

Optimized C++

Ed Keenan

13 February 2019

13.0.6.4.5 Mayan Long Count

Goals

Intrinsics

- What are intrinsics?
- How to use intrinsics?
- Trends

SIMD

- Old style, too much assembly like alternative
- Intrinsics SSE

Esoteric knowledge

- Increase your geek points
- Impressed your friends
- A Good seasoning...
 - Do not over use

5 out of 4 programmers are bad at math?

What are intrinsics?

- Compiler intrinsics are psuedo-functions that expose CPU functionality
 - Think of them as "Compiler fragment macros"
 - Intrinsics are the natural evolution from inline assembly
- Common usage
 - Implement vectorization and parallelization in languages which do not address such constructs

What are intrinsics?

Similar to inline functions

 Substitutes a sequence of automaticallygenerated instructions for the original function call.

Different than inline function

- Compiler has an intimate knowledge of the intrinsic function
- Better integrate it and optimize it for the situation.

Inline

- Code segment for that function is usually inserted inline,
- Avoiding the overhead of a function call.

Written by compiler teams

- Highly efficient machine instructions
- Access to specialized instructions

Very Fast

- Faster than the equivalent inline assembly
- Optimizer has a built-in knowledge of how many intrinsics behave

Properties of Intrinsics

Assembly too limiting

- Some optimizations can be available that are not available when inline assembly is used.
- Reorder intrinsics to mask off staging and processor delays

Black magic

- Also, the optimizer can expand the intrinsic differently
- Align buffers differently
- Adjustments depending on the context and arguments of the call

General Intrinsics

Most functions are contained in libraries

- Some functions are built in
 - intrinsic to the compiler
- These are referred to as intrinsic functions or intrinsics.
- Many functions look them up!
 - Math functions:
 - acos acosf acosl asin asinf asinl
 - atan atanf atanl atan2 atan2f atan2l
 - ceil ceill cosh coshf coshl cos
 - sosf cosl exp expf expl floor floorf
 - fmod fmodf fmodl log logf log10 log10f
 - log10l pow powf powl sin sinf sinl sinh sinhf
 - sinhl sqrt sqrtf sqrtl tan tanf tanl tanh tanhf tanhl

- Microsoft and Intel's C/C++ compilers as well as GCC implement intrinsics that map directly to the x86 SIMD instructions
 - MMX
 - SSE
 - SSE2
 - SSE3
 - SSSE3
 - SSE4

64-bit windows

- Microsoft compiler (VC2005 as well as VC2008) inline assembly is not available when compiling for 64 bit Windows
- Intrinsics are the only alternative
- New intrinsics have been added that map to standard assembly instructions

SIMD history

SIMD

- Started early 1980's
- DSP (Digital Signal Processors)
 - AT&T
 - DSP1 1980
 - Texas Instruments
 - TMS32010 1983
- Wicked software processing
 - Convolution
 - FFT (Fast Fourier Transforms)
 - FIR filters and more

SIMD

Single Instruction, Multiple Data

MMX - introduction

- MMX is a single instruction, multiple data (SIMD) instruction set
 - Designed by Intel
 - Introduced in 1997 in their Pentium line of microprocessors
 - MMX "Matrix Math Extensions"
- Competition: AMD vs Intel
 - AMD enhanced Intel's MMX with the 3DNow!
 - Added floating point
 - Intel added floating-point math
 - Created the SSE extension two years later.

MMX - internals

- MMX added eight new registers to the architecture
 - MM0 through MM7
- MMn registers holds a 64-bit integer.
 - Concept of packed data types
 - single 64-bit integer (quadword)
 - two 32-bit integers (doubleword)
 - four 16-bit integers (word)
 - eight 8-bit integers (byte)

- Pack and unpack instructions:
 - PUNPCKLDQ, PUNPCKLWD, PUNPCKLBW, PUNPCKHDQ, PUNPCKHWD, PUNPCKHBW, PACKSSWB, PACKSSDW, PACKUSWB
- Shift instructions:
 - PSLLQ, PSLLD, PSLLW, PSRLQ, PSRLD, PSRLW, PSRAD, PSRAW
- Move instructions:
 - MOVQ and MOVD.
- Addition and subtraction operands:
 - PADDB, PADDW, PADDD, PADDUSB, PADDUSW, PADDSSB, PADDSSW,
 - PSUBB, PSUBW, PSUBD, PSUBUSB, PSUBUSW, PSUBSSB, PSUBSSW

- Multiplication instructions:
 - PMADDWD, PMULHW, PMULLW
- Comparison instructions:
 - PCMPEQB, PCMPEQW, PCMPEQD,
 - PCMPGTB, PCMPGTW, PCMPGTD
- Logical operation instructions:
 - PAND, PANDN, POR, PXOR
- EMMS is in a category of its own
 - instruction restores the floating point state


```
void additiveblend2 (unsigned char *dst, const unsigned char *src, int (
      asm {
                ecx, src
        mov
                edx, dst
        mov
                eax, quads
        mov
                    mm7, mm7
        pxor
top:
                    mmO, [ecx]
                                   ; load four source bytes
        movd -
        movd
                    mm1, [edx]
                                   ; load four destination bytes
        punpcklbw mm0, mm7
                                   ;unpack source bytes to words
        punpcklbw mm1, mm7
                                   ;unpack destination bytes to words
                                   ;add words together
        paddw
                    mm0, mm1
        packuswb
                    mmO, mm1
                                   ; pack words with saturation
        movd
                    [edx], mmO
                                   :store blended result
                                   ;advance source pointer
        add
                ecx, 4
        add
                edx, 4
                                   ;advance destination pointer
        dec
                                   ;loop back until done
                eax.
        jne
              top
        emms
```

What do you think?

