Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 II Semester, 2016-2017

CHEMF 244 Physical Chemistry III			
Quiz Test - 01;	Time: 30 mins.	Date: 14.02.201	7 [25 M]
Name:	ID:	Ma	arks obtained:
Q1. On the basis	of symmetry, which of the fo	ollowing molecule(s) can	nnot have a dipole
moment: CH ₄ , CH	H_3Cl , CH_2D_2 , H_2S , SF_6 . Expla	in briefly.	[2]
Q2. Consider ethy	vlene molecule and answer th	e following:	
a) What are the symmetry operations present in the molecule?			[2]
b) How many classes of symmetry operations are there in the molecule?			le? [4]
c) What would be the dimension of the irreducible representations?			[2]
d) Construct the o			[2]
e) Determine the	Mulliken symbols for each of	the irreducible represe	entation. [2]
Q3. (i) Consider	$2p_x$ and $2p_y$ orbitals of N a	atom in NH ₃ molecule	. Use $2p_x$ and $2p_y$
orbitals as the bas	ses function to represent all	the transformation ope	erators of the point
group to which	NH ₃ belongs. What would	l be the irreducible r	representation? Do
mention all the re-	levant assumption.		[7]
(ii) Comment wit	h brief explanation:		
(a) Orbital overlap integral of $2p_x$ and $2p_y$ orbitals.			[2]
(b) Orbital overlap	o integral of $2p_x$ and $2p_z$ orb	oitals.	[2]

Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 II Semester, 2016-2017

CHEMF 244 Physical Chemistry III

Quiz Test - 02; Time: 25 mins. Date: 05.04.2017 [25 M]

Name: ID: Marks obtained:

- **Q1.** Given that $D_e = 4.75$ eV and $R_e = 0.741$ Å for the ground electonic state of H_2 . Find $U(R_e)$, and $\langle T_{el} \rangle_{Re}$ in eV. Ground state energy of H-atom is -13.598 eV. [4]
- **Q2.** A particle is subject to the potential energy $V = ax^4 + by^4 + cz^4$. If its ground state energy is 10 eV, calculate T and V for the ground state. [4]
- **Q3.** Apply Hellmann-Feynman theorem to 1-D simple harmonic oscillator to evaluate $\langle x^2 \rangle$.
- **Q4.** Determine the number of basis functions for CH₃OH for a calculation using the following basis sets: (i) STO-3G, (ii) 3-21G, (iv) 6-31G, (v) 6-31G*, (vii) 6-31G**, and (viii) 6-31+G*

Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 II Semester, 2016-2017

CHEMF 244 Physical Chemistry III

Quiz Test - 03; Time: 30 mins. Date: 26.04.2017 [25 M]

Name: ID: Marks obtained:

- **Q1.** Consider simple model system, H_2 , in minimal basis molecular orbital treatment using linear combination of atomic orbitals. The hydrogen atom 1s orbitals are ϕ_1 and ϕ_2 centered on H-atom 1 and 2, respectively.
- (a) Represent all spin orbitals of H_2 using molecular orbitals, Ψ_1 and Ψ_2 . [4]
- (b) What would be the form of ground state wave function of H₂ molecule if you take into considerations determinants upto double excitations? Justify your answer. [4]
- (c) Assume, the Hartree Fock approximated ground state wave function of H_2 is Ψ_0 . Determine the matrix element $\langle \Psi_0 | \widehat{O_1} | \Psi_0 \rangle$. $\widehat{O_1}$ is the one electron operator. [7]
- Q2. Perturbation theory for non-degenerate state is not useful for degenerate states: Explain in brief. [3]
- **Q3.** Use the concepts of Moller-Plesset perturbation theory to answer the following questions for a molecular system of 3 electrons:
- (a) What would be the form of the unperturbed Hamiltonian? Need to explain all the terms in brief. Answer, without proper description would not be considered. [3]
- (b) What would be the form of the zeroth order wavefunction? [2]
- (c) What would be the eigen value of the state represented in previous question. [2]