EXERCICE 1.

Vérifier que l'ensemble \mathbb{R}_+^* muni des lois interne et externe suivantes

$$u \boxplus v = uv \quad \text{et} \quad \lambda \boxdot u = u^{\lambda},$$

où u et v sont dans \mathbb{R}_+^* et $\lambda \in \mathbb{R}$, est un \mathbb{R} -espace vectoriel.

EXERCICE 2.

L'axe réel dans $\mathbb C$ est-il un sous-espace vectoriel du $\mathbb C$ -espace vectoriel $\mathbb C$? du $\mathbb R$ -espace vectoriel $\mathbb C$?

EXERCICE 3.

Dans l'espace vectoriel $E = \mathbb{R}^3$, on considère les ensembles suivants,

$$\mathsf{F} = \left\{ (\lambda - 3\mu, 2\lambda + 3\mu, \lambda) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

et

$$G = \{(x, y, z) \in E \mid x + 2y = 0\}.$$

- 1. Prouver que les ensembles F et G sont des sous-espaces vectoriels de E.
- **2.** Déterminer le sous-espace vectoriel $F \cap G$.

EXERCICE 4.

On note $E = \mathbb{R}^{\mathbb{N}}$. Les sous-ensembles suivants sont-ils des sous-espaces vectoriels de E^{-2}

1.
$$E_1 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \mid \lim_{n \to +\infty} u_n = 0 \right\};$$

$$\textbf{2.} \ E_2 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \ \big| \ u_n = \mathcal{O}\left(n^2\right) \right\};$$

3.
$$E_3 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \mid u_n \sim \frac{1}{n} \right\};$$

$$\textbf{4.} \ E_4 = \bigg\{ (u_n)_{n \in \mathbb{N}} \in E \ \big| \ \exists k \in \mathbb{R} \ , \ u_n \sim \frac{k}{n} \bigg\}.$$

EXERCICE 5.

Parmi les parties suivantes de l'espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$, déterminer celles qui sont des sous-espaces vectoriels,

- 1. L'ensemble des fonctions telles que f(1) = 0;
- **2.** L'ensemble des fonctions telles que f(0) = 1;
- **3.** L'ensemble des fonctions de classe \mathcal{C}^1 ;
- 4. L'ensemble des fonctions monotones:
- **5.** L'ensemble des fonctions impaires;
- 6. L'ensemble des fonctions 2π -périodiques.

EXERCICE 6.

Soient E un K-espace vectoriel et X, Y deux parties de E. Prouver que

$$\operatorname{vect}(X \cap Y) \subset \operatorname{vect}(X) \cap \operatorname{vect}(Y)$$
.

Donner un exemple où cette inclusion est *stricte*.

EXERCICE 7.

Parmi les ensembles suivants reconnaître ceux qui sont des sous-espaces vectoriels.

- 1. $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + a = 0, \text{ et } x + 3az = 0\};$
- **2.** $E_2 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) = 0 \};$
- **3.** $E_3 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = 1 \};$
- **4.** $E_4 = \{(x,y) \in \mathbb{R}^2 \mid x + \alpha y + 1 \ge 0\}.$

EXERCICE 8.

Parmi les ensembles suivants, reconnaître ceux qui sont des sous-espaces vectoriels :

- 1. $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\};$
- **2.** $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\};$
- **3.** $E_3 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0, y = z\};$
- **4.** $E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1\};$
- **5.** $E_5 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + xy \ge 0\};$
- **6.** $E_6 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 \ge 0\};$
- 7. $E_7 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(1) = 0 \};$
- **8.** $E_8 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 1 \};$
- **9.** $E_9 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ est croissante} \}.$

EXERCICE 9.

Montrer qu'un K-espace vectoriel E n'est jamais l'union de deux sous espacesvectoriels stricts (i.e. distincts de E).

EXERCICE 10.

