Team Level Lectures

Andres Buritica Monroy

1 Farey sequences

Let n be a fixed positive integer. Let $\frac{a_1}{b_1}, \ldots, \frac{a_k}{b_k}$ be the rational numbers between 0 and 1 inclusive with denominators at most n, written in increasing order and lowest terms.

- Prove that for each i, $a_{i+1}b_i a_ib_{i+1} = 1$.
- Prove that the rational number x with smallest denominator such that $\frac{a_i}{b_i} < x < \frac{a_{i+1}}{b_{i+1}}$ is $\frac{a_i + a_{i+1}}{b_i + b_{i+1}}$.
- Which pairs of numbers appear as consecutive b_i s?

Example problems:

- Suppose that $(a_1, b_1), (a_2, b_2), \ldots, (a_{100}, b_{100})$ are distinct ordered pairs of nonnegative integers. Let N denote the number of pairs of integers (i, j) satisfying $1 \le i < j \le 100$ and $|a_i b_j a_j b_i| = 1$. Determine the largest possible value of N over all possible choices of the 100 ordered pairs.
- A lattice point in the Cartesian plane is a point whose coordinates are both integers. A lattice polygon is a polygon all of whose vertices are lattice points.

Let Γ be a convex lattice polygon. Prove that Γ is contained in a convex lattice polygon Ω such that the vertices of Γ all lie on the boundary of Ω , and exactly one vertex of Ω is not a vertex of Γ .

2 Dirichlet Convolution and Mobius Inversion

Let $f: \mathbb{N} \to \mathbb{R}$ and $g: \mathbb{N} \to \mathbb{R}$ be two functions. We define the Dirichlet convolution f * g as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

We define the functions d, σ , φ as before and also define the functions

$$\zeta(n) = 1, \ \psi(n) = n.$$

• Prove that * is associative: that is, (a * b) * c = a * (b * c).

- Prove that if a and b are multiplicative then so is a * b.
- Find a function δ such that $\delta * a = a$ for all functions a.
- Find a function μ such that $\mu * \zeta = \delta$.
- Prove that $q = f * \zeta \iff f = q * \mu$.
- Find $\zeta * \zeta$, $\psi * \zeta$ and $\varphi * \zeta$.
- Prove that

$$\sum_{i=1}^{n} f(i) \left\lfloor \frac{n}{i} \right\rfloor = \sum_{i=1}^{n} (f * \zeta)(j).$$

Example problems:

For a positive integer n, let f(n) be the number of binary strings of length n that can't be expressed as an m-fold repetition of another binary string for any m > 1.

For example, f(6) = 54 since the only strings of length 6 that can be expressed as an m-fold repetition of another binary string for some m > 1 are 000000, 001001, 010010, 010101, 011011, 100100, 101101, 110110, 1111111.

- Find two functions g and h, in closed form, such that f = g * h.
- Prove that $n \mid f(n)$.
- Find all n for which $n \mid \sum_{i=1}^{n} f(i) \left\lfloor \frac{n}{i} \right\rfloor$.

3 Polynomials mod p

Let p be prime.

- Prove that unique factorisation holds for polynomials mod p. (This is not true for all integers for instance, $(x-1)^2 \equiv (x-3)^2 \pmod{4}$.)
- Prove that for every function $f: \mathbb{Z}_p \to \mathbb{Z}_p$ there is a unique polynomial P in \mathbb{Z}_p of degree less than p-1 such that f(x) = P(x) for each $x \in \mathbb{Z}_p$.
- Let g be a generator mod p, and let ab = p 1. Prove that

$$\prod_{i=1}^{a} (x - g^{bi}) \equiv x^a - 1 \pmod{p}.$$

What does this tell us about the roots of the cyclotomic polynomials in mod p?

- Consider all $\binom{p-1}{k}$ products of k elements of \mathbb{Z}_p . Prove that their sum is divisible by p.
- For any positive integer n , prove that

$$\sum_{i=1}^{p-1} i^n \equiv 0 \pmod{p}.$$

Example problems:

- Let p be an odd prime. We compute the product of (4-x), where x varies over all residues mod p except the quadratic residues. Find the least residue of this product mod p.
- Find the least residue of the sum of all generators mod p.
- Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo n (hence $\mathbb{Z}/n\mathbb{Z}$ has n elements). Find all positive integers n for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions

$$g(x)$$
, $g(x) + x$, $g(x) + 2x$, ..., $g(x) + 100x$

are all bijections on $\mathbb{Z}/n\mathbb{Z}$.

• Let p be an odd prime. An integer x is called a quadratic non-residue if p does not divide $x - t^2$ for any integer t.

Denote by A the set of all integers a such that $1 \le a < p$, and both a and 4 - a are quadratic non-residues. Calculate the remainder when the product of the elements of A is divided by p.

4 Binomial coefficients mod p

ullet Wolstenholme's Theorem: let a and b be positive integers, and let p be a prime greater than 3. Prove that

$$\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^3}.$$

• Lucas' Theorem: let $m = \sum m_i p^i$ and $n = \sum n_i p^i$ be the base-p expansions of m and n, where p is prime. Prove that

$$\binom{m}{n} \equiv \prod \binom{m_i}{n_i} \pmod{p}.$$

5 Weak Prime Number Theorem

- 1. Prove that the sum of the reciprocals of the primes diverges.
- 2. Let n be a positive integer larger than 1.
 - (a) Prove that the product of all primes between $\lceil \frac{n}{2} \rceil$ and n (including n, not including $\lceil \frac{n}{2} \rceil$) is less than 2^n .
 - (b) Prove that the product of all primes between 1 and n is at most 4^{n-1} .
 - (c) Find some real number c independent of n such that there are at most $\frac{cn}{\log_2 n}$ primes that are at most n.
- 3. Let n be a positive integer larger than $2^{2^{2^2}}$.
 - (a) Let p be a prime.

- Prove that if $p^k \mid {2n \choose n}$ then $p^k < 2n$.
- Prove that if $2p \le 2n < 3p$ then $p \nmid \binom{2n}{n}$.
- (b) Prove that

$$\prod_{\substack{p^k \parallel \binom{2n}{n} \\ p \le n}} p^k < \binom{2n}{n}.$$

(c) Find some real number c independent of n such that there are at least $\frac{cn}{\log_2 n}$ primes that are at most n.