Лекция 10

Однофакторный дисперсионный анализ

Однофакторный дисперсионный анализ

(One-way ANOVA)

Есть k независимых выборок:

Почему Y, а не X?

Дисперсия во всех наблюдениях одинакова.

Математическое ожидание может отличаться от выборки к выборке.

$$Y_{ij} \sim N(\mu_i, \sigma^2)$$

ещё пишут так:
$$Y_{ij} = \mu_i + \epsilon_{ij}$$
 , $\epsilon_{ij} \sim N(0$, $\sigma^2)$

Общее число наблюдений:

$$n = n_1 + n_2 + ... + n_k$$

Гипотезы:

$$H_0: \mu_1 = \mu_2 = ... = \mu_k$$

 $H_{\scriptscriptstyle A}$: хотя бы в одной выборке м.о. отличается

Зачем это нужно? Мы же умеем сравнивать средние попарно.

Однофакторный дисперсионный анализ

Есть k независимых выборок:

$$Y_{11}, ..., Y_{1n_1}$$

$$Y_{21}, ..., Y_{2n_2}$$

$$Y_{k1}, \ldots, Y_{kn_k}$$

Общее число наблюдений:

$$n = n_1 + n_2 + ... + n_k$$

Разные средние:

$$\overline{Y}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij}$$

 $ar{Y}_{i} = rac{1}{n_{i}} \sum_{i=1}^{n_{i}} Y_{ij}$ - выборочные (групповые) средние

$$ar{Y} = rac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$$
 - общее среднее

За основную гипотезу: все $\, ar{Y}_{i} \,$ близки к $\, ar{Y} \,$.

Против основной гипотезы: разброс между средними.

Разложение разброса

Разные средние:

$$\bar{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$

- выборочные (групповые) средние

$$ar{Y} = rac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$$
 - общее среднее

Остатки (residuals):

$$e_{ij} = Y_{ij} - \bar{Y}_i$$

Потом пригодится:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} e_{ij} = 0$$

$$\sum_{i=1}^{n_i} e_{ij} = 0, \quad j = 1, ..., k$$

Разложение признака на объяснённую и необъяснённую составляющие:

$$Y_{ij} = \mu_i + \epsilon_{ij} = \overline{Y}_i + e_{ij}$$

Зачем эти отстатки нужны?

Разложение разброса

Разные средние:

$$ar{Y}_i = rac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$
 - выборочные (групповые) средние $ar{Y} = rac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$ - общее среднее

Туманная дребедень:

$$TSS = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 - \text{общая сумма квадратов (Total Sum of Squares)}$$

$$ESS = \sum_{i=1}^k \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 = \sum_{i=1}^k n_i (\bar{Y}_i - \bar{Y})^2 - \text{объяснённая сумма квадратов (Explained Sum of Squares)}$$

$$RSS = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} e_{ij}^2 - \text{остаточная сумма квадратов (Residual Sum of Squares)}$$

Теорема (Пифагора):

$$TSS = ESS + RSS$$

Примечание. Обозначения сильно варьируются. Вместо ESS пишут MSS (Model Sum of Squares) или SSW (Sum of Squares Within groups). Да как угодно всё это называется и обозначается...

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 \qquad ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 \qquad RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2$$

$$TSS = ESS + RSS$$

$$Y_{ij} - \bar{Y} = (Y_{ij} - \bar{Y}_i) + (\bar{Y}_i - \bar{Y}_i)$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 \qquad ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 \qquad RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2$$

$$TSS = ESS + RSS$$

$$Y_{ij} - \overline{Y} = (Y_{ij} - \overline{Y}_i) + (\overline{Y}_i - \overline{Y}_i)$$

Возведём в квадрат:

$$(Y_{ij} - \bar{Y})^2 = (Y_{ij} - \bar{Y}_i)^2 + (\bar{Y}_i - \bar{Y})^2 + 2(Y_{ij} - \bar{Y}_i)(\bar{Y}_i - \bar{Y})$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 \qquad ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 \qquad RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2$$

$$TSS = ESS + RSS$$

$$Y_{ij} - \overline{Y} = (Y_{ij} - \overline{Y}_i) + (\overline{Y}_i - \overline{Y}_i)$$

