Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

ong	ratulations! You passed!
~	1 / 1 points
	s the "cache" used for in our implementation of forward propagation and backwo
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
	It is used to keep track of the hyperparameters that we are searching over, to sup computation.
	It is used to cache the intermediate values of the cost function during training.
0	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
Corr Cor the	corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
Corr Cor the	corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. ect rect, the "cache" records values from the forward propagation units and sends it backward propagation units because it is needed to compute the chain rule
Corr Cor the deri	corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. ect rect, the "cache" records values from the forward propagation units and sends it backward propagation units because it is needed to compute the chain rule vatives.
Corr Cor the deri	corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. ect rect, the "cache" records values from the forward propagation units and sends it backward propagation units because it is needed to compute the chain rule vatives. 1/1 points
Corr Cor the deri	corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. Sect rect, the "cache" records values from the forward propagation units and sends it backward propagation units because it is needed to compute the chain rule vatives. 1/1 points g the following, which ones are "hyperparameters"? (Check all that apply.)

ì		- [7]
	bias vectors	D[°]

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

un-s	elected is corfect	10/10 p
	size of the hidden layers $m{n}^{[m{l}]}$	
Corre	ect	
	number of iterations	
Corre	ect	
	activation values $oldsymbol{a^{[l]}}$	
Un-s	elected is correct	
	number of layers $oldsymbol{L}$ in the neural network	
Corre	ect	
3.	1/1 points	
Which	of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
<u> </u>		
Corre	ect	
	The earlier layers of a neural network are typically computing more complex fee of the input than the deeper layers.	atures
~	1 / 1 points	
	ization allows you to compute forward propagation in an $m{L}$ -layer neural network licit for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/F	
	True	
0	False	
Corre	ect	

https://www.coursera.org/learn/neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},...)$ in Key concepts on Deep Neural Networks between the layers: $(a^{[l]}=g^{[l]}(z^{[l]}))$ points (100%) Quiz, 10 questions $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},...)$.

```
/
```

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

1/1 points

6.

False False

1/1 points

8.

There are certain functions with the following properties:

Key concepts on the pulled tall Networks work circuit, you will need a large network of 100%

(where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

Correct
False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $oxed{W}^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $oldsymbol{b^{[1]}}$ will have shape (4, 1)

Correc

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $oxed{W}^{[1]}$ will have shape (3, 4)

Un-selected is correct

Key concepts who Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Un-sel	actad.	:-		
un-se	ectea	15	cor	rect

$oxed{W^{[2]}}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $oldsymbol{W}^{[l]}$ is $oldsymbol{(n^{[l]}, n^{[l-1]})}$.
$oldsymbol{b^{[2]}}$ will have shape (1, 1)
Un-selected is correct
$oxed{W^{[2]}}$ will have shape (3, 1)
Un-selected is correct
$oldsymbol{b^{[2]}}$ will have shape (3, 1)
Yes. More generally, the shape of $\pmb{b^{[l]}}$ is $(\pmb{n^{[l]}}, \pmb{1})$.
$m{W}^{[3]}$ will have shape (3, 1)
Un-selected is correct
$m{b}^{[3]}$ will have shape (1, 1)
Yes. More generally, the shape of $\pmb{b^{[l]}}$ is $(\pmb{n^{[l]}}, \pmb{1})$.
$W^{[3]}$ will have shape (1, 3)
Yes. More generally, the shape of $oldsymbol{W}^{[l]}$ is $(oldsymbol{n}^{[l]}, oldsymbol{n}^{[l-1]})$.
$m{b}^{[3]}$ will have shape (3, 1)
Un-selected is correct

1/1 points