Is Sharing Caring?

How CRISPR-Cas systems affect rates of Horizonal Gene Transfer

Siddharth Reed

Golding Lab, McMaster University

February 18, 2022

Background

Figure 1: [1]

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome

Figure 1: [1]

- ▶ Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- Transduction

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- ▶ Transduction
 - Transfer of DNA through phage

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- Transduction
 - Transfer of DNA through phage
- Rates of HGT can be impacted by

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- Transduction
 - Transfer of DNA through phage
- Rates of HGT can be impacted by
 - Amount of exogenous DNA/cell density/phage density

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- Transduction
 - Transfer of DNA through phage
- Rates of HGT can be impacted by
 - Amount of exogenous DNA/cell density/phage density
 - Selective pressures

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- Transduction
 - Transfer of DNA through phage
- Rates of HGT can be impacted by
 - Amount of exogenous DNA/cell density/phage density
 - Selective pressures
 - Metabolic costs

Figure 1: [1]

- Transformation
 - Incorporation of free-floating DNA into the genome
- Conjugation
 - Transfer of DNA through cell-cell connections
- ▶ Transduction
 - Transfer of DNA through phage
- Rates of HGT can be impacted by
 - Amount of exogenous DNA/cell density/phage density
 - Selective pressures
 - Metabolic costs
 - Sequence compatibility

Figure 2: [2]

Useful mathematical abstraction of real world system

Figure 2: [2]

- Useful mathematical abstraction of real world system
- Nodes represent objects

Figure 2: [2]

- Useful mathematical abstraction of real world system
- ▶ Nodes represent objects
- Edges represent relationships

Figure 2: [2]

- Useful mathematical abstraction of real world system
- Nodes represent objects
- Edges represent relationships
- Nodes and edges can have attributes

Figure 2: [2]

- Useful mathematical abstraction of real world system
- Nodes represent objects
- Edges represent relationships
- Nodes and edges can have attributes
- Nodes are OTUs, edges are inferred HGT rates

Adaptive immune system in bacteria

Figure 3: [3]

- Adaptive immune system in bacteria
- $\blacktriangleright \ \, \mathsf{Failed} \ \, \mathsf{``infection''} \, \to \mathsf{spacer} \,\, \mathsf{acquisition}$
 - \rightarrow targeted degradation for next "infection"

- Adaptive immune system in bacteria
- ▶ Failed "infection" → spacer acquisition \rightarrow targeted degradation for next "infection"
- Protects against foreign DNA absorption/integration

- Adaptive immune system in bacteria
- ► Failed "infection" → spacer acquisition \rightarrow targeted degradation for next "infection"
- Protects against foreign DNA absorption/integration
- Requires CRISPR loci + Cas proteins

Figure 3: [3]

- Adaptive immune system in bacteria
- Failed "infection" → spacer acquisition
 → targeted degradation for next
 "infection"
- Protects against foreign DNA absorption/integration
- ▶ Requires CRISPR loci + Cas proteins
- ▶ 45% of bacteria have CRISPR loci (n = 6782) [4]

Do CRISPR Systems Affect Horizontal Gene Transfer?

Yes

▶ Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales

- ▶ Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT

- ▶ Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT

- ▶ Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- ► Contradicted by a former undergraduate thesis student [5]

- Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student [5]
 - Can see inhibitory effects of CRISPR on HGT over short evolutionary time scales

- ▶ Gophna et al. 2015 found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student [5]
 - Can see inhibitory effects of CRISPR on HGT over short evolutionary time scales
 - Higher gene indel rates for CRISPR containing OTUs than non-CRISPR containing outgroups

Fitness Cost Factors

▶ Metabolic maintenance [3]

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]
- ▶ Environmental pressures [7]

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]
- Anti-CRISPR systems [8]

Fitness Cost Factors

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]
- Anti-CRISPR systems [8]
- Prophage abundance [9]

Cost Reduction Strategies

CRISPR Cost Complexity and Curbing It

Fitness Cost Factors

- ▶ Metabolic maintenance [3]
- ▶ Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]
- Anti-CRISPR systems [8]
- Prophage abundance [9]

