250 Temel Sayılar Teorisi Problemi

24 Ekim 2024

İçindekiler

Hoşgeldiniz	3
1 Tam Sayıların Bölünmesi	4
Kavnakca	13

Hoșgeldiniz

Bu kitap, Waclaw Sierpinski'nin 250 Problems in Elementary Number Theory (Sierpinski (1970)) kitabının Türkçeye uyarlanmasıyla oluşturulmuştur.

1 Tam Sayıların Bölünmesi

- 1. $n^2 + 1$ sayısının n + 1'e bölünecek şekilde tüm pozitif tam sayı n değerlerini bulunuz.
- 2. $x^3 3$ sayısının x 3'e bölünecek şekilde tüm $x \neq 3$ tam sayılarını bulunuz.
- 3. $4n^2 + 1$ sayısının 5'e ve 13'e bölünmesini sağlayan sonsuz sayıda pozitif tam sayı n'nin bulunduğunu kanıtlayınız.³
- 4. Her pozitif tam sayı n için $3n^3 + 26n 27$ sayısının 169'a bölündüğünü kanıtlayınız.
- 5. k=0,1,2,... için $22^{6k+2}+3$ sayısının 19'a bölündüğünü kanıtlayınız.⁵
- 6. $2^{70} + 3^{70}$ sayısının 13'e bölündüğünü gösteriniz.

¹Bu koşulu sağlayan yalnızca bir pozitif tam sayı vardır: n=1. Gerçekten de $n^2+1=n(n+1)-(n-1)$ 'dir; bu nedenle, $n+1\mid n^2+1$ ise, $n+1\mid n-1$ olur. Bu, pozitif tam sayılar için yalnızca n-1=0 olduğunda mümkündür, yani n=1 olmalıdır.

 $^{^2}x-3=t$ olarak tanımlayalım. Böylece, $t,\,t\neq0$ olacak şekilde bir tam sayı olur ve $t\mid(t+3)^3-3$, bu da $t\mid3^3-3$ yani $t\mid24$ koşuluna eşdeğerdir. Bu nedenle, t'nin 24'ün bir tam sayı böleni olması gerekli ve yeterlidir. Bu durumda, $t,\,\pm1,\,\pm2,\,\pm3,\,\pm4,\,\pm6,\,\pm8,\,\pm12,\,\pm24$ sayılarından biri olmalıdır. x=t+3 için şu değerleri elde ederiz: $-21,\,-9,\,-5,\,-3,\,-1,\,0,\,1,\,2,\,4,\,5,\,6,\,7,\,9,\,11,\,15,$ ve 27.

³Örneğin, 65k + 56 aritmetik dizisindeki tüm n sayıları (burada k = 0, 1, 2, ...), istenen özelliğe sahiptir. Gerçekten de, n = 65k + 56 için, $k \ge 0$ tam sayısı ile $n \equiv 1 \pmod{5}$ ve $n \equiv 4 \pmod{13}$ olur. Bu nedenle, $4n^2 + 1 \equiv 0 \pmod{5}$ ve $4n^2 + 1 \equiv 0 \pmod{13}$ olur. Böylece, $5 \mid 4n^2 + 1$ ve $13 \mid 4n^2 + 1$.

⁴ $n^2+1\equiv 0\pmod 5$ ve $4n^2+1\equiv 0\pmod 13$ olur. Böylece, $5\mid 4n^2+1$ ve $13\mid 4n^2+1$.

4İddiamızı tümevarım yöntemiyle kanıtlayacağız. $169\mid 3^6-26-27=676=4\cdot 169$ olduğunu biliyoruz. Sonraki adımda, $3^{3(n+1)+3}-26(n+1)-27-(3^{3n+3}-26n-27)=26(3^{3n+3}-1)$ elde ederiz. Ancak, $13\mid 3^3-1$, bu nedenle $13\mid 3^{3(n+1)}-1$ ve $169\mid 26(3^{3n+3}-1)$ 'dir. Tümevarım yöntemiyle kanıt hemen ortaya çıkar.

 $^{^52^6=64\}equiv 1\pmod 9$ olduğuna göre, k=0,1,2,...için $2^{6k}\equiv 1\pmod 9$ elde ederiz. Bu nedenle $2^{6k+2}\equiv 2^2\pmod 9$ olur ve her iki taraf da çift olduğundan, $2^{6k+2}\equiv 2^2\pmod 18$ elde ederiz. Buradan $2^{6k+2}=18t+2^2$ elde ederiz, burada $t\geq 0$ bir tam sayıdır. Ancak, Fermat'ın küçük teoremine göre, $2^{18}\equiv 1\pmod 19$ 'dur ve $2^{18t}\equiv 1\pmod 19$ olur, t=0,1,2,...için. Böylece, $2^{6k+2}\equiv 2^{18t+4}\equiv 2^4\pmod 19$ olur; buradan da $2^{6k+2}+3\equiv 2^4+3\equiv 0\pmod 19$ elde edilir ve bu da kanıtlanması gereken şeydir.

