# Update on the fabrication and performance of 2-D arrays of superconducting Magnesium Diboride (MgB<sub>2</sub>) thermal detectors for outer-planets exploration.

B. Lakew (1), S. Aslam (1)

(1) NASA Goddard Space Flight Center, Maryland USA (brook.lakew@nasa.gov / Fax:301-614-6015)

#### **Abstract**

Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of  $MgB_2$  thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

#### 1. Introduction

In this poster we present results of noise and sensitivity (D\*) measurements from a pixel in a 2-D array of superconducting  $MgB_2$  thin film. The 2-D array is maintained at the superconducting transition temperature of an architectured, high resistance,  $MgB_2$  thin film on a SiN-coated Si substrate



Figure 1: Single pixel in a 2-D array of MgB2 bolometers.

## 2. Summary and Conclusions

Unlike Yttrium Barium copper oxide (YBCuO), Magensium Diboride (MgB2) grows nicely on SiN. By architecturing it into a long meander line we have been able to obtain high resistance ( $\sim 2k\Omega$ ) MgB2 thermistors on the back of each pixel. The

characterization of the 2-D array is underway and a pixel sensitivity  $(D^*)$  of  $\geq$  of  $10^{10}$  cmHz<sup>1/2</sup>/W is expected, which is over an order of magnitude higher that thermopiles currently used on the CIRS instrument on Cassini.

## Acknowledgements

NASA/Goddard and the NASA PIDD program have funded this project

### References

- [1] S. Aslam et al, IEEE Trans. on Appl. Superconduct.,19, 3, 257-260, 2009
- [2] P.L. Richards, J. Appl. Phys. 76 p. 1.,1994
- [3] J.H. Lee, S.C. Lee and Z.G. Khim, *Phys. Rev. B* **40** p. 6806,1989
- [4] C. Gandini, M. Rajteri, C. Portesi, E. Monticone, A. Masoero, P. Mazzetti, in: J. Phys.: 7th European Conference on Applied Superconductivity, Conference Series, vol. 43, pp. 313–316, 2006
- [5] P. Dutta and P.M. Horn, Rev. Mod. Phys. 53 (3), p. 497, 1981