#### 1 Brøker

Brøker er tal på formen

hvor a, b er tal samt  $b \neq 0$ . a er tælleren og b er nævneren. 1.1 Regneregler

### Der gælder

$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}, \quad \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}, \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc},$$
$$a\frac{b}{c} = \frac{ab}{c}, \quad \frac{\frac{a}{b}}{c} = \frac{a}{bc}, \quad \frac{a}{\frac{b}{c}} = \frac{ac}{b}.$$

#### 1.2 Forkorte/Forlænge Brøker Fælles faktorer kan forkortes:

$$\frac{1}{b} =$$

# 2 Potenser

Potenser er tal på formen

x er grundtallet og a er eksponenten. 2.1 Regneregler

## Der gælder

$$x^{a}x^{b} = x^{a+b}, \quad \frac{x^{a}}{x^{b}} = x^{a-b}, \quad (xy)^{a} = x^{a}y^{a},$$
  
 $\left(\frac{x}{y}\right)^{a} = \frac{x^{a}}{y^{a}}, \quad (x^{a})^{b} = x^{ab}, \quad x^{-a} = \frac{1}{x^{a}}.$ 

Hvis  $x \ge 0$  og  $n \in \mathbb{Z}_+$  så findes et tal

$$(\sqrt[n]{x})^n = x.$$

Bemærk at  $\sqrt[n]{x} = x^{\frac{1}{n}}$ .

## 3.1 Regneregler

Der gælder

$$\sqrt[n]{x} = x^{\frac{1}{n}}, \quad \sqrt[n]{x^m} = x^{\frac{m}{n}} = (\sqrt[n]{x})^m,$$

$$\sqrt[n]{x} = \sqrt[n]{x} \sqrt[n]{y}, \qquad \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}.$$

## 4 Kvadratsætninger

Der gælder

$$(a+b)^2 = a^2 + b^2 + 2ab$$
$$(a-b)^2 = a^2 + b^2 - 2ab$$
$$(a+b)(a-b) = a^2 - b^2.$$

#### 5 Ligninger

Ligninger kan reduceres med følgende Et førstegradspolynomium har forskrift: Der gælder at 1. Man må lægge til/trække fra med

- det samme tal på begge sider af et lighedstegn. 2. Man må gange/dividere med det
- samme tal (undtagen 0) på begge sider af et lighedstegn. 5.1 Andengradsligninger

### Andengradsligninger er på formen

$$ax^2 + bx + c = 0, (1$$

Løsningerne til (1) er

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

## 5.2 Faktorisering

Hvis  $ax^2 + bx + c = 0$  har rødder  $r_1$  og  $r_2$ 

$$ax^2 + bx + c = a(x - r_1)(x - r_2).$$

#### 6 Funktioner

En funktion  $f: X \to Y$  tildeler alle  $x \in X$ præcis ét element  $f(x) \in Y$ .

#### 6.1 Sammensatte funktioner

Hvis  $f: X \to Y$  og  $g: Y \to Z$  defineres sammensætningen  $g \circ f: X \to Z$  ved ret ud fra enhedscirklen:  $(g \circ f)(x) = g(f(x))$ . f er den indre funktion,



#### 6.2 Inverse funktioner

To funktioner  $f: X \to Y$  og  $g: Y \to X$  er hinandens inverse hvis

$$f(g(y)) = y$$
, og  $g(f(x)) = x$ 

for alle x i X og y i Y.



## 6.3 Polynomier

f(x) = ax + b.

 $f(x) = ax^2 + bx + c.$ 

#### Logaritmen med grundtal a, $\log_a$ : $]0, \infty[\rightarrow$

R er invers til eksponentialfunkionen  $f_a(x) = a^x \ (a > 0, a \ne 1)$ . Der gælder at

$$\log_a(a^x) = x$$
 og  $a^{\log_a(y)} = y$ 

 $\log x = \log_{10} x$ 

 $\ln x = \log_e x$ ,

Der gælder

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a\left(\frac{x}{y}\right) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r\log_a(x). \end{split}$$

#### 7 Trigonometriske funktioner



Der gælder at

| θ             | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
|---------------|---|----------------------|----------------------|----------------------|-----------------|
| $\sin \theta$ | 0 | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |
| $\cos \theta$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1/2                  | 0               |
| $\tan \theta$ | 0 | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | -               |
|               |   |                      |                      |                      |                 |

 $samt tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ 

### 8 Differentialregning

Den afledede f' af f betegnes  $\frac{d}{dx}f = \frac{df}{dx}$ .

