Cason Konzer

This brief report is to complement details of the project which may or may not be presented in class. Curious students are encouraged to ask questions, and explore the extensive source code. As a general note, this is still an in development application and not fully matured.

DATABASE CONNECTOR

The database used in this application is Postgres, and Python is used as the application language. It is thus the case that psycopg2 is used as the database connector. The connector logic is stored in the postility.py module, which contains a plethora of commonly used statements. These are primarily of the type CREATE, INSERT, UPDATE, & SELECT. The functions are linked to a Graphical User Interface (GUI) in the guitility.py module. Displayed below is an image of the GUI:

The buttons which are primarily linked to the database connector fall under the Queries section, with some additionally under Networking. Details from SQL transactions are logged to sys.stdout using a Logging Cursor. The application handles database COMMITS and ROLLBACKS as required.

DATABASE CREATION

In this project we will create 6 databases (and additionally review the development database), retrieve some search results on their literature, and identify the top authors and papers from a graph based approach. In the following results we document the analysis of each database, which is topic specific.

Each database will require a CREATE DATABASE statement from the SQL console, and update to the .ini file referenced by the applications, followed by initialization, searching, and analysis within the application. It would without a doubt have been beneficial to further automate the process and link database creation to functionality within the GUI.

Initialization of the database starts by connecting to it in the GUI by using the dropdown menu Citegres - Set Default DB, and selecting the database which was created in the console. The Results field will inform you of the change in selection and be logged to sys.stdout. Following, you need to connect to the database by selecting Citegres - Connect in the menus. The last step is to create the table space required for the application in the database by selecting Citegres - Implant Schema in the menus. The code below is ran via the application on the connected database, logging will take place in sys.stdout:

```
DROP TABLE IF EXISTS papers_raw;
DROP TABLE IF EXISTS paper_concepts;
DROP TABLE IF EXISTS citations;
DROP TABLE IF EXISTS supports;
DROP TABLE IF EXISTS papers;
DROP TABLE IF EXISTS openalex;
DROP TABLE IF EXISTS venues;
DROP TABLE IF EXISTS types;
DROP TABLE IF EXISTS concepts;
DROP TABLE IF EXISTS publishers;
DROP TABLE IF EXISTS authors;
CREATE TABLE authors (id SERIAL, author TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE publishers (id SERIAL, publisher TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE concepts (id SERIAL, concept TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE types (id SERIAL, ptype TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE venues (id SERIAL, venue TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE openalex (id SERIAL, openalex_url TEXT UNIQUE NOT NULL, PRIMARY KEY(id));
CREATE TABLE papers (id SERIAL, doi TEXT, title TEXT UNIQUE NOT NULL, pdate DATE, author INTEGER
REFERENCES authors(id) NOT NULL, publisher INTEGER REFERENCES publishers(id), ptype INTEGER
REFERENCES types(id), venue INTEGER REFERENCES venues(id), openalex INTEGER REFERENCES openalex(id),
PRIMARY KEY(id));
CREATE TABLE supports (paper INTEGER REFERENCES papers(id), author INTEGER REFERENCES authors(id),
PRIMARY KEY(paper, author));
CREATE TABLE citations (source INTEGER REFERENCES openalex(id), target INTEGER REFERENCES openalex(id),
PRIMARY KEY(source, target));
CREATE TABLE paper_concepts (paper INTEGER REFERENCES papers(id), concept INTEGER REFERENCES
concepts(id), PRIMARY KEY(paper, concept));
CREATE TABLE papers_raw (id SERIAL, doi TEXT, title TEXT, pdate DATE, author_id
INTEGER, publisher TEXT, publisher_id INTEGER, ptype TEXT, ptype_id INTEGER, venue TEXT, venue_id
INTEGER, openalex TEXT, openalex_id INTEGER, PRIMARY KEY(id));
```

At this point in time you can optionally enable VPN switching through the Nord menu. This is an experimental figure and requires the Nord VPN application, the code could of course be ported to a different VPN. It is additionally worth noting that if you wish to run this application locally, you must update the static paths set at the top of the nordility, seleamility.py and postility.py source code.

In order to start populating the databases enter your relevant queries into DBLP Search Query and conduct a SEARCH. A prerequisite is to enable the automated browser via Chrome - Connect in the menus. If the search seems to align with your topic, continue by conducting an XML SEARCH then an Explode & Extract XML via Chrome, note that this may take some time. What the automated browser does is iterate through each paper's DBLP page to extract additional metadata, primarily related to referencing APIs, which is not included in the XML. Lastly, run an Import XML to Citegres to populate the database with the search. A current limitation of the application is that it can only process up to the first 1,000 papers returned. The database is normalized on import, further details can be found in the importXML function of the postility.py module. You can additionally keep an eye on sys.stdout for details on the import.

