Partie III

Codes Correcteurs d'erreurs

Taux d'erreurs

• Taux d'erreur = $\frac{\text{Nbre bits erronés}}{\text{Nbre bits transmis}}$

Exemple :

- 10⁻⁵ sur ligne téléphonique
- 10⁻⁷ à 10⁻⁸ sur ligne coaxiale
- 10⁻¹⁰ à 10⁻¹² sur fibre optique

Codes correcteurs d'erreurs

- Différentes techniques pour détecter les erreurs :
 - Détection par répétition ;
 - Détection par code ;
- Mais alors ... d'où :
 - Détection et correction d'erreurs par code.

Codes correcteurs d'erreurs

- Lorsqu'un message est reconnu comme faux, le récepteur en demande la répétition à l'émetteur!
- Mais cela implique :
 - Une voie de retour,
 - Une identification des messages reçus,
 - Une mémoire des messages émis
 - > une baisse du débit!

Codes correcteurs d'erreurs

- Problème : construire des codes qui détectent et corrigent un maximum d'erreurs, tout en allongeant le moins possible les messages, et qui soient faciles à décoder!
- Dimension du code : nbre de bits utiles ;
- Longueur du code : nbre total de bits après l'ajout du CCE.

	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	VCR
Н	0	0	0	1	0	0	1	0
E	1	0	1	0	0	0	1	1
L	0	0	1	1	0	0	1	1
L	0	0	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1
LCR								

	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	VCR
Н	0	0	0	1	0	0	1	0
E	1	0	1	0	0	0	1	1
L	0	0	1	1	0	0	1	1
L	0	0	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1
LCR	0	1	0	0	0	0	1	0

	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	VCR	
Н	0	0	0	1	0	0	1	0	
E	1	0	1	0	0	0	1	1	
L	0	0	0	1	0	0	1	1	!!!
L	0	0	1	1	0	0	1	1	
0	1	1	1	1	0	0	1	1	
LCR	0	1	0	0	0	0	1	0	

	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	VCR	
Н	0	0	0	1	0	0	1	0	
E	1	0	1	0	0	0	1	1	
L	0	0	1	1	1	0	1	1	!!!
L	0	0	0	1	0	0	1	1	!!!
0	1	1	1	1	0	0	1	1	
LCR	0	1	0	0	0	0	1	0	
			<u> </u>		<u> </u>				

Code à redondance cyclique

- On ajoute à la suite de bits P(x) des informations supplémentaires :
 - le reste de la division polynomiale de x^mP(x)
 avec le polynôme générateur g(x) de degré m.

Exemple

- séquence à envoyer : 1 1 0 1
- Polynôme générateur : x⁴ + x + 1

(de degré 4)

• Division:

11010000

10011

En réception ...

 En réception on doit avoir le reste de la division du polynôme reçu par le polynôme générateur g(x) nul.

11010100

Code Reed-Solomon

- On ajoute à la suite de bits des informations supplémentaires :
- Exemple :
 - pour la suite 02 09 12
 - on transmet 02 09 12 23 56

Code de Hamming (codage convolutif)

- On fait correspondre à chaque mot un nouveau mot tel que 2 mots successifs diffèrent de k bits.
- k est la distance de Hamming
 - on peut alors *détecter (k-1) erreurs* ;
 - on peut corriger (k-1)/2 erreurs.

Code de Hamming (exemple)

Name	PCS 5B Code-group	MII 4B Nibble Code				
DATA CODES						
0	11110	0000				
1	01001	0001				
2	10100	0010				
3	10101	0011				
4	01010	0100				
5	01011	0101				
6	01110	0110				
7	01111	0111				
8 10010		1000				
9 10011		1001				
Α	10110	1010				
В	10111	1011				
С	11010	1100				
D	11011	1101				
E	11100	1110				
F 11101		1111				

Exemple

```
• 00 10011
```

- 01 10100
- 11 01110
- 10 01001

- distance de Hamming = 3
- => on détecte 2 erreurs ; on peut corriger 1 erreur
- le débit utile est multiplié par 5/2 !

En pratique

• TNT :

- un codage Reed Solomon
 - ajoute à chaque paquet de 188 bits, 16 bits de correction ;
- un codage convolutif
 - 3 bits au lieu de 2.

• **GSM**:

 les 260 bits sont regroupées en 3 classes ; le débit passe alors à 22.8 kbits/s.

Pour améliorer encore la transmission, l'entrelacement

