УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Системы искусственного интеллекта»

Лабораторная работа №4

Вариант 3

Студент

Кузнецов М. А.

P33131

Преподаватель

Авдюшина А. Е.

Описание задания

3	Absolute(Sin(x)) X: 6,36.3 Y: 01.2	Handwritten	Regularization L2, output layer
		digits	activation type

- 1. Изменяя гиперпараметры, постарайтесь достичь максимального значения точности (не менее 0,95) для модели части 2 с фиксированным количеством эпох 20.
- 2. Измените значение 1-го гиперпараметра с min на max с минимальным шагом, зависит от вашего варианта.
- 3. Покажите влияние на результат с помощью графиков.
- 4. Опишите влияние каждого гиперпараметра на точность.
- 5. Установите значение гиперпараметра обратно на то, которое обеспечивало максимальную точность.
- 6. Повторите 2-5 шагов для второго гиперпараметра.

Часть 1.

Функция исходная и с шумами:

```
# Your variant function

def main_func(x):
    return abs(np.sin(x))

def main_func_noisy(x):
    return main_func(x) + np.cos(4*x + 1) / 5

def result_func(xy):
    return main_func(xy[0]) > xy[1]

def result_func_noisy(xy):
```


Параметры, при которых удалось достичь наибольшей достоверности:

При дальнейшем изменении количества эпох нейронка переобучалась, и достоверность упиралась в это значение с незначительной погрешностью.

Макс. достоверность – 89%

Часть 2

Параметры, при которых удалось достичь наибольшей достоверности:

Макс. Достоверность – 90%

Теперь исследуем влияние гиперпараметров:

Relu:

Tanh:

Linear:

Теперь исследуем Regularization L2:

-0.1

0.0001

0.0005

0.001

0.005

В ходе выполнения данной лабораторной работы я изучил обычные нейронные сети, как они устроены, а также как влияют различные параметры и функции(loss, batch size, learn rate, regularization L1 and L2, функции активации, количество эпох, количество нейроной на каждом слое) на результаты достоверности получаемой нейронной сети.