Homework 2

Problem 1

Let $\Omega = \{1, 2, 3, 4\}$, and set $S = \{\emptyset, \{1\}, \{2\}, \{3, 4\}, \Omega\}$.

- (a) Prove that S is a semi-algebra.
- (b) Define $\chi:S o\mathbb{R}$ as follows:

$$\chi(\emptyset) = 0, \chi(\{1\}) = \chi(\{2\}) = \chi(\{3,4\}) = 1, \chi(\Omega) = 4.$$

Show that χ is "pairwise" additive: $\chi(A \cup B) = \chi(A) + \chi(B)$ whenever A, B, and $A \cup B$ are all in S. Show also that χ is not additive over all finite disjoint unions.

(This shows it is important, when dealing with semi-algebras and other classes not closed under finite union, to spell out the full statement of "finite additivity" in all proofs.)

Solution

- (a) S is a semi-algebra.
- 1. Non-empty and Contains Ω :

Clearly, $\Omega \in S$ and $\emptyset \in S$.

2. Closed under Intersection:

We need to check that the intersection of any two sets in S is also in S:

- $\bullet \ \ \emptyset \cap A = \emptyset \text{ for any } A \in S.$
- $\{1\} \cap \{2\} = \emptyset$.
- $\{1\} \cap \{3,4\} = \emptyset$.
- $\{2\} \cap \{3,4\} = \emptyset$.
- $\{3,4\} \cap \Omega = \{3,4\}.$
- $\{1\} \cap \Omega = \{1\}.$

- $\{2\} \cap \Omega = \{2\}.$
- $\Omega \cap \Omega = \Omega$.

All these intersections are in S, so S is closed under intersections.

3. Complement Property:

We need to check that the complement of any set in S can be written as a finite disjoint union of sets in S:

- $\emptyset^c = \Omega$.
- $\{1\}^c = \{2,3,4\} = \{2\} \cup \{3,4\}$
- $\{2\}^c = \{1,3,4\} = \{1\} \cup \{3,4\}$
- $\{3,4\}^c = \{1,2\} = \{1\} \cup \{2\}$
- $\Omega^c = \emptyset$.

Thus, S satisfies the complement condition.

Since S is closed under intersections and complements can be expressed as finite disjoint unions of sets in S, S is a semi-algebra.

(b) χ is "pairwise" additive but not additive over all finite disjoint unions.

1. Pairwise Additivity:

We need to show that $\chi(A \cup B) = \chi(A) + \chi(B)$ whenever A, B, and $A \cup B$ are all in S:

- ullet $\chi(\emptyset \cup A) = \chi(A) = \chi(\emptyset) + \chi(A)$ for any $A \in S$.
- $\chi(\{1\} \cup \{2\}) = \chi(\{1,2\}) = 2 = \chi(\{1\}) + \chi(\{2\}).$
- $\chi(\{1\} \cup \{3,4\}) = \chi(\{1,3,4\}) = 2 = \chi(\{1\}) + \chi(\{3,4\}).$
- $\chi(\{2\} \cup \{3,4\}) = \chi(\{2,3,4\}) = 2 = \chi(\{2\}) + \chi(\{3,4\}).$
- $\chi(\{1\} \cup \Omega) = \chi(\Omega) = 4 = \chi(\{1\}) + \chi(\Omega)$.

In all cases, pairwise additivity holds.

2. Non-Additivity over All Finite Disjoint Unions:

Consider the sets $\{1\}$, $\{2\}$, and $\{3,4\}$ which are disjoint and their union is Ω :

$$\chi(\{1\} \cup \{2\} \cup \{3,4\}) = \chi(\Omega) = 4$$

but

$$\chi(\{1\}) + \chi(\{2\}) + \chi(\{3,4\}) = 1 + 1 + 1 = 3.$$

Thus, χ is not additive over all finite disjoint unions.

Therefore, χ is pairwise additive but not additive over all finite disjoint unions.

