СОДЕРЖАНИЕ

			Стр.
1	1 разде	ел	8
	1.1	Отображения	8
	1.2	Бином Ньютона	8
	1.3	Треугольник Паскаля	9
2	2 разде	ел	10
	2.1	Основные алгебраические системы	10
3	3 разде	ел	13
	3.1	Отношение эквивалентности	13
	3.2	Кольцо вычетов \mathbb{Z}_n	14
	3.3	Линии на плоскости \mathbb{Z}_p^2	16
4	4 разде	ел	18
	4.1	Группа подстановок. Проверка аксиом	18
	4.2	Разложение на циклы и на транспозиции	18
	4.3	Декремент и четность подстановки, четность	
	про	оизведения, подгруппа четных подстановок	21
5	5 разде	ел	23
	5.1	Арифметика матриц: сложение, умножение,	
	тра	анспонирование	23
	5.2	Кольцо квадратных матриц над полем	23
	5.3	Перестановочные матрицы	24
	5.4	Разложение квадратной матрицы на произве-	
	ден	ние диагональной и трансвекции	25
	5.5	Блочные матрицы	25

6	6 разде	Л	27
	6.1	Определители квадратных матриц и их св-ва	27
	6.2	Обратная матрица	30
	6.3	След матрицы	33
7	7 разде	Л	34
	7.1	Поле комплексных чисел \mathbb{C} : определение, един-	
	СТВ	енность, существование	34
	7.2	Геометрическое описание сложения и умножения	36
	7.3	Формула Муавра, извлечение корней	37
8	8 разде	л	38
	8.1	Кольцо многочленов над полем	38
	8.2	Делимость в кольце многочленов	39
	8.3	НОД многочленов алгоритм Евклида	39
	8.4	Схема Горнера	40
	8.5	Приводимые и неприводимые многочлены	41
	8.6	Аналог основной теоремы Арифметики	41
	8.7	Алгебраически замкнуты поля	42
	8.8	Основная теорема алгебры	42
	8.9	Теорема Виета	43
	8.10	Построение конечных полей	43
9	9 разде	Л	45
	9.1	Многочлены с рациональными коэффициентами	45
	9.2	Лемма Гаусса	46
	9.3	Признак Эйзенштейна	47
10	10 разд	ел	48

10.1	Векторные (линейные) пространства	48
10.2	Аксиомы векторного пространства и следствия	
ИЗ Н	них	48
10.3	Алгебры	49
10.4	Подпространства и подалгебры	49
10.5	Тело	49
10.6	Теорема Веддерберна	50
11 11 разд	ел	51
11.1	Линейная (не)зависимость систем векторов и	
СВО	йства линейно (не)зависимых систем	51
11.2	Линейная оболочка системы векторов	52
12 12 разд	ел	53
12.1	Метод Гаусса	53
12.2	Классификация СЛАУ	53
12.3	Структура решения СЛАУ	54
12.4	Метод Гаусса на языке преобразования матриц.	55
13 13 разд	ел	56
13.1	Основная Лемма о линейной зависимости	56
13.2	Базис и размерность векторного пространства	57
13.3	Описание конечномерных подпространств с	
РОТ	ностью до изоморфизма	58
13.4	Теорема о размерности пр-ва решений однород-	
НОЙ	СЛАУ	59
13.5	Базис пространства решений однородной	
СЛ	AУ - ΦCP	60

13.6 Теорема о существовании однородной СЛАУ,	
задающей подпространство	60
14 14 раздел	62
14.1 Переход от одного базиса к другому, матрица	
перехода и ее св-ва	62
15 15 раздел	63
15.1 Ранг и БАЗА системы векторов	63
15.2 Ранг матрицы, теорема о ранге матри-	
цы(=теорема о базисном миноре)	63
15.3 Лемма о вычислении ранга матрицы	65
15.4 Теорема Кронекера - Капелли	65
16 16 раздел	67
16.1 Геометрия подпространств	67
16.2 Теорема о существовании базиса, согласованно-	
го с парой подпространств	67
16.3 Формула Грассмана	
16.4 Линейно независимые подпространства	68
16.5 Поиск базиса суммы и пересечения подпро-	
странств	69
17 17 раздел	7 2
17.1 Линейные отображения	72
17.2 Матрица линейного отображения	72
17.3 Ядро и образ линейного отображения	73
17.4 Теорема о сумме размерностей ядра и образа	73

	17.5	Теорема о структуре прообраза линейного	
	ОТО	бражения $(\varphi^{-1}(y) = x + ker \varphi)$	73
		Операции над линейными отображениями	73
	17.7	Изменение матрицы линейного отображения	
	при	изменении базиса	74
	17.8	Частные случаи линейных отображений: ли-	
	ней	ные операторы, линейные формы	75
18	18 разд	ел	76
	18.1	Линейные формы	76
	18.2	Координатная строка линейной формы	76
	18.3	Сопряжённое пространство	76
	18.4	Аннулятор подпространства	77
	18.5	Теорема о размерности аннулятора	77
	18.6	Критерий базисности для набора линейных форм	77
19	19 разд	ел	78
	19.1	Факторпространство	78
	19.2	Теорема о размерности факторпространства	78
	19.3	Коразмерность подпространства	78
	19.4	Может ли быть так, что $dim~U=\infty, dim~V=$	
	∞ ,	а $codim\ U$ конечна?	79
20	20 разд	ел	80
	20.1	Геометрические векторы	80
	20.2	Деление отрезка в заданном отношении	81
	20.3	Правые и левые тройки векторов	81
	20.4	Скалярное произведение векторов и свойства	82
	20.5	Векторное произведение векторов и свойства	82

	20.6	Смешанное произведение векторов и свойства	83
	20.7	Критерии ортогональности, коллинеарности и	
	KOM	планарности геометрических векторов	83
		Выражения для произведений векторов в де-	
	кар	товых координатах	84
		Тождества «бац минус цаб» и Якоби	85
	20.10	9Что такое кольцо Ли?	86
21~2	21 разд	ел	87
	21.1	Прямые на плоскости	87
	21.2	Плоскости в пространстве	89
	21.3	Прямые в пространстве	91
22~2	22 разд	ел	93
		Кривые второго порядка	93
	22.2	Эллипс	93
	22.3	Гипербола	94
	22.4	Парабола	95
	22.5	Оптические свойства кривых второго порядка	96
	22.6	Кривые второго порядка как конические сечения	98
$23\ 2$	23 разд	ел	99
	23.1	Общая теория кривых второго порядка	99
	23.2	Теорема о 9 видах уравнений, к которым при-	
	вод	ится уравнение любой кривой второго порядка	99
	23.3	Ортогональные инварианты кривой второго	
	ПОП	ядка	104

23.4	Классификация кривых второго порядка по ин-	
вар	иантам	104
23.5	Ортогональные преобразования на плоскости и	
ИХ М	матрицы	106
24 24 разде	ел	107
24.1	Аффинные пространства	107
24.2	Репер и аффинная система координат	107
24.3	Плоскость в аффинном пространстве	107
24.4	Аффинная оболочка множества точек	108
24.5	Аффинная зависимость и независимость точек .	108
24.6	Аффинные плоскости как множества решений	
СЛ	АУ	108
24.7	Барицентрическая комбинация точек	108
24.8	Барицентрические координаты точки относи-	
телі	ьно заланных точек	109

1 1 раздел

1.1 Отображения

Def: отображение - правило φ , которое каждому элементу множества X ставит в соответствие единственный элемент множества Y.

$$\varphi:X\to Y$$

Def: $\varphi:X\to Y,\,\psi:Y\to Z.$ Тогда $\varphi\circ\psi(X)=\varphi(\psi(X))$ - композиция отображений φ и ψ

Def: Пусть $\varphi(x) = y$. Тогда y - образ x, x - прообраз y.

Виды отображений:

- 1. Инъекция: $\forall x_1, x_2 \in X : x_1 \neq x_2 \to \varphi(x_1) \neq \varphi(x_2)$
- 2. Сюръекция: $\forall y \in Y \exists x \in X : \varphi(x) = y$
- 3. Биекция: инъекция и сюръекция вместе

1.2 Бином Ньютона

Def: Биноминальными коэффициентами называют числа $C_n^k = \frac{n!}{k!(n-k)!}$

Th(Бином Ньютона):
$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$
 Док-во:

- 1)База: n = 1 : a + b = a + b верно
- 2)Предположим, что утверждение верно для n=p, т.е. $(a+b)^p=\sum_{k=0}^p C_p^k a^k b^{p-k}=C_p^0 a^p b^0+C_p^1 a^{p-1}b+\ldots+C_p^{p-1}ab^{p-1}+C_p^p a^0 b^p$

 $(a+b)^{p+1}=(a+b)^p(a+b)=C_p^0a^{p+1}b^0+C_p^1a^pb+\ldots+C_p^{p-1}a^2b^{p-1}+$ $C_p^pab^p+C_p^0a^pb+C_p^1a^{p-1}b^2+\ldots+C_p^{p-1}ab^p+C_p^pa^0b^{p+1}=C_{p+1}^0a^{p+1}b^0+$ $(C_p^1+C_p^0)a^pb+(C_p^2+C_p^1)a^{p-1}b^2+\ldots+(C_p^{p-1}+C_p^{p-2})a^2b^{p-1}+(C_p^p+C_p^{p-1})ab^p+C_{p+1}^{p+1}a^0b^{p+1}=C_{p+1}^0a^{p+1}b^0+C_{p+1}^1a^pb+\ldots+C_{p+1}^pab^p+$ $C_p^{p+1}a^0b^{p+1}=\sum_{k=0}^{p+1}C_{p+1}^ka^kb^{p+1-k}.$ Значит, из верности формулы для n=p следует верность формулы для n=p следует верность формулы для n=p+1

Значит, формула верна для $\forall n \in \mathbb{N}$, ч.т.д.

1.3 Треугольник Паскаля

Def: Треугольник Паскаля - бесконечная таблица биноминальных коэффициентов, имеющая треугольную форму. Каждое число равно сумме двух чисел, расположенных над ним.

Рисунок 1.1 — Первые 7 уровней треугольника Паскаля

2 2 раздел

2.1 Основные алгебраические системы

Def: Алгебраическая система - непустое множество с заданным на нем набором операций и отношений.

 $A = \langle A; f_1, \dots, f_n; R_1, \dots, R_m \rangle$, где f_i - алгебраическая операция, определенная на A, R_i - отношение, определенное на A.

Алгебраическая система с пустым множеством отношений называется алгеброй.

Def: Бинарная (двухместная) операция - отображение $\varphi:A \times B \to C$.

Def: Бинарная операция на множестве (внутренняя бинарная операция) - отображение $\varphi: A \times A \to A$

Основные алгебраические системы:

- Группоид множество с одной бинарной операцией. $\langle A, * \rangle$
- Полугруппа группоид с ассоциативной бинарной операцией, т.е. $\forall a,b,c\in A\Rightarrow (a*b)*c=a*(b*c)$
- Моноид полугруппа с нейтральным элементом, т.е. $\exists e \in A: \forall x \in A \Rightarrow e*x = x*e = x.$
- Группа моноид с обратным элементом, т.е. $\forall a \in G \Rightarrow \exists b:$ a*b=b*a=e
- Абелева группа (коммутативная группа) группа, для которой выполняется:

$$\forall a, b \in G \Rightarrow a * b = b * a$$

- Кольцо алгебраическая система с 2 бинарными операциями $(\langle R, +^2, \cdot^2 \rangle)$, для которой:
 - 1. R абелева группа отн-но "+"

2.
$$\forall a, b, c \in R \Rightarrow \begin{cases} a(b+c) = ab + bc \\ (a+b)c = ac + bc \end{cases}$$

- Поле - ассоциативное коммунитатовное кольцо с 1, в котором каждый ненулевой элемент обратим.

Def: Пусть имеется $\langle M,* \rangle,\ N\subseteq M.\ N$ замкнуто отн-но *, если $\forall a,b\in N\Rightarrow a*b\in N$

Def: $\langle H, * \rangle$ - подгруппа $\langle G, * \rangle$, если $\langle H, * \rangle$ - подсистема $\langle G, * \rangle$ и является группой отн-но сужения групповых операций на H

Def: Подмножество L кольца R называется подкольцом, если:

- 1. Оно является подгруппой аддитивной группы кольца R
- 2.~L замкнуто отн-но " · "

Ex: $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Def: Подмножество L называется подполем поля F, если:

- 1. L подкольцо кольца F
- 2. $1 \in L$
- 3. $\forall a \in L \ (a \neq 0) \ \exists a^{-1} \in L : a^{-1} \cdot a = a \cdot a^{-1} = 1$

Def: нильпотент - элемент a кольца такой, что $\exists n \in \mathbb{N} : a^n = 0$

Def: идемпотент - элемент a кольца такой, что $a^2=a$

Def: $a,b \in R$ называются делителями нуля, если $a \cdot b = 0$ $(a,b \neq 0)$

Лемма: В поле нет делителей нуля

Док-во: $a, b \in F$ $a \neq 0, b \neq 0$ $a \cdot b = 0$

Т.к. поле, то $\exists a^{-1}$

$$a^{-1}(a\cdot b)=a^{-1}\cdot 0$$

$$(a^{-1}a) \cdot b = a^{-1} \cdot 0$$

$$1 \cdot b = 0$$

b=0 - противоречие

Def: Порядок группы - число элементов в ней(если оно конечно)

Def: Характеристика поля(char K) - наименьшее $n \in \mathbb{N}: n*1=0.$ Если такого n нет, то char K=0

Def: Алгебраические системы A, B одной и той же сигнатуры $\sigma = \{f_1, \ldots, f_n; R_1, \ldots, R_m\}$ называются изоморфными, если существует биективное отображение $\varphi : A \to B$ такое, что:

- для любой операции $f_i \in \sigma$ и любых элементов $a_1, \ldots, a_{n_i} \in A$ выполняется равенство: $\varphi(f_i(a_1, \ldots, a_{n_i})) = f_i(\varphi(a_1), \ldots, \varphi(a_{n_i}))$
- для любого отношения $R_j \in \sigma$ и любых элементов $a_1, \ldots, a_{m_j} \in A$: $R_j(a_1, \ldots, a_{m_j}) \Leftrightarrow R_j(\varphi(a_1), \ldots, \varphi(a_{m_j}))$

При этом само отображение называется изоморфизмом системы A на систему B.

3 з раздел

3.1 Отношение эквивалентности

Def: Пусть $M \neq \varnothing$. Тогда отношением R на множестве M называют любое подмножество $R \subseteq M \times M$. $(a,b) \in R \to aRb$

Def: отношение R называется отношением эквивалентности, если оно:

- 1. Рефлективно aRa
- 2. Симметрично $aRb \Leftrightarrow bRa$
- 3. Транзитивно $aRb, bRc \Rightarrow aRc$

Обозначается $\widetilde{R}, a \sim b$

Def: $a \in M; R(a) = \{b \in M | b \sim a\}$ - класс эквивалентности.

$$R(a) \cap R(b) \neq \varnothing \Rightarrow R(a) = R(b)$$

Любое отношение эквивалентности разбивает множество M на непересекающиеся классы эквивалентности (такое разбиение называется факторизацией).

Def: Фактормножество — множество всех классов эквивалентности для заданного отношения эквивалентности R на множестве M.

Def: $M \to M/R$ - отображение факторизации; M/R - факториножество по отношению R

Def: Отношение эквивалентности называется согласованным с операцией *, если $a \sim a', b \sim b' \Rightarrow a * b \sim a' * b'$

3.2 Кольцо вычетов \mathbb{Z}_n

$$a \equiv b \pmod{n} \Leftrightarrow (a - b) : n, n \in N$$

Def: $R(a) = [a]_n = [a] = \{b \in \mathbb{Z} | (a-b) : n\}$ - вычет а по модулю

n

$$\mathbb{Z}_n = \{[0]_n, [1]_n, ..., [n-1]_n\}$$

Th: Кольцо \mathbb{Z}_n является полем тогда и только тогда, когда $n \in \mathbb{P}$

Док-во:

$$n = km$$
 $1 < k, m < n$

$$[k]_n \neq [0]_n$$

$$[m]_n \neq [0]_n$$

 $[k]_n \cdot [m]_n = [km]_n = [n]_n = [0]_n \Rightarrow n$ составное, \mathbb{Z}_n не поле, т.к. имеет делители нуля.

