

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Projekt z MSP

Spracoval: Patrik Németh

Čísla zadaní: 19, 3

Cvičenia – skupina: streda, 10:00

5. decembra 2020

Zadání projektu z předmětu MSP

Každý student obdrží na cvičení konkrétní data (čísla ze seznamu), pro které vypracuje projekt. K vypracování můžete použít libovolné statistické programy.

- 1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data př. 1.
- a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.
- b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.
- c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.
- d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.
- e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.
- f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.
- g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

Návod: Oba soubory zpracujte neroztříděné. Testujte nejprve rovnost rozptylů odchylek před a po seřízení stroje. Podle výsledku pak zvolte vhodný postup pro testování rovnosti středních hodnot odchylek před a po seřízení stroje.

- 2. Měřením dvojice (*Výška*[cm], *Váha*[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.
- a) Vypočtěte bodový odhad koeficientu korelace.
- b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou nezávislé.
- c) **Regresní analýza -** data proložte přímkou: $V \acute{a} h a = \beta_0 + \beta_1 \cdot V \acute{y} \check{s} k a$
 - 1) Bodově odhadněte β_0 , β_1 a rozptyl s^2 .
 - 2) Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, \quad H_A: \beta_0 \neq -100,$$

 $H: \beta_1 = 1, \quad H_A: \beta_1 \neq 1,$

3) Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

Termín pro odevzdání práce je 11 týden výuky zimního semestru ve cvičení.

Vypracovanie

1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.

Štatistický súbor

1,34 1 0,1126 2 1,17 27 1,94 3 2,5728 1,99 4 1,7729 -0,320,88 30 0, 75 1,45 -0,356 31 7 1,78 32 1,448 1,56 33 1,631,01 34-0, 29 $\overline{2,25}$ 10 35 0.870,4636 -1,3411 12 0,2337 2,070,5913 38 -0,5114 0,9239 3,31 15 1,84 40 0,3916 2,2641 1,38 17 -0,2942 -0.982,06 18 43 0.5319 0,68 44 -0,2520 2, 1450,5921 1,88 461,02 22 1,36 -0.0147 1,38 23 0,0348 240,361,98 49 25 0,4250 -0.85

Usporiadaný štatistický súbor

(1)	-1.34	(26)	1.01
(2)	-0.98	(27)	1.02
(3)	-0.85	(28)	1.17
(4)	-0.51	(29)	1.34
(5)	-0.35	(30)	1.36
(6)	-0.32	(31)	1.38
(7)	-0.29	(32)	1.38
(8)	-0.25	(33)	1.44
(9)	-0.2	(34)	1.45
(10)	-0.01	(35)	1.56
(11)	0.03	(36)	1.63
(12)	0.11	(37)	1.77
(13)	0.23	(38)	1.78
(14)	0.36	(39)	1.84
(15)	0.39	(40)	1.88
(16)	0.42	(41)	1.94
(17)	0.46	(42)	1.98
(18)	0.53	(43)	1.99
(19)	0.59	(44)	2.06
(20)	0.59	(45)	2.07
(21)	0.68	(46)	2.1
(22)	0.7	(47)	2.25
(23)	0.87	(48)	2.26
(24)	0.88	(49)	2.57
(25)	0.92	(50)	3.31

a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.

$$x_{(1)} = \min_{i} \ x_i = -1,34$$

$$x_{(n)} = \max_{i} x_i = 3,31$$

 $\begin{aligned} x_{(1)} &= \min_i \, x_i = -1,34 \\ x_{(n)} &= \max_i \, x_i = 3,31 \\ \text{Variačný obor: } \langle x_{(1)}, x_{(n)} \rangle = \langle -1,34;3,31 \rangle \end{aligned}$

Rozpätie: $x_{(n)} - x_{(1)} = 4,65$

Počet tried: m=11Dĺžka triedy: $\frac{x_{(n)}-x_{(1)}}{m}=0,42\overline{27}$

trieda	\mathbf{x}_{i-}	\mathbf{x}_{i+}	stred triedy	kumul. poč.	poč.	relat. poč.	relat. kumul. poč.
1	-1,3400	-0,9173	-1,1286	2	2	0,04	0,04
2	-0,9173	-0,4945	-0,7059	4	2	0,04	0,08
3	-0,4945	-0,0718	-0,2832	9	5	0, 1	0, 18
4	-0,0718	0,3509	0,1395	13	4	0,08	0, 26
5	0,3509	0,7736	0,5623	22	9	0, 18	0,44
6	0,7736	1,1964	0,9850	28	6	0, 12	0,56
7	1,1964	1,6191	1,4077	35	7	0, 14	0,7
8	1,6191	2,0418	1,8305	43	8	0, 16	0,86
9	2,0418	2,4645	2,2532	48	5	0, 1	0,96
10	2,4645	2,8873	2,6759	49	1	0,02	0,98
11	2,8873	3,3100	3,0986	50	1	0,02	1

b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku. $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i=0,944$ Medián: $\tilde{x}=0,965$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,944$$

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1,006424$$

Median:
$$x = 0,903$$

Modus: $\hat{x} = 0,562272$
 $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1,006424$
 $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 1,003206$

c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.

