UNIVERSIDADE FEDERAL TECNOLÓGICA DO PARANÁ VARIÁVEIS COMPLEXAS

LISTA Nro. 2

Prof. Dr. Iván Gonzáles

28 de março de 2022

1 A exponencial

- 1.) Reduza à forma $re^{i\theta}$ cada um dos números complexos dados:
- (a) 1 + i
- (b) -1 + i
- (c) $1 + i\sqrt{3}$
- (d) $\sqrt{3} + i$
- (e) $\frac{1+i\sqrt{3}}{\sqrt{3}-i}$
- (f) $\frac{i}{1+i}$
- 2.) Mostre que $exp(3 + 7\pi i) = -e^3$.
- 3.) Estabeleça as fórmulas de Euler:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \ e \ \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

- 4.) Sendo $z = re^{i\theta}$, prove que $|e^{iz}| = e^{-r\sin\theta}$.
- 5.) Prove que $e^z=1 \iff z=2k\pi i, k$ inteiro.
- 6*.) Prove que $r_1e^{i\theta_1} + r_2e^{i\theta_2} = r_3e^{i\theta_3}$, onde

$$r_3 = \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)},$$

 \mathbf{e}

$$\tan \theta_3 = \frac{r_1 \sin \theta_1 + r_2 \sin \theta_2}{r_1 \cos \theta_1 + r_2 \cos \theta_2}.$$

Faça um gráfico.

7*.) Estabeleça as duas identidades seguintes:

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(n + \frac{1}{2})\theta]}{2\sin(\frac{\theta}{2})},$$

$$\sin \theta + \sin 2\theta + \dots + \sin n\theta = \frac{1}{2\sin(\theta/2)} \left[\cos \frac{\theta}{2} - \cos \left[(n + \frac{1}{2})\theta \right] \right].$$

- 8*.) Determine z de forma que o triângulo de vértices i, z e iz seja equilátero.
- 9*.) Mostre que se ω é qualquer raíz n-esima da unidade distinta da unidade, então

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0.$$

2 Conjunto de pontos no plano

- 1.) Represente graficamente os conjuntos dados:
- (a) $Re \ z < 3$
- (b) $Im z \geq 1$
- (c) |z 2i| > 2
- (d) $z \neq 0$, $0 \leq arg(z) \leq \pi/3$
- (e) 1 < |z + 1 2i| < 2
- (f) $Re(\frac{1}{z}) < \frac{1}{4}$
- (g) $Im z^2 < 0$

- (h) $Re z^2 > 0$
- (i) $z \neq 0$, $|arg(z^3)| < 2\pi/3$
- (j) |z-2| = |z-3i|
- (k) |z+5| = |z-1-i|
- (1) $|(z-i)(1-i\sqrt{3})| = |2z|$
- 2.) Identifique cada um dos conjuntos de pontos dados. Faça os respectivos gráficos.
- (a) |z i| + |z + 2| = 3
- (b) $|z 2 + i| + |z| \le 4$
- (c) |z-2| = 2|z+2i|
- (d) Re(1-z) = |z|
- 3.) Esboçar o gráfico de:
- (a) |z 1 + i| = 1
- (b) $(z+i) \le 3$
- (c) $|z 4i| \ge 4$
- (d) $Re(\overline{z} i) = 2$
- (e) |2z i| = 4
- 4.) Determine os pontos de acumulação de cada um dos seguintes conjuntos:
- a.) $z_n = i^n, \ n = 1, 2, 3, \cdots$
- b.) $z_n = i^n/n, \ n = 1, 2, 3, \cdots$
- c.) $0 \le arg(z) < \pi/2, \ z \ne 0.$
- 5*.) Estude a transformação $w=e^z$ e mostre que segmentos verticais e horizontais são mapeados em porções de círculos e raios respectivamente. Faça um gráfico!. Use isto e deduzca que esta transformação mapea regiões retângulares de lados paralelos aos eixos, em uma porção de um anel circular tal como indica o gráfico:

- 6.) Identifique a região imagem do setor $r \leq 1, 0 \leq \theta \leq \pi/4$ mapeado pela transformação
- a.) $w = z^2$
- b.) $w = z^3$.
- c.) $w = z^4$.
- 7.) Encontre a imagem da faixa infinita $x \ge 0, 0 \le y \le \pi$ mapeada pela transformação w = exp(z) e grafique as respectivas fronteiras.
- 8*.) Encontre a grafique as imagens das hipérbolas

$$x^2 - y^2 = c_1$$
, $(c_1 < 0)$ e $2xy = c_2$, $(c_2 < 0)$,

mapeadas pela transformação $w=z^2$.