Возведём в квадрат:

$$(Y_{ij} - \bar{Y})^2 = (Y_{ij} - \bar{Y}_i)^2 + (\bar{Y}_i - \bar{Y})^2 + 2(Y_{ij} - \bar{Y}_i)(\bar{Y}_i - \bar{Y})$$

Просуммируем по всем наблюдениям:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\bar{Y}_{i} - \bar{Y})^{2} + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i})(\bar{Y}_{i} - \bar{Y})$$

$$TSS = RSS + ESS + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} e_{ij}(\bar{Y}_{i} - \bar{Y})$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 \qquad ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 \qquad RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2$$

$$TSS = ESS + RSS$$

$$Y_{ij} - \overline{Y} = (Y_{ij} - \overline{Y}_i) + (\overline{Y}_i - \overline{Y}_i)$$

Возведём в квадрат:

$$(Y_{ij} - \bar{Y})^2 = (Y_{ij} - \bar{Y}_i)^2 + (\bar{Y}_i - \bar{Y})^2 + 2(Y_{ij} - \bar{Y}_i)(\bar{Y}_i - \bar{Y})$$

Просуммируем по всем наблюдениям:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2 + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)(\bar{Y}_i - \bar{Y})$$

$$TSS = RSS + ESS + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_i} e_{ij}(\bar{Y}_i - \bar{Y})$$

Избавимся от суммы справа:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} e_{ij} (\bar{Y}_i - \bar{Y}) = \sum_{i=1}^{k} \left[(\bar{Y}_i - \bar{Y}) \sum_{j=1}^{n_i} e_{ij} \right] = 0$$

Получили, что TSS = ESS + RSS ▶

F-статистика

Проверяем гипотезы:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_{\scriptscriptstyle A}$: хотя бы в одной выборке м.о. отличается

Статистика:

$$F = rac{\mathrm{ESS} \, / \, (k-1)}{\mathrm{RSS} \, / \, (n-k)} \, \stackrel{H_0}{\sim} \, F_{k-1,n-k}$$
 доказательство - отдельно

Решающее правило:

отвергнуть
$$H_0$$
 , если $F > F_{k-1,n-k,\alpha}$

Пример

Отдел маркетинга в компании, владеющей сетью супермаркетов, пытается определить оптимальное расположение для продаваемых пончиков. В течение четырёх недель пончики ставились на верхнюю полку, в течение шести недель — на полку на уровне глаз, и в течение пяти недель — на нижнюю полку. В таблице приведены количества проданных упаковок с пончиками за все 15 недель эксперимента:

Нижняя полка	На уровне глаз	Верхняя полка	
228	226	175	
173	237	211	
190	225	214	
195	261	159	
	243	233	
	224		

Даёт ли проведённый эксперимент основания считать, что объём продаж пончиков зависит от их расположения на полках? Выполните проверку на уровне значимости 5%.

Пример

Рассчитываем средние:

ic.	${Y}_{1j}$	Y_{2i}	${Y}_{3j}$	
		На уровне глаз	_	
	228	226	175	
	173	237	211	
	190	225	214	
	195	261	159	
		243	233	
		224		
Среднее:	196.5	236.0	198.4	lacksquare
Общее сред	нее:	212.933		
		$ar{Y}$		
	$n_1=4,$	$n_2=6,$	$n_3=5,$	
	n	= 4 + 6 + 5	= 15	

То же на картинке

Когда не слишком мало наблюдений, лучше использовать усатые ящики

Рассчитываем статистику и делаем вывод

	Нижняя полка		На уров	вне глаз	Верхняя полка	
	Продажи Остатки		Продажи	Продажи Остатки		Остатки
	228	31.5	226	-10	175	-23.4
	173	-23.5	237	1	211	12.6
	190	-6.5	225	-11	214	15.6
	195	-1.5	261	25	159	-39.4
			243	7	233	34.6
			224	-12		
Среднее:	196.5		236.0		198.4	
Общее среднее:		212.933				

ESS =
$$4 \times (196.5 - 212.933)^2 + 6 \times (236 - 212.933)^2 + 5 \times (198.4 - 212.933)^2 = 5328.73$$