RESULTS

Creation of the below databases follows the above process.

After the database is imported, the analysis is started by building citation graphs. We will build citation graphs based on paper to paper citations, and mine for the most relevant papers and authors using network centrality metrics. To create the author citation graph you will need to run Build Author Citation Graph, similarly run Build Paper Citation Graph for the paper citation graph. Acknowledgement of the build will be displayed in the Results window.

With the graph build, you can then compute the centrality metrics using the Compute Graph Metrics

button. Having computed the metrics you can display the centrality results using Display Degree Centralities, Display Closeness Centralities or Display Betweenness Centralities. The results will be returned in descending order, with the top of the list representing core authors and papers in the field. The idea behind this tool is to use it as a paper discovery tool, with future applications in citation network analysis, interactive network visualization, and bibliography management. Using the Plot Graph button, there is an additional functionality implemented to visualize the last built network. This is not particularly useful at this time, but may be interesting to the reader.

DATABASES

For the first database we will look into the topic of databases, ah ha:)

CODE

CREATE DATABASE databases;

DBLP QUERIES

databases: 21,324 results, top 1,000 imported.

TOP AUTHORS BY DEGREE CENTRALITY

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

	degree_centralities
Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases.	0.000439
AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture.	0.000439
BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences.	0.000329
Replica Consistency in Lazy Master Replicated Databases.	0.000219
COACT: a query interface language for collaborative databases.	0.000110
An overview of graph databases and their applications in the biomedical domain.	0.000110
Some Notes on Knowledge Assimilation in Deductive Databases.	0.000110

PAPERS CITATION GRAPH

GENERAL NOTES

Despite a relatively large import, the citation networks for this search were rather limited with only 82 citations.

NETWORKING

For the second database we will look into the topic of networking.

CODE

CREATE DATABASE networking;

DBLP QUERIES

networking: 15,014 results, top 1,000 imported.


```
Empty DataFrame
Columns: [author, degree_centralities]
Index: []
```

AUTHORS CITATION GRAPH

NA

TOP PAPERS BY DEGREE CENTRALITY

```
Empty DataFrame
Columns: [paper, degree_centralities]
Index: []
```

PAPERS CITATION GRAPH

NA

GENERAL NOTES

Networking was unable to resolve any citations in the network, seems ironic:)

ARCHITECTURE

For the third database we will look into the topic of architecture.

CODE

CREATE DATABASE architecture;

DBLP QUERIES

architecture: 96,678 results, top 1,000 imported.

TOP AUTHORS BY DEGREE CENTRALITY

	author	degree_centralities
5	Jan Löhe	0.000751
12	Leo Pruijt	0.000751
0	Abdul Razzaq	0.000000
28 22	Feng Chen	0.000000
22	T. H. Akila S. Siriweera	0.000000
11		

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

A second for the species of contracting this state extraction to the same of create of the same of the

PAPERS CITATION GRAPH

GENERAL NOTES

Architecture resulted in a rather low citation count of 26.

SOCIAL COMPUTING

For the fourth database we will look into the topic of social computing.

CODE

CREATE DATABASE social_computing;

DBLP QUERIES

 $\verb|social computing: 1,545| results, top 1,000| imported.$

author	degree centralities
Nazish Zaman Khan	0.000364
Daniel Zhang 0001	0.000334
Xiaokang Wang 0001	0.000228
Michael Goldweber	0.000152
Amy Isvik	0.000121
Pablo Chamoso	0.000121
Daniel Yue Zhang	0.000121
Fei Hao 0001	0.000091
Abdullayev Vugar Hacimahmud	0.000076
Ming Yang 0032	0.000061
Weishan Zhang	0.000061
Abdullah Khanfor	0.000061
Sanjay Kumar	0.000061
Joon Sung Park	0.000030
Ricardo S. Alonso	0.000030
Katie Shilton	0.000030
Shuhong Chen	0.000030
Javier Bajo	0.000030
Junbin Liang	0.000030
Mirela Riveni	0.000030
Wei Zhang 0140	0.000030
Tao Wang	0.000030
Aziz Mohaisen	0.000030

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

Been Social Sensing Here Edge Computing Vision and Challenges.

BresicoSpy: Inside the heterogeneity of edge computing Vision and Challenges.

Computing Test and Sensing Here Edge Computing System in social sensing.

An Integrated Top-down and Bettom-up Task Allocatics Approach in Social Sensing heads Gape Computing Systems.

An Integrated Top-down and Bettom-up Task Allocatics Approach in Social Sensing heads Gape Computing Systems.

Demonstrated Computing Computing Sects of Computing Compu

PAPERS CITATION GRAPH

GENERAL NOTES

Social computing showed promissing results when comparing to the first, successfully building a network of 231 citations.