Soit F le sous-espace vectoriel de \mathbb{R}^3 d'équation x+y+z=0 et G le sous-espace vectoriel de \mathbb{R}^3 d'équations $\begin{cases} x - y + 2z = 0 \\ x + y - z = 0 \end{cases}$

- 1. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2. Soit $(x,y,z) \in \mathbb{R}^3$. Déterminer la projection de (x,y,z) sur F (resp. G) parallélement à G (resp. F).

EXERCICE 11.

Soient F_1, \ldots, F_p des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que F_1, \ldots, F_p sont en somme directe si et seulement si

$$\forall k \in [2, p], \left(\sum_{j=1}^{k-1} F_j\right) \cap F_k = \{0_E\}$$

EXERCICE 12.

Soient F_1, \ldots, F_p des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie tels que $F_1 + \cdots + F_p = E$. Montrer qu'il existe des sous-espace vectoriels G_1, \ldots, G_p de E tels que $G_k \subset F_k$ pour tout $k \in [1, p]$ et $G_1 \oplus \cdots \oplus G_p = E$.

EXERCICE 13.

On note E l'ensemble des suites réelles convergentes, F l'ensemble des suites réelles de limite nulle et G l'ensemble des suites réelles constantes.

- 1. Montrer que E, F, G sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- **2.** Montrer que $E = F \oplus G$.

EXERCICE 14.

Soient E l'ensemble des suites réelles constantes, F l'ensemble des suites réelles (u_n) vérifiant $u_{n+1} + u_n = 0$ pour tout $n \in \mathbb{N}$, G l'ensemble des suites réelles (u_n) vérifiant $u_{n+2} + u_n = 0$ pour tout $n \in \mathbb{N}$ et enfin H l'ensemble des suites réelles périodiques de période 4.

- 1. Montrer que E, F, G, H sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- 2. Montrer que E, F, G sont inclus dans H.
- **3.** Montrer que $E \oplus F \oplus G = H$.

EXERCICE 15.

On note $E=\mathbb{R}^{\mathbb{R}},\;F=\{f\in\mathbb{R}^{\mathbb{R}},\;f(0)+f(1)=0\}$ et G l'ensemble des fonctions constantes sur \mathbb{R} .

- 1. Montrer que F et G sont des sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.

EXERCICE 16.

Soient F, G deux sous-espaces vectoriels de E. Quelles assertions parmi les suivantes sont vraies en général?

- F∩G ⊂ F+G;
 F∪G ⊂ F+G;
 F⊂F+G;
- **4.** F + F = F; **5.** F ∪ (F ∩ G) ⊂ F + G; **6.** F + G = G + F

EXERCICE 17.

Soient F, G et H trois sous-espaces vectoriels d'un K-espace vectoriel E.

1. Que pensez-vous de la proposition suivante,

$$F + G = F$$
 si et seulement si $F \supset G$?

2. Que pensez-vous de la proposition suivante,

$$F + G = F + H \implies G = H$$
?

EXERCICE 18.★

Soient F, G et H trois sous-espaces vectoriels d'un K-espace vectoriel E tels que

$$F+H=G+H, \ F\cap H=G\cap H,$$

et $F \subset G$. Prouver que F = G.

Exercice 19.★

On note $E=\mathbb{R}^\mathbb{R}$, P le sous-ensemble de E formé par les fonctions paires et I le sous-ensemble de E formé par les fonctions impaires.

- 1. Montrer que P et I sont deux sous-espaces supplémentaires dans E.
- 2. Pour tout $f \in E$, la projection du vecteur f sur P parallèlement à I est appelée partie paire de f. On définit de même la partie impaire de f. Calculer les parties paire et impaire des fonctions suivantes :le cosinus, le sinus, l'exponentielle, $f: x \mapsto x^4 + x$.

Exercice 20.★★

Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$, \mathcal{C} l'ensemble des fonctions constantes sur [0,1], et \mathcal{A} l'ensemble des éléments de E s'annulant en 1.

