Generowanie cyfr pisanych odręcznie na bazie sieci neuronowej o architekturze autoencodera Analiza i implementacja różnych modeli generatywnych

Prowadzący: Adam Świtoński

Politechnika Śląska

Maj 2024

Plan prezentacji

- Modele
- 2 Porównanie modeli
- Wyzwania implementacyjne
- Przykłady zastosowań

Opis projektu

Cel projektu

Zastosowanie sieci neuronowej o architekturze autoencodera do generowania niskorozdzielczych obrazów cyfr pisanych odręcznie.

- Trenowanie różnych wariantów autoencoder'a
- Generowanie nowych cyfr poprzez podawanie losowych wartości na wejście dekodera
- Badanie wpływu struktury sieci (liczba warstw, liczba neuronów) oraz parametrów uczenia
- Wykorzystanie zbioru danych MNIST

Rozważane warianty

Klasyczny autoencoder, wariacyjny autoencoder (VAE), GAN, Diffusion, VQ-VAE, Conditional VAE

Autoencoder

Autoencoder to rodzaj sieci neuronowej, która uczy się kompresować dane wejściowe do reprezentacji o niższym wymiarze (kod), a następnie rekonstruować oryginalne dane z tej reprezentacji.

Zastosowania:

- Redukcja wymiarowości
- Denoising (odszumianie)
- Generowanie nowych danych

Zalety: prostota, szybki trening, interpretowalność

Wady: ograniczona zdolność generatywna, brak kontroli nad rozkładem latentnym

Bibliografia: [2]

Wariacyjny Autoencoder (VAE)

VAE to probabilistyczne rozszerzenie autoencodera, które modeluje rozkład latentny danych.

Kluczowe cechy:

- Modelowanie rozkładu latentnego (μ, σ)
- Regularyzacja poprzez KL-dywergencję
- Generowanie nowych próbek przez próbkowanie

Zalety: generatywność, ciągła przestrzeń latentna, możliwość interpolacji

Wady: rozmyte próbki, trudność w

trenowaniu

Bibliografia: [4]

Conditional VAE

Conditional VAE (CVAE) to wariacyjny autoencoder, który dodatkowo warunkuje generowanie na zadanej klasie (np. cyfra).

Kluczowe cechy:

- Warunkowanie generowania na etykietach
- Możliwość sterowania procesem generacji
- Łączenie etykiet z danymi wejściowymi

Zalety: kontrola nad generowanymi danymi, elastyczność

Wady: większa złożoność, wymaga etykiet

Bibliografia: [6]

VQ-VAE

VQ-VAE to autoencoder, w którym przestrzeń latentna jest kwantyzowana do skończonego zbioru wektorów (słownik kodów).

Kluczowe cechy:

- Dyskretna przestrzeń latentna
- Kwantyzacja wektorowa
- Słownik kodowy

Zalety: dyskretna reprezentacja, dobre wyniki w generowaniu sekwencji

Wady: trudność w trenowaniu, konieczność

doboru rozmiaru słownika

Bibliografia: [5]

Generative Adversarial Network (GAN)

GAN to model generatywny składający się z dwóch sieci: generatora (tworzy próbki) i dyskryminatora (odróżnia próbki prawdziwe od fałszywych).

Kluczowe cechy:

- Układ rywalizujący (gra dwuosobowa)
- Generator tworzy coraz lepsze próbki
- Dyskryminator staje się coraz trudniejszy do oszukania

Zalety: realistyczne próbki, duża elastyczność

Wady: trudność w trenowaniu, niestabilność,

mode collapse

Bibliografia: [1]

Diffusion Model

Model dyfuzji to nowoczesny model generatywny, który uczy się odszumiania danych przez odwracanie procesu stopniowego dodawania szumu.

Kluczowe cechy:

- Proces forward (dodawanie szumu)
- Proces reverse (przewidywanie i usuwanie szumu)
- Iteracyjne próbkowanie

Zalety: wysoka jakość generowanych próbek, stabilność treningu

Wady: długi czas generowania, złożoność

obliczeniowa

Bibliografia: [3]

Porównanie modeli generatywnych

Model	Zalety	Wady
Autoencoder	Prostota implementa-	Słaba generatywność,
(2006)	cji, szybki trening	rozmyte obrazy
VAE (2013)	Solidne podstawy teo-	Rozmyte obrazy, trud-
	retyczne, ciągła prze-	ność balansowania re-
	strzeń latentna	konstrukcji i KL diver-
		gencji
GAN (2014)	Ostre, realistyczne	Niestabilność tre-
	próbki	ningu, mode collapse
Conditional	Kontrola nad proce-	Większa złożoność
VAE (2015)	sem generacji, warun-	implementacji, wy-
	kowanie na klasach	maga etykiet
VQ-VAE	Ostrzejsze obrazy, do-	Trudniejszy do tre-
(2017)	bra kompresja	nowania, problemy z
		kwantyzacją
Diffusion	Najlepsza jakość obra-	Powolne próbkowanie,
(2020)	zów, stabilny trening	wysoka złożoność ob-
		liczeniowa

Wyzwania implementacyjne

- Dobór architektury: Liczba warstw, liczba neuronów, funkcje aktywacji
- Dobór wymiarowości przestrzeni latentnej: Zbyt mała utrata informacji, zbyt duża - brak generalizacji
- Balansowanie funkcji straty: Np. w VAE balans między rekonstrukcją a regularyzacją KL
- Stabilność treningu: Szczególnie w przypadku GAN-ów
- Efektywność obliczeniowa: Modele dyfuzji wymagają wielu kroków podczas generowania
- Ocena jakości wygenerowanych próbek: Metody ilościowe vs jakościowe

Przykłady zastosowań

Generowanie danych syntetycznych:

- Augmentacja danych w uczeniu maszynowym
- Syntetyczne dane dla trenowania innych modeli
- Generowanie przykładów do zastosowań edukacyjnych

Zastosowania praktyczne:

- Transfer stylu pisma
- Uzupełnianie brakujących fragmentów
- Korekta i poprawa pisma odręcznego
- Konwersja cyfr między różnymi stylami

Bibliografia I

- [1] Ian Goodfellow i in. "Generative adversarial nets". W: Advances in neural information processing systems. 2014, s. 2672–2680.
- [2] Geoffrey E Hinton i Ruslan R Salakhutdinov. "Reducing the dimensionality of data with neural networks". W: Science 313.5786 (2006), s. 504–507.
- [3] Jonathan Ho, Ajay Jain i Pieter Abbeel. "Denoising diffusion probabilistic models". W: *Advances in neural information processing systems*. T. 33. 2020, s. 6840–6851.
- [4] Diederik P Kingma i Max Welling. "Auto-encoding variational bayes". W: arXiv preprint arXiv:1312.6114 (2013).
- [5] Aaron van den Oord, Oriol Vinyals i Koray Kavukcuoglu. "Neural discrete representation learning". W: Advances in neural information processing systems. 2017, s. 6306–6315.

Bibliografia II

[6] Kihyuk Sohn, Xinchen Yan i Honglak Lee. "Learning structured output representation using deep conditional generative models". W: Advances in neural information processing systems. 2015, s. 3483–3491.