SCC121 Fundamentals of Computer Science

Prof Corina Sas

School of Computing and Communications

Week 5 Quiz

- Sets
- Relations
- Functions
- Propositional Logic

Overview

- Propositions
- Truth tables
- Fundamental connectives
- Logical properties of propositions

Objectives

- Understanding basic ideas about propositional logic, propositions and their logical properties
- Facility in the construction of Truth tables and of using fundamental connectives

Overview

- Propositions
- Truth tables
- Fundamental connectives
- Logical properties of propositions

Logic

- Logic: the study of reasoning
 - rational ways of drawing conclusions

Propositions - definition

- Proposition: a claim about how things are
 - a statement that is either true or false, but not both.
- If a proposition is true, then we say it has a truth value of "true"
- if a proposition is false, its truth value is "false"
- We use letters to represent propositions

A = "It is raining"

Notation: proposition A can be

T, 1 (one) true

F, 0 (zero) or false

Propositions - examples

Propositions with the truth value of "true" (T)

- "Grass is green"
- "Snow is white"
- "2+2 = 4"

Propositions with the truth value of "false" (F)

- "2 + 8 = 11"
- "1 = 0"

Non propositions - examples

- Non propositions are not claims about how things are
 - Cannot be said to be true or false
- Is the water warm?
- Where are we?
- "Go for it!"
- Put the phone down!
- Ouch!
- Aha

Let's playxercise!

https://kahoot.it/

Overview

- Propositions
- Truth tables
- Fundamental connectives

Atomic and compound propositions

 Atomic proposition – proposition whose true or false value does not depend on that of any other proposition.

 Compound proposition - propositions constructed from atomic propositions by combining them with fundamental connectives.

Truth tables

 Truth table tabulates the value of a compound proposition for all possible values of its atomic propositions and their combination, i.e., one column for each atomic proposition

• Truth table for 2 atomic propositions:

	Р	Q	Compound
1	F	F	
2	F	Т	
3	Т	F	
4	Т	Т	

Overview

- Propositions
- Truth tables
- Fundamental connectives
- Logical properties of propositions

Fundamental connectives

- AND ^
- OR ∨
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

Fundamental connectives

- AND ^
- OR ∨
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

$AND(\Lambda)$

- AND connective takes two proposition P and Q to form a third proposition called conjunction.
- The conjunction is true when both P and Q propositions are true
- Written: P ∧ Q

Р	Q	$P \wedge Q$
F	ш	F
F	T	F
Т	F	F
Т	T	Т

$AND(\Lambda)$

- AND connective takes two proposition P and Q to form a third proposition called conjunction.
- The conjunction is true when both P and Q propositions are true
- Written: P ∧ Q

Р	Q	$P \wedge Q$
F	F	F
F	Т	F
Т	F	F
Т	T	Т

AND (\land) : examples

- X = "Java is a programming language"
- Y = "C is a programming language"
- What is X ∧ Y?
 - X ∧ Y = "Java and C are programming languages"

Multiple Propositions for AND (^)

- We can connect as many propositions as we like $R = A \wedge B \wedge C \wedge D \dots$
- The rule is:
 - all propositions must be TRUE for the result to be TRUE
 - so, if even only one proposition is FALSE, then the result is FALSE
- So the result of $R = T \wedge T \wedge T \wedge T \wedge T \wedge F$ is FALSE.

Fundamental connectives

- AND ^
- OR \(\times \)
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

$OR(\lor)$

- OR connective takes two proposition P and Q to form a third proposition called disjunction.
- The disjunction is true when P is true, Q is true, or both P and Q propositions are true
- Written: P \(\times \) Q

Р	Q	$P \vee Q$
F	F	F
F	Т	Т
Т	F	Т
Т	T	T

$OR(\lor)$

- OR connective takes two proposition P and Q to form a third proposition called disjunction.
- The disjunction is true when
 P is true, Q is true, or both P
 and Q propositions are true
- Written: P \(\times \) Q

Р	Q	$P \vee Q$
F	F	F
F	T	Т
Т	F	Т
Т	Т	Т

OR (\mathbf{v}) : examples

- C = "I am going to the Lake District"
- D = "I am going to London"
- What is C ∨ D?
 - C \times D = "I am going to the Lake District or I am going to London"

