

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

Práctica 2 de Señales y Sistemas

Convolución y análisis de sistemas LTI

Grado en Ciencia e Ingeniería de Datos

Profesores:

Alejandro Díaz, Jorge Larrey y Antonio Lozano

Prólogo

El objetivo principal de esta práctica es que el alumno alcance una comprensión práctica de la operación suma de convolución y que la emplee para realizar el análisis de señales y sistemas en tiempo discreto (tanto FIR como IIR). Se incluyen en negrita, a lo largo del guion de la práctica, los estudios teóricos que se han de realizar de manera previa a la práctica para una mejor compresión y aprovechamiento de la misma.

Funciones útiles para la realización de la práctica

conv, exp, filter, length, linspace, sum, zeros

1. Convolución de señales discretas

La convolución de dos señales discretas viene dada por la expresión

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

La convolución de dos señales se puede entender de dos maneras desde el punto de vista analítico:

1. En la primera a cada impulso de la señal de entrada, el sistema responde con la respuesta al impulso ponderada por el valor de la señal en ese momento, así:

$$y[n] = \cdots + x[-1]h[n+1] + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$$

2. Para la segunda en cada instante de tiempo discreto n la señal de salida y[n] se calcula asumiendo que el eje de tiempos es k, se queda fija la señal de entrada, y se invierte y se desplaza a n la respuesta al impulso, multiplicándose finalmente ambas señales y sumando todos sus valores. De esta manera podemos obtener el resultado:

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

....

$$y[-1] = \sum_{k=-\infty}^{\infty} x[k]h[-1-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k]$$

$$y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k]$$

....

Cuestiones

- Calcule previamente de manera gráfica y a mano la convolución de las dos señales causales x[n] y h[n] que definiremos en MATLAB de la siguiente manera
 - $x = [1 \ 2 \ -2];$
 - $h = [1 \ 3 \ 0 \ 1 \ 2 \ 1 \ 2];$
- Teniendo en cuenta que la longitud de la secuencia x[n] es N y la de h[n] es M, deduzca una expresión para la longitud de y[n].
- Programe dos funciones MATLAB, denominadas **conv1** y **conv2**, que implementen la convolución de dos señales discretas mediante el método 1 y el método 2 explicados anteriormente. Las funciones tendrán el formato **y=conv1(x,h)** y **y=conv2(x,h)**. Puede inicializar la longitud de la señal de salida deducida en el punto anterior al implementar las funciones. Proporcione el código desarrollado.
- Compruebe el correcto funcionamiento de las funciones empleando las señales x[n] y h[n] generadas en MATLAB previamente. Consulte la ayuda (con el comando help) de la función conv de MATLAB, que implementa la convolución discreta de dos secuencias. El resultado con conv, conv1 y conv2 ha de ser el mismo con cualquier par de señales de entrada.

2. Respuesta al impulso de un sistema lineal

La respuesta al impulso h[n] se emplea para caracterizar el comportamiento de un sistema lineal e invariante (LTI – Linear Time-Invariant). Podremos clasificar el comportamiento de los sistemas LTI atendiendo a la duración finita o infinita de la respuesta al impulso. Por lo tanto, hablaremos respectivamente de sistemas FIR (Finite Impulse Response) o bien de sistemas IIR (Infinite Impulse Response).

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

Cuestiones

Sistemas FIR

$$v[n] = 2x[n] + x[n-1] - 2x[n-2] + x[n-3]$$

- Como estudio previo represente el diagrama de bloques (con delays, multiplicadores y sumadores) que caracteriza a este sistema.
- Como estudio previo calcule y represente gráficamente a mano la respuesta al impulso h[n] del sistema dado. ¿Es de duración finita?
- Como estudio previo calcule a mano la salida del sistema ante la entrada $x[n]=\delta[n]-\delta[n-1]$, (en MATLAB x=[1 -1]).

Calcule la salida con la función **conv** (o **convol1**, **convol2**) en Matlab y verifique que los resultados coinciden con el estudio **previo**

Sistemas IIR

Para un sistema IIR causal definido por la ecuación en diferencias

$$y[n] - \frac{4}{5}y[n-1] = x[n]$$

Teniendo en cuenta que se trata de un sistema IIR la respuesta al impulso es de duración infinita. Dado que h[n] es de duración infinita no se podrá emplear la función **conv** de MATLAB para obtener exactamente la salida de este sistema ante cualquier señal de entrada. Para estos casos, MATLAB ofrece la función **filter** con la que podemos calcular la salida del sistema a partir de la entrada y la ecuación en diferencias.

- Como estudio previo calcule analíticamente la respuesta al impulso del sistema anterior. Genere en MATLAB la respuesta al impulso mediante la función filter y tomando x[n] como x=[1 zeros(1,24)]. Verifique que el resultado teórico y el práctico coinciden.
- Como estudio previo calcule analíticamente la respuesta del sistema ante la siguiente señal de entrada:

$$x[n] = \left(\frac{1}{3}\right)^n u[n]$$

Genere en MATLAB la señal x[n] en el intervalo [0:49]. Genere en MATLAB la salida del sistema ante la entrada x[n] empleando de nuevo la función **filter**. Compruebe que el resultado práctico coincide con la solución teórica.

Repita el proceso anterior, esta vez para la siguiente señal de entrada

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

$$x[n] = \left(\frac{4}{5}\right)^n u[n]$$

y verifique que la salida, tanto **teórica** como práctica, es

$$y[n] = (n+1) \left(\frac{4}{5}\right)^n u[n]$$