⁶Fermat'ın küçük teoremine göre, $2^{12} \equiv 1 \pmod{13}$ olduğundan, $2^{60} \equiv 1 \pmod{13}$ elde ederiz. Ayrıca, $2^5 \equiv 6 \pmod{13}$ olduğu için, $2^{10} \equiv -3 \pmod{13}$ elde ederiz. Öte yandan, $3^3 \equiv 1 \pmod{13}$ 'tür, bu da $3^{69} \equiv 1 \pmod{13}$ ve $3^{70} \equiv 3 \pmod{13}$ anlamına gelir. Bu nedenle, $2^{70} + 3^{70} \equiv 0 \pmod{13}$ olur, yani $13 \mid 2^{70} + 3^{70}$, bu da kanıtlanması gereken şeydir.

- 7. $20^{15} 1$ sayısının $11 \cdot 31 \cdot 61$ çarpanına bölündüğünü kanıtlayınız.
- 8. Her pozitif tam sayım ve a > 1 tam sayısı için

$$\left(\frac{a^m-1}{a-1}, a-1\right) = (a-1, m)$$

esitliğinin sağlandığını kanıtlayınız.8

9. Her pozitif nsayısı için $3\cdot (15^5+25^5+\cdots+n^5)$ sayısının $13^3+23^3+\cdots+n^3$ 'e bölündüğünü kanıtlayınız.

$$\frac{a^m-1}{a-1} = (a^{m-1}-1) + (a^{m-2}-1) + \dots + (a-1) + m \tag{1}$$

ve $a-1\mid a^k-1$ ifadesinin $k=0,1,2,\ldots$ için geçerli olduğunu dikkate alarak, $d\mid m$ elde ederiz. Bu nedenle, a-1 ve m sayılarının $d>\delta$ ortak bir böleni olsaydı, (1) eşitliğine göre $\delta\mid \frac{a^m-1}{a-1}$ olurdu ve a^m-1 ile a-1 sayıları $\delta>d$ ortak bir bölenine sahip olurdu ki bu imkânsızdır. Bu nedenle, d, a-1 ve m sayılarının en büyük ortak bölenidir ve bu kanıtlanması gereken şeydir.

 9 Pozitif tam sayı n için, şu eşitliğe sahibiz:

$$1^3+2^3+\cdots+n^3=\frac{n^2(n+1)^2}{4}$$

(bu eşitlik tümevarım ile elde edilir). Yine tümevarım ile şu eşitliği de elde ederiz:

$$1^5 + 2^5 + \dots + n^5 = \frac{1}{12}n^2(n+1)^2(2n^2 + 2n - 1)$$

bu da tüm pozitif tam sayılar n için geçerlidir. Bu formüllerden şu sonucu elde ederiz:

$$3(1^5+2^5+\cdots+n^5)/(1^3+2^3+\cdots+n^3)=2n^2+2n-1$$

bu da istenen özelliği kanıtlar.

 $^{^7}$ Açıkça görülüyor ki, $20^{15}-1$ sayısının her bir asal böleni olan 11, 31 ve 61'in $20^{15}-1$ 'i böldüğünü göstermek yeterlidir. $2^5\equiv -1\pmod{11}$ ve $10\equiv -1\pmod{11}$ olduğundan, $10^5\equiv -1\pmod{11}$, bu da $20^5\equiv 1\pmod{11}$ ve $20^{15}\equiv 1\pmod{11}$ anlamına gelir. Dolayısıyla $11\mid 20^{15}-1$. Sonra, $20\equiv -11\pmod{31}$ olduğundan, $20^2\equiv 121\equiv -3\pmod{31}$ 'dir. Bu nedenle, $20^3\equiv (-11)(-3)=33\equiv 2\pmod{31}$ ve $20^{15}\equiv 2^5\equiv 1\pmod{31}$ olur. Böylece, $31\mid 20^{15}-1$. Son olarak, $3^4\equiv 20\pmod{61}$ ve bu da $20^{15}\equiv 3^{60}\equiv 1\pmod{61}$ anlamına gelir (Fermat'ın küçük teoremine göre); bu nedenle $61\mid 20^{15}-1$. $^8d=\left(\frac{a^m-1}{a-1},a-1\right)$ olarak tanımlayalım. Aşağıdaki eşitliği göz önünde bulunduralım:

