CHAPTER 8

PROPERTIES OF RELATIONS

Relations on Sets

Example 8.1.1 – The Less-than Relation for Real Numbers

Define a relation L from R to R as follows: For all real numbers x and y,

$$x L y \Leftrightarrow x < y$$
.

a. Is 57 *L* 53?

- b. Is (-17) *L* (-14)?
- c. Is 143 *L* 143? d. Is (-35) *L* 1?
- e. Draw the graph of L as a subset of the Cartesian plane $R \times R$

Example 8.1.1 – Solution

a. No, 57 > 53.

b. Yes, -17 < -14.

c. No, 143 = 143.

- d. Yes, -35 < 1.
- e. For each value of x, all the points (x, y) with y > x are on the graph. So, the graph consists of all the points above the line x = y.

Example 8.1.2 – The Congruence Modulo 2 Relation

Define a relation E from Z to Z as follows: For every $(m, n) \in Z \times Z$,

 $m E n \Leftrightarrow m - n$ is even.

- a. Is 4 E 0? Is 2 E 6? Is 3 E (-3)? Is 5 E 2?
- b. List five integers that are related by *E* to 1.
- c. Prove that if *n* is any odd integer, then *n E* 1.

Example 8.1.2 – Solution

a. Yes, 4 E 0 because 4 - 0 = 4 and 4 is even.

Yes, 2E6 because 2-6=-4 and -4 is even.

Yes, 3 E (-3) because 3 - (-3) = 6 and 6 is even.

No, $5\cancel{E}$ 2 because 5 – 2 = 3 and 3 is not even.

Example 8.1.2 – Solution

b. There are many such lists. One is

- 1 because 1 1 = 0 is even.
- 3 because 3 1 = 2 is even.
- 5 because 5 1 = 4 is even.
- -1 because -1 1 = -2 is even.
- -3 because -3 1 = -4 is even.

Example 8.1.2 – Solution

c. **Proof:** Suppose n is any odd integer. Then n = 2k + 1 for some integer k. Now by definition of E, $n \in 1$ if, and only if, n - 1 is even.

But by substitution,

$$n-1=(2k+1)-1=2k$$
,

and since *k* is an integer, 2*k* is even. Hence *n E* 1 [as was to be shown].

It can be shown that integers m and n are related by E if, and only if, $m \mod 2 = n \mod 2$ (that is, both are even or both are odd).

When this occurs *m* and *n* are said to be **congruent modulo 2**.

Example 8.1.3 – A Relation on a Power Set

Let $X = \{a, b, c\}$.

Then $\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$

Define a relation **S** from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ as follows: For all sets A and B in $\mathcal{P}(X)$ (that is, for all subsets A and B of X),

 $A S B \Leftrightarrow A$ has at least as many elements as B.

- a. Is {a, b} **S** {b, c}?
- c. Is {b, c} **S** {a, b, c}?

- b. Is {*a*} **S** ∅?
- d. Is {*c*} **S** {*a*}?

Example 8.1.3 – Solution

- a. Yes, both sets have two elements.
- b. Yes, $\{a\}$ has one element and \emptyset has zero elements, and $1 \ge 0$.
- c. No, $\{b, c\}$ has two elements and $\{a, b, c\}$ has three elements and 2 < 3.
- d. Yes, both sets have one element.

The Inverse of a Relation

The Inverse of a Relation

If R is a relation from A to B, then a relation R^{-1} from B to A can be defined by interchanging the elements of all the ordered pairs of R.

Definition

Let R be a relation from A to B. Define the inverse relation R^{-1} from B to A as follows:

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}.$$

This definition can be written operationally as follows:

For all
$$x \in A$$
 and $y \in B$, $(y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$.

Example 8.1.4 – The Inverse of a Finite Relation

Let $A = \{2, 3, 4\}$ and $B = \{2, 6, 8\}$, and let R be the "divides" relation from A to B: For every ordered pair $(x, y) \in A \times B$,

$$x R y \iff x | y \quad x \text{ divides } y.$$

- a. State explicitly which ordered pairs are in R and R^{-1} , and draw arrow diagrams for R and R^{-1} .
- b. Describe R^{-1} in words.

Example 8.1.4 – Solution

a.
$$R = \{(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)\}$$

$$R^{-1} = \{(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)\}$$

Example 8.1.4 – Solution

To draw the arrow diagram for R^{-1} , you can copy the arrow diagram for R but reverse the directions of the arrows.

Or you can redraw the diagram so that B is on the left.

Example 8.1.4 – Solution

b. R^{-1} can be described in words as follows: For every ordered pair $(y, x) \in B \times A$,

 $y R^{-1}x \Leftrightarrow y$ is a multiple of x.

Directed Graph of a Relation

Directed Graph of a Relation

Definition

A **relation on a set** A is a relation from A to A.

When a relation *R* is defined *on* a set *A*, the arrow diagram of the relation can be modified so that it becomes a **directed graph**.

Instead of representing *A* as two separate sets of points, represent *A* only once, and draw an arrow from each point of *A* to each related point.

Directed Graph of a Relation

As with an ordinary arrow diagram,

```
For all points x and y in A,
```

there is an arrow from x to y \Leftrightarrow $x R y \Leftrightarrow (x, y) \in R$.

Example 8.1.6 – Directed Graph of a Relation

Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a relation R on A as follows: For every $x, y \in A$,

$$x R y \Leftrightarrow 2 | (x - y).$$

Draw the directed graph of *R*.

Example 8.1.6 – Solution

Note that 3R3 because 3-3=0 and 2|0 since $0=2\cdot 0$. Thus, there is a loop from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth, since the difference of each integer with itself is 0, and 2|0.

Note also that 3 R 5 because $3 - 5 = -2 = 2 \cdot (-1)$. And 5 R 3 because $5 - 3 = 2 = 2 \cdot 1$. Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3.

Example 8.1.6 – Solution

The other arrows in the directed graph, as shown below, are obtained by similar reasoning.

