```
In [1]:
```

import pandas as pd

In [2]:

df=pd.read_csv('C:/shubhangi/2023-24/LP-III_ML/Assignment 1/uber.csv')

In [3]:

df.head()

Out[3]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5

In [4]:

```
df=df.drop(['Unnamed: 0','key','pickup_datetime'],axis=1)
```

In [5]:

df.shape

Out[5]:

(200000, 6)

In [6]:

df.dtypes

Out[6]:

fare_amount float64
pickup_longitude float64
pickup_latitude float64
dropoff_longitude float64
passenger_count int64
dtype: object

In [7]:

set(df.dtypes)

Out[7]:

{dtype('int64'), dtype('float64')}

In [8]:

df.dropna()

Out[8]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3
4	16.0	-73.925023	40.744085	-73.973082	40.761247	5
199995	3.0	-73.987042	40.739367	-73.986525	40.740297	1
199996	7.5	-73.984722	40.736837	-74.006672	40.739620	1
199997	30.9	-73.986017	40.756487	-73.858957	40.692588	2
199998	14.5	-73.997124	40.725452	-73.983215	40.695415	1
199999	14.1	-73.984395	40.720077	-73.985508	40.768793	1

199999 rows × 6 columns

```
In [9]:
df.isnull().sum()
Out[9]:
fare_amount
pickup_longitude
                      0
pickup_latitude
dropoff_longitude
                      0
                      1
dropoff_latitude
                      1
passenger_count
dtype: int64
In [10]:
df['dropoff_longitude'].fillna(value=df['dropoff_longitude'].median(),inplace=True)
In [11]:
df['dropoff_latitude'].fillna(value=df['dropoff_latitude'].mean(),inplace=True)
In [12]:
df.isnull().sum()
Out[12]:
                      0
fare_amount
pickup_longitude
                      0
{\tt pickup\_latitude}
                      0
dropoff_longitude
dropoff_latitude
                      0
                      0
passenger_count
                      0
dtype: int64
In [13]:
import plotly.express as px
In [14]:
fig=px.box(df,y='fare_amount')
In [15]:
fig.show()
```



```
In [16]:
x=df.drop(['pickup_longitude','pickup_latitude','dropoff_longitude','dropoff_latitude'],axis=1)
```

```
7/18/23, 7:06 PM
  In [17]:
  df.describe()[['fare_amount', 'passenger_count']]
  Out[17]:
           fare_amount passenger_count
  count 200000.000000
                         200000.000000
             11.359955
                              1.684535
              9.901776
                             1 385997
    std
```

In [47]:

max

min 25%

50% 75%

import numpy as np

-52.000000

6.000000

8.500000

12.500000

499.000000

0.000000

1.000000

1.000000

2.000000

208.000000

In [48]:

```
def remove_outlier(df1 , col):
   Q1 = df1[col].quantile(0.25)
   Q3 = df1[col].quantile(0.75)
   IQR = Q3 - Q1
   lower_whisker = Q1-1.5*IQR
   upper_whisker = Q3+1.5*IQR
   df[col] = np.clip(df1[col] , lower_whisker , upper_whisker)
   return df1
```

In [49]:

```
def treat_outliers_all(df1 , col_list):
    for c in col_list:
       df1 = remove_outlier(df , c)
    return df1
```

In [50]:

```
df = treat_outliers_all(df , df.iloc[: , 0::])
```

In [52]:

import matplotlib.pyplot as plt

```
In [53]:
```

```
df.plot(kind = "box", subplots = True, layout = (7,2), figsize=(15,20))
Out[53]:
                          Axes(0.125,0.786098;0.352273x0.0939024)
fare_amount
pickup_longitude
                       Axes(0.547727,0.786098;0.352273x0.0939024)
pickup_latitude
                          Axes(0.125,0.673415;0.352273x0.0939024)
dropoff_longitude
                       Axes(0.547727,0.673415;0.352273x0.0939024)
dropoff_latitude
                           Axes(0.125,0.560732;0.352273x0.0939024)
passenger_count
                       Axes(0.547727,0.560732;0.352273x0.0939024)
dtype: object
    20
                                                                       -73.94
    15
                                                                       -73.96
     10
                                                                        -73.98
     5
                                                                       -74.00
                                                                       -74.02
    -5
                                fare_amount
                                                                                                     pickup_longitude
                                                                      -73.925
 40.800
                                                                      -73.950
 40.775
                                                                      -73.975
 40.750
 40.725
                                                                      -74.000
 40.700
                                                                      -74.025
                                                                                                     dropoff_longitude
                               pickup_latitude
  40.80
                                                                            2
  40.75
                                                                            1
  40.70
                               dropoff_latitude
                                                                                                     passenger_count
```

In [54]:

pip install haversine

Requirement already satisfied: haversine in c:\programdata\anaconda3\lib\site-packages (2.8.0) Note: you may need to restart the kernel to use updated packages.

In [56]:

import haversine as hs

In [57]:

```
travel_dist = []
for pos in range(len(df['pickup_longitude'])):
    long1,lati1,long2,lati2 = [df['pickup_longitude'][pos],df['pickup_latitude'][pos],df['dropoff_longitude'][pos],df['dropoff_latitude'][pos],df['dropoff_longitude'][pos],df['dropoff_latitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['dropoff_longitude'][pos],df['drop
```

```
In [58]:
```

```
print(travel_dist)
df['dist_travel_km'] = travel_dist
df.head()
```

IOPub data rate exceeded.

The notebook server will temporarily stop sending output

to the client in order to avoid crashing it.

To change this limit, set the config variable

`--NotebookApp.iopub_data_rate_limit`.

Current values:

NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)

NotebookApp.rate_limit_window=3.0 (secs)

Out[58]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	dist_travel_km
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1.0	1.683325
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1.0	2.457593
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1.0	5.036384
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3.0	1.661686
4	16.0	-73.929786	40.744085	-73.973082	40.761247	3.5	4.116088

In [59]:

```
#Uber doesn't travel over 130 kms so minimize the distance
df= df.loc[(df.dist_travel_km >= 1) | (df.dist_travel_km <= 130)]
print("Remaining observastions in the dataset:", df.shape)</pre>
```

Remaining observastions in the dataset: (200000, 7)

In [60]:

In [61]:

```
df.drop(incorrect_coordinates, inplace = True, errors = 'ignore')
df.head()
```

Out[61]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	dist_travel_km
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1.0	1.683325
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1.0	2.457593
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1.0	5.036384
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3.0	1.661686
4	16.0	-73.929786	40.744085	-73.973082	40.761247	3.5	4.116088

In [62]:

df.isnull().sum()

Out[62]:

```
fare_amount 0
pickup_longitude 0
pickup_latitude 0
dropoff_longitude 0
dropoff_latitude 0
passenger_count 0
dist_travel_km 0
dtype: int64
```

In [63]:

import seaborn as sns

In [64]:

sns.heatmap(df.isnull()) #Free for null values

Out[64]:

<Axes: >

In [65]:

corr = df.corr() #Function to find the correlation
print(corr)

