4.9.5

EE25BTECH11003 - Adharvan Kshathriya Bommagani

October 9, 2025

Question

Find the equations of the lines that pass through the point (3,2) and make an angle of 40° with the line x-2y=3.

First, we express the given point and line using column vectors.

The line passes through the point (3,2). The position vector **h** is:

$$\mathbf{h} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

The given line is x - 2y = 3. From the formula $\mathbf{n}^{\top} \mathbf{x} = c$, we can identify the **normal vector** to this line, $\mathbf{n_1}$:

$$\mathbf{n_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

The direction vector of the line, $\mathbf{m_1}$, is orthogonal to its normal vector $(\mathbf{m_1}^{\top}\mathbf{n_1} = 0)$. A simple choice is:

$$\mathbf{m_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

We find the direction vectors, $\mathbf{m_2}$ and $\mathbf{m_3}$, for the new lines by rotating $\mathbf{m_1}$ by $+40^\circ$ and -40° . The rotation matrix $R(\theta)$ is:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Rotation by $+40^{\circ}$:

$$\mathbf{m_2} = R(40^\circ)\mathbf{m_1} = \begin{pmatrix} 2\cos(40^\circ) - \sin(40^\circ) \\ 2\sin(40^\circ) + \cos(40^\circ) \end{pmatrix}$$

Rotation by -40°:

$$\mathbf{m_3} = R(-40^\circ)\mathbf{m_1} = \begin{pmatrix} 2\cos(40^\circ) + \sin(40^\circ) \\ -2\sin(40^\circ) + \cos(40^\circ) \end{pmatrix}$$

To find the equation in normal form $\mathbf{n}^{\top}\mathbf{x} = c$, we need the normal vector $\mathbf{n_2}$ and the constant $c_2 = \mathbf{n_2}^{\top}\mathbf{h}$.

For a direction vector
$$\mathbf{m} = \begin{pmatrix} u \\ v \end{pmatrix}$$
, a normal vector is $\mathbf{n} = \begin{pmatrix} -v \\ u \end{pmatrix}$.

Normal Vector n₂:

$$\mathbf{n_2} = \begin{pmatrix} -(2\sin(40^\circ) + \cos(40^\circ)) \\ 2\cos(40^\circ) - \sin(40^\circ) \end{pmatrix}$$

Constant c_2 :

$$c_2 = \mathbf{n_2}^{\top} \mathbf{h}$$

= $-3(2\sin(40^\circ) + \cos(40^\circ)) + 2(2\cos(40^\circ) - \sin(40^\circ))$
= $\cos(40^\circ) - 8\sin(40^\circ)$

Equation:

$$-(2\sin(40^\circ) + \cos(40^\circ))x + (2\cos(40^\circ) - \sin(40^\circ))y = \cos(40^\circ) - 8\sin(40^\circ)$$

Similarly, we find the normal vector $\mathbf{n_3}$ and constant $\mathbf{c_3} = \mathbf{n_3}^{\mathsf{T}} \mathbf{h}$.

Normal Vector n₃:

$$\mathbf{n_3} = \begin{pmatrix} 2\sin(40^\circ) - \cos(40^\circ) \\ 2\cos(40^\circ) + \sin(40^\circ) \end{pmatrix}$$

Constant c_3 :

$$c_3 = \mathbf{n_3}^{\top} \mathbf{h}$$

= $3(2\sin(40^\circ) - \cos(40^\circ)) + 2(2\cos(40^\circ) + \sin(40^\circ))$
= $\cos(40^\circ) + 8\sin(40^\circ)$

Equation:

$$(2\sin(40^\circ) - \cos(40^\circ))x + (2\cos(40^\circ) + \sin(40^\circ))y = \cos(40^\circ) + 8\sin(40^\circ)$$

Plot of the Lines

