Übungen zu Einführung in die Algebra

Jendrik Stelzner

14. November 2016

Inhaltsverzeichnis

1	Gruppentheorie	2
2	Ringtheorie	6
3	Modultheorie	11

1 Gruppentheorie

Übung 1. Ein Kriterium für maximale Untergruppen

Es sei G ein Gruppe und $H\subseteq G$ eine Untergruppe, so dass [G:H] endlich und prim ist. Zeigen Sie, dass H eine maximale echte Untergruppe von G ist. Entscheiden Sie, ob H notwendigerweise normal in G ist.

Lösung 1.

Es sei $p\coloneqq [G:H]$. Da p eine Primzahl ist gilt inbesondere $p\ne 1$, weshalb H eine echte Untergruppe von G ist. Ist $K\subsetneq G$ eine echte Untergruppe von G mit $H\subseteq K$, so gilt wegen der Multiplikativität des Index', dass

$$p = [G:H] = [G:K][K:H].$$

Da p eine Primzahl ist, gilt entweder [G:K]=p und [K:H]=1, oder [G:K]=1 und [K:H]=p. Es gilt [G:K]>1, da K eine echte Untergruppe von G ist, und somit [K:H]=1. Also ist K=H, und somit H eine maximale echte Untergruppe.

H ist nicht notwendigerweise normal in G: Für $G = S_3$ und $H = \langle (1\,2) \rangle = \{ \mathrm{id}, (1\,2) \}$ ist H zwar nicht normal in G, aber [G:H] = |G|/|H| = 6/2 = 3 ist prim.

Übung 2. Multiple Choice I

Entscheiden Sie, ob die folgenden Aussagen allgemein gültig sind, und geben sie gegebenenfalls ein Gegenbeispiel an.

- 1. Ist G eine Gruppe und $N \subseteq G$ eine normale Untergruppe, so gilt $G \cong (G/N) \times N$.
- 2. Ist G eine endliche Gruppe, so dass G/N für normale Untergruppe $N\subseteq G$ mit $N\neq 1$ abelsch ist, so ist auch G abelsch.
- 3. Zwei Gruppen G_1 und G_2 sind genau dann isomorph, wenn $G_1 \times H \cong G_2 \times H$ für jede Gruppe H.
- 4. Sind G_1 und G_2 zwei Gruppen, so ist jede Untergruppe von $G_1 \times G_2$ von der Form $H_1 \times H_2$ für Untergruppen $H_1 \subseteq G_1$ und $H_2 \subseteq G_2$.
- 5. Sind G_1 und G_2 zwei Gruppen, so dass es Gruppenepimorphismen $\phi\colon G_1\to G_2$ und $\psi\colon G_2\to G_1$ gibt, so gilt $G_1\cong G_2$.

Lösung 2.

1. Die Aussage ist falsch: Es sei $G=\mathbb{Z}$ und $N=2\mathbb{Z}$. Dann ist

$$(G/N) \times N \cong (\mathbb{Z}/2\mathbb{Z}) \times (2\mathbb{Z}) \cong (\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}.$$

Es ist allerdings $(\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z} \ncong \mathbb{Z}$, da $(\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}$ ein Element der Ordnung 2 enthält (nämlich (1,0)), \mathbb{Z} aber nicht.

2. Die Aussage ist falsch: Die einzige nicht-trivialen normalen Untergruppe von S_3 sind $N = \langle (1\,2\,3) \rangle = \{ \mathrm{id}, (1\,2\,3), (1\,3\,2) \}$ und S_3 selbst. Der Quotient S_3/N hat Ordnung 2, weshalb $S_3/N \cong \mathbb{Z}/2\mathbb{Z}$ abelsch ist, und $S_3/S_3 = 1$ ist ohnehin abelsch. Die Gruppe S_3 selbst ist allerdings nicht abelsch.

Alternativ ist A_n für $n \geq 5$ einfach, weshalb A_n der einzige nicht-triviale Normalteiler von A_n ist, aber A_4 ist für $n \geq 4$ nicht abelsch.

