P - 9 - 2012

PVC 제조공정의 화재폭발 위험성평가 및 비상조치 기술지침

2012. 7.

한국산업안전보건공단

안전보건기술지침의 개요

O 작성자 : 인천대학교 우 인 성

O 개정자 : 최 이 락

- O 제·개정 경과
 - 2009년 11월 화학안전분야 기준제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
- O 관련 규격 및 자료
 - 공정안전보고서 및 심사사례
 - 국내 PVC 제조공장 매뉴얼
- O 관련 법규 · 규칙 · 고시 등
 - 산업안전보건법 제23조(안전조치)
 - 산업안전보건기준에관한규칙 제225조(위험물질의 제조 등 작업시의 조치)
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 7월 18일

제 정 자: 한국산업안전보건공단 이사장

P - 9 - 2012

PVC 제조공정에서 화재폭발 위험성평가 및 비상조치 기술지침

1. 목적

이 기술지침은 화학 및 석유화학 산업의 PVC(Poly vinyl chloride) 제조공정에서 인화성 물질 사용·취급 시 예상되는 위험요인을 파악하고 피해를 최소화하기 위 하여 필요한 비상조치 기술지침을 정하는데 그 목적이 있다.

2. 적용범위

이 기술지침은 화학 및 석유화학 산업의 PVC 생산을 위한 인화성 물질 저장·취급설비 및 반응을 위한 관련설비의 안전운전에 적용할 수 있다.

3. 용어의 정의

- (1) 이 기술지침에서 사용되는 용어의 뜻은 다음과 같다.
 - (가) "현탁중합(Suspension polymerization)"이란 물에 VCM(Vinyl chloride monomer)을 분산한 상태에서 중합하는 반응을 말하며, 입자크기는 120 ~ 180 μm 정도가 일반적이다.
 - (나) "유화중합(Emulsion polymerization)"이란 물에 VCM을 유화시킨 상태에서 중합하는 반응을 말하며, 입자크기는 $1\sim 10~\mu\mathrm{m}$ 정도가 일반적이다.
 - (다) "괴상중합(Bulk polymerization)"이란 물과 분산제(유화제)를 사용하지 않고 VCM과 반응개시제를 직접 반응시키는 방법을 말한다.
- (2) 그 밖에 이 기술지침에서 사용하는 용어의 뜻은 특별한 규정이 있는 경우를 제외

KOSHA GUIDE P - 9 - 2012

하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에관한규칙」에서 정하는 바에 의한다.

4. PVC 제조공정의 특성 및 위험요인

4.1 현탁중합방법

4.1.1 공정흐름도

<그림 1> 현탁중합방법의 공정흐름도

- (1) 현탁중합방법은 다른 중합방법에 비해 대량 생산의 장점을 가지고 있는데, 주요 단위공정은 다음과 같다.
 - (가) VCM 저장 및 R-VCM(Recovered VCM)의 응축·저장공정
 - (나) 용액(Solution) 준비공정
 - (다) 중합반응공정(회분식)
 - (라) 슬러리의 탈기(Stripping) 및 폐수의 탈기공정

- (마) 미반응 VCM의 회수(Recovery)공정
- (바) 원심분리 및 건조공정
- (사) 제품 이송 및 저장공정
- 4.1.2 R-VCM의 응축·저장공정
 - (1) VCM저장탱크로부터 일일탱크로 VCM을 이송하여 사용하거나 미반응 VCM을 응축하여 회수한 R-VCM을 탱크에 보관한 후 사용한다.
 - (2) 유해위험요인으로는 독성가스의 누출위험 및 VCM탱크의 화재·폭발위험이 있을 수 있다.
- 4.1.3 용액(Solution)의 준비공정
 - (1) 반응기로 주입되는 부원료인 코팅제, 분산제 및 반응개시제 등을 준비하고 주입하는 공정으로 일반적인 공급순서와 각 단계별 목적은 다음과 같다.
 - (가) 코팅(Coating)액 분무: 반응기 내벽의 스케일 방지
 - (나) 완충(Buffer)액 공급 : 콜로이드가 안정화되도록 슬러리의 산도(Acidity)를 중 성으로 조절
 - (다) 탈염수(De-mineralized water) 공급: 반응온도 제어
 - (라) R-VCM 공급
 - (마) 순수 VCM 공급
 - (바) 분산제(Emulsifier) 공급: PVC 입자의 크기 조절
 - (사) 반응 개시제(Initiator) 공급: 반응속도 조절, PVC 제조공정에서 사용하는 반응 개시제는 다양한 유기과산화물(Organic peroxide)이 사용된다.
 - (아) 탈염수 및 VCM 공급 중단
 - (자) 산화방지제(A/O) 공급(반응종결단계): 수지색깔을 희게 하기 위하여 산화방지 제를 사용하며, 반응억제제(Holding)는 반응종결단계 직전 및 비정상일 때 투

