

Chapter 4

Relations/Function and Matrices

Outline

Relations and their properties

Representing Relations

Closures of Relations

Equivalence Relations

Partial Orderings

Relations and Their Properties

The most direct way to express a relationship between elements of two sets is to use ordered pairs.

For this reason, sets of ordered pairs are called binary relations.

Def:

Let A and B be sets. A binary relation from A to B is a subset R of $A \times B = \{ (a,b) : a \in A, b \in B \}$.

Example:

A: the set of students in your school.

B: the set of courses.

 $R = \{ (a, b) : a \in A, b \in B, a \text{ is enrolled in course } b \}$

Def: We use the notation aRb to denote that $(a,b) \in R$, and aRb to denote that $(a,b) \notin R$.

Moreover, a is said to be related to b by R if aRb.

Example: Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$, then $\{(0,a),(0,b),(1,a),(2,b)\}$ is a relation R from A to B. This means, for instance, that 0Ra, but that 1Rb.

R

- Binary relations represent relationships between the elements of two sets.
- n-ary relations express relationships among elements of more than two sets

Representing Binary Relations

 We can represent a binary relation R by a table showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	R	u	V
0	X	X			1	
1		X		1	0	1
2	X			2	1	0

Relations vs. Functions

A relation can be used to express a $\frac{1-to-many}{n}$ relationship between the elements of the sets A and B.

Example:

• A function defined on sets A,B A -> B assigns to each element in the domain set A exactly one element from B. So it is a special relation.

Example:

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) | a \text{ divides } b\}$?

Sol:

$$R = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \}$$

Example: Consider the following relations on **Z**.

$$R_1 = \{ (a, b) \mid a \le b \}$$

 $R_2 = \{ (a, b) \mid a > b \}$
 $R_3 = \{ (a, b) \mid a = b \text{ or } a = -b \}$
 $R_4 = \{ (a, b) \mid a = b \}$
 $R_5 = \{ (a, b) \mid a = b+1 \}$
 $R_6 = \{ (a, b) \mid a + b \le 3 \}$

Which of these relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

Sol:

	(1,1)	(1,2)	(2,1)	(1,-1)	(2,2)
R_1	•				•
R_2			•	•	
R_3	•			•	•
R_4	•				•
R_5			•		
R_6	•	•	•	•	

Properties of Relations

Def. A relation R on a set A is called <u>reflexive</u> if $(a,a) \in R$ for every $a \in A$.

Example: Consider the following relations on

$$\{1, 2, 3, 4\}:$$

$$R_2 = \{ (1,1), (1,2), (2,1) \}$$

$$R_3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \}$$

$$R_4 = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \}$$
which of them are reflexive?

Sol:

 R_3

Example: Which of the relations from Example 5 are reflexive?

$$R_1 = \{ (a, b) \mid a \le b \}$$
 $R_2 = \{ (a, b) \mid a > b \}$
 $R_3 = \{ (a, b) \mid a = b \text{ or } a = -b \}$
 $R_4 = \{ (a, b) \mid a = b \}$
 $R_5 = \{ (a, b) \mid a = b+1 \}$
 $R_6 = \{ (a, b) \mid a + b \le 3 \}$
Sol: R_1 , R_3 and R_4

Symmetric and Antisymmetric:

- (1) A relation R on a set A is called symmetric if for $a, b \in A$, $(a, b) \in R \Rightarrow (b, a) \in R$.
- (2) A relation R on a set A is called <u>antisymmetric</u> if for a, $b \in A$, if $(a, b) \in R$ and $(b, a) \in R \implies a = b$.

That is, a relation is symmetric if and only if a is related to b implies that b is related to a. A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a related to b and b related to a. That is, the only way to have a related to b and b related to a is for a and b to be the same element. The terms symmetric and antisymmetric are not opposites, because a relation can have both of these properties or may lack both of them

Example: Which of the relations from are symmetric or antisymmetric?

$$R_2 = \{ (1,1), (1,2), (2,1) \}$$

 $R_3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \}$
 $R_4 = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \}$

Sol:

 R_2 , R_3 are symmetric R_4 are antisymmetric.

Example: Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Sol: It is not symmetric since 1|2 but $2 \nmid 1$. It is antisymmetric since a|b and b|a implies a=b.