INFORMATICS

For the fifth database we will look into the topic of informatics.

CODE

CREATE DATABASE informatics;

DBLP QUERIES

informatics: 50,390 results, top 1,000 imported.

		degree_centralities
8	Peter J. Embí	0.012649
1	Suzanne Bakken	0.012268
16	Casimir A. Kulikowski	0.010202
71	Michael G. Kahn	0.006845
57	Shan He	0.005989
42	William R. Hersh	0.004098
32	Charles P. Friedman	0.004086
24	Lucila Ohno-Machado	0.003713
6	Jen Bichel-Findlay	0.003502
44	Saif S. Khairat	0.003267
22	Tiffany C. Veinot	0.003239
7	Philip R. O. Payne	0.002756
40	Shawn N. Murphy	0.002610
153	Enrico W. Coiera	0.002503
19	Annette L. Valenta	0.002393
70	William Hsu	0.002122
26	Rahul Banerjee	0.001985
48	Rupa Valdez	0.001883
41	Reinhold Haux	0.001824
53	Dehua Hu	0.001332
132	Susan H. Fenton	0.001314
37	Rachel L. Richesson	0.001269
25	Kim M. Unertl	0.001244
154	Ellen Kim	0.001001
178	Chiehwen Ed Hsu	0.000845
45	Manal Almalki	0.000807
102	Elmer V. Bernstam	0.000792
62	Julia Kampov-Polevoi	0.000758
3	Cynthia S. Gadd	0.000715
108	Tiffani J. Bright	0.000633
110	Ashley C. Griffin	0.000560
9	Thomas George Kannampallil	0.000536
73	Hyeoneui Kim	0.000518
151	Jodyn Platt	0.000460
51	Raniah Aldekhyyel	0.000441
14	Reed M. Gardner	0.000433
10	Vimla L. Patel	0.000429
31	Qi Rong Huang	0.000405
204	Jennifer S. Singer	0.000375
61	Gerry Nesbitt	0.000375
49	Jenna L. Marquard	0.000346
167	Carolynn L. Smith	0.000304
17	Charles Safran	0.000303
96	Sheena Desai	0.000292

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

MAIR Board white papers definition of biomedical informatics and specifications of one operations for graduate chemicals in the second control of the Dates and Control of the Control of

PAPERS CITATION GRAPH

GENERAL NOTES

Informatics was the best single search network created for the report, hosting 498 citations.

ENGINEERING

For the last database we will look into the topic of engineering.

CODE

CREATE DATABASE engineering;

DBLP QUERIES

engineering: 59,729 results, top 1,000 imported.

	d1:-:
	degree_centralities
Stefan Biffl	0.008858
Dietmar Winkler 0001	0.001399
Arndt Lüder	0.001399
Marta Sabou	0.001399
Boutheina Gherib	0.000000
Rogério de Lemos	0.000000
Danny Weyns	0.000000
Michael E. Auer	0.000000
Brit-Maren Block	0.000000
Youcef Baghdadi	0.000000
Bobbi Young	0.000000
Len Wozniak	0.000000
Diana Adela Martin	0.000000
Lukas Kathrein	0.000000
Iván A. García	0.000000
Kendra M. L. Cooper	0.000000
Yen-Lin Han	0.000000
Tomás Bures	0.000000
Balamuralithara Balakrishnan	0.000000

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

PAPERS CITATION GRAPH

GENERAL NOTES

The network for engineering was additionally rather small with only 68 citations.

ECHO CHAMBERS

My initial development took place on the study of echo chambers.

CODE

CREATE DATABASE CiteGres;

DBLP QUERIES

echochamber: 2 results, all imported. echo chamber: 173 results, all imported. filter bubble: 106 results, all imported. epistemic bubble: 2 results, all imported. cognitive dissonance: 62 results, all imported. confirmation bias: 92 results, all imported. selective exposure: 53 results, all imported. homophily: 428 results, all imported.

author	degree centralities
Mike Thelwall	0.000687
Silvia Knobloch-Westerwick	0.000458
Halil Bisgin	0.000371
Matteo Cinelli	0.000367
Engin Bozdag	0.000357
Simpson Zhang	0.000334
Sanja Scepanovic	0.000311
Y. Connie Yuan	0.000293
Qingzi Vera Liao	0.000252
Munmun De Choudhury	0.000252
Kiran Garimella	0.000240
Pranav Dandekar	0.000229
R. Kelly Garrett	0.000209
Giacomo Villa	0.000192
Andrea De Salve	0.000188
David Laniado	0.000179
Gabriel Machado Lunardi	0.000151
Sofia Dokuka	0.000146
Uthsav Chitra	0.000146
Kuntal Dey	0.000137
Alireza Amrollahi	0.000133
Tim Donkers	0.000127
Sayooran Nagulendra	0.000119
Per Block	0.000110
Quentin Grossetti	0.000106
Kibae Kim	0.000101
Yingqiang Ge	0.000101
R. Sudhesh Solomon	0.000096

