Ladder Problem Analysis Assignment

Student Workbook

July 17, 2025

Problem Analysis Guide

Given the ladder problem solution, complete the following analysis steps to deepen your understanding of the problem-solving process.

Part 1: System Visualization (20 points)

- 1. Draw a detailed system diagram showing:
 - The ladder's position relative to the house
 - The person's position on the ladder
 - All relevant dimensions
 - The center of mass of the ladder
 - System boundaries clearly defined
- 2. Create a Free Body Diagram (FBD) showing:
 - All forces acting on the ladder
 - Proper force vectors with labels
 - The angle θ between the ladder and the ground
 - The coordinate system you're using
- 3. Identify and list all known quantities with their units:
 - \bullet Mass of person = ____ kg
 - \bullet Mass of ladder = ____ kg
 - \bullet Length of ladder = _____ m
 - Distance from wall = $\underline{\hspace{1cm}}$ m
 - Height of person on ladder = _____ m
 - \bullet Center of mass location = _____ m

Part 2: Mathematical Analysis (40 points)

4. Show the step-by-step calculation of the angle θ :

$$\theta = \arccos\left(\frac{2}{6}\right) = \underline{\hspace{1cm}}^{\circ}$$

5. Write out the three equilibrium equations with proper units:

- Sum of forces in x-direction:
- Sum of forces in y-direction: _____
- Sum of torques about the bottom of the ladder: _____
- 6. Show the complete algebraic steps to find N starting from:

$$f = \left(\frac{1}{2}w + \frac{1}{3}W\right)\sin\theta\cos\theta = (w + W - N)\tan\theta$$

Include units in each step.

7. Calculate the weights w and W with proper units:

$$w = \underline{\hspace{1cm}}$$
 $W = \underline{\hspace{1cm}}$

Part 3: Final Calculations (40 points)

8. Show the detailed calculation of N with units:

$$N = \left(1 - \frac{\cos^2 \theta}{2}\right) w + \left(1 - \frac{\cos^2 \theta}{3}\right) W$$

$$= \frac{1}{2} \frac{1}{2$$

9. Calculate f showing all steps and units:

$$f = (w + W - N) \tan \theta$$

$$= \frac{1}{M}$$

10. Calculate N' showing all steps and units:

$$N' = \frac{f}{\sin \theta}$$

$$= \frac{1}{100}$$

11. Calculate the magnitude of the total force at the bottom:

$$F_{
m bottom} = \sqrt{f^2 + N^2}$$

$$= \frac{1}{N}$$

Analysis Questions (Bonus: 10 points)

- a. Why is the force at the top (N') much smaller than the force at the bottom?
- b. How would the forces change if the angle θ were smaller?
- c. Why is it important that the rain gutter is assumed to be frictionless?
- d. What assumptions are we making about the ladder's structure in this problem?