Atividade 1

1. Mostre que

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(x,y) \mapsto d(x,y) = (x-y)^2$$

não é uma métrica em \mathbb{R} .

2. Seja $d: M \times M \to \mathbb{R}$ uma métrica. Mostre que as funções

$$\alpha(x,y) = \sqrt{d(x,y)}, \quad \beta(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad \gamma(x,y) = \min\{1, d(x,y)\}$$

são métricas em M. Dica: Para a função β , utilize a função $f(t) = \frac{t}{1+t}$ (a qual é crescente, pois...).

3. Seja $(V, \|\cdot\|)$ um espaço vetorial normado cuja norma $\|\cdot\|: V \to \mathbb{R}$ é induzida de um produto interno $\langle \cdot, \cdot \rangle: V \times V \to \mathbb{R}$ de maneira usual, isto é, $\|v\| = \sqrt{\langle v, v \rangle}$, para $v \in V$. Prove a **Lei do Paralelogramo**

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in V.$$