6.1.1
$$\bigotimes_{n=0}^{\infty} \left(\frac{1}{5}\right)^n = \sum_{j=1}^{\infty} \left(\frac{1}{5}\right$$

$$\begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \end{array}
 & \begin{array}{l$$

h) & C1/n n 2n

1 n 2 = 0 kcur

 $\lim_{n \to \infty} \frac{n+5}{7n^2 + 5n^2} = \lim_{n \to \infty} \frac{n^3 + 5n^2}{7n^2 - 5n - 2} = 0$ Divergen

e) & (-1)ⁿ & & | 1 | 1 | 1 | 1 | 20 | Korr

& (x) = 1 > & (x) = -5 sylvade for all x>1

b) & (-)ⁿ⁺¹ > lim 1 = 0

S = - 1 = 3

= | X+1 | | (n+2) | -)

1x+1 21

(x+1) <5

6.3,3 a) 8/4)

6 4

\(\lambda \) \(\lambda \) \(\lambda \) = \(\lambda \) \(\lambda \)

\ 646) =7 \ 6"6) =4 \ 6"6) = 8