Задача 1. Іноземна компанія, яка реалізує свою продукцію в Україні, збирає статистику щодо причин повернення товарів на склад. Розглядають можливі варіанти: товар пошкоджений в процесі транспортування чи товар бракований. За статистикою відомо, що ймовірність повернення товару через пошкодження при транспортуванні становить 0,05, а ймовірність повернення через брак становить 0,3.

- 1. Обчислити власноруч ймовірність того, що повернений товар був бракований (використати теорему Байєса) та навести обчислення.
- 2. Побудувати **мережу Байєса** за допомогою програми GeNIe 2.0 та встановити зв'язки між вхідними змінними для задачі логістики.
- 3. Встановити ймовірність того, що повернений товар був бракований.

_ _ _ .

Jobgovens I A-Spanobour B- uppeareres C- nouvesgom. P(B) - P(B/A)P(A) - P(B/C) P(C) -2 0,3.0,5 = 0,08.0,5 = 0,8

2) Створення мережі Байєса в програмі GeNle:

Встановлюємо evidence на returned та перевіряємо умовні вірогідності для таблиці state:

Як бачимо, пораховані вручну результати співпали з отриманими в GeNle

Nº2:

Підготовка даних:

- 1. Для початку змінюємо символ, на символ.
- 2. Далі заповнюємо відсутню інформацію нулями
- 3. Сортуємо данні та видаляємо значення які сильно відрізняються від інших.

Наприклад:

ANNUAL	_SALES
	78173000000
	239600000000
	23960000000
	9960100000
	9960100000
	9960100000
	9960100000

4. Далі проводимо дискретизацію кожного стовпчика та виводимо гістограму.

Далі розглянемо ці дії на прикладі стовпчика Balance

1. Выдаляємо данні які виділяються

2. Проводимо дискретизацію та виводимо результати наших дій.

Далі проводимо аналогічні дії стосовно інших стовпчиків.

Розділяємо навчальну та тестову вибірку у співвідношенні 85/15 відповідно.

Будуємо структуру навчальної вибірки:

Навчання параметрів мережі за навчальною вибіркою:

7) Валідація тестової вибірки та аналіз:

Accuracy:

```
LONG_RUN_AVERAGE_PD = 0.850746 (57/67)

s1_below_0 = 0.901961 (46/51)

s2_0_0 = 0.833333 (10/12)

s3_0_0 = -nan(ind) (0/0)

s4_0_up = 0.25 (1/4)
```

Мною було протестовано 4 моделі, однак з таким розподіленням була найбільш точною. Вона не гарантує стопроцентний результат, однак, процент похибки в ній найменший.

№3 Попередня обробка даних:

1. Об'єднжмо класи з однаковими назвами.

2. Видаляємо записи з нулями.

	Gender	Age 🕏	redit_sum	Ситепсу	Term_of_crediting_in day	Interest rate_%	Duration_o	f_stay_in_a_sity	Maritial_status	Children	Job_position	Tenure_with_current_err	nployer Term_of_existence	_of_enterprise Company_type	Number_of_employees_in_kompany	Income_customer Cost	ts_customer goal_credit	Result
	Female	44	2619	0	360	28	120_9999		MARRIED	c2	AS	120_9999	120_9999	OT	100_9999	1138	155 consumer_cred	dit good
•	Female	40	96000	0	5400	13	6_12		MARRIED	c1	AS	24_60	24_60	WB	0_5	8397	0 flat	good
	Female	45	15000	EUR	1080	16	120_9999		SINGLE	c0	TM	60_120	60_120	OT	6_15	5296	430 overhaul	good
	Male	44	8500	EUR	1095	17	120_9999		MARRIED	c1	TM	0_3	0_12	LI	6_15	3000	192 overhaul	good
	Male	30	10980	EUR	1080	13	120_9999		MARRIED	c1	TM	12_18	12_24	WB	6_15	7238	800 overhaul	good
	Male	60	3200	EUR	1800	12	120_9999		MARRIED	c1	TM	24_60	24_60	CA	31_50	2960	810 consumer_cred	dit good
	Female	30	8000	EUR	2520	14	120_9999		MARRIED	c3	SP	120_9999	12_24	WB	31_50	2634	764 overhaul	good

3. Знов видаляємо данні які сильно виділяються від середніх.

Term_of_crediting_	in day Ir
1096	85055
695	35055
622	36880
622	35055
622	35055
585	85420
38	71920
	65700
	65700

Далі проводимо дискретизацію та виводимо результати аналогічно другому завданню.

Аналогічно робимо для інших стовпчиків.

Розділюємо на тренувальну та тестову вибірки у співвідношеніі 90/10

Та проводимо навчання

Результати валідації та аналіз:

Accuracy:

```
Result = 0.939301 (7923/8435)
bad = 0.00197239 (1/507)
good = 0.999243 (7922/7928)
```

Для покращення моделі треба збільшити данні с поганою кредитною історією, бо інакше мережа предиетить майже завжди результат близький до 1.