

EMC TEST REPORT for Intentional Radiator No. 130800486SHA-002

Applicant : Kustom Musical Amplification INC.

3015 Kustom Drive, Hebron, Kentucky, 41048 USA

Manufacturer : Hangzhou Samko Electronics Co., Ltd.

No. 8, Jiaqi Road, Xianlin Street, Yuhang District,

Hangzhou, 311122 China

Equipment : Power Amplifier

Type/Model : DAWN50BT, PW50BT

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2013): Radio Frequency Devices

ANSI C63.4 (2009): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

RSS-210 Issue 8 (December 2010): Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

RSS-Gen Issue 3 (December 2010): General Requirements and Information for the Certification of Radiocommunication Equipment

Date of issue: March 16, 2014

Anyou -

Prepared by: Reviewed by:

Anthony Shen (*Project Engineer*) Daniel Zhao (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Services Ltd. Shanghai

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Steve Li Tel: +86 21 64956565 ext. 214 Fax: +86 21 54262335 ext. 214

Content

SUMMARY	
DESCRIPTION OF TEST FACILITY	2
1. GENERAL INFORMATION	5
1.1 Applicant Information	
1.2 Identification of the EUT	5
1.3 Technical specification	
1.4 Mode of operation during the test / Test peripherals used	6
2. TEST SPECIFICATION	7
2.1 Instrument list	7
2.2 Test Standard	7
2.3 Test Summary	8
3. 20 DB BANDWIDTH	9
3.1 Limit	9
3.2 Test Configuration	9
3.3 Test Procedure and test setup	9
3.4 Test Protocol	10
4. CARRIER FREQUENCY SEPARATION	14
4.1 Limit	14
4.2 Test Configuration	14
4.3 Test Procedure and test setup	14
4.4 Test Protocol	15
5. MAXIMUM PEAK OUTPUT POWER	19
5.1 Test limit	19
5.2 Test Configuration	19
5.3 Test procedure and test setup	19
5.4 Test protocol	
6. RADIATED SPURIOUS EMISSIONS	24
6.1 Test limit	24
6.2 Test Configuration	
6.3 Test procedure and test setup	
6.4 Test protocol	
7. CONDUCTED SPURIOUS EMISSIONS & BAND EDGE	30
7.1 Limit	30
7.2 Test Configuration	30
7.3 Test procedure and test setup	
7.4 Test protocol	
8. POWER LINE CONDUCTED EMISSION	34
8.1 Limit	34
8.2 Test configuration	
EMI receiver	
8.3 Test procedure and test set up	
8.4 Test protocol	
9. NUMBER OF HOPPING FREQUENCIES	
9.1 Limit	
9.2 Test Configuration	

9.3 Test procedure and test setup	37
9.4 Test protocol	38
10. DWELL TIME	39
10.1 Limit	39
10.2 Test Configuration	39
10.3 Test procedure and test setup	39
10.4 Test protocol	
11. OCCUPIED BANDWIDTH	
11.1 Test limit	47
11.2 Test Configuration	47
11.3 Test procedure and test setup	
11.4 Test protocol	48
12. Spurious emission for receiver	52
12.1 Test limit	52
12.2 Test Configuration	
12.3 Test procedure and test setup	
12.4 Test protocol	

1. General Information

1.1 Applicant Information

Applicant: Kustom Musical Amplification INC.

3015 Kustom Drive, Hebron, Kentucky, 41048 USA

 Name of contact:
 Fred J Conrad

 Tel:
 859-817-7164

 Fax:
 859-817-7199

Manufacturer: Hangzhou Samko Electronics Co., Ltd.

No. 8, Jiaqi Road, Xianlin Street, Yuhang District,

Hangzhou, 311122 China

Sample received date : March 10, 2014

Date of test : March 10, 2014 ~ March 13, 2014

1.2 Identification of the EUT

Equipment: Power Amplifier

Type/model: DAWN50BT, PW50BT

FCC ID: 2AAVGHMG00050

IC: 11349A-HMG00050

1.3 Technical specification

Operation Frequency Band: 2402 - 2480 MHz

Modulation: GFSK, π /4 DQPSK, 8DPSK

Technology:

GFSK is different from π /4DQPSK and 8DPSK. 8DPSK is similar with π /4DQPSK but more complex, and with a bigger data rate. So all tests except dwell time and number of hopping frequencies were performed with GFSK modulation and 8DPSK modulation for representative.

Antenna Designation: PCB antenna, un-detachable

Gain of Antenna: 0dBi

Rating: 110-120V~, 60Hz

Description of EUT: EUT is a Power Amplifier. It has two models and they

are the same except the model name and brand name. Only the model of PW50BT was chosen to perform all

the tests as representative.

