Crypt1ography and Network Security Unit-III Session 17

Dr. V. K. Pachghare

International Data Encryption Algorithm

(IDEA)

Overview

A symmetric encryption block cipher

Overview

- A symmetric encryption block cipher
- Mixing of three incompatible algebraic operations on 16-bit blocks:
 - bitwise XOR
 - addition modulo 2^{16} and
 - multiplication modulo $2^{16} + 1$

Overview

- A symmetric encryption block cipher
- Mixing of three incompatible algebraic operations on 16-bit blocks:
 - bitwise XOR
 - addition modulo 2^{16} and
 - multiplication modulo $2^{16} + 1$
- Avoids the use of any lookup tables or S-boxes

• Plaintext and ciphertext Block: 64-bit

• Plaintext and cipher text Block: 64-bit

• Key: 128-bit

• Plaintext and cipher text Block: 64-bit

• Key: 128-bit

There are total eight and half rounds

- Plaintext and cipher text Block: 64-bit
- Key: 128-bit
- There are total eight and half rounds
- The first eight rounds are identical.

- Plaintext and cipher text Block: 64-bit
- Key: 128-bit
- There are total eight and half rounds
- The first eight rounds are identical.
- The last round is a half round which uses only first four steps (operations) of the other rounds

• The encryption process is identical to the decryption process

- The encryption process is identical to the decryption process
- But the subkeys for decryption are different from encryption

• Each round except last round uses 6 sub-keys of 16-bit each.

- Each round except last round uses 6 sub-keys of 16-bit each.
- Last round uses 4 sub-keys.

- Each round except last round uses 6 sub-keys of 16-bit each.
- Last round use 4 sub-keys.
- Total of 52 (= $8 \times 6 + 4$) different 16-bit sub-keys have to be generated from the 128-bit key

Working

The working of IDEA is divided into two parts:

- Key generation
- Encryption

Key Generation

Total nine rounds.

Key Generation

- Total nine rounds.
- Total 52 subkeys of 16 bits are required for encryption.

Key Generation

- Total nine rounds.
- Therefore, total 52 subkeys of 16 bits are required for encryption.
- Same number of keys are required for decryption.

- The first step of the algorithm is to generate 52 subkeys, K_1 to K_{52} .
- The original key for IDEA is 128-bit key.
- This key is used to generate the subkeys

• Step 1:

Split the 128-bit key into 8 parts of 16 bits each. These parts are the first eight subkeys K_1 to K_8

• Step 1:

Split the 128-bit key into 8 parts of 16 bits each. These are the first eight subkeys K₁ to K₈

Bit	1 to 16	17 to 32	33 to 48	49 to 64	65 to 80	81 to 96	97 to 112	113 to 128
position								
Subkey	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K ₈

• Step 2:

- Then apply circular left shift by 25 bits position on the 128-bit key
- Split the key again into eight parts of 16 bits each
- This gives next 8 subkeys, i.e., K_9 to K_{16} .

• Step 2:

- Then apply circular left shift by 25 bits position on the 128-bit key
- Split the key again into eight parts of 16 bits each
- This gives next 8 subkeys, i.e., K_9 to K_{16} .

Bit position	26 to 41	42 to 57	58 to 78	74 to 89	90 to 105	106 to 121	122 to 9	10 to 25
Subkey	K_9	K ₁₀	K ₁₁	K_{12}	K ₁₃	K ₁₄	K ₁₅	K ₁₆

• Step 3:

• Repeat step 2 until all 52 subkeys are generated

• Subkeys K_{17} to K_{24} are generated by starting from bit number 51 of the original key.

- Subkeys K_{17} to K_{24} are generated by starting from bit number 51 of the original key.
- Subkeys K_{25} to K_{32} are generated by starting from bit number 76 of the original key.

- Subkeys K_{17} to K_{24} are generated by starting from bit number 51 of the original key.
- Subkeys K_{25} to K_{32} are generated by starting from bit number 76 of the original key.
- Subkeys K_{33} to K_{40} are generated by starting from bit number 101 of the original key.

