ЛАБОРАТОРНАЯ РАБОТА № 2

ТЕМА: ПРОГРАММИРОВАНИЕ АЛГОРИТМОВ ЛИНЕЙНОЙ СТРУКТУРЫ

Цель работы: Обучить студентов способам построения блок-схем и составления программ на языке C++ для алгоритмов линейной структуры. Также научить студентов составлять программы алгоритмов линейных структур для решения специализированных задач.

Задания для самостоятельных работ:

Задание 1. Построить блок-схему и составить программу для вычисления значения функций по своему варианту, указанных в таблице. Вывести на печать значения вводимых исходных данных и результаты вычислений.

1	$a = \frac{2\cos(x - \pi/6)}{1/2 + \sin^2 y}; b=1 + \frac{z^2}{3 + z^2/5}$	X=1,426 y=-1,220 z=3,5
2	$Q = \left x^{y/x} - \sqrt[3]{y/x} \right , W = (x - y) \frac{y - z/(y - x)}{1 + (y - x)^2}$	x=1,825 y=18,225 z=-3,298
3	$S=1 + x + x^{2}/(2!) + x^{3}/(3!) + x^{4}/(4!)$ $\psi=x(\sin x^{3} + \cos^{2}y)$	x=0,335 y=0,025
4	$Y=e^{-bt}sin(at+b) - \sqrt{bt} - a$ $S=bsin(at^2cos2t) - 1$	a=-0,5 b=1,7, t=0,44
5	W= $\sqrt{x^2+b} - b^2\sin^3(x+a)/x$ Y= $\cos^2 x^3 - x/\sqrt{a^2+b^2}$	a=1,5 b=15,5 x=-2,9
6	$S=x^{3}tg^{2}(x+b)^{2} + a/\sqrt{x+b}$ $\underline{bx^{2}-a}$ $Q=e^{ax}-1$	a=16,5 b=3,4 x=0,61
7	$R=x^{2}(x+1)/b - \sin^{2}(x+a)$ $S=\sqrt{xb/a} + \cos^{2}(x+b)^{3}$	a=0,7 b=0,005 x=0,5

	1	1
8	Y= $\sin^3(x^2+a)^2-\sqrt{x/b}$ Z= $x^2/a + \cos(x+b)^3$	a=1,1 b=0,004 x=0,2
9	$\begin{vmatrix} \sqrt{3} \sqrt{\text{mtgt}} + c\sin t \\ Z = \text{mcos(btsint)} + c \end{vmatrix}$	m=2, c=-1 t=1,2, b=0,7
10	$Y=btg^2x -a/sin^2(x/a)$ $D=ae^{-\sqrt{a}}cos(bx/a)$	a=3,2 b=17,5 x=-4,8
11		a=10,2 b=9,2 x=2,2 c=0,5
12	$ \frac{a^{2X} + b^{-X} \cos(a+b)x}{Y = X+1} $ $ R = \sqrt{x^2 + b} - b^2 \sin^3(x+a)/x $	a=0,3 b=0,9 x=0,61
13	$\sum_{z=1}^{\infty} \sqrt{ax \sin 2x + e^{-2x}(x+b)}$ $W = \cos^2 x^3 - x/\sqrt{a^2 + b^2}$	a=0,5 b=3,1 x=1,4
14	$\frac{a^2x + e^{-x}\cos bx}{U = bx - e^{-x}\sin bx + 1}$ $F = e^{2x}\ln(a+x) - b^{3x}\ln(b-x)$	a=0,5 b=2,9 x=0,3
15	$\frac{\sin x}{Z = \sqrt{1 + m^2 \sin^2 x}} - \operatorname{cmln}(mx)$ $S = e^{-ax} \sqrt{x + 1} + e^{-bx} \sqrt{x + 1,5}$	m=0,7 c=2,1 x=1,7 a=0,5 b=1,08

16	$\begin{vmatrix} a^2x + e^{-x}\cos bx \\ y = bx - e^{-x}\sin bx + 1 \end{vmatrix}$	a=0.5 b=1.5 x=2.9
	$\begin{vmatrix} Y = 0x - e & \sin 0x + 1 \\ S = e^{-ax} \sqrt{x + 1} + e^{-bx} \sqrt{x + 1,5} \end{vmatrix}$	A 2.7
17	$\sum_{x=0}^{\infty} \sqrt{a^2 + b^2} \sqrt{a^2 + b^2}$ $= \sqrt{ax \sin 2x + e^{-2x}(x+b)}$ $= \sqrt{a^2 + b^2}$ $= \sqrt{a^2 + b^2}$	a=0.3 b=3.2 x=4.1
18	$F=\ln(\cos(x^{2}-a^{2}) + \sin^{2}(x/b))$ $\frac{x+\sqrt{x+a}}{x-\sqrt{ x-b }}$ $Z=e^{-cx}$	a=2.1 b=0.2 x=1.5
19	$ \begin{array}{l} Y = \sin^3(x^2 + a)^2 - \cos(x/b) \\ Z = x^2/a + (\cos(x+b))^{tg(ax)} \end{array} $	a=1.3 b=0.8 x=2.5
20	$Y=e^{3\sin(3x)}(x^{2}+a)^{2}-\sqrt{x/b}$ $Z=x^{2\cos(ax)}/a + \cos(x+b)^{3}$	a=2.5 b=1.2 x=4.5

Задание 2.

