CEIT 418 Data Science Project

As your final data science project for CEIT 418, you will explore an educational dataset, and build a classification machine learning model. As the submission, you should submit in OdtuClass the following items:

- 1. The url of the Google Colab document, and
- 2. The PDF version of the complete notebook.

Submissions missing any of the files will not be evaluated.

In the first part, mostly you are expected to explore different tables (possible by using functions such as head, shape, info, and describe), deal with duplicate records and missing values, and perform some exploratory tasks.

In the second part, you will build a classification model and report its accuracy.

Important Information

For any action you take on the data, you should **explain your rationale** (e.g., I took into account colmuns X and Y when detecting duplicates because Z). Also, you should **provide an explanation/interpretation for outputs** produced by your code (e.g., based on this result, A and B columns can be dropped since they carry mostly missing values).

About the Dataset

For the final project, you will work on a public educational dataset shared by UK Open University. Although throughout this document you will be provided with sufficient information about this public dataset, you are strongly recommended to refer to https://analyse.kmi.open.ac.uk/open_dataset for more detailed information.

There is also Kaggle page where you can see some analysis performed shared by other publicly. I think they can be also helpful if you want to explore the dataset beyond this assignment. https://www.kaggle.com/datasets/rocki37/open-university-learning-analytics-dataset

1. Exploratory Analysis

1.1. Courses Table

Courses table (courses.csv) contains the list of all available modules and their presentations.

The columns are:

- code_module code name of the module, which serves as the identifier.
- **code_presentation** code name of the presentation. It consists of the year and "B" for the presentation starting in February and "J" for the presentation starting in October.
- length length of the module-presentation in days.

The structure of B and J presentations may differ and therefore it is good practice to analyse the B and J presentations separately. Nevertheless, for some presentations the corresponding previous B/J presentation do not exist and therefore the J presentation must be used to inform the B presentation or vice versa. In the dataset this is the case of CCC, EEE and GGG modules.

```
import numpy as np
import pandas as pd

courses = pd.read_csv("courses.csv")
print(courses.shape)
courses.head()
```

(22, 3)

	code_module	code_presentation	module_presentation_length
0	AAA	2013J	268
1	AAA	2014J	269
2	BBB	2013J	268
3	BBB	2014J	262
4	BBB	2013B	240

TASK1: Identify and treat duplicate/missing values (if there is any).

TASK2: Find out how many courses started in February vs October, and compare their length. Interpret the results.

```
forj=courses[courses["code_presentation"].str.contains("J")]
forb=courses[courses["code_presentation"].str.contains("B")]
print(forj.shape[0], forb.shape[0])
#there are 13 values for october and 9 values for februrary there are more values.
```

13 9

→ 1.2. Student Info Table

StudentInfo (studentInfo.csv) file contains **demographic** information about the students together with their final result. File contains the following columns:

- code_module an identification code for a module on which the student is registered.
- **code_presentation** the identification code of the presentation during which the student is registered on the module.
- id_student a unique identification number for the student.
- **gender** the student's gender.
- **region** identifies the geographic region, where the student lived while taking the module-presentation.
- highest_education highest student education level on entry to the module presentation.
- **imd_band** specifies the Index of Multiple Depravation band of the place where the student lived during the module-presentation.
- age_band band of the student's age.
- num_of_prev_attempts the number times the student has attempted this module.
- **studied_credits** the total number of credits for the modules the student is currently studying.
- disability indicates whether the student has declared a disability.
- **final_result** student's final result in the module-presentation.

```
student = pd.read_csv("studentInfo.csv")
print(student.shape)
student.head()
```

(32593, 12)

	code_module	code_presentation	id_student	gender	region	highest_educa
0	AAA	2013J	11391	М	East Anglian Region	HE Qualifi
1	AAA	2013J	28400	F	Scotland	HE Qualifi
2	AAA	2013J	30268	F	North Western Region	A Level or Equi
3	AAA	2013J	31604	F	South East Region	A Level or Equi
4	AAA	2013J	32885	F	West Midlands Region	Lower Than A

TASK1: Identify and treat duplicate/missing values (if there is any)

```
print(student.isna().sum())
print(student.duplicated().sum())
```

#there are plenty number of missing values so dropping 1111 lines is not a good

code_module	0
code_presentation	0
id_student	0
gender	0
region	0
highest_education	0
imd_band	1111
age_band	0
num_of_prev_attempts	0
studied_credits	0
disability	0
final_result	0
dtype: int64	
0	

```
mode=student["imd_band"].mode()
# we get the mode as 20-30%
student['imd_band'].fillna("20-30%", inplace=True)
student["imd_band"].isna().sum()
```

TASK2: Treating categorical variables.

