Фазовый синхронизм (Phase matching)

Право на глупость – одна из гарантий свободного развития личности.

Марк Твен

Двухосные кристаллы $n_x < n_y < n_z$

Соотношение показателей преломления

В общем случае (при различных значениях углов ϕ и θ):

$$n_s(\lambda_1, \varphi_1, \theta_1) \neq n_s(\lambda_2, \varphi_2, \theta_2)$$
 $n_f(\lambda_1, \varphi_1, \theta_1) \neq n_f(\lambda_2, \varphi_2, \theta_2)_3$

Фазовый синхронизм в двухосных кристаллах

Генерация второй гармоники $n_i(\lambda) = n_i(\lambda/2)$

ssf - тип взаимодействия

Нормальный закон дисперсии: самое большое значение $n_i(\lambda)$ = самому маленькому значению $n_i(\lambda/2) \implies n_z(\lambda) = n_x(\lambda/2) -$ вдоль оси Y.

Показатели преломления в двухосных кристаллах

Фазовый синхронизм - Ү

Появление фазового синхронизма

$$n_{z}(\lambda)=n_{s}(\lambda) = n_{f}(\lambda/2)=n_{x}(\lambda/2)$$

Вдоль оси Ү

Фазовый синхронизм ssf: XY-YZ

В главных плоскостях кристалла

$$n_{\rm s}(\lambda) = n_{\rm f}(\lambda/2)$$

В главных плоскостях:

xy:
$$n_z(\lambda, \phi=0^\circ, \theta=0^\circ) = n_{xy}(\lambda/2, \phi, \theta=90^\circ)$$

yz:
$$n_{yz}$$
 (λ , φ =90°, θ) = n_x (λ /2, φ =0°, θ =90°)

В главных плоскостях одна компонента $E_{\rm i}$ всегда совпадает с главной осью, и показатель преломления для нее равен главному значению.

Генерация второй гармоники (ГВГ)

Кристалл LBO, ssf тип взаимодействия

Диапазон прозрачности: 0,155 – 3,2 мкм

Типы синхронизма (взаимодействия)

$$\lambda_1 \geq \lambda_2 > \lambda_3$$

Тип						
ssf	1-й тип					
sff	2-й тип					
fsf	∠ νι ινιιι					
fff						
SSS						
s f s	Невозможны из-за дисперсии среды					
ffs						
fss						

Направления фазового синхронизма - конус 4-го порядка.

$$\Phi C = \Phi C(\varphi, \theta, \lambda_i)$$

!!!
$$\theta_{\phi c} \neq Vz(\lambda_i)$$
 !!! $Vz=Vz(\lambda_i)$

Диаграмма направлений фазового синхронизма

Генерация второй гармоники.

Основные конфигурации направлений фазового синхронизма для

ssf типа

sff типа.

Возможные переходы.

ssf тип:

$$0-1-0$$

 $0-1-3-1-0$
 $0-1-2-1-0$
 $0-1-3-4-3-1-0$
 $0-1-2-4-2-1-0$
 $0-1-3-4-2-1-0$

sff тип:

$$0-1-0$$
 $0-1-3-4-3-1-0$
 $0-5-0$ $0-5-2-4-2-5-0$
 $0-1-3-1-0$ $0-1-2-4-2-1-0$
 $0-5-2-5-0$ $0-1-3-4-2-1-0$
 $0-1-2-1-0$ $0-1-2-4-3-1-0$

0-1-2-5-0 0-5-2-4-3-1-0

0-5-2-1-0 $0-1-2-4-3-1 \stackrel{10}{-} 0$

Диаграмма направлений фазового синхронизма

M.V. Hobden. Phase-matching second harmonic generation in biaxial crystals. J. Appl. Phys, 1967, v.038, N11, p.4365-4372.

С.Г. Гречин, С.С. Гречин, В.Г. Дмитриев. Полная классификация типов взаимодействия при генерации второй гармоники в двухосных нелинейных кристаллах. Квант. электр., 2000, т.30, №5, с.377-386.