- 1. Montrer que ${\mathcal C}$ et ${\mathcal A}$ sont des sous-espaces vectoriels supplémentaires dans E.
- 2. Montrer que $\mathcal C$ est également un supplémentaire dans $\mathcal E$ du sous-espace suivant

$$\mathcal{N} = \left\{ f \in E \mid \int_0^1 f(t)dt = 0 \right\}.$$

- 3. Calculer les projections sur $\mathcal C$ parallèlement à $\mathcal A$ puis à $\mathcal N$ d'une fonction $f\in \mathcal E.$
- 4. Donner d'autres exemples de supplémentaires de C dans E.

EXERCICE 21.

On note $E = \mathbb{R}^3$ et

$$F = \{(x, y, z) \in E \mid x + y - z = 0\}$$

 $_{
m et}$

$$G = \{(a-b, a+b, a-3b) \mid a, b \in \mathbb{R}\}.$$

- 1. Etablir que F et G sont des sev de E.
- **2.** Déterminer $F \cap G$.
- 3. Prouver que F + G = E. La somme est-elle directe ?

EXERCICE 22.★★

Soient A, B et C trois sev d'un \mathbb{K} -ev E. On note

$$F = (A \cap B) + (A \cap C), \quad G = A \cap (B + (A \cap C))$$

et $H = A \cap (B + C)$.

- 1. Montrer que F et G sont des sev de H.
- **2.** Etablir que F = G.
- **3.** A-t-on toujours F = G = H?

Exercice 23.★★

Soient F, G, F' et G' quatre sev d'un \mathbb{K} -ev E tels que $F \cap G = F' \cap G'$. Etablir que

$$(F + (G \cap F')) \cap (F + (G \cap G')) = F.$$

EXERCICE 24.

On note E l'espace vectoriel réel des fonctions dérivables de \mathbb{R} dans \mathbb{R} . Soient \mathbb{N} et \mathcal{A} les sous-ensembles de E définis par,

$$\mathcal{A} = \big\{ f \in E \mid f \text{ affine} \big\}$$

et

$$\mathcal{N} = \{ f \in E \mid f(0) = f'(0) = 0 \}.$$

- 1. Prouver que \mathcal{A} et \mathcal{N} sont deux sous-espaces vectoriels de \mathcal{E} .
- 2. Montrer que \mathcal{A} et \mathcal{N} sont supplémentaires dans \mathcal{E} .
- 3. Déterminer la projection sur \mathcal{A} parallèlement à \mathcal{N} d'une fonction $f \in E$.

REMARQUE. On rappelle qu'une fonction f de \mathbb{R} dans \mathbb{R} est affine si et seulement si il existe deux réels \mathfrak{a} et \mathfrak{b} tels que $\forall t \in \mathbb{R}$, $f(t) = \mathfrak{a}t + \mathfrak{b}$.

EXERCICE 25.

Soit $\mathcal{F} = ((1, -2, 1), (2, -3, 1), (-1, 3, -2)).$

- 1. Le vecteur (2,1,3) est-il combinaison linéaire de la famille \mathcal{F} ?
- **2.** Même question pour le vecteur (2,5,-7).

Exercice 26.★★

Soit $E=\mathbb{R}^\mathbb{R}$ l'espace vectoriel sur \mathbb{R} des applications de \mathbb{R} dans \mathbb{R} . Pour tout $n\in\mathbb{N},$ on pose

$$f_n : x \mapsto \cos^n(x)$$
 et $g_n : x \mapsto \cos(nx)$.

Montrer que pour tout n positif,

$$\mathrm{vect}(f_k, 0 \leqslant k \leqslant n) = \mathrm{vect}(g_k, 0 \leqslant k \leqslant n).$$

EXERCICE 27.

Soient $\alpha \in \mathbb{R}$, $E = \mathbb{R}^3$ et

$$u = (1, -1, 1), v = (0, 1, a).$$

Déterminer une condition nécessaire et suffisante portant sur a pour que $(1,1,2) \in \text{vect}(\mathfrak{u},\nu)$.