For this table, besides fixing any potential issue about duplicate/missing values, you are expected to explore the categorical variables: such as highest_education, imd_band, and age_band.

In particular, you may want to check if some categories of highest_education, imd_band, age_band variables (e.g., Post Graduate Qualification in highest_education) contain few instances. In such cases, you may need to merge the minority categories with a major category and even dedice to create a new set of (fewer) categories based on the existing ones. In some cases, you may even want to decide the reduce the number of categories (if you think they are many).

As long as you provide the rationale, you can decide such details by yourself. You should work on AT LEAST TWO categorical variables in this task.

SECOND CATEGORICAL VARIABLE

according to my searchings post graduate qualification and HE qualification t
filter1 = student.loc[student["highest_education"].str.contains("Post")==True,"
filter1.shape

(313,)

student["highest_education"].replace("Post Graduate Qualification", "HE Qualifi
filter2 = student.loc[student["highest_education"].str.contains("Post")==True,"
filter2.shape

(0,)

TASK3: Demographic Information and Performance Levels

More importantly for this table you are expected to explore various relationships between final_result and at least three categorical variable (e.g., did students with HE qualification perform better, did students with low imd_band withdraw more often, or did geographic region play any role? etc.). For this purpose you can visualize data and compute some basic statistics.

You must use at least two different chart types (e.g., bar or line or pie) to illustrate how the success/failure rates differ between different categories (e.g., education level, regions, imd_band, age, etc.). At least in one case, the chart should also denote the gender to illustrate the possible interaction between gender and the other categorical variable (e.g., do european females perform better than asian males -just an example :)).

import matplotlib.pyplot as plt
import seaborn as sns

1) association between final results and number of attempts for modules accor
plt.figure(figsize=(10,6))

sns.barplot(x='final_result', y='num_of_prev_attempts', hue='gender', data=stucplt.title('Final Results According to Number of Attempts',fontweight="bold",forplt.xlabel('Final Result')

plt.ylabel('Number of Attempts')

Text(0, 0.5, 'Number of Attempts')

2) association between disabilities and finas results

```
freq_table = pd.DataFrame(student[['final_result',"disability"]].value_counts()
freq_table
freq_table.reset_index()

freq_table.plot(kind="line", color="lightgreen", figsize = (15,6))
plt.title('numerical distribution about final results according to disability',
plt.xlabel('number of student')
plt.ylabel('final results with disability(yes/no)')
```

interpretation: in general people with no disabilities tend to pass

3) association between success and education level

freq_table2 = pd.DataFrame(student[['final_result', "highest_education"]].value
freq_table2.plot(kind="barh", figsize = (15,6), color="lightblue")

✓ 1.3. Registration Table

Registration table (studentRegistration.csv) contains information about the time when the student registered for the module presentation. For students who unregistered the date of unregistration is also recorded. File contains five columns:

- code_module an identification code for a module.
- **code_presentation** the identification code of the presentation.
- id_student a unique identification number for the student.
- date_registration the date of student's registration on the module presentation, this is
 the number of days measured relative to the start of the module-presentation (e.g. the
 negative value -30 means that the student registered to module presentation 30 days
 before it started).
- date_unregistration date of student unregistration from the module presentation, this
 is the number of days measured relative to the start of the module-presentation.
 Students, who completed the course have this field empty. Students who unregistered
 have Withdrawal as the value of the final_result column in the studentInfo.csv
 file.

```
regist = pd.read_csv("studentRegistration.csv")
print(regist.shape)
regist.head()
```

(32593, 5)

	code_module	code_presentation	id_student	date_registration	date_unreg
0	AAA	2013J	11391	-159.0	
1	AAA	2013J	28400	-53.0	
2	AAA	2013J	30268	-92.0	
3	AAA	2013J	31604	-52.0	
4	AAA	2013J	32885	-176.0	

