实验十九 分光计的调节和掠入射法测量折射率 实验报告

1400012141 邵智轩 周二下午3组 2016年10月25日

一 数据处理

1 测定玻璃三棱镜顶角

$$\psi = \frac{1}{2}(\theta_2' - \theta_1' + \theta_2'' - \theta_1'')$$

序号	$ heta_1'$	θ_1''	$ heta_2'$	$ heta_2''$	ψ
1	268°51′	88°58′	$148^{\circ}54'$	$328^{\circ}55'$	120°0′
2	268°54′	89°0′	148°58′	328°57′	119°59′30″
3	268°54′	89°0′	148°58′	328°57′	119°59′30″
平均值 $\bar{\psi}$	-	-	-	-	119°59′40″

$$\sigma_{\bar{\psi}} = 10''$$

$$\sigma_A = \sigma_{\psi} = \sqrt{\sigma_{\bar{\psi}}^2 + (\frac{e}{\sqrt{3}})^2} = 0.6' = 40''$$

$$A = 180^\circ - \bar{\psi} = 60^\circ 0' 20'' \pm 40''$$

2 掠入射法测三棱镜的折射率(钠灯)

$$\phi = \frac{1}{2}(\theta_3' - \theta_4' + \theta_3'' - \theta_4'')$$

序号	$ heta_3'$	$ heta_3''$	$ heta_4'$	$ heta_4^{\prime\prime}$	ϕ
1	$296^{\circ}15'$	116°18′	254°40′	$74^{\circ}46'$	41°33′30″
2	296°16′	116°18′	254°40′	74°46′	41°34′
3	296°16′	116°18′	254°40′	74°46′	41°34′
平均值ቒ	-	-	-	-	41°33′50″

$$\begin{split} &\sigma_{\bar{\phi}} = 10'' \\ &\sigma_{\phi} = \sqrt{\sigma_{\bar{\phi}}^2 + (\frac{e}{\sqrt{3}})^2} = 0.6' = 40'' \\ &\bar{\phi} = 41^\circ 33' 50'' \pm 40'' \\ &n = \sqrt{1 + (\frac{\cos A + \sin \phi}{\sin A})^2} \\ &\text{代入数据,则计算出} \\ &n = 1.67463 \\ &\text{又} \\ &\sigma_n = \frac{\sqrt{n^2 - 1}}{n \sin A} \sqrt{(\cos \phi \sigma_{\phi})^2 + (\frac{1 + \sin \phi \cos A}{\sin A} \sigma_A)^2} = 3 \times 10^{-4} \\ &\text{所以} \\ &n = 1.6746 \pm 0.0003 \end{split}$$

3 最小偏向角法测三棱镜的折射率(汞灯绿色谱线)

$$\delta_m = \frac{1}{2}(\theta_5' - \theta_6' + \theta_5'' - \theta_6'')$$

序号	$ heta_5'$	θ_5''	θ_6'	$\theta_6^{\prime\prime}$	δ_m
1	311°10′	131°15′	257°7′	77°13′	54°2′30″
2	310°59′	131°4′	$256^{\circ}54'$	77°0′	54°4′30″
3	311°39′	131°41′	257°29′	77°36′	54°7′30″
平均值 δ_m	-	-	-	-	54°4′50″

$$\sigma_{\delta_m} = 2'$$
 $\sigma_{\delta_m} = \sqrt{\sigma_{\delta_m}^2 + (\frac{e}{\sqrt{3}})^2} = 2'$
 $\delta_m = 54^\circ 5' \pm 2'$
 $n = \frac{\sin \frac{A + \delta_m}{2}}{\sin \frac{A}{2}}$
代入数据,则计算出 $n = 1.67804$
又 $\sigma_n = \frac{n}{2} \sqrt{(\cot \frac{A + \delta_m}{2} \sigma_{\delta_m})^2 + [(\cot \frac{A + \delta_m}{2} - \cot \frac{A}{2})\sigma_A]^2} = 4 \times 10^{-4}$
所以 $n = 1.6780 \pm 0.0004$

二 分析与讨论

实验中测量误差的来源分析

- 1游标盘的读数有对准误差,或者个人因素造成的系统误差。
- 2 最小偏向角法中, 谱线的折返位置没有找准。
- 3 在测量过程中,望远镜筒、平行光筒、载物台平面偏离了与转轴垂直的状态。
- 4 在转动望远镜筒找像时没有拧紧游标盘的止动螺钉,导致待测物(载物台)也有一定程度地旋转。