A 2D-DFT based method to compute the Bezoutian and a link to Lyapunov equations

Chayan Bhawal, Debasattam Pal and Madhu N. Belur

Control and Computing Department of Electrical Engineering IIT Bombay

Indian Control Conference, Guwahati January 6, 2017

Introduction

p, q are polynomials:

$$\frac{p(x)q(y) + p(y)q(x)}{x + y}$$

$$\frac{p(x)q(y) - p(y)q(x)}{x - y}$$

Stability analysis

Riccati equation solutions

Bezoutian

Storage functions

Polynomial coprimeness

Introduction

p, q are polynomials:

$$\frac{p(x)q(y) + p(y)q(x)}{x + y}$$

$$\frac{p(x)q(y) - p(y)q(x)}{x - y}$$

Indian Control Conference, Guwahati

Introduction

p, q are polynomials:

$$\frac{p(x)q(y) + p(y)q(x)}{x + y}$$

Indian Control Conference, Guwahati

Bezoutian b(x, y)

p, q are polynomials:

$$\frac{p(x)q(y) + p(y)q(x)}{x + y} =: b(x, y)$$

Bezoutian b(x, y)

p, q are polynomials:

$$\frac{\phi(x,y)}{x+y} =: b(x,y)$$

Bezoutian b(x, y)

p, q are polynomials:

$$\phi(x,y) = (x+y)b(x,y)$$

Objective and Outline

p, q are polynomials:

$$\phi(x,y) = (x+y)b(x,y)$$

OBJECTIVE: To compute the Bezoutian b(x, y).

Objective and Outline

p, q are polynomials:

$$\phi(x,y) = (x+y)b(x,y)$$

OBJECTIVE: To compute the Bezoutian b(x, y).

OUTLINE

- **1** 2D-DFT based method to compute Bezoutian.
- 2 Bezoutian and link to Lyapunov equation.
- 3 Lyapunov equation and its link to two variable polynomials.

Let
$$\mathbf{X} := \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{\mathsf{N}-1} \end{bmatrix}$$
, $\mathbf{Y} := \begin{bmatrix} 1 \\ y \\ y^2 \\ \vdots \\ y^{\mathsf{N}-1} \end{bmatrix}$ Bezoutian: $(x+y)b(x,y) = \phi(x,y)$

$$(x+y)b(x,y) = \phi(x,y)$$

Let
$$\mathbf{X} := \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{\mathsf{N}-1} \end{bmatrix}$$
, $\mathbf{Y} := \begin{bmatrix} 1 \\ y \\ y^2 \\ \vdots \\ y^{\mathsf{N}-1} \end{bmatrix}$ Bezoutian:
$$(x+y)b(x,y) = \phi(x,y)$$

$$\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}, \ \Phi \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}$$

Let
$$\mathbf{X} := \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{\mathsf{N}-1} \end{bmatrix}$$
, $\mathbf{Y} := \begin{bmatrix} 1 \\ y \\ y^2 \\ \vdots \\ y^{\mathsf{N}-1} \end{bmatrix}$ Bezoutian:
$$(x+y)b(x,y) = \phi(x,y)$$

$$\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}, \ \Phi \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}$$

$$(x+y) = \mathbf{X}^T \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \mathbf{Y} =: \mathbf{X}^T R \mathbf{Y}, \ J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

Let
$$\mathbf{X} := \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{\mathsf{N}-1} \end{bmatrix}$$
, $\mathbf{Y} := \begin{bmatrix} 1 \\ y \\ y^2 \\ \vdots \\ y^{\mathsf{N}-1} \end{bmatrix}$ Bezoutian:
$$(x+y)b(x,y) = \phi(x,y)$$

$$\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}, \ \Phi \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}$$

$$(x+y) = \mathbf{X}^T \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \mathbf{Y} =: \mathbf{X}^T R \mathbf{Y}, \ J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

$$b(x,y) = \mathbf{X}^T \begin{bmatrix} \tilde{B} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{Y} =: \mathbf{X}^T B \mathbf{Y}, \ \tilde{B} \in \mathbb{R}^{(\mathsf{N}-1) \times (\mathsf{N}-1)}$$

$$(x+y)b(x,y) = \phi(x,y) \implies \left(\mathbf{X}^T R Y\right) \left(\mathbf{X}^T B \mathbf{Y}\right) = \left(\mathbf{X}^T \Phi Y\right)$$

