M 383: Assignment 4

Nathan Stouffer

Problem. Compute the sup, inf, limsup, liminf, and all the limit points of the sequence $x_1, x_2, ...$ where $x_n = 1/n + (-1)^n$.

Proof. First we compute the sup. To this end, we show that 3/2 is an upper bound for $1/n + (-1)^n$ for all $n \in \mathbb{N}$.

$$3/2 \ge 1/n + (-1)^n \iff 3n/2 \ge 1 + n(-1)^n \ge 1 - n \iff 5n/2 \ge 1 \iff n \ge 2/5$$

which is true for all natural numbers. Now we must show that 3/2 is the least upper bound for $x_n = 1/n + (-1)^n$. We know this because 3/2 is an element of the sequence: $x_2 = 1/2 + (-1)^2 = 1/2 + 1 = 3/2$.

Now we compute the inf. First we will show that $-1 \le x_n$ for all $n \in \mathbb{N}$.

$$-1 \le 1/n + (-1)^n \iff -n \le 1 + n(-1)^n \le 1 + n \iff -n \le 1 + n \iff n \ge -1/2$$

which is true for all natural numbers. No we must show that -1 is the greatest lower bound for x_n . Suppose there was a lower bound -1 + 1/k for some $k \in \mathbb{N}$. But -1 + 1/k cannot be a lower bound for x_n since x_{2k+1} is certainly less than -1 + 1/k:

$$x_{2k+1} = \frac{1}{2k+1} + (-1)^{2k+1} = \frac{1}{2k+1} + -1 < -1 + 1/k \iff \frac{1}{2k+1} < 1/k \iff k < 2k+1 \iff k > -1$$

which is true for all natural numbers. So -1 + 1/k cannot be a lower bound for x_n , which implies that -1 is the greatest lower bound for the sequence.

Before computing \limsup and \liminf , we will find all the limit points of $\{x_n\}$. Note that $x_1, x_2, x_3, \ldots = y_1, z_1, y_2, z_2, y_3, z_3, \ldots$ where $y_n = 1/(2n-1) + (-1)^{2n-1}$ and $z_n = 1/2n + (-1)^{2n}$. Further $y_n = 1/(2n-1) + (-1)^{2n-1} = 1/(2n-1) + -1$ and $z_n = 1/2n + (-1)^{2n} = 1/2n + 1$. Then we can say that $\lim_{n \to \infty} y_n = -1$ and $\lim_{n \to \infty} z_n = 1$. Since each subsequence converges, $\{y_n\}$ and $\{z_n\}$ each have only one limit point. Additionally, we know that x_1, x_2, \ldots is just a shuffled sequence of y_1, y_2, \ldots and z_1, z_2, \ldots so the limit points of x_1, x_2, \ldots are the limit points of $\{y_n\}$ and $\{z_n\}$: -1 and 1.

For \limsup and \liminf , we know that \limsup is the \sup of the set of \liminf points and that \liminf is the \inf of the set of the \liminf points. So the \limsup is 1 and the \liminf is -1.

Problem. If a bounded sequence is the sum of a monotone increasing and a monotone decreasing sequence $(x_n = y_n + z_n \text{ where } \{y_n\} \text{ is monotone increasing and } \{z_n\} \text{ is monotone decreasing), does it follow that the sequence converges? What if <math>\{y_n\}$ and $\{z_n\}$ are bounded?

Proof. Suppose we have a monotone increasing sequence $\{y_n\}$ and a monotone decreasing sequence $\{z_n\}$. Is their bounded sum $\{x_n\} = \{y_n + z_n\}$ necessarily convergent? No. Consider such sequences $\{y_n\} = 1, 2, 2, 3, 3, 4, 4, \ldots$ and $\{z_n\} = -1, -1, -2, -2, -3, -3, -4, \ldots$ with sum $\{x_n\} = 0, 1, 0, 1, 0, 1, 0, \ldots$ which has no limit.

