Appendix A

Species replacement details for cophylogeny analysis

Some host species in the bartonella dataset were only identified to the genus level, but these genera were important to include because their exclusion would have reduced the breadth of the analysis and some represented unique families. Thus, a representative species was chosen based on a) close relatedness with the original host (same genus), b) geographic range overlap with the study capture location, and c) the availability of *cytb* sequences on GenBank with similar length to others in the dataset (~1000 base pairs). For *Micropteropus* sp. and *Epomophorus* sp. from Nigeria, only *Micropteropus pusillus* and *Epomophorus gambianus* had ranges that overlapped with the capture location. *Tylonycteris pachypus* was the only species with a suitable *cytb* sequence for *Tylonycteris* sp. For other representative species, multiple options fulfilled the above criteria:

Miniopterus sp. (Kenya) – *M. natalensis*, *M. fraterculus*

Myotis sp. (Peru) – *M. nigricans*, *M. keaysi*, *M. riparius*, *M. simus*

Pipistrellus sp. (UK) – *P. pipistrellus*, *P. nathusii*, *P. pygmaeus*

Hipposideros sp. (Malaysia) – H. diadema, H. armiger, H. ater, H. bicolor, H. cervinus,

H. cineraceus, H. larvatus, H. pomona

Rhinolophus sp. (Nigeria) – *R. landeri*, *R. fumigatus*

From these options, a random choice was drawn from the available set. *Miniopterus natalensis* was chosen to represent *Miniopterus* sp. from Kenya, *Myotis nigricans* for *Myotis* sp. from Peru, *Pipistrellus pipistrellus* for *Pipistrellus* sp. from the UK, *Hipposideros diadema* for *Hipposideros* sp. from Malaysia, and *Rhinolophus landeri* for *Rhinolophus* sp. from Nigeria. These replacements are marked with an asterisk (*) in Table S3.

For other bat species, no *cytb* sequences could be found or they were too short (much less than 1000 base pairs). Thus, a suitable replacement was found based on a) close relatedness with the original host (same genus), b) geographic range overlap with the study capture location, and c) the availability of *cytb* sequences on GenBank with similar length to others in the dataset (~1000 base pairs). *Phyllostomus discolor* is present in both Guatemala and Peru and only *Phyllostomus hastatus* is present in both locations. *Megaderma lyra* and *Megaerops ecaudatus* were the only other member of their genera in Vietnam to replace *Megaderma spasma* and *Megaerops niphanae*, respectively. For *Hipposideros commersoni*, this species has been split into three additional species previously recognized as subspecies – *H. gigas*, *H. thomensis*, and *H. vittatus*. Only *H. gigas* fulfilled both criteria for overlap with the capture location in Kenya and the availability of a suitable *cytb* sequence. For other replacement species, multiple options fulfilled the above criteria:

 $Rhinolophus\ borneensis\ subsp.\ chaseni\ and\ R.\ acuminatus\ (Vietnam)-R.\ affinis,\ R.$ $malayanus,\ R.\ pearsonii,\ R.\ stheno$

Hipposideros fulvus (Thailand) - H. armiger, H. ater, H. cineraceus, H. diadema, H. larvatus, H. lylei, H. pomona, H. pratti, H. turpis

From these options, a random selection was made. *Rhinolophus acuminatus* was replaced with *Rhinolophus malayanus*, *Rhinolophus borneensis* subsp. *chaseni* with *Rhinolophus affinis*, and *Hipposideros fulvus* with *Hipposideros cineraceus*. These replacements are marked with a dagger (†) in Table S3. Lei and Olival (2014) made similar replacements for species in their analysis, although without the stipulation that the geographic range of the substitute species should overlap with the capture location. The inclusion of this criterion is important in the present study because of the dual focus on bat phylogeny and sympatry. This stipulation was

only modified for *Chaerephon plicatus*, which has no representative *cytb* sequence in GenBank and no other representatives of the genus present in Thailand.

It would be computationally infeasible to test how each choice of replacement affects our results, however we perform a single sensitivity analysis by using a second set of suitable replacement species in the global fit tests and correlation between bat phylogeny and sympatry. For the sensitivity analysis, we chose *Miniopterus fraterculus* (AJ841975) to represent *Miniopterus* sp. from Kenya, *Chaerephon leucogaster* (GQ489166) for *Chaerephon plicatus* from Thailand, *Myotis riparius* (JX130570) for *Myotis* sp. from Peru, *Pipistrellus pygmaeus* (AJ504442) for *Pipistrellus* sp. from the UK, *Hipposideros pomona* (DQ054810) for *Hipposideros* sp. from Malaysia, *Hipposideros lylei* (JN247043) for *Hipposideros fulvus* from Thailand, *Rhinolophus stheno* (FJ185213) for *Rhinolophus acuminatus* from Vietnam, *Rhinolophus pearsonii* (JX502551) for *Rhinolophus borneensis* subsp. *chaseni* from Vietnam, *Rhinolophus fumigatus* (FJ457614) for *Rhinolophus* sp. from Nigeria.

