Support Vector Machines Optimization DMKM

Carlos López Roa me@mr3m.me

December 17, 2015

Abstract

We used a Support Vector Machine (SVM) to train $_3$ a binary classifier.

Introduction

Given a m vectors in \mathbb{R}^n represented in the ma- $\lim_{x \to \infty} A \in \mathbb{R}^{m \times n}$ labeled by the binary vector \hat{y} with $\hat{y}_i \in \{-1, 1\}$, we can construct the linear kernel $\sup_{x \to \infty} 10^{10}$ problem:

Problem 1

$$\min_{\substack{\omega,\gamma,y\\ s.t.}} \quad \nu e^T y + \frac{1}{2} \omega^T \omega
s.t. \quad D \times (A\omega - e\gamma) + y \ge e
\qquad y > 0.$$
(1)

With $\omega \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$, $y \in \mathbb{R}^m$, $e = \mathbf{1} \in \mathbb{R}^m$, $\nu > 0$ and $_6^5$

Recall $||x||_2^2 = \langle x, x \rangle = x^T x$. The solution of problem ⁸ 1 defines a hyperplane

$$x^T \omega = \gamma, \tag{2}_{11}$$

which separate the points represented in matrix A_{13} into two semispaces.

Thus we are to evaluate the error of the classifier using the formula

$$\epsilon = \frac{1}{2m} \sum |\operatorname{sign}(A\omega - \gamma) - \hat{y}| \tag{3}$$

Implementation

We chose to implement the CVX solver in Matlab 2011a 7.12.0.635.

First we generated the data using the provided binary of sizes 10^1 , 10^2 , 10^3 , 10^4 , with seed 26071991.

Then we parsed the output into txt files using the supplied code in python, removing the special cases marked with * as follows

The following is to call the solver in Matlab

Where we used the best ν we could find discussed in the results.

Results

To choose the best ν in order to minimize the error trying not to overfit, we explored the parameter iterating on the range $\{2^i\}_{i=-9}^{10}$ exhibiting the result shown in figure 1. We chose the minimum ν in the sweet zone, that is $\nu = 2^{-3}$

Using this parameter we chose to train a 10^3 sample size and test in a 10^4 sample size, that is training with just 10% of the sample.

Figure 1: Behaviour of the error as a function of the parameter ν we observe a *sweet* zone in which the error stays low, before going up again.

The results as follows:

m	ϵ [%]
10^{3}	4.8
10^{4}	5.0

That is, the sample set exhibited 95.2% accuracy and the test set 95% using only 10% of the set to train.

Conclusions

- 1. We implemented a linear kernel suppor vector machine to classify a binary labeled set in \mathbb{R}^4
- 2. We explored the normalization parameter of the model to minimize the error still avoiding over-fitting.
- 3. We trained the model using only 10% of the test set and got accuracy of 95%