13 décembre 2018 GEL 1002

Solutionnaire EXAMEN 2

Exercice I : Mesures à l'oscilloscope

1) On doit mesurer l'amplitude de chaque signal pour en déduire le module de l'impédance :

$$V = 5 \cdot 25 = 125 V$$

 $I = 6 \cdot 1.5 = 9 A$
 $Z = \frac{V}{I} = 13.89 \Omega$

On mesure ensuite le retard entre le courant et la tension ainsi que la période des signaux :

$$\Delta t = 2 \cdot 0.003 = 6 \text{ ms}$$

 $T = 9 \cdot 0.003 = 27 \text{ ms}$

Le déphasage entre le courant et la tension est donc :

$$\varphi = \frac{\Delta t}{T} \cdot 360^{\circ} = 80^{\circ}$$

On remarque que le courant est en avance sur la tension. L'impédance a donc une réactance de nature capacitive. Son déphasage est négatif.

$$\overline{Z} = R + jX = Z \cdot \cos \varphi + jZ \cdot \sin \varphi = R - \frac{j}{C\omega} = 2.41 - j13.68 \Omega = 13.89 \Omega \angle -80^{\circ}$$

2) La puissance est dissipée par la résistance :

$$P = R \cdot I_{RMS}^2 = \frac{R}{2} \cdot I_{\text{max}}^2 = 97.6 W$$

3) La valeur de l'impédance lorsque la fréquence devient égale à 20 Hz :

$$\overline{Z} = R - \frac{j}{C \cdot 2\pi f} = 2.41 - j \frac{1}{314 \cdot 10^{-6} \cdot 2\pi f} = 2.41 - j \cdot 25.34 \Omega = 25.45 \Omega \angle -84.6^{\circ}$$

Exercice II: Analyse d'un circuit par la méthode d'inspection (20 pts)

1) On suppose que la fréquence f est nulle.

La tension de chaque générateur correspond à sa tension continue : $V_{g1} = 4V$ $V_{g2} = 2V$

Un condensateur se comporte comme un circuit ouvert à fréquence nulle et une inductance comme un court-circuit. On en déduit

$$I_1 = 0 A$$

$$I_2 = \frac{V_{g1}}{R_3 + R_2} = \frac{4}{200 + 50} = 16 \text{ mA}$$

2) On suppose que la fréquence f est infinie

Un condensateur se comporte comme un court-circuit à fréquence infinie et une inductance comme un circuit ouvert.

Pour les générateurs, on doit considérer les valeurs continues et les composantes alternatives

Remarque : Il n'y a pas de composante continue de courant à rajouter pour la valeur efficace de I_1 (question 1 – branche capacitive)

$$I_{2-CA-RMS} = \frac{V_{g2}}{R_2 + R_3} = \frac{5}{\sqrt{2} \cdot 250} = 14.1 \, mA$$

$$I_{2-RMS} = \sqrt{I_{2-DC}^2 + I_{2-CA-RMS}^2} = \sqrt{16^2 + 14.1^2} = 21.3 \, mA$$

Exercice III: Travail de préparation du laboratoire 8 (15 pts)

1) Si le pont est équilibré, on peut écrire:

$$V_{ab} = 0 \Leftrightarrow V_{ac} = V_{bc}$$

On peut utiliser la règle du diviseur de tension pour trouver les relations entre les impédances

$$\frac{R_x + jL_x\omega}{R_x + jL_x\omega + R_3} = \frac{R_2}{R_2 + \left(R_4 / / \frac{-j}{C\omega}\right)} \quad \Leftrightarrow \quad \left(R_x + jL_x\omega\right) \cdot \left[R_2 + \left(R_4 / / \frac{-j}{C\omega}\right)\right] = \left(R_x + jL_x\omega + R_3\right) \cdot R_2$$

$$\Leftrightarrow (R_x + jL_x\omega) \cdot (R_4 / \frac{-j}{C\omega}) = R_3 \cdot R_2$$

$$\Leftrightarrow (R_x + jL_x\omega) \cdot \left(\frac{R_4}{1 + jR_4C\omega}\right) = R_3 \cdot R_2$$

$$\Leftrightarrow (R_x + jL_x\omega) \cdot R_4 = R_3 \cdot R_2 \cdot (1 + jR_4C\omega)$$

On sépare la partie réelle de la partie imaginaire pour obtenir un système de deux équations à deux inconnues.

$$\begin{cases} R_x \cdot R_4 = R_3 \cdot R_2 \\ R_4 \cdot L_x \omega = R_2 \cdot R_3 \cdot R_4 \cdot C \cdot \omega \end{cases} \Leftrightarrow \begin{cases} R_x = \frac{R_2 \cdot R_3}{R_4} \\ L_x = R_2 \cdot R_3 \cdot C \end{cases}$$

Une méthode équivalente consiste à égaler le produit des impédances diagonalement opposées. La démonstration est plus courte.

$$\left(R_{x}+jL_{x}\omega\right)\cdot\left(R_{4}//\frac{-j}{C\omega}\right) = R_{2}\cdot R_{3} \qquad \Leftrightarrow \qquad \left(R_{x}+jL_{x}\omega\right)\cdot\left(\frac{R_{4}}{1+jR_{4}C\omega}\right) = R_{2}\cdot R_{3}$$

$$\left\{R_{x}\cdot R_{4} = R_{3}\cdot R_{2} \atop R_{4}\cdot L_{x}\omega = R_{2}\cdot R_{3}\cdot R_{4}\cdot C\cdot \omega \right. \Leftrightarrow \left. \begin{cases} R_{x} = \frac{R_{2}\cdot R_{3}}{R_{4}} \\ L_{x} = R_{2}\cdot R_{3}\cdot C \end{cases} \right.$$

