

L3 - Síťová vrstva

- Základním funkce
 - Hledání cesty směrování routing
 - Zjistit kam se mají data poslat
 - Předávání dat forwarding
 - Když už vím kam data patří, tak je předám zvoleným směrem
- Rozšiřující / nepovinné funkce
 - Předcházení zahlcení
 - Snaha upravit provoz / směrování tak, aby se zahlcení předešlo
 - Protože pokud už k němu dojde, nejde dělat nic jiného než data zahazovat, což vede k nutnosti znovu poslání a tím znovu zatížení sítě
 - Řízení toku
 - Snaha předejít tomu, aby se zahltil příjemce tedy síť je ok, ale nestíhá příjemce
 - Výsledné chování může být velice podobné jako zahlcení sítě, ale má jinou příčinu a i řešení
 - Pokud je zahlcena síť, můžeme za určitých okolností posílat data jinudy/rozložit tok mezi více zařízení, ale pokud je zahlcen klient můžeme jen zpomalit vysílání
 - QOS Quality of Service
 - Zajištění minimálně požadovaných zdrojů pro vybrané služby
 - Například pro hlas / multimédia nepotřebuji moc, ale potřebuji pravidelně

Spojení a stabilita

- V rámci L3 předpokládáme sítě s přepínáním paketů, které používají přenos dat metodou Store&Forward a můžeme realizovat jako službu/spojení:
 - Spojovanou
 - Pak přenášený blok dat označuje jako Paket
 - Obecněji je ale jako paket nazýván jakýkoliv blok dat naformátovaný jako paket
 - Před přenosem je jednorázově nalezena cesta a jako adresa je pak přenášen jen identifikátor cesty
 - Obdobně jako přepojování okruhů, ale cesta není vyhrazena, jedná se o virtuální okruh
 - Jednotlivé prvky routery si pamatují výsledek přešlého hledání
 - Například u ATM
 - Nespojovanou
 - Pak se přenášený blok označuje jako Datagram
 - Přenáší se celá adresa příjemce
 - K rozhodování o směrování dochází na každém uzlu / routeru
 - Například IP
- Přenos můžeme dělit i z pohledu spolehlivosti
 - Spolehlivý
 - Potvrzovaný víme, že data došla
 - Typicky pro spojované protokoly
 - Nespolehlivý
 - Nepotvrzovaný data odešleme, ale nemáme zajištěno, zda data dojdou a zda se o tom dozvíme
 - Pro spojované i nespojované protokoly
 - Z výše uvedeného by to vypadlo, že nad IP(nespojovaná služba) nejde realizovat spolehlivý přenos to není zcela pravda, protože TCP spolehlivý je a je zároveň i spojovaný ALE řeší se až na L4

Směrovací tabulka

- Informace i možnostech směrování se ukládají do směrovací tabulky
- V tabulce jsou uloženy VŠECHNY dostupné cesty
- Logicky v tabulce nemohou být cesty ke všem strojům v sítí
 - Jeden problém je že tabulka by byla obrovská
 - Druhý problém, že všechny cesty neznáme
- Náhradou cest o kterých nevím je výchozí cesta
 - Default gateway pokud nevím kam, použiji toto pravidlo
- Cíle ve směrovací tabulce mohou být násobné
 - Tedy k jednomu cíli vede více cest
- Typy záznamů ve směrovací tabulce
 - Static ručně zadané cesty
 - Mají nejvyšší váhu administrátor "ví co dělá"
 - Directly connect cesty vzniklé z lokálně připojených sítí
 - Druhá nejvyšší váha jsem součástí dané sítě, takže mohu této informaci věřit
 - Dynamic cesty vložené dynamickými směrovacími protokoly
 - Tyto cesty mohou být vložená přímo nebo zprostředkovaně pomocí redistribuce

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
s* 0.0.0.0/0 [1/0] via 209.165.200.234, serial0/0/1
                is directly connected, Serial0/0/1
   172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
    172.16.1.0/24 is directly connected, GigabitEthernet0/0
    172.16.1.1/32 is directly connected, GigabitEthernet0/0
    172.16.2.0/24 [120/1] via 209.165.200.226,00:00:12, Serial0/0/0
    172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
    172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
    192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
   209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
     209.165.200.224/30 is directly connected, Serial0/0/0
     209.165.200.225/32 is directly connected, Serial0/0/0
     209.165,200,228/30 [120/1] via 209.165,200,226, 00:00:12, Serial0/0/0
     209.165.200.232/30 is directly connected, Serial0/0/1
     209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

Forwardovací tabulka

- Ve směrovací tabulce toho může být hodně
- Informace v ní mohou násobně
 - Tedy více cest jednomu cíli, ale my už potřebujeme data někam předat a je nutné říci kam
- K samotnému předání se pak použije forwardovací tabulka
- Jedná se podmnožinu informací ze směrovací tabulky
 - Pro každý cíl je jen jedna cesta
 - Je snaha počet řádek co nejvíce snížit
 - Například pomocí agregace
- Čím méně řádků v tabulce, tím rychlejší odbavení

zdroj: https://community.cisco.com/t5/routing/unable-to-understand-this-routing-table-created-by-rip/td-p/1842945

