Chapter 1

Proposition 1.1

Let $\mathcal{M}(\mathcal{F})$ be the σ -algebra generated by $\{$, if \mathcal{E} is a subset of $\mathbb{P}(X)$, with $\mathcal{E}\subseteq\mathcal{M}(\mathcal{F})$, then $\mathcal{M}(\mathcal{E})\subseteq\mathcal{M}(\mathcal{F})$.

Proof. Notice that because $\mathcal{E} \subseteq \mathcal{M}(\mathcal{F})$,

$$\mathcal{M}(\mathcal{F}) \in \{\mathcal{M}, \mathcal{E} \subseteq \mathcal{M}, \mathcal{M} \text{ is a } \sigma\text{-algebra}\}\$$

Taking the intersection, noting that $\mathcal{M}(\mathcal{E})$ is the intersection of all σ -algebras containing \mathcal{E} as a subset, we have

$$\bigcap \{\mathcal{M}(\mathcal{F})\} \supseteq \bigcap \{\mathcal{M}, \mathcal{E} \subseteq \mathcal{M}, \mathcal{M} \text{ is a } \sigma\text{-algebra}\}$$

And

$$\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$$

Updated 2023-12-05 at 17:47

Proposition 1.2

The Borel σ -algebra of \mathbb{R} , \mathbb{B} is generated by the following

- The family of open intervals $\mathcal{E}_1 = \{(a, b), a < b\},\$
- The family of closed intervals $\mathcal{E}_2 = \{[a, b], a < b\},\$
- The family of half-open intervals $\mathcal{E}_3 = \{(a,b], a < b\}$ or $\mathcal{E}_4 = \{[a,b), a < b\}$
- The open rays $\mathcal{E}_5 = \{(a, +\infty), a \in \mathbb{R}\}\ \text{or}\ \mathcal{E}_6 = \{(-\infty, a), a \in \mathbb{R}\}\$
- The closed rays $\mathcal{E}_7 = \{[a, +\infty), a \in \mathbb{R}\}\ \text{or}\ \mathcal{E}_8 = \{(-\infty, a], a \in \mathbb{R}\}\$

Proof. By definition, \mathbb{B} is generated by the family of all open sets in \mathbb{R} , but every open set is a countable union of open intervals. Therefore

$$\mathcal{T}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E}) \Longrightarrow \mathbb{B} \subseteq \mathcal{M}(\mathcal{E})$$

Conversely, every open interval is an open set, hence

$$\mathcal{E}_1 \subseteq \mathcal{T}_{\mathbb{R}} \subseteq \mathbb{B} \implies \mathcal{M}(\mathcal{E}) \subseteq \mathbb{B}$$

Every closed interval can also be written as a countable intersection of open intervals, for every [a, b], with a < b, we have

$$[a,b] = \bigcap_{n \ge 1} (a - n^{-1}, b + n^{-1}) \tag{1}$$

Indeed, fix any $x \in [a, b]$ then for every $n \ge 1$,

$$a - n^{-1} < a < x < h < h + n^{-1}$$

So $x \in \bigcap_{n \ge 1} (a - n^{-1}, b + n^{-1})$. If x an element of the left member, then for every $n \ge 1$,

$$a-n^{-1} < x \implies a-x \le 0$$

Similarly for $x \le b$, therefore equation (1) is valid, and $\mathcal{E}_2 \subseteq \mathbb{B} = \mathcal{M}(\mathcal{E})$. To show the reverse estimate, every open interval can be written as a countable union of closed intervals,

$$(a,b) = \bigcup_{n \ge 1} [a+n^{-1}, b-n^{-1}]$$
 (2)

To show that the above estimate is indeed true, fix any $x \in (a, b)$, then

$$a < x < b \iff a < a + n^{-1} \le x \le b - n^{-1} < b$$

 $\iff x \in \bigcup_{n \ge 1} [a + n^{-1}, b - n^{-1}]$

So that equation (2) holds. By similar argumentation we have $\mathcal{E}_1 \subseteq \mathcal{M}(\mathcal{E}) \Longrightarrow \mathcal{M}(\mathcal{E}) = \mathcal{M}(\mathcal{E})$.

For \mathcal{E}_3 , \mathcal{E}_4

- $(a,b] = \bigcap_{n\geq 1} (a,b+n^{-1})$, proves $\mathcal{M}(\mathcal{E}_3) \subseteq \mathcal{M}(\mathcal{E}_1)$,
- $(a,b) = \bigcup_{n\geq 1} (a,b-n^{-1}]$, proves $\mathcal{M}(\mathcal{E}_1) \subseteq \mathcal{M}(\mathcal{E}_3)$,
- $[a,b] = \bigcup_{n\geq 1} [a,b-n^{-1}]$, proves $\mathcal{M}(\mathcal{E}_4) \subseteq \mathcal{M}(\mathcal{E}_2)$,
- $[a,b] = \bigcap_{n\geq 1} [a,b+n^{-1})$, proves $\mathcal{M}(\mathcal{E}_2) \subseteq \mathcal{M}(\mathcal{E}_4)$

So that $\mathcal{M}(\mathcal{E}_1) = \mathcal{M}(\mathcal{E}_2) = \mathcal{M}(\mathcal{E}_3) = \mathcal{M}(\mathcal{E}_4) = \mathbb{B}$. By taking complements of each element we get $\mathcal{M}(\mathcal{E}_5) = \mathcal{M}(\mathcal{E}_8)$ and $\mathcal{M}(\mathcal{E}_6) = \mathcal{M}(\mathcal{E}_7)$. Notice also that

