انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

хi																																		پ	د يبا
xiii																														اچ	کادیہ	<u>_</u>	ي كتا	پيا نا جوا	مير د
1																											ت	باوار	ي مي	تفر ف	ساده	ول	. جدا	ور	1
2																														ئى مەسىي	نموز		1.	1	
14										ولر	ب	كييه	رز	اور	مت	ے سر	ن کی	رال	ميا.		طلد	ئى م	زياؤ	ومية	كاجيو	'y'	' =	= ;	f(x, y	_/)		1.	2	
23																														، پاعلیم			1.	3	
39																														۔ پاساد			1.4	4	
51																														ی مار اساده			1.:	•	
68																														ی جائے ی خط			1.		
	•																يت	بتائ	بر یک	تاو	دین	وجو	ما کی	حل	ت:	ب ساوا،	يىر نى مى	ں تفر ف	رر ت	ِ ائی قیم	ر. ابتد		1.	_	
																																			_
79																														، تفرق		وم	. جه د	נו	2
																										-				یں خو	•		2.	1	
95																																	2.	2	
110																																	2.	3	
114																																	2.	4	
130																												وات	مسا	كوشى	يولر		2.	5	
138																							L	ونسح	؛ور	تائی	وريكأ	تاو	ۇرىي	کی وج	حل		2.	6	
147																								ت	أوار) مسر	فر ق	اده ته	ی سا	متجانس	غير		2.	7	
159																											٦	رگر	ناثر	ن ار ت	جبرة		2.	8	
165																				ىك	ملی م	۶_	يطه.	كاج	حل	عال	زار	برق		2.8	3.1				
169																														ادوار			2.	_	
180										ىل	کاح	ت	باوار	مــه	رقی	تف	اده) سر	نطح	: س	متجانه	نير •	سے غ	تج	ر ا	کے ط	خ_	بر ل	لوم	ارمع	مقد	2	2.1	0	

iv

نظى ساده تفر قى مساوات		3
متجانس خطی ساده تفرقی مسادات	3.1	
مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات	3.2	
غير متجانس خطی ساده تفرقی مساوات	3.3	
غیر متجانس خطی سادہ تفر قی مساوات	3.4	
	نظامِ تفرق	4
قالب اور سمتىيە كے بنیادی حقائق		
سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 نظی نظام		
ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب		
نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام		
ي في تراكيب برائے غير خطي نظام		
ع د میب ایک در جی مساوات میں تباد کہ		
۱۰۰۲ مارون کو حتایت کا متاس تعطی نظام	4.7	
نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	1.,	
2)1		
ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	طاقق تسلسا	5
ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار		٥
رىي ب ن ى داردى		
مبَسُوط طاقتى تسلىل ـ تركيب فَرومنيوس	<i>5</i> 2	
taran da antara da a	5.3	
5.3.1 علملى استعال	5.3	
مسادات بىيىل اور بىيىل تفاعل	5.4	
ساوات بىيل اور بىيل تفاعل	5.4 5.5	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6 5.7	
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات ببیل اور ببیل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 لا پلاس تاد 6.1	6
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تاباد 6.1 6.2	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس تا 6.1 6.2 6.3	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 6.1 6.2 6.3 6.4 6.5 6.6	6

عـــنوان V

لا پلاس بدل کے عمومی کلیے	6.8	
را: سمتيات	خطي لجه	7
را. نسيات غير سمتات اور سمتات	7.1	,
مير عليك الرسميك المراء	7.1	
مهتیات کا مجموعه، غیر سمق کے ساتھ ضرب	7.2	
سيات ه الموجد ، بير المحتال مع مرب		
	7.4	
اندروني ضرب (ضرب نقط)	7.5	
اندرونی ضرب فضا	7.6	
تسمق ضرب	7.7	
اجزاء کی صورت میں سمتی ضرب	7.8	
غير سمتی سه ضرب اور دیگر متعدد ضرب نفید مشرب از در یگر متعدد ضرب اور دیگر متعدد مشرب از در یگر متعدد مشرب از در متعدد متعدد مشرب از در متعدد متعدد مشرب از در متعدد م	7.9	
b3 17.	1 63	_
را: قالب، سمتىي، مقطع - خطى نظام	خطى الجبر	8
قالب اور سمتيات مجموعه اورغير سمتی ضرب	8.1	
قالبی ضرب	8.2	
8.2.1 تبديل محل		
خطی مساوات کے نظام۔ گاوی اسقاط	8.3	
8.3.1 صف زیند دار صورت		
خطى غير تابعيت ـ درجه قالب ـ ستى فضا	8.4	
خطی نظام کے حل: وجو دیت، یکتائی	8.5	
دودر بی اور تین در بی مقطع قال	8.6	
مقطح قاعده كريم	8.7	
معكوس قالب_گاوس جار دُن اسقاط	8.8	
سمتى فضاءالدر وني ضرب، خطى تبادله	8.9	
ن صالدرون رب نبورید	0.7	
را: التيازي قدر مسائل قالب	خطىالجير	9
را الهياري مدر حساس فات امتيازي قدر مسائل قالب-امتيازي اقدار اورامتيازي سمتيات كالحصول	9.1	,
المياري مداكل كے چنداستعال	9.2	
القيار في التعالق التع	9.2	
امتیازی اسماس، وتری بنانا، دو در جی صورت کمی استان دور جی صورت کمی استان دور جی صورت کمی استان دور جی صورت کمی	9.4	
مخلوط قالب اور مخلوط صورتيل	9.5	
تي احصاء - سمتي تفاعل	سمتي آه	10
ر الصاحب في ها ن غير سمق ميدان اور سمتي ميدان		10
سیر خاسمیدان اور خاسمیدان	10.1	
720	10.2	
	10.3	
مبان و مان اختااور مر ورث	10.4	
ما ن اخلاور مرور من المعلق و روز	10.5	
ان مار افران الرام الفران من المنظم الفران المنظم الفران المنظم الفران الفران الفران الفران المنظم الفران المنظم الفران المنظم	10.0	

vi

745																						ئلە	_م	ت	ير قي	رسمع	ااو	ل	فاعل	کے ز	ت	برار	تنغي	روم	تنعد	ور	با	کیر	7	ر ی	زنج	;	1	0.	7	
751 764																													(وال	وهل	کی	ر اك	بيدا	ن	سمنخ	غير	٠,	رڌ) تفر	سمتح	-	1	0.8	8	
764																													إت	تمتيا	ن	ركاا	ل	نإدا	ورت	ام	إنظ	د ک	ندو	ں مح	نباد	;	1	0.9	9	
769																																														
777																																			Ü	روغ	ر کا	ع کی	غل	ا نفا	سمتح	1	0.	.1	1	
781																																			لا	مسد	<u></u>	. ,	نكما	<u>,</u>	- 23	.lı	تكملإ	ب متی	س	11
782																																			_			٠	, . I	ر تکما	نط نط	:	1	1	1	11
787	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	4	2 V	ر ر	با ترسما	ر خطے	:	1	1 ′	ı ۲	
796	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		U	٥	ں) کر	,		1	1.4	<u>ر</u>	
/96	•	•	٠	٠	٠	•	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	•		•	•	٠	•	•	•	•	٠	٠	3	63) :	ر.	را) کا	زوج	,	1	1	•	
810	•	•	•	•	•	•	•	•	•	•		•		•	•		•	•		•	•	•		•			•	•	•	•	• .	إدله	، تبإ	يير	U	(500	6	ىل	راتم	زوج سرط	,	1	1.4	4	
820 825	•		•	•	٠		•				•			•		•		•	•	•	•	•	•	٠	•		•	•	•	٠		٠,	•	•		٠	٠		<u>ط</u>	يس	-		1	1.5	5	
825	•	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	٠	•	•	٠	•	•	•	٠	•	•		•	•	•	بہ	ر و	ال	ن او	رت	مور	ی	نياد	٠	<i>ت</i>	ی	مما پیدط		I	1.6	5	
837	•																																				•		ل	کی علم سیر	3		1	1.	7	
845																																														
850																																مال	ستع	را	کے او	نتار	2	و_	يلا	ģ. ~	مسئلا	•	1	1.9	9	
861 866																																٠,			;		(سر	نو	ر مرسنا	مسئلا	• 1	1.	.10)	
866																														ال	ستع	ىلى!	<i>z</i> ,	أور	اج	کے نہ س	_(سر	نو	م مرسنا	مسئلا	• 1	1.	.1	1	
869																																			ل	ع تلم	خطح	: اد	آز	سے	راه	1	1.	.12	2	
009	•	•							•	•	•	•	٠																																	
883																																														12
883																																(ىل	نبله	تى ز	ونيا	، تکا	ل	غاعا	ىن						12
883 884																									•		•				•	(ىل	نىلە ت	تى ن كلىا	ونيا ولر′	، تکا ا_ر	ل بل	غا ^{عا} ماس	ی نة پر نته	و دور	,	12	2.:	1	12
883 884																										,) فاعل	ىر ، كەز	نىد ت ا_	تی ن کلیا ہمرو	ونيا ولر′ ور	، تکا ۱-! یء	ل مل ور أ	غاعا ملس ماد و	ی تا پئر تن مار ک	و دور	,	12	2.:	1	12
883																																غاعل	، لے ز	ت ا_	کلیا په و	و و لر ار ص)-! یء	مل ور أ	مله)دو	یرُ د بیرُ باری	ور نور: خته	, ;	1. 1. 1.	2.2 2.2 2.3	1 2 3	12
883 884 889 902																															ر	غاعل فاعل	، اے: ا	ت ا_	کلیا په و)	و کر مر اعل)-! یء ی نفا	عل ور أ لااق	مله)دو رط	يرُ ^ر د يرُ بارگ ٺاو	ور نور: خته خند	, ; !	1: 1: 1: 1:	2.2 2.2 2.2	1 2 3 4	12
883 884 889 902 907																																غاعل غاء	ر اے: ۔	ت ا_	کلیا په و)	و کر مر اعل ماع)-! ىء ى تفا .اتس	عل ور أ لاقت ت	مله رط رط	یر کتا بار ک ت او س س	ور فور خته خفه خفه	; ; :	1: 1: 1: 1: 1:	2.2 2.2 2.4 2.4	1 2 3 4 5	12
883 884 889 902 907 916 923																																غاعل صول	ا کے ز د	ت اب لمل	کلیا په و)	و کر اعل اعل کابغ)-! ىء ن تفا راتسر	مل ور أ لاأقر ت	مله ارط بعر بعر	یئر تنا باری تاو بیئرعا	ور فور خته خفه فور	, ; ;	12 12 12 12 12	2.2 2.2 2.4 2.5	1 2 3 4 5	12
883 884 889 902 907 916 923 931 936																													للل	· · · · · · · · · · · · · · · · · · ·	ر مکعر	ففاعل صول فن-	ا الح ز د ر کنج	ت الـ نثر ر	کلیا په و پرځ پرځ	و کر رو اعل ماع کا بغ کا بغود	۱-بر میء ماتسر مسرر	مل ور ا لااقر ان رر د	مله رط بعد ردد بند	یر کتا باری پیرعند پیرعند پیر	ور خور خفر فور بغر نفر	, ; ; ;	1: 1: 1: 1: 1: 1: 1:	2.2 2.2 2.2 2.4 2.5 2.6 2.6	1 2 3 4 5 7 8	12
883 884 889 902 907 916																													للل	· · · · · · · · · · · · · · · · · · ·	ر مکعر	ففاعل صول فن-	ا الح ز د ر کنج	ت الـ نثر ر	کلیا په و پرځ پرځ	و کر رو اعل ماع کا بغ کا بغود	۱-بر میء ماتسر مسرر	مل ور ا لااقر ان رر د	مله رط بعد ردد بند	یر کتا باری پیرعند پیرعند پیر	ور خور خفر فور بغر نفر	, ; ; ;	1: 1: 1: 1: 1: 1: 1:	2.2 2.2 2.2 2.4 2.5 2.6 2.6	1 2 3 4 5 7 8	12
883 884 889 902 907 916 923 931 936																													للل	· · · · · · · · · · · · · · · · · · ·	ر مکعر	ففاعل صول فن-	ا الح ز د ر کنج	ت الـ نثر ر	کلیا په و پرځ پرځ	و کر رو اعل ماع کا بغ کا بغود	۱-بر میء ماتسر مسرر	سل ور: ماش رربر س	مله رط مع رد ابذ مل	یر ت باری نداو بیرع بیر بیر	ور خد. خد. خور فور فور	, ; ; ;	1: 1: 1: 1: 1: 1: 1:	2.2 2.2 2.4 2.5 2.6 2.6 2.8 2.8	1 2 3 4 5 6 7 8	
883 884 889 902 907 916 923 931 936 940																													للل	· · · · · · · · · · · · · · · · · · ·	مکعر	فاعل فاعل صوا ف- ف-	ا الح أ المح الم	ت اب ب نیرر نیرر	کلیا په و پرځ پرځ	و کر طر اعل اعل کا بغ کا بغ کا بغ کا بغ	ا-ب ی تف سر سر یچه یچه	سل ور: ای ایر ررب	مك رط رد الم المين الم	یر ته باری ناوی میرع میرکزی میرکزی ساو	ور خد خد خور فور نور	; ; ; ; ; ;	12 12 12 12 12 12 12	2.2 2.2 2.4 2.5 2.6 2.6 2.8 2.8	1 2 3 4 5 6 7 8 9	12
883 884 889 902 907 916 923 931 936 940 953 953																													للل	· · · · · · · · · · · · · · · · · · ·	مکعر	غاغل موا موا ن-	ا ا ا ا ا ا	ت الـ نگرر شرر	کلیا په و پر کل کاکنا د	و لر اعل اعل کا بغ کلو د	ا-ب ما تفا مراب	لر اور: ارب ارب	سكه رط رط انتخار مارد اسل	باری باری میران میران میران میران	ور خور خفر نفور نور نور	, ; ; ; ;	12 12 12 12 13 13 13 13 13	2.2 2.2 2.4 2.5 2.6 2.5 2.8 3.2	1 2 3 4 5 6 7 8 9	
883 884 889 902 907 916 923 931 936 940 953 953 958																									٠	مو		وار	للل سا	ری .	مکعم	نفاعل نفاعل صوا ن - نام	ا الما الما الما الما الما الما الما ال	ت اب نگرر بیران برانار	کلیا په و پریز	و کر اعل اعل کا بغ کا بغ کلو د شکو د	ا-با ما تفا عدم تعالم	سر ور: ارب دربار دار	مله رط رد انتخاره الناسول ان	یر کتاری اری ساوا میر کاری میر کاری میر کاری	ور خته خفر فور فور نفر ممون	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	2.2 2.2 2.2 2.5 2.6 2.5 2.5 3.2	1 2 3 4 5 6 7 8 9	
883 884 889 902 907 916 923 931 936 940 953 958 960																										مو	٠ • • •		سا			نفاعل موا موا ن ر رب	ا الحادث . الحادث . الحادث .	ت اب نیرر بیار ب	کلیا پر کا رکیدیر رکیدیر	و کر اور اعل ماع کا بغ کا بغ کا بغ کا بغ	ا - ال القائد التعان	سل ور: الأرب درا فيرا	مك رط مناخ مناخ مناخ	یئر در ارک میران میران میران میران میران میران	ور خدم خدم نفور نفور نمور نمار	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	2.1 2.2 2.2 2.3 2.6 2.5 2.8 3.1 3.2 3.3	1 2 3 4 5 6 7 8 9 7 1 2 3	
883 884 889 902 907 916 923 931 936 940 953 958 960 973																										مو	٠ ٠ ٠	٠	سا		٠ ٠ ٠ ١ ١ ١ ١ ١	غاعل صول ن ن رب	ا الحادث . الماض . الماض .	ت اب نیرر بخ ص	کلیا پر کرک مرکز	و کر تر اعل ماع کا بغ کا بغ گود دالو	ا - الله الله الله الله الله الله الله ا	سل اور آ ار بر ادر ا اور ا	مله رط انتخار منز انتخاب	یئر ته اری گیری کاری میران کار داری گاری	ور خور خفر فور فور مناد مسا		1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	2.2 2.3 2.4 2.5 2.6 2.5 3.2 3.3 3.3	1 2 3 4 5 6 7 8 9 7 1 2 3 4	
883 884 889 902 907 916 923 931 936 940 953 958 960																									٠	ممو	٠ • • •	٠	٠	٠	 مکعہ .)	نفاعل ففاعل صول ن ن ن ن ک ر	ا الحادث المادة الم	ت اب نیرر نیر نیر	کلیا پر کا میری میری	و کر تر اعل اعل کا بغ کا بغ کا دار دارار زرار	ا-! ی عنا الته تعانی سر الته تعانی	سل اور: ار برا فیرا اورا	مله ارط المراتع المنافضو المنافضو المنافضو	یئر تنظیم از کاری از کاری کاری کاری کاری کاری کاری کاری کاری	ور خور خفر فور ملی ملین مسا		1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	2.2 2.2 2.2 2.3 2.6 2.6 2.6 3.2 3.2 3.3 3.3	1 2 3 4 5 6 7 8 9 7 1 2 3 4 5 4 5 4 5 7	

عسنوان	vii

متطيل جلي		
قطبی محدومیں لا پلاسی	13.9	
: دائری جلی مساوات بیبل	13.10	
ُ مساوات لا پلاس _ نظريه مخفی قوه	13.11	
كروى محدد مين مساوات لا پلاس ـ مساوات ليزاندر		
لا پلاس تبادل برائے جزوی تفرقی مساوات		
و_ مخلوط تحليلي تفاعل	1 مخلوط اعدا	4
مخلوط اعداد کی قطبی صورت یہ تکونی عدم مساوات کی معلق معلق کی معلق	14.1	
مخلوط اعداد کی قطبی صورت۔ تکونی عدم مساوات	14.2	
مخلوط سطح مين منحنيات اور خطي	14.3	
مخلوط تفاعل ـ مد ـ تفرق ـ تحليلي تفاعل	144	
روها ن عدد عرب المنظم الله الله الله الله الله الله الله الل	14.5	
ناطق تفاعل - جذر		
قوت نمائي تفاعل	14.7	
تكونياتي اور بذلولي تفاعل	14.8	
لوگار تقم _ عمومي طاقت		
	,	
يەنقتەڭ ي	1. محافظ زاو	5
نشه کی نشه کی		
عافظ زاويد نقش	15.2	
عطى <i>كسرى تب</i> ادل		
ک مرن بادل		
نتشون کی شرق بادن		
ريمان سطحين	15.6	
ت 1157	1 مخلوط تكملا	6
ت المعلق	16.1	
مخلوط خطئ تکمل کی خواص	16.2	
كوق كا مناه ممكل		
و کاه مسلمه سن ما ۱۳۷۷ میل در اید غیر قطعی تمل در ۱۳۷۰ میل کار اید غیر قطعی تمل در ۱۳۷۰ میل کارد. در ۱۳۸۰ میل کارد اید غیر قطعی تمل در در ۱۳۸۰ میل کارد اید غیر قطعی تمل در	10.5	
كوشي كاكليه كلل		
تخلیلی تفاعل کے تفرق	16.6	
. 17		
يىلىل 1201	1′ ترتیباور	7
. مسل المسلط	17.1	
ر نگل	17.2	
كوتى اصول مركوزيت برائح ترتيب اور تسلسل	17.3	
يك سرحققى زتپ ليبنئرير كھ برائے حقیقی تسلسل	17.4	

viii

تىلىل كى مر كوزىت اورا نفراخ كى پر تھيں		
1243 ل. ئير شلىل اور لوغوں شلىل طاقق شلىل كار دپ ميں نقائل 1256	اقتى تىلىا 18.1 18.2 18.3 18.4 18.5 18.6 18.7	18
الانتانى پر خليل پذيرى ـ صفراورندرت	کمل بذریه 19.1 19.2	19
هيقى كل بذريعه سئله بقيد	19.3 19.4	
1344 ي تفاعل اور نظريه مخفى قوه 1344	20.1 20.2 20.3	20
ا نام الله الله الله الله الله الله الله ال	21.2 21.3 21.4 21.5 21.6	21
کے اعداد کی تراکیب خطی مساوات کا نظام ۔ گاوی تا اسقاط، معکوس قالب ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	22.1 22.2	22

ix

22.4 تركيب كمتر مربع	5
-	
مدادی تراکیب برائے تفر قی مساوات	1 23
23.1 کی در جی تفرقی مساوات کے اعدادی تراکیب	
23.2 دودر جی تفرقی مساوات کے اعداد می تراکیب	2
. 23. اعدادی تراکیب برائے بینوی جزوی تفر تی مساوات	3
23.3.1 مسّله ڈرشلے	
23.3.2 بدلتي رخ تفي تركيب	
. 23 مئله نيومن اور مخلوط سرحدی قيمت مئله -غير منظم سرحد	1
. 23. اعدادی تراکیب برائے قطع مکافی مساوات	5
شمال اور شاريات	1 24
من المستنبي على المستنبي أن وعيت اوراس كامقصد	
24.2 نمونه كااظهار بذريعه جدول اورترسيم	2
. 24.5 نمونی اوسطاور نمونی تغیریت	3
24.4 بلامنصوبه تجربات، انجام، و قوعات	1
24.5 احتال	5
. 24.6 م تب اجتماعات اورغير م تب اجتماعات	5
1553	7
24.8 تقتيم كالوسطاوراس كي تغيريت	2
	,
24.9 ثنائي، يو يُن، اور بيش بندى تقسيم	
24.10عموى تقتيم)
24.11) يك سے زائد بلا منصوبہ متغیرات كی تقسیمیں	i
24.12 بلامنصوبه نمونه بهندي- بلامنصوبه اعداد)
24.13 مقدار معلوم كاندازه لكانا	
24.14 قتار والمستروع المستروع	
24.15 قال کی رکھ کے فیطے	
24.10 نير هام عيار	
24.10 توليت نمونه	
24.18 وقت	
24.16 غير مقدار معلوم پر کھ	
24.20 يىر عدار خو _{اب} د ها	
24.20 پیا شول فی جوزیال-سید تھے تھوط کو مواق بتانا)
شافی ثبوت	
فير معلومات	. ب
آ.ب اعلی تفاعل کے مساوات	l

۽ جدول

میری پہلی کتاب کادیباچہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لا تعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

مارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بوں بیہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

باب24

احتمال اور شاريات

بڑے پیانے پر مصنوعات کی پیداوار اور تجرباتی مواد کے تجزید کے لئے حسابی شاریات بہت اہم ہے۔ اس باب کی شروع میں مواد کا جدول اور ترسیم سے اظہار پر غور کیا جائے گا۔چونکہ شاریات کی بنیاد حسابی احمال ہے للذا اس کے بعد حسابی احمال کے بنیادی تصورات اور اصولوں پر غور کیا جائے گا۔ باب کا باقی حصہ شاریات کے اہم ترین تراکیب پر مشمل ہے۔

24.1 حسانی شاریات کی نوعیت اوراس کا مقصد

انجینئری شاریات میں ہمیں ایسے تجربات کی بناوٹ اور تشخیص سے غرض ہو گا جو عملی مسائل کے بارے میں معلومات فراہم کر سکے، مثلاً، خام مال یا تیار کردہ مصنوعات کے معیار کی جانج پڑتال، مشین اور آلات یا مصنوعات کی تیاری میں استعال تراکیب کا آپس میں موازنہ، مزدور کی پیداوار، صارفین کا نئی مصنوعات کے لئے رد عمل، مختلف حالات میں کیمیائی عمل سے حاصل پیداوار، خام لوہا کی کثافت اور اس میں لوہے کی مقدار کا تعلق، مختلف درجہ حرارت پر ایئر کنڈشنر نظام کی کارکردگی، فولاد میں کاربن کی مقدار اور فولاد کی داک ویل آسختی کا تعلق، وغیرہ وغیرہ۔

مثال کے طور پر، بڑے پیانے پر (پیچ، بلب، موبائل فون وغیرہ کی) پیداوار کے عمل میں عموماً بیے عیب2 اجزاء، جو درکار خواص کے معیار پر یورا نہیں اترتے ہیں، درکار خواص کے معیار پر یورا نہیں اترتے ہیں،

 $m Rockwell^1$ $m nondefective^2$ $m defective^3$

پائے جائیں گے۔ درکار خواص میں دھرا کا قطر، بلب کی کم سے کم عرصہ ذندگی⁴ ، ہر قماتی مصنوعات میں استعال رقی مزاحت کی قیت کے حدود، کتاب میں استعال کاغذ کی موٹائی، خود کار بھری گئی بوتل میں مشروب کی کم سے کم مقدار، برقی سوئچ کا زیادہ سے زیادہ دورانیہ ردعمل، اور کیڑے کی کم سے کم مضبوطی شامل ہیں۔

مصنوعات کی معیار میں فرق متعدد وجوہات (مثلاً خام مال ، خود کار مشین کی کار کردگی، کاریگر کی کاریگری) کی بنا ممکن ہے جن کو قبل از وقت جاننا ممکن نہیں ہے للمذا انہیں بلا منصوبہ تبدیلیاں⁵ تصور کیا جات ہے۔پیداوار کے تراکیب کی کار کر د گی اور متذکرہ بالا دیگر مثالوں میں بھی صورت حال ایسا ہی ہو گا۔