Channel Description: There are 79 channels in all. The designed channel

spacing is 1MHz.

Channel	Frequency
Identifier	(MHz)
low	2402
middle	2441
high	2480

1.4 Mode of operation during the test / Test peripherals used

While testing the transmitter mode of the EUT, the internal modulation is applied. All the functions of the host device except the BT module were set on stand-by mode.

2. Test Specification

2.1 Instrument list

Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Equipment	Type				
Test Receiver	ESIB 26	R&S	EC 3045	2013-10-21	2014-10-20
Semi-anechoic	-	Albatross	EC 3048	2013-5-21	2014-5-20
chamber		project			
Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2013-5-16	2014-5-15
Horn antenna	HF 906	R&S	EC 3049	2013-5-13	2014-5-12
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2013-4-12	2014-4-11
Test Receiver	ESCS 30	R&S	EC 2107	2013-10-21	2014-10-20
A.M.N.	ESH2-Z5	R&S	EC 3119	2014-1-9	2015-1-8
A.M.N.	ESH3-Z5	R&S	EC 2109	2014-1-10	2015-1-9
High Pass Filter	WHKX	Wainwright	EC4297-1	2014-2-8	2015-2-7
	1.0/15G-10SS				
High Pass Filter	WHKX	Wainwright	EC4297-2	2014-2-8	2015-2-7
	2.8/18G-12SS				
High Pass Filter	WHKX	Wainwright	EC4297-3	2014-2-8	2015-2-7
	7.0/1.8G-8SS				
Band Reject Filter	WRCGV	Wainwright	EC4297-4	2014-2-8	2015-2-7
	2400/2483-				
	2390/2493-				
	35/10SS				
Test Receiver	FSV40	R&S	/	2013-10-21	2014-10-20
Preamplifier	AP-025C	Quietek	QT-AP003	2013-11-25	2014-11-24
Preamplifier	AP-180C	Quietek	CHM-	2013-11-25	2014-11-24
•			0602013		
Broad-Band Horn	BBHA9120D	Schwarzbeck	496	2013-11-25	2014-11-24
Antenna					
Broad-Band Horn	BBHA9170	Schwarzbeck	294	2013-11-25	2014-11-24
Antenna					

2.2 Test Standard

47CFR Part 15 (2013) ANSI C63.4: 2009

RSS-210 Issue 8 (December 2010)

RSS-Gen Issue 3 (December 2010)

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB Bandwidth	15.247(a)(1)	RSS-210 Issue 8	Tested
		Annex 8	
Carrier Frequency Separation	15.247(a)(1)	RSS-210 Issue 8	Pass
		Annex 8	
Output power	15.247(b)(1)	RSS-210 Issue 8	Pass
		Annex 8	
Radiated Spurious Emissions	15.205 & 15.209	RSS-210 Issue 8	Pass
		Clause 2	
Conducted Spurious Emissions	15.247(d)	RSS-210 Issue 8	Pass
& Band Edge		Annex 8	
Power line conducted emission	15.207	RSS-Gen Issue 3	Pass
		Clause 7.2.4	
Number of Hopping	15.247(a)(1)(iii)	RSS-210 Issue 8	Pass
Frequencies		Annex 8	
Dwell time	15.247(a)(1)(iii)	RSS-210 Issue 8	Pass
		Annex 8	
Occupied bandwidth	-	RSS-Gen Issue 3	Tested
		Clause 4.6.1	
Spurious emission for receiver	15B	RSS-310 Issue 3	NA
		Clause 3.1	

Note: "NA" means "not applied".

3. 20 dB Bandwidth

Test result: Tested

3.1 Limit

☐ Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. ☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Test Configuration

3.3 Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = 2 to 3 times the 20 dB bandwidth, RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

3.4 Test Protocol

Temperature : 22°C Relative Humidity : 45 %

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	840.00	560.00
GFSK	M	890.00	593.33
	Н	890.00	593.33

Channel L

Date: 13.MAR.2014 13:19:13

Date: 13.MAR.2014 13:20:13

Date: 13.MAR.2014 13:21:03

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1230.00	820.00
8DPSK	M	1266.00	844.00
	Н	1260.00	840.00

Channel L

Date: 13.MAR.2014 13:26:29

Date: 13.MAR.2014 13:27:48

Date: 13.MAR.2014 13:28:34

4. Carrier Frequency Separation

Test result: Pass

4.1 Limit

☐ Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. ☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB

bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

4.2 Test Configuration

4.3 Test Procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

4.4 Test Protocol

Temperature : 22°C Relative Humidity : 45 %

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
	L	1002.00	≥560.00
GFSK	М	1002.00	≥593.33
	Н	1002.00	≥593.33

