EMBEDDED

Question: l and m are two parallel lines intersected by another pair of parallel lines p and $q(figure\ 1)$, show that $\triangle ABC \cong \triangle CDA$.

Figure:

Figure 1: Required parallelogram

Solution:

Symbol	Description	Value
В	Vertex at origin	0
a	Side of the parallelogram, $BC = DA$	6
b	Side of the parallelogram, $AB = CD$	$\sqrt{29}$
θ	Angle of the parallelogram, $\angle ABC$	$\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)$

Table 1: Table of input parameters ${\cal L}$

Symbol	Description	Value
C	Vertex of parallelogram	ae_1
A	Vertex of parallelogram	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
D	Vertex of parallelogram	C + A
CA	Side of both $\triangle ACB$ and $\triangle CDA$	$\sqrt{a^2 - 2ab\cos\theta + b^2}$

Table 2: Table of output parameters

From figure 1 between $\triangle ABC$ and $\triangle CDA$

$$\cos \angle BAC = \frac{AB.CA}{\|AB\| \|CA\|}$$

$$= \frac{ab\cos\theta + b\sin\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}}$$

$$= \frac{17}{\sqrt{29}\sqrt{41}}$$

$$CD.CA$$

$$(1)$$

$$(2)$$

$$= \frac{ab\cos\theta + b\sin\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{2}$$

$$=\frac{17}{\sqrt{29}\sqrt{41}}\tag{3}$$

$$\cos \angle ACD = \frac{CD.CA}{\|CD\| \|CA\|}$$

$$= \frac{b^2 - ab\cos\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}}$$
(5)

$$= \frac{b^2 - ab\cos\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{5}$$

$$=\frac{17}{\sqrt{29}\sqrt{41}}\tag{6}$$

$$So, \angle BAC = \angle ACD.$$
 (7)

$$\cos \angle ACB = \frac{CB.CA}{\|CB\| \|CA\|} \tag{8}$$

$$= \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{9}$$

$$=\frac{24}{6\sqrt{41}}$$
 (10)

$$||CB|| ||CA|| = \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}}$$

$$= \frac{24}{6\sqrt{41}}$$

$$\cos \angle CAD = \frac{DA.CA}{||DA|| ||CA||}$$

$$= \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}}$$
(10)
(11)

$$= \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{12}$$

$$=\frac{24}{6\sqrt{41}}\tag{13}$$

$$So, \angle ACB = \angle CAD.$$
 (14)

And CA is common side .

So,
$$\triangle ABC \cong \triangle CDA$$
. $(byA - A - S)$ $(proved)$