Experimental Design Note 7 2^K Factorial Design

Keunbaik Lee

Sungkyunkwan University

2^k Factorial Design

- Involving k factors to detect the important factors in the process with a minimum of experimental units.
- Each factor has two levels (often labeled + and -)
- Factor screening experiment (preliminary study) often used to at the early stage of experimentation to detect potential candidate factors for more detailed investigation.
- Identify important factors and their interactions
- Interaction (of any order) has **ONE** degree of freedom
- Factors need not be on numeric scale
- Ordinary regression model can be employed

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

where β_1 , β_2 , and β_{12} are related to main effects, interaction effects defined later.

Chemical Processes Example

Factor		Treatment	Re	eplica	te	
Α	В	Combination	I	Ш	Ш	Total
-	-	A low, B low	28	25	27	80
+	-	A high, B low	36	32	32	100
-	+	A low, B high	18	19	23	60
+	+	A high, B high	31	30	29	90

A=reactant concentration, B=catalyst amount, y=recovery

Analysis Procedure for a Factorial Design

- Estimate factor effects
- Formulate model
 - With replication, use full model
 - With an unreplicated design, use normal probability plots
- Statistical testing (ANOVA)
- Refine the model
- Analyze residuals (graphical)
- Interpret results

The Simplest Case: 2²

Figure 6.1 Treatment combinations in the 2² design

"-" and "+" denote the low and high levels of a factor, respectively.

Estimation of Factor Effects I

$$A = \bar{y}_{A^{+}} - \bar{y}_{A^{-}} = \frac{ab + a}{2n} - \frac{b + (1)}{2n} = \frac{1}{2n} [ab + a - b - (1)]$$

$$B = \bar{y}_{B^{+}} - \bar{y}_{B^{-}} = \frac{ab + b}{2n} - \frac{a + (1)}{2n} = \frac{1}{2n} [ab + b - a - (1)]$$

$$AB = \frac{ab + (1)}{2n} - \frac{a + b}{2n} = \frac{1}{2n} [ab + (1) - a - b]$$

The effect estimates are:

$$A = 8.33$$
, $B = -5.00$, $AB = 1.67$

The quantities in brackets are **contrasts** in the treatment combinations.

Estimation of Factor Effects II

Effects and Contrasts

fac	tor			eff	ect (cont	rast)
Α	В	total	mean	1	Α	В	AB
-	-	80	80/3	1	-1	-1	1
+	-	100	100/3	1	1	-1	-1
-	+	60	60/3	1	-1	1	-1
+	+	90	90/3	1	1	1	1

■ There is a one-to-one correspondence between effects and contrasts, and contrasts can be directly used to estimate the effects.

Estimation of Factor Effects III

■ For a effect corresponding to contrast $c = (c_1, c_2, \cdots)$ in 2^2 design

$$\mathsf{effect} = \frac{1}{2} \sum_{i} c_i \bar{y}_i$$

where i is an index for treatments and the summation is over all treatments. For example,

effect(A) =
$$\frac{1}{2n} \{ (y_{++} + y_{+-}) - (y_{-+} + y_{--}) \}$$

= $\frac{1}{2} \{ \bar{y}_{++} + \bar{y}_{+-} - \bar{y}_{-+} - \bar{y}_{--} \}$,
effect(B) = $\frac{1}{2} \{ \bar{y}_{++} + \bar{y}_{-+} - \bar{y}_{+-} - \bar{y}_{--} \}$,
effect(AB) = $\frac{1}{2} \{ \bar{y}_{++} + \bar{y}_{--} - \bar{y}_{+-} - \bar{y}_{-+} \}$,

Estimation of Factor Effects IV

Sum of Squares due to Effect

- Because effects are defined using contrasts, their sum of squares can also be calculated through contrasts.
- Recall for contrast $c = (c_1, c_2, \cdots)$, its sum of squares is

$$SS_{Contrast} = \frac{(\sum_{i} c_{i} \bar{y}_{i})^{2}}{\sum_{i} c_{i}^{2}/n}$$

So

$$SS_{A} = \frac{(-\bar{y}(A_{-}B_{-}) + \bar{y}(A_{+}B_{-}) - \bar{y}(A_{-}B_{+}) + \bar{y}(A_{+}B_{+}))^{2}}{4/n} = 208.33$$

$$SS_{B} = \frac{(-\bar{y}(A_{-}B_{-}) - \bar{y}(A_{+}B_{-}) + \bar{y}(A_{-}B_{+}) + \bar{y}(A_{+}B_{+}))^{2}}{4/n} = 75.00$$

$$SS_{AB} = \frac{(\bar{y}(A_{-}B_{-}) - \bar{y}(A_{+}B_{-}) - \bar{y}(A_{-}B_{+}) + \bar{y}(A_{+}B_{+}))^{2}}{4/n} = 8.33$$

Estimation of Factor Effects V

Sum of Squares and ANOVA

		_		
Source of	Sum of	Degrees of	Mean	
Variation	Squares	Freedom	Square	F
Α	SS_A	1	MS_A	
В	SS_B	1	MS_B	
AB	SS_{AB}	1	MS_{AB}	
Error	SSE	N-4	MSE	
Total	SS_T	N-1		

where
$$SS_T = \sum_{i,j,k} y_{ijk}^2 - y.../N$$
, $SSE = SS_T - SS_A - SS_B - SS_{AB}$.

Revisit Chemical Process Example I

ANOVA Table

See Chemical-Process.SAS.

See Chemica	ai-r rocess.	JAJ.			
Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	F	P-value
A	208.33	1	208.33	53.15	0.0001
В	75.00	1	75.00	19.13	0.0024
AB	8.33	1	8.33	2.13	0.1826
Error	31.34	8	3.92		
Total	323.00	11			

Revisit Chemical Process Example II

Residuals and Diagnostic Checking

■ FIGURE 6.2 Residual plots for the chemical process experiment

Analyzing 2² Experiment using Regression Model I

Because every effect in 2^2 design, or its sum of squares, has one degree of freedom, it can be equivalently represented by a numerical variable, and regression analysis can be directly used to analyze the data. The original factors are not necessarily continuous.

Code the levels of factor A and B as follow

A
$$X_1$$
 B X_2 $y_{ijk} = /L + T_i + \beta_j + (T_i)_{ij} + \mathcal{E}_{ijk}$ -1 $+1$ $+1$ $\Sigma T_i = 0$, $\Sigma \beta_i = 0$

Fit regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

Analyzing 2² Experiment using Regression Model II

The fitted model should be
$$y = \overline{y}_{..} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

i.e., the estimated coefficients are half of the effects, respectively.

See Chemical-Process.SAS.

Analyzing 2² Experiment using Regression Model III

Response Surface

■ FIGURE 6.3 Response surface plot and contour plot of yield from the chemical process experiment

The 2³ Factorial Design I

■ FIGURE 6.4 The 2³ factorial design

(a) Geometric view

(b) Design matrix

The 2³ Factorial Design II

$$\begin{split} A &= \bar{y}_{A^+} - \bar{y}_{A^-}, \quad B &= \bar{y}_{B^+} - \bar{y}_{B^-}, \\ C &= \bar{y}_{C^+} - \bar{y}_{C^-}, \quad \text{etc...} \end{split}$$

Analysis is done via computer.

The 2³ Factorial Design III

Table of - and + Signs for the 2^3 Factorial Design

■ TABLE 6.3 Algebraic Signs for Calculating Effects in the 2³ Design

T		Factorial Effect									
Treatment Combination	I	A	В	AB	С	AC	BC	ABC			
(1)	+	-	-	+	-	+	+	_			
a	+	+	-	-	-	-	+	+			
b	+	_	+	-	_	+	-	+			
ab	+	+	+	+	-	-	-	-			
c	+	_	_	+	+	-	-	+			
ac	+	+	-	-	+	+	-	-			
bc	+	_	+	-	+	-	+	_			
abc	+	+	+	+	+	+	+	+			

The 2³ Factorial Design IV

Properties of the Table

- Except for column I, every column has an equal number of + and - signs
- The sum of the product of signs in any two columns is zero
- Multiplying any column by I leaves that column unchanged (identity element)
- The product of any two columns yields a column in the table:

$$A \times B = AB$$
. $AB \times BC = AB^2C = AC$

- Orthogonal design
- Orthogonality is an important property shared by all factorial designs

The 2³ Factorial Design V

Contrasts for Calculating Effects in 2³ Design

			factorial effects								
Α	В	С	treatment	I	A	B	AB	C	AC	BC	ABC
-	_	_	(1)	1	-1	-1	1	-1	1	1	-1
+	_	_	a	1	1	-1	-1	-1	-1	1	1
_	+	_	b	1	-1	1	-1	-1	1	-1	1
+	+	-	ab	1	1	1	1	-1	-1	-1	-1
-	_	+	С	1	-1	-1	1	1	-1	-1	1
+	_	+	ac	1	1	-1	-1	1	1	-1	-1
-	+	+	bc	1	-1	1	-1	1	-1	1	-1
+	+	+	abc	1	1	1	1	1	1	1	1

