Creating a Machine Learning Pipeline to Evaluate Employee Attrition

Presented by: Apoorv Anand, Ashmita Mukherjee, Sivaram Mandava

Prepared for: The University of Chicago MS in Applied Data Science, Machine Learning Operations Final Project

Date: August 15, 2024

Agenda

01

EDA + Preprocessing

Dataset overview with exploratory insights + cleaning

02

Pipeline + Modeling

Our Pipeline and Model choice after an initial AutoML run

03

Deployment

How we deployed for inference using a Databricks workflow along with endpointing

04

Monitoring + Dataset Change

How we deployed model monitoring and tracked the synthetic test data drift

We chose an employee attrition dataset where we predict churn based on various features

<u>Employee Attrition Classification</u> <u>Dataset (from Kaggle)</u>

- Simulated dataset designed for the analysis and prediction of employee attrition
- ~75K samples split into train and test sets
- Primary key of employee id
- Useful features such as:
 - Numeric: age, years at company, distance from home
 - Categorical: gender, job role, job satisfaction, marriage status

	Train	Test
# Observations	59,598	14,900
Split-Percentage	80%	20%
Target Variable	Attrition (Stayed or Left)	

Our exploratory analysis of the data indicates features that are relatively uncorrelated and ripe for pre-processing

We preprocessed our features using techniques like encoding and

After preprocessing, we pushed our train features to a feature store within Databricks itself

We deploy AutoML to explore model options and subsequently settled on XGBoost Classifier

Metrics Dataset Run Name Created Duration Source M test_accuracy_ test_f1_score 1 day ago m dataset (1852359e) Train , m da... +2 0.7583041... 0.7469858... smiling-roo-145 3.1min intrigued-steed-439 1 day ago m dataset (1852359e) Train , m di +2 3.4min 0.7576364... 0.7463755... m dataset (1852359e) Train , m di... +2 hilarious-shrew-519 1 day ago 5.9min 0.7566349.. 0.7445690... m dataset (1852359e) Train , m da... +2 vaunted-shrimp-341 1 day ago 0.7560507... 0.7441575... 3.3min aentle-fish-177 1 day ago m dataset (1852359e) Train , m da. +2 0.7552996... 0.7440195... 3.6min m dataset (1852359e) Train , m da. +2 1 day ago 1.7min 0.7561342... 0.7438639..

We then create our XGBoost model using Hyperopt and MLFlow pipeline to generate our predictions and metric evaluations

Best Parameters chosen by Hyperopt for XGBoost:
objective: binary:logistic
colsample_bytree: 0.402
enable_categorical: False
learning_rate: 0.072
max_depth: 3
min_child_weight: 1
missing: nan
n estimators: 584

Best Parameters chosen by Hyperopt with values ranges based on baseline AutoML

Modelling Process

Metrics used for Evaluation and Results

		precision	recall	f1-score	support
	0	0.77	0.77	0.77	6210
	1	0.75	0.75	0.75	5710
accui	racy			0.76	11920
macro	avg	0.76	0.76	0.76	11920
weighted	avg	0.76	0.76	0.76	11920

F1 score for both classes have similar performance indicating no bias

A Databricks workflow allows us to deploy our model in an environment that continuously ingests new data

The deployed model is used for inference to predict attrition

	1 ² ₃ Employee_ID	1.2 prediction
1	38272	1
2	1549	0
3	31466	0
4	30663	0
5	37115	0
6	52460	1
7	7612	1
8	63461	1
9	1	1
10	72300	0
11	37247	1
12	72219	0
13	19533	1
14	50626	0
15	25720	0

Gradio offers a simple endpoint solution for our pipeline, outputting our inference results in an intuitive user interface

Example of <u>10 attrition inferences</u> our model makes from newly ingested data in the Gradio endpoint UI

Model Monitoring with MLFlow for two separate runs

Q Search metrics	
Metric	Value
accuracy	0.7424496644295302
auc_roc	0.8295651144313345
f1_score	0.7285587975243147
precision	0.7270160578789483
recall	0.7301080985291512

Q Search metrics	
Metric	Value
accuracy	0.7408557046979866
auc_roc	0.8294899612190207
f1_score	0.7287257398788091
precision	0.7320042342978123
recall	0.7254764819024305

We spin up Evidently AI to generate monitoring reports to track our model and its performance

To explore "changed" test data, we shift Number of Promotions and Number of Dependents in our dataset

Evidently Al automatically displays drift insights for our changed features

Drift Scores Higher than the Threshold of 0.5, hence Drift is detected

Evidently Al also displays charts to effectively monitor specific shifts in features

Link to Video Demonstration

https://drive.google.com/file/d/1RqhT9TW1hIk8IsRimOdat9OhvWh3DfIV/view?usp=share_link

Link to Notebooks

Link to Notebooks

https://uchicago-team2-databricks.cloud.databricks.com/browse/folders/1051949419685084?o=29437060 2992426

Questions?

For any follow-ups, please email:

Apoorv Anand - apanand@uchicago.edu

Sivaram Mandava - <u>sivaramm@uchicago.edu</u>

Ashmita Mukherjee - <u>ashmitam@uchicago.edu</u>