Chapitre I.

Généralités sur les fonctions

Les savoir-faire du parcours

- Exploiter l'équation y = f(x) d'une courbe : appartenance, calcul de coordonnées.
- Modéliser par des fonctions des situations issues des mathématiques, des autres disciplines.
- Résoudre une équation du type f(x) = k en choisissant une méthode adaptée : graphique, algébrique, logicielle.
- Relier représentation graphique et tableau de variations.
- Déterminer graphiquement les extremums d'une fonction sur un intervalle.
- Exploiter un logiciel de géométrie dynamique ou de calcul formel, la calculatrice ou Python pour décrire les variations d'une fonction donnée par une formule.
- Relier sens de variation, signe et droite représentative d'une fonction affine.
- Pour les fonctions affines, carré, inverse, racine carrée et cube, résoudre graphiquement ou algébriquement une équation du type f(x) = k.

Les mathématiciennes et mathématiciens

Compétence

1

Généralités sur les fonctions

Définition 1: Notion de fonction.

Définir une fonction f d'un ensemble \mathcal{D} de réels dans \mathbb{R} , c'est associer à chaque réel x de \mathcal{D} un unique réel noté f(x).

- On dit que \mathcal{D} est l'ensemble de définition de f.
- f(x) est l'image de x par f.

$$f: D \longrightarrow \mathbb{R}$$

 $x \mapsto f(x)$

• x est un **antécédent** de f(x) par f.

Ce qui se lit : la fonction f qui à x associe f(x).

La fonction se nomme par une lettre, généralement f, et peut être générée de 4 façons différentes.

- une expression algébrique notée f(x) avec laquelle on calcule des images.
- une courbe, généralement appelée C_f
- · un tableau de valeurs qui associe sur deux lignes, quelques valeurs et leurs images.
- un algorithme, qui décrit les étapes de calcul pour obtenir f(x)

Fonction générée par une expression algébrique

Définition 3: Expression algébrique d'une fonction.

Soit f une fonction définie sur son domaine de définition \mathcal{D} . L'expression algébrique de f est la forme algébrique de f(x).

Méthode 4. Déterminer algébriquement une image par f

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 6x + 3$.

Pour déterminer l'image d'un nombre a par f, il suffit de calculer f(a).

L'image de 5 par f est $f(5) = 2 \times 5^2 - 6 \times 5 + 3 = 50 - 30 + 3 = 23$

L'image de $\sqrt{3}$ par f est $f(\sqrt{3}) = 2\sqrt{2}^2 - 6\sqrt{2} + 3 = 4 - 6\sqrt{2} + 3 = 7 - 6\sqrt{2}$

Méthode 5. Déterminer algébriquement un antécédent par f

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 6x + 3$.

Pour déterminer le (ou les) antécédent(s) d'un nombre a par f, il faut et il suffit de résoudre l'équation f(x) = 3.

$$2x^2 - 6x + 3 = 3$$

$$2x^2 - 6x = 0$$

$$2x(x-3) = 0$$

2x = 0 ou x - 3 = 0, x = 0 ou x = 3. $\mathcal{S} = \{0, 3\}$. Les antécédents de 3 par f sont 0 et 3.

Lorsque le domaine de définition n'est pas donné, l'expression algébrique f(x) de la fonction f permet de le déterminer.

Modéliser par des fonctions

		Modéliser.	
2	Soit f la fonction qui à un coté c d'un triangle équilatéral associe son périmètre. Définir f		
			縣總
			回鄉
			/b/ABC
<u>ာ</u>		Modéliser.	\supset_{T}
J	Pour une distance connue, la vitesse moyenne se définit en fonction du temps. La distance entre Toulon et H de 20 km. Définir la fonction vitesse moyenne v .	•	
			# /A D.O

if f la fonction définie sur $]-\infty;1[$ par $f(x)=\frac{1}{x-1}.$ 1. Calculer l'image de -2 par f.

Soit g la fonction définie sur \mathbb{R} par g(x) = 2x - 1.

