

537,556

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

03 JUN 2005

(43) International Publication Date
17 June 2004 (17.06.2004)

PCT

(10) International Publication Number
WO 2004/050605 A1

(51) International Patent Classification⁷: C07C 211/63,
213/04, 213/08, C11D 1/835, C07C 217/50, C11D 1/62,
3/43

04355-090, SP (BR). QUEIROZ CAVALCANTE, Cássio
[BR/BR]; Rua Daniel Fox 138, São Paulo SCP-083-470,
SP (BR).

(21) International Application Number:
PCT/EP2003/013279

(74) Agent: PACZKOWSKI, Marcus; Clariant Service
GmbH, Patente, Marken, Lizenzen, Am Unisys-Park 1,
65843 Sulzbach (DE).

(22) International Filing Date:
26 November 2003 (26.11.2003)

(81) Designated States (national): BR, CA, CN, JP, KR, MX,
US.

(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(30) Priority Data:
02027119.3 4 December 2002 (04.12.2002) EP

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant: CLARIANT INTERNATIONAL LTD
[CH/CH]; Rothausstrasse 61, CH-4132 Muttenz (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GALLOTTI, Manlio [IT/BR]; Al. Itu, 1420 apto 101, CEP-01421-001 São Paulo, SP (BR). RAMOS PEREIRA DE MORAES, Patricia [BR/BR]; Rua Eduardo de Magalhaes 168, CEP-

A1

(54) Title: QUATERNARY AMMONIUM COMPOSITION

(57) Abstract: A quaternary ammonium composition is claimed which essentially consists of a) a cationic compound with general formula (I) wherein R₁ is C₈-C₂₂-alkyl, C₈-C₂₂-alkenyl, C₈-C₂₂-alkylamidopropyl, C₈-C₂₂ alkenyl-amidopropyl, C₈-C₂₂-alkyl/alkenyl(poly)alkoxyalkyl, C₈-C₂₂-alkanoylethyl or C₈-C₂₂-alkenyoylethyl, R₂, R₃ and R₄ are C₁-C₂₂-alkyl, C₂-C₂₂-alkenyl or a group of the formula -A-(OA)_n-OH, A is -C₂H₄- and/or -C₃H₆-, n is a number from 0 to 20 and X is an anion, b) water and c) a non-ionic solvent of the general formula R-O-(AO)_nH, where R is hydrogen, alkyl or alkenyl containing 8 to 22 carbon atoms, or phenyl, A is C₂H₄ and/or C₃H₆ and n is a number from 0 to 20, which composition is characterized in that it contains less than 20 % by weight of water.

WO 2004/050605 A1

Description**Quaternary ammonium composition**

5 Use of quaternary ammonium compounds in detergents formulations has been widely used as it improves physical and chemical properties of the mixture.

One of the most used ammonium quaternary are the Hydroxyethyl Quats. They could be classified as a typical cationic surfactant which solubility or hydrophilic

10 characteristics are improved by the presence of a hydroxyl group in its structure. This characteristic makes possible its use in typical anionic formulation in which is stable and shows particular benefits of synergistic action on removal of difficult stains like oily and fatty ones from fabrics or other surfaces, also after aging.

15 It also presents synergistic effect when incorporate with anionics, amphoteric, and/or non-ionics surfactants.

Hydroxyethyl Quats are detyrancy boosters for use in all laundry detergent powders and liquid for clothes washing in house hold, industrial, and institutional area.

20 The use of these compounds in HDP formulations improves the fatty-soil and clay-soil removal, the graying inhibition, the enzyme efficiency and the bleach effects. Besides that it reduces interference of surfactant system on the action of dye transfer inhibitor and dye fixing agents.

