Федеральное государственное бюджетное учреждение науки Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук (ИММ УрО РАН)

УДК 656.7.052 (075.8)

УТВЕРЖДАЮ

Зам. Директора ИММ УрО РАН

к.ф.-м.н.

И.Н. Кандоба

Инв. №

"" февраля 2016 г.

ОТЧЕТ О НАУЧНО-ЭКСПЕРИМЕНТАЛЬНОЙ РАБОТЕ

Алгоритмы и программы обработки информации для АС УВД (Этап 3)

Том 1.

Одновременное оценивание движения воздушных судов и систематических ошибок РЛС

Зав. отделом динамических систем доктор физ.-мат.наук

А.М. Тарасьев

Зав. сектором кандидат физ.-мат.наук

В.С. Пацко

Реферат

Отчет ?? страниц, 23 рисунка, 12 источников.

СИСТЕМАТИЧЕСКИЕ ОШИБКИ РЛС ПО АЗИМУТУ И ДАЛЬНОСТИ, АВТОМАТИЧЕСКОЕ ЗАВИСИМОЕ НАБЛЮДЕНИЕ АЗН-В, ВОССТАНОВЛЕНИЕ ТРАЕКТОРИИ ВС, АЛГОРИТМ COVARIANCE INTERSECTION

В первом разделе рассматривается задача одновременного оценивания параметров движения многих ВС и параметров систематических ошибок нескольких радиолокаторов, наблюдающих за ними. Рассмотрены алгоритм оптимальной фильтрации (фильтр Калмана) и субоптимальные подходы, позволяющие производить оценивание «распараллеленное» между различными ВС.

Во втором разделе предлагается алгоритм многогипотезного восстановления траектории ВС. Алгоритм основан на моделировании пучка траекторий, отслеживающих измерения ВС, и представляющих различные варианты его движения, совместимые с динамическими возможностями самолёта.

Приведены результаты моделирования с использованием модельных и реальных данных.

Исследования могут быть использованы при разработке алгоритмов вычислительных комплексов перспективных систем управления воздушным движением.

Руководители работы

В.С. Пацко

зав. сектором, Руководство работой со стороны ИММ.

кандидат физ.-мат. наук

Р.М. Ахмедов

зав. отделом НИТА

Руководство работой со стороны Заказчика.

Список исполнителей со стороны ИММ

Алгоритмы одновременного оценивания параметров дви-Д.А. Бедин жения многих ВС и систематических ошибок нескольких

мл. научн. сотр. РЛС. Анализ возможности параллельной реализации.

Глава 1 отчёта.

А.П. Денисов

Процедура оптимизации в алгоритме многогипотезного

А.Г. Иванов восстановления траектории. Программа конвертации дан-

гл. программист ных.

Глава 2 отчёта.

Алгоритм многогипотезного восстановления траектории:

А.А. Федотов построения в начальном окне, процедура ветвления, пронаучн. сотр., цедура прореживания, математическая модель ВС, графи-

кандидат физ.-мат. наук ческий интерфейс и общая компоновка программы.

Глава 2 отчёта.

Список исполнителей со стороны НИТА

С.А. Ганебный Подготовка исходных данных.

инженер-программист, кандидат физ.-мат. наук

А.Б. Васильев Подготовка исходных данных.

инженер-программист Обсуждение алгоритмов и полученных результатов.

Оглавление

Bı	Введение						
1	Одновременное оценивание движения BC и систематических ошибок. Алгоритмы параллельной фильтрации процессов, связанных через						
	изм	ерени		6			
	1.1		ание задачи наблюдения за многими ВС	7			
	1.2	Задач	а фильтрации	10			
	1.3	Уравн	нения оптимальной фильтрации	13			
	1.4	Упрог	ценые алгоритмы оценивания по Henk Blom	16			
	1.5	Алгор	ритм оценивания на основе CI	19			
	1.6	Модел	лирование работы алгоритмов параллельной фильтрации	22			
2	Алі	горитм	и многогипотезного восстановления траектории	33			
	2.1	Обще	е описание алгоритма	33			
	2.2 Основные процедуры алгоритма многогипотезного восстановле		вные процедуры алгоритма многогипотезного восстановления тра-				
		ектор	ии	34			
		2.2.1	Построения в начальном окне	34			
		2.2.2	Ветвление пучка при поступлении нового замера	34			
		2.2.3	Группировка и прореживание треков	35			
		2.2.4	Вычисление веса треков и меры расхождения треков	35			
		2.2.5	Расчёт оценки текущего положения ВС	36			
	2.3	Матег	матическая модель траекторного движения ВС	36			
		2.3.1	Аналитические расчёты при интегрировании уравнений движения	36			
	2.4	Струг	ктура данных программы, термины	37			
	2.5	Алгор	ритм оптимизации	37			
	2.6	Прогр	рамма конвертации данных	38			
	2.7	Резул	ьтаты моделирования	40			
		2.7.1	Модельные данные	40			
		2.7.2	Реальные данные	40			
За	клю	чение		45			
Л	Литература						

Введение

В настоящее время радиолокаторы (иначе, радиолокационные станции — РЛС) остаются основным источником информации о движении воздушных судов (ВС) для службы управления воздушным движением (УВД). В ходе наблюдения они производят измерения дальности до сопровождаемого объекта и азимута — его углового положения относительно направления на север. Вторичные радиолокаторы дополнительно принимают информацию о высоте ВС.

Измерения радиолокаторов имеют погрешности. Принято различать погрешности, которые хорошо описываются случайными величинами (так называемые «случайные ошибки») и систематические ошибки, имеющие неслучайную природу.

Возникает вопрос, имеется ли возможность оценивать систематические ошибки радиолокаторов одновременно с восстановлением параметров движения ВС. Первая глава отчёта посвящена исследованию этого вопроса. Рассматривается алгоритм фильтрации Калмана. Показано, что несмотря на оптимальность этот метод плохо подходит для применения в реальных системах УВД, поскольку накладывает жёсткие требования на архитектуру программы, где будут обрабатываться данные: фильтр Калмана обязывает работать с большими матрицами ковариации, включающими информацию сразу по всем наблюдаемым ВС без возможности параллельной обработки. Далее в главе приводятся два других алгоритма, позволяющих работать параллельно по различным ВС за счёт некоторого снижения качества оценок.

Во второй главе рассматривается задача восстановления траектории по поступающим радиолокационным замерам. В предлагаемом алгоритме производится моделирование пучка траекторий, который модифицируется при поступлении очередного замера. Модификация заключается в последовательном запуске процедур ветвления, прореживания и оптимизации. Приведены результаты моделирования.

Реальные данные систем АЗН и РЛС были предоставлены заказчиком.

Работа выполнена по Договору № 610-15У от 16.02.2015 г. между Федеральным государственным бюджетным учреждением науки Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук (Екатеринбург) и ООО «Фирма «НИТА» (Санкт-Петербург).

1 Одновременное оценивание движения ВС и систематических ошибок. Алгоритмы параллельной фильтрации процессов, связанных через измерения

В настоящее время в системах УВД для определения параметров движения воздушных судов (координаты, скорости, ускорения и т.д.) используются алгоритмы линейного рекуррентного оценивания, близкие по используемой математической технике к фильтру Калмана. В качестве основного метода применяется алгоритм ІММ. Главная особенность состоит в том, что задача оценки параметров движения для всех ВС, нахоящихся в зоне наблюдения, решается независимо для каждого ВС. Это полностью соответствует представлению о том, что движение каждого ВС никак не зависит от движения других ВС. Также это удобно с точки зрения архитектуры программы, реализующей систему мультитраекторной обработки — данные, описывающие каждое ВС, можно легко выделить в отдельный объект, который можно создавать, удалять и использовать, например, для сравнения со вновь поступающими не привязанными к конкретному ВС измернеиями. С точки зрения математических алгоритмов, такое разделение также удобно, поскольку позволяет оставаться в рамках расчётов в пространстве достаточно низкой размерности (4—6 для фильтра Калмана, 15—30 для ІММ).

Наблюдение за движением ВС производится с помощью радиотехнических средств: как правило это система из нескольких радиолокаторов и система АЗН-В. Реальные измерительные средства, помимо случайных ошибок измерений, имеют систематические ошибки. Случайные ошибки измерения изначально предусмотрены архитектурой алгоритмов рекуррентного оценивания, как фильтра Калмана, так и ІММ. Систематические ошибки в случае не сложных вариантов их пространственной зависимости также легко могут быть включены в алгоритмы оценивания, но при их включении обнаруживается одно весьма существенное обстоятельство: систематические ошибки одного и того же измерительного средства присутствуют в уравнении наблюдения для разных воздушных судов. Так, в простом случае связи между неизвестными оцениваемыми состояниями и измерением РЛС возникает следующее линейное уравнение наблюдения:

$$z_{al}(t) = C^{\chi}(t)\chi_a(t) + C^{\varsigma}(t)\varsigma_l(t) + D(t)w_l(t).$$
(1.1)

Здесь t — момент времени; a — индекс, обозначающий номер воздушного судна (aircraft); l — индекс радиолокатора (locator); z_{al} — вектор измерения; χ_a — вектор параметров движения BC; ς_l — вектор параметров, характеризущий состояние РЛС; $w_l(t)$ — текущая реализация случайной ошибки РЛС; $C^{\chi}(t)$, $C^{\zeta}(t)$, D(t) — матрицы, характеризующие влияние каждого параметра на измерение.

Из вида этого уравнения ясно, что систематическая ошибка локатора l может быть оценена только совместно с параметрами движения BC a. Но этот радиолокатор наблюдает не только это движение, также верно и обратное — BC a наблюдается не только радиолокатором l. Фазовые переменные для разных движений оказываются «сцепленными» между собой через параметры систематических ошибок. Таким образом, система всех движений и всех систематических ошибок нуждается в совместном

оценивании.

Как будет показано далее, даже в простом случае неуправляемых движений, стандартные процедуры оптимального совместного оценивания — фильтр Калмана, оценка Гаусса—Маркова — приводят к соотношениям, в которых переменые, относящиеся к разным движениям и систематическим ошибкам, существенно связаны друг с другом. Это приводит к следующим неприятным последствиям:

- нет возможности задать в программе отдельные объекты для движений разных BC;
- затруднено создание и удаление движений;
- в вычислениях необходимо поддерживать большую матрицу ковариации ошибок оценивания, (в которую входят все кросс-ковариации для ошибок оценивания между различными ВС, между каждым ВС и каждым РЛС и т.д.) это выливается в большие затраты по времени вычисления и по памяти.

От требования, чтобы параметры оценивались оптимально, можно отказаться. При этом появляется возможность устранить нежелательные эффекты, указанные выше. Но в таком случае необходимо тщательно проектировать алгоритм оценивания, для того чтобы получаемые оценки были близки к неизвестным истинным параметрам.

Целью исследования, излагаемого ниже, является создание алгоритма лёгкого для параллельной реализации по отдельным воздушным судам и при этом обладающего низким уровнем погрешности оценивания. Исследование логически продолжает исследование, изложенное в отчёте [1].

1.1 Описание задачи наблюдения за многими ВС

Считаем, что каждое воздушное судно подчиняется независимому, но одинаковому по структуре уравнению движения. Так движение BC номер i имеет описание

$$d\chi_i(t) = f(t, \chi_i(t), u_i(t))dt + dv_i(t),$$

где χ_i — вектор параметров движения BC; f — функция, задающая скорости движения; $u_i(t)$ — функция управления, специфичная для BC i; dv_i — приращение случайного возмущения для непрерывного варианта динамики; само дифференциальное уравнение сформулировано, например, в смысле Ито. В силу того, что наблюдение за ВС ведётся «в большом масштабе», вектор χ_i может содержать не очень большое число параметров, а функция f может быть выбрана достаточно простой. Измерения при помощи РЛС производятся в дискретные моменты времени, поэтому дальше удобно иметь дело с дискретизированным вариантом системы. При этом разумно ограничиться динамикой, близкой к линейной

$$\chi_i(t_k) = A_i(t_k, \chi_i(t_{k-1}), u_i(t_k))\chi_i(t_{k-1}) + B_i(t_k)v_i(t_k).$$
(1.2)

Здесь v_i — случайное возмущение; B_i — матричная функция, формирующая влияние случайного возмущения на движение; A_i — матрица, формирующая вид движения системы, зависящая от текущего значения управления $u(t_k)$. Моменты времени t_k принадлежат некоторому дискретному множеству $\mathcal T$ и, на самом деле, определяются по ходу развития движения, т.е. не являются заданными заранее.

В программе мультирадарной обработки для метода IMM уравнения движения использываются именно в виде (1.2). Далее, будем рассматривать более простую линейную динамику без управления

$$\chi_i(t_k) = A_i(\mathcal{T}_k)\chi_i(t_{k-1}) + B_i(t_k)v_i(t_k).$$
(1.3)

Здесь $\mathcal{T}_k = \{t_l \in \mathcal{T} \colon t_l \leqslant t_k\}$ — множество моментов времени до текущего включительно.

В качестве основного варианта при моделировании выбираем прямолинейное равномерное движение на плоскости

$$\chi_i(t_k) = \begin{bmatrix} x_i(t_k) \\ v_i(t_k) \end{bmatrix}, \quad x_i(t_k), v_i(t_k) \in \mathbb{R}^2, \quad A_i(\mathcal{T}_k) = \begin{bmatrix} I_{2 \times 2} & (t_k - t_{k-1})I_{2 \times 2} \\ 0_{2 \times 2} & I_{2 \times 2} \end{bmatrix}, \quad (1.4)$$

где x_i, v_i обозначают векторы координат и скорости на плоскости \mathbb{R}^2 . Непосредственно в моделировании используется $B_i \equiv 0, v_i \equiv 0$.

