Algèbre

Martin Mugnier

DD ENSAE-HEC, 2019

Chapitre 1: Espaces vectoriels, applications linéaires, matrices

Espaces vectoriels, généralités

2 Applications linéaires

Matrices et applications linéaires

Structure d'espace vectoriel

Définition

On appelle un **groupe** la donnée d'un ensemble $\mathbb K$ et d'une opération $+ \atop \mathbb K$ telle que

- + est une loi de composition interne sur $\mathbb{K}: \forall (a,b) \in \mathbb{K}^2, a+b \in \mathbb{K}$,
- associative : $\forall (a,b,c) \in \mathbb{K}^3, (a+b) + c = a + (b+c)$
- ullet possède un élément neutre : $\exists 0_\mathbb{K} \in \mathbb{K} : \forall a \in \mathbb{K}, \ a + 0_\mathbb{K} = 0_\mathbb{K} + a = a$
- ullet tout élément de $\mathbb K$ possède un symétrique :

$$\forall a \in \mathbb{K}, \exists (-a) \in \mathbb{K}, \ a \underset{\mathbb{K}}{+} (-a) = (-a) \underset{\mathbb{K}}{+} (a) = 0_{\mathbb{K}}$$

Si de plus + est commutative alors $(\mathbb{K}, +)$ est dit "groupe abélien".

Structure d'espace vectoriel

Définition

On appelle espace vectoriel sur \mathbb{K} , un ensemble E, dont les éléments sont appellés **vecteurs**, muni de deux opérations : **une loi interne** (appellée addition et notée +) et une **loi externe** (appellée multiplication par un scalaire et notée, \times) telles que :

- i) (E, +) est un groupe abélien,
- ii) $\forall \lambda \in \mathbb{K}, \forall (x, y) \in E^2, \lambda \underset{E}{\times} (x + y) = \lambda \underset{E}{\times} x + \lambda \underset{E}{\times} y$
- iii) \times est exo-distributive à gauche par rapport à +,
- iv) \times est exo-associative à gauche pa rapport à \times , K
- $\mathsf{v)} \ \forall \mathsf{x} \in \mathsf{E}, \, 1_{\mathbb{K}} \underset{\mathsf{E}}{\times} \mathsf{x} = \mathsf{x}$

Dans la suite, 0_E = élément neutre pour +, pour tout $x \in E$, -x désigne son symétrique pour +.

Structure d'espace vectoriel

Ici, $\mathbb{K} = \mathbb{R}$.

Proposition

Si $(E, \underset{E}{+}, \underset{E}{\times})$ est un $\mathbb{K}-\text{e.v.}$ alors

A montrer.

Quelques exemples : \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^n , l'ensemble \mathbb{R}^A des applications de A dans \mathbb{R} où :

- l'addition est définie par : pour tout $f, g \in \mathbb{R}^A$, $f + g : x \in A \mapsto f(x) + g(x)$,
- la multiplication par un scalaire est définie par : pour tout $f \in \mathbb{R}^A$, $\lambda \in \mathbb{R}$, $\lambda f : x \mapsto \lambda f(x)$.

 \mathbb{R}^A est un espace vectoriel de fonctions.

Sous-espace vectoriel

Définition

Soit $(E, +, \times)$ un \mathbb{R} — e.v.. On dit que F est un sous-espace vectoriel (s.e.v.) de E ssi :

- F ⊂ E
- F ≠ ∅
- $\forall (\alpha, \beta) \in \mathbb{R}^2$, $\forall (u, v) \in F^2$, $\alpha \times u + \beta \times v \in F$,

i.e. F, non vide et inclus dans E est un s.e.v. de E si et seulement si il est stable par combinaison linéaire.

Exemple:

Fixons $E = \mathbb{R}^2$, et montrez que $F = \{(x, y) \in \mathbb{R}^2 / x + 2y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 .

Proposition

Soit $(F_i)_{i=1,...,p}$ une famille de sous-espaces vectoriels de E, alors l'intersection $\cap_{i=1,...,p} F_i$ est un sous-espace vectoriel de E.

Exemple : Considerons $F = \{(x, y, z)/x + 2y - z = 0\}$ et $G = \{(x, y, z)/x = y\}$.

Sous-espace vectoriel engendré

Définition

Soit E un $\mathbb{K}-e.v.$ et A une partie quelconque de E. L'intersection de tous les s.e.v. de E contenant A est le plus petit (au sens de l'inclusion) s.e.v. de E contenant E. On l'appelle **s.e.v.** engendré par E et noté E vectE.

