MeteoShield Manual

Contents

1 Document revision history	3
2. Introduction	4
3. Electrical Specifications & darba režimi	5
Sensor Performance	6
Temperature Sensor	6
Humidity	6
Light	6
CO2	7
Pressure	7
Sound Level	8
General Purpose Outputs (GPO)	8
Example GPO	9
OLED	9
4. Pin Description	10
5. Serial Host Programming	11
5.1 Communication Interface	11
5.2 Frame Layout	12
5.3 Commands	12
Dimensions	13
Important Notices	14
ESD Precautions	14
Warranty	14
Deferences	15

1 DOCUMENT REVISION HISTORY

Table 1.

REVISION	DATE	DESCRIPTION
V0.01	2014.05.18	First incomplete revision
V0.02	2014.07.31	In progress

2. INTRODUCTION

3. ELECTRICAL SPECIFICATIONS

		Min	Type	Max	units
Storage temerature		-20	-	-85	°C
temerature					
Usage Temperature					
Temperature					
	· · · · · · · · · · · · · · · · · · ·				

SENSOR PERFORMANCE

Temperature Sensor

Table 1. Temperature sensor parameters¹

Parameter	Symbole	Test Condition	Min	Type	Max	Unit
Operatio Range		I and Y Grade	-40	-	+125	
		G Grade	-40	-	+85	0.0
Accuracy ²		$-10^{\circ}\text{C} \le t_{A} \le 85^{\circ}\text{C}$	1	±0.3	±0.4	°C
		-40 °C $\leq t_A \leq 125$ °C	1	-	±0.6	
Repetability/Noise		14-bit resolution	-	0.01	-	°C RM
Response Time ³	T _{63%}	On MS board	1	> 6	-	S
Long Term Stability			-	≤ 0.01	-	°C/Yr

Notes:

- Values are given for Si7020 temperature sensor, not for all MeteoShield board;
- 2. 14b measurement resolution (default).
- 3. Time to reach 63% of final value in response to a step change in temperature. Actual response time will vary dependent on system thermal mass and air-flow.

Humidity

Table 2. Humidity sensor parameters¹

Parameter	Symbole	Test Condition	Min	Тур	Max	Unit
Operating Range ²		Non-condensing	0	-	100	%RH
Accuracy ^{3,4}		0-80% RH	-	±3	±4	%RH
		80-100% RH		±3	±6.5	
Repeatibility/Noise		12-bit resolution	-	0.025	-	%RH RMS
Response Time ⁵	T _{63%}	1m/s airflow	1	18	1	S
Drift vs. Temperature			-	0.05	-	%RH/°C
Hysteresis			-	±1	-	% RH
Long Term Stability			-	≤ 0.25	-	%RH/yr

Notes:

- Values are given for Si7020 temperature sensor, not for all MeteoShield board;
- Recommended humidity operating range is 20% to 80% RH (non-condensing) over -10 °C to 60 °C. Prolonged operation beyond these ranges may result in a shift of sensor reading, with slow recovery time.
- Excludes hysteresis, long term drift, and certain other factors and is applicable to non-condensing environments only. See section "4.1. Relative Humidity Sensor Accuracy" for more details.

 Drift due to aging effects at typical room conditions of 30 °C and 30% to 50% RH. May be impacted by dust, vaporized solvents or other
- contaminants, e.g., out-gassing tapes, adhesives, packaging materials, etc. See section "4.7. Long Term Drift/Aging"
- Response time to a step change in RH. Time for the RH output to change by 63% of the total RH change

Light

Table 3. Light sensor parameters

CO2

Table 4. CO2 sensor parameters

Parameter	Symbole	Test Condition	Min	Тур	Max	Unit
Oerating Range			0	-	2000	ppm
Accuracy ¹			ı	$< \pm 50^2$	1	ppm
Response Time	T ₉₀		ı	< 195	1	S
Temperature		0 50°C	-	2	-	ppm
dependence		(30 122 °C)				CO ₂ /°C
Long term stability			1	20	1	ppm/yr
Measuring interval			ı	15	1	S
Peak current			-	500	-	mA (0.05s)

