# Theorem: Rank-Nullity Theorem

## Theorem: Rank-Nullity Theorem

For any Linear Transformation  $T: V \to W$  between finite-dimensional s, the dimensions of the Kernel and Image satisfy a fundamental relationship.

### Statement

Let  $T:V\to W$  be a linear transformation where V is finite-dimensional. Then:

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T))$$

where:  $-\ker(T) = \{\mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0}\}\$  is the kernel (null space) of T -  $\operatorname{im}(T) = \{T(\mathbf{v}) : \mathbf{v} \in V\}$  is the image (range) of T

### **Alternative Formulation**

Using standard terminology:

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$$

where: -  $\operatorname{nullity}(T) = \dim(\ker(T))$  -  $\operatorname{rank}(T) = \dim(\operatorname{im}(T))$ 

#### **Proof Outline**

- 1. Let  $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$  be a basis for  $\ker(T)$
- 2. Extend to a basis  $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_r\}$  for V
- 3. Show that  $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_r)\}$  is a basis for  $\mathrm{im}(T)$
- 4. Therefore:  $k + r = \dim(V)$ , where  $k = \dim(\ker(T))$  and  $r = \dim(\operatorname{im}(T))$

#### Consequences

- **Injectivity criterion**: T is injective if and only if  $\dim(\ker(T)) = 0$
- Surjectivity criterion: T is surjective if and only if  $\dim(\operatorname{im}(T)) = \dim(W)$
- Isomorphism criterion: For  $\dim(V) = \dim(W)$ , T is an isomorphism if and only if T is injective (or surjective)

This theorem is fundamental to understanding the structure of linear transformations and solving systems of linear equations.

# Dependency Graph



Local dependency graph