Московский государственый университет им. М.В.Ломоносова Механико-математический факультет Кафедра газовой и волновой динамики

Ракитин Виталий Павлович.

Численное решение краевой задачи принципа максимума в задаче оптимального управления методом стрельбы.

Содержание

1	Постановка заадачи	2
2	Формализация задачи	2
3	Система необходимых условий оптимальности	2
4	Анормальный случай и исследование задачи	4
5	Краевая задача	4
6	Аналитическое решение краевой задачи	5
7	Численное решение краевой задачи методом стрельбы	5
8	Тестирование на гармоническом осцилляторе	6
9	Результаты решения задачи и их анализ	9
10	Сравнение аналитического и численного решений	9
11	Приложения 11.1 Решение задачи о математическом осцилляторе в Wolfram Mathematica 9	11 11

1 Постановка заадачи

Рассматривается задача (номер 33) Лагранжа с фиксированным временным отрезком, без ограничений вида «меньше или равно»:

$$\int_{0}^{1} \frac{\ddot{x}^{2}}{1 + \alpha t^{4}} dt \to extr,$$

$$\int_{0}^{1} x dt = 1, \qquad x(0) = \dot{x}(1) = 0, \qquad \dot{x}(0) = 1,$$
(1)

где α — известная константа, параметр задачи.

Требуется формализовать задачу как задачу оптимального управления, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы и обосновать точность полученных результатов, проверить полученные экстремали Понтрягина на оптимальность при различных значениях параметра

$$\alpha = \{0.0; 0.1; 1.0; 10.0\}.$$

2 Формализация задачи

Формализуем задачу для оптимального управляения. Для этого введём следующие обозначения

$$y = \dot{x}, \qquad u = \dot{y} = \ddot{x}.$$

где u — управление.

Тогда исходная система (1) перепишется в виде:

$$\begin{cases} \dot{x} = y; \\ \dot{y} = u; \\ u \in \mathbb{R}; \\ \text{при } t = 0: x(0) = 0, \quad y(0) = 1; \\ \text{при } t = 1: y(1) = 0; \\ \int_{0}^{1} x dt = 1; \\ \int_{0}^{1} \frac{u^{2}}{1 + \alpha t^{4}} dt \to extr. \end{cases}$$

$$(2)$$

3 Система необходимых условий оптимальности

Рассмотртим задачу Лагранда в пространстве $\Omega = C^1(\Delta, \mathbb{R}^2) \times C(\Delta, \mathbb{R}) \times \mathbb{R}^2$:

$$u(t) \in \mathbb{R}, \quad \overline{x}^T = (x, y) \in \mathbb{R}^2, \quad \dot{\overline{x}}^T - (y, u) = 0, \quad \varphi(t, \overline{x}(t), u(t)) = (y, u);$$

Далее выпишем следующий функционалы

$$B_i(\overline{x},u,t_0,t_1)=B_i(x,y,u,0,1)=\int\limits_0^1 f_i(t,\overline{x},u)dt+\psi_i(0,\overline{x}(0),1,\overline{x}(1)),$$
 где $i=1,\dots,4.$
$$B_0=\int\limits_0^1 \frac{u^2}{1+\alpha t^2}dt, \qquad f_0=\frac{u^2}{1+\alpha t^2}, \qquad \psi_0=0;$$

$$B_1=\int\limits_0^1 xdt-1=0, \qquad f_1=x, \qquad \psi_1=-1;$$

$$B_2=x(0), \qquad f_2=0, \qquad \psi_2=x(0);$$

$$B_3=y(0)-1, \qquad f_3=0, \qquad \psi_3=y(0)-1;$$

$$B_4 = y(1), \qquad f_4 = 0, \qquad \psi_4 = y(1);$$

Далее выпишем функцию Лагранжа

$$\mathcal{L} = \int_{0}^{1} Ldt + l;$$

где

лагранжиан:
$$L=\sum_{i=0}^4 \lambda_i f_i(t,\overline{x},u) + \langle \overline{p}(t),\dot{\overline{x}}-\varphi(t,\overline{x},u) \rangle;$$

терминант:
$$l = \sum_{i=0}^4 \lambda_i \psi_i(0, \overline{x}(0), 1, \overline{x}(1));$$

$$\lambda = (\lambda_0, \dots, \lambda_4), \quad \overline{p}(\cdot) = (p_x, p_y) \in C^1(\Delta, \mathbb{R}^{2*})$$

множетели лагранжа задачи, а так же функцию Понтрягина

$$H(t, \overline{x}, u, \overline{p}, \lambda) = \langle \overline{p}(t), \varphi(t, \overline{x}, u) \rangle - \sum_{i=0}^{4} \lambda_i f_i(t, \overline{x}, u).$$

А теперь выпишем функции Лагранжа и Понтрягина в явном виде:

$$L = \lambda_0 \left(\frac{u^2}{1 + \alpha t^4} \right) + \lambda_1 x + p_x (\dot{x} - y) + p_y (\dot{y} - u);$$

$$l = -\lambda_1 + \lambda_2 x(0) + \lambda_3 (y(0) - 1) + \lambda_4 y(1);$$

$$H = p_x y + p_y u - \lambda_0 \left(\frac{u^2}{1 + \alpha t^4} \right) - \lambda_1 x;$$
(3)

Далее применим к задаче оптимального управления (2) принцип максимума Понтрягина. Необходимые условия оптимальности:

1. Уравнения Эйлера-Лагранжа (сопряжённая система уравнений, условие стационарности по \overline{x}):

$$\begin{cases} \dot{p}_x = -\frac{\partial H}{\partial x} = \lambda_1; \\ \dot{p}_y = -\frac{\partial H}{\partial y} = -p_x. \end{cases}$$
(4)

2. условие оптимальности по управлению,

$$u = \arg \underset{u \in \mathbb{R}}{\text{abs }} \max H(u) = \arg \underset{u \in \mathbb{R}}{\text{abs }} \max \left(p_y u - \left(\frac{\lambda_0}{1 + \alpha t^4} \right) u^2 \right) = \frac{p_y \left(1 + \alpha t^4 \right)}{2\lambda_0}$$

при $\lambda_0 \neq 0$, так как H(u) — парабола, с ветвями, направленными вниз (т.к. $\lambda_0 \geqslant 0$ — см.п. 6), достигает максимума в вершине, при указанном значении аргумента u;

3. условия трансверсальности по \bar{x} :

$$p_x(t_k) = (-1)^k \frac{\partial l}{\partial x(t_k)}, \qquad p_y(t_k) = (-1)^k \frac{\partial l}{\partial y(t_k)}.$$

В нашем случае $k = 0, 1, t_0 = 0, t_1 = 1$. Значит

$$p_x(0) = \lambda_2,$$
 $p_x(1) = 0,$ $p_y(0) = \lambda_3,$ $p_y(1) = -\lambda_4.$

- 4. условия стационарности по t_k : нет, так как в задаче (2) t_k известные константы;
- 5. условия дополняющей нежёсткости: нет, так как в задаче (2) отсутствуют условия вида «меньше или равно»;
- 6. условие неотрицательности: $\lambda_0 \ge 0$;
- 7. условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- 8. НЕРОН (множители Лагранжа НЕ Равны Одновременно Нулю).

4 Анормальный случай и исследование задачи

Исследуем возможность анормального случая $\lambda_0 = 0$. При $\lambda_0 = 0$ из (2) и (4) получим систему дифференциальных уравнений:

$$\begin{cases} \dot{x} = y; \\ \dot{y} = u; \\ \dot{p}_{x} = \lambda_{1}; \\ \dot{p}_{y} = -p_{x}; \end{cases}$$

$$(5)$$

Отсюда получаем,

$$p_x(t) = \lambda_1 t + C,$$
 $p_y(t) = -\lambda_1 t - C.$

Так же из условия (п. 2), имеем

$$p_y(t) \equiv 0, \qquad \dot{p}_y(t) \equiv 0,$$

иначе

$$u(t) = \pm \infty$$
,

и такой управляемый процесс не является допустимым. Следовательно,

$$\lambda_1 t + C = 0, \qquad \lambda_1 t = C,$$

где $t \in \mathbb{R}$, $\lambda_1, C = \text{const}$, тогда

$$\lambda_1 = C = 0, \qquad p_x(t) \equiv 0.$$

Из условий трансверсальности (п. 3) получаем

$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0.$$

Таким образом, если $\lambda_0 = 0$, то все множители Лагранжа равны 0 и получается противоречие с условием (п. 8). Значит, анормальный случай невозможен.

