Applied Epidemiology I: Summary statistics, tables and interpreting results

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet

December 3, 2020

Acknowledgements

This course material is based on my learning from Anastasia Lam's teachings in last year's Applied Epidemiology I lab sessions, and readings from *Epidemiology* by Gordis [1], *A First Course in Probability and Statistics* by Goldsman and Goldsman [2], *Principles of Biostatistics* by Pagano and Gauvreau [3], and *Biostatistics I* by Gabriel and Frumento [4]. I especially want to thank Marlene Stratmann for reviewing the slides and Prof. Paul Dickman for providing me with suggestions to improving the teaching.

Outline

Summary statistics

Measures of Central Tendency: mean, median, mode Measures of Dispersion: range, IQR, variance, standard deviation

2 Tables

Bad example
Basics of making tables
One-way tables
Two by two tables
Stata tool for Epidemiology

3 Basic Epidemiology terms

Rate vs. proportion Risk, risk difference, risk ratio Odds. odds ratio 4 Interpreting results

Principles

Ratio > or < 1

More examples

6 Calculate ratios using Stata

Risk ratio

Odds ratio

Incidence rate ratio

6 References

 Mean: the sum of the values of a variable and dividing by number of the observations

- Mean: the sum of the values of a variable and dividing by number of the observations
- Median: the middle (the 50th centile) observation

- Mean: the sum of the values of a variable and dividing by number of the observations
- Median: the middle (the 50th centile) observation
- Mode: the value that occurs most frequently

- Mean: the sum of the values of a variable and dividing by number of the observations
- Median: the middle (the 50th centile) observation
- Mode: the value that occurs most frequently

• Range: the difference between the maximum and the minimum

- Range: the difference between the maximum and the minimum
- Interquartile range: the absolute difference between the 25th percentile of the observations and the 75th.

- Range: the difference between the maximum and the minimum
- Interquartile range: the absolute difference between the 25th percentile of the observations and the 75th.
- Variance, standard deviation (sd): a measure of spread of the data

- Range: the difference between the maximum and the minimum
- Interquartile range: the absolute difference between the 25th percentile of the observations and the 75th.
- Variance, standard deviation (sd): a measure of spread of the data

$$s^2 = \widehat{Var}(x) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

. tabstat age, s(count range min max iqr var sd)

variable	l 	N	range	min	max
age	I	34	20	47	67

variable	iqr	variance	sd
age	10	36.12834	6.010686

Tables: Bad example

What is the problem here?

Table 5
Simulation results for using full data, CRs only, and proposed method under four missing mechanisms

	Bias ^a		Variance ^b		95% CI°	
Method	(\hat{eta}_W)	(\hat{eta}_X)	(\hat{eta}_W)	(\hat{eta}_X)	(\hat{eta}_W)	$(\hat{\beta}_X)$
		(M.1) P(R	= 1) = 0	0.66		
Full	0.01346	0.02229	0.04008	0.03685	0.955	0.950
Comp	0.03062	-0.003561	0.1149	0.06732	0.960	0.955
Impu	0.01431	0.021	0.04088	0.05169	0.980	0.975
	(N	1.2) logit P	(R = 1)	= 2Y		
Full	0.007908	-0.02116	0.03838	0.03624	0.975	0.925
Comp	0.01945	0.07096	0.107	0.06581	0.960	0.950
Impu	0.006966	0.01597	0.04227	0.05226	0.975	0.985
	(N	1.3) logit P	(R=1)	=2X		
Full	0.007908	-0.02116	0.03838	0.03624	0.975	0.925
Comp	0.01225	0.0589	0.08856	0.06818	0.980	0.975
Impu	0.009563	-0.04699	0.03865	0.04923	0.985	0.970
	(M.	4) logit $P(I$	R = 1) =	X + Y		
Full	0.01346	0.02229	0.04008	0.03685	0.955	0.950
Comp	0.02404	1.613	0.1102	0.08202	0.955	0.580
Impu	0.01814	0.08289	0.0578	0.06075	0.955	0.970

 $^{{}^{8}\}text{Bias} = (\hat{\beta} - \beta_{0})/\beta_{0}.$

^bSimulation variance.