ہم ایک پیدا کردہ رکن کو پر کھنے کے لئے عموماً بہت وقت درکار ہو گا اور ایسا کرنا خاصہ مہنگا ہو گا۔اگر پر کھنے کے دوران رکن ضائع ہوتا ہو تب ہر رکن کو پر کھنا ممکن نہیں ہو گا۔اسی لئے تمام ارکان کو پر کھنے کی بحائے چند ارکان کو بطور نھو نہ 6 بر کھا جاتا ہے اور اس نمونہ کے نتائج سے کل تعداد (آبادی 7) کے بارے میں رائے بنائی جاتی ہے۔ اگر 10000 پیچوں کی کھیپ سے 100 پیچوں کے نمونہ کو پر کھا جائے اور اس میں 5 پیچ عیب دار نکلیں تب ہم کہہ سکتے ہیں کہ اس کھیپ میں % 5 بیچ عیب دار ہوں گے، پس اتنا ضروری ہے کہ نمونہ کو بلا منصوبہ⁸ چینا حائے لیغنی کھیپ میں موجود ہر چیج کا بطور نمونہ منتخب ہونے کا امکان ⁹ ایک حبیبا ہو۔ ظاہر ہے کہ الیی رائے مکمل طور یر درست نہیں ہو سکتی ہے اور یہ کہنا کہ ٹھیک % 5 چیج عیب دار ہوں گے عموماً درست نہیں ہو گا لیکن عام طور عملی زندگی میں اتنی درست رائے (یا نتیجہ) کی ضرورت پیش نہیں آئے گی۔جتنے زبادہ ارکان کو پر کھا جائے ہمیں نتائج یر اتنا زیادہ اعتماد ہوتا ہے۔ حسابی احتمال کا نظریہ ان خیالات کو ٹھوس شکل دیتا ہے اور نتائج پر کتنا اعتبار کیا جائے، اس کی ناپ بھی پیش کرتا ہے۔یوں شاریات کی بنیاد نظریہ احتمال ہے۔

اسی طرح خام لوہا میں لوہے کی فی صد مقدار u حاننے کی خاطر ہم بلا منصوبہ n تعداد کے نمونے لیتے ہوئے ان میں لوپے کی فی صد مقدار تج باتی طور دریافت کریں گے۔ ان n نمونوں کے تج باتی نتائج x_1, \dots, x_n کی اوسط u کو تخمین ہوگ۔ $\bar{x} = \frac{x_1 + \dots + x_n}{n}$ اوسط

مختلف نوعیت کے مسائل کے لئے مختلف تراکیب اور تکنیک درکار ہوں گے البتہ مسئلے کی تشکیل سے حل تک کے قدم عموماً ایک جیسے ہوتے ہیں۔انہیں یہاں پیش کرتے ہیں۔

> $lifetime^4$ random variation⁵

sample⁶ population⁷

at random⁸

chance⁹

- مسئلے کی تشکیل۔ مسئلے کو ٹھیک ٹھیک بیان کرنا اور تفتیشی عمل کے حدود تعین کرنا ضروری ہے تا کہ شاریاتی تفتیش کی لاگت، تفتیش کار کی مہارت اور دستیاب سہولیات کو مد نظر رکھتے ہوئے مخصوص وقت میں قابل استعال نتائج حاصل ہوں۔اس قدم میں واضح تصورات سے حسابی نموند 10 کی تخلیق 11 بھی شامل ہے۔ (مثال کے طور پر ہم نے تعین کرنا ہو گا کہ عیب دار رکن سے کیا مراد ہے۔)
- تجربه کی تخلیق۔ آخری مرطے میں استعال ہونے والی شاریاتی ترکیب کا انتخاب، نمونہ کی جمامت (جتنے ارکان کا تجربه یا ان پر تجربه کیا جائے گا، وغیرہ) اور طبعی تراکیب اور سکنیک جو بروئے کار لائے جائیں گے کا انتخاب اس قدم میں کیا جائے گا۔ کم سے کم وقت اور لاگت کے ساتھ زیادہ سے زیادہ معلومات حاصل کرنا مقصد ہے۔
 - تجربه یا مواد جمع کرنے کا عمل۔ اس قدم میں قواعد پر سختی سے عمل کرنا ضروری ہے۔
- جدول بندی۔ اس قدم میں تجرباتی نتائج کو واضح اور سادہ جدول کی شکل میں لکھا جاتا ہے اور ساتھ ہی انہیں ترسیم کیا جا سکتا ہے۔ اس قدم میں نمونہ کی اوسط اور قیتوں میں پھیل کے تخمین کا حساب بھی کیا جاتا ہے۔
- شاریاتی رائے زنی۔ اس قدم میں کوئی مخصوص شاریاتی ترکیب کو نمونہ سے حاصل نتائج پر لا گو کرتے ہوئے نامعلوم خواص کے بارے میں رائے قائم کی جاتی ہے تاکہ ہم مطلوبہ جواب حاصل کر سکیں۔

24.2 نمونه كااظهار بذريعه جدول اورترسيم

شاریاتی تجربہ کے دوران عموماً مشاہدوں (زیادہ تر صورتوں میں اعداد) کا سلسلہ حاصل ہوتا ہے جنہیں ہم اسی ترتیب سے لکھتے ہیں جس میں انہیں حاصل کیا گیا ہو۔ایک مثال جدول 24.1 میں دی گئی ہے۔ سینٹ اور بجری (کنگریٹ) سے لکھتے ہیں جس بیلن (قطر 15.24 cm) اور لمبائی 30.48 cm) بنا کر 28 دن 13 بعد انہیں چیرا گیا۔یوں ہمیں ایک نمونہ حاصل ہوا جو 100 نمونہ اعداد پر مشتمل ہے۔یوں نمونہ کی جسامت¹⁴ 100 سے۔

mathematical model¹⁰

الفظ "نمونه" اور لفظ" صابی نمونه "علیحده معنی رکھتے ہیں۔ای لئے صابی نمونه کو بطوراصطلاح لیتے ہوئے پورا کھاجائے گایعنی "صابی نمونه"۔ د. .

bar graph¹²

¹³ سینٹ کو مکمل مضبوط ہونے کے لئے اتنے دن در کار ہوتے ہیں۔

 $[\]rm size^{14}$

جدول 24.1: کنگریٹ بیلن چیرنے کے لئے در کار فی مربع سنٹی میٹر قوت (N cm⁻²)

320	380	340	410	380	340	360	350	320	370
350	340	350	360	370	350	380	370	300	420
370	390	390	440	330	390	330	360	400	370
320	350	360	340	340	350	350	390	380	340
400	360	350	390	400	350	360	340	370	420
420	400	350	370	330	320	390	380	400	370
390	330	360	380	350	330	360	300	360	360
360	390	350	370	370	350	390	370	370	340
370	400	360	350	380	380	360	340	330	370
340	360	390	400	370	410	360	400	340	360

اس جھے میں ہم نمونہ کو جدول اور ترسیم کی صورت میں ظاہر کرنا سیکھتے ہیں۔ہم ان تراکیب کو جدول 24.1 کی مدد سے سیکھتے ہیں۔

جدول 24.1 میں دی گئی معلومات جانے کی خاطر ہم مواد کو ترتیب دیتے ہیں۔ہم (کم سے کم قیمت) 310 ، 330 ، 310 ، 3

x کسی مخصوص x کے لئے نمونہ میں x اور x سے کم قیمتوں کی تمام تعدد کا مجموعہ لیتے ہوئے مجموعی تعدد x حاصل ہوتی ہے جس کو پانچویں قطار میں درج کیا جاتا ہے۔ مثال کے طور پر x=350 کا مطابقی مجموعی تعدد x=350 ہے۔ مثال کے خص کے تحت x=350 اور اس سے کم قیمتوں کی تعداد x=350 ہے۔ اس کو جمامت x=350 ہے۔ مثال کے جس کے تحت x=350 ہے۔ اس کو جمامت x=350

tally mark¹⁵

absolute frequency¹⁶

frequency¹⁷

relative frequency¹⁸

cumulative frequency¹⁹

جدول 24.2: جدول تقتيم برائے جدول 24.1 کانمونہ

1	2	3	4	5	6
مضبوطي	تمی تعدد نشان شار	<i>></i>	اضافی تعدد	مجموعی تعدد	مجموعی اضافی تعدد
300		2	0.02	2	0.02
310		0	0.00	2	0.02
320		4	0.04	6	0.06
330		6	0.06	12	0.12
340	'	11	0.11	23	0.23
350		14	0.14	37	0.37
360		16	0.16	53	0.53
370		15	0.15	68	0.68
380		8	0.08	76	0.76
390		10	0.10	86	0.86
400		8	0.08	94	0.94
410		2	0.02	96	0.96
420		3	0.03	99	0.99
430		0	0.00	99	0.99
440		1	0.01	100	1.00

سے چھٹی قطار میں درج مجموعی اضافی تعدد²⁰ حاصل ہوتی ہے۔مثال کے طور پر چھٹی قطار سے ہم دکھتے ہیں کہ نمونہ میں %76 قیمتیں 380 کے برابر یا اس سے کم ہیں۔

اگر نمونه میں کوئی قیت نه پائی جاتی ہو تب اس قیت کی تعدد 0 ہوگی۔اگر نمونه میں تمام قیمتیں ایک جیسی ہوں تب اس قیمت کی تعدد کی دو انتہائی قیمتیں ہیں للذا درج ذیل حاصل ہوتا ہے۔

مسکلہ 24.1: (اضافی تعدد) اضافی تعدد کی کم سے کم قیمت 0 اور زیادہ سے زیادہ قیمت 1 ہے۔

 x_1, x_2, \cdots, x_m فرض کریں کہ جسامت n کے نمونہ میں درج ذیل m مختلف قیمتیں پائی جاتی ہیں x_1, x_2, \cdots, x_m

جن کے مطابقتی اضافی تعدد

 $\tilde{f}_1, \tilde{f}_2, \cdots, \tilde{f}_m$

ہیں۔تب ہم درج ذیل تفاعل ²¹ متعارف کر سکتے ہیں

(24.1)
$$\tilde{f}(x) = \begin{cases} \tilde{f}_j & \text{so } x = x_j & \text{for } j = 1, 2, \dots, m \\ 0 & \text{soliton} \end{cases}$$

جس کو نمونہ کا تعددی تفاعل²² کہتے ہیں۔ یہ نمونہ میں قیمتوں کی تقسیم (پھیل) دیتا ہے۔ اس لئے ہم کہتے ہیں کہ یہ تفاعل نمونہ کی تعددی تقسیم ²³ دیتا ہے۔

 $ilde{f}(300) = 0.02$ مثال کے طور پر جدول 24.2 میں تعددی تفاعل کی قیمتیں قطار $ilde{4}$ میں دکھائی گئی ہیں جہاں $ilde{f}(320) = 0.04$ ، $ilde{f}(310) = 0$ ،

جسامت الم کے نمونہ میں تمام تعدد کا مجموعہ اللہ کے برابر ہو گا۔ (کیول؟) اس سے درج ذیل اخذ ہوتا ہے۔

cumulative relative frequency²⁰

²¹ بم تم استعال کرتے ہیں چونکہ ل کو تعددی تفاعل کے لئے استعال کیا جائے گا جس کا استعال کثرت سے ہوگا۔

frequency function of the sample 22

frequency distribution²³

مئلہ 24.2: اضافی تعدد کا مجموعہ کسی بھی نمونہ میں تمام اضافی تعدد کا مجموعہ 1 کے برابر ہو گا، یعنی:

$$\sum_{j=1}^{m} \tilde{f}(x_j) = \tilde{f}(x_1) + \tilde{f}(x_2) + \dots + \tilde{f}(x_m) = 1$$

نمونہ کا توسیمی اظہار شکل 24.1-الف تا شکل 24.1-ت میں دکھایا گیا ہے۔شکل 24.1-پ میں ہر مستطیل کا رقبہ مطابقی اضافی تعدد کے برابر ہو گا لہذا عمودی محدد پر اضافی تعدد فی اکائی رقبہ ہو گا۔چونکہ شکل 24.1-پ میں تمام

24.2 اور مجمو عن تعددی نفاعل $ilde{f}(x)$ اور مجمو عن تعددی نفاعل $ilde{f}(x)$ برائے جدول $ilde{f}(x)$

مستطیل کی چوڑائی ایک جیسی ہے لہذا عمود کی محدد پر قیمتیں $\tilde{f}(x)$ کے راست متناسب ہوں گی۔ البتہ مستطیل کو چوڑائیاں مختلف ہونے کی صورت میں ایسا نہیں ہو گا۔ شکل 24.1-ت میں بھی یہی صورت حال ہو گی۔

ہم اب درج ذیل تفاعل متعارف کرتے ہیں

 $\tilde{F}(x) = 2$ اور x اور x متمام قیمتوں کے اضافی تعدد کا مجموعہ x

جس کو نمونے کا مجموعی تعددی تفاعل 24 یا مختراً تقسیمی تفاعل نمونہ 25 کہتے ہیں۔ شکل 24.2 میں مثال دی گئے ہے۔

 $\tilde{f}(x)$ ہو $\tilde{f}(x)\neq 0$ سیڑھی نفاعل (گلڑوں میں مستقل نفاعل) ہے جس میں ٹھیک ان x پر جہاں $\tilde{f}(x)$ ہو $\tilde{f}(x)$ کے برابر چلانگ بائے جاتے ہیں۔ پہلی چھلانگ نمونہ کی کم سے کم قیمت اور آخری چھلانگ نمونہ کی زیادہ سے زیادہ قیمت پر یائی جائے گا۔ آخری چھلانگ کے بعد $\tilde{f}(x)=1$ رہے گا۔

cumulative frequency function of the sample 24 sample distribution function 25

میں)	ت(نيوڻن	<u>ە كئے در كار قو</u>	و توڑنے کے	ن دھاگے ک	پاس کے سوفی	:24.3ر	جدول	
18	86	107	87	94	82	81	98	

114	118	86	107	87	94	82	81	98	84
120	126	98	89	114	83	94	106	96	111
123	110	83	118	83	96	96	74	91	81
102	107	103	80	109	71	96	91	86	129
130	104	86	121	96	96	127	94	102	87

اور $\tilde{F}(x)$ کا تعلق درج ذیل ہے $\tilde{f}(x)$

(24.2)
$$\tilde{F}(x) = \sum_{t \le x} \tilde{f}(t)$$

جہاں $x \leq x$ کا مطلب ہے کہ کسی بھی x کے لئے ان تمام f(x) کا مجموعہ لیا جائے گا جن کے لئے کہ کی قیمت $x \leq x$ کا مطلب ہے کہ ہو۔

ا گر کسی نمونہ میں مختلف اعداد کی تعداد بہت زیادہ ہو تب اس کا جدولی اور ترسیمی اظہار غیر ضروری طور پر مشکل ہو گا جس کو گیروہ بندی²⁶ سے آسان بنانا ممکن ہے۔آئیں گروہ بندی کے عمل کو سمجھیں۔

دیے گئے نمونہ کے لحاظ سے ہم ایبا وقفہ I منتخب کرتے ہیں جس میں تمام نمونی قیمتیں شامل ہوں۔ہم I کو کروں میں تقسیم کرتے ہیں جنہیں جماعتی وقفہ I کہتے ہیں۔ان جماعتی وقفوں کے وسطی نقطوں کو جماعتی وسطی نقطے I کھی نشان I کہتے ہیں۔ہر جماعتی وقفہ میں پائے جانے والے نمونی قیمتیں کو طبقہ I کہتے ہیں۔ طبقہ میں نقطے I میں نمونی قیمتوں کی تعداد کو جماعتی تعدد I کہتے ہیں جس کو جسامت نمونہ I سے تقسیم کرنے سے اضافی جماعتی تعدد I کو جو جماعتی نشان کے تابع ہے گروہ بند نمونہ کا تعددی تفاعل I ہیں۔ اس طرح مجموعی اضافی جماعتی تعدد I جو جماعتی نشان کے تابع ہے گروہ بند نمونہ کا تقسیمی تفاعل I کہاتا ہے۔ جدول I کہ اور جدول I کہ میں مثال دیا گیا ہے۔

grouping²⁶

class intervals²⁷

class midpoints²⁸

class marks²⁹

 $^{{\}rm class}^{30}$

 $^{{\}rm class}\ {\rm frequency}^{31}$

relative class frequency³²

frequency function of the grouped sample³³

distribution!function of the grouped sample³⁴

جماعتی وقفه	جماعتی نشان x	نی تعدد نشان شار	<i>></i>	$\tilde{f}(x)$	$\tilde{F}(x)$
65 - 75	70		2	0.04	0.04
75 - 85	80		8	0.16	0.20
85 - 95	90		11	0.22	0.42
95 - 105	100		12	0.24	0.66
105 - 115	110		8	0.16	0.82
115 - 125	120		5	0.10	0.92
125 - 135	130		4	0.08	1.00
		مجموعه	50	1.00	

جدول 24.4: تعددي جدول برائے جدول 24.3 (گروہ بند)

جماعتوں کی تعداد جتنی کم رکھی جائے، گروہ بند نمونہ کی تقسیم اتنی سادہ ہو گی اور اتنی ہی زیادہ معلومات کھوئی جائے گی چونکہ اصل نمونی قیمتیں اب صریحاً نظر نہیں آئیں گی۔ گروہ بندی کرتے وقت دھیان رکھیں کہ صرف غیر ضروری معلومات کھوئی جائے۔ گروہ بند نمونہ استعال کرتے ہوئے مشکلات سے بچنے کی خاطر درج ذیل اصولوں کا خیال رکھیں۔

- جماعتی وقفے برابر رکھیں۔
- جماعتی نشان یوں منتخب کریں کہ جماعتی نشان سادہ اعداد (جن میں غیر صفر ہندسوں کی تعداد کم سے کم ہو) پر واقع ہوں۔
- x_j اگر نمونی قیت x_j دو جماعتوں کی سرحد پر واقع ہو تب یہ قیت اس طبقہ میں شامل کیا جائے گا جو x_j ہے شروع ہوتا ہو۔

سوالات

سوال 24.1 تا سوال 24.9 میں دیے گئے نمونہ کا تعددی جدول بنائیں اور نمونہ کو تعددی نقطہ ترسیم، ڈبہ ترسیم اور مستطیل ترسیم کی صورت میں دکھائیں۔ سوال 24.1: مزاحمت کی قیمت اوہم Ω میں۔

99 100 102 101 98 103 100 102 99 101 100 100 99 101 100 102 99 101 98 100

سوال 24.2:

6 2 4 1 2 4 3 3 2 1 6 5 6 3 4

سوال 24.3: برقی سون کا سینڈوں میں دورانیہ ردعمل

1.3 1.4 1.1 1.5 1.4 1.3 1.2 1.4 1.5 1.3 1.2 1.3 1.5 1.4 1.4 1.6 1.3 1.5 1.1 1.4

سوال 24.4: خام كوئله مين كوئله كي في صد مقدار

87 86 85 87 86 87 86 81 77 85 86 84 83 83 82 84 83 79 82 73

سوال 24.5: چادری فولاد کی تنشی مضبوطی [kg mm⁻²]

44 43 41 41 44 44 43 44 42 45 43 43 44 45 46 42 45 41 44 44 43 44 46 41 43 45 45 42 44 44

سوال 24.6: خود کار نظام سے 100 کاغذ کے گھٹے بنانے میں کی بیشی 0 - 1 + 0 = 0 کاغذ کے گھٹے بنانے میں کی بیشی

سوال 24.7: ایک ہی قسم کے گاڑیوں کا تیل کا خرچہ۔ [کلومیٹر فی لیٹر]
12 11.5 11 12.5 11 12

سوال 24.8: خود کار نظام سے بھری گئی تھیلوں کا گرام میں وزن 200 201 198 198 201 200 201

سوال 24.9: اندرون شہر چلتی ریل گاڑی کا اڈے پر ٹھیک وقت پر چینچنے سے انحراف (منٹوں میں)³⁵

سوال 24.10: سوال 24.3 کے نمونہ کی مجموعی تعددی تفاعل کا ترسیم کھیپنیں۔

سوال 24.11: جدول 24.4 کے گروہ بند نمونہ کا ڈبہ ترسیم، مستطیل ترسیم اور تعددی کثیر الاضلاع ترسیم کھپنیں۔

سوال 24.12: جدول 24.1 میں جماعتی و قفوں کے جماعتی نشان 300 ، 320 ، 340 ، ، ، ، پر لیتے ہوئے مطابقتی تعددی جدول بنائیں۔اس کے مستطیل ترسیم تھینچ کا شکل 24.1-پ کے ساتھ موازنہ کریں۔

سوال 24.13: جدول 24.3 میں جماعتی نشان 75 ، 85 ، 95 ، ... کے کر مطابقتی تعددی جدول بنائیں۔اس کے مستطیل ترسیم کا سوال 24.10 کے ترسیم سے موازنہ کریں۔

سوال 24.14: تجرباتی نتائج میں سب سے کم ناپ 10.8 cm اور سب سے زیادہ ناپ 11.9 cm تھی۔اس مواد کی گروہ بندی لے لئے جماعتی وقفہ تجویز کریں۔

³⁵مید کی جاسکتی ہے کہ ایک دن ہمار ی ریل گاڑیاں بھی وقت کی اتنی یابند ہوں گی۔

24.3 نمونی اوسطاور نمونی تغیریت

تعددی تفاعل (یا تقسیمی تفاعل) نمونہ کی صحیح تصویر کشی کرتا ہے۔اس تفاعل سے ہم نمونہ کے کئی خواص کا حساب لگا سکتے ہیں مثلاً نمونی قیمتوں کی اوسط جسامت، پھیل، تشاکل، وغیرہ۔ اس حصہ میں ہم ایسے اہم ترین دو قیمتوں، نمونی اوسط اور نمونی تغیریت، پر غور کریں گے۔

نمونہ x_1, x_2, \cdots, x_n کی اوسط قیمت یا مختصراً نمونی اوسط \overline{x} سے ظاہر کیا جاتا ہے جس کی تعریف درج زیل کلیہ دیتی ہے۔

(24.3)
$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

تمام نمونی قیمتوں کے مجموعہ کو جسامت n سے تقسیم کرتے ہوئے نمونی اوسط حاصل ہو گا۔ظاہر ہے کہ یہ نمونی قیمتوں کی اوسط جسامت دے گا۔

نمونہ x_1, x_2, \cdots, x_n کی نمونی تغیریت x_1, x_2, \cdots, x_n کیا جاتا ہے جس کی تعریف درج ذیل کلیہ دیتی ہے۔

(24.4)
$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{j} - \bar{x})^{2}$$
$$= \frac{1}{n-1} [(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}]$$

نمونی اوسط \bar{x} سے نمونی قیتوں کے انحراف کے مربعوں کو n-1 سے تقسیم کرتے ہوئے نمونی تغیریت عاصل ہو گا۔ یہ نمونی قیتوں کی انحراف یا پھیل کی ناپ ہے۔ نمونی تغیریت غیر منفی عدد ہو گا۔ نمونی تغیریت 8 کا مثبت جذر معیادی انحراف 8 کہلاتا ہے جس کو 8 سے ظاہر کیا جاتا ہے۔

مثال 24.1: نمونی اوسط اور نمونی تغیریت بلا منصوبہ منتخب کیے گئے کیلوں کی (سنٹی میٹروں میں) لمبائیاں درج ذیل ہیں۔

 $0.80 \quad 0.81 \quad 0.81 \quad 0.82 \quad 0.81 \quad 0.82 \quad 0.80 \quad 0.82 \quad 0.81 \quad 0.81$

sample mean³⁶ sample variance³⁷

standard deviation³⁸

مساوات 24.3 سے نمونی اوسط

 $\bar{x} = \frac{1}{10}(0.80 + 0.81 + 0.81 + 0.82 + \dots + 0.81) = 0.811 \,\text{cm}$

اور مساوات 24.4 سے نمونی تغیریت

 $s^2 = \frac{1}{9}[(0.80 - 0.811)^2 + \dots + (0.81 - 0.811)^2] = 0.000054 \,\text{cm}^2$

ہے۔ایک جیسی نمونی قیتوں کو اکھا لکھنے سے حساب نسبتاً آسان بنایا جا سکتا ہے جیسے

 $\bar{x} = \frac{1}{10}(2 \cdot 0.80 + 5 \cdot 0.81 + 3 \cdot 0.82) = 0.811 \,\mathrm{cm}$

جہاں قوسین میں تین مختلف نمونی قیتوں $x_1=0.80$ ، $x_1=0.80$ اور $x_3=0.82$ کو ان کی تعدد سے خبرب دیا گیا ہے۔اس طرح

 $s^2 = \frac{1}{9}[(2(0.800 - 0.811)^2 + 5(0.810 - 0.811)^2 + 3(0.820 - 0.811)^2] = 0.000054$

ار گا_

اس مثال میں ہم نے \bar{x} اور \bar{s}^2 کو نمونہ کے تعددی تفاعل $\bar{f}(x)$ کی مدد سے حاصل کرنا دیکھا۔اگر ایک نمونہ میں ٹھیک m میں ٹھیک m مختلف اعدادی قیمتیں

 x_1, x_2, \cdots, x_m

پائی جاتی ہوں جن کے مطابقتی اضافی تعدد

 $\tilde{f}(x_1), \tilde{f}(x_2), \cdots, \tilde{f}(x_m)$

ہوں تب حساب کے لئے در کار تعدد درج ذیل ہوں گے

 $n\tilde{f}(x_1), n\tilde{f}(x_2), \cdots, n\tilde{f}(x_m)$

جنہیں استعال کرتے ہوئے مساوات 24.3 اور مساوات 24.4 سے

(24.5) $\bar{x} = \frac{1}{n} \sum_{i=1}^{m} x_i n \tilde{f}(x_i)$

اور

(24.6)
$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{m} (x_{j} - \bar{x})^{2} n \tilde{f}(x_{j})$$

حاصل ہو گا۔ دھیان رہے کہ مساوات 24.3 اور مساوات 24.4 میں ہم تمام نمونی قیتوں پر مجموعہ لیتے ہیں جبکہ مساوات 24.5 اور مساوات 24.6 میں ہم اعدادی طور مختلف نمونی قیتوں پر مجموعہ حاصل کرتے ہیں۔ حتی تعدد $n \tilde{r}(x_i)$ عدد صحیح ہوں گے جبکہ اضافی تعدد $n \tilde{r}(x_i)$ عموماً غیر عدد صحیح ہوں گے۔

چونکہ $x_j - \bar{x}$ کی حتمی قیمت نمونی اوسط کی نسبت بہت کم ہو سکتی ہے لہذا s^2 کے مذکورہ بالا کلیات کی استعال ہے (خود کار حساب میں) ملحوظ ہندسے ضائع ہوں گے۔ہم s^2 کا ایک ایسا کلیہ اخذ کرتے ہیں جو ان مشکلات سے دو چار نہ ہو۔ہم مساوات 24.4 میں

$$(x_j - \bar{x})^2 = x_j^2 - 2x_j\bar{x} + \bar{x}^2$$

پر کرتے ہوئے تین مجموعے

$$\sum (x_j - \bar{x})^2 = \sum x_j^2 - 2\bar{x} \sum x_j + \sum \bar{x}^2$$

 $\bar{x}=24.3$ حاصل کرتے ہیں جہاں آخری مجموعہ $n\bar{x}^2$ کے برابر ہے۔ مساوات $\bar{x}=24.3$ کی قیمت پر کرتے ہوئے

$$-2\bar{x}\sum x_j = -\frac{2}{n}(\sum x_j)^2$$
 let $n\bar{x}^2 = \frac{1}{n}(\sum x_j)^2$

لکھا جا سکتا ہے جنہیں استعال کرتے ہوئے

(24.7)
$$s^{2} = \frac{1}{n-1} \left[\sum_{j=1}^{n} x_{j}^{2} - \frac{1}{n} \left(\sum_{j=1}^{n} x_{j} \right)^{2} \right]$$

حاصل ہو گا۔ اس طرح مساوات 24.6 کو تبدیل کرتے ہوئے

(24.8)
$$s^{2} = \frac{1}{n-1} \left[\sum_{j=1}^{m} x_{j}^{2} n \tilde{f}(x_{j}) - \frac{1}{n} \left(\sum_{j=1}^{m} x_{j} n \tilde{f}(x_{j}) \right)^{2} \right]$$

حاصل کیا جا سکتا ہے۔

 $\bar{x}=\bar{x}=0$ مثال کے طور پر مثال 24.1 میں مساوات 24.5 اور مساوات 24.8 (جدول 24.5) سے پہلے کی طرح $\frac{8.11}{10}=0.811$

$$s^2 = \frac{1}{9} \left(6.5777 - \frac{8.11^2}{10} \right) = \frac{0.00049}{9} = 0.000054$$

حاصل ہوتے ہیں۔

نغیریت کا حساب برائے مثال 24.1	جدول 24.5:اوسطاور آ
--------------------------------	---------------------

x_j	$10\tilde{f}(x_j)$	$x_j \cdot 10\tilde{f}(x_j)$	x_j^2	$x_j^2 \cdot 10\tilde{f}(x_j)$
0.80	2	1.60	0.6400	1.2800
0.81	5	4.05	0.6561	3.2805
0.82	3	2.46	0.6724	2.0172

سوالات

سوال 24.15: گزشته حصے کی سوال 24.2 کے لئے نمونی اوسط اور نمونی تغیریت علاش کریں۔ $\bar{x}=3.47,\ s^2=2.98$

سوال 24.16: گزشته حصے کی سوال 24.4 کے لئے نمونی اوسط اور نمونی تغیر بہت تلاش کریں۔ $\bar{x}=84,\ s^2=\frac{1251}{95}$.