RSS = $31.5^2 + (-23.5)^2 + ... + (-39.4)^2 + 34.6^2 = 6328.2$

$$TSS = (228 - 212.933)^2 + (173 - 212.933)^2 + ... + (233 - 212.933)^2 = 11656.93$$

Рассчитываем статистику и делаем вывод

	Нижняя полка		На уров	вне глаз	Верхняя полка	
	Продажи	Остатки	Продажи	Остатки	Продажи	Остатки
	228	31.5	226	-10	175	-23.4
	173	-23.5	237	1	211	12.6
	190	-6.5	225	-11	214	15.6
	195	-1.5	261	25	159	-39.4
			243	7	233	34.6
			224	-12		
Среднее:	196.5		236.0		198.4	
Общее среднее:		212.933				

ESS =
$$4 \times (196.5 - 212.933)^2 + 6 \times (236 - 212.933)^2 + 5 \times (198.4 - 212.933)^2 = 5328.73$$

RSS = $31.5^2 + (-23.5)^2 + ... + (-39.4)^2 + 34.6^2 = 6328.2$

$$TSS = (228 - 212.933)^2 + (173 - 212.933)^2 + ... + (233 - 212.933)^2 = 11656.93$$

Статистика:
$$F = \frac{\text{ESS / }(k-1)}{\text{RSS / }(n-k)} = \frac{5328.73 \text{ / }(3-1)}{6328.2 \text{ / }(15-3)} = 5.05.$$

Критическое значение: $F_{k-1,n-k,\alpha} = F_{2,12,0.05} = 3.89$.

Вывод: F = 5.05 > 3.89 => объём продаж в среднем зависит от расположения.

Р-значение

Гипотеза о равенстве средних (продажи не связаны с расположением) отвергается на уровне 2.6% и выше.

Оценка дисперсии

$$\hat{\sigma}^{2} = \frac{RSS}{n-k} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} e_{ij}^{2}}{n-k}.$$

Докажем несмещённость. ◀ Несмещённая оценка по отдельной выборке:

$$\hat{\sigma}_{i}^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} e_{ij}^{2}$$

$$\sigma^{2} = E(\hat{\sigma}_{i}^{2}) = \frac{1}{n_{i} - 1} E\left(\sum_{j=1}^{n_{i}} e_{ij}^{2}\right) \implies E\left(\sum_{j=1}^{n_{i}} e_{ij}^{2}\right) = \sigma^{2}(n_{i} - 1)$$

Оценка дисперсии

$$\hat{\sigma}^{2} = \frac{RSS}{n-k} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} e_{ij}^{2}}{n-k}.$$

Докажем несмещённость. ◀ Несмещённая оценка по отдельной выборке:

$$\hat{\sigma}_{i}^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i})^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} e_{ij}^{2}$$

$$\sigma^{2} = E(\hat{\sigma}_{i}^{2}) = \frac{1}{n_{i} - 1} E\left(\sum_{j=1}^{n_{i}} e_{ij}^{2}\right) \implies E\left(\sum_{j=1}^{n_{i}} e_{ij}^{2}\right) = \sigma^{2}(n_{i} - 1)$$

Складываем квадраты остатков по всем выборкам:

$$E(RSS) = E\left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} e_{ij}^2\right) = \sum_{i=1}^{k} E\left(\sum_{j=1}^{n_i} e_{ij}^2\right) = \sum_{i=1}^{k} \sigma^2(n_i - 1) = \sigma^2(n_1 + ... + n_k - k) = \sigma^2(n - k).$$

Так что

$$E(\sigma^2) = \frac{E(RSS)}{n-k} = \frac{\sigma^2(n-k)}{n-k} = \sigma^2. \blacktriangleright$$

Коэффициент детерминации

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

Отражает долю разброса признака Ү, которую можно объяснить принадлежностью к разным выборкам (долю объясняемого разброса).

Интерпретация крайних значений:

 $R^2 = 0$ - средние во всех выборках совпадают, никаких различий (ESS=0,TSS=RSS>0)

 $R^2 = 1$ - внутри выборок нет вариации признака, разброс объясняется исключительно различием между выборками (RSS=0,TSS=ESS>0)

Скорректированный (нормированный, поправленный) коэффициент детерминации:

$$R_{adj}^2 = 1 - rac{ ext{RSS}/(n-k)}{ ext{TSS}/(n-1)}$$
 он может быть <0 !