P - 9 - 2012

입, 반응종결제(Shortstop)는 반응개시제의 기능을 상실시켜 반응을 종결시킨다.

- (2) 주요유해위험요인은 다음과 같다.
 - (가) 분산제의 비산에 의한 분진폭발
 - (나) 분산제의 용매(메탄올) 누출 증기에 의한 화재·폭발
 - (다) 반응 개시제(유기과산화물)의 저장온도 제어 실패로 반응개시제의 자연 분해에 의한 폭발

4.1.4 회분식 중합반응공정

- (1) PVC수지의 원료인 VCM, 분산제인 탈염수, 반응개시제 및 첨가제를 반응기에 투입하여 일정 온도와 일정 압력(50~70 ℃, 0.9~1.2 MPa)으로 교반하면서 약 4~8시간 중합하여 반응전환율 80 %이상에서 반응을 종결하는 공정이다.
- (2) 주요유해위험요인은 다음과 같다.
 - (가) 폭주반응, 유틸리티 실패 등으로 인한 반응기 폭발 위험
 - (나) 수동밸브(Manual valve) 오동작에 의한 VCM 누출 위험
 - (다) 압력방출장치 작동으로 VCM의 대기 방출

4.1.5 슬러리의 탈기 및 폐수의 탈기공정

- (1) 슬러리의 탈기공정은 반응 종료 후 미반응 VCM을 회수하는 공정으로 PVC에 녹아 있는 VCM을 회수하기 위하여 혼합물인 슬러리를 운전온도(60 ~ 80 ℃)에서 슬러리 탈기탑(Slurry stripping column)의 상부로 공급하는 공정이다.
- (2) 슬러리의 탈거 공정에서의 주요유해위험요인은 다음과 같다.
 - (가) 탑 주위 밸브 조작 시 고온의 내부 액체 주의
 - (나) 동절기, 탑 내의 액체를 하수구로 배출시킬 때 과량의 수증기 발생 : 탑 주위에 얼음판이 형성되지 않도록 주의

P - 9 - 2012

- (3) 폐수의 탈기공정은 폐수에 포함된 VCM을 폐수 탈기탑(Waste water stripping column)에서 회수하는 공정으로 폐수 내 VCM을 10 ppm 이하로 유지하여야 한다.
- (4) 폐수분리공정은 비점에 가까운 고온수를 취급하므로, 모든 설비가 보온되어야 한다.

4.1.6 미반응 VCM의 회수(Recovery) 공정

- (1) 미반응 VCM은 블로우다운(Blow-down)탱크와 탑(Column)을 통해 회수되는데, 탈거공정에서 회수된 미반응 VCM을 압축하여 VCM 저장지역으로 이송하는 공정이다.
- (2) VCM 회수방법은 회분식(Batch) 회수, 블로우다운(Blow-down) 회수, 연속 회수 방법을 적용할 수 있다.
- (3) 주요유해위험요인은 다음과 같다.
 - (가) 미반응 VCM의 누출 위험
 - (나) 중압 스팀(MP Steam) 접촉에 의한 작업자 화상(열상)위험

