Part I INTRODUCTION

INTRODUCTION TO DIFFERENTIAL GEOMETRY

1.1 DIFFERENTIABLE MANIFOLDS

Roughly speaking, a manifold is a topological space that, locally, looks like the Euclidean space \mathbb{R}^n . This similitude is essential, and will let us control the manifold as if we were working in the Euclidean space; generally, its properties will be proved using the known properties of \mathbb{R}^n .

The following definition specifies the formal concept of a topological manifold:

Definition 1 (N-dimensional topological manifold) Let Mⁿ be an n-dimensional topological space. The space Mⁿ is called a topological manifold if the following properties are satisfied:

- 1. M^n is locally homeomorphic to \mathbb{R}^n .
- 2. Mⁿ is a Hausdorff space.
- 3. Mⁿ has a countable topological basis.

The first property states that, for every point $p \in M^n$, there exists an open neighbourhood $U \subset M^n$ of p and a homeomorphism

$$h: U \rightarrow V$$

with $V \subset \mathbb{R}^n$ an open set.

The Hausdorff property has to be added, as the local homeomorphism does not imply this topological characteristic. The usual counterexample is the line with two origins: let $M = \mathbb{R} \cup p$ be the union of the real line and a point $p \notin \mathbb{R}$. Define a topology in this space with $\mathbb{R} \subset M$ as an open set and the neighbourhoods of p being the sets $(U \setminus \{0\}) \cup \{p\}$, where U is a neighbourhood of $0 \in \mathbb{R}$. This space is locally Euclidean but not Hausdorff: the intersection of any two neighbourhoods of the points $0 \in \mathbb{R}$ and p is non-empty.

The last property will prove to be key in our study, as it will let us define metrics on the manifold.

1.1.1 Charts

Definition 2 (Coordinate chart) A coordinate chart —or coordinate system— in a topological manifold M^n is a homeomorphism $h\colon U\to V$ from an open subset of the manifold $U\subset M$ onto an open subset of the Euclidean space $V\subset \mathbb{R}^n$.

We call U a coordinate neighbourhood in M.

Definition 3 (Coordinate atlas) Let

$$A = \{h_{\alpha} \colon U_{\alpha} \to V_{\alpha}/\alpha \in I\}$$

be a set of coordinate charts in a topological manifold M^n , where I is a family of indices and the open subsets $U_{\alpha} \subset M$ are the corresponding coordinate neighbourhoods.

A is said to be an atlas of M if every point is covered with a coordinate neighbourhood; i.e., if $\bigcup_{\alpha \in I} U_{\alpha} = M$.

1.1.2 Differentiable structures

Definition 4 (Transition map) Let M^n be a manifold and (U, φ) , (V, ψ) a pair of coordinate charts in M^n with overlapping domains

$$U\cap V\neq\emptyset$$

The homeomorphism between the open sets of the Euclidean space \mathbb{R}^n

$$\psi \circ \varphi^{-1} \colon \varphi(U \cap V) \to \psi(U \cap V)$$

is called a transition map.

We say that both charts overlap smoothly if $\psi \circ \varphi^{-1}$ is a homeomorphism or the This transition map is said to be smooth if the sets are

Definition 5 (Smooth overlap) Two charts (U, φ) , (V, ψ) are said to overlap smoothly if their domains are disjoint —i.e., if $U \cap V = \emptyset$ — or if the transition map $\psi \circ \varphi^{-1}$ is a diffeomorphism.

Definition 6 (Smooth coordinate atlas)

Definition 7 (Maximal atlas)

Proposition 8 (Maximal atlas uniqueness)

Definition 9 (Differentiable structure)

Definition 10 (Differentiable manifold)