Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Magnetic Media Online

NYC ML 2015-04-16

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Prediction

Multi-Label Categorization

Table of Contents

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Conclusion

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Predictor

A *predictor* is a black box which spits out an estimate of an unknown parameter.

E.g.:

- Will it rain tomorrow?
- ▶ Will this person buy this product?
- Is this person a terrorist?
- Is this stock a good investment?

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Examples

Perfect - always right

Mislabeled - always the opposite

Random - independent of the actual

San Diego Weather Forecast:

Actual: 3 days of rain per 365 days

Predict: sunshine always!

Coin flip

Actual: true half the time

Predict: true if coin lands Head

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Why Evaluate Predictors?

- Which one is better?
- ▶ How much to pay for one?
 - ► You can always flip the coin yourself, so the *random* predictor is the least valuable!
- When to use this one and not that one?

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Confusion Matrix + Cost

Predictor		Predicted		
		Sun	Rain	Hurricane
	Sun	100	10	1
Actual	Rain	5	20	6
	Hurricane	0	3	2

Costs		Predicted		
		Sun	Rain	Hurricane
	Sun	0	1	3
Actual	Rain	2	0	2
	Hurricane	10	5	0

Total cost (i.e., predictor value) = 45

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Confusion/Costs Matrix

Probability/Costs		Predicted			
		Target		Non-target	
Actual	Bought	1%	\$1	9%	\$0
Actual	Did not buy	9%	(\$0.1)	81%	\$0

Profitable

Expected value of one customer: \$0.001 > 0.

Worthless!

The **Predicted** and **Actual** are *independent*!

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Table of Contents

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Conclusion

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

> Multi-Label Categorization

What if the Cost is Unknown?

Total	M	Pred	icted
Population	/ V	True(PT)	False(PF)
Actual	True(AT)	TP	FN(type2)
Actual	False(AF)	FP(type1)	TN

Perfect : FN = FP = 0

Mislabeled : TP = TN = 0

Random (Predicted & Actual are independent):

$$TP = \frac{PT \times AT}{N}$$
 $FN = \frac{PF \times AT}{N}$ $FP = \frac{PT \times AF}{N}$ $TN = \frac{PF \times AF}{N}$

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Metrics Based on the Confusion Matrix

8 partial measures

- 1. Positive predictive value (PPV, Precision): $\frac{TP}{PT}$
- 2. False discovery rate (FDR): $\frac{FP}{PT}$
- 3. False omission rate (FOR): $\frac{FN}{PF}$
- 4. Negative predictive value (NPV): $\frac{TN}{PF}$
- 5. True positive rate (TPR, Sensitivity, Recall): $\frac{TP}{AT}$
- 6. False positive rate (FPR, Fall-out): $\frac{FP}{AF}$
- 7. False negative rate (FNR): $\frac{FN}{AT}$
- 8. True negative rate (TNR, Specificity): $\frac{TN}{AF}$

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Metrics Based on the Confusion Matrix

4 total measures

- 1. Accuracy: $\mathbb{P}(Actual = Predicted)$.
- 2. F_1 : the harmonic average of Precision and Recall
- 3. Matthew's Correlation Coefficient (MCC): AKA Pearson correlation coefficient.
- 4. Proficiency: the proportion of the information contained in the Actual distribution which is captured by the Predictor.

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Metric Requirements

Meaning: the meaning of the metric should be transparent without resorting to averages of meaningful values

Discrimination:

Weak: its value is 1 for the perfect predictor (and only for it)

Strong: additionally, its value is 0 for a worthless (random with any base rate) predictor (and only for such a predictor)

Universality: the metric should be usable in any setting, whether binary or multi-class, classification (a unique class is assigned to each example) or categorization/community detection (an example can be placed into multiple categories or communities)

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Accuracy

- ▶ $\mathbb{P}(Actual = Predicted) = \frac{tp+tn}{N}$
- ▶ Perfect: 1
- ► Mislabeled: 0
- Sun Diego Weather Forecast:
 - Accuracy = 362/365 = 99.2%
 - ► The predictor is worthless!
- Does not detect a random predictor

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

F_1 -Score

- ▶ The harmonic average of Precision and Recall: $\frac{2 \times tp}{2 \times tp + fp + fn}$
- ▶ Perfect: 1
- ▶ 0 if either Precision or Recall is 0
- ▶ Correctly handles SDWF (because Recall = 0)...
- ...But only if we label rain as True!
- Otherwise Recall = 100%, Precision = 99.2%, $F_1 = 99.6\%$
- $ightharpoonup F_1$ is Asymmetric (Positive vs Negative)

