Collision mechanisms in one-electron capture by He²⁺ ions in collisions with hydrocarbons

B. Seredyuk, R. W. McCullough, and H. B. Gilbody

Department of Physics and Astronomy, Queen's University, Belfast, Belfast BT7 1NN, United Kingdom

(Received 1 November 2004; published 18 February 2005)

Translational energy spectroscopy has been used to study one-electron capture by 200–2000 eV amu⁻¹ He²⁺ ions in CH₄, C₂H₄, and C₂H₆. The main He⁺(n,l) excited product channels have been identified and their relative importance assessed. Although significantly different patterns of behavior are observed, all three cases exhibit the highly selective nature of the electron capture process in spite of the large number of possible nondissociative and dissociative product channels associated with a wide spread in energy defects ΔE .

DOI: 10.1103/PhysRevA.71.022713 PACS number(s): 34.70.+e

I. INTRODUCTION

The process of one-electron capture by He²⁺ ions in slow collisions with simple molecules may be highly selective because of the nature and position of the initial and final potential energy curves describing the molecular systems formed during the collision. Thus in the reaction

$$\mathrm{He}^{2+} + Y_i Z_i \longrightarrow \mathrm{He}^+(n,l) + Y_i Z_i^+(\Sigma) \pm \Delta E$$

where $Y_iZ_j^+(\Sigma)$ includes all final bound or dissociative states, only a limited number of product channels leading to excited products $\operatorname{He}^+(n,l)$ corresponding to energy defects ΔE may be involved. In addition to identifying and assessing the relative importance of the main product channels, the extent to which dissociative and nondissociative collision mechanisms contribute to the selective electron capture process is also of considerable interest in view of the many possible fragmentation modes involving a wide spread in values of ΔE .

In previous work in this laboratory, we have used the well-established technique of translational energy spectroscopy (TES) to provide identification and a quantitative assessment of the main product channels and the collision mechanisms involved in many different processes. Such information is particularly important in cases where reliable theoretical models of the collision have not yet been established. For example, our earlier TES studies of He²⁺-H₂ collisions in this laboratory [1] provided direct evidence of the great importance of highly selective dissociative excitation mechanisms in the one-electron capture process at low energies. Our subsequent TES studies [2] of one-electron capture by 200–1000 eV amu⁻¹ He²⁺ ions in CO have also confirmed the dominant role of processes involving dissociative electron capture at low energies.

In the present work, we have used TES to study oneelectron capture by $\mathrm{He^{2+}}$ ions in $\mathrm{CH_4}$, $\mathrm{C_2H_4}$, and $\mathrm{C_2H_6}$ in the range 200–2000 eV amu⁻¹. There are no detailed theoretical predictions for electron capture collisions with these hydrocarbons, and in our previous work (see, for example, [3]), we have shown that simple predictions based on reaction windows using a Landau-Zener approach are of very limited value when both dissociative and nondissociative channels are important. It is of interest to determine to what extent the general pattern of behavior in these cases is similar to that found in our previous studies of collisions of $\mathrm{He^{2+}}$ with $\mathrm{H_2}$ and CO . These processes are also relevant to a better understanding of collisions of He²⁺ ions (as an important component of the solar wind) with cometary and planetary atmospheres (see, for example, [4]). In magnetically confined fusion plasmas, these measurements are also relevant to improved modeling of the transport of He²⁺ in edge plasmas containing hydrocarbon impurities arising from the use of carbon composite facing materials [5,6].

II. EXPERIMENTAL APPROACH

A detailed explanation of the apparatus and experimental approach has been given in our previous publications (see [7] and references therein) so that only a brief summary need be given here. In the TES approach, the He^{2+} primary ion beam of well-defined energy T_1 is passed through the target gas and the kinetic energy T_2 of the forward-scattered He^+ ions formed as products of single collisions is then measured. The difference in kinetic energy ΔT is then given by

$$\Delta T = T_2 - T_1 = \Delta E - \Delta K$$

where ΔK is a small recoil correction of the target. Provided the ratio $\Delta E/T_1 \ll 1$ and the scattering is confined to small angles, the measured change in translational energy $\Delta T \approx \Delta E$. The relative importance of collision product channels (characterized by particular values of ΔE) may then be assessed from a careful analysis of the energy change spectra subject to the limitations of the available energy resolution.