- 3. Die Aussage ist wahr: Gilt $G_1\cong G_2$, so gibt es einen Isomorphismus $\phi\colon G_1\to G_2$. Für jede Gruppe H ist dann $\phi\times\operatorname{id}_H\colon G_1\times H\to G_2\times H$ ein Isomorphismus, und somit $G_1\times H\cong G_2\times H$. Gilt andererseits $G_1\times H\cong G_2\times H$ für jede Gruppe H, so gilt inbesondere $G_1\cong G_1\times 1\cong G_2\times 1\cong G_2$.
- 4. Die Aussage ist falsch: Ist G eine Gruppe mit $G \neq 1$ und $G_1 = G_2 = G$, so ist $\Delta = \{(g,g) \mid g \in G\}$ eine Untergruppe von $G_1 \times G_2 = G \times G$, die sich nicht als ein solches Produkt schreiben lässt.
- 5. Die Aussage ist falsch: Für die Gruppen

$$G_1 = \bigoplus_{n \in \mathbb{N}} \mathbb{Z} = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots$$

und

$$G_2=\mathbb{Z}/2\mathbb{Z}\oplus\bigoplus_{n\in\mathbb{N}}\mathbb{Z}=\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}\oplus\cdots$$

gibt es Gruppenepimorphismen

$$\phi \colon G_1 \to G_2, \quad (n_1, n_2, n_3, \dots) \mapsto (\overline{n_1}, n_2, n_3, \dots)$$

und

$$\psi \colon G_2 \to G_1, \quad (\overline{n_1}, n_2, n_3, \dots) \mapsto (n_2, n_3, \dots).$$

Es gilt aber $G_1 \ncong G_2$, denn G_2 enthält ein Element der Ordnung 2, G_1 jedoch nicht.

Übung 3.

Es seien G_1 und G_2 zwei Gruppen, $N_1 \subseteq G_1$ und $N_2 \subseteq G_2$ zwei normale Untergruppen. Geben Sie jeweils Beispiele für die folgenden Situationen:

- 1. Es gilt $G_1 \cong G_2$ und $N_1 \cong N_2$, aber $G_1/N_1 \ncong G_2/N_2$.
- 2. Es gilt $G_1 \cong G_2$ und $G_1/N_1 \cong G_2/N_2$, aber $N_1 \ncong N_2$.
- 3. Es gilt $G_1/N_1 \cong G_2/N_2$ und $N_1 \cong N_2$, aber $G_1 \ncong G_2$.

Lösung 3.

1. Es seien $G_1=G_2=\bigoplus_{n\geq 0}\mathbb{Z}$, sowie $N_1=\bigoplus_{n\geq 1}\mathbb{Z}$ und $N_2=\bigoplus_{n\geq 2}\mathbb{Z}$. Dann gilt $G_1=G_2\cong N_1\cong N_2$ aber

$$G_1/N_1 \cong \mathbb{Z} \ncong \mathbb{Z} \oplus \mathbb{Z} = G_2/N_2.$$

2. Es seien $G_1 = G_2 = \bigoplus_{n \geq 0} \mathbb{Z}$ und

$$N_1 := \mathbb{Z} \oplus 0 \oplus 0 \oplus 0 \oplus \cdots$$

und

$$N_2 := \mathbb{Z} \oplus \mathbb{Z} \oplus 0 \oplus 0 \oplus \cdots$$

Dann gilt

$$G_1/N_1 \cong \bigoplus_{n\geq 1} \mathbb{Z} \cong \bigoplus_{n\geq 2} \mathbb{Z} = G_2/N_2.$$

Es gilt aber $N_1 \ncong N_2$, denn $N_1 \cong \mathbb{Z}$ ist zyklisch, $\mathbb{Z} \oplus \mathbb{Z}$ aber nicht.

