Al Summer School 2025 Medical Imaging Informatics

University of Pittsburgh

Introduction to Medical Image Annotations

Instructor: Nick Littlefield, MS

Learning Objectives

After completing this lecture, you should be able to:

- Explain the overall process of medical image annotation
- Understand the different types of annotations
- Understand the primary steps in bounding box annotation for object detection
- Understand how to evaluate manual annotation
- Understand what tools are used for bounding box annotation
- Understand the common errors that occur in the annotation process

Outline

- Medical Image Annotation: What and Why?
- Types of Annotations in Medical Imaging
- Annotation Pipelines
- Challenges
- Evaluating Manual Annotations
- Annotation Tools
- Common Errors

Medical Image Annotation: What and Why?

- Medical image annotation is the process of labeling medical images to highlight specific features, structures, or abnormalities.
- Aids in training AI models, improving clinical decision support, research and development

Types of Medical Image Annotation

- There are multiple types of medical image annotations:
 - Object Detection
 - Segmentation
 - Classification

Student Activity: What are some example scenarios where you could use each type of annotation?

Types of Medical Image Annotation: Segmentation

Outlines the boundaries of different structures (organs, tissue, bony anatomy)

Types of Medical Image Annotation: Object Detection

- Identifying and localizing regions of interest that contain specific objects
- Examples:
 - Cells in microscopic image
 - Knee joint area,
 - Brain tumors
 - Lung nodules

Types of Medical Image Annotation: Classification

- Assigning labels or categories to images based on the content of the image
- Examples:
 - benign vs. malignant brain tumors
 - lung cancer screening benign, pre-cancerous, malignant,
 - fracture types simple, compound, ...

Typical Annotation Pipeline

Challenges with Medical Image Annotations

- Accuracy and precisions of annotations: Annotations need to be precise and highly accurate to train AI models
- Consistency of the annotations: different annotators can have varying interpretation of the same image
- Time consuming and costly: Detailed annotations take extensive amount of time
- Complexity of medical images: images have different modalities, quality, and can contain artifacts

Student Activity: Accuracy and precision of annotations are important. How can we ensure precision across annotators and ensure annotators are annotating correctly?

Intersection over Union: What and Why?

- When evaluating both manual annotations and object detection algorithms we need a metric to measure overall
 - quality of the annotations or performance of the model
- Intersection over Union (IoU) measures the amount overlap between
 - Groups of annotators annotating medical images
 - The predicted bounding box and the ground truth bounding box
- The better the overlap between the groups of annotators or between the predicted bounding box and ground truth bounding box the better the inter-rater agreement between annotators and better the predictions

Different Ranges of IoU

IoU General Algorithm

- Calculating the IoU between two annotators:
 - Get the bounding box coordinates from both annotators
 - Compare the bounding boxes between the annotators
 - Calculate the area of overlap (intersection) and the area of the union
 - Divide the intersection by the union
 - Analyze the obtained results
 - Repeat for all annotated images
- The above algorithm can be done for object detection, but instead is done between the **predicted bounding box** and the **ground truth**.

Performing the IoU Calculation

- Suppose we have two annotators, A and B:
 - Extract the bounding box coordinates for A and B
 - Find the intersection coordinates of the bounding boxes:

$$x_{I_0} = \max(x_0^A, x_0^B)$$

 $y_{I_0} = \max(y_0^A, y_0^B)$
 $x_{I_1} = \min(x_1^A, x_1^B)$
 $y_{I_1} = \min(y_1^A, y_1^B)$

Calculate the area of the intersection

$$A \cap B = (x_1^I - x_0^I) * (y_1^I - y_0^I)$$

Performing the IoU Calculation (Cont.)

- Suppose we have two annotators, A and B:
 - Calculate area of the union

Area
$$A = (x_1^A - x_0^A) * (y_1^A - y_0^A)$$

Area $B = (x_1^B - x_0^B) * (y_1^B - y_0^B)$
 $A \cup B = AreaA + AreaB - A \cap B$

Calculate the IoU

$$IoU = \frac{A \cap B}{A \cup B}$$

 The above steps can be done for object detection, but instead is done between the predicted bounding box and the ground truth.

Example: Calculating the IoU Between Two Annotations

• Suppose we have two annotators, A and B who have annotated the following knee x-ray:

X0: 105 X1: 556 Y0: 266 Y1: 845

X0: 144 X1: 562 Y0: 264 Y1: 683

Example: Calculating the IoU Between Two Annotations

• Suppose we have two annotators, A and B who have annotated the following knee x-ray:

• Extract the bounding box coordinates for A and B X0: 105 X1: 556 X0: 144 X1: 562 Y0: 266 Y1: 845 Y0: 264 Y1: 683

Find the intersection coordinates of the bounding boxes:

$$x_{I_0} = \max(x_0^A, x_0^B) = \max(105, 144) = 144$$

 $y_{I_0} = \max(y_0^A, y_0^B) = \max(266, 264) = 266$
 $x_{I_1} = \min(x_1^A, x_1^B) = \min(556, 562) = 556$
 $y_{I_1} = \min(y_1^A, y_1^B) = \min(845, 683) = 683$

Calculate the area of the intersection

$$A \cap B = (x_1^I - x_0^I) * (y_1^I - y_0^I) = (556 - 144) * (683 - 266)$$

= 410 * 417 = 171804

Performing the IoU Calculation (Cont.)

- Suppose we have two annotators, A and B:
 - Calculate area of the union

Area
$$A = (x_1^A - x_0^A) * (y_1^A - y_0^A) = (556 - 105) * (845 - 266) = (451 * 579) = 261129$$

Area $B = (x_1^B - x_0^B) * (y_1^B - y_0^B) = (562 - 144) * (683 - 264) = 418 * 419 = 175142$
 $A \cup B = AreaA + AreaB - A \cap B = 261129 + 175142 - 171804 = 264467$

Calculate the IoU

$$IoU = \frac{A \cap B}{A \cup B} = \frac{175142}{264467} = 0.662$$

Tools for Object Detection Annotations: LabelImg

- Lightweight and easy-to-use image annotation tool for labeling bounding boxes for object detection in images
- Generates XML file containing the class of an object and the bounding box coordinates for the upper left and lower right corners

Tools for Object Detection Annotations: Roboflow

- Platform designed to help developers build, train, and deploy computer vision models—particularly for tasks like object detection, classification, and segmentation
- Allows for data management:
 - Upload and organize image datasets.
 - Annotate images directly in the browser or import annotations from other tools.
 - Automatically convert between bounding box formats (e.g., COCO, YOLO, Pascal VOC).

Common Mistakes in Image Annotation

- Inaccurate bounding boxes: boxes that are too loose or too tight can lead to poor model performance.
- **Inconsistent labeling:** different annotators may label the same structure differently (e.g., one calls it "tumor," another "mass").
- Missing annotations: forgetting to annotate an object entirely can introduce false negatives during training.
- Incorrect class labels: assigning the wrong category (e.g., labeling a benign tumor as malignant).
- Overlapping or redundant boxes: placing multiple boxes around the same object can confuse the model.
- Ignoring image artifacts: failing to distinguish between real features and noise/artifacts from poor imaging.
- **Non-standard formats:** saving annotations in incompatible formats (e.g., mixing YOLO and Pascal VOC without conversion).

Hand-On Practice: Manual Annotations in Roboflow

Thank you!

Questions!

