## Copyright Notice

These slides are distributed under the Creative Commons License. DeepLearning.Al makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite DeepLearning.Al as the source of the slides. For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

## Week 3 Air Quality in Bogotá Colombia

# W3 Lesson 1 Designing and Implementing Your Air Quality Project

## Al and Public Health



# Air Quality Design and Implement Phases

## Al for Good framework

Deploy

**Explore** 

Design

Implement

Evaluate

- 1.Prototype your solution
- 2.Ensure data privacy
- 3.Design the user experience

## Temporal change of PM2.5



#### Pollutant correlation

**NOX & NO: 0.95** 

PM10 & PM2.6: 0.8

CO & NOX: 0.73



## Some factors that affect pollution levels



Hour of day



Day of week



Location

## Temporal change



## Baseline model



#### Station SUB PM2.5 / hour



## Baseline model: Last value





#### Baseline model: Last value





### Baseline model: Nearest station





#### **Last value**

Past measurement, same location

#### **Nearest station**

Current measurement, different location

## Al and Public Health



## Air Quality Establish a Baseline

## Al and Public Health



# Air Quality Train and Test a Neural Network

## Observing patterns in the data

#### Station SUB avg. PM2.5/hour



Hour of day

#### Station SUB avg. PM2.5/day



Day of week

## Observing patterns in the data

NO2 vs. OZONE (color indicates density of points)



## Correlations between different pollutants





#### **Hidden Layers**



#### **Hidden Layers**





#### **Hidden Layers**



#### **Hidden Layers**



#### **Baseline Model**

Nearest station model

#### **Neural Network Model**

- Station location
- Time of day
- Day of the week
- Other pollutant values

## Al and Public Health



## Air Quality Nearest Neighbor Method



#### Nearest neighbor







#### Nearest neighbor

## K-Nearest Neighbor (kNN)



K-nearest neighbor (KNN)

## K-Nearest Neighbor (kNN)



$$\frac{10 + 16 + 11 + 8}{4} = 11.25$$

## K-Nearest Neighbor (kNN)



$$10 + 16 + 11 + 8$$

#### Inverse distance weighting

$$weight = rac{1}{d^2}$$

## Al and Public Health



## Air Quality Design Phase Checkpoint



- How will you address issues with imbalances, biases, privacy, or other concerns with your data?
- What kind of model will you implement, and how will you measure its performance?
- How will your design address the problem you set out to work on?
- How will the end user interact with your system?

## Design phase checkpoint





◆ How will you address issues with imbalances, biases, privacy, or other concerns with your data? ✓



- What kind of model will you implement, and how will you measure its performance?
- How will your design address the problem you set out to work on?
- How will the end user interact with your system?

Design phase checkpoint



- How will you address issues with imbalances, biases, privacy, or other concerns with your data?
- What kind of model will you implement, and how will you measure its performance?

## Design phase checkpoint





"Public health professionals working with the city of Bogotá need to be able to provide **real time estimates of air quality** throughout the city so that citizens can be aware of any health risks due to poor air quality and plan their outdoor activities accordingly."

### Checkpoint

- How will you address issues with imbalances, biases, privacy, or other concerns with your data? ➤
- What kind of model will you implement, and how will you measure its performance?
- How will your design address the problem you set out to work on?
- How will the end user interact with your system?



- How will you address issues with imbalances, biases, privacy, or other concerns with your data?
- What kind of model will you implement, and how will you measure its performance?
- How will your design address the problem you set out to work on?
- How will the end user interact with your system?

## Al and Public Health



# Air Quality Implement Phase



## Al and Public Health



# Air Quality Project Wrap Up



- Is your model performance acceptable?
- Are end users able to successfully use your system?

## Is your model performance acceptable?







- 1.Measure project impact
- 2.Communicate results
- 3.Determine next steps



#### **Explore**

### Design

#### Implement

#### Evaluate

- 1.Engage stakeholders
- 2.Define the problem
- 3.Determine if Al could help

- 1.Prototype your solution
- 2.Ensure data privacy
- 3.Design the user experience

- 1.Productionize AI models
- 2.Integrate the user experience
- 3.Test with end users

- 1.Measure project impact
- 2.Communicate results
- 3.Determine next steps



#### **Explore**

Design

mplement

Evaluate

- 1.Engage stakeholders
- 2.Define the problem
- 3.Determine if Al could add value









#### **Explore**

- 1.Engage stakeholders
- 2.Define the problem
- 3.Determine if Al could add value

"Public health professionals working with the city of Bogotá need to be able to provide **real time estimates of air quality** throughout the city so that citizens can be aware of any health risks due to poor air quality and plan their outdoor activities accordingly."



