FONCTIONS CARACTÉRISTIQUES

Exercice 1 (Propriétés élémentaires).

- a) Montrer que ϕ_X est bornée et uniformément continue.
- b) Montrer que ϕ_X est de type positif : pour tout $n \ge 1$ et tout $(t_1, \dots, t_n) \in \mathbb{R}^n$, la matrice complexe $\{\phi_X(t_j t_k)\}_{1 \le j,k \le n}$ est hermitienne positive.
- c) Soit $n \geq 1$. On suppose que $\mathbb{E}[|X|^n] < \infty$. Montrer que $\phi_X \in \mathcal{C}^n(\mathbb{R})$, et calculer $\phi_X^{(n)}$.
- d) Donner le développement de Taylor de ϕ_X d'ordre 2 en zero lorsque $\mathbb{E}[X^2] < \infty, \mathbb{E}[X] = 0.$

Exercice 2 (Lois usuelles). Calculer Φ_X dans chacun des cas suivants.

- a) $X \sim \mathcal{U}(\{-1, +1\})$.
- b) $X \sim \mathcal{B}(p)$.
- c) $X \sim Bin(n, p)$.
- d) $X \sim \mathcal{G}(p)$
- e) $X \sim \mathcal{P}(\lambda)$.
- f) $X \sim \mathcal{U}(-a, a)$.
- g) $X \sim \mathcal{N}(\mu, \sigma^2)$.
- h) $X \sim \mathcal{E}(\lambda)$.
- i) $X \sim \Gamma(r, \lambda)$.

Exercice 3 (Formule d'inversion de Fourier). On se propose de montrer que si $\phi_X \in L^1(\mathbb{R})$, alors X admet une densité continue et bornée, donnée par la formule suivante :

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \phi_X(t) dt \qquad (x \in \mathbb{R}).$$

- a) Vérifier que f est bien continue et bornée.
- b) Justifier que pour tous $\sigma > 0$ et $u \in \mathbb{R}$, on a

$$\exp\left(-\frac{u^2}{2\sigma^2}\right) \ = \ \frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(iut - \frac{\sigma^2 t^2}{2}\right) \, \mathrm{d}t.$$

c) En déduire que pour tous $\sigma > 0$ et $y \in \mathbb{R}$, on a

$$\mathbb{E}\left[\exp\left(-\frac{(X-y)^2}{2\sigma^2}\right)\right] = \frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-iyt - \frac{\sigma^2t^2}{2}\right) \phi_X(t) dt.$$

d) En déduire que pour toute fonction $h \colon \mathbb{R} \to \mathbb{R}$ continue à support compact, on a

$$\frac{1}{\sigma\sqrt{2\pi}}\int_{\mathbb{R}}h(y)\mathbb{E}\left[\exp\left(-\frac{(X-y)^2}{2\sigma^2}\right)\right]\,\mathrm{d}y\quad\xrightarrow[\sigma\to 0+]{}\int_{\mathbb{R}}h(y)f(y)\,\mathrm{d}y.$$

e) Vérifier que le membre de gauche vaut $\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathbb{E}[h(X+\sigma s)]e^{-\frac{s^2}{2}}\,\mathrm{d}s$ et conclure.

Exercice 4 (Cauchy). Soit λ un réel strictement positif.

- a) Vérifier que $f\colon x\mapsto \frac{\lambda}{2}e^{-\lambda|x|}$ est une densité (dite densité de Laplace de paramètre λ), et calculer la fonction caractéristique associée.
- b) En déduire la fonction caractéristique de la loi de Cauchy de paramètre λ .
- c) Que peut-on dire de la somme de deux variables aléatoires de Cauchy indépendantes?

Exercice 5 (Atomes). Soit X une variable aléatoire. Montrer que pour tout $x \in \mathbb{R}$,

$$\frac{1}{2T} \int_{-T}^{T} e^{-itx} \Phi_X(t) dt \xrightarrow[t \to \infty]{} \mathbb{P}(X = x).$$

Exercice 6 (Transformations). Montrer que si ϕ est une fonction caractéristique, alors $\overline{\phi}$, $\operatorname{Re}(\phi)$, $|\phi|^2$ et $e^{\phi-1}$ en sont aussi.

Exercice 7 (Somme d'uniformes). Soit X, Y deux variables aléatoires indépendantes et de loi uniforme sur l'intervalle (-1,1). On pose Z:=X+Y.

- a) Montrer que Z admet une densité que l'on calculera.
- b) Calculer par ailleurs ϕ_Z .
- c) En déduire la fonction caractéristique de la loi de densité $t\mapsto c\left(\frac{\sin t}{t}\right)^2$, ainsi que la valeur de la constante c.

Exercice 8 (Laplace). Soient W, X, Y, Z des variables aléatoire indépendantes, de loi $\mathcal{N}(0, 1)$.

- a) Déterminer la fonction caractéristique de WX.
- b) En déduire la loi de WX + YZ.
- c) Montrer que |WX + YZ| suit la loi exponentielle de paramètre 1.

Exercice 9 (Une énigme). Soit Q une loi symétrique sur \mathbb{R} , avec la propriété suivante : pour tout $n \geq 1$, si X_1, \ldots, X_n sont i.i.d. de loi Q, alors $\frac{1}{n}(X_1 + \cdots + X_n)$ suit encore la loi Q. Trouver Q!

Exercice 10 (Une autre énigme). Dans cet exercice, X et Y désignent des variables aléatoires indépendantes et idendiquement distribuées de loi inconnue, de moyenne 0 et de variance 1. De plus, X+Y est indépendante de X-Y. Quelle est la loi de X et Y?

Exercice 11 (Encore une énigme). Dans cet exercice, X et Y désignent des variables aléatoires indépendantes et idendiquement distribuées de loi inconnue, de carré intégrable. De plus, $\frac{X+Y}{\sqrt{2}}$ suit aussi la même loi que X et Y.

- a) Quelle est l'espérance de *X* ?
- b) Déterminer une équation fonctionnelle satisfaite par ϕ_X .
- c) Résoudre cette équation à l'aide d'un développement de Taylor, et trouver la loi de X.