8.1 Regneregler

| c                 | 0                |  |  |
|-------------------|------------------|--|--|
| x                 | 1                |  |  |
| $x^n$             | $nx^{n-1}$       |  |  |
| $\frac{x^n}{e^x}$ | $e^x$            |  |  |
| $e^{cx}$          | ce <sup>cx</sup> |  |  |
| $\overline{a^x}$  | $a^x \ln a$      |  |  |
| $\ln x$           | $\frac{1}{x}$    |  |  |
| $\cos x$          | $-\sin x$        |  |  |
| sin x             | cos x            |  |  |
| tanx              | $1 + \tan^2(x)$  |  |  |
| elle regneregler  |                  |  |  |

f'(x)

## 8.2 Gener

Der gælder at

$$(cf)'(x) = cf'(x) 
(f \pm g)'(x) = f'(x) \pm g'(x) 
(fg)'(x) = f'(x)g(x) + f(x)g'(x) 
\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)} 
\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

Den sidste regneregel kaldes kæderglen.

### 9 Ubestemte integraler

En funktion f har stamfunktion F hvis

$$F'(x) = f(x).$$

Det ubestemte integral af f defineres til

$$\int f(x) dx = F(x) + k,$$

hvor F er en stamfunktion til f og  $k \in \mathbb{R}$ .

### 9.1 Generelle regneregler

$$\int cf(x)dx = c \int f(x)dx$$

$$\int f(x)g(x)dx = [f(x)G(x)]_a^b - \int f'(x)g(x)dx = [f(x)G(x)]_a^b - \int f'(x)g(x)dx = [f(x)G(x)]_a^b - \int f'(x)g(x)dx$$

$$\int f(x)g(x)dx = \int f(x)dx \pm \int g(x)dx.$$

$$\int f(g(x))g'(x)dx = f(x)G(x) - \int f'(x)G(x)dx$$
Givet et integral på
$$\int_a^b f(g(x))g'(x)dx \text{ anvendes me}$$

$$\int f(g(x))g'(x)dx = F(g(x)) + k.$$
1. Lad  $u = g(x)$ .

Den 3. regel kaldes delvis integration og den sidste kaldes integration ved substitu-

| f(x)          | $\int f(x) dx$             |
|---------------|----------------------------|
| С             | cx + k                     |
| x             | $\frac{1}{2}x^2 + k$       |
| $x^n$         | $\frac{1}{n+1}x^{n+1} + k$ |
| $e^x$         | $e^x + k$                  |
| $e^{cx}$      | $\frac{1}{c}e^{cx} + k$    |
| $\frac{1}{x}$ | $\ln( x ) + k$             |
| $\ln x$       | $x\ln(x) - x + k$          |
| $\cos x$      | $\sin x + k$               |
| $\sin x$      | $-\cos x + k$              |
| tan x         | $-\ln( \cos(x) ) + k$      |

#### 9.3 Integration ved substitution Givet et integral på

formen  $\int f(g(x))g'(x) dx$  anyendes metoden: 1. Lad u = g(x).

9.2 Regneregler

Der gælder at

- 2. Udregn  $\frac{du}{dx}$  og isoler dx.
- 3. Substituer g(x) og dx.
- 4. Udregn integralet mht. *u*.
- 5. Substituer tilbage.

## 10 Besemte integraler

Det bestemte integral af f i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

hvor F er en stamfunktion til f.

## 10.1 Generelle regneregler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x)g(x) dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x) dx$$

$$\int_{a}^{b} f(g(x))g'(x) dx = [F(x)]_{g(a)}^{g(b)}.$$

## 10.2 Integration ved substitution

formen  $\int_{a}^{b} f(g(x))g'(x) dx$  anyendes metoden

- 1. Lad u = g(x).
- 2. Udregn  $\frac{du}{dx}$  og isoler dx.
- 3. Substituer g(x), dx samt grænser.
- 4. Udregn integralet mht. *u*.