- 10. $1^n + 2^n + \dots + (n-1)^n$ sayısının n'e bölünmesini sağlayan tüm n>1 tam sayılarını bulunuz.
- 11. Pozitif tam n sayısı için $a_n=2^{2n+1}-2^{n+1}+1$ ve $b_n=2^{2n+1}+2^{n+1}+1$ sayılarından hangisinin 5'e bölünüp, hangisinin bölünmediğini tespit ediniz. 11

$$n \mid k^n + (n-k)^n$$
 (çünkü $(-k)^n = -k^n$)

Böylece, $n \mid 1^n + 2^n + \dots + (n-1)^n$ elde ederiz. Diğer yandan, eğer n çift ise, 2^s , n'yi bölen en yüksek 2 kuvveti olsun (bu nedenle s pozitif bir tam sayıdır). $2^s \ge s$ olduğundan, k çift olduğunda $2^s \mid k^n$ ve k tek olduğunda (bu dizideki k sayılarının sayısı (n-1)/2'dir) Euler'in teoremine göre $k^{2^s-1} \equiv 1 \pmod{2^s}$ ve $k^n \equiv 1 \pmod{2^s}$ elde ederiz (çünkü $2^s \mid n$). Böylece şu sonuca ulaşırız:

$$1^n+3^n+\cdots+(n-3)^n+(n-1)^n\equiv \frac{n}{2}\pmod{2^s}$$

bu da şu sonucu verir:

$$1^n+2^n+\cdots+(n-1)^n\equiv \frac{n}{2}\pmod{2^s}$$

 $2^n+4^n+\dots+(n-2)^n\equiv 0\pmod{2^s} \text{ olduğundan, } n\mid 1^n+2^n+\dots+(n-1)^n \text{ elde ederiz. Eğer } 2^s\mid n \text{ ise, } \tfrac{n}{2}\equiv 0\pmod{2^s} \text{ olur ve } 2^s\mid n \text{ ve } 2^{s+1}\mid n \text{ çelişkisini elde ederiz. Böylece, } n \text{ çift olduğunda } n\nmid 1^n+2^n+\dots+(n-1)^n \text{ elde edilir.}$

Not: Fermat teoreminden şu sonucu kolayca çıkarırız: Eğer n bir asal sayıysa, $n \mid 1^n + 1 - 1^n + \dots + (n-1)^n + 1$. Ancak, bu ilişkiyi sağlayan bileşik bir sayı bilmiyoruz. G. Ginga, böyle bir bileşik sayı olmadığını öne sürdü, ancak bu 1'den küçük bileşik bir sayının var olmadığını henüz kanıtlayamadı.

¹¹Dört durumu inceleyelim:

(a) n=4kolsun, burada k pozitif bir tam sayıdır. Bu durumda,

$$a_n = 2^{8k+1} - 2^{4k+1} + 1 \equiv 2 - 2 + 1 \equiv 1 \pmod 5,$$

$$b_n = 2^{8k+1} + 2^{4k+1} + 1 \equiv 2 + 2 + 1 \equiv 0 \pmod{5}.$$

 $(2^4 \equiv 1 \pmod{5})$ olduğundan, $2^{4k} \equiv 1 \pmod{5}$ 'tir.)

(b) n = 4k + 1 olsun, k = 0, 1, 2, ... Bu durumda,

$$a_n = 2^{8k+3} - 2^{4k+2} + 1 \equiv 8 - 4 + 1 \equiv 0 \pmod{5},$$

$$b_n = 2^{8k+3} + 2^{4k+2} + 1 \equiv 8 + 4 + 1 \equiv 3 \pmod{5}.$$

(c) n = 4k + 2 olsun, k = 0, 1, 2, ... Bu durumda,

$$a_n = 2^{8k+5} - 2^{4k+3} + 1 \equiv 2 - 8 + 1 \equiv 0 \pmod{5},$$

$$b_n = 2^{8k+5} + 2^{4k+3} + 1 \equiv 2+8+1 \equiv 1 \pmod{5}.$$

(d) n = 4k + 3 olsun, k = 0, 1, 2, ... Bu durumda,

$$a_n = 2^{8k+7} - 2^{4k+4} + 1 \equiv 8 - 1 + 1 \equiv 3 \pmod{5},$$

$$b_n = 2^{8k+7} + 2^{4k+4} + 1 \equiv 8 + 1 + 1 \equiv 0 \pmod{5}.$$

Sonuç olarak, a_n sayıları yalnızca $n\equiv 1$ veya 2 (mod 4) olduğunda 5'e bölünürken, b_n sayıları yalnızca $n\equiv 0$ veya 3 (mod 4) olduğunda 5'e bölünür. Böylece, yalnızca a_n veya b_n sayılarından biri 5'e bölünür.

