ASSIGNMENT-03 ROLL NO-234107206

Main Flowsheet

CO₂-Feed Specification

H₂O Specification

RedFrac Configuration

1.NRTL Model

4		Units	CO2-FEED ▼	H2O ▼	BTM-STRM ▼	TOP-STRM
•	Phase			Liquid Phase	Liquid Phase	Vapor Phase
-	Temperature	С	40	25	28.1278	26.5082
	Pressure	bar	10	10	10	10
	Molar Vapor Fraction		0.999895	0	0	1
	Molar Liquid Fraction		0.000104868	1	1	0
	Molar Solid Fraction		0	0	0	0
	Mass Vapor Fraction		0.999859	0	0	1
	Mass Liquid Fraction		0.000140802	1	1	0
	Mass Solid Fraction		0	0	0	0
	Molar Enthalpy	cal/mol	-92132.6	-68262.2	-68421.4	-92050.1
	Mass Enthalpy	cal/gm	-2104.45	-3789.13	-3757.82	-2110.57
	Molar Entropy	cal/mol-K	-3.39797	-38.9652	-38.6662	-3.63132
	Mass Entropy	cal/gm-K	-0.0776146	-2.1629	-2.12361	-0.0832606
	Molar Density	mol/cc	0.000384118	0.055173	0.0545577	0.000401372
	Mass Density	gm/cc	0.0168167	0.993957	0.993374	0.0175054
	Enthalpy Flow	cal/sec	-58456.8	-157880	-159164	-57173.5
	Average MW		43.78	18.0153	18.2078	43.6139
	+ Mole Flows	kmol/hr	2.28415	8.32627	8.37441	2.236
	+ Mole Fractions					
	+ Mass Flows	kg/hr	100	150	152.479	97.5208
	 Mass Fractions 					
	ETHYLENE		0	0	0	C
	ACETI-01		0.006	0	0.00393496	3.00098e-22
	WATER		0	1	0.98283	0.00142398
	CARBO-01		0.982	0	0.0132318	0.986276
	NITROGEN		0.012	0	3.22909e-06	0.0123
	OXYGEN		0	0	0	C
	Volume Flow	l/min	99.1079	2.5152	2.55827	92.8485
_						

P = 10 bar

Bottom stream temperature = 28.1278 ^oC

Top stream temperature = 26.5082 $^{\circ}$ C

Mass flow rate of top stream = 97.5208 Kg/hr

Mass flow rate of bottom stream = 152.479 Kg/hr

Number of theoretical stage = 6

Composition of top stream = $3.00098*10^{-22}$

 $Composition\ of\ bottom\ stream = 0.00393496$

Reflux Ratio = 0

2.UNIQUAC Model

	Units	BTM-STRM ▼	CO2-FEED ▼	H2O -	TOP-STRM
IIXED Substream					
Phase		Liquid Phase		Liquid Phase	Vapor Phase
Temperature	С	28.2363	40	25	26.520
Pressure	bar	10	10	10	1
Molar Vapor Fraction		0	0.999898	0	
Molar Liquid Fraction		1	0.000102256	1	
Molar Solid Fraction		0	0	0	
Mass Vapor Fraction		0	0.999863	0	
Mass Liquid Fraction		1	0.000137331	1	
Mass Solid Fraction		0	0	0	
Molar Enthalpy	cal/mol	-68422.1	-92132.6	-68262.2	-92049
Mass Enthalpy	cal/gm	-3757.72	-2104.45	-3789.13	-2110.5
Molar Entropy	cal/mol-K	-38.6634	-3.39792	-38.9652	-3.6309
Mass Entropy	cal/gm-K	-2.12338	-0.0776136	-2.1629	-0.083252
Molar Density	mol/cc	0.0545505	0.000384117	0.055173	0.00040135
Mass Density	gm/cc	0.99328	0.0168166	0.993957	0.017504
Enthalpy Flow	cal/sec	-159169	-58456.8	-157880	-57167
Average MW		18.2084	43.78	18.0153	43.613
♦ Mole Flows	kmol/hr	8.37463	2.28415	8.32627	2.2357
◆ Mole Fractions					
Mass Flows	kg/hr	152.489	100	150	97.511
Mass Fractions					
ETHYLENE		0	0	0	
ACETI-01		0.00393471	0.006	0	1.87332e-2
WATER		0.982767	0	1	0.0014249
NITROGEN		3.2425e-06	0.012	0	0.012301
CARBO-01		0.0132946	0.982	0	0.98627
Volume Flow	l/min	2,55867	99.1082	2,5152	92.843

