STANISLAS Exercices

Séries entières Chapitre IX

PSI

2021-2022

I. Séries entières

I.1 Rayons de convergence, Calculs de sommes

Exercice 1. Déterminer le rayon de convergence et, lorsqu'elle s'exprime simplement, la somme des séries entières de coefficients :

1.
$$n2^{-n}$$
.

2.
$$\frac{1}{(2n)!}$$

2.
$$\frac{1}{(2n)!}$$

3. $\frac{1}{n(n+1)}$, $n \ge 1$.

4.
$$\frac{n^2+4n-1}{n+4}\cdot \frac{1}{n!}$$

5.
$$\frac{\sin n}{n}, \ n \geqslant 1$$

6.
$$\left(1 + \frac{(-1)^n}{\ln(n)}\right)^{n^2}, n \ge 2.$$
7. $\ln\left(1 + \frac{(-1)^{n-1}}{\sqrt{n}}\right), n \ge 1.$

7.
$$\ln\left(1+\frac{(-1)^{n-1}}{\sqrt{n}}\right), \ n\geqslant 1.$$

Exercice 2. Déterminer les rayons de convergence des séries entières :

1.
$$\sum \frac{x^{4n-1}}{4n-1}$$
.

3.
$$\sum \frac{\ln(n)}{n^2} x^{2n}$$
.
4. $\sum {2n \choose 2} x^{2n}$.

2.
$$\sum 3^n x^{2n}$$

4.
$$\sum_{n=0}^{\infty} {n \choose n} x^{2n}$$

Exercice 3. Soit d(n) le nombre de diviseurs de l'entier naturel non nul n. Déterminer le rayon de convergence de $\sum d(n)z^n$.

Exercice 4. [Mines] Déterminer le rayon de convergence de la série entière de terme général $(3+(-1)^n)^n x^n$.

Exercice 5. Montrer que, pour tout t réel, $\cosh(t) \leq e^{t^2/2}$

Exercice 6. Soit α un réel tel que $t \mapsto (\arcsin t)^{\alpha}$ soit intégrable sur]0,1].

Pour tout $n \ge 1$, on pose $I_n(\alpha) = \int_0^{1/n} (\arcsin(t))^{\alpha} dt$. **1.** Montrer qu'il existe $M \in \mathbb{R}$ tel que $\left| I_n(\alpha) - \frac{1}{(\alpha+1)n^{\alpha+1}} \right| \le \frac{M}{n^{\alpha+3}}$.

2. Déterminer le rayon de convergence de $\sum I_n(\alpha)x^n$ et étudier son comportement aux bornes.

Exercice 7. (\mathbb{Z}) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $(u_0, u_1) \in \mathbb{R}^2$ et, pour tout entier naturel n, $u_{n+2} = 3u_{n+1} - 2u_n$. Déterminer le rayon de convergence, puis calculer la somme de $\sum u_n z^n$.

Exercice 8. [Centrale] Soit la fonction définie par la série entière

$$f(x) = \sum_{n=1}^{+\infty} \sin\left(\frac{1}{\sqrt{n}}\right) x^n.$$

1. Rappeler la définition du rayon de convergence d'une série entière. Déterminer le rayon de convergence R de cette série f.

2. Étudier la convergence de la série en -R et en R.

3. Étudier $\lim_{x\to R^-} f(x)$ puis la limite de $x\mapsto (R-x)f(x)$ en R^- .

Exercice 9. [Mines] On pose $g(x) = \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}}$.

1. Déterminer le rayon de convergence de a

2. Déterminer la limite puis un équivalent simple de q aux bornes de son intervalle ouvert de convergence.

I.2 Équations différentielles

Exercice 10. (Telephone numbers) [Mines] Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que pour tout $n \ge 2$, $a_n = a_{n-1} + (n-1)a_{n-2}$. Déterminer f de classe \mathscr{C}^{∞} sur \mathbb{R} telle que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = a_n$.

Exercice 11. Soit (u_n) une suite vérifiant la relation de récurrence $u_{n+2} = 2u_{n+1} - u_n$. Déterminer la nature puis la somme de la série entière $\sum u_n \frac{x^n}{n!}$. On utilisera une équation différentielle satisfaite par la série entière.

Exercice 12. On considère l'équation différentielle $x^2y'' + 4xy' + 2y =$ $\ln(1+x)$.

1. Déterminer les solutions développables en séries entières au voisinage de 0.

2. En donner une expression à l'aide des fonctions élémentaires.

Exercice 13. Déterminer les solutions développables en séries entières de 4xy'' + 2y' - y = 0.

Exercices IX PSI

I.3 Développements en série entière

Exercice 14. Déterminer le développement en série entière des fonctions suivantes:

$$1. \ln \left(\frac{8 - x^3}{2 - x} \right).$$

3.
$$\int_0^{2\pi} \ln(1 + x \sin^2(t)) dt$$
.
4. $\sin(\alpha \arcsin(x))$.

.
$$(1+x^2)\arctan(x)$$
. 4. $\sin(\alpha\arcsin(x)$

Exercice 15. [Centrale] Soient $a \in \mathbb{R}$ et f une fonction dérivable de \mathbb{R} dans \mathbb{R} vérifiant pour tout $x \in \mathbb{R}$, f'(x) = f(ax).