25 All these benefits are described in US 5.415.812, WO 97/45513, WO 97/43367, WO 97/42292, WO 97/44419, WO 97/12018, WO 98/13448, WO 98/13449, WO 98/13451, WO 98/13452, WO 98/13453, WO 98/17751, WO 98/17754, WO 98/17755, WO 98/17758, WO 98/17759, WO 98/17766, WO 98/17767,

30 WO 98/17768, WO 98/17769, WO 98/20092, WO 98/35004.

Hydroxyethyl Quats also provide a sensitive synergic improvement in physical and chemical properties of light duty liquid formulations, as described in WO0188073.

In Hard Surface Cleaners the Hydroxyethyl Quats increase the detergency when it is in the presence of anionic surfactants and in Disinfectant Cleaners it presents all

5 benefits as comparable with anionic cleaners but with a special anti-bacteria effect, as described in WO 01/94511.

The up dated technology available to produce this kind of surfactant is based on synthesis in aqueous medium, as the active content is a salt and so it's highly soluble

10 in water. Therefore, it has been commercialized in aqueous solution. However, nowadays the detergent market tends to use raw materials as concentrated as possible, what means with the lowest amount of water possible. In most of the cases the water has to be removed from the final formulation. So, it's a big advantage to the customer buying the cationic compound obtained in a medium that is part of the final
15 product and don't need to be removed. Besides that, using detergents having high concentrations of detersive substances minimize transportation, storage and packaging costs. It also improves handling for the customer.

In this way detergents having big amounts of water constitute a difficulty for detergent

20 industries because it decreases the content of the active substances.

The present invention provides for quaternary ammonium composition essentially consisting of

a) a cationic compound with general formula:

25

wherein R₁ is C₈-C₂₂-alkyl, C₈-C₂₂-alkenyl, C₈-C₂₂-alkylamidopropyl, C₈-C₂₂-alkenyl-amidopropyl, C₈-C₂₂-alkyl/alkenyl(poly)alkoxyalkyl, C₈-C₂₂-alkanoylethyl or C₈-C₂₂-alkenoylethyl, R₂, R₃ and R₄ are C₁-C₂₂-alkyl, C₂-C₂₂-alkenyl or a group of the formula -A-(OA)_n-OH, A is -C₂H₄- and/or -C₃H₆-, n is a number from 0 to 20 and X is an

5 anion,

b) water and

c) a non-ionic solvent of the general formula R-O-(AO)_nH, where R is hydrogen, 10 alkyl or alkenyl containing 8 to 22 carbon atoms, or alkyl-phenyl, A is C₂H₄ and/or C₃H₆ and n is a number from 0 to 20, when R is alkyl or alkenyl and n is a number from 1 to 20 if R is hydrogen, which composition is characterized in that it contains less than 20 % by weight of water.

15 The quaternary ammonium composition presents preferably 5 to 60 % by weight of an active cationic component a), less than 20 % of water and preferably 40 to 95 % by weight of one or more of the non-ionic solvent. The composition is also characterized for having less than 5 % of by products (free amine plus amine chlorohydrate). Addition of some additives to improve product characteristics is also possible.

20

The compositions as claimed herein are prepared in the following way according to the nature of R₂, R₃ and R₄.

If R₄ is an alkyl or alkenyl group an amine of the formula

25

wherein R₁, R₂ and R₃ are as defined above, is quaternized by reacting it with a halo alkyl or halo alkenyl of the formula R₄-X wherein X is chlorine or bromine. This reaction is made in the presence of a non-ionic solvent c) as defined above. The reaction time is from 3 to 8 hours and the reaction temperature is from 20 to 100°C.

5 This reaction is done by diluting the starting amine with the non-ionic solvent and then adding the halo alkyl or halo alkenyl compound. It is also possible to first mix the halo alkyl or halo alkenyl compound with the non-ionic solvent and than add the amine.

