

R Tutorial for Statistical Learning

Qidi Peng

16: Support vector machines

Code	Comments	Results
#Support vector classifier.		
install.packages("e1071");	The package "e1071" includes built-in functions for	
library(e1071);	support vector machines.	
#Generate 2 classes of observations with linear boundary.		
set.seed (1);		
x=matrix (rnorm (20*2), ncol =2);	First generate a sample of 20 independent 2-dimensional	
	normal vectors.	
y=c(rep (-1,10), rep (1,10));	Set a set of responses y (for labeling rows of x). By the	
	support vector classifier approach, y takes values either -1	
	or 1.	
x[y==1,]=x[y==1,]+1;	Add 1 to each of the second half rows of x. Then one has 2	
	classes of normal vectors: one is the first 10 rows, which is	
	mean zero, the other one is the remaining 10 rows of x,	
	which is mean (1,1).	
plot(x, col = (3-y));	Visualize the 2 classes of observations, using distinct	
	colors. (3-y) is the label of colors. This step is necessary to	
	check whether the classes are well separated. We see here	
	the data are not well separated. But the boundary is almost	
	linear.	
dat=data.frame(x=x, y=as.factor (y));	Create data frame. The response y must be factors.	
$svmfit \!\!=\! svm(y \!\!\sim\! ., \! data \!\!=\! dat, \! kernel \!\!=\! "linear", \! cost \!\!=\! 10, \! scale \!\!=\! FALSE);$	Run a support vector classifier. Scale=FALSE means we	
	don't let the data be normalized. cost=10 specifies a tuning	
	parameter, it shows the length of margins, smaller is cost,	
	wider are the margins.	
plot(svmfit , dat);	Visualize the linear classifier. The region of feature space	
	that will be assigned to the -1 class is shown in light blue,	
	and the region that will be assigned to the +1 class is	
	shown in purple. We see the margins are soft: they allow	
	for some violations of observations.	

svmfit\$index;	Check the indices of support vectors. 1 to 10 belong to	[1] 1 2 5 7 14
	Class -1, 11-20 belong to Class 1.	16 17
summary (svmfit);	Print the summary of this model.	
#To see the property of the argument "cost", we take an extreme		
case.	Take cost=0.1, which is quite small.	
$svmfit = svm(y \sim ., data = dat, kernel = "linear", cost = 0.1, scale = FALSE); \\$	Plot the classifier.	
plot(svmfit , dat);	Print the labels of support vectors. We see the margins are	[1] 1 2 3 4 5
svmfit\$index;	quite wide.	7 9 10 12 13 14 15
		16 17 18 20
#To choose the best "cost", we perform a cross-validation.		
set.seed(1);	Use function tune(), we select the best cost among some	
$tune.out = tune(svm, y\sim., data = dat, kernel$	candidate values.	- best performance:
="linear",ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)));	A summary tells you the best choice of cost is 0.1.	0.1
summary (tune.out);		
	This is another way to show the best cost, by outputting the	
bestmod =tune.out\$best.model;	variable best.model.	
summary(bestmod);		
#Prediction.	In order to test our decision boundary, we create another 20	
xtest=matrix (rnorm (20*2), ncol =2);	test data.	
ytest=sample (c(-1,1), 20, rep=TRUE);		
xtest[ytest ==1,]= xtest[ytest ==1,] + 1;		
testdat =data.frame (x=xtest , y=as.factor (ytest));		
	Use predict() to classify the test data, the decision	
<pre>ypred=predict (bestmod ,testdat);</pre>	boundary is provided by the model "bestmod", the one	
	with cost=0.1.	
	The confusion matrix shows only 1 test data is mistakenly	
$table(predict = \!\!\! ypred \;,\; truth \!\!\! = testdat\$y);$	classified by the decision boundary.	truth
		predict -1 1
		-1 11 1
		1 0 8
#Support vector machine.		
#Generate 2 classes of non-linear boundary observations.		
set.seed (1);		
x=matrix (rnorm (200*2), ncol =2);	Generate 200 normal observations of dimension 2.	
y=c(rep (1,150),rep (2,50));	Set labels of classes. The first 150 data go to Class 1, the	
	remaining 50 data go to Class 2.	
x[1:100,]=x[1:100,]+2;	Change the first 100 data in Class 1.	
x[101:150 ,]= x[101:150 ,] -2;	Change the values of Class 2.	
dat=data.frame(x=x,y=as.factor (y));	Build a data frame.	
		İ
plot(x, col=y);	We see the boundary of the 2 classes is quite irregular.	