Note:

Antisymmetric and symmetric can coexist

$$\forall (a,b) \in R, a \neq b$$
 $\begin{cases} \text{sym.} \Rightarrow (b,a) \in R \\ \text{antisym.} \Rightarrow (b,a) \notin R \end{cases}$

Therefore, if there is no (a, b) with a≠b in R, it can be satisfied at the same time

eg. Let $A = \{1,2,3\}$, give a relation R on A set. R is both symmetric and antisymmetric, but not reflexive.

Sol:

$$R = \{ (1,1),(2,2) \}$$

Transitive:

A relation R on a set A is called transitive if for $a, b, c \in A$, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$.

Example: Is the "divides" relation on the set of positive integers transitive?

Sol: Suppose a|b and b|c

- $\Rightarrow a|c$
- ⇒ transitive

Example: Which of the relations in R_2 , R_3 and R_4 are transitive?

$$R_2 = \{ (1,1), (1,2), (2,1) \}$$

 $R_3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \}$
 $R_4 = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \}$

Sol:

 R_2 is not transitive since $(2,1) \in R_2$ and $(1,2) \in R_2$ but $(2,2) \notin R_2$. R_3 is not transitive since $(2,1) \in R_3$ and $(1,4) \in R_3$ but $(2,4) \notin R_3$. R_4 is transitive.

Combining Relations

```
Example: Let A = \{1, 2, 3\} and B = \{1, 2, 3, 4\}.
      The relation \mathbf{R}_1 = \{(1,1), (2,2), (3,3)\}
    and \mathbf{R}_2 = \{(1,1), (1,2), (1,3), (1,4)\} can be
    combined to obtain
   R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}
   R_1 \cap R_2 = \{(1,1)\}
   R_1 - R_2 = \{(2,2), (3,3)\}
   R_2 - R_1 = \{(1,2), (1,3), (1,4)\}
   R_1 \oplus R_2 = \{(2,2), (3,3), (1,2), (1,3), (1,4)\}
       symmetric difference, which is (R_1 \cup R_2) - (R_1 \cap R_2)
```

Def: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a,c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \cap R$.

- ✓ S∘R is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S.
- ✓ For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1) in S ∘R. Computing all the ordered pairs in the composite, we find

Example : What is the composite of the relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with R = $\{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with S = $\{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

Ans. *S* ${}^{\circ}$ *R* is the relation from {1, 2, 3} to {0, 1, 2} with $S {}^{\circ}$ *R* = {(1, 0), (1,1), (2, 1), (2, 2), (3, 0), (3, 1)}.

Def: Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n$ ${}^{\circ}R$.

Example: Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , n=2, 3, 4,...

Sol.
$$R^2 = R \circ R = \{(1, 1), (2, 1), (3, 1), (4, 2)\}.$$

 $R^3 = R^2 \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\}.$
 $R^4 = R^3 \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\} = R^3.$
Therefore $R^n = R^3$ for $n = 4, 5,$

THEOREM: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Representing Relations

1. Representing Relations using Matrices

2. Representing Relations using Diagraphs

1. Representing Relations using Matrices

A relation between finite sets can be represented using a zero—one matrix.

Suppose that R is a relation from $A = \{a_1, a_2, ..., a_m\}$

to
$$B = \{b_1, b_2, ..., b_n \}.$$

The relation R can be represented by the matrix

$$M_R = [m_{ij}]$$
, where

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in \mathbb{R} \\ 0, & \text{if } (a_i, b_j) \notin \mathbb{R} \end{cases}$$

Example: Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$ Let $R = \{(a, b) \mid a > b, a \in A, b \in B\}$. What is the matrix M_R representing R?

Sol:

$$R = \{(2, 1), (3, 1), (3, 2)\}$$

$$B$$

$$1 \quad 2$$

$$1 \quad 0 \quad 0$$

$$A \quad 2 \quad 1 \quad 0$$

$$3 \quad 1 \quad 1$$

$$\therefore M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Note. Different order of elements of A and B will produce different MR. If A=B, the rows and columns should use the same order.

 \times Let $A = \{a_1, a_2, ..., a_n\}$.

A relation R on A is reflexive iff $(a_i, a_i) \in R, \forall i$.

i.e.,

$$M_R = \begin{bmatrix} a_1 & a_2 & \dots & \dots & a_n \\ a_1 & 1 & & & \\ & a_2 & & 1 \\ & & & \ddots & \\ & & & & \ddots \\ & & & & & 1 \end{bmatrix}$$
 All 1s on the diagonal. Off Diagonal Elements can Be 0 or 1.