Bodový odhad strednej hodnoty:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,944$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1,026963$$

Bodový odhad smerodatnej odchýľky:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 1,013391$$

d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.

trieda	\mathbf{x}_{i-}	\mathbf{x}_{i+}	stred triedy	kumul. poč.	poč.	teor. poč.	$\frac{\text{rozdiel}^2}{\text{teor. poč.}}$
1	-1000	-0,0718	-500,0359	9	9	7,9038	0,1520
2	-0,0718	0,3509	0,1395	13	4	6,0556	0,6978
3	0,3509	0,7736	0,5623	22	9	7,7029	0,2184
4	0,7736	1,1964	0,9850	28	6	8,2542	0,6156
5	1,1964	1,6191	1,4077	35	7	7,4509	0,0273
6	1,6191	2,0418	1,8305	43	8	5,6658	0,9616
7	2,0418	1000	501,0209	50	7	6,9668	0,0002

Testovacie kritérium:
$$t = \sum_{j=1}^{m} \frac{(f_j - \hat{f}_j)^2}{\hat{f}_j} = 2,6727,$$

$$\chi^2_{1-\alpha}$$
 pre $k=7-2-1$ stupňov voľnosti: 9,4877,

doplnok kritického oboru:
$$\overline{W_{\alpha}} = \langle 0; \chi^2_{1-\alpha} \rangle = \langle 0; 9, 4877 \rangle$$
.

Keďže $t \in \overline{W_{\alpha}}$, tak sa hypotéza $X \sim N(0,944;1,027)$ nezamieta.

e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.

Predpoklad: $X \sim N(\mu, \sigma^2), \mu$ a σ^2 sú neznáme.

Bodový odhad strednej hodnoty:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,944$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1,026963$$

Bodový odhad smerodatnej odchýľky:
$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2} = 1,013391$$

Intervalový odhad parametru μ :

0,975 kvantil Študentovho rozdelenia $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 2,009575237 0,995 kvantil Študentovho rozdelenia $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 2,679951974

$$\alpha = 0,05: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle 0,655997191483301; 1,2320028085167 \right\rangle$$

$$\alpha = 0,01: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle 0,559921971551384; 1,32807802844862 \right\rangle$$

Intervalový odhad parametru σ^2 :

0,975 kvantil Pearsonovho rozdelenia $\chi^2_{\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 31,5549164626671 0,975 kvantil Pearsonovho rozdelenia $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 70,2224135664345 0,995 kvantil Pearsonovho rozdelenia $\chi^2_{\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 27,2493490695696 0,995 kvantil Pearsonovho rozdelenia $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti = 78,2307080866899

$$\alpha = 0,05 : \left\langle \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}; \frac{(n-1)s^2}{\chi_{\alpha/2}^2} \right\rangle = \langle 0,716597414476408; 1,59471821323106 \rangle$$

$$\alpha = 0,01 : \left\langle \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}; \frac{(n-1)s^2}{\chi_{\alpha/2}^2} \right\rangle = \langle 0,643241014055983; 1,84669365391174 \rangle$$

Intervalový odhad parametru σ :

$$\alpha = 0,05 : \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle 0,846520770256943; 1,26282152865362 \right\rangle$$

$$\alpha = 0,01 : \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle 0,802023075762775; 1,35893107033129 \right\rangle$$

f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.

Študentov jednovýberový test:

Testujeme **hypotézu** $H_0: \mu = 0$ oproti **alternatívnej hypotéze** $H_A: \mu \neq 0$:

testovacie kritérium:
$$t = \frac{\overline{x} - \mu_0}{s} \sqrt{n} = \frac{\overline{x} - 0}{s} \sqrt{n} = 6,58687682116824$$

doplnok kritického oboru: $\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle$ pre alternatívnu hypotézu H_A , 0,975 kvantil Študentovho rozdelenia $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupňami voľnosti =2,00957523712924 $\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle = \left\langle -2,00957523712924; 2,00957523712924 \right\rangle$

Keďže $t\notin \overline{W_{\alpha}}$, tak sa hypotéza $H_0: \mu=0$ zamieta a alternatívna hypotéza $H_A: \mu\neq 0$ nezamieta.

g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víteli, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

	$x\ 1:20\!-\!X$
1	0.11
2	1.17
3	2.57
4	1.77
5	0.88
6	1.45
7	1.78
8	1.56
9	1.01
10	2.25
11	0.46
12	0.23
13	0.59
14	0.92
15	1.84
16	2.26
17	-0.29
18	2.06
19	0.68
20	2.1

	$x \ 21:50-Y$
21	1.88
22	-0.01
23	0.03
24	0.36
25	0.42
26	1.34
27	1.94
28	1.99
29	-0.32
30	0.7
31	-0.35
32	1.44
33	1.63
34	-0.2
35	0.87
36	-1.34
37	2.07
38	-0.51
39	3.31
40	0.39
41	1.38
42	-0.98
43	0.53
44	-0.25
45	0.59
46	1.02
47	1.36
48	1.38
49	1.98
50	-0.85

počet n priemer \overline{x} bodový odhad rozptylu s^2 bodový odhad smerodatnej odchýľky s

X	Y
20	30
1,27	0,726667
0,661821	1,179451
0,813524	1,086025

Test rovnosti rozptylov:

Testuje sa hypotéza $H_0: \sigma_X^2 = \sigma_Y^2$:

testovacie kritérium:
$$t = \frac{s^2(X)}{s^2(Y)} = \frac{0,661821}{1,179451} = 0,561127$$

doplnok kritického oboru: $\overline{W}_{\alpha} = \langle F_{\alpha/2}(n-1,m-1), F_{1-\alpha/2}(n-1,m-1) \rangle$ pre $H_A : \sigma_X^2 \neq \sigma_Y^2$, $F_{\alpha/2}(k_1,k_2), F_{1-\alpha/2}(k_1,k_2)$ sú kvantily Fischer-Snedecerovho rozdelenia s $k_1 = n-1$ a $k_2 = m-1$ stupňami voľnosti.

$$F_{\alpha/2}(19,29) = 0,41632$$

$$F_{1-\alpha/2}(19,29) = 2,231274$$

$$\left\langle F_{\alpha/2}(n-1,m-1),F_{1-\alpha/2}(n-1,m-1)\right\rangle = \left\langle 0,41632;2,231274\right\rangle$$

Keďže $t\in\overline{W_{\alpha}}$, tak sa hypotéza $H_0:\sigma_X^2=\sigma_Y^2$ nezamieta.

Študentov dvojvýberový test:

Testuje sa hypotéza $H_0: \mu_X - \mu_Y = 0$ za podmienky $\sigma_X^2 = \sigma_Y^2$

testovacie kritérium:
$$t = \frac{\overline{x} - \overline{y} - \mu_0}{\sqrt{(n-1)s^2(X) + (m-1)s^2(Y)}} \sqrt{\frac{nm(n+m-2)}{n+m}} = 1,906574$$

doplnok kritického oboru: $\overline{W_{\alpha}}=\left\langle -t_{1-\alpha/2},t_{1-\alpha/2}\right\rangle$ pre $H_A:\mu_X-\mu_Y\neq 0$, $t_{1-\alpha/2}$ - kvantil Študentovho rozdelenia s k=n+m-2=20+30-2=48 stupňami voľnosti.

 $t_{1-\alpha/2} = 2,010635$

$$\overline{W_{\alpha}} = \langle -t_{1-\alpha/2}, t_{1-\alpha/2} \rangle = \langle -2, 010635; 2, 010635 \rangle$$

 $\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle = \left\langle -2, 010635; 2, 010635 \right\rangle$ Keďže $t \in \overline{W_{\alpha}}$, tak sa hypotéza $H_0: \mu_X - \mu_Y = 0$ nezamieta.

2. Měřením dvojice (Výška[cm], Váha[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.

X - Výška [cm]	Y – Váha [kg]
166	67
152	52
154	78
155	57
190	109
182	97
153	58
193	95
191	98
166	82
164	68
186	90
175	85
154	54
200	104
199	110
164	75
200	119
180	94
158	65

$$n = 20$$

$$\overline{x} = 174, 1$$

$$\overline{y} = 82, 85$$

$$\sum_{i=1}^{n} x_i^2 = 612014$$

$$\sum_{i=1}^{n} y_i^2 = 145161$$

$$\sum_{i=1}^{n} x_i y_i = 294839$$

a) Vypočtěte bodový odhad koeficientu korelace.

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n \overline{x}^2\right) \left(\sum_{i=1}^{n} y_i^2 - n \overline{y}^2\right)}} = 0,940332$$

b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou nezávislé.