If a composition is made containing a quaternary compound wherein R₄ is a group of
10 the formula -A-(OA)_n-OH, the amine of the formula R₁R₂R₃N is treated with an inorganic halo acid such as for example hydrochloric acid. This reaction is done in the presence of the non-ionic solvent as defined above. The reaction normally is completed after 0,5 to 2 hour at a temperature of 20 to 100°C. In a second step the ammonium salt obtained in the first step is reacted with ethylene oxide and/or
15 propylene oxide at 40 to 100°C

Normally this step takes 3-8 hours, depending on the amount of starting material and the equipment where the reaction is performance.

It's important to emphasize that the component or component used as reactional
20 medium must be inert, what means they cannot react with ethylene oxide or propylene oxide under the theses conditions.

As cationic surfactants there may be used the following ones, alkyldimethyl-hydroxyethyl-ammonium, alkyl-dimethyl(poly)alkoxyalkyl-ammonium, alkyltrimethyl-ammonium, dialkyldimethyl-ammonium, dialkyl-methyl(poly)alkoxyalkyl-ammonium, alkyl-di(poly)-alkoxyalkyl-methyl-ammonium, dialkyl-di(poly)alkoxy-ammonium, alkyl-tri(poly)-alkoxy-ammonium, alkylamidopropyl-trimethyl-ammonium, alkylamidopropyl-dimethyl(poly)-alkoxyalkyl-ammonium, alkoxyethyl-trimethyl-ammonium. Instead of alkyl these ammonium compounds may also have alkenyl groups or mixtures of both.
30 The alkyl as well as the alkenyl groups may contain 8 to 22 carbon atoms. They may be linear or branched. (Poly)-alkoxyalkyl means a group of the formula -A-(OA)_n-OH

wherein A is ethylene or propylene group or a mixture of both and n is a number from 0 to 20. Preferably n is zero and A is ethylene that means those compounds and preferred which contain a hydroxyethyl group. Most preferred ammonium compounds are C₈-C₂₂-alkyl- or alkenyl-dimethyl-hydroxyethyl-ammonium compounds. All

5 mentioned ammonium compounds might contain any kind of anion; the preferred ones are chloride, bromide, acetate, lactate, sulphate or methosulphate.

As solvent there may be used the following ones, an alcohol or an ethoxylated alcohol with general formula R-O-(AO)_nH, where R is alkyl or alkenyl group containing 8 to 22
10 carbon atoms, A is C₂H₄ and/or C₃H₆ and n is a number from 0 to 20, a polymer or a block co-polymer with general formula -A-(OA)_n-OH wherein A is ethylene and/or propylene group or a mixture of both and n is a number of from 0 to 20, nonylphenol or ethoxylated nonylphenol with general formula C₉H₁₉-phenyl-O-(AO)_nH, where A is C₂H₄ and/or C₃H₆ or a mixture of the compounds above.

15

Example 1:

To a 3 liter four necked round bottom flask equipped with stirrer, thermometer, reflux condenser and dropping funnel were charged 1460 g of C₁₂/C₁₄/C₁₆ alcohol polyglycol
20 7 EO and 324 g of dimethyl alkyl (C₁₂/C₁₄/C₁₆) amine. Under stirring were added 150 g of hydrochloric acid 34 % in fifteen minutes. Due the exothermicity the temperature reach 70°C. During the addition the temperature was kept between 60-70°C. The system was let under stirring and at 70-75°C for two more hours. We got approx. 1930 g of an intermediate product with the following characteristics:

25

Appearance (25°C): Clear slightly yellow liquid

Free amine: 0,19 %

Amine Chlorohydrate: 19,0 %

Water (KF): 5,4 %

30

To a 2 liter high-pressure reactor equipped with stirrer, thermometer, nitrogen feed and pressured dropping funnel were charged 969 g of the intermediate (Amine Chlorohydrate). The system was in inert mode and then heated to 65-70°C. Then 36,7 g (0,75 mols) of ethylene oxide were added in 4 hours, keeping the temperature

5 at

75-80°C and the pressure between 0,5 and 3,0 Bar. We kept the system for 1 more hour stirring at 75-80°C. We got approx. 1005 g of final product with the following characteristics:

10 Appearance (25°C): Clear slightly yellow liquid

Free amine + amine chlorohydrate: 0,54 %

Active content: 19,5 %

Water (KF): 4,9 %

15 To decrease even more the amount of water the product was distilled under vacuum and at 70-80°C for 3 hour and we got a product with the following characteristic:

Appearance (25°C): Clear slightly yellow liquid

Free amine + amine chlorohydrate: 0,55 %

20 Active content: 19,8 %

Water (KF): 1,7 %

Keeping distilling for two more hours at the same conditions we got the following product:

25

Appearance (25°C): Cloud white liquid

Free amine + amine chlorohydrate: 0,60 %

Active content: 20,3 %

Water (KF): 0,46 %

Summarizing with this process we got tree different possible final product:

Characteristics	Example 1.1	Example 1.2	Example 1.3
Appearance (25°C)	Clear slightly yellow liquid	Clear slightly yellow liquid	Cloud white liquid
Free Amine + Amine Chlorohydrate (%)	0,19	0,55	0,60
Cationic Content (%)	19,5	19,8	20,3
Water (KF) (%)	5,4	1,7	0,46

5 Example 2:

To a 3 liter four necked round bottom flask equipped with stirrer, thermometer, reflux condenser and dropping funnel were charged 1650 g of C₁₂/C₁₄/C₁₆ alcohol polyglycol 7 EO and 905 g of dimethyl alkyl (C₁₂/C₁₄/C₁₆) amine. Under stirring were added 419

10 g of hydrochloric acid 34 % in fifteen minutes. Due the exothermicity the temperature reach 70°C. During the addition the temperature was kept between 60-70°C. The system was let under stirring and at 70-75°C for two more hours. We got approx. 2974 g of an intermediate product with the following characteristics:

15 Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days.

Free amine: 0,13 %

Amine Chlorohydrate: 34,6 %

Water: 10,8 %

20

To a 2 liter high-pressure reactor equipped with stirrer, thermometer, nitrogen feed and pressured dropping funnel were charged 1120 g of the intermediate (Amine Chlorohydrate). The system was in inert mode and then heated to 65-70°C. Then

73,7 g (1,68mols) of ethylene oxide were added in 4 hours, keeping the temperature at 75-80°C and the pressure between 0,5 and 3,0 Bar. We kept the system for 1 more hour stirring at 75-80°C. We got approx. 1005 g of final product with the following characteristics:

5

Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days. The product can be easily homogenized by stirring at a temperature between 25 and 50°C.

Free amine + amine chlorohydrate: 0,42 %

10 Active content: 37,2 %

Water (KF): 9,6 %

To decrease even more the amount of water the product was distilled under vacuum and at 70-80°C for 3 hour and we got a product with the following characteristic:

15

Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days. The product can be easily homogenized by stirring at a temperature between 25 and 50°C.

Free amine + amine chlorohydrate: 0,4 %

20 Active content: 39,7 %

Water (KF): 4,6 %

Example 3:

25 To a 3 liter four necked round bottom flask equipped with stirrer, thermometer, reflux condenser and dropping funnel were charged 1320 g of C₁₂/C₁₄/C₁₆ alcohol polyglycol 7 EO and 456 g of dimethyl alkyl (C₁₂/C₁₄/C₁₆) amine. Under stirring were added 211 g of hydrochloric acid 34 % in fifteen minutes. Due the exothermicity the temperature reach 70°C. During the addition the temperature was kept between 30 60-70°C. The system was let under stirring and at 70-75°C for two more hours. We got approx. 1930 g of an intermediate product with the following characteristics:

Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days.