 $^{^{10}}$ Bunlar, 1'den büyük tüm tek sayılardır. Aslında, n tek ven>1ise, (n-1)/2 pozitif bir tam sayıdır ve $k=1,2,\ldots,(n-1)/2$ için kolayca şu ifadeyi elde ederiz:

12. Her n pozitif tam sayısı için

$$x+1, x^x+1, x^{x^x}+1, \dots$$

sonsuz dizisinin her bir terimi n'ye bölünecek şekilde bir x pozitif tam sayısı bulunduğunu kanıtlayınız. 12

13. Her x çift pozitif tam sayısı için

$$x^{x} + 1, x^{x^{x}} + 1, x^{x^{x^{x}}} + 1, \dots$$

dizisinin terimlerinden hiçbirinin n'ye bölünmeyecek şekilde sonsuz sayıda n tek pozitif tam sayısı bulunduğunu kanıtlayınız. 13

- 14. Her n pozitif tam sayısı için $(n+1)^n-1$ sayısının n^2 'ye bölündüğünü kanıtlayınız. 14
- 15. Her n pozitif tam sayısı için $2^{(2^n-1)n}-1$ sayısının $(2^n-1)^2$ 'ye bölündüğünü kanıtlayınız. 15

$$(1+n)^n = 1 + \binom{n}{1}n + \binom{n}{2}n^2 + \dots + \binom{n}{n}n^n$$

n>1 için (bu, $1^2\mid 2^2-1$ durumu göz önüne alındığında varsayılabilir), üçüncü terimden itibaren tüm terimler n'yi en az 2 üssünde içerir. İkinci terim $\binom{n}{1}n=n^2$ 'ye eşittir. Bu nedenle, $n^2\mid ((1+n)^n-1)$ ve bu kanıtlanması gereken şeydir.

$$m^2 \mid ((m+1)^m - 1)$$

ilişkisini elde ederiz. $m=2^n-1$ için, $(m+1)^m=2^{(2^n-1)}$ olduğundan, şu ilişkiyi elde ederiz:

$$(2^n-1)^2 \mid (2^{(2^n-1)n}-1),$$

ve bu, kanıtlanması gereken şeydir.

 $[\]overline{\ ^{12}x=2n-1}$ seçmek yeterlidir. Böylece x,x^x,x^{x^x},\ldots sayılarının her biri tek olur ve dolayısıyla 2n=x+1, sonsuz dizinin her bir terimi olan $x+1,x^x+1,x^{x^x}+1,\ldots$ sayılarının bir bölenidir.

 $^{^{13}}$ Örneğin, 4k+3 biçimindeki tüm asal sayılar p. Aslında, xçift olduğunda, dizideki x,x^x,x^{x^x},\ldots terimlerinin her biri çifttir. Eğer dizideki $x^x+1,x^{x^x}+1,x^{x^{x^x}}+1,\ldots$ terimlerinden herhangi biri p'ye tam bölünseydi, pozitif bir tam sayı miçin $p\mid x^m+1$ ilişkisine sahip olurduk, dolayısıyla $(x^m)^2\equiv -1\pmod p$. Ancak, -1, 4k+3 biçimindeki asal bir modül için bir karekök kalanı olamaz.

 $^{^{14}\}mathrm{Binom}$ açılımından

 $^{^{15}}$ Problem 14'e göre, pozitif tam sayılar m için

- 16. $2^n + 1$ sayısı n'ye bölünecek şekilde sonsuz sayıda pozitif tam n sayısı bulunduğunu kanıtlayınız. Bu koşulu sağlayan tüm asal sayıları bulunuz. 16
- 17. Her a > 1 tam sayısı için $a^n + 1$ sayısının n'ye bölünecek şekilde sonsuz sayıda pozitif tam n sayısı bulunduğunu kanıtlayınız.¹⁷

 $^{16}3\mid 2^3+1$ ve pozitif bir tam sayımiçin $3^m\mid 2^{3^m}+1$ olduğunu varsayalım. O zaman $2^{3^m+1}=(3^mk-1)^3=3^mk^3-3^mk^2+3^mk-1=3^mt-1$, burada t pozitif bir tam sayıdır. Böylece $3^{m+1}\mid 2^{3^m+1}+1$ ve tümevarım ile $3^m\mid 2^{3^m}+1$ 'i elde ederiz, $m=1,2,\ldots$ Ancak, $n\mid 2^n+1$ ilişkisini sağlayan başka pozitif tam sayılar da vardır. Aslında, pozitif bir tam sayıniçin $n\mid 2^n+1$ ise, aynı zamanda $2^n+1\mid 2^{2^n+1}+1$ olur. Gerçekten de $2^n+1=kn$, burada k bir tam sayıdır (açıkça, tektir), o zaman $2^n+1\mid 2^{kn}+1=2^{2^n+1}+1$ olur. Böylece $9\mid 2^3+1$ ifadesi $513\mid 2^{513}+1$ sonucunu verir.

n'nin asal olduğunu ve $n \mid 2^n + 1$ olduğunu varsayalım. Fermat'ın teoremiyle, $n \mid 2^n - 2$ elde ederiz, bu da $n \mid 3$ sonucunu verir. n asal olduğuna göre, n = 3 elde ederiz. Gerçekten, $3 \mid 2^3 + 1$ olur. Böylece, $n \mid 2^n + 1$ ilişkisini sağlayan tek asal sayı n = 3 olur.

