Getting started with Competitive Programming

Week 10 – Dynamic Programming

Problem 1: Jumping stones

There are n stones in a row from left to right. You are standing on the first stone. From every step from stone number i, you can jump at most k stones further (i+1, i+2, ..., i+k). You cannot jump over stone number n. How many ways are there to travel to stone number n?

Input format

You are given two space separated integers on one line, denoting n and k, respectively.

Output format

Print the answer modulo $10^9 + 7$.

See the sample tests for sample inputs and outputs.

Problem 2: Knapsack for all subsets

Given are a sequence of N positive integers $A_1,A_2,...,A_N$ and another positive integer S.

For a non-empty subset T of the set $\{1,2,...,N\}$, let us define f(T) as follows:

f(T) is the number of different non-empty subsets $\{x1,x2,...,xk\}$ of T such that

• $A_{x1}+A_{x2}+...+A_{xk}=S$.

Find the sum of f(T) over all 2^N-1 subsets T of $\{1,2,...,N\}$. Since the sum can be enormous, print it modulo 998244353.

Constraints

- All values in input are integers.
- 1≤*N*≤3000
- 1≤*S*≤3000
- $1 \le A_i \le 3000$

Input

Input is given from Standard Input in the following format:

NS

 $A_1,A_2,...,A_N$

Output

Print the sum of f(T) modulo 998244353.

Sample Input 1

3 4

224

Sample Output 1

6

For each T, the value of f(T) is shown below. The sum of these values is 6.

- $f(\{1\})=0$
- $f({2})=0$
- *f*({3})=1 (One subset{3}satisfies the condition.)
- $f({1,2})=1({1,2})$
- $f({2,3})=1({3})$
- $f({1,3})=1({3})$
- $f({1,2,3})=2({1,2},{3})$

Sample Input 2

58

99999

Sample Output 2

0

Sample Input 3

10 10

3141592653

Sample Output 3

3296