

MR1035-820
Serial Number: 09/781,283
Amendment Dated 28 October 2003
Reply to Office Action dated 30 July 2003

AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listing of claims in the application:

LISTING OF CLAIMS:

Claim 1 (Currently amended): A planarization method of inter-layer dielectrics, comprising the steps of:

providing a semiconductor substrate including a field oxide, a source, a drain, and a gate formed thereon;

forming a dielectric layer used as an inter-layer dielectric on said semiconductor substrate, said dielectric layer being formed with a thickness in the range of 3000 - 15000 angstroms;

lapping said dielectric layer by means of a chemical mechanical polishing; and

forming on said lapped dielectric layer a cap layer of silicon nitrogen-oxide ~~to have~~ having a thickness in the range of 300 - 2000 angstroms and a refractive index of at least 1.6, wherein said cap layer is translucent to ultra-violet light.

MR1035-820
Serial Number: 09/781,283
Amendment Dated 28 October 2003
Reply to Office Action dated 30 July 2003

Claim 2 (Original): The planarization method of inter-layer dielectrics as claimed in claim 1, wherein said gate comprises from bottom to top a tunneling oxide layer, a floating gate, a dielectric layer, and a control gate.

Claim 3 (Original): The planarization method of inter-layer dielectrics as claimed in claim 2, wherein said floating gate and said control gate are composed of polysilicon.

Claim 4 (Original): The planarization method of inter-layer dielectrics as claimed in claim 1, wherein said dielectric layer is a borophosphosilicate glass layer.

Claims 5 - 8 (Cancelled).

Claim 9 (Currently amended): A planarization method of inter-metal dielectrics, comprising the steps of:

providing a semiconductor substrate having a plurality of metal-interconnects formed thereon;

forming a dielectric layer used as an inter-metal dielectric on said substrate, said dielectric layer being formed with a thickness in the range of 3000 – 15000

MR1035-820
Serial Number: 09/781,283
Amendment Dated 28 October 2003
Reply to Office Action dated 30 July 2003

angstroms;

lapping said dielectric layer by means of a chemical mechanical polishing;
and

forming on said lapped dielectric layer a cap layer of silicon nitrogen-oxide
~~to have~~ having a thickness in the range of 300 - 2000 angstroms and a refractive index of
at least 1.6, wherein said cap layer is translucent to ultra-violet light.

Claim 10 (Original): The planarization method of inter-layer dielectrics as claimed
in claim 9, wherein said metal-interconnect is composed of aluminum, aluminum-copper
alloy, aluminum-silicon-copper alloy, or copper.

Claim 11 (Original): The planarization method of inter-layer dielectrics as claimed
in claim 9, wherein said dielectric layer is a phosphosilicate glass layer.

Claim 12 (Original): The planarization method of inter-layer dielectrics as claimed
in claim 9, wherein said dielectric layer is a fluorosilicate glass layer.

Claim 13 (Original): The planarization method of inter-layer dielectrics as claimed

MR1035-820

Serial Number: 09/781,283

Amendment Dated 28 October 2003

Reply to Office Action dated 30 July 2003

in claim 9, wherein said dielectric layer is a low K dielectric layer.

Claim 14 (Currently amended): The planarization method of inter-layer dielectrics as claimed in claim 9, wherein said dielectric layer is a silicon oxide layer formed by means of ~~the~~ plasma enhanced chemical vapor deposition.

Claim 15 (Currently amended): The planarization method of inter-layer dielectrics as claimed in claim 9, wherein said dielectric layer is a tetraethyl-orthosilicate layer formed by means of ~~the~~ plasma enhanced chemical vapor deposition.

Claims 16 - 19 (Cancelled).