Формирование наблюдений z_{ij} будем описывать следующим уравнением наблюдения, несколько более сложным, чем уравнение (1.1):

$$z_{ij}(t) = C_i^{\chi}(t_k)\chi_i(t_k) + C_j^{\varsigma}(t_k, \chi_i(t_k))\varsigma_j(t_k) + D_j(t_k, \chi_i(t_k))w_j(t_k).$$
 (1.5)

Матрицы C_j^{ς} , D_j для всех имеющих смысл случаев зависят от положения BC, поэтому явно указывается зависимость от χ_i . В качестве параметров ς_j могут выступать постоянная систематическая ошибка по дальности и азимуту, коэффициент линейной зависимости для систематической ошибки по дальности и т.д. Матрица C_j^{ς} описывает влияние этих неизвестных параметров на измерения.

Для параметров ς_j , характеризующих систематические ошибки РЛС, также введём динамику

$$\varsigma_j(t_k) = A_j^{\varsigma}(t_k)\varsigma_j(t_{k-1}) + B_j^{\varsigma}(t_k)v_j^{\varsigma}(t_k). \tag{1.6}$$

Матрица B_i^ς характеризует дрейф систематических ошибок со временем. Для моделирования будем принимать:

$$\varsigma_j = \begin{bmatrix} \Delta_j^r \\ \Delta_i^{\alpha} \end{bmatrix}, \qquad A_j^{\varsigma}(t_k) \equiv I_{2\times 2}, \qquad B_i^{\varsigma}(t_k) \equiv 0_{2\times 2}.$$
(1.7)

Здесь $\Delta_j^r, \Delta_j^\alpha \in \mathbb{R}$ — значения постоянных систематических ошибок по дальности и азимуту, соответственно. Подробно понятия систематических ошибок по дальности и азимуту введены в отчёте [2].

Рассмотрим общий фазовый вектор

$$\xi(t) = \begin{bmatrix} \chi_1(t) \\ \chi_2(t) \\ \vdots \\ \chi_n(t) \\ \varsigma_1(t) \\ \varsigma_2(t) \\ \vdots \\ \varsigma_m(t) \end{bmatrix} . \tag{1.8}$$

Здесь n и m — количества наблюдаемых BC и наблюдающих радиолокаторов. Уравнения (1.3), (1.6) можно переписать как

$$\xi(t_{k}) = A(\mathcal{T}_{k})\xi(t_{k-1}) + B(t_{k})v(t_{k}) =$$

$$= \begin{bmatrix} A_{1}(\mathcal{T}_{k}) & & & & & & \\ & \ddots & & & & & \\ & & A_{n}(\mathcal{T}_{k}) & & & & \\ & & & A_{1}^{\varsigma}(t_{k}) & & & \\ & & & & \ddots & & \\ & & & & & A_{m}^{\varsigma}(t_{k}) \end{bmatrix} \begin{bmatrix} \chi_{1}(t_{k-1}) \\ \vdots \\ \chi_{n}(t_{k-1}) \\ \vdots \\ \zeta_{m}(t_{k-1}) \end{bmatrix} + \\ \vdots \\ \zeta_{m}(t_{k-1}) \end{bmatrix} + \\ \begin{bmatrix} B_{1}(t_{k}) & & & & & \\ & & \ddots & & \\ & & & B_{n}(t_{k}) & & \\ & & & & \ddots & \\ & & & & & B_{m}^{\varsigma}(t_{k}) \end{bmatrix} \begin{bmatrix} v_{1}(t_{k}) \\ \vdots \\ v_{n}(t_{k}) \\ v_{1}^{\varsigma}(t_{k}) \\ \vdots \\ v_{m}^{\varsigma}(t_{k}) \end{bmatrix}, \quad (1.9)$$

где матрицы A и B представляют собой блочно-диагональные матрицы, объединяющие все A_i , A_i^ς и B_i , B_i^ς . Также будем использовать символы A^χ , A^ς , B^χ , B^ς для обозначения верхнего и нижнего блоков матриц A и B, соответствующих динамике переменных χ и ς .

Каждый момент времени $t_k \in \mathcal{T}$ свяжем с некоторым измерением $z_{ij}(t_k)$ положения ВС с номером i при помощи радиолокатора j. При этом будем считать, что такое измерение одно и в момент t_k нет никаких других измерений. Запишем уравнение наблюдения в том виде, как оно должно применяться ко всему большому фазовому вектору.

$$z(t_{k}) = z_{ij}(t_{k}) = C(t_{k}, \xi(t_{k}))\xi(t_{k}) + D(t_{k}, \xi(t_{k}))w(t_{k}),$$

$$C(t_{k}, \xi(t_{k})) = \begin{bmatrix} C^{\chi}(t_{k}) & C^{\varsigma}(t_{k}, \chi(t_{k})) \end{bmatrix},$$

$$i$$

$$C^{\chi}(t_{k}) = \begin{pmatrix} 0 & \cdots & 0 & C_{i}^{\chi}(t_{k}) & 0 & \cdots & 0 \end{pmatrix},$$

$$j$$

$$C^{\varsigma}(t_{k}, \chi(t_{k})) = \begin{pmatrix} 0 & \cdots & 0 & C_{j}^{\varsigma}(t_{k}, \chi_{i}(t_{k})) & 0 & \cdots & 0 \end{pmatrix},$$

$$D(t_{k}, \xi(t_{k})) = D_{j}(t_{k}, \chi_{i}(t_{k})), \qquad w(t_{k}) = w_{j}(t_{k}).$$

$$(1.10)$$

Как указывалось выше, для моделирования будем применять предположение постоянных систематических ошибок по дальности и азимуту. При этом будем использовать линеаризованную модель воздействия таких ошибок на измерения. Соответствующие матрицы $C^{\chi}(t_k), C^{\varsigma}(t_k, \chi_i(t_k)), D(t_k, \chi_i(t_k))$ имеют вид:

$$C_{i}^{\chi}(t_{k}) \equiv \begin{bmatrix} I_{2\times2} & 0_{2\times2} \end{bmatrix}, \quad C_{j}^{\varsigma}(t_{k}, \chi_{i}(t_{k})) = \begin{bmatrix} \frac{1}{\|x_{i}(t_{k}) - x_{j}^{\mathsf{R}}\|} (x_{i}(t_{k}) - x_{j}^{\mathsf{R}}) & \Omega_{2\times2}^{\pi/2} (x_{i}(t_{k}) - x_{j}^{\mathsf{R}}) \end{bmatrix},$$

$$D(t_{k}, \chi_{i}(t_{k})) = C_{j}^{\varsigma}(t_{k}, \chi_{i}(t_{k})), \qquad \Omega_{2\times2}^{\pi/2} = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}. \tag{1.11}$$

Здесь x_j^R — координаты точки стояния радиолокатора $j; \, \Omega_{2\times 2}^{\pi/2}$ — матрица поворота на угол $\frac{\pi}{2}$ против часовой стрелки на плоскости \mathbb{R}^2 с учётом северо-восточной системы

координат. Случайные ошибки

$$w_j^{\varsigma}(t_k) = \begin{bmatrix} w_j^r(t_k) \\ w_j^{\alpha}(t_k) \end{bmatrix}$$

разделяются на случайные ошибки, действующие по дальности и азимуту.

Для всех случайных ошибок считаем справедливыми свойства:

$$\mathbb{E}\{v_{i}(t_{k})\} = \mathbb{E}\{v_{i}^{\varsigma}(t_{k})\} = \mathbb{E}\{w_{j}(t_{k})\} = 0, \qquad (1.12)$$

$$\mathbb{C}\mathbf{ov}\{v_{i_{1}}(t_{k}), v_{i_{2}}(t_{l})\} = \delta_{kl}\delta_{i_{1}i_{2}}V_{i_{1}}^{\chi}, \qquad \mathbb{C}\mathbf{ov}\{w_{j_{1}}(t_{k}), w_{j_{2}}(t_{l})\} = \delta_{kl}\delta_{j_{1}j_{2}}W_{j_{1}},$$

$$\mathbb{C}\mathbf{ov}\{v_{j_{1}}^{\varsigma}(t_{k}), v_{j_{2}}^{\varsigma}(t_{l})\} = \delta_{kl}\delta_{j_{1}j_{2}}V_{j_{1}}^{\varsigma}, \qquad \mathbb{C}\mathbf{ov}\{v_{i}(t_{k}), w_{j}(t_{l})\} = \mathbb{C}\mathbf{ov}\{v_{j_{1}}^{\varsigma}(t_{k}), w_{j_{2}}(t_{l})\} = 0, \qquad \forall i, i_{1}, i_{2} \in 1, \dots, n, \ \forall j, j_{1}, j_{2} \in 1, \dots, m, \ \forall t_{k}, t_{l} \in \mathcal{T},$$

где δ_{pq} — символ Кронекера; V_i^χ — постоянная матрица дисперсии случайных возмущений для уравнений движения; V_j^ς — постоянная матрица дисперсии случайных возмущений для уравнения эволюции параметров радиолокатора j; W_j — постоянная матрица дисперсии случайных ошибок наблюдения для радиолокатора j. Матрицы ковариаций для больших столбцов v и w будем обозначать

$$V^{\chi} = \begin{bmatrix} V_1^{\chi} & 0 \\ & \ddots & \\ 0 & V_n^{\chi} \end{bmatrix}, \quad V^{\varsigma} = \begin{bmatrix} V_1^{\varsigma} & 0 \\ & \ddots & \\ 0 & V_m^{\varsigma} \end{bmatrix},$$

$$V = \begin{bmatrix} V^{\chi} & 0 \\ 0 & V^{\varsigma} \end{bmatrix}, \quad W = \begin{bmatrix} W_1 & 0 \\ & \ddots & \\ 0 & W_m \end{bmatrix}.$$

Для моделирования будем применять W_j вида:

$$W_j = \begin{bmatrix} \sigma_{rj}^2 & 0\\ 0 & \sigma_{\alpha j}^2 \end{bmatrix} , \qquad (1.13)$$

где σ_{rj} , $\sigma_{\alpha j}$ — заданные среднеквадратичные отклонения для случайных ошибок наблюдения по дальности и азимуту, относящихся к радиолокатору j. Матрицы V_i^{χ} будем брать одинаковыми диагональными, также будем поступать и с матрицами V_j^{ς} (в данном случае не будем раскрывать подробный вид и смысл диагональных элементов, поскольку при моделировании эта матрица принималась равной нулю).

$$V_i^{\chi} = \begin{bmatrix} \sigma_{x^1}^2 & & & 0 \\ & \sigma_{x^2}^2 & & \\ & & \sigma_{v^1}^2 & \\ 0 & & & \sigma_{v^2}^2 \end{bmatrix}, \qquad V_j^{\varsigma} = \begin{bmatrix} \sigma_{\varsigma^1}^2 & & 0 \\ & \ddots & \\ 0 & & \sigma_{\varsigma^q}^2 \end{bmatrix}. \tag{1.14}$$

1.2 Задача фильтрации

Целью фильтрации является получение оценки $\hat{\xi}(t_k)$ фазового вектора ξ на момент t_k поступления последнего измерения. Предполагается, что оценка вычисляется как некоторая функция Ξ от информации обо всех измерениях до этого момента времени:

$$\hat{\xi}(t_k) = \Xi(\{z(t)\}_{t \in \mathcal{T}_k}),\,$$

а также от априорной информации. Также предполагается, что задан некоторый критерий, по которому будет определяться качество оценивания. Популярным выбором является:

$$J(t_k) = \mathbb{E}\left\{ \|h^{\mathsf{T}}(\hat{\xi}(t_k) - \xi(t_k))\|^2 \right\},$$
 (1.15)

где h^{T} — некоторая заданная линейная функция, выделяющая, например, некоторую часть координат из всего вектора, $\xi(t_k)$ — истинное значение фазового вектора ξ в момент времени t_k . Поскольку речь идёт об оценивании в присутствии случайных ошибок наблюдения, оценка $\hat{\xi}(t_k)$ является случайной величиной, и в критерии присутствует символ математического ожидания $\mathbb{E}\{\cdot\}$.

Наиболее простыми и разумными с точки зрения оптимальности являются линейные рекуррентные оценки с линейным прогнозированием:

$$\bar{\xi}(t_k) = A(\mathcal{T}_k)\hat{\xi}(t_{k-1}), \qquad (1.16)$$

$$\hat{\xi}(t_k) = L(t_k, R(t_k))\bar{\xi}(t_k) + K(t_k, R(t_k))z(t_k), \qquad (1.17)$$

$$R(t_k) = \mathcal{F}(t_k, R(t_{k-1})).$$
 (1.18)

Здесь $L(t_k, R(t_k))$ и $K(t_k, R(t_k))$ — матричные коэффициенты, выбираемые для каждого момента самостоятельно, и зависящие от параметров линейных уравнений (1.9), (1.10), а также от вектора дополнительных параметров $R(t_k)$, пересчитываемого отдельно по некоторму, уже в общем случае нелинейному, правилу (1.18). Уравнение прогноза (1.16) обеспечивает оптимальную по имеющейся информации $\hat{\xi}(t_{k-1})$ оценку вектора $\xi(t_k)$ среди всех возможных оценок вообще. Т.е. при оптимальном выборе $\hat{\xi}(t_{k-1})$ оценка $\bar{\xi}(t_k)$ является оптимальной среди всех оценок вектора $\xi(t_k)$ по измерениям, предшествующим моменту t_k . Уравнение (1.17) называют уравнением коррекции. Его целью является получение новой оценки, учитывющий последнее измерение.