Cost Reduction Strategies

Selective CRISPR inactivation [3]

CRISPR Cost Complexity and Curbing It

Fitness Cost Factors

- Metabolic maintenance [3]
- Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]
- Anti-CRISPR systems [8]
- Prophage abundance [9]

Cost Reduction Strategies

- Selective CRISPR inactivation [3]
- \triangleright CRISPRs get transferred \implies population level immunity [10]

CRISPR Cost Complexity and Curbing It

Fitness Cost Factors

- Metabolic maintenance [3]
- Off-target effects [6]
- Environmental pressures [7]
- Phage density [8]
- Anti-CRISPR systems [8]
- Prophage abundance [9]

Cost Reduction Strategies

- Selective CRISPR inactivation [3]
- ightharpoonup CRISPRs get transferred \implies population level immunity [10]
- CRISPR can enhance transduction-mediated HGT [9]

My Project

Goals

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRISPR containing OTUs to non-CRISPR containing OTUs.

Goals

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRISPR containing OTUs to non-CRISPR containing OTUs.

Gene Indel Rates vs. Network Statistics

Compare gene Indel rates to node/network statistics for CRISPR containing and non-CRISPR containing OTUs

Markophylo [11]

▶ Input: a presence/absence matrix of gene families + species tree

Markophylo [11]

- ▶ Input: a presence/absence matrix of gene families + species tree
- ▶ Branches are partitioned by the OTU having a CRISPR system

Markophylo [11]

- ▶ Input: a presence/absence matrix of gene families + species tree
- Branches are partitioned by the OTU having a CRISPR system
- Internal branches ignored

Markophylo [11]

- ▶ Input: a presence/absence matrix of gene families + species tree
- Branches are partitioned by the OTU having a CRISPR system
- Internal branches ignored
- ▶ Gene birth-death rates are estimated for each branch partition

Network Sampling

 $\frac{1}{|N_u|}\sum_{uv}^{N_u}w_{uv}$ where N_u is the set of ► Mean Node Degree: nodes incident to u

- ▶ Mean Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- ▶ Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u [12]

- ▶ Mean Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u [12]
- ▶ **Network Assortativity:** $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of *M*. $A \in [-1, 1]$. [13]

- ▶ Mean Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u [12]
- ▶ Network Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1, 1]$. [13]
- Network Modularity: $Q = \frac{1}{2m} \sum_{uv}^{W} [W_{uv} \frac{k_u k_v}{2m}] \delta(u, v)$ where m is the total edge weight, k_u is the degree of u and $\delta(u, v)$ is 1 if u and v both have or do not have CRISPR systems and 0 otherwise. $Q \in [-1, 1]$ [14]

Get Fastas

Results

Example "Consensus" Network

Genus Size Distribution

Mean Node Degree

Gene Indel Rates

Gene Indel Rate Vs. Fraction of CRISPR OTUs

Gene Indel Rate Vs. Fraction of CRISPR OTUs

000000000000

Assortativity Distributions

00000000000

Indel Rate Pair Plot

Moral of the Study

▶ Large variation in HGT rate between genera.

- ▶ Large variation in HGT rate between genera.
- \blacktriangleright CRISPR systems \sim associated with lower HGT rates

- ▶ Large variation in HGT rate between genera.
- lueen CRISPR systems \sim associated with lower HGT rates
 - Prominent exceptions exist

- ▶ Large variation in HGT rate between genera.
- ightharpoonup CRISPR systems \sim associated with lower HGT rates
 - Prominent exceptions exist
 - High mixing between CRISPR and non-CRISPR OTUs

- Large variation in HGT rate between genera.
- ▶ CRISPR systems ~ associated with lower HGT rates
 - Prominent exceptions exist
 - High mixing between CRISPR and non-CRISPR OTUs
- Population level effects of CRISPR systems may decrease HGT rates

- Large variation in HGT rate between genera.
- ▶ CRISPR systems ~ associated with lower HGT rates
 - Prominent exceptions exist
 - High mixing between CRISPR and non-CRISPR OTUs
- Population level effects of CRISPR systems may decrease HGT rates
- ▶ Interplay of CRISPR systems and HGT is complex and warrants further study

▶ Intergenic comparisons: What if we analyze networks with multiple genera e.g. ones that share a microbiome?

