CK

Series

Wide Temperature

- \bullet Operating with wide temperature range $\,$ -40 \sim +105 $^{\circ}\mathrm{C}$
- Load life of 1000~2000 hours
- RoHS Compliance

■SPECIFICATIONS

Item	Charact	eristics												
Operation Temperature Range	-40 ~ +1	05℃												
Voltage Range	4 ~ 450	V												
Capacitance Range	0.1 ~ 68	00μF												
Capacitance Tolerance	± 20 % ((at 120Hz, 2	.0℃)											
	WV(V) 6.3 ~ 100									160 ~ 450				
	Size	. ,					Ф12.	5 ~ 16				Ф6.3 ~ 16	6	
Leakage Current	Time	А	fter 2 minu	tes			After 1	minutes	5		Af	ter 5 minu	ites	
Capplication of rated voltage Capplication of rated volt	tion of rate	d voltage)												
	L.C.								•					
						wh	nicheve	r is grea	iter		whic	chever is g	reater	
Dissination Factor (MAX)	V	/V(V)	4	6.3	10	16	25	35	50	63	100	160~250	350~450	
. ,	tanδ	4~10Ф	0.42		0.26	0.22	0.16	0.14	0.12	0.10	0.10	0.20	0.25	
(tario) (at 12011217400, 20 c)	tano	12.5~16Ф	0.45	0.38	0.34	0.30	0.26	0.22	0.18	0.14	0.10	0.20	0.25	
	W/\/					10	16	25	25	50 62	100	160 250	350450	
	7(-25℃					-		25						
Leakage Current Time After 2 minutes After 1 minutes (application of rated voltage) (application of rated voltage)			Ф4 ~ 10	-				4			-			
	2	_												
	_ ,	. ,	16	17	12	10	8	5	4	3	3	6	10	
	After 2000Hrs. (1000hrs. For Φ4 ~ Φ6.3x5.4) application of the rated voltage at 105°C, they meet the characteristics											stics		
l oad Life	Canacit	ance change												
Load Liio					1						f 4V or	less		
					200% or less of initial specified value									
	Leakage	e Current			initial	specifie	d value	or less						
Shelf Life		• .	ors under n	o load	at 105	°C for 10	000 hou	rs, they	meet th	e speci	fied val	lue for load	l life chara	cteristics
	After ref	low solderin	g and resto	red at r	oom te	mperati	ure, they	/ meet t	he char	acterist	ics liste	d below.		-
		ance change)		Withir	±10%	of initial	value						
Resistance to Soldering Heat		ion Factor				specifie								
	Leakage	e Current			initial	specifie	d value	or less			-			
Marking	Black pr	int on the ca	se top											

■ DRAWING (Unit: mm)

^{*2} Applicable to Φ6.3x7.7

^{*3} Applicable to Ф8х10.5 ~ Ф10

^{*4} Applicable to Φ12.5 ~ Φ16

ELCON

CK Series

■ DIMENSIONS(Unit:mm)

ФDxL	4x5.4	5x5.4	6.3x5.4	6.3x7.7	8x10.5	10x10.5	10x13.5	12.5x13.5	12.5x16	16x16.5
Α	2.0	2.2	2.6	2.6	3.0	3.3	3.3	4.9	4.9	5.8
В	4.3	5.3	6.6	6.6	8.4	10.4	10.4	13.0	13.0	17.0
С	4.3	5.3	6.6	6.6	8.4	10.4	10.4	13.0	13.0	17.0
E±0.2	1.0	1.4	1.9	1.9	3.1	4.7	4.7	4.7	4.7	6.4
L	5.4	5.4	5.4	7.7	10.5	10.5	13.5	13.5	16.0	16.5
Н	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.8~1.2	0.8~1.2	0.8~1.2	0.8~1.2	0.8~1.2	0.8~1.2

