CSE 417T: Homework 7

Due: December 1, 2016 10am

Notes:

- There are 6 problems on 2 pages in this homework.
- You may **not** use late days on this homework. Solutions will be distributed in class on December 1.
- This homework has 50 points and a bonus problem worth 25 points.
- Submit all answers by committing a <u>single pdf file</u> named **YOUR_WUSTL_KEY_hw7.pdf** to the hw7 folder in your SVN repository.

Problems:

- 1. (From Russell & Norvig) Suppose I pick some decision tree on functions going from 5 Boolean variables to a Boolean output. Now, I generate all possible inputs \mathbf{x}_i , and run them through the decision tree to produce the corresponding classes y_i . Finally, I take this generated dataset of all (\mathbf{x}_i, y_i) pairs, and run a greedy decision tree learning algorithm using information gain as the splitting criterion. Am I guaranteed to get back the same tree that generated the data? If not, what kind of guarantee can I give about the tree that is returned?
- 2. Consider the following dataset: the class variable is whether or not a car gets good mileage, and the features are Cylinders (either 4 or 8), Displacement (High, Medium, or Low), and Horsepower (High, Medium, or Low).

Cylinders	Displacement	Horsepower	GoodMPG?
4	Low	Low	No
8	High	High	No
8	High	Medium	Yes
8	High	High	No
4	Low	Medium	Yes
4	Medium	Medium	No

Give a decision tree that classifies this dataset perfectly. If you were to split this dataset using information gain, what would the first feature chosen to split on be?

3. Consider a training set of size *n*, where each example has two continuous features, no two examples have the exact same value for any of the two features, and the problem is a two-class problem. Suppose the training set is linearly separable. Can a decision tree correctly separate the data? What if the dataset is not linearly separable? In either case, if a decision tree can correctly separate the data, give the tightest bound that you can on the depth of that tree.

- 4. Suppose you apply bagging and boosting to a hypothesis space of linear separators. Will the hypothesis space of the ensemble still be linear for boosting? For bagging?
- 5. (From Russell & Norvig) Construct an SVM that computes the XOR function. Use values of +1 and -1 for the inputs and outputs. Map inputs (x_1, x_2) into a space consisting of x_1 and x_1x_2 . Draw the four input points in this space and the maximal margin separator. What is the margin? Now draw the separating line back in the original input space.
- 6. The key point of the so-called "kernel trick" in SVMs is to learn a classifier that effectively separates the training data in a higher dimensional space without having to explicitly compute the representation $\Phi(\mathbf{x})$ of every point \mathbf{x} in the original input space. Instead, all the work is done through the kernel function that computes dot products $K(\mathbf{x_i}, \mathbf{x_j}) = \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_i})$.

Show how to compute the squared Euclidean distance in the projected space between any two points x_i , x_j in the original space without explicitly computing the Φ mapping, instead using the kernel function K.

Bonus Problem (25 extra points):

Bagging reduces the variance of a classifier by averaging over several classifiers trained on subsets of the original training data. The subsets are obtained by <u>uniform subsampling with replacement</u>. I.e. if your data is $S = \{(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)\}$, at each iteration you create a new data set S' with n random picks, picking each example pair with probability $\frac{1}{n}$ <u>each time</u>. As a result you could end up with multiple identical pairs, or some not present at all.

Let $p_n(m, k)$ be the probability that you have drawn m unique examples after k picks with |S| = n. So clearly $p_n(m, k) = 0$ whenever m > k (because you cannot end up with more unique elements m than you have drawn), and also $p_n(m, k) = 0$ whenever m > n.

- (a) What are the base-case values of $p_n(1,1), p_n(m,1), p_n(1,k)$?
- (b) Assume you are have already picked k-1 elements. What is the probability that the k^{th} pick will **not** increase your number of unique elements m? What is the probability that it will?
- (c) Can you express $p_n(m, k)$ in terms of $p_n(m, k-1)$ and $p_n(m-1, k-1)$?
- (d) Write out the formula for $E_{k=n}[\frac{m}{n}]$, the expected ratio of unique elements (m) and the total number of elements (n) after n picks (i.e. k=n) from set S with |S|=n.
- (e) Write a little recursive function (in the programming language of your choice) that evaluates $E_{k=n}\left[\frac{m}{n}\right]$. Plot its value as n increases. What value does it converge to?
- (f) If you average over M classifiers, trained on sub-sets S'_1, \ldots, S'_M where $|S'_i| = n$, what is the probability that **at least** one input pair is never picked in any of the training data sets S'_i ? Plot this function as M increases. (Assuming that n is large enough for the convergence as observed in (c).)