Using the maximum likelihood trees of bat species and *Bartonella* genotypes, global fit tests find a strongly significant cophylogenetic signal (ParaFitGlobal = 13.37, P = 1E-5; m² global value = 8.54, P = 1E-4). Using ParaFit, 159/186 of host-parasite links were significant at the P \leq 0.05 level, 129/186 at the P \leq 0.005 level, and 103/186 at the P \leq 0.001 level. Using PACo, 93/186 of host-parasite links were below the median and 9 were above Q3+1.5(IQR). The correlation between bat phylogeny and sympatry remains strong with the substitute species (Pearson correlation coefficient = 0.31, P = 1E-5). Global fit tests were repeated using bat sympatry and the maximum likelihood tree of *Bartonella* genotypes, finding a significant trend (ParaFitGlobal = 106.3, P = 1E-5; m² global value = 57.5, P = 1E-4). Using ParaFit, 144/186 of host-parasite links were significant at the P \leq 0.05 level, 133/186 at the P \leq 0.005 level, and

126/186 at the P \leq 0.001 level. Using PACo, 93/186 of host-parasite links were below the median and 5 were above Q3+1.5(IQR). The optimal linear combination of the bat phylogeny and bat sympatry matrices using ParaFit was $\omega_{phy} = 1$ and $\omega_{geo} = 0$, ParaFitGlobal = 13.37; for PACo the optimal combination was $\omega_{phy} = 1$ and $\omega_{geo} = 0$, m^2 global value = 8.54. Our sensitivity analysis indicated that the choice of substitute species does not greatly affect the results of the cophylogeny tests.

Appendix B

Analysis of sampling bias

We looked for the presence of bias in the dataset by testing the correlation between the number of host-parasite links and sampling effort. Specifically, we used two measures of sampling effort: the number of published articles on each bat species found on Web of Science and the total sample size of each bat species tested in the individual studies that contribute to the dataset. There was a significant log-log correlation between the number of host-parasite links and Web of Science articles (Fig. S10a; Pearson correlation coefficient, r = 0.27, P = 0.03). The correlation became only marginally significant when the bat with the highest number of hostparasite links (Eidolon helvum, 35 links) was removed (Fig. S10b; Pearson correlation coefficient, r = 0.24, P = 0.05). There was a significantly positive log-log correlation between the number of links and individual species' sample sizes (Fig. S10c; Pearson correlation coefficient, r = 0.71, P = 4E-11). This correlation was still significant when the species with the highest number of host-parasite links (Eidolon helvum, 35 links) was removed (Fig. S10d; Pearson correlation coefficient, r = 0.66, P = 4E-09). This suggests that high levels of bartonella diversity found in several bat species are probably due in part to sampling bias, although this does not completely exclude the effects of ecological and evolutionary processes that may increase bartonella diversity in some bats.

Supplementary Material

Table S1. *Bartonella* citrate synthase (*gltA*) genotypes detected in bats included in the analysis dataset with GenBank accession numbers. Host bat genus and species were extracted from GenBank metadata or from published articles (Anh et al., 2015; Bai et al., 2015, 2012, 2011; Brook et al., 2015; Concannon et al., 2005; Judson et al., 2015; Kamani et al., 2014; Kosoy et al., 2010; Lin et al., 2012; Olival et al., 2015; Veikkolainen et al., 2014). Bats from Thailand were included from the CDC database (M. Kosoy, unpublished data).

Genotype	Host species	Location	gltA accession number
M406	Myotis daubentonii	UK	AJ871613
M62	Myotis mystacinus	UK	AJ871612
M207	Pipistrellus sp.	UK	AJ871614
M451	Nyctalus noctula	UK	AJ871615
M409	Pipistrellus sp.	UK	AJ871611
Cul-9	Lophostoma silvicolum	Peru	EF616479
R-191	Rousettus aegyptiacus	Kenya	HM363764
T-837	Triaenops persicus	Kenya	HM545138
H-556	Hipposideros commersoni	Kenya	HM545137
C-583	Coleura afra	Kenya	HM545136
M1-44	Miniopterus sp.	Kenya	HM545139
M2-491	Miniopterus sp.	Kenya	HM545140
M3-373	Miniopterus sp. Desmodus rotundus	Kenya	HM545141 HM597187
B29042 B29043	Desmodus rotundus Desmodus rotundus	Guatemala Guatemala	HM597188
B29043 B29044	Desmodus rotundus Desmodus rotundus	Guatemala	HM597189
B29044 B29107	Desmodus rotundus	Guatemala	HM597190
B29107 B29108	Desmodus rotundus, Carollia perspicillata	Guatemala	HM597191
B29114	Desmodus rotundus, Carollia perspicillata	Guatemala	HM597192
B29102	Pteronotus davyi	Guatemala	HM597193
B29109	Pteronotus davyi	Guatemala	HM597194
B29119	Desmodus rotundus	Guatemala	HM597195
B29122	Desmodus rotundus	Guatemala	HM597196
B29116	Phyllostomus discolor	Guatemala	HM597198
B29126	Carollia perspicillata, Sturnira lilium	Guatemala, Costa Rica	HM597199, KJ816674
B29230	Phyllostomus discolor	Guatemala	HM597200
B29115	Phyllostomus discolor	Guatemala	HM597201
B29110	Glossophaga soricina	Guatemala	HM597202
B29105	Pteronotus davyi	Guatemala	HM597203
B29112	Phyllostomus discolor	Guatemala	HM597204
B29134	Pteronotus davyi	Guatemala	HM597205
B29137	Sturnira lilium	Guatemala	HM597206
B29172	Micronycteris microtis	Guatemala	HM597207
B29111	Artibeus toltecus	Guatemala	HM597197
B32945	Desmodus rotundus	Peru	JQ071379
B32947	Phyllostomus discolor	Peru	JQ071387
B32954	Artibeus planirostris	Peru	JQ071382
B32946	Glossophaga soricina	Peru	JQ071383
B32943	Carollia perspicillata	Peru Peru, Costa Rica	JQ071384
B32960 B32955	Carollia perspicillata Carollia perspicillata	Peru, Costa Rica Peru	JQ071386, KJ816691 JQ071385
B32955 B32854	Caronia perspicinata Phyllostomus hastatus	Peru Peru	JQ071388 JQ071388
B32855	Pnytiostomus nastatus Desmodus rotundus	Peru	JQ071388 JQ071378
B32856	Vampyressa bidens	Peru	JQ071378 JQ071389
B32942	Myotis sp.	Peru	JQ071389 JQ071390
B32851	Artibeus obscurus	Peru	JQ071380