 $n \in \mathbb{P}$ $[a]_n \neq [0]_n$

Переберем все элементы $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$

 $[0]_n, [a]_n, [2a]_n, \dots, [(n-1)a]_n$ - докажем от противного, что все они различны

Допустим, что $[ka]_n = [ma]_n, 0 \le k < m \le n-1$

 $[(m-k)a]_n = [0]_n \Rightarrow (m-k)a : n, \text{ при этом } (m-k) : n \text{ - не может},$ а a : n тоже не может.

Следовательно, допущение неверное и все элементы различные.

 $|\mathbb{Z}_n|=n\Rightarrow$ где-то в (*) есть $[1]_n\Rightarrow [a]_n$ обратим, тогда \mathbb{Z}_n - поле.

Def: $\langle \mathbb{Z}_n, +, \cdot \rangle$ - кольцо вычетов

Арифметика в кольце вычетов: $[a]_n + [b]_n = [a+b]_n$ и $[a]_n [b]_n = [ab]_n, \forall a,b \in Z$

Ex: арифметика в кольце вычетов \mathbb{Z}_5 :

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Таблица 3.1 — Таблица Келли для сложения

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Таблица 3.2 — Таблица Келли для умножения

Примечание: в
$$\mathbb{Z}_p (a+b)^p = a^p + b^p$$

 $(a+b)^p = \sum_{k=0}^p C_p^k a^k b^{p-k}$

$$0 < k < p$$
 $C_p^k = \frac{p!}{k!(p-k)!} = \frac{(p-k+1)\dots(p-1)p}{k}$: p Малая Th Ферма: $a^p \equiv a \pmod{p}, p \in \mathbb{P}, a \in Z$ $a^{p-1} \equiv 1 \pmod{p}$, $\mathrm{HOД}(a,p) = 1$ Док-во: $\mathrm{Hадо}\ \mathrm{доказать},\ \mathrm{что}\ \mathrm{B}\ \mathbb{Z}_p \quad [a^p] = [a]$ $[a^p] = \underbrace{[a] \cdot \ldots \cdot [a]}_p = [a]^p = \underbrace{([1] + \ldots + [1])^p}_a = \underbrace{[1]^p + \ldots + [1]^p}_a = \underbrace{[1] + \ldots + [1]}_a$

3.3 Линии на плоскости \mathbb{Z}_p^2

Аксиомы конечной геометрии

- Через любые 2 точки проходит одна и только одна прямая
- Для каждой прямой и не принадлежащей ей точки существует ровно одна прямая, не пересекающаяся с этой прямой
- Существует три точки, не лежащие на одной прямой

Def: Прямая это множество точек (x,y), удовлетворяющее уравнению ax+by=c, где хотя бы один из коэфициентов $a,b\neq 0$

Прямые на плоскости \mathbb{Z}_2^2

1.
$$1x + 0y = 0$$
 $1x = 0 \cdot AB$

2.
$$1x + 0y = 1$$
 $1x = 1 \cdot CD$

3.
$$1x + 1y = 0$$
 $1x + 1y = 0 \cdot AD$

4.
$$1x + 1y = 1$$
 $1x + 1y = 1 \cdot CB$

5.
$$0x + 1y = 1$$
 $1y = 0 \cdot AC$

6.
$$0x + 1y = 1$$
 $1y = 1 \cdot BD$

Рисунок 3.1

4 4 раздел

4.1 Группа подстановок. Проверка аксиом

Def: Биективное преобразование π непустого мн-ва $M \neq \varnothing$ называется подстановкой мн-ва M

Def: Композиция перестановок $\pi, \sigma \in S(M)$ - это $(\pi \circ \sigma)(i) = \pi(\sigma(i)), i \in X_n$, также называется произведением подстановок.

Th: мн-во всех подстановок S(m) образует группу отн-но композиции

Д-во:

- 1. ассоциативность $\forall \pi, \sigma, \tau \in S_n \Rightarrow \pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$ $(\pi \circ (\sigma \circ \tau))(x) = (\sigma \circ \tau)(\pi(x)) = \tau((\pi(\sigma(x)))$ $u((\pi \circ \sigma) \circ \tau)(x) = \tau((\pi \circ \sigma)(x)) = \tau((\pi(\sigma(x)))$
- 2. Наличие нейтрального элемента

$$\pi_e = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{array}\right)$$

3. $\forall \pi \in S(M) \exists \pi^{-1} : \pi \circ \pi^{-1} = \pi_e$

4.2 Разложение на циклы и на транспозиции

Def: Подстановку π называют циклом длины s, если мн-во ее перемещаемых символов можно занумеровать так, что

$$T_{\pi} = \{i_1, i_2, \dots, i_s\}: \pi(i_1) = i_2, \pi(i_2) = i_3, \dots, \pi(i_s) = i_1$$

Th: Порядок цикла длины s равен s

Def: Циклы α и β называются независимыми, если мн-ва их перемещаемых символов не пересекается

Th: Пусть π - нетождественная подстановка. Тогда π представима в виде произведения попарно независимых циклов $\sigma_1\sigma_2\ldots\sigma_k$, и это разложение единственно с точностью до порядка сомножителей, такое пр-е называется каноническим разложением этой подстановки.

Док-во индукцией по числу нетревиальных орбит.

Т.к. π нетождественная, то есть по крайней мере одна нетревиальная орбита $\{i_1,i_2,\ldots,i_s\}$ $\sigma_1=(i_1,i_2,\ldots,i_s)$

Если других нетривиальных орбит нету, то все доказано.

$$T_{\sigma_1} \subset T_{\pi} \quad \pi_1 = \pi \cdot \sigma_1^{-1} \quad i \in T_{\sigma_1}$$

 $i=i_l\in\{i_1,i_2,\ldots,i_s\}$ $\pi_1(i)=\pi(i_l)=(\pi\cdot\sigma_1^{-1})(i_l)=\pi(\sigma_1^{-1}(i_l))=\pi(i_{l-1})\Rightarrow$ все символы T_{σ_1} неподвижны относительно подстановки π_1 .

С другой стороны, если $i \notin T_{\sigma_1}$

 $\pi_2(i) = \pi(\sigma_1^{-1}(i)) = \pi(i) \Rightarrow$ на всех остальных символах действие π_1 совпадает с действием π

 $T_{\pi_1} = T_{\pi} \backslash T_{\sigma_1}$ произошло распадение на нетревиальные орбиты, число которых, на единицу меньше, чем у исходной подстановки

 $\pi_1 = \sigma_k \dots \sigma_2$ - произведение независимых циклов

Т.к. $\pi=\pi_1\cdot\sigma_1$ $T_{\sigma_1}\cap T_{\pi_1}=\varnothing\Rightarrow\pi=\sigma_k\ldots\sigma_2\cdot\sigma_1$ и является искомым

Пусть $\pi = \tau_m \cdot \tau_{m-1} \cdot \ldots \cdot \tau_1$ - другое разложение

 $i_1 \in T_\pi \Rightarrow i_1 \in T_{ au_1}$, циклы независимы \Rightarrow их можно переставить $i_1 \in T_{ au_1}$

$$\tau_1(i_1) = \pi(i_1) = \sigma_1(i_1) = i_2$$

$$\tau_1(i_2) = \pi(i_2) = \sigma_1(i_2) = i_3$$

и т.д.

$$\tau_1(i_s) = \pi(i_s) = \sigma_1(i_s) = i_1 \Rightarrow \tau_1 = \sigma_1$$

$$\pi = \pi_1 \cdot \sigma_1 = \pi_1 \cdot \tau_1$$

С π_1 и т.д. аналогично \Rightarrow разложение единственно.

Таким образом, существует взаимно однозначное соответствие между орбитами, на которые разбивается множество M, и циклами, на произведение которых оно раскладывается.

Def: Циклы длины 2 называют транспозицией

Th: $\forall \pi \in S_n$ раскладывается в пр-е транспозиций.

Док-во:
$$\pi = \sigma_k \cdot \ldots \cdot \sigma_1$$

$$\sigma$$
 - цикл $\sigma = (i_1, i_2, \dots, i_s) = (i_1, i_2)(i_1, i_3) \dots (i_1, i_s)$ $(1243) = (12)(14)(13)$

Рисунок 4.1

Замечание: такое разложение не является единственным.

Ex:
$$(12)(13)(12) = (23)$$

Th: $\forall \pi \in S_n$ можно разложить на n-s транспозиций, где n - кол-во всех символов, s - число независимых циклов

Док-во:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} = (j_1 j_2 \dots j_{k_1})(\dots)$$
 - разложение на s независимых циклов

По предыдущей лемме каждый цикл раскладывается в произведение k-1 транспозиций $\Rightarrow \pi$ раскладывается на $(k_1-1)+$ $(k_2-1)+\ldots+(k_s-1)=\underbrace{(k_1+k_2+\ldots+k_s)}_n-\underbrace{(1+\ldots+1)}_s=n-s$ транспозиций (циклы длины 1 учитываем).

4.3 Декремент и четность подстановки, четность произведения, подгруппа четных подстановок

Def: Декремент подстановки $d(\pi) = n - s$, где n - число всех символов, s - число независимых циклов.

Def: Знак подстановки $sign(\pi) = (-1)^{d(\pi)}$. Подстановка четная, если $sign(\pi) = 1$ и нечетная в обратном случае.

Def: Случай, когда i < j, но $\pi(i) > \pi(j)$ называется инверсией, или беспорядком.

Th: Умножение на транспозицию меняет знак подстановки на противоположный.

$$\pi \in S_n \quad (i,j) \in S_n \quad d(\pi\tau) = d(\pi) \pm 1$$

Пусть $\pi = \sigma_k \dots \sigma_1$ - разложение в произведение k независимых циклов, в том числе тривиальных $(i) = \sigma \quad T_\sigma = \{i\}$

I.
$$i,j$$
 в одной орбите $i,j \in \{k_1,k_2,\ldots,k_3\}$ $\sigma = (k_1,k_2,\ldots,k_s)$ $i,j \in T_\sigma$ $i=k_1,j=k_m$ $(i,j)(k_1,\ldots,k_m,\ldots,k_s) = (k_1,k_2,\ldots,k_{m-1})\cdot(k_m,\ldots,k_s) \Rightarrow d(\pi\tau) = d(\pi)-1$ II. i,j в разных орбитах $(i_1,i_2,\ldots,i_s)(j_1,j_2,\ldots,j_s)$ $(i,j)(i_1,i_2,\ldots,i_s)(j_1,\ldots,j_s) = (i_1,i_2,\ldots,i_s,j_1,\ldots,j_s) \Rightarrow d(\tau\pi) = d(\pi)+1$

Следствия:

- 1. Декремент подстановки имеет ту же четность, что и число инверсий.
- 2. $sign(\sigma\pi) = sign(\sigma) \cdot sign(\pi)$

Th: Множество всех четных подстановок образует подгруппу в S_n порядка $\frac{n!}{2}$ (при n>1)

Def: Группа всех четных подстановок степени n называется знакопеременной и обозначается A_n

5 5 раздел

5.1 Арифметика матриц: сложение, умножение, транспонирование

Def:
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}. A + B = (a_{ij} + b_{ij})_{m \times n}$$

Def: $A = (a_{ik})_{m \times s}, B = (b_{kj})_{s \times n}. A \cdot B = (c_{ij})_{m \times n}, c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj}$
Def: A^T - транспонированная матрица $A. A = (a_{ij})_{m \times n}, A^T = (a_{ij})_{n \times m}$

Св-ва транспонирования:

1.
$$(A^T)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(\lambda \cdot A)^T = \lambda \cdot A^T$$

$$4. \ (A \cdot B)^T = B^T \cdot A^T$$

5.2 Кольцо квадратных матриц над полем

Th: Пусть $\langle R,+,\cdot\rangle$ - асооциативное кольцо, $n\in N$. Тогда $\langle M_n(R),+,\cdot\rangle$ - кольцо матриц.

Лемма: Пусть $\langle R, + \rangle$ - абелева группа. Тогда $\langle M_n(R), + \rangle$ - абелева группа.

Док-во:

1.
$$(A+B)+C = ((a_{ij}+b_{ij})+c_{ij}) = (a_{ij}+(b_{ij}+c_{ij})) = A+(B+C)$$

2.
$$A + B = (a_{ij} + b_{ij}) = (b_{ij} + a_{ij}) = B + A$$

$$3. \bigcirc = (0)_{n \times n}$$

$$4. -A = (-a_{ij})_{n \times n}$$

Лемма:
$$(A + B) \cdot C = A \cdot C + B \cdot C$$

 $A, B \in M_{m \times s}(R)$ $C \in M_{s \times n}(R)$
 $\sum_{k=1}^{n} (a_{ik} + bik) c_{kj} = \sum_{k=1}^{n} (a_{ik} c_{kj} + b_{ik} c_{kj}) = \sum_{k=1}^{n} a_{ik} c_{kj} + \sum_{k=1}^{n} b_{ik} c_{kj} = f_{ij}$
 $C \cdot (A + B) = C \cdot A + C \cdot B$

Лемма: Пусть $\langle S, + \rangle$ - коммутативная полугруппа и $X = (x_{ij})_{m \times n}$. Тогда

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij}$$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ & \dots & & \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

Лемма: $A = (a_{ij})_{m \times s}, B = (b_{ij})_{s \times t}, C = (c_{ij})_{t \times n}$. (AB)C = A(BC)

Док-во:

$$D=AB$$
 $F=BC$ $G=(AB)\cdot C$ $H=A\cdot (BC)$ $g_{ij}=\sum_{k=1}^t a_{ik}c_{kj}=\sum_{k=1}^t (\sum_{l=1}^s a_{il}b_{lk})c_{kj}=\sum_{k=1}^t \sum_{l=1}^s (a_{il}b_{lk})c_{kj}=$ (по лемме бухгалтера) $\sum_{l=1}^s \sum_{k=1}^t a_{il}(b_{lk}c_{kj})=\sum_{l=1}^s a_{il}\sum_{k=1}^t (b_{lk}c_{kj})=\sum_{l=1}^s a_{il}f_{lj}=h_{ij}$ По этим леммам $M_n(R)$ - ассоциативное кольцо.

5.3 Перестановочные матрицы

Def: Перестановочные, или коммутирующие, матрицы - матрицы, для которых выполняется рав-во $A\cdot B=B\cdot A$

Ex:
$$\begin{pmatrix} 2 & 3 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 3 \\ 4 & 3 \end{pmatrix}$$

5.4 Разложение квадратной матрицы на произведение диагональной и трансвекции

Def: Трансвекция $T_{rs}(\lambda)$ - квадратная матрица, содержащая единицы на главной диагонали, ненулевое число λ на позиции $(r,s), r \neq s$ и нули в остальных ячейках.

Th: При умножении матрицы A на трансвекцию $T_{rs}(\lambda)$ слева к r-той строке матрицы A прибавляется s-ая строка, умноженная на λ

При умножении матрицы A на трансвекцию $T_{rs}(\lambda)$ справа к s-тому столбцу матрицы A прибавляется r-й столбец, умноженный на λ

Th: $T_{rs}(-\lambda)$ является обратным эл-том по умножению к $T_{rs}(\lambda)$, т.е. $T_{rs}(\lambda) \cdot T_{rs}(-\lambda) = E$

Th: $\forall A \in M_n(F) \exists T_1, T_2, \dots, T_s, D : A = T_1 T_2 \dots T_k D T_{k+1} \dots T_s,$ где D - диагональная матрица

5.5 Блочные матрицы

Def: матрица, имеющая более чем одну строку или столбец, может быть разбита на блоки - подматрицы прямыми, проведен-

ными между строками и (или) столбцами. Полученая таким образом матрица называется блочной.