سوال 24.17: نمونه 2,1,4,5 کا مستطیل ترسیم کیپنیں۔ترسیم کو دیکھ کر \bar{x} اور s کی قیمتوں کا اندازہ لگائیں۔ s^2 ، \bar{x} ، اور s کی قیمتوں کا حباب لگائیں۔ $\bar{x}=3,\ s^2=3.3,\ s=1.817$

سوال 24.18: وکھائیں کہ کم سے کم اور زیادہ سے زیادہ نمونی قیمتوں کے 🕏 🛪 ہو گا۔

سوال 24.19: نمونه كا

نمونہ میں سب سے بڑی قیمت اور سب سے جھوٹی قیمت کے فرق کو نمونہ کا ³⁹ کہتے ہیں۔مثال 24.1 میں دیے گئے نمونہ کا تلاش کریں۔ جواب: 0.02

سوال 24.20: صدویه، وسطانیه

> ${\rm range^{39}}$ percentile⁴⁰

 ${
m median}^{41}$

کو نصف چو تھائی 42 بھی کہتے ہیں۔جدول 24.2 کے نمونہ کا وسطانی \tilde{x} تلاش کریں۔ جواب: 360

سوال 24.21: نمونه کی Q_{25} اور Q_{75} صدوبیہ کو بالترتیب نچلی چو تھائی 44 اور بالائی چو تھائی 44 کہتے ہیں۔ جدول 24.2 کے نمونہ کا کی Q_{75} ، Q_{25} جکبہ $Q_{75}-Q_{25}$ علی خونہ کا کی ناپ ہے کو چو تھائی 45 کہتے ہیں۔ جدول 24.2 کے نمونہ کا کی $Q_{75}-Q_{25}$ اور $Q_{75}-Q_{25}$ علی $Q_{75}-Q_{25}$ جواب $Q_{75}-Q_{25}$ علی $Q_{75}-Q_{25}-Q_{25}$ علی $Q_{75}-Q_{25}-Q_{25}$ علی $Q_{75}-Q_{25}$

سوال 24.22: جدول 24.3 کے لئے سوال 24.21 کو حل کریں۔ جواب: $\frac{345}{4}$, $\frac{439}{4}$, $\frac{47}{2}$

سوال 24.23: عاده

نمونہ میں سب سے زیادہ بار آنے والی قیمت کو نمونہ کی عادہ⁴⁶ کہتے ہیں۔ یہ سب سے عام قدر ہوتی ہے۔ درج ذیل نمونہ کی اوسط، وسطانیہ اور عادہ تلاش کریں۔ ان پر تبصرہ کریں۔

جواب: 100 = 3ده 1000 = 9 وسطانيه 1000 = 10

سوال 24.24: مبدا كام

اگر $x_j=x_j^*+c$ اور $j=1,\cdots,n$ ہو جہاں $x_j=x_j^*+c$

$$ar{x} = c + ar{x}^*, \quad \left(ar{x}^* = \frac{1}{n} \sum_{j=1}^n x_j^* \right)$$
 Jet $s^2 = s^{*2}$

ہوں گے جہاں x_j^* قیمتوں کی تغیریت s^{*2} ہے۔ (s^{*2}) ہوں ہوں ہوں ہوں ہوں ہوں کے جہاں کے مترادف ہے لہذا اس کو ترکیب مبدا کا مہم ہیں۔)

سوال 24.25: ترکیب مبدا کام کو مثال 24.1 کے نمونہ پر لا گو کریں۔

middle quartile⁴²

lower quartile⁴³

upper quartile⁴⁴

interquartile range⁴⁵

 $[\]mathrm{mode}^{46}$

method of working origin⁴⁷

سوال 24.26: مكمل رمز نويسي

 c_1 اور c_2 مستقل ہیں تب و کھائیں کہ $j=1,\cdots,n$ ہو جہال $ar{x}=c_1ar{x}^*+c_2$ اگر $ar{x}=c_1ar{x}^*+c_2$ ہو جہال ہیں تب و کھائیں کہ

 48 ہوں گے جہاں ** اور ** کی معنی سوال 24.24 میں پیش کی گئی ہیں۔اس کو ترکیب مکمل رمز نویسی ** کہتے ہیں۔(اس ترکیب سے قلم و کاغذ استعال کرتے ہوئے نتائج کی جلد جانچ پڑتال کی جا سکتی ہے۔)

سوال 24.27: اس تركيب كو مثال 24.1 كے نمونہ پر لا گو كريں۔

سوال 24.28: کسی بھی نمونہ کی گروہ بندی سے عموماً نمونی اوسط متاثر ہو گا۔ دکھائیں کہ نمونی اوسط میں تبدیل $\frac{1}{2}$ سے زیادہ نہیں ہو سکتی ہے جہال ہر ایک جماعتی وقفہ کی لمبائی 1 ہے۔

سوال 24.29: جدول 24.3 کی غیر گروہ بند نمونہ کی گروہ بندی جدول 24.4 میں کی گئی ہے۔دونوں مواد کی اوسط اور تغیریت تلاش کریں۔نتائج کا آپس میں موازنہ کریں۔

جواب: $\bar{x}=99.2,\ s^2=234.7$; گروہ بند : $\bar{x}=99.4,\ s^2=254.7$

24.4 بلامنصوبه تجربات، انجام، وقوعات

شاریاتی تجربات یا شاریاتی مشاہدے سے ہمیں نمونے حاصل ہوں گے جن کی مدد سے ہم متعلقہ آبادی کے بارے میں نتائج افذ کرنا چاہیں گے۔ایسا کرنے سے پہلے حسابی اختال کی مدد سے ہمیں آبادی کے حسابی نمونے بنانے ہوں گے۔یہ نظریہ حسابی شاریات کی بنیاد ہے جس کی گہرائی میں ہم اپنی ضرورت کے مطابق جائیں گے۔اس حصہ میں کی بنیادی تصورات کو متعارف کیا جائے گا۔

ایک بلا منصوبہ تجربہ یا بلا منصوبہ مشاہدہ، جنہیں ہم مخضراً تجربہ 49 یا مشاہدہ 50 کہیں گے، سے مراد وہ عمل ہے جو درج ذمل خواص رکھتا ہو۔

method of full coding⁴⁸ experiment⁴⁹

observation⁵⁰

- اس کو طے شدہ قواعد کے تحت سرانجام دیا جاتا ہے جو عمل کو مکمل طور پر بیان کرتے ہیں۔
 - اس عمل کو جتنی بار چاہیں دوبارہ انجام دیا جا سکتا ہے۔
- ہر مرتبہ عمل کا نتیجہ اتفاق پر منحصر ہو گا (یعنی نتیجہ ان اثرات پر منحصر ہے جنہیں ہم قابو نہیں کر سکتے ہیں) للذا قبل از وقت يكتا طور ير نتيجه حاننا ممكن نهيس ہو گا۔

ایک مرتبہ تج ہے کے عمل سے حاصل نتیجہ کو اس کو شش ⁵¹ کا انجام⁵² کتیے ہیں۔

اس کی مثال (کرکٹ کی کھیل کی آغاز میں) سکہ چھینکنا، لوڈو ⁵³ کی کھیل میں پانبہ ⁵⁴ چھینکنا، 100 پیچ کی ڈبی سے 10 پیچوں کا انتخاب یا مختلف حالات میں کیمیائی عمل کی پیداوار تعین کرنا اور دیگر تجربات مثلاً بلا منصوبه 20 افراد کا انتخاب اور ان کا فشار حون ⁵⁵ تعین کرنا یا کسی موضوع بر ان کی رائے جانا ہیں۔

کسی تج یہ کے تمام مکنہ انحام کے سلسلہ کو اس تجربہ کی غوبی فضا⁵⁶ کہتے ہیں جس کو S سے ظاہر کیا جائے گا۔ ہر ایک انجام کو S کا رکن 57 یا نقطہ 58 کہتے ہیں۔ متنابی تعداد کے ارکان پر مشمل سلسلہ متناہبی جبکہ لامتنابی تعداد کے ارکان پر مشتمل سلسلہ لامتنامیں کہلائے گا۔

مثال کے طور پر پانسہ بھینکنے کے بلا منصوبہ تجربہ کے ساتھ درج ذیل نمونی سلسلہ منسلک کیا جا سکتا ہے،

 $S = \{1, 2, 3, 4, 5, 6\}$

چونکہ یانسہ بھینکنے کے بعد (جھ ممکنات میں سے) کسی ایک رخ رکے گا۔

صنعتی پیداوار سے ہم ایک رکن نکال کر دیکھ سکتے ہیں کہ آیا وہ بے عیب یا عیب دار ہے۔ یوں S دو ارکان D (عیب دار) اور N (بے عیب) پر مشتمل ہو گا جنہیں اعداد مثلاً 0 (عیب دار) اور 1 (بے عیب) سے بھی

> ${
> m outcome}^{52}$ $ludo^{53}$

⁵⁴ایک مکعب جس کی چھ سطحوں پر ایک تاچھ نقطے ہوتے ہیں۔

blood pressure⁵⁵ sample $\rm space^{56}$

 $^{{\}rm element}^{57}$

point⁵⁸

ظاہر کیا جا سکتا ہے۔اب اگر ہم ایک سے زیادہ اقسام کے عیب میں تمیز کریں تب نمونی فضا دو سے زائد نقطوں پر مشتمل ہو گا۔

کیاس کی مضبوطی کے تجربہ (جدول 24.3) میں نمونی فضا لا متناہی ہو گا چونکہ دھاگہ توڑنے کے لئے درکار قوت کسی مخصوص میں کوئی بھی مثبت قیت ہو کتی ہے۔

عملی مسائل میں ہمیں انفرادی انجام سے زیادہ دلچینی نہیں ہو گی بلکہ ہم صرف اتنا جانا چاہیں گے کہ آیا اس کا کسی مخصوص سلسلہ انجام سے تعلق ہے (یا نہیں ہے)۔ ظاہر ہے کہ ایبا ہر سلسلہ A پوری نمونی فضا S کا ذیلی سلسلہ ہو گا۔اس کو وقوعہ 59 کہتے ہیں۔

چونکہ کوئی بھی انجام S کا ذیلی سلسلہ ہو گالہذا یہ ایک مخصوص قسم کا وقوعہ ہو گا جس کو بنیادی وقوعہ کہتے ہیں۔اسی طرح بوری فضا S بھی ایک مخصوص وقوعہ ہے۔

مثال 24.2: پانی کے نکوں (جنہیں ایک تا پانچ سے ظاہر کیا جاتا ہے) میں سے دو نککے منتخب کیے جاتے ہیں۔ نمونی فضا درج ذیل دس مکنہ انجام پر مشتمل ہو گی۔

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

اب اگر ہم عیب دار نلکوں میں دلچین رکھتے ہوں تب ہمیں درج ذیل تین انجاموں میں فرق کرنا ہو گا۔

A: -(1, 2, 3) دونوں عیب دار ہیں C: -(1, 2, 3) دونوں عیب دار ہیں ہے ۔ (1, 2, 3) عیب دار ہیں تب درج ذیل ہو گا۔

П

نمونی فضا S اور تجربہ کے انجام کو وین اشکال 60 سے ظاہر کیا جا سکتا ہے۔ فرض کریں کہ شکل 24.3 میں چکور کے اندر نقطوں کا سلسلہ S کو ظاہر کرتے ہے۔ تب مستطیل کے اندر بند منحنی کا اندرون کسی و قوعہ کو ظاہر کرنے گا جس کو ہم E سے ظاہر کرتے ہیں۔ ان تمام ارکان (انجاموں) کا سلسلہ جو E میں شامل نہیں ہیں کو E میں گا جس کو ہم کہتے ہیں جس کو E سے ظاہر کیا گیا ہے۔

event⁵⁹

Venn diagram⁶⁰

¹⁰ ق ع المساق المستقب المستقبل الم

 E^{C} اورو قوعات E اور کھائے گئے ہیں E^{C} اور قوعات کا اور کھائے گئے ہیں

مثال کے طور پر یانسہ تھینکنے کے تجربہ میں

جب جفت عدد حاصل ہو E:

کا متمم

 E^{C} : $= e^{-1}$

ہو گا۔اییا و قوعہ جس میں کوئی انجام نہ پایا جاتا ہو کو خالی و قوعہ ⁶² یا نا ممکن و قوعہ ⁶³ کہتے ہیں جس کو ∞ سے ظاہر کیا جاتا ہے۔

فرض کریں کہ کسی تجربہ میں A اور B کوئی دو و قوعات ہیں۔ تب وہ و قوعہ جو S میں ان تمام ارکان پر مشتمل ہو جو A یا B یا دونوں میں پائے جاتے ہوں کو A اور B کا اشتراک 64 کہلاتا ہے جس کو درج ذیل سے ظاہر کیا جاتا ہے۔

$A \sqcup B$

وہ و قوعہ جو S میں ان تمام ارکان پر مشتمل ہو جو A اور B دونوں میں پائے جاتے ہوں کو A اور B اور B کا تقاطع A کہلاتا ہے جس کو درج ذیل سے ظاہر کیا جاتا ہے۔ شکل A 24.4 میں اشتر اک اور تقاطع کو وین شکل پر دکھایا گیا ہے۔ A

 $A \cap B$

B اور B میں کوئی و توعہ مشترک نہ ہو تب B=0 ہو گا اور ہم کہیں گے کہ A اور B اور جم بیں۔ بیے ربط و قوع 66 یا باہمی بلا شرکت و قوعہ 67 ہیں۔

empty event⁶²

impossible event⁶³

 $union^{64}$

 $intersection^{65}$

disjoint events⁶⁶

mutually exclusive events⁶⁷

 $A \cup B$ (الف)اشتراك (

 $B \cdot A$ اور (گهری سیابی میں)ان کی اشتر اک اور نقاطع کی وین شکل $B \cdot A$

شكل 24.5: وين شكل برائے مثال 24.3

مثال کے طور پر مثال 24.2 میں $P = B \cap C = \emptyset$ ہیں۔ $P = B \cup C$ ایک یا دو عیب دار نلکیاں ہیں۔

مثال 24.3: پانسہ کھینکنے کے ایک تجربہ میں درج ذیل و قوعہ

4 سے حیموٹا عدد نہ ہو: A

 $B: \mathcal{B}$ عدد ہو 3

 \square کا اشتراک $B = \{a, b, b, a \mid A \cap B = \{a\}$ اور تقاطع $A \cap B = \{a, b, b, a, b, a$

اگر و قوعہ A کے تمام ارکان و قوعہ B میں پائے جاتے ہوں تب A کو B کا ذیلی و قوعہ 68 کہتے ہیں جس کو درج ذیل کھا جاتا ہے۔

 $A \subset B \quad \iota \quad B \supset A$

ظاہر ہے کہ $A\subset B$ کی صورت میں اگر B واقع پذیر ہو تب لازماً A بھی وقوع پذیر ہو گا۔ مثال کے طور پر وقوعہ $D=\{4,6\}$ پر وقوعہ $D=\{4,6\}$ کا ذیلی وقوعہ ہے۔

 ${
m subevent}^{68}$

فرض کریں کہ نمونی فضا S میں کئی و قوعات A_1, \cdots, A_m ہیں۔ تب ان m و قوعات میں سے ایک میں یا ایک سے زیادہ میں پائے جانے والے تمام ارکان پر مشتل و قوعہ ان m و قوعات کا اشتراک ہو گا جس کو

$$\bigcup_{j=1}^m A_j$$
 أي $A_1 \cup A_2 \cup \cdots \cup A_m$

کھا جاتا ہے۔ان تمام و قوعات میں یائے جانے والے ارکان پر مشتمل و قوعہ A_1,\cdots,A_m کا نقاطع ہو گا جس کو

$$\bigcap_{j=1}^m A_j$$
 $\bigcap_{j=1}^m A_j$ $A_1 \cap A_2 \cap \cdots \cap A_m$

لکھا جاتا ہے۔

زیادہ عمومی طور پر فرض کریں کہ S میں لامتنائی ارکان A_1, \dots, A_m, \dots یائے جاتے ہیں۔تب اشتراک

$$\bigcup_{j=1}^{\infty} A_j$$
 أَي $A_1 \cup A_2 \cup \cdots$

ان تمام ارکان پر مشتمل و قوعہ ہو گا جو کم سے کم کسی ایک مذکورہ بالا و قوعہ میں پائے جاتے ہوں۔اسی طرح تقاطع

$$\bigcap_{j=1}^{\infty} A_j$$
 أي $A_1 \cap A_2 \cap \cdots$

ان تمام ارکان پر مشتمل و قوعہ ہو گا جو مذکورہ بالا تمام و قوعہ میں پائے جاتے ہوں۔

اگر و قوعات A_1,\cdots,A_m,\cdots یوں ہوں کہ ان میں سے کسی ایک کا واقع ہونے سے باقی کسی و قوعہ کا واقع ہونے سے باقی کسی و قوعہ کا واقع ہونا نا ممکن ہو تب کسی مجبی $A_j\cap A_k=\varnothing$ کے لئے $A_j\cap A_k=\varnothing$ ہو گا اور ایسی و قوعات کو بسے ربط و قوعات یا باہمی بلا شرکت و قوعات کہا جاتا ہے۔

مثال کے طور پر مثال 24.2 میں A, B, C بے ربط و قوعات ہیں۔

فرض کریں کہ ہم بلا منصوبہ تجربہ n مرتبہ کرتے ہوئے n قیمتوں پر مشمل نمونہ حاصل کرتے ہیں۔فرض کریں کہ ان n کہ ان n کو خشوں میں وقوعہ A اور وقوعہ B کے اضافی تعدد بالترتیب f(B) اور f(B) ہیں۔تب وقوعہ $A \cup B$ کی اضافی تعدد

(24.9)
$$\tilde{f}(A \cup B) = \tilde{f}(A) + \tilde{f}(B) - \tilde{f}(A \cap B)$$

ور گاراگر A اور B با جمی بلا شرکت ہوں تب $\tilde{f}(A\cap B)=0$ اور $\tilde{f}(A\cup B)=\tilde{f}(A)+\tilde{f}(B)$ (24.10)

ہو گا۔ یہ کلیات شکل 24.4 میں دکھائے گئے وین شکل سے صاف ظاہر ہیں۔ ان کا با ضابطہ ثبوت آپ سے سوال 24.34 میں مانگا گیا ہے۔

سوالات

سوال 24.30: روسکے چھیکنے کے نمونی فضا کا ترسیم کھیجیں۔

سوال 24.31: پانسہ کی جوڑی ایک مرتبہ تھینگی جاتی ہے۔اس تجربہ کا نمونی فضا بنائیں جس میں تمام ارکان ہوں۔اس شکل پر درج ذیل و قوعات کی نشاندہی کریں۔ (الف) دونوں کیساں عدد ہیں۔ (ب) دونوں اعداد کا مجموعہ 7 سے زیادہ ہے۔ (پ) دونوں اعداد کا مجموعہ 5 ہے۔

سوال 24.32: تین بر قیاتی پرزوں کا عرصہ زندگی کا نمونی فضا تلاش کریں۔ جواب: غیر منفی اعداد کے تمام مرتب تین اعداد کا فضا۔

سوال 24.33: ایک تجربہ میں چادر میں سوراخ کر کے سوراخ کا قطر ناپا جاتا ہے۔سوراخ کا قطر 2.9 cm اور 3.1 cm کے جے۔ ع کا متم تلاش کریں۔

سوال 24.34: مساوات 24.9 کو ثابت کریں۔

جواب: $A \cup B$ صرف اور صرف اس صورت ہو گا جب $A \cap B$ یا $A \cap B^C$ یا $A \cap B$ ہو۔ یہ تینوں $\tilde{f}(A) = \frac{n_1 + n_2}{n}$ ہو۔ تب بین بیل شرکت ہیں۔ فرض کریں کہ نمونہ میں متعلقہ حتمی تعدد 1 ہوں 1 ہوں 1 ہوں گے۔ ان سے مساوات 1 ہوں گے۔ ان سے مساوات 1 ہوں عاصل ہوتا ہے۔ 1 ہوں عاصل ہوتا ہے۔ 1 ہوں عاصل ہوتا ہے۔

سوال 24.35: ایک ڈبیا میں 20 قلم ہیں جن میں سے 10 قلم بے عیب ہیں۔ 8 قلموں میں عیب A نوالا 20. قلموں میں عیب B اور B قلموں میں دونوں عیب پائے جاتے ہیں۔ فرض کریں کہ بلا منصوبہ ایک قلم نکالا جاتا ہے۔ متعلقہ نمونی فضا B کی وین شکل بنائیں جس میں A قسم کے عیب کا وقوعہ B اور B قسم کے جاتا ہے۔ متعلقہ نمونی فضا B کی وین شکل بنائیں جس میں A

24.5 احتال.