Genotype	Host species	Location	gltA accession number
B32953	Artibeus planirostris	Peru	JQ071381
No. 5	Miniopterus schreibersii	Taiwan	JF500511
No. 7	Miniopterus schreibersii	Taiwan	JF500513
AS050	Myotis myotis	Poland	JQ695835
AS071	Myotis myotis	Poland	JQ695834
2574/1	Myotis daubentonii	Finland	KF003129
1160/1	Myotis daubentonii	Finland	KF003122
1157/3	Eptesicus nilssoni	Finland	KF003115
Mr37079	Monophyllus redmani, Phyllonycteris poeyi	Puerto Rico, Dominican Republic	KJ530746, JX416249
Mr37078	Monophyllus redmani	Puerto Rico	KJ530745
Mr37077	Monophyllus redmani	Puerto Rico	KJ530744
Mr37075	Monophyllus redmani	Puerto Rico	KJ530743
Bc37076	Brachyphylla cavernarum	Puerto Rico	KJ530743 KJ530742
	Artibeus jamaicensis	Puerto Rico	KJ530742 KJ530741
Aj37081			
B23976	Eidolon helvum	Kenya	KM030507
B40005	Eidolon helvum	Cameroon	KM030518
B23979	Eidolon helvum	Kenya	KM030509
B24225	Eidolon helvum	Kenya	KM030511
B40396	Eidolon helvum	Tanzania	KM030522
B40400	Eidolon helvum	Tanzania	KM030523
B23812	Eidolon helvum, Rhinolophus landeri	Kenya, Nigeria	KM030504, KF418810
B24163	Eidolon helvum	Kenya	KM030510
B32120	Eidolon helvum	Nigeria	KM030512
B39301	Eidolon helvum	Ghana	KM030516
B39325	Eidolon helvum	Ghana	KM030517
B23975	Eidolon helvum	Kenya	KM030506
B39286	Eidolon helvum	Ghana	KM030514
B39296	Eidolon helvum	Ghana	KM030515
B40908	Eidolon helvum	Uganda	KM030526
B39249	Eidolon helvum	Ghana	KM030513
B40391	Eidolon helvum	Tanzania	KM030521
B40014	Eidolon helvum	Tanzania	KM030520
B40406	Eidolon helvum	Tanzania	KM030525
B23797	Eidolon helvum, Micropteropus pusillus, Epomophorus gambianus	Kenya, Nigeria	KM030503, KF418812, KF418808
Mi-BA38	Micropteropus sp.	Nigeria	KF418812
Eh-GB64	Eidolon helvum	Nigeria	KF418811
Rh-GB31	Rhinolophus sp.		KF418810
Ep-BA63	Epomophorus sp.	Nigeria Nigeria	
_	* * *	Nigeria	KF418808
Rh-GB59	Rhinolophus sp.	Nigeria	KF418809
Rh-GB1	Rhinolophus sp.	Nigeria	KF418807
Ep-GB65	Epomophorus sp.	Nigeria	KF418806
B110	Hipposideros larvatus, Hipposideros armiger	Vietnam	KP100360, KP100357
B109	Megaderma lyra	Vietnam	KP100359
B102	Rhinolophus chaseni	Vietnam	KP100358
B096	Hipposideros armiger	Vietnam	KP100357
B095	Hipposideros armiger	Vietnam	KP100356
B087	Hipposideros larvatus	Vietnam	KP100355
B081	Hipposideros larvatus	Vietnam	KP100354
B079	Rhinolophus chaseni	Vietnam	KP100353
B072	Megaerops niphanae	Vietnam	KP100352
B068	Rhinolophus acuminatus	Vietnam	KP100351
B064	Rhinolophus acuminatus	Vietnam	KP100350
דטטע	тиногорииз исинишиз	+ ICtilaiii	111 100330

Genotype	Host species	Location	gltA accession number
B063	Rhinolophus acuminatus	Vietnam	KP100349
B056	Rhinolophus acuminatus	Vietnam	KP100348
B055	Rhinolophus acuminatus	Vietnam	KP100347
B052	Rhinolophus acuminatus	Vietnam	KP100346
B050	Rhinolophus acuminatus	Vietnam	KP100345
B049	Rhinolophus sinicus	Vietnam	KP100344
B047	Rhinolophus sinicus	Vietnam	KP100343
B006	Rhinolophus acuminatus	Vietnam	KP100342
B005	Megaderma spasma	Vietnam	KP100341
B003	Rhinolophus acuminatus	Vietnam	KP100340
SK197	Tadarida plicata	Thailand	-
SK170	Tadarida plicata	Thailand	-
SK157	Tadarida plicata	Thailand	-
CR224	Hipposideros fulvus	Thailand	-
KP270	Hipposideros larvatus	Thailand	-
KP182	Hipposideros armiger, Hipposideros larvatus	Thailand	-
KP283b	Taphozous melanopogon	Thailand	-
SK163	Tadarida plicata	Thailand	-
KP277	Hipposideros larvatus	Thailand	-
KP293b	Hipposideros larvatus	Thailand	-
KEL08	Eidolon dupreanum	Madagascar	KP010191
KEL16	Eidolon dupreanum	Madagascar	KP010192
KEL17	Eidolon dupreanum	Madagascar	KP010193
I	Anoura geoffroyi	Costa Rica	KJ816666
III	Artibeus lituratus, Anoura geoffroyi, Sturnira mordax, Sturnira lilium	Costa Rica	KJ816680
III	Vampyressa thyone	Costa Rica	KJ816672
III	Carollia castanea	Costa Rica	KJ816683
III	Artibeus lituratus	Costa Rica	KJ816675
III	Platyrrhinus vittatus	Costa Rica	KJ816684
VII	Carollia sowelli	Costa Rica	KJ816690
XII	Myotis keaysi	Costa Rica	KJ816676
2308	Brucella melitensis	outgroup	AM040264
OV483	Rhizobium leguminosarum	outgroup	NZ_JQJS01000011
OAB	Ochrobactrum anthropi	outgroup	NZ_CP008820