Def: блочные матрицы одинакового размера и одинакового разбиения на блоки называются конформными

Например, матрица A может быть разбита на блоки следующим образом: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$ Обозначим $P = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \ \mathcal{Q} = \begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix}, \ R = (a_{31}), \ \mathcal{S} = (a_{32} \, a_{33}).$ В этих обозначениях матрица A примет вид: $A = \begin{pmatrix} P & \mathcal{Q} \\ R & \mathcal{S} \end{pmatrix}$.

Рисунок 5.1

6 6 раздел

6.1 Определители квадратных матриц и их св-ва

Def: Определителем матрицы $A = (a_{ij})_{n \times n} \in M_n(F)$ называется элемент поля F, который вычисляется по формуле $|A| = det(A) = \sum_{\sigma \in S_n} sign\sigma \cdot a_{1,\sigma 1} \cdot a_{2,\sigma 2} \cdot \ldots \cdot a_{n,\sigma n}$ (Сумма по всем подстановками из S_n)

Th: При умножении строки матрицы на число определитель умножается на это число.

Док-во:
$$det(A) = \sum_{\sigma \in S_n} sign\sigma \cdot a_{1,\sigma 1} \cdot \ldots \cdot (\lambda \cdot a_{k,\sigma k}) \cdot \ldots \cdot a_{n,\sigma n} = \lambda \cdot det(A)$$

Следствия:

1. Если одна из строк(один из столбцов) матрицы состоит из нулей, то определитель равен 0.

2.
$$A \in M_n(F), \lambda \in F, det(\lambda \cdot A) = \lambda^n \cdot det(A)$$

Лемма: если 2 матрицы различаются только r-ой строкой, то матрица, полученная сложением r-х строк этих матриц с сохранением всех остальных эл-тов, имеет определитель равный сумме определителей исходных матриц. detC = detA + detB

Док-во:

$$det(C) = \sum_{\sigma \in S_n} sign\sigma \cdot a_{1,\sigma 1} \cdot \ldots \cdot (a_{r,\sigma r} + b_{r,\sigma r}) \cdot \ldots \cdot a_{n,\sigma n} = \sum_{\sigma \in S_n} sign\sigma \cdot a_{1,\sigma 1} \cdot \ldots \cdot a_{r,\sigma r} \cdot \ldots \cdot a_{n,\sigma n} + \sum_{\sigma \in S_n} + sign\sigma \cdot a_{1,\sigma 1} \cdot \ldots \cdot b_{r,\sigma r} \cdot \ldots \cdot a_{n,\sigma n} = det(A) + det(B)$$

Лемма: если в матрице 2 строки(столбца) совпадают, то ее определитель равен 0.

Док-во:

Пусть совпадают r-тая и s-тая строки

$$au$$
 - транспозиция $(r,s) \in S_n$

$$arphi_{ au}:\sigma\longmapsto\sigma\cdot au$$
 - биекция

$$sign(\sigma\tau) = -sign\sigma$$

$$det(A) = \sum_{\sigma \in S_n} sign\sigma \cdot a_{1,\sigma 1} \cdot \ldots \cdot a_{r,\sigma r} \cdot \ldots \cdot a_{s,\sigma s} \cdot \ldots \cdot a_{n,\sigma n} = \sum_{\sigma \in S_n} \ldots - \sum_{\sigma \in S_n \setminus A_n} \ldots = \sum_{\sigma \in S_n} (a_{1,\sigma 1} \cdot \ldots \cdot a_{r,\sigma r} \cdot \ldots \cdot a_{s,\sigma s} \cdot \ldots \cdot a_{n,\sigma n} - a_{1,\sigma 1} \cdot \ldots \cdot a_{r,\sigma r} \cdot \ldots \cdot a_{s,\sigma s} \cdot \ldots \cdot a_{n,\sigma n}) = 0$$

Следствие: при перестановке местами двух строк матрицы ее определитель меняет знак.

В A переставили строки r и $s \Rightarrow$ получили B.

Лемма: при добавлении к строке матрицы другой строки, умноженной на некоторое число, определитель не меняется.

Док-во:

$$A = (a_{ij}), B = (b_{ij}) \in M_n(F)$$
 $b_{rj} = a_{rj} + \lambda \cdot a_{sj}$ $C = (c_{ij})$ $D = (d_{ij})$ $c_{rj} = \lambda \cdot a_{sj}$ $d_{rj} = a_{sj}$ $c_{ij} = d_{ij} = a_{ij}$ $i \neq r$ $det(D) = 0$ (т.к. 2 одинаковые строки) $det(C) = \lambda \cdot det(D)$ $det(B) = det(A) + det(C) = det(A)$

Лемма: Определитель треугольной матрицы равен пр-ю элтов на главной диагонали

Док-во для верхнетреугольной:

$$\sigma \in S_n$$
 для всех $i = 1, \ldots, n$ $i \leq \sigma(i)$

 $\sigma(n)=n\Rightarrow\sigma(n-1)=n-1\ldots\sigma(1)=1\Rightarrow\sigma\text{ - тождественная}$ подстановка

Тогда для любой нетождественной подтановки существует такое $i:i>\sigma(i)$ $a_{i,\sigma(i)}=0$ - в сумме для определителя будет только один ненулевой элемент $a_{11}\cdot a_{22}\cdot\ldots\cdot a_{nn}$ - произведение элементов на глвной диагонали.

Следствие:
$$D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$
 $T = T_{rs}(\lambda) \quad det(D) = \lambda_1 \cdot \dots \cdot \lambda_n \quad det(T) = 1 \quad det(E) = 1$
Th: $A, B \in M_n(F)$. Тогда $det(AB) = det(A) \cdot det(B)$
Док-во:
$$1) \ A = diag(\lambda_1, \dots, \lambda_n)$$
 $det(AB) = \lambda_1 \cdot \dots \cdot \lambda_n \cdot det(B)$

Каждая строка B умножается на соответствующий λ_i

2)
$$A = T_{rs}(\lambda)$$
 $det(A) = 1$ $det(AB) = detB = 1 \cdot detB = det(A) \cdot det(B)$

3) A - произвольная матрица

$$A \cdot B = T_1 \cdot \ldots \cdot T_k \cdot D \cdot T_{k+1} \cdot \ldots \cdot T_s \cdot B$$

$$det(A \cdot B) = det(T_1 \cdot \ldots \cdot T_k \cdot D \cdot T_{k+1} \cdot \ldots \cdot T_s \cdot B) = det(T_1 \cdot \ldots \cdot T_k \cdot D) \cdot det(T_{k+1} \cdot \ldots \cdot T_s \cdot B) = det(A) \cdot det(B)$$

$$Th: \forall A \in M_n(F) \Rightarrow det(A^T) = det(A)$$

$$(A_1 \cdot \ldots \cdot A_s)^T = A_s^T \cdot \ldots \cdot A_1^T \quad A = T_1 \cdot \ldots \cdot T_k \cdot D \cdot T_{k+1} \cdot \ldots \cdot T_s$$

$$A^T = T_s^T \cdot \ldots \cdot T_{k+1}^T \cdot D^T \cdot T_k^T \cdot \ldots \cdot T_1^T \Rightarrow det(A^T) = det(D^T) = det(D) = det(A)$$

Следствие: если в каждом доказанном утверждении заменить слово строка на столбец, то утверждение останется верным.

6.2 Обратная матрица

Def: $A \in M_n(F)$. A^{-1} - обратная матрица, если $A^{-1} \cdot A = A \cdot A^{-1} = E$.

Def: матрица, которая получается при вычеркивании r-той строки и s-того столбца называется дополнительной к элементу a_{rs} , а её определитель называется минором. $\overset{\sim}{A_{rs}}=(-1)^{r+s}\cdot M_{rs}$ - алгебраическое дополнение.

Th: $A \in M_n(F)$, $det(A) \neq 0 \Rightarrow A^{-1} = \frac{1}{det(A)} \cdot \hat{A}$, где \hat{A} - транспонированная матрица алгебраических дополнений к матрице A.

Док-во:
$$A \cdot X = E$$

 X_1, X_2, \dots, X_n - столбцы X, E_1, E_2, \dots, E_n - столбцы E.

Тогда уравнение распадается на $AX_1=E_1,AX_2=E_2,\dots,AX_n=E_n$ (система уравнений $AX_j=E_j$)

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \dots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} - \text{ Ha j-tom Mecte.}$$

$$x_{ij} = \frac{\overset{\sim}{A_{ji}}}{\det A} \quad A^{-1} = \frac{\tilde{A}}{\det(A)}$$
$$A \cdot X = E \quad \det A \neq 0 \quad X \cdot A = E$$
$$X = A^{-1}E \quad X = EA^{-1}$$

Def: Матрица A называется вырожденной, если det(A) = 0 (невырожденной в остальных случаях)

Th(Теорема Крамера): если A невырожденная, то система $A\cdot x=b(x,b$ - столбцы) имеет единственной решение, которое может быть вычислено по формуле $x_i=\frac{det A_i}{det A}$, где A_i - матрицы, полученные из A заменой i-го столбца на столбец b.

лученные из
$$A$$
 заменой 1-го столоца $\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ & \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n \\ \rightarrow D_x = \stackrel{\sim}{b} \end{cases}$

$$A \cdot x = b \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Будем последовательно умножать слева на трансвекции обе части матричного уравнения, пока матрица A не станет диагональной (элементарные преобразования).

$$\begin{array}{c} :d_{11}\\ :d_{22}\\ :d_{22}\\ :d_{nn} \end{array} \left\{ \begin{array}{cccc} d_{11}x_1 & =& =& \stackrel{\sim}{b_1}\\ d_{22}x_2 & =& \stackrel{\sim}{b_2}\\ & & & \\$$

$$x_i=b_i$$
 $det(E)=1$ $x_2=b_2$ 1 b_1 \mathbb{O} $x_n=b_n$ $det(A_i)=$ b_i $x_n=b_n$ $det(A_i)=$ d

6.3 След матрицы

Def: tr(A) - след квадратной матрицы, $tr(A) = \sum_{i=1}^n a_{ii}$ Свойства:

- $1. \ tr(A) = tr(A^T)$
- $2. \ tr(A+B) = tr(A) + tr(B)$
- $3. \ tr(AB) = tr(BA)$

7 7 раздел

7.1 Поле комплексных чисел \mathbb{C} : определение, единственность, существование

Def: \mathbb{C} :

1. Содержит подполе, изоморфное ℝ

$$2. \ \exists i \in \mathbb{C} : i^2 = -1$$

3. Минимальное среди полей, удволетворяющих условиям (1) и (2)

Th: Поле $\mathbb C$ существует и единственно с точностью до изоморфизма

Док-во:

$$a,b \in R$$

$$z = \left(egin{array}{cc} a & -b \\ b & a \end{array} \right) - \mbox{матричная форма}$$

Замкнутость относительно + очевидна

Относительно умножения:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} ac - bd & -ad - bc \\ bc + ad & ac - bd \end{pmatrix}$$

$$\begin{pmatrix} c & -d \\ d & c \end{pmatrix} \cdot \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} ac - bd & -ad - bc \\ bc + ad & ac - bd \end{pmatrix} - \text{коммута-}$$
ТИВНОСТЬ
$$\begin{vmatrix} a & -b \\ b & a \end{vmatrix} = a^2 + b^2 = 0$$

$$z^{-1} = \frac{1}{a^2 + b^2} \cdot \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 — каждый ненулевой элемент обратим

Доказательство остальных аксиом очевидно.

$$R = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \middle| a \in R \right\}$$

Изоморфизм $\varphi: R \to R$

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \longmapsto a$$

$$-1 \longmapsto \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -E$$

$$i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad i^2 = -1 = -E$$

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) = -E$$

Изоморфизм сохраняет структуру множеств

Пусть $C' \not\approx C$ не изоморфно, $(i')^2 = -1$

$$\begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix} \quad \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

$$\begin{pmatrix} a' & 0 \\ 0 & a' \end{pmatrix} + i' \cdot b' \longleftrightarrow \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + i \cdot b$$

$$a + bi \longmapsto a' + b'i'$$

Тогда $C' \approx C$

 $z=a+b\cdot i$ - алгебраическая форма комплексного числа

Re(z)=a - вещественная часть

Im(z)=b - мнимая часть

 $0 = 0 + 0 \cdot i$ - ноль

 $z=r(cos(arphi)+i\cdot sin(arphi))$ - геометрическая форма записи комплексного числа, $|z|=r=\sqrt{a^2+b^2}$

$$z_1 = z_2 \Leftrightarrow Re(z_1) = Re(z_2), Im(z_1) = Im(z_2)$$

7.2 Геометрическое описание сложения и умножения

На плоскости, где каждое комплексное число $z=a+b\cdot i$ отображено как вектор, идущий от начала координат (0;0) до точки (a;b), сложение комплексных чисел сводится к сложению соответствующих векторов по правилу паралелограмма.

Рисунок 7.1 — Геометрическое описание сложения комплексных чисел

При умножении комплексных чисел происходит поворот и растяжение:

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

7.3 Формула Муавра, извлечение корней

Th: $r\cdot(cos\phi+i\cdot sin\phi)=r\cdot e^{i\phi}$ - экспоненциальная форма комплексного числа

Следствие(формула Муавра): $(r(cos\varphi+isin\varphi))^n=r^n(cosn\phi+isinn\phi)$

Извлечение корней:
$$\sqrt[n]{z}=\sqrt[n]{r}(cos\frac{\varphi+2\pi k}{n}+isin\frac{\varphi+2\pi k}{n}),$$
 где $z=a+bi,$ $r=\sqrt{a^2+b^2}=|z|,$ $k=0,1,\ldots,n-1$

Первообразные корни из 1:

 $arepsilon_k$ - корни из единицы

$$\varepsilon_k = cos \frac{2\pi k}{n} + i sin \frac{2\pi k}{n}$$

$$\mathbb{C}_n = \{ \varepsilon_k | k = 0, 1, \dots n - 1 \}$$

Def: Корень из 1 называется первообразным, сели остальные эл-ты из \mathbb{C}_n представимы в виде его степени

8 8 раздел

8.1 Кольцо многочленов над полем

Def:многочлен f от переменной x над кольцом \mathbb{R} :

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k, a_i \in \mathbb{R}$$

R[x] - все многочлены над кольцом $\mathbb R$

Th: Пусть R - ассоциативное кольцо, тогда

- 1. $\langle R[x], +, \cdot \rangle$ ассоциативное кольцо
- 2. Если R коммутативно, то и R[x] коммутативное кольцо
- 3. Если R кольцо с единицей, то и R[x] кольцо с единицей.

Лемма: Пусть R - ассоциативное кольцо, заданы 2 многочлена $f,g\in R[x],$ тогда:

- 1. $deg(f+g) \leq max\{degf, degg\}, \ degf$ степень многочлена
- 2. $deg(f \cdot g) \leq degf + degg$
- 3. Если R кольцо без делителей нуля, то $deg(f\cdot g)=degf+degg$

Следствие: Если R - поле, то $R[x]^*$ - множество всех обратимых эл-тов: все многочлены нулевой степени

8.2 Делимость в кольце многочленов

Th: Пусть даны $f,g\in F[x],g\neq 0$ над полем F, тогда $\exists q,r\in F[x]:f=gq+r,degr< degg(q$ и г определены однозначно, q - неполное частное, r - остаток)

Def: Ненулевой многочлен $g \neq 0$ делит многочлен $\mathrm{f}(g|f,f \vdots g),$ если f можно представить в виде f-qg

Свойства делимости:

- 1. $q|f,g|h \Rightarrow g|(f+h)$
- 2. $q|f \Rightarrow \forall h \in F[x]g|(hf)$
- 3. $degg = 0 \Rightarrow \forall f \in F[x]g|f$
- 4. $degh = 0, g|f \Rightarrow (gh)|f$

Th(Теорема Безу): Остаток от деления многочлена f на двучлен (x - c) равен значению многочлена f в точке с.