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Matthews correlation coefficient

AKA Phi coefficient, Pearson correlation coefficient:

$$\frac{\mathsf{tp}\times\mathsf{tn}-\mathsf{fp}\times\mathsf{fn}}{\sqrt{\left(\mathsf{tp}+\mathsf{fp}\right)\times\left(\mathsf{tp}+\mathsf{fn}\right)\times\left(\mathsf{fp}+\mathsf{tn}\right)\times\left(\mathsf{fn}+\mathsf{tn}\right)}}$$

• Range: [-1; 1]

Perfect: 1

▶ Mislabeled: −1

Random: 0

- Handles San Diego Weather Forecast
- Hard to generalize to non-binary classifiers.

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Uncertainty coefficient

- ▶ AKA Proficiency: $\alpha = \frac{I(Predicted;Actual)}{H(Actual)}$
- Range: [0; 1]
- Measures the percentage of bits of information contained in the Actual which is captured by the Predictor.
- ▶ 1 for both Perfect and Mislabeled predictors
- 0 for the random predictor
- ► Handles San Diego Weather Forecast and all the possible quirks *the best*.
- Easily generalizes to any number of categories.

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Comparison

FN=0TP=20 i=0FP=0 TN=180TP=15 FN=5i=50FP=45 TN=135TP=10FN=10i = 100 $\overline{\mathsf{TN}} = 90$ FP=90 TP=5FN=15i = 150FP=135 TN=45TP=0FN=20 i = 200FP=180 TN=0

Binary Predictor Metric Comparison (base rate=10%)

=0..200, coniusion matrix. tp=0.1 (200-i), m=0.1 i, tp=0.9 i, m=0.9 (200-i)

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

2 Against 2 – take 1

$$A = \begin{bmatrix} \mathsf{tp} = 2 & \mathsf{fn} = 3 \\ \mathsf{fp} = 0 & \mathsf{tn} = 45 \end{bmatrix}; B = \begin{bmatrix} \mathsf{tp} = 5 & \mathsf{fn} = 0 \\ \mathsf{fp} = 7 & \mathsf{tn} = 38 \end{bmatrix}$$

	Α	В
Proficiency	30.96%	49.86%
Pearson's ϕ	61.24%	59.32%
Accuracy	94.00%	86.00%
F_1 -score	57.14%	58.82%

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

> Multi-Label Categorization

2 Against 2 – take 2

$$A = \begin{bmatrix} \mathsf{tp} = 3 & \mathsf{fn} = 2 \\ \mathsf{fp} = 2 & \mathsf{tn} = 43 \end{bmatrix}; B = \begin{bmatrix} \mathsf{tp} = 5 & \mathsf{fn} = 0 \\ \mathsf{fp} = 7 & \mathsf{tn} = 38 \end{bmatrix}$$

	А	В
Proficiency	28.96%	49.86%
Pearson's ϕ	55.56%	59.32%
Accuracy	92.00%	86.00%
F ₁ -score	60.00%	58.82%

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Categorization

Proficiency - The Odd One Out

$$A = \begin{bmatrix} \mathsf{tp} = 3 & \mathsf{fn} = 2 \\ \mathsf{fp} = 1 & \mathsf{tn} = 44 \end{bmatrix}; B = \begin{bmatrix} \mathsf{tp} = 5 & \mathsf{fn} = 0 \\ \mathsf{fp} = 6 & \mathsf{tn} = 39 \end{bmatrix}$$

	А	В
Proficiency	35.55%	53.37%
Pearson's ϕ	63.89%	62.76%
Accuracy	94.00%	88.00%
F_1 -score	66.67%	62.50%

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

predictors and their evaluation

Binary Prediction

Multi-Class Prediction

> Viulti-Label Categorization

Accuracy - The Odd One Out

$$A = \begin{bmatrix} \mathsf{tp} = 1 & \mathsf{fn} = 4 \\ \mathsf{fp} = 0 & \mathsf{tn} = 45 \end{bmatrix}; B = \begin{bmatrix} \mathsf{tp} = 5 & \mathsf{fn} = 0 \\ \mathsf{fp} = 13 & \mathsf{tn} = 32 \end{bmatrix}$$

	А	В
Proficiency	14.77%	34.57%
Pearson's ϕ	42.86%	44.44%
Accuracy	92.00%	74.00%
F_1 -score	33.33%	43.48%

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

F₁-score – The Odd One Out

$$A = \begin{bmatrix} \mathsf{tp} = 1 & \mathsf{fn} = 4 \\ \mathsf{fp} = 0 & \mathsf{tn} = 45 \end{bmatrix}; B = \begin{bmatrix} \mathsf{tp} = 2 & \mathsf{fn} = 3 \\ \mathsf{fp} = 2 & \mathsf{tn} = 43 \end{bmatrix}$$

	А	В
Proficiency	14.77%	14.71%
Pearson's ϕ	42.86%	39.32%
Accuracy	92.00%	90.00%
F_1 -score	33.33%	44.44%

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Predictor Re-Labeling

For a predictor P, let 1-P be the re-labeled predictor, i.e., when P predicts 1, 1-P predicts 0 and vice versa.

