Since $\psi(u) = 0$ iff $u \in U$, and $\psi(v) \ge 0$ for all $v \in \mathbb{R}^n$, we have $J_{\epsilon}(u) = J(u)$, and since u_{ϵ} is the minimizer of J_{ϵ} we have $J_{\epsilon}(u_{\epsilon}) \le J_{\epsilon}(u)$, so we obtain

$$J(u_{\epsilon}) \le J(u_{\epsilon}) + \frac{1}{\epsilon} \psi(u_{\epsilon}) = J_{\epsilon}(u_{\epsilon}) \le J_{\epsilon}(u) = J(u),$$

that is,

$$J_{\epsilon}(u_{\epsilon}) \le J(u). \tag{*_1}$$

Since J is coercive, the family $(u_{\epsilon})_{\epsilon>0}$ is bounded. By compactness (since we are in \mathbb{R}^n), there exists a subsequence $(u_{\epsilon(i)})_{i\geq 0}$ with $\lim_{i\to\infty} \epsilon(i) = 0$ and some element $u' \in \mathbb{R}^n$ such that

$$\lim_{i \to \infty} u_{\epsilon(i)} = u'.$$

From the inequality $J(u_{\epsilon}) \leq J(u)$ proven in $(*_1)$ and the continuity of J, we deduce that

$$J(u') = \lim_{i \to \infty} J(u_{\epsilon(i)}) \le J(u). \tag{*2}$$

By definition of $J_{\epsilon}(u_{\epsilon})$ and $(*_1)$, we have

$$0 \le \psi(u_{\epsilon(i)}) \le \epsilon(i)(J(u) - J(u_{\epsilon(i)})),$$

and since the sequence $(u_{\epsilon(i)})_{i\geq 0}$ converges, the numbers $J(u)-J(u_{\epsilon(i)})$ are bounded independently of i. Consequently, since $\lim_{i\to\infty} \epsilon(i)=0$ and since the function ψ is continuous, we have

$$0 = \lim_{i \to \infty} \psi(u_{\epsilon(i)}) = \psi(u'),$$

which shows that $u' \in U$. Since by $(*_2)$ we have $J(u') \leq J(u)$, and since both $u, u' \in U$ and u is the unique minimizer of J over U we must have u' = u. Therfore u' is the unique minimizer of J over U. But then the whole family $(u_{\epsilon})_{\epsilon>0}$ converges to u since we can use the same argument as above for *every* subsequence of $(u_{\epsilon})_{\epsilon>0}$.

Note that a convex function $\psi \colon \mathbb{R}^n \to \mathbb{R}$ is automatically continuous, so the assumption of continuity is redundant.

As an application of Proposition 49.19, if U is given by

$$U = \{ v \in \mathbb{R}^n \mid \varphi_i(v) \le 0, \ i = 1, \dots, m \},\$$

where the functions $\varphi_i \colon \mathbb{R}^n \to \mathbb{R}$ are convex, we can take ψ to be the function given by

$$\psi(v) = \sum_{i=1}^{m} \max\{\varphi_i(v), 0\}.$$