GigaDevice Semiconductor Inc.

GD32E507V-START 评估板 用户指南 V1.0

目录

目	录		1
图			3
表			4
1.	简介	·	5
2.	功能	长引脚分配	5
3.	ίζ]指南	5
4.		+设计概述	
	اکر 4.1.	供电电源	
	4.2.	启动方式选择	
	4.3.	LED 指示灯	6
	4.4.	按键	7
	4.5.	USART	7
	4.6.	USB	8
	4.7.	Extension	8
	4.8.	GD-Link	
	4.9.	MCU	
5.		呈使用指南	
	5.1.	GPIO 流水灯	
	5.1.		
	5.1.	2. DEMO 执行结果	. 10
	5.2.	GPIO 按键轮询模式	. 10
	5.2.	1. DEMO 目的	. 10
	5.2.	2. DEMO 执行结果	. 10
	5.3.	EXTI 按键中断模式	. 11
	5.3.		
	5.3.	2. DEMO 执行结果	11
	5.4.	串口中断收发	. 11
	5.4.		
	5.4.		
	5.5.	TIMER 和按键触发外部中断	12
	5.5.		
	5.5.		

GigaDo	evice		GD32E507V-START
5.6	S. USB	MSC 设备	12
5	5.6.1.	DEMO 目的	12
5	5.6.2.	DEMO 执行结果	13
5.7	. USB	HID 主机	13
5	5.7.1.	DEMO 目的	13
5	5.7.2.	DEMO 执行结果	13
6. 片	饭本历史		14

图

图	4-1.	供电电源原理图	6
		启动方式选择原理图	
		LED 功能原理图	
		按键功能原理图	
		USART 原理图	
图	4-6.	USB 原理图	8
图	4-7.	Extension 原理图	8
图	4-8.	GD-Link 原理图	9
图	4-10). MCU 原理图	9

表

表 2-1.	引脚分配	5
表 6-1.	版本历史1	4

1. 简介

GD32E507V-START 开发板使用 GD32E507VET6 作为主控制器。开发板使用 GD-Link Mini USB 接口提供 5V 电源。提供包括扩展引脚在内的及 Reset, Boot, K2-User Key, LED, USB, USART 转 USB 接口等外设资源。更多关于开发板的资料可以查看 GD32E507V-START-Rev1.0 原理图。

2. 功能引脚分配

表 4.1-1. 引脚分配

功能	引脚	描述
LED	PC6	LED1
RESET		K1-Reset
KEY	PA0	User Key
USART	PB6	USART0_TX
USAKT	PB7	USART0_RX
	PA9	USB_VBUS
USB	PA11	USB_DM
USB	PA12	USB_DP
	PD9	USB 上拉控制

3. 入门指南

开发板使用 GD-Link Mini USB 提供 5V 电源。下载程序到开发板需要使用 GD-Link 工具,在选择了正确的启动方式并且上电后,LEDPWR 将被点亮,表明开发板供电正常。

所有例程提供了 Keil 和 IAR 两个版本,其中 Keil 版的工程是基于 Keil MDK-ARM 5.26 uVision5 创建的, IAR 版的工程是基于 IAR Embedded Workbench for ARM 8.32.1 创建的。在使用过程中有如下几点需要注意:

- 1、如果使用 Keil uVision5 打开工程,安装 GigaDevice.GD32E50x_DFP.1.3.0.pack,以加载相关文件。
- 2、如果使用 IAR 打开工程,安装 IAR_GD32F50x_ADDON_1.3.0.exe,以加载相关文件。

4. 硬件设计概述

4.1. 供电电源

图4-1. 供电电源原理图

4.2. 启动方式选择

图4-2. 启动方式选择原理图

4.3. LED 指示灯

图4-3. LED功能原理图

4.4. 按键

图4-4. 按键功能原理图

4.5. USART

图4-5. USART原理图

4.6. USB

图4-6. USB原理图

4.7. Extension

图4-7. Extension原理图

4.8. GD-Link

图4-8. GD-Link原理图

4.9. MCU

图4-9. MCU原理图

5. 例程使用指南

5.1. GPIO 流水灯

5.1.1. DEMO 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习使用 GPIO 控制 LED
- 学习使用 SysTick 产生 1ms 的延时

GD32E507V-START-V1.0 开发板上有 2 个按键和 1 个 LED。这些按键是 User Key 和 Reset Key, 所有 LED 通过 GPIO 控制。

这个例程将讲述怎么点亮这些 LED。

5.1.2. **DEMO** 执行结果

下载程序<01_GPIO_Running_LED>到开发板上,LED将被循环点亮。

5.2. GPIO 按键轮询模式

5.2.1. DEMO 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习使用 GPIO 控制 LED 和按键
- 学习使用 SysTick 产生 1ms 的延时

GD32E507V-START-V1.0 开发板上有 2 个用户按键和 1 个 LED。这些按键是 User Key 和 Reset Key,所有 LED 通过 GPIO 控制。

这个例程讲述如何使用按键 User Key 控制 LED1。当按下 User Key,将检测 IO 端口的输入值,如果输入为低电平,将等待延时 100ms。之后,再次检测 IO 端口的输入状态。如果输入仍然为低电平,表明按键成功按下,翻转 LED1 的输出状态。

5.2.2. DEMO 执行结果

下载程序<02_GPIO_Key_Polling_mode>到开发板上,按下 User Key, LED1 将会点亮,再次按下用 User Key, LED1 将会熄灭。