3. Es seien $G_1=\mathbb{Z}/4\mathbb{Z}$ und $G_2=\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, sowie $N_1=2\mathbb{Z}/4\mathbb{Z}=\{\overline{0},\overline{2}\}$ und $N_2=\mathbb{Z}/2\mathbb{Z}\oplus 0$. Wegen der Kommutativität von G_1 und G_2 handelt es sich jeweils um eine normale Untergruppe. Da N_1 und N_2 beide zweielementig sind, gilt

$$N_1 \cong \mathbb{Z}/2\mathbb{Z} \cong N_2$$

(denn $\mathbb{Z}/2\mathbb{Z}$ ist die bis auf Isomorphie eindeutige zweielementige Gruppe). Nach dem zweiten (oder dritten) Isomorphiesatz gilt

$$G_1/N_1 = (\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z},$$

und für den anderen Quotienten gilt

$$G_2/N_2 = (\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z} \oplus 0)$$

$$\cong ((\mathbb{Z}/2\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z})) \oplus ((\mathbb{Z}/2\mathbb{Z})/0) \cong 0 \oplus \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}.$$

Also gilt auch $G_1/N_1\cong G_2/N_2$. Es gilt aber $G_1\not\cong G_2$, da G_1 ein Element der Ordnung 4 enthält, G_2 jedoch nicht.

Übung 4. Gruppen mit trivialer Automorphismengruppe

Es sei G eine Gruppe mit Aut(G) = 1.

- 1. Zeigen Sie, dass G abelsch ist.
- 2. Zeigen Sie, dass g = -g für alle $g \in G$.
- 3. Folgern Sie, dass es eine eindeutige \mathbb{F}_2 -Vektorraumstruktur auf G gibt.
- 4. Folgern Sie, dass G = 0 oder $G \cong \mathbb{Z}/2\mathbb{Z}$.

Lösung 4.

- 1. Für $g \in G$ sei $c_g \colon G \to G$ die Konjugation mit g. Dies ist ein Automorphismus von G, weshalb $c_g = \mathrm{id}_G$. Somit ist $g \in \mathrm{Z}(G)$.
- 2. Wegen der Kommutativität von G ist die Abbildung $n \colon G \to G, g \mapsto -g$ ein Automorphismus von G. Somit ist $n = \mathrm{id}_G$, also -g = g für alle $g \in G$.
- 3. Nach dem vorherigen Aufgabenteil ist 2g=0 für alle $g\in G$. Deshalb gibt es eine eindeutige \mathbb{F}_2 -Vektorraumstruktur auf G via

$$\overline{n} \cdot g = n \cdot g$$
 für alle $n \in \mathbb{Z}, g \in G$,

wie sich durch direktes Nachrechnen ergibt.

4. Es sei $(b_i)_{i\in I}$ eine Basis von G als \mathbb{F}_2 -Vektorraum. Ist $G\neq 0$ und $G\ncong \mathbb{Z}/2$, so ist $\dim_{\mathbb{F}_2}G\geq 2$. Es gibt daher $i_1,i_2\in I$ with $i_1\neq i_2$. Die Permutation

$$\sigma\colon \{b_i\}_{i\in I} \to \{b_i\}_{i\in I}, \quad b_j \mapsto \begin{cases} b_{i_2} & \text{falls } j=i_1, \\ b_{i_1} & \text{falls } j=i_2, \\ b_j & \text{sonst,} \end{cases}$$

induziert einen nicht-trivialen \mathbb{F}_2 -Vektorraumautomorphismus $\alpha\colon G\to G$ mit

$$\alpha\left(\sum_{i\in I}\lambda_i b_i\right) = \sum_{i\in I}\lambda_i b_{\sigma(i)}.$$

Dann ist α aber insbesondere ein nicht-trivialer Gruppenautomorphismus, im Widerspruch zu ${\rm Aut}(G)=1.$

2 Ringtheorie

Übung 5. Initialobjekte in der Kategorie der Ringe

- 1. Zeigen Sie, dass es für jeden Ring R einen eindeutigen Ringhomomorphismus $\mathbb{Z} \to R$ gibt. (Dies bedeutet, dass der Ring \mathbb{Z} ein Initialobjekt in der Kategorie der Ringe ist.)
- 2. Es sei Z ein Ring, so dass es für jeden Ring R einen eindeutigen Ringhomomorphismus $Z \to R$ gibt. Zeigen Sie, dass $Z \cong \mathbb{Z}$.

