



FIG. 2



F16.3

••

.



F16.4

WRAPPING A WIRE SENSING ELEMENT. AROUND A FLEXIBLE INSULATED CORE WIRE TO CREATE ANASSEMBLY 1520 ELECTRICALLY CONNECTING A FIRST END OF THE SENSINGWIRE TO THE FIRST END OF THE CORE WIRE PROVIDING LEADS FOR THE SENSOR BY ELECTRICALLY CONVECTING A FIRST LEAD TO THE SECOND END OF THE SENSING WIRE AND USING THE SECOND END OF THE COLE WIRE ASA SECOND LEAD. 540 PLACING THE MIRE WEAPPED ASSEMBLY INTO A HEAT SHRINKABLE POLYMER MATERIAL 550 SEALING THE SENSOR BY HEATING THE SHRINKABLE POLYMER MATERIAL

FIG. 5