

similar pattern

PROOFS AND LOGIC

INTRODUCTION

connection between things that are apparently not connected,

counting > no. of pairs of students

bowling -> pin counting

alley

(1) (3) (6) (10)

how many?

looks like a bowling alley problem.

a how many binary trees possible with 3 nodes?

(5)

2 construct minimum spanning tree from graph. how many?

erder of nh

linear algebra:

multiplying 3 matrices A, A2 A2

hord to 7 ((A₁ A₂) A₃) (A₁ (A₂ A₃)) (3)

See but

They are they are how many 2 node binary trees can you construct related 2 (-) 2 node BT3 er 4 node BT3 PROOFS thm V2 is irrational

Caristotle) - by contradiction. assume on the contrary, 1/2 is rational rational no. - ratio of 2 natural numbers as b & integers, b \$0

no common factors for a, b. a > b / ~b > ~a Vlemma: helper theorm if n2 is even, then n is even Cusing contrapositive orgument a2 & even (proof by contrapositive)

a is even
 let a= 2K some integor K
Some (Magor K
262 = (2K) 2
b2 = 2 K2
. 2
b² is even
b is even
but, a 8 b have no common factors (contradiction)
-> Jz is irrational.
NUMBER OF PRIMES ARE INFINITE
(evolid -> founder of western mathematics)
 (euclid's elements)
assume no of primes are finite.

CUTTING PLANES

base rase n=1, P = T, +1 = 1+1 = 2

=
$$(T_{K}+1)+(K+1)$$
 (from assumption)

$$= \left[T_{k} + (k+1) \right] + 1$$

Logic			
1			
foundation 6			
theorm pr	overs Ca	utomatic)
			7
* >	×		C and 'DACB are congrue
	\rightarrow	·. ar	igles ame
В	C		
		14	also costomer for logic
			The same same and the
	AND COL	VNECTI	/E\$
VARIABLES			/FS
VARIABLES			
VARIABLES R v W	OR		binary
VARIABLES R v W	OR		
R V W	OR		binary
VARIABLES R v W	OR		
R V W	OR AND NOT		binary
R V W R A W Precedence of	OR AND NOT	•	binany
R V W	OR AND NOT		binary

COMPLETE SET

minimal set of connectives that will generate all the rest.

TRUTH TABLE

A	B	AVB	ANB	$A \rightarrow B$	
D	ь	v	0		
Ď	1	1	0	<u> </u>	
	6.)	0	0	
1	(. 1	1	

applications in circuits

3-sat algo.

ex list out all possible function between 2 variables.

give names. (2^{2^n})

	2	and	7(4-76)	0	7(8-74)	0	ABB	or o	
	0	0	0	0		1			
	0	0	1		O	6	1	. 1	
	Ď	l	6	1 ,	D		. 0	1	
-	ر روم	7(NOB)	73 6	78	· M	B no	nd		
+	1			Í		110	1		
+	0	0	D e	1	1		1	1	

0

0