Johns Hopkins Engineering

Immunoengineering

Immunoengineering—Pathogens

Therapeutic Discovery Process

Drug Discovery Process

- Define
 Disease
 Phenotype
- 2. Replicate in in vitro setting

a Disease knowledge integration

b Incorporation and assessment of disease relevance in cells

Drug Discovery Process

c PDD compound screening and validation

3. Screen
Compounds in vitro, then in vivo

Nature Reviews | Drug Discovery

Therapeutic Discovery Approaches

- Large scale screens
- Mechanistically inspired

- Combinatorial approaches
- New tools for discovery

High-throughput Compound Screening

High-throughput screen

- Host-pathogen interactions
 Cell or organism level
 - 1

Small molecule libraries

- FDA-approved drugs
- Diversity-oriented synthesis
 - Natural products

Plate assay read-out

- Automated microscopy
 - Host survival
 - Pathogen invasion

Example: Antimalarial

- Screened 4,731 compounds
- Chemical evolution

Hit from screen

Pf(3D7) EC₅₀ 0.12 μM Calculated log(P) 4.3 Solubility not determined Mouse cli. 5.3 ml min⁻¹ g⁻¹

DDD102542

Pf(3D7) EC₅₀ 0.35 μM Calculated log(P) 3.7 Solubility 36 μM Mouse cli. 8.6 ml min⁻¹ g⁻¹

DDD103679

Pf(3D7) EC₅₀ 0.70 μM Calculated log(*P*) 3.7 Solubility 180 μM Mouse cli. 3.4 ml min⁻¹ g⁻¹

DDD107498

Pf(3D7) EC $_{50}$ 0.001 μ M Calculated log(P) 3.2 Solubility 216 μ M Mouse cli. < 0.9 ml min $^{-1}$ g $^{-1}$

Example: Antimalarial

Limitations to Screening

Nature Reviews | Microbiology

Discovery Based on Inspiration of Biology

Example: Enhancing Antibiotics

Example: Enhancing Antibiotics

- Model to predict ROS targets
- ROS target synergize with antibiotics

Combinatorial Approaches

Nature Reviews | Microbiology

Combinatorial Approach – Commensal Vaccine

Combinatorial Approach – Commensal Vaccine

14

Jones, Charles H., et al. "Comprehensive vaccine design for commensal disease progression." *Science Advances* 3.10 (2017): e1701797.

Combinatorial Approach – Commensal Vaccine

New Tools for Target Discovery - Vaccine

and mutations incorporated into a single virus, creating a HIS virus that is attenuated in vitro and in vivo.

1 Naïve mice or ferrets are vaccinated with the HIS influenza virus. 2 Mice or ferrets are challenged with homologous or heterologous virus strains.

Animals challenged with HIS virus exhibited superior protection compared to mock challenged animals with respect to both reduced mortality and viral loads.

sensitive strains are selected and sent for

RNA sequencing.

New Tools for Target Discovery - Antibiotics

New Tools for Drug Discovery – Directed Evolution

Nature Reviews | Genetics

New Tools for Drug Discovery – Directed Evolution

Approach	Advantages	Disadvantages
High volume	 + Many opportunities for success, enabling success + Not require prior knowledge lead to novel finding + Compound may already be approved 	 May not be as specific Requires assay to be high throughput and may require significant framework Requires library to be established
Mechanistic insight	 + Leads to direct and specific therapy + Potentially more potent than random hits + Can potentially lead to cure rather than treatment 	Requires more resourcesHigher chance of failureTakes longer
Combination therapies	+ Increased potency than relying on one mechanism+ May be able to use two or more existing therapies	Safety and side effects a concernRegulatory hurdles
New tools	+ Increase throughput + Increase insight	 Tools may not be available or require significant expertise Tools are still not refined to always be predictive
20		

