Лабораторная работа №5

Модель эпидемии (SIR)

Ибатулина Дарья Эдуардовна, НФИбд-01-22

Содержание

1	Цель работы				
2	Зада	Задание			
3	Теор	ретичес	кое введение	7	
4	Вып 4.1		е лабораторной работы зация модели эпидемии в xcos	8	
	4.2		зация модели с помощью блока Modelica в xcos	16	
	4.3		кнение. Реализация модели SIR в OpenModelica	21	
	4.4	Задан	ие для самостоятельного выполнения	22	
		4.4.1	Реализация модели SIR с учётом демографических процес- сов в xcos	23	
		4.4.2	Реализация модели SIR с учётом демографических процес- сов с помощью блока Modelica в xcos	29	
		4.4.3	Реализация модели SIR с учётом демографических процес- сов в OpenModelica	31	
5	Выв	оды		34	
Сп	исок	литера	туры	35	

Список иллюстраций

4.1	Установка значений констант во вкладке Установка	8
4.2	Поиск блоков в разделе Моделирование во вкладке Палитры блоков	9
4.3	Установка параметров моделирования в разделе Моделирование во	
	вкладке Параметры моделирования	9
4.4	Редактирование параметров блока Scope	C
4.5	Редактирование параметров блока MUX	C
4.6	Редактирование параметров блока верхнего блока интегрирования	
	s(0) - задание начального условия	1
4.7	Редактирование параметров блока среднего блока интегрирования	
	і(0) - задание начального условия	1
4.8	Редактирование параметров блока нижнего блока интегрирования	
	r(0) - задание начального условия	2
4.9	Настройка аккуратности соединений	2
4.10	Задание значения eta	3
4.11	Задание значения ν	3
	Задание границ суммы	4
	Готовая модель	5
4.14	Запуск моделирования	5
4.15	Готовый график	6
4.16	Задание параметров блока Modelica	7
4.17	Задание уравнений и начальных условий, переменных на входе и	
	выходе	7
4.18	Установка переменных среды	8
4.19	Значение константы β	8
4.20	Значение константы ν	9
4.21	Задание параметров моделирования	9
4.22	Модель эпидемии	C
4.23	График	C
	Создание нового класса	1
4.25	Код, задающий модель эпидемии в OpenModelica	1
4.26	Установка времени симуляции	2
4.27	График	2
4.28	Установка значений констант	3
4.29	Установка параметров моделирования	3
4.30	Полученная схема	4
	μ = 0.5	5
4 32	$\mu = 1$	5

4.33	μ = 0.3	26
4.34	μ = 0.1	26
	β = 5, ν = 0.3, μ = 0.2	
	Задание параметров блока Modelica	
4.37	Полученная модель	30
4.38	Задание уравнений и начальных условий, переменных на входе и	
	выходе	30
4.39	Полученный график	31
4.40	Код для задания параметров симуляции в OpenModelica	32
4.41	Задание параметров симуляции	32
4.42	Полученный график	33

1 Цель работы

Научиться работать со средствами моделирования xcos, Modelica и OpenModelica.

2 Задание

- 1. Реализовать имитационную модель эпидемии в хсох;
- 2. Реализовать имитационную модель эпидемии в Modelica;
- 3. Реализовать имитационную модель эпидемии в OpenModelica;
- 4. Выполнить задание для самостоятельной работы.

3 Теоретическое введение

Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях:

- S(susceptible, уязвимые) здоровые особи, которые находятся в группе риска и могут подхватить инфекцию;
- I(infective, заражённые, распространяющие заболевание) заразившиеся переносчики болезни;
- R(recovered/removed, вылечившиеся) те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших). Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам. Типичная эволюция особи популяции описывается следующей диаграммой:

S->I->R

Считаем, что система замкнута, т.е. N=S+I+R.

4 Выполнение лабораторной работы

4.1 Реализация модели эпидемии в хсоѕ

Для начала настроим xcos: зайдём в него из меню *Пуск*, введём в поиск название и нажимаем *выполнить*. Необходимо произвести настройку параметров моделируемой среды (рис. [4.1], [4.2], [4.3]).

Рис. 4.1: Установка значений констант во вкладке Установка

Рис. 4.2: Поиск блоков в разделе Моделирование во вкладке Палитры блоков

Рис. 4.3: Установка параметров моделирования в разделе *Моделирование* во вкладке *Параметры моделирования*

Каждому блоку необходимо задать его характеритиски (количество входов, например, или значения констант β и ν) (рис. [4.4], [4.5], [4.6], [4.7], [4.8]).

Рис. 4.4: Редактирование параметров блока Ѕсоре

Рис. 4.5: Редактирование параметров блока MUX

Рис. 4.6: Редактирование параметров блока верхнего блока интегрирования s(0) - задание начального условия

Рис. 4.7: Редактирование параметров блока среднего блока интегрирования i(0) - задание начального условия

Рис. 4.8: Редактирование параметров блока нижнего блока интегрирования r(0) - задание начального условия

Для красоты и аккуратности соединений между блоками используем метод редактирования их параметров (рис. [4.9]).

