Code: 397-61105

BEST AVAILABLE COPY PATENT OFFICE PATENT JOURNAL

KOKAI PATENT APPLICATION NO. SHO 57[1982]-21466

Int. Cl.3:

C 09 D 11/00

Sequence Nos. for Office Use:

11/16

7455-4J

7455-4J

Application No.:

Sho 55[1980]-95948

Application Date:

July 14, 1980 .

Publication Date:

February 4, 1982

No. of Inventions:

1 (Total of 4 pages)

Examination Request:

Not requested

RECORDING LIQUID

Inventors:

Masahiro Haruta Canon Inc. 3-30-2 Shimomaruko, Ota-ku, Tokyo

Takwshi Sakata Canon Inc. 3-20-2 Shimomaruko, Ota-ku, Tokyo

Takeshi Yano
Canon Inc.
3-30-2 Shimomaruko,
Ota-ku, Tokyo

Tokuya Ota Canon Inc. 3-30-2 Shimomaruko, Ota-ku, Tokyo

Yoji Matsufuji Canon Inc. 3-30-2 Shimomaruko, Ota-ku, Tokyo

Applicant:

Canon Inc. 3-30-2 Shimomaruko, Ota-ku, Tokyo

Agent:

Giichi Marushima, patent attorney

[There are no amendments to this patent.]

Claim

A type of recording liquid characterized by the fact that chelating is performed in a water-base liquid medium in the presence of a dispersing agent to synthesize a chelate pigment so that fine particles of the aforementioned pigment are dispersed in the aforementioned liquid meium.

Detailed explanation of the invention

This invention pertains to a type of recording liquid using a finely dispersed chelate pigment as the coloring agent. In particular, this invention pertains to a type-of recording liquid appropriate for inkjet recording method.

In the prior art, the recording liquids, that is, inks, used in felt pens, fountain pens, and other handwriting tools, are prepared by dissolving or dispersing various dyes and pigments in a liquid medium made of water or other organic solvent. It is well known that the aforementioned composition is used in the so-called inkjet recording method, in which the liquid in a recording head is ejected from an ejection orifice to make a recording by means of the vibration of a peizoelectric vibrator, the electrostatic attraction of a high voltage applied, or thermal energy. For example, various inks prepared by dissolving or dispersing different types of dyes and pigments in water-base solvents or nonwater-base solvents have been disclosed in Japanese Kokai Patent Application Nos. Sho 50[1975]-91427, Sho 51[1976]-90624, Japanese Kokoku Patent Nos. Sho 51[1976]-40484, Sho 52[1977]-13126; Sho 52[1977]-13127, and Japanese Kokai Patent Application No. Sho 50[1975]-95008. The following are the conditions required for both the recording liquids for pens and the recording liquids for inkjet recorders.

- (1) There should be no clogging at the pen tip or the tip of the orifice due to drying.
- (2) Fixing on the recording materials (paper, cloth, film, etc.), should be fast and with little blotting.
- (3) The recorded image should have a vivid hue and a high density.
- (4) The recorded image should have high water resistance and lightfastness.
- (5) The recording liquid should not corrode the peripheral materials (container, seal; etc.)

(6) The recording liquid should have a high safety with etc.

For the recording liquid for inkjet recorders, it also should have appropriate liquid properties (viscosity, surface tension, electroconductivity, etc.), matched with the ejecting conditions (driving voltage, driving frequency, shape and material of ejection orifice, diameter of orifice, etc.), and should have long-term ejecting stability.

However, it is rather hard to meet all of the above requirements at the same time, and, at this point, the aforementioned conventional technologies are not satisfactory. The dyes and pigments for use in preparing the recording liquids include those disclosed in Japanese Kokoku Patent Application No. Sho 52[1977]-13126, Japanese Kokai Patent Application Nos. Sho 49[1974]-89534, Sho 50[1975]-95008, Sho 53[1978]-77706, and Sho 51[1976]-90624. Usually, for the recording liquids prepared from direct dyes, acidic dyes, basic dyes, and other dyes, there are problems with respect to water resistance and lightfastness of the recorded images. On the other hand, for the recording liquids prepared from pigments, the dispersion stability is poor, and clogging may take place easily.

