DENEY ADI: Ve Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla AND Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ		ÇIKIŞ
Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ve_kapisi IS

PORT(a:IN BIT;
    b:IN BIT;
    x:OUT BIT);

END ve_kapisi;

ARCHITECTURE mimaril OF ve_kapisi IS

BEGIN
x<=a AND b;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Veya Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla OR Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GİRİŞ		ÇIKIŞ
Α	A B	
0	0	0
0	1	1
1	0	1
1	1	1

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY veya_kapisi IS

PORT(a:IN BIT;
        b:IN BIT;
        x:OUT BIT);

END veya_kapisi;

ARCHITECTURE mimaril OF veya_kapisi IS

BEGIN

x<=a OR b;

END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Ya da Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla XOR Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GİRİŞ		ÇIKIŞ
Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY yada_kapisi IS

PORT(a:IN BIT;
        b:IN BIT;
        x:OUT BIT);

END yada_kapisi;

ARCHITECTURE mimaril OF yada_kapisi IS

BEGIN

x<=a XOR b;

END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/yada_kapisi/a	1				
/yada_kapisi/b	1				
/yada_kapisi/x	0				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Ve-Değil Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla NAND Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GİRİŞ		ÇIKIŞ
Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY vedegil_kapisi IS

PORT(a:IN BIT;
        b:IN BIT;
        x:OUT BIT);

END vedegil_kapisi;

ARCHITECTURE mimari1 OF vedegil_kapisi IS

BEGIN
x<=a NAND b;
END mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Veya-Değil Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla NOR Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gi	GiRiŞ	
Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY veyadegil_kapisi IS

PORT(a:IN BIT;
        b:IN BIT;
        x:OUT BIT);

END veyadegil_kapisi;

ARCHITECTURE mimaril OF veyadegil_kapisi IS

BEGIN
x<=a NOR b;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Ya da-Değil Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, x çıkış bitlerinin kullanılmasıyla XNOR Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ		ÇIKIŞ
Α	A B	
0	0	1
0	1	0
1	0	0
1	1	1

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY yadadegil_kapisi IS

PORT(a:IN BIT;
        b:IN BIT;
        x:OUT BIT);

END yadadegil_kapisi;

ARCHITECTURE mimaril OF yadadegil_kapisi IS

BEGIN
x<=a XNOR b;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Değil Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A giriş ve x çıkış bitinin kullanılmasıyla NOT Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ	ÇIKIŞ
Α	X
0	1
1	0

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.'de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY degil_kapisi IS
    Port ( a: IN STD_LOGIC;
        x: OUT STD_LOGIC);

END degil_kapisi;

ARCHITECTURE mimaril OF degil_kapisi IS
BEGIN
    x <= NOT a;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Messages			
♦ /degil_kapisi/a	1		
/degil_kapisi/x	0		

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Buffer Kapısı'nın VHDL ile Yapısal Tasarımı

Deneyin Amacı: A giriş ve x çıkış bitinin kullanılmasıyla Buffer(Tampon) Kapısının davranışının VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ	ÇIKIŞ
Α	X
0	0
1	1

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.'de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY bufer_kapisi IS

PORT(giris:IN BIT;
    cikis:DUT BIT);

END bufer_kapisi;

ARCHITECTURE mimaril OF bufer_kapisi IS

BEGIN
cikis<=giris;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Yarım Toplayıcının VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, s ve c çıkış bitlerinin kullanılmasıyla yarım toplayıcının nasıl çalışma gösterdiğinin VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ		ÇIKIŞ		
Α	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY yarim_toplayici IS

PORT (a:IN BIT;
        b:IN BIT;
        c:OUT BIT;
        s:OUT BIT);

END yarim_toplayici;

ARCHITECTURE mimaril OF yarim_toplayici IS

BEGIN
s<=a XOR b;
c<=a AND b;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/yarim_toplayici/a	1				
/yarim_toplayici/b	1				
/yarim_toplayici/s	0				
/yarim_toplayici/c	1				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Yarım Toplayıcının VHDL ile Davranışsal Tasarımı

Deneyin Amacı: A ve b giriş, s ve c çıkış bitlerinin kullanılmasıyla yarım toplayıcının nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gil	RiŞ	ÇIKIŞ			
Α	В	S	С		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY yarimToplayici dav IS
PORT (a,b: IN STD LOGIC;
    s,c:OUT STD LOGIC);
END yarimToplayici dav;
ARCHITECTURE mimaril OF yarimToplayici dav IS
BEGIN
   PROCESS(a,b)
  BEGIN
   if(a='0' and b='0') then
    s<='0';
    c<='0';
    elsif(a='0' and b='1') then
     s<='1';
     c<='0';
    elsif(a='1' and b='0') then
    s<='1';
     c<='0';
    elsif(a='1' and b='1') then
    s<='0';
     c<='1';
    end if;
   END PROCESS:
END mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/yarimtoplayici_dav/a	1				
/yarimtoplayici_dav/b	1				
/yarimtoplayici_dav/s					
/yarimtoplayici_dav/c	1				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Tam Toplayıcının VHDL ile Yapısal Tasarımı

