

Machine Learning Course - CS-433

## Text Representation Learning

Nov 24, 2016

©Martin Jaggi 2016



## Motivation

Finding numerical representations for words is fundamental for all machine learning methods dealing with text data.



Goal: For each word, find mapping (embedding)

$$w_i \mapsto \mathbf{w}_i \in \mathbb{R}^K$$

Representation should capture semantics of the word.



Constructing good feature representations (= representation learning) benefits all ML applications.

#### The Co-Occurrence Matrix

A big corpus of un-labeled text can be represented as the co-occurrence counts

 $n_{ij} := \# \text{contexts where word } w_i \text{ occurs together with word } w_i.$ 

|    | W <sub>n</sub> |   |   |   |   |
|----|----------------|---|---|---|---|
|    |                | 1 | 1 |   | æ |
| Wd |                |   | 3 |   |   |
|    |                | 1 |   |   |   |
|    |                | 2 |   | 1 |   |
|    | 1              |   |   |   | 1 |
|    |                |   | 1 |   |   |
|    |                | 1 |   | 1 | 1 |

-0 = unobserved(not part of  $\Omega$ )  $n_{dn} += 1$ 

.. [ w<sub>n</sub> . . .

Needs definition of

• Context e.g. document, paragraph, sentence, window

windle site 3

• Vocabulary  $\mathcal{V} := \{w_1, \dots, w_D\}$ 

- IVI = 1M

For words  $w_d = 1, 2, ..., D$  and context words  $w_n = 1, 2, ..., N$ , the co-occurrence counts  $n_{ij}$  form a very sparse  $D \times N$  matrix.

# Learning Word-Representations (Using Matrix Factorization)

Find a factorization of the cooccurence matrix! Typically uses  $\log$  of the actual counts, i.e.  $x_{dn} := \log(n_{dn})$ .

We will aim to find  $\mathbf{W}$ ,  $\mathbf{Z}$  s.t.

$$\mathbf{X} pprox \mathbf{W} \mathbf{Z}^{ op}$$
 .

So for each pair of words  $(w_d, w_n)$ , we try to 'explain' their co-occurrence count by a numerical representation of the two words

- in fact by the inner product of the two feature vectors  $\mathbf{W}_{d:}$ ,  $\mathbf{Z}_{n:}$ .



$$\min_{\mathbf{W}, \mathbf{Z}} \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \frac{1}{2} \sum_{(d, n) \in \Omega} [x_{dn} - (\mathbf{W} \mathbf{Z}^{\top})_{dn}]^{2}$$
where  $\mathbf{W} \in \mathbb{R}^{D \times K}$  and  $\mathbf{Z} \in \mathbb{R}^{N \times K}$ 

where  $\mathbf{W} \in \mathbb{R}^{D \times K}$  and  $\mathbf{Z} \in \mathbb{R}^{N \times K}$  are tall matrices, having only  $K \ll D, N$  columns.

The set  $\Omega \subseteq [D] \times [N]$  collects the indices of non-zeros of the count matrix  $\mathbf{X}$ .

Each row of those matrices forms a representation of a word  $(\mathbf{W})$  or a context word  $(\mathbf{Z})$  respectively.

## GloVe

This model is called GloVe, and is a variant of word2vec.

Weights  $f_{dn}$ : Give "importance" of each entry. Choosing  $f_{dn} := 1$  is ok. GloVe weight function:



## Choosing K

K e.g. 50, 100, 200

## Word Analogies



| Newspapers          |                       |               |                     |  |  |  |  |
|---------------------|-----------------------|---------------|---------------------|--|--|--|--|
| New York            | New York Times        | Baltimore     | Baltimore Sun       |  |  |  |  |
| San Jose            | San Jose Mercury News | Cincinnati    | Cincinnati Enquirer |  |  |  |  |
| NHL Teams           |                       |               |                     |  |  |  |  |
| Boston              | Boston Bruins         | Montreal      | Montreal Canadiens  |  |  |  |  |
| Phoenix             | Phoenix Coyotes       | Nashville     | Nashville Predators |  |  |  |  |
| NBA Teams           |                       |               |                     |  |  |  |  |
| Detroit             | Detroit Pistons       | Toronto       | Toronto Raptors     |  |  |  |  |
| Oakland             | Golden State Warriors | Memphis       | Memphis Grizzlies   |  |  |  |  |
| Airlines            |                       |               |                     |  |  |  |  |
| Austria             | Austrian Airlines     | Spain         | Spainair            |  |  |  |  |
| Belgium             | Brussels Airlines     | Greece        | Aegean Airlines     |  |  |  |  |
| Company executives  |                       |               |                     |  |  |  |  |
| Steve Ballmer       | Microsoft             | Larry Page    | Google              |  |  |  |  |
| Samuel J. Palmisano | IBM                   | Werner Vogels | Amazon              |  |  |  |  |

W:2 France

O Air\_France\_KLM

Closest 21

w:1

find W, Z

## **Training**

- Stochastic Gradient Descent (SGD)
- Alternating Least-Squares (ALS)

#### Open questions:

- Parallel and distributed training
- Does regularization help?

## Alternative: Skip-Gram Model

(Original word2vec)

Uses binary classification (logistic regression objective), to separate good word pairs  $(w_d, w_n)$  from bad word pairs. Same inner product score = matrix factorization.

Wd: 2n:

Given  $\underline{w_d}$ , a context word  $\underline{w_n}$  is

- Good = appearing together in a context window of 5
- Bad = any word  $w_{n'}$  sampled randomly: Negative sampling

## Learning Representations of Documents

Supervised:

For a supervised task (e.g. predicting the emotion of a tweet), we can use matrix-factorization (below) or convolutional neural networks (see



(Sen Gences)



 $\rightarrow$  SemEval competition for tweet classification.

## Unsupervised:

Open research.

### **FastText**

Matrix factorization to learn document/sentence representations

(supervised).



Given a sentence  $(w_1, w_2, \ldots, w_m), \text{ let } \mathbf{x}_n \in$ be the bag-of-words representation of the sentence.





$$\min_{\mathbf{W}, \mathbf{Z}} \ \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \sum_{s_n \text{ a sentence}} f(y_n \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{x}_n)$$

where  $\mathbf{W} \in \mathbb{R}^{1 \times K}$ ,  $\mathbf{Z} \in \mathbb{R}^{|\mathcal{V}| \times K}$ are the variables, and the vector  $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$  represents our *n*-th training sentence.

Here f is a linear classifier loss function, and  $y_n$  is the classification label for sentence  $\mathbf{x}_n$ . y label

Yn ∈ {-n,13

Supervised, need data (x., x.)

mode

#### **Further Pointers**

#### 1. word2vec:

code: code.google.com/p/word2vec/ paper:

"Distributed representations of words and phrases and their compositionality" - T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. NIPS 2013

#### 2. GloVe:

code and vectors: nlp.stanford.edu/projects/glove/paper:

"GloVe: Global Vectors for Word Representation" - Pennington, J., Socher, R., Manning, C. D.. EMNLP 2014

#### 3. FastText

code: github.com/facebookresearch/fastText papers:

"Bag of Tricks for Efficient Text Classification" - Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. - arXiv, 2016.

"Enriching Word Vectors with Subword Information" - Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. - arXiv, 2016.