- My thoughts
 - Yuck
 - Evil
 - Crap...
- Not assembly
 - please no assembly!
- MMX not that useful for our applications
 - We use many floating point operations
 - SSE to the rescue

SSE

- Streaming SIMD Extensions (SSE) is a SIMD instruction set extension to the x86
 - Intel 1999 in their Pentium III
 - Reply to AMD's 3DNow!
 - SSE contains 70 new instructions.
 - Scalar and packed floating point instructions.

- SSE defines 8 new 128-bit registers
 - (xmm0 ~ xmm7)
 - single-precision floating-point computations.
- These registers are used for data computations only.
 - Since each register has 128-bit long
 - can store total 4 of 32-bit floating-point numbers
 - (1-bit sign, 8-bit exponent, 23-bit mantissa).

Floating point instructions

- Memory-to-Register / Register-to-Memory / Register-to-Register data movement
 - Scalar MOVSS
 - Packed MOVAPS, MOVUPS, MOVLPS, MOVHPS, MOVLHPS, MOVHLPS
- Arithmetic
 - Scalar ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, MAXSS, MINSS, RSQRTSS
 - Packed ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, MAXPS, MINPS, RSQRTPS
- Compare
 - Scalar CMPSS, COMISS, UCOMISS
 - Packed CMPPS
- Data shuffle and unpacking
 - Packed SHUFPS, UNPCKHPS, UNPCKLPS
- Data-type conversion
 - Scalar CVTSI2SS, CVTSS2SI, CVTTSS2SI
 - Packed CVTPI2PS, CVTPS2PI, CVTTPS2PI
- Bitwise logical operations
 - Packed ANDPS, ORPS, XORPS, ANDNPS

Integer instructions

- Arithmetic
 - PMULHUW, PSADBW, PAVGB, PAVGW, PMAXUB, PMINUB, PMAXSW, PMINSW
- Data movement
 - PEXTRW, PINSRW
- Other
 - PMOVMSKB, PSHUFW

Other instructions

- MXCSR management
 - LDMXCSR, STMXCSR
- Cache and Memory management
 - MOVNTQ, MOVNTPS, MASKMOVQ, PREFETCH0, PREFETCH1, PREFETCH2, PREFETCHNTA, SFENCE


```
Vector4 SSE CrossProduct(const Vector4 &Op A, const Vector4 &Op B)
                                     Vector4 Ret Vector;
                                       asm
                                         MOV EAX Op A
                                                                           // Load pointers into CPU regs
                                         MOV EBX, Op B
                                                                          // Move unaligned vectors to SSE regs
                                         MOVUPS XMM0, [EAX]
                                         MOVUPS XMM1, [EBX]
                                         MOVAPS XMM2, XMM0
                                                                         // Make a copy of vector A
                                         MOVAPS XMM3, XMM1
                                                                         // Make a copy of vector B
                                         SHUFPS XMM0, XMM0, 0xD8
                                                                         // 11 01 10 00 Flip the middle elements of A
                                                                          // 11 10 00 01 Flip first two elements of B
                                         SHUFPS XMM1, XMM1, 0xE1
                                         MULPS XMM0, XMM1
                                                                         // Multiply the modified register vectors
// R.x = A.y * B.z - A.z * B.y
// R.y = A.z * B.x - A.x * B.z
                                         SHUFPS XMM2, XMM2, 0xE1
                                                                         // 11 10 00 01 Flip first two elements of the A copy
                                                                         // 11 01 10 00 Flip the middle elements of the B
                                         SHUFPS XMM3, XMM3, 0xD8
// R.z = A.x * B.y - A.y * B.x
                                copy
                                         MULPS XMM2, XMM3
                                                                        // Multiply the modified register vectors
                                         SUBPS XMM0, XMM2
                                                                         // Subtract the two resulting register vectors
                                         MOVUPS [Ret Vector], XMM0
                                                                         // Save the return vector
                                     return Ret Vector:
```


Multiply a Vector by a Scalar and return the result

```
Vector4 SSE_Multiply(const Vector4 &Op_A, const float &Op_B)
                                                             Vect SSE Multiply(const Vect &A, const float &scale)
     Vector4 Ret Vector;
                                                                  Vect B:
     // Create a 128 bit vector with four elements Op B
     m128 F = mm set1 ps(Op B)
                                                                  Vect C:
     asm
                                                                  // Create a scale vector
         // Load pointer into CPU reg
                                                                  // [ scale | scale | scale | scale ]
        MOV EAX, Op_A
        // Move the vector to an SSE reg
                                                                  B.m = _mm_load1_ps( &scale );
         MOVUPS XMM0, [EAX]
                                                                  // multiply vector by scale
        // Multiply vectors
                                                                  //[s*A.x|s*A.y|s*A.z|s*A.z]
         MULPS XMM0, F
        // Save the return vector
                                                                  C.m = _mm_mul_ps(A.m, B.m);
         MOVUPS [Ret Vector], XMM0
                                                                  return C;
     return Ret_Vector;
```


