ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Σχολη ΗΜ&ΜΥ, ΕΜΠ Καθηγητης Πετρος Μαραγκος

Laplace Μετ/σμος & Εφαρμογες σε Αναλυση ΓΧΑ Συστηματων Σ.Χ. και Διαφορικες Εξισωσεις

ΓΧΑ Συστηματα Συνεχους Χρονου

• Αν ένα συνεχούς-χρόνου σύστημα είναι γραμμικό και χρονικά αναλλοίωτο τότε η έξοδος *y(t)* σχετίζεται με την είσοδο *x(t)* μέσω ενός ολοκληρώματος Συνέλιξης

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

όπου *h(t)* η *κρουστική απόκριση* του συστήματος.

• Η συνέλιξη γίνεται <u>Πολλαπλασιασμός στο πεδίο</u> Συχνότητας μέσω Μετασχηματισμών

Ιδιοτητες ΓΧΑ Συστηματος μεσω Κρουστικης Αποκρισης

AITIATOTHTA (Causality)

$$h(t) = 0 \quad \forall t < 0$$

EYΣΤΑΘΕΙΑ (Stability)

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

EΛΛΕΙΨΗ MNHMHΣ (Memoryless)

$$h(t) = K \cdot \delta(\tau)$$

Αναπαρασταση/Υλοποιηση ΓΧΑ Συστηματος σε Χρονο και Συχνοτητα (μεσω Fourier)

$$\delta(t) \longrightarrow S$$

$$S$$

$$x(t) \longrightarrow h(t) = S[x(t)]$$

$$S$$

$$Y(j\omega) \longrightarrow Y(j\omega) = X(j\omega)H(j\omega)$$

Μετ/σμοι Σηματων Συνεχους & Διακριτου Χρονου

Ι. Σημα Συνεχους Χρονου: $x_c(t)$

Laplace μετ/σμος:
$$X_c(s) = \int_{-\infty}^{\infty} x_c(t)e^{-st}dt$$

Fourier μετ/σμος:
$$X_c(j\omega) = \int_{-\infty}^{\infty} x_c(t)e^{-j\omega t}dt$$

II. Σημα Διακριτου Χρονου: x[n]

$$Z$$
 μετ/σμος: $X_d(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

Discrere-Time Fourier Transform (DTFT): $X_d(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$

Discrere Fourier Transform (DFT):
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}, \quad k = 0,...,N-1$$

Μιγαδικα Ημιτονοειδη = Ιδιοσηματα για ΓΧΑ Συστηματα

$$x(t) = e^{st} \longrightarrow \mathbf{h(t)} \longrightarrow y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau$$

$$s = \sigma + j\omega$$

$$= e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$

$$\underbrace{\qquad \qquad \qquad }_{H(s)}$$

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

Συναρτηση Μεταφορας
(Transfer Function)
ή Συναρτηση Συστηματος
(System Function)
= Laplace Transform {Impulse Response}

$$y(t) = \underbrace{H(s)}_{eigenvalue} \cdot \underbrace{e^{st}}_{eigensignal}$$

Αποκριση ΓΧΑ Συστηματος για Εισοδο = Γραμμικο Συνδυασμο Μιγ. Ημιτονοειδων

$$x(t) = \sum_{k} c_k e^{s_k t}$$

$$y(t) = \sum_{k} c_{k} H(s_{k}) e^{s_{k}t}$$

Αμφίπλευρος Μετ/σμός Laplace

$$X^{\alpha}(s) = \mathcal{L}^{\alpha}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-st}dt, \quad s \in \mathbb{C}$$

Μιγαδικη Συχνοτητα
$$s = \sigma + j\omega$$

$$ROC = \left\{ s \in \mathbb{C} : \left| X^{\alpha}(s) \right| < \infty \right\}$$

Περιοχη Συγκλισης (ΠΣ) (Region Of Convergence)

$$\mathcal{F}[x(t)] = X^{\alpha}(s)\Big|_{s=j\omega} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Fourier Transform from Laplace

$$\mathcal{L}^{\alpha}[x(t)] = \mathcal{F}\left[x(t)e^{-\sigma t}\right] = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\omega t}dt$$

$$x(t) = \frac{1}{2\pi j} \oint_{Br} X^{\alpha}(s) e^{st} ds$$
 Inverse Laplace Transform