3 Funções de Variável Complexa

- 1.) Determine as partes real e imaginária de cada uma das seguintes funções:
 - a) $w = z^2 5z + 3$
 - b) $w = \frac{3}{z-5}$
 - c) $w = \frac{z+2}{z-2}$
 - d) $w = \frac{z-4i}{z+3i}$
 - e) $w = e^z(z i)$
- 2.) Determine o domínio máximo de definição das funções dadas
 - a) $w = \frac{z}{(z-i)\sin y}$
 - b) $w = \frac{z}{x} \frac{y}{z}$
 - c) $w = \frac{z^2 + (z-1)^3}{(e^z 1)\cos y}$

4 Funções Analíticas I - Limites

1.) Calcule os limites:

a.)
$$\lim_{z \to -3i} (z^2 - 5z)$$
.

b.)
$$\lim_{z \to i} (\frac{4z+i}{z+1})$$
.

c.)
$$\lim_{z \to \infty} \frac{z+1}{z^2 - 7}$$

d.)
$$\lim_{z \to \infty} \frac{z^3 - 3z^2 + 1}{z^2 + 5z - 3}$$
.

e.)
$$\lim_{z \to i} \frac{6z + 7}{2z - 3}$$
.

$$f.) \lim_{z \to \infty} \frac{6z + 7}{2z - 3}.$$

g.)
$$\lim_{z \to 3} \frac{z^3 - 27}{z - 3}$$
.

h.)
$$\lim_{z \to \infty} \frac{z^3 - 27}{z - 3}$$
.

i.)
$$\lim_{z \to 0} \frac{\sqrt{1+z} - 1}{z}$$
.

j.)
$$\lim_{z \to 0} \frac{(1+z)^{1/4} - 1}{z}$$
.

k.)
$$\lim_{z \to 0} \frac{(1+z)^{1/3} - (1-z)^{1/3}}{z}$$
.

5 Limites II

- 1.) Considere o $\lim_{z\to 0} \left(\frac{z}{\bar{z}}\right)^2$.
 - a) A valor tende o limite a medida que z se aproxima de 0 ao longo do eixo real?
 - b) A valor tende o limite a medida que z se aproxima de 0 ao longo do eixo imaginário?
 - c) Suas respostas para os itens a) e b) inplicam que $\lim_{z\to 0} \left(\frac{z}{\bar{z}}\right)^2$ existe? Justifique sua resposta.
 - d) A valor tende o limite a medida que z se aproxima de 0 ao longo da reta y=x?

- e) O que se pode concluir a respeito de $\lim_{z\to 0} \left(\frac{z}{\bar{z}}\right)^2 ?$
- 2.*) [Julia's set] Considere a aplicação $f(z) = z^2$. Dado um ponto z_0 tente calcular o limite $\lim_{n\to\infty} f^n(z)$, onde $f^n(z) = f(f^{n-1}(z))$. Pinte de preto os pontos sobre o plano complexo tais que o limite acima existe e de vermelho os pontos tais que o limite acima é ∞ . O conjunto colorido de preto é chamado o conjunto de Julia da função z^2 . Desenhe no plano complexo teus resultados!

Os conjuntos de Julia são gerados pelas funções $f(z) = z^2 + c$, onde c é uma constante.

Alguns Conjuntos de Julia:

Filled Julia set for $z^2 - 1$.

Filled Julia set for $z^2 - 0.123 + 0.745i$.

O conjunto de Mandelbrot M é definido como o conjunto de pontos c para os quais o conjunto de Julia $z^2 + c$ é conexo por

caminhos. Segundo esta definição temos a figura seguinte:

O conjunto de Mandelbrot inicia o estudo da Geometria Fractal!

3.) Usando as propriedades de limites, calcule:

a)
$$\lim_{z \to i} \frac{(3+i)z^4 - z^2 + 2z}{z+1}$$
.

b)
$$\lim_{z \to 1+\sqrt{3}i} \frac{z^2 + 2z + 4}{z - 1 - \sqrt{3}i}$$
.

c)
$$\lim_{z \to -i} \frac{z^4 - 1}{z + i}.$$

d)
$$\lim_{z\to 2+i} \frac{z^2 - (2+i)^2}{z - (2+i)}$$
.

4.) Verifique se a função dada é contínua ou não no ponto z_0 especificado.

a)
$$f(z) = \frac{z^2 + 1}{z + i}$$
 em $z_0 = -i$.

b)
$$f(z) = z^3 - \frac{1}{z}$$
 em $z_0 = 3i$.

c)
$$f(z) = \frac{z^3}{z^3 + 3z^2 + z}$$
 em $z_0 = i$

6 Derivação e Analiticidade

1.) Calcule as derivadas das funções:

a)
$$f(z) = 1 - z^2 + 4iz^5$$
.

b)
$$f(z) = (z^2 - i)^3 (iz + 1)^2$$

c)
$$f(z) = \frac{z-3i}{z+3i}$$
.

d)
$$f(z) = (2z^2 + i)^5$$

e)
$$f(z) = (1 - 4z^2)^3$$
.

f)
$$f(z) = \frac{(1+z^2)^4}{z^2}$$
, $z \neq 0$.

