4.10. Consider the truss in Fig. P4.10 loaded as shown. Cross-sectional areas in square inches are shown in parentheses. Consider symmetry and model only one-half of the truss shown. Determine displacements and element stresses. Let $E=30\times10^6\,\mathrm{psi}$.

FIGURE P4.10

Program Listing 147

4.20. In the 11-member truss shown in Fig. P4.20, the horizontal and vertical members have a cross-sectional area of 200 mm², and all other members have a cross-sectional area of 90 mm². All members are made of steel. For the loading shown, determine nodal displacements and element stresses using symmetry/antisymmetry. If Euler critical load (buckling load) of a member of length l is $\pi^2 E I/l^2$, check if all members in compression are safe in buckling.

FIGURE P4.20