Forwardovací tabulka: Agregace

- Kromě default gateway může počet řádek při směrování snížit agregace
- Cíl je z více řádků udělat jeden, který pokryje všechny původní řádky
 - Logickým požadavkem je, že odchozí port/IP musí být stejné Route Summarization
- Agregace může probíhat dvojím způsobem
 - Ručně spojím vybrané sítě do jedné větší viz obrázek
 - Automaticky směrovač sám agreguje jednotlivé cesty
 - Zde může nastat problém, že agregace může probíhat na úrovni tříd adres a nemusí být tedy žádoucí
 - Např. 10.0.0.0/24 a 10.1.0.0/24 se agreguji na 10.0.0.0/8
 - Jedná se o třídu adres A, kde defaultní maska je /8
 - Automatická agregace lze na směrovačích vypnout

zdroj: http://basicitnetworking.blogspot.com/2012/11/route-aggregation-with-vlsm.html

Forwardovací tabulka: Administrative

distance

- Pokud máme ve směrovací tabulce více cest se stejným cílem potřebujeme na základě "něčeho" rozhodnout, kterou použít
- Toto rozhodnutí se dělá na základě "Administrative distance"
 - Jedná se o celé kladné číslo
 - Tato hodnota určuje váhu / důvěryhodnost dané informace
- Do forwardovací tabulky se ukládají informace s nejnižší dostupnou hodnotou AD pro danou cestu
- Důvěryhodnost protokolů je ve výchozím stavu dané, ale lze v případě potřeby i měnit
- Jednotlivé protokoly mohou mít různou důvěryhodnost dle místa použití
 - Interní EIGRP 20
 - Externí EIGRP 170
 - Jinak řečeno se každý protokol nehodí na všechna použití

```
Router_A#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets

D 10.0.0.0 [90/30720] via 192.168.0.2, 00:00:09, FastEthernet0/0

C 192.168.0.0/24 is directly connected, FastEthernet0/0

Router_A#
```

zdroj: https://study-ccna.com/administrative-distance-metric/

Routing Technique	Preference	
Connected Interface		0
Static Route		1
EIGRP Summary Route		5
EBGP		20
Internal EIGRP		90
IGRP		100
OSPF		110
ISIS		115
RIP		120
EGP		140
ODR		160
External EIGRP		170
Internal BGP		200
Unknown		255

zdroj: http://packetsanalyzed.blogspot.com/2013/04/hp-administrative-distance.html

Základní principy v směrování

- Směrování na základě cílové adresy / Destination base routing
 - Nejběžnější varianta směrování
 - Rozhodujícím kritériem je "cílová adresa"
 - Obsah ani zdroj data není relevantní pro rozhodování
 - Rozhodnutí nemusí (ale může) být vázáno na konkretní adresu, ale spíše na síť do které adresa patří
 - Tedy se jedná o zobecnění ve snaze snížit počet záznamu ve směrovací / forwardovací tabulce
 - Dnes patrně nejrozšířenější metoda
- Směrování dle cesty s nejnižsí "cenou" / Least cost routing
 - Síť beme jako orientovaný ohodnocený graf, ve kterém hledáme nejlevnější cestu
 - Orientovaný každá cesta nemusí být obou směrná
 - Ohodnocený každá cesta má nějakou cenu (latence, zatéžení, konstanty např realně cena přenosu)
 - Klasická grafová úloha řešitelná například pomocí Dijkstrova algoritmu
- Směrování se řeší samostaně v každém uzlu routeru / Hop by hop
- Každý jeden uzel rozhoduje o dalším kroku kam data předá
- Rozhodování je samostatné, ale může vycházet ze společně získaných/sdílených informací
- Směrování je nezávislé na obsahu
 - Obsah dat / služba vyšších vrstev která jsou přenášena nemají na směrování vliv
 - Neplatí v případě QOS
- Směrování je bezstavovost
 - Nezáleží na obsahu / cíly předchozího paketu při rozhodování o aktuálním

Další možné principy v směrování

- Tyto principy nejsou obecně používané, ale mohou se v některých specifických situacích hodit
- Směrování podle zdrojové adresy / Source base routing
 - Je opakem k destination base routing
 - Může se destination base routingem kombinovat napřed zkusím source base routing a když se pravidlo nenajde, použiji destionation base routing
 - Je třeba doplnit rozhodovací pravidla v Linuxu ip rules který pomohou rozhodnout dle čeho se směruje
- Směrování na základě obsahu / Content switching
 - Může se někdy hodit moci směrovat podle informací od vyšších vrstev například L4
- Směrování se zohledněním historie / Flows
 - Pokud nějaká data patří k sobě například stream multimédií, může být výhodné je posílat stejnou cestou

