Homework #4

MEMS 0071 - Introduction to Fluid Mechanics

Assigned: September 28^{th} , 2019 Due: October 4^{th} , 2019

Problem #1

A coal barge that is 15 [m] wide (2L), that has a draft of 4 [m] (H), is loaded such that the center of gravity is 2 [m] above the waterline and 7.5 [m] (L) from either side. Assuming a unit length of the barge, determine if this configuration stable. Additionally, determine at what angle of θ that the barge become unstable.

Problem #2

Fluid is flowing through a control surface with a velocity $\vec{V} = \langle 8, 1, -2 \rangle$ [m/s]. The control surface is described via the cross product of the following two vectors: $\vec{a} = \langle 0.5, 10, -1 \rangle$ [m] and $\vec{b} = \langle 0.75, 2, 6 \rangle$ [m]. Determine the normal component of velocity with respect to the control surface in terms of its Cartesian components and magnitude.

Problem #3

A home, with a footprint of 10 [m] by 10 [m], and roof with an angle θ =35°, is experiencing heavy rainfall. If the rain is falling at a rate of 50 [mm/hr], and the single downspout has a cross-sectional flow area of 3,750 [mm²], determine:

- a) The velocity of the water exiting the down-spout;
- b) The volumetric flow rate through the down-spout.

Problem #4

A circular balloon is being filled through the inlet, which has a cross-sectional area denoted as A_1 . The air enters the balloon with a velocity V_1 and a density ρ_1 . If the balloon radius is denoted as R, and the density within is taken as an average value ρ_{avg} , construct an expression for the time rate of change of mass within the balloon.

Problem #5

Water enters the tank with diameter d from \bigcirc 1 and \bigcirc 3 and exits at \bigcirc 2. The cross-sectional area of pipe \bigcirc 1 is 50 [mm²], that of pipe \bigcirc 2 is 70 [mm²]. The volumetric flow rate into the system through pipe \bigcirc 3 is 0.01 [m³/s]. Determine the following:

- a) An anlytical expression for the change of water height, dh/dt in terms of the volumetric flow rates $\dot{\forall}_1$, $\dot{\forall}_2$ and $\dot{\forall}_3$;
- b) Once the system has reached steady-state, determine the exit velocity of the fluid at \bigcirc given $V_1=3$ [m/s] and $\dot{\forall}_3=0.01$ [m³/s];
- c) The time it takes to reach steady-state, assuming the exit velocity obeys the Toricelli equation $(V = \sqrt{2gh})$

Problem #6

Water is entering a tank with diameter d_t with a constant mass flow rate of \dot{m} . The tank has an opening at the bottom with diameter d_o . Assume the exit velocity is $\sqrt{2gh}$. If the tank is empty, determine:

- a) The maximum height the water can reach in the tank;
- b) A relation for the water height, z, as a function of time;
- c) The time it takes for the tank to reach steady-state.

Problem #7

Calculate the Reynolds number for the following scenarios and determine if the flow is laminar, transitional or turbulent:

- a) Air (ρ =1.225 [kg/m³], μ =16.82 [μ Pa-s]) flowing through a rectangular duct of 25 [cm] by 40 [cm] at a velocity of 1.5 [m/s]
- b) Water (ρ =998 [kg/m³], μ = 8.90·10⁻⁴ [Pa-s]) flowing through a cylindrical spillway tunnel with a diameter of 15.24 [m] at 53.5 [m/s]
- c) A Boeing 757 flying at 10,000 [m] through air (ρ =0.4135 [kg/m³], μ =1.458·10⁻⁵ [Pa-s]) at a speed of 858 [km/hr] where the chord length of the wing is taken as 8.20 [m] at the fuselage and 1.73 [m] at the wingtip