- Subkeys K_{17} to K_{24} are generated by starting from bit number 51 of the original key.
- Subkeys K_{25} to K_{32} are generated by starting from bit number 76 of the original key.
- Subkeys K_{33} to K_{40} are generated by starting from bit number 101 of the original key.
- Subkeys K_{41} to K_{48} are generated by starting from bit number 125 of the original key.

- Subkeys K_{17} to K_{24} are generated by starting from bit number 51 of the original key.
- Subkeys K_{25} to K_{32} are generated by starting from bit number 76 of the original key.
- Subkeys K_{33} to K_{40} are generated by starting from bit number 101 of the original key.
- Subkeys K_{41} to K_{48} are generated by starting from bit number 125 of the original key.
- Subkeys K_{49} to K_{52} are generated by starting from bit number 22 of the original key

• The repetitions in the subkeys are avoided due to circular left shift of 25 bits

Key generation for Decryption

- For generation of subkeys for decryption, subkeys for encryption are used in reverse order
- Suppose the key for encryption is denoted by K and the key for decryption is denoted by Z.
- K_1 to K_{52} denotes the subkeys for encryption
- Z_1 to Z_{52} denotes the subkeys for decryption

- For generation of subkeys for decryption, subkeys for encryption are used in reverse order
- For first four keys of decryption round 1, first four keys of last round of encryption are used
- i.e., encryption subkeys K_{49} to K_{52} are used to generate decryption subkeys Z_1 to Z_4 .
- For generation of these subkeys, multiplicative inverse and additive inverse are used.

- For last two keys of decryption round 1, last two keys of eighth round of encryption are used
- i.e., encryption subkeys K_{47} to K_{48} are used to generate decryption subkeys Z_5 to Z_6 .

Subkeys for encryption

	R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-9
K-1	K ₁	K ₇	K ₁₃	K ₁₉	K ₂₅	K ₃₁	K ₃₇	K ₄₃	K ₄₉
K-2	K ₂	K ₈	K ₁₄	K ₂₀	K ₂₆	K ₃₂	K ₃₈	K ₄₄	K ₅₀
K-3	K ₃	K ₉	K ₁₅	K ₂₁	K ₂₇	K ₃₃	K ₃₉	K ₄₅	K ₅₁
K-4	K ₄	K ₁₀	K ₁₆	K ₂₂	K ₂₈	K ₃₄	K ₄₀	K ₄₆	K ₅₂
K-5	K ₅	K ₁₁	K ₁₇	K ₂₃	K ₂₉	K ₃₅	K ₄₁	K ₄₇	
K-6	K ₆	K ₁₂	K ₁₈	K ₂₄	K ₃₀	K ₃₆	K ₄₂	K ₄₈	

Subkeys for decryption

	R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-9
K-1	Z ₁	Z ₇	Z ₁₃	Z ₁₉	Z ₂₅	Z ₃₁	Z ₃₇	Z ₄₃	Z ₄₉
K-2	Z ₂	Z ₈	Z ₁₄	Z ₂₀	Z ₂₆	Z ₃₂	Z ₃₈	Z ₄₄	Z ₅₀
K-3	Z ₃	Z ₉	Z ₁₅	Z ₂₁	Z ₂₇	Z ₃₃	Z ₃₉	Z ₄₅	Z ₅₁
K-4	Z ₄	Z ₁₀	Z ₁₆	Z ₂₂	Z ₂₈	Z ₃₄	Z ₄₀	Z ₄₆	Z ₅₂
K-5	Z ₅	Z ₁₁	Z ₁₇	Z ₂₃	Z ₂₉	Z ₃₅	Z ₄₁	Z ₄₇	
K-6	Z ₆	Z ₁₂	Z ₁₈	Z ₂₄	Z ₃₀	Z ₃₆	Z ₄₂	Z ₄₈	