καμπύλη Bromwich (Bromwich contour) $\{\sigma+j\omega:\omega\in\mathbb{R}\}$

Βασικα Παραδειγματα Μετ/σμου Laplace

1.
$$x(t) = e^{at}u(t) \stackrel{\text{LT}}{\longleftrightarrow} X(s) = \int_{0}^{\infty} e^{at}e^{-st}dt = \frac{1}{s-a}$$

$$\prod \Sigma =$$

$$FT[e^{at}u(t)]=?$$

2.
$$x(t) = -e^{at}u(-t) \stackrel{\text{LT}}{\longleftrightarrow} X(s) = -\int_{-\infty}^{0} e^{at}e^{-st}dt = \frac{1}{s-a}$$

$$\prod \Sigma =$$

$$FT[-e^{at}u(-t)]=?$$

3.
$$x(t) = \cos(\omega_0 t)u(t) \xleftarrow{\text{LT}} X(s) = \frac{s}{s^2 + \omega_0^2}$$

$$\prod \Sigma =$$

$$FT[\cos(\omega_0 t)u(t)] = ?$$

Ιδιοτητες του Αμφιπλευρου Μετασχηματισμου Laplace

α/α	Σήμα	Μετασχηματισμός	Περιοχή Σύγκλισης (Region of Convergence) $ROC = \left\{ s : \left X(s) \right < \infty \right\}$
1	x(t)	X(s)	R
2	$x_1(t)$	$X_1(s)$	$R_{\rm l}$
3	$x_2(t)$	$X_2(s)$	R_2
4	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$R_1 \cap R_2 \subseteq ROC$
5	$x(t-t_0)$	$e^{-st_0}X(s)$	R
6	$e^{s_0t}x(t)$	$X(s-s_0)$	$ROC = R + s_0$
7	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC = aR
8	$x_1(t)^*x_2(t)$	$X_1(s)X_2(s)$	$R_1 \cap R_2 \subseteq \text{ROC}$
9	$\frac{d}{dt}x(t)$	sX(s)	$R \subseteq ROC$
10	-tx(t)	$\frac{d}{ds}X(s)$	R
11	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$R \cap \{\Re e\{s\} > 0\} \subseteq ROC$

α/α	Σήμα	Μετασχηματισμός	Περιοχή Σύγκλισης
	x(t)	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$	$\left\{s: \left X(s)\right < \infty\right\}$
1	$\delta(t)$	1	$\forall s$
2	$\delta(t-T)$	e^{-sT}	$\forall s$
3	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
4	-u(-t)	1	$\Re e\{s\} < 0$
		S	
5	$\frac{t^{n-1}}{(n-1)!}u(t), n=2,3,$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
6	↓n-1	1	$\Re e\{s\} < 0$
	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$me\{s\} < 0$
7	$e^{-at}u(t)$	1	$\Re e\{s\} > -a$
		$\overline{s+a}$	
8	$-e^{-at}u(-t)$	1	$\Re e\{s\} < -a$
		s + a	
9	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), n = 2, 3,$	$\frac{s+a}{\left(s+a\right)^n}$	$\Re e\{s\} > -a$
10	$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\frac{1}{(s+a)^n}$	$\Re e\{s\} < -a$
	(n-1)!	$(s+a)^n$	
11	$\cos(\omega_0 t)u(t)$		$\Re e\{s\} > 0$
		$\frac{s}{s^2 + \omega_0^2}$	
12	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
10			
13	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\Re e\{s\} > -a$
14	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\Re e\{s\} > -a$
1.5	(()-(24 () 2
15	$t\cos(\omega_0 t)u(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\Re e\{s\} > 0$
16	$t\sin(\omega_0 t)u(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\Re e\{s\} > 0$
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Μονόπλευρος Μετ/σμός Laplace

$$X(s) = \mathcal{L}[x(t)u(t)] = \int_{0}^{\infty} x(t)e^{-st}dt, \quad s \in \mathbb{C}$$