Problem 2

(Exercise 4.12 in Driver) Let Ω_1 and Ω_2 be sets, and let $\mathcal{A}_1\subseteq 2^{\Omega_1}$ and $\mathcal{A}_2\subseteq 2^{\Omega_2}$ be semi-algebras. Show that

$$S=\mathcal{A}_1 imes\mathcal{A}_2=\{A_1 imes A_2:A_1\in\mathcal{A}_1,A_2\in\mathcal{A}_2\}\subseteq 2^{\Omega_1 imes\Omega_2}$$

is a semi-algebra.

Solution

To prove that \boldsymbol{S} is a semi-algebra, we need to show the following properties:

1. Empty Set and Whole Set:

Since A_1 and A_2 are semi-algebras, they both contain the empty set \emptyset and their respective whole sets Ω_1 and Ω_2 . Therefore,

$$\emptyset \times \emptyset = \emptyset \in S$$
,

and

$$\Omega_1 imes\Omega_2\in S.$$

Thus, $\emptyset \in S$ and $\Omega_1 imes \Omega_2 \in S$.

2. Closed under Intersection:

Let $X_1=A_1 imes A_2$ and $X_2=B_1 imes B_2$ where $A_1,B_1\in \mathcal{A}_1$ and $A_2,B_2\in \mathcal{A}_2.$ Then,

$$X_1\cap X_2=(A_1 imes A_2)\cap (B_1 imes B_2)\ =(A_1\cap B_1) imes (A_2\cap B_2)$$

Since \mathcal{A}_1 and \mathcal{A}_2 are semi-algebras, $A_1\cap B_1\in\mathcal{A}_1$ and $A_2\cap B_2\in\mathcal{A}_2$. Thus,

$$(A_1\cap B_1) imes (A_2\cap B_2)\in S.$$

Hence, *S* is closed under intersection.

3. Complementation Property:

Let $X=A_1\times A_2$ where $A_1\in\mathcal{A}_1$ and $A_2\in\mathcal{A}_2$. We need to show that X^c can be expressed as a finite union of disjoint sets in S.

We decompose X^c into a union of three parts:

$$X^c=(A_1^c imes A_2)\cup (A_1 imes A_2^c)\cup (A_1^c imes A_2^c).$$

To show that LHS = RHS:

$$egin{aligned} X^c = & (A_1 imes A_2)^c \ = & \{(x,y): (x,y)
otin A_1 imes A_2 \} \ = & \{(x,y): x
otin A_1 ext{ or } y
otin A_2 \} \ = & \{(x,y): x
otin A_1^c ext{ and } y
otin A_2 \} \ \cup & \{(x,y): x
otin A_1 ext{ and } y
otin A_2^c \} \ \cup & \{(x,y): x
otin A_1^c ext{ and } y
otin A_2^c \} \ = & (A_1^c imes A_2) \cup (A_1 imes A_2^c) \cup (A_1^c imes A_2^c) \end{aligned}$$

To show that these three parts are disjoint, observe that:

$$(A_1^c imes A_2) \cap (A_1 imes A_2^c) \ = (A_1^c \cap A_1) imes (A_2 \cap A_2^c) = \emptyset \ (A_1^c imes A_2) \cap (A_1^c imes A_2^c) \ = (A_1^c \cap A_1^c) imes (A_2 \cap A_2^c) = \emptyset \ (A_1 imes A_2^c) \cap (A_1^c imes A_2^c) \ = (A_1 \cap A_1^c) imes (A_2^c \cap A_2^c) = \emptyset$$

Since \mathcal{A}_1 and \mathcal{A}_2 are semi-algebras, $A_1^c \in \mathcal{A}_1$ and $A_2^c \in \mathcal{A}_2$. Therefore,

$$(A_1^c imes A_2) \in S, \quad (A_1 imes A_2^c) \in S, \quad (A_1^c imes A_2^c) \in S.$$

Thus, X^c can be expressed as a finite union of disjoint sets in S.