8.3 НОД многочленов алгоритм Евклида

Def: Общим делителем многочленов f(x) и g(x) называется такой d(x), что f(x):d(x), g(x):d(x)

Def: HOД(gcd) многочленов f и g называется их общий делитель с наибольшей степенью, другое обозначение - (f,g)

Лемма: пусть r - остаток от деления f на g, тогда множество общих делителей f и g совпадает с мноежством общих делителей g и r, в частности d=(f,g)=(g,r)

Док-во: Пусть $h|g,h|r\Rightarrow h|f(f=gq+r),$ обратно $h|f,h|q\Rightarrow h|r(r=f-qg)$

Если f:g $d = f \cdot 0 + g \cdot 1$

Если $f \not g$ поделим f на g с остатком $f = gq_1 + r_1$. Затем g поделим на $r_1 : g = q_2r_1 + r_2$. Затем r_1 поделим на r_2 и т.д.

$$r_{n-2} = g_n r_{n-1} + r_n$$
 $r_{n-1} = q_{n+1} r_n$ без остатка.

Тогда $r_n=(r_{n-1},r_n)=(r_{n-2},r_{n-1})=\ldots=(g,r_1)=(f,g)$ - последний ненулевой остаток и будет НОДом (алгоритм Евклида)

Th: $f,g \in F[x], g \neq 0$, тогда $\exists gcd(f,g)$, который может быть представлен в виде

$$d = fu + gv, u, v \in F[x]$$

Более того, если degf, degg > 0, то и и v можно выбрать так, что degu < degg, degv < degf

8.4 Схема Горнера

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$f(x) = (x - c)(b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0) + r$$

$$x^n : a_n = b_{n-1} \quad b_{n-1} = a_n$$

$$x^{n-1} : a_{n-1} = b_{n-2} - cb_{n-1} \quad b_{n-2} = a_{n-1} + cb_{n-1}$$

$$x^{n-2} : a_{n-2} = b_{n-3} - cb_{n-2} \quad b_{n-3} = a_{n-2} + cb_{n-2}$$

$$\dots$$

$$x^1 : a_1 = b_0 - cb_1 \quad b_0 = a_1 + cb_1$$

$$x^0 : a_0 = r - cb_0 \quad r = a_0 + cb_0$$

•	\mathbf{a}_n	a_{n-1}	 a_1	a_0
c	$b_{n-1} = a_n$	$b_{n-2} = a_{n-1} + c \cdot b_{n-1}$	 $b_0 = a_1 + c \cdot b_1$	$\mathbf{r} = \mathbf{a}_0 + c \cdot b_0$

Таблица 8.1 — Деление многочлена f(x) на (x - c)

Ex:

$$f = 2x^6 - 11x^4 - 19x^3 - 7x^2 + 8x + 5$$
 Найти $f(3)$

•	2	0	-11	-19	-7	8	5
3	2	$6 = 0 + 2 \cdot 3$	7 = -11 + 3.6	2	-1	5	20=f(3)

Таблица 8.2

8.5 Приводимые и неприводимые многочлены

Def: Пусть $f \in F[x], degf > 0$. Такой многочлен называется неприводимым над F, если из его разложения на многочлены: $f = u \cdot v, u, v \in F[x]$ следует, что degu = 0 или degv = 0

8.6 Аналог основной теоремы Арифметики

Th: $f \in F[x], f \neq 0$. Тогда $\exists \alpha \in F$ и неприводимые многочлены p_1, p_2, \ldots, p_r со старшими коэффициентами 1, что f представим в виде: $f = \alpha p_1 p_2 \ldots p_r$, и такое разложение единственно с точностью до порядка сомножителей

Док-во:

f - неприводим $f=af_1$ lpha=a a- старший коэффициент f

$$f$$
 - приводим $f=\alpha\cdot f_1\cdot f_2=\ldots=\alpha p_1p_2\ldots p_r$ Единственность: пусть не так: $f=ap_1p_2\ldots p_r$ $f=bq_1q_2\ldots q_s$ $a=b=\alpha$ $\alpha(f-f)=\alpha(p_1p_2\ldots p_r-q_1q_2\ldots q_s)=0$ $F-$ поле \Rightarrow нет делителей нуля и $\alpha\neq 0$ $\Rightarrow p_1p_2\ldots p_r=q_1q_2\ldots q_s$ $r\leq s$ $p_r|q_1q_2\ldots q_s$ q_1,q_2,q_s- неприводимые $\Rightarrow p_r|q_j$ $j=\{1,\ldots,s\}$ Пусть $j=s$ $p_r|q_s$ $q_s=u\cdot p_r$ $degu=0$ т.к. q_s неприводим $u=1$ $q_s=p_r$ $p_r(p_1p_2\ldots p_{r-1}-q_1q_2\ldots q_{s-1})=0$ аналогично \vdots $p_1=q_1\Rightarrow$ единственно

8.7 Алгебраически замкнуты поля

Def: Поле F называется алгебраически замкнутым, если каждый многочлен ненулевой степени с коэффициентами из F[x] имеет в этом поле корень.

8.8 Основная теорема алгебры

Th: Поле \mathbb{C} алгебраически замкнуто

Следствие 1: $\forall f(x) \in \mathbb{C}[x]$ имеет ровно n корней, где n = deg(f(x)), т.е. f(x) разлагается над \mathbb{C} на линейные сомножители.

Следствие 2: $\forall f(x) \in \mathbb{R}[x]$ ненулевой степени раскладывается над \mathbb{R} в произведение многочленов степени не выше второй

Следствие 3: Всякий многочлен из $\mathbb{R}[x]$ нечетной степени имеет хотя бы 1 вещественный корень

8.9 Теорема Виета

Th:
$$f(x) = a_n x^n + \ldots + a_1 x + a_0$$

$$f(x) = a_n (x - c_1)(x - c_2) \ldots (x - c_n) = a_n (x^n + x^{n-1}(-c_1 - c_2 - \ldots - c_n) + x^{n-2}(c_1 c_2 + c_1 c_3 + \ldots + c_{n-1} c_n) + \ldots + (-1)^n (c_1 c_2 \ldots c_n))$$
Тогда:

$$\begin{cases} c_1 + c_2 + \ldots + c_n = -\frac{a_{n-1}}{a_n} \\ c_1 c_2 + c_1 c_3 + \ldots + c_{n-1} c_n = \frac{a_{n-2}}{a_n} \\ \cdots \\ c_1 c_2 \ldots c_n = (-1)^n \cdot \frac{a_0}{a_n} \end{cases}$$

8.10 Построение конечных полей

Пусть p -простое число и $f \in \mathbb{Z}_p[x]$ - ненулевой многочлен. Рассмотрим множество:

$$\mathbb{Z}_p[x]/(f) = \{g(x) \in \mathbb{Z}_p[x] | deg(g) < deg(f)\}$$

Множество $\mathbb{Z}_p x/(f)$ с операциями сложения и умножения по модулю многочлена f является коммутативным и ассоциативным кольцом с 1.

Th: Пусть p -простое число и $f \in \mathbb{Z}_p[x]$ - ненулевой многочлен. Кольцо $\mathbb{Z}_p[x]/(f)$ с операциями сложения и умножения по модулю многочлена f является полем тогда и только тогда, когда f(x) неприводим над полем \mathbb{Z}_p

Если f(x) неприводим над полем \mathbb{Z}_p , то Кольцо $\mathbb{Z}_p x/(f)$ является полем, элементами которого являются всевозможные остатки при делении на f(x). Их найдется p^n , значит, столько и элементов в поле $\mathbb{Z}_p x/(f)$ ($n=\deg(f(x))$)

9 9 раздел

9.1 Многочлены с рациональными коэффициентами

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_n \neq 0, \ a_i \in \mathbb{Q}, f(x) \in \mathbb{Q}[x]$$

Th: Если $f(x) \in \mathbb{Z}[x]$ и многочлен имеет рациональный корень $\frac{u}{v}$, то:

- 1. $u|a_0$
- $2. v|a_n$
- 3. $\forall m \in \mathbb{Z} \Rightarrow (u-mv)|f(m)$ В частности, (u-v)|f(1), (u+v)|f(-1)

Док-во:

$$f(\frac{u}{v}) = a_n \frac{u^n}{v^n} + a_{n-1} \frac{u^{n-1}}{v^{n-1}} + \dots + a_1 \frac{u}{v} + a_0 = 0 | \cdot v^n$$

$$\underbrace{0}_{:u} = \underbrace{a_n u^n + a_{n-1} u^{n-1} v + \dots + a_1 u v^{n-1}}_{:u} + a_0 v^n \Rightarrow a_0 v^n : u \Rightarrow$$

 a_0 :u

Аналогично, a_n :v

3: разложим f по степеням x-m

$$f(x) = c_n(x-m)^n + c_{n-1}(x-m)^{n-1} + \dots + c_1(x-m) + c_0$$
 $f(m) =$

$$c_0$$

$$f(\frac{u}{v}) = c_n(\frac{u-vm}{v})^n + c_{n-1}(\frac{u-vm}{v})^{n-1} + \dots + c_1\frac{u-vm}{v} + c_0|\cdot v^n$$

$$c_n(u-vm)^n + c_{n-1}v(u-vm)^{n-1} + \dots + c_1(u-vm)v^{n-1} + c_0v^n|:$$

$$(u - mv)$$

$$\frac{c_0v^n}{u-mv} \in Z$$
 $\frac{u-mv}{v} = \frac{u}{v} - n$ - несократимая $\Rightarrow c_0$: $(u-mv)$

$$c_0 = f(m)$$

Следствие: если $f(x) \in \mathbb{Z}[x]$ имеет рациональный корень, и f(x) нормированный $(a_n = 1)$, то этот корень целый.

9.2 Лемма Гаусса

Лемма: если многочлен с целыми коэффициентами раскладывается в произведение двух многочленов с рациональными коэффициентами, то он раскладывается в произведение пропорциональных им многочленов с целыми коэффициентами

Многочлен с целыми коэффициентами называется примитивным, если его коэффициенты взаимно просто в совокупности.

Идея: редукция по модулю $p \in P$ $[f]_p = [a_n]_p x^n + \ldots + [a_1]_p x + [a_0]_p$ $[f+g]_p = [f]_p + [g]_p$ $[fg]_p = [f]_p \cdot [g]_p$ $f \in Z[x] \quad f = gh \quad g, h \in Q[x]$

Всякий многочлен с целыми коэффициентами пропорицонален некоторому примитивному многочлену.

$$f=\mu g_1h_1\quad \mu\in Q$$
 g_1,h_1 - примитивные, пропорциональные g и h соответственно. $\lambda=\frac{u}{v}$ НОД $(u,v)=1,\, p$ - простой делитель v $f=\frac{u}{v}g_1h_1\quad vf=ug_1h_1$ $[0]=[u][g_1][h_1]$ в $Z_p[x]$ (Редукция по модулю p)

Но тогда получвается, что поле $Z_p[x]$ имеет делители нуля \Rightarrow противоречие $\Rightarrow v = \pm 1 \Rightarrow \mu \in Z$

9.3 Признак Эйзенштейна

Th:
$$f(x) \in \mathbb{Z}[x]$$

Если $\exists p \in \mathbb{P}$:

1.
$$p|a_k, k = 0, 1, \dots, n-1$$

$$2. p \not\mid a_n$$

3.
$$p^2 \not | a_0$$

То f неприводим над Q

Док-во:
$$f = gh$$
 $g, h \in Q[x]$ $degg < n, degh < n$
 $f(x_i) = g(x_i) \cdot h(x_i)$ $g = \sum_{i=0}^m b_i x^i$ $h = \sum_{i=0}^s c_i x^i$ $b_i, c_i \in Z$
 $p|a_0 \Rightarrow p|b_0c_0 \Rightarrow p|b_0b|c_0$ (иначе $a:p^2$). Пусть $p|b_0$

$$\underbrace{a_1}_{:p} = b_1c_0 + \underbrace{b_0c_1}_{:p} \Rightarrow b_1c_0:p \Rightarrow b_1:p \Rightarrow \text{ аналогично } b_i:p \Rightarrow i:p$$

 $\forall k \, a_k : p \Rightarrow a_n : p$ - противоречие.

$$a_n = \underbrace{b_m}_{:p} c_s$$

$$a_k = b_0 c_1 + b_1 c_0 + \dots + b_{k-1} c_1 + b_k c_0$$

встречаются и другие c_i

$$a_0 = b_0 c_0 \quad a_1 = b_1 c_0 + b_0 c_1 \quad a_2 = b_2 c_0 + b_1 c_1 + b_0 c_2$$

$$\underbrace{a_k}_{:p} = \sum_{i+j=k} b_i c_j : p \Rightarrow b_k c_0 : p \Rightarrow b_k : p$$

$$\Rightarrow b_m : p$$

10 10 раздел

10.1 Векторные (линейные) пространства

Def: векторное пространство над полем F - мн-во векторов V с бинарной операцией сложения и унарной операцией $v \to \alpha v$ (умножение на скаляр)($\forall \alpha \in F, v \in V$)

10.2 Аксиомы векторного пространства и следствия из них

Аксиомы:

- 1. $\langle V, + \rangle$ абелева группа
- 2. $\forall \alpha \in F, \forall u, v \in V \Rightarrow \alpha(u+v) = \alpha u + \alpha v$
- 3. $\forall \alpha, \beta \in F, \forall u \in V \Rightarrow (\alpha + \beta)u = \alpha u + \beta u$
- 4. $\forall \alpha, \beta \in F, \forall u \in V \Rightarrow (\alpha \beta)u = \alpha(\beta u)$
- 5. $\exists 1 \in F : \forall u \in V \Rightarrow 1 \cdot u = u \cdot 1 = u$

Следствия:

- 1. $\alpha \cdot 0 = 0 \ (0 \in V)$
- $2. \ \alpha(-v) = -\alpha v$
- 3. $\alpha(u-v) = \alpha u \alpha v$
- 4. $0(0 \in F) \cdot v = 0(0 \in V)$
- 5. $(-1) \cdot v = -v$

10.3 Алгебры

Def: Алгебра A над полем F - множество с двумя бинарными операциями(сложением и умножением) и унарной операцией $a \to \alpha a (\forall \alpha \in F, a \in A)$

Свойства:

- 1. A кольцо отн-но $+, \cdot$
- 2. А векторное пр-во отн-но + и умножения на скаляр
- 3. $\forall \alpha \in F \forall a, b \in A \Rightarrow \alpha(ab) = (\alpha a)b = a(\alpha b)$

10.4 Подпространства и подалгебры

V - векторное пространство над F

Def: Непустое подмн-во U ($\varnothing \neq U \subseteq V$) называется подпространством, если U замкнуто отн-но операций, заданных на V.

Подпространство само является векторным пространством A - алгебра над F

Def: Непустое подмн-во U ($\varnothing \neq U \subseteq A$) называется подалгеброй, если U замкнуто отн-но операций, заданных на A.

Подпалгебра сама является алгеброй.

10.5 Тело

Def: Тело - множество с 2 операциями и следующими свойствами:

- 1. Абелева группа отн-но сложения
- 2. Все ненулевые элементы образуют группу относительно умножения
- 3. Дистрибутивность умножения относительно сложения Тело - кольцо с единицей, в котором каждый ненулевой элемент обратим.

Если умножение коммутативно, то тело превращается в поле.

10.6 Теорема Веддерберна

Th: Всякое конечное ассоциативное тело является полем

11 11 раздел

11.1 Линейная (не)зависимость систем векторов и свойства линейно (не)зависимых систем

Def: система векторов (a_1,a_2,\ldots,a_n) называется линейно независимой, если $\lambda_1a_1+\lambda_2a_2+\ldots+\lambda_na_n\Rightarrow\lambda_1=\lambda_2=\ldots=\lambda_n=0$ и линейно зависимой в остальных случаях.