Table S2. *Bartonella* citrate synthase (*gltA*) genotypes detected in ectoparasites included in the analysis dataset with GenBank accession numbers. Ectoparasite and host bat genus and species were extracted from GenBank metadata or from published articles (Billeter et al., 2012; Brook et al., 2015; Judson et al., 2015; Morse et al., 2012; Veikkolainen et al., 2014).

Genotype	Ectoparasite	Host species	Location	gltA accession number
NB-1.2	Siphonaptera sp.	Myotis brandtii	Finland	KF003137
AS025	Spinturnix myoti	Myotis myotis	Poland	JQ695839
AS033	Spinturnix myoti	Myotis myotis	Poland	JQ695838
AS036	Spinturnix myoti	Myotis myotis	Poland	JQ695837
AS048	Spinturnix myoti	Myotis myotis	Poland	JQ695836
AS067	Spinturnix myoti	Myotis myotis	Poland	JQ695840
Cg 462	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172074
Cg 401	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172072
Cg 454	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172071
Cg 414	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172070
Cg 433	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172069
Cg 443	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172068
Cg 465-2	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172067
Cg 713-2	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172066
Cg 405	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172065
Cg 424	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172064
Cg 417-2	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172063
Cg 426-1	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172062
Cg 436-3	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172061
Cg 418	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172060
Cg 423-2	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172059
Cg 423-1	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Bioko	JN172058
Cg 364	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172049
Cg 374	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172050
Cg 358-3	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172051
Cg 366-1	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172052
Cg 371	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172053
Cg 315-1	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172054
Cg 303-1	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172055
Cg 303-2	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172056
Cg 366	Cyclopodia greefi	Eidolon helvum	Equatorial Guinea: Annobón	JN172057
Cg K1-2	Cyclopodia greefi	Eidolon helvum	Ghana	JN172035
Cg K5-1	Cyclopodia greefi	Eidolon helvum	Ghana	JN172036
Cg K8-1	Cyclopodia greefi	Eidolon helvum	Ghana	JN172037
Cg Q22-1	Cyclopodia greefi	Eidolon helvum	Ghana	JN172038

Genotype	Ectoparasite	Host species	Location	gltA accession number
Cg Q98-1	Cyclopodia greefi	Eidolon helvum	Ghana	JN172039
Cg Q100-2	Cyclopodia greefi	Eidolon helvum	Ghana	JN172040
Cg Q130	Cyclopodia greefi	Eidolon helvum	Ghana	JN172041
Cg G35-2	Cyclopodia greefi	Eidolon helvum	Ghana	JN172042
Cg G31-1	Cyclopodia greefi	Eidolon helvum	Ghana	JN172043
Cg G38-2	Cyclopodia greefi	Eidolon helvum	Ghana	JN172044
Cg GG236	Cyclopodia greefi	Eidolon helvum	Ghana	JN172045
Cg GG48	Cyclopodia greefi	Eidolon helvum	Ghana	JN172046
Cg GG243-2	Cyclopodia greefi	Eidolon helvum	Ghana	JN172047
Cg GG243-3	Cyclopodia greefi	Eidolon helvum	Ghana	JN172048
E-124	Cyclopodia greefi	Eidolon helvum	Ghana	JN190887
E7	Cyclopodia horsfieldii	Pteropus hypomelanus	Malaysia	JX416257
E5	Cyclopodia horsfieldii	Pteropus hypomelanus	Malaysia	JX416256
P2874	Cyclopodia simulans	Ptenochirus jagori	Philippines	JX416255
27_3_4	Paradyschiria lineata	Noctilio leporinus	Panama	JX416254
DR0583	Trichobius adamsi	Macrotus waterhousii	Dominican Republic	JX416253
05_01_07	Phthiridium sp. scissa group	Rhinolophus pearsoni	Laos	JX416252
23_03_04	Strebla diaemi	Diaemus youngi	Panama	JX416251
CWD974	Trichobius johnsonae	Pteronotus personatus	Mexico	JX416248
RCO934	Pseudostrebla ribeiroi	Lophostoma silvicolum	Peru	JX416247
Mala11	Basilia (Tripselia) coronata	Tylonycteris sp.	Malaysia	JX416246
ZAG03	Basilia nattereri	Myotis nattererei	Slovenia	JX416241
JAE1033	Leptocyclopodia sp. nov.	Harpionycteris whiteheadi	Philippines	JX416239
Mala15	Phthiridium (Stylidia) fraterna	Hipposideros sp.	Malaysia	JX416238
DR05241	Trichobius adamsi	Macrotus waterhousii	Dominican Republic	JX416237
ZAG01	Trichobius corynorhinus	Corynorhinus townsendii	USA	JX416236
FG13	Paratrichobius longicrus complex	Artibeus lituratus	French Guyana, Costa Rica	JX416232, KJ816687
FG10	Paratrichobius longicrus complex	Artibeus lituratus	French Guyana	JX416231
KEL02-3	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010152
KEL02-4	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010153
KEL19-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010164
KEL09-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010159
KEL02-2	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010151
KEL11-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010160
KEL07-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010158
KEL17-2	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010163
KEL04-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010155
ANGB03-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010150
KEL04-2	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010156

