٧

2008 10 - 13

4 - 2008,

© 2008 .

[1].

, $0 < k_h < 1$, $0 < k_v < 1$.

 $(i, j), i \in [1; wd],$

 $j \in [1; ht], ht = wd = 4^N, N$

 $W = \{L, H_1, H_2, H_3\},\$ f ,

(. 2.):

) $L = \{w_{ij}\}, \quad i \in [wd/4 + 1; 3 \cdot wd/4], \ j \in [ht/4 + 1; 3 \cdot ht/4].$

) $H_1 = \{w_{ij}\}, \qquad i \in [wd/4 + 1; 3 \cdot wd/4], \quad j \in [1; ht/4] \cup [(3 \cdot ht/4) + 1; ht].$) $H_2 = \{w_{ij}\}, \qquad i \in [1; wd/4] \cup [(3 \cdot wd/4) + 1; wd], \quad j \in [ht/4 + 1; 3 \cdot ht/4].$

) $H_3 = \{w_{ij}\},\$ $i \in [1; wd/4] \cup [(3 \cdot wd/4) + 1; wd], j \in [1; ht/4] \cup [(3 \cdot ht/4) + 1; ht].$

$\mathbf{w}_{1,1}$	$w_{1,2}$	$w_{1,3}$	$w_{1,4}$	$w_{1,5}$	$w_{1,6}$	$w_{1,7}$	$w_{1,8}$
$w_{2,1}$	$W_{2,2}$	$W_{2,3}$	W _{2,4}	W _{2,5}	W _{2,6}	W _{2,7}	W _{2,8}
$w_{3,1}$	$w_{3,2}$	$W_{3,3}$	W _{3,4}	W _{3,5}	W _{3,6}	W _{3,7}	W _{3,8}
$W_{4,1}$	$W_{4,2}$	W _{4,3}	W _{4,4}	W _{4,5}	W _{4,6}	W _{4,7}	W _{4,8}
$W_{5,1}$	${\bf W}_{5,2}$	W _{5,3}	W _{5,4}	W _{5,5}	W _{5,6}	W _{5,7}	W _{5,8}
$W_{6,1}$	$W_{6,2}$	W _{6,3}	W _{6,4}	W _{6,5}	W _{6,6}	W _{6,7}	W _{6,8}
$w_{7,1}$	${\bf w}_{7,2}$	W _{7,3}	W _{7,4}	W _{7,5}	W _{7,6}	W _{7,7}	W _{7,8}
$w_{8,1}$	${\bf w}_{8,2}$	$W_{8,3}$	$w_{8,4}$	${ m w}_{8,5}$	${ m W}_{8,6}$	${ m W}_{8,7}$	$\mathbf{w}_{8,8}$

H ₃	H_1	H ₃
H_2	L	H_2
H ₃	H_1	Н3

_	L	H ₂
	H ₁	H ₃

$$k_{h}^{a} \quad k_{v}^{a},$$

$$k_{h}^{a} \quad k_{v}^{a},$$

$$k_{h}^{a} = \min_{k_{h}^{a} \in K} \left| k_{h}^{a} - k_{v} \right|, \quad k_{v}^{a} = \min_{k_{v}^{a} \in K} \left| k_{v}^{a} - k_{v} \right|, \quad K = \left\{ \frac{2}{\sqrt{4^{N}}}, \frac{4}{\sqrt{4^{N}}}, \dots, \frac{\sqrt{4^{N}} - 2}{\sqrt{4^{N}}} \right\},$$