4.1.7 원심분리 및 건조공정

- (1) 슬러리를 원심분리기로 탈수하여 약 70%의 물을 제거한 후 유동층 건조기 내에서 뜨거운 공기와 접촉시켜 건조물을 부유 유동시키면서 잔여 수분을 제거하는 공정이다.
- (2) 건조된 PVC 수지는 분리망(Screen)을 통과시켜 크기가 큰 것을 분리한다.
- (3) 건조된 제품(PVC 분말)은 공기 이송방식으로 사일로 저장조에 이송한다.
- (4) 주요유해위험요인은 다음과 같다.
 - (가) 건조기 온도제어 실패 시 화재위험
 - (나) 뜨거운 공기와의 접촉으로 작업자 화상(열상) 위험

P - 9 - 2012

- (다) 원심분리기의 정전기 축적에 의한 스파크 발생위험
- 4.1.8 제품 이송(Pneumatic conveying) 및 저장공정
 - (1) 건조공정에서 이송된 PVC 분말을 사일로에 저장하여 포장 출하하는 공정이다.
 - (2) 주요유해위험요인은 다음과 같다.
 - (가) 송풍기의 온도가 높을 경우 PVC분말의 변성 유발, 정전기 발생 증가로 이송 배관 막힘.
 - (나) 입경이 $0.1 \sim 10 \mu$ m에 해당하는 PVC 유화중합의 경우, 정전기 축적에 의한 분 진폭발 위험
 - (다) 백필터(Bag filter) 청소과정 중 화재위험
- 4.2 기타 중합방법의 공정 개요 및 흐름도

4.2.1 유화중합방법

유화중합방법은 VCM을 탈염수 중에 유화 분리한 후 수용성 반응개시제를 사용하여 $1\sim 10~\mu\mathrm{m}$ 입경의 폴리머 라텍스를 얻는다. 이 라텍스를 직접 분무 건조하여 제품을 생산한다.

KOSHA GUIDE P - 9 - 2012

<그림 2> 유화중합방법의 공정흐름도

4.2.2 괴상중합방법

괴상중합방법은 단량체인 VCM에 가용성 반응개시제를 가해 라디칼(Radical) 중합을 적정한 반응율로 실시하고, 미반응 VCM을 회수한 다음 분쇄, 분급하여 제품화한다. 분산제나 유화제를 사용하지 않는다.

<그림 3> 괴상중합방법의 공정흐름도

5. 위험성평가에 포함될 사항

5.1 위험성 평가 시 일반적 고려사항

- (1) 역류의 위험이 있는 구간은 반드시 검토하여 체크밸브의 설치를 고려하여야 한다.
- (2) 동파 및 점도로 인한 위험이 있는 구간은 반드시 검토하여 스팀을 이용한 보온설비(Steam tracing) 혹은 전기를 이용한 보온설비(Electrical tracing)를 설치하여야 한다.
- (3) 위험이 가장 높은 구간은 피해의 크기 및 범위를 산정하여야 한다.
- (4) 정량적 위험성평가 결과를 바탕으로 가상시나리오를 작성하고 이를 토대로 정기 적으로 교육·후련하여야 한다.
- (5) VCM 누출이 가능한 구간에는 가스누출감지경보기가 설치되어 있는지 확인하여 야 하고 외부 화재가 가능한 구간에는 내화시설을 확인하여야 한다.

5.2 공정(Process area) 위험성평가

- (1) 용액의 준비공정에 대한 위험성평가 시 다음을 고려하여야 한다.
 - (가) 반응개시제 및 첨가제의 물질 상호간의 혼촉 위험성 확인
 - (나) 부원료 조제공정의 인적오류 예방을 위한 이중확인시스템의 확보
 - (다) 반응개시제 저장·투입 시 인적오류 예방을 위한 위험성 평가
- (2) 반응공정에 대한 위험성평가 시 다음을 고려하여야 한다.
 - (가) 중합반응 시 과압의 발생원인(반응폭주, 운전실패, 장치결함, 유틸리티 중단 등)분석 및 이를 제거/감소하기 위한 평가를 실시하여야 한다.
 - (나) VCM 누출 발생원인에 대한 위험성평가를 실시하여야 한다. 특히 반응 종료후 PVC 슬러리를 블로우다운 이송 시 운전 중인 다른 반응기의 수동밸브 (Manual valve)가 개방될 위험성을 평가하여야 한다.

