Отчет о выполнении лабораторной работы №3.

Гистерезис.

Блуменау М. И., 07.10.2020

Оглавление

Аннотация	1
Теоретические сведения	
Оборудование и инструментальные погрешности	
Описание установок	
Результаты измерений и обработка данных	
Погрешности	
Вывод	
Библиография	
~	

Аннотация

В данной работе изучается явление магнитного гистерезиса — зависимости намагниченности образца не только от приложенного внешнего поля, но и от его прошлого состояния. В качестве образцов использовались кольца-сердечники из феррита или пермаллоя. Для наблюдения петли гистерезиса собрана электрическая схема, в которой через катушку, намотанную на исследуемый образец, пропускался переменный электрический ток. Измеряться в эксперименте будут сила тока (которая пропорциональна напряженности Н магнитного поля в катушке) и напряжение, пропорциональное интегралу напряжения на катушке (пропорционально индукции магнитного поля В). Измеряемые напряжения выводились на экран цифрового осциллографа.

Теоретические сведения

Схема измерения индуктивности: R — резистор сопротивлением 50-1000 Ом, L — катушка, индуктивность которой требуется измерить, G — выход встроенного генератора осциллографа, U1 и U2 — напряжения, измеряемое на первом и втором каналах осциллографа. Земля у генератора и обоих входов осциллографа общая.

С генератора подается синусоидальный сигнал с амплитудой 12 В. В приближении, что резистор имеет только активное сопротивление, а катушка только реактивное можно рассчитать импеданс катушки $Z_L = i\,\omega\,L$, зная U1, U2 и R. Полный импеданс всей цепи равен $Z = Z_L + R$. Тогда модули (и амплитуды) тока и напряжения в цепи связаны следующим образом: $U_0 = I_0 \cdot \sqrt{R^2 + (\omega\,L)^2}$. Измеряемое напряжение U2 равно произведению величины тока в цепи на сопротивление R, из это получим связь между U1 и U2:

 $\frac{U_1}{U_2} = \sqrt{1 + \left(\omega \frac{L}{R}\right)^2}$, из которой можно найти индуктивность L. Из этого соотношения легко понять требования на величину сопротивления R и частоту ω : они должны быть такими, чтобы величина $\omega \frac{L}{R}$ заметно превышала единицу, иначе измерения будут неточными.

Исследование гистерезиса: Связь напряженности поля H и тока в цепи I находится по теореме о циркуляции: $H = \pi D$, где N_1 – число витков в первой катушке, D – средний

диаметр тороидального сердечника. Ток находится через закон Ома. Напряжение на катушке (первой или второй) по закону Фарадея пропорционально производной индукции поля В в

сердечнике:
$$V = \frac{-d\Phi}{dt} = -S N_i \frac{dB}{dt}$$
 . Здесь S — площадь поперечного сечения тороидального

сердечника, N_i - число витков в катушке. Для того чтобы измерять сигнал пропорциональный индукции поля используется интегрирующая цепочка из сопротивления R емкости C. Можно показать, что если постоянная времени цепочки RC значительно превышает период изменения сигнала (в данном случае это период колебания напряжения в сети электроснабжения равный 20 мс), то напряжение на конденсаторе равно

$$\frac{1}{RC}\int Vdt = \frac{1}{RC}SN_1B$$
 . [Методичка]

Также понадобятся магнитная восприимчивость: $\chi = \frac{M}{H}$, где $M = \frac{B}{\mu_0} - H$.

Для нахождения магнитной проницаемости:

$$L = \frac{N^2 \mu_0 \mu h}{2\pi} \ln \frac{R}{r}$$
, где h — длина стороны сердечника (его толщина, h = 11мм), R —

внешний радиус, r — внутренний радиус. Отсюда:
$$\mu = \frac{2 \pi L}{\mu_0 N^2 h \ln \frac{R}{r}}$$
.

Оборудование и инструментальные погрешности

Цифровой осциллограф со встроенным генератором синусоидального напряжения, ЛАТР, понижающий трансформатор, клемник для сборки электрических цепей, ферритовый или пермаллоевый сердечник, резисторы с сопротивлениями 10 (для второй схемы) и 1 (для первой) Ом, резистор с сопротивлением 494,8 Ом, резистор с сопротивлением в 787,2 кОм, конденсатор емкостью 0,943 мкФ, толстая медная проволока.

$$\Delta_U = 0.01 B$$

Описание установок

Далее представлены схемы:

Иллюстрация 1: Первая схема с одной катушкой

Иллюстрация 2: Вторая схема с двумя катушками

Результаты измерений и обработка данных

Для изучения явления гистерезиса использовались обе схемы. Число витков в катушках N_1 =42 u N_2 =32 , 1 катушка использовалась в 1 схеме. Индуктивность легко найти из следующей таблицы по формуле, указанной в теории:

U_1 , B	$U_{\scriptscriptstyle 2}$, B	R, Ом	w, Гц	L, мГн
11,5	10,4	494,8	10000	3,72
12,1	4,5	494,8	50000	3,93
12,2	1,8	494,8	100000	5,28
12,5	11,5	494,8	10000	3,36
11,9	6,4	494,8	50000	2,47
12,2	2,8	494,8	100000	3,34

Первые три строчки относятся внутренней катушке, остальные к внешней.

Тогда значения магнитной проницаемости следующие (1 и 2 обозначают какая катушка была использована):

$$\chi_1 = 7.4 \pm 1.1 \frac{\kappa \Gamma H}{M}$$
$$\chi_2 = 9 \pm 1.5 \frac{\kappa \Gamma H}{M}$$

На этом этапе трудно определить материал сердечника, так как он может быть и ферритом, и пермаллоем (при условии, что он точно один из них).

Поскольку данные получились с большим количеством шума, было решено их отфильтровать, воспользовавшись алгоритмом Савицкого-Голея, который методом наименьших квадратов аппроксимирует полиномом точки в пределах небольшого отрезка. Данный фильтр примечателен тем, что не изменяет форму, величину площади и высоты при наличии обычных пиков, но вносит сильные искажения, если есть резкие перепады амплитуды, которых в данном случае как раз нет.

Далее представлены петли гистерезиса, а для второй схемы также представлен один график зависимости магнитной проницаемости (поскольку они практически идентичны):

Иллюстрация 3: Опыт 1

Иллюстрация 4: Опыт 2

Иллюстрация 5: Опыт 3

Как можно заметить, петли гистерезиса выглядят достаточно странно. В целом, это подтверждает теорию, которая гласит, что с одной катушкой результат получается очень неточным.

Иллюстрация 6: Опыт 4

Иллюстрация 7: Опыт 5

Иллюстрация 8: Опыт 6

Иллюстрация 9: Опыт 7

Иллюстрация 10: Зависимость магнитной проницаемости от поля в 4 опыте

Иллюстрация 11: Зависимость намагниченности от поля в 4 опыте

Имея зависимость B(H), достаточно просто вычисляется и остаточная намагниченность или коэрцитивная сила: точки пересечения графика зависимости с осями дают два значения. Значение B (при H=0), делённое на μ_0 — остаточная намагниченность, а значение H при нулевом значении B— коэрцитивная сила. Таблица полученных данных (первые 3 опыта относятся к 1ой схеме, остальные ко 2ой):

№ Опыта	$I_{\it max}$, A	$H_{\kappa o ext{\scriptsize ppy}}$, А/м	$M_{\it ocm}$, $\kappa { m A/m}$
1	1.85	372.08	629.97
2	2.93	595.33	1060.09
3	4.06	810.31	1417.70
4	0.17	3.45	31.76
5	0.27	3.87	36.96
6	0.41	4.42	51.75
7	0.66	5.60	54.26

Имеющийся образец имеет малую коэрцитивную силу, что в целом совпадает с табличными данными для пермаллоя (у него от 0,8 до 80 А/м, в зависимости от состава). Исходя из этого можно сделать предположение, что материал сердечника — пермаллой. Сделать это можно, отбросив результаты, полученные первой схемой, но, как было показано выше, в тех экспериментах петля гистерезиса была достаточно странной. Также графики намагниченности и проницаемости приведены не для всех опытов, поскольку имеют аналогичный вид.

Погрешности

Для расчёта погрешности использовалось:

$$\Delta = \sqrt{\sum_{i=1}^{n} \left(\frac{\delta f}{\delta a_{i}} \Delta_{a_{i}}\right)^{2}}$$

В этом случае получается:

$$\Delta = \frac{RU_1 \Delta_U}{2 \pi U_2^2} \cdot \sqrt{\frac{U_1^2 + U_2^2}{U_1^2 - U_2^2}}$$

Вывод

Найденная индуктивность катушки позволила сделать первоначальное предположение о материале сердечника. Исходя из данных, полученных на схеме с двумя катушками, можно сделать вывод, что данный образец в достаточной мере похож на пермаллой. Также рассмотрев обе схемы, подтверждается и тот факт, что первая достаточно неточная. Как и предполагалось, чем толще экран, или чем лучше проводимость материала — тем лучше.

Библиография

Методичка, 2020