Def: Нетривиальная линейная комбинация - это линейная комбинация, в которой хотя бы 1 коэффициент не равен 0

Лемма: Векторы a_1, a_2, \ldots, a_n линейно зависимы \Leftrightarrow хотя бы 1 из них линейно выражается через остальные(при n>1)

Док-во:

$$\Leftarrow$$
 Пусть $a_1 = \lambda_2 a_2 + \ldots + \lambda_n a_n$

 $\underbrace{1}_{\neq 0}\cdot a_1-\lambda_2a_2-\ldots-\lambda_na_n=0$ - нетривиальная линейная комбинация

$$\Rightarrow \lambda_1 a_1 + \ldots + \lambda_i a_i + \ldots + \lambda_n a_n$$
 - нетривиальная, пусть $\lambda_i \neq 0$ Тогда $a_i = -\frac{\lambda_1}{\lambda_i} a_1 - \ldots - \frac{\lambda_n}{\lambda_i} a_n$

Лемма: Пусть векторы a_1, a_2, \ldots, a_n линейно независимы, b линейно выражается через них $\Leftrightarrow a_1, a_2, \ldots, a_n, b$ линейно зависимы

 $\Leftarrow \Pi$ усть $\lambda_1 a_1 + \ldots + \lambda_n a_n + \mu b = 0$ - нетривиальная линейная комбинация, т.к. линейно зависима

$$\mu \neq 0$$
: $b = -\frac{\lambda_1}{\mu}a_1 - \ldots - \frac{\lambda_n}{\mu}a_n$

Если $\mu=0,$ то $\lambda_1a_1+\ldots+\lambda_na_n+\mu b=0$ тревиальная - противоречие

$$\Rightarrow$$
 Пусть $b = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$

Тогда
$$\underbrace{1}_{\neq 0} \cdot b - \lambda_1 a_1 - \lambda_2 a_2 - \ldots - \lambda_n a_n = 0$$
 - нетривиальная

Лемма: Пусть в линейно выражается через a_1, a_2, \ldots, a_n . Это выражение единственно(с точностью до перестановок) \Leftrightarrow (a_1, a_2, \ldots, a_n) линейно независима

$$\Leftarrow b = \lambda_1 a_1 + \ldots + \lambda_n a_n \quad b = \mu_1 a_1 + \ldots + \mu_n a_n$$

$$0 = b - b = \underbrace{(\lambda_1 - \mu_1)}_{0} a_1 + \ldots + \underbrace{(\lambda_n - \mu_n)}_{0} a_n$$

 $\lambda_i = \mu_i$ разложение единственно

 \Rightarrow Пусть $\mu_1 a_1 + \ldots + \mu_n a_n = 0$ - нетривиальная комбинация

$$b = \mu_1 a_1 + \ldots + \mu_n a_n$$

$$b = 0 + b = (\lambda_1 + \mu_1)a_1 + \ldots + (\lambda_n + \mu_n)a_n$$

 $(\lambda_i + \mu_i) \neq \mu_i$ противоречие

11.2 Линейная оболочка системы векторов

Def: Линейной оболочкой системы векторов $(a_1, a_2, \dots, a_n) =$ A называется множество всех линейных комбинаций этих векторов

$$L(A) = \langle A \rangle = \langle a_1, a_2, \dots, a_n \rangle = \{\lambda_1 a_1 + \dots + \lambda_n a_n | \lambda_i \in F, a_i \in A\}$$

12 12 раздел

12.1 Метод Гаусса

Метод Гаусса - метод решения системы линейных алгебраических уравнений (СЛАУ). Заключается в сведении системы уравнений к треугольному виду путем элементарных преобразований

Ех: Решить систему уравнений:

$$\begin{cases} 3x_1 + 4x_2 = 10 \\ 5x_1 - 7x_2 = 3 \end{cases}$$
 Решение:
$$\begin{pmatrix} 3 & 4 & 10 \\ 5 & -7 & 3 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 10 \\ 15 & -21 & 9 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 10 \\ 0 & -41 & -41 \end{pmatrix} \longrightarrow$$

$$\begin{cases} 3x_1 + 4x_2 = 10 \\ -41x_2 = -41 \end{cases}$$

$$\begin{cases} x_1 = 2 \\ x_2 = 1 \end{cases}$$

12.2 Классификация СЛАУ

Def: СЛАУ называют совместной, если у нее есть хотя бы одно решение, иначе - несовместной

Def: СЛАУ называют определенной, если она имеет ровно 1 решение, а если она имеет больше одного решения, то неопределенной

12.3 Структура решения СЛАУ

- Совокупность всех решений произвольной СЛАУ с n неизвестными является подпр-вом пр-ва F^n
- Совокупность всех решений произвольной СЛАУ сумма какого-либо ее однородного решения и подпр-ва решений, соответствующего однородной ей СЛАУ (т.е. общее решение однородной СЛАУ сумма общего решения однородной и частного решения неоднородной)

Пример:

$$\begin{pmatrix} z+8\\ -z-3\\ z\\ 5 \end{pmatrix} = z * \begin{pmatrix} 1\\ -1\\ 1\\ 0 \end{pmatrix} + \begin{pmatrix} 8\\ -3\\ 0\\ 5 \end{pmatrix}$$

12.4 Метод Гаусса на языке преобразования матриц

Элементарные преобразования матриц:

- 1. Умножить і-го уравнение на $\alpha \in F \longrightarrow$ умножить на $Q_i(\alpha) = diag(1,1,...,\alpha(i),1,...,1)$
- 2. Поменять і и ј уравнения местами умножить на

$$P_{i,j} = \begin{pmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0(i,i) & \dots & 1(i,j) & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1(j,i) & \dots & 0(j,j) & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

3. К і-му уравнению прибавить ј-е, умноженное на $\alpha \in F \longrightarrow$ умножить на

$$T_{i,j}(lpha) = \left(egin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \ddots & lpha(i,j) & \dots \\ \dots & \dots & \ddots & \dots \\ \dots & \dots & \dots & 1 \end{array}
ight)$$

13 13 раздел

13.1 Основная Лемма о линейной зависимости

Если векторы b_1, b_2, \ldots, b_m линейно выражаются через векторы $a_1, a_2, \ldots, a_n (m > n)$, то векторы b_1, b_2, \ldots, b_m линейно зависимы.

Теорема: всякая однородна СЛАУ, в которой количество уравнений меньше количества неизвестных, имеет ненулевое решение.

Док-во:

$$b_1 = \mu_{11}a_1 + \ldots + \mu_{1n}a_n$$

. . .

$$b_m = \mu_{m1}a_1 + \ldots + \mu_{mn}a_n$$

Подставим в: $\lambda_1 b_1 + \lambda_2 b_2 + \ldots + \lambda_m b_m = (\ldots) a_1 + (\ldots) a_2 + \ldots + (\ldots) a_n = \lambda_1 (\mu_{11} a_1 + \ldots + \mu_{1n} a_n) + \ldots + \lambda_m (\mu_{m1} a_1 + \ldots + \mu_{mn} a_n) = a_1 (\lambda_1 \mu_{11} + \ldots + \lambda_m \mu_{m1}) + \ldots + a_n (\lambda_1 \mu_{1n} + \ldots + \lambda_m \mu_{mn})$ $\begin{pmatrix} \lambda_1 \mu_{11} + \ldots + \lambda_m \mu_{m1} = 0 \\ \lambda_1 \mu_{11} + \ldots + \lambda_m \mu_{m1} = 0 \end{pmatrix}$

$$\begin{cases} \lambda_{1}\mu_{11} + \ldots + \lambda_{m}\mu_{m1}) + \ldots + \\ \lambda_{1}\mu_{11} + \ldots + \lambda_{m}\mu_{m1} = 0 \\ \lambda_{1}\mu_{12} + \ldots + \lambda_{m}\mu_{m2} = 0 \\ \vdots \\ \lambda_{1}\mu_{1n} + \ldots + \lambda_{m}\mu_{mn} = 0 \end{cases}$$

По теореме есть ненулевое решение, т.к. количество уравнений меньше количества неизвестных.

Произвольное решение - $(\lambda_1, \lambda_2, \dots, \lambda_m)^T \Rightarrow$ есть нетревиальная линейная комбинация \Rightarrow линейно зависимая

13.2 Базис и размерность векторного пространства

Def: Векторное пространство называется конечномерным, если оно порождается конечным числом векторов, и бесконечномерным в противном случае

Def: Система векторов $\{e_1, e_2, \ldots, e_n\}$ называется базисом векторного пр-ва, если любой вектор из этого пр-ва единственным образом выражается в виде линейной комбинации этих векторов.

$$\forall a \in V \Rightarrow \exists! \alpha_1, \alpha_2, \dots, \alpha_n : a = \alpha_1 * e_1 + \alpha_2 * e_2 + \dots + \alpha_n * e_n$$

Def2: базис векторного пр-ва V - любая линейно независимая система, порождающая это пр-во.

Def: число векторов в базисе называют размерностью пр-ва (dim V)

13.3 Описание конечномерных подпространств с точностью до изоморфизма

Th: векторное пространство V размерности dimV=n над полем $\mathbb F$ изоморфно $\mathbb F^n$

Изоморфизм - биективное отображение $\varphi:V\to \mathbb{F}^n \ \forall a\in V\to [a]\in \mathbb{F}^n$

Док-во: $[a] = [b] \Rightarrow a = b$

$$\varphi(\underbrace{\alpha}_{\in F} \underbrace{\alpha}_{\in V} + \underbrace{\beta}_{\in F} \underbrace{b}_{\in V}) = [\alpha a + \beta b] = \begin{pmatrix} \alpha \alpha_1 + \beta \beta_1 \\ \alpha \alpha_2 + \beta \beta_2 \\ \cdots \\ \alpha \alpha_n + \beta \beta_n \end{pmatrix} =$$

$$\alpha \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix} + \beta \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_n \end{pmatrix}$$

$$[a] = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \end{pmatrix} \quad [b] = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \end{pmatrix}$$

Следствие: $\hat{2}$ конечномерных пространства одной размерности надо одним полем изоморфны (Оба изоморфны \mathbb{F}^n)

13.4Теорема о размерности пр-ва решений однородной СЛАУ

Th: Размерность пространства решений однородной СЛАУ с n неизвестными равна n-rank(A), где A - матрица коэффициентов СЛАУ

Док-во:

13.5 Базис пространства решений однородной СЛАУ - Φ CP

Def: Базис пространства решений однородной СЛАУ - это фундаментальная система решений (максимальный набор линейно независимых решений)

13.6 Теорема о существовании однородной СЛАУ, задающей подпространство

Если в линейном n - мерном пространстве L_n зафиксирован базис, то любое его k-мерное линейное подпространство L_k можно задать системой линейных однородных уравнений с n неизвестными ранга n-k.

Док-во:

Пусть в L_n зафиксирован базис $e=(e_1,e_2,\dots,e_n)$, а L_k - k - мерное подпространство L_n . Выберем в L_k базис $a=(a_1,a_2,\dots,a_k)$.

Пусть
$$\begin{cases} a_1 = \alpha_{11}e_1 + \alpha_{21}e_2 + \dots + \alpha_{n1}e_n \\ a_2 = \alpha_{12}e_1 + \alpha_{22}e_2 + \dots + \alpha_{n2}e_n \\ & \dots \\ a_k = \alpha_{1k}e_1 + \alpha_{2k}e_2 + \dots + \alpha_{nk}e_n \end{cases}$$

В матричной форме
$$a=e\cdot A$$
, где $A=\left(egin{array}{cccc} lpha_{11} & lpha_{12} & \dots & lpha_{1k} \\ lpha_{21} & lpha_{22} & \dots & lpha_{2k} \\ & & & \dots \\ lpha_{n1} & lpha_{n2} & \dots & lpha_{nk} \end{array}\right)$

Т.к. a - базис, то rank(A) = k

Пусть вектор $d \in L_k \Rightarrow d = c_1a_1 + c_2a_2 + \ldots + c_ka_k$, где c_1, c_2, \ldots, c_k - параметры. В матричном виде $d = a \cdot C$, где C - столбец параметров. Отсюда $d = e \cdot (A \cdot C)$. Если X - столбец координат вектора d в базисе e, то $d = e \cdot X$. Отсюда $e \cdot X = e \cdot (A \cdot C)$ и $X = A \cdot C$.

Распишем в координатном виде
$$\begin{cases} x_1 = \alpha_{11}c_1 + \alpha_{12}c_2 + \ldots + \alpha_{1k}c_k \\ x_2 = \alpha_{21}c_1 + \alpha_{22}c_2 + \ldots + \alpha_{2k}c_k \\ & \ldots \\ x_n = \alpha_{n1}c_1 + \alpha_{n2}c_2 + \ldots + \alpha_{nk}c_k \\ & \Pi$$
 После исключения параметров получится система $n-k$ ли-

После исключения параметров получится система n-k линейных однородных уравнений. Векторы a_1, a_2, \ldots, a_k являются ее линейно независмыми решениями. Все остальные решения являются их линейными кобинациями.

Следовательно, система векторово (a_1, a_2, \ldots, a_k) будет фундаментальной системой решений полученной системы уравнений и поэтому ранг этой системы уравнений равен n-k

1414 раздел

Переход от одного базиса к другому, матрица 14.1перехода и ее св-ва

$$A = (a_1, a_2, \dots, a_n)$$
 $B = (b_1, b_2, \dots, b_n)$ - базисы V $b_1 = t_{1,1} * a_1 + t_{2,1} * a_2 + \dots + t_{n,1} * a_n$ $b_2 = t_{1,2} * a_1 + t_{2,2} * a_2 + \dots + t_{n,2} * a_n$ \vdots $b_n = t_{1,n} * a_1 + t_{2,n} * a_2 + \dots + t_{n,n} * a_n$ $(b_1, b_2, \dots, b_n) = (a_1, a_2, \dots, a_n) * T$ $T = \begin{pmatrix} t_{1,1} & t_{1,2} & \dots & t_{1,n} \\ t_{2,1} & t_{2,2} & \dots & t_{2,n} \\ \dots & \dots & \dots & \dots \\ t_{n,1} & t_{n,2} & \dots & t_{n,n} \end{pmatrix}$ - в j -м столбце находятся коорди-

наты вектора b_i в базисе

Т - матрица перехода от базиса A к базису B; $(A \leadsto B)$ или $T_{A\to B}$

Свойства матрицы перехода:

1.
$$(A \rightsquigarrow A) = E$$

2.
$$(A \leadsto B) * (B \leadsto C) = (A \leadsto C)$$

3. $(A \leadsto B)(B \leadsto A) = E$

3.
$$(A \leadsto B)(B \leadsto A) = E$$

15 15 раздел

15.1 Ранг и БАЗА системы векторов

Def: БАЗА системы векторов - эквивалентная ей [системе векторов] независимая подсистема (база состоит из максимального числа линейно независимых векторов так, что присоединение любого вектора из этой системы к базе делает ее линейно зависимой).

Ex: $\{1, x, 3x + 2\}$

Базы: $\{1, x\}, \{1, 3x + 2\}, \{x, 3x + 2\}$

Def: Ранг систенмы векторов - число векторов в БАЗЕ.

15.2 Ранг матрицы, теорема о ранге матрицы(=теорема о базисном миноре)

Def: Строчный ранг матрицы - размерность линейной оболочки системы ее строк

Def: Столбцовый ранг матрицы - размерность линейной оболочки ее столбцов

Def: Минорный ранг матрицы - наибольший порядок отличной от нуля минорной матрицы.

Def: базисный минор - любой ненулевой минор максимального порядка. Для того чтобы минор был базисным, необходимо и достаточно, чтобы все окаймляющие его миноры (то есть содер-

жащие его миноры на единицу большего порядка) были равны нулю.

Th: Столбцовый, строчный и мирнорный ранги матриц совпадают.

