Package 'RobustBetaReg'

July 27, 2021

Version 0.0.1.000

Title Robust of Beta Regression Model
Author Yuri Maluf [aut,cre], Silvia Ferrari [ths]
Maintainer Yuri Maluf <yurimaluf@gmail.com></yurimaluf@gmail.com>
Description Robust estimators for beta regression model, including robust test and graphical diagnostic tools
Depends R (>= 3.0.0), betareg, nleqsly
Imports Rmpfr, rstudioapi, crayon, pracma, numDeriv, Formula, robustbase, Matrix, parallel
Repository GitHub
<pre>URL https://github.com/yurimaluf/RobustBetaReg.git</pre>
License GPL-3
NeedsCompilation yes
Encoding UTF-8
R topics documented:
degbeta plot.LSMLE plotenvelope residuals.LSMLE robustbetareg robustbetareg.control SaddlepointTest WaldTypeTest
Index

plot.LSMLE

degbeta

The EGB of the second type

Description

Density and random generation for the exponential generalized beta (EGB) of the second type,

Usage

```
degbeta(y_star, mu, phi, log = FALSE)
regbeta(n, mu, phi)
```

Arguments

mu	mu parameter.
phi	phi parameter.

log a logical value. If TRUE return the log of density function.

n number of observations.

y_star logit transformation of original data $(y \in (0,1))$ and $y^* \in (-\infty,\infty)$.

Details

For more details see

Value

Return the value of density function or a random sample.

plot.LSMLE

Interactive plots for diagnostic of robust betareg models

Description

Several types of standard diagnostic plots can be produced interactively, involving various kinds of residuals, influence measures, weights etc.

Usage

```
## $3 method for class 'LSMLE'
plot(object, ask = TRUE, ...)
## $3 method for class 'LMDPDE'
plot(object, ask = TRUE, ...)
```

plotenvelope 3

Arguments

object	fitted model object of class "LSMLE" or "LMDPDE".
ask	logical. If TRUE the user is asked before each plot.
	other parameters to be passed through to plotting functions.

Examples

-		-	
DΙ	ote	nvel	ope

Simulated Envelope of Residuals

Description

Plot a simulated envelope of beta residuals, from LSMLE and LMDPDE objects.

Usage

```
plotenvelope(object, n.sim, conf, control = robustbetareg.control(...), ...)
```

Arguments

object	Fitted model object of class "LSMLE" or "LMDPDE" (see robustbetareg).
n.sim	the number of simulation sample. Deafault n.sim=50.
conf	the confidence level of the envelopes required. The default is to find 95 confidence envelopes.
control	a list of control arguments specified via robustbetareg.control.
	other parameters to be passed through to plotting functions.

Value

Return a simulated envelope graphic.

Examples

```
fit=robust betareg(I(food/income) \sim income + persons | 1, data=FoodExpenditure, alpha=0.08) \\ plotenvelope(fit,n.sim=100)
```

4 residuals.LSMLE

residuals.LSMLE

Residuals Method for robustbetareg Objects

Description

Extract various types of residuals from robust beta regression models: Pearson residuals (raw residuals scaled by square root of variance function) and different kinds of weighted residuals suggested by Espinheira et al. (2008) and Espinheira et al. (2017).

Usage

```
## S3 method for class 'LSMLE'
residuals(object, type = c("sweighted2", "pearson", "weighted",
    "sweighted", "sweighted.gamma", "sweighted2.gamma", "combined",
    "combined.projection"))

## S3 method for class 'LMDPDE'
residuals(object, type = c("sweighted2", "pearson", "weighted",
    "sweighted", "sweighted.gamma", "sweighted2.gamma", "combined",
    "combined.projection"))
```

Arguments

object fitted model object of class "LSMLE" or "LMDPDE".

type character indicating type of residuals.

Details

The definitions of the first four residuals are provided in Espinheira et al. (2008): Equation 2 for "pearson", Equation 6 for "weighted", Equation 7 for "sweighted", and Equation 8 for "sweighted2". For the last four residuals the definitions are described in Espinheira et al. (2017): Last equation of Equation 7 and Equation 10 for "sweighted.gamma" and "sweighted2.gamma" respectively, Equation 9 for "combined", and Equation 11 for "combined.projection".

References

Espinheira, P.L., Ferrari, S.L.P., and Cribari-Neto, F. (2008). On Beta Regression Residuals. Journal of Applied Statistics, 35(4), 407–419.

Espinheira, P.L., Santos, E.G. and Cribari-Neto, F. (2017). On nonlinear beta regression residuals. Biometrical Journal, 59(3), 445-461.

Examples

```
fit=robust betareg(I(food/income)\sim income+persons|1, data=FoodExpenditure, alpha=0.08) \\ residuals(fit,type="sweighted")
```

robustbetareg 5

|--|

Description

Fit robust beta regression models for rates and proportions via LSMLE and LMDPDE using a parametrization with mean (depending through a link function on the covariates) and precision parameter (called phi).

