CS480/680 Lecture 19: July 10, 2019

Attention and Transformer Networks
[Vaswani et al., Attention is All You
Need, NeurIPS, 2017]

Attention

- Attention in Computer Vision
 - 2014: Attention used to highlight important parts of an image that contribute to a desired output

- Attention in NLP
 - 2015: Aligned machine translation
 - 2017: Language modeling with Transformer networks

Sequence Modeling

Challenges with RNNs

- Long range dependencies
- Gradient vanishing and explosion
- Large # of training steps
- Recurrence prevents parallel computation

Transformer Networks

- Facilitate long range dependencies
- No gradient vanishing and explosion
- Fewer training steps
- No recurrence that facilitate parallel computation

Attention Mechanism

- Mimics the retrieval of a value v_i for a query q based on a key k_i in database
- Picture

$$attention(q, \mathbf{k}, \mathbf{v}) = \sum_{i} similarity(q, k_i) \times v_i$$

Attention Mechanism

Neural architecture

- Example: machine translation
 - Query: s_{i-1} (hidden vector for $i-1^{th}$ output word)
 - Key: h_i (hidden vector for j^{th} input word)
 - Value: h_j (hidden vector for j^{th} input word)

Transformer Network

- Vaswani et al., (2017)
 Attention is all you need.
- Encoder-decoder based on attention (no recurrence)

Multihead attention

 Multihead attention: compute multiple attentions per query with different weights

$$\begin{split} & multihead(Q,K,V) = W^{O}concat(head_{1},head_{2},...,head_{h}) \\ & head_{i} = attention(W_{i}^{Q}Q,W_{i}^{K}K,W_{i}^{V}V) \\ & attention(Q,K,V) = softmax\left(\frac{Q^{T}K}{\sqrt{d_{k}}}\right)V \end{split}$$

Masked Multi-head attention

- Masked multi-head attention: multi-head where some values are masked (i.e., probabilities of masked values are nullified to prevent them from being selected).
- When decoding, an output value should only depend on previous outputs (not future outputs). Hence we mask future outputs.

$$attention(Q, K, V) = softmax\left(\frac{Q^T K}{\sqrt{d_k}}\right)V$$

$$maskedAttention(Q, K, V) = softmax\left(\frac{Q^{T}K + M}{\sqrt{d_{k}}}\right)V$$

where M is a mask matrix of 0's and $-\infty$'s

Other layers

Layer normalization:

- Normalize values in each layer to have 0 mean and 1 variance
- For each hidden unit h_i compute $h_i \leftarrow \frac{g}{\sigma}(h_i \mu)$ where g is a variable, $\mu = \frac{1}{H}\sum_{i=1}^H h_i$ and $\sigma = \sqrt{\frac{1}{H}\sum_{i=1}^H (h_i \mu)^2}$
- This reduces "covariate shift" (i.e., gradient dependencies between each layer) and therefore fewer training iterations are needed

Positional embedding

Embedding to distinguish each position

$$PE_{position,2i} = \sin(position/10000^{2i/d})$$

$$PE_{position,2i+1} = \cos(position/10000^{2i/d})$$

Comparison

 Attention reduces sequential operations and maximum path length, which facilitates long range dependencies

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length		
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)		
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)		
Convolutional	$O(\hat{k\cdot n\cdot d^2})$	O(1)	$O(log_k(n))$		
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)		

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75			96.80	
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4	~~~	$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$		
Transformer (big)	28.4	41.0			

GPT and GPT-2

- Radford et al., (2018) Language models are unsupervised multitask learners
 - Decoder transformer that predicts next word based on previous words by computing $P(x_t|x_{1..t-1})$
 - SOTA in "zero-shot" setting for 7/8 language tasks (where zero-shot means no task training, only unsupervised language modeling)

BERT (Bidirectional Encoder Representations from Transformers)

- Devlin et al., (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
 - Decoder transformer that predicts a missing word based on surrounding words by computing $P(x_t|x_{1..t-1.t+1..T})$
 - Mask missing word with masked multi-head attention
 - Improved state of the art on 11 tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1