

salida, esto no significa que en esa ruta se llegue al punto estable en la

Salida

Figure 2: Circuito 01

Figure 5: Circuito 04

	Ejercicio Olo	
	Circuito 01 Salida F1	
	80ps tyd	60 ps tcd 4 nuta corta
		100 ps tcd
	170ps tpd	135ps tcd [3]
	2 3 rutasarticas	
	Salida F2	
	85 rs trd	70ps tod [3]
	3 nutas críticas	3, utas cortas
	Circuito 02 solida F	
	● 65ps tyd	50ps tcd
-	\$2ke fbq	65ps tcd
	• 9sps tpd	65ps ted
0	ruta crítica 100 ps tpd	80 ps tcd
	• 70 ps tpd	55 ps tod ruta corta
	Salida G 6 5 pe tpd	
	ruta critica 100 ps tyd	50ps tod
	o sops trd	40 ps ted into corta
	085ps tpd	65 ps tod
	Circuito 03 salida F	1 ruta corta
	o 80ps tpd	60 ps ted 110 pstpd 85 ps tec
	rula critica 8 145ps tpd	105 ps tcd
	• 125ps tpd	95ps tcd
manus dan salama kasa s	o 130 ps tpd	95ps tcd
	100 ps tpd	70ps tcd
	Salida 7	2
	• ssps tpd	40ps tcd ruta coota
	ruta crítica • 85 ps tpd	6Sps ted
	o tops tod	55ps tcd

Circuito 04 Salida Z	
ruta crítica 15 ps tpd Salida y	10ps ted rutacorta
2 rutas criticas 95 ps trd Salida x	ssps ted [2] anutas costas 70ps ted [2]
a rutas criticas 125 ps tpd - 70 ps tpd	9sps ted [2] 5sps ted ruta corta
- 110ps tpd	85 ps tcol [2]
≥ 85ys tpcl Salida ω	Osps tcd
2 rutas criticas 110ps tpd • 70ps tpd	85 ps tcd [2]
= 40ps tyd	30ps tcd suta corta

Universidad del Valle de Guatemala Digital 1 Jonathan Emanuel Pu Aguilera Fecha entrega: 16.08.2020

Sección lab: 11 Carné: 19249

Mux 2:1

Mux 4:1

Mux 8:1 usando 2:1

Mux 8:1 usando 4:1

Código para el mux 2x1

Código para el mux 4x1

```
//Modulo mux 4:1
module Mux_4x1(output wire Y2, input wire D0, D1, D2, D3, S0, S1);
   //declarar los cables que van a conectar los muxes2x1 entre si
   wire Y0, Y1;
   //utilizar el modulo 2x1 para conectar los selectores
   Mux_2x1 c1(Y0, D0, D1, S0); //cable de subsalida Y0, entra selector S0 y D0, D1
   Mux_2x1 c2(Y1, D2, D3, S0); //cable de subsalida Y1, entra selector S0, D2, D3
   Mux_2x1 c3(Y2, Y0, Y1, S1); //cable de salida Y, entra selector S1, y entran las salidas de los anteriores
endmodule
```

Código para el mux 8x1

```
//Modulo mux 8:1

module Mux_8x1(output wire Y5, input wire D0, D1, D2, D3, D4, D5, D6, D7, S0, S1, S2);

//declarar los subcables de los muxies4x1

wire Y3, Y4;

//utilizar dos modulos 4x1 primero

Mux_4x1 c4(Y3, D0, D1, D2, D3, S0, S1);

Mux_4x1 c5(Y4, D4, D5, D6, D7, S0, S1);

//utilizar un modulo 2x1

Mux_2x1 c6(Y5, Y3, Y4, S2);

endmodule
```

Código de implementación Tabla01 con 8x1

```
//Implementacion del ejercicio01 con muxes generados
//
//Tabla01 mux 8:1
module Tabla01_8x1(output wire Y6, input wire inA, inB, inC);
    //utilizar el modulo 8x1
    wire GND, V;
    assign GND = 0;
    assign V = 1;
    Mux_8x1 T1_8x1(Y6, GND, V, V, GND, V, GND, GND, V, inA, inB, inC);
endmodule
```

```
module testbench();
//Tabla01 con mux 8x1
    reg p1, p2, p3;
   wire out1;
   //mi modulo Tabla01 8x1 recibe la salida primero, luego las entradas
   Tabla01 8x1 T1a(out1, p1, p2, p3);
    initial begin
        #1
        $display("\n");
        $display(" Tabla01 8x1 ");
        $display("A B C | Y");
       $display("----|:);
        $monitor("%b %b %b | %b", p1, p2, p3, out1);
           //entradas comienzan todas en 0
           p1 = 0; p2 = 0; p3 = 0;
        #1 p1 = 0; p2 = 0; p3 = 1;
       #1 p1 = 0; p2 = 1; p3 = 0;
       #1 p1 = 0; p2 = 1; p3 = 1;
       #1 p1 = 1; p2 = 0; p3 = 0;
       #1 p1 = 1; p2 = 0; p3 = 1;
       #1 p1 = 1; p2 = 1; p3 = 0;
       #1 p1 = 1; p2 = 1; p3 = 1;
    end
```

