# Дискретная математика: множества и логика



13 января 2021

### Математическое доказательство



**Утверждение** в математике — то, что можно либо доказать, либо опровергнуть.

Доказательство в математике — цепочка логических умозаключений, показывающая, что при условии истинности не которого набора аксиом и правил вывода утверждение верно.

**Аксиома** — утверждение, которое принимается на веру без доказательства.

Пример 1.1. 0.(9) = 1.

- Квантор всеобщности  $\forall$ .
- Квантор существования  $\exists$ .
- Импликация (логическое следствие)  $-\Longrightarrow$  .
- Равносильность  $\iff$  .

**Пример 1.2.**  $\forall$  натурального n число  $n^2 + n + 41$  является простым.

**Пример 1.3.**  $\exists$  положительные целые  $x,\ y,\ z$  такие, что  $313(x^3+y^3)=z^3.$ 

**Пример 1.4.**  $\forall$  натурального n выполнено

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

**Пример 1.5.\***  $\forall$  натурального n выполнено

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
.

### **Матем**атическая индукция



**Математическая индукция** — способ доказательства утверждения, зависящего от натурального параметра.

### Описание метода:

Предположим, что требуется доказать каждое из утверждений  $P_0, P_2, \dots, P_n, P_{n+1}, \dots$ 

Допустим, что

- (База индукции) Установлено, что  $P_0$  верно.
- (Шаг индукции) Для любого n доказано, что если верно  $P_n$ , то верно  $P_{n+1}$ .

Тогда все утверждения верны.

**Пример 1.6.**  $\forall$  натурального n выполнено равенство

$$1+3+5+\cdots+(2n-1)=n^2$$
.

### Язык теории множеств



**Множество** — совокупность элементов. Порядок элементов не важен. Элементы входят без повторений.

Пример 1.7. Множество цифр  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ .

Пример 1.8. Множество натуральных чисел  $\mathbb{N}=\{0,1,2,3,\dots\}$ , множество целых чисел  $\mathbb{Z}=\{0,1,-1,2,-2,\dots\}$ .

#### Обозначения:

- $a \in A$  принадлежность элемента a множеству A;
- $A \subseteq B$  множество A является подмножеством B (любой элемент множества A также является элементом множества B);
- A = B множества состоят из одинаковых наборов элементов;
- Ø пустое множество.

## Задание множества и операции



### Способы задания множества:

- Перечисление  $M = \{1, 2, 3, 4\}$ ;
- Описание условия  $N = \{x \mid x = 2y + 1, y \in \mathbb{Z}\}.$

#### Операции с множествами:

- объединение  $A \cup B$  состоит из элементов, которые принадлежат хотя бы одному из множеств;
- пересечение  $A \cap B$  состоит из элементов, которые принадлежат обоим множествам;
- разность  $A \setminus B$  состоит из элементов, которые принадлежат A, но не принадлежат B;
- ullet симметрическая разность  $A \triangle B$  состоит из элементов, принадлежащих ровно одному из множеств.

# Диаграммы Эйлера-Венна





# Диаграммы Эйлера-Венна



### Пример 1.9. Убедимся, что

- a)  $A \subseteq B$  u  $B \subseteq A \iff A = B$ ;
- **6)**  $(A \setminus B) \cup (A \cap B) = A;$
- $\mathbf{B)}\ (B\setminus A)\cup (A\setminus B)=A\triangle B.$

## Высказывания и предикаты



Высказывание — утверждение, являющееся либо истиной, либо ложью.

**Предикат** — предложение, истинность которого можно проверить, подставив в него значения переменных.

**Пример 1.10.** a(x) = «число x больше 5» — предикат.

c=«любую карту можно покрасить в четыре цвета так, чтобы соседние участки были различных цветов» — высказывание.

Пример 1.11. «Данное высказывание ложно».

Истинно ли это высказывание или нет?

