Facultad de Ciencias, UNAM Teoría de Códigos Tarea 1

Rubí Rojas Tania Michelle

10 de agosto de 2020

1. Construye el campo $\mathbb{F}_{16}.$ También da sus tablas de suma y multiplicación.

Solución: En el anillo \mathbb{Z}_2 existe el polinomio irreducible $f(x) = x^4 + x + 1$. Tenemos que

$$\mathbb{F}_{16} = \mathbb{Z}_2[x]/(x^4 + x + 1) \tag{1}$$

donde los elementos de \mathbb{F}_{16} son:

$$\mathbb{F}_{16} = \{ax^3 + bx^2 + cx + d : a, b, c, d \in \mathbb{Z}_2\}$$

$$= \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + x, x^3 + x^2 + 1, x^3 + x^2 + x + 1\}$$

Etiquetamos cada uno de los elementos de \mathbb{F}_{16} de la siguiente manera:

$$g_0(x) = 0$$

 $g_1(x) = 1$

 $g_2(x) = x$

 $g_3(x) = x + 1$

 $g_4(x) = x^2$

 $g_5(x) = x^2 + 1$

$$q_6(x) = x^2 + x$$

 $g_7(x) = x^2 + x + 1$

 $g_8(x) = x^3$

 $g_9(x) = x^3 + 1$

 $g_{10}(x) = x^3 + x$

 $g_{11}(x) = x^3 + x + 1$

 $g_{12}(x) = x^3 + x^2$

 $g_{13}(x) = x^3 + x^2 + x$

 $g_{14}(x) = x^3 + x^2 + 1$

 $g_{15}(x) = x^3 + x^2 + x + 1$

Su respectiva tabla de suma es:

+	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_1	g_1	g_0	g_3	g_2	g_5	g_4	g_7	g_6	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{15}	g_{12}	g_{13}
g_2	g_2	g_3	g_0	g_1	g_6	g_7	g_4	g_5	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{12}	g_{15}	g_{14}
g_3	g_3	g_2	g_1	g_0	g_7	g_6	g_5	g_4	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{14}	g_{13}	g_{12}
g_4	g_4	g_5	g_6	g_7	g_0	g_1	g_2	g_3	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_{10}	g_9	g_{11}
g_5	g_5	g_4	g_7	g_6	g_1	g_0	g_3	g_2	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_{11}	g_8	g_{10}
g_6	g_6	g_7	g_4	g_5	g_2	g_3	g_0	g_1	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_8	g_{11}	g_9
g_7	g_7	g_6	g_5	g_4	g_3	g_2	g_1	g_0	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_9	g_{10}	g_8
g_8	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{14}	g_{13}	g_{15}	g_0	g_1	g_2	g_3	g_4	g_6	g_5	g_7
g_9	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{12}	g_{15}	g_{13}	g_1	g_0	g_3	g_2	g_5	g_7	g_4	g_6
g_{10}	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{15}	g_{12}	g_{14}	g_2	g_3	g_0	g_1	g_6	g_4	g_7	g_5
g_{11}	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{13}	g_{14}	g_{12}	g_3	g_2	g_1	g_0	g_7	g_5	g_6	g_4
g_{12}	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_9	g_{10}	g_{11}	g_4	g_5	g_6	g_7	g_0	g_2	g_1	g_3
g_{13}	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_{11}	g_8	g_9	g_6	g_7	g_4	g_5	g_2	g_0	g_3	g_1
g_{14}	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_8	g_{11}	g_{10}	g_5	g_4	g_7	g_6	g_1	g_3	g_0	g_2
g_{15}	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_1	g_2	g_0

mientras que su tabla de multiplicación es:

•	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0
g_1	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_2	g_0	g_2	g_4	g_6	g_8	g_{10}	g_{12}	g_{13}	g_3	g_1	g_7	g_5	g_{11}	g_{15}	g_9	g_{14}
g_3	g_0	g_3	g_6	g_5	g_{12}	g_{15}	g_{10}	g_9	g_{11}	g_8	g_{14}	g_{13}	g_7	g_1	g_4	g_2
g_4	g_0	g_4	g_8	g_{12}	g_3	g_7	g_{11}	g_{15}	g_6	g_2	g_{13}	g_{10}	g_5	g_{14}	g_1	g_9
g_5	g_0	g_5	g_{10}	g_{15}	g_7	g_2	g_{14}	g_8	g_{13}	g_{11}	g_4	g_1	g_9	g_3	g_{12}	g_6
g_6	g_0	g_6	g_{12}	g_{10}	g_{11}	g_{14}	g_7	g_1	g_5	g_3	g_9	g_{15}	g_{13}	g_2	g_8	g_4
g_7	g_0	g_7	g_{13}	g_9	g_{15}	g_8	g_1	g_6	g_{14}	g_{10}	g_3	g_4	g_2	g_{12}	g_5	g_{11}
g_8	g_0	g_8	g_3	g_{11}	g_6	g_{13}	g_5	g_{14}	g_{12}	g_4	g_{15}	g_7	g_{10}	g_9	g_2	g_1
g_9	g_0	g_9	g_1	g_8	g_2	g_{11}	g_3	g_{10}	g_4	g_{14}	g_5	g_{12}	g_6	g_7	g_{15}	g_{13}
g_{10}	g_0	g_{10}	g_7	g_{14}	g_{13}	g_4	g_9	g_3	g_{15}	g_5	g_8	g_2	g_1	g_6	g_{11}	g_{12}
g_{11}	g_0	g_{11}	g_5	g_{13}	g_{10}	g_1	g_{15}	g_4	g_7	g_{12}	g_2	g_9	g_{14}	g_8	g_6	g_3
g_{12}	g_0	g_{12}	g_{11}	g_7	g_5	g_9	g_{13}	g_2	g_{10}	g_6	g_1	g_{14}	g_{15}	g_4	g_3	g_8
g_{13}	g_0	g_{13}	g_{15}	g_1	g_{14}	g_3	g_2	g_{12}	g_9	g_7	g_6	g_8	g_4	g_{11}	g_{10}	g_5
g_{14}	g_0	g_{14}	g_9	g_4	g_1	g_{12}	g_8	g_5	g_2	g_{15}	g_{11}	g_6	g_3	g_{10}	g_{13}	g_7
g_{15}	g_0	g_{15}	g_{14}	g_2	g_9	g_6	g_4	g_{11}	g_1	g_{13}	g_{12}	g_3	g_8	g_5	g_7	g_{10}

2. Construye una matriz generadora para el código RS(4,11).

Solución: Una matriz generadora para RS(4,11) es

- 3. Supón que recibes la palabra $y = (10, 1, 2, 2, 2, 10, 7, 2, 9, 3, 7) \in \mathbb{F}_{11}^{11}$. Decodifica la palabra usando el algoritmo de Gao, sabiendo que la palabra es del código RS(4, 11).
- 4. Construye una base para \mathcal{L}_k de tal manera que la matriz generadora del código RS(k,q) sea de la forma

$$\begin{bmatrix} I_k & P \end{bmatrix} \tag{2}$$

donde I_k es la matriz identidad $k \times k$ y P es una matriz $k \times (q - k)$.

SOLUCIÓN: Sabemos que $\mathcal{L}_k = \{f(x) \in \mathbb{F}_q[x] : deg(f) < k\}$, es decir, \mathcal{L}_k son todos los polinomios de grado menor que k con coeficientes en $\mathbb{F}_q = \{0, 1, \alpha, \alpha^2, ..., \alpha^{q-2}\}$, donde éste es un campo finito de q elementos.

Sea $\beta = \{1, \alpha x, \alpha_2 x^2, ..., \alpha_{k-1} x^{k-1}\}$, con $\alpha_i \in \mathbb{F}_q - \{0\}$ e $i \in \{1, 2, ..., q-2\}$. Entonces tenemos que β es una base para \mathcal{L}_k con una matriz generadora

$$G = \begin{bmatrix} I_k & P \end{bmatrix}$$

Recordemos que un mensaje $m = (m_1, m_2, ..., m_k)$ se codifica haciendo $m \cdot G$. Entonces

$$G = \begin{bmatrix} I_k & P \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \alpha x & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots & \vdots & \vdots & \alpha_2 x^2 & \vdots & 0 \\ 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & \alpha_{k-1} x^{k-1} \end{bmatrix}$$

y $m \cdot G = (m_1, m_2, ..., m_k, m_1, m_2 \alpha x, m_3 \alpha_2 x^2, ..., m_k \alpha_{k-1} x^{k-1}).$

Así, G tiene dimensión k y cada mensaje codificado tiene longitud q. Por lo tanto, G genera a RS(k,q).

5. Demuestra que el número de subespacios vectoriales de \mathbb{F}_q^n de dimensión i es:

$$\mathcal{G}(n,i) = \frac{(q^n - 1)(q^n - q)\cdots(q^n - q^{i-1})}{(q^i - 1)(q^i - q)\cdots(q^i - q^{i-1})}$$
(3)

para i = 1, ..., n.

Demostración. Sabemos que un subespacio de dimensión k se especifica dando k vectores linealmente independientes $\{v_1, v_2, ..., v_k\} \in V = \mathbb{F}_q^n$. El vector v_1 puede ser elegido como cualquier vector distinto de cero en V, por lo que hay q^n-1 opciones para v_1 . Dado v_1 , v_2 se puede elegir como cualquier vector que no se encuentre en el subespacio generado por v_1 . Como este subespacio tiene q elementos, entonces hay q^n-q opciones para v_2 . Siguiendo de esta manera, tenemos que dados $v_1, v_2, ..., v_i$ con i < k, entonces hay q^n-q^i opciones para v_{i+1} . Así, el número de conjuntos de k vectores linealmente independientes en V es

$$(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{k-1})$$
 (4)

Como hay muchos conjuntos k linealmente independientes que generan el mismo subespacio, entonces debemos dividir la expresión anterior entre el número de k conjuntos que generan el mismo subespacio (i.e. el número de bases para un subespacio de dimensión k).

