

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

# Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2023

Question Paper Log Number P72906A

Publications Code WST03\_01\_MS\_2301

All the material in this publication is copyright

© Pearson Education Ltd 2023

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL IAL MATHEMATICS

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

#### 'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

## To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

## 'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

## 'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

## 3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

  If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

  If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **Special notes for marking Statistics exams (for AAs only)**

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

| Question |                                                                                                                                                                                                                                                                                                      | Scheme                                                                                           |                                                                                                                                                   | Marks        |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| 1 (a)(i) | Metl                                                                                                                                                                                                                                                                                                 |                                                                                                  | Method 2                                                                                                                                          | 1/14/113     |  |  |  |
|          | $[\overline{y} =$                                                                                                                                                                                                                                                                                    | $\left[\frac{847}{100}\right] = 8.47$                                                            | 847+100×1000 [=100847]                                                                                                                            | M1           |  |  |  |
|          | So $\bar{x}$                                                                                                                                                                                                                                                                                         | $\overline{\epsilon} = 1000 + \frac{847}{100} = 1008.47 *$                                       | $\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47$ *                                                                                    | A1*          |  |  |  |
| (ii)     | $\left[ S_{x}^{2} \right]$                                                                                                                                                                                                                                                                           | $\left[s_x^2\right] = \frac{101707510.1 - \frac{"100847"^2}{100}}{99}$                           | M1                                                                                                                                                |              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                      | = 64                                                                                             |                                                                                                                                                   | A1           |  |  |  |
|          |                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                   | (4)          |  |  |  |
| (b)      | $H_0$ :                                                                                                                                                                                                                                                                                              | $\mu_x = 1010$ $H_1: \mu_x \neq 1010$                                                            |                                                                                                                                                   | B1           |  |  |  |
|          | 77                                                                                                                                                                                                                                                                                                   | 1010 7 1010                                                                                      |                                                                                                                                                   | (1)          |  |  |  |
| (c)      | $\frac{\overline{X} - 1010}{"8" / \sqrt{100}} = -1.9$ oe $\frac{\overline{X} - 1010}{"8" / \sqrt{100}} = 1.96$ oe                                                                                                                                                                                    |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                      | 1008.432 $\bar{X} = 1011.568$ awr                                                                |                                                                                                                                                   | A1           |  |  |  |
|          | $\overline{X} \leqslant "1008.432"$ $\overline{X} \geqslant "1011.568"$                                                                                                                                                                                                                              |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                   | (4)          |  |  |  |
| (d)      | 1008.47 is not in the critical region                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          | The machine does not need to be stopped /reset                                                                                                                                                                                                                                                       |                                                                                                  |                                                                                                                                                   |              |  |  |  |
| (e)      | It is                                                                                                                                                                                                                                                                                                | reasonable since the sample size is                                                              | (reasonably) large                                                                                                                                | B1 (2)       |  |  |  |
| (0)      | it is reasonable since the sample size is (reasonably) large                                                                                                                                                                                                                                         |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          | Notes                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                                                                   |              |  |  |  |
| (a)(i)   | M1                                                                                                                                                                                                                                                                                                   | For 8.47 or $\frac{847}{100}$ or $847 + 100 \times 1$                                            | 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen                                                                                            |              |  |  |  |
|          | A1*                                                                                                                                                                                                                                                                                                  | cso correct solution including $\overline{x} =$<br>y and must not be just $x \in E(X)$ , $\mu_x$ | and=1008.47 allow alt notation for $\overline{x}$ but must refine an of $x$                                                                       | fer to x not |  |  |  |
| (ii)     | M1                                                                                                                                                                                                                                                                                                   | For a correct expression ft their 1008                                                           | 47 Allow for answer of 1064                                                                                                                       |              |  |  |  |
|          | A1                                                                                                                                                                                                                                                                                                   | Cao do not ISW Allow 64.00                                                                       |                                                                                                                                                   |              |  |  |  |
| (b)      | B1                                                                                                                                                                                                                                                                                                   | Both hypotheses correct. Must be in t                                                            | terms of $\mu$ . (Allow $H_0: \mu_y = 10  H_1: \mu_y \neq 10$ )                                                                                   |              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                      | Mark (c) and (d) together                                                                        |                                                                                                                                                   |              |  |  |  |
| (c)      | M1 For $\pm$ standardisation with 1010 and their sd. Allow equivalent eg. $1010 \pm n \times "8" / \sqrt{100}$ SC condone use of 1008.47 for 1010 or for $\bar{X}$                                                                                                                                   |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          | B1                                                                                                                                                                                                                                                                                                   | For c.v. = $\pm 1.96$ or better seen (Calca one tail hypotheses in (b)                           | culator gives 1.95996) Condone 1.6449 or better if                                                                                                | they have    |  |  |  |
|          | A1 For both limits 1008 or better and 1012 or better seen. (condone 1011from correct working)                                                                                                                                                                                                        |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          | A1                                                                                                                                                                                                                                                                                                   | letters(condone $\mu$ ) Allow other notar                                                        | ir figures (not z value). Allow use of $<$ and $>$ also allow tion eg [1012, $\infty$ ], ( $\infty$ , 1008] allow [1012, $\infty$ ], [ $\infty$ , | 1008]        |  |  |  |
| (d)      | d) If their CR if the final A mark in part (c) is awarded. For a correct comment compatible w CR. Must refer to $1008.47$ (allow mean of x) is in or out of their CR Allow writing in the form " $1008.432$ " $< 1008.47 < "1011.568$ " etc but if in middle it must ends. If no clear CR it is M0A0 |                                                                                                  |                                                                                                                                                   |              |  |  |  |
|          | dep on M1 awarded. Correct conclusion consistent with comparing 1008.47 with their CR( allow interval/ range etc). If it is in the CR they must say it needs to be reset/stopped. If it is not in the C it must say it does not need to be stopped/reset. (allow equivalent wording)                 |                                                                                                  |                                                                                                                                                   |              |  |  |  |

