Задача 1. Пусть (x_n) — последовательность положительных чисел, стремящаяся к a. Докажите¹, что тогда для любого $k \in \mathbb{N}$ существует предел последовательности $(\sqrt[k]{x_n})$, равный $\sqrt[k]{a}$.

Задача 2. Пусть a,b>0 и $n\in\mathbb{N}$. Докажите, что выполнено неравенство $\frac{a^{n+1}}{b^n}\geqslant (n+1)a-nb.$

Задача 3. (о числе е) Докажите, что

- а) последовательность $e_n = \left(1 + \frac{1}{n}\right)^n$ монотонно возрастает;
- **б)** последовательность $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонно убывает;
- в) $\lim_{n\to\infty} e_n = \lim_{n\to\infty} E_n$ (число e по определению равно пределу этих последовательностей);
- **r)** выполнено неравенство $2{,}25 < e < 3{,}375$ (компьютер использовать нельзя);
- д) Найдите такое n, что $|e-e_n|<10^{-6}$ (компьютер использовать нельзя).

Задача 4. (*о числе* e^r) Докажите, что **a)** $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e};$

- **б)** $\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k$, если число k целое; **в)** $\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = e^r$, если число r рационально;
- \mathbf{r})* одна из последовательностей $\left(1+\frac{r}{n}\right)^n$ и $\left(1+\frac{r}{n}\right)^{n+r}$ монотонно возрастает, другая монотонно убывает (начиная с какого-то момента), и пределы обеих последовательностей равны e^r .

Задача 5. Обозначим сумму $\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)$ через s_n , а число $\left(1+\frac{1}{n}\right)^n$ через e_n .

- а) Докажите, что для любого натурального n выполнено неравенство $e_n \leqslant s_n$;
- **б)** Зафиксируем натуральное число N и рассмотрим любое натуральное n > N. Раскроем скобки в выражении $\left(1 + \frac{1}{n}\right)^n$ по биному Ньютона и оставим лишь первые N+1 слагаемых. Докажите, что предел полученной таким образом последовательности равен s_N ;
- в) Докажите, что $s_N \leqslant e$;
- \mathbf{r}) Докажите, что $\lim_{n\to\infty} s_n = e;$
- д)* Докажите, что $\sum_{i=m}^{n} \frac{1}{i!} \leqslant \frac{1}{m!} \cdot \frac{1}{1 \frac{1}{m+1}};$
- е)* Найдётся ли n < 100 такое, что $|e s_n| < 10^{-6}$? (Компьютер использовать нельзя.)
- **ж)***Докажите, что для любого $r \in \mathbb{Q}$ существует предел $\lim_{n \to \infty} \sum_{i=0}^n \frac{r^i}{i!} = \lim_{n \to \infty} \left(1 + \frac{r^1}{1!} + \ldots + \frac{r^n}{n!}\right) = e^r$.

Задача 6. Докажите, что $\lim_{n \to \infty} n(e^{\frac{1}{n}} - 1) = 1$. (Подсказка: томом поможет в расков в р

1	2	3 a	3 6	3 B	3 Г	3 д	4 a	4 б	4 B	4 Г	5 a	5 6	5 в	5 г	5 д	5 e	5 ж	6

⁽Домножение на сопряжённое будет крайне уместно и в этой задаче. :sиsвзуро Π) 1