P - 9 - 2012

- (3) 건조공정 설비에서는 PVC 분진폭발 위험성에 대한 검토를 하여야 한다.
- (4) PVC 저장 및 이송공정의 백필터 및 사일로 저장조에서의 PVC 분진폭발 위험성을 평가하고 이를 제거·감소하기 위한 방안을 검토하여야 한다. 특히, 입경이 작은 (0.1 ~ 10 μm)에 해당하는 유화중합의 경우 분진폭발 위험을 평가하여야 한다.
 - (가) 공기를 이용한 이송시스템(Pneumatic system) 등에서 발생될 수 있는 정전기의 제거·감소를 위하여 배관 연결부위를 주기적으로 점검하고, 배관의 끝단 부위나 기기류 접지, 백필터는 도전성 재질이 포함된 필터를 사용하고 접지하여야 한다.
 - (나) 기기의 구동부위에서 마찰로 인해 발생되는 열을 고려하여 주기적으로 설비를 점검하고, 기기에 윤활조치를 하여야 한다.
 - (다) 폭발압력의 방산조치인 폭발방산구(Emergency vent)를 설치하여야 한다.
 - (라) 망치의 재질을 비방폭형 도구(Non-spark)로 변경하여야 한다.

6. 비상조치 절차

다음의 절차는 PVC 제조공정의 비상조치 예시이다. 사업장마다 비상대비 구성설비가 다를 수 있으므로 다음 예시의 내용은 참고용으로 활용한다.

6.1 비상전원

- (1) 전원공급이 중단되면 PVC 공장의 비상발전기를 구동하여 비상전원을 공급하도록 구성한다. 운전원은 비상전원을 이용하여 공장의 비상조치를 취하여야 한다.
- (2) 비상전원 공급장치는 주 전원이 중단된 후 일정시간(약 5초 내외) 경과되면 가동되어 공정에 전원을 공급하게 된다.

P - 9 - 2012

6.2 긴급 반응종결제(Shortstop)의 주입

- (1) 반응기에서 중합반응이 진행하는 도중 전원공급 차단이나 교반기 가동 중단 등 비상사태가 발생할 경우에는 반응을 정지하기 위해 긴급 반응종결제가 투입될 수 있다.
- (2) 긴급 반응종결제로는 주로 산화질소(NO, Nitric oxide)가 사용된다. 이 시스템에 서는 반응 중 교반이 정지되고, 약 5초 경과 후 NO가 주입되는데, NO 가스는 독성이 강하므로 취급에 주의하여야 한다.
- (3) 만약 반응종결제를 주입하여도 반응기의 반응 압력이 계속해서 증가하면 버핑 (Burping) 밸브를 개방하여 필요한 만큼 반응기 상부와 연결된 회수분리탑 (Recovery separator)으로 반응물을 보낸다.

6.3 기타

- (1) 운전 중 계장용 공기(Instrument air)의 공급이 중단되면 원료공급을 중단하고 모든 반응기에 반응종결제를 정상주입량의 2배 주입한다.
- (2) 교반기(Agitator)의 가동이 중단되어 5초 이내에 다시 기동되지 못하면 다음 조치 중 하나가 이루어지도록 한다.
 - (가) PLC에 의해 자동적으로 반응종결제(NO가스)를 반응기로 투입한다.
 - (나) 수동으로 반응종결제를 추가 주입하고 작업반장의 지시에 따라 블로우다운탱 크 또는 탑 공급탱크로 보낸다.
 - (다) 반응기의 버핑 밸브를 개방하여 회수분리탑으로 반응물질을 보낸다.
 - (라) 비어있는 반응기가 있을 경우에는 빈 반응기와 연결(Line-up)하여 해당 반응기의 압력을 낮춘다.