|     | SC        | If the CR in (c) is of the form "1008.432" $< \bar{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset. |
|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (e) | <b>B1</b> | Any suitable comment about the sample being large eg $n$ is large                                                                                                   |

| Question |                                                                                                                                                              |                                                                                                                         | S         | Scheme     |           |             |                |             |                                   |                 | Marks        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-------------|----------------|-------------|-----------------------------------|-----------------|--------------|
|          | Athl                                                                                                                                                         | ete                                                                                                                     | A         | В          | C         | D           | E              | F           | G                                 | Н               |              |
| 2 (a)    |                                                                                                                                                              | k SBT                                                                                                                   | 4         | 2          | 1         | 3           | 5              | 6           | 8                                 | 7               | M1           |
| _ (u)    | FP                                                                                                                                                           | ~                                                                                                                       | 1         | 2          | 3         | 4           | 5              | 6           | 7                                 | 8               | 1,11         |
|          |                                                                                                                                                              | =9+0+4+1-                                                                                                               |           |            |           |             | 1 2            |             |                                   | U               | M1           |
|          |                                                                                                                                                              |                                                                                                                         |           |            | 10]       |             |                |             |                                   | 4.0.01          |              |
|          | $r_s = 1$                                                                                                                                                    | - \frac{6("16")}{8(63)}                                                                                                 | = 0.8095  | )          |           |             |                |             |                                   | awrt 0.81       | dM1 A1 (4)   |
| (1-)     | H · a = 0 H · a > 0                                                                                                                                          |                                                                                                                         |           |            |           |             |                |             |                                   |                 |              |
| (b)      | $H_0: \rho = 0$ , $H_1: \rho > 0$<br>Critical Value $r_s = 0.8333$ or CR: $r_s \ge 0.8333$                                                                   |                                                                                                                         |           |            |           |             |                |             |                                   |                 | B1           |
|          |                                                                                                                                                              |                                                                                                                         |           |            |           |             | •.•            |             |                                   | •               | B1           |
|          |                                                                                                                                                              | ot reject H <sub>0</sub> or no<br>nce of a positive                                                                     |           |            | does not  | lie in th   | e critica      | region      | or there                          | is no           | M1           |
|          |                                                                                                                                                              | is no evidence                                                                                                          |           |            | rrelation | betwee      | n seasoi       | 's best     | time and                          | d finishing     | 4.1.0        |
|          |                                                                                                                                                              | on for these ath                                                                                                        | _         |            |           |             |                |             |                                   |                 | A1ft (4)     |
|          |                                                                                                                                                              |                                                                                                                         |           |            |           |             |                |             |                                   |                 |              |
| (c)      | r = -                                                                                                                                                        | $\frac{0.225175}{0.1286875 \times 0.5}$                                                                                 | 55275     |            |           |             |                |             |                                   |                 | M1           |
|          | 1                                                                                                                                                            | 0.12868/3×0.3<br>84428                                                                                                  | 03213     |            |           |             |                |             |                                   | awrt 0.844      | A1           |
|          | 0.0                                                                                                                                                          | 71120                                                                                                                   |           |            |           |             |                |             |                                   | uwit 0.011      | (2)          |
| (d)      | Critical Value $r = 0.7887$ or CR: $r \ge 0.7887$                                                                                                            |                                                                                                                         |           |            |           |             |                | M1          |                                   |                 |              |
|          | so there is evidence of a positive correlation between season's best time and finishing                                                                      |                                                                                                                         |           |            |           |             |                |             |                                   | finishing       | A1 ft        |
