Survival Analysis

P8108 Midterm - Chapters 1-4 Xuange Liang xl3493@cumc.columbia.edu

Ch1: Basic Definitions & Notation

Notation: $h(t) = \lambda(t)$ (hazard), $H(t) = \Lambda(t)$ (cumulative hazard)

$$\begin{split} & \textbf{Key relationships:} \\ & S(t) = 1 - F(t) = e^{-H(t)}; \ F(t) = \int_0^t f(u) du; \\ & f(t) = -S'(t) \\ & h(t) = \frac{f(t)}{S(t)} = -\frac{d \log S(t)}{dt}; \\ & H(t) = \int_0^t h(u) du = -\log S(t) \end{split}$$

$$f(t) = h(t)S(t); P(T > s + t|T > s) = \frac{S(s+t)}{S(s)}$$

Median: $t_{0.5}$ where $S(t_{0.5}) = 0.5$; Mean:

 $E(T) = \int_0^\infty S(t)dt$

Properties: S(0) = 1, $S(\infty) = 0$, non-increasing, right-continuous. $h(t) \ge 0$ (can be > 1)

Ch1: Types of Censoring

Right censoring (most common):

Event occurs after observation period ends Observe $X = \min(T, C)$ where C=censoring time $\delta = I(T \leq C)$: event indicator (1=event, 0=censored)

Left censoring: event before study starts Interval censoring: event in known interval

Type I censoring: fixed censoring time Type II censoring: study ends after fixed # events

Random censoring: censoring time random Left truncation: only observe subjects surviving past entry L. Risk set: only those entered and not yet failed/censored. Differs from left censoring

Ch1: Censoring Assumptions

Non-informative (independent) censoring:

Censoring time independent of failure time P(T > t | T > u, censored at u) = P(T > t | T > u)REQUIRED for valid KM estimator

Informative censoring:

Censoring related to failure mechanism Violates standard methods - need special approaches

Example of informative: patients withdraw due to worsening condition

Censoring distribution: Reverse KM: treat censoring as "event". Check if censoring differs between groups. $\hat{G}(t) = P(C > t)$

Ch2: Kaplan-Meier Estimator

Product-limit estimator:

$$\hat{S}(t) = \prod_{t_i < t} \left(1 - \frac{d_i}{r_i} \right) = \prod_{t_i < t} \frac{r_i - d_i}{r_i}$$

where:

 $t_1 < t_2 < \cdots$: ordered distinct event times d_i : # events at t_i

 r_i : # at risk at t_i (alive just before t_i)

Risk set at t_i : Include those who fail at t_i and censored after t_i ; exclude those censored at t_i or failed before t_i

Key: $\hat{S}(t)$ step function, decreases only at event

Greenwood's variance formula:

$$\operatorname{Var}(\hat{S}(t)) = \hat{S}(t)^{2} \sum_{t_{i} \leq t} \frac{d_{i}}{r_{i}(r_{i} - d_{i})}$$

Standard error:

$$SE(\hat{S}(t)) = \hat{S}(t) \sqrt{\sum_{t_i \leq t} \frac{d_i}{r_i(r_i - d_i)}}$$

KM-based cumulative hazard:

 $\hat{\Lambda}_{KM}(t) = -\log \hat{S}_{KM}(t)$. Alternative to NA. Inverse: $\hat{S}_{KM}(t) = e^{-\hat{\Lambda}_{KM}(t)}$

Variance of $\log \hat{S}(t)$:

$$\operatorname{Var}[\log \hat{S}(t)] = \sum_{t_i \le t} \frac{d_i}{r_i(r_i - d_i)}$$

Note: NO \hat{S}^2 factor! Used in log transformation CI

CI for $\hat{S}(t)$ - Three methods:

1. Plain (linear): $\hat{S}(t) \pm 1.96SE(\hat{S}(t))$

Problem: may exceed [0,1]

2. Log transformation: $SE[\log \hat{S}(t)] = \frac{SE(\hat{S})}{\hat{S}(t)}$

CI: $\exp[\log \hat{S}(t) \pm 1.96SE(\log \hat{S})]$

3. Log-log (preferred, default):

 $\theta = \log[-\log \hat{S}(t)]$

$$SE(\theta) = \frac{\sqrt{\sum d_i/(r_i(r_i - d_i))}}{|\log \hat{S}(t)|}$$
CI: $\exp\{-\exp(\theta \pm 1.96SE(\theta))\}$

Always stays in [0,1], best for extreme $\hat{S}(t)$ values

Percentiles: p-th: smallest t_p where $\hat{S}(t_p) \le 1 - p$. Median: $\hat{S}(t_{0.50}) = 0.50$. If $\hat{S}(t)$ never reaches threshold, undefined

Backward calculation: Given $\hat{S}(t)$ product form & n, find d_i , r_i , c_i :

Step-by-step: 1) From

 $\hat{S}(t_i)/\hat{S}(t_{i-1}) = (r_i - d_i)/r_i$, read denominator $\Rightarrow r_i$, then $d_i = r_i$ – numerator. 2) Compute c_i : if $r_1 < n$, then $n - r_1$ censored before τ_1 ; otherwise $c_i = (r_i - d_i) - r_{i+1}$. 3) Verify: $\sum d_i + \sum c_i = n$

Ex (Sample Q1): n = 13, $\hat{S}(\tau_1) = 10/11 \Rightarrow r_1 =$ $11, d_1 = 1, c_{\text{early}} = 13 - 11 = 2.$ $\hat{S}(\tau_2) = (10/11)(9/10) \Rightarrow r_2 = 10, d_2 = 1, c_1 =$ (11-1)-10=0. Continue. Final check: $\sum d_i = 6, \sum c_i = 7, 6 + 7 = 13 \checkmark$

Trap: If product starts < 1, early censoring! $r_1 =$ first denominator, NOT n

Backward calc: $n=10, \hat{S}(\tau_1)=\frac{8}{9}$ $\hat{S}(\tau_2) = \frac{8}{9} \times \frac{6}{7}, \ \hat{S}(\tau_3) = \frac{8}{9} \times \frac{6}{7} \times \frac{4}{5} \Rightarrow r_1 = 9, d_1 = 1, c_0 = 1; \ r_2 = 7, d_2 = 1, c_1 = 1; r_3 = 5, d_3 = 1, c_2 = 1; c_3 = 4. \ \text{Check: } 3 + 7 = 10 \ \checkmark$

RMST: RMST $(\tau) = \int_0^{\tau} \hat{S}(t)dt$ (area under KM to τ). Use when median not reached

KM example: Data: 2, 3+, 5, 6. t = 2: $r = 4, d = 1, \hat{S}(2) = \frac{3}{4} = 0.75. t = 3$: censored, $\hat{S} = 0.75. \ t = 5:$ $r = 2, d = 1, \hat{S}(5) = 0.75 \times \frac{1}{2} = 0.375$. Greenwood: $\operatorname{Var}[\hat{S}(5)] = (0.375)^2 \left[\frac{1}{12} + \frac{1}{2}\right] = 0.082$. Check: $\sum d_i + \sum c_i = n$

Ch2: Other Estimators

Nelson-Aalen (NA) cumulative hazard:

$$\hat{H}_{NA}(t) = \sum_{t_i \le t} \frac{d_i}{r_i}$$

Variance: $Var[\hat{H}_{NA}(t)] = \sum_{t_i < t} \frac{d_i}{r_i^2}$

Fleming-Harrington estimator:

$$\hat{S}_{FH}(t) = \exp(-\hat{H}_{NA}(t))$$

Close to \hat{S}_{KM} when hazards small. Uses NA for cumulative hazard

Comparison: NA: direct H(t) estimate; KM: direct S(t) estimate. $\hat{\Lambda}_{KM}(t) \approx \hat{H}_{NA}(t)$ for small

Life table (actuarial): For grouped data in $[t_j, t_{j+1})$: effective risk set $r_i^* = r_j - c_j/2$, then $\hat{q}_j = d_j/r_i^*, \, \hat{S}(t_{j+1}) = \hat{S}(t_j)(1 - \hat{q}_j)$

NA vs KM relationship:

KM:
$$\hat{S}(t) = \prod (1 - \frac{d_i}{r_i})$$

NA:
$$\hat{H}_{NA}(t) = \sum_{i} \frac{d_i}{r_i}, \hat{S}_{FH}(t) = e^{-\hat{H}_{NA}(t)}$$

When d_i/r_i small: $1 - \frac{d_i}{r_i} \approx e^{-d_i/r_i}$ $\Rightarrow \hat{S}_{KM}(t) \approx \hat{S}_{FH}(t)$ and $-\log \hat{S}_{KM}(t) \approx \hat{H}_{NA}(t)$

Ch3: Comparing Two Groups

Logrank test (Mantel-Haenszel):

 $H_0: S_1(t) = S_2(t)$ for all t

At each event time t_i :

$$E_{1i} = \frac{r_{1i} \cdot d_i}{r_i} \quad \text{(expected in group 1)}$$

$$V_i = \frac{r_{1i}r_{2i}d_i(r_i - d_i)}{r_i^2(r_i - 1)} \quad \text{(variance)}$$

where $r_i = r_{1i} + r_{2i}$, $d_i = d_{1i} + d_{2i}$

Test statistic:

$$\chi_{LR}^2 = \frac{\left[\sum_i (O_{1i} - E_{1i})\right]^2}{\sum_i V_i} \sim \chi_1^2$$

Weights: Logrank=equal; Wilcoxon: $\chi_W^2 = [\sum r_i (O_{1i} - E_{1i})]^2 / \sum r_i^2 V_i \text{ (early)}; G^{\rho, \gamma}$: $w_i = \hat{S}^{\rho}(1 - \hat{S})^{\gamma}, (\rho, \gamma)$: (0,0)=logrank, (1,0) = early, (0,1) = late

Test selection: Logrank when PH holds. Curves cross: Wilcoxon or weighted tests. With confounders: stratified logrank

Stratified logrank:

For K strata, sum over strata:

$$\chi^2 = \frac{[\sum_{k=1}^K \sum_i (O_{1ik} - E_{1ik})]^2}{\sum_{k=1}^K \sum_i V_{ik}}$$

Logrank steps: 1) Pool all unique event times. 2) At each t_i : count $r_{1i}, r_{2i}, d_{1i}, d_{2i}$. 3) Calculate E_{1i}, V_i . 4) Sum: $O_1 = \sum d_{1i}, E_1 = \sum E_{1i}, V_i = \sum V_i$. 5) $\chi^2 = (O_1 - E_1)^2 / V \sim \chi_1^2$

Key points: Pool times first. Skip censoring times. r_i from pooled data. Sum over ALL event

Ch4: Cox Proportional Hazards

Model form:

$$h(t, Z) = h_0(t) \exp(\beta_1 Z_1 + \dots + \beta_p Z_p)$$
$$h(t, Z) = h_0(t) e^{\beta^T Z}$$

Components:

 $h_0(t)$: baseline hazard (when all Z=0) $Z = (Z_1, \dots, Z_p)^T$: covariate vector $\beta = (\beta_1, \dots, \beta_p)^T$: coefficients

Semi-parametric:

No parametric form assumed for $h_0(t)$ Estimate β without specifying $h_0(t)$

Proportional hazards property:

$$\frac{h(t,Z^{(1)})}{h(t,Z^{(0)})} = \frac{h_0(t)e^{\beta^T}Z^{(1)}}{h_0(t)e^{\beta^T}Z^{(0)}} = e^{\beta^T(Z^{(1)}-Z^{(0)})}$$

Ratio independent of t (constant over time)

Hazard ratio (HR):

$$HR = e^{\beta^T (Z^{(1)} - Z^{(0)})}$$

For binary Z: $HR = e^{\beta}$

For continuous Z (c-unit change): $HR = e^{\beta c}$

Interpretation:

 $\beta > 0$: HR > 1, increased hazard (worse survival) $\beta < 0$: HR < 1, decreased hazard (better survival) $\beta = 0$: HR = 1, no effect

HR meaning: HR=2 means hazard doubles; HR=0.5 means hazard halves. NOT survival probability!

Log-linear model:

 $\log(HR) = \beta^T Z$

Linear in log-hazard scale

Partial likelihood:

Cox (1972, 1975) developed partial likelihood Conditions on risk sets at each failure time Avoids specifying $h_0(t)$

$$L(\beta) = \prod_{i=1}^D \frac{\exp(\beta^T Z_{(i)})}{\sum_{j \in R(t_{(i)})} \exp(\beta^T Z_j)}$$

Estimation:

Maximize $\log L(\beta)$ using Newton-Raphson Obtain $\hat{\beta}$ and $Var(\hat{\beta})$ from information matrix

Ch4: Inference for Cox Model

Three tests for $H_0: \beta = 0$: 1. Wald:

$$\chi_W^2 = \frac{\hat{\beta}^2}{Var(\hat{\beta})} \sim \chi_1^2 \ 2.$$
 Scores

 $\chi_W^2 = \frac{\hat{\beta}^2}{Var(\hat{\beta})} \sim \chi_1^2$ 2. Score: $\chi_S^2 = U(0)^T I(0)^{-1} U(0)$ (logrank for single binary covariate) 3. Partial LR:

 $\chi_{LR}^2 = 2[\log L(\hat{\beta}) - \log L(\beta_0)]$ (most reliable)

Generally: $\chi_W^2 \le \chi_{LR}^2 \le \chi_S^2$ for small effects

CI for HR: 95% CI = $e^{\hat{\beta} \pm 1.96 SE(\hat{\beta})}$. CI excludes $1 \Leftrightarrow p < 0.05$

Overall test: For $H_0: \beta_1 = \cdots = \beta_p = 0$, use partial LR with p df

Confounding: > 10% change in $\hat{\beta}$ suggests confounding

Nested model comparison:

For nested models (Model $0 \subset Model 1$):

 H_0 : extra parameters = 0

 $\chi^2_{LR} = 2[\log L_1(\hat{\beta}_1) - \log L_0(\hat{\beta}_0)]$ df = # extra parameters in Model 1

Individual coefficient test:

Wald:
$$Z = \frac{\hat{\beta}_{j}}{SE(\hat{\beta}_{j})} \sim N(0,1)$$
 or $\chi^{2} = Z^{2} \sim \chi_{1}^{2}$
95% CI: $\hat{\beta}_{j} \pm 1.96 \times SE(\hat{\beta}_{j})$
For HR: $e^{\hat{\beta}_{j} \pm 1.96 \times SE(\hat{\beta}_{j})}$

Ch4: Tied Times & Other Topics

Handling ties: Breslow (fast), Efron (better, default in R), Exact (slow). Use Efron for most

Breslow method: At time t_i with d_i tied deaths:

$$L_i(\beta) = \frac{\prod_{j \in D_i} \exp(\beta^T Z_j)}{\left[\sum_{k \in R_i} \exp(\beta^T Z_k)\right]^{d_i}}$$

Efron method: Better approximation for ties Let $S_R = \sum_{k \in R_i} e^{\beta^T Z_k}$, $S_D = \sum_{j \in D_i} e^{\beta^T Z_j}$

$$L_i(\beta) = \frac{\prod_{j \in D_i} e^{\beta^T Z_j}}{\prod_{l=1}^{d_i} \left[S_R - \frac{l-1}{d_i} S_D \right]}$$

Adjusts risk set by removing fraction of tied deaths Practical notes: Breslow/Efron give similar results when few ties. Efron preferred when >5%

Ch4: Stratified Cox Model

When PH assumption violated for a covariate: Stratified model:

$$h_k(t, Z) = h_{0k}(t)e^{\beta^T Z}$$

Different baseline $h_{0k}(t)$ for stratum k Common β across strata

Stratification vs adjustment:

Stratify: don't estimate effect, allow different baselines

Adjust: estimate effect, assume common baseline

Interaction:

 $h(t|Z_1, Z_2) = h_0(t)e^{\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_1 Z_2}$. Effect of Z_1 at $Z_2 = c$: $HR = e^{\beta_1 + \beta_3 c}$. Test: $H_0: \beta_3 = 0$

Multiple covariates: $HR = \exp[\beta_1(Z_1^{(1)} - Z_1^{(0)}) + \beta_2(Z_2^{(1)} - Z_2^{(0)})]$

Categorical (>2 levels): Use dummy variables. 3-level: 2 indicators. Overall test: LR with 2 df

Variance-Covariance matrix:

For $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)^T$:

$$Var(\hat{\beta}_1 + \hat{\beta}_2) = Var(\hat{\beta}_1) + Var(\hat{\beta}_2) + 2Cov(\hat{\beta}_1, \hat{\beta}_2)$$

Important for linear combinations of parameters (e.g., interaction effects)