## Explore

1.Engage stakeholders

2.Define the problem

3.Determine if Al could add value

| B:B |       | PM2.5 |        |        |        |         |        |         |                  |
|-----|-------|-------|--------|--------|--------|---------|--------|---------|------------------|
|     | А     | В     | С      | D      | Е      | F       | G      | Н       | Ĺ                |
| 1   | PM10  | PM2.5 | NO     | NO2    | NOX    | CO      | OZONO  | Station | DateTime         |
| 2   | 56.6  | 32.7  | 7.504  | 15.962 | 23.493 | 0.44924 | 2.431  | USM     | 01-01-2021 1:00  |
| 3   | 59.3  | 39.3  | 16.56  | 17.866 | 34.426 | 0.69832 | 1.121  | USM     | 01-01-2021 2:00  |
| 4   | 96.4  | 70.8  | 22.989 | 17.802 | 40.791 | 0.88243 | 1.172  | USM     | 01-01-2021 3:00  |
| 5   | 108.3 | 81    | 3.704  | 9.886  | 13.591 | 0.29549 | 6.565  | USM     | 01-01-2021 4:00  |
| 6   | 87.7  | 56.1  | 2.098  | 9.272  | 11.371 | 0.16621 | 9.513  | USM     | 01-01-2021 5:00  |
| 7   | 74.4  | 38.6  | 2.249  | 11.064 | 13.313 | 0.22534 | 5.466  | USM     | 01-01-2021 6:00  |
| 8   | 60.4  | 27.2  | 11.49  | 14.675 | 26.165 | 0.41357 | 2.467  | USM     | 01-01-2021 7:00  |
| 9   | 51.9  | 29.5  | 5.864  | 7.348  | 13.212 | 0.20784 | 10.8   | USM     | 01-01-2021 8:00  |
| 10  | 38.1  | 21.6  | 3.506  | 4.266  | 7.773  |         | 17.161 | USM     | 01-01-2021 9:00  |
| 11  | 28.9  | 23.1  | 4.343  | 3.866  | 8.209  |         | 19.674 | USM     | 01-01-2021 10:00 |
| 12  | 22    | 17.5  | 5.878  | 4.03   | 9.907  |         | 19.842 | USM     | 01-01-2021 11:00 |
| 13  | 20.9  | 12.3  | 1.98   | 2.529  | 4.509  |         | 20.958 | USM     | 01-01-2021 12:00 |
| 14  | 18.9  | 9.8   | 1.095  | 1.979  | 3.075  |         | 21.33  | USM     | 01-01-2021 13:00 |
| 15  | 17    | 7.7   | 3.625  | 3.536  | 7.161  |         | 19.957 | USM     | 01-01-2021 14:00 |
| 16  | 14.1  | 6.3   | 6.586  | 6.544  | 13.131 |         | 18.004 | USM     | 01-01-2021 15:00 |
| 17  | 10.6  | 5.1   | 9.439  | 8.191  | 17.63  |         | 16.753 | USM     | 01-01-2021 16:00 |
| 18  | 20.2  | 4     | 6.055  | 5.69   | 11.745 |         | 16.814 | USM     | 01-01-2021 17:00 |
| 19  | 24.2  | 7.2   | 10.031 | 9.301  | 19.332 |         | 13.337 | USM     | 01-01-2021 18:00 |

## Pollutant correlation

**NOX & NO: 0.95** 

PM10 & PM2.6: 0.8

CO & NOX: 0.73



## Some factors that affect pollution levels



Hour of day



Day of week



Location





Explore

## Design

- 1.Prototype your solution
- 2.Ensure data privacy
- 3.Design the user experience





Implement

Evaluate

Deploy

- 1.Productionize Al models
- 2.Integrate the user experience
- 3.Test with end users

## Al and Public Health



# Project Spotlight: Air pollution in South Africa - Tapiwa Chiwewe

## Air pollution

**6.7 million**premature deaths annually

98% of urban areas don't meet accepted quality standards

1\$ invested = 30\$ benefit

## Guidelines for success

1. Could AI add value? Where and how specifically?



## Guidelines for success

1. Could AI add value? Where and how specifically?



2. Build on existing Infrastructure



## Guidelines for success

1. Could AI add value? Where and how specifically?



2. Build on existing Infrastructure



3. Collaborate for success



## Al and Public Health



## Course 1 Wrap Up



#### **Explore**

#### Design

#### Implement

#### Evaluate

- 1.Engage stakeholders
- 2.Define the problem
- 3.Determine if Al could add value

- 1.Prototype your solution
- 2.Ensure data privacy
- 3.Design the user experience

- 1.Productionize Al models
- 2.Integrate the user experience
- 3.Test with end users

- 1.Measure project impact
- 2.Communicate results
- 3.Determine next steps