 $E_A \cup E_B$ ، $E_A^C \cap E_B^C$ ، $E_A^C \cap E_B$ ، $E_A \cap E_B^C$ ، $E_A \cap E_B$ ، وقومه على انجام كى تعداد بتائين $E_A \cup E_B^C$ ، $E_A^C \cup E$

سوال 24.36: وین شکل کی مدد سے درج ذیل قواعد کو پر تھیں۔

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $(A \cup B)^C = A^C \cap B^C$ قوانين ڏي مارگن وين اشکال بناتے ہوئے درج ذیل ڏي مارگن قوانين 69 کی تصدیق کریں۔ $(A \cup B)^C = A^C \cap B^C$ $(A \cap B)^C = A^C \cup B^C$

سوال 24.38: متم کی تعریف سے درج ذیل اخذ کریں جہاں نمونی فضا S کا A کوئی ذیلی سلسلہ ہے۔ $(A^C)^C=A, \quad S^C=\varnothing, \quad \varnothing^C=S, \quad A\cup A^C=S, \quad A\cap A^C=\varnothing$

سوال 24.39: وین شکل استعال کرتے ہوئے دکھائیں کہ $B \subset B$ صرف اور صرف تب ہو گا جب $A \subset B$ ہو۔ $A \subset B$ کے لئے $A \cap B$ کی صورت میں شرط تلاش کریں۔

24.5 احتال

تجربہ سے ثابت ہوتا ہے کہ عموماً بلا منصوبہ تجربات کی اضافی تعدد میں شاریاتی کیسانیت پائی جاتی ہے۔ یعنی ایسے تجربہ کے مختلف کمبی تسلسل میں کسی وقوعہ کے مطابقتی اضافی تعدد تقریباً ایک جیسے ہوں گے۔اس کی مثالیں جدول 24.6 اور شکل 24.6 میں دکھائی گئی ہیں۔ (سکہ سیسکنے سے شیر یا خط حاصل ہوتا ہے۔) شکل 24.6 میں یوں معلوم ہوتا ہے کہ جیسے جیسے لڑکوں کی تعداد بڑھتی ہے ویسے ویسے لڑکوں کی فی صد میں اتر چڑھاو کم ہوتی جاتی ہے۔ عیب دار اشیاء کا فی صد بھی ایسا ہی دویہ رکھتا ہے اور اس طرح کے دیگر مثال بھی دیے جا سکتے ہیں۔

De Morgan's laws⁶⁹

جدول24.6: سکہ پھینکنے کے نتائج

تجربہ کرنے والا	جتنی مرتبه سکه پھینکا گیا	جتنی مرتبه شیر حاصل ہوا	شیر کی اضافی تعدد
امجد	4040	2048	0.5069
مشرف	12 000	6019	0.5016
مشرف	24 000	12 012	0.5005

شکل 24.6: و قوعہ "لڑ کے کی پیدائش"

چونکہ عموماً بلا منصوبہ تجربات میں شاریاتی کیسانیت پائی جاتی ہے ہم دعویٰ کرتے ہیں کہ ایسے تجربہ میں وقوعہ P(E) کے ایسا عدد P(E) پایا جاتا ہے کہ تجربہ بہت زیادہ مرتبہ سرانجام دینے سے E کا اضافی تعدد تخییناً E کا محتمی خاصیت ہوگا۔ ہم E کو بلا منصوبہ تجربہ میں E کا احتمال E کیا۔ دھیان رہے کہ یہ عدد E کی حتمی خاصیت نہیں ہے بلکہ کسی نمونی فضا E یعنی کسی بلا منصوبہ تجربہ سے متعلق ہے۔

جب ہم کہتے ہیں کہ E کا احتمال P(E) ہے، اس سے ہمارا مطلب یہ ہے کہ اگر اس تجربہ کو بہت زیادہ مرتبہ سرانجام دیا جائے تب اضافی تعدد f(E) عملی طور پر لازماً P(E) کے تخییناً برابر ہو گا۔ (یہاں "تخییناً برابر" کو ہم نے "محیک برابر" بنانا ہو گا۔اس کے لئے ہمیں حصہ 24.10 تک انتظار کرنا ہو گا۔)

متعارف کردہ اختال یوں تجربی اضافی تعدد سے وابستہ ہے۔اس طرح ضروری ہے کہ یہ اضافی تعدد کی چند بنیادی خواص رکھتا ہو۔یہ خواص مسئلہ 24.12 اور مساوات 24.10 سے اخذ کیے جا سکتے ہیں جنہیں حسابی احتمال کمے مسلمات کہتے ہیں۔

حسابی احتمال کے مسلمات

 ${\rm probability}^{70}$

24.5 احتال.

(الف) اگر نمونی فضا
$$S$$
 میں E میں E میں S ایک و توجہ ہو تب درج ذیل ہو گا۔
$$0 \leq P(E) \leq 1$$

• (ب) تمام نمونی فضا کے لئے درج ذیل ہو گا۔

$$(24.12) P(S) = 1$$

• (پ) اگر A اور B باہمی بلا شرکت و قوعات (حصہ 24.4) ہوں تب درج ذیل ہو گا۔

(24.13)
$$P(A \cup B) = P(A) + P(B)$$
 U with $P(A \cup B) = P(A) + P(B)$ U with $P(A \cup B) = P(A) + P(B)$

و (پ*) اگر E_2 ، E_1 برای بلا شرکت و قوعات ہوں تب درج ذیل ہو گا۔ • (24.13*) $P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$

مسلمہ -پ سے الكراجى ماخوذ كے ذريعه درج ذيل حاصل ہوتا ہے۔

مسکہ 24.3: (قاعدہ جمع برائے باہمی بلا شرکت وقوعات) اگر E_m \cdots E_1 گا۔

(24.14) $P(E_1 \cup E_2 \cup \cdots \cup E_m) = P(E_1) + P(E_2) + \cdots + P(E_m)$

آپ مساوات 24.9 كا درج ذيل مماثل ثابت كر سكتے ہيں۔

مسکہ 24.4: (قاعدہ جمع برائیے صوابدیدی وقوعات) S نمونی فضا S میں وقوعات S اور S کے لئے درج ذیل ہو گا۔

(24.15)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

مزيد و قوعه $E \cup E^C = S$ اور اس كا متم و قوعه E^C (حصه 24.4) بلا شركت بين للذا $E \cup E^C = S$ هو گاليون

$$P(E \cup E^C) = P(E) + P(E^C) = 1$$

حاصل ہو گا جس سے درج ذیل اخذ ہوتا ہے۔

مسكر 24.5: (قاعده اتمام)

نمونی فضا S میں وقوعہ E اور اس کے متم وقوعہ E^C کے احتمال کا تعلق درج ذیل کلیہ دیتا ہے۔ $P(E) = 1 - P(E^C)$ (24.16)

اس کلیہ کو وہاں استعال کیا جا سکتا ہے جہاں $P(E^{C})$ کا حساب P(E) کے حساب سے زیادہ آسان ہو۔ مثال 24.5 میں اس کی استعال د کھائی جائے گی۔

ہم نمونی فضا ۶ میں وقوعات کے احتمال کی قیت کس طرح مقرر کر سکتے ہیں؟

k انجام کا امکان ایک جیبا ہے اگر k متنابی ہو اور k انجام کا امکان ایک جیبا ہے تب ہم ہر انجام کے احمال کو یکساں قیمت مختص کر سکتے ہیں اور مسلمہ -ب کے تحت یہ احمال لازماً $\frac{1}{k}$ ہو گا۔ اس صورت میں احمال کا حساب، و قوعات کے ارکان کی گنتی کے مترادف ہو گا۔

مثال 24.4: منصفانہ پانسہ مثال 24.4: منصفانہ پانسہ منطقانہ پانسہ کے تجربہ میں $S = \{1,2,3,4,5,6\}$ جے۔یوں $P(1) = \frac{1}{6}$ ، $P(1) = \frac{1}{6}$ ، $P(1) = \frac{1}{6}$ ، $P(1) = \frac{1}{6}$ ، و کیست

> و قوعه جس میں بالائی سطح پر جفت نقطے ہوں : A $P(A) = P(2) + P(4) + P(6) = \frac{1}{2}$ کا اختمال احتمال احتمال کا اختمال کا اختمال احتمال کا اختمال کا اختمال احتمال کا اختمال کا اختمال کا اختمال کا احتمال کا احتما و قوعہ جس میں بالائی سطح سر 4 نقطوں سے زیادہ نقطے ہوں : B

24.5 احتال.

کا اختمال $P(B) = P(5) + P(6) = \frac{1}{3}$ کا اختمال کا

مثال 24.5: سكم اچهالنا

یانچ کے ایک ساتھ اچھا لے جاتے ہیں۔ کم از کم ایک خط حاصل ہونے کا احتمال تلاش کریں۔ حل: چونکہ ہر ایک سکہ خط یا شیر دے سکتا ہے المذا نمونی فضا $2^5=2^5$ ارکان پر مشتمل ہے۔ منصفانہ سکہ کی صورت میں ہر انجام کو ایک جیسا احتمال $\frac{1}{32}$ مختص کیا جا سکتا ہے۔ تب وقوعہ A^C جس میں کوئی بھی خط حاصل نہ ہو صرف 1 رکن پر مشتمل ہو گا للذا $P(A^C)=\frac{1}{32}$ ہو گا۔ اس طرح $P(A^C)=\frac{31}{32}$ ہو گا۔ اس طرح $P(A^C)=\frac{31}{32}$

اگر تجربہ کی نوعیت سے ایسا ظاہر نہ ہو کہ متناہی انجام یکساں برابر امکان رکھتے ہیں یا اگر نمونی فضا متناہی نہ ہو تب، حسابی احمال کے مسلمات پر پورا اترتے ہوئے، ہم کمبی تواتر میں کوشش دہرا کر اضافی تعدد کو استعال کرتے ہوئے احمال کی قیمتیں مخص کرتے ہیں۔

اس طرح ہمیں مختینی قیتیں حاصل ہوں گی لیکن اس سے کوئی فرق نہیں پڑے گا۔کلا سی طبیعیات میں ہمیں عموماً ایسی صورت حال کا سامنا ہوتا ہے مثلاً ہم جانتے ہیں کہ مادہ کی کوئی کمیت ہوتی ہے لیکن اس کمیت کی ٹھیک قیمت جاننا ممکن نہیں ہوتا ہے۔ نظریہ بنانے میں یہ رکاوٹ پیدا نہیں کرتی ہے۔

اگر ہمیں شک ہو کہ ہم نے درست طریقہ سے احمال کی قیمتیں مختص نہیں کی ہیں تب ہم شاریاتی پر کھ کا سہارا لے سکتے ہیں جس پر حصہ 24.18 میں غور کیا جائے گا۔

عموماً یہ جانتے ہوئے کہ وقوعہ A ہو چکا ہے ہمیں وقوعہ B کا اختمال درکار ہو گا۔اس کو دیے گیے A کی صورت میں B کا مشروط احتمال D(B|A) ہیں جس کو D(B|A) سے ظاہر کیا جاتا ہے۔الی صورت میں D(B|A) کا مشروط احتمال کردار ادا کرتا ہے اور یہ اختمال D(A) کا وہ (کسری) حصہ ہو گا جو D(A) کا مطابقتی ہو۔یوں

(24.17)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} \qquad [P(A) \neq 0]$$

conditional probability⁷¹

ہو گا۔ای طرح دیے گیے B کی صورت میں A کا مشروط احمال

(24.18)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad [P(B) \neq 0]$$

ہو گا۔

مساوات 24.17 اور مساوات 24.18 کو $P(A \cap B)$ کے لئے حل کرتے ہوئے درج ذیل حاصل ہو گا۔

مسّله 24.6: قاعده ضرب

P(B)
eq 0 اور P(A)
eq 0 ہوتب P(A)
eq 0 اور P(B)
eq 0 اور P(B)
eq 0

(24.19)
$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

ہو گا۔

اگر A اور B ایسے و قوعات ہوں کہ

$$(24.20) P(A \cap B) = P(A)P(B)$$

ہو تب انہیں غیر تابع وقوعات 72 کہتے ہیں۔اب اگر $P(A) \neq 0$ اور $P(B) \neq 0$ ہوں تب مساوات 24.17 مساوات 24.18 کے تحت

$$P(A|B) = P(A), \quad P(B|A) = P(B)$$

ہوں گے جس کا مطلب ہے کہ A کا اختمال B کے انجام یا غیر انجام پر منحصر نہیں ہو گا اور اسی طرح B کا اختمال A کے انجام یا غیر انجام پر منحصر نہیں ہو گا۔

 A_1, \dots, A_k ای طرح m و قوعات m و قوعات m ای طرح m ای طرح m و قوعات m ای طرح m ای طرح m و قوعات m و قوعات m و آبیا و آبیا و m و آبیا و آبیا و m و m و آبیا و m

دھیان کریں کہ چیزوں کے سلسلہ سے چیز نکالنے، یعنی آبادی سے نمونہ حاصل کرنے، کے دو طریقے پائے جاتے ہیں۔

independent events⁷²

24.5 احتال.

• نمونہ واپس رکھتے ہوئے نمونے کا حصول۔ ہم کل سے جس چیز کو بلا منصوبہ نکالتے ہیں، اس چیز کو واپس کل میں رکھ کر کل کو اچھی طرح گڈ لڈ کرتے ہیں۔اس کے بعد اگلا نمونہ نکالا جاتا ہے۔

• غونہ واپس نہ رکھتے ہوئے غونے کا حصول ۔ ہم نمونہ نکال کر ایک طرف رکھ دیتے ہیں۔

مثال 24.6: واپس رکھتے ہوئے اور بغیر واپس رکھتے ہوئے نمونے کا حصول ایک ڈبیا میں 10 پیچ پائے جاتے ہیں جن میں سے 3 عیب دار ہیں۔دو پیچ بلا منصوبہ نکالے جاتے ہیں۔دونوں پیچ بے عیب ہونے کا احمال تلاش کریں۔ہم درج زیل وقوعات پر غور کرتے ہیں۔

 $A: _{-}$ پہلا نکالا گیا نیچ بے عیب ہے۔ $B: _{-}$

 $\frac{1}{10}$ چونکہ 10 میں سے 7 پیچ بے عیب ہیں اور ہم بلا منصوبہ پیچ نکالتے ہیں للذا ہر پیچ کا نکالے جانے کا امکان ور ہے۔ یوں $P(A)=\frac{7}{10}$ ہو گا۔ اگر ہم اس پیچ کو واپس ڈبیا میں رکھ دیں تب دوسری مرتبہ پیچ نکالنے میں اور کہا مرتبہ پیچ نکالنے میں کوئی فرق نہیں ہو گا للذا $P(B)=\frac{7}{10}$ ہو گا۔یہ وقوعات غیر تالع ہیں اور

 $P(A \cap B) = P(A)P(B) = 0.7 \cdot 0.7 = 0.49 = 49 \%$

ہو گا۔اس کے بر عکس اگر ہم نمونہ واپس نہ رکھیں تب A وقوع پذیر ہونے کے بعد دوسری مرتبہ ڈبیا میں کل و گا۔اس کے بر عکس اگر ہم نمونہ واپس نہ رکھیں تب $P(B|A) = \frac{6}{9} = \frac{2}{3}$ ہو گا۔مسکلہ 24.6 کے تحت درج ذیل ہو گا۔

 $P(A \cap B) = \frac{7}{10} \cdot \frac{2}{3} \approx 47\%$

П

سوالات

سوال 24.40: $\frac{31}{32}$ منصفانہ سکے اچھال کر کم سے کم $\frac{31}{32}$ خط حاصل کرنے کا کیا احتمال ہے؟

سوال 24.41: تین منصفانه پانسه اچھالے جاتے ہیں۔وقوعہ E جس میں کم از کم دو اعداد مختلف حاصل ہوتے ہیں کا اختال تلاش کریں۔

سوال 24.42: 000 پنچ کی کھیپ میں 10 عیب دار ہیں۔اس کھیپ سے 3 پنچ بلا منصوبہ نکالے جاتے ہیں۔(الف) بغیر واپس رکھے، (ب) واپس رکھتے ہوئے، تینوں پنچ بے عیب ہونے کا احمال تلاش کریں۔ جواب: (الف) $0.93 = 72.98 \cdot \frac{89}{100} \cdot \frac{90}{100} \cdot \frac{89}{98} \cdot \frac{88}{99} \cdot \frac{90}{100}$

سوال 24.43: تین برتن ہیں اور ہر برتن میں 5 مرچ ہیں جن پر 1 تا 5 کھا گیا ہے۔ ہر برتن سے ایک مرچ نکالا جاتا ہے۔ وقوعہ E جس میں نکالے گئے مرچ پر کھے اعداد کا مجموعہ 3 سے زیادہ ہو کا احمال تلاش کریں۔

سوال 24.44: 100 لوہے کے سلاخوں کے جتما میں 25 سلاخ زیادہ لمبے، 25 کم لمبے اور 50 سیح لمبائی کے ہیں۔ اگر 2 سلاخ بلا منصوبہ نکالے جائیں اور انہیں واپس نہ رکھا جائے تب (الف) دونوں ٹھیک لمبائی کے، (ب) ایک ٹھیک لمبائی کا، (پ) دونوں غلط لمبائی کے، (ت) دو کم لمبائی کے سلاخ نکالنے کے اخمال تلاش کریں۔ جواب: (الف) % 24.75 ، (ب) % 50.5 ، (پ) % 24.75 ، (ت) % 6.06

سوال 24.45: کافی عرصہ سے ایک کارخانے میں گلاس بنائے جا رہے ہیں جن میں عیب دار گلاسوں کی شرح برقرار %2 ہے۔ ہر آدھا گھنٹہ بعد دو گلاس نکال کر پر کھے جاتے ہیں۔اس وقوعہ کا کیا اختمال ہے کہ (الف) دونوں گلاس بے عیب ہوں، (ب) ایک گلاس بے عیب ہوں، (پ) دونوں گلاس عیب دار ہوں؟ تینوں صور توں کے اختمال کا مجموعہ کیا ہے؟

سوال 24.46: ایک ڈیزل انجن سے برقی جزیٹر چلایا جاتا ہے۔ 30 دن کے عرصہ میں ڈیزل انجن میں مرمت کی ضرورت کا اختال %6 ہے۔ کسی مخصوص دورانیہ میں دونوں کے مرمت کی ضرورت کا اختال کیا ہو گا؟ دونوں کے مرمت کی ضرورت کا اختال کیا ہو گا؟ جواب: % 10.7

سوال 24.47: کسی مثین میں ہوا کا دباو خود کار نظام سے قابو کیا جاتا ہے۔ یہ خود کار نظام 6 ٹرانزسٹر ⁷³ پر مبنی ہے۔ کسی دورانیہ میں ہر ایک ٹرانزسٹر کے خراب ہونے کا اخمال 0.05 ہے۔ خود کار نظام صرف اس صورت کام کر سکتا ہے جب تمام ٹرانزسٹر ٹھیک ہوں۔ کسی دورانیہ میں خود کار نظام کے خراب ہونے کا اخمال کیا ہوگا؟

 ${\rm transistor}^{73}$

24.5 احتال.

B سوال 24.48: ایک ڈییا میں 100 پتج ہیں جن میں سے 10 پتجوں میں A قسم کا عیب، 5 میں 5 وسم کا عیب پایا جاتا قسم کا عیب اور 2 میں دونوں اقسام کے عیب پایے جاتے ہیں۔ پہلے نکالے گئے پتج میں A قسم کا عیب پایا جاتا ہے۔ اس پتج میں B قسم کے عیب کا اختمال کیا ہو گا؟ جواب: $P(E_B|E_A) = \frac{P(E_A \cap E_B)}{P(E_A)} = \frac{0.02}{0.10} = 20\%$

سوال 24.49: دو منصفانہ پانسہ اچھالے جاتے ہیں۔ایک پانسہ 5 دیتا ہے۔دونوں کا مجموعہ 9 سے زیادہ ہونے کا اختال تلاش کریں۔

وں تب $P(A \cap B^C) = 0.4$ اور P(B) = 0.5 ، $P(A^C) = 0.2$. $P(A \cap B^C) = 0.4$. P(B) = 0.5 ، $P(A^C) = 0.4$. $P(B|A \cup B^C)$. $P(B|A \cup$

سوال 24.51: مسكله 24.4 كو ثابت كريل

سوال 24.52: مسكله 24.3 كو ثابت كرير_

سوال 24.53: مسئله 24.6 کو وسعت دینے ہوئے درج ذیل دکھائیں۔ $P(A\cap B\cap C)=P(A)P(B|A)P(C|A\cap B)$

 $P(B) \leq P(A)$ ہو گا۔ وکھائیں کہ اگر A کا ذیلی سلسلہ B ہو تب $P(B) \leq P(A)$ ہو گا۔ جواب: $P(B) \leq P(A \cap B^C) = P(A \cap B^C)$ ہو گا۔ $P(A \cap B^C) \geq P(B)$ ہے۔ $P(A \cap B^C) \geq P(B)$ ہے۔ $P(B) \leq P(B)$

24.6 مرتب اجتماعات اور غير مرتب اجتماعات

گزشتہ حصہ سے ہم جانتے ہیں کہ k مساوی انجام پر مشتمل متناہی نمونی فضا S میں ہر انجام کا احمال k ہے اور وقوعہ S کا احمال حاصل کرنے کی خاطر ہم S وقوعات کو گنتے ہیں۔ یوں اگر وقوعہ S مرتبہ سرانجام ہو تب S ہوگر وقوعہ S ہوگر فابت ہوتے ہیں۔ S ہوگر انجام کی گنتی کے لئے درج ذیل کلیات مردگار ثابت ہوتے ہیں۔

فرض کریں کہ چیزوں یا ارکان کی تعداد n ہے۔ انہیں کسی بھی ترتیب سے ایک صف میں رکھا جا سکتا ہے۔ایسی ہر ترتیب ان چیزوں کی ایک موقب اجتماع⁷⁴ کہلاتی ہے۔

مسكله 24.7: موتب اجتماعات

n مختلف چیزوں کی مرتب اجتماعات کی تعداد درج ذیل ہو گی جہاں تمام چیزیں مرتب اجتماعات میں شامل ہیں۔

$$(24.22)$$
 $n! = 1 \cdot 2 \cdot 2 \cdot 3 \cdot \cdot \cdot n$ "پڑھیں $n!$ " $n!$

مرتب اجتماع میں پہلی جگہ کو n مختلف طریقوں سے پر کیا جا سکتا ہے۔ پہلی جگہ پر کرنے کے بعد n-1 ارکان رہ جاتے ہیں للذا دوسری جگہ کو n-1 مختلف طریقوں سے پر کیا جا سکتا ہے۔ اسی طرح چلتے ہوئے درج ذیل متیجہ حاصل ہو گا۔

مسكه 24.8: موتب اجتماعات

اگر n چیزوں کو c مختلف جماعتوں میں تقسیم کیا جا سکتا ہو جہاں ہر ایک جماعت میں تمام چیزیں بالکل کیساں ہوں جبکہ ہر جماعت میں چیزیں دوسری تمام جماعتوں کی چیزوں سے مختلف ہوں تب ان چیزوں کی مرتب اجتماعات کی تعداد

(24.23)
$$\frac{n!}{n_1 1 n_2! \cdots n_c!} \qquad (n_1 + n_2 + \cdots + n_c = n)$$

ہو گی جہاں تمام چیزیں کی گئی ہیں اور j ویں جماعت میں چیزوں کی تعداد n_j ہے۔

k چیزوں سے ایک وقت میں k چیزیں منتخب کونے سے ایک مرتب اجتماعات حاصل ہوں گی جن میں صرف k چیزیں شامل ہوں گی۔ایک ہی k ارکان کی دو مرتب اجتماعات جن میں ارکان کی ترتیب مختلف ہو،

permutation⁷⁴

تعریف کی رو، سے مختلف مرتب اجتماعات ہوں گی۔ مثال کے طور پر تین حروف a,b,c میں سے ایک وقت دو حروف منتخب کرتے ہوئ حروف منتخب کرتے ہوئے cb ، ca ، ba ، bc ، ac ، ab مرتب اجتماعات ملتی ہیں۔

k چیزوں میں سے k چیزوں کی مرتب اجتماعات، جہاں چیز واپس رکھی جائے، حاصل کرتے ہوئے کہ کسی بھی چیز کو پہلی مقام پر رکھ کر، دوسری جگہ کوئی بھی چیز بشمول پہلی چیز رکھی جا گئی ہے۔ اس طرح باقی جگہ پر کے جاتے ہیں۔ مثال کے طور پر a,b,c میں سے ایک وقت میں 2 حروف منتخب کر کے واپس رکھتے ہوئے کل cc ، bb ، aa مرتب اجتماعات واصل ہوں گی جس میں مذکورہ بالا b مرتب اجتماعات اور bb ، bb ،

مسّله 24.9: مرتب اجتماعات

بغیر واپس رکھے، n مختلف چیزوں میں سے ایک وقت میں k چیزیں منتخب کرتے ہوئے مرتب اجماعات کی تعداد

(24.24)
$$n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

عاصل ہو گی جبکہ منتخب چیز واپس رکھتے ہوئے مرتب اجتاعات کی تعداد درج ذیل ہو گ۔

$$(24.24^*)$$
 n^k

مرتب اجتماعات (کی تعداد) میں نا صرف چیزیں اہمیت رکھتی ہیں بلکہ ان چیزوں کی ترتیب بھی اہمیت رکھتی ہے۔اس کے برعکس دی گئے چیزوں کے غیر موتب اجتماعات⁷⁵ سے مراد ایک یا ایک سے زیادہ چیزوں کی وہ انتخاب ہے جس میں چیزوں کی ترتیب کو رد کیا جاتا ہے۔دو قتم کے غیر ترتیبی اجتماعات یائے جاتے ہیں۔

بغیر واپس رکھتے ہوئے، ایک وقت میں n چیزوں میں سے k چیزیں منتخب کرتے ہوئے سلسلے بنائے جا سکتے ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہیں۔ ہر سلسلہ میں k مختلف چیزیں ہوں گی اور کسی بھی دو سلسلوں میں بالکل ایک جیسی چیزیں نہیں پائی جائیں گی۔

اس کے علاوہ، چیزوں کو واپس رکھتے ہوئے، ایک وقت میں n چیزوں میں سے k چیزیں منتخب کرتے ہوئے سلسلے بنائے جا سکتے ہیں۔

combinations⁷⁵

مثال کے طور پر 3 حروف a,b,c میں سے ایک وقت میں 2 حروف منتخب کر کے بغیر واپس رکھے ab ، مثال کے طور پر 3 حروف cc ، bb ، aa ، bc ، ac ، ab عاصل bc ، ac عاصل کیے جا سکتے ہیں جبکہ چیزیں واپس رکھتے ہوئے bc ، ac کے جا سکتے ہیں۔

مسئلہ 24.10: غیر موتب اجتماعات بغیر واپس رکھے، n چیزوں میں سے ایک وقت میں k چیزیں منتف کرتے ہوئے

(24.25)
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots k}$$

غیر مرتب اجتماعات حاصل ہوں گے جبکہ چیزیں واپس رکھتے ہوئے غیر مرتب اجتماعات کی تعداد درج ذیل ہو گی۔

$$\binom{n+k-1}{k}$$

k ساوات 24.25 کے ساتھ منسلک فقرہ مسئلہ 24.9 کے پہلے جھے سے اخذ ہوتا ہے لینی n چیزوں میں سے k چیزیں منتخب کرتے ہوئے ان k چیزوں کے مرتب اجتماعات k ہوں گے جن میں صرف چیزوں کی ترتیب مختلف ہو گی (مسئلہ 24.7) کیکن مسئلہ 24.10 کے پہلے فقرے کے تحت ان k چیزوں کا صرف ایک غیر مرتب اجتماع پایا جاتا ہے۔ مسئلہ 24.10 کا آخری فقرہ الکراجی ماخوذ سے حاصل کیا جا سکتا ہے (سوال 24.64)۔