1. Déterminer un antécédent de 4 par g.

Modéliser.

2 Fonction représentée par une courbe

Définition 7: Représentation graphique.

Le plan est muni d'un repère (O; I; J). Soit f une fonction définie sur l'ensemble D.

La **représentation graphique** ou courbe représentative \mathscr{C}_f de la fonction f dans le repère (O; I; J) est l'ensemble des points de coordonnées (x; f(x)), où $x \in D$. Une équation de \mathscr{C}_f est y = f(x).

Propriété 8: Appartenance d'un point à une courbe.

Soit f une fonction définie sur un ensemble \mathcal{D} et $A(x_A,y_A)$ un point du plan.

- 1. Si le point A appartient à la courbe \mathscr{C}_f alors $y_A = f(x_A)$.
- 2. Réciproquement, si $y_A = f(x_A)$ alors le point A appartient à la courbe \mathscr{C}_f .

Exemple 9.

Soit f la fonction définie par $f(x) = 5x^2 + 3x - 1$.

Soit A(2; 25) un point du plan.

A appartient-il à la courbe de f ?

 $f(2) = 5 \times 2^2 + 3 \times 2 - 1 = 25 = y_A$

donc le point A appartient à la courbe de f.

Soit B(-1; 2) un point du plan.

B appartient-il à la courbe de f?

 $f(-1) = 5 \times (-1^2 + 3 \times (-1 - 1) = 5 - 3 - 1 = 1$

 $f(x_B) \neq y_B$ donc B n'appartient pas à la courbe de f.

Remarques 10.

- Le tracé d'une courbe représentative est toujours approximatif : on construit un tableau de valeurs, on place les points correspondants dans un repère et on les relie par une courbe régulière.
- On peut utiliser la calculatrice pour remplir un tableau de valeurs et tracer des courbes représentatives.
- Certaines fonctions ne sont connues que par leur courbe représentative

Méthode 11. Déterminer graphiquement une image ou un antécédent par f

On se reportera à la figure ci dessous

- L'image de a est l'ordonnée du point de la courbe d'abscisse a.
- Les antécédents de b sont les abscisses des points de la courbe dont l'ordonnée est b.

Soit f une fonction et k un nombre réel. On note $\mathscr C$ la courbe représentative de f dans un repère et D_k la droite d'équation y=k (parallèle à l'axe des abscisses). Les solutions de l'équation f(x)=k sont les abscisses des points d'intersection entre C et D_k .

 \circledast Résoudre graphiquement f(x)=m revient à déterminer les antécédents de m par f.

Exploiter l'équation y=f(x) d'une courbe

	Calculer.	
8	Soit f la fonction définie sur $\mathbb R$ par $f(x)=\dfrac{x-3}{x^2+5}$. A le point d'abscisse 2 de la courbe représentative de f . Calculer	
	l'ordonnée du point A .	盟盟
		回路
		/b/ABCD
	Calculer	_
9	Soit f la fonction définie sur $\mathbb{R}\setminus\{-5\}$ par $f(x)=rac{4}{x+5}.$	_ل
	Le point $B\left(3; \frac{1}{2}\right)$ appartient-il à la courbe représentative de f .	鼺
		/b/ABCD
	Calculer.	<u></u>
0	Soit h la fonction définie sur $\mathbb R$ par $h(x)=x^2-5x+2$.	
	Démontrer que le point $A\left(\sqrt{3};5\left(1-\sqrt{3}\right)\right)$ appartient à la courbe représentative de h .	鼎總
		回数
		/b/ABCD

Exploiter la courbe d'une fonction f

11

Calculer. On donne la courbe représentative \mathcal{C}_f de la fonction f cicontre. 1. Lire le domaine de définition de f. 2. Lire l'image de 1 par f. \mathcal{C}_g 3 2 3. Lire f(-2). 4. Déterminer les antécédents de 3 par f. -15. Est-il vrai que f(x) = -1 admet 2 solutions négatives? -2

3 Fonction générée par un tableau de valeurs

Définition 13: Tableau de valeurs.

