Function	Description	Example
mean (A)	If A is a vector, returns the mean value of the elements of the vector.	>> A=[5 9 2 4]; >> mean(A) ans =
C=max(A)	If A is a vector, C is the largest element in A. If A is a matrix, C is a row vector containing the largest element of each column of A.	>> A=[5 9 2 4 11 6 11 1]; >> C=max(A) C = 11
[d,n]=max(A)	If A is a vector, d is the largest element in A, and n is the position of the element (the first if several have the max value).	>> [d,n]=max(A) d = 11 n =
min(A)	The same as $max(A)$, but for the smallest element.	>> A=[5 9 2 4]; >> min(A)
[d,n]=min(A)	The same as $[d,n] = \max (A)$, but for the smallest element.	ans = 2
sum(A)	If A is a vector, returns the sum of the elements of the vector.	>> A=[5 9 2 4]; >> sum(A) ans = 20
sort(A)	If A is a vector, arranges the elements of the vector in ascending order.	>> A=[5 9 2 4]; >> sort(A) ans = 2 4 5 9

Function	Description	Example
std(A)	If A is a vector, returns the	>> A=[5 9 2 4];
	standard deviation of the ele-	>> std(A)
	ments of the vector.	ans =
		2.9439
det(A)	Returns the determinant of a	>> A=[2 4; 3 5];
	square matrix A.	>> det(A)
		ans =
		-2
dot(a,b)	Calculates the scalar (dot)	>> a=[1 2 3];
	product of two vectors a and	>> b=[3 4 5];
	b. The vectors can each be	>> dot(a,b)
	row or column vectors.	ans =
		26
cross(a,b)	Calculates the cross product of two vectors a and b, (axb). The two vectors must have each three elements.	>> a=[1 3 2];
		>> b=[2 4 1];
		>> cross(a,b)
		ans =
		-5 3 -2
inv(A)	Returns the inverse of a	>> A=[2 -2 1; 3 2 -1; 2 -3 2];
	square matrix A.	>> inv(A)
		ans =
		0.2000 0.2000 0
		-1.6000 0.4000 1.0000
		-2.6000 0.4000 2.0000

Function	Description	Example
sign(x)	Signum function. Returns 1 if $x > 0$, -1 if $x < 0$, and 0 if $x = 0$.	>> sign(5) ans = 1

length(A)	Returns the number of elements	>> A=[5 9 2 4];
	in the vector A.	>> length(A)
		ans =
		4

Control Flow Statements

For-Loops:

Allow a group of commands (statements) to be repeated a fixed number of times. The general form of a **for** is:

```
For x = initial_value: increment : End_value
```

```
statement 1
statement 2
statement 3
.....statement n
```

end

```
📝 Editor - Untitled*
  Untitled* × +
      % examples of loops
1
     for x=1:2:10
          disp(x); % disp is used to display a text or a variable
3
     ∟end
 4
 5
6
      8
7
     ☐ for x=100:-5:1
8
          disp(x);
9
     ∟end
10
11
      8
12
     ☐ for x=1:30
13
         p(x) = sin(x*pi/180);
14
         disp(p(x));
15
     ∟end
16
      % can we do the previous example is a different way? of course!
17
18
      8
19
     - for x=1:10
20
       for y=1:10
21
              z(x,y)=x*y;
22
      end
23
     ∟end
24
      disp(z);
25
26
      *
27
     28
         y=x^5;
29
         disp(y)
30
      ∟end
31
32
```

 while Loops: evaluate a group of commands (statements) an indefinite number of times when while's condition is true. The general form is:

```
while expression statements.....
```

% the statements between the **while** and **end** are executed as long as ALL elements in expression are true!

```
% Example !
x=0;
while x<10
    x=x+1;
    disp(x);
end</pre>
```

• if-else-end: evaluates an expression, and executes a group of statements when the expression is true. The simplest if-elesend construction is:

If expression statements end

 Relational Operators: we use them to compare two arrays of the same size or to compare an array to a scalar.

Symbol	Description	
<	Less than	
<=	Less than or equal to	
>	Greater than	
>=	Greater than or equal to	
==	Equal to	
~=	Not equal to	

How to use them? Easy!! Let's take an example: Assume that you have two arrays with the same size **a** and **b**. And we want to compare both arrays if the corresponding elements have a same value or not:

```
a=[I 2 3 4 5];
b=[3 4 5 2 3];
k=a==b
c=a>b
% Interesting!
```