Genotype	Ectoparasite	Host species	Location	gltA accession number
KEL02-5	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010154
KEL17-1	Cyclopodia dubia	Eidolon dupreanum	Madagascar	KP010162
II	Exastinion clovisi	Anoura geoffroyi	Costa Rica	KJ816688
III	Trichobius dugesii	Glossophaga soricina	Costa Rica	KJ816678
IV	Aspidoptera phyllostomatis	Artibeus jamaicensis	Costa Rica	KJ816682
V	Paratrichobius longicrus	Artibeus lituratus	Costa Rica	KJ816685
VIII	Trichobius joblingi	Carollia castanea	Costa Rica	KJ816686
X	Trichobius costalimai	Phyllostomus discolor	Costa Rica	KJ816665
XI	Trichobius keenani	Micronycteris microtis	Costa Rica	KJ816681
XII	Aspidoptera delatorrei	Sturnira lilium	Costa Rica	KJ816673
XIII	Anatrichobius scorzai	Myotis keaysi	Costa Rica	KJ816669
XIV	Anatrichobius scorzai	Myotis keaysi	Costa Rica	KJ816667
XV	Aspidoptera delatorrei	Sturnira lilium	Costa Rica	KJ816679
XVI	Paratrichobius dunni	Uroderma bilobatum	Costa Rica	KJ816692
XVII	Paratrichobius dunni	Uroderma bilobatum	Costa Rica	KJ816677
XIX	Megistopoda proxima	Sturnira lilium	Costa Rica	KJ816670
XX	Basilia sp.	Myotis keaysi	Costa Rica	KJ816689
2308	Brucella melitensis	-	outgroup	AM040264
OV483	Rhizobium leguminosarum	-	outgroup	NZ_JQJS01000011
OAB	Ochrobactrum anthropi	-	outgroup	NZ_CP008820

Table S3. Cytochrome b (*cytb*) sequences for bat species included in the analysis dataset with GenBank accession numbers. An asterisk (*) indicates that the species is a representative for sequences attributed only to the bat genus. A dagger (†) indicates that the original host species has no suitable *cytb* sequence in GenBank and was replaced by another species. A double dagger (‡) indicates that the host species name listed in the original article has been revised or reclassified. See Appendix A for details on species replacements. Host bat family and suborder were recorded based on the IUCN Red List of Threatened Species (IUCN, 2014), the Mammal Species of the World 3rd Edition (Wilson and Reeder, 2005), and published articles (Agnarsson et al., 2011; Teeling et al., 2002). Web of Science citations (as of August 2015) were recorded based on a search of the original host binomial species name. Study sample sizes for each species were quantified from original articles, using the original host species wherever a species-level replacement was made.

Host species	Family	Suborder	Region	cytb accession number	WoS citations	Study sample size	Number of links
Coleura afra	Emballonuridae	Yangochiroptera	Africa	JQ710752	6	sample size	1
	Emballonuridae Emballonuridae		Asia S/SE/SE	EF584221	28	2	1
Taphozous melanopogon		Yangochiroptera					1
Miniopterus natalensis*	Miniopteridae	Yangochiroptera	Africa	AJ841977	28	87	3
Miniopterus schreibersii	Miniopteridae	Yangochiroptera	Europe-Asia-Africa	EF530348	211	14	2
Chaerephon plicatus (Tadarida plicata)†‡	Molossidae	Yangochiroptera	Asia S/SE/SE	GQ489157	5	45	4
Pteronotus davyi	Mormoopidae	Yangochiroptera	America C/S/Carib	AF338672	20	10	5
Pteronotus personatus	Mormoopidae	Yangochiroptera	America C/S/Carib	KC011599	13	1	1
Noctilio leporinus	Noctilionidae	Yangochiroptera	America C/S/Carib	JX257161	64	1	1
Anoura geoffroyi	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ155495	42	6	3
Artibeus toltecus	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ376728	3	1	1
Artibeus jamaicensis	Phyllostomidae	Yangochiroptera	America C/S/Carib	GQ861667	235	19	2
Artibeus lituratus	Phyllostomidae	Yangochiroptera	America C/S/Carib	KP134571	135	13	5
Artibeus obscurus	Phyllostomidae	Yangochiroptera	America C/S/Carib	KP134536	19	10	1
Artibeus planirostris	Phyllostomidae	Yangochiroptera	America C/S/Carib	KP134540	40	16	2
Brachyphylla cavernarum	Phyllostomidae	Yangochiroptera	America C/S/Carib	AY572383	14	2	1
Carollia castanea	Phyllostomidae	Yangochiroptera	America C/S/Carib	AF187022	27	20	2
Carollia perspicillata	Phyllostomidae	Yangochiroptera	America C/S/Carib	KF019723	354	49	6
Carollia sowelli	Phyllostomidae	Yangochiroptera	America C/S/Carib	AF511973	15	5	1
Desmodus rotundus	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ155477	376	50	10
Diaemus youngi	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ155475	22	1	1
Glossophaga soricina	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ392516	217	18	3
Lophostoma silvicolum (Tonatia silvicola)‡	Phyllostomidae	Yangochiroptera	America C/S/Carib	JF923862	15	2	2
Macrotus waterhousii	Phyllostomidae	Yangochiroptera	America C/S/Carib	AY380745	22	2	2
Micronycteris microtis	Phyllostomidae	Yangochiroptera	America C/S/Carib	AY380756	18	3	2
Monophyllus redmani	Phyllostomidae	Yangochiroptera	America C/S/Carib	AF382888	17	20	4

