(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 March 2003 (13.03.2003)

PCT

English

(10) International Publication Number WO 03/020890 A2

(51) International Patent Classification7:	C12N	Drive, Wilmington, D
(21) International Application Number:	PCT/US02/27549	Vasantha [US/US]; 1: DE 19807 (US). ROUV Taunton Road, Wilmine
(22) International Filing Date: 29 August	2002 (29.08.2002)	Stuart, M. [US/US]; 15 DE 19809 (US).
(25) Filing Language:	English ((74) Agent: FELTHAM, No

- (30) Priority Data: 60/315,546 29 August 2001 (29.08.2001) US

(26) Publication Language:

- (71) Applicant (for all designated States except US): E.L. DU PONT DE NEMOURS AND COMPANY (US/US): 1007
- Market Street, Wilmington, DE 19898 (US). (72) Inventors; and
- (75) Inventors/Applicants (for US only): BRAMUCCI. Michael, G. [US/US]; 532 Melmont Avenue, Folsom, PA 19033 (US). BRZOSTOWICZ, Patricia, C. [US/US]; 1417 Williamsburg Drive, West Chester, PA 19382 (US). KOSTICHKA, Kristy, N. [US/US]; 111 Shrewsbury

- Wilmington DE 19810 (US). NAGARAJAN, 3 Dickinson Lane, Wilmington, VIERE, Pierre, E. [FR/US]; 737 gton, DE 19803 (US), THOMAS, 508 Woodsdale Road, Wilmington,
- eil, S.; E.I. Du Pont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, DE 19805 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasjan patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: GENES ENCODING BAEYER-VILLIGER MONOOXYGENASES

(57) Abstract: Genes have been isolated from a variety of bacteria encoding Baeyer-Villiger monooxygenase activity. The genes and their products are useful for the conversion of ketones to the corresponding esters. A series of motifs, common to all genes, has been identified as diagnostic for genes encoding proteins of this activity.

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
 of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS. For two-letter codes and other abbreviations, refer to the "Guid-MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent ance Notes on Codes and Abbreviations' appearing at the begin-(AM, AZ, BY, KG, KZ, MD, RU, IT, TM), European patent in fine of each regular issue of the PCT Gaette.

TITLE

GENES ENCODING BAEYER-VILLIGER MONOOXYGENASES FIELD OF THE INVENTION

The invention relates to the field of molecular biology and microbiology. More specifically, genes have been isolated from a variety of bacteria encoding Baeyer-Villiger monooxygenase activity.

BACKGROUND OF THE INVENTION

In 1899, Baeyer and Villiger reported on a reaction of cyclic ketones with peroxymonosulfuric acid to produce lactones (*Chem Ber* 32:3625-3633 (1899)). Since then, the Baeyer-Villiger (BV) reaction has been broadly used in organic synthesis. BV reactions are one of only a few methods available for cleaving specific carbon-carbon bonds under mild conditions, thereby converting ketones into esters (Walsh and Chen, *Angew. Chem. Int. Ed. Engl* 27:333-343 (1998)).

10

15

20

30

35

In the last several decades, the importance of minimizing environmental impact in industrial processes has catalyzed a trend whereby alternative methods are replacing established chemical techniques. In the arena of Baeyer-Villiger (BV) oxidations, considerable interest has focused on discovery of enantioselective versions of the Baeyer-Villiger oxidation that are not based on peracids. Enzymes, which are often enantioselective, are valued alternatives as renewable, biodecradable resources.

Many microbial Baeyer-Villiger monooxygenases enzymes (BVMOs), which convert ketones to esters or the corresponding lactones (cyclic esters) (Stewart, *Curr. Org. Chem.* 2:195-216 (1998), have been identified from both bacterial and fungal sources. In general, microbial BV reactions are carried out by monooxygenases (EC 1.14.13.x) which use O₂ and either NADH or NADPH as a co-reductant. One of the oxygen atoms is incorporated into the lactone product between the carbonyl carbon and the flanking carbon while the other is used to oxidize the reduced NADPH producing H₂O (Banerjee, A. In *Stereosel, Biocatal.*; Patel, R.N., Ed.; Marcel Dekker: New York, 2000; Chapter 29, pp 867-876). All known BVMOs have a flavin coenzyme which acts in the oxidation reaction; the predominant coenzyme form is flavin adenine dinucleotide cofactor (FAD).

The natural physiological role of most characterized BVMOs is degradation of compounds to permit utilization of smaller hydrocarbons and/or alcohols as sources of carbon and energy. As a result of this,

BVMOs display remarkably broad substrate acceptance, high enantioselectivies, and great stereoselctivity and regioselectivity (Mihovilovic et al. J. Org. Chem. 66:733-738 (2001). Suitable substrates for the enzymes can be broadly classified as cyclic ketones, ketoterpenes, and steroids. However, few enzymes have been subjected to extensive biochemical characterization. Key studies in relation to each broad ketone substrate class are summarized below.

 Cyclic ketones: Activity of cyclohexanone monooxygenase upon cyclic ketone substrates in Acinetobacter sp. NCIB 9871 has been studied extensively (reviewed in Stewart, Curr. Org. Chem. 2:195-216 (1998), Table 2; Walsh and Chen, Angew.Chem.Int.Ed. Engl 27:333-343 (1988), Tables 4-5). Specificity has also been biochemically analyzed in Brevibacterium sp. HCU (Brzostowicz et al., J. Bact. 182(15):4241-4248 (2000)).

10

15

20

30

35

- 2. Ketoterpenes: A monocyclic monoterpene ketone monooxygenase has been characterized from Rhodococcus erythropolis DCL14 (Van der Werf, J. Biochem. 347:693-701 (2000)). In addition to broad substrate specificity against ketoterpenes, the enzyme also has activity against substituted cyclohexanones.
 - Steroids: The steroid monooxygenase of Rhodococcus rhodochrous (Morii et al. J. Biochem 126:624-631 (1999)) is well characterized, both biochemically and by sequence data.

The genes and gene products listed above are useful for specific Baeyer-Villiger reactions targeted toward cyclic ketone, ketoterpene, or steroid compounds, however the enzymes are limited in their ability to predict other newly discovered proteins which would have similar activity.

The problem to be solved, therefore is to provide a suite of bacterial flavoprotein Baeyer-Villiger monooxygenase enzymes that can efficiently perform oxygenation reactions on cyclic ketones and ketoterpenes compounds. Identity of a suite of enzymes with this broad substrate acceptance would facilitate commercial applications of these enzymes and reduce efforts with respect to optimization of multiple enzymes for multiple reactions. Maximum efficiency is especially relevant today, when many enzymes are genetically engineered such that the enzyme is recombinantly expressed in a desirable host organism. Additionally, a collection of BVMO's with diverse amino acid sequences could be used to create a general predictive model based on amino acid sequence

conservation of other BVMO enzymes. Finally, a broad class of BVMO's could also be used as basis for the *in vitro* evolution of novel enzymes.

Applicants have solved the stated problem by isolating several novel organisms with BVMO activity, identifying and characterizing BMVO genes, expressing these genes in microbial hosts, and demonstrating activity of the genes against a wide range of ketone substrates, including cyclic ketones and ketoterpenes. Several signature sequences have been identified, based on amino acid sequence alignments, which are characteristic of specific BVMO families and have diagnostic utility.

SUMMARY OF THE INVENTION

10

20

25

30

The invention provides an isolated nucleic acid fragment isolated from *Rhodococus* selected from the group consisting of:

- (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence selected form the group consisting of SEQ ID NOs:8, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
 - (b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monoxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a) or (b).

Similarly the invention provides an isolated nucleic acid fragment isolated from Arthrobacter selected from the group consisting of:

- (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence as set forth in SEO ID NO:12:
- (b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monooxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a), or (b).

Additionally the invention provides an isolated nucleic acid fragment isolated from *Acidovorax* selected from the group consisting of:

 (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence as set forth in SEQ ID NO:18

(b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monooxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a), or (b).

5

15

20

25

30

35

In additional embodiments the invention provides polypeptides encoded by the present sequences as well as genetic chimera of the present sequences and transformed hosts expressing the same.

10 In a preferred embodiment the invention provides a method for the identification of a polypeptide having monooxygenase activity comprising:

(a) obtaining the amino acid sequence of a polypeptide suspected of having monooxygenase activity; and

(b) aligning the amino acid sequence of step (a) with the amino acid sequence of a Baeyer-Villiger monooxygenase consensus sequence selected from the group consisting of SEQ ID NO:47, SEQ ID NO:48 and SEQ ID NO:49.

wherein where at least 80% of the amino acid residues at positions p1-p74 of SEQ ID NO:47, or at least 80% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 80% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved, the polypeptide of (a) is identified as having monooxygenase activity.

In an alternate embodiment the invention provides a method for identifying a gene encoding a Baeyer-Villiger monooxygenase polypeptide comprising:

- (a) probing a genomic library with a nucleic acid fragment encoding a polypeptide wherein where at least 80% of the amino acid residues at positions p1- p74 of SEQ ID NO:47, or at least 80% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 80% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved;
- (b) identifying a DNA clone that hybridizes with a nucleic acid fragment of step (a):
- (c) sequencing the genomic fragment that comprises the clone identified in step (b),

wherein the sequenced genomic fragment encodes a Baeyer-Villiger monooxygenase polypeptide.

In a preferred embodiment the invention provides a method for the biotransformation of a ketone substrate to the corresponding ester,

comprising: contacting a transformed host cell under suitable growth conditions with an effective amount of ketone substrate whereby the corresponding ester is produced, said transformed host cell comprising a nucleic acid fragment encoding an isolated nucleic acid fragment of any of the present nucleic acid sequences; under the control of suitable regulatory sequences.

In an alternate embodiment the invention provides a method for the in vitro transformation of a ketone substrate to the corresponding ester, comprising: contacting a ketone substrate under suitable reaction

conditions with an effective amount of a Baeyer-Villiger monooxygenase enzyme, the enzyme having an amino acid sequence selected from the group consisting of SEQ ID NOs:8, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.

Additionally the invention provides a mutated microbial gene encoding a protein having an altered biological activity produced by a method comprising the steps of:

15

20 .

25

30

35

- (i) digesting a mixture of nucleotide sequences with restriction endonucleases wherein said mixture comprises:
 - a) a native microbial gene selected from the group consisting of SEQ ID NOs:7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45;
 - b) a first population of nucleotide fragments which will hybridize to said native microbial sequence;
- c) a second population of nucleotide fragments which will not hybridize to said native microbial sequence;

wherein a mixture of restriction fragments are produced;

- (ii) denaturing said mixture of restriction fragments;
- (iii) incubating the denatured said mixture of restriction fragments of step (ii) with a polymerase:
- (iv) repeating steps (ii) and (iii) wherein a mutated microbial gene is produced encoding a protein having an altered biological activity. Additionally the invention provides unique strains of Acidovorax sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:5, Arthrobacter sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:1, and Rhodococcus sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:6.

In another embodiment the invention provides an *Acidovorax sp.* comprising the 16s rDNA sequence as set forth in SEQ ID NO:5.

PCT/US02/27549 WO 03/020890

Additionally the invention provides an Arthrobacter sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:1. Similarly the invention provides a Rhodococcus sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:6.

5 Additionally the invention provides an isolated nucleic acid useful for the identification of a BV monooxygenase selected from the group consisting of SEQ ID 70-113.

BRIEF DESCRIPTION OF THE DRAWINGS. AND SEQUENCE DESCRIPTIONS

Figures 1, 2, 3, 4, and 5 show chnB monooxygenase activity of Brevibacterium sp. HCU, Acinetobacter SE19, Rhodococcus sp. phi1, Rhodococcus sp. phi2, Arthrobacter sp. BP2 and Acidovorax sp. CHX genes over-expressed in E. coli assayed against various ketone substrates.

10

20

25

35

Figure 6 illustrates the signature sequences of the three BVMO 15 groups based on the consensus sequences derived from the alianments of Figure 7, Figure 8 and Figure 9.

Figure 7 shows a Clustal W alignment of a family of Baeyer-Villiger monoxygenases (Family 1) and the associated signature sequence.

Figure 8 shows a Clustal W alignment of a family of Baeyer-Villiger monoxygenases (Family 2) and the associated signature sequence. Figure 9 shows a Clustal W .alignment of a family of BC

monoxygenases (Family 3) and the associated signature sequence. The invention can be more fully understood from the following detailed description and the accompanying sequence descriptions which form a part of this application.

The following sequences conform with 37 C.F.R. 1.821-1.825 ("Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures - the Sequence Rules") and 30 consistent with World Intellectual Property Organization (WIPO) Standard ST.25 (1998) and the sequence listing requirements of the EPO and PCT (Rules 5.2 and 49.5(a-bis), and Section 208 and Annex C of the Administrative Instructions). The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

SEQ ID NOs:1-49 are full length genes or proteins as identified in Table 1.

Table 1

Summary of Gene and Protein SEQ ID Numbers Organism Gene Protein Gene Name SEQ ID SEQ ID Nο No Arthrobacter sp. BP2 1 _ 16s rDNA sequence Rhodococcus sp. phi1 2 16s rDNA sequence 3 Rhodococcus sp. phi2 16s rDNA sequence 4 16s rDNA sequence Brevibacterium sp. HCU 5 16s rDNA sequence Acidovorax sp. CHX __ Rhodococcus 6 16s rDNA sequence erythropolis AN12 Rhodococcus sp. phi1 7 8 chnB Monooxygenase phi1 10 chnB Monooxygenase Rhodococcus sp. phi2 9 phi2 Arthrobacter sp. BP2 11 12 chnB Monooxygenase BP2 13 14 chnB1 Monooxygenase Brevibacterium sp. HCU **HCU #1** 16 chnB2 Monooxygenase Brevibacterium sp. HCU 15 HCU #2 18 chnB Monooxygenase Acidovorax sp. CHX 17 CHX Acinetobacter sp. SE19 19 20 chnB Monooxygenase SE19 21 22 Rhodococcus ORF 8 chnB erythropolis AN12 Monooxygenase (1413) ORF 9 chnB Rhodococcus 23 24 erythropolis AN12 Monooxygenase (1985) 25 26 ORF 10 chnB Rhodococcus Monooxygenase (1273) ervthropolis AN12 27 28 ORF 11 chnB Rhodococcus erythropolis AN12 Monooxygenase (2034) 29 30 ORF 12 chnB Rhodococcus erythropolis AN12 Monooxygenase (1870) 32 Rhodococcus 31 ORF 13 chnB Monooxygenase (1861) erythropolis AN12

33

34

Rhodococcus

ORF 14 chnB

Gene Name	Organism	Gene	Protein
		SEQ ID	SEQ ID
		No	No
Monooxygenase (2005)	erythropolis AN12		
ORF 15 chnB	Rhodococcus	35	36
Monooxygenase (2035)	erythropolis AN12		
ORF 16 chnB	Rhodococcus	37	38
Monooxygenase (2022)	erythropolis AN12		
ORF 17 chnB	Rhodococcus	39	40
Monooxygenase (1976)	erythropolis AN12		
ORF 18 chnB	Rhodococcus	41	42
Monooxygenase (1294)	erythropolis AN12		
ORF 19 chnB	Rhodococcus	43	44
Monooxygenase (2082)	erythropolis AN12		
ORF 20 chnB	Rhodococcus	45	46
Monooxygenase (2093)	erythropolis AN12		
Signature Sequence #1	Consensus Sequence		47
Signature Sequence #2	Consensus Sequence		48
Signature Sequence #3	Consensus Sequence		49

SEQ ID NOs:50-62 are primers used for 16s rDNA sequencing.

SEQ ID NO:63 describes a primer used for RT-PCR and out-PCR.

SEQ ID NOs:64 and 65 are primers used for sequencing of inserts within pCR2.1

SEQ ID NOs:66 and 67 are primers used to amplify monooxygenase genes from *Acinetobacter* sp. SE19.

SEQ ID NOs:68-107 are primers used for amplification of full length

Baever-Villiger monooxygenases.

SEQ ID NOs:108-113 are primers used to screen cosmid libraries.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides nucleic acid and amino acid sequences defining a group of Baeyer-Villiger monooxygenase enzymes. These enzymes have been found to have the ability to use a wide variety of ketone substrates that include two general classes of compounds, cyclic ketones and ketoterpenes. These enzymes are characterized by function as well as a series of diagnostic signature sequences. The enzymes may

be expressed recombinantly for the conversion of ketone substrates to the corresponding lactones or esters.

In this disclosure, a number of terms and abbreviations are used. The following definitions are provided.

"Open reading frame" is abbreviated ORF.

"Polymerase chain reaction" is abbreviated PCR.

"Gas Chromatography Mass spectrometry" is abbreviated GC-MS.

"Baeyer-Villiger" is abbreviated BV.

5

10

2.5

30

35

"Baeyer-Villiger monooxygenase" is abbreviated BVMO.

The term "Baeyer-Villiger monooxygenase", refers to a bacterial enzyme that has the ability to oxidize a ketone substrate to the corresponding lactone or ester.

The term "ketone substrate" includes a substrate for a Baeyer-Villiger monooxygenase that comprises a class of compounds which include cyclic ketones and ketoterpenes. Ketone substrates of the invention are defined by the general formula:

20 wherein R and R₁ are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted alkyl, substituted or unsubstituted alkylidene.

The term "alkyl" will mean a univalent group derived from alkanes by removal of a hydrogen atom from any carbon atom: C_nH_{2n+1} -. The groups derived by removal of a hydrogen atom from a terminal carbon atom of unbranched alkanes form a subclass of normal alkyl (n-alkyl) groups: $H[CH_2]_n$ -. The groups RCH_2 -, R_2CH - (R not equal to H), and R_3C - (R not equal to H) are primary, secondary and tertiary alkyl groups respectively.

The term "alkenyl" will mean an acyclic branched or unbranched hydrocarbon having one carbon-carbon double bond and the general formula C_nH_{2n}. Acyclic branched or unbranched hydrocarbons having more than one double bond are alkadienes, alkatrienes, etc.

The term "alkylidene" will mean the divalent groups formed from alkanes by removal of two hydrogen atoms from the same carbon atom, the free valiances of which are part of a double bond (e.g. (CH₃)₂C, also known as propan-2-ylidene).

As used herein, an "isolated nucleic acid molecule" is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.

A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known and exemplified in Sambrook, J., Fritsch. E. F. and Maniatis. T. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein (entirely incorporated herein by reference). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Typical stringent hybridization conditions are for example, 20 hybridization at 0.1X SSC, 0.1% SDS, 65°C with a wash with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS. Generally post-hybridization washes determine stringency conditions. One set of preferred conditions uses a series of washes starting with 6X SSC. 0.5% SDS at room temperature for 15 min, then repeated with 2X SSC, 0.5% SDS at 45°C 25 for 30 min, and then repeated twice with 0.2X SSC, 0.5% SDS at 50°C for 30 min. A more preferred set of stringent conditions uses higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2X SSC, 0.5% SDS was increased to 60°C. Another preferred set of highly stringent 30 conditions uses two final washes in 0.1X SSC, 0.1% SDS at 65°C. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and 35 the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having

those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-9.51). For hybridizations with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11,7-11.8). In one embodiment the length for a hybridizable nucleic acid is at least about 10 nucleotides. Preferable a minimum length for a hybridizable nucleic acid is at least about 15 nucleotides; more preferably at least about 20 nucleotides; and most preferably the length is at least 30 nucleotides. Furthermore, the skilled artisan will recognize that the temperature and wash solution salt concentration may be adjusted as necessary according to factors such as length of the probe.

10

15

20

25

The term "complementary" is used to describe the relationship between nucleotide bases that are capable to hybridizing to one another. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the instant invention also includes isolated nucleic acid fragments that are complementary to the complete sequences as reported in the accompanying Sequence Listing as well as those substantially similar nucleic acid sequences.

The term "percent identity", as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" 30 and "similarity" can be readily calculated by known methods, including but not limited to those described in: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. 35 M., and Griffin, H. G., eds.) Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, New York (1991). Preferred methods to determine

identity are designed to give the best match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations may be performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.

Suitable nucleic acid fragments (isolated polynucleotides of the present invention) encode polypeptides that are at least about 70% identical, preferably at least about 80% identical to the amino acid sequences reported herein. Preferred nucleic acid fragments encode amino acid sequences that are about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences that are at least about 90% identical to the amino acid sequences that are at least about 95% identical to the amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments not only have the above homologies but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 150 amino acids, still more preferably at least 250 amino acids. and most preferably at least 250 amino acids.

20

25

35

"Codon degeneracy" refers to the nature in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment that encodes all or a substantial portion of the amino acid sequence encoding the instant microbial polypeptides as set forth in SEQ ID NOs.8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a gene for improved expression in a host cell, it is desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

"Synthetic genes" can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form gene segments which are then enzymatically assembled to construct the entire gene. "Chemically synthesized", as related to a sequence of DNA, means that the component nucleotides were assembled in vitro. Manual chemical synthesis of DNA may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the genes can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.

"Gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences, "Chimeric gene" refers to any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found 25 in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A 30 "transgene" is a gene that has been introduced into the genome by a transformation procedure.

15

35

"Coding sequence" refers to a DNA sequence that codes for a specific amino acid sequence. "Suitable regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequence) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences

may include promoters, translation leader sequences, introns, polyadenylation recognition sequences, RNA processing site, effector binding site and stem-loop structures.

"Promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the 10 art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". It is further recognized that since in most cases the exact boundaries of regulatory sequences 15 have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

The "3" non-coding sequences" refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor.

20

25

"RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the 30 RNA that is without introns and that can be translated into protein by the cell. "cDNA" refers to a double-stranded DNA that is complementary to and derived from mRNA, "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Patent No. 5,107,065; WO 9928508). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding

sequence, or the coding sequence. "Functional RNA" refers to antisense RNA, ribozyme RNA, or other RNA that is not translated yet has an effect on cellular processes.

The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.

The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide.

10

15

20

"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" or "recombinant" or "transformed" organisms.

The terms "plasmid", "vector" and "cassette" refer to an extra chromosomal element often carrying genes which are not part of the central metabolism of the cell, and usually in the form of circular doublestranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear or circular, of a single- or double-stranded 25 DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3' untranslated sequence into a cell. "Transformation cassette" refers to a specific vector 30 containing a foreign gene and having elements in addition to the foreign gene that facilitate transformation of a particular host cell. "Expression cassette" refers to a specific vector containing a foreign gene and having elements in addition to the foreign gene that allow for enhanced expression of that gene in a foreign host. 35

The term "sequence analysis software" refers to any computer algorithm or software program that is useful for the analysis of nucleotide or amino acid sequences. "Sequence analysis software" may be

commercially available or independently developed. Typical sequence analysis software will include but is not limited to the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI), BLASTP, BLASTN, BLASTX (Altschul et al., J. Mol. 5 Biol. 215:403-410 (1990), and DNASTAR (DNASTAR, Inc. 1228 S. Park St. Madison, WI 53715 USA), and the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, Comput. Methods Genome Res., [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Publisher: Plenum, New York, NY). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values" will mean any set of values or parameters which originally load with the software when first initialized.

The term "signature sequence" means a set of amino acids 15 conserved at specific positions along an aligned sequence of evolutionarily related proteins. While amino acids at other positions can vary between homologous proteins, amino acids which are highly conserved at specific positions indicate amino acids which are essential in the structure, the stability, or the activity of a protein. Because they are 20 identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers, or "signatures", to determine if a protein with a newly determined sequence belongs to a previously identified protein family. Signature sequences of the present invention are specifically described Figure 6 showing the 25 signature sequence comprised of p1-p74 of SEQ ID NO:47, p1-p76 of SEQ ID NO:48 and p1-p41 of SEQ ID NO:49.

Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by Sambrook, J., Fritsch,

30 E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989) (hereinafter "Maniatis"); and by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory Cold Press Spring Harbor, NY (1984); and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-Interscience (1987).

Isolation Of Microorganisms Having Baever-Villiger Monooxygenase **Activity**

5

10

15

20

Microorganisms having Baever-Villiger monooxygenase activity may be isolated from a variety of sources. Suitable sources include industrial waste streams, soil from contaminated industrial sites and waste stream treatment facilities. The Baeyer-Villiger monooxygenase containing microorganisms of the instant invention were isolated from activated sludge from waste water treatment plants.

Samples suspected of containing a microorganism having Baeyer-Villiger monooxygenase activity may be enriched by incubation in a suitable growth medium in combination with at least one ketone substrate. Suitable ketone substrates for use in the instant invention include cyclic ketones and ketoterpenes having the general formula:

wherein R and R₁ are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted alkyl, or substituted or unsubstituted alkenyl or substituted or unsubstituted alkylidene. These

compounds may be synthetic or natural secondary metabolites Particularly useful ketone substrates include, but are not limited to Norcamphor, Cyclobutanone, Cyclopentanone, 2-methyl-cyclopentanone. Cyclohexanone, 2-methyl-cyclohexanone, Cyclohex-2-ene-1-one, 1,2cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, Cycloheptanone, Cyclooctanone, Cyclodecanone, Cycloundecanone, 25 Cyclododecanone, Cyclotridecanone, Cyclopenta-decanone, 2tridecanone, dihexyl ketone, 2-phenyl-cyclohexanone, Oxindole. Levoglucosenone, dimethyl sulfoxide, dimethy-2-piperidone, Phenylboronic acid, and beta-ionone. Growth medium and techniques needed in the enrichment and screening of microorganisms are well known in the art and examples may be found in Manual of Methods for General Bacteriology (Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, eds), American Society for Microbiology, Washington, DC. (1994)); or by Thomas D. Brock in Biotechnology: A Textbook of Industrial 35 Microbiology, Second Edition, Sinauer Associates, Inc., Sunderland, MA (1989).

PCT/US02/27549 WO 03/020890

Characterization of the Baever-Villiger Monooxygenase Containing Microorganisms:

The sequence of the small subunit ribosomal RNA or DNA (16S rDNA) is frequently used for taxonomic identification of novel bacterial. Currently, more than 7,000 bacterial 16S rDNA sequences are now available. Highly conserved regions of the 16S rDNA provide priming sites for broad-range polymerase chain reaction (PCR) (or RT-PCR) and obviate the need for specific information about a targeted microorganism before this procedure. This permits identification of a previously 10 uncharacterized bacterium by broad range bacterial 16S rDNA amplification, sequencing, and phylogenetic analysis.

This invention describes the isolation and identification of 7 different bacteria based on their taxonomic identification following amplification of the 16S rDNA using primers corresponding to conserved 15 regions of the 16S rDNA molecule (Amann. R.I. et al. Microbiol. Rev. 59(1):143-69 (1995); Kane, M.D. et al. Appl. Environ. Microbiol. 59:682-686 (1993)), followed by sequencing and BLAST analysis (Basic Local Alignment Search Tool; Altschul, S. F., et al., J. Mol. Biol. 215:403-410 (1993); see also www.ncbi.nlm.nih.gov/BLAST/). Bacterial strains were identified as highly homologous to bacteria of the genera Brevibacterium, Arthrobacter, Acinetobacter, Acidovorax, and Rhodococcus.

20

25

30

35

Comparison of the 16S rRNA nucleotide base sequence from strain AN12 to public databases reveals that the most similar known sequences (98% homologous) are the 16S rRNA gene sequences of bacteria belonging to the genus Rhodococcus.

Comparison of the 16S rRNA nucleotide base sequence from strain CHX to public databases reveals that the most similar known sequences (97% homologous) are the 16S rRNA gene sequences of bacteria of the genus Acidovorax.

Comparison of the 16S rRNA nucleotide base sequence from strain BP2 to public databases reveals that the most similar known sequences (99% homologous) are the 16S rRNA gene sequences of bacteria of the genus Arthrobacter. Comparison of the 16S rRNA nucleotide base sequence from strain SE19 to public databases reveals that the most similar known sequences (99% homologous) are the 16S rRNA gene sequences of bacteria of the genus Acinetobacter.

Comparison of the 16S rRNA nucleotide base sequence from strains phi1 and phi2 to public databases reveals that the most similar

known sequences (99% homologous) are the 16S rRNA gene sequences of bacteria belonging to the genus *Rhodococcus*.

Identification of Baeyer-Villiger Monooxygenase Homologs

The present invention provides examples of Baeyer-Villiger
monoxygenase genes and gene products having the ability to convert
suitable ketone substrates comprising cyclic ketones and ketoterpenes to
the corresponding lactone or ester. For example, genes encoding
BVMO's have been isolated from Arthrobacter (SEQ ID NO:11),
Brevibacterium (SEQ ID NO:13 and 15), Acidovorax (SEQ ID NO:17),
Acinetobacter (SEQ ID NO:19), and Rhodococcus (SEQ ID NO:7, 9, 21,
23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45).

Comparison of the Arthrobacter sp. BP2 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 57% identical to the amino acid sequence of reported herein over length of 532 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments 20 reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are 25 chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Acidovorax sp. CHX chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 57% identical to the amino acid sequence of reported herein over length of 538 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, surpa). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active

proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus sp. phi1 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 55% identical to the amino acid sequence of reported herein over length of 542 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% -80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

10

15

20

25

Comparison of the Rhodococcus sp. phi2 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 53% identical to the amino acid sequence of reported herein over length of 541 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% -80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN12 ORF8 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 37% identical to the amino acid sequence of reported herein over length of 439 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

10

. 15

20

25

30

35

Comparison of the Rhodococcus ervthropolis AN1 ORF9 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 44% identical to the amino acid sequence of reported herein over length of 518 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF10 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 64% identical to the amino acid sequence of reported herein over length of 541 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about

70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

10

15

20

25

30

35

Comparison of the Rhodococcus erythropolis AN1 ORF11 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 65% identical to the amino acid sequence of reported herein over length of 462 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF12 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 45% identical to the amino acid sequence of reported herein over length of 523 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid

sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

5

Comparison of the Rhodococcus erythropolis AN1 ORF13 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 55% identical to the amino acid sequence of reported herein over length of 493 amino acids using a Smith-Waterman alignment algorithm 10 (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active 15 proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic 20 acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF14 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 51% identical to the amino acid sequence of reported herein over 25 length of 539 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are 35 chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF15 chnB nucleotide base and deduced amino acid sequences to public databases

reveals that the most similar known sequences range from a distant as about 39% identical to the amino acid sequence of reported herein over length of 649 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

10

15

20

25

30

35

Comparison of the Rhodococcus erythropolis AN1 ORF16 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 43% identical to the amino acid sequence of reported herein over length of 494 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF17 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 53% identical to the amino acid sequence of reported herein over length of 499 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic

acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid

sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

10

15

20

25

30

35

Comparison of the Rhodococcus erythropolis AN1 ORF18 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 44% identical to the amino acid sequence of reported herein over length of 493 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF19 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 54% identical to the amino acid sequence of reported herein over length of 541 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are

chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

Comparison of the Rhodococcus erythropolis AN1 ORF20 chnB nucleotide base and deduced amino acid sequences to public databases reveals that the most similar known sequences range from a distant as about 42% identical to the amino acid sequence of reported herein over length of 545 amino acids using a Smith-Waterman alignment algorithm (W. R. Pearson, supra). Preferred amino acid fragments are at least about 70% - 80% and more preferred amino acid fragments are at least about 10 80%-90% identical to the sequences herein. Most preferred are nucleic acid fragments that are at least 95% identical to the amino acid fragments reported herein. Similarly, preferred chnB encoding nucleic acid sequences corresponding to the instant ORF's are those encoding active proteins and which are at least 80% identical to the nucleic acid sequences reported herein. More preferred chnB nucleic acid fragments are at least 90% identical to the sequences herein. Most preferred are chnB nucleic acid fragments that are at least 95% identical to the nucleic acid fragments reported herein.

15

20

25

30

In addition to the identification of the above mentioned sequences and the biochemical characterization of the activity of the gene product, Applicants have made the discovery that many of these monooxygenase proteins share diagnostic signature sequences which may be used for the identification of other proteins having similar activity. For example, the present monooxygenases may be grouped into three general families based on sequence alignment. One group, referred to herein BV Family 1. is comprised of the monooxygenase sequences shown in Figure 7 and generating the consensus sequence as set forth in SEQ ID NO:47. As will be seen in Figure 7, there are a group of completely conserved amino acids in 74 positions across all of the sequences of Figure 7. These positions are further delineated in Figure 6, and indicated as p1 - p74.

Similarly, BV Family 2 is comprised of the monooxygenase sequences shown on Figure 8, and generating the consensus sequence as set forth in SEQ ID NO:48. The signature sequence of BV Family 2 monooxygenases is shown in Figure 6 having the positions p1-p76. BV Family 3 monooxygenases are shown in Figure 9, generating the consensus sequence as set for the in SEQ ID NO:49, having the signature sequence as shown in Figure 6 of positions p1-p41.

Although there is variation among the sequences of the various families, all of the individual members of these families have been shown to possess monooxygenase activity. Thus, it is contemplated that where a polypeptide possesses the signature sequences as defined in Figures 6-9 that it will have monooxygenase activity. It is thus within the scope of the present invention to provide a method for identifying a gene encoding a Baeyer-Villiger monooxygenase polypeptide comprising:

(a) probing a genomic library with a nucleic acid fragment encoding a polypeptide wherein where at least 80% of the amino acid residues at positions p1- p74 of SEQ ID NO:47, or at least 80% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 80% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved;

- (b) identifying a DNA clone that hybridizes with a nucleic acid fragment of step (a);
- (c) sequencing the genomic fragment that comprises the clone identified in step (b).

wherein the sequenced genomic fragment encodes a Baeyer-Villiger monooxygenase polypeptide.

10

15

20 .

25

30

35

In a preferred embodiment the invention provides the above method wherein where at least 100% of the amino acid residues at positions p1- p74 of SEQ ID NO:47, or at least 100% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 100% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved.

It will be appreciated that other Baeyer-Villiger monooxygenase genes having similar substrate specificity may be identified and isolated on the basis of sequence dependent protocols or according to alignment against the signature sequences disclosed herein.

Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g. polymerase chain reaction (PCR), Mullis et al., U.S. Patent 4,683,202), ligase chain reaction (LCR), Tabor, S. et al., Proc. Acad. Sci. USA 82: 1074, (1985)) or strand displacement amplification (SDA, Walker, et al., Proc. Natl. Acad. Sci. U.S.A., 89: 392, (1992)).

For example, genes encoding similar proteins or polypeptides to the present Baeyer-Villiger monooxygenases could be isolated directly by using all or a portion of the nucleic acid fragments set forth in SEQ ID NOs:7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 or as DNA hybridization probes to screen libraries from any desired bacteria using methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis, supra). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primers DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part of or fulllength of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length DNA

10

15

20

30

35

Typically, in PCR-type primer directed amplification techniques, the primers have different sequences and are not complementary to each other. Depending on the desired test conditions, the sequences of the primers should be designed to provide for both efficient and faithful replication of the target nucleic acid. Methods of PCR primer design are common and well known in the art. (Thein and Wallace, "The use of oligonucleotide as specific hybridization probes in the Diagnosis of Genetic Disorders", in *Human Genetic Diseases: A Practical Approach*, K. E. Davis Ed., (1986) pp. 33-50 IRL Press, Herndon, Virginia; Rychlik, W. (1993) In White, B. A. (ed.), Methods in Molecular Biology, Vol. 15, pages 31-39, PCR Protocols: Current Methods and Applications. Humania Press. Inc., Totowa. NJ.)

fragments under conditions of appropriate stringency.

Generally PCR primers may be used to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. However, the polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding microbial genes.

Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can

follow the RACE protocol (Frohman et al., PNAS USA 85:8998 (1988)) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al., PNAS USA 86:5673 (1989); Loh et al., Science 243:217 (1989)).

Accordingly the invention provides a method for identifying a nucleic acid molecule encoding a Baeyer-Villiger monooxygenase comprising: (a) synthesizing at least one oligonucleotide primer corresponding to a portion of the sequence selected from the group consisting of SEQ ID NOs:7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 and (b) amplifying an insert present in a cloning vector using the oligonucleotide primer of step (a); wherein the amplified insert encodes a Baever-Villiger monooxygenase

15

35

Alternatively the instant sequences may be employed as hybridization reagents for the identification of homologs. The basic components of a nucleic acid hybridization test include a probe, a sample suspected of containing the gene or gene fragment of interest, and a specific hybridization method. Probes of the present invention are typically single stranded nucleic acid sequences which are complementary to the nucleic acid sequences to be detected. Probes are "hybridizable" to the nucleic acid sequence to be detected. The probe length can vary from 5 bases to tens of thousands of bases, and will depend upon the specific 25 test to be done. Typically a probe length of about 15 bases to about 30 bases is suitable. Only part of the probe molecule need be complementary to the nucleic acid sequence to be detected. In addition, the complementarity between the probe and the target sequence need not be perfect. Hybridization does occur between imperfectly complementary molecules with the result that a certain fraction of the bases in the hybridized region are not paired with the proper complementary base.

Hybridization methods are well defined. Typically the probe and sample must be mixed under conditions which will permit nucleic acid hybridization. This involves contacting the probe and sample in the presence of an inorganic or organic salt under the proper concentration and temperature conditions. The probe and sample nucleic acids must be in contact for a long enough time that any possible hybridization between the probe and sample nucleic acid may occur. The concentration of probe

or target in the mixture will determine the time necessary for hybridization to occur. The higher the probe or target concentration the shorter the hybridization incubation time needed. Optionally a chaotropic agent may be added. The chaotropic agent stabilizes nucleic acids by inhibiting nuclease activity. Furthermore, the chaotropic agent allows sensitive and stringent hybridization of short oligonucleotide probes at room temperature [Van Ness and Chen (1991) Nucl. Acids Res. 19:5143-5151]. Suitable chaotropic agents include guanidinium chloride, guanidinium thiocyanate, sodium thiocyanate, lithium tetrachloroacetate, sodium perchlorate.

rubidium tetrachloroacetate, potassium iodide, and cesium trifluoroacetate, among others. Typically, the chaotropic agent will be present at a final concentration of about 3M. If desired, one can add formamide to the hybridization mixture, typically 30-50% (v/v). Various hybridization solutions can be employed. Typically, these

15

25

30

35

comprise from about 20 to 60% volume, preferably 30%, of a polar organic solvent. A common hybridization solution employs about 30-50% v/v fornamide, about 0.15 to 1M sodium chloride, about 0.05 to 0.1M buffers, such as sodium citrate, Tris-HCl, PIPES or HEPES (pH range about 6.9), about 0.05 to 0.2% detergent, such as sodium dodecylsulfate, or between 0.5-20 mM EDTA, FICOLL (Pharmacia Inc.) (about 300-500 kilodaltons), polyvinylpyrrolidone (about 250-500 kdal), and serum albumin. Also included in the typical hybridization solution will be unlabeled carrier nucleic acids from about 0.1 to 5 mg/mL, fragmented nucleic DNA, e.g., calf thymus or salmon sperm DNA, or yeast RNA, and optionally from about 0.5 to 2% wt/vol glycine. Other additives may also be included, such as volume exclusion agents which include a variety of polar water-soluble or swellable agents, such as polyethylene glycol, anionic polymers such as polyacrylate or polymethylacrylate, and anionic saccharidic polymers, such as devtran sulfate.

Thus, the invention provides a method for identifying a nucleic acid molecule encoding a Baeyer-Villiger monooxygenase comprising:(a) probing a genomic library with a portion of a nucleic acid molecule selected from the group consisting of SEQ ID NOs:7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45; (b) identifying a DNA clone that hybridizes under conditions of 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS with the nucleic acid molecule of (a); and (c) sequencing the genomic fragment

that comprises the clone identified in step (b), wherein the sequenced genomic fragment encodes Baeyer-Villiger monooxygenase.

Recombinant Expression–Microbial

The genes and gene products of the present BVMO sequences may be introduced into microbial host cells. Preferred host cells for expression of the instant genes and nucleic acid molecules are microbial hosts that can be found broadly within the fungal or bacterial families and which grow over a wide range of temperature, pH values, and solvent tolerances. Because of transcription, translation and the protein

biosynthetic apparatus is the same irrespective of the cellular feedstock, functional genes are expressed irrespective of carbon feedstock used to generate cellular biomass. Large scale microbial growth and functional gene expression may utilize a wide range of simple or complex carbohydrates, organic acids and alcohols, saturated hydrocarbons such

as methane or carbon dioxide in the case of photosynthetic or chemoautotrophic hosts. However, the functional genes may be regulated, repressed or depressed by specific growth conditions, which may include the form and amount of nitrogen, phosphorous, sulfur, oxygen, carbon or any trace micronutrient including small inorganic ions.

20

35

In addition, the regulation of functional genes may be achieved by the presence or absence of specific regulatory molecules that are added to the culture and are not typically considered nutrient or energy sources. Growth rate may also be an important regulatory factor in gene expression. Examples of suitable host strains include but are not limited

to fungal or yeast species such as Aspergillus, Trichoderma, Saccharomyces, Pichia, Candida, Hansenula, or bacterial species such as member of the proteobacteria and actinomycetes as well as the specific genera Rhodococcus, Acinetobacter, Arthrobacter, Mycobacteria, Nocardia, Brevibacterium, Acidovorax, Bacillus, Streptomyces,

30 Escherichia, Salmonella, Pseudomonas, Aspergillus, Saccharomyces, Pichia, Candida, Cornyebacterium, and Hansenula.

Particularly suitable in the present invention as hosts for monoxygenase are the members of the Proteobacteria and Actinomycetes. The Proteobacteria form a physiologically diverse group of microorganisms and represent five subdivisions (α , β , γ , ϵ , δ) (Madigan et al., <u>Brock Biology of Microorganisms</u>, 8th edition, Prentice Hall, UpperSaddle River, NJ (1997)). All five subdivisions of the Proteobacteria contain microorganisms that use organic compounds as sources of

carbon and energy. Members of the Proteobacteria suitable in the present invention include, but are not limited to *Burkholderia*, *Alcaligenes*, *Pseudomonas*, *Sphingomonas*, *Pandoraea*, *Delftia* and *Comamonas*.

Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct chimeric genes for production of the any of the gene products of the instant sequences. These chimeric genes could then be introduced into appropriate microorganisms via transformation to provide high level expression of the enzymes.

Vectors or cassettes useful for the transformation of suitable host cells are well known in the art. Typically the vector or cassette contains sequences directing transcription and translation of the relevant gene, a selectable marker, and sequences allowing autonomous replication or chromosomal integration. Suitable vectors comprise a region 5' of the gene which harbors transcriptional initiation controls and a region 3' of the DNA fragment which controls transcriptional termination. It is most preferred when both control regions are derived from genes homologous to the transformed host cell, although it is to be understood that such control regions need not be derived from the genes native to the specific species chosen as a production host.

Initiation control regions or promoters, which are useful to drive expression of the instant ORF's in the desired host cell are numerous and familiar to those skilled in the art. Virtually any promoter capable of driving these genes is suitable for the present invention including but not limited to CYC1, HIS3, GAL1, GAL10, ADH1, PGK, PHO5, GAPDH, ADC1, TRP1, URA3, LEU2, ENO, TPI (useful for expression in Saccharomyces); AOX1 (useful for expression in Pichia); and lac, ara, tet, trp, IP_L, IP_R, T7, tac, and trc (useful for expression in Escherichia coli) as well as the army, apr, npr promoters and various phage promoters useful for expression in Bacillius.

Termination control regions may also be derived from various genes native to the preferred hosts. Optionally, a termination site may be unnecessary, however, it is most preferred if included.

35 Recombinant Expression-Plants

5

10

30

The sequences encoding the BVMO's of the present invention may be used to create transgenic plants having the ability to express the

microbial proteins. Preferred plant hosts will be any variety that will support a high production level of the instant proteins.

Suitable green plants will included but are not limited to of soybean. rapeseed (Brassica napus, B. campestris), sunflower (Helianthus annus), cotton (Gossypium hirsutum), corn, tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), wheat (Triticum sp), barley (Hordeum vulgare), oats (Avena sativa, L), sorghum (Sorghum bicolor), rice (Oryza sativa), Arabidopsis, cruciferous vegetables (broccoli, cauliflower, cabbage, parsnips, etc.), melons, carrots, celery, parsley, tomatoes, potatoes, strawberries, peanuts, grapes, grass seed crops, sugar beets, sugar cane, 10 beans, peas, rye, flax, hardwood trees, softwood trees, and forage grasses. Algal species include but not limited to commercially significant hosts such as Spirulina and Dunalliela. Overexpression of the proteins of the instant invention may be accomplished by first constructing chimeric genes in which the coding region are operably linked to promoters capable of directing expression of a gene in the desired tissues at the desired stage of development. For reasons of convenience, the chimeric genes may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non-coding sequences encoding transcription termination signals must also be provided. The instant chimeric genes may also comprise one or more introns in order to facilitate gene expression.

Any combination of any promoter and any terminator capable of inducing expression of a coding region may be used in the chimenc genetic sequence. Some suitable examples of promoters and terminators 25 include those from nopaline synthase (nos), octopine synthase (ocs) and cauliflower mosaic virus (CaMV) genes. One type of efficient plant promoter that may be used is a high level plant promoter. Such promoters, in operable linkage with the genetic sequences or the present invention should be capable of promoting expression of the present gene 30 product. High level plant promoters that may be used in this invention include the promoter of the small subunit (ss) of the ribulose-1,5bisphosphate carboxylase from example from soybean (Berry-Lowe et al., J. Molecular and App. Gen., 1:483-498 1982)), and the promoter of the chlorophyll a/b binding protein. These two promoters are known to be 35 light-induced in plant cells (See. for example. Genetic Engineering of Plants, an Agricultural Perspective, A. Cashmore, Plenum, New York (1983), pages 29-38; Coruzzi, G. et al., The Journal of Biological

Chemistry, 258:1399 (1983), and Dunsmuir, P. et al., Journal of Molecular and Applied Genetics, 2:285 (1983)).

Plasmid vectors comprising the instant chimeric genes can then be constructed. The choice of plasmid vector depends upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., EMBO J. 4:2411-2418 (1985); De Almelda et al., Mol. Gen. Genetics 218:78-86 (1989)), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA blots (Southern, J. Mol. Biol. 98:503, (1975)). Northern analysis of mRNA expression (Kroczek, J. Chromatogr. Biomed. Appl., 618 (1-2):133-145 (1993)), Western analysis of protein expression, or phenotypic analysis.

For some applications it will be useful to direct the instant proteins to different cellular compartments. It is thus envisioned that the chimeric genes described above may be further supplemented by altering the coding sequences to encode enzymes with appropriate intracellular targeting sequences such as transit sequences (Keegstra, K., Cell 56:247-253 (1989)), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels, J.J., Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53 (1991)), or nuclear localization signals (Raikhel, N. Plant Phys.100:1627-1632 (1992)) added and/or with targeting sequences that are already present removed. While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of utility may be discovered in the future that are useful in the invention.

