Generative Adversarial Networks for Cosmology Mass Maps (Simulation Emulation)

Mustafa Mustafa Evan Racah, Rami Alrfou

MANTISSA, Berkeley Lab. 01/17/2017

Generative Adversarial Networks

Kevin McGuinness

5

Generative Adversarial Networks

(Goodfellow 2016)

Generative Adversarial Networks – Loss Functions

Saturating game (Minimax):

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$
$$J^{(G)} = -J^{(D)}$$

Ian Goodfellow arXiv:1701.00160

Generative Adversarial Networks – Loss Functions

Saturating game (Minimax):

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$
$$J^{(G)} = -J^{(D)}$$

Ian Goodfellow arXiv:1701.00160

Generative Adversarial Networks – Loss Functions

Saturating game (Minimax):

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$
$$J^{(G)} = -J^{(D)}$$

Non-saturating game (heuristic):

$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D \left(G(\boldsymbol{z}) \right)$$

Ian Goodfellow arXiv:1701.00160

Cosmology Mass Maps Simulator Emulator

Basic idea:

Cosmologist need to run computationally expensive simulations of the mass density maps of the universe with different parameters $\sigma = (\sigma 1, \sigma 2, ...)$. The evolution of the universe is not deterministic, i.e. you can get "different" mass maps for the same set of parameters σ^* .

We want to explore if we can use GANs to help in reducing the computational time. A reliable GAN duet might also be used to extract features or summary statistics.

The fidelity of the generated images can be checked using a cosmologist metric ("summary statistics").

Cosmology Mass Maps Simulator Emulator

Dataset:

1000 1024x1024 mass maps generated at one σ^* point. It is possible to generate more if needed.

- → **Ultimate goal:** a conditional/parametric generator $G(\sigma, z)$, where σ is the cosmologists vector of parameters and z is a vector of random noise
- **Current goal:** G(z) which will generate images at the fixed point σ^* of our test sample

Heuristically found stable architecture

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

- → Trained on 1M 64x64 images (float32)
- → Total of 8 epochs with evaluations at 4 and 8

- → Trained on 1M 64x64 images (float32)
- → Total of 8 epochs with evaluations at 4 and 8

Epoch4: Generated Images

Epoch8: Generated Images

First-order (MickyMouse) tests for the reproducibility of correlations in real mass maps

Cosmo DCGAN 128x128

10 epochs on 200k images

3 epochs on 200k images