Далее в тексте, если рассматриваемые величины $\hat{\xi}(t_k)$, $\bar{\xi}(t_k)$, $L(t_k, R(t_k))$, и т. д. относятся к одному и тому же моменту времени t_k , скобки с аргументами в некоторых случаях будут опускаться, если это не будет создавать двусмысленности.

Популярным дополнительным условием является условие несмещённости оценки

$$\mathbb{E}\Big\{\hat{\xi}(t_k)\Big\} = \mathbb{E}\{\xi(t_k)\} , \qquad (1.19)$$

которое в случае детерминированного фазового вектора ξ , например, в случае равенства нулю матрицы $B(t_k)$ в уравнении (1.9), принимает вид

$$\mathbb{E}\left\{\hat{\xi}(t_k)\right\} = \xi(t_k). \tag{1.20}$$

Если оценка $\hat{\xi}(t_{k-1})$ удовлетворяет условию (1.19), легко видеть, что и оценка $\bar{\xi}(t_k)$ ему удовлетворяет в силу уравнения (1.9). Для уравнения коррекции (1.17) условие несмещённости (1.19) приводит к следующему условию

$$\mathbb{E}\Big\{\hat{\xi}(t_k)\Big\} = L\,\mathbb{E}\Big\{\bar{\xi}(t_k)\Big\} + K\,\mathbb{E}\{z(t_k)\} =$$

$$= L\,\mathbb{E}\{\xi(t_k)\} + K\,\mathbb{E}\{C(t_k, \xi(t_k))\xi(t_k)\} + K\,\mathbb{E}\{D(t_k, \xi(t_k))w(t_k)\} =$$

$$= L\,\mathbb{E}\{\xi(t_k)\} + K\,\mathbb{E}\{C(t_k, \xi(t_k))\xi(t_k)\} + K\,\mathbb{E}\{D(t_k, \xi(t_k))\}\,\mathbb{E}\{w(t_k)\} =$$

$$= L\,\mathbb{E}\{\xi(t_k)\} + K\,\mathbb{E}\{C(t_k, \xi(t_k))\xi(t_k)\} ,$$

$$\Longrightarrow L\,\mathbb{E}\{\xi(t_k)\} = I - K\,\mathbb{E}\{C(t_k, \xi(t_k))\xi(t_k)\} ,$$

которое для случая матрицы C, не зависящей от ξ , или для случая, когда вектор ξ является детерминированным, переходит в матричное условие

$$L(t_k, R(t_k)) = I - K(t_k, R(t_k)) C(t_k, \xi(t_k)).$$
(1.21)

В случае рассматриваемой нами модельной системы матрица C очень слабо зависит от ξ . Так, заменив в выражении (1.11) для матрицы $C_j^{\varsigma}(t_k,\xi(t_k))$ вектор $x_i(t_k)$ на $z_{ij}(t_k)$ или $\bar{x}_i(t_k)$ (часть прогнозной оценки $\bar{\xi}(t_k)$), мы получим близкое выражение, пригодное для использования в линейных алгоритмах. Далее, все алгоритмы будут рассматирваться с условием (1.21) с приближенной заменой $x_i(t_k)$ на $\bar{x}_i(t_k)$ в матрице C — это соответствует варианту Enhanced Kalman Filter (EKF) для нелинейной системы. При его подстановке в уравнение коррекции получается

$$\hat{\xi}(t_k) = \bar{\xi}(t_k) + K(t_k, R(t_k)) \left(z(t_k) - C(t_k, \bar{\xi}(t_k)) \bar{\xi}(t_k) \right)$$

или в упрощённой записи

$$\hat{\xi}(t_k) = \bar{\xi}(t_k) + K\left(z(t_k) - C\bar{\xi}(t_k)\right). \tag{1.22}$$

Слагаемое $C(t_k, \bar{\xi}(t_k)) \bar{\xi}(t_k)$ можно проинтерпретировать как прогнозное измерение на момент t_k . Таким образом в выражении оценки (1.22) фигурирует разность между действительным и прогнозым измерениями.

Далее, в разделах посвящённых алгоритмам параллельной фильтрации, поскольку все рассматриваемые соотношения касаются шага между моментами t_{k-1} и t_k , аргументы будут опускаться. Т. е. будут приняты обозначения

$$A = A(\mathcal{T}_k), \qquad B = B(t_k), \qquad C = C(t_k, \bar{\xi}(t_k)), \qquad D = D(t_k, \bar{\xi}(t_k)).$$

Введём обозначение для матрицы ковариаций ошибки оценивания для прогнозной оценки

$$\bar{P}(t_{k}) = \mathbb{C}\mathbf{ov}\left\{\bar{\xi}(t_{k}) - \xi(t_{k})\right\} = \\
= \begin{bmatrix}
\mathbb{C}\mathbf{ov}\{\bar{\chi}_{1}(t_{k}) - \chi_{1}(t_{k}), \bar{\chi}_{1}(t_{k}) - \chi_{1}(t_{k})\} & \cdots & \mathbb{C}\mathbf{ov}\{\bar{\chi}_{1}(t_{k}) - \chi_{1}(t_{k}), \bar{\varsigma}_{m}(t_{k}) - \varsigma_{m}(t_{k})\} \\
\vdots & & \vdots & & \vdots \\
\mathbb{C}\mathbf{ov}\{\bar{\varsigma}_{m}(t_{k}) - \varsigma_{m}(t_{k}), \bar{\chi}_{1}(t_{k}) - \chi_{1}(t_{k})\} & \cdots & \mathbb{C}\mathbf{ov}\{\bar{\varsigma}_{m}(t_{k}) - \varsigma_{m}(t_{k}), \bar{\varsigma}_{m}(t_{k}) - \varsigma_{m}(t_{k})\} \end{bmatrix} = \\
= \begin{bmatrix}
\bar{P}_{\chi_{1}\chi_{1}}(t_{k}) & \cdots & \bar{P}_{\chi_{1}\varsigma_{m}}(t_{k}) \\
\vdots & \ddots & \vdots \\
\bar{P}_{\varsigma_{m}\chi_{1}}(t_{k}) & \cdots & \bar{P}_{\varsigma_{m}\varsigma_{m}}(t_{k})\end{bmatrix} = \begin{bmatrix}
\bar{P}_{\chi\chi} & \bar{P}_{\chi\varsigma} \\
\bar{P}_{\varsigma\chi} & \bar{P}_{\varsigma\varsigma}
\end{bmatrix} (1.23)$$

и для матрицы ковариации ошибки основной оценки по измерениям до момента t_k включительно

$$\hat{P}(t_k) = \mathbb{C}\mathbf{ov}\left\{\hat{\xi}(t_k) - \xi(t_k)\right\} = \\
= \begin{bmatrix}
\mathbb{C}\mathbf{ov}\{\hat{\chi}_1(t_k) - \chi_1(t_k), \hat{\chi}_1(t_k) - \chi_1(t_k)\} & \cdots & \mathbb{C}\mathbf{ov}\{\hat{\chi}_1(t_k) - \chi_1(t_k), \hat{\varsigma}_m(t_k) - \varsigma_m(t_k)\}\\
& \vdots & \ddots & \vdots\\
\mathbb{C}\mathbf{ov}\{\hat{\varsigma}_m(t_k) - \varsigma_m(t_k), \hat{\chi}_1(t_k) - \chi_1(t_k)\} & \cdots & \mathbb{C}\mathbf{ov}\{\hat{\varsigma}_m(t_k) - \varsigma_m(t_k), \hat{\varsigma}_m(t_k) - \varsigma_m(t_k)\}
\end{bmatrix} = \\
= \begin{bmatrix}
\hat{P}_{\chi_1\chi_1}(t_k) & \cdots & \hat{P}_{\chi_1\varsigma_m}(t_k)\\
\vdots & \ddots & \vdots\\
\hat{P}_{\varsigma_m\chi_1}(t_k) & \cdots & \hat{P}_{\varsigma_m\varsigma_m}(t_k)\end{bmatrix} = \begin{bmatrix}
\hat{P}_{\chi\chi} & \hat{P}_{\chi\varsigma}\\
\hat{P}_{\varsigma\chi} & \hat{P}_{\varsigma\varsigma}
\end{bmatrix}. (1.24)$$

Здесь символами $\bar{P}_{\chi\chi}$, $\bar{P}_{\chi\varsigma}$, $\bar{P}_{\varsigma\varsigma}$ и т. д. обозначены большие блоки матриц, включающие все ковариации между соответствующими частями фазового вектора. Так, например,

$$\hat{P}_{\chi\varsigma} = \mathbb{C}\mathbf{ov}\{\hat{\chi}(t_k) - \chi(t_k), \hat{\varsigma}(t_k) - \varsigma(t_k)\} .$$

Приведём общие уравнения для эволюции этих матриц. В силу уравнения (1.9) и (1.16) справедливо

$$\bar{\xi}(t_k) - \xi(t_k) = A\hat{\xi}(t_{k-1}) - A\xi(t_{k-1}) - Bv(t_k) = A\left(\hat{\xi}(t_{k-1}) - \xi(t_{k-1})\right) - Bv(t_k).$$

Следовательно, в силу независимости случайной ошибки динамики $v(t_k)$ и ошибок оценивания $\hat{\xi}(t_{k-1}) - \xi(t_{k-1})$, зависящих от случайных величин v(t), w(t) при $t \in \mathcal{T}_{k-1}$, верно соотношение

$$\bar{P}(t_k) = \mathbb{E}\left\{ \left(\bar{\xi}(t_k) - \xi(t_k)\right) \left(\bar{\xi}(t_k) - \xi(t_k)\right)^{\mathsf{T}} \right\} = A\hat{P}(t_{k-1})A^{\mathsf{T}} + BVB^{\mathsf{T}}. \tag{1.25}$$

Пусть выполнено условие несмещённости и уравнение коррекции (1.17) переходит в (1.22), тогда для произвольного матричного коэффициента K (не зависимо от способа получения) справедливо

$$\begin{split} \hat{\xi}(t_k) - \xi(t_k) &= \bar{\xi}(t_k) - \xi(t_k) + K \left(z(t_k) - C \hat{\xi}(t_k) \right) = \\ &= \bar{\xi}(t_k) - \xi(t_k) + K \left(C \xi(t_k) + w(t_k) - C \hat{\xi}(t_k) \right) = (I - KC) \left(\bar{\xi}(t_k) - \xi(t_k) \right) + Kw(t_k) \,. \end{split}$$

Так же как и при выводе соотношения для $\bar{P}(t_k)$, можно утверждать о независимости случайной ошибки наблюдения $w(t_k)$ и ошибок оценивания $\bar{\xi}(t_k) - \xi(t_k)$, так как последние зависят от случайных величин v(t), w(t) при $t \in \mathcal{T}_{k-1}$ и от $v(t_k)$. Следовательно, верно соотношение

$$\hat{P}(t_k) = \mathbb{E}\left\{ \left(\hat{\xi}(t_k) - \xi(t_k) \right) \left(\hat{\xi}(t_k) - \xi(t_k) \right)^\mathsf{T} \right\} =$$

$$= (I - KC)\bar{P}(t_k)(I - KC)^\mathsf{T} + KWK^\mathsf{T} \quad (1.26)$$

известное как формула Йозефа [3].

Для критерия (1.15) известна формула

$$J(t_k) = \operatorname{tr}\left\{h^{\mathsf{T}}\hat{P}(t_k)h\right\}. \tag{1.27}$$

1.3 Уравнения оптимальной фильтрации

Уравнения оптимальной фильтрации можно получить, минимизируя след матрицы $\hat{P}(t_k)$ в соотношении (1.26) варьированием различных матричных коэффициентов K. При этом выводится коэффициент $K^*(t_k)$ минимизирующий критерий на каждом шаге работы алгоритма.

$$K^{*}(t_{k}) = \bar{P}(t_{k})C^{\mathsf{T}} \left(C\bar{P}(t_{k})C^{\mathsf{T}} + DWD^{\mathsf{T}} \right)^{-1}.$$
 (1.28)

Интересно, что оптимальное значение K^* подходит и для любого h в формуле (1.27), т. е. соответствует равномерной по h оценке.

Полностью, с подстановкой соотношения (1.28), уравнения рекуррентной фильтрации называются уравнениями фильтра Калмана (или реккуррентной оценки Гаусса-Маркова для случая B=0). Приведём их полностью:

$$\bar{\xi}(t_k) = A\hat{\xi}(t_{k-1}),
\bar{P}(t_k) = A\hat{P}(t_{k-1})A^{\mathsf{T}} + BVB^{\mathsf{T}},
\Lambda = C\bar{P}(t_k)C^{\mathsf{T}} + DWD^{\mathsf{T}},
K^* = \bar{P}(t_k)C^{\mathsf{T}}\Lambda^{-1},
\hat{\xi}(t_k) = \bar{\xi}(t_k) + K^* \left(z(t_k) - C\bar{\xi}(t_k)\right),
\hat{P}(t_k) = (I - K^*C)\bar{P}(t_k)(I - K^*C)^{\mathsf{T}} + K^*WK^{*\mathsf{T}} =
= (I - K^*C)\bar{P}(t_k) = \bar{P}(t_k) - K^*\Lambda K^{*\mathsf{T}}.$$
(1.29)

Матрица Λ является матрицей ковариации отклонения прогнозного измерения $C\bar{\xi}(t_k)$ от действительного измерения $z(t_k)$. Два последних равенства в формуле для $\hat{P}(t_k)$ широко известны в литературе по фильтру Калмана. Однако следует отдавать себе отчёт, что эти соотношения ориентированы на специфический выбор K, и в общем случае не верны.