Deneyin Amacı: A, b ve EG(elde) giriş, toplam ve EC çıkış bitlerinin kullanılmasıyla tam toplayıcının nasıl çalışma gösterdiğinin VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

	GiRiŞ	,	ÇIK	IŞ.
Α	В	EG	Toplam	EC
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.'de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tam_toplayici IS
PORT(a,b,eg:IN STD_LOGIC;
    toplam,ec:OUT STD_LOGIC);

END tam_toplayici;

ARCHITECTURE mimaril OF tam_toplayici IS
BEGIN
toplam<=(a xor b) xor eg;
ec<=(eg and (a xor b)) or (a and b);
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/tam_toplayici/a	1				
/tam_toplayici/b	1				
/tam_toplayici/eg	1				
/tam_toplayici/toplam	1				
/tam_toplayici/ec	1				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Tam Toplayıcının VHDL ile Davranışsal Tasarımı

Deneyin Amacı: A, b ve EG(elde) giriş, toplam ve EC çıkış bitlerinin kullanılmasıyla tam toplayıcının nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

	GiRiŞ	;	ÇIK	IŞ.
Α	В	EG	Toplam	EC
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.'de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY tamToplayici dav IS
PORT(a,b,eg:IN STD LOGIC;
    toplam, ec: OUT STD LOGIC);
END tamToplayici dav;
ARCHITECTURE mimaril OF tamToplayici dav IS
BEGIN
   PROCESS (a,b,eg)
  BEGIN
   if (A='0' and B='0' and EG='0') then
    toplam <= '0';
    ec <= '0';
    elsif (A='0' and B='0' and EG='1') or
   (A='0' and B='1' and EG='0') or
   (A='1' and B='0' and EG='0') then
    toplam <= '1';
   ec <= '0';
   elsif (A='0' and B='1' and EG='1') or
  (A='1' and B='0' and EG='1') or
  (A='1' and B='1' and EG='0') then
   toplam <= '0';
   ec <= '1';
    toplam <= '1';
   ec <= '1';
  END if;
end PROCESS;
end mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Yarım Çıkarıcının VHDL ile Yapısal Tasarımı

Deneyin Amacı: A ve b giriş, fark ve borç çıkış bitlerinin kullanılmasıyla yarım çıkarıcının nasıl çalışma gösterdiğinin VHDL ile yapısal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gi	RiŞ	ÇIKIŞ				
Α	В	Fark	Borç			
0	0	0	0			
0	1	1	1			
1	0	1	0			
1	1	0	0			

Tablo 1. Devrenin doğruluk tablosu

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY yari_cikarici IS
PORT (a,b:IN BIT;
    fark,borc:OUT BIT);

END yari_cikarici;

ARCHITECTURE mimaril OF yari_cikarici IS
BEGIN
fark<=a XOR b;
borc<=(not a) and b;
END mimaril;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/yari_cikarici/a	1				
/yari_cikarici/b	1				
/yari_cikarici/fark	0				
/yari_cikarici/fark/yari_cikarici/borc	0				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Yarım Çıkarıcının VHDL ile Davranışsal Tasarımı

Deneyin Amacı: A ve b giriş, fark ve borç çıkış bitlerinin kullanılmasıyla yarım çıkarıcının nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gi	RİŞ	ÇIKIŞ				
Α	В	Fark	Borç			
0	0	0	0			
0	1	1	1			
1	0	1	0			
1	1	0	0			

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.' de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
LIBRARY ieee;
USE ieee std logic 1164.all;
ENTITY yarim cikarici IS
PORT (a,b:IN BIT;
     fark, borc: OUT BIT);
END yarim cikarici;
ARCHITECTURE mimaril OF yarim cikarici IS
BEGIN
 process(a,b)
  begin
    if(a/=b) then fark<='1';
     else fark<='0';
    end if;
    if(a='0') and (b='1') then borc<='1';
     else borc<='0';
    end if;
  end process;
 end mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Messages					
/yarim_cikarici/a	1				
/yarim_cikarici/b	1				
/yarim_cikarici/fark	0				
/yarim_cikarici/borc	0				