- ▶ **Intergenic comparisons:** What if we analyze networks with multiple genera e.g. ones that share a microbiome?
- **Inferring direction:** Inferring direction of transfer \rightarrow more analytic tools available

- ▶ **Intergenic comparisons:** What if we analyze networks with multiple genera e.g. ones that share a microbiome?
- **Inferring direction:** Inferring direction of transfer \rightarrow more analytic tools available
- ► CRISPR Label: binary (presence) → continuous (activity) e.g. array length, transciptomic data, etc.

- ▶ **Intergenic comparisons:** What if we analyze networks with multiple genera e.g. ones that share a microbiome?
- **Inferring direction:** Inferring direction of transfer \rightarrow more analytic tools available
- ► CRISPR Label: binary (presence) → continuous (activity) e.g. array length, transciptomic data, etc.
- ▶ **Gene function analysis:** How are HGT dynamics different for different functional groups?

- ▶ **Intergenic comparisons:** What if we analyze networks with multiple genera e.g. ones that share a microbiome?
- **Inferring direction:** Inferring direction of transfer \rightarrow more analytic tools available
- ► CRISPR Label: binary (presence) → continuous (activity) e.g. array length, transciptomic data, etc.
- ▶ **Gene function analysis:** How are HGT dynamics different for different functional groups?
- ▶ Transfer of CRISPR systems: How do CRISPR systems get transfered around?

Conclusion

Is Sharing Caring?

Conclusion

Is Sharing Caring?

▶ Yes, for researchers

Conclusion

Is Sharing Caring?

- Yes, for researchers
- Jury's still out for bacteria

Thanks

Thank you to

- Dr. G. Brian Golding
- Dr. Ben Evans
- The Golding lab
 - Caitlin Simopoulos
 - Daniella Lato
 - Zachery Dickson
 - Sam Long
 - George Long
 - Lucy Zhang
 - Brianne Laverty
 - Nicole Zhang
- Everyone here for listening

Code Availability

All code written written for this project is available at https://github.com/DJSid dharthVader/Undergrad_Thesis

Bibliography I

- 1. Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Current Opinion in Microbiology 2011; **14**:615–623.
- 2. Bondy JA, Murty USR. Graph theory with applications. Wiley; 2002.
- 3. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-cas immune system: Biology, mechanisms and applications. Biochimie 2015; **117**:119–128.
- 4. Grissa, I. and Drevet, C. and Couvin, D. CRISPRdb. 2017.
- 5. Zambelis A, Dang UJ, Golding GB. Effects of CRISPR-cas system presence on lateral gene transfer rates in bacteria. 2015.

Bibliography II

- 6. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: Gene regulation or autoimmunity? Trends in Genetics 2010: **26**:335–340.
- 7. Dzidic S, Bedeković V. Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. Acta pharmacologica Sinica 2003; **24**:519—526.
- 8. Bondy-Denomy J, Davidson AR. To acquire or resist: the complex biological effects of CRISPR-cas systems. Trends Microbio 2014; **22**:218–25.
- 9. Watson BNJ, Staals RHJ, Fineran PC. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction. Bondy-Denomy J. Gilmore MS. eds. mBio 2018; 9.

Bibliography III

- 10. Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: Evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution 2006; **62**:718–729.
- 11. Dang UJ, Golding GB. Markophylo: Markov chain analysis on phylogenetic trees. *Bioinformatics* 2016; **32**:130–132.
- 12. Onnela JP, Saramaki J, Kertesz J, Kaski K. Intensity and coherence of motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 2005; **71**:065103.
- 13. Newman ME. Assortative mixing in networks. Phys Rev Lett 2002; **89**:208701.

Bibliography IV

14. Newman ME. Analysis of weighted networks. Phys Rev E Stat Nonlin Soft Matter Phys 2004; **70**:056131.