

Practice 3 Operational Amplifiers

Nikolay Nikolaev Nikolai Poliakov Roman Olekhnovich (nanikolaev@itmo.ru)
(polyakov_n_a@itmo.ru)
(r.o.olekhnovich@mail.ru)

Summary

ITMO

- 1. Wien Bridge Oscillator
- 2. Practice work 2: simulation
- 3. Control test

ITMO

Wien Bridge Oscillator

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_o = \frac{1}{2\pi \sqrt{R_1 C_1 R_2 C_2}}$$

If, in particular, the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_o = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

ITMO

Wien Bridge Oscillator

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_o = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

If, in particular, the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_o = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

İTMO

$$f_0 = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi RC} = \frac{1}{2\pi R_1C};$$

	Source voltage frequency, [Hz]	Load resistance, [Ω]	Resistance , [Ω]	Voltage source power supply [V]	
	J tost	R _{Load}	R_I	Vcc ±	Vref
†	1000	1000000	10000	<u>+</u> 5	0,2

$$C_1 = C_2$$

$$R_1 = R_2$$

$$R_3 = 2R_4$$

$$C_1 = C_2 = \frac{1}{2\pi R_1 f_{test}}$$

Choose real capacitor
$$f_0 = \frac{1}{2\pi R_1 C_{1_real}}$$

ITMO

Real operational amplifier

 f_{0_ideal} =11.11kHz Ideal operational amplifier

$$f_{0_calculated} = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi*110*10^{-12}*130*10^3} = 11,129 \text{kHz}$$

ITMO

69:2968µs, 8:930:

Real operational amplifier

Ideal operational amplifier

Test 2 iTM

https://forms.yandex.com/cloud/6372342c5d2a0664e323da80/

https://clck.ru/32gh38

1st deadline: 15.11.2022 15:15 (GMT +8)

Practice 3

ITMO

1st deadline: 25.11.2022 15:15 (GMT +8)

Thanks for your attention!