Subkeys for encryption

	R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-9
K-1	K ₁	K ₇	K ₁₃	K ₁₉	K ₂₅	K ₃₁	K ₃₇	K ₄₃	K ₄₉
K-2	K ₂	K ₈	K ₁₄	K ₂₀	K ₂₆	K ₃₂	K ₃₈	K ₄₄	K ₅₀
K-3	K ₃	K ₉	K ₁₅	K ₂₁	K ₂₇	K ₃₃	K ₃₉	K ₄₅	K ₅₁
K-4	K ₄	K ₁₀	K ₁₆	K ₂₂	K ₂₈	K ₃₄	K ₄₀	K ₄₆	K ₅₂
K-5	K ₅	K ₁₁	K ₁₇	K ₂₃	K ₂₉	K ₃₅	K ₄₁	K ₄₇	
K-6	K ₆	K ₁₂	K ₁₈	K ₂₄	K ₃₀	K ₃₆	K ₄₂	K ₄₈	

Subkeys for decryption first round

	R-1	R-9/R-8	R-1
K-1	Z_1	K ₄₉	$(K_{49})^{-1} \mod (2^{16} + 1)$
K-2	Z_2	K ₅₀	-(K ₅₀)mod (2 ¹⁶)
K-3	Z_3	K ₅₁	-(K ₅₁)mod (2 ¹⁶)
K-4	Z_4	K ₅₂	$(K_{52})^{-1} \mod (2^{16} + 1)$
K-5	Z_5	K ₄₇	K ₄₇
K-6	Z_6	K ₄₈	K ₄₈

Subkeys for decryption second round

	R-2	R-8/R-7	
K-1	Z ₇	K ₄₃	(K ₄₃) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₈	K ₄₄	-(K ₄₄)mod (2 ¹⁶)
K-3	Z_9	K ₄₅	-(K ₄₅)mod (2 ¹⁶)
K-4	Z ₁₀	K ₄₆	(K ₄₆) ⁻¹ mod (2 ¹⁶ +1)
K-5	Z ₁₁	K ₄₁	K ₄₁
K-6	Z ₁₂	K ₄₂	K ₄₂

Subkeys for decryption third round

	R-2	R-7/R-6	
K-1	Z ₁₃	K ₃₇	(K ₃₇) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₁₄	K ₃₈	-(K ₃₈)mod (2 ¹⁶)
K-3	Z ₁₅	K ₃₉	-(K ₃₉)mod (2 ¹⁶)
K-4	Z ₁₆	K ₄₀	(K ₄₀) ⁻¹ mod (2 ¹⁶ +1)
K-5	Z ₁₇	K ₃₅	K ₃₅
K-6	Z ₁₈	K ₃₆	K ₃₆

Subkeys for decryption fourth round

	R-2	R-6/R-5	
K-1	Z ₁₉	K ₃₁	(K ₃₁) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₂₀	K ₃₂	-(K ₃₂)mod (2 ¹⁶)
K-3	Z ₂₁	K ₃₃	-(K ₃₃)mod (2 ¹⁶)
K-4	Z ₂₂	K ₃₄	$(K_{34})^{-1} \mod (2^{16} + 1)$
K-5	Z ₂₃	K ₂₉	K ₂₉
K-6	Z ₂₄	K ₃₀	K ₃₀

Subkeys for decryption fifth round

	R-2	R-5/R-4	
K-1	Z ₂₅	K ₂₅	(K ₂₅) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₂₆	K ₂₆	-(K ₂₆)mod (2 ¹⁶)
K-3	Z ₂₇	K ₂₇	-(K ₂₇)mod (2 ¹⁶)
K-4	Z ₂₈	K ₂₈	$(K_{28})^{-1} \mod (2^{16} + 1)$
K-5	Z ₂₉	K ₂₃	K ₂₃
K-6	Z ₃₀	K ₂₄	K ₂₄

Subkeys for decryption sixth round

	R-2	R-4/R-3	
K-1	Z ₃₁	K ₁₉	(K ₁₉) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₃₂	K ₂₀	-(K ₂₀)mod (2 ¹⁶)
K-3	Z ₃₃	K ₂₁	-(K ₂₁)mod (2 ¹⁶)
K-4	Z ₃₄	K ₂₂	$(K_{22})^{-1} \mod (2^{16} + 1)$
K-5	Z ₃₅	K ₁₇	K ₁₇
K-6	Z ₃₆	K ₁₈	K ₁₈

