PROYECTO FINAL

Visión por Computador

Gonzalo Maldonado Arana

Vanessa Elizabeth Mejía Fajardo

Itsasne Presumido Martínez-Conde

Índice

CONTEXTO

Objetivo del Proyecto

Contexto del Proyecto

Visión por Computador

- Calibración de las cámaras
- Captura y procesamiento de imágenes
- Extracción de características

Reinforcement Learning

Optimización del orden de recogida de los cubos

Robótica Inteligente

Integración del robot colaborativo

Planificación y ejecución de los movimientos

2

PUESTA EN MARCHA

Puesta en Marcha

3

DESARROLLO

DESARROLLO

01

Obtención de Figura 3D

Procesar las imágenes para extraer características de la figura

Localización de los Cubos

Identificar la posición y el color de los cubos sobre la mesa de trabajo

02

OBTENCIÓN FIGURA 3D

Objetivo

- Definir la perspectiva de alzado, lateral y planta
- Localizar la posición y el color de cada cubo
- Obtener la representación 3D de la figura

REPRESENTACIÓN 3D

Obtención de la imagen

Obtención de la imagen

Segmentación por Color

- Obtención de la imagen
- Segmentación por Color
- 2 Filtro Sobel

- Obtención de la imagen
- 1 Segmentación por Color
- 2 Filtro Sobel
- 3 Umbralización y Morfología

- Obtención de la imagen
- Segmentación por Color
- 2 Filtro Sobel
- 3 Umbralización y Morfología
- 4 Aplicación de Máscara Inversa

- Obtención de la imagen
- 1 Segmentación por Color
- 2 Filtro Sobel
- 3 Umbralización y Morfología
- 4 Aplicación de Máscara Inversa
- 5 Morfología y Canny

- Obtención de la imagen
- 1 Segmentación por Color
- 2 Filtro Sobel
- 3 Umbralización y Morfología
- 4 Aplicación de Máscara Inversa
- Morfología y Canny
- 6 Filtrado de Contornos

Proyecto Final - I

- Obtención de la imagen
- 1 Segmentación por Color
- 2 Filtro Sobel
- 3 Umbralización y Morfología
- 4 Aplicación de Máscara Inversa
- 5 Morfología y Canny
- 6 Filtrado de Contornos
- 7 Localizar cubos y asignar colores

Obtención de la imagen

Obtención de la imagen

1 Umbralización

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color
- 3 Morfología

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color
- 3 Morfología
- 4 Extracción de contornos por Color

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color
- 3 Morfología
- 4 Extracción de contornos por Color
- * Calibración del Área del Cubo

Proyecto Final ______ 24

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color
- 3 Morfología
- 4 Extracción de contornos por Color
- * Calibración del Área del Cubo
- 5 Separación de Contornos

- Obtención de la imagen
- 1 Umbralización
- 2 Segmentación por Color
- 3 Morfología
- 4 Extracción de contornos por Color
- * Calibración del Área del Cubo
- 5 Separación de Contornos
- 6 Localizar cubos y asignar colores

OBTENCIÓN FIGURA 3D: Generación Figura 3D

DESARROLLO

01

Obtención de Figura 3D

Procesar las imágenes para extraer características de la figura

Localización de los Cubos

Identificar la posición y el color de los cubos sobre la mesa de trabajo

02

Objetivo

- Segmentar los cubos
- Determinar la posición, orientación y color de cada cubo

Posición: (110, 20) Rotación: 340° Color: Azul

Posición: (200, 40)

Rotación: 20° Color: Amarillo

Obtención de la imagen

Obtención de la imagen

Corrección de la distorsión

- Obtención de la imagen
- Corrección de la distorsión
- 2 Detección del marcador ArUco

- Obtención de la imagen
- Corrección de la distorsión
- 2 Detección del marcador ArUco
- 3 Conversión escala de grises y HSV

- Obtención de la imagen
- 1 Corrección de la distorsión
- 2 Detección del marcador ArUco
- 3 Conversión escala de grises y HSV
- 4 Binarización mediante umbral manual

- Obtención de la imagen
- Corrección de la distorsión
- Detección del marcador ArUco
- 3 Conversión escala de grises y HSV
- 4 Binarización mediante umbral manual
- 5 Detección de bordes con Canny

- Obtención de la imagen
- Corrección de la distorsión
- Detección del marcador ArUco
- 3 Conversión escala de grises y HSV
- 4 Binarización mediante umbral manual
- 5 Detección de bordes con Canny
- 6 Encontrar contornos

- Obtención de la imagen
- Corrección de la distorsión
- Detección del marcador ArUco
- 3 Conversión escala de grises y HSV
- Binarización mediante umbral manual
- 5 Detección de bordes con Canny
- 6 Encontrar contornos
- 7 Localizar cubos y asignar colores

4

DEMOSTRACIÓN

PROYECTO FINAL

Visión por Computador

Gonzalo Maldonado Arana

Vanessa Elizabeth Mejía Fajardo

Itsasne Presumido Martínez-Conde

