Mathematics 172 Homework, January 22, 2018.

Example 1. A cell has volume $V = 8 \times 10^{-6} \text{mm}^3$ and surface area $A = 3.6 \times 10^{-3} \text{mm}^2$. Assume that oxygen, O_2 , passes through the cell membrane at a rate of $.5(\text{mg/mm}^2)/\text{hr}$

(a) What is the total amount of O_2 that is comming into the cell per hour?

Solution:

Total $O_2/\text{hour} = (3.6 \times 10^{-3} \text{mm}^2) \times .5 (\text{mg/mm}^2)/\text{hr} = .0018 \text{mg/hr}.$

(b) What is the amount of O_2 per volume comming into the cell per hour? Solution: Take the last answer and divide by the volume:

Rate of
$$O_2$$
 per volume = $\frac{.0018 \text{mg/hr}}{8 \times 10^{-6} \text{mm}^3} = 225 (\text{mg/mm}^2)/\text{hr}.$

(c) If the cell needs $50(\text{mg/mm}^3)/\text{hr}$ of O_2 to survive, then how much can it be magnified before it dies from lack of oxygen?

Solution: Let λ be the factor by which it is magnified. Then by our rules for scaling we have

$$V_{mag} = 8 \times 10^{-6} \lambda^3 \text{mm}^3, \qquad A_{mag} = 3.6 \times 10^{-3} \lambda^2 \text{mm}^2$$

Thus

Total
$$O_2$$
 intake = $A_{mag} \times .5 (\text{mg/mm}^2)/\text{hr} = .0018 \lambda^2 \text{mg/hr}$

and

$$\text{Rate of } O_2 \text{ per volume} = \frac{.0018 \lambda^2 \text{mg/hr}}{8 \times 10^{-6} \lambda^3 \text{mm}^3} = \frac{225 (\text{mg/mm}^2)/\text{hr}}{\lambda}.$$

The threshold where oxygen starvation sets in is when

Rate of
$$O_2$$
 per volume = $50 (\text{mg/mm}^3)/\text{hr}$.

That is

$$\frac{225(\mathrm{mg/mm^2})/\mathrm{hr}}{\lambda} = 50(\mathrm{mg/mm^3})/\mathrm{hr}.$$

Solving for λ gives

$$\lambda = \frac{225}{50} = 4.5$$

Therefore the cell can only grow to 4.5 times its length.

- 1. A cell has volume $V=4.6\times 10^{-6} \rm mm^3$ and surface area $A=6.7\times 10^{-3} \rm mm^2$. Assume that oxygen, O_2 , passes through the cell membrane at a rate of $.62 (\rm mg/mm^2)/hr$
- (a) What is the total ammount of O_2 that is comming into the cell per hour? $Answer: 4.154 \times 10^{-3} \text{mg/hr}.$
 - (b) What is the amount of O_2 per volume comming into the cell per hour? Answer: $903.04 (\text{mg/mm}^2)/\text{hr}$.

(c) If the cell needs $377 (\text{mg/mm}^3)/\text{hr}$ of O_2 to survive, then how much can it be magnified before it dies from lack of oxygen? Answer: The magnification factor is $\lambda=18.06$.