Component Model Description Form (v3.0)

About

Model name	ConstantTcondHeatPump
Author / organization	Tue Vissing Jensen (DTU), Edmund Widl (AIT)
Short description	Heat pump model with constant output temperature at the condenser.
Present use / development status	Used as component model for representing the heat pump defined in system configuration MENB-SC.

Classification

Domain	 □ electrical storage □ thermal storage ⊠ energy conversion device □ other, please specify:
Intended application (including scale and resolution)	Used as part of the power-to-heat facility in system configuration $MENB-SC$, providing a coupling point between the electrical network and the thermal network. In this setup, its intended power consumption rating is 100 kW_{el} . The source for the evaporator is the thermal network's return line. The condenser's output is fed to the thermal storage tank. The model is intended for high-resolution technical simulations, e.g., implementing test case $MENB-TC01$.
Modelling of spatial aspects	 □ lumped (single device) ☑ discretized (single device) □ averaged (multiple devices) □ other, please specify: The model captures the thermodynamic processes of the heat pump's evaporator and condenser. Details about the hydraulics of the components are not considered.
Model dynamics	 □ static ⋈ quasi-static □ dynamic □ other, please specify: The model equations assume quasi-static thermodynamic processes.
Model of computation	 ⊠ time-continuous ✓ discrete-event ☐ state machine ☐ other, please specify:

	The mathematical representation of the model includes a first-order linear differential equation. Hence, the model is primarily intended for time-continuous simulations (using a numerical integrator), see Equation 11a. Alternatively, the model equations also include an (approximate) analytical solution that allows to use the model in a time-discrete simulation (e.g., in a simulation with fixed time-steps and without using a numerical integrator), see Equation 11b.
Functional representation	 ⊠ explicit ☑ other, please specify: Most model equations are explicit and can be directly used to calculate the system state through a sequence of simple calculations. However, the system dynamics is modelled implicitly with the help of a first-order linear differential equation (Equation 11a), which

Mathematical Model

Input variables	 mdot_cond_in (float): mass flow at condenser inlet [kg/s] mdot_evap_in (float): mass flow at evaporator inlet [kg/s] T_cond_in (float): temperature of mass flow at condenser inlet [°C] T_evap_in (float): temperature of mass flow at evaporator inlet [°C]
Output variables	 mdot_cond_out (float): mass flow at condenser outlet [kg/s] mdot_evap_out (float): mass flow at evaporator outlet [kg/s] T_cond_out (float): temperature of mass flow at condenser outlet [°C] T_evap_out (float): temperature of mass flow at evaporator outlet [°C] P_effective (float): electrical power consumption [kWel]
Parameters	 P_rated (float): electrical power rating [kWel] P_0 (float): electrical stand-by power consumption [kWel] T_evap_min (float): minimal evaporator outlet temperature [°C] T_cond_max (float): maximum condenser outlet temperature [°C] T_cond_target (float): condenser outlet temperature setpoint [°C] eta_sys (float): ratio between work provided by the pump and available thermodynamic work [-] eta_comp (float): compressor efficiency [-] lambda_comp (float): compressor time constant [1/s]

Internal variables	W_rated (float): mechanical power rating [kW]
	W_0 (float): mechanical stand-by power consumption [kW]
	W_cond_max (float): maximum mechanical work done in the condenser [kW]
	W_evap_max (float): maximum mechanical work done in the evaporator [kW]
	W_max (float): maximum mechanical work constraint [kW]
	W_requested (float): requested mechanical work [kW]
	W_effective (float): effective mechanical work [kW]
	Q_flow (float): requested heat flow at the condenser [kW _{th}]
	 T_cond_log (float): logarithmic mean temperature of condenser [°C]
	T_evap_log (float): logarithmic mean temperature of evaporator [°C]
	• eta (float): overall efficiency [-]
Internal constants	• Cp (float) = 4.180: specific heat capacity of water [kJ/(kg.K)]
	Governing equations
	1) mdot_cond_out = - mdot_cond_in
	2) mdot_evap_out = - mdot_evap_in
	3) T_cond_log = logmean(T_cond_in, T_cond_out)
	4) T_evap_log = logmean(T_evap_in, T_evap_out)
	5) eta=eta_sys/(1-T_evap_log/T_cond_log)
	6) Q_flow = (T_cond_target - T_cond_in) · \ ·Cp·mdot_cond_in
	7) W_cond_max = (T_cond_max - T_cond_in) · \ ·Cp·mdot_cond_in/eta
	8) W_evap_max = (T_evap_in - T_evap_min) · \ · Cp · mdot_evap_in / (eta - 1)
	9) W_max = \
	10) W_requested = clamp(0, Q_flow/eta, W_max)
	11) Alternative representation of system dynamics (a: linear differential equation, b: approximate solution for simulation step-size Δt):
	a) d/dt W_effective = lambda_comp·\
	l at
	\cdot (W_requested-W_effective)
	<pre>b) W_effective(t + Δt) = \</pre>