Σημαντική Ιδιότητα: LT (Χρονική Παράγωγος) περιλαμβάνει και αρχική συνθήκη

$$\mathcal{L}\left[\frac{dx(t)}{dt}\right] = \int_{0}^{\infty} \frac{dx(t)}{dt} e^{-st} dt = x(t)e^{-st} \Big|_{0}^{\infty} + s \int_{0}^{\infty} x(t)e^{-st} dt$$
$$= sX(s) - x(0+)$$

$$\mathcal{L}\left[x^{(n)}(t)\right] = s^n X(s) - s^{n-1} x(0+) - s^{n-2} x^{(1)}(0+) - \dots - x^{(n-1)}(0+)$$

Αμφίπλευρος Laplace = Αθροισμα 2 Μονόπλευρων Μετ/σμών

 $αv x(t) = 0 \forall t > 0$, και y(t) = x(-t), τότε

$$X^{\alpha}(s) = \int_{-\infty}^{0} x(t)e^{-st}dt = \int_{0}^{\infty} y(\tau)e^{s\tau}d\tau = Y(-s)$$

Για την γενική περίπτωση που έχουμε ένα **αμφίπλευρο σήμα** x(t), μπορούμε να το γράψουμε ως άθροισμα ενός δεξίπλευρου και ενός αριστερόπλευρου σήματος:

$$x(t) = \underbrace{x(t)u(t)}_{x_1(t)} + \underbrace{x(t)u(-t)}_{x_2(-t)}$$

$$X^{\alpha}(s) = X_1(s) + X_2(-s)$$

Πολλαπλες Λυσεις Απο την Αντιστροφη του Αμφιπλευρου Laplace μετ/σμου

$$X^{\alpha}(s) = \frac{1}{s^2 + 5s + 6} = \frac{1}{s + 2} - \frac{1}{s + 3}$$

$$x(t) = \underbrace{x(t)u(t)}_{x_1(t)} + \underbrace{x(t)u(-t)}_{x_2(-t)} \implies X^{\alpha}(s) = X_1(s) + X_2(-s) : \text{ Aθροισμα δυο μονοπλευρων}$$

$$X_1(s) = \mathcal{L}\big[x(t)u(t)\big] \text{ και } X_2(s) = \mathcal{L}\big[x(-t)u(t)\big]$$

Λύση	ROC	Σήμα x(t)	$X_1(s)$	$X_2(-s)$
#				
Λύση	Re(s) < -3	$x_a(t) = (e^{-3t} - e^{-2t})u(-t)$	0	1 1
α	, ,			$\frac{1}{s+2} - \frac{1}{s+3}$
Λύση	$-3 < \operatorname{Re}(s) < -2$	$x_b(t) = -e^{-2t}u(-t) - e^{-3t}u(t)$	1	1
b			$-{s+3}$	$\overline{s+2}$
Λύση	$-2 < \operatorname{Re}(s)$	$x_c(t) = (e^{-2t} - e^{-3t})u(t)$	1 1	0
c			$\frac{1}{s+2} - \frac{1}{s+3}$	

Μονόπλευρος Μετ/σμός Laplace

Ευθυς:

$$X(s) = \mathcal{L}[x(t)] = \int_{0}^{\infty} x(t)e^{-st}dt, \quad s \in \mathbb{C}$$

Περιοχη Συγκλισης:

$$ROC = \left\{ s \in \mathbb{C} : \operatorname{Re}\left\{s\right\} > \operatorname{Re}\left\{s_{c}\right\} \right\}$$

 s_c είναι το singular σημείο της X(s) με το μεγαλύτερο πραγματικό μέρος.

Αντιστροφος: η Περιοχη Συγκλισης οριζεται μοναδικα, ειναι παντα ενα δεξιο ημιεπιπεδο. Επομενως, υπαρχει παντα ενας μοναδικος αντιστροφος Laplace μετ/σμος.