^cConfidence interval using jackknife standard error.

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)
- Tables are numbered sequentially.

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)
- Tables are numbered sequentially.

• Don't insert tables from the program's output.

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)
- Tables are numbered sequentially.

- Don't insert tables from the program's output.
- No vertical lines
- As few horizontal lines as possible

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)
- Tables are numbered sequentially.

- Don't insert tables from the program's output.
- No vertical lines
- As few horizontal lines as possible
- (Suggested) Arial 10 pt, normal spacing

- Headings should be
 - self-explanatory and informative
 - placed above the tables.
 - (Graph headings are placed below.)
- Tables are numbered sequentially.

- Don't insert tables from the program's output.
- No vertical lines
- As few horizontal lines as possible
- (Suggested) Arial 10 pt, normal spacing

Table 1: Baseline characteristics of colon cancer patients diagnosed during 1981-1990, Sweden.

		< 50	50-59	60-69	70-79	≥80	All
Colon cancer							
1981-1990	Patient size (n)	1 148	2 485	6 227	9 381	5 442	24 683
	Female (%)	51.74	52.43	50.09	51.61	59.28	53.01
	Proportion of censoring ¹ (%)	34.41	15.69	3.12	0.22	0.09	4.07

We use cancer data still.
 sysuse cancer, clear
 keep if drug == 1 | drug == 2

- We use cancer data still.
 sysuse cancer, clear
 keep if drug == 1 | drug == 2
- One-way table of frequencies with mean and sd of age
 table died, contents(freq mean age sd age)

- One-way table of frequencies
 - . tabulate died

1 if patient			
died	Freq.	Percent	Cum.
0	9	26.47	26.47
1	25	73.53	100.00
Total	34	100.00	

- Create table I of baseline characteristics using table1_mc
- This command is useful. Play it on your own!
- See help table1_mc

```
ssc install table1_mc, replace
```

```
. table1_mc, vars(age conts)
```

Data are presented as median (IQR).

 2 by 2 table for drug and died with relative frequency by column or row

. tabulate died drug, col row

1 if			
patient	Drug type	(1=placebo)	
died	1 0	1	Total
	+		+
0	l 8	1	J 9
	88.89	11.11	100.00
	57.14	5.00	26.47
	+		+
1	1 6	19	1 25
	1 24.00	76.00	100.00
	42.86	95.00	73.53
	+		+
Total	l 14	20	l 34
	41.18	58.82	100.00
	100.00	100.00	100.00

 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
    1 if |
  patient | Drug type (1=placebo)
                                  Total
              88.89 11.11 |
                               100.00
              57.14
                       5.00 l
       1 I
                        19 I
              24.00 76.00 |
                              100.00
              42.86
                       95.00 I
                                 73.53
   Total |
              14 20 |
                                     34
              41.18 58.82 I
                              100.00
             100.00 100.00 |
                               100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
                                      0.001
```

 2 by 2 table with chi-square test and fisher's exact test How to interpret the results?

•	1 if		, сот	TOW CHIZ	exact	
	patient	Drug ty	pe (1=	placebo)		
	died	I	0	1	Tot:	al
	0	i	8	1	i I	9
		88.	39	11.11	100.	00
		57.	14	5.00	26.	47
	1	1	6	19	'	 25
		1 24.	00	76.00	100.	00
		42.	36	95.00	73.	53
	Total		 14	20		 34
		41.	18	58.82	100.	00
		100.	00	100.00	100.	00
	1	Pearson ch Fisher's			39 Pr =	0.001 0.001

tabulate died drug cel rou chi? evact

• 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
     1 if |
  patient | Drug type (1=placebo)
              88.89 11.11 |
                                100.00
                       5.00 I
       1 I
                         19 I
              24.00 76.00 I
                                  100.00
              42.86
                        95.00 I
                                  73.53
    Total |
              14 20 |
                                      34
              41.18 58.82 I
                               100.00
             100.00
                    100.00 I
                                100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
```

- How to interpret the results?
- Chi-square test: testing the association between two binary variables.

