

MSP430

Interface com Android via Bluetooth

Érika M. S. Tagima

Início: 11h00

Agenda

- پ A família 430
- رب MSP430 vs Arduino
- وب Datasheet MSP430G2553
- ح Ambiente de desenvolvimento: Energia
- ح Ambiente de desenvolvimento: Code Composer Studio
- اب Hands-on: Enviando dados via Bluetooth

- Baixo consumo de energia
 - 230 μA em 1 MHz, 2.2 V (MSP430G2xx3)
 - Ideal para usar com bateria
- 16 bit RISC CPU
 - 27 instruções físicas

Dados retirados do documento: MSP430G2x53 e MSP430G2x13 Datasheet http://www.ti.com/lit/ds/symlink/msp430g2153.pdf

JTAG TMS, TCK, TDI, TDO

Spy-Bi-Wire TST, RST

Protocolo desenvolvido pela Texas Instruments

- Clock é eficiente para aplicações com uso de bateria
 - ACLK Baixa frequência
 - DCO Oscilador digital interno de alta frequência
 - Bom pra quando não tem USCIAO pra Uart
 - MCLK Master clock
 - SMCLK Slave clock
- DCO volta para operação rapidamente quando ocorre interrupção
 - Menos de 2 μs

Agenda

- ہ A família 430
- س MSP430 vs Arduino
- وب Datasheet MSP430G2553
- و Ambiente de desenvolvimento: Energia
- ح Ambiente de desenvolvimento: Code Composer Studio
- اب Hands-on: Enviando dados via Bluetooth

ATmega328

IOREF
RESET
3.3V
SV
GND
GND
PO
GND
F
G

8 bits

Arduino

MAR

12 ~11 ~10

TX → 1 RX ← Ø

MSP430G2553

LaunchPad MSP-EXP430G2

Arduino UNO

fórum arduino

Forums - Arduino - RoboCore

https://www.robocore.net/modules.php?name=Forums&file=viewforum&f=35 ▼ RoboCore - Arduino, Sensores, Motores, Baterias...

Fórum - FilipeFlop

https://www.filipeflop.com > Fórum ▼

Aqui você tira suas dúvidas sobre a plataforma **Arduino**, como placas, ... Se você é apaixonado por este mini-pc chamado Raspberry Pi, este é o seu **fórum**.

Forum - Arduino Portugal

https://www.arduinoportugal.pt/forums/ ▼

Todas as questões sobre Componentes de Eletrónica e dúvidas na criação de Placas de Circuitos Integrados são neste **forum**. 3; 4; Há 9 meses, 3 semanas.

Projeto Arduino

projetoarduino.forumeiros.com/ ▼

Fórum voltado a estudantes, hobistas e profissionais que se interessam por projetos de eletrônica com enfase no **Arduíno**

Fórum - Embarcados - Sua fonte de informações sobre Sistemas ...

https://www.embarcados.com.br > Fórum ▼

Fórum sobre sistemas embarcados, firmware, hardware e linux embarcado. ... me indicar um projeto para testes de portas serial RS232 e RS485 com **arduino**, ...

Arduino - Programação de microcontroladores - Clube do Hardware

https://www.clubedohardware.com.br→ ...→ Programação de microcontroladores ▼

No site da TEXAS INSTRUMENTS \$9,99 (USD)

Melhorias:

- EnergyTrace Measurement
- 3.3V e 5V
- Micro USB

• ...

LaunchPad MSP-EXP430G2 (DEFASADO)

LaunchPad MSP-EXP430G2ET (ATIVO)

EnergyTrace Measurement

Para prototipagem: Arduino

 Para projetos que requerem mais robustez e gasto de energia controlado: MSP430

Agenda

- و A família 430
- س MSP430 vs Arduino
- **Datasheet MSP430G2553**
- ح Ambiente de desenvolvimento: Energia
- Ambiente de desenvolvimento: Code Composer Studio
- اب Hands-on: Enviando dados via Bluetooth

Table 1. Available Options (1)(2)

Device	BSL	EEM	Flash (KB)	RAM (B)	Timer_A	COMP_A+ Channel	ADC10 Channel	USCI_A0, USCI_B0	Clock	I/O	Package Type
MSP430G2553IRHB32										24	32-QFN
MSP430G2553IPW28	1		16	512	2x TA3	8	8	1	LF, DCO,	24	28-TSSOP
MSP430G2553IPW20	1	'								16	20-TSSOP
MSP430G2553IN20										16	20-PDIP

Tensão: 1.8V ~ 3.6V

Ideal é 3.3V

Table 1. Available Options (1)(2)

