Topology Qual Problems

D. Zack Garza

Friday 29th May, 2020

Contents

1	Prob	roblems		
	1.1	Homotopy]	
	1.2	Fundamental Group	1	
		Group Actions		
	1.4	Applications	4	
	1.5	Van Kampen's Theorem	4	
		Mayer Vietoris (Sheet 7)		
		Cellular Homology (Sheet 8)		
	1.8	Degree	ļ	
	1.9	Universal Coefficient Theorem (Sheet 10)	ļ	
		Homological Algebra (Sheet 11)		
	1.11	Cohomology Ring (Sheet 12)	6	

1 Problems

1.1 Homotopy

- 1. Show that any non-surjective map $f: X \to S^n$ is homotopic to the constant map.
- 2. Let $f, g \to S^n$ be such that $\forall x \in X, f(x) \neq -g(x)$. Show that $f \simeq g$.
- 3. Let $\alpha: S^n \longrightarrow S^n$, $\alpha(p) = -p$ be the antipodal map on S^n . Show that n odd $\implies f \simeq id$.
- 4. Show that X is homotopy-equivalent to a point \iff id_X $\simeq g$ for some constant map g.
- 5. Show that $S^1 \times I \simeq M$, the Mobius strip. 6. Show that $\mathbb{R}^3 S^1 \simeq S^1 \vee S^2$.
- 7. Classify the letters of the alphabet up to homeomorphism, and up to homotopy.
- 8. **REVISIT** Let $f, g: S^1 \to X$, $P = X \cup_f B^2 \cong X \coprod B^2 / \sim$, where $X \sim f(x)$, $Q = X \cup_g B^2$. Show that $f \simeq g \implies P \simeq Q$.

1.2 Fundamental Group

- 1. Show that $x, y \in X$ path & simply-connected \implies all paths from x to y are homotopic rel
- 2. Show that for X path connected, $\pi_1(X) = \mathbb{K} \iff \forall \text{cts. } f: S^1 \to X \ f$, extends to a continuous map $F: B^2 \to X$.
- 3. Show $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

- 4. Show $\pi_1(S^n) = 1$ for $n \geq 2$.
- 5. Show that $S^2 \{p_0, p_1\} \simeq S^1$.
- 6. Show that $S^3 \{p_0, p_1\} \simeq S^2$
- 7. Show that $S^2 \ncong S^3$.
- 8. For each of the following $f: S^1 \to S^1$, identify the corresponding $f_*: \mathbb{Z} \longrightarrow \mathbb{Z}$:
 - 1. $z \mapsto z^n$
 - 2. $\bar{x} \mapsto -\bar{x}$
 - 3. $e^{i\theta} \mapsto e^{2\pi i \sin \theta}$
- 9. Determine the winding number of the following map: $f: S^1 \longrightarrow \mathbb{C} \{0\}, z \mapsto 8z^4 + 4z^3 + 4z^3 + 4z^4 + 4z^4$
- 10. Identify $\pi_1(M, [(1, \frac{1}{2})])$, and identify the class of ∂M .
- 11. Let $X = S^1 \times S^1$ and γ a loop based at x_0 . What is the induced map γ_{\sharp} ?

1.3 Group Actions

- 1. Show that octagon pasting is homeomorphic to the $T = \mathbb{R}^2/\mathbb{Z}^2$.
- 2. Let x_0 be the image of 0, show that there is an order 6 homeomorphism $f: T \longrightarrow T$ fixing x_0 . Find a representation of f_* as a matrix, and find its determinant.
- 3. Show that $\pi_1(K)$, the Klein bottle, is given by pairs (m,n) where $(m,n)\star(p,q)=(m+1)$ $(-1)^n p, n+q$
 - 1. Show this is torsion-free
 - 2. Show that T is a double cover of K.
- 4. For each of these actions of \mathbb{Z}_2 on S^n , compute $\pi_1(S^n/\mathbb{Z}_2)$
 - 1. $S^1, z \mapsto -z$
 - 2. $S^2, (x, y, z) \mapsto (-x, -y, z)$ 3. $S^3, (z, w) \mapsto (-z, -w)$

1.4 Applications

- 1. Let $i: \mathbb{RP}^2 \longrightarrow \mathbb{RP}^3$, induced by $S^2 \hookrightarrow S^3$ as the equator. Show that $i \not\simeq \text{const.}$
- 2. Show that there is no map $f: S^2 \longrightarrow S^1$ that commutes with the antipodal map.
- 3. Prove that for any $f: S^2 \longrightarrow \mathbb{R}^2$, there exists $x \in S^2$ such that f(x) = f(-x).
- 4. Prove the Ham Sandwich theorem.
- 5. Show that K can not be a topological group.

