极简数学・中学篇 第五册

大青花鱼

目录

第一章	圆	5
1.1	圆的基本性质	5
1.2	圆心角和圆周角	7
1.3	圆内接多边形	9
1.4	弧长和面积	9
第二章	圆和三角形	11
2.1	圆幂	11
2.2	切线和割线	11
2.3	垂心和外接圆	11
2.4	内切圆和旁切圆	11
2.5	九点圆	11
第三章	三角函数	13
3.1	锐角的三角函数	13

4	E	录
3.2	三角函数的图像和性质	13
3.3	三角函数和三角形	13
第四章	从或许到确定	15
4.1	事件和试验	15
4.2	计数和概率	15
4.3	组合和排列	15
第五章	因式分解	17
5.1	因式和公因式	17
5.2	根和因式	17
第六章	三段论	19
6.1	大前提、小前提和结论	19
6.2	直言三段论	19

第一章 圆

学习反比例函数和二次函数时,我们发现,就算是简单代数式的函数,它的图像也是我们无法手动画出的曲线。曲线是比直线更复杂的形状。为了给我们今后研究各种曲线打下基础,以下我们研究一种简单的曲线:圆。

1.1 圆的基本性质

我们已经学过圆的概念。公理体系中,我们这样定义圆:平面上到定点 O 距离为定长的点的集合,是一个圆。给定线段 XY,到 O 的距离和 AB 等长的点构成一个圆。O 叫做**圆心**,XY 叫做圆的**半径**,长度一般记为 r,不至于混淆的时候,半径的长也简称为半径。

圆心为 O、半径为 r 的圆,一般记为圆 (O,r) 或 $\odot(O,r)$ 。圆心 O 和 另一点 P 确定的圆,一般记为圆 (O,P) 或 $\odot(O,P)$ 。如果不在意半径,不 至于混淆的情况下,也可以简记为圆 O。

平面上的点到 O 的距离小于 r, 就说它在圆内; 如果等于 r, 就说它在圆上; 如果大于 r, 就说它在圆外。

关于圆,我们有以下公理:

- 直线和圆有两个交点 A、B, 当且仅当直线有部分在圆内。
- 给定点 $A \$ 和线段 $EF \$ GH,如果 |EF| + |GH| > |AB| > ||EF| |GH||,

那么总存在两点 $P \cdot Q$,使得 $|AP| = |EF| \cdot |PB| = |GH|$, $|AQ| = |EF| \cdot |QB| = |GH|$ 。 $P \cdot Q$ 分别在直线 AB 两侧。

连接圆上两点 A、B,直线 AB 和圆有 A、B 两个交点,根据圆公理,线段 AB (除端点)在圆内。我们把线段 AB 称为圆的一条**弦**。连接圆上一点 A 和圆心 O,延长 AO,根据圆公理,它和圆有另一个交点 B,称为点 A 的**对径点**。AB 称为圆的**直径**。直径是过圆心的弦。它的长度是半径的两倍。不至于混淆的时候,直径的长也简称为直径。

给定圆上两点 A、B,考虑弦 AB 的垂直平分线 l,圆心 O 显然在 l 上。也就是说,恰有一条直径垂直平分每条弦。

圆、角和旋转有天然的关系。给定角 AOB, 可以定义旋转:

定义 1.1.1. 给定角 AOB, 平面中一点 P 关于 $\angle AOB$ 旋转的结果,是唯一使得 $\angle POQ = \angle AOB$ 且 |OP| = |OQ| 的点 Q。

O 称为旋转的中心。任何点 P 绕中心旋转,结果都在圆 (O,P) 上。

可以看到,给定一个圆 (O,P),从点 P 出发,旋转不同的角度,就得到圆上其它的点。从零角出发,随着角度不断增大,直到周角,我们沿逆时针经历了圆上所有的点。也就是说,我们认为零角到周角的角按角度和圆上的点之间有一一映射。换句话说,数轴上 0 和 360 之间的数,和圆上的点之间有一一映射。我们把它称作**圆映射**,记为 $\gamma_{(O,P)}$ 。

通过 $\gamma_{(O,P)}$,我们可以把对圆的研究,改为对数轴上线段的研究。这样就把曲线上的问题转为了直线上的问题。比如,既然 [0,360) 对应整个圆,那么 [0,180] 就对应半个圆,[0,60] 就对应六分之一个圆,等等。我们把闭区间对应的圆的部分称为**圆弧**。

同一圆上两个圆弧分别对应 $[a_1, a_1 + x]$ 和 $[a_2, a_2 + x]$,这两个圆弧有什么不同吗? 观察圆的图像可知,并没有不同。也就是说,圆弧的形状只和它对应数轴上区间的长度有关,和它所在的位置无关。只要对应的区间一

样长,那么圆弧就全等,可以相互覆盖。换句话说,圆弧只要等长,就是全等的。于是,线段所满足的公理,对同一个圆上的圆弧也成立。

和线段一样,圆弧也有起点和终点。比如 [0,60] 对应的圆弧,起点就是 P,终点是 60 度角 POQ 的终边和圆的交点 Q。如果圆弧对应的区间长度超过 180,就说它是**优弧**;如果圆弧对应的区间长度小于 180,就说它是**劣弧**;如果等于 180,就说它是**半圆**。优弧比半圆长,劣弧比半圆短。

从直线和圆相交的角度来看,圆上两点表示这两点确定的直线将圆分为两个圆弧。这两个圆弧并起来就是圆,所以要么一个是优弧、一个是劣弧,要么两者都是半圆(这时直线过圆心)。

