

• 서론

- 선행연구 요약
- 연구의 배경
- 연구의 목적
- 연구 추진 방법

• 태양광 에너지 이론적 배경

- 태양광 에너지 원리
- 국내 태양광 산업 현황

- 국내 태양광에너지 도입 사례
- 국외 태양광에너지 도입 사례

Ⅴ. 신규사례 분석

- 국내 태양광에너지 도입 신규 사례
- 국외 태양광에너지 도입 신규 사례

V • 국내외 항만의 기술적 및 제도적 비교

VI. 결론

- 신재생에너지 도입한계
- 국내 항만의 태양광의 확대방안

Ⅰ. 서론 - 연구배경 및 목적

〈그림 II-8〉 우리나라 신·재생에너지 보급 목표

자료: 우리금융경영연구소, 「최근 신·재생에너지 산업 동향」, 2019. 2

연구 배경

- 파리기후 협약, 그린 뉴딜 등 친환경 정책 도입에 따라 국내 항만에 신재생 에너지 도입의 중요성 부각
- 대표적인 신재생에너지 11개 중 태양광 에너지가 그린포트 구축에 가장 합리적
- 기존 선행연구에 그린포트 구축에의 태양광 중점 연구 부재 및 중복된 사례를 소개로 다양성 결여

연구 목적

- · 환경 친화적 항만산업을 미래 성장 동력으로 사용하기 위한 추진방안 제시
- · 항만의 태양광 도입 국내·외 사례와 확대 방안을 통합 분석 및 현황 제시

연구 방법

- 태양광에너지 적용 사례정리, 정책 및 과정의 한계 · 대안제시
- 추후 국내항만의 태양광 에너지 산업의 발전 방안 논의

1.서론 - 선행연구 요약

[항만과 도시의 연계성을 고려한 녹색항만 구축방안 연구] 이태동, 2015

국내외 항만 통환관리체계 등 지닌 새로운 친환경 녹색항 만 개념 및 사업제시

[우리나라 항만의 신재생 에너지 도입과 발전 방안에 관한연구] 조은진, 2015

태양광발전을 적용한 국내항만과 국외 신재생에너지 선진 국 항만비교 및 발전방안 제시

[친환경에너지 정책 추진강화에 따른 항만의 신재생 에너지 확대방안] 심기섭 외 2, 2017

항만 내 신재생에너지의 발전 방안 연구 및 항만 구역 내 도입 현황 소개. 신재생에너지에 대한 지속적인 기술개발, 관련 제도의 절차 간소화 등을 확대방안으로 제시

[태양으로 다가온 인천항 에코포트 사업(인천항만공 사의 사회적가치 창출 대표사례)] 안길섭, 2019

현 정부에서 공공기관인 인천항만공사의 사회적 가치 창 출에 대하여 사례를 통해 설명

[친환경 신재생 에너지를 활용한 항만물류산업 발전 방안에 관한 연구] 문지애, 2019

신재생 에너지(풍력, 태양광, LNG냉열 등) 활용한 항만물 류 사례제시. LNG 냉열의 활용을 강조 및 정책 지원과 투 자 강조 2015

[Green port 구축을 위한 환발해권 항만효율성 및 전략에 관한 연구] 니에징리, 2016

그린포트 현황을 국내외 사례를 비교하여 항만 효율성을 증진시키기 위한 환발해권의 전략을 강구

2016

2017

[울산항 녹색항만정책 재정립을 위한 개선방안 연구] 신광철, 2018

중국 및 국내외 녹색항만 정책분석, 울산항 개선방안 서술. 육상전원장치, 태양광시설 등 확대 제시. 자연친화적 신재생에너지 강조

2018

2019

[신재생에너지 공급의무화 RPS제도 도입효과 및 보 급정책 발전방안 연구] 이창훈, 2018

공급의무화제도(2012)의 과중한 정부목표치 조정. REC 가중치 변경가능성 및 객관성 부족 등의 보완 및 개선. 발 전차액지원제도(FIT)재도입 방안 검토 제시

Ⅱ. 태양광에너지 이론적 배경

태양광 에너지의 원리

태양광 에너지: 햇빛을 받으면 광전효과에 의해 전기를 발생하는 태양전지를 이용한 방식

전계 형성 단계

반사방지막 PN N층 접합 p층 후면전극

- 붕소를 첨가한 P형 반도체와 인을 확산시킨 N형 반도체 접합
- N형 반도체에는 다수의 전자 존재
- P형 반도체에는 다수의 정공 존재

자유 이동 단계

 전지에 태양광에너지가 입사된 후 반도체 내부 자유 이동

양극 분류 단계

출처: 한국에너지 공단

• 내부 자유 이동 중 PN접합에 의해 생긴 전계에 들어오게 되면 양극으로 분류

장 점	단 점			
• 유지보수 용이 및 무인화 가능	• 기후의 영향을 많이 받음			
• 20년 이상의 긴 수명	• 초기 투자비용이 과다			

II. 태양광에너지 이론적 배경

국내 태양광에너지 산업은 타 신재생에너지 산업에 비하여 참여 기업체 수, 고용인원, 매출, 투자액 측면에서 높은 수준을 보여준다.