Host species	Family	Suborder	Region	cytb accession	WoS	Study	Number
	•			number	citations	sample size	of links
Phyllonycteris poeyi	Phyllostomidae	Yangochiroptera	America C/S/Carib	GU937240	7	1	1
Phyllostomus hastatus†	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ155479	94	17	7
Platyrrhinus vittatus	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ154178	1	2	1
Sturnira lilium	Phyllostomidae	Yangochiroptera	America C/S/Carib	KC753849	126	20	6
Sturnira mordax	Phyllostomidae	Yangochiroptera	America C/S/Carib	KC753824	6	11	1
Uroderma bilobatum	Phyllostomidae	Yangochiroptera	America C/S/Carib	AY169955	33	4	2
Vampyressa bidens	Phyllostomidae	Yangochiroptera	America C/S/Carib	FJ154181	5	3	1
Vampyressa thyone	Phyllostomidae	Yangochiroptera	America C/S/Carib	DQ312431	4	2	1
Corynorhinus townsendii	Vespertilionidae	Yangochiroptera	America N	KC747680	54	1	1
Eptesicus nilssonii	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	GQ272582	46	1	1
Myotis brandtii	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	AF376844	60	1	1
Myotis daubentonii	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	AB106589	243	6	2
Myotis keaysi	Vespertilionidae	Yangochiroptera	America C/S/Carib	JX130526	5	9	4
Myotis myotis	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	AM261883	2751	7	3
Myotis mystacinus	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	AB106605	81	2	1
Myotis nattereri	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	JF412413	143	2	1
Myotis nigricans*	Vespertilionidae	Yangochiroptera	America C/S/Carib	KP134584	58	6	1
Nyctalus noctula	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	JX570902	195	1	1
Pipistrellus pipistrellus*	Vespertilionidae	Yangochiroptera	Europe-Asia C/E	KF874521	983	36	2
Tylonycteris pachypus*	Vespertilionidae	Yangochiroptera	Asia S/SE/SE	EF517315	15	1	1
Hipposideros armiger	Hipposideridae	Yinpterochiroptera	Asia S/SE/SE	JX849197	42	25	2
Hipposideros diadema*	Hipposideridae	Yinpterochiroptera	Asia S/SE/SE	DQ219421	13	1	1
Hipposideros fulvus†	Hipposideridae	Yinpterochiroptera	Asia S/SE/SE	DQ054809	12	1	1
Hipposideros commersoni‡	Hipposideridae	Yinpterochiroptera	Africa	EU934469	3	4	1
Hipposideros larvatus	Hipposideridae	Yinpterochiroptera	Asia S/SE/SE	EU434949	19	32	7
Triaenops persicus	Hipposideridae	Yinpterochiroptera	Africa	EU798758	7	8	1
Megaderma lyra†	Megadermatidae	Yinpterochiroptera	Asia S/SE/SE	DQ888678	124	3	2
Eidolon dupreanum	Pteropodidae	Yinpterochiroptera	Africa	KM226003	10	94	8
Eidolon helvum	Pteropodidae	Yinpterochiroptera	Africa	JN398200	101	383	35
Epomophorus gambianus*	Pteropodidae	Yinpterochiroptera	Africa	JF728757	8	53	2
Harpyionycteris whiteheadi	Pteropodidae	Yinpterochiroptera	Asia S/SE/SE	DQ445708	1	1	1
Megaerops niphanae†	Pteropodidae	Yinpterochiroptera	Asia S/SE/SE	GQ410214	1	2	1
Micropteropus pusillus*	Pteropodidae	Yinpterochiroptera	Africa	JF728734	3	11	1
Ptenochirus jagori	Pteropodidae	Yinpterochiroptera	Asia S/SE/SE	AB046325	8	1	1
Pteropus hypomelanus	Pteropodidae	Yinpterochiroptera	Asia S/SE/SE	AB062472	44	2	2
Rousettus aegyptiacus	Pteropodidae	Yinpterochiroptera	Africa	JF728760	254	105	1
Rhinolophus acuminatus†	Rhinolophidae	Yinpterochiroptera	Asia S/SE/SE	FJ185205	2	17	2

Host species	Family	Suborder	Region	cytb accession number	WoS citations	Study sample size	Number of links
Rhinolophus borneensis subsp. chaseni†	Rhinolophidae	Yinpterochiroptera	Asia S/SE/SE	DQ987605	2	5	7
Rhinolophus landeri*	Rhinolophidae	Yinpterochiroptera	Africa	EU436668	5	18	2
Rhinolophus pearsonii	Rhinolophidae	Yinpterochiroptera	Asia S/SE/SE	JX502551	2	1	1
Rhinolophus sinicus	Rhinolophidae	Yinpterochiroptera	Asia S/SE/SE	HM134917	18	7	2
Ornithorhynchus anatinus	=	-	outgroup	HQ379928	-	=	=.
Rattus rattus	-	-	outgroup	AB033702	-	-	
Equus caballus	-	-	outgroup	D82932	-	-	_

Fig. S1. Maximum likelihood (likelihood = -28954.11) phylogenetic tree of bat species using 1140 base pair sequences of the mitochondrial *cytb* gene aligned using MAFFT (Katoh and Standley, 2013). The tree was assembled in MEGA6 (Tamura et al., 2013) using the GTR+ Γ +I substitution model with four gamma categories (Nei and Kumar, 2000). Node support values were estimated from 1000 bootstrap replicates; only support values \geq 50% are shown.

Fig. S2. Maximum likelihood (likelihood = -9839.48) phylogenetic tree of *Bartonella* genotypes using 333 base pair sequences of the genomic *gltA* gene aligned using MAFFT (Katoh and Standley, 2013). The tree was assembled in MEGA6 (Tamura et al., 2013) using the GTR+ Γ +I substitution model with four gamma categories (Nei and Kumar, 2000). Node support values were estimated from 1000 bootstrap replicates; only support values \geq 50% are shown.