- **1.** Montrer que f est de classe \mathscr{C}^{∞} et donner l'expression de $f^{(n)}$.
- 2. Montrer que f n'est pas développable en série entière si |a| > 1 et si f(0) est non nul.
- 3. Montrer que f est développable en série entière si $|a| \leq 1$. Que dire plus particulièrement lorsque |a|=1?

Exercice 16. [Mines] Soit q un réel tel que |q| < 1.

- 1. Trouver les fonctions continues de \mathbb{R} dans \mathbb{R} telles que $\forall x \in \mathbb{R}, f(x) =$ (1+qx)f(qx).
- **2.** Montrer que ces fonctions sont développables en séries entières sur \mathbb{R} .

II. Dénombrement & Probabilités

Exercice 17. (Nombre de dérangements) [Mines] Pour tout $n \in \mathbb{N}^*$, on note D_n le nombre de permutations de [1, n] sans point fixe. On pose $D_0 = 1$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $n! = \sum_{k=0}^{n} \binom{n}{k} D_k$. 2. Montrer que le rayon de convergence de la série entière $\sum \frac{D_k}{k!} x^k$ est au moins égal à 1.
- **3.** Déterminer D_n .

Exercice 18.

1. On définit sur \mathbb{C} la fonction $f(z) = \frac{1}{6} \sum_{k=1}^{6} z^k$. On note $\omega = e^{\frac{2i\pi}{5}}$ et

$$\delta_n = \sum_{k=1}^4 f(\omega^k)^n$$

- $\delta_n = \sum_{k=1}^4 f(\omega^k)^n$. **a)** Pour tout entier $j \in [1, 4]$, déterminer $f(\omega^j)$.
 - **b)** Montrer que, s'il existe un entier k tel que n=5k, alors $\delta_n=\frac{4}{6^n}$.
- c) Déterminer la valeur de δ_n lorsque n n'est pas un multiple de 5. Soit n un entier naturel non nul. On lance successivement n fois un dé équilibré. Pour tout $k \in [1,n]$, on note X_k le numéro de la face obtenue au k-ème lancer et S_n la somme des n faces ainsi obtenues, i.e. $S_n = \sum_{k=1}^n X_k$. Pour tout entier naturel k appartenant à $S_n(\Omega)$, on note $p_k = \mathbb{P}(S_n = k)$ et q_n la probabilité que S_n soit un multiple de 5.
- 2. Montrer que

$$\forall z \in \mathbb{C}, \mathbb{E}\left[z^{S_n}\right] = f(z)^n.$$

- **3.** En déduire la valeur de $\sum_{k=1}^{+\infty} p_{5k}$. **4.** Déterminer la valeur de q_n , puis $\lim_{n \to +\infty} q_n$.

Exercice 19. [X-ENS] Soit $\theta \in \mathbb{R}_+$. On considère une salle remplie d'un nombre infini de tables, toutes infiniment longues. Les invités arrivent les uns après les autres. Le premier s'assoit à la première table. Les autres se disposent suivant cette règle : soit le (k+1)-ème invité s'installe à une nouvelle table avec une probabilité $\frac{\theta}{k+\theta}$, soit il choisit un invité déjà présent et s'installe à sa table. On note K_n le nombre de tables non vides lorsque n invités sont assis.

- **1.** Calculer $\mathbb{P}(K_n=1)$.
- **2.** Montrer que la fonction génératrice de K_n vaut

$$g_n(x) = \prod_{i=0}^{n-1} \frac{\theta x + i}{\theta + i}.$$

- **3.** Trouver un équivalent de $\mathbb{E}[K_n]$ et de $\mathbb{V}(K_n)$ lorsque n tend vers $+\infty$.
- **4.** Soit $\varepsilon > 0$. En déduire que $\mathbb{P}\left(\left|\frac{K_n}{\ln(n)} \theta\right| \geqslant \varepsilon\right) \to 0$ lorsque $n \to +\infty$.

Exercices IX PSI

5. Soit $i \in \mathbb{N}^*$. On note X_i la variable aléatoire qui retourne 1 si le *i*-ème invité s'est assis à une nouvelle table et 0 sinon. Trouver la loi de probabilité de X_i puis exprimer K_n en fonction des X_i .

6. Retrouver alors les résultats de la question **3**.

Exercice 20. [Mines] Soient X une variable aléatoire à valeurs entières définie sur un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ et $t \in [0, 1]$.

- **1.** Montrer que $G_X(t)^2 \leqslant G_X(t^2)$.
- 2. Déterminer une condition d'égalité.

III. Avec Python

Exercice 21. [Centrale] On considère une marche aléatoire à une dimension : on part de 0 à t=0 et on monte ou descend avec une probabilité 1/2.

On considère

- * p_n la probabilité d'être de retour à 0 au rang n; ainsi $p_0 = 1$.
- * q_n la probabilité d'être de retour pour la première fois à 0 au rang n; ainsi $q_0 = 0$.
- 1. Écrire un programme pour faire apparaître plusieurs trajectoires différentes.
- **2.** Calculer p_{2n} et en déterminer un équivalent en $+\infty$.

On introduit les séries entières

$$P(x) = \sum_{n=0}^{+\infty} p_n x^n \text{ et } Q(x) = \sum_{n=1}^{+\infty} q_n x^n.$$

- 3. Montrer que leur rayon de convergence est supérieur ou égal à 1.
- **4.** Prouver que $P(x) = \frac{1}{\sqrt{1-x^2}}$ et P(x)Q(x) = P(x) 1.
- **5.** En déduire Q(x) et la valeur de q_n .