PEA 2455 CONTROLE 2. PROVA

Prof. Walter Kaiser JUNHO/2015

Obs: a) Prova individual com consulta restrita a apenas uma folha A4 que poderá ser preenchida frente e verso com as informações que o aluno considerar relevantes, a qual obrigatoriamente deverá ser entregue com nome juntamente com a prova; Em caso de cola será atribuída <u>nota zero à prova</u>. É proibido utilizar celulares.

b) As questões devem ser resolvidas nos espaços correspondentes abaixo dos enunciados,

podendo-se usar o verso se necessárias;

c) Para padronizar os resultados, aconselha-se usar três casas decimais após a vírgula nos cálculos, arredondando a quarta casa convenientemente;

d) A interpretação das questões faz parte da avaliação. Deixe por escrito quaisquer hipóteses

que achar não óbvias;

e) Tempo de prova: 100 (cem) minutos.

Nota	Q1	Q2	Q3
	3.0 pontos	3.5 pontos	3.5pontos

1ª QUESTÃO

A figura abaixo apresenta o diagrama de Nyquist de um sistema de controle do tipo S.L.I.T., com realimentação unitária e ganho em malha aberta K de valor numérico conhecido e que possui dois polos reais de mesmo valor em módulo e sinais opostos.

- A) O sistema em malha fechada é estável? Justifique sua resposta.
- B) Quanto é a margem de ganho? Indique no gráfico a margem de fase.
- C) Esboce qualitativamente o LGR do sistema. Quanto vale o ganho CC?

2ª QUESTÃO

Considere um sistema de levitação de uma bola de pingue-pongue flutuando em um forte jato de ar constante gerado por um ventilador potente.

Você poderia pensar que a bola vai escapar para o lado, mas ela permanece estável no centro do fluxo de arl A razão para este comportamento é que o fluxo de ar se move em alta velocidade. Pela equação de Bernoulli o fluxo de ar forma uma região de pressão mais baixa do que o ar estacionário que circunda a bolinha. Se a bola começar a se mover para um dos lados, a alta-pressão do ar estacionário empurra-a de volta o centro da corrente de ar.

Na vertical existem duas forças atuando sobre a bolinha: a força gravitacional $F_{\rm g}$ e a força de arrasto aerodinâmica F_d . Portanto, a posição y da bolinha é dada pela equação:

$$m\ddot{y} = F_d - F_g = \frac{1}{2} \rho C_d A v^2 - mg$$
.

Onde: ρ é a densidade do ar, C_d é o coeficiente de arrasto, g a aceleração gravitacional, v a velocidade do ar, \underline{A} e \underline{m} são a área da seção transversal e a massa da bolinha respectivamente. Admita: i) que um sensor ótico detecta a posição da bolinha; ii) que a velocidade do ar tem uma relação linear com a rotação $\Omega(s)$ do motor CC e iii) que a rotação do motor seja controlada pela tensão de armadura $V_a(s)$. Linearizando o sistema, resulta o diagrama de blocos abaixo para o sistema de controle da posição da bolinha:

Motor

circuida a politina, as a naise asi... para um dos lados, a alta-pressão do ar estacionário empurra-a de volta o centro da corrente de ar.

Na vertical existem duas forças atuando sobre a bolinha; a força gravitacional $F_{\rm g}$ e a força de arrasto aerodinâmica F_d . Portanto, a posição y da bolinha é dada pela equação:

$$m\ddot{y} = F_d - F_g = \frac{1}{2} \rho C_d A v^2 - mg.$$

Onde: ρ é a densidade do ar, C_d é o coeficiente de arrasto, g a aceleração gravitacional, v a velocidade do ar, \underline{A} e \underline{m} são a área da seção transversal e a massa da bolinha respectivamente. Admita: i) que um sensor ótico detecta a posição da bolinha; ii) que a velocidade do ar tem uma relação linear com a rotação $\Omega(s)$ do motor CC e iii) que a rotação do motor seja controlada pela tensão de armadura $V_a(s)$. Linearizando o sistema, resulta o diagrama de blocos abaixo para o sistema de controle da posição da bolinha:

- A) Assumindo Gc(s)=1, o sistema em malha fechada é estável? Por quê? Caso não seja, qual o controlador que você utilizaria para estabilizar a planta? Justifique.
- B) Projetar o controlador de forma que os polos dominantes em malha fechada tenham amortecimento $\xi = 0.5$ e frequência amortecida de 20 rad/s.
- C) Esboçar qualitativamente o LGR e indicar os polos dominantes em Malha Fechada.

3ª QUESTÃO

O modelo linearizado do sistema de controle de altitude <u>h</u> em função do ângulo de ataque <u>e</u> de uma aeronave com realimentação interna é apresentado no diagrama de blocos abaixo:

Quando um piloto quer ganhar altitude, ele tem que inicialmente rodar a aeronave para em seguida aumentar o ângulo de ataque. Para girar a aeronave, ocorre uma força descendente na cauda devido ao aumento do ângulo do profundor. Isso faz com que haja uma força descendente sobre a aeronave, ou seja, o centro de gravidade desce, antes que a força ascendente da asa principal resultante do aumento do ângulo de ataque faça a aeronave subir.

- A) Projete um controlador para que os polos dominantes em malha fechada sejam -0.125± j\
 e o erro em rampa nulo. Qual deve ser o controlador? Justifique.
- B) Esboce qualitativamente o LGR do sistema compensado.