Jadrá zarovnaní

Broňa Brejová 24.10.2024

Opakovanie: Heuristické lokálne zarovnávanie, BLAST

Príklad: k=2 (začíname z jadier dĺžky 2). (V praxi sa používa k=10 a viac.)

- 1. nájdi zhodné úseky
- 2. rozšír bez medzier
- 3. spoj medzerami

Senzitivita heuristického algoritmu

Odhad senzitivity:

Predpokladáme zarovnanie bez medzier, dĺžky L Každá pozícia je zhoda s pravdepodobnosťou p

Senzitivita:

 $f(L,p) = \Pr({\sf zarovnanie\ obsahuje\ } k\ {\sf zh\^{o}d\ za\ sebou})$

Senzitivita heuristického algoritmu

Predpokladáme zarovnanie bez medzier, dĺžky ${\cal L}$

Každá pozícia je zhoda s pravdepodobnosťou p

Senzitivita $f(L,p) = \Pr(\text{zarovnanie obsahuje } k \text{ zhôd za sebou})$

Náhodné premenné:

 X_i : je na pozícii i v zarovnaní zhoda?

 Y_i : je na pozícii i začiatok jadra?

$$Y = \sum_{i} Y_{i}$$

$$f(L,p) = P(Y > 0) = 1 - P(Y = 0)$$

Na zamyslenie

$$P(Y_i = 1) = ?$$

Hodnoty premennej Y?

$$E(Y) = ?$$

$$P(Y = 0) = ?$$

Príklad k=3:

AGTGGCTGCCAGGCTGG

CGAGGCTGCCTGGTTGG

 X_i 01011111110110111

 Y_i 00011111000001

Senzitivita heuristického algoritmu

Zarovnanie dĺžky L, pr. zhody p

 X_i : je na pozícii i v zarovnaní zhoda?

 Y_i : je na pozícii i začiatok jadra?

$$Y = \sum_{i} Y_i$$

P(Y=0) spočítame dynamickým programovaním

 $A[n] = \Pr(\text{zarovnanie dĺžky } n \text{ neobsahuje } k \text{ zhôd za sebou})$

Budeme rozlišovať prípady podľa toho, koľko je na konci jednotiek

Príklad k=3:

AGTGGCTGCCAGGCTGG

CGAGGCTGCCTGGTTGG

 X_i 01011111110110111

 Y_i 000111110000001

Opakovanie: ako funguje hľadanie jadier

DB: ulož k-mery do slovníka Query: hľadaj v slovníku

AGTGGCTGCCAGGCTGG cGaGGCTGCCaGGtTGG

AGTGGCTGCCAGGCTGG		cGaGGCTGCCtGGtTGG
AGTGG, 1	AGGCT,11	CGAGG, 1
GTGGC,2	AGTGG,1	GAGGC, 2
TGGCT, 3	CAGGC, 10	AGGCT, 3 -> 11
GGCTG, 4	CCAGG, 9	GGCTG, 4 -> 4,12
GCTGC, 5	CTGCC, 6	GCTGC, 5 -> 5
CTGCC, 6	GCCAG,8	CTGCC, 6 -> 6
TGCCA, 7	GCTGC,5	TGCCT, 7
GCCAG,8	GCTGG,13	GCCTG, 8
CCAGG, 9	GGCTG, 4, 12	CCTGG, 9
CAGGC, 10	GTGGC,2	CTGGT, 10
AGGCT,11	TGCCA, 7	TGGTT, 11
GGCTG, 12	TGGCT, 3	GGTTG,12
GCTGG,13		GTTGG,13

Šetrenie pamäťou: BLAT

```
k = 5, s = 3
AGTGGCTGCCAGGCTGG
cGaGGCTGCCaGGtTGG
AGTGGCTGCCAGGCTGG
                                   cGaGGCTGCCtGGtTGG
AGTGG
                       CCAGG, 9
                                   CGAGG, 1
 GTGGC
                       CTGCC, 6 GAGGC, 2
                                     AGGCT, 3
  TGGCT, 3
                       GGCTG, 12
   GGCTG
                       TGGCT, 3
                                      GGCTG, 4 -> 12
    GCTGC
                                       GCTGC, 5
                                         CTGCC, 6 -> 6
     CTGCC, 6
                                          TGCCT, 7
      TGCCA
       GCCAG
                                           GCCTG, 8
        CCAGG, 9
                                            CCTGG, 9
                                             CTGGT, 10
          CAGGC
                                              TGGTT, 11
           AGGCT
                                               GGTTG, 12
            GGCTG, 12
             GCTGG
                                                GTTGG, 13
```

