Math 128: Calculus 2 for the Sciences

Winter 2016

Lecture 11: January 27, 2016

Lecturer: Jen Nelson Notes By: Harsh Mistry

11.1 Volumes Continued

Example 11.1 Find the volume of the solid obtained by rotating the area bounded by $x = y^2$ and x + y = 2 about y = -3

y = 1, -2

volume of one shell = $2\pi(y+3)(2-y-y^2)dy$

Total Volume =
$$\int_{-2}^{1} 2\pi (y+3)(2-y-y^2)dy$$

= $\frac{45\pi}{2}$

Practice: Find the volume enclosed by $x = y^3, y = \sqrt{2-x}, y = 0$ rotated about y = 1 Try to use both vertical rectangles and horizontal rectangles.

Tips:

- Draw a diagram
- Check rotating both vertical and horizontal rectangles to determine which orientation to use
- Be careful with radius of cylinder/disk/washer if not rotating about x
- Limits of integration must be for same variable that is in the integral

11.2 Arc Length

Consider y = f(x)

If f(x) is continuous on [a,b], then the length of the curve y = f(x) on $a \le x \le b$ is

$$L = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2}$$

If instead we have x = g(y) where $c \le y \le d$, then we use

$$L = \int_{c}^{d} \sqrt{1 + (\frac{dx}{dy})^2}$$

End of Lecture Notes Notes By: Harsh Mistry