 \aleph The relation R is symmetric iff $(a_i, a_j) \in R \Rightarrow (a_j, a_i) \in R$. This means $m_{ii} = m_{ii}$ (i.e. MR is a symmetric matrix).

$$M_R = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & & & \\ 0 & & & \end{bmatrix} = (M_R)^t$$

The relation R is antisymmetric iff $(a_i,a_j)\in R$ and $i\neq j\Rightarrow (a_j,a_i)\notin R$. This means that if $m_{ij}=1$ with $i\neq j$, then $m_{ji}=0$. i.e.,

$$M_R = \begin{bmatrix} 1 & 1 \\ 0 & \cdot & 0 \\ 1 & \cdot & 0 \end{bmatrix}$$

* The transitive property is not easy to judge directly from the matrix, and needs to be calculated

Example: Suppose that the relation *R* on a set is represented by the matrix

$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Sol:

Reflexive

Symmetric

Not Antisymmetric

Example: Suppose that $S=\{0, 1, 2, 3\}$. Let R be a relation containing (a, b) if $a \le b$, where $a \in S$ and $b \in S$. Is R reflexive, symmetric, antisymmetric?

Sol:

$$M_R = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 0 & 0 & 1 & 1 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 \times R is reflexive and antisymmetric, not symmetric.

Example: Suppose the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

Sol:

$$M_{R_1 \cup R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R_1 \cap R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example: Find the matrix representing the relation $S^{\circ}R$, where the matrices representing R and S are

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Sol:

$$M_{S^{\circ}R} = M_R \odot M_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

After $M_R \times M_S$ (matrix multiplication) change numbers

Example 6. Find the matrix representing the relation R^2 , where the matrix representing R is

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Sol:

$$M_{R^2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

2. Representing Relations using Digraphs

Def: A directed graph (digraph) consists of a set *V* of vertices (or nodes) together with a set *E* of ordered pairs of elements of *V* called edges (or arcs).

Example: Show the digraph of the relation $R = \{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$.

Sol:

Vertex: 1, 2, 3, 4
Edge: (1,1), (1,3),
(2,1), (2,3), (2,4),
(3,1), (3,2),
(4,1)

X The relation R is Reflexive iff for every vertex,

X The relation R is Symmetric iff for any vertices $x \neq y$, either

(If there is an edge between two points, it must be a pair of edges in different directions)

X = X = X + Y. The relation X = X + Y + Y = X + Y = X + Y + Y = X + Y + Y = X + Y + Y = X + Y + Y = X + Y + Y + Y = X + Y

If there is an edge between two points, there must be only one edge

X The relation R is Transitive iff for $a, b, c \in A$, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$.

This means:

(As long as point x has a path to point y, x must have an edge directly connected to y)

Example: Determine whether the relations R and S are reflexive, symmetric, antisymmetric, and/or transitive

Sol:

not reflexive, symmetric not antisymmetric not transitive $(b \rightarrow a, a \rightarrow c, b \rightarrow c)$

Irreflexive : $(a,a) \notin R$, $\forall a \in A$

Closures of Relations

Closures of Relations

Def: The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

- ➤In terms of the digraph representation of R
 - To find the reflexive closure add loops.
 - To find the symmetric closure add arcs in the opposite direction.
 - To find the transitive closure if there is a path from a to b, add an arc from a to b.

Closures of Relations

Closures

The relation $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A = \{1, 2, 3\}$ is not reflexive.

Q: How to construct a smallest reflexive relation R_r such that $R \subseteq R_r$?

Sol: Let $R_r = R \cup \{(2,2), (3,3)\}.$ i. e., $R_r = R \cup \Delta$, where $\Delta = \{(a, a) | a \in A\}.$

 R_r is a reflexive relation containing R that is as small as possible. It is called the reflexive closure of R.

Example: What is the reflexive closure of the relation $R=\{(a,b) \mid a < b\}$ on the set of integers?

Sol:
$$R_r = R \cup \Delta = \{(a,b) \mid a < b\} \cup \{(a,a) \mid a \in \mathbb{Z}\}$$

= $\{(a,b) \mid a \le b, a,b \in \mathbb{Z}\}$

Example:

The relation $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ on the set $A=\{1,2,3\}$ is not symmetric. Find a smallest symmetric relation R_s containing R.

Sol: Let
$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

Let $R_s = R \cup R^{-1} = \{ (1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (1,3), (3,2) \}$

 R_s is called the Symmetric Closure of R.

Example: What is the symmetric closure of the relation $R=\{(a,b) \mid a>b \}$ on the set of positive integers?