- $(a,b] = (a,+\infty) \cap (-\infty,b]$, proves $\mathcal{E}_3 \subseteq \mathcal{M}(\mathcal{E}_5)$, and $\mathcal{M}(\mathcal{E}_3) \subseteq \mathcal{M}(\mathcal{E}_5)$.
- $(a, +\infty) = \bigcup_{n \ge 1} (a, a + n]$, proves $\mathcal{E}_5 \subseteq \mathcal{M}(\mathcal{E}_3)$, and $\mathcal{M}(\mathcal{E}_5) \subseteq \mathcal{M}(\mathcal{E}_3)$.
- $[a,b) = [a,+\infty) \cap (-\infty,b)$, proves $\mathcal{E}_4 \subseteq \mathcal{M}(\mathcal{E}_6)$, and $\mathcal{M}(\mathcal{E}_4) \subseteq \mathcal{M}(\mathcal{E}_7)$,
- $[a, +\infty) = \bigcup_{n \ge 1} [a, a+n)$, proves $\mathcal{E}_7 \subseteq \mathcal{M}(\mathcal{E}_4)$, and $\mathcal{M}(\mathcal{E}_7) \subseteq \mathcal{M}(\mathcal{E}_4)$.

Finally, $\mathcal{M}(\mathcal{E}_3) = \mathcal{M}(\mathcal{E}_5) = \mathcal{M}(\mathcal{E}_8) = \mathbb{B}$ and $\mathcal{M}(\mathcal{E}_4) = \mathcal{M}(\mathcal{E}_6) = \mathcal{M}(\mathcal{E}_7) = \mathbb{B}$.

Proposition 1.3

If A is countable, then $\otimes_{\alpha \in A} \mathfrak{M}_{\alpha}$ is the $\sigma\text{-algebra generated}$ by

$$W \stackrel{\Delta}{=} \left\{ \prod_{\alpha \in A} E_{\alpha}, E_{\alpha} \in \mathcal{M}_{\alpha} \right\}$$

Proof. We agree to define

$$V \stackrel{\Delta}{=} \left\{ \pi_{\alpha}^{-1}(E_{\alpha}), E_{\alpha} \in \mathcal{M}_{\alpha} \right\}$$

By definition, V generates $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$. Fix any element in $x = \pi_{\alpha}^{-1}(E_{\alpha}) \in V$, then

$$\pi_{\alpha}(x) \in E_{\alpha}, \, \pi_{\beta \neq \alpha}(x) \in X_{\beta}$$

Then $x \in W$ if we choose $x = \prod_{c \in A} E_c$, for $E_c = E_\alpha$ if $c = \alpha$, and $E_c = X_c$ if $c \neq \alpha$.

Proposition 1.4

Proposition 1.5

Proposition 1.6

Proposition 1.7

Proposition 1.8

Proposition 1.9

Proposition 1.10

Proposition 1.11: Caratheodory's Theorem

If μ^* is an outer measure on **X**, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

Proof. We quote the definition for a set $A \subseteq X$ to be μ^* measurable. For any $E \subseteq X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A) \tag{3}$$

- Show \mathcal{M} is an algebra.
- μ^* is finitely additive on \mathcal{M} .
- \mathcal{M} is closed under countable disjoint (this makes \mathcal{M} a sigma algebra, since it is an algebra that is closed under countable disjoint unions)

Lemma 1.1

The family of μ^* -measurable sets is an algebra.

Proof of Lemma 1.1. Clearly \mathcal{M} is closed under complements. To show that it is a σ -algebra, and if $A, B \in \mathcal{M}$, then $\left\{\underbrace{E \cap A}_{1}, \underbrace{E \setminus A}_{2}\right\} \subseteq \mathbb{P}(\mathbf{X})$. And because B is μ^{*} -measurable,

$$\mu^*(E) = \underbrace{\mu^*(E \cap A \cap B) + \mu^*(E \cap A \setminus B)}_{1} + \underbrace{\mu^*(E \cap B \setminus A) + \mu^*(E \setminus (A \cup B))}_{2}$$

By subadditivity of μ^* , $A \cup B = A \cap B + A \setminus B + B \setminus A$ with + denoting the disjoint union, hence

$$\mu^*(E \cap (A \cap B)) \le \mu^*(E \cap (A \cap B)) + \mu^*(E \cap (A \setminus B)) + \mu^*(E \cap (B \setminus A))$$

and

$$\mu^*(E) \geq \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B))$$

Lemma 1.2

 μ^* is finitely additive on \mathcal{M} , the family of μ^* -measurable sets.

Proof of Lemma 1.2. Let A, B be disjoint μ^* -measurable sets. It suffices to show $\mu^*(A \cup B) \ge \mu^*(A) + \mu^*(B)$, as the reverse estimate follows from subadditivity. From Lemma 1.1, $A \cup B \in \mathcal{M}$, so

$$\mu^*(A \cup B) = \mu^*(A \cup B \cap A) + \mu^*(A \cup B \setminus A)$$
$$= \mu^*(A \cup \emptyset) + \mu^*(A \setminus A \cup B \setminus A)$$
$$= \mu^*(A) + \mu^*(B)$$

Corollary 1.1

If $\{A_j\}_{j\geq N}\subseteq \mathcal{M}$ is a finite disjoint family, then

$$\mu^* \Big(\bigcup A_{j \le N} \Big) = \sum \mu^* (A_{j \le N})$$

Lemma 1.3

Let $\{A_j\}_{j\geq 1}$ be a countable disjoint sequence in \mathcal{M} , and denote $B_n = \bigcup A_{j\leq n} \in \mathcal{M}$ by Lemma 1.1. For every $E \subseteq X$,

$$\mu^*(E \cap B_n) = \sum \mu^*(E \cap A_{j \le n})$$

Proof of Lemma 1.3. We will proceed by induction. If n = 1 then we have equality, suppose the result holds for $n \in \mathbb{N}^+$, and $A_{n+1} \in \mathcal{M}$ so

$$\mu^*(E \cap B_{n+1}) = \mu^*(E \cap B_{n+1} \cap A_{n+1}) = \mu^*(E \cap B_{n+1} \setminus A_{n+1})$$
$$= \mu^*(E \cap A_{n+1}) + \mu^*(E \cap B_n)$$
$$= \sum_{j \le n+1} \mu^*(E \cap A_j)$$

as
$$A_i \cap A_{n+1} = \emptyset \iff A_i \setminus A_{n+1} = A_i$$
, and $B_n \cap A_n = A_n \iff A_n \subseteq B_n$.