Lösung 5.

1. Ist $\phi \colon \mathbb{Z} \to R$ ein Ringhomomorphismus, so ist $\phi(1_{\mathbb{Z}}) = 1_R$. Für alle $n \in \mathbb{Z}$ ist damit

$$\phi(n) = \phi(n \cdot 1_{\mathbb{Z}}) = n \cdot \phi(1_{\mathbb{Z}}) = n \cdot 1_{R}.$$

Also ist ϕ eindeutig. Durch direktes Nachrechnen ergibt sich auch, dass $\psi \colon \mathbb{Z} \to R$ mit

$$\psi(n) \coloneqq n \cdot 1_R \quad \text{für alle } n \in \mathbb{Z}$$

ein Ringhomomorphismus ist.

2. Es gibt einen eindeutigen Ringhomomorphismus $\phi\colon\mathbb{Z}\to Z$ sowie einen eindeutigen Ringhomomorphismus $\psi\colon Z\to\mathbb{Z}$. Es ist auch $\psi\circ\phi\colon\mathbb{Z}\to\mathbb{Z}$ ein Ringhomomorphismus. Die Identität $\mathrm{id}_\mathbb{Z}\colon\mathbb{Z}\to\mathbb{Z}$ ebenfalls ein Ringhomomorphismus ist. Da es genau einen Ringhomomorphismus $\mathbb{Z}\to\mathbb{Z}$ gibt, muss sowohl $\psi\circ\phi$ als auch $\mathrm{id}_\mathbb{Z}$ dieser eindeutige Ringhomomorphismus $\mathbb{Z}\to\mathbb{Z}$ sein. Folglich ist $\psi\circ\phi=\mathrm{id}_\mathbb{Z}$. Analog ergibt sich, dass $\phi\circ\psi=\mathrm{id}_\mathbb{Z}$.

Übung 6.

Es sei R ein Ring. Konstruieren Sie eine Bijektion zwischen der Menge der Ringhomomorphismen $\mathbb{Z}[T] \to R$ und R.

Lösung 6.

Aus der Vorlesung ist bekannt, dass die Abbildung

$$\{ \text{Ringhomomorphismen } \mathbb{Z}[T] \to R \} \to \{ \text{Ringhomomorphismen } \mathbb{Z} \to R \} \times R, \\ \phi \mapsto (\phi|_{\mathbb{Z}}, \phi(T))$$

eine Bijektion ist. Da es genau einen Ringhomomorphismus $\mathbb{Z} \to R$ gibt, ergibt sich ferner, dass die Abbildung

{Ringhomomorphismen
$$\mathbb{Z} \to R$$
} \times $R \to R$, $(\psi, r) \mapsto r$

eine Bijektion ist. Damit ergibt sich insgesamt eine Bijektion

{Ringhomomorphismen
$$\mathbb{Z}[T] \to R$$
} $\to R$, $\phi \mapsto \phi(T)$.

Übung 7.

Es sei R ein kommutativer Ring.

- 1. Zeigen Sie, dass ein Ideal $\mathfrak{p} \subseteq R$ genau dann prim ist, wenn R/\mathfrak{p} ein Integritätsbereich ist.
- 2. Zeigen Sie, dass ein Ideal $\mathfrak{m} \subseteq R$ genau dann maximal ist, wenn R/\mathfrak{m} ein Körper ist.

Lösung 7.

Dies ist eine Standardaussage, deren Beweis sich in jedem Algebra-Buch findet.

Übung 8.