مثال 24.7: مسئله 24.7 اور مسئله 24.8 كا استعمال

ایک ڈبیا میں 10 مختلف قسم کے بیچ ہیں جنہیں ایک مخصوص ترتیب سے مشین میں لگایا جانا ہے۔ان بیچوں کو ڈبیا سے بلا منصوبہ نکالا جاتا ہے۔انہیں ڈبیا سے درکار ترتیب میں نکالنے کا احمال P بہت کم (مسلم 24.7) یعنی

$$P = \frac{1}{10!} = \frac{1}{3628800} \approx 0.00003\%$$

ہو گا۔ اگر ڈبیا میں 6 دائیں ہاتھ اور 4 بائیں ہاتھ بنتی ہوں اور 6 دائیں ہاتھ بنتی پہلے اور 4 بائیں ہاتھ بنتی بعد میں درکار ہوں تب اس ترتیب میں بنتی نکالنے کا اخمال P (مسئلہ 24.8) درج ذیل ہو گا۔

$$P = \frac{6!4!}{10!} = \frac{1}{210} \approx 0.5 \%$$

مثال 24.8: مسئلہ 24.9 کا استعمال ایک خفی خط میں حروف کو 5 کی گروہ (الفاظ) میں لکھا جاتا ہے۔مساوات 24.24* سے ہم دیکھتے ہیں کہ کل

$$26^5 = 11881376$$

مختلف الفاظ ممکن ہیں۔ مساوات 24.24 کے تحت ایسے الفاظ جن میں ہر حرف زیادہ سے زیادہ ایک مرتبہ استعال ہو کی تعداد درج ذبل ہو گی۔

$$\frac{26!}{(26-5)!} = 26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 = 7\,893\,600$$

مثال 24.9: مسئلہ 24.10کا استعمال 500 بیچوں میں سے 5 بیچ بلا منصوبہ منتخب کرتے ہوئے

$$\binom{500}{5} = \frac{500!}{5!495!} = \frac{500 \cdot 499 \cdot 498 \cdot 497 \cdot 496}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 255244687600$$

نمونے حاصل کے جاسکتے ہیں۔

آئیں عدد ضربہ تفاعل کے بار میں کچھ ہاتیں کریں۔صفر کا عدد ضربہ (!0) کی تعریف

$$(24.26) 0! = 1$$

ے۔ باتی عدد صحیح کے عدد ضربہ درج ذیل کلیہ سے حاصل کیے جاتے ہیں۔

$$(24.27) (n+1)! = (n+1)n!$$

بڑی عدد کے لئے بیہ کلید بہت بڑے اعداد دیتا ہے۔ ہم بڑے عدد n کی صورت میں عموماً درج ذیل کلیہ مسٹر لنگ⁷⁶ استعال کرتے ہیں 77

(24.28)
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad (e = 2.718\cdots)$$

Stirling formula⁷⁶ ⁷⁷انگلىتانى رياضى دان جيمس سٹر لنگ[1770-1692] جہاں \sim سے مرادیہ ہے کہ n کی قیت لامتنائی کے نزدیک تر ہونے سے مساوات 24.28 کی دونوں ہاتھ کا \sim تناسب 1 کے قریب تر ہو گا۔

ثنائی عددی سو 78 کی تعریف درج ذیل کلیہ ہے۔

شار کنندہ میں لا اجزاء ہیں۔مزید ہم درج ذیل تعریف پیش کرتے ہیں۔

(24.30)
$$\binom{a}{0} = 1 \implies \binom{0}{0} = 1$$

a=n کے لئے مساوات 24.29 سے a=n

(24.31)
$$\binom{n}{k} = \binom{n}{n-k} \qquad (n \ge 0, 0 \le k \le n)$$

حاصل ہو گا۔ چونکہ

(24.32)
$${a \choose k} + {a \choose k+1} = {a+1 \choose k+1} \qquad (k \ge 0, \xi^{\infty})$$

لکھا جا سکتا ہے لہذا ثنائی عددی سر کو تکرار سے حاصل کیا جا سکتا ہے۔مساوات 24.29 سے درج ذیل بھی حاصل ہوتا ہے۔

متعدد ویگر کلیات اخذ کیے جا سکتے ہیں جن میں سے ہم

اور

(24.35)
$$\sum_{k=0}^{r} \binom{p}{k} \binom{q}{r-k} = \binom{p+q}{r}$$

پیش کرتے ہیں۔

binomial coefficients⁷⁸

سوالات

سوال 24.55: تمام چار اعداد 1,2,3,4 ليتے ہوئے كتنے مرتب اجتماعات حاصل ہوں گے؟

سوال 24.56: تمام پانچ حروف تبجی د، ڈ، ذ، ر، ڑ لیتے ہوئے کتنے مرتب اجتماعات حاصل ہوں گے؟

سوال 24.57: وس افراد میں سے تین افراد کے کتنے پنچایت بنائی جا سکتی ہیں؟ جواب: $\binom{10}{3}=120$

سوال 24.58: گاڑی کے نمبر پلیٹ پر دو حروف تیجی اور تین اعداد لکھ کر کتنے مختلف نمبر پلیٹ بنائے جا سکتے ہیں؟ ہیں؟

 $^\circ$ سوال 24.59: $^\circ$ کی کھیپ سے 3 چیزوں کے کتنے نمونے حاصل کیے جا سکتے ہیں $^\circ$ جواب: $^\circ$ $^\circ$ 161 700: $^\circ$

سوال 24.60: ایک لوٹے میں 2 سیاد، 3 سفید، اور 4 سرخ گیند پڑے ہیں۔ ہم بلا منصوبہ ایک گیند نکال کر ایک طرف رکھ دیتے ہیں۔ اس کے بعد دوسرا گیند نکل کر ایک طرف رکھ دیتے ہیں اور اس طرف رکھ دیتے ہیں۔ اس کا اختال تلاش کریں کہ پہلے 2 سیاہ، اس کے بعد 3 سفید اور آخری گیند نکال کر ایک طرف رکھ دیتے ہیں۔ اس کا اختال تلاش کریں کہ پہلے 2 سیاہ، اس کے بعد 3 سفید اور آخر میں 4 سرخ گیند نکلیں۔

سوال 24.61: ہمارے پار 6 مختلف رنگ ہیں۔ہم کتنے طریقوں سے (الف) 2 ، (ب) 3 رنگ منتخب کر سکتے ہیں؟

جواب: 15,15

سوال 24.62: 10 کی کھیپ میں 2 چیزیں عیب دار ہیں۔ان میں سے چار چیزوں کے کتنے نمونے حاصل کیے جا سکتے ہیں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں کوئی بھی چیز عیب دارہ؟ دارنہ ہوں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں 1 چیزعیب دارہوں؟ ان میں سے چار چیزوں کے ایسے کتنے نمونے حاصل کیے جا سکتے ہیں کہ ان میں 2 چیزیں عیب دار ہوں؟

سوال 24.63: مسكله 24.9 ثابت كرين-

جواب: ثبوت کا طریقہ کار وہی ہے جو مسلہ 24.7 میں استعال کیا گیا ہے لیکن اب n کی جگہ ہم جگہیں پر کرتے ہیں۔ اگر واپس رکھنا ممکن ہو تب k میں سے ہر ایک کو n اشیاء سے پر کیا جا سکتا ہے۔

سوال 24.64: مسئله 24.10 كا آخرى فقره ثابت كرين اشاره مساوات 24.34 استعال كرين ـ

سوال 24.65: مساوات 24.28 استعال كرتے ہوئے !4 اور !8 كى تخيينی قيمتيں حاصل كريں۔ان تخيينی قيمتيں حاصل كريں۔ان تخيينی قيمتوں كا حتى اور اضافی خلل كيا ہے؟ جواب: % 23.5, 0.5, 2 ; 39 902, 400, 1

سوال 24.66: ایک کھیپ سے 4 چیزوں کا نمونہ، بغیر واپس رکھے حاصل کیا جاتا ہے۔ مرتب اجتماعات اور غیر مرتب اجتماعات کی تعداد کا آپس میں کیا تعلق ہو گا؟

سوال 24.67: مساوات 24.29 سے مساوات 24.32 حاصل کریں۔

سوال 24.68: (مسئلہ ثنائی) مسئلہ ثنائی 7⁹ کے تحت

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

ہو گا۔ یوں a^kb^{n-k} کا عددی سر $\binom{n}{k}$ ہے۔ کیا مسئلہ 24.10 سے آپ یہ اخذ کر سکتے ہیں یا آپ سمجھتے ہیں کہ یہ محض انفاق ہے۔

سوال 24.69: مسئله ثنائی (سوال 24.68) کو

 $(1+b)^p(1+b)^q = (1+b)^{p+q}$

ير لا گو كرتے ہوئے مساوات 24.35 ثابت كريں۔

24.7 بلامنصوبه متغيرات غير مسلسل اوراستمراري تقسيم

دو پانسے اچھال کر 2 تا 12 عدد صحیح مجموعہ X حاصل ہو گالیکن اگلے اچھال میں حاصل X کی پیش گوئی نہیں کر سکتے ہیں لہذا ہم کہہ سکتے ہیں کہ X "امکان" پر منحصر ہے۔اسی طرح اگر ہم پیچوں کی کھیپ سے 5 کا

binomial theorem⁷⁹

نمونہ لے کر ان کی لمبائی ناپنا چاہیں تو ہم پیش گوئی نہیں کر سکتے ہیں کہ ان میں سے کتنے عیب دار ہوں گے؛ یوں عیب دار پیچوں کی تعداد X "امکان" پر منحصر ہو گی۔

بلا منصوبہ متغیر 80 X سے مراد ایبا تفاعل ہے جس کی قیت حقیقی اعداد اور "امکان" پر منحصر ہوں۔ بلا منصوبہ متغیر کو امکانی متغیر کو است ہو گا کہ تفاعل X درج ذیل خواص رکھتا ہے۔

- تجربه کی نمونی فضا S پر X معین ہے اور اس کی قیمتیں حقیقی اعداد ہیں۔
- فرض کریں کہ a کوئی حقیقی عدد اور I کوئی وقفہ ہیں۔تب S میں ان تمام انجام کا سلسلہ جن کے لئے X=a ہو کا احمال پوری طرح معین ہو گا اور یہی کچھ S میں ان تمام انجام کے لئے درست ہو گا جن X=a کے لئے X کی قیت X میں ہو۔بیہ احمال حصہ 24.5 میں دی گئی مسلمات کے تحت ہوں گی۔

ا گرچہ یہ تعریف عمومی ہے جس میں بہت سے تفاعل شامل ہیں، ہم دیکھیں گے کہ عملًا اہم بلا منصوبہ متغیرات کے اقسام اور ان کی مطابقتی "تقسیم احتمال" کی تعداد بہت کم ہیں۔

اگر ہم بلا منصوبہ تجربہ سرانجام دیں اور عدد a کا مطابقی وقوعہ حاصل ہو تب ہم کہتے ہیں کہ اس تجربہ کی کوشش میں بلا منصوبہ متغیر X قیمت a اختیار x کرتا ہے۔ہم سے بھی کہتے ہیں کہ ہم نے قیمت x اختیار x کا مطابقی وقوعہ " کہنے کے ہم مختصراً کہتے ہیں، "وقوعہ x "۔ مطابقی احمال مشاہدہ x اعدد x کا مطابقی وقوعہ " کہنے کے ہم مختصراً کہتے ہیں، "وقوعہ x اللہ کیا جاتا ہے۔اس طرح وقوعہ x کے ہم مختصراً کہتے ہیں، "وقوعہ x اللہ کیا جاتا ہے۔اس طرح وقوعہ

میں کوئی قیمت اختیار کرتا ہے a < X < b

کا احتمال P(a < X < b) سے ظاہر کیا جاتا ہے۔وقوعہ

 $X \le x$ (ختیار کرتا ہے کم قیمت X افتیار کرتا ہے c)

کا احتمال $P(X \leq c)$ سے ظاہر کیا جائے گا اور و قوعہ

X>x (حت زیادہ قیمت X اختیار کرتا ہے C

random variable⁸⁰ stochastic variable⁸¹

 $\begin{array}{c} {\rm assume}^{82} \\ {\rm observed}^{83} \end{array}$

کا اختمال p(X>c) سے ظاہر کیا جائے گا۔

مندرجہ بالا دو آخری و قوعات باہمی بلا شرکت ہیں للذا حصہ 24.5 کے مسلمہ-پ سے درج ذیل حاصل ہو گا۔

$$P(X \le c) + P(X > c) = P(-\infty < X < \infty)$$

چونکہ $0 < X < \infty$ پورانمونی فضا کو ظاہر کرتا ہے للذا مسلمہ-ب کے تحت دایاں ہاتھ $0 < X < \infty$ جس سے درج ذیل اہم نتیجہ اخذ ہوتا ہے۔

(24.36)
$$P(X > c) = 1 - P(X \le c)$$
 (24.36)

مثال کے طور پر، اگر X وہ عدد ہو جو پانسہ اچھال کر حاصل ہوتا ہو، تب

$$P(X = 1) = \frac{1}{6}$$
, $P(X = 2) = \frac{1}{6}$, $P(1 < X < 2) = 0$, $P(1 \le X \le 2) = \frac{1}{3}$, $P(0 \le X \le 3.2) = \frac{1}{2}$, $P(X > 4) = \frac{1}{3}$, $P(X \le 0.5) = 0$, ...

ہوں گے۔

عموماً صورتوں میں بلا منصوبہ متغیرات غیر مسلسل⁸⁴ یا استموادی 85 ہوں گے۔ان دونوں پر باری باری غور کرتے ہیں۔ ہیں۔

بلا منصوبه متغیر X اور اس کا مطابقتی تقییم اس صورت غیر مسلسل کہلاتے ہیں جب X درج ذیل خواص رکھتا ہو۔

• ان قیتوں کا تعداد جن کے لئے X کا احمال غیر 0 ہو متناہی یا قابل شار لا متناہی ہوں۔

بو گا۔ $P(a < X \leq b) = 0$ بین ایبا قیمت نہ پایا جاتا ہو، تب $a < X \leq b$ ہو گا۔ فرض کریں کہ

 $x_1, \quad x_2, \quad x_3, \quad \cdots$

وہ قیمتیں ہیں جن کے لئے X کا مثبت احمال پایا جاتا ہو اور فرض کریں کہ مطابقتی احمال درج ذیل ہیں۔

$$p_1$$
, p_2 , p_3 , \cdots

تب $P(X=x_1)=P_1$ ، وغیره ہو گا۔ ہم اب تفاعل

(24.37)
$$f(x) = \begin{cases} p_j & x = x_j \\ 0 & x \neq x_j \end{cases} \quad (j = 1, 2, \cdots)$$

متعارف کرتے ہیں۔ f(x) کو X کا تفاعل احتمال 86 کہتے ہیں۔

 $discrete^{84}$

continuous⁸⁵

probability function⁸⁶

چونکہ P(S)=1 (حصہ 24.5 مسلمہ-ب) ہے لمذا لازمی طور پر درج ذیل ہو گا۔

(24.38)
$$\sum_{j=1}^{\infty} f(x_j) = 1$$

اگر ہمیں بلا منصوبہ غیر مسلسل متغیر X کا اختال معلوم ہو، تب ہم کسی بھی وقفہ $a < X \leq b$ کے لحاظ سے $P(a < X \leq b)$

(24.39)
$$P(a < X \le b) = \sum_{a < x_j \le b} f(x_j) = \sum_{a < x_j \le b} p_j$$

ہو گا جو اس وقفہ میں تمام x_j کے لئے اختمال p_p کا مجموعہ ہے۔بند، کھلا یا لا تناہی وقفہ کے لئے صورت حال تقریباً اسی طرح ہے۔اس حقیقت کو ہم یوں بیان کرتے ہیں کہ بلا منصوبہ متغیر X کے لئے نفاعل اختمال f(x) ، تقسیم احتمال f(x) ، تقسیم 88 کو کیتا طور پر تغین کرتا ہے۔

اگر X کوئی بلا منصوبہ متغیر ہو، جو ضروری نہیں کہ غیر مسلسل ہو، تب کسی بھی حقیقی عدد X = X کے لئے X = X X = X اختیار کر سکتا ہے)

کا مطابقتی اختال $P(X \leq x)$ پایا جائے گا۔ ظاہر ہے کہ $P(X \leq x)$ کی قیمت X کے انتخاب پر منحصر ہو گی: یہ X کا تفاعل ہو گا جس کو X کا تفاعل تقسیم X کا تفاعل تفاعل

$$(24.40) F(x) = P(X \le x)$$

ہو گا۔ چونکہ کسی بھی a اور b > a کے لئے

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$

ہے للذا

(24.41)
$$P(a < X \le b) = F(b) - F(a)$$

probability distribution⁸⁷ distribution⁸⁸

distribution function⁸⁹

- کو تجاوی نفاعل احمال کتے ہیں، خصوصاً وہ جو f(x) کو تجاوی نفاعل احمال کتے ہیں۔ خصوصاً وہ جو f(x)

ہو گا جس سے ظاہر ہے کہ X کی تقسیم کو تفاعل تقسیم مکتا طور پر تعین کرتا ہے لہٰذا اس کو احمال کے حساب کے لئے استعال کیا جا سکتا ہے۔ لئے استعال کیا جا سکتا ہے۔

فرض کریں کہ X ایک غیر مسلسل متغیر ہے۔ تب ہم تفاعل تقسیم F(x) کو تفاعل احتمال f(x) کی صورت میں ظاہر کر سکتے ہیں۔ یقیناً مساوات 24.39 ($a=-\infty$) اور b=x اور b=x ساتھ) پر کرتے ہوئے

(24.42)
$$F(x) = \sum_{x_j \le x} f(x_j)$$

حاصل ہو گا جہاں دایاں ہاتھ $x \leq x$ کے لئے ان تمام $f(x_j)$ کا مجموعہ ہے۔ سادہ مثالیں شکل 24.7 اور شکل 24.8 میں دکھائی گئ ہیں جو دو پانسہ کو ایک بار اچھال کر حاصل ہوا ہے۔ دونوں اشکال میں f(x) کو ڈبہ ترسیم کی صورت میں دکھایا گیا ہے۔ شکل 24.7 میں 6, $x = 1, 2, \cdots$ اور اس کے علاوہ کی صورت میں دکھایا گیا ہے۔ شکل 24.7 میں $x = 1, 2, \cdots$ اور اس کے علاوہ $x = 1, 2, \cdots$ کے جو پانسہ اچھال کر حاصل ہوئے ہیں جبکہ شکل 24.8 میں $x = 1, 2, \cdots$ کی قیمتیں درج ذیل ہیں جو دو پانسہ کا حاصل مجموعہ ہے۔

دو پانسہ کے تجربہ میں چونکہ $6 \cdot 6 = 6 \cdot 6$ مکنہ مساوی امکانی انجام ہیں لہذا ہر ایک کا اختال $\frac{1}{36}$ ہے۔ صرف (1,1) کے لئے (جہاں پہلا عدد ایک پانسہ اور دوسرا عدد دوسرے پانسہ کا نتیجہ ہے) X = 2 ہو گا؛ اسی طرح X = 4 ہو X = 4 ہو گا؛ X = 4 ہو گا، وغیرہ۔ X = 4 ہو گا، وغیرہ۔

صرف وہ x_1, x_2, x_3, \dots قیمتیں جن کے لئے بلا منصوبہ غیر مسلسل متغیر X مثبت اخمال رکھتا ہو X کی محکنہ قیمتیں F(x) ہمکنہ قیمتیں F(x) ہمکنہ قیمتیں F(x) ہمکنہ قیمتیں وقفہ میں کوئی مکنہ قیمت نہ پائی جاتی اس وقفہ میں تفاعل تقسیم F(x) مستقل ہو گا۔اس طرح F(x) مسیر همی تفاعل (کلووں میں مستقل تفاعل) ہو گا جس میں F(x) مسیر اوپر رخ F(x) میں مسیر F(x) میں جب کے گئی جبکہ دو چھلانگوں کے نتیج یہ مستقل ہو گا۔ شکل F(x) اور شکل F(x) میں ایسا صاف ظاہر ہے۔

X اور X اور کرتے ہیں۔ایک بلا منصوبہ متغیر کی تعریف پیش کرتے ہیں اور اس پر غور کرتے ہیں۔ایک بلا منصوبہ متغیر X اور اس کا مطابقتی تفاعل تقسیم تب استمرادی کہلاتے ہیں جب اس کا تفاعل تقسیم $F(x) = P(X \leq x)$ مثبت ہو

possible values⁹¹

F(x) اور تفاعل اختال اختال المختال المختاع المختاع المختال المختال المختال المختاط المختاع المختاط المختاط

اور اسے درج ذیل تکمل کی صورت میں لکھنا ممکن ہو ⁹²

$$(24.43) F(x) = \int_{-\infty}^{x} f(v) \, \mathrm{d}v$$

جہاں متکمل استمراری ہے، ماسوائ v کی متناہی تعداد کے قیمتوں کے لئے۔متکمل f کو تقسیم کی کثافت اخمال یا مختصراً کینافت کہتے ہیں۔ ہر اس x پر جہال f(x) استمراری ہو وہاں مساوات 24.43 کو تقسیم کرتے ہوئے F'(x) = f(x)

حاصل ہو گا۔اس لحاظ سے تفاعل تقسیم کا تفرق کثافت ہے۔

ماوات 24.43 اور حصہ 24.5 کے مسلمہ-ب کے تحت درج ذیل ہو گا۔

$$(24.44) \qquad \qquad \int_{-\infty}^{\infty} f(v) \, \mathrm{d}v = 1$$

مساوات 24.41 اور مساوات 24.43 سے درج زیل کلیہ حاصل ہوتا ہے۔

(24.45)
$$P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(v) \, dv$$

24.43 استراری ہے لیکن F(x) کے استراری ہونے ہے مساوات 24.43 کی موجود گی ثابت نہیں ہوتی ہے۔ چونکد ایسے استراری نفاعل تقسیم جنہیں مساوات 24.43 کی صورت میں لکھنا ممکن نہ ہو مکلاً بہت کم ہائے ہیں سندان مطلاعات "استراری بلا مضویہ متنیر" ااور "استراری تقسیم "جوبہت نیادہ استعالی کی جاتی ہیں لئید اہو کے کا ارکان بہت کم ہوگا۔

شكل 24.45: شكل برائے مساوات 24.45

یوں جیسا شکل 24.9 میں دکھایا گیا ہے، کثافت f(x) کے منحنی کے پنچ x=a اور x=b کا تھی رقبہ احتمال کے برابر ہوگا۔

اور a < X < b ، $a < X \leq b$ وقفہ $a < X \leq b$ اور $a \leq X \leq b$ اور $a \leq X \leq b$

استمراری تقسیم کے مثال (سوالات) اگلے جھے کے سوالات اور آنے والے حصوں میں پیش کئے جائیں گے۔

سوالات

سوال 24.70: تفاعل احتمال احتمال $f(x)=rac{x^2}{14}\;(x=1,2,3)$ اور تفاعل تقسیم کی ترسیم کھینیں۔

 $f(4)=f(5)=rac{1}{8}$ ، $f(3)=rac{1}{4}$ ، $f(2)=rac{1}{2}$ کا تفاعل اختمال اختمال اختمال ہے کہ X کیا اختمال ہے کہ X کیا اختمال ہے کہ X کی قیمت X ہو گی؟

f(1)=0.3 سوال 24.72: ایک مشین کو X سالوں کے بعد تبدیل کرنا ضروری ہے۔ X کا تفاعل احتمال X سوال 24.72: ایک مشین کو X سالوں کے بعد تبدیل کرنا ضروری ہے۔ X اور X کو ترسیم کریں۔ X بادر X کو ترسیم کریں۔

سوال 24.73: کسی پٹرول پہپ میں ایک دن کی درکار پٹرول بلا منصوبہ متغیر X ہے۔ فرض کریں کہ f(x)=k کی کثافت X کی کثافت X کی کثافت X کی کثافت کی کہ جارتہ X کی کثافت کی کہ جارتہ کی جارتہ کی جارتہ کی جارتہ کی جارتہ کی کہ خوانہ کی کہ خوانہ کی کہ جارتہ کی کریں کی جارتہ کی جارتہ

تقیم F(x) ترسیم کریں۔ جواب:

$$k = \frac{1}{4000}, \quad F(x) = \begin{cases} 0 & x < 2000 \\ \frac{x}{4000} - 0.5 & 2000 \le x < 6000 \\ 1 & x \ge 6000 \end{cases}$$

c ہے۔ f(x)=0 کے لئے $f(x)=ce^{-x}$ کیا ہے۔ f(x)=0 کی ہوت کا میں ہوت کی ہے۔ f(x)=0 کی

سوال 24.75: 3 پانسہ اچھال کر ان کا مجموعہ لے کر بلا منصوبہ متغیر X حاصل کیا جاتا ہے۔ تفاعل اختمال f(x) ترسیم کریں۔ f(x) جواب: $f(x) = \frac{1}{216}$, $f(x) = \frac{3}{216}$, \dots

سوال 24.76: کافذ کے گئے کی موٹائی X ملی میٹر ہے۔ فرض کریں کہ 1.9 < x < 2.1 کے لئے کا موٹائی f(x) = 0 ہے۔ f(x) = 0 تلاش کریں۔اس کا کیا اختال ہے کہ گئے کی موٹائی f(x) = 0 اور f(x) = 0 ہو؟

سوال 24.77: ایک سکہ کو اتنی مرتبہ (X) اچھالا جاتا ہے جب تک خط حاصل نہ ہو۔ دکھائیں کہ اس تجربہ کا تفاعل اختمال f(x) مساوات 24.38 کو مطمئن کرتا ہے۔ f(x) ہو گا۔ دکھائیں کہ f(x) مساوات 24.38 کو مطمئن کرتا ہے۔