Free amine: 0,10 %

Amine Chlorohydrate: 26,4 %

5 Water: 8,6 %

To a 2 liter high-pressure reactor equipped with stirrer, thermometer, nitrogen feed and pressured dropping funnel were charged 987 g of the intermediate (Amine Chlorohydrate). The system was in inert mode then heated to 65-70°C. Then 50,3 g

10 (1,14 mols) of ethylene oxide were added in 4 hours, keeping the temperature at 75-80°C and the pressure between 0,5 and 3,0 Bar. We kept the system for 1 more hour stirring at 75-80°C. We got approx. 1005 g of final product with the following characteristics:

15 Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days. The product can be easily homogenized by stirring at a temperature between 25 and 50°C.

Free amine + amine chlorohydrate: 0,37 %

Active content: 28,4 %

20 Water (KF): 7,5 %

To decrease even more the amount of water the product was distilled under vacuum and at 70-80°C for 3 hour and we got a product with the following characteristic:

25 Appearance (25°C): Slightly cloud and yellow liquid with shows phase separation after some days. The product can be easily homogenized by stirring at a temperature between 25 and 50°C.

Free amine + amine chlorohydrate: 0,29 %

Active content: 30,1 %

30 Water (KF): 4,3 %

Claims:

1. A quaternary ammonium composition essentially consisting of
a) a cationic compound with general formula:

5

wherein R₁ is C₈-C₂₂-alkyl, C₈-C₂₂-alkenyl, C₈-C₂₂-alkylamidopropyl, C₈-C₂₂-alkenyl-amidopropyl, C₈-C₂₂-alkyl/alkenyl(poly)alkoxyalkyl, C₈-C₂₂-alkanoylethyl or C₈-C₂₂-alkenoylethyl, R₂, R₃ and R₄ are C₁-C₂₂-alkyl, C₂-C₂₂-alkenyl or a group of the formula -A-(OA)_n-OH, A is -C₂H₄- and/or -C₃H₆-, n is a number from 0 to 20 and X is an anion,

10

b) water and
c) a non-ionic solvent of the general formula R-O-(AO)_nH, where R is hydrogen, alkyl or alkenyl containing 8 to 22 carbon atoms, or alkylphenyl, A is C₂H₄ and/or C₃H₆ and n is a number from 0 to 20, when R is alkyl or alkenyl and n is a number from 1 to 20 if R is hydrogen, which composition is characterized in that it contains less than 20 % by weight of water.

15

20 2. Composition, according to claim 1, which contains 5 to 60 % by weight of the cationic compound a).

25

3. Composition, according to claim 1, wherein the cationic compound a) is an C₈-C₂₂-alkyl or C₈-C₂₂-alkenyl-dimethyl-hydroxyethyl ammonium.

4. Composition, according to claim 1, which has 40 to 95 % by weight of the non ionic solvent c).

5. Composition, according to claim 1, which has less than 5% of by-products.

6. Composition, according to claim 1, which the non ionic solvent is an ethoxylated fatty alcohol, a fatty alcohol, a polyethylene glycol, a polypropylene

5 glycol, a block co-polymer of ethylene and propylene, a nonylphenol, a ethoxylated nonylphenol or a mix of these compounds.

7. A process for preparing a composition as claimed in claim 1 wherein R₄ in the compound a) is defined as C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl, which process consists in

10 reacting an amine of the formula

wherein R₁, R₂ and R₃ are as defined above with a halo alkyl or halo alkenyl of the formula R₄-X wherein R₄ is C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl and X is chlorine or bromine

15 in the presence of a non-ionic solvent c) as defined in claim 1.

8. A process for preparing a composition as claimed in claim 1 wherein R₄ in the cationic compound a) is defined as a group of the formula -A-(OA)_nOH wherein A and n are as defined in claim 1, which process consists of reacting an amine of the

20 formula

with an inorganic halo acid and than reacting the ammonium salt thus obtained with ethylene oxide and/or propylene oxide.

