24. Rozloučení s analytickou geometrií

Úloha 1. Mějme parabolu r danou rovnicí $-2(x+1) = (y-1)^2$. Nalezněte tečny k r z bodu B[3;2].

Úloha 2. Stejné r a B jako v Úloze 1, ale nyní se mají najít všechny přímky procházející B, které mají s r právě jeden společný bod.

Úloha 3. Kružnice k má střed v počátku a poloměr 1. Parabola r má za osu souměrnosti osu x, její ohnisko je "vpravo" od vrcholu a její parametr je $\frac{1}{2}$; určete souřadnice jejího vrcholu tak, aby měla s k společné právě dva body.

Úloha 4. V závislosti na parametru $t\in\mathbb{R}$ rozhodněte, o jaký geometrický útvar se jedná: (a) $x^2+y^2=t$, (b) $x^2+ty^2=1$, (c) $x^2+tx+y^2=1$, (d) $x^2-y^2-ty=1$.

Úloha 5. Určete obecnou rovnici roviny, která prochází body [3;0;0], [0;2;0] a [0;0;4]. Napadne vás rychlá metoda, jak to určovat, pokud máte zadány body ležící na osách?

Úloha 6. Vypočítejte vzdálenost bodu M[3;-1;4] od přímky AB, kde A[0;2;1], B[1;3;0].

Úloha 7. Najděte obecnou rovnici roviny, která prochází bodem A[1;-2;4] a je kolmá na roviny $\varrho\colon 2x+y-3z+7=0,\ \sigma\colon x-2y-z+4=0.$

Úloha 8. Ukažte na příkladu, že vektorový součin není asociativní, tj. nalezněte tři vektory \mathbf{u} , \mathbf{v} , \mathbf{w} , které budou splňovat ($\mathbf{u} \times \mathbf{v}$) × $\mathbf{w} \neq \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$.

Úloha 9. Dokažte, že vzdálenost dvou (nezbytně rovnoběžných) přímek v rovině, jejichž obecné rovnice jsou $p: ax + by + c_1 = 0$ a $q: ax + by + c_2 = 0$, je dána vztahem

$$\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}.$$

- \star Úloha 10. Rovnice $x^2-x-2xy+y^2-y=0$ popisuje určitou parabolu. Zkuste odhadnout, jak vypadá, a určit její parametr. (Nápověda: Všimněte si určité symetrie.)
- * Úloha 11. Spočtěte objem toru, jehož "roura" má poloměr 1 a poloměr prázdné části je rovněž
 1. (Nápověda: Jde o "rozdíl" dvou rotačních těles.)

- **1.** x 2y + 1 = 0 v bodě [-3; -1] a x + 4y 11 = 0 v bodě [-9; 5]
- **2.** kromě těch dvou tečen to je ještě y=2
- **3.** $\left[-\frac{5}{4}; 0\right]$ a pak všechny [s; 0], kde $s \in (-1; 1)$
- **4.** (a) t > 0: kružnice, t = 0: bod, t < 0: prázdná množina (b) t < 0: hyperbola, t = 0: dvě rovnoběžné přímky, t > 0: elipsa (pro t = 1 kružnice) (c) vždy jde o kružnici (d) $t \in \{-2; 2\}$: dvě různoběžné přímky, $t \notin \{-2; 2\}$: hyperbola
- 5. $\frac{1}{3}x + \frac{1}{2}y + \frac{1}{4}z 1 = 0$, z čehož je ta metoda snad vidět
- **6.** $2\sqrt{6}$
- 7. x + y + 2z 2 = 0
- 8. např. $\mathbf{u} = \mathbf{v} = \mathbf{e}_1$, $\mathbf{w} = \mathbf{e}_2$
- 9. vzdálenost p a q lze spočítat jako vzdálenost libovolného bodu q od p; vezmeme-li libovolný bod $B[x_0;y_0]$ ležící na q, pak jeho vzdálenost od p je dána vztahem $\frac{1}{\sqrt{a^2+b^2}}|ax_0+by_0+c_1|$, ovšem $ax_0+by_0=-c_2$, protože $B\in q$
- 10. jde o parabolu s vrcholem v počátku, která je symetrická podle osy y=x, parametr je $\frac{\sqrt{2}}{4}$ 11. $4\pi^2$