The purpose of this invention is to solve the aforementioned problems of the conventional technology by providing a type of recording liquid characterized by the fact that it can meet the demands on ejection stability, long-term storage stability, fixing property, as well as density, vividness, water resistance and lightfastness of the images recorded, at the same time, and it also has excellent safety with respect to odor, toxicity,

ignition, etc., so that it is excellent for practical applications.

That is, this invention provides a type of recording liquid characterized by the fact that chelating is performed in a water-base liquid medium in the presence of a dispersing agent to synthesize a chelate pigment so that the fine particles of the aforementioned pigment are dispersed in the aforementioned liquid medium.

That is, this invention provides a type of recording liquid which gives full display to the excellent water resistance and lightfastness of the chelate pigment, improves the dispersing stability, which used to be a disadvantage of the conventional pigment-based recording liquids, can be manufactured in a simple method, and has a high value for practical applications. The recording liquid of this invention is characterized by the fact that a chelate pigment with little solubility is synthesized in a liquid medium containing a dispersing agent, followed by removal of the inorganic salts or other impurities by means of centrifugal isolation method, ultrafiltration method, or reverse osmosis method forming the recording liquid.

Consequently, compared with the conventional case in which an existing pigment is crushed and blended with a dispersing agent and a liquid medium by a ball mill, sand mill, roller mill or other dispersing machine to form the recording liquid, the recording liquid of this invention can realize dispersion of the pigment much finer and much more stable. The orifice diameter of the recording liquid ejecting opening of the pens and inkjet recorders is in the range of tens to hundreds \upsim. On the other hand, for the recording liquid prepared by dispersing a pigment together with a dispersing agent and a liquid medium in a ball

mill or other dispersing machine, the size of the obtained pigment particles is on the order of hundreds of mpm, and there are often larger particles with sizes in the range of a few pm to tens of pm, causing clogging of the ejecting opening of the ink. Even when the larger particles are removed after the ink is manufactured by means of centrifugal isolation, filtration, or other method, because the dispersion state is unstable, particles will again aggregate to form larger particles that precipitate when the ink stands still.

According to this invention, the pigment particles have sizes in the range of 1-100 mm, and no reaggregation takes place during long-term storage. Also, in this invention, in order to further improve the stability in long-term storage, it is preferred that the unreacted intermediates and the inorganic salts formed curing the pigment synthesis process be removed by means of an ultrafiltration method, a conventionally adopted method.

According to this invention, the pigment contained in the recording liquid is synthesized by chelating in a liquid medium in the presence of a dispersing agent. According to this invention, it is preferred that the chelate pigment have little solubility in the liquid medium from the viewpoint of improvement of the water resistance and lightfastness of the recorded images.

Examples of the first component for forming the aforementioned chelate pigment include tannic acid, gallic acid, catechol, pyrogallol, vivicdin [transliteration], oxine, dimethyl glyoxime, bezoinoxime, oxydiphenylamine, aniline sulfate, alizarin, quinalizarin, etc. Examples of other components include metal salts, such as halides, sulfates, nitrates, and acetates of iron, copper, nickel, chromium, cobalt, magnesium, vanadium,

zinc, etc., as well as ammonium metavanadate, etc. When the recording liquid of this invention is prepared, first of all, a prescribed amount of the aforementioned first chelating component is added into a water-base solvent containing a dispersing agent, followed by blending well and dissolution. Then, an aqueous solution of the aforementioned metal salt is added slowly into the obtained solution, and is crushed and blended with the solution. Subsequently, the mixture was processed by a centrifugal isolator, etc., to remove the larger particles that failed to disperse stably in the solvent. In this way, a

In the recording liquid of this invention, the content of the pigment formed by chelating is preferably in the range of 1-30 wts.

