胞经 PBS (PBS: 35mM 磷酸缓冲液/0.15MNaCl, PH7.0) 洗涤,取 100ul 的 8%人红细胞悬液于 96 孔板中,每孔中加入 100ul 抗菌肽溶液,37℃一小时后,1500rpm 离心 5 分钟,转移 100ul 上清于新的 96 孔板中,通过酶标仪检测 414nm 下的吸收。阴性对照用 PBS,阳性对照用 0.1% TritonX-100。检测结果见表 3

表 3	土 种抗菌肽溶血活性检测结果			
 	容血率(%)			

抗菌肽浓度	容血率 (%)					
(ug/ml)	cecropin Al	buforinII	GK-1	GK-2	GK-3	
12. 5	0	0	0	0	0	
25	0	0	0	0	0	
50	0	0	0	0	0	
100	1. 2	0	0. 5	0. 2	0.6	
200	3	0.5	0.8	1.0	1. 1	
500	10	1. 7	1.5	2	1. 9	

表3中抗菌肽的溶血率值越小,则代表抗菌肽的溶血毒性越小。

实施例 7 动物体内急性毒性试验

本实施例用以检测合成抗菌肽对动物的毒性,并用固相化学法合成的抗菌肽 cecropin Al 和 buforin II 作为对照,测定本发明提供的抗菌肽 GK-1、GK-2 和 GK-3 的毒性。

采用昆明小白鼠 60 只,雌雄各半,体重 33.5±0.25g,抗菌肽按 1mg/kg 剂量,每日一次连续 7 天经肌注小白鼠,观察动物在最大剂量下毒性反应。实验结果表明,动物经肌注抗菌肽 7 天后,无异常反应,活动正常。经 7 天观察,60 只小白鼠全部存活。证明合成抗菌肽无毒性作用。

实施例 8 合成抗菌肽和万古霉素对小鼠金黄色葡萄球菌感染模型抑制效果的比较使用昆明小白鼠的急性感染模型,实验步骤如下:

将金黄色葡萄球菌 CMCC26003 置于含 5%猪胃粘液素的小牛肉灌输肉汤里,振荡培养过夜。体重大约 33.5±0.25g 的小鼠腹腔内注射 10⁶-10⁷存活细胞,每个处理组里有 3 个小鼠。静脉注射抗菌肽 GK-1 (溶于 0.1 毫升 5%右旋糖里供注射),在 10 分钟里注射。皮下注射万古霉素(万古霉素对小鼠皮下给药是完全可生物利用的,不论皮下给予或静脉给予有相似的活性)。

表 4 抗菌肽 GK-1 和万古霉素对金黄色葡萄球菌急性感染小白鼠模型的抑制作用

剂量	抑制率(9	<i>K</i>)	
(mg/kg)	14 things (9)		
-	抗菌肽 GK-1 静脉注射	万古霉素皮下注射	
0	0		
0. 125	20		
0. 25	100		
0. 5	100	0	
1.0	100	40	
2.0		80	
4. 0		100	
8. 0		100	

如表 4 所示,静脉注射给予 0.25mg/kg,合成抗菌肽能 100%保护感染小鼠。万古霉素在 4.0 毫克/kg 剂量下才 100%有效。所有的未处理小鼠在不到 24 小时里都死亡。

该实验例显示,合成抗菌肽对用高致命的细菌剂量的小鼠急性感染模型杀灭金黄 色葡萄球菌是十分有效的。

序列表

```
<110>上海高科联合生物技术研发有限公司
<120>一组合成抗菌肽
<130>SPI028296
<160>54
<170>PatentIn Version2.1
<210>1
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>1
Arg Phe Arg Leu Val Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>2
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222>(13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
```

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222>(15,19,23) <223>Xaa=Lys或Arg

<400>2 Arg Phe Arg Leu Val Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa 10 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 <210>3 <211>19 <212>PRT <213>人工序列 <220> <221>CHAIN <222> (12, 16) <223>Xaa=Lys或Arg <222> (13, 17) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (14, 18) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (15, 19) <223>Xaa=Lys或Arg <400>3 Arg Phe Lys Leu Val Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa 10 15 Xaa Xaa Xaa Xaa <210>4 <211>23 <212>PRT <213>人工序列 <220> <221>CHAIN <222> (12, 16, 20) <223>Xaa=Lys或Arg <222>(13, 17, 21) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (14, 18, 22) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (15, 19, 23) <223>Xaa=Lys或Arg <400>4 Arg Phe Lys Leu Val Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa 10 15 Xaa Xaa Xaa Xaa Xaa Xaa Xaa