Ιδιοτητες του Μονοπλευρου Μετασχηματισμου Laplace

α/α	Ιδιότητα	Σήμα	Μετασχηματισμός
1		$ x(t) x_1(t) x_2(t) $ = 0 $\forall t < 0$	$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$ $X_{1}(s)$ $X_{2}(s)$
2	Γραμμικότητα	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$
3	Μετατόπιση στο χρόνο	$x(t-t_o), t_o > 0$	$e^{-s_o t}X(s)$
4	Μετατόπιση στη συχνότητα	$e^{s_o t} x(t)$	$X(s-s_o)$
5	Κλιμάκωση χρόνου	x(at), a>0	$\frac{1}{a}X\left(\frac{s}{a}\right)$
6	Συζυγές	$x^*(t)$	$X^*(s)$
7	Συνέλιξη	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$
8	Παραγώγιση στο χρόνο,	x'(t) $x''(t)$	sX(s) - x(0+) $s^2X(s) - sx(0+) - x'(0+)$
	Δεύτερη παράγωγος		
9	Παραγώγιση στη συχνότητα	-tx(t)	$\frac{d}{ds}X(s)$
10	Πολλαπλασιασμός με δύναμη χρόνου	$t^n x(t), n = 1, 2,$	$(-1)^n \frac{d^n}{ds^n} X(s)$
11	Ολοκλήρωση στο χρόνο	$\int_{0}^{t} x(\tau)d\tau$	$\frac{1}{s}X(s)$
12	Θεώρημα Αρχικής Τιμής:	$x(0+) = \lim_{s \to \infty} sX(s)$	
13	$Θεώρημα Τελικής Τιμής:$ $Aν \lim_{t\to\infty} \left x(t)\right < \infty, τότε$	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	

ΘΕΩΡΗΜΑ ΑΝΑΠΤΥΞΗΣ HEAVISIDE: Έστω μια ρητή συνάρτηση X(s) που εκφράζει ένα μονόπλευρο μετ/σμό Laplace, με βαθμό πολυωνύμου αριθμητή μικρότερο του παρονομαστή. Αν οι πόλοι της είναι $s_1, s_2, ..., s_k$ με βαθμούς πολλαπλότητας $m_1, m_2, ..., m_k$, τότε η συνάρτηση του μετασχηματισμού μπορεί να αναπτυχθεί ως το ακόλουθο άθροισμα $\underline{k}_{m_k} \underline{m}_k \underline{$

 $X(s) = \sum_{i=1}^{k} \sum_{n=1}^{m_{k}} \frac{A_{i,n}}{(s - s_{i})^{n}}$

Το residue της συνάρτησης και, ισοδύναμα, ο αντίστροφος μετ/σμός Laplace του (i, n) όρου δίνει το σήμα

$$\left[\mathcal{L}^{-1} \left[\frac{A_{i,n}}{(s-s_i)^n} \right] = \frac{A_{i,n}}{(n-1)!} t^{n-1} e^{s_i t}, \quad t \ge 0$$

ζεύγος δύο συζυγών μιγαδικών πόλων.

$$\mathcal{L}^{-1} \left[\frac{A_{i,n}}{(s - s_i)^n} + \frac{A_{i,n}^*}{(s - s_i^*)^n} \right] = \frac{2|A_{i,n}|t^{n-1}e^{\sigma_i t}}{(n-1)!} \cos(\omega_i t + \angle A_{i,n})u(t)$$

Αναπτυξη σε Μερικα Κλασματα

PARTIAL FRACTION EXPANSION (CT signals/systems)

original rational function

$$H(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{\alpha_n s^n + \dots + \alpha_1 s + \alpha_0} \qquad m < n \rightarrow proper$$

$$m < n \rightarrow proper$$

$$m > n \rightarrow non-proper$$

if
$$m \ge n$$
,
 $H(s) = C_{m-n} + C_1 + C_2 + C_0 + \frac{b_{n-1} + \cdots + b_1 + b_0}{S + a_{n-1} + \cdots + a_1 + a_0}$

(G(s))