Device	BSL	EEM	Flash (KB)	RAM (B)	Timer_A	COMP_A+ Channel	ADC10 Channel	USCI_A0, USCI_B0	Clock	I/O	Package Type
MSP430G2553IRHB32										24	32-QFN
MSP430G2553IPW28	1		16	512	2x TA3	8	8	1	LF, DCO,	24	28-TSSOP
MSP430G2553IPW20	1	1	16							16	20-TSSOP
MSP430G2553IN20										16	20-PDIP

MSP430G2453 – 8kB Flash

MSP430G2353 – 4kB Flash

MSP430G2253 – 2kB Flash

MSP430G2153 – 1kB Flash

MSP430G2513 – 8kB Flash

MSP430G2413 – 4kB Flash

MSP430G2313 – 4kB Flash

MSP430G2213 – 2kB Flash

MSP430G2113 – 1kB Flash

S/ ADC

- Modos de operação
 - 1 modo ativo (Active Mode)
 - 5 modos de baixa energia (Low Power Mode)
 - +GIE: General Interruption Enabled

	CPU	ACLK	DCO	SMCLK	MCLK	Cristal
AM	Ativo	Ativo	Ativo	Ativo	Ativo	Ativo
LPM0	Desativado	Ativo	Ativo	Ativo	Desativado	Ativo
LPM1	Desativado	Ativo	Depende	Ativo	Desativado	Ativo
LPM2	Desativado	Ativo	Ativo	Desativado	Desativado	Ativo
LPM3	Desativado	Ativo	Desativado	Desativado	Desativado	Ativo
LPM4	Desativado	Desativado	Desativado	Desativado	Desativado	Desativado

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY					
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range (1)	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest					
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30					
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29					
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28					
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27					
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26					
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25					
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24					
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23					
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22					
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21					
			0FFE8h	20					
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19					
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18					
			0FFE2h	17					
			0FFE0h	16					
See (7)			0FFDEh	15					
See (8)			0FFDEh to 0FFC0h	14 to 0, lowest					

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range (1)	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG (4)	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowest

UART: USCIAO

Vetor de interrupção RX: UCAORXIFG

Vetor de interrupção TX: UCA0TXIFG

Agenda

- A família 430 س
- رب MSP430 vs Arduino
- رب Datasheet MSP430G2553
- ہی Ambiente de desenvolvimento: Energia
- ح Ambiente de desenvolvimento: Code Composer Studio
- اب Hands-on: Enviando dados via Bluetooth

Arduino

```
osketch_feb12a | Arduino 1.8.8
                                                                       \times
File Edit Sketch Tools Help
                                                                      Ø
  sketch_feb12a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
                        Arduino Pro or Pro Mini, ATmega328P (3.3V, 8 MHz) on COM11
```

Energia

```
\times
<u>File Edit Sketch Tools Help</u>
 sketch_feb12a
void setup() {
  // put your setup code here, to run once:
void loop() {
 // put your main code here, to run repeatedly:
                                 MSP-EXP430G2 w/ MSP430G2553 on COM3
```

Agenda

- A família 430 س
- رب MSP430 vs Arduino
- رب Datasheet MSP430G2553
- ح Ambiente de desenvolvimento: Energia
- من Ambiente de desenvolvimento: Code Composer Studio
- اب Hands-on: Enviando dados via Bluetooth

Code Composer Studio

Agenda

- ہ A família 430
- رب MSP430 vs Arduino
- رب Datasheet MSP430G2553
- ح Ambiente de desenvolvimento: Energia
- ح Ambiente de desenvolvimento: Code Composer Studio
- ان Hands-on: Enviando dados via Bluetooth

O que fazer?

Pinagem

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

Setando:

IE2 |= UCAORXIE;

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

Setando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Setando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Setando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Zerando:

IE2 &= ~UCAORXIE;

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

Zerando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Zerando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Zerando:

Queremos manipular o vetor de interrupção, habilitando (setando) ou desabilitando (zerando) a interrupção do TX

• Zerando:

Uart_9600_init_1MHz

• Estamos usando o DCO em 1MHz

$$Baudrate = \frac{1Mhz}{104} \cong 9600$$

E esse código no Energia?

(Hands-on)

Então pra que usar o CCS?

Done compiling.

Sketch uses 2148 bytes (13%) of program storage space. Maximum is 16384 bytes. Global variables use 90 bytes (17%) of dynamic memory, leaving 422 bytes for local variables. Maximum is 512 bytes.

19

MSP-EXP430G2 w/ MSP430G2553 on COM3

Então pra que usar o CCS?

- Energy Trace Measurement
- Liberdade de opções

Código disponível em

https://github.com/Tagima/CPBR12_MSP430

