Revisão P2 - Álgebra Linear - 2022-1 - Geometria dos Dados - Comparando e Aproximando Dados - Versão 1

João Paixão

June 15, 2022

Contents

1		oduto Interno - Linha · coluna			
	1.1	T T T T T T T T T T T T T T T T T T T			
	1.2	Modelagem com o produto interno			
2	Transposta 4				
	2.1	Propriedades			
		Algoritmo			
3	Norma				
	3.1	Especificação			
	3.2				
4	Normalizar				
	4.1	Especificação			
		Algoritmo			
5	Distância entre dois vetores				
	5.1	Especificação			
	5.2	Algoritmo			
6	Projeção ortogonal na reta				
	6.1	Especificação			
	6.2	Algoritmo			
7	Distância entre um vetor e uma reta				
	7.1	Especificação			
	7.2	Algoritmo			

8	Cosseno	10	
	8.1 Especificação	10	
	8.2 Algoritmo	10	
9	Média	11	
	9.1 Especificação	11	
	9.2 Algoritmo	11	
10	Sistema com infinitas soluções		
	10.1 Especificação	12	
	10.2 Algoritmo	12	
11	Vetor perpendicular	13	
	11.1 Especificação	13	
	11.2 Algoritmo	13	
12	Mínimos quadrados - Sistema sem solução	14	
	12.1 Especificação	14	
	12.2 Algoritmo	14	
13	Projeção ortogonal no plano	15	
	13.1 Especificação	15	
	13.2 Algoritmo	15	
14	Distância entre um vetor e um plano	16	
	14.1 Especificação	16	
	14.2 Algoritmo	16	
15	Matrizes ortogonais	17	
	15.1 Especificação	17	
	15.2 Algoritmo	17	
16	Resolver um sistema "ortogonal"	18	
	16.1 Especificação	18	
	16.2 Algoritmo	18	
17	Fatoração (combinações e ortogonalidade)	19	
18	Representação Implícita vs Explícita	20	
	18.1 Explícita	20	
	18.2 Implícita	20	
	18.3 Vantagens e Desvatagens	20	
19	Outros Teoremas	21	
20	Dicionário - Geometria e Álgebra	21	

1 Produto Interno - Linha · coluna

$$a^{t}b \leftarrow a_{1}b_{1} + a_{2}b_{2} + \dots + a_{n}b_{n} = \sum_{i=1}^{n} a_{i}b_{i}$$

1.1 Propriedades

- $\bullet \ a^t(b+c) = a^tb + a^tc$
- $a^tb = b^ta$
- $\bullet \ (a+b)^t c = a^t c + b^t c$
- $(a+b)^t(c+d) = a^t c + a^t d + b^t c + b^t d$

1.2 Modelagem com o produto interno

Exemplos:

- 1. Determine a média arimética de vários números com o produto interno.
- 2. Determine a soma de vários números com o produto interno.
- 3. Determine uma média ponderada de vários números com o produto interno.
- 4. Determine a soma dos 3 primeiros números de vários números.

2 Transposta

2.1 Propriedades

Teorema 2.1. $(AB)^t = B^t A^t$

Teorema 2.2. $(A+B)^t = A^t + B^t$

2.2 Algoritmo

$$A_{ij}^t \leftarrow A_{ji}$$

Obs A^tB = "todos os produtos internos possíveis" entre as colunas de A e B.

3 Norma

Intuição: Achar o tamanho de um vetor v.

3.1 Especificação

- Entrada: Um vetor
- $\bullet\,$ Saída: Um escalar
- $\bullet ||v|| \ge 0$
- $\bullet \ \|v\| = 0 \iff v = \bar{0}$
- $\|\lambda v\| = |\lambda| \|v\|$ (λ é um escalar).
- $\bullet \ \|v+w\| \leq \|v\| + \|w\|$

$$\|v\|^2 \leftarrow v^t v$$

4 Normalizar

Intuição: Achar um vetor \bar{v} na mesma direção de v com tamanho um (vetor unitário).