Kategorizace směrování

- Dle reakce na změny
 - Neadaptivní
 - Adaptivní
- Dle metody řízení
 - Centralizované
 - Isolované
 - Distribuované
 - Hierarchické

Kategorizace směrování: Dle reakce na změnu: Neadaptivní

- Většinou se jedná o statické nastavení
- Nereaguje na změny v prostředí
 - Pokud je změna třeba například při výpadku směrovače musí někdo přijít a udělat změnu ručně
- Výhodou je vysoká míra predikovatelnosti
 - Bez ohledu nato co se děje, víte kudy vám data tečou
 - Což s ohledem na fakt, že jednotlivé spoje mohou mít různou cenu za přenos může být výhodné
 - Bezpečné řešení
 - Změny neprobíhají na základě stavu sítě, tedy nejde se směrováním manipulovat
 - Nemá žádnou přidanou režii z hlediska přenosu

Kategorizace směrování: Dle reakce na změnu: Adaptivní

- Řeší nedostatky neadaptivního směrování
 - Tento požadavek vznikl "časem" u prvních sítě s nízkým využitím a malým počtem uzlů nebyl nutný
- Adaptivní směrování se cyklicky snaží zjišťovat stav sítě a tyto informace pak promítnout do směrování
 - Reaguje na výpadek či přidání datové cesty
 - Může reagovat i na zhoršení parametrů existující přenosové cesty
 - Ke zhoršení může dojít vlivem vnějších vlivů například interference nebo počasí, ale i vliv zatížení spoje saturace linky
- Nevýhodou je nenulová režie adaptivních protokolů
 - Informace nutné k nastavení směrování se přenáší jako další data
 - Snižuje využití kapacity přenosového kanálu
 - Režie je tím větší čím více uzlů a změn je v sítí
 - Vzniká bezpečnostní riziko spojené s možností manipulovat s dynamickými směrovacími protokoly
 - V podstatě se jedná o snahu odklonit provoz jinam než kam správně patří z důvodů:
 - Možnosti zachytávání a případně modifikace dat Man in the Middle
 - Znepřístupnění služby / sítě Denial of Service

Kategorizace směrování: Dle metod rozhodování: Centralizované

- Nejjednodušší cesta z pohledu implementace
- Máme jednu stanici, která řídí obsah směrovacích tabulek jednotlivých uzlů / směrovačů
 - Označuje se jako route server
- Ostatní stanice pouze realizují forwarding provozu na základě směrovacích informací od route serveru
 - Označované např jako edge device
- Výhodou je komplexní pohled na síť
 - Všechny informace jsou na jednom místě
 - Všechny informace se předávají v síti jen na jednu stanici
 - Je velice snadné, jako u všech centralizovaných řešení, měnit algoritmy
- Tak jako u všech centralizovaných řešení je problém výpadek route serveru
 - Single point of failure

Kategorizace směrování: Dle metod rozhodování: Isolované

- Každý uzel funguje autonomně a s ostatními nespolupracuje a ani není nikým řízen
- Data ostatním posílá a přijímá je, ale jen jako data, nikoliv jako řídící informace
- Existuje více metod izolovaného směrování
 - Záplavové směrování
 - "Horká brambora"
 - Náhodné směrování
 - Zpětné učení
 - Source routing
 - Policy base routing
- Nejsou tak masivně využívané samostatně, ale mají svůj význam ve speciálních případech slouží
 jako řešení krizových či počátečních situací
 - Krizová zařízení přestává stačit rozhodovat o směrování
 - Mohu použít náhodné směrování či metodu horké brambory
 - Počáteční potřebuji nějakou informaci zjistit, ale zatím nemám jak
 - Použiji například záplavové směrování, protože pokud cesta existuje najde ji

Kategorizace směrování: Dle metod rozhodování: Isolované: Záplavové směrování

- Někdy označované jako Fooding
- Podobně jako jako u broadcastu pro switch jsou data rozeslána na všechny porty, krom toho ze kterého dorazila
 - Nepotřebuje žádnou směrovací tabulku
- Logickým důsledkem je fakt, že pokud nějaká cesta existuje, je nalezena a data doručena
- Nevýhod je ale více:
 - Pokud jsou v sítí smyčky vniká problém násobných paketů
 - Stejně jako pro switch broadcastová bouře
 - Násobné pakety je třeba nalézt a odstranit z provozu
 - Celá síť je násobně zatížena nehodí se na běžný intenzivní provoz
- Může být použit jako nástroj pro hledání a sestavení virtuální cesty
- Může být použit tam, kde bez ohledu na režii potřebujeme mít jistotu, že data nakonec dojdou

Kategorizace směrování: Dle metod rozhodování: Isolované: "Horká brambora"

