Efficient Computational Algorithms

Luca Pernigo

Università della Svizzera italiana¹

Monte Carlo and MCMC Nov 7, 2022

Outline

Monte Carlo

2 MCMC

3 Conclusion

Table of Contents

Monte Carlo

2 MCMC

Conclusion

Monte Carlo

Random numbers generator: A mechanism for producing a sequence of random variables $U_1, U_2, ...$ with the following two properties:

- lacktriangle each U_i follows the uniform distribution between 0 and 1
- the U_i are mutually independent

Monte Carlo

The idea behind Monte Carlo sampling is to use a random number generator in order to sample from the desired distribution. In this presentation the Inverse Transform Method will be considered.

Choosing the uniform distribution is handy because it enables us to generate random sample from any other distribution using the Inverse Transform Method.

- First simulate observations $U_i \sim U[0,1]$
- Second calculate $Y = F^{-1}(U_i)$, where F^{-1} is the quantile function of the desired distribution

It follows that the random variable $Y_i = F^{-1}(U_i)$ is distributed according to F

Before illustrating the procedure, it is important to remind a useful property of the uniform distribution [0,1]:

$$F(X) = \begin{cases} 0 & x < 0 \\ x & 0 < x < 1 \\ 1 & x > 1 \end{cases}$$

Hence the property F(c) = P(X) = c

To show why $Y_i \sim F$ consider:

$$\begin{split} &P(Y_i \leq c) = P(F^{-1}(U_i) \leq c) \\ &P(F^{-1}(U_i) \leq c) = P(U_i \leq F(c)) \end{split}$$

Definition of Y

Apply ${\cal F}$ to both side of the disequality

$$P(U_i \le F(c)) = F(c)$$

Finally, use the fact that U_i is a random variable following the uniform distribution $\left[\mathbf{0,1} \right]$

Random sample from an exponential distribution

Consider the exponential distribution $f(y)=\frac{e^{-y/\theta}}{\theta}$ its cumulative distribution is $F(x)=1-e^{-y/\theta}$ Our goal is to obtain its quantile distribution F^{-1}

$$\begin{split} F(y) &= 1 - e^{-y/\theta} = F(F^{-1}(U)) = U \\ U &= 1 - e^{-y/\theta} \\ 1 - U &= e^{-y/\theta} \\ log(1 - U) &= \frac{-y}{\theta} \\ y &= -log(1 - U)\theta \end{split}$$

Pluggin into y the observation from a random uniform [0,1] we get a random sample from an exponential with parameter θ

approximate Inverse Transform Method Normal

Some distributions do not even have a close form quantile function.

approximate Inverse Transform Method Normal

Nevertheless, we can approximate it and apply the same logic to the approximation of the quantile function.

approximate Inverse Transform Method Normal

```
Input: u between 0 and 1
    Output: x, approximation to \Phi^{-1}(u).
  y \leftarrow u - 0.5
  if |y| < 0.42
                  r \leftarrow y * y
                  x \leftarrow y * (((a_3 * r + a_2) * r + a_1) * r + a_0) /
                                                              ((((b_3 * r + b_2) * r + b_1) * r + b_0) * r + 1)
 else
                  if (y > 0) r \leftarrow 1 - u
                 r \leftarrow \log(-\log(r))
                 x \leftarrow c_0 + r * (c_1 + r * (c_2 + r * (c_3 + r * (c_4 + c_4 
                                                             r * (c_5 + r * (c_6 + r * (c_7 + r * c_8)))))))
                 if (y < 0) x \leftarrow -x
return x
```

Table of Contents

Monte Carlo

2 MCMC

3 Conclusion

Metropolis Hastagings

Metropolis Hastagings

Metropolis Hastagings

HMC

HMC

HMC

Table of Contents

Monte Carlo

2 MCMC

3 Conclusion

Conclusion

Thank you