## Introduction to Machine Learning, Spring 2023

## Homework 2

(Due Thurs, Mar. 23 at 11:59pm (CST))

## March 5, 2023

- 1. [15 points] Kernel functions implicitly define some mapping function  $\phi(\cdot)$  that transforms an input instance  $\mathbf{x} \in \mathbb{R}^d$  to high dimensional space Q by giving the form of dot product in Q:  $K(\mathbf{x}_i, \mathbf{x}_j) \equiv \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ 
  - (a) Prove that the kernel is symmetric, i.e.  $K(\mathbf{x}_i, \mathbf{x}_j) = K(\mathbf{x}_j, \mathbf{x}_i)$ . [5 points]
  - (b) Assume we use radial basis kernel function  $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{1}{2}\|\mathbf{x}_i \mathbf{x}_j\|^2\right)$ . Thus there is some implicit unknown mapping function  $\phi(\mathbf{x})$ . Prove that for any two input instances  $\mathbf{x}_i$  and  $\mathbf{x}_j$ , the squared Euclidean distance of their corresponding points in the feature space Q is less than 2, i.e. prove that  $\|\phi(\mathbf{x}_i) \phi(\mathbf{x}_j)\|^2 \le 2.$  [5 points] solution:
  - (c) With the help of a kernel function, SVM attempts to construct a hyper-plane in the feature space Q that maximizes the margin between two classes. The classification decision of any  $\mathbf{x}$  is made on the basis of the sign of

$$\langle \hat{\mathbf{w}}, \phi(\mathbf{x}) \rangle + \hat{w}_0 = \sum_{i \in SV} y_i \alpha_i K(\mathbf{x}_i, \mathbf{x}) + \hat{w}_0 = f(\mathbf{x}; \alpha, \hat{w}_0),$$

where  $\hat{\mathbf{w}}$  and  $\hat{w}_0$  are parameters for the classification hyper-plane in the feature space Q, SV is the set of support vectors, and  $\alpha_i$  is the coefficient for the *i*-th support vector. Again we use the radial basis kernel function. Assume that the training instances are linearly separable in the feature space Q, and assume that the SVM finds a margin that perfectly separates the points.

If we choose a test point  $\mathbf{x}_{far}$  which is far away from any training instance  $\mathbf{x}_i$  (distance here is measured in the original space  $\mathbb{R}^d$ ), prove that  $f(\mathbf{x}_{far}; \alpha, \hat{w}_0) \approx \hat{w}_0$ .[5 points] solution:

2. [15 points] The Poisson distribution is a useful discrete distribution which can be used to model the number of occurrences of something per unit time. For example, in networking, the number of packets to arrive in a given time window is often assumed to follow a Poisson distribution. If X is Poisson distributed, i.e.  $X \sim \text{Poisson}(\lambda)$ , its probability mass function takes the following form:

$$P(X \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{X!}$$

It can be shown that if  $\mathbb{E}(X) = \lambda$ . Assume now we have n i.i.d. data points from Poisson  $(\lambda)$ :  $\mathcal{D} = \{X_1, \ldots, X_n\}$  (For the purpose of this problem, you can only use the knowledge about the Poisson and Gamma distributions provided in this problem.)

- (a) Show that the sample mean  $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$  is the maximum likelihood estimate (MLE) of  $\lambda$  and it is unbiased  $(\mathbb{E}(\hat{\lambda}) = \lambda)$ . [5 points] solution:
- (b) Now let's be Bayesian and put a prior distribution over  $\lambda$ . Assuming that  $\lambda$  follows a Gamma distribution with the parameters  $(\alpha, \beta)$ , its probability density function:

$$p(\lambda \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}$$

where  $\Gamma(\alpha) = (\alpha - 1)$ ! (here we assume  $\alpha$  is a positive integer). Compute the posterior distribution over  $\lambda$ . [5 points] solution:

(c) Derive an analytic expression for the maximum a posterior (MAP) of  $\lambda$  under Gamma  $(\alpha, \beta)$  prior. [5 points] solution:

3. [10 points] using d-separation on figure 1 to discuss the following questions.



Figure 1: A Bayes net

- (a) Are A and B conditionally independent, given D and F? [5 points] solution:
- (b) P(D|CEG) = ?P(D|C)[5 points] solution: