SIGNAL PROCESSING Through GATE

EE1205-TA Group

 $Author:\ Sayyam\ Palrecha$

Copyright ©2024 by Sayyam Palrecha

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

In	troduction	ii
1	Harmonics	1
2	Filters	3
3	Z-transform	5
4	Systems	7
5	Sequences	g
6	Sampling	11
7	Contour Integration	13
8	Laplace Transform	15
9	Fourier transform	19

Introduction

This book provides solutions to signal processing problems in GATE.

Harmonics

Z-transform

Systems

Sampling

Contour Integration

Laplace Transform

8.1 Consider the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$. The boundary conditions are y = 0 and $\frac{dy}{dx} = 1$ at x = 0. Then the value of y at $x = \frac{1}{2}$ (GATE AE 2022) Solution:

Parameters	Values	Description
y(0)	0	y at x = 0
y'(0)	1	$\frac{dy}{dx}$ at $x = 0$

Table 8.1: Parameters

$$\frac{d^2y}{dx^2} \stackrel{\mathcal{L}}{\longleftrightarrow} s^2 Y(s) - sy(0) - y'(0) \tag{8.1}$$

$$\frac{dy}{dx} \stackrel{\mathcal{L}}{\longleftrightarrow} sY(s) - y(0) \tag{8.2}$$

Applying Laplace Transform, using (8.1) and (8.2),

$$s^{2}Y(s) - sy(0) - y'(0) - 2(sY(s) - y(0)) + Y(s) = 0$$
(8.3)

From Table 8.1,

$$(s^2 - 2s + 1)Y(s) - 1 = 0 (8.4)$$

$$Y(s) = \frac{1}{(s-1)^2} \tag{8.5}$$

$$t^n \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{n!}{s^{n+1}} \tag{8.6}$$

$$e^{at}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s-a)$$
 (8.7)

Taking Inverse Laplace Transform for Y(s), using (8.6) and (8.7),

$$y(x) = xe^x (8.8)$$

$$\implies y\left(\frac{1}{2}\right) = \frac{\sqrt{e}}{2} \tag{8.9}$$

Figure 8.1: Plot of y(x)

Fourier transform