1 Teoria dei campi

1.1 Estensione di campi

Introduciamo ora un concetto fondamentale nella teoria algebrica dei numeri e nello studio delle radici polinomiali, che costituirà la base della teoria di Galois.

Definizione

Una coppia di campi \mathbb{K} e \mathbb{L} con $\mathbb{K} \subseteq \mathbb{L}$ si dice estensione di campi e si denota con \mathbb{L}/\mathbb{K} .

Resta inteso che \mathbb{K} ha le stesse operazioni binarie di \mathbb{L} , cioè che \mathbb{K} è un sottocampo di \mathbb{L} . Inoltre, in questo caso la notazione \mathbb{L}/\mathbb{K} non ha nulla a che vedere con il quoziente di campi.

Esempio. Se consideriamo \mathbb{R} e \mathbb{C} con le usuali operazioni di somma e prodotto, \mathbb{R} è un sottocampo di \mathbb{C} , dunque \mathbb{C}/\mathbb{R} è un'estensione di campi. \square

Se \mathbb{L}/\mathbb{K} è un'estensione di campi, sia $\cdot_{|\mathbb{K}\times\mathbb{L}}$ la restrizione a \mathbb{K} della prima componente del prodotto $\cdot: \mathbb{L} \times \mathbb{L} \to \mathbb{L}$ del campo \mathbb{L} . Considerando tale moltiplicazione per gli elementi di \mathbb{K} e la usuale somma di \mathbb{L} , si ha che $(\mathbb{L}, +, \cdot)$ ha la struttura di uno spazio vettoriale su \mathbb{K} . Infatti, possiamo pensare gli elementi di \mathbb{K} come scalari e quelli di \mathbb{L} come vettori.

Definizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi. Definiamo grado dell'estensione \mathbb{L}/\mathbb{K} la dimensione $\dim_{\mathbb{K}}(\mathbb{L}) \in \mathbb{N} \cup \{\infty\}$ dello spazio vettoriale \mathbb{L} sul campo \mathbb{K} , e si denota con $|\mathbb{L} : \mathbb{K}|$.

La scelta del termine "grado", che richiama il concetto di grado di un polinomio, sarà più chiara in seguito, quando approfondiremo i legami tra estensione di campi e polinomi.

Esempio. Se consideriamo \mathbb{Q} , \mathbb{R} e \mathbb{C} con le usuali operazioni di somma e prodotto, si ha che $|\mathbb{C}:\mathbb{R}|=2$ perché $\mathcal{B}=\{1,i\}$ è una base per \mathbb{C} , e $|\mathbb{R}:\mathbb{Q}|=\infty$ perché \mathbb{R} non è numerabile, quindi non ammette una base finita su \mathbb{Q} , che invece è numerabile. \square

Definizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi. Un elemento $a \in \mathbb{L}$ si dice:

- (i) algebrico su \mathbb{K} se esiste un polinomio non nullo $f(x) \in \mathbb{K}[x]$ tale che f(a) = 0;
- (ii) trascendente su K se non è algebrico.

Esempio. Se consideriamo \mathbb{R}/\mathbb{Q} , l'elemento $a = \sqrt{2}$ è algebrico perché $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ e f(a) = 0, mentre $e \in \pi$ sono entrambi elementi trascendenti. \Box

Sia \mathbb{L}/\mathbb{K} un'estensione di campi e sia $a \in \mathbb{L}$. Detta $\phi_a \colon \mathbb{K}[x] \to \mathbb{L}$ la valutazione in a, essendo ϕ_a un omomorfismo si ha che $\ker(\phi_a) \lhd \mathbb{K}[x]$. SISTEMARE TUTTO.

¹Ricordiamo che la dimensione di uno spazio vettoriale è la cardinalità di una sua base, cioè un insieme di vettori linearmente indipendenti che generano tutto lo spazio.

²La dimostrazione è tutt'altro che elementare e prende il nome di *Teorema di Lindemann-Weierstrass*.

Definizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi e sia $a \in \mathbb{L}$ un elemento algebrico su \mathbb{K} . Il generatore monico di $\ker(\phi_a)$ è detto polinomio minimo di a e si denota con $\min_{a,\mathbb{K}}(x) \in \mathbb{K}[x]$.

Proposizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi e sia $a \in \mathbb{L}$ algebrico su \mathbb{K} . Sia $f(x) \in \mathbb{K}[x]$ tale che:

- (i) f(a) = 0;
- (ii) f(x) è monico;
- (iii) f(x) è irrudicibile.

Allora, f(x) è il polinomio minimo di a, cioè $f(x) = \min_{a,\mathbb{K}}(x)$.

Dimostrazione. Per (i) si ha che $f(x) \in \ker(\phi_a)$, dunque esiste un polinomio $q(x) \in \mathbb{K}[x]$ tale che $f(x) = q(x) \cdot \min_{a,\mathbb{K}}(x)$. Essendo f(x) irriducibile per (iii), almeno uno fra q(x) e $\min_{a,\mathbb{K}}(x)$ è invertibile; tuttavia, $\min_{a,\mathbb{K}}(x) \notin \mathbb{K}[x]^{\times}$ e quindi CONCLUDERE

Sia \mathbb{L}/\mathbb{K} un'estensione di campi e sia $S \subseteq \mathbb{L}$ un sottoinsieme.

Proposizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi e sia $a \in \mathbb{L}$ algebrico su \mathbb{K} . Allora, $\mathbb{K}(a) = \mathbb{K}[a]$.

Dimostrazione. Sia $f(x) = \sum_{i=0}^{n} c_i x^i \in \mathbb{K}[x]$. Poiché $c_i \in \mathbb{K} \subseteq \mathbb{K}(a)$ e $a \in \mathbb{K}(a) \Rightarrow a^k \in \mathbb{K}(a)$ essendo $\mathbb{K}(a)$ chiuso rispetto al prodotto, $f(a) \in \mathbb{K}(a)$. Dunque, per l'arbitrarietà di f(x) concludiamo che $\mathrm{Im}(\phi_a) = \mathbb{K}[a] \subseteq \mathbb{K}(a)$. FINIRE, ESERCIZIO PER CASA XD COME SEI SIMPATICO

Manca anche la lezione del 30/10/2019, al momento è solo cartacea, e contiene cose davvero molto importanti tipo la formula del grado.