2021 年秋季学期"计算机网络"(011144.01) 期末复习--补充习题

助教: 董寅灏 朱映 白欣雨 李昱祁 王澍民 2022 年 1 月 于中国科学技术大学

则目的地址可以是()。

(A) 180.80.76.0

	友情提醒 :以下补充习 故。 请优先复习作业和		,部分题目有一定难序	 度和综合性,供学有余力的同学选
育	4章 网络层:	数据平面		
1.	下列关于 IP 路由器	功能的描述中,正确的	J是 ()。	
	I. 运行路由协议,	设置路由表		
	II. 监测到拥塞时,	合理丢弃 IP 分组		
	III. 对收到的 IP 分:	组头进行差错校验,确	角保传输的 IP 分组不是	丢失
	IV. 根据收到的 IP	分组的目的 IP 地址,	将其转发到合适的输出	出线路上
	(A) 仅 III、IV	(B) 仅I、II、III	(C) 仅 I、II、IV	(D) I, II, III, IV
2.	(A) 可以确保数据分(B) 需要为每条虚电(C) 建立虚电路时需	路预分配带宽		
3.	在子网 192.168.4.0/5 (A) 0	30 中,能接收目的地址 (B) 1	止为 192.168.4.3 的 IP (C) 2	分组的最大主机数是 ()。 (D) 4
4.		可为 192.168.5.0/24, 每个子网内的最大可分 (B) 32, 6		网掩码为 255.255.255.248, 则该网络)。 (D) 8, 30
5.	若将网络 21.3.0.0/16 (A) 254	5 划分为 128 个规模相 (B) 256	同的子网,则每个子 (C) 510	网可分配的最大 IP 地址个数是 ()。 (D) 512

(B) 180.80.76.255

6. 某主机的 IP 地址为 180.80.77.55, 子网掩码为 255.255.252.0。若该主机向其所在子网发送广播分组,

(C) 180.80.77.255 (D) 180.80.79.255

- 7. 下列 IP 地址中, 只能作为 IP 分组的源 IP 地址但不能作为目的 IP 地址的是()。
 - (A) 0.0.0.0
- (B) 127.0.0.1
- (C) 200.10.10.3
- (D) 255.255.255.255

8. 某路由器的路由表如下表所示:

目的网络	下一跳	接口
169.96.40.0/23	176.1.1.1	S1
169.96.40.0/25	176.2.2.2	S2
169.96.40.0/27	176.3.3.3	S3
0.0.0.0/0	176.4.4.4	S4

若路由器收到一个目的地址为 169.96.40.5 的 IP 分组,则转发该 IP 分组的接口是(

- (A) S1
- (B) S2
- (C) S3
- (D) S4
- 9. 某路由器中有转发接口相同的 4条路由表项, 其目的网络地址分别为 35.230.32.0/21、35.230.40.0/21、 35.230.48.0/21 和 35.230.56.0/21,将该 4 条路由聚合后的目的网络地址为()。
 - (A) 35.230.0.0/19
- (B) 35.230.0.0/20
- (C) 35.230.32.0/19 (D) 35.230.32.0/20
- 10. 若将 101.200.16.0/20 划分为 5 个子网,则可能的最小子网的可分配 IP 地址数是()。
 - (A) 126
- (B) 254
- (C) 510
- (D) 1022
- 11. 现将一个 IP 网络划分为 3 个子网, 若其中一个子网是 192.168.9.128/26, 则下列网络中, 不可能是另 外两个子网之一的是()。
- (A) 192.168.9.0/25 (B) 192.168.9.0/26 (C) 192.168.9.192/26 (D) 192.168.9.192/27
- 12. 若路由器向 MTU = 800B 的链路转发一个总长度为 1580B 的 IP 数据报 (首部长度为 20B) 时, 进行 了分片,且每个分片尽可能大,则第 2 个分片的总长度字段和 MF 标志位的值分别是()。
 - (A) 796, 0
- (B) 796, 1
- (C) 800, 0
- (D) 800, 1
- 13. 某网络拓扑如图 1 所示, 路由器 R1 只有到达子网 192.168.1.0/24 的路由。为使 R1 可以将 IP 分组 正确地路由到图中的所有子网,则在 R1 中需要增加的一条路由(目的网络,子网掩码,下一跳)是()。

图 1: 第 4 章第 13 题图

(A) 192.168.2.0	255.255.255.128	192.168.1.1
(B) 192.168.2.0	255.255.255.0	192.168.1.1
(C) 192.168.2.0	255.255.255.128	192.168.1.2
(D) 192.168.2.0	255.255.255.0	192.168.1.2

14. 某网络拓扑图如图 2 所示,路由器 R1 通过接口 E1、E2 分别连接局域网 1、局域网 2,通过接口 L0 连接路由器 R2,并通过路由器 R2 连接域名服务器与互联网。R1 的 L0 接口的 IP 地址是 202.118.2.1; R2 的 L0 接口的 IP 地址是 202.118.2.2, L1 接口的 IP 地址是 130.11.120.1, E0 接口的 IP 地址是 202.118.3.1; 域名服务器的 IP 地址是 202.118.3.2。

图 2: 第 4 章第 14 题图

R1 和 R2 的路由表结构如下:

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口

- (1) 将 IP 地址空间 202.118.1.0/24 划分为两个子网,分别分配给局域网 1 和局域网 2,每个局域网 需分配的 IP 地址数不少于 120 个。请给出子网划分结果,说明理由或给出必要的计算过程。
- (2) 请给出 R1 的路由表,使其明确包括到局域网 1 的路由、局域网 2 的路由、域名服务器的主机路由和互联网的路由。
- (3) 请采用路由聚合技术,给出 R2 到局域网 1 和局域网 2 的路由。
- 15. 某公司的网络如图 3 所示。IP 地址空间 192.168.1.0/24 均分给销售部和技术部两个子网,并已分别为部分主机和路由器接口分配了 IP 地址,销售部子网的 MTU = 1500B,技术部子网的 MTU = 800B。

图 3: 第 4 章第 15 题图

回答下列问题:

- (1) 销售部子网的广播地址是什么? 技术部子网的子网地址是什么? 若每台主机仅分配一个 IP 地址,则技术部子网还可以连接多少台主机?
- (2) 假设主机 192.168.1.1 向主机 192.168.1.208 发送一个总长度为 1500B 的 IP 分组, IP 分组的头部长度为 20B, 路由器在通过接口 F1 转发该 IP 分组时进行了分片。若分片时尽可能分为最大片,则一个最大 IP 分片封装数据的字节数是多少? 至少需要分为几个分片? 每个分片的片偏移量是多少?

16. 某校园网有两个局域网,通过路由器 R1、R2 和 R3 互联后接入 Internet, S1 和 S2 为以太网交换机。局域网采用静态 IP 地址配置,路由器部分接口以及各主机的 IP 地址如图 4 所示。

图 4: 第 4 章第 16 题图

假设 NAT 转换表结构为

外	M	内网		
IP 地址 端口号		IP 地址	端口号	

请回答下列问题:

- (1) 为使 H2 和 H3 能够访问 Web 服务器 (使用默认端口号),需要进行什么配置?
- (2) 若 H2 主动访问 Web 服务器时,将 HTTP 请求报文封装到 IP 数据报 P 中发送,则 H2 发送的 P 的源 IP 地址和目的 IP 地址分别是什么?经过 R3 转发后,P 的源 IP 地址和目的 IP 地址分别是什么?经过 R2 转发后,P 的源 IP 地址和目的 IP 地址分别是什么?
- 17. 某网络拓扑如图 5 所示,其中 R 为路由器,主机 $H1 \sim H4$ 的 IP 地址配置以及 R 的各接口 IP 地址配置如图中所示。现有若干台以太网交换机 (无 VLAN 功能) 和路由器两类网络互联设备可供选择。

图 5: 第 4 章第 17 题图

请回答下列问题:

- (1) 设备 1、设备 2 和设备 3 分别应选择什么类型的网络设备?
- (2) 设备 1、设备 2 和设备 3 中, 哪几个设备的接口需要配置 IP 地址?为对应的接口配置正确的 IP 地址。
- (3) 为确保主机 H1~H4 能够访问 Internet, R 需要提供什么服务?
- (4) 若主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报, 网络中哪几个主机会接收该数据报?

第5章 网络层:控制平面

1. 某网络中的所有路由器均采用距离向量路由算法计算路由。若路由器 E 与邻居路由器 A, B, C 和 D 之间的直接链路距离分别是 8, 10, 12 和 6, 且 E 收到邻居路由器的距离向量如下表所示,则路由器 E 更新后的到达目的网络 Net1 \sim Net4 的距离分别是 ()。

目的网络	A 的距离向量	B的距离向量	C的距离向量	D 的距离向量
Net1	1	23	20	22
Net2	12	35	30	28
Net3	24	18	16	36
Net4	36	30	8	24

- (A) 9, 10, 12, 6
- (B) 9, 10, 28, 20
- (C) 9, 20, 12, 20
- (D) 9, 20, 28, 20
- 2. 假设图 6 中的 R1、R2、R3 采用 RIP 交换路由信息,且均已收敛。若 R3 检测到网络 201.1.2.0/25 不可达,并向 R2 通告一次新的距离向量,则 R2 更新后,其到达该网络的距离是()。
 - (A) 2
- (B) 3
- (C) 16
- (D) 17

图 6: 第 5 章第 2 题图

- 3. 某自治系统内采用 RIP, 若该自治系统内的路由器 R1 收到其邻居路由器 R2 的距离向量, 距离向量中包含信息 <net1, 16>,则能得出的结论是()。
 - (A) R2 可以经过 R1 到达 net1, 跳数为 17
 - (B) R2 可以到达 net1, 跳数为 16
 - (C) R1 可以经过 R2 到达 net1, 跳数为 17
 - (D) R1 不能经过 R2 到达 net1

- 4. 直接封装 RIP、OSPF、BGP 报文的协议分别是()。
 - (A) TCP, UDP, IP

(B) TCP, IP, UDP

(C) UDP, TCP, IP

- (D) UDP, IP, TCP
- 5. 若路由器 R 因为拥塞丢弃 IP 分组,则此时 R 可向发出该 IP 分组的源主机发送的 ICMP 报文类型 是()。
 - (A) 路由重定向
- (B) 目的不可达
- (C) 源点抑制
- (D) 超时
- 6. 在 TCP/IP 体系结构中,直接为 ICMP 提供服务的协议是()。
 - (A) PPP
- (B) IP
- (C) UDP
- (D) TCP
- 7. 假设 Internet 的两个自治系统构成的网络如图 7 所示,自治系统 AS1 由路由器 R1 连接两个子网构成;自治系统 AS2 由路由器 R2、R3 互联并连接 3 个子网构成。各子网地址、R2 的接口名、R1 与R3 的部分接口 IP 地址如图 7 所示。