9. Process according to claim 7 or 8, wherein the amine is C₈-C₂₂-alkyl or C₈-C₂₂-alkenyl-dimethyl amine.
10. Process, according to claim 8, wherein the monohalo acid is aqueous,
5 hydrochloric acid.
11. Process, according to claim 8, wherein the ammonium salt is reacted with
ethylene oxide.
- 10 12. Process according to claim 8, wherein the non ionic solvent is Coconut PEG 7.
13. Process according to claim 8, wherein the first step is proceed in a temperature
between 20 and 100°C.
- 15 14. Process according to claim 8, wherein the second step is proceeded in a
temperature between 40 and 100°C.

INTERNATIONAL SEARCH REPORT

Index

Application No

EP 03/13279

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07C211/63 C07C213/04 C07C213/08 C11D1/835 C07C217/50
 C11D1/62 C11D3/43

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07C C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 414 124 A (SMITH KIM R ET AL) 9 May 1995 (1995-05-09) column 2, line 30-34, 47-63 claims 1,18,19; example 5 ---	1-7,9
X	DATABASE WPI Section Ch, Week 198322 Derwent Publications Ltd., London, GB; Class D21, AN 1983-52575K XP002238205 & JP 58 067649 A (LION AKZO KK), 22 April 1983 (1983-04-22) abstract ---	1,2,4,5, 7,9
A	US 5 053 531 A (GOVINDAN CHERUTHUR) 1 October 1991 (1991-10-01) column 2, line 2-60 examples ---	1-14 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

8 April 2004

27/04/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Bertran Nadal, J

INTERNATIONAL SEARCH REPORT

Intesa

Application No

EP 03/13279

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/28950 A (CRODA INC) 25 May 2000 (2000-05-25) claims 1-19; tables 1,2 ----	1-14
A	WO 94/21592 A (HENKEL) 29 September 1994 (1994-09-29) page 3, paragraph 3 -page 4, paragraph 1 page 9, last paragraph example 6 ----	1-14
A	EP 0 726 246 A (RHEOX INT) 14 August 1996 (1996-08-14) page 2, line 23-34 examples ----	1-14
A	WO 94/07978 A (HENKEL KGAA) 14 April 1994 (1994-04-14) claims -----	1-14

INTERNATIONAL SEARCH REPORT

Inte

Application No

PCT/EP 03/13279

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5414124	A	09-05-1995	US	5545749 A	13-08-1996
JP 58067649	A	22-04-1983	NONE		
US 5053531	A	01-10-1991	US	4904825 A	27-02-1990
			US	5187214 A	16-02-1993
			CA	2001561 A1	08-05-1990
			EP	0442948 A1	28-08-1991
			JP	4502911 T	28-05-1992
			WO	9005129 A2	17-05-1990
WO 0028950	A	25-05-2000	AU	1714400 A	05-06-2000
			EP	1131041 A1	12-09-2001
			JP	2002529487 T	10-09-2002
			WO	0028950 A1	25-05-2000
			US	2003012763 A1	16-01-2003
			US	6607715 B1	19-08-2003
WO 9421592	A	29-09-1994	DE	4308794 C1	21-04-1994
			DE	4335782 C1	28-07-1994
			AT	153653 T	15-06-1997
			DE	59306618 D1	03-07-1997
			DE	59308832 D1	03-09-1998
			WO	9421592 A1	29-09-1994
			WO	9421593 A1	29-09-1994
			EP	0689531 A1	03-01-1996
			EP	0689532 A1	03-01-1996
			ES	2119146 T3	01-10-1998
			ES	2102183 T3	16-07-1997
			JP	8507537 T	13-08-1996
			JP	8507538 T	13-08-1996
			US	5718891 A	17-02-1998
EP 0726246	A	14-08-1996	CA	2166570 A1	11-08-1996
			EP	0726246 A1	14-08-1996
			US	6103687 A	15-08-2000
			US	5634969 A	03-06-1997
			US	5759938 A	02-06-1998
WO 9407978	A	14-04-1994	DE	4232448 A1	31-03-1994
			WO	9407978 A1	14-04-1994
			EP	0663003 A1	19-07-1995