Preliminary Zn(n,p)Cu Data

Andrew Voyles
22 February 2016

Experimental Setup – 03 Nov 2015

Zinc

Thickness: 1.03 ± 0.01 mm

Diameter: 9.90 ± 0.15 mm

- Weight: 0.5375 \pm 0.0001 g

Indium

Thickness: 0.48 ± 0.02 mm

Diameter: 9.77 ± 0.12 mm

- Weight: 0.2475 \pm 0.0001 g

Beam On: 2:13:16 PM

Beam Off: 5:13:16 PM

Start of Counting: 5:43:01 PM

Polyethylene

Fitting to Model

Results

	T ½ (ENSDF)	X^2/DoF	#σ above ENSDF				
Counts (336 keV)	4.486 h	4.519	±	0.0457	h	1.7286	0.722
Counts (391 keV)	99.476 m	104.5208	±	5.6701	m	1.721	0.890
Counts (417 keV)	54.29 m	52.0074	±	2.6139	m	1.021	-0.873
Counts (511 keV)	12.701 h	11.8183	±	0.7027	h	1.6785	-1.256

Experimental Setup – 11 Feb 2016

Zinc

Thickness: 1.03 ± 0.01 mm

Diameter: 9.85 ± 0.15 mm

- Weight: 0.4514 \pm 0.0001 g

Indium

Thickness: 0.51 ± 0.02 mm

Diameter: 9.786± 0.12 mm

Weight: 0.2481± 0.0001 g

Beam On: 2:40:30 PM

Beam Off: 6:02:00 PM

Start of Counting: 6:37:25 PM

Results – Removal of 511 Contamination

	T ½ (ENSDF)	X^2/DoF	#σ above ENSDF				
Counts (336 keV)	4.486 h	4.519	±	0.0457	h	1.7286	0.722
Counts (391 keV)	99.476 m	104.5208	±	5.6701	m	1.721	0.890
Counts (417 keV)	54.29 m	52.0074	±	2.6139	m	1.021	-0.873
Counts (511 keV) (cut 1 st 4hrs)	12.701 h	12.0791	±	1.0704	h	1.7616	-0.581
Counts (511 keV) (11 Feb Run)	12.701 h	11.8804	±	0.8377	h	1.1299	-0.980

67Cu Peaks – 80 hrs into count

Next Steps

- Need to apply correct detector efficiency calibration
 - Will not affect half lives of peaks, just XS calculations
 - Calculate ⁶⁴Cu production XS, relative to In
 - XS appears to be ~50 mb
- Preparing for (n,p) measurements on:
 - 50Ti(n, α),47Ca
 - 105Pd(n,p)105Rh
 - 159Tb(n,p)159Gd
- Extend measurements to $E_n \le ^{55}$ MeV, using 88" Cyclotron ⁷Li(p,n) quasimonoenergetic neutron source (currently in development with Jon Engle [LANL])
- Measure ⁶⁷Cu production cross section using LEPS
 - 184.5 keV peak masked by U/Pb decay chain, Compton background
 - Also inhibited by lower production XS
 - Use enriched ⁶⁷Zn target?

