H1N1 VACCINES PREDICTION

FELIX MBURU NJOROGE

DSF-PT06

BACKGROUND

- Vaccination is a key public health measure to fight infectious diseases.
- Vaccines provide immunization for individuals and enough vaccination in a community can reduce further spread of a diseases through herd immunity.
- This phone survey asked respondents whether they had received the H₁N₁ and seasonal flu vaccines, in conjunction with questions about themselves.
- These additional questions covered their social, economic, and demographic background, opinions on risks of illness and vaccine effectiveness, and behaviors towards mitigating transmission.

Objectives

1. Predict
Vaccination Uptake
Based on
Demographic and
Socioeconomic
Factors:

2. Forecast Future Vaccination Rates:

3. Analyze the Impact of Public Perceptions on Vaccination Behavior:

4. Evaluate the Effectiveness of Preventive Behaviors on Vaccination Rates:

EDA

Univariate analysis

Class imbalance problem

Bivariate analysis

MULTIVARIATE ANALYSIS

Correlation Heatmap

1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

CLASS IMBALANCE HANDLED USING SMOTE

LOGISTIC REGRESSION PERFORMANCE METRICS

	Classification Report (SMOTE Data):				
Train-test split		precision	recall	f1-score	support
	0	0.93	0.79	0.85	4539
	1	0.53	0.80	0.64	1354
	accuracy			0.79	5893
	macro avg	0.73	0.80	0.75	5893
	weighted avg	0.84	0.79	0.81	5893

Accuracy: [0.80807365 0.81208687 0.82507082 0.81841795 0.826682

Mean Accuracy score: 0.8180663409043527

Cross validation Precision: [0.81415503 0.80182648 0.82097902 0.80369203 0.81303

Mean Precision score: 0.810738028094392

Recall: [0.79839471 0.82908404 0.83144476 0.8427762 0.84837034

Mean Recall score: 0.8300140104188273

F1_score: [0.80619785 0.81522748 0.82617875 0.82277022 0.83032825]

Mean F1_score score: 0.820140511411752

AUC = 0.87

DECISION TREES PERFORMANCE

Accuracy

```
(0.7671163145838635,
```

```
precision recall f1-score support\r
1 0.49 0.52 0.51 9
0 avg 0.67 0.68 0.68 39
```

REPORT AFTER HYPERPARAMETER TUNING

Accuracy: 0.8078391448205651

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.89	0.88	3029
1	0.59	0.54	0.56	900

Top 10 Feature Importances in Decision Tree Classifier

K NEAREST NEIGHBOUR

BEFORE HYPERPARAMETER TUNING

Accuracy: 0.7966403665054721

Classification Report:

precision		recall	f1-score	support	
	0.82	0.94	0.88	3029	
	9.61	0.31	9.41	988	

AFTER TUNING

Accuracy: 0.8055484856197506

Classification Report:

precision	recall	f1-score	support	
0.82	0.96	0.88	3029	
0.67	0.29	0.41	900	

XGBOOST

Accuracy: 0.8360906082972767

Classification Report:

precision		recall	f1-score	support	
	0.88	0.91	0.90	3029	
	0.66	0.57	0.62	900	

SUMMARY

 doctor_recc_hini, seasonal_vaccine, opinion_hini risk and doctor_recc_seasonal were the most important features for predicting hini vaccine use.

Best model performance was observed after XGboost