Proposition

Soit E *un* \mathbb{K} - e.v. *et* $A \subset E$

- 1) Si $A = \emptyset$ alors $Vect(A) = \{0_E\}$.
- 2) Si A est un s.e.v. de E alors Vect(A) = A.

Théorème

Si on note M l'ensemble des combinaisons linéaires associées à la famille $(x_i)_{i\in I}$ d'éléments de E, alors :

$$M = Vect(\bigcup_{i \in I} \{x_i\})$$

Somme de sous-espaces vectoriels

L'union de deux s.e.v. n'est pas un s.e.v. Dans \mathbb{R}^2 : $F = \{(x,y)/x = y\}$ et $G = \{(x,y)/x + y = 0\}$, montrez que $(1,1) \in F \cup G$, $(1,-1) \in F \cup G$ mais $(2,0) \notin F \cup G$.

Définition

Soient F et G deux sous espaces vectoriels de E, on définit F+G par :

$$F+G=\left\{x\in E,\quad \exists (f,g)\in F\times G:\ x=f+g\right\}.$$

- $(F_i)_{i=1,...,p}$ sont en **somme directe** quand $\forall i \in \{2,...,p\}$, $F_i \cap \left[\sum_{k=1,...,i-1} F_k\right] = \{0_E\}$, ce qu'on note $\bigoplus_{i=1,...,p} F_i$.
- F et G sont des sous espaces **supplémentaires** quand $F \oplus G = E$.

Proposition

Soient F et G deux s.e.v. de E, on a $F + G = Vect(F \cup G)$.

Somme de sous-espaces vectoriels

Proposition

 $E = \bigoplus_{i=1,\ldots,p} F_i$ si et seulement si $\forall x \in E$, $\exists ! (x_1,\ldots,x_p) \in F_1 \times \cdots \times F_p$ tel que $x = x_1 + \ldots + x_p$.

Famille libre, famille génératrice

Définition (Famille libre)

Soit (x_1, \ldots, x_k) des vecteurs de E. On dit que (x_1, \ldots, x_k) est une **famille libre** de E si et seulement si pour toute combinaison linéaire associée à $(\lambda_1, \ldots, \lambda_k) \in \mathbb{R}^k$ telle que $\sum_{j=1}^k \alpha_j \underset{E}{\times} x_j = 0_E$ alors $\alpha_j = 0$ pour tout $j = 1, \ldots k$.

Définition (Famille génératrice)

Soit (x_1, \ldots, x_k) des vecteurs de E, on dit que (x_1, \ldots, x_k) **génère** E si tout vecteur $x \in E$ peut etre exprimé comme une combinaison linéaire de (x_1, \ldots, x_k) , i.e. il existe $(\alpha_1, \ldots, \alpha_k) \in \mathbb{R}^k$ tels que

$$x = \sum_{j=1}^{k} \alpha_j \underset{E}{\times} x_j$$

Famille génératrice, base

Définition

 (x^1, \dots, x^k) est une **famille génératrice** pour E si et seulement si $Vect(\bigcup_{i \in I} \{x_i\}) = E$.

Définition

Une famille (x_1, \dots, x_k) est une **base** de E si et seulement si c'est une famille libre et génératrice de E.

- Toute sous famille d'une famille libre est libre
- Toute sur famille d'une famille génératrice est génératrice
- Toute sur famille d'une famille liée est liée.

Proposition (Décomposition unique)

Une famille (x_1, \cdots, x_k) est une base de l'espace vectoriel E si et seulement si chaque vecteur $x \in E$ peut être décomposé de manière unique comme une combinaison linéaire de (x^1, \cdots, x^k) . On a alors :

$$x = \sum_{j=1}^{k} \alpha_j \underset{E}{\times} x_j$$

Les (α_j) sont appellés les coordonnées de x dans la base (x_1, \dots, x_k) .

Dimension

Définition

Un espace vectoriel E est de dimension finie si et seulement si il admet au moins une famille génératrice de cardinal fini. On appelle ce nombre la dimension de E, notée Dim(E).

Proposition

Si E admet une famille génératrice finie de cardinal n alors toute famille libre de E est finie et de cardinal inférieur ou égal à n. De plus, on peut échanger des vecteurs de la famille génératrice avec les vecteurs de la famille libre pour obtenir une nouvelle famille génératrice pour E.