- Objective: Find B.
- Different problems have different coefficient matrix Φ .
- R remains fixed.

$$R \star B = \Phi$$

$$\mathscr{F}(R)\otimes\mathscr{F}(B)=\mathscr{F}(\Phi)$$

$$(x+y)b(x,y) = \phi(x,y) \implies (\mathbf{X}^T R Y) (\mathbf{X}^T B \mathbf{Y}) = (\mathbf{X}^T \Phi Y)$$

- Objective: Find B.
- Different problems have different coefficient matrix Φ .
- R remains fixed.
- Two variable polynomial multiplication \Leftrightarrow 2D-Convolution.

$$R \star B = \Phi$$

$$\mathscr{F}(R)\otimes\mathscr{F}(B)=\mathscr{F}(\Phi)$$

$$(x+y)b(x,y) = \phi(x,y) \implies (\mathbf{X}^T R Y) (\mathbf{X}^T B \mathbf{Y}) = (\mathbf{X}^T \Phi Y)$$

- Objective: Find B.
- Different problems have different coefficient matrix Φ .
- R remains fixed.
- Two variable polynomial multiplication \Leftrightarrow 2D-Convolution.

$$R \star B = \Phi$$

where \star means 2D-convolution.

$$\mathscr{F}(R)\otimes\mathscr{F}(B)=\mathscr{F}(\Phi)$$

$$(x+y)b(x,y) = \phi(x,y) \implies (\mathbf{X}^T R Y) (\mathbf{X}^T B \mathbf{Y}) = (\mathbf{X}^T \Phi Y)$$

- Objective: Find B.
- Different problems have different coefficient matrix Φ .
- R remains fixed.
- Two variable polynomial multiplication \Leftrightarrow 2D-Convolution.

$$R \star B = \Phi$$

where \star means 2D-convolution.

$$(x+y)b(x,y) = \phi(x,y) \implies (\mathbf{X}^T R Y) (\mathbf{X}^T B \mathbf{Y}) = (\mathbf{X}^T \Phi Y)$$

- Objective: Find B.
- Different problems have different coefficient matrix Φ .
- R remains fixed.
- Two variable polynomial multiplication \Leftrightarrow 2D-Convolution.

$$R \star B = \Phi$$

where \star means 2D-convolution.

• 2D-convolution \Leftrightarrow Elementwise multiplication

$$\mathscr{F}(R)\otimes\mathscr{F}(B)=\mathscr{F}(\Phi)$$

where \otimes means elementwise multiplication.

$$B = \mathscr{F}^{-1}\Big[\mathscr{F}(\Phi)./\mathscr{F}(R)\Big].$$

$$B=\mathscr{F}^{-1}\Big[\mathscr{F}(\Phi)./\mathscr{F}(R)\Big].$$

- The algorithm fails when any element of $\mathcal{F}(R)$ is zero.
- $(k,\ell)^{th}$ element of $\mathscr{F}(R)$ is $e^{-j\frac{2\pi}{N}k} + e^{-j\frac{2\pi}{N}\ell}$ i.e. pairwise sum of

• N even case: Zero padding required in R and Φ to make them odd.

$$B = \mathscr{F}^{-1} \Big[\mathscr{F}(\Phi)./\mathscr{F}(R) \Big].$$

- The algorithm fails when any element of $\mathcal{F}(R)$ is zero.
- $(k,\ell)^{th}$ element of $\mathscr{F}(R)$ is $e^{-j\frac{2\pi}{N}k} + e^{-j\frac{2\pi}{N}\ell}$ i.e. pairwise sum of roots of unity.

• N even case: Zero padding required in R and Φ to make them odd.

$$B = \mathscr{F}^{-1}\Big[\mathscr{F}(\Phi)./\mathscr{F}(R)\Big].$$

- The algorithm fails when any element of $\mathscr{F}(R)$ is zero.
- $(k,\ell)^{th}$ element of $\mathscr{F}(R)$ is $e^{-j\frac{2\pi}{N}k} + e^{-j\frac{2\pi}{N}\ell}$ i.e. pairwise sum of roots of unity.