■ DIMENSIONS&MAXIMUM PERMISSIBLE RIPPLE CURRENT

	WV 4		6.3		10			16	25								
μF	Code	00	3	0.	J	1,	A		1C		1E						
4.7	4R7									4x5.4	13						
10	100							4x5.4	18	5x5.4	20						
10	100							4x5.4	10	(4x5.4)	(14)						
22	220			4x5.4	22	5x5.4	25	5x5.4	27	6.3x5.4	36						
22	220			485.4	22	(4x5.4)	(20)	(4x5.4)	(20)	(5x5.4)	(25)						
33	330	5x5.4	30	5x5.4	27	5x5.4	30	6.3x5.4	40	6.3x5.4	44						
33	330	(4x5.4)	18	(4x5.4)	(22)	(4x5.4)	(22)	(5x5.4)	(28)	(5x5.4)	(29)						
47	470	5x5.4	36	5x5.4	33	5x5.4	30	6.3x5.4	48	6.3x5.4	48						
47	470	(4x5.4)	(24)	(4x5.4)	(25)	383.4	30	(5x5.4)	(31)	0.383.4	40						
100	101	6.3x5.4	60	6.3x5.4	50	6.3x5.4	53	6.3x5.4	60	6.3x7.7	91						
100	101	(5x5.4)	(43)	(5x5.4)	(39)	(5x5.4)	(45)	0.383.4	60		91						
150	151	6.3x5.4	52	6.3x5.4	55	6.3x5.4	62	6.3x7.7	95	8x10.5	140						
150	131	0.383.4	32	0.383.4	55	0.383.4	02	0.387.7	93	(6.3x7.7)	(100)						
220	221	6.3x5.4	57	6.3x7.7 105	6.3x7.7	105	8x10.5	150	8x10.5	175							
220	221		37	(6.3x5.4)	(67)	0.07.7	103	(6.3x7.7)	(105)	0.10.5	175						
330	331	6.3x7.7	100	6.3x7.7	105	8x10.5	196	8x10.5	195	10x10.5	240						
330	331	0.587.7	100	0.587.7	103	0.10.5	190	0.10.5	195	(8x10.5)	(220)						
470	471	6.3x7.7	105	8x10.5	210	10x10.5	260	10x10.5	295	10x10.5	280						
470	4/1	0.587.7	105	(6.3x7.7)	(120)	(8x10.5)	(210)	(8x10.5)	(230)	10.10.5	200						
680	681	8x10.5	210	8x10.5	210	10x10.5	270	10x10.5	315	10x13.5	400						
		8x10.5		10x10.5	300			12.5x13.5	500								
1000	102		8x10.5	8x10.5	8x10.5	8x10.5	8x10.5	8x10.5	02 8x10.5	230	(8x10.5)	(230)	10x10.5	315	(10x13.5)	(390)	12x13.5
				` ′	. ,			(10x10.5)	(340)								
1500	152	10x10.5	315	10x13.5	450	10x13.5	460	12x13.5	550	12.5x16	850						
1300	132	10.10.5	313	(10x10.5)	(315)	10.13.3	400	12.13.3	330	12.5710	030						
2200	222	10x13.5	440	12.5x13.5	620	12.5x13.5	680	16x16.5	950	16x16.5	1050						
2200	222	(10x10.5)	(340)	(10x13.5)	(500)	12.0x10.0	080	(12.5x16)	(750)	100.00.5	1030						
3300	332	10x13.5	490	12.5x16	700	16x16.5	1000	16x16.5	1000								
3300				(12.5x13.5)	(660)	10.10.5	1000	10.10.5	1000								
4700	472	12x13.5	600	16x16.5	1000												
6800	682	16x16.5	950]						Case size	Ripple current						
0000	0000 002	(12.5x16)	(650)							Case size	Mppie cuitefit						