¹⁷Öncelikle O. Reutter'e ait aşağıdaki teoremi kanıtlayacağız (bkz. [17]):

Eğer a+1, tam sayı üs ile bir 2 kuvveti değilse, o zaman $n \mid a^n+1$ ilişkisi pozitif tam sayılarla sonsuz çözümü vardır.

Eğer a+1, tam sayı üs ile bir 2 kuvveti değilse, o zaman p>2 olan bir asal böleni vardır. Bu durumda, $p\mid a+1$ olur.

Lemma. Eğer $k \ge 0$ bir tam sayı ve $p \mid a^k + 1$ ise, o zaman $p^{k+1} \mid a^{p^{k+1}} + 1$.

Lemmanın İspatı. $k \ge 0$ olan bir tam sayı için $p^k \mid a^k + 1$ olduğunu varsayalım. $a^k = b$ yazalım, bu durumda $p^k \mid b + 1$ elde ederiz, dolayısıyla $b = -1 \pmod{p^{k+1}}$ olur.

p tek asal olduğundan, $a^{p^{k+1}}+1=b^{p+1}=(b+1)(b^{p-1}-b^{p-2}+\cdots-b+1)$ ifadesini elde ederiz.

Ve (çünkü $b = -1 \pmod{p^{k+1}}$ bu da $b^p = 1 \pmod{p^{k+1}}$ anlamına gelir) $b^2 = 1 \pmod{p}$ ve $b^{2i} = 1 \pmod{p}$ elde ederiz. Bu nedenle:

$$b^{p-1} - b^{p-2} + \dots - b + 1 = 0 \pmod{p}$$
,

bu da ikinci terimin p'ye bölünebilir olduğunu gösterir. Dolayısıyla, $p^{k+1} \mid a^{p^{k+1}} + 1$ elde ederiz ve bu ispatlanması gereken şeydir.

Lemma, $p \mid a+1$ olduğunda, $p^{k+1} \mid a^{p^{k+1}}+1$ ve $p^{k+1} \mid a^{p^{k+1}}+1$ için k=1,2,... ifadesiyle tümevarım sağlar. Bu da $n \mid a^n+1$ ilişkisini sağlayan sonsuz pozitif tam sayı n olduğunu ve O. Reutter'in teoremini ispatladığımızı gösterir.

Reutter teoreminin koşullarını sağlayan pozitif tam sayılar için, a'nın tek ve a>1 olduğunu varsaymak yeterlidir. Bu durumda, a^2+1 ve a^2 ifadesi 8k+1 formundadır. Dolayısıyla, $a^2+1=8k+2=2(4k+1)$ tek bir çift sayıdır. Şu lemayı ispatlayacağız:

Lemma. Eğer a tek ise, o zaman a ve $a^2 + 1$ çift tek sayılar olup, $s \mid a + 1$ ise, pozitif bir tam sayı $s_1 > s$ vardır ki s_1 ve $a^{s_1} + 1$ de çift tek sayılardır ve $s_1 \mid a^{s_1} + 1$.

İspat. $a^2 + 1$ ve $a^{s_1} + 1$ çift tek sayılar olduğundan, a + 1 = ms elde ederiz, burada m tektir. Böylece $a^s + 1 = a^{s_1} + 1 = a^{s_1} + 1$ 'dir ve $a^{s_1} + 1$ çift bir çift tek sayıdır.

 $s_1\mid a+1$ olduğunda, $s_1\mid a^{s_1}+1$ ve $s_1\mid a^{s_1}+1$ elde ederiz. Bu durumda, a>1olduğundan, $s_1>s$ olur. Böylece lema ispatlanmış olur.

a tek olduğundan, s=2 diyebiliriz, bu da lemanın koşullarını sağlar. Böylece, $n\mid a^n+1$ ilişkisini sağlayan sonsuz pozitif tam sayı n olduğunu gösteririz ve bu ispatlanması gereken şeydir (bkz. [35]).

