Blatt 1

Dienstag, 3. November 2020 11:41

Vouc Penktzahl (lakkesive Ros. Aufgaben) :

Felix Lehmann, Jan Manhillen, Leo Kyster Oerter

Aufgabe 4 Interpretation von Histogrammen

Zur einfachen Rechnung seien die beiden folgenden 4×4 -Grauwertbilder $\mathbf{I}_1 = [I_1(x,y)]$ und $\mathbf{I}_2 = [I_2(x,y)]$ mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

$$\mathbf{I}_1 = \begin{bmatrix} 4 & 2 & 5 & 1 \\ 5 & 3 & 2 & 3 \\ \hline 4 & 2 & 6 & 2 \\ \hline 4 & 1 & 2 & 1 \end{bmatrix}$$

$$\mathbf{I}_2 = \begin{array}{|c|c|c|c|c|}\hline 2 & 1 & 2 & 1 \\ \hline 1 & 7 & 6 & 1 \\ \hline 0 & 6 & 6 & 2 \\ \hline 1 & 1 & 2 & 1 \\ \hline \end{array}$$

1. Berechnen Sie die unnormalisierten Intensitätshistogramme $h(\mathbf{I_1})$ sowie $h(\mathbf{I_2})$ und stellen Sie diese tabellarisch dar.

I	h(I ₁)	h(I ₂)
0	0	1
1	3	7
2	5	4
3	2	0
4	3	0
5	2	0
6	1	3
7	0	1

2. Berechnen Sie die normalisierten Intensitätshistogramme $p(\mathbf{I_1})$ sowie $h(\mathbf{I_2})$ und stellen Sie diese tabellarisch dar.

S = 4

Z = 4

S * Z = 16

1	p(I ₁)	p(I ₂)
0	0	1/16 = 0,0625
1	3/16 = 0,1875	7/16 = 0,4375
2	5/16 = 0,3125	4/16 = 0,25
3	2/16 = 0,125	0
4	3/16 = 0,1875	0
5	2/16 = 0,125	0
6	1/16 = 0,0625	3/16 = 0,1875
7	0	1/16 = 0,0625

3. Berechnen Sie die Mittelwerte $m_{\mathbf{I_1}}$ und $m_{\mathbf{I_2}}$ sowie die mittl. quadr. Abreichungen $q_{\mathbf{I_1}}$ und $q_{\mathbf{I_2}}$.

$$m_{I} = \frac{1}{N} \sum_{I=0}^{I_{max}} I * N * p_{I}(I) = \sum_{I=0}^{I_{max}} I * p_{I}(I)$$

$$m_{I_{1}} = \sum_{I=0}^{7} I * p_{I}(I) = \frac{47}{16} = 2.9375$$

$$m_{I_{2}} = \sum_{I=0}^{7} I * p_{I}(I) = \frac{40}{16} = 2.5$$

$$q_{I} = \sum_{I=0}^{I_{max}} (I - m_{I})^{2} * p_{I}(I)$$

$$q_{I_{1}} = \sum_{I=0}^{7} (I - m_{I_{1}})^{2} * p_{I}(I_{1}) = \frac{591}{256} \approx 2.31$$

$$q_{I_{2}} = \sum_{I=0}^{7} (I - m_{I_{2}})^{2} * p_{I}(I_{2}) = 5$$

4. Welche vergleichenden Aussagen sind über die Bilder I_1 und I_2 anhand ihrer Mittelwerte und mittl. quadr. Abreichungen ableitbar? Was ist bzgl. beider Werte für I_2 kritisch zu bedenken?

Der Mittelwert des ersten Bildes ist höher als der des zweiten Bildes. Es ist also insgesamt ein wenig heller als I_2 .

Das zweite Bild hat deutlich größere Intensitätsunterschiede. Die mittlere quadratische Abweichung ist mehr als doppelt so groß wie die von I_1 . Es handelt sich um ein bimodales Histogramm. In der Mitte ist das Bild sehr hell, während der Rand relativ dunkel ist. Mittlere Intensitäten sind nicht vorhanden.

Aufgabe 5 Lineare Histogrammspreizung

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild I = [I(x,y)] mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

2	3	3	5
2	4	4	5

a) Berechnen Sie das unnormalisierte Intensitätshistogramm $h(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

1	h(I)
0	0
1	0
2	2
3	2
4	2
5	2
6	0
7	0

b) Berechnen Sie das normalisierte Intensitätshistogramm $p(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

S = 4

Z = 2

S * Z = 8

1	p(I)
0	0
1	0
2	2/8 = 0,25
3	2/8 = 0,25
4	2/8 = 0,25
5	2/8 = 0,25
6	0
7	0

c) Berechnen Sie mit Herleitung die beiden Konstanten c_1 und c_2 für die lineare Histogrammspreizung $T(\mathbf{I})$.

