Introdução ao DNS

Volnys Borges Bernal volnys@lsi.usp.br

Laboratório de Sistemas Integráveis http://www.lsi.usp.br/

Agenda

- □ Serviço DNS
- □ Funcionamento básico
- □ Espaço de nomes
- □ Resolver
- □ Caching
- □ Requisição DNS

- □ "Domain Name System"
- □ Serviço que permite a resolução de nomes ou endereços IP, ou seja, tradução:
 - ❖ nome -> IP
 - ❖ IP → nome (opcional)
- Serviço necessário para todos computadores que utilizam a Internet
- □ Protocolo DNS
 - ❖ RFC 1034 Domain Names Concepts and Facilities
 - RFC 1035 Domain Names Implementation and Specification

□ Existem dois tipos de entidades:

- * "Resolver"
 - Entidade cliente
 - Realiza requisições para de resolução de nome ou endereço
- ❖ "Name Server"
 - Entidade servidora
 - Responde às requisições de resolução de nome ou endereço

□ Resolver e Servidor DNS

- □ Parece um serviço simples, mas é complexo:
 - Base de dados distribuída pelo mundo
 - Diversos tipos de interações:
 - Resolver → Servidor DNS
 - Servidor DNS → Servidor DNS

□ Cliente (resolver) requisita tradução ao Servidor DNS

 □ Se o Servidor não souber, requisita tradução a outro Servidor DNS

□ Programa nslookup

- Programa de teste do serviço DNS
- Faz o papel de um "resolver" (cliente DNS)

```
# nslookup
Default Server: localhost.intranet
Address: 127.0.0.1

> www.uol.com.br
Server: localhost.intranet
Address: 127.0.0.1

Name: www.uol.com.br
Addresses: 200.221.8.17, 200.221.8.18, 200.221.8.16

> exit
#
```


□ Árvore de nomes da Internet

- Semelhante a uma hierarquia de arquivos
 - Exemplo: "apolo.lsi.usp.br"

□ Nome

- Absoluto ou "Full-qualified domain name" (FQDN)
 - apolo.lsi.usp.br.
 - (observe o ponto ao final!)

Relativo

- apolo
- apolo.lsi
- apolo.lsi.usp
- apolo.lsi.usp.br

□ Restrições

- Um nó não pode ter dois nós filhos com o mesmo nome
- Nomes são de no máximo de 63 bytes
- * Caracteres válidos: "A"-"Z" "a"-"z" "0"-"9" "." "-"

zona Isi.usp.br.

□ Top Level Domain (TLD)

- Coutry Code Top Level Domain (ccTLD)
 - Relação de códigos paises
 - .br, .uk, .de,
 - http://www.iana.org/cctld/cctld-whois.htm
- Generic Top Level Domains (gTLD)
 - .aero, .biz, .com, .coop, .edu, .gov, .info, .int, .mil, .museum, .name, .net, .org, .pro
 - http://www.iana.org/gtld/gtld.htm
- Domínios de infra-estrutura
 - .arpa
 - http://www.iana.org/arpa-dom/

- □ Domínios ".br"
 - Domínio de Primeiro Nível (DPN)
 - Instituições (pessoa jurídica)
 - o agr.br, art.br, edu.br, com.br, esp.br, mil.br,
 - Profissionais liberais
 - adv.br, arq.br, eng.br,
 - Pessoas físicas
 - o .nom.br
 - ❖ Relação completa em:
 - http://registro.br/info/dpn.html

□ Tipos de domínios

- Domínios diretos
 - Utilizados para mapeamento de
 - o Nome → endereço IP
- Domínios reversos
 - Utilizados para mapeamento de
 - o Endereço IP → Nome

□ Resolução reversa de 200.100.50.35:

❖ 35.50.100.200.in-addr.arpa → www.xyz.com.br

- (1) Utilize o utilitário "nslookup" para descobrir ...
 - (a) O endereço associado ao nome DNS www.uol.com.br
 - Se necessário utilize o subcomando "set query=a" (address)
 - (b) O nome associado ao endereço IP 143.107.161.161
 - Informe diretamente
 - o 143.107.161.161 ou
 - o 161.161.107.143.in-addr.arpa

- (c) Os servidores DNS associados ao domínio "lsi.usp.br"
 - Utilize o subcomando "set query=ns" (name server)
- (d) As informações a respeito do mapa principal do domínio "lsi.usp.br"
 - Utilize o subcomando "set query=soa" (start of authority)
- (d) Os servidores SMTP do domínio "lsi.usp.br"
 - Utilize o subcomando "set query=mx" (mail exchange)

(2) Utilize o utilitário "host" para descobrir ...

- (a) O endereço associado ao nome www.uol.com.br
 - host www.uol.com.br
- (b) O nome associado ao endereço IP 143.107.161.161
 - host 143.107.161.161
- (c) Os servidores DNS associados ao domínio "lsi.usp.br"
 - host -t ns lsi.usp.br
- (d) As informações a respeito do mapa principal do domínio "lsi.usp.br"
 - host -t soa lsi.usp.br
- (d) Os servidores de e-mail do domínio "lsi.usp.br"
 - host -t mx lsi.usp.br

Resolver

Resolver

□ Cliente DNS

 Na prática, o resolver é uma biblioteca agregada à aplicação que é responsável pela interação com o servidor DNS para tradução de nomes

 O "resolver" deve ser configurado em cada maquina

28

□ Informações necessárias para configurar um resolver:

- nameservers:
 - Servidores DNS que o computador deve contactar
 - deve ser especificado o endereço de dois servidores DNS
 - geralmente os servidores mais próximos
- domain:
 - Domínio ao qual o nome do computador pertence
- search
 - Lista de domínios ao qual o nome deve ser procurado
 - Exemplo: "search Isi.usp.br intranet".
 - Em uma tradução do nome "terra", será tentado primeiro "terra.lsi.usp.br" e em seguida "terra.intranet"