1.5 Van Kampen's Theorem

- 1. Compute a presentation of $\pi_1(T)$ and prove it is isomorphic to \mathbb{Z}_2 .
- 2. (Images)
- 3. Show that $T D^1 := X \simeq S^1 \vee S^1$.
 - 1. Show there does not exist a retraction $r: X \longrightarrow \partial X$.
- 4. Images
- 5. IMages
- 6. Images
- 7. Calculate a presentation of $\pi_1(S^3 K)$
- 8. Show that all 3 presentations of $\pi_1(K)$ are isomorphic
 - 1. Square with sides glued

- 2. Two mobius strips glues along boundary
- 3. Multiplication rule
- 9. Given a group $G = \langle A : R \rangle$, show how to construct a CW-complex X such that $\pi_1(X) = G$.
- 10. Write down the fundamental group of the following spaces:
- 11. $\mathbb{R}^2 \{0, 1\}$
- 12. $\mathbb{R}^2 I$
- 13. The symbol $\oplus \in \mathbb{R}^2$
- 14. $S^2 \{p_i\}_{i=1}^4$
- 15. $T \{p_0\}$
- 16. S^2/\mathbb{Z}_2 via the antipodal map
- 17. S^2/\mathbb{Z}_3 via a $2\pi/3$ rotation about the z-axis.
- 18. $S_2 \cup \{(0,0,z) \mid -1 \le z \le 1\}$
- 19. $\mathbb{R}^3 \{(x, y, 0) \mid x^2 + y^2 = 1\}$
- 20. $\mathbb{R}^2 H$, the Hopf link
- 21. Prove that the homophony group is trivial.

1.6 Mayer Vietoris (Sheet 7)

- 1. Compute the homology of:

 - 1. $\mathbb{RP}^2 = M \bigcup_{\partial} D^2$ 2. $T^2 = S^1 \times S^1 = (S^1 \times I) \bigcup_f (S^1 \times I)$ where $(x,0) \sim (x,1) \sim (\bar{x},0) \in \mathbb{C}$ 3. $S^1 \bigcup_f B^2$ attached along ∂B^2 using $z \mapsto z^n$
- 2. Show $\tilde{H}_i(\Sigma X) \cong \tilde{H}_{i-1}(X)$
 - 1. Show $\Sigma S^n \cong S^{n+1}$
- 3. For $f: S^n \circlearrowleft$, show deg $f = \deg \Sigma f$
 - 1. Conclude $\pi_n(S^n) = \mathbb{Z}$
- 4. Let $\{A_i\}^n \in \mathbf{Ab}$ be finitely generated, show $\exists X \mid H_i(X) \cong A_i$ for $i \leq n$ and 0 otherwise.
- 5. Suppose $X = \bigcup_{i=1}^{n} A_i$ such that for any $1 \leq k \leq n$, $\bigcap_{i=1}^{k} A_i$ is either empty or contractible, show $i \geq n-1 \implies \tilde{H}_i(X) = 0$ and that this bound is sharp.
- 6. Compute $H_*(X \times S^n)$ in terms of $H_*(X)$
 - 1. Compute $H_*(T^n)$
- 7. Let $M = (S^1 \times B^2) \bigcup_{id_{\partial}} (S^1 \times B^2)$ and compute $H_*(M; \mathbb{Z})$
- 8. Let $X = S^n \times I$ with its ends glued together by a map $S^n \circlearrowleft$ of degree d, calculate $H_*(X)$.
- 9. Compute $H_*(X)$ for $X = S^3 N$, with N a knotted solid torus and $\partial N = T$ its boundary torus

- 10. Let CA be the cone on A, show that $\tilde{H}_*(X \bigcup CA) \cong \tilde{H}_*(X,A)$.
- 11. Show that the Mayer-Vietoris sequence is natural, i.e. If $X \xrightarrow{f} Y$ where $f(A) \subset C$ and $f(B) \subset D$, then this commutes:

$$H_n(X) \longrightarrow H_n(A \cap B) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_{n-1}(X)$$

$$\downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_*$$

$$H_n(Y) \longrightarrow H_n(C \cap D) \longrightarrow H_n(C) \oplus H_n(D) \longrightarrow H_{n-1}(Y)$$

1.7 Cellular Homology (Sheet 8)

Compute the homology of these spaces

- 1. $S_m \vee S_n$
- 2. $S^m \times S^n$
- 3. A hexagon with the identifications a + b + c a b c
- 4. Orientable surface of genus *g*
 - 1. g = 2 is given by a + b a b + c + d c d
- 5. Nonorientable surface of genus g Obtain by removing g discs from S^2 and attaching g mobius strips
- 6. $S_1 \vee S_1$ with two discs attached via $(ab)^3$ and $(ab)^6$

7. This identification space:

8. This identification space:

- 9. This identification space:
- 10. Describe a CW complex structure for the lens space L(p,1) and compute π_1, H_* for it.

1.8 Degree

- 1. Let $p(x) = \sum_{i=1}^{n} a_i x^i$, view $p : \mathbb{C} \bigcup \infty \circlearrowleft$ and determine its topological degree 2. Let $p(z) = \frac{\prod_{i=1}^{n} z a_i}{\prod_{j=1}^{m} z b_j}$ with all a_i, b_j distinct. What is its topological degree? 3. Show that if $f : S^m \longrightarrow S^n$ and $\exists U \subset S^m$ such that $f|_U \cong f(U)$, then m = n and f is \vdots
- surjective.