2) On utilise les formules précédentes pour l'application numérique :

$$\begin{cases} R_x = \frac{R_2 \cdot R_3}{R_4} = \frac{100 \cdot 2000}{40000} = 5 \Omega \\ L_x = R_2 \cdot R_3 \cdot C = 100 \cdot 2000 \cdot 10^{-8} = 0.002 = 2mH \end{cases}$$

Exercice IV: Tracé de diagrammes de Bode

1)
$$\overline{H}(j\omega) = \frac{\overline{V}_c(j\omega)}{\overline{V}_g(j\omega)} = \frac{\frac{1}{jC\omega}}{R_L + jL\omega + \frac{1}{jC\omega}} = \frac{1}{1 - LC\omega^2 + jRC\omega} = \frac{1}{1 - LC(2\pi f)^2 + j2\pi RCf}$$

3)
$$\|\overline{H}\| = \frac{1}{\sqrt{(1 - 7.24 \cdot 10^{-9} f^2)^2 + 7.85 \cdot 10^{-11} f^2}} \qquad \angle \overline{H} = -\tan^{-1} \left(\frac{8.86 \cdot 10^{-6} f}{1 - 7.24 \cdot 10^{-9} f^2}\right)$$

4)
$$f_{n} = \frac{1}{2\pi\sqrt{LC}} = 11755 \, Hz$$

$$Gn_{dB} = 20 \cdot Log_{10} \left(\frac{1}{\sqrt{\left(1 - LC\left(2\pi f_{n}\right)^{2}\right)^{2} + \left(2\pi RCf_{n}\right)^{2}}} \right) = -20 \cdot Log_{10} \left(2\pi RCf_{n}\right) = 19.65 \, dB$$

Il trouver Δf_{-3dB} , il faut trouver les fréquences f_1 et f_2 pour lesquelles on a un gain de Gn -3dB = 16.65 dB

$$G_{-3dB} = 20 \cdot Log_{10} \|\overline{H}\| = -10 \cdot Log_{10} \left(\left(1 - LC \left(2\pi f \right)^2 \right)^2 + \left(2\pi RCf \right)^2 \right) = 16.65 dB$$

$$\left(1 - LC \left(2\pi f \right)^2 \right)^2 + \left(2\pi RCf \right)^2 = 10^{-1.665}$$

$$\left(1 - 7.24 \cdot 10^{-9} f^2 \right)^2 + 7.85 \cdot 10^{-11} f^2 = 0.02163$$

On pose
$$X = f^2$$

$$\left(1 - 7.24 \cdot 10^{-9} X\right)^2 + 7.85 \cdot 10^{-11} X = 0.02163$$

$$1 - 1.45 \cdot 10^{-8} X + 5.24 \cdot 10^{-17} X^2 + 7.85 \cdot 10^{-11} X = 0.02163$$

$$0.978 - 1.44 \cdot 10^{-8} X + 5.24 \cdot 10^{-17} X^2 = 0 = c + bX + aX^2$$

$$\Delta = b^2 - 4ac = 2.28 \cdot 10^{-18}$$

$$X_1 = \frac{-b + \sqrt{\Delta}}{2a} = 1.52 \cdot 10^8$$

$$X_2 = \frac{-b - \sqrt{\Delta}}{2a} = 1.23 \cdot 10^8$$
On en déduit : $f_1 = \sqrt{X_1} = \sqrt{1.52 \cdot 10^8} = 12321 \, Hz$

$$f_2 = \sqrt{X_2} = \sqrt{1.23 \cdot 10^8} = 11093 \, Hz$$

Donc

$$\Delta f_{-3dB} = f_1 - f_2 = 1227 Hz$$
 et $Q = \frac{f_n}{\Delta f_{-3dB}} = \frac{11755}{1227} = 9.58$

5) Calcul pour chaque point

Gain en décibel : $G_{dB} = 20 \cdot Log_{10} \|\overline{H}\|$

Phase en degrés : $\phi = \Delta t \cdot f \cdot 360$

Fréquence (Hz)	V _g (V)	Vc (V)	Δt (μ s)	Gain (dB)	Déphasage (degrés)
100	1	1.000	-1.41	0.0006	-0.051
5000	5	6.095	-1.72	1.721	-3.096
8000	4	7.386	-2.611	5.328	-7.52
11000	1	6.328	-9.615	16.03	-38.1
12000	0.25	2.187	-25.83	18.84	-111.6
13000	0.3	1.196	-32.62	12.01	-152.7
15000	0.8	1.246	-31.12	3.85	-168.1
20000	3	1.577	-24.25	-5.59	-174.7
100000	10	0.14	-4.98	-37.1	-179.3

Asymptotes et points caractéristiques

Asymptotes de la courbe de gain :

 $0 \text{ dB si } f = f_n$ pente de -40 dB/decade si $f > f_n$ Les deux asymptotes se coupent au point $(\hat{f}_n, 0)$

