CS 3313 Foundations of Computing:

Simplification and Conversion to CNF

http://gw-cs3313-2021.github.io

The Membership Problem

- Does a string belong to a CFG; or equivalently, does a CFG generate a string?
 - In programming: if not, then there are syntax errors (w.r.t the grammar) in the program (the string)
- We can check manually
 - Programs with thousands of lines; with various levels of nested structures; etc.
- Or through some automation procedures, e.g., Parsing
 - How an IDE tells you where an error/warning occurs.

Simplification

- However, CFGs do not impose restrictions on the RHS of the production rules.
 - Redundancies, useless productions, rules complicate parsing tree;
 - o $O(|P|^n)$ complexity to determine exhaustively for a string with length n.

- Simplify the rules: three-step procedure
 - \circ Removing λ -productions
 - \circ If $A \to \lambda$ and $B \to \lambda$, then so is AB.
 - \circ If $A \to B$ and $B \to \lambda$, then $A \to \lambda$
 - Removing unit-productions
 - Removing non-terminating or non-reachable variables
- Next step: converting the rules to a certain "form".
- Before we apply our automation procedures.

Chomsky Normal Form

■ **Def**: A CFG G = (V, T, P, S) is in Chomsky Normal Form (CNF) if all productions are of the form

```
\circ A \rightarrow BC, or
```

$$\circ A \rightarrow a$$
,

• where $A, B, C \in V$, and $a \in T$.

■ **Benefit**: Parsing tree for $w \in G$ becomes a binary tree.

CNF

- G₁ with production rules:
 - $\circ S \rightarrow AS \mid a$
 - $\circ A \rightarrow SA \mid b$
- Is G_1 in CNF?

- *G*₂ with production rules:
 - $\circ S \rightarrow AS \mid AAS$
 - $\circ A \rightarrow SA \mid aa$
- Is G_2 in CNF?

- **Theorem 6.6**: Any CFG G = (V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\widehat{G} = (\widehat{V}, \widehat{T}, S, \widehat{P})$ in CNF.
- *Proof* by constructing \widehat{G} for arbitrary G that has no λ or unit productions [form the simplification algorithms].

❖ Step 1: Constructing $G_1 = (V_1, T, S, P_1)$ from G by considering all productions P in the form

$$A \rightarrow x_1 x_2 \dots x_n$$

where each x_i is either in V or T.

- $A \rightarrow x_1 x_2 \dots x_n$
- If n = 1, then x_1 must already be a terminal, since we do not have unit productions.
 - \circ In the case, let *P* be P_1 .
- ➤ Otherwise, in V_1 , we introduce new variables B_a for each $a \in T$, and $B_a \to a$ is put into P_1 .
- Then, for each A, we put into P_1 the production

$$A \rightarrow C_1 C_2 \dots C_n$$

where $C_i = x_i$ if $x_i \in V$, and $C_i = B_a$ if $x_i = a$.

- This part of the algorithm removes all terminals from productions whose RHS has length greater than one, replacing them with newly introduced variables.
- At the end of this step, we have a grammar G_1 with all its productions in the form of either
 - $\circ A \rightarrow a$ The B_a 's
 - \circ or $A \rightarrow C_1C_2 \dots C_n$, where $C_i \in V_1$.
- ✓ It is easy to see that $L(G_1) = L(G)$.

- **Step 2**: Constructing \hat{G} by reducing lengths of the RHS of rules in G_1 when necessary.
- First, from P_1 , we put all productions in the form of $A \to a$ or $A \to C_1C_2$ into \hat{P} .

- For rules with $A \to C_1 \dots C_n$, n > 2, we introduce new variables D_1, D_2, \dots and put into \widehat{P} the productions
 - $\circ A \rightarrow C_1D_1$
 - $\circ D_1 \to C_2 D_2 \dots \dots$
 - O $D_{n-1} \to C_{n-1}C_n$, where each $A, D_1, ..., D_{n-1}$ is in CNF.
- ✓ It is easy to see that \hat{G} is in CNF, and $L(\hat{G}) = L(G)$.

CNF Construction-Example

Consider G with production rules:

$$S \rightarrow ABa \ A \rightarrow aab \ B \rightarrow Ac$$

- First of all, no λ or unit or useless productions.
- **Step 1**: For G_1 , we add $S \to ABB_a$ $A \to B_aB_aB_b$ $B \to AB_c$ and $B_a \to a$ $B_b \to b$ $B_c \to c$ into P_1 .

■ **Step 2**: For \widehat{G} , we add $S \to AD_1$ $D_1 \to BB_a$ $A \to B_aD_2$ $D_2 \to B_aB_b$ $B \to AB_c$ and $B_a \to a$ $B_b \to b$ $B_c \to c$ into \widehat{P} .

Scratch

- $P: S \rightarrow ABa \ A \rightarrow aab \ B \rightarrow Ac$
- Step 1:

Scratch

- $P_1: S \to ABB_a \quad A \to B_aB_aB_b \quad B \to AB_c \quad B_a \to a \quad B_b \to b \quad B_c \to c$
- Step 2:

In-Class Exercise

- Convert the following grammar to CNF:
 - $S \rightarrow PSQ$
 - $P \rightarrow aPS \mid a \mid \lambda$
 - $Q \rightarrow SbS \mid P \mid bb$

HW4 Hints

- P1. Regular Grammar to DFA/NFA: Theorem 3.3 (last lab)
- P2. Find a left-linear grammar: Example 3.13

- P3. (f). $\{w \in \{a,b\}^* \mid n_a(w) = 3n_b(w), n_a(w), n_b(w) \ge 0\}$: **Example 5.4.**, $\{a^*b^* \mid n_a(w) = n_b(w)\}$
 - $S \rightarrow aSb \mid SS \mid \lambda$
 - How do we modify the rules?
 - Recall $\{w \in \{a, b\}^* \mid n_a(w) \bmod 3 = 0\}$ from HW2.

HW4 Hints

- P3. (e). Consider the matching symbols on two sides of the equation and construct these matching rules. Then integrate these rules together.
 - Example: For every d, we need _____ to balance the constraint equation.
 - *S* →
 -
 - $P \rightarrow$
 - \bullet $Q \rightarrow$
 - $R \rightarrow$

HW4 Hints

- P3. (g). $\{w \in \{a, b, c\}^* \mid n_a(w) + n_b(w) \neq 3n_b(w), n_a(w), n_b(w), n_c(w) \geq 0\}$:
 - Establish equality cases; then add either a/b or c.
 - How to add? Add before, or after, or in-between: $TS \mid ST \mid STS$, where T can either add a/b or c, and S holds the equality but can also have $SS \mid STS$.
 - T can add any number of a/b's; the other direction, any number of c's
 - T can also add say 1 c and 2 a's: two c's and six a/b's \rightarrow three c's and eight a/b's.