15. Основы дозиметрии (1 час).

2-я контрольная работа (2 часа).

Задачи к практическим занятиям

1. Классические и квантовые модели атома

- 1. Согласно модели Томсона, найти радиус атома водорода и длину волны испускаемого им света, если его энергия ионизации равна 13,6 эВ.
- 2. Найти вероятность того, что α-частица с энергией 3 МэВ при прохождении свинцовой фольги толщиной 1,5 мкм испытает рассеяние в интервале углов 59-61°.
- 3. Оценить время, за которое электрон, движущийся вокруг ядра водорода по орбите r=0.5A, упал бы на ядро, если бы он терял энергию на излучение в соответствии с классической теорией.
- 4. Частица массой m движется по круговой орбите в поле $U=\chi r^2/2$. Найти с помощью боровского условия квантования разрешенные уровни энергии и соответствующие радиусы орбит.
- 5. Пренебрегая спин-орбитальным взаимодействием для атомарного водорода вычиспить:
 - а) в каких пределах должна лежать энергия бомбардирующих электронов, чтобы спектр излучения атома имел только три линии, указать их длины волн;
 - б) минимальную разрешающую способность спектрометра $\lambda/\delta\lambda$, при которой можно разрешить первые 20 линий серии Бальмера;
- 6. Вычислить для мезоатома водорода (масса мезона составляет 207 масс электрона):
 - а) радиус первой боровской орбиты;
 - б) длину волны резонансной линии;
 - в) энергии связи основных состояний, когда ядром является протон или дейтон; сравнить изотопический сдвиг со сдвигом в атоме водорода.
- 7. Найти для позитрония:
 - а) радиус первой боровской орбиты;
 - б) потенциал ионизации;
 - в) постоянную Ридберга и длину волны резонансной линии.
- 8. Для атомарного водорода построить схему возможных переходов для головной линии серии Бальмера с учетом тонкой структуры. Определить интервал (в см⁻¹) между крайними компонентами.
- 9. Оценить (в электронвольтах) расщепление 2Р-состояния позитрония, вызванное взаимодействием спиновых магнитных моментов позитрона и электрона.
- 10. Оценить по порядку величины длину волны излучения межзвездного атомарного водорода в радиодиапазоне. Межзвездный водород находится в основном состоянии, и его излучение обусловлено переориентацией спина электрона.

2. Водородоподобные атомы

- 1. Найти константу C_1 дипольной составляющей потенциала атомного остова атома рубидия, если известно, что квантовый дефект Δ =1.3 при l=2.
- 2. Термы атомов и ионов с одним валентным электроном можно представить в виде $T=R(Z-a)^2/n^2$, где Z заряд ядра (в e); a поправка экранирования, n главное квантовое число. Вычислить, a и n валентного электрона атома лития, если известно, что ионизационные потенциалы Li и Be⁺ равны соответственно 5.39 и 17.0 эВ и поправка, a для них одинакова.
- 3. Определить по спектру излучения поправку Ридберга (квантовый дефект) для терма Na $5s \, ^2S_{1/2}$, и постоянную C_1 , характеризующую величину дипольного момента.

4. Головная линия резкой серии цезия является дублетом с длинами волн 1469,5 и 1358,8 нм. Найти интервалы (в см⁻¹) между компонентами следующих линий этой серии.

3. Многоэлектронные атомы

- 1. Рассмотреть гелиеподобный ион в основном состоянии в первом порядке теории возмущений, выбрав в качестве невозмущенных водородоподобные функции с эффективным зарядом.
- 2. На основе вариационного метода определить потенциал ионизации атома гелия и иона лития.
- 3. В рамках модели Томаса-Ферми определить полную энергию электронов атома, потенциальную энергию взаимодействия электронов с зарядом ядра, а также энергию межэлектронного взаимодействия.
- 4. Установить каким элементам принадлежат следующие K_{α} линии рентгеновского излучения 1,935 Å; 1,787 Å.
- 5. Определить поправки экранирования Мозли для K_{α} -линий атомов Sn, Cs и W, длины волн которых равны соответственно 0,492 Å, 0,402 Å, 0,210 Å.
- 6. Найти кинетическую энергию электронов, вырываемых с K-оболочки атомов молибдена K_{α} -излучением серебра.