• N even case: Zero padding required in R and Φ to make them odd.

 \bullet $b(x,y) = \mathbf{X}^T B \mathbf{Y}$ and $\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}$

$$(x+y)b(x,y) = \phi(x,y)$$

$$\bullet \ E := \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}} \ (\text{call } \textit{unit cyclic matrix}).$$

• Then.

$$EB + BE^T = \Phi$$

$$xb(x, y) + yb(x, y) = \mathbf{X}^T E B \mathbf{Y} + \mathbf{X}^T B E^T \mathbf{Y}.$$

• $b(x,y) = \mathbf{X}^T B \mathbf{Y}$ and $\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}$

$$(x+y)b(x,y) = \phi(x,y)$$

$$\bullet \ E := \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}} \ (\text{call } \textit{unit cyclic matrix}).$$

• Then.

$$EB + BE^T = \Phi$$

$$xb(x,y) + yb(x,y) = \mathbf{X}^T E B \mathbf{Y} + \mathbf{X}^T B E^T \mathbf{Y}.$$

• $b(x,y) = \mathbf{X}^T B \mathbf{Y}$ and $\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}$

$$(x+y)b(x,y) = \phi(x,y)$$

•
$$E := \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}} \text{ (call } \textit{unit cyclic matrix)}.$$

• Then,

$$EB + BE^T = \Phi$$

$$xb(x,y) + yb(x,y) = \mathbf{X}^T E B \mathbf{Y} + \mathbf{X}^T B E^T \mathbf{Y}.$$

• $b(x,y) = \mathbf{X}^T B \mathbf{Y}$ and $\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}$

$$(x+y)b(x,y) = \phi(x,y)$$

•
$$E := \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}} \text{ (call } unit \ cyclic \ matrix).}$$

• Then,

$$EB + BE^T = \Phi$$

$$xb(x,y) + yb(x,y) = \mathbf{X}^T E B \mathbf{Y} + \mathbf{X}^T B E^T \mathbf{Y}.$$

• $b(x,y) = \mathbf{X}^T B \mathbf{Y}$ and $\phi(x,y) = \mathbf{X}^T \Phi \mathbf{Y}$

$$(x+y)b(x,y) = \phi(x,y)$$

•
$$E := egin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
 (call unit cyclic matrix).

• Then,

$$EB + BE^T = \Phi$$

Relation between 2D-DFT and Lyapunov equation?

- $\mathcal{L}_A(P) = AP + PA^T$ where $A \in \mathbb{R}^{N \times N}, P \in \mathbb{C}^{N \times N}$.
- Eigenvalues of A be $\{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}$ corresponding to
- $\mathcal{L}_A(v_iv_i^*) = (\lambda_i + \lambda_i^*)v_iv_i^*$ (compare with $Ax = \lambda x$).
 - Eigenmatrix of $\mathcal{L}_A(\bullet)$ is $v_i v_i^*$ with respect to eigenvalue $(\lambda_i + \lambda_i^*)$.
- For us, A = E i.e. $\mathcal{L}_E(P) = EP + PE^T$.

- $\mathcal{L}_A(P) = AP + PA^T$ where $A \in \mathbb{R}^{N \times N}$, $P \in \mathbb{C}^{N \times N}$.
- Eigenvalues of A be $\{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}$ corresponding to eigenvectors $\{v_0, v_1, \ldots, v_{N-1}\}.$
- $\mathcal{L}_A(v_i v_i^*) = (\lambda_i + \lambda_i^*) v_i v_i^*$ (compare with $Ax = \lambda x$).
 - Eigenmatrix of $\mathcal{L}_A(\bullet)$ is $v_i v_i^*$ with respect to eigenvalue $(\lambda_i + \lambda_i^*)$.
- For us, A = E i.e. $\mathcal{L}_E(P) = EP + PE^T$.