0.001

• 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
     1 if |
  patient | Drug type (1=placebo)
              88.89 11.11 |
                                  100.00
                        5.00 I
       1 I
                         19 I
              24.00 76.00 I
                                  100.00
              42.86
                        95.00 I
                                  73.53
    Total |
              14 20 I
                                      34
              41.18 58.82 I
                               100.00
                    100.00 I
              100.00
                                 100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
                                       0.001
```

- How to interpret the results?
- Chi-square test: testing the association between two binary variables.
- Using placebo has association with that the patients died or not.

• 2 by 2 tables straitified by sex

. bysort sex: tab died drug, col row chi2

 \rightarrow sex = 0

1 if patient died	Drug type	(1=placebo)	Total
0	6	1	7
	85.71	14.29	100.00
	75.00	9.09	36.84
1	2	10	12
	16.67	83.33	100.00
	25.00	90.91	63.16
Total	8	11	19
	42.11	57.89	100.00
	100.00	100.00	100.00

Pearson chi2(1) = 8.6466 Pr = 0.003

-> sex = 1			
1 if			
		(1=placebo)	
died	0	1	Total
		+	
0	2	0	2
1	100.00	0.00	100.00
I	33.33	0.00	13.33
		+	
1	4	9	13
1	30.77	69.23	100.00
1	66.67	100.00	86.67
		+	
Total	6	9	15
I	40.00	60.00	100.00
I	100.00	100.00	100.00
Pe	earson chi2((1) = 3.4615	Pr = 0.06

Tables: Stata tool for Epidemiology

• How to use Stata to generate risk ratios and odds ratios?

Tables: Stata tool for Epidemiology

- How to use Stata to generate risk ratios and odds ratios?
- A useful tool in Stata's default function can be found at
- Statistics Epidemiology and related Tables for epidemiologists