The dispersing agents that can be used in this invention include the conventional amionic, nonionic, cationic, and amphoteric surfactants. In particular, the polymeric dispersing agents having molecular weight in the range of 500-100,000 are preferred. Examples of the preferable polymeric dispersing agents with molecular weight within the aforementioned range include polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl pyridine, polyacrylate, polymethacrylate, condensed naphthalene sulfonate, olefin-maleic anhydride copolymers (with olefins including ethylene, styrene, isobutylene, diisobutylene, α -olefin, vinyl ether, etc.), and their derivatives (maleates or amides), polyoxyethylene, polyoxypropylene, polyoxyethylene-polyoxypropylene block polymer, styrene-(meth)acrylic acid (or salt) copolymer, (meth)acrylic ester-(meth)acrylic acid (or salt) copolymer, styrene-itaconic acid (or salt) copolymer,

vinyl naphthalene-maleic anhydride (or salt) copolymer, vinylnaphthalene-(meth)acrylic acid copolymer, vinylnaphthalene-itaconic acid (or salt) copolymer, etc. The polymeric dispersing agents prepared by further copolymerizing the aforementioned polymers with acrylonitrile, vinyl acetate, (meth)acrylamide, N-methylol (meth)acrylamide, vinyl chloride, vinylidene chloride, or other monomers can be used preferably. The aforementioned polymeric dispersing agents may be prepared by radical polymerization or other conventional polymerization method. The commercially available dispersing agents of the aforementioned types may be used in this invention. Examples of the commercially available dispersing agents that can be used include naphthalenesulfonic acid formalin condensate Demol NL (product of Kao Atlas Co., Ltd.); polycarbonate compound Polystar-OM (product of Nippon Yushi K.K.); polyoxyethylene nonyl phenol ether Emulgen (product of Kao Atlas Co., Ltd.) and Nonion NS-230 (product of Nippon Yushi K.K.); polyoxyethylene octadecylamine Naimin [transliteration] S-215 (product of Nippon Yushi K.K.); etc.

The amount of the dispersing agent used in this invention with respect to the pigment is preferably in the range of 1-500 wt%, or more preferably in the range of 5-300 wt%.

The preferable liquid medium for this invention is water or water-base solvent prepared by blending water and a water-miscible organic solvent. Examples of the water-miscible organic solvents that can be used preferably include methyl alcohol, ethyl alcohol, propyl alcohol, diacetone alcohol, furfuryl alcohol, ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, tetraethylene glycol, ethylene glycol,

monomethyl ether, ethylene glycol monoethyl ether, methylcarbitol, ethylcarbitol, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, methylcarbitol acetate, ethylcarbitol acetate, diacetone alcohol, diethanolamine, triethanolamine, formamide, acetamide, dimethylacetamide, etc.

The content of the water-miscible organic solvent in the liquid medium is preferably in the range of 5-80 wt%, or more preferably in the range of 10-50 wt%. The recording liquid of this invention may contain other conventional additives, such as viscosity-adjusting agents, surface-tension-adjusting agents, electroconductivity-adjusting agents, binder, etc.

In the following, this invention will be explained in more detail with reference to application examples. In the application examples, parts refers to parts by weight.

Application Example 1

50 parts of oxine, 100 parts of Demol NL (product of Kao Atlas Co., Ltd.), and 200 parts of diethylene glycol were dissolved in 400 parts of water. The mixture was loaded into an attritor (blender/crusher) and was crushed and blended. Subsequently, a solution prepared by dissolving 25 parts of ferric chloride and 100 parts of diethylene glycol in 225 parts of water was added a little at a time into the aforementioned attritor, followed by further crushing and blending for 2 h. The obtained dispersion was loaded in a centrifugal isolator to remove the particles that were not dispersed, forming a recording liquid.

The physical properties of the recording liquid include a . 10 concentration of the coloring agent of 7 wt%, viscosity of 4 cps, and surface tension of 40 dyne/cm. Using the obtained recording liquid and on an inkjet recorder equipped with an on-demand inkjet head (with ejection orifice diameter of 50 μm , piezoelectric vibrator driving voltage of 60 V, and frequency of 4 kHz), which makes use of a piezoelectric vibrator to eject the recording liquid, studies T_1-T_4 were carried out. Excellent results were obtained for all of them.