AUTHORS CITATION GRAPH

TOP PAPERS BY DEGREE CENTRALITY

paper	degree centralities
Homophily in MySpace.	0,000488
The echo chamber effect on social media.	0,000270
Breaking the filter bubble; democracy and design.	0,000265
From Acquaintances to Friends: Homophily and Learning in Networks.	0.000254
Tie Formation on Twitter: Homophily and Structure of Egocentric Networks.	0.000250
A study of homophily on social media.	0.000231
Semantic homophily in online communication: Evidence from Twitter.	0.000224
Homophily of Network Ties and Bonding and Bridging Social Capital in Computer-Mediated Distributed Teams.	0.000204
Political Discourse on Social Media: Echo Chambers, Gatekeepers, and the Price of Bipartisanship.	0.000195
Echo chambers online?: Politically motivated selective exposure among Internet news users.	0.000155
Discovering Homophily in Online Social Networks.	0.000142
A Conceptual Tool to Eliminate Filter Bubbles in Social Networks.	0.000135
Confirmation Bias in Online Searches: Impacts of Selective Exposure Before an Election on Political Attitude Strength and Shifts.	0.000132
Gender homophily in online dyadic and triadic relationships.	0.000129
Preelection Selective Exposure.	0.000118
Can you hear me now?: mitigating the echo chamber effect by source position indicators.	0.000111
Beyond the filter bubble: interactive effects of perceived threat and topic involvement on selective exposure to information.	0.000108
Analyzing the Impact of Filter Bubbles on Social Network Polarization.	0.000105
Assessing Topical Homophily on Twitter.	0.000099
What Are Filter Bubbles Really? A Review of the Conceptual and Empirical Work.	0.000099
Effect of homophily on network formation.	0.000092
Echo chamber detection and analysis.	0.000086
The Dual Echo Chamber: Modeling Social Media Polarization for Interventional Recommending.	0.000077
The dark side of the boom? Credibility, selective exposure and the proliferation of online sources of political information.	0.000075
Serendipity by Design? How to Turn from Diversity Exposure to Diversity Experience to Face Filter Bubbles in Social Media.	0.000073
Understanding the Psycho-Sociological Facets of Homophily in Social Network Communities.	0.000069
Hashtag homophily in twitter network: Examining a controversial cause-related marketing campaign.	0.000066
Expert voices in echo chambers: effects of source expertise indicators on exposure to diverse opinions.	0.000063
Distance matters: Exploring proximity and homophily in virtual world networks.	0.000059
I Want to Break Free! Recommending Friends from Outside the Echo Chamber.	0.000057
Echo Chambers vs Opinion Crossroads in News Consumption on Social Media.	0.000053
Multidimensional homophily in friendship networks.	0.000053

PAPERS CITATION GRAPH

GENERAL NOTES

This was by far the most fruitful citation network with 593 unique citations.

CONCLUSION

As we can see for the project results, it is not always the case that we are able to build adequate citation networks. To truly use this tool to effectively identify the most prominent articles and researchers for a topic, a few expansions are needed. First, queries need to be processed deeper than the most recent 1000 papers. This is surely the case in prominent fields or when searching general topics that publish over 1000 papers yearly. Enabling such a feature would not be too far of a stretch from the current work. It is my assumption that this is part of the reason for observable poor results. Second, after building a database it would make sense to expand it by conducting author and concept based searches. Already the information is available and would enable an incremental update based approach. In the end, the target of the application is to identify core publishers and papers in specific fields, so such an approach would be expected to add noise. The current networking metrics are limited, and adding additional ones may be of interest. In a similar manner, it may make sense to query across other databases such as Google Scholar. Concluding, I am quite happy with this work and in the implementation learned a lot about applied database applications and built extensive skills in the creation of graphical user interfaces.

REFERENCES

listed below is a set of web sites which were relevant to the development of this application project and may be useful to the reader:

- https://www.psycopg.org/docs/#
- https://www.postgresql.org/docs/
- https://docs.python.org/3/library/tkinter.html
- https://tkdocs.com/pyref/index.html
- https://networkx.org/
- https://matplotlib.org/
- https://www.crummy.com/software/BeautifulSoup/bs4/doc/
- https://requests.readthedocs.io/en/latest/
- https://www.selenium.dev/documentation/
- https://openalex.org/
- https://dblp.org/
- https://opencitations.net/index/api/v1/
- https://www.semanticscholar.org/product/api
- https://github.com/CrossRef/rest-api-doc