SUPERSEDING NOISE THROUGH HASHING AND DATA LINKAGES

National Institute on Aging: Division of Behavioral and Social Research
Advised by Dr. Partha Bhattacharyya

CURRENT PROBLEM

- Datasets are linked across across different entities and sources [1]
- Errors in identifying the same subjects occur
- For example, Paul C. Smith and Paul D. Smith could be linked due to errors in name, among others such as in DOB (Date of Birth)
 - Lack of fully identifiable information
 - inherent noise and randomness

SOLUTION

Created hash value to mask the identifiable data in reproducible way

Created a synthetic and realistic dataset to conduct linkage comparisons

- 1. Merged CRISP Legacy Data of NIH awards from the online available datasets for the past 39 years
 - Approximately 2.1 million data points and 300,000 unique persons
- 2. Imputed values
 - MOB, YOB, DOB, Gender [3], Location-specific [4]
- 3. Adding noise
 - Key-stroke, gender, zip-code based, MOB/DOB/YOB-errors

TOKEN ANALYSIS STEPS

Matched hashed tokens from a Private Contractor and an internal SHA-512 Hashing Algorithm with known unique identifiers [5]

- 1. Grouped results by the hashed token groups and unique identifiers (SSN)
- Matched within dataset containing noise encodings (i.e. where exactly noise was imputed)
- 3. Counted misses where the SSNs did not result in a match
- 4. Repeated Steps 1-3 for results for many permutations of token groups for both SSN and SSN4

COMPARISON OF RESULTS

Token	Token Grouping	Private Contractor		SHA512 Hash	
		Misses	% Incorrect	Misses	% Incorrect
1	SSN	0	0	0	0
2	SSN4	11075	3.67	11052	3.66
3	SSN + MOB + DOB + YOB	0	0	0	0
4	SSN4 + MOB + DOB + YOB	6738	2.23	6738	2.23
5	SSN4 + Gender + MOB + DOB + YOB	4739	1.57	4739	1.57
6	SSN4 + First Name + Last Name	229	0.08	229	0.08
7	Last Name + First Name + Gender	72184	23.92	72260	23.94
8	Last Name + First Name + Gender + DOB	7054	2.34	7079	2.35
9	Last Name + First Name + MOB + DOB + YOB	46	0.02	46	0.02
10	Last Name + First Name + Gender + COB	18584	6.16	18828	6.24
11	Last Name + Gender + MOB + DOB + YOB + COB	18	0.01	18	0.01

VISUALIZING SSN VS SSN4 HASHING

INCREASING PARAMETERS YIELDS BETTER MATCHES

DELIVERABLES AND FUTURE WORK

Conclusion

- Based on the results from the SHA512 Hash and the Private Contractor, the unresolved miss rates are roughly similar
- The SSN4 was a worse indicator of linking on it's own, but combined with other columns (First Name, Last Name, YOB) it is still formidable

Next Steps

- Obtain final hashing results from NIH GUID ID's and Datavant (January 2021)
- Provide final recommendation and comparison on most appropriate hashing approach

SPECIAL THANKS AND CONTACT

Special Thanks to:

- NIA: Division of Behavioral and Social Research
 - Dana Plude
 - Partha Bhattacharyya
 - Jonathan King
- National Institutes of Health
 - Jessica Mazerik
- Coding it Forward
 - Rachel Dodell
 - Chris Kuang
 - Ariana Soto

Contact Info:

Vishal Dubey

Duke University Computer Science and Statistics E: dubeyv2@nih.gov | vishal.dubey@duke.edu T: (407) 687 - 8998

CITATIONS

- [1] An Introduction to Probabilistic Record Linkage (http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/problinkage.pdf)
- [2] Probabilistic record linkage (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005943/)
- [3] Gender predictor model (https://pypi.org/project/gender-guesser/)
- [4] Zipcode and city database (https://pypi.org/project/uszipcode/)
- [5] SHA-512 Cryptographic Hash Algorithm (https://www.movable-type.co.uk/scripts/sha512.html)

APPENDIX

VISHAL DUBEY
Duke University
CS + Statistics

SOLUTION

A hash is a value that masks the original data in an identifiable way so that it may be compressed.

- Generated synthetic dataset with imputed noise
 - Ensures that noise is controlled and known for each variable/column in the dataset
- Groupings based on variables where noise was imputed
 - Analyze differences in hashed values for insight into unresolved versus resolved matches
- An analysis of tokens hashed in different pairings to observe how the noise affected the error rates for linkages within a dataset

TOKEN GROUPS

Token	Private Contractor and SHA512 Hashing Token Elements
1	SSN
2	SSN4
3	SSN + MOB + DOB + YOB
4	SSN4 + MOB + DOB + YOB
5	SSN4 + Gender + MOB + DOB + YOB
6	SSN4 + First Name + Last Name
7	Last Name + First Name + Gender
8	Last Name + First Name + Gender + DOB
9	Last Name + First Name + MOB + DOB + YOB
10	Last Name + First Name + Gender + COB
11	Last Name + Gender + MOB + DOB + YOB + COB

