

# HiPerFET™ Power MOSFETs

IXFK / IXFN 44 N50 IXFK / IXFN 48 N50

| $oldsymbol{V}_{	exttt{DSS}}$ | <b>I</b> <sub>D25</sub> | R <sub>DS(on)</sub> |  |  |  |
|------------------------------|-------------------------|---------------------|--|--|--|
| 500 V                        | 44 A                    | 0.12 Ω              |  |  |  |
| 500 V                        | 48 A                    | 0.12 Ω<br>0.10 Ω    |  |  |  |
| t <sub>rr</sub> ≤ 250 ns     |                         |                     |  |  |  |

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t,

| Symbol                      | Test Conditions                                                                                                                                                          | Maximur<br>IXFK | n Rating         |                        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------------|
| V <sub>DSS</sub>            | T <sub>_1</sub> = 25°C to 150°C                                                                                                                                          | 500             | 500              | V                      |
| V <sub>DGR</sub>            | $T_J = 25^{\circ}C$ to $150^{\circ}C$ ; $R_{GS} = 1 M\Omega$                                                                                                             | 500             | 500              | V                      |
| V <sub>gs</sub>             | Continuous                                                                                                                                                               | ±20             | ±20              | V                      |
| V <sub>GSM</sub>            | Transient                                                                                                                                                                | ±30             | ±30              | V                      |
| I <sub>D25</sub>            | $T_{\rm c} = 25^{\circ}{\rm C}$ 44N50<br>48N50                                                                                                                           | 44<br>48        | 44<br>48         | A<br>A                 |
| I <sub>DM</sub>             | $T_{\rm c} = 25^{\circ}$ C, 44N50<br>pulse width limited by $T_{\rm JM}$ 48N50                                                                                           | 176<br>192      | 176<br>192       | A<br>A                 |
| I <sub>AR</sub>             | $T_{c} = 25^{\circ}C$                                                                                                                                                    | 24              | 24               | Α                      |
| E <sub>AR</sub>             | $T_{c} = 25^{\circ}C$                                                                                                                                                    | 30              | 30               | mJ                     |
| dv/dt                       | $\begin{split} &I_{_{S}} &\leq I_{_{DM}},  di/dt \leq 100 \; A/\mu s,  V_{_{DD}} \leq V_{_{DSS}}, \\ &T_{_{J}} \leq 150 ^{\circ} C,  R_{_{G}} = 2 \; \Omega \end{split}$ | 5               | 5                | V/ns                   |
| $\overline{\mathbf{P}_{D}}$ | T <sub>C</sub> = 25°C                                                                                                                                                    | 500             | 520              | W                      |
| T                           |                                                                                                                                                                          | -55             | +150             | °C                     |
| T <sub>JM</sub>             |                                                                                                                                                                          |                 | 150              | °C                     |
| T <sub>stg</sub>            |                                                                                                                                                                          | -55             | +150             | °C                     |
| $T_L$                       | 1.6 mm (0.063 in) from case for 10 s                                                                                                                                     | 300             | -                | °C                     |
| V <sub>ISOL</sub>           | 50/60 Hz, RMS $t = 1 \text{ min}$<br>$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$                                                                                       | -               | 2500<br>3000     | V~<br>V~               |
| M <sub>d</sub>              | Mounting torque Terminal connection torque                                                                                                                               | 0.9/6           | 1.5/13<br>1.5/13 | Nm/lb.in.<br>Nm/lb.in. |
| Weight                      |                                                                                                                                                                          | 10              | 30               | g                      |