The 2³ Factorial Design VI

$$\widehat{M} = \widehat{y}_{...} = \frac{1}{8n} \left(y_{HT} + y_{HT$$

grand mean:
$$\frac{\sum_{i} \bar{y}_{i}}{2^{3}}$$

effect: $\frac{\sum_{i} c_{i} \bar{y}_{i}}{2^{3-1}}$

Contrast Sum of Squares:

$$SS_{effect} = \frac{(\sum_{i} c_{i} \overline{y}_{i.})^{2}}{2^{3}/n} = 2n(effect)^{2}$$

Variance of Estimate:

$$var(effect) = \frac{\sigma^2}{n2^{3-2}}$$

The 2³ Factorial Design VII

t-test for effects (confidence interval approach):

$$\mathsf{effect} \pm t_{lpha/2,2^k(n-1)} \mathsf{SE}(\mathsf{effect})$$

Example I

Model Coefficients-Full Model

■ TABLE 6.4

The Plasma Etch Experiment, Example 6.1

	Cod	ded Factors Etch Rate		Rate		Factor Levels				
Run	A	В	C	Replicate 1	Replicate 2	Total	Low (-1)		High (+1)	
1	-1	-1	-1	550	604	(1) = 1154	A (Gap, cm)	0.80	1.20	
2	1	-1	-1	669	650	a = 1319	B (C ₂ F ₆ flow, SCCM)	125	200	
3	-1	1	-1	633	601	b = 1234	C (Power, W)	275	325	
4	1	1	-1	642	635	ab = 1277				
5	-1	-1	1	1037	1052	c = 2089				
6	1	-1	1	749	868	ac = 1617				
7	-1	1	1	1075	1063	bc = 2138				
8	1	1	1	729	860	abc = 1589				

$$A=Gap$$
, $B=Flow$, $C=Power$, $y=Etch$ Rate

Example II

Full Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon$$

Model Coefficients for Full Model

Factor	Coefficient Estimated	DF	Standard Error	95% CI Low	95% CI High
Intercept	776.06	1	11.87	748.70	803.42
A-Gap	-50.81	1	11.87	-78.17	−23.45 ✓
B-Gas flow	3.69	1	11.87	-23.67	31.05
C-Power	153.06	1	11.87	125.70	180.42 V
AB	-12.44	1	11.87	-39.80	14.92
AC	-76.81	1	11.87	-104.17	-49.45 √
BC	-1.06	1	11.87	-28.42	26.30
ABC	2.81	1	11.87	-24.55	30.17

Example III

ANOVA Table

■ TABLE 6.6

Analysis of Variance for the Plasma Etching Experiment

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_{0}	P-Value
Gap (A)	41,310.5625	1	41,310.5625	18.34	0.0027
Gas flow (B)	217.5625	1	217.5625	0.10	0.7639
Power (C)	374,850.0625	1	374,850.0625	166.41	0.0001
AB	2475.0625	1	2475.0625	1.10	0.3252
AC	94,402.5625	1	94,402.5625	41.91	0.0002
BC	18.0625	1	18.0625	0.01	0.9308
ABC	126.5625	1	126.5625	0.06	0.8186
Error	18,020.5000	8	2252.5625		
Total	531,420.9375	15			

Example IV

Reduced Model

$$y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \epsilon$$

Model Coefficients for Reduced Model

Factor	Coefficient Estimate	DF	Standard Error	95% CI Low	95% CI High
Intercept	776.06	1	10.42	753.35	798.77
A-Gap	-50.81	1	10.42	-73.52	28.10
C-Power	153.06	1	10.42	130.35	175.77
AC	-76.81	1	10.42	-99.52	-54.10

Example V

Model Summary Statistics

 \blacksquare R^2 and adjusted R^2 for reduced model

$$R^{2} = \frac{SS_{Model}}{SS_{T}} = \frac{5.106 \times 10^{5}}{5.314 \times 10^{5}} = 0.9608$$

$$R^{2}_{Adj} = 1 - \frac{SSE/df_{E}}{SS_{T}/df_{T}} = 1 - \frac{20857.75/12}{5.314 \times 10^{5}/15} = 0.9509$$

Standard error of full model coefficients

$$se(\hat{\beta}) = \sqrt{\frac{MSE}{n2^k}} = \sqrt{\frac{2252.56}{2 \times 8}} = 11.87$$

Example VI

Confidence interval on model coefficients

$$\hat{\beta} - t_{\alpha/2, \mathsf{df_E}} \mathsf{SE}(\hat{\beta}) \leq \beta \leq \hat{\beta} + t_{\alpha/2, \mathsf{df_E}} \mathsf{SE}(\hat{\beta})$$