VLSM (Variable Length Subnet Masking)

Question:

- Major Network: **10.0.0.0/16**

- Subnet requirements:

Subnet	Size
Α	120
В	37
С	1000
D	500
Е	200
F	2

Answer:

Subnet	Mask	Dec Mask	Network Address	Usable Range	Broadcast address

Step 0: Verify if the IP address pool of the major network is big enough for all subnets

- Number of host bits in the major network:

$$\Rightarrow$$
 n = 32 - mask = 32 - 16 = 16

- Number of available IP addresses in major network:

$$\Rightarrow$$
 2ⁿ - 2 = 2¹⁶ - 2 = 65534

- Number of IP addresses needed for all subnets:

$$\Rightarrow$$
 120 + 37 + 1000 + 500 + 200 + 2 = 1859 < 65534

=> Sufficient

Step 1: Fill out all subnets into the subnetting table from the largest to the smallest

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000							
D	500							
Е	200							
Α	120							
В	37							
F	2							

Step 2: Calculate the number of host bits needed for each subnet

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10						
D	500	9						
Е	200	8						
Α	120	7						
В	37	6						
F	2	2						

- n: number of host bits => $2^n - 2 \ge Size$

n	2 ⁿ	2 ⁿ - 2
1	2	0
2	4	2
3	8	6
4	16	14
5	32	30
6	64	62
7	128	126
8	256	254
9	512	510
10	1024	1022
11	2048	2046

Examples:

• **Subnet C**: $2^n - 2 \ge 1000 \Rightarrow n = 10$

• **Subnet D**: $2^n - 2 \ge 500 \Rightarrow n = 9$

Step 3: Calculate subnet mask (slash notation and decimal dotted notation)

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10	/22	255.255.252.0				
D	500	9	/23	255.255.254.0				
Е	200	8	/24	255.255.255.0				
Α	120	7	/25	255.255.255.128				
В	37	6	/26	255.255.255.192				
F	2	2	/30	255.255.255.252				

- Slash notation: mask = 32 n
- **Dotted decimal notation:** determine the number of bits 1 in each octet and convert it into decimal value

Example:

- Subnet C (n = 10)
 - Slash notation: $mask = 32 10 = 22 = \frac{22}{22}$
 - Dotted decimal notation: 22 => 8.8.6.0 => 255.255.252.0
- Subnet D (n = 9)
 - Slash notation: $mask = 32 9 = 23 \Rightarrow \frac{23}{23}$
 - Dotted decimal notation: 23 => 8.8.7.0 => 255.255.254.0

Number of bits 1	Binary	Decimal
0	00000000	0
1	10000000	128
2	11000000	192
3	11100000	224
4	11110000	240
5	11111000	248
6	11111100	252
7	11111110	254
8	11111111	255

Step 4: Calculate the gap to the next subnet

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10	/22	255.255.252.0	4.0			
D	500	9	/23	255.255.254.0	2.0			
E	200	8	/24	255.255.255.0	1.0			
Α	120	7	/25	255.255.255.128	.128			
В	37	6	/26	255.255.255.192	.64			
F	2	2	/30	255.255.255.252	.4			

- Calculate using the "Magic Number" (256) and the decimal subnet mask
- Go from right to left of the decimal subnet mask, look for the first number that is not 0
- Subtract that number from 256
- Put the 0s back (if there is any)

Examples:

Subnet C : Dec Mask = 255.255.252.0	Subnet A : Dec Mask = 255.255.255.128	
256 - 255.255. <mark>252.</mark> 0 .4.0	256 - 255.255.255. <mark>128</mark> .128	

Step 5: Calculate the network address for each subnet

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10	/22	255.255.252.0	4.0	10.0.0.0		
D	500	9	/23	255.255.254.0	2.0	10.0.4.0		
E	200	8	/24	255.255.255.0	1.0	10.0.6.0		
Α	120	7	/25	255.255.255.128	.128	10.0.7.0		
В	37	6	/26	255.255.255.192	.64	10.0.7.128		
F	2	2	/30	255.255.255.252	.4	10.0.7.192		
						10.0.7.196	·	

- The network address of the 1^{st} subnet = major network (but with different subnet mask)
- Next subnet network address = Current subnet network address + Gap
- Calculate 1 additional network address after the last subnet

Example:

- Subnet C: 1^{st} subnet = major network = 10.0.0.0
- **Subnet D**: 2^{nd} subnet = 1^{st} subnet + gap = 10.0.0.0 + 4.0 = 10.0.4.0
- **Subnet E**: 3^{rd} subnet = 2^{nd} subnet + gap = 10.0.4.0 + 2.0 =**10.0.6.0**
- ...

Step 6: Calculate the broadcast address for each subnet

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10	/22	255.255.252.0	4.0	10.0.0.0		10.0.3.255
D	500	9	/23	255.255.254.0	2.0	10.0.4.0		10.0.5.255
Е	200	8	/24	255.255.255.0	1.0	10.0.6.0		10.0.6.255
Α	120	7	/25	255.255.255.128	.128	10.0.7.0		10.0.7.127
В	37	6	/26	255.255.255.192	.64	10.0.7.128		10.0.7.191
F	2	2	/30	255.255.255.252	.4	10.0.7.192		10.0.7.195
						10.0.7.196		

- The broadcast address of the current subnet = the network address of the next subnet -1

Example:

• **Subnet C:** network address of the next subnet = 10.0.4.0

Decimal	Binary
10.0.4.0	00001010.000000000.00000100.00000000
-1	-1
10.0.3.255	00001010.000000000.00000011.11111111

Step 7: Calculate the range of the usable IP addresses for each subnet:

Subnet	Size	Number of host bits	Mask	Dec Mask	Gap	Network Address	Usable Range	Broadcast address
С	1000	10	/22	255.255.252.0	4.0	10.0.0.0	10.0.0.1 - 10.0.3.254	10.0.3.255
D	500	9	/23	255.255.254.0	2.0	10.0.4.0	10.0.4.1 - 10.0.5.254	10.0.5.255
E	200	8	/24	255.255.255.0	1.0	10.0.6.0	10.0.6.1 - 10.0.6.254	10.0.6.255
Α	120	7	/25	255.255.255.128	.128	10.0.7.0	10.0.7.1 - 10.0.7.126	10.0.7.127
В	37	6	/26	255.255.255.192	.64	10.0.7.128	10.0.7.129 - 10.0.7.190	10.0.7.191
F	2	2	/30	255.255.255.252	.4	10.0.7.192	10.0.7.193 - 10.0.7.194	10.0.7.195

- Usable IP addresses of each subnet are all the IP between the network address and the broadcast address
- The 1st usable IP address = network address + 1
- The last usable IP address = broadcast address -1

Example:

• Subnet C

- \circ Network address = 10.0.0.0
- O Broadcast address = 10.0.3.255
- The 1st usable IP address = 10.0.0.0 + 1 = 10.0.0.1
- \circ The last usable IP address = 10.0.3.255 1 = 10.0.3.254