同一个圆上,明确了起点 A 和终点 B,就唯一确定了圆弧 \widehat{AB} 。如果只说了两点 A、B,那么 \widehat{AB} 一般指劣弧或起点为 A 终点为 B 的圆弧。如果要指优弧,一般会特别强调。

习题 1.1.1. 证明:

- 1. 同一个圆中, 直径是最长的弦。
- 2. 任意线段经过旋转得到等长的线段。任意三角形经过旋转得到同角 全等的三角形。

1.2 圆心角和圆周角

根据圆映射的定义,每个圆弧都对应一个顶点在圆心,大小介于零角和周角之间的角,称为它的**圆心角**。圆弧还可以对应另一类角。给定起点为A,终点为B的圆弧 \widehat{AB} 和圆上一点P,则角 \widehat{APB} 称为一个**圆周角**。每个圆弧只对应一个圆心角,但可以对应很多个圆周角。

同一段圆弧的圆心角和圆周角之间,有什么关系呢?如右图,连接PO,延长交圆于对径点Q。由于 $\triangle AOP$ 是等腰三角形, $\angle OAP + \angle OPA = 0$,

同理, $\angle OBP + \angle OPB = 0$ 。于是

$$\angle AOB = \angle AOQ + \angle QOB$$

= $\angle OAP + \angle APO + \angle PBO + \angle OPB$
= $2\angle APO + 2\angle OPB = 2\angle APB$

也就是说,圆心角是圆周角的两倍大小,圆周角是圆心角的一半大小。由于每段圆弧只对应一个圆心角,无论 P 取圆上哪个点,圆周角 APB 都是圆心角的一半大小。

定理 1.2.1. 圆周角定理 给定圆 O 上的弧 \widehat{AB} 及圆上两点 $P \setminus Q$,

$$\angle APB = \angle AQB = \frac{1}{2} \angle AOB.$$

对径点和圆心形成平角,因此,根据圆周角定理,对径点对应的圆周角是直角。或者说,半圆对应的圆周角是直角。

同一个圆里,圆上的点 A、B 对应的圆心角 $\angle AOB$ 和点 C、D 对应的圆心角 $\angle COD$ 相等,那么根据"边角边",圆心 O 和它们构成的三角形满足: $\triangle AOB \simeq \triangle COD$ 。弦 AB 和 CD 也等长。不仅如此,根据圆映射,圆弧 \widehat{AB} 和 \widehat{CD} 也等长。事实上, \widehat{CD} 就是 \widehat{AB} 关于某个角旋转的结果。我们把这个结论称为"等角对等弦"、"等角对等弧"。

反之,如果两个圆弧 \widehat{AB} 和 \widehat{CD} 等长,那么它们对应的区间也一样长。这说明它们对应的圆心角一样大。圆心角既然相等,那么弦 AB 和 CD 也等长。更进一步,设 P 是圆上的点,那么圆周角 $\angle APB$ 和 $\angle CPD$ 也一样大。我们把这个结论称为"等弧对等弦"、"等弧对等角"。

反过来,如果圆 O 上两条弦 AB 和 CD 等长,那么根据"边边边", $\triangle AOB \simeq \triangle COD$ 。于是圆心角相等,所以劣弧 \widehat{AB} 和 \widehat{CD} 等长。我们把 这个结论称为"等弦对等角"、"等弦对等弧"。

总的来说,在同一个圆里,两点对应的弦长相等当且仅当对应的(劣

1.3 圆内接多边形

9

弧)弧长相等,当且仅当对应的圆心角相等,当且仅当对应的圆周角相等。弦、弧、圆心角、圆周角,都是用来描述圆的部分和整体关系的方法。

给定圆上两点 A、B,它们对应的垂直平分线 l 平分 $\angle AOB$,即把 $\angle AOB$ 分成两个相同大小的圆心角。因此,设 l 和圆交于 P、Q,则它们 也分别平分所在的圆弧(称为弧的中点)。我们把这一系列结论总称为垂径 定理:

定理 1.2.2. 垂径定理 给定圆上两点,则恰有圆的一条直径垂直平分两点对应的弦,同时平分对应的圆心角和两个圆弧。

垂径定理也可以说成: 过圆 O 的弦 AB 中点的直径与弦 AB 垂直,同时平分 $\angle AOB$ 和弧 \widehat{AB} 。

- 习题 1.2.1. 给定圆 O, 弦 AB 中点记为 M, |MO| 称为弦 AB 的弦心距。
 - 1. 证明: 圆心角相等, 当且仅当对应的弦心距相等。
- 2. 设直线 MO 与圆 O 交于 P、Q 两点,证明: $|MP| \cdot |MQ| = |MA| \cdot |MB|$.

1.3 圆内接多边形

我们对圆上一点、两点引出的形状都有了初步了解,现在来看圆上多个点对应的形状。首先来看三个点的情形。

1.4 弧长和面积

10 第一章 圆

第二章 圆和三角形

- 2.1 圆幂
- 2.2 切线和割线
- 2.3 垂心和外接圆
- 2.4 内切圆和旁切圆
- 2.5 九点圆

第三章 三角函数

- 3.1 锐角的三角函数
- 3.2 三角函数的图像和性质
- 3.3 三角函数和三角形

第四章 从或许到确定

- 4.1 事件和试验
- 4.2 计数和概率
- 4.3 组合和排列

第五章 因式分解

- 5.1 因式和公因式
- 5.2 根和因式

第六章 三段论

- 6.1 大前提、小前提和结论
- 6.2 直言三段论