Отчёт 2

Анализ влияния кэша на время выполнения блочного матричного умножения

Работу выпоолнил

Лю Цинлун 323

Test Environment:

PAPI Version : 5.5.1.0

Vendor string and code : AuthenticAMD (2)

Model string and code : AMD Ryzen 5 PRO 2500U w/ Radeon Vega Mobile Gfx (17)

CPU Revision : 0.000000

CPUID Info : Family: 23 Model: 17 Stepping: 0

: 384

CPU Max Megahertz : 2000 CPU Min Megahertz : 1600 Hdw Threads per core : 2 Cores per Socket : 4 **Sockets** : 1 **NUMA Nodes** : 1 : 8 CPUs per Node Total CPUs : 8 Running in a VM Number Hardware Counters: 0

Cache Information.

Max Multiplex Counters

L1 Data Cache:

Total size: 32 KB Line size: 64 B Number of Lines: 512 Associativity: 8

L1 Instruction Cache:

Total size: 64 KB Line size: 64 B Number of Lines: 1024 Associativity: 4

L2 Unified Cache:

Total size: 512 KB Line size: 64 B Number of Lines: 8192 Associativity: 8 L3 Unified Cache:

Total size: 4096 KB Line size: 64 B Number of Lines: 65536 Associativity: 16

Counters used: PAPI_TOT_CYC, PAPI_L1_DCM, PAPI_L1_DCA,

PAPI_L2_DCM,

PAPI_L2_DCA,

PAPI_FP_OPS,

PAPI_TLB_DM

Result stats can be seen below, all tests are run 5 times and take the average value Test matrix size: 1024x1024

Index	Ijk	Ikj	Kij	Jik	Jki	kji
Time(ms)	5482.46	5692.13	5698.68	5192.19	5585.88	5679.04
Cycles	4.19893e+06	4.19893e+06	4.19893e+06	4.19893e+06	4.19893e+06	4.19893e+06
L1 miss %	0.996583	0.996296	0.997415	0.995608	0.997055	0.996772
L2 miss %	1.42117e-14	1.42118e-14	1.42116e-14	1.42113e-14	1.42118e-14	1.42117e-14
FLOP	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06
TLB miss	5	5	5	5	5	5

Table 1: stats for blocksize 32

Index	Ijk	Ikj	Kij	Jik	Jki	kji
Time(ms)	5791.92	7575.13	5854.89	5738.73	5894.72	6008.02
Cycles	4.19896e+06	4.19896e+06	4.19896e+06	4.19896e+06	4.19896e+06	4.19896e+06
L1 miss %	0.995451	0.993182	0.995959	0.996748	0.996211	0.994772
L2 miss %	1.42122e-14	1.42116e-14	1.42119e-14	1.4212e-14	1.42117e-14	1.42117e-14
FLOP	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06	4.21418e+06
TLB miss	5	5	5	5	5	5

Table 2: stats for optimized blocksize

Conclution:

Для размера блока 32*32, время выпонения меньше чем оптимальный размера блока.

Самый быстрый работающий индекс : jik

Промах кэша L1 и L2 для оптимального размера блока меньше, размер блока 32*32.

FLOP, TLB miss и cycles для обоих одиноковые.