|          | time                                                                                                                                                         | for these athlete                                                                                                       | S         |            |           |             |                |             |                                   |                 | (2)          |
|          |                                                                                                                                                              |                                                                                                                         |           |            | Note      | es          |                |             |                                   |                 | Total 12     |
| (a)      | M1                                                                                                                                                           | attempt to rank                                                                                                         | seasonal  | best time  |           |             | rect), Ma      | y be impl   | lied by \(\sum_{\text{inition}}\) | $\int d^2 = 16$ |              |
| _        | N/1                                                                                                                                                          | Attempt to find                                                                                                         | the diffe | rence bet  | ween eac  | h of the    | ranks (a       | t least 3 o | correct) a                        | nd evaluatin    | $g \sum d^2$ |
|          | M1                                                                                                                                                           | May be implied                                                                                                          | by awrt   | 0.81 NB    | if no ran | ks for SE   | T it is M      | 0           |                                   |                 |              |
|          | dM1                                                                                                                                                          | <b>dM1</b> dependent on 1 <sup>st</sup> M1. Using $1 - \frac{6\sum d^2}{8(63)}$ with their $\sum d^2$                   |           |            |           |             |                |             |                                   |                 |              |
|          | A1                                                                                                                                                           | $\frac{17}{21}$ or awrt 0.8                                                                                             | 31(0)     |            |           |             |                |             |                                   |                 |              |
|          | SC                                                                                                                                                           | for reverse rankings                                                                                                    |           |            |           |             |                |             |                                   |                 |              |
| (1.)     | D1                                                                                                                                                           |                                                                                                                         |           |            |           |             |                |             | looks lik                         | e rho eg p).    | Must be      |
| (b)      | <b>B1</b> both hypotheses correct. Must be in terms of $\rho$ (allow something that looks like rho eg $\rho$ attached to H <sub>0</sub> and H <sub>1</sub>   |                                                                                                                         |           |            |           |             |                | 01/         |                                   |                 |              |
|          | B1                                                                                                                                                           | critical value of                                                                                                       |           | Sign sl    | hould ma  | tch there   | $H_1$ or $r_s$ |             |                                   |                 |              |
|          |                                                                                                                                                              | correct statemen                                                                                                        | nt compa  | ring their | CV with   | their $r_s$ | - no con       | text need   | ed but do                         | not allow       |              |
|          | M1                                                                                                                                                           | contradicting no                                                                                                        | on contex | tual com   | ments. If | no CV o     | r test stat    | istic give  | en or the                         | test value  o   | r  CV  > 1   |
|          | then it is M0                                                                                                                                                |                                                                                                                         |           |            |           |             |                |             | Conclusia                         | mayat === f- :: |              |
|          | A1ft correct conclusion in context for their value of $r_s$ from (a) and their stated CV. Conclusion positive correlation seasonal best or time and position |                                                                                                                         |           |            |           |             |                | Conclusion  | must reter                        |                 |              |
|          |                                                                                                                                                              | to <b>positive correlation</b> , <b>seasonal best</b> or <b>time</b> and <b>position</b> .  For use of two-tailed test: |           |            |           |             |                |             |                                   |                 |              |
|          | SC                                                                                                                                                           | May score B0B                                                                                                           |           |            | v 0.881.  | .)          |                |             |                                   |                 |              |
| (c)      | M1                                                                                                                                                           | correct method                                                                                                          |           |            |           |             |                |             |                                   |                 |              |
|          | <b>A1</b> awrt 0.844                                                                                                                                         |                                                                                                                         |           |            |           |             |                |             |                                   |                 |              |
| (d)      | M1                                                                                                                                                           | Critical value of                                                                                                       | f 0.7887  | Allow 0.3  | 8343 if h | vnothese    | s are two      | tailed in   | (h)                               |                 |              |