4. Энергия многоэлектронного атома. Атомные спектры.

- 1. Найти термы атомов, незаполненная электронная подоболочка которого np^2 . То же для nd^2 .
- 2. Выписать возможные типы термов для электронной конфигурации: $ns^1 n'p^2$. То же для $np^1 n'p^2$.
- 3. Определить число электронов в единственной незаполненной подоболочке атома, основной терм которого: $3F_2$; ${}^6S_{5/2}$.
- 4. Определить спин ядра ⁵⁹Co, основной терм атома которого содержит восемь компонент сверхтонкого расщепления.

5. Взаимодействие атомов.

- 1. Выразить квадрупольный момент электрона с орбитальным моментом l через средний квадрат его расстояния до центра.
- 2. Определить дальнодействующую часть потенциала взаимодействия иона с атомом.
- 3. Найти потенциал дальнодействующего взаимодействия двух атомов, если орбитальный момент одного из них равен нулю.
- 4. Определить поляризуемость атома водорода в основном состоянии.
- 5. Определить дальнодействующую часть потенциала взаимодействия дипольной молекулы и атома с нулевым моментом.

6. Химическая связь.

- 1. Произвести разделение переменных в уравнении Шредингера для электронных термов иона молекулярного водорода, воспользовавшись эллиптическими координатами.
- 2. Записать обозначения возможных термов молекул H_2 , N_2 , O_2 , Cl_2 , которые могут получиться при соединении атомов в нормальных состояниях.
- 3. То же для молекул НСІ и СО.
- 4. Определить электронные термы молекулярного иона H_2^+ , получающегося при соединении атома H в нормальном состоянии с ионом H^+ , при расстояниях между ядрами, превышающих боровский радиус.

Разбор 1-й контрольной работы.

7. Структура молекул.

- 1. Определить валентность атома I в основном состоянии, атома кислорода в состоянии $2p^23s^1p^1$. Какова валентность азота в азотной кислоте?
- 2. Записать выражение для внешней электронной конфигурации молекулы CO и молекулярного иона CO⁺. Сколько связей имеется в каждом случае, и какова их природа? Энергия связи какой молекулы сильнее? То же для молекул NO, NO⁺.
- 3. Напишите выражение для внешних электронных конфигураций F_2 , F_2^+ , и F_2^- и определите в каждом случае число получающихся связей. Какие из конфигураций имеют наивысшую и наименьшую энергии связи?
- 5. Построить корреляционные диаграммы для молекул В2 и ВН.
- 6. Нарисовать конфигурацию электронных облаков гексафторида серы, углекислого газа, воды. Определить степень гибридизации.

8. Энергетические уровни молекул. Молекулярные спектры.

- 1. Найти соотношение между характерными временами столкновения двухатомных молекул и характерными временами колебательного и вращательного движений.
- 2. Соответствующая переходу $J=0 \rightarrow J=1$ линия поглощения вращательного спектра наблюдается у 12 C 16 O при 1,153·10 11 Гц и при 1,102·10 11 Гц у молекулы 2 C 16 O. Найти массовое число изотопа углерода.
- 3. Предположите, что молекула водорода ведет себя в точности как гармонический осциллятор с коэффициентом жесткости 516 Н/м. Вычислите колебательное квантовое число, соответствующее энергии диссоциации молекулы 4,5 эВ. Определите разность энергий диссоциации молекул D₂ и H₂.
- 4. Найти энергию, необходимую для возбуждения молекулы H_2 из основного состояния на первый колебательный уровень ($\upsilon=1$). Во сколько раз эта энергия больше энергии возбуждения данной молекулы на первый вращательный уровень (J=1). ($d=0,741\cdot10^{-8}$ см⁻¹; $\upsilon=4395,2$ см⁻¹; $\iota=28,5\cdot10^{-3}$).
- 5. Определить максимально возможное колебательное квантовое число, соответствующую колебательную энергию и энергию диссоциации двухатомной молекулы, собственная частота которой ω и коэффициент ангармоничности χ . Вычислить эти величины для H_2 (v=4395,2 см $^{-1}$; χ v =125 см $^{-1}$).
- 6. Найти момент инерции молекулы CH и расстояние между ее ядрами, если интервалы между соседними линиями чисто вращательного спектра этой молекулы $\Delta v=29,0~\text{cm}^{-1}$.
- 7. Определить наиболее вероятную угловую скорость вращения молекулы кислорода при T=300°К. Межъядерное расстояние 1.21·10⁻⁸ см.
- 8. Найти относительный изотопический сдвиг $\Delta \lambda / \lambda$ линий чисто колебательного и чисто вращательного спектров смеси молекул $H^{35}Cl$ и $H^{37}Cl$.