에너지원 기업체수(개)		수(개)	고용인원(명)		국내매출(억원)		해외매출(억원)		투자액(억원)	
에디지권		비중		비중	ľ	비중		비중		비중
태 양 광	97	30.5%	7,567	59.2%	23,197	49.8%	45,310	75.0%	2,103	84.1%
태 양 열	7	2.2%	92	0.7%	107	0.2%	-	-	1	0.0%
풍 력	18	5.7%	1,545	12.1%	682	1.5%	13,931	23.0%	113	4.5%
연료전지	14	4.4%	946	7.4%	6,809	14.6%	14	0.0%	141	5.6%
지열·수열	21	6.6%	339	2.7%	476	1.0%	-	-	19	0.8%
수 력	4	1.3%	74	0.6%	100	0.2%	8	0.0%	2	0.1%
바이오	123	38.7%	1,827	14.3%	14,782	31.8%	1,178	1.9%	113	4.5%
소 계	281 ^{주)}	89.3%	12,390	96.9%	46,154	99.2%	60,441	100.0%	2,492	99.7%
폐 기 물	34	10.7%	393	3.1%	381	0.8%	_	_	8	0.3%
합 계	314 ^{주)}	100.0%	12,783	100.0%	46,535	100.0%	60,441	100.0%	2,500	100.0%

출처: 한국에너지 공단(신재생에너지 센터)

인료전지 14 (4%)

(real

태양월 85 (1%)

III. 국내 사례 [부산, 인천, 여수·광양, 평택]

니에징리(2016), 심기섭 외(2017), 정태원 외(2018) 등은 각 국내항만의 태양광활용사례를 제시·비교 하였다.

부산항

- ·2011년 태양광 1차 컨테이너화물 작업장(CFS) 지붕에 설치
- ·2016년 태양광 배후물류단지 건물 옥상 태양광 발전설비 설치

인천항

- ·2013년 인천 북항 벌크터미널 창고
- · 인천 북항 다목적부두(주) 창고 등 8개 창고 지붕에 태양광 발전 설비 설치

여수광양항

- ·2011년 국내항만 최초 컨테이 너 부두내 대규모 태양광발전설 비 구축
- ·2013년 황금물류센터 옥상에 태양광 발전 모듈을 설치
- ·2014년 '광양항 4단계 태양광 발전사업'

- ·2014년 마린센터 등 설립을 위 해 케이디 파워와 MOU체결
- ·2014년 최신 태양광 설치 기술, TCS(Team Control System) 태양광 시스템 도입

III. 국외 사례 [네덜란드, 독일, 미국 LA]

니에징리(2016), 심기섭 외(2017), 정태원 외(2018) 등은 각 국외항만의 태양광활용사례를 제시·비교 하였다.

네덜란드 로테르담항

- ·2016년 Kloosterboer Delta Terminal의 냉장 창고에 태양광 총 11,000개 패널 설치
- ·2016년 냉동 창고 위에 대형 태양광 단지 조성
- •신재생 에너지 산학 클러스터 조성

독일 함부르크항

- · CTA 물류센터 활용
- ·신재생에너지 함부르크 클러스터 조성 및 발전차액지원제도 (FiT) 도입 (HRCA 설립, 체계적 관리)

미국 LA롱비치항

- ·'Middle Harbour Terminal'재개 발 프로젝트의 태양광 발전 시스템
- ·롱비치항 터미널 E의 12개의 간이 차 고 지붕 태양광 모듈 설치
- ·Westmont 프로그램(일종의 FiT)
- ·지원금 제도 PortTech LA 프로그램

IV. 국내 신규 사례 [부산, 인천, 여수·광양, 평택]

국내 각 항만공사, KOTRA 등에서 국내 항만의 태양광 활용에 대한 현황 및 발전 계획을 제시하였으며, 본 연구에서는 이를 정리 및 비교하였다.