M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to **A1ft positive correlation**, **seasonal best** or **time** and **finishing time**. Do not allow contradicting comments. if the |test value| or |CV| > 1 then it is M0

| Question    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 | Scheme                                       |                                                 | Marks                  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------|--|--|--|
|             | 86×3                                                                                                                                                                                                                                                                                                                                                 | ×300 1114×300                                                                                                                                   |                                              |                                                 |                        |  |  |  |
| 3 (a)       | 120                                                                                                                                                                                                                                                                                                                                                  | or                                                                                                                                              |                                              |                                                 |                        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | and 278.5                                                                                                                                       |                                              |                                                 |                        |  |  |  |
|             | 21.0                                                                                                                                                                                                                                                                                                                                                 | and 276.5                                                                                                                                       |                                              |                                                 |                        |  |  |  |
| (1.)        | H <sub>0</sub> : M                                                                                                                                                                                                                                                                                                                                   | Making a claim and age are independent (not associated)                                                                                         |                                              |                                                 |                        |  |  |  |
| (b)         |                                                                                                                                                                                                                                                                                                                                                      | Molving a claim and against not independent (agas sixted)                                                                                       |                                              |                                                 |                        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | Observed                                                                                                                                        | Expected                                     | $\frac{(O-E)^2}{E}$                             |                        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | Observed Expected $\frac{(O-E)^2}{E}$ 14 "21.5" $\frac{(14-"21.5")^2}{"21.5"} = 2.6162$ 286 "278.5" $\frac{(286-"278.5")^2}{"278.5"} = 0.20197$ |                                              |                                                 |                        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | 286                                                                                                                                             | "278.5"                                      | $\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$   |                        |  |  |  |
|             | $\sum_{i=1}^{n}$                                                                                                                                                                                                                                                                                                                                     | $\frac{(O-E)^2}{E} = 7.123 + $                                                                                                                  | - "2.616"+ "0.2019                           | 1                                               | M1                     |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | 9.941                                                                                                                                           |                                              | aw                                              | vrt 9.94 A1            |  |  |  |
|             | v = (2                                                                                                                                                                                                                                                                                                                                               | (2-1)(3-1) = 2                                                                                                                                  |                                              |                                                 | B1                     |  |  |  |
|             | $\chi_2^2(0.$                                                                                                                                                                                                                                                                                                                                        | $01) = 9.210 \implies C$                                                                                                                        | CR: $X^2 \ge 9.21[0]$                        |                                                 | B1ft                   |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      | e CR/significant/Reject H <sub>0</sub> ] There is sufficient evidence to suggest that making a is not independent of age.                       |                                              |                                                 |                        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                              |                                                 | (7)                    |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                              | otes                                            | Total 9                |  |  |  |
| (a)         | M1                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                              | eted value. Implied by one correct value.       |                        |  |  |  |
|             | A1                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | for both 21.5 and 278.5                      |                                                 | . 1 . 1 . 22           |  |  |  |
| (b)         | B1                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | eses correct. Must men<br>"connection" is B0 | tion claim and age at least once. Use of "      | relationship" or       |  |  |  |
|             | M1                                                                                                                                                                                                                                                                                                                                                   | A correct method for finding both contributions to the $\chi^2$ value or awrt 2.62 or awrt 0.202 Al                                             |                                              |                                                 |                        |  |  |  |
|             | 1411                                                                                                                                                                                                                                                                                                                                                 | truncated answers of 2.61 and 0.201 May be implied by awrt 9.94                                                                                 |                                              |                                                 |                        |  |  |  |
|             | M1                                                                                                                                                                                                                                                                                                                                                   | Adding their two                                                                                                                                | o values to 7.123 (may                       | be implied by a full $\chi^2$ calculation, with | at least 3 correct     |  |  |  |
|             | 1411                                                                                                                                                                                                                                                                                                                                                 | expressions or values. Do not ISW)                                                                                                              |                                              |                                                 |                        |  |  |  |
|             | A1                                                                                                                                                                                                                                                                                                                                                   | awrt 9.94                                                                                                                                       |                                              |                                                 |                        |  |  |  |
|             | B1                                                                                                                                                                                                                                                                                                                                                   | v = 2 This mark can be implied by a correct critical value of 9.21 or better                                                                    |                                              |                                                 |                        |  |  |  |
|             | B1ft                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                              |                                                 |                        |  |  |  |
|             | dA1ft Independent of hypotheses but dependent on both M marks being awarded. We will ft their test statistic and CV only. A correct contextual conclusion compatible with their values, which has the words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/ not associated. Do not allow contradicting statements. |                                                                                                                                                 |                                              |                                                 |                        |  |  |  |
| Full calcul |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                              | 2                                               | 2                      |  |  |  |
| (24-1)      | $(4,33)^2$                                                                                                                                                                                                                                                                                                                                           | $(176 - 185 67)^2$                                                                                                                              | $(48-50.17)^2$ (6)                           | $52-649.83)^2 (14-"21.5")^2 (286-$              | _"278 5"\ <sup>2</sup> |  |  |  |

$$eg \frac{(24-14.33)^2}{14.33} + \frac{(176-185.67)^2}{185.67} + \frac{(48-50.17)^2}{50.17} + \frac{(652-649.83)^2}{649.83} + \frac{(14-"21.5")^2}{21.5} + \frac{(286-"278.5")^2}{278.5}$$

or awrt 6.52 + awrt 0.5 + awrt 0.09 + awrt 0.01 + awrt 2.62 + 0.20

or 
$$\frac{24^2}{14.33} + \frac{176^2}{185.67} + \frac{48^2}{50.17} + \frac{652^2}{649.83} + \frac{14^2}{"21.50"} + \frac{286^2}{"278.5"} - 1200$$

or awrt 40.19 + awrt 166.83 + awrt 45.92 + awrt 654.17 + awrt 9.116 + awrt 293.702 – 1200

| Quest | ion                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |  |  |  |  |
|-------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| 4 (a  | a)                               | $H_0$ : B(4, 0.5) is a suitable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D1                                                                           |  |  |  |  |
|       |                                  | $H_1: B(4, 0.5)$ is not a suitable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                                                                           |  |  |  |  |
|       |                                  | Expected frequencies 12.5, 50, 75, 50, 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A1                                                                        |  |  |  |  |
|       |                                  | $(O-E)^2 (15-"12.5")^2 (10-"12.5")^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |  |  |  |  |
|       |                                  | $\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + \dots + \frac{(10 - "12.5")^2}{"12.5"}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) / (1                                                                       |  |  |  |  |
|       |                                  | 2 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                                                                           |  |  |  |  |
|       |                                  | or $\sum \frac{O^2}{E} - N = \frac{15^2}{"12.5"} + + \frac{10^2}{"12.5"} - 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |  |  |  |  |
|       |                                  | = 10.84 (or 10.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                                                                           |  |  |  |  |
|       |                                  | $\nu = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1                                                                           |  |  |  |  |
|       |                                  | $\chi_4^2(0.05) = 9.488  \Rightarrow CR \geqslant 9.488$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                                                                           |  |  |  |  |
|       |                                  | Sufficient evidence to say that the research students claim is not supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1ft                                                                         |  |  |  |  |
|       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (8)                                                                          |  |  |  |  |
| (b)   | )                                | $[0 \times 15 + ]1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10[= 360]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                                                                           |  |  |  |  |
|       |                                  | $\frac{360}{200\times4} = 0.45 *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1*                                                                          |  |  |  |  |
|       |                                  | 200×4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |  |  |  |  |
| (c)   | \ \ \                            | H <sub>0</sub> : Binomial is a suitable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                                          |  |  |  |  |
|       |                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1                                                                           |  |  |  |  |
|       | _                                | $H_1$ : Binomial is not a suitable model $v = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D1                                                                           |  |  |  |  |
|       | _                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1<br>B1ft                                                                   |  |  |  |  |
|       | _                                | $\chi_3^2(0.05) = 7.815 \implies CR \geqslant 7.815$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |  |  |  |  |
|       |                                  | No significant evidence to say that the binomial is not a reasonable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1ft                                                                         |  |  |  |  |
| 1     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                          |  |  |  |  |
|       |                                  | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4) <b>Total 14</b>                                                          |  |  |  |  |
| (a)   | B1                               | Notes  Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total 14                                                                     |  |  |  |  |
| (a)   |                                  | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total 14                                                                     |  |  |  |  |
| (a)   | B1 M1                            | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total 14                                                                     |  |  |  |  |
| (a)   |                                  | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1                            | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if need)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1                            | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1 M1                         | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1                            | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1 M1 A1                      | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1 M1 A1 B1                   | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total 14                                                                     |  |  |  |  |
| (a)   | M1 A1 M1 A1 B1 B1                | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or $4 \times 0.5^4 \times 200 = 50$ or $6 \times 0.5^4 \times 200 = 75$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{\text{nd}}$ M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rotal 14  eded)  and their test (Allow in                                    |  |  |  |  |
| (a)   | M1 A1 M1 A1 B1                   | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eded) and their test (Allow in en must say                                   |  |  |  |  |
|       | M1 A1 M1 A1 B1 B1 A1ft           | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{\text{nd}}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then ot supported (not binomial). If their Test statistic < their CV then must say supported (is binomial).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eded) and their test (Allow in en must say                                   |  |  |  |  |
| (a)   | M1 A1 M1 A1 B1 B1                | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eded) and their test (Allow in en must say                                   |  |  |  |  |
| (b)   | M1 A1 M1 A1 B1 B1 A1ft           | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV at statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial) accorrect method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$ . Implied by 360 or 1.8  cso allow for 360/800 or 1.8/4 or 1.8 = 4 $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rotal 14  eded)  and their test (Allow in en must say mial)                  |  |  |  |  |
|       | M1 A1 B1 A1ft M1 A1* B1          | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{\text{nd}}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV at statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then to supported (not binomial). If their Test statistic < their CV then must say supported (is binomial) a correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$ . Implied by 360 or 1.8  cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/Both                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rotal 14  reded)  and their test (Allow in en must say mial)                 |  |  |  |  |
| (b)   | M1 A1 M1 B1 B1 A1ft M1 A1* B1 B1 | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8  For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8  10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488  9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815  Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. ft their CV at statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then of Supported (not binomial). If their Test statistic < their CV then must say supported (is binonal A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$ . Implied by 360 or 1.8  cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B( $v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their $v$ in part(a) $v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their $v$ in part(a) $v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their $v$ in part(a) $v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their $v$ in part(a) $v = 3$ This mark can be implied by a correct critical v | rotal 14  reded)  and their test (Allow in en must say mial) (0.45,4)        |  |  |  |  |
| (b)   | M1 A1 B1 B1 A1ft M1 B1 B1 B1     | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer $10.84$ or $10.8$ For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer $10.84$ or $10.8$ $10.84$ Allow $10.8$ $v = 4$ This mark can be implied by a correct critical value of $9.488$ $9.488$ ft their degrees of freedom if given. For $v = 3$ it is $7.815$ Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV ar statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic $>$ their CV the not supported (not binomial). If their Test statistic $<$ their CV then must say supported (is binon A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$ . Implied by $360$ or $1.8$ cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/Bi $v = 3$ This mark can be implied by a correct critical value of $7.815$ Condone (their $v$ in part(a) $-7.815$ ft their degrees of freedom if they have (their $v$ in part(a) $-1$ ).                                                                                                                                                                                                                                                                       | rotal 14  reded)  and their test (Allow in en must say mial)  (0.45,4)  - 1) |  |  |  |  |
| (b)   | M1 A1 M1 B1 B1 A1ft M1 A1* B1 B1 | Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$ ) Condone B(0.5, 4)  For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer $10.84$ or $10.8$ For all 5 expected frequencies correct. These must be seen and cannot be implied.  For an attempt at the test statistic, at least 2 correct expressions/ values seen (include $-200$ if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer $10.84$ or $10.8$ $10.84$ Allow $10.8$ $v = 4$ This mark can be implied by a correct critical value of $9.488$ $9.488$ ft their degrees of freedom if given. For $v = 3$ it is $7.815$ Dep on the $2^{nd}$ M1. independent of hypotheses. Need claim or student or binomial. If their CV ar statistic only. A correct conclusion based on their test statistic value and their $\chi^2$ critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic $>$ their CV the not supported (not binomial). If their Test statistic $<$ their CV then must say supported (is binon A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$ . Implied by $360$ or $1.8$ cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/Bi $v = 3$ This mark can be implied by a correct critical value of $7.815$ Condone (their $v$ in part(a) $-7.815$ ft their degrees of freedom if they have (their $v$ in part(a) $-1$ ).                                                                                                                                                                                                                                                                       | rotal 14  reded)  and their test (Allow in en must say mial)  (0.45,4)  - 1) |  |  |  |  |