Proposition (Théorème de la base incomplète)

Soit E un espace vectoriel de dimension finie, $\mathcal{L}=(x_i)_{i\in I}$ une famille libre et $\mathcal{G}=(y_i)_{i\in J}$ génératrice finie. Alors il existe un ensemble K tel que $K\subset J$ et $(\mathcal{L},(y_i)_{i\in K})$ soit une base de E.

Dimension

Proposition

Soit E un espace vectoriel de dimension finie. Tout sous-espace vectoriel F admet au moins un suppplémentaire dans E. De plus, pour tout supplementaire S on a Dim(F) + Dim(S) = Dim(E).

Proposition

Soit E un espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E. Alors F+G et $F\cap G$ sont également de dimension finie, et on a $Dim(F+G)=Dim(F)+Dim(G)-Dim(F\cap G)$.

Application linéaire : Définition

Définition

Soient (E,F) deux \mathbb{R} -espaces vectoriels. Une application $f:E\to F$ est linéaire si et seulement si

$$\forall (u,v) \in E^2$$
 $f(u+v) = f(u) + f(v)$

$$\forall \alpha \in \mathbb{R}, \quad \forall u \in E, \quad f(\alpha \underset{E}{\times} u) = \alpha \underset{F}{\times} f(u).$$

L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$. Une application linéaire de E dans E est appellée un **endomorphisme**.

Théorème

Soit $(e_i)_{i\in I}$ une base de E, alors f est déterminée entièrement par la donnée de $(f(e_i))_{i\in I}$.

4□ > 4₫ > 4 를 > 4 를 > 6
(0) Q(

Le noyau et l'image d'une application linéaire

Définition

i) Soit f une application linéaire de E dans F. On appelle **noyau** de f l'ensemble des vecteurs $u \in E$ tels que f(u) = 0, i.e.

$$Ker(f) = \{u \in E/f(u) = 0_F\}$$

ii) On appelle l'image de f , l'ensemble des vecteurs $v \in F$ tels que

$$Im(f) = \{ v \in F/\exists u \in E, \quad v = f(u) \}$$

Proposition

Ker(f) et Im(f) sont respectivement des sous-espaces vectoriels de E et de F.

Proposition

Si E et F sont de dimensions finies alors E et F sont isomorphes si et seulement si Dim(E) = Dim(F).

Exemple : Soit f une application de \mathbb{R}^2 dans \mathbb{R}^3 , définie par :

$$f(x_1, x_2) = \begin{pmatrix} x_1 - x_2 \\ x_1 + 2x_2 \\ x_1 + 2x_2 \end{pmatrix}$$

Montrer que f est linéaire. Donner Ker(f) et Im(f).

Théorème

Soit $f: E_1 \to E_2$ une application linéaire, où E_1 et E_2 sont de dimension finie.

- 1) f est **injective** si et seulement si $Ker(f) = \{0_{E_1}\}.$
- 2) f est **surjective** si et seulement si $Im(f) = E_2$.
- 3) f est **bijective** si elle est injective et surjective, i.e. si $Ker(f) = \{0_{E_1}\}$ et $Im(f) = E_2$.
- 4) Théorème du rang : $Dim(Ker(f)) + Dim(Im(f)) = Dim(E_1)$

Si Im(f) est de dimension finie r, alors on dit que le rang de f, noté Rg(f) est égal à r.

Proposition

Si E et F sont de dimensions finies alors :

- $Rg(g \circ f) \leq Min(Rg(f), Rg(g))$
- si f est surjective alors $Rg(g \circ f) = Rg(g)$
- si g est injective alors $Rg(g \circ f) = Rg(f)$

Proposition

- Si E est de dimension finie alors f est injective si et seulement si Rg(f) = Dim(E)
- Si F est de dimension finie alors f est surjective si et seulement si Rg(f) = Dim(F)

Les projecteurs linéaires

Définition

Soient H et S deux sous-espaces vectoriels de E tels que $E=H\oplus S$: $\forall x\in E,\quad \exists !(x_H,x_S)\in H\times S, x=x_H+x_S.$ L'application p_H définie par

$$p_H: E \to E$$

 $x \mapsto x_H$,

est appellée projecteur linéaire sur H parallèlement à S.

Les projecteurs linéaires

Proposition

Si p_H est le projecteur linéaire sur H parallèlement à S, alors

- $p_H \in \mathcal{L}(E)$
- $Im(p_H) = H$ et $Ker(p_H) = S$.

