

Facultad de Ingeniería

Laboratorio de Fundamentos de Máquinas Eléctricas (6656)

Profesor: Mónica Mónico Mendoza Ing.

Semestre 2019-1

Práctica No. 5

Desplazamiento angular y verificación del diagrama fasorial

Grupo 2

Vivar Colina Pablo

Ciudad Universitaria Septiembre de 2018.

1. Introducción

1.1. Representación fasorial

La corriente alterna se puede representar con una flecha girando a velocidad angular ω . Este elemento recibe el nombre de fasor y se representa como un número complejo.

Su longitud coincide con el valor máximo de la tensión o corriente (según sea la magnitud que se esté representando). También se utiliza el valor RMS en lugar del valor máximo (ver transformación a fasores). En ese caso habría que dividir el valor máximo por raíz de 2.

El ángulo (corrimiento de la señal sobre el eje horizontal) representa la fase. La velocidad de giro ω está relacionada con la frecuencia de la señal. [1]

2. Objetivos

Para verificar el diagrama, se aplica al lado de alta tensión un sistema trifásico de voltajes, tomando lecturas con un voltímetro, interconectando a la vez una terminal de alta tensión y una de baja tensión.

3. Resultados

Terminales Alta	Terminales Baja	Defasamiento
Δ	Δ	0 °
	λ	30 °
λ	λ	0 °
λ	Δ	30 °

Cuadro 1: Conexiones en Transformador

$T_2[V]$	Medición $T_1[V]$
286.6	$H_3 - X_2 = 56$
286.8	$H_3 - X_3 = 55.2$
292.7	$H_1 - H_3 = 109.7$
280.3	$H_2 - X_2 = 56.2$
290.3	$H_2 - H_3 = 151.6$

Cuadro 2: Relacion de conexiones

Las relaciones mostradas a continuación deben cumplirse para las sitaciones donde existan 30^o de defasamiento.

$$H_3 - X_2 = H_3 - X_3 \tag{1}$$

$$H_3 - X_2 < H_1 - H_3 \tag{2}$$

$$H_2 - X_2 < H_2 - X_3 \tag{3}$$

$$H_2 - X_2 < H_1 - H_3 \tag{4}$$

Para el primer transformador se obtuvo lo siguiente:

$$56[V] \approx 55,2[V] \tag{5}$$

$$56[V] < 109,7[V] \tag{6}$$

$$56.2 < 151.6[V] \tag{7}$$

$$56.2 < 109.7[V] \tag{8}$$

Para el segundo transformador se obtuvo lo siguiente:

$$286,6[V] \approx 286,8[V] \tag{9}$$

$$286,6[V] < 292[V] \tag{10}$$

$$280,3[V] < 290,3[V] \tag{11}$$

$$280,3 < 292,7[V] \tag{12}$$

Para el tercer transformador se obtuvo lo siguiente:

$$285,2[V] \approx 284,8[V] \tag{13}$$

$$285,2[V] < 284,8[V] \tag{14}$$

$$283,2[V] < 293,3[V] \tag{15}$$

$$280,3 < 292,7[V] \tag{16}$$

Es importante mencionar que las cargas lineales no deforman la forma de la onda, sin embargo las cargas no lineales sí lo hacen.

Ejemplos de cargas lineales pueden ser una resistencia o una inductancia, y ejemplos de cargas no lineales pueden ser la luz led, semiconductores, etc.

4. Conclusiones

El objetivo de la práctica se cumplió porque logramos verificar de manera presencial el desfasamiento fasorial que se producen entre las conexiones delta y estrela que pueden presentar los transformadores.

5. Referencias

Referencias

[1] FisicaPractica. Representación Fasorial.