| Question |                                                                                                                                                                      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                 |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| 5 (a)    |                                                                                                                                                                      | $: \mu_A = \mu_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                    |  |  |  |  |  |  |
| 3 (u)    |                                                                                                                                                                      | $: \mu_A > \mu_B$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |  |  |  |
|          | CO                                                                                                                                                                   | $se = \sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                    |  |  |  |  |  |  |
|          | 7 =                                                                                                                                                                  | <u>+ 1377 – 1368</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | $17.8^2 \cdot 18.4^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                    |  |  |  |  |  |  |
|          | $z = \pm \frac{1377 - 1368}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          | $=\pm 2.339$ awrt $\pm 2.34$                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          | On                                                                                                                                                                   | e tailed c.v. $ Z  = 2.3263$ or CR: $Z \le -2.3263$ or $Z \ge 2.3263$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                    |  |  |  |  |  |  |
|          | In                                                                                                                                                                   | CR/Significant/Reject H <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dM1                   |  |  |  |  |  |  |
|          | Su                                                                                                                                                                   | fficient evidence to support that the mean $\underline{\text{vield}}$ from plants using fertiliser $\underline{A}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1ft                  |  |  |  |  |  |  |
|          | gre                                                                                                                                                                  | eater than the mean <u>yield</u> from plants using fertiliser <u>B</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |  |  |  |
| ALT      | fi.,                                                                                                                                                                 | ding the CI can get D1M1M1A0D1M1A1 unless test statistic given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (7)                   |  |  |  |  |  |  |
| ALI      | 1111                                                                                                                                                                 | ding the CI can get B1M1M1A0B1M1A1 unless test statistic given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |  |  |  |  |
|          | aw                                                                                                                                                                   | ard M1 for $z = \pm \frac{D}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$ dep on first M1 where $2.3 \le z \le 2.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | $\sqrt{\frac{17.8}{50} + \frac{18.4}{40}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | by be implied by $ D  = 8.949$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |  |  |  |  |
| (b)      |                                                                                                                                                                      | pected profit per plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |  |  |  |  |  |
|          | Α.                                                                                                                                                                   | $3 \times 1 \ 377 - \frac{75}{}$ $R: 3 \times 1 \ 368 - \frac{50}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                    |  |  |  |  |  |  |
|          |                                                                                                                                                                      | $\frac{3 \times 1.377 - \frac{75}{50}}{82.62(1)} B: 3 \times 1.368 - \frac{50}{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |  |  |  |  |  |  |
|          | <i>A</i> :                                                                                                                                                           | £2.63(1) B: £2.85(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Al                    |  |  |  |  |  |  |
|          | Cla                                                                                                                                                                  | aire should use fertiliser B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dA1 (3)               |  |  |  |  |  |  |
|          |                                                                                                                                                                      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total 10              |  |  |  |  |  |  |
| (a)      | <b>B</b> 1                                                                                                                                                           | Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A and B not use the degree of $\mu$ If A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | used the              |  |  |  |  |  |  |
| ` '      |                                                                                                                                                                      | letter must be defined  For a correct attempt to find the se or se <sup>2</sup> Condone slip in sample sizes May be implied by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |  |  |  |  |
|          | M1                                                                                                                                                                   | se = awrt 3.85 or se <sup>2</sup> = awrt 14.8. Allow for a $p$ -value of 0.0096 or awrt 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |  |  |  |  |
|          | M1                                                                                                                                                                   | For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18. 4 rather the same $\frac{1}{2}$ and $\frac{1}{2}$ | han 17.8 <sup>2</sup> |  |  |  |  |  |  |
|          | <b>A1</b>                                                                                                                                                            | and 18. $4^2$ Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097<br>awrt = $\pm 2.34$ Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |  |  |  |
|          | B1                                                                                                                                                                   | $\pm$ 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tistic                |  |  |  |  |  |  |
|          | DI                                                                                                                                                                   | dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |  |  |  |
|          | dM1                                                                                                                                                                  | their test statistic and CV only - need not be contextual but do not allow contradicting non co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | comments.  ft their z value and CR only. A correct contextual statement compatible with their test statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and CV                |  |  |  |  |  |  |
| .        | A1ft                                                                                                                                                                 | with context of yield (at least once) and A and B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anu CV                |  |  |  |  |  |  |
|          |                                                                                                                                                                      | NB id they give a <i>p</i> -value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |  |  |  |
|          | A correct method to find the profit per $n$ plants or $m$ kg for either fertiliser $A$ or fertiliser $B$                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
| (b)      | <b>M1</b> $n(3\times1.377-75/50)$ or $n(3\times1.368-50/40)$ or $m(3-75/50\times1.377)$ or $m(3-50/(40\times1.368))$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | where $n$ and $m \neq 0$ Implied by one correct value for $A$ or $B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | must have 2 values which can be compared. ie using same $n$ or $m$ . Profit per $n$ plant £2.63(1) $n$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |  |  |  |  |
|          | £2.85(4) n or profit per m kg awrt £1.91 m and awrt £2.09 m (2dp) or cost per m kg awrt £1.<br>awrt £0.91 m or number plants per £1, awrt $0.38$ y and awrt $0.35$ y |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          | dA1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |  |
|          |                                                                                                                                                                      | Useful numbers ( $n = 50$ gives profit 131.55, 142.7) or ( $n = 40$ gives profits105.24 and 114.16) gain M1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |  |  |  |