Рис. 4.9: Настройка аккуратности соединений

Продолжаем добавлять на модель новые блоки, отвечающие за суммирование и умножение и задавать параметры блоков (рис. [4.10], [4.11], [4.12]).

Рис. 4.10: Задание значения eta

Рис. 4.11: Задание значения u

Рис. 4.12: Задание границ суммы

В результате получилась такая модель (рис. [4.13]). Запустим ее (рис. [4.14]) и получим результат моделирования - график, на котором изображены кривые для значений s, i, r (рис. [4.15].)

Рис. 4.13: Готовая модель

Рис. 4.14: Запуск моделирования

Рис. 4.15: Готовый график

4.2 Реализация модели с помощью блока Modelica в xcos

Для того, чтобы модель выглядела более просто, а не так громоздко, как в первом случае, мы используем единый блок Modelica, благодаря которому не нужно задавать параметры каждому из блоков отдельно, а просто задать их этому блоку, а уравнения прописать в окошке для кода. Задаём схему и параметры блоку Modelica (рис. [4.16]), открывается окошко с кодом, в которое мы прописываем наши уравнения и начальные условия для s, i, r и то, какие переменные на входе и выходе (рис. [4.17]). Устанавливаем контекст (рис. [4.18]), значения констант на схеме (рис. [4.19], [4.20]) и параметры моделирования (рис. [4.21]).

Рис. 4.16: Задание параметров блока Modelica

Рис. 4.17: Задание уравнений и начальных условий, переменных на входе и выходе

Рис. 4.18: Установка переменных среды

Рис. 4.19: Значение константы β

Рис. 4.20: Значение константы u

Рис. 4.21: Задание параметров моделирования

Получилась следующая (рис. [4.22]) схема и при запуске симуляции соответствующий график (рис. [4.23]).

Рис. 4.22: Модель эпидемии

Рис. 4.23: График

Результаты (графики) в этих двух случаях совпадают. Графики идентичны.

4.3 Упражнение. Реализация модели SIR в OpenModelica

Открываем программу OMEdit, создаём новый класс: заходим во вкладку *Файл* -> *Создать* -> *Класс*, вводим его имя (рис. [4.24]).

Рис. 4.24: Создание нового класса

Прописываем в открывшийся файл код, задающий нашу модель эпидемии: значения констант, начальные условия и уравнения системы (рис. [4.25]).

```
Мodelica 

Мodelica 

Моdelica 

Моdel Вид Текст sir_om sir_om

Моdel Вид Текст sir_om sir_om

моdel sir_om parameter Real I 0 = 0.001; parameter Real S 0 = 0.999; parameter Real S 0 = 0.999; parameter Real beta = 1; parameter Real mu = 0.3; parameter Real mu = 0.5; 

Real i(start=I 0); Real i(start=I 0); Real r(start=R 0); 

quantion der(s)=-beta*s*i; der(i)=beta*s*i-nu*i; der(r)=nu*i; end sir_om;
```

Рис. 4.25: Код, задающий модель эпидемии в OpenModelica

При запуске симуляции задаём параметры симуляции (в данном случае время, равное 30) (рис. [4.26]).

Рис. 4.26: Установка времени симуляции

В результате получаем график, идентичный тем двум, которые создали в предыдущих пунктах работы (рис. [4.27]). Чтобы график не был пустым, справа на панели необходимо поставить галочки напротив тех переменных, значения которых мы хотим увидеть на графике - это s, i, r.

Рис. 4.27: График

4.4 Задание для самостоятельного выполнения

Теперь необходимо так же создать модель демографических процессов, уравнения и значения констант для которого приведены в указаниях к работе. Помимо β и ν добавляется новая константа - μ .

4.4.1 Реализация модели SIR с учётом демографических процессов в xcos

Так же, как обычно, задаем все параметры блоков и располагаем их в правильном порядке и корректно соединяя между собой (рис. [4.28], [4.29], [4.30]).

Рис. 4.28: Установка значений констант

Рис. 4.29: Установка параметров моделирования

Рис. 4.30: Полученная схема

При запуске симуляции получается такой график (рис. [4.31]). Также, как сказано в задании, построю графики с различными значениями параметра μ . Значения указаны на подписях к рисункам (рис. [4.32], [4.33], [4.34], [4.35]).

Рис. 4.31: μ = 0.5

Рис. 4.32: μ = 1

Рис. 4.33: μ = 0.3

Рис. 4.34: μ = 0.1

Рис. 4.35: β = 5, ν = 0.3, μ = 0.2

Получаем, что В системе уравнений параметр μ учитывает как рождаемость, так и смертность. Разберём закономерности при разных значениях μ :

• При μ =0.5 (средняя рождаемость и смертность):

Популяция стабилизируется: число восприимчивых, инфицированных и выздоровевших выходит на равновесные значения. Инфекция не исчезает полностью, но колебания уменьшаются со временем.