Sol:

The symmetric closure of R is the relation

R U R-1 =
$$\{(a, b) \mid a>b\}\cup\{(b, a) \mid a>b\}=\{(a, b) \mid a = b\}$$
OR

$$R \cup \{ (b, a) \mid a > b \} = \{ (c, d) \mid c \neq d \}$$

Def:

1.(Reflexive Closure of R on A)

 R_r =the smallest reflexive relation containing R.

$$R_r = R \cup \{ (a, a) \mid a \in A, (a, a) \notin R \}$$

2.(Symmetric Closure of R on A)

 R_s =the smallest symmetric relation containing R.

$$R_s = R \cup \{ (b, a) \mid (a, b) \in R \text{ and } (b, a) \notin R \}$$

3.(Transitive closure of *R* on *A*)

 R_t =the smallest transitive relation containing R.

$$R_t = R \cup \{(a, c) \mid (a, b) \in R_t \text{ and } (b, c) \in R_t, \text{ but } (a, c) \notin R_t \}$$
 (repeat)

Note. There is no antisymmetric closure, because if it is not antisymmetric, it means that there is $a\neq b$, and (a,b) & (b,a) are both $\in R$, then adding any pair cannot become antisymmetric.

Paths in Directed Graphs

Def: A path from a to b in the digraph G is a sequence of edges $(x_0, x_1), (x_1, x_2), \ldots, (x_{n-1}, x_n)$ in G, where $n \in \mathbb{Z}^+$, and $x_0 = a, x_n = b$. This path is denoted by $x_0, x_1, x_2, \ldots, x_n$ and has length n.

Example:

Theorem: Let R be a relation on a set A. There is a path of length n, where $n \in \mathbb{Z}^+$, from a to b if and only if $(a, b) \in R^n$.

Transitive Closures

Def: Let R be a relation on a set A. The connectivity relation R^* consists of pairs (a, b) such that there is a path of length at least one from a to b in R.

i.e.,
$$R^* = \bigcup_{i=1}^{\infty} R^i$$

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Lemma 1 Let R be a relation on a set A with /A/=n. then

$$R^* = \bigcup_{i=1}^n R^i$$

Example: Let R be a relation on a set A, where $A = \{1,2,3,4,5\}$, $R = \{(1,2),(2,3),(3,4),(4,5)\}$. What is the transitive closure R, of R?

Theorem: Let M_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^* is

$$M_{R^*} = M_R \vee M_R^{[2]} \vee \cdots \vee M_R^{[n]}.$$

Example: Find the zero-one matrix of the transitive closure of the relation R where $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

 $M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Equivalence Relations

Equivalence Relations

Def: A relation *R* on a set *A* is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example:

Let R be the relation on the set of integers such that aRb if and only if a=b or a=-b. Then R is an equivalence relation.

Example:

Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Then R is an equivalence relation. **Example:** (Congruence Modulo *m*)

Let $m \in \mathbb{Z}$ and m > 1. Show that the relation

 $R=\{(a,b) \mid a\equiv b\pmod{m}\}$ is an equivalence relation on the set of integers.

(a is congruent to b modulo m, a and b have the same remainder when divided by m)

- Sol: Note that $a \equiv b \pmod{m}$ iff $m \mid (a-b)$.
 - $: \oplus a \equiv a \pmod{m} \Rightarrow (a, a) \in R \Rightarrow \mathsf{reflexive}$
 - ② If $a \equiv b \pmod{m}$, then a-b=km, $k \in \mathbb{Z}$ $\Rightarrow b-a=(-k)m \Rightarrow b \equiv a \pmod{m} \Rightarrow \text{symmetric}$
 - ③ If $a\equiv b \pmod{m}$, $b\equiv c \pmod{m}$ then a-b=km, b-c=lm $\Rightarrow a-c=(k+l)m \Rightarrow a\equiv c \pmod{m} \Rightarrow \text{transitive}$
 - $\Rightarrow u c (\kappa + \iota)m \Rightarrow u c \pmod{m} \Rightarrow u = \iota \text{ ansitive}$
 - \therefore R is an equivalence relation.

Let l(x) denote the length of the string x.

Suppose that the relation

 $R=\{(a,b) \mid l(a)=l(b), a,b \text{ are strings of English letters }\}$ Is R an equivalence relation?

- ② $(a,b) \in R$ ⇒ $(b,a) \in R$ ⇒ symmetric \rbrace Yes.

Example: Let R be the relation on the set of real numbers such that xRy if and only if x and y differ by less than 1, that is |x-y| < 1. Show that R is not an equivalence relation.

