

### 42588 - Data and data science

Week 3 – Surveys and data

14th of February 2024



#### DTU Management Engineering

Department of Management Engineering



## **Today's program**

- Survey design by Sonja
- Group work
- Briefly on data types
- Work on Project 1



# The course plan

| Week | Date | Subject/Lecture                                | Literature                                     | Exercises                                      | Teachers                    |
|------|------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------|
| 1    | 31/1 | Introduction + questions and data              | AoS chap. 3                                    | Form groups + week 1 exercise                  | Stefan                      |
| 2    | 7/2  | Basics on data and variables                   | AoS chap. 1-2 (+ OM 1)                         | Project 1 – start                              | Stefan/Guest from<br>Genmab |
| 3    | 14/2 | Surveys + data types + experimental data       | Paper 1 (+ OM 2-5)                             | Project 1 – work                               | Sonja / Stefan              |
| 4    | 21/2 | Governance + causality                         | Paper 2 + AoS chap. 4 (+<br>OM 6)              | Project 1 – deadline                           | Hjalmar / Stefan            |
| 5    | 28/2 | More on data, e.g. real-time data, online data | Paper 3 (+ OM 7-10)                            | Discuss data for project 2                     | Guido/ Stefan               |
| 6    | 6/3  | Visualisation                                  | Chap. 1,5,6,7,10,23, 24,29 in Wilke + (AM 1-2) | Integrated exercises + work on project 2       | Mads                        |
| 7    | 13/3 | Spatial data                                   | Chap. 1,14 in Gimonds                          | Week 7 exercises + work on project 2           | Mads / Guest from<br>Niras  |
| 8    | 20/3 | Imputation/weighting/presentation proj. 2      | Paper 4                                        | First deadline of project 2 + Week 8 exercises | Mads                        |
| 9    | 3/4  | Data analytics I                               | ISL ch. 3 + paper 5                            | Work on project 3a                             | Stefan                      |
| 10   | 10/4 | Data analytics II                              | ISL ch. 6                                      | Work on project 3a                             | Stefan                      |
| 11   | 17/4 | Data analytics III                             | ISL ch. 4                                      | Work on project 3b                             | Stefan                      |
| 12   | 24/4 | Data analytics IV                              | TBD                                            | Work on project 3b                             | Stefan                      |
| 13   | 1/5  | Summary and perspective                        | Paper 6                                        | Project 3 – deadline                           | Stefan                      |



#### Feedback on last week

- Diskrete vs. kontinuerte variable
- Hvornår benyttes kovarians/correlation?
- Betinget vs. ubetinget hvad er mest korrekt?
- Kode + simulation af data + dinosaur plot
- Mere om projekterne





 Cross-section data are data where we have observations that are not related through unobserved factors

| ObsID | Var1 | <br>VarK |
|-------|------|----------|
| 1     | X_11 | <br>X_1K |
| 2     | X_21 | <br>X_2K |
|       |      |          |
| N     | X_N1 | <br>X_NK |

- Such data can be modelled using linear regression, lasso and ridge regression, logistic regression, trees, support vector machines and other types of classical models.
- Data could be one day travel diaries, wage data across individuals (specific year), GDP data across countries (specific year).



• Time-series data are data where we have many observations from the same individual or unit so there is definitely a relation between observations.

| ObsID | TimeID | Var1 | <br>VarK |
|-------|--------|------|----------|
| 1     | 1      | X_11 | <br>X_1K |
| 1     | 2      | X_21 | <br>X_2K |
|       |        |      |          |
| 1     | N      | X_N1 | <br>X_NK |

- Such data can be modelled using linear regression with serial correlation, time-series models, specific neural networks, and other types of models that do take the correlation into account.
- Data could be one year travel diary for one person, GDP for one country over many years, waiting time at the airport, house consumption of natural gas.



• Panel data are data where we have several observations from the same individual or unit so there is definitely a relation between observations.

| ObsID | TimeID | Var1  |     | VarK  |
|-------|--------|-------|-----|-------|
| 1     | 1      | X_111 | ••• | X_11K |
| ***   |        |       |     |       |
| 1     | Т      | X_1T1 |     | X_1TK |
|       |        |       |     |       |
| N     | 1      | X_N11 |     | X_N1K |
|       |        |       |     |       |
| N     | Т      | X_NT1 |     | X_NTK |

• Such data can be modelled using panel versions of linear regression, specific neural networks, and other types of models that do take the panel correlation into account.



- Panel data could be one week of travel diaries from many individuals, GDP for some countries over many years, counting stations for bike flow all C25 stock measured daily in a year, or air pollution from various stations across a city.
- In general, panel data can become very complicated to work with if both N and T are large at least in classical models. Some machine learning models might be better if prediction is the purpose.
- On the other hand for N large and T small, panel data can give many insights into changes in behaviour that cannot be analysed using either cross-section or time-series data.



## **Data types**

- Observational data are registrations of something that happens in the real world. Revealed preference (RP) data is a common word used in social sciences for observational data when the observation represents a decision or choice.
- The benefit is that the data measure some aspect of reality. This does not guarentee validity but it can support it.
- RP data may also be problematic in some contexts, e.g.
  - they are restricted to options and variables that exist or have existed historically,
  - variables may have little variation in real markets, e.g. prices in some markets
  - variables tend to be correlated in the real world. This makes it difficult to disentangle the effect of specific variables



## **Data types**

- Stated preference (SP) data is a common word used in social sciences for hypothetical data related to choices.
- These data are reactions or answers to hypothetical situations/questions that happens in a hypothetical setting.
- The problem is that the data are hypothetical and hence may not match reality.
- SP data have some advantages, e.g.
  - they can include novel options and variables that do not exist yet,
  - variables can have more variation than in a real market, e.g. prices
  - variables can be designed to be uncorrelated or close to this. This allows us to disentangle of the effect of various variables



#### **Feedback**

- Final questions
  - 1. What was the most interesting you learned during the lecture?
  - 2. What is your most important unanswered question based on the lecture?

 Group 1 (Caroline V., Johanne, Nadia) should send/hand in their feedback to Stefan. Everyone else are very welcome to give feedback as well!





#### For next time

- Read for this week
  - Slides + Lietz, P. (2010)



- The other papers should be seen as supplementary reading.
- To prepare for lecture 4, you should read
  - Wilkinson et al. (2022)
- Work on Project 1. Do not leave today before, I know your topic for project 1.
- Note that the deadline for project 1 is 26/2.