20

25

30

35

Process for the Production of Lactones and Esters from Ketone Substrates

Once the appropriate nucleic acid sequence has been expressed in a recombinant organism, the organism may be contacted with a suitable ketone substrate for the production of the corresponding ester. The Baeyer-Villiger monoxygenases of the instant invention will act on a variety of ketone substrates comprising cyclic ketones and ketoterpenes to produce the corresponding lactone or ester. Suitable ketone substrates for the conversion to esters are defined by the general formula:

wherein R and R₁ are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted alkyl, or substituted or unsubstituted alkyl, or substituted or unsubstituted alkyl, or substituted or unsubstituted alkylidene.

Particularly useful ketone substrates include, but are not limited to Norcamphor, Cyclobutanone, Cyclopentanone, 2-methyl-cyclopentanone, Cyclohexanone, 2-methyl-cyclopentanone, Cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, Cyclopentanone, dihexyl ketone, 2-phenyl-cyclohexanone, Oxindole, Levoglucosenone, dimethyl sulfoxide, dimethy-2-piperidone,

Phenylboronic acid, and beta-ionone.

Alternatively it is contemplated that the enzymes of the invention may be used in vitro for the transformation of ketone substrates to the corresponding esters. The monoxygenase enzymes may be produced recombinantly or isoalted from native sources, purified and reacted with the appropriate substrate under suitalbe conditions of pH and temperature.

15

20

25

Where large scale commercial production of lactones or esters is desired, a variety of culture methodologies may be applied. For example, large scale production from a recombinant microbial host may be produced by both batch or continuous culture methodologies.

A classical batch culturing method is a closed system where the composition of the media is set at the beginning of the culture and not subject to artificial alterations during the culturing process. Thus, at the beginning of the culturing process the media is inoculated with the desired organism or organisms and growth or metabolic activity is permitted to occur adding nothing to the system. Typically, however, a "batch" culture is batch with respect to the addition of carbon source and attempts are often made at controlling factors such as pH and oxygen concentration. In batch systems the metabolite and biomass compositions of the system change constantly up to the time the culture is terminated. Within batch cultures cells moderate through a static lag phase to a high growth log phase and finally to a stationary phase where growth rate is diminished or

halted. If untreated, cells in the stationary phase will eventually die. Cells in log phase are often responsible for the bulk of production of end product or intermediate in some systems. Stationary or post-exponential phase production can be obtained in other systems.

A variation on the standard batch system is the Fed-Batch system. 5 Fed-Batch culture processes are also suitable in the present invention and comprise a typical batch system with the exception that the substrate is added in increments as the culture progresses. Fed-Batch systems are useful when catabolite repression is apt to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the 10 media. Measurement of the actual substrate concentration in Fed-Batch systems is difficult and is therefore estimated on the basis of the changes of measurable factors such as pH, dissolved oxygen and the partial pressure of waste gases such as CO₂. Batch and Fed-Batch culturing methods are common and well known in the art and examples may be 15 found in Thomas D. Brock in Biotechnology: A Textbook of Industrial Microbiology, Second Edition (1989) Sinauer Associates, Inc., Sunderland, MA., or Deshpande, Mukund V., Appl. Biochem. Biotechnol., 36, 227, (1992), herein incorporated by reference.

Commercial production of lactones and esters of the present invention may also be accomplished with a continuous culture. Continuous cultures are an open system where a defined culture media is added continuously to a bioreactor and an equal amount of conditioned media is removed simultaneously for processing. Continuous cultures generally maintain the cells at a constant high liquid phase density where cells are primarily in log phase growth. Alternatively continuous culture may be practiced with immobilized cells where carbon and nutrients are continuously added, and valuable products, by-products or waste products are continuously removed from the cell mass. Cell immobilization may be performed using a wide range of solid supports composed of natural and/or synthetic materials.

20

25

30

Continuous or semi-continuous culture allows for the modulation of one factor or any number of factors that affect cell growth or end product concentration. For example, one method will maintain a limiting nutrient such as the carbon source or nitrogen level at a fixed rate and allow all other parameters to moderate. In other systems a number of factors affecting growth can be altered continuously while the cell concentration, measured by media turbicity, is kept constant. Continuous systems strive

to maintain steady state growth conditions and thus the cell loss due to media being drawn off must be balanced against the cell growth rate in the culture. Methods of modulating nutrients and growth factors for continuous culture processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology and a variety of methods are detailed by Brock, *supra*. Baeyer-Villiger monocygenases having enhanced activity

It is contemplated that the present BVMO sequences may be used to produce gene products having enhanced or altered activity. Various methods are known for mutating a native gene sequence to produce a gene product with altered or enhanced activity including but not limited to error prone PCR (Melnikov et al., Nucleic Acids Research, (Feb. 15, 1999) Vol. 27, No. 4, pp. 1056-1062); site directed mutagenesis (Coombs et al., Proteins (1998), 259-311, 1 plate. Editor(s): Angeletti, Ruth Hogue.

15 Publisher: Academic, San Diego, CA) and "gene shuffling" (US 5,605,793; US 5,811,238; US 5,830,721; and US 5,837,458, incorporated herein by

The method of gene shuffling is particularly attractive due to its facile implementation, and high rate of mutagenesis and ease of screening. The process of gene shuffling involves the restriction endonuclease cleavage of a gene of interest into fragments of specific size in the presence of additional populations of DNA regions of both similarity to or difference to the gene of interest. This pool of fragments will then be denatured and reannealed to create a mutated gene. The mutated gene is then screened for altered activity.

reference).

The BVMO sequences of the present invention may be mutated and screened for altered or enhanced activity by this method. The sequences should be double stranded and can be of various lengths ranging form 50 bp to 10 kb. The sequences may be randomly digested into fragments ranging from about 10 bp to 1000 bp, using restriction endonucleases well known in the art (Maniatis *supra*). In addition to the instant microbial sequences, populations of fragments that are hybridizable to all or portions of the microbial sequence may be added. Similarly, a population of fragments which are not hybridizable to the instant sequence may also be added. Typically these additional fragment populations are added in about a 10 to 20 fold excess by weight as compared to the total nucleic acid. Generally if this process is followed the number of different specific nucleic acid fragments in the mixture will

be about 100 to about 1000. The mixed population of random nucleic acid fragments are denatured to form single-stranded nucleic acid fragments and then reannealed. Only those single-stranded nucleic acid fragments having regions of homology with other single-stranded nucleic acid fragments will reanneal. The random nucleic acid fragments may be denatured by heating. One skilled in the art could determine the conditions necessary to completely denature the double stranded nucleic acid. Preferably the temperature is from 80°C to 100°C. The nucleic acid fragments may be reannealed by cooling. Preferably the temperature is from 20°C to 75°C. Renaturation can be accelerated by the addition of polyethylene glycol ("PEG") or salt. A suitable salt concentration may range from 0 mM to 200 mM. The annealed nucleic acid fragments are then incubated in the presence of a nucleic acid polymerase and dNTP's (i.e. dATP, dCTP, dGTP and dTTP). The nucleic acid polymerase may be the Klenow fragment, the Taq polymerase or any other DNA polymerase 15 known in the art. The polymerase may be added to the random nucleic acid fragments prior to annealing, simultaneously with annealing or after annealing. The cycle of denaturation, renaturation and incubation in the presence of polymerase is repeated for a desired number of times. Preferably the cycle is repeated from 2 to 50 times, more preferably the 20 sequence is repeated from 10 to 40 times. The resulting nucleic acid is a larger double-stranded polynucleotide ranging from about 50 bp to about 100 kb and may be screened for expression and altered activity by standard cloning and expression protocol. (Manatis supra).

Furthermore, a hybrid protein can be assembled by fusion of functional domains using the gene shuffling (exon shuffling) method (Nixon et al, PNAS, 94:1069-1073 (1997)). The functional domain of the instant gene can be combined with the functional domain of other genes to create novel enzymes with desired catalytic function. A hybrid enzyme may be constructed using PCR overlap extension method and cloned into the various expression vectors using the techniques well known to those skilled in art.

25

30

35

EXAMPLES

The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without

departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

GENERAL METHODS

35

- Standard recombinant DNA and molecular cloning techniques used in the Examples are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T. *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, (1989) (Maniatis) and by T. J. Silhavy, M. L. Bennan, and L. W. Enquist,
 Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1984) and by Ausubel, F. M. *et al.*, Current Protocols in Molecular Biology, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).
- Materials and methods suitable for the maintenance and growth of bacterial cultures are well known in the art. Techniques suitable for use in the following examples may be found as set out in Manual of Methods for General Bacteriology (Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costllow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, Eds., American Society for Microbiology, Washington, DC.
- 20 (1994)) or by Thomas D. Brock in <u>Biotechnology</u>: <u>A Textbook of Industrial Microbiology</u>, Second Ed., Sinauer Associates, Inc.: Sunderland, MA (1989). All reagents, restriction enzymes and materials used for the growth and maintenance of bacterial cells were obtained from Aldrich Chemicals (Milwaukee, WI), DIFCO Laboratories (Detroit, MI),
- 25 GIBCO/BRL (Gaithersburg, MD), or Sigma Chemical Company (St. Louis, MO) unless otherwise specified.
 - Bacterial Strains and Plasmids: Rhodococcus erythropolis AN12, Brevibacterium sp. HCU, Arthrobacter sp. BP2, Rhodococcus sp. phi1, Rhodococcus sp. phi2, Acidovorax sp. CHX, and Acinetobacter sp. SE19 were isolated from enrichment of activated studge obtained from industrial wastewater treatment facilities. Max Efficiency competent cells of E. coli DH5α and DH10B were purchased from GIBCO/BRL (Gaithersburg, MD). Expression plasmid pQE30 were purchased from Qiagen (Valencia, CA), while cloning vector pCR2.1 and expression vector pTrc/His2-Topo were purchased from Invitrogen (San Diego, CA).

Taxonomic identification of Rhodococcus erythropolis AN12, Brevibacterium sp. HCU, Arthrobacter sp. BP2, Rhodococcus sp. phi1, Rhodococcus sp. phi2, Acidovorax sp. CHX, and Acinetobacter sp. SE19

was performed by PCR amplification of 16S rDNA from chromosomal DNA using primers corresponding to conserved regions of the 16S rDNA molecule (Table 2). The following temperature program was used: 95°C (5 min) for 1 cycle followed by 25 cycles of: 95°C (1 min), 55°C (1 min),

5 72°C (1 min), followed by a final extension at 72°C (8 min). Following DNA sequencing (according to the method shown below), the 16S rDNA gene sequence of each isolate was used as the query sequence for a BLAST search (Altschul, et al., Nucleic Acids Res. 25:3389-3402 (1997)) against GenBank for similar sequences.

10

<u>Table 2</u> Primers to Conserved Regions of 16s rDNA

Primer Sequence (5'- 3') Reference SEQ ID NO GAGTTTGATCCTGGCTC (HK12) Amann, R.I. et al. Microbiol. 50 Rev. 59(1):143-69 (1995) AG Amann, R.I. et al. Microbiol. Rev. 51 CAGG(A/C)GCCGCGGTA 59(1):143-69 (1995) AT(A/T)C (HK21) Amann, R.I. et al. Microbiol. 52 GCTGCCTCCCGTAGGA Rev. 59(1):143-69 (1995) GT Amann, R.I. et al. Microbiol. Rev. 53 CTACCAGGGTAACTAAT CC 59(1):143-69 (1995) ACGGCCGGTGTGTAC Amann, R.I. et al. Microbiol. Rev. 54 59(1):143-69 (1995) Amann, R.I. et al. Microbiol. Rev. CACGAGCTGACGACAG 55 59(1):143-69 (1995) CCAT TACCTTGTTACGACTT (HK13) Amann, R.I. et al. Microbiol. 56 Rev. 59(1):143-69 (1995) Amann, R.I. et al. Microbiol. Rev. G(A/T)ATTACCGCGGC(57 59(1):143-69 (1995) G/T)GCTG Amann, R.I. et al. Microbiol. Rev. 58 GGATTAGATACCCTGGT 59(1):143-69 (1995) AG Amann, R.I. et al. Microbiol. Rev. ATGGCTGTCGTCAGCT 59 59(1):143-69 (1995) CGTG 60 GCCCCG(C/T)CAATTC (HK15) Kane, M.D. et al. Appl. Environ, Microbiol, 59:682-686 CT (1993)

SEQ ID NO	Primer Sequence (5'- 3')	Reference
61	GTGCCAGCAG(C/T)(A/C) GCGGT	(HK14) Kane, M.D. et al. <i>Appl. Environ. Microbiol.</i> 59:682-686 (1993)
62	GCCAGCAGCCGCGGTA	(JCR15) Kane, M.D. et al. <i>Appl. Environ. Microbiol.</i> 59:682-686 (1993)

Note: Parenthetical information in bold is the original name for the primer, according to the reference provided.

Sequencing

5

25

Sequence was generated on an ABI Automatic sequencer using dye terminator technology (U.S. Patent 5,366,860; EP 272007) using a combination of vector and insert-specific primers. Sequence editing was performed using either Sequencher (Gene Codes Corp., Ann Arbor, MI) or the Wisconsin GCG program (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI) and the CONSED package (version 7.0). All sequences represent coverage at least two times in both directions.

Manipulations of genetic sequences were accomplished using the suite of programs available from the Genetics Computer Group Inc. (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI). Where the GCG program "Pileup" was used, the gap creation default value of 12 and the gap extension default value of 4 were used. Where the GCG "Gap" or "Bestfit" programs were used, the default gap creation penalty of 50 and the default gap extension penalty of 3 were used. In any case where GCG program parameters were not prompted for, in these or any other GCG program, default values were used.

The meaning of abbreviations is as follows: "sec" means second(s), "min" means minute(s), "h" means hour(s), "d" means day(s), "µL" means microliter, "mL" means milliliters, "L" means liters, "µM" means micromolar, "mM" means millimolar, "M" means molar, "mmol" means millimole(s), "µmole" mean micromole", "g" means grarn, "µg" means micrograrn, "ng" means nanograrn, "U" means units, "mU" means milliunits, "ppm" means parts per million, "psi" means pounds per square inch, and "kB" means kilobase.

EXAMPLE 1

Monooxygenase Gene Discovery in a Mixed Microbial Population

This Example describes the isolation of the cyclohexanone degrading organisms *Arthrobacter* sp. BP2, *Rhodococcus* sp. phi1, and

Rhodococcus sp. phi2 by enrichment of a mixed microbial community. Differential display techniques applied to cultures containing the mixed microbial population permitted discovery of monooxygenase genes. Enrichment for cyclohexanone degraders

A mixed microbial community was obtained from a wastewater bicreactor and maintained on minimal medium (50 mM KHPO₄ (pH 7.0), 10 mM (NH₄)SO₄, 2 mM MgCl₂, 0.7 mM CaCl₂, 50 µM MnCl₂, 1 µM FeCl₃, 1 µM ZnCl₃, 1.72 µM CuSO₄, 2.53 µM CoCl₂, 2.42 µM Na₂MoO₂, and 0.0001% FeSO₄) with trace amounts of yeast extract casamino acids and peptone (YECAAP) at 0.1% concentration with 0.1% cyclohexanol and cyclohexanone added as carbon sources. Increased culture growth in the presence of cyclohexanone indicated a microbial population with members that could convert cyclohexanone.

Isolation of Strains

15

35

Seven individual strains were isolated from the community by

spreading culture on R2A Agar (Becton Dickinson and Company,
Cockeysville, MD) at 30° C. Strains were streaked to purity on the same
medium. Among these seven strains, the strain identified as Arthrobacter
species BP2 formed large colonies of a light yellow color. One
Rhodococcus strain, identified as species phi1, formed small colonies that
were orange in color. The other Rhodococcus strain, designated species
phi2, formed small colonies that were red in color.

Individuals strains were Identified by comparing 16s rDNA sequences to known 16S rRNA sequences in the GenBank sequence database. The 16S rRNA gene sequence from strain BP2 (SEQ ID NO:1) was at least 99% homologous to the 16S rRNA gene sequences of bacteria belonging to the genus Arthrobacter. The 16S rRNA gene sequences from strains phi1 and phi2 were each at least 99% homologous to the 16S rRNA gene sequences of bacteria belonging to the genus of gram positive bacteria, Rhodococcus. The complete 16s DNA sequence of Rhodococcus sp. phi1 is shown as SEQ ID NO:2, while that of Rhodococcus sp. phi2 is listed as SEQ ID NO:3.

Induction of cyclohexanone oxidation genes

For induction of cyclohexanone oxidation genes within members of this community, 1 ml of inoculum from a waste water bioreactor was suspended in 25 ml minimal medium with 0.1% YECAAP and incubated ovemight at 30°C with agitation. The next day 10 ml of the ovemight culture was resuspended in a total volume of 50 ml minimal medium with 0.1% YECAAP. The optical density of the culture was 0.29 absorbance units at 600 nm. After equilibration at 30°C for 30 min, the culture was split into two separate 25 ml volumes. To one of these cultures, 25 µl (0.1%) cyclohexanone (Sigma-Aldrich, St. Louis, MO) was added. Both 10 cultures were incubated for an additional 3 hrs. At this time, cultures were moved onto ice, harvested by centrifugation at 4°C, washed with two volumes of minimal salts medium and diluted to an optical density of 1.0 absorbance unit (600 nm). Approximately 6 ml of culture was placed in a water jacketed respirometry cell equipped with an oxygen electrode (Yellow Springs Instruments Co., Yellow Springs, OH) at 30°C to confirm cyclohexanone enzymes were induced. After establishing the baseline respiration for each cell suspension, cyclohexanone was added to a final concentration of 0.1% and the rate of O2 consumption was further monitored. For the control culture, 2 mM potassium acetate was added 200 sec after the cyclohexanone.

Isolation of total community RNA

20

After the 3 hr induction period with cyclohexanone described above, the control and induced sample (2 mL each) were harvested at 1400 rpm in a 4 °C centrifuge and resuspended in 900 µl Buffer RLT 25 (Qiagen, Valencia, CA). A 300 µl volume of zirconia beads (Biospec Products, Bartlesville, OK) was added and cells were disrupted using a bead beater (Biospec Products) at 2400 beats per mln for 3 min. Each of these samples was split into six aliquots for nucleic acid isolation using the RNeasy Mini Kit (Qiagen, Valencia, CA) and each was eluted with 100 RNase-free dH₂O supplied with the kit. DNA was degraded in the samples using 10 mM MgCl₂, 60 mM KCl and 2 U RNase-free DNase I (Ambion, Austin, TX) at 37 °C for 4 hr. Following testing for total DNA degradation by PCR using one of the arbitrary oligonucleotides used for RT-PCR, RNA was purified using the RNeasy Mini Kit and eluted in 100 µl 35 RNase-free dH₂O as described previously.

Generation of RAPDs from arbitrarily reverse-transcribed total RNA

A set of 244 primers with the sequence CGGAGCAGATCGAVVVV (SEQ ID NO:63); where VVVV represent all the combinations of the three bases A, G and C) was used in separate RT-PCR reactions as with RNA 5 from either the control or induced cells. The SuperScriptTM One-StepTM RT-PCR System (Life Technologies Gibco BRL, Rockville, MD) reaction mixture was used with 2-5 ng of total RNA in a 25 µl total reaction volume. The PCR was conducted using the following temperature program:

> 1 cycle: 4 °C (2 min), 5 min ramp to 37 °C (1 hr), followed by 95 °C incubation (3 min);

1 cycle: 94 °C (1 min), 40 °C (5 min), and 72 °C (5 min); 40 cycles: 94 °C (1 min), 60 °C (1 min), and 72 °C (1 min); 1 cycle: 70 °C (5 min) and 4 °C hold until separated by

electorphoresis. Products of these PCR amplifications (essentially RAPD fragments) were separated by electrophoresis at 1 V/cm on polyacrylamide cels (Amersham Pharmacia Biotech, Piscataway, NJ). Products resulting from the control mRNA (no cyclohexanone induction) and induced mRNA fragments were visualized by silver staining using an automated gel 20 stainer (Amersham Pharmacia Biotech, Piscataway, NJ).

Reamplification of differentially expressed DNA fragments

10

15

30

A 25 ul volume of a sodium cyanide elution buffer (10mg/ml NaCN, 20 mM Tris-HCl (pH 8.0), 50 mM KCl and 0.05% NP40) was incubated with an excised gel band of a differentially display fragment at 95°C for 20 min. Reamplification of this DNA fragment was achieved in a PCR 25 reaction using 5 µl of the elution mixture in a 25 µl reaction using the primer from which the fragment was originally generated. The temperature program for reamplification was: 94 °C (5 min); 20 cycles of 94 °C (1 min), 55 °C (1 min), and 72 °C (1 min); followed by 72 °C (7 min). The reamplification products were directly cloned into the pCR2.1-TOPO vector (Invitrogen, Carlsbad, CA) and were sequenced using an ABI model 377 with ABI BigDye terminator sequencing chemistry (Perseptive Biosystems, Framinham, MA). Eight clones were submitted for sequencing from each reamplified band. The nucleotide sequence of the 35 cloned fragments was compared against the non-redundant GenBank database using the BlastX program (NCBI).

Sequencing of cyclohexanone oxidation pathway genes

Oligonucleotides were designed to amplify by PCR individual differentially expressed fragments. Following DNA isolation from individual strains, these oligonucleotide primers were used to determine 5 which strain contained DNA encoding the individual differentially expressed fragments. Cosmids were screened by PCR using primers designed against differentially displayed fragments with homology to known cyclohexanone degradation genes. Each recombinant E. coli cell culture carrying a cosmid clone (1.0 µl) was used as the template in a 25 ul PCR reaction mixture. The primer pair A102FI (SEQ ID NO:108) and CONR (SEQ ID NO:109) was used to screen the Arthrobacter sp. BP2 library, primer pair A228FI (SEQ ID NO:110) and A228RI (SEQ ID NO:111) was used to screen the Rhodococcus sp. phi2 library, and the primer pair of A2FI (SEQ ID NO:112) and A34RI (SEQ ID NO:113) was used to screen the Rhodococcus sp. phi1 library. Cosmids from 15 recombinant E. coli which produced the correct product size in PCR reactions were isolated, digested partially with Sau3AI and 10-15 kB fragments from this partial digest were sub-cloned into the blue/white screening vector pSU19 (Bartolome, B. et al. Gene. 102(1): 75-8 (Jun 15, 1991); Martinez, E. et al. Gene. 68(1): 159-62 (Aug 15, 1988)). These 20 sub-clones were isolated using Qiagen Turbo96 Miniprep kits and rescreened by PCR as previously described. Sub-clones carrying the correct sequence fragment were transposed with pGPS1.1 using the GPS-1 Genome Priming System kit (New England Biolabs, Inc., Beverly, 25 MA). A number of these transposed plasmids were sequenced from each end of the transposon to obtain kilobase long DNA fragments. Sequence assembly was performed with the Sequencher program (Gene Codes Corp., Ann Arbor MI).

EXAMPLE 2

<u>Isolation of Brevibacterium sp. HCU Monooxygenase Genes</u> <u>Involved In The Oxidation Of Cyclohexanone</u>

This Example describes the isolation of the cyclohexanol and cyclohexanone degrader *Brevibacterium* sp. HCU. Discovery of BV monooxygenase genes from the organism was accomplished using differential display methods.

Strain Isolation

30

35

Selection for a halotolerant bacterium degrading cyclohexanol and cyclohexanone was performed on agar plates of a halophilic minimal

medium (Per liter: 15 g Agar, 100 g NaCl, 10 g MgSO₄, 2 g KCl, 1 g NH₄Cl, 50 mg KH₂PO₄, 2 mg FeSO₄, 8 g, Tris-HCl (pH 7)) containing traces of yeast extract and casaminoacids (0.005% each) and incubated under vapors of cyclohexanone at 30°C. The inoculum was a resuspension of sludge from industrial wastewater treatment plant. After two weeks, beige colonies were observed and streaked to purity on fresh agar plates grown under the same conditions.

The complete 16s DNA sequence of the isolated *Brevibacterium* sp. HCU was found to be unique and is shown as SEQ ID NO:4.

Comparison to other 16S rRNA sequences in the GenBank sequence database found the 16S rRNA gene sequence from strain HCU was at least 99% homologous to the 16S rRNA gene sequences of bacteria belonging to the genus *Brevibacterium*.

Induction of the Cyclohexanone Degradation Pathway

10

15

2.0

25

30

Induciblity of the cyclohexanone pathway was tested by respirometry in low salt medium. One colony of *Brevibacterium sp.* HCU was inoculated in 300 ml of \$12 mineral medium (50 mM KHPO₄ buffer (pH 7.0), 10 mM (NH4)₂SO₄, 2 mM MgCl₂, 0.7 mM CaCl₂, 50 uM MnCl₂, 1 µM FeCl₃, 1 µM ZnCl₃, 1.72 µM CuSO₄, 2.53 µM CoCl₂, 2.42 µM Na₂MoO₂, and 0.0001% FeSO₄) containing 0.005% yeast extract. The culture was then split into two flasks which received respectively 10 mM acetate and 10 mM cyclohexanone. Each flask was incubated for 6 hrs at 30°C to allow for the induction of the cyclohexanone degradation genes. The cultures were then chilled on iced, harvested by centrifugation and washed three times with ice-cold S12 medium lacking traces of yeast extract. Cells were finally resuspended to an optical density of 2.0 at 600 nm and kept on ice until assayed.

Half a ml of each culture was placed in a water jacketed respirometry cell equipped with an oxygen electrode (Yellow Spring Instruments Co., Yellow spring, OH) and containing 5 ml of air saturated S12 medium at 30°C. After establishing the baseline respiration for each of the cell suspensions, acetate or cyclohexanone was added to a final concentration of 0.02% and the rate of O₂ consumption was further monitored.

35 Identification of Cyclohexanone Oxidation Genes

Identification of genes involved in the oxidation of cyclohexanone made use of the fact that this oxidation pathway is inducible. The mRNA populations of a control culture and a cyclohexanone-induced culture were

compared using a technique based on the random amplification of DNA fragments by reverse transcription followed by PCR.

Isolation of Total Cellular RNA

2.400 beats per min for two min.

15

20

30

35

The cyclohexanone oxidation pathway was induced by addition of 0.1% cyclohexanone into one of two "split" 10 ml cultures of Brevibacterium sp. HCU grown in S12 medium. Each culture was chilled rapidly in an ice-water bath and transferred to a 15 ml tube. Cells were collected by centrifugation for 2 min at 12,000 x g in a rotor chilled to -4°C. The supernatants were discarded, the pellets resuspended in 0.7 ml of ice-cold solution of 1% SDS and 100 mM sodium acetate at pH 5 and transferred to a 2 ml tube containing 0.7 ml of aqueous phenol pH 5 and 0.3 ml of 0.5 mm zirconia beads (Biospec Products, Bartlesville, OK). The

tubes were placed in a bead beater (Biospec) and disrupted at

Following the disruption of the cells, the liquid phases of the tubes were transferred to new microfuge tubes and the phases separated by centrifugation for 3 min at 15,000 x g. The aqueous phase containing total RNA was extracted twice more with phenol at pH 5 and twice with a mixture of phenol/chloroform/isoamyl alcohol pH 7.5 until a precipitate was no longer visible at the phenol/water interface. Nucleic acids were then recovered from the aqueous phase by ethanol precipitation with three volumes of ethanol and the pellet resuspended in 0.5 ml of diethyl pyrocarbonate (DEPC) treated water. DNA was digested by 6 units of RNAss-free DNAse (Boehringer Mannheim, Indianapolis, IN) for 1 hr at 37°C. The total RNA solution was then extracted twice with phenol/chloroform/isoamyl alcohol pH 7.5, recovered by ethanol precipitation and resuspended in 1 ml of DEPC treated water to an

Generation of RAPDs Patterns From Arbitrarily Reverse-Transcribed Total RNA

approximate concentration of 0.5 mg per ml.

Arbitrarily amplified DNA fragments were generated from the total RNA of control and induced cells by following the protocol described by Wong K.K. et al. (Proc Natl Acad Sci U S A. 91:639 (1994)). A series of parallel reverse transcription (RT)/PCR amplification experiments were performed using a RT-PCR oligonucleotide set. This set consisted of 81 primers, each designed with the sequence CGGAGCAGATCGAVVVV (SEQ ID NO:63) where VVVV represent all the combinations of the three bases A, G and C at the last four positions of the 3'-end.

PCT/US02/27549 WO 03/020890

The series of parallel RT-PCR amplification experiments were performed on the total RNA from the control and induced cells, each using a single RT-PCR oligonucleotide. Briefly, 50 µl reverse transcription (RT) reactions were performed on 20-100 ng of total RNA using 100 U

Moloney Murine Leukemia Virus (MMLV) reverse transcriptase (Promega, Madison, WI) with 0.5 mM of each dNTP and 1 mM for each oligonucleotide primer. Reactions were prepared on ice and incubated at 37°C for 1 hr.

Five ul from each RT reaction were then used as template in a 50 μl PCR reaction containing the same primer used for the RT reaction (0.25 µM), dNTPs (0.2 mM each), magnesium acetate (4 mM) and 2.5 U of the Tag DNA polymerase Stoffel fragment (Perkin Elmer, Foster City, CA). The following temperature program was used: 94°C (5 min), 40°C (5 min), 72°C (5 min) for 1 cycle followed by 40 cycles of 94°C (1 min), 60°C (1 min), 72°C (5 min). 15

10

20

25

RAPD fragments were separated by electrophoresis on acrylamide gels (15 cm x 15 cm x 1.5 mm, 6% acrylamide, 29:1 acryl:bisacrylamide, 100 mM Tris, 90 mM borate, 1 mM EDTA pH 8.3). Five µl from each PCR reaction were analyzed with the reactions from the control and the induced RNA for each primer running side by side. Electrophoresis was performed at 1 V/cm. DNA fragments were visualized by silver staining using the Plus One® DNA silver staining kit in the Hoefer automated gel stainer (Amersham Pharmacia Biotech, Piscataway, NJ).

Reamplification of the Differentially Expressed DNA

Stained gels were rinsed extensively for one hr with distilled water. Bands generated from the RNA of cyclohexanone induced cells but absent in the reaction from the RNA of control cells were excised from the gel and placed in a tube containing 50 µl of 10 mM KCl and 10 mM Tris-HCI (pH 8.3) and heated to 95°C for 1 hr to allow some of the DNA to diffuse out of the gel. Serial dilutions of the eluate over a 200 fold range were used as template for a new PCR reaction using the Taq polymerase. The primer used for each reamplification (0.25 µM) was the one that had generated the pattern.

Each reamplified fragment was cloned into the blue/white cloning vector pCR2.1 (Invitrogen, San Diego, CA) and sequenced using the universal forward and reverse primers (M13 Reverse Primer (SEQ ID NO:64) and M13 (-20) Forward Primer (SEQ ID NO:65).

Extension of monooxygenase fragments by Out-PCR.

Kilobase-long DNA fragments extending the sequences fragments identified by differential display were generated by "Out-PCR", a PCR technique using an arbitrary primer in addition to a sequence specific

5 primer. The first step of this PCR-based gene walking technique consisted of randomly copying the chromosomal DNA using a primer of arbitrary sequence in a single round of amplification under low stringency conditions. The primers used for Out-PCR were chosen from a primer set used for mRNA differential display and their sequences were

CGGAGCAGATCGAVVVV (SEQ ID NO:63) where VVVV was A, G or C. Ten Out-PCR reactions were performed, each using one primer of arbitrary sequence. The reactions (50 µl) included a 1X concentration of the rTth XL buffer provided by the manufacturer (Perkin-Elmer, Foster City, CA), 1.2 mM magnesium acetate, 0.2 mM of each dNTP, 10-100 ng genomic DNA, 0.4 mM of one arbitrary primer and 1 unit of rTth XL polymerase (Perkin-Elmer). A five min annealing (45°C) and 15 min extension cycle (72°C) lead to the copying of the genomic DNA at arbitrary sites and the incorporation of a primer of arbitrary but known sequence at the 3' end.

15

20

25

30

After these initial low stringency annealing and replication steps. each reaction was split into two tubes. One tube received a specific primer (0.4 mM) designed against the end of the sequence to be extended and directed outward, while the second tube received water and was used as a control. Thirty additional PCR cycles were performed under higher stringency conditions with denaturization at 94°C (1 min), annealing at 60°C (0.5 min) and extension at 72°C (10 min). The long extension time was designed to allow for the synthesis of long DNA fragments by the long range rTth XL DNA polymerase. The products of each pair of reactions were analyzed in adjacent lanes on an agarose gel.

Bands present in the sample having received the specific primer but not in the control sample were excised from the agarose gel, melted in 0.5 ml H₂O and used as the template in a new set of PCR reactions. A 1X concentration of rTth XL buffer, 1.2 mM magnesium acetate, 0.2 mM of each dNTP, 0.4 mM of primers, 1/1000 dilution of the melted slice and 35 1 unit of rTth XL polymerase were used for these reactions. The PCR was performed at 94°C (1 min), 60°C (0.5 min), and 72°C (15 min) per cycle for 20 cycles. For each of these reamplification reactions, two control reactions, lacking either the arbitrary primer or the specific primer, were

included in order to confirm that the reamplification of the band of interest required both the specific and arbitrary primer. DNA fragments that required both the specific and arbitrary primer for amplification were sequenced. For sequencing, the long fragments obtained by Out-PCR were partially digested with Mbol and cloned into pCR2.1 (Invitrogen, Carlsbad, CA). Sequences for these partial fragments were obtained using primers designed against the vector sequence.

EXAMPLE 3

Isolation of a Acidovorax sp. CHX Monooxygenase Gene Involved in Degradation of Cyclohexane

This Example describes the isolation of the cyclohexane degrader Acidovorax sp. CHX. Discovery of a BVMO gene was accomplished using differential display methods.

Strain Isolation

10

15

30

An enrichment for bacteria growing on cyclohexane as a sole carbon source was started by adding 5 ml of an industrial wastewater sludge to 20 ml of mineral medium (50 mM KHPO₄ (pH 7.0), 10 mM (NH₄)SO₄, 2 mM MgCl₂, 0.7 mM CaCl₂, 50 μM MnCl₂, 1 μM FeCl₃, 1 μM ZnCl₃, 1.72 μM CuSO₄, 2.53 μM CoCl₂, 2.42 μM Na₂MoO₂, and 0.0001% 20 FeSO₄) in a 125 ml Erlenmeyer flask sealed with a Teflon lined screw cap. A test tube containing 1 ml of a mixture of mineral oil and cyclohexane (8/1 v/v) was fitted in the flask to provide a low vapor pressure of cyclohexane (approximately 30% of the vapor pressure of pure cyclohexane). The enrichment was incubated at 30°C for a week. Periodically, 1 to 10 dilutions of the enrichment were performed in the 25 same mineral medium supplemented with 0.005% of yeast extract under low cyclohexane vapors. After several transfers, white flocks could be seen in the enrichments under cyclohexane vapors. If cyclohexane was omitted, the flocks did not grow.

After several transfers, the flocks could be grown with 4 µl of liquid cyclohexanone added directly to 10 ml of medium. To isolate colonies, flocks were washed in medium and disrupted by thorough shaking in a bead beater. The cells released from the disrupted flocks were streaked onto R2A medium agar plates and incubated under cyclohexane vapors. Pinpoint colonies were picked under a dissecting microscope and inoculated in 10 ml of mineral medium supplemented with 0.01% yeast extract and 4 µl of cyclohexane. The flocks were grown, disrupted and streaked again until a pure culture was obtained.

Taxonomic identification of this isolate was performed by PCR amplification of 16S rDNA, as described in the General Methods. The 16S rRNA gene sequence from strain CHX was at least 98% homologous to the 16S rRNA gene sequence of an uncultured bacterium (Seq.

Accession number AF143840) and 95% homologous to the 16s rRNA gene sequences of the genus Acidovorax termperans (Accession number AF078766). The complete 16s DNA sequence of the isolated Acidovorax sp. CHX is shown as SEQ ID NO:5.

Induction of Cyclohexane Degradation Genes

For induction of cyclohexane degradation genes, colonies of Acidovorax sp. CHX were scraped from an R2A agar plate and inoculated into 25 ml R2A broth. This culture was incubated overnight at 30°C. The next day 25 ml of fresh R2A broth was added and growth was continued for 15 min. The culture was split into two separate flasks, each of which received 25 ml. To one of these flasks, 5 µl of pure cyclohexane was added to induce expression of cyclohexane degradation genes. The other flask was kept as a control. Differential display was used to identify the Acidovorax sp. CHX monooxygenase gene. Identification of cyclohexane induced gene sequences and sequencing cyclohexanone oxidation genes 20 from strains was performed in a similar manner as described in Example 1.

EXAMPLE 4

Isolation of a Acinetobacter sp. SE19 Monooxygenase Gene Involved in Degradation of Cyclohexanol

This Example describes the isolation of the cyclohexanol degrader Acinetobacter sp. SE19. Discovery of a BV monooxygenase gene was accomplished by screening of cosmid libraries, followed by sequencing of shot-gun libraries.

Isolation of Strain

10

25

30

35

An enrichment for bacteria that grow on cyclohexanol was isolated from a cyclopentanol enrichment culture. The enrichment culture was established by inoculating 1 mL of activated sludge into 20 mL of S12 medium (10 mM ammonium sulfate, 50 mM potassium phosphate buffer (pH 7.0), 2 mM MgCl₂, 0.7 mM CaCl₂, 50 uM MnCl₂, 1 uM FeCl₃, 1 uM ZnCl₃, 1.72 uM CuSO₄, 2.53 uM CoCl₂, 2.42 uM Na₂MoO₂, and 0.0001% FeSO₄) in a sealed 125 mL screw-cap Erlenmever flask. The enrichment culture was supplemented with 100 ppm cyclopentanol added directly to the culture medium and was incubated at 35°C with reciprocal shaking.

The enrichment culture was maintained by adding 100 ppm cyclopentanol every 2-3 days. The culture was diluted every 2-10 days by replacing 10 mL of the culture with the same volume of S12 medium. After 15 days of incubation, serial dilutions of the enrichment culture were spread onto

LB plates. Single colonies were screened for the ability to grow on S12 liquid with cyclohexanol as the sole carbon and energy source. The cultures were grown at 35°C in sealed tubes. One of the isolates, strain SE19 was selected for further characterization.

The 16s rRNA genes of SE19 isolates were amplified by PCR according to the procedures of the General Methods. Result from all 10 isolates showed that strain SE19 has close homology to Acinetobacter haemolyticus and Acinetobacter junii, (99% nucleotide identity to each). Construction Of Acinetobacter Cosmid Libraries

Acinetobacter sp. SE19 was grown in 25 ml LB medium for 6 h at 37°C with aeration. Bacterial cells were centrifuged at 6,000 rpm for 10 min in a Sorvall RC5C centrifuge at 4°C. Supernatant was decanted and the cell pellet was frozen at -80°C. Chromosomal DNA was prepared as outlined below with special care taken to avoid shearing of DNA. The cell pellet was gently resuspended in 5 ml of 50 mM Tris-10 mM EDTA (pH 8) and lysozyme was added to a final concentration of 2 mg/ml. The suspension was incubated at 37°C for 1 h. Sodium dodecyl sulfate was then added to a final concentration of 1% and proteinase K was added at 100 µg/ml. The suspension was incubated at 55°C for 2 h. The suspension became clear and the clear lysate was extracted with equal 25 volume of phenol:chloroform:isoamyl alcohol (25:24:1). After centrifuging at 12,000 rpm for 20 min, the aqueous phase was carefully removed and transferred to a new tube. Two volumes of ethanol were added and the DNA was gently spooled with a sealed glass pasteur pipet. The DNA was dipped into a tube containing 70% ethanol. After air drying, the DNA was resuspended in 400 µl of TE (10 mMTris-1 mM EDTA, pH 8) with RNaseA (100 µg/ml) and stored at 4°C. The concentration and purity of DNA was determined spectrophotometrically by OD₂₆₀/OD₂₈₀. A diluted aliquot of DNA was run on a 0.5% agarose gel to determine the intact nature of DNA.

20

35

Chromosomal DNA was partially digested with Sau3AI (GIBRO/BRL, Gaithersburg, MD) as outlined by the instruction manual for the SuperCos 1 Cosmid Vector Kit. DNA (10 µg) was digested with 0.5 unit of Sau3AI at room temperature in 100 µl of reaction volume. Aliquots

of 20 µl were withdrawn at various time points of the digestion: e.g., 0, 3, 6, 9, 12 min. DNA loading buffer was added and samples were analyzed on a 0.5% agarose gel to determine the extent of digestion. A decrease in size of chromosomal DNA corresponded to an increase in the length of

- time for Sau3AI digestion. The preparative reaction was performed using 50 µg of DNA digested with 1 unit of Sau3AI for 3 min at room temperature. The digestion was terminated by addition of 8 mM of EDTA. The DNA was extracted once with phenol:chloroform:isoamyl alcohol and once with chloroform. The aqueous phase was adjusted to 0.3 M NaOAc
- and ethanol precipitated. The partially digested DNA was dephosphorylated with calf intestinal alkaline phosphatase and ligated to SuperCos 1 vector, which had been treated according to the instructions in the SuperCos 1 Cosmid Vector Kit. The ligated DNA was packaged into lamda phage using Gigapack III XL packaging extract, as
- 15 recommended by Stratagene (manufacturer's instructions were followed). The packaged Acinetobacter genomic DNA library contained a phage titer of 5.6 x 10⁴ colony forming units per µg of DNA as determined by transfecting E. coli XL1-Blue MR. Cosmid DNA was isolated from six randomly chosen E. coli transformants and found to contain large inserts of DNA (25-40kb).
 - Identification and Characterization of Cosmid Clones Containing a Cyclohexanone Monooxygenase Gene
- The cosmid library of *Acinetobacter* sp. SE19 was screened based on the homology of the cyclohexanone monooxygenase gene. Two primers, monot.: GAGTCTGAGCATATGTCACAAAAAATGGATTTTG
- (SEQ ID NO:66) and monoR:
 GAGTCTGAGGGATCCTTAGGCATTGGCAGGTTGCTTGAT (SEQ ID NO:67) were designed based on the published sequence of
- cyclohexanone monooxygenase gene of *Acinetobacter sp.* NCIB 9871.

 The cosmid library was screened by PCR using monoL and monoR primers. Five positive clones (5B12, 5F5, 8F6, 14B3 and 14D7) were identified among about 1000 clones screened. They all contain inserts of
- 35-40 kb that show homology to the cyclohexanone monooxygenase gene amplified by monoL and monoR primers. Southern hybridization using this gene fragment as a probe indicated that the cosmid clone 5B12 has about 20kb region upstream of the monooxygenase gene and cosmid

Cosmid clone 14B3 contains rearranged Acinetobacter DNA adjacent to the monooxygenase gene.

Construction of shot-gun sequencing libraries

15

20

25

Shot gun libraries of 5B12 and 8F6 were constructed. Cosmid DNA 5 was sheared in a nebulizer (Inhalation Plastics Inc., Chicago, IL) at 20 psi for 45 sec and the 1-3 kb portion was gel purified. Purified DNA was treated with T4 DNA polymerase and T4 polynucleotide kinase following manufacturer's (GIBCO/BRL) instructions. Polished inserts were ligated into pUC18 vectors using Ready-To-Go pUC18Smal/BAP+Ligase (GIBCO/BRL). The ligated DNA was transformed into E. coli DH5α cells and plated on LB with ampicillin and X-gal. A majority of the transformants were white and those containing inserts were sequenced with the universal and reverse primers of pUC18 by standard sequencing methods.

Shot gun library inserts were sequenced with pUC18 universal and reverse primers. Sequences of 200-300 clones from each library were assembled using Sequencher 3.0 program. A contig of 17419 bp containing the cyclohexanone monooxygenase gene was formed.

EXAMPLE 5

Isolation and Sequencing of Rhodococcus erythropolis AN12 This Example describes isolation of Rhodococcus erythropolis AN12 strain from wastestream sludge. A shotgun sequencing strategy approach permitted sequencing of the entire microbial genome. Isolation of Rhodococcus erythropolis AN12

Strain AN12 of Rhodococcus erythropolis was isolated on the basis of ability to grow on aniline as the sole source of carbon and energy. Bacteria that grow on aniline were isolated from an enrichment culture. The enrichment culture was established by inoculating 1 ml of activated sludge into 10 ml of \$12 medium (10 mM ammonium sulfate, 50 mM 30 potassium phosphate buffer (pH 7.0), 2 mM MgCl₂, 0.7 mM CaCl₂, 50 μM MnCl₂, 1 μM FeCl₃, 1 μM ZnCl₃, 1.72 μM CuSO₄, 2.53 μM CoCl₂, 2.42 μM Na₂MoO₂, and 0.0001% FeSO₄) in a 125 ml screw cap Erlenmeyer flask. The activated sludge was obtained from a DuPont wastewater treatment facility. The enrichment culture was supplemented with 100 ppm aniline added directly to the culture medium and was incubated at 25°C with 35 reciprocal shaking. The enrichment culture was maintained by adding 100 ppm of aniline every 2-3 days. The culture was diluted every 14 days by replacing 9.9 ml of the culture with the same volume of S12 medium.

Bacteria that utilize aniline as a sole source of carbon and energy were isolated by spreading samples of the enrichment culture onto S12 agar. Aniline was placed on the interior of each petri dish lid. The petri dishes were sealed with parafilm and incubated upside down at room

5 temperature (25°C). Representative bacterial colonies were then tested for the ability to use aniline as a sole source of carbon and energy. Colonies were transferred from the original S12 agar plates used for initial isolation to new S12 agar plates and supplied with aniline on the interior of each petri dish lid. The petri dishes were sealed with parafilm and lncubated upside down at room temperature (25°C).

A 16S rRNA gene of strain AN12 was sequenced (SEQ ID NO:6) as described in the General Methods and compared to other 16S rRNA sequences in the GenBank sequence database. The 16S rRNA gene sequence from strain AN12 was at least 98% homologous to the 16S rRNA gene sequences of high G + C Gram positive bacteria belonging to the genus *Rhodococcus*.

Preparation of Genomic DNA for Sequencing and Sequence Generation Genomic DNA and library construction were prepared according to published protocols (Fraser et al. Science 270(5235): 397-403 (1995)). A cell pellet was resuspended in a solution containing 100 mM Na-EDTA (bH 8.0), 10 mM Tris-HCI (pH 8.0), 400 mM NaCl, and 50 mM MgCl₂.