Es sei R ein kommutativer Ring und $\mathfrak{p}\subseteq R$ ein Ideal. Zeigen Sie, dass \mathfrak{p} genau dann ein Primideal ist, wenn es einen Körper K und einen Ringhomomorphismus $\phi\colon R\to K$ mit $\ker\phi=\mathfrak{p}$ gibt.

Beweis. Ist \mathfrak{p} ein Primideal, so ist R/\mathfrak{p} ein Integritätsbereich. Da die kanonische Inklusion $R/\mathfrak{p} \to Q(R/\mathfrak{p})$ ein injektiver Ringhomomorphismus ist, folgt für die Komposition

$$\phi \colon R \xrightarrow{\pi} R/\mathfrak{p} \to Q(R/\mathfrak{p}),$$

dass $\ker \phi = \ker \pi = \mathfrak{p}$. (Hier bezeichnet $\pi \colon R \to R/\mathfrak{p}$ die kanonische Projektion.) Da $Q(R/\mathfrak{p})$ ein Körper ist, zeigt dies eine Implikation.

Gibt es andererseits einen Körper K und einen Ringhomomorphismus $\phi \colon R \to K$ mit $\mathfrak{p} = \ker \phi$, so ist $R/\mathfrak{p} \cong \operatorname{im} \phi \subseteq K$. Der Körper K ist insbesondere ein Integritätsbereich, weshalb auch der Unterring im ϕ ein Integritätsbereich ist. Der Quotient R/\mathfrak{p} ist also ein Integritätsbereich und \mathfrak{p} somit eine Primideal.

Übung 9.

Es sei K ein Körper.

- 1. Zeigen Sie, dass es für jedes Polynom $f \in K[X]$ einen eindeutigen K-linearen Ringhomomorphismus $\phi_f \colon K[X] \to K[X]$ gibt, so dass $\phi_f(X) = f$.
- 2. Zeigen Sie, dass ϕ_f genau dann ein Ringisomorphismus ist, wenn deg f=1.

Übung 10. Funktorialität der Einheitengruppe

Ist R ein Ring, so ist

$$R^{\times} \coloneqq \{x \in R \mid x \text{ ist eine Einheit}\}$$

die Einheitengruppe von R. Zeigen Sie:

- 1. Ist R ein Ring, so bildet R^{\times} bezüglich der Multiplikation aus R eine Gruppe.
- 2. Sind R und S zwei Ringe und ist $\phi\colon R\to S$ ein Ringhomomorphismus, so induziert ϕ per Einschränkung einen Gruppenhomomorphismus

$$\phi^{\times} : R^{\times} \to S^{\times}, \quad x \mapsto \phi(x).$$

3. Für jeden Ring R gilt $\mathrm{id}_R^\times=\mathrm{id}_{R^\times}$, und für alle Ringhomomorphismen $\phi\colon R_1\to R_2$ und $\psi\colon R_2\to R_3$ gilt $(\psi\phi)^\times=\psi^\times\phi^\times$.

(*Hinweis*: Zum Verständnis genügt es kommutative Ringe zu betrachten. Die Aussage ist aber auch für nicht-kommutative Ringe von Bedeutung.)

Übung 11. Urbilder von Idealen

Es seien R und S zwei kommutative Ringe und $\phi \colon R \to S$ ein Ringhomomorphismus.

- 1. Zeigen Sie, dass für jedes Ideal $\mathfrak{a} \subseteq S$ das Urbild $\phi^{-1}(\mathfrak{a})$ ein Ideal in R ist.
- 2. Entscheiden Sie, ob $\phi^{-1}(\mathfrak{p})$ ein Primideal ist, wenn $\mathfrak{p}\subseteq S$ ein Primideal ist.
- 3. Entscheiden Sie, ob $\phi^{-1}(\mathfrak{m})$ ein maximales Ideal ist, wenn $\mathfrak{m}\subseteq S$ ein maximales Ideal ist.

Lösung 11.

