101. Sejam *A*, *B*, *C* conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:

- a) Se $A \setminus B \sim B \setminus A$, então $A \sim B$.
- b) Se $A \sim B$, então $A \backslash B \sim B \backslash A$.
- c) Se $A \sim B$, então $A \cup C \sim B \cup C$.
- d) Se $A \sim B$, então $A \cap C \sim B \cap C$.
- e) Se $A \sim B$ e $A \cap C = B \cap C = \emptyset$, então $A \cup C \sim B \cup C$.
- f) Se $A \cap C \sim B \cap C$ e $C \neq \emptyset$, então $A \sim B$.

102. Sejam $a, b \in \mathbb{R}$ tais que a < b. Prove que

a)
$$[0, 1] \sim [0, 1] \sim [0, 1] \sim [0, 1] \sim [a, b] \sim [a, b] \sim [a, b] \sim [a, b]$$

b)
$$[0,1] \sim \mathbb{R} \sim \left] -\frac{\pi}{2}, \, \frac{\pi}{2} \right[\sim \left] 0, \, +\infty \right[$$

103. Sejam A, B conjuntos disjuntos. Prove que

- a) se A e B são finitos, então $A \cup B$ é finito.
- b) se A é finito e B é numerável, então $A \times B$ é numerável.
- c) se A e B são numeráveis, então $A \cup B$ é numerável.

104. Sejam A, B conjuntos. Prove que

- a) se A e B são finitos, então $A \times B$ é finito.
- b) se A é finito e não vazio e B é numerável, então $A \times B$ é numerável.
- c) se A é finito e $A \sim B$, então B é finito.
- d) se A é finito e $B \subseteq A$, então B é finito.

105. Prove que os seguintes conjuntos são numeráveis:

- a) \mathbb{N}_0
- b) \mathbb{Z}
- c) $\mathbb{N} \times \mathbb{Z}$
- d) $\mathbb{Z} \times \mathbb{Z}$

106. Determine o cardinal de cada um dos conjuntos seguintes.

$$A = \{a, e, i, o, u\}$$

$$C = \{x \in \mathbb{N} \mid x^2 = 5\}$$

$$E = \{\text{funções de } \{a, b, c\} \text{ em } \{1, 2, 3, 4\}\}$$

$$B = \{1, -3, 5, 11, -28\}$$

$$D = \{10n \mid n \in \mathbb{N}\}$$

$$F = \mathcal{P}(\{1, 4, 5, 9\})$$

107. Prove que o conjunto $\mathbb{R}\setminus\mathbb{Q}$, dos números irracionais, é infinito não numerável.