| Symbol              | <b>Test Conditions</b>                               | $(T_J = 25^{\circ}C, \text{ unless of} $<br>min. | <br>ristic Va<br>se speci<br>max. |          |
|---------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------|
| V <sub>DSS</sub>    | $V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ mA}$         | 500                                              |                                   | V        |
| $V_{GS(th)}$        | $V_{DS} = V_{GS}$ , $I_{D} = 8 \text{ mA}$           | 2                                                | 4                                 | V        |
| I <sub>GSS</sub>    | $V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$                 |                                                  | ±200                              | nA       |
| I <sub>DSS</sub>    | $V_{DS} = 0.8 \cdot V_{DSS}$<br>$V_{GS} = 0 V$       | T <sub>J</sub> = 25°C<br>T <sub>J</sub> = 125°C  | 400<br>2                          | μA<br>mA |
| R <sub>DS(on)</sub> | $V_{GS} = 10 \text{ V}, I_{D} = 0.5 \bullet I_{D25}$ | 44N50<br>48N50                                   | 0.12<br>0.10                      | Ω<br>Ω   |
|                     | Pulse test, $t \le 300 \mu s$ , duty                 | cycle d≤2%                                       |                                   |          |





Either Source terminal at miniBLOC can be used as Main or Kelvin Source

#### **Features**

- · International standard packages
- Molding epoxies meet UL94 V-0 flammability classification
- SOT-227B miniBLOC with aluminium nitride isolation
- Low  $R_{DS (on)}$  HDMOS<sup>TM</sup> process
- Unclamped Inductive Switching (UIS) rated
- · Fast intrinsic rectifier

#### **Applications**

- DC-DC converters
- Synchronous rectification
- · Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- Temperature and lighting controls

#### **Advantages**

- · Easy to mount
- · Space savings
- High power density



| Symbol                                                   |                                                                                                                                                      | Characteristic Values $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$ |      |                |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|----------------|
|                                                          | min.                                                                                                                                                 | typ.                                                                            | max. |                |
| g <sub>fs</sub>                                          | $V_{DS} = 10 \text{ V}; I_{D} = 0.5 \bullet I_{D25}, \text{ pulse test}$ 22                                                                          | 42                                                                              |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | $ V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz} $                                                                                   | 8400<br>900<br>280                                                              |      | pF<br>pF<br>pF |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub>    | $\begin{cases} V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 0.5 \bullet I_{D25} \\ R_{G} = 1 \Omega \text{ (External)}, \end{cases}$ | 30<br>60<br>100<br>30                                                           |      | ns<br>ns<br>ns |
| Q <sub>g(on)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub> | $ V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25} $                                                                     | 270<br>60<br>135                                                                |      | nC<br>nC<br>nC |
| $oldsymbol{R}_{	ext{thJC}} \ oldsymbol{R}_{	ext{thCK}}$  | TO-264 AA<br>TO-264 AA                                                                                                                               | 0.15                                                                            | 0.25 | K/W<br>K/W     |
| R <sub>thJC</sub><br>R <sub>thCK</sub>                   | miniBLOC, SOT-227 B<br>miniBLOC, SOT-227 B                                                                                                           | 0.05                                                                            | 0.24 | K/W<br>K/W     |

### Source-Drain Diode

Characteristic Values

(T<sub>1</sub> = 25°C, unless otherwise specified)

| Symbol                                                | Test Conditions min.                                                                                 | typ.      | max. | ,             |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------|------|---------------|
| I <sub>s</sub>                                        | V <sub>GS</sub> = 0 V                                                                                |           | 48   | Α             |
| I <sub>SM</sub>                                       | Repetitive; pulse width limited by $T_{_{\rm JM}}$                                                   |           | 192  | Α             |
| $\mathbf{V}_{\mathtt{SD}}$                            | $I_{_F}$ = 100 A, V $_{_{\rm GS}}$ = 0 V, Pulse test, t $\leq$ 300 $\mu s$ , duty cycle d $\leq$ 2 % |           | 1.5  | V             |
| t <sub>rr</sub><br>Q <sub>RM</sub><br>I <sub>RM</sub> |                                                                                                      | TBD<br>20 | 250  | ns<br>μC<br>A |