KOSHA GUIDE P - 9 - 2012

< 부 록 >

PVC 제조공정의 사고사례

<별표 1> PVC 제조반응기의 VCM 누출사고(국외)

연도	장소	사고원인	인명피해	시설피해
1961	일본	반응기의 내용물을 잘못 방출	사망 4명 부상 10명	공정 내 주요구조물 손상
1966	미국 뉴저지	운전원이 실수로 반응기 하부밸브를 열어 내용물 방출	사망 1명	공정시설 파괴
1980	미국 메사추세츠	운전원이 실수로 반응기 하부밸브를 열어 내용물 방출	부상 2명	약 10억원
1980	미국 캘리포니아	부적절한 반응기 설계로 하부밸브가 일부 개방되어 내용물 유출	-	공정시설의 대규모 손상

※ 출처 : CSB 사고보고서(2004년)

<별표 2> 압력과 관련된 폭발사고 (1)

사고유형	사고사례	사고원인	재발방지대책
안전밸브 사고	○ 안전밸브 및 벤트 밸브까지 스케일로 막혀 비상수단으로 맨홀을 개방함. ○ 반응기 압력이 상승하는 데도 안전밸브가 개방되지 않을 때 ·계속 기다리는 경우 ·안전밸브가 방출 되었을 때 수동 밸브를 잠근 사례 ○ 과잉 공급(Over Charge)시 압력이 거의 수직적으로 상승	o 전력 중단(Power down) o 부대설비 중단(Utility down)	 1. 안전방출 (Safety vent) 시스템 및 중합금지제 투입설비의 주기적 정비 2. 작업표준 준수 3. 안전밸브 설치 표준

<별표 3> 압력과 관련된 폭발사고 (2)

사고유형	사고사례	사고원인	재발방지대책
설비 부실	o PVC 공장의 밸브 파열로 운전 중 VCM 및 슬러리 전량 누출	 0 용접부 불량 등 제작 불량 0 사용압력 등 운전조건의 임의 변경 0 적절치 않은 재질, 규격 사용 0 노후로 인한 부식, 피로 누적 0 설계불량, 검사불량 등 	1. 설비, 배관의 적절한 재질 선정 및 용접방법 사용 2. 임시 배관 등 편법 사용 배제 3. 노후설비 검사 체계 및 방법 확립
정전기	o 소지물의 반응기 내 낙하에 의한 폭발 (일본 PVC 공장)	o 의복, 작업도구류의 마찰, 충돌 등에 의한 정전기 방전 ※ 특히 건조한 동절기에 의복이나 스크린 시브 (Screen Sieve)에서 정전기 발생이 심함.	 위험지역에서의 작업도구, 작업 방법, 복장 등 준수 철저한 치환으로 가연성 물질 제거
물질의		o 탱크 내 폭발성(저온 분해성) 물질의 보관 중 외기온도 등에 의한 자연분해의 가속화로 탱크의 내압상승 및 폭발	o 시스템 보완 (In-time Charge)으로 용기 내 대기 방지 및 PSV 설치
	o 반응개시제 용기 등의 잔유물에 의한 용기 파열사고	o 저온 분해성 약품 용기의 보관, 취급 부주의로 인한 폭발	 적절한 보관 장소 잔유물의 확실한 제거 적정한 반응 억제제(Inhibitor) 농도 유지

<별표 4> VCM 누출사고

사고 유형	사고사례	사고원인	재발방지대책
V	o 안전밸브 개방 o 안전밸브가 작동하지 않아 강제로 벤트밸브(Vent valve) 개방	o 안전밸브 작동 또는 벤트 밸브 개방에 의한 VCM 누출	 작업 표준 준수 역류 가능 배관(VC → CW, 질소 등) 체크밸브 설치
	o 패킹(Packing) 삽입 불량 시 파열 o 노후설비, 배관의 부식 누출 o 열팽창에 의한 패킹 파열 등 o 감압 송풍기(Blower) 회수(RW) 배관을	0 탱크류, 패킹, 배관파열 등에 의한 누출 분출0 배관의 역류	- CW: VCM 가스 검지기 설치 3. 치환설비의 구축 4. 설비의 주기적 점검 및 운전과 시스템의 최적화 - VCM 배관에 방출밸브(Relief
	통한 VCM의 역류 o 반응기 배플(Baffle) 누출 시 o 운전 중인 반응기 맨홀개방에 의한 누출 o 밸브 오조작으로 인한 개방 o DCS 시운전 시	o 오조작(시운전, 운전중 밸브 또는 맨홀 개방 등)	v/v) 설치 - S/D시 주기적인 패킹 배관점검
	오작동, 오조작 o 조작금지 표시 부착 밸브를 임의조작하여 구형탱크(Ball tank) VCM의 S/D 중인 공정으로 역류 o 공정 내 드레인 (Drain) 배관의 동결	o 구형탱크 등 드레인 배관 동파로 VCM 누출	

