Total No.	of (Questions	:	8]	
-----------	------	-----------	---	----	--

SEAT No.:	
-----------	--

[Total No. of Pages: 4

P2163

[5059]-628 B.E.(E&Tc)

MULTIRATE AND ADAPTIVE SIGNAL PROCESSING (2012 Pattern)(Elective-II)

Time : 2½ Hours | [Max. Marks : 70]

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 3) Assume suitable data, if necessary.

Q1) a) Verify Parsevals theorem for
$$x(t) = e^{-6t}$$
. $u(t)$ [6]

b) For a given signal, x(t)

$$x(t) = 1+t -1 \le t \le 0$$
$$= 1-t 0 \le t \le 1$$

ii) energy in
$$x(t)$$
 [2]

iv) Energy in
$$\frac{d}{dt}x(t)$$
 [2]

- **Q2)** a) Design at a block diagram level, a two stage decimator that down samples an audio signal by a factor 30 and satisfies the following specifications
 - i) ilp sampling frequency fs \rightarrow 240 KHz
 - ii) Highest frequency fo interest in the → 3.4KHz data
 - iii) Pass band ripple, $\delta_p \rightarrow 0.05$
 - iv) Stop band ripple, $\delta_s \rightarrow 0.01$

filter length, N=
$$\frac{-10 \log(\delta_p \delta_s)-13}{14.6 \Delta f}+1$$

Where Δf = normalized transistion width assume decimation factors of 10&3 for stages 1&2 respectively. [16]

b) For the decimator in part (a) calculate the total number of multiplications per second (MPS) and the total storage requirements (TSR) [4]

- **Q3)** a) Derive the conditions of alias cancellation for a Harr 2 band filter bank structure [8]
 - b) Find out the magnitude and phase response of the systems represented by following i/p o/p relations

i)
$$Y(n) = \frac{1}{2} [x(n) + x(n-1)]$$
 [5]

ii)
$$Y(n) = \frac{1}{2} [x(n) - x(n-1)]$$
 [5]

OR

Q4) For the signal, y(t) shown in fig-1

- a) State which V subspace Y(t) belongs to and why
- b) Calculate the piecewise constants such that y(t) belongs to V-1 & W-1 subspace [6]

[2]

- Using Harr $\phi(t/2)$, plot projections and span of y(t) on V-1 and using Harr $\psi(t/2)$, plot projections & span as y(t) on W-1 [4]
- d) Reconstruct the original signal. Show that $V_0 = V_{-1} \oplus W_{-1}$ [6]

Q5) For an adaptive filter, inputs
$$X_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 and $X_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ have target(desired)

values, $Y_1 = -1 Y_2 = 1$ respectively.

The convergence factor μ =0.3. The initial weights of the filter are W=[0 0 0].

The filter is trained using LMS algorithm, for four iterations. The inputs applied to the filters follow the sequence, $X_1, X_2, X_1 \& X_2$.

Find-

c) Find mean square error at the end of second and fourth iteration [4]

OR

Q6) a) Prove that cost function of an adaptive filter is given by

$$J(W) = E[d^{2}(n)] - 2W^{T}P_{dx} + W^{T}R_{x}W$$

Where d(n) is the desired signal

 P_{dx} is the cross correlation vector

 R_{y} is the auto correlation matrix

W is the weight vector. [8]

b) For an adaptive filter is

$$R_{x} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} P_{dx} = \begin{bmatrix} -1 & 1 \end{bmatrix}^{T} & E[d^{2}(n)] = 4$$

Find-

i) Optimum weight vector by solving wiener hoff equation [6]

ii) minimum value of the cost function [2]

Q7) $X[n]=\{40, 10, 36, 4, 48, 2, 10, 0\} \in V_3$

a) Show smoothing effect

[8]

b) Reconstruct after suppressing coefficients in Wj subspaces

[8]

OR

Q8) Write a notes on:

[16]

- a) Wavelet lifting scheme
- b) Any one application of Adaptive filters