To show \mathcal{M} is a sigma-algebra, fix any disjoint sequence $\{A_j\}_{j\geq 1}\subseteq \mathcal{M}$, and denote B_n as in lem. 1.3. Define $B=\bigcup A_{j\geq 1}\supseteq B_n$ and for every $n\geq 1$, we have

$$\mu^*(E) = \mu^*(E \cap B_n) + \mu^*(E \setminus B_n)$$

$$= \sum \mu^*(E \cap A_{j \le n}) + \mu^*(E \setminus B_n)$$

$$\geq \sum \mu^*(E \cap A_{j \le n}) + \mu^*(E \setminus B) \qquad \text{since } B_n \subseteq B \iff B^c \subseteq B_n^c$$

$$\geq \sup_n \left[\sum \mu^*(E \cap A_{j \le n}) \right] + \mu^*(E \setminus B)$$

Let $J \subseteq \mathbb{N}^+$ be a finite non-empty set. And $\sup J \in \mathbb{N}^+$, $\sup J < +\infty$. By the Archmedean Property we can find a large $N \in \mathbb{N}^+$, with N > J so that

$$\sum_{j \in J} \mu^*(E \cap A_j) \leq \sum_{j \leq N} \mu^*(E \cap A_j)$$

Applying the estimate $\sup_n \left[\sum \mu^*(E \cap A_{j \le n}) \right] + \mu^*(E \setminus B) \le \mu^*(E)$ reads

$$\left[\sum_{j\in J}\mu^*(E\cap A_j)\right]+\mu^*(E\setminus B)\leq \mu^*(E)$$

Now by Chapter 0, the infinite sum

$$\sum_{j\geq 1} \mu^*(E \cap A_j) = \sup \left\{ \sum_{j\in J} \mu^*(E \cap A_j), J \subseteq \mathbb{N}^+, 0 < |J| < +\infty \right\}$$

and $\bigcup A_{j\geq 1}=B$ is μ^* -measurable. Since $\mu^*(\emptyset)=0$, and μ^* is countably additive on \mathcal{M} , (perhaps by replacing E with the union over all disjoint sets), μ^* is a measure on \mathcal{M} . To show μ^* is a complete measure, fix $A\in\mathcal{M}$ where $\mu^*(A)=0$. Then any $B\subseteq A$ is also null, and for $E\subseteq X$,

$$\mu^*(E) \ge \underbrace{\mu^*(E \cap B)}_{0} + \mu^*(E \setminus B) \implies B \in \mathcal{M}$$

Updated 2023-12-05 at 17:47

Proposition 1.12

Proposition 1.13

Proposition 1.14

Proposition 1.15

Proof. If $\{E_j\}_{j\geq 1}\subseteq \mathcal{A}$ such that each $E_j=FDU(I_{ji})$ over finitely many i, and suppose E_j are disjoint, and that $DU(E_j)\in \mathcal{A}$. So that $DU(E_j)=FDU(I_{\alpha})$ for some finite collection of half-intervals $\{I_{\alpha}\}$.

We will first prove the simpler case. Suppose we have already proven:

$$\{E_j\}_{j\geq 1}\subseteq \mathcal{A},\, DU(E_j)=I_\alpha\in \mathcal{A} \implies$$

$$\mu_0\Big(DU(E_j)\Big) = \sum \mu_0(E_j) = \mu_0(I_\alpha) \quad (4)$$

but each E_j is a FDU of I_{ji} , and for every $j \ge 1$, $E_j \cap I_\alpha \in \mathcal{A}$ (closure under intersections, because the family of FDU of h-intervals is an algebra).

Thus we have a disjoint sequence whose union is one h-interval. In symbols:

$$DU(E_i) = FDU(I_\alpha) \implies I_\alpha = DU(E_i \cap I_\alpha)$$

 $\forall j \geq 1, E_j \cap I_\alpha \in \mathcal{A} \Longrightarrow$

$$\mu_0(FDU(I_\alpha)) = \sum_{\alpha < +\infty} \mu_0(I_\alpha)$$

$$= \sum_{\alpha < +\infty} \sum_{j \ge 1} \mu_0(E_j \cap I_\alpha)$$

$$= \sum_{j \ge 1} \sum_{\alpha < +\infty} \mu_0(E_j \cap I_\alpha)$$

$$= \sum_{j \ge 1} \mu_0(E_j)$$

It is permissible to swap the two summations because we are using the supremum definition for a sum of non-negative terms. And we applied finite-additivity (see earlier), to conclude that $\sum_{j\geq 1} \sum_{\alpha} \mu_0(E_j \cap I_{\alpha}) = \sum_{j\geq 1} \mu_0(E_j)$.

Define

- $\mathcal{H}_1 = \{(a, b], -\infty \le a < b < +\infty\},$
- $\mathcal{H}_2 = \left\{ (a, +\infty), a \in \mathbb{R} \cup \{-\infty\} \right\},$
- $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \{\emptyset\}$. Where + denotes the disjoint union.
- DU: disjoint union, FDU: finite disjoint union.

