Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Santa Fe

Modelación de sistemas multiagentes con gráficas computacionales TC2008B, Grupo 302

Octavio Navarro Hinojosa Gilberto Echeverría Furió

Documentación Final

Equipo #2 | Integrantes:

Salvador Federico Milanés Braniff	A01029956
Manuel Barrera López Portillo	A01570669
Miguel Ángel Bustamante Perez	A01781583
Juan Muniain Otero	A01781341

Presentación del equipo

Manuel Barrera Lopez Portillo

Fortalezas	Áreas de Oportunidades	Expectativas
Creación de documentaciónAnálisis de problema	- Desarrollo en unity	- Entender el desarrollo de una inteligencia artificial.

Miguel Angel Bustamante Perez

Fortalezas	Áreas de Oportunidades	Expectativas
 Creación de modelos en Blender. Generación de ideas para la lógica del programa. 	- Desarrollo de animaciones en Blender.	- Lograr comprender las bases de inteligencia artificial utilizando el modelado de agentes.

Juan Muniain Otero

Fortalezas	Áreas de Oportunidades	Expectativas
 Ideación de lógica y diseño del programa Administración de equipos de trabajo y gestión de requerimientos 	 Planeación de la integración de código y arte Estimar mejor las fechas de entrega 	- Lograr entender cómo se integran conceptos matemáticos e inteligencia artificial, y aprender a utilizar las herramientas propuestas

Salvador Federico Milanes Braniff

Fortalezas	Áreas de Oportunidades	Expectativas

Repositorio de GitHub: https://github.com/munij3/Reto-TC2008B

Trello para el manejo de actividades y requerimientos:

https://trello.com/b/hyh2nYDJ/tc2008b-traffic-simulator

Descripción de Proyecto

En términos más generales es el desarrollo de una simulación de una ciudad con carros. Estos tienen la capacidad de saber a dónde dirigirse dentro de una 'ciudad' y se pueden mover en las calles delimitadas en un grid. Estos también saben cuándo parar y reanudar su movimiento en la ciudad.

Se necesita utilizar dos herramientas de software para simular esta ciudad. Una 'inteligencia artificial' y un juego simple de steam que proyecta las interacciones de la inteligencia artificial.

Elementos críticos de la inteligencia artificial.

La inteligencia artificial de esta modelación tiene varios tipos de agentes. Se pueden dividir en lo general en 2 campos de agentes: Campo de Agente ciudad y Agente carro.

Requerimientos Funcionales

Requerimiento	Definición
Generar una representación visual de la ciudad.	 Visualización en Unity. Esto consiste en un archivo de Unity donde se vea la 'ciudad' en 3D. Esta visualización tiene que ser interactiva. Con un código externo. Se deben de diferenciar con prefabs cada agente individual Visualización en python. Utilizar 'mesa' para ver

	el comportamiento de los agentes.
Utilizar mesa para simular los aspectos de una ciudad.	 Definición de agentes: Agentes se refiere a programas independientes de python que simulan un comportamiento. Se necesitan Agentes estáticos para elementos como: Calles, Edificios Agentes dinámicos:Carros, semáforos y objetivos. Agente carro no tiene omnisciencia y omnipotencia.

No funcionales

Requerimiento	Definición
Visualmente Atractivo	Los prefabs de unity tienen que tener un diseño atractivo y que cumplan con simbolizar lo que cada uno representan

Agentes de la ciudad Ciudad:

La ciudad está dividida en múltiples agentes que interactúan con el agente carro:

- Agente Calle
- Agente Edificio
- Agente Semáforo
- Agente Objetivo
- Agente Carro

Dentro del Grid Ciudad se generan de manera simultánea y estática el Agente Calle, Edificio, Semaforo y Objetivo. Estos dentro del grid van a tener

diferentes acciones. Desde permanecer estáticos y no interactúan con el ambiente, o solo sirven para darle indicaciones al agente Carro.

Agente	Descripción de Funcionalidad
Agente Calle	Llena el grid un área en el cual un carro puede conducir.
	Si el frente y el trasero del del agente Carro están rodeados por agente calle, se puede mover.
	Tiene la propiedad de dirección que indica donde puede moverse el agente carro.
Agente Edificio	Llena un área de grid en donde el agente carro no puede conducir.
	Si el agente carro quiere moverse a un espacio que es ocupado por un agente edificio, el agente carro tiene que cambiar su dirección.
Agente Semáforo	Estos ayudan a manejar el tráfico dentro de la ciudad.
	El espacio donde esté un semáforo tendrá dos estados: 'Verde' y 'rojo'
	Estado Verde: Permite la circulación del Agente Carro dentro del área de semáforo.
	Estado Rojo: Previene la circulación de Agente Carro dentro del área del semáforo
Agente Objetivo	Espacio final de la ruta de un agente carro.
	Aquí un agente carro termina su trayecto.

Agente Carro

Este es el agente que traversa desde su punto de origen hasta un Agente objetivo. Este tiene cuatro acciones: Moverse adelante, Girar a la izquierda, girar a la derecha y detenerse.

Moverse: Sigue el Flujo de agente Calle

Girar a la derecha: La orientación del frente del carro cambia por 90 grados positivos.

Girar a la izquierda: La orientación del frente del carro cambia por 90 grados negativos.

Detenerse: next step es en siguiente

Diagrama de Clases

Diagrama de jerarquía

Diagrama de Actividades

Interaccion de Agentes

