

Learning Objectives

- 1. Understand the role of transportation in a supply chain
- 2. Evaluate the strengths and weaknesses of different modes of transportation
- 3. Discuss the role of infrastructure and policies in transportation
- 4. Identify the relative strengths and weaknesses of various transportation network design options
- 5. Identify trade-offs that shippers need to consider when designing a transportation network

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

The Role of Transportation in a Supply Chain

- Movement of product from one location to another
- Products rarely produced and consumed in the same location
- Significant cost component
- Shipper requires the movement of the product
- Carrier moves or transports the product

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

1/1_3

Modes of Transportation and their Performance Characteristics

- Air
- Package carriers
- Truck
- Rail
- Water
- Pipeline
- Intermodal

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall.

Air

- Cost components
 - Fixed infrastructure and equipment
 - Labor and fuel
 - Variable passenger/cargo
- Key issues
 - Location/number of hubs
 - Fleet assignment
 - Maintenance schedules
 - Crew scheduling
 - Prices and availability

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

14-5

Package Carriers

- Small packages up to about 70 kg
- Expensive
- Rapid and reliable delivery
- Small and time-sensitive shipments
- Provide other value-added services
- Consolidation of shipments a key factor

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Truck

- Significant fraction of the goods moved
- Truckload (TL)
 - Low fixed cost
 - Imbalance between flows
- Less than truckload (LTL)
 - Small lots
 - Hub and spoke system
 - May take longer than TL

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

14-7

Rail

- Move commodities over large distances
- High fixed costs in equipment and facilities
- Scheduled to maximize utilization
- Transportation time can be long
 - Trains 'built' not scheduled

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Water

- Limited to certain geographic areas
- Ocean, inland waterway system, coastal waters
- Very large loads at very low cost
- Slowest
- Dominant in global trade
- Containers

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

14-9

Pipeline

- High fixed cost
- Primarily for crude petroleum, refined petroleum products, natural gas
- Best for large and stable flows
- Pricing structure encourages use for predictable component of demand

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Intermodal

- Use of more than one mode of transportation to move a shipment
- Grown considerably with increased use of containers
- May be the only option for global trade
- More convenient for shippers one entity
- Key issue exchange of information to facilitate transfer between different modes

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

1/ 11

Design Options for a Transportation Network

- When designing a transportation network
 - 1. Should transportation be direct or through an intermediate site?
 - 2. Should the intermediate site stock product or only serve as a cross-docking location?
 - 3. Should each delivery route supply a single destination or multiple destinations (milk run)?

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hali

All Shipments via Intermediate Transit Point with Cross-Docking

- Suppliers send their shipments to an intermediate transit point
- They are cross-docked and sent to buyer locations without storing them

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Tailored Network

Network Structure	Pros	Cons
Direct shipping	No intermediate warehouse Simple to coordinate	High inventories (due to large lot size) Significant receiving expense
Direct shipping with milk runs	Lower transportation costs for small lots Lower inventories	Increased coordination complexity
All shipments via central DC with inventory storage	Lower inbound transportation cost through consolidation	Increased inventory cost Increased handling at DC
All shipments via central DC with cross-dock	Low inventory requirement Lower transportation cost through consolidation	Increased coordination complexity
Shipping via DC using milk runs	Lower outbound transportation cost for small lots	Further increase in coordination complexity
Tailored network	Transportation choice best matches needs of individual product and store	Highest coordination complexity

Table 14-2

Copyright ©2013 Pearson Education, Inc. publishing as Prentice H

Selecting a Transportation Network

- Eight stores, four supply sources
- Truck capacity = 40,000 units
- Cost \$1,000 per load, \$100 per delivery
- Holding cost = \$0.20/year

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

14-19

Selecting a Transportation Network

Annual sales = 960,000/store Direct shipping

Batch size shipped from each

supplier to each store = 40,000 units

Number of shipments/yr from

each supplier to each store = 960,000/40,000 = 24

Annual trucking cost

for direct network = $24 \times 1,100 \times 4 \times 8 = \$844,800$

Average inventory at each

store for each product = 40,000/2 = 20,000 units

Annual inventory cost

for direct network = $20,000 \times 0.2 \times 4 \times 8 = $128,000$

Total annual cost of

direct network = \$844,800 + \$128,000 = \$972,800

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hal

Selecting a Transportation Network

Annual sales = 960,000/store Milk runs

Batch size shipped from each

supplier to each store = 40,000/2 = 20,000 units

Number of shipments/yr from

each supplier to each store = 960,000/20,000 = 48

Transportation cost per shipment

per store (two stores/truck) = 1,000/2 + 100 = \$600

Annual trucking cost

for direct network = $48 \times 600 \times 4 \times 8 = $921,600$

Average inventory at each

store for each product = 20,000/2 = 10,000 units

Annual inventory cost

for direct network = $10,000 \times 0.2 \times 4 \times 8 = $64,000$

Total annual cost of

direct network = \$921,600 + \$64,000 = \$985,600

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hali

1/1-21

Selecting a Transportation Network

Annual sales = 120,000/store Direct shipping

Batch size shipped from each

supplier to each store = 40,000 units

Number of shipments/yr from

each supplier to each store = 120,000/40,000 = 3

Annual trucking cost

for direct network = $3 \times 1,100 \times 4 \times 8 = $105,600$

Average inventory at each

store for each product = 40,000/2 = 20,000 units

Annual inventory cost

for direct network = $20,000 \times 0.2 \times 4 \times 8 = $128,000$

Total annual cost of

direct network = \$105,600 + \$128,000 = \$233,600

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hal

Selecting a Transportation Network

Annual sales = 120,000/store Milk runs

Batch size shipped from each

supplier to each store = 40,000/4 = 10,000 units

Number of shipments/yr from

each supplier to each store = 120,000/10,000 = 12

Transportation cost per shipment

per store (two stores/truck) = 1,000/4 + 100 = \$350

Annual trucking cost

for direct network = $12 \times 350 \times 4 \times 8 = $134,400$

Average inventory at each

store for each product = 10,000/2 = 5,000 units

Annual inventory cost

for direct network = $5,000 \times 0.2 \times 4 \times 8 = $32,000$

Total annual cost of

direct network = \$134,400 + \$32,000 = \$166,400

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hali

1/1-23

Trade-offs in Transportation Design

- Transportation and inventory cost trade-off
 - Choice of transportation mode
 - Inventory aggregation
- Transportation cost and responsiveness trade-off

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hal

Trade-offs in Transportation Design

Mode	Cycle Inventory	Safety Inventory	In-Transit Cost	Transportation Time	Transportation Cost
Rail	5	5	5	2	5
TL	4	4	4	3	3
LTL	3	3	3	4	4
Package	1	1	1	6	1
Air	2	2	2	5	2
Water	6	6	6	1	6

Table 14-3

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

14-25

Tailored Transportation

- The use of different transportation networks and modes based on customer and product characteristics
- Factors affecting tailoring
 - Customer density and distance
 - Customer size
 - Product demand and value

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hal

Tailored Transportation

	Short Distance	Medium Distance	Long Distance
High density	Private fleet with milk runs	Cross-dock with milk runs	Cross-dock with milk runs
Medium density	Third-party milk runs	LTL carrier	LTL or package carrier
Low density	Third-party milk runs or LTL carrier	LTL or package carrier	Package carrier

Table 14-10

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

14-27

Tailored Transportation

Product Type	High Value	Low Value
High demand	Disaggregate cycle inventory. Aggregate safety inventory. Inexpensive mode of transportation for replenishing cycle inventory and fast mode when using safety inventory.	Disaggregate all inventories and use inexpensive mode of transportation for replenishment.
Low demand	Aggregate all inventories. If needed, use fast mode of transportation for filling customer orders.	Aggregate only safety inventory. Use inexpensive mode of transportation for replenishing cycle inventory.

Table 14-11

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Ha

- The complexity of transportation decisions demands use of IT systems
- IT software can assist in:
 - Identification of optimal routes by minimizing costs subject to delivery constraints
 - Optimal fleet utilization
 - GPS applications

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

14-29

Risk Management in Transportation

- Three main risks to be considered in transportation are
 - Risk that the shipment is delayed
 - 2. Risk of disruptions
 - Risk of hazardous material
- Risk mitigation strategies
 - Decrease the probability of disruptions
 - Alternative routings
 - In case of hazardous materials the use of modified containers, low-risk transportation models, modification of physical and chemical properties can prove to be effective

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Making Transportation Decisions in Practice

- 1. Align transportation strategy with competitive strategy
- 2. Consider both in-house and outsourced transportation
- 3. Use technology to improve transportation performance
- 4. Design flexibility into the transportation network

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hal