Multiple Propositions for OR (\vee)

- We can connect as many propositions as we like
 R = A \times B \times C \times D
- The rule is:
 - all propositions must be FALSE for the result to be FALSE
 - so, if even only one proposition is TRUE, then the result is TRUE
- So the result of
 - $R = F \lor F \lor F \lor F \ldots \lor F \lor T \text{ is TRUE}.$

Fundamental connectives

- AND ^
- OR \(\times \)
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

Exclusive OR (XOR) (\bigoplus or $\underline{\vee}$)

- OR is also called inclusive disjunction
- XOR connective takes two proposition P and Q to form a third proposition called exclusive disjunction.
- The exclusive disjunction is true when P is true, Q is true, but not both P and Q propositions are true.
- Written: P ⊕ Q

Р	Q	$P \oplus Q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Exclusive OR (XOR) (\bigoplus or $\underline{\vee}$)

- OR is also called inclusive disjunction
- XOR connective takes two proposition P and Q to form a third proposition called exclusive disjunction.
- The exclusive disjunction is true when P is true, Q is true, but not both P and Q propositions are true.
- Written: P ⊕ Q

Р	Q	$P \oplus Q$
F	H	F
F	Т	Т
Т	F	Т
Т	Т	F

Exclusive OR (\bigoplus) : examples

- A = "I will have the soup for starters"
- B = "I will have the salad for starters"
- What is $A \oplus B$?
 - A ⊕ B = "I will have either the soup or salad for starters, but not both"

Multiple Propositions for XOR (\bigoplus or $\underline{\vee}$)

- We can connect as many propositions as we like
 R = A ⊕ B ⊕ C ⊕ D
- The rule is:
 - an odd number of propositions must be TRUE for the result to be TRUE
 - an even number of propositions must be TRUE for the result to be FALSE

Fundamental connectives

- AND ^
- OR \(\times \)
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

Negation (~)

- Negation connective takes one proposition P to form a second proposition called negation.
- The negation is True when P is False
- Written: ~P

Р	~P
Т	F
F	Т

Negation (~)

- Negation connective takes one proposition P to form a second proposition called negation.
- The negation is True when P is False
- Written: ~P

Р	~P
Т	F
F	Т

Negation (~): examples

- A = "It is raining"
- ~A = "It is not raining"
- X = "The program runs OK"
- ~X = "The program does not run OK"

Conditional or implication (if... then) (\rightarrow or \Rightarrow)

- If the train is late, then we will miss our flight.
 - The statement after the "if" is the antecedent
 - The claim after the "then" is the consequent.
- IF antecedent THEN consequent
- IF the train is late, THEN we will miss our flight.

• If the train is late, but we do not miss our flight, then the above conditional must be false.

Conditional or implication (if... then) (\rightarrow or \Rightarrow)

- If... then connective combines two propositions P and Q into a third proposition called conditional or implication.
- The conditional or implication is false when the antecedent P is true and its consequent Q is false.

Р	Q	$P \rightarrow Q$
Щ	F	T
F	Т	Т
T	F	F
T	T	Т
antecedent	consequent	conditional

- *If... then* connective combines two propositions P and Q into a third proposition called conditional or implication.
- The conditional or implication is false when the antecedent P is true and its consequent Q is false; otherwise, a conditional is true.

Р	Q	$P \rightarrow Q$
F	F	Т
F	Т	Т
Т	F	F
T	T	Т
antecedent	consequent	conditional

- *If... then* connective combines two propositions P and Q into a third proposition called conditional or implication.
- The conditional or implication is false when the antecedent P is true and its consequent Q is false; otherwise, a conditional is true.

Р	Q	$P \rightarrow Q$
H	F	Т
F	T	Т
Т	F	F
Т	Т	Т
antecedent	consequent	conditional

- *If... then* connective combines two propositions P and Q into a third proposition called conditional or implication.
- The conditional or implication is false when the antecedent P is true and its consequent Q is false; otherwise, a conditional is true.
- Written: $P \rightarrow Q$
 - If P is true, then Q is true
 - P is antecedent
 - Q is consequent

Р	Q	$P \rightarrow Q$
F	F	Т
F	Т	Т
T	F	F
T	Т	Т
antecedent	consequent	conditional

- *If... then* connective combines two propositions P and Q into a third proposition called conditional or implication.
- The conditional or implication is false when the antecedent P is true and its consequent Q is false; otherwise, a conditional is true.
- A conditional also states that false antecedent could imply either false or true consequent. Why?

Р	Q	$P \rightarrow Q$
F	F	Т
F	Т	Т
Т	F	F
T	T	Т
antecedent	consequent	conditional

"If I am elected, then I will lower taxes" - social contract

- P = "I am elected"
- Q = "I will lower taxes"
- P → Q implication

P = elected	Q= lower taxes	Р	Q	$P \rightarrow Q$
not elected	not lower taxes	F	H	Т
not elected	lower taxes	F	7	Т
elected	not lower taxes	Т	F	F
elected	lower taxes	Т	Т	Т

a) seems fair: If I am not elected, then I am not obligated to lower the taxes.

	P = elected	Q= lower taxes	Р	Q	$P \rightarrow Q$
a	not elected	not lower taxes	Щ	Щ	Т
b	not elected	lower taxes	Щ	H	Т
С	elected	not lower taxes	Т	F	F
d	elected	lower taxes	Т	Т	Т

- a) seems fair: If I am not elected, then I am not obligated to lower the taxes.
- b) seems fair: If I am not elected, I may still in other ways work hard to lower the taxes, although I do not have to for the contract to remain valid.

	P = elected	Q= lower taxes	Р	Q	$P \rightarrow Q$
а	not elected	not lower taxes	F	F	Т
b	not elected	lower taxes	F	Т	Т
С	elected	not lower taxes	Т	F	F
d	elected	lower taxes	Т	Т	Т

c) seems fair: I was elected, but I didn't keep my part of the bargain and I didn't reduce taxes) I lied when I made my promise. It was a false proposition.

	P = elected	Q= lower taxes	Р	Q	$P \rightarrow Q$
а	not elected	not lower taxes	F	F	Т
b	not elected	lower taxes	F	Т	Т
С	elected	not lower taxes	Т	F	F
d	elected	lower taxes	Т	Т	Т

- c) seems fair: I was elected, but I didn't keep my part of the bargain and I didn't reduce taxes) I lied when I made my promise. It was a false proposition.
- d) seems fair, I kept my promise. (I was elected, I reduced taxes)

	P = elected	Q= lower taxes	Р	Q	$P \rightarrow Q$
a	not elected	not lower taxes	F	F	Т
b	not elected	lower taxes	F	Т	Т
С	elected	not lower taxes	Т	F	F
d	elected	lower taxes	Т	Т	Т

Fundamental connectives

- AND ^
- OR \(\times \)
- XOR \oplus , or \vee
- NOT ~, or ¬
- Conditional \rightarrow , or \Rightarrow
- Biconditional \leftrightarrow , \Leftrightarrow , or \equiv

Biconditional (if and only if) $(\leftrightarrow, \Leftrightarrow, \text{ or } \equiv)$

- If and only if connective combines two propositions P and Q into a third proposition called biconditional.
- The biconditional is true when both P and Q have the same truth value, and it is false if P and Q have different truth values

•	V	V	r	i	t	te	9	r	1:	F)	(\rightarrow	Q
---	---	---	---	---	---	----	---	---	----	---	---	----------	---------------	---

- $P \rightarrow Q$
- $Q \rightarrow P$

P	Q	$P \leftrightarrow Q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

• Equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$

Biconditional (if and only if): example

You will be paid on Monday if and only if you submit your timesheets today.

2 conditionals:

You will be paid on Monday *if* you submit your timesheets today. You will be paid on Monday *only if* you submit your timesheets today.

Or:

If you submit your timesheets today then you will be paid on Monday.

If you are paid on Monday then you must have submitted your timesheets today.

