Homework 8

- 89. Let $\Phi: M \to N$ be a unital *-homomorphism between von Neumann algebras.
 - (1) Prove that the following two conditions are equivalent:
 - (a) Φ is normal: $x_{\lambda} \nearrow x$ implies $\Phi(x_{\lambda}) \nearrow \Phi(x)$.
 - (b) Φ is σ -WOT continuous.

Proof. For a bounded net of positive operators x_{λ} increasing to a positive operator x, we know that convergence in the WOT, SOT, σ -WOT, and σ -SOT are all equivalent. Suppose Φ is σ -WOT continuous. If $x_{\lambda} \nearrow x$, then in particular $x_{\lambda} \to x$ σ -WOT, so $\Phi(x_{\lambda}) \to \Phi(x)$ σ -WOT as well.

On the other hand, suppose that $\Phi: M \to N$ is normal. Let $\psi \in N_*$, the dual of N under the σ -WOT topology, be positive. Since ψ is σ -WOT continuous, ψ is normal, so $\psi \circ \Phi$ is normal and positive, and hence σ -WOT continuous by problem 88. Since M_* is spanned by positive linear functionals (Corollary 4.3.4 of Jesse Peterson's notes), this shows that $\psi \circ \Phi$ is σ -WOT continuous for every $\psi \in N_*$. Since the σ -WOT topology is the weak topology induced by the predual, this is precisely the condition for Φ to be σ -WOT continuous.

(2) Prove that if Φ is normal, then $\Phi(M) \subseteq N$ is a von Neumann subalgebra.

Proof. If $\ker(\Phi)=0$, then by problem 72 part 2, we know that $\Phi(M)$ is a von-Neumann subalgebra of N. Therefore, it suffices to construct unital Von-Neumann algebra *-homomorphism $C:M\to\operatorname{coker}(\Phi)$, with an injective factorization $\overline{\Phi}:\operatorname{coker}(\Phi)\to N$ so that $\Phi=\overline{\Phi}C$. Since $\{0\}\subseteq N$ is σ -WOT closed and Φ is σ -WOT continuous, $\ker(\Phi)$ is σ -WOT closed. Since Φ is a ring homomorphism, $\ker(\Phi)$ is a 2-sided ideal. By results proven in class, $\ker(\Phi)$ is of the form Mz for some $z\in P(Z(M))$. Since $z\in Z(M)$, we know that zH and (1-z)H are M-invariant subspaces of H; if $m-n\in\ker(\Phi)$, then (m-n)z=m-n, so (m-n)(1-z)=0. Let $C:M\to M(1-z)$ be the compression map, a σ -WOT continuous unital *-homomorphism for sure. If C(x)=C(y), then $\Phi(x)=\Phi(y)$, so the map $\overline{\Phi}:M(1-z)\to N$ given by $\overline{\Phi}(m(1-z))=\Phi(m)$ is a well-defined homomorphism. By definition, $\overline{\Phi}$ is unital, and since (1-z) is central and self-adjoint, C and $\overline{\Phi}$ are *-homomorphisms. But (m(1-z))(1-z)=m(1-z), so $\overline{\Phi}$ is actually a restriction of Φ , and hence still σ -WOT continuous.

For the sake of completeness, we should say why the σ -WOT topology on M(1-z) is the subspace topology coming from M. When constructing the predual, we found that for a von-Neumann algebra A, we have $A_* \cong L^1(B(H))/A_{\perp}$, where A_{\perp} is precisely those elements $y \in L^1(B(H))$ so that $\operatorname{tr}(ay) = 0$ for every $a \in A$. Therefore, the σ -WOT topology on any $A \subseteq B(H)$ is actually induced by the (usually redundant) family of seminorms $(a \to |\operatorname{tr}(ay)|)_{y \in L^1(B(H))}$, and every von-Neumann algebra $A \subseteq B(H)$ has the induced σ -WOT topology from B(H).

- (3) Let φ be a normal state on a von Neumann algebra M, and let $(H_{\varphi}, \Omega_{\varphi}, \pi_{\varphi})$ be the cyclic GNS representation of M associated to φ , i.e. $H_{\varphi} = L^2(M, \varphi)$, $\Omega_{\varphi} \in H_{\varphi}$ is the image of $1 \in M$ in H_{φ} , and $\pi_{\varphi}(x)m\Omega_{\varphi} = xm\Omega_{\varphi}$ for all $x, m \in M$.
 - (a) Show that π_{φ} is normal.

