2.2

Tangente à une courbe

Spé Maths 1ère - JB Duthoit

2.2.1 Définition d'une tangente

Définition

Soit f une fonction définie sur un intervalle I et soit $a \in \mathbb{R}$

On suppose de plus que la fonction f est dérivable en a.

La tangente à la courbe C_f est la droite passant par A(a; f(a)) et de coefficient directeur f'(a).

Savoir-Faire 2.10

I SAVOIR CONSTRUIRE DES TANGENTES À UNE COURBE

Savoir-Faire 2.11

SAVOIR DÉTERMINER GRAPHIQUEMENT UN NOMBRE DÉRIVÉ

2.2.2 Equation d'une tangente à une courbe

Propriété

Soit f une fonction définie sur un ensemble D_f et soit C_f sa courbe représentative dans un repère $(O; \vec{\imath}, \vec{\jmath})$.

Soit $a \in D_f$. On suppose que f est dérivable en a.

Une équation de la tangente à C_f en a est :

$$y - f(a) = f'(a)(x - a)$$

Savoir-Faire 2.12

SAVOIR DÉTERMINER UNE ÉQUATION DE TANGENTE À UNE COURBE

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Déterminer les équations des tangentes T_2 , T_{-2} et T_1 .

• Exercice 2.5

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

Donner une équation de la tangente à C_f en 4, notée T_4 .