- Intrinsics allow the code to look more C-like.
 - Easier to read and understand
 - Faster to implement and experiment
 - No Assembly flash backs
- Use the intrinsics
 - Assembly instructions are being omitted for future extensions to the compilers
 - Compiler support will only be through intrinsics

Retro PS2 code alert~

```
#elif (MATH_IS_PS2)
       register Matrix out(MATRIX_NO_INIT);
       asm __volatile__ ("
                    // First matrix
                    lqc2
                                                            vf1, 0x00(%0)
                    lqc2
                                                            vf2, 0x10(%0)
                                                            vf3, 0x20(%0)
                    lqc2
                    lqc2
                                                            vf4, 0x30(%0)
                    // Second matrix
                    lqc2
                                                            vf5, 0x00(%1)
                    lqc2
                                                            vf6, 0x10(%1)
                    lqc2
                                                            vf7, 0x20(%1)
                    lqc2
                                                            vf8, 0x30(%1)
                    // Add
                    vadd
                                                            vf1, vf1, vf5
                                                            vf2, vf2, vf6
                    vadd
                                                            vf3, vf3, vf7
                    vadd
                                                            vf4, vf4, vf8
                    vadd
                    // Store
                                                            vf1, 0x00(%2)
                    sqc2
                                                            vf2, 0x10(%2)
                    sqc2
                                                            vf3, 0x20(%2)
                    sqc2
                                                            vf4, 0x30(%2)
                    sqc2
        : "r" (this),
         "r" (&a),
         "r" (&out)
        :);
       return out;
```


- __declspec(align(#)) to control the alignment of user-defined data
 - Example 1:
 __declspec(align(32)) struct Str1{ int a, b, c, d, e; };
 Example 2:
 #define CACHE_ALIGN __declspec(align(32))
 struct CACHE_ALIGN S1
 {
 // cache align all instances of S1
 int a;
 int b;
 int c;
 int d;
 };
- All SSE instructions must be 16-Byte aligned
 - __declspec(align(16))
 - Example: __declspec(align(16)) float a[4];

m128

- The __m128 data type, for use with the SSE and SSSE instructions intrinsics, is defined in xmmintrin.h
 - ___m128
- Example:
 #include <xmmintrin.h>
 int main()
 {
 __m128 x;

```
typedef union __declspec(intrin_type)
   CRT ALIGN(16) m128
    float
                         m128_f32[4];
    unsigned __int64
                         m128_u64[2];
                         m128_i8[16];
     int8
     int16
                         m128 i16[8];
     int32
                         m128 i32[4];
     int64
                         m128_i64[2];
    unsigned ___int8
                         m128_u8[16];
    unsigned __int16
                         m128_u16[8];
    unsigned int32
                         m128 u32[4];
  m128;
```

Data Structure


```
Class Vect
    // anonymous union
    union
       m128
                  m;
      // anonymous struct
       struct
                  float x;
                  float y;
                  float z;
                  float w;
                  };
    };
};
```

Unions

- Clever way to hide the alignment croft.
- Unions must span the size of the largest component
- Must be aligned to the most restrictive element.
- Anonymous Unions allows access like:

```
Vect A;

A.x = 5.0f;
A.y = 6.0f;

__m128 B = A.m;
```


- It's all the same memory, just it can be seen from different ways.
 - X element (0 bytes offset)
 - Y element (4 bytes offset)
 - Z element (8 bytes offset)
 - W element (12 bytes offset)

Memory 1		×
		++ =
0x0012FE50	1.0000000	^
0x0012FE54	2.0000000	
0x0012FE58	3.0000000	
0x0012FE5C	4.0000000	

- SSE defines two types of operations
 - scalar and packed.

Scalar

- Scalar operation only operates on the least-significant data element (bit 0~31)
- SSE instructions have a suffix -ss for scalar operations (Single Scalar)

Packed

- Packed operation computes all four elements in parallel.
- SSE instructions have a -ps for packed operations (Parallel Scalar).

Add PS (packed scalar)

Intrinsic	Instruction	Operation	RO	R1	R2	R3
_mm_add_ps	ADDPS	Adds	Copy Code	Copy Code	Copy Code	Copy Code
			a0 [op] b0	a1 [op] b1	a2 [op] b2	a3 [op] b3

 $C = _mm_add_ps(A, B);$

Α	X	Υ	Z	W
^	5	6	7	8
	+	+	+	+
В	Х	Υ	Z	W
Ь	10	20	30	40
	↓	\	\	↓
С	X	Y	Z	W
	15	26	37	48

Add SS (single scalar)

Intrinsic	Instruction	Operation	RO	R1	R2	R3
_mm_add_ss	ADDSS	Adds	Copy Code	Copy Code	Copy Code	Copy Code
			a0 [op] b0	a1	a.2	a3

 $C = _mm_add_ss(A, B);$

Α	Х	Y		Z		W	
^	5	6		7		8	
	+						
В	Х	Υ		Z		W	
Ь	10	20		30		40	
	↓		7	,	,	•	,
С	Х	Υ		Z		W	
	15	6		7		8	

- Microsoft Reference manual
 - live in this link:

http://msdn.microsoft.com/enus/library/708ya3be%28v=vs.100%29. aspx

SSE2

SSE2 - Streaming SIMD Extensions 2

- IA-32 SIMD instruction sets.
- SSE2 Intel Pentium 4 in 2001.