Testuje sa hypotéza $H_0: \rho = 0$:

testovacie kritérium: $t=\frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}}=11,724906$ doplnok kritického oboru: $\overline{W}_{\alpha}=\left\langle 0,t_{1-\alpha/2}\right\rangle$ pre alternatívnu hypotézu: $H_A: \rho \neq 0$,

$$t_{1-\alpha/2}(n-2)=2,100922$$
, čím $\overline{W_{\alpha}}=\langle 0;2,100922\rangle$
Keďže $t\notin \overline{W_{\alpha}}$, tak sa hypotéza $H_0: \rho=0$ sa **zamieta**.

- c) **Regresní analýza** data proložte přímkou: $V\acute{a}ha = \beta_0 + \beta_1 \cdot V\acute{y}\check{s}ka$
 - 1. Bodově odhadněte β_0 , β_1 a rozptyl s^2 .
 - 2. Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, H_A: \beta_0 \neq -100,$$

$$H: \beta_1 = 1, H_A: \beta_1 \neq 1,$$

3. Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

x_i	y_i	x_i^2	y_i^2	x_iy_i
166	67	27556	4489	11122
152	52	23104	2704	7904
154	78	23716	6084	12012
155	57	24025	3249	8835
190	109	36100	11881	20710
182	97	33124	9409	17654
153	58	23409	3364	8874
193	95	37249	9025	18335
191	98	36481	9604	18718
166	82	27556	6724	13612
164	68	26896	4624	11152
186	90	34596	8100	16740
175	85	30625	7225	14875
154	54	23716	2916	8316
200	104	40000	10816	20800
199	110	39601	12100	21890
164	75	26896	5625	12300
200	119	40000	14161	23800
180	94	32400	8836	16920
158	65	24964	4225	10270
3482	1657	612014	145161	294839

priemer 174,1 82,85

1) Bodově odhadněte
$$\beta_0$$
, β_1 a rozptyl s^2 .

$$b_1 = \frac{1}{\det(H)} \left(n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i \right) = 1,096157$$

$$b_0 = \overline{y} - b_1 \overline{x} = -107,990962$$

Regresná priamka:
$$y = b_0 + b_1 x = -107,990962 + 1,096157x$$

$$S_{\min}^{\star} = \sum_{i=1}^{n} y_i^2 - b_0 \sum_{i=1}^{n} y_i - b_1 \sum_{i=1}^{n} x_i y_i = 912,142382$$

$$s^2 = \frac{S_{\min}^{\star}}{n-2} = 50,674577$$

2) Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, H_A: \beta_0 \neq -100,$$

$$h^{11} = \frac{\sum_{i=1}^{n} x_i^2}{\det(H)} = 5,277985$$

$$t = \frac{b_0 - (-100)}{s\sqrt{h^{11}}} = -0,488619$$

$$t_{1-\alpha/2}(n-2) = 2,100922$$

$$\overline{W_0} = \langle -2,100922; 2,100922 \rangle$$

 $\overline{W_{\alpha}}=\langle -2,100922;2,100922\rangle$ Keďže $t\in \overline{W_{\alpha}},$ tak sa hypotéza H nezamieta.

$$\begin{split} H: \beta_1 &= 1, \, H_A: \beta_1 \neq 1, \\ h^{22} &= \frac{n}{\det(H)} = 0,000172 \\ t &= \frac{b_1 - 1}{s\sqrt{h^{22}}} = 1,028533 \\ t_{1-\alpha/2}(n-2) &= 2,100922 \\ \overline{W_\alpha} &= \langle -2,100922; 2,100922 \rangle \\ \text{Keďže } t \in \overline{W_\alpha}, \, \text{tak sa hypotéza H nezamieta}. \end{split}$$

3) Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

	Výpočet pásu spoľahlivosti								
		stredné y		individuálne y					
x_i	y_i	dolný	horný	dolný	horný	h^{\star}			
150	56, 432612	50,636889	62,228336	40, 393236	72,471988	0,150178			
155	61,913398	56,887721	66,939075	46,135927	77,690869	0,112922			
160	67,394184	63,052137	71,736231	51,820984	82,967384	0,084291			
165	72,87497	69,083103	76,666837	57,446120	88,303820	0,064283			
170	78,355756	74,915979	81,795533	63,009641	93,701870	0,052899			
175	83,836541	80,487690	87,185393	68,510551	99,162532	0,050140			
180	89,317327	85,778050	92,856604	73,948604	104,686050	0,056004			
185	94,798113	90,827334	98,768892	79,324321	110,271906	0,070492			
190	100,278899	95,703244	104,854554	84,638957	115,918841	0,093604			
195	105,759685	100,464868	111,054502	89,894432	121,624938	0,125341			
200	111,240471	105, 152574	117,328367	95,093221	127,387720	0,165701			