Так как $\lambda_0 \neq 0$, то в силу однородности функции Лагранжа по множителям Лагранжа выберем следующее условие нормировки:

$$\lambda_0 = \frac{1}{2},$$

тогда из условия (п. 2) определяется управление

$$u = p_u(1 + \alpha t^4),\tag{6}$$

5 Краевая задача

Ко всему вышесказанному добавим, что

$$\int_{0}^{1} x dt = 1.$$

Введём обозначение

$$arphi(t)=\int\limits_0^1x(au)d au,$$
 а так же $\lambda_1=a;$

тогда

$$\begin{cases} \varphi(0) = 0, \\ \dot{\varphi} = x; \\ \varphi(1) = 1; \end{cases}$$

$$(7)$$

Таким образом, на основе принципа максимума Понтрягина задача оптимального управления (2) сводится к краевой задаче (8).

$$\begin{cases} \dot{x} = y; \\ \dot{y} = p_y(1 + \alpha t^4); \\ \dot{p}_x = \lambda_1 = a; \\ \dot{p}_y = -p_x; \\ \dot{\varphi} = x; \\ \dot{a} = 0. \end{cases}$$

$$(8)$$

$$x(0) = 0,$$
 $y(0) = 1,$ $\varphi(0) = 0;$
 $y(1) = 0,$ $p_x(1) = 0.$ $\varphi(1) = 1;$
 $\alpha = \{0.0; 0.1; 1.0; 10.0\}.$

Однако, λ_1 в краевой задаче

6 Аналитическое решение краевой задачи

Полученная краевая задача решается аналитически.

1. из уравнения $\dot{p}_x = 1$ следует, что

$$p_x = t + C_1$$
,

где $C_1 = \text{const.}$

Так же из краевых условий видим, что $p_x(1)=0$, тогда $0=1+C_1$, значит $C_1=-1$.

2. из уравнения

$$\dot{p}_y = -p_x = -t + 1$$

получим, что

$$p_y = -\frac{1}{2}t^2 + t + C_2,$$
 где $C_2 = {
m const.}$

3. из уравнения

$$\dot{y} = p_y(1 + \alpha t^4) = (-\frac{1}{2}t^2 + t + C_2)(1 + \alpha t^4)$$

не сложно получить,

$$y = \frac{1}{2} \left(-\frac{2}{5} \alpha C_2 t^5 - \frac{\alpha t^7}{7} - \frac{\alpha t^6}{3} - 2C_2 t - \frac{t^3}{3} - t^2 \right) + C_3$$

Из краевых условий y(0) = 1, y(1) = 0 получим

$$C_3 = 1,$$
 $C_2 = -\frac{5(5\alpha - 7)}{21(\alpha + 5)}$

А значит

$$y = \frac{1}{42} \left(t \left(t \left(-3\alpha t^5 - 7\alpha t^4 + \frac{2\alpha (5\alpha - 7)t^3}{\alpha + 5} - 7t - 21 \right) - \frac{320}{\alpha + 5} + 50 \right) + 42 \right)$$

4. из уравнения

$$\dot{x} = y = \frac{1}{42} \left(t \left(t \left(-3\alpha t^5 - 7\alpha t^4 + \frac{2\alpha(5\alpha - 7)t^3}{\alpha + 5} - 7t - 21 \right) - \frac{320}{\alpha + 5} + 50 \right) + 42 \right)$$

следует

$$x = \frac{t}{1008} \left(-9\alpha t^7 - 24\alpha t^6 + \frac{8\alpha(5\alpha - 7)t^5}{\alpha + 5} + \frac{120(5\alpha - 7)t}{\alpha + 5} - 42t^3 - 168t^2 + 1008 \right) + C_4,$$

