1 2D Projective Geometry [18 pts]

- 1. (a) [2 pts] Calculate the line passing through 2 given points: (1) $\mathbf{p}_1 = [3, 4, 1]^T$, $\mathbf{p}_2 = [4, 3, 0]^T$, (2) $\mathbf{p}_1 = [3, 4, 2022]^T$, $\mathbf{p}_2 = [3, 4, -1967]^T$.
 - (b) [2 pts] Calculate the intersection point between 2 given lines: (1) $\mathbf{l}_1 = [3, 4, 1]^T$, $\mathbf{l}_2 = [0, 0, 1]^T$, (2) $\mathbf{l}_1 = [3, 4, 1]^T$, $\mathbf{l}_2 = [3, 4, 2]^T$.

(a) U)
$$\begin{cases}
l_1 = p_1 \times p_2 = \begin{vmatrix} 3 & 4 & 1 \\ 3 & 4 & 1 \\ -7 & 1 \end{vmatrix} = \begin{bmatrix} -3 \\ 4 \\ -7 & 1 \end{vmatrix}$$

$$\begin{cases}
l_2 = p_3 \times p_4 = \begin{vmatrix} 3 & 4 & 2022 \\ 3 & 4 & -196 \end{vmatrix} = \begin{bmatrix} -15956 \\ 11967 \end{bmatrix} = \begin{bmatrix} -15966 \\$$

2. [3 pts] Suppose a conic in 2D projective space is given by $C = lm^T + ml^T$, where l and m are 2 lines. Show that a point belongs to C if and only if it is on m or l.

$$X^{T}(X=0) \mathcal{Q} C = \ell m^{T} + m \ell^{T} =) X^{T}(\ell m^{T} + m \ell^{T}) X = 0$$

$$\Rightarrow X^{T}(X^{T}(m^{T}X + X^{T}m\ell^{T}X = 0)$$

$$m^{T}X = X^{T}m \cdot X^{T}\ell = \ell^{T}X$$

$$\Rightarrow \sum \{X^{T}\ell\}(X^{T}m) = 0 = \} \text{ either } X^{T}\ell = 0 \text{ or } X^{T}m = 0$$

$$\Rightarrow X \text{ is on } m \text{ or } \ell.$$

- 3. [4 pts] Given a transformation $\mathbf{H} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (a) transform a point $\mathbf{p} = [3, 4, 1]^T$,
 - (b) transform a line $\mathbf{l} = [-4, 3, 0]$
 - (c) transform a conic $\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - (d) does this transformation leaves the circular points at infinity unchanged? Explain the reason without calculation.

- - (a) Reflection along a line,
 - (b) Doubling spherical coordinates: $(r, \theta) \rightarrow (2r, 2\theta)$,
 - (c) A picture hanging on a wall and its image taken by a camera,
 - (d) Transformation between these 2 world maps.

- 5. [3 pts] Are these statements true or false?
 - (a) Given a line 1, if both \mathbf{H}_A and \mathbf{H}_B map 1 to $[0,0,1]^T$, then $\mathbf{H}_A\mathbf{H}_B^{-1}$ is an affine transformation.
 - (b) Instead of annotating orthogonal lines, if we annotate multiple pairs of lines that form 45 degree angles in the metric space, we can still calculate C_{∞}^{\star} .
 - (c) If we are allowed to annotate pairs of parallel and orthogonal lines, we need at least 5 pairs of them to calculate C_{∞}^{\star} .

2 3D Projective Geometry [12 pts]

6. [3 pts] Show that the Plucker Representation of a 3D line $\mathbf{L} = \mathbf{x}_1 \mathbf{x}_2^T - \mathbf{x}_2 \mathbf{x}_1^T$ is equivalent to representing the line as $(\tilde{\mathbf{d}}, \tilde{\mathbf{x}} \times \tilde{\mathbf{d}})$, i.e. show they have the same elements up to scale.

