Design of a drift chamber tracking system for the IDEA experiment at FCC-ee

N. Alipour Tehrani (CERN), B. Hegner, F. Grancagnolo, P. Janot, A. M. Kolano, G. F. Tassielli, G. Voutsinas

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference

10 - 17 November 2018, International Convention Center Sydney, Australia

The Future Circular Collider Experiment (FCC)

- A future possibility for the post-LHC era
- 3 options of circular colliders
 - FCC-ee: electron positron collisions
 - FCC-hh: proton proton collisions
 - FCC-eh: electron proton collisions
- \sim 100 km tunnel in Geneva area
- FCC-ee collider parameters:

Stages	Z	WW	H (ZH)	tī
Beam energy [GeV]	45.6	80	120	182.5
Average bunch spacing [ns]	19.6	163	994	3396

FCCSW: Physics and Detector simulations with FCCSW

- Common software for all FCC experiments (ee, hh & eh) [3]
- Detector and physics studies
 - Fast & full simulations
 - One software stack from event generation to physics analysis
- Collaborative approach with other CERN experiments
 - Gaudi from LHC [1]
 - DD4hep [2] from CLIC & LHCb
 - New solutions where needed
- The simulation pipeline

Geometry	Segmen-	Geant4	Digiti-
DDhep	tation	simulation	zation

The IDEA detector concept for FCC-ee

- The IDEA detector is one of the two detector concepts for the FCC-ee
- Ultimate goal for the IDEA detector concept
 - Vertex detector: MAPS
 - Ultra-light drift chamber with particle identification
 - Double readout calorimetry
 - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to increase the forward coverage
 - 2 T solenoidal magnetic field
 - Instrumented return yoke
 - Large tracking volume (R \sim 8 m) for very weakly coupled (long-lived) particles

Tungsten Shielding

Solenoid Shielding

Beam Pipe

Vertex Detector

Luminosity Calorimeter

The drift chamber

- The gas volume is divided into a set of hyperboloid layers.
- Each layer contains one sensitive wire for signal acquisition.
- Field wires surround the sensitive wires to provide homogeneous electric field for each cell.
- The wires are rotated with a stereo angle of 0.1 radians to improve the longitudinal resolution along them.
- The parameters of the drift chamber

90 % Helium & Gas 10 % isobutane (C_4H_{10}) Length 4500 mm Inner radius 345 mm Outer radius 2000 mm Nb. layer 112 Cell size 12 mm - 14.7 mm Number of sensitive wires 56448 Single cell resolution 0.1 mm Longitudinal resolution

The simulation of the drift chamber with FCCSW

- The first layer of the drift chamber with wires rotated with a certain stereo angle.
- The DD4hep segmentation (DDSEGMENTATION) is responsible to associate a hit to the wire it drifts to.
- Wires are illustrated using different colors.

- The coverage of the drift chamber as a function of the polar angle θ is investigated using FCCSW.
- High coverage in the barrel region by \sim 112 wires in average.
- In the forward region, silicon disks are foresean to increase the number of layers measuring the tracks.

Beam-induced backgrounds and the impact on the drift chamber

- Three main sources of beam-induced backgrounds at FCC-ee [4]
 - **Incoherent** e^+e^- **pairs** due to bremstrahlung photons \Rightarrow highest source of background
 - $\gamma\gamma \rightarrow$ hadrons \Rightarrow Expected to have a very low impact
 - Synchrotron radiation (SR) \Rightarrow Dictates the design of the interaction region (IR)
 - Defines the beampipe radius, the design of the shielding (in Tungesten)
 - Mostly stopped by the shielding, few SR photons can hit the detector
- The trajectory of the e^+e pairs in a 2 T magnetic field (using helix extrapolation).
- Simulation of the hits produced in the drift chamber due to incoherent e^+e^- pairs (using FCCSW)

5
4
— Top Stage
3
2
1
0
0
20
40
60
80
100
Layers

Conclusions

- The overall impact remains low and the results are promising for the track reconstruction with this detector.
- Summary of the occupancy of the drift chamber due to the beam-induced backgrounds

Background	Average occupancy		
	$E_{cm} = 91.2 \text{ GeV}$	$E_{cm} = 365 \text{ GeV}$	
e^+e^- pair background	1.1%	2.9%	
$\gamma\gamma ightarrow {\sf hadrons}$	0.001%	0.035%	
Synchrotron radiation	_	0.2%	

References

- G. Barrand et al. "GAUDI A software architecture and framework for building HEP data processing applications". In: Comput. Phys. Commun. 140 (2001), pp. 45–55. DOI: 10.1016/S0010-4655(01)00254-5.
 - M. Frank, F. Gaede, and P. Mato. "DD4hep: A Detector Description Toolkit for High Energy Physics Experiments". In: J. Phys.: Conf. Ser. 513.AIDA-CONF-2014-004 (2013), p. 022010. URL: http://cds.cern.ch/record/1670270.