

Artificial Intelligence

Presented by:

Ahmed Mohamed Elsayed Tabbash	20P1076
Ahmed Ibrahim Eldera	20p2701
Mohamed Awad Shawki	22P0240
Paula Emil Alexan	2200750
YAMAN ABDELHAMID ABDELSAMIE ELEWA	2002078

Presented for:

Dr. Maryam Nabil Eng. Mohammed Essam

Junior - Spring 2025 - Artificial intelligence • CSE472

Contents

וכ	resente	ed by :	. 1
)	resente	ed for :	. 1
1.	Data	a Cleaning & Preprocessing (clean.py and tryout.ipynb)	. 3
	Why Cl	ean and Preprocess Data?	. 3
	Step	-by-Step Breakdown	. 3
	Why Tr	ain Multiple Models?	. 5
	Step	-by-Step Breakdown	. 5
	Models	Used:	. 6
	1.	LinearRegression	. 6
	2.	Ridge Regression	. 6
	3.	Lasso Regression	. 6
	4.	RandomForestRegressor	. 6
	5.	GradientBoostingRegressor	. 6
	6.	KNeighborsRegressor	. 6
	7.	SVR (Support Vector Regression)	. 6
	Evaluat	ion Metrics	. 7
	Mea	n Squared Error (MSE)	. 7
	Cros	s-Validation MSE	. 7
	Purpos	se	. 7
	Step	-by-Step Breakdown	. 7
	Purpos	se	. 8
	Why	Use a Notebook?	. 8
10	owEvery	/thing Fits Together	. 8
Ν	hy This I	Pipeline?	. 8

Data Cleaning & Preprocessing (clean.py and tryout.ipynb)

Why Clean and Preprocess Data?

Machine learning models require:

- Numerical input (no text or categorical data).
- No missing values (NaNs).
- Consistent feature formats (e.g., all sizes in MB).
- No outliers or erroneous data (e.g., typos, impossible values).

Step-by-Step Breakdown

a. Column Renaming

- Purpose: Makes the data human-readable and easier to work with.
- **Example:** $X0 \rightarrow AppName$, $X1 \rightarrow Category$, etc.

b. Dropping Unnecessary Columns

• **Purpose:** Removes columns that do not help prediction (e.g., AppName is just an identifier).

c. Category Handling

- **Remove Erroneous Categories:** E.g., a category labeled '1.9' is likely a data entry error.
- **Group Rare Categories:** Categories with very few samples can cause overfitting. Grouping them into 'OTHER' ensures the model doesn't learn noise.
- One-Hot Encoding: Converts each category into a binary column (e.g., Cat_BUSINESS = 1 if the app is business, else 0). This allows models to use categorical data.

d. Numeric Conversion

- NumReviews, AppSize, NumInstalls, Price: All must be numeric.
- **AppSize:** Converts all sizes to MB (e.g., $12k \rightarrow 0.0117 \text{ MB}$, $20M \rightarrow 20 \text{ MB}$). Handles missing or ambiguous values by filling with the median.
- NumInstalls: Removes + and commas, converts to integer.
- Price: Ensures all prices are numeric.

e. Boolean and Categorical Encoding

- IsFree: Converts "Free" to 0 and "Paid" to 1.
- AgeCategory: One-hot encodes age restrictions (e.g., Age Everyone, Age Teen).
- **Genres:** Apps can have multiple genres (e.g., "Action; Adventure"). Uses MultiLabelBinarizer to create a column for each genre, set to 1 if the app has that genre.

f. Date Handling

• **LastUpdate:** Converts to datetime, extracts the year (e.g., 2018), then drops the original column.

g. Dropping More Columns

• **Version, MinAndroidVer:** Often too granular or inconsistent for modeling, so they are dropped.

h. Handling Missing Values

- AppSize: Fill with median.
- Rating (target): Drop rows with missing ratings (since you can't train on them).
- Other features: Ensure no missing values remain.

i. Normalization

• **NumInstalls, NumReviews:** These are often highly skewed (some apps have millions of installs, most have few). Applying np.log1p() (logarithm of 1 + value) compresses large values and spreads out small ones, making the data easier for models to learn from.

j. Final Checks

- No NaNs: Ensures all missing values are handled.
- No text columns: All features must be numeric for ML models.
- **No infinite values:** Ensures no division-by-zero or log(0) errors.

k. Saving

Cleaned Data: Saved for use in training and testing.

2. Model Training & Evaluation (Train.py)

Why Train Multiple Models?

- No single model is best for all problems.
- Trying a variety of models (linear, tree-based, instance-based, etc.) helps find the best fit for your data.