부산항

- ·2022년까지 총 100MW급 태 양광 발전단지 조성 통해 세계 최 대 규모 'Green Port'구축 예정
- ·2020년 6월 1단계 100MW급 태양광 발전단지를 조성
- · 항만공사는 임대 협의 및 인허 가 취득을 지원

인천항

- ·내항 갑문도수로 (해상)
- ·유휴시설 및 부지에 태양광 시 설을 구축
- ·에너지저장장치(ESS)
- ·①정박중인 선박에 공급
 - ② 한국전력공사에 판매
- ·선박형 스마트그리드 형태 (AMP)

여수・광양항

- ·해양산업클러스터 사업
- · 항만물류 R&D 분야 산업의 육 성을 위한 테스트 베드 클러스터 조성
- ·서측 배후단지일대 자전거도로 태양광발전소 사업

평택항

- ·2020년 신재생에너지 보급지 원사업 선정
- ·복합물류센터 /마린 센터/ 포승 물류부지/ 배후단지/ 홍보관등 태양광 발전소 설치 예정(옥상 등)

IV. 국외 신규 사례 [독일, 미국 샌디에이고]

국외 각 항만공사, KOTRA 등에서 국외 항만의 태양광 활용에 대한 현황 및 발전 계획을 제시하였으며, 본 연구에서는 이를 정리 및 비교하였다.

독일 함부르크항

- ·2020년 함부르크 항구 태양열 계류 시스템
- · 19개 태양광 패널의 캡스턴이 있는 퀵 릴리스 계류 후크 장치에 전원제공

미국 샌디에이고항

- ·해양 터미널(TAMT)에 태양열 마이크로그리드, 배터리 저장 시스템 및 전기 인프라 설치 계획
- •프로젝트 진행 비용 절반
- = 캘리포니아 에너지 위원회 전기 프로그램 투자변경 보조금으로 지원

IV. 국외 신규 사례 [네덜란드]

Kloosterboer Cool Port. II

- 2022년 1월 로테르담 항구 최첨단 완전자동화 냉장 시설 완공 예정
- 기존 Cool Port. I보다 에너지 효율 35~45% 더 높음
- 건물 지붕에 약 2,700개의 태양광 패널 설치
 (기존 쿨포트 1 에 설치된 태양 전지판 11,000개)

Floating panels

- 2019년 로테르담 항만청은 새로운 수상 태양열 농장 설치 계획
- 태양광 발전소를 건설하면 33,000 가구의 전력 소비에 해당하는 80~100MW의 전력 생산 가능

Wafer-thin film(태양광원리)

- 웨이퍼 박막을 통해 식용유 응결현상 해결
- 웨이퍼 박막은 창고와 사무실의 지붕에 설치되는 태양광 패널에 비하여 무게 효율적

V. 국내외 항만의 기술 및 제도 비교

국내와 국외 항만 내 태양광에너지 도입에 따른 기술 및 제도를 비교해본 결과, 국내 태양광에너지의 기술력은 세계 최고 수준이나 제도적 수준은 타 선진국에 비하여 미비한 실정이다.

	국내	국외
기술적	• 22년까지 양산 셀 제품의 기술적 한계효율 인 23% 달성 및 10%이상 단가저감	• 얇고 가벼운 웨이퍼 박막 기술 개발(네덜란드)
	• 페로브스카이트, CISG 화합물 등 차세대 전지 소대 장비 개발	• 19개의 태양광 패널이 계류 장치에 전원 제공 (독일)
	• '고효율 태양광 상용화 연구센터'구축 업계 - 부지/양산라인 정부 - 장비 R&D 지원 검토	• 마이크로 그리드, 배터리 저장 시스템 기술 개발 (미국)
제도적	• RPS 도입	• 신재생 에너지 산학 클러스터 조성(네덜란드)
	(신재생 에너지 공급 의무화 제도) • 융자지원	• 신재생에너지 함부르크 클러스터 조성(독일) (HRCA 설립, 체계적 관리) - EEG 바탕의 발전차액지원제도(FiT)도입
	・ 신재생에너지 클러스터 (새만금) ・ 한국형 FiT 도입	• Westmont 프로그램(일종의 FiT)(미국) - 지원금 제도 PortTech LA 프로그램 운영 (신재생에너지 도입 기업에 대한 과정 지원)

VI. 결론 - 도입 한계 및 태양광 확대방안

신재생에너지 도입 한계

- 공유수면 점사용 비허가
- 초기 투자비 경감을 위한 융자지원만 시행
- 항만에서 한국형 발전차액지원제도(FiT) 사용 한계
- 산·학·연 연구협력 사업 부족

국내 항만의 태양광의 확대방안

- 공유수면 점사용 허가제도 개선
- 신재생에너지 사업비 보조금 지원 및 세제 우대 방안 마련
- 공급의무화제도(RPS)와 항만에서 발전차액지원제도(FiT)의 병행 운용
- 클러스터 구축