Steps:

- 1. Show that \mathcal{H} is an elementary family.
- 2. Show that if $I_{\alpha} \in \mathcal{H}_1$, then for every $I_{\beta} \in \mathcal{H}_1 \cup \mathcal{H}_2$, $I_{\alpha} \cap I_{\beta} \in \mathcal{H}_1$. We write this as

$$I_{\alpha} \cap \mathcal{H}_1 = \mathcal{H}_1, I_{\alpha} \cap \mathcal{H}_2 = \mathcal{H}_1$$

3. Show that if $I_{\alpha} \in \mathcal{H}_2$, then

$$I_{\alpha} \cap \mathcal{H}_1 = \mathcal{H}_1, I_{\alpha} \cap \mathcal{H}_2 = \mathcal{H}_2$$

4. Show that $\mu_0((a, b]) = \overline{F}(b) - \overline{F}(a)$ is well defined. (modify the proof in Folland to check for $a = -\infty$ with

$$\overline{F}: \overline{\mathbb{R}} \to \overline{\mathbb{R}}, \quad \begin{cases} \overline{F}|_{\mathbb{R}} &= F \\ \overline{F}(+\infty) &= \sup_{x} F(x), \\ \overline{F}(-\infty) &= \inf_{x} F(x) \end{cases}$$

5. Show that $\mu_0((a, b]) = \overline{F}(b) - \overline{F}(a)$ is well defined for $b < +\infty$. If $E = (a, b] \in \mathcal{A}$, then E is an FDU of \mathcal{H}_1 , and \mathcal{H}_2 . So we write

$$E = FDU(\mathcal{H}_1) + FDU(\mathcal{H}_2) = FDU(\mathcal{H}_1)$$

since E is bounded above, the \mathcal{H}_2 part of the FDU must be null. Now fix $E = FDU_{\mathcal{H}_1}(I_j) = FDU_{\mathcal{H}_1}(I_2)$. And follow the proof in Folland to see the 'well-definedness' of μ_0 if $E \in \mathcal{H}_1$.

6. Next, suppose $E \in \mathcal{H}_2$ and

$$E = FDU(\mathcal{H}_1) + FDU(\mathcal{H}_2)$$

Clearly $FDU(\mathcal{H}_2) \neq \emptyset$, since E is unbounded above, and $FDU(\mathcal{H}_2)$ consists of exactly one element, so we write

$$E = FDU(\mathcal{H}_1) + (z, +\infty)$$

7. Show that $\mu_0((a, b]) = \overline{F}(b) - \overline{F}(a)$ is well defined. Hint: use the fact that if $E \in \mathcal{A}$, such that $E = FDU(E, \mathcal{H}_1) + FDU(E, \mathcal{H}_2)$, then $FDU(E, \mathcal{H}_2)$ contains at most one element (after throwing away empty sets), then use this to deduce $E \cap I_{\alpha}$ has a $FDU(E \cap I_{\alpha}, \mathcal{H}_2)$ of exactly one \mathcal{H}_2 interval, where I_{α} participates in $FDU(E, \mathcal{H}_2)$, if E is unbounded above. Then take $E \setminus I_{\alpha} = FDU(E \setminus I_{\alpha}, \mathcal{H}_1) = FDU(E, \mathcal{H}_1)$.

- 8. Now show that μ_0 is well-defined on all $E \in \mathcal{A}$.
- 9. Continue the proof for Folland until you reach the unbounded intervals, then modify the 'right continuity argument' to add an extra \mathcal{H}_2 interval. Let $I = \mathcal{H}_1 + \mathcal{H}_2 = I_\alpha + I_\beta$, meaning I can be represented by at most one \mathcal{H}_1 and \mathcal{H}_2 interval. If $(I_k) \subseteq \mathcal{H}_1 \cup \mathcal{H}_2$, then $\{I_k \cap I_\alpha\} \subseteq \mathcal{H}_1$, and continue the proof as usual.

Proposition 1.16

Proposition 1.17

Proposition 1.18

Exercises

Exercise 1.1

Proposition 1.19

Proposition 1.20

Proposition 1.21

Proposition 1.22

An algebra \mathcal{A} is a σ -algebra \iff it is closed under countable increasing unions.

Proof. \Leftarrow is trivial. And it suffices to show that \mathcal{A} is closed under countable disjoint unions. Indeed, if $\{E_i\}_{i\geq 1}\subseteq \mathcal{A}$ is a countable disjoint sequence of sets, write

$$F_n = \bigcup E_{j \le n}$$

Clearly, F_i is increasing, and denote $F = \bigcup E_{i \ge 1}$, which is a member of \mathcal{A} . We claim that

$$\bigcup F_{n\geq 1} = \bigcup E_{j\geq 1}$$

Fix any $x \in \bigcup E_{j \ge 1}$, then x belongs in some $E_j \subseteq F_j$, and \supseteq is proven. Also, if $x \in \bigcup F_{n \ge 1}$, then there exists some F_n for which x is a member of. For this particular F_n , means that $x \in E_j$ where $j \le n$ and $x \in \bigcup E_{j \ge 1}$.

Proposition 1.23

Let $\mathcal{M}(\mathcal{E})$ be the σ -algebra generated by $\mathcal{E} \subseteq X$, and

$$\mathcal{N} = \left\{ \mathcal{M}(\mathcal{F}), \, \mathcal{F} \subseteq \mathcal{E}, \, \mathcal{F} \text{ is countable} \right\}$$

Show that $\mathcal{M}(\mathcal{E}) = \mathcal{N}$.

Proof. The outline of the proof is as follows,

- 1. Prove that $\mathcal{N} \subseteq \mathcal{M}(\mathcal{E})$,
- 2. Show that \mathcal{N} is a σ -algebra,
- 3. Show that \mathbb{N} contains \mathcal{E} as a subset, and hence $\mathcal{M}(\mathcal{E}) \subseteq \mathbb{N}$.