P.F.E. of G(s): examples

* 3 distinct roots:

$$G(s) = \frac{b_{z} s^{2} + b_{1} s + b_{0}}{s^{3} + \alpha_{z} s^{2} + \alpha_{1} s + \alpha_{0}} = \frac{b_{z} s^{2} + b_{1} s + b_{0}}{(s - P_{1})(s - P_{2})(s - P_{3})}$$

$$= \frac{A_{1}}{s - P_{1}} + \frac{A_{2}}{s - P_{2}} + \frac{A_{3}}{s - P_{3}} , A_{i} = G(s)(s - P_{i})$$

$$|s = P_{i}|$$

#3 non-distinct roots:

$$G(s) = \frac{b_2 s^2 + b_1 s + b_0}{(s - P_1)^2 (s - P_2)} = \frac{A_{11}}{s - P_1} + \frac{A_{12}}{(s - P_1)^2} + \frac{A_{21}}{s - P_2}$$

$$A_{21} = G(s)(s - P_2)\Big|_{s = P_2}, A_{11} = \frac{d}{ds}G(s)(s - P_1)^2\Big|_{s = P_1}, A_{12} = G(s)(s - P_1)^2\Big|_{s = P_1}$$

General case: roots
$$P_i$$
, $1 \le i \le K$, of multiplicity M_i

$$G(s) = \sum_{i=1}^{K} \frac{M_i}{N_{i-1}} \frac{A_{in}}{(s-P_i)^n}$$

$$A_{in} = \frac{1}{(m_i-n)!} \left[\frac{d^{m_i-n}}{ds^{m_i-n}} G(s)(s-P_i)^{m_i} \right]_{s=P_i}$$

Μηχανικα και Ηλεκτρικα Συστηματα περιγραφομενα απο Γραμμικες Διαφορικες Εξισωσεις

Αυσεις Διαφορικων Εξισωσεων (Μοντελων Συστηματων)

Γραμμική Διαφορική Εξισωσή με Σταθερους Συντελεστες

$$a_{p} \frac{d^{p} y(t)}{dt^{p}} + a_{p-1} \frac{d^{p-1} y(t)}{dt^{p-1}} + \dots + a_{o} y(t) = b_{q} \frac{d^{q} x(t)}{dt^{q}} + b_{q-1} \frac{d^{q-1} x(t)}{dt^{q-1}} + \dots + b_{o} x(t)$$

Γενικη Λυση = Λυση Ομογενους (Zero-Input Response) + Ειδικη Λυση (Zero-State Response)

(General Solution = Homogeneous Solution + Particular Solution)

$$y(t) = y_{zs}(t) + y_{zi}(t)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_q s^q + b_{q-1} s^{q-1} + \dots + b_o}{a_p s^p + a_{p-1} s^{p-1} + \dots + a_o}$$

$$Transfer Function$$

$$Y_{zs}(s) = H(s)X(s)$$

Συναρτηση Μεταφορας

$$Y_{\rm zs}(s) = H(s)X(s)$$

Θεώρημα: Η γραμμική διαφορική εξίσωση με σταθερούς συντελεστές

$$a_{p} \frac{d^{p} y(t)}{dt^{p}} + a_{p-1} \frac{d^{p-1} y(t)}{dt^{p-1}} + \dots + a_{o} y(t) = b_{q} \frac{d^{q} x(t)}{dt^{q}} + b_{q-1} \frac{d^{q-1} x(t)}{dt^{q-1}} + \dots + b_{o} x(t)$$

ισοδυναμεί με ένα αιτιατό γραμμικό και χρονικά αναλλοίωτο σύστημα συνεχούς χρόνου εάν ισχύει η συνθήκη αρχικής $\chi(t) = 0 \ \forall t \leq t_0 \Rightarrow \chi(t) = 0 \ \forall t \leq t_0$

