Type system

rem

2024-09-20

Contents

1	Unification logic																1																
	1.1	Rules .																															1

1 Unification logic

During unification we substitute all *type variables* with concrete types. These concrete types are resolved based on the substitution rules below.

1.1 Rules

Let $Unify(T_1, T_2)$ be the unification function within the environment θ . Let S be the set of types: {Int, Float, Char, String, ...}.

Unification of identical types: $\theta = \{\}$

$$\overline{\mathrm{Unify}(T_1, T_2) = \{\}}$$

Unification of two primitive types:

$$\frac{T_1 = T_2 \text{ and } T_1, T_2 \in S}{\text{Unify}(T_1, T_2) = \{\}}$$

Unification of type variables:

• FV(T) refers to the free variables within T (the occurs check).

Occurs check prevents infinite type expansion which is very bad.

• If α does not occur within T, we can substitute α with T

$$\frac{\alpha \notin FV(T)}{Unify(\alpha,T) = \{\alpha \mapsto T\}}$$

Unification of arrays and pointers: Recursive substitution:

• If T_1 and T_2 can be unified with substitution θ then, $Array(T_1)$ and $Array(T_2)$

can also be unified with θ .

$$\frac{\text{Unify}(T_1, T_2) = \theta}{\text{Unify}(\text{Array}(T_1), \text{Array}(T_2)) = \theta}$$
$$\frac{\text{Unify}(T_1, T_2) = \theta}{\text{Unify}(\text{Pointer}(T_1), \text{Pointer}(T_2)) = \theta}$$

Unification of function types: To unify two function types $T_1 \to T_2$ and $T_1' \to T_2'$, we unify the input types T_1 with T_1' and T_2' (the output types).

$$\frac{\operatorname{Unify}(T_1, T_1') = \theta_1 \operatorname{Unify}(T_2[\theta_1], T_2'[\theta_1]) = \theta_2}{\operatorname{Unify}(T_1 \to T_2, T_{1 \to T_2'}) = \theta_1 \circ \theta_2}$$

Where, in the above equation:

- θ_1 and θ_2 are the *substitutions* from unifying the argument and return types
- The result is the *composition* of both substitutions (as in $\theta_1 \circ \theta_2$)