```
Stata/IC 16.1 File Edit View Data Graphics Statistics User Window Help
```

Tables: Stata tool for Epidemiology

- How to use Stata to generate risk ratios and odds ratios?
- A useful tool in Stata's default function can be found at
- Statistics Epidemiology and related Tables for epidemiologists
 Stata/IC 16.1 File Edit View Data Graphics Statistics User Window Help
- But before demonstrating how this works, a recapture on basic epi terms!

Rate

Rate

• Incidence (rate): no. of diseased total person-time

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, hazard is often defined as mortality rate.

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, hazard is often defined as mortality rate.

Proportion

• Cumulative incidence: **over a time period**,

no. of new cases of the disease no. of initially disease-free persons

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, hazard is often defined as mortality rate.

Proportion

- Cumulative incidence: **over a time period**, no. of new cases of the disease no. of initially disease-free persons
- Fatality: **over a time period**, no. of deaths of the disease no. of persons with the disease

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, hazard is often defined as mortality rate.

Proportion

- Cumulative incidence: **over a time period**, no. of new cases of the disease no. of initially disease-free persons
- Fatality: over a time period, no. of deaths of the disease no. of persons with the disease
- Point prevalence: at a specified time, no. of diseased no. of persons
- Period prevalence: **over a time period**, no. of diseased no. of persons

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, hazard is often defined as mortality rate.

Proportion

- Cumulative incidence: over a time period, no. of new cases of the disease no. of initially disease-free persons
- Fatality: over a time period, no. of deaths of the disease no. of persons with the disease
- Point prevalence: at a specified time, no. of diseased no. of persons
- Period prevalence: over a time period, no. of diseased no. of persons
- Survival (proportion/probability) rate:

no. of alive persons (since diagnosis)
no. of initially disease-free persons (since diagnosis)

Quizs

1. What is the key difference between rate and proportion?

- 1. What is the key difference between rate and proportion?
 - TIME!
 - Rate: person-time
 - Proportion: specify a period/point of time

- 1. What is the key difference between rate and proportion?
 - TIME!
 - Rate: person-time
 - Proportion: specify a period/point of time
- 2. Mortality vs. fatality?

- 1. What is the key difference between rate and proportion?
 - TIME!
 - Rate: person-time
 - Proportion: specify a period/point of time
- 2. Mortality vs. fatality?
 - Mortality (rate): no. of deaths total person-time
 - Fatality: over a time period, no. of deaths of the disease no. of persons with the disease

- 1. What is the key difference between rate and proportion?
 - TIME!
 - Rate: person-time
 - Proportion: specify a period/point of time
- 2. Mortality vs. fatality?
 - Mortality (rate): no. of deaths total person-time
 - Fatality: over a time period, no. of deaths of the disease no. of persons with the disease
- 3. Is risk a rate or a proportion?

Risk: the proportion (probability) of an event, e.g., death.

Risk: the proportion (probability) of an event, e.g., death.

Estimates of risk: cumulative incidence, cumulative hazard

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:cumulative hazard} \mbox{Cumulative hazard} = 1 - \mbox{Survival proportion} = \mbox{Cumulative probability of death}$

$$F(t) = 1 - S(t) = P(T \le t)$$

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative probability of death} \\ \mbox{Cumulative probability of death} \\$

$$F(t) = 1 - S(t) = P(T \le t)$$

• Risk difference: the difference of the probabilities of an event between the exposed group and non-exposed group

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative hazard} = 1 - \mbox{Survival proportion} = \mbox{Cumulative probability of death}$

$$F(t) = 1 - S(t) = P(T \le t)$$

- Risk difference: the difference of the probabilities of an event between the exposed group and non-exposed group
- Risk ratio: the ratio of the probabilities of an event between the exposed group and non-exposed group

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative probability of death} \\ \mbox{Cumulative probability of death} \\$

$$F(t) = 1 - S(t) = P(T \le t)$$

- Risk difference: the difference of the probabilities of an event between the exposed group and non-exposed group
