1. If we want to analyze only players who were regularly involved in the season, how can we use set theory to define eligibility?

We define two sets:

- Set A: Players who averaged more than 20 minutes per game (|A| = 268)
- Set B: Players who played at least 41 games (|B| = 340)

The set of qualified players is their intersection:

-S = AB = 226

This filters out part-time or minimally used players, ensuring valid comparisons.

2. Whats the probability a player is average in 0 or 1 of the 5 main categories?

From the data:

- -P(0 categories) = 0.323 (32.3%)
- -P(1 category) = 0.363 (36.3%)

So the combined probability:

P(0 or 1 categories) = 0.323 + 0.363 = 0.686 (68.6%)

Most players are average in 1 or no categories statistical balance is rare.

3. What is the chance the most average player is not selected in 3 random picks?

Lets assume the chance of selecting the target player = 0.5 per trial.

The probability of not selecting them in 3 trials:

 $P = (1 - 0.5)^3 = 0.125$

So there's a 12.5% chance the most average player is overlooked in 3 random attempts.

4. In how many ways can 9 players be grouped into levels of averageness?

We want to arrange 9 players into groups of 3 (highly average), 5 (moderately average), and 1 (perfectly average):

Use permutations with repetition:

Ways = 9! / (3! * 5! * 1!) = 504

5. If a player is average in points, how likely are they to also be average in another stat?

From conditional counts:

- -P(TRB | PPG) = 0.414
- -P(AST | PPG) = 0.276
- -P(STL | PPG) = 0.259
- -P(BLK | PPG) = 0.190

Conclusion: Being average in one stat doesnt strongly imply averageness elsewhere.

6. Are points and rebounds independent?

We compare:

- P(PPG) = 58 / 226 = 0.257
- -P(TRB) = 65 / 226 = 0.288
- P(PPG TRB) = 24 / 226 = 0.106
- If independent: 0.257 * 0.288 = 0.074

Since 0.106 0.074, they are not independent a weak positive relationship exists.

7. If a player is average in points, whats the probability theyre a big man?

We apply Bayes Rule:

- -P(PPG) = 58 / 226 = 0.257
- -P(Big) = 84 / 226 = 0.372
- $-P(PPG \mid Big) = 19 / 84 = 0.226$

Bayes: $P(Big \mid PPG) = (0.226 * 0.372) / 0.257 = 0.327$

So ~32.7% of average scorers are big men.

8. Whats the expected number of categories a player is average in?

Using the formula:

$$E(X) = [x * P(x)] = 0*0.323 + 1*0.363 + 2*0.217 + 3*0.075 + 4*0.022$$

= 1.11

So, the average player is statistically average in ~1.1 categories.

9. What is the probability of being average in all 5 categories?

Using binomial formula:

n = 5, p = 0.222 (prob. of being average in 1 category)

 $P(X = 5) = C(5,5) * 0.222^5 = 0.00054$

Very rare (<0.1%).

10. Whats the chance the first average player appears on the 5th try?

Geometric formula:

 $P = (1-p)^{k-1} * p = (1-0.097)^{4} * 0.097 = 0.06449$

So, 6.4% chance it takes 5 tries to find the first one.

11. On average, how many players do you need to find 3 average ones?

Negative binomial expected value:

E(X) = r / p = 3 / 0.097 = 30.93

So expect to examine ~31 players to find 3 average ones.

12. If 4 players are randomly selected, what's the chance all are average scorers?

Using hypergeometric:

P = [C(58, 4) * C(168, 0)] / C(226, 4) 0.01806

Only ~1.8% of 4-player groups are all average in scoring.

13. Do blocks follow a Poisson distribution?

Yes the distribution is count-based, right-skewed.

- (bigs) = 0.859
- (non-bigs) = 0.370

Most non-bigs had 0 blocks, which is expected for low- Poisson variables.

14. How many players fall within 1.5 standard deviations of average PPG?

Tchebysheffs bound:

P(|X - | < 1.5) 1 - 1/k = 1 - 1/2.25 = 0.556

Actual observed: 87.2% much higher than guaranteed bound.

15. Whats the probability a player is within 15% of average PPG?

Normal model:

= 14.18, = 5.96

Interval: 12.05 X 16.31 P = 0.2788 (27.9%)

16. What are the expected value and variance for PPG?

Computed from sample:

Mean = 14.18 points per game

Variance = 35.52

17. What's the chance a player is in the average AST range assuming a uniform distribution?

U(0, 10) width = 10 Interval = [2.77, 3.75] width = 0.98 P = 0.98 / 10 = 0.0979 (9.8%)

18. Do any NBA stat categories follow a Gamma (or Exponential) distribution?

Yes. Stats that are right-skewed and involve counts of rare events like blocks or steals often resemble a Gamma distribution.

- For example, blocks per game among non-bigs had = 0.370, heavily right-skewed.
- Most players have 0 or 1 block per game, but a few have much higher values, creating the tail. This shape is typical of Gamma or Exponential distributions, which makes them suitable for modeling rare but variable events in NBA stats.

19. What's the probability a player averages over 20 PPG and over 10 RPG?

We define:

A = PPG > 20

B = RPG > 10

 $P(A) = 68 / 883 \approx 0.077$

 $P(B) = 20 / 883 \approx 0.023$

 $P(A \cap B) = 7 / 883 \approx 0.0082$

So:

 $P(PPG > 20 \text{ and } RPG > 10) = P(A \cap B) = 0.0082$

20. What's the probability a player averages less than 20 PPG and less than 5 RPG?

We define:

So:

 $P(X < 20 \text{ and } Y < 5) = 664 / 883 \approx 0.752$

21. What's the probability a player averages exactly 11 PPG?

Since very few players hit exactly 11.000, I looked at a small range: 10.9 ≤ PTS ≤ 11.1

Number of players in this range = 11 Total players = 883

So:

 $P(PPG \approx 11) \approx 11 / 883 = 0.0125$

23. What's the probability a player averages >10 RPG given they average >20 PPG? We define:

A = PPG > 20

B = RPG > 10

We want:

 $P(B \mid A) = P(A \cap B) / P(A)$

 $P(A \cap B) = 7 / 883$

P(A) = 68 / 883

So:

 $P(B \mid A) = (7 \mid 883) \div (68 \mid 883) = 7 \mid 68 \approx 0.105$