Proof. Suppose $x_{\lambda} \to x$ σ -WOT. For every $z, y \in M$, we have

$$\langle \pi_{\varphi}(x - x_{\lambda})y\Omega, z\Omega \rangle = \varphi(z^{*}(x - x_{\lambda})y)$$

Since multiplication is σ -WOT continuous in each coordinate and φ is σ -WOT continuous by (1),

$$\langle \pi_{\varphi}(x-x_{\lambda})y\Omega, z\Omega \rangle \to 0$$

Since z and y were arbitrary and vectors of the form $y\Omega$ are norm-dense in H_{φ} , this shows that $\pi_{\varphi}(x_{\lambda}) \to \pi_{\varphi}(x)$ WOT. Since $\pi_{\varphi}(x_{\lambda})$ is bounded by $||\pi_{\varphi}(x)||$, and the σ -WOT and WOT agree on bounded sets, $\pi_{\varphi}(x_{\lambda}) \to \pi_{\varphi}(x)$ σ -WOT as well. By part (1), this is enough to show that π_{φ} is normal.

(b) Deduce that if φ is faithful, then $M \cong \pi_{\varphi}(M) \subseteq B(H_{\varphi})$ is a von Neumann algebra acting on H_{φ} .

Proof. If φ is faithful, then for $x \neq y$, we have

$$||\pi_{\varphi}(x-y)||^2 \ge ||\pi_{\varphi}(x-y)\Omega||_{\varphi}^2$$
$$= \varphi((x-y)^*(x-y))$$
$$> 0,$$

since $(x-y)^*(x-y)$ is a nonzero positive operator. Hence, π_{φ} is a faithful representation and the claim follows from (2).

91. (1) It's easy to see that J is a conjugate linear isometry:

$$J((\lambda a + b) \Omega) = (\lambda a + b)^* \Omega = \overline{\lambda} a \Omega + b \Omega, \quad \text{and}$$

$$\|J(a\Omega)\| = \|a^*\Omega\|$$

$$= \langle a^*\Omega, a^*\Omega \rangle$$

$$= \operatorname{tr}(aa^*)$$

$$= \operatorname{tr}(a^*a)$$

$$= \langle a\Omega, a\Omega \rangle$$

$$= \|a\Omega\|.$$

Lastly, $J[M\Omega] = M\Omega$, because M is *-closed. Since $M\Omega$ is dense in L^2M by construction, we have that $J[M\Omega]$ is dense in L^2M as well.

(2) From the previous part, we know that J extends uniquely to a conjugate linear isometry $L^2M \to L^2M$.

Now fix $\xi \in L^2M$, and take a sequence $(a_n)_{n\in\mathbb{N}}$ in M such that $a_n\Omega \to \xi$. Then

$$J^{2}\xi = J^{2} \left(\lim_{n \to \infty} a_{n} \Omega \right)$$

$$= \lim_{n \to \infty} J^{2} \left(a_{n} \Omega \right), \quad \text{since } J^{2} \text{ is continuous}$$

$$= \lim_{n \to \infty} \left(\left(a_{n}^{*} \right)^{*} \Omega \right)$$

$$= \lim_{n \to \infty} a_{n} \Omega$$

$$= \xi$$

so that $J^2 = 1$ on L^2M .

Next, for $\xi = b\Omega$, $\eta = a\Omega \in M\Omega$, we have

$$\begin{split} \langle J\eta, J\xi \rangle &= \langle a^*\Omega, b^*\Omega \rangle \\ &= \operatorname{tr} \left(ba^* \right) \\ &= \operatorname{tr} \left(a^*b \right) \\ &= \langle b\Omega, a\Omega \rangle \\ &= \langle \xi, \eta \rangle \,. \end{split}$$

Now if $\xi, \eta \in L^2M$, we can write $\xi = \lim_{n \to \infty} a_n \Omega$ and $\eta = \lim_{n \to \infty} b_n \Omega$ for some sequences $(a_n), (b_n) \in M$.