### Логические операции с высказываниями



С высказываниями и предикатами можно совершать операции:

| Обозначение                          | Значение                                                               | Название        |  |
|--------------------------------------|------------------------------------------------------------------------|-----------------|--|
| $a \wedge b$                         | « <i>a</i> и <i>b</i> »                                                | конъюнкция      |  |
| $a \lor b$                           | $\ll a$ или $b\gg$                                                     | дизъюнкция      |  |
| $a \rightarrow b$                    | «из $a$ следует $b$ »                                                  | импликация      |  |
| $\neg a$                             | «не а»                                                                 | отрицание       |  |
| $a \equiv b \ (a \leftrightarrow b)$ | $a\equiv b\;(a\leftrightarrow b)$ ( « $a$ равносильно $b$ » — эквивале |                 |  |
| $a \oplus b$                         | «либо $a$ , либо $b$ »                                                 | исключающее ИЛИ |  |

**Пример 1.12.** Верно ли, что все живые сейчас тиранозавры умеют вышивать крестиком?

**Пример 1.13.** Для целых чисел «x больше 5»  $\wedge$  «x меньше 5» эквивалентно «x = 6».

# Таблица истинности



Будем полагать a=1, если высказывание a истинно, и a=0 в противном случае.

Как определены логические операции?

| a | b | $a \wedge b$ | $a \lor b$ | $a \rightarrow b$ | $a \equiv b$ | $a \oplus b$ |
|---|---|--------------|------------|-------------------|--------------|--------------|
| 0 | 0 | 0            | 0          | 1                 | 1            | 0            |
| 0 | 1 | 0            | 1          | 1                 | 0            | 1            |
| 1 | 0 | 0            | 1          | 0                 | 0            | 1            |
| 1 | 1 | 1            | 1          | 1                 | 1            | 0            |

# Таблица истинности



Пример 1.14. Докажем следующие законы:

**1)** 
$$1 \wedge a = a;$$
 **2)**  $0 \wedge a = 0;$  **3)**  $0 \vee a = a;$  **4)**  $1 \vee a = 1$ 

5) 
$$\neg(\neg a) = a;$$
 6)  $\neg(a \land b) = \neg a \lor \neg b;$  7)  $\neg(a \lor b) = \neg a \land \neg b$ 

**8)** 
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c);$$
 **9)**  $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ 

### Связь между языками логики и множеств



Пусть a(x) — предикат «число x больше 5», b(x) — «число x меньше 7». Пусть  $A=\{x\mid x>5\},\ B=\{x\mid x<7\}.$  Тогда предикат « $x\in A$ » эквивалентен предикату a(x), а « $x\in B$ » эквивалентен b(x).

Более того, предикат « $x \in A \cup B$ » эквивалентен  $a(x) \lor b(x)$ , а « $x \in A \cap B$ » эквивалентно  $a(x) \land b(x)$ .

**Пример 1.15.** Выразим с помощью предикатов a(x) и b(x) и логических связок предикат « $x \in A \setminus B$ ».

Пример 1.16. Докажем равенство  $B \setminus (A \setminus B) = B$ .

## Семинарская часть



1.1 Пусть в некой деревне живёт брадобрей, который бреет всех жителей деревни, которые не бреются сами, и только их.

Бреет ли брадобрей сам себя?

1.2\* Докажите, что ∀ натурального n выполнено

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2.$$

- 1.3 Докажем, что все лошади в мире одного цвета.
- $1.4\, x,y,z$  целые числа, для которых истинен предикат

$$\neg(x=y) \land ((y < x) \rightarrow (2z > x)) \land ((x < y) \rightarrow (x > 2z))$$

Чему равно x, если z = 7, y = 16?



- 1.5 Для какого слова *пожно* высказывание «Первая буква слова гласная  $\to$  (Вторая буква слова гласная  $\lor$  Последняя буква слова гласная)»?
- 1) Жара **2)** Орда **3)** Огород **4)** Парад
- **1.6** Докажите, что  $a \rightarrow b = \neg a \lor b$
- $oxed{1.7}$  Докажите, что для любых множеств  $A,\ B,\ C$  выполняются равенства
- a)  $A \setminus (A \setminus B) = A \cap B;$  6)  $B \cup (A \setminus B) = A \cup B;$
- $\mathbf{B})\;(A\cup B)\setminus (A\cap B)=(A\setminus B)\cup (B\setminus A);$
- $\mathbf{r)} \ (A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C).$