- Metoda "horké brambory" Hot Potato
- Cílem je přicházející data co nejrychleji odbavit bez ohledu na vše ostatní
- Data se neodesílají podle směrovací tabulky, ale dle toho kterým portem mohou nejrychleji odejít
 - Což lze zjistit na základě délky výstupního bufferu jednotlivých portů
 - Což samozřejmě nemusí nutně být ten ideální nebo správný port
- Může mít dvojí reálné využití
 - Jako doplněk jiného "klasického" směrování, kdy se na toto přepne v případě potíží
 - Na routeru se v bufferech hromadí data a router přestává stíhat, přepne na tuto metodu a v co nejkratším čase fronty vyprázdní nebo alespoň výrazně sníží jejich délku. A to i za cenu toho, že některá data nemusí nutně dojít k cíli a už vůbec ne ideální cestu => přehodím ten problém "tu horkou bramboru" na někoho dalšího
 - Pro vyvažování zátěže násobných linek
 - Pokud mám dvě či více cesty z bodu A do bodu B, mohu jejich provoz pomocí této metody optimalizovat/vyvažovat
 - Protože jak se řeklo, aktuální paket odejde cestou s nejkratším bufferem

Kategorizace směrování: Dle metod rozhodování: Isolované: Náhodné směrování

- Náhodné směrování Random walk
- Jak už název napovídá jedná se o náhodné směrování
- Směr / port není volen na základě nějakého kritéria, ale náhodně
 - Například na rozdíl od "horké brambory", kde sice také není směrovací tabulka, ale nějaký princip ano
- Používá se v situacích kdy na rozhodování není čas / zdroje / důvod
 - Například při zahlcení směrovače toto zařízení typicky data zahazuje, s použitím náhodného směrování se počítá s dvojím možným benefitem
 - Jednak i náhodně mohu trefit tu správnou cestu šance není velká podle počtu portů ale je nějaká
 - I pokud netrefím správný směr, je pořád možné, že další směrovač na tom bude lepé a bude vědět kam data poslat
 - Takže sice o jeden či více kroků cestu prodloužím, ale zabráním ztrátě dat, timeoutu a znovu poslání
- Reálně se používá například v senzorických nebo bezdrátových sítích

Kategorizace směrování: Dle metod rozhodování: Isolované: Zpětné učení

- Zpětné učení Backward learning
- Používá směrovací tabulku, kterou si postupně plní
 - Na počátku je prázdná nepotřebuje počáteční informace
 - Pokud přijde paket od A pro B, poznačí si do směrovací tabulky cestu k A
 - Data mají jít k B, ale neví se kudy, takže není na výběr a data pošleme na všechny ostatní porty daného routeru
 - Použije se záplavové směrování jako "berlička" k nalezení cesty, protože pokud existuje, záplavové směrování ji najde
 - Pokud data dorazí až do B a ten pošle odpověď kam ví, protože to se naučil na základě příchozích dat – naučí se z odpovědi první router i cestu k B
- Výhodou je, že nepotřebuji žádnou výchozí konfiguraci
- Nevýhoda je dlouhá doba a režie na učení
 - Ta je o to horší, čím více se síť mění v čase
 - S počtem komunikujících stanic narůstá i délka tabulek, což také není žádoucí
- V reálu se nepoužívá na L3, ale používá se tento princip na L2 v Ethernetu
 - Pro mosty/přepínače kde data chodí jen ne konkrétní porty, na rozdíl od hubu

Kategorizace směrování: Dle metod rozhodování: Isolované: Source routing

- Směrování od zdroje Source routing
- Kudy data půjdou určuje odesílatel tím, že tyté informace vloží do hlavičky paketu
 - Tedy ne jen adresa cíle, ale rovnou celá cesta
- Kudy mohou data jít odesílatel nejprve zjistí pomocí záplavového směrování
 - Drobné modifikace je v tom, že záplavově směrovaný paket do sebe uchovává informaci o uzlech kterými prošel
 - Až dojde k cíli použije tuto sekvenci k návratu a zároveň tím zjistil cestu
- V praxi se opět na L3 nepoužívá
 - Je nutná podpora na směrovačích
 - Má vysokou režii
- Používá se ale na L2 v rámci Token Ringu
- POZOR neplést se Source base routingem

Kategorizace směrování: Dle metod rozhodování: Isolované: Policy base routing

- Směrování podle pravidel Policy base routing
- Varianta směrování dle "dalších pravidel"
 - Zdrojová adresa
 - Port / protokol
 - Metadata jako je typ paketu, jeho velikost atd.
- Běžně se nepoužívá kvůli vyšší režii, ale má své využití v krajních situacích
 - Například při použití více směrovacích tabulek v jednom stroji na základě adresy zdroje
- Typicky PBR má vyšší prioritu než běžné směrovací tabulky
- Příklad:
 - firma X má nařízeno, že provoz z rozsahu IP adres A, je směrováno přes ISP 1 a provoz z rozsahu IP adres B je směrováno přes ISP 2
 - Tohle běžným routingem řešit nejde, protože by se vždy použila výchozí brána => potřebujeme PBR kde podle pravidla testujícího zdrojovou adresu může použít jinou směrovací tabulku s jinou výchozí bránou

zdroj:

Kategorizace směrování: Dle metod rozhodování: Distribuované

- Distribuované směrování není založené na samostatném směrování každého jednoho uzlu ani na jedné centrální autoritě, ale využívá společného algoritmu a předávání informací
- Jednotlivé uzly se vzájemně informují o dostupných sítí, o jejich parametrech atd. a na základě toho si každý uzel sestaví svoji směrovací tabulku
- Tyto algoritmy počítají se změnami v síti a informace průběžně nebo na základě změny aktualizují
 - Jedná se o adaptivní řešení
- Distribuované směrovací algoritmy dělí na :
 - Interní IGP (Interior gateway protokol)
 - Distance vector protokoly
 - Link state
 - Externí EGP (Exterior gateway protokol)
 - "Path vector"
- POZOR: Dynamické směrovací protokoly provoz Nesměrují/Nepřenášejí data, ale jen plní směrovací tabulky, které se ke směrování následně používají
- Z pohledu počítačové sítě se jedná o běžné aplikační protokoly

Kategorizace směrování: Dle metod rozhodování: Distribuované: Metrika

- Metrika je typicky číslo, které určuje "kvalitu" dané cesty ve směrovací tabulce
- Pokladem pro metriku může být jedna nebo i více veličin
- Tři nejběžnější modely:
 - Distance vector metrikou je délka vektoru vzdáleností
 - Tedy např. přes kolik dalších routerů musí paket projít aby došel k cíli
 - Link state metrikou je cost/cena, která se typicky určuje na základě rychlosti linek, tedy šířky pásma
 - Path vector obdobně jako u distance vector se hledá nejkratší cesta z pohledu skoků, ale ne po
 jednotlivých routerech, ale po jednotlivých autonomních oblastech
- Metrika se používá k rozhodnutí, kterou z násobných linek ve směrovací tabulce promítnout do forwardovací tabulky
- Podle konkrétního protokolu může hodnota metriky označovat i nedostupnou cestu
 - Pro Distance vector protokol RIP je to například 16
 - 16-ctý uzel se bere jako nekonečno jako by tam už ani cesta nebyla

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP : Distance vector

- Distance vector protokoly DVA nebo DVR
- Metrikou těchto protokolů je "vektor" vzdáleností
 - Tedy např. počet mezilehlých směrovačů
- K vyhledávání používá Bellman-Fordův algoritmus
 - Hledání nejkratší cesty v ohodnoceném grafu
- Neberou v potaz reálné parametry linek, ale jen "vzdálenost" v podobě počtu uzlů
 - Reálně tedy mohou data poslat kratší, ale mnohem pomalejší cestou
- Výhodou je snadné zjišťování "stavu sítě", neboť se realizuje jen jako výměna informací mezi dvěma sousedy
 - Tedy mají je připojené nebo je dostaly od jiných sousedů
 - Není třeba linky proměřovat, tedy nebereme v potaz reálné parametry linek mezi uzly ani jejich zatížení
- Každý uzel má jen částečnou informaci o stavu celé sítě
- Problém nastává s timeouty u velkých sítí
 - Musí být zvolena hranice, kdy se další uzel za už považuje za nedostupný
 - Velikost sítí je tak reálně omezena dostupným počtem směrovačů v řadě
- DVA algoritmy pomalu konvergují
 - Informace o výpadku se šíří pomalu, protože v každém kroku se informace výpadku předá jen sousedům

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Distance vector: Tvorba tabulky

- Postupná tvorba směrovací tabulky
 - V prvním kroku znám jen své připojení sítě, které inzeruji/posílám přímým sousedům
 - Pro A 10.1.0.0 a 10.2.0.0 s metrikou nula
 - Pro B 10.2.0.0 a 10.3.0.0 s metrikou nula
 - Pro C 10.3.0.0 a 10.4.0.0 s metrikou nula
 - V druhém kroku dostanu info od svých sousedů a ty doplním do své tabulky
 - Pro A
 - 10.1.0.0 a 10.2.0.0 s metrikou 0
 - 10.3.0.0 s metrikou 1 (od B)
 - Pro B
 - 10.2.0.0 a 10.3.0.0 s metrikou 0
 - 10.1.0.0 s metrikou 1 (od A)
 - 10.4.0.0 s metrikou 1 (od C)
 - Pro C
 - 10.3.0.0 a 10.4.0.0 s metrikou 0
 - 10.2.0.0 s metrikou 1 (od B)

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Distance vector: Tvorba tabulky II.