A beam of He²⁺ ions, produced by an all-permanentmagnet 10 GHz ECR ion source, was extracted into an accelerator beamline held at a potential -4 kV. This beam was then momentum analyzed using a 90° double-focusing magnet and passed through two hemispherical electrostatic analyzers. The energy of the emergent beam was then adjusted to that required by passage through a cylindrical electrostatic lens system before entering a voltage-labeled target gas cell. The target gas of interest flowed into the cell at constant rate low enough to ensure single-collision conditions. The forward-scattered He⁺ product ions emerging from the cell (within an acceptance angle of $\pm 3^{\circ}$) were then energy analyzed by a third hemispherical energy analyzer and recorded by a computer-controlled position-sensitive detector. By scanning the retarding voltage, a translational energy spectrum of the product ions could be obtained while maintaining an energy resolution of about 1 eV. An analysis of the posi-

FIG. 1. Energy change spectra for one-electron capture by 300–2000 eV amu⁻¹ He²⁺ ions in CH₄.

tions and magnitudes of the peaks in the observed spectra (using PEAK-FIT software) allowed identification and determination of the relative importance of each product channel. In principle, cross sections for each observed product channel could then be derived by normalizing the sum of the relative yields to total one-electron capture cross sections if available. Energy defects corresponding to specific product channels were identified by reference to photoelectron spectroscopy data and we have assumed that Franck-Condon transitions are valid throughout. For CH₄ we used the data of Brundle and Robin [8], Dujardin *et al.* [9], and Rabalais *et al.* [10], for C₂H₄ the data of Pollard *et al.* [11], and for C₂H₆ the data of Mackie *et al.* [12].

III. RESULTS AND DISCUSSION

Figure 1 shows our observed energy change spectra for one-electron capture by 300–2000 eV amu⁻¹ He²⁺ ions in CH₄. At 2000 eV amu⁻¹, the spectrum is dominated by the peak centered on an energy change of about 0.5 eV which (by reference to photoelectron spectroscopy data) appears to correspond mainly to the nondissociative product channel

FIG. 2. Measured cross sections for main product states of $\mathrm{He^{+}}$ formed in one-electron capture by 300–2000 eV $\mathrm{amu^{-1}\ He^{2+}}$ ions in $\mathrm{CH_{4}}$ together with total one-electron capture cross sections.

$$\text{He}^{2+} + \text{CH}_4 \rightarrow \text{He}^+(n=2) + \text{CH}_4^+[^1T_2] + (0.05-0.85) \text{ eV}$$

leading to $He^+(n=2)$ formation. The spectra also indicate the presence of a much smaller nondissociative contribution from the endothermic channel,

$$\text{He}^{2+} + \text{CH}_4 \rightarrow \text{He}^+(n=3) + \text{CH}_4^+[{}^1T_2] - (6.7-7.5) \text{ eV}$$

leading to $He^+(n=3)$ formation.

The spectra in Fig. 1 also show the presence of a broad peak centered on an energy change of about 12 eV. This peak, while small at 2000 eV amu⁻¹, becomes larger with decreasing energy and at 300 eV amu⁻¹, it provides the main contribution to the total captures. This broad peak comprises a number of possible product channels involving a variety of fragmentation modes,

$$He^{2+} + CH_4 \rightarrow He^+(n=1) + (CH_4^{2+} \Rightarrow fragmentation) + (3.3-21 \text{ eV})$$

through transfer ionization accompanied by $\text{He}^+(n=1)$ formation. The energy resolution available in our TES measurements is insufficient to distinguish between the many possible fragmentation modes. As in our previous studies of one-electron capture by He^{2+} ions, the present spectra provide no evidence of contributions from autoionizing double capture. Overall, in spite of the many different product channels involving a wide range of energy defects ΔE , one-electron capture in $\text{He}^{2+}\text{-CH}_4$ can be seen to be highly selective in the energy range considered with only He^+ (n=1, 2, 1) and 3) formation observable. In Fig. 2, we show cross sections for He^+ (n=1, 2, 1) and 3) formation which have been derived from the measured energy change spectra by normalization to total cross sections for one-electron capture. These