Док-во: для строчного. Пусть минорный ранг = r. Пусть эти r строк и r столбцов находятся в левом верхнем углу. Покажем, что строки этого минора линейно неазвисимы. Пусть это не так. a_1, a_2, \ldots, a_r - строки матрицы, тогда есть нетривиальная линейная комбинация $\lambda_1 a_1 + \ldots + \lambda_r a_r = 0$ - это верно и для подстрок, входящих в базисный минор \Rightarrow строки базисного минора линейно зависимы \Rightarrow этот минор равен 0, противоречие

Докажем, что остальные строки линейно выражаются через строки, пересекающие рассматриваемый минор Δ_r

$$\Delta_{r+1} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2r} & a_{2j} \\ & & \dots & & & \\ a_{r1} & a_{r2} & \dots & a_{rr} & a_{rj} \\ a_{i1} & a_{i2} & \dots & a_{ir} & a_{ij} \end{vmatrix}$$

$$\Delta_{r+1} = a_{1j} \underbrace{A_{1j} + a_{2j}}_{\lambda_1} \underbrace{A_{2j} + \dots + a_{ij}}_{\lambda_2} \underbrace{A_{ij}}_{\lambda_{r+1}} = 0$$

$$\begin{cases} \lambda_1 a_{1j_s} + \lambda_2 a_{2j_s} + \dots + \underbrace{\lambda_{r+1}}_{\neq 0} a_{ij_s} = 0 \\ & \dots \\ \lambda_1 a_{1j_e} + \lambda_2 a_{2j_e} + \dots + \underbrace{\lambda_{r+1}}_{\neq 0} a_{ij_e} = 0 \end{cases}$$

$$\lambda_1 \begin{pmatrix} a_{1j_s} \\ \vdots \\ a_{1j_e} \end{pmatrix}^T + \ldots + \lambda_{r+1} \begin{pmatrix} a_{ij_s} \\ \vdots \\ a_{ij_e} \end{pmatrix}^T = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}^T$$

Строки линейно зависимы, а строки, пересекающие базисный минор, являются базисом линейной оболочки строк матрицы.

Следствие (теорема о базисном миноре): Строки(столбцы), пересекающие базисный минор, линейно независимы. Любая строка(столбец) матрицы является линейной комбинацией базисных.

15.3 Лемма о вычислении ранга матрицы

Лемма: ранг матрицы равен числу ненулевых строк любой ступенчатой матрицы, к которой изнгачальная матрица приводится путем элементарных преобразований строк.

Док-во:
$$\begin{pmatrix}
* & \dots & \dots \\
0 & * & \dots & \dots \\
0 & 0 & * & \dots \\
0 & \dots & \dots & 0
\end{pmatrix}$$

$$\begin{array}{c}
a_1 \\
a_2 \\
a_r \\
0 & \dots & \dots & 0
\end{pmatrix}$$

$$\begin{array}{c}
\lambda_1 \\
a_1 + \lambda_2 \\
0 & \dots + \lambda_r
\end{array}$$

$$\begin{array}{c}
a_r \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
\lambda_1 \\
0
\end{array}$$

$$\begin{array}{c}
a_1 + \lambda_2 \\
0
\end{array}$$

$$\begin{array}{c}
a_2 + \dots + \lambda_r \\
0
\end{array}$$

$$\begin{array}{c}
a_r \\
0
\end{array}$$

15.4 Теорема Кронекера - Капелли

Th: СЛАУ совместная тогда и только тогда, когда ранг матрицы ее коэффициентов равен рангу расширенной матри-

цы.(Расширенная матрица - основная + столбец свободых членов)

Необходимость: пусть система Ax = B совместна. Тогда $\exists x_1, \ldots, x_n \in R$ такие, что $b = x_1a_1 + \ldots + x_na_n$. Следовательно, столбец b является линейное комбинацией столбцов a_1, \ldots, a_n матрицы A. Из того, что ранг матрицы не изменится, если приписать или вычеркнуть столбец (строку), который является линейнок комбинацией других столбцов (строк) следует, что rank(A) = rank(A|B)

Достаточность: пусть rank(A) = rank(A|B) = r. Возьмем какой-нибудь базисный минор. Т.к. rank(A) = r, то он же и является базисным минором матрицы A|B. Тогда по теореме о базисном миноре столбец коэффициентов является линейнок комбинацией базисных столбцов (столбцов A), СЛАУ совместна.

16 16 раздел

16.1 Геометрия подпространств

Def: Если есть конечномерные пространства U и V такие, что $U\subseteq V$, то базис U дополним до базиса V.

Def: Базис пространства V называется согласованным с пространством U, если U является линейной оболочкой какой-то части базисных векторов.

16.2 Теорема о существовании базиса, согласованного с парой подпространств

Th: Для всякой пары подпространств $U,W\subseteq V$ существует базис пространства V, согласованный с каждым из этих подпространств.

Док-во:

$$e_1, e_2, \ldots, e_r$$
 – базис $U \cap W$.

$$e_1, e_2, \dots, e_r, e_{r+1}, \dots, e_k$$
 – базис U .

$$e_1, e_2, \ldots, e_r, w_{r+1}, \ldots, w_t$$
 – базис W .

$$e_1, e_2, \ldots, e_r, e_{r+1}, \ldots, e_k, w_{r+1}, \ldots, w_t$$
 – линейно-независимый?

Рассмотрим линейную комбинацию $\alpha_1 e_1 + \ldots + \alpha_r e_r + \alpha_{r+1} e_{r+1} + \cdots$

$$\ldots + \alpha_k e_k + \beta_{r+1} w_{r+1} + \ldots + \beta_t w_t = 0$$

Пусть
$$x = \alpha_1 e_1 + \ldots + \alpha_r e_r + \alpha_{r+1} e_{r+1} + \ldots + \alpha_k e_k = -\beta_{r+1} w_{r+1} - \ldots - \beta_t w_t$$

 $x \in U, x \in W \Rightarrow x \in U \cap W \Rightarrow x = \gamma_1 e_1 + \ldots + \gamma_r e_r = -\beta_{r+1} w_{r+1} - \ldots - \beta_t w_t = 0 \Rightarrow \gamma_1 = \ldots = \gamma_r = \beta_{r+1} = \ldots = \beta_t = 0 \Rightarrow x = 0 \Rightarrow \alpha_1 = \ldots = \alpha_k = 0 \Rightarrow$ изначальная система линейно-независима.

Получился базис, согласованный и с одним пространством и с другим.

16.3 Формула Грассмана

Th: $dim(U+W) = dim\ U + dim\ W - dim(U\cap W)$ Док-во: Покажем, что $e_1, e_2, \ldots, e_r, e_{r+1}, \ldots, e_k, w_{r+1}, \ldots, w_t$ - базис U+W $\forall v \in U+W, u \in U, w \in W$ $v = u+w = (\alpha_1e_1+\ldots+\alpha_re_r+\alpha_{r+1}e_{r+1}+\ldots+\alpha_ke_k)+(\beta_1e_1+\ldots+\beta_re_r+\beta_{r+1}w_{r+1}+\ldots+\beta_tw_t) = (\alpha_1+\beta_1)e_1+\ldots+(\alpha_r+\beta_r)e_r+\alpha_{r+1}e_{r+1}+\ldots+\alpha_ke_k+\beta_{r+1}w_{r+1}+\ldots+\beta_tw_t$ $dim(U\cap W) = r, dim\ U = k, dim\ W = t, dim(U+W) = k+t-r = dim\ U+dim\ W-dim(U\cap W)$

16.4 Линейно независимые подпространства

Def: Два подпространства U и W называются линейно независимыми, если $U\cap W=0$

Def: V раскладывается в прямую сумму $V = U_1 \bigoplus \dots U_k$, если: 1. подпространства $U_1, \dots, U_k - \Pi H3$ (линейно независимые); 2. пространство $V = U_1 + \ldots + U_k, v \in V$ представим ед. образом в виде $v = u_1 + \ldots + u_k$.

Def: Вектор $u_i \in U_i$ из прямой суммы называется проекцией вектора V на подпространство U_i

16.5 Поиск базиса суммы и пересечения подпространств.

Базис суммы - объединение базисов.

Ex:

$$U = \langle (1,2,3)^T, (4,3,1)^T, (2,-1,-5)^T \rangle$$

$$V = \langle (1, 1, 1)^T, (-3, 2, 0)^T, (-2, 3, 1)^T \rangle$$

Базис
$$U: \langle (0, -5, -11)^T, (2, -1, -5)^T \rangle$$

Базис
$$V: \langle (1,1,1)^T, (0,-5,-3)^T \rangle$$

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 3 & 1 \\
2 & -1 & -5 \\
1 & 1 & 1 \\
-3 & 2 & 0 \\
-2 & 3 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 1 \\
4 & 3 & 1 \\
2 & -1 & -5 \\
1 & 2 & 3 \\
-3 & 2 & 0 \\
-2 & 3 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 1 \\
0 & -1 & -3 \\
0 & -3 & -7 \\
0 & 1 & 2 \\
0 & 5 & 3 \\
0 & 5 & 3
\end{pmatrix}
\sim$$

$$\begin{pmatrix} 1 & -3 & -2 & | & x_1 \\ 1 & 2 & 3 & | & x_2 \\ 1 & 0 & 1 & | & x_3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & | & x_1 \\ 0 & 5 & 5 & | & x_2 - x_1 \\ 0 & 3 & 3 & | & x_3 - x_1 \end{pmatrix} \cdot 3 \sim \begin{pmatrix} 1 & -3 & -2 & | & x_1 \\ 0 & 15 & 15 & | & 3x_2 - 3x_1 \\ 0 & 15 & 15 & | & 5x_3 - 5x_1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & | & x_1 \\ 0 & 15 & 15 & | & 3x_2 - 3x_1 \\ 0 & 15 & 15 & | & 5x_3 - 5x_1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & | & x_1 \\ 0 & 15 & 15 & | & 3x_2 - 3x_1 \\ 0 & 0 & 0 & | & 5x_3 - 5x_1 - 3x_2 + 3x_1 \end{pmatrix}$$

$$V: 5x_3 - 2x_1 - 3x_2 = 0$$

$$U \cap V: \begin{cases} 7x_1 - 11x_2 + 5x_3 = 0 \\ -2x_1 - 3x_2 + 5x_3 = 0 \end{cases}$$

$$\begin{pmatrix} 7 & -11 & 5 \\ -2 & -3 & 5 \end{pmatrix} \cdot ? \sim \begin{pmatrix} 14 & -22 & 10 \\ -14 & -21 & 35 \end{pmatrix} \sim \begin{pmatrix} 14 & -22 & 10 \\ -14 & -21 & 35 \end{pmatrix} \sim \begin{pmatrix} 14 & -22 & 10 \\ -14 & -21 & 35 \end{pmatrix}$$

$$\begin{cases} 7x_1 - 11x_2 + 5x_3 = 0 \\ 43x_2 - 45x_3 = 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 40 \\ 45 \\ 43 \end{pmatrix} - \Phi CP, \text{ является базисом } U \cap V$$

17 17 раздел

17.1 Линейные отображения

Def: Пусть U, V — векторные пространства над \mathbb{F} . Тогда $\varphi\colon U \to V$ называется линейным отображением, если $\varphi(\underbrace{\alpha x + \mu y}) = \alpha \underbrace{\varphi(x)}_{\in V} + \mu \underbrace{\varphi(y)}_{\in V}$

17.2 Матрица линейного отображения

Рассмотрим $\varphi \colon V \to U$. Пусть $dim\ V = n, dim\ U = m,$ базисы $V \colon (e_1, \dots, e_n), U \colon (u_1, \dots, u_m)$ $\varphi(e_1) = a_{11}u_1 + a_{21}u_2 + \dots + a_{m1}u_m$ $\varphi(e_2) = a_{12}u_1 + a_{22}u_2 + \dots + a_{m2}u_m$ \vdots $\varphi(e_n) = a_{1n}u_1 + a_{2n}u_2 + \dots + a_{mn}u_m$

Def: Тогда матрица линейного отображения в базисах е и u:

$$[\varphi]_{e,u} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$(\varphi(e_1), \varphi(e_2), \dots, \varphi(e_n)) = (u_1, u_2, \dots, u_m)[\varphi]_{e,u}$$

Столбцы матрицы линейного отображения – образы базисных векторов первого пространства (V) в базисе второго пространства (U).

17.3 Ядро и образ линейного отображения

Пусть $\varphi \colon U \to V$ – линейное отображение.

Def: Ядро линейного отображения: $Ker \ \varphi = \{a \in U \mid \varphi(a) = 0\} \subseteq U$

Def: Образ линейного отображения: $Im \ \varphi = \{\varphi(a) \mid a \in U\} \subseteq U$

17.4 Теорема о сумме размерностей ядра и образа

Тh: Пусть φ : $U \to V$. Тогда $dim\ Ker\ \varphi + dim\ Im\ \varphi = dim\ U$ Док-во: φ : $\mathbb{F}^n \to \mathbb{F}^m \Rightarrow dim\ Ker\ \varphi = n - rk[\varphi], dim\ Im\ \varphi = rk[\varphi] \Rightarrow dim\ Ker\ \varphi + dim\ Im\ \varphi = n - rk[\varphi] + rk[\varphi] = n = dim\ U$

17.5 Теорема о структуре прообраза линейного отображения $(\varphi^{-1}(y) = x + ker \ \varphi)$

Тh: Пусть $\varphi \colon U \to V$. Тогда $\varphi^{-1}(y) = x + ker \ \varphi = \{x + a \in U \mid a \in ker \ \varphi\}$, где x – какое-либо решение уравнения $\varphi(x) = y$. Док-во: $\varphi(x + ker \ \varphi) = \varphi(x) + \varphi(a) = \varphi(x) + 0 = y$.

17.6 Операции над линейными отображениями

Пусть заданы линейные отображения $\varphi, \psi \colon V \to U$. Для них можно задать операции:

- · cymma: $(\varphi + \psi)(x) = \varphi(x) + \psi(x)$;
- · умножение на скаляр $\alpha \in \mathbb{F}$: $(\alpha \varphi)(x) = \alpha \varphi(x)$.

Относительно этих операций линейное отображение образует векторное пространство.

Пусть $\varphi\colon V\to U, \psi\colon W\to V$. Для этих отображений можно задать операцию * такую, что $\varphi*\psi\colon W\to U$.

17.7 Изменение матрицы линейного отображения при изменении базиса

Пусть $\varphi \colon V \to U$.

Базисы $V:(e_1,\ldots,e_n)=e,\ U:(f_1,\ldots,f_m)=f.$

Новые базисы $(e_1', \dots, e_n') = e', \ (f_1', \dots, f_m') = f'.$

$$\varphi(e) = (f) \cdot [\varphi]_{e,f}$$

 $(1) \ \varphi(e') = (f') \cdot [\varphi]_{e',f'} = (f)(f \leadsto f')[\varphi]_{e',f'}, \ \text{где} \ (f \leadsto f') -$ матрица перехода

$$(2) \varphi(e') = \varphi(e \cdot (e \leadsto e')) = \varphi(e)(e \leadsto e') = (f)[\varphi]_{e,f}(e \leadsto e')$$

Приравняем правые части (1) и (2), сократив на (f):

$$(f \leadsto f')[\varphi]_{e',f'} = [\varphi]_{e,f}(e \leadsto e')$$

Значит, $\varphi_{e',f'} = (f \leadsto f')^{-1} [\varphi]_{e,f} (e \leadsto e')$

17.8 Частные случаи линейных отображений: линейные операторы, линейные формы

Hom(U,V) - все линейный отображения (гомоморфизмы) из одного пространства в другое

End(U) = Hom(U,U) Линейный оператор (эндоморфизм) - линейное отображение (гомоморфизм) из векторного пространства в себя

гомоморфизмы	биективность
Hom(U,V)	изоморфизмы
End(U) = Hom(U, U)	автоморфизмы

Hom(U,F) линейные формы (линейные функции, линейные функционалы) - линейное отображение из векторного пространства в поле, над которым оно задано

Ex:

- 1) E^2 поворот на плоскости
- 2) $E^3 \to E^2$ проецирование вектора на плоскость
- 3) $R[x] \to R[x]$ дифференцирование (линейное отображение) $R[x]_n \to R[x]_{n-1} \quad n>0$
- 4) Параллельный перенос на вектор a

18 18 раздел

18.1 Линейные формы

Def: Линейная форма $\alpha\colon V\to \mathbb{F}$ такая, что $\alpha(\lambda x+\mu y)=\lambda\alpha(x)+\mu\alpha(y)$

Ex:
$$\alpha(A) = tr \ A, A \in M_n(\mathbb{F})$$

18.2 Координатная строка линейной формы

$$(e_1, \ldots, e_n)$$
 – базис V.