Genomic DNA preparation After resuspension, the cells were gently lysed in 10% SDS, and incubated for 30 minutes at 55°C. After incubation at room temperature, proteinase K (Boehringer Mannheim, Indianapolis, IN) was added to 100 µg/ml and incubated at 37°C until the suspension was clear. DNA was extracted twice with Tris-equilibrated phenol and twice with chloroform. DNA was precipitated in 70% ethanol and resuspended in a solution containing 10 mM Tris-HCl and 1 mM Na-EDTA (TE buffer) pH 7.5. The DNA solution was treated with a mix of RNAases, then extracted twice with Tris-equilibrated phenol and twice with chloroform. This was followed by precipitation in ethanol and resuspension in TE buffer.

<u>Library construction</u> 200 to 500 µg of chromosomal DNA was resuspended in a solution of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, and 30% glycerol, and sheared at 12 psi for 60 sec in an Aeromist Downdraft Nebulizer chamber (IBI Medical products, Chicago, IL). The DNA was precipitated, resuspended and treated with Bal31 nuclease (New England Biolabs, Beverly, MA). After size fractionation, a

35

fraction (2.0 kb, or 5.0 kb) was excised, cleaned and a two-step ligation procedure was used to produce a high titer library with greater than 99% single inserts.

Sequencing A shotgun sequencing strategy approach was adopted for the sequencing of the whole microbial genome (Fleischmann, R. et al. Whole-Genome Random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223): 496-512 (1995)).

EXAMPLE 6

Identification and Characterization of Bacterial Genes Genes encoding each monooxygenase were identified by 10 conducting BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The sequences obtained in Examples 1, 2, 3, 4, and 5 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology 20 Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX BLOSUM62 algorithm with a gap exisitense cost of 11 per residue gap cost of 2, filtered, gap alignment (Gish, W. and States, D. J. Nature Genetics 25 3:266-272 (1993)) provided by the NCBI.

All comparisons were done using either the BLASTNnr or BLASTXnr algorithm. The results of the BLAST comparisons are given in Table 3 which summarize the sequence to which each sequence has the most similarity. Table 3 displays data based on the BLASTXnr algorithm with values reported in expect values. The Expect value estimates the statistical significance of the match, specifying the number of matches, with a given score, that are expected in a search of a database of this size absolutely by chance.

35

30

TABLE

7						
Citation	Cheng, Q., et al. J. Bacteriol. 182: 4744- 4751 (2000)	Cheng, Q., et al. J. Bacteriol. 182: 4744- 4751 (2000)	Cheng, Q., et al. J. Bacteriol. 182: 4744- 4751 (2000)	Moril, S., et al. J. Biochem. 126 (3): 624- 631 (1999)	Moril, S., et al. J. Biochem. 126 (3): 624- 631 (1999)	Cheng, Q., et al. J. Bacteriol, 182: 4744- 4751 (2000)
E- value ^c	9-174	e-163	e-106	ө-122	2e-94	0.0
% Similarity ^b	<u>r</u>	29	72	26	g,	73
% Identity ^a	SS	53	57	4	88	57
SEQ ID Peptid	ω	10	. 12	4	16	18
SEQ ID base	7	о	Ξ.	5	15	17
Similarity Identified	>gb AAG10021.1 AF282240_5 (AF282240) cyclohexanone monooxygenase (Acinetobacter sp. SE19]	>gb AAG10021.1 AF282240_5 (AF282240) cyclohexanone monooxygenase [Acinetobacter sp. SE19]	>gb AAG10021.1 AF282240_5 (AF282240) cyclohexanone moncoxygenase (Acinetobacter sp. SE19]	Sufflic7158 steroid monooxygenase (EC 114.99). Rhodococus modochrous dellgAA24454.1 (AB010439) steroid monooxygenase (Rhodococcus rhodochrous)	> <u>pfr UC7158</u> steroid monooxygenase (EC 1.14.89) - Rhodococus rhodochrous db JaAA24454.1 (AB010439) steroid monooxygenase (Rhodococcus rhodochrous)	>gb AAG10021.1 AF282240_5 (AF282240) cyclohexanone mohooxygenase [Acinetobacter sp. SE19]
Gene Name and Organism of Isolation	chnB Rhodococcus sp. phi 1	chnB Rhodococcus sp. phl 2	chnB Arthrobacter sp. BP2	chnB1 Bravibacterlu m sp. HCU	chnB2 Brevibacterlu m sp. HCU	chnB Acidovorax sp.CHX
ORF	-	2	က	4	ເດ	9

Citation	Chen, Y.C., et al. <i>J.</i> Bacteriol, 170 (2): 781- 789 (1988)	Seeger, K.J., et al. Direct Submission (??- AUG-1999) to the EMBL Data Library	Redenbach, M., et al. <i>Mol. Microbiol.</i> 21 (1): 77-96 (1996)	Morli, S., et al. <i>J.</i> <i>Biochem</i> , 126 (3), 624- 631 (1999)	Nierman, W.C., et al. Proc. Natl. Acad. Sol. U.S.A. 98 (7): 4136- 4141 (2001)
E- value ^C	0.0	6e-58	e-118	0:0	e-176
% Similarity ^b	66	50	61	76	74
% identity ^a	66	37	4	2 8	65
SEQ ID Peptid	20	22	24	56	88 ·
SEQ ID base	6	21	g .	52	27
Similarity Identified	adbileAA86293.11 (AB006902) oydolveantoren 12-monoxygenase (Acinetobacter sp.) dbijlaAB61738.11 (AB028668) oydolvexanore 1,2- monoxygenase (Acinetobacter sp. NCIMB98711	>pri[[137052 probable fleviv-containing monoxygenese - Streptomyces coelicolor can emb(cA5249.1) (AL10974) putative flevin-containing monoxygenese (Streptomyces coelicolor A312))	>emb[CAB59686.1] (AL 132674) monooxygenase, [Streptomyces coelicolor A3(2)]	PpirijuC715B steroid monooxygenase (EC 114.89-)- Rhodococcus rhodochrous dbjjBAA24454.1 (AB010439) steroid monoxygenase [Rhodococcus rhodochrus]	Pgb/AA/C2759.1 (AE005753) monooxygenase, flavin-binding family [Caulobacter crescentus]
Gene Name and Organism of	chnB Acinetobacter sp. SE19	ORF 8 chnB Rhodococcus erythropolis AN12	ORF 9 chnB Rhodococcus erythropolis	ORF 10 chnB Rhodococcus erythropolis AN12	ORF 11 chnB Rhodococus erythropolis AN12
ORF Name	7	ω	6	0	-

Citation	Redenbach, M., et al. <i>Mol. Microbiol.</i> 21 (1): 77-96 (1996)	Nierman, W.C., et al. Proc. Natl. Acad. Scl. U.S.A. 98 (7): 4136- 4141 (2001)	Morii, S., et al. J. Blochem. 126 (3), 624- 631 (1999)	Freiberg, C.A., et al. Nature 387: 394-401 (1997).	Stover, C.K., et al. Nature 406 (6799): 959-964 (2000)
E- value ^c	e-124	е-159	e-154	6145	ө-119
identitya Similarityb value ^C	63	89	. 92	28	98
% Identity ^a	45	55	51	38	43
SEQ ID Peptid	30	32	34	ge Se	88
SEQ base	29	34	83	38	37
Similarity identified	>emb[CAB59688.1 (AL132674) monooxygenase, [Streptomyces coelicolor A3(2)]	Pgb AAK24539.1 (AE005925) monooxygenase, flavin-binding family [Caulobacter crescentus]	Ppir[JuC7158 steroid monooxygenase [Ed. 14.89-)- Rhodococus modochrous dol[BAZ4454.1 (AB010439) steroid monoxygenase [Rhodococcus monoxygenase [Rhodococcus monoxygenase]	ssple56.87/Y4ID_RHISN PROBABLE MONOOXYGENASE Y4ID gb/AB91699.11 (AE000078) Y4ID [Rhizoblum sp. NGR234]	Ppir[J683453 probable illeninograminogramonos autorinos autonomos
Gene Name and Organism of	ORF 12 chnB Rhodococcus erythropolis	ORF 13 chnB Rhodococcus erythropolis	ORF 14 chnB Rhodococcus erythropolis AN12	ORF 15 chnB Rhodococcus erythropolis	ORF 16 chnB Rhodococcus erythropolis AN12
ORF	12	13	4	5	16

							_		-	-		_		-	-	- Mary		_	_		_	_	_	_	_
Citation	i i		Cole, S.T., et al. Nature 393 (6685):	237-244 (1990)					Stover, C.K., et al.	Nature 406 (6799):	959-964 (2000)				/ c +0 O 2000	Doctoriol 180 (17):	4744 4754 (2000)	(2002)		Morii S. ata J.	Biochem. 126 (3): 624-	631 (1999)	(2001) 100		
-	valuec		e-150						e-117						100	00				4123	1				
/0	Identitya Similarityb value	_	02						99						٤	200				90	3				
,	% Identitya		53						44						;	ķ				CV	7				
020	ğ o	Peptid	9						42							4				94	?				
	ij <u>0</u>	pase	98						14							5				ļ	2				
	Similarity Identified		>pir G70852 hypothetical protein Rv3083 - Mycobacterium tuberculosis (strain	H37RV)	emb[CAA16141.1] (AL021309) hypothetical protein Rv3083	[Mycobacterium tuberculosis]	monooxxgenase, flavin-binding family	[Mycobacterium tuberculosis	>pir A83453 probable flavin-containing	monooxygenase PA1538 [imported] -	Pseudomonas aeruginosa (strain PAO1)	gb AAG04927.1 AE004582_5	(AE004582) probable flavin-containing	monooxygenase [Pseudomonas	aeruginosa	>gb AAG10021.1 AF282240_5	(AF282240) cyclohexanone	monooxygenase [Acinetobacter sp.	SE19]		Spiriluc/158 steroid monooxygenase	(EC 1.14.99) - Knodococcus	rhodochrous	dbj BAA24454.1 (AB010439) steroid	monooxygenase [Rhodococcus
	Gene Name and	Organism of	ORF 17 chnB	Rhodococcus	erythropolis AN12				ORF 18 chnB		Rhodococcus	erythropolis	AN12			ORF 19 chnB		Rhodococcus	erythropolis	AN12	ORF 20 chnB		Rhodococcus	erythropolis	AN12
	ä	Name	17						18	:						19					20				

a % identity is defined as percentage of amino acids that are identical between the two proteins.

by, smilativi is defined to a percentage of amino acids that are identical or conserved between the two proteins.

Cappect value. The Expect value estimates the satisfacial agrificance of the match, specifying the number of matches, with a given score, that are expected in a search of a database of this size absolutely by chance.

EXAMPLE 7

Cloning and Expression Of Monooxygenase Genes into Escherichia coli

This example illustrates the expression in *E. coli* of isolated full length BVMO genes from *Bravibacterium* sp. HCU, *Acinetobacter* SE19, *Rhodococcus* sp. phi1, *Rhodococcus* sp. phi2, *Arthrobacter* sp. BP2 and *Acidovorax* sp. CHX.

Full length BVMO's were PCR amplified, using chromosomal DNA as the template and the primers shown below in Table 4.

<u>Table 4</u>
Primers Used for Amplification of Full-Length BV Monooxygenases

10

15

20

Monooxygenase	Forward Primer	Reverse Primer
Brevibacterium sp.	atgccaattacacaacaacttgacc	ctatttcatacccgccgattcac
HCU chnB1	(SEQ ID NO:68)	(SEQ ID NO:69)
Brevibacterium sp.	atgacgtcaaccatgcctgcac	cacttaagtcgcattcagccc
HCU chnB2	(SEQ ID NO:70)	(SEQ ID NO:71)
Acinetobacter sp.	atggattttgatgctatcgtg	ggcattggcaggttgcttg
SE19 chnB	(SEQ ID NO:72)	(SEQ ID NO:73)
Arthrobacter sp.	atgactgcacagaacactttcc	tcaaagccgcggtatccg
BP2 chnB	(SEQ ID NO:74)	(SEQ ID NO:75)
Rhodococcus sp.	atgactgcacagatctcacccac	tcaggcggtcaccgggacagcg
phi1 chnB	(SEQ ID NO:76)	(SEQ ID NO:77)
Rhodococcus sp.	atgaccgcacagaccatccacac	tcagaccgtgaccatctcgg
phi2 chnB	(SEQ ID NO:78)	(SEQ ID NO:79)
Acidovorax sp. CHX	atgtcttcctcgccaagcagc	cagtggttggaacgcaaagcc
chnB	(SEQ ID NO:80)	(SEQ ID NO:81)

Following amplification, the *chnB* gene fragments were cloned into pTrcHis-TOPO TA vectors with either an N-terminal tail or C-terminal tail, as provided by the vector sequence (N-terminal tail for *Brevibacterium sp.* HCU, *Rhodococcus sp.* phi1, *Rhodococcus sp.* phi2, and *Arthrobacter sp.* BP2 monooxygenases; C-terminal tail for *Acinetobacter sp.* SE19 and *Acidovorax sp.* CHX monooxygenases). These vectors were transformed into *E. coli*, with transformants grown in Luria-Bertani broth supplemented with amplicillin (100 ug/ml) and inoficiarin (0.1 ug/ml) at 30°C until the absorbance at 600 nm (A600) reached 0.5. When the A600 was reached, the temperature was shifted to 16°C.

The encoded monooxygenase sequences were expressed upon addition of IPTG to the culture media, 30 min after the temperature shift to 16°C. The cultures were grown further overnight (14 hrs) and harvested by centrifugation in a cold centrifuge. The cells were treated with lysozyme (100 mg/ml) for 30 min on ice and sonicated. Following sonication, cell extracts were centrifuged and the supernatant was equilibrated with Ni-NTA resin (Qiagen, Valencia, CA) for 1 hr at 4°C. Protein bound resin was washed successively with increasing concentrations of imidazole buffer until the protein of interest was released from the resin. The purified protein was concentrated and the buffer exchanged to remove the imidazole. The protein concentration was

EXAMPLE 8

Assays of chnB Monooxygenase Activities of Brevibacterium sp. HCU. Acinetobacter SE19, Rhodococcus sp. phi1, Rhodococcus sp. phi2, Arthrobacter sp. BP2 and Acidovorax sp. CHX.

adjusted to 1 ug/ml.

15

25

30

The chnB monooxygenase activity of each over-expressed enzyme from Example 7 was assayed against various ketone substrates: cyclobutanone, cyclopentanone, 2-methylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, cyclohex-2-ene-1-one, 1,2-20 cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, cycloheptanone, cyclooctanone, cyclodecanone, cycloundodecanone, cyclododecanone, cyclotridecanone, cyclopentadecanone, 2-tridecanone. 2-phenylcyclohexanone, diheyl ketone, norcamphor, beta-ionone, oxindole, levoglucosenone, dimethyl sulfoxide, dimethyl-2-piperidone, and phenylboronic acid. Compounds were selected on the basis of previous observations by van der Werf (J. Biochem. 347:693-701 (2000)) and Miyamoto et al. (Biochimica et Biophysica Acta 1251: 115-124 (1995)) and by searches for the ketone substructure.

All compounds were obtained from Sigma-Aldrich with only two exceptions. Levoglucosenone was obtained from Toronto Reseach Chemicals, Inc. and dimethyl-2-piperidone was prepared according to U.S. Patent 6,077,955. For enzyme assays all compounds were dissolved to a concentration of 0.1 M in methanol, with the exceptions of norcamphor (dissolved in ethyl acetate), cyclododecanone, cycltridecanone and cyclopentadecanone (dissolved in propanol), and levoglucosenone (dissolved with acetone).

The monooxygenase activity of each over-expressed enzyme was assayed spectrophotometrically at 340 nm by monitoring the oxidation of NADPH. Assays were performed in individual quartz cuvettes, with a pathlength of 1 cm. The following components were added to the cuvette 5 for the enzyme assays: 380 ul of 33.3 mM MES-HEPES-sodium acetate buffer (pH 7.5), 5 µl of 0.1 M substrate (1.25 mM final concentration), 10 μl of 1 μg/μl enzyme solution (10 ng total, 0.025 ng/μl) and 5 ul NADPH (1.2 M. 15 mM final concentration). An Ultrospec 4000 (Pharmacia Biotech, Cambridge, England) was used to read the absorbance of the 10 samples over a two to ten minute time period and the SWIFT (Pharmacia Biotech) program was used to calculate the slope of the reduction in absorbance over time. For the Brevibacterium sp. HCU chnB2, the rates were multiplied by a factor of 3.25 to adjust for decrease in activity due to storage as suggested by the literature (J. Bacteriol. 2000. 182: 15 p.4241-4248). Monooxygenase activity of each over-expressed enzyme is shown in Table 5, with respect to each ketone substrate. The specific activity values listed are given in umol/min/mg. The notation "ND" refers

Graphical representation of the data shown in Table 5 is also provided in Figures 1, 2, 3, 4, and 5.

to "No Activity Detected".

<u>Table 5</u>
<u>Specific Activity of Monooxygenase Enzymes Against Various</u>
Ketone Substrates

		Kelon	e Subsi	iaces			
				Species			
Compound	sp.	sp.	sp.	sp.	sp.	sp.	sp.
	HCU	HCU	SE19	BP2	CHX	phi1	phi2
	chnB1	chnB2	chnB	chnB	chnB	chnB	chnB_
Norcamphor	0.410	1.331	4.474	2.842	0.166	1.504	2.816
Cyclobutanone	ND	0.374	0.109	0.128	ND	0.102	0.154
Cyclopentanone	ND	1.331	3.034	1.491	0.621	1.370	2.451
2-methyl- cyclopentanone	1.395	0.874	8.378	3.514	0.627	3.392	6.445
Cyclohexanone	2.765	1.726	6.349	3.565	0.397	3.680	3.750

	Species								
Compound	sp.	sp.	sp.	sp.	sp.	sp.	sp.		
	HCU	HCU	SE19	BP2	СНХ	phi1	phi2		
	chnB1	chnB2	chnB	chnB	chnB	chnB	chnB		
2-methyl-	2.714	1.622	9.990	4.205	0.627	4.774	5.952		
cyclohexanone									
Cyclohex-2-ene-1-	0.435	0.541	5.357	2.739	0.666	2.694	3.091		
one									
1,2-	0.787	0.416	0.077	0.237	0.096	0.083	ND		
cyclohexanedione									
1,3-	0.237	0.978	0.237	0.397	0.032	ND	0.141		
cyclohexanedione									
1,4-	3.405	1.123	8.346	3.994	0.794	3.302	6.150		
cyclohexanedione									
Cycloheptanone	0.646	0.374	8.422	3.846	0.608	3.622	6.234		
Cyclooctanone	ND	ND	1.984	0.646	0.410	0.627	0.141		
Cyclodecanone	ND	ND	0.320	0.166	0.160	0.077	0.205		
Cycloundecanone	ND	0.125	0.064	0.064	0.058	ND	0.051		
Cyclododecanone	ND	0.229	0.122	0.198	0.051	ND	0.122		
Cyclotridecanone	ND	ND	0.166	0.147	NE	ND	0.109		
Cyclopenta-	ND	ND	0.109	0.122	NE	0.122	. ND		
decanone		 					4.000		
2-tridecanone	ND	0.187	NE	NE	0.096	0.160	1.690		
dihexyl ketone	ND	0.270	NE	NE	NE	0.160	ND		
2-phenyl- cyclohexanone	1.459	0.104	5.370	NE	0.192	1.050	0.730		
Oxindole	2.438	0.229	7.091	4.845	0.307	3.411	4.858		
Levoglucosenone	NE	NE	1.126	0.525	0.147	0.461	0.506		

	Species							
Compound	sp.	sp.	sp.	sp.	sp.	sp.	sp.	
	HCU	HCU	SE19	BP2	CHX	phi1	phi2	
	chnB1	chnB2	chnB	chnB	chnB	chnB	chnB	
dimethyl sulfoxide	0.230	ND	0.819	0.422	0.358	0.518	0.544	
dimethy-2- piperidone	2.822	0.354	8.384	4.154	0.557	3.539	6.509	
Phenylboronic acid	1.606	ND	0.102	0.192	ND	ND	0.109	
beta-ionone	0.109	0.374	3.347	1.485	0.544	2.707	0.544	

EXAMPLE 9

Cloning Of Rhodococcus erythropolis AN12 Monooxygenase Genes into Escherichia coli

This example illustrates the construction of a suite of recombinant E. coli, each containing a full length BVMOs from Rhodococcus erythropolis AN12.

5

Full length BV monooxygenases were PCR amplified, using chromosomal DNA as the template and the primers shown below in Table 10 6.

Table 6
Primers Used for Amplification of Full-Length BV Rhodococcus

erythropolis AN12 Monocxygenases

chnB	Forward Primer	Reverse Primer
Mono-		
oxygenase		
ORF 8	atg agc aca gag ggc aag tac gc	[tca] gtc ctt gtt cac gta gta ggc c
	(SEQ ID NO:82)	(SEQ ID NO:83)
ORF 9	atg gtc gac atc gac cca acc tc	tta tog got cot cac ggt ttc tog
	(SEQ ID NO:84)	(SEQ ID NO:85)
ORF 10	atg acc gat cct gac ttc tcc acc	tca tgc gtg cac cgc act gtt cag
	(SEQ ID NO:86)	(SEQ ID NO:87)
ORF 11	atg agc ccc tcc ccc ttg ccg ag	tca tgc gcg atc cgc ctt ctc gag
	(SEQ ID NO:88)	(SEQ ID NO:89)

chnB	Forward Primer	Reverse Primer
Mono-		
oxygenase		
ORF 12	gtg aac aac gaa tot gac cac tto	tca tgc ggt gta ctc cgg ttc cg
	(SEQ ID NO:90)	(SEQ ID NO:91)
ORF 13	atg agc acc gaa cac ctc gat g	tca act ctt gct cgg tac cgg cg
	(SEQ ID NO:92)	(SEQ ID NO:93)
ORF 14	atg aca gac gaa ttc gac gta gtg at	tca gct ctg gtt cac agg gac gg
	(SEQ ID NO:94)	(SEQ ID NO:95)
ORF 15	atg gcg gag ata gtc aat ggt cc	tca ccc tcg cgc ggt cgg agt c
	(SEQ ID NO:96)	(SEQ ID NO:97)
ORF 16	gtg aag ctt ccc gaa cat gtc gaa ac	tca tgc ctg gac gct ttc gat ctt g
	(SEQ ID NO:98)	(SEQ ID NO:99)
ORF 17	atg aca cag cat gtc gac gta ctg a	cta tgc gct ggc gac ctt gct atc
	(SEQ ID NO:100)	(SEQ ID NO:101)
ORF 18	atg tca tca cgg gtc aac gac ggc c	tca tcc ttt gcc tgt cgt cag tgc
	(SEQ ID NO:102)	(SEQ ID NO:103)
ORF 19	atg act aca caa aag gcc ctg acc	tca ggc gtc gac ggt gtc ggc c
	(SEQ ID NO:104)	(SEQ ID NO:105)
ORF 20	atg aca act acc gaa tcc aga act c	tca gcg cag att gaa gcc ctt gta tc
	(SEQ ID NO:106)	(SEQ ID NO:107)

Following amplification, the gene fragments were cloned into pTrcHis-TOPO TA vectors with either an N-terminal tail or C-terminal tail, as provided by the vector sequence. These vectors were transformed into *E. coli*, with transformants grown in Luria-Bertani broth supplemented with ampicillin (100 ug/ml).

EXAMPLE 10

<u>Assays of chnB Monooxygenase Activities of Rhodococcus erythropolis</u> AN12

The chnB monooxygenase activity of each expressed enzyme from Example 9 was tested for activity according to its ability to convert cyclohexanone to caprolactone.

Conversion of Cyclohexanone to Caprolactone.

10

Clones containing the full length monooxygenase genes were transferred from LB agar plate to 5 mL of M63 minimal media (GIBCO) containing 10 mM glycerol, 50 ug/mL ampicillin, 0.1 mM IPTG, and 500 mg/L cyclohexanone. In addition to the clones containing full length

monooxygenases, a plasmid without an insert and a "no cell" control were also assayed. The encoded monooxygenase sequences were expressed upon addition of IPTG to the culture media. The cultures were incubated overnight at room temperature (24°C). Samples (1.25 mL) for analysis were taken immediately after incubation and after overnight incubation; cells were removed by centrifugation (4°C, 13,000 rpm).

GC-MS Detection of Caprolactone

Caprolactone formed by the action of the cloned monooxygenase was extracted from the aqueous phase with ethylacetate (1.0 ml aqueous/0.5 mL ethylacetate). Caprolactone was detected by gas chromotagraphy mass spectrometry (GC-MS) analysis, using an Agilent 6890 Gas chromatograph system.

The analysis of the ethylacetate phase was performed by injecting 1 uL of the ethyl acetate phase into the GC. The inlet temperature was 115°C and the column temperature profile was 50° C for 4 min and ramped to 250°C at 20°C/min, for a total run time of 14 min. The compounds were separated with an Hewlet Packard HP-5MS (5% phenyl Methyl Siloxane) column (30 m length, 250 um diameter, and 0.25 um film thickness). The mass spectra was subtracted from the spectra at the retention time of caprolactone (9.857 min). Presence of caprolactone was confirmed by comparison of the test reactions to an authentic standard obtained from Aldrich Chemical Company (St. Louis, MO).

Results of these assays are shown below in Table 7, in terms of the

25 presence or absence of detectable caprolactone formation according to
the activity of each expressed BV monooxygenase enzyme.

Table 7 Ability of Monooxygenase Enzymes to Convert Cyclohexanone to Caprolactone

	Fo	rmation of Caprolact	one
Ī	Detected	Not Detected	Not Assayed
chnB	ORF8	ORF 15	ORF 10
Monooxygenases	ORF9	No cell control	ORF 13
	ORF11	Plasmid control	ORF 14
	ORF12		ORF 20
	ORF16		
	ORF 17	!	
	ORF18		
	ORF19		

5

10

20

EXAMPLE 11

Identification of Signature Sequences Between Families of BV Monooxygenases

Sequence analysis of the 20 genes encoding Baeyer-Villiger monooxygenases identified in the previous examples allows definition of three different BV signature sequence families based on amino acid similarities. Each family possesses several member genes for which biochemical validation of the enzyme as a functional BV enzyme capable of the oxidation of cyclohexanone was demonstrated (Examples, supra). Sequence alignment of the homologues 15 for each family was performed by Clustal W alignment (Higgins and Sharp (1989) CABIOS. 5:151-153). This allows the identification of a set of amino acids that are conserved at specific positions in the alignment created from all the sequences available.

The results of these Clustal W alignments are shown in Figures 7, 8, and 9 for BV Family1, BV family 2, and BV Family 3. In all cases, an "*" indicates a conserved signature amino acid position. The conserved amino acid signature sequence for each Family is shown in Figure 6, along with the signature sequence P-# positions. This conserved amino acid/ position set becomes a signature for each family. Any new protein with a sequence that can be aligned with those of the existing members of the family and which includes at the specific positions a at least 80% of the signature sequence amino acids can be considered a member of the specific family.

BV Family 1

20

25

This family comprises the *chnB* monooxygenase sequences of Arthrobacter sp. BP2 (SEQ ID NO:12), *Rhodococcus* sp. phi1 (SEQ ID NO:8), *Rhodococcus* sp. phi2 (SEQ ID NO:10), *Acidovorax* sp. CHX (SEQ

- NO:9), Knodococcus sp. pniz (SEQ ID NO:10), Audovoras sp. on NC-I ID NO:14), Brevibacterium sp. HCU (SEQ ID NOs:16 and 18), and Rhodococcus erythropolis AN12 ORF10, ORF14, ORF19, and ORF20 (SEQ ID NOs:26, 34, 44 and 46). Within a length of 540 amino acids, a total of 74 positions are conserved (100%). This signature sequence of Family 1 BV monoxygenases is shown beneath each alignment of
- proteins (Figure 7) and is listed as SEQ ID NO:47. The ability to identify the signature sequence within this family of proteins was made possible by: 1) the number of sequences of BV monooxygenases; and 2) the characterization of their activity as BV-monooxygenases.
- Based on the limited number (4 total) of BV monooxygenase 15 sequences in the public domain, for which blochemical data is also available, 3 of these sequences align with the signature sequence discovered for Family 1. These sequences are:
 - (1) Acinetobacter sp. NCIMB9871 chnB (NCBI Accession Number AB026668, based on Chen, Y.C. et al. (*J Bacteriol*. 170(2):781-789 (1988)). Key biochemical characterization of this protein was performed by Donogue et al. (*Eur J Biochem*. 16;63(1):175-92 (1976)), Trudgill et al. (*Methods Enzymol*. 188:70-77 (1990)), and lwaki et al. (*Appl Environ Microbiol*. 65(11):5158-62 (1999)). This enzyme shares 72 of the 74 conserved amino acids in the signature sequence of Family 1 BV monoxygenases.
 - (2) Rhodococcus erythropolis limB (NCBI Accession Number AJ272366, based on the work of Barbirato et al. (FEBS Lett. 438 (3): 293-296 (1998)) and van der Werf et al. (Biol. Chem. 274 (37): 26296-26304 (1999)). Key blochemical characterization of this protein was performed by van der Werf, M,J. et al. (Microbiology 146 (Pt 5):1129-41 (2000); Biochem J. 1;347 Pt 3:693-701 (2000); and Appl Environ Microbiol. 65(5):2092-102 (1999)). This enzyme is known as a carvone monooxygenase
 - (3) Rhodococcus rhodochrous smo (NCBI Accession Number 5 AB010439). This enzyme was sequenced and characterized by Morii, S. et al. (J. Biochem. 126 (3), 624-631 (1999)). This enzyme is known as a steroid monooxygenase. It shares 74 of the 74 conserved amino acids in the signature sequence of Family 1 BV monooxygenases.

PCT/US02/27549 WO 03/020890

The enzymes described in the public domain having the highest sequence similarity to Group 1 have been characterized as dimethylaniline hydroxylases.

BV Family 2

15

20

25

35

This family comprises the chnB monooxygenase sequences of 5 Rhodococcus erythropolis AN12 ORF9, ORF12, ORF15, ORF 16, and ORF18 (SEQ ID NOs:24, 30, 36, 38, and 42). Within a length of 497 amino acids, a total of 76 positions are conserved (100%). This signature sequence for Family 2 BV monooxygenases is shown beneath each alignment of proteins (Figure 8) and is listed as SEQ ID NO:48. The 10 ability to identify the signature sequence within this family of proteins was made possible by: 1) the number of sequences of BV monooxygenases; and 2) the characterization of their activity as BV-monooxygenases. Based on the limited number (4 total) of BV monooxygenase

sequences in the public domain, for which biochemical data is also available, only 1 of these sequences align with the signature sequence discovered for Family 2. This sequence is Pseudomonas putida JD1 Key biochemical characterization of this protein was performed by Tanner A., et al. (J Bacteriol, 182(23):6565-6569 (2000)). This enzyme is known as an acetophenone monooxygenase. It shares 69 of the 76 conserved amino acids in the signature sequence of Family 2 BV monooxygenases. BV Family 3

This family comprises the chnB monooxygenase sequences of Rhodococcus erythropolis AN12 ORF8, ORF 11, ORF 13, and ORF17 (SEQ ID NOs:22, 28, 32, and 40). Within a length of 471 amino acids. a total of 41 positions are conserved (100%). This signature sequence for Family 3 BV monooxygenases is shown beneath each alignment of proteins (Figure 9) and is listed as SEQ ID NO:49. The ability to identify the signature sequence within this family of proteins was made possible by: 1) the number of sequences of BV monooxygenases; and 2) the 30 characterization of their activity as BV-monooxygenases.

There are no sequences in the public domain with demonstrated BV activity that belong to this group. The dimethylaniline N-oxidase shares only 30 amino acids out of 41 conserved amino acids discovered in the signature sequence, which represents less than 80% of the conserved positions.

CLAIMS

What is claimed is:

- An isolated nucleic acid fragment selected from the group consisting of:
 - (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs:8, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46:
 - (b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monooxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a) or (b).

- 2. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 542 amino acids that has at least 55% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:8 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 3. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 541 amino acids that has at least 53% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:10 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 4. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 439 amino acids that has at least 37% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:22 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 5. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 518 amino acids that has at least 44% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ

ID NO:24 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

- 6. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 541 amino acids that has at least 64% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:26 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 7. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 462 amino acids that has at least 65% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:28 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 8. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 523 amino acids that has at least 45% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:30 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 9. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 493 amino acids that has at least 55% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:32 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 10. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 539 amino acids that has at least 51% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:34 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 11. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 649 amino acids that has at least 39% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:36 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

12. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 494 amino acids that has at least 43% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:38 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

- 13. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 499 amino acids that has at least 53% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:40 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 14. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 493 amino acids that has at least 44% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:42 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 15. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 541 amino acids that has at least 54% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:44 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 16. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 545 amino acids that has at least 42% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:46 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 17. The isolated nucleic acid fragment of Claim 1 selected from the group consisting of SEQ ID NOs:7, 9, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- 18. An isolated nucleic acid fragment of Claim 1 isolated from Rhodococcus.
- 19. A polypeptide encoded by the isolated nucleic acid fragment of Claim 1.

 The polypeptide of Claim 19 selected from the group consisting of SEQ ID NOs:8, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.

- 21. An isolated nucleic acid fragment selected from the group consisting of:
 - (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence as set forth in SEQ ID NO:12;
 - (b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monooxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a), or (b).

- 22. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 532 amino acids that has at least 57% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:11 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 23. An isolated nucleic acid fragment of Claim 21 isolated from Arthrobacter.
- 24. A polypeptide encoded by the isolated nucleic acid fragment of Claim 21
 - 25. The polypeptide of Claim 24 as set forth in SEQ ID NO:12.
- 26. An isolated nucleic acid fragment selected from the group consisting of:
 - (a) an isolated nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide having an amino acid sequence as set forth in SEQ ID NO:18;
 - (b) an isolated nucleic acid molecule encoding a Baeyer-Villiger monooxygenase polypeptide that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid fragment that is complementary to (a), or (b).

 An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 538 amino acids that has at

least 57% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:17 or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

- 28. An isolated nucleic acid fragment of Claim 26 isolated from Acidovarax.
- 29. A polypeptide encoded by the isolated nucleic acid fragment of Claim 26.
- The polypeptide of Claim 29 selected from the group consisting of SEQ ID NO:18.
- 31. A chimeric gene comprising the isolated nucleic acid fragment of any one of Claims 1, 19, 25, 30, or 35 operably linked to suitable regulatory sequences.
- 32. A transformed host cell comprising a host cell and the chimeric gene of Claim 31.
- 33. The transformed host cell of Claim 32 wherein the host cell is selected from the group consisting of bacteria, yeast, filamentous fungi, and green plants.
- 34. The transformed host cell of Claim 33 wherein the host cell is selected from the group consisting of proteobacteria and actinomycetes.
- The transformed host cell of Claim 34 wherein the host cell is selected from the group consisting of Burkholderia, Alcaligenes, Pseudomonas, Sphingomonas, Pandoraea, Delftia and Comamonas.
- 36. The transformed host cell of Claim 33 wherein the host cell is selected from the group consisting of Rhodococcus, Acinetobacter, Mycobacteria, Nocardia, Arthrobacter, Brevibacterium, Acidovorax, Bacillus, Streptomyces, Escherichia, Salmonella, Pseudomonas, Aspergillus, Saccharomyces, Pichia, Candida, Comyebacterium, and Hansenula.
- 37. The transformed host cell of Claim 33 wherein the host cell is selected from the group consisting of soybean, rapeseed, sunflower, cotton, corn, tobacco, alfalfa, wheat, barley, oats, sorghum, rice, Arabidopsis, cruciferous vegetables, melons, carrots, celery, parsley, tomatoes, potatoes, strawberries, peanuts, grapes, grass seed crops, sugar beets, sugar cane, beans, peas, rye, flax, hardwood trees, softwood trees, and forage grasses
- A method of obtaining a nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide comprising:

 (a) probing a genomic library with the nucleic acid fragment of any one of Claims 1, 21, or 26;

- (b) identifying a DNA clone that hybridizes with the nucleic acid fragment of any one of Claims 1, 21, or 26;
- sequencing the genomic fragment that comprises the clone identified in step (b);

wherein the sequenced genomic fragment encodes a Baeyer-Villiger monoxygenase polypeptide.

 A method of obtaining a nucleic acid fragment encoding a Baeyer-Villiger monooxygenase polypeptide comprising:

- (a) synthesizing at least one oligonucleotide primer corresponding to a portion of the isolated nucleic acid sequence of any one of Claims 1, 21, or 26; and
- (b) amplifying an insert present in a cloning vector using the oligonucleotide primer of step (a);
 wherein the amplified insert encodes a Baeyer-Villiger
- monooxygenase polypeptide.

 40. A method for the identification of a polypeptide having monooxygenase activity comprising:
 - (a) obtaining the amino acid sequence of a polypeptide suspected of having monooxygenase activity; and
 - (b) aligning the amino acid sequence of step (a) with the amino acid sequence of a Baeyer-Villiger monooxygenase consensus sequence selected from the group consisting of SEQ ID NO:47, SEQ ID NO:48 and SEQ ID NO:49;

wherein where at least 80% of the amino acid residues at positions p1-p74 of SEQ ID NO:47, or at least 80% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 80% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved, the polypeptide of (a) is identified as having monooxygenase activity.

- 41. A method according to Claim 40 wherein least 100% of the amino acid residues at positions p1-p74 of SEQ ID NO:47, or at least 100% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 100% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved.
- 42. A method for identifying a gene encoding a Baeyer-Villiger monoxygenase polypeptide comprising:

(a) probing a genomic library with a nucleic acid fragment encoding a polypeptide wherein where at least 80% of the amino acid residues at positions p1- p74 of SEQ ID NO:47, or at least 80% of the amino acid residues at p1p76 of SEQ ID NO:48 or at least 80% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved:

- (b) identifying a DNA clone that hybridizes with a nucleic acid fragment of step (a);
- sequencing the genomic fragment that comprises the clone identified in step (b);

wherein the sequenced genomic fragment encodes a Baeyer-Villiger monooxygenase polypeptide.

43. A method according to Claim 42 wherein least 100% of the amino acid residues at positions p1- p74 of SEQ ID NO:47, or at least 100% of the amino acid residues at p1-p76 of SEQ ID NO:48 or at least 100% of the amino acid residues of p1-p41 of SEQ ID NO:49 are completely conserved.

- 44. The product of either of Claims 40 or 42.
- 45. A method for the biotransformation of a ketone substrate to the corresponding ester, comprising: contacting a transformed host cell under suitable growth conditions with an effective amount of ketone substrate whereby the corresponding ester is produced, said transformed host cell comprising a nucleic acid fragment encoding an isolated nucleic acid fragment of any of Claims 1, 21, 26 or 44; under the control of suitable regulatory sequences.
- 46. The method of Claim 45 wherein the ketone substrate is selected from the group consisting of cyclic ketones and ketoterpenes having the general formula:

wherein R and R₁ are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted alkyl, or substituted or unsubstituted alkenyl or substituted or unsubstituted alkylidene.

47. The method of Claim 46 wherein the ketone substrate is selected from the group consisting of Norcamphor, Cyclobutanone, Cyclopentanone, 2-methyl-cyclopentanone, Cyclohexanone, 2-methyl-cyclohexanone, Cyclohexa-ene-1-one, 1,2-cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, Cycloheptanone, Cyclobectanone, Cyclodectanone, Cyclodectanone, Cyclodectanone, Cyclodectanone, Cyclotectanone, Cyclopenta-decanone, 2-tridecanone, dihexyl ketone, 2-phenyl-cyclohexanone, Oxindole, Levoglucosenone, dimethyl sulfoxide, dimethyl-cycloperidone, Phenylboronic acid, and beta-ionone.

- 48. A method for the *in vitro* transformation of a ketone substrate to the corresponding ester, comprising: contacting a ketone substrate under suitable reaction conditions with an effective amount of a Baeyer-Villiger monooxygenase enzyme, the enzyme having an amino acid sequence selected from the group consisting of SEQ ID NOs:8, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- 49. A method according to Claim 49 wherein the ketone substrate is selected from the group consisting of cyclic ketones and ketoterpenes having the general formula:

wherein R and R_1 are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted alkyl, or substituted or unsubstituted alkylidene.

50. A method according to Claim 48 wherein the ketone substrate is selected from the group consisting of Norcamphor, Cyclobutanone, Cyclopentanone, 2-methyl-cyclopentanone, Cyclohexanone, 2-methyl-cyclohexanone, Cyclohexa-ene-1-one, 1,2-cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, Cycloheptanone, Cyclobectanone, Cyclodectanone, Cyclodectanone, Cyclodectanone, Cyclopenta-decanone, 2-tridecanone, dihexyl ketone, 2-phenyl-cyclohexanone, Oxindole, Levoglucosenone, dimethyl sulfoxide, dimethy-2-piperidone, Phenylboronic acid, and beta-ionone.

51. A mutated microbial gene encoding a protein having an altered biological activity produced by a method comprising the steps of

- digesting a mixture of nucleotide sequences with restriction endonucleases wherein said mixture comprises:
 - a) a native microbial gene selected from the group consisting of SEQ ID NOs:7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45;
 - a first population of nucleotide fragments which will hybridize to said native microbial sequence;
 - a second population of nucleotide fragments which will not hybridize to said native microbial sequence;
- wherein a mixture of restriction fragments are produced;
 - (ii) denaturing said mixture of restriction fragments;
 - (iii) incubating the denatured said mixture of restriction fragments of step (ii) with a polymerase;
 - (iv) repeating steps (ii) and (iii) wherein a mutated microbial gene is produced encoding a protein having an altered biological activity.
- 52. An Acidovorax sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:5
- 53. An Arthrobacter sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:1
- 54. A Rhodococcus sp. comprising the 16s rDNA sequence as set forth in SEQ ID NO:6
- An isolated nucleic acid useful for the identification of a BV monoxygenase selected from the group consisting of SEQ ID 70-113.

