

Outline

- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Multiclass Classification and Weak Supervision

Model Evaluation and Selection

- ☐ How to evaluate the quality of a classifier
 - A typical measure: Accuracy
 - Other metrics to consider?
- ☐ How to assess the classification quality
 - Use (independent) validation test set instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
 - Holdout method
 - Cross-validation
 - Bootstrap
- Comparing classifiers using ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- □ In a confusion matrix with m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals
- ☐ An example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity, and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- □ Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

□ Error rate: 1 - accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
 - One class may be rare
 - E.g., fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
- Measures handle the class imbalance problem
 - Sensitivity (recall): True positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- □ **Precision** (Exactness): What percentage of tuples labeled as positive is actually positive? $P = Precision = \frac{TP}{TP + FP}$
- □ **Recall** (Completeness): What percentage of positive tuples are labeled as positive?
 - □ Range: [0, 1]

$$R = Recall = \frac{TP}{TP + FN}$$

- ☐ The "inverse" relationship between precision & recall
- □ F measure (or F-score): Harmonic mean of precision and recall
 - ☐ In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{D} + (1 - \alpha) \cdot \frac{1}{D}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Assigning β times as much weight to recall as to precision

- □ F1-measure (balanced F-measure)
 - \Box That is, when $\beta = 1$,

$$F_1 = \frac{2PR}{P + R}$$

Classifier Evaluation Metrics: Example

Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (accuracy)

- Sensitivity = TP/P = 90/300 = 30%
- Specificity = TN/N = 9560/9700 = 98.56%
- \square Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- \square Error rate = (FP + FN)/All = (140 + 210)/10000 = 3.50%
- \square Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- \square Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- \blacksquare F1 = 2 P × R /(P + R) = 2 × 39.13% × 30.00%/(39.13% + 30%) = 33.96%

Classifier Evaluation: Holdout & Cross-Validation

Holdout method

- ☐ The given data set is randomly partitioned into two independent sets
 - ☐ Training set (e.g., 2/3) for model construction
 - ☐ Test set (e.g., 1/3) for accuracy estimation
- Repeated random sub-sampling validation: A variation of holdout
 - □ Repeat holdout k times, accuracy = average of the accuracies obtained
- \square Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - □ At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: Folds are stratified so that class distribution in each fold is approximately the same as that in the initial data

Classifier Evaluation: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- □ Several bootstrap methods, and a common one is .632 bootstrap
 - □ A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - \square Repeating the sampling procedure k times, the overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Model Selection: ROC Curves

- **ROC** (Receiver Operating Characteristics) curve: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve (AUC: Area Under Curve) is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: The one that is most likely to belong to the positive class appears at the top of the list
- ☐ The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- The vertical axis represents the true positive rate
- The horizontal axis represents the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Issues Affecting Model Selection

- Accuracy
 - Classifier accuracy: Predicting class label
- Speed
 - Time to construct the model (training time)
 - Time to use the model (classification/prediction time)
- □ **Robustness**: Handling noise and missing values
- □ **Scalability**: Efficiency in disk-resident databases
- Interpretability
 - Understanding and insight provided by the model
- Other measures
 - E.g., goodness of rules, such as decision tree size or compactness of classification rules

Outline

- Techniques to Improve Classification Accuracy: Ensemble Methods
- Bagging: Bootstrap Aggregation
- Random Forest: Basic Concepts and Methods
- Boosting and AdaBoost
- Classification of Class-Imbalanced Data Sets
- Classifying Data Streams with Skewed Distribution

Ensemble Methods: Increasing the Accuracy

Training

Test data

Ensemble

Prediction

 M_2

- Ensemble methods
 - Use a combination of models to increase accuracy.
 - Combine a series of k learned models, M_1 , M_2 , ..., M_3 , ..., M_4 , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: Trains each model using a subset of the training set
 - Models learned independently, in parallel
 - □ Simple voting: Outcome is determined by the majority of the parallel models
 - Boosting: Trains each new model instance to emphasize the training instances that previous models misclassified (correcting the "errors" of previous model)
 - Models learned in order (a sequential ensemble)
 - Weighted voting: Outcome is determined by the majority but the sequential models were built by assigning greater weights to misclassified instances of the previous models

Bagging: Bootstrap Aggregation

Test_data

Ensemble

Prediction

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - □ A classifier model M_i is learned for each training set D_i
- Classification: Classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - ☐ The bagged classifier M* counts the votes and assigns the class with the most votes to **X**
- Prediction: It can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy: Improved accuracy in prediction
 - Often significantly better than a single classifier derived from D
 - For noise data: Not considerably worse, more robust

Random Forest: Basic Concepts

- □ Random Forest (first proposed by L. Breiman in 2001)
 - A variation of bagging for *decision trees*
 - Data bagging
 - Use a subset of training databy sampling with replacement for each tree
 - Feature bagging
 - At each node use a random selection of attributes as candidates and split by the best attribute among them
 - Comparing with original bagging, the random forests method increases the diversity among generated trees
 - During classification, each tree votes and the most popular class is returned

Methods for Constructing Random Forest

- Two Methods to construct Random Forest:
 - Forest-RI (random input selection)
 - Randomly select, at each node, F attributes as candidates for the split at the node
 - ☐ The CART methodology is used to grow the trees to maximum size
 - Forest-RC (random linear combinations)
 - Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than typical bagging or boosting

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses - weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - □ The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Adaboost (Freund and Schapire, 1997)

- Given a set of d class-labeled tuples, $(X_1, y_1), ..., (X_d, y_d)$
- □ Initially, all the weights of tuples are set the same (i.e., 1/d)
- ☐ Generate *k* classifiers in *k* rounds. At round i,
 - □ Tuples from D are sampled (with replacement) to form a training set D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - □ A classification model M_i is derived from D_i
 - ☐ Its error rate is calculated using D_i as a test set
 - ☐ If a tuple is misclassified, its weight is increased; otherwise, it is decreased
- \square Error rate: err(X_i) is the misclassification error of tuple X_i
- \Box Classifier M_i error rate is the sum of the weights of the misclassified tuples:
- The weight of classifier M_i's vote is $\log \frac{1 error(M_i)}{error(M_i)}$ $= \sum_{j}^{n} w_j \times err(\mathbf{X_j})$

Classification of Class-Imbalanced Data Sets

- □ Class-imbalance problem: Rare positive examples but numerous negative ones
 - E.g., medical diagnosis, fraud transaction, accident (oil-spill), and product fault
- Traditional methods assume a balanced distribution of classes and equal error

costs: Not suitable for class-imbalanced data

- ☐ Typical methods on imbalanced data in two-class classification
 - Oversampling: Re-sampling of data from positive class
 - □ **Under-sampling**: Randomly eliminate tuples from negative class
 - Threshold-moving: Move the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Classifying Data Streams with Skewed Distribution

- Classify data stream with skewed distribution (i.e., rare events)
- **Biased sampling:** Save only the positive examples in the streams
- \square **Ensemble:** Partition negative examples of S_m into k portions to build k classifiers
- Effectively reduce classification errors on the minority class

Multiclass Classification

- □ Classification involving more than two classes (i.e., > 2 Classes)
- Methodology
 - Reducing the multi-class problem into multiple binary problems
- Method 1. One-vs.-rest (or one-vs.-all)
 - ☐ Given *m* classes, train *m* classifiers: One for each class
 - Classifier j: Treat tuples in class j as positive & all the rest as negative
 - □ To classify a tuple **X**, the set of classifiers vote as an ensemble
- ☐ Method 2. One-vs.-one (or all-vs.-all): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - ☐ To classify **X**, each classifier votes: **X** is assigned to the class with maximal vote
- Comparison: One-vs.-one tends to perform better than one-vs.-rest
- Many new algorithms have been developed to go beyond binary classifier method

Weak Supervision: A New Programming Paradigm for Machine Learning

- Overcome the training data bottleneck
 - Leverage higher-level and/or noisier input from experts
- Exploring weak label distributions provided more cheaply and efficiently by
 - Higher-level, less precise supervision (e.g., heuristic rules, expected label distributions)
 - Cheaper, lower-quality supervision (e.g., crowdsourcing)
 - Existing resources (e.g., knowledge bases, pre-trained models)
- These weak label distributions could take many forms
 - Weak labels from crowd workers, output of heuristic rules, or the result of distant supervision (from KBs), or the output of other classifiers, etc.
 - Constraints and invariances (e.g., from physics, logic, or other experts)
 - Probability distributions (e.g., from weak or biased classifiers, userprovided labels, feature expectations, or measurements)

Relationships Among Different Kinds of Supervisions

Many areas of machine learning are motivated by the bottleneck of labeled training data, but are divided at a high-level by what information they leverage instead.

Semi-Supervised Classification

unlabeled

labeled

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident
 - label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv.: Easy to understand; Disadv.: May reinforce errors
- □ Co-training: Use two or more classifiers to teach each other
 - \square Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f_1 and f_2
 - Then f₁ and f₂ are used to predict the class label for unlabeled data X
 - Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 & vice versa
- Other methods include joint probability distribution of features and labels

- A special case of semi-supervised learning
 - Unlabeled data: Abundant
 - Class labels are expensive to obtain
- Active learner: Interactively query teachers (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: A small subset of D is labeled; U: A pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - ☐ The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using *learning curves*: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- ☐ A lot of algorithms have been developed for active learning

Transfer Learning: Conceptual Framework

- ☐ Transfer learning: Extract knowledge from one or more source tasks (e.g., recognizing cars) and apply the knowledge to a target task (e.g., recognizing trucks)
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks
- Many algorithms are developed, applied to text classification, spam filtering, etc.

Summary

- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Multiclass Classification and Weak Supervision

Recommended Readings

- Breiman, L. (1996). Bagging predictors. *Machine Learning*, *24*(2), 123-140. Retrieved from https://link.springer.com/article/10.1023/A:1018054314350
- □ Efron, B. & Tibshirani, R. (1993). *An introduction to the bootstrap*. London, UK: Chapman & Hall/CRC.
- Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. *JCSS*, *55*(1), 119-139. Retrieved from https://www.sciencedirect.com/science/article/pii/S002200009791504X
- Gao, J., Fan, W., & Han, J. (2007). A general framework for mining concept-drifting data streams with skewed distributions. *Proc. of SDM*. DOI: 10.1137/1.9781611972771.1. Retrieved from http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.1
- Grossman, R., Seni, G., Elder, J., Agarwal, N., & Liu, H. (2010). *Ensemble methods in data mining: Improving accuracy through combining predictions*. San Rafael, CA: Morgan & Claypool.
- Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. *IJCAI*, *2*, 1137-1143. Retrieved from https://dl.acm.org/citation.cfm?id=1643047
- Pan, S. J. & Yang, Q. (2010). A Survey on transfer learning. *IEEE Trans. on Knowledge and Data Eng.* Retrieved from http://ieeexplore.ieee.org/document/5288526/
- Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A review. *Int. Journal of Pattern Recognition and Artificial Intelligence*, 23(4), 687. Retrieved from http://www.worldscientific.com/doi/abs/10.1142/S0218001409007326
- □ Zhou, Z.-H. (2012). *Ensemble methods: Foundations and algorithms*. Boca Raton, FL: CRC Press.

References

- □ Stanford DAWN. (2017). *Labeled training data graphic* [Online image]. Retrieved from https://goo.gl/EaXfBj
- □ All other multimedia elements belong to © 2018 University of Illinois Board of Trustees.