Tous les nombres que vous avez rencontrés dans votre scolarité peuvent être sur une droite. La position relative de deux nombres peut être décrite au moyen des symboles

Exemple 1 $2, 5, \sqrt{2}, \frac{4}{5}$ sont des nombres

Notations

Rappel : On se donne E un ensemble de nombres et a un nombre. La notation $x \in E$ signifie que x à E. $x \notin E$ signifie que x à l'ensemble E.

- L'ensemble des nombres réels compris entre 0 et 7 inclus se note . On appelle cet ensemble un **intervalle** . 0 et 7 s'appellent les **bornes** de l'intervalle.
- Si l'on souhaite décrire l'ensemble des nombres réels compris entre 0 et 7 en excluant 7, on note .
- Par commodité on introduit deux symboles $+\infty$ et $-\infty$.] $-\infty$; 7] désigne l'intervalle de tous les nombres

Comme on l'a vu dans l'activité sur les intervalles, on représente généralement les intervalles sous forme d'une droite graduée :

Savoir-Faire 2 : Décrire des intervalles de nombres

Exercice 1 : Décrire sous forme d'intervalles les ensembles de nombres décrits ci-dessous par une phrase :

- 1. L'ensemble des nombres réels plus petits que 2 et plus grands que -3.
- 2. L'ensemble des nombres réels positifs plus grands que 8.
- 3. L'ensemble des nombres réels négatifs plus petits que 7.

Exercice 2 : En vous inspirant du modèle pré-rempli, décrire avec les symboles $<,>,\leq,\geq$ les intervalles suivants :

- $x \in [-3, 7] \Leftrightarrow -3 \le x \ge 7$.
- $x \in [-2; 3]$
- $x \in [-1; 2[$
- $x \in [2; +\infty[$

Savoir-Faire 3: Utiliser les intervalles

Complétez au moyen des symboles vus dans les parties précédentes :

- 1. $\sqrt{2}$... [1,3;2,5].
- $2. -\frac{3}{5} \dots [1; 8].$
- 3. $-\frac{1}{5}$...]-0,2;6].