Figure 2

Figure 3

Figure 4

Figure 5

FIGURE 6

BVMO Family 1 consensus:

MTAGESLTVUDAVUTGAGFGGIYAJMKLREGGLTVVGFDAADGFGGTWYNNEYFGLSDTSSUVTRESPDEDLLGDWYMKE
TYPTÖPELLEVLEDVUDRFDLREDFRÖTEVTSATYLEDENLMEVTTDGGSVYTRAFVUNAVGLLSALTNEPNIPGLDTFSG
ETI HTAAMPEGVDLYGGRGVGVIGGTSTGIQVITALAPEVELLVFVRTPGYSVFUNRRVTRAGJDALTAGVDRIMQVXR
SVARFGESTVPAMSVSEERINKVFERAMESGGFRFMFGTGGLATROBANTFAASFIRSKIREIVGDFFTARKLPFU
LEARRALCDGVYEVTYRRVMAVADILKENIPLETTRAGGVYENGVHELDVLVFRAGTPAVDGNYRTLDIRGGGGLSINGE
WGGGPTSYLGLSTAGFFMFMVLGFNGFFTNLFSIETTGVFWSTSDTLAYAENGIRALEPTPERABDBWTATCTDIANATLF
TRADSHTFGAMVGGKFSULFYLGGGGNYRAVLADVAAAGVRGFALKSADAVTA (SEG IN 10-147)

Signature Sequence Positions BVMO Family 1

Amino	Consensus	Signature	Amino	Consensus	Signature	Amino	Consensus	Signatu
acid	position	Position	acid	position	Position	acid	position	Position
D	11	P-1	G	178	P-26	P	354	P-51
G	16	P-2	V	181	P-27	1	355	P-52
G	18	P-3	v	183	P-28	D	374	P-53
G	21	P-4	G	185	P-29	A	379	P-54
G	32	P-5	G	187	P-30	T	380	P-55
G	45	P-6	G	190	P-31	G	381	P-56
G	46	P-7	Q	192	P-32	D	383	P-57
W	48	P-8	I	194	P-33	G	387	P-58
N	51	P-9	A	198	P-34	G	399	P-59
Y	53	P-10	L	204	P-35	W	406	P-60
P	54	P-11	V	206	P-36	G	415	P-61
G	55	P-12	F	207	P-37	P	422	P-62
D	59	P-13	R	209	P-38	N	423	P-63
Y	65	P-14	R	265	P-39	P	430	P-64
D	101	P-15	G	276	P-40	P	433	P-65
L	102	P-16	F	286	P-41	N	436	P-66
W	124	P-17	F	302	P-42	E	464	P-67
G	144	P-18	K	306	P-43	W	473	P-68
G	156	P-19	D	313	P-44	W	492	P-69
F	160	P-20	L	320	P-45	G	495	P-70
G	162	P-21	P	322	P-46	N	497	P-71
H	166	P-22	R	329	P-47	P	499	P-72
T	167	P-23	Y	336	P-48	G	500	P-73
W	170	P-24	N	344	P-49	K	501	P-74
P	171	P-25	V	345	P-50			

BVMO Family 2 consensus:

MYXI PXHIKEVUTIGAGFAGIGANELIKRKGIDOFULLERADDUGGTYRRINTY PGAACUVSKLYSYSFARNPHWYRIPAGPAGDET YDYLEDDAXAGILXHYBYPAGVAGUNGBAGLAWAYTASGELARAFUNATGELS
XFKI POLPGLESPEGXXFHSAXWAYDLDLRGBRYAVVGTGASAVQFVPEITAXAXTI.TVFQRTFGWULFRE
XFKI POLPGLESPEGXXFHSAXWAYDLDLRGBRYAVVGTGASAVQFVPEITAXAXTI.TVFQRTFGWULFRE
XTYLEXXALSAMYSFSVFGGYWALKKELKIGT FERALGSGFWYXFWLIXXKALSAMHLRGRQWDPELEXXIX.TPD
YTPGCKEMILLSNDWYPSLXFROYSLVTSGVVSVTEKGVVDADGVEREXVDIIFATGFHSTTDXFXAMKITGG
BGRSLADHNASAXAYLICTAVGFFNLFXLGAPTGHFSTYXTLBAQABETJSALXXMRSGGIALDVR
ASWOXXFWXAVQERLARTVWNAGGCSSWYXDPDGRNSTXWFWSTXXFRARTRFDPSDYXPSSPTPETXXG
(GEO ID 80.148)

Signature Sequence Positions BVMO Family 2

Amino	Consensus	Signature Position	Amino acid	Consensus position	Signature Position	Amino	Consensus	Signatu. Position
acid G	position 15	P-1	F	155	P-27	R	291	P-53
G	17	P-2	G	157	P-28	L	302	P-54
G	20	P-3	F	160	P-29	v	307	P-55
E	39	P-4	H	161	P-30	G	321	P-56
G	45	P-5	W	165	P-31	D	333	P-57
G	46	P-6	G	173	P-32	T	339	P-58
w	48	P-7	G	180	P-33	Ġ	340	P-59
N	51	P-8	G	182	P-34	F	341	P-60
Y	53	P-9	Ā	183	P-35	G	357	P-61
P	54	P-10	S	184	P-36	w	364	P-62
G	55	P-11	A	185	P-37	G	373	P-63
D	59	P-12	o	187	P-38	F	379	P-64
P	61	P-13	P	190	P-39	P	380	P-65
L	64	P-14	Ô	203	P-40	N	381	P-66
Y	65	P-15	Ř	204	P-41	G	387	P-67
S	66	P-16	w	208	P-42	P	388	P-68
S	68	P-17	P	211	P-43	S	396	P-69
W	75	P-18	D	214	P-44	Е	402	P-70
Ë	84	P-19	P	229	P-45	Q	404	P-71
Ÿ	88	P-20	R	236	P-46	Ŷ	407	P-72
w	120	P-21	L	268	P-47	V	429	P-73
G	139	P-22	o	271	P-48	V	445	P-74
P	144	P-23	D	274	P-49	G	460	P-75
P	147	P-24	L	277	P-50	R	461	P-76
P	150	P-25	P	283	P-51	P	467	P-77
G	151	P-26	K	290	P-52			

BVMO Family 3 consensus:

ID NO 49)

Signature Sequence Positions BVMO Family 1

Amino acid	Consensus position	Signature Position	Amino acid	Consensus position	Signature Position
G	12	P-1	G	159	P-22
A	13	P-2	H	163	P-23
G	14	P-3	K	176	P-24
G	17	P-4	V	178	P-25
A	21	P-5	V	180	P-26
E	36	P-6	G	182	P-27
G	42	P-7	G	184	P-28
G	43	P-8	A	198	P-29
W	45	P-9	R	206	P-30
S	57	P-10	P	220	P-31
F	67	P-11	P	242 -	P-32
D	78	P-12	P	269	P-33
Y	87	P-13	G	293	P-34
V	107	P-14	G	314	P-35
W	118	P-15	D	320	P-36
V	120	P-16	A	325	P-37
T	121	P-17	T	326	P-38
G	141	P-18	G	327	P-39
P	151	P-19	D	361	P-40
G	155	P-20	L	415	P-41
F	157	P-21	Y	419	P-42

2003 Arthrobacter 2002 Rhodococcus-phi2-Mono Rhodococcus-phi1-Mono Acidovorax Brevibacterium-Mono1 2003 Brevibacterium-Mono2	MTDE FDWIVIGACIAGNGHLHEVR-WOLLPAN MTDPDFSTAP LIDWVIGACKGAYAHERIR-BOGLEVIG HTQANTE(TO UDAVVIGACRGGITYNHILANBEGULTVVG HTQCHTT UDAVVIGACRGGITYNHILANBEGULTVG HTQCHTT UDAVVIGACRGGITYNHILANBEGULTVG HTQCHTT UDAVVIGACRGGITYNHILANBEGULTVG HTSESSANI POLIVOGACRGGITAHHLAHBUGULKWAY HTTPGLOD HIDATVIGARGGITAHHLAHBUGULKWAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAY HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAYAH HTTPGLOD HIDATVIGARGSGITAHHLAHBUGUKKAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYA
2005 Arthrobacter 2052 Rhodococcus-phi2-Mono Rhodococcus-phi1-Mono Acidovorax Bravibacterium-Mono1 2093 Brevibacterium-Mono2	FEASIGNACT/YMMRY PRANCOUSELE/STYPESE/LOGMENTRIVADOA FEASIS/GGTWYFRITYARACTURS/DYSYSPESELQQDD/MSEKYAAQO FEASIS/GGTWYFRITYARACTURS/DYSYSPESELQQDD/MSEKYAAQO FEXDADERGGTWWRITYAGAUS/DYSSHYTRS STRUCLLQDOTWARTY TOP FEXDADERGGTWWRITYAGAUS/DYSSHYTRS STRUCLLQDOTWARTY TOP FEXDADERGGTWWRITYAGAUS/DYSSHITRS STRUCLLQDOTWARTYYTQP FEXDADERGGTWWRITYAGAUS/DYSSHITRS STRUCLLQDOTWARTYYTQP FEXDADERGGTWWRITYAGAUS/DYSSHITRS STRUCLLQDOTWARTYYTQP FEXDAGEGGTWWRITYAGAUS/DYSSHITRS STRUCLLQDOTWARTYTTQP VENCHOLGGTWWITHENTACYHOUS/STYLISP STRUCKHUMYAGAUFOAC WENCHOLGGTWWITHENTACHTOSTQTTQTY-QUANKUMDPRELYFEDEN WENAGGFGGIWWRITYAGAUS/DYSHITRS-DYS
2005 1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phi1-Mono Acidovorax Erevibacterium-Mono1 2093 Brevibacterium-Mono2	EIMRYISHVVETFDLARDIRPHTRVEAMTYESTTARWTVQTDSAGSVVAK EILSYLLMYADRIPDLARDFFOTRUKUSAGFPSGTATWRVQTDGGIDDTSE EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGGAVTERK EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGGAVTERK EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGSTYTGAT EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGTYTGAT EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGTYTGAK EILSYLEWONDSPOLARRERSFOTRUKSATTLEGGENAWTTGGTTAK EILSYLEWONDSPOLARRERSFOTRUKSATTLAGGENAWTGATTAK EILSYLEWONDSPOLARRERSFOTRUKSATTAK EILSYLEWONDSPO
2005 1273	FVINATGCLSEENVPYIPGVETPAGDVLHTGRWPQDPVDFTGKRVGVIGT FVVCATGSLSTANVPNIAGRETPGGDVFHTGFWPHEGVDFTGKRVGVIGT

YVINAVGLLSAINFPNLPGIDTFEGETIHTAAWP-QGKSLAGRRVGVIGT YVVNAVGLLSAINRPDLPGLETFEGETIHTAAWP-EGKDLTGRRVGVIGT Rhodococcus-phi2-Mono YVVNAVGLLSAINFPNLPGLDTPEGETIHTAAWP-EGKSLAGRRVGVIGT YVVNAVGLLSAINFPDLPGLDTPEGETIHTAAWP-EGKNLAGKRVGVIGT Rhodococcus-phil-Mono FIVTALGLISAINWPNIPGRESPOGEMYHTAAWP-KDVELRGKRVGVIGT FLISAMGALSOAIFPAIDGIDEFNGAKYHTAAWPADGVDFTGKKVGVIGV Brevibacterium-Mono1 FFITCCGMLSAPMEDLFPGQQDPRGQIPHTSRWPHGDVELTGKRVGVVGV AVIVATGFGAKPLYPNIEGLDSPEGECHHTARWPQGGLDMTGKRVVVMGT Brevibacterium-Mono2

1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovorax Brevibacterium-Mono1 2093 Brevibacterium-Mono2

2005 1273 Arthrobacter

Arthrobacter

Acidovorax

2082

2093

2005

GSSGVQAIPLIARQAAELVVFQRTPAYTLPAVDEPLDPELQAAIKADYRG GSSGIQSIPLIAEQADHLYVFQRSANYSVPAGNTPLDDKRRAEIKAGYAE GSTGOOVITALAPEVEHLTVFVRTPOYSVPVGKRPVTTQQIDEIKADYDN GSTGQQVITALAPTVEHLTVFVRTPQYSVPVGKRAVTDEQIDAVKADYEN GSTGQOVITALAPEVEHLTVFVRTPQYSVPVGNRPVTPEQIDAIKADYDR GSTGOOVITALAPEVEHLTVFVRTPQYSVPVGNRPVTKEQIDAIKADYDG GSTGVQLITAIAPEVKHLTVFQRTPQYSVPTGNRPVSAQEIAEVKRNFSK GASGIQII PELAKLAGELFVFQRTPNYVVESNNDKVDAEWMQYVRDNYDE GATGIQVIQTIADEVDQLKVFVRTPQYALPMKNPQYDSDDVAAYKDRFEE GASGIOVIOEAAAVAEHLTVFORTPNLALPMRQQRLSADDNDRYRENIED * ** ** *; :

**. **

. * . * *

.1 *11* *1*.

FRARNNEVPTAGLSRFPTNPNSVFLFSTKERDAILEHNWNRGG--PLMLR RRALSK--RSGGSPFVSDPRSALEVSEAERNAAYEERWKLGG--VLFAK IWAQVK--RSGVAFGFEESTVPAMSVTEEERRQVYEKAWEYGGGFRFMFE

WO 03/020890

2093

2005

Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovorax Brevibacterium-Monol

2003 Brevibacterium-Mono2

2005 1273 Arthrobacter Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovoray Brevibacterium-Monol

Brevibacterium-Mono2

1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovorax Brevibacterium-Monol 2093 Brevibacterium-Mono2

2005 1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovorax Brevibacterium-Monol 2093 Brevibacterium-Mono2

2005 1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovoray Brevibacterium-Mono1 2093 Brevibacterium-Mono?

1273 Arthrobacter 2082 Rhodococcus-phi2-Mono Rhodococcus-phil-Mono Acidovorax Brevibacterium-Mono1 2093

Brevibacterium-Mono2

2005

PCT/US02/27549 IWTQVK--RSSVAFGREESTUPAMSVSA RVYEEAWEQGGGFRFMFG IWEQAK--NSAVAFGFEESTLPAMSVSEEERNRIFQEAWDHGGGFRFMFG IWDSVK--KSAVAFGFEESTLPAMSVSEEERNRIFOEAWDHGGGFRFMFG VWQQVR--ESAVAFGFEESTVPAMSVSEAERORVFOEAWNOGNGFYYMFG IFERAS--KHPFGVDMEYPTDSAVEVSEEERKRVFESKWEEGG-FHFANE LRTTLP--HTFTGPEYDFEYVWADLAPE-QRREVLENIYEYGS-LKLWLS RFQIRD--NSFAGPDFYFIPQNAADTPEDERTAIYEKMWDEGG-FPLWLG :*

AFGDLLVDSAANEVVAEFVRNKIROIVTDPEVAAKLTP-T--HVIGCKRI TFADOTSNIEANGTAAAFAERKIRSEVQDQAIADLLIPND--HPIGTKRI TFSDIATDEEANETAASFIRNKIVETIKDPETARKLTP----TGLFARRP TFGDIATDEEANETAASFIRSKITAMIEDPETARKLTP---TGLFARRP TFGDIATDEAANEAAASFIRSKIAEIIEDPETARKLMP----TGLFAKRP TFGDIATDEAANEAAASPIRSKIAEIIEDPETARKLMP----TGLYAKRP TFCDIATDPQANEAAATFIRNKIAEIVKDPETARKLTP---TDVYARRP CFTDLGTSPRASELASEFIRSKIREVVKDPATADLLCPKS--YSFNGKRV SFAEMFFDEOVSDEISEFVREKMRARLIDPELCDLLIPTD--YGFGTHRV NFQGLLTDEAANHTFYNFWRSKVHDRVKDPKTAEMLAPATPPHPFGVKRP . .. * . *; ; * . * * . .*

CLSDGYYETYNRVNVRLVDIKRHPIEEITPTTARTGE-DSHDLDMLVFAT VTDTNYYQSYNRDNVSLVDLKSAPIEAIDEAGIKTAD-AHYELDALVFAT LCDDGYFQVFNRPNVBAVAIKENPIREVTAKGVVTEDGVLHELDVIVFAT LCDDGYFQVFNRPNVEAVAIKENPIREITAKGVVTEDGVLHKLDVLVLAT LCDAGYHQVPNRPNVEAVAIKENPIREVTAKGVVTEDGVLHELDVLVFAT LCDNGYYEVYNRPNVEAVAIKENPIREVTAKGVVTEDGVLHELDVLVFAT LCDSGYYRTYNRSNVSLVDVKATPISAMTPRGIRTADGVEHELDMLILAT PTGHGYYBTFNRTNVHLLDARGTPITRISSKGIVHGD-TEYELDAIVFAT PLETNYLEVYHRPNVTAIGVKNNPIARIVPQGIELTDGTFHELDVIILAT SLEQNYPDVYNQDNVDLIDSNATPITRVLPNGVETPD-GVVECDVLVLAT ::: ** : . ** :

GYDAITGALSRIDIRGRAGLSLQEAWS-DGPRTYLGLGVSGFPNLFIMTG GFDAMTGALDRIEIRGRNGETLRENWH-AGPRTYLGLGVHGFPNLFIVTG GFDAVDGNYRRMEISGRDGVNINDHWD-GOPTSYLGVSTAKFPNWFMVLG GFDAVDGNYRRMTISGRGGLNINDHWD-GQPTSYLGIATANFPNWFMVLG GPDAVDGNYRRIEIRGRDGLHINDHWD-GQPTSYLGVSTANFPNWFMVLG GPDAVDGNYRRIEIRGRNGLHINDHWD-GQPTSYLGVTTANFPNWFMVLG GYDAVDGNYRRIDLRGRGGQTINEHWN-DTPTSYVGVSTANFPNMFMILG GFDAMTGTLTNIDIVGRDGVILRDKWAODGLRTNIGLTVNGFFNFLMSLG GFDAGTGALTRIDIRGRGGRSLKEDWG-RDIRTTMGLMVHGYPNMLTTAV GPDNNSGGINAIDIKA-GGQLLRDKWA-TGVDTYMGLSTHGFPNLMFLYG 1.1 * : :*: . :** :

PGSPSV-LTNVLVAIHQHATWIGECLKHMTDNDIRTMEATPEAEONWGDH PGSPSV-LSNMILAAEQHVDWIAGAINHLDSAGIDTIEPSAEAVDNWLDE PNGP---FTNLPPSIETQVEWISDTVAYABENGIRAIEPTPEARAEWTET PNGP---FTNLPPSIETQVEWISDTIGYVERTGVRAIEPTPEAESAWTAT PNGP---FTNLPPSIETQVEWISDTIGYAERNGVRAIEPTPEARAEWTET PNGP---FTNLPPSIETQUEWISDTVAYAERNEIRAIEPTPEAREEWTQT PNGP---FTNLPPSIEAOVEWITDLVAHMROHGLATAEPTRDAEDAWGRT PQTP---YSNLVVPIQLGAQWMQRFLKFIQERGIEVFESSREAEEIWNAE PLAPSAALCNWTTCLQQQTEWISEAIRYMQERDLTVIEPTKEAEDAWVAH PQSPSG-FCNGTDFGGAPGDMVADFLIWLKDNGISRFESTEEVEREWRAH : : : *.: :.

VRDLAEQTLLSS----CGSWYLGANIPGKRQVFMPLVG-FPDYAKKCAEI CSRRASATLFPS----ANSWYMGANIPGKPRIFMPFIGGFGVYSDICADV CTQIANMTVFTK----VDSWIFGANVPGKKPSVLFYLGGLGNYRGVLDDV CTDIANMTVFTK----VDSWIFGANVPGKKPSVLFYLGGLGNYRAVLADV CTAIANATLFTK----GDSWIFGANIPGKTPSVLFYLGGLRNYRAVLAEV CTDIANATLFTR----GDSWIFGANVPGKKPSVLFYLGGLGNYRNVLAGV CAEIAEQTLFGQ----VESWIFGANSPGKKHTLMFYLAGLGNYRKOLADV TIRGAESTVMSIEGPKAGAWFIGGNIPGKSREYQVYMGGGQVYQDWCREA HDETAAVNLISK----TDSWYVGSNVPGKPRRVLSYTGGVGAYREKAQEI VDDIFVNSLFPK----AKSWYWGANVPGKPAQMLNYSEASPHI-----

.* *.* ***

	ASAGYPGFAFQYDPL-VPVNQS [SEQ: ID NO:349
2005	AAAGYRGFELNSAVHA [SEQ ID NO:26]
1273	TANGYRGFELKS-EAAVAA [SEQ ID NO:12]
Arthrobacter	TEGGYQGFALKT-ADTVDA [SEQ ID NO:44]
2082	TEGGYQGFALKT-ADIVDA [SEQ ID NO. 10]
Rhodococcus-phi2-Mono	ATDGYRGFDVKS-AEMVTV [SEQ ID NO:10]
Rhodococcus-phil-Mono	VADSYRGFELKS-AVPVTAZ [SEQ ID NO:8]
Acidovorax	ANAOYOGFAFQP-L [SEQ ID NO:18]
Acidovorax	EESDYATFLNADSIDGEKVRESAGMK [SEQ ID NO:14]
Brevibacterium-Monol	ADAGYKGFNLR[SEQ ID NO:46]
2093	ADAGYRGPNER [SEQ ID NO:16]

10/0	VNNESDHFEVVIIGGISGIGAAIHLQREG-IDNFALLERAD
2022	VKLPEHVETLIVGAGFAGMGLAARMLRDNRTADVVLIERGA
1985	mvdidptsgpsagdeetrtrrtrvvvigagfggigtavrlkqsg-iddfvvleraai
1294	MSSRVNDGHIAIIGTGFSGLCMAIELKKKG-IDDFVLYERADI
2035	
2035	MABIVNGPQIKPATAKCDERLHAIVIGAGIAGMLASVELSRAGIPHVILEKNDI
	. ::* *:.*: :
1870	LGGTWRANTYPGCACDVPSGLYSYSFAANPDWTRLPAEQPEIREYIENTAGTHGVDKHVF
2022	IGGTWRDNTYPGCACDVPTALYSYSFAPSADWSHTPARQPEIYDYLKKVAADTGIGDRVI
1985	PGGTWQVNTYPGAQCDIPSILYSFSFAPNPNWTRLYPLOPEIYDYLRDCVHRFGLAGHF
1294	VGGTWRDNTYPGAACDVPSVLYSYSFAQNPNWTRIFPPWSELLDYLRSVAAQYDLLPHIF
2035	VGGSWWENRYPGAGVDTPSHLYSISSFP-RNWSTHFGKRDEVQGYLEDFAEANDIRRNVF
	:* * *. * *: *** * :*: : *: *:: .:
	·
1870	FGVEMLSARWDASQSLWKITTSSGE-LTARFVIAAAGPWNEPL/TPAIPGLEAFEGE
2022	LNCELEAAVWDEDAALWRVRTSLGS-LTVKALVAATGALSTPKIPDFPGLDOFSGT
1985	CNQDVTEASWDEQAQIWRVHTAETV-WEAQFLVAATGPFSAPATPDLPGLESFRGC
1294	PGVEVSEMRFDEDRLRWNIQFASGESVTAAVVVNGSGGLSNPYIPOLPGLESFEGA
2035	FRHEVTRAEFEESKQSWRVSVQRPGEASETLEAPILISAVGLLNRPKIPHLPGIETFRGR
1870	VFHSSQWNHDYDLTGKLVAVVGTGASAVQFVPRIVSQVSALHLYQRTAQWVLPKPD
2022	
	TFHSATWNHEHELRGERVAVIGTGASAVQFVPEIADPAAHVTVPQRTPAWVIPRMD
1985	MFHTADWNHDHDLRGERIAVVGTGASAVQIIPRLQPLADTLTVFQRTPTWILPHPD
1294	AFHSAKWRHDLDMSGRRVAVIGSGASAIQFVPEIAPHTETLHVFQRSPNWVMPRGD
2035	LFHSAEWPSELDDPESLRGKRVGIVGTGASAMQIGPAIADRVGSLTIFQRSPQWIAPNDD
	:: * : : : *. :.::*:*:**:*: * : . ::::**:. *: *. *
1870	HYVPRIERSVMRFVPGAQKALRSIEYGIMEALGLGFRNP-WILRIVQKLGSAQ
2022	
	RTLPAAQKAVYSRIPATQKVVRGAVYGFRELLGAAMSHATWVLPAFEAAARLH
1985	QPMTGWPSALFERVPLTQRLARKGLDLLQEALVPGFVYKPSLLKGLAALGRAH
1294	AALSPATRERPSRRPYRQRWLRWRTYWAPEKLASAFLGNRKLVEQYRSQALAN
2035	YFTTIDDGVHWLMDNIPGYREWYRARLSWIFNDKVYSSLQVDPDWPEPSASINATNHGHR
1870	LRLQVRD-PKLRKALTPDYTLGCKRLLMSNSYYPALGKPNVSVHANAVEOIRGN
2022	LRROVKD-PELRRKLTPDFTIGCKRMLLSNDWLRTLDRADVSLVDSGLVSVTEG
1985	LRRQVRD-PELRAKLLPHYAPGCKRPTPSNTYYPALASPNVEVVTDGIVEVQER
1294	LQQQVPD-SDLRQKVTPDYDPGCKRRLISDDWYPALQRENVHLNTSGVSEIRPH
2035	
4035	KFYERYLRDQLGDRTDLIEASLPDYPPFGKRMLLDNGWFTMLRKPDVTLVPHGVDALTPS
	*: *: * * * *
1870	TVIGADGVEAEVDAIIFGTGFHILDMPIASKVFDGEGRSLDDHWQGSPQ-AYFGSAVSGF
2022	GVVDGHGVEHKVDTIIFATGFTPTEPPVAHLITGKRGETLAAHWNGSPN-AYKGTAVSGF
1985	
	GVL/TADGAFREVDTIVMGTGFRMGDNPSFDTIRGQDGRSLAQTWNGSAE-AFLGTTISGF
1294	SIIDSEGAEHEVDTLIFATGFOATSFLAPMKVFGREGVELSDSWREGAA-TKLGLASAAF
2035	GLVDTNGVEHQLDVIVMATGFHSVRVLYPMDIVGRSGRSTGEIWGEHDARAYLGITVPDF
0000	
	1: .*. ::*.::*** :
1870	PNAFILLGPSLGTGHTSAFMIL-EAOLNYVAQAIGHARRHGWOTIDVREEVQAAFNSOVO
2022	PNLFLMYGPNTNLGHSSIVYML-ESQAEYVNDALNTMKRERLDALDVNESVQVHYNKGIQ
1985	PNFFMILGPNS-VVYTSQVVTI-EAQVEYIVSCILQMDERGIGSIDVRADVQREPVRATD
1294	PNLWFLNGPNTGLGHNSIIFMI-EAQARYIASAVQYMRRKSITALELDRTVQTGSYAATQ
2035	PNFFVMTGPNTGLGHGGSFITILECQVRYIMDALKLMQSENLGAMECRAEVNDRYNEAVD
	** 1.1 **.
1870	EALGTTVYNAGGCESYFFDVNGRNSFNWPWSSGAMRRLRDFDPYAYNHTSNPESDNTPP
2022	HELQHTVWNKGGCSSWYIDPEGRNSVQWPTFTFKFRSLLEHFDRENYSAR-KIESVQA
1985	RRLATSVWNAGGCSSYYLVDGGRNYTFYPGFNRSFRARTKRADLAHYAQVQFVSSAALT-
1294	
	ERMRRTVWASGGCDSWYQSADGRIDTLWPASTIEYWLRTRLFRKSDFHALTTGKG
2035	RQHAQMVWTHPAMENWYRNPDGRVVSVLPWRINDYWAMTYRVDPSDFRTEPARSESVPTP
	** ** *

2022		[SEO	ID NO:38]	
1985	TARETVRSR	[SEQ	ID NO:24]	
1294		[SEQ	ID NO:42]	
2035	TARG	[SEO	ID NO:361	

1861 1976 1413 2034	-MSTREMUNLIVEAGLOGIGANYHLOTEL PRISTYALLEARANSGOTWOLFRY POITEDMTCHVUDVLII GAGLISGIGAACHLITEOTYGSTYALLEARANSGOTWOLFRY POITEDMSTREMTALLGAGFISGLAGARNIADR BOLTHOFFSHIDDVGGLADIDHP HSTYLE MSTREMTALLGAGFISGLAGARNIADR BOLTHOFFSHIDDVGGLADIDHP HSTYLE MSTREMTALLGAGFISGLAGARNIADR POITEDCYTASDEVGGNYYTNIPHGMSACYQ
1861 .	SDMFTLGYPFRPWTDAKAIADGDSILRYVRDTARENGIDKKIRYNRKVTAASWS
1976	SDMLTFGFGFRPWIGTKVLADGASIRDYVEETAKEYGVTDHINFGRKVVAMDFD
1413	SAHLISSKGTTAFAEFPMADSVADYPSHIELAEYFRDYADTHDLRRHPAFGTTVIDVL
2034	SLHIDTSKWRLAFEDFPVSADLPDFPHHSELFQYFKDYVEHFGLRESIIFN-TSVVAAER
2001	*: . *:::.* : *:: ::
1861	SATSTWTVTVTTGDEDETLTCNFLYLCSGYYSYDGGYTPDFPGRESFAGEVVHPOFWP
1976	RTAAQWSVTVLVEATGETETWTANVLVGACGYYNYDKGYRPAFPGEDDFRGOIVHPOHWP
1413	PVDSLWQVTTRSRS-GETSVARYRGVIIANGTLSKPNIPTFRGDFTGTLMHTSEYR
2034	DANGLWTVTRSDGEVRTYDVLMVCNGHHWDPNIPDYPGEFDGVLMHSHSYN
	* **
1861 ·	EELDYSDKKVVVIGSGATAVTLVPTMSRDASHVTMLQRSPTYILALPSSDKLSDTIR
1976	EDLDYTGKKVVVIGSGATAITLIPSMAPTAGHVTMLQRSPTWIQALPSEDPVAKGLK
1413	SAEIFRGKRVLVIGAGNSGCDIAVDAVHOAECVDLSVRRGYY
2034	DPFDPIDMRGKKVVVVGMGNSGLDIASELGQRYLADKLIVSARRGVW
	::*:* * :. :: : *
1861	-AVLPNQLAHSIARWKSVVVNLSFYQLCRRSPARAKRMLNLAISRQLPKDIPLDPHF
1976	LARVPDQIAYKIGRARNIALQRASFQLSRTNPKLAKKLFLAQIRLOLGKNVDLRHF
1413	FVPKYLPGR-PSDTLNQGKPLPPWIKQRVDTLLLKQFTGDPVRFGFP
2034	VLPKYLGGV-PGDKLITPPWMPRGLRLFLSRRFLGKNLGTMFGYGLP
	1*. 1 1 * 1 ! . 1
1861	TPSYDPWDQRLCVVPDGDLFKALRSGKASIETDHIDTFTETGILLASGRELEADIIVTAT
1976	TPSYNPWDQRLCVVPNGDLPKVLKSGKADIVTDRIATFTEKGIVTESGREIEADVIVTAT
1413	APDYKIYES-HPVV-NSLILHHIGHGDVHVRAD-VDRFEGKTVRFVDGSSADYDLVLCAT
2034	KPDHRPFEA-HPSA-SGEPLGRAGSGDITFKPA-ITKLDGKQVHFADGTAEDVDVVVCAT
,	*** ** ** ** *** ** ** ** ** ** ** **
1861	GLKMEACGGMSIEVDGELVTLGDRYAYKGMMISDVPNPAMCVGYTNASWTLRADITSMYV
1976	GLNVQILGGATMSIDGEPVKLNETVAYKSVLYSDIPNFLMILGYTNASWTLKADLAASYL
1413	GYHLDYPFIAREDLDWSGAAPDLFLNVASRRH-DNLFVLGMVEASGLGWOGR-YOOAELV
2034	GYNISFPFFDDPNLLPDKDNRFPLFKRMMKPGIDNLFFMGLAQPMPTLVNFA-EQOSKLV
	* ***
1861	CRILITEMDKRDYSKCVPHAT-EEMDQRPILDLASGYVMRAVEQPPKQGSKSPWNMRON
1976	CRVLKIMRDRSYTTFEVHAEPEDFAEESLMGGALTSGYTORGDGEMPROGARGAWKVVNN
1413	AKLITARTEAPAAAREFSAAAAGPPPDLSGGYKYLKLGRMA
2034	AAYLTGKYQLPSANEMQEITKADEAYFLAPYYKS-PRHTIQLEFDPYVRNMN
	*1 *
1861	YILDR-LHSTFGSINDHMTFSKAPARHSTFVPSKS- [SEO ID NO:32]
1976	YYRDRKLMHDAEIEDGVLOFSKVDIAVVPDSKVASA [SEO ID NO:40]
1413	YYVNKD [SEQ ID NO:22]
2034	KEIAKGTKRAAASGNKLPVAARAAAHELEKADRA- [SEQ ID NO:28]

SEQUENCE LISTING

<110>	E. I. DU PONT DE NEMOURS & COMPANY	
<120>	GENES ENCODING BAEYER-VILLIGER MONOOXYGENASES	
<130>	CL1789 PCT	
<150> <151>	60/315,546 2001-08-29	
<160>	113	
<170>	Microsoft Office 97	
<210>	1	
<211>	791	
<212>	DNA	
<213>	Arthrobacter sp. BP2	
<400> accacct	1 ttog acggetecce cecacaaggg ttaggecace ggettegggt gttaccaact	60
ttcgtga	actt gacgggcggt gtgtacaagg cccgggaacg tattcaccgc agcgttgctg	120
atctgcg	gatt actagogaet cogacttoat ggggtogagt tgcagacccc aatcogaact	180
gagaccg	ggct ttttgggatt agetecacet cacagtateg caaccetttg taceggecat	240
tgtagca	atgo gtgaagooca agacataagg ggcatgatga tttgaogtog toccoacott	300
cctccga	agtt gaccceggca gtetectatg agteccegge egaacegetg geaacataga	360
acgaggg	sttg cgctcgttgc gggacttaac ccaacatctc acgacacgag ctgacgacaa	420
ccatgca	acca cetgtaaacc ggcegcaagc ggggcacctg tttccaggtc tttccggtcc	480
atgtcaa	gcc ttggtaaggt tcttcgcgtt gcatcgaatt aatccgcatg ctccgccgct	540
tgtgcgg	gcc cccgtcaatt cctttgagtt ttagccttgc ggccgtactc cccaggcggg	600
gcactta	atg cgttagctac ggcgcggaaa acgtggaatg tcccccacac ctagtgccca	660
acgttta	egg catggactac cagggtatet aatectgtte getececatg etttegetee	720
tcagcgt	cag ttacagecca gagacetgee tttgecateg gtgtteetet tgatatetge	780
gcatttc	acc g	791

<210> 2

<211> 1303

<212> DNA

<213> Rhodococcus sp. phil

<400> 2 gtgcttaaca catgcaagtc gaacgatgaa gcccagcttg ctgggtggat taqtgqcqaa 60 cgggtgagta acacgtgggt gatctgccct gcactctggg ataagcctgg gaaactgggt 120 ctaataccgg atatgacctc gggatgcatg tcctggggtg gaaagttttt cggtgcagga 180 tgagcccgcg gcctatcagc ttgttggtgg ggtaatggcc taccaaggcg acgacgggta 240 gccqqcctga gagggcgacc ggccacactg ggactgagac acggcccaga ctcctacggg 300 aggcagcagt ggggaatatt gcacaatggg cgcaagcctg atgcagcgac gccgcgtgag 360 ggatgacggc cttcgggttg taaacctctt tcacccatga cgaagcgcaa gtgacggtag 420 tgggagaaga agcaccggcc aactacgtgc cagcagccgc ggtaatacgt aggtgcgagc 480 gttgtccgga attactgggc gtaaagagct cgtaggcggt ttgtcgcgtc gtctgtgaaa 540 tcccgcagct caactgcggg cttgcaggcg atacgggcag actcgagtac tgcaggggag 600 actggaattc ctggtgtagc ggtgaaatgc gcagatatca ggaggaacac cggtggcgaa 660 ggcgggtctc tgggcagtaa ctgacgctga ggagcgaaag cgtgggtagc gaacaggatt' 720 agataccetg gtagtecacg cegtaaacgg tgggegetag gtgtgggttt cettecacgg 780 gatccgtgcc gtagccaacg cattaagcgc cccgcctggg gagtacggcc gcaaggctaa 840 aactcaaagg aattgacggg ggcccgcaca agcggcggag catgtggatt aattcgatgc 900 aacgcgaaga accttacctg ggtttgacat gtaccggacg actgcagaga tgtggtttcc 960 ttaagteeeg caacgagege aaccettgte etgtgttgee ageaegtgat ggtggggaet 1080 cgcaggagac tgccggggtc aactcggagg aaggtgggga cgacgtcaag tcatcatgcc 1140 ccttatgtcc agggcttcac acatgctaca atggtcggta cagagggctg cgataccgtg 1200 aggtggagcg aatcccttaa agccggtctc agttcggatc ggggtctgca actcgacccc 1260 gtgaagtcgg agtcgctagt aatcgcagat cagcaacgct gcg 1303

<210> 3

<211> 1296

<212> DNA

<213> Rhodococcus sp. phi2

<400> 3						
gcttaacaca	a tgcaagtcga	acgatgaago	ccagettget	gggtggatta	gtggcgaacg	60
ggtgagtaad	acgtgggtga	tetgecetge	acttcgggat	aagcctggga	aactgggtct	120
aataccggat	aggacetege	gatgcatgtt	ccggggtgga	aaggttttcc	ggtgcaggat	180
gggcccgcgg	cctatcagct	tgttggtggg	gtaacggccc	accaaggcga	cgacgggtag	240
ccggcctgag	agggcgaccg	gccacactgg	gactgagaca	cggcccagac	tcctacggga	300
ggcagcagtg	gggaatattg	cacaatgggc	gcaagcctga	tgcagcgacg	ccgcgtgagg	360
gatgacggcc	ttcgggttgt	aaacctcttt	cagtaccgac	gaagcgcaag	tgacggtagg	420
tacagaagaa	gcaccggcca	actacgtgcc	agcaagccgc	ggtaatacgt	aaggtgcgaa	480
gcgttgtccg	gaattactgg	gcgtaaagag	ctcgtaggcg	gtttgtcgcg	tegtetgtga	540
aaacccgcag	ctcaactgcg	ggcttgcagg	cgatacgggc	agacttgagt	actgcagggg	600
agactggaat	tcctggtgta	gcggtgaaat	gcgcagatat	caggaggaac	accggtggcg	660
aaggegggte	tctgggcagt	aactgacgct	gaggagcgaa	agcgtgggta	gcgaacagga	720
ttagataccc	tggtagtcca	cgccgtaaac	ggtgggeget	aggtgtgggt	ttccttccac	780
gggatccgtg	ccgtagctaa	cgcattaagc	gccccgcctg	gggagtacgg	ccgcaaggct	840
aaaactcaaa	ggaattgacg	ggggcccgca	caagcggcgg	agcatgtgga	ttaattcgat	900
gcaacgcgaa	gaaccttacc	tgggtttgac	atacaccgga	ccgccccaga	gatggggttt	960
cccttgtggt	cggtgtacag	gtggtgcatg	gctgtcgtca	gctcgtgtcg	tgagatgttg	1020
ggttaagtcc	cgcaacgagc	gcaacccttg	tcctgtgttg	ccagcacgta	atggtgggga	1080
ctcgcaggag	actgccgggg	tcaactcgga	ggaaggtggg	gacgacgtca	agtcatcatg	1140
cccttatgt	ccagggcttc	acacatgcta	caatggccgg	tacagagggc	tgcgataccg	1200
egaggtggag	cgaatccctt	aaagccggtc	tcagttcgga	teggggtetg	caactcgacc	1260
ccgtgaagtc	ggagtcgcta	gtaatcgcag	atcagc			1296

<210> 4

<211> 1388

<212> DNA

<213> Brevibacterium sp. HCU

<400> 4

cgcccttgag	tttgatcctg	gctcaggacg	aacgctggct	gcgtgcttaa	cacatgcaag	60
tcgaacgctg	aagccgacag	cttgctgttg	gtggatgagt	ggcgaacggg	tgagtaacac	120
gtgagtaacc	tgcccctgat	ttcgggataa	gcctgggaaa	ctgggtctaa	taccggatac	180
gaccacctga	cgcatgttgg	gtggtggaaa	gtttttcgat	cggggatggg	ctcgcggcct	240
atcagcttgt	tggtggggta	atggcctacc	aaggcgacga	cgggtagccg	gcctgagagg	300
gcgaccggcc	acactgggac	tgagacacgg	cccagactcc	tacgggaggc	agcagtgggg	360
aatattgcac	aatgggggaa	accctgatgc	agcgacgcag	cgtgcgggat	gacggccttc	420
gggttgtaaa	ccgctttcag	cagggaagaa	gcgaaagtga	eggtacetge	agaagaagta	480
ccggctaact	acgtgccagc	agccgcggta	atacgtaggg	tacgagcgtt	gtccggaatt	540
attgggcgta	aagagctcgt	aggtggttgg	tcacgtctgc	tgtggaaacg	caacgcttaa	600
cgttgcgcgt	gcagtgggta	cgggctgact	agagtgcagt	aggggagtct	ggaattcctg	660
gtgtagcggt	gaaatgcgca	gatatcagga	ggaacaccgg	tggcgaaggc	gggactctgg	720
gctgtaactg	acactgagga	gcgaaagcat	ggggagcgaa	caggattaga	taccctggta	780
gtccatgccg	taaacgttgg	gcactaggtg	tgggggacat	tccacgttct	ccgcgccgta	840
gctaacgcat	taagtgcccc	gcctggggag	tacggtcgca	aggctaaaac	tcaaaggaat	900
tgacgggggc	ccgcacaagc	ggcggagcat	gcggattaat	tcgatgcaac	gcgaagaacc	960
ttaccaaggc	ttgacataca	ctggaccgtt	ctggaaacag	ttettetett	tggagctggt	1020
gtacaggtgg	tgcatggttg	tegteagete	gtgtcgtgag	atgttgggtt	aagtcccgca	1080
acgagcgcaa	ccctcgttct	atgttgccag	cacgtgatgg	tgggaactca	taggagactg	1140
ccggggtcaa	ctcggaggaa	ggtggggatg	acgtcaaatc	atcatgccct	ttatgtcttg	1200
ggcttcacgc	atgctacaat	ggctggtaca	gagagaggcg	aacccgtgag	ggtgagcgaa	1260
tcccttaaag	ccagtctcag	ttcggatcgt	agtctgcaat	tcgactacgt	gaagtcggag	1320
togotagtaa	tcgcagatca	gcaacgctgc	ggtgaatacg	ttcccgggcc	ttgtacacac	1380
cgcccgta						1388

<210> 5

<211> 895

<212> DNA

<213> Brachymonas sp. CHX

<400> 5
taggctaact acttctggca gaaccegctc ccatggtgtg acgggcggtg tgtacaagac 60

ccgggaacgt	attcaccgcg	acatgctgat	ccgcgattac	tagcgattcc	gacttcacgc	120
agtcgagttg	cagactgcga	tccggactac	gaccggcttt	gtgggattgg	ctcccctcg	180
cgggttggct	accctctgta	ccggccattg	tatgacgtgt	gtagccccac	ctataagggc	240
catgaggact	tgacgtcatc	cccaccttcc	tccggtttgt	caccggcagt	cccattagag	300
tgccctttcg	tagcaactaa	tggcaagggt	tgcgctcgtt	gcgggactta	acccaacatc	360
tcacgacacg	agctgacgac	agccatgcag	cacctgtgtg	caggttctct	ttcgagcact	420
cccaaatctc	ttcaggattc	ctgccatgtc	aaaggtgggt	aaggtttttc	gegttgcate	480
gaattaaacc	acatcatcca	ccgcttgtgc	gggtccccgt	caattccttt	gagtttcaac	540
cttgcggccg	tactccccag	gcggtcaact	tcacgcgttg	gcttcgttac	tgagtcagct	600
aagacccaac	aaccagttga	catcgtttag	ggcgtggact	accagggtat	ctaatcctgt	660
ttgctcccca	cgctttcgtg	catgagcgtc	agtgcaggcc	caggggattg	ccttcgccat	720
cggtgttcct	ccgcatatct	acgcatttca	ctgctacacg	cggaattcca	teccetetg	780
cegcaeteca	gctttgcagt	cacaaaggca	gttcccaggt	tgagcccggg	gatttcacct	840
ctgtcttaca	aaaccgcctg	cgcacgcttt	acgcccagta	attccgatga	acgct	895

<210> 6

<211> 1439

<212> DNA

<213> Rhodococcus erythropolis AN12

<220>

<221> misc_feature

<222> (1417)..(1417)

<223> N = G or A or T or C

<400 > 6
 aaaacgctgg geggegttg cttaacacat geaattegag eggtaaggee ttteggggta
 60
 cacaaagegge gaacgggtga gtaacacgtg ggtgatetge cetgeactte gggataagee
 120
 tgggaaactg ggtetaatae eggatatgae etcaggtege atgaettggg gtggaaaaat
 ttateggtge aggatgggee egeggeetat eagettgttg gtggggataa
 ggcgacaacg ggtaccegae etgaaagggt gaccggcae actgggaetg aacacaggee
 300

ıg (tgggcgaaag	cctgatgcac	360
a	tctttcagca	gggacaaacg	420
jc (tgccagcagc	cgcggtatta	480
g	agttcgtacg	cggtttgtcg	540
gg 9	ggcgatacgg	gcagacttga	600
t i	atgcgcagat	atcaggagga	660
g	ctgaggaacg	aaagcgtggg	720
g	acggtgggcg	ctaggtgtgg	780
t ,	cgccccgcct	ggggagtacg	840
g	acaatcggcg	gaacatgtgg	900
ja i	atataccgga	aagctgcaga	960
a	gctgtcgtca	gctcgtgtcg	1020
g	tcttatgttg	ccagcacgtt	1080
19 9	ggaaggtggg	gacgacgtca	1140
g	caatggccag	tacagagggc	. 1200
ja i	tcagttcgga	teggggtetg	1260
g	atcagcaacg	ctgcggtgaa	1320
a	aaagtcggta	acacccgaag	1380
ja t	ggatcggcga	ttgggcgcc	1439

<210> 7

<211> 1626

<212> DNA

<213> Rhodococcus sp. phil

<400> 7
atgactgace agatctcace cacagttgte gacgocgttg teatoggee eggattegge
60
ggcatctacg ccytgcacaa getgcacaac gaacagggee tgaccgtggt eggtttegac
120
aaggeggacg gccccggegg tacctggtac tggaacget accegggage getetcegac
180
accgagagte atctctacge ettetcgtte gaccgcgac tgctgcagga eggcacgtgg
240
aagaccacgt acatcaccca gcccgagate etcgagtate teggaagge egtegcgcg
300
ttegacctge gtcgtcactt ccggttegge accgaggtca cctcgggat etacccgga
360

gacgagaacc tgtgggaggt ctccaccgac aagggtgagg tctaccgggc caagtacgtc 420 gtcaacgccg tgggcctgct ctccgccatc aacttccccg acctccccgg cctcqacacc 480 ttcgagggcg agaccatcca caccgccgcc tggcccgagg gcaagaacct cgccggcaag 540 cgtgtcggtg tcatcggtac cggatcgacc gggcagcagg tcatcaccgc cctcgcgccg 600 gaggtegage accteacegt ettegteege acceegeagt acteegtgee ggteggeaac 660 cgtcccgtga cgaaggaaca gatcgacgcg atcaaggccg actacgacgg tatctgggac 720 agegteaaga agteegeggt ggeetteggg ttegaggagt ceaccetgee tgeeatgtee 780 gtctcggaag aggagcgcaa ccgcatettc caggaggcgt gggaccacgg cggcggcttc 840 cgcttcatgt tcggcacctt cggcgacatc gccaccgacg aggccgccaa cgaagctgcg 900 gcatcgttca tccgctccaa gatcgccgag atcatcgagg atccggaaac ggcccgcaag 960 ctgatgccga ccggtctgta cgccaagcgt ccgctgtgcg acaacggcta ctacgaggtg 1020 tacaaccgcc cgaacgtcga ggccgtcgcg atcaaggaga accccatccg tgaggtcacc 1080 gccaagggcg togtgaccga ggacggtgtc ctccacgaac togacgtgct cgtcttegcc 1140 accegetteg acgeegtega eggeaactae egeeggateg agateegegg eeggaaegge 1200 ctgcacatca acgaccactg ggacggccag ccgacgagct accteggcgt caccaccqcq 1260 aacttececa actggtteat ggtgeteggt cecaaeggee egtteacaaa eetgeegeeg 1320 agcatcgaaa cgcaggtcga gtggatcagc gacaccgtcg cctacgccga gcgcaacgag 1380 atccgtgcga tcgaacccac cccggaggcc gaggaggagt ggacgcagac ctgcaccgac 1440 atogogaacg ccacgotgtt caccogoggt gactootgga tottoggogo gaatgttoog 1500 ggcaagaagc cgagcgtcct gttctacctg ggcggactgg gcaactaccg caacgtcctc 1560 gegggtgteg tegeegaeag etacegaggt ttegagttga agteegetgt eeeggtgaee 1620 gcctga 1626

<210> 8

<211> 542

<212> PRT

<213> Rhodococcus sp. phil

<400> 8

Met Thr Ala Gln Ile Ser Pro Thr Val Val Asp Ala Val Val Ile Gly

1 10 15

Ala Gly Phe Gly Gly Ile Tyr Ala Val His Lys Leu His Asn Glu Gln 25 Gly Leu Thr Val Val Gly Phe Asp Lys Ala Asp Gly Pro Gly Gly Thr Trp Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr Glu Ser His Leu Tyr Arg Phe Ser Phe Asp Arg Asp Leu Leu Gln Asp Gly Thr Trp Lys Thr Thr Tyr Ile Thr Gln Pro Glu Ile Leu Glu Tyr Leu Glu Ser Val Val Asp Arg Phe Asp Leu Arg Arg His Phe Arg Phe Gly Thr Glu 105 Val Thr Ser Ala Ile Tyr Leu Glu Asp Glu Asn Leu Trp Glu Val Ser 120 Thr Asp Lys Gly Glu Val Tyr Arg Ala Lys Tyr Val Val Asn Ala Val 130 Gly Leu Leu Ser Ala Ile Asn Phe Pro Asp Leu Pro Gly Leu Asp Thr 145 Phe Glu Gly Glu Thr Ile His Thr Ala Ala Trp Pro Glu Gly Lys Asn Leu Ala Gly Lys Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly Gln Gln Val Ile Thr Ala Leu Ala Pro Glu Val Glu His Leu Thr Val Phe 200 Val Arg Thr Pro Gln Tyr Ser Val Pro Val Gly Asn Arg Pro Val Thr 215 Lys Glu Gln Ile Asp Ala Ile Lys Ala Asp Tyr Asp Gly Ile Trp Asp Ser Val Lys Lys Ser Ala Val Ala Phe Gly Phe Glu Glu Ser Thr Leu 250