Def: $\alpha(x) = x_1 \alpha(e_1) + \ldots + x_n \alpha(e_n) \in \mathbb{F}, (\alpha(e_1), \ldots, \alpha(e_n))$ – координатная строка линейной формы.

18.3 Сопряжённое пространство

Def: Пространство линейной формы на V называется сопряженным пространством и обозначается: V^*

Def: Сопряжённый базис — набор координатных функций $(\varepsilon_1,\ldots,\varepsilon_n)$

Def: Второе сопряжённое пространство $V^{**} \simeq V$ изоморфно изначальному пространству V

18.4 Аннулятор подпространства

Def: Аннулятор пространства $U\subseteq V$ – это $U^o=\{\alpha\in V^*\mid \alpha(x)=0\; \forall x\in U\}\subseteq V$

18.5 Теорема о размерности аннулятора

Th: $dim\ U^o = dim\ V - dim\ U$ Док-во: $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ – базис V, согласованный с U. (e_1, \ldots, e_k) – базис U, $(\varepsilon_1, \ldots, \varepsilon_k)$ – базис U^* $U^o = \langle \varepsilon_{k+1}, \ldots, \varepsilon_n \rangle \Rightarrow dim\ U^o = n - k = dim\ V - dim\ U$

18.6 Критерий базисности для набора линейных форм

Th: Набор функций α_1,\ldots,α_n является базисом пространства $\begin{cases} \langle \alpha_1,x\rangle=0\\ \vdots & \text{имеет единственное решение } x=0.\\ \langle \alpha_n,x\rangle=0 \end{cases}$ Док-во: α_1,\ldots,α_n - базис V^* \Leftrightarrow $\langle \alpha_1,\ldots,\alpha_n\rangle=V^*$ \Leftrightarrow

19 19 раздел

19.1 Факторпространство

19.2 Теорема о размерности факторпространства

Th: $dim(V/U) = dim \ V - dim \ U$

Док-во: $(e_1,\ldots,e_k,e_{k+1},\ldots,e_n)$ – базис V, (e_1,\ldots,e_k) – базис U.

Докажем, что $(e_{k+1} + U, \dots, e_n + U)$ – базис V/U.

Пусть $x = x_1e_1 + \ldots + x_ke_k + x_{k+1}e_{k+1} + \ldots + x_ne_n$, x_{k+1} лежит в том же классе, что и изначальная сумма.

 $x+U=x_{k+1}(e_{k+1}+U)+\ldots+x_n(e_n+U),$ то есть векторы $\langle e_{k+1}+U,\ldots,e_n+U\rangle=V/U.$

Покажем линейную независимость $\lambda_{k+1}(e_{k+1}+U)+\ldots+\lambda_n(e_n+U)$

 $\lambda_1e_1+\ldots+\lambda_ke_k-\lambda_{k+1}e_{k+1}-\ldots-\lambda_ne_n=0$, т.к. базис, то все $\lambda_i=0$.

19.3 Коразмерность подпространства

Пусть задано пространство $U \subseteq V$.

Def: Коразмерность подпространства U в пространстве V есть число, равное разности между размерностью V и размерностью U (что равно размерности факторпространства): $codim\ U=dim\ V-dim\ U=dim(V/U)$

19.4 Может ли быть так, что $dim\ U=\infty, dim\ V=\infty,$ а $codim\ U$ конечна?

А: Да.

Пример.
$$V = Func(x,\mathbb{F})\ U = \gamma(Y) \simeq Func(X \backslash U,\mathbb{F})$$
 $|X| = \infty\ |Y| = \infty\ |X \backslash Y| = \infty$ V,U — бесконечномерные. $dimV = dimU = \infty$ $V/U \simeq Func(Y,\mathbb{F}) \Rightarrow dim(V/U) = codim(U) = n$

20 20 раздел

20.1 Геометрические векторы

Задается афинная система координат $(0, e_1, e_2, e_3)$.

Def: Координаты точки X — координаты ее радиус-вектора \overrightarrow{OX} .

Лемма: если заданы точки $A(x_1,y_1,z_1), B(x_2,y_2,z_2),$ то $\overrightarrow{AB}=(x_2-x_1,y_2-y_1,z_2-z_1).$

Док-во:
$$\overrightarrow{OA} = (x_1, y_1, z_1), \overrightarrow{OB} = (x_2, y_2, z_2)$$

 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB} \Rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

Def: Векторы, лежащие на параллельных прямых, называются коллинеарными.

Def: Векторы, параллельные одной плоскости, называются компланарными.

20.2 Деление отрезка в заданном отношении

Пусть
$$\frac{|AC|}{|CB|} = \frac{\lambda}{\mu}$$
.

 $\overrightarrow{AB} = (x_b - x_a, y_b - y_a, z_b - z_a)$
 $\overrightarrow{AC} = \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$
 $\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$
 $(x_a, y_a, z_a) + \frac{\lambda}{\lambda + \mu} (x_b - x_a, y_b - y_a, z_b - z_a) = \frac{1}{\lambda + \mu} ((\lambda + \mu)x_a + \lambda(x_b - x_a), \dots) = \frac{1}{\lambda + \mu} (\mu x_a + \lambda x_b, \mu y_a + \lambda y_b, \mu z_a + \lambda z_b) = \frac{\mu \overrightarrow{OA} + \lambda \overrightarrow{OB}}{\lambda + \mu}$

20.3 Правые и левые тройки векторов

Def: Тройка векторов $\vec{a}, \vec{b}, \vec{c}$ называется правой, если для наблюдателя, находящегося в конце третьего вектора \vec{c} кратчайший поворот от \vec{a} к \vec{b} совершается против часовой стрелки.

20.4 Скалярное произведение векторов и свойства

Def: $\vec{a}\vec{b} = |a||b|\cos\varphi$ — скалярное произведение векторов

Когда даны координаты векторов $\vec{a}=(a_x,a_y,a_z),\vec{b}=(b_x,b_y,b_z),$ скалярное произведение можно записать так: $\vec{a}\vec{b}=a_xb_x+a_yb_y+a_zb_z.$

Свойства скалярного произведения:

- 1. $\vec{a}\vec{b} = \vec{b}\vec{a}$;
- 2. $\vec{a}^2 \ge 0$;
- 3. $(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c};$
- 4. $(\lambda \vec{a})\vec{b} = \lambda(\vec{a}\vec{b})$.

20.5 Векторное произведение векторов и свойства

Def: Векторным произведением векторов \vec{a} и \vec{b} называется такой вектор $\vec{c} = \vec{a} \times \vec{b} = [\vec{a}, \vec{b}],$ что:

- 1. $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$;
- 2. $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi = S$ площадь параллелограмма;
- 3. $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку.

Свойства векторного произведения:

- 1. $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}];$
- 2. $[k\vec{a}, \vec{b}] = k[\vec{a}, \vec{b}];$
- 3. $[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}];$
- 4. $[\vec{a}, \vec{a}] = 0$.

20.6 Смешанное произведение векторов и свойства

Def: Смешанное произведение $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$ – векторное произведение первых двух, умноженный скалярно на третий.

 $(\vec{a},\vec{b},\vec{c})=|\vec{a}\times\vec{b}|\cdot|\vec{c}|\cos\psi=S|\vec{c}\cos\psi=S\cdot h=V_{\vec{a},\vec{b},\vec{c}}$ – объем параллелограмма.

$$(\vec{a}, \vec{b}, \vec{c}) < 0 \Leftrightarrow \vec{a}, \vec{b}, \vec{c}$$
 – левая тройка;

$$(\vec{a}, \vec{b}, \vec{c}) > 0 \Leftrightarrow \vec{a}, \vec{b}, \vec{c}$$
 – правая тройка;

$$(\vec{a}, \vec{b}, \vec{c}) = 0 \Leftrightarrow \vec{a}, \vec{b}, \vec{c}$$
 – компланарные;

Свойства смешанного произведения:

1.
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{b}, \vec{a}, \vec{c});$$

- 2. Линейность по каждому аргументу: $(\vec{a} \times \vec{b})(\alpha_1 \vec{c_1} + \alpha_2 \vec{c_2}) = \alpha_1 (\vec{a} \times \vec{b}) \vec{c_1} + \alpha_2 (\vec{a} \times \vec{b}) \vec{c_2};$
- 3. $(\vec{a}, \beta_1 \vec{b_1} + \beta_2 \vec{b_2}, \vec{c}) = \beta_1(\vec{a}, \vec{b_1}, \vec{c}) + \beta_2(\vec{a}, \vec{b_2}, \vec{c}).$

20.7 Критерии ортогональности, коллинеарности и компланарности геометрических векторов

Скалярное произведение дает критерий ортогональности: $\vec{a} \cdot \vec{b} = 0$ — скалярное произведение равно $0 \Rightarrow$ векторы ортогональны (перпендикулярны).

Векторное произведение дает критерий коллинеарности: $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow$ векторы коллинеарны.

Смешанное произведение дает критерий компланарности: $(\vec{a},\vec{b},\vec{c})=0 \Leftrightarrow \vec{a},\vec{b},\vec{c} \text{ компланарные}.$

20.8 Выражения для произведений векторов в декартовых координатах

$$\vec{a} = a_1 i + a_2 j + a_3 k$$

$$\vec{b} = b_1 i + b_2 j + b_3 k$$

$$(\vec{a} \times \vec{b}) = (a_1 i + a_2 j + a_3 k) \times (b_1 i + b_2 j + b_3 k) = a_1 b_1 (\underbrace{i \times i}) + a_1 b_2 (\underbrace{i \times j}) + a_1 b_3 (\underbrace{i \times k}) + a_2 b_1 (\underbrace{j \times i}) + a_2 b_2 (\underbrace{j \times j}) + a_2 b_3 (\underbrace{j \times k}) + a_3 b_1 (\underbrace{k \times i}) + a_3 b_2 (\underbrace{k \times j}) + a_3 b_3 (\underbrace{k \times k}) = (a_2 b_3 - a_3 b_2) i - (a_1 b_3 - a_3 b_1) + (a_1 b_2 - a_2 b_1) k = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} i - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} j + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} k = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \Rightarrow \text{ векторное произведение вычисляется через } \det \begin{pmatrix} \vec{a} \times \vec{b} \end{pmatrix} \vec{c} = (\dots i - \dots j + \dots k) (c_1 i + c_2 j + c_3 k) = c_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \Rightarrow n$$
-мерный объём (определитель $n \times n$).

Тождества «бац минус цаб» и Якоби 20.9

Th: І
$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$$
 — «бац минус цаб» ІІ $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$ — Якоби Док-во:

I Выберем деартов базис $(\vec{e_1}, \vec{e_2}, \vec{e_3}) : \vec{e_3} \uparrow \uparrow \vec{c}, \vec{b}$ лежит в плоскости $(\vec{e_2}, \vec{e_3})$.

$$\vec{a} = (a_1, a_2, a_3)$$

$$\vec{b} = (0, b_2, b_3)$$

$$\vec{c} = (0, 0, c_3)$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{a} \times \begin{vmatrix} i & j & k \\ 0 & b_2 & b_3 \\ 0 & 0 & c_3 \end{vmatrix} = \vec{a} \times (b_2 c_3 i + 0 j + 0 k) =$$

$$\begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_2 c_3 & 0 & 0 \end{vmatrix} = -k a_2 b_2 c_3 + j a_3 b_2 c_3 = (0, a_3 b_2 c_3, -a_2 b_2 c_3)$$

$$\vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}) = \vec{b}(a_3 c_3) - \vec{c}(a_2 b_2 + a_3 b_3) = i \cdot 0 + j \cdot a_3 b_2 c_3 +$$

$$k(\underbrace{b_3 a_3 c_3 - c_3 a_2 b_2 - c_3 b_3 a_3}_{=-a_2 b_2 c_3}) \Rightarrow \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$$

$$\vec{b} \times (\vec{c} \times \vec{a}) = \vec{c}(\vec{b}, \vec{a}) - \vec{a}(\vec{b}, \vec{c})$$

$$\vec{c} \times (\vec{a} \times \vec{b}) = \vec{a}(\vec{c}, \vec{b}) - \vec{b}(\vec{c}, \vec{a})$$

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$$

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$$

20.10 Что такое кольцо Ли?

Def: $\langle A, +, * \rangle$ – кольцо. Если удовлетворяет требованию антикоммутативности (b*a=-a*b) и тождеству Якоби, то кольцо Ли.

Ex: $\langle E^3, +, \times \rangle$ – пример кольца Ли

21 21 раздел

21.1 Прямые на плоскости

$$(\overline{r}-\overline{r}_0)\cdot\overline{n}=0$$
 $(x-x_0,y-y_0)\cdot(A,B)=0$ $A(x-x_0)+B(y-y_0)=0$ - нормально уравнение прямой $\overline{n}=(A,B)$ - нормальный вектор

$$Ax+By+(-Ax_0-By_0)=0$$
 $Ax+By+C=0$ - общее уравнение прямой $(x-x_0,y-y_0)=\lambda(p,q)$ $\frac{x-x_0}{p}=\frac{y-y_0}{q}$ - каноническое уравнение прямой $\overline{s}=(p,q)$ - напраляющий вектор

$$egin{aligned} q(x-x_0)&=p(y-y_0)\ x-x_0&y-y_0\ x_1-x_0&y_1-y_0 \end{aligned} = 0 \quad rac{x-x_0}{x_1-x_0} = rac{y-y_0}{y_1-y_0}$$
 - уравнение прямой по двум точкам

$$\begin{vmatrix} (\overline{r}-\overline{r}_0) \times \overline{s} = \overline{0} \\ i & j & k \\ x - x_0 & y - y_0 & 0 \\ p & q & 0 \end{vmatrix} = k \underbrace{\begin{vmatrix} x - x_0 & y - y_0 \\ p & q \end{vmatrix}}_{=0} = \overline{0}$$

$$\frac{x - x_0}{p} = \frac{y - y_0}{q} = t$$

$$\begin{cases} x = x_0 + pt \\ y = y_0 + qt \\ \overline{r} = \overline{r}_0 + \overline{s}t \end{cases}$$
- параметрическое уравнение прямой
$$\frac{x - a}{\overline{r}_0} = \frac{y}{b}$$

$$b(x - a) = -ya$$

$$bx + ay = ab$$

 $\frac{x}{a} + \frac{y}{b} = 1$ - уравнение прямой в отрезках

Расстояние от точки $M_0(x_0,y_0)$ до прямой на плоскости Ax+By+C=0 $p(M_0,l)=|\Pi p_{\overline{n}}\overline{M_0M_1}|=\frac{|(\overline{r}_1-\overline{r}_0)\cdot\overline{n}|}{|\overline{n}|}=\frac{|\overline{r}_1\overline{n}-\overline{r}_0\overline{n}|}{|\overline{n}|}=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+R^2}}$

Нормальное уравнение прямой

$$\begin{split} \overline{n} &= (p \cdot cos\alpha, p \cdot sin\alpha) \\ (x - p \cdot cos\alpha) \cdot p \cdot cos\alpha + (y - p \cdot sin\alpha) \cdot p \cdot sin\alpha = 0 \\ x \cdot p \cdot cos\alpha + y \cdot p \cdot sin\alpha - p^2 = 0 | : p \neq 0 \\ x \cdot cos\alpha + y \cdot sin\alpha - p = 0 \end{split}$$

21.2 Плоскости в пространстве

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0, (x_0, y_0, z_0) \in \alpha$$

