Tianyi Xiang

73 Whitney Avenue, New Haven, CT-06510, US

Phone: +1(203)3901440 Personal Website: tianyi20.github.io

EDUCATION

Yale University

New haven, US

Master of Science (MS) in Mechanical Engineering & Material Science

Aug.2024 - Jun.2025

Email: tianyi.xiang@yale.edu

Google Scholar: Tianyi Xiang

Core Modules: Neural networks & Learning System, Intermediate Machine Learning, Advanced Computational Vision, Deep Learning Theory and Applications.

Xi'an Jiaotong-Liverpool University (XJTLU); Rank 1 Best Overall

Suzhou, China

BEng Mechatronics and Robotic Systems; Major GPA: 4.0/4.0

Aug.2020 - Jun.2024

Core Modules: Dynamic Systems, Instrumentation and Control, Mechanical Engineering Design, Machine Learning, Industrial Automation and Robot Control, Robotic Systems, Pattern Recognition

PUBLICATIONS

- [1] Yifan zhu, **Tianyi Xiang**, Aaron Dollar, Zherong Pan, "Real-to-Sim via End-to-End Differentiable Simulation and Rendering," *IEEE Robotics and Automation Letters (RA-L, 2024)*(under review);
- [2] **Tianyi Xiang**, Borui Li, Quan Zhang, March Leach, Enggee Lim. "A Novel Approach to Grasping Control of Soft Robotic Grippers based on Digital Twin," 29th International Conference on Automation and Computing (ICAC 2024);
- [3] **Tianyi Xiang**, Borui Li, Xiaonan Pan, Quan Zhang. "Development of a Simple and Novel Digital Twin Framework for Industrial Robots in Intelligent Robotics Manufacturing," 20th International Conference on Automation Science and Engineering (CASE 2024); Video
- [4] Xie, B., Xie, Y., Ma, Y., Luo, N., Xiang, T., et al., "High performance $(Zn_{0.5}Mg_{0.5})TiO_3$ ceramics based composite films for powering multi-mode translation unit and human motion monitoring", ACS Applied Materials & Interfaces. (under review).;

RESEARCH EXPERIENCE

• Real-to-Sim via End-to-End Differentiable Simulation and Rendering

Research Assistant, Yale University, Advisor: Prof. Aaron Dollar; Paper

Aug. 2024 - Present

- Implemented an end-to-end jointly differentiable representation of objects' shape, appearance, and physical properties.
- Constructed an algorithm for identifying world models online from sparse robot observations, which referred as real-to-sim, with an end-to-end differentiable simulation and rendering pipeline.
- Given 3D cloud data with tactile force sensor data from realsense D435 and UR5e, predicted object physical properties and rendered image with Unilateral Chamfer error 1.99mm and Pose error 12.2mm.
- Liquid Manipulation: Category-level pose & dimension detector with pouring action optimizer Group Project, Yale University, Advisor: Prof. Brian Scassellati; Video Aug. 2024 - Dec. 2024
 - Implemented the single-Stage keypoint-based category-level object pose estimation into a Multiple detectors combined under ROS noetic platform; github link.
 - Given the pose and dimension messages of manipulable objects, converted the pouring action to a constrained optimization problem solved by scipy.github link
 - Leveraged ROS moveit melodic to cooperate with the constrained optimizer, achieving the orientation constrained motion planning with perception pipeline for collision avoidance github link
- Forked PDDLstream Task and Motion planning (TAMP) online replanning.

 $Independent\ Research,\ Video$

Jul.2024 - Aug.2024

- Folked from Caelan Reed Garrett online replanning TAMP, implemented the pybullet simulation environment with TAMP toolkit via the PDDLstream language solved by Fast-Downard
- Behaviour cloning (BC) learning-based Block Pushing task

 $Independant\ Research,\ Yale\ University;\ {\it video}$

May.2024 - Aug.2024

• Developed a behavior cloning model based on a multi-layer perceptron (MLP) architecture in the PyBullet simulator, integrating image observations and prior actions to inform the policy, as opposed to traditional behavior learning approaches.

• Addressed optimization challenges arising from discontinuities in the action space, achieving competitive or superior results compared to state-of-the-art offline reinforcement learning methods on human-expert tasks within the D4RL benchmark suite, without utilizing reward signals.