9. Интенсивность спектральных линий.

- 1. Объем газообразного лития, содержащий N= $3.0\cdot10^{16}$ атомов при T=1500K, излучает резонансную линию ($\lambda=670.8$ нм; 2P \rightarrow 2S) мощностью I=0.25 Вт. Найти среднее время жизни Li в 2P-состоянии.
- 2. Атомарный водород находится в термодинамическом равновесии со своим излучением. Вычислить:
 - а) отношение вероятностей индуцированного и спонтанного излучений атомов с уровня 2P при T=3000K;
 - б) температуру, при которой эти вероятности одинаковы.
- 3. Найти характер углового распределения интенсивности излучения при переходе между уровнями 2P (m_i =0) и 1S в атоме водорода. То же для m_i =±1.
- 4. Спектральная линия λ =532,0 нм возникает в результате перехода между двумя возбужденными состояниями атома, средние времена жизни которых равны 12 и 20 нс. Оценить естественную ширину этой линии $\Delta\lambda$.

- 5. В атоме Na для оптического перехода $3p^2P_{3/2} \rightarrow 2s^2S_{1/2}$ сила осциллятора равна 0.76. Вычислить время жизни уровня $3p^2P_{3/2}$.
- 6. Определить давление газа, находящегося при $T=1000^{\circ}$ K, при котором ударное уширение спектральной линии $\lambda=570$ нм окажется равным допплеровской ширине. Газокинетический диаметр атомов $5\cdot10^{-8}$ cm.
- 7. Определить относительные интенсивности компонент тонкой структуры спектральных линий атомов щелочных металлов.
- 8. Найти вероятность перехода между компонентами сверхтонкой структуры атома водорода для уровня 1s $^2S_{1/2}$.

10. Атомы и молекулы во внешних электрических и магнитных полях.

- 1. При известных L и S определить с помощью закона косинусов g-фактор Ланде.
- 2. Вычислить g-фактор для атомов:
 - а) с одним валентным электроном в состояниях S, P и D;
 - δ) в состоянии 3 P;
 - в) в S-состояниях;
 - г) в синглетных состояниях.
- 3. Максимальное значение проекции магнитного момента атома, находящегося в D_2 состоянии, равно четырем магнетонам Бора. Определить мультиплетность этого терма.
- 4. Возможно ли, чтобы фактор Ланде был больше 2, меньше 1, меньше нуля? Приведите примеры.
- 5. При какой индукции магнитного поля интервал между зеемановскими компонентами термов $3^2P_{1/2}$ и $3^2P_{3/2}$ атома Na будет равен 0,1 тонкого расщепления 3^2P -состояния, если длины волн желтого дублета натрия равны λ_1 =589,593 и λ_2 =588,996 нм.
- 6. Какой эффект Зеемана (простой, сложный) будет наблюдаться в слабом магнитном поле для переходов: ${}^{1}P \rightarrow {}^{1}S, {}^{2}D_{5/2} \rightarrow {}^{2}P_{3/2}, {}^{3}D_{1} \rightarrow {}^{3}P_{0}, {}^{5}I_{5} \rightarrow {}^{5}H_{4}$?
- 7. Найти штарковское расщепление уровней водорода в случае, когда расщепление мало по сравнению с интервалами тонкой структуры (но велико по сравнению с лэмбовским сдвигом).

11. Рассеяние света на атомах и молекулах.