Since S satisfies all three properties of a semi-algebra, we conclude that S is indeed a semi-algebra. \blacksquare

Problem 3

(Exercise 4.3 in Driver) Let $A_n, B_n \subseteq \Omega$ for $n \in \mathbb{N}$. Show that

$$\left(igcup_{n=1}^\infty A_n
ight) \smallsetminus \left(igcup_{n=1}^\infty B_n
ight) \subseteq igcup_{n=1}^\infty (A_n \smallsetminus B_n).$$

Use this to show that

$$\left(igcup_{n=1}^{\infty}A_n
ight) riangle \left(igcup_{n=1}^{\infty}B_n
ight) \subseteq igcup_{n=1}^{\infty}(A_n riangle B_n).$$

Solution

Let $A_n, B_n \subseteq \Omega$ for $n \in \mathbb{N}$. We will prove the following two statements:

1.
$$\left(\bigcup_{n=1}^{\infty}A_{n}\right)\smallsetminus\left(\bigcup_{n=1}^{\infty}B_{n}\right)\subseteq\bigcup_{n=1}^{\infty}(A_{n}\smallsetminus B_{n})$$

Proof:

Let $x \in \left(\bigcup_{n=1}^{\infty} A_n\right) \setminus \left(\bigcup_{n=1}^{\infty} B_n\right)$. This means:

1.
$$x \in igcup_{n=1}^\infty A_n$$

2.
$$x \notin \bigcup_{n=1}^{\infty} B_n$$

From (1), $\exists k \in \mathbb{N}$ such that $x \in A_k$. From (2), $\forall n \in \mathbb{N}, x \not\in B_n$. In particular, $x \not\in B_k$.

Therefore, $x \in A_k \setminus B_k \subseteq \bigcup_{n=1}^\infty (A_n \setminus B_n)$.

Thus, we have

$$\left(igcup_{n=1}^\infty A_n
ight) \smallsetminus \left(igcup_{n=1}^\infty B_n
ight) \subseteq igcup_{n=1}^\infty (A_n \smallsetminus B_n)$$

2.
$$\left(\bigcup_{n=1}^\infty A_n\right) \triangle \left(\bigcup_{n=1}^\infty B_n\right) \subseteq \bigcup_{n=1}^\infty (A_n \triangle B_n)$$

Proof:

Recall that for any sets X and Y, $X \triangle Y = (X \smallsetminus Y) \cup (Y \smallsetminus X)$.

Let
$$L=ig(igcup_{n=1}^\infty A_nig) riangle ig(ig)_{n=1}^\infty B_nig)$$
 and $R=igcup_{n=1}^\infty (A_n riangle B_n)$.

$$egin{aligned} L &= \left(\left(igcup_{n=1}^{\infty} A_n
ight) \setminus \left(igcup_{n=1}^{\infty} B_n
ight) \left(\left(igcup_{n=1}^{\infty} B_n
ight) \setminus \left(igcup_{n=1}^{\infty} A_n
ight)
ight) \ &\subseteq igcup_{n=1}^{\infty} (A_n \setminus B_n) \cup igcup_{n=1}^{\infty} (B_n \setminus A_n) \quad ext{(by part 1)} \ &= igcup_{n=1}^{\infty} ((A_n \setminus B_n) \cup (B_n \setminus A_n)) \ &= igcup_{n=1}^{\infty} (A_n riangle B_n) = R \end{aligned}$$

Thus, we have shown that $L \subseteq R$, which completes the proof.

Problem 4

(Exercise 4.4 in Driver) Let $A,B,C\subseteq\Omega$. Recall that the **symmetric difference** of sets is $A\triangle B=(A\cap B^c)\cup(B\cap A^c)$.

(a) Show that $A \cap C^c \subseteq (A \cap B^c) \cup (B \cap C^c)$.

(b) Use part (a) to show that

$$A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$$
.

(c) Now, let $\nu:2^\Omega\to[0,\infty)$ be an outer measure. Show that the function $d:2^\Omega\times 2^\Omega\to[0,\infty)$ defined by $d(A,B)=\nu(A\triangle B)$ satisfies the **triangle inequality**:

$$d(A,C) \leq d(A,B) + d(B,C).$$

Solution

(a)
$$A\cap C^c\subseteq (A\cap B^c)\cup (B\cap C^c)$$
.

