Übungen zur Algorithmischen Bioinformatik I

Blatt 2

Xiheng He

April 2021

3. Aufgabe (10 Punkte):

Beweisen oder Wiederlegen Sie folgende Behauptungen. Achten Sie auf eine formal korrekte Durchführung.

(a)
$$O(f) \cdot O(g) = O(f \cdot g)$$
, hierbei ist $O(f) \cdot O(g) := \{\hat{f} \cdot \hat{g} : \hat{f} \in O(f) \land \hat{g} \in O(g)\}$ mit $f, g, \hat{f}, \hat{g} : \mathbb{N} \longrightarrow \mathbb{R}_+$ und das Gleichheitzeichen bedeutet Mengengleichheit.

Aus Definition 1.25 sind:

$$\exists c_1, c_2 \in \mathbb{R}, n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : n \geq n_0 : \hat{f} \leq c_1 \cdot f(n) = O(f) \text{ und } \hat{g} \leq c_2 \cdot g(n) = O(g)$$

sei $a := c_1 \cdot c_2 \in \mathbb{R}_+$

$$O(f) \cdot O(g) = \hat{f} \cdot \hat{g} = c_1 \cdot f(n) \cdot c_2 \cdot g(n) = a \cdot f(n)g(n) \stackrel{Regel.13}{=} O(f \cdot g)$$

Daraus ist $O(f) \cdot O(g) \in O(f \cdot g)$.

(b) Für jedes Polynom p vom Grad $k \ge 1$ gilt $\log(p(n)) \in \Theta \log(n)$;

sei $p(n) \ge 0$ ein Polynom vom Grad k, dann gilt $p \in (n^k)$

Nach Rechenregel 3 gilt: $p(n) \leq c_1 \cdot n^k$ (i) und $p(n) \geq c_2 \cdot n^k$ (ii)

Daraus:

$$\log(p(n)) \stackrel{i}{\leq} \log(c_1 \cdot n^k) = \log(c_1) + \log(n^k) = \log(c_1) + k \log(n)$$

$$\log(p(n)) \stackrel{ii}{\ge} \log(c_2 \cdot n^k) = \log(c_2) + \log(n^k) = \log(c_2) + k \log(n)$$

Da beide $\log(c_1)$, $\log(c_2)$ und k konstant sind, dann gilt $\log(c_1) \in O(1) \log(c_2) \in O(1)$ und daher $\log(p(n)) \in \Theta(\log(n))$.

$$(c)f,g \in \Theta(h) \Rightarrow |f-g| \in \Theta(h)$$
, wobei $|f-g|: n \to |f(n)-g(n)|$;

sei
$$f = n \log n \in \Theta(n \log n), g = n \log n \in \Theta(n \log n), ist |f - g| : n \to |f(n) - g(n)| = 0 \in O(1) \not\Longrightarrow \Theta(n \log n)$$