Matemática Discreta – AD2 – 2007/2

Observações: Caro tutor, aqui estão as soluções comentadas da AD2, referente as aulas 14–20 do Módulo 1.

Ao elaborar a avaliação procurei escolher questões cujas soluções envolvem o cálculo de probabilidades, por aplicação da definição, das técnicas de contagem e das regras básicas.

Nada impede que, ao resolver as questões, o aluno apresente soluções alternativas que você, tutor, considere mais interessantes do que as que eu estou fornecendo. Quando este for o caso, use seu bom senso para redistribuir os pontos, sem ofender o critério de correção, de modo a prestigiar a iniciativa do aluno.

Se você tiver alguma dúvida sobre como proceder ou quizer fazer alguma sugestão ou observação, por favor, entre em contato pelo email petrucio@cos.ufrj.br.

Conteúdo abordado:

Espaço amostral, Eventos, Cálculo de probabilidades, Cálculo de probabilidades por meio de técnicas de contagem, Probabilidade do evento complementar, Regra da adição.

Soluções comentadas:

- 1. Um número é escolhido ao acaso no conjunto $\{1, 2, 3, ..., 100\}$, de números naturais e os seguintes eventos são considerados: ser múltiplo de 2; ser múltiplo de 3; ser múltiplo de 2 ou 3; não ser múltiplo nem de 2 nem de 3.
 - (a) (0,5) Determine o espaço amostral Ω deste experimento;
 - (b) (0,5) Defina cada um dos eventos acima na notação $\{x \in \Omega : P(x)\};$
 - (c) (2,5) Calcule a probabilidade de cada um dos eventos definidos ocorrerem.

Solução:

- (a) O espaço amostral é o conjunto $\Omega = \{1, 2, 3, \dots, 100\}.$
- (b) Os eventos acima podem ser definidos do seguinte modo:

```
\begin{split} A &= \{x \in \Omega : x \text{ \'e m\'ultiplo de 2}\}; \\ B &= \{x \in \Omega : x \text{ \'e m\'ultiplo de 3}\}; \\ C &= \{x \in \Omega : x \text{ \'e m\'ultiplo de 2 e } x \text{ \'e m\'ultiplo de 3}\}; \\ D &= \{x \in \Omega : x \text{ \'e m\'ultiplo de 2 ou } x \text{ \'e m\'ultiplo de 3}\}; \\ E &= \{x \in \Omega : x \text{ \~n\~ao \'e m\'ultiplo de 2 e } x \text{ \~n\~ao \'e m\'ultiplo de 3}\}. \end{split}
```

- (c) Observe que $n(\Omega) = 100$, $C = A \cap B$, $D = A \cup B$ e $E = A^c \cap B^c = (A \cup B)^c$.
 - Cálculo de P(A): De cada dois elementos consecutivos de Ω um é múltiplo de 2 e o outro não. Assim, temos que $n(A) = \frac{100}{2} = 50$. Logo, $P(A) = \frac{50}{100}$.
 - Cálculo de P(B): Observe que os múltiplos de 3 em Ω pertencem ao conjunto $\Omega' = \{1, 2, 3, \dots, 99\}$. De cada três elementos consecutivos de Ω' um é múltiplo de 3 e os outros não. Assim, temos que $n(B) = \frac{99}{3} = 33$. Logo, $P(B) = \frac{33}{100}$.
 - Cálculo de P(C): Observe que x é múltiplo de 2 e x é múltiplo de 3 se, e somente se, x é múltiplo de 6. Os múltiplos de 6 em Ω pertencem ao conjunto $\Omega' = \{1, 2, 3, \dots, 96\}$. De cada seis elementos consecutivos de Σ' um é múltiplo de 6 e o outro não. Assim, temos que $n(C) = \frac{96}{6} = 16$. Logo, $P(C) = \frac{16}{100}$.

- Cálculo de P(D): Como $A \cap B = \emptyset$, pela Regra dos Eventos Mutuamente Exclusivos, $P(A \cup B) = P(A) + P(B) P(A \cap B)$. Logo, $P(D) = \frac{50}{100} + \frac{33}{100} \frac{16}{100} = \frac{67}{100}$.
- Cálculo de P(E): Pela Regra da Probabilidade do Evento Complementar, $P((A \cup B)^c) = 1 P(A \cup B)$. Logo, $P(E) = 1 \frac{67}{100} = \frac{33}{100}$.
- 2. Um grupo é constituído de seis homens e quatro mulheres. Três pessoas são selecionadas ao acaso, neste grupo, sem reposição, e os seguintes eventos são considerados: as três pessoas são mulheres; ao menos duas pessoas são mulheres.
 - (a) (1,0) Determine o espaço amostral Ω deste experimento;
 - (b) (0,5) Defina cada um dos eventos acima na notação $\{x \in \Omega : P(x)\};$
 - (c) (1,0) Calcule a probabilidade de cada um dos eventos definidos ocorrerem.

Solução:

Considere o conjunto $U = \{h_1, h_2, h_3, h_4, h_5, h_6, m_1, m_2, m_3, m_4\}$ com 10 elementos, sendo seis homens e quatro mulheres.