- 1. Вычислить сечение рассеяния фотона малой частоты на атоме водорода в основном состоянии.
- 2. Найти сечение рассеяния электромагнитной волны на многоэлектронном атоме в классическом приближении, при условии, что длина волны больше размера атома.
- 3. Определить частоту колебаний ω молекулы HF, если в спектре рамановского рассеяния волны с λ = 435,0 нм разность между ближайшей стоксовой и антистоксовой компонентой равна $\Delta\lambda$ =154,0 нм. Ангармонизм молекулы χ =0,0218.
- 4. Водород при температуре 1500К и давлении 1 атм облучается излучением одинаковой интенсивности на двух длинах волн: головной линии серии Бальмера и 656.3 нм. Найти отношение интенсивностей рассеянных сигналов.
- 5. Найти отношение интенсивностей фиолетового и красного спутников, ближайших к несмещенной линии, в спектре рамановского рассеяния света на молекулах Cl₂ при T=300K. Во сколько раз изменится это соотношение при увеличении температуры вдвое?
- 6. Ближайшие сателлиты спектра рамановского рассеяния излучения с λ = 546,1 нм на молекулярном азоте отстоят на $\Delta\lambda$ = 0,72 нм. Найти вращательную постоянную B, см⁻¹, и момент инерции молекулы N_2 .

12. Движение атомов в резонансных световых полях

- 1. Определить скорость, которую приобрел покоящийся атом водорода в результате излучения фотона при переходе из первого возбужденного состояния в основное. На сколько процентов отличается энергия испущенного фотона от энергии данного перехода.
- 2. Оценить вероятность спонтанного излучения молекулы ω_{cn} при переходе с возбужденного уровня E_m на уровень E_n в случае, когда молекула помещена внутрь объемного резонатора, настроенного на частоту $\omega = (E_m E_n)/\hbar$. Соответствующая вероятность спонтанного излучения в свободном пространстве равна $\omega_{cn}^{\ 0}$. Объем резонатора V, его добротность Q. Считать, что ширина молекулярных уровней Γ все время остается меньше ширины линии резонатора: $\Gamma < \omega/Q$.

13. Взаимодействие атомов и молекул при столкновениях

1. Вычислить сечение захвата иона одного газа атомом другого газа вследствие поляризационного взаимодействия.

14. Обменные процессы при столкновениях.

- 1. Определить сечение резонансной перезарядки высоковозбужденного атома на ионе в пределе малых скоростей столкновения.
- 2. Определить сечение передачи возбуждения от дипольной молекулы (возбужден первый колебательный уровень) к такой же молекуле в основном состоянии.
- 3. Найти связь между сечением фотораспада атома и сечением фотоприлипания к нему.

Разбор 2-й контрольной работы.

15. Основы дозиметрии.

- 1. Ионизационная камера наполненная воздухом (V=5л, p=250 кПа, T=300К) помещена в однородное поле γ -излучения. Ток насыщения I=0,32мкА. Определить мощность экспозиционной дозы.
- 2. Найти в воздухе и воде в точках, где плотность потока γ -фотонов с энергией E=2,00 МэВ составляет $J=1,30\cdot10^4$ см⁻²с⁻¹ мощности поглощенной и экспозиционной доз.
- 3. На поверхности кожи площадью S=2,0 см² падает нормально $N=3,2\cdot 10^4$ α -частиц с E=5,1 МэВ. Найти средние значения поглощенной и эквивалентной доз, мГр и мЗв, в слое, равном глубине проникновения α -частиц в биологическую ткань. *Справка*: пробег α -частиц в биологической ткани в 815 раз меньше пробега в воздухе; коэффициент качества для указанных α -частиц K=20.

Самостоятельная работа студентов (74 часа)

Перечень занятий на СРС	Объем,
	час
Подготовка к практическим занятиям, решение задач	52
Подготовка к контрольным работам	4
Подготовка к экзамену	18

5. Перечень учебной литературы.

5.1. Основная литература

- 1. Бурмасов В.С., Оришич А.М. Физика и химия атомов и молекул. Учеб. пос. Новосибирск. НГУ, 2006.
- 2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: [учеб. пособие для физ. спец. унтов: в 10 т.] Т.3: Квантовая механика. Нерелятивистская теория. Изд. 4-е, испр. Москва: Наука, 1989. 767 с.