Let's playxercise!

https://kahoot.it/

Fundamental connectives: precedence

How do we parse this statement?

$$\neg X \rightarrow Y \lor Z \rightarrow X \lor Y \land Z$$

Operator precedence for propositional logic:

 \neg

Λ

V

 \longrightarrow

 \longleftrightarrow

 $\neg X \rightarrow Y \lor Z \rightarrow X \lor Y \land Z$ is short for: $\neg X \rightarrow Y \lor X \rightarrow X \lor Y \land Z$

Fundamental connectives: precedence

How do we parse this statement?

$$\neg X \rightarrow Y \lor Z \rightarrow X \lor Y \land Z$$

Operator precedence for propositional logic:

Λ

V

 \longrightarrow

 \longleftrightarrow

 $\neg X \rightarrow Y \lor Z \rightarrow X \lor Y \land Z \text{ is short for: } (\neg X) \rightarrow ((Y \lor Z) \rightarrow (X \lor (Y \land Z)))$

Overview

- Propositions
- Truth tables
- Fundamental connectives
- Logical properties of propositions

Logical properties

- Tautologies
- Contradictions
- Contingencies

Logical properties of two propositions:

Logical equivalence

Logical properties - tautologies

Tautologies - propositions which are always true, regardless of the truth values of its atomic propositions.

- Example: Q v ~Q
 - Q = "I passed the exam", ~Q = "I did not pass the exam"
 - Q v ~Q = "I passed the exam OR I did not pass the exam" is always true, regardless of the truth values of Q.

The truth table for a tautology has "T" (true) in every row.

Q	~Q	Q ∨ ~Q
Т	F	Т
F	Т	Т

Logical properties - contradictions

Contradictions - propositions which are always false, regardless of the truth values of its atomic propositions.

- Example: Q ∧ ~Q
 - Q = "I passed the exam", ~Q = "I did not pass the exam"
 - Q ∧ ~Q = "I passed the exam AND I did not pass the exam" is always false, regardless of the truth values of Q.

The truth table for a contradiction has "F"(false) in every row.

Q	~Q	Q ^ ~Q
Т	F	F
F	Т	F

Logical properties - contingencies

Contingencies – propositions that are neither tautologies nor contradictions

- Example: P, ~P
- P = "I passed the exam", ~P = "I did not pass the exam" Contingencies have both "T"s and "F"s in their truth tables.

Р	P ~
Т	F
F	Т

Logical properties - equivalence

- Two propositions are logically equivalent if they have exactly the same truth value under all circumstances.
 - P and Q are logically equivalent if they are both true, or both false.
 - Written: P ≡ Q
- Whenever we find logically equivalent propositions, we should feel free to replace one with another as we wish.

Summary: propositions

- Proposition a claim about how things are that is either true or false, but not both.
- Atomic proposition proposition whose truth or falsity does not depend on the truth or falsity of any other proposition.
- Compound proposition propositions constructed from atomic propositions by combining them with connectives.
- Truth table table with the value of a compound proposition for all possible values of its atomic propositions.

Summary: fundamental connectives

- AND fundamental connective that takes two proposition P and Q to form a third: conjunction proposition which is true when both P and Q are true $(P \land Q)$
- OR fundamental connective that takes two proposition P and Q to form a third: inclusive disjunction proposition which is true when P is true, Q is true, or both P and Q are true (P ∨ Q)
- XOR fundamental connective that takes two proposition P and Q to form a third: exclusive
 disjunction proposition which is true when P is true, Q is true, but not both P and Q are true (P ⊕ V)
- Negation fundamental connective that takes one proposition P to form a second proposition called negation which is true when P is false (~P).
- Conditional fundamental connective that combines two propositions P and Q into a third
 proposition called conditional or implication which is false when the antecedent P is true and its
 consequent Q is false; otherwise, a conditional is true (P → Q)
- Biconditional fundamental connective that combines two propositions P and Q into a third
 proposition called biconditional which is true when both P and Q have the same truth value, and it is
 false if P and Q have different truth values (P ↔ Q)

Summary: logical properties

- Tautologies propositions which are always true, regardless of the truth values of its atomic propositions.
- Contradictions propositions which are always false, regardless of the truth values of its atomic propositions.
- Contingencies propositions that are neither tautologies nor contradictions.
- Logically equivalent propositions propositions which have exactly the same truth value under all circumstances.