Pro	Ala	Met	Ser 260	Val	Ser	Glu	Glu	G1u 265	Arg	Asn	Arg	Ile	Phe 270		Glu	
Ala	Trp	Asp 275	His	Gly	Gly	Gly	Phe 280	Arg	Phe	Met	Phe	Gly 285	Thr	Phe	Gly	
Asp	Ile 290		Thr	Авр	Glu	Ala 295	Ala	Asn	Glu	Ala	Ala 300	Ala	Ser	Phe	Ile	
Arg 305	Ser	Lys	Ile	Ala	Glu 310	Ile	Ile	Glu	Asp	Pro 315	Glu	Thr	Ala	Arg	Lys 320	
Leu	Met	Pro	Thr	Gly 325	Leu	Tyr	Ala	Lys	Arg 330		Leu	Сув	Asp	Asn 335	Gly	
Iyr	Tyr	Glu	Val 340	Tyr	Asn	Arg	Pro	Asn 345	Va1	Glu	Ala	Val	Ala 350	Ile	Lys	
3lu	Asn	Pro 355	Ile	Arg	Glu	Val	Thr 360	Ala	Lys	Gly	Val	Val 365	Thr	Glu	Asp	
31y	Val 370	Leu	His	Glu	Leu	Asp 375	Val	Leu	Val	Phe	Ala 380	Thr	Gly	Phe	Asp	
41a 885	Val	Asp	Gly	Asn	Tyr 390	Arg	Arg	Ile	Glu	Ile 395	Arg	Gly	Arg	Asn	Gly 400	
Leu	His	Ile	Asn	Авр 405	His	Trp	Asp	Gly	Gln 410	Pro	Thr	Ser	Tyr	Leu 415	Gly	
/al	Thr	Thr	Ala 420	Asn	Phe	Pro	Asn	Trp 425	Phe	Met	Val	Leu	Gly 430	Pro	Asn	
lly	Pro	Phe 435	Thr	Asn	Leu		Pro 440	Ser	Ile	Glu	Thr	Gln 445	Val	Glu	Trp	
le	Ser 450	Asp	Thr	Val		Tyr 455	Ala	Glu	Arg		Glu 460	Ile	Arg	Ala	Ile	
65	Pro	Thr	Pro	Glu	Ala 470	Glu	Glu	Glu		Thr 475	Gln	Thr	Сув	Thx	Asp 480	
le	Ala	Asn		Thr 485	Leu	Phe	Thr	Arg	Gly 490	Asp	Ser	Trp		Phe 495	Gly	
				61			_	_	1	_		_	_			

500 505 510

Leu Gly Asn Tyr Arg Asn Val Leu Ala Gly Val Val Ala Asp Ser Tyr 515 520 525

Arg Gly Phe Glu Leu Lys Ser Ala Val Pro Val Thr Ala Glx 530 535 540

<210> 9

<211> 1623

<212> DNA

<213> Rhodococcus sp. phi2

atgaccgcac agaccatcca caccgtcgac gccgtcgtca tcggcgccgg attcggcggc atctacgccg tccacaagct gcaccacgaa ctcggcctga ccaccgtcgg attcgacaag 120 gcagacggcc ccggcggcac ctggtactgg aaccgctacc cgggcgccct ctccgacacg 180 gagagccacc totaccgott ctccttcgac cgcgacctgc tgcaggacgg cacctggaag 240 aacacgtacg tcacccagcc cgagatcctg gagtatctcg aggacgtcqt cgaccqcttc 300 gacctgogoc gocacttoog gttoggoacc gaggtcacct cggcgatcta totogacgac 360 gagaacctct gggaggtcac caccgacggc ggcgacgtct atcgggcgac ctacgtcgtc 420 aacgccgtcg ggctgctctc cgccatcaac ttcccgaacc tgcccggcct ggacacgttc 480 gagggggaga ccatccacac cgccgcctgg ccggagggca agagcctcgc cgggcgccgc 540 gtcggcgtca tcggtaccgg ttccaccggc cagcaggtca tcacggcgct ggcgccggag 600 gtcgagcacc tcaccgtctt cgtccggacc ccgcagtact ccgtaccggt cggcaaccgt 660 cccgtgaccc cggagcagat cgacgcgatc aaggccgact acgaccgaat ctgggagcag 720 gccaagaact ccgcggtggc cttcggcttc gaggagtcca ccctgccggc catgtccgtc 780 toqqaqgagg agogcaacog gatottocag gaggootggg accaeggegg eggattoegt 840 ttcatgttcg gcaccttcgg tgacatcgcc accgacgagg ccgccaacga aqccgccgcq 900 tegttcatcc getecaagat egeegagate ategaggate eggagacege eegcaagetg 960 atgeegaceg gtetgttege caagegeeeg etgtgegacg eeggetacea eeaggtette 1020 aaccggccga acgtggaagc ggttgccatc aaggagaacc ccatccgcga ggtcaccgcg 1080 aagggcgtgg tgaccgagga cggcgtcctg cacgagttgg acgtgctcgt cttcgccacc 1140 gqcttcgacg ccgtggacgg caactaccgg cgcatcgaga tccgcggccg ggacggcctg 1200

cacatcaacg accactggga cggccagccg accagctacc tgggcgtctc cacggcgaac 1260 ttccccaact ggttcatggt gctgggcccc aacggtccgt tcacgaacct gcccccgagc 1320 atcgagaccc aggtcgagtg gatcagcgac acgatcgggt acgccgagcg caacggtgtg 1380 cgggccatcg agcccacgcc ggaggccgag gccgaatgga ccgagacctg caccgcgatc 1440 gcgaacgcca cgctgttcac caagggcgat tcgtggatct tcggcgcgaa catcccgggc 1500 aagacgccga gcgtactgtt ctacctgggc ggcctgcgca actaccgtgc cgtcctcgcc 1560 gaggtegega cegaeggata ceggggette gaegtgaagt cegeegagat ggteaeggte 1620 1623 tqa

<210> 10

<211> 541

<212> PRT

<213> Rhodococcus sp. phi2

<400> 10

Met Thr Ala Gln Thr Ile His Thr Val Asp Ala Val Val Ile Gly Ala

Gly Phe Gly Gly Ile Tyr Ala Val His Lys Leu His His Glu Leu Gly 20 25 30

Leu Thr Thr Val Gly Phe Asp Lys Ala Asp Gly Pro Gly Gly Thr Trp 35 40 45

Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr Glu Ser His Leu 50 60

Tyr Arg Phe Ser Phe Asp Arg Asp Leu Leu Gln Asp Gly Thr Trp Lys 65 70 75 80

Asn Thr Tyr Val Thr Gln Pro Glu Ile Leu Glu Tyr Leu Glu Asp Val 85 90 95

Val Asp Arg Phe Asp Leu Arg Arg His Phe Arg Phe Gly Thr Glu Val

Thr Ser Ala Ile Tyr Leu Asp Asp Glu Asn Leu Trp Glu Val Thr Thr

Asp Gly Gly Asp Val Tyr Arg Ala Thr Tyr Val Val Asn Ala Val Gly 135 Leu Leu Ser Ala Ile Asn Phe Pro Asn Leu Pro Gly Leu Asp Thr Phe 150 145 Glu Gly Glu Thr Ile His Thr Ala Ala Trp Pro Glu Gly Lys Ser Leu 170 Ala Gly Arg Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly Gln Gln 185 Val Ile Thr Ala Leu Ala Pro Glu Val Glu His Leu Thr Val Phe Val 200 205 Arg Thr Pro Gln Tyr Ser Val Pro Val Gly Asn Arg Pro Val Thr Pro 215 Glu Gln Ile Asp Ala Ile Lys Ala Asp Tyr Asp Arg Ile Trp Glu Gln 230 225 Ala Lys Asn Ser Ala Val Ala Phe Gly Phe Glu Glu Ser Thr Leu Pro 250 Ala Met Ser Val Ser Glu Glu Glu Arg Asn Arg Ile Phe Gln Glu Ala 260 Trp Asp His Gly Gly Gly Phe Arg Phe Met Phe Gly Thr Phe Gly Asp 280 Ile Ala Thr Asp Glu Ala Ala Asn Glu Ala Ala Ala Ser Phe Ile Arg Ser Lys Ile Ala Glu Ile Ile Glu Asp Pro Glu Thr Ala Arg Lys Leu 310 Met Pro Thr Gly Leu Phe Ala Lys Arg Pro Leu Cys Asp Ala Gly Tyr His Gln Val Phe Asn Arg Pro Asn Val Glu Ala Val Ala Ile Lys Glu Asn Pro Ile Arg Glu Val Thr Ala Lys Gly Val Val Thr Glu Asp Gly 360

PCT/US02/27549 WO 03/020890

Val	Leu 370	His	Glu	Leu	Asp	Val 375	Leu	Val	Phe	Ala	Thr 380	Gly	Phe	Asp	Ala		
Val 385	Asp	Gly	Asn	Tyr	Arg 390	Arg	Ile	Glu	Ile	Arg 395	Gly	Arg	Asp	Gly	Leu 400		
His	Ile	Asn	Asp	His 405	Trp	Asp	Gly	Gln	Pro 410	Thr	Ser	Tyr	Leu	Gly 415	Val		
Ser	Thr	Ala	Asn 420	Phe	Pro	Asn	Trp	Phe 425	Met	Val	Leu	Gly	Pro 430	Asn	Gly		
Pro	Phe	Thr 435	Asn	Leu	Pro	Pro	Ser 440	Ile	Glu	Thr	Gln	Val 445	Glu	Trp	Ile		
Ser	Asp 450	Thr	Ile	Gly	Tyr	Ala 455	Glu	Arg	Asn	Gly	Val 460	Arg	Ala	Ile	Glu		
Pro 465	Thr	Pro	Glu	Ala	Glu 470	Ala	Glu	Trp	Thr	Glu 475	Thr	Сув	Thr	Ala	Ile 480		
Ala	Asn	Ala	Thr	Leu 485	Phe	Thr	Lys	Gly	Asp 490	ser	Trp	Ile	Phe	Gly 495	Ala		
Asn	Ile	Pro	Gly 500	Lys	Thr	Pro	Ser	Val 505	Leu	Phe	Tyr	Leu	Gly 510	Gly	Leu		
Arg	Asn	Tyr 515	Arg	Ala	Val	Leu	Al a 520	Glu	Val	Ala	Thr	Asp 525	Gly	Tyr	Arg		
Gly	Phe 530	Asp	Val	Lys	Ser	Ala 535	Glu	Met	Val	Thr	Val 540	Glx					
<21)> :	11															
<21	l> :	L596															
<21	2> 1	ONA															
<21	3> 1	Arthi	robad	cter	sp.	BP2											
<40		11		actt	+ ~	2000	catt			tea	tcat	coar		aact	tegge	6	_
-	-					-	_	-		-			_				
ggcatctacg ccgtccacaa gcttcacaac gagcagggtc tgaccgttgt cggcttcgac aaggccgacg gtcccqqcq cacctqqtac tqqaaccqct acccqqqcqc tctctctqac																	

13

accgagagcc	acgtctaccg	cttctcttc	gataagggcc	tcctgcagga	cggcacctgg	240
aagcacacct	acatcaccca	gcccgagatc	ctcgagtacc	ttgaggacgt	cgttgaccgc	300
tttgacctgc	ggcgccactt	ccgctttggt	accgaggtca	agtccgccac	ctacctcgaa	360
gacgagggcc	tgtgggaagt	gaccaccggc	ggcggcgcgg	tgtaccgggc	taagtacgtc	420
atcaacgccg	tggggctgct	gtcagccatc	aacttcccga	acctgcccgg	gatcgacacc	480
tttgagggcg	agaccatcca	caccgccgcc	tggccgcagg	gcaagtccct	cgccggtcgc	540
cgcgtg g gtg	tgatcggcac	cggttccacc	ggccagcagg	tcatcacggc	gctggcaccg	600
gaagttgaac	acctgaccgt	cttcgtcagg	accccgcagt	actccgtccc	ggtgggcaag	660
cgccccgtga	ccacccagca	gattgacgag	atcaaggccg	actacgacaa	catctgggca	720
caggtcaagc	gttccggcgt	agccttcggc	ttcgaggaaa	gcaccgtgcc	ggccatgagc	780
gtcaccgaag	aagaacgccg	ccaggtctac	gagaaggcct	gggaatacgg	cggcggcttc	840
cgcttcatgt	tcgaaacctt	cagcgacatc	gccaccgacg	aggaggccaa	cgagactgcg	900
gcatccttca	tccggaacaa	gatcgtcgag	accatcaagg	atccggagac	ggcacggaaa	960
ctgacgccga	cgggcttgtt	cgcccgtcgc	ccgctctgcg	acgacggctt	acttccaggt	1020
gttcaaccgg	cccaacgtcg	aggetgtege	tatcaaggaa	aaccccattc	gggaagtcac	1080
ggccaagggt	gtggtgacgg	aggacggcgt	gctgcacgag	ctggacgtca	tegtettege	1140
gaccggtttc	gacgccgtgg	acggcaatta	ccgccgcatg	gagatcagcg	ggcgcgacgg	1200
cgtgaacatc	aacgaccact	gggacgggca	gcccaccagc	tacctgggcg	tttccacagc	1260
gaagttcccc	aactggttca	tggtgctggg	acccaacggc	ccgttcacga	acctgccgcc	1320
gagcatcgag	acgcaggtcg	aatggatcag	cgacacggtg	gcctacgcgg	aggaaaacgg	1380
aatccgggcg	atcgagccga	ccccggaggc	cgaagccgag	tggaccgaga	cgtgcacaca	1440
gatcgcgaac	atgacggtgt	tcaccaaggt	cgattcatgg	atcttcggcg	cgaacgttcc	1500
gggcaagaag	cccagcgtgc	tgttctatct	gggeggeetg	ggcaactacc	gcggcgtcct	1560
ggacgatgtc	accgacaacg	gataccgcgg	ctttga			1596

<210> 12

<211> 532

<212> PRT

<213> Arthrobacter sp. BP2

<400> 12

Met 1	Thr	Ala	Gln	Asn 5	Thr	Phe	Gln	Thr	Val 10	Asp	Ala	Val	۷al	Ile 15	Gly
Ala	Gly	Phe	Gly 20	Gly.	Ile	Tyr	Ala	Val 25	His	ГЛЗ	Leu	His	Asn 30	Glu	Gln
Gly	Leu	Thr 35	Val	Val	Gly	Phe	Asp 40	Lys	Ala	Asp	Gly	Pro 45	Gly	Gly	Thr
Trp	Tyr 50	Trp	Asn	Arg	Tyr	Pro 55	Gly	Ala	Leu	Ser	Asp 60	Thr	Glu	Ser	His
Val 65	Tyr	Arg	Phe	Ser	Phe 70	Aap	гÀг	Gly	Leu	Leu 75	Gln	Asp	Gly	Thr	Trp 80
Lys	His	Thr	Tyr	Ile 85	Thr	Gln	Pro	Glu	Ile 90	Leu	Glu	Tyr	Leu ,	Glu 95	Asp
Val	Val	Asp	Arg 100	Phe	Asp	Leu	Arg	Arg 105	His	Phe	Arg	Phe	Gly 110	Thr	Glu
Val	Lys	Ser 115	Ala	Thr	Tyr	Leu	Glu 120	Asp	Glu	Gly	Leu	Trp 125	Glu	Val	Thr
Thr	Gly 130	Gly	Gly	Ala	Val	Tyr 135	Arg	Ala	Lys	Tyr	Val 140	Ile	Asn	Ala	Val
Gly 145	Leu	Leu	Ser	Ala	Ile 150	Asn	Phe	Pro	Asn	Leu 155	Pro	Gly	Ile	Asp	Thr 160
Phe	Glu	Gly	Glu	Thr 165	Ile	His	Thr	Ala	Ala 170	Trp	Pro	Gln	Gly	Lys 175	Ser
Leu	Ala	Gly	Arg 180	Arg	Val	Gly	Val	Ile 185	Gly	Thr	Gly	Ser	Thr 190	Gly	Gln
Gln	Val	Ile 195	Thr	Ala	Leu	Ala	Pro 200	Glu	Val	Glu	His	Leu 205	Thr	Val	Phe
Val	Arg 210	Thr	Pro	Gln	Tyr	Ser 215	Val	Pro	Val	Gly	Lys 220	Arg	Pro	Val	Thr
Thr 225	Gln	Gln	Ile	Asp	Glu 230	Ile	Lys	Ala	Asp	Tyr 235	Asp	Asn	Ile	Trp	Ala 240
Gln	Val	Lys	Arg	Ser	Gly	۷al	Ala	Phe	Gly	Phe	Glu	Glu	Ser	Thr	Val

245 250 255

Pro Ala Met Ser Val Thr Glu Glu Glu Arg Arg Gln Val Tyr Glu Lys 260 265 270

Ala Trp Glu Tyr Gly Gly Gly Phe Arg Phe Met Phe Glu Thr Phe Ser

Asp Ile Ala Thr Asp Glu Glu Ala Asn Glu Thr Ala Ala Ser Phe Ile 290 295 300

Arg Asn Lys Ile Val Glu Thr Ile Lys Asp Pro Glu Thr Ala Arg Lys 305 310 315 320

Leu Thr Pro Thr Gly Leu Phe Ala Arg Arg Pro Leu Cys Asp Asp Gly

Leu Leu Pro Gly Val Gln Pro Ala Gln Arg Arg Gly Cys Arg Tyr Gln 340 345 350

Gly Lys Pro His Ser Gly Ser His Gly Gln Gly Cys Gly Asp Gly Gly 355 360 365

Arg Arg Ala Ala Arg Ala Gly Arg His Arg Leu Arg Asp Arg Phe Arg

Arg Arg Gly Arg Gln Leu Pro Pro His Gly Asp Gln Arg Ala Arg Arg 385 390 395

Arg Glu His Gln Arg Pro Leu Gly Arg Ala Ala His Gln Leu Pro Gly
405 410 415

Arg Phe His Ser Glu Val Pro Gln Leu Val His Gly Ala Gly Thr Gln 420 425 430

Arg Pro Val His Glu Pro Ala Ala Glu His Arg Asp Ala Gly Arg Met

Asp Gln Arg His Gly Gly Leu Arg Gly Gly Lys Arg Asn Pro Gly Asp

Arg Ala Asp Pro Gly Gly Arg Ser Arg Val Asp Arg Asp Val His Thr 465 470 475 480

Asp Arg Glu His Asp Gly Val His Gln Gly Arg Phe Met Asp Leu Arg 485 490 495

Arg Glu Arg Ser Gly Gln Glu Ala Gln Arg Ala Val Leu Ser Gly Arg 500 505 Pro Gly Gln Leu Pro Arg Arg Pro Gly Arg Cys His Arg Gln Arg Ile 520 Pro Arg Leu Glx 530 <210> 13 <211> 1662 <212> DNA <213> Brevibacterium sp. HCU <220> <221> CDS <222> (1)..(1662) -223 <400> 13 atg cca att aca caa caa ctt qac cac qac qct atc qtc atc qqc qcc 48 Met Pro Ile Thr Gln Gln Leu Asp His Asp Ala Ile Val Ile Gly Ala 5 10 ggc ttc tcc gga cta gcc att ctg cac cac ctg cgt gaa atc ggc cta 96 Gly Phe Ser Gly Leu Ala Ile Leu His His Leu Arg Glu Ile Gly Leu 20 gac act caa atc gtc gaa gca acc gac ggc att gga gga act tgg tgg 144 Asp Thr Gln Ile Val Glu Ala Thr Asp Gly Ile Gly Gly Thr Trp Trp 35 atc aac cgc tac ccg ggg gtg cgg acc gac agc gag ttc cac tac tac 192 Ile Asn Arg Tyr Pro Gly Val Arg Thr Asp Ser Glu Phe His Tyr Tyr 50 tot tto ago tto ago gag gas ott cot gac gag tog aga tog act caa 240 Ser Phe Ser Phe Ser Lys Glu Val Arg Asp Glu Trp Thr Trp Thr Gln 65 70 cgc tac cca gac ggt gaa gaa gtt tgc gcc tat ctc aat ttc att gct 288 Arg Tyr Pro Asp Gly Glu Glu Val Cys Ala Tyr Leu Asn Phe Ile Ala gat ega ett gat ett egg aag gae att eag etc aac tea ega gtg aat 336

Asp Arg Leu Asp Leu Arg Lys Asp Ile Gln Leu Asn Ser Arg Val Asn

100 105 110 act gcc cgt tgg aat gag acg gaa aag tac tgg gac gtc att ttc gaa 384 Thr Ala Arg Trp Asn Glu Thr Glu Lys Tyr Trp Asp Val Ile Phe Glu 120 gac ggg tcc tcg aaa cgc gct cgc ttc ctc atc agc gca atg ggt gca 432 Asp Gly Ser Ser Lys Arg Ala Arg Phe Leu Ile Ser Ala Met Gly Ala 135 ctt agc cag gcg att ttc ccg gcc atc gac gga atc gac gaa ttc aac 480 Leu Ser Gln Ala Ile Phe Pro Ala Ile Asp Gly Ile Asp Glu Phe Asn ggc gcg aaa tat cac act gcg gct tgg cca gct gat ggc gta gat ttc 528 Gly Ala Lys Tyr His Thr Ala Ala Trp Pro Ala Asp Gly Val Asp Phe acg qqc aaq aaq qtt qqa qtc att qqq qtt qqq qcc tcq qqa att caa 576 Thr Gly Lys Lys Val Gly Val Ile Gly Val Gly Ala Ser Gly Ile Gln atc att ccc gag ctc gcc aag ttg gct ggc gaa cta ttc gta ttc cag 624 Ile Ile Pro Glu Leu Ala Lys Leu Ala Gly Glu Leu Phe Val Phe Gln cga act ccg aac tat gtg gtt gag agc aac aac gac aaa gtt gac gcc Arg Thr Pro Asn Tyr Val Val Glu Ser Asn Asn Asp Lys Val Asp Ala 672 gag tgg atg cag tac gtt cgc gac aac tat gac gaa att ttc gaa cgc 720 Glu Trp Met Gln Tyr Val Arg Asp Asn Tyr Asp Glu Ile Phe Glu Arg gca tcc aag cac ccg ttc ggg gtc gat atg gag tat ccg acg gat tcc 768 Ala Ser Lys His Pro Phe Gly Val Asp Met Glu Tyr Pro Thr Asp Ser 245 gcc gtc gag gtt tca gaa gaa gga cgt aag cga gtc ttt gaa agc aaa 816 Ala Val Glu Val Ser Glu Glu Glu Arg Lys Arg Val Phe Glu Ser Lys 265 tgg gag gag gga ggc ttc cat ttt gca aac gag tgt ttc acg gac ctg 864 Trp Glu Glu Gly Gly Phe His Phe Ala Asn Glu Cys Phe Thr Asp Leu ggt acc agt cct gag gcc agc gag ctg gcg tca gag ttc ata cgt tcg 912 Gly Thr Ser Pro Glu Ala Ser Glu Leu Ala Ser Glu Phe Ile Arg Ser 295 aag att cgg gag gtc gtt aag gac ccc gct acg gca gat ctc ctt tgt 960 Lys Ile Arg Glu Val Val Lys Asp Pro Ala Thr Ala Asp Leu Leu Cys 310 315 ccc aag teg tac teg tte aac ggt aag ega gtg ceg ace gge cac gge 1008

1056

Pro Lys Ser Tyr Ser Phe Asn Gly Lys Arg Val Pro Thr Gly His Gly 325 330 335 tac tac gag acg ttc aat cgc acg aat gtg cac ctt ttg gat qcc acg

Tyr Tyr Glu Thr Phe Asn Arg Thr Asn Val His Leu Leu Asp Ala Arg

345

340

					cgg Arg											1104
					gat Asp											1152
					acc Thr 390											1200
atc Ile	ctc Leu	cgc Arg	gac Asp	aag Lys 405	tgg Trp	gcc Ala	cag Gln	gat Asp	999 Gly 410	ctt Leu	agg Arg	aca Thr	aac Asn	att Ile 415	ggt Gly	1248
ctt Leu	act Thr	gta Val	aac Asn 420	ggc	ttc Phe	ccg Pro	aac Asn	ttc Phe 425	ctg Leu	atg Met	tct Ser	ctt Leu	gga Gly 430	cct Pro	caģ Gln	1296
acc Thr	ccg Pro	tac Tyr 435	tcc Ser	aac Asn	ctt Leu	gtt Val	gtt Val 440	cct Pro	att Ile	cag Gln	t tg Leu	gga Gly 445	gcc Ala	caa Gln	tgg Trp	1344
atg Met	cag Gln 450	cga Arg	ttc Phe	ctt Leu	aag Lys	ttc Phe 455	att Ile	cag Gln	gaa Glu	cgc Arg	ggc Gly 460	att Ile	gaa Glu	gtg Val	ttc Phe	1392
					gct Ala 470											1440
ggc	gct Ala	gaa Glu	tct Ser	acg Thr 485	gtc Val	atg Met	tcc Ser	atc Ile	gaa Glu 490	gga Gly	ccc Pro	aaa Lys	gcc Ala	ggc Gly 495	gca Ala	1488
					aac Asn											1536
tat Tyr	atg Met	ggc Gly 515	ggc Gly	ggt Gly	cag Gln	gtc Val	tac Tyr 520	cag Gln	gac Asp	tgg Trp	Сув	cgc Arg 525	gag Glu	gcg Ala	gaa Glu	1584
					act Thr					Asp						1632
					gcg Ala 550				tag							1662

<210> 14

<211> 553

<212> PRT

<213> Brevibacterium sp. HCU

<400> 14

Met Pro Ile Thr Gln Gln Leu Asp His Asp Ala Ile Val Ile Gly Ala 1 5 10 15

Gly Phe Ser Gly Leu Ala Ile Leu His His Leu Arg Glu Ile Gly Leu 20 25 30

Asp Thr Gln Ile Val Glu Ala Thr Asp Gly Ile Gly Gly Thr Trp Trp 35 40 45

Ile Asn Arg Tyr Pro Gly Val Arg Thr Asp Ser Glu Phe His Tyr Tyr 50 55 60

Ser Phe Ser Phe Ser Lys Glu Val Arg Asp Glu Trp Thr Trp Thr Gln 65 70 75 80

Arg Tyr Pro Asp Gly Glu Glu Val Cys Ala Tyr Leu Asn Phe Ile Ala 85 90 95

Asp Arg Leu Asp Leu Arg Lys Asp Ile Gln Leu Asn Ser Arg Val Asn 100 105 110

Thr Ala Arg Trp Asn Glu Thr Glu Lys Tyr Trp Asp Val Ile Phe Glu 115 120 125

Asp Gly Ser Ser Lys Arg Ala Arg Phe Leu Ile Ser Ala Met Gly Ala 130 140

Leu Ser Gln Ala Ile Phe Pro Ala Ile Asp Gly Ile Asp Glu Phe Asn 145 150 155 160

Gly Ala Lys Tyr His Thr Ala Ala Trp Pro Ala Asp Gly Val Asp Phe 165 170 175

Thr Gly Lys Lys Val Gly Val Ile Gly Val Gly Ala Ser Gly Ile Gln 180 185 190

Ile Ile Pro Glu Leu Ala Lys Leu Ala Gly Glu Leu Phe Val Phe Gln 195 200 205

Arg Thr Pro Asn Tyr Val Val Glu Ser Asn Asn Asp Lys Val Asp Ala 210 215 220

20

Glu Trp Met Gln Tyr Val Arg Asp Asn Tyr Asp Glu Ile Phe Glu Arg 230 235 240 Ala Ser Lys His Pro Phe Gly Val Asp Met Glu Tyr Pro Thr Asp Ser 245 250 Ala Val Glu Val Ser Glu Glu Glu Arg Lys Arg Val Phe Glu Ser Lys 265 260 Trp Glu Glu Gly Gly Phe His Phe Ala Asn Glu Cys Phe Thr Asp Leu 280 Gly Thr Ser Pro Glu Ala Ser Glu Leu Ala Ser Glu Phe Ile Arg Ser Lys Ile Arg Glu Val Val Lys Asp Pro Ala Thr Ala Asp Leu Leu Cys 315 Pro Lys Ser Tyr Ser Phe Asn Gly Lys Arg Val Pro Thr Gly His Gly 325 330 Tyr Tyr Glu Thr Phe Asn Arg Thr Asn Val His Leu Leu Asp Ala Arg 340 345 Gly Thr Pro Ile Thr Arg Ile Ser Ser Lys Gly Ile Val His Gly Asp Thr Glu Tyr Glu Leu Asp Ala Ile Val Phe Ala Thr Gly Phe Asp Ala 375 Met Thr Gly Thr Leu Thr Asn Ile Asp Ile Val Gly Arg Asp Gly Val Ile Leu Arg Asp Lys Trp Ala Gln Asp Gly Leu Arg Thr Asn Ile Gly Leu Thr Val Asn Gly Phe Pro Asn Phe Leu Met Ser Leu Gly Pro Gln 420 425 Thr Pro Tyr Ser Asn Leu Val Val Pro Ile Gln Leu Gly Ala Gln Trp 440 Met Gln Arg Phe Leu Lys Phe Ile Gln Glu Arg Gly Ile Glu Val Phe 455

465	Ser	Ser	Arg	Glu	Ala 470	Glu	Glu	Ile	Ттр	Asn 475	Ala	Glu	Thr	Ile	Arg 480	
Gly	Ala	Glu	Ser	Thr 485	Val	Met	Ser	Ile	Glu 490	Gly	Pro	ьув	Ala	Gly 495	Ala	
Trp	Phe	Ile	Gly 500	Gly	Asn	Ile	Pro	Gly 505	Lys	Ser	Arg	Glu	Tyr 510	Gln	Val	
Tyr	Met	Gly 515	Gly	Gly	Gln	Val	Tyr 520	Gln	qaA	Тгр	Сув	Arg 525	Glu	Ala	Glu	
Glu	Ser 530	qaA	Tyr	Ala	Thr	Phe 535	Leu	Asn	Ala	Asp	Ser 540	Ile	Asp	Gly	Glu	
Lув 545	Val	Arg	Glu	Ser	Ala 550	Gly	Met	Lys								
<21)> :	15														
<21	L> :	1590														
<212	2> 1	ANC														
<213	3> 1	3rev:	lbact	eri	ım sı	. но	υ									
<220	>									•						
<22	L> (CDS														
<222	2>	(1)	1150													
			(123	90)												
<223	3>		. (133	90)			٠									
<400)> 3				cct	gra		202	aca.	cca	Cag	aca	220	~~a	asc.	48
<400 atg)> 3 acg	tca	acc Thr	atg			ccg									48
<400 atg Met 1	acg Thr	tca Ser gag	acc	atg Met 5	Pro gac	Ala	ccg Pro	Thr	Ala 10 gtg	Ala ggt	Gln ggc	Ala gga	Asn ttc	Ala 15 tcg	ggg	48 96
<400 atg Met 1 gag Glu	acg Thr acc Thr	tca Ser gag Glu tct	acc Thr gtc Val	atg Met 5 ctc Leu	Pro gac Asp	gca Ala ctg Leu	ccg Pro ctc Leu	Thr atc Ile 25 gaa	Ala 10 gtg Val gac	Ala ggt Gly	Gln ggc Gly ttc	Ala gga Gly aag	ttc Phe 30 gtc	Ala 15 tcg Ser aag	Asp ggg Gly gtc	

Į	ro 55	ggt Gly	gct Ala	cgt Arg	acg Thr	gac Asp 70	agc Ser	acc Thr	gga Gly	cag Gln	atc Ile 75	tat Tyr	cag Gln	ttc Phe	cag Gln	tac Tyr 80	240
I	ag Jys	gac Asp	ctg Leu	tgg Trp	aag Lys 85	gac Asp	ttc Phe	gac Asp	ttc Phe	aag Lys 90	gag Glu	ctc Leu	tac Tyr	Pro	gac Asp 95	Phe	288
2	ac Asn	gly ggg	gtt Val	cgg Arg 100	gag Glu	tac Tyr	ttc Phe	gag Glu	tac Tyr 105	gtc Val	gac Asp	tcg Ser	cag Gln	ctc Leu 110	gac Asp	ctg Leu	336
						ttc Phe											384
1	Jac Asp	gct Ala 130	gcc Ala	aag Lys	gag Glu	tgg Trp	acg Thr 135	gtg V al	cga Arg	tcg Ser	tcg Ser	gaa Glu 140	gga Gly	cgt Arg	gag Glu	cag Gln	432
2	egg Arg 145	gcc Ala	cgt Arg	gcg Ala	gtc V al	atc Ile 150	gtc Val	gcc Ala	acc Thr	ggc	ttc Phe 155	ggt Gly	gcg Ala	aag Lys	ccc Pro	ctc Leu 160	480
1	tac Iyr	ccg Pro	aac Asn	atc Ile	gag Glu 165	ggc	ctc Leu	gac Asp	agc Ser	ttc Phe 170	gaa Glu	ggc	gag Glu	tgc Cys	cat His 175	cac His	528
						cag Gln											576
,	gtc Val	gtc Val	atg Met 195	ggc	acc Thr	ggt Gly	gct Ala	tcc Ser 200	ggc	atc Ile	cag Gln	gtc Val	att Ile 205	caa Gln	gaa Glu	gcc Ala	624
	gcg Ala	gcg Ala 210	gtt Val	gcc Ala	gaa Glu	cac His	ctc Leu 215	acc Thr	gtc Val	ttc Phe	cag Gln	ege Arg 220	acc Thr	ccg Pro	aac Asn	ctt Leu	672
	gcc Ala 225	ctg Leu	ccg Pro	atg Met	egg Arg	cag Gln 230	cag Gln	egg Arg	ctg Leu	tcg Ser	gcc Ala 235	gat Asp	gac Asp	aac Asn	gat Asp	cgc Arg 240	720
	tac Tyr	cga Arg	gag Gl u	aac Asn	atc Ile 245	gaa Glu	gat Asp	cgt Arg	ttc Phe	caa Gln 250	atc Ile	cgt Arg	gac Asp	aat Asn	tcg Ser 255	ttt Phe	768
	gcc Ala	gga Gly	ttc Phe	gac Asp 260	ttc Phe	tac Tyr	ttc Phe	atc Ile	ccg Pro 265	cag Gln	aac Asn	gcc Ala	gcg Ala	gac Asp 270	acc. Thr	ecc Pro	816
	gag Glu	gac Asp	gag Glu 275	cgg Arg	acc Thr	gcg Ala	atc Ile	tac Tyr 280	gaa Glu	aag Lys	atg Met	tgg Trp	gac Asp 285	gaa Glu	ggc Gly	gga Gly	864
	ttc Phe	cca Pro 290	ctg Leu	tgg Trp	ctc Leu	gga Gly	aac Asn 295	ttc Phe	cag Gln	gga Gly	ctc Leu	ctc Leu 300	acc Thr	gat Asp	gag Glu	gca Ala	912
	gcc	aac	cac	acc	ttc	tac	aac	ttc	tgg	cgt	tcg	aag	gtg	cac	gat	cgt	960

Ala 305	a Asr	1 His	Thr	Phe	310	Asn	Phe	Trp	Arg	31:		s Val	Hi	As _l	Arg 320	
gt <u>e</u> Val	aag Lys	gat Asp	Pro	225 325	Thr	gcc	gag Glu	g atg 1 Met	Leu 330	Ala	cco Pro	g gcg	aco Thr	2 CC 2 Pro	a ccg Pro	1008
His	ccg Pro	Phe	ggc Gly 340	Va]	aag Lys	Arg	Pro	Ser 345	Leu	gaa	cag Glr	aac Asr	tac Tyr 350	Phe	gac Asp	1056
gta Val	tac Tyr	aac Asn 355	Gln	gac	aat Asn	gtc Val	gat Asp 360	Leu	atc	gac Asp	s teg Ser	aat Asn 365	Ala	Thr	ccg Pro	1104
ato Ile	acc Thr 370	Arg	gtc Val	ctt	ccg	aac Asn 375	Gly	gtc Val	gaa Glu	acc	Pro 380	Asp	gga Gly	gtc Val	gtc Val	1152
gaa Glu 385	Cys	gat Asp	gtc Val	ctc Leu	gtg Val 390	ctg Leu	gcc Ala	acc Thr	ggc	ttc Phe 395	gac Asp	aac Asn	aac Asn	ago Ser	ggc Gly 400	1200
ggc	atc Ile	aac Asn	gcc Ala	atc Ile 405	gat Asp	atc Ile	aaa Lys	gcc Ala	ggc Gly 410	61 y 999	cag Gln	ctg	ctg Leu	cgt Arg 415	gac Asp	1248
aag Lys	tgg Trp	gcg Ala	acc Thr 420	ggc	gtg Val	gac Asp	acc Thr	tac Tyr 425	atg Met	GJ Y 999	ctg Leu	tcg Ser	acg Thr 430	cac His	gga Gly	1296
ttc Phe	ecc Pro	aat Asn 435	ctc Leu	atg Met	ttc Phe	ctc Leu	tac Tyr 440	ggc Gly	ccg Pro	cag Gln	agc Ser	cct Pro 445	tcg Ser	ggc	ttc Phe	1344
tgc Cys	aat Asn 450	ely aga	acc Thr	gac Asp	ttc Phe	ggc Gly 455	gga Gly	gcg Ala	cca Pro	gly ggc	gat Asp 460	atg Met	gtc Val	gcc Ala	gac Asp	1392
ttc Phe 465	ctc Leu	atc Ile	tgg Trp	ctc Leu	aag Lys 470	gac Asp	aac Asn	ggc Gly	atc Ile	tcg Ser 475	cgg Arg	ttc Phe	gaa Glu	tcc Ser	acc Thr 480	1440
gaa Glu	gag Glu	gtc Val	Glu	cgg Arg 485	gaa Glu	tgg Trp	cgc Arg	Ala	cat His 490	gtc Val	gac Asp	gac Asp	atc Ile	ttc Phe 495	gtc Val	1488
aac Asn	tcg Ser	Leu	ttc Phe 500	ccc Pro	aag Lys	gcg Ala	Lys	tcc Ser 505	tgg Trp	tac Tyr	tgg Trp	ggc Gly	gcc Ala 510	aac Asn	gtc Val	1536
ccc Pro	Gly	aag Lys 515	ccg Pro	gcg Ala	cag Gln	Met	ctc Leu 520	aac Asn	tat Tyr	tcg Ser	Glu	gcg Ala 525	tcc Ser	ccg Pro	cat His	1584
atc Ile	tag				٠											1590

<210> 16

<211> 529

<212> PRT

<213> Brevibacterium sp. HCU

<400> 16

Met Thr Ser Thr Met Pro Ala Pro Thr Ala Ala Gln Ala Asn Ala Asp 1 10 15

Glu Thr Glu Val Leu Asp Ala Leu Ile Val Gly Gly Gly Phe Ser Gly 20 \$25\$

Pro Val Ser Val Asp Arg Leu Arg Glu Asp Gly Phe Lys Val Lys Val 35 40 45

Trp Asp Ala Ala Gly Gly Fhe Gly Gly Ile Trp Trp Asn Cys Tyr 50 $\,$ 55 $\,$ 60 $\,$

Pro Gly Ala Arg Thr Asp Ser Thr Gly Gln Ile Tyr Gln Phe Gln Tyr 65 70 75 80

Lys Asp Leu Trp Lys Asp Phe Asp Phe Lys Glu Leu Tyr Pro Asp Phe 85 90 95

Asn Gly Val Arg Glu Tyr Phe Glu Tyr Val Asp Ser Gln Leu Asp Leu 100 105 110

Ser Arg Asp Val Thr Phe Asn Thr Phe Ala Glu Ser Cys Thr Trp Asp 115 120 125

Asp Ala Ala Lys Glu Trp Thr Val Arg Ser Ser Glu Gly Arg Glu Gln 130 135 140

Arg Ala Arg Ala Val Ile Val Ala Thr Gly Phe Gly Ala Lys Pro Leu 145 150 155 160

Tyr Pro Asn Ile Glu Gly Leu Asp Ser Phe Glu Gly Glu Cys His His 165 170 175

Thr Ala Arg Trp Pro Gln Gly Gly Leu Asp Met Thr Gly Lys Arg Val

Val Val Met Gly Thr Gly Ala Ser Gly Ile Gln Val Ile Gln Glu Ala

Ala Ala Val Ala Glu His Leu Thr Val Phe Gln Arg Thr Pro Asn Leu Ala Leu Pro Met Arg Gln Gln Arg Leu Ser Ala Asp Asp Asn Asp Arg Tyr Arg Glu Asn Ile Glu Asp Arg Phe Gln Ile Arg Asp Asn Ser Phe Ala Gly Phe Asp Phe Tyr Phe Ile Pro Gln Asn Ala Ala Asp Thr Pro Glu Asp Glu Arg Thr Ala Ile Tyr Glu Lys Met Trp Asp Glu Gly Gly Phe Pro Leu Trp Leu Gly Asn Phe Gln Gly Leu Leu Thr Asp Glu Ala Ala Asn His Thr Phe Tyr Asn Phe Trp Arg Ser Lys Val His Asp Arg Val Lys Asp Pro Lys Thr Ala Glu Met Leu Ala Pro Ala Thr Pro Pro His Pro Phe Gly Val Lys Arg Pro Ser Leu Glu Gln Asn Tyr Phe Asp Val Tyr Asn Gln Asp Asn Val Asp Leu Ile Asp Ser Asn Ala Thr Pro Ile Thr Arg Val Leu Pro Asn Gly Val Glu Thr Pro Asp Gly Val Val Glu Cys Asp Val Leu Val Leu Ala Thr Gly Phe Asp Asn Asn Ser Gly Gly Ile Asn Ala Ile Asp Ile Lys Ala Gly Gly Gln Leu Leu Arg Asp Lys Trp Ala Thr Gly Val Asp Thr Tyr Met Gly Leu Ser Thr His Gly the Pro Asn Leu Met Phe Leu Tyr Gly Pro Gln Ser Pro Ser Gly Phe

Cys Asn Gly Thr Asp Phe Gly Gly Ala Pro Gly Asp Met Val Ala Asp 450 450 455

Phe Leu Ile Trp Leu Lys Asp Asn Gly Ile Ser Arg Phe Glu Ser Thr 465 470 480

Glu Glu Val Glu Arg Glu Trp Arg Ala His Val Asp Asp Ile Phe Val 485 490 495

Asn Ser Leu Phe Pro Lys Ala Lys Ser Trp Tyr Trp Gly Ala Asn Val 500 505 510

Pro Gly Lys Pro Ala Gln Met Leu Asn Tyr Ser Glu Ala Ser Pro His 515 520 525

Ile

<210> 17

<211> 1614

<212> DNA

<213> Brachymonas sp. CHX

<400> 17 atgtetteet egecaageag egecatteat ttegatgeca tegttgtggg egeeggattt 60 ggcggcatgt atatgctgca caaactgcgc gaccagctcg gactcaaggt caaggttttc 120 gacacageeg geggeategg eggeacetgg tattggaate getateetgg ageettgtee 180 gacacgcaca gtcatgtcta tcagtattct ttcgacgaag cgatgctcca agaatggaca 240 tggaagaaca aatacctcac gcagccagaa atactggctt atctggagta tgtagcagac 300 eggetegate tgegecegga catteagttg aacacgaceg tgacategat gcatttcaat 360 gaagtccaca acatctggga agtgcgcacg gaccggggcg ggtactacac cgcgcgcttt 420 atcgtgacgg cactgggttt gttatccgcg atcaactggc ccaacattcc gggccgcgaa 480 agettecaag gegagatgta teacacagee geetggeeaa aagatgtega aetgegegge 540 aaacqcgtcg gcgtgatcgg caccggctcg acgggtgtgc agctgattac cgccatcgct 600 ccagaggtca aacacctgac ggtcttccag cgtacaccgc aatacagcgt gccgacggga 660 aatcgtcctg tctccgcgca agaaatcgca gaagtcaagc gaaacttcag caaggtatgg 720

27

caacaagtac	gtgaatccgc	cgtcgcattc	ggcttcgagg	aaagcacagt	gecegegatg	780	
agcgtctccg	aagccgaacg	ccagcgcgtc	tttcaggaag	cctggaacca	aggcaacggc	840	
ttttactaca	tgttcggcac	attttgcgac	atcgccaccg	acccgcaggc	caacgaagcc	900	
gcagccacct	tcatacgcaa	caaaatcgcc	gagatcgtca	aagacccgga	aaccgcccgc	960	
aagctcacgc	ctacggatgt	ttacgcccga	cgcccgcttt	gcgacagtgg	ctactatcgc	1020	
acctacaacc	gcagcaacgt	ctcactggtg	gatgtgaagg	cgacaccaat	cagtgcgatg	1080	
acgccccggg	gcattcgcac	cgccgacggt	gtcgagcacg	agttggatat	gttgatcctt	1140	
gccactggct	atgacgccgt	cgatggcaat	taccgccgca	tegacetgeg	eggeegtgge	1200	
ggccaaacca	tcaatgagca	ctggaacgac	actectacca	gttatgtagg	ggtcagcacc	1260	
gccaacttcc	ccaacatgtt	catgatcctg	ggcccgaatg	gcccattcac	gaacctgccg	1320	
ccgtcgatcg	aagcacaggt	cgaatggatc	accgacctgg	ttgcccacat	gcgccagcac	1380	
gggctcgcga	cggccgaacc	aacgcgcgat	gctgaagatg	cctggggccg	cacctgcgcg	1440	
gaaatcgccg	agcagacgct	ttttggccag	gttgaatcat	ggatcttcgg	tgccaacagc	1500	
cccgggaaga	aacatacttt	gatgttctat	ctggccggcc	tggggaacta	ccgcaagcag	1560	
ctcgccgacg	tagcgaacgc	gcaataccaa	ggctttgcgt	tccaaccact	gtaa	1614	

<210> 18

<211> 538

<212> PRT

<213> Brachymonas sp. CHX

<400> 18

Met Ser Ser Ser Pro Ser Ser Ala Ile His Phe Asp Ala Ile Val Val 1 5 10 15

Gly Ala Gly Phe Gly Gly Met Tyr Met Leu His Lys Leu Arg Asp Gln 20 25 30

Leu Gly Leu Lys Val Lys Val Phe Asp Thr Ala Gly Gly Ile Gly Gly 35 40 45

Thr Trp Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr His Ser 50 55 60

His Val Tyr Gln Tyr Ser Phe Asp Glu Ala Met Leu Gln Glu Trp Thr 65 70 75 80

Trp Lys Asn Lys Tyr Leu Thr Gln Pro Glu Ile Leu Ala Tyr Leu Glu 85 Tyr Val Ala Asp Arg Leu Asp Leu Arg Pro Asp Ile Gln Leu Asn Thr Thr Val Thr Ser Met His Phe Asn Glu Val His Asn Ile Trp Glu Val 120 125 Arg Thr Asp Arg Gly Gly Tyr Tyr Thr Ala Arg Phe Ile Val Thr Ala 135 Leu Gly Leu Leu Ser Ala Ile Asn Trp Pro Asn Ile Pro Gly Arg Glu 150 155 Ser Phe Gln Gly Glu Met Tyr His Thr Ala Ala Trp Pro Lys Asp Val 165 170 175 Glu Leu Arg Gly Lys Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly 180 Val Gln Leu Ile Thr Ala Ile Ala Pro Glu Val Lys His Leu Thr Val 205 195 200 Phe Gln Arg Thr Pro Gln Tyr Ser Val Pro Thr Gly Asn Arg Pro Val 210 215

