557

7. $9/\sqrt{29}$.

9. (a) z + 9x = 6y - 6.

(b)
$$z + y = \pi/2$$
.

(c)
$$z = 1$$
.

11. (a) $-\frac{1}{3\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k}).$

(b)
$$2i + 2j + 2k$$
.

(c)
$$-\frac{2}{9}(\mathbf{i} + \mathbf{j} + \mathbf{k})$$
.

13. k.

15. La gráfica de f es la superficie de nivel 0 = F(x, y, z) = f(x, y) - z. Por tanto, el plano tangente está dado por

$$0 = \nabla F(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0)$$
$$= \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right)$$
$$\cdot (x - x_0, y - y_0, z - z_0).$$

Puesto que $z_0 = f(x_0, y_0)$, esto es $z = f(x_0, y_0) + (\partial f/\partial x)(x_0, y_0)(x - x_0) + (\partial f/\partial y)(x_0, y_0)(y - y_0)$.

17. (a) $\nabla f = (z + y, z + x, x + y),$ $\mathbf{g}'(t) = (e^t, -\sin t, \cos t),$

$$(f \circ \mathbf{g})'(1) = 2e \cos 1 + \cos^2 1 - \sin^2 1.$$

(b) $\nabla f = (yze^{xyz}, xze^{xyz}, xye^{xyz}),$

$$\mathbf{g}'(t) = (6, 6t, 3t^2), (f \circ \mathbf{g})'(1) = 108e^{18}.$$

(c) $\nabla f = [1 + \log(x^2 + y^2 + z^2)](x\mathbf{i} + y\mathbf{j} + z\mathbf{k}), \mathbf{g}' = (e^t, -e^{-t}, 1), (f \circ \mathbf{g})'(1) = [1 + \log(e^2 + e^{-2} + 1)](e^2 - e^{-2} + 1).$

19. (a) (0,0).

(b)
$$\nabla f(0,0) = (-4x, -6y)|_{(0,0)} = (0,0).$$

21. Sea $f(x, y, z) = 1/r = (x^2 + y^2 + z^2)^{-1/2}$; $\mathbf{r} = (x, y, z)$. Entonces calculamos

$$\nabla f = (x^2 + y^2 + z^2)^{-3/2}(x, y, z) = -(1/r^3)\mathbf{r}.$$

23. $\nabla f = (g'(x), 0).$

25. $\mathbf{D}f(0,0,\ldots,0) = [0,\ldots,0].$

27. $\mathbf{d}_1 = [-(0.03 + 2by_1)/2a]\mathbf{i} + y_1\mathbf{j},$ $\mathbf{d}_2 = [-(0.03 + 2by_2)/2a]\mathbf{i} + y_2\mathbf{j},$ donde y_1 e y_2 son las soluciones de

$$(a^2 + b^2)y^2 + 0.03by + \left(\frac{0.03^2}{4} - a^2\right) = 0.$$

29.
$$\nabla V = \frac{\lambda}{2\pi\varepsilon_0}$$

$$\left[\left(\frac{x + x_0}{r_2^2} - \frac{x - x_0}{r_1^2} \right) \mathbf{i} + 2y \left(\frac{1}{r_2^2} - \frac{1}{r_1^2} \right) \mathbf{j} \right].$$

31. Se cruza en el punto $(2,2,0), \sqrt{5}/10$ segundos después.

Ejercicios de repaso del Capítulo 2

1. (a) Paraboloide elíptico.

(b) Sea y' = y + 3 y escribir z = xy'. Es un paraboloide hiperbólico (desplazado).

3. (a) $\mathbf{D}f(x,y) = \begin{bmatrix} 2xy & x^2 \\ -ye^{-xy} & -xe^{-xy} \end{bmatrix}$.

(b)
$$\mathbf{D}f(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

(c)
$$\mathbf{D}f(x, y, z) = [e^x \ e^y \ e^z].$$

(d)
$$\mathbf{D}f(x,y,z) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

5.
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2\pi & 0 \end{bmatrix}$$
.

7.
$$\begin{bmatrix} -12 & 28 \\ -5 & 17 \\ -4 & -5 \end{bmatrix}$$
.

9. $(0, 25\pi, 0)$.

11. El plano tangente a una esfera en (x_0, y_0, z_0) es normal a la recta que pasa por el centro y por (x_0, y_0, z_0) .