第3章a: 微分中值定理

数学系 梁卓滨

2019-2020 学年 I

Outline

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 数 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值

即:在 x₀ 附近成立

$$f(x) \le f(x_0)$$

那么 x_0 是驻点.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),

即:在 x_0 附近成立

$$f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$$

那么 x_0 是驻点.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 数 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \le f(x_0)$,则 $f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \le f(x_0)$,则 $f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 x_0 是 y = f(x) 的 驻点.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值), 即:在 x_0 附近成立

$$f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

$$f'(x_0) = f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$

$$\Rightarrow f'(x_0) = 0$$

y = f(x) 在 x_0 处取到局部最大(或最小) ⇒ x_0 是驻点

y = f(x) 在 x_0 处取到局部最大(或最小) \Rightarrow x_0 是驻点

注 费马定理的逆命题不成立.

y = f(x) 在 x_0 处取到局部最大(或最小) \Rightarrow x_0 是驻点

注 费马定理的逆命题不成立. 也就是:

 x_0 是驻点 \Rightarrow y = f(x) 在 x_0 处取到局部最大(或最小)

$$y = f(x)$$
 在 x_0 处取到局部最大(或最小) ⇒ x_0 是驻点

注 费马定理的逆命题不成立. 也就是:

$$x_0$$
 是驻点 \Rightarrow $y = f(x)$ 在 x_0 处取到局部最大(或最小)

$$M$$
 $x_0 = 0$ 是 $y = x^3$ 的驻点,但不是局部最大(或最小)值点.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = 0$.

注 罗尔定理的三个条件,缺一不可,否则都有反例.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处 f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

注 罗尔定理的三个条件,缺一不可,否则都有反例.

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

(1) 在闭区间 0, 1] 上连续,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1)

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

所以由罗尔定理可知:存在 $\xi \in (0,1)$ 使得 $g'(\xi) = 0$.

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

所以由罗尔定理可知:存在 $\xi \in (0,1)$ 使得 $g'(\xi) = 0$.

因为 g'(x) = f'(x) - 2x,所以 $f'(\xi) - 2\xi = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点
$$\xi \in (a, b)$$
,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且 恒成立 f'(x) = 0,则 f 是常数.

拉格朗日中值定理

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $a \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知:

拉格朗日中值定理

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $\alpha \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知: $\exists \xi \in (x_1, x_2)$ 使得

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

拉格朗日中值定理

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

f(b)
$$f(a) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a)$$

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且 恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $\alpha \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知: $\exists \xi \in (x_1, x_2)$ 使得

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

由条件 f'(ξ) = 0,所以 $f(x_2) = f(x_1)$.

例1 证明当 $x_1 < x_2$ 时,成立不等式: arctan x_2 — arctan $x_1 \le x_2 - x_1$.

 $\arctan x_2 - \arctan x_1 \le x_2 - x_1$.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,

例1 证明当 $x_1 < x_2$ 时,成立不等式: $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 \leq x_2 - x_1.$

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的 f(x) , f(x) 。

理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2}$$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 $\Leftrightarrow f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的

条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \cos \xi \le 1$$

 $\arctan x_2 - \arctan x_1 \leq x_2 - x_1$.

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

条件,故 $\exists \xi \in (x_1, x_2)$ 使得

例 1 证明当 $x_1 < x_2$ 时,成立不等式:

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定 理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$

所以 $\arctan x_2 - \arctan x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

 $\sin x_2 - \sin x_1 \le x_2 - x_1$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的

🔔 暨南大學

7/10 ⊲ ⊳ ∆ ⊽

所以 $\sin x_2 - \sin x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

 $\frac{f(x_2) - f(x_1)}{f(x_2) - f(x_1)} = f'(\xi) = \cos \xi \le 1$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

$$\frac{f(x)-f(0)}{x-0} = f'(\xi) = \frac{-\xi}{(\xi+1)^2}$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

所以f(x) < f(0)

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

所以
$$f(x) < f(0) = 0$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

所以
$$f(x) < f(0) = 0$$
,即 $\frac{x}{1+x} < \ln(1+x)$.