- 1. Es sei $\pi \colon S \to S/\mathfrak{a}$, $s \mapsto \overline{s}$ die kanonische Projektion. Dann ist $\pi \phi$ ein Ringhomomorphismus und somit $\ker(\pi \phi) = \phi^{-1}(\ker \pi) = \phi^{-1}(\mathfrak{a})$ ein Ideal in R.
- 2. Die Aussage gilt: Es sei $\pi\colon S\to S/\mathfrak{p},\,s\mapsto \overline{s}$ die kanonische Projektion und $\mathfrak{q}:=\phi^{-1}(\mathfrak{p}).$ Der Quotient S/\mathfrak{p} ist ein Integritätsbereich, da \mathfrak{p} ein Primideal ist. Nach dem vorherigen Aufgabenteil ist \mathfrak{q} ein Ideal in R, und da $\ker(\pi\phi)=\phi^{-1}(\ker\pi)=\phi^{-1}(\mathfrak{p})=\mathfrak{q}$ induziert $\pi\phi$ einen injektiven Ringhomomorphismus

$$\psi \colon R/\mathfrak{q} \to S/\mathfrak{p} \quad \overline{r} \mapsto \overline{\phi(r)}.$$

Der Ring im $(\pi\phi) \subseteq S/\mathfrak{p}$ ist als Unterring eines Integritätsbereichs ebenfalls ein Integritätsbereich. Somit ist $R/\mathfrak{q} \cong \operatorname{im}(\pi\phi)$ ein Integritätsbereich, also \mathfrak{q} ein Primideal.

3. Die Aussage gilt nicht: Es sei etwa $\phi\colon\mathbb{Z}\to\mathbb{Q}$ die kanonische Inklusion. Dann ist $\mathfrak{m}:=0$ ein maximales Ideal in \mathbb{Q} , aber $\phi^{-1}(0)=0$ ist kein maximales Ideal in \mathbb{Z} , da $\mathbb{Z}/\mathfrak{m}\cong\mathbb{Z}$ kein Körper ist.

Übung 12.

Es sei R ein kommutativer Ring. Es seien $\mathfrak{a},\mathfrak{b}\subseteq R$ zwei Ideale mit $\mathfrak{a}=(x_i\mid i\in I)$ und $\mathfrak{b}=(y_i\mid j\in J)$. Zeigen Sie, dass

$$\mathfrak{ab} = (x_i y_i \mid i \in I, j \in J).$$

Lösung 12.

Für alle $i \in I$ und $j \in J$ folgt aus $x_i \in \mathfrak{a}$ und $y_j \in \mathfrak{b}$, dass $x_i y_j \in \mathfrak{ab}$. Daraus folgt, dass $(x_i y_j \mid i \in I, j \in J) \subseteq \mathfrak{ab}$. Sind andererseits $a \in \mathfrak{a}$ und $b \in \mathfrak{b}$, so ist $a = \sum_{i \in I} r_i x_i$ und $b = \sum_{j \in J} s_j y_j$ mit $r_i, s_j \in R$, wobei $r_i = 0$ für fast alle $i \in I$ und $s_j = 0$ für fast alle $j \in J$. Deshalb ist

$$ab = \sum_{\substack{i \in I \\ j \in I}} r_i s_j x_i y_j \in (x_i y_j \mid i \in I, j \in J).$$

Da jedes Element aus \mathfrak{ab} von der Form $\sum_{k=1}^n a_k b_k$ mit $a_k \in \mathfrak{a}$ und $b_k \in \mathfrak{b}$ ist, folgt daraus, dass $\mathfrak{ab} \subseteq (x_i y_j \mid i \in I, j \in J)$.

Übung 13. Zur Definition von Unterringen

Geben Sie ein Beispiel für einen kommutativen Ring R und eine Teilmenge $S\subseteq R$ mit den folgenden Eigenschaften:

- S ist abgeschlossen unter der Addition und Multiplikation von R, d.h. für alle $s_1, s_2 \in S$ ist auch $s_1 + s_2 \in S$ und $s_1 s_2 \in S$.
- Zusammen mit der Einschränkung der Addition und Multiplikation aus R ist S ebenfalls ein (notwendigerweise kommutativer) Ring.
- S ist kein Unterring von R.