Energy (keV amu ⁻¹)	Totals	$He^{+}(n=1)$	$He^{+}(n=2)$	$He^{+}(n=3)$
0.25	1.80 ± 0.27	1.56±0.16	0.23 ± 0.03	
0.30	1.91 ± 0.28	1.39 ± 0.10	0.52 ± 0.03	
0.35	2.03 ± 0.30	1.44 ± 0.07	0.56 ± 0.03	0.02 ± 0.02
0.50	2.37 ± 0.35	1.44 ± 0.08	0.89 ± 0.04	0.03 ± 0.01
0.75	3.56 ± 0.53	1.40 ± 0.10	2.09 ± 0.10	0.06 ± 0.01
1.00	3.86 ± 0.57	1.02 ± 0.10	2.76 ± 0.13	0.07 ± 0.01
1.25	5.16 ± 0.77	0.86 ± 0.13	4.18 ± 0.21	0.11 ± 0.03
1.50	5.95 ± 0.89	0.81 ± 0.07	5.05 ± 0.25	0.08 ± 0.01
1.75	6.71 ± 1.00	0.61 ± 0.07	6.01 ± 0.30	0.07 ± 0.01
2.00	7.43 ± 1.11	0.62 ± 0.15	6.65 ± 0.33	0.14 ± 0.03

TABLE I. Measured cross sections (in units of 10^{-16} cm²) for one-electron capture by He²⁺ ions in CH₄ leading to He⁺(n=1, 2, and 3) formation compared with total electron capture cross sections.

total cross sections were measured using a simple attenuation technique in which we normalized our values to a value measured at 2 keV amu⁻¹ by Hoekstra [13]. Strictly, our measured cross sections, which necessarily include contributions from two-electron capture, are an upper limit to the total one-electron capture cross section. All our measured cross sections for one-electron capture by He²⁺ ions in CH₄ are listed in Table I.

Figure 3 shows energy change spectra for one-electron capture by 215–2000 eV amu $^{-1}$ He $^{2+}$ ions in C₂H₄. At 215 eV amu $^{-1}$ the main peak can be correlated with He $^{+}$ (n = 2) formation through one of the following possible dissociative channels

$$\text{He}^{2+} + \text{C}_2\text{H}_4 \rightarrow \text{He}^+(n=2) + \text{C}_2\text{H}_4^+[\widetilde{A}^2B_2] \Rightarrow (\text{C}_2\text{H}_3^+,\text{H}) + 0.38 \text{ eV}.$$

$$He^{2+} + C_2H_4 \rightarrow He^+(n=2) + C_2H_4^+[\tilde{A}^2B_2] \Rightarrow (C_2H_2^+, H_2) + 0.46 \text{ eV},$$

which our available energy resolution cannot separately distinguish. This peak can be seen to decrease in relative importance with increasing impact energy.

At 2000 eV amu⁻¹, the peak centered on an energy change of about 2.6 eV corresponding to the nondissociative channel

$$\mathrm{He}^{2+} + \mathrm{C}_2\mathrm{H}_4 \rightarrow \mathrm{He}^+(n=2) + \mathrm{C}_2\mathrm{H}_4^+[\widetilde{X}^{\,2}B_3] + (2.42-2.92) \; \mathrm{eV},$$

leading to $He^+(n=2)$ formation can be seen to provide the main contribution to the total although there is little evidence of this at our lowest impact energy. Small endothermic contributions from the channel

$$\text{He}^{2+} + \text{C}_2\text{H}_4 \rightarrow \text{He}^+(n=2) + \text{C}_2\text{H}_4^+[\widetilde{B}^{\ 2}A] - (1.89-1.19) \text{ eV}$$
 and, at the higher energies,

$$\text{He}^{2+} + \text{C}_2\text{H}_4 \rightarrow \text{He}^+(n=3) + \text{C}_2\text{H}_4^+[\tilde{X}^2B_3] - (5.13-4.63) \text{ eV}$$
 are also evident.