2.) Mostre as identidades:

a)
$$(z^n)' = nz^{n-1}$$
, para todo inteiro positivo n .

b) Sendo
$$z \neq 0$$
, prove que $(1/z)' = -1/z^2$.

c*) Se f e g são funções analíticas, então o produto é uma função analítica com derivada:

$$(fg)' = f'g + fg'.$$

Mostre a regra de derivação de Leibniz

$$(fg)^{n} = f^{(n)}g + nf^{(n-1)}g' + \frac{n(n-1)}{2}f^{(n-2)}g'' + \cdots + fg^{(n)}$$
$$= \sum_{j=0}^{n} {n \choose j} f^{(n-j)}g^{(j)}.$$

d) Mostre que o quociente de duas funções analíticas f e g num ponto, z onde $g(z) \neq 0$, é função analítica e

$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}.$$

3.)* Mostre que um polinômio

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n, \ a_n \neq 0,$$

de grau n é derivável em todo ponto, com derivada

$$p'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1}.$$

Mostre também que os coeficientes do polinômio podem ser escritos na forma:

$$a_0 = p(0), \ a_1 = \frac{p'(0)}{1!}, \ a_2 = \frac{p''(0)}{2!},$$

$$\cdots, a_n = \frac{p^{(n)(0)}}{n!}.$$

 Em quais pontos existem as derivadas das funções:

- a) $f(z) = \bar{z}$.
- b) f(z) = Re(z).
- c) f(z) = Im(z).
- d) $f(z) = z \bar{z}$.
- e) $f(z) = 2x + ixy^2$.
- f) $f(z) = e^x e^{-iy}$
- 5.) Mostre que as equações de Cauchy-Riemann são equivalentes a cada uma das formas seguintes:

$$\frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y} \ e \ \frac{\partial f}{\partial y} = i\frac{\partial f}{\partial x}.$$

- 6.) Use as equações de Cauchy-Riemann para verificar quais das funções a seguir é analítica e em qual domínio. No caso em que a função seja analítica calcule a derivada. f'(z):
 - a) $w = z^3$.
 - b) $w = \overline{e^z}$.
 - c) $w = \overline{z}$
 - d) $w = \frac{1}{z}$
 - e) $w = (e^y + e^{-y})\sin x + (e^y e^{-y})\cos x$.
 - f) $w = e^y(\cos x + i\sin x)$
 - g) $w = e^{-y}(\cos x + i\sin x)$
 - h) $w = \sqrt{z}$.
- 7.) Calcule f' e f'' em cada caso:
 - a) f(z) = iz + 2.
 - b) $f(z) = z^3$.
 - c) $f(z) = e^{-x}e^{-iy}$.
 - d) $f(z) = \cos x \cosh y i \sin x \sinh y$.

7 Logaritmo

1.) Demostre que $\log \frac{z_1}{z_2} = \log z_1 - \log z_2$, no sentido de igualdade de conjunto de valores.

2.*) Mostre que

$$log(-1) = (2k+1)\pi i$$

е

$$\log i = \frac{4k+1}{2}\pi i, \ k = 0, \pm 1, \pm 2, \cdots$$

3.*) Mostre que, sendo $x \neq 0$

$$\log(x + iy) = \frac{1}{2}\log(x^2 + y^2) + (\theta_0 + 2k\pi)i,$$

onde θ_0 é uma das determinações de arctg(y/x). Se x=0, então $y \neq 0$ e θ_0 pode ser tomado igual a $\pm \pi/2$ conforme seja y>0 ou y<0, respectivamente.

- 4.) Determine todas as raízes das equações seguintes:
 - a) $e^z = -1$.
 - b) $e^{2z} = -e$.
 - c) $e^z = -\sqrt{3} + 3i$.
 - d) $e^z + 6e^{-z} = 5$.
 - e) $\log z = \pi i/2$.
- 1.) Calcule o $\log z$, onde:
 - a) z = 1 i
 - b) z = e
 - c) z = -1 + i
 - d) $z = -1 \sqrt{3}i$
 - e) z = -ei
- 2.) Calcule o $\log z$ nos ramos indicados:
 - a) z = 1 i no ramo $0 \le \theta < 2\pi$.
 - b) z = e no ramo $-\pi < \theta < \pi$.
 - c) $z = -1 + i \text{ no ramo } \frac{3\pi}{2} \le \theta < \frac{7\pi}{2}$.
 - d) $z = -1 \sqrt{3}i$ no ramo $-\frac{\pi}{4} < \theta \le \frac{7\pi}{4}$.
- 3.) Demonstre que $\log(z_1z_2) = \log(z_1) + \log(z_2)$ no sentido de igualdade de conjuntos de valores.
- 4.) Mostre que $\log (-1) = (2k+1)\pi i$.