Multimaterial Simulations using the Ghost Fluid Method

Knut Sverdrup

Cavendish Laboratory, Department of Physics, J J Thomson Avenue, Cambridge. CB3 0HE

Abstract

The unsteady, compressible Euler equations for multimaterial flow in one dimension have been solved numerically by employing a level set method and two versions of the Ghost Fluid Method.

1. Introduction

1.1. Euler equations

The Euler equations govern adiabatic and inviscid flow of a fluid. In one dimension, with density ρ , velocity u, total energy E and pressure p, they are given by

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0, \qquad (1)$$

where the vectors of conserved quantities \mathbf{U} and their fluxes $\mathbf{F}(\mathbf{U})$ are given by

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{pmatrix}. \tag{2}$$

It is sometimes convenient to work in terms of the primary variables $\mathbf{W} = \begin{pmatrix} \rho, & u, & p \end{pmatrix}^T$. The total energy is the sum of the kinetic and potential energy of the system, i.e.

$$E = \frac{1}{2}\rho u^2 + \rho e\,, (3)$$

where e is the internal energy, related to the other variables through the equation of state. For an ideal gas, the equation of state is

$$e = \frac{p}{(\gamma - 1)p}, \tag{4}$$

where γ denotes the ratio of specific heats for the gas.

Preprint submitted to MPhil in Scientific Computing

- 1.2. Riemann problem
- 1.3. Multimaterial flow

2. Numerical methods

- 2.1. Slope-Limiting Centered scheme (SLIC)
- 2.2. Level-set method
- 2.3. Ghost Fluid Methods
- 2.3.1. Original Ghost Fluid Method
- 2.3.2. Riemann Ghost Fluid Method

3. Results

- 3.1. Moving contact discontinuity
- 3.2. Simple ghost fluid tests
- 3.3. Multimaterial shock tubes for gases
- 3.4. Water-gas shock tube test

4. Conclusions

Figure 1: Original Ghost Fluid method for test C. $\triangle N = 100 \times N = 200 \circ N = 400$

Figure 2: Riemann Ghost Fluid method for test C. $\triangle N = 100~\text{\times}N = 200~\text{o}N = 400$

Figure 3: Original Ghost Fluid method for test D. $\triangle N = 100~\times N = 200~\circ N = 400$

Figure 4: Riemann Ghost Fluid method for test D. $\triangle N = 100~\text{\times}N = 200~\text{o}N = 400$

Figure 5: Riemann Ghost Fluid method for test E. $\triangle N = 100~\text{\times}N = 200~\text{o}N = 400$

Figure 6: Riemann Ghost Fluid method for test E with higher accuracy (N=1000).