<별표 5> 전기사고 및 공정파급 사고

사고 유형	사고사례	사고원인	재발방지대책
전기 사고	o 반응기 교반기 모터 소손으로 인한 긴급 중합 금지조치 o 반응기 Inverter 회로 구성 (현장, DCS) 문제가 있어서 정전후 복귀 시 A/G 미가동 o 모터 용량 부족으로 모터 소손	1. 모터 노후 2. 정격용량 초과 운전 3. 보호계전기의 Spec 및 설정(Setting) 시의 문제 4. Inverter 회로 오구성	o S/D시 주기적인 모터 내부점검 및 정비 o 주기적인 MCC 내부점검 o 노후설비 및 정격 초과 설비 등의 순차적 대체
공정에 심각한 영향을 주는 사고	지락으로 공정 전체의 Main ACB가 차단되어 공정에 전기 공급이 중단	o 모터의 지락 등 공정 MCC 내부로부터 유발 o 수전소 사고 등 공정의 외부로부터의 전원공급 불가 상태	o 대용량 모터(440 V 이상)에 대한 주기적인 내부 점검, 정비 및 관리 강화 (교체운전, 가동 전 점검, 예열) o 전원 및 공기 중단 시 자동밸브 조작 숙지 o UPS, MCC 내부 설비에 대한 주기적인 점검

<별표 6> 공정운전사고(부원료 투입사고)

 사고 유형	사고사례	사고원인	재발방지대책
반응	o 시스템 불비 o 교대 인수인계 불량 o 기록 미비	o 반응개시제 이중 투입	o 작업표준 준수 o 운전원의 투입 전후 잔량 확인 o 설비 개선(DCS, 시스템) o 품명 및 Lot 확인 기록 o 부원료 계량 저울의 계량치 기록화
	o 투입 시 잔량이 남은상태에서 차기 BatchCharge로 과량 투입o 저울 계량 미스		
	o 반응개시제 적재 장소에 타 반응개시제 혼적으로 오투입 o 반응개시제 수령자의 실수 o 2종의 반응개시제 계량 시 개시제의 변경 계량	o 변경 투입	
유화제, 분산제 등	o 품종 교체 시 저장 탱크 잔량 미처리로 타 품종(PVA) 혼합 o PVA 저장탱크의 탈염수(DW) 배관 개방 또는 누출로 농도 변경 o 화학물질 이송배관의 역류(체크밸브 고착) o 저장설비 후단의 스트레이너(Strainer) 정비작업 후 개방된 상태로 공급	o 설비 불량, 관리 불량	 0 부원료 투입 시 2중 확인 시스템 0 부원료 계량 관리부 활용 0 부원료 계량 저울의 계량치 기록화

<별표 7> 공정운전사고(V/V 오조작 사고)

사고 유형	사고사례	사고원인	재발방지대책
밸브 오조작 사고	o 펌프 측의 필터 정비후 가스용기(Gas holder)로 가는 VCM 배관을 폐쇄하지 않아 펌프 가동 시 가스용기 급상승 o O/H시 VCM 배관 치환 후 우회밸브를 개방한 상태로 중합기에 VCM 사입	o 치환 작업 시 등 VCM 배관을 연결(Common) 시켜 두고 작업 후 원상 복귀 미실시 o 공용배관(Common	 작업 후 상위 직급자 확인(특히, 정기보수 후 배관 연결 등) 업무 인수인계의 철저 작업자의 확인 근무조는 음주 금지 등 자기관리 필요
	밸브로 오인하여 잘못 조작	Line) 밸브의 오조작	
	o 안전밸브 작동 불가	o 정비 시 안전밸브 전단의 블록밸브를 닫은 후 미 개방	
	o DCS 시운전시 또는 정상운전 중 조작 미스	o DCS 상 밸브 오조작	