## TO-264 AA Outline



| Dim. | Millimeter |       | Inches |       |
|------|------------|-------|--------|-------|
|      | Min.       | Max.  | Min.   | Max.  |
| Α    | 4.82       | 5.13  | .190   | .202  |
| A1   | 2.54       | 2.89  | .100   | .114  |
| A2   | 2.00       | 2.10  | .079   | .083  |
| b    | 1.12       | 1.42  | .044   | .056  |
| b1   | 2.39       | 2.69  | .094   | .106  |
| b2   | 2.90       | 3.09  | .114   | .122  |
| С    | 0.53       | 0.83  | .021   | .033  |
| D    | 25.91      | 26.16 | 1.020  | 1.030 |
| E    | 19.81      | 19.96 | .780   | .786  |
| е    | 5.46       | BSC   | .215   | BSC   |
| J    | 0.00       | 0.25  | .000   | .010  |
| K    | 0.00       | 0.25  | .000   | .010  |
| L    | 20.32      | 20.83 | .800   | .820  |
| L1   | 2.29       | 2.59  | .090   | .102  |
| Р    | 3.17       | 3.66  | .125   | .144  |
| Q    | 6.07       | 6.27  | .239   | .247  |
| Q1   | 8.38       | 8.69  | .330   | .342  |
| R    | 3.81       | 4.32  | .150   | .170  |
| R1   | 1.78       | 2.29  | .070   | .090  |
| S    | 6.04       | 6.30  | .238   | .248  |
| Т    | 1.57       | 1.83  | .062   | .072  |

## miniBLOC, SOT-227 B



M4 screws (4x) supplied

| Dim.   | Millir | meter | Inches    |       |  |  |
|--------|--------|-------|-----------|-------|--|--|
|        | Min.   | Max.  | Min. Max. |       |  |  |
| A<br>B | 31.50  | 31.88 | 1.240     | 1.255 |  |  |
| С      | 4.09   | 4.29  | 0.161     | 0.169 |  |  |
| D<br>E | 4.09   | 4.29  | 0.161     | 0.169 |  |  |
| F      | 14.91  | 15.11 | 0.587     | 0.595 |  |  |
| G      | 30.12  | 30.30 | 1.186     | 1.193 |  |  |
| H      | 38.00  | 38.23 | 1.496     | 1.505 |  |  |
| J      | 11.68  | 12.22 | 0.460     | 0.481 |  |  |
| K      | 8.92   | 9.60  | 0.351     | 0.378 |  |  |
| L      | 0.76   | 0.84  | 0.030     | 0.033 |  |  |
| M      | 12.60  | 12.85 | 0.496     | 0.506 |  |  |
| N      | 25.15  | 25.42 | 0.990     | 1.001 |  |  |
| O      | 1.98   | 2.13  | 0.078     | 0.084 |  |  |
| PQ     | 4.95   | 5.97  | 0.195     | 0.235 |  |  |
|        | 26.54  | 26.90 | 1.045     | 1.059 |  |  |
| R S    | 3.94   | 4.42  | 0.155     | 0.174 |  |  |
|        | 4.72   | 4.85  | 0.186     | 0.191 |  |  |
| T      | 24.59  | 25.07 | 0.968     | 0.987 |  |  |
| U      | -0.05  | 0.1   | -0.002    | 0.004 |  |  |
|        |        |       |           |       |  |  |

Fig. 1 Output Characteristics



Fig. 3  $R_{DS(on)}$  vs. Drain Current



Fig. 5 Drain Current vs.

Case Temperature



Fig. 2 Input Admittance



Fig. 4 Temperature Dependence of Drain to Source Resistance



Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage



Fig.7 Gate Charge Characteristic Curve



to Drain Voltage 100 90 80 70 60 50  $T_J = 125^{\circ}C$ 40 30 T<sub>1</sub> = 25°C 20 10 0.00 0.25 0.50 0.75 1.00 1.25  $V_{\rm SD}$  - Volt

Fig.9 Source Current vs. Source 1.50

Fig.10 Transient Thermal Impedance



Time - Seconds

Fig.8 Capacitance Curves



