МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по лабораторной работе №9

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Гусев Д. А.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

- 3 Выполнение работы.
- 3.1 В соответсвии с рисунком и восьмым вариантом задания были определены:
 - $U_{MAX} = 1,5 B$ и U_{MIN} : -1,5 B;
 - в соотвествии с заданием $U_{\text{огр}} = U_{\text{MAX}} = 1,5 \text{ B};$
 - в соотвествии с вариантом 8 f_{MIN} = 0,4 к Γ ц и f_{MAX} = 3,5 к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u,non}$. $N_{MIN}=3$ / 0.25=12

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$ В.

3.2 При частоте дескритизации 7к Γ ц длина одного отсчета будет равна 1000~мс / 7000~гц = 0,14мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,14мс ≈ 7 отсчетов, для 6мс количество отсчетов равняется 42.

Для удобного определения $U_{BX}(t)$, В по графику, график сигнала был преобразован в png картинку размером 6000x6000 пикселей. На график была наложена сетка — деление каждые 0,14мс по оси t. График представлен на рисунке 2.

Рисунок 2 — График аналогового сигнала

На сигнале каждые 0,14мс были отложены точки. Так как высота изображения равна 6000 пикселей, а размах напряжения равен 3 вольтам, значит в 1 пикселе $3/6000 = 5*10^{(-4)}$ В. Остчет пикселей производится сверху вниз, где координаты верхнего левого угла (0,0), а нижего правого угла (6000,6000).

Для перевода значений $U_{BX}(t)$, Px в $U_{BX}(t)$, В применяется формула:

$$ABS(U_{BX}(t), Px - 3000) * 5*10(-4).$$

 $U_{KB}(t)$, B рассчитывается по формуле:

=
$$OKPBBEPX(U_{BX}(t) / \delta) * \delta$$

N рассчитывается по формуле:

$$N = U_{KB}(t) / \delta$$

Результаты измерений представлены в табилце 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), Px	UBX(t), B	UKB(t),B	ΔΚΒ(t)	N	Двоичный код
1	3000	0,000	0,000	0,00	0	0000
2	2458	0,271	0,281	-0,01	3	0011
3	1915	0,543	0,563	-0,02	6	0110
4	1451	0,775	0,844	-0,07	9	1001
5	1031	0,985	1,031	-0,05	11	1011
6	712	1,144	1,219	-0,07	13	1101
7	496	1,252	1,313	-0,06	14	1110
8	426	1,287	1,313	-0,03	14	1110
9	451	1,275	1,313	-0,04	14	1110
10	572	1,214	1,219	0,00	13	1101
11	742	1,129	1,219	-0,09	13	1101
12	1031	0,985	1,031	-0,05	11	1011
13	1325	0,838	0,844	-0,01	9	1001
14	1624	0,688	0,750	-0,06	8	1000
15	1958	0,521	0,563	-0,04	6	0110
16	2257	0,372	0,375	0,00	4	0100
17	2518	0,241	0,281	-0,04	3	0011
18	2686	0,157	0,188	-0,03	2	0010
19	2863	0,069	0,094	-0,03	1	0001
20	2963	0,019	0,094	-0,08	1	0001
21	2989	0,006	0,094	-0,09	1	0001
22	3000	0,000	0,000	0,00	0	0000

23	3000	0,000	0,000	0,00	0	0000
24	3015	0,008	0,094	-0,09	1	0001
25	3041	0,021	0,094	-0,07	1	0001
26	3095	0,048	0,094	-0,05	1	0001
27	3194	0,097	0,188	-0,09	2	0010
28	3361	0,181	0,188	-0,01	2	0010
29	3548	0,274	0,281	-0,01	3	0011
30	3788	0,394	0,469	-0,07	5	0101
31	4077	0,539	0,563	-0,02	6	0110
32	4400	0,700	0,750	-0,05	8	1000
33	4710	0,855	0,938	-0,08	10	1010
34	5053	1,027	1,031	0,00	11	1011
35	5284	1,142	1,219	-0,08	13	1101
36	5450	1,225	1,313	-0,09	14	1110
37	5591	1,296	1,313	-0,02	14	1110
38	5595	1,298	1,313	-0,01	14	1110
39	5439	1,220	1,313	-0,09	14	1110
40	5284	1,142	1,219	-0,08	13	1101
41	4990	0,995	1,031	-0,04	11	1011
42	4115	0,558	0,563	-0,01	6	0110

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью Манчестерского кода. Результат приведен на рисунке 3.

Рисунок 3 — Манчестерский код

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.