Date: 13.MAR.2014 13:44:56

Date: 13.MAR.2014 13:45:44

Date: 13.MAR.2014 13:46:25

Mode	СН	Frequency Separation	Limit
		(kHz)	(kHz)
	L	1002.00	≥820.00
8DPSK	М	1008.00	≥844.00
	Н	1002.00	≥840.00

Channel L

Date: 13.MAR.2014 13:54:16

Date: 13.MAR.2014 13:55:12

Date: 13.MAR.2014 13:55:56

5. Maximum peak output power

Test result: Pass

5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC § 15.247(b) is measured using the Spectrum Analyzer with Span = 5 times the 20 dB bandwidth, RBW≥ the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

5.4 Test protocol

Temperature : 22 °C Relative Humidity : 45 %

Mode	СН	Cable loss	Corrected reading	Limit
		(dB)	(dBm)	(dBm)
	L	0.80	-1.23	
GFSK	M	0.80	-0.74	≤21.00
	Н	0.80	0.08	

Conclusion: The maximum EIRP = 0.08 = 1.019mW which is lower than the limit of 4W listed in RSS-210.

Date: 13.MAR.2014 14:01:39

Date: 13.MAR.2014 14:02:13

Date: 13.MAR.2014 14:02:33

Mode	СН	Cable loss	Corrected reading	Limit
		(dB)	(dBm)	(dBm)
	L	0.80	-3.15	
8DPSK	M	0.80	-2.30	≤21.00
	Н	0.80	-1.35	

Conclusion: The maximum EIRP = -1.35 = 0.733mW which is lower than the limit of 4W listed in RSS-210.

Channel L

Date: 13.MAR.2014 14:04:52

Date: 13.MAR.2014 14:05:33

Date: 13.MAR.2014 14:06:00

6. Radiated Spurious Emissions

Test result: PASS

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)
RBW = 1MHz, VBW = 3MHz (>1GHz for PK);
RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor".

6.4 Test protocol

GFSK Modulation:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	30.70	88.30	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
	V	329.36	16.00	34.80	46.00	11.20	PK
L	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1599.19	-10.20	50.90	54.00	3.10	PK
	Н	2390.00	-8.00	40.60	54.00	13.40	PK
	Н	4806.18	-1.50	54.10	74.00	19.90	PK
	Н	4805.87	-1.50	36.60	54.00	17.40	AV
	Н	2441.07	30.70	88.90	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
M	V	329.36	16.00	34.80	46.00	11.20	PK
M	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1625.25	-10.10	51.20	54.00	2.80	PK
	Н	4885.77	-1.10	54.60	74.00	19.40	PK
	Н	4885.23	-1.10	36.80	54.00	17.20	AV
	Н	2479.83	30.70	89.80	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
	V	329.36	16.00	34.80	46.00	11.20	PK
Н	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1651.30	-9.90	50.40	54.00	3.60	PK
	Н	2483.50	-7.80	40.20	54.00	13.80	PK
	Н	4961.54	-0.80	54.30	74.00	19.70	PK
	Н	4960.79	-0.80	36.50	54.00	17.50	AV

8DPSK Modulation:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	30.70	86.30	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
	V	329.36	16.00	34.80	46.00	11.20	PK
L	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1599.19	-10.20	50.90	54.00	3.10	PK
	Н	2390.00	-8.00	38.60	54.00	13.40	PK
	Н	4806.18	-1.50	52.10	74.00	19.90	PK
	Н	4805.87	-1.50	35.60	54.00	17.40	AV
	Н	2441.07	30.70	86.80	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
M	V	329.36	16.00	34.80	46.00	11.20	PK
M	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1625.25	-10.10	51.20	54.00	2.80	PK
	Н	4885.77	-1.10	53.60	74.00	19.40	PK
	Н	4885.23	-1.10	35.80	54.00	17.20	AV
	Н	2479.83	30.70	87.80	Fundamental	/	PK
	Н	119.42	15.30	29.50	43.50	14.00	PK
	Н	129.14	15.00	32.30	43.50	11.20	PK
	V	329.36	16.00	34.80	46.00	11.20	PK
Н	V	480.98	19.50	32.20	46.00	13.80	PK
	Н	1651.30	-9.90	50.40	54.00	3.60	PK
	Н	2483.50	-7.80	39.70	54.00	13.80	PK
	Н	4961.54	-0.80	53.50	74.00	19.70	PK
	Н	4960.79	-0.80	35.80	54.00	17.50	AV

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.
- 6. The emission was conducted from 30MHz to 25GHz.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = 54 -10.20 = 43.80dBuV/m

Horizontal

Vertical

7. Conducted Spurious Emissions & Band Edge

Test result: PASS

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

7.3 Test procedure and test setup

The Conducted Spurious Emissions per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

7.4 Test protocol

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
	L	-1.06	52.81	
GFSK	M	-0.50	51.56	≥20
	Н	-0.02	57.43	

Note: The test was performed from 9kHz to 26GHz and the worst data is listed here.

