What does f' say about the graph of f? (Section 2.8) and Derivatives of Polynomials and Exponential Functions (Section 3.1)

Introduction

The derivative of a function f(x) gives a lot of information about the graph of f(x). It also tells you about the maxes and mins of f(x).

Overview

Derivative and Shape of Graph

Maxes/Mins

Second Derivative and Shape of Graph

Shortcut rules for derivatives

Recall

The derivative gives the slope of a graph.

Plugging x-values into f(x) gives the y-values of the graph of f(x)

Plugging x values into f'(x) gives the slope of the graph of f(x)

The value on the f'(x) graph corresponds to the slope on the f(x) graph

Examples

Extrema

Local extrema on a graph are peaks and valleys

The peaks are called local maxima (singular: maximum)

The valleys (low points) are local minima (singular: minimum)

Extrema

Local extrema only occur at endpoints of the domain or where the slope = 0

Points where the slope = 0 are called **critical points**

Examples

More precise definitions (Important to remember)

When we say "local max/min" we mean a point (x, y). The **value** of the max/min is the y-value.

Second derivatives

Remember: The **second derivative** of a function f(x) is found by taking the derivative twice.

In other words, find f'(x) then do (f'(x))'

The second derivative tells us how "curved" the graph is.

Concavity

The sign of f''(x) tells us about which way the graph of f(x) curves.

If f''(x) > 0 on an interval (a, b), then the function f(x) is concave up on that interval.

Concave up = "smiley face"

If f''(x) < 0 on an interval (a, b), then the function f(x) is concave up on that interval.

Concave down = "frowny face"

Cubic function example (Concavity)

Cubic function example (all three graphs)

Power rule

The rule for taking the derivative of the function $f(x) = x^n$, where n is any number is:

$$f'(x) = nx^{n-1}$$

Examples

$$f(x) = x$$

$$f(x) = x^{11}$$

$$f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x^2}$$

Constant rule

The derivative of any number (i.e., the variable x does not appear in the term) is 0.

Constant multiple rule

If a function has a number multiplied out front, then we can ignore that number while taking the derivative.

$$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

Addition/subtraction rule

If two pieces of a function are added/substracted to each other, we may calculate the derivative of each piece separately.

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Note: Does NOT work when multiplied or divided!

Example

Calculate the derivative of the following function:

$$f(x) = 3x^{2/3} - \frac{1}{x^2} + 5 \cdot 3^6$$

Example

Calculate the equation of the tangent line to f(x) at x = 1.

$$f(x) = x^3 - \frac{2}{x^2}$$

Example

Calculate the equation of the tangent line to f(x) at x = 4.

$$f(x) = \sqrt{x} - \frac{1}{x} + 2$$

Rule for ex

The derivative of $f(x) = e^x$ is easy!

$$\frac{d}{dx}e^{x}=e^{x}$$

Note: This rule changes if there is anything else in the exponent, e.g. e^{2x} (We'll talk about how to differentiate this next time.)

Examples