P = 10 bar

Bottom stream temperature = $28.2363 \, ^{0}C$

Top stream temperature = 26.5206 $^{\circ}$ C

Mass flow rate of top stream = 97.5112 Kg/hr

Mass flow rate of bottom stream = 152.489 Kg/hr

Number of theoretical stage = 6

Composition of top stream = $1.87332*10^{-24}$

Composition of bottom stream = 0.00393471

Reflux ratio = 0

3.SRK Model

4		Units	BTM-SRTM ▼	CO2-FEED ▼	H2O -	TOP-STRM ▼
-	MIXED Substream					
þ.	Phase		Liquid Phase		Liquid Phase	Vapor Phase
Þ	Temperature	С	26.4531	40	25	24.9976
Þ	Pressure	bar	10	10	10	10
Þ	Molar Vapor Fraction		0	0.999454	0	1
Þ	Molar Liquid Fraction		1	0.000545599	1	0
Þ	Molar Solid Fraction		0	0	0	0
Þ	Mass Vapor Fraction		0	0.999273	0	1
Þ	Mass Liquid Fraction		1	0.000727474	1	0
þ.	Mass Solid Fraction		0	0	0	0
Þ	Molar Enthalpy	cal/mol	-68995.6	-92227.2	-68989.4	-92243.1
þ.	Mass Enthalpy	cal/gm	-3821.19	-2106.61	-3829.49	-2112.08
Þ.	Molar Entropy	cal/mol-K	-38.8875	-3.61632	-38.9853	-3.98124
þ.	Mass Entropy	cal/gm-K	-2.15371	-0.0826022	-2.16401	-0.0911581
Þ	Molar Density	mol/cc	0.0531886	0.00040138	0.053357	0.000424783
Þ	Mass Density	gm/cc	0.960376	0.0175724	0.961241	0.018552
Þ.	Enthalpy Flow	cal/sec	-159650	-58516.9	-159562	-58429.3
þ.	Average MW		18.0561	43.78	18.0153	43.6741
Þ	◆ Mole Flows	kmol/hr	8.33007	2.28415	8.32627	2.28034
Þ	◆ Mole Fractions					
Þ	◆ Mass Flows	kg/hr	150.408	100	150	99.5917
>	 Mass Fractions 					
Þ.	ETHYLENE		0	0	0	0
Þ	ACETI-01		0.00200026	0.006	0	0.0030037
>	NITROGEN		2.07915e-08	0.012	0	0.0120492
>	WATER		0.996547	0	1	0.00111542
>	CARBO-01		0.00145264	0.982	0	0.983832
>	Volume Flow	I/min	2.61023	94.8456	2.6008	89.4707

P = 10 bar

Bottom stream temperature = 26.4531 ^oC

Top stream temperature = $24.9976 \, ^{0}\text{C}$

Mass flow rate of top stream = 99.5917 Kg/hr

Mass flow rate of bottom stream = 150.408 Kg/hr

Number of theoretical stage = 6

Composition of top stream = 0.0030037

Composition of bottom stream = 0.00200026

Reflux ratio = 0

Model	Number of stages	Top stream composition (mass fraction of acetic acid)	Bottom stream composition (mass fraction of acetic acid)	Top stream mass flow of acetic acid	Bottom stream mass flow of acetic acid
NRTL	6	3.00098*10 ⁻²²	0.00393496	2.926*10 ⁻²⁰	0.6
UNIQUAC	6	1.87332*10 ⁻²⁴	0.00393471	1.826*10 ⁻²²	0.6
SRK	6	0.0030037	0.00200026	0.299144	0.300856

Conclusion:

From observation of above table we get that UNIQUAC model is the best amongst all of three , because it is giving highest production of acetic acid than other two while the SRK model is giving least acetic acid production