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

所以
$$f(x) < f(0) = 0$$
,即 $\frac{x}{1+x} < \ln(1+x)$.

$$g(x) = \ln(1+x) - x.$$

在[0,x]上,g满足拉氏中值定理的条件,

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x) - f(0)}{x - 0} = f'(\xi) = \frac{-\xi}{(\xi + 1)^2} < 0.$$

所以f(x) < f(0) = 0,即 $\frac{x}{1+x} < \ln(1+x)$.

(2) 令

$$g(x) = \ln(1+x) - x.$$

$$\frac{g(x)-g(0)}{x-0} = g'(\xi)$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x)-f(0)}{x-0} = f'(\xi) = \frac{-\xi}{(\xi+1)^2} < 0.$$
所以 $f(x) < f(0) = 0$,即 $\frac{x}{1+x} < \ln(1+x)$.

(2) 令

$$q(x) = \ln(1+x) - x.$$

$$\frac{g(x) - g(0)}{x - 0} = g'(\xi) = \frac{-\xi}{1 + \xi}$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 (1) 令

$$f(x) = \frac{x}{1+x} - \ln(1+x).$$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x)-f(0)}{x-0} = f'(\xi) = \frac{-\xi}{(\xi+1)^2} < 0.$$
所以 $f(x) < f(0) = 0$,即 $\frac{x}{1+x} < \ln(1+x)$.

(2) 令

$$g(x) = \ln(1+x) - x.$$

$$\frac{g(x)-g(0)}{x-0}=g'(\xi)=\frac{-\xi}{1+\xi}<0.$$

证明 (1) 令

8/10 < ▷ △ ▽

- 3a 中值定理
- 所以 g(x) < g(0)

所以f(x) < f(0) = 0,即 $\frac{x}{1+x} < \ln(1+x)$.

例 3 证明当 x > 0 时,成立不等式:

 $\frac{x}{1+x} < \ln(1+x) < x.$

 $f(x) = \frac{x}{1+x} - \ln(1+x).$

 $\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$

 $a(x) = \ln(1+x) - x$.

 $\frac{g(x) - g(0)}{x - 0} = g'(\xi) = \frac{-\xi}{1 + \xi} < 0.$

- (2) 令

 - 在 [0,x] 上,g 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

 $a(x) = \ln(1+x) - x$.

 $\frac{g(x) - g(0)}{x - 0} = g'(\xi) = \frac{-\xi}{1 + \xi} < 0.$

 $\frac{x}{1+x} < \ln(1+x) < x.$

所以f(x) < f(0) = 0,即 $\frac{x}{1+x} < \ln(1+x)$.

在 [0,x] 上,g 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

$$\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$$

 $f(x) = \frac{x}{1+x} - \ln(1+x).$ 在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

例 3 证明当 x > 0 时,成立不等式:

证明 (1) 令

所以 q(x) < q(0) = 0

(2) 令

所以f(x) < f(0) = 0,即 $\frac{x}{1+x} < \ln(1+x)$.

在 [0,x] 上,g 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

 $\frac{g(x) - g(0)}{x - 0} = g'(\xi) = \frac{-\xi}{1 + \xi} < 0.$

在 [0,x] 上,f 满足拉氏中值定理的条件,故 $\exists \xi \in (0,x)$ 使得

 $\frac{x}{1+x} < \ln(1+x) < x.$

 $f(x) = \frac{x}{1+x} - \ln(1+x).$

 $a(x) = \ln(1+x) - x$.

(2) 令

 $\frac{f(x)-f(0)}{x-0}=f'(\xi)=\frac{-\xi}{(\xi+1)^2}<0.$

例 证明当 x > 0 时,成立不等式:

证明 (1) 令

所以 g(x) < g(0) = 0,即 $\ln(1+x) < x$. 3a 中值定理

柯西中值定理

定理 如果函数 f(x) 和 g(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在开区间 (a, b) 内 $g'(x) \neq 0$,

则至少存在一点 $\xi \in (a, b)$,使得 $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}$.

