- 1. Reading assignment
 - $1.1 \ 5.1 5.5$
 - 1.2 6.1
- 2. Problems: The problems with bolded numbers will be collected for grading for both completeness and correctness. However, credit will also be given for attempts that are fully justified.
 - 2.1 5.1.5, 5.1.6, **5.1.7**.
 - 2.2 5.2.18, **5.2.21**, **5.2.22**, 5.2.23, 5.2.25.
 - 2.3 **5.4.5**, **5.4.6**, 5.4.7.
 - 2.4 5.5.14, **5.5.19**, **5.5.20**, **5.5.21**
- 3. These are extra problems for practice. They will not be collected.
 - 3.1. Evaluate the following limits:
 - 3.1.1 $\lim_{n\to\infty} \int_0^1 \frac{ne^x}{1+n^2x^{1/2}} dx$.
 - 3.1.2 $\sum_{n=0}^{\infty} \frac{1}{n} \int_{1}^{2} \ln^{n} x dx$.
 - 3.2. Let f be an integrable function on a measurable set $E \subset \mathbb{R}^d$. Show that if $\{A_n\}$ is a sequence of measurable subsets of E such that $|A_n| \to 0$, then $\int_{A_n} f \to 0$.
 - 3.3. Compute the following limit for each of the cases a > 0, a = 0, and a < 0: $\lim_{n \to \infty} \int_a^{\infty} \frac{n}{1 + n^2 x^2} dx$.
 - 3.4. Prove that if $f \in L^1(\mathbb{R})$, then $\lim_{n\to\infty} f(x) \sin nx dx = 0$.
 - 3.5. Let $E \subset \mathbb{R}^d$ be measurable. Assume that functions $f_n \in L^(E)$ satisfy $||f_n||_1 \to 0$, and there exists some $g \in L^1(E)$ such that $|f_n|^2 \leq g$ a.e. for every n. Prove that $\int_E |f_n|^2 \to 0$.
 - 3.6. Let $f \in L^1(\mathbb{R})$ and let $g_n(x) = \int_{x-n}^{x+n} f(t)dt$.
 - 3.6.1 Prove that g_n is continuous.
 - 3.6.2 Given $x \in \mathbb{R}$, determine whether $\lim_{n\to\infty} g_n(x)$ exists, and if so find it.
 - 3.6.3 Given $n \in \mathbb{N}$, determine whether $\lim_{x\to\infty} g_n(x)$ exists, and if so find it.
 - 3.7 Compute $\iint |f|$ and the two iterated integrals of f. Do They exist? Are they equal? where $f(x,y) = \frac{xy}{(x^2+y^2)^2}$ on the domain $[-1,1]^2$.
 - 3.8 Let $g: \mathbb{R} \to \mathbb{R}$ be a nonmeasurable function and define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \begin{cases} g(x): & y \in \mathbb{Q} \\ e^{-|x|-|y|} & y \notin \mathbb{Q} \end{cases}$ Is f measurable? Is f integrable?
 - 3.9 Let f be a bounded measurable function on a measurable set $E \subset \mathbb{R}^d$, and suppose that there exist some constants C > 0 and $\alpha \in (0,1)$ such that $|\{|f| > t\}| \le Ct^{-\alpha}$ for all t > 0. Prove that f is integrable.
 - 3.10 This question has two parts.
 - 3.10.1 Prove that $f(x) = \int_{-\infty}^{\infty} \frac{1}{1+t^2} \frac{\sin(x-t)}{1+(x-t)^2} dt$ is continuous on \mathbb{R} .
 - 3.10.2 Is $F(x,t) = \frac{1}{1+t^2} \frac{\sin(x-t)}{1+(x-t)^2}$ integrable on \mathbb{R}^2 ?

¹©Kasso Okoudjou and Tufts University