Шифрование хранимых данных в ClickHouse

Шифрование хранимых данных (Data Encryption at Rest)

- Защита данных на дисках от несанкционированного доступа, в том числе в случае утери или кражи диска
- Шифрование хранимых данных НЕ обеспечивает защиту данных, пересылаемых по сети. Но это может быть достигнуто другими средствами (см. https_port, tcp_port_secure, interserver https port и др.)

Способы шифрования данных:

Функции encrypt и decrypt

```
INSERT INTO mytable VALUES
encrypt('aes-128-cbc', 'plaintext',
'secretkey0123456')

SELECT decrypt('aes-128-cbc', x,
'secretkey0123456') FROM mytable
```

Зашифрованный виртуальный диск

Шифрующий кодек

```
CODEC (AES_128_GCM_SIV)
CODEC (AES_256_GCM_SIV)
```

Виртуальные диски

```
CREATE TABLE mytable (x String) ENGINE=MergeTree ORDER BY tuple()
```

- данные сохраняются в папке /var/lib/clickhouse/

```
<policies>
конфигурация:
                                                     <mypolicy>
<clickhouse>
                                                        <volumes>
   <storage configuration>
                                                          <main>
      <disks>
                                                             <disk>mydisk</disk>
         <mydisk>
                                                          </main>
            <type>local</type>
                                                       </volumes>
            <path>/mydisk/</path>
                                                     </mypolicy>
         </mydisk>
                                                  </policies>
      </disks>
                                               </storage configuration>
                                            </clickhouse>
CREATE TABLE mytable (x String) ENGINE=MergeTree ORDER BY tuple()
SETTINGS storage policy - mypolicy '
```

- данные сохраняются в папке /mydisk/

Виртуальные диски

Тип диска указывает, каким образом диск хранит данные.

Поддерживаемые типы дисков: local, memory, s3, hdfs, web, encrypted

Зашифрованный виртуальный диск: пример

Конфигурация:

```
<clickhouse>
   <storage configuration>
      <disks>
         <local disk>
            <type>local</type>
            <path>/disk/</path>
         </local disk>
         <encrypted disk>
            <type>encrypted</type>
            <disk>local disk</disk>
            <path>encrypted/</path>
            <key>secretkey0123456</key>
         </encrypted disk>
      </disks>
```

```
<policies>
         <encrypted policy>
            <volumes>
               <main>
                  <disk>encrypted disk</disk>
               </main>
            </volumes>
         </encrypted policy>
      </policies>
  </storage configuration>
</clickhouse>
```

авторы реализации: Александра Латышева Виталий Баранов

Зашифрованный виртуальный диск: пример

```
CREATE TABLE mytable (x String) ENGINE=MergeTree ORDER BY tuple()
SETTINGS storage_policy='encrypted_policy';
```

```
INSERT INTO mytable VALUES ('plaintext');
INSERT INTO mytable VALUES ('plaintext2');
SELECT * FROM mytable;
```

```
-x
plaintext
```

```
plaintext2
```

2 rows in set. Elapsed: 0.003 sec.

Представление данных на зашифрованном диске

/disk/encrypted/store/751/751f7fee-3e58-4782-b51f-7fee3e588782/

```
all_1_1_0/
    checksums.txt
    columns.txt
    count.txt
    default_compression_codec.txt
    data.bin
    data.mrk3
```

```
all_2_2_0/
checksums.txt
columns.txt
count.txt
default_compression_codec.txt
data.bin
data.mrk3
```

detached

format_version.txt

Ключи шифрования

1) Ключи можно (и рекомендуется) задавать в шестнадцатеричном виде:

```
<key_hex>00112233445566778899aabbccddeeff</key_hex>
```

2) Длина ключа зависит от алгоритма шифрования:

aes_128_ctr - алгоритм по-умолчанию

```
<algorithm>aes_192_ctr</algorithm>
<key>123456789012345678901234</key>
```

 3) Хранить ключи прямо в основном файле конфигурации небезопасно.

Альтернативы:

Передача ключа через переменную окружения

```
$ ENCKEY=secretkey0123456
/usr/bin/clickhouse-server
```

Символическая ссылка в /etc/clickhouse-server/config.d/

```
$ ln -s /media/usb/keys.xml
/etc/clickhouse-server/config.d/keys.xml
```

/media/usb/keys.xml

4) Можно одновременно использовать много ключей.

```
<disks>
   <encrypted disk>
      <type>encrypted</type>
      <disk>local disk</disk>
      <path>encrypted/</path>
      <key id="0">zerokeyzerokey </key>
      <key id="1">firstkeyfirstkey</key>
      <key id="2">secondkeysecond </key>
      <current key id>2</current key id>
   </encrypted disk>
</disks>
```

При записи новых данных используется текущий ключ (*current_key_id*)

При чтении данных могут использоваться любые ключи (не только *current_key_id*)

Добавление нового ключа:

```
<disks>
  <encrypted disk>
     <type>encrypted</type>
     <disk>local disk</disk>
     <path>encrypted/</path>
     <key id="0">zerokeyzerokey </key>
     <key id="1">firstkeyfirstkey</key>
     <key id="2">secondkeysecond </key>
     <current key id>2</current key id>
     <key id="3">thirdsecretkey </key>
     <current key id>3</current key id>
  </encrypted disk>
</disks>
```