	+ exp(-lambda_comp·Δt)·W_effective(t)
	12) P_effective = P_0 + W_effective / eta_comp
	where
	• $logmean(x, y) = (x - y) / ln(x / y)$
	• $clamp(a, x, b) = \begin{cases} x \dots \text{ if } (x > a) \lor (x < b) \\ a \dots \text{ if } (x \le a) \\ b \dots \text{ if } (x \ge b) \end{cases}$
	Constitutive equations
	13) W_rated = P_rated · eta_comp
	14) W_0 = P_0 · eta_comp
Initial conditions	N/A
Boundary conditions	• T_evap_log < T_cond_log

Testing

Innute and somewhere	Deservators of heat numbers deli-
Inputs and parameters	Parameters of heat pump model:
	• P_rated = 50 kW _{el}
	• P_0 = 0.3 kW _{el}
	• T_evap_min = 20 °C
	• T_cond_max = 85 °C
	T_cond_target = 75 °C
	• eta_sys = 0.5
	• eta comp = 0.7
	• lambda_comp = 0.2 s ⁻¹
	Parameters of ideal mass flow sources/sinks:
	• source_evaporator
	o temperature: 30 °C
	o mass flow: 3.5 kg/s
	• source_condenser
	o temperature: 60 °C
	o mass flow: controlled by PI controllersink evaporator
	o temperature: 20 °C
	• sink condenser
	o temperature: 50 °C
	PI controller
	k (float) = 1e-3: gain of the PI controller
	Ti (float) = 1s: time constant of integrator block
	yMax (float) = 3 kg/s: upper limit of output
	yMin (float) = 0 kg/s: lower limit of output
	The PI controller setpoint is the only exogenous input to the test system:
	PI_setpoint = $\begin{cases} 25 \text{ kW}_{el} \text{ for } t \in [0,450) \\ 50 \text{ kW}_{el} \text{ for } t \in [0,900] \end{cases}$
Control function	The PI controller is modelled according to chapter 3 of reference [1].
Initial system state	The simulation starts with the heat pump close to steady state operation:
	• mdot_cond_in = 3.5 kg/s
	• mdot_evap_in = 1.2 kg/s
	• T_cond_in = 60 °C
	• T_evap_in = 30 °C
	 T_cond_out = 75 °C T evap out = 26 °C
	• P effective = 25 kW _{el}
Tomporel resolvition	_
Temporal resolution	The simulation of the heat pump model requires a numerical integrator. The simulation step size should be chosen accordingly. For the results
	reported below, the DASSL solver has been used with a tolerance of 1e-4.
Evolution of system	The simulation starts with the heat pump in steady state operation. After
state	450 seconds, the power consumption setpoint of the PI controller
	is second, the police consumption secponic of the Fr controller

	changes, resulting in a dynamic response of the heat pump, which se back to steady state operation within a short period.	ttles
Expected results	Figure 1 shows the most relevant results from the simulation of the setup. The results are also attached as dataset in "MENB_heat_pump_test.zip". The results reported here have been produced with an implementation of the heat pump model and the test system in Dymola/Mode Dymola's DASSL solver has been used with a tolerance of 1e-4. ———————————————————————————————————	file ation elica.
	20 200 400 600 800 time in s	
	o 200 400 600 800 time in s Figure 2: Expected results for the power consumption (top), temperature (middle) mass flows (bottom).	and

Model harmonization	
Narrative	See model validation test setup.
Test system configuration	See model validation test setup.
Inputs and parameters	See model validation test setup.

Control function	See model validation test setup.
Initial system state	See model validation test setup.
Temporal resolution	See model validation test setup.
Evolution of system state	See model validation test setup.
Expected results	 electrical energy consumed: 9.24 kWh thermal energy withdrawn from the evaporator mass flow: 77.4 MJ thermal energy supplied to the condenser mass flow: 121.58 MJ

Additional Information

Reference implementation	Modelica and Python implementations of this model are available online: https://github.com/ERIGrid2/benchmark-model-multi-energy-networks
Similar / related models	-
Related publications	[1] Åström K.J., and Hägglund T.: <i>PID Controllers: Theory, Design, and Tuning</i> . Instrument Society of America, 2nd edition, 1995
Intellectual property	This model is released under a BSD-3-Clause License.