 $\overline{n} = (A, B, C) \perp \alpha$

$$Ax + By + Cz + D = 0$$
 - общее уравнение плоскости $\begin{cases} x = x_0 + t_1p_1 + t_2q_1 \\ y = y_0 + t_1p_2 + t_2q_2 \end{cases}$ - параметрическое уравнение плоско-

$$(\overline{r} - \overline{r}_0) \cdot \overline{n} = 0$$

$$\overline{r} = \overline{r}_0 + t_1 \overline{r}_1 + t_2 \overline{r}_2$$

$$(\overline{r} - \overline{r}_0, \overline{r}_1 - \overline{r}_0, \overline{r}_2 - \overline{r}_0) = 0$$

$$\overline{n} \perp \overline{M_0 M_1}, \overline{n} \perp \overline{M_0 M_2}$$
 $\overline{n} = \overline{M_0 M_1} \times \overline{M_0 M_2}$
 $((\overline{r}_1 - \overline{r}_0) \times (\overline{r}_2 - \overline{r}_0)) \cdot (\overline{r} - \overline{r}_0) = 0$
 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ - уравнение плоскости в отрезках

 $x \cdot cos\alpha + y \cdot cos\beta + z \cdot cos\gamma - p = 0 - \text{нормальное уравнение}$ плоскости

Расстояние от точки до плоскости

$$p(M_0, \alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

21.3 Прямые в пространстве

$$\overline{r} = \overline{r}_0 + \overline{s}t \ (\overline{s}$$
 - направляющий)
$$\begin{cases} x = x_0 + pt \\ y = y_0 + qt \end{cases}$$
 - параметрическое
$$z = z_0 + rt$$

$$\frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$
 - каноничнское уравнение
$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$
 - уравнение по 3 точкам Прямая как линия пересечения двух плоскостей
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0(\alpha_1) \\ A_2x + B_2y + C_2z + D_2 = 0(\alpha_2) \end{cases}$$

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}^2 + \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}^2 + \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}^2 \neq 0$$
 - не параллельны
$$\overline{s} = \overline{n}_1 \times \overline{n}_2 = \begin{vmatrix} i & j & k \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$

Замечание. Вопросы об углах между объектами сводятся к углам между их направляющими и нормальными векторами.

$$\begin{split} Ax + By + Cz + D &= 0 \\ \frac{x - x_0}{l} &= \frac{y - y_0}{m} = \frac{z - z_0}{n} \\ \overline{n} &= (A; B; C) & \overline{a} &= (l; m; n) \\ \cos \theta &= \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}} \end{split}$$

$$= \frac{1}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

$$= \frac{|Al + Bm + Cn|}{|Al + Bm + Cn|}$$

$$\sin arphi = rac{|Al+Bm+Cn|}{\sqrt{A^2+B^2+C^2}\sqrt{l^2+m^2+n^2}}$$
 - угол между прямой и плоскостью

и плоекостью

Расстояние между двумя прямыми в пространстве

$$\begin{split} \frac{x-x_1}{l_1} &= \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1} &\quad M_1(x_1;y_1;z_1) &\quad \overline{a}_1 = (l_1;m_1;n_1) \\ \\ \frac{x-x_2}{l_2} &= \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2} &\quad M_2(x_2;y_2;z_2) &\quad \overline{a}_2 = (l_2;m_2;n_2) \\ \\ V &= S \cdot d &\quad d = \frac{V}{S} \end{split}$$

 $V = |(\overline{u}_1 \times \overline{u}_2) \cdot \overline{M_1 M_2}|$ $S = |\overline{u}_1 \times \overline{u}_2|$

- расстояние между прямыми

22 22 раздел

22.1 Кривые второго порядка

$$\underbrace{a_{11}x^2 + 2a_{12}xy + a_{22}y^2}_{I} + \underbrace{2a_{1}x + 2a_{2}y + a_{0}}_{II} = 0$$
I – квадратичная часть; II – мнимая часть.
$$(x,y) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2(a_{1},a_{2}) \begin{pmatrix} x \\ y \end{pmatrix} + a_{0} = 0$$

$$a_{12} = a_{21}$$

22.2 Эллипс

Def: Эллипс – геометрическое место т. плоскости, сумма расстояний от которых до двух заданных есть величина постоянная.

Каноночиское уравнеине эллипса:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- (1) a большая полуось;
- (2) *b* малая полуось;
- (3) $c = \sqrt{a^2 b^2}$ линейный эксцентриситет;
- (4) точки $F_1(-c,0), F_2(c,0)$ фокусы;
- (5) 2c фокусное расстояние;
- (6) $0 < \varepsilon = c/a < 1 ($ числовой) эксцентриситет;
- (7) прямые $x = \pm a/\varepsilon$ директрисы;

Пусть M(x,y) - произвольная точка эллипса. Отрезки F_1M, F_2M называются фокальными радиусами точки M.

22.3 Гипербола

Def: Гипербола – геометрическое место точек плоскости, модуль разности расстояний от которых до двух заданных постоянная величина.

Каноническое уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

- (1) a вещественная полуось;
- (2) *b* мнимая полуось;
- (3) $c = \sqrt{a^2 + b^2}$ линейный эксцентриситет;
- (4) точки $F_1(-c,0), F_2(c,0)$ фокусы;
- (5) 2c фокусное расстояние;
- (6) $\varepsilon = c/a > 1-$ (числовой) эксцентриситет;
- (7) прямые $x = \pm a/\varepsilon$ директрисы;

22.4 Парабола

Def: Парабола – геометрическое место точек в плоскости, равноудаленных от заданной прямой и точки.

Каноническое уравнение параболы:

$$y^2 = 2px.$$

- (1) ось Ox ось параболы;
- (2) фокальная хорда отрезок с концами на параболе, проведенный через фокус перпендикулярно оси;
- (3) p (фокальный) параметр (равен половине длины фокальной хорды);
 - (4) p/2 фокусное расстояние
 - (5) точка F(p/2,0) фокус;
 - (6) прямая x = -p/2— директриса.

22.5 Оптические свойства кривых второго порядка

Для эллипса: лучи света, исходящие из одного фокуса эллипса, после зеркального отражения от эллипса проходят через второй фокус.

Для гиперболы: продолжение отраженного луча света, исходящего из одного фокуса гиперболы, попадает во второй фокус.

Для параболы: лучи света, исходящие из фокуса параболы, после зеркального отражения от нее образуют пучок лучей, параллельных ее фокальной оси

22.6 Кривые второго порядка как конические сечения

$$XF_1+XF_2=2a$$

$$\frac{XF}{\rho(X,d)} = \varepsilon < 1$$

$$\frac{XF}{\rho(X,d)} = \varepsilon = 1$$

Гипербола

$$|XF_1-XF_2|=2a$$

$$\frac{XF}{
ho(X,d)} = \varepsilon > 1$$

23 23 раздел

23.1 Общая теория кривых второго порядка

Уравнение кривой второго порядка: $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{12}x + 2a_{22}y + a_{0} = 0$

$$(x,y) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2(a_1, a_2) \begin{pmatrix} x \\ y \end{pmatrix} + a_0 = 0$$

$$X^T Q X + 2LX + a_0 = 0$$

23.2 Теорема о 9 видах уравнений, к которым приводится уравнение любой кривой второго порядка

Th: Уравнение кривой второго порядка может быть преобразовано посредством замены координат, состоящей из сдвига начала координат и поворота координатных осей, к одной из следующих девяти канонических форм:

1 Эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a \ge b > 0$$

2 Мнимый эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1, \quad a \ge b > 0$$

3 Пара мнимых пересекающихся прямых

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0, \quad a \ge b > 0$$

4 Гипербола

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad a > 0, b > 0$$

5 Пара пересекающихся прямых

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0, \quad a \ge 0, b > 0$$

6 Парабола

$$y^2 = 2px$$

7 Пара параллельных прямых

$$y^2 - a^2 = 0, \quad a \neq 0$$

8 Пара мнимых параллельных прямыхх

$$y^2 + a^2 = 0, \quad a \neq 0$$

9 Пара совпадающих прямых

$$y^2 = 0$$

remuse \mathcal{E}_{cnu} (*) joigaët yeng kpuly is, to $\overline{L}_{3} = a_{33}\overline{L}_{2}$ have reputoca
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
I2 > 0 (2. mm):
$I_{s} < 0 \implies (*"): 3.$
$I_3 = 0 \Rightarrow (x'')$: TOTKOL $(0; 0)$
1, > 0 => (x"): \$ (usumbus = nounc)
$\Box \qquad \overline{\underline{I}}_{2} = \begin{vmatrix} a_{11}^{"} & 0 \\ 0 & a_{22}^{"} \end{vmatrix} = a_{11}^{"} \cdot a_{22}^{"} > 0 \Rightarrow oghoro justice$
ear $\overline{I}_s = 0 \Rightarrow x'' = 0$, $y'' = 0 \Rightarrow \text{Tocka}(0;0)_{0}x''y''$
ecn
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
$I_3 > 0$: $\frac{x^{1/2}}{a^2} + \frac{x^{1/2}}{b^2} = -1$ wh. θ .
$I_2 < O(\Gamma, MHum)$:
$I_3 \neq 0 \Rightarrow \Gamma$
$\overline{\int}_{\mathfrak{Z}} = 0$ => пара пересекающихся прямых

$\bar{I}_2 = O \left(\prod_{i} \mu_i \mu_{i} \right)$
$\overline{L}_{3} \neq 0 \implies \overline{\Pi}$. $\overline{L}_{3} = 0 \implies \overline{\Pi}$ пара параллельных прямых / прямая / пустое множество
$\Box_{\mathcal{L}} \overline{L}_{S} = D \Rightarrow \alpha_{1S}' = D :$
$a_{22} \left(y + \frac{a_{25}}{a_{2L}'} \right)^2 + 2a_{15} x' + a_{55} - \frac{a_{25}^{12}}{a_{2L}} = 0$ a_{22}
$a_{22}^{12} \cdot y^{2} + (a_{21} \cdot a_{33} - a_{23}^{12}) = 0$
$y''^{2} = -\frac{a_{21} \cdot a_{33} - a_{13}^{2}}{a_{22}^{2}}$
a => > 0 => 2 npenue
$\alpha_{33}^{"} = 0 \Rightarrow 1 \text{ spende}$ $\alpha_{35}^{"} < 0 \Rightarrow \emptyset (\text{napa unumax spensor})$
$\Delta = \prod_{3} \neq 0 : a_{22} \left(y' + \frac{a_{23}}{a'} \right)^{2} + 2a_{13} \times + a_{33} - \frac{a_{13}}{a_{22}} = 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$y'' = 2p \times y'' P = \frac{a_1 s}{a_2 s} x''$

Нецентральные линии
$\overline{I}_{z} = 0 \qquad \overline{I}_{z} = a_{11} \cdot a_{22} - a_{12}^{z} = 0$
$a_{11} \cdot a_{22} = a_{12}^2 > 0$ ognor Juaka
$I_{1} = \alpha_{11} + \alpha_{22} \neq 0$
$(*) \rightarrow (*')$ no lopot:
$a_{11}^{1} \times^{1^{2}} + a_{22} y^{1^{2}} + 2a_{13} \times^{1} + 2a_{23} y^{1} + a_{33} = 0$
$\overline{L}_{2} = \begin{vmatrix} a_{11} & D \\ 0 & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} = 0$
$a_{22} \left(y^{2} + 2 \frac{a_{23}}{a_{22}} y^{1} + \frac{a_{23}}{a_{22}} \right) + 2 a_{15} x^{1} + a_{35} - \frac{a_{25}^{2}}{a_{22}^{2}} = 0$
$a_{22}^{1} \left(y' + \frac{a_{25}}{a_{24}^{1}} \right)^{2} + 2a_{15}^{1} \times + a_{55}^{1} - \frac{a_{25}^{12}}{a_{22}^{1}} = 0 (x^{15})$
y"

Ортогональные инварианты кривой второго по-23.3рядка

Def: Функция J от коэффициентов многочлена F называется ортогональным инвариантом, если она не меняется при переходе от одной прямоугольной системы к другой.

Классификация кривых второго порядка по инвариантам

Th: Следующий набор инвариантов является необходимым и достаточным условием принадлежности к одному из 9 уравнений

$$S=a_{11}+a_{22}$$
 $\delta=egin{array}{c|c} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}$ $\Delta=egin{array}{c|c} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{array}$ Относительный ивариант $k=egin{array}{c|c} a_{11} & a_1 \\ a_1 & a_0 \end{array}+egin{array}{c|c} a_{22} & a_2 \\ a_2 & a_0 \end{array}$

Является инвариантом, когда $\delta = \Delta$

1 Эллипс

$$\delta > 0$$
 $S \cdot \Delta < 0$

2 Мнимый эллипс

$$\delta > 0 \quad S \cdot \Delta > 0$$

3 Пара мнимых пересекающихся прямых

$$\delta > 0$$
 $\Delta = 0$

4 Гипербола

$$\delta < 0 \quad \Delta \neq 0$$

5 Пара пересекающихся прямых

$$\delta < 0$$
 $\Delta = 0$

6 Парабола

$$\delta = 0 \quad \Delta \neq 0$$

7 Пара параллельных прямых

$$\delta = \Delta = 0 \quad k < 0$$

8 Пара мнимых параллельных прямыхх

$$\delta = \Delta = 0 \quad k > 0$$

9 Пара совпадающцх прямых

$$\delta = \Delta = k = 0$$

23.5 Ортогональные преобразования на плоскости и их матрицы

Опр: квадратная матрица A называется ортогональной, если $A^T=A^{-1},$ т.е. $AA^T=A^TA=E,$ сама единичная матрица является ортогональной.

$$(det A)^2 = 1$$

O(n) - ортогональная группа

$$n = 2 \quad \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \quad \begin{pmatrix} \cos\varphi & \sin\varphi \\ \sin\varphi & -\cos\varphi \end{pmatrix}$$

Специальная ортогональная группа SO(n)

Определитель $= \pm 1$

SO(2) - поворот плоскости относительно координат: группа вращения плоскости

SO(3) - группа вращения пространства, углы Эйлера

24 24 раздел

24.1 Аффинные пространства

Def: Аффинным пространством, ассоциирующемся с V, называется множество A с операцией $A+V\to A$, удовлетворяющее следующим свойствам:

- 1. a + (x + y) = (a + x) + y;
- $2. \ a+0=a \quad \forall a \in A, 0 \in V;$
- 3. $\forall a, b \in A \exists ! x \in V : a + x = b$.

24.2 Репер и аффинная система координат

Def: Аффинной системой координат в пространстве называется точка О (начало координат) и базис пространства.

Def: Принято вектора базиса откладывать от точки О и совокупность точки и базиса называть репером.

24.3 Плоскость в аффинном пространстве

Def: Плоскость в аффинном пространстве – подмножество $P \subset A$ такого вида: $P = a_0 + U, \quad a_0 \in A, \quad U \subset V$

24.4 Аффинная оболочка множества точек

Def: Для любого множества $M \subseteq A$ и любой точки $a_0 \in M$ рассматривается аффинная оболочка множества точек $a_0 + \langle \overline{a_0 a}, a \in M \rangle$

24.5 Аффинная зависимость и независимость точек

Def: Точки a_0, \ldots, a_k называются аффинно независимыми, если $(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_k}) - \Pi H3$.

Def: Точки a_0, \ldots, a_k называются аффинно ависимыми, если они лежат в плоскости размерности $< \mathbf{k} \Leftrightarrow (\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_k}) - \Lambda 3$.

24.6 Аффинные плоскости как множества решений СЛАУ

Th: Всякая аффинная плоскость – множество решений некоторой СЛАУ.

24.7 Барицентрическая комбинация точек

Def: Барицентрическая комбинация точек – это комбинация вида $\sum_{i=1}^k \lambda_i a_i$ такая, что $\sum_{i=1}^k \lambda_i = 1$.

24.8 Барицентрические координаты точки относительно заданных точек

Пусть $\overrightarrow{a_0a_1}, \dots, \overrightarrow{a_0a_k}$ – ЛНЗ. Рассмотрим $a = \sum_{i=1}^k \lambda_i a_i,$ $\sum_{i=1}^k \lambda_i = 1.$ $\overrightarrow{a_0a} = \sum_{i=1}^k \lambda_i \cdot \overrightarrow{a_0a_i}.$

Def: $(\lambda_0,\ldots,\lambda_i,\ldots,\lambda_k)$ – барицентрические координаты точки a, относительно точек $a_0,\ldots,a_k.$