Ser Ala Gln Glu Ile Ala Glu Val Lys Arg Asn Phe Ser Lys Val Trp 225 230 235 240

Gln Gln Val Arg Glu Ser Ala Val Ala Phe Gly Phe Glu Glu Ser Thr 245 250 255

Val Pro Ala Met Ser Val Ser Glu Ala Glu Arg Gln Arg Val Phe Gln 260 265 270

Glu Ala Trp Asn Gln Gly Asn Gly Phe Tyr Tyr Met Phe Gly Thr Phe 275 280 285

Cys Asp Ile Ala Thr Asp Pro Gln Ala Asn Glu Ala Ala Ala Thr Phe 290 295 300

Ile Arg Asn Lys Ile Ala Glu Ile Val Lys Asp Pro Glu Thr Ala Arg 305 310 315 320

Lys Leu Thr Pro Thr Asp Val Tyr Ala Arg Arg Pro Leu Cys Asp Ser 325 330 335

- Gly Tyr Tyr Arg Thr Tyr Asn Arg Ser Asn Val Ser Leu Val Asp Val 340 345 350
- Lys Ala Thr Pro Ile Ser Ala Met Thr Pro Arg Gly Ile Arg Thr Ala 355 360 365
- Asp Gly Val Glu His Glu Leu Asp Met Leu Ile Leu Ala Thr Gly Tyr 370 380
- Asp Ala Val Asp Gly Asn Tyr Arg Arg Ile Asp Leu Arg Gly Arg Gly 385 390 395
- Gly Gln Thr Ile Asn Glu His Trp Asn Asp Thr Pro Thr Ser Tyr Val 405 410 415
- Gly Val Ser Thr Ala Asn Phe Pro Asn Met Phe Met Ile Leu Gly Pro
- Asn Gly Pro Phe Thr Asn Leu Pro Pro Ser Ile Glu Ala Gln Val Glu 435 440 445
- Trp Ile Thr Asp Leu Val Ala His Met Arg Gln His Gly Leu Ala Thr $450 \hspace{1.5cm} 455 \hspace{1.5cm} 460$
- Ala Glu Pro Thr Arg Asp Ala Glu Asp Ala Trp Gly Arg Thr Cys Ala 465 470 475 480
- Glu Ile Ala Glu Gln Thr Leu Phe Gly Gln Val Glu Ser Trp Ile Phe 485 490 495
- Gly Ala Asn Ser Pro Gly Lys Lys His Thr Leu Met Phe Tyr Leu Ala 500 505 510
- Gly Leu Gly Asn Tyr Arg Lys Gln Leu Ala Asp Val Ala Asn Ala Gln 515 520 525
- Tyr Gln Gly Phe Ala Phe Gln Pro Leu Glx 530
- <210> 19
- <211> 1644

<212> DNA

<213> Acinetobacter sp. SE19

<220>

<221> CDS

<222> (1)(1644)	
<223>	
<400> 19 atg gag att atc atg tca cas aas atg gat ttt gat gct atc gtg att Met Glu Ile Ile Met Ser Gln Lys Met Asp Phe Asp Ala Ile Val Ile 1 5 10 15	48
ggt ggt ggt tit ggc gga cit tat gca gtc aaa aaa ita aga gac gag Gly Gly Gly Phe Gly Gly Leu Tyr Ala Val Lys Lys Leu Arg Asp Glu 20 25 30	96
ctc gaa ctt aag gtt cag gct ttt gat aaa gcc acg gat gtc gca ggt Leu Glu Leu Lys Val Gln Ala Phe Asp Lys Ala Thr Asp Val Ala Gly 35 40 45	144
act tgg tac tgg aac cgt tac cca ggt gca ttg tcg gat aca gaa acc Thr Trp Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr Glu Thr 50 60	192
cac ctc tac tgc tat tct tgg gat aaa gaa tta cta caa tcg cta gaa Ris Leu Tyr Cys Tyr Ser Trp Asp Lys Glu Leu Leu Gln Ser Leu Glu 65 70 75 80	240
atc aag aaa aaa tat gtg caa ggc cct gat gta cgc aag tat tta cag Ile Lys Lys Lys Tyr Val Gln Gly Pro Asp Val Arg Lys Tyr Leu Gln 85 90 95	288
caa gtg gct gaa aag cat gat tta aag aag agc tat caa ttc aat acc Gln Val Ala Glu Lys His Asp Leu Lys Lys Ser Tyr Gln Phe Asn Thr 100 105 110	336
gcg gtt caa tcg gct cat tac aac gaa gca gat gcc ttg tgg gaa gtc Ala Val Gln Ser Ala His Tyr Asn Glu Ala Asp Ala Leu Trp Glu Val 115 120 125	384
acc act gaa tat ggt gat aag tac acg gog cgt ttc ctc atc act gct Thr Thr Glu Tyr Gly Amp Lym Tyr Thr Ala Arg Phe Leu Ile Thr Ala 130 135 140	432
tta ggc tta ttg tct gcg cct aac ttg cca aac atc aaa ggc att aat Leu Gly Leu Leu Ser Ala Pro Asn Leu Pro Asn Ile Lys Gly Ile Asn 145 150 155 160	480
cag ttt ama ggt gag ctg cat cat acc agc cgc tgg cca gat gac gta Gln Phe Lys Gly Glu Leu His His Thr Ser Arg Trp Pro Asp Asp Val 165 170 175	528

	Phe	Glu	Gly 180	Lys	cgt Arg	Val	Gly	Val 185	Ile	Gly	Thr	Gly	Ser 190	Thr	Gly	576
gtt Va l	cag Gln	gtt Val 195	att Ile	acg Thr	gct Ala	gtg Val	gca Ala 200	cct Pro	ctg Leu	gct Ala	aaa Lys	cac His 205	ctc Leu	act Thr	gtc Val	624
					caa Gln											672
					aaa Lys 230											720
Авр	Gly	Val	Trp	Asn 245	tca Ser	Ala	Leu	Ala	Phe 250	Gly	Leu	Asn	Glu	Ser 255	Thr	768
Val	Pro	Ala	Met 260	Ser	gta Val	Ser	Ala	Glu 265	Glu	Arg	ьуз	Ala	Val 270	Phe	Glu	816
aag Lys	gca Ala	tgg Trp 275	caa Gln	aca Thr	ggt Gly	ggc Gly	ggt Gly 280	ttc Phe	cgt Arg	ttc Phe	atg Met	ttt Phe 285	gaa Glu	act Thr	ttc Phe	864
Gly	Asp 290	Ile	Ala	Thr	aat Asn	Met 295	Glu	Ala	Asn	Ile	Glu 300	Ala	Gln	Asn	Phe	912
att Ile 305	Lys	ggt Gly	aaa Lys	att Ile	gct Ala 310	gaa Glu	atc Ile	gtc Val	aaa Lys	gat Asp 315	cca Pro	gcc Ala	att Ile	gca Ala	Gln 320	960
Ile 305 aag	Lys	Gly	Lys	Ile	Ala	Glu ttg	Ile	Val gca	Lys aaa	Asp 315 cgt	Pro	Ala ttg	Ile tgt	Ala	Gln 320 agt	1008
Ile 305 aag Lys	ctt Leu	Gly atg Met	cca Pro	cag Gln 325	Ala 310 gat	ttg Leu	tat Tyr	yal gca Ala gac	aaa Lys 330	Asp 315 cgt Arg	ccg Pro	ttg Leu	tgt Cys gaa	gac Asp 335	Gln 320 agt Ser	
Ile 305 aag Lys ggt Gly	ctt Leu tac Tyr	atg Met tac Tyr	cca Pro aac Asn 340	cag Gln 325 acc Thr	Ala 310 gat Asp	ttg Leu aac Asn	tat Tyr cgt Arg	gca Ala gac Asp 345	aaa Lys 330 aat Asn	Asp 315 cgt Arg gtc Val	ccg Pro cgt Arg	ttg Leu tta Leu	tgt Cys gaa Glu 350	gac Asp 335 gat Asp	gln 320 agt Ser gtg Val	1008
Ile 305 aag Lys ggt Gly aaa Lys aat	ctt Leu tac Tyr gcc Ala ggc Gly 370	atg Met tac Tyr aat Asn 355 gat	cca Pro aac Asn 340 ccg Pro	cag Gln 325 acc Thr att Ile	Ala 310 gat Asp ttt Phe gtt Val gaa Glu	ttg Leu aac Asn gaa Glu tta Leu 375	tat Tyr cgt Arg att 11e 360 gac Asp	gca Ala gac Asp 345 acc Thr	aaa Lys 330 aat Asn gaa Glu ctg Leu	aac Asn ata Ile	ecg Pro egt Arg ggt Gly tgt Cys	ttg Leu tta Leu gtg Val 365 gcc	tgt Cys gaa Glu 350 aaa Lys aca	gac Asp 335 gat Asp ctc Leu	gtg val gaa Glu ttt phe	1008 1056 1104
Ile 305 aag Lys ggt Gly aaa Lys aat	tac Tyr gcc Ala ggc Gly 370 gcc Ala	atg Met tac Tyr aat Asn 355 gat Asp	Lys cca Pro aac Asn 340 ccg Pro ttc	cag Gln 325 acc Thr att Ile	Ala 310 gat Asp ttt Phe gtt Val	ttg Leu aac Asn gaa Glu tta Leu 375	tat Tyr cgt Arg att Ile 360 gac Asp	yal gca Ala gac Asp 345 acc Thr	Lys aaa Lys 330 aat Asn gaa Glu ctg Leu	Asp 315 cgt Arg gtc Val aac Asn ata Ile	ccg Pro cgt Arg ggt Gly tgt Cys 380	ttg Leu tta Leu gtg Val 365 gcc Ala	tgt Cys gaa Glu 350 aaa Lys aca Thr	gac Asp 335 gat Asp ctc Leu ggt Gly	Gln 320 agt Ser gtg Val gaa Glu ttt Phe	1008 1056 1104
aag Lys aaaa Lys aat Asn gat Asp 385	ctt Leu tac Tyr gcc Ala ggc Gly 370 gcc Ala	Gly atg Met tac Tyr aat Asn 355 gat Asp gtc Val	cca Pro aac Asn 340 ccg Pro ttc Phe	cag Gln 325 acc Thr att Ile gtt Val ggc Gly	Ala 310 gat Asp ttt Phe gtt Val gaa Glu aac Asn	ttg Leu aac Asn gaa Glu tta Leu 375 tat Tyr	tat Tyr cgt Arg att Ile 360 gac Asp	gca Ala gac Asp 345 acc Thr atg Met	Lys aaa Lys 3330 aat Asn gaa Glu ctg Leu atg	Asp 315 cgt Arg gtc Val aac Asn ata Ile gac Asp 395	ccg Pro cgt Arg ggt Gly tgt Cys 380 att Ile	ttg Leu tta Leu gtg Val 365 gcc Ala caa Gln	tgt Cys gaa Glu 350 aaa Lys aca Thr	gac Asp 335 gat Asp ctc Leu ggt Gly aaaa Lys tat	gts val gaa glu ttt phe aac Asn 400 atg	1008 1056 1104

Gly Val Thr Val Asn Asn Tyr Pro Asn Met Phe Met Val Leu Gly Pro	
aat ggc ccg ttt acc aac ctg ccg cca tca att gaa tca cag gtg gaa Asn Gly Pro Phe Thr Asn Leu Pro Pro Ser Ile Glu Ser Gln Val Glu 445 445	1344
tgg atc agt gat acc att caa tac acg gtt gaa aac aat gtt gaa tac Trp Ile Ser Asp Thr Ile Gln Tyr Thr Val Glu Asn Asn Val Glu Ser 450 455 460	1392
att gaa gcg aca aaa gaa gcg gaa gaa caa tgg act caa act tgc gcc Ile Glu Ala Thr Lys Glu Ala Glu Glu Gln Trp Thr Gln Thr Cys Ala 465 470 480	1440
aat att gcg gaa atg acc tta ttc cct aaa gcg caa tcc tgg att ttt Asn Ile Ala Glu Met Thr Leu Phe Pro Lys Ala Gln Ser Trp Ile Phe 485 490 495	1488
ggt gcg aat atc ccg ggc aag aaa aac acg gtt tac ttc tat ctc ggt Gly Ala Asn Ile Pro Gly Lys Lys Asn Thr Val Tyr Phe Tyr Leu Gly 500 505 510	1536
ggt tta aaa gaa tat cgc agt gcg cta gcc aac tgc aaa aac cat gcc Gly Leu Lys Glu Tyr Arg Ser Ala Leu Ala Asn Cys Lys Asn His Ala 515 520 525	1584
tat gaa ggt ttt gat att caa tta caa cgt tca gat atc aag caa cct Tyr Glu Gly Phe Asp Ile Gln Leu Gln Arg Ser Asp Ile Lys Gln Pro 530 540	1632
gcc aat gcc taa Ala Asn Ala 545	1644
Ala Asn Ala 545	1644
Ala Asn Ala 545 <210> 20	1644
Ala Asn Ala 545 <210> 20 <211> 547	1644
Ala Asn Ala 545 <210> 20	1644
Ala Asn Ala 545 <210> 20 <211> 547 <212> FRT	1644
Ala Apn Ala 545 <210> 20 <211> 547 <212> PRT <213> Acinetobacter sp. SE19	1644
Ala Asm Ala 545 <210> 20 <211> 547 <212> PRT <213> Acinetobacter sp. SE19 <400> 20 Met Glu Ile Ile Met Ser Gln Lys Met Asp Phe Asp Ala Ile Val Ile	1644
Ala Asn Ala 545 <210> 20 <211> 547 <212> PRT <213> Acinetobacter sp. SE19 <400> 20 Met Glu Ile Ile Met Ser Gln Lys Met Asp Phe Asp Ala Ile Val Ile 1 10 15 Gly Gly Gly Phe Gly Gly Leu Tyr Ala Val Lys Lys Leu Arg Asp Glu	1644

33

50 55 **60** .

His Leu Tyr Cys Tyr Ser Trp Asp Lys Glu Leu Leu Gln Ser Leu Glu 65 70 75 80

Ile Lys Lys Lys Tyr Val Gln Gly Pro Asp Val Arg Lys Tyr Leu Gln 85 90 95

Gln Val Ala Glu Lys His Asp Leu Lys Lys Ser Tyr Gln Phe Asn Thr 100 105 110

Ala Val Gln Ser Ala His Tyr Asn Glu Ala Asp Ala Leu Trp Glu Val 115 120 125

Thr Thr Glu Tyr Gly Asp Lys Tyr Thr Ala Arg Phe Leu Ile Thr Ala 130 135 140

Leu Gly Leu Leu Ser Ala Pro Asn Leu Pro Asn Ile Lys Gly Ile Asn 145 150 155 160

Gln Phe Lys Gly Glu Leu His His Thr Ser Arg Trp Pro Asp Asp Val

Ser Phe Glu Gly Lys Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly 180 185 190

Val Gln Val Ile Thr Ala Val Ala Pro Leu Ala Lys His Leu Thr Val

Phe Gln Arg Ser Ala Gln Tyr Ser Val Pro Ile Gly Asn Asp Pro Leu 210 215 220

Ser Glu Glu Asp Val Lys Lys Ile Lys Asp Asp Asp Tyr Asp Lys Ile Trp 225 230 235 240

Asp Gly Val Trp Asn Ser Ala Leu Ala Phe Gly Leu Asn Glu Ser Thr \$245\$

Val Pro Ala Met Ser Val Ser Ala Glu Glu Arg Lys Ala Val Phe Glu 260 265 270

Lys Ala Trp Gln Thr Gly Gly Gly Phe Arg Phe Met Phe Glu Thr Phe 275 280 285

Gly Asp Ile Ala Thr Asn Met Glu Ala Asn Ile Glu Ala Gln Asn Phe 290 295 300

Ile Lys Gly Lys Ile Ala Glu Ile Val Lys Asp Pro Ala Ile Ala Gln Lys Leu Met Pro Gln Asp Leu Tyr Ala Lys Arg Pro Leu Cys Asp Ser Gly Tyr Tyr Asn Thr Phe Asn Arg Asp Asn Val Arg Leu Glu Asp Val Lys Ala Asn Pro Ile Val Glu Ile Thr Glu Asn Gly Val Lys Leu Glu Asn Gly Asp Phe Val Glu Leu Asp Met Leu Ile Cys Ala Thr Gly Phe Asp Ala Val Asp Gly Asn Tyr Val Arg Met Asp Ile Gln Gly Lys Asn Gly Leu Ala Met Lys Asp Tyr Trp Lys Glu Gly Pro Ser Ser Tyr Met Gly Val Thr Val Asn Asn Tyr Pro Asn Met Phe Met Val Leu Gly Pro Asn Gly Pro Phe Thr Asn Leu Pro Pro Ser Ile Glu Ser Gln Val Glu Trp Ile Ser Asp Thr Ile Gln Tyr Thr Val Glu Asn Asn Val Glu Ser Ile Glu Ala Thr Lys Glu Ala Glu Glu Gln Trp Thr Gln Thr Cys Ala Asn Ile Ala Glu Met Thr Leu Phe Pro Lys Ala Gln Ser Trp Ile Phe Gly Ala Asn Ile Pro Gly Lys Lys Asn Thr Val Tyr Phe Tyr Leu Gly

Gly Leu Lys Glu Tyr Arg Ser Ala Leu Ala Asn Cys Lys Asn His Ala

Tyr Glu Gly Phe Asp Ile Gln Leu Gln Arg Ser Asp Ile Lys Gln Pro

Ala Asn Ala 545

<210> 21

<211> 1320

<212> DNA

<213> Rhodococcus erythropolis AN12

<400> 21 atgagcacag agggcaagta cgcgctgatc ggagcgggtc cgtctggatt ggccggcgcg 60 egaaaceteg ategageegg catagegtte gaeggetteg agageeaega egaegteggt 120 qqqctctqqq acatcqacaa cccqcacaqc accqtctacq aqtcqqcqca cctcatttcq 180 240 togaagggca ccaccgcatt cgcggagttc ccgatggcgg attcggttgc cgactacccg 300 agccacateg aacttgeega gtattteege gactaegeeg atacceaega tettegeagg 360 cactttgcct tcggcactac cgtcatcgac gttttgccgg tcgattcgct gtggcaggtc accacgcgta gtcgcagcgg tgagacttca gtcgcgcggt atcgaggcgt gatcatcgcg 420 480 aacqqaacgc tqtcgaagcc gaacataccg acgttccggg gcgacttcac cggcacgttg atgcacacga gcgagtaccg cagtgccgag atcttccgcg gaaagagagt gctggtcatc 540 600 ggagcgggca acagtggatg cgacatcgcc gtcgatgccg tccaccaggc cgagtgcgtc gatttgagcg ttcggcgagg ctactacttc gtccccaagt atctgttcgg gcgaccctcg 660 gacacgttga atcagggaaa gccgttgccg ccgtggatca aacaacgcgt cgacaccttg 720 ttactcaagc agttcacggg agatccggtg cggttcggat ttccggcacc ggactacaag 780 840 atctacqaat cqcatccqqt cqtqaactcq ttqatcctqc accacatcqq gcacqqtgac gtgcacgtgc gcgccgacgt cgaccggttc gaggggaaga cggtgcggtt tgtcgacgga 900 tegtetgeeg actaegacet egttetetge gecaeggggt ateacetega etatecette 960 atogogogog aggacotgga otggtogggt gotgococgg acctgttoot caacgtogog 1020 agtogcogcc acgacaatct ctttgttctc ggcatggtcg aagcatccgg tctcgggtgg 1080 1140 cagggtcgtt accagcaggc cgagttggtg gccaaattga tcaccgcacg caccgaagcc 1200 cccgccgcgg cgcgcgaatt ctcggcagcg gcggccggcc ctcctcccga tctgtccggg qqatacaaqt acctqaaqct qqqacqaatq qcctactacg tgaacaaqqa cqcctaccga 1260 teggegatea gaeggeacat eggaetgete gatgeegete tgaegaaggg aggteagtga 1320

<210> 22

<211> 439

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 22

Met Ser Thr Glu Gly Lys Tyr Ala Leu Ile Gly Ala Gly Pro Ser Gly 1 5 10 15

Leu Ala Gly Ala Arg Asn Leu Asp Arg Ala Gly Ile Ala Phe Asp Gly 20 25 30

Phe Glu Ser His Asp Asp Val Gly Gly Leu Trp Asp Ile Asp Asn Pro 35 .

His Ser Thr Val Tyr Glu Ser Ala His Leu Ile Ser Ser Lys Gly Thr 50 55 60

Thr Ala Phe Ala Glu Phe Pro Met Ala Asp Ser Val Ala Asp Tyr Pro 65 70 75 80

Ser His Ile Glu Leu Ala Glu Tyr Phe Arg Asp Tyr Ala Asp Thr His 85 90 95

Asp Leu Arg Arg His Phe Ala Phe Gly Thr Thr Val Ile Asp Val Leu $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Pro Val Asp Ser Leu Trp Gln Val Thr Thr Arg Ser Arg Ser Gly Glu 115 120 125

Thr Ser Val Ala Arg Tyr Arg Gly Val Ile Ile Ala Asn Gly Thr Leu 130 135 140

Ser Lys Pro Asn Ile Pro Thr Phe Arg Gly Asp Phe Thr Gly Thr Leu 145 150 155 160

Met His Thr Ser Glu Tyr Arg Ser Ala Glu Ile Phe Arg Gly Lys Arg

Val Leu Val Ile Gly Ala Gly Asn Ser Gly Cys Asp Ile Ala Val Asp 180 185 190

Ala Val His Gln Ala Glu Cys Val Asp Leu Ser Val Arg Arg Gly Tyr

195 200 205

Tyr Phe Val Pro Lys Tyr Leu Phe Gly Arg Pro Ser Asp Thr Leu Asn 215 220 Gln Gly Lys Pro Leu Pro Pro Trp Ile Lys Gln Arg Val Asp Thr Leu 230 Leu Leu Lys Gln Phe Thr Gly Asp Pro Val Arg Phe Gly Phe Pro Ala Pro Asp Tyr Lys Ile Tyr Glu Ser His Pro Val Val Asn Ser Leu Ile 265 Leu His His Ile Gly His Gly Asp Val His Val Arg Ala Asp Val Asp 280 Arg Phe Glu Gly Lys Thr Val Arg Phe Val Asp Gly Ser Ser Ala Asp 295 300 Tyr Asp Leu Val Leu Cys Ala Thr Gly Tyr His Leu Asp Tyr Pro Phe 310 315 Ile Ala Arg Glu Asp Leu Asp Trp Ser Gly Ala Ala Pro Asp Leu Phe 330 Leu Asn Val Ala Ser Arg Arg His Asp Asn Leu Phe Val Leu Gly Met 340 345

Val Glu Ala Ser Gly Leu Gly Trp Gln Gly Arg Tyr Gln Gln Ala Glu 355 360 365

Leu Val Ala Lys Leu Ile Thr Ala Arg Thr Glu Ala Pro Ala Ala Ala 370 375 380

Arg Glu Phe Ser Ala Ala Ala Ala Gly Pro Pro Pro Asp Leu Ser Gly 385 390 395 400

Gly Tyr Lys Tyr Leu Lys Leu Gly Arg Met Ala Tyr Tyr Val Asn Lys 405 410 415

Asp Ala Tyr Arg Ser Ala Ile Arg Arg His Ile Gly Leu Leu Asp Ala 420 425 430

Ala Leu Thr Lys Gly Gly Gln 435

<210> 23

<211> 1557

<212> DNA

<213> Rhodococcus erythropolis AN12

<400> 23 atgqtcqaca tcqacccaac ctcqqqqcca tcqqccqqtq acqaqqaaac tcqaactcqc 60 cgaacacgag tcgtcgtcat cggagccggt ttcggcggca tcggaacggc tgtccgcttg 120 aagcagteeg ggategaega ettegtegtt etggaaegtg eegeggagee eggggggaee 180 tggcaggtca atacctacce eggtgcacag tgcgacatec cgtcgattct gtactcgttc 240 tegtttgege ccaateegaa etggaegegg etgtateece tgeageeega gatetaegae 300 360 tateteeggg attgegteea tegettegga etggeeggte attteeactg caaccaggae gtgacagaag cttcgtggga cgagcaagec cagatetgge gggtacacae tgcggaaace 420 gtctgggagg cacagtteet ggtcgcggcc accggcccgt tcagtgcccc cgccacaccc 480 gacetteecq qqctcqaatc qtttcqtqqt caqatqttcc acaccqcqqa ctqqaaccac 540 qaccacgacc ttcgcggtqa gcggatagcc gtggtcggca ccggcgcctc tqcggtgcag 600 atcatececa gaetgeaace getegeggae aegttgaeeg tgtteeageg gaeacegaeg 660 tggatcctgc cgcatccgga tcagccgatg accggctggc caagcgctct cttcgagcgg 720 780 gtgccgctca cccaacqact ggcacqcaag ggactcgacc tgcttcaaga agccctggta cccggattcg tgtacaagcc gtcactgctc aaagggctgg ccgcactcgg ccgagcacac 840 cttcgccggc aggtgcggga cccggagctt cgcgcaaagc tgctccccca ctacqcattc 900 ggatgcaagc gtccgacgtt ctcgaacacc tactatcccg cgctggcgtc acccaatgtg 960 1020 qaqqtqqtqa cqqacqqaat cqtcqaqqtq caqqaqcqcq gagttctcac cgcggacggc 1080 gccttccggg aagtcgacac catagtcatg ggaaccggct ttcggatggg agacaacccg tegttegaca ccateegagg ccaggaegge egcageeteg cacagaegtg gaaeggeagt 1140 geogaggeet teeteggeac cactateage ggtttteega aettetteat gateetegge 1200 cccaattccg tggtctacac ctcacaggtc gtcacgatcg aagcccaggt cgagtacatc 1260 gtgagetgca ttetteaaat ggaegagege ggeateggea geategaegt eegegeagae 1320 qtqcaacqcq aqttcqtacq cqcqacaqac cqccqactcq ccaccaqcqt qtqqaacqcc 1380 ggcgggtgca gtagttacta cctcgtcgac ggcggtcgca actacacctt ctatcccgga 1440

ttcaaccgat cattccgggc caggaccaaa cgagccgacc tcgctcacta cgcgcaggta 1	500
caaccogtct cgtccgcagc actcaccact gctcgagaaa ccgtgaggag ccgataa 1	557
<210> 24	
<211> 518	
<212> PRT	
<213> Rhodococcus erythropolis AN12	
<400> 24	
Met Val Asp Ile Asp Pro Thr Ser Gly Pro Ser Ala Gly Asp Glu Glu 1 10 15 15	
Thr Arg Thr Arg Arg Thr Arg Val Val Val Ile Gly Ala Gly Phe Gly $25 \\ 25 \\ 30$	
Gly Ile Gly Thr Ala Val Arg Leu Lys Gln Ser Gly Ile Asp Asp Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$	
Val Leu Glu Arg Ala Ala Glu Pro Gly Gly Thr Trp Gln Val Asn $50 \\$	
Thr Tyr Pro Gly Ala Gln Cys Asp Ile Pro Ser Ile Leu Tyr Ser Phe 65 70 75 80	
Ser Phe Ala Pro Asn Pro Asn Trp Thr Arg Leu Tyr Pro Leu Gln Pro 85 90 95	
Glu Ile Tyr Asp Tyr Leu Arg Asp Cys Val His Arg Phe Gly Leu Ala 100 105 110	
Gly His Phe His Cys Asn Gln Asp Val Thr Glu Ala Ser Trp Asp Glu 115 120 125	
Gln Ala Gln Ile Trp Arg Val His Thr Ala Glu Thr Val Trp Glu Ala 130 140	
Gln Phe Leu Val Ala Ala Thr Gly Pro Phe Ser Ala Pro Ala Thr Pro 145 150 155 160	
Asp Leu Pro Gly Leu Glu Ser Phe Arg Gly Gln Met Phe His Thr Ala 165 170 175	

Asp Trp Asn His Asp His Asp Leu Arg Gly Glu Arg Ile Ala Val Val Gly Thr Gly Ala Ser Ala Val Gln Ile Ile Pro Arg Leu Gln Pro Leu Ala Asp Thr Leu Thr Val Phe Gln Arg Thr Pro Thr Trp Ile Leu Pro His Pro Asp Gln Pro Met Thr Gly Trp Pro Ser Ala Leu Phe Glu Arg Val Pro Leu Thr Gln Arq Leu Ala Arq Lys Gly Leu Asp Leu Leu Gln Glu Ala Leu Val Pro Gly Phe Val Tyr Lys Pro Ser Leu Leu Lys Gly Leu Ala Ala Leu Gly Arg Ala His Leu Arg Arg Gln Val Arg Asp Pro Glu Leu Arg Ala Lys Leu Leu Pro His Tyr Ala Phe Gly Cys Lys Arg Pro Thr Phe Ser Asn Thr Tyr Tyr Pro Ala Leu Ala Ser Pro Asn Val Glu Val Val Thr Asp Gly Ile Val Glu Val Gln Glu Arg Gly Val Leu Thr Ala Asp Gly Ala Phe Arg Glu Val Asp Thr Ile Val Met Gly Thr Gly Phe Arg Met Gly Asp Asn Pro Ser Phe Asp Thr Ile Arg Gly Gln Asp Gly Arg Ser Leu Ala Gln Thr Trp Asn Gly Ser Ala Glu Ala Phe Leu Gly Thr Thr Ile Ser Gly Phe Pro Asn Phe Phe Met Ile Leu Gly Pro Asn Ser Val Val Tvr Thr Ser Gln Val Val Thr Ile Glu Ala Gln Val Glu Tyr Ile Val Ser Cys Ile Leu Gln Met Asp Glu Arg Gly Ile

420 425 430

Gly Ser Ile Asp Val Arg Ala Asp Val Gln Arg Glu Phe Val Arg Ala 435 440 445

Thr Asp Arg Arg Leu Ala Thr Ser Val Trp Asn Ala Gly Gly Cys Ser 450 455 460

Ser Tyr Tyr Leu Val Asp Gly Gly Arg Asn Tyr Thr Phe Tyr Pro Gly 465 470 475

Phe Asn Arg Ser Phe Arg Ala Arg Thr Lys Arg Ala Asp Leu Ala His 485 490 495

Tyr Ala Gln Val Gln Pro Val Ser Ser Ala Ala Leu Thr Thr Ala Arg 500 505 510

Glu Thr Val Arg Ser Arg 515

<210> 25

<211> 1626

<212> DNA

<213> Rhodococcus erythropolis AN12

<400> 25 atgaccgate etgacttete cacegeacea etegacgteg tagteategg egeeggegte 60 gctggcatgt acqccatgca ccgacttcgc gagcaggggc tgcgtgtcca cggcttcgag 120 qeqqqctccq gaqtgggcgg cacgtggtat ttcaaccgct accccggcgc acgctgcgac 180 gtegagagtt tegactacte etactegtte teegaagage tgcaacagga ttgggactgg 240 agogagaagt acgoogogca accggagato ototogtaco togatoacgt ggotgatogo 300 ttcgacctac gcactggctt caccttcgac acacgcgttc tgagcgcaca gttcgacgag 360 ggtactgcca cgtggcgagt acagaccgac ggcggtcacg acgtcacctc acgcttcgtc 420 gtgtgcgcca cgggcagcct ctcgaccgca aacgttccga acattgcggg ccgtgagacc 480 ttcggtggcg atgtgttcca caccggtttc tggccgcacg agggcgtcga cttcaccggc 540 aaacqcqtcg gcgtgatcgg caccggatcc tcgggcatcc agtccattcc gctgatcgcc 600 qagcaggccg atcatctcta cgtgttccag cggtccgcga attacagtgt gccggcagga 660 aacacgcete tegatgacaa gegeegegee gagatcaagg eeggetaege agagegtega 720

gcgctgtcca agcgcagtgg cggtggatcg ccgttcgttt cggatcctcg cagcgccctc 780 gaagtetegg aggeegagag aaaegeggea taegaggage ggtggaaget eggeggtgte 840 ctottegeca agacattege agaccagaeg ageaacateg aggecaaegg gacageggea gcgtttgccg aacgcaagat tcgctcggaa gtccaggatc aggcgatcgc cgacctgctc 960 attocquacq accaccocat cggaaccaag cggatagtca cggacacgaa ctactaccag 1020 agetacaace gtgacaacgt cageetggta gateteaagt cegeacegat egaggegate 1080 gacgaggetg gaatcaagae ggeegatgeg eactacgaac tggatgeget ggtgtttgcc 1140 accgggttcg acgcgatgac gggagcgctc gatcgcatcg agatccgcgg ccgcaatggc 1200 gagacqttqc qcqaqaactq qcatgcqgqt ccaaggacgt atctaggcct cggagtacac 1260 gggttcccca acctgttcat cgtcaccggg ccgggtagcc cgagtgtgct gtccaacatg 1320 attetegetg ecgageagea egtggaetgg ategegggeg egateaacea cetegatteg 1380 gegggcateg acaccatega accgagtgcc gaageegtgg acaactggct egacgaatge 1440 tcacgccggg cgtcggcgac gctgtttcca tccgcgaact cctggtacat gggagccaac 1500 atteegggaa ageegaggat atteatgeea tteateggag gatteggtgt etacteegae 1560 atctgtgcag acgtggcagc agcgggatac cgaggcttcg aactgaacag tgcggtgcac 1620 1626 gcatga

<210> 26

<211> 541

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 26

Met Thr Asp Pro Asp Phe Ser Thr Ala Pro Leu Asp Val Val Ile 1 5 10 15

Gly Ala Gly Val Ala Gly Met Tyr Ala Met His Arg Leu Arg Glu Gln 20 25 30

Gly Leu Arg Val His Gly Phe Glu Ala Gly Ser Gly Val Gly Gly Thr 35 40 45

Trp Tyr Phe Asn Arg Tyr Pro Gly Ala Arg Cys Asp Val Glu Ser Phe

Asp Tyr Ser Tyr Ser Phe Ser Glu Glu Leu Gln Gln Asp Trp Asp Trp 70 Ser Glu Lys Tyr Ala Ala Gln Pro Glu Ile Leu Ser Tyr Leu Asp His 90 Val Ala Asp Arg Phe Asp Leu Arg Thr Gly Phe Thr Phe Asp Thr Arg 105 Val Leu Ser Ala Gln Phe Asp Glu Gly Thr Ala Thr Trp Arg Val Gln 120 Thr Asp Gly Gly His Asp Val Thr Ser Arg Phe Val Val Cys Ala Thr Gly Ser Leu Ser Thr Ala Asm Val Pro Asm Ile Ala Gly Arg Glu Thr 155 150 Phe Gly Gly Asp Val Phe His Thr Gly Phe Trp Pro His Glu Gly Val 165 170 Asp Phe Thr Gly Lys Arg Val Gly Val Ile Gly Thr Gly Ser Ser Gly Ile Gln Ser Ile Pro Leu Ile Ala Glu Gln Ala Asp His Leu Tyr Val 200 Phe Gln Arg Ser Ala Asn Tyr Ser Val Pro Ala Gly Asn Thr Pro Leu Asp Asp Lys Arg Arg Ala Glu Ile Lys Ala Gly Tyr Ala Glu Arg Arg Ala Leu Ser Lys Arg Ser Gly Gly Gly Ser Pro Phe Val Ser Asp Pro 245 250 Arg Ser Ala Leu Glu Val Ser Glu Ala Glu Arg Asn Ala Ala Tyr Glu 260 265 Glu Arg Trp Lys Leu Gly Gly Val Leu Phe Ala Lys Thr Phe Ala Asp Gln Thr Ser Asn Ile Glu Ala Asn Gly Thr Ala Ala Ala Phe Ala Glu 295

Arg Lys Ile Arg Ser Glu Val Gln Asp Gln Ala Ile Ala Asp Leu Leu Ile Pro Asn Asp His Pro Ile Gly Thr Lys Arg Ile Val Thr Asp Thr Asn Tyr Tyr Gln Ser Tyr Asn Arg Asp Asn Val Ser Leu Val Asp Leu Lys Ser Ala Pro Ile Glu Ala Ile Asp Glu Ala Gly Ile Lys Thr Ala Asp Ala His Tyr Glu Leu Asp Ala Leu Val Phe Ala Thr Gly Phe Asp Ala Met Thr Gly Ala Leu Asp Arg Ile Glu Ile Arg Gly Arg Asn Gly Glu Thr Leu Arg Glu Asn Trp His Ala Gly Pro Arg Thr Tyr Leu Gly Leu Gly Val His Gly Phe Pro Asn Leu Phe Ile Val Thr Gly Pro Gly Ser Pro Ser Val Leu Ser Asn Met Ile Leu Ala Ala Glu Gln His Val . 435 Asp Trp Ile Ala Gly Ala Ile Asn His Leu Asp Ser Ala Gly Ile Asp Thr Ile Glu Pro Ser Ala Glu Ala Val Asp Asn Trp Leu Asp Glu Cys Ser Arg Arg Ala Ser Ala Thr Leu Phe Pro Ser Ala Asn Ser Trp Tyr Met Gly Ala Asn Ile Pro Gly Lys Pro Arg Ile Phe Met Pro Phe Ile Gly Gly Phe Gly Val Tyr Ser Asp Ile Cys Ala Asp Val Ala Ala Ala Gly Tyr Arg Gly Phe Glu Leu Asn Ser Ala Val His Ala

PCT/US02/27549 WO 03/020890

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1389

<210> 27

<211> 1389

<212> DNA

cgcqcatga

<213> Rhodococcus erythropolis AN12

<400> 27 atgagecect ecceptige gagegtetge atcateggeg eegggeetac eggaateace acggccaagc gaatgaagga attcggaata cccttcgact gctacgaagc gtccgacgag qtcqqcqqaa actqqtacta caaqaacccc aacqqaatqt cqqcctqcta ccaqaqcctq catatogaca cqtcqaaqtq qcqcttqqca ttcqaqqact tcccqqtctc tqccqacctt cocgatttcc cccaccattc cgaactcttc cagtacttca aggactacgt cgagcatttc ggcctgcgtg agtcgatcat cttcaacacc agtgttgttg ctgcagagcg tgatgcaaac qqactqtqqa ccqtcacqcq ctcqqacqqc qaaqtccqta cctacqacqt cctqatqqtc tgcaatggtc accactggga tcccaatatc ccggattacc cgggcgaqtt cgacggcqtc ctcatgcaca gccacagcta caacgacccq ttcgatccga tcgacatgcq cggcaagaaa gtagtegtgg teggaatggg gaacteegge ttggacattg etteegaact ggggeagaga tacctegecg acaageteat egteteggeg egeegeggeg tgtgggtgtt geegaaatac ctgggcgcg tgccggaga caaactgatc accccccct ggatgcctcg ggggctgcgc ctgttcctga gtcgtcgatt cctcggcaag aacctgggaa ccatggaggg ctacggacta cccaagccag atcaccgccc cttcgaggca catccgtcag ccagtggcga gttcttggga cgtgccgggt ccggcgacat caccttcaag ccggcgatca ccaaactcga cggaaagcag qttcatttcq ccqacqcac cqccqaqqac qtcqacqtqq tcqtctqcqc caccqqctac aacatcagct teceettett egacqaeeeg aacetgetge eggacaaaga caacegatte 1020 ccactettca aacgeatgat gaageeegga ategacaace tettetteat gggacteget 1080 cageccatge egacgetegt aaacttegee gageageaga geaagetegt egeggeetae 1140 ctcaccqqta aataccaqct qccqtccqcq aacqaqatqc aqqaqatcac caaqqccqac 1200 qaqqqqtact tcctcqcccc ctattacaaq tcaccqcqcc acaccattca qctcqaqttc 1260 gacccgtacg tccgcaacat gaacaaggaa attgccaagg gcaccaagcg tgccgcggcc 1320 togoggaaca aactacctgt tgcggcgcgt gcagcagcac acgaactcga gaaggcggat 1380

<210> 28

<211> 462

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 28

Met Ser Pro Ser Pro Leu Pro Ser Val Cys Ile Ile Gly Ala Gly Pro 1 5 10 15

Thr Gly Ile Thr Thr Ala Lys Arg Met Lys Glu Phe Gly Ile Pro Phe 20 25 30

Asp Cys Tyr Glu Ala Ser'Asp Glu Val Gly Gly Asn Trp Tyr Tyr Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Pro Asn Gly Met Ser Ala Cys Tyr Gln Ser Leu His Ile Asp Thr 50 60

Ser Lys Trp Arg Leu Ala Phe Glu Asp Phe Pro Val Ser Ala Asp Leu 65 70 75 80

Pro Asp Phe Pro His His Ser Glu Leu Phe Gln Tyr Phe Lys Asp Tyr 85 90 95

Val Glu His Phe Gly Leu Arg Glu Ser Ile Ile Phe Asn Thr Ser Val 100 105 110

Val Ala Ala Glu Arg Asp Ala Asn Gly Leu Trp Thr Val Thr Arg Ser

Asp Gly Glu Val Arg Thr Tyr Asp Val Leu Met Val Cys Asn Gly His 130 135 140

His Trp Asp Pro Asn Ile Pro Asp Tyr Pro Gly Glu Phe Asp Gly Val 145 150 155 160

Leu Met His Ser His Ser Tyr Asn Asp Pro Phe Asp Pro Ile Asp Met 165 170 175

Arg Gly Lys Lys Val Val Val Gly Met Gly Asn Ser Gly Leu Asp 180 185

Ile Ala Ser Glu Leu Gly Gln Arg Tyr Leu Ala Asp Lys Leu Ile Val

195 200 205

Ser Ala Arg Arg Gly Val Trp Val Leu Pro Lys Tyr Leu Gly Gly Val 215 Pro Gly Asp Lys Leu Ile Thr Pro Pro Trp Met Pro Arg Gly Leu Arg Leu Phe Leu Ser Arg Arg Phe Leu Gly Lys Asn Leu Gly Thr Met Glu 250 Gly Tyr Gly Leu Pro Lys Pro Asp His Arg Pro Phe Glu Ala His Pro 265 260 Ser Ala Ser Gly Glu Phe Leu Gly Arg Ala Gly Ser Gly Asp Ile Thr 280 Phe Lys Pro Ala Ile Thr Lys Leu Asp Gly Lys Gln Val His Phe Ala 295 Asp Gly Thr Ala Glu Asp Val Asp Val Val Val Cys Ala Thr Gly Tyr Asn Ile Ser Phe Pro Phe Phe Asp Asp Pro Asn Leu Leu Pro Asp Lys Asp Asn Arg Phe Pro Leu Phe Lys Arg Met Met Lys Pro Gly Ile Asp 345 Asn Leu Phe Phe Met Gly Leu Ala Gln Pro Met Pro Thr Leu Val Asn Phe Ala Glu Gln Gln Ser Lys Leu Val Ala Ala Tyr Leu Thr Gly Lys Tyr Gln Leu Pro Ser Ala Asn Glu Met Gln Glu Ile Thr Lys Ala Asp 390 Glu Ala Tyr Phe Leu Ala Pro Tyr Tyr Lys Ser Pro Arg His Thr Ile 410 Gln Leu Glu Phe Asp Pro Tyr Val Arg Asn Met Asn Lys Glu Ile Ala 425 Lvs Gly Thr Lvs Arg Ala Ala Ala Ser Gly Asn Lvs Leu Pro Val Ala 435 440 445

Ala Arg Ala Ala His Glu Leu Glu Lys Ala Asp Arg Ala 450 455 460

<210> 29 <211> 1572

<212> DNA

<213> Rhodococcus erythropolis AN12

<400> 29 gtgaacaacg aatotgacca ottogaggto gtgatcatcg goggtggaat ttocggaatc 60 ggogoggota tocacotgoa gogtotogga atogacaact togcactoot ogagaaggoo 120 gactccctcg gtggaacctg gcqcqccaac acctatcccq ggtgcgcctg cgacgttcca 180 tccggtctgt actcgtactc ctttgccgcc aatccggatt ggacgcgctt gttcgcggag 240 caaccggaga tccgcgaata catcgagaac acggcgggca cgcacggagt cgacaaacac 300 gttcgcttcg gggtcgaaat gctctccgcg cgatgggatg cgtcgcaatc actgtggaag 360 ataacaactt ccagcggga actgactgct cgcttcgtga tagccgctgc cggcccatgg 420 aacgaacccc tgacaccggc gatccccgga ctgqaaqcqt tcqaqqqaqa qqtqtttcat 480 tectegeagt ggaateaega etaegaeetg aceggaaaae tegtegeegt egtaggaace 540 ggagcgtcgg cagtccagtt cgttccgcgc atcgtctccc aggtctccgc ccttcacctc 600 taccagogaa cogotcaatg ggttotococ aaaccogato actacgtaco goggatogaa 660 aggtccgtca tgcgattcgt gccgggagca cagaaagcct tgcgcagcat cgaatacgga 720 atcatggaag cgctcggatt gggattccgt aatccatgga tcctqcqaat cqtqcaqaaa 780 ctogggtcag cccaattgcg cctacaggta cgcgatcgga agctgcgcaa ggcattgact 840 coogactaca coctoggttg caaqcqactq ctcatqtcqa actcqtacta tccqqccctc 900 ggcaaaccca acgtcagcgt ccatgccaac gccgtcgagc agatccgcgg taacaccgtg 960 ateggegeeg acggagtgga ggeggaggtg gacgccatca tetteggaac gggettecac 1020 atcctcgaca tgcccatcgc atccaaggta ttcgacggag aaggtcgatc actcgacgat 1080 cattggcagg gaagcccgca ggcgtacttc ggctccgccg tcagtggatt ccccaacgca 1140 ttcatcctgc tgggcccgag cctcggcacc gggcacacat cggcgttcat gatcttggaa 1200 goccaactga actatgtggc gcaggcaatc ggccacgcc gtcgtcacgg ctggcagacc 1260 atcgacgtgc gagaggaagt tcaggcagcc ttcaattctc aggttcagga ggcattgggg 1320

accacggtet acaacgcegg tggttgegaa agetatttet tegacgteaa eggcegeaac 1380 agtttcaact ggccgtggtc gtccggcgcc atgcgtcgac ggctacggga cttcgatccg 1440 tatgectaca accacacgte gaaccetgag teagacaaca egeceeetga acceaegeca 1500 tecgaaceca egecatetga acceaegeca tecgagecca ecaceagtee ggaaceggag 1560 tacaccgcat ga 1572 <210> 30 <211> 523 <212> PRT <213> Rhodococcus erythropolis AN12 <400> 30 Val Asn Asn Glu Ser Asp His Phe Glu Val Val Ile Ile Glv Glv Glv Ile Ser Gly Ile Gly Ala Ala Ile His Leu Gln Arg Leu Gly Ile Asp 25 Asn Phe Ala Leu Leu Glu Lys Ala Asp Ser Leu Gly Gly Thr Trp Arg 40 Ala Asn Thr Tyr Pro Gly Cys Ala Cys Asp Val Pro Ser Gly Leu Tyr Ser Tyr Ser Phe Ala Ala Asn Pro Asp Trp Thr Arg Leu Phe Ala Glu Gln Pro Glu Ile Arg Glu Tyr Ile Glu Asn Thr Ala Gly Thr His Gly Val Asp Lys His Val Arg Phe Gly Val Glu Met Leu Ser Ala Arg Trp 100 Asp Ala Ser Gln Ser Leu Trp Lys Ile Thr Thr Ser Ser Gly Glu Leu 120 Thr Ala Arg Phe Val Ile Ala Ala Gly Pro Trp Asn Glu Pro Leu 135 Thr Pro Ala Ile Pro Gly Leu Glu Ala Phe Glu Gly Glu Val Phe His

