# Lying for Profit: An Empirical Evaluation of Antecedents of Dishonesty

Michael Geden & Amanda Young

## Introduction

- Counterproductive work behaviors (CWB): volitional acts that harm (or intend to harm) an organization or its members (Spector et al., 2006)
- Different CWBs have different antecedents; we focused on theft
- Theft costs organizations a lot of money, BUT it is hard to measure because people are motivated to lie on self-report measures
- We created an empirical proxy for organizational theft in which participants could earn more money by lying
  - Similar to getting paid more for lying on a time card

#### **Antecedents:**

- Temporary cognitions and more stable dispositional traits both influence behaviors
- Moral disengagement: dispositional propensity to rationalize immoral action as just to avoid guilt (Bandura, 1986)
- Cognitive Dissonance: holding inconsistent cognitions creates an unpleasant tension that individuals seek to reduce (Festinger, 1957)
- "I am a good person" + "I stole something" + "Stealing is bad and good people don't do it" = dissonance
- **Hypocrisy:** <u>induces</u> cognitive dissonance; after committing a transgression, individuals act in a compensatory moral manner to reduce dissonance (Greene & Low, 2014)
- Moral Licensing: <u>reduces</u> cognitive dissonance; after committing a moral behavior, individuals are more likely to engage in immoral behavior (Jordan, Mullen, & Murnigham, 2011)
- The current study tested the whether moral disengagement and either inducing (hypocrisy) or reducing (moral licensing) cognitive dissonance would influence individuals' response to an empirical proxy for theft.

## Hypotheses

- **H1:** Moral licensing will be positively related to theft.
- **H2:** Hypocrisy will be negatively related to theft.
- **H3:** Moral disengagement will be positively related to theft.

# **Experimental Method/Data**

## **Primary Dataset:**

- Gave survey to 138 Mechanical Turk workers
- Between-subjects design with 3 conditions:
- Control: no dissonance manipulation baseline
- <u>Hypocrisy:</u> increase dissonance by writing ramifications of theft essay followed by describing a time you stole in the past
- Moral licensing: decrease dissonance by writing ramifications of theft essay followed by describing a time you were ethical in the past
- Moral disengagement measure via self-report assessment
- Empirical theft proxy
  - Given an impossible word search supposedly containing "Latin Names for Plants" and offered a bonus payment for every word they self-reported finding
  - There were actually no words to find
  - 1 minute time limit to make it seem hard instead of impossible
  - Lying with the intent to profit = any number of words reported above 0

## **Prior Dataset:**

- 503 participants from Mechanical Turk
- Completed same empirical theft proxy, but no measure of antecedents
- Used to create informative priors for the intercept in regression models for primary dataset

## Impossible Word Search

| Α     | K      | 1 | Υ | Т | G | Υ | W | W | K | J | I      | M      | U | V |
|-------|--------|---|---|---|---|---|---|---|---|---|--------|--------|---|---|
| N     | O      | Υ | S | Υ | F | Z | W | Α | Q | S | S      | G      | W | J |
| X     | L      | C | J | F | F | C | S | M | T | V | R      | В      | U | Q |
| V     | ı      | Z | D | K | Р | I | X | Α | C | X | C      | Ο      | Н | C |
| L     | G      | Р | 0 | I | В | Α | Υ | K | K | L | P      | F      | Α | S |
| 0     | C      | В | L | X | 0 | Ν | U | D | O | W | 1      | В      | Ε | X |
| S     | U      | U | Z | Υ | X | C | I | L | C | Р | R      | Z      | X |   |
| G     | Α      | Q | V | V | 1 | U | Н | C | W | K | Α      | K      | Т | Υ |
| G     | M      | O | Н | W | V | D | Z | W | X | D | Τ      | Р      | U | G |
| G     | R      | D | P | C | S | J | C | F | R | X | 0      | Ε      | Н | X |
| L     | D      | S | C | O | S | Ν | D | Н | J | Z | P      | S      | X |   |
| Z     | L      | D | Q | M | D | Z | R | Z | Z | S | Ε      | S      | M | M |
| F     | Q      | R | C | Z | 0 | I | Α | T | C | Q | Р      | X      | Ε | W |
| Q     | R      | Р | S | C | P | Α | Н | G | P | Υ | Α      | Т      | D | Н |
| Н     | ı      | S | Υ | M | L | M | Q | N | Н | J | С      | F      | E | Α |
| Λ I : | ALNUIC |   |   |   |   |   |   |   |   |   | D I IX | /I I C |   |   |

**ALNUS** RHANTERIUM BUXUS **TRIFIDA ASCLEPIAS GLUTINOSA** LIEX **DULCAMARA** INCANA **SYMPLOCARPUS SYRIACA MALUS DAUCUS PRUNUS PLANTANUS RUDBECKIA POMIFERA** LYONOTHAMNUS HIRTA SOLANIUM

#### Models

#### **Three Types of Models:**

#### 1. Poisson

 $Y_i \sim Poisson(\lambda_i)$ 

 $log(\lambda_i) = \beta_0 + \beta_1 * Licensing_i + \beta_2 * Hypocrisy_i + \beta_3 * Moral Disengagement_i$ 