Notes:

Pressure

Table 5. Pressure sensor parameters

Parameter	Symbole	Test Condition	Min	Тур	Max	Unit
Oerating Range		Calibrated Range	50	_	110	kPa
			20	_	110	
Pressure Reading Noise			-	19	-	kPa
Pressure Absolute Accuracy		50 to 110 kPa over 0°C to 50°C	-0.4	-	0.4	kPa
		50 to 11 kPa over -10°C to 70°C	-	±0.05	-	
Pressure relative Accuracy		Relative accuracy during Pressure change between 70 to 110 kPa at any constant temperature between -10°C to 50°C		±0.05		kPa
		Relative accuracy during changing temperature between -10°C to 50°C at any constant pressure between 50 kPa to 110 kPa		±0.1		
Long Term Drift		After a period of 1 year		±0.1		kPa
Notes:	1				1	

At 25 °C (77°F) and 1013 mbar; +3% of measuring value; 1.

Sound Level

Table 6. Pressure sensor parameters

Parameter	Symbole	Test Condition	Min	Тур	Max	Unit
Operating Range			30	-	120	SLdB
Accuracy			-	±5	-	SLdB
Time-weightening				1		S
Notes:						
1.						

General Purpose Outputs (GPO)

MeteoShield has additional one connector X3. Pins from 1 to 6 are open collector (NPN transistor) outputs, four of them are related to physical measuring parameters (table 7.), two of them are user controllable and two are power supply +5 VDC.

Image TODO

Table 7. Connector X3 pinout

Pin Nr.	Description	Related to
1	OC^1	Temerature
2	OC^1	Humidity
3	OC^1	Light
4	OC^1	CO2
5	OC^1	User
6	OC^1	User
7	+5 VDC	Supply
8	+5 VDC	Supply
Note:	N Open Colector type outputs.	-

Example GPO

OLED

Example OLED

4. PIN DESCRIPTION

5. SERIAL HOST PROGRAMMING

5.1 Communication Interface

A host communicating to MeteoShield is done via a serial port (UART), it must use the following settings.

Table. TODO

Parameter	Value
Baud rate	115200 bits/s
Parity	No
Data bits	8
Stop bits	1

All transfered bytes are in ASCII. The least significant bit (LSB) of eatch byte must be transmitted first on the physical interface.

Data flow from/to MeteoShiel is switchet with two jumpers. Image [TODO] figure \mathbf{A} show configuration MeteoShield is connected to $\mathbf{X2}$ connector pins $\mathbf{0}$ (RX) and $\mathbf{1}$ (TX) – arduino boards compatible. Figure \mathbf{B} shows configuration MeteoShield is connected to USB-UART bridge (CP210X) $^{\triangle}$.

5.2 Frame Layout

The host and the MeteoShield communicates via simple protocol with one frame type. Each frame contains Start {#} character, command (CMD), variable (VAR), code (CODE), value (VAL), seperators {.} {:} and end of frame {\r} {\n} characters.

Note:

Curly brackets-> {} is used for visual separation of ONE parameter, ONE character. Physically they do not appear in the frame.

Example:

 $\{CMD\}$ it means that there is only one character – for excample 'S' – ASCII character with decimal value 83 which means *SET* something.

$$\#.\{CMD\}.\{VAR\}.\{CODE\}:\{VAL\}\r$$

5.3 Commands

DIMENSIONS

All dimensions in [mm]

IMPORTANT NOTICES

Warning, Personal Injury

Do not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.

ESD Precautions

Warranty

REFERENCES

[A] –	MeteoShield uses SiliconLabs USB-to-UART bridge CP210x. Drivers can be found:
	<u>link.</u>