UCF "Practice" Local Contest — Aug 29, 2015

Knight Moves – Gold Edition

filename: goldknight (Difficulty Level: Hard)

You have a chessboard of size $N \times N$. The rows and columns are numbered from 1 to N. In a cell located at row R_1 and Column C_1 , a knight is starting his journey. The knight wants to go to the cell located at row R_2 and Column C_2 . Move the knight from the starting cell to this destination cell with minimum number of moves.

As a reminder, a knight's jump moves him 2 cells along one of the axes, and 1 cell along the other one. In other words, if a knight is at (A,B), it may move to (A-2,B-1), (A-2, B+1), (A+2, B-1), (A+2, B+1), (A-1, B-2), (A+1,B-2), (A-1, B+2) or (A+1, B+2). Of course, the knight cannot leave the board.

The Problem:

Given N, R_1 , C_1 , R_2 and C_2 , determine the minimum number of steps necessary to move the knight from (R_1, C_1) to (R_2, C_2) .

The Input:

The first input line contains a positive integer, T, indicating the number of test cases. Each case consists of a line containing five integers N (3 \leq N \leq 20), R₁, C₁, R₂ and C₂ (1 \leq R₁, C₁, R₂, C₂ \leq N).

The Output:

For each test case, first output "Case #i:" where i is the test case number, starting with 1. Then, output the minimum number of steps needed to move the knight from (R_1, C_1) to (R_2, C_2) . Assume that there will always be a solution, i.e., it's possible to move the knight from its starting cell to its destination cell. Leave a blank line after the output for each test case. Follow the format illustrated in Sample Output.

Sample Input:

2 5 1 1 2 3 5 1 1 2 2

Sample Output:

Case #1: 1

Case #2: 4