5.3. EXTI 按键中断模式

5.3.1. **DEMO** 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习使用 GPIO 控制 LED 和按键
- 学习使用 EXTI 产生外部中断

GD32E507V-START-V1.0 开发板有 2 个按键和 1 个 LED。这些按键是 User Key 和 Reset Key。LED 可通过 GPIO 控制。

这个例程讲述如何使用 EXTI 外部中断线控制 LED1。当按下 User Key 按键,将产生一个外部中断。在中断服务函数中,应用程序翻转 LED1 的输出状态。

5.3.2. DEMO 执行结果

下载程序< 03_EXTI_Key_Interrupt_mode >到开发板, LED1 亮灭一次用于测试。按下 User Key 按键, LED1 将会点亮, 再次按下 User Key 按键, LED1 将会熄灭。

5.4. 串口中断收发

5.4.1. DEMO 目的

这个例程包括了 GD32 MCU 的以下功能:

■ 学习使用串口发送和接收中断与超级终端之间的通信

5.4.2. DEMO 执行结果

下载程序< 04_USART_HyperTerminal_Interrupt >到开发板,将串口线连到开发板的 USART 上。首先,所有灯亮灭两次用于测试。然后 USART 将输出数组 tx_buffer 的内容(从 0x00 到 0xFF)到支持 hex 格式的超级终端并等待接收由超级终端发送的 BUFFER_SIZE 个字节的数据。MCU 将接收到的超级终端发来的数据存放在数组 rx_buffer 中。在发送和接收完成后,将比较 tx_buffer 和 rx_buffer 的值,如果结果相同,LED1 闪烁;如果结果不相同,LED1 一直亮。

超级终端输出的信息如下图所示:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

5.5. TIMER 和按键触发外部中断

5.5.1. **DEMO** 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习使用 GPIO 控制 LED 和按键
- 学习使用 EXTI 产生外部中断
- 学习使用 TIMER 产生 PWM

GD32E507V-START-V1.0 开发板上有 2 个用户按键和 1 个 LED。这些按键是 User Key 和 Reset Key,所有 LED 通过 GPIO 控制。

这个例程讲述如何使用 TIMER 生成 PWM 产生外部中断然后在中断服务程序中翻转 LED1 的输出状态,以及如何使用 EXTI 外部中断线控制 LED1。当按下 User 按键,将产生一个外部中断,在中断服务函数中,应用程序翻转 LED1 的输出状态。

5.5.2. **DEMO** 执行结果

下载程序<05_TIMER_Key_EXTI>到开发板,首先,LED1 灯会亮灭一次用于测试,按下 User 按键,LED1 将会点亮,再次按下 User 按键,LED1 将会熄灭。使用杜邦线连接PA6(TIMER2_CH0)和 PA4,LED1 的输出状态会每隔 500ms 翻转一下。

5.6. USB MSC 设备

5.6.1. **DEMO** 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习如何使用 USBHS
- 学习如何实现 USB MSC (大容量存储) 设备

本 DEMO 主要实现了一个 U 盘。U 盘是现今非常普遍的可移动 MSC 类设备。MSC,即 Mass Storage device Class(大容量存储设备类),是一种计算机和移动设备之间的传输协议,它允许一个通用串行总线(USB)设备来访问主机的计算设备,使两者之间进行文件传输,主要包括移动硬盘、移动光驱和 U 盘等。MSC 类设备必须有存储介质,DEMO 中使用了 MCU 的内

部 SRAM 作为存储介质。具体的 MSC 类协议内容请自行查阅与参考其协议标准。

MSC 类设备会使用多种传输协议与命令格式进行通信,所以在实现时需要自行选择合适的协议与命令格式。本 DEMO 中选择 BOT (仅批量传输)协议和所需的 SCSI (小型计算机接口)命令,并和多种 Window 操作系统兼容。具体的 BOT 协议内容与 SCSI 命令规格请自行查阅与参考其协议标准。

5.6.2. **DEMO** 执行结果

下载<06_USB_MSC_Device >到开发板中并运行。当开发板连到 PC 后,可以在计算机的设备管理器中看到通用串行总线控制器里面多出了一个 USB 大容量存储设备,同时看到磁盘驱动器里面多了1个磁盘驱动器,如下所示:

接着,打开资源管理器后会看到里面多了1个磁盘,如下图所示:

此时,写/读/格式化操作可以像其他移动设备一样进行。

5.7. USB HID 主机

5.7.1. **DEMO** 目的

这个例程包括了 GD32 MCU 的以下功能:

- 学习使用 USBHS 模块作为 HID 主机
- 学习 HID 主机和鼠标设备之间的操作
- 学习 HID 主机和键盘设备之间的操作

评估板内部包含 USBHS 模块,该模块可以被使用作为一个 USB 设备、一个 USB 主机或者一个 OTG 设备。该示例主要展示了如何使用 USBHS 作为一个 USB HID 主机和外部 USB HID 设备进行通信。

5.7.2. **DEMO** 执行结果

将<07_USB_HID_Host>代码下载到开发板并运行。

如果一个鼠标被连入,用户将会看到鼠标枚举的信息。首先按下 USER 按键,将会看到插入的设备是鼠标;然后移动鼠标,将会在串口调试助手看到鼠标坐标位置。

如果一个键盘被连入,用户将会看到键盘枚举的信息。首先按下 USER 按键,将会看到插入的设备是键盘;然后按下键盘按键,将会通过串口调试助手显示按键状态。

6. 版本历史

表 5.7-1. 版本历史

版本号	说明	日期
1.0	初稿发布	2020年09月04日

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.