Sravani Vadlamani

Agenda

- Overview of Classification
- Logistic Regression
- Multiple Logistic Regression
- Multinomial Logistic Regression

Introduction

- Linear regression assumes quantitative response variable
- In many situations, response variable is qualitative
- Process for predicting qualitative responses is called classification
 - Assigning an observation to a category and hence predicting a qualitative response to an observation is referred as classifying that observation
 - Methods used for classification predict the probability that the observation belongs to each of the categories of a qualitative variable as the basis for making the classification

Classification Techniques

- Logistic regression
- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- Naïve Bayes
- K-nearest neighbors
- Generalized additive models
- Decision Trees, Random forests, Boosting
- Support Vector Machines

Classification Examples

- Determine whether a student will pass STA 3241 or not
- How do banks determine if a credit card transaction is fraudulent or not
- Determine whether a patient has cancer or not
- A patient has symptoms attributed to one of four medical conditions. Which of the four conditions does this patient have?
- You have three routes to choose from for your morning commute.
 Which one would you choose?

Why not Linear Regression for Qualitative Variables

- The coding of qualitative variables are coded as 1, 2, 3 ...implies a natural ordering on the outcomes and insists that the difference between any two outcomes is the same when this need not be true.
- A binary qualitative variable can be coded using the dummy variable approach (0 and 1) and a linear regression model can be used to predict response variable ($\hat{Y} > 0.5$). However, some predictions may be outside the 0, 1 interval making it hard to interpret probabilities.

- Logistic regression models the probability that Y belongs to a particular category
- The following linear equation cannot be used to model the probability because

$$p = \beta_0 + \beta_1 X_1$$

- Probabilities can take values between 0 and 1 (bounded constraint)
- Non-linear relation between probability and X variables

 We use a logistic function to model p(x) such that the output is always between 0 and 1 for all values of X

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

The above equation can be rewritten as

$$\frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 x}$$

• $\frac{p(x)}{1-p(x)}$ is called the odds and takes values between 0 and ∞

• For example, a probability of 1 in 5 will yield an odds of 0.25 p(x) = 1/5 = 0.2

$$\frac{p(x)}{1-p(x)} = \frac{0.2}{1-0.2} = \frac{0.2}{0.8} = 0.25$$

$$\frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 x}$$

Taking the log of both sides of the above equation will result in log

odds or logit.

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Logistic regression has a logit that is linear in X

Important Definitions

- P = probability of event
- Odds is the probability of event divided by the probability of nonevent

$$Odds = \frac{P}{1 - P}$$

Logit – Natural log of odds

$$\ln(Odds) = \ln\left(\frac{P}{1 - P}\right)$$

 In logistic regression, the log of the odds (logit) is linearly related to the predictor

$$logit(P) = b_0 + b_i x_i$$

Logistic Regression Parameter Interpretation

- In linear regression, β_1 gives the average change in Y associated with a one-unit increase in X
- In logistic regression, a one-unit change in X yields a β_1 change in the log-odds
 - This is equivalent to multiplying the odds by e^{eta_1}
- If β_1 is positive, increasing X will increase p(x)
- If β_1 is negative, increasing X will decrease p(x)
- The rate of change in p(x) per unit change in X depends on the value of X

Estimating Parameters

- The coefficients β_0 and β_1 must be estimated based on the training
- Logistic regression uses maximum likelihood to estimate β_0 and β_1 such that the predicted probability is as close to the observed classes using the following likelihood function

$$l(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_i))$$

• The estimates β_0 and β_1 maximize the above function

Estimating Parameters

The accuracy of coefficient estimates is measured using Z – statistic

$$Z(\widehat{\beta_1}) = \frac{\widehat{\beta_1}}{SE(\widehat{\beta_1})}$$

- A large z-statistic offers evidence against the null hypothesis H_0 : $\beta_1 = 0$
- After estimating the coefficients, β_0 and β_1 we can make predictions by plugging them into the model equation

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

• β_0 captures the ratio of positive and negative classifications in the given dataset

Making Predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576,$$

Making Predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable student [Yes] in the table.

$$\begin{split} \widehat{\Pr}(\text{default=Yes}|\text{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\text{default=Yes}|\text{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Multiple Logistic Regression

- Predicting binary response variable with multiple predictors

• The logistic function is given by the following equation
$$p(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots \beta_p x_p}}$$

The log odds is given by the following equation

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p$$

• Maximum likelihood is used to estimate β_0 , β_1 , β_p

Multinomial Logistic Regression

- Logistic regression allows for only k=2 classes of the response variable
- For K>2 classes we use multinomial logistic regression
 - One class is chosen to serve as the baseline and left out of the model
 - The log odds between any pair of classes is linear in the features
 - Interpretation of coefficients is tied to the choice of baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$
(4.10)

for k = 1, ..., K-1, and

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$
 (4.11)

It is not hard to show that for k = 1, ..., K-1,

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=K|X=x)}\right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p.$$
(4.12)

Multinomial Logistic Regression

- Softmax coding
 - Treat all K classes symmetrically and estimate coefficients for all classes

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$
 (4.13)

Thus, rather than estimating coefficients for K-1 classes, we actually estimate coefficients for all K classes. It is not hard to see that as a result of (4.13), the log odds ratio between the kth and k'th classes equals

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$
(4.14)

 Discriminant analysis is the preferred means of handling multiple- class classification