

Winning Space Race with Data Science

Vo Nguyen Trung Kien 19/04/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies:
 - Collecting data through API and Web Scraping
 - Cleaning and wrangling data
 - Carrying out EDA by SQL and some Python libraries such as Matplotlib, Seaborn
 - Building an interactive map with Folium
 - Building a dashboard with Plotly Dash
 - Building a predictive model
- Summary of all results:
 - Data Analysis result
 - Data visualization
 - Predictive result

Introduction

Project background and context:

- With the recent successes in private space travel, space industry is becoming more and more mainstream and accessible to general population. Cost of launch continues to remain a key barrier for new competitors to enter the space race
- SpaceX with its first stage reuse capabilities offers a key advantage against its competitors. Each SpaceX launch costs around 62 million dollar and SpaceX can reuse stage 1 for future launches. This provides SpaceX a unique advantage where other competitors are spending around 165 mission plus for each launch

Problems you want to find answers:

- Determine whether the first stage of SpaceX Falcon 9 will land successfully
- The effect of parameters on the landing outcomes
- Correlations between launch sites and success rates

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API
 - Web scraping on Wikipedia
- Perform data wrangling
 - Determining labels for supervised learning models
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Creating a 'class' column, standardizing and transforming data, split train/test data, finding the best classification algorithm (Logistic Regression, SVM, Decision Tree, KNN)

Data Collection

• This project used SpaceX API and Web scraping on Wikipedia for data collection

Data Collection – SpaceX API

 Create API GET request, normalize data and read in to a Dataframe:

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)

# Use json_normalize meethod to convert the json
data = pd.json_normalize(response.json())
```

2. Declare global variable lists that will store data returned by helper functions with additional API calls

to get relevant data

```
#Global variables
BoosterVersion = []
PayloadMass = []
Orbit = []
LaunchSite = []
Outcome = []
Flights = []
GridFins = []
Reused = []
Legs = []
LandingPad = []
Block = []
ReusedCount = []
Serial = []
Longitude = []
Latitude = []
```

- Call helper functions to get relevant data where columns have IDs (e.g., rocket column is an identification number)
 - getBoosterVersion(data)
 - getLaunchSite(data)
 - getPayloadData(data)
 - getCoreData(data)
- Construct dataset from received data & combine columns into a dictionary:

```
launch dict = {'FlightNumber': list(data['flight number']),
'Date': list(data['date']),
'BoosterVersion':BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome.
'Flights':Flights,
'GridFins':GridFins,
'Reused':Reused,
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount,
'Serial':Serial,
'Longitude': Longitude,
'Latitude': Latitude}
```

Create Dataframe from dictionary and filter to keep only the Falcon9 launches:

```
# Create a data from Launch_dict
df_launch = pd.DataFrame(launch_dict)

# Hint data['BoosterVersion']!='Falcon 1'
data_falcon9 = df_launch[df_launch['BoosterVersion']!= 'Falcon 1']

data_falcon9.to_csv('dataset_part\_1.csv', index=False)
```

Data Collection - Scraping

 Create API GET method to request Falcon9 launch HTML page

```
static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1007686992"

html_data = requests.get(static_url).text
```

2. Create Beautiful Soap object
soup = Beautiful Soup(html_data, "html.parser")

Find all the tables on the Wiki page and extract relevant column names from the HTML table header

```
html_tables = soup.find_all ('table')

column_names = []

# Apply find_all() function with `th` element on firs
# Iterate each th element and apply the provided extr
# Append the Non-empty column name (`if name is not N
colnames = soup.find_all('th')
for x in range (len(colnames)):
    name2 = extract_column_from_header(colnames[x])
    if (name2 is not None and len(name2) > 3):
        column_names.append(name2)
```

 Create an empty Dictionary with keys from extracted column names:

```
launch dict= dict.fromkeys(column names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
# Let's initial the launch dict with each vc
launch dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch dict['Payload mass'] = []
launch dict['Orbit'] = []
launch dict['Customer'] = []
launch_dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch dict['Booster landing']=[]
launch_dict['Date']=[]
launch dict['Time']=[]
```

- Fill up the launch_dict with launch records extracted from table rows.
 - Utilize following helper functions to help parse HTML data

```
def date_time(table_cells):
    def booster_version(table_cells):
    def landing_status(table_cells):
    def get_mass(table_cells):
```

6. Convert launch_dict to Dataframe:

```
df=pd.DataFrame(launch_dict)
```

Data Wrangling

- Carrying out EDA to find patterns in data and using Data wrangling to define labels for supervised learning models
- IBM-Data-Science-Capstone-Project/ at main trungkien-011001/IBM-Data-Science-Capstone-Project (github.com)

EDA with Data Visualization

 As part of the Exploratory Data Analysis (EDA), following charts were plotted to gain further insights into the dataset:

1. Scatter plot:

- · Shows relationship or correlation between two variables making patterns easy to observe
- Plotted following charts to visualize:
 - · Relationship between Flight Number and Launch Site
 - · Relationship between Payload and Launch Site
 - · Relationship between Flight Number and Orbit Type
 - · Relationship between Payload and Orbit Type

2. Bar Chart:

- Commonly used to compare the values of a variable at a given point in time. Bar charts makes it easy
 to see which groups are highest/common and how other groups compare against each other. Length
 of each bar is proportional to the value of the items that it represents
- · Plotted following Bar chart to visualize:
 - · Relationship between success rate of each orbit type

3. Line Chart:

- · Commonly used to track changes over a period of time. It helps depict trends over time.
- Plotted following Line chart to observe:
 - · Average launch success yearly trend

EDA with SQL

- Here is the link
- IBM-Data-Science-Capstone-Project/Week 2 EDA SQL.ipynb at main trungkien-011001/IBM-Data-Science-Capstone-Project (github.com)

Build an Interactive Map with Folium

- Here is the link
- <u>IBM-Data-Science-Capstone-Project/Week 3 Launch Site Location.ipynb at main · trungkien-011001/IBM-Data-Science-Capstone-Project (github.com)</u>

Build a Dashboard with Plotly Dash

- Here is the link
- IBM-Data-Science-Capstone-Project/Week 3 Plotly Dashboard.py at main
 trungkien-011001/IBM-Data-Science-Capstone-Project (github.com)

Predictive Analysis (Classification)

 Load SpaceX dataset (csv) in to a Dataframe and create NumPy array from the column class in data

```
data = pd.read_csv("https://cf-courses-data.s3.us.cloud-object
et_part_2.csv")

Y = data['Class'].to_numpy()
```

Standardize data in X then reassign to variable X using transform

```
X= preprocessing.StandardScaler().fit(X).transform(X)
```

Train/test/split X and Y in to training and test data sets.

```
# Split data for training and testing data sets
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split
( X, Y, test_size=0.2, random_state=2)
print ('Train set:', X_train.shape, Y_train.shape)
print ('Test set:', X_test.shape, Y_test.shape)
```

- Create and refine Models based on following classification Algorithms: (below is LR example)
 - Create Logistic Regression object and then create a GridSearchCV object
 - Fit train data set in to the GridSearchCV object and train the Model

```
parameters = {"C":[0.01,0.1,1],'penalty':['l2'], 'solver':['lbfgs']};
LR = LogisticRegression()
logreg_cv = GridSearchCV(LR, parameters,cv=10)
logreg cv.fit(X train, Y train)
```

 Find and display best hyperparameters and accuracy score

```
print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("accuracy :",logreg_cv.best_score_)
```

 iv. Check the accuracy on the test data by creating a confusion matrix

```
yhat=logreg_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

 Repeat above steps for Decision Tree, KNN, and SVM algorithms

3. Find the best performing model

```
i = Model_Performance_df['Accuracy Score'].idxmax()
print('The best performing alogrithm is '+ Model_Performance_df['Algo Type'][i]
+ ' with score ' + str(Model_Performance_df['Accuracy Score'][i]))
```

The best performing alogrithm is Decision Tree with score 0.875

Algo Type Accuracy Score Test Data Accuracy Score

2	Decision Tree	0.875000	0.833333
3	KNN	0.848214	0.833333
1	SVM	0.848214	0.833333
0	Logistic Regression	0.846429	0.833333

Results

Flight Number vs. Launch Site

- Success rates (Class=1) increases as the number of flights increase
- For launch site 'KSC LC 39A', it takes at least around 25 launches before a first successful launch

Payload vs. Launch Site

- For launch site 'VAFB SLC 4E', there are no rockets launched for payload greater than 10,000 kg
- Percentage of successful launch (Class=1) increases for launch site 'VAFB SLC 4E' as the payload mass increases
- There is no clear correlation or pattern between launch site and payload mass

Success Rate vs. Orbit Type

- Orbits ES-LI, GEO, HEO, and SSO have the highest success rates
- GTO orbit has the lowest success rate