Proof: Let $x \in A \cap C^c$. Then $x \in A$ and $x \notin C$. We consider two cases:

1. If
$$x \notin B$$
, then $x \in A \cap B^c \subseteq (A \cap B^c) \cup (B \cap C^c)$.

2. If
$$x \in B$$
, then $x \in B \cap C^c \subseteq (A \cap B^c) \cup (B \cap C^c)$.

In both cases, $x\in (A\cap B^c)\cup (B\cap C^c)$. Therefore, $A\cap C^c\subseteq (A\cap B^c)\cup (B\cap C^c)$. \blacksquare

(b)
$$A\triangle C\subseteq (A\triangle B)\cup (B\triangle C)$$
.

Proof: Recall that $A \triangle C = (A \cap C^c) \cup (C \cap A^c)$.

From part (a), we have:

1.
$$A \cap C^c \subseteq (A \cap B^c) \cup (B \cap C^c)$$

2.
$$C \cap A^c \subseteq (C \cap B^c) \cup (B \cap A^c)$$

Therefore,

$$egin{aligned} A riangle C &= (A \cap C^c) \cup (C \cap A^c) \ &\subseteq [(A \cap B^c) \cup (B \cap C^c)] \cup [(C \cap B^c) \cup (B \cap A^c)] \ &= (A \cap B^c) \cup (B \cap A^c) \cup (B \cap C^c) \cup (C \cap B^c) = (A riangle B) \cup (B riangle C) \end{aligned}$$

Thus,
$$A\triangle C\subseteq (A\triangle B)\cup (B\triangle C)$$
.

(c)
$$d(A,C) \leq d(A,B) + d(B,C)$$
.

Proof: From part (b), we know that $A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$.

Since ν is an outer measure, it is monotone and countably subadditive. Therefore,

$$egin{aligned} d(A,C) &=
u(A riangle C) \ &\leq
u((A riangle B) \cup (B riangle C)) \ &\leq
u(A riangle B) +
u(B riangle C) \ &= d(A,B) + d(B,C) \end{aligned}$$

Thus, $d(A,C) \leq d(A,B) + d(B,C)$, which proves the triangle inequality.

Problem 5

Let $\mathcal A$ be a field over Ω , and let $\mathbb P$ be a probability measure on $(\Omega,\sigma(\mathcal A))$. Let $B\in\sigma(\mathcal A)$. Prove that for any $\epsilon>0$, there is a set $A\in\mathcal A$ such that $\mathbb P(A\triangle B)<\epsilon$. I.e. $\mathcal A$ is "dense" in $\sigma(\mathcal A)$.

[Hint: show that the collection of all sets B satisfying this property is a σ -field.]

Proof

To prove this statement, we will follow an approach similar to the method discussed in class for extending a field to a σ -field.. We'll construct a set analogous to a "compact set" and prove that it is a σ -field, thereby establishing our conclusion.

Define
$$\bar{\mathcal{A}}=\{B\in\sigma(\mathcal{A}): \forall \epsilon>0, \exists A\in\mathcal{A} \text{ such that } \mathbb{P}(A\triangle B)<\epsilon\}.$$

We will prove that $\bar{\mathcal{A}}$ is a σ -field.

- 1. First, $\emptyset \in \bar{\mathcal{A}}$: For any $\epsilon > 0$, choose $A = \emptyset \in \mathcal{A}$. Then $\mathbb{P}(\emptyset \triangle \emptyset) = 0 < \epsilon$.
- 2. If $B\in \bar{\mathcal{A}}$, then $B^c\in \bar{\mathcal{A}}$: Let $\epsilon>0$. Since $B\in \bar{\mathcal{A}}$, there exists $A\in \mathcal{A}$ such that $\mathbb{P}(A\triangle B)<\epsilon$.

Note that $A\triangle B=A^c\triangle B^c$. Therefore, $\mathbb{P}(A^c\triangle B^c)=\mathbb{P}(A\triangle B)<\epsilon$. Since \mathcal{A} is a field, $A^c\in\mathcal{A}$. Thus, $B^c\in\bar{\mathcal{A}}$.

3. If $\{B_n\}_{n=1}^\infty\subset ar{\mathcal{A}}$, then $igcup_{n=1}^\infty B_n\in ar{\mathcal{A}}$:

Step 1: Let $\{A_n\}_{n=1}^\infty\subset\mathcal{A}$. We will show that $A=\bigcup_{n=1}^\infty A_n\in\bar{\mathcal{A}}$ and $\lim_{N\to\infty}\mathbb{P}(\bigcup_{n=1}^N A_n\triangle A)=0$.