- (T_1) Long-term storage property of recording liquid: The recording liquid was sealed in a glass container and was stored at -30°C and 60°C for 6 months, the recording liquid was then observed. No insoluble component was deposited, and there was no change in the properties and hue of the recording liquid.
- (T_z) Ejection stability: At room temperature, 5°C and 40°C, respectively, continuous ejecting was performed for 24 h. Under all of these conditions, it was found that stable high-quality recording could be realized throughout the period.
- (T_3) Ejection response property: 2-sec intermittent ejecting and ejecting after setting for 2 months were studied. It was found that in both cases, there was no clogging at the tip of the orifice, and stable and uniform recording operation could be
- (T₄) Quality of recorded image: The recorded image was found to have a high density and was vivid. Also, after exposing to indoor light for 6 months, the increase in the density is less than 1%. Also, even after the image was dipped in water for 1 min, no blotting of the image was observed.

FEB-25-1998 14:03

Application Example 2

The same items were studied as in Application Example 1 by using the recording liquid in Application Example 1 on an inkjet recorder equipped with on-demand multiheads that generate ink droplets record upon application of thermal energy on the recording liquid inside the recording head (ejection orifice diameter 35 $\mu\text{m}\text{,}$ resistance of the heating resistor of 150 $\Omega\text{,}$ driving voltage of 30 V, and frequency of 2 kHz). It was found that the results were excellent for all of the items.

Application Example 3

Tannic acid: 5 parts

Glycerin: 15 parts

Polystar-OM (product of Nippon Yushi K.K.): 15 parts Water: 25 parts

The above composition was loaded in an attritor for crushing and blending. Then, a solution prepared by dissolving 5 parts of ammon[ium] metavanadate and 10 parts of glycerin in 25 parts of water was added a little at a time into the aforementioned attritor, followed by further crushing and blending for 2 h. The obtained dispersion was loaded in a centrifugal isolator to remove the particles that were not dispersed, forming a recording liquid. The physical properties of the recording liquid include a concentration of the coloring agent of 10 wt%, viscosity of 5 cps, and surface tension of 42 dyne/cm. Using the obtained recording liquid and on the same device as in Application

Example 1, tests were carried out. Excellent results were obtained for all of them.

Application Example 4

For each of the recording liquids prepared in Application Examples 1-3, the following test was performed: The recording liquid was filled in a felt pen, and the cap was then applied. After setting for 1 week, the felt pen was used for handwriting. It was found that smooth writing was realized for all of them [samples of handwriting], and the water resistance and lightfastness were excellent for all of the recorded images.

As explained in the above, the recording liquid of this invention has the following advantages:

- (1) The recording liquid has good long-term storage stability, and clogging of pen tips and orifices hardly takes place.
- (2) The allowance is wide for stable ejection in case of variation in temperature and other driving conditions.
- (3) The recording liquid can fix fast on the recording material, and the image is vivid.
- (4) The printed image has excellent water resistance and lightfastness.
- (5) The recording liquid has a high level of safety, and does not corrode the peripheral materials (container and sealing material). etc.

_---

49 日本国特許庁 (JP)

①特許出願公開

[©]公開特許公報(A)

昭57-21466

⑤Int. Cl.³C 09 D 11/00 11/16

職別記号 101

庁内整理番号 7455—4 J 7455—4 J

> 発明の数 1 審査請求 未請求

> > (全 4 頁)

创記録液

②特 願 昭55—95948

②出 頭 昭55(1980)7月14日

⑩発 明 者 春田昌宏

東京都大田区下丸子3丁目30番 2号キャノン株式会社内

⑫発 明 者 栄田毅

東京都大田区下丸子3丁目30番 2号キャノン株式会社内

¹⁰ 発明者 矢野泰弘

東京都大田区下丸子3丁目30番

2号キャノン株式会社内

70発 明 者 太田徳也

東京都大田区下丸子3丁目30番

2号キヤノン株式会社内

0発 明 者 松藤洋二

東京都大田区下丸子 3 丁目30番

2号キヤノン株式会社内

の出 願 人 キヤノン株式会社

東京都大田区下丸子3丁目30番

2.号

四代 理 人 弁理士 丸島儀一

明 細書

1. 発明の名称

記録液

2. 特許請求の範囲

分散剤の存在する水性液媒体中でキレート化 ・ を為してキレート類料を合成することにより、 前配液媒体中に前記類料の微粒子を分散せしめ て成ることを特徴とする記録液。