Отметим, что в качестве дополнительных параметров $R(t_k)$, по которым пересчитывается коэффициент K, в данном случае выступают прогнозная $\bar{P}(t_k)$ и действительная $\hat{P}(t_k)$ матрицы ковариаций ошибок оценивания.

Рассмотрим важную особенность фильтра Калмана. Даже для изучаемой нами системы с её специфическим видом уравнения наблюдения (1.10) и матрицы C будет справедливо:

$$\bar{P}(t_k)C^{\mathsf{T}} = \begin{bmatrix} \bar{P}_{\cdot\chi_i}(t_k)(C_i^{\chi})^{\mathsf{T}} & \bar{P}_{\cdot\varsigma_i}(t_k)(C_i^{\varsigma})^{\mathsf{T}} \end{bmatrix},$$

где под символами $\bar{P}_{,\chi_i}$, $\bar{P}_{,\varsigma_j}$ понимаются столбцы матрицы \bar{P} , соответствующие переменным χ_i и ς_j . В коэффициенте K^* активными (не равными нулю) являются все строки для всех движений ВС и всех параметров радиолокаторов, несмотря на то, что текущее измерение связано с конкретным ВС и конкретным радиолокатором. Т. е. коррекция оценки $\bar{\xi}$ затрагивает все переменные, и коррекция матрицы ковариации \bar{P} производится по всем строкам и столбцам. Это является общим свойством для фильтрации Калмана — этап коррекции затрагивает все переменные и всю матрицу ковариаций.

В отличие от этапа коррекции, на этапе прогноза (экстраполяции) в фильтре Калмана не происходит такого значительного «перемешивания» различных частей фазового вектора. Рассматриваемая нами система является системой с «разделённой» динамикой (1.9), в которой части фазового вектора χ_i , ζ_j эволюционируют независимо друг от друга. Легко проверить, что в силу специфического вида матриц A и B соотношения этапа прогноза (1.29) легко «распараллеливаются»:

$$\bar{\xi}(t_k) = A\hat{\xi}(t_{k-1}) \Rightarrow \bar{\chi}_i(t_k) = A_i\hat{\chi}_i(t_{k-1}),
\bar{\zeta}_j(t_k) = A_j^\varsigma \hat{\zeta}_j(t_{k-1}),$$

$$\bar{P}(t_k) = A\hat{P}(t_{k-1})A^\mathsf{T} + BVB^\mathsf{T} \Rightarrow \bar{P}_{\chi_i\chi_i}(t_k) = A_i\hat{P}_{\chi_i\chi_i}(t_{k-1})A_i^\mathsf{T} + B_iV_i^\chi B_i^\mathsf{T},$$

$$\bar{P}_{\zeta_j\zeta_j}(t_k) = A_j^\varsigma \hat{P}_{\zeta_j\zeta_j}(t_{k-1})A_j^{\mathsf{T}} + B_j^\varsigma V_j^\varsigma B_j^{\mathsf{T}}.$$
(1.30)

Таким образом, в задаче одновременного оценивания положения нескольких ВС и систематических ошибок РЛС, как и в других задачах с «разделённой» динамикой,

главным препятствием к параллельному применению алгоритмов фильтрации является именно этап коррекции. Содержательно можно сказать, что коррекция систематических ошибок по итогам некоторого измерения вынуждает несколько изменить оценки положения всех BC, которые были сделаны по предыдущей, до коррекции, оценке систематических ошибок.

Рассмотрим соотношения фильтра Калмана в варианте, разделённом по фазовым переменным. Здесь и далее матрицы ковариаций разделяются на блоки, соответствующие частям фазового вектора χ и ς : Уравнение наблюдения:

$$z(t_k) = C_i^{\chi} \chi_i(t_k) + C_j^{\varsigma} \varsigma_j(t_k) + D_j w_j.$$

Фильтр для переменных, описывающих движение.

Этап предсказания:

$$\bar{\chi}(t_k) = A^{\chi} \hat{\chi}(t_{k-1}),$$

$$\bar{P}_{\chi\chi}(t_k) = A^{\chi} \hat{P}_{\chi\chi}(t_{k-1}) A^{\chi \mathsf{T}} + B^{\chi} V^{\chi} B^{\chi \mathsf{T}}.$$

Этап коррекции:

$$K_{\chi} = \left(\bar{P}_{\chi\chi_{i}}(t_{k})C_{i}^{\chi\mathsf{T}} + \bar{P}_{\chi\varsigma_{j}}(t_{k})C_{j}^{\varsigma\mathsf{T}}\right)\Lambda^{-1},$$

$$\hat{\chi}(t_{k}) = \bar{\chi}(t_{k}) + K_{\chi}\left(z(t_{k}) - C_{i}^{\chi}\bar{\chi}_{i}(t_{k}) - C_{j}^{\varsigma}\bar{\varsigma}_{j}(t_{k})\right),$$

$$\hat{P}_{\chi\chi}(t_{k}) = \bar{P}_{\chi\chi}(t_{k}) - K_{\chi}\Lambda K_{\chi}^{\mathsf{T}}.$$

$$(1.31)$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\begin{split} \bar{\varsigma}(t_k) &= A^\varsigma \hat{\varsigma}(t_{k-1}) \,, \\ \bar{P}_{\varsigma\varsigma}(t_k) &= A^\varsigma \hat{P}_{\varsigma\varsigma}(t_{k-1}) A^{\varsigma \, \mathsf{T}} + B^\varsigma V^\varsigma B^{\varsigma \, \mathsf{T}} \,. \end{split}$$

Этап коррекции:

$$K_{\varsigma} = \left(\bar{P}_{\chi_{i\varsigma}}(t_{k})^{\mathsf{T}} C_{i}^{\chi\mathsf{T}} + \bar{P}_{\varsigma\varsigma_{j}}(t_{k}) C_{j}^{\varsigma\mathsf{T}}\right) \Lambda^{-1},$$

$$\hat{\varsigma}(t_{k}) = \bar{\varsigma}(t_{k}) + K_{\varsigma} \left(z(t_{k}) - C_{i}^{\chi} \bar{\chi}_{i}(t_{k}) - C_{j}^{\varsigma} \bar{\varsigma}_{j}(t_{k})\right),$$

$$\hat{P}_{\varsigma\varsigma}(t_{k}) = \bar{P}_{\varsigma\varsigma}(t_{k}) - K_{\varsigma} \Lambda K_{\varsigma}^{\mathsf{T}}.$$

$$(1.32)$$

Обновление блока кросс-ковариации:

$$\bar{P}_{\chi\varsigma}(t_k) = A^{\chi} \hat{P}_{\chi\varsigma}(t_{k-1}) A^{\varsigma \mathsf{T}},$$

$$\hat{P}_{\chi\varsigma}(t_k) = \bar{P}_{\chi\varsigma}(t_k) - K_{\chi} \Lambda K_{\varsigma}^{\mathsf{T}}.$$

Для обоих фильтров используется одна матрица Λ :

$$\Lambda = C_i^{\chi} \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} + C_i^{\chi} \bar{P}_{\chi_i \varsigma_j}(t_k) C_j^{\varsigma \mathsf{T}} + C_i^{\varsigma} \bar{P}_{\chi_i \varsigma_j}(t_k)^{\mathsf{T}} C_i^{\chi \mathsf{T}} + C_j^{\varsigma} \bar{P}_{\varsigma_j \varsigma_j}(t_k) C_j^{\varsigma \mathsf{T}} + D_j W_j D_j^{\mathsf{T}}.$$
(1.33)

1.4 Упрощеные алгоритмы оценивания по Henk Blom

В статье [4] также как и в данном отчёте рассматривается задача одновременного оценивания движения многих ВС и определения систематических ошибок. Приводятся варианты упрощения алгоритма фильтрации Калмана, показавшие хорошую работу на практике. В основе этих упрощений лежит простое предположение. Пусть мы рассматриваем уравнение коррекции (1.31). Давайте при этом считать, что неизвестное ς на самом деле нам известно, т. е. оценка $\bar{\varsigma}$ не является случайной величиной и совпадает с ς . Это может быть дальнейшим образом обобщено тем, что ковариации $\bar{P}_{\chi\varsigma}$ и $\bar{P}_{\varsigma\varsigma}$ равны нулю при вычислении текущей оценки $\hat{\chi}$ переменной χ (т. е. как бы не существуют). Это приводит к следующим приближённым формулам:

$$\bar{P}_{\chi\varsigma}(t_k)C^{\varsigma\mathsf{T}} = \bar{P}_{\chi\varsigma_j}(t_k)C^{\varsigma\mathsf{T}}_j = 0, \qquad \bar{P}_{\varsigma\varsigma}(t_k) = 0, \Longrightarrow K_{\chi}(t_k) = \bar{P}_{\chi\chi}(t_k)C^{\chi\mathsf{T}}\Lambda_{\chi}^{-1} = \bar{P}_{\chi\chi_i}(t_k)C^{\chi\mathsf{T}}_i\Lambda_{\chi}^{-1}, \qquad (1.34)$$

$$\Lambda_{\chi} = C^{\chi} \bar{P}_{\chi\chi}(t_k) C^{\chi \mathsf{T}} + DW D^{\mathsf{T}} = C_i^{\chi} \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} + D_j W_j D_j^{\mathsf{T}}. \tag{1.35}$$

Рассмотрим формулу (1.34). Предположим, что все кросс-ковариации между параметрами движения i и параметрами других движений равны нулю на момент, предшествующий коррекции:

$$\bar{P}_{\chi_{i_1}\chi_i} = 0$$
, $\forall i_1 \neq i$.

Тогда при применении коэффициента K_{χ} из формулы (1.34) справедливо

$$K_{\chi_{i_1}}(t_k) = 0, \qquad K_{\chi_i}(t_k) = \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} \Lambda_{\chi}^{-1}.$$
 (1.36)

Подставляя это конкретное выражение для K_χ в уравнения (1.31), получаем, что для всех $i_1 \neq i$ и любых $l=1,\ldots,n$ справедливо

$$\hat{\chi}_{i_1} = \bar{\chi}_{i_1}, \qquad \hat{P}_{\chi_{i_1}\chi_l} = \bar{P}_{\chi_{i_1}\chi_l}.$$

Это означает, что параметры движений $i_1 \neq i$ не изменяются при учёте измерения $z(t_k)$, изменению подвергается только параметры движения, которое непосредственно наблюдается. Кроме того, из этого следует, что кросс-ковариации между параметрами остальных движений и параметрами движения i остаются равными нулю и после коррекции. Следовательно, если в начальный момент обеспечить для всех $i_1 \neq i_2$ нулевые кросс-ковариации

$$\bar{P}_{\chi_{i_1}\chi_{i_2}} = 0 \,,$$

то и дальше они останутся нулевыми, а каждое движение можно будет обрабатывать отдельным фильтром в параллельном режиме.

Аналогично можно поступать и в ходе коррекции ς , считая при этом не случайными величинами текущие оценки $\bar{\chi}$ параметров движения ВС. Это приводит к приближённым соотношениям, аналогичным соотношениям (1.34), (1.35), записанным для параметров систематических ошибок ς :

$$\bar{P}_{\varsigma\chi}(t_k)C^{\chi\mathsf{T}} = \bar{P}_{\varsigma\chi_i}(t_k)C_i^{\chi\mathsf{T}} = 0, \qquad \bar{P}_{\chi\chi}(t_k) = 0, \quad \Longrightarrow K_{\varsigma}(t_k) = \bar{P}_{\varsigma\varsigma}(t_k)C^{\varsigma\mathsf{T}}\Lambda_{\varsigma}^{-1} = \bar{P}_{\varsigma\varsigma_j}(t_k)C_j^{\varsigma\mathsf{T}}\Lambda_{\varsigma}^{-1}, \qquad (1.37)$$

$$\Lambda_{\varsigma} = C^{\varsigma} \bar{P}_{\varsigma\varsigma}(t_k) C^{\varsigma \mathsf{T}} + DW D^{\mathsf{T}} = C_i^{\varsigma} \bar{P}_{\varsigma_i\varsigma_i}(t_k) C_i^{\varsigma \mathsf{T}} + D_j W_j D_i^{\mathsf{T}}. \tag{1.38}$$

В случае пересчёта коэффициента K_{ς} по правилу (1.37) точно также как и для χ появляется возможность параллельного пересчёта отдельных параметров ς_{j} . Для этого нужно лишь обеспечить, чтобы в начальный момент времени для кросс-ковариаций выполнялось условие

$$\bar{P}_{\varsigma_1\varsigma_2} = 0$$
.

Разделённые фильтры для фазового вектора и для систематической ошибки

Опишем подробно соотношения параллельной фильтрации, с учётом упрощённого вычисления коэффициента K_{χ} по формулам (1.34), (1.35) и коэффициента K_{ζ} по формулам (1.37), (1.38) Напомним, что уравнение наблюдения для текущего измерения выглядит следующим образом:

$$z(t_k) = C_i^{\chi} \chi_i(t_k) + C_i^{\varsigma} \varsigma_j(t_k) + D_j w_j.$$

Фильтр для переменных χ_i , описывающих движение. i = 1, ..., n.