Subkeys for decryption seventh round

	R-2	R-3/R-2	
K-1	Z ₃₇	K ₁₃	(K ₁₃) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₃₈	K ₁₄	-(K ₁₄)mod (2 ¹⁶)
K-3	Z ₃₉	K ₁₅	-(K ₁₅)mod (2 ¹⁶)
K-4	Z ₄₀	K ₁₆	$(K_{16})^{-1} \mod (2^{16} + 1)$
K-5	Z ₄₁	K ₁₁	K ₁₁
K-6	Z ₄₂	K ₁₂	K ₁₂

Subkeys for decryption eight round

	R-8	R-2/R-1	
K-1	Z ₄₃	K ₇	(K ₇) ⁻¹ mod (2 ¹⁶ +1)
K-2	Z ₄₄	K ₈	-(K ₈)mod (2 ¹⁶)
K-3	Z ₄₅	K ₉	-(K ₉)mod (2 ¹⁶)
K-4	Z ₄₆	K ₁₀	$(K_{10})^{-1} \mod (2^{16} + 1)$
K-5	Z ₄₇	K ₅	K ₅
K-6	Z ₄₈	K ₆	K ₆

Subkeys for decryption ninth round

	R-9	R-1	
K-1	Z ₄₉	K ₁	$(K_1)^{-1} \mod (2^{16} + 1)$
K-2	Z ₅₀	K_2	-(K ₂)mod (2 ¹⁶)
K-3	Z ₅₁	K ₃	-(K ₃)mod (2 ¹⁶)
K-4	Z ₅₂	K ₄	$(K_4)^{-1} \mod (2^{16} + 1)$

• Plaintext block is 64 bits

- Plaintext block is 64 bits
- Divide the plaintext block into 4 sub blocks of 16 bits each.

- Plaintext block is 64 bits
- Divide the plaintext block into 4 sub blocks of 16 bits each.
- Suppose sub blocks are P₁, P₂, P₃, P₄

• There are total nine rounds, eight complete and one half rounds.

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys
- The first eight rounds use 6 subkeys each

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys
- The first eight rounds use 6 subkeys each
- The last round uses 4 subkeys.

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys
- The first eight rounds use 6 subkeys each
- The last round uses 4 subkeys.
- So, the first round uses subkeys K_1 to K_6

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys
- The first eight rounds use 6 subkeys each
- The last round uses 4 subkeys.
- So, the first round uses subkeys K_1 to K_6
- Each round have 14 steps

- There are total nine rounds, eight complete and one half rounds.
- The encryption is done using 52 subkeys
- The first eight rounds use 6 subkeys each
- The last round uses 4 subkeys.
- So, the first round uses subkeys K_1 to K_6
- First eight rounds have 14 steps
- Last round has 4 steps

Operation Used

- Multiplication modulo 2¹⁶+1
 - $Ex. P_1 * K_1 \mod (2^{16}+1)$
- Addition modulo 2¹⁶
 - $Ex. (P_1 + K_1) \mod 2^{16}$
- XOR

1. Multiplication modulo $2^{16}+1$ between P_1 and the first subkey K_1 . The result is S_1

$$(P_1)_{10} * (K_1)_{10} \mod 65537 = S_1$$

- 1. Multiplication modulo $2^{16}+1$ between P_1 and the first subkey K_1 . The result is S_1 .
- 2. Addition modulo 2^{16} between P_2 and the second subkey K_2 . The result is S_2 .

$$(P_2)_{10} + (K_2)_{10} \mod 65536 = S_2$$

- 1. Multiplication modulo $2^{16}+1$ between P_1 and the first subkey K_1 . The result is S_1 .
- 2. Addition modulo 2^{16} between P_2 and the second subkey K_2 . The result is S_2
- 3. Addition modulo 2^{16} between P_3 and the third subkey K_3 . The result is S_3

- 1. Multiplication modulo $2^{16}+1$ between P_1 and the first subkey K_1 . The result is S_1 .
- 2. Addition modulo 2^{16} between P_2 and the second subkey K_2 . The result is S_2
- 3. Addition modulo 2^{16} between P_3 and the third subkey K_3 . The result is S_3 .
- 4. Multiplication modulo $2^{16}+1$ between P_4 and the fourth subkey K_4 . The result is S_4 .