图 7: 第 5 章第 7 题图

请回答下列问题:

(1) 假设路由表结构如下表所示。利用路由聚合技术,给出 R2 的路由表,要求包括到达图中所有子 网的路由,且路由表中的路由项尽可能少。

日的网络 「一跳 接口		目的网络	下一跳	接口
-----------------	--	------	-----	----

- (2) 若 R2 收到一个目的 IP 地址为 194.17.20.200 的 IP 分组, R2 会通过哪个接口转发该 IP 分组?
- (3) R1 与 R2 之间利用哪个路由协议交换路由信息? 该路由协议的报文被封装到哪个协议的分组中进行传输?
- 8. 某网络中的路由器运行 OSPF 路由协议,下表是路由器 R1 维护的主要链路状态信息 (LSI),图 8 是根据该表及 R1 的接口名构造的网络拓扑。

		R1 的 LSI	R2 的 LSI	R3 的 LSI	R4 的 LSI	备注
Rout	ter ID	10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	标识路由器的 IP 地址
	ID	10.1.1.2	10.1.1.1	10.1.1.6	10.1.1.5	所连路由器的 Router ID
Link1	IP	10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	Link1 的本地 IP 地址
	Metric	3	3	6	6	Link1 的费用
	ID	10.1.1.5	10.1.1.6	10.1.1.1	10.1.1.2	所连路由器的 Router ID
Link2	IP	10.1.1.9	10.1.1.13	10.1.1.10	10.1.1.14	Link2 的本地 IP 地址
	Metric	2	4	2	4	Link2 的费用
Net1	Prefix	192.1.1.0/24	192.1.6.0/24	192.1.5.0/24	192.1.7.0/24	直连网络 Net1 的网络前缀
neur	Metric	1	1	1	1	到达直连网络 Net1 的费用

图 8: 第 5 章第 8 题图

请回答下列问题:

(1) 设路由表结构如下表所示,给出图中 R1 的路由表,要求包括到达图中子网 192.1.x.x 的路由,且路由表中的路由项尽可能少。

目的网络	下一跳	接口

- (2) 当主机 192.1.1.130 向主机 192.1.7.211 发送一个 TTL = 64 的 IP 分组时,R1 通过哪个接口转 发该 IP 分组? 主机 192.1.7.211 收到的 IP 分组的 TTL 是多少?
- (3) 若 R1 增加一条 Metric 为 10 的链路连接 Internet,则表中 R1 的 LSI 需要增加哪些信息?

第6章 链路层和局域网

- 1. 下列介质访问控制方法中,可能发生冲突的是()。
 - (A) CDMA
- (B) CSMA
- (C) TDMA
- (D) FDMA
- 2. 下列关于 CSMA/CD 协议的叙述中, 错误的是()。
 - (A) 边发送数据帧, 边检测是否发生冲突
 - (B) 适用于无线网络,以实现无线链路共享
 - (C) 需要根据网络跨距和数据传输速率限定最小帧长
 - (D) 当信号传播延迟趋近 0 时,信道利用率趋近 100%

- 3. 以太网的 MAC 协议提供的是()。
 - (A) 无连接的不可靠服务
- (B) 无连接的可靠服务

(C) 有连接的可靠服务

(D) 有连接的不可靠服务

- 4. ARP 的功能是 ()。
 - (A) 根据 IP 地址查询 MAC 地址
- (B) 根据 MAC 地址查询 IP 地址
- (C) 根据域名查询 IP 地址
- (D) 根据 IP 地址查询域名
- 5. 路由器 R 通过以太网交换机 S1 和 S2 连接两个网络, R 的接口、主机 H1 和 H2 的 IP 地址与 MAC 地址如图 9 所示。若 H1 向 H2 发送一个 IP 分组 P, 则 H1 发出的封装 P 的以太网帧的目的 MAC 地址、H2 收到的封装 P 的以太网帧的源 MAC 地址分别是 ()。

图 9: 第 6 章第 5 题图

- $(A) \ 00-a1-b2-c3-d4-62, \ 00-1a-2b-3c-4d-52 \qquad (B) \ 00-a1-b2-c3-d4-62, \ 00-a1-b2-c3-d4-61$

- (C) 00-1a-2b-3c-4d-51, 00-1a-2b-3c-4d-52 (D) 00-1a-2b-3c-4d-51, 00-a1-b2-c3-d4-61
- 6. 某以太网拓扑及交换机当前转发表如图 10 所示, 主机 00-e1-d5-00-23-a1 向主机 00-e1-d5-00-23-c1 发 送一个数据帧, 主机 00-e1-d5-00-23-c1 收到该帧后, 向主机 00-e1-d5-00-23-a1 发送一个确认帧, 交换 机对这两个帧的转发端口分别是()。