pr inc (corr)				
			oickup_latitude \	
fare_amount	1.000000	0.154069	-0.110842	
pickup_longitude	0.154069	1.000000	0.259497	
pickup_latitude	-0.110842	0.259497	1.000000	
dropoff_longitude	0.218675	0.425619	0.048889	
dropoff_latitude	-0.125898	0.073290	0.515714	
passenger_count	0.015778	-0.013213	-0.012889	
dist_travel_km	0.786385	0.048446	-0.073362	
	dropoff longitude	e dropoff latit	tude passenger co	unt \
fare amount	0.21867	-0.125	898 0.015	778
pickup_longitude	0.425619	0.073	3290 -0.013	213
pickup latitude	0.048889	0.515	714 -0.0128	889
dropoff longitude	1.000000	0.245	6667 -0.0093	303
dropoff latitude	0.245667	7 1.000	9000 -0.0063	308
passenger count	-0.009303	-0.006	308 1.000	900
dist_travel_km	0.155193	L -0.052	2701 0.0098	884
	dist travel km			
fare amount	0.786385			
pickup longitude	0.048446			
pickup latitude	-0.073362			
dropoff_longitude	0.155191			
dropoff_latitude	-0.052701			
passenger count	0.009884			
dist travel km	1.000000			

```
In [66]:
sns.heatmap(df.corr(),annot = True)
Out[66]:
<Axes: >
                                                                                       - 1.0
                               0.15
                                       -0.11
                                                0.22
                                                        -0.13
                                                                0.016
                                                                         0.79
       fare_amount -
                                                                                       0.8
  pickup longitude
                       0.15
                                        0.26
                                                        0.073
                                                              -0.013 0.048
                                                                -0.013 -0.073
                                                                                      - 0.6
                       -0.11
                                               0.049
    pickup_latitude
                               0.26
                                         1
 dropoff_longitude -
                       0.22
                               0.43
                                       0.049
                                                 1
                                                         0.25
                                                               -0.0093 0.16
                                                                                       0.4
   dropoff_latitude
                      -0.13
                              0.073
                                                0.25
                                                          1
                                                                -0.0063 -0.053
                                                                                       0.2
                      0.016
                             -0.013
                                      -0.013 -0.0093 -0.0063
  passenger_count -
                                                                  1
                                                                        0.0099
                                                                                       0.0
                              0.048
    dist_travel_km -
                      0.79
                                       -0.073
                                                0.16
                                                       -0.053 0.0099
                                                                           1
                                pickup_longitude
                                                 dropoff_longitude
                                                         dropoff_latitude
                        fare_amount
                                        pickup_latitude
                                                                  passenger_count
                                                                          dist_travel_km
In [67]:
 x = df[['pickup\_longitude','pickup\_latitude','dropoff\_longitude','dropoff\_latitude','passenger\_count','dist\_travel\_km']] 
y = df['fare_amount']
In [68]:
from sklearn.model_selection import train_test_split
In [69]:
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size = 0.33)
In [70]:
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
In [71]:
regression.fit(X_train,y_train)
Out[71]:

▼ LinearRegression

LinearRegression()
In [72]:
regression.intercept_
Out[72]:
4461.8731571535045
In [73]:
regression.coef_
Out[73]:
array([ 26.29632195, -7.60159329, 19.73368384, -18.21120668,
          0.05898655,
                         1.8490378 ])
```

```
In [74]:
prediction = regression.predict(X_test) #To predict the target values
print(prediction)
[ \ 6.49105246 \ \ 6.92068004 \ \ 5.82905968 \ \dots \ 13.55261447 \ \ 7.52776996
  7.4194044 ]
In [75]:
y_test
from sklearn.metrics import r2_score
In [76]:
r2_score(y_test,prediction)
Out[76]:
0.6475045527243914
In [77]:
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test,prediction)
print(MSE)
10.429294359791001
In [78]:
RMSE = np.sqrt(MSE)
print(RMSE)
3.229441803128058
In [79]:
from sklearn.ensemble import RandomForestRegressor
In [80]:
rf = RandomForestRegressor(n_estimators=100)
In [81]:
rf.fit(X_train,y_train)
Out[81]:
▼ RandomForestRegressor
RandomForestRegressor()
In [84]:
y_pred = rf.predict(X_test)
y_pred
Out[84]:
array([ 6.209, 6.919, 4.642, ..., 15.599, 8.569, 5.437])
In [85]:
R2_Random = r2_score(y_test,y_pred)
R2_Random
Out[85]:
0.7612178302829902
In [86]:
MSE_Random = mean_squared_error(y_test,y_pred)
In [87]:
print(MSE_Random)
7.064855887063792
In [88]:
RMSE_Random = np.sqrt(MSE_Random)
print(RMSE_Random)
2.657979662650524
```

```
In [89]:
print("OK")
OK
In [ ]:
```