Un tableau de valeurs d'une fonction f regroupe sur la première ligne des nombres du domaine de définition de f et sur la deuxième ligne, les images de chaque nombre par f.

Exemple 14.

La fonction f est exprimée par le tableau suivant :

x	-5	-3	-1	0	2	4
f(x)	4	2	1	2	0	-3

- L'image de -3 est 2 ou encore que f(-3) = 2.
- L'image de 2 est 0 ou encore que f(2) = 0.
- 2 a deux antécédents : -3 et 2. c'est à dire f(-3)=0 et f(2)=0

Remarque 15.

- Le tableau de valeurs ne regroupe que quelques valeurs du domaine de définition. Il permet de tracer la courbe de la fonction f en utilisant les valeurs et leurs images comme coordonnées des points de la courbe.
- Pour compléter un tableau de valeurs, on utilise la calculatrice ou un algorithme.

4 Fonction définie par un algorithme

Définition 16: Algorithme.

Un **algorithme** est une suite finie d'opérations qui aboutit à un résultat. Une fonction peut se définir par un algorithme.

Exemple 17.

- · Choisir un nombre (réel).
- Ajouter 5.
- Multiplier le résultat par lui-même.
- x.
- x + 5.
- (x+5)(x+5)
- $m \subset \mathbb{D}$
- $x \mapsto x + 5 \mapsto (x+5)(x+5)$
- $x \mapsto f(x) = (x+5)(x+5)$

Parité d'une fonction

Définition 18: Parité d'une fonction.

Une fonction f définie sur un intervalle centré I est dite **paire** lorsque sa courbe représentative est symétrique par rapport à l'axe des ordonnées. Algébriquement, pour tout $x \in I$, f(x) = f(-x).

Méthode 19.

Pour démontrer qu'une fonction est **paire**, on démontre que

- 1. \mathcal{D}_f est centré en 0.
- 2. pour tout $x \in \mathcal{D}_f$, f(x) = f(-x).

Définition 20: Fonction impaire.

Une fonction f définie sur un intervalle centré I est dite **impaire** lorsque sa courbe représentative est symétrique par rapport à l'origine du repère. Algébriquement, pour tout $x \in I$, f(x) = -f(-x).

Méthode 21.

Pour démontrer qu'une fonction est **impaire**, on démontre que

- 1. \mathcal{D}_f est centré en 0.
- 2. pour tout $x \in \mathcal{D}_f$, f(x) = -f(-x).

Soit la fonction f définie par $f(x)=x^2-6x+9$ sur $[-6;4]$.								M	lodéliser	
Compléter le tableau suivant.										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										/b/AB
2. Déterminer $f(-2)$.										
3. Déterminer un antécédent de 9 pat f .										
								M	lodéliser	
Soit la fonction f définie par $f(x)=-2x^2-5$ sur $\mathbb R$. . Écrire un programme de calcul en Python qui définit la 2. fonction f .	Complé thon de				ant e	en u	tilisant	la fonctio	on Py-	
	x	-3	-2	-1	0	1	2			/b/AB
	f(x)									
								M	lodéliser	
On donne l'algorithme suivant pour définir la fonction $f. \ $	1. Dé	termin	er l'im	age d	e 4 p	oar j	f			
• Choisir un nombre x compris entre -10 et 10 .										/b/AB

2. Déterminer la fonction f en fonction de x.

Étudier la parité d'une fonction

• Prendre le carré du résultat obtenu.

• Ajouter 5.

• Soustraire 3

		Modéliser.
15	Soit la fonction f définie par $f(x)=x^2+6$ sur $\mathbb R$. Démontrer que la fonction f est paire.	Soit la fonction f définie par $f(x)=x^2+5x+6$ sur $\mathbb R$. 1. La fonction f est-elle paire?
		2. La fonction f est-elle impaire?

Variations et extremum

Théorème 22: Variations d'une fonction.