18. $2^n + 2$ sayısı n'ye bölünecek şekilde sonsuz sayıda pozitif tam n sayısı bulunduğunu kanıtlayınız. 18

19. $a^{10} + 1$ sayısının 10'a bölünmesini sağlayan tüm pozitif tam a sayılarını bulunuz. 19

$$2^{n} + 1 \mid 2^{2^{n}+2} + 1 = 2^{2^{2^{n}+2}} + 2$$

 $n_1 = 2^n + 2$ için ise:

$$n_1 - 1 = 2^n + 1 \mid 2^{2^n + 1} + 1$$

Sonra, $n-1 \mid 2^{n-1}+1$ ifadesini elde ederiz ki bu da $2^n+1=2^{n-1}m+1$ 'i verir, burada m tektir. Dolayısıyla:

$$2^{n} + 1 \mid 2^{a-1}m + 1 = 2^{2^{n}+1}$$

elde ederiz, bu da:

$$2^{n} + 2 \mid 2^{2^{2^{n}+2}+2}, \quad ve \quad n_1 \mid 2^{n_1+2}$$

Bu koşulları sağlayan sonsuz sayıda çift tam sayı \boldsymbol{n} vardır.

 $n_1=2^n+2$ olduğundan, koşullarımızı sağlayan sonsuz sayıda çift tam sayı vardır. n=2'den başlayarak, ardışık sayılar 2, 6, 66, $2^{66}+2$, ... Ancak, C. Bindschedler bu yöntemin $n\mid 2^n+2$ ilişkisini sağlayan tüm sayıları vermediğini fark etti; örneğin 946 sayısı $2^{946}+2$ ilişkisini sağlamaz. Bu problemi tartışan C. Bindschedler tarafından verilen çözümü, Elemente der Mathematik dergisinin 18. sayısındaki 430 numaralı problemimde görebilirsiniz (1963), sayfa 90.

 19 Eğer a bir pozitif tam sayıysa ve r sayısı a sayısının 10'a bölünmesinden kalan ise, $a^{10}+1$ ifadesi ancak ve ancak $r^{10}+1$ ifadesi 10'a bölünebiliyorsa 10'a bölünür. Bu nedenle, sadece $r=0,1,2,\ldots,9$ sayıları dikkate alınmalıdır ve bu sayılar için sadece $3^{10}+1$ ve $7^{10}+1$ ifadelerinin 10'a bölünebildiğini kolayca doğrularız. Dolayısıyla, $a^{10}+1$ ifadesi 10'a bölünebilen tüm a sayıları 10k+3 ve 10k+7 formundadır, burada $k=0,1,2,\ldots$

 $[\]overline{)^{18}}n$ çift ise ve $n\mid 2^n+2$ ve $n\mid n-1\mid 2^{n-1}+1$ ise (örneğin n=2 için bu doğrudur), o zaman $n_1=2^n+2$ sayısı için $n_1\mid 2^{n_1}+2$ ve $n_1\mid n_1-1\mid 2^{n_1-1}+1$ elde ederiz. Aslında, $n\mid 2^n+2$ ve n çift olduğunda, $2^n+2=nk$ elde edilir, burada k tektir. Dolayısıyla:

- 20. Hiçbir n > 1 tam sayısı için $2^n 1$ sayısının n'ye bölünmediğini kanıtlayınız. n
 - (a) $2^n + 1$ sayısının n'ye bölünmesini sağlayan sonsuz tane n pozitif tam sayısının bulunduğunu gösteriniz.²¹
- 21. $3^n + 1$ sayısının n'ye bölünmesini sağlayan tüm n tek pozitif tam sayılarını bulunuz. 22
- 22. $n \cdot 2^n + 1$ sayısının 3'e bölünmesini sağlayan tüm n pozitif tam sayılarını bulunuz.²³

$$2^{3^{k+1}} + 1 = (2^{3^k} + 1)(2^{3^k} - 2^{3^k} + 1)$$

ve şu gözlemden yola çıkarak:

$$2^{3^k} - 2^{3^k} + 2 = 2^{3^k} + 2 - (2^{3^k} + 1)$$
, ve $3 \mid 2^{3^k} + 2$

(çünkü 4^3 bölündüğünde kalan 1 verir), formülün ikinci terimi $2^{3^{k+1}}+1$ 'in 3 ile bölünebilir olduğunu gösterir, bu da $3 \mid 2^{3^{k+1}}+1$ anlamına gelir.

Eğer n = 6k + 1 ise, $2^6 \equiv 1 \pmod{3}$ olduğundan,

$$n2^n + 1 = (2^6)2 + 1 \equiv 2 + 1 \equiv 0 \pmod{3}$$
.

Bu durumda $3 \mid n2^n + 1$ olur.

Eğer n = 6k + 2 ise,

$$n2^n + 1 = 2(2^6)2 + 1 \equiv 8 + 1 \equiv 0 \pmod{3}$$
,

yani yine $3 \mid n2^n + 1$.