SSE2 adds 70 instructions

- Allows you to now use double precision.
- Since doubles are 64-bits, __m128 only holds 2 doubles
- So it behaves like a double precision MMX
- 2 doubles (SIMD) in the multiple data.

-dp in the instructions

- Not that useful for game development
- We are single precision ©

SSE3 (minor extension)

- SSE3 Intel code name Prescott New Instructions (PNI)
 - 3rd the SSE instruction set for the IA-32
 - Intel introduced SSE3 in early 2004 for Pentium 4 CPU.
- SSE3 contains 13 new instructions
 - Additional functions deal with integer land extensions.
 - Not that useful ⁽²⁾

SSSE3

- Supplemental Streaming SIMD Extension 3 (SSSE3)
 - Intel's name for the SSE instruction set's fourth iteration
 - Didn't want to rev the number to SSE4
 - My guess, it didn't get done in time for SSE3 release....
- SSSE3 contains 16 new discrete instructions over SSE3.
 - More packed integer data instructions
 - Not useful for Games, but a cool reference

SSE4

SSE4 another extension

- It was announced on September 27, 2006
- Became available at the Spring 2007
- 54 new instructions
 - 47 new instructions v4.1
 - 7 new instruction v4.2

Some crazier extensions

- 4.1 Version
 - HDTV codecs
 - Added, dot product
 - _mm_dp_ps()
- 4.2 Version
 - CRC32 function

SSE5 / Future....

SSE5 here's where it gets weird

- SSE5 AMD supported part of the SSE5 spec then changed some stuff for their processors.
 - So it's a spec / but not official
- Intel came out with their AVX-512 instruction set
 - Added 512 registers
 - MAC instructions and backward compatibility with the SSE instruction set
 - Too much crap to walk through ...
 - if you care dig into this stuff more.

This Class

Optimized C++

- Restrict use to SSE4.1 and under for this class
 - Nothing higher allowed!
- __cpuid, __cpuidex
 - Can query to see what version your processor supports
- WARNING...
 - Many people got a 0 on Particles
 - They used a version of SIMD that wasn't supported on the TESTING PC.

Coding with SSE

- To code using SSE is easy and a puzzle.
 - Get the data correctly formatted.
 - Use the data *Union* trick I came up with.
 - Removes the alignment issues
 - Off to the races piecing the puzzle together.
- Keep the reference manual open
 - Single step everything
 - Look at the data
 - Use unique data to start with
 - A(1,2,3,4) and B(10,20,30,40).
 - Easy to determine any aliasing or instruction confusion

Intrinsic	Instruction	Operation	RO	R1	R2	R3
_mm_add_ps	ADDPS	Adds	Copy Code	Copy Code	Copy Code	Copy Code a3 [op] b3

$$C = _mm_add_ps(A, B);$$

Α	X	Υ	Z	W
^	5	6	7	8
	+	+	+	+
В	Х	Υ	Z	W
	10	20	30	40
	\	\	\	\
С	Х	Υ	Z	W
	15	26	37	48

Code Experiment:

Vect_SIMD A(1,2,3,4); Vect_SIMD B(10,20,30,40); Vect_SIMD C;

$$C.m = \underline{mm}_{add}_{ps}(A.m, B.m);$$

Transpose macro

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

Convert row vectors into column vectors

- Way cool...
 - SSE4.1 now has dot products...
 - About time, DSP's had them for 20 years.
 - _mm_dp_ps(A,B,Mask)
 - Mask sets who gets multiplied and written

```
tmp0 := (mask4 == 1) ? (a0 * b0) : +0.0
tmp1 := (mask5 == 1) ? (a1 * b1) : +0.0
tmp2 := (mask6 == 1) ? (a2 * b2) : +0.0
tmp3 := (mask7 == 1) ? (a3 * b3) : +0.0

tmp4 := tmp0 + tmp1 + tmp2 + tmp3

r0 := (mask0 == 1) ? tmp4 : +0.0
r1 := (mask1 == 1) ? tmp4 : +0.0
r2 := (mask2 == 1) ? tmp4 : +0.0
r3 := (mask3 == 1) ? tmp4 : +0.0
```


You can get help

 Starting with Visual Studio 8 will self generate SSE instructions by simply

flipping a switch.

Cheap and Cheezy

Outstanding...

