Exercice 7

Considérons $\mathbb{R}_n[X]$ muni du produit scalaire

$$\langle P|Q\rangle = \int_0^1 P(x)Q(x) dx$$
.

Posons L_k le polynôme égal à la dérivée $k^{\text{ième}}$ de $[X(X-1)]^k$ pour $k \in [0, n]$.

- 1. Montrer que la famille $(L_k)_{k \in [0,n]}$ est orthogonale.
- 2. Calculer la norme euclidienne de L_k pour $k \in [0, n]$.

Exercice 14

Soit E un espace euclidien et $e_1, \ldots, e_n \in E$ tels que

$$\forall x \in E$$
, $||x||^2 = \sum_{i=1}^n \langle x | e_i \rangle^2$.

- 1. Montrer que la famille $(e_1, ..., e_n)$ est génératrice.
- 2. Supposons, dans cette question, que les vecteurs e_1, \ldots, e_n sont unitaires. Montrer que (e_1, \ldots, e_n) est une base orthonormale de E.
- 3. Supposons, dans cette question, que dim E = n.
 - a. Montrer que (e_1, \ldots, e_n) est une base de E.
 - b. Montrer que

$$\forall (x, y) \in E^2, \qquad \langle x | y \rangle = \sum_{i=1}^n \langle x | e_i \rangle \langle y | e_i \rangle.$$

c. Soit $M \in \mathcal{M}_n(\mathbb{R})$ la matrice dont le coefficient en position i, j est $\langle e_i | e_j \rangle$. Montrer que $M^2 = M$ et conclure.

Exercice 15

Soit *p* un projecteur orthogonal d'un espace euclidien *E*.

- 1. Montrer que $||p(x)||^2 = \langle p(x)|x \rangle$ pour tout $x \in E$.
- 2. Montrer que, pour toute base orthonormée (e_1, \ldots, e_n) de E,

$$\sum_{k=1}^{n} ||p(e_k)||^2 = \operatorname{rg}(p).$$

Exercice 16

Soit p un projecteur d'un espace euclidien E. Montrer que p est un projecteur orthogonal si, et seulement si, $||p(x)|| \le ||x||$ pour tout $x \in E$.