Chantum Simple harmonic oscillator
An example of a simple harmonic oscillator
is a point mass connected to a spring whose other end fixed and is on
a frictionless surface.
The force acting on the point mass is $F = -kx$
Where k is the spring constant and F is the restoring force.
The potential energy $U = -\int F dx$
$U = -\int -kx dx$
$U = \frac{1}{2} k x^2$
The total energy of the harrmonic oscillator is $E = k.E + P.E$ $= \frac{1}{2}mv^2 + \frac{1}{2}kx^2$
$E = \frac{1}{2} KA^2 = constant$ Where A' is the amplitude of ascillation.
As the potential is independent of time, one can solve the
ine independent Schroedinger's equation to obtain the Eigenfunction.
The one-dimensional time independent Schroeelinger's equation is
$\frac{d^2 V_0}{dx^2} + \frac{2m}{h^2} (E-u) V_0 = 0$
Rearranging the above equation we get
$\frac{t^2}{2m} \frac{d^2v}{dx^2} + (E-U) \frac{1}{4}v = 0$

In order to solve the above expation, let us assume the following trial solution

In order to solve the above expation, let us assume the following trial solution

$$V_0 = N e^{ax^2} - 2$$

where N is the normalization constant and 'a' is a constant.

Differentiating eq(2) with 'x' we get

$$\frac{dV_0}{dx} = -8aN e^{-ax^2} \times (-2ax)$$

$$\frac{dV_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax) + e^{-ax^2}$$

$$\frac{dV_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax) + e^{-ax^2}$$

$$\frac{dV_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax) + e^{-ax^2}$$
Substituting (3) and (2) in (1) we get

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$
Substituting (3) and (2) in (1) we get

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2} = -8aN e^{-ax^2} \times (-2ax^2 + 1) = (3)$$

$$\frac{d^2V_0}{dx^2}$$

must vanish. RHS

This implies
$$-\frac{2a^2h^2}{m}x^2 + \frac{1}{2}kx^2 = 0$$

$$\frac{-2a^2t^2}{m} + \frac{1}{2}k = 0$$

$$\frac{2a^2t^2}{m} = \frac{1}{2}k$$

$$\alpha^2 = \frac{1}{4} \frac{mk}{4^2} \qquad -6$$

We know that $\omega_o^2 = \frac{k}{m}$, where ω_o is the angular trequency of oscillation.

$$\omega_{\delta}^{2} = \frac{k}{m}$$

$$K = m \omega_{\delta}^{2} \qquad -(7)$$

$$\frac{\alpha^2 - 1}{4} \frac{m \times m \omega_0^2}{4}$$

$$a = \frac{1}{2} \frac{m\omega_0}{t} - 8$$

Considering eq.(5), eq.(4) reduces to $E = a t^{2} - 9$

$$E = \frac{at^2}{m}$$

Substituting eq. (9) in eq. (8) We get

$$\frac{E}{2} = \frac{1}{2} \frac{m \omega_0}{t} \times \frac{t^2}{m}$$

 $E = \frac{1}{2} t \omega$ is the lowest energy level of a quantum harmonic oxillator.

The next energy levels are given as

$$E = \left(n + \frac{1}{2}\right) + 1 \quad \text{where } n = 0, 1, 2, 3, \dots$$

$$E_0 = \frac{1}{2} t \Omega$$
, $E_1 = \frac{3}{2} t \Omega$, $E_2 = \frac{5}{2} t \Omega$, ...