First, for any $\mathcal{F} \subseteq \mathcal{E}$, where \mathcal{F} is countable, it follows from Lemma 1.1 that $\mathcal{M}(\mathcal{F}) \subseteq \mathcal{M}\mathcal{E}$. Taking the union over all of such \mathcal{F} , we get $\bigcup \mathcal{M}(\mathcal{F}) = \mathcal{N} \subseteq \mathcal{M}(\mathcal{E})$.

To show that \mathbb{N} is a σ -algebra, fix any $A \in \mathbb{N}$, and A belongs to $\mathbb{M}(\mathcal{F})$, therefore $A^c \in \mathbb{M}(\mathcal{F}) \subseteq \mathbb{N}$. To show closure under countable unions, fix a sequence $\{E_j\} \subseteq \mathbb{N}$, then each of these E_j belongs to a corresponding $\mathbb{M}(\mathcal{F}_j)$, for $j \in \{1, 2, ...\}$. Now define

$$\overline{\mathcal{F}} = \bigcup \mathcal{F}_{i \geq 1} \subseteq \mathcal{E}$$

and $\overline{\mathcal{F}}$ is obviously countable. Hence for every $j \geq 1$, $\mathcal{M}(\mathcal{F}_j) \subseteq \mathcal{M}(\overline{\mathcal{F}})$ and taking the union yields

$$\bigcup \mathcal{M}(\mathcal{F}_{j\geq 1})\subseteq \mathcal{M}(\overline{\mathcal{F}})\subseteq \mathcal{N}$$

It is also clear that our sequence $\{E_j\}$ is contained in $\mathcal{M}(\overline{\mathcal{F}})$, and $E = \bigcup E_j$ belongs to $\mathcal{M}(\overline{\mathcal{F}}) \subseteq \mathcal{N}$ as an element. Therefore \mathcal{N} is a σ -algebra.

Let $\alpha \in A$ index the family of sets in \mathcal{E} , (so that $E_{\alpha} \in \mathcal{E}$) and the singleton set of a set $\{E_{\alpha}\}$ is a countable subset of \mathcal{E} . For every $\alpha \in A$, we have

$$E_{\alpha} \in \mathcal{M}(\{E_{\alpha}\}) \subseteq \mathcal{N} \Longrightarrow \mathcal{E} \subseteq \mathcal{N}$$

And one final application of Lemma 1.1 finishes the proof.

Proposition 1.24

Proposition 1.25

If $\mu_1, ..., \mu_n$ are measures on (X, \mathcal{M}) , and $a_1, ..., a_n \in [0, +\infty)$, then $\mu = \sum_{i=1}^{n} \mu_i$ is a measure on (X, \mathcal{M}) .

Proof. If $\{E_i\}$ is a disjoint sequence in \mathcal{M} , and denote $E = \bigcup (E_i)$. If for each $k \leq n$, $\mu_k(E) < +\infty$,

$$\mu_k(E) = \sum \mu_k(E_j) \implies a_k \mu_k(E) = \sum a_k \mu_k(E_j)$$

Then,

$$\mu(E) = \sum_{k \le n} a_k \mu_k(E) = \sum_{k \le n} \sum_{j \ge 1} a_k \mu_k(E_j) = \sum_{j \ge 1} \sum_{k \le n} a_k \mu_k(E_j) = \sum_{j \ge 1} \mu(E_j)$$

If there exists some mu_k such that $\mu_k(E) = +\infty$, then

$$\mu(E) = \sum_{k \le n} \sum_{j \ge 1} a_k \mu_k(E_j)$$

Now if there exists some $\mu_{k'}$ with $\mu_{k'}(E) = +\infty$, then $\mu(E) = \sum_{k \le n} \mu_k(E) = +\infty$, and

$$\sum_{j\geq 1} \mu(E_j) = \sup_N \sum_{j\leq N} \sum_{k\leq n} a_k \mu_k(E_j) \geq \mu_{k'}(E)$$

Therefore $\mu(E) = \sum_{j \ge 1} \mu(E_j)$, and μ is a measure.

Proposition 1.26

If (X, \mathcal{M}, μ) is a measure space, and $\{E_j\} \subseteq \mathcal{M}$, then $\mu(\liminf E_j) \le \liminf \mu(E_j)$. Also, $\mu(\limsup E_j) \ge \limsup \mu(E_j)$ provided that $\mu(\bigcup E_{j \ge 1}) < +\infty$

Proof. If $\{E_j\}_{j\geq 1}$ is a sequence in \mathcal{M} , and define $F_m=\bigcap_{j\geq m}E_j$

$$\liminf E_j = \bigcup_{m \ge 1} \bigcap_{j \ge m} E_j = \bigcup_{m \ge 1} F_m$$

Also, for every $m \ge 1$, $F_m \subseteq E_m$, and F_m is an increasing sequence, because

$$[m, +\infty) \supseteq [m+1, +\infty) \Longrightarrow F_m \subseteq F_{m+1}$$

Using continuity above, and writing $F = \bigcup F_{m \ge 1} = \liminf E_j$, we have

$$\mu(\liminf E_j) = \mu(F)$$

$$= \liminf \mu(F_m)$$

$$\leq \liminf \mu(E_m)$$

The second part of the proof is similar, if $G_m = \bigcup_{j \geq m} E_j$, then

$$\limsup E_j = \bigcap_{m \ge 1} \bigcup_{j \ge m} E_j = \bigcap_{m \ge 1} G_m$$

Similarly, G_m is a decreasing sequence, and since $\mu(\bigcup E_{j\geq 1}) = \mu(G_1)$ is finite, we can use continuity from above in the same manner, and the proof is complete.

Proposition 1.27

Proposition 1.28

Proposition 1.29

Proposition 1.30

Let (X, \mathcal{M}, μ) be a finite measure space,

- If $E, F \in \mathcal{M}$, and $\mu(E\Delta F) = 0$, then $\mu(E) = \mu(F)$,
- Say that $E \sim F$ if $\mu(E\Delta F) = 0$, then \sim is an equivalence relation on \mathcal{M} ,
- For every $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E\Delta F)$. Show that ρ defines a metric on the space of \mathcal{M}/\sim equivalence classes.