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: SR Tipi Yaz-Boz'un Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: S, R girişlerinin ve saat vuruşlarının kullanılmasıyla, SR tipi yaz-boz' un çıkışının, bir sonraki saat vuruşunda nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

	Gİ	RiŞ	SAAT	Bir Sonraki Saat vuruşu
S	R	Reset	Clk	Q
0	0	0		Q(t)
0	1	0		0 (Sıfır Yapma)
1	0	0		1 (Bir Yapma)
1	1	0		Tanımsız
Х	Х	1		0

Tablo 1. Devrenin karakteristik tablosu

```
library IEEE;
use IEEE STD LOGIC 1164 all;
entity SRff dav is
     port(S,R,clk: in STD LOGIC;
        reset : in STD LOGIC;
        q,qb: out STD LOGIC);
end SRff dav;
architecture mimaril of SRff dav is
begin
    SRff: process (s,r,clk,reset) is
    begin
        if (reset='1') then
           q <= '0';
            qb <= '1';
        elsif (rising_edge (clk)) then
            if (s/=r) then
                q <= s;
                qb <= r;
            elsif (s='1' and r='1') then q <= '2';
               qb <= 'Z';
            end if;
        end if;
    end process SRff;
end mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: JK Tipi Yaz-Boz' un Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: J, K girişlerinin ve saat vuruşlarının kullanılmasıyla, JK tipi yaz-boz' un çıkışının, bir sonraki saat vuruşunda nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

	Gİ	RiŞ	SAAT	Bir Sonraki Saat vuruşu
J	K	Reset	Clk	Q(t+1)
0	0	0		Q(t)
0	1	0		0 (Sıfır Yapma)
1	0	0		1 (Bir Yapma)
1	1	0		Q'(t)
Χ	Χ	1		0

Tablo 1. Devrenin karakteristik tablosu

```
library IEEE;
use IEEE STD LOGIC 1164 all;
entity JKff dav is
     port(j,k,clk : in STD_LOGIC;
         reset : in STD LOGIC;
        q ,qb: out STD LOGIC);
end JKff dav;
architecture mimaril of JKff dav is
    jkff: process (j,k,clk,reset) is
    variable m : std logic := '0';
   begin
        if (reset='1') then
           m := '0';
        elsif (rising_edge (clk)) then
           if (j/=k) then
               m := j;
            elsif (j='1' and k='1') then
               m := not m;
            end if;
        end if;
        q \ll m;
        qb <= not m;
    end process jkff;
end mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: D Tipi Yaz-Boz' un Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: D girişinin ve saat vuruşlarının kullanılmasıyla, D tipi yaz-boz' un çıkışının, bir sonraki saat vuruşunda nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

GiRiŞ	SAAT	Bir Sonraki Saat vuruşu
D	Saat	Q(t+1)
0		0
1		1

Tablo 1. Devrenin karakteristik tablosu

Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: T Tipi yaz-boz' un Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: T girişinin ve saat vuruşlarının kullanılmasıyla T tipi yaz-boz' un çıkışının, bir sonraki saat vuruşunda nasıl çalışma gösterdiğinin VHDL ile davranışsal olarak tasarımın yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gi	RİŞ	SAAT	Bir Sonraki saat vuruşu				
Т	Reset	Clk	Q(t+1)				
0	0		Q (t)				
1	0		Q'(t)				
Х	1		0				

Tablo 1. Devrenin karakteristik çizelgesi

```
library ieee;
use ieee.std_logic_1164.all;
entity Tff dav is
port(clk,reset,t: in std_logic;
                q: out std logic);
end Tff dav;
architecture mimari of Tff dav is
  signal q reg: std logic;
  signal q next: std logic;
begin
  process(clk)
  begin
   if (reset = '1') then
      q_reg <= '0';
    elsif (clk'event and clk = '1') then
      q_reg <= q_next;
    end if;
   end process;
       q_next <= q_reg when t = '0' else
                not(q reg);
       q <= q_reg;
end mimari;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: 8*1'lik Seçicinin Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: $S_{2,}$ $S_{1,}$ S_0 seçim girişlerinin değerlerine göre I çıkışının 8*1'lik seçici ile belirlenmesinde nasıl çalışma gösterdiğinin davranışsal olarak tasarımın yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Sec	cim Bit	leri	GİRİŞ	ÇIKIŞ		
S ₂	S ₁	S ₀	$S_2S_1S_0$	ı		
0	0	0	Giriş(0)	Çıkış(0)		
0	0	1	Giriş(1)	Çıkış(1)		
0	1	0	Giriş(2)	Çıkış(2)		
0	1	1	Giriş(3)	Çıkış(3)		
1	0	0	Giriş(4)	Çıkış(4)		
1	0	1	Giriş(5)	Çıkış(5)		
1	1	0	Giriş(6)	Çıkış(6)		
1	1	1	Giriş(7)	Çıkış(7)		

Tablo 1. Devrenin doğruluk tablosu

Tablo 1.'de verilen doğruluk tablosu aşağıdaki gibi kodlanmıştır.

