

M.E. 227.3 Thermodynamics I
Department of Mechanical Engineering
Final Examination
2:00pm December 19, 2000

Time: 3 hours
Calculators Allowed
Formula Sheet Supplied

Total Marks: 100
Closed Book
This exam has SIX questions

- (10) 1. Briefly define the following terms:
- Reversible process.
 - Critical point.
 - Quality.
 - Adiabatic.
 - Polytropic process.
- (10) 2. Describe the conditions under which the assumption of constant specific heats for an ideal gas is valid. Why?
- (20) 3. A piston-cylinder device contains 1 kg of air which undergoes a cycle consisting of the following three reversible processes from an initial state of $P_1 = 100 \text{ kPa}$ and $T_1 = 200^\circ\text{C}$.
- adiabatic expansion
 - constant volume process
 - constant temperature process
- The net work for the cycle is -6.3 kJ . Sketch the cycle on $P - v$ and $P - h$ coordinates. Find the heat transfer for each of the three processes. Assume that air behaves as an ideal gas ($R = 287 \text{ J/kg/K}$) with constant $c_v = 720 \text{ J/kg/K}$. $(0, 61.5 \text{ kJ}, -67.8 \text{ kJ})$
- (20) 4. A perfectly-insulated, 0.5 m^3 , rigid vessel is initially empty but develops a small leak and eventually fills with air from the surroundings which are at 100 kPa and 300 K . What is the mass of air in the vessel when flow eventually stops? Assume that air behaves as an ideal gas. (0.415 kg)
- (20) 5. A vapour compression refrigeration system uses R134a as its working fluid. The evaporator and condenser pressures are 2 bar and 7 bar respectively. The temperature at the inlet to the compressor is 0°C and the isentropic efficiency of the compressor is 85%. The refrigeration effect is 8 kW and the coefficient of performance is 5.2. What is the flowrate of the refrigerant and what input power is required? What is the quality at the inlet to the evaporator? $Q. 0.481 \text{ kg/s}, -1.54 \text{ kW}, 23\%$
- (20) 6. An ideal Rankine cycle with reheat operates with steam generator outlet conditions of 8 MPa and 531.4°C . The condenser pressure is 20 kPa . Assume that the exit of the condenser is a saturated liquid. If all liquid is to be eliminated from the turbines, calculate the minimum pressure at which a reheat can be installed and the minimum amount of reheat which must be added (in kJ/kg). What is the thermal efficiency of the cycle under these conditions?
-

$500 \text{ kPa}, 602.7 \text{ kJ/kg}, 38.2\%$

M.E. 227.3 Thermodynamics I
Department of Mechanical Engineering
Final Examination
9:00am December 10, 2001

Time: 3 hours
Calculators Allowed
Formula Sheet Supplied

Total Marks: 100
Closed Book
This exam has SIX questions

- (10) 1. Briefly define the following terms:
- (a) Thermal equilibrium.
 - (b) Extensive properties.
 - (c) Reheater.
 - (d) Clausius Inequality.
 - (e) Ideal gas.
- (10) 2. Briefly explain why the sudden expansion of a gas is an irreversible process.
- (20) 3. A piston-cylinder device contains 2.5 kg of air which undergoes a power cycle consisting of the following three reversible processes from an initial state of 100 kPa and 200°C.
(a) constant volume process to 400°C
(b) adiabatic expansion
(c) constant temperature process
- (16.7%)
- Find the thermal efficiency of this cycle. Assume that air behaves as an ideal gas ($R = 0.287 \text{ kJ}/(\text{kg} \cdot \text{K})$) with constant $c_v = 0.720 \text{ kJ}/(\text{kg} \cdot \text{K})$.
- (20) 4. A turbine receives superheated steam at 10 MPa and 520°C. The expansion through the turbine follows $Pv^{1.3} = \text{constant}$. The turbine exit is at 1 bar. Determine the amount of heat transfer between the turbine and the surroundings. (- 482.4 kJ/kg)
- (20) 5. A vapour compression refrigeration system uses R134a as its working fluid. The condenser pressure is 7 bar and the evaporator pressure is 1 bar. The cycle rejects heat at a rate of 8.42 kW. The outlet of the condenser is subcooled by 4°C. The isentropic efficiency of the compressor is 85% and it performs 50.97 kJ/kg of work on the refrigerant. What is the refrigeration effect? What is the coefficient of performance? (6.41 kW, 3.21)
- (20) 6. An ideal Rankine cycle has an open feedwater heater operating at 1 MPa. The steam generator outlet conditions are 8 MPa and 520°C. The condenser pressure is 30 kPa. Assume that the exit of the condenser is a saturated liquid. The temperature at the exit of the feedwater heater is 180°C. Clearly sketch the cycle on a $T - s$ diagram. What is the thermal efficiency of the cycle? (51.3%)
-

M.E. 227.3 Thermodynamics I
Department of Mechanical Engineering
Final Examination
9:00am December 10, 2002

Time: 3 hours

Total Marks: 100

Calculators Allowed

Closed Book

Formula Sheet Supplied

This exam has FIVE questions

- (20) 1. A heat engine draws 10 kW of heat from a reservoir at 800 K. The work it produces drives a refrigerator which produces a refrigeration effect of 10 kW. Both devices reject heat to a reservoir at 300 K. What is the lowest possible temperature of the space cooled by the refrigerator? **(184.6 K)**
- (20) 2. Air undergoes a Carnot power cycle in a closed system. The high and low temperature extremes are 700 K and 300 K. The high and low pressure extremes are 30 bar and 1 bar. Determine the net work (in kJ/kg) for this cycle. Assume that air behaves as an ideal gas ($R = 0.287 \text{ kJ}/(\text{kg} \cdot \text{K})$) with constant $c_v = 0.720 \text{ kJ}/(\text{kg} \cdot \text{K})$. **(50 kJ/kg)**
- (20) 3. A proposed heat engine produces work at a rate of 6.5 MW while operating at steady state. Air enters the engine at 10 bar and 600 K and leaves at 1 bar and 500 K. The mass flow rate of the air is 1.2 kg/s. The engine also receives superheated steam at 20 bar and 500°C which leaves the engine as a saturated vapour at 1 bar. The engine is well insulated from its surroundings and kinetic and potential energy may be neglected. Assume that air behaves as an ideal gas with $R = 0.287 \text{ kJ}/(\text{kg} \cdot \text{K})$. Is the power output claimed possible? **(Not Possible)**
- (20) 4. A vapour compression refrigeration system uses R134a as its working fluid. The entrance to the compressor is a saturated vapour and the exit of the condenser is a saturated liquid. The evaporator pressure is 1 bar and the isentropic efficiency of the compressor is 90%. If the refrigeration effect is 20 kW and the mass flow rate of refrigerant is 0.1383 kg/s, what is the coefficient of performance? What is the maximum possible coefficient of performance for any refrigerator operating between the same temperature limits? **(3.24, 3.71)**
- (20) 5. A Rankine cycle has an open feedwater heater operating at 1 MPa. The steam generator outlet conditions are 8 MPa and 520°C. The condenser pressure is 30 kPa. The pumps are isentropic but the turbines have efficiencies of 80%. The entrance to both pumps is a saturated liquid. What is the thermal efficiency of the cycle? **(32.0 %)**
-