

Av. Dr José Sebastião da Paixão s/nº, Bairro Lindo Vale CEP: 36180-000 - Rio Pomba/MG Telefone: (32) 3571-5700 www.riopomba.ifsudestemg.edu.br

Curso: Ciência da Computação Disciplina: Teoria dos Números Professor: Marcelo Cunha

- **01)** Observe a sequência (1,3,5, ...) formada pelos números ímpares positivos. Responda os seguintes itens:
- a) Obtenha a fórmula do termo geral dessa sequência.
- b) O número ímpar 65 ocupa qual posição na sequência?

Nosso objetivo é obter uma fórmula para a soma dos "n" primeiros da sequência acima. Indicaremos por S_n a soma, ou seja, $S_n = a_1 + a_2 + a_3 + \cdots + a_n$. Complete a tabela abaixo:

n	S_n
1	
2	
3	
4	

Você tem alguma proposta para a fórmula da soma?

Em caso positivo demonstre sua proposta utilizando o princípio de indução Matemática

02) Demosntre a seguinte proposição:

$$P(n) : \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \forall n \in \mathbb{N}$$

03) Observe a seguinte definição:

"Dizemos que um inteiro a divide b se, e somente se, existir um inteiro q tal que b=a. q"

O símbolo que será utilizado para divisibilidade será $a \mid b$, que significa "a divide b". Como por exemplo temos que $2 \mid 8$ pois existe um inteiro que multiplicado por 2 que resulta em 8.

Demonstre, utilizando o princípio de indução matemática que a proposição abaixo é verdadeira:

$$P(n) : 3 | (2^{2n} - 1), \forall n \in N$$

04) Demonstre a proposição $P(n): 2^n > n$, $\forall n \in \mathbb{N}$