Диаграмма направлений фазового синхронизма

Дисперсия направлений ФС при ГВГ в кристаллах

LBO KTP

Двухосные кристаллы

Кристалл LBO. Диапазон прозрачности: 155 - 3200 нм

Генерация второй гармоники

ssf: 554,2 – 2914,0 **ssf**: 791,1 – 2141 HM

Диагр	амма	LBO, mm2			
		ssf	sff		
00		33	10		
00-10	Y	<u>554,</u> 2			
10					
10-30	\mathbb{Z}	687,1			
30					
30-31	Y		<u>791,1</u>		
31	61				
31-33	$\int Z$		1193		
33					
33-43	S X	1211			

43	67					
43-41			1400			
41						
41-31	\mathcal{L} X	1409				
31						
31-30	Y		<u>2141</u>			
30						
30-10	\bigcirc Z	2288				
10						
10-00	Y	<u>2914</u>				
00		3200				

Двухосные кристаллы

Диаграмма		KTP	, mm2	CTA, mm2		KTA, mm2		Banana, mm2		
		ssf	sff	ssf	sff	ssf	sff	ssf	sff	
00		7	700		700		700		740	
00-10		<u>741</u>		900,8		<u>771</u>		1020,6		
10										
10-20	X	796,2		1023		842,2		1021,9		
20										
20-21	5	7	<u>993,9</u>		1280		1034,7		1433,3	
21										
21-22	X		1079,5		1548		1141,7		1434,2	
22								5000		
22-21	<u></u>		3105,5		2947		3448			
21										
21-20	5	7	3105,5		2947		<u>3448</u>			
20										
20-10	Z X	4054		3697		4547,7				
10										
10-00	7	4251		<u>4244</u>		4701,7				
00		4	500	53	00	53	00		14	

Трехчастотное (трехволновое) взаимодействие

LBO: λ_1 =1,125 MKM, λ_2 =0,9 MKM, λ_3 =0,5 MKM

KTP: $λ_1$ =1,32 мкм, $λ_2$ =1,064 мкм, $λ_3$ =0,509 мкм

LISe: λ_1 =5,49 mkm, λ_2 =1,32 mkm, λ_3 =1,064 mkm

CBO: λ_1 =1,125 MKM, λ_2 =0,9 MKM, λ_3 =0,5 MKM

Диаграмма направлений фазового синхронизма – трехчастотное взаимодействие

Jin Jer Huang, Tao Shen, Guang Jü Ji, Wei Gao, Hong Wang, Yu.M. Andreev, A.V. Shaiduko. Complete classification of the direction loci for three-wave collinear quadratic parametric interactions in biaxial acentric crystals. Optics Communications, 2008, v.281, N11, p.3208-

3216

Диаграмма направлений фазового синхронизма.

Yannick Petit, Pierre Brand, Benoît Boulanger, Patricia Segonds. Classification of angular quasi-phase matching loci in periodically poled uniaxial crystals. Optical Materials, 2010, v.32, N11, p.1501-1507.

Tao Shen, Jin Jer Huang, Liu Yang, Zhang Yu, Qiang Yang, Wei Gao. Collinear phase-matching loci of LBO crystal in three-wave interactions. Optik, 2012, v.123, N4, p.333-337.

Диаграмма направлений фазового синхронизма в главных плоскостях кристалла

Зависимости направлений фазового синхронизма для генерации второй гармоники в кристаллах a)-BGS, и b) - BGSe.

18

Векторный фазовый синхронизм

Одноосные кристаллы – оое тип

$$\bar{k} = \bar{k}_2 - 2\bar{k}_1 < 0$$

$$\bar{k} = \bar{k}_2 - \bar{k}_1(+\Delta\theta) - \bar{k}_1(-\Delta\theta)$$

Векторный фазовый синхронизм

Достоинства:

- возможность реализации взаимодействия при угле синхронизма, равном 90° ,
- возможность реализации синхронизма за пределами диапазона длин волн, в пределах которого имеет место скалярный фазовый синхронизм.

Недостатки:

- ограниченная длина взаимодействия.

Комбинации типов синхронизма

Отрицательные кристаллы.

Генерация четвертой гармоники

Возможны все комбинации типов синхронизма ГВГ - ГЧГ.

Генерация третьей гармоники

Возможны комбинации: ГВГ оое – ГТГ оее и еое .