1.9 Universal Coefficient Theorem (Sheet 10)

- 1. Identify the following groups up to isomorphism

 - 1. $\mathbb{Z}_m \otimes \mathbb{Z}_n$ 2. $\mathbb{Z}_{60}^4 \otimes (\mathbb{Z}_{24}^3 \oplus \mathbb{Z}_8^4 \oplus \mathbb{Z}_{120})$ 3. $\mathbb{Z}_n \otimes \mathbb{Q}$

 - 4. $(\mathbb{Z} \oplus \mathbb{Z}_n) \otimes (\mathbb{Q}/\mathbb{Z})$
- 2. Compute:
 - 1. $\operatorname{Tor}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_8, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4)$
 - 2. $\operatorname{Ext}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5)$
- 3. Compute the following directly from chain complexes and check using UCT:
 - 1. $H_*(\mathbb{RP}^n; \mathbb{Z}_2)$
 - 2. $H_*(\mathbb{RP}^n, \mathbb{Z}_3)$
 - 3. $H^*(\mathbb{RP}^n, \mathbb{Z}_6)$
- 4. For any space X, show that $H^1(X)$ is free abelian
- 5. Show that $H_*(X;\mathbb{Q}) = H_*(X;\mathbb{Z}) \otimes \mathbb{Q}$ $H^*(X;\mathbb{Z}) = \text{hom}(H_*(X;\mathbb{Z}),\mathbb{Q})$
- 6. Construct a space X such that $H_*(X;\mathbb{Z}) = (\mathbb{Z},\mathbb{Z}_6,\mathbb{Z}_{12},\mathbb{Z} \oplus \mathbb{Z}_4,0\cdots)$ Compute $H^*(X;\mathbb{Z})$
- 7. Compute $H_*(\mathbb{RP}^2 \times \mathbb{RP}^2; \mathbb{Z}_2)$
- 8. Compute $H_*(\Sigma \mathbb{RP}^2 \times \mathbb{RP}^2; \mathbb{Z})$
- 9. Compute $H_*(\mathbb{RP}^2 \times \mathbb{RP}^3; \mathbb{Z})$
- 10. Let G be a topological group. Show that $H_*(G)$ is an algebra. Show that $G \curvearrowright H_*(G)$, which factors through the homomorphism $G \longrightarrow \pi_0(G)$ yielding a trivial action if G is path-connected.

1.10 Homological Algebra (Sheet 11)

- 1. Show that $\ker A \longrightarrow A \otimes \mathbb{Q}$ given by $a \mapsto a \otimes 1$ is the torsion subgroup of A.
- 2. Show that $A \hookrightarrow B \implies A \otimes \mathbb{Q} \hookrightarrow B \otimes \mathbb{Q}$
- 3. Find a free resolution of \mathbb{Q} as a \mathbb{Z} -module.
- 4. Compute $Tor(\mathbb{Q}, A)$
 - 1. Compute $Tor(\mathbb{Q}/\mathbb{Z}, A)$

5

- 6. Let $R = \mathbb{Z}[x,y]$, and M = R/(x-y), N = R/(x,y). Construct free resolutions of M,N to compute:
 - $\operatorname{Ext}_R^*(M, M)$
 - $\operatorname{Ext}_R^*(M,N)$
 - $\operatorname{Ext}_R^*(N,M)$
 - $\operatorname{Ext}_R^*(N,N)$
- 7. Let Λ_* be the exterior algebra generated by the symbols $\{dx_i\}^n$ over a field k. Show that letting $d = \cdot \vee dx_1$ yields a chain complex $0 \longrightarrow \Lambda^0 \longrightarrow \Lambda^1 \longrightarrow \cdots \longrightarrow \Lambda^n \longrightarrow 0$ with trivial homology. Compute what happens when dx_1 is replaced with an arbitrary non-zero element in Λ^1 .
- 8. Define M as the group ring $R = \mathbb{Z}[\mathbb{Z}_2]$ with the action $(\cdot) \times -1$. Construct a free resolution of M and compute $\operatorname{Tor}_R^*(M, M)$.
- 9. Show $\operatorname{Tor}_R^*(\cdot,\cdot)$ is symmetric in the following way: Given M,N, take free resolutions, view $M_* \longrightarrow M$ as a chain map and tensor with N_* to get a chain $\operatorname{map} \psi : M_* \otimes_R N_* \longrightarrow M \otimes_R N_*$. Show that ψ is a quasi-isomorphism using the exact sequence $0 \longrightarrow (Z_n,0) \longrightarrow (N_n,0) \longrightarrow (B_{n-1},0) \longrightarrow 0$, then switch the roles of M,N.
- 10. Prove that for a SES $0 \longrightarrow A \longrightarrow B \longrightarrow C$, the group $\operatorname{Ext}(C,A)$ classifies extensions of C by A up to isomorphism.

1.11 Cohomology Ring (Sheet 12)

Todo