Baseline estimation: $\hat{h}_0(t_i) = \frac{d_i}{\sum_{j \in R_i} e^{\hat{\beta}^T Z_j}};$

$$\hat{H}_0(t) = \sum \hat{h}_0(t_i); \, \hat{S}_0(t) = e^{-\hat{H}_0(t)}$$

Predicted survival: $\hat{S}(t|Z) = [\hat{S}_0(t)]^{\exp(\hat{\beta}^T Z)}$. Precision: # events, not subjects

Ch4: Examples & Interpretation

Basic HR: $h(t) = h_0(t)e^{0.5X_1 + 0.03X_2}$ ($X_1 = \text{trt}$, X_2 =age). Trt vs control: $HR = e^{0.5} = 1.65$; 10y age \uparrow : $HR = e^{0.3} = 1.35$; Trt 60yo vs control 50yo: $HR = e^{0.5+0.3} = e^{0.8} = 2.23$

CI to SE: HR=1.5 (1.2, 1.9) \Rightarrow

 $\hat{\beta} = \log(1.5) = 0.405;$

 $SE(\hat{\beta}) = [\log(1.9) - \log(1.2)]/[2(1.96)] = 0.117;$ Z = 0.405/0.117 = 3.46, p < 0.001

Stratified: $h(t) = h_{0,stage}(t)e^{-0.971X_E + 0.003X_A}$. ER+ vs ER- (same age/stage):

 $HR = e^{-0.971} = 0.38$. Different stages: CANNOT

Interaction: $h(t) = h_0(t)e^{\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_1 Z_2}$. Effect of Z_1 at $Z_2=0$: $HR=e^{\beta_1}$; at $Z_2=1$: $HR=e^{\beta_1+\beta_3}$

Reading KM plots: Step function; median = first t where $\hat{S}(t) < 0.5$; crossing curves \Rightarrow PH violated; use formal tests (logrank/Cox); CI overlap is not a significance test; # at risk shown in table below

Ch4: Checking PH Assumption

PH assumption: $h_1(t)/h_0(t) = HR$ (constant) $\Rightarrow S_1(t) = [S_0(t)]^{HR}$ (multiplicative, NOT additive)

On KM plot (S(t) vs t): Curves NOT parallel! Distance changes over time. Non-crossing \Rightarrow PH plausible. Crossing \Rightarrow PH violated

On log-log plot $(\log[-\log S(t)] \text{ vs } t)$: Curves ARE parallel if PH holds. Vertical distance = log(HR). Why:

 $\log[-\log S_1(t)] = \log[-\log S_0(t)] + \log(HR)$

Tests: 1) KM non-crossing. 2) Log-log parallel. 3) cox.zph() in R

If violated: Stratify (different h_0 , don't estimate

Key Formulas & Values

Critical values: $z_{0.975} = 1.96$, $z_{0.995} = 2.576$, $\chi^2_{1,0.95} = 3.84, \, \chi^2_{2,0.95} = 5.99$

Useful logs/exp: $\log(2) = 0.693$, $\log(0.5) = -0.693, e^{0.5} \approx 1.65, e^{-0.5} \approx 0.61,$

 $e^1 \approx 2.72, e^{-1} \approx 0.37$ More useful values: log(3) = 1.099,

 $\log(0.38) \approx -0.97, e^{0.3} \approx 1.35, e^{-0.97} \approx 0.38$ Conversions: $\beta = \log(HR)$; $HR = e^{\beta}$;

 $\hat{H}(t) = -\log \hat{S}(t); \ \hat{S}(t) = e^{-\hat{H}(t)}$

Percentage change in hazard:

 $HR = 1.5 \text{ means } 50\% \text{ increase: } (HR - 1) \times 100\%$ $HR = 0.6 \text{ means } 40\% \text{ decrease: } (1 - HR) \times 100\%$

Cox prediction: Individual survival

 $\hat{S}(t|Z) = [\hat{S}_0(t)]^{\exp(\hat{\beta}^T Z)}$. For c-unit change: $HR = e^{\beta c}$. Multiple changes:

 $HR = \exp[\beta_1 \Delta Z_1 + \beta_2 \Delta Z_2]$

Variance formulas: Greenwood uses \hat{S}^2 . For $\log \hat{S}$: Var $[\log \hat{S}] = \sum_{t_i \leq t} \frac{d_i}{r_i(r_i - d_i)}$ (no \hat{S}^2 factor!)

