

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: 1 de 6

APELLIDOS Y NO	MBRES DEL DOCENTE					CAS	TRO FERN	ANDE	Z JOSE CA	RLOS					
CORREO ELECTR	ONICO		josecastro@unicesar.edu.co												
PROGRAMAS US	JARIOS		Ingeniería Electrónica												
FACULTAD USUA	FACULTAD USUARIA			Ingeniería y Tecnológicas											
ASIGNATURA Diseño de Sistema: Microelectrónicos			CÓDIGO EL-601		CRÉDITOS	4	TEÓRICO	NO	TEÓRICO - PRÁCTICO	SI	HABILITABL	.E	NO Н	NO ABILITABLE	SI
AÑO LECTIVO	2023	PERIODO ACADÉMICO	II		FECHA DE INICIO	-	AGOSTO 08		TOTAL	16 SE	MANAS		CHA DE IINACIÓN	DICIEMBE	RE 09

				COMPE	TENCIAS	Y RESULT	ADOS DE APRENDIZ	AJE DE LA ASIGN	IATURA			
CÓDIGO		COMPET	ENCIA DE LA ASIGNA	TURA (C	A)		CÓDIGO	RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA (RAA)				
CA1	Comprender el funciona definidas por su respuest de darnos como resultado	a en frecu	iencia de forma que pue	da diseña	ado en la ar circuitos	as caracterí s con la capa	sticas acidad RAA1	Analiza y diseña filtros activos con Amplificadores operacionales usando configuraciones específicas de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga,				
CA2	Diseña circuitos no linea diferentes aplicaciones funcionamiento.							Utiliza los amplificadores operacionales para el diseño de circuitos no lineales como osciladores además, comprende el concepto de realimentación positiva y su utilidad en el diseño de circuitos no lineales				
CA3	Utiliza el amplificador o electrónica análoga recor					plicaciones	de la RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la electrónica análoga.				es aplicaciones de la
	CONT	ENIDOS F	ORMATIVOS					EVALUACIÓN ACADÉMICA ESTRATEGIA				
SEMANA	TEMAS DE DOCENCIA DIRECTA	HDD	TEMAS TRABAJO INDEPENDIENTE	нті	CA	RAA	CRITERIO DE EVALUACIÓN	TIPO DE EVALUACIÓN	EVIDENCIA DE EVALUACIÓN	INSTRUMENTOS DE EVALUACIÓN	DIDÁCTICA	BIBLIOGRAFÍA
1	Socialización plan desarrollo de asignatura. Introducción: características del amplificador operacional y su funcionamiento, para el procesado analógico de señales	6	Consulta e investigación	6	CA1	RAA1	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga	Formativa: mediante enfoque cuantitativo			Clase magistral Ejemplos Solución de problemas de análisis y aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: 2 de 6

2	1.1. Clasificación de los filtros 1.1.1. Filtros pasabajos 1.1.2. Filtros pasaaltos	6	Lectura de los temas Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA1	RAA1	Utiliza los amplificadores operacionales para el diseño de filtros activos Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales para el diseño de filtros activos	Formativa: mediante enfoque cuantitativo	Prueba escrita Informe de Iaboratorio	Laboratorio Quiz	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
3	1.1.3. Filtros pasabanda 1.1.4. Filtros rechazabanda 1.1.5. Filtros pasatodo	6	Lectura de los temas Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA1	RAA1	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales para el diseño de filtros activos	Formativa: mediante enfoque cuantitativo	Informe de laboratorio	Laboratorio	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
4	1.2. Determinación de las ecuaciones que rigen el comportamiento de los filtros 1.2.1. Función de transferencia 1.2.2. Factor de calidad 1.2.3. Frecuencia de corte	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA1	RAA1	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales	Formativa: mediante enfoque cuantitativo	Informe de laboratorio	Laboratorio	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: 3 de 6

	1.2.4. Frecuencia de resonancia						para el diseño de filtros activos					
5	1.2.5. Ancho de banda 1.2.6. Factor de escalado de impedancia 1.3. Configuraciones generales para filtros de primer y segundo orden 1.3.1. Redes generales de primer orden.	6	Lectura de los temas Pre informe de laboratorio y simulaciones Consulta e investigación	6	CA1	RAA1	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales para el diseño de filtros activos	Formativa: mediante enfoque cuantitativo	Prueba escrita Informe de Iaboratorio	Laboratorio Taller de aplicación	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Talleres de aplicación Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
6	1.3.2. Redes generales de Segundo Orden 1.3.3. Red Sallen Y key (VCVS) 1.4. Aproximaciones básicas 1.4.1. Filtros Butterworth 1.4.2. Filtros Chebyshev	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación	6	CA1	RAA1	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales para el diseño de filtros activos	Formativa: mediante enfoque cuantitativo	Examen escrito	PRIMER EXAMEN	Clase magistral Ejemplos Solución de problemas de análisis y aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
7	Socialización nota primer examen 1.4.3. Filtros Bessel 1.4.4. Filtros de función elíptica o Cauer 1.5. Diseño de filtros mediante la función de transferencia	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA2	RAA2	Conoce los conceptos generales de filtrado en frecuencia y tipos de filtros para aplicaciones de electrónica análoga Utiliza los amplificadores operacionales	Formativa: mediante enfoque cuantitativo	Informe de laboratorio	Laboratorio	Clase magistral Ejemplos Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: **4** de **6**