| Question | Scheme                                                                                                                                                                                                                                                          |                                                                                             |          |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|--|--|--|--|
| 6 (a)    | $\overline{x} = \frac{8}{3}$                                                                                                                                                                                                                                    | $\frac{06.4}{36} = ]22.4$                                                                   | B1       |  |  |  |  |
|          | "22.4" $\pm$ 2.3263 $\times \frac{0.4}{\sqrt{36}}$                                                                                                                                                                                                              |                                                                                             |          |  |  |  |  |
|          | (22.24, 22.55) awrt (22.2, 22.6)                                                                                                                                                                                                                                |                                                                                             |          |  |  |  |  |
|          | NB answers which are awrt (22.2, 22.6) gain full marks                                                                                                                                                                                                          |                                                                                             |          |  |  |  |  |
|          | F                                                                                                                                                                                                                                                               |                                                                                             | (4)      |  |  |  |  |
| (b)      | [The Central Limit Theorem is not required as] the original population is <b>normally</b> distributed                                                                                                                                                           |                                                                                             |          |  |  |  |  |
|          | 22.5:                                                                                                                                                                                                                                                           |                                                                                             | (1)      |  |  |  |  |
| (c)      |                                                                                                                                                                                                                                                                 | within the confidence interval                                                              | B1 ft    |  |  |  |  |
|          | So no r                                                                                                                                                                                                                                                         | reason to doubt the manufacturers claim                                                     | dB1 ft   |  |  |  |  |
|          |                                                                                                                                                                                                                                                                 |                                                                                             | (2)      |  |  |  |  |
| (d)      | $\overline{Y} \sim N$                                                                                                                                                                                                                                           | $\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$                                      | B1       |  |  |  |  |
|          | $P(\overline{Y} < 848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$                                                                                                                                                              |                                                                                             |          |  |  |  |  |
|          |                                                                                                                                                                                                                                                                 | = 0.1038 (Calculator gives $0.10295$ ) awrt $0.103 / 0.104$                                 | A1 (3)   |  |  |  |  |
| ALT      | N(8500                                                                                                                                                                                                                                                          | 250)                                                                                        | B1       |  |  |  |  |
|          | `                                                                                                                                                                                                                                                               | $848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$                  | M1       |  |  |  |  |
|          |                                                                                                                                                                                                                                                                 | = 0.1038                                                                                    | A1       |  |  |  |  |
| (a)      | D1                                                                                                                                                                                                                                                              | Notes For 22.4                                                                              | Total 10 |  |  |  |  |
| (a)      | B1                                                                                                                                                                                                                                                              |                                                                                             |          |  |  |  |  |
|          | M1                                                                                                                                                                                                                                                              | For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with $1.2 < z < 2.6$ |          |  |  |  |  |
|          | B1                                                                                                                                                                                                                                                              | For z value = $2.3263$ or better seen (Calculator gives $2.3263479$ )                       |          |  |  |  |  |
|          | A1                                                                                                                                                                                                                                                              | awrt (22.2, 22.6) This does not imply the B1                                                |          |  |  |  |  |
| (b)      | B1                                                                                                                                                                                                                                                              | For reference to the data is modelled by <b>normal distribution</b>                         |          |  |  |  |  |
| (c)      | B1 ft ft their CI For a comment on whether 22.5 (or it) is or is not in their CI allow eg range for CI Allow "22.24" < 22.5 < " 22.6" Answer must be compatible with their CI                                                                                   |                                                                                             |          |  |  |  |  |
|          | dB1 ft                                                                                                                                                                                                                                                          | Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe                |          |  |  |  |  |
| (d)      | for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have $\overline{Y}$ or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850,2.5)$ seen used or $N(8500,250)$ seen or used. Both implied by a correct standardisation. |                                                                                             |          |  |  |  |  |
|          | M1                                                                                                                                                                                                                                                              | For $\pm$ (a correct standardisation) implied by a correct answer                           |          |  |  |  |  |
|          | A1                                                                                                                                                                                                                                                              | awrt 0.103 to 0.104                                                                         |          |  |  |  |  |
|          | •                                                                                                                                                                                                                                                               | ·                                                                                           |          |  |  |  |  |

| Question |                                                                                          | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks              |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| 7 (a)    | Let $P = t$                                                                              | time to serve a customer at a standard checkout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
|          | $Q = P_1 +$                                                                              | $[Q \sim] N(720,1200)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                 |  |  |  |  |  |  |
|          | $P(Q < 660) = P\left(Z < \pm \frac{660 - "720"}{"\sqrt{1200"}}\right) [= P(Z < -1.732)]$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
|          | = 0.0418 (Calculator gives 0.04163) <u>awrt 0.041 / 0.042</u>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
| A T 7T   | for the B1 M1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
| ALT      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
|          | B1 for                                                                                   | $[Q \sim] N\left(12, \frac{1}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |  |  |  |  |  |
|          | M1 for                                                                                   | $P(Q < 11) = P\left(Z < \pm \frac{11 - "12"}{\sqrt{"\frac{1}{3}"}}\right) [= P(Z < -1.732)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |  |  |
|          |                                                                                          | $(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |  |  |
| (b)      | Assume                                                                                   | the time taken to serve customers is independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1 (1)             |  |  |  |  |  |  |
| (c)      | P - time                                                                                 | to serve a customer at an express checkout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)                |  |  |  |  |  |  |
|          |                                                                                          | $(S_1)^2 + (R_1 + R_2)^2 + (R$ | M1 A1              |  |  |  |  |  |  |
|          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1411 741           |  |  |  |  |  |  |
|          | P(S>0)                                                                                   | $= P\left(Z > \pm \frac{0-20}{\sqrt{1648}}\right) \left[= P\left(Z > -0.492\right)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                 |  |  |  |  |  |  |
|          |                                                                                          | 9 (Calculator gives 0.6888) <u>awrt 0.688 / 0.689</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                 |  |  |  |  |  |  |
| ALT      |                                                                                          | M1A1M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |  |  |  |  |  |  |
|          | M1 for 1                                                                                 | $N\left(\frac{1}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |  |  |  |  |
|          |                                                                                          | (3,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |  |  |  |  |
|          |                                                                                          | $I\left(\frac{1}{3},\frac{103}{225}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |  |  |  |  |
|          | M1 C                                                                                     | $0 - \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |  |  |  |  |  |
|          | MI for ±                                                                                 | M1 for $\pm \frac{0 - \frac{1}{3}}{\sqrt{103/225}}$ "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |  |  |  |  |  |  |
|          |                                                                                          | V /225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                |  |  |  |  |  |  |
|          |                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) <b>Total 8</b> |  |  |  |  |  |  |
|          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100010             |  |  |  |  |  |  |
| (a)      | B1                                                                                       | For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in standardisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |  |  |  |  |
|          | M1                                                                                       | For standardising using 660, their mean ≠ 240 or 4 and their standard deviation ≠ 20 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                  |  |  |  |  |  |  |
|          | A 1                                                                                      | distribution given the mean and sd must be correct in the standardisation. Allow $\pm$ stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |  |  |
| (1)      | A1                                                                                       | awrt 0.041 or awrt 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 )                |  |  |  |  |  |  |
| (b)      | B1                                                                                       | A correct assumption. Must have context of customers or time and independence(allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v random)          |  |  |  |  |  |  |
| (c)      | M1                                                                                       | For N( $\pm 20$ ,) or N $\left(\frac{1}{3}$ ,) maybe awarded in standardisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |
|          | A1                                                                                       | For N(±20, 1648) or N $\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |  |  |  |  |  |  |
|          | M1                                                                                       | For standardising using 0 and mean of $\pm 20$ or $\pm 1/3$ and their standard deviation. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 may be           |  |  |  |  |  |  |
|          | A1                                                                                       | implied by having just the mean on the numerator Allow $\pm$ stand awrt 0.688 to 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |  |  |  |  |  |  |
|          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |  |  |  |