图 10: 第 6 章第 6 题图

- (A) {3} 和 {1}
- (B) {2, 3} 和 {1} (C) {2, 3} 和 {1, 2} (D) {1, 2, 3} 和 {1}

无线网络和移动网络 第7章

- 1. 下列选项中,对正确接收到的数据帧进行确认的 MAC 协议是 ()。
 - (A) CSMA
- (B) CDMA
- (C) CSMA/CD
- (D) CSMA/CA
- 2. IEEE 802.11 无线局域网的 MAC 协议 CSMA/CA 进行信道预约的方法是 ()。
 - (A) 发送确认帧

- (B) 采用二进制指数退避
- (C) 使用多个 MAC 地址
- (D) 交换 RTS 与 CTS 帧

第8章 网络安全

1. 下列选项中,不	属于主动攻击的是()。		
(A) 流量分析	(B) 重放		(C) IP 地址欺骗	(D) 拒绝服务

- 2. 下列关于对称密码的叙述中,错误的是()。
 - (A) 加密/解密处理速度快 (B) 加密/解密使用的密钥相同
 - (C) 密钥管理和分发简单 (D) 数字签名困难
- 3. 下列关于非对称密钥体制的叙述中,错误的是()。
 - (A) 加密/解密算法是公开的 (B) 加密密钥不等于解密密钥
 - (C) 无法通过加密密钥导出解密密钥 (D) 需要基于网络分发解密密钥
- 4. 甲收到一份来自乙的电子订单,在将订单中的货物送达到乙时,乙否认自己曾经发送过这份订单,为 了消除这种纷争,采用的安全技术是()。
- (A) 数字签名技术 (B) 数字证书 (C) 消息认证码 (D) 身份认证技术
- 5. 下列关于证书的叙述中,错误的是()。
 - (A) 证书通常由 CA 颁发
 - (B) 证书携带持有者的公开密钥
 - (C) 证书的真实性可以通过验证证书的签名获知
 - (D) 证书通常携带 CA 的公开密钥

第 4 章参考答案

- 1. C. I 和 IV 显然是 IP 路由器的功能。对于 II, 当路由器监测到拥塞时,可合理丢弃 IP 分组,并向发出该 IP 分组的源主机发送一个源点抑制的 ICMP 报文。对于 III,路由器对收到的 IP 分组首部进行差错检验,丢弃有差错首部的报文,但不保证 IP 分组不丢失。
- 2. B. 虚电路服务需要有建立连接过程,每个分组使用短的虚电路号,属于同一条虚电路的分组按照同一路由进行转发,分组到达终点的顺序与发送顺序相同,可以保证有序传输,不需要为每条虚电路预分配带宽。
- 3. C. 首先分析 192.168.4.0/30 这个网络,主机号只占 2 位,地址范围为 192.168.4.0 ~ 192.168.4.3,主机号全 1 时,即 192.168.4.3 是广播地址,因此可容纳 4-2=2 台主机。
- 4. B. 由于该网络的 IP 地址为 192.168.5.0/24,网络号为前 24 位,后 8 位为子网号 + 主机号。子网掩码为 255.255.255.248,第 4 个字节 248 转化成二进制为 11111000,因此后 8 位中,前 5 位用于子网号,在 CIDR 中可以表示 $2^5=32$ 个子网;后 3 位用于主机号,除去全 0 和全 1 的情况,可以表示 $2^3-2=6$ 台主机地址。
- 5. C. 这个网络有 16 位的主机号,平均分成 128 个规模相同的子网,每个子网有 7 位的子网号,9 位的主机号。除去一个网络地址和广播地址,可分配的最大 IP 地址个数是 $2^9 2 = 510$ 。
- 6. D. 子网掩码的第 3 个字节为 111111100, 可知前 22 位为子网号、后 10 位为主机号。IP 地址的第 3 个字节为 01001101 (下划线为子网号的一部分), 将主机号 (即后 10 位) 全置为 1, 可以得到广播地址为 180.80.79.255。
- 7. A. 根据 RFC 文档描述, 0.0.0.0/32 可以作为本主机在本网络上的源地址。127.0.0.1 是回送地址,以它为目的 IP 地址的数据将被立即返回本机。200.10.10.3 是 C 类 IP 地址。255.255.255.255 是广播地址。
- 8. C. 根据"最长前缀匹配原则", 169.96.40.5 与 169.96.40.0 的前 27 位匹配最长,因此选 C。选项 D 为 默认路由,只有当前面的所有目的网络都不能和分组的目的 IP 地址匹配时才使用。
- 9. C. 对于此类题目,先分析需要聚合的 IP 地址。观察发现,题中的四个路由地址,前 16 位完全相同,不同之处在于第 3 段的 8 位中,将这 8 位展开写成二进制,分别如下:

	7	6	5	4	3	2	1	0
32	0	0	1	0	0	0	0	0
40	0	0	1	0	1	0	0	0
48	0	0	1	1	0	0	0	0
56	0	0	1	1	1	0	0	0

观察发现,四个地址的第 3 段中,从前向后最多有 3 位相同,因此这 3 位是能聚合的最大位数。将这些相同的位都保留,将第 3 段第 3 位之后的所有位都置 0,就得到了聚合后的 IP 地址: 35.230.32.0,其网络前缀为 16+3,也即前 19 位,因此聚合后的网络地址为 35.230.32.0/19。

