ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 119

- 1. Дайте определение случайной величины, которая имеет гамма-распределение $\Gamma(\alpha, \lambda)$, и выведите основные свойства гамма-расределения. Запишите формулы для математичсекого ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ гамма-распределения
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;10] и [0;9] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,719 \leqslant Z \leqslant 1,005).$
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 93, 3333%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 19%
- 4. Создайте эмперические совокупности \exp и \sin вида $\exp(1), \exp(2), ..., \exp(85)$ и $\sin(1), \sin(2), ..., \sin(85)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности ехр, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков exp и sin на совокупности натуральных чисел от 1 до 85.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	28	23	3
X = 300	2	12	32

Из Ω случайным образом без возвращения извлекаются 5 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(Y)$; 2) стандартное отклонение $\sigma(X)$; 3) ковариацию Cov(X,Y)

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{2X_1 + 3X_2 + 4X_3 + X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 2X_3 + 3X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Подготовил

P2508

П.Е. Рябов

Утверждаю:

Первый заместитель руководителя департамента

Режиин Феклин В.Г.