20

```
<210>5
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>5
Arg Phe Lys Leu Val Lys Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa
<210>6
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>6
Arg Phe Lys Leu Val Lys Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
                                                         15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>7
<211>19
<212>PRT
<213>人工序列
<220>
```

```
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>7
Arg Phe Lys Leu Val Lys Lys Ile Val Leu Ala Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>8
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>8
Arg Phe Lys Leu Val Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa ·
<210>9
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
```

```
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>9
Lys Phe Lys Leu Val Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>10
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>10
Lys Phe Lys Leu Val Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                  20
<210>11
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
 <223>Xaa=Lys或Arg
 <222> (13, 17)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222> (14, 18)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222> (15, 19)
 <223>Xaa=Lys或Arg
```

<400>11

```
Arg Phe Arg Leu Phe Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                      10
Xaa Xaa Xaa Xaa
<210>12
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>12
Arg Phe Arg Leu Phe Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>13
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>13
Arg Phe Lys Leu Phe Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>14
<211>23
<212>PRT
```

<213>人工序列

<220>

<221>CHAIN

<222> (12, 16, 20)

<223>Xaa=Lys或Arg

<222> (13, 17, 21)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222> (14, 18, 22)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222> (15, 19, 23)

<223>Xaa=Lys或Arg

<400>14

Arg Phe Lys Leu Phe Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa

U

15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

<210>15

<211>19

<212>PRT

<213>人工序列

<220>

<221>CHAIN

<222> (12, 16)

<223>Xaa=Lys或Arg

<222> (13, 17)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222>(14, 18)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222> (15, 19)

<223>Xaa=Lys或Arg

<400>15

Arg Phe Lys Leu Phe Lys Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa 5 10 15

Xaa Xaa Xaa Xaa

<210>16

<211>23

<212>PRT

<213>人工序列

<220>

<221>CHAIN

<222> (12, 16, 20)

<223>Xaa=Lys或Arg

```
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>16
Arg Phe Lys Leu Phe Lys Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>17
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>17
Arg Phe Lys Leu Phe Lys Lys Ile Leu Vai Gly Xaa Xaa Xaa Xaa
                                     10
                                                         15
Xaa Xaa Xaa Xaa
<210>18
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16, 20)
<223>Xaa=Lys或Arg
<222>(13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
```

```
<400>18
Arg Phe Lys Leu Phe Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>19
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>19
Lys Phe Lys Leu Phe Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa
<210>20
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Va·l或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>20
Lys Phe Lys Leu Phe Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

20

<212>PRT

```
<210>21
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>21
Arg Phe Arg Gly Val Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
                 5
                                                         15
Xaa Xaa Xaa Xaa
<210>22
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>22
Arg Phe Arg Gly Val Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
                                                         15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>23
<211>19
```

```
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>23
Arg Phe Arg Gly Val Lys Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>24
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19, 23)
<223>Xaa=Lys或Arg
<400>24
Arg Phe Arg Gly Val Lys Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>25
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
```

<223>Xaa=Lys或Arg


```
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>25
Arg Phe Arg Gly Val Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa
<210>26
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>26
Arg Phe Arg Gly Val Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>27
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
```

```
<400>27
Lys Phe Arg Gly Val Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
                                                         15
Xaa Xaa Xaa Xaa
<210>28
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19, 23)
<223>Xaa=Lys或Arg
<400>28
Lys Phe Arg Gly Val Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>29
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>29
Arg Trp Arg Ile Gly Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>30
```

```
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>30
Arg Trp Arg Ile Gly Arg Arg Ile Val Leu Ala Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>31
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>31
Arg Trp Arg Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa
<210>32
<211>23
<212>PRT
<213>人工序列
<220>
```

```
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>32
Arg Trp Arg Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                      10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>33
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>33
Lys Trp Arg Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                      10
                                                          15
Xaa Xaa Xaa Xaa
<210>34
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
```

```
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>34
Lys Trp Arg Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>35
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>35
Lys Trp Lys Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa
<210>36
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19, 23)
<223>Xaa=Lys或Arg
<400>36
Lys Trp Lys Ile Gly Lys Lys Ile Val Leu Ala Xaa Xaa Xaa Xaa
                                                          15
```

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

<213>人工序列

```
<210>37
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>37
Arg Trp Arg Leu Phe Arg Arg Ile Gly Ile Gly Xaa Xaa Xaa Xaa
                                                         15
Xaa Xaa Xaa Xaa
<210>38
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222>(13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19, 23)
<223>Xaa=Lys或Arg
<400>38
Arg Trp Arg Leu Phe Arg Arg Ile Gly Ile Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>39
<211>19
<212>PRT
```

