What is claimed is:

1	1.	A system for providing out-of-band notification of service
2	changes, com	prising:
3	a clust	ter framework into a layered architecture, comprising:
4		an application layer comprising at least one of applications and
5	middleware s	upporting the applications;
6		a database instance resource group interoperating with the
7	application la	yer and comprising a database instance providing services; and
8		a monitor associated with the database instance resource group and
9	exporting an	out-of-band interface to the database instance resource group;
10	a noti	fication mechanism generating an UP service notification from the
1	cluster frame	work upon service availability and generating a DOWN service
12	notification for	com the cluster framework upon service non-availability.
1	2	A system according to Claim 1 fouther comprising:
1	2.	A system according to Claim 1, further comprising:
2	•	ned operation interface incorporated into the application layer; and
3		stification mechanism generating a COMING UP service notification
4	_	an instruction received through the planned operation interface and
5	generating a	GOING DOWN service notification responsive to a further
6	instruction re	ceived through the planned operation interface.
1	3.	A system according to Claim 1, further comprising:
2	a glob	oal services daemon interfaced to the database instance resource
3	group; and	
4	the no	otification mechanism generating a DOWN service notification for
5	the services of	on a failed database instance; generating a COMING UP service
6	notification f	rom the global services daemon responsive to a recovering database
7	instance and	generating an UP service notification from the global services
8	daemon respo	onsive to a recovered database instance.
1	4	A system according to Claim 1, further comprising:
1	4.	A system according to Claim 1, further comprising.

2	at least one of a remote procedure call interface and an event interface	
3	provided to the database instance resource group.	
1	 A system according to Claim 1, further comprising: 	
2		
	a resilient set of cluster frameworks comprising an active node and one or	
3	more standby nodes.	
1	6. A system according to Claim 5, wherein the resilient cluster	
2	framework executes a node failover to the active node.	
1	7. A system according to Claim 5, wherein the resilient cluster	
2	framework executes a node failover to one such standby node.	
1	8. A system according to Claim 1, further comprising:	
2	a non-resilient set of cluster frameworks comprising an active node.	
	·	
1	9. A system according to Claim 1, wherein the resilient cluster	
2	framework terminates service on a failed node responsive to a DOWN service	
3	notification.	
1	10. A system according to Claim 1, wherein the resilient cluster	
2	framework resumes service on a recovered node responsive to an UP service	
3	notification	
1	11. A system according to Claim 1, wherein the resilient cluster	
2	framework effects a switchover to a standby node responsive to a COMING UP	
3	service notification.	
_		
1	12. A system according to Claim 1, wherein the application layer pre-	
2	connects to a standby node responsive to one of a COMING UP service	
3	notification and an UP service notification.	
1	13. A method for providing out-of-band notification of service	
2	changes, comprising:	
3	structuring a cluster framework into a layered architecture, comprising:	

4	an application layer comprising at least one of applications and	
5	middleware supporting the applications;	
6	a database instance resource group interoperating with the	
7	application layer and comprising a database instance providing services; and	
8	a monitor associated with the database instance resource group and	
9	exporting an out-of-band interface to the database instance resource group;	
10	generating an UP service notification from the cluster framework upon	
11	service availability; and	
12	generating a DOWN service notification from the cluster framework upon	
13	service non-availability.	
1	14. A method according to Claim 13, further comprising:	
2	incorporating a planned operation interface into the application layer;	
3	generating a COMING UP service notification responsive to an instruction	
4	received through the planned operation interface; and	
5	generating a GOING DOWN service notification responsive to a further	
6	instruction received through the planned operation interface.	
1	15. A method according to Claim 13, further comprising:	
2	providing a global services daemon interfaced to the database instance	
3	resource group;	
4	generating a DOWN service notification for the services on a failed	
5	database instance;	
6	generating a COMING UP service notification from the global services	
7	daemon responsive to a recovering database instance; and	
8	generating an UP service notification from the global services daemon	
9	responsive to a recovered database instance.	
1	16. A method according to Claim 13, further comprising:	
2	providing at least one of a remote procedure call interface and an event	
3	interface to the database instance resource group.	
1	17. A method according to Claim 13, further comprising:	

- 24 -

2	configuring a resilient set of cluster frameworks comprising an active nod	
3	and one or more standby nodes.	
1	18. A method according to Claim 17, further comprising:	
2	executing a node failover to the active node.	
1	19. A method according to Claim 17, further comprising:	
2	executing a node failover to one such standby node.	
1	20. A method according to Claim 13, further comprising:	
2	configuring a non-resilient set of cluster frameworks comprising an active	
3	node.	
1	21. A method according to Claim 13, further comprising:	
2	terminating service on a failed node responsive to a DOWN service	
3	notification.	
1	22. A method according to Claim 13, further comprising:	
2	resuming service on a recovered node responsive to an UP service	
3	notification	
1	23. A method according to Claim 13, further comprising:	
2	effecting a switchover to a standby node responsive to a COMING UP	
3	service notification.	
1	24. A method according to Claim 13, further comprising:	
2	pre-connecting to a standby node responsive to one of a COMING UP	
3	service notification and an UP service notification.	
1	25. A computer-readable storage medium holding code for performing	
2	the method according to Claim 13.	
1	26. A system for communicating service change events in a cluster	
2	framework environment, comprising:	