Then for each $k \in \mathbb{N}$,

$$\begin{split} \langle J\eta, Ja_k\Omega\rangle &= \left\langle J\lim_{n\to\infty} b_n\Omega, Ja_k\Omega\right\rangle \\ &= \lim_{n\to\infty} \left\langle J\left(b_n\Omega\right), J\left(a_k\Omega\right)\right\rangle \\ &= \lim_{n\to\infty} \left\langle a_k\Omega, b_n\Omega\right\rangle \\ &= \left\langle a_k\Omega, \lim_{n\to\infty} b_n\Omega\right\rangle \\ &= \left\langle a_k\Omega, \eta\right\rangle. \quad \text{Then} \\ \langle J\eta, J\xi\rangle &= \left\langle J\eta, J\lim_{k\to\infty} a_k\Omega\right\rangle \\ &= \lim_{k\to\infty} \left\langle J\eta, Ja_k\Omega\right\rangle \\ &= \lim_{k\to\infty} \left\langle a_k\Omega, \eta\right\rangle \\ &= \left\langle \lim_{k\to\infty} a_k\Omega, \eta\right\rangle \\ &= \left\langle \xi, \eta\right\rangle. \end{split}$$

Thus $\langle J\eta, J\xi \rangle = \langle \xi, \eta \rangle$ for all $\xi, \eta \in L^2M$.

(3) For $a, b \in M$, we have

$$Ja^*Jb\Omega = Ja^*b^*\Omega = (ba)\Omega$$
, and thus for $m \in M$,
 $(JmJb)(a\xi) = (JmJ)(ba)\xi$
 $= bam^*\xi$
 $= b(JmJa)\xi$
 $= b(JmJ)(a\xi)$.

Thus JmJ commutes with b on $M\Omega$, and since $M\Omega$ is dense in L^2M , it follows that JmJ commutes with b on L^2M .

Since $b \in M$ was arbitrary, it follows that $JmJ \in M'$, so $JMJ \subseteq M'$.

(4) For $a, b, c \in M$, we compute

$$\langle Ja^* Jb\Omega, c\Omega \rangle = \langle ba\Omega, c\Omega \rangle$$

$$= \operatorname{tr} (c^* ba)$$

$$= \operatorname{tr} (ac^* b)$$

$$= \langle b\Omega, (ac^*)^* \Omega \rangle$$

$$= \langle b\Omega, ca^* \Omega \rangle$$

$$= \langle b\Omega, JaJc\Omega \rangle.$$

Thus $(JaJ)^* = Ja^*J$, again because $M\Omega$ is dense in L^2M .

(5) For all $a \in M$ and $y \in M'$, we have

$$\begin{split} \langle Jy\Omega,a\Omega\rangle &= \langle Jy\Omega,Ja^*\Omega\rangle \\ &= \langle a^*\Omega,y\Omega\rangle \\ &= \langle y^*a^*\Omega,\Omega\rangle \\ &= \langle a^*y\Omega,\Omega\rangle \\ &= \langle y^*\Omega,a\Omega\rangle \,. \end{split}$$

Since $\langle Jy\Omega, a\Omega \rangle = \langle y^*\Omega, a\Omega \rangle$ for all $a \in M$, and $M\Omega$ is dense in L^2M , we have $Jy\Omega = y^*\Omega$ for all $y \in M'$.

(6) Take $x, y, z \in M'$. Then

$$\begin{split} Jx^*Jy\Omega &= Jx^*y^*\Omega = yx\Omega, \quad \text{ and thus} \\ \langle Jx^*Jy\Omega, z\Omega\rangle &= \langle yx\Omega, z\Omega\rangle \\ &= \operatorname{tr}(z^*yx) \\ &= \operatorname{tr}(xz^*y) \\ &= \langle y\Omega, (xz^*)^*\Omega\rangle \\ &= \langle y\Omega, JxJz\Omega\rangle\,, \end{split}$$

so that $(JxJ)^* = Jx^*J$.

(7) For $a, b \in M$ and $x, y \in M'$, we have

$$\begin{split} \langle xJyJa\Omega,b\Omega\rangle &= \langle a\Omega,Jy^*Jx^*b\Omega\rangle \\ &= \langle a\Omega,Jy^*Jbx^*\Omega\rangle \\ &= \operatorname{tr}(xb^*JyJa) \\ &= \operatorname{tr}(b^*JyJax) \\ &= \operatorname{tr}(b^*JyJxa) \\ &= \langle JyJxa\Omega,b\Omega\rangle \end{split}$$

(8) Thus from the above we see that each $x \in M'$ commutes with each $JyJ \in JM'J$, so that $M' \subseteq (JM'J)' = JMJ$, so that M' = JMJ.

- 92. Let Γ be a discrete group, and let $L\Gamma = \{\lambda_g\}'' \subseteq B(\ell^2\Gamma)$. Consider the faithful σ -WOT continuous tracial state $\operatorname{tr}(x) = \langle x\delta_e, \delta_e \rangle$ on $L\Gamma$.
 - (1) Show that $u\delta_g = \lambda_g$ uniquely extends to a unitary $u \in B(\ell^2\Gamma, L^2L\Gamma)$ such that for all $x \in L\Gamma$ and $\xi \in \ell^2\Gamma$, $L_xu\xi = ux\xi$ where $L_x \in B(L^2L\Gamma)$ is left multiplication by x, i.e., $L_x(y\Omega) = xy\Omega$.