Не рекомендуется:

модификация существующих ключей, удаление старых ключей

Размещение зашифрованных файлов

```
<disks>
   <local disk>
      <type>local</type>
      <path>/disk/</path>
   </local disk>
   <encrypted disk>
      <type>encrypted</type>
      <disk>local disk</disk>
      <path>encrypted/</path>
      <key>secretkey0123456</key>
   </encrypted disk>
</disks>
```

```
<encrypted_disk>
    <type>encrypted</type>
    <disk>s3_disk</disk>
        <key>secretkey0123456</key>
</encrypted_disk>
```

в Amazon S3

в HDFS

файлы будут размещены в /disk/encrypted/

Зашифрованный диск: Примечания

- 1. шифрование происходит при записи на диск, расшифровка при чтении с диска
- 2. применимо для движков таблиц семейств MergeTree и Log
- 3. шифруются все данные, в том числе засечки и контрольные суммы
- 4. метадата (определения таблиц) не зашифрована
- 5. при чтении расшифровываются только необходимые данные
- 6. при слиянии кусков MergeTree выполняется расшифровка, слияние, и потом шифрование
- 7. при репликации в ReplicatedMergeTree данных кусок расшифровывается, пересылается, и потом шифруется на другой реплике снова (см. interserver_https_port !!!)
- 8. ключи на разных нодах могут не совпадать

Производительность зашифрованного диска


```
INSERT INTO mytable SELECT number FROM numbers(10000000);
SELECT sum(x) FROM mytable;
```

Зашифрованный диск: Алгоритм AES CTR

- + произвольный доступ (можно расшифровать данные из середины файла)
- **+** размер не изменяется (количество байт до и после шифрования одно и то же), сохраняются смещения
- + можно добавить данные в конец файла без расшифровки предыдущих данных
- + быстро работает
- iv не должен использоваться повторно (но мы это решили)

Случайно сгенерированный іч

Шифрование столбцов

Автор идеи: depressed-pho

авторы реализации: <u>depressed-pho</u> Филатенков Артур

```
CREATE TABLE mytable (x String Codec (AES_128_GCM_SIV))
ENGINE=MergeTree ORDER BY x;
```

Пример работы

```
INSERT INTO mytable VALUES ('plaintext');
INSERT INTO mytable VALUES ('plaintext2');
SELECT * FROM mytable;
```

```
-x----
plaintext
```

```
-x
plaintext2
```

2 rows in set. Elapsed: 0.013 sec.

Порядок кодеков

```
CREATE TABLE mytable (x String Codec(Delta, LZ4, AES_128_GCM_SIV))
ENGINE=MergeTree ORDER BY x;
```

Порядок кодеков:

- 1. Специальные (Delta, DoubleDelta, Gorilla, T64)
- 2. Сжатие общего назначения (ZSTD, LZ4)
- 3. Шифрование (AES_128_GCM_SIV, AES_256_GCM_SIV)

Порядок кодеков

Шифрование без сжатия

```
CREATE TABLE mytable (x String Codec (AES_128_GCM_SIV))
ENGINE=MergeTree ORDER BY x;
```

Сжатие и шифрование

```
CREATE TABLE mytable (x String, Codec(LZ4, AES_128_GCM_SIV))
ENGINE=MergeTree ORDER BY x;
```

Подробнее о конфиге

```
<clickhouse>
    <encryption codecs>
        <aes 128 gcm siv>
            <key>0123456789abcdef</key>
        </aes 128 gcm siv>
        <aes 256 gcm siv>
             <key hex id="0">00112233445566778899aabbccddeeff</key hex>
             <key hex id="1" from env="ENCKEY"></key hex>
             <current key id>1</current key id>
        </aes 256 gcm siv>
    </encryption codecs>
</clickhouse>
```

SIV Algorithms and Nonce

- Алгоритмы шифрования обладают свойством nonce misuse resistance
- Значение по умолчанию:

Бинарное представление зашифрованных данных

- Key_id id ключа
- Nonce nonce, если он определен
- Encrypted_data зашифрованные данные

•••	key_id	nonce	encrypted_data
			_

Производительность

INSERT INTO mytable SELECT number FROM numbers (10000000);

SELECT sum(x) FROM mytable;

Особенности шифрования с помощью кодека

- Возможность зашифровать только часть столбцов
- При слиянии кусков выполняется расшифровка, затем слияние, потом шифрование
- Для репликации данных необходимо иметь одинаковые ключи на узлах

Результаты

Зашифрованный виртуальный диск (21.9)

Шифрующий кодек (21.11)

CODEC (AES_128_GCM_SIV)
CODEC (AES_256_GCM_SIV)

Планы

- Интеграция с KMS (AWS KMS и др.)
- Улучшить управление ключами (переход на новый ключ вместо старого)
- Улучшить шифрующий кодек (генерация nonce, разные ключи для разных столбцов)
- Предлагайте!

Спасибо за внимание