	I	
	remaining 100 will be testing data.	
svmfit=svm(y~.,data=dat[train ,],kernel="radial",gamma=1,cost=1);	Perform a radial kernel support vector machine.	
plot(svmfit , dat[train ,]);	Visualize the decision boundary.	
summary (svmfit);	Summary of the model outputs.	
#Choose the best values of parameters gamma and cost, using		
cross-validation.		
tune.out=tune(svm,y~.,data=dat[train ,],kernel="radial",ranges	Run a cross-validation to choose the best parameters	
=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)));	among some candidate values.	
summary (tune.out);	The summary shows the best choice is cost=1,gamma=2.	- best parameters:
		cost gamma
		1 2
	Use the validation set to test the best model	
	(cost=1,gamma=2). We see from the confusion matrix that,	pred
table(true=dat[-train,"y"],pred=predict(tune.out\$best.model,newx=d	39 over 100 data are mistakenly classified by the best	true 1 2
at[-train,]));	model.	1 56 21
		2 18 5
#SVM with multiple classes.		
#When there are more than 2 classes, the svm() function will		
automatically perform multi-class #classification using the		
one-versus-one approach.		
#Generate 3 classes of observations.		
set.seed (1);	Add 50 rows to the previous observations x.	
x=rbind(x, matrix (rnorm (50*2), ncol =2));	Build the third label of class y=0.	
y=c(y, rep (0,50));	Change the values of the third class.	
x[y==0,2]=x[y==0,2]+2;	Set the data as data frame.	
dat=data.frame(x=x, y=as.factor (y));		
par(mfrow =c(1,1));	Plot the observations.	
plot(x,col = (y+1));	Run a radial kernel support vector machine.	
svmfit=svm(y~.,data=dat,kernel="radial",cost=10,gamma=1);	Illustrate the decision boundary.	
plot(svmfit , dat);		
	We see in the function svm(), the argument kernel has	
help(svm);	other options as "polynomial" and "sigmoid". Please try	
	them with your observations.	

17: Unsupervised learning: PCA

Codes	Comments	Results
# Principal component analysis.		
# We perform PCA to "USArrests" data set.		
states =row.names(USArrests);	The rows of the data set are state names.	
states;	Check the names of the 50 states.	
names(USArrests);	Check the variables contained in the data set.	[1] "Murder"
		"Assault"
		"UrbanPop" "Rape"
<pre>pr.out=prcomp(USArrests,scale =TRUE);</pre>	prcomp() function performs PCA to the data set.	
summary(pr.out);	Summary of the outputs. We see there are totally 4	
	components (since p=4). By comparing the	
	proportions of variances, we believe the first 2	
	principal components are the most important to	
	explain tell the dimension of the data set.	
biplot(pr.out, scale =0);	Visualize the first 2 PCs. From the image we see	
	Virginia has every feature in the middle, California	
	has high rate of rape, Mississippi has high rate of	
	murder, etc.	
pr.out\$center;	The means of the 4 crimes.	
pr.out\$scale;	The standard deviations of the 4 crimes.	
pr.out\$rotation;	The corresponding PC loading vectors.	
pr.out\$rotation=-pr.out\$rotation;	Change the directions of PC.	
pr.out\$x=-pr.out\$x;		
biplot (pr.out , scale =0);	Let the coordinates be positive. We reproduce the	
	image.	
names(pr.out);	Check all the output variables of pr.out.	
u=(pr.out\$sdev^2)/sum(pr.out\$sdev^2);	We show the cree plot, which explains how much	
plot(u,xlab="Principal Component",ylab="Proportion of	does each PC explain the variance.	
Variance Explained",ylim=c(0,1),type="b");	does each i e explain the variance.	
plot(cumsum(u), xlab=" Principal Component ",ylab	The cumulative sum of variances explained by the	
="Cumulative Proportion of Variance Explained	first PCs. These images will help us to decide how	
",ylim=c(0,1),type="b");	many PC should be considered in a selected model.	
2 C-1792E 17	,	

18: Clustering analysis

Codes	Comments	Results
#K-means.		