#### 2. Overdispersed Poisson

 $Y_i \sim Poisson(\lambda_i)$ 

 $\log(\lambda_i) = \beta_0 + \beta_1^* Licensing_i + \beta_2^* Hypocrisy_i + \beta_3^* Moral Disengagement_i + \gamma_i$  $\gamma_i \sim \text{Normal}(0, \sigma^2)$ 

### 3. Negative Binomial

- $Y_i \sim NegativeBinomial(p_i, r)$
- $p_i = \frac{r}{r + \lambda_i}$
- $r \sim Uniform(0,50)$

 $log(\lambda_i) = \beta_0 + \beta_1 * Licensing_i + \beta_2 * Hypocrisy_i + \beta_3 * Moral Disengagement_i$ 

#### **Priors for Intercept:**

- Licensing & Hypocrisy are dummy-coded indicators of condition, and moral disengagement was mean-centered, so  $\beta_0$  represents base degree of lying
- Prior dataset used to create informative priors for intercept ( $\beta_0$ )
  - Found mean ( $\mu_{prior}$ ) and variance ( $\sigma^2_{prior}$ ) for posterior distribution of the  $\beta_0$
- Run for Poisson, Overdispersed Poisson, and Negative Binomial
- 3 different priors used for  $\beta_0$
- 1. Uninformative:  $\beta_0 \sim \text{Normal}(0, 1000)$
- 2. Weak Prior:  $\beta_0$  ~ Normal( $\mu_{prior}$ ,  $\sigma^2_{prior}$ \*4)
- 3. Strong Prior:  $\beta_0 \sim \text{Normal}(\mu_{prior}, \sigma^2_{prior})$

#### **Uniformative Slope Priors:**

- $\beta_1 \sim \text{Normal}(0, 1000)$
- $\beta_2 \sim \text{Normal}(0, 1000)$
- $\beta_3 \sim \text{Normal}(0, 1000)$

# **Analysis Implementation**

- All analyses used JAGs via R
- 3 Markov chains
- Burn-in = 15,000 iterations
- 20,000 iterations per chain
- Trace plots and Gelman–Rubin diagnostic indicated convergence
- Minimum effective sample size > 2,000 for all parameters

# **Model Selection**

## **10-fold Cross Validation:**

## Poisson:

| $\overline{\beta_0}$ Prior | MSE   | Bias   | Average SD C | Coverage |
|----------------------------|-------|--------|--------------|----------|
| Uninformative              | 14.26 | 5 -0.0 | 2 1.17       | 0.86     |
| Weak                       | 14.12 | 0.0    | 7 1.20       | 0.85     |
| Strong                     | 14.18 | 3 0.1  | 4 1.23       | 0.86     |

## **Overdispersed Poisson:**

| $\beta_0$ Prior | MSE     | Bias   | Average SD | Coverage |
|-----------------|---------|--------|------------|----------|
| Uninformative   | 28677.8 | 7 38.8 | 0 2333.55  | 0.95     |
| Weak            | 645.6   | 0 10.0 | 0 511.42   | 0.95     |
| Strong          | 438.2   | 7 6.7  | 5 256.03   | 0.94     |

## Negative Binomial:

| $\beta_0$ Prior | MSE E  | 3ias | Average SD | Coverage |
|-----------------|--------|------|------------|----------|
| Uninformative   | 57.04  | 1.56 | 39.15      | 0.95     |
| Weak            | 55.33  | 1.83 | 20.85      | 0.97     |
| Strong          | 143.85 | 3.11 | . 30.79    | 0.98     |
|                 |        |      |            |          |

## DIC:

## **Penalized Deviance:**

| Model                 | Strong W | /eak  | Uninformative |  |  |
|-----------------------|----------|-------|---------------|--|--|
| Poisson               | 741.2    | 739.7 | 739.8         |  |  |
| Overdispersed Poisson | 281.1    | 274.1 | 266.0         |  |  |
| Negative Binomial     | 365.8    | 363.4 | 362.5         |  |  |

# **Model Comparison**



Figure 1. Actual (black line) and posterior (pink lines) densities for the uninformative  $\beta_0$  prior. Posterior densities are a sample of 50 draws.

• Plots for weak and strong priors were very similar

## **Residual Plots**







Figure 2. Residual plots for the models using the uninformative  $\beta_0$  prior.

• Plots for weak and strong priors were very similar

## Results

- The Overdispersed Poisson model was chosen based on DIC, similarity of posterior to actual densities, and residual plots
  - Hypotheses were evaluated using Overdispersed Poisson models with uninformative, weak, and strong priors for  $\beta_0$
- Hypothesis 1: Not Supported
- 95% Credible Sets included 0 for β<sub>1</sub>
   Hypothesis 2: Not Supported
- 95% Credible Sets included 0 for  $\beta_2$
- Hypothesis 3: Supported
  - 95% Credible Sets did not include 0 for  $\beta_3$  • Mean posterior  $\beta_3$  values: 1.11 (uninformative), 0.98 (weak), 0.42 (strong)

# Conclusions

- Overdispersed Poisson models were preferred to Poisson and Negative Binomial models for this data
- Higher moral disengagement is related to increased magnitude of lying for profit
- Moral licensing and hypocrisy were not related to lying
- Conclusions were not affected by using prior information on base rate
   Magnitude of moral disengagement effect smaller for stronger priors
- Future research:
  - Create strong feelings of dissonance or consonance
  - Test other cognitive variables
  - Replicate in a field setting
  - Is moral disengagement stable or can it be decreased with training?