Proof of Part A. Use the fact that $\mu(F) = \mu(E \cap F) + \mu(F \cap E^c)$, and by monotonicity,

$$\mu(F\cap E^c)\leq \mu(E\Delta F)=0$$

And $\mu(F) = \mu(E \cap F) = \mu(E)$, the last equality follows after a simple modification.

Proof of Part B. Suppose that $\mu(E\Delta F) = \mu(F\Delta G) = 0$, then

- $\mu(E \cap F^c) = \mu(F \cap E^c) \le \mu(E\Delta F) = 0$ by monotonicity,
- Similarly, we have $\mu(F \cap G^c)\mu(G \cap F^c) = 0$, and
- By subadditivity,
 - $-\ \mu(E\cap G^c)=\mu(E\cap F^c\cap G^c)+\mu(E\cap F\cap G^c)\leq 0, \ \mathrm{and}\ \mu(E\cap G^c)=0, \ \mathrm{and}$
 - $-\mu(G\cap E^c)=0$
- Therefore $\mu(E\Delta G) = \mu(E\cap G^c) + \mu(G\cap E^c) = 0$

It is clear that the relation is reflexive, since $E\Delta E = \emptyset$, and symmetry is trivial.

Proof of Part C. Since $\rho(E,F) = \rho(F,E)$, and $\rho(E,F) \ge 0$ for every $E,F \in \mathcal{M}$, and $\rho(E,F) = 0 \iff E \sim F$. We only have to prove the Triangle Inequality. Notice that

$$\mu(E \setminus F) = \mu(E \cap F^c \cap G) + \mu(E \cap F^c \cap G^c)$$

$$\leq \mu(F^c \cap G) + \mu(E \cap F^c)$$

and in the same fashion,

$$\mu(F \setminus E) \leq \mu(F \cap G^c) + \mu(E^c \cap F)$$

Combining the two inequalities, and applying additivity finishes the proof.

Proposition 1.31

Every σ -finite measure is semi-finite

Proof. Suppose μ is σ -finite then there exists an increasing sequence of sets $E_j \nearrow X$ with $\mu(E_j) < +\infty$. Now for every $W \in \mathcal{M}$, if $\mu(W) = +\infty$ then $\mu(W) = \lim_{j \to \infty} \mu(E_j \cap W) = +\infty$. Since this real-valued limit converges to its supremum $+\infty$, there exists a non-null subset $E_j \cap W$ of positive and finite measure.

Proposition 1.32

If μ is a semi-finite measure, and if $\mu(E)=+\infty$, for every C>0, there exists an $F\subseteq E$ with $0<\mu(F)<+\infty$.

Proof. Suppose by contradiction that there exists a C>0 so for every $F\subseteq E$, if F is of finite measure, then $0\leq \mu(F)\leq C$. Let $s=\sup\{\mu(F), F\subseteq E, 0<\mu(F)<+\infty\}$, and for any $n^{-1}>0$, this induces a F_n with measure

$$\mu(F_n) > s - n^{-1}$$

and take $A_n = \bigcup_{j \le n} F_j$. A simple induction will show that $\mu(A_n) \le \sum_{j \le n} \mu(F_j) < +\infty$, therefore $\mu(A_n) \le s$ for every $n \ge 1$. By continuity from below

$$\lim_{n\to\infty}\mu(A_n)=\mu\Big(\bigcup_{j\geq 1}F_j\Big)\leq s$$

Next, by monotonicity, denoting the union over A_n by A, for every $n^{-1} > 0$

$$s - n^{-1} \le \mu(A_n) \le \mu(A) \le s \implies \mu(A) = s$$

Now, $E \setminus A$ is a set of infinite measure, and by semi-finiteness. Find a set $B \subseteq E \setminus A$ with strictly positive measure, so that

$$\mu(A \cup B) = \mu(A) + \mu(B) > s$$

And this finishes the proof.

Proposition 1.33

Given a measure μ on $(\mathbf{X}, \mathcal{M})$, and define $\mu_0 = \sup\{\mu(F), F \subseteq E, \mu(F) < +\infty\}$. Show μ_0 is semi-finite. Then, show that if μ is semi-finite, $\mu = \mu_0$. Lastly, there exists a measure ν on $(\mathbf{X}, \mathcal{M})$, with $\mu = \nu + \mu_0$, where ν only assumes the values 0 or $+\infty$.

Proof. First, a small Lemma. We claim that $\mu_0 = \mu$ on finite sets. Let $E \in \mathcal{M}$, and $\mu(E) < +\infty$, since

$$\mu(E) \in {\{\mu(F), F \subseteq E, \mu(E) < +\infty\}} \implies \mu(E) \le \mu_0(E)$$

Next, for every $W \subseteq E$, $\mu(W) \le \mu(E)$, so $\mu_0(E) \le \mu(E)$. This proves the equality.

If E is any measurable subset of **X**, and suppose also $\mu_0(E) = +\infty$, one can easily find subsets of E, $\{E_n\}_{n\geq 1}$ with

$$n \ge \mu(E_n) < +\infty$$

But E_n is a subset of finite measure, so $0 < \mu(E_n) = \mu_0(E_n) < +\infty$. This proves the semi-finiteness of μ_0 .

Next, suppose μ is semi-finite, and fix any measurable set E. If E is if finite measure, then $\mu(E) = \mu_0(E)$, and if $\mu(E) = +\infty$, apply Exercise 14, so there exists a sequence of subsets of finite measure $E_n \subseteq E$ for every $n \ge 1$, with $\mu(E_n) \to \mu(E)$. Therefore $\mu_0(E) = \mu(E)$.