- $\mathcal{L}_A(P) = AP + PA^T$ where $A \in \mathbb{R}^{N \times N}$, $P \in \mathbb{C}^{N \times N}$.
- Eigenvalues of A be $\{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}$ corresponding to eigenvectors $\{v_0, v_1, \ldots, v_{N-1}\}.$
- $\mathscr{L}_A(v_iv_i^*) = (\lambda_i + \lambda_i^*)v_iv_i^*$ (compare with $Ax = \lambda x$).
 - Eigenmatrix of $\mathcal{L}_A(\bullet)$ is $v_i v_i^*$ with respect to eigenvalue $(\lambda_i + \lambda_i^*)$.
- For us, A = E i.e. $\mathcal{L}_E(P) = EP + PE^T$.

- $\mathcal{L}_A(P) = AP + PA^T$ where $A \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}, P \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$.
- Eigenvalues of A be $\{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}$ corresponding to eigenvectors $\{v_0, v_1, \ldots, v_{N-1}\}.$
- $\mathscr{L}_A(v_iv_i^*) = (\lambda_i + \lambda_i^*)v_iv_i^*$ (compare with $Ax = \lambda x$).
 - Eigenmatrix of $\mathscr{L}_A(\bullet)$ is $v_i v_i^*$ with respect to eigenvalue $(\lambda_i + \lambda_i^*)$.
- For us, A = E i.e. $\mathcal{L}_E(P) = EP + PE^T$.

- $\mathcal{L}_A(P) = AP + PA^T$ where $A \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}, P \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$.
- Eigenvalues of A be $\{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}$ corresponding to eigenvectors $\{v_0, v_1, \ldots, v_{N-1}\}.$
- $\mathscr{L}_A(v_iv_i^*) = (\lambda_i + \lambda_i^*)v_iv_i^*$ (compare with $Ax = \lambda x$).
 - Eigenmatrix of $\mathcal{L}_A(\bullet)$ is $v_i v_i^*$ with respect to eigenvalue $(\lambda_i + \lambda_i^*)$.
- For us, A = E i.e. $\mathcal{L}_E(P) = EP + PE^T$. Eigenvalues and eigenvectors of E matters.

•
$$(x + y) = \mathbf{X}^T R \mathbf{Y}$$
 where $R = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}$ and $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Elements of $\mathcal{F}(R)$ are pairwise sum of roots of unity.

- $\mathcal{L}_E(P) := EP + PE^T$ where $E \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is the unit cyclic matrix. Eigenvalues of $\mathcal{L}_{E}(\bullet)$ are also pairwise sum of roots of unity.
- Then,

Elements of
$$\mathscr{F}(R) \equiv$$
 corresponding eigenvalues of $\mathscr{L}_{E}(\bullet)$.

$$\bullet \ (x+y) = \mathbf{X}^T R \mathbf{Y} \text{ where } R = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{\mathtt{N} \times \mathtt{N}} \text{ and } J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Elements of $\mathcal{F}(R)$ are pairwise sum of roots of unity.

• $\mathscr{L}_E(P) := EP + PE^T$ where $E \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is the unit cyclic matrix.

Eigenvalues of $\mathcal{L}_E(\bullet)$ are also pairwise sum of roots of unity.

• Then,

Elements of
$$\mathscr{F}(R) \equiv$$
 corresponding eigenvalues of $\mathscr{L}_E(\bullet)$.

$$\bullet \ (x+y) = \mathbf{X}^T R \mathbf{Y} \text{ where } R = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{\mathtt{N} \times \mathtt{N}} \text{ and } J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Elements of $\mathcal{F}(R)$ are pairwise sum of roots of unity.

- $\mathscr{L}_E(P) := EP + PE^T$ where $E \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is the unit cyclic matrix.
 - Eigenvalues of $\mathcal{L}_E(\bullet)$ are also pairwise sum of roots of unity.
- Then,

Elements of
$$\mathscr{F}(R) \equiv$$
 corresponding eigenvalues of $\mathscr{L}_{E}(\bullet)$.

$$\bullet \ (x+y) = \mathbf{X}^T R \mathbf{Y} \text{ where } R = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{\mathtt{N} \times \mathtt{N}} \text{ and } J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Elements of $\mathcal{F}(R)$ are pairwise sum of roots of unity.

- $\mathscr{L}_E(P) := EP + PE^T$ where $E \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is the unit cyclic matrix.
 - Eigenvalues of $\mathcal{L}_E(\bullet)$ are also pairwise sum of roots of unity.
- Then,

Elements of
$$\mathscr{F}(R) \equiv$$
 corresponding eigenvalues of $\mathscr{L}_E(\bullet)$.