TASK1: As the first task, you need to ensure that there are no conflicts between studentRegistration.csv and studentInfo.csv dataset in terms of **Withdrawal** status of *unregistered* students. For example, if a student unregistered from a course at some point (which can be found in "studentRegistration.csv"), his/her final_result should be **Withdrawal**.

```
df1 = pd.read_csv('studentRegistration.csv')
df2 = pd.read_csv('studentInfo.csv')
df3 = df1.merge(df2, on=['id_student'], how='outer')
(df3[df3["final_result"]=="Withdrawn"].id_student==np.NAN).sum()

#yes there are no conflicts between two datasets since the output comes as zero
```

TASK2: Categorize students based on the day they registered for a course. In other words, you need to **bin** the registration data based on the date_registration column. Just to illustrate this idea, you can group students into categories such as "Very early birds", "early birds", "in-time", and "late-comers". You can use the categories given in this example or create your own categories.

```
print(regist["date_registration"].max(),
regist["date_registration"].min(),
regist["date registration"].median(),
regist["date_registration"].mean())
    167.0 -322.0 -57.0 -69.4113002335013
group_names = ["class oppenners", 'early comers', 'late comers']
bins= [-330, -57, 0, 170]
register=pd.cut(regist["date_registration"], bins, labels=group_names)
register
    0
              class oppenners
    1
                 early comers
    2
              class oppenners
    3
                 early comers
              class oppenners
    32588
                 early comers
    32589
                 early comers
    32590
              class oppenners
    32591
                 early comers
    32592
                 early comers
    Name: date_registration, Length: 32593, dtype: category
    Categories (3, object): ['class oppenners' < 'early comers' < 'late
    comers'l
```

to find the bin values look at the data structure

TASK3: Categorize students based on the day they *unregistered* a course. In other words, you need to **bin** registration date based on the date_unregistration column. You are free to determine the number and the name of the categories (as in Task1).

to find the bin values look at the data structure

```
print(regist["date_unregistration"].max(),
regist["date_unregistration"].min(),
regist["date unregistration"].median(),
regist["date_unregistration"].mean())
    444.0 -365.0 27.0 49.757644956314536
mask = regist[regist['date unregistration'].isna()==False]
groupnames=["earlies", "close calls", "later comings"]
bins= [-365, 27, 49, 444]
unregister=pd.cut(mask["date_unregistration"], bins, labels=groupnames)
unregister
    2
                    earlies
    15
              later comings
    22
              later comings
    29
              later comings
    41
              later comings
    32576
             later comings
    32577
             later comings
    32578
              later comings
    32586
                close calls
    32591
              later comings
    Name: date_unregistration, Length: 10072, dtype: category
    Categories (3, object): ['earlies' < 'close calls' < 'later comings']</pre>
```

regist["unreg. label"]=unregister
regist["regist. label"]=register
regist.head()

	code_module	code_presentation	id_student	date_registration	date_unreg
0	AAA	2013J	11391	-159.0	
1	AAA	2013J	28400	-53.0	
2	AAA	2013J	30268	-92.0	

TASK4: Choose *THREE variables* from demographic data (studentInfo.csv), and explore if there is some relationship between students' registration/unregistration behaviour and the chosen demographic variables (e.g., did students from HE registered early? did male students unregistered sooner than female students?). You are free in exploring the data to answer similar questions that you determine. If you find no relationship, this is totally fine. Just remember that your analysis should be accompanied with meaningful interpretations.

to make it easier combine two dataframe

df = regist.merge(student, on=['id_student'], how='outer')
df.head()

	code_module_x	code_presentation_x	id_student	date_registration	date_u
0	AAA	2013J	11391	-159.0	
1	AAA	2013J	28400	-53.0	
2	AAA	2013J	30268	-92.0	
3	AAA	2013J	31604	-52.0	
4	AAA	2013J	32885	-176.0	

```
# first variable : gender and registration
pd.DataFrame(df[["regist. label", "gender"]].value_counts())
```

male and female students tend to come to class early the proportion of late (
rest of the students

0

regist. label	gender	
class oppenners	M	12295
early comers	M	11546
class oppenners	F	8582
early comers	F	8025
late comers	F	172
	M	117

second variable : final results and unregistriation

df = pd.merge(regist, student, on='id_student')

pd.DataFrame(df.groupby(['final_result', 'regist. label']).size())

in fail situation, unexpectedly students mostly class openers. almost all of
maybe it can be said that coming early has an effect on passing
#in general, late comers are form minority of the students