Flight Number vs. Orbit Type

- For orbit VLEO, first successful landing (class=1) doesn't occur until 60+ number of flights
- For most orbits (LEO, ISS, PO, SSO, MEO, VLEO) successful landing rates appear to increase with flight numbers
- There is no relationship between flight number and orbit for GTO

Payload vs. Orbit Type

- Successful landing rates (Class=1) appear to increase with pay load for orbits LEO, ISS, PO, and SSO
- For GEO orbit, there is not clear pattern between payload and orbit for successful or unsuccessful landing

Launch Success Yearly Trend

- Success rate (Class=1) increased by about 80% between 2013 and 2020
- Success rates remained the same between 2010 and 2013 and between 2014 and 2015
- Success rates decreased between 2017 and 2018 and between 2019 and 2020

All Launch Site Names

Query:

select distinct Launch_Site from spacextbl

Description:

- 'distinct' returns only unique values from the queries column (Launch_Site)
- There are 4 unique launch sites

Result:

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

Query:

```
select * from spacextbl where Launch_Site LIKE 'CCA%' limit 5;
```

Description:

- Using keyword 'Like' and format 'CCA%', returns records where 'Launch_Site' column starts with "CCA".
- Limit 5, limits the number of returned records to 5

Result:

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 04-06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 08-12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 08-10	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 01-03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Query:

```
select sum(PAYLOAD_MASS__KG_) from spacextbl where Customer = 'NASA (CRS)'
```

- Description:
 - 'sum' adds column 'PAYLOAD_MASS_KG' and returns total payload mass for customers named 'NASA (CRS)'
- Result:

45596

Average Payload Mass by F9 v1.1

Query:

select avg(PAYLOAD_MASS__KG_) from spacextbl where Booster_Version LIKE 'F9 v1.1'

Description:

 'avg' keyword returns the average of payload mass in 'PAYLOAD_MASS_KG' column where booster version is 'F9 v1.1'

Result:

2928

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

Query:

```
select min(Date) as min_date from spacextbl where Landing__Outcome = 'Success (ground pad)'
```

• Description:

- 'min(Date)' selects the first or the oldest date from the 'Date' column where first successful landing on group pad was achieved
- Where clause defines the criteria to return date for scenarios where 'Landing_Outcome' value is equal to 'Success (ground pad)'

• Result:

min_date

2015-12-22

Total Number of Successful and Failure Mission Outcomes

Query:

select Mission_Outcome, count(Mission_Outcome) as counts from spacextbl group by Mission_Outcome

• Description:

- The 'group by' keyword arranges identical data in a column in to group
- In this case, number of mission outcomes by types of outcomes are grouped in column 'counts'

Result:

mission_outcome	counts
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

Query:

```
select Booster Version, PAYLOAD MASS KG from spacextbl where PAYLOAD MASS KG = (select max(PAYLOAD MASS KG) from spacextbl)
```

Description:

- The sub query returns the maximum payload mass by using keywork 'max' on the pay load mass column
- The main query returns booster versions and respective payload mass where payload mass is maximum with value of 15600

• Result:

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

2015 Launch Records

Query:

```
select Landing_Outcome, Booster_Version, Launch_Site from spacextbl where Landing_Outcome = 'Failure (drone ship)' and year(Date) = '2015'
```

Description:

- The query lists landing outcome, booster version, and the launch site where landing outcome is failed in drone ship and the year is 2015
- The 'and' operator in the where clause returns booster versions where both conditions in the where clause are true
- The 'year' keywork extracts the year from column 'Date
- The results identify launch site as 'CCAFS LC-40' and booster version as F9 v1.1 B1012 and B1015 that had failed landing outcomes in drop ship in the year 2015

Result:

landingoutcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Query:

```
select Landing_Outcome, count(*) as LandingCounts from spacextbl where Date between '2010-06-04' and '2017-03-20' group by Landing_Outcome order by count(*) desc;
```

Description:

- The 'group by' key word arranges data in column 'Landing_Outcome' into groups
- The 'between' and 'and' keywords return data that is between 2010-06-04 and 2017-03-20
- The 'order by' keyword arranges the counts column in descending order
- The result of the query is a ranked list of landing outcome counts per the specified date range

Result:

landing_outcome	landingcounts
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Success (ground pad)	5
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	1
Precluded (drone ship)	1

SpaceX Falcon 9 – Launch Sites Map

Fig 1 - Global Map

Fig 2 - Zoom 1

Figure 1 on left displays the Global map with Falcon 9 launch sites that are located in the United States (in California and Florida). Each launch site contains a circle, label, and a popup to highlight the location and the name of the launch site. It is also evident that all launch sites are near the coast.