και ταυτόχρονα έχουμε μηδενικές αρχικές συνθήκες για $t=t_{o}$:

$$y(t_o) = \frac{dy(t_o)}{dt} = \dots = \frac{d^{p-1}y(t_o)}{dt^{p-1}} = 0$$

Τότε η συνέλιζη εισόδου και κρουστικής απόκρισης συμπίπτει με την απόκριση μηδενικής κατάστασης:

$$y_{zs}(t) = x(t) * h(t)$$

Θεώρημα 6.5: Θεωρούμε ένα σύστημα που περιγράφεται από τη διαφορική εξίσωση

$$a_{p}\frac{d^{p}y(t)}{dt^{p}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{o}y(t) = b_{q}\frac{d^{q}x(t)}{dt^{q}} + \dots + b_{1}\frac{dx(t)}{dt} + b_{o}x(t) \quad (6.4.61)$$

με αρχικές συνθήκες $\left[y(0),y'(0),...,y^{(p-1)}(0)\right]$. Υποθέτουμε $x(0)=x'(0)=...=x^{(p-1)}(0)=0$.

(α) Ο μονόπλευρος μετ/σμός Laplace και των δύο πλευρών της (6.4.61) μας δίνει

$$Y(s) = \frac{B(s)}{A(s)}X(s) + \frac{C(s)}{A(s)}$$
(6.4.62)

όπου ορίζουμε

$$A(s) = a_p s^p + ... + a_1 s + a_o, \quad B(s) = b_q s^q + ... + b_1 s + b_o$$
 (6.4.63)

το πολυώνυμο C(s) έχει βαθμό $\leq p-1$ και εξαρτάται από τις αρχικές συνθήκες $\left[y(0),y'(0),...,y^{(p-1)}(0)\right]$ και τους συντελεστές $a_1,...,a_p$. Αντίστροφος μετ/σμός Laplace της (6.4.62) μας δίνει την έξοδο ως άθροισμα της απόκρισης μηδενικής κατάστασης, $y_{zs}(t)$, και της απόκρισης μηδενικής εισόδου, $y_{zi}(t)$, όπου:

$$y_{zs}(t) = \mathcal{L}^{-1} \left[\frac{B(s)}{A(s)} X(s) \right], \quad y_{zi}(t) = \mathcal{L}^{-1} \left[\frac{C(s)}{A(s)} \right]$$
 (6.4.64)

(β) Αντίστροφος μετ/σμός Laplace της συνάρτησης μεταφοράς δίνει την κρουστική απόκριση:

$$h(t) = \mathcal{L}^{-1} \left[H(s) = \frac{B(s)}{A(s)} \right]$$
 (6.4.65)

ΓΧΑ Συστηματα/ Κυκλωματα Ταξης- 1

input voltage + voltage
$$(x,y,y) = (x,y) = (x$$

· via Eigenfunctions if input consists of sinusoids (steady-state resp.)

ΓΧΑ Συστηματα/ Κυκλωματα Ταξης- 2

2nd-ORDER LTI SYSTEMS /CIRCUITS

TIME-DOMAIN ANALYSIS

• Find Impulse Response by solving D.E.: h+2Jwnh+wnh=wnS(t) Integrate DE. over $[0,0^+] \rightarrow h(0^+) = \omega_n^2$.

Solve
$$h+2J\omega_nh+\omega_nh=0$$
, $t>0$ $h(t)$ $h(0^t)=0$, $h(0^t)=\omega_n^2$

CHARACTERISTIC EQN:
$$[5^2+2]w_nS+w_n^2=0$$
 C.E.

Case 1 (3>1)

2 real roots:
$$S_{1,2} = -J \omega_n \pm \omega_n \sqrt{J^2 I}$$

Case 2 (J=1)

Case 3 (0< J<1)

Z cowplex conj. roots

 $S_{1,2} = -J \omega_n \pm j \omega_n \sqrt{I - J^2}$

FREQUENCY-DOMAIN ANALYSIS

• Find Frequency Response by applying F.T. to D.E: $(DE) \longrightarrow -\omega^{2} Y(\omega) + 2 J \omega_{n} j \omega Y(\omega) + \omega_{n}^{2} Y(\omega) = \omega_{n}^{2} X(\omega) \longrightarrow H(\omega) = \frac{\omega_{n}}{\omega_{n}^{2} - \omega_{n}^{2} + j 2 J \omega_{n} \omega}$

$$H(\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2J\omega_n(j\omega) + \omega_n^2} \xrightarrow{P.F.E.} \frac{\omega_n}{2\sqrt{J_z^2}} \left(\frac{1}{j\omega - S_1} - \frac{1}{j\omega - S_2}\right) \xrightarrow{I.F.T.} h(t) = \frac{\omega_n}{2\sqrt{J_z^2}} \left(e^{S_1 t} - e^{S_2 t}\right) u(t)$$