Así, aplicando la expresión (4) al caso especial en que n=k, tenemos que cada subespacio de dimensión k de V tiene

$$(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})$$
 (5)

bases. Por lo tanto, el número de subespacios de dimensión k de V es

$$\mathcal{G}(n,k) = \frac{(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{k-1})}{(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})}$$

6. Demuestra que $RS(k,q)_q^{\top} = RS(q-k,q)$.

Demostración. Notemos que tanto RS(k,q) como RS(q-k,q) tienen dimensiones complementarias, por lo que es suficiente mostrar que son ortogonales. Tenemos que el código RS(k,q) es generado por el polinomio X^i , con i < k; y el código RS(q-k,q) es generado por el polinomio X^j , con j < q-k. El producto punto de los correspondientes códigos es $\sum_v v^{i+j}$ (teniéndo en cuenta que $i+j \leq q-2$). Sabemos que existen algunos elementos $c \neq 0 \in \mathbb{F}_q$ tales que $c^{i+j} \neq 1$, pues de lo contrario, el polinomio $X^{i+j}-1$ de grado i+j debería de tener q-1>i+j raíces, lo cual es imposible. Además, tenemos que $c^{i+j}\left(\sum_v v^{i+j}\right)=\sum_v v^{i+j}$, ya que cv se desplaza a través de todos los elementos distintos de cero que pertenecen a \mathbb{F}_q cuando v lo hace. De aquí se sigue que $(c^{i+j}-1)\left(\sum_v v^{i+j}\right)=0$, y como $c^{i+j}\neq 1$, entonces podemos concluir que $\sum_v v^{i+j}=0$ (que es lo que queríamos mostrar). Por lo tanto, $RS(k,q)_q^{\top}=RS(q-k,q)$.

7. Demuestra que si C es un código MDS, entonces C^{\top} también es MDS.

Demostración. Supongamos que C es un código MDS con una matriz generadora G con columnas c_i , donde $i \in \{1, 2, ..., n\}$. Entonces G es una matriz de $k \times n$, y por hipótesis tenemos que cada combinación lineal de los renglones tiene un peso de Hamming de al menos n - k + 1. Por una proposición vista en clase, sabemos que C^{\top} tiene una matriz de verificación de paridad G^T . Como C = [n, k, n - k + 1], entonces debemos mostrar que la distancia mínima de C^{\top} es igual a n - (n - k) + 1 = k + 1, es decir, $C^{\top} = [n, n - k + 1, k + 1]$ (esto significa que cada subconjunto de k columnas de la matriz generadora G es linealmente independiente).

Procedemos por contradicción. Supongamos que algunas k columnas de G son linealmente dependientes. Sea H la submatriz de $k \times k$ formada por estas columnas. Como las columnas son linealmente dependientes, entonces el rango de H es menor que k debido a que los renglones de H tienen alguna dependencia lineal. Por lo tanto, existe una combinación lineal de los renglones de H que suma 0, por lo que podemos usar esta misma combinación lineal en los renglones de G cuya suma tiene al menos k ceros, lo cual implicaría que tiene un peso de Hamming $\leq n-k$. Pero como cualquier combinación lineal de los renglones de G en un código MDS debe tener un peso de Hamming al menos n-k+1, entonces tenemos una contradicción.

Por lo tanto, C^{\top} es un código MDS.

8. Resuelve los siguientes ejercicios

a) Encuentra la matriz generadora G del código Simplex S(3,2). SOLUCIÓN: Sabemos que el código S(3,2) tiene

$$\frac{q^k - 1}{q - 1} = \frac{2^3 - 1}{2 - 1}$$
$$= \frac{8 - 1}{1}$$
$$= 7$$

subespacios de dimensión 1. Por lo tanto,

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

b) Supongamos que un mensaje es enviado bajo el código H(3,2). Verifica si el mensaje r=1010001 es correcto.

Solución: Sabemos que $H(3,2) = [7,4,3]_2$ y que una matriz de verificación para H(3,2) es cualquier matriz generadora para S(3,2). Así, la matriz obtenida en el inciso anterior es una matriz de verificación para nuestro código H(3,2).

El mensaje r se puede ver como un vector

$$x = (1, 0, 1, 0, 0, 0, 1) \in \mathbb{F}_2^7$$

Ahora, calculamos el síndrome de x.

$$S(x) = Gx^{t}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Como $S(x) = (0, 1, 0)^t \neq 0$ entonces podemos concluir que hubo errores de transmisión. Notemos que $(0, 1, 0)^t$ corresponde a la segunda columna de G, por lo que sabemos que la segunda coordenada es incorrecta. Entonces el vector error es

$$e = (0, 1, 0, 0, 0, 0, 0)$$

Por lo tanto, la palabra envíada fue

$$z = x - e$$

$$= (1, 0, 1, 0, 0, 0, 1) - (0, 1, 0, 0, 0, 0, 0)$$

$$= (1, 1, 1, 0, 0, 0, 1)$$