Notations: $\tilde{\mathbf{d}}$ is the unit direction vector along the line, and $\tilde{\mathbf{x}}$ is any point on the line. Note that $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{d}}$ are 3-dim Euclidean coordinates while \mathbf{x}_1 and \mathbf{x}_2 are 4-dim homogeneous coordinates.

$$\widehat{d} \triangleq \frac{\widetilde{X}_{1} - \widetilde{X}_{2}}{|\widetilde{X}_{1} - \widetilde{X}_{2}|} = \alpha \begin{bmatrix} X_{1X} - X_{2X} \\ X_{1y} - X_{2y} \\ X_{1z} - X_{2z} \end{bmatrix} \Rightarrow \widetilde{X}_{1} \widetilde{X} \times \widehat{d} = -\alpha \widetilde{X}_{1} \times \widetilde{X}_{2}$$

$$\widehat{X} \triangleq \widetilde{X}_{1} + \widehat{\beta} \widehat{d} = \begin{bmatrix} X_{1X} + \widehat{\beta}(X_{1X} - X_{2X}) \\ X_{1y} + \widehat{\beta}(X_{1y} - X_{2y}) \\ X_{1z} + \widehat{\beta}(X_{1z} - X_{2z}) \end{bmatrix}$$
so the plucter coordinates are.
$$\widehat{d} = A \begin{bmatrix} X_{1X} - X_{2X} \\ X_{1y} - X_{2y} \\ X_{1y} - X_{2y} \\ X_{1y} - X_{2y} \end{bmatrix} \times \begin{bmatrix} X_{1x} + \widehat{\beta}(X_{1x} - X_{2x}) \\ X_{1y} + \widehat{\beta}(X_{1y} - X_{2y}) \end{bmatrix}$$

$$= A \begin{bmatrix} \widehat{X}_{1} + \widehat{\beta}(A_{1x} - X_{2x}) \\ X_{1z} + \widehat{\beta}(X_{1y} - X_{2y}) \end{bmatrix} \times \alpha (\widehat{X}_{1} - \widehat{X}_{2})$$

$$= A \begin{bmatrix} \widehat{X}_{1} + \widehat{\beta}(A_{1x} - X_{2x}) \\ X_{1z} + \widehat{\beta}(X_{2x} - X_{2x}) \end{bmatrix} \times \alpha (\widehat{X}_{1} - \widehat{X}_{2})$$

$$= A \begin{bmatrix} \widehat{X}_{1} + \widehat{\beta}(A_{2x} - X_{2x}) \\ X_{1z} + \widehat{\beta}(A_{2x} - X_{2x}) \end{bmatrix} \times \alpha (\widehat{X}_{1} - \widehat{X}_{2x})$$

$$= -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} - \widehat{\beta} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{1x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} \widehat{X}_{2x} = -\alpha ((1+\widehat{\beta}) \widehat{X}_{2x} - \alpha \widehat{\beta} \widehat{X}_{2x} - \alpha \widehat{\beta}$$

- 7. [2 pts] Suppose U is a 4×4 matrix. $U_{4\times 4} = [u_1, u_2, u_3, u_4]$ and $U^TU = I$.
 - (a) Suppose u_1, u_2, u_3 represent 3 points in the 3D space. What is the plane passing through these 3 points?
 - (b) Suppose u_1 , u_2 , u_3 , u_4 represent 4 points in the 3D space. Let l_1 be the line passing through u_1 , u_2 , and l_2 be the line passing through u_3 , u_4 . Do l_1 and l_2 intersect or not? (Only consider real-number points.)

- 8. [4 pts] (a) Calculate the 3D transformation H that represents the projection onto a plane $\pi = [\mathbf{n}^T, 0]^T$, where $\mathbf{n} = [a, b, c]^T$ is a unit vector.
 - (b) Calculate the 3D transformation **H** that represents the reflection along a plane $\pi = [\mathbf{n}^T, 0]^T$, where $\mathbf{n} = [a, b, c]^T$ is a unit vector.

9. [3 pts] In the lecture, we introduced an algorithm to compute homography between images from 4 pairs of point correspondences. Design an algorithm that instead uses pairs of line correspondences. Write the constraints provided by each correspondence, and how to compute the H that satisfies these.