- Postupná tvorba směrovací tabulky
 - V třetím kroku
 - Pro A
 - 10.1.0.0 a 10.2.0.0 s metrikou 0
 - 10.3.0.0 s metrikou 1 (od B)
 - 10.4.0.0 s metrikou 2 (od B, původně od C)
 - Pro B
 - 10.2.0.0 a 10.3.0.0 s metrikou 0
 - 10.1.0.0 s metrikou 1 (od A)
 - 10.4.0.0 s metrikou 1 (od C)
 - Pro C
 - 10.3.0.0 a 10.4.0.0 s metrikou 0
 - 10.2.0.0 s metrikou 1 (od B)
 - 10.1.0.0 s metrikou 2 (od B, původně od A)

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Distance vector: Problém počítání do nekonečna

- Problém počítání do nekonečna count of infinity
- Sousední routery si vyměňují informace včetně těch, které nejsou jejich lokální, ale neučily se je
- Problém nastává při výpadku, např. pro uzel A
 - Pokud je síť stabilní, má B dvě info k 10.1.0.0
 - Od A s cenou 1
 - Od C s cenou 2
 - Tu ale nepoužije, protože od A má lepší cenu
 - Pokud ale A vypadne, v B se použije cesta od C s hodnotou 2
 a B si ji uloží s hodnotou 3 (2 od C + 1 cesta z B do C)
 - V dalším kroku C dostane info od B, že tuto síť umí s cenou 3 a upraví si svoji tabulku na 4 (3 od B + 1 na cestu z C do B)
 - A info zas pošle dále ...
 - Problémů je zde více
 - Tohle by nikdy neskončilo můžeme vyřešit limitem např 16 pro RIP
 - Celé šíření výpadku velice dlouho trvá

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Distance vector: Řešení problému počítání do nekonečna

- Základní řešení se označuje jako "split horizon" rozštěpený horizont
 - Pokud se cestu do 10.1.0.0 dozvím od B(jako uzel C) , tak už ji zpět do B neinzeruji
 - Tedy pokud vypadne uzel A, cesta zmizí z B a v dalším kroku i z C
- Rozšířením "split horizont" je "split horizon with poisoned reverse"
 - Rozštěpený horizont s otráveným zpětným kanálem
 - Já sice tu cestu zpět inzerovat budu, ale s hodnotou nekonečno
- Důsledkem obou metod je rychlejší šíření negativní informace – info o výpadku cesty
- Problém částečně zůstává, neboť nejde zabránit vzniku cyklů
 - Nevracím data zpět, ale pokračuji pořád dál jedním směrem
 - Možným řešením je neaktualizovat data ihned, ale počkat na info od dalších uzlů, ale to bude zpomalovat konvergenci
 - Řešením by byl trigged update okamžitá informace o změně
 - Pokud jsem upravil svou tabulku IHNED to info předám dále

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Distance vector: RIP

- Nejtypičtějším DVA protokolem je RIP
- Metrikou pro RIP je jen počet kroků k dosažení požadované sítě
 - Počet mezilehlých směrovačů
- Informaci o dostupných sítích rozesílá každý uzel každých 30s
- Jedná se o vlastní směrovací tabulku složenou s lokálně připojených sítí a získaných informací
- Pokud nové info nepřijde od souseda déle než 180s, je prohlášen za mrtvého
- RIP pro komunikaci používá 520/UDP
 - Jako běžný aplikační protokol potřebuje prostup ve FW
- Používá "Split horizon with poisoned reverse" a "Triggered update"
- Existují tři verze:
 - RIP 1
 - Původní verze, neřeší zabezpečení, pracuje jen s třídami adres
 - Podporuje 15 uzlů v řadě, 16-tý se rovná nekonečnu nedostupný
 - Data posílá broadcastem
 - RIP 2
 - Rozšiřuje původní verzi o podporu CIDR pracuje s maskami sítí
 - Data posílá multicastem
 - · Zavádí autentizaci heslem
 - RIP ng (next generation)
 - Přináší podporu pro IPv6

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Link state

- Nedostatkem DVA je fakt, že nezohledňuje aktuální stav sítě ani její parametry
- Link state protokoly používají jako metriku cenu cost, což je informace lince mezi uzly
 - Zda je linka 1Mbps, 10Mbps,
- Každý uzel cyklicky testuje dostupnost svých sousedů pomocí "Hello" zpráv
 - Ví, že soused žije a ví jak "rychlá" k němu vede linka
- Každý uzel šíří všem ostatním uzlům informace, které má
- Zásadní rozdíl proti DVA info už nepředávám jen sousedům, ale VŠEM
- Jednotlivé uzly si sami vypočítávají směrovací informace
 - Dostávám info od všech, takže vím o stavu celé sítě
- Pokud jeden uzel udělá chybu ve výpočtu neovlivní to další uzly
- Používá se Dijkstrův algoritmus
- Informace o stavu linek Link State pakety LSP
 - Informace se musejí rozesílat při změně, ale VŠEM uzlům
 - Novou informaci mají všechny uzly v prvním kroku, což výrazně urychluje konvergenci oproti DVA
- Informace se může rozesílat i periodicky, ale spíše pro osvěžení informací a za delší dobu než u DVA
- Například jen jednou za 30min
- Uzel, který přijme LSP, jej pošle všem sousedům, kromě toho od koho info dostal
- V rámci LSP je identifikace verze pokud přijmu LSP se starší verzí zahodím jej
- Přenos LSP je spolehlivý
 - Využívá potvrzení doručení, timeouty a případné opakovaní zaslání informace
- Ve výsledku má LSA menší režii než DVA v závislosti na počtu uzlů a proto se lépe hodí do rozsáhlejších sítí
- LSA rychleji konverguje a neobsahuje problém počítání do nekonečna