```
library ieee;
use ieee std logic 1164.all;
ENTITY mux 8x1 IS
PORT(sec : in std logic vector(2 downto 0);
 giris : in std logic vector(7 downto 0);
 cikis : out std logic);
 end mux 8x1;
 architecture mimaril of mux 8x1 IS
 begin
   process(sec, giris)
  begin
     case sec is
          when "000" => cikis <=giris(0);
          when "001" => cikis <=giris(1);
          when "010" => cikis <=giris(2);
          when "011" => cikis <=giris(3);
          when "100" => cikis <=giris(4);
          when "101" => cikis <=giris(5);
          when "110" => cikis <=giris(6);
          when "111" => cikis <=giris(7);
    end case;
  end process;
end mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: 3*8 Decoder' in Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: n bitlik ikili (binary) veriyi, 2ⁿ bitlik onlu(decimal) veriye dönüştüren, sayısal eleman olan decoder' in(kod çözücü), giriş bitlerine göre çıkışın belirlenmesinin, VHDL ile davranışsal olarak tasarlanması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

G	İRİŞ BİTLE	Rİ	ÇIKIŞ BİTLERİ								
Giriş(2)	Giriş(1)	Giriş(0)	Çıkış(0)	Çıkış(1)	Çıkış(2)	Çıkış(3)	Çıkış(4)	Çıkış(5)	Çıkış(6)	Çıkış(7)	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Tablo 1. Devrenin doğruluk çizelgesi

```
LIBRARY ieee;
USE ieee std logic 1164.all;
ENTITY decoder day IS
PORT (giris: IN std logic vector(2 downto 0);
     cikis: OUT std logic vector(7 downto 0));
END decoder dav;
ARCHITECTURE mimaril OF decoder day IS
BEGIN
   PROCESS (giris)
   BEGIN
    case giris is
     when "000" => cikis <= "00000001";
     when "001" => cikis <= "00000010";
     when "010" => cikis <= "00000100";
     when "011" => cikis <= "00001000";
     when "100" => cikis <= "00010000";
     when "101" => cikis <= "001000000";
     when "110" => cikis <= "010000000";
     when "111" => cikis <= "10000000";
    end case;
   end process;
END mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Messages									
/decoder_dav/giris	000	000	001	010	011	100	101	110	111
-♦ (2)	0								
(1)	0								
└-	0								
	00000001	00000001	00000010	00000100	00001000	00010000	00100000	01000000	10000000
- ◆ (7)	0								
- → (6)	0								
- ◆ (5)	0								
- ◆ (4)	0								
- ◆ (3)	0								
- ♦ (2)	0								
- (1)	0								
└-<> (0)	1								

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: 8*3 Encoder' in Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: 2ⁿ bitlik onlu(decimal) veriyi, n bitlik ikili(binary) veriye dönüştüren, sayısal eleman olan, encoder' in(kodlayıcı), giriş bitlerine göre çıkışın belirlenmesinin VHDL ile davranışsal olarak tasarlanması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

	GİRİŞ BİTLERİ									ÇIKIŞ			
Giriş(7)	Giriş(6)	Giriş(5)	Giriş(4)	Giriş(3)	Giriş(2)	Giriş(1)	Giriş(0)	Çıkış(2)	Çıkış(1)	Çıkış(0)			
0	0	0	0	0	0	0	1	0	0	0			
0	0	0	0	0	0	1	0	0	0	1			
0	0	0	0	0	1	0	0	0	1	0			
0	0	0	0	1	0	0	0	0	1	1			
0	0	0	1	0	0	0	0	1	0	0			
0	0	1	0	0	0	0	0	1	0	1			
0	1	0	0	0	0	0	0	0	1	0			
1	0	0	0	0	0	0	0	0	1	1			

Tablo 1. Devrenin doğruluk çizelgesi