Is there a link between Lyapunov operators and two variable polynomial multiplication in general?

- $\mathscr{L}_E(P) := EP + PE^T$ where E is unit cyclic matrix.
- Let $V \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and $v(x, y) := \mathbf{X}^T V \mathbf{Y}$.
- Canonical surjection map

$$\Pi: \mathbb{C}[x,y] \longrightarrow \mathbb{C}[x,y]/\mathbb{A} \text{ where } \mathbb{A} := \langle x^{\mathbb{N}} - 1, y^{\mathbb{N}} - 1 \rangle.$$

• Then,

$$\mathcal{L}_E(V) = \mu V \iff \Pi((x+y)v(x,y)) = \mu v(x,y).$$

A is the ideal generated by (a $f(x,y)(x^N-1) + f(x,y)(y^N-1)$) i.e. the set of all polynomials of the form $e(x,y)(x^N-1) + f(x,y)(y^N-1)$. Indian Control Conference, Guwahati.

- $\mathscr{L}_E(P) := EP + PE^T$ where E is unit cyclic matrix.
- Let $V \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and $v(x, y) := \mathbf{X}^T V \mathbf{Y}$.
- Canonical surjection map

$$\Pi: \mathbb{C}[x,y] \longrightarrow \mathbb{C}[x,y]/\mathbb{A} \text{ where } \mathbb{A} := \langle x^{\mathbb{N}} - 1, y^{\mathbb{N}} - 1 \rangle.$$

• Then,

$$\mathscr{L}_E(V) = \mu V \iff \Pi\Big((x+y)v(x,y)\Big) = \mu v(x,y).$$

A is the ideal generated by (a $f(x,y)(x^N-1) + f(x,y)(y^N-1)$) i.e. the set of all polynomials of the form $e(x,y)(x^N-1) + f(x,y)(y^N-1)$. Indian Control Conference, Guwahati.

- $\mathscr{L}_E(P) := EP + PE^T$ where E is unit cyclic matrix.
- Let $V \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and $v(x, y) := \mathbf{X}^T V \mathbf{Y}$.
- Canonical surjection map

$$\Pi : \mathbb{C}[x,y] \longrightarrow \mathbb{C}[x,y]/\mathbb{A} \text{ where } \mathbb{A} := \langle x^{\mathbb{N}} - 1, y^{\mathbb{N}} - 1 \rangle.$$

• Then,

$$\mathscr{L}_E(V) = \mu V \iff \Pi\Big((x+y)v(x,y)\Big) = \mu v(x,y).$$

A is the ideal generated by $(x^{\mathbb{N}} - 1), (y^{\mathbb{N}} - 1)$ i.e. the set of all polynomials of the form $e(x,y)(x^N-1) + f(x,y)(y^N-1)$.

- $\mathscr{L}_E(P) := EP + PE^T$ where E is unit cyclic matrix.
- Let $V \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and $v(x, y) := \mathbf{X}^T V \mathbf{Y}$.
- Canonical surjection map

$$\Pi: \mathbb{C}[x,y] \longrightarrow \mathbb{C}[x,y]/\mathbb{A} \text{ where } \mathbb{A} := \langle x^{\mathbb{N}} - 1, y^{\mathbb{N}} - 1 \rangle.$$

• Then,

$$\mathscr{L}_E(V) = \mu V \iff \Pi\Big((x+y)v(x,y)\Big) = \mu v(x,y).$$

A is the ideal generated by $(x^{\mathbb{N}} - 1), (y^{\mathbb{N}} - 1)$ i.e. the set of all polynomials of the form $e(x,y)(x^N-1) + f(x,y)(y^N-1)$.

• Consider
$$E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$$
.

• Consider
$$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Then $\mathcal{L}_E(V) = 2V$.

•
$$v(x,y) = \mathbf{X}^T V \mathbf{Y} = 1 + x + y + xy$$
.