```
<220>
<221>CHAIN
<222>(12, 16)
<223>Xaa=Lys或Arg
<222>(13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>39
Arg Trp Arg Leu Phe Lys Arg Ile Gly Ile Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>40
<211>23
<212>PRT
 <213>人工序列
 <220>
 <221>CHAIN
 <222>(12, 16, 20)
 <223>Xaa=Lys或Arg
 <222>(13, 17, 21)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222>(14, 18, 22)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222>(15, 19, 23)
 <223>Xaa=Lys或Arg
 <400>40
 Arg Trp Arg Leu Phe Lys Arg Ile Gly Ile Gly Xaa Xaa Xaa Xaa
                                                           15
                                       10
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                   20
  <210>41
  <211>19
  <212>PRT
  <213>人工序列
  <220>
  <221>CHAIN
  <222> (12, 16)
  <223>Xaa=Lys或Arg
  <222> (13, 17)
  <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
```

```
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>41
Arg Trp Arg Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>42
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>42
Arg Trp Arg Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa
                 5
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210>43
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>43
Arg Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa
```


15 10 5 Xaa Xaa Xaa Xaa <210>44 <211>23 <212>PRT <213>人工序列 <220> <221>CHAIN <222> (12, 16, 20) <223>Xaa=Lys或Arg <222>(13, 17, 21) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (14, 18, 22) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (15, 19, 23) <223>Xaa=Lys或Arg <400>44 Arg Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa 15 10 5 Xaa Xaa Xaa Xaa Xaa Xaa Xaa <210>45 <211>19 <212>PRT <213>人工序列 <220> <221>CHAIN <222>(12, 16) <223>Xaa=Lys或Arg <222> (13, 17) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222> (14, 18) <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe <222>(15, 19) <223>Xaa=Lys或Arg <400>45 Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa 10 Xaa Xaa Xaa Xaa

<210>46

<211>23

<212>PRT

```
•
```

<213>人工序列

<220>

<221>CHAIN

<222>(12, 16, 20)

<223>Xaa=Lys或Arg

<222>(13, 17, 21)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222> (14, 18, 22)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222>(15, 19, 23)

<223>Xaa=Lys或Arg

<400>46

Lys Trp Lys Leu Phe Lys Lys Ile Gly Ile Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

<210>47

<211>19

<212>PRT

<213>人工序列

<220>

<221>CHAIN

<222>(12, 16)

<223>Xaa=Lys或Arg

<222>(13, 17)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222> (14, 18)

<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe

<222>(15, 19)

<223>Xaa=Lys或Arg

<400>47

Arg Phe Arg Val Ile Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa 5 10 15

Xaa Xaa Xaa Xaa

<210>48

<211>23

<212>PRT

<213>人工序列

<220>

<221>CHAIN

```
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
<223>Xaa=Lys或Arg
<400>48
Arg Phe Arg Val Ile Arg Arg Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                     10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 20
<210>49
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19)
<223>Xaa=Lys或Arg
<400>49
Arg Phe Arg Val Ile Arg Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa
<210>50
<211>23
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16, 20)
<223>Xaa=Lys或Arg
<222> (13, 17, 21)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18, 22)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (15, 19, 23)
```


<223>Xaa=Lys或Arg

<400>50

Arg Phe Arg Val Ile Arg Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

4

- <210>51
- <211>19
- <212>PRT
- <213>人工序列
- <220>
- <221>CHAIN
- <222> (12, 16)
- <223>Xaa=Lys或Arg
- <222> (13, 17)
- <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
- <222> (14, 18)
- <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
- <222> (15, 19)
- <223>Xaa=Lys或Arg

<400>51

Arg Phe Arg Val Ile Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa 5 10 15

Xaa Xaa Xaa Xaa

- <210>52
- <211>23
- <212>PRT
- <213>人工序列
- <220>
- <221>CHAIN
- <222> (12, 16, 20)
- <223>Xaa=Lys或Arg
- <222>(13, 17, 21)
- <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
- <222> (14, 18, 22)
- <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
- <222> (15, 19, 23)
- <223>Xaa=Lys或Arg

<400>52

Arg Phe Arg Val Ile Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

20


```
<210>53
<211>19
<212>PRT
<213>人工序列
<220>
<221>CHAIN
<222> (12, 16)
<223>Xaa=Lys或Arg
<222> (13, 17)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222> (14, 18)
<223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
<222>(15, 19)
<223>Xaa=Lys或Arg
<400>53
Lys Phe Lys Val Ile Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                      10
Xaa Xaa Xaa Xaa
<210>54
<211>23
<212>PRT
<213>人工序列
 <220>
 <221>CHAIN
 <222> (12, 16, 20)
 <223>Xaa=Lys或Arg
 <222> (13, 17, 21)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222> (14, 18, 22)
 <223>Xaa=Gly或Ala或Val或Leu或Ile或Phe
 <222> (15, 19, 23)
 <223>Xaa=Lys或Arg
 <400>54
 Lys Phe Lys Val Ile Lys Lys Ile Leu Val Gly Xaa Xaa Xaa Xaa
                                      10
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

20

说明书附图