For the last part of the proof, let μ be an arbitrary measure. And let $E \in \mathcal{M}$. If $\mu(E) < +\infty$, then $\nu(E) = 0$ would suffice (this proves the first property of the measure). If $\mu(E) = +\infty$, and if $\mu(E)$ is not semi-finite, then set $\nu(E) = +\infty$. So that $\mu_0(E) + \nu(E) = 0 + \infty = \infty = \mu(E)$. The additivity of ν is immediate, since ν can only assume two values. This finishes the proof.

Proposition 1.34

Proof.

Proposition 1.35

Let $\{A_j\}_{j\geq 1}$ be a countable disjoint sequence in $\mathcal{M},$ and denote $B_n=\bigcup A_{j\leq n}\in\mathcal{M}.$ For every $E\subseteq \mathbf{X},$

$$\mu^*(E\cap B_n)=\sum \mu^*(E\cap A_{j\leq n})$$

Proof. Proven in Theorem 1.11 as a Lemma.

Proposition 1.36

Let $\mathcal{A} \subseteq \mathbb{P}(\mathbf{X})$ be an algebra. A_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersection of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} , and μ^* be the induced outer-measure.

- (a) For any $E \subseteq X$, and $\varepsilon > 0$, there exists $A \in \mathcal{A}_{\sigma}$ with $E \subseteq A$ and $\mu^*(A) \leq \mu^*(E) + \varepsilon$.
- (b) If $\mu^*(E) < +\infty$, then E is μ^* -measurable \iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subseteq B$ and $\mu^*(B \setminus E) = 0$
- (c) If μ_0 is σ -finite, the restriction $\mu^*(E) < +\infty$ in (b) is superfluous.

Proof of Part A. Let $E \subseteq X$ and $\varepsilon > 0$, then by definition of μ^* ,

$$\mu^*(E) + \varepsilon \ge \sum \mu_0(A_j) = \sum \mu^*(A_j) \ge A$$

by subadditivity and $A = \bigcup A_i$.

Proof of Part B. Suppose E is outer-measurable and of finite outermeasure, then by part A we have a sequence of $A_n \in \mathcal{A}_{\sigma}$ with

$$\mu^*(E) + n^{-1} \ge \mu^*(A_n) \implies \mu^*(E) = \mu^*(A)$$

if we define $A = \bigcap A_n \supseteq E$. Using the μ^* -measurability of E, we get

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E) < +\infty \implies \mu^*(A \setminus E) = 0$$

Conversely, if $\mu^*(A \setminus E) = 0$, for any $V \subseteq \mathbf{X}$, with $\mu^*(V) < +\infty$, we have

$$\mu^*(V) = \mu^*(V \cap A) + \mu^*(V \setminus A)$$

$$\geq \mu^*(V \cap E) + \mu^*(V \setminus A) + \mu^*(V \cap [A \setminus E])$$

$$\geq \mu^*(V \cap E) + \mu^*(V \setminus E)$$

Proof of Part C. Suppose μ_0 is σ -finite, then $E \in \mathcal{M}^*$ induces a sequence $E_j \nearrow E$, where each E_j is of finite measure. By part b) we obtain $\{A_j\} \subseteq \mathcal{A}_{\sigma\delta}$ with

$$\mu^*(A_j \setminus E_j) = 0$$

Now define $B = \bigcup A_j$, so that $B \in \mathcal{A}_{\sigma\delta}$. Observe $\bigcup (A_j \setminus E_j) = B \setminus E_1 \supseteq B \setminus E$ (verify these). And $\mu^*(B \setminus E) = \leq \sum \mu^*(A_j \setminus E_j) = 0$ by subadditivity. Since $B \supseteq E$, and $B \in \mathcal{A}_{\sigma\delta}$, this proves \Longrightarrow .

Conversely, suppose $E \subseteq \mathbf{X}$ and there exists a $B \in \mathcal{A}_{\sigma\delta}$ with $E \subseteq B$, $\mu^*(B \setminus E) = 0$. Let $\{\mathbf{X}_j\} \nearrow \mathbf{X}$ as a sequence of sets of finite measure. Then,

$$(\mathbf{X}_i \cap B) \setminus (\mathbf{X}_i \cap E) = \mathbf{X}_i \cap (B \setminus E) \subseteq B \setminus E$$

 $\mathbf{X}_j \cap B \in \mathcal{A}_{\sigma\delta}$, and $\mathbf{X}_j \cap B \supseteq (\mathbf{X}_j \cap E)$. Each $E_j = \mathbf{X}_j \cap E$ is μ^* measurable by monotonicity, so is their countable union.

Proposition 1.37

Let μ^* be an outer measure on **X** induced from a finite premeasure μ_0 . If $E \subseteq \mathbf{X}$, define the inner measure of E to be $\mu_*(E) = \mu_0(\mathbf{X}) - \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$.

Proof. Suppose $E \subseteq X$ is μ^* -measurable. Then

$$\mu^*(\mathbf{X}) = \mu^*(\mathbf{X} \cap E) + \mu^*(\mathbf{X} \setminus E) = \mu_0(\mathbf{X})$$

Rearranging gives the result, since all quantities are finite.