Date: 13.MAR.2014 14:11:08

Channel H

Date: 14.MAR.2014 10:09:26

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
	L	-4.49	49.87	
8DPSK	М	-3.72	52.00	≥20
	Н	-2.96	54.81	

Note: The test was performed from 9kHz to 26GHz and the worst data is listed here.

Stop 2.403 GHz

9.3 MHz/

Date: 13.MAR.2014 14:15:12

Start 2.31 GHz

Date: 13.MAR.2014 14:17:58

8. Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

8.2 Test configuration

- For table top equipment, wooden support is 0.8m height table
- ☐ For floor standing equipment, wooden support is 0.12m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

8.4 Test protocol

Frequency	Correct Factor (dB)	Corrected Reading (dBuV)		Limit (dBuV)		Margin (dB)	
		QP	AV	QP	AV	QP	AV
0.15 (L)	0.27	27.65	3.99	65.54	55.54	37.89	51.55
0.19 (L)	0.14	22.49	1.68	64.01	54.01	41.52	52.33
19.87 (L)	0.94	11.41	5.30	60.00	50.00	48.59	44.70
0.16 (N)	0.27	27.53	4.04	65.54	55.54	38.01	51.50
0.19 (N)	0.14	22.26	1.68	64.01	54.01	41.75	52.33
19.87 (N)	0.94	9.75	5.40	60.00	50.00	50.25	44.60

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

9. Number of Hopping Frequencies

Test result: Pass

9.1 Limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Test Configuration

9.3 Test procedure and test setup

The channel number per FCC §15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

9.4 Test protocol

Channel Number	Limit	
79	≥15	

Date: 13.MAR.2014 14:23:06

10. Dwell Time

Test result: Pass

10.1 Limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Configuration

10.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

10.4 Test protocol

Packet	Occupancy time for single hop	СН	Real observed period	Hops among Observed	Dwell time (s)	Limit
	(ms)		(s) P	period I	T	(s)
			3.16	33	0.14	
DH1	0.422	M	3.16	33	0.14	
		Н	3.16	33	0.14	
		L	3.16	17	0.29	
DH3	1.688	M	3.16	17	0.29	≤0.4
	Н	3.16	17	0.29		
		L	3.16	11	0.32	
DH5	2.924	M	3.16	11	0.32	
		Н	3.16	11	0.32	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

2. Average time of occupancy T = O *I * 31.6 / P

Date: 13.MAR.2014 14:28:26

Date: 13.MAR.2014 15:01:08

Date: 13.MAR.2014 15:01:30

Date: 13.MAR.2014 15:01:54

Date: 13.MAR.2014 14:30:16

Date: 13.MAR.2014 15:02:52

Date: 13.MAR.2014 15:03:43

Date: 13.MAR.2014 15:03:59

Date: 13.MAR.2014 14:32:35

Date: 13.MAR.2014 15:04:56

Date: 13.MAR.2014 15:05:16

Date: 13.MAR.2014 15:05:34

11. Occupied Bandwidth

Test Status: Tested

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 3 Clause 4.6.1 was measured using the Spectrum Analyzer with the RBW close to 1% of the selected span, VBW = 3 * RBW Detector = Sample, Sweep = Auto.

11.4 Test protocol

Temperature : 22 °C Relative Humidity : 45 %

Modulation	Channel	Occupied Bandwidth (kHz)
	L	835.00
GFSK	M	840.00
	Н	840.00

Channel L

Date: 13.MAR.2014 13:32:50

Date: 13.MAR.2014 13:33:34

Date: 13.MAR.2014 13:34:00

Modulation	Channel	Occupied Bandwidth (kHz)
	L	1158.00
8DPSK	M	1158.00
	Н	1158.00

Channel L

Date: 13.MAR.2014 13:37:34

Date: 13.MAR.2014 13:39:20

Date: 13.MAR.2014 13:40:14

12. Spurious emission for receiver

Test result: NA

12.1 Test limit

The spurious emission shall test through 3 times tuneable or local oscillator frequency whichever is the higher, without exceeding 40 GHz.

If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5nW above 1 GHz.

☐ If a radiated measurement is made, all spurious emissions shall comply with the limits of Table below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

12.2 Test Configuration

Please refer to clause 6.2

12.3 Test procedure and test setup

Please refer to clause 6.3.

12.4 Test protocol

Polarization	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 = 32.20dB/m; Corrected Reading = 10dBuV + 32.20dB/m = 42.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 42.20dBuV/m, then Margin = 54-42.20 = 11.80dBuV/m