1. (a) In a communication network with a shared medium, assume all frames have the same size of 1000 bytes and the transmission rate is 8 Mbps. What is the vulnerable period of frame transmission using slotted Aloha? [1]

of frame transmission using slotted Aloha? [1]

Vilherable period for Aloha = 2x frame time (TFr)

= 2x 8 x106 tops
1000 x 8 tots

= 2x 10000 seconds

(b) Use an example to show the hidden terminal problem in wireless ad hoc networks. [1]

Suppose we have the following wireless retwork configuration:

In the configuration depicted above, network A and notwork B are in the range of each other, as are network C and network B. However, network A and network C are outside each other's range and therefore cannot communicate with each other. The problem arises when both network A and network C simultaneously try to communicate with B. As both A and C court sense each other, when they both communicate with B the packets collide during transmission and are rendered weless. This is what is known as the hidden terminal problem.

2. (a) Given the frame flag 01111110, please write down the bit stuffed string (including flags) for the following bit string: 0111111111111110111110. [2]

Bit stuffing prevents the Flag from appearing in transmitted data.

In this case anytime the data stream has 5 consecutive 1's, a 0 bit is stuffeel.

Here is the bit-stuffed storng: 0111110111110101111100.

(b) A character is represented in its binary format: 10101111. Please write down the character in Hamming coded format with even parity. [4]

We have a 8-bit character. We need 4 check bits (2°=0, 2=2, 2=4, 2=8).

	Bin	ary	Table:			
about-						
	3	2	2	20		
1	0	0	O	1		
2	0	D	1	0		
3	0	0	1	I_{i}		
ч		١	0	0		
2345678910	0	1	0	1		
6	0	1	١	0		
1	O	1	t	1		
2	1	0	0	0		
9	1	0	0	1		
10	ì	0	A	0		
11	. 1	0	1	١		
12	1	1	0	0		

Check bit positions 1
check bit Positions for 21- 3,5,7,9, 11

for 21- 3,6,7,10, 11

for 4:- 5,6,7,12

for 8:- 9,10,11,12

Bit position	1	2 '	3	4	5	6	171	8	0	10	11	12	-
Data Bits			0		1	1	1	District Section 1	1	1	1	0	
	est getroni comultati pre alimpiana peri	- up-metamorium ti a	Na dia Production di Santana					1					
Check Bits	O CONTRACTOR OF THE PROPERTY O	0	-		and the second of				open on the second	and the same		and the particular state of th	
After Enesding	10	0	0	1	1	\	\ '	\ '		C)		

(c) Given the generator polynomial $x^3 + x + 1$, please write down the CRC-appended bit string of the following data sting: 001100110011. [3]

$$\chi^{3} + \chi + 1 = |\chi^{3} + 0\chi^{2} + |\chi + 1|$$

: $G_{1}(\chi) = |0||$

Mow compute polynamial division

(3)

CRC append bit string = 001100110011111

3. In the following graph that represents the topology of a network, vertexes represent network routers, and edges represent bidirectional, symmetric communication links and are labeled by the link cost.

With link-state routing, please find the paths with the least cost from router A to all other routers, respectively. You need to show each step of your work using the following tables. [6]

Iterations	В	С	D	E	F	G
Initially	(3, A)	(∞, .)	$(\infty, .)$	$(\infty, .)$	(9, A)	$(\infty, .)$
1	(2, A)	(8, B)	(∞).)	(00).)	(3,B)	(9,3)
2	(2,A)	(4,F)	(∞,.)	(01)	(3/B)	(7,F)
3	(2,A)	(4,F)	(13,0)	(10,0)	(3,B)	(S,C)
4	(2, A)	(4, F)	(13,0)	(6,61)	(3,0)	(5,C)
5	(2,A)	(WF)	(7,E)	(6,6)	(3,B)	(5,0)

Give the least cost path and cost from A to other routers in the following table.

	Full Path	Cost
From A to B:	A→B	2/
From A to C:	AAFACI	4
From A to D:	ANBAFACAGAEAD	7 '
From A to E:	A > B > F + C > G > E	6/
From A to F:	A>B>F	3
From A to G:	ADBDFACOG	5/

4. An IP packet (with no IP header options) has the length of 4000 bytes. The packet has been forwarded through a link that can only support IP packets up to 2308 bytes. Then, these fragments have been forwarded to the next link that can only support IP packets up to 1500 bytes. Please write down the following IP header fields of all IP fragments of the original \$500-byte IP packet after the above two links: "Total length", "Fragment offset" and "More Fragment (MF)". [3]

No. of fragments needed for fragment
$$11 - \frac{2308}{1500-20} = 1.56 = 2$$
 fragments