#Example 1: clustering a numerical data set.		
set.seed (2);	Artificially generate 2 groups of data. Each	
x=matrix (rnorm (50*2), ncol =2);	group has 25 observations.	
x[1:25,1]=x[1:25,1]+3;	One has a shift of 3;	
x[1:25,2]=x[1:25,2]-4;	The other one has a shift of -4.	
	Perform a K-means clustering with K=2.	
km.out =kmeans (x,2, nstart =20);	nstart is the number of random assignments	
	run for initial step. If nstart=20, R runs 20	
	times algorithm for 20 different initial	
	clusters, then shoose the best result. So we	
	had better choose a big nstart value.	
km.out\$cluster;	The label of cluster for each observation.	
plot(v.col=/km.out\$cluster±1) main="IV Mages Clustering Page14-	Plot the results. The 2 clusters are of	
plot(x, col=(km.out\$cluster+1), main="K-Means Clustering Results with K=2", xlab ="",ylab="",pch =20,cex =2);	distinct colors.	
with K-2, xiao - ,yiao- ,pcii -20,cex -2);	distilict colors.	
		[1] 97.97927
	We try K-means with K=3.	
set.seed (4);		
km.out = kmeans $(x,3, nstart = 20)$;	Print the results.	
km.out;		
	The total within-cluster sum of squares,	
km.out\$tot.withinss;	which we seek to minimize by performing	
	K-means clustering.	
km.out\$withinss;	The individual within-cluster	
	sum-of-squares.	
#Example 2: Clustering analysis to image data.		
install.packages("ripa");	This package allows to load JPEG and	
library(ripa);	convert image to matrix, and convert matrix	
install.packages("jpeg");	to image.	
library(jpeg);	Download the image data id.jpg from	
img =readJPEG("C:/Users/Peng/Desktop/id.jpg");	Canvas. Convert it into a 3D matrix. The	
	components (fractions) of img correspond	
	to pixels. 0=black, 1=white.	
plot(imagematrix(img));	Convert the matrix img into a picture.	
dim(img);	Check the dimension of img.	[1] 2672 2004
ID=kmeans(img,3);	Perform K-mean with K=3s.	3
C=matrix(ID\$cluster,2004,2672,3);	Create a cluster indices matrix	

	corresponding to each element of img.	
C=t(C);	Transpose C.	
plot(imagematrix(C/3));	Simulate the id.jpg, using labels of clusters.	
	The 3-means assigns each value in C to be	
	among 1,2,3, then C/3 is to make sure that	
	the components are all fractions.	

Hierarchical clustering. hc.complete=hclust(dist(x),method ="complete"); These 3 functions perform the same hc.average=hclust(dist(x),method ="average"); Euclidean distance dist() hierarchical hc.single=hclust(dist(x),method ="single"); clustering, respectively, they plot the hierarchical clustering dendrogram using complete, single, and average linkage clustering. In complete-link (or complete linkage) hierarchical clustering, we merge in each step the two clusters whose merger has the smallest diameter (or: the two clusters with the smallest maximum pairwise distance). In single-link (or single linkage) hierarchical clustering, we merge in each step the two clusters whose two closest members have the smallest distance (or: the two clusters with the smallest minimum pairwise distance). Average-link (or group average) clustering is a compromise between the sensitivity of complete-link clustering to outliers and the tendency of single-link clustering to form long chains that do not correspond to the intuitive notion of clusters as compact, spherical objects. Illustrate the 3 dendrograms. par(mfrow = c(1,3));plot(hc.complete,main="Complete;Linkage",xlab="",sub="",cex=.9); plot(hc.average,main ="Average Linkage",xlab="",sub="",cex=.9); plot(hc.single,main = "Single Linkage",xlab="",sub="",cex=.9); Output the cluster labels for 2 subgroups cutree(hc.complete,2); clustering. xsc=scale (x); One usually scales the data set before running hierarchical clustering.