4.1 Especificação

 \bullet Entrada: Um vetor v

- Saída: Um vetor \bar{v}

• Existe um λ tal que $\lambda \bar{v} = v$.

 $\bullet \ \|\bar{v}\| = 1$

$$\bar{v} \leftarrow \tfrac{v}{\|v\|}$$

5 Distância entre dois vetores

Intuição: Determine a distância entre v e w.

5.1 Especificação

- Entrada: Um vetor v e um vetor w.
- Saída: Um escalar.
- $dist(v, w) \ge 0$.
- $dist(\lambda v, \lambda w) = |\lambda| dist(v, w)$
- $dist(v, w) = 0 \iff v = w$
- Para qualquer vetor z, $dist(v, w) \leq dist(v, z) + dist(z, w)$

$$dist(v, w) \leftarrow \|v - w\|$$

6 Projeção ortogonal na reta

Intuição: Dado um vetor v e uma reta R, determine o vetor p na reta R mais próximo de v.

6.1 Especificação

- \bullet Entrada: Um vetor v e uma reta R.
- \bullet Saída: Um vetor p.
- Se $w \in R$, então $dist(v, p) \leq dist(v, w)$.

6.2 Algoritmo

Seja \bar{w} um vetor unitário na reta R, $p \leftarrow (v^t \bar{w}) \bar{w}.$

7 Distância entre um vetor e uma reta

Intuição: Determine a menor distância entre um vetor v e uma reta R.

7.1 Especificação

- \bullet Entrada: Um vetor v e uma reta R.
- Saída: Um escalar λ .
- Se $w \in R$, então $d \leq dist(v, w)$.

7.2 Algoritmo

 $p \leftarrow$ a projeção ortogonal de vna reta R $d \leftarrow dist(v,p)$

8 Cosseno

Intuição: Dado um vetor v e um vetor w, determine um número entre -1 e 1 que mede quanto os dois vetores estão na mesma proporção .

8.1 Especificação

- ullet Entrada: Um vetor v e um vetor w.
- Saída: Um escalar.
- $-1 \le cos(v, w) \le 1$.
- Se existe λ positivo tal que $v=\lambda w,$ então $\cos(v,w)=1.$
- Se existe λ negativo tal que $v=\lambda w,$ então $\cos(v,w)=-1.$

$$cos(v, w) \leftarrow \frac{v^t w}{\|v\| \|w\|}$$

9 Média

Intuição:

- 9.1 Especificação
- 9.2 Algoritmo

10 Sistema com infinitas soluções

Intuição: Determine todas as soluções de um sistema Ax = 0.

10.1 Especificação

- \bullet Entrada: Uma matriz A.
- \bullet Saída: Todas as soluções x.
- Para todo x, Ax = 0

10.2 Algoritmo

 $C \leftarrow GJ(A)$ "Gauss-Jordan na A" e depois colocar as variáveis com pivô em função das variáveis sem pivô.

Definição 10.1 (Dimensão da solução). A dimensão da solução é o número de variáveis sem pivô.

11 Vetor perpendicular

Intuição: determine um vetor v, perpendicular à a_1, a_2, \ldots, a_n .

11.1 Especificação

- Entrada: os vetores a_1, a_2, \ldots, a_n (ou uma matriz A com os vetores a_i como colunas).
- \bullet Saída: Um vetor v
- $a_1^t v = 0, a_2^t v = 0, \dots, a_n^t v = 0.$

11.2 Algoritmo

 $v \leftarrow$ uma solução $n\tilde{a}o\text{-}nula$ do sistema $A^tv = 0,$ se existir.

12 Mínimos quadrados - Sistema sem solução

Intuição: determine uma solução aproximada para um sistema linear Ay=b que não tem solução.

12.1 Especificação

ullet Entrada: A matriz A e um vetor b.