Soit f une fonction définie sur un intervalle I de \mathbb{R} . On dit que

- f est croissante sur I pour exprimer que les nombres et leurs images augmentent conjointement. On formalise cette idée par : Soit x et x' deux réels de I tels que $x \le x'$ et f croissante sur I, alors $f(x) \le f(x')$
- f est décroissante sur I pour exprimer que lorsque les nombres augmentent , leurs images diminuent. On formalise cette idée par : Soit x et x' deux réels de I tels que $x \le x'$ et f décroissante sur I, alors $f(x) \geqslant f(x')$.

Définition 23: Extremum d'une fonction.

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

- f admet un **maximum** M sur I signifie qu'il existe un réel a de I tel que pour tout $x \in I$, $f(x) \leqslant f(a)$. M = f(a). Graphiquement, f(a) est l'ordonnée la plus grande de tous les points de la courbe de f.
- f admet un **minimum** m sur I signifie qu'il existe un réel b de I tel que pour tout $x \in I$, $f(b) \leqslant f(x)$. m=f(b). Graphiquement, f(b) est l'ordonnée la plus petite de tous les points de la courbe de f.
- f est bornée sur I lorsque f admet un minimum et un maximum sur I.

Définition 24: Tableau de variation.

Le **tableau de variation** d'une fonction f est un tableau qui synthétise les variations de la fonction f sur son domaine de définition.

Fonctions de référence

Les fonctions affines

Définition 25: Fonction affine.

Soit a et b deux réels données avec a non nul. La **fonction affine** f est la fonction définie sur $\mathbb R$ par f(x) = ax + b.

La représentation graphique de la fonction affine f est la droite d'équation y = ax + b

Lorsque b=0, la fonction affine se nomme fonction linéaire.

Logique mathématique 27.

Toute fonction linéaire est une fonction affine. Une fonction affine n'est pas une fonction linéaire.

Théorème 28: Variations de la fonction affine.

La fonction affine est strictement monotone sur

Lorsque a est positif, la fonction affine f est strictement croissante sur \mathbb{R} .

Lorsque a est négatif, la fonction affine f est strictement décroissante sur \mathbb{R} .

Relier représentation graphique et tableau de variations. Déterminer graphiquement les extremums d'une fonction sur un intervalle.

17	Raisonner.	ABCD
18	r, raisonner.	<u>,</u>
	 	製
	/0//	ABCD

La fonction Carré

Définition 29: Fonction Carré.

La **fonction Carré** f est la fonction définie sur \mathbb{R} par $f(x) = x^2$.

La représentation graphique de la fonction Carré s'appelle une parabole et son équation est $y=x^2$.

Théorème 30.

La fonction Carré f est paire.

La parabole d'équation $y = x^2$ est symétrique par rapport à l'axe des ordonnées.

La fonction Carré est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .

La fonction Cube

Définition 32: Fonction Cube.

La **fonction Cube** f est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Théorème 33.

La fonction Cube f est impaire.

La courbe d'équation $y = x^3$ est symétrique par rapport à l'origine du repère.

-3

-4

Théorème 34: Variations de la fonction Cube.

La fonction Cube est strictement croissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .

Connaitre et utiliser la fonction Carré

Comparer sans les calculer.

 $\left(\frac{3}{3}\right)^2$ at -2

Raisonner.

• $(-11)^2$ et $(-6)^2$

 $\bullet \ \ -7^2 \ \text{et} \ -8^2$

Raisonner. Calculer.

1. Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à [1;3].

2. Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à [-1;4].

Connaitre et utiliser la fonction Cube

Comparer sans les calculer.

• $\left(\frac{1}{5}\right)^3$ et π^3

Raisonner.

• $(-5)^3$ et $(-9)^3$

La fonction Inverse

Définition 35: Fonction Inverse.

La **fonction Inverse** f est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

La représentation graphique de la fonction Inverse s'appelle une hyperbole et son équation est $y=\frac{1}{x}$.

Théorème 36.

La fonction Inverse f est impaire.

La hyperbole d'équation $y=\frac{1}{x}$ est symétrique par rapport à l'origine du repère.

Théorème 37: Variations de la fonction Inverse.