- Risk ratio: the ratio of the probabilities of an event between the exposed group and non-exposed group
- Caution! Relative risk could be either risk ratio or rate ratio!

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

- Risk difference between females having shiba and males having shiba = $\widehat{p_F} \widehat{p_M} = 2/4 2/3 = -0.16667$
- Interpretation: Females have 16.67 % lower risk of having shiba than males.

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

- Risk difference between females having shiba and males having shiba = $\widehat{p_F} \widehat{p_M} = 2/4 2/3 = -0.16667$
- Interpretation: Females have 16.67 % lower risk of having shiba than males.
- Risk ratio between females having shiba and males having shiba

$$=\widehat{p_F}\div\widehat{p_M}=2/4\div2/3=0.75.$$

 Interpretation: The RR of females having shiba is 0.75 times than males having shiba.

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

 Odds ratio measures the association between an exposure and an outcome.

Odds ratio (OR) =
$$\frac{Odds_{exposed}}{Odds_{unexposed}}$$

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

 Odds ratio measures the association between an exposure and an outcome.

Odds ratio (OR) =
$$\frac{Odds_{exposed}}{Odds_{unexposed}}$$

 E.g., the OR is 0.5, which indicates that there is a 50% decrease in the odds of having an outcome among the exposed compared to the unexposed.

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

Odds ratio measures the association between an exposure and an outcome.

Odds ratio (OR) =
$$\frac{Odds_{exposed}}{Odds_{unexposed}}$$

- E.g., the OR is 0.5, which indicates that there is a 50% decrease in the odds of having an outcome among the exposed compared to the unexposed.
- Why there is no odds difference?

	Female (Exposed)	Male (Unexposed)	Total
shiba	2	2	4
(Case) guinea pig (Noncase)	2	1	3
Total	4	3	7

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig	2	1	3
(Noncase) Total	4	3	7

 The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$

$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

- OR of having shiba (females to males)
- OR = $\frac{Odds_f}{Odds_m} = \frac{1}{2}$

 The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$

$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$
$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

- OR of having shiba (females to males)
- OR = $\frac{Odds_f}{Odds_m} = \frac{1}{2}$
- Interpretation: there is a 50% decrease in the odds of having shiba among females compared to males. Higher odds of shiba ownership among males than females!
- It seems that females instead love guinea pigs more.

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed
- Example:
 - 1. Females have a RR of 0.75 having shiba compared to males.

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed
- Example:
 - 1. Females have a RR of 0.75 having shiba compared to males.
 - 2. Females have a 50% decrease in the odds of having shiba compared to males.

Interpreting results: Ratio > or < 1

Ratio

Interpreting results: Ratio > or < 1

Ratio

- As ratio < 1,
 - $(1 RR/OR) \times 100\%$
 - E.g., RR = 0.75, $(1 0.75) \times 100\% = 25\%$
 - 25% lower risk

Interpreting results: Ratio > or < 1

Ratio

- As ratio < 1.
 - $(1 RR/OR) \times 100\%$
 - E.g., RR = 0.75, $(1-0.75) \times 100\% = 25\%$
 - 25% lower risk
- As ratio > 1,
 - $(RR/OR 1) \times 100\%$
 - E.g., OR = 2.05, $(2.05 1) \times 100\% = 105\%$
 - The odds is 2 times higher.
 - Twice the odds

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

	OR (95% C.I.)
	Model 2
	sex, y ² Model 1 + AGP ³
V negative (n = 770)	
Glucose intolerance status ¹	
normal glucose tolerance	ref.
IFG/IGT	2.65 (1.00;7.06)
diabetes	4.23 (1.54;11.57)
Glucose intolerance status ¹ normal glucose tolerance IFG/IGT	2.65 (1.00;7.06)

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

	OR (95% C.I.)	OR (95% C.I.) Model 1	OR (95% C.I.) Model 2
	Unadjusted	Adjusted for age, sex, socio-demography ²	Model 1 + AGP ³
HIV negative (n = 770)			
Glucose intolerance status ¹			
normal glucose tolerance	ref.	ref.	ref.
IFG/IGT	2.26 (1.50;3.41)	2.34 (1.52;3.61)	2.65 (1.00;7.06)
diabetes	2.15 (1.35;3.42)	2.14 (1.32;3.46)	4.23 (1.54;11.57)

1. People with diabetes had a higher odds of TB (OR 2.15, 95% CI: 1.35-3.42) relative to people without diabetes.

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

	OR (95% C.I.)	OR (95% C.I.) Model 1	OR (95% C.I.) Model 2
	Unadjusted	Adjusted for age, sex, socio-demography ²	Model 1 + AGP ³
HIV negative (n = 770)			
Glucose intolerance status ¹			
normal glucose tolerance	ref.	ref.	ref.
IFG/IGT	2.26 (1.50;3.41)	2.34 (1.52;3.61)	2.65 (1.00;7.06)