Código de implementación Tabla01 con 4x1

```
//Tabla01 mux 4:1
module Tabla01_4x1(output wire Y7, input wire inA, inB, inC);

//declaracion de cables para las entradas de C
wire N1;
assign N1 = ~ inC;
//utilizar el modulo 4x1
Mux_4x1 T1_4x1 (Y7, inC, N1, N1, inC, inA, inB);
endmodule
```

```
//Tabla01 con mux 4x1
   reg p4, p5, p6;
   wire out2;
   Tabla01 4x1 T1b(out2, p4, p5, p6);
   initial begin
       #9
       $display("\n");
       $display(" Tabla01 4x1 ");
       $display("A B C | Y");
       $display("----");
       $monitor("%b %b %b | %b", p4, p5, p6, out2);
           //entradas comienzan todas en 0
           p4 = 0; p5 = 0; p6 = 0;
       #1 p4 = 0; p5 = 0; p6 = 1;
       #1 p4 = 0; p5 = 1; p6 = 0;
       #1 p4 = 0; p5 = 1; p6 = 1;
       #1 p4 = 1; p5 = 0; p6 = 0;
       #1 p4 = 1; p5 = 0; p6 = 1;
       #1 p4 = 1; p5 = 1; p6 = 0;
       #1 p4 = 1; p5 = 1; p6 = 1;
   end
```

Código de implementación Tabla01 con 2x1

```
//Tabla01 mux 2:1
module Tabla01_2x1(output wire Y8, input wire inA, inB, inC);
  wire compuerta1, compuerta2;
  assign compuerta1 = (inB) ^ (inC);
  assign compuerta2 = (inB) ~^ (inC);
  //utilizar el modulo 2x1
  Mux_2x1 T1_2x1(Y8, compuerta1, compuerta2, inA);
endmodule
```

```
//Tabla01 con mux 2x1
   reg p7, p8, p9;
   wire out3;
   Tabla01_2x1 T1c(out3, p7, p8, p9);
   initial begin
       #17
        $display("\n");
       $display(" Tabla01 2x1 ");
       $display("A B C | Y");
       $display("----");
       $monitor("%b %b %b", p7, p8, p9, out3);
           //entradas comienzan todas en 0
           p7 = 0; p8 = 0; p9 = 0;
       #1 p7 = 0; p8 = 0; p9 = 1;
       #1 p7 = 0; p8 = 1; p9 = 0;
       #1 p7 = 0; p8 = 1; p9 = 1;
       #1 p7 = 1; p8 = 0; p9 = 0;
       #1 p7 = 1; p8 = 0; p9 = 1;
       #1 p7 = 1; p8 = 1; p9 = 0;
       #1 p7 = 1; p8 = 1; p9 = 1;
   end
```

Código de implementación Tabla02 con 8x1

```
//Tabla02 mux 8:1
module Tabla02_8x1(output wire Y9, input wire inA, inB, inC);
  //declarar tierra y voltaje
  wire GND, V;
  assign GND = 0;
  assign V = 1;
  //utilizar el modulo 8x1 (recibe primero la salida)
  Mux_8x1 T2_8x1(Y9, V, V, GND, GND, V, V, V, GND, inC, inB, inA);
endmodule
```

```
//Tabla02 con mux 8x1
   reg p10, p11, p12;
   wire out4;
   Tabla02_8x1 T2a(out4, p10, p11, p12); //se tomaron las x's como 1, 1
   initial begin
       #25
       $display("\n");
       $display(" Tabla02 8x1 ");
       $display("A B C | Y");
       $display("-----|:);
       $monitor("%b %b %b | %b", p10, p11, p12, out4);
           p10 = 0; p11 = 0; p12 = 0;
       #1 p10 = 0; p11 = 0; p12 = 1;
       #1 p10 = 0; p11 = 1; p12 = 0;
       #1 p10 = 0; p11 = 1; p12 = 1;
       #1 p10 = 1; p11 = 0; p12 = 0;
       #1 p10 = 1; p11 = 0; p12 = 1;
       #1 p10 = 1; p11 = 1; p12 = 0;
       #1 p10 = 1; p11 = 1; p12 = 1;
```