Step-by-Step Breakdown

a. Data Loading

Loads the cleaned, normalized data for training, validation, and testing.

b. Feature Selection

 Selects only the columns used for prediction (excludes the target Rating and any identifiers).

c. Target Extraction

Sets the Rating column as the value to predict.

d. Missing Value Checks

Ensures no missing values in features or targets.

e. LazyML (LazyPredict)

- What is it? A library that quickly trains and evaluates many regression models with default settings.
- **Why use it?** To get a fast, broad comparison of many algorithms and see which ones are promising.
- **How does it work?** It fits each model on the training data and evaluates on the validation set, reporting metrics like R² and RMSE.

f. K-Fold Cross-Validation

- What is it? A robust way to estimate model performance.
- How does it work?
 - Splits the training data into k (e.g., 5) folds.
 - Trains the model on k−1 folds, tests on the remaining fold.
 - Repeats this k times, each time with a different test fold.
 - Reports the average performance.
- Why use it? Reduces the risk of overfitting to a particular train/validation split and gives a
 more reliable estimate of model performance.

g. Model Training & Evaluation

- Trains each model on the full training set.
- Evaluates on validation and test sets using Mean Squared Error (MSE).
- Saves each trained model for later use.

Models Used:

1. LinearRegression

- **How it works:** Finds the best-fitting straight line (hyperplane) through the data.
- When to use: When you suspect a linear relationship between features and target.
- Pros: Simple, interpretable.
- Cons: Can't capture non-linear relationships.

2. Ridge Regression

- **How it works:** Like LinearRegression, but adds L2 regularization (penalizes large coefficients).
- Why: Helps prevent overfitting, especially when features are correlated.

3. Lasso Regression

- How it works: Like Ridge, but uses L1 regularization (can shrink some coefficients to zero, effectively selecting features).
- Why: Useful for feature selection and preventing overfitting.

4. RandomForestRegressor

- How it works: Builds many decision trees on random subsets of the data and averages their predictions.
- Why: Handles non-linearities, interactions, and is robust to outliers and overfitting.

5. GradientBoostingRegressor

- **How it works:** Builds trees sequentially, each one correcting the errors of the previous.
- Why: Often achieves high accuracy, especially on tabular data.

6. KNeighborsRegressor

- How it works: Predicts the target by averaging the values of the k nearest neighbors in feature space.
- **Why:** Simple, non-parametric, can capture local patterns.

7. SVR (Support Vector Regression)

- How it works: Tries to fit as many data points as possible within a margin, using kernel tricks to capture non-linear relationships.
- Why: Good for complex, non-linear data, robust to outliers.

Evaluation Metrics

Mean Squared Error (MSE)

- **Definition:** The average of the squared differences between predicted and actual values.
- Why: Penalizes large errors more than small ones, commonly used for regression.

Cross-Validation MSE

- Definition: The average MSE across all folds in K-Fold CV.
- Why: Gives a more robust estimate of model performance.

3. Prediction (prediction.py)

Purpose

 Apply a trained model to new, unseen data (e.g., for a competition or real-world deployment).

Step-by-Step Breakdown

a. Load Test Data

Reads the cleaned and normalized test data.

b. Feature Alignment

- Ensures the test data has the same features as the training data.
- Handles missing columns by filling with zeros (so the model can still make predictions).

c. Load Model

Loads a previously trained model (e.g., Lasso, RandomForest) using joblib.

d. Predict

Uses the model to predict ratings for the test data.

e. Save Results

Outputs predictions to a CSV file for submission or further analysis.

4. Interactive Data Cleaning (tryout.ipynb)

Purpose

- Prototype and visualize each cleaning step.
- Debug and explore the data interactively.
- Document the cleaning process.

Why Use a Notebook?

- You can see the effect of each transformation.
- Easy to plot, summarize, and check data at each step.
- Useful for developing and testing your cleaning pipeline before scripting it in clean.py.

How Everything Fits Together

- 1. Raw Data → clean.py/tryout.ipynb → Cleaned Data
- 2. Cleaned Data \rightarrow Train.py \rightarrow Trained Models
- 3. Trained Models + New Data \rightarrow prediction.py \rightarrow Predictions

Why This Pipeline?

- Data cleaning ensures the models get the best possible input.
- Trying multiple models increases the chance of finding the best fit for your data.
- Cross-validation ensures your results are robust and not due to chance.
- Saving models allows for easy deployment and reuse.
- Automated prediction enables you to apply your solution to new data quickly.

Summary Table

File	Purpose	Key Steps/Models Used
clean.py	Data cleaning & preprocessing	Renaming, encoding, normalization, missing value handling
Train.py	Model training, validation, evaluation	Linear, Ridge, Lasso, RandomForest, GradientBoosting, KNN, SVR, LazyML, K-Fold CV
predictio n.py	Predicting on new/test data	Loads model, aligns features, predicts, saves results
tryout.ip ynb	Interactive data cleaning & exploration	Step-by-step cleaning, encoding, normalization, splitting, saving