Thank you Herb Sutter

Visual Studio 10 - SSE

AVX – arm race continues

- Advanced Vector Extensions (AVX or AVX-256) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008
- AVX-256 expands SIMD sse to 256-bit support
 - 1st in Sandy Bridge processor
 - Q1 2011 -Intel
 - 1st in Bulldozer processor
 - Q3 2011 AMD
- AVX2 expands most integer commands to 256 bits and introduces FMA.
 - AVX-512 expands AVX to 512-bit support

AVX – details

- AVX extends even further, from 128 bits to 256 bits
 - VEX prefix
 - <u>V</u>ector <u>EX</u>tension
- Processors with AVX support, the legacy SSE instructions
 - Extended using the VEX prefix to operate on the lower 128 bits
- AVX-512 register scheme as extension from the AVX
 - **EVEX** prefix
 - <u>E</u>xtension <u>V</u>ector <u>EX</u>tension
- AVX introduces a three-operand SIMD instruction format
 - Destination register is distinct from the two source operands.
 - An <u>SSE</u> instruction using the conventional two-operand form a = a + b can now use a non-destructive three-operand form c = a + b, preserving both source operands.
- Alignment requirement of SIMD memory operands is relaxed.

- AVX-512 (ZMM0-ZMM31)
- AVX (YMM0-YMM15)
- SSE (XMM0-XMM15)

511	256	255	128	127	0
ZMM0		YMI	M0	XMV	10
ZMM1		YMI	M1	XMV	11
ZMM2		YMI	M2	XMV	12
ZMM3		YMI	M3	XMV	13
ZMM4		YMI	VI4	XMV	14
ZMM5		YMI	M5	XMV	15
ZMM6		YMI	M6	XMV	16

511	256	255	128	127	0
ZMMO		ΥN	IMO	XM	MO
ZMM1		ΥN	IM1	XM	M1
ZMM2		ΥN	IM2	XM	M2
ZMM3		ΥN	IM3	XM	МЗ
ZMM4		ΥN	IM4	XM	M4
ZMM5		ΥN	IM5	XM	M5
ZMM6		ΥN	IM6	XM	M6
ZMM7		ΥN	IM7	XM	M7
ZMM8		ΥN	IM8	XM	M8
ZMM9		ΥN	IM9	XM	M9
ZMM10		YM	M10	XMI	V110
ZMM11		YM	M11	XMI	V11
ZMM12		YM	M12	XMI	/ 112
ZMM13		YM	M13	XMI	И13
ZMM14		YM	M14	XMI	/ 114
ZMM15		YM	M15	XMI	/ 115
ZMM16		YM	M16	XMI	M16
ZMM17		YM	M17	XMI	/117
ZMM18		YM	M18	XMI	M18
ZMM19		YM	M19	XMI	И19
ZMM20		YM	M20	XMI	И20
ZMM21		YM	M21	XMI	/I21
ZMM22		YM	M22	XMI	И22
ZMM23		YM	M23	XMI	M23
ZMM24		YM	M24	XMI	/l24
ZMM25		YM	M25	XMI	M25
ZMM26		YM	M26	XMI	И26
ZMM27			M27	XMI	
ZMM28			M28	XMI	M28
ZMM29		_	M29	XMI	И29
ZMM30			M30	XMI	
ZMM31		YM	M31	XMI	//31

Thank You!

Questions?

Vector & Matrix:

Quick & Dirty

Optimized C++

Ed Keenan

Overview

- Making a fast library
 - Lessons from a battled scared programmer
- Math Library
 - What do you use Matrices
- 1x4 Vectors
 - Standard operators
 - Dot / Cross
- 4x4 Matrices
 - Standard operators
- 3D transformations
 - Tying this all together
- Why is this good?

Making Your Library FAST

- Quick summary of how to make a fast library
 - If you took Game Physics or Engine
 - You should have an idea of my thoughts.
 - Here they are again.
- This knowledge is a reaction to bad libraries
 - Horrible ones I used
 - Horrible mistakes I made
 - Experience gained over the last 20 yrs...

General rules

- Direct access to variables
 - Do not use an index or any loop inside your code
- Const correctness
 - This helps the compiler optimize your code.
- Add specialized instructions
 - Rx*Ry*Rz if it happens a lot, make a custom function
- Add Intrinsics to everything
 - Keep your data 16 Byte aligned

General rules

- Adding implicit prevention
 - Last assignment stuff (private is your friend)
- Adding proxy for complicated functionality
 - You can distribute a library now
 - Optimize it later with proxies
- Testbed
 - Metrics your timing and assumptions
- Use only FLOATS
 - We went to the moon on 16-bit
 - 32-bits is enough for any conventional math system
 - Doubles SUCK! (slow)

Matrix

- Matrix
 - m x n array of numbers
 - m rows
 - n columns

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

3x3 matrix

2x4 matrix

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \end{bmatrix}$$

Matrix - add

- Matrix
 - A + B = B + A

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$
$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_3 \end{bmatrix}$$

Same process for 3x3 or 3x4 or 4x4 Like positions are added together

Matrix - Subtract

Matrix

• A - B = -B + A

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} - \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} a_1 - b_1 & a_2 - b_2 \\ a_3 - b_3 & a_4 - b_3 \end{bmatrix}$$

Same process for 3x3 or 3x4 or 4x4 Like positions are subtracted together

Matrix - position

Positions

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \quad 2x3 \ matrix$$

a is (1,1)position d is (2,1)position c is (1,3)position

(row, col) position

Matrix - transpose

Swap row and column positions

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \quad 2x3 \ matrix$$

c is (1,3) is now (3,1)
$$A^{T} = \begin{bmatrix} a & a \\ b & e \\ c & f \end{bmatrix}$$
 3x2 matrix

- Note:
 - T super script, to indicate transpose
 - The rows and columns are swapped
 - The dimension of the matrix is swapped

Swap row and column positions

$$A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \quad A^{T} = \begin{bmatrix} a & e & i & m \\ b & f & j & n \\ c & g & k & o \\ d & h & l & p \end{bmatrix}$$

Swap columns and rows inside of matrix

Matrix - Multiplication

Matrix 2x2

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$

$$C = AB$$

$$C = \begin{bmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{bmatrix}$$

Matrix - Multiplication

- Matrix 2x2
 - Across then down

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$

$$C = AB$$

$$C = \begin{bmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{bmatrix}$$

Matrix 3x3

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \quad B = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix}$$

$$C = AB$$

$$C = \begin{bmatrix} a_1b_1 + a_2b_4 + a_3b_7 & a_1b_2 + a_2b_5 + a_3b_8 & a_1b_3 + a_2b_6 + a_3b_9 \\ a_4b_1 + a_5b_4 + a_6b_7 & a_4b_2 + a_5b_5 + a_6b_8 & a_4b_3 + a_5b_6 + a_6b_9 \\ a_7b_1 + a_8b_4 + a_9b_7 & a_7b_2 + a_8b_5 + a_9b_8 & a_7b_3 + a_8b_6 + a_9b_9 \end{bmatrix}$$

(dot product) Across then down

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \quad B = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix}$$

$$C = AB$$

$$C = \begin{bmatrix} a_1b_1 + a_2b_4 + a_3b_7 & a_1b_2 + a_2b_5 + a_3b_8 & a_1b_3 + a_2b_6 + a_3b_9 \\ a_4b_1 + a_5b_4 + a_6b_7 & a_4b_2 + a_5b_5 + a_6b_8 & a_4b_3 + a_5b_6 + a_6b_9 \\ a_7b_1 + a_8b_4 + a_9b_7 & a_7b_2 + a_8b_5 + a_9b_8 & a_7b_3 + a_8b_6 + a_9b_9 \end{bmatrix}$$

Vector * Matrix

- Vector * matrix
 - Size of matrix needs to agreement
 - Inside dimensions only
 - (1 x n) vector
 - 1 row, n –columns
 - Just a specialized matrix with 1 row, n columns
 - (n x m) matrix
 - n rows, m columns
 - V_{out} = V * M
 - Dimensionally
 - (1 x n) (n x m)
 - Inside are both n so it's allowed

Vector * Matrix

- Vector * Matrix
 - V_{out} = V * M

$$\begin{aligned} V_{out} &= V * M \\ V_{out} &= \begin{bmatrix} v_x & v_y & v_z \end{bmatrix} \begin{bmatrix} m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 \\ m_7 & m_8 & m_9 \end{bmatrix} \\ V_{out} &= \begin{bmatrix} v_x m_1 + v_y m_4 + v_z m_7 & v_x m_2 + v_y m_5 + v_z m_8 & v_x m_3 + v_y m_6 + v_z m_9 \end{bmatrix} \end{aligned}$$

- Row Major
 - Vector (1x4) ← that's a Row

Matrix * Vector

- Matrix * Vector
 - Size of matrix needs to agreement
 - Inside dimensions only
 - (m x n) matrix
 - m rows, n columns
 - (n x 1) vector
 - n rows, 1 –column
 - Just a specialized matrix with 4 rows, 1 column
 - V_{out} = M * V
 - Dimensionally
 - (m x n) (n x 1)
 - Inside are both n so it's allowed

Matrix * Vector

- Matrix * Vector
 - V_{out} = M * V

$$V_{out} = M * V$$

$$V_{out} = \begin{bmatrix} m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 \\ m_7 & m_8 & m_8 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$V_{out} = \begin{bmatrix} m_1 v_x + m_2 v_y + m_3 v_z \\ m_4 v_x + m_5 v_y + m_6 v_z \\ m_7 v_x + m_8 v_y + m_9 v_z \end{bmatrix}$$

- Column Major
 - Vector (4x1) ← that's a Row

Row Major vs Column Major

- Vector * Matrix
 - If vector is (1 x n) size
 - It is a row vector
- Row major orientation
 - Matrices A, B, C are concatenated left to right
 - M = A*B*C
 - For row major (preferred for performanc)
- Column major orientation
 - A, B, C are concatenated Right to Left.
 - M = C * B * A
 - For column major (vectors that are nx1 dimensions)

Row Major

- Graphics Cards
 - OpenGL or DirectX
 - Use Row major internally
- Physics engines
 - Use row major
- You should use row major
 - Be cool, use row major

4D vectors

- 4D Vectors
 - (1x4) dimensions
 - V = [x, y, z, 1]
- Why do we need them:
 - Matrix multiplication reasons
 - Future class, allows mixture of translation and rotation
 - Quaternions
 - Cache alignment

4D Row Vectors

- Since vectors are (1x4) dimension
 - Matrices need to be (4xn)
 - V_{out} = V * M
 - Dimensionally
 - (1 x n) (n x m)
 - Inside are both n so it's allowed
- All the math today can easily extended to 4D
 - Just follow the pattern
 - Exception is inverse, look that up.

Vector 1x4

- Vectors we use are 4 dimension homogeneous vectors
 - Components: X,Y,Z,W
- What is W?
 - It is an extension to make the matrix multiplies work for both rotations and translations.