Этап предсказания:

$$\bar{\chi}_i(t_k) = A_i \hat{\chi}_i(t_{k-1}),$$

$$\bar{P}_{\chi_i \chi_i}(t_k) = A_i \hat{P}_{\chi_i \chi_i}(t_{k-1}) A_i^\mathsf{T} + B_i V_i^{\chi} B_i^\mathsf{T}.$$

Этап коррекции:

$$\hat{\chi}_i(t_k) = \bar{\chi}_i(t_k) + K_{\chi_i} \left(z(t_k) - C_i^{\chi} \bar{\chi}_i(t_k) - C_j^{\varsigma} \bar{\varsigma}_j(t_k) \right) ,$$

$$\hat{P}_{\chi_i \chi_i}(t_k) = \bar{P}_{\chi_i \chi_i}(t_k) - K_{\chi_i} \Lambda_{\chi_i} K_{\chi_i}^{\mathsf{T}} .$$

Аппроксимация:

$$\begin{split} K_{\chi_i} &= \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} \Lambda_{\chi_i}^{-1} \,, \\ \Lambda_{\chi_i} &= C_i^{\chi} \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} + D_j W_j D_j^{\mathsf{T}} \,. \end{split}$$

Фильтр для параметров систематической ошибки ς_i . j = 1, ..., m.

Этап предсказания:

$$\bar{\zeta}_j(t_k) = A_j^{\varsigma} \hat{\zeta}_j(t_{k-1}) ,$$

$$\bar{P}_{\varsigma_j\varsigma_j}(t_k) = A_j^{\varsigma} \hat{P}_{\varsigma_j\varsigma_j}(t_{k-1}) A_j^{\varsigma \mathsf{T}} + B_j^{\varsigma} V_j^{\varsigma} B_j^{\varsigma \mathsf{T}} .$$

Этап коррекции:

$$\hat{\varsigma}_{j}(t_{k}) = \bar{\varsigma}_{j}(t_{k}) + K_{\varsigma_{j}} \left(z(t_{k}) - C^{\chi} \bar{\chi}_{i}(t_{k}) - C_{j}^{\varsigma} \bar{\varsigma}_{j}(t_{k}) \right) ,$$

$$\hat{P}_{\varsigma_{j}\varsigma_{j}}(t_{k}) = \bar{P}_{\varsigma_{j}\varsigma_{j}}(t_{k}) - K_{\varsigma_{j}} \Lambda_{\varsigma_{j}} K_{\varsigma_{i}}^{\mathsf{T}} .$$

Аппроксимация:

$$K_{\varsigma_j} = \bar{P}_{\varsigma_j\varsigma_j}(t_k)C_j^{\varsigma\mathsf{T}}\Lambda_{\varsigma_j}^{-1}$$

$$\Lambda_{\varsigma_j} = C_j^{\varsigma}\bar{P}_{\varsigma_j\varsigma_j}(t_k)C_j^{\varsigma\mathsf{T}} + D_jW_jD_j^{\mathsf{T}}.$$

Фильтр Калмана для фазового вектора, макро-фильтр для систематической ошибки

Кроме одновременного применения упрощённых формул (1.34), (1.35), (1.37), (1.38) для коэффициентов K_{χ} и K_{ς} в статье [4] приводится ещё один «промежуточный» вариант упрощения. В этом варианте рассматривается ситуация, когда для каждого движения i в некоторый момент t_k одновременно приходят измерения нескольких радиолокаторов. Будем считать для простоты, что это радиолокаторы с номерами от 1 до $m' \leqslant m$. При этом упрощение и, как следствие, «распараллеливание» выполняется только для переменных χ_i . Для параметров систематических ошибок ς_j принимаются дополнительные упрощающие формулы, позволяющие не пересчитывать кросс-ковариации $\bar{P}_{\varsigma\chi}$. Не останавливаясь на подробной интерпретации метода, приведём вычислительные соотношения.

Напоминаем, что уравнение наблюдения выглядит следующим образом:

$$z(t_k) = C_i^{\chi} \chi_i(t_k) + C_i^{\varsigma} \varsigma_j(t_k) + D_j w_j.$$

Фильтр для переменных, описывающих движение.

Этап предсказания:

$$\bar{\chi}_i(t_k) = A_i \hat{\chi}_i(t_{k-1}),$$

$$\bar{P}_{\chi_i \chi_i}(t_k) = A_i \hat{P}_{\chi_i \chi_i}(t_{k-1}) A_i^\mathsf{T} + B_i V_i^{\chi} B_i^\mathsf{T}.$$

Этап коррекции:

$$\hat{\chi}_i(t_k) = \bar{\chi}_i(t_k) + K_{\chi_i} \left(z(t_k) - C_i^{\chi} \bar{\chi}_i(t_k) - C_j^{\varsigma} \bar{\varsigma}_j(t_k) \right) ,$$

$$\hat{P}_{\chi_i \chi_i}(t_k) = \bar{P}_{\chi_i \chi_i}(t_k) - K_{\chi_i} \Lambda_{\chi_i} K_{\chi_i}^{\mathsf{T}} .$$

Аппроксимация:

$$K_{\chi_i} = \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} \Lambda_{\chi_i}^{-1} ,$$

$$\Lambda_{\chi_i} = C_i^{\chi} \bar{P}_{\chi_i \chi_i}(t_k) C_i^{\chi \mathsf{T}} + D_j W_j D_j^{\mathsf{T}} .$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{\varsigma}(t_k) = A^{\varsigma} \hat{\varsigma}(t_{k-1}),$$

$$\bar{P}_{\varsigma\varsigma}(t_k) = A^{\varsigma} \hat{P}_{\varsigma\varsigma}(t_{k-1}) A^{\varsigma \mathsf{T}} + B^{\varsigma} V^{\varsigma} B^{\varsigma \mathsf{T}}.$$

Этап коррекции:

$$\hat{\varsigma}(t_k) = \bar{\varsigma}(t_k) + K_{\varsigma} \left(z(t_k) - C_i^{\chi} \bar{\chi}_i(t_k) - C_j^{\varsigma} \bar{\varsigma}_j(t_k) \right) ,$$

$$\hat{P}_{\varsigma\varsigma}(t_k) = \bar{P}_{\varsigma\varsigma}(t_k) - K_{\varsigma} \Lambda_{\varsigma} K_{\varsigma}^{\mathsf{T}} .$$

В вычислении матриц K_{ς} и Λ_{ς} используются аппроксимация члена $C^{\chi}\bar{P}_{\chi\varsigma}(t_k)$:

$$K_{\varsigma} = (\bar{P}_{\varsigma\varsigma}(t_{k})C^{\varsigma\mathsf{T}} + H^{\mathsf{T}})\Lambda_{\varsigma}^{-1},$$

$$\Lambda_{\varsigma} = m'C^{\chi}\bar{P}_{\chi\chi}(t_{k})C^{\chi\mathsf{T}} + \sum_{j_{1},j_{2}=1}^{m'} C_{j_{1}}^{\varsigma}\bar{P}_{\varsigma_{j_{1}}\varsigma_{j_{2}}}(t_{k})C_{j_{2}}^{\varsigma\mathsf{T}} + \sum_{j=1}^{m'} (HC_{j}^{\varsigma\mathsf{T}} + C_{j}^{\varsigma}H^{\mathsf{T}} + D_{j}W_{j}D_{j}^{\mathsf{T}}),$$

где H строится следующим образом:

$$\begin{split} F_{\chi} &= \sum_{j=1}^{m'} (D_{j} W_{j} D_{j}^{\mathsf{T}})^{-1} \,, \\ F_{\varsigma} &= \sum_{j=1}^{m'} (D_{j} W_{j} D_{j}^{\mathsf{T}})^{-1} C_{j}^{\varsigma} \,, \\ H &= - (F_{\chi}^{\mathsf{T}} F_{\chi})^{-1} F_{\chi}^{\mathsf{T}} F_{\varsigma} \bar{P}_{\varsigma\varsigma}(t_{k}) \,. \end{split}$$

1.5 Алгоритм оценивания на основе СІ

Ключевое отличие алгоритмов, предложенных Henk Blom в статье [4], от алгоритма фильтрации Калмана состоит в том, что матричный коэффициент фильтра K отличен от нуля только для тех переменных, которые непосредственно участвуют в уравнении наблюдения для текущего измерения. Это приводит к идее, что следует находить оптимальный фильтр, заранее удовлетворяющий такому свойству, которое далее выступает как некоторое ограничение в задаче оптимизации.

Пусть в рассматриваемый момент времени t_k движение с номером i измеряется радиолокатором с номером j. Уравнение наблюдения имеет вид

$$z(t_k) = C_i^{\chi} \chi_i(t_k) + C_j^{\varsigma} \varsigma_j(t_k) + D_j w_j.$$

Перегруппируем и переобозначим переменные, входящие в фазовый вектор ξ

$$\xi(t_k) = \begin{bmatrix} \chi_i \\ \varsigma_j \\ y \end{bmatrix} .$$

В переменную y входят параметры всех остальных движений, кроме i-го, и параметры всех остальных радиолокаторов, кроме j-го. Несмотря на замену, оставим прежние обозначения для матриц, присутствующих в уравнении динамики и уравнении наблюдения. Новые матрицы могут быть получены из старых путём перестановок строк и столбцов. Прогнозная и скорректированная матрицы ковариаций ошибок оценивания разделяются на следующие блоки:

$$\bar{P}(t_k) = \begin{bmatrix} \bar{P}_{\chi_i \chi_i} & \bar{P}_{\chi_i \varsigma_j} & \bar{P}_{\chi_i y} \\ \bar{P}_{\varsigma_j \chi_i} & \bar{P}_{\varsigma_j \varsigma_j} & \bar{P}_{\varsigma_j y} \\ \bar{P}_{y \chi_i} & \bar{P}_{y \varsigma_j} & \bar{P}_{y y} \end{bmatrix} , \qquad \hat{P}(t_k) = \begin{bmatrix} \hat{P}_{\chi_i \chi_i} & \hat{P}_{\chi_i \varsigma_j} & \hat{P}_{\chi_i y} \\ \hat{P}_{\varsigma_j \chi_i} & \hat{P}_{\varsigma_j \varsigma_j} & \hat{P}_{\varsigma_j y} \\ \hat{P}_{y \chi_i} & \hat{P}_{y \varsigma_j} & \hat{P}_{y y} \end{bmatrix} .$$

Рассматриваем коэффициенты К фильтра следующего вида

$$K = \begin{bmatrix} K_{\chi_i} \\ K_{\varsigma_j} \\ 0 \end{bmatrix}, \tag{1.39}$$

т. е. не воздействующие в ходе коррекции на часть переменных y. Подставляя такой вид K в формулу Йозефа (1.26), получаем следующие выражения для диагональных

блоков скорректированной матрицы ковариации \hat{P} :

$$\hat{P}_{\chi_{i}\chi_{i}} = (I - K_{\chi_{i}}C_{i}^{\chi}) \bar{P}_{\chi_{i}\chi_{i}} (I - K_{\chi_{i}}C_{i}^{\chi})^{\mathsf{T}} +
+ (I - K_{\chi_{i}}C_{i}^{\chi}) \bar{P}_{\chi_{i}\varsigma_{j}} C_{j}^{\varsigma\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}} + K_{\chi_{i}} C_{j}^{\varsigma} \bar{P}_{\varsigma_{j}\chi_{i}} (I - K_{\chi_{i}}C_{i}^{\chi})^{\mathsf{T}} +
+ K_{\chi_{i}} C_{j}^{\varsigma} \bar{P}_{\varsigma_{j}\varsigma_{j}} C_{j}^{\varsigma\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}} + K_{\chi_{i}} D_{j} W_{j} D_{j}^{\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}},$$

$$\hat{P}_{\varsigma_{j}\varsigma_{j}} = (I - K_{\varsigma_{j}} C_{j}^{\varsigma}) \bar{P}_{\varsigma_{j}\varsigma_{j}} (I - K_{\varsigma_{j}} C_{j}^{\varsigma})^{\mathsf{T}} +
- (I - K_{\varsigma_{j}} C_{j}^{\varsigma}) \bar{P}_{\varsigma_{j}\chi_{i}} C_{i}^{\chi\mathsf{T}} K_{\varsigma_{j}}^{\mathsf{T}} - K_{\varsigma_{j}} C_{i}^{\chi} \bar{P}_{\chi_{i}\varsigma_{j}} (I - K_{\chi_{i}} C_{i}^{\chi})^{\mathsf{T}} +
+ K_{\varsigma_{j}} C_{i}^{\chi} \bar{P}_{\chi_{i}\chi_{i}} C_{i}^{\chi\mathsf{T}} K_{\varsigma_{j}}^{\mathsf{T}} + K_{\varsigma_{j}} D_{j} W_{j} D_{j}^{\mathsf{T}} K_{\varsigma_{j}}^{\mathsf{T}},$$
(1.41)

 $\hat{P}_{yy} = \bar{P}_{yy} \,, \tag{1.42}$

Диагональные блоки рассмотрены по следующей причине. Для многих систем с «разделённой» динамикой имеют смысл критерии вида (1.27), в которых каждая строка h^{T} выделяет лишь переменные, относящиеся к какому-нибудь одному набору парметров — либо χ_i , либо ς_j . Легко показать, что в таких случаях значение критерия зависит только от диагональных блоков. Отметим, что каждый блок зависит от своего коэффициента: блок для χ_i от K_{χ_i} , а блок для ς_j — от K_{ς_j} . Это позволяет оптимизировать значения K_{χ_i} и K_{ς_i} независимо. Так, для $h^{\mathsf{T}} = I$:

$$\min_{K_{\chi_i}, K_{\varsigma_j}} \operatorname{tr} \left\{ \hat{P} \right\} = \min_{K_{\chi_i}} \operatorname{tr} \left\{ \hat{P}_{\chi_i \chi_i} \right\} + \min_{K_{\varsigma_j}} \operatorname{tr} \left\{ \hat{P}_{\varsigma_j \varsigma_j} \right\} .$$

Соотношение (1.42) вместе с (1.39) подтверждает, что алгоритм фильтрации рассматриваемого типа не затрагивает остальные переменные, кроме χ_i и ς_j . Однако это само по себе не приводит к возможности распараллеливания вычислений. Рассмотрим блок ковариаций (1.40). Из вида формулы легко можно понять, что для корректного вычисления оптимального K_{χ_i} необходимо держать в памяти и всё время пересчитывать кросс-ковариации $\bar{P}_{\chi_i\varsigma_j}$, а значит и вычислять не только диагональные блоки, но и все $\hat{P}_{\chi_i\varsigma_j}$, что приводит к тем же самым неприятным эффектам, что и оптимальная фильтрация при помощи фильтра Калмана. Для параллельного применения алгоритма требуется устранить влияние кросс-ковариаций $\bar{P}_{\chi_i\varsigma_j}$ на вычисления K_{χ_i} и при этом обеспечить не очень большое «загрубление».