Sol:

- ① $xRx \ \forall x \ \text{since} \ x-x=0$ $\Rightarrow \text{reflexive}$
- ② $xRy \Rightarrow |x-y| < 1 \Rightarrow |y-x| < 1 \Rightarrow yRx$ \Rightarrow symmetric
- ③ xRy, $yRz \Rightarrow |x-y| < 1$, |y-z| < 1 $\Rightarrow |x-z| < 1$ $\Rightarrow \text{Not transitive}$

Take x = 2.8, y = 1.9, and z = 1.1, so |x - y| = |2.8 - 1.9| = 0.9 < 1, |y - z| = |1.9 - 1.1| = 0.8 < 1, but |x - z| = |2.8 - 1.1| = 1.7 > 1. That is, 2.8R 1.9, 1.9R 1.1, but 2.8 R 1.1.

Equivalence Classes

Def:

Let R be an equivalence relation on a set A.

The equivalence class of the element $a \in A$ is

$$[a]_R = \{ s \mid (a, s) \in R \}$$

For any $b \in [a]_R$, b is called a <u>representative</u> of this equivalence class.

Note:

If
$$(a, b) \in R$$
, then $[a]_R = [b]_R$.

What are the equivalence class of 0 and 1 for congruence modulo 4?

```
Let R = \{ (a,b) \mid a \equiv b \pmod{4} \}

Then [0]_R = \{ s \mid (0,s) \in R \}

= \{ ..., -8, -4, 0, 4, 8, ... \}

[1]_R = \{ t \mid (1,t) \in R \} = \{ ..., -7, -3, 1, 5, 9, ... \}
```

Equivalence Classes and Partitions

Def.

A <u>partition</u> of a set S is a collection of disjoint nonempty subsets A_i of S that have S as their union.

In other words, we have $A_i \neq \emptyset$, $\forall i$,

$$A_i \cap A_j = \emptyset$$
 , for any $i \neq j$, and $\bigcup A_i = S$.

Example:

Suppose that $S=\{1, 2, 3, 4, 5, 6\}$. The collection of sets $A_1=\{1, 2, 3\}$, $A_2=\{4, 5\}$, and $A_3=\{6\}$ form a partition of S.

THEOREM:

Let R be an equivalence relation on a set A. Then the equivalence classes of R form a partition of A.

Example:

List the ordered pairs in the equivalence relation R produced by the partition A_1 ={1, 2, 3}, A_2 ={4, 5}, and A_3 ={6} of S={1, 2, 3, 4, 5, 6}.

$$R = \{ (a, b) \mid a, b \in A_1 \} \cup \{ (a, b) \mid a, b \in A_2 \}$$

$$\cup \{ (a, b) \mid a, b \in A_3 \}$$

$$= \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2),$$

$$(3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6) \}$$

The equivalence classes of the congruence modulo 4 relation form a partition of the integers. OR

What are the sets in the partition of the integers arising from congruence modulo 4?

Sol: There are four congruence classes, corresponding to [0]4, [1]4, [2]4, and [3]4. They are the sets

$$[0]_4 = \{ \dots, -8, -4, 0, 4, 8, \dots \}$$

$$[1]_4 = \{ \dots, -7, -3, 1, 5, 9, \dots \}$$

$$[2]_4 = \{ \dots, -6, -2, 2, 6, 10, \dots \}$$

$$[3]_4 = \{ \dots, -5, -1, 3, 7, 11, \dots \}$$

Partial Orderings

Partial Orderings

Def: A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set *S* together with a partial ordering *R* is called a partially ordered set, or poset, and is denoted by (*S*, *R*).

Example:

Show that the "greater than or equal" (≥) is a partial ordering on the set of integers.

①
$$x \ge x \ \forall x \in \mathbb{Z}$$
 \Rightarrow reflexive

② If
$$x \ge y$$
 and $y \ge x$ then $x = y$. \Rightarrow antisymmetric

Def:

The elements a and b of a poset (S, \preceq) are called comparable if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \preceq b$ or $b \preceq a$, a and b are called incomparable.

Example:

In the poset (\mathbb{Z}^+ , |), are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Sol:

 $3|9 \Rightarrow comparable$

 $5/\sqrt{7}$ and $7/\sqrt{5} \Rightarrow$ incomparable

Def: If (S, \preceq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preceq is called a total order or a linear order. A totally ordered set is also called a chain.

Example:

The poset (\mathbf{Z}, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.

