NMR

Nukleární Magnetická Rezonance

Zdeněk Moravec, hugo@chemi.muni.cz

Stručná historie

- ▶ 1943 Nobelova cena za objev magnetického momentu protonu -Otto Stern.
- ▶ 1944 Nobelova cena za rezonanční metodu pro zjištění magnetických vlastností atomových jader - Isidor Isaac Rabi.
- ▶ **1945** První ¹H NMR spektrum vody.
- ▶ 1952 Nobelova cena za rozvoj metod pro přesná měření jaderného magnetismu a první NMR signál - Felix Bloch a Edward Mills Purcell.
- ▶ **1965** Širokopásmový ¹H decoupling.
- ▶ 1991 Nobelova cena za HR-NMR, vývoj nových pulsních technik, rozvoj FT-NMR a zavedení 2D NMR technik - Richard R. Ernst.
- ▶ 2002 Nobelova cena za vývoj NMR technik umožňujících určení 3D struktury biomolekul Kurt Wütthrich.
- ▶ 2003 Nobelova cena za vývoj MRI Paul C. Lauterbur.

Princip

- ► Sledujeme absorpci radiofrekvenčního záření vzorkem, který je umístěn v magnetickém poli.
- Vzorek je nejčastěji kapalný, ale lze měřit i pevné látky a plyny.
- Jde o důležitou metodu v chemické a strukturní analýze.
- Vyžaduje silné magnetické pole, proto se nejčastěji využívá supravodivých magnetů.

Jaderný spin

- Atomové jádro se skládá z protonů a neutronů.
- ▶ Obě částice mají spin $\pm \frac{1}{2}$.
- ▶ Jaderný spin je roven součtu spinů všech nukleonů.
- V NMR jsou aktivní pouze jádra s *nenulovým jaderným spinem*.
- Nejčastěji se využívají jádra se spinem $\frac{1}{2}$, např. 1 H, 13 C, 19 F nebo 31 P.
- Bez vlivu vnějšího magnetického pole mají všechny orientace jaderného spinu stejnou energii.
- Pokud ale vložíme jádro do magnetického pole, získáme systém hladin o různých energiích.
- Pokud na tento systém působíme radiofrekvenčním zářením, může dojít k absorpci energie a excitaci spinu na vyšší energetickou hladinu.
- Poté pozorujeme návrat spinu a původní hladinu a emisi absorbované energie, kterou následně snímáme.

Jaderný spin

Radiofrekvenční pulsy

- FT-NMR využívá k excitaci jaderných spinů radiofrekvenční pulsy.
- Ty excitují všechna měřená jádra, např. protony, najednou.
- Pulsy sklápí vektor magnetizace a způsobují jeho precesi.
- ightharpoonup Délka pulsů se pohybuje v řádu μ s.
- Čím je puls delší, tím je větší i sklápěcí úhel.

Chemický posun

- Izolovaná jádra stejného izotopu budou v magnetickém poli rezonovat při stejné frekvenci.
- Pokud uvažujeme molekuly, je každé jádro ovlivněno také lokálními magnetickými poli, které jsou generovány vazebnými elektrony. Tím dochází ke změně rezonanční frekvence daného jádra.
- ightharpoonup Změna je dána tzv. chemickým okolím pozorovaného jádra a nazývá se *chemický posun*. Označuje se δ a je dán vztahem:

$$\delta = \frac{\nu - \nu_{TMS}}{\nu}$$

- $ultrale
 u_{TMS}$ je rezonanční frekvence standardu, u je rezonanční frekvence signálu.
- Chemický posun je bezrozměrný, jelikož se jedná o velmi malé hodnoty, udává se v ppm.
- Chemický posun je, na rozdíl od rezonanční frekvence, nezávislý na hodnotě vnějšího magnetického pole.

Chemický posun

Srovnání ¹H NMR spekter ethylbenzenu na spektrometrech 60 a 300 MHz

8/29

Interakční konstanta

- Pokud je v molekule více NMR aktivních jader, může docházet k jejich vzájemné interakci. Síla této interakce je dána hlavně počtem vazeb, které jádra oddělují.
- Velikost interakční konstanty je nezávislá na intenzitě magnetického pole.

Interakční konstanta

- Způsob štěpení je dán počtem interagujících spinů.
- Pro jádra se spinem $\frac{1}{2}$ je velikost multipletu, tzn. počet signálů po štěpení a jejich vzájemná intenzita dána *Pascalovým trojúhelníkem*.

n = 0							1						
n = 1						1		1					
n = 2					1		2		1				
n = 3				1		3		3		1			
n = 4			1		4		6		4		1		
n = 5		1		5		10		10		5		1	
n = 6	1		6		15		20		15		6		1

Interakční konstanta

Velikost interakce se vyjadřuje pomocí interakční konstanty, která se označuje písmenem J. Pro přesnější popis interakce se využívá indexů, např. interakci mezi atomy vodíku v ethanolu (přes tři vazby H-C-C-H) vyjádříme ³J_{HH}. Její velikost se udává v Hz.