```
LIBRARY ieee;
USE ieee std logic 1164 all;
ENTITY encoder day IS
PORT (giris: IN std logic vector(7 downto 0);
     cikis: OUT std logic vector(2 downto 0));
end encoder dav;
ARCHITECTURE mimari1 OF encoder dav IS
BEGIN
   PROCESS (giris)
   BEGIN
     if(giris(0)='1') then cikis<="000";
     elsif(giris(1)='1') then cikis<="001";
     elsif(giris(2)='1') then cikis<="010";
     elsif(giris(3)='1') then cikis<="011";
     elsif(giris(4)='1') then cikis<="100";
     elsif(giris(5)='1') then cikis<="101";
     elsif(giris(6)='1') then cikis<="110";
     elsif(giris(7)='1') then cikis<="111";
     end if:
   end PROCESS;
end mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Messages									
- /encoder_dav/giris	10000000	00000001	00000010	00000100	00001000	00010000	00100000	01000000	10000000
-♦ (7)	1								
−♦ (6)	0								
−♦ (5)	0								
-♦ (4)	0								
-♦ (3)	0								
−♦ (2)	0								
-(1)	0								
└-<> (0)	0								
	111	000	001	010	011	100	101	110	111
-♦ (2)	1								
- ◆ (1)	1								
└-	1								

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Yapısal ve Davranışsal Tasarımın Bir Devrede Kullanılarak VHDL ile Tasarımı

Deneyin Amacı: A ve b girişlerinin ve dâhili sinyalin kullanılmasıyla, yapısal olarak, AND kapısı ve davranışsal olarak d yaz-boz' u kullanılarak, yapısal ve davranışsal tasarımın birlikte kullanılmasının VHDL ile tasarımının yapılması.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Gİ	RiŞ		ÇIKIŞ
Α	В	Dâhili sinyal	Q
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Tablo 1. Devrenin doğruluk çizelgesi

```
LIBRARY ieee;
USE ieee std logic 1164 all;
ENTITY yapdav_tasarim IS
PORT (a,b,clk : IN BIT;
            q: OUT BIT);
END yapdav_tasarim;
ARCHITECTURE mimaril OF yapdav tasarim IS
-- sinyal tanımlamalari
signal dahili sinyal :bit;
--yapısal tasarım
dahili sinyal <=a and b;
   process(clk)
    --davranışsal tasarım
    if (clk='1' and clk 'event) then q<=dahili sinyal;
    end if;
    end process;
END mimari1;
```


Şekil 1. Devrenin RTL diyagramı

Şekil 2. Devrenin benzetim sonuçları

DENEY ADI: Basit bir RAM' in Davranışsal Olarak VHDL ile Tasarımı

Deneyin Amacı: n ve k sabit değişkenlerini kullanarak, 2^k kelimelik n bitlik veri giriş ve çıkışına sahip, saat vuruşlarını kullanarak ve 'oku' veya 'yaz' girişlerinin aktifliklerine göre, k bitlik adres seçim yolunun gösterdiği bölgeden veya bölgeye, okuma veya yazma yapabilen basit bir RAM' in VHDL ile davranışsal tasarımı.

Deneyin Yapılışı: Devre aşağıdaki gibi çalışma göstermektedir.

Tablo 1. RAM Blok Şeması

Tablo 1' de verilen 2^k kelimelik n bitlik RAM'ın VHDL ile kodlanması aşağıdaki gibi yapılmıştır.

```
LIBRARY ieee;
USE ieee std logic 1164 all;
USE ieee.std_logic_unsigned.all;
ENTITY ram IS
GENERIC(n: integer:=8;
        k: integer:=10);
PORT(clk,oku,yaz: IN STD LOGIC;
     veri giris: IN STD LOGIC VECTOR(n-1 downto 0);
     adres secim: IN STD LOGIC VECTOR(k-1 downto 0);
     veri cikis: OUT STD LOGIC VECTOR(n-1 downto 0));
END ram;
ARCHITECTURE mimari OF ram IS
type ram tipi is array (0 to 2**k) of std logic vector(n-1 downto 0);
signal ram1:ram tipi;
BEGIN
   PROCESS (clk)
    BEGIN
     if(clk='1' and clk'EVENT) then
      if(yaz='1') then
       ram1(conv integer(adres secim)) <= veri giris;
      elsif(oku='1') then
       veri_cikis<=ram1(conv_integer(adres_secim));
      end if;
     end if;
   END PROCESS;
END mimari;
```


Şekil 1. Devrenin RTL diyagramı

Messages									
♦ /ram/clk	1								
🔷 /ram/oku	1								
🔷 /ram/yaz	0								
<u>→</u> /ram/veri_giris	01010101	UUUUUUU		10101010	01010101				
_	0000000010	UUUUUUUL	JU	0000000001	0000000010	0000000001		0000000010	
+- /ram/veri_cikis	01010101	00000000					10101010		01010101

Şekil 2. Devrenin benzetim sonuçları