Рассмотрим блоки матрицы \bar{P} , участвующие в выражении для блока $\hat{P}_{\chi_i\chi_i}$. Легко проверить следующее матричное неравенство:

$$\begin{bmatrix} \bar{P}_{\chi_i \chi_i} & \bar{P}_{\chi_i \varsigma_j} \\ \bar{P}_{\varsigma_j \chi_i} & \bar{P}_{\varsigma_j \varsigma_j} \end{bmatrix} \preccurlyeq \begin{bmatrix} (1+\gamma)\bar{P}_{\chi_i \chi_i} & 0 \\ 0 & \left(1+\frac{1}{\gamma}\right)\bar{P}_{\varsigma_j \varsigma_j} \end{bmatrix}$$

при любом выборе $\gamma>0$. Знак \preccurlyeq означает порядок для симметричных матриц в смысле неотрицательной определённости (разность матрицы справа и слева неотрицательно определена). Это матричное неравенство приводит к новому матричному неравенству для $\hat{P}_{\chi_i\chi_i}$:

$$\hat{P}_{\chi_{i}\chi_{i}} \leq (1+\gamma) \left(I - K_{\chi_{i}} C_{i}^{\chi}\right) \bar{P}_{\chi_{i}\chi_{i}} \left(I - K_{\chi_{i}} C_{i}^{\chi}\right)^{\mathsf{T}} + \left(1 + \frac{1}{\gamma}\right) K_{\chi_{i}} C_{j}^{\varsigma} \bar{P}_{\varsigma_{j}\varsigma_{j}} C_{j}^{\varsigma\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}} + K_{\chi_{i}} D_{j} W_{j} D_{j}^{\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}} . \quad (1.43)$$

В работе [5] показано, что неравенство является существенно нестрогим, т. е. равенство достигается «на некоторых направлениях» в пространстве матриц, и неравенство не может быть заменено на строгое.

Опираясь на оценку (1.43), легко предложить следующий алгоритм фильтрации. Пусть для момента времени t_{k-1} выполнено

$$\hat{P}_{\chi_i \chi_i}(t_{k-1}) \preccurlyeq \hat{R}_{\chi_i \chi_i}(t_{k-1}),$$

$$\hat{P}_{\varsigma_j \varsigma_j}(t_{k-1}) \preccurlyeq \hat{R}_{\varsigma_j \varsigma_j}(t_{k-1}).$$

Тогда, основываясь на следующем свойстве

$$Q \preccurlyeq U \implies TQT^\mathsf{T} \preccurlyeq TUT^\mathsf{T}$$

для произвольных неотрицательно определённых матриц $Q,\,U$ и произвольной матрицы $T,\,$ а также на виде прогнозной матрицы ковариации (1.25), можно утверждать, что и

$$\bar{P}_{\chi_i \chi_i}(t_k) \preccurlyeq A_i \hat{R}_{\chi_i \chi_i}(t_{k-1}) A_i^\mathsf{T} + B_i V_i^\mathsf{X} B_i^\mathsf{T} \triangleq \bar{R}_{\chi_i \chi_i}(t_k) ,$$

$$\bar{P}_{\varsigma_j \varsigma_j}(t_k) \preccurlyeq A_j^\varsigma \hat{R}_{\varsigma_j \varsigma_j}(t_{k-1}) A_j^{\varsigma \mathsf{T}} + B_j^\varsigma V_j^\varsigma B_j^{\varsigma \mathsf{T}} \triangleq \bar{R}_{\varsigma_j \varsigma_j}(t_k) .$$

Следовательно, для блока $\hat{P}_{\chi_i\chi_i}$ будет справедливо:

$$\hat{P}_{\chi_{i}\chi_{i}}(t_{k}) \leq (1+\gamma) \left(I - K_{\chi_{i}}C_{i}^{\chi}\right) \bar{R}_{\chi_{i}\chi_{i}} \left(I - K_{\chi_{i}}C_{i}^{\chi}\right)^{\mathsf{T}} + \left(1 + \frac{1}{\gamma}\right) K_{\chi_{i}}C_{j}^{\varsigma} \bar{R}_{\varsigma_{j}\varsigma_{j}}C_{j}^{\varsigma\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}} + K_{\chi_{i}}D_{j}W_{j}D_{j}^{\mathsf{T}} K_{\chi_{i}}^{\mathsf{T}}. \quad (1.44)$$

Далее, матрицу в правой части (1.44) можно выбрать исходя из минимума некоторого критерия, например следа, при этом получив новую оценку $\hat{R}_{\chi_i\chi_i}$. При минимизации следа путём варьирования K_{χ_i} получаются следующие соотношения:

$$S^{*} = (1+\gamma)C_{i}^{\chi}\bar{R}_{\chi_{i}\chi_{i}}(t_{k})C_{i}^{\chi\mathsf{T}} + \left(1+\frac{1}{\gamma}\right)C_{j}^{\varsigma}\bar{R}_{\varsigma_{j}\varsigma_{j}}(t_{k})C_{j}^{\varsigma\mathsf{T}} + D_{j}W_{j}D_{j}^{\mathsf{T}},$$

$$K_{\chi_{i}}^{*} = (1+\gamma)\bar{R}_{\chi_{i}\chi_{i}}C_{i}^{\chi\mathsf{T}}S^{*-1},$$

$$\hat{R}_{\chi_{i}\chi_{i}}(t_{k}) = (1+\gamma)\left(\bar{R}_{\chi_{i}\chi_{i}}(t_{k}) - (1+\gamma)\bar{R}_{\chi_{i}\chi_{i}}C_{i}^{\chi\mathsf{T}}S^{*-1}C_{i}^{\chi}\bar{R}_{\chi_{i}\chi_{i}}(t_{k})\right) =$$

$$= (1+\gamma)\bar{R}_{\chi_{i}\chi_{i}}(t_{k}) - K_{\chi_{i}}^{*}S^{*}K_{\chi_{i}}^{*\mathsf{T}}$$

$$(1.45)$$

с условием

$$\hat{P}_{\chi_i \chi_i}(t_k) \preccurlyeq \hat{R}_{\chi_i \chi_i}(t_k) \,. \tag{1.46}$$

Соотношения (1.45) справедливы для произвольного $\gamma>0$. С помощью выбора γ также можно улучшить качество аппроксимации, минимизируя след $\hat{R}_{\chi_i\chi_i}$.

Аналогично можно вывести соотношения на оценку для ς_j и коэффициент фильтра K_{ς_j} . При этом можно пользоваться новой константой γ , выбранной независимо от предыдущей. В итоге получается алгоритм оценивания, который работает гарантированно в смысле неравенства (1.46) для произвольных матриц кросс-ковариаций $\bar{P}_{\chi\varsigma}$. В качестве дополнительных параметров, по которым производится вычисление (1.18) матричных коэффициентов фильтра, выступают матрицы $\bar{R}_{\chi_i\chi_i}$, $\hat{R}_{\chi_i\chi_i}$, $\hat{R}_{\varsigma_j\varsigma_j}$, $\hat{R}_{\varsigma_j\varsigma_j}$ для всех $i=1,\ldots,n,\,j=1,\ldots,m$.

По видимому, впервые алгоритм, основанный на соотношениях, близких к (1.44), (1.45), был предложен в работе [6], в дальнейшем он получил название CI — Covariance Intersection. Отметим, что полное обосование корректности его работы было получено лишь недавно, в цикле статей Pablo Arambel и Uwe Hanebeck, смотреть следует статью [5].

1.6 Моделирование работы алгоритмов параллельной фильтрации

Было произведено численное моделирование алгоритмов фильтрации. Рассматривались три алгоритма: фильтр Калмана (в качестве контрольного эталонного алгоритма), разделённый фильтр по Henk Blom и фильтр, основанный на CI.

В качестве модельной задачи была взята задача наблюдения за воздушными судами на плоскости. Использовалась простая динамика ВС в виде прямолинейного и равномерного движения (1.4). Модельные траектории представляют собой набор из 15 движений, начальные условия для которых были выбраны случайно. Общий вид движений приведён на рис. 1.1. Длительность движений по времени составляет 1000 с.

Наблюдающие радиолокаторы обладают постоянными систематическими ошибками по дальности и азимуту и располагаются в заданных точках на плоскости. Их характеристики приведены ниже в таблице Измерения производились с интервалом 1

	РЛС 1	РЛС 2	РЛС 3
координаты, м, С	-20000	230000	-35000
В	-20000	-30000	235000
сист. ошибка по азимуту, °	-0.19	-0.16	0.17
сист. ошибка по дальности, м	400	130	-300
скорость дрейфа сист. ошибки по азимуту, $^{\circ}/c$	0.02	0.02	0.02
скорость дрейфа сист. ошибки по дальности, м/с	1	1	1
случ. ошибка по азимуту, °	0.05	0.05	0.05
случ. ошибка по дальности, м	15	15	15

раз в секунду. При этом все радиолокаторы одновременно наблюдали все движения.

Моделирование производилось в несколько итераций, представлены результаты для 20 из них. На каждой итерации формировались свои реализации случайных ошибок измерений и случайных ошибок движения, при этом траектории движения ВС и систематические ошибки оставались неизменными. Далее, на рисунках представлены результаты работы алгоритмов.

На рис. 1.2–1.5 представлены результаты работы фильтра Калмана. На рис. 1.6–1.9 показано качество оценивания алгоритма по статье Henk Blom. Рис. 1.10–1.13 относятся к алгоритму, в основе которого лежит метод СІ. На всех рис. изображены графики зависимости от времени для модулей отклонения между истинными параметрами движения и их оценками, а также теоретические уровни такого отклонения. Рассматриваются следующие характеристики: на рис. 1.2, 1.6, 1.10 показаны отклонения для вектора геометрического положения, рассчитывается модуль отклонения в метрах; на рис. 1.3, 1.7, 1.11 — отклонения для вектора скорости, рассчитывается модуль отклонения в м/с; на рис. 1.4, 1.8, 1.12 — отклонения для систематической опибки по азимуту, рассчитывается модуль отклонения в °; на рис. 1.5, 1.9, 1.13 — отклонения для систематической опибка по дальности, рассчитывается модуль отклонения в метрах.

На всех рис. синим цветом показан модуль отклонения рассматриваемой величины для одной выделенной итерации моделирования. Чёрной пунктирной кривой показан график для усредннённого по всем 20 реализациям модуля отклонения. Красным показан график теоретической оценки отклонения параметра, сделанной при помощи части следа истинной матрицы ковариаций, пересчитываемой по уравнению (1.26).

Методика рассчёта связана с тем, что в формуле (1.15) берётся h^{T} , выделяющий нужные переменные, а затем используется равенство (1.15) и (1.27). Зелёным цветом показана теоретическая оценка отклонения, сделанная при помощи части следа матрицы ковариации, использующейся внутри алгоритма. Для алгоритма по Henk Blom это части пересчитываемой приближённо \hat{P} . Для алгоритма, основанного на СІ — части оценки \hat{R} .

Группа рис. 1.14–1.17 сделана для простого сравнения работы алгоритмов. На каждом рисунке приведены оценки качества для разных алгоритмов, вычисленные для одной и той же характеристики. Оценка качества берётся в виде усредннённого по всем 20 реализациям модуля отклонения. На рис. 1.14 изображены отклонения для геометрического положения, на рис. 1.15 — для вектора скорости, на рис. 1.16 — для систематической ошибки по азимуту, на рис. 1.17 — для систематической ошибки по дальности.

На основании моделирования можно сделать следующие выводы. Оба алгоритма распараллеливания показали неплохие результаты, но совершенно по-разному. Так, алгоритм на основе СІ показал лучшую точность (даже по сравнению с фильтром Калмана) для вычисления скорости и систематических ошибок по азимуту, однако обладает очень долгим переходным процессом вследствие своей «консервативности». Алгоритм рассчитан на произвольные кросс-ковариации между частями фазового вектора, должен работать для всех возможных частных случаев и поэтому имеет маленькие по модулю компоненты коэффициента усиления K. Алгоритм Henk Blom по большинству показателей работает сравнимо с алгоритмом фильтрации Калмана, однако также имеет завышенное время переходного процесса.