Proposition

Soit $p \in \mathcal{L}(E)$, $p \circ p = p$ si et seulement si p est un projecteur linéaire sur Im(p) parallèlement à Ker(p).

Exercice: à montrer.

Matrice représentative d'une application linéaire

Soit $\mathcal{U}=(u_1,\ldots,u_p)$ une base de E et $\mathcal{V}=(v_1,\ldots,v_n)$ une base de F. Alors f est entièrement définie par l'image des vecteurs de la base \mathcal{U} : $(f(u_1),\ldots,f(u_p))$.

On note par
$$\begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{pmatrix}$$
 les composantes de $f(u_i)$ sur la base (v_1, \dots, v_n) .

Définition

On appelle matrice représentative de f sur \mathcal{U}, \mathcal{V} la matrice de taille $n \times p$, notée $\mathcal{M}_{\mathcal{U},\mathcal{V}}(f)$ ou \mathcal{M} at $(f,\mathcal{U},\mathcal{V})$ contenant en colonne les composantes des $f(u_i)$ dans la base (v_1,\ldots,v_n) .

Théorème

L'application $f \mapsto Mat(f, \mathcal{U}, \mathcal{V})$ est un isomorphisme de $\mathcal{L}(E, F)$ dans $\mathcal{M}_{n,p}(\mathbb{R})$.

Exemple:

Soit f une application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 , définie par :

$$f(x_1, x_2) = \begin{pmatrix} x_1 - x_2 \\ x_1 + 2x_2 \\ x_1 + 2x_2 \end{pmatrix}$$

Matrice de f dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 ?

Proposition

Soit f une application linéaire de E dans F, et g une application linéaire de F dans G.

1) Quelque soit $x \in E$, de composantes $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ dans $\mathcal{U} = (u_1, \dots, u_p)$, les composantes de f(x) dans $\mathcal{V} = (v_1, \dots, v_n)$ sont données par

$$\mathcal{M}_{\mathcal{U},\mathcal{V}}(f) \times \left(\begin{array}{c} x_1 \\ \vdots \\ x_p \end{array} \right)$$

2) Soient \mathcal{U} , \mathcal{V} et \mathcal{W} une base de E, et respectivement de F, G. Alors :

$$\mathcal{M}_{\mathcal{U},\mathcal{W}}(g \circ f) = \mathcal{M}_{\mathcal{V},\mathcal{W}}(g) \times \mathcal{M}_{\mathcal{U},\mathcal{V}}(f)$$

Martin Mugnier

Endomorphismes

Proposition

La matrice A associée à une application linéaire f est inversible si et seulement si f est bijective. Alors, la matrice de f^{-1} est A^{-1} . Si la matrice A est inversible, alors ses colonnes sont linéairement indépendantes.

Notation : on note $GL_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

Matrice de passage, matrices equivalentes

Définition

Soient $\mathcal U$ et $\mathcal V$ deux bases de E. On appelle **matrice de passage** $P_{\mathcal V,\mathcal U}$ de $\mathcal U$ dans $\mathcal V$, la matrice contenant les colonnes de $\mathcal V$ (nouvelle base) dans $\mathcal U$ (ancienne base).

C'est à dire : $P_{\mathcal{V},\mathcal{U}} = \mathcal{M}_{\mathcal{V},\mathcal{U}}(id_E)$.

Définition

Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $A \in \mathcal{M}_{n,p}(\mathbb{R})$. A et A sont dites équivalentes ssi il existe $(P,Q) \in GL_p(\mathbb{R}) \times GL_n(\mathbb{R})$ telles que :

$$\widetilde{A} = Q^{-1}AP$$
.

Matrice de passage

Soit x un vecteur de E dont les coordonnées dans $\mathcal U$ sont données par

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et les coordonnées dans $\mathcal V$ sont données par $X' = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$.

 $X = P_{\mathcal{V} \mathcal{U}} X'.$

Si f est un endomorphisme de E, la matrice $M_{\mathcal{U}}$ de f dans \mathcal{U} , et la matrice $M_{\mathcal{V}}$ de f dans \mathcal{V} satisfont :

$$M_{\mathcal{V}} = P_{\mathcal{V},\mathcal{U}}^{-1} \times M_{\mathcal{U}} \times P_{\mathcal{V},\mathcal{U}}.$$