•
$$(x+y)v(x,y)/\langle x^2 - 1, y^2 - 1 \rangle$$

= $(x^2 + x^2y + xy^2 + 2xy + x + y^2 + y)/\langle x^2 - 1, y^2 - 1 \rangle$
= $2 + 2x + 2y + 2xy$
= $2v(x,y)$

- Consider $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$.
- Consider $V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $\mathcal{L}_E(V) = 2V$.
- $v(x,y) = \mathbf{X}^T V \mathbf{Y} = 1 + x + y + xy$.
- $(x+y)v(x,y)/\langle x^2 1, y^2 1 \rangle$ = $(x^2 + x^2y + xy^2 + 2xy + x + y^2 + y)/\langle x^2 - 1, y^2 - 1 \rangle$ = 2 + 2x + 2y + 2xy= 2v(x,y)

- Consider $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$.
- Consider $V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $\mathcal{L}_E(V) = 2V$.
- $v(x,y) = \mathbf{X}^T V \mathbf{Y} = 1 + x + y + xy$.
- $(x+y)v(x,y)/\langle x^2 1, y^2 1 \rangle$ = $(x^2 + x^2y + xy^2 + 2xy + x + y^2 + y)/\langle x^2 - 1, y^2 - 1 \rangle$ = 2 + 2x + 2y + 2xy= 2v(x,y)

- Consider $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$.
- Consider $V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $\mathcal{L}_E(V) = 2V$.
- $v(x,y) = \mathbf{X}^T V \mathbf{Y} = 1 + x + y + xy$.

•
$$(x+y)v(x,y)/\langle x^2 - 1, y^2 - 1 \rangle$$

= $(x^2 + x^2y + xy^2 + 2xy + x + y^2 + y)/\langle x^2 - 1, y^2 - 1 \rangle$
= $2 + 2x + 2y + 2xy$
= $2v(x,y)$

$$\mathscr{L}_E(V) = \mu V \iff \Pi\Big((x+y)v(x,y)\Big) = \mu v(x,y).$$

Analogous result:

- $\ell_E(p) := Ep$ where $E \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is the unit cyclic matrix
- Let $p \in \mathbb{C}^{\mathbb{N} \times 1}$ and $v(x) = \mathbf{X}^T p$
- $\pi : \mathbb{C}[x] \longrightarrow \mathbb{R}[x]/\mathfrak{a} \text{ where } \mathfrak{a} := \langle x^{\mathbb{N}} 1 \rangle.$

$$\ell_E(q) = \lambda q \iff \pi\Big(xv(x)\Big) = \lambda^{(N-1)}v(x).$$

Conclusion

- Reported a method to compute Bezoutian using 2D-DFT.
- 2 Link between Bezoutian and Lyapunov operator.
- **3** Two variable interpretation of Lyapunov operator.

THANK YOU

Queries?

2D-Convolution: example

$$(1+x+y)(2+xy) = \begin{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix} \end{pmatrix}$$
$$= 2+2x+2y+xy+x^2y+xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$y[m, n] = \sum_{i=0}^{N} \sum_{i=0}^{N} x[i, j] h[m - i, n - j]$$

V.Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser, 2001. Indian Control Conference, Guwahati

2D-Convolution: example

$$(1+x+y)(2+xy) = \begin{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix} \end{pmatrix}$$
$$= 2+2x+2y+xy+x^2y+xy^2$$

We compute: 2D-convolution of coefficient matrices,

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

2D-convolution formula

$$y[m, n] = \sum_{i=0}^{N} \sum_{j=0}^{N} x[i, j]h[m - i, n - j]$$

V.Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser, 2001. Indian Control Conference, Guwahati

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

1		0	
0	1	2	1
	1		0

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ & & \end{bmatrix}$$

Example:
$$(1 + x + y)(2 + xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

		1	0	
	1	1 0	2	
	1	0		

$$\begin{bmatrix} 2 & 2 & 0 \\ & & \end{bmatrix}$$

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & & & \end{bmatrix}$$

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc} 1 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline \end{array}$$

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & \end{bmatrix}$$

Example:
$$(1 + x + y)(2 + xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc} 1 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \end{array}$$

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

	1		1
1	1	0	0
0		2	

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & & \end{bmatrix}$$

Example:
$$(1+x+y)(2+xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Example:
$$(1 + x + y)(2 + xy) = 2 + 2x + 2y + xy + x^2y + xy^2$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

1	1	
1	0 1	0
	0	2

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$