Table S4. Global fit test results from ParaFit and PACo analyses. P-values were calculated from global fits (ParaFit and PACo) using 10000 permutations.

Test of cophylogeny (ML	trees)	Test of sympatry (ML trees)		
ParaFit		ParaFit		
ParaFitGlobal	12.07	ParaFitGlobal	70.42	
p-value	1E-05	p-value	1E-05	
F1 statistics with p-value < 0.05	157/186	F1 statistics with p-value <0.05	146/186	
F1 statistics with p-value < 0.005	122/186	F1 statistics with p-value <0.005	135/186	
F1 statistics with p-value < 0.001	96/186	F1 statistics with p-value < 0.001	125/186	
PACo		PACo		
m ² global value	8.11	m ² global value	56.98	
p-value	1E-04	p-value	1E-04	
Residuals below overall median	93/186	Residuals below overall median	93/186	
Number of outliers (>1.5xIQR)	10	Number of outliers (>1.5xIQR)	5	
Test of cophylogeny (Bayesia	nn trees)	Test of sympatry (Bayesian	trees)	
ParaFit		ParaFit		
ParaFitGlobal	30.16	ParaFitGlobal	50.20	
p-value	1E-05	p-value	1E-05	
F1 statistics with p-value < 0.05	182/186	F1 statistics with p-value <0.05	159/186	
F1 statistics with p-value < 0.005	180/186	F1 statistics with p-value <0.005	152/186	
F1 statistics with p-value < 0.001	180/186	F1 statistics with p-value < 0.001	145/186	
PACo		PACo		
m ² global value	17.16	m ² global value	53.13	
p-value	1E-04	p-value	1E-04	
Residuals below overall median	93/186	Residuals below overall median	93/186	
Number of outliers (>1.5xIQR)	8	Number of outliers (>1.5xIQR)	15	

30 IQR – interquartile range.

Fig. S3. Bayesian phylogeny of bat host species reconstructing bat families, shown by colored branches. Posterior probabilities for nodes are shown as circles (●) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the family at that node (Family.prob). Mean tree likelihood = -27928.95, ESS = 16066; mean family tree likelihood = -57.93, ESS = 15472.

Fig. S4. Bayesian phylogeny of bat host species reconstructing bat superfamilies, shown by colored branches. Posterior probabilities for nodes are shown as circles (\bullet) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the bat superfamily at that node (Superfamily.prob). Mean tree likelihood = -27928.95, ESS = 16066; mean superfamily tree likelihood = -30.75, ESS = 15199.

47 48

Fig. S5. Bayesian phylogeny of bat host species reconstructing bat suborders, shown by colored branches. Posterior probabilities for nodes are shown as circles (•) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the bat suborder at that node (Suborder.prob). Mean tree likelihood = -27928.95, ESS = 16066; mean suborder tree likelihood = -13.86, ESS = 15871.

Fig. S6. Bayesian phylogeny of bat host species reconstructing bat geographic regions, shown by colored branches. Posterior probabilities for nodes are shown as circles (\bullet) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the geographic region at that node (Region.prob). Note the geographic region represents where the bat host was captured, which may not reflect its total range. Mean tree likelihood = -27928.95, ESS = 16066; mean region tree likelihood = -60.51, ESS = 16166.

Fig. S7. Bayesian phylogeny of *Bartonella* genotypes reconstructing bat host families, shown by colored branches. Posterior probabilities for nodes are shown as circles (\bullet) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the bat host family at that node (Family.prob). Mean tree likelihood = -9981.92, ESS = 2713; mean family tree likelihood = -125.52, ESS = 1028. Details on tip labels for *Bartonella* genotypes and associated host species are listed in Table S1 and S2.

Fig. S8. Bayesian phylogeny of *Bartonella* genotypes reconstructing bat host superfamilies, shown by colored branches. Posterior probabilities for nodes are shown as circles (\bullet) scaled by size from 0 to 1 (Posterior.prob) and colored by the support for the bat host suborder at that node (Superfamily.prob). Mean tree likelihood = -9981.92, ESS = 2713; mean superfamily tree likelihood = -60.36, ESS = 525. Details on tip labels for *Bartonella* genotypes and associated host species are listed in Table S1 and S2.

Fig. S9. Results of global fit comparisons based on analysis of host phylogeny and *Bartonella* genotypes, divided between genotypes found in bat hosts and ectoparasites. ML.PACo.resid – individual residuals from the PACo global fit using a maximum likelihood tree, BEAST.PACo.resid – individual residuals from the PACo global fit using a Bayesian tree, ML.ParaFit.F1 – F1 fit statistics from the ParaFit global fit using a maximum likelihood tree, BEAST.ParaFit.F1 – F1 fit statistics from the ParaFit global fit using a Bayesian tree.

Fig. S10. Results of sampling bias tests for bat species and *Bartonella* genotypes. a) log-log correlation between the number of host-parasite links and Web of Science articles; b) log-log correlation between the number of host-parasite links and Web of Science articles, *Eidolon helvum* removed; c) log-log correlation between the number of links and individual species sample sizes; and d) log-log correlation between the number of links and individual species sample sizes, *Eidolon helvum* removed.

