Домашняя работа № 1

Автор: Минеева Екатерина

Задача 2.7

$$T(n) = \Theta(n^2)$$

$$\Lambda$$
 $T(n) = \Omega(n^2)$, T. K. $T(n) = T(n/2+2) + T(n/2-2) + n^2 \ge n^2$.

Пусть при n<8 рекурсия не вызывается, а выполняется $\leq d$ операций. Возьмем $M=\max(d,8)$. И докажем, что $\ \forall n\ T(n)\leq M\cdot n^2$ (то есть , что $T(n)=\bar{O}(n)$):

База

Докажем базу для всех n < 8.

Т. к при n < 8 выполняется $\leq d$ операций и $M \geq d, \, \forall \,\, n < 8: \,\, T(n) \leq M \cdot n^2$

Шаг

Предположим, что $\forall n < k \ T(n) \le M \cdot n^2$.

Если k < 8, то этот случай разобран в базе и делать ничего не нужно.

Если $k \geq 8$, то воспользовавшись предположением индукции, докажем, что $T(k) \leq M \cdot k^2$

$$T(k) = T(\frac{k}{2} + 2) + T(\frac{k}{2} - 2) + k^2 \le M(\frac{k}{2} + 2)^2 + M(\frac{k}{2} - 2)^2 + k^2 =$$

$$= \frac{Mk^2}{4} + 2Mk + 4M + \frac{Mk^2}{4} - 2Mk + 4M + k^2 = \frac{Mk^2}{2} + 8M + k^2 \le$$

$$\text{(T.к. } M \ge 8) \quad \le \frac{Mk^2}{2} + 8M + \frac{Mk^2}{8} \le Mk^2 \quad \Leftarrow$$

$$\Leftarrow$$
 $\frac{k^2}{2}+8+\frac{k^2}{8}\leq k^2$ \Leftrightarrow $8\leq \frac{3k^2}{8}$ \Leftrightarrow $8^2\leq 3k^2$ - верно, поскольку $k\geq 8$. Шаг доказан.

$$T(n) = \Omega(n^2)$$
 if $T(n) = \bar{O}(n)$ \Rightarrow $T(n) = \Theta(n^2)$