- (a) O espaço amostral é o conjunto $\Omega = \{X \subseteq U : n(X) = 3\}$, formado pelos subconjuntos de três pessoas selecionadas ao acaso, em U, sem reposição. Note que os elementos de Ω são conjuntos.
- (b) Os eventos acima podem ser definidos por:

 $A = \{X \in \Omega : \text{ todos os elementos de } X \text{ são mulheres}\};$ $D = \{X \in \Omega : \text{ ao menos dois dos elementos de } X \text{ são mulheres}\}.$

Note que cada eventos é um conjunto de conjuntos.

- (c) Temos que $n(\Omega) = C(10,3) = 120$.
 - Cálculo de P(A): Para formar um elemento de A, podemos executar uma única tarefa:

 t_1 : formar um subconjunto com 3 elementos do conjunto $\{m_1, m_2, m_3, m_4\}$.

Assim, temos que n(A) = C(4,3). Logo, a probabilidade de que as três pessoas selecionadas sejam mulheres é $P(A) = \frac{C(4,3)}{C(10,3)}$.

• Cálculo de P(D): Considere o evento

 $B = \{X \in \Omega : \text{ exatamente dois dos elementos de } X \text{ são mulheres} \}.$

Observe que $D=A\cup B$. Como $A\cap B=\emptyset$, pela Regra dos Eventos Mutuamente Exclusivos, $P(A\cup B)=P(A)+P(B)$. Assim, calculando P(B), o problema está resolvido.

Para formar um elemento de B, podemos executar duas tarefas:

 t_1 : formar um subconjunto com 2 elementos do conjunto $\{m_1, m_2, m_3, m_4\}$;

 t_2 : escolher um elemento do conjunto $\{h_1, h_2, h_3, h_4, h_5, h_6\}$.

Assim, temos que n(B) = C(4, 2). Logo, $P(B) = \frac{C(4, 2)}{C(10, 3)} \times 6$.

Finalmente, $P(D) = \frac{C(4,3)}{C(10,3)} + 6 \times \frac{C(4,2)}{C(10,3)}$.

- 3. (3,0) Um grupo é constituído de dez pessoas, entre elas Carol e Leo. As pessoas do grupo são dispostas, ao acaso, em uma ordenação linear e os seguintes eventos são considerados: Carol e Leo estão lado a lado, na ordenação; existe ao menos uma pessoa entre Carol e Leo, na ordenação; existe exatamente uma pessoa entre Carol e Leo, na ordenação.
 - (a) (0.5) Descreva o espaço amostral Ω deste experimento;
 - (b) (3,5) Calcule as probabilidades dos eventos considerados acima ocorrem.

Solução:

Considere o conjunto $U = \{P_1, P_2, \dots, P_8, C, L\}$ com 10 elementos, dentre elas C (Carol) e L (Leo).

(a) O espaço amostral é o conjunto Ω de todas as permutações dos elementos de U. Os eventos acima podem ser definidos por:

$$\begin{split} A &= \{ p \in \Omega : C \text{ e } L \text{ são elementos consecutivos de } p \}; \\ B &= \{ p \in \Omega : C \text{ e } L \text{ não são elementos consecutivos de } p \}; \\ C &= \{ p \in \Omega : \text{entre } C \text{ e } L, \text{ em } p, \text{ existe exatamente um elemento de } U \}. \end{split}$$

Note que C é um subconjunto próprio de B.

- (b) Temos que $n(\Omega) = 10!$ e $B = A^c$.
 - Cálculo de P(A): Para formar um elemento de A, podemos executar duas tarefas:

 t_1 : formar uma ordenação linear com C e L; t_2 : formar uma permutação com as pessoas P_1, \ldots, P_8 e a ordenação linear formada em t_1 .

A tarefa t_1 pode ser executada de P(2) = 2! maneiras. A tarefa t_2 pode ser executada de P(9) = 9! maneiras. Logo, pelo PM, temos um total de $2! \times 9!$ elementos em A. Assim, $P(A) = \frac{2! \times 9!}{10!}$.

- Cálculo de P(B): Pela Regra da Probabilidade do Evento Complementar, $P(A^c) = 1 P(A)$. Logo, $P(B) = 1 \frac{2! \times 9!}{10!}$.
- Cálculo de P(C): Para formar um elemento de C, podemos executar quatro tarefas:

 t_1 : escolher uma das pessoas P_1, \ldots, P_8 ; t_2 : formar uma ordenação linear com C e L;

 t_3 : formar uma permutação com as pessoas não escolhidas em t_1 e a ordenação linear formada em t_2 .

 $t_4 \;\; : \;\; \text{inserir a pessoa escolhida em } t_1$ entre C_1 e $C_2,$ na ordenação.

A tarefa t_1 pode ser executada de 8 maneiras. A tarefa t_2 pode ser executada de P(2)=2! maneiras. A tarefa t_3 pode ser executada de P(8)=8! maneiras. A tarefa t_4 pode ser executada de 1 maneira. Logo, pelo PM, temos um total de $8\times 2!\times 8!\times 1$ elementos em C. Assim, $P(C)=\frac{8\times 2!\times 8!}{10!}$.

 ${\it Jorge~Petr\'ucio~Viana}$ Coordenador da Disciplina MD/IM–UFF