10. B. 网络前缀为 20 位,将 101.200.16.0/20 划分为 5 个子网,为了保证有子网的可分配 IP 地址数尽可能小,即要让其他子网的可分配 IP 地址数尽可能大,不能采用平均划分的方法,而要采用变长的子网划分方法,也就是最大子网用 1 位子网号,第二大子网用 2 位子网号,以此类推。

- 子网 1: 101.200.0001<u>0</u>000.00000001 ~ 101.200.0001<u>0</u>111.11111110; 地址范围为 101.200.16.1/21 ~ 101.200.23.254/21; 可分配的 IP 地址数为 2046 个。
- 子网 2: 101.200.0001<u>10</u>00.00000001 ~ 101.200.0001<u>10</u>11.11111110; 地址范围为 101.200.24.1/22 ~ 101.200.27.254/22; 可分配的 IP 地址数为 1022 个。
- 子网 3: 101.200.0001<u>110</u>0.00000001 ~ 101.200.0001<u>110</u>1.11111110; 地址范围为 101.200.28.1/23 ~ 101.200.29.254/23; 可分配的 IP 地址数为 510 个。
- 子网 4: 101.200.0001<u>1110</u>.00000001 ~ 101.200.0001<u>1110</u>.11111110; 地址范围为 101.200.30.1/24 ~ 101.200.30.254/24; 可分配的 IP 地址数为 254 个。
- 子网 5: 101.200.0001<u>1111</u>.00000001 ~ 101.200.0001<u>1111</u>.11111110; 地址范围为 101.200.31.1/24 ~ 101.200.31.254/24; 可分配的 IP 地址数为 254 个。

综上所述,可能的最小子网的可分配 IP 地址数是 254 个。

11. B. 根据题意,将 IP 网络划分为 3 个子网。其中一个是 192.168.9.128/26。可以简写成 x.x.x.10/26 (其中 10 是 128 的二进制 1000 0000 的前两位,因为 26-24=2)。

A 选项可以简写成 x.x.x.0/25; B 选项可以简写成 x.x.x.00/26; C 选项可以简写成 x.x.x.11/26; D 选项可以简写成 x.x.x.110/27。

对于 A 和 C, 可以组成 x.x.x.0/25、x.x.x.10/26、x.x.x.11/26 这样 3 个互不重叠的子网。

对于 D, 可以组成 x.x.x.10/26、x.x.x.110/27、x.x.x.111/27 这样 3 个互不重叠的子网。

但对于 B,要想将一个 IP 网络划分为几个互不重叠的子网,3 个是不够的,至少需要划分为 4 个子 网: x.x.x.00/26、x.x.x.01/26、x.x.x.10/26、x.x.x.11/26。

- 12. B. 链路层 MTU = 800B。IP 分组首部长 20B。片偏移以 8 个字节为偏移单位,因此除最后一个分片,其他每个分片的数据部分长度都是 8B 的整数倍。所以,最大 IP 分片的数据部分长度为 776B。总长度 1580B 的 IP 数据报中,数据部分占 1560B,1560/776 = 2.01···,需要分成 3 片。故第 2 个分片的总长度字段为 796,MF 为 1 (表示还有后续的分片)。
- 13. D. 要使 R1 能够正确地将分组路由到所有子网, R1 中需要有到 192.168.2.0/25 和 192.168.2.128/25 的路由,分别转换成二进制如下:

 $192.168.2.0:\ \underline{11000000}\ \underline{10101000}\ \underline{00000010}\ \underline{00000000}$

 $192.168.2.128;\ 11000000\ 10101000\ 00000010\ 10000000$

前 24 位都是相同的,于是可以聚合成超网 192.168.2.0/24,子网掩码为前 24 位,即 255.255.255.0。下一跳是与 R1 直接相连的 R2 的地址,因此是 192.168.1.2。

- 14. (1) CIDR 中的子网号可以全 0 或全 1,但主机号不能全 0 或全 1。因此若将 IP 地址空间 202.118.1.0/24 划分为 2 个子网,且每个局域网需分配的 IP 地址个数不少于 120 个,则子网号至少要占用一位。由 2⁶ 2 < 120 < 2⁷ 2 可知,主机号至少要占用 7 位。由于源 IP 地址空间的网络前缀为 24 位,因此 主机号位数 + 子网号位数 = 8。综上可得主机号位数为 7,子网号位数为 1。因此子网的划分结果为子网 1:202.118.1.0/25,子网 2:202.118.1.128/25。地址分配方案:子网 1 分配给局域网 1,子网 2 分配给局域网 2;或子网 1 分配给局域网 2,子网 2 分配给局域网 1。
 - (2) 由于局域网 1 和局域网 2 分别与路由器 R1 的 E1、E2 接口直接相连,因此在 R1 的路由表中,目的网络为局域网 1 的转发路径是直接通过接口 E1 转发的,目的网络为局域网 2 的转发路径是直接通过接口 E2 转发的。由于局域网 1、2 的网络前缀均为 25 位,因此它们的子网掩码均为

255.255.255.128。

R1 专门为域名服务器设定了一个特定的路由表项,因此该路由表项中的子网掩码应为 255.255.255.255 (只有和全 1 的子网掩码相与时,才能完全保证和目的 IP 地址一样,从而选择该特定路由)。对应的下一跳转发地址是 202.118.2.2,转发接口是 L0。

R1 到互联网的路由实质上相当于一个默认路由(即当某一目的网络 IP 地址与路由表中其他一项都不匹配时,匹配该默认路由表项),默认路由一般写为 0/0,即目的地址为 0.0.0.0,子网掩码为 0.0.0.0。对应的下一跳转发地址是 202.118.2.2,转发接口是 L0。

综上可得路由器 R1 的路由表如下:

(若子网 1 分配给局域网 1, 子网 2 分配给局域网 2)

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202.118.1.0	255.255.255.128	_	E1
202.118.1.128	255.255.255.128	_	E2
202.118.3.2	255.255.255.255	202.118.2.2	L0
0.0.0.0	0.0.0.0	202.118.2.2	L0

(若子网 1 分配给局域网 2, 子网 2 分配给局域网 1)

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202.118.1.128	255.255.255.128		E1
202.118.1.0	255.255.255.128	-	E2
202.118.3.2	255.255.255.255	202.118.2.2	L0
0.0.0.0	0.0.0.0	202.118.2.2	L0

(3) 局域网 1 和局域网 2 的地址可以聚合为 202.118.1.0/24, 而对于路由器 R2 来说,通往局域网 1 和局域网 2 的转发路径都是从 L0 接口转发的,因此采用路由聚合技术后,路由器 R2 到局域网 1 和局域网 2 的路由如下:

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202.118.1.0	255.255.255.0	202.118.2.1	L0

15. (1) 广播地址是网络地址中主机号全 1 的地址 (主机号全 0 的地址代表网络本身)。销售部和技术部 均分配了 192.168.1.0/24 的 IP 地址空间, IP 地址的前 24 位为子网的网络号。于是在后 8 位中 划分部门的子网,选择前 1 位作为部门子网的网络号。令销售部子网的网络号为 0,技术部子网的网络号为 1,则技术部子网的完整地址为 192.168.1.128;令销售部子网的主机号全 1,可以得 到该部门的广播地址为 192.168.1.127。

每台主机仅分配一个 IP 地址,计算目前还可以分配的主机数,用技术部可以分配的主机数减去已分配的主机数,技术部总共可以分配的主机数为 $2^7-2=126$ (减去全 0 和全 1 的主机号)。已经分配了 208-129+1=80 台,此外还有 1 个 IP 地址 (192.168.1.254) 分配给了路由器的端口,因此还可以分配 126-80-1=45 台。

(2) 判断分片的大小,需要考虑各个网段的 MTU,而且注意分片的数据长度必须是 8B 的整数倍。由题可知,在技术部子网内, MTU = 800B, IP 分组头部长 20B,最大 IP 分片封装数据的字节数

为 $\lfloor (800-20)/8 \rfloor \times 8 = 776$ 。至少需要的分片数为 $\lceil (1500-20)/776 \rceil = 2$ 。第 1 个分片的偏移量为 0;第 2 个分片的偏移量为 776/8 = 97。

16. (1) 两个子网使用了相同的网段,且路由器开启了 NAT 功能,加上题干给出了 NAT 表结构,因此需要配置 NAT 表。路由器 R2 开启 NAT 服务,当路由器 R2 从 WAN 口收到来自 H2 或 H3 发来的数据时,根据 NAT 表发送给 Web 服务器的对应端口。外网 IP 地址应该为路由器的外端 IP 地址。内网 IP 地址应该为 Web 服务器的地址,Web 服务器默认端口为 80,因此内网端口号固定为 80,当其他网络的主机访问 Web 服务器时,默认访问的端口应该也是 80,但是访问的目的 IP 是路由器的 IP 地址,因此 NAT 表中的外部端口最好也统一为 80. 题中并未要求对 H1 进行访问,因此 H1 的 NAT 表项可以不写。R2 的 NAT 表配置如下:

外网		内网	
IP 地址	端口号	IP 地址	端口号
203.10.2.2	80	192.168.1.2	80

- (2) 由于启用了 NAT 服务, H2 发送的 P 的源 IP 地址应该是 H2 的内网地址,目的地址应该是 R2 的外网 IP 地址,源 IP 地址是 192.168.1.2,目的 IP 地址是 203.10.2.2。R3 转发后,将 P 的源 IP 地址改为 R3 的外网 IP 地址,目的 IP 地址仍然不变,源 IP 地址是 203.10.2.6,目的 IP 地址是 203.10.2.2。R2 转发后,将 P 的目的 IP 地址改为 Web 服务器的内网地址,源地址仍然不变,源 IP 地址是 203.10.2.6,目的 IP 地址是 192.168.1.2。
- 17. (1) 以太网交换机 (无 VLAN 功能) 连接的若干 LAN 仍然是一个网络 (同一个广播域),路由器可以连接不同的 LAN、不同的 WAN 或把 WAN 和 LAN 互联起来,隔离了广播域。IP 地址 192.168.1.2/26 与 192.168.1.3/26 的网络前缀均为 192.168.1.0,视为 LAN1。IP 地址 192.168.1.66/26 与 192.168.1.67/26 的网络前缀均为 192.168.1.64,视为 LAN2。所以设备 1 为路由器,设备 2、3 为以太网交换机。
 - (2) 设备 1 为路由器, 其接口应配置 IP 地址。IF1 接口与路由器 R 相连, 其相连接口的 IP 地址为 192.168.1.253/30, 253 的二进制表示形式为11111101, 因此 IF1 接口的网络前缀也应为 192.168.1.111111, 已分配 192.168.1.253, 去除全 0 全 1, IF1 接口的 IP 地址应为 192.168.1.254。 LAN1 的默认网关为 192.168.1.1, LAN2 的默认网关为 192.168.1.65, 网关的 IP 地址是具有路由 功能的设备的 IP 地址,通常默认网关地址就是路由器中的 LAN 端口地址,设备 1 的 IF2、IF3 接口的 IP 地址分别设置为 192.168.1.1 和 192.168.1.65。
 - (3) 私有地址段: C 类 $192.168.0.0 \sim 192.168.255.255$,即 $H1 \sim H4$ 均为私有 IP 地址,若要能够访问 Internet,R 需要提供 NAT 服务,即网络地址转换服务。
 - (4) 主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报,主机号全为 1,为本网络的广播地址,由于路由器可以隔离广播域,只有主机 H4 会接收到数据报。