موال 24.78 k = 0 کے لئے $f(x) = kx^2$ ہے۔ f(x) = 0 ہو۔ $f(x) = kx^2$ ہو۔ f(x) = 0 ہو۔ f

سوال 24.79: بلب کی عرصہ زندگی X بلا منصوبہ متغیر ہے جس کی کثافت

$$f(x) = 6[0.25 - (x - 1.5)^{2}] 1 \le x \le 2$$

اور باتی x = 1 کے لئے f(x) = 0 ہے، جہاں f(x) = 0 ہے مراد 1000 گھنٹے ہیں۔ کیا اخمال ہے کہ سڑک f(x) = 0 ہور بیش نہ آئے؟ کے اشارے پر پہلے 1200 گھنٹوں میں تین میں سے کسی ایک بھی بلب کی تبدیل کرنے کی ضرورت پیش نہ آئے؟ $P(X > 1200) = \int_{1.2}^{2} 6[0.25 - (x - 1.5)^{2}] dx = 0.896^{3} = 72\%$

سوال 24.80: کسی وکان کی فروخت اور منافع کی نسبت X ہے۔ فرض کریں کہ X کی تفاعل تقسیم عوال 24.80: کسی وکان کی فروخت اور منافع کی نسبت $F(x) = \frac{x^2-4}{5}$ اور X < 2 کے لئے X < 2 ور X < 3 اور X < 2 کے لئے X < 2 کی قیت 2.5 (%40% منافع) اور X < 2 منافع) کے نتی میں ہونے کا کیا احتمال ہے؟

 $X \leq b$ سوال 24.81 سوال X = 24.81 سوال $X \leq b$ متغیر ہے جو کوئی بھی حقیقی قیمت اختیار کر سکتا ہے۔ وقوعہ $X \leq b$ بھی جو کوئی بھی $A \leq b$ ہوں گے؟ $A \leq b$ ہوں گے؟ جواب $A \leq b$ بیا $A \leq c$ بیا $A \leq$

سوال 24.82: ایک ڈبہ میں 4 دائیں ہاتھ پتج اور 6 بائیں ہاتھ پتج پائے جاتے ہیں۔ بغیر واپس رکھے، دو پتج P(X=1) ، P(X=0) ، P(X=1) ، P(X=0) ، نظر منصوبہ نکالے جاتے ہیں۔ نکالے گئے بائیں ہاتھ پتچوں کی تعداد X ہے۔ اخمال P(X=1) ، P(X=1) ، P(X=1) تلاش P(X=1) ، P(X=1) ، P(X=1) تلاش کریں۔

 $P(X \le b) \le P(X \le c)$ سے مراد b < c ہے۔ b < c ہے۔ b < c

24.8 تقسيم كالوسطاوراس كى تغيريت

تقیم کے اوسط 93 کو سے ظاہر کیا جاتا ہے اور اس کی تعریف درج ذیل ہے۔

(24.46)
$$\mu = \sum_{j} x_{j} f(x_{j}) \qquad (مغیر مسلسل تقسیم)$$

$$\mu = \int_{-\infty}^{\infty} x f(x) dx \qquad (ستمراری تقسیم)$$

مساوات 24.46-الف میں زیر غور بلا منصوبہ متغیر X کا تفاعل اخمال f(x) ہے اور ہم تمام ممکنہ قیتوں (حصہ X کی حسابی توقع X کی حسابی توقع وقع کی جہوعہ لیتے ہیں۔مساوات 24.46-ب میں X کی کثافت X کی کشافت X کی حسابی توقع وقع وقع کی مسابی توقع وقع کی مسابی توقع وقع کی حسابی توقع وقع کی حسابی توقع وقع کی مسابی توقع و توقع و

mean⁹³

mathematical expectation 94

-24.46 بیں جس کو E(X) سے ظاہر کیا جاتا ہے۔ تعریف کی رو سے ہم فرض کرتے ہیں کہ مساوات 24.46۔ الف کی تسلسل حتی مر تکز ہو گی اور $-\infty$ سے ∞ تک |x| f(x) کا تکمل موجود ہو گا۔ اگر یہ تکمل موجود نہ ہو تب ہم کہتے ہیں کہ اس تقسیم کی اوسط نہیں ہائی جاتی ہے؛ الیی صورت عملی انجینئری میں شاذ و نادر پائی جاتی ہے۔

x=c کے لحاظ سے ایک تقسیم کو اس صورت تشاکلی کہتے ہیں جب ہر حقیقی x کے لئے درج ذیل مطمئن ہوتا ہو۔

(24.47)
$$f(c+x) = f(c-x)$$

آپ درج ذیل مسکله ثابت کر سکتے ہیں (سوال 24.84)۔

مسکہ 24.11: (تشاکلی تقسیم کا اوسط) اگرایک تقسیم $\mu=c$ کے کاظ سے تشاکلی ہو اور اس کا اوسط μ ہو تب $\mu=c$ ہو گا۔

تقسیم کی تغیریت 95 کو σ^2 سے ظاہر کیا جاتا ہے اور اس کی تعریف درج ذیل کلیہ دیتی ہے

(24.48)
$$\sigma^{2} = \sum_{j} (x_{j} - \mu)^{2} f(x_{j})$$
 (الف)
$$(24.48)$$

$$(\varphi^{2} = \sum_{j} (x_{j} - \mu)^{2} f(x_{j})$$
 (ب)
$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$
 (ب)
$$(\varphi^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

جہاں تعریف کی رو سے ہم فرض کرتے ہیں کہ مساوات 24.48-الف میں دی گئی تسلسل حتی مر تکز ہے اور مساوات 24.48-الف میں دی گئی تسلسل حتی مر تکز ہے اور مساوات 24.48-ب کا تکمل موجود ہے۔

غیر مسلسل تقسیم کی صورت میں اگر کسی ایک نقطہ پر f(x)=1 اور باقی ہر جگہ g(x)=0 ہو تب غیر مسلسل تقسیم کی صورت میں درج ذیل ہو گا۔ g(x)=0 ہو گا جو عملًا غیر دلچیپ صورت ہے۔اس غیر دلچیپ صورت کے علاوہ ہر صورت میں درج ذیل ہو گا۔ g(x)=0 g(x)=0 (24.49)

تغیر بیت کا مثبت جذر معیاری انحواف 96 کہلاتا ہے جس کو σ سے ظاہر کیا جاتا ہے۔

 $[\]begin{array}{c} \text{variance}^{95} \\ \text{standard deviation}^{96} \end{array}$

بلا منصوبہ متغیر X جن قیمتوں کو اختیار کر سکتا ہے، تغیریت کو ان قیمتوں کی پھیل کی ناپ تصور کیا جا سکتا ہے۔

مثال 24.10: (اوسط اور تغیریت) بلا منصوبہ متغیر

X = Mسکه احیمال کر شیر کا حاصل ہونا

 $P(X=1)=rac{1}{2}$ اور X=1 اور X=1 ہیں جن کا احتمال Y=1 اور Y=1 ا

$$\sigma^2 = (0 - \frac{1}{2})^2 \cdot \frac{1}{2} + (1 - \frac{1}{2})^2 \cdot \frac{1}{2} = \frac{1}{4}$$

مثال 24.11: يكسان تقسيم وه تقسيم جس كى كثافت a < x < b كے لئے

$$f(x) = \frac{1}{b-a} \qquad (a < x < b)$$

اور باقی x کے لئے f=0 ہو، وقفہ a< x < b میں یکساں تقسیم a< x < b ہو، وقفہ a< x < b اور مساوات a< x < b بیں۔ مساوات 24.48-الف سے $a= a+b \over 2$ اور مساوات 24.48-ب سے تغیریت حاصل کرتے ہیں۔

$$\sigma^{2} = \int_{a}^{b} (x - \frac{a+b}{2})^{2} \frac{1}{b-a} dx = \frac{(b-a)^{2}}{12}$$

 \Box پین کی ناپ ہے۔ σ^2 کی ہیں جو دکھاتی ہیں کہ σ^2 کی ناپ ہے۔ σ^2 کی بین جو دکھاتی ہیں کہ انگر 24.10 میں چند خصوصی مثالیں پیش کی گئی ہیں جو دکھاتی ہیں ہیں جو دکھاتی ہیں جو دکھا

$$\mu^* = c_1 \mu + c_2$$

uniform distribution 97

 σ^2 کیاں تقسیم جن کی ایک جیسی اوسط (0.5) کیکن مختلف تغیریت σ^2 ہے

اور تغيريت

(24.51)
$$\sigma^{*2} = c_1^2 \sigma^2$$

ہو گی۔

ثبوت: ہم پہلے $c_1>0$ فرض کرتے ہوئے مساوات 24.50 کو استراری صورت کے لئے ثابت کرتے ہوئے مساوات X^* ہیں۔چونکہ X کور پر چھوٹے سے وقفہ Δx کا مطابقتی اختمال (تخمیناً) $f(x)\Delta x$ ہو گا جو ہر صورت X^* ہیں۔ چونکہ X کور پر مطابقتی چھوٹے وقفہ $\Delta x^*=c_1\Delta x$ پر اختمال $X^*=c_1\Delta x$ ہو گا لہذا $X^*=c_1\Delta x$ اور $X^*=c_1\Delta x$ کی کثافت $X^*=c_1\Delta x$ کی کثا

$$\mu^* = \int_{-\infty}^{\infty} x^* f^*(x^*) \, \mathrm{d}x^* = \int_{-\infty}^{\infty} (c_1 x + c_2) f(x) \, \mathrm{d}x$$
$$= c_1 \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x + c_2 \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

جہاں آخری تکمل مساوات 24.44 کے تحت 1 کے برابر ہو گا۔یوں مساوات 24.50 ثابت ہوتی ہے۔چو تکہ $x^*-\mu^*=(c_1x+c_2)-(c_1\mu+c_2)=c_1x-c_1\mu$

ہے لہذا تغیریت کی تعریف سے

$$\sigma^{*2} = \int_{-\infty}^{\infty} (x^* - \mu^*)^2 f^*(x^*) \, \mathrm{d}x^* = \int_{-\infty}^{\infty} (c_1 x - c_1 \mu)^2 f(x) \, \mathrm{d}x = c_1^2 \sigma^2$$

x=1 حاصل ہو گا۔ x=1 سے نتائج تبدیل نہیں ہوتے ہیں چونکہ اس سے دو اضافی منفی کی علامتیں ملتی ہیں، ایک میں کمل کے رخ کی تبدیلی کی بنا (دھیان رہے کہ x=1 کا مطابقتی x=1 اور دوسرا x=1 کی بنا؛ یہاں x=1 درکار ہو گا چونکہ کثافت غیر منفی قیمت ہے۔ x=1

غیر مسلسل کثافت کے لئے مسلے کا ثبوت بھی بالکل ایبا ہی ہے۔

П

مساوات 24.50 اور مساوات 24.51 سے ہم درج ذیل اخذ کر سکتے ہیں۔

مسکلہ 24.13: (معیاری متغیر) اگر بلا منصوبہ متغیر $Z=rac{X-\mu}{\sigma}$ کی اوسط $Z=rac{X-\mu}{\sigma}$ ہو، تب مطابقتی متغیر $Z=rac{X-\mu}{\sigma}$ کی اوسط Z=1 اوسط Z=1 تغیر بیت Z=1 ہو گی۔

کو X کا مطالقتی معیاری متغیر 98 کہتے ہیں۔

X کوئی بلا منصوبہ متغیر اور g(X) کوئی استمراری تفاعل ہو جو تمام حقیقی X کے لئے معین ہو تب عدد

(24.52)
$$E(g(X)) = \sum_{j} g(x_{j}) f(x_{j}) \qquad (X فير مسلسل X)$$

$$((24.52) \qquad ((24.52) \qquad E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) \, \mathrm{d}x \qquad (X \otimes \mathbb{C})$$

کو g(X) کی حسابی توقع 99 کہتے ہیں۔ یہاں f بالترتیب تفاعل اخمال یا کثافت ہے۔

ماوات 24.52 میں $g(X) = X^k \ (k = 1, 2, \cdots)$ میں $g(X) = X^k \ (k = 1, 2, \cdots)$ مماوات $E(X^k) = \int_{-\infty}^{\infty} x^k f(x) \, \mathrm{d}x$ اور $E(X^k) = \sum_{j=0}^{\infty} x^j f(x_j)$

standardized variable 98 mathematical expectation 99

(24.54)

$$E([X - \mu]^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \, \mathrm{d}x$$
 for $E([X - \mu]^k) = \sum_j (x_j - \mu)^k f(x_j)$

 λ ویں وسطی معیار اثر λ کے ہیں۔ آپ درج ذیل ثابت کر سکتے ہیں۔ λ ویں وسطی معیار اثر

$$(24.55) E(1) = 1$$

$$(24.56) \mu = E(X)$$

(24.57)
$$\sigma^2 = E([X - \mu]^2)$$

سوالات

سوال 24.84: مسئله 24.11 ثابت كرير-جواب:

$$\begin{split} \mu &= \int_{-\infty}^{c} t f(t) \, \mathrm{d}t + \int_{c}^{\infty} t f(t) \, \mathrm{d}t \\ &= -\int_{\infty}^{0} (c-x) f(c-x) \, \mathrm{d}x + \int_{0}^{\infty} (c+x) f(c+x) \, \mathrm{d}x = 2c \int_{0}^{\infty} f(c+x) \, \mathrm{d}x = c \end{split}$$
غير مسلس تقسيم کے لئے بھی ثبوت اسی طرح حاصل کیا جا سکتا ہے۔

سوال 24.85: ایک تقشیم کی کثافت $f(x)=rac{1}{2}e^{-|x|}$ ہے۔اس کی اوسط اور تغیریت تلاش کریں۔ $\mu=0,\sigma^2=2$ جواب:

X سوال X سوال X کی اوسط اور تغیریت تلاش کریں۔ بلا منصوبہ متغیر X سوال 24.86 کیں دیا گیا ہے۔

 $\begin{array}{c} {\rm kth~moment^{100}} \\ {\rm kth~central~moment^{101}} \end{array}$

ریں۔ سوال 24.88: سوال 24.86 کے X کا مطابقتی معیاری بلا منصوبہ متغیر تلاش کریں۔ $\frac{x-\frac{4}{3}}{\sqrt{\frac{2}{9}}}$

سوال 24.89: مسكله 24.12 كو غير مسلسل صورت كے لئے ثابت كريں۔

سوال 24.90: مسئلہ 24.13 کو مساوات 24.50 اور مساوات 24.51 سے اخذ کریں۔ $c_1=\frac{\mu}{\sigma}$ روب اور مساوات 24.51 میں مساوات 24.51 اور مساوات 24.51 میں مساولت 24.51 میں مساوات 24.51 میں مساولت 24.51 م

سوال 24.91: ایک مخصوص قسم کے ٹائر بلا منصوبہ متغیر X (ہزار کلو میٹر) چلتے ہیں۔ X کی کثافت $f(x) = \theta e^{-\theta x}$ کی کثافت $\theta > 0$ مقدار معلوم ہے۔ (الف) ایسے ایک ٹائر $\theta > 0$ مقدار معلوم ہے۔ (الف) ایسے ایک ٹائر $\theta > 0$ ہو تب کم سے کم $\theta = 0.05$ کلومیٹر تک پہنچنے کا احتمال کیا ہو گا؟

سوال 24.93: سوال 24.92 میں اگر کیل کے وتر کا 1 cm سے انحراف 0.06 cm بڑھ جائے تب اس کو عیب دار تصور کیا جاتا ہے۔کتنے فی صد کیل عیب دار ہوں گے؟

X سوال 24.94: ایک پیڑول پمپ کو ہر جمعرات دو پہر کے وقت پیڑول مہیا کیا جاتا ہے۔ فروخت پیڑول کا مجم f(x)=6x(1-x) گی کثافت احمال f(x)=6x(1-x) ورنہ f(x)=6x(1-x) اور تغیریت تلاش کریں۔ $g(x)=\frac{1}{2}$ ورنہ $g(x)=\frac{1}{2}$ ورنہ $g(x)=\frac{1}{2}$ ورنہ $g(x)=\frac{1}{2}$ ورنہ $g(x)=\frac{1}{2}$ ورنہ ویک جواب: $g(x)=\frac{1}{2}$

سوال 24.95: سوال 24.94 میں پٹرول کی ٹینکی کا حجم کتنا ہو گا اگر ایک ہفتہ میں ٹینکی خالی ہونے کا اخمال % 10 ہو؟

سوال 24.96: مساوات 24.55، مساوات 24.56 اور مساوات 24.57 ثابت كرين-

 $\sigma^2 = E(X^2) - \mu^2$ اور $E(X - \mu) = 0$ ہوں گے۔ $E(X - \mu) = 0$

f(x)=2 ورنہ f(x)=0 کی گافت f(x)=0 کے لئے f(x)=0 ورنہ f(x)=0 عیار اثر تلاش کریں۔ سوال 24.97 میں دیے گئے کلیہ سے σ^2 حاصل کریں۔ $E(X^k)=rac{2}{k+2},\ \sigma^2=rac{1}{18}$

a سوال E(ag(X)+bh(X))=aE(g(X))+bE(h(X)) بو گا جہاں ہو E(ag(X)+bh(X))=aE(g(X))+bE(h(X)) بو گا جہاں اور b مستقل ہیں۔

 $C_{x}=0$ یر کیساں تقسیم کے معیار اثر تلاش کریں۔ $E(X^{k})=rac{1}{k+1}$ جواب: $E(X^{k})=rac{1}{k+1}$

سوال 24.101: (توچھاپن) عدد $\gamma = \frac{1}{\sigma^3} E([X-\mu]^3)$ کو X کا توچھاپن $\gamma = \frac{1}{\sigma^3} E([X-\mu]^3)$ عدد اصطلاح کا جواز پیش کرنے کی خاطر دکھائیں کہ μ کے لحاظ سے تشاکلی χ کے لئے اگر تیسرا وسطی معیار اثر موجود ہو تب ہے معیار اثر صفر ہو گا۔

سوال 24.102: t=0 کی صورت میں کثافت تقسیم $f(x)=xe^{-x}$ ورنہ f=0 کی صورت میں کثافت تقسیم کا ترچیاپن تلاش کریں۔ $f(x)=xe^{-x}$ کو ترسیم کریں۔

 $\sigma^2=2, \gamma=rac{4}{2\sqrt{2}}=\sqrt{2}$ پواب: حکمل بالحصص لیں

سوال 24.103: (معيار اثر كا پيدا كار تفاعل) بلا منصوبه غير مسلس با استمراري متغير X كے معيار اثر كا پيدا كار نفاعل درج ذيل كليات ديت بيں

$$G(t)=E(e^{tX})=\sum_{j}e^{tx_{j}}f(x_{j})$$
 of $G(t)=E(e^{tX})=\int_{-\infty}^{\infty}e^{tx}f(x)\,\mathrm{d}x$

جہاں فرض کیا گیا ہے کہ مجموعہ کی علامت کے اندر اور تکمل کی علامت کے اندر تفرق لیا جا سکتا ہے۔ دکھائیں کہ جہاں فرض کیا گیا ہے کہ مجموعہ کی علامت کے لخاظ سے $G^{(k)}(t)$ ہو گا اور بالخصوص $G^{(k)}(t)$ ہو گا جہاں $G^{(k)}(t)$ سے مراد $G^{(k)}(t)$ کا G کا G وال تفرق ہے۔

 $skewness^{102}$

24.9 ثنائی، پو نسن، اور بیش ہندسی تقسیم

ہم اب چند مخصوص غیر مسلسل تقسیم پر غور کرتے ہیں جو شاریات کے لئے اہم ہیں۔

ثنائي تقسيم

ہم ایک تجربہ کو n مرتبہ بلا منصوبہ سرانجام دینے میں وقوعہ A کے واقع ہونے کی تعداد سے حاصل ثنائی تقسیم پر غور کرتے ہیں جہاں ایک کوشش میں A کا احمال P(A)=p فرض کیا جائے گا۔ تب ایک کوشش میں پر غور کرتے ہیں جہاں ایک کوشش میں q=1-p ہو گا۔ یہ تجربہ p مرتبہ سرانجام دیتے ہوئے ہم بلا منصوبہ متغیر A

$$X = 3$$
واقع ہونے کی تعداد A

(24.58)
$$\underbrace{AA\cdots A}_{z^{n}/x}\underbrace{BB\cdots B}_{z^{n}/n-x}$$

نظر آئے گا۔ پہاں $B=A^{C}$ ہے؛ یعنی A واقع نہیں ہوا ہے۔ ہم فرض کرتے ہیں کہ تمام کوششیں بلا منصوبہ ہے یعنی ہے ایک دوسرے پر اثر انداز نہیں ہوتی ہیں۔ تب چونکہ P(A)=p اور P(B)=q ہیں لہذا مساوات P(A)=p کا مطابقتی اختال

$$\underbrace{pp\cdots p}_{z^{n}/x}\underbrace{qq\cdots q}_{z^{n}/n-x}=p^{x}q^{n-x}$$

p اور p=5 اور p=5 اور p=5 اور p=5 اور عنائی تقسیم شیام اوات p=5 اور اور p=5

(24.59)
$$f(x) = \binom{n}{x} p^x q^{n-x} \qquad (x = 0, 1, \dots, n)$$

ہو گا جبکہ x کے کسی دوسری قیمت کے لئے f(x) = 0 ہو گا۔ n کو ششوں میں ٹھیک x مرتبہ A واقع ہونا کا اختال مساوات 24.59 دیتی ہے جہاں ایک کو شش میں A واقع ہونے کا اختال p ہونا کا اختال مساوات 24.59 میں دی گئی تقسیم کو ثنائی تقسیم e شائی تقسیم e شائی تقسیم کو ثنائی تقسیم e کا میابی کا اختال کہتے ہیں۔ e کو کامیابی e کا کا میابی کا اختال کہتے ہیں۔ شکل 24.11 میں e کا واقع ہونے کو ناکامی e کی مساوات e کو ایک کو شش میں کامیابی کا اختال کہتے ہیں۔ شکل 24.11 میں e کو اور مختلف e کے کے مساوات 24.59 ترسیم کیا گیا ہے۔

ثنائی تقسیم کی اوسط (سوال 24.107)

$$(24.60) \mu = np$$

اور تغيريت (سوال 24.107)

$$(24.61) \sigma^2 = npq$$

ہے۔ وھیان رہے کہ p=0.5 پر μ کے لحاظ سے تشیم تشاکلی ہے۔

 $\begin{array}{c} \rm binomial~distribution^{103} \\ \rm success^{104} \end{array}$

failure¹⁰⁵

p اور p=5 اور p=5 اور کے لئے مساوات 24.62 میں دی گئی یو نس تقسیم شکل p=1

يونس تقسيم

الى غير مسلسل تقسيم جس كا تفاعل احمال درج ذيل ہو پوئسن تقسيم 106 كہلاتي 107 ہے۔

(24.62)
$$f(x) = \frac{\mu^x}{x!} e^{-\mu}$$

شکل 24.12 میں n=5 اور مختلف μ کے لئے مساوات 24.62 میں دی گئی پو نُس تقسیم ترسیم کی گئی ہے۔ n=5 اور $m \to \infty$ کی صورت اوسط m=n ایک متناہی قیمت کے قریب تر ہو گی اور ثنائی تقسیم کی $p \to 0$ تحدیدی صورت پو نُس تقسیم دیتی ہے۔ پو نُس تقسیم کی اوسط m=n اور تغیریت (سوال 24.108) درج ذیل ہے۔ $\sigma^2=u$

اکائی دورانیہ (وقت) میں کسی چوک سے گزرتی گاڑیوں کی تعداد، اکائی لمبائی کے تار میں عیبوں کی تعداد، کاغذ کے اکائی رقبہ میں عیبوں کی تعداد، وغیرہ یوسن تقسیم سے حاصل کیے جاتے ہیں۔

واپس رکھ کراور واپس نہ رکھ کر نمونے کا حصول۔ بیش ہندسی تقسیم

واپس رکھ کر نمونہ حاصل کرنے میں ثنائی تقسیم (مثال 24.6) اہم ہے۔ مثال کے طور پر ایک ڈبیا میں N پیچ ہیں جن میں سے M پیچ عیب دار ہیں۔اگر ہم ڈبے سے ایک پیچ بلا منصوبہ نکالیں تب عیب دار پیچ کے حصول کا

Poisson distribution 106

¹⁰⁷سميول دني يوسول

احتمال

$$p = \frac{M}{N}$$

ہو گا۔ یوں واپس رکھ کر حاصل، x پیچوں کے نمونہ میں عیب دار پیچوں کی تعداد x ہونے کا اخمال (مساوات 24.59)

(24.64)
$$f(x) = {n \choose x} \left(\frac{M}{N}\right)^x \left(1 - \frac{M}{N}\right)^{n-x} \qquad (x = 0, 1, \dots, n)$$

ہو گا۔واپس نہ رکھ کر حاصل نمونہ میں احمال

(24.65)
$$f(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} \qquad (x = 0, 1, \dots, n)$$

بو گار مساوات 24.65 مين دي گئي تقيم كو بيش بهندسي تقسيم 108 كت 109 بين-

ماوات 24.65 ثابت کرنے کی خاطر ہم ویکھتے ہیں کہ مساوات 24.25 کے تحت

- (الف N اشیاء میں سے n اشیاء کے انتخاب کے N مختلف طریقے ہیں N
- وب) میں سے x عیب دار کے انتخاب کے $\binom{M}{x}$ مختلف طریقے ہیں، M

اور (+) میں ہر طریقہ کے ساتھ (+) کا ہر طریقہ لے کر، بغیر واپس رکھتے ہوئے (+) میں سے (+) عیب دار کی انتخاب کے کل طریقے حاصل ہوں گے۔ چونکہ (الف) تمام و قوعات کا مجموعہ ہے اور ہم بلا منصوبہ انتخاب کرتے ہیں لہٰذا اس طرح کے ہر طریقہ کا اخمال (+) ہوگا۔ یوں مساوات 24.65 ثابت ہوتا ہے۔

