Minimizing the number of states of a DFA

- Partition the set of states into two groups:
 - G₁: set of accepting states
 - G₂: set of non-accepting states
- For each new group G
 - partition G into subgroups such that states s₁ and s₂ are in the same group iff
 - for all input symbols a, states s_1 and s_2 have transitions to states in the same group.
- Start state of the minimized DFA is the group containing the start state of the original DFA.
- Accepting states of the minimized DFA are the groups containing the accepting states of the original DFA.

2/8/2016

Minimizing the No States of a DFA

2/8/2016

Transition table of DFA

States	Input symbol	
	a	b
→A	В	С
В	В	D
С	В	С
D	В	Е
*E	В	С

(ABCD) and (E) (ABC), (D) and (E) (AC),(B),(D) and (E) Replacing C by A

Minimized DFA

States	Input symbol	
	a	b
→A	В	A
В	В	D
D	В	Е
*E	В	A