0

final_result	regist. label	
Distinction	class oppenners	1745
	early comers	1862
	late comers	16
Fail	class oppenners	3870
	early comers	4524
	late comers	74
Pass	class oppenners	7231
	early comers	7339
	late comers	109
Withdrawn	class oppenners	8031
	early comers	5846
	late comers	90

```
# third variable : age band and unregistration
pd.DataFrame(df[["regist. label", "age_band"]].value_counts())
# students who have age between 0-35 tend to come to classes very early
# students who have age between 35-55 are mostly early comers
# ages 55 and more are minority of the age groups
```

0

regist. label	age_band	
class oppenners	0-35	15057
early comers	0-35	13695
	35-55	5740
class oppenners	35-55	5661
late comers	0-35	181
class oppenners	55<=	159
early comers	55<=	136
late comers	35-55	107
	55<=	1

→ 1.4. Course Components Table

Course components table (moodle.csv) contains information about the available materials in the Moodle LMS. Typically these are html pages, pdf files, etc. Students have access to these materials online and their interactions with the materials are recorded. The moodle.csv file contains the following columns:

- id_site an identification number of the material.
- **code_module** an identification code for module.
- code_presentation the identification code of presentation.
- activity_type the role associated with the module material.
- week_from the week from which the material is planned to be used.
- week_to week until which the material is planned to be used.

```
moodle = pd.read_csv("moodle.csv")
print(moodle.shape)
moodle.head()
```

(6364, 6)

.(week_t	week_from	activity_type	code_presentation	code_module	<pre>id_site</pre>	
1	Na	NaN	resource	2013J	AAA	546943	0
1	Na	NaN	oucontent	2013J	AAA	546712	1
1	Na	NaN	resource	2013J	AAA	546998	2
1	Na	NaN	url	2013J	AAA	546888	3
1	Na	NaN	resource	2013J	AAA	547035	4

TASK1: In this dataset, some columns contain mainly missing values. Detect them and drop them to save space in the memory.

print(moodle.isna().sum())

there are 6364 rows and 5243 of them have na values at two variables if we dr
rows we lost so much data so 1 drop the columns

moodle.dropna(axis=1,inplace=True)
moodle

id_site	0
code_module	0
code_presentation	0
activity_type	0
week_from	5243
week_to	5243

dtype: int64

	id_site	code_module	code_presentation	activity_type
0	546943	AAA	2013J	resource
1	546712	AAA	2013J	oucontent
2	546998	AAA	2013J	resource
3	546888	AAA	2013J	url
4	547035	AAA	2013J	resource
6359	897063	GGG	2014J	resource
6360	897109	GGG	2014J	resource
6361	896965	GGG	2014J	oucontent
6362	897060	GGG	2014J	resource
6363	897100	GGG	2014J	resource

6364 rows × 4 columns

TASK2: First identify the top 5 popular course component (activity_type) across all courses. Then, create a new table that displays how many times each of these popular components were included in each offering (code_presentation) of each course (code_module). Briefly interpret this table.

```
# first five most popular activity_type
a=moodle["activity_type"].value_counts().head(5)
print(a)
print(a.index)
```

resource 2660 subpage 1055 oucontent 996 url 886 forumng 194

Name: activity_type, dtype: int64

Index(['resource', 'subpage', 'oucontent', 'url', 'forumng'], dtype='object

mask=pd.DataFrame(moodle[["activity_type" ,"code_presentation", "code_module"]]
mask.loc[a.index]

- # the most code presentation is resource module bbb
- # the least code presentation is forumng module ggg
- # forumung has least number of module

activity_type	code_presentation	code_module	
resource	2013B	BBB	236
	2013J	BBB	236
	2014B	BBB	231
	2013B	DDD	182
	2013J	DDD	178
forumng	2013B	FFF	5
	2014J	BBB	3
	2013J	GGG	2
	2014J	GGG	2
	2014B	GGG	2

107 rows × 1 columns

Student activity data (studentMoodleInteract.csv) contains information about each student's interactions with the materials in the VLE. This file contains the following columns:

- code_module an identification code for a module.
- **code_presentation** the identification code of the module presentation.
- id_student a unique identification number for the student.
- id_site an identification number for the course material/component.
- **date** the date of student's interaction with the material measured as the number of days since the start of the module-presentation.
- **sum_click** the number of times a student interacts with the material in that day.

studentmoodleinfo = pd.read_csv("studentMoodleInteract.csv")
print(studentmoodleinfo.shape)
studentmoodleinfo.head()

(492567, 6)

	code_module	code_presentation	id_student	id_site	date	sum_click
0	AAA	2013J	28400.0	546652.0	-10.0	4.0
1	AAA	2013J	28400.0	546652.0	-10.0	1.0
2	AAA	2013J	28400.0	546652.0	-10.0	1.0
3	AAA	2013J	28400.0	546614.0	-10.0	11.0
4	AAA	2013J	28400.0	546714.0	-10.0	1.0

TASK1: Display the total number of clicks for each course per each semester delivered. Besides a textual output, some visualizations must be provided for helping to interpret the data.

df=pd.DataFrame(studentmoodleinfo[["code_module", "code_presentation", "sum_cli
df

	code_module	code_presentation	sum_click
0	AAA	2013J	4.0
1	AAA	2013J	1.0
2	AAA	2013J	1.0
3	AAA	2013J	11.0
4	AAA	2013J	1.0
492562	BBB	2013B	2.0
492563	BBB	2013B	1.0
492564	BBB	2013B	4.0
492565	BBB	2013B	3.0
492566	BBB	NaN	NaN

492567 rows × 3 columns

```
plt.figure(figsize=(10,6))
plt.title('number of clicks for each course',fontweight="bold",fontsize=14,loc=
plt.xlabel('module code')
plt.ylabel('number of clicks')
sns.barplot(x='code_module', y='sum_click', hue='code_presentation', data=df, presentation')
```

<Axes: title={'left': 'number of clicks for each course'},
xlabel='code_module', ylabel='sum_click'>

TASK2: As a follow up to the first task, identify the courses in which the total number of clicks is higher in 2014 than 2013. If the course was taught two times in the same year (such as, 2013B and 2013J) use the average of both semesters ((2013B+2013J)/2) to compare with the other year.

mask=df.groupby(by=['code_module', 'code_presentation']).size()
mask.unstack()

from the table it can be seen that 2013B has higher clicks for BBB and 2013J

code_presentation	2013B	2013J	2014J
code_module			
AAA	NaN	180982.0	169316.0
BBB	192013.0	NaN	NaN

TASK3: Which type of resources were mostly clicked by the students? Do you observe a common pattern accross courses (e.g., in almost all courses, clicks on resource is higher than quiz)? A heatmap as a visualization might be helpful here.

dff=studentmoodleinfo.merge(moodle)
dff
dff2=pd.DataFrame(dff.groupby(by=['code_module', 'sum_click', "activity_type"])
dff2

0

code_module sum_click activity_type **AAA** 1.0 dataplus 248 forumng 39935 150 glossary homepage 17625 oucollaborate 247 ... **BBB** 291.0 forumng 297.0 forumng 1 300.0 forumng 1 306.0 forumng 1 319.0 forumng 1

636 rows x 1 columns

```
plt.figure(figsize=(15,6))
plt.xlabel('activity type' )
plt.ylabel('number of clicks')
sns.lineplot( x="activity_type", y="sum_click", data=dff2, hue="code_module")
```


TASK4: For each student, compute the total number of clicks per each course component type (activity_type column in moodle.csv) separately for each course and semester. A simple representation of the expected table is provided below with fake data (note that in the given example columns and rows are incomplete).

Student Id	code_module	code_presentation	PDF	Assignment
1234	AAA	2013J	23	33
1234	BBB	2014B	5	42

Note that, in this task you actually create some features that can be used for predictive modeling.

pivot_table

		activity_type	dataplus	forumng	glossary	hom
id_student	code_module	code_presentation				
6516.0	AAA	2014J	5.25	2.577143	0.0	3.1
11391.0	AAA	2013J	0.00	3.711538	0.0	3.4
23629.0	BBB	2013B	0.00	2.846154	0.0	2.4
24734.0	AAA	2014J	0.00	2.194444	0.0	2.5
25107.0	BBB	2013B	0.00	3.800000	0.0	2.5
	•••					
2692384.0	ввв	2013B	0.00	2.55556	0.0	3.7
2692514.0	AAA	2014J	3.00	3.743136	0.0	6.8
2694424.0	AAA	2013J	0.00	3.389946	0.0	5.1
2694788.0	AAA	2014J	0.00	1.333333	0.0	2.0
2698257.0	AAA	2013J	0.00	2.610390	0.0	2.4