Lösung 13.

Es sei $R=\mathbb{Z}\times\mathbb{Z}$ und $S=\mathbb{Z}\times 0=\{(n,0)\mid n\in\mathbb{Z}\}$. Offenbar ist S unter der Addition und Multiplikation abgeschlossen. Zusammen mit der Einschränkung dieser Operationen bildet S einen kommutativen Ring, für den $S\cong\mathbb{Z}$ gilt. Da $1_R=(1,1)\notin S$ ist S allerdings kein Unterring von R.

Übung 14.

Es sei R ein kommutativer Ring.

- 1. Definieren Sie, wann zwei Elemente von R assoziiert sind.
- 2. Es sei nun R ein Integritätsbereich. Zeigen Sie, dass zwei Elemente $a,b\in R$ genau dann assoziiert sind, wenn (a)=(b).

Übung 15.

Es sei R ein kommutativer Ring und $S\subseteq R$ eine multiplikative Teilmenge.

- 1. Zeigen Sie, dass R_S noethersch ist, wenn R noethersch ist.
- 2. Zeigen oder widerlegen Sie, dass R_S ein Hauptidealring ist, wenn R ein Hauptidealring ist

Übung 16.

Für jedes $d \in \mathbb{N}$ sei

$$\mathbb{Z}[\sqrt{-d}] := \mathbb{Z}[i\sqrt{d}] = \{a + i\sqrt{d}b \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

Es darf im Folgenden ohne Beweis genutzt werden, dass $\mathbb{Z}[\sqrt{-d}]$ ein Unterring von \mathbb{C} ist.

- 1. Zeigen Sie, dass $\mathbb{Z}[\sqrt{-1}]$ ein euklidischer Ring ist.
- 2. Zeigen Sie, dass $\mathbb{Z}[\sqrt{-2}]$ ein euklidischer Ring ist.

3. Zeigen Sie, dass $\mathbb{Z}[\sqrt{-5}]$ kein euklidischer Ring ist.

Übung 17.

Es sei R ein euklidischer Ring. Zeigen Sie, dass R ein Hauptidealring ist.

Übung 18.

Es sei R ein kommutativer Ring, so dass R[X] ein Hauptidealring ist. Zeigen Sie, dass R bereits ein Körper ist.

Übung 19.

Es seien R und R' zwei kommutative Ringe, $S\subseteq R$ eine multiplikative Teilmenge und $f\colon R\to R'$ ein Ringhomomorphismus.

- 1. Zeigen Sie, dass $S' \coloneqq f(S)$ eine multiplikative Teilmenge von R' ist.
- 2. Zeigen Sie, dass f einen Ringhomomorphismus $f_S \colon R_S \to R'_{S'}$ induziert.

Übung 20.

Zeigen Sie, dass $\mathbb{Z}[i] \cong \mathbb{Z}[X]/(X^2+1)$.

Übung 21.

Es sei R ein kommutativer Ring und $f \in R$. Zeigen Sie, dass $R_f \cong R[X]/(fX-1)$.

3 Modultheorie

Übung 22.

Zeigen Sie, dass es auf jeder abelschen Gruppe genau eine \mathbb{Z} -Modulstruktur gibt.

Übung 23.

Es sei Rein kommutativer Ring und Mein R-Modul. Es sei $I\subseteq R$ ein Ideal.

- 1. Zeigen Sie, dass sich die R-Modulstruktur auf M genau dann zu einer R/I-Modulstruktur fortsetzen lässt, wenn IM=0 (d.h. wenn am=0 für alle $a\in I$ und $m\in M$).
- 2. Es sei $S\subseteq R$ eine multiplikative Teilmenge. Zeigen Sie, dass sich die R-Modulstruktur auf M genau dann zu einer R_S -Modulstruktur fortsetzen lässt, wenn für jedes $s\in S$ die Abbildung $\lambda_s\colon M\to M, m\mapsto sm$ bijektiv ist.