There are no measurements of total cross sections for oneelectron capture by He^{2+} ions in C_2H_4 in the present energy range so in Fig. 4, we show simply the relative cross sections for excited state formation derived from our energy change spectra. While both dissociative and nondissociative capture both lead to $He^+(n=2)$ formation, the dissociative capture process is clearly dominant at our lowest impact energy. Our measured relative cross sections for one-electron capture by He^{2+} ions in C_2H_4 are listed in Table II.

FIG. 3. Energy change spectra for one-electron capture by 215–2000 eV amu $^{-1}$ He $^{2+}$ ions in C_2H_4 .

FIG. 4. Measured relative cross sections for main product states of He $^+$ formed in one-electron capture by 215–2000 eV amu $^{-1}$ He $^{2+}$ ions in C₂H₄.

Figure 5 shows energy change spectra for $200-2000 \text{ eV amu}^{-1} \text{ He}^{2+}$ ions in C_2H_6 . In this case also, $\text{He}^+(n=2)$ formation is the dominant excited product. At the lowest energy, rather surprisingly, the spectrum is dominated by a single endothermic peak associated with the nondissociative channel

$$\text{He}^{2+} + \text{C}_2\text{H}_6 \rightarrow \text{He}^+(n=2) + \text{C}_2\text{H}_6^+[^2E_u] - (2.6-1.79) \text{ eV}.$$

However, at the higher energies the spectra indicate increasing contributions from the channels

$$\text{He}^{2+} + \text{C}_2\text{H}_6 \rightarrow \text{He}^+(n=2) + \text{C}_2\text{H}_6^+ [^2A_{1g}] \Rightarrow \text{(fragments)}$$

+ 0.1 eV.

$$\text{He}^{2+} + \text{C}_2\text{H}_6 \rightarrow \text{He}^+(n=2) + \text{C}_2\text{H}_6^{+}[^2E_g] \Rightarrow \text{(fragments)} + (0.35-1.1) \text{ eV},$$

in which, according to the photoionization measurements of Mackie *et al.* [12], the main breakup fragment is $C_2H_4^+$. At

TABLE II. Measured relative cross sections for one-electron capture by He^{2+} ions in C_2H_4 leading to $He^+(n=2 \text{ and } 3)$ formation through both dissociative and nondissociative processes expressed as a percentage of the total captures.

Energy (keV amu ⁻¹)	$He^+(n=2)$ nondissoc.	$He^+(n=2)$ dissoc.	$He^+(n=3)$ nondissoc.
0.35	38.76 ± 1.93	53.94 ± 2.69	7.28 ± 0.36
0.50	44.30 ± 2.21	50.28 ± 2.51	5.40 ± 0.27
0.75	55.58 ± 2.77	36.85 ± 1.84	7.55 ± 0.37
1.00	61.89 ± 3.09	31.82 ± 1.59	6.28 ± 0.31
1.25	54.85 ± 2.74	36.97 ± 1.84	8.17 ± 0.40
1.50	52.43 ± 2.62	39.33 ± 1.96	8.22 ± 0.41
1.75	54.13 ± 2.70	38.74 ± 1.93	7.12 ± 0.35
2.00	56.00 ± 2.80	38.46 ± 1.92	5.52 ± 0.27

FIG. 5. Energy change spectra for one-electron capture by 200–2000 eV amu $^{-1}$ He $^{2+}$ ions in C_2H_6 .