90 **References**

- 91 Agnarsson, I., Zambrana-Torrelio, C.M., Flores-Saldana, N.P., May-Collado, L.J., 2011. A time-
- 92 calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLOS Curr. 3,
- 93 RRN1212. doi:10.1371/currents.RRN1212
- Anh, P.H., Van Cuong, N., Son, N.T., Tue, N.T., Kosoy, M.Y., Woolhouse, M.E., Baker, S.,
- 95 Bryant, J.E., Thwaites, G., Carrique-Mas, J.J., Rabaa, M.A., 2015. Diversity of
- 96 Bartonella spp. in bats, southern Vietnam. Emerg. Infect. Dis. 21, 1266–1267.
- 97 doi:10.3201/eid2107.141760
- 98 Bai, Y., Hayman, D.T., McKee, C.D., Kosoy, M.Y., 2015. Classification of *Bartonella* strains
- associated with straw-colored fruit bats (*Eidolon helvum*) across Africa using a multi-
- locus sequence typing platform. PLoS Negl. Trop. Dis. 9, e0003478.
- doi:10.1371/journal.pntd.0003478
- Bai, Y., Kosoy, M.Y., Recuenco, S., Alvarez Castillo, D., Moran, D., Turmelle, A.S., Ellison, J.,
- Garcia, D.L., Estevez, A., Lindblade, K., Rupprecht, C.E., 2011. *Bartonella* spp. in bats,
- 104 Guatemala. Emerg. Infect. Dis. 17, 1269–1272. doi:10.3201/eid1707.101867
- Bai, Y., Recuenco, S., Gilbert, A.T., Osikowicz, L.M., Gomez, J., Rupprecht, C.E., Kosoy, M.Y.,
- 2012. Prevalence and diversity of *Bartonella* spp. in bats in Peru. Am. J. Trop. Med. Hyg.
- 107 87, 518–523. doi:10.4269/ajtmh.2012.12-0097
- Billeter, S.A., Hayman, D.T., Peel, A.J., Baker, K.S., Wood, J.L., Cunningham, A.A., Suu-Ire,
- 109 R.D., Dittmar, K., Kosoy, M.Y., 2012. *Bartonella* species in bat flies (Diptera:
- Nycteribiidae) from western Africa. Parasitology 139, 324–329.
- doi:10.1017/S0031182011002113
- Brook, C.E., Bai, Y., Dobson, A.P., Osikowicz, L.M., Ranaivoson, H.C., Zhu, Q., Kosoy, M.Y.,

113 Dittmar, K., 2015. Bartonella spp. in fruit bats and blood-feeding ectoparasites in 114 Madagascar. PLoS Negl. Trop. Dis. 9, e0003532. doi:10.1371/journal.pntd.0003532 115 Concannon, R., Wynn-Owen, K., Simpson, V., Birtles, R.J., 2005. Molecular characterization of 116 haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. Parasitology 131, 489– 117 496. doi:10.1017/S0031182005008097 118 IUCN, 2014. The IUCN Red List of threatened species [WWW Document]. URL 119 http://www.iucnredlist.org/ 120 Judson, S., Frank, H., Hadly, E., 2015. Bartonellae are prevalent and diverse in Costa Rican bats 121 and bat flies. Zoonoses Public Health 62, 609–617. doi:10.1111/zph.12188 122 Kamani, J., Baneth, G., Mitchell, M., Mumcuoglu, K.Y., Gutiérrez, R., Harrus, S., 2014. 123 Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West 124 Africa. Vector-Borne Zoonotic Dis. 14, 625–632. doi:10.1089/vbz.2013.1541 125 Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: 126 improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 127 doi:10.1093/molbev/mst010 128 Kosoy, M.Y., Bai, Y., Lynch, T., Kuzmin, I. V, Niezgoda, M., Franka, R., Agwanda, B., 129 Breiman, R.F., Rupprecht, C.E., 2010. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 130 16, 1875–1881. doi:10.3201/eid1612.100601 131 Lei, B.R., Olival, K.J., 2014. Contrasting patterns in mammal-bacteria coevolution: Bartonella 132 and Leptospira in bats and rodents. PLoS Negl. Trop. Dis. 8, e2738. 133 doi:10.1371/journal.pntd.0002738 134 Lin, J.-W., Hsu, Y.-M., Chomel, B.B., Lin, L.-K., Pei, J.-C., Wu, S.-H., Chang, C.-C., 2012. 135 Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new

136 potential reservoir of *Bartonella*. Vet. Microbiol. 156, 119–126. 137 doi:10.1016/j.vetmic.2011.09.031 138 Morse, S.F., Olival, K.J., Kosoy, M.Y., Billeter, S.A., Patterson, B.D., Dick, C.W., Dittmar, K., 139 2012. Global distribution and genetic diversity of *Bartonella* in bat flies 140 (Hippoboscoidea, Streblidae, Nycteribiidae). Infect. Genet. Evol. 12, 1717–23. 141 doi:10.1016/j.meegid.2012.06.009 142 Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University Press, New 143 York. 144 Olival, K.J., Dittmar, K., Bai, Y., Rostal, M.K., Lei, B.R., Daszak, P., Kosoy, M.Y., 2015. 145 Bartonella spp. in a Puerto Rican bat community. J. Wildl. Dis. 51. doi:10.7589/2014-04-146 113 147 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular 148 evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. 149 doi:10.1093/molbev/mst197 150 Teeling, E.C., Madsen, O., Van den Bussche, R.A., de Jong, W.W., Stanhope, M.J., Springer, 151 M.S., 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old 152 World rhinolophoid microbats. Proc. Natl. Acad. Sci. 99, 1431–1436. 153 doi:10.1073/pnas.022477199 154 Veikkolainen, V., Vesterinen, E.J., Lilley, T.M., Pulliainen, A.T., 2014. Bats as reservoir hosts 155 of human bacterial pathogen, Bartonella mayotimonensis. Emerg. Infect. Dis. 20, 960-156 967. doi:10.3201/eid2006.130956 157 Wilson, D., Reeder, D.M., 2005. Mammal species of the world: a taxonomic and geographic 158 reference. Smithsonian Institution Press, Washington, D.C.