How do you use a matrix?

- Matrices will allow points to be transformed from one location to another.
- Points are in the form of vectors
 - p = [x,y,z,w]
 - W = 1, for our discussion.
- Multiply a point with a matrix you transform the point.
 - p_out = p * M;

Translation

- Move points in space, along some vector.
- Points can be moved in the x,y,z direction.
 - Any direction, + or -, doesn't matter.
- Translation Matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ T_x & T_y & T_z & 1 \end{bmatrix}$$

Tx, Ty, Tz is the translation direction applied

Using Translation Matrix

- Point
 - p = [x,y,z,w]
- Output
 - p_out = p * M;

$$p_{out} = p * T$$

$$p_{out} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 5 & 7 & 1 \end{bmatrix}$$

$$p_{out} = \begin{bmatrix} 12 & 25 & 37 & 1 \end{bmatrix}$$

- Example:
 - p = [10,20,30,1]
 - Translation = [2, 5, 7]

- In previous example we processed one point
 - You can process a collections of points
 - Did someone say array?

$$p_{out} = p * T$$

$$p_{out}[i] = p[i] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 5 & 7 & 1 \end{bmatrix}$$

Process a collection of points through the matrix.

Same for operations

- You can transform points by
 - Scaling,
 - Translation
 - Rotation
- Quick summary of transformations
 - Covering the next several slides
 - Stay with me... Your getting it.

Scale

- Scaling
 - You can scale in the x, y, z directions
 - You can scale uniformly or independently
- Scale Matrix:

$$S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations

- Rotations can be rotate points around an axis.
- Many rotations can be thought of a series of individual rotations.
 - Rx rotation about the x-axis
 - Ry rotation about the y-axis
 - Rz rotation about the z-axis
- Rotations can be about an arbitrary axis.
 - Not in this class (Quaternions are better)

Rotation Matrices, Rx, Ry, Rz

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_{x} & \sin \theta_{x} & 0 \\ 0 & -\sin \theta_{x} & \cos \theta_{x} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y} = \begin{bmatrix} \cos \theta_{y} & 0 & -\sin \theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 & 0 \\ -\sin \theta_z & \cos \theta_z & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Putting it all together

- A matrix can transform points
- You can scale, rotate or translate points
- If you do several operations together you can concatenate matrices!
 - That the big take away.
- Concatenating matrices saves
 - times and operations

Transform Example:

- Take a bag of points (array)
 - Scale the points
 - Rotate the points
 - Translate points
- Piece meal you would:

$$\begin{aligned} p_{out_A}[i] &= p[i] * S \\ p_{out_B}[i] &= p_{out_A}[i] * R \\ p_{out_C}[i] &= p_{out_B}[i] * T \end{aligned}$$

- 3 separate transformations
- A lot of multiplies, and adds... we can do better

Continued:

- One matrix can represent all those transformations
 - Scale, then Rotate, then translate the points
 - \bullet S \rightarrow R \rightarrow T
 - One concatenated matrix can represent all
 - M = S*R*T

Answer to the Universe...

- Not exactly, but close
 - Use 1x4 vectors to allow the concatenation to happen mathematically.
 - Otherwise need to stage transform our points.
 - Very wasteful and slow.
 - Points are in [x,y,z,w]
 - W is 1 for this class
 - Physics
 - In Computer Graphics it has other uses
 - Perspective Correction.

- Vector has a magnitude and a direction
 - Vectors can be formed from 2 pts
- Simply subtract the points.
 - 1st pt is the head of the vector
 - 2nd pt is the tail of the vector
 - V_{AB} forms a vector from A to B

$$P_A = \begin{bmatrix} a_x & a_y & a_z & 1 \end{bmatrix}$$

$$P_B = \begin{bmatrix} b_x & b_y & b_z & 1 \end{bmatrix}$$

$$V_{AB} = P_B - P_A = [b_x - a_x \quad b_y - a_y \quad b_z - a_z \quad 1]$$

1x4 Vector math

Vectors A & B

$$A = \begin{bmatrix} a_x & a_y & a_z & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} b_x & b_y & b_z & 1 \end{bmatrix}$$

$$A + B = [a_x + b_x \quad a_y + b_y \quad a_z + b_z \quad 1]$$

 $A - B = [a_x - b_x \quad a_y - b_y \quad a_z - b_z \quad 1]$

Magnitude (length)

$$A = \begin{bmatrix} a_x & a_y & a_z & 1 \end{bmatrix}$$

$$||A|| = \sqrt{(a_x^2 + a_y^2 + a_z^2)}$$

Normalize

Change the vector to length of 1

$$A = [a_x \quad a_y \quad a_z \quad 1]$$

$$||A|| = \sqrt{\left(a_x^2 + a_y^2 + a_z^2\right)}$$

$$U_A = \left[\frac{a_x}{||A||} \quad \frac{a_y}{||A||} \quad \frac{a_z}{||A||} \quad 1\right]$$

Dot product

- Dot product returns a scalar.
 - Single float (not a vector)

$$A = \begin{bmatrix} a_x & a_y & a_z & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} b_x & b_y & b_z & 1 \end{bmatrix}$$

$$A \cdot B = \left(a_x b_x + a_y b_y + a_z b_z \right)$$

- Or if you know the angle between the vectors
 - Not recommended

$$A \cdot B = ||A|| ||B|| \cos \theta$$

$$|d| = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|} = \|\mathbf{B}\| \cos \theta$$