Then

$$egin{aligned} \mathsf{Accuracy}(1-P) &= 1 - \mathsf{Accuracy}(P) \ \phi(1-P) &= -\phi(P) \ lpha(1-P) &= lpha(P) \end{aligned}$$

No similar simple relationship exists for F_1 .

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Table of Contents

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Conclusion

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Multi-Class Prediction

- Examples:
 - ► Character recognition
 - ► Mislabeling is bad
 - Group detection
 - ► Mislabeling is fine
- Metrics:
 - Accuracy = $\mathbb{P}(Actual = Predicted)$
 - ▶ No Recall, Precision, F₁!

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Pearson's ϕ

Define

$$\phi^2 = \frac{\chi^2}{N} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where

$$O_{ij} = \mathbb{P}(\mathsf{Predicted} = i \ \& \ \mathsf{Actual} = j)$$
 $E_{ij} = \mathbb{P}(\mathsf{Predicted} = i) \times \mathbb{P}(\mathsf{Actual} = j)$

- 0 for a worthless (independent) predictor
- Perfect predictor: depends on the data

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Proficiency

Same as before!

$$lpha = rac{I(\mathsf{Predicted}; \mathsf{Actual})}{H(\mathsf{Actual})}$$
 $H(A) = -\sum_{i=1}^N \mathbb{P}(A=i) \log_2 \mathbb{P}(A=i)$
 $I(P;A) = \sum_{i=1}^N \sum_{j=1}^N O_{ij} \log_2 rac{O_{ij}}{E_{ij}}$

- 0 for the worthless predictor
- ▶ 1 for the perfect (and mis-labeled!) predictor

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

 ϕ vs ϕ

 ϕ is to Chi-squared test same as α is to Likelihood-ratio test

NeymanPearson lemma Likelihood-ratio test is the most powerful test. Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

> Multi-Label Categorization

This Metric is Old! Why is it Ignored?

Tradition: My teacher used it

Inertia: I used it previously

Cost: Log is more computationally expensive than ratios

Not anymore!

Intuition: Information Theory is hard

► Intuition is learned: start Information Theory in High School!

Mislabeled = Perfect : Can be confusing or outright undesirable

Use the Hungarian algorithm

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Table of Contents

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Conclusion

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Prediction

Multi-Label Categorization

Multi-Label Categorization

- Examples:
 - Text Categorization
 - ▶ Mislabeling is bad
 - ▶ But may indicate problems with taxonomy
 - Community Detection
 - Mislabeling is fine
- Metrics:
 - No Accuracy: cannot handle partial matches
 - Precision & Recall work again!

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Precision & Recall

$$\begin{aligned} \mathsf{Recall} &= \frac{\sum_i \#\{\mathsf{objects\ correctly\ classified\ as\ c_i\}}{\sum_i \#\{\mathsf{objects\ actually\ in\ }c_i\}} \\ &= \frac{\sum_i \#\{o_j \mid c_i \in \mathsf{Actual}(o_j) \cap \mathsf{Predicted}(o_j)\}}{\sum_i \#\{o_j \mid c_i \in \mathsf{Actual}(o_j)\}} \\ &= \frac{\sum_j \#[\mathsf{Actual}(o_j) \cap \mathsf{Predicted}(o_j)]}{\sum_j \#\mathsf{Actual}(o_j)} \\ \mathsf{Precision} &= \frac{\sum_i \#\{\mathsf{objects\ correctly\ classified\ as\ }c_i\}}{\sum_i \#\{\mathsf{objects\ classified\ as\ }c_i\}} \\ &= \frac{\sum_i \#\{o_j \mid c_i \in \mathsf{Actual}(o_j) \cap \mathsf{Predicted}(o_j)\}}{\sum_i \#\{o_j \mid c_i \in \mathsf{Predicted}(o_j)\}} \\ &= \frac{\sum_j \#[\mathsf{Actual}(o_j) \cap \mathsf{Predicted}(o_j)]}{\sum_j \#\mathsf{Predicted}(o_j)} \end{aligned}$$

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Precision & Recall - ?!