Eğer n = 6k + 4 ise,

$$n2^n + 1 \equiv 4(2^6)2^4 + 1 \equiv 2^5 + 1 \equiv 2 \pmod{3}$$
.

Son olarak, n = 6k + 5 ise,

$$n2^n + 1 = 5(2^6)2^5 + 1 \equiv 2 \pmod{3}$$
.

Bu durumda, $n2^n+1$ ifadesi ancak ve ancak n, 6k+1 veya 6k+2 formunda olduğunda 3'e bölünebilir. Burada k=0,1,2,...

 $^{^{20}}n > 1$ pozitif tamsayılarının olduğunu ve n'in en küçüğü olduğunu varsayalım. Euler teoremine göre $n \mid (2^n-1)$. Ancak, pozitif tamsayılar a ve b için 2^a-1 ve 2^b-1 sayıların en büyük ortak böleni 2^d-1 'dir, burada d=(a,b)'dir.

a=n ve b=arphi(n) için d=(n, arphi(n))'dir, dolayısıyla $n\mid (2^d-1)$ 'dir. Ancak, n>1 olduğundan $2^d-1>1$ elde ederiz, bu da d>1 ve $1< d\leq arphi(n)< n$ anlamına gelir ve $d\mid n\mid (2^d-1)$ ifadesi n'in tanımına avkırıdır.

²¹Örneğin, $n=3^k$ biçimindeki tüm sayılar için (k=1,2,...). Bu durumu matematiksel tümevarım yoluyla ispatlayacağız. Elimizde $3 \mid 2^{3^k} + 1$ var. Eğer herhangi bir pozitif tam k için $3 \mid 2^{3^k} + 1$, o zaman, aşağıdaki özdeşlikten hareketle

 $^{^{22}}n=1$ olan tek sayıdır. Varsayalım ki, n>1 olan bir tek sayı vardır ve $n\mid 3^n+1$. Bu durumda, $n\mid 9n-1$. $n,\ n\mid 9^{\varphi(n)}-1$ ile pozitif bir tam sayı olsun. $d=(\varphi(n),n)$ olarak tanımlandığında, $n\mid 9^d-1$ elde edilir. Ancak, d>1 olduğunda, $n\mid 8$ elde edilir ki, n tek olduğu için bu mümkün değildir. Sonuç olarak $1< d\leq \varphi(n)< n$ ve $d\mid n$, bu nedenle n>1 koşulunu sağlayan tek bir sayı yoktur.

 $^{^{23}}$ Açıkça, nsayısı 3'e bölünemez. Bu nedenle, nsayısı aşağıdaki formlardan birinde olmalıdır: $6k+1,\,6k+2,\,6k+4$ veya 6k+5, burada $k=0,1,2,\ldots$

- 23. Her tek p asal sayısı için $n \cdot 2^n + 1$ sayısının p'ye bölünmesini sağlayan sonsuz sayıda n pozitif tam savısının bulunduğunu kanıtlayınız.²⁴
- 24. Her pozitif tam n sayısı için, y^y sayısı x^x 'e bölünecek, fakat y sayısı x^x 'e bölünmeyecek sekilde x > n ve y pozitif tam savılarının bulunduğunu kanıtlayınız. ²⁵
- 25. Her n tek pozitif tam sayısı için 2^n-1 sayısının n'ye bölündüğünü kanıtlavınız. 2^{26}
- 26. 2^n-3 (n=2,3,...) sonsuz dizisinin 5'e bölünen sonsuz sayıda terimi olduğunu; 13'e bölünen sonsuz tane terimin bulunduğunu, fakat 65'e bölünen hiçbir terimin bulunmadığını kanıtlavınız.²⁷

$$\varphi(n) = q_1^{a_1-1}q_2^{a_2-1}\dots q_k^{a_k-1}(q_1-1)(q_2-1)\dots (q_k-1)$$

ve $q_1^{a_1-1}q_2^{a_2-1}\dots q_k^{a_k-1}\mid n,\, q_1-1 < q_2-1 < \dots < q_k-1$ olduğu için $q_k-1 < n$ ve $q_1-1 < q_2-1 < \dots < q_k-1$, n'den küçük farklı pozitif tam sayılardır. Böylece $(q_1-1)(q_2-1)\dots (q_k-1)(n-1)!\mid n!$ elde edilir ve buradan $\varphi(n)(n-1)! \mid n!$ olduğu sonucu çıkar.

