Factoring

Any integer N can be written as

$$N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$$

where α_j are positive integers and p_j are primes.

Example 1

$$N = 15 = 3 \cdot 5$$
, $\alpha_1 = \alpha_2 = 1$, $p_1 = 3$, $p_2 = 5$.

Definition 1 Greatest Common Divisor (GCD) of integers a and b is the largest integer x s.t. x|a and x|b (here | denotes "divides without a reminder")

 $\overset{\textbf{Example 2}}{\textbf{ASS1gnment}} \underset{a = 3 \cdot 3 \cdot 2}{\textbf{Project}} \underset{b = 3 \cdot 5 \cdot 2}{\textbf{Exam Help}}$

 $\gcd(a,b) = 3 \cdot 2 = 6.$

Let L be the number of bits in the binary representation of N, that is $N_2 = n_1 \cdots n_L$, $n_j = 0, 1$ (Ex. If N = 15, then $N_2 = 1111$)

Let z be an integer uch that: CStutorCS

- 1. $z^2 \pmod{N} = 1$
- 2. $z \pmod{N} \neq 1$ (if $z \pmod{N} = 1$, then $z^2 \pmod{N} = 1$, but we do not need this case)
- 3. $z \pmod{N} \neq N-1$ (if $z \pmod{N} = N-1$, then $z^2 \pmod{N} = 1$, and so we would like to exclude this possibility)

Theorem 1 gcd(z-1, N) or(and) gcd(z+1, N) is (are) non-trivial factor(s) of N.

Note that gcd(z - 1, N) and gcd(z + 1, N) can be computed using only $O(L^3) = O((\log_2 N)^3)$ operations using Euclid's algorithm.

Theorem 2 Let x be an integer chosen uniformly randomly subject to requirements

- 1. $1 \le x \le N 1$
- 2. x is co-prime to N, i.e. gcd(x, N) = 1

Let r be the order of x, i.e., $x^r \pmod{N} = 1$. Then

$$\Pr(r \text{ is even and } x^{r/2} \pmod{N} \neq N-1) \geqslant 1 - \frac{1}{2^m}.$$

- If x is such as described in Theorem 2, then we take $z = x^{r/2}$.
- Recall that m is the number of primes in factorization of $N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$;
- Note that we do not need to check condition 3 formulated for Theorem 1, since since if $x^r/2 \pmod{N} = 1$ then the order of x is r/2, but we assumed that the order is r.

Algarithm for finding a factor of Sect Exam Help 1. Randomly choose $x \in [1, N-1]$

- 2. If gcd(x, N) > 1, then RETURN gcd(x, N) (gcd(x, N) is a nontrivial factor of NTLPS of Section 1. else: find the order r of $x \pmod{N}$ (use quantum computer here).
- 3. If r is even and $x^{r/2} \pmod{N} \neq N-1$, then assign $z = x^{r/2}$; else go to Step X CStutores
- 4. Compute $f_1 = \gcd(z 1, N)$ and $f_2 = \gcd(z + 1, N)$.
- 5. If $f_1|N$ RETURN (f_1) .
- 6. If $f_2|N$ RETURN (f_2) .
- 7. The end.

Example 3 N = 15. Assume we randomly took x = 7

$$7^4 \pmod{15} = 1 \Rightarrow r = 4$$

 $x^{r/2} = 7^2 = 49, \ 49 \pmod{15} = 4 \Rightarrow 7^2 \pmod{15} \neq N - 1 = 14$
 $\Rightarrow z = x^{r/2} = 7^2 = 49$
 $f_1 = \gcd(z - 1, 15) = \gcd(48, 15) = 3$
 $f_2 = \gcd(z + 1, 15) = \gcd(50, 15) = 5$

Both $f_1 = 3$ and $f_2 = 5$ are factors of N = 15. Let us also find U for these N and x. Recall that

$$U|y\rangle \to |xy \pmod{15}\rangle$$
.

We have L=4 and hence U is a 16×16 permutation matrix that conducts the mapping

y	$7 \cdot y$	$7 \cdot y \pmod{15}$
0	0	0
1	7	7
2	14	14
3	21	6
	•	•

Assignment Project Exam Help
Using the correspondence between linear algebra notation and Dirac's no-

Using the correspondence between linear algebra notation and Dirac's notation, we get that the first 4 columns of U are

Indeed this matrix moves $|0\rangle$ to $|0\rangle$:

$$U \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

and $|1\rangle$ into $|7\rangle$

WeChat: cstutorcs