Final Presentation

Group 잘했조

Professor Seibum Choi

20100048 Hyungkyu Kim

20140013 Geonhee Ko

20140929 Pouya

20140425 Ahyoung Lee

20150314 Sungbin Park

20150352 Jinwook Park

20150915 Ailian Chi

System Introduction

System Introduction

Hardware - Circuit

Hardware - Suspension

1. Reduce Vibration

- High frequency vibration ->vision problem
- With smaller K, less vibration in high frequency region

2. Increase Traction

Without Suspension

With Suspension

Hardware - Suction Process

Easy to collect balls

• Storage faces the front of the robot

- Accurate because it uses camera vision
- Fast because it doesn't turn around

Hardware - Cooling

1. Free convection

$$T_{\infty} = 20^{\circ} \text{C}, \quad T_{s} = 40^{\circ} C, \quad L = 0.05 \text{m}$$

$$Ra_{L} = \frac{g\beta(T_{s} - T_{\infty})L^{3}}{v\alpha} = 2.1796 \times 10^{5}$$

$$\overline{Nu_{L}} = 0.59Ra_{L}^{\frac{1}{4}} = 12.7481$$

$$\therefore \overline{h} = \frac{\overline{Nu_D}k}{L} = 6.7565 \text{ W/m}^2\text{K}$$

2. Forced convection

$$T_{\infty} = 20^{\circ} \text{C}, \ T_{s} = 40^{\circ} C, \ D = 0.05 \text{m}$$

$$Re_D = \frac{VD}{V} = 9259$$

$$\overline{Nu_D} = 0.191 \,\text{Re}_D^{\frac{2}{3}} \,\text{Pr}^{\frac{1}{3}} = 75.1$$

$$\therefore \overline{h} = \frac{\overline{Nu_D}k}{D} = 39.8 \text{ W/m}^2\text{K}$$

Hardware - Cooling

• Without Cooling ($T_{m ax} = 38$ °C)

• With Cooling ($T_{max} = 26$ °C)

Software - Vision

```
Point2f one, two;
float x1, x2, y1, y2;
float r1, r2;
float l;
size_t contour_b = contours_b.size();
for( size_t i = 0; i< contour_b; i++ ){</pre>
            if(radius_b[i] > iMin_tracking_ball_size){
                for(size_t j=0; j<contour_b; j++){</pre>
                    for(size_t k=0; k<contour_b; k++){</pre>
                        one = center_b[j]; two = center_b[k];
                        r1 = radius_b[j]; r2 = radius_b[k];
                        x1 = one.x; y1 = one.y;
                        x2 = two.x; \sqrt{2} = two.y;
                         l = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
                        if(r1+r2>l){
                            if(r1>r2){ //!!!
                                radius_b.erase(radius_b.begin()+k);
                                center_b.erase(center_b.begin()+k);
                                contours_b.erase(contours_b.begin()+k);
                                contour_b--;
```

 Remove extra contour circle data with vector.erase function

Contour_size=3 Contour_size=1

Software - Algorithm

Software - Algorithm

How to go back to the basket

Software - PD control

Robot Direction control using feedback control

Bang-bang Control (On-off Control) Scheduling (Open Loop)

PD Control (Closed Loop)

- Error due to deceleration time
- Jerk due to discontinuous velocity profile

- Reduced error and Jerk
- Open loop control

- Even less error and Jerk
- Robust due to closed loop control

Software - Bang-bang control

Software - Scheduling

On-off control

- Fast speed -> more error
- Slow speed -> more time

Scheduling

- Slow speed when angle is small
 - ->reduce error
- Fast speed when angle is big
 - ->reduce time

Software - Scheduling ->PD control

Software - PD control

Advantage of Feedback control: Robustness

- Uneven floor
- Deformation of Hardware
- External disturbances

Demo Video(x2)

Thank you