Возвращение к пончикам

Мы уже успели рассчитать суммы квадратов:

$$ESS = 5328.73$$

$$RSS = 6328.2$$

$$TSS = 11656.93$$

Коэффициенты детерминации:

$$R^2 = \frac{ESS}{TSS} = \frac{5328.73}{11656.93} = 0.46$$

$$R_{adj}^2 = 1 - \frac{6328.2/(15-3)}{11656.93/(15-1)} = 0.37$$

посчитано просто для примера

46% разброса наблюдаемых объёмов продаж можно объяснить за счёт смены расположения пончиков.

Картинки и циферки

 $R^2 \approx 0.3$

Снова *F*-статистика

Проверяем гипотезы:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_{\scriptscriptstyle A}$: хотя бы в одной выборке м.о. отличается

Статистика:

$$F = \frac{\text{ESS} / (k-1)}{\text{RSS} / (n-k)} \stackrel{H_0}{\sim} F_{k-1, n-k}$$

Её можно выразить через коэффициент детерминации:

$$F = \frac{R^2 / (k-1)}{(1-R^2) / (n-k)}$$

Образец вывода (Stata)

P>|t|

0.021

0.904

0.000

t

2.66

0.12

17.11

[95% Conf. Interval]

71.79712

35.46415

221.5172

7.202881 -31.66415

171.4828

. anova y shelt	f						
		Number Root M				squared = j R-squared =	= 0.4571 = 0.3667
	Source	Parti	al ss	df	MS	F	Prob > F
	Model	5328.	73333	2	2664.36667	5.05	0.0256
	shelf	5328.	73333	2	2664.36667	5.05	0.0256
	Residual	6	328.2	12	527.35		
	Total	11656	.9333	14	832.638095		
. reg							
Source	SS	df		MS		mber of obs = 2, 12) =	
Model Residual	5328.73333 6328.2			36667 27.35	Pr R-	ob > F =	0.0256 0.4571
Total	11656.9333	14	832.6	38095		T	= 22.964

Coef.

39.5

1.9

196.5

У

shelf

_cons

2

Std. Err.

14.82326

15.40479

11.48205

Сравнение средних по трём выборкам

Сравнение с «базовой категорией» (нижней полкой)

Проверка предпосылок

Можно изучить распределение остатков — гистограмма или «квантиль-квантиль».

все предпосылки выполнены

не нормальное распределение, разные дисперсии

нормальное распределение, разные дисперсии (гетероскедастичность)

выброс

QQ для задачи с пончиками

Для размышления

Пусть для выборок все предпосылки выполнены.

Будут ли остатки

- ▶ независимыми?
- ▶ нормальными?
- ► гомоскедастичными*?

^{*} гомоскедастичность — равенство дисперсий.

Подытожим

Предпосылки: Y_{11} , ..., Y_{1n_1} ; Y_{21} , ..., Y_{2n_2} ; ... ; Y_{k1} , ..., Y_{kn_k} независимы, $Y_{ii} \sim N\left(\mu_i,\sigma^2\right)$.

Гипотезы:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_{\scriptscriptstyle A}$: хотя бы в одной выборке м.о. отличается

Разложение разброса:

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2; \qquad ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y})^2; \qquad RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2.$$

TSS = ESS + RSS.

Коэффициенты детерминации:

$$R^{2} = \frac{\text{ESS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}, \quad 0 \le R^{2} \le 1; \qquad R_{adj}^{2} = 1 - \frac{\text{RSS}/(n-k)}{\text{TSS}/(n-1)}.$$

F-статистика:

$$F = \frac{\text{ESS}/(k-1)}{\text{RSS}/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} \stackrel{\text{H}_0}{\sim} F_{k-1,n-k}.$$

Критическое правило: отвергнуть H_0 , если $F > F_{k-1,n-k,\alpha}$.

О чём я не говорил

- > Зачем нужен дисперсионный анализ, если мы можем сравнивать выборки попарно.
- > Попарные сравнения в дисперсионном анализе.
- > Сравнение дисперсий в нескольких выборках.
- > Критерий Краскелла-Уоллиса (он полезен, но не уместился).
- > Многофакторный дисперсионный анализ.
- > Как сравнить распределение качественного признака по нескольких выборкам.

Следующая лекция

Корреляционный анализ, часть I: выборочные коэффициенты корреляции Пирсона и Спирмена.