Código de implementación Tabla02 con 4x1

```
//Tabla02 mux 4:1
v module Tabla02_4x1(output wire Y10, input wire inA, inB, inC);
    //declarar el cable negado C y tierra
    wire NC, GND;
    assign NC = ~(inC);
    assign GND = 0;
    //utilizar el modulo 4x1
    Mux_4x1 T2_4x1(Y10, NC, GND, inC, NC, inB, inA);
endmodule
```

```
/Tabla02 con mux 4x1
  reg p13, p14, p15;
  wire out5;
  Tabla02 4x1 T2b(out5, p13, p14, p15); //se tomaron las x's como 0, 0
  initial begin
      #33
      $display("\n");
      $display(" Tabla02 4x1 ");
      $display("A B C | Y");
      $display("----");
      $monitor("%b %b %b | %b", p13, p14, p15, out5);
          //entradas comienzan todas en 0
          p13 = 0; p14 = 0; p15 = 0;
      #1 p13 = 0; p14 = 0; p15 = 1;
      #1 p13 = 0; p14 = 1; p15 = 0;
      #1 p13 = 0; p14 = 1; p15 = 1;
      #1 p13 = 1; p14 = 0; p15 = 0;
      #1 p13 = 1; p14 = 0; p15 = 1;
      #1 p13 = 1; p14 = 1; p15 = 0;
      #1 p13 = 1; p14 = 1; p15 = 1;
  end
```

Código de implementación Tabla02 con 2x1

```
//Tabla02 mux 2:1
module Tabla02_2x1(output wire Y11, input wire inA, inB, inC);
   //necesito declarar dos compuertas
   wire compuerta1, compuerta2;
   assign compuerta1 = (inB) ~| (inC); //compuerta NOR
   assign compuerta2 = (inB) ^ (inC); //compuerta XOR
   //utilizar modulo 2x1
   Mux_2x1 T2_2x1(Y11, compuerta1, compuerta2, inA);
endmodule
```

```
//Tabla02 con mux 2x1
   reg p16, p17, p18;
   wire out6;
   Tabla02 2x1 T2c(out6, p16, p17, p18); //se tomaron las x's como 0, 0
   initial begin
       #41
       $display("\n");
       $display(" Tabla02 2x1 ");
       $display("A B C | Y");
       $display("----");
       $monitor("%b %b %b | %b", p16, p17, p18, out6);
           p16 = 0; p17 = 0; p18 = 0;
       #1 p16 = 0; p17 = 0; p18 = 1;
       #1 p16 = 0; p17 = 1; p18 = 0;
       #1 p16 = 0; p17 = 1; p18 = 1;
       #1 p16 = 1; p17 = 0; p18 = 0;
       #1 p16 = 1; p17 = 0; p18 = 1;
       #1 p16 = 1; p17 = 1; p18 = 0;
       #1 p16 = 1; p17 = 1; p18 = 1;
   end
```

```
//Fin del codigo
   initial
    #49 $finish;

//GTK Wave
   initial begin
    $dumpfile("Lab05Muxes_tb.vcd"); //nombre del archivo
    $dumpvars(0, testbench); //Nombre de este modulo
   end

//fin del modulo para las 6 tablas
endmodule
```

PS C:\Users\jpu20\Documents\GitHub\Repositorio D1 19249\Lab05 D1> apio sim			
> WARNING: no PCF file found (.pcf)			
iverilog -o Lab@5Muxes_tb.out -D VCD_OUTPUT=Lab@5Muxes_tb C:/Users/jpu2@/.apio\packages\toolchain-yosys\share\yosys/ice4@/cells_sim.v Lab@5Muxes_v Lab@5Muxes_tb.vvp Lab@5Muxes_tb.out -VCD info: dumpfile Lab@5Muxes_tb.vcd opened for output.			
Tabla01 8x1 A B C Y			
Tabla01 4x1 A B C Y			
Tabla01 2x1 A B C Y			

```
Tabla02 8x1
A B C
        | Y
0 0 0
         1
0 0 1
         1
       | 1
| 0
| 0
| 1
| 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
         1
1 1 1
          0
Tabla02 4x1
A B C
         Υ
0 0 0
         1
0 0 1
         0
       | 0
| 0
| 0
| 1
| 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Tabla02 2x1
A B C
         Υ
0 0 0
         1
0 0 1
          0
0 1 0
         0
0 1 1
         0
         0
1 0 0
1 0 1
         1
1 1 0
          1
1 1 1
          0
gtkwave Lab05Muxes_tb.vcd Lab05Muxes_tb.gtkw
```

GTK wave para la tabla01

GTK Wave para la tabla02

 $\underline{https://github.com/pu19249/Repositorio-D1-19249.git}$