 $I_{\text{max}} = 7$

 $I_{minGiven} = 2$

 $I_{\text{maxGiven}} = 5$

 $c_1 = -I_{minGiven} = -2$

 $c_2 = I_{max} / (I_{maxGiven} - I_{minGiven}) = 7/3$

d) Wenden Sie die so ermittelte lineare Histogrammspreizung T auf das obige 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x}, \mathbf{y})]$ an und geben Sie das so gespreizte neue Grauwertbild $\mathbf{I}' = T(\mathbf{I})$ wieder.

$$T(I) = [(I-2) * 7/3]$$

ı	T(I)
0	0
1	0
2	0
3	2
4	5
5	7
6	7
7	7

$$r = \begin{bmatrix} 0 & 2 & 2 & 7 \\ 0 & 5 & 5 & 7 \end{bmatrix}$$

Aufgabe 6 Gamma-Korrektur

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild I = [I(x,y)] mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

0	1	1	4
0	2	2	4

a) Berechnen Sie die Gamma-Korrektur für I = [I(x,y)] mit $\gamma=0.5$ und geben Sie das so korrigierte neue Grauwertbild $I'=T_{\gamma=0.5}(I)$ wieder.

ı	T _{γ=0.5} (I)
0	0
1	3
2	4
3	5
4	6

$$\mathbf{I'} = \begin{bmatrix} 0 & 3 & 3 & 6 \\ 0 & 4 & 4 & 6 \end{bmatrix}$$

b) Berechnen Sie die Gamma-Korrektur für I=[I(x,y)] mit $\gamma=2.0$ und geben Sie das so korrigierte neue Grauwertbild $I'=T_{\gamma=2}(I)$ wieder.

I	T _{γ=2} (I)
0	0
1	0
2	1
3	1
4	3

$$\mathbf{I}' = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

c) Welche der beiden Gamma-Korrekturen ($\gamma=0.5,~\gamma=02.0$) ist angemessen? Begründen Sie Ihre Antwort einerseits mit der Qualität des Eingabebildes und andererseits mit der Eigenschaft der jeweiligen Gamma-Korrektur.

Das Eingabebild ist unterbelichtet, was man daran sieht, dass sich die meisten Intensitätswerte im niedrigen Bereich befinden. Es gibt keine Intensitätswerte, die größer als 4 sind.

Also ist die Gamma-Korrektur mit γ = 0.5 angemessen, da man Gamma-Korrekturen mit γ < 1 für unterbelichtete Bilder nutzt, wobei niedrige Intensitätswerte gespreizt und hohe Intensitätswerte gestaucht werden.

Bei Gamma-Korrekturen mit $\gamma > 1$ werden hohe Intensitätswerte gespreizt und niedrige gestaucht, was besser für überbelichtete Bilder ist.

Aufgabe 7 Histogrammlinearisierung bzw. Maximierung der Entropie

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild I = [I(x,y)] mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

1	0	1	1	7
	2	6	6	7

a) Berechnen Sie das unnormalisierte Intensitätshistogramm $h(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

I	h(I)
0	1
1	2
2	1
3	0
4	0
5	0
6	2
7	2

b) Berechnen Sie das normalisierte Intensitätshistogramm $p(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

S = 4

Z = 2

S * Z = 8

1	p(I)
0	1/8 = 0,125
1	2/8 = 0,25
2	1/8 = 0,125
3	0
4	0
5	0
6	2/8 = 0,25
7	2/8 = 0,25

c) Berechnen Sie das kumulative Intensitätshistogramm $s(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

I	s(I)
0	0,125
1	0,375
2	0,5
3	0,5
4	0,5
5	0,5
6	0,75
7	1

d) Wenden Sie nun die Histogrammlinearisierung T_H auf das obige 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x},\mathbf{y})]$ an und geben Sie das so korrigierte neue Grauwertbild $\mathbf{I}' = T_H(\mathbf{I})$ wieder.

I	T _H (I)
0	1
1	3
2	4
3	4
4	4
5	4
6	6
7	7

$$\mathbf{I'} = \begin{bmatrix} 1 & 3 & 3 & 7 \\ 4 & 6 & 6 & 7 \end{bmatrix}$$