• A Novel Approach to Grasping Control of Soft Robotic Grippers based on Digital Twin Research Assistant, XJTLU, Advisor: Dr. Quan Zhang; Paper Apr. 2024 - Jun. 2024

- Proposed a Digital Twin (DT) framework for real-time motion and pose control of pneumatic flexible gripper in Unity3D, modeled as underactuated robotic finger
- Constructed the four-section piecewise constant curvature flexible gripper model kinematics and pure mathematical simulation in Unity3D, achieved maximum task space error under 3.4%
- \circ Implemented triple-domain mapping using RGB-D image processing calibration method with gemini-pro 3D depth camera
- Development of a Simple and Novel Digital Twin Framework for Manufacturing Robots

 Research Assistant, XJTLU, Advisor: Dr. Quan Zhang; Paper; Video

 Jun. 2023 Apr. 2024
 - Enabled a Simple and Novel Digital Twin System based on C# and Robot Web Service (RWS) in Unity 3D and Web-based Platform, discarding the traditional 3rd party tools like ROS and costly device like PLC, but achieving efficient communication with 17ms Refreshing Rate.
 - Integrated the real-time path planning based on Levenberg-Marquard Inverse Kinematics Numerical Solution executed in MATLAB, achieving X-Y-Z Global Linear Motion Control and Multi-Joint Motion Control with Reachability 100%, and Accuracy 100%.
 - Created a User-friendly Web-based Platform by WEBGL with a Remote Surveillance Camera, and easy accessible Graphical User Interfaces (GUI) including functions like Pointer Operation, I/O System Operation in real-time control
- Trajectory Planning with a DIY rocker-bogie mechanical design Mars Rover

 Independent Research, XJTLU; Video*

 **Sep.2023 Feb.2024*
 - o Recreating the rover's rocker-bogie suspension dynamic modeling system with servo and DC motor
 - leveraging Radar, Depth Cameras, and Simultaneous Localization and Mapping (SLAM), incorporating deep Reinforcement Learning for obstacle detection and avoidance
 - Designing and optimizing the trajectory strategy based on the Genetic Algorithm(GA) and geometrical interactions
- The dynamic optimization of Automated Guided Vehicle (AGV)

2022 ABB Smart Innovation Competition: First prize; Intro

Jun.2022 - Sep.2023

- Applied dynamic optimization of local trajectory planning through LQR, Dual-loop PID, stanely method, and MPC Motion control algorithms to AGV incorporating B-spline and A-star method, with simulation and modelling in Automation studio, MapleSim, and Scene Viewer
- Designed self-supervised spline interpolation techniques to generate control points, achieving a maximum deviation of lower 50%(in unit) in critical turning areas in rare 3% occurrence probability
- Innovatively utilized intelligent visual distance-refresh methodology to compensate the non-completely homogeneous trajectory points due to B-spline planning incorporating with dual-loop PID
- Obtained the sliding friction coefficient 0.2, by tire Magic Fomula to render the control algorithm designed applicable

• Dynamic Optimization of ROS SLAM for Autonomous Vehicles

Independent research, XJTLU, video

Jun.2022 - Aug.2022

- Developed and implemented a SLAM-based navigation system for an autonomous vehicle with radar using ROS and Gazebo
- Leveraged AMCL for adaptive localization and differential drive controllers, combining with Move_Base for efficient navigation in simulated environments.
- \circ Optimized sampling-based planning methodologies (e.g., A* and RRT), achieving a 30% increase in localization accuracy and a 25% reduction in computational overhead, significantly enhancing both precision and efficiency.

AWARDS AND HONORS

$\boldsymbol{2024}$	Best Overall Academic Performance (Rank 1 Overall)	Xi'an Jiaotong-Liverpool University
2023	University Academic Excellence Award (Rank 1/36)	Xi 'an $Jiaotong$ - $Liverpool\ University$
2023	University Summer Undergraduate Research Fellow	Xi 'an $Jiaotong$ - $Liverpool\ University$
$\boldsymbol{2022}$	ABB Smart Innovation Competition: First prize(Rank 3/275)	$ABB,\ B\&R\ Industrial\ Automation$
$\boldsymbol{2022}$	University Academic Excellence Award (Rank 1/64)	Xi'an Jiaotong-Liverpool University
2022	University Summer Undergraduate Research Fellow	Xi'an Jiaotong-Liverpool University

TEACHING EXPERIENCE

\circ Research Assistant

XJTLU, Suzhou, China

Fall 2023 - Spring 2024

- * PID parameterization and tuning for the servo motors which drive for the Cartesian robot station and Tripodworkstation, respectively
- * Designed the coding and implementation platform in Automation Studio affiliated to B&R Co.
- * Applied servo motor control system and mastered the basic operation of its maintenance

SKILLS

- $\circ \ \mathbf{Programming} \colon \mathrm{PDDL}, \ \mathrm{ROS}(\mathrm{noetic}), \ \mathrm{Python}, \ \mathrm{C/C++/C\#}, \ \mathrm{MATLAB}, \ \mathrm{RAPID}(\mathrm{ABB})$
- Tools: ROS, Ubuntu20.04, Pybullet, Visual Studio, Blender, Unity 3D, SolidWorks, Fusion 360, PTC cero, CAD, Origin, MATLAB, SIMULINK,
- \circ Language: Mandarin(Native), English(Fluent, IELTS 7.0)