بیش ہندسی تقسیم کی اوسط (سوال 24.121)

$$\mu = n \frac{M}{N}$$

hypergeometric distribution¹⁰⁸ ¹⁰⁹ چونکہ اس تشیم کے معدار اثر کے پیداکار نقائل کو ٹیش ہندی تفائل کی صورت بیں لکھا ماسکتا ہے۔

اور تغيريت

(24.67)
$$\sigma^2 = \frac{nM(N-M)(N-n)}{N^2(N-1)}$$

-4

مثال 24.12: واپس رکھ کو اور نا رکھ کو نمونے کا حصول ایک ڈبہ میں 10 تصاویر ہیں جن میں سے 3 عیب دار ہیں۔ہم بلا منصوبہ 2 تصاویر ڈب سے نکالتے ہیں۔بلا منصوبہ منظیر

X=3نمونه میں عیب دار کی تعداد

کا تفاعل احتمال تلاش کریں۔

حل: يبال N-M=7 ، M=3 ، N=10 اور n=2 بين والپن ركھ كر نمونہ حاصل كرتے ہوئے ماوات N-M=3 تحت

$$f(x) = {2 \choose x} \left(\frac{3}{10}\right)^x \left(\frac{7}{10}\right)^{2-x}, \quad f(0) = 0.49, \quad f(1) = 0.42, \quad f(2) = 0.09$$

حاصل ہوتا ہے۔ واپس نہ رکھ کر نمونہ حاصل کرتے ہوئے مساوات 24.65 سے

$$f(x) = \frac{\binom{3}{x}\binom{7}{2-x}}{\binom{10}{2}}, \quad f(0) = f(1) = \frac{21}{45} \approx 0.47, \quad f(2) = \frac{3}{45} \approx 0.07$$

حاصل ہوتا ہے۔

n = 1 کو خواظ ہے n = 1 اور n = 1 بہت بڑی مقدار ہوں تب واپس رکھتے ہوئے اور واپس نہ رکھتے ہوئے واس نہ رکھتے ہوئے حاصل کردہ نمونے تقریباً ایک جیسے ہول گے للذا ایسی صورت میں بیش ہندی تقسیم کی جگہ $p = \frac{M}{N}$ لیتے ہوئے ثنائی تقسیم استعال کی جاسکتی ہے، جو نسبتاً سادہ تفاعل ہے۔

یوں بہت بڑی آبادی (لامتناہی آبادی) سے، واپس رکھتے ہوئے یا واپس نہ رکھتے ہوئے، نمونہ حاصل کرتے ہوئے شائی تقسیم استعال کی جاسکتی ہے۔

سوالات

سوال 24.104: چار سکے ایک ساتھ اچھالے جاتے ہیں۔بلا منصوبہ متغیر " X =تعداد خط " کا تفاعل اخمال الشال منصوبہ متغیر " X =تعداد خط اللہ کریں۔ X =تعداد خط کا اخمال کریں۔ X =تعداد خط کا اخمال کریں۔ جواب: 0.0625, 0.25, 0.9375, 0.9375

سوال 24.105: نثانے پر تیر مارنے کا امکان % 10 ہے۔ 10 تیر چلائے جاتے ہیں۔ کم سے کم ایک بار نثانہ لگنے کا اختال کیا ہو گا؟

سوال 24.106: 24 گھنٹوں کے پر کھ میں p=1 امکان ہے کہ ایک خاص قتم کا بلب زائل ہو جائے گا۔ ایسے 10 بلبوں کا ،کوئی بھی بلب خراب ہوئے بغیر ، مسلسل 10 گھنٹے روشنی دینے کا اخمال کیا ہو گا۔ جواب: 90.4% 90.4%

سوال 24.107: مسئلہ ثنائی استعال کرتے ہوئے دکھائیں کہ ثنائی تقسیم کے معیار اثر کا پیدا کار تفاعل (سوال 24.103) درج ذیل ہے اور مساوات 24.60 کو ثابت کریں۔

$$G(t) = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^{x} q^{n-x} = \sum_{x=0}^{n} \binom{n}{x} (pe^{t})^{x} q^{n-x} = (pe^{t} + q)^{n}$$

سوال 24.108: دکھائیں کہ پوکئن تقسیم کے معیار اثر کا پیدا کار تفاعل درج ذیل ہے اور مساوات 24.63 کو ثابت کریں۔

$$G(t) = e^{-\mu} e^{\mu e^t}$$

سوال 24.109: وکھائیں کہ $E([X-\mu]^3) = E(X^3) - 3\mu E(X^2) + 2\mu^3$ ہو گا۔اس کو اور سوال 24.109: وکھائیں کہ پوکس تقسیم کا ترچھائین $\gamma = \frac{1}{\sqrt{\mu}}$ ہو گہتا ہے کہ $\gamma = \frac{1}{\sqrt{2}}$ کی بڑی قبیت کے لئے یہ تقسیم تقریباً تشاکل ہے (شکل 24.12)۔

سوال 24.110: وکھائیں کہ پوکئن تقسیم کا تفاعل تقسیم $F(\infty)=1$ کو مطمئن کرتا ہے۔

سوال 24.111: ایک ٹیلیفون تقسیم کار شختی اوسطاً 600 ٹیلیفون کے لئے کافی ہے۔ یہ ایک منٹ میں زیادہ سے زیادہ 10 نئے ٹیلیفون ملا سکتی ہے۔ پو نُسن تقسیم استعال کرتے ہوئے اس بات کا احمال علاش کریں کہ کسی ایک منٹ میں یہ تقسیم کار شختی ناکافی ثابت ہو گا۔

سوال 24.112: ایک کارخانے میں Ω 50 کے برقی مزاحمت پیدا کیے جاتے ہیں جن میں سے وہ مزاحمت بی 0.2 عیب نصور کیے جاتے ہیں جن کی مزاحمت Ω 45 Ω اور Ω 55 کے آج ہو۔ عیب دار مزاحمت کا احمال Ω 50 کے ساتھ فروخت کیا جاتا ہے۔ تقسیم پوکس استعال کرتے ہوئے ایک کھیپ میں عیب دار مزاحمت نکلنے کا احمال حاصل کریں۔ Ω 50 جواب: Ω 100 کے احمال حاصل کریں۔ Ω 50 جواب: Ω 100 کا حاصل کریں۔

سوال 24.113: فرض کریں کہ ایک مشین کے پیدا کردہ پیچوں میں سے % 3 عیب دار ہوتے ہیں۔ایک ڈیا میں ہے 50 بینے دار بیچ نکنے کا احمال ڈیا میں 50 بیچ بھرے جاتے ہیں۔تقسیم پوکن استعال کرتے ہوئے ایک ڈیا میں x عیب دار بیچ نکنے کا احمال تلاش کریں۔

سوال 24.114: ایک پل سے جمع کے دن صبح 8 تا 10 بج نی منٹ X گاڑیاں گزرتی ہیں۔ فرض کریں X کو پوئس تقییم ظاہر کرتی ہے جس کا اوسط 5 ہے۔ کسی ایک منٹ میں 3 یا 3 سے کم گاڑیاں گزرنے کا احتمال تلاش کریں۔ جواب: 0.265

سوال 24.115: ایک مقناطیسی پٹی کے 100 میٹر لمبائی میں اوسطاً 2 عیب پائے جاتے ہیں۔ 300 میٹر لمبائی میں اوسطاً 2 عیب پائے جاتے ہیں۔ 300 میٹر کمبی پٹی (الف) میں x عیب کا احتمال کیا ہو گا، (ب) بلا عیب ہونے کا احتمال کیا ہو گا؟

سوال 24.116: گئے کے ڈبا میں 20 فتیلہ ہیں جن میں سے 5 عیب دار ہیں۔ اس ڈبا سے بلا منصوبہ 3 فتیے بغیر واپس رکھے بطور نمونہ نکالے جاتے ہیں۔ اس نمونہ میں x عیب دار فتیلے ہونے کا اختال کیا ہوگا؟

سوال 24.117: ایک تقسیم کار 100 قلم کے ڈبوں فروخت کرتا ہے۔وہ اس بات کی ضانت دیتا ہے کہ کسی ایک ڈب میں سے زیادہ سے زیادہ 100 قلم عیب دار ہوں گے۔ایک خریدار ہر ڈب میں سے 10 قلم بغیر واپس رکھے نکال کر پر کھتا ہے۔کوئی بھی قلم عیب دار نہ ہونے کی صورت میں وہ ڈبا خرید لیتا ہے ورنہ وہ ڈب کو نہیں خریدتا۔اس کا کیا احمال ہے کہ ایک ڈب میں 10 عیب دار قلم ہوں (للذا یہ ضانت پر پورا اترتا ہے) اور خریدار اس ڈب کو نہ خریدے؟

سوال 24.118: سوال 24.117 میں کیا احمال ہے کہ ایک ڈب میں 20 عیب دار قلم ہونے کے باوجود خریدار اسے خرید لیتا ہے؟

سوال 24.119: ایک کارخانے میں پیچوں کی پیداوار کی جاتی ہے۔ ہر گھنٹہ بلا منصوبہ n پیچ کا نمونہ حاصل کر کے پر کھا جاتا ہے۔ ایک یا ایک سے زیادہ عیب دار پیچ حاصل ہونے کی صورت میں کام روک کر مشینوں کی کار کردگی تملی بخش بنائی جاتی ہے۔ n کتنا ہو گا اگر n 10 عیب دار پیچ کی صورت میں n 95 احمال ہے کہ کام روکا جائے گا؟

سوال 24.120: 1 سے لے کر 13 تک عدد کو علیحدہ علیحدہ کاغذ پر ککھا جاتا ہے۔ان میں سے بلا منصوبہ تین کاغذ نکالے جاتے ہیں جبکہ ایک شخص بغیر دیکھے تینوں پر ککھے اعداد بتاتا ہے۔کیا اخمال ہے کہ وہ (الف) کوئی بھی درست عدد نہ بتائے، (ب) ایک عدد شمیک بتائے، (پ) دو عدد شمیک بتائے، (ت) تینوں اعداد شمیک بتائے، جواب: $\frac{1}{280}$, $\frac{30}{280}$, $\frac{30}{280}$, $\frac{30}{280}$, $\frac{30}{280}$, $\frac{30}{280}$, $\frac{30}{280}$

سوال 24.121: مساوات 24.66 كو ثابت كرين ـ

سوال 24.122: (متعدد رکنی تقسیم) k باہمی بلا شرکت وقوعات A_1, \dots, A_k کے اخمال بالترتیب $p_1 + \dots + p_k = 1$ بین جہال $p_1 + \dots + p_k = 1$ ہیں۔ دکھائیں کہ ان میں p_1 کی تعداد $p_1 + \dots + p_k$ کی تعداد $p_2 + \dots + p_k$ کی تعداد $p_1 + \dots + p_k$ کی تعداد $p_2 + \dots + p_k$

$$f(x_1,\dots,x_n) = \frac{n!}{x_1!\dots x_k!}p_1^{x_1}\dots p_k^{x_k}$$

ہو گا جہاں $x_1+\cdots+x_n=n$ ہو گا جہاں ہو کو متعدد رکنی تقسیم جس کی تفاعل ہو گا جہاں ہو کو متعدد رکنی تقسیم جس کی تفاعل

سوال 24.123: برقی مزاحمت کی پیداوار میں % 3 کی مزاحمت $R < 198\,\Omega$ اور % 5 کی مزاحمت $R > 201\,\Omega$ اور $x_1 \in R < 198\,\Omega$ اور $x_1 \in R < 201\,\Omega$ اور $x_1 \in R > 201\,\Omega$ کے نمونہ میں $x_1 \in R < 198\,\Omega$ اور $x_2 \in R > 201\,\Omega$ کے $x_2 \in R < 198\,\Omega$

 $multinomial distribution^{110}$

24.10 عمومی تقسیم

الیی تقسیم جس کی کثافت

(24.68)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \qquad (\sigma > 0)$$

ہو کو عمومی تقسیم 111 یا گاوی تقیم 112 کہتے ہیں۔اس طرح تقییم والا بلا منصوبہ متغیر عمومی 113 یا عمومی بانظا ہوا 114 کہلاتا ہے۔ عملی دلچیں کے بہت سارے بلا منصوبہ متغیرات عمومی یا تخییناً عمومی ہیں اور یا ان کا تبادلہ با آسانی عمومی بلا منصوبہ متغیرات میں کیا جا سکتا ہے۔ اس کے علاوہ کئی پیچیدہ تقسیم کو تخییناً عمومی تقسیم سے ظاہر کیا جا سکتا ہے۔شاریاتی پر کھ کے کئی ثبوت میں بھی یہ تقسیم کردار ادا کرتی ہے۔

مساوات 24.68 میں تقسیم کی اوسط μ اور اس کا معیاری انحراف σ ہے۔ f(x) کی منحنی μ کے لحاظ سے تشاکلی ہے اور اس کو قبوس جرس جرس آلا ویس جرس کو شکل 24.13 میں $\mu=0$ اور σ کئی قیمتوں تشاکلی ہے اور اس کو قبوس جرس $\mu=0$ ($\mu<0$) $\mu>0$ کے لئے وص کی شکل تبدیل نہیں ہوتی البتہ ہے μ اکائیاں دائیں (ہائیں) منتقل ہوتا ہے۔ σ کی قیمت جتنی کم ہو، σ $\mu=0$ پر قوس کی چوٹی اتنی زیادہ بلند ہو گی اور چوٹی کے دونوں اطراف ڈھلوان اتنی زیادہ ہو گی (شکل 24.13) جو تغیریت کے تصور کے عین مطابق ہے۔

مساوات 24.68 سے ہم دیکھتے ہیں کہ عمومی تقسیم کا تقسیمی تفاعل

(24.69)
$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{v-\mu}{\sigma})^2} dv$$

ہو گا۔یوں مساوات 24.45 سے درج ذیل حاصل ہو گا۔

(24.70)
$$P(a < X \le b) = F(b) - F(a) = \frac{1}{\sigma \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2}(\frac{v-\mu}{\sigma})^2} dv$$

normal distribution¹¹¹

Gauss distribution¹¹²

normal¹¹³

normally distributed 114

 $[\]rm bell\ curve^{115}$

24.10.غــوى تقــيم

 σ اور مختلف $\mu=0$ اور مختلف $\mu=0$ اور مختلف $\mu=0$ اور مختلف

 $\Phi(z)$ اوسط0اور تغیریت 1 کے عمومی تقسیم کا تفاعل تقسیم (24.14

مساوات 24.69 کا تکمل بنیادی طریقوں سے حاصل کرنا ممکن نہیں ہے البتہ اس کو درج ذیل تکمل کی صورت میں کھا جا سکتا ہے (شکل 24.14)

(24.71)
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du$$

جو عمومی تقسیم کا وہ تفاعل ہے جس کی اوسط 0 اور تغیریت 1 ہے اور جس کو جدول بند کیا گیا ہے۔ یہ جدول مسیمہ جدیں پیش کیے گئے ہیں۔ اگر $\frac{\mathrm{d} u}{\sigma} = u$ کیا جائے تب $\frac{\mathrm{d} u}{\mathrm{d} v} = \frac{1}{\sigma}$ اور جمیں میں میں کے گئے ہیں۔ اگر $z = \frac{v-\mu}{\sigma}$ لیا جائے تب کیا ہوگا۔ مساوات 24.69 سے یوں $z = \frac{x-\mu}{\sigma}$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{u^2}{2}} \sigma \, \mathrm{d}u$$

 $z=rac{x-\mu}{\sigma}$ عاصل ہو گا جس میں σ کٹ جاتا ہے اور جس کا دایاں ہاتھ مساوات 24.71 دیتا ہے جہاں σ کٹ جاتا ہے اور جس کا دایاں ہاتھ مساوات

(24.72)
$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

اس سے اور مساوات 24.70 سے درج ذیل ایک اہم کلیہ اخذ ہوتا ہے۔

(24.73)
$$P(a < X \le b) = F(b) - F(a) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

بالخصوص $\Phi(1)-\Phi(-1)$ اور $b=\mu+\sigma$ کی صورت میں دایاں ہاتھ $a=\mu-\sigma$ کے برابر ہے؛ $b=\mu+2\sigma$ اور $b=\mu+2\sigma$ کی صورت میں دایاں ہاتھ $a=\mu-2\sigma$ وغیرہ، وغیرہ $a=\mu-2\sigma$ کی صورت میں جدول سے دیکھتے ہوئے درج ذیل حاصل ہوتا ہے (شکل 24.15)۔

(24.74)
$$P(\mu - \sigma < X \le \mu + \sigma) \approx 68\%$$
 (24.74) $P(\mu - 2\sigma < X \le \mu + 2\sigma) \approx 95.5\%$ (پ) $P(\mu - 3\sigma < X \le \mu + 3\sigma) \approx 99.7\%$

یوں ہم توقع کرتے ہیں کہ بلا منصوبہ عمومی متغیر X کی بہت ساری قینتیں درج ذیل طرح بانٹی گئی ہوں گی۔

• (الف) تقریبًا
$$\frac{2}{3}$$
 قیتیں $\mu-\sigma$ اور $\mu+\sigma$ کے جھی ہوں گی،

ول کی،
$$\mu + 2\sigma$$
 اور $\mu + 2\sigma$ ہول گی، $\mu - 2\sigma$ اور $\mu + 2\sigma$ کے جو اور $\mu + 2\sigma$

24.10.غـوى تتــيم

شكل 24.75: اظهار مساوات 24.74

• ($_{\mu}$) \bar{u} $= \frac{3\sigma}{4}$ $= \frac{3\sigma}{4}$ $= \frac{3\sigma}{4}$ $= \frac{3\sigma}{4}$

جس کو درج ذیل طریقہ سے بھی بیان کیا جا سکتا ہے۔

وہ قیمت جس کی μ سے دوری σ سے زیادہ ہو، 8 کو ششوں میں تقریباً 1 مرتبہ واقع ہوگی، جبکہ وہ قیمت جس کی μ سے دوری 2σ یا 3σ یا 3σ یا 400 اور 400 اور 400 کو ششوں میں تقریباً 1 مرتبہ واقع ہوگی۔یوں عملی طور پر تمام قیمتیں 3σ اور 4σ اور 4σ کے تی پائی جائیں گی۔اس دو اعداد کو تین سگما حدود 4σ کے تی بین۔

اسی طرح درج ذیل حاصل ہو گا۔

(24.75)
$$P(\mu - 1.96\sigma < X \le \mu + 1.96\sigma) = 95\%$$

$$(\mu - 2.58\sigma < X \le \mu + 2.58\sigma = 99\%$$

$$(\mu - 2.29\sigma < X \le \mu + 3.29\sigma = 99.9\%$$

درج ذیل مثال ضمیمہ ج میں دیے گیے عمومی تقسیم کی جدول کا استعال سمجھنے میں مدد دیں گ۔

مثال 24.13: درج ذیل اختال ضمیمہ ج کی مدد سے تلاش کریں جہاں X عمومی ہے جس کی اوسط 0 اور تغیریت 1 ہے۔

(الف)
$$P(X \le 2.44)$$
, (ب) $P(X \le -1.16)$, (پ) $P(X \ge 1)$, (الف) $P(X \le X \le 10)$

three-sigma limits 116

حل: ہم ضمیمہ و سے جوابات بڑھ کر لکھتے ہیں۔

(الف) 0.9927, (ب) 0.1230, (پ)
$$1 - P(X \le 1) = 1 - 0.8413 = 0.1587$$
, (الف) $\Phi(10) = 1.0000$ (کیوں؟), $\Phi(2) = 0.9772$, $\Phi(10) - \Phi(2) = 0.0228$

مثال 24.14: گزشتہ مثال کو دوبارہ حل کریں۔اس مرتبہ فرض کریں کہ X عمومی ہے جس کی اوسط 0.8

جواب: صفیمیه ه اور مساوات 24.73 استعال کرتے ہوئے درج ذیل حاصل ہو گا۔

(الف)
$$F(2.44) = \Phi(\frac{2.44 - 0.80}{2}) = \Phi(0.82) = 0.7939$$

(
$$-$$
) $F(-1.16) = \Phi(-0.98) = 0.1635$

(
$$\downarrow$$
) $1 - P(X \le 1) = 1 - F(1) = 1 - \Phi(0.1) = 0.4602$

(
$$\mathbf{z}$$
) $F(10) - F(2) = \Phi(4.6) - \Phi(0.6) = 1 - 0.7257 = 0.2743$

مثال 24.15: فرض کریں کہ X عمومی ہے جس کی اوسط 0 اور تغیریت 1 ہے۔اییا متعقل c تلاش کریں جو درج ذمل کو مطمئن کرتا ہو۔

(الف)
$$P(X \ge c) = 10\%$$
, (ب) $P(X \le c) = 5\%$ (پ) $P(0 \le X \le c) = 45\%$, (ت) $P(-c \le X \le c) = 99\%$

حل: ضممه وسے درج ذیل حاصل ہو گا۔

(الغ)
$$1 - P(X \le c) = 1 - \Phi(c) = 0.1, \Phi(c) = 0.9, c = 1.282,$$

$$(-)$$
 $c = -1.645,$

$$\Phi(c) - \Phi(0) = \Phi(c) - 0.5 = 0.45, \Phi(c) = 0.95, c = 1.645,$$

$$(z)$$
 $c = 2.576$

24.10.غـوي تتــيم

سوال 24.124: فرض کریں کہ X عمومی ہے جس کی اوسط 2 اور تغیریت 0.25 ہے۔ایسا c تلاش کریں جو درج ذیل کو مطمئن کرتا ہو۔

(الف)
$$P(X \ge c) = 0.2$$
, (ب) $P(-c \le X \le -1) = 0.5$ (ب) $P(-2 - c \le X \le -2 + c) = 0.9$, (الف) $P(-2 - c \le X \le -2 + c) = 99.6\%$

حل: ضميمه وسے درج ذيل حاصل ہو گا۔

$$(1-P(X \le c) = 1 - \Phi(\frac{c+2}{0.5}) = 0.2,$$
 $\Phi(2c+4) = 0.8, 2c+4 = 0.842, c = -1.579$
(ب) $\Phi(\frac{-1+2}{0.5}) - \Phi(\frac{-c+2}{0.5}) = 0.9772 - \Phi(4-2c) = 0.5,$
 $\Phi(4-2c) = 0.4772, 4-2c = -0.057, c = 2.03$
(ب) $\Phi(\frac{-2+c+2}{0.5}) - \Phi(\frac{-2-c+2}{0.5})$
 $= \Phi(2c) - \Phi(-2c) = 0.9, 2c = 1.645, c = 0.823$
(ت) $\Phi(2c) - \Phi(-2c) = 99.6\%, 2c = 2.878, c = 1.439$

مثال 24.16: ایک کارخانے میں ایک خاص موٹائی کی لوہے کی چادریں بنائی جاتی ہیں۔ یہ کام خود کار مشین کرتے ہیں۔ خام مال میں فرق اور درجہ حرارت، لرزش وغیرہ کی بنا مشینوں کا رویہ اور استعال آلات میں معمولی تبدیلیاں رو نما ہوتی ہیں جنہیں قبل از وقت جاننا ممکن نہیں ہوتا ہے۔ ان وجوہات کی بنا چادریں ایک دوسرے سے مختلف ہوتی ہیں۔ ہم چادر کی موٹائی X (ملی میٹر) کو بلا منصوبہ متغیر تصور کر سکتے ہیں۔ ہم فرض کرتے ہیں کہ یہ متغیر عمومی ہے جس کی اوسط $\mu = 10 \, \text{mm}$ اور معیاری انحراف موٹائی گا تعداد ہوں کی تعداد ہوں کی اوسط $\mu = 10 \, \text{mm}$ موٹائی کہ سے متغیر عمومی عبیب دار چادروں کی تعداد موٹائی ہوں ہوں (ب) کا اوسط ($\mu = 10 \, \text{mm}$ اس 10.05 $\mu = 10 \, \text{mm}$ کرنا چاہتے ہیں کہ عیب دار چادروں کی تعداد $\mu = 10 \, \text{mm}$ فی موٹائی کی صد تعداد ہوں کی تعداد $\mu = 10.01 \, \text{mm}$ کرنا چاہتے ہیں کہ عیب دار کی فی صد تعداد پر کیا اثر پڑے گا؟

(الغن)
$$P(X \le 9.97) = \Phi(\frac{9.97 - 10.00}{0.02}) = \Phi(-1.5) = 0.0668 \approx 6.7 \,\%$$

(•)
$$P(X \ge 10.05) = 1 - P(X \le 10.05) = 1 - \Phi(\frac{10.05 - 10.00}{0.02})$$

 $= 1 - \Phi(2.5) = 1 - 0.9938 \approx 0.6\%$

(
$$\downarrow$$
) $P(9.97 \le X \le 10.03) = \Phi(\frac{10.03 - 10.00}{0.02}) - \Phi(\frac{9.97 - 10.00}{0.02})$
= $\Phi(1.5) - \Phi(-1.5) = 0.8664$; $\Longrightarrow 1 - 0.8664 \approx 13\%$

(ت) مساوات 24.75-الف سے

$$c = 1.96\sigma = 0.039$$

يول جواب 9.961 mm ا 9.961 سے۔

(4)
$$P(9.961 \le X \le 10.039) = \Phi(\frac{10.039 - 10.010}{0.02}) - \Phi(\frac{9.961 - 10.010}{0.02})$$
$$= \Phi(1.45) - \Phi(-2.45) = 0.9265 - 0.0071 \approx 92\%$$

للذا جواب %8 ہو گا۔آپ نے دیکھا کہ مثین میں معمولی تبدیلی سے عیب دار چادروں کی تعداد میں بہت زیادہ اضافہ پیدا ہوتا ہے۔

