High-Speed Ring Oscillator based Sensors for Remote Side-Channel Attacks on FPGAs

Joseph GRAVELLIER (EMSE)
Jean-Max DUTERTRE (EMSE)
Yannick TEGLIA (THALES)
Philippe LOUBET-MOUNDI (THALES)

Laboratoire de Sécurité des Architectures et des Systèmes, F-13541 Gardanne France Thales - 13600 La Ciotat, France

December 2019

THALES
MINES
Saint-Étienne

Example: Padlock

- Two ways to crack the padlock:
 - 1) Brute Force all the combinations.
 - (2) Listen to padlock clicks.

THALES
MINES
Saint-Étienne

Example: Padlock

- Two ways to crack the padlock:
 - 1 Brute Force all the combinations.
 - (2) Listen to padlock clicks.

THALES
MINES
Saint-Étienne

Use case: Smart Card

- Retrieve a credit card secret key ? :
 - 1 Using Brute Force \rightarrow impossible.
 - (2) Using power measurement \rightarrow Yes, because the secret leaks!

THALES
MINES
Saint-Étienne

Use case: Smart Card

- Retrieve a credit card secret key? :
 - (1) Using Brute Force \rightarrow impossible.
 - (2) Using power measurement \rightarrow Yes, because the secret leaks!

Application: Power side-channel on RSA

- $\bullet \ \ \mathsf{Example} \ \ \mathsf{on} \ \ \mathsf{RSA} \ \ \mathsf{algorithm} \colon \ \mathit{if} \ \ \big(\mathit{Key}[\mathsf{i}] = 1\big) \ \{\mathit{do} \ \mathit{something} \}.$
- Attacker measures RSA power consumption.
- Knowing RSA algorithm & RSA power consumption, the attacker deduces RSA key bits.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

THALES MINES

Application: Power side-channel on RSA

- Example on RSA algorithm: if $(Key[i] = 1) \{do \ something\}$.
- Attacker measures RSA power consumption.
- Knowing RSA algorithm & RSA power consumption, the attacker deduces RSA key bits.

THALES MINES

Application: Power side-channel on RSA

- Example on RSA algorithm: if $(Key[i] = 1) \{do \ something\}$.
- Attacker measures RSA power consumption.
- Knowing RSA algorithm & RSA power consumption, the attacker deduces RSA key bits.

Joseph GRAVELLIER Reconfig 2019 December 2019 4 / 26

Usual Hardware Attacks

- Type: fault injection attack (FIA) & side-channel attack (SCA).
- Target: smart cards, microcontrollers, system on chip...
- Means: oscilloscope, power & EM probe...
- Range: local, direct physical access required.

Context: What is remote side-channel?

Remote Hardware Attacks

- Type: fault injection attack (FIA) & side-channel attack (SCA).
- Range: remote, access to a network required.
- Target: connected devices (IoT), data centers. . .
- Means: resources available within the target.

Outline

Remote Side-Channel Attacks on Heterogeneous SoC.

- (1) **Introduction** to remote FPGA-based hardware attacks.
- 2 Presentation of the proposed RO-based sensor design.
- (3) Experimental validation and SCA.
- (4) Comparison with other **SCA setups**.

Outline

Remote Side-Channel Attacks on Heterogeneous SoC.

- (1) **Introduction** to remote FPGA-based hardware attacks.
- 2 Presentation of the proposed **RO-based sensor design**.
- (3) Experimental validation and SCA.
- (4) Comparison with other **SCA setups**.

Basics

- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption algorithm implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage sensor implementation (Schellenberg et al).

Basics

- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption algorithm implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage sensor implementation (Schellenberg et al).

Basics

- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption algorithm implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage sensor implementation (Schellenberg et al).

- Ring-oscillator based sensor basics:
 - A **RO** generates an oscillation clk_{RO} at a frequency f_{RO} .

- Ring-oscillator based sensor basics:
 - A **RO** generates an oscillation clk_{RO} at a frequency f_{RO} .
 - A **counter** is incremented by one each clk_{RO} period.

- Ring-oscillator based sensor basics:
 - A **RO** generates an oscillation clk_{RO} at a frequency f_{RO} .
 - A **counter** is incremented by one each clk_{RO} period.
 - A register reads the counter value at a fixed rate clk.