Составить блок-схему и программу на языке C++ для расчета объема вредной газовой смеси, выходящей по производственной дымоходной трубе - V_1 (M^3/c), рассчитываемая по формуле:

$$V_1 = \frac{\pi D^2}{4} w_0 \tag{3}$$

где: **D** (м) – диаметр производственной дымоходной трубы.

$$D = 0.25 + K$$

Здесь К -вариант студента (порядковый номер по журналу).

 w_0 (м/с) – средняя скорость газовой смеси, выходящей по дымоходной трубе.

$$w_0 = 42,5 * K$$

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Для программирования алгоритмов линейной структуры используются операторы присваивания, ввода исходных данных и вывода результатов.

Оператор присваивания. Оператор присваивания служит для вычисления значения выражения и присваивания его имени результата. Общий вид записи оператора присваивания:

```
V:=b; где v - имя результата; b - выражение; := - символ присваивания. 
Например: P:=0.125; \quad Z:=TRUE; \\ Y:=0; \\ Y:=0.5; PN:=1.26+(T+SQR(A*A-B));
```

Операторы ввода и вывода данных.

Операторы ввода обеспечивают программу исходными данными, необходимыми для решения задачи, а операторы вывода осуществляют вывод результатов решения. Поэтому практически любая программа должна содержать эти операторы, выполненные в языке C++ как процедуры.

Для ввода используются операторы:

```
cin >> b_{1}>> b_{2}>> ... >> b_{n};
где b_1, b_2,...,b_n - имена значений переменных, подлежащих вводу.
Например:
cin>>a>>b>>c:
    Для вывода информации используются операторы:
cout << b_1 << b_2 << ... << b_n;
где b_1, b_2,...,b_n - имена значений переменных, подлежащих выводу.
Например:
   cout << a << b << c;
Общий вид программы линейной структуры имеет вид:
     #include <iostream>
         #include <math.h>
      using namespace std;
       int main ()
{
      int a,b,c;
      cin>>a>>b>>c:
```

```
.
.
cout<<"ответ="
```

Операторы вывода допускают указание о ширине поля, отводимого под значение.

Пример. Составить программу для вычисления значений функции

```
Y=e^{ax}+\sin(x^2+b).
```

Программа имеет вид:

```
#include <iostream>
    #include <math.h>
    using namespace std;
    int main ()

{
    int a,b;
    cin>>a>>b;
    y=exp(a*x)+sin(sqr(x)+b);
    out<<"y="<<y;
}</pre>
```

Задания для самостоятельных работ:

Задача 1. Составить программу для определения удельной массы почвы

$$D = \frac{p}{(A+P)-c}$$

где,

А - вес пикнометра с водой

Р - вес почвы

С - вес пикнометра с водой и почвой

D- удельная масса почвы

Задача 2. Составить программу для определения влажности почвы

$$W = \frac{(a-b)}{(b-c)} * 100$$

где, А- вес стакана с сухой почвой, гр

В - вес стакана с влажной почвой, гр

С - чистый вес стакана

D - удельная масса почвы

A = 42,5012

B = 39,5020

C = 20,1510

Задача 3. Составить программу для определения объемной массы почвы

$$Q = \frac{(p-c) * 100\%}{(100-w) * V}$$

где, Q – объемная масса почвы, г / $_{\text{CM}}^{\text{3}}$

Р- вес кольца

с - чистый вес кольца; г;

W- влажность почвы, %

V- объем кольца, см³

 $P = 157,5 \Gamma$

 $S = 42,5 \Gamma$

W = 15,48%

 $V = 100 \text{ CM}^3$

Порядок выполнения работы:

- 1. Построить блок-схему алгоритма решения задачи.
- 2. Составить программу на языке С++ согласно построенной блок-схеме.
- 1. Набрать программу в среде АВС С++.
- 2. Сохранить программу в памяти компьютера.
- 3. Отладить программу (найти синтаксические и логические ошибки в программе и исправить их).
- 4. Запустить программу.
- 5. Ввести исходные данные.
- 6. Переписать результаты.
- 7. Провести анализ полученного решения.

8. Оформить лабораторную работу.

Вопросы для проверки:

- 1. Какие алгоритмы называются линейными?
- 2. Какие операторы используются при программировании алгоритмов линейной структуры?
- 3. Какова структура оператора присваивания?
- 4. Как работает оператор ввода?
- 5. Как работает оператор вывода?
- 6. Как указывается ширина поля, отводимого под значение, при выводе целых и действительных чисел?