Figure 2 and Figure 3 zoom in to the launch sites to display 4 launch sites:

- VAFB SLC-4E (CA)
- CCAFS LC-40 (FL)
- KSC LC-39A (FL)
- CCAFS SLC-40 (FL)

Fig 3 - Zoom 2

SpaceX Falcon 9 – Success/Failed Launch Map for all Launch Sites

Fig 1 - US map with all Launch Sites

VAFE SLC4E Launch
Site

Space Com

VAFF 6

Site

KSC
LC39A
Launch
Site

RSC
6

Site

Fig 2 – VAFB Launch Site with success/failed markers

Fig 3 – KSC LC-39A success/failed markers

- Figure 1 is the US map with all the Launch Sites. The numbers on each site depict
 the total number of successful and failed launches
- Figure 2, 3, 4, and 5 zoom in to each site and displays the success/fail markers with green as success and red as failed
- By looking at each site map, KSC LC-39A Launch Site has the greatest number of successful launches

Fig 4 – CCAFS SLC-40 success/failed markers

Fig 5 – CCAFS SLC-40 success/failed markers

SpaceX Falcon 9 – Launch Site to proximity Distance Map

Fig 2 - Zoom in for sites - coastline, railroad, and highway

Figure 1 displays all the proximity sites marked on the map for Launch Site VAFB SLC-4E. City Lompoc is located further away from Launch Site compared to other proximities such as coastline, railroad, highway, etc. The map also displays a marker with city distance from the Launch Site (14.09 km)

Figure 2 provides a zoom in view into other proximities such as coastline, railroad, and highway with respective distances from the Launch Site

In general, cities are located away from the Launch Sites to minimize impacts of any accidental impacts to the general public and infrastructure. Launch Sites are strategically located near the coastline, railroad, and highways to provide easy access to resources.

Launch Success Counts For All Sites

- Launch Site 'KSC LC-39A' has the highest launch success rate
- Launch Site 'CCAFS SLC-40' has the lowest launch success rate

Launch Site with Highest Launch Success Ratio

- KSC LC-39A Launch Site has the highest launch success rate and count
- Launch success rate is 76.9%
- Launch success failure rate is 23.1%

Payload vs. Launch Outcome Scatter Plot for All Sites

- Most successful launches are in the payload range from 2000 to about 5500
- Booster version category 'FT' has the most successful launches
- Only booster with a success launch when payload is greater than 6k is 'B4'

Booster Version Category

v1.1

B4

Classification Accuracy

	Algo Type	Accuracy Score	Test Data Accuracy Score
2	Decision Tree	0.875000	0.833333
3	KNN	0.848214	0.833333
1	SVM	0.848214	0.833333
0	Logistic Regression	0.846429	0.833333

- Based on the Accuracy scores and as also evident from the bar chart, Decision Tree algorithm has the highest classification score with a value of .8750
- Accuracy Score on the test data is the same for all the classification algorithms based on the data set with a value of .8333
- Given that the Accuracy scores for Classfication algorithms are very close and the test scores are the same, we may need a broader data set to further tune the models

Confusion Matrix

- The confusion matrix is same for all the models (LR, SVM, Decision Tree, KNN)
- Per the confusion matrix, the classifier made 18 predictions
- 12 scenarios were predicted Yes for landing, and they did land successfully (True positive)
- 3 scenarios (top left) were predicted No for landing, and they did not land (True negative)
- 3 scenarios (top right) were predicted Yes for landing, but they did not land successfully (False positive)
- Overall, the classifier is correct about 83% of the time ((TP + TN) / Total) with a misclassification or error rate ((FP + FN) / Total) of about 16.5%

Conclusions

- · As the numbers of flights increase, the first stage is more likely to land successfully
- Success rates appear go up as Payload increases but there is no clear correlation between Payload mass and success rates
- Launch success rate increased by about 80% from 2013 to 2020
- Launch Site 'KSC LC-39A' has the highest launch success rate and Launch Site 'CCAFS SLC-40' has the lowest launch success rate
- Orbits ES-L1, GEO, HEO, and SSO have the highest launch success rates and orbit GTO the lowest
- Lunch sites are located strategically away from the cities and closer to coastline, railroads, and highways
- The best performing Machine Learning Classfication Model is the Decision Tree with an accuracy of about 87.5%. When the models were scored on the test data, the accuracy score was about 83% for all models. More data may be needed to further tune the models and find a potential better fit.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

