TRIGONOMETRY Chapter 06

Razones trigonométricas de ángulos notables I

"No es lo que sabes, es lo que haces con lo que sabes"

TRIÁNGULOS NOTABLES Y APROXIMADOS

TRIÁNGULOS NOTABLES

TRIÁNGULO APROXIMADO (PITAGÓRICO)

Luego aplicamos las definiciones de las razones trigonométricas del ángulo agudo.

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$csc60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

αRT	sen	cos	tan	cot	sec	CSC
30 °	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	1 2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45 °	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	$\frac{3}{5}$	4 5	$\frac{3}{4}$	$\frac{4}{3}$	$\frac{5}{4}$	$\frac{5}{3}$
53 °	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	5 4

1) Efectúe E = cos60°. cot37°.

RESOLUCIÓN

$$\mathsf{E} = \left(\frac{1}{2}\right) \cdot \left(\frac{4}{3}\right) \cdot \left(\frac{1}{2}\right)$$

$$\mathsf{E} = \frac{4}{12} \ \therefore \ \mathsf{E} = \frac{1}{3}$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

2) Efectúe A = $\sqrt{3 \tan^2 60^\circ}$. 8 sen 30°

RESOLUCIÓ

$$A = \sqrt{3 \left(\sqrt{3}\right)^2 / 8 \left(\frac{1}{2}\right)}$$

$$A = \sqrt{3.3.4}$$

$$\therefore A = \sqrt{36} = 6$$

sena	cosα	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

3) Efectúe T =
$$\frac{\sqrt{8} \sec 45^{\circ} + \tan^{4} 60^{\circ}}{\sec 37^{\circ}. \sec 53^{\circ}}$$

RESOLUCIÓ

$$T = \frac{\sqrt{8}(\sqrt{2}) + (\sqrt{3})^4}{\sqrt{5}} = \frac{\sqrt{16} + 3^2}{1}$$

$$T = 13$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	$\overline{\mathbf{C}\mathbf{A}}$	CO	$\overline{\mathbf{C}\mathbf{A}}$	CO

4) Efectúe Q =

 $32^{\text{sen}37^{\circ}} + 16^{\cos 60^{\circ}}$

RESØLUCIÓN

$$Q = \frac{(32)^{\frac{3}{5}} + (16)^{\frac{1}{2}}}{\sqrt{6}^{2(1)}} = \frac{(2^{5})^{\frac{3}{5}} + (2^{4})^{\frac{1}{2}}}{\sqrt{6}^{2}}$$

$$\therefore Q = \frac{8+4}{6} = 2$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

5) Si $\cot \beta = \text{sen} 30^{\circ}$, siendo β un ángulo agudo; efectúe $M = \sqrt{5} (\text{sen} \beta + \cos \beta)$

RESOLUCIÓN

Del dato tenemos:

$$\cot \beta = \frac{1}{2} = \frac{CA}{CO}$$

Calculamos:

$$M = \sqrt{5}(sen\beta + \cos\beta)$$

$$M = \sqrt{5} \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}} \right)$$

$$\therefore M = 3$$

6) Mauro tiene 2 terrenos en el distrito de Miraflores y San Borja. Si los terrenos tienen las dimensiones mostradas. ¿ Cuál de ellos tiene mayor área?

MIRAFLORES 1

5tan²60°

9cot37°

2

7sec²45°

SAN BORJA

30sen30°

<u>RESOLUCIÓ</u>

Calcula<mark>m</mark>nos las áreas de los terreno

A1 =
$$(5\tan^2 60^\circ) \times (9\cot 37^\circ)$$

=
$$(5.\sqrt{3}^2) \times (9.\frac{4}{3}) = (15) \times (12)$$

 $A1 = 180 \text{ m}^2$

A2 =
$$(7sec^2 45^\circ) \times (30sen 30^\circ)$$

=
$$(7. \sqrt{2}^2) \times (30. \frac{1}{2}) = (14) \times (15)$$

 $A2 = 210 \text{ m}^2$

ı Finalmente:

 El terreno de San Borja tiene mayor área

7) A Víctor, el jardinero de mi escuela, le han propuesto cercar tres terrenos en forma de triángulos; para lo cual le pagarán s/.10 por cada metro del perímetro triangular que ha trabajado. ¿Cuál de las opciones le conviene más y cuánto es lo máximo que podría

RESOLUCIÓN

Perímetro de A: $tan^260^\circ + sec^360^\circ + 9cot45^\circ = \sqrt{3}^2 + 2^3 + 9(1) = 20 \implies S/200$

Perímetro de B: $csc^330^\circ + \sqrt{2}sec45^\circ + 8tan45^\circ = 2^3 + \sqrt{2}(\sqrt{2}) + 8(1) = 18 \implies 5/180$

Perímetro de C2 $cot^330^\circ + 10sen53^\circ + 20cos60^\circ = 2\sqrt{3}^2 + 10.\frac{4}{5} + 20.\frac{1}{2} = 24$ S/240