```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('wine.csv')
```

df.head()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflav
0	14.23	1.71	2.43	15.6	127	2.80	3.06	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	

df.tail()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonf]
173	13.71	5.65	2.45	20.5	95	1.68	0.61	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	

df.isnull().sum()

Alcohol 0 ${\tt Malic_Acid}$ 0 Ash Ash_Alcanity 0 Magnesium 0 ${\sf Total_Phenols}$ Flavanoids 0 Nonflavanoid_Phenols 0 0 Proanthocyanins Color_Intensity 0 Hue OD280 0 Proline 0 Customer_Segment dtype: int64

df.describe()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	${\tt Nonflavanoid_Phenols}$	Proanthocyanins	Colc
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	

df.info()

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 178 entries, 0 to 177
     Data columns (total 14 columns):
                               Non-Null Count Dtype
     # Column
     ---
          -----
                                -----
         Alcohol
      0
                                178 non-null
                                                float64
         Malic_Acid
                               178 non-null
                                                float64
     1
     2
         Ash
                               178 non-null
                                                float64
      3
          Ash_Alcanity
                                178 non-null
                                                float64
      4 Magnesium
                               178 non-null
                                                int64
      5
          Total Phenols
                                178 non-null
                                                float64
      6
         Flavanoids
                                178 non-null
                                                float64
          Nonflavanoid Phenols 178 non-null
                                                float64
      8
                                178 non-null
                                                float64
         Proanthocvanins
                                                float64
          Color_Intensity
                                178 non-null
      10 Hue
                                178 non-null
                                                float64
      11 OD280
                                178 non-null
                                                float64
     12 Proline
                                178 non-null
                                                int64
     13 Customer_Segment
                                178 non-null
                                                int64
     dtypes: float64(11), int64(3)
     memory usage: 19.6 KB
df.dropna(inplace=True)
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_ = sc.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train, X_test, ytrain, ytest = train_test_split(X_,y, test_size = 0.2, random_state = 0)
from sklearn.decomposition import PCA
pca = PCA(n\_components = 2)
X_train = pca.fit_transform(X_train)
X_test = pca.fit_transform(X_test)
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train,ytrain)
              LogisticRegression
     LogisticRegression(random_state=0)
from sklearn.metrics import confusion_matrix, accuracy_score
ypred = classifier.predict(X_test)
cm = confusion_matrix(ytest,ypred)
ac = accuracy_score(ytest,ypred)
print("Confusion Matrix: \n", cm)
print()
print("Accuracy Score: \n", ac)
     Confusion Matrix:
      [[ 0 1 13]
      [ 4 11 1]
      [6 0 0]]
     Accuracy Score:
      0.30555555555556
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, ytrain
X1, X2 = np.meshgrid(np.arange(start = X_{set}[:, 0].min() - 1, stop = X_{set}[:, 0].max() + 1, step = 0.01),
   np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
\verb|plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), \\
   alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
   plt.scatter(X\_set[y\_set == j, 0], X\_set[y\_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j)
plt.title('Logistic Regression (Training set)')
```

```
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend()
plt.show()
```

<ipython-input-20-a276a67f5d16>:10: UserWarning: *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided a plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j)

<ipython-input-21-f8018a0b205a>:10: UserWarning: *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided a plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j)

