Course Code	Course Title			Т	Р	С		
MCOA506L Real Time Embedded systems				0	0	2		
Pre-requisite	NIL Sy				yllabus version			
		1.0						

Course Objectives:

- 1. Identify modern embedded systems requirements and its' design constraints
- 2. Acquire hardware and software skills required for the role of embedded system engineer
- 3. Build automated control systems for real world problems using low cost embedded platforms

Course Outcomes:

On the completion of this course the student will be able to:

- 1. Identify a microcontroller based on application specifications.
- 2. Develop embedded software using commercial integrated development environments
- 3. Interface sensors and actuators using suitable communication protocols
- 4. Design data acquisition system for embedded measurement and control applications
- 5. Design and implement real-time embedded control applications

Module:1 Embedded systems

2 hours

Embedded system components; Examples of embedded system; Attributes; Characteristics; Challenges in embedded computing system design; Typical embedded system software operations

Module:2 | ARM Cortex-M Architecture

3 hours

CPU core: Architecture, Registers, Operating modes; Memory organization; Instructions: Instruction formats, and addressing modes; Exceptions and Interrupts; Commercial ARM Cortex-M microcontrollers

Module:3 | Programming Embedded Systems

3 hours

Embedded C programming: Number systems, Data types, Data structures, Functions, Bitwise operations; Improving responsiveness: Interrupts, Finite state machines; Concurrency; Scheduling; Context switching; Real-time systems; Embedded software development: Host and target, Compiler, Assembler, Linker, and Loader; Hardware and software debugging, In system programming

Module:4 Peripherals and Interfacing

5 hours

Memory mapped IO; GPIO programming: Push-Pull, Open-Drain modes, Pull up and Pull down modes, Input and output devices; Timing generation and measurements: Timers, and PWM, Input capture; ADC, DAC, Analog comparator; Block data transfer using DMA; Real Time Clock (RTC); Power management

Module:5 | Serial Communication Protocols

5 hours

Serial communication protocols: UART, I2C, SPI, and CAN; Architecture; electrical considerations; message formats; message types; transmission and arbitration; Data visualization using logic analysers

Module:6 Data acquisition System Design

5 hours

Analog interfacing and data acquisition; Transducers; Current to voltage circuit, Instrumentation amplifier, isolation, Anti-aliasing filters; Nyquist theory to determine sampling rate; Measurement of voltage, current, and temperature; Analysis of noise; Techniques to reduce noise; Optical encoders for speed and position measurement; Data acquisition case studies

Module:7 | Embedded Control System

5 hours

Closed loop control system: Set-point control and trajectory tracking; Design process for a PID controller; Fixed point vs. Floating point representation, Implementation of PID controller; Implementation of digital filters, Quantization, Overflow and resource issues; Case

stu	studies: Digital power supply design and motor control									
Module:8		Contemporary Issues				2 hours				
				Total Le	cture hours:	30 hours				
Text Book(s)										
1.	Alexan	inder G Dean, Embedded Systems Fundamentals with Arm Cortex-M based								
	Microco	Microcontrollers: A Practical Approach, ARM Education Media, 2021.								
2.	Jonath	an W. Valvano, Embedded Microcomputer Systems: Real Time Interfacing, Third								
	Edition, Cengage Learning, 2010.									
Reference Books										
1.	Yifeng	Yifeng Zhu, Embedded Systems with ARM Cortex-M Microcontrollers in Assembly								
	Langu	uage and C, Third Edition, 2018.								
2.		n Wolf, Computers as Components: Principles of Embedded Computing Design,								
		ird Edition, Morgan Kaufmann, 2012.								
3.	_	amal, Embedded Systems- Architecture, Programming and Design, Third Edition,								
	McGraw Hill Education India, 2017.									
Mode of Evaluation: CAT, Laboratory Assessment/Assignment / Quiz / FAT										
Recommended by Board of Studies 09-07-2022										
App	Approved by Academic Council No. 67 Date 08-08-2022									