Let $D_n=A_n \smallsetminus igcup_{k=1}^{n-1} A_k$. Then $\{D_n\}$ are disjoint and $A=igcup_{n=1}^\infty D_n$.

$$egin{aligned} \mathbb{P}(A) &= \mathbb{P}(igcup_{n=1}^{\infty} D_n) = \sum_{n=1}^{\infty} \mathbb{P}(D_n) \ &= \lim_{N o \infty} \sum_{n=1}^{N} \mathbb{P}(D_n) = \lim_{N o \infty} \mathbb{P}(igcup_{n=1}^{N} D_n) \end{aligned}$$

Therefore,

$$egin{aligned} \lim_{N o\infty}\mathbb{P}(igcup_{n=1}^NA_n riangle A) &= \lim_{N o\infty}\mathbb{P}(igcup_{n=1}^ND_n riangle A) \ &= \lim_{N o\infty}\mathbb{P}(A extcolor{black}igcup_{n=1}^ND_n) \ &= \lim_{N o\infty}[\mathbb{P}(A) - \mathbb{P}(igcup_{n=1}^ND_n)] \ &= \mathbb{P}(A) - \mathbb{P}(A) = 0 \end{aligned}$$

Since $igcup_{n=1}^N D_n = igcup_{n=1}^N A_n \in \mathcal{A}$ (by \mathcal{A} is a field) and $\lim_{N o\infty} \mathbb{P}(igcup_{n=1}^N A_n riangle A) = 0$, we have

$$A=igcup_{n=1}^\infty A_n\in ar{\mathcal{A}}$$

Step 2: Now, let $B=igcup_{n=1}^\infty B_n$ where $B_n\in \bar{\mathcal{A}}$. We will show that $B\in \bar{\mathcal{A}}$:

Let $\epsilon>0$. For each n, choose $A_n\in\mathcal{A}$ such that $\mathbb{P}(A_n\triangle B_n)<rac{\epsilon}{2^{n+1}}$. Such a choice of A_n is possible since $B_n\in\bar{\mathcal{A}}$.

Define $A = \bigcup_{n=1}^\infty A_n$. Let N be a sufficiently large positive integer satisfying:

$$\mathbb{P}igg(igcup_{n=1}^N A_n riangle Aigg) < rac{\epsilon}{2}$$

By step 1 we know that Such an N exists. We then have:

$$egin{aligned} \mathbb{P}(igcup_{n=1}^N A_n riangle B) &\leq \mathbb{P}(igcup_{n=1}^N A_n riangle A) + \mathbb{P}(A riangle B) \ &< rac{\epsilon}{2} + \mathbb{P}(A riangle B) \ &= rac{\epsilon}{2} + \mathbb{P}(igcup_{n=1}^\infty A_n riangle B_n) \ &\leq rac{\epsilon}{2} + \sum_{n=1}^\infty \mathbb{P}(A_n riangle B_n) \ &< rac{\epsilon}{2} + \sum_{n=1}^\infty rac{\epsilon}{2^{n+1}} = \epsilon \end{aligned}$$

Since $\mathcal A$ is a field, $\bigcup_{n=1}^N A_n \in \mathcal A$. Therefore, for any $\epsilon>0$, there exists $A\in \mathcal A$ such that $\mathbb P(A\triangle B)<\epsilon$, proving that $B\in \bar{\mathcal A}$.

Thus, $\bar{\mathcal{A}}$ is a σ -field. Since $\sigma(\mathcal{A})$ is the smallest σ -field containing \mathcal{A} , we have $\sigma(\mathcal{A}) \subset \bar{\mathcal{A}}$. However, by the definition of $\bar{\mathcal{A}}$ we have $\bar{\mathcal{A}} \subset \sigma(\mathcal{A})$, which shows that $\bar{\mathcal{A}} = \sigma(\mathcal{A})$.

Therefore, for any $B \in \sigma(\mathcal{A})$ and any $\epsilon > 0$, there exists $A \in \mathcal{A}$ such that $\mathbb{P}(A \triangle B) < \epsilon$, which completes the proof. \blacksquare