2000 eV amu⁻¹, there is evidence of a small $He^+(n=3)$ contribution from the nondissociative endothermic channel

$$\text{He}^{2+} + \text{C}_2\text{H}_6 \rightarrow \text{He}^+(n=3) + \text{C}_2\text{H}_6^{+}[^2E_g] - (7.29-6.54) \text{ eV}.$$

IV. CONCLUSION

TES studies of one-electron capture $200-2000 \text{ eV amu}^{-1} \text{ He}^{2+} \text{ ions in CH}_4, \text{ C}_2\text{H}_4, \text{ and C}_2\text{H}_6 \text{ have}$ revealed significantly different patterns of behavior. However, in spite of the large number of possible nondissociative and dissociative product channels associated with a wide spread in energy defects ΔE , all three cases confirm the highly selective nature of the electron capture process leading to a very limited number of product states $He^+(n,l)$. In the case of He²⁺ ions in CH₄, while nondissociative electron capture into the $He^+(n=2)$ state is dominant at the highest energies considered, at low energies $He^+(n=1)$ formation through exothermic channels is dominant. This behavior is similar to our previous observations [2] of one-electron capture by slow He²⁺ ions in CO. The present TES results for He²⁺ ions in C₂H₄ exhibit a very different behavior with $He^+(n=2)$ as the main product ion arising through a variety of different dissociative and nondissociative channels. Dissociative channels of small exothermicity are found to provide the main charge transfer contribution at the lowest energies. Our TES results for He^{2+} ions in C_2H_6 also identify $He^+(n)$ =2) as the main product ion. This arises from both dissociative and nondissociative channels but, unlike C_2H_4 , electron capture at low energies takes place predominantly through endothermic capture channels.

ACKNOWLEDGMENTS

This work was supported by the International Research Centre for Experimental Physics (IRCEP) and also forms part of the LEIF (HPRI-CT-1999-40012) and European Community Framework 5 Thematic Network on Low Energy Ion Facilities. One of us (B.S.) is indebted to the IRCEP for partial financial support. We are also grateful to Dr. R. Hoekstra and his collaborators at the KVI Institute, Groningen, The Netherlands for providing us with useful data for the He²⁺-CH₄ one-electron capture process at 2 keV amu⁻¹.

- J. M. Hodgkinson, T. K. Mclaughlin, and R. W. McCullough, J. Phys. B 28, L393 (1995).
- [2] D. M. Kearns, D. R. Gillen, D. Voulot, J. B. Greenwood, R. W. McCullough, and H. B. Gilbody, J. Phys. B 35, 4335 (2001).
- [3] D. M. Kearns, R. W. McCullough, R. Trassl, and H. B. Gilbody, J. Phys. B 36, 3653 (2003).
- [4] T. E. Cravens, Geophys. Res. Lett. 24, 105 (1997).
- [5] C. F. Maggi, I. D. Horton, and H. P. Summers, Plasma Phys. Controlled Fusion 42, 669 (2000).
- [6] F. L. Tabares, D. Tafalla, I. Tanarrow, V. J. Herrero, A. Islayaikin, and C. Mafiotte, Plasma Phys. Controlled Fusion 44, L37 (2002).
- [7] D. M. Kearns, R. W. McCullough, and H. B. Gilbody, J. Phys.

- B **34**, 3401 (2002).
- [8] C. R. Brundle and M. B. Robin, J. Chem. Phys. 53, 2196 (1970).
- [9] G. Dujardin, D. Winkoun, and S. Leach, Phys. Rev. A 31, 3027 (1985).
- [10] J. W. Rabalais, T. Bergmark, L. O. Werme, L. Karlsson, and K. Siegbahn, Phys. Scr. 3, 13 (1971).
- [11] J. E. Pollard, D. J. Trevor, J. E. Reutt, Y. T. Lee, and D. A. Shirley, J. Chem. Phys. 81, 5302 (1984).
- [12] R. A. Mackie, A. M. Sands, S. W. J. Scully, D. M. P. Holland, D. A. Shaw, K. F. Dunn, and C. J. Latimer, J. Phys. B 35, 1061 (2002).
- [13] R. Hoekstra (private communication)