Рис. 1.1: Модельные траектории и радиолокаторы. Положения радиолокаторов покзаны треугольниками

Рис. 1.3: Фильтр Калмана. Отклонение по вектору скорости показано в м/с

Рис. 1.5: Фильтр Калмана. Отклонение для систематической ошибки по дальности показано в метрах

	part1pict/blom-dx.eps	
Рис. 1.6:	Упрощённый фильтр Н. Blom. Отклонение по вектору положения :	 показано
в метрах		
Γ		
	part1pict/blom-dv.eps	

Рис. 1.7: Упрощённый фильтр Н. Blom. Отклонение по вектору скорости показано в $_{\rm M}/{\rm c}$

Рис. 1.9: Упрощённый фильтр Н. Blom. Отклонение для систематической ошибки по дальности показано в метрах

Рис. 1.11: Упрощённый фильтр на основе метода СІ. Отклонение по вектору скорости показано в м/с

Рис. 1.13: Упрощённый фильтр на основе метода СІ. Отклонение для систематической ошибки по дальности показано в метрах

Рис. 1.15: Сравнение разных фильтров. Отклонение по вектору скорости показано в $_{\rm M}/{\rm c}$

Рис. 1.17: Сравнение разных фильтров. Отклонение для систематической ошибки по дальности показано в метрах

2 Алгоритм многогипотезного восстановления траектории

Данный раздел отчёта посвящен исследованию задачи оценивания параметров движения воздушного судна по поступающим радиолокационным замерам. Рассматривается движение в горизонтальной плоскости. Модель движения — система дифференциальных уравнений 4-го порядка, описывающая траекторное движение ВС с ограничением на продольное и боковое ускорения. При этом предполагается, что эти ускорения являются неизвестными наблюдателю параметрами управления, изменяющимися во времени. Для простоты принимается гипотеза, что как функции времени эти управления являются кусочно-постоянными.

В рассматриваемом подходе наряду с текущими параметрами движения формируются наиболее вероятные варианты его предыстории в виде модельных траекторий. Формируемая совокупность возможных траекторий движения воздушного судна с кусочно-постоянными управлениями используются для получения текущей средневзвешенной оценки текущего положения ВС. В общем случае такая задача является многоэкстремальной, даже в случае, когда для её решения используются замеры одного и того же воздушного судна. Поэтому является естественным использование в качестве оценки движения ВС нескольких вариантов траектории.

Предлагаемый подход во многом пересекается с подходом, используемым в настоящее время при мультирадарной обработке данных в НИТА, где задействуется фильтр Калмана и метод ІММ. В частности, как и в ІММ, в каждый момент времени рассматриваются различные варианты движения. Расчёт на улучшение показателей (по сравнению с методом ІММ) по оценке текущих параметров движения сделан на более полное использование модели траекторного движения [7], а также на более представительное хранение предыстории (сохраняется набор наиболее вероятных характерных вариантов (гипотез) движения ВС).

2.1 Общее описание алгоритма

Рассматривается движение воздушного судна в горизонтальной плоскости, которое наблюдается одновременно несколькими радиолокаторами. В рамках решения задачи мультирадарной обработки производится оценка текущих координат и скорости ВС по всем замерам, пришедшим до данного момента времени. Предлагается подход, в котором рассчитывается набор (пучок) наиболее вероятных траекторий ВС (с учётом возможных выбросов измерений). Оговоренный пучок треков пересчитывается с использованием измерений из некоторого бегущего окна по времени с фиксированной длительностью. Пересчёт запускается при каждом вновь поступившем измерении РЛС. В качестве текущей оценки положения ВС рассматриваются варианты выбора «по наилучшей траектории» и выбора «по средней траектории» с использованием принципа максимальной достоверности. Формирование пучка траекторий производится с целью обеспечить максимальную представительность вариантов движения. При описании модели траекторного движения использовались [7,8].

2.2 Основные процедуры алгоритма многогипотезного восстановления траектории

2.2.1 Построения в начальном окне

Начальное окно по времени, используемое для завязки траектории, имеет особый смысл для алгоритма. Длительность начального окна в текущей версии программы и далее в этом подразделе подразумевается заранее выбранным и фиксированным. Формирование пучка траекторий в начальном окне осуществляется по различным тройкам РЛС-замеров, удовлетворяющих следующим условиям:

- замеры попарно разнесены по времени не менее, чем на 8 сек.
- расстояние по геометрическим координатам для всех пар замеров составляет не меньше 800 м.
- при движении с постоянной по величине скоростью по окружности, соединяющей три точки геометрического положения РЛС-замеров, отклонение от замеров в соответствующие моменты времени не превосходит 800 м.

Предполагается, что в начальном окне существует хотя-бы одна такая тройка РЛСзамеров. Ограничение по боковому ускорению в явной форме не задаётся, хотя следует отметить, что оно обеспечивается неявно при выполнении перечисленных выше условий (если рассматривать движения с постоянными ускорениями).

По каждой допустимой тройке РЛС-замеров формируется трек с движением по окружности, проходящей через замеры, и с условием минимальной суммы отклонений по времени от замеров РЛС. Для каждого замера отклонение по времени рассчитывается как модуль разности между моментом РЛС-замера и моментом на траектории, который соответствует прохождению траектории через геометрическую отметку замера. Для получения соответствующих параметров движения в виде начальных координат, направления и величины скорости, а также величины бокового ускорения используются явные аналитические формулы и метод наименьших квадратов.

2.2.2 Ветвление пучка при поступлении нового замера

Данная операция выполняется для каждого вновь поступившего замера РЛС и представляет собой формирование ведущих к данному замеру ответвлений от всех имеющихся треков. Цель ветвления — обеспечение представительности возможных вариантов движения ВС с учётом информации, содержащейся в новом замере. При выполнении данной операции по каждому треку формируется (если это возможно с учётом принятой модели движения) ещё один дополнительный трек, содержащий ответвление, которое ведёт в геометрическую точку замера.

В качестве ответвления рассматривается движение по дуге окружности с нулевым продольным ускорением (с постоянной по величине скоростью), которое отделяется от некоторой старой траектории. Для построения требуемой дуги используется та же процедура формирования трека по трём точкам, что и в предыдущем подразделе. Отличие заключается лишь в фиксированных параметрах движения (координаты, направление и величина скорости) на начальный момент времени — они берутся с движения, подлежащего ветвлению. Дополнительные две точки берутся непосредственно со старого трека (см. рис. 2.1), при этом выбирается вариант с наибольшим результирующим весом у траектории с ответвлением.

Рис. 2.1: Пример выполнения операции ветвления

В ходе ветвления количество треков таким образом может удвоиться. Формируемый на данном этапе пучок треков является начальным приближением для последующей обработки, включающей процедуры прореживания треков и их оптимизации с целью улучшения локальной аппроксимации.

2.2.3 Группировка и прореживание треков

При пересчёте пучка траекторий необходимо выполнять их прореживание, ввиду экспоненциального (с основанием два) роста числа вариантов треков по ходу поступлении замеров РЛС за счёт операции ветвления. Здесь требуется, с одной стороны, сохранить представительность среди сохраняемых вариантов движения, а, с другой стороны, необходимо оставить только «лучшие» треки. Представительность в части вариантов движения необходима для оперативного отслеживания изменений в динамике траекторного движения ВС (также, как и в методе ІММ). Среди прочих рассматривался вариант, когда треки просто упорядочиваются по весу, а затем остаётся только некоторое количество лучших по весу треков. На практике это подход оказался неудовлетворительным, поскольку пучок начинает состоять из практически одинаковых треков, которые отражают лишь какой-то один вариант движения, более предпочтительный на текущий момент времени. В этом случае переход на другой тип движения (с движения по окружности на движение по прямой и т.п.) приводит к повышеным ошибкам (возникает смещение).

В настоящее время рассматривается несложная в реализации идея, предполагающая разбиение треков на группы по рассчитываемой степени близости (см. раздел 2.5) с дальнейшим выбором в каждой группе наилучшего представителя.

2.2.4 Вычисление веса треков и меры расхождения треков

Вес траектории используется для сравнения текущих треков с целью отбора наилучшего при условии их «близости» (меры расхождения). Вес трека связан с вероятностью движения по заданной совокупности замеров при условии, что часть замеров может содержать выбросы и быть ошибочной. Численно мера расхождения треков рассчитывается как среднее расстояние между треками в геометрических координа-

тах, рассчитываемое на равномерной сетке времени в текущем расчётном окне.

!!! Формула

2.2.5 Расчёт оценки текущего положения ВС

Описанные выше расчёты в текущем окне по времени и выполняемые при обработке поступающих замеров РЛС заканчиваются

- по лучшему треку
- по совокупности треков с весами

2.3 Математическая модель траекторного движения ВС

Алгоритм использует следующее модельное описание динамики самолёта:

$$\dot{x} = v \cos \varphi,
\dot{z} = v \sin \varphi,
\dot{\varphi} = u/v,$$

$$\dot{v} = w.$$
(2.1)

Здесь x, z — координаты положения на плоскости; путевой угол φ — угол на плоскости между вектором скорости от оси x; v — величина скорости (v > 0); u — боковое ускорение; w — продольное ускорение.

Предполагаем, что управления u, w стеснены геометрическими ограничениями $|u| \le u_{\text{max}}, |w| \le w_{\text{max}}.$

При практическом использовании интегрирования с построением трека в геометрических координатах используется сетка по времени, включающая все секундные отметки (это позволяет корректно сравнивать треки с несовпадающими моментами переключения).

2.3.1 Аналитические расчёты при интегрировании уравнений движения

Система (2.1) в случае постоянных u, w является интегрируемой аналитически [10,11].

Примем за начальный момент времени t=0. Предположим, что в этот момент выполняются следующие начальные условия на фазовые координаты:

$$v(0) = v_0 > 0, \quad \varphi(0) = 0, \quad x(0) = z(0) = 0.$$
 (2.2)

Тогда для момента времени t>0 при условии, что v>0 на всем промежутке от 0 до t , будут выполнены соотношения

$$v(t) = v_0 + wt,$$

$$\varphi(t) = \frac{u}{w} \ln\left(1 + \frac{wt}{v_0}\right) = \frac{u}{w} \ln\frac{v(t)}{v_0},$$

$$x(t) = \frac{u}{u^2 + 4w^2} v^2(t) \sin\varphi(t) + \frac{2w}{u^2 + 4w^2} \left(v^2(t)\cos\varphi(t) - v_0^2\right),$$

$$z(t) = -\frac{u}{u^2 + 4w^2} \left(v^2(t)\cos\varphi(t) - v_0^2\right) + \frac{2w}{u^2 + 4w^2} v^2(t)\sin\varphi(t).$$
(2.3)

Для случая w=0 соотношения выводятся из (2.3) предельным переходом.

Другие начальные условия приводятся к (2.2) путём замен

$$\varphi \to \varphi + \varphi_0$$
, $x \to x + x_0$, $z \to z + z_0$.

2.4 Структура данных программы, термины

Участює постоянного управления — промежуток времени, характеризующийся постоянством ускорений ВС. На нём фиксируются: u_i (поле записи .Upr) — значение поперечного управления; w_i (поле .Wpr) — значение продольного управления; t_{ni} (.UTr) — время начала участка постоянного управления; t_{ki} (.UTk) — время конца участка постоянного управления.

Трек управления — двунаправленный список участков постоянного управления. Каждый участок постоянного управления в треке управления должен содержать ссылки на предыдущий участок (поле записи .Prd) и последующий участок (поле .Sld). Величины t_{ni} и t_{ki} последовательных элементов списка должны быть согласованы, т. е. $t_{ki-1} = t_{ni}$. Также участки постоянного управления могут содержать поля .nTr и .kTr — ссылки на участок геометрического трека (определяется ниже), который был порождён рассматриваемым участком постоянного управления.

Замер $P\mathcal{\Pi}C$ содержит поля: .Хzr — координата замера «на север» в плоскости Земли; .Zzr — координата замера «на восток» в плоскости Земли; .Hzr — высота замера над плоскостью Земли; .Tzr — время замера; .Nrls — номер $P\mathcal{\Pi}C$ замера.

Трек замеров — двунаправленный список замеров РЛС. Каждый замер РЛС в треке замеров должен содержать ссылки на предыдущий замер (поле записи .Prd) и последующий замер (поле .Sld).

Точка геометрического трека описывает положение ВС и содержит поля: .X — координата ВС «на север» в плоскости Земли; .Z — координата ВС «на восток» в плоскости Земли; .H — высота ВС над плоскостью Земли; .Phi — направление скорости ВС (угол по часовой стрелке относительно направления на север); .V — величина скорости ВС. Время точки геометрического трека в необходимых случаях вычисляется используя её положение в геометрическом треке.

Геометрический трек — двунаправленный список точек геометрического трека. Каждая точка геометрического трека должена содержать ссылки на предыдущий замер (поле записи .Prd) и последующий замер (поле .Sld). Вычисление геометрического трека по треку управления возможно при помощи процедуры PostrTrekaSTekUchUprPrymo(). Аргументом этой процедуры является первый элемент списка трека управления, этот элемент должен иметь поле .nTr, указывающее на точку геометрического трека. Эта точка используется как начальная при интегрировании уравнений движения BC.

Треки всех видов (трек управления, трек замеров, геометрический трек) в программе хранятся в одном массиве

var MetkaTreka:array[0..RazmerMassivaMetok]of TMetkaTreka;

Тип TMetkaTreka описан как запись с вариантной частью. Варианты соответствуют виду трека. Такой подход позволяет динамически распределять память между треками разных видов, использовать одни и те же процедуры манипулирования двунаправленным списком (добавление/удаление элемента, очистка трека и т. п.). Недостатком такого подхода служит большая вероятность возникновения ошибок программирования и сложность отладки.