							para el diseño de filtros activos					
8	2.1. Realimentación Positiva 2.2. Osciladores	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA2	RAA2	Utiliza los amplificadores operacionales para el diseño de circuitos no lineales como osciladores Comprende el concepto de realimentación positiva y su utilidad en el diseño de circuitos no lineales	Formativa: mediante enfoque cuantitativo	Prueba escrita Informe de Iaboratorio	Laboratorio Taller de aplicación	Clase magistral Ejemplos Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
9	2.3. Comparador de lazo abierto 2.4. Disparador Schmitt	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA2	RAA2	Utiliza los amplificadores operacionales para el diseño de circuitos no lineales como osciladores Comprende el concepto de realimentación positiva y su utilidad en el diseño de circuitos no lineales	Formativa: mediante enfoque cuantitativo	Informe de laboratorio	Laboratorio	Clase magistral Ejemplos Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
10	2.5. Histéresis 2.6. Detectores de nivel de voltaje	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Pre informe de laboratorio y simulaciones	6	CA2	RAA2	Utiliza los amplificadores operacionales para el diseño de circuitos no lineales como osciladores Comprende el concepto de realimentación positiva y su utilidad en el diseño de	Formativa: mediante enfoque cuantitativo	Prueba escrita Informe de Iaboratorio	Laboratorio Taller de aplicación	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Talleres de aplicación Laboratorio	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: **5** de **6**

							circuitos no lineales					
11	3.1. Rectificador de precisión 3.2. Rectificador de media onda	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación	6	CA3	RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la electrónica análoga	Formativa: mediante enfoque cuantitativo	Examen escrito	SEGUNDO EXAMEN	Clase magistral Ejemplos Solución de problemas de análisis y aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
12	Socialización nota segundo examen 3.3. Limitador de precisión 3.4. Rectificador de onda completa	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación	6	CA3	RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la electrónica análoga	Formativa: mediante enfoque cuantitativo	Informe y entrega del proyecto	Laboratorio Proyecto final	Clase magistral Ejemplos Solución de problemas de análisis y aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
13	3.5. Diseño de Fuentes Controladas	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación	6	CA3	RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la electrónica análoga	Formativa: mediante enfoque cuantitativo	Informe y entrega del proyecto	Laboratorio Proyecto final	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Talleres de aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
14	4.1. Conversión Analógico-Digital y Digital-Análoga 4.2. Convertidor ADC de Aproximaciones Sucesivas 4.3. Convertidor ADC Paralelo o Tipo Flash	6	Lectura de los temas Solución de ejercicios adicionales Consulta e investigación Entrega y sustentación del proyecto de la asignatura	6	CA3	RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la electrónica análoga	Formativa: mediante enfoque cuantitativo	Informe y entrega del proyecto	Laboratorio Proyecto final	Clase magistral Ejemplos Solución de problemas de análisis y aplicación Proyecto final	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.
15	4.4. Circuitos DAC 4.5. Filtros conmutados	6	Lectura de los temas Solución de ejercicios	6	CA3	RAA3	Reconoce la versatilidad de los amplificadores operacionales para diferentes aplicaciones de la	Formativa: mediante enfoque cuantitativo	Informe y entrega del proyecto	EVALUACIÓN PROYECTO FINAL FERIA	Solución de problemas de análisis y aplicación	Rashid, M. Circuitos Microelectrónicos Análisis y Diseño. Thomson.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 2

PLAN DE DESARROLLO DE LA ASIGNATURA

PÁG.: **6** de **6**

				electrónica análoga				
16	Examen final				Formativa: mediante enfoque cuantitativo	Examen escrito	EXAMEN FINAL	
17	Socialización nota final Registro de notas							

	EVALUACIONES PARCIALES								
FEC	НА	INSTRUMENTO	PONDERACIÓN						
PRIMER PARCIAL	11 AL 16 DE SEPTIEMBRE	EXAMEN ESCRITO	30%						
SEGUNDO PARCIAL	17 AL 23 DE OCTUBRE	EXAMEN ESCRITO	30%						
TERCER PARCIAL	20 AL 25 DE NOVIEMBRE	EXAMEN FINAL Y PROYECTO FINAL	40%						

OBSERVACIONES

Jul Joft	
FIRMA DEL PROFESOR	FIRMA DEL JEFE DE DEPARTAMENTO