Cross Product

Cross product returns a vector

$$A \times B = \begin{bmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

$$A \times B = \begin{bmatrix} a_y b_z - a_z b_y & -(a_x b_z - a_z b_x) & a_x b_y - a_y b_x & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} a_x & a_y & a_z & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} b_x & b_y & b_z & 1 \end{bmatrix}$$

Trig form:

$$A \times B = ||A|| ||B|| \sin \theta_{\widehat{K}}$$

Matrix 4x4

- All the math we will do will be 4x4 Matrices
- It allows concatenation of different types of transforms.
 - It's Cool and Hip!

 Assume we are using these matrices for the rest of the examples:

$$M = \begin{bmatrix} m_0 & m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 & m_7 \\ m_8 & m_9 & m_{10} & m_{11} \\ m_{12} & m_{13} & m_{14} & m_{15} \end{bmatrix} \quad N = \begin{bmatrix} n_0 & n_1 & n_2 & n_3 \\ n_4 & n_5 & n_6 & n_7 \\ n_8 & n_9 & n_{10} & n_{11} \\ n_{12} & n_{13} & n_{14} & n_{15} \end{bmatrix}$$

Matrix Add

$$M+N = \begin{bmatrix} m_0 + n_0 & m_1 + n_1 & m_2 + n_2 & m_3 + n_3 \\ m_4 + n_4 & m_5 + n_5 & m_6 + n_6 & m_7 + n_7 \\ m_8 + n_8 & m_9 + n_9 & m_{10} + n_{10} & m_{11} + n_{11} \\ m_{12} + n_{12} & m_{13} + n_{13} & m_{14} + n_{14} & m_{15} + n_{15} \end{bmatrix}$$

Matrix Sub

$$M-N = \begin{bmatrix} m_0-n_0 & m_1-n_1 & m_2-n_2 & m_3-n_3 \\ m_4-n_4 & m_5-n_5 & m_6-n_6 & m_7-n_7 \\ m_8-n_8 & m_9-n_9 & m_{10}-n_{10} & m_{11}-n_{11} \\ m_{12}-n_{12} & m_{13}-n_{13} & m_{14}-n_{14} & m_{15}-n_{15} \end{bmatrix}$$

Matrix Scale

Matrix Scale by a scalar

$$sM = \begin{bmatrix} sm_0 & sm_1 & sm_2 & sm_3 \\ sm_4 & sm_5 & sm_6 & sm_7 \\ sm_8 & sm_9 & sm_{10} & sm_{11} \\ sm_{12} & sm_{13} & sm_{14} & sm_{15} \end{bmatrix}$$

$$R = MN = \begin{bmatrix} m_0 & m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 & m_7 \\ m_8 & m_9 & m_{10} & m_{11} \\ m_{12} & m_{13} & m_{14} & m_{15} \end{bmatrix} \begin{bmatrix} n_0 & n_1 & n_2 & n_3 \\ n_4 & n_5 & n_6 & n_7 \\ n_8 & n_9 & n_{10} & n_{11} \\ n_{12} & n_{13} & n_{14} & n_{15} \end{bmatrix}$$

$$r_0 = m_0 n_0 + m_1 n_4 + m_2 n_8 + m_3 n_{12}$$
 $r_1 = m_0 n_1 + m_1 n_5 + m_2 n_9 + m_3 n_{13}$
 $r_2 = m_0 n_2 + m_1 n_6 + m_2 n_{10} + m_3 n_{14}$
 $r_3 = m_0 n_3 + m_1 n_7 + m_2 n_{11} + m_3 n_{15}$
 $r_4 = m_4 n_0 + m_5 n_4 + m_6 n_8 + m_7 n_{12}$
 $r_5 = m_4 n_1 + m_5 n_5 + m_6 n_9 + m_7 n_{13}$
 $r_6 = m_4 n_2 + m_5 n_6 + m_6 n_{10} + m_7 n_{14}$
 $r_7 = m_4 n_3 + m_5 n_7 + m_6 n_{11} + m_7 n_{15}$

$$r_8 = m_8 n_0 + m_9 n_4 + m_{10} n_8 + m_{11} n_{12}$$
 $r_9 = m_8 n_1 + m_9 n_5 + m_{10} n_9 + m_{11} n_{13}$
 $r_{10} = m_8 n_2 + m_9 n_6 + m_{10} n_{10} + m_{11} n_{14}$
 $r_{11} = m_8 n_3 + m_9 n_7 + m_{10} n_{11} + m_{11} n_{15}$
 $r_{12} = m_{12} n_0 + m_{13} n_4 + m_{14} n_8 + m_{15} n_{12}$
 $r_{13} = m_{12} n_1 + m_{13} n_5 + m_{14} n_9 + m_{15} n_{13}$
 $r_{14} = m_{12} n_2 + m_{13} n_6 + m_{14} n_{10} + m_{15} n_{14}$
 $r_{15} = m_{12} n_3 + m_{13} n_7 + m_{14} n_{11} + m_{15} n_{15}$

Questions?