 \Box

بلا منصوبہ عمومی متغیر سے خطی تبادل کے ذریعہ بلا منصوبہ عمومی متغیر ہی حاصل ہو گا۔مساوات 24.72 سے آپ یقیناً درج ذیل حاصل کر پائیں گے۔

مسّلہ 24.14: (خطی تبادل)

اگر $X^*=c_1X+c_2\;(c_1\neq 0)$ ہو تب σ^2 ہو تب μ اور تغیریت σ^2 ہو تب σ^2 ہو تب σ^2 ہو گی۔ $\sigma^*=c_1X+c_2$ ہو گی۔ گا جس کی اوسط $\sigma^*=c_1X+c_2$ اور تغیریت $\sigma^*=c_1^2$ ہو گی۔

بڑی n کی صورت میں ثنائی تقسیم کو تخمیناً عمومی تقسیم سے ظاہر کیا جا سکتا ہے۔ بڑی n کی صورت میں تفاعل تقسیم

(24.76)
$$f(x) = \binom{n}{x} p^x q^{n-x} \qquad (x = 0, 1, \dots, n)$$

24.10.غـوي تقـيم

کے شائی عددی سر اور طاقت سادہ نہیں رہتے اور ان سے چھٹکارا حاصل کرنے میں بہتری ہے۔

مُسَلَم 24.15: (ڈی موسے ور اور لاپلاس کا تحدیدی مسئلہ) بڑی n کے لئے

$$f(x) \sim f^*(x) \qquad (x = 0, 1, \cdots, n)$$

ہو گا جہاں f کو مساوات 24.76 میں پیش کیا گیا ہے جبکہ

(24.77)
$$f^*(x) = \frac{1}{\sqrt{2\pi}\sqrt{npq}}e^{-\frac{z^2}{2}}, \quad z = \frac{x - np}{\sqrt{npq}}$$

عومی تقسیم کی کثافت ہے جس کی اوسط $\mu=np$ اور تغیریت $\sigma^2=npq$ ہے (جو ثنائی تقسیم کی اوسط اور تغیریت ہیں) اور علامت \sim (متقاربی برابر) کا مطلب ہے کہ جیسے جیسے n لا تناہی کے قریب تر ہوتا جائے ولیے واپسے دونوں اطراف کی نسبت 1 کے قریب تر ہوتی جائے گی۔ مزید کسی بھی غیر منفی اعداد صحیح a اور b (b b) b b) b b b b

(24.78)
$$P(a \le X \le b) = \sum_{x=a}^{b} \binom{n}{x} p^x q^{n-x} \sim \Phi(\beta) - \Phi(\alpha),$$
$$\alpha = \frac{a - np - 0.5}{\sqrt{npq}}, \quad \beta = \frac{b - np + 0.5}{\sqrt{npq}}$$

اس مسکے کا ثبوت اس کتاب میں پیش نہیں کیا جائے گا۔ اس مسکے کے ثبوت سے ظاہر ہوتا ہے کہ غیر مسلسل سے استمراری صورت میں تبادلے کی بنا اصلاح کی ضرورت پیش آتی ہے جو اجزاء α ، 0.5 ، اور β کی صورت میں نظر آتا ہے۔

سوالات

سوال 24.125: وکھائیں کہ مساوات 24.68 کے نقاط تصویف $x = \mu - \sigma$ اور $x = \mu + \sigma$ پر پاکے جاتے ہیں۔ نقطہ تصریف سے مراد وہ نقطہ ہے جس پر منحنی کی شکل محدب سے مجوف یا مجوف سے محدب ہوتی ہو۔ $x = \mu + \sigma$ ہو۔

inflextion points¹¹⁷

 $\Phi(-z) = 1 - \Phi(z)$ وکھائیں :24.126

P(X>83) - ج P(X>83) اور P(X>80) اور P(X>80) اور P(X<80) اور P(X<81) اور P(X<80) اور P(X<81) تلاش کریں۔

 $P(X \leq 112.5)$ ہوگی متغیر ہے جس کی اوسط 105 اور تغیریت 25 ہے۔ (24.128 کی اوسط 105 ہوگی ہوگئی ہے۔ $P(X \leq 112.5)$ ہوگی اور $P(X \leq 110.5 < X < 111.25)$ ہواب:

 $P(X \leq c) = 95\,\%$ مولی جولی ہے جس کی اوسط 14 اور تغیریت 4 ہے۔ایسا کہ X :24.129 موال 24.129 ہو تکاش کریں۔ $P(-c \leq X \leq c) = 99\,\%$ ہو تکاش کریں۔ جواب: $P(X \leq c) = 95\,\%$ ہو تکاش کریں۔ جواب: 17.29, -17.29, 19.152

موال 24.131: گاڑی کی ایک مخصوص بیڑی کی زندگی X عمومی متغیر ہے جس کی اوسط 4 سال اور معیاری انحراف 1 سال ہے۔ صنعت گر بیٹری کی تین سال کی ضانت دیتا ہے۔ اس کو ضانت کی بنا کتنی فی صد بیٹریاں مہیا کرنی ہوں گی؟ جواب: 16%

سوال 24.132: ایک سکه 4040 مرتبہ اچھالا جاتا ہے۔ 2048 شیر حاصل ہونے کا اخمال کیا ہو گا؟

سوال 24.133: ایک صنعت کار کاغذ بناتا ہے جس کی کمیت عمومی متغیر ہے جس کی اوسط $\mu=1.950\,\mathrm{g}$ اور معیاری انحراف $\sigma=0.025\,\mathrm{g}$ ہے۔کاغذ کو $\sigma=0.005\,\mathrm{g}$ کی جتھوں میں فروخت کیا جاتا ہے۔ایک جتھا میں کتنے کاغذ کو وجھاری ہوں گے؟ $\sigma=0.025\,\mathrm{g}$ ہواب: تقریباً 22

سوال 24.134: مثال 24.16 کے جزو۔پ میں عیب دار چادروں کی تعداد % 6 کے لئے σ کتنا ہو گا؟

سوال 24.135: برقی مزاحمت کا پیداکار تجربہ سے جانتا ہے کہ اس کے بنائے گئے مزاحمت کی قیمت عمومی متغیر ہو اور $\mu=150\,\Omega$ اور معیاری انحراف $\sigma=5\,\Omega$ ہے۔ کتنے فی صد کی مزاحمت $\mu=150\,\Omega$ اور

24.10 غــوى تقــيم

 Ω 152 کے جے ہو گی؟ کتنے فی صد کی مزاحمت Ω 140 اور Ω 160 کے جے ہو گی؟ جواب: 0.55, 0.55

سوال 24.136: ایک بلاسٹک اینٹ کی طاقت توڑ 118 X (کلو گرام) عمومی متغیر ہے جس کی اوسط 1250 kg اور معیاری انحراف 55 kg ہے۔ وہ کمیت تلاش کریں جس پر بلاسٹک ٹوٹنے کا انحراف 55 kg سے زیادہ نہ ہو۔

سوال 24.137: ایک صارف کو $0.280 \mp 0.002 \, \mathrm{cm}$ قطر کے قابلے درکار ہیں۔ایک صنعت کار کے بنائے گئے قابلوں کی $\mu = 0.279 \, \mathrm{cm}$ اور $\sigma = 0.001 \, \mathrm{cm}$ اور $\sigma = 0.001 \, \mathrm{cm}$ کتے فی صد قابلے صارف کی تخصیص پر پورا اتر تے ہیں؟ جواب: 84%

سوال 24.138: ایک فروش کار 1000 بلب گئے کے ایک ڈب میں بیچیا ہے۔ p=1 لیتے ہوئے مساوات 24.78 کی مدد سے اس بات کا اختال تلاش کریں کہ ایک ڈب میں m=1 سے زیادہ بلب خراب نہیں ہول گے۔

سوال 24.139: حدول عمومي استعال كرتي ہوئے مساوات 24.75 ميں ديے گئے نتائج حاصل كريں۔

سوال 24.140: مسكله 24.14 ثابت كرين-

سوال 24.141: اگر X عمو می ہو جس کی اوسط μ اور تغیریت σ^2 ہے تب X کیا ہو گی؟ جواب: X جواب کی اوسط X او اوسط

سوال 24.142: (بڑے اعداد کے لئے برنولی کا قاعدہ)

فرض کریں کہ ایک تجربہ میں وقوعہ A کا اختمال p(0 ہے، اور فرض کریں کہ <math>n بلا منصوبہ کوششوں میں A واقع ہونے کی تعداد X ہے۔ دکھائیں کہ کسی بھی $\epsilon > 0$ کے $\infty < n$ کرتے ہوئے درج ذیل ذیل ہو گا

(24.79)
$$P\left(\left|\frac{X}{n} - p\right| < \epsilon\right) \to 1 \qquad (n \to \infty)$$

breaking strength¹¹⁸

 $u=r\cos\theta,v=r\sin\theta$) متعارف کرتے ہوئے درج ($u=r\cos\theta,v=r\sin\theta$) متعارف کرتے ہوئے درج زیل ثابت کریں۔

(24.80)
$$\Phi(\infty) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du = 1$$

جواب:

$$\Phi^{2}(\infty) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{u^{2}}{2}} e^{-\frac{v^{2}}{2}} du dv = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r dr d\theta = 1$$

سوال 24.144: مساوات 24.80 اور تکمل بالحصص استعال کرتے ہوئے دکھائیں کہ مساوات 24.68 میں محیاری تقسیم کا معیاری انحراف ہے۔

24.11 ایک سے زائد بلامنصوبہ متغیرات کی تقسیمیں

اگر ایک بلا منصوبہ تجربہ میں ہم ایک مقدار کا مشاہدہ کریں تب ہمیں اس تجربہ کے ساتھ واحد ایک بلا منصوبہ متغیر، مثلاً $K(x) = P(X \le x)$ ، وابستہ کرنا ہو گا۔ حصہ 24.7 سے ہم جانتے ہیں کہ اس کا مطابقتی تفاعل تقسیم کو مکمل طور پر تعین کرتا ہے، چونکہ ہر وقفہ $a < X \le b$ کے لئے درج ذیل ہو گا۔

$$P(a < X \le b) = F(b) - F(a)$$

اگر ایک بلا منصوبہ تجربہ میں ہم دو مقدار کا مشاہدہ کریں تب ہمیں اس تجربہ کے ساتھ دو بلا منصوبہ متغیرات، مثلاً X اور Y ، وابستہ کرنا ہو گا۔ مثال کے طور پر فولاد کی راک ویل شخق کو X اور اس میں کاربن کی مقدار کو X فاہر کر سکتے ہیں۔ہر ایک تجربہ اعداد کی جوڑی جو X=x Y=y ، X=x کی جس کو مخضراً X=x کاما اور ظاہر کر سکتے ہیں۔ہر ایک تجربہ اعداد کی جوڑی X=x کی مستطیل X=x مستوی پر بطور نقطہ دکھایا جا سکتا ہے۔ہم اب ایک مستطیل کے لئے ہمیں مطابقتی احتمال X=x کرتے ہیں (شکل 24.16)۔اگر ایسے ہر ایک مستطیل کے لئے ہمیں مطابقتی احتمال

$$P(a_1 < X \le b_1, a_2 < Y \le b_2)$$

شكل 24.16: دوبعدي تقسيم كاتصور

معلوم ہو تب ہم کہتے ہیں کہ دو بعدی بلا منصوبہ متغیر $(X,Y)^{-119}$ یا بلا منصوبہ متغیرات X^{-109} اور Y^{-109} دو بعدی تفاعل احتمال X^{-120} ہمیں معلوم ہے۔ تفاعل

(24.81)
$$F(x,y) = P(X \le x, Y \le y)$$

كو اس تقسيم يا (X,Y) كا تقسيمي تفاعل 121 كيتم بين - چونكه (سوال 24.145)

(24.82)
$$P(a_1 < X \le b_1, a_2 < Y \le b_2) = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2)$$

لکھا جا سکتا ہے لہذا مساوات 24.81 تقسیم کو یکنا طور پر تعین کرتا ہے۔

غير مسلسل دوبعدي تقسيميي

اگر (X,Y) درج ذیل خواص رکھتا ہو تب متغیر (X,Y) اور اس کا مطابقتی تقسیم غیر مسلسل کہلائے گا۔

X, Y تناہی تعداد یا قابل ثار لا تناہی تعداد کی جوڑی قیمتیں (x, y) اختیار کر سکتا ہے جن کے مطابقتی احمال مثبت ہوں گے۔ہر ایسا دائرہ کار جس میں ایسی کوئی جوڑی نہ پائی جاتی ہو کا احمال 0 ہو گا¹²²۔

فرض کریں کہ ایک کوئی جوڑی ہے اور $p_{ij} = p_{ij} = p_{ij}$ ہم فرض کرتے $x_i, y_j = p_{ij}$ ہم فرض کرتے ہیں کہ $p_{ij} = p_{ij}$ کی جوڑیوں کے لئے صفر بھی ہو سکتا ہے)۔ تفاعل

$$f(x,y) = \begin{cases} p_{ij} & x = x_i, y = y_j \\ 0 & \lambda \end{cases}$$

two-dimensional random variable 119

two-dimensional probability distribution 120

distribution function¹²¹

¹²² دھیان رہے کہ پہلی خاصیت سے یہ نہیں کہاجاسکتاہے

(24.86)

 $j=1,2,\cdots$ اور $i=1,2,\cdots$ کا تفاعل احتمال کہتے ہیں؛ یہال غیر تابع طور پر $i=1,2,\cdots$ اور X,Y) کا مماثل ہیں۔مساوات X,Y کا مماثل

(24.84)
$$F(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$$

ہے اور مساوات 24.38 کی جگه درج ذیل شرط ہو گا۔

(24.85)
$$\sum_{i} \sum_{j} f(x_{i}, y_{j}) = 1$$

مثال کے طور پر اگر ہم ایک روپیہ اور پانچ روپیہ کے سکے اچھال کر

X = 1ایک روپیه کی خط کی تعداد پاپنچ روپیه کی خط کی تعداد Y = 1

پر غور کریں تب X اور Y کی قیت 0 یا 1 ہو سکتی ہے اور تفاعل احمال

ورخہ f(x,y)=0 ورخہ (ان کے علاوہ) $f(0,0)=f(1,0)=f(0,1)=rac{1}{4}$

استمراري دوبعدي تقسيميي

اور اس کا تقسیم اس صورت استمراری کہلاتے ہیں جب مطابقتی تفاعل تقسیم کو دوہرا تکمل $F(x,y)=\int_{-\infty}^y \int_{-\infty}^x f(x^*,y^*)\,\mathrm{d}x^*\,\mathrm{d}y^*$

کی صورت میں لکھنا ممکن ہو جہاں f(x,y) معین، غیر منفی اور پورے مستوی میں محدود ہے ماسوائے متناہی تعداد کے استمراری قابل تفرق منحنیات پر۔ f(x,y) کو تقسیم کی کٹافت احتمال کہتے ہیں۔ یوں درج ذیل ہو گا۔

(24.87)
$$P(a_1 < X \le b_1, a_2 < Y \le b_2) = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x, y) \, dx \, dy$$

شكل 24.18: يكسال تقسيم (مساوات 24.88) كا تفاعل تقسيم

شكل 24.17: كيسال تقتيم (مساوات 24.88) كا تفاعل احمال كثافت

مثال کے طور پر (شکل 24.17)

(24.88)
$$f(x,y) = 0$$
 ورنہ $f(x,y) = \frac{1}{k}$ متطیل R متطیل R جب

 $k=(eta_1-lpha_1)(eta_2-lpha_2)$ میں کیاں تقسیم کو ظاہر کرتا ہے؛ یہاں k مستطیل کا رقبہ یعنی R میں کیاں تقسیم کو شکل 24.18 میں دکھایا گیا ہے۔

دوبعدی غیر مسلسل تقسیم کے حاشیہ تقسیمیں

فرض کریں کہ بلا منصوبہ غیر مسلسل متغیر (X,Y) کا تفاعل احتمال f(x,y) ہو، جبکہ P(X=x,Y) نتیں ہمیں دلچینی نہیں ہے کوئی بھی قیت اختیار کر سکتا ہو، تب تفاعل احتمال (اختیاریP(X=x,Y) کو $f_1(x)$

(24.89)
$$f_1(x) = P(X = x, Y \cup y) = \sum_{y} f(x, y)$$

کہ مام غیر صفر قیمتوں کا مجموعہ لیا گیا ہے۔ ظاہر ہے کہ f(x,y) کی تمام غیر صفر قیمتوں کا مجموعہ لیا گیا ہے۔ ظاہر ہے کہ $f_1(x)$ ایک بلا منصوبہ متغیر تقسیمی احتمال کا تفاعل احتمال ہے۔ اس تقسیم کو دیے گئے دو بعدی تقسیم کے لحاظ ہے

کا حاشیہ تقسیم 123 کہا جاتا ہے۔اس کا تفاعل تقسیم درج ذیل ہو گا۔ X

(24.90)
$$F_1(x) = P(X \le x, Y نتياری) = \sum_{x^* < x} f_1(x^*)$$

اسی طرح تفاعل احتمال

(24.91)
$$f_2(y) = P(X ن تياری, Y = y) = \sum_{x} f(x, y)$$

دیے گیے دو بعدی تقسیم کا Y کے لحاظ سے حاشیہ نقسیم تعین کرتا ہے۔ ساوات 24.91 میں ہم y کے مطابقتی غیر صفر f(x,y) کا مجموعہ لیتے ہیں۔ اس تقسیم کا نفاعل تقسیم درج زبل ہو گا۔

(24.92)
$$F_2(y) = P(X$$
افتيارى, $Y \le y) = \sum_{y^* \le y} f_2(y^*)$

ظاہر ہے کہ بلا منصوبہ متغیر (X,Y) کے دونوں حاشیہ تقسیم غیر مسلسل ہیں۔

جدول 24.7 میں ان کی مثال دی گئی ہے جہاں تاش کے پتوں سے تین پتے نکال کر واپس رکھے جاتے ہیں۔ ملکہ کے حصول کو X جبکہ بادشاہ کے حصول کو Y سے ظاہر کیا گیا ہے۔ تاش کے کل X جبکہ بادشاہ کے حصول کو X ہو گا۔ یوں ایک پتہ نکال کر ملکہ حاصل کرنے کا اختال X ہو گا۔ یوں ایک پتہ نکال کر ملکہ جاصل کرنے کا اختال کر ملکہ یا بادشاہ حاصل کرنے کا اختال کر ملکہ یا بادشاہ حاصل کرنے کا اختال اختال اختال کے پتہ نکال کر ملکہ یا بادشاہ حاصل کرنے کا اختال ہوگا۔ یہ ہوگا۔ اس طرح اس بلا منصوبہ تجربہ کا مطابقتی تفاعل اختال

$$f(x,y) = \frac{3!}{x!y!(3-x-y)!} \left(\frac{1}{13}\right)^x \left(\frac{2}{13}\right)^y \left(\frac{10}{13}\right)^{3-x-y} \qquad (x+y \le 3)$$

ہو گا اور ان کے علاوہ f(x,y)=0 ہو گا۔جدول 24.7 میں f(x,y) اور ان کے علاوہ f(x,y)=0 ہو گا۔

د وبعدی استمراری تقسیم کے حاشیہ تقسیمیں

ای طرح کثافت
$$f(x,y)$$
 والے استمراری متغیر X,Y کے لئے ہم $(X \le x, Y \in X)$ یا $(X \le x, Y < \infty)$

marginal distribution¹²³

جدول 24.7: تاش سے ملکہ اور باد شاہ کا حصول

<i>y x</i>	0	1	2	3	$\int f_1(x)$
0	1000 2197	600 2197	120 2197	$\frac{8}{2197}$	1728 2197
1	$\frac{300}{2197}$	$\frac{120}{2197}$	$\frac{12}{2197}$	0	432 2197
2	$\frac{30}{2197}$	$\frac{6}{2197}$	0	0	36 2197
3	$\frac{1}{2197}$	0	0	0	1 2197
$f_2(y)$	1331 2197	$\frac{726}{2197}$	$\frac{132}{2197}$	$\frac{8}{2197}$	

پر غور کر سکتے ہیں جس کا مطابقتی احمال

$$F_1(x) = P(X \le x, -\infty < Y < \infty) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x^*, y) \, \mathrm{d}y \right) \mathrm{d}x^*$$

ہو گا جس میں

(24.93)
$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

لکھتے ہوئے

(24.94)
$$F_1(x) = \int_{-\infty}^{\infty} f_1(x^*) \, \mathrm{d}x^*$$

کھا جا سکتا ہے۔ $f_1(x)$ اور $F_1(x)$ کو بالترتیب دیے گئے استمراری تقسیم کے لحاظ سے حاشیہ تقسیم کی سکتا ہے۔ ثافت اور تقسیمی تفاعل کہتے ہیں۔ دیے گئے دو بعدی استمراری تقسیم کے لحاظ سے تفاعل

(24.95)
$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$$

کو حاشبہ تقسیم Y کی کثافت اور

(24.96)
$$F_2(y) = \int_{-\infty}^{\infty} f_2(y^*) \, dy^* = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y^*) \, dx \, dy^*$$

کو حاشیہ تقسیم ۲ کا تقسیمی تفاعل کہتے ہیں۔ہم دیکھتے ہیں کہ استمراری تقسیم کے دونوں حاشیہ تقسیم استمراری ہیں۔

بلامنصوبه متغيرات كى تابعيت اور غير تابعيت

دو بعدی (X,Y) تقسیم جس کا تفاعل تقسیم F(x,y) ہو کے بلا منصوبہ متغیرات X اور Y اس صورت غیر تابع کہلاتے ہیں جب تمام (x,y) کے لئے

(24.97) $F(x,y) = F_1(x)F_2(y)$

ہو ورنہ انہیں تابع کہتے ہیں۔

فرض کریں کہ X اور Y دونوں غیر مسلسل یا دونوں استمراری ہوں۔ تب X اور Y اس صورت غیر تابع ہوں گے جب ان کے مطابقتی تفاعل احمال یا کثافتیں $f_1(x)$ اور $f_2(y)$ درج ذیل کو مطمئن کرتے ہوں (24.160)۔

(24.98) $f(x,y) = f_1(x)f_2(y)$

مثال کے طور پر جدول 24.7 میں متغیرات تالع ہیں۔ایک روپیہ اور پانچ روپیہ کے سکے ایک بار اچھال کر متغیرات

X = 1 پانچ روپیہ کے سکے کے خط کی تعداد Y = 1 روپیہ کے سکے کے خط کی تعداد

0 یا 1 قیت اختیار کر سکتے ہیں اور یہ متغیرات غیر تالع ہیں۔

تابعیت اور غیر تابعیت کی تصور کو n بعدی تقسیم X_1, \dots, X_n جس کا نفاعل احمال $F(x_1, \dots, x_n) = P(X_1 < x_1, \dots X_n < x_n)$

 x_1, \dots, x_n المنصوبہ متغیرات تک وسعت دی جا سکتی ہے۔اگر تمام x_1, \dots, x_n کے لئے x_1, \dots, x_n (24.99) $F(x_1, \dots, x_n) = F_1(x_1) F_2(x_2) \dots F_n(n)$

ہو جہاں X_j کے حاشیہ تقسیم کا تقسیمی تفاعل $F_j(x_j)$ ہو، لیتی

 $F_j(x_j) = P(X_j \le x_j, X_k$ رافتیاری, $k \ne j$

تب يه بلا منصوبه متغيرات غير تابع كهلاتي بين ورنه ان متغيرات كو تابع كتب بين-

بلامنصوبه متغیرات کے تفاعل

فرض کریں کہ بلا منصوبہ متغیر F(x,y) کا تفاعل احتمال یا کثافت f(x,y) اور تقسیمی تفاعل E(x,y) ہیں اور E(x,y) فرض کریں کہ E(x,y) غیر مستقل استمراری تفاعل ہے جو تمام E(x,y) پر معین ہے۔تب E(x,y) فرض کریں کہ والے مثال کے طور پر ہم دو پانسہ چھیئتے ہیں۔پہلے پانسہ عدد E(x,y) اور دوسرا پانسہ عدد E(x,y) دیتا E(x,y) کے دان دونوں کا مجموعہ ہے (شکل E(x,y))۔

اگر $g(x_1,\cdots,x_n)$ بعدی متغیر ہوا ور تمام (x_1,\cdots,x_n) پر (x_1,\cdots,x_n) معین غیر متنقل استمراری تفاعل ہو تب $Z=g(X_1,\cdots,X_n)$ بیا منصوبہ متغیر ہو گا۔

غیر مسلسل بلا منصوبہ متغیر (X,Y) کی صورت میں ان تمام f(x,y) کا مجموعہ لیتے ہوئے جن کے لئے Z=g(X,Y) کی قیمت زیر غور y کے برابر ہو، ہم z=g(X,Y) کا تفاعل احتمال z=g(x,y) حاصل کر سکتے ہیں، یعنی:

(24.100)
$$f(z) = P(Z = z) = \sum_{g(x,y)=z} f(x,y)$$

ح كا تقسيمي تفاعل

(24.101)
$$F(z) = P(Z \le z) = \sum_{g(x,y) \le z} f(x,y)$$

ہو۔ $g(x,y) \leq z$ کا جن کے لئے f(x,y) کا مجموعہ لیا جائے گا جن کے لئے

بلا منصوبہ استمراری متغیر (X,Y) کے لئے اسی طرح

(24.102)
$$F(z) = P(Z \le z) = \int_{g(x,y) \le z} f(x,y) \, dx \, dy$$

ہو گا جہاں ہر z کے لئے ہم xy مستوی میں خطہ $g(x,y) \leq z$ پر تکمل حاصل کرتے ہیں۔

g(X, Y) کی حسانی تو قع۔ مجموعه اوسطاور تغیریت

درج ذیل عدد کو g(X,Y) کی حسابی توقع 124 یا مخضراً توقع کہتے ہیں۔