Eğer n tek ise, (Euler teoremine göre) $n \mid 2^{\varphi(n)} - 1 \mid 2^{n!} - 1$, dolayısıyla $n \mid 2^{n!} - 1$, bu da kanıtlanması

 $2^3 \equiv 3 \pmod 5 \text{ ve } 2^4 \equiv 3 \pmod 13 \text{ olduğu için, } 24k+3 \equiv 3 \pmod 5 \text{ ve } 2^{12k+4} \equiv 3 \pmod 13 \text{ elde ederiz, burada } k=0,1,2,\dots$ Dolayısıyla, 5 | $2^{4k+3}-3$ ve 13 | $2^{12k+4}-3$, burada $k=0,1,2,\dots$

Bir sonraki adımda, $2^6 \equiv 1 \pmod{65}$ olduğunu ve bu nedenle $2^{12} \equiv 1 \pmod{65}$ olduğunu görürüz. Böylece $2^n-3\equiv 2^n-3\pmod{65}$, bu da 2^n-3 dizisinin (n=2,3,...) 12 periyotlu olduğunu gösterir. 2^n-3 3 sayılarının hiçbiri (n=2,3,...) 65'e bölünmüyorsa, bunu göstermek için n=2,3,...,13 için 2^n- 3 sayılarının 65'e bölünüp bölünmediğini kontrol etmek yeterlidir. 65'e bölündüğünde kalanlar sırasıyla 1, 5, 13, 29, 61, 60, 58, 54, 46, 30, 63, 64 olup, bunların hiçbiri sıfır değildir.

²⁴Eğer p tek bir asal sayıysa ve n=(p-1)(kp+1), burada k=0,1,2,..., o zaman $n\equiv -1\pmod p$ ve $p-1\mid n$. Fermat'nın küçük teoremi gereğince, $2^n\equiv 1\pmod p$ olur, dolayısıyla $n2^n+1\equiv 0\pmod p$.

Not: Bu problemden, $n2^n + 1$ formunda sonsuz savida bilesik savi olduğu sonucu çıkarılabilir, burada npozitif bir tam sayıdır. Bu formdaki sayılar Cullen sayıları olarak bilinir. 1 < n < 141 aralığında bu formdaki tüm sayılar bileşik olduğu ispatlanmıştır, ancak n=141 için $n2^n+1$ asal bir sayıdır. Sonsuz sayıda asal Cullen sayısı olup olmadığı bilinmemektedir.

 $^{^{25}}n$ verilen bir pozitif tam sayı olsun ve k>1 olmak üzere $2^k>n$ olacak şekilde pozitif bir tam sayı olsun. p, 2^k-1 'den büyük bir asal sayı olsun. k>1 olduğu için, $x=2^k,\ y=2p$ olarak alalım. Buradan $x\nmid y$ ve $x^x \mid y^y$ olur, çünkü $x=2^{2^k}$ ve $y^y=(2p)^{2p},$ burada $2p>2^kk.$ Örneğin, 4 \nmid 10, fakat 4^4 \mid 10^10, 8 \nmid 12, fakat 8^8 \mid 12^12, 9 \nmid 21, fakat 9^9 \mid 21^21.

 $^{^{26}}$ Pozitif tam sayılar için, $\varphi(n)\mid n!$ olduğu açıktır. Aslında, n=1için bu doğrudur; eğer n>1ise ve $n = q_1^{a_1} q_2^{a_2} \dots q_k^{a_k}$ asal çarpanlarına ayrılmışsa, burada $q_1 < q_2 < \dots < q_k$ olmak üzere, o zaman

²⁷Fermat'nın teoremine göre, $2^4 \equiv 1 \pmod{5}$ ve $2^{12} \equiv 1 \pmod{13}$.

- 27. 2^n-2 ve 3^n-3 sayıları n'ye bölünmesini sağlayan iki en küçük bileşik n sayısını bulunuz.
- 28. 2^n-2 sayısının n'ye bölünmesini, 3^n-3 sayısının da n'ye bölünmesini sağlayan en küçük n pozitif tam sayısını bulunuz.
- 29. 2^n-2 sayısının n'ye bölünmemesini, 3^n-3 sayısının da n'ye bölünmesini sağlayan en küçük n pozitif tam sayısını bulunuz.
- 30. Her a pozitif tam sayısı için a^n-a sayısının n'e bölünecek şekilde bir n bileşik sayısı bulunuz.
- 31. a,b,c tam sayılar olmak üzere $a^3+b^3+c^3$ sayısı 9'a bölünüyorsa, a,b,c sayılarından en az birinin 3'e bölündüğünü kanıtlayınız.
- 32. a_k , k = 1, 2, 3, 4, 5 tam sayılar olmak üzere

$$a_1^3 + a_2^3 + a_3^3 + a_4^3 + a_5^3$$

sayısı 9'a bölünüyorsa,

$$3 \mid (a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5)$$

olduğunu kanıtlayınız.

Kaynakça

Sierpinski, Waclaw. 1970. 250 problems in elementary number theory. American Elsevier Publishing Company.