Proof. Since $(\delta_g)_{g\in\Gamma}$ is an orthonormal basis in $\ell^2\Gamma$, in order to show that $u\delta_g = \lambda_g$ extends uniquely to a unitary, it suffices to prove that $(\lambda_g\Omega)_{g\in\Gamma}$ is an orthonormal basis for $L^2L\Gamma$. First, we check that $(\lambda_g\Omega)_{g\in\Gamma}$ is orthonormal:

$$\begin{aligned} \langle \lambda_g \Omega, \lambda_h \Omega \rangle &= \operatorname{tr}(\lambda_h^* \lambda_g) \\ &= \langle \lambda_g \delta_e, \lambda_h \delta_e \rangle \\ &= \langle \delta_g, \delta_h \rangle \\ &= \delta_{g=h}. \end{aligned}$$

It remains to show that span $\{\lambda_g\Omega:g\in\Gamma\}$ is dense in $L^2L\Gamma$. By construction, $\{x\Omega:x\in L\Gamma\}$ is dense in $L^2L\Gamma$, so it suffices to prove that span $\{\lambda_g\Omega:g\in\Gamma\}$ is dense in $\{x\Omega:x\in L\Gamma\}$ is dense in $L^2L\Gamma$.

Let $x \in L\Gamma$. By the definition of $L\Gamma$, there is a net $(x_i)_{i \in I}$ so that $x_i \in \text{span}\{\lambda_g : g \in \Gamma\}$ for each $i \in I$ and $x_i \to x$ SOT. By the Kaplansky density theorem, we may assume $||x_i|| \le ||x||$ for all $i \in I$. Then since multiplication is jointly continuous on bounded sets, $(x-x_i)^*(x-x_i) \to 0$ SOT. Therefore, $(x-x_i)^*(x-x_i) \to 0$ WOT and hence σ -WOT, since everything is bounded. Now since tr is σ -WOT continuous,

$$||x\Omega - x_i\Omega||_2^2 = \operatorname{tr}((x - x_i)^*(x - x_i)) \to \operatorname{tr}(0) = 0.$$

That is, $x_i\Omega \to x\Omega$ in $L^2L\Gamma$. This completes the proof that $(\lambda_g)_{g\in\Gamma}$ is an orthonormal basis for $L^2L\Gamma$.

Now for all $g, h \in \Gamma$,

$$L_{\lambda_g} u \delta_h = L_{\lambda_g} \lambda_h \Omega$$

$$= \lambda_g \lambda_h \Omega$$

$$= \lambda_{gh} \Omega$$

$$= u \delta_{gh}$$

$$= u \lambda_g \delta_h.$$

Hence by linearity and continuity of u and each λ_g , we have $L_x u \xi = u x \xi$ for all $\xi \in \ell^2 \Gamma$ and all $x \in \text{span}\{\lambda_g : g \in \Gamma\}$. It remains to check that if $x_i \to x$ SOT, then $L_{x_i} \to L_x$ SOT. By the Kaplansky density theorem, we may assume $||x_i|| \le ||x||$ for all i. Then for $y \in L\Gamma$, we have $||x_iy|| \le ||xy||$ and $x_iy \to xy$ SOT. Hence, by the computation in the previous paragraph, $L_{x_i}(y\Omega) \to L_x(y\Omega)$ in $L^2L\Gamma$. Since this holds for all $y \in L\Gamma$, we have $L_{x_i} \to L_x$ SOT as desired.

(2) Deduce from Problem 91 that $L\Gamma' = R\Gamma$.

Proof. By problem 91, it suffices to show $JL\Gamma J = R\Gamma$. For $g, h \in \Gamma$, we have

$$(JL_x J)(\lambda_h \Omega) = JL_x(\lambda_{h^{-1}}\Omega)$$

$$= J(x\lambda_{h^{-1}}\Omega)$$

$$= \lambda_h x^* \Omega$$

$$= R_{x^*}(\lambda_h \Omega).$$

Since $(\lambda_h \Omega)_{h \in \Gamma}$ is an orthonormal basis for $L^2 L \Gamma$, we have $J L_x J = R_{x^*}$. Therefore, $J L \Gamma J = R \Gamma$.