3. 発明の詳細な説明

本発明は懲細に分散されたキレート 顔料を色剤とする記録液に関し、特には、インクジェット 記録方式に適した記録液に関する。

ジェット配録方式に於いても上配の様な組成物が使用されることが知られている。例えば特別昭 50 - 91427号、特開昭 51-90624 号、特公昭 51-40484 号、特公昭 52-13126 号、特公昭 52-13127 号、特開昭 50-95008 号に示される様に各種染料飯料を水系または非水系溶媒に発展或いは分散させたものが知られている。 文具用、インクジェット用記録液に共通した好ましい条件としては、

- (I) ペン先またはオリフィス先端での乾燥による目詰りを起さないこと
- (2) 被記録部材(紙、布、フィルム等)に対して定着が速くにじみの少ないこと、
- (3) 記録画像の色調が鮮明で濃度が高いこと、
- (4) 記録画像の耐水性、耐光性が優れていると
- (5) 記録液の周辺材料(容器、シール等)を使さないこと、
- (6) 臭気、毒性、引火性等の安全性の優れたものであること、

等が挙げられる。更にインクジェット用配録液としては、この他に吐出条件(駆動電圧、駆動問放数、吐出オリフィスの形状と材質、オリフィス任等)にマッチした被物性(粘度、表面强力、電導度等)を有しており長期的な吐出安定性を有することが要求される。

本発明は、前述従来例の欠点を除き、吐出安 定性、長期保存安定性、定常性、画像の優度、 鮮明度、耐水性、耐光性を同時に満足し、更に

本発明によれば 顔料粒子径は 1 ~ 1 0 0 ミリミクロンの範囲であり長期保存しても再凝集を起こすことがない。尚、本発明では、長期保存による安定性を一層高めるためには、一般に使用されている限外が過法により顔料合成時に生成する末反応中間体や無機塩類を除去することが望ましい。

は臭気、毒性、引火性等の安全性に優れた実用 性の高い配録液を提供せんとするものである。

そして、斯かる本発明の記録液は、分散剤の存在する水性液媒体中で中レート化を為して中レート朝料を合成することにより、前記液媒体中に前配類料の微粒子を分散せしめて成ることを特徴とする。

即ち、本発明はキレート 顔料の有する優れた 耐水性、耐光性を生かして、従来の顔料 系配録 被の欠点であった分散安定性を改良し、簡便な 方法で製造しうる実用性の高い配録液を提供する。又、本発明の特徴は難溶性の成 レート 顔料を分散剤を含有する液媒中で過去や シート 顔料を分散剤を含有する液媒中で過去や そのままいは、 逸知等の不純物を除去するだ けで配母液とすることにある。

従って、従来技術の様に既存の類料を分散剤や液媒体と共にポールミル、サンドミル、ロールミル等の分散優器で単に混合厚砕して配会液を製造する場合と数べて、はるかに参細で安定

本発明記録液中に含有される顔料は、キレート化によって分散剤の存在する液媒体中に於て合成されるものである。そして、このキレート顔料としては、とりわけ、記録画像の耐水性及び耐光性を向上させる目的上、液媒体に難溶性のものが本発明には好適である。

れた岩液中に前配金属塩の水溶液を徐々に添加しつつ尽砕混合を行なう。 次いで、これを遠心分離根等にかけて、 溶媒中に安定に分散していない組大紋子等を除去した後、 配母液とする。

斯かる記録液に於いて、キレート化による顔料の好ましい含有量は 1 ~ 3 0 重量パーセントである。

ルマリン超合物であるデモールNL(花王丁トラス社製):ポリカルボン酸型化合物であるギリスター OM(日本油脂社製):ポリオモンノールエーテルであるエマルゲン 9 5 0(花王丁トラス社製)、及びノニオン NS-230(日本油脂社製):ポリオ中シエチレンオクタデシルアミンであるナイミーン S-215(日本油脂社製)等がある。