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Link

state: OSPF

- Dnes nejběžnější představil LSA protokolů
- Používá Dijkstrův algoritmus
- Cyklicky posílá sousedům Hello pakety pro zjištění jejich stavu
 - A díky tomu může detekovat změny, kde info o změně pak posílá všem
 - · Posílá se každých 10s a posílá se přes multicast
 - Pokud do 40s neobdržím Hello, prohlásím souseda za mrtvého
- Podporuje autentizaci a sumarizaci
- Pro velké sítě zavádí dělení na subsítě area
 - Základní je Area0, ke které jsou připojeny další oblasti AreaX
 - Komunikaci mezi oblastmi zajišťují ABR směrovače
 - Mají přístup do obou sítí
 - Předávají JEN sumarizované informace z dané sítě, ne celou topologii
 - Existují ještě ASBR směrovače, které jsou pouze transportní
 - Umožňují importovat routy z jiných systémů jako je např RIP
- Pro broadcastové sítě zavádí tři stavy routerů
 - DR Designed router pověřený router
 - Je volen na základě konfigurační konstanty a MAC adresy
 - BDR Backup Designed router záložní pověřený router
 - DRO ostatní routery, které se připojují k DR nebo BDR
 - Komunikace pak není každý s každým, čímž se šetří přenosy a zrychluje konvergence

zdroj: http://www.cs.vsb.cz/grygarek/SPS/lect/OSPF/ospf.html

zdroj: https://jjrinehart.wordpress.com/2012/07/30/ospf-iv-there-is-no-i-in-team-more-about-drs/

Kategorizace směrování: Dle metod rozhodování: Distribuované: IGP: Link state: OSPF: Cena linek

- Výchozí cena linky v OSPF je
 - Cena = 100.000.000/bandwith
 - Tedy reference k 100Mbps vychází z historie, když se 100Mbps bral jako maximální možná hodnota
- Zde vzniká problém, protože od 100Mbps výše bude cena linek 1
 - Ale to neodpovídá, protože 100MBps není stejný jako 10Gbps
- V routerech jsou dvě možnosti řešení
 - Upravit referenční hodnotu výpočtu
 - Pro cisco např ospf auto-cost reference-bandwith XXX
 - Nastavit cenu linky ručně
 - Pokud se například jedná jen o jednu linku v systému
 - Např pro cisco ip ospf cost XX

Auto-Cost Reference-Bandwidth 1000

Interface Type	Cost Value
10 Gigabit Ehternet (10 Gbps)	1
Gigabit Ethernet (1 Gbps)	1
Fast Ethernet (100 Mbps)	10
Ethernet (10 Mbps)	100
Serial (1.544 Mbps)	647
Serial (128 Kbps)	7812
Serial (64 Kbps)	15625

Kategorizace směrování: Dle metod rozhodování: Distribuované: EGP: Path Vector

- Path vector se používá v externích dynamických směrovacích protokolech
- Kromě informace o cílové sítí obsahuje
 - Router pomocí kterého je dostupný
 - Celou cestu k cílové sítí
 - Cesta je definovaná jako seznam autonomních oblastí
- Někdy je zařazován mezi Distance vector protokoly
- Autonomní systém AS
 - Samostatně spravovaná oblast s vlastním identifikátorem
 - Samostatná směrovací doména
 - Co se děje uvnitř se neprojevuje nahodile navenek, ale jen prostřednictvím hraničního uzlu, který předává informace
 - V každé AS (nebo také někdy area) může být použito jiné směrování
 - Směrování mezi AS zajišťují EGP protokoly například BGP

zdroj: https://bethepacketsite.wordpress.com/2016/04/20/dynamic-routing-path-vector/