	WV 35			50			63	100	
μF	Code	0G		1H		1J	2A		
0.1	0R1			4x5.4	0.7	4x5.4	0.7		
0.22	R22			4x5.4	1.6	4x5.4	1.6		
0.33	R33			4x5.4	2.5	4x5.4	2.5		
0.47	R47			4x5.4	3.5	4x5.4	3.5		
1	010			4x5.4	7	4x5.4	7	4x5.4	7
2.2	2R2			4x5.4	11	4x5.4	11	6.3x5.4	14
2.2	3.3 3R3	4x5.4	13	4x5.4	13	5x5.4	13	6.3x7.7	32
3.3		485.4	13	4.5.4	13			(6.3x5.4)	(20)
4.7	4.7 4R7	4x5.4	14	5x5.4	16	5x5.4	16	6.3x7.7	35
4.7	4117	4.5.4	14	(4x5.4)	(13)	5x5.4	10	(6.3x5.4)	(21)
10	100	5x5.4	21	6.3x5.4	24	6.3x7.7	39	8x10.5	77
10	100	(4x5.4)	(14)	0.383.4	24	6.3x5.4	(24)	(6.3x7.7)	(35)
22	220	6.3x5.4	38	6.3x7.7	51	8x10.5	98	10x10.5	126
22	220	(5x5.4)	(30)	(6.3x5.4)	(42)	(6.3x7.7)	(49)	(8x10.5)	(84)
33	330	6.3x5.4	42	6.3x7.7	60	8x10.5	112	10x10.5	133
		6.3x7.7	70	8x10.5	120	(10x10.5)	160	12.5x13.5	250
47	470	(6.3x5.4)	(50)	6.3x7.7	(63)	(8x10.5)	(119)	(10x13.5)	(160)
		·						(10x10.5)	(140)
68	680	·				Case size	Ripple current	12.5x13.5	300
00	080 80					Case Size		(10x13.5)	(180)

[·]Case size ΦDxL (mm), ripple current (mA rms) at 105℃, 120Hz

ELCON

CK Series

■ DIMENSIONS&MAXIMUM PERMISSIBLE RIPPLE CURRENT

	WV	3	5	50)	63	3	10	0		160
μF	Code	1	V	11	+	1.	J	2/	1	2C	
22	220									10x13.5	50
33	330									12.5x13.5	95
47	470									12.5x13.5	205
47	470									16x16.5	(240)
		8x10.5	120	10x10.5	170	12.5x13.5	270	16v16 F	450		
100	101			(8x10.5)	(140)	(10x13.5)	(210)	16x16.5	450	16x16.5	250
		(6.3x7.7)	(84)			(10x10.5)	(196)	(12.5x13.5)	(380)		
150	151	8x10.5	155	10x10.5	170	10x13.5	225				
		10x10.5	220	10x13.5	280	16x16.5	560				
220	221	(8x10.5)	(190)	(10x10.5)	(220)	(12.5x13.5)	(470)	16x16.5	550		
				16x16.5	600	16x16.5	700				
330	331	10x10.5	245	(12.5x13.5)	(420)	(12.5x16)	(510)				
				(10x13.5)	(295)		(/				
470	474	12.5x13.5	520	16x16.5	700	40,40 5	750				
470	471	(10x13.5)	(375)	(12.5x16)	(520)	16x16.5	750				
680	681	12.5x13.5	530	16x16.5	750						
1000	100	16x16.5	750							Coop oizo	Dinnla aurrant
1000	102	12.5x16	(600)							Case size	Ripple current
	WV	20	0	25	0	350	0	400)	4	450
μF	Code	2	D	28	=	2\	/	20	}	2W	
3.3	3R3							10x13.5	40	10x13.5	40
4.7	4D7			40.42 5		40,42.5	0.5	10x13.5	45	10x13.5	42
4.7	4R7			10x13.5		10x13.5	85	(12.5x13.5)	(48)	(12.5x13.5)	45
10	100	10x13.5	75	10x13.5	75	12.5x13.5	105	12.5x13.5	50	12.5x13.5	55
22	220	12.5x13.5	105	12.5x13.5	105	16x16.5	130	16x16.5	85	16x16.5	85
33	330	12.5x13.5	120	16x16.5	135						
47	470	16x16.5	220								
100	101									Case size	Ripple current

[·]Case size ΦDxL (mm), ripple current (mA rms) at 105°C, 120Hz

■ FREQUENCY COEFFICIENT OF ALLOWABLE RIPPLE CURRENT

- FALQUI	FREGOLIGIT COLFFICIENT OF ALLOWABLE RIFFLE CORRENT										
	Freque	ency	50Hz	120Hz	300Hz	1KHz	10KHz~				
	Ф4~Ф10	0.1~68µF	0.70	1.00	1.17	1.36	1.50				
	Ψ4~Ψ10	100~3300μF	0.85	1.00	1.08	1.20	1.30				
Coefficient	Ф12.5~Ф16	~68µF	0.75	1.00	1.35	1.57	2.00				
		100~680µF	0.80	1.00	1.23	1.34	1.50				
		1000~6800μF	0.85	1.00	1.00	1.13	1.15				