Facultatea/Colegiul _____

Numărul legitimației de bancă ______ Numele _____ Prenumele tatălui _____ Prenumele _____

CHESTIONAR DE CONCURS

DISCIPLINA: Geometrie și Trigonometrie M2A

VARIANTA A

- 1. Un con circular drept se desfășoară pe un plan după un sfert de cerc. Atunci raportul dintre lungimea generatoarei conului și raza bazei conului este (4 pct.)
 - a) 2; b) 6; c) 1; d) 5; e) 4; f) 3.
- 2. Să se determine lungimea x a laturii unui cub, știind că lungimea diagonalei cubului este x + 1. (4 pct.)

a)
$$\frac{\sqrt{3}-1}{2}$$
; b) 2; c) $\frac{\sqrt{3}}{2}$; d) 3; e) 1; f) $\frac{1+\sqrt{3}}{2}$.

3. Să se determine raportul dintre raza sferei înscrise în cubul de latură 1 și raza sferei circumscrise aceluiași cub. (4 pct.)

a)
$$4\sqrt{3}$$
; b) $\frac{\sqrt{3}}{2}$; c) $2\sqrt{3}$; d) $\frac{\sqrt{3}}{6}$; e) $\frac{\sqrt{3}}{3}$; f) $\frac{\sqrt{3}}{4}$.

4. Un paralelipiped dreptunghic, cu diagonala de lungime 4 și laturile bazei de lungimi 2 și 3, are înălțimea de lungime (**4 pct.**)

a)
$$\sqrt{3}$$
; b) $\frac{\sqrt{3}}{2}$; c) $\sqrt{2}$; d) $2\sqrt{2}$; e) $2\sqrt{3}$; f) $\frac{\sqrt{3}}{4}$.

- 5. Fie a, b, c trei drepte necoplanare în spațiu având un punct comun, iar M un punct nesituat pe ele. Atunci planele (M,a), (M,b), (M,c) au proprietatea (4 pct.)
 - a) au numai un punct comun; b) sunt perpendiculare două câte două; c) coincid; d) numai două dintre cele trei plane coincid; e) au numai două puncte comune; f) au o dreaptă comună.
- 6. Secțiunea într-un cilindru, dusă prin axa de simetrie a acestuia, este un pătrat. Să se calculeze raportul dintre raza bazei și generatoarea cilindrului. (4 pct.)

a)
$$\frac{1}{\sqrt{3}}$$
; b) $\frac{1}{2}$; c) $\frac{1}{\sqrt{2}}$; d) $\sqrt{2}$; e) $\sqrt{3}$; f) $\frac{1}{3}$.

7. Determinați produsul soluțiilor ecuației $\cos^2 x + 2\cos x = 0$, situate în intervalul $[-\pi, \pi]$. (4 pct.)

a)
$$-\frac{\pi^2}{4}$$
; b) π^2 ; c) $\frac{\pi^2}{4}$; d) $-\pi^2$; e) $-\frac{\pi^2}{2}$; f) $\frac{\pi^2}{2}$.

8. Se dă parabola P: $y^2 = x$. Să se determine raza cercului cu centrul în punctul C(-1,0), care intersectează parabola într-un singur punct. (4 pct.)

a) 3; b) 4; c)
$$\sqrt{2}$$
; d) -1; e) 2; f) 1.

9. Calculați $\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right) \left(\cos\frac{\pi}{12} - i\sin\frac{\pi}{12}\right)$. (4 pct.)

a) 1; b) -1; c)
$$-\sqrt{2}$$
; d) $\frac{1}{2}$; e) $-\frac{1}{2}$; f) $\sqrt{2}$.

10. O piramidă are ca bază un pătrat cu latura de 4 cm. Înălțimea piramidei este de 4 cm și cade în centrul bazei. Să se calculeze aria laterală a piramidei. **(4 pct.)**

a)
$$13\sqrt{5}$$
; b) $16\sqrt{5}$; c) $18\sqrt{5}$; d) $14\sqrt{5}$; e) $12\sqrt{5}$; f) $15\sqrt{5}$.

- 11. Aflați numărul minim de puncte necoplanare care, luate câte trei, determină patru plane distincte. (4 pct.) a) 7; b) 8; c) 4; d) 5; e) 6; f) 9.
- 12. Punctul (1,1) este proiecția originii pe dreapta d. Aflați ecuația dreptei d. (4 pct.)

a)
$$x - y = 0$$
; b) $x + y = 0$; c) $x + y - 2 = 0$; d) $x + y + 2 = 0$; e) $x + y + 1 = 0$; f) $x + y - 1 = 0$.

13. Fie vectorii $\vec{a} = 2m\vec{i} + \vec{j}$ şi $\vec{b} = \vec{i} + \vec{j}$, relativ la un reper ortonormat de versori \vec{i} , \vec{j} . Să se determine parametrul real m astfel încât vectorii \vec{a} și \vec{b} să fie perpendiculari. (6 pct.)

a)
$$m = \frac{1}{3}$$
; b) $m = -\frac{1}{4}$; c) $m = \frac{1}{2}$; d) $m = -\frac{1}{3}$; e) $m = \frac{1}{4}$; f) $m = -\frac{1}{2}$.

14. Să se calculeze $\cos^2 x$ dacă $\sin x = \frac{\sqrt{3}}{2}$. (6 pct.)

a) 1; b)
$$-\frac{1}{4}$$
; c) $\frac{3}{4}$; d) $\frac{1}{2}$; e) $\frac{1}{4}$; f) 0.

15. Ecuația planului ce trece prin punctele A(2,0,0), B(0,2,0), C(0,0,2) este (6 pct.)

a)
$$x + z = 2$$
; b) $x - y + z = 0$; c) $y + z = 2$; d) $x + y + z = 2$; e) $x + y = 2$; f) $x + y - z = 0$.

16. În triunghiul ABC se dau măsurile unghiurilor $\hat{A} = 90^{\circ}$, $\hat{B} = 60^{\circ}$ și lungimea laturii BC = 8. Să se calculeze lungimea laturii AB. (8 pct.)

17. În triunghiul ABC se cunosc $\hat{A} = 60^{\circ}$ și AB = 4, AC = 6. Care este lungimea medianei din B? (8 pct.)

a)
$$2\sqrt{3}$$
; b) $3\sqrt{2}$; c) $\sqrt{11}$; d) 3; e) $\sqrt{13}$; f) $\sqrt{7}$.

18. Suma soluțiilor ecuației $\sin^2 x = 1$, din intervalul $[0, 2\pi]$, este (8 pct.)

a)
$$3\pi$$
; b) 0; c) 2π ; d) π ; e) $\frac{\pi}{2}$; f) $\frac{3\pi}{2}$.