

Semantic-Aware Dual Contrastive Learning for Multi-label Image Classification

Leilei Ma¹, Dengdi Sun², Lei Wang³, Haifeng Zhao¹,4;⊠ and Bin Luo¹ ¹School of Computer Science and Technology, Anhui University, China ²School of Artificial Intelligence, Anhui University, China ³School of Computer Science and Engineering, Nanjing University of Science and Technology, China ⁴Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China

Highlights

- We propose a novel Semantic-Aware Dual Contrastive Learning framework named SADCL for multi-label image classification, effectively learning more discriminative visual representation.
- Compared with class activation maps (CAM), we leverage Semantic-Aware Representation Learning to accurately and easily locate the label-related image regions.
- Experiments on five challenging large-scale public datasets (MS-COCO, PASCAL VOC 2007&2012, NUS-WIDE, and Visual Genome) show that our proposed method is effective and outperforms the state-of-the-art methods.

Ours(SADCL)

(448, 576)

Problems and Motivations Unified embedding space Unified embedding space (a): dual contrastive learning (b): conventional method active label-embeding unactivate label-embeding unprojected category prototype category prototype □ fork □ chair □ bottle □ wine glass person

- Common methods fail to localize the semantic region of interest in the image, or the localized object region lacks discrimination and contains potential noise.
- Existing methods consider only inter-category relationships (intra-image), ignoring intracategory relationships (cross-image).

- We model the context relationship among multiple objects and scenes at the front end of the framework, and generate an initial label-level visual representation with abundant semantic information through transformer autoencoder with multi-head attention mechanism.
- Our method aims to maximize the inter-class distance and minimize the intra-class distance of visual representations in the unified embedding space.
- Sample-to-sample contrastive learning considers only activated label-level visual representations. We propose a prototype-based contrastive learning loss to fully exploit this unactivated label-level visual representation information.

Experiments																
Methods	(R_{train}, R_{test})	m A D	All							Top 3						
		mAP	CP	CR	CF1	OP	OR	OF1	CP	CR	CF1	OP	OR	OF1		
CNN-RNN [25]	(-,-)	61.2	_	-	-	-	-	-	66.0	55.6	60.4	69.2	66.4	67.8		
RNN-Att [26]	(-,-)	-	-	-	-	-	-	-	79.1	58.7	67.4	84.0	63.0	72.0		
ResNet101*[12]	(448, 448)	81.5	82.1	71.2	76.0	84.6	75.4	79.7	85.9	62.9	71.6	89.6	66.1	76.1		
MLGCN [5]	(448, 448)	83.0	85.1	72.0	78.0	85.8	75.4	80.3	89.2	64.1	74.6	90.5	66.5	76.7		
MS-CMA [34]	(448, 448)	83.8	82.9	74.4	78.4	84.4	77.9	81.0	88.2	65.0	74.9	90.2	67.4	77.1		
P-GCN [6]	(448, 448)	83.2	84.9	72.7	78.3	85.0	76.4	80.5	89.2	64.3	74.8	90.0	66.8	76.7		
GM-MLIC [29]	(448, 448)	84.3	87.3	70.8	78.3	88.6	74.8	80.6	90.6	67.3	74.9	94.0	69.8	77.8		
MCAR [10]	(448, 448)	83.8	85.0	72.1	78.0	88.0	73.9	80.3	88.1	65.5	75.1	91.0	66.3	76.7		
TDRG [35]	(448, 448)	84.6	86.0	73.1	79.0	86.6	76.4	81.2	89.9	64.4	75.0	91.2	67.0	77.2		
CCD-R101 [20]	(448, 448)	84.0	87.2	70.9	77.3	88.8	74.6	81.1	89.7	63.9	72.9	92.0	66.5	77.2		
MulCon [8]	(448, 448)	84.9	84.0	74.8	79.2	85.6	78.0	81.6	87.8	65.9	75.3	90.5	67.9	77.6		
Query2Label [21]	(448, 448)	84.9	84.8	74.5	79.3	86.6	76.9	81.5	78.0	69.1	73.3	80.7	70.8	75.4		
CPSD [30]	(448, 448)	84.9	88.4	71.7	79.2	89.3	74.8	81.4	-	-	-	-	-	-		
Ours(SADCL)	(448, 448)	85.6	84.6	76.0	79.8	86.0	78.5	82.1	88.9	66.6	74.9	91.0	68.3	78.0		
ADDGCN [33]	(448, 576)	85.2	84.7	75.9	80.1	84.9	79.4	82.0	88.8	66.2	75.8	90.3	68.5	77.9		
SSGRL [2]	(576, 576)	83.8	89.9	68.5	76.8	91.3	70.8	79.7	91.9	62.5	72.7	93.8	64.1	76.2		
AdaHGNN [28]	(576, 576)	85.0	-	-	79.9	-	-	81.8	_	-	75.5	-	-	77.6		
C-Tran [16]	(576, 576)	85.1	86.3	74.3	79.9	87.7	76.5	81.7	90.1	65.7	76.0	92.1	71.4	77.6		
TDRG [35]	(576, 576)	86.0	87.0	74.7	80.4	87.5	77.9	82.4	90.7	65.6	76.2	91.9	68.0	78.1		
CCD-R101 [20]	(576, 576)	85.3	88.3	73.1	80.2	88.8	76.3	82.1	91.0	65.2	76.0	92.3	67.3	77.9		

