Analysis of Randomized Quicksort

• Quiz 1: Given an array of $n \ge 4$ distinct elements $a_1 < a_2 < ... < a_n$, what is the probability that a_3 and a_4 are compared during randomized quicksort?

- A. 0
- B. 1/n
- C. 2/n
- D. 1

- Quiz 2: Given an array of $n \ge 4$ distinct elements $a_1 < a_2 < ... < a_n$, what is the probability that a_2 and a_4 are compared during randomized quicksort?
- A. 0
- B. 2/n
- C. 1/3
- D. 2/3

• Quiz 3: Given an array of $n \ge 2$ distinct elements $a_1 < a_2 < ... < a_n$, what is the probability that a_1 and a_n are compared during randomized quicksort?

- A. 0
- B. 1/n
- C. 2/n
- D. 1

• Quiz 4: Given an array of $n \ge 10$ distinct elements $a_1, a_2, ..., a_n$, what is the probability that a_4 and a_{10} are compared during randomized quicksort?

Analysis of Randomized Quicksort

Let RV X = number of comparisons over all calls to Partition. Suffices to compute E[X].

Analysis of Randomized Quicksort

Let RV X = number of comparisons over all calls to Partition.

Suffices to compute E[X].

Notation:

- Let $z_1, z_2, ..., z_n$ denote the list items (in sorted order).
- Let $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}.$

Let RV
$$X_{ij} = \begin{cases} 1 & \text{if } z_i \text{ is compared to } z_j \\ 0 & \text{otherwise} \end{cases}$$

That is, X_{ij} is an **indicator** random variable. $X_{ij}=I\{z_i \text{ is compared to } z_i\}.$

Thus,
$$X = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} X_{ij}$$
.

Analysis (Continued)

We have:

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P[z_i \text{ is compared to } z_j]$$

So, all we need to do is to compute $P[z_i \text{ is compared to } z_i]$.

Analysis (Continued)

 z_i and z_j are compared iff the first element to be chosen as a pivot from Z_{ij} is either z_i or z_j . [note: $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$]

Exercise: discuss this.

$$P[z_{i} \text{ is compared to } z_{j}] = P[z_{i} \text{ or } z_{j} \text{ is first pivot from } Z_{ij}]$$

$$= P[z_{i} \text{ is first pivot from } Z_{ij}]$$

$$+ P[z_{j} \text{ is first pivot from } Z_{ij}]$$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1}$$

$$= \frac{2}{j-i+1}$$

Analysis (Continued)

Therefore,

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n).$$

Substitute k = j - i.

$$\sum_{k=1}^{n} \frac{1}{k} = H_n \text{ (n}^{th} \text{ Harmonic number)}$$

$$H_n = \ln n + O(1), \text{ Eq. (A.7)}$$

Exercises on indicator random variables

• Text p 122: 5.2-1, 5.2-2, 5.2-3, 5.2-4, 5.2-5

Deterministic vs. Randomized Algorithms

- Deterministic Algorithm: Identical behavior for different runs for a given input. Worst case analysis.
- Randomized Algorithm: Behavior is generally different for different runs for a given input. Average runtime analysis.
 - Better: compute expectation & variance