3	a pluranty of service change events for communication between a pluranty	
4	of nodes, comprising:	
5	an UP service change event;	
6	a DOWN service change event;	
7	a COMING UP service change event; and	
8	a GOING DOWN service change event;	
9	a remote procedure call interface from a database instance in a database	
10	stack executing on one such node; and	
11	a notification mechanism publishing at least one such service change event	
12	from the database instance.	
-1	A system asserding to Claim 26 further comprising:	
1	27. A system according to Claim 26, further comprising:	
2	a further notification mechanism receiving the one such service change	
3	event at one or more other nodes.	
1	28. A system according to Claim 26, further comprising:	
2	a cluster service within the database stack.	
4	20 A waste we associate to Claim 26 footban commissions	
1	29. A system according to Claim 26, further comprising:	
2	a planned interface within the database stack.	
1	30. A system according to Claim 26, further comprising:	
2	a global services daemon with listener within the database stack.	
1	31. A system according to Claim 26, further comprising:	
2	a cluster service processing a multiple instance failover from the one such	
3	node to one or more other nodes.	
1	32. A system according to Claim 26, further comprising:	
2	a cluster service processing a single instance failover to the one such node.	
1	33. A system according to Claim 26, further comprising:	
2	a cluster service processing a switchover from the one such node to one or	
3	more other nodes.	

1	34.	A method for communicating service change events in a cluster
2	framework e	nvironment, comprising:
3	defining a plurality of service change events for communication between a	
4	plurality of nodes, comprising:	
5		an UP service change event;
6		a DOWN service change event;
7		a COMING UP service change event; and
8		a GOING DOWN service change event;
9	expor	ting a remote procedure call interface from a database instance in a
10	database stack executing on one such node; and	
11	gener	ating a notification publishing at least one such service change event
12	from the data	base instance.
1	35.	A method according to Claim 34, further comprising:
2	receiv	ving the one such service change event at one or more other nodes.
1	36.	A method according to Claim 34, further comprising:
2	provi	ding a cluster service within the database stack.
1	37.	A method according to Claim 34, further comprising:
2	provi	ding a planned interface within the database stack.
1	38.	A method according to Claim 34, further comprising:
2	provi	ding a global services daemon with listener within the database stack.
1	39.	A method according to Claim 34, further comprising:
2	proce	ssing a multiple instance failover from the one such node to one or
3	more other n	odes.
1	40.	A method according to Claim 34, further comprising:
2	proce	ssing a single instance failover to the one such node.
1	41.	A method according to Claim 34, further comprising:

2	processing a switchover from the one such node to one or more other
3	nodes.
1	42. A computer-readable storage medium holding code for performing
2	the method according to Claim 34.
1	43. A method for detecting a failure of a first process, the method
2	comprising the steps of:
3	establishing a first connection between said first process and a second
4	process;
5	monitoring status of said first process to determine whether said first
6	process has failed; and
7	in response to determining that said first process has failed, notifying said
8	second process that said first process has failed;
9	wherein a second connection, that is different from said first connection, is
10	used to notify said second process of said failure of said first process failure.
1	44. A method according to Claim 43, wherein:
2	the step of establishing a first connection between said first process and a
3	second process includes the step of establishing a first connection between an
4	application server and a database instance;
5	the step of monitoring includes the step of monitoring status of said
6	database instance; and
7	the step of notifying said second process that said first process has failed
8	includes the step of causing an out-of-band break to be sent to said application
9	server.
1	45. A method for detecting a failure of a first process, the method
2	comprising the steps of:
3	establishing a first connection between said first process and a second
4	process, wherein said first connection is established using one or more sockets;
5	monitoring status of said first process to determine whether said first
6	process has failed:

7	detecting that said first process has failed, wherein failure of said first	
8	process does not cause closure of said one or more sockets; and	
9	in response to detecting that said first process has failed, causing an out-	
10	of-band notification to be sent to said second process, wherein said out-of-band	
11	notification is not sent over said first connection.	
1	46. A system for detecting a failure of a first process, the system	
2	comprising:	
3	a first computer component and a second computer component that are	
4	configured to communicate over a first connection; and	
5	a fault monitoring component that is configured to monitor the status of a	
6	first process associated with said first computer component and in response to	
7	detecting a failure of said first process, causing an out-of-band notification to be	
8	sent to said second computer component, wherein said out-of-band notification is	
9	sent over a second connect that is distinct from said first connection.	