PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 16

MAT1106 — Introducción al Cálculo Fecha: 2020-10-27

Problema 1:

Sea $x_n = \frac{1}{n^k} \binom{n}{m} \text{ con } k, m \in \mathbb{N}$:

- (a) Demuestre que si k < m se tiene que $x_n \to \infty$
- (b) Demuestre que si k = m se tiene que $x_n \to \frac{1}{m!}$
- (c) Demuestre que si k > m se tiene que $x_n \to 0$

Solución problema 1:

Problema 2:

Sea x_n una sucesión convergente y $\varepsilon > 0$, demuestre que existe una subsucesión x_{n_k} tal que para todo $k \in \mathbb{N}$ se tiene

$$\left| x_{n_k} - x_{n_{k+1}} \right| < \varepsilon.$$

Solución problema 2:

Problema 3:

Sea x_n una sucesión. Definimos $s_n = \sum_{k=1}^n x_k$. Asuma que $s_n \to L$ y que x_n es siempre positiva. Definimos

$$r_n = \lim_{m \to \infty} \sum_{k=n+1}^m x_k.$$

- (a) Encuentre r_n de manera explicita.
- (b) Demuestre que $r_n \to 0$.

Solución problema 3: