Programme de colle : Semaine 13 Lundi 6 Janvier

1 Cours

1. Dénombrement

- Ensembles finis, cardinal d'une union disjointe, cardinal d'une union quelconque pour 2 ensembles, cardinal d'un complémentaire
- Cardinal d'un produit cartésien
- lien entre injection, surjection, bijection et cardinal.
- Choix de p objet parmi n
 - Avec ordre et répétition (n^p)
 - Avec ordre et sans répétition, $(\frac{n!}{(n-p)!})$
 - Sans ordre et sans répétition, $\binom{n}{p}$
 - Sans ordre et avec répétition. $\binom{n+p-1}{p}$

2. Géométrie

- Vecteurs de \mathbb{R}^2 et \mathbb{R}^3 (définis comme éléments de \mathbb{R}^2 et \mathbb{R}^3).
- Opérations sur les vecteurs : somme et multiplication par un scalaire.
- Déterminant de deux vecteurs de \mathbb{R}^2 .
- Produit scalaire.
- Equation de droite dans le plan : cartésienne et paramétrique.
- Vecteur directeur, vecteur normal.
- equation d'un cercle dans le plan.
- Droite et plans dans l'espace

3. Python:

- Instruction conditionnelle (if/else)
- Fonction
- Boucle for, while
- Liste
- Chaine de caractères

2 Exercices Types

- 1. Un sac contient 5 jetons blancs et 8 jetons noirs. On suppose que les jetons sont discernables (numérotés par exemple) et on effectue un tirage de 6 jetons de ce sac.
 - (a) On suppose que les jetons sont tirés successivement en remettant à chaque fois le jeton tiré.
 - i. Donner le nombre de résultats possibles.
 - ii. Combien de ces résultats amènent
 - A. exactement 1 jeton noir?
 - B. au moins 1 jeton noir?
 - C. au plus un jeton noir?
 - D. 2 fois plus de jetons noirs que de jetons blancs?
 - (b) Mêmes questions en supposant que les jetons sont tirés successivement sans remise.
 - (c) Mêmes questions en supposant que les jetons sont tirés simultanément.
- 2. Soit D la droite d'équation y = 2x + 1 en donner une représentation paramétrique. En donner un vecteur normal. Soit A = (1, 2) donner le projeté orthogonal de A sur D

- 3. Soit D la droite d'équation paramétrique $\begin{cases} x = 1 + 2\lambda \\ y = 2 \lambda \end{cases}$ où $\lambda \in \mathbb{R}$. En donner une équation cartésienne.
- 4. Les points A et B ont pour coordonnées respectives (2,4) et (-1,3). Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (2,-1) et (3,-2). Donner des équations (cartésiennes et paramétriques) de
 - La droite (AB).
 - La droite \mathcal{D} qui passe par A et de vecteur directeur \vec{u} .
 - La droite \mathcal{D}' qui passe par B et qui est orthogonale à \vec{v} .
- 5. (a) Déterminer l'équation du cercle C_1 de diamètre [AB] où A(3,1) et B(7,-1).
 - (b) La partie C_2 du plan définie par l'équation cartésienne $x^2 + y^2 8x + y + 10 = 0$ est-elle un cercle? Si oui, donner son centre et son rayon.
 - (c) Déterminer l'intersection de C_1 et C_2 .
- 6. On considère les plans $\mathcal{P}: x-y+z=1$ et $\mathcal{P}': x+2y+3z=6$. Justifier que $\mathcal{P}\cap\mathcal{P}'$ est une droite, que l'on appellera \mathcal{D} . Déterminer un vecteur directeur de \mathcal{D} .
- 7. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de u_n où $(u_n)_{n\in\mathbb{N}}$ est une des suites définies précédemment.
- 8. Ecrire une fonction Python qui prend en argument un entier la valeur de la somme $\sum_{k=1}^{n} k^7$