If $\mu^*(E) = \mu_*(E)$, then $\mu^*(E^c) = \mu_*(E^c)$, since the definition of μ_* is symmetric. Let $B \in \mathcal{A}_{\sigma\delta}$, with $\mu^*(B) = \mu^*(E)$, $E \subseteq B$. We can always find such a B by taking the intersection over all $B_n \in \mathcal{A}_{\sigma}$,

$$\mu^*(E) + n^{-1} \ge \sum_j \mu^*(B(j, n)) \ge \mu^* \left(\bigcup_j B(j, n) = B_n\right)$$

Notice $E \subseteq B \iff E^c \supseteq B^c \iff E^c \cap B^c = B^c$. Since B is μ^* -measurable, we have

$$\mu^{*}(E^{c} \cap B) + \mu^{*}(E^{c} \setminus B) = \mu^{*}(E^{c})$$

$$= \mu^{*}(X) - \mu^{*}(E)$$

$$\mu^{*}(B \setminus E) + \mu^{*}(B^{c}) = \mu^{*}(X) - \mu^{*}(E)$$

$$= \mu^{*}(B) + \mu^{*}(B^{c}) - \mu^{*}(E)$$

$$\mu^{*}(B \setminus E) = \mu^{*}(B) - \mu^{*}(E)$$

$$= 0$$

Proposition 1.38

Proof.

Proposition 1.39

Let μ^* be an outer measure induced from a premeasure, and $\overline{\mu} = \mu^*|_{\mathcal{M}^*}$, where \mathcal{M}^* denotes the family of μ^* -measurable sets. Show that $\overline{\mu}$ is saturated. That is, $\widetilde{\mathcal{M}}^* = \mathcal{M}^*$

Proof. Suppose E is locally measurable (with respect to $\overline{\mu} = \mu^*|_{\mathcal{M}^*}$). Fix $V \subseteq \mathbf{X}$, with $\mu^*(V) < +\infty$. It suffices to show $\mu^*(V) = \mu^*(V \cap E) + \mu^*(V \setminus E)$.

By 18a), find a $V' \in \mathcal{A}_{\sigma\delta}$, with $V \subseteq V'$, and $\mu^*(V') = \mu^*(V) < +\infty$. so that $E \cap V'$ is μ^* -measurable.

$$\mu^*(V) = \mu^*(V \cap E \cap V') + \mu^*(V \setminus (V \cap (V' \cap E))$$

therefore

$$\mu^*(V) = \mu^*(V \cap E) + \mu^*(V \setminus E)$$

Updated 2023-12-05 at 17:47

Proposition 1.40

 $\textit{Proof.} \ \, \text{To show} \,\, \overline{\mu} \,\, \text{is complete, Fix} \,\, U \subseteq F, \,\, \text{where} \,\, F \in \mathcal{M}^*, \,\, \text{with} \,\, \overline{\mu}(F) = 0 \,\, \text{Let} \,\, F' \in \mathcal{A}_{\sigma\delta}, \,\, \text{with} \,\, F' \supseteq F, \,\, \text{and}$

$$\mu^*(F') = \mu^*(F) \ge \mu^*(F' \setminus U)$$

Since $F' \supseteq U$, applying Exercise 18b gives $\overline{\mathcal{M}^*} \subseteq \mathcal{M}^*$. For the other direction,

Proposition 1.41

Proof.

Proposition 1.42

If μ is a finite measure on (X, \mathcal{M}) , and let μ^* be the outer measure. Suppose that $E \subseteq X$ satisfies $\mu^*(E) = \mu^*(X)$ (but $E \notin \mathcal{M}$ necessarily). Show that

- (a) For any $A, B \in \mathcal{M}$, and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.
- (b) Let $\mathcal{M}_E = \{A \cap E, A \in \mathcal{M}\}$, and define v on \mathcal{M} with $v(A \cap E) = \mu(A)$. Then \mathcal{M}_E is a σ -algebra, and v is a measure on \mathcal{M}_E .

Proof of Part A.

$$\mu^*(E) = \mu^*(X) \Longrightarrow \mu^*(X \setminus E) = 0$$

This is a simple consequence of the μ^* -measurability of X, since $X \in \mathcal{M}$, and the μ is a pre-measure on \mathcal{M} , b And by monotonicity,

$$\begin{cases} A \cap (X \setminus E) \subseteq (X \setminus E) \\ B \cap (X \setminus E) \subseteq (X \setminus E) \end{cases} \implies \begin{cases} \mu^* (A \cap (X \setminus E)) = 0 \\ \mu^* (B \cap (X \setminus E)) = 0 \end{cases}$$

Write $A \cap X = (A \cap E) \cup (A \cap X \setminus E)$, and by subadditivity of μ^* ,

$$\mu(A) = \mu^* (A \cap X)$$

$$\leq \mu^* (A \cap E) + \mu^* (X \setminus E)$$

$$= \mu^* (B \cap E)$$

$$\leq \mu^* (B \cap X)$$

$$= \mu(B)$$

Therefore $\mu(A) \leq \mu(B)$, and $\mu(B) \leq \mu(A)$ is trivial.

Proof of Part B. We want to show \mathcal{M}_E is a σ -algebra.

• Closure under complements,

$$\forall A \cap E \in \mathcal{M}_E, A \in \mathcal{M} \Longrightarrow (E \setminus A^c) \in \mathcal{M}$$

Therefore $(E \setminus A^c) \cap E \in \mathcal{M}_E$. Note that the question mentions that \mathcal{M}_E is a σ -algebra on E, therefore we take complements relative to E.

• Closure under countable unions. Fix any countable sequence $\{A_j \cap E\} \subseteq \mathcal{M}_E$ where $\{A_j\} \subseteq \mathcal{M}$. It is obvious that $A = \cup A_j \in \mathcal{M}$, therefore $\cup (A_j \cap E) = E \cap A \in \mathcal{M}_E$ as well.

Since $v(\emptyset) = \mu(\emptyset \cap E) = 0$, and for countable additivity, fix any disjoint sequence $\{A_j \cap E\}_{j \geq 1} \subseteq \mathcal{M}_E$, where $\{A_j\}_{j \geq 1} \subseteq \mathcal{M}$, and let $A = \bigcup A_{j \geq 1}$

$$\begin{aligned} v(A \cap E) &= \mu(A) \\ &= \sum \mu(A_{j \ge 1}) \\ &= \sum v(A_{j \ge 1} \cap E) \end{aligned}$$