UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Cálculo Diferencial

Nombre del Alumno	Diego Joel Zuñiga Fragoso	Grupo	511				
Fecha de la Práctica	27/09/2022	No Práctica	8				
Nombre de la Práctica	Aproximación al concepto de límite						
Unidad	Límites						

OBJETIVOS

Reconocer el concepto de límite.

EQUIPO Y MATERIALES

Computadora con Office, Scientific WorkPlace

1.- Completa la tabla de valores (hasta cinco decimales) y utilízala para estimar el valor del límite.

a) $\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$

a)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

X	3.9	3.99	3.999	4.001	4.01	4.1
f(x)	0.25158	0.25016	0.25002	0.24998	0.24984	0.24846

Se observa de acuerdo con la tabla, que el límite solicitado es 1/4

b)
$$\lim_{x \to 2} \frac{x-2}{x^2+x-6}$$

X	1.9	1.99	1.999	2.001	2.01	2.1
f(x)	0.20408	0.2004	0.20004	0.19996	0.1996	0.19608

Se observa de acuerdo con la tabla, que el límite solicitado es 1/5

c)
$$\lim_{x\to 1} \frac{x-1}{x^3-1}$$

X	0.9	0.99	0.999	1.001	1.01	1.1
f(x)	0.369	0.33669	0.33367	0.333	0.33002	0.30211

Se observa de acuerdo con la tabla, que el límite solicitado es 1/3

$$d) \lim_{x\to 0} \frac{e^x - 1}{x}$$

X	-0.1	0.01	-0.001	0.001	0.01	0.1
f(x)	0.95163	0.99502	0.9995	1.0005	1.005	1.0517

Se observa de acuerdo con la tabla, que el límite solicitado es 1

e)
$$\lim_{x\to 0} \frac{\text{sen } x}{x}$$

X	-1	-0.5	-0.1	-0.05	-0.01	0.01	0.05	0.1	0.5	1
f(x)	sen(1)	0.95885	0.99833	0.99958	0.99998	0.99998	0.99958	0.99833	0.95885	sen(1)

Se observa de acuerdo con la tabla, que el límite solicitado es 1

f) $\lim_{x\to 0^+} x \ln x$

X	0.1	0.01	0.001	0.0001	0.00001
f(x)	-0.23026	-4. 6052×10 ⁻²	-6. 9078×10 ⁻³	-9. 2103×10 ⁻⁴	-1. 1513×10 ⁻⁴

Se observa de acuerdo con la tabla, que el límite solicitado es 0

Grafica las funciones anteriores y compara los resultados obtenidos con lo que muestra la gráfica

a) Cuando x tiene a 4 se puede ver que efectivamente f(x) tiende a 1/4

b) En la gráfica se puede ver que cuando x tiene a 2, f(x) tiende a 1/5, aunque realmente 2 no está en el dominio por lo que el límite no existe

c) En la gráfica se puede ver que efectivamente cuando x tiene a 1, f(x) tiende a 1/3

d) En la gráfica se puede ver que efectivamente cuando x tiene a 0, f(x) tiende a 1

e) En la gráfica se puede ver que efectivamente cuando x tiene a 0, f(x) tiende a 1. Aunque realmente 0 no está en el dominio de la función, por lo que no existe el límite

2.- Grafica las siguientes funciones y estima el valor del límite si es que existe.

a)
$$\lim_{x \to 1} \frac{x^3 + x^2 + 3x - 5}{2x^2 - 5x + 3}$$

No existe el límite cuando x tiende a 1

b) $\lim_{x\to 0} \cos \frac{1}{x}$

No existe el límite cuando x tiende a 0

- 3.- Gráfica en el mismo sistema pero con colores diferentes las siguientes funciones

a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

g(x) = x + 1

Determina $\lim_{x\to 2} \frac{x^2-x-2}{x-2} = 3$ DETERMINARLO VISUALMENTE

$$f(x) = \frac{x^2 - 1}{x - 1}$$

g(x) = x + 1

Determina $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$

$$f(x) = \frac{9-t}{3-\sqrt{t}}$$

$$g(x) = 3 + \sqrt{t}$$

Determina $\lim_{t\to 9} \frac{9-t}{3-\sqrt{t}} = 6$

CONCLUSIONES. Basándote en los resultados obtenidos en la pregunta 3 anterior explica, ¿qué relación existe entre las funciones f y g?

Son exactamente iguales, aunque f(x) es una división, al factorizar el numerador y cancelar con el binomio del denominador, la ecuación se convierte en g(x).

EVALUACIÓN DE LA PRÁCTICA

Se evaluará el documento con los datos solicitados, las gráficas y conclusiones enviado al siguientes correo electrónico: jisar2604@yahoo.com.mx