- ▶ The above is the "macro" Precision & Recall (and F_1)
- ► Can also define "micro" Precision & Recall (and F₁)
- There is some confusion as to which is which

Side Note

Single label per object \Longrightarrow

Precision = Recall = Accuracy = F_1

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Proficiency: Definition

Introduce binary random variables:

$$Ac_i := c_i \in Actual$$

 $Pc_i := c_i \in Predicted$

Define:

$$\alpha = \frac{I(\prod_{i} Pc_{i}; \prod_{i} Ac_{i})}{H(\prod_{i} Ac_{i})}$$

Problem: cannot compute!

- ▶ KDD Cup 2005 Taxonomy: 67 categories
- ► Cartesian product: $267 > 1020 \gg 800k$ examples

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Proficiency: Estimate

Numerator: Assume that Ac_i is independent of everything but Pc_i (similar to Nave Bayes).

Denominator : Use $H(A \times B) \ge H(A) + H(B)$

Define:

$$\alpha = \frac{\sum_{i} I(Pc_{i}; Ac_{i})}{\sum_{i} H(Ac_{i})} = \frac{\sum_{i} H(Ac_{i})\alpha(Pc_{i}, Ac_{i})}{\sum_{i} H(Ac_{i})}$$

where

$$\alpha(\mathsf{Pc}_i, \mathsf{Ac}_i) = \frac{I(\mathsf{Pc}_i; \mathsf{Ac}_i)}{H(\mathsf{Ac}_i)}$$

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Proficiency: Permuted

Recover re-labeling invariance

: Let M(c) be the optimal assignment with the cost matrix being the pairwise mutual informations.

Define Permuted Proficiency metric:

$$\alpha' = \frac{\sum_{i} I(M(Pc_i); Ac_i)}{\sum_{i} H(Ac_i)} = \frac{\sum_{i} H(Ac_i)\alpha(M(Pc_i), Ac_i)}{\sum_{i} H(Ac_i)}$$

M is optimal implies $\alpha \leq \alpha'$ (equality iff the optimal assignment is the identity.)

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Prediction

Multi-Label Categorization

Proficiency: Properties

Meaning: (an estimate of) the share of the information contained in the actual distribution recovered by the classifier.

Strong Discrimination: yes!

Universality: the independence assumption above weakens the claim that the metric has the same meaning across all domains and data sets.

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Example: KDD Cup 2005

- ▶ 800 queries
- ▶ 67 categories
- ▶ 3 human labelers

Actual	labeler 1	labeler 2	labeler 3
Predicted	labeler 2	labeler 3	labeler 1
Precision	63.48%	36.50%	58.66%
Recall	41.41%	58.62%	55.99%
α	24.73%	28.06%	33.26%
α'	25.02%	28.62%	33.51%
Reassigned	9	12	11

Information Theoretic Metrics for Multi-Class Predictor Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Each Human Against Dice

Pit each of the three human labelers against the random labeler with the same category probability distribution:

	Labeler 1	Labeler 2	Labeler 3
F_1	14.3%	7.7%	19.2%
examples/category	3.7 ± 1.1	2.4 ± 0.9	3.8 ± 1.1
categories/example	44 ± 56	28 ± 31	48 ± 71

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Academic Setting

Consider a typical University department:

Every professor serves on 9 administrative committees out of 10 available.

Worthless Predictor

Assign each professor to 9 random committees.

Performance

- ► Precision = Recall = 90%
- ▶ Proficiency: $\alpha = 0$

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Numeric Stability

- ► Think of the data as an infinite stream of observations, and view the actually available data as a sample.
- How would the metrics change if the sample is different?
- ► All metrics have approximately the same variability (standard deviation):
 - ho pprox 1% for 800 observations of KDD Cup 2005
 - $ightharpoonup \approx 0.5\%$ for 10,000 observations in the Magnetic data set

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Table of Contents

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Conclusion

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Prediction

Multi-Label Categorization

Summary

- If you know the costs use the expected value.
- ▶ If you know what you want (Recall/Precision &c) use it.
- ▶ If you want a general metric, use Proficiency instead of F_1 .

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

Multi-Label Categorization

Implementation

Python code in

https://github.com/Magnetic/proficiency-metric

Contributions of implementations in other languages are welcome!

Information
Theoretic Metrics
for Multi-Class
Predictor
Evaluation

Sam Steingold, Michal Laclavík

Introduction: predictors and their evaluation

Binary Prediction

Multi-Class Prediction

> Multi-Label Categorization