If we require that $\{y_n\}$ and $\{z_n\}$ are bounded, then we can claim that $\{x_n\}$ converges. This is because Theorem 3.1.2 says that any bounded, monotone increasing sequence converges (and there is an analogous result for bounded, monotone decreasing sequences). So $\{y_n\}$ and $\{z_n\}$ converge and $\{x_n\} = \{y_n + z_n\}$ is just the sum of two converging sequences, so $\{x_n\}$ must also converge.

Problem. Prove $\sup(A \cup B) \ge \sup A$ and $\sup(A \cap B) \le \sup A$.

Proof. We begin by proving that $\sup(A \cup B) \ge \sup A$. To this end, suppose that the opposite were true: that $\sup(A \cup B) < \sup A$. By definition of \sup , we know $\sup A = x$ where x is the smallest extended real number satisfying $a \le x$ for all $a \in A$. We also know $\sup(A \cup B) = z$ where z is the smallest extended real number satisfying $a \le z$ for all $a \in A$ and $b \le z$ for all $b \in B$. From this, we conclude that $\sup(A \cup B) < \sup A \iff z < x$. We also know $a \le z$ for all a, so it must be true that $a \le z < x$ for all a. But we have just showed that x is not the smallest extended real number satisfying $a \le x$ for all a, a contradiction! So it must be true that $\sup(A \cup B) \ge \sup A$.

Now we show that $\sup(A\cap B)\leq \sup A$. Suppose that $\sup(A\cap B)>\sup A$. By definition of \sup , we know $\sup(A\cap B)=x$ where x is the smallest extended real number satisfying $a\leq x$ for all $a\in A$. We also know that $\sup(A\cap B)=z$ where z is the smallest extended real number satisfying $c\leq z$ for all $c\in C=A\cap B$. Then $\sup(A\cap B)>\sup A\iff z>x$. We know that $x\geq a$ and that every $c\in A$ (for $c\in A\cap B\iff c\in A\land c\in B$), so we can conclude that $z>x\geq a\geq c$. But then z is not the smallest extended real number satisfying $z\geq c$ (for x is strictly less than z). so we have reached a contradiction and it must be true that $\sup(A\cap B)\leq \sup A$.

Problem. Is every subsequence of a subsequence of a subsequence also a subsequence of the sequence?

Proof. Given a sequence $\{x_n\}$ with a subsequence $\{x'_n\}$ we must show that any $\{x''_n\}$ (a subsequence of $\{x'_n\}$) is also a subsequence of $\{x_n\}$. We know every element of $\{x'_n\}$ is an element of $\{x_n\}$ since $\{x'_n\}$ is obtained by crossing off elements of $\{x_n\}$. We also know that $\{x''_n\}$ is obtained by crossing off elements of $\{x'_n\}$. Then, we can obtain $\{x''_n\}$ by crossing off every element of $\{x_n\}$ that should not be in $\{x''_n\}$ and that should not be in $\{x''_n\}$. Therefore, $\{x''_n\}$ must also be a subsequence of $\{x_n\}$.

Problem. Can there exist a sequence whose set of limit points is exactly 1, 1/2, 1/3, ...?

Proof. There is no sequence whose set of limit points is exactly $1, 1/2, 1/3, \ldots$. We prove this with contradiction. Suppose x_1, x_2, x_3, \ldots is a sequence whose limit points are exactly $1, 1/2, 1/3, \ldots$. A limit point y of x_1, x_2, \ldots must satisfy the following: for all 1/n and m there must exist some $j \ge m$ such that $|y-x_j| < 1/n$. For the sake of contradiction, we assumed that any 1/a (for $a \in \mathbb{N}$) is a limit point of x_1, x_2, \ldots . Then there must exist an infinite number of terms less than 1/a for any a, which is equivalent to saying that 0 is a limit point of x_1, x_2, \ldots . But this is a contradiction for we assumed that the limit points were $1, 1/2, 1/3, \ldots$, thus there can be no sequence whose limit points are exactly $1, 1/2, 1/3, \ldots$