5. Apply XOR between S_1 and S_3 . The result is S_5 .

- 5. Apply XOR between S_1 and S_3 . The result is S_5 .
- 6. Apply XOR between S_2 and S_4 . The result is S_6 .

- 5. Apply XOR between S_1 and S_3 . The result is S_5 .
- 6. Apply XOR between S_2 and S_4 . The result is S_6 .
- 7. Multiplication modulo $2^{16}+1$ between S_5 and the fifth subkey K_5 . The result is S_7 .

- 5. Apply XOR between S_1 and S_3 . The result is S_5
- 6. Apply XOR between S_2 and S_4 . The result is S_6
- 7. Multiplication modulo $2^{16}+1$ between S_5 and the fifth subkey K_5 . The result is S_7 .
- 8. Addition modulo 2^{16} between S_6 and S_7 . The result is S_8 .

- 5. Apply XOR between S_1 and S_3 . The result is S_5
- 6. Apply XOR between S_2 and S_4 . The result is S_6
- 7. Multiplication modulo $2^{16}+1$ between S_5 and the fifth subkey K_5 . The result is S_7 .
- 8. Addition modulo 2^{16} between S_6 and S_7 . The result is S_8 .
- 9. Multiplication modulo $2^{16}+1$ between S_8 and the sixth subkey K_6 . The result is S_9 .

- 5. Apply XOR between S_1 and S_3 . The result is S_5 .
- 6. Apply XOR between S_2 and S_4 . The result is S_6 .
- 7. Multiplication modulo $2^{16}+1$ between S_5 and the fifth subkey K_5 . The result is S_7 .
- 8. Addition modulo 2^{16} between S_6 and S_7 . The result is S_8 .
- 9. Multiplication modulo $2^{16}+1$ between S_8 and the sixth subkey K_6 . The result is S_9 .
- 10. Addition modulo 2^{16} between S_7 and S_9 . The result is S_{10} .

11. Apply XOR between S_1 and S_9 . The result is S_{11}

- 11. Apply XOR between S_1 and S_9 . The result is S_{11}
- 12. Apply XOR between S_2 and S_{10} . The result is S_{12}

- 11. Apply XOR between S_1 and S_9 . The result is S_{11}
- 12. Apply XOR between S_2 and S_{10} . The result is S_{12}
- 13. Apply XOR between S_3 and S_9 . The result is S_{13}

- 11. Apply XOR between S_1 and S_9 . The result is S_{11}
- 12. Apply XOR between S_2 and S_{10} . The result is S_{12}
- 13. Apply XOR between S_3 and S_9 . The result is S_{13}
- 14. Apply XOR between S_4 and S_{10} . The result is S_{14}

X : Multiplication modulo 216+1

+ : Addition modulo 216

⊕ : XOR operation

Round 9

- 1. Multiplication modulo $2^{16}+1$ between P_1 and the subkey $K_{49}.$ The result is $C_{1.}$
- 2. Addition modulo 2^{16} between P_2 and the subkey K_{50} . The result is C_2
- 3. Addition modulo 2^{16} between P_3 and the subkey K_{51} . The result is C_3 .
- 4. Multiplication modulo $2^{16}+1$ between P_4 and the subkey K_{52} . The result is C_4 .

Decryption

- The computational process used for decryption of the ciphertext is essentially the same as that used for encryption
- The only difference is that each of the 52 16-bit key sub-blocks used for decryption is the inverse of the key sub-block used during encryption

Questions?