Kategorizace směrování: Dle metod rozhodování: Distribuované: EGP: Path

Vector: BGP

- BGP Border gateway protokol
- Nejpoužívanější představit EGP
- Používá Path-vector
- Podporuje autentizaci
- Komunikuje pomocí 179/TCP
- Na rozdíl od IGP protokolů BGP nehledá sousedy, ale má je zadané
 - Bavíme se o propojení AS/ISP, tedy typicky point-to-point spoje hledání nemá smysl
- Používá hledání nejkratší cesty, kde nejkratší je ta, která prochází přes co nejméně AS
 - Ceny jednotlivých cest je také možné doplnit o statické části ceny konstanty
 - To je pro EGP nesmírně důležité, protože se zde typicky řeší násobné spoje a s ohledem na jejich ceny je nutné mít možnost preference
- Při navázání spojení se sousedem jsou nejprve vyměněny všechny směrovací informace
- V dalším kroku už se posílají jen změny šetříme přenos
- Cyklicky se kontroluje, zda všichni sousedi žijí
 - Typicky 1x za minutu

zdroj: https://www.semanticscholar.org/paper/BIGP-a-new-single-protocol-that-can-work-as-an-igp-Gupta/20bd5da8b6a4dfa2ea862f096953e2ce2d9a373b

Kategorizace směrování: Dle metod rozhodování: Distribuované: EGP: Path Vector: BGP: Metrika

- Metrika u BGP není tak jednoduchá / jednoznačná jako u IGP protokolů, kde hledáme jen nejlepší cestu v rámci jednoho organizačního celku
- BGP směruje provoz mezi ISP / či přes ně a v tu chvíli hrají roli i další faktory:
 - Ceny linek / Ceny přenosů
 - Obchodní podmínky / vztahy jednotlivých ISP
- Parametrů je více viz tabulka a mají různou váhu a dosah
 - Část parametrů zůstává jen v AS a k dalším ISP se nepřenáší
 - Část parametrů se exportuje jako preference i mimo AS
 - Weight jen v routeru lokální
 - Local_preference v rámci AS
 - Med exportované mezi AS

Priority	Attribute
1	Weight
2	Local Preference
3	Originate
4	AS path length
5	Origin code
6	MED
7	eBGP path over iBGP path
8	Shortest IGP path to BGP next hop
9	Oldest path
10	Router ID
11	Neighbor IP address

zdroj: https://networklessons.com/bgp/bgp-attributes-and-path-selection

Kategorizace směrování: Dle metod rozhodování: Hierarchické směrování

- Hierarchické směrování se snaží řešit problematiku rozsáhlých sítí
 - V rozsáhlých sítích vzniká problém s rychlostí konvergence
 - Příliš dlouho trvá, než se nová informace dostane všude
 - Vzniká problém zatížení sítě obslužným provozem
 - Čím více routeru v jedné síti, tím více komunikace mezi nimi
- Řešením je rozdělit síť na více malých oblastí v a směrování řešit samostatně
 - Uvnitř dané oblasti
 - Nazývané směrovací doména / Area / Autonomní systém
 - Protokoly IGP
 - Externě mezi jednotlivými oblastmi
 - Protokoly EGP
- Historicky musely jednotlivé oblasti opravdu tvořit hierarchii
 - Počítalo se s páteřní oblastí na kterou se ostatní připojí jako např v OSPF
 - Dnes už to není nutné a jednotlivé AS mohou být na stejné úrovni

zdroj: https://lh3.googleusercontent.com/proxy/fWaDz-xR3WchuzrSYqH6xNaI49OxF15mYi7-sX6k98b2YFbAr3sdLjtQhQkG3XnkJK-NL4VIjlenLtgcnNwQM1Ae0y1WlvLMV50yopELdGlqLDvR8co

Kategorizace směrování: Dle metod rozhodování: Hierarchické směrování: Peering

- Peering je vzájemné propojení jednotlivých ISP
- Tedy propojení jednotlivých AS
- Peering je možné realizovat dvojím způsobem
- Na přímo
- Nejjednodušší cesta dva ISP se dohodnou, udělají mezi sebou propoj a nastaví směrování kde si mezi sebou propagují informace o svých sítích
- Problém je, že nemůžeme propojit na přímo všechny sítě
- Pomocí peering centra
- Více ISP se dohodne na spolupráce a společném "bodě" kde bude docházet ke společnému propojení – peerigový uzel
- Peeringové centrum je typicky hrazeno z členských poplatků
- · Je zde společný zájem na fungování
- Fungování není levné protože zde tečou obrovská data
- Jedná se citlivý bod z hlediska bezpečnosti
- Cena za členství není malá a jednotlivý partneři se mohou propojovat vzájemně na přímo
- Ať už jako primární nebo jako záložní řešení
- Propojení je možné na více úrovních, u nás se typicky řeší čtyři možnosti
- NIX české peeringové centrum
- SIX propojení na slovenská peeringové centrum
- Transit zahraniční konektivita
- Přímé propojení ISP
- Ceny za jednotlivé přenosy a stejně tak parametry linek v jednotlivých propojích jsou různé a je nutné je hlídat
- Protože pokud například tečou dlouhodobě data k českému partnerovi pomocí zahraniční konektivity bude to velice drahé