Caching

Caching

- Utilizado para diminuir o tempo de resposta de uma requisição ao servidor DNS
- □ *Time-to-Live* (TTL)
 - Define o tempo de vida de uma entrada no cache de nomes
- □ Importância
 - Uma tradução ip-nome pode demorar muito tempo.
 - * Se já estiver no cache, retorna imediatamente

□ Requisição Recursiva

- Normalmente gerada pelo "resolver"
- Obriga o servidor retornar a resposta ou erro (se não encontra-la)
- Para isso, o servidor pode necessitar consultar
 - cache
 - outros servidores de nomes
- Mais complexa de ser tratada

- □ Requisição Interativa (ou não recursiva)
 - O servidor consulta sua base de dados (inclusive o cache) para poder responder.
 - Não ativa outros servidores de nomes na tentativa de achar a resposta
 - Se não puder responder, procura indicar um servidor de nomes que possa ter a informação requisitada

Servidores DNS

"Root Name Servers"

- Servidores Interativos que respondem requisições sobre servidores de nomes do primeiro nível da árvore
- Quando um servidor local não consegue resolver uma determinada requisição esta é repassada a um "Root Name Server"
- Existem vários "Root Name Servers" espalhados pelo mundo (se todos falharem todas as resoluções na Internet irão falhar)
- Todos servidores DNS devem possuir uma lista atualizada de todos os "Root Name Servers"

Root name servers

□ Existem 13 servidores DNS raiz nomeados de:

- a.root-servers.net
- b.root-servers.net
- *****
- m.root-servers.net

nslookup

```
> set q=ns
                         internet address = 193.0.14.129
K. ROOT-SERVERS. NET
                         internet address = 198.32.64.12
L. ROOT-SERVERS. NET
                         internet address = 202.12.27.33
M.ROOT-SERVERS.NET
                         internet address = 192.36.148.17
I ROOT-SERVERS NET
                         internet address = 192.203.230.10
E.ROOT-SERVERS.NET
                         internet address = 128.8.10.90
D. ROOT-SERVERS, NET
A. ROOT-SERVERS. NET
                         internet address = 198.41.0.4
                         internet address = 128.63.2.53
H. ROOT-SERVERS. NET
                         internet address = 192.33.4.12
C.ROOT-SERVERS.NET
                         internet address = 192.112.36.4
G. ROOT-SERVERS, NET
                         internet address = 192.5.5.241
F. ROOT-SERVERS. NET
B. ROOT-SERVERS, NET
                         internet address = 128.9.0.107
                         internet address = 192.58.128.30
J. ROOT-SERVERS, NET
```

Servidor	Operador	Localização
Α	Verisign	EUA
В	Information Sciences Institute	EUA
С	Cogent Communications	EUA
D	University of Maryland	EUA
E	NASA Ames Research Center	EUA
F	Internet Software Consortium	Mundo
G	U.S. DOD Network Information Center	EUA
Н	U.S Army Research Lab	EUA
I	Autonomica	Europa
J	VeriSign Global Registry Services	EUA
K	Reseaux IP Europeens – Network Coordination Centre	Europa
L	Internet Corporation for Assigned Names and Numbers	EUA
М	WIDE Project	Japão

□ Problemas

- Protocolo DNS permite somente 13 "root name servers"
 - Como disponibilizar servidores DNS espalhados em cada continente?
- Disponibilidade do serviço
 - Quanto mais próximo um servidor DNS raíz, menor a indisponibilidade do serviço
- Latência de resolução
 - Quanto mais próximo um servidor DNS raíz, menor a latência de resolução

□ f.root-servers.net

- Conjunto de servidores DNS
- Distribuídos pelo mundo
- Endereço
 - IPv4 = 192.5.5.241
 - IPv6 = 2001:500::1035
- Serviço roteado por "anycast"
- Maiores detalhes:
 - http://f.root-servers.org/

Auckland	Nova Zelandia	
São Paulo	Brasil	
Hong Kong	China	
Joanesburgo	Africa do Sul	
Los Angeles	EUA	
Nova York	EUA	
Madri	Espanha	
Palo Alto	EUA	
Beijing	China	
Roma	Italia	
Seul	Coreia	
São Francisco	EUA	
San Jose	EUA	
Moscow	Russia	
Otawa	Canada	

Root name servers

□ 20/08/2003

- Disponibilizado o primeiro servidor DNS raiz na América Latina.
- Localização: São Paulo
- Mantido por: registro.br
- Réplica do "f.root-servers.net" mantido pela ISC (Internet Software Consortium, Inc)
- Anúncio:
 - http://www.isc.org/ISC/news/pr-08202003.html
- Vantagens
 - Maior disponibilidade do serviço DNS
 - Menor latência de resolução

□ Anycast

- Forma de roteamento de supernet no backbone da Internet
- www.isc.org/tn/isc-tn-2003-1.html

Referências

Referências

□ Livros:

❖ DNS and BIND

Albitz, P; Liu, Cricket.

O'Reilly & Associates, Inc

Internet Security - Professional Reference

Autikns, Derek et. all

New Riders

□ Artigos:

Name Server Operations Guide for BIND, release 4.9.5.
Vixie, Paul.

Referências

□ Internet RFC's:

- RFC 1034 Domain Names Concepts and Facilities
- RFC 1035 Domain Names Implementation and Specification
- RFC 1033 Domain Administrator Guide
- ❖ RFC 1713 Tools for DNS debugging

□ Sites:

www.isc.org/