本発明に使用される分散剤の好ましい添加量は顔料分に対して 1 ~ 5 0 0 登量パーセントであり、より好適には 5 ~ 3 0 0 登量パーセントである。

またはアミド等)、ポリオキシエチレン、ポリ オウシブロピレン、ポリオキシエチレンーポリ オキシブロピレンブロックポリマー、スチレン - (メタ)アクリル酸(塩)共貫合体、(メタ) アクリル酸エステルー(メタ)アクリル酸 (塩)共賃合体、 スチ レンーイタコン酸(塩) 共賃合体、イタコン設エステルーイタコン酸 (塩)共貫合体、ピニルナフタレン-無水マレ イン酸(塩)共賃合体、ビニルナフタレンー (メタ)アクリル酸共食合体、ビニルナフタレ ンーイタコン酸(塩)共食合体等である。尚、 上配の頭合体に更に例えばアクリロニトリル、 酢酸ピニル、(メタ)アクリルアミド、N-メ チロール(メタ)アクリルアミド、塩化ヒニル、 塩化ビニリデン、等のモノマーが共頂合されて いる商分子分散剤も好遊に使用できる。 これら の高分子分散剤はラジカル貫合等公知の貫合方 **法により合成される。又、本発明では、この分** 散剤として市販品を用いても良い。市販されて いる分散剤としては、ナフタレンスルホン酸ホ

これらの水混和性有機溶剤の好ましい。合有品は被媒体中5~80 度且パーセントであり、更に好遊には10~50 度且 パーセントである。 尚、本発明の配母液にはこの他に従来公知の結 度四盛剤、妥面張力四盛剤、包導度回逐剤、パインダー等を添加することが出来る。

本発明を以下の突施例で更に詳細に説明する。 数 め、突施例中の部窓は宜量部数である。

突施例 1

この配像液の物性は、溶色剤 Qu 皮的 7 風 分 5 では、 表面 張力 4 0 dy ne/cm であった。 この配像液を用いてビエン 提 働 子によって配 の た で せ 出 さ せ る オ ン デ マ ン ド 型 イ ン ク ジ エ ッ ト に 母 な 飲 4 KHz)を 有 す な け こ ク ジ エ ッ ト に 母 を 位 に よ り 、 T₁ ~ T₄ の 検 け た っ た と こ ろ 、 い ず れ も 良 好 な 結 果 を 将 た 。 (T₁) 記 録 液 の 長 期 保 存 性 : 配 録 液 を ガ ラス

ッド(吐出オリフィス径35μ、発熱抵抗体抵抗値150Ω、駆励電圧30 V、周波数2 KHz)を有するインクシェット配録装置を用いて突施例1と同様の検討を行なったが、何れに於ても低れた結果を得た。

突施例 3

 タンニン酸
 5 部

 グリセリン
 1 5 ・

 ポリスター O M (日本油脂社銀)
 1 5 ・

 水
 2 5 ・

容器に密閉し、 - 3 0 でと 6 0 でで 6 ヵ月間保存したのちでも不溶分の折出は認められず、液の物性や色調も変化がなかった。

(T2)吐出安定性:室温、5 ℃、4 0 ℃の雰囲気中でそれぞれ 2 4 時間の逆続吐出を行なったが、いずれの条件でも終始安定した髙品質の配像が行なえた。

(Ts)吐出応答性: 2 秒毎の間歇吐出と2 ヵ月間放置後の吐出について調べたが、いずれの場合もオリフィス先端での目詰りがなく安定で均一に配録された。

(T4)配係面像の品質:配母された面像は母 度が高く鮮明であった。又、室内光に6ヵ月さ らしたのちの辺度の低下率は1 多以下であり、 また、水中に1分間浸した場合、面像のにじみ は全く見られなかった。

突施例 2

突施例1の配母液を用いて、配録ヘッド内の 配母液に除エネルギーを与えて液滴を発生させ 配母を行なうオンディマンドタイプのマルチへ

いずれに於ても任れた結果が得られた。 突施例4

突施例1及び3で得られた各記録液を個別にフェルトペンに充切しキャップをとって 1 週間放 登後に整記したところ、いずれもスムーズに 毎記ができ、配録画像の耐水性、耐光性はきわめて低れていた。

以上説明した様に本発明の記録液には、

- (1) 液の長期保存安定性が良好で、ベン先やオリフィスの目詰りを起しにくい。
- (2) 温度や区顷条件の変荷に対して、安定吐出のアローワンスが広い。
- (3) 被配贷部材への定 が 遊く、 画 像 は 鮮明である。
- (4) 印字物の耐水性、耐光性が極めて良好である。
- (5) 配象液の安全性が高く、周辺材料(容器、 シール材料)を促さない。

等の利点がある。