Partial likelihood (KEY CONCEPT): At each failure time t_i , conditional prob that individual i fails given one failure in risk set R_i :

$$L_i(\beta) = \frac{\exp(\beta^T Z_i)}{\sum_{j \in R_i} \exp(\beta^T Z_j)}$$

Full partial likelihood: $L(\beta) = \prod_{i=1}^{D} L_i(\beta)$ over all D events. Maximize $\log L(\beta)$ to get $\hat{\beta}$

Log partial likelihood:

$$\log L(\beta) = \sum_{i=1}^{D} \left[\beta^T Z_i - \log \left(\sum_{j \in R_i} \exp(\beta^T Z_j) \right) \right]$$

Score: $U(\beta) = \frac{\partial \log L}{\partial \beta}$; Information:

$$I(\beta) = -\frac{\partial^2 \log L}{\partial \beta \partial \beta^T}$$

Baseline hazard (Breslow estimator): After getting $\hat{\beta}$:

$$\hat{h}_0(t_i) = \frac{d_i}{\sum_{j \in R_i} \exp(\hat{\beta}^T Z_j)}$$

Then $\hat{H}_0(t) = \sum_{t_i \le t} \hat{h}_0(t_i), \, \hat{S}_0(t) = \exp(-\hat{H}_0(t))$

Relationship to KM: When $\beta = 0$ (no covariates), Cox model reduces to KM estimator

Exponential: $h(t) = \lambda$ (constant), $S(t) = e^{-\lambda t}$, $H(t) = \lambda t$. Median= 0.693/ λ . Mean= 1/ λ . Memoryless: P(T > s + t | T > s) = P(T > t). MLE: $\hat{\lambda} = d / \sum_{i=1}^{n} X_i$

Weibull: $h(t) = \alpha \lambda t^{\alpha - 1}$, $S(t) = e^{-\lambda t^{\alpha}}$. $\alpha > 1$: \uparrow hazard; $\alpha < 1$: \downarrow hazard; $\alpha = 1$: exponential. Check: plot $\log H(t)$ vs $\log t$ linear

Log-normal: Non-monotone hazard (increases then decreases)

Interpretation Templates

Compare treatments:

No diff: "No difference between [A] vs [B] in [outcome]. KM curves [nearly identical], HR=[val] (95% CI: [...]), p = [val] (not sig)." Sig diff: "[Advantage/Disadvantage] to [A] vs [B]

in [outcome]. KM curves [separate], HR=[val] (95% CI: [...]), p = [val] (sig)."

Note: HR<1 favors exposed (lower hazard); HR>1 favors unexposed

PH check:

OK: "KM curves [parallel/non-crossing], PH reasonable. [Further diagnostics possible.]"

Violated: "KM curves [cross/converge], PH may be violated. [Consider stratified/time-dep.]"

Cox model format:

Binary W: $\lambda(t, W) = \lambda_0(t)e^{\beta W}, \ \beta = \log(HR)$ Continuous X: HR for c-unit \uparrow : $e^{\beta c}$ Multiple: $\lambda(t,Z) = \lambda_0(t)e^{\beta_1 Z_1 + \beta_2 Z_2 + \cdots}$ Interaction: Effect of Z_1 at $Z_2 = 0$: $HR = e^{\beta_1}$; at $Z_2 = 1$: $HR = e^{\beta_1 + \beta_3}$

HR interpretation: HR>1: $[(HR-1) \times 100]\% \uparrow$ hazard; HR<1: $[(1 - HR) \times 100]\% \downarrow$ hazard

Quick Reference

Test equivalences: Score test for single binary covariate = Logrank test; Logrank = $G^{0,0}$ (equal weights); Wilcoxon = $G^{1,0}$ (early differences)

Key inequalities: $\chi_W^2 \le \chi_{LR}^2 \le \chi_S^2$; For small x: $1-x \approx e^{-x}$, $\log(1+x) \approx x$; Delta method: $Var[g(X)] \approx [g'(\mu)]^2 Var(X)$

Assumptions: KM: non-informative censoring; Logrank: PH + non-informative censoring; Cox PH: proportional hazards + non-informative censoring