150

Ser Ser Gln Trp Asn His Asp Tyr Asp Leu Thr Gly Lys Leu Val Ala Val Val Gly Thr Gly Ala Ser Ala Val Gln Phe Val Pro Arg Ile Val Ser Gln Val Ser Ala Leu His Leu Tyr Gln Arg Thr Ala Gln Trp Val Leu Pro Lys Pro Asp His Tyr Val Pro Arg Ile Glu Arg Ser Val Met Arg Phe Val Pro Gly Ala Glm Lys Ala Leu Arg Ser Ile Glu Tyr Gly Ile Met Glu Ala Leu Gly Leu Gly Phe Arg Asn Pro Trp Ile Leu Arg Ile Val Gln Lys Leu Gly Ser Ala Gln Leu Arg Leu Gln Val Arg Asp Pro Lys Leu Arg Lys Ala Leu Thr Pro Asp Tyr Thr Leu Gly Cys Lys Arg Leu Leu Met Ser Asn Ser Tyr Tyr Pro Ala Leu Gly Lys Pro Asn Val Ser Val His Ala Asn Ala Val Glu Gln Ile Arg Gly Asn Thr Val Ile Gly Ala Asp Gly Val Glu Ala Glu Val Asp Ala Ile Ile Phe Gly Thr Gly Phe His Ile Leu Asp Met Pro Ile Ala Ser Lys Val Phe Asp Gly Glu Gly Arg Ser Leu Asp Asp His Trp Gln Gly Ser Pro Gln Ala

Tyr Phe Gly Ser Ala Val Ser Gly Phe Pro Asn Ala Phe Ile Leu Leu

Gly Pro Ser Leu Gly Thr Gly His Thr Ser Ala Phe Met Ile Leu Glu

Ala Gln Leu Asn Tyr Val Ala Gln Ala Ile Gly His Ala Arg Arg His 405 410 415	
Gly Trp Gln Thr Ile Asp Val Arg Glu Glu Val Gln Ala Ala Phe Asn 420 425 430	
Ser Gln Val Gln Glu Ala Leu Gly Thr Thr Val Tyr Asn Ala Gly Gly 435 440 445	
Cys Glu Ser Tyr Phe Phe Asp Val Asn Gly Arg Asn Ser Phe Asn Trp 450 455 460	
Pro Trp Ser Ser Gly Ala Met Arg Arg Arg Leu Arg Asp Phe Asp Pro 465 470 475 480	
Tyr Ala Tyr Asn His Thr Ser Asn Pro Glu Ser Asp Asn Thr Pro Pro 485 490 495	
Glu Pro Thr Pro Ser Glu Pro Thr Pro Ser Glu Pro Thr Pro Ser Glu 500 505 510	
Pro Thr Thr Ser Pro Glu Pro Glu Tyr Thr Ala 515 520	
<210> 31	
<211> 1482	
<212> DNA	
<213> Rhodococcus erythropolis AN12	
<400> 31 atgageaceg aacacetega tgteetgate gteggegeeg gettgteegg eateggtget	60
gettategae tecagacega geteceagga aagtegtaeg caateetega ggeeeggageg	120
aacagcggcg gaacctggga cctcttcaag tatcccggca tccgatcgga ttccgacatg	180
ttcacgctcg gctacccgtt tcgcccgtgg acagatgcca aagcaatcgc cgacggtgat	240
tcgatcctgc ggtacgtgcg cgacaccgcg cgagagaacg ggatcgacaa gaagattcgg	300
tacaaccgga aggtgacggc cgcatcatgg tcgtcagcga cctcgacctg gacagtcacg	360
gtcacgaccg gcgacgaaga cgaaacattg acctgtaact tcctctatct ctgcagcggg	420
tactacaget acgaeggegg atacacecee gaetteceeg gaegtgaate gtttgeeggt	480
gaggtagtgc acccccagtt ctggcccgaa gaactcgatt actccgacaa gaaggtcgtt	540

gtgatcggaa	geggegeeae	cgcagtcact	ttggtcccca	cgatgtcacg	ggacgcaagc	600
cacgtcacga	tgetecageg	atcaccgacg	tacattctgg	cgcttccgtc	cagcgacaaa	660
ttatcggaca	ccattegege	ggtactgccg	aatcaactcg	cgcacagcat	cgctcgatgg	720
aagagegteg	tagtgaacct	gagtttctac	caactgtgcc	gacgcagtcc	ggcgcgtgca	780
aagaggatgc	tgaacctcgc	gatcagtcgt	caactcccga	aagacatccc	cctcgatcct	840
cacttcacac	cctcctacga	tccctgggac	cagogottgt	gcgtcgtacc	cgacggcgat	900
ttgttcaaag	ccctccgatc	cggcaaggcc	tcgatcgaga	ccgatcacat	cgacaccttc	960
accgagaccg	ggatccttct	cgcgtcaggt	cgcgaactcg	aagctgacat	catcgtcact	1020
gcaacaggat	tgaagatgga	ggcgtgcggc	gggatgtcca	tcgaagtgga	cggcgaactc '	1080
gtcaccctcg	gtgatcgtta	cgcctacaag	ggcatgatga	tcagcgacgt	accgaacttc	1140
gcgatgtgcg	teggetacae	caacgcctcg	tggactctgc	gagcagatct	cacgtcgatg	1200
tacgtgtgcc	gactgctgac	ggagatggac	aagegegaet	attcgaagtg	cgtgccgcac	1260
gcgaccgaag	aaatggacca	gcggccgatc	ctggatctgg	cgtcggggta	cgtcatgcgt	1320
gccgtggaac	agttcccgaa	gcagggatcg	aagtcaccgt	ggaacatgcg	tcagaactac	1380
atccttgacc	gtcttcactc	cacgttcggg	agcatcaacg	accacatgac	gttctcgaag	1440
gcaccagctc	gacattcgac	gccggtaccg	agcaagagtt	ga		1482

<210> 32

<211> 493

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 32

Met Ser Thr Glu His Leu Asp Val Leu Ile Val Gly Ala Gly Leu Ser 1 5 10 15

Gly Ile Gly Ala Ala Tyr Arg Leu Gln Thr Glu Leu Pro Gly Lys Ser 20 25 30

Tyr Ala Ile Leu Glu Ala Arg Ala Asn Ser Gly Gly Thr Trp Asp Leu 35 40 45

Phe Lys Tyr Pro Gly Ile Arg Ser Asp Ser Asp Met Phe Thr Leu Gly 50 55 60

Tyr Pro Phe Arg Pro Trp Thr Asp Ala Lys Ala Ile Ala Asp Gly Asp Ser Ile Leu Arg Tyr Val Arg Asp Thr Ala Arg Glu Asn Gly Ile Asp Lys Lys Ile Arg Tyr Asn Arg Lys Val Thr Ala Ala Ser Tro Ser Ser Ala Thr Ser Thr Trp Thr Val Thr Val Thr Thr Gly Asp Glu Asp Glu Thr Leu Thr Cys Asn Phe Leu Tyr Leu Cys Ser Gly Tyr Tyr Ser Tyr 130 135 Asp Gly Gly Tyr Thr Pro Asp Phe Pro Gly Arg Glu Ser Phe Ala Gly 145 150 155 Glu Val Val His Pro Gln Phe Trp Pro Glu Glu Leu Asp Tyr Ser Asp Lys Lys Val Val Val Ile Gly Ser Gly Ala Thr Ala Val Thr Leu Val 185 Pro Thr Met Ser Arg Asp Ala Ser His Val Thr Met Leu Gln Arg Ser Pro Thr Tyr Ile Leu Ala Leu Pro Ser Ser Asp Lys Leu Ser Asp Thr Ile Arg Ala Val Leu Pro Asn Gln Leu Ala His Ser Ile Ala Arg Trp 235 Lys Ser Val Val Val Asn Leu Ser Phe Tyr Gln Leu Cys Arg Arg Ser Pro Ala Arg Ala Lys Arg Net Leu Asn Leu Ala Ile Ser Arg Gln Leu 260 265 Pro Lys Asp Ile Pro Leu Asp Pro His Phe Thr Pro Ser Tyr Asp Pro 280 Trp Asp Gln Arg Leu Cys Val Val Pro Asp Gly Asp Leu Phe Lys Ala 290 295

Leu Arg Ser Gly Lys Ala Ser Ile Glu Thr Asp His Ile Asp Thr Phe 305 Thr Glu Thr Gly Ile Leu Leu Ala Ser Gly Arg Glu Leu Glu Ala Asp 325 Ile Ile Val Thr Ala Thr Gly Leu Lys Met Glu Ala Cys Gly Gly Met Ser Ile Glu Val Asp Gly Glu Leu Val Thr Leu Gly Asp Arg Tyr Ala 355 Tyr Lys Glv Met Met Ile Ser Asp Val Pro Asn Phe Ala Met Cys Val 370 375 Gly Tyr Thr Asn Ala Ser Trp Thr Leu Arg Ala Asp Leu Thr Ser Met 385 390 395 Tyr Val Cys Arg Leu Leu Thr Glu Met Asp Lys Arg Asp Tyr Ser Lys 405 410 415 Cys Val Pro His Ala Thr Glu Glu Met Asp Gln Arg Pro Ile Leu Asp 420 Leu Ala Ser Gly Tyr Val Met Arg Ala Val Glu Gln Phe Pro Lys Gln 435 440 Gly Ser Lys Ser Pro Trp Asn Met Arg Gln Asn Tyr Ile Leu Asp Arg 450 455 Leu His Ser Thr Phe Gly Ser Ile Asn Asp His Met Thr Phe Ser Lys 465 470 475 480 Ala Pro Ala Arg His Ser Thr Pro Val Pro Ser Lys Ser 485 <210> 33 <211> 1620 <212> DNA <213> Rhodococcus erythropolis AN12 <400> 33

atgacagacg aattcgacgt agtgatcgtg ggtgcaggtc tcgcaggtat gcagatgctg 60

cacgaggttc	gcatggtcgg	cctcacggcc	aaagttttcg	aggccggcgg	aggtgcaggt	120
ggcacctggt	attggaaccg	ctacccgggt	gctcggtgtg	acgtggagag	tttggagtac	180
tcctatcagt	tctccgaggt	getecaacag	gaatgggaat	ggacccgccg	gtacgcagat	240
caggcegaga	tcatgcgcta	catcagccac	gtcgtcgaaa	ccttcgacct	ggcccgcgac	300
atcaggtttc	atacccgggt	cgaggcgatg	acctacgagg	agaccaccgc	caggtggacg	360
gttcagacgg	acagtgccgg	cgaggttgtg	gccaaattcg	tgattatggc	caccgggtgt	420
ctgtcggagc	cgaacgtgcc	gtacataccg	ggtgtggaga	cattegeggg	cgacgtgctg	480
cacaccgggc	gctggccgca	ggatcccgtc	gacttcacag	gcaagcgggt	cggcgtgatc	540
ggaaccggat	catctggcgt	gcaagccatc	ccactcatcg	cgcggcaagc	ggeegagete	600
gtagtettte	agcgcactcc	tgcatacacg	ttgcccgctg	tcgacgagcc	gctcgacccg	660
gaattgcagg	cggcgatcaa	ggccgattac	agggggttcc	gtgcgcgaaa	caacgaagtg	720
cccaccgcgg	gactctcccg	atttccgacg	aatccgaact	cggttttcct	gttctcaacg	780
aaggagcggg	atgccatcct	cgaacacaat	tggaaccgag	gcgggccgtt	gatgctgcgc	840
gccttcggcg	atctgctggt	ggaeteagee	gctaacgagg	tggtagccga	gttcgtccgc	900
aacaagatcc	gccagatcgt	taccgacccc	gaggtcgctg	cgaagctcac	accgacacac	960
gtgatcggat	gcaaacgaat	ctgtctcagc	gacggctatt	acgagaccta	caaccgggtc	1020
aacgtgcgct	tagtcgacat	caaacgccac	ccaatcgagg	agatcacgcc	tactacagcc	1080
cggaccggcg	aggactcgca	tgacctggac	atgctcgtgt	tcgccactgg	ctacgatgcc	1140
atcactggcg	cactctcacg	catcgacatc	cgeggcegeg	cagggttgtc	attgcaggaa	1200
gcatggtcgg	acggaccgcg	cacctatctc	gggctcgggg	tctccggctt	cccaaatctg	1260
ttcatcatga	ccggccccgg	aagcccatcg	gtattgacca	atgttcttgt	cgccatacac	1320
caacatgega	catggatcgg	cgaatgcctg	aagcatatga	ccgacaacga	tattcggaca	1380
atggaagcca	cgcccgaagc	cgagcagaac	tggggggacc	acgtgcgcga	cctcgccgag	1440
cagaccctgc	tctcatcgtg	cgggtcctgg	tacctcggag	caaacatccc	cggtaagaga	1500
caagtattca	tgccgctggt	egggttteeg	gactacgcca	agaaatgcgc	ggaaatcgca	1560
tccgccggct	acccgggctt	cgccttccag	tacgaccccg	tecetgtgaa	ccagagctga	1620

<210> 34

<211> 539

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 34

Met Thr Asp Glu Phe Asp Val Val Ile Val Gly Ala Gly Leu Ala Gly 1 5 15

Met Gln Met Leu His Glu Val Arg Met Val Gly Leu Thr Ala Lys Val 20 25 30

Phe Glu Ala Gly Gly Gly Ala Gly Gly Thr Trp Tyr Trp Asn Arg Tyr 35 40 45

Pro Gly Ala Arg Cys Asp Val Glu Ser Leu Glu Tyr Ser Tyr Gln Phe 50 \$55\$

Ser Glu Val Leu Gln Gln Glu Trp Glu Trp Thr Arg Arg Tyr Ala Asp 65 70 75 80

Gln Ala Glu Ile Met Arg Tyr Ile Ser His Val Val Glu Thr Phe Asp 85 90 95

Leu Ala Arg Asp Ile Arg Phe His Thr Arg Val Glu Ala Met Thr Tyr 100 105 110

Glu Glu Thr Thr Ala Arg Trp Thr Val Gln Thr Asp Ser Ala Gly Glu 115 120 125

Val Val Ala Lys Phe Val Ile Met Ala Thr Gly Cys Leu Ser Glu Pro 130 135 140

Asn Val Pro Tyr Ile Pro Gly Val Glu Thr Phe Ala Gly Asp Val Leu 145 150150155

His Thr Gly Arg Trp Pro Gln Asp Pro Val Asp Phe Thr Gly Lys Arg 165 170 175

Val Gly Val Ile Gly Thr Gly Ser Ser Gly Val Gln Ala Ile Pro Leu 180 185 190

Ile Ala Arg Gln Ala Ala Glu Leu Val Val Phe Gln Arg Thr Pro Ala 195 200 205

Tyr Thr Leu Pro Ala Val Asp Glu Pro Leu Asp Pro Glu Leu Gln Ala 210 215 220

Ala Ile Lys Ala Asp Tyr Arg Gly Phe Arg Ala Arg Asn Asn Glu Val

225					230					235					240
Pro	Thr	Ala	Gly	Leu 245	Ser	Arg	Phe	Pro	Thr 250		Pro	Asn	Ser	Val 255	Phe
Leu	Phe	Ser	Thr 260		Glu	Arg	Азр	Ala 265	Ile	Leu	Glu	His	Asn 270	Trp	Asn
Arg	Gly	Gly 275	Pro	Leu	Met	Leu	Arg 280	Ala	Phe	Gly	Азр	Leu 285	Leu	Val	Asp
Ser	Ala 290	Ala	Asn	Glu	Val	Val 295	Ala	Glu	Phe	Val	Arg 300	Asn	Lys	Ile	Arg
Gln 305		Val	Thr	Asp	Pro 310	Glu	Val	Ala	Ala	Lys 315	Leu	Thr	Pro	Thr	His 320
Val	Ile	Gly	Сув	Lys 325	Arg	Ile	Сув	Leu	Ser 330	Asp	Gly	Tyr	Tyr	Glu 335	Thr
Tyr	Asn	Arg	Val 340	Asn	Val	Arg	Leu	Val 345	Asp	Ile	Lys	Arg	His 350	Pro	Ile
Glu	Glu	Ile 355	Thr	Pro	Thr	Thr	Ala 360	Arg	Thr	Gly	Glu	Asp 365	Ser	His	Asp
Leu	Asp 370	Met	Leu	Val	Phe	Ala 375	Thr	Gly	Tyr	Asp	Ala 380	Ile	Thr	Gly	Ala
Leu 385	Ser	Arg	Ile	Asp	Ile 390	Arg	Gly	Arg	Ala	Gly 395	Leu	Ser	Leu	Gln	Glu 400
Ala	Trp	Ser	Asp	Gly 405	Pro	Arg	Thr	Tyr	Leu 410	Gly	Leu	Gly	Val	Ser 415	Gly
Phe	Pro	Asn	Leu 420	Phe	Ile	Met	Thr	Gly 425	Pro	Gly	Ser	Pro	Ser 430	Val	Leu
Thr	Asn	Val 435	Leu	Val	Ala	Ile	His 440	Gln	His	Ala	Thr	Trp 445	Ile	Gly	Glu
Cys	Leu 450	Lys	His	Met	Thr	Asp 455	Asn	Asp	Ile	Arg	Thr 460	Met	Glu	Ala	Thr
Pro 465	Glu	Ala	Glu		Asn 470	Trp	Gly	Авр		Val 475	Arg	Asp	Leu		Glu 480

Gln Thr Leu Leu Ser Ser Cys Gly Ser Trp Tyr Leu Gly Ala Asn Ile 485 490 495

Pro Gly Lys Arg Gln Val Phe Met Pro Leu Val Gly Phe Pro Asp Tyr 500 505 510

Ala Lys Lys Cys Ala Glu Ile Ala Ser Ala Gly Tyr Pro Gly Phe Ala 515 520 525

Phe Gln Tyr Asp Pro Val Pro Val Asn Gln Ser 530 535

<210> 35

<211> 1950

<212> DNA

<213> Rhodococcus erythropolis AN12

<400> 35 atgactateg teactgacet ggacegtgac cacetgegtt eggeggtgtt acgggggaat 60 gttccgacca tgctcgccgt gttgctggag ctgaccgccg atgagcggtg ggtggcaccc 120 cgctatcaac ccacgcgcag tcggggcatg gatgacaatt ccacgggagg acttccggag 180 gaggttcagt ccqaaatccq qaqcqcqttq atcqacqcaq tqqaacqctq qtqqacqctq 240 gacgagccgt cccggcggac gctggacagc tcggaagtag agcgaatcct caacttcacc 300 tgcagcgaga ccgtaccgcc ggacttcgcg ccgatgatgg cggagatagt caatggtccq 360 cagatcaagc ctgccaccgc caagtgcgac gagcgactcc acgccatcgt gatcggcgcc 420 ggcatcgcgg ggatgctggc ctccgtcgag ctcagccgcg ctgggatccc tcacgtgatc 480 ctggagaaga acgacgacgt cggcggatca tggtgggaga accgctatcc gggcgccgga 540 gttgatacac cgagccacct ttactcgate teqteqttec ctcqtaactq qtcqacccac 600 ttcggcaagc gcgacgaggt tcagggatat ctcgaggact ttgcggaggc caacqacatc 660 eggegeaatg teegetteeg teatgaggtg aegegegeeg agttegagga gtegaaacag 720 agttggcgtg tgtccgtcca gcgaccaggt gaggcgtcgg agaccctcga ggctcccatc 780 ctgatcagcg cggtcggtct gctcaatcgt ccgaaqatcc cgcatctacc gggaatcgag 840 accttccgtg gtcgcctctt ccactccgcc gagtggccga gcgagctcga cgatcccgag 900 tegeteegeg gaaagegagt gggcategte ggtaceggag ceagtgetat geagategge 960

coggocateg oggatogtgt oggatogotg acgatottee agegoteacc acagtggato 1020 gcaccgaacg acqactactt cacgaccatc gacgacggcg tccactggct gatggacaac 1080 atccccggct atcgcgagtg gtaccgggcg cgtctgtcqt qqatcttcaa cqacaaqqtq 1140 tactcgtccc tccaggtcga ccccgactgg ccagagccga gcqcctcgat caatqcqacc 1200 aaccatggtc atcgcaagtt ctacgaacgc tatctccgcg atcagctggg tgatcgaaca 1260 gatetgateg aggeatetet teeggaetat eegecettig giaagegaat getgetggae 1320 aatggctggt tcacgatgct tcgtaagccc gacgtcacac tggtgeceea eggagtegac 1380 gccctgacac cttctggact cgtcgacacg aacggcgtcg agcaccagct ggacgtcatt 1440 gtcatggcga cgggtttcca cagtgtgcgc gttctttacc cgatggacat cgtcggtcga 1500 teeggeeggt ccaeeggaga aatetgggge gageaegaeg egegegeeta eetggggate 1560 acagttcctg acttccccaa tttcttcqtc atgaccqqac cqaacaccqq cctqqqacat 1620 ggggggagct tcatcacgat cctggaatgt caggtccgct acatcatgga tgccttgaag 1680 ttgatgcaat cggaaaacct cggcgcgatg gagtgccggg ccgaggtcaa cgatcgatac 1740 aacgaggccg tcgaccgaca gcacgcacag atggtctgga cccatccggc aatggagaac 1800 tggtaccgaa accoggacgg tcgcqtcqtq tcqqtccttc cqtqqcqqat caacqactac 1860 tgggccatga cctaccgagt cgacccgtca gattttcgta ccgagccggc acgctccgag 1920 tcggtcccga ctccgaccgc gcgagggtga 1950

<210> 36

<211> 649

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 36

Met Thr Ile Val Thr Asp Leu Asp Arg Asp His Leu Arg Ser Ala Val 1 5 5 10 10 15

Leu Arg Gly Asn Val Pro Thr Met Leu Ala Val Leu Leu Glu Leu Thr 20 25 30

Ala Asp Glu Arg Trp Val Ala Pro Arg Tyr Gln Pro Thr Arg Ser Arg 35 40 45

Gly Met Asp Asp Asn Ser Thr Gly Gly Leu Pro Glu Glu Val Gln Ser 50 55 60

Glu Ile Arg Ser Ala Leu Ile Asp Ala Val Glu Arg Trp Trp Thr Leu Asp Glu Pro Ser Arg Arg Thr Leu Asp Ser Ser Glu Val Glu Arg Ile Leu Asn Phe Thr Cys Ser Glu Thr Val Pro Pro Asp Phe Ala Pro Met Met Ala Glu Ile Val Asn Gly Pro Gln Ile Lys Pro Ala Thr Ala Lys Cys Asp Glu Arg Leu His Ala Ile Val Ile Gly Ala Gly Ile Ala Gly Met Leu Ala Ser Val Glu Leu Ser Arg Ala Gly Ile Pro His Val Ile Leu Glu Lys Asn Asp Asp Val Gly Gly Ser Trp Trp Glu Asn Arg Tyr Pro Gly Ala Gly Val Asp Thr Pro Ser His Leu Tyr Ser Ile Ser Ser Phe Pro Arg Asn Trp Ser Thr His Phe Gly Lys Arg Asp Glu Val Gln Gly Tyr Leu Glu Asp Phe Ala Glu Ala Asn Asp Ile Arg Arg Asn Val Arg Phe Arg His Glu Val Thr Arg Ala Glu Phe Glu Glu Ser Lys Gln Ser Trp Arg Val Ser Val Gln Arg Pro Gly Glu Ala Ser Glu Thr Leu Glu Ala Pro Ile Leu Ile Ser Ala Val Gly Leu Leu Asn Arg Pro Lys

Ser Ala Glu Trp Pro Ser Glu Leu Asp Asp Pro Glu Ser Leu Arg Gly 290 295 300

Ile Pro His Leu Pro Gly Ile Glu Thr Phe Arg Gly Arg Leu Phe His

Lys Arg Val Gly Ile Val Gly Thr Gly Ala Ser Ala Met Gln Ile Gly 305 310 Pro Ala Ile Ala Asp Arg Val Gly Ser Leu Thr Ile Phe Gln Arg Ser Pro Gln Trp Ile Ala Pro Asn Asp Asp Tyr Phe Thr Thr Ile Asp Asp Gly Val His Trp Leu Met Asp Asn Ile Pro Gly Tyr Arg Glu Trp Tyr 360 Arg Ala Arg Leu Ser Trp Ile Phe Asn Asp Lys Val Tyr Ser Ser Leu 375 380 Gln Val Asp Pro Asp Trp Pro Glu Pro Ser Ala Ser Ile Asn Ala Thr Asn His Gly His Arg Lys Phe Tyr Glu Arg Tyr Leu Arg Asp Gln Leu 410 Gly Asp Arg Thr Asp Leu Ile Glu Ala Ser Leu Pro Asp Tyr Pro Pro 425 Phe Gly Lys Arg Met Leu Leu Asp Asn Gly Trp Phe Thr Met Leu Arg Lys Pro Asp Val Thr Leu Val Pro His Gly Val Asp Ala Leu Thr Pro 455 Ser Gly Leu Val Asp Thr Asn Gly Val Glu His Gln Leu Asp Val Ile Val Met Ala Thr Gly Phe His Ser Val Arg Val Leu Tyr Pro Met Asp 485 Ile Val Gly Arg Ser Gly Arg Ser Thr Gly Glu Ile Trp Gly Glu His Asp Ala Arg Ala Tyr Leu Gly Ile Thr Val Pro Asp Phe Pro Asn Phe

Phe Val Met Thr Gly Pro Asn Thr Gly Leu Gly His Gly Gly Ser Phe

535

Ile Thr Ile Leu Glu Cys Gln Val Arg Tyr Ile Met Asp Ala Leu Lys 545 550 550 555	
Leu Met Gln Ser Glu Asn Leu Gly Ala Met Glu Cys Arg Ala Glu Val $565 \ \ 575 \ \ $	
Asn Asp Arg Tyr Asn Glu Ala Val Asp Arg Gln His Ala Gln Met Val $580 \\ 590 \\$	
Trp Thr His Pro Ala Met Glu Asn Trp Tyr Arg Asn Pro Asp Gly Arg 595 600 605	
Val Val Ser Val Leu Pro Trp Arg Ile Asn Asp Tyr Trp Ala Met Thr 610 620	
Tyr Arg Val Asp Pro Ser Asp Phe Arg Thr Glu Pro Ala Arg Ser Glu 625 630 630 635 . 640	
Ser Val Pro Thr Pro Thr Ala Arg Gly 645	
<210> 37	
<211> 1485	
<212> DNA	
<213> Rhodococcus erythropolis AN12	
<400> 37 gtgaagettc ccgaacatgt cgaaacattg atcgtcggtg ccggattcgc cggtatgggc	6
ttggcggcca gaatgcttcg tgacaaccga acggcggaeg tcgtgttgat cgagcgcgga	12
gctgatatcg gtggcacctg gcgagacaac acctacccag gttgtgcctg tgacgtgccg	18
acggcgctgt actcgtattc ttttgcgccg agcgctgatt ggagtcatac ctttgctcgt	24
cagcccgaga tctacgacta tctgaagaaa gtggccgcag acaccggcat cggggatcgc	30
gtaatcctga actgcgaact cgaagccgct gtgtgggacg aggatgcggc gctgtggcgg	36
gtccggacat ccctggggtc gttgacagtc aaagcgctgg tcgctgcgac cggggcgttg	420

tcgacaccca agatcccgga ttttcccggt ctcgaccaat tctccggtac cactttccat

teggegaegt ggaaccaega acaegaaetg egtggtgage gegtageegt gateggaaeg

ggagcgtcgg cggttcagtt cgttcccgaa attgccgacc ctgctgccca tgtcaccgtg

ttccagagaa ctccggcctg ggtgattccg cgaatggatc gcaccctgcc tgcggcgcag

63

480

540

600

aaggccgtct	actcgcggat	tcccgctacg	cagaaagttg	ttcgcggagc	ggtttacggt	720
tttcgcgagt	tgctcggtgc	cgcgatgtca	catgcgacgt	gggtcctgcc	ggccttcgag	780
geggeegege	gcctccatct	gcgcagacag	gtgaaagatc	cggagttgcg	ccggaaactg	840
actcccgatt	tcacgatcgg	ttgcaagcgc	atgcttctgt	ccaacgactg	gttgcgcacc	900
ctcgaccgcg	cggacgtgag	cctggtcgac	agcgggctcg	tctcggtcac	cgagggcggg	960
gtggtcgacg	ggcacggagt	cgagcacaag	gtcgacacca	tcatcttcgc	cacggggttc	1020
acgeegaegg	aaccgcctgt	ggcgcatctg	atcaccggaa	aacgtggcga	aacgctggcc	1080
gcgcattgga	acggtagccc	caatgcctac	aagggcactg	eggtcagegg	gttcccgaat	1140
ctgttcctca	tgtacggtcc	gaacaccaac	ctcggaçaca	gttcgatcgt	gtacatgctc	1200
gagtcccagg	ccgagtacgt	caacgacgcg	ttgaacacca	tgaaacgtga	gcgactggac	1260
gctcttgatg	tcaacgagtc	ggtacaggtg	cactacaaca	agggaattca	gcacgagttg	1320
cagcacacgg	tgtggaacaa	gggcggatgc	tcgagttggt	acatcgatcc	ggaggggcgc	1380
acteggtgc	agtggccgac	gttcacattc	aaattccgtt	cgctgctgga	gcatttcgat	1440
cgtgagaact	actccgctcg	caagatcgaa	agcgtccagg	catga		1485

<210> 38

<211> 494

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 38

Val Lys Leu Pro Glu His Val Glu Thr Leu Ile Val Gly Ala Gly Phe 1 5 10 15

Ala Gly Met Gly Leu Ala Ala Arg Met Leu Arg Asp Asn Arg Thr Ala 20 25 30

Asp Val Val Leu Ile Glu Arg Gly Ala Asp Ile Gly Gly Thr Trp Arg 35 40 45

Asp Asn Thr Tyr Pro Gly Cys Ala Cys Asp Val Pro Thr Ala Leu Tyr 50 55 60

Ser Tyr Ser Phe Ala Pro Ser Ala Asp Trp Ser His Thr Phe Ala Arg 65 70 75 80

Gln Pro Glu Ile Tyr Asp Tyr Leu Lys Lys Val Ala Ala Asp Thr Gly Ile Gly Asp Arg Val Ile Leu Asn Cys Glu Leu Glu Ala Ala Val Trp Asp Glu Asp Ala Ala Leu Trp Arg Val Arg Thr Ser Leu Gly Ser Leu Thr Val Lys Ala Leu Val Ala Ala Thr Gly Ala Leu Ser Thr Pro Lys Ile Pro Asp Phe Pro Gly Leu Asp Gln Phe Ser Gly Thr Thr Phe His Ser Ala Thr Trp Asn His Glu His Glu Leu Arg Gly Glu Arg Val Ala Val Ile Gly Thr Gly Ala Ser Ala Val Gln Phe Val Pro Glu Ile Ala Asp Pro Ala Ala His Val Thr Val Phe Gln Arg Thr Pro Ala Trp Val Ile Pro Arg Met Asp Arg Thr Leu Pro Ala Ala Gln Lys Ala Val Tyr Ser Arg Ile Pro Ala Thr Gln Lys Val Val Arg Gly Ala Val Tyr Gly Phe Arg Glu Leu Leu Gly Ala Ala Met Ser His Ala Thr Trp Val Leu Pro Ala Phe Glu Ala Ala Ala Arg Leu His Leu Arg Arg Gln Val Lys Asp Pro Glu Leu Arg Arg Lys Leu Thr Pro Asp Phe Thr Ile Gly Cys Lys Arg Met Leu Leu Ser Asn Asp Trp Leu Arg Thr Leu Asp Arg Ala Asp Val Ser Leu Val Asp Ser Gly Leu Val Ser Val Thr Glu Gly Gly

Val Val Asp Gly His Gly Val Glu His Lys Val Asp Thr Ile Ile Phe

325 330 335							
Ala Thr Gly Phe Thr Pro Thr Glu Pro Pro Val Ala His Leu Ile Thr 340 345 350							
Gly Lys Arg Gly Glu Thr Leu Ala Ala His Trp Asn Gly Ser Pro Asn 355 360 365							
Ala Tyr Lys Gly Thr Ala Val Ser Gly Phe Pro Asn Leu Phe Leu Met 370 375 380							
Tyr Gly Pro Asn Thr Asn Leu Gly His Ser Ser Ile Val Tyr Met Leu 385 390 395 400							
Glu Ser Gln Ala Glu Tyr Val Asn Asp Ala Leu Asn Thr Met Lys Arg 405 410 415							
Glu Arg Leu Asp Ala Leu Asp Val Asn Glu Ser Val Gln Val His Tyr 420 425 430							
Asn Lys Gly Ile Gln His Glu Leu Gln His Thr Val Trp Asn Lys Gly 435 440 445							
Gly Cys Ser Ser Trp Tyr Ile Asp Pro Glu Gly Arg Asn Ser Val Gln 450 455 460							
Trp Pro Thr Phe Thr Phe Lys Phe Arg Ser Leu Leu Glu His Phe Asp 465 470 475 480							
Arg Glu Asn Tyr Ser Ala Arg Lys Ile Glu Ser Val Gln Ala 485 $$\rm 490$$							
<210> 39							
<211> 1500							
<212> DNA							
<213> Rhodococcus erythropolis ANI2							
<400> 39 atgacacage atgtcgacgt actgatcate ggcgctggct tgtccggaat cggcgcggct							
tgccacctca ttcgtgagca gaccggaagc acttargcga tcctcgagcg rcgcgagaac							

tgccacctca ttcgtgagca gaccggaagc acttacgcga tcctcgagcg ccgcgagaac 120
atcggtggca cctgggacct gttcaagtac cgggcatcc gttcggactc cgacatgctc 180
accttcggat tcggtttccg tccttggatc ggcacaaag tgctcgaga cgggcacagt 240

atccgtgact	acgtcgagga	aaccgccaag	gaatacggcg	tcaccgacca	catcaacttc	300
ggccgcaagg	togtggctat	ggacttcgac	cgtaccgccg	cgcagtggtc	cgtgaccgtc	360
ctggtcgagg	cgacagggga	gaccgagacg	tggaccgcga	acgtcctcgt	cggcgcctgt	420
ggttactaca	actacgacaa	gggttaccgc	cccgccttcc	ccggtgagga	cgacttccgc	480
ggtcagatcg	tgcacccgca	gcactggccg	gaggateteg	attacaccgg	aaagaaggta	540
gtggtcatcg	gtteeggege	caccgcgatc	acgctgatcc	cgtcgatggc	cccaccgcc	600
ggtcacgtca	ccatgctgca	gcgctcgccc	acgtggatcc	aggegettee	gtccgaggac	660
cctgttgcca	agggtctcaa	gctcgcacgc	gttcccgacc	agattgctta	caagattggt	720
cgagcccgca	atatcgcact	gcaacgcgcc	agettteage	tttctcgcac	caacccgaag	780
ctggccaaga	agetgtteet	cgcccagatc	cgcctgcagc	teggcaagaa	cgtggacctg	840
cgtcacttca	ctcccagcta	caaccegtgg	gatcagcgcc	tgtgcgtggt	tcccaacggg	900
gacctgttca	aggtgctcaa	gagcggcaag	gccgacatcg	tcaccgaccg	tatcgccacg	960
ttcaccgaga	agggcatcgt	gaccgagtcg	ggccgcgaaa	tcgaggccga	cgtcatcgtc	1020
acggcgaccg	gcttgaacgt	acagattctg	ggcggcgcaa	ccatgagcat	cgacggcgag	1080
ccggtcaagc	tcaacgagac	tgtggcctac	aagagcgtgc	tctactccga	catcccgaac	1140
ttcctgatga	tcctcggcta	caccaacgcg	tcgtggacgc	tcaaggctga	cctggccgcg	1200
tcctatctgt	gtcgcgtgct	caagatcatg	cgcgatcgca	gctacacgac	tttcgaggtt	1260
cacgccgaac	ccgaggactt	cgccgaagaa	tctctcatgg	gcggagccct	gacctcgggc	1320
tacatccagc	gcggcgacgg	agaaatgccg	cgtcagggtg	cccgcggcgc	gtggaaagtg	1380
gtcaacaatt	actaccgcga	ccgcaagctg	atgcacgacg	ccgagatcga	agacggtgtg	1440
ctgcagttca	gcaaggtcga	tattgctgtc	gtgcctgata	gcaaggtcgc	cagcgcatag	1500

<210> 40

<211> 499

<212> PRT

<213> Rhodococcus erythropolis AN12

<400> 40

Met Thr Gln His Val Asp Val Leu Ile Ile Gly Ala Gly Leu Ser Gly 1 5 10 15

Ile Gly Ala Ala Cys His Leu Ile Arg Glu Gln Thr Gly Ser Thr Tyr

20 25 30

Ala Ile Leu Glu Arg Arg Glu Asn Ile Gly Gly Thr Trp Asp Leu Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys Tyr Pro Gly Ile Arg Ser Asp Ser Asp Met Leu Thr Phe Gly Phe 50 55 60

Gly Phe Arg Pro Trp Ile Gly Thr Lys Val Leu Ala Asp Gly Ala Ser 65 70707575

Ile Arg Asp Tyr Val Glu Glu Thr Ala Lys Glu Tyr Gly Val Thr Asp 85 90 95

His Ile Asn Phe Gly Arg Lys Val Val Ala Met Asp Phe Asp Arg Thr 100 105 110

Ala Ala Gln Trp Ser Val Thr Val Leu Val Glu Ala Thr Gly Glu Thr 115 120 125

Glu Thr Trp Thr Ala Asn Val Leu Val Gly Ala Cys Gly Tyr Tyr Asn 130 135 140

Tyr Asp Lys Gly Tyr Arg Pro Ala Phe Pro Gly Glu Asp Asp Phe Arg 145 150 155 160

Gly Gln Ile Val His Pro Gln His Trp Pro Glu Asp Leu Asp Tyr Thr 165 170 175

Gly Lys Lys Val Val Val Ile Gly Ser Gly Ala Thr Ala Ile Thr Leu 180 185

Ile Pro Ser Met Ala Pro Thr Ala Gly His Val Thr Met Leu Gln Arg 195 200 205

Ser Pro Thr Trp Ile Gln Ala Leu Pro Ser Glu Asp Pro Val Ala Lys 210 215 220

Gly Leu Lys Leu Ala Arg Val Pro Asp Gln Ile Ala Tyr Lys Ile Gly 225 230 235

Arg Ala Arg Asn Ile Ala Leu Gln Arg Ala Ser Phe Gln Leu Ser Arg 245 250250255

Thr Asn Pro Lys Leu Ala Lys Lys Leu Phe Leu Ala Gln Ile Arg Leu 260 265 270

Gln Leu Gly Lys Asn Val Asp Leu Arg His Phe Thr Pro Ser Tyr Asn 275 280 285

Pro Trp Asp Gln Arg Leu Cys Val Val Pro Asn Gly Asp Leu Phe Lys 290 295 300

Val Leu Lys Ser Gly Lys Ala Asp Ile Val Thr Asp Arg Ile Ala Thr 305 310 315 320

Phe Thr Glu Lys Gly Ile Val Thr Glu Ser Gly Arg Glu Ile Glu Ala 325 330 335

Asp Val Ile Val Thr Ala Thr Gly Leu Asn Val Gln Ile Leu Gly Gly 340 345 350

Ala Thr Met Ser Ile Asp Gly Glu Pro Val Lys Leu Asn Glu Thr Val 355 360 365

Ala Tyr Lys Ser Val Leu Tyr Ser Asp Ile Pro Asn Phe Leu Met Ile 370 375 380

Leu Gly Tyr Thr Asn Ala Ser Trp Thr Leu Lys Ala Asp Leu Ala Ala 385 390 395

Ser Tyr Leu Cys Arg Val Leu Lys Ile Met Arg Asp Arg Ser Tyr Thr 405 410 415

Thr Phe Glu Val His Ala Glu Pro Glu Asp Phe Ala Glu Glu Ser Leu 420 425 430

Met Gly Gly Ala Leu Thr Ser Gly Tyr Ile Gln Arg Gly Asp Gly Glu
435 440 445

Met Pro Arg Gln Gly Ala Arg Gly Ala Trp Lys Val Val Asn Asn Tyr 450 455 460

Tyr Arg Asp Arg Lys Leu Met His Asp Ala Glu Ile Glu Asp Gly Val 465 470 475

Leu Gln Phe Ser Lys Val Asp Ile Ala Val Val Pro Asp Ser Lys Val 485 490 495

Ala Ser Ala

<210> 41 <211> 1482

<212> DNA

<400> 41

<213> Rhodococcus erythropolis AN12

atgteateac gggteaacga eggeeacate gegateateg gaacegggtt tteegggetg 60 tgcatggcga tcgaactgaa gaagaagggc atcgacgact tcgtcctgta cgaacgcgcc 120 gacgatgtcg gcggaacctg gcgcgacaac acatacccag gggcagcctg cgatgtgccc 180 agogtgttgt attoctacto ottogotoag aaccogaact ggaccogtat ottoccqcca 240 tggtcggaac tgctcgacta tctcagatct gttgctgcgc agtatgattt gctgccgcac 300 atcogetteg gtgtegaggt etcegaaatg eggttegaeg aggacegget eeggtggaae 360 atccagttcg catccggcga atcagtgacg gcggccgttg tcgtcaacqq ctcaggggc 420 ttgagtaatc cgtacatccc gcagctaccc ggactggaat cattcgaggg tgccgcattc 480 cacteegeca agtggegaca tgacetegac atgtegggaa ggegtgtege ggtgataggt 540 teeggegeca gtgegateca gttegteece gaaategeee egeacaeega gaeeetteat 600 gtgtttcagc gatcacccaa ctgggtcatg ccacgtggtg atgccgcgct gtcgcccgcc 660 accegegaaa gatteteacg gegteettat egteaacggt ggetgegatg geggaeetae 720 tgggcattcg aaaagctcgc cagcgccttc ctcggaaatc gcaaactcgt cgaacagtac 780 cgateccagg cgctegecaa tetteaacag caaqtqeeqq atteqqaett qaqqeaqaaq 840 gtcaccccag attacgatcc tggctgtaaa cgtcgcttga tatccqacqa ctqqtacccc 900 gegetgeaac gggaaaatgt geacttgaac aceteggggg ttteegagat eegeeegeat 960 tegateattg acteagaggg ageggaacac gaagtegaca ceetgatett egegacegga 1020 ttccaggcaa ccagcttcct ggcaccgatg aaagtattcg gccgcgaagg agtcgaactc 1080 tecgacagtt ggegegaggg egeegeaaca aageteggge ttgeateege egegtteeeg 1140 aacctgtggt teetcaaegg ceegaatace ggteteggte acaactegat catetteatg 1200 ategaageac aagecagata categetteg geagtgeagt acatgegeeg aaaaagtate 1260 actgeceteg aactegateg cacegtecag acaggeaget acgeegecae ccaaqaacge 1320 atgegeegaa etgtatggge ategggtgge tgegaeaget ggtateaate egetgaeggt 1380 cgaatcgaca ccctgtggcc ggccagcaca atcgaatact ggttgcgcac caggctattc 1440 cgcaaqtccg acttccatgc actgacgaca ggcaaaggat ga 1482

- <210> 42
- <211> 493
- <212> PRT
- <213> Rhodococcus erythropolis AN12
- <400> 42
- Met Ser Ser Arg Val Asn Asp Gly His Ile Ala Ile Ile Gly Thr Gly
 1 5 10 15
- Phe Ser Gly Leu Cys Met Ala Ile Glu Leu Lys Lys Lys Gly Ile Asp 20 25 30
- Asp Phe Val Leu Tyr Glu Arg Ala Asp Asp Val Gly Gly Thr Trp Arg
- Asp Asn Thr Tyr Pro Gly Ala Ala Cys Asp Val Pro Ser Val Leu Tyr 50 55 60
- Ser Tyr Ser Phe Ala Gln Asn Pro Asn Trp Thr Arg Ile Phe Pro Pro 65 70 75 80
- Trp Ser Glu Leu Leu Asp Tyr Leu Arg Ser Val Ala Ala Gln Tyr Asp 85 90 95
- Leu Leu Pro His Ile Arg Phe Gly Val Glu Val Ser Glu Met Arg Phe 100 105 110
- Asp Glu Asp Arg Leu Arg Trp Asn Ile Gln Phe Ala Ser Gly Glu Ser 115 \$120\$ 125
- Val Thr Ala Ala Val Val Val Asn Gly Ser Gly Gly Leu Ser Asn Pro 130 140
- Tyr Ile Pro Gln Leu Pro Gly Leu Glu Ser Phe Glu Gly Ala Ala Phe 145 $$ 150 $$ 155 $$ 160
- His Ser Ala Lys Trp Arg His Asp Leu Asp Met Ser Gly Arg Arg Val 165 170 175
- Ala Val Ile Gly Ser Gly Ala Ser Ala Ile Gln Phe Val Pro Glu Ile 180 185 190