Example:

The poset $(\mathbf{Z}^+, |)$ is not totally ordered.

Lexicographic Order:

The words in a dictionary are listed in alphabetic, or lexicographic, order, which is based on the ordering of the letters in the alphabet.

Def. Let (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) be two posets. The lexicographic ordering \preccurlyeq on $A_1 \times A_2$ is defined as $(a_1, a_2) \prec (b_1, b_2)$ either if $a_1 \prec_1 b_1$ or if both $a_1 = b_1$ and $a_2 \prec_2 b_2$ We obtain a partial ordering \preccurlyeq by adding equality to the ordering \prec on $A_1 \times A_2$.

In the poset $(\mathbb{Z}\times\mathbb{Z}, \preccurlyeq)$, where \preccurlyeq is the lexicographic ordering constructed from the usual \leq relation on \mathbb{Z} .

$$(3,5) \prec (4,8),$$

 $(3,8) \prec (4,5),$

$$(4, 9) \prec (4, 11)$$

Sol: The Ordered Pairs Less Than (3, 4) in Lexicographic Order.

Hasse Diagrams:

Graphical representation of the relation of elements of a **partially ordered set (poset)** with an implied *upward orientation*. A point is drawn for each element of the **poset** and joined with the line segment according to the following rules:

- If p < q in the poset, then the point corresponding to p appears lower in the drawing than the point corresponding to q.
- ■The two points p and q will be joined by line segment if p is related to q.

Draw the Hasse diagram representing the partial ordering $\{(a, b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.

Draw the Hasse diagram for the partial ordering $\{(A, B) | A \subseteq B\}$ on the power set P(S) where $S=\{a, b, c\}$.

Maximal and Minimal Elements

Def.

An element $a \in S$ is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$. Similarly, an element $a \in S$ is minimal if there is no $b \in S$ such that $b \prec a$. a is the greatest element of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$. a is the least element of (S, \preccurlyeq) if $a \preccurlyeq b$ for all $b \in S$.

Example:

8, 12 are maximal,1 is least and minimal,no greatest element

Def.

Let A be a subset of a poset (S, \preceq) . If u is an element of S such that $a \preceq u$ for all elements $a \in A$, then u is called an upper bound of A.

If l is an element of S such that $l \preceq a$ for all elements $a \in A$, then l is called an lower bound of A.

$$A = \{2, 6\}$$

upper bound of A: 6, 12

lower bound of A: 1, 2

Def.

Let A be a subset of a poset (S, \preceq) . An element x is called the least upper bound of A if x is an upper bound of A and $x \preceq z$ whenever z is an upper bound of A.

Let A be a subset of a poset (S, \preceq) . An element x is called the greatest lower bound of A if x is a lower bound of A and $y \preceq x$ whenever y is a lower bound of A.

 $A_1=\{d, e\}, A_2=\{b, c\}$ least upper bound of $A_1=f$ A_1 has no greatest lower bound A_2 has no least upper bound greatest lower bound of $A_2=a$

Lattices

Def. A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.

Example:

Determine whether the following posets are lattices.

Is the poset (**Z**⁺, |) a lattice?

Sol: For any $a, b \in \mathbb{Z}^+$, gcd(a,b) is the greatest lower bound of a, b: least common multiple lcm(a,b) is the least upper bound of a, b: greatest common divisor \Rightarrow Yes

Example:

Determine whether the posets $(\{1, 2, 3, 4, 5\}, |)$ and $(\{1, 2, 4, 8, 16\}, |)$ are lattices.

Sol: In $(\{1, 2, 3, 4, 5\}, |)$, 2 and 3 has no l.u.b. \Rightarrow No.

 $\ln (\{1, 2, 4, 8, 16\}, \|)$

any a, b has l.u.b. and g.l.b. \Rightarrow Yes.

Topological Sorting

Suppose that a project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?

Def.

A total ordering \prec is said to be compatible with the partial ordering R if $a \prec b$ whenever aRb.

Constructing a compatible total ordering from a partial ordering is called topological sorting.

Lemma 1.

Every finite nonempty poset (S, \preceq) has at least one minimal element.

Topological sorting: Output minimal element one by one, that is, get compatible total ordering from small to large

Example:

Find a compatible total ordering for the poset $(\{1, 2, 4, 5, 12, 20\}, |)$.

Sol:

$$1 \prec 2 \prec 5 \prec 4 \prec 12 \prec 20$$

The order of 2 and 5 can be swapped, as can 12 and 20