- Ring-oscillator based sensor basics:
 - A **RO** generates an oscillation clk_{RO} at a frequency f_{RO} .
 - A **counter** is incremented by one each clk_{RO} period.
 - A register reads the counter value at a fixed rate clk.

- f_{RO} fluctuates with temperature and voltage variations.
 - if $V \nearrow$ or $T \searrow$ then $f_{RO} \nearrow$: bigger values are sampled
 - if $V \searrow$ or $T \nearrow$ then $f_{RO} \searrow$: smaller values are sampled

- Target: connected devices that embeds FPGAs.
 - (A) Multi-user FPGAs in cloud datacenters (Schellenberg et al).
 - (B) Printed circuit boards **PCB** (Schellenberg et al).
 - (C) **Heterogeneous** connected **SoCs** (Zhao et al).

- Target: connected devices that embeds FPGAs.
 - (A) Multi-user FPGAs in **cloud datacenters** (Schellenberg et al).
 - (B) Printed circuit boards **PCB** (Schellenberg et al).
 - (C) **Heterogeneous** connected **SoCs** (Zhao et al).

Threat model and related works

- Target: connected devices that embeds FPGAs.
 - (A) Multi-user FPGAs in **cloud datacenters** (Schellenberg et al).
 - (B) Printed circuit boards **PCB** (Schellenberg et al).
 - (C) **Heterogeneous** connected **SoCs** (Zhao et al).

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs, a sampling rate of only 8 MHz was achieved [...], making them too slow to sense variations at circuit speed" (Gnad et al. 2018)

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs, a sampling rate of only 8 MHz was achieved [...], making them too slow to sense variations at circuit speed" (Gnad et al. 2018)

- For this reason:
 - RO were only used for SPA side-channel attacks.
 - RO are not considered as a threat for CPA attacks.

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs a compling rate of only 8 MHz was achieved [], making them too clow to sense variations at circuit speed" (Gnad et al. 2018)

- For this reason:
 - RO were only used for SPA side-channel attacks.
 - RO are not considered as a threat for CPA attacks.
- We refute this assumption:

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs a compling rate of only 8 MHz was achieved [], making them too clow to sense variations at circuit speed" (Gnad et al. 2018)

- For this reason:
 - RO were only used for SPA side-channel attacks.
 - RO are not considered as a threat for CPA attacks.
- We refute this assumption:
 - Through the introduction of a novel RO-based sensor design.

Joseph GRAVELLIER Reconfig 2019 December 2019 11/26

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs a sampling rate of only 8 MHz was achieved [], making them too clow to sense variations at circuit speed" (Gnad et al. 2018)

- For this reason:
 - RO were only used for SPA side-channel attacks.
 - RO are not considered as a threat for CPA attacks.
- We refute this assumption:
 - Through the introduction of a novel RO-based sensor design.
 - Capable of a 250 MHz sampling frequency.

Joseph GRAVELLIER Reconfig 2019 December 2019 11/26

Supposed RO-based sensors limitations

"The measurement through ROs requires a counting mechanism. Because of that, even with multiple ROs a sampling rate of only 8 MHz was achieved [], making them too clow to sense variations at circuit speed" (Gnad et al. 2018)

- For this reason:
 - RO were only used for SPA side-channel attacks.
 - RO are not considered as a threat for CPA attacks.

We refute this assumption:

- Through the introduction of a novel RO-based sensor design.
- Capable of a 250 MHz sampling frequency.
- Suitable for CPA side-channel attacks.

Outline

Remote Side-Channel Attacks on Heterogeneous SoC.

- 1) Introduction to remote FPGA-based hardware attacks.
- 2 Presentation of the proposed RO-based sensor design.
- 3 Experimental validation and SCA.
- (4) Comparison with other **SCA setups**.

- Recipe for a speed efficient sensor:
 - Implement the fastest RO achievable with the available logic.

- Recipe for a speed efficient sensor:
 - Implement the fastest RO achievable with the available logic.
 - Implement a counter capable of handling RO speed.