Comparisons with state-of-the-art methods on the MS-COCO dataset.* indicates the reproduced results of our implementation. All metrics are in %.

ı	<u>Methods</u>	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	motor	person	plant	sheep	sofa	train	tv	mAP
ı	CNN-RNN [25]	96.7	83.1	94.2	92.8	61.2	82.1	89.1	94.2	64.2	83.6	70.0	92.4	91.7	84.2	93.7	59.8	93.2	75.3	99.7	78.6	84.0
ı	ResNet-101* [12]	99.0	98.4	97.5	96.0	81.4	97.3	97.3	97.1	79.6	96.0	88.1	97.5	98.5	95.8	98.8	85.9	97.2	84.6	98.8	92.0	93.8
ı	RNN-Att [26]	98.6	97.4	96.3	96.2	75.2	92.4	96.5	97.1	76.5	92.0	87.7	96.8	97.5	93.8	98.5	81.6	93.7	82.8	98.6	89.3	91.9
ı	SSGRL* [2]	99.5	97.1	97.6	97.8	82.6	94.8	96.7	98.1	78.0	97.0	85.6	97.8	98.3	96.4	98.1	84.9	96.5	79.8	98.4	92.8	93.4
ı	ML-GCN [5]	99.5	98.5	98.6	98.1	80.8	94.6	97.2	98.2	82.3	95.7	86.4	98.2	98.4	96.7	99.0	84.7	96.7	84.3	98.9	93.7	94.0
ı	P-GCN [6]	99.6	98.6	98.4	98.7	81.5	94.8	97.6	98.2	83.1	96.0	87.1	98.3	98.5	96.3	99.1	87.3	95.5	85.4	98.9	93.6	94.3
ı	ADDGCN* [33]	99.8	99.0	98.4	99.0	86.7	98.1	98.5	98.3	85.8	98.3	88.9	98.8	99.0	97.4	99.2	88.3	98.7	90.7	99.5	97.0	96.0
ı	KGGR* [1]	99.3	98.6	97.9	98.4	86.2	97.0	98.0	99.2	82.6	98.3	87.5	99.0	98.9	97.4	99.1	86.9	98.2	84.1	99.0	95.0	95.0
ı	DSDL [36]	99.8	98.7	98.4	97.9	81.9	95.4	97.6	98.3	83.3	95.0	88.6	98.0	97.9	95.8	99.0	86.6	95.9	86.4	98.6	94.4	94.4
ı	GM-MLIC [29]	99.4	98.7	98.5	97.6	86.3	97.1	98.0	99.4	82.5	98.1	87.7	99.2	98.9	97.5	99.3	87.0	98.3	86.5	99.1	94.9	94.7
ı	TDRG [35]	99.9	98.9	98.4	98.7	81.9	95.8	97.8	98.0	85.2	95.6	89.5	98.8	98.6	97.1	99.1	86.2	97.7	87.2	99.1	95.3	95.0
ı	MulCon* [8]	99.8	98.3	99.3	98.6	83.3	98.4	98.0	98.3	85.8	98.3	90.5	99.3	98.9	96.6	98.8	86.3	99.8	87.3	99.8	96.1	95.6
ı	CPCL [30]	99.6	98.6	98.5	98.8	81.9	95.1	97.8	98.2	83.0	95.5	85.5	98.4	98.5	97.0	99.0	86.6	97.0	84.9	99.1	94.3	94.4
ı	SST [3]	99.8	98.6	98.9	85.5	94.7	97.9	98.6	83.0	96.8	85.7	98.8	98.8	98.9	95.7	99.1	85.4	96.2	84.3	99.1	95.0	94.5
I	Ours(SADCL)*	100.0	99.0	99.5	99.1	88.9	98.8	98.7	99.6	84.2	98.4	90.1	99.4	99.6	99.0	99.3	90.2	99.6	88.9	99.8	95.3	96.4
														_								

