Comparação de grupos

Atenção!

Você deve submeter uma solução **original** e elaborada por **si**. Leia com atenção esta <u>página</u> sobre a avaliação das fichas e guiões do projeto.

Descrição

O seu programa deve ler valores correspondentes a grupos e decidir se há diferenças entre eles.

Input

O seu programa deve ler:

- Uma linha com o número de grupos G;
- *G* linhas, contendo cada uma um número inteiro *N* com o número de valores a ler desse grupo seguida de *N* valores inteiros desse grupo.

Eis um exemplo:

```
3
5 1 2 3 4 5
4 2 4 5 7
4 1 2 3 6
```

Neste caso:

- Há 3 grupos;
- O grupo 1 contém 5 valores;
- O grupo 2 contém 4 valores;
- O grupo 3 contém 4 valores.

Output

O seu programa deve começar por imprimir uma tabela com os valores dos 3 grupos usando as seguintes colunas:

- Pos Posição no array ordenado;
- Ord Número de ordem (é o valor anterior mais um);
- **Grp** Número do grupo ao qual aquele valor pertence;
- OrdRel Média das ordens para os valores iguais;
- Val O valor;
- Prm A primeira posição no array com o mesmo valor.

Todos os números inteiros devem ser impressos com o formato "%4d" enquanto que o valor correspondente a **OrdRel** deve ser impresso usando o formato "%10.1f".

Eis o que o seu programa deveria imprimir para o exemplo acima:

Pos	Ord	Grp	OrdRel	Val	Prm
0	1	1	1.5	1	0
1	2	3	1.5	1	0
2	3	1	4.0	2	2
3	4	2	4.0	2	2
4	5	3	4.0	2	2
5	6	1	6.5	3	5
6	7	3	6.5	3	5
7	8	1	8.5	4	7
8	9	2	8.5	4	7
9	10	1	10.5	5	9
10	11	2	10.5	5	9
11	12	3	12.0	6	11
12	13	2	13.0	7	12

Seguidamente, o seu programa deve imprimir a tabela com as médias das ordens relativas por grupo juntamente com a média da ordem global. Eis o que o seu programa deveria imprimir para o exemplo acima:

Grp	MediaOrdem		
1	6.2		
2	9.0		
3	6.0		
Todos	7.0		

O último valor (correspondendo ao Total) é calculado usando o número total de valores mais um a dividir por dois.

Finalmente o seu programa deve calcular o valor X:

$$S = \sum_{g=1}^{n_g} t_g \cdot (ar{o}_g - ar{o})^2$$

$$X = \frac{n-1}{n} \cdot \frac{12 \cdot S}{n^2 - 1}$$

Onde:

- n é o número total de valores
- ullet t_g é o número de elementos no grupo g
- n_g é o número de grupos
- $ar{o}_q$ é a média da ordem do grupo g
- \bar{o} é a média da ordem total

No caso do exemplo:

$$S = 5 imes (6.2 - 7.0)^2 + 4 imes (9.0 - 7.0)^2 + 4 imes (6.0 - 7.0)^2 = 23.2$$
 $X = rac{13 - 1}{13} imes rac{12 imes 23.2}{13^2 - 1} pprox 1.53$

Seguidamente deve comparar o valor X com o valor de referência através da seguinte função:

```
double valor_referencia(int num_grupos) {
    double p = 0.95;
    double df = num_grupos - 1;
    double a = (p < 0.5) ? sqrt(-2.0 * log(p)) : sqrt(-2.0 * log(1.0 - p));
    double poly = 2.515517 + 0.802853 * a + 0.010328 * a * a;
    double q = 1.0 + 1.432788 * a + 0.189269 * a * a + 0.001308 * a * a * a;</pre>
```

```
double z = (p < 0.5) ? -(a - poly / q) : (a - poly / q);
double x = df * pow(1.0 - 2.0 / (9.0 * df) + z * sqrt(2.0 / (9.0 * df)), 3.0);
return x;
}</pre>
```

E imprimir:

- Um linha com a palavra "Calc:" seguinda do valor X com duas casas decimais;
- Uma linha com a palavra "Ref:" seguinda do valor de referência com duas casas decimais;
- E finalmente uma linha com a palavra "Nao" se X é menor do que o valor de referência e "Sim" caso contrário.

No caso do exemplo, o seu programa deveria imprimir o seguinte:

```
Calc: 1.53
Ref: 5.94
Nao
```

Restrições

- Há no máximo 100 grupos;
- Cada grupo contém no máximo 100 valores;
- Cada valor é inteiro e cabe num int sem quaisquer problemas.

Exemplo

Eis o exemplo completo:

Input

```
3
5 1 2 3 4 5
4 2 4 5 7
4 1 2 3 6
```

Output

```
Pos
   Ord Grp
           OrdRel Val Prm
 0
    1
      1
           1.5 1
    2
 1
      3
             1.5
                  1
                     a
   3
 2
            4.0
                     2
      1
 3
            4.0
                     2
  4 2
                  2
 4
  5 3
            4.0
                  2
                     2
 5
  6 1
            6.5
                  3
                     5
 6
   7 3
            6.5
                 3
                     5
 7
            8.5
                  4
   8 1
                     7
   9 2
                  4
                    7
 8
            8.5
 9
  10 1
            10.5
                  5 9
10
  11 2
            10.5
                  5 9
11
   12 3
            12.0
                  6 11
                  7 12
            13.0
```

```
Grp MediaOrdem
    1    6.2
    2    9.0
    3    6.0
Todos    7.0
```

Calc: 1.53 Ref: 5.94

Nac

Eis outro exemplo:

Input

7
8 2 6 3 2 2 3 2 1
5 0 0 0 0 0 2
5 5 3 2 0 3
4 0 0 0 1
7 1 0 0 0 0 0 0 0
4 3 2 2 3
8 0 0 1 0 0 1 1 2

Output

Pos	Ord	Grp	OrdRel	Val	Prm
0	1	2	9.5	0	0
1	2	2	9.5	0	0
2	3	2	9.5	0	0
3	4	2	9.5	0	0
4	5	3	9.5	0	0
5	6	4	9.5	0	0
6	7	4	9.5	0	0
7	8	4	9.5	0	0
8	9	5	9.5	0	0
9	10	5	9.5	0	0
10	11	5	9.5	0	0
11	12	5	9.5	0	0
12	13	5	9.5	0	0
13	14	5	9.5	0	0
14	15	7	9.5	0	0
15	16	7	9.5	0	0
16	17	7	9.5	0	0
17	18	7	9.5	0	0
18	19	1	21.5	1	18
19	20	4	21.5	1	18
20	21	5	21.5	1	18
21	22	7	21.5	1	18
22	23	7	21.5	1	18
23	24	7	21.5	1	18
24	25	1	29.0	2	24
25	26	1	29.0	2	24
26	27	1	29.0	2	24
27	28	1	29.0	2	24
28	29	2	29.0	2	24
29	30	3	29.0	2	24
30	31	6	29.0	2	24
31	32	6	29.0	2	24
32	33	7	29.0	2	24
33	34	1	36.5	3	33
34	35	1	36.5	3	33
35	36	3	36.5	3	33
36	37	3	36.5	3	33
37	38	6	36.5	3	33
38	39	6	36.5	3	33
39	40	3	40.0	5	39
40	41	1	41.0	6	40

Grp MediaOrdem
1 31.4
2 13.4

3 30.3 4 12.5 5 11.2 6 32.8 7 16.4 Todos 21.0

Calc: 22.79 Ref: 12.57

Sim