Interakční konstanta

Decoupling (dekaplink)

- Štěpením signálů spektra je důležitou informací pro strukturní analýzu, zároveň ale zhoršuje poměr signál/šum.
- Pro potlačení štěpení se používá tzv. decoupling, kdy kontinuálně ozařujeme dekaplovaná jádra. Tím dojde k potlačení štěpení.
- Ztratíme ale informaci o kvantitativním složení vzorku, protože intenzita signálu v dekaplovaném spektru není úměrná koncentraci.
- Gated decoupling neozařujeme během akvizice, nedojde k potlačení NOE.
- ▶ Inverse-gated decoupling ozařujeme pouze během akvizice, vhodné pro jádra se záporným gyromagnetickým poměrem – ¹⁵N, ²⁹Si.

Decoupling (dekaplink)

Decoupling (dekaplink)

 $^{13}{\rm C}$ NMR bez $^1{\rm H}$ decoupleru ethylbenzenu $_{\rm C}$ $_{\rm C}$ $_{\rm C}$ $_{\rm C}$ $_{\rm C}$ $_{\rm C}$ $_{\rm C}$

Schéma NMR spektrometru

NMR magnety

Permanentní - do 100 MHz

NMR magnety

► Cryogen-free - 100-300 MHz - levný provoz

NMR magnety

- Supravodivé magnety nejběžnější v NMR
 - ► Chlazené kapalným heliem (4-2,2 K)
 - Magnetické pole až 23,5 T (1000 MHz)

Závislost rezonanční frekvence na síle magnetického pole

B ₀ [T]	¹ H [MHz]	¹³ C [MHz]
1,41	60	15,1
2,35	100	25,15
7,05	300	75,4
11,74	500	125,7
14,09	600	150,9
16,44	700	176,05
19,97	850	213,78
22,32	950	238,94
28,20	1200	318,59

NMR sondy

- Hlavní funkcí je excitace spinového systému a snímání odezvy.
- Obsahují lockovací kanál.
- Udržují stabilní teplotu vzorku.

Často obsahují také gradientovou cívku(y) pro experimenty využíva
 i/c/ pulpní gradienty magnetického p

jící pulsní gradienty magnetického p

- Podle konstrukce se dělí:
 - ► Teplé sondy
 - Kryosondy
 - Průtočné sondy
 - Nanosondy

NMR sondy

- Sondy se dále dělí podle počtu cívek. Citlivost cívek klesá se vzdálenosti od vzorku.
 - Dvoukanálové dvě cívky
 - Tříkanálové (triple resonance)
- BB sondy mají vnitřní cívku určenou pro měření jader X a vnější pro měření ¹H nebo ¹H decoupling. Inverzní sondy mají uspořádání opačné a jsou vhodné pro snímání jader ¹H jader, např. v 2D experimentech ¹H-¹³C HSQC.
- Sondy také dělíme sondy podle velikosti NMR kyvety, pro které jsou konstruovány, nejčastěji 5 a 10 mm.

NMR sondy

Vzorky pro NMR spektroskopii

- Využívají se tenkostěnné skleněné kyvety, které se umisťují do plastových nebo keramických rotorků. Průměr kyvet je nejčastěji 3, 5 nebo 10 mm.
- Pro měření je nutné připravit roztok měřené látky v deuterovaném rozpouštědle. Signál ²H (D) se používá k lockování vzorku.
- Vzorky reakčních směsí se často měří v koaxiálním uspořádání, kdy se kyveta se vzorkem vloží do kyvety s deuterovaným rozpouštědlem.
- Signál deuterovaného rozpouštědla lze využít i jako standard ke kalibraci spektra.

2D NMR

- Pro složitější molekuly už nemusí být 1D NMR spektrum čitelné.
- ► Rozlišení se dá zvýšit silnějším magnetickým polem.
- Lepší cestou je přechod na NMR experimenty ve dvou a více dimenzích.
- ▶ V dnešní době se rutinně využívá 2D a 3D NMR.

NMR v pevné fázi

- MAS NMR Magic Angle Spinning.
- Vzorek je napěchován do keramického rotoru a rotuje pod úhlem 54,7° ($\cos^2\theta_m=\frac{1}{3}$, magický úhel).
- ► Rotace při rychlostech 0-130 kHz.
- Pro měření málo citlivých jader se využívá cross-polarizace.

NMR ve slabém magnetickém poli

- Earth's-Field NMR.
 - Využívá magnetické pole Země.
 - Lze měřit velké vzorky.
 - ▶ Pro zlepšení S/N se využívá pre-polarizace v elektromagnetu.
- Low-Field NMR.
- Systémy využívající permanentní magnety nebo elektromagnety.

Využití NMR

- Rutinní kvalitativní a kvantativní chemická analýza.
- Strukturní analýza.
- Strukturní analýza biomolekul.
- Studium degradačních procesů a stupně degradace, např. barviv, polymerů, atd.
- Studium stupně hydratace v nástěnných malbách pomocí bezkontaktní sondy.

Literatura

- 1. http://chem.ch.huji.ac.il/nmr/
- 2. H. Günther (2013). NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, ISBN 978-3527330003
- J. Keeler (2005). Understanding NMR Spectroscopy. ISBN 978-0-470-01786-9.