Ala Pro His Thr Glu Thr Leu His Val Phe Gln Arg Ser Pro Asn Trp 200 Val Met Pro Arg Gly Asp Ala Ala Leu Ser Pro Ala Thr Arg Glu Arg 215 Phe Ser Arg Arg Pro Tyr Arg Gln Arg Trp Leu Arg Trp Arg Thr Tyr 225 Trp Ala Phe Glu Lys Leu Ala Ser Ala Phe Leu Gly Asn Arg Lys Leu 245 Val Glu Gln Tyr Arg Ser Gln Ala Leu Ala Asn Leu Gln Gln Gln Val 265 Pro Asp Ser Asp Leu Arg Gln Lys Val Thr Pro Asp Tyr Asp Pro Gly Cys Lys Arg Arg Leu Ile Ser Asp Asp Trp Tyr Pro Ala Leu Gln Arg 295 Glu Asn Val His Leu Asn Thr Ser Gly Val Ser Glu Ile Arg Pro His . 315 Ser Ile Ile Asp Ser Glu Gly Ala Glu His Glu Val Asp Thr Leu Ile Phe Ala Thr Gly Phe Gln Ala Thr Ser Phe Leu Ala Pro Met Lys Val 340 345 Phe Gly Arg Glu Gly Val Glu Leu Ser Asp Ser Trp Arg Glu Gly Ala Ala Thr Lys Leu Gly Leu Ala Ser Ala Ala Phe Pro Asn Leu Trp Phe 375 Leu Asn Gly Pro Asn Thr Gly Leu Gly His Asn Ser Ile Ile Phe Met 390 395 Ile Glu Ala Gln Ala Arg Tyr Ile Ala Ser Ala Val Gln Tyr Met Arg 405 Arg Lys Ser Ile Thr Ala Leu Glu Leu Asp Arg Thr Val Gln Thr Gly 420 425

Ser Tyr Ala Ala Thr Gln Glu Arg Met Arg Arg Thr Val Trp Ala Ser 435 440 445

Gly Cys Asp Ser Trp Tyr Gln Ser Ala Asp Gly Arg Ile Asp Thr 450 460

Leu Trp Pro Ala Ser Thr Ile Glu Tyr Trp Leu Arg Thr Arg Leu Phe 465 470 475

Arg Lys Ser Asp Phe His Ala Leu Thr Thr Gly Lys Gly 485 490

<210> 43

<211> 1626

<212> DNA

<4nn> 43

<213> Rhodococcus erythropolis AN12

atgactacac aaaaggeeet gaccactgte gatgecateg teateggege eggattegge 60 gggatctacg ccgtccacaa actggccaac gagctcggcc tcacgacggt cggcttcgac 120 aaggcagacg gcccgggcgg cacgtggtac tggaaccgct acccgggtgc actgtccgac 180 accgaaagec acgtetaccg gtteteatte gaccgtgace tgetteagga eggtacetqq 240 aagcacacct acaccactca acccqaqatt ctcqaatacc ttqaqqatqt cqtttcccqq 300 ttegacetae geeggeactt ceaettegge aetgeegteg aatetgeggt gtatetegaa 360 gacgaacaac tgtgggaagt caccaccgac acaggcgaga tctaccgcgc tacctacgtc 420 gtcaatgctg tegggetect etcegecate aategacegg atetgeeegg tetegagaca 480 ttcgaaggcg agaccatcca caccgcagcg tggcccgagg gcaaggatct caccggccgc 540 egegteggeg tgateggtac eggatetact gggcaacagg teatcacggc ectggegeca 600 acggtcgaac acctcactgt attcgtgcga actccccagt actcgqtqcc qqtcqqcaaq 660 cgcgcggtga ccgacgagca gatcgacgca gtcaaagccg actacgagaa catctggact 720 caggicaaaa gatcctcggt ggcattcggc ttcgaggaat ctactgttcc ggccatgaqc 780 gtgtccgcgg aagaacgcct cagggtctac gaagaggcat gggagcaggg cggcggtttc 840 cgattcatgt tcggaacctt cggtgacatc gctaccgacg aagaagccaa cgaaactgca 900 gcatcgttca ttcgctcgaa gatcaccgcc atgatcgaag acccggagac tgcccgcaaa 960 ctgacgccca ccggactatt cgcgagacga ccgttgtgcg acgacgggta cttccaggtc 1020

ttcaaccgcc	cgaacgtcga	ggcggtcgcc	atcaaggaaa	accccattcg	tgagatcaca	1080
gccaagggcg	tggtgaccga	ggacggcgtc	ctgcacaaat	tggacgtcct	ggtcctcgcc	1140
accggcttcg	acgccgtcga	cgggaactac	cgccgcatga	ccatttccgg	tegeggtgge	1200
ctgaacatca	acgaccattg	ggacggccaa	cccaccagct	acctggggat	tgccaccgcg	1260
aacttcccca	actggttcat	ggtgctcggc	cccaacggac	cgttcacgaa	ccttcctcca	1320
agcatcgaaa	ctcaggtcga	gtggatcagc	gacaccatag	gttacgtcga	gcggacaggt	1380
gtgcgggcga	tcgaacccac	accggaggcg	gaatccgcat	ggaccgcgac	ctgcacggac	1440
atcgcgaaca	tgaccgtctt	caccaaggtt	gattcatgga	tcttcggggc	caatgttcca	1500
ggaaagaagc	ccagcgtgct	gttctacctt	ggcgggctcg	gcaactaccg	cgccgtcctg	1560
gcagacgtca	ccgagggggg	ctatcagggc	tttgctctga	agacggccga	caccgtcgac	1620
gcctga						1626

<210> 44

<211> 541 <212> PRT

<213> Rhodococcus erythropolis AN12

<400> 44

Met Thr Thr Gln Lys Ala Leu Thr Thr Val Asp Ala Ile Val Ile Gly
1 5 10 15

Ala Gly Phe Gly Gly Ile Tyr Ala Val His Lys Leu Ala Asn Glu Leu
20 25 30

Gly Leu Thr Thr Val Gly Phe Asp Lys Ala Asp Gly Pro Gly Gly Thr 35 40 45

Trp Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr Glu Ser His 50 60

Val Tyr Arg Phe Ser Phe Asp Arg Asp Leu Leu Gln Asp Gly Thr Trp 65 70707575

Lys His Thr Tyr Thr Gln Pro Glu Ile Leu Glu Tyr Leu Glu Asp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Val Val Ser Arg Phe Asp Leu Arg Arg His Phe His Phe Gly Thr Ala 100 105 110

Val Glu Ser Ala Val Tyr Leu Glu Asp Glu Gln Leu Trp Glu Val Thr 115 120 125

Thr Asp Thr Gly Glu Ile Tyr Arg Ala Thr Tyr Val Val Asn Ala Val 130 135 140

Gly Leu Leu Ser Ala Ile Asn Arg Pro Asp Leu Pro Gly Leu Glu Thr 145 150 155 160

Phe Glu Gly Glu Thr Ile His Thr Ala Ala Trp Pro Glu Gly Lys Asp 165 170 175

Leu Thr Gly Arg Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly Gln 180 185 190

Gln Val Ile Thr Ala Leu Ala Pro Thr Val Glu His Leu Thr Val Phe 195 200 205

Val Arg Thr Pro Gln Tyr Ser Val Pro Val Gly Lys Arg Ala Val Thr 210 215 220

Asp Glu Gln Ile Asp Ala Val Lys Ala Asp Tyr Glu Asn Ile Trp Thr 225 230 235

Gln Val Lys Arg Ser Ser Val Ala Phe Gly Phe Glu Glu Ser Thr Val 245 250 255

Pro Ala Met Ser Val Ser Ala Glu Glu Arg Leu Arg Val Tyr Glu Glu Glu 260 265 270

Ala Trp Glu Gln Gly Gly Gly Phe Arg Phe Met Phe Gly Thr Phe Gly 275 280 285

Asp Ile Ala Thr Asp Glu Glu Ala Asn Glu Thr Ala Ala Ser Phe Ile 290 295 300

Arg Ser Lys Ile Thr Ala Met Ile Glu Asp Pro Glu Thr Ala Arg Lys 305 310 315 320

Leu Thr Pro Thr Gly Leu Phe Ala Arg Arg Pro Leu Cys Asp Asp Gly

Tyr Phe Gln Val Phe Asn Arg Pro Asn Val Glu Ala Val Ala Ile Lys 340 345 350

Glu Asn Pro Ile Arg Glu Ile Thr Ala Lys Gly Val Val Thr Glu Asp 355 360 365

- Gly Val Leu His Lys Leu Asp Val Leu Val Leu Ala Thr Gly Phe Asp 370 375 380
- Ala Val Asp Gly Asn Tyr Arg Arg Met Thr Ile Ser Gly Arg Gly Gly 385 390 395 400
- Leu Asn Ile Asn Asp His Trp Asp Gly Gln Pro Thr Ser Tyr Leu Gly
 405 410 415
- Ile Ala Thr Ala Asn Phe Pro Asn Trp Phe Met Val Leu Gly Pro Asn 420 425 430
- Gly Pro Phe Thr Asn Leu Pro Pro Ser Ile Glu Thr Gln Val Glu Trp $435 \ \ \, 440 \ \ \, \ \, 445$
- Ile Ser Asp Thr Ile Gly Tyr Val Glu Arg Thr Gly Val Arg Ala Ile 450 455 460
- Glu Pro Thr Pro Glu Ala Glu Ser Ala Trp Thr Ala Thr Cys Thr Asp 465 470 475
- Ile Ala Asn Met Thr Val Phe Thr Lys Val Asp Ser Trp Ile Phe Gly 485 490 495
- Ala Asn Val Pro Gly Lys Lys Pro Ser Val Leu Phe Tyr Leu Gly Gly 500 505 510
- Leu Gly Asn Tyr Arg Ala Val Leu Ala Asp Val Thr Glu Gly Gly Tyr $515 \hspace{1.5cm} 520 \hspace{1.5cm} 525$
- Gln Gly Phe Ala Leu Lys Thr Ala Asp Thr Val Asp Ala 530 535 540
- <210> 45
- <211> 1638
- <212> DNA
- <213> Rhodococcus erythropolis AN12
- <400> 45
 atgacaacta ccgaatccag aactcagacc gacaaggetg gggccgtcac gctcgatgcg 60

ttgatcatcg	gcgccggagt	cgccggtttg	tatcagctcc	acatgetteg	cgagcaggga	120
ctgaacgtcc	gcgcctacga	cgctgcggaa	gacgtcggcg	gtacgtggta	ctggaaccgt	180
tacccaggcg	cacgattcga	ctccgaagcc	tacatctacc	agtacctgtt	ctccgaggac	240
ctgtacaaga	actggagctg	gagtcaacgc	ttcccggccc	agcccgaaat	tgagcggtgg	300
atgcgctacg	tegeegacae	cctggacctg	cgtcgcagca	ttcagttttc	cacaacaatc	360
accagcgccg	agttcgacga	ggtagctgag	cgttggacca	ttcgcaccga	ccgcggcgag	420
gaaatcagca	cccgattctt	catcacctgt	tgcggaatgc	tgtcggcgcc	gatggaagat	480
ttgttccccg	gacaacagga	cttccggggg	cagatettee	acacctcgcg	atggccgcac	540
ggagatgtag	aactcaccgg	taagcgtgtc	ggtgtcgtcg	gcgtcggcgc	cactggcatt	600
caggtaatcc	agaccatcgc	cgacgaggtt	gatcaactga	aggtgttcgt	gcggacaccc	660
cagtacgcct	tgccgatgaa	aaaccctcag	tacgacagcg	acgacgtcgc	ggcctacaag	720
gaccgattcg 	aggagetteg	aaccacactg	ccgcacacct	tcacaggctt	cgaatacgat	780
ttcgaatacg	tgtgggccga	cctagccccc	gaacagcgcc	gcgaggtgct	cgagaacatc	840
tacgagtacg	gatcactcaa	getgtggetg	tegtegtteg	cggagatgtt	cttcgatgag	900
caggtcagtg	acgagatctc	cgagttcgtt	cgcgagaaaa	tgcgggcgcg	gctcatcġat	960
ccggagctgt	gcgacctgct	gattcccact	gactatggct	tcggcacaca	ccgtgtgccg	1020
ctcgaaacca	actacctcga	ggtgtaccac	cgcccgaatg	tgacggccat	cggcgtcaag	1080
aacaacccga	tcgcgcgaat	cgtcccccaa	ggcatcgagt	tgaccgacgg	taccttccac	1140
gaactagacg	tgatcatttt	ggccactggg	ttcgatgcag	gcaccggcgc	actgactcga	1200
atcgacatcc	gcggccgcgg	tggtcggtct	ctgaaggaag	actggggacg	cgatattcgc	1260
acgacaatgg	gcctgatggt	gcacggttac	ccgaacatgc	tgacgaccgc	cgtgcccctg	1320
gcaccctccg	cggcactgtg	caacatgacc	acgtgcttgc	agcagcagac	cgagtggatc	1380
agcgaagcaa	ttcgctacat	gcaagagcgc	gatctgaccg	tcatcgagcc	taccaaggag	1440
gccgaggacg	cgtgggtggc	gcaccacgac	gaaacagccg	cagtgaatct	gatctccaag	1500
acggattcct	ggtacgtagg	ttccaacgtt	ccagggaagc	cgcgacgggt	cctgtcctac	1560
acggggggag	tcggcgcata	ccgagaaaag	gcgcaggaaa	tcgccgacgc	cggatacaag	1620
ggcttcaatc	tgcgctga					1638

<210> 46

<211> 545

- <212> PRT
- <213> Rhodococcus erythropolis AN12

<400> 46

Met Thr Thr Glu Ser Arg Thr Gln Thr Asp Lys Ala Gly Ala Val 1 5 10 15

Thr Leu Asp Ala Leu Ile Ile Gly Ala Gly Val Ala Gly Leu Tyr Gln 20 25 30

Leu His Met Leu Arg Glu Gln Gly Leu Asn Val Arg Ala Tyr Asp Ala 35 40 45

Ala Glu Asp Val Gly Gly Thr Trp Tyr Trp Asn Arg Tyr Pro Gly Ala 50 55 60

Arg Phe Asp Ser Glu Ala Tyr Ile Tyr Gln Tyr Leu Phe Ser Glu Asp 65 70 75 80

Leu Tyr Lys Asn Trp Ser Trp Ser Gln Arg Phe Pro Ala Gln Pro Glu 85 90 95

Ile Glu Arg Trp Met Arg Tyr Val Ala Asp Thr Leu Asp Leu Arg Arg . 100 105 110

Ser Ile Gln Phe Ser Thr Thr Ile Thr Ser Ala Glu Phe Asp Glu Val

Ala Glu Arg Trp Thr Ile Arg Thr Asp Arg Gly Glu Glu Ile Ser Thr 130 135 140

Arg Phe Phe Ile Thr Cys Cys Gly Met Leu Ser Ala Pro Met Glu Asp 145 150 155 160

Leu Phe Pro Gly Gln Gln Asp Phe Arg Gly Gln Ile Phe His Thr Ser 165 170 175

Arg Trp Pro His Gly Asp Val Glu Leu Thr Gly Lys Arg Val Gly Val

Val Gly Val Gly Ala Thr Gly Ile Gln Val Ile Gln Thr Ile Ala Asp 195 200 205

Glu Val Asp Gln Leu Lys Val Phe Val Arg Thr Pro Gln Tyr Ala Leu

210 215 220

Pro Met Lys Asn Pro Gln Tyr Asp Ser Asp Asp Val Ala Ala Tyr Lys 230 235 Asp Arg Phe Glu Glu Leu Arg Thr Thr Leu Pro His Thr Phe Thr Gly Phe Glu Tyr Asp Phe Glu Tyr Val Trp Ala Asp Leu Ala Pro Glu Gln 265 Arg Arg Glu Val Leu Glu Asn Ile Tyr Glu Tyr Gly Ser Leu Lys Leu 280 Trp Leu Ser Ser Phe Ala Glu Met Phe Phe Asp Glu Gln Val Ser Asp 295 300 Glu Ile Ser Glu Phe Val Arg Glu Lys Met Arg Ala Arg Leu Ile Asp 315 Pro Glu Leu Cys Asp Leu Leu Ile Pro Thr Asp Tyr Gly Phe Gly Thr 330 His Arg Val Pro Leu Glu Thr Asn Tyr Leu Glu Val Tyr His Arg Pro Asn Val Thr Ala Ile Gly Val Lys Asn Asn Pro Ile Ala Arg Ile Val Pro Gln Gly Ile Glu Leu Thr Asp Gly Thr Phe His Glu Leu Asp Val 375

Ile Ile Leu Ala Thr Gly Phe Asp Ala Gly Thr Gly Ala Leu Thr Arg 385 390 395 400

Ile Asp Ile Arg Gly Arg Gly Gly Arg Ser Leu Lys Glu Asp Trp Gly 405 \$410\$

Arg Asp Ile Arg Thr Thr Met Gly Leu Met Val His Gly Tyr Pro Asn 420 425 430

Met Leu Thr Thr Ala Val Pro Leu Ala Pro Ser Ala Ala Leu Cys Asn 435 440

Met Thr Thr Cys Leu Gln Gln Gln Thr Glu Trp Ile Ser Glu Ala Ile 450 460

Arg Tyr Met Gln Glu Arg Asp Leu Thr Val Ile Glu Pro Thr Lys Glu 465 Ala Glu Asp Ala Trp Val Ala His His Asp Glu Thr Ala Ala Val Asn 485 Leu Ile Ser Lys Thr Asp Ser Trp Tyr Val Gly Ser Asn Val Pro Gly Lys Pro Arg Arg Val Leu Ser Tyr Thr Gly Gly Val Gly Ala Tyr Arg 515 520 Glu Lys Ala Gln Glu Ile Ala Asp Ala Gly Tyr Lys Gly Phe Asn Leu 530 535 540 Ara 545 <210> 47 <211> 540 <212> PRT <213> Artificial Sequence <220> <223> consensus sequence <400> 47 Met Thr Ala Gln Glu Ser Leu Thr Val Val Asp Ala Val Val Ile Gly 10 Ala Gly Phe Gly Gly Ile Tyr Ala Val His Lys Leu Arg Glu Gln Gly Leu Thr Val Val Gly Phe Asp Ala Ala Asp Gly Pro Gly Gly Thr Trp Tyr Trp Asn Arg Tyr Pro Gly Ala Leu Ser Asp Thr Glu Ser His Val 50 55

Tyr Arg Phe Ser Phe Asp Glu Asp Leu Leu Gln Asp Trp Thr Trp Lys

Glu Thr Tyr Pro Thr Gln Pro Glu Ile Leu Glu Tyr Leu Glu Asp Val 85 90 95

- Val Asp Arg Phe Asp Leu Arg Arg Asp Phe Arg Phe Gly Thr Glu Val
- Thr Ser Ala Thr Tyr Leu Glu Asp Glu Asn Leu Trp Glu Val Thr Thr 115 120 125
- Asp Gly Glu Val Tyr Arg Ala Arg Phe Val Val Asn Ala Val Gly 130 135 140
- Leu Leu Ser Ala Ile Asn Phe Pro Asn Ile Pro Gly Leu Asp Thr Phe 145 150 155 160
- Glu Gly Glu Thr Ile His Thr Ala Ala Trp Pro Glu Gly Val Asp Leu 165 170 175
- Thr Gly Lys Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly Ile Gln 180 185 190
- Val Ile Thr Ala Leu Ala Pro Glu Val Glu His Leu Thr Val Phe Val 195 200 205
- Arg Thr Pro Gln Tyr Ser Val Pro Val Gly Asn Arg Pro Val Thr Ala 210 215 220
- Glu Gln Ile Asp Ala Ile Lys Ala Asp Tyr Asp Glu Ile Trp Ala Gln 225 230 235 240
- Val Lys Arg Ser Gly Val Ala Phe Gly Phe Glu Glu Ser Thr Val Pro 245 250 255
- Ala Met Ser Val Ser Glu Glu Glu Arg Asn Arg Val Phe Glu Glu Ala 260 265 265
- Trp Glu Glu Gly Gly Gly Phe Arg Phe Met Phe Gly Thr Phe Gly Asp $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$
- Ile Ala Thr Asp Glu Ala Ala Asn Glu Thr Ala Ala Ser Phe Ile Arg 290 295 300
- Ser Lys Ile Arg Glu Ile Val Lys Asp Pro Glu Thr Ala Arg Lys Leu 305 $$ 310 $$ 315 $$ 320

Thr Pro Thr Gly Leu Phe Ala Arg Arg Arg Leu Cys Asp Asp Gly Tyr 330 Tyr Glu Val Tyr Asn Arg Pro Asn Val Glu Ala Val Asp Ile Lys Glu 340 Asn Pro Ile Arg Glu Ile Thr Ala Lys Gly Val Val Thr Glu Asp Gly Val Leu His Glu Leu Asp Val Leu Val Phe Ala Thr Gly Phe Asp Ala 375 Val Asp Gly Asn Tyr Arg Arg Ile Asp Ile Arg Gly Arg Gly Leu 385 390 395 Ser Leu Asn Asp His Trp Asp Gly Gln Pro Thr Ser Tyr Leu Gly Leu 405 410 415 Ser Thr Ala Gly Phe Pro Asn Trp Phe Met Val Leu Gly Pro Asn Gly 420 425 430 Pro Phe Thr Asn Leu Pro Pro Ser Ile Glu Thr Gln Val Glu Trp Ile 435 440 445 Ser Asp Thr Ile Ala Tyr Ala Glu Glu Asn Gly Ile Arg Ala Ile Glu . 450 455 Pro Thr Pro Glu Ala Glu Asp Glu Trp Thr Ala Thr Cys Thr Asp Ile 465 470 Ala Asn Ala Thr Leu Phe Thr Lys Ala Asp Ser Trp Ile Phe Gly Ala 485 490 495 -Asn Val Pro Gly Lys Lys Pro Ser Val Leu Phe Tyr Leu Gly Gly Leu 500 510 Gly Asn Tyr Arg Ala Val Leu Ala Asp Val Ala Ala Ala Gly Tyr Arg Gly Phe Ala Leu Lys Ser Ala Asp Ala Val Thr Ala 530 535 <210> 48 <211> 497

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> consensus sequence
- <220>
- <221> MISC_FEATURE
- <222> (3)..(3)
- <223> G or A or T or C
- <220>
- <221> MISC FEATURE
- <222> (6)..(6)
- <223> G or A or T or C
- <220>
- <221> MISC_FEATURE
- <222> (9)..(9)
- <223> G or A or T or C
- <220>
- <221> MISC_FEATURE
- <222> (30)..(30)
- <223> G or A or T or C
- <220>
- <221> MISC_FEATURE
- <222> (63)..(63)
- <223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (81)..(81)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (95)..(95)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (96)..(96)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (99)..(99)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (100)..(100)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (123)..(123)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (132)..(132)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (143)..(143)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (158)..(158)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (159)..(159)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (164)..(164)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (195)..(195)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (197)..(197)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (215)..(215)

<223> G or A or T or C

<220>

<221> MISC FEATURE

-- <222> (219)..(219)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (221)..(221)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (237)..(237)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (252)..(252)

<220>

<221> MISC_FEATURE

<222> (254)..(254)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (259)..(259)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (260)..(260)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (261)..(261)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (279)..(279)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (303)..(303)

<220>

<221> MISC_FEATURE

<222> (320)..(320)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (343)..(343)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (346)..(346)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (348)..(348)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (369)..(369)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (384)..(384)

<220>

<221> MISC FEATURE

<222> (399)..(399)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (413)..(413)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (414)..(414)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (431)..(431)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (432)..(432)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (435)..(435)

<220>

<221> MISC FEATURE

<222> (456)..(456)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (465)..(465)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (471)..(471)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (472)..(472)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (486)..(486)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (495)..(495)

<220>

<221> MISC FEATURE

<222> (496)..(496)

<223> G or A or T or C

<400> 48

Met Val Xaa Ile Pro Xaa Arg His Xaa Glu Val Val Ile Ile Gly Ala 1 5 10 15

Gly Phe Ala Gly Ile Gly Ala Ala Val Glu Leu Lys Arg Xaa Gly Ile 20 \cdot 25 30

Asp Asp Phe Val Leu Leu Glu Arg Ala Asp Asp Val Gly Gly Thr Trp 35 40 45

Arg Asp Asn Thr Tyr Pro Gly Ala Ala Cys Asp Val Pro Ser Xaa Leu 50 60

Tyr Ser Tyr Ser Phe Ala Pro Asn Pro Asn Trp Thr Arg Leu Phe Ala 65 70 75 80

% Xaa Gln Pro Glu Ile Tyr Asp Tyr Leu Glu Asp Val Ala Ala Xaa Xaa Xaa 85 90 95

Gly Leu Xaa Xaa His Val Arg Phe Gly Val Glu Val Thr Glu Ala Arg 100 105 110

Trp Asp Glu Ser Ala Gln Leu Trp Arg Val Xaa Thr Ala Ser Gly Glu 115 120 125

Leu Thr Ala Xaa Phe Leu Val Ala Ala Thr Gly Pro Leu Ser Xaa Pro 130 140

Lys Ile Pro Asp Leu Pro Gly Leu Glu Ser Phe Glu Gly Xaa Xaa Phe 145 150 155 160

His Ser Ala Xaa Trp Asn His Asp Leu Asp Leu Arg Gly Glu Arg Val

Ala Val Val Gly Thr Gly Ala Ser Ala Val Gln Phe Val Pro Glu Ile 180 $$180\,$

Ala Asp Xaa Ala Xaa Thr Leu Thr Val Phe Gln Arg Thr Pro Gln Trp

195 200 205 Val Leu Pro Arg Pro Asp Xaa Thr Leu Pro Xaa Ala Xaa Arg Ala Val 215 Phe Ser Arg Val Pro Gly Thr Gln Lys Trp Leu Arg Xaa Arg Leu Tyr Gly Ile Phe Glu Ala Leu Gly Ser Gly Phe Val Xaa Pro Xaa Trp Leu Leu Pro Xaa Xaa Xaa Ala Leu Ala Arg Ala His Leu Arg Arg Gln Val 260 265 270 Arg Asp Pro Glu Leu Arg Xaa Lys Leu Thr Pro Asp Tyr Thr Pro Gly 280 Cys Lys Arg Met Leu Leu Ser Asn Asp Trp Tyr Pro Ala Leu Xaa Lys 295 Pro Asn Val Ser Leu Val Thr Ser Gly Val Val Glu Val Thr Glu Xaa 310 315 Gly Val Val Asp Ala Asp Gly Val Glu His Glu Val Asp Thr Ile Ile Phe Ala Thr Gly Phe His Xaa Thr Asp Xaa Pro Xaa Ala Met Lys Ile 340 345 Phe Gly Arg Glu Gly Arg Ser Leu Ala Asp His Trp Asn Gly Ser Ala Xaa Ala Tyr Leu Gly Thr Ala Val Ser Gly Phe Pro Asn Leu Phe Xaa Leu Leu Gly Pro Asn Thr Gly Leu Gly His Thr Ser Ile Val Xaa Ile 390 395

Leu Glu Ala Gln Ala Glu Tyr Ile Ala Ser Ala Leu Xaa Xaa Met Arg
410 415

Arg Glu Gly Leu Gly Ala Leu Asp Val Arg Ala Glu Val Gln Xaa Xaa
420 425 430

Phe Asn Xaa Ala Val Gln Glu Arg Leu Ala Thr Thr Val Trp Asn Ala 435 440 445

Gly Gly Cys Ser Ser Trp Tyr Xaa Asp Pro Asp Gly Arg Asn Ser Thr 450 455 Xaa Trp Pro Trp Ser Thr Xaa Xaa Phe Arg Ala Arg Thr Arg Arg Phe 475 Asp Pro Ser Asp Tyr Xaa Pro Ser Ser Pro Thr Pro Glu Thr Xaa Xaa 485 Gly <210> 49 <211> 471 <212> PRT <213> Artificial Sequence <220> <223> consensus sequence <220> <221> MISC FEATURE <222> (22)..(22) <223> G or A or T or C <220> <221> MISC FEATURE <222> (25)..(25) <223> G or A or T or C <220> <221> MISC FEATURE

<222> (28)..(28) <223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (31)..(31)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (62)..(62)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (72)..(72)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (75)..(75)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (85)..(85)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (86)..(86)

<220>

<221> MISC FEATURE

<222> (93)..(93)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (95)..(95)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (99)..(99)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (102)..(102)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (111)..(111)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (112)..(112)

<220> <221> MISC_FEATURE <222> (113)..(113) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (115)..(115) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (123)..(123) <223> G or A or T or C <220> <221> MISC FEATURE <222> (124)..(124) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (125)..(125) <223> G or A or T or C <220>

<221> MISC_FEATURE
<222> (131)..(131)
<223> G Or A or T or C

<220>

<221> MISC_FEATURE

<222> (137)..(137)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (138)..(138)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (158)..(158)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (160)..(160)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (166)..(166)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (170)..(170)

<220> <221> MISC FEATURE <222> (188)..(188) <223> G or A or T or C <220> <221> MISC_FRATURE <222> (193)..(193) <223> G or A or T or C <220> <221> MISC FEATURE <222> (195)..(195) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (196)..(196) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (197)..(197) <223> G or A or T or C

<220>

<221> MISC_FRATURE

<222> (199)..(199)

<223> G or A or T or C

<220> <221> MISC FEATURE <222> (221)..(221) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (226)..(226) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (228)..(228) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (229)..(229) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (230)..(230) <223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (231)..(231)

<221> MISC_FEATURE
<222> (232)..(232)
<223> G Or A Or T Or C
<220>
<221> MISC_FEATURE
<222> (235)..(235)
<223> G Or A Or T Or C
<220>
<221> MISC_FEATURE
<222> (235)..(235)

<220>

<220>

<221> MISC_FEATURE

<222> (240)..(240)

<223> G or A or T or C

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (244)..(244)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (249)..(249)

<221> MISC_FEATURE

<222> (262)..(262)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (264)..(264)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222 (264)..(264)

<223> MISC_FEATURE

<220>

<220>

<220>

<221> MISC_FEATURE

<222> (272)..(272) <223> G or A or T or C

<222> (289)..(289)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (296)..(296)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (298)..(298)

<220> <221> MISC FEATURE <222> (310)..(310) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (317)..(317) <223> G or A or T or C <220> <221> MISC FEATURE <222> (330)..(330) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (331)..(331) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (332)..(332) <223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (338)..(338)

<220> <221> MISC FEATURE <222> (339)..(339) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (347)..(347) <223> G or A or T or C <220> <221> MISC FEATURE <222> (348)..(348) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (350)..(350) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (356)..(356) <223> G or A or T or C <220> <221> MISC FEATURE

<222> (357)..(357)
<223> G or A or T or C

<221> MISC_FEATURE
<222> (358)..(358)
<223> G or A or T or C
<220>
<221> MISC_FEATURE
<222> (359)..(359)
<223> G or A or T or C
<220>
<221> MISC_FEATURE
<222> (369)..(368)
<223> G or A or T or C

<220>

<220>

<221> MISC FEATURE

<221> MISC_FEATURE <222> (384)..(384) <223> G or A or T or C

<222> (392)..(392)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (393)..(393)

<220> <221> MISC_FEATURE <222> (395)..(395) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (396)..(396) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (400)..(400) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (401)..(401) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (402)..(402) <223> G or A or T or C <220> <221> MISC_FEATURE

<222> (403)..(403) <223> G or A or T or C

<220> <221> MISC FEATURE <222> (404)..(404) <223> G or A or T or C <220> <221> MISC FEATURE <222> (407)..(407) <223> G or A or T or C <220> <221> MISC FEATURE <222> (410)..(410) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (411)..(411) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (412)..(412) <223> G or A or T or C <220> <221> MISC_FEATURE

<222> (413)..(413) <223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (421)..(421)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (423)..(423)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (424)..(424)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (426)..(426)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (429)..(429)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (432)..(432)

<220> <221> MISC FEATURE <222> (434)..(434) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (435)..(435) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (437)..(437) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (438)..(438) <223> G or A or T or C <220> <221> MISC FEATURE <222> (439)..(439) <223> G or A or T or C <220>

<221> MISC_FEATURE

<222> (440)..(440)

<223> G OR A OR T OR C

<220>

<221> MISC_FEATURE

<222> (443)..(443)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (444)..(444)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (447)..(447)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (449)..(449)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (450)..(450)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (451)..(451)

<220> <221> MISC_FEATURE <222> (452)..(452) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (453)..(453) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (454)..(454) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (455)..(455) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (456)..(456) <223> G or A or T or C <220> <221> MISC_FEATURE <222> (457)..(457)

<220>

<221> MISC_FEATURE

<222> (458)..(458)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (459)..(459)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (460)..(460)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (464)..(464)

<223> G or A or T or C

<220>

<221> MISC_FEATURE

<222> (465)..(465)

<223> G or A or T or C

<220>

<221> MISC FEATURE

<222> (466)..(466)

<220> <221> MISC FEATURE <222> (468)..(468) <223> G or A or T or C <220> <221> MISC_PEATURE <222> (469)..(469) <223> G or A or T or C <220> <221> MISC PEATURE <222> (470) . . (470) <223> G or A or T or C <220> <221> MISC FEATURE <222> (471)..(471) <223> G or A or T or C <400> 49 Met Ser Thr Glu His Leu Asp Val Leu Ile Ile Gly Ala Gly Leu Ser Gly Ile Gly Ala Ala Xaa Arg Leu Xaa Arg Glu Xaa Gly Ile Xaa Phe Ala Ile Leu Glu Ala Arg Asp Asn Val Gly Gly Thr Trp Asp Leu Phe

Gly Ala Phe Arg Pro Phe Pro Xaa Ala Lys Xaa Leu Ala Asp Gly Pro

Asn Tyr Pro Gly Ile Arg Ser Asp Ser Asp His Leu Thr Xaa Gly Lys

65 70 75 80

Ser His Glu Leu Xaa Xaa Tyr Val Arg Asp Thr Ala Xaa Glu Xaa Gly 85 90 95

Leu Arg Xaa His Ile Xaa Phe Gly Thr Lys Val Val Ala Ala Xaa Xaa 100 105 110

Xaa Ala Xaa Ser Leu Trp Thr Val Thr Val Xaa Xaa Xaa Gly Glu Thr 115 120 125

Glu Val Xaa Thr Tyr Asn Val Leu Xaa Xaa Ala Asn Gly Tyr Tyr Ser 130 135 140

Tyr Asp Lys Gly Asn Ile Pro Asp Phe Pro Gly Glu Phe Xaa Gly Xaa 145 150 155

Leu Val His Pro Gln Xaa Tyr Pro Glu Xaa Leu Asp Tyr Arg Gly Lys 165 170 175

Lys Val Val Ile Gly Ser Gly Ala Ser Gly Xaa Thr Leu Ala Pro 180 185 190

Xaa Met Xaa Xaa Xaa Ala Xaa His Val Thr Met Leu Gln Arg Ser Gly 195 200 205

Thr Tyr Ile Ala Leu Pro Ser Asp Ala Val Val Pro Xaa Gln Leu Ala 210 215 220

Gly Xaa Arg Xaa Xaa Xaa Xaa Xaa Leu Gln Xaa Xaa Gln Leu Arg Xaa 225 230 235 240

Pro Pro Trp Xaa Ala Lys Arg Leu Xaa Leu Leu Leu Ile Arg Arg Gln \$245\$

Leu Gly Lys Asn Val Xaa Leu Xaa Gly Phe Pro Thr Pro Ser Tyr Xaa 260 265 270

Pro Trp Asp Gln His Leu Cys Val Val Pro Asn Gly Asp Leu Leu Lys 275 280 285

Xaa Leu Gly Ser Gly Asp Ala Xaa Ile Xaa Thr Asp Ile Asp Thr Phe 290 295 300

Thr Gly Lys Gly Val Xaa Phe Ala Ser Gly Arg Glu Xaa Asp Ala Asp 305 $310 \hspace{1.5cm} 315 \hspace{1.5cm} 320$

Val Val Val Thr Ala Thr Gly Leu Asn Xaa Xaa Xaa Gly Gly Pro Phe 325 330 335

Ile Xaa Xaa Asp Gly Leu Leu Val Asp Leu Xaa Xaa Arg Xaa Ala Leu $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Phe Tyr Lys Xaa Xaa Xaa Xaa Ser Asp Asn Leu Asn Phe Leu Gly Xaa 355 360 365

Val Gly Tyr Thr Asn Ala Ser Trp Thr Leu Arg Ala Asp Leu Ala Xaa 370 380

Leu Val Ala Cys Arg Leu Leu Xaa Xaa Met Xaa Xaa Arg Ser Ala Xaa 385 390 395

Xaa Xaa Xaa His Ala Xaa Ala Glu Xaa Xaa Xaa Xaa Leu Leu Ala 405 $^{\circ}$ 410 $$ 415

Ser Gly Tyr Lys Xaa Arg Xaa Xaa Gly Xaa Met Pro Xaa Gln Gly Xaa 420 425 430

Lys Xaa Xaa Trp Xaa Xaa Xaa Xaa Asn Tyr Xaa Xaa Asp Arg Xaa Leu 435 440 445

Xaa Xaa Ala Xaa Xaa Xaa Xaa 465 470

<210> 50

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer HK12

<400> 50

gagtttgatc ctggctcag

19

<210> 51

<211> 18

<213> Artificial Sequence

<220>

<223> Primer

<400> 51

caggmgccgc ggtaatwc

18

<210> 52

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer HK21

<400> 52

gctgcctccc gtaggagt

18

<210> 53

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 53

ctaccagggt aactaatcc

19

<210> 54

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 54

acgggcggtg tgtac

15

20

16

<210> 55

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 55

cacgagetga egacagecat

<210> 56

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer HK13

<400> 56

taccttgtta cgactt

<210> 57

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

	57 acege ggekgetg	18
<210>	58	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	58 gata coctggtag	19
<210>	59	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> atggct	59 gtog tcagotogtg	20
<210>	60	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Primer HK15	
<400> gccccc		16
<210>	61	

wo	03/020890	PCT/US02/27549
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer HK14	
<400> gtgcca	61 gcag ymgcggt	17
<210>	62	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer JCR15	
<400> gccagc	62 agoc goggta	16
<210>	63	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> cggagc	63 agat cgavvvv	17

<213> Artificial Sequence

<210> 64 <211> 17 <212> DNA

<220>		
<223>	M13 Reverse Primer	
<400> caggaa	64 acag ctatgac	17
<210>	65	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	M13 (-20) Forward Primer	
<400> ctggcc	65 gtog ttttac	16
<210>	66	
<211>	34	
<212>	DNA	
<213>	Acinetobacter sp. NCIB 9871	
<400> gagtct	66 gagc atatgtcaca aaaaatggat titg	34
<210>	67	
<211>	39	
<212>	DNA	
<213>	Acinetobacter sp. NCIB 9871	
<400> gagtct	67 gagg gatoottagg cattggcagg ttgottgat	39
<210>	68	
<211>	25	

WO 03/020890 PCT/US02/27549 <212> DNA <213> Brevibacterium sp. HCU <400> 68 atgccaatta cacaacaact tgacc 25 <210> 69 <211> 23 <212> DNA <213> Brevibacterium sp. HCU <400> 69 ctatttcata cccgccgatt cac 23 <210> 70 <211> 22 <212> DNA <213> Brevibacterium sp. HCU <400> 70 atgacgtcaa ccatgcctgc ac 22 <210> 71 <211> 21

<211> 21 <212> DNA <213> Brevibacterium sp. HCU

<400> 71
cacttaagtc gcattcagcc c 21

<210> 72 <211> 21 <212> DNA

<213> Acinetobacter sp. SE19

<pre><210> 73 <211> 19 <212> DNA <213> Acinetobacter sp. SE19 <400> 73 ggcattggca ggttgcttg</pre>		72 tttg atgctatcgt g	2
<pre><212> DNA <213> Acinetobacter sp. SE19 <400> 73 ggcattggca ggttgcttg</pre>	<210>	73	
<pre><213> Acinetobacter sp. SE19 <400> 73 ggcattggca ggttgcttg</pre>	<211>	19	
<pre><400> 73 ggcattggca ggttgcttg</pre>	<212>	DNA	
ggcattggca ggttgcttg 1: <210> 74 <211> 22 <212> DNA <213> Arthrobacter sp. BP2 <400> 74 atgactgcac agaacacttt cc 22 <210> 75 <211> 18 <212> DNA <213> Arthrobacter sp. BP2 <400> 75 tcaaagccgc ggtatccg 18 <400> 76 <211> 23 <212> DNA <213> Rhodococcus sp. phil <400> 76	<213>	Acinetobacter sp. SE19	
<pre><211> 22 <212> DNA <213> Arthrobacter sp. BP2 <400> 74 atgactgcac agaacacttt cc</pre>			19
<pre><212> DNA <213> Arthrobacter sp. BP2 <400> 74 atgactgcac agaacacttt cc</pre>	<210>	74	
<pre><213> Arthrobacter sp. BP2 <400> 74 atgactgcac agaacacttt cc</pre>	<211>	22	
<pre><400> 74 atgactgcac agaacacttt cc</pre>	<212>	DNA	
atgactgcac agaacacttt cc 22 <210> 75 <211> 18 <212> DNA <213> Arthrobacter sp. BP2 <400> 75 tcaaagccgc ggtatccg 18 <210> 76 <211> 23 <212> DNA <213> Rhodococcus sp. phi1 <400> 76	<213>	Arthrobacter sp. BP2	
<pre><211> 18 <212> DNA <213> Arthrobacter sp. BP2 <400> 75 tcaaagcegc ggtatccg</pre>			22
<pre><212> DNA <213> Arthrobacter sp. BP2 <400> 75 tcaaagcegc ggtatccg</pre>	<210>	75	
<pre><213> Arthrobacter sp. BP2 <400> 75 tcaaagcegc ggtatccg</pre>	<211>	18	
<pre><400> 75 tcaaagcgc ggtatccg</pre>	<212>	DNA	
toaaagcogc ggtatcog 18 <210> 76 <211> 23 <212> DNA <213> Rhodococcus sp. phi1 <400> 76	<213>	Arthrobacter sp. BP2	
<211> 23 <212> DNA <213> Rhodococcus sp. phi1 <440> 76			18
<212> DNA <213> Rhodococcus sp. phi1 <400> 76	<210>	76	
<213> Rhodococcus sp. phil	<211>	23	
<400> 76	<212>	DNA	
	<213>	Rhodococcus sp. phil	
acqueeque agacereue euc		76 geac agatotoaco cac	23

<210>	77	
<211>	22	
<212>	DNA	
<213>	Rhodococcus sp. phil	
<400>		22
ccaggo	ggtc accgggacag cg	22
<210>	78	
<211>	23	
<212>	DNA	
<213>	Rhodococcus sp. phi2	
<400>		
atgace	gcac agaccatcca cac	23
<210>	79	
<211>	20	
<212>	DNA	
<213>	Rhodococcus sp. phi2	
<400>		
tcagac	cgtg accatctcgg	20
<210>	80	
<211>	21	
<212>	DNA	
<213>	Brachymonas sp. CHX	
<400>	80	
atgteti	ceet egecaageag e	21
<210>	81	
<211>	21	

<212> DNA <213> Brachymonas sp. CHX <400> 81 cagtggttgg aacgcaaagc c 21 <210> 82 <211> 23 <212> DNA <213> Rhodococcus erythropolis AN12 <400> 82 atgagcacag agggcaagta cgc 23 <210> 83 <211> 25 <212> DNA <213> Rhodococcus erythropolis AN12 <400> 83 teagteettg tteacgtagt aggee 25 <210> 84 <211> 23 <212> DNA <213> Rhodococcus erythropolis AN12 <400> 84 atggtcgaca tcgacccaac ctc 23 <210> 85 <211> 24 <212> DNA <213> Rhodococcus erythropolis AN12

PCT/US02/27549

WO 03/020890

<400> ttatcg	85 ggctc ctcacggttt ctcg	24
<210>	86	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atgaco	86 gate etgaettete eace	24
<210>	87	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcatgo	87 gtgc accgoactgt toag	24
<210>	88	
<211>	23	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atgage	88 coct coccettgce gag	23
<210>	89	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
400> catgc	89 gcga tcogccttct cgag	24

<210>	90	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> gtgaac	90 aacg aatctgacca cttc	24
<210>	91	
<211>	23	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcatgc	91 ggtg tactccggtt ccg	23
<210>	92	
<211>	22	
<212>	DNA .	
<213>	Rhodococcus erythropolis AN12	
<400> atgagca	92 acceg aacacctcga tg	22
<210>	93	
<211>	23	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcaacto	93 httg ctcggtaccg gcg	23
<210>	94	
<211>	26	

<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atgaca	94 9acg aattcgacgt agtgat	26
<210>	95	
<211>	23	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcagct	95 ctgg ttcacaggga cgg	23
<210>	96	
<211>	23	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atggcg	96 gaga tagtcaatgg tcc	23
<210>	97	
<211>	22	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcaccc	97 tege geggteggag te	22
<210>	98	
<211>	26	
<211> <212>		

<400> gtgaago	98 cttc ccgaacatgt cgaaac	26
<210>	99	
<211>	25	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> tcatgc	99 stgg acgetttega tettg	25
<210>	100	
<211>	25	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atgaca	100 cagc atgtcgacgt actga	25
<210>	101	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> ctatgc	101 gctg gcgaccttgc tatc	24
<210>	102	
<211>	25	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400> atgtcal	102 tcac gggtcaacga cggcc	25

<210>	103	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400>	103 tttg cctgtcgtca gtgc	24
ccaccc	cery cerycogeca gage	-
<210>	104	
<211>	24	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
	= t=	
<400>		24
atgact	acac aaaaggccct gacc	49
<210>	105	
<211>	22	
<212>	DNA .	
<213>	Rhodococcus erythropolis AN12	
<400>	105 gtcg acggtgtcgg cc	22
tcaggc	geeg acggegeegg ee	
<210>	106	
<211>	25	
<212>	DNA	
<213>	Rhodococcus erythropolis AN12	
<400>	106 acta ccgaatccag aactc	25
ucyaca	week ceganoocky ancec	23
<210>	107	
<211>	26	

•

<212>	DNA ·	
<213>	Rhodococcus erythropolis AN12	
<400> tcagcg	107 caga ttgaagccct tgtatc	26
<210>	108	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer A102FI for screening Arthrobacter sp. BP2 library	
	108 ctac atcacccage	20
<210>	109	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Primer CONR for screening Arthrobacter sp. BP2 library	
	109 aggt agaacag	17
<210>	110	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer A228FI for screening Rhodococcus sp. phi2 library	
-400-	110	

gatct	egat ceggeggtag ttgc	24
<210>	111	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer A228RI for screening Rhodococcus sp. phi2 library	
<400>	111 gccg accggtctgt acg	23
geegae	goog acceggeouge acg	
<210>	112	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer A2FI for screening Rhodococcus sp. phil library	
<400> ccacac	112 gttgt cgacgccgtt gtc	23
<210>	113	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer A34RI for screening Rhodococcus sp. phil library	
<400> tcgaaa	113 acctc ggtagctgtc gg	22