Usage

```
robustbetareg(formula, data, alpha, type = c("LSMLE", "LMDPDE"),
link = c("logit", "probit", "cloglog", "cauchit", "loglog"),
link.phi = NULL, control = robustbetareg.control(...),
model = TRUE, y = TRUE, ...)

LSMLE.fit(y, x, z, alpha = NULL, link = "logit", link.phi = "log",
control = robustbetareg.control(...), ...)
LMDPDE.fit(y, x, z, alpha = NULL, link = "logit", link.phi = "log",
control = robustbetareg.control(...), ...)
```

Arguments

formula	symbolic description of the model (of type $y \sim x$ or $y \sim x \mid z$).
data	arguments controlling formula.
alpha	the tuning value within $(0,1)$, for robust estimation. When alpha is equal to zero is equivalent of MLE.
type	character specification of the type of estimator. Currently, LSMLE (default) and LMDPDE.
link	character specification of the link function in the mean model (mu). Currently, "logit", "probit", "cloglog", "cauchit", "log", "loglog" are supported
link.phi	character specification of the link function in the precision model (phi). Currently, "identity", "log", "sqrt" are supported. The default is "log" unless formula is of type $y \sim x$ where the default is "identity"
control	a list of control arguments specified via robustbetareg.control.
model, y	logicals for robustbetareg. If TRUE the corresponding components of the fit (model frame, response, model matrix) are returned. For LSMLE.fit and LMDPDE.fit y must be a numeric response vector within (0,1).
X, Z	numeric regressor matrix for mean and precision model respectively, defaulting to an intercept only.

Details

For more details see:...

6 robustbetareg

Value

robustbetareg returns an object of class "LSMLE" or "LMDPDE" with a list of the following components:

coefficients A numeric vector of parameter estimates

vcov the covariance matrix of all parameters in the model

converged logical indicating successful convergence of nleqsly call

fitted.values the vector of predicted values

start the starting values for the parameters estimator

weights the weights generated by robust estimator for each obs.

Tuning the selected tuning parameter

residuals a vector of standardized weighted residual 2

n number of observations

link mean link function applied

link.phi precision link function applied

Optimal. Tuning logical indicating whether the auto selecting tuning algorithm was selected

pseudo.r.squared pseudo R-squared value (squared correlation of linear predictor and link-transformed response)

control the control arguments passed to auto selecting tuning algorithm and nleqsly call

std.error the standard error of all parameters

call the original function call

formula the original formula

model the full model frame

y the response proportion vector

robustbetareg.control 7

robustbetareg.control Control Parameter for Robust Beta Regression

Description

Various parameters that control fitting of robust beta regression models using robustbetareg.

Usage

```
robustbetareg.control(object, start = NULL, alpha.optimal = TRUE, tolerance = 1e-3, maxit = 250, L = 0.02, M = 3, ...)
```

Arguments

fitted model object of class "LSMLE" or "LMDPDE". object start a numeric vector with an initial guess of the root of estimation equation. alpha.optimal a logical value. If TRUE the tuning parameter should be selected automatic. tolerance numeric tolerance for convergence. integer specifying the maxit argument of iterations used by the Newton-Raphson maxit algorithm. a parameter of auto selecting algorithm of tuning parameter (default L=0.02). L М a integer parameter value of auto selecting algorithm of tuning parameter (default M=3).

For more details see:...

Value

Details

A list with the arguments specified.

currently not used.

SaddlepointTest	Robust Saddlepoint Test

Description

Saddlepoint tests for both simple and composite hypothesis for independent but non-homogeneous observations, based on LSMLE and LMDPDE.

Usage

```
SaddlepointTest(object, FUN, ..., thrd)
```

8 WaldTypeTest

Arguments

object fitted model object of class "LSMLE" or "LMDPDE"

FUN the function representing the null hypothesis to be tested

... further arguments to be passed

thrd number (integer) of threads to speed up the process. If missing, the value is

autodetected by the available number of multi-core processor

References

Lo, S. N., Ronchetti, E. Robust and accurate inference for generalized linear models. Journal of Multivariate Analysis, 100, 2126–2136 (2009)

Examples

```
\label{lem:come} fit=robust be tareg(I(food/income)^income+persons|1,data=FoodExpenditure,alpha=0.08) $$h0=function(theta,B){c(theta[1],B)}$$#Hiphothesis to be tested $$SaddlepointTest(fit,h0,B=c(0,0))$$#H0: income=persons=0$
```

WaldTypeTest

Robust Wald-type Tests

Description

Wald-type tests for both simple and composite hypothesis for independent but non-homogeneous observations, based on LSMLE and LMDPDE.

Usage

```
WaldTypeTest(object, FUN, ...)
```

Arguments

object fitted model object of class "LSMLE" or "LMDPDE"

The function representing the null hypothesis to be tested

... Further arguments to be passed

References

Basu, A., Ghosh, A., Martin, N. et al. Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator. Metrika 81, 493–522 (2018)

Examples

```
fit=robustbetareg(I(food/income)~income+persons|1,data=FoodExpenditure,alpha=0.08) h0=function(theta,B)\{theta[2:3]-B\}\#Hiphothesis to be tested $$WaldTypeTest(fit,h0,B=c(0,0))\#Testing income=persons=0$
```

Index

```
degbeta, 2

LMDPDE.fit (robustbetareg), 5

LSMLE.fit (robustbetareg), 5

plot.LMDPDE (plot.LSMLE), 2
plot.LSMLE, 2
plotenvelope, 3

regbeta (degbeta), 2
residuals.LMDPDE (residuals.LSMLE), 4
residuals.LSMLE, 4
robustbetareg, 3, 5
robustbetareg., 7
robustbetareg.control, 3, 5, 7

SaddlepointTest, 7

WaldTypeTest, 8
```