Question 1

What would be the derivative of the function $f(x) = \sin x$?

j'be) = lim	flx+x).	- f (x)	min(A+B) =	
1 1→0	h		01m(A)(0	S(B)+
= lim	pintz+	1) - sinz	/Cos	(A) sin(3)
<i>~</i> →0		h		•
= lim	printed cost	h) + cus la) sm t	15 A :	= x = h
4-30		h		
- lim	oinse (co	sh-1) + 0	ioshilisin h	
^ →)		sh-1) + C		
= lim	pinz	cost-1	cosx sint	^
~	0	105h-1 +	- &	
			A= 1/	z
Here him cosh-1	= O ,	How?	Din2A=	1- cos(zA)
~30 h				2
lun cost	-1 _ lim	- 20in 2 (h)	2) = len-1	(2/2).on/h2
4->0 4	T 1.5	0 4	450	4/2
			=(1).0	. 1=0]
				_
= lim ai	oa cosh-	1) + lim	cosx sinh	
~ →0	- (n	1 450		1
= nnx	lim west	P + 105	x lim six	R
	1-30 4		130	h
= Cosx				

	the derivative of $f(x) = x^{-} \sin(x)$.
d	$(a^2 sinz) = \frac{d}{dx} (z^2) sinz + ze^2 \frac{d}{dx} (sinz)$
012	= 22 sma + sc2 cossc.
	= 22 gima + 36 (0556)
	= 26 (69572 + 260526)

Compute the derivative of

•
$$f(x) = \frac{1}{\sin x}$$
. $= cosecut$

•
$$f(x) = \frac{1}{\cos x}$$
.

•
$$f(x) = \frac{1}{\tan x}$$
. $=$ cotang

•
$$f(x) = (1)/(\cos x) - (1) \cdot (\cos x)$$

$$= \frac{2inx}{105^{2}n} = \frac{2inx}{105x} = \frac{1}{105x} = \frac{1}{105x}$$

$$= \frac{-\sin^2 x}{\sin^2 x}$$

$$= \frac{-\sec^2 x}{\int \cos^2 x}$$

$$= \frac{-\frac{1}{105^2 x}}{\sin^2 x} = -\frac{1}{\cos^2 x} = -\cos^2 x$$

$$= \frac{-\sin^2 x}{\cos^2 x}$$

Compute the derivative of $f(x) = \frac{\sec x}{1 + \tan x}$.

· Quotrent rule first
· Apply the formulas for the derivative of trig. Jets.
1'(2) = (nuex) (1+tanz) - prese (1+tanz)

 $|+\tan x|^2 = \frac{(|+\tan x|^2)^2}{(|+\tan x|^2)^2}$

 $= \frac{\text{sucse}(tanse-1)}{(tanse+1)^2}$

Suppose that a the volume of a balloon is given by $V(r):=\frac{4\pi}{3}r^3$ where r is the radius of the balloon. You inflate air in such a way that $r(t)=(t^2+1)$ where t is the time (in seconds) after you started to inflate the balloon.

• What is the speed at which the volume increases?

V(r)=	4	(t7+1)3	~v	ارا می ح
	3			

Find F'(x) if $F(x) = \sqrt{x^2 + 1}$.

$$y(h) = \sqrt{x} = x^{1/2}$$
, $f(x) = x^{2+1}$
 $f(h) = \sqrt{x}$, $g(h) = x^{2+1}$

$$= \frac{1}{2} \left[\frac{1}{2} \sin^2 \left(\frac{1}{2} \right) \right]^{n/2-1} \cdot (2n)$$

$$=\frac{1}{2}(\pi^2+1)^{-1/2}\cdot 2/\pi$$

$$y' = 100 (ghi)^{100-1} - g'(x)$$

$$= 100(x^{3}-1)^{99} \cdot (3x)$$

$$= 300x(x^{3}-1)^{99}$$

Let $x^3 + y^3 = 6xy$ be the folium of Descartes.

- a) Find y'.
- b) Find the equation of the tangent line passing through the point P = (3,3).

$$\Rightarrow$$
 $3x^2 + 3y^2 \cdot y' = le[y + xy]$

=>
$$3y^2y^1 - lexy^2 = ley - 3x^2$$

=>
$$y' = \frac{\log - 3x^2}{3y^2 - 4x}$$
.

$$m = y'$$
 = $\frac{(2 \cdot 3 - 3 \cdot 3^2)}{(2 \cdot 4) = (3 \cdot 3)} = \frac{9}{3 \cdot 9 - (2 \cdot 3)} = \frac{9}{9} = -1$

$$3=T(3)=-1-3-16$$
 => $b=6$
 50 ,

Example 16 Reprove that if $y = \tan x$, then $y' = \sec^2 x$.