• При μ =0.3 (умеренная рождаемость и смертность):

Инфекция медленно затухает, так как рождается меньше здоровых людей, но и меньше людей умирает. Доля выздоровевших постепенно растёт, а доля инфицированных уменьшается.

• При μ =1 (высокая рождаемость и смертность):

Быстрая смена поколений: инфекция не успевает затухнуть, потому что в популяции постоянно появляются новые восприимчивые индивиды. Инфекция остаётся на стабильно высоком уровне.

• При μ =0.2 (низкая рождаемость и смертность): Инфекция постепенно исчезает, так как новых восприимчивых людей почти не появляется. Доля выздоровевших возрастает, и система стремится к состоянию без инфекции.

Если β =5, ν =0.3, μ =0.2, то зараженность будет вести себя довольно резко:

Быстрое начальное распространение инфекции: Поскольку β (скорость заражения) очень большая, число инфицированных людей резко вырастет. Это происходит из-за высокой вероятности передачи инфекции при контакте восприимчивых и инфицированных людей.

Пик заражения: Из-за сильного заражения инфекция быстро достигает максимума. Пик может быть довольно высоким, потому что инфицированные передают вирус почти лавинообразно.

Спад после пика: Постепенно число инфицированных начнет снижаться, потому что выздоровление (ν) и демографические процессы (μ) начнут играть свою роль. Люди либо выздоравливают, либо уходят из популяции, а новые рождённые индивиды изначально здоровы.

Низкий уровень инфекции в долгосрочной перспективе: Поскольку μ не слишком высокое, смертность не сильно выравнивает рождаемость, но инфекция постепенно угаснет, и число заболевших стабилизируется на низком уровне.

Колебания или затухание: Возможно, зараженность будет немного колебаться, но со временем инфекция почти исчезнет из популяции.

Закономерности, которые я выявила при анализе графиков:

- 1. Чем выше μ , тем сильнее инфекция закрепляется в популяции из-за постоянного притока новых восприимчивых людей.
- 2. При низком μ инфекция исчезает, так как инфицированные люди либо выздоравливают, либо умирают, и здоровых новорождённых мало.
- 3. Чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния. При высоком коэффициенте заражения β

система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

4.4.2 Реализация модели SIR с учётом демографических процессов с помощью блока Modelica в хсоя

Теперь снова привычным способом настроим необходимые параметры (рис. [4.36], [4.37], [4.38]). В результате получим такой график (рис. [4.39]).

Рис. 4.36: Задание параметров блока Modelica

Рис. 4.37: Полученная модель

```
ввои значения
Function definition in Modelica
Here is a skeleton of the functions which you should edit
class generic
 ////automatically generated ////
   //input variables
   Real beta, nu, mu;
   //output variables
   //Real s,i,r;
 ///do not modif above this line ////
    Real s(start=.999), i(start=.001),r(start=.0);
equation
   der(s)=-beta*s*i+mu*i+mu*r;
   der(i)=beta*s*i-nu*i-mu*i;
   der(r)=nu*i-mu*r;
end generic;
                                        ОК Отменить
```

Рис. 4.38: Задание уравнений и начальных условий, переменных на входе и выходе

Рис. 4.39: Полученный график

График полностью совпадает с построенным в xcos без блока Modelica (рис. [4.31]).

4.4.3 Реализация модели SIR с учётом демографических процессов в OpenModelica

Привычным способом задаём нашу модель в OpenModelica (рис. [4.40], [4.41], [4.42]).

```
model om2
 1
 2
      parameter Real I 0 = 0.001;
 3
      parameter Real R 0 = 0.000;
 4
      parameter Real S 0 = 0.999;
 5
      parameter Real beta = 1;
      parameter Real nu = 0.3;
 6
 7
      parameter Real mu = 0.5;
 8
 9
     Real s(start=S 0);
      Real i(start=I 0);
10
11
      Real r(start=R 0);
12
13 equation
14
      der(s) = -beta*s*i + mu*i + mu*r;
15
      der(i)=beta*s*i-nu*i - mu*i;
16
      der(r)=nu*i - mu*r;
17
  end om2;
18
```

Рис. 4.40: Код для задания параметров симуляции в OpenModelica

Рис. 4.41: Задание параметров симуляции

Рис. 4.42: Полученный график

График так же идентичен тем, что получены в результате предыдущих двух симуляций (рис. [4.31]).

5 Выводы

В результате выполнения лабораторной работы я научилась работать со средствами моделирования xcos, xcos с блоком Modelica и OpenModelica.

Список литературы

1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №5. Моделирование информационных процессов. - 2025. - 6 с.