Из краевых условий x(0) = 0, тогда

$$C_4 = 0$$

Из вышесказанного следует, что решением нашей системы будет следующим

$$\begin{cases} x = \frac{t}{1008} \left(-9\alpha t^7 - 24\alpha t^6 + \frac{8\alpha(5\alpha - 7)t^5}{\alpha + 5} + \frac{120(5\alpha - 7)t}{\alpha + 5} - 42t^3 - 168t^2 + 1008 \right); \\ y = \frac{1}{42} \left(t \left(t \left(-3\alpha t^5 - 7\alpha t^4 + \frac{2\alpha(5a - 7)t^3}{\alpha + 5} - 7t - 21 \right) - \frac{320}{\alpha + 5} + 50 \right) + 42 \right); \\ p_x = t - 1; \\ p_y = -\frac{1}{2}t^2 + t - \frac{5(5\alpha - 7)}{21(\alpha + 5)} \end{cases}$$

7 Численное решение краевой задачи методом стрельбы

Краевая задача (8) решается численно методом стрельбы. В качестве параметров пристрелки выбираются недостающие для решения задачи Коши значения при t=0

$$\beta_x = p_x(0), \qquad \beta_y = p_y(0), \qquad \beta = \{\beta_x, \beta_y\}.$$

Задав эти значения каким-либо образом и решив задачу Коши на отрезке $\Delta = [0,1]$ получим соответствующие выбранному значению β функции $x(t)[\beta], y(t)[\beta], p_x(t)[\beta], p_y(t)[\beta]$ и, в частности, значения $p_x(1)[\beta], y(1)[\beta]$. Задача Коши для системы дифференциальных уравнений (8) с начальными условиями в нулевой момент времени решается численно явным методом Рунге-Кутты 5-го порядка, основанным на расчётных формулах Дормана-Принса 5(6) DOPRI5 с автоматическим выбором шага (то есть с контролем относительной локальной погрешности на шаге по правилу Рунге). Для решения краевой задачи необходимо подобрать значения β так, чтобы выполнились условия:

$$p_x(1)[\beta] = 0,$$
 $y(1)[\beta] = 0.$

соответственно вектор-функцией невязок будет функция

$$X(\beta) = \begin{pmatrix} p_x(1)[\beta] \\ y(1)[\beta] \end{pmatrix}$$

Таким образом, в результате выбора вычислительной схемы метода стрельбы, решение краевой задачи свелось к решению системы двух алгебраических уравнений от двух неизвестных. Корень β системы алгебраических уравнений $X(\beta)=0$ находится методом Ньютона с модификацией Исаева-Сонина. Решение линейной системы уравнений внутри модифицированного метода Ньютона осуществляется методом Гаусса с выбором главного элемента по столбцу, с повторным пересчётом.

Схема численного решения краевой задачи методом стрельбы выбрана таким образом, что при отсутствии ошибок в программной реализации решения задачи Коши, найденный методом Ньютона корень будет правильным (без учёта погрешности численного интегрирования), даже если внутри метода Ньютона есть какие-то ишибки. Напротив, ошибка в решении задачи Коши делает бесполезным полученный результат, даже если всё остальное запрограммировано правильно и методу Ньютона удалось найти корень.

Исходя из этого крайне важен следующий тест части программы, решающей задачу Коши, на системе дифференциальных уравнений с известным аналитическим решением.

8 Тестирование на гармоническом осцилляторе

Дабы отбросить все сомнения в корректности работы программы для решения задачи Коши, проведём тестирование на более простом случае с заранее известным решением, а именно на гармоническом осцилляторе

$$\begin{cases} \frac{dx}{dt} = y; \\ \frac{dy}{dt} = -x; \\ 0 < t < 30; \\ t = 0 : x = 0, y = 8. \end{cases}$$

Визуализация численного решения данной задачи с помощью нашей программы представлена в виде графиков на рис.(3), (2) и (1). Для удобства проверки дополнительно решим нашу задачу с помощью пакета Wolfram Mathematica 9 (см. рис. 11.1). Сравнивая полученные результаты можно заметить, что полученные решения абсолютно идентичны, на основе чего можно сделать вывод о корректности работы программы. Однако, для большей достоверности проверим так же численные оценки отклонений.