 \bullet Saída: Um vetor \bar{x}

• Para todo x, $dist(A\bar{x}, b) \leq dist(Ax, b)$

12.2 Algoritmo

 $\bar{x} \leftarrow \text{solução do sistema } A^t A \bar{x} = A^t b.$

Observação: Se $dist(A\bar{x}, b) = 0$, então o sistema tem solução exata.

13 Projeção ortogonal no plano

Intuição: Dado um vetor v e um plano P, determine o vetor p no plano P mais próximo de v.

13.1 Especificação

- \bullet Entrada: Um vetor v e um plano P (ou dois vetores que geram o plano).
- \bullet Saída: Um vetor p.
- Se $w \in P$, então $dist(v, p) \leq dist(v, w)$.

```
\bar{x} \leftarrow \text{solução do sistema } A^t A \bar{x} = A^t b. p \leftarrow A \bar{x}.
```

14 Distância entre um vetor e um plano

Intuição: Determine a menor distância entre um vetor v e um reta P.

14.1 Especificação

- ullet Entrada: Um vetor v e um plano P.
- Saída: Um escalar λ .
- Se $w \in P$, então $d \leq dist(v, w)$.

14.2 Algoritmo

 $p \leftarrow$ a projeção ortogonal de vno plano P $\lambda \leftarrow dist(v,p)$

15 Matrizes ortogonais

Intuição: Dado uma matrix Q, verificar se

- 1. Q quando aplicada à qualquer vetor v não muda o tamanho de v
- 2. Q quando a aplicada à quaisquer dois vetores v e w o $\cos(v,w)$ não muda

15.1 Especificação

- Para qualquer vetor v, ||Qv|| = ||v||
- Para quaisquer vetores v e w, dist(Qv,Qw) = dist(v,w)
- Para quaisquer vetores v e w, cos(Qv,Qw) = cos(v,w).

15.2 Algoritmo

$$Q^tQ == I$$

Outra maneira de ver As colunas q_i de Q todas tem norma igual à 1 e são perpendiculares entre si.

$$q_i^t q_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

16 Resolver um sistema "ortogonal"

Intuição: Dado uma matriz ortogonal Qe um vetor b, determine um vetor xtal que Qx=b.

16.1 Especificação

- \bullet Entrada: uma matriz ortogonal Qe um vetor b.
- \bullet Saída: Um vetor x.
- $\bullet \ \ Qx=b.$

$$x \leftarrow Q^t b.$$

17 Fatoração (combinações e ortogonalidade)

Olhar os dois primeiros exercícios da Lista.

18 Representação Implícita vs Explícita

18.1 Explícita

Representação Explícita de uma reta: Representar os vetores da reta R com todas as combinações de um vetor.

18.2 Implícita

Representação Implícita de uma reta: Representar os vetores na reta R por um vetor perpendicular a todos os vetores da reta R.

18.3 Vantagens e Desvatagens

- Explícita vs. Implícita
- Boa para gerar vetores novos vs. Boa para verificar se um vetor está ou não na reta.
- Desenhar vs. colisão em jogos

Obs: Funciona da mesma maneira para o plano.

19 Outros Teoremas

Teorema 19.1. Para todo w na reta R, v é perpendicular à $w \iff v$ é perpendicular à um vetor a_1 que gera a reta R.

Teorema 19.2. Para todo w no plano P, v é perpendicular à $w \iff v$ é perpendicular à dois vetores a_1 e a_2 que geram o plano P.

20 Dicionário - Geometria e Álgebra

- 1. Geometria ⇔ Álgebra
- 2. Humano ⇔ Álgebra
- 3. Visual \iff Simbólico
- 4. $||x||^2 = \lambda \iff \lambda = x^t x$
- 5. v é perpendicular à $w \iff v^t w = 0$
- 6. v está na reta gerada por $a_1 \iff$ existe um escalar c_1 tal que $a_1c=v$
- 7. v está no plano gerado por a_1 e $a_2 \iff$ existe escalares c_1 e c_2 tal que $c_1a_1+c_2a_2=b$