La fonction Carré est strictement décroissante sur \mathbb{R}_{-}^* et strictement décroissante sur \mathbb{R}_{+}^* .

La fonction Racine carrée

Définition 38: Fonction Racine carrée.

La fonction Racine carrée f est la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$.

L'ensemble de définition de la fonction Racine Carrée n'est pas centré. Donc la fonction Racine carrée n'est ni paire, ni impaire.

Théorème 40: Variations de la fonction Racine Carrée.

La fonction Cube est strictement croissante sur

Connaitre et utiliser les fonctions Inverse et Racine Carrée

Raisonner. Comparer sans les calculer. $\bullet \ \ \tfrac{1}{5} \ \text{et} \ \frac{1}{4}$ $\bullet \ \ -\frac{1}{4} \ \text{et} \ -\frac{1}{6}$ • $\sqrt{10}$ et $\sqrt{100}$ Raisonner. Expliquer pourquoi la fonction Inverse n'est pas décroissante sur $\mathbb{R}^*.$ Représenter. Raisonner.

Résoudre graphiquement les équations, puis retrouver les résultats algébriquement.					
1. $\frac{1}{x} = 4$					
l l					
//					
2. $\sqrt{x} = 2$					
Valider ces résultats par le calcul.					

Raisonner. Calculer.

25		_ر
	1. Déterminer algébriquement l'intervalle de $\dfrac{1}{x}$ lorsque x appartient à $[1;3]$.	鸓
		/b/ABCE
		75/11202
	2. Déterminer algébriquement l'intervalle de \sqrt{x} lorsque x appartient à $[1;2]$.	

Raisc	nner.	Ca	lcul	lei

	Naisonner. Card	iici.
33	On se propose de résoudre l'équation (E) : $\sqrt{x^2 + x + 1} = x$	
	Expliquer pourquoi cette équation ne peut pas admettre de solution négative	回从回
	1. Expliquel pourquoi delle equalion ne peut pas admettre de solution negative.	高級
		. /b/AB(
		75/75
	On cherche donc des solutions positives.	
	(a) Expliquer pourquoi si $x\geqslant 0$, alors $x^2+x+1\geqslant 0$	
	(b) Expliquer pourquoi alors, résoudre l'équation (E) revient à résoudre l'équation (E') $x^2 + x + 1 = x^2$, ave	eC .
	$x \geqslant 0$.	
	(c) Résoudre l'équation (E')	
	(d) Conclure sur l'ensemble des solutions de (E)	
	(a) Contains and Tensemble accidentations at (E).	
	Danyésantar Daisan	205
34	Représenter. Raisons	
34	Soit M un point de l'hyperbole $\mathcal H$ d'équation $y=rac{1}{x}.$ On construit le point N tel que M soit le milieu de $[ON].$ Quel G	
	le lieu des points N lorsque M décrit $\mathcal H$?	

35

La fonction f définie sur $\mathbb R$ par $f(x)=\left(\frac{1}{x+2}-3\right)^2$ se décompose de la façon suivante :

$$f: x \longmapsto x + 2 \mapsto \frac{1}{x+2} \longmapsto \frac{1}{x+2} - 3 \longmapsto \left(\frac{1}{x+2} - 3\right)^2$$

Décomposer, comme montré dans l'exemple, les fonctions suivantes à l'aide des fonctions affine, Carré et Inverse.

1. $g(x) = \left(\frac{1}{x} - 1\right)^2$

.....

2. $h(x) = \frac{1}{x^2 + 5} + 3$

.....

Représenter.

36

Sur la représentation graphique de g telle que $g(x)=\frac{1}{x}$, on a placé les points A et B d'abscisses respectives 2 et $\frac{1}{2}$.

.....

2. La droite (AB) coupent les axes en M et N. Montrer que les segments [AB] et [MN] ont même milieu.

.....

.....

Représenter. Raisonner. Calculer.

	$\frac{-6}{-4x}$	
		/b/A
2. $x \leqslant -1$, major	$\frac{2}{x-7} \dots $	

