KOSHA GUIDE

G - 24 - 2011

기계류의 방사성 물질로부터 위험을 줄이기 위한 안전가이드

2011. 12

한국산업안전보건공단

안전보건기술지침의 개요

0 작성자 : 숭실대학교 기계공학과 서 상 호 교수

o 개정자: 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

o 제·개정 경과

- 2009년 11월 일반안전분야 제정위원회 심의(제정)
- 2011년 12월 산업안전일반분야 제정위원회 심의(개정, 법규개정조항 반영)
- o 관련 규격 및 자료
- Safety of machinery Reduction of risk to health from hazardous substances emitted by machinery, BSI, 1996
- 산업안전보건용어사전, 한국산업안전보건공단, 2006
- 안전보건기술지침 「위험물질을 다루는 작업장의 위험표시에 관한 가이드」
- 0 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전 보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12월 24일

제 정 자 : 한국산업안전보건공단 이사장

KOSHA GUIDE G - 24 - 2011

기계류의 방사성 물질로부터 위험을 줄이기 위한 안전가이드

1. 목 적

이 지침은 각종 기계류에서 방사되는 위험물질의 위험요소와 이에 대한 대응방안을 제시함으로써 방사성 물질로 인한 상해를 미연에 방지하는 지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 각종 기계류를 설치・취급하는 모든 작업장에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "위험물질(Dangerous materials)"이라 함은 폭발물, 독극물, 인화물, 방사선 물질 등을 말한다.
- (나) "방사성 물질(Radioactive material)"이라 함은 불안정한 원소의 원자핵이 스스로 붕괴하면서 그 내부로부터 방사선을 방출하는 물질을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건 기준에 관한 규칙 및 관련고시에서 정하는 바에 의한다.

KOSHA GUIDE G - 24 - 2011

4. 방사성 물질 발생원

- (1) 기계류의 특정 부분
- (2) 기계류 자체에 있는 물질
- (3) 기계류 사용 시 직·간접적으로 나오는 방사성 물질

5. 방사성 물질의 확인

기계류 제조자는 건강에 유해한 방사선 물질로부터 예측 가능한 위험요소에 대한 확인과 평가를 해야 한다. 위험단계는 방사선 물질의 위험비율, 사람에게 노출될 가능성 그리고 노출 정도에 따라 다르다.

- (1) 방사성 물질의 확인
 - (가) 기계류의 사용기간 동안 모든 단계에서 예상할 수 있는 가능한 방사량 및 방 사 범위
 - (나) 기계류 관련 방사 위치 및 방향과 사람의 위치
 - (다) 가능한 방사 시기
 - (라) 방사의 물리적 특성 상(Phase), 속도, 온도, 압력
 - (마) 공중 방사 혹은 표면 오염의 발생 여부.
 - (바) 방사를 유발하거나 또는 감소시킬 수 있는 위험요소의 확인.
 - (사) 중대 위험요소 확인 : 방사를 유발하는 최대 관련 위험요소들을 확인.
- (2) 방사의 유형과 평가 방법

방사의 유형과 평가방법은 <표 1>과 같다.

G - 24 - 2011

<표 1> 방사의 유형과 평가방법

방사 유형	평가 방법
무 방사	시각검사연기 시험틴달 빔 램프압력 시험
한정된 방사	성분 성능국소 농도 평가
모든 방사(가능한 복합 방사)	- 질량보존으로 평가 - 시험자료

6. 위험요소의 방지대책

- (1) 방사의 축소 및 제거
- (가) 방사를 유발하는 작동방법 지양
- (나) 대안적 생산과정의 선택
- (다) 대안적 작동방법 선택
- (라) 유해물질 사용 중단
- (마) 위험물질을 덜 유해한 물질로 대체
- (바) 원격 조정 및 자동화
- (2) 환기 및 기계적 수단에 의한 방지 대책
- (가) 공기 순환시스템 사용
- (나) 먼지 발생이 줄어드는 물질 사용
- (다) 물에 의한 먼지 억제

KOSHA GUIDE

G - 24 - 2011

- (라) 밸브, 펌프 그리고 플랜지 사용
- (마) 틈새 방지
- (바) 대체 액체 사용
- (3) 기계류의 설치 위치 조정에 의한 방지대책
- (가) 불필요한 접근 금지
- (나) 위험한 작동과 안전한 작동의 분리
- (다) 위험에 노출되는 작업자의 수 축소
- (라) 필요 시에만 오염지역 접근
- (마) 위험물질에 대한 노출시간 축소
- (4) 작업자를 위한 방지대책
- (가) 오염된 벽 혹은 표면 등을 정기적으로 세척
- (나) 건강에 유해한 물질의 안전한 보관 및 처리 수단 규정
- (다) 적절한 개인보호구 착용
- (라) 오염지역에서의 식사 및 흡연 금지
- (마) 오염된 의류의 세탁과 처리를 위한 설비
- (바) 개인 작업자를 위한 적절한 정보, 지침, 훈련