Comparisons with state-of-the-art methods on the VOC 2007 dataset. * indicates the reproduced results of our implementation, and * indicates the model pre-trained on MS-COCO. All of the inputs are 448×448 resolution except SSGRL(576), ADDGCN(512) and KGGR(576).

	Mo	odule		MS	S-COC	CO	NUS-WIDE			
Baseline	SARL*	SARL	SSCL	PSCL	mAP	OF1	CF1	mAP	OF1	CF1
✓					81.5	79.7	76.0	62.5	73.8	59.2
\checkmark	\checkmark				84.7	81.5	78.7	65.0	74.2	61.0
\checkmark		\checkmark			85.0	81.7	79.3	65.3	74.8	61.7
\checkmark		\checkmark	\checkmark		85.4	81.7	79.6	65.7	74.9	62.7
\checkmark		\checkmark		\checkmark	85.4	82.1	79.8	65.6	75.0	62.4
✓		✓	✓	✓	85.6	82.1	79.8	65.9	75.0	63.0

Ablation study of different components in
MS-COCO and NUS-WIDE Datasets.
Baseline mean ResNet101 network with
average pooling and fc layer. SARL* denotes
SARL after removing Transformer - encoder.
All metrics reflect all predicted scores instead
of taking the top-3 highest prediction scores.

Methods	mAP	A	\mathbf{M}	10p 3			
Methods	IIIAP	CF1	OF1	CF1	OF1		
CNN-RNN [25]	-	-	-	34.7	55.2		
ResNet101* [12]	62.5	59.2	73.8	54.6	69.4		
CADM [4]	62.8	60.7	74.1	56.3	70.6		
ADDGCN* [33]	63.3	60.3	73.5	56.5	69.3		
P-GCN [6]	62.8	60.4	73.4	57.0	69.1		
TDRG* [35]	63.5	60.0	73.8	56.1	69.5		
SST [3]	63.5	59.6	73.2	55.9	68.8		
MulCon [8]	63.9	61.8	74.8	-	-		
CCD-R101* [20]	64.2	61.8	74.6	56.7	70.0		
Ours(SADCL)	65.9	63.0	75.0	57.8	70.6		

All

Top 3

Comparisons with state-of-the-art methods on the NUSWIDE dataset. * indicates the reproduced results of our implementation. The input images are resized to 448×448 resolution in both the training and testing phases.

Figures (a) and (b) visualize 2000 randomly sampled label-level visual representations from the MS-COCO test dataset. Figure (c) visualizes the learned category prototypes on the MS-COCO dataset. Different colors and shapes represent different superclasses.