Mathématiques appliquée à l'informatique

Bertieaux Jordan Août 2020

Enseignant : Mr Lerat Sébastien

Table de Matières

1	Nombres Complexes	3
2	Exemple d'examen	4

1 Nombres Complexes

SubSection Section

2 Exemple d'examen

Q1 : Calcul du déterminant de la matrice

$$A = \begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^0 - 1 & 1 - 2^3 2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix}$$

A) Simplification de la matrice

$$2^{0} - 1 = 1 - 1 = 0$$

 $1 - 2^{3}2^{-3} = 1 - 2^{3-3} = 1 - 2^{0} = 1 - 1 = 0$

$$\begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 0 & 0 & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix}$$

B) Swap des zeros

$$8 * \begin{pmatrix} 1 & 5 & 6 \\ 9 & 9, 5 & -9, 5 \\ 4 & 8 & 16 \end{pmatrix}$$

C) Extraction des sous matrices

Matrices de signes

$$\begin{pmatrix} + & + & - \\ - & - & + \\ + & + & - \end{pmatrix}$$

Extraction des matrices

$$8*(1*\begin{pmatrix} 9,5 & -9.5 \\ 8 & 16 \end{pmatrix}) - 5*\begin{pmatrix} 9,5 & -9.5 \\ 4 & 16 \end{pmatrix} + 6*\begin{pmatrix} 9 & 9.5 \\ 4 & 8 \end{pmatrix})$$

D) Calcul des déterminants 2*2

$$+6*((9*8)-(4*9,5))$$

)

E) Simplification des calculs

8*(

$$1*(152 - (-76))$$

$$-5*(144 - (-38))$$

$$+6*(72 - 38)$$

)

F) Mise en équation et résolution

$$8*(228-5*(182)+6*(34))$$

$$8*(228 - 910 + 204)$$

$$8*(228 + 204 - 910)$$

$$\det(A) = -3824$$

$\mathbf{Q2}: \mathbf{Calcul}$ nombre complex

Que doit valoir a pour que l'argument soit 135° quand b=-5, c=4 et d=11

 $\tfrac{a+bi}{c+di}$

A)?????????????

Q3 : Transformer en forme conjonctive

$$(A \land \neg B) \lor (C \implies a)$$

A) Simplifier l'implications

$$(A \wedge \neg \ B) \ V \ (\neg \ A \ V \ (C \wedge A))$$

B) Utilisation du théorème De Morgan

$$a+b = \neg a * \neg b$$

$$\neg (A \land \neg B) \land \neg (\neg A \lor (C \land A))$$

S = NEG(A ET NEG(B))ETNEG(NEG(A)OU(C OU A))

Q4: Théorie des ensembles naïfs

A) Soit A={pi,2,e} et B={-1, 5} Calculer $|A \times B|$

1) Calculer $A \times B$

$$A*B = \{ (pi,-1),(pi,5), (2,-1),(2,5), (e,-1),(e,5) \}$$

2) Calculer la cardinalité de $|A \times B|$

$$|A| = 3 |B| = 2$$

$$|A \times B| = |A| * |B| = 2*3 = 6$$

S = la cardinalité est le nombre de sous-ensembles (6)

B) Soit P | A U B | A =
$$\{3,4,5\}$$
 B= $\{1,2,3\}$

1) Union des 2 ensembles

$$P(A) = \{\{\}, \{3\}, \{4\}, \{5\}, \{3,4\}, \{4,5\}, \{3,5\}, \{3,4,5\}\}$$

2) Calcul de la cardinalité des ensembles

$$|P| = 8$$

$\mathbf{Q5}: \mathbf{Induction\ forte/faibles}$

Notez que l'induction faible est égale à l'induction forte. Néanmoins il est plus naturel de démontrer les propriétés soit avec de l'induction simple, soit avec la forte comme réalisé durant le cours. Il vous est demandé de choisir entre les deux fonction de l'énoncé.

Soit n un nombre naturel, que faut-il pour démontrer que 10^{n-1} est un multiple de 9 ?		
Veuillez choisir au moins une réponse : (Cochez ce qui est vrai)		
\Box On peut utiliser l'induction faible ou forte		
\Box Il faut au moins 3 cas de base		
\square il faut utiliser l'induction forte		
\Box il faut au moins un unique cas de base		
\Box il faut au moins 2 cas de base		
Q6 : Nombre entiers		
Soient a,b et m des nombre naturels. Est-ce que		
$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$		
a) Développement de l'égalité		
(a+b) mod m = ((a+b) mod m) mod m (8+10) mod 2 = ((8 mod 2)+(10 mod 2)) mod 2 (18) mod 2 = (0+0) mod 2 0 = (0) mod 2 0 = 0		
Sélectionnez une réponse :		
\square Vrai		
□ Faux		

Q7 : Déterminer les complexités de l'algorithme suivant avec n la taille du tableau

Listing 1 – Python algorithme \mathbf{def} Apply(array, value, start=None, res=0): if(start is None): start = len(array)-1if(start < 0): return res if(array[start] == value): $\textbf{return} \ \text{Apply} \, (\, \operatorname{array} \, , \operatorname{value} \, , \operatorname{start} \, -1, \operatorname{res} +1)$ return Apply (array, value, start -1, res) cochez ce qui est vrai concernant la complexités (au moins une réponse) \square a. $\theta(1)$ \square b. $o(n^2)$ \square c. O(log(n)) \square d. o(log(n)) \square e. $\theta(log(n))$ \Box f. o(n) \square g. o(1) \Box h. O(1) \square i. o(nlog(n)) \square j. O(nlog(n)) \square k. $\theta(n)$ \Box 1. $\theta(n^2)$ \square m. $O(n^2)$ \square n. O(n)

 \square o. $\theta(nlog(n))$

Q8 : Ensemble Naturels

Soit N est l'esemble des naturels sauf 0 $R=(a,b), a \in N, b \in N$ et a est un multiple de b		
cochez ce qui est vrai concernant R. (au moins une réponse)		
□ R est transitif		
\square Aucune réponse		
\square R est réflexif		
\square R est anti-symètrique		
□ R est symètrique		