FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO ANÁLISE NUMÉRICA – Aula 06 – 2º SEMESTRE/2019 PROF. Jamil Kalil Naufal Júnior

TEORIA: RESOLUÇÃO DE EQUAÇÕES (I)

Nossos **objetivos** nesta aula são:

- Conhecer o problema de resolução de equações.
- Conhecer e praticar com o Algoritmo da Bisseção para a soluções de problemas.

Para esta semana, usamos como referência as **Seção 2.1** (**Método da Bissecção**) do nosso livro da referência básica:

BURDEN, R.L., FAIRES, J.D. **Análise Numérica**. 10.ed. São Paulo: Cengage Learning, 2017.

Não deixem de ler esta seção depois desta aula!

PROBLEMA DE RESOLUÇÃO DE EQUAÇÕES

- O problema de resolução de equações de uma variável consiste em, dada uma função de uma variável f(x), encontrar um valor r tal que f(r)=0. Este valor é chamado raiz de f(x).
- Por exemplo, a função P(x) mostrada abaixo possui três raízes:

1. Encontre todas as raízes da função:

$$f(x) = x^5 + x - 2x^4 - 2$$

Resolução:

$$x^5 + x - 2x^4 - 2 = 0$$

$$x(x^4+1)-2(x^4+1)=0$$

$$(x^4 + 1).(x-2) = 0$$

Considerando o conjunto dos números complexos, ou seja, $-1 = i^2$

Raízes: 2, $-\sqrt{i}$, $+\sqrt{i}$

2. Encontre todas as raízes da função:

$$f(x) = 4x^3 - 3x^2 - 25x - 6$$

Resolução:

$$4x^3-3x^2-25x-6=0$$

Teorema das raízes racionais:

Divisores de a_0 :p ϵ {+-1, +-2, +-3, +-6}

Divisores de a_n:q ϵ {+-1, +-2, +-4}

p/q
$$\epsilon$$
 {+-1, +-2, +-, 3,+-6, +-1/2, +-1/4,+- 3/2, +-3/4}

$$f(-2) = 0 (raiz)$$

$$f(x) = q(x).Q(x) = 0$$
, sendo $Q(x) = (x+2)$, portanto, $f(x) = q(x).(x+2) = 0$

Método prático de Briot Ruffini

Aplicando Báskara, raízes = {-1/4, 3}

$$(x-3)(x+1/4).(x+2)=0$$

Raízes: {-2, -1/4, 3}

3. Encontre todas as raízes da função:

$$f(x) = x^3 + 4x^2 - 10$$

Método Cardano-Tartaglia

Solução Geral

Para a equação cúbica geral $ax^3 + bx^2 + cx + d = 0$, o método de Cardano-Tartaglia garante a existência de três soluções complexas, as quais podem ser escritas da seguinte forma em termos dos coeficientes a, b, c e d:

$$\begin{split} x_1 &= -\frac{b}{3a} + \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \\ x_2 &= -\frac{b}{3a} + \left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)\sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \left(\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right)\sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \\ x_3 &= -\frac{b}{3a} + \left(\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right)\sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)\sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}, \\ \text{em que } p &= \frac{c}{a} - \frac{b^2}{3a^2} \text{ e } q = \frac{d}{a} - \frac{bc}{3a^2} + \frac{2b^3}{27a^3}. \end{split}$$

Raízes:

$${x_1 = 1,365230013,}$$

 ${x_2 = -2,68262+0,35826i,}$
 ${x_3 = -2,68262-0,35826i}$

MÉTODO DA BISSECÇÃO

- Trata-se de um dos métodos mais elementares para se resolver equações.
- Inicialmente, delimita-se um intervalo [a,b] que contenha a raiz procurada. Divide-se o intervalo ao meio (p_i) e define-se se a busca pela continua pelo lado esquerdo ou direito da divisão dependendo do sinal do produto f(a)f(pi) ou f(b)f(pi). Vamos sempre procurar do lado que tiver o produto negativo, pois a função muda de sinal neste intervalo.
- O esquema iterativo é mostrado na figura abaixo:

Como se trata de um esquema iterativo, é necessário fornecer uma tolerância ε. A partir desta tolerância, existem diversas alternativas para critérios de parada:

$$|p_N - p_{N-1}| < \varepsilon,$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \quad p_N \neq 0,$$

$$|f(p_N)| < \varepsilon.$$

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

4. Encontre uma aproximação para uma raiz da equação no intervalo [1,2] com tolerância ϵ =0.1.

$$f(x) = x^3 + 4x^2 - 10 = 0$$

Utilize, como critério de parada, $|f(p_N)|<arepsilon_{.}$

Solução:

$$Como f(1) = -5 e f(2) = 14,$$

Para a primeira iteração do método da bissecção, usamos o fato de que no ponto médio de [1, 2] temos f(1,5) = 2,375 > 0. Isso indica que devemos escolher o intervalo [1, 1,5] para nossa segunda iteração. A seguir, encontramos que f(1,25) = -1,796875, de modo que nosso intervalo se torna [1,25, 1,5], cujo ponto médio é 1,375. Ao continuar dessa maneira, encontramos os valores na Tabela.

n a _n	$b_{_{n}}$	<i>P</i> _n	$f(p_n)$	
1 1,0	2,0	b2=p1 1,5	2,375	f(a ₁).f(p ₁)<0
2 a2=a11,0	b3=b2, 1,5	a3=p2 1,25	-1,79687	f(a ₂).f(p ₂)>0
3 1,25		b4=p3 1,375	0,16211	f(a ₃).f(p ₃)<0
4 a4=a3 1,25	b5=b4, 1,375	a5=p4 1,3125	-0,84839	f(a ₄).f(p ₄)>0
5 1,31	25 1,375	a6=p5 1,34375	-0,35098	f(a ₅).f(p ₅)>0
6 1,34	b6=b5 1,375	1,359375	-0,09641	

Para n=1 temos que $a_1=1 \Rightarrow f(1)=-5$ e $p_1=1,5 \Rightarrow f(1,5)=+2,375$, então f(1).f(1,5)<0

O algoritmo para em n=6, pois atingiu-se o critério de parada $|f(p_6)| = 0.09641 < 0.1$ no qual temos $p_6 = 1,359375$.

Temos que pelo exercício 03 que a raiz real é 1,365230013, temos um erro absoluto de $|1,365230013-1,359375| = 0,005855013 (0,5855013.10^{-2}) < 0,1$

Apesar de conceitualmente claro, o método da bissecção tem desvantagens significativas. Sua convergência é lenta (isto é, N pode crescer muito antes que $\mid p-p_N \mid$ se torne pequeno o suficiente), e uma boa aproximação intermediária pode ser descartada de modo inadvertido. Entretanto, o método tem a propriedade importante de sempre convergir para uma solução e, por isso, é utilizado muitas vezes como o iniciador de métodos mais eficientes .

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

5. Escreva o Método da Bissecção numa versão algorítmica.

Para determinar uma solução de f(x) = 0, dada a função contínua f no intervalo [a, b], onde f(a) e f(b) têm sinais opostos:

```
ENTRADA extremidades a, b; tolerância TOL; número máximo de iterações N_0.
```

SAÍDA solução aproximada p ou mensagem de erro.

Passo 1 Faça
$$i = 1$$
;

$$FA = f(a)$$
.

Passo 2 Enquanto $i \le N_0$, execute os Passos 3 a 6.

Passo 3 Faça
$$p = a + (b - a)/2$$
; (Calcule p_i)

$$FP = f(p)$$
.

Passo 4 Se
$$FP = 0$$
 ou $(b - a)/2 < TOL$, então SAÍDA (p) ; (Procedimento concluído com sucesso.) PARE.

Passo 5 Faça i = i + 1.

Passo 6 Se $FA \cdot FP > 0$, então faça a = p; (Calcule a_a, b_a)

$$FA = FP$$

senão faça b = p. (FA não muda)

Passo 7 SAÍDA ('O método falhou após N_0 iterações, $N_0 =$ ', N_0); (O procedimento não foi bem-sucedido.) PARE.

Quando um computador é utilizado para gerar aproximações, é boa prática definir um limite superior para o número de iterações. Isso elimina a possibilidade da ocorrência de um laço infinito, uma situação que pode ocorrer quando a sequência diverge (e também quando a codificação do programa é incorreta). Isso foi efetuado no Passo 2 do Algoritmo , no qual o limite $N_{\scriptscriptstyle 0}$ foi definido e o procedimento encerrado se $i>N_{\scriptscriptstyle 0}$.

Observe que, para iniciarmos o algoritmo de bissecção, devemos determinar um intervalo [a, b] com $f(a) \cdot f(b) < 0$. Em cada passo, o comprimento do intervalo que contém um zero de f é reduzido por um fator 2 e, desse modo, é vantajoso escolher o menor intervalo inicial [a, b] possível.

EXERCÍCIOS EXTRA-CLASSE

1. Utilize o Método da Bissecção para encontrar uma raiz das equações abaixo com tolerância ε=0.00001. Utilize o mesmo critério de parada usado em aula.

a.
$$x - 2^{-x} = 0$$
 for $0 \le x \le 1$

b.
$$e^x - x^2 + 3x - 2 = 0$$
 for $0 \le x \le 1$

c.
$$2x\cos(2x) - (x+1)^2 = 0$$
 for $-3 \le x \le -2$ and $-1 \le x \le 0$

d.
$$x \cos x - 2x^2 + 3x - 1 = 0$$
 for $0.2 \le x \le 0.3$ and $1.2 \le x \le 1.3$

2. Implemente o Método da Bisseção em Python como uma função bisseccao(f,a,b,epsilon), que recebe a função f, o intervalo [a,b] e uma tolerância epsilon e devolve uma aproximação de uma raiz de f no intervalo [a,b] com tolerância epsilon.