Previous RO-based sensors limitations

- Recipe for a speed efficient sensor:
 - Implement the fastest RO achievable with the available logic.
 - Implement a counter capable of handling RO speed.
- Problem with existing sensors:
 - They use binary counters made of complex flip-flops JK, Toggle, etc and additional logic.

- Recipe for a speed efficient sensor:
 - Implement the fastest RO achievable with the available logic.
 - Implement a counter capable of handling RO speed.
- Problem with existing sensors:
 - They use binary counters made of complex flip-flops JK, Toggle, etc and additional logic.
 - These designs struggle to meet timing requirement.

JRC-RO based sensor

- We propose an ultra-light/speed optimized design:
 - A unique NAND gate for the RO.(1 LUT)
 - A synchronous Johnson Ring **Counter**. (8 flip-flops + 1 LUT)
 - A 8-bit sampling Register. (8 flip-flops)

- We propose an ultra-light/speed optimized design:
 - A unique NAND gate for the RO.(1 LUT)
 - A synchronous Johnson Ring Counter. (8 flip-flops + 1 LUT)
 - A 8-bit sampling Register. (8 flip-flops)

- We propose an ultra-light/speed optimized design:
 - A unique NAND gate for the RO.(1 LUT)
 - $-\,$ A synchronous Johnson Ring **Counter**. (8 flip-flops $+\,$ 1 LUT)
 - A 8-bit sampling Register. (8 flip-flops)

- We propose an ultra-light/speed optimized design:
 - A unique NAND gate for the RO.(1 LUT)
 - $-\,$ A synchronous Johnson Ring **Counter**. (8 flip-flops $+\,$ 1 LUT)
 - A 8-bit sampling Register. (8 flip-flops)
- The overall sensor consumes 2 Artix-7 slices.

- JRC-RO based sensor
 - A speed optimized design:
 - RO frequency reaches around 1.2 GHz.
 - Johnson Ring-Counter provides 16 distinct states.
 - Sampling register is cadenced at 250 MHz

- A speed optimized design:
 - RO frequency reaches around 1.2 GHz.
 - Johnson Ring-Counter provides 16 distinct states.
 - Sampling register is cadenced at 250 MHz

- A speed optimized design:
 - RO frequency reaches around 1.2 GHz.
 - Johnson Ring-Counter provides 16 distinct states.
 - Sampling register is cadenced at 250 MHz

- JRC-RO based sensor
 - A speed optimized design:
 - RO frequency reaches around 1.2 GHz.
 - Johnson Ring-Counter provides 16 distinct states.
 - Sampling register is cadenced at 250 MHz
 - Only 4-5 counter increments between each sampling!

- Resolution relies on the number of RO-based sensor instances.
 - Different ROs run at Different frequencies.

- Resolution relies on the number of RO-based sensor instances.
 - Different ROs run at Different frequencies.
 - Each RO provide a peculiar information!

- Resolution relies on the number of RO-based sensor instances.
 - Different ROs run at Different frequencies.
 - Each RO provide a peculiar information!
 - Multiplying ROs enhances the overall granularity.

Outline

Remote Side-Channel Attacks on Heterogeneous SoC.

- (1) **Introduction** to remote FPGA-based hardware attacks.
- 2 Presentation of the proposed **RO-based sensor design**.
- (3) Experimental validation and SCA.
- (4) Comparison with other **SCA setups**.

Experimental Setup

- Target: Xilinx Zynq 7000 heterogeneous SoC
- FPGA (Xilinx Artix-7):
 64 RO-based sensors and AES algorithm
- CPU (ARM Cortex-A9): Traces export and AES management

Experiment on AES encryption @10MHz:

Impact of the RO-based sensor number

1 acquisition using 1, 16 and 64 ROs @250MHz.

• Experiment on AES encryption @10MHz:

Impact of the RO-based sensor number

- − 1 acquisition using 1, 16 and 64 ROs @250MHz.
- RO contributions are summed and averaged.

- Experiment on AES encryption @10MHz:
 - 1 acquisition using 1, 16 and 64 ROs @250MHz.
 - RO contributions are summed and averaged.
 - The 10 AES rounds gradually appears.

- Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.

- Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.
 - AES encryption time @50MHz \Rightarrow **220**ns

- Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.
 - AES encryption time @50MHz ⇒ 220ns
 - Synchronisation ⇒ Encryption and measurement launched simultaneously.

- Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.
 - AES encryption time @50MHz ⇒ 220ns
 - Synchronisation ⇒ Encryption and measurement launched simultaneously.
 - CPA model ⇒ AES Last round $HW[ARK_9 \oplus ARK_{10}]$

- 100,000 AES encryptions are measured using 16, 32 and 64 ROs.
 - Using $16\ ROs \rightarrow 78{,}939\ traces$ per AES key byte

- - 100,000 AES encryptions are measured using 16, 32 and 64 ROs.
 - Using $16\ ROs \rightarrow 78,939\ traces$ per AES key byte
 - Using **32 ROs** \rightarrow **26,912 traces** per AES key byte

- 100,000 AES encryptions are measured using 16, 32 and 64 ROs.
 - Using **16 ROs** \rightarrow **78,939 traces** per AES key byte
 - Using **32 ROs** ightarrow **26,912 traces** per AES key byte
 - Using **64 ROs** \rightarrow **8,324 traces** per AES key byte

Outline

Remote Side-Channel Attacks on Heterogeneous SoC.

- (1) **Introduction** to remote FPGA-based hardware attacks.
- 2 Presentation of the proposed **RO-based sensor design**.
- (3) Experimental validation and SCA.
- (4) Comparison with other **SCA setups**.

- TDC & Electromagnetic Side-Channel Attack
 - Goal: **challenge** our sensor results regarding other SCA setups.
 - Experimental Setup (1) (internal remote):
 - Time-to-digital converter (delay line)
 - TDC Sampling Rate: 250MHz
 - Experimental Setup (2) (external local):
 - EM Probe: Langer ICR HH 150
 - Oscilloscope Sampling Rate: 5GS/s

Time-to-Digital Converter

- TDC & Electromagnetic Side-Channel Attack
 - Goal: **challenge** our sensor results regarding other SCA setups.
 - Experimental Setup (1) (internal remote):
 - Time-to-digital converter (delay line)
 - TDC Sampling Rate: 250MHz
 - Experimental Setup (2) (external local):
 - EM Probe: Langer ICR HH 150
 - Oscilloscope Sampling Rate: 5GS/s

Time-to-Digital Converter

TDC & Electromagnetic Side-Channel Results

- Goal: challenge our sensor results with TDC-based sensor.
- RO provides "similar" results to other setups.
 - Using $\mathbf{RO}
 ightarrow \mathbf{7,685}$ traces per AES key byte

- TDC & Electromagnetic Side-Channel Results
 - Goal: challenge our sensor results with TDC-based sensor.
 - RO provides "similar" results to other setups.
 - Using $RO \rightarrow \textbf{7,685}$ traces per AES key byte
 - Using **EM** ightarrow **2,561 traces** per AES key byte

- Goal: challenge our sensor results with TDC-based sensor.
- RO provides "similar" results to other setups.
 - Using $RO \rightarrow \textbf{7,685}$ traces per AES key byte
 - Using EM
 ightarrow 2,561 traces per AES key byte
 - Using **TDC** ightarrow **1,536 traces** per AES key byte

- Our main contribution is a new RO-based sensor capable of:
 - Reaching high sampling frequencies with decent resolution.

- Our main contribution is a new RO-based sensor capable of:
 - Reaching high sampling frequencies with decent resolution.
 - Performing remote CPA attacks on secret key algorithms (AES).

- Our main contribution is a new RO-based sensor capable of:
 - Reaching high sampling frequencies with decent resolution.
 - Performing remote CPA attacks on secret key algorithms (AES).
 - Providing similar results to existing SCA setups.

- Our main contribution is a new RO-based sensor capable of:
 - Reaching high sampling frequencies with decent resolution.
 - Performing remote CPA attacks on secret key algorithms (AES).
 - Providing similar results to existing SCA setups.
- It's an ideal alternative for monitoring fine-grained high-speed voltage fluctuations in SoCs

Thank you! Questions?

joseph.gravellier@emse.fr

Joseph GRAVELLIER Reconfig 2019 December 2019 26 / 26