2261 rows x 12 columns

TASK5: Using proper visualizations and statistical analysis, please explore if there is any relationship between students' course performance (final_result column in studentInfo.csv) and clicks on different resources.

dataframe= student.merge(dff)
dataframe

dff3=pd.DataFrame(dataframe.groupby(by=['final_result', 'sum_click', "activity_
dff3

			0
final_result	sum_click	activity_type	
Distinction	1.0	dataplus	35
		forumng	8707
		glossary	66
		homepage	2177
		oucollaborate	21
Withdrawn	94.0	oucontent	1
	101.0	homepage	1
	171.0	forumng	1
	274.0	forumng	1
	288.0	forumng	1

1241 rows × 1 columns

```
plt.figure(figsize=(20,6))
plt.xlabel('activity type' )
plt.ylabel('number of clicks')
sns.lineplot( x="activity_type", y="sum_click", data=dataframe, hue="final_rest
```



```
# another visulization
plt.figure(figsize=(20,6))
plt.xlabel('activity type' )
plt.ylabel('number of clicks')
sns.barplot( x="activity_type", y="sum_click", data=dataframe, hue="final_resul")
```


in these task we mainly work with categorical variables because of that 1 pre # because scatter, box and etc. are better choises for numerical variables.

2. Predictive Modeling

In this section, you will build a machine learning model to predict students' final course outcome (final_result column in studentInfo.csv). That is, whether student is 'Pass', 'Withdrawn', 'Fail', or 'Distinction'. If you consider the number of students in some of these categories are too few, you can combine them into a new category.

→ 2.1. Generate Features from Demographic Information

In Section 1.2, you explored demographic data about students and tuned some categorical variables. From these categorical variables, please generate *at least* **10** *dummy* variables to be used for predictors in the machine learning model.

categorical_columns = ['gender', 'highest_education', 'imd_band', 'disability']
dummy = pd.get_dummies(student[categorical_columns])
dummy

	gender_F	gender_M	highest_education_A Level or Equivalent	highest_education_HE Qualification	highes.
0	0	1	0	1	
1	1	0	0	1	
2	1	0	1	0	
3	1	0	1	0	
4	1	0	0	0	
32588	1	0	0	0	
32589	1	0	0	0	
32590	1	0	1	0	
32591	1	0	0	0	
32592	1	0	0	1	

32593 rows × 18 columns

student_info_with_dummies = pd.concat([student, dummy], axis=1)
d= pd.DataFrame(student_info_with_dummies)
d

	code_module	code_presentation	id_student	gender	region	highest_€
0	AAA	2013J	11391	М	East Anglian Region	HE C
1	AAA	2013J	28400	F	Scotland	HE C
2	AAA	2013J	30268	F	North Western Region	A Level or
3	AAA	2013J	31604	F	South East Region	A Level or
4	AAA	2013J	32885	F	West Midlands Region	Lower Tr
32588	GGG	2014J	2640965	F	Wales	Lower Th
32589	GGG	2014J	2645731	F	East Anglian Region	Lower Tł
32590	GGG	2014J	2648187	F	South Region	A Level or
32591	GGG	2014J	2679821	F	South East Region	Lower Th
32592	GGG	2014J	2684003	F	Yorkshire Region	HE C

32593 rows × 30 columns

→ 2.2. Generate/Select Features from Click Data

In Section 1.5, you have already created some features from students' click behaviour. You can use all of them here as additional predictors.

Additionally, you should create *at least* **3** features indicating the engagement level of students at different course components. Some example features are provided below:

- a dummy variable that indicates if students clicked at least three types of course components or not,
- each student's average number of clicks across all components per a single course and semester,
- a dummy variable indicating if students clicked all types of course components.

There is no limit in the type and number of additional feature you can generate from the click data.