1. Для вычисления глобальной погрешности введём множество переменных δ_i :

$$\delta_0 = 0, \qquad \delta_{k+1} = Err_k + \delta_k \cdot e^{\int\limits_{t_k}^{t_{k+1}} \mu(s) ds}$$

Интеграл в предыдущем выражении можно приблизить следующим образом

$$\int_{t_{k+1}}^{t_{k+1}} \mu(s)ds = (t_{k+1} - t_k) \cdot \operatorname{Hmax}\left(\frac{J + J^T}{2}\right),$$

где J- матрица Якоби исходной системы дифференциальных уравнений, Err_k- максимум расстояний между соответствующими координатами на k-ом шаге, а Hmax-функция, возвращающая максимальное собственное значение полученной матрицы. В наше случае мы получим следующее

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad A = \frac{J + J^T}{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\lambda_{1,2} = 0, \qquad \delta_0 = 0, \qquad \delta_{k+1} = Err_k + \delta_k.$$

Таким образом были получены следющщие значения глобальной погрешности:

```
для точности погрешности -7-го порядка \delta_k=2.433796\cdot 10^{-6} для точности погрешности -9-го порядка \delta_k=3.964618\cdot 10^{-7} для точности погрешности -11-го порядка \delta_k=8.135620\cdot 10^{-9}
```

2. А оценка локального отклонения на шаге для каждой точки $t = \{50, 100, 150, 200\}$ для обеих координат получилась равна в районе 100 ± 2 , что намного превышает теоретическую оценку 56.23 и свидетельствуют о большом запасе точности в методе — при уменьшении максимально допустимой относительной погрешности на шаге интегрирования на 2 порядка происходит существенное уточнение решения, метод в данном случае работает как метод более высокого порядка. Это в первую очередь связано с коэффициентами в расчётных формулах метода и особенностями системы дифференциальных уравнений гармонического осциллятора.

На основе выше сказанного можно сделать вывод, что полученная программа работает корректно.

Рис. 1. Решение задачи о математическом осцилляторе. График зависимости y(x)

Рис. 2. Решение задачи о математическом осцилляторе. График зависимости y(t)

Рис. 3. Решение задачи о математическом осцилляторе. График зависимости x(t)

- 9 Результаты решения задачи и их анализ
- 10 Сравнение аналитического и численного решений

Список литературы

- [1] И. С. Григорьев. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005.
- [2] В.В.Александров, Н.С.Бахвалов, К.Г.Григорьев, Г.Ю.Данков, М.И.Зеликин, С.Я.Ищенко, С.В.Конягин, Е.А.Лапшин, Д.А.Силаев, В.М.Тихомиров, А.В.Фурсиков. Практикум по численным методам в задачах оптимального управления Издательство Московского университета, 1988.
- [3] И. С. Григорьев, И. С. Заплетин. Практикум по численным методам в задачах оптимального управления. Дополнение I Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2007.

11	Приложения
----	------------

11.1 Решение задачи о математическом осцилляторе в Wolfram Mathematica 9.

```
In[44]:= solve = NDSolve[
             \{x'[t] == y[t], y'[t] = -x[t], x[0] == 0, y[0] == 8\}, \{x, y\}, \{t, 0, 30\}]
         ParametricPlot[Evaluate[{x[t], y[t]} /. solve], {t, 0, 30}]
         ParametricPlot[Evaluate[{t,x[t]
                                                                          } /. solve], {t, 0, 30}]
         ParametricPlot[Evaluate[{t,y[t]}
                                                                          } /. solve], {t, 0, 30}]
\label{eq:out_44} \textsc{Out_44} = \; \left\{ \left. \left\{ x \to \textsc{InterpolatingFunction} \left[ \, \left\{ \, \left\{ \, 0 \, . \, , \, \, 30 \, . \, \right\} \, \right\} \, , \, \, <> \, \right] \, , \right. \right. \right. \right.
             y \rightarrow \texttt{InterpolatingFunction[} \left\{ \left. \left\{ \texttt{0., 30.} \right\} \right\} \text{, } <> \right] \right\} \right\}
Out[45]=
                         -5
Out[46]=
                                      10
                                                    15
                                                                  20
                                                                                             30
Out[47]=
                                                                               25
                                      10
                                                    15
                                                                  20
```