

# Computação Escalável

Trabalho AS

Thiago Pinheiro de Araújo EMAp/FGV 2022.1

## Objetivo



Escrever um simulador de cenários explorando paralelismo e concorrência, e a partir dele criar um pipeline escalável capaz de gerar análises sobre os dados.



#### Objetivos

- Os objetivos do trabalho são:
  - Criar um programa capaz de simular o tráfego de veículos em uma cidade explorando as características de <u>paralelismo e concorrência</u> abordadas na disciplina.
  - Criar um pipeline capaz de gerar análises a partir de múltiplos cenários de simulação de tráfego
    - Modelar a arquitetura do pipeline
      - Escolhendo os mecanismos de comunicação e processamento paralelo adequados.
    - Extrair os dados de forma eficiente
      - Buscando reduzir o impacto no desempenho do sistema-alvo.
    - Processar os dados de forma paralela gerando as análises.
    - Prover um mecanismo para visualizar as análises.



#### Requisitos do simulador

- O simulador de tráfego deverá representar as ruas e os cruzamentos de uma cidade
  - Ruas devem ser representadas como arestas e cruzamentos como vértices de um grafo.
  - A cada execução do programa o grafo deverá ser gerado de forma aleatória durante a inicialização.
- O grafo deverá possuir vértices terminais que conectam a cidade simulada com cidades vizinhas
  - Cada vértice terminal deverá adicionar um número aleatório de veículos a cada ciclo.
  - Cada veículo que atingir um vértice terminal deverá ser removido da simulação.



#### Requisitos do simulador

- Ruas poderão ser trafegadas em ambos os sentidos
  - No entanto ao entrar em uma rua o veículo não pode trocar o sentido.
- Cada rua deverá possuir uma capacidade máxima veículos para cada sentido.
- O comprimento de uma rua deverá ser definido de forma aleatória durante a inicialização
  - O número de ciclos para atravessar uma rua deverá ser baseado na velocidade do veículo e no comprimento da rua.
  - Ao passar por um cruzamento a velocidade do veículo deverá variar de forma aleatória (considere limites máximo e mínimo para a variação).



#### Requisitos do simulador

- Cada cruzamento deverá ser controlado por um conjunto de semáforos de trânsito
  - Ao atingir um cruzamento o veículo deverá escolher de forma aleatória dentre as arestas associadas ao mesmo, exceto a aresta de entrada.
- O veículo somente poderá trafegar entre duas arestas caso:
  - A capacidade máxima da aresta de destino não tenha sido atingida.
  - Tenha obtido acesso exclusivo ao par de arestas (problema dos filósofos jantando).

 O programa deverá fornecer um mecanismo para visualizar o estado de cada ciclo ao longo da simulação.



#### Requisitos do pipeline de análises

- A fonte de dados a ser utilizada no pipeline consistirá em múltiplas instâncias da aplicação de simulação.
- A aplicação deverá ser instrumentada de forma que notifique o seu estado a cada ciclo da simulação.
- O simulador deverá executar cada cenário por um tempo definido de forma aleatória
  - Ao concluir a execução de um cenário o programa deverá gerar um novo cenário.



#### Requisitos

- O conjunto de análises deverá apresentar as seguintes informações considerando todos os cenários de simulação:
  - Número total de cenários em execução.
  - Número total de veículos nos cenários em execução.
  - Número total de ruas e cruzamentos nos cenários em execução.
  - A velocidade média dentre todos os veículos de todos os cenários executados.
  - A maior distância percorrida por um veículo considerando todos os cenários executados.
  - O tempo médio de execução dos cenários.
  - O cenário que trafegou o maior número de veículos e a quantidade.



#### Requisitos

- O usuário da ferramenta de análise deverá ser capaz de escolher um cenário para visualizar as seguintes análises sobre o mesmo:
  - Número de veículos.
  - Número de ruas e cruzamentos.
  - A velocidade média dentre todos os veículos.
  - A maior distância percorrida por um veículo.
  - Duração da execução corrente.
  - Número de veículos em cada rua.



#### Observações

- O objetivo do trabalho não é abordar:
  - Técnicas, ferramentas e algoritmos de simulação.
  - Técnicas de lA para tomada de decisão.
  - Algoritmos de escolha de caminho (pathfinding).
  - Técnicas e ferramentas de visualização de dados.
  - Modelagem dimensional.



#### Implementação do simulador

- O programa de simulação de cenários poderá ser escrito em C++ (utilizando threads) ou Python (utilizando o pacote multiprocessing).
- Os veículos devem ser divididos em N (configurável) linhas de execução independentes a fim de explorar o paralelismo e os mecanismos de controle de concorrência ao computar as suas ações.
- A atualização do ambiente também deve ser computada em uma linha de execução diferente da principal.
- A saída do programa de simulação deverá exibir uma representação do grafo contendo as ruas com o número de veículos em cada sentido, e os cruzamentos com o estado de cada semáforo.



#### Implementação do pipeline

- A extração do dado deverá ser realizada utilizando um dos mecanismos de comunicação abordados na disciplina
  - O grupo deverá definir a estratégia de ingestão do dado, o momento em que a mesma deverá ser executada, e o conteúdo da mensagem.
- Os dados extraídos deverão ser armazenados em um repositório de dados
  - O grupo deverá escolher o banco de dados e definir o seu modelo.
- Os dados devem ser processados de forma paralela utilizando um dos mecanismos abordados na disciplina.
- As análises devem ser apresentadas em tempo real através de uma aplicação linha de comando.



#### Entrega

- Grupos devem ter até 4 integrantes.
- O trabalho deverá ser entregue em um arquivo zip contendo
  - Um documento descrevendo a modelagem geral, as principais decisões de projeto e a solução para cada um dos problemas de concorrência identificados.
  - Um manual (readme) com instruções para compilar e executar.
  - O código-fonte de cada componente do sistema.
- A entrega deverá ser realizada no eClass até o dia 04/07/2022 às 23:59
  - Trabalhos entregues após esta data não serão aceitos.



#### Avaliação

- A avaliação será baseada nos critérios a seguir:
  - Documentação do projeto contendo a modelagem, os problemas identificados e as soluções.
  - Modelagem geral do sistema.
  - Solução para computar o comportamento dos veículos de forma paralela e concorrente.
  - Solução para veículos atravessarem cruzamentos.
  - Solução para computar as análises no pipeline.
  - Organização do projeto.
  - Qualidade do código.
  - Manual de instruções.