<u>CLAIMS</u>

1. A coating thickness measuring instrument having a first mode of
operation in which the instruments operative to make measurements with a first
resolution and a second mode of operation in which the instrument is operative to
make measurements with a second resolution, the first resolution being greater than
the second resolution

- 2. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range and when the instrument is in the second mode, the instrument is operative to make measurements in a second range.
- 3. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range at a high resolution and when the instrument is in the second mode, the instrument is operative to make measurements in a second range at a lower resolution, the second range being longer than the first range.
- 4. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range and when the instrument is in the second mode, the instrument is operative to make measurements in a second range, such that the first range and the second range overlap.
- 5. The instrument of claim 1, further including an inductive probe comprising a drive coil, and two pickup coils.
 - 6. The instrument of claim 1, further including an inductive probe comprising a drive coil and two pickup coils; and

	1	a m	leans to drive an alternating current of substantially constant
	2	amplitude in the dr	ive coil.
1	1	7. The	instrument of claim 1, further including:
20	2	an i	nductive probe comprising a drive coil and two pickup coils; and
יעט	3	a m	neans to drive an alternating current of substantially constant
	4	amplitude in the dr	ive coil;
	5	whe	erein the means to drive an alternating current comprises an
	6	oscillator and asso	ciated control loop circuit arranged to control the oscillator in
ŧ	7	dependence upon c	urrent flowing in the drive coil.
	1	8. The	instrument of claim 1, further including:
	2	an i	nductive probe comprising a drive coil and two pickup coils; and
	3	a m	leans to drive an alternating current of substantially constant
	4	amplitude in the dr	ive coil; and
	5	a me	eans for varying the amplitude of alternating current flowing in the
	6	drive coil;	
	7	whe	rein the means to drive an alternating current comprises an
	8	oscillator and asso	ciated control loop circuit arranged to control the oscillator in
	9	dependence upon c	urrent flowing in the drive coil.
	1	9. The	instrument of claim 8, wherein the means for varying the
	2	amplitude comprise	es a digitally controlled potentiometer.
	1	10. The	instrument of claim 1, further including:
	2	an i	nductive probe comprising a drive coil and two pickup coils; and
	3	ame	eans for sensing variation in coupling between the drive and pickup
	4	coils and convertin	g the variation in coupling to a thickness value.

,	1
Clary.	,2
	3
Ch,	4
	5
	6
	1
	2
3	3

11. The instrument of claim 1, further including:
an inductive probe comprising a drive coil and two pickup coils; and
a means for sensing variation in coupling between the drive and pickup
coils and converting this to a thickness value;

wherein said means for sensing comprises a differential amplifier, means for rectifying the output of the pickup coils and an analog to digital converter.

12. The instrument of claim 1, further including:

an inductive probe comprising a drive coil and two pickup coils; and a means for sensing variation in coupling between the drive and pickup coils and converting the variation in coupling to a thickness value, said means for sensing comprising a differential amplifier, means for rectifying the output of the pickup coils and an analog to digital converter;

wherein the means for rectifying comprises a synchronous detector controlled by a synchronizing signal derived from the means to drive an alternating current in the drive coil.

13. The instrument of claim 1, further including:
an inductive probe comprising a drive coil and two pickup coils; and
a means to modify the amplitude of current flowing in the drive coil
in dependence upon output from the pickup coils.

14. The instrument of claim 1, further including:

an inductive probe comprising a drive coil and two pickup coils; and a means to modify the amplitude of current flowing in the drive coil in dependence upon output from the pickup coils;

wherein the means to modify the amplitude comprises a control loop arranged to reduce the amplitude of current supplied to the drive coil as differential output of the pickup coils increases.

	7	15.	The instrument of claim 1, further including.
	2		an inductive probe comprising a drive coil and two pickup coils;
	3		a means to modify the amplitude of current flowing in the drive coil
	4	in dependenc	e upon output from the pickup coils; and
	5		a switch to enable the control loop to be switched in and out of
	6	operation, in	order to switch the instrument between the first and second modes;
	7		wherein the means to modify the amplitude comprises a control loop
	8	arranged to re	educe the amplitude of current supplied to the drive coil as differential
D9900750 .ozoso:	9	output of the	pickup coils increases.
9 0			·
= ~	1	16.	The instrument of claim 1, comprising:
U	2		a microprocessor; and
D a	3		a memory, the memory being operative to store look-up tables for both
-	4	long and shor	rt range modes of operation and the microprocessor being operative to
	5	generate a co	ating thickness value using one of the look-up tables.
!! 6 -			
	1	17.	A doating thickness measuring instrument, comprising:
\	2		an inductive probe having a drive coil and a pickup coil;
RI	3		a means for driving an alternating current in the drive coil;
•	4		a means for detecting the output of the pickup coil; and
	5		a means for modifying the current in the drive coil in dependence upon
	6	the output of	the pickup coil.
	1	18.	The instrument of claim 17, wherein the means for modifying the
	2	current in the	drive coil comprises a control logp which is switchable in and out of
	3	operation to p	provide two modes of operation for the instrument.
			, , , , , , , , , , , , , , , , , , ,

		1	19. The instrument of claim 18, wherein the means for modifying the		
SAN		2	current in the drive coil comprises a first control loop which is switchable in and out		
	\ /	3	of operation to provide two modes of operation for the instrument and wherein the		
	La la	4	means for driving a current in the drive coil comprises a second control loop arranged		
'	J)	5	to maintain the amplitude of current in the drive coil at a substantially constant level.		
ogsopa, agansul					
		1	20. The instrument of claim 17, wherein the means for modifying the		
		2	current in the drive coil comprises a first control loop which is switchable in and out		
		3	of operation to provide two modes of operation for the instrument and wherein the		
		4	means for driving comprises an amplitude controlled oscillator and the first control		
		5	loop is implemented by a current to voltage rectifier, a low pass filter and an error		
	·	6	amplifier.		
U C					
5		1	21. The instrument of claim 17, wherein the means for modifying is		
	AL	2	arranged to modify the input to the error amplifier and the amplitude of the current in		
	•	3	the drive coil.		
- Paris		1	22. The instrument of claim 17, wherein the means for detecting the output		
		2	of the pickup coil comprises a synchronous detector.		

Addi