diabetes	2.15 (1.35;3.42)	2.14 (1.32;3.46)	4.23 (1.54;11.57)

- 1. People with diabetes had a higher odds of TB (OR 2.15, 95% CI: 1.35-3.42) relative to people without diabetes.
- Having diabetes was associated with more than a
 2-fold increase (OR: 2.15, 95% CI: 1.35; 3.42) in the odds of TB compared to not having diabetes.

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

 $\begin{tabular}{ll} \textbf{Table 3} Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9,309) \\ \end{tabular}$

	OR (CI 95 %)	P value
Anxiety symptoms		
Model 1		
Physical activity		
Yes	0.71 (0.54, 0.91)	0.01
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.71 (0.55, 0.93)	0.01
No	1 (reference)	
Depression symptoms		
Model 1		
Physical activity		
Yes	0.63 (0.48, 0.81)	< 0.001
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.63 (0.49, 0.82)	0.001
No	1 (reference)	

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

Table 3 Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9,309)

	OR (CI 95 %)	P value
Anxiety symptoms		
Model 1		
Physical activity		
Yes	0.71 (0.54, 0.91)	0.01
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.71 (0.55, 0.93)	0.01
No	1 (reference)	
Depression symptoms		
Model 1		
Physical activity		
Yes	0.63 (0.48, 0.81)	< 0.001
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.63 (0.49, 0.82)	0.001
No	1 (reference)	

1. Patients who conducted recommended levels of physical activity had a 29% lower odds of anxiety (OR: 0.71, 95% CI: 0.54-0.91) and a 37% lower odds of depression (OR: 0.63, 95% CI: 0.48-0.81) relative to those who did not.

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

Table 3 Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9,309)

	OR (CI 95 %)	P value
Anxiety symptoms		
Model 1		
Physical activity		
Yes	0.71 (0.54, 0.91)	0.01
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.71 (0.55, 0.93)	0.01
No	1 (reference)	
Depression symptoms		
Model 1		
Physical activity		
Yes	0.63 (0.48, 0.81)	< 0.001
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.63 (0.49, 0.82)	0.001
No	1 (reference)	

1. Patients who conducted recommended levels of physical activity had a 29% lower odds of anxiety (OR: 0.71, 95% CI: 0.54-0.91) and a 37% lower odds of depression (OR: 0.63, 95% CI: 0.48-0.81) relative to those who did not.

Our results showed that individuals who practiced recommended levels of physical activity were less likely to have anxiety
 (OR: 0.71, 95% CI: 0.54-0.91) and depression
 (OR: 0.63, 95% CI: 0.48-0.81) in comparison with those who did not.

Calculate ratios using Stata: Risk ratio

• Finally we come back to Stata again!

Calculate ratios using Stata: Risk ratio

- Finally we come back to Stata again!
- cs case exposed
 - . cs died drug

	Drug type [Exposed	1=placebo] Unexposed	 Tot	al:	
Cases Noncases		6 8	 	25 9	
Total	20	14	 	34	
Risk	.95 I	.4285714	.73529	941	
	Point 	estimate	[95% +	Conf.	Interval]
Risk difference Risk ratio Attr. frac. ex. Attr. frac. pop	.5488722		1.200	5166 0631 1043	.7976911 4.092525 .7556521
		chi2(1) =	11.50 F	r>chi2	= 0.0007

Calculate ratios using Stata: Odds ratio

cs case exposed, orcs died drug, or

	0 01	[1=placebo] Unexposed	 Total		
Cases Noncases	19 1				
Total	20	14	34		
Risk	.95	.4285714	.7352941		
	Point	estimate	 [95% Cor	nf. Interval]	
Risk difference	.5	5214286	.24516	6 .7976911	
Risk ratio	1 2.	216667	1.20063	1 4.092525	
Attr. frac. ex.	1 .5	488722	1 .1671043	3 .7556521	
Attr. frac. pop	1 .4	:171429	1		
Odds ratio	l 25	.33333	3.189793	3 .	(Cornfield
	+	chi2(1) =	11.50 Pr>	chi2 = 0.0007	

Calculate ratios using Stata: Incidence rate ratio

ir case exposed studytime

. ir died drug studytime

Incidence-rate comparison

Incidence-rate co	mparison				
	Drug type [:	1=placebo]	1		
	Exposed	Unexposed	Total		
1 if patient die		6	25		
Months to death	180	209	389		
Incidence rate	1 .1055556	.0287081	.0642674		
	Point	estimate	[95% Conf.	Interval]	
Inc. rate diff.	.076	 68474	.0241182	.1295766	
Inc. rate ratio	3.676852		1.411772	11.24864	(exact)
Attr. frac. ex.	.7280282		.2916701	.9111003	(exact)
Attr. frac. pop	.553	33014	1		
Mid p-values for	tests of incid	dence-rate d	ifference:		

Adj Pr(Exposed 1 if patient die <= 19) = 0.9985 (lower one-sided)

Adj Pr(Exposed 1 if patient die >= 19) = 0.0015 (upper one-sided)

Two-sided p-value = 0.0031

References¹

- 1. Gordis L. Epidemiology. Philadelphia, PA: Elsevier/Saunders, 2014. ISBN 9781455737338.
- David Goldsman PG. A First Course in Probability and Statistics. Georgia Institute of Technology, 2020.
- Marcello Pagano KG. Principles of Biostatistics. Cengage Learning, Inc, 2000. ISBN 0534229026.
- 4. Erin Gabriel PF. Epidemiology PhD program, Karolinska Institutet, 2020.