第5章参考答案

- 1. D. 根据距离向量算法, E 收到相邻路由器的距离向量后, 更新它的路由表:
 - (1) 当原路由表中没有目的网络时,把该项目添加到路由表中;
 - (2) 发来的路由信息中有一条到达某个目的网络的路由,该路由与当前使用的路由相比,有较短的距离,就用经过发送路由信息的结点的新路由替换。

分析题意可知, E 与邻居路由器 A、B、C 和 D 之间的直接链路距离分别是 8, 10, 12 和 6。到达 Net1 ~ Net4 没有直接链路,需要通过邻居路由器。从上述算法可知, E 到达目的网络一定是经过 A, B, C 和 D 中距离最小的。根据题中所给的距离信息,计算 E 经邻居路由器到达目的网络 Net1 ~ Net4 的距离,如下表所示,选择到达每个目的网络距离的最短值。

目的网络	经过 A 需要的距离	经过 B 需要的距离	经过 C 需要的距离	经过 D 需要的距离
Net1	9	33	32	28
Net2	20	45	42	34
Net3	32	<u>28</u>	<u>28</u>	42
Net4	44	40	<u>20</u>	30

所以距离分别是 9, 20, 28, 20。

- 2. B. 因为 R3 检测到网络 202.1.2.0/25 不可达,因此将到该网络的距离设置为 16 (距离为 16 表示不可达)。当 R2 从 R3 收到路由信息时,因为 R3 到该网络的距离为 16,则 R2 到该网络也不可达,但此时记录 R1 可达 (由于 RIP 的特点是"坏消息传得慢",R1 并未收到 R3 发来的路由信息),R1 到该网络的距离为 2,再加上从 R2 到 R1 的距离的 1,得 R2 到该网络的距离为 3。
- 3. D. R1 在收到信息并更新路由表后,若需要经过 R2 到达 net1,则其跳数为 17,由于距离为 16 表示不可达,因此 R1 不能经过 R2 到达 net1, R2 也不可能到达 net1。B、C 错误,D 正确。而题目中并未给出 R1 向 R2 发送的信息,因此 A 也不正确。
- 4. D. RIP 是一种分布式的基于距离向量的路由选择协议,它通过广播 UDP 报文来交换路由信息。OSPF 是一个内部网关协议,要交换的信息量较大,应使报文的长度尽量短,所以不使用传输层协议(如 UDP 或 TCP),而直接采用 IP。BGP 是一个外部网关协议,在不同的自治系统之间交换路由信息,由于网络环境复杂,需要保证可靠传输,所以采用 TCP。因此,选 D。
- 5. C. ICMP 差错报告报文有 5 种: 终点不可达、源点抑制、时间超过、参数问题、改变路由 (重定向), 其中源点抑制是指在路由器或主机由于拥塞而丢弃数据报时,向源点发送源点抑制报文,使源点知道 应当把数据报的发送速率放慢。
- 6. B. ICMP 报文作为数据字段封装在 IP 分组中,因此 IP 直接为 ICMP 提供服务。UDP 和 TCP 都是传输层协议,为应用层提供服务。PPP 是数据链路层协议,为网络层提供服务。
- 7. (1) 要求 R2 的路由表能到达图中的所有子网,且路由项尽可能少,则应对每个路由接口的子网进行聚合。在 AS1 中,子网 153.14.5.0/25 和子网 153.14.5.128/25 可聚合为子网 153.14.5.0/24;在 AS2 中,子网 194.17.20.0/25 和子网 194.17.21.0/24 可聚合为子网 194.17.20.0/23;子网 194.17.20.128/25 单独连接到 R2 的接口 E0。

于是可以得到 R2 的路由表如下:

目的网络	下一跳	接口
153.14.5.0/24	153.14.3.2	S0
194.17.20.0/23	194.17.24.2	S1
194.17.20.128/25	_	E0

(2) 该 IP 分组的目的 IP 地址 194.17.20.200 与路由表中的 194.17.20.0/23 和 194.17.20.128/25 两个路由表项均匹配,根据最长匹配原则,R2 将通过 E0 接口转发该 IP 分组。

- (3) R1 和 R2 属于不同的自治系统,因此应使用边界网关协议 (BGP) 交换路由信息;BGP 是应用层协议,它的报文被封装到 TCP 段中进行传输。
- 8. (1) 因为题目要求路由表中的路由项尽可能少,所以这里可以把子网 192.1.6.0/24 和 192.1.7.0/24 聚 合为子网 192.1.6.0/23, 其他网络照常,可得到路由表如下:

目的网络	下一跳	接口
192.1.1.0/24	_	E0
192.1.6.0/23	10.1.1.2	L0
192.1.5.0/24	10.1.1.10	L1

- (2) 通过查路由表可知: R1 通过 L0 接口转发该 IP 分组。因为该分组要经过 3 个路由器 (R1、R2、R4), 所以主机 192.1.7.211 收到的 IP 分组的 TTL 是 64-3=61。
- (3) R1 的 LSI 需要增加一条特殊的直连网络, 网络前缀 Prefix 为 "0.0.0.0/0", Metric 为 10。

第6章参考答案

- 1. B. 选项 A、C 和 D 都是信道划分协议, 信道划分协议是静态划分信道的方法, 肯定不会发生冲突。 CSMA 的全称是载波侦听多路访问协议, 其原理是站点在发送数据前先侦听信道, 发现信道空闲后再发送, 但在发送过程中有可能会发生冲突。
- 2. B. CSMA/CD 适用于有线网络, CSMA/CA 则广泛应用于无线局域网。其他选项关于 CSMA/CD 的 描述都是正确的。
- 3. A. 考虑到局域网信道质量好,以太网采取了两项重要的措施来使通信更简单: (1)采用无连接的工作方式; (2)不对发送的数据帧进行编号,也不要求对方发回确认。因此,以太网提供的服务是不可靠的服务,即尽最大努力的交付。差错的纠正由高层完成。
- 4. A. 在实际网络的数据链路层上传送数据时,最终必须使用硬件地址,ARP 将网络层的 IP 地址解析 为数据链路层的 MAC 地址。
- 5. D. 在网络的信息传递中,会经常用到两个地址: MAC 地址和 IP 地址。其中,MAC 地址会随着信息被发往不同的网络而改变,但 IP 地址当且仅当信息在私人网络中传递时才会改变。分组 P 在如题图所示的网络中传递时,首先由主机 H1 将分组发往路由器 R, 此时源 MAC 地址为 H1 主机本身的MAC 地址,即 00-1a-2b-3c-4d-52,目的 MAC 地址为路由器 R 的 MAC 地址,即 00-1a-2b-3c-4d-51。路由器 R 收到分组 P 后,根据分组 P 的目的 IP 地址,得知应将分组从另一个端口转发出去,于是会给分组 P 更换新的 MAC 地址,此时由于从另外的端口转发出去,因此 P 的新源 MAC 地址变为转发的端口 MAC 地址,即 00-a1-b2-c3-d4-61,目的 MAC 地址应为主机 H2 的 MAC 地址,即 00-a1-b2-c3-d4-62。根据分析过程,题目所问的 MAC 地址应为路由器 R 两个端口的 MAC 地址,因此选 D。
- 6. B. 主机 00-e1-d5-00-23-a1 向 00-e1-d5-00-23-c1 发送数据帧时,交换机转发表中没有 00-e1-d5-00-23-c1 这一项,所以向除 1 接口外的所有接口广播这一帧,即 2、3 端口会转发这一帧,同时因为转发表中并没有 00-e1-d5-00-23-a1 这一项,所以转发表会把(目的地址 00-e1-d5-00-23-a1,端口 1)这一项加入转发表。而当 00-e1-d5-00-23-c1 向 00-e1-d5-00-23-a1 发送确认帧时,由于转发表已经有 00-e1-d5-00-23-a1 这一项,所以交换机只向 1 端口转发,选 B。

第7章参考答案

- 1. D. CSMA/CA 是无线局域网标准 802.11 中的协议,它在 CSMA 的基础上增加了冲突避免的功能。 ACK 帧是 CSMA/CA 避免冲突的机制之一,也就是说,只有当发送方收到接收方发回的 ACK 帧后, 才确认发出的数据帧已正确到达目的地。
- 2. D. CSMA/CA 协议进行信道预约时,主要使用的是请求发送帧 (Request to Send, RTS) 和清除发送帧 (Clear to Send, CTS)。一台主机想要发送信息时,先向无线站点发送一个 RTS 帧,说明要传输的数据及相应的时间。无线站点收到 RTS 帧后,会广播一个 CTS 帧作为对此的响应,既给发送端发送许可,又指示其他主机不要在这个时间内发送数据,从而预约信道,避免碰撞。发送确认帧的目的主要是保证信息的可靠传输;二进制指数退避法是 CSMA/CD 中的一种冲突处理方法; C 选项则和预约信道无关。

第8章参考答案

- 1. A. 主动攻击是指试图改变系统资源或影响系统的操作。被动攻击试图从系统中获取信息,但不对系统产生影响。流量分析只需从通信频度、报文长度等流量模式推断通信的性质,因此属于被动攻击。
- 2. C. 对称密码的主要缺陷是密钥管理和分发困难。
- 3. D. 由于只有接收端才需要解密密钥,因此不存在分发解密密钥的问题。
- 4. A. 数字签名技术使发送端无法否认曾经发送过的电子订单。
- 5. D. 证书中携带证书持有者的公开密钥和颁发证书的 CA 的数字签名, 但不会携带 CA 的公开密钥。