Šetrenie pamäťou: minimizery

k = 5, s = 4		
AGTGGCTGCCAGGCTGG		cGaGGCTGCCtGGtTGG
AGTGG, 1	AGGCT,11	CGAGG
GTGGC	AGTGG,1	GAGGC
TGGCT	CAGGC,10	AGGCT, 3 -> 11
GGCTG	CCAGG, 9	GGCTG
GCTGC,5	CTGCC, 6	GCTGC
CTGCC, 6	GCTGC,5	CTGCC, 6 -> 6
TGCCA		TGCCT
GCCAG		GCCTG
CCAGG, 9		CCTGG, 9
CAGGC, 10		CTGGT,10
AGGCT, 11		TGGTT
GGCTG		GGTTG
GCTGG		GTTGG

BLAST vs BLAT vs minimizery

n: dĺžka DB, m: dĺžka query, krok s

Program	k-merov v slovníku	k-merov hľadáme	jadro zaručené pri
BLAST	n	m	k zhôd pri sebe
BLAT	n/s	m	k+s-1 zhôd pri sebe
minimizery	$\operatorname{cca} 2n/(s+1)$	$\operatorname{cca} 2m/(s+1)$	k+s-1 zhôd pri sebe

V počtoch k-merov sme zanedbali členy typu -k+1

Nástroj minimap2 (Heng Li 2018):

- k=15, s=10 nanopórové čítania vs genóm
- $k=15,\,s=5$ prekryvy v nanopórových čítaniach
- $k=19,\,s=10$ porovnanie genómov s 80% zhodami

MinHash

Technika navrhnutá na hľadanie podobných textov, napr. webstránok Text reprezentujeme ako množinu slov.

Jaccardova miera podobnosti množín:

Množiny $A,B\subseteq U$ (U je univerzum, napr. všetky slová) $J(A,B)=\frac{|A\cap B|}{|A\cup B|}$

Na zamyslenie:

Aké hodnoty môže J(A,B) nadobudnúť?

Za akých okolností nadobudne extrémy?

Čo by mohli byť "slová" v DNA?

Ako rýchlo spočítame?

Čo ak máme veľa dvojíc A, B?

Odhad Jaccardovej miery vzorkovaním

Chceme odhadnúť $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

Vzorkujeme u_1,u_2,\ldots,u_s rovnomerne, nezávisle z $A\cup B$ Nech $X_i=1$ ak u_i patrí do $A\cap B$ a $X_i=0$ inak $P(X_i=1)=?$

$$X = \frac{1}{s} \sum_{i=1}^{s} X_i$$

$$E(X) = ?$$

$$Var(X) \le \frac{1}{4s}$$

Nepraktické:

- nevieme rýchlo vzorkovať z $A \cup B$
- nevieme v malej pamäti zistiť, či $u_i \in A \cap B$

Odhad Jaccardovej miery hašovaním (minHash)

Nech h je (náhodná) hašovacia funkcia na U

Považujeme ju za náhodnú permutáciu

$$A=\{a_1,a_2,\ldots,a_n\}$$
 definujeme
$$minHash_h(A):=\min\{h(a_1),h(a_2),\ldots,h(a_n)\}$$

Nech X=1 ak $minHash_h(A)=minHash_h(B)$ inak 0.

Potom
$$E[X] = J(A,B) = |A \cap B|/|A \cup B|$$

Chceme počítať premenné X_1,\ldots,X_s pre nezávisle zvolené náhodné hašovacie funkcie h_1,\ldots,h_s .

MinHash

Výpočet sketchov pre dokumenty:

Zvolíme si "náhodné" hašovacie funkcie h_1,\ldots,h_s Pre každý text $A=\{a_1\ldots a_n\}$: Pre každú funkciu h_i z h_1,\ldots,h_s : $S_{A,i}=\min\{h_i(a_1),h_i(a_2),\ldots,h_i(a_n)\}$

Porovnávanie sketchov pre dokumenty:

Pre každé dva texty A, B

$$x = |\{i : S_{A,i} = S_{B,i}\}|$$

 x/s je odhad $J(A,B)$

Čas a pamäť?

Program Mash na porovnávanie genómov

Používa $k=21,\,s=1000$ (s najmenších v jednej hašovacej funkcii) sketch má asi 8kb na genóm (genóm má milióny až miliardy nukleotidov)