Case 2 (J=1): Critically damped
$$H(\omega) = \frac{\omega_n^2}{(j\omega + \omega_n)^2} \xrightarrow{I.F. T.} h(t) = \omega_n^2 t e^{-\omega_n t} u(t)$$

$$\frac{(j\omega + \omega_n)^2}{\text{Case 3 (): Underdamped}}$$

$$H(\omega) = \frac{\omega_n}{2j\sqrt{1-J^2}} \left(\frac{1}{j\omega - S_1} - \frac{1}{j\omega - S_2}\right) \longrightarrow \left[h(t) = \frac{\omega_n e^{-J\omega_n t}}{\sqrt{1-J^2}} \sin[(\omega_n \sqrt{1-J^2})t]u(t)\right]$$

Κρουστικες Αποκρισεις ГХА Συστηματος Ταξης- 2 για διαφορετικες θεσεις των πολων

Αναλογικα Παθητικα Φιλτρα Butterworth

$$s_p = (-1)^{\frac{1}{2N}} (j\Omega_c)$$

Γραμμικοι Ταλαντωτες - Συντονισμος

$$\frac{d^2y(t)}{dt^2} + 2\zeta\omega_o \frac{dy(t)}{dt} + \omega_o^2 y(t) = b_o x(t)$$

$$0 \le \zeta < 1 \text{ (underdamped)} \quad \Rightarrow \quad h(t) = \left(\frac{b_o}{\omega_o \sqrt{1 - \zeta^2}}\right) e^{-\zeta \omega_o t} \sin \left[\left(\omega_o \sqrt{1 - \zeta^2}\right) t\right] u(t)$$

Ενεργο Ζωνοπερατο Φιλτρο

ACTIVE BANDPASS FILTER

* From ideal op-amp approx. (..., DV=0), lin. superposition,

$$\Rightarrow \frac{\sqrt{2(s)}(R+\frac{1}{Cs})}{R+\frac{1}{Cs}+\frac{R/Cs}{R+1/Cs}} + \frac{\sqrt{1(s)}\frac{R/Cs}{R+1/Cs}}{R+\frac{1}{Cs}+\frac{R/Cs}{R+1/Cs}} = \sqrt{2(s)}\frac{Ro}{Ro+R}$$

$$\Rightarrow H(s) \triangleq \frac{V_{z}(s)}{V_{I}(s)} = K \frac{\frac{1}{Q}(\frac{s}{\omega_{o}})}{(\frac{s}{\omega_{o}})^{2} + \frac{1}{Q}(\frac{s}{\omega_{o}}) + 1}$$

$$K = H(j\omega_{o})$$

Συναρτηση Μεταφορας Συνδυασμου Συστηματων

$$H(s) = H_1(s) + H_2(s).$$

$$H(s) = H_1(s)H_2(s)$$

$$x(t) \xrightarrow{+} \xrightarrow{+} \xrightarrow{e(t)} \xrightarrow{h_1(t)} \xrightarrow{h_1(t)} \xrightarrow{H_1(s)} y(t)$$

$$\frac{Y(s)}{X(s)} = H(s) = \frac{H_1(s)}{1 + H_1(s)H_2(s)}$$

Ευσταθεια

BIBO: Bounded Input → Bounded Output

BIBO-Ευστάθεια
$$\Leftrightarrow \int_{-\infty}^{\infty} |h(t)| dt < \infty$$

Ενα αιτιατό ΓΧΑ σύστημα ειναι ευσταθές εάνν όλοι οι πόλοι της H(s) κείνται στο αριστερό μιγαδικό s-ημιεπίπεδο

