semestre 1

Matrices et transformations du plan

On se place dans un repère orthonormé direct (O, \vec{i}, \vec{j}) du plan.

- Une **translation** de vecteur $\vec{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ qui, à tout point M = (x,y) du plan, associe le point M' = (x',y') tel que $\vec{MM'} = \vec{u}$ se définit matriciellement comme la somme des matrices colonnes $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$
- On peut aussi définir des transformations géométriques planes à l'aide de **matrices** de transformation $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ qui, à tout point M = (x,y) du plan associent le point M' = (x',y') tel que:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix}$$

Ainsi:

- La symétrie axiale par rapport à l'axe des abscisses s'obtient en posant $T=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$;
- La symétrie axiale par rapport à l'axe des ordonnées en posant $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$;
- La rotation de centre O d'angle θ en posant $T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$;
- L'homothétie de centre O et de rapport $k \in \mathbb{R}$ en posant $T = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$.

Remarque: La translation est la seule transformation usuelle s'exprimant sous forme additive. Les autres s'expriment sous forme multiplicative.

Exemples: Pour une rotation de centre O et d'angle $\frac{\pi}{2}$, la matrice T est $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

La matrice associée à la rotation de centre O et d'angle $-\frac{2\pi}{3}$ est la matrice $T = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$

Questions préliminaires

Dans un repère orthonormé direct (O, \vec{i}, \vec{j}) , on donne A = (2, 4) et B = (5, 3).

- 1. Calculer les coordonnées de l'image A' de A par la rotation de centre O et d'angle $\frac{\pi}{3}$.
- 2. Calculer les coordonnées de l'image B' de B par la translation de vecteur $\vec{u} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Dragon de Heighway

On construit une suite de points de la façon suivante:

- Le premier point est O = (0,0).
- À partir de ce point O, chaque point est obtenu à partir de son prédécesseur en appliquant une transformation f_1 ou f_2 . Les transformations f_i sont associées à une relation matricielle de la forme

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = T_i \times \begin{pmatrix} x \\ y \end{pmatrix} + \vec{u}_i$$

- Pour chaque nouveau point, on choisit au hasard et de façon équiprobable l'une des

deux transformations
$$f_1$$
 ou f_2 suivantes:
Pour f_1 : $T_1 = \begin{pmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ et $\vec{u}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$; pour f_2 : $T_2 = \begin{pmatrix} -0.5 & -0.5 \\ 0.5 & -0.5 \end{pmatrix}$ et $\vec{u}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

- 1. Ecrire une fonction Python transformation1(p) qui prend en paramètre d'entrée un point p de coordonnées x, y et retourne les coordonnées x1, y1 de son image par f_1 .
- 2. Écrire une fonction Python transformation2(p) qui prend en paramètre d'entrée un point p de coordonnées x, y et retourne les coordonnées x^2 , y^2 de son image par
- 3. Compléter le script TP8.py à l'aide de vos fonctions transformation1(p) et transformation2(p) puis l'exécuter afin d'obtenir le dragon de Heighway.

Fougère de Barnsley

Le mathématicien anglais Michael Barnsley a décrit comment, à partir d'un point, créer des figures en forme de fougères à l'aide des transformations suivantes :

- Le premier point est O = (0,0).
- À partir de ce point O, chaque point est obtenu à partir de son prédécesseur en appliquant une transformation f_1 avec une probabilité de 0,01; f_2 avec une probabilité de 0,85; f_3 avec une probabilité de 0,07; ou f_4 avec une probabilité de 0,07.
- Les transformations f_i sont associées à une relation matricielle de la forme

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = T_i \times \begin{pmatrix} x \\ y \end{pmatrix} + \vec{u}_i$$
Pour $f_1 : T_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0.16 \end{pmatrix}$ et $\vec{u}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$; pour $f_2 : T_2 = \begin{pmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \end{pmatrix}$ et $\vec{u}_2 = \begin{pmatrix} 0 \\ 1.6 \end{pmatrix}$;
pour $f_3 : T_3 = \begin{pmatrix} 0.2 & -0.26 \\ 0.23 & 0.22 \end{pmatrix}$ et $\vec{u}_3 = \begin{pmatrix} 0 \\ 1.6 \end{pmatrix}$; pour $f_4 : T_4 = \begin{pmatrix} -0.15 & 0.28 \\ 0.26 & 0.24 \end{pmatrix}$ et $\vec{u}_4 = \begin{pmatrix} 0 \\ 0.44 \end{pmatrix}$

- 1. Modifier le programme de la partie précédente pour tracer la fougère de Barnsley.
- 2. Modifier le nombre de points tracés pour constater les effets sur la fougère.
- 3. Chacune des quatre transformations est responsable de la création d'une partie de la fougère, saurez-vous retrouver laquelle?

Fractale en forme d'arbre

On reprend le principe d'un grand nombre de répétitions d'une famille de trois transformations géométriques, cette fois-ci équiprobables.

- On pose
$$c = 0.255$$
, $r = 0.75$, $q = 0.625$, $\theta_1 = -\frac{\pi}{8}$, $\theta_2 = \frac{\pi}{5}$.
- Pour $f_1 : T_1 = \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}$ et $\vec{u}_1 = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$
- Pour $f_2 : T_2 = \begin{pmatrix} r\cos\theta_1 & -r\sin\theta_1 \\ r\sin\theta_1 & r\cos\theta_1 \end{pmatrix}$ et $\vec{u}_2 = \begin{pmatrix} 0.5 - 0.5r\cos\theta_1 \\ c - 0.5r\sin\theta_1 \end{pmatrix}$
- Pour $f_3 : T_3 = \begin{pmatrix} q\cos\theta_2 & -r\sin\theta_2 \\ q\sin\theta_2 & r\cos\theta_2 \end{pmatrix}$ et $\vec{u}_3 = \begin{pmatrix} 0.5 - 0.5q\cos\theta_2 \\ 0.6c - 0.5q\sin\theta_2 \end{pmatrix}$.

- 1. Modifier le programme de la partie précédente pour tracer la nouvelle fractale.
- 2. Modifier le nombre de points tracés et constater les effets su l'arbre.