

Politechnika Bydgoska im. J. J. Śniadeckich Wydział Telekomunikacji, Informatyki i Elektrotechniki **Zakład Systemów Teleinformatycznych**

Przedmiot	Przetwarzanie obrazów	
Prowadzący	mgr inż. Grzegorz Czeczot	
Temat	Operacje arytmetyczne	
Student		
Nr lab.	3	Data wykonania
Ocena		Data oddania spr.

1. Cel ćwiczenia

Podczas laboratorium zostanie wykonana seria zadań dotyczących operacji arytmetycznych na obrazach, a więc modyfikacji jasności czy kontrastu.

2. Wstęp teoretyczny

Operacje arytmetyczne są kolejnymi z najbardziej podstawowych operacji, jakie wykonuje się na obrazie. Zgodnie z definicją, w dziedzinie przetwarzania obrazów, są to takie działania, w efekcie których zmieniana jest intensywność piksela, a jego położenie nie zmienia się. Zalicza się tutaj wszelkiego rodzaju modyfikacje jasności czy kontrastu.

3. Zadania do samodzielnego wykonania

3.1. Zadanie 1.

Utworzyć nowy projekt w NetBeans lub uruchomić projekt utworzony na poprzednich zajęciach. Napisać program, który wczyta dowolny obrazek do pamięci, a następnie zmieni jego kontrast i wyświetli go w nowym oknie.

3.2. Zadanie 2.

Zmienić treść programu tak, aby kontrast pozostał bez zmian, ale zmodyfikowana była jasność obrazu.

3.3. Zadanie 3.

Zmienić treść programu tak, aby wczytywał dwa obrazki, nakładał je na siebie tworząc efekt przezroczystości (pokazany na rysunku obok) i wyświetlał je razem w okienku.

Uwaga: czy wszystkie obrazy udaje się nałożyć na siebie?

3.4. Zadanie 4.

Normalizacja to proces zmiany kolorów w obrazie tak, aby zajmował cały przedział kolorów.

Przykład. Wartości intensywności pikseli obrazu A zawierają się w przedziale (0, 255), czyli nie ma żadnego elementu całkiem białego i całkiem czarnego. Po normalizacji ten przedział będzie domknięty obustronnie.

W tym zadaniu należy zmodyfikować program, tak aby wczytywał **poniższy** rysunek, sprawdzał największą i najmniejszą wartość piksela w obrazku. Następnie przeprowadzić normalizację w przedziale <0, 255> i ponownie wypisać największą i najmniejszą wartość.

Wskazówka: do znalezienia wartości największej i najmniejszej można wykorzystać obiekt *MinMaxLocResult*.

3.5. Zadanie 5.

Zazwyczaj obrazy, które były wykorzystywane na laboratorium, posiadały trzy kanały: czerwony, niebieski i zielony.

Zmienić treść programu tak, aby rozkładał on wczytany obraz (użyć powyższego lub innego, który będzie wykorzystywał trzy podstawowe kolory: czerwony (255-0-0), zielony (0-255-0) i niebieski (0-0-255)) na trzy składowe i zapisywał każdą z nich w oddzielnym obrazku na dysku.

Jak można wyjaśnić "znikanie" elementów?

3.6. Zadanie 6.

W przetwarzaniu obrazów wyróżnia się wiele przestrzeni barw. Najbardziej podstawowa to ta, która zawiera czerwony, niebieski i zielony. Inną przestrzenią jest HSV.

Zmienić kod programu tak, aby wczytywał obraz w przestrzeni kolorów HSV. Czy obraz się różni? W sprawozdaniu wyjaśnić krótko czym jest HSV i jak możemy dokonać konwersji między przestrzeniami RGB i HSV.

3.7. Zadanie 7.

Binaryzacja in. progowanie (ang. *thersholding*), to najprostsza metoda segmentacji obrazu. Pozwala wydzielić pierwszy plan obrazu od jego tła. W bibliotece OpenCV jest kilka różnych sposobów binaryzacji.

Zmienić kod programu tak, aby wczytywał on obraz w skali szarości, a następnie przeprowadzał jego binaryzację. Sprawdzić różne metody i różne wartości progów.

3.8. Zadanie 8.

W OpenCV obrazy są macierzami. Można na nich wykonywać podstawowe operacje arytmetyczne takie jak dodawanie, odejmowanie, mnożenie i dzielenie (operacje te są dostępne w pakiecie *Core*).

Zmienić kod programu tak, aby dla dwóch wczytanych obrazów A i B wykonywał operacje:

- -A+B
- -A-B
- -B-A
- A*B
- -A/B
- B/A

a następnie zapisywał wyniki każdej z nich oddzielnym pliku na dysku. Czy wszystkie obrazy można poddać takim działaniom?

3.9. Zadanie 9.

Jednym ze sposobów zebrania informacji o obrazie jest jego histogram. Zmienić kod programu tak, aby wyliczał histogram dla kolorowego obrazu, a następnie narysować ten histogram.

4. Sprawozdanie

W sprawozdaniu należy zawrzeć:

- wypełnioną tabelę z początku instrukcji;
- skopiowane <u>istotne</u> części kodu programów napisanych w trakcie zajęć;
- opis wykonanych zadań ze zrzutami ekranu;
- <u>własne</u> spostrzeżenia jako wnioski.