1) a dummy variable for indicating how many times the students who pass inter
bin=[0,3.5,664,1326]
a = dataframe.loc[dataframe["final_result"].str.contains("Pass")==True,"sum_cli
cat=pd.cut(a, bin)
pd.get_dummies(cat)

	(0.0, 3.5]	(3.5, 664.0]	(664.0, 1326.0]
0	1	0	0
1	1	0	0
2	0	1	0
3	0	1	0
4	0	1	0
492561	1	0	0
492562	1	0	0
492563	1	0	0
492564	1	0	0
492565	1	0	0

331602 rows × 3 columns

2) average clicks per course for each student

dataframe['total_click'] = dataframe.groupby(['id_student', 'code_module', 'coc
dataframe['total_components'] = dataframe.groupby(['id_student', 'code_module',
dataframe['average_clicks_per_course'] = dataframe['total_click'] / dataframe['

cat=pd.qcut(dataframe['average_clicks_per_course'], 4)
pd.get_dummies(cat)

	(0.999, 86.5]	(86.5, 228.0]	(228.0, 444.125]	(444.125, 1964.5]
0	0	1	0	0
1	0	1	0	0
2	0	1	0	0
3	0	1	0	0
4	0	1	0	0
492561	1	0	0	0
492562	1	0	0	0
492563	1	0	0	0
492564	1	0	0	0
492565	1	0	0	0

492566 rows x 4 columns

3) total clicks with respect to highest education level for each student

dataframe['total_click_wrt_he'] = dataframe.groupby(['id_student', 'highest_edu
dataframe

cat=pd.qcut(dataframe['total_click_wrt_he'], 4)
pd.get_dummies(cat)

	(0.999, 615.0]	(615.0, 1734.0]	(1734.0, 3501.0]	(3501.0, 15716.0]
0	0	1	0	0
1	0	1	0	0
2	0	1	0	0
3	0	1	0	0
4	0	1	0	0
492561	1	0	0	0
492562	1	0	0	0
492563	1	0	0	0
492564	1	0	0	0
492565	1	0	0	0

492566 rows x 4 columns

2.3. Training and Testing the Model

As the last activity in this project, you are expected to train and test a logistic regression model for predicting students' final course status. You should use 10-fold cross-validation.

Interpret the results based on confusion matrix and AUC scores. In your interpretation, please also mention the features with high predictive power and those with low predictive power.

Please note that the achieving low/high accuracy in the predictions has no importance for your grade.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_re
from sklearn.model_selection import train_test_split

maskdata = dataframe[["final_result", "sum_click"]]
maskdata.head()

	final_result	sum_click
0	Pass	1.0
1	Pass	1.0
2	Pass	5.0
3	Pass	7.0
4	Pass	6.0

```
X = maskdata.drop('final_result', axis=1) # Features
y = maskdata['final_result'] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randon
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
predictions = log_reg.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
conf_matrix = confusion_matrix(y_test, predictions)
report = classification_report(y_test, predictions)
print("Accuracy:", accuracy)
print("Confusion Matrix:")
print(conf matrix)
print("Classification Report:")
print(report)
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:
      _warn_prf(average, modifier, msg_start, len(result))
    Accuracy: 0.6726861156789898
    Confusion Matrix:
     [ [
                             0]
           1
                 0 12777
           1
                 0 9179
                             01
           7
                 0 66268
                             01
                 0 10279
                             011
    Classification Report:
                   precision
                                recall
                                        f1-score
                                                    support
                                  0.00
     Distinction
                        0.09
                                             0.00
                                                      12778
                        0.00
                                  0.00
             Fail
                                             0.00
                                                       9180
             Pass
                        0.67
                                  1.00
                                             0.80
                                                      66275
       Withdrawn
                        0.00
                                  0.00
                                             0.00
                                                      10281
        accuracy
                                             0.67
                                                      98514
                        0.19
                                  0.25
                                             0.20
                                                      98514
        macro avg
    weighted avg
                        0.46
                                  0.67
                                             0.54
                                                      98514
```

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:
 _warn_prf(average, modifier, msg_start, len(result))

#interpretations :

#the accuracy level of the regression model approximetly 67.26%
#the regression model has high accuracy(it is way bigger than 50%)
#but cannot predict distinction, fail, withdrawn wery well
#pass dominates the dataset so it becomes biassed
#so it effects overall accuracy