K -

3)
$$L^{N}$$
, H_{1}^{N} , H_{2}^{N} , H_{3}^{N} (. 3.):

$$L^{N} = T_{K}^{-1} \big[W_{L} \big], \ H_{1}^{N} = T_{K}^{-1} \big[W_{H_{1}}^{N} \big], \ H_{2}^{N} = T_{K}^{-1} \big[W_{H_{2}}^{N} \big], \ H_{2}^{N} = T_{K}^{-1} \big[W_{H_{3}}^{N} \big],$$

$$T_K^{-1}ig[ulletig]$$
 -

$$W_{L} = \begin{cases} w_{ij}, i \in \left[\frac{ht\left(1-k_{v}^{a}\right)+2}{2}; \frac{ht\left(1+k_{v}^{a}\right)}{2}\right], j \in \left[\frac{wd\left(1-k_{h}^{a}\right)+2}{2}; \frac{wd\left(1+k_{h}^{a}\right)}{2}\right], \\ 0. \end{cases}$$

$$W_{H_{1}}^{N} = \begin{cases} w_{ij}, i \in \left[\frac{ht(1-k_{v}^{a})+2}{2}; \frac{ht(1+k_{v}^{a})}{2}\right], j \in \left[1; \frac{wd(1-k_{h}^{a})}{2}\right] \cup \left[\frac{wd(1+k_{h}^{a})+2}{2}; wd\right], \\ 0, . \end{cases}$$

$$W_{H_2}^N = \begin{cases} w_{ij}, i \in \left[1; \frac{ht\left(1-k_v^a\right)}{2}\right] \cup \left[\frac{ht\left(1+k_v^a\right)+2}{2}; ht\right], j \in \left[\frac{wd\left(1-k_h^a\right)+2}{2}; \frac{wd\left(1+k_h^a\right)}{2}\right], \\ 0, \qquad . \end{cases}$$

$$W_{H_3}^N = \begin{cases} w_{ij}, i \in \left[1; \frac{ht\left(1-k_v^a\right)}{2}\right] \cup \left[\frac{ht\left(1+k_v^a\right)+2}{2}; ht\right], j \in \left[1; \frac{wd\left(1-k_h^a\right)}{2}\right] \cup \left[\frac{wd\left(1+k_h^a\right)+2}{2}; wd\right], \\ 0, \qquad . \end{cases}$$

4)
$$L^{N}$$
, H_{1}^{N} , H_{2}^{N} , H_{3}^{N}

$\mathbf{w}_{1,1}$	$w_{1,2}$	$w_{1,3}$	$w_{1,4}$	$w_{1,5}$	$w_{1,6}$	$w_{1,7}$	$w_{1,8}$
	$W_{2,2}$						
$w_{3,1}$	$W_{3,2}$	W _{3,3}	W _{3,4}	${\bf W}_{3,5}$	W _{3,6}	W _{3,7}	W _{3,8}
$w_{4,1}$	$W_{4,2}$	W _{4,3}	W _{4,4}	$W_{4,5}$	W _{4,6}	W _{4,7}	W _{4,8}
W _{5,1}	$W_{5,2}$	W _{5,3}	W _{5,4}	${\bf W}_{5,5}$	W _{5,6}	W _{5,7}	W _{5,8}
$W_{6,1}$	$W_{6,2}$	W _{6,3}	W _{6,4}	$W_{6,5}$	W _{6,6}	W _{6,7}	W _{6,8}
W _{7,1}	W _{7,2}	W _{7,3}	W _{7,4}	W _{7,5}	W _{7,6}	W _{7,7}	W _{7,8}
$w_{8,1}$	$w_{8,2}$	$w_{8,3}$	$W_{8,4}$	${\bf w}_{8,5}$	$W_{8,6}$	W _{8,7}	${ m w}_{8,8}$

H ₃	H_1	H ₃
H_2	L	H_2
H ₃	H_1	H ₃

. 2. – $L, H_1, H_2, H_3;$ - L, H_1, H_2, H_3 $k_h = 0.75, k_v = 0.25.$

. . 3 $k_h = 0.5$,

 $k_{\nu} = 0.5$ (. 3.) $k_{h} = 0.75$, $k_{\nu} = 0.25$ (. 3 .).

. 3. L, H_1, H_2, H_3 , : $-k_h = 0.5$, $k_v = 0.5$; $-k_h = 0.75$, $k_v = 0.25$.

1. , -671 . : . . / . – .: , 2005.