2.5 Алгоритм оптимизации

Алгоритм оптимизации основывается на методе Хука – Дживса [12].

В качестве входной информации алгоритм получает ссылку на трек управления

(последовательность участков постоянного управления).

Алгоритм варьирует: значения продольного управления w_i , значения поперечного управления u_i , время переключения между участками постоянного управления t_{ni} . При этом учитываются ограничения: на абсолютные значения управления, на минимальную продолжительность постоянного управления. Целью варьирования является построение последовательности управлений, которые бы определяли геометрический трек с минимальным весом.

Для вычисления веса трека алгоритм формирует временный трек управления. В процессе формирования временного трека происходит проверка нарушения ограничений на управление, если ограничения нарушаются, то происходит возврат в основной алгоритм Хука — Дживса, при этом в качестве значения минимизируемой функции возвращается штраф пропорциональный величине нарушения ограничения (при этом при подаче на вход алгоритма оптимизации трека управления с нарушением ограничений возможно «скатывание» алгоритма в область, где ограничения не нарушаются). Для построения геометрического трека по сформированному треку управления используется обращение к процедуре PostrTrekaSTekUchUprPrymo() (которая производит интегрирование), затем вес трека вычисляется обращением к функции RaschetVesaTreka() и происходит возврат в основной алгоритм алгоритм Хука — Дживса с возвратом веса трека в качестве значения минимизируемой функции.

Варьирование прекращается когда текущие шаги варьирования оказываются меньше заданных финальных шагов варьирования.

Алгоритм возвращает ссылку на новый трек управления, получившийся в результате варьирования. В свою очередь трек управления содержит ссылки на соответствующий геометрический трек.

Константы-параметры алгоритма оптимизации

Алгоритм использует следующие постоянные параметры (константы):

Du1 = 0.5 — начальный шаг варьирования поперечного управления;

Dw1 = 0.25 – начальный шаг варьирования продольного управления;

Dt1 = 32.0 - начальный шаг варьирования разбивки времени;

DuFin = 0.01 – финальный шаг варьирования поперечного управления;

DwFin = 0.01 – финальный шаг варьирования продольного управления;

DtFin = 0.02 – финальный шаг варьирования разбивки времени;

 $MAXu = 4 (u_{max})$ – максимальное значение поперечного управления;

 $\texttt{MAXw} = 2 (w_{\text{max}})$ – максимальное значение продольного управления;

dtmin = 10.0 - минимальный промежуток времени постоянного управления;

dh = 0.5 – множитель уменьшения шага при неудаче в «поиске вокруг базовой точки» метода Хука – Дживса.

2.6 Программа конвертации данных

Программа tracks_plots_00 предназначена для фильтрации и конвертации данных (РЛС, АЗН-В, монорадарная обработка, мультирадарная обработка) из текстовых файлов tracks.txt, plots_txt, plots_ads.txt, получаемых при помощи программы vidparser.exe из файлов .vid. Цель конвертации — получить небольшие по объёму текстовые файлы данных для использования в программе многогипотезного восстановления траектории.

В связи с тем, что исходные файлы имеют очень большой объём (гигабайты), полная загрузка информации из файлов в оперативную память (при использовании 32-битной ОС и 32-битного компилятора) не представляется возможной. Используются неоднократное чтение файлов и приближённая оценка сверху количества замеров в РЛС-треках.

Алгоритм

- Первое чтение файла tracks.txt, сбор общей статистики по источникам, глобальным идентификаторам трека и т.п.
- Выделение памяти для АЗН-треков.
- Чтение файла plots_ads.txt. Заполнение массивов замеров АЗН.
- Упорядочение замеров внутри АЗН-треков по времени, запись треков в файлы ads.new4 и ads.plt.
- Освобождение памяти для АЗН-треков.
- Выделение памяти (на основе приближённой оценки) для монорадарных треков (моно-треков), треков мультирадарной обработки (мульти-треков), РЛС-треков.
- Второе чтение файла tracks.txt. Заполнение массивов моно-треков и мультитреков, заполнение номеров замеров в РЛС-треках.
- Упорядочение замеров внутри моно-треков и мульти-треков по времени, запись треков в файлы *_mr.new4 и *_mr.plt.
- Чтение файла plots.txt. Заполнение массивов замеров РЛС-треков.
- Упорядочение замеров внутри РЛС-треков по времени, запись треков в файлы *_r.new4 и *_r.plt.

Особенности текущей версии, параметры программы

Воздушные суда идентифицируются по параметру global (глобальный номер трека), при этом в обработку идёт не более AZN_TRACKS_MAX воздушных судов, АЗН-треки которых имеют не менее AZN_TRACKS_MIN_MEASUR замеров (при этом из подходящих выбираются АЗН-треки с наибольшим числом замеров).

Из файлов tracks.txt, plots.txt учитываются РЛС-замеры и моно-замеры, параметр sensor которых равен параметру RADAR_SENSOR_ONLY.

Если после всех фильтраций трек содержит меньше TRACKS_MIN_MEASUR замеров, то он не записывается.

Выходные файлы записываются в поддиректорию new, которая не должна существовать до запуска программы. В директории new создаются поддиректории, совпадающие с параметром global записываемых BC. Записываются файлы ads.new4 и ads.plt (АЗН-треки), 240_mr.new4 и 240_mr.plt (мульти-треки), *_mr.new4 и *_mr.plt (моно-треки), *_r.new4 и *_r.plt (РЛС-треки). Здесь * — номер РЛС.

Файлы *.plt имеют формат треков программы Ozi Explorer и используются для визуализации треков при помощи программы GPSMapEdit.

Формат файлов .new4

Текстовые файлы, в которых построчно записаны замеры. Столбцы: время замера, широта замера, долгота замера, высота замера. Столбцы разделяются символом табуляции.

Для РЛС-треков в качестве координат замеров используются поля lat и lon файла plots.txt, т.е. широта и долгота, сформированные из дальности и азимута сырых РЛС-замеров, которые предварительно корректируются с учётом текущей оценки систематических ошибок в программе мультирадарной обработки.

2.7 Результаты моделирования

Приведены результаты вычислений, полученные на модельных и реальных данных.

На всех рисунках: синие кривые обозначают траектории из пучка, построенные на текущий момент; желтые квадратики — замеры РЛС (смоделированные или полученные из файла plots.txt). При работе с модельными данными: зелёная траектория — идеальное движение ВС. При работе с реальными данными: зелёная траектория — трек РЛС (получен из файла plots.txt); красная траектория — трек монорадарной обработки (получен из файла tracks.txt); жёлтая трактория — трек АЗН-В (получен из файла plots_ads.txt).

2.7.1 Модельные данные

На рис. 2.2—2.4 показаны результаты работы с модельными данными, относящимися к одной и той же модельной траектории. Движение по этой траектории направлено слева направо (на «восток»).

Рисунок 2.2 иллюстрирует построение в начальном окне, необходимое для «разгона» алгоритма. Некая «разбросанность» пучка, видимая на рисунке, характерна только для этого этапа и пропадает после операций прореживания или оптимизации.

Рисунок 2.3 показывает состояние текущего пучка траекторий после нескольких последовательных итераций ветвления треков и прореживания. Последней была применена процедура ветвления.

На рис. 2.4 показано состояние в которое переходит пучок после применения оптимизации к состоянию, изображённому на рис. 2.3.

2.7.2 Реальные данные

На рис. 2.5 показан конечный участок пучка движений при обработке данных BC с глобальным номером трека 29850, полученных с РЛС № 26, сенсор 10 (вторичная РЛС режима RBS). Приведено состояние непосредственно после процедуры ветвления перед которой происходило нескольких последовательных итераций ветвления треков и прореживания.

Рисунок 2.6 показывает состояние текущего пучка движений при обработке данных данных ВС с глобальным номером трека 30637, полученных с РЛС № 35, сенсор 10 (вторичная РЛС режима RBS). Приведено состояние непосредственно после процедуры оптимизации. Здесь, как и на рис. 2.4, виден недостаток использования процедуры оптимизации в том виде, как это реализовано в настоящее время: после оптимизации большинство траекторий пучка оканчивается близко с последним замером (или точно на нём). Рассматриваются различные способы преодоления этого недостатка: усиленное ограничение снизу на продолжительность последнего промежутка постоянного

		٦
	part2pict/perv_pribl.eps	
	Рис. 2.2: Построение в начальном окне. Модельные данные	
		٦
	part2pict/do_optomiz.eps	
Рис. 2.	3: Текущий пучок траекторий после процедуры ветвления. Модельны	е данные
		_
	part2pict/posle_optimiz.eps	
P_{MC} 2	$4\cdot$ Текуший пучок траекторий после процедуры оптимизации. Моледь	яые пан-

Рис. 2.4: Текущий пучок траекторий после процедуры оптимизации. Модельные данные

управления; использование других функционалов для подсчёта веса трека (меньший вес последнего замера, «лункообразный» функционал).

2. Алгоритм многогипотезного восстановления траектории

43

Рис. 2.5: Текущий пучок траекторий после процедуры ветвления. Реальные данные: глобальный номер трека 29850, РЛС № 26. Движение направлено «вверх»

44

Рис. 2.6: Текущий пучок траекторий после процедуры оптимизации. Реальные данные: глобальный номер трека 30637, РЛС № 35. Движение направлено «вверх»

Заключение

В первой части рассматриваются алгоритмы одновременного определения параметров движения многих ВС и систематических ошибок нескольких РЛС, которые наблюдают за ними. Рассмотрены проблемы, которые возникают в этой задаче при решении с помощью фильтра Калмана, в частности, трудности с параллельной реализацией. Предложены альтернативные алгоритмы, позволяющие добиться лёгкой параллельной реализации, и при этом сравнимые по точности с фильтром Калмана.

Вторая часть посвящена алгоритму многогипотезного восстановления траектории воздушного судна. Алгоритм базируется на поддержании пучка возможных траектрий движения, который изменяется процедурами ветвления (обязательна при получении очередного замера), прореживания, оптимизации. Описаны составные части алгоритма и вспомогательная утилита конвертации данных. Приведены результаты моделирования.

Литература

- [1] Бедин Д. А., Денисов А. П., Иванов А. Г., Федотов А. А., Черетаев И. В., Ганебный С. А., Васильев А. Б. Одновременное определение координат движущегося ВС и коррекция систематических ошибок РЛС при помощи фильтра Калмана. 2015. Отчёт по Договору 610-15У. 33 с.
- [2] Пацко В. С., Ахмедов Р. М., Федотов А. А., Иванов А. Г., Бедин Д. А., Беляков А. В., Строков К. В. Разработка алгоритмов обработки и оценивания информации для АС УВД (этап 2). Расчет оценки расхождения по времени в замерах от нескольких РЛС. / Отчет о научно-экспериментальной работе. Екатеринбург: ИММ УрО РАН, 2012, 41 с.
- [3] Taghavi, E., Tharmarasa, R., Kirubarajan, T. Bar-Shalom, Y. Bias Estimation for Practical Distributed Multiradar-Multitarget Tracking Systems / in Proceedings of Information Fusion (FUSION), 2013 16th International Conference on, 9-12 July 2013, pp. 1304–1311.
- [4] Blom, H. A. P., Van Doorn, B. A. Systematic Error Estimation in Multisensor Fusion Systems / Proceedings of SPIE The International Society for Optical Engineering. Vol. 1954, Oct. 1993, pp. 450–461.
- [5] Reinhardt, M., Noack, B., Arambel, P. O., Hanebeck, U. D. Minimum Covariance Bounds for the Fusion under Unknown Correlations // Signal Processing Letters, IEEE. Vol. 22, Iss. 9, Sept. 2015, pp. 1210–1214.
- [6] Julier, S. J., Uhlmann, J. K. A Non-divergent Estimation Algorithm in the Presence of Unknown Correlations / Proceedings of Amer. Control Conf., vol. 4, 1997, pp. 2369–2373.
- [7] ГОСТ 20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения. Издание официальное. Москва, Госкомстандарт, 1980.
- [8] Π *ятко С.Г., Красов А.И. и др.* Автоматизированные системы управления воздушным движением. Санкт-Петербург, Изд. Политехника, 2004.
- [9] Бедин Д.А., Беляков А.В., Кумков С.И., Пацко В.С., Пятко С.Г., Строков К.В., Федотов А.А. Отчёт по договору №61/2007. Разработка алгоритмов и программ обработки и анализа информации в системе УВД (Этап 4). Том 2. Пакет алгоритмов для задачи восстановления траектории самолёта. 2008. 51 с.
- [10] Бедин Д.А., Беляков А.В., Кумков С.И., Пацко В.С., Пятко С.Г., Федотов А.А. Методы и алгоритмы анализа, выделения и отсеивания недостоверных замеров радиолокационной информации. Восстановление траектории самолета по зашумленным замерам в движущемся окне. 2006, Отчёт по Договору 53/2005. 27 с.

- [11] Бедин Д.А., Беляков А.В., Кумков С.И., Пацко В.С., Пятко С.Г., Строков К.В., Федотов А.А. Методы и алгоритмы анализа, выделения и отсеивания недостоверных замеров радиолокационной информации. Программный пакет алгоритмов восстановления траектории самолета по замерам с ошибкой. 2007, Отчёт по Договору 53/2005. 41 с.
- [12] Банди Б. Методы оптимизации (вводный курс). М.: Радио и связь, 1988.