Invariance of Vector-Cloud Neural Network

Heng Xiao

Virginia Tech

Joint work with: Xuhui Zhou (Virginia Tech) Jiequn Han (Princeton) Ruiying Xu (Delft)

June 1, 2021

Problem Statement

Overview

- We aim to find a mapping from the cloud (○) to a cloud center (★).
- The cloud has n points (•), each with a point \mathbf{q} attached to it.
- The cloud is thus $\mathcal{Q} = [\mathbf{q}_1^\top, \mathbf{q}_2^\top, \dots, \mathbf{q}_n^\top].$

Nomenclature

Nomenclature (with example values)

- Number of points in cloud: n = 100; index i and $i' = 1, \dots, n$
- Number of features $\ell = 11$; index $j = 1, \dots, \ell$
- Number of encoding functions m = 64, index $k = 1, \dots, m$

Nomenclature - cont.

Example dimension of variable

- Feature vector for each point: $\mathbf{q} \in \mathbb{R}^{11 \times 1}$
- Cloud feature matrix: $Q \in \mathbb{R}^{100 \times 11}$
- ullet Embedding function (64 encoded values for each point) $\mathcal{G} \in \mathbb{R}^{100 \times 64}$
- Embedded feature matrix: $G \in \mathbb{R}^{64 \times 64}$
- Reduced embedded matrix $\mathcal{G}^{\star} \in \mathbb{R}^{64 \times 4}$ (keeping only the first m'=4 columns for compactness).

H. Xiao (Virginia Tech)

Translational and Galilean Invariance

Translational and Galilean invariance is straightforward:

- Use only the *relative* coordinates of the points, not the absolute locations.
- Use only the *relative* velocities (for Galilean invariance).

Rotational Invariance: First Attempt

Pairwise projection among the points can remove dependence on coordinate orientation.

Rotational Invariance with Pairwise Inner Product

- Use only the $\mathbf{q}_i^{\top} \mathbf{q}_{i'}$, where $i, i' = 1 \dots n$.
- Hence, $\mathcal{D}' = \mathcal{Q}^{\top} \mathcal{Q}$ is a rotational invariant feature matrix.
- ullet \mathcal{D}' Lacks Permutational Invariance
- Write $\mathcal{D}'_{ii'} = \sum_{j=1}^{\ell} \mathcal{Q}_{ij} \mathcal{Q}_{ji'}$ (*i* and *i'* are cloud point indices, and *j* is feature index).
- \mathcal{D}' would switch rows and columns if the n points are permutated (i.e., the numbering is switched).

How to achieve permutational invariance?

Permutational Invariance - General

Examples

Heuristics: A function where all arguments have the same status is permutational variant, e.g.,

- $f(x_1, x_2, x_3) = \frac{1}{3}(x_1 + x_2 + x_3)$
- $f(x_1, x_2, x_3) = \frac{1}{3}(x_1 + x_2 + x_3) + x_1x_2x_3 + x_1x_2 + x_2x_3 + x_1x_3$

Counter-Examples:

These functions are not permutational variant:

- $f(x_1, x_2, x_3) = x_1(x_2 + x_3)$
- $f(x_1, x_2, x_3) = (x_1 + x_2 x_3)$

The arguments have different status in the function.

Permutational Invariance

Summation over all points can achieve permutational invariance Define a function that depends only on the set of vectors $\{\mathbf{q}_i\}_{i=1}^n$ and .

• Introduce a set of m functions $\{\phi_k(\mathbf{c}_i)\}_{k=1}^m$, where scalars \mathbf{c}_i is part of feature vector \mathbf{q}_i , and $k=1,\ldots,m$ is the embedding function index:

$$\mathcal{L}_{kj} = \frac{1}{n} \sum_{i=1}^{n} \phi_k(\mathbf{c}_i) \mathcal{Q}_{ij}$$

Note

- Inner product (contraction) between ϕ and $\mathcal Q$ removed dependence on point ordering (index i, red above).
- This is evident as index i disappeared in the results \mathcal{L}_{ki} after the contraction.

Rotational Invariance: Final Attempt

\mathcal{L} is Permutational Invariant

- Order-removing transformation: $\mathcal{L}_{kj} = \frac{1}{n} \sum_{i=1}^{n} \phi_k(\mathbf{c}_i) \mathcal{Q}_{ij}$
- Or in matrix form: $\mathcal{L} = \frac{1}{n} G^{\top} \mathcal{Q}$ with $\mathcal{G}_{ki} = \phi_k(\mathbf{c}_i)$.

Achieve Rotational Invariance

- ullet ${\cal L}$ is obtained by rotating and scaling ${\cal Q}$
- $\mathcal{D} = \mathcal{L}\mathcal{L}^{\top} \equiv \frac{1}{n^2} \mathcal{G}^{\top} \mathcal{Q} \mathcal{Q}^{\top} \mathcal{G}$ is rotational invariant
- ullet Note that ${\mathcal D}$ is also translational and permutational invariant because ${\mathcal L}$ is.

Compact Representation

We have transformed cloud feature Q to invariant D:

$$\mathcal{D} = \mathcal{L} \mathcal{L}^{\top} \equiv \frac{1}{n^2} \mathcal{G}^{\top} \mathcal{Q} \mathcal{Q}^{\top} \mathcal{G}$$

Example Problem Size

- Cloud has n = 100 points.
- ullet Each point has a feature vector of length $\ell=11.$
- We chose m=64 encoding functions, i.e., size of $\phi=\{\phi_j\}_{j=1}^{64}$.
- ullet $\mathcal{Q} \in \mathbb{R}^{100 imes 11}$ (1100 raw features)
- ullet $\Longrightarrow \mathcal{D} \in \mathbb{R}^{64 \times 64}$ (4096 embedded features)

May not need so many features!

Compact Representation

Feature Compression

- It is desirable to only keep first $m' \ll m$ columns of \mathcal{D} for a more compact encoding.
- To this end, we define:

$$\mathcal{D} = \mathcal{L} \mathcal{L}^{\star \top} \equiv \frac{1}{n^2} \mathcal{G}^{\top} \mathcal{Q} \mathcal{Q}^{\top} \mathcal{G}^{\star} \in \mathbb{R}^{64 \times 4}$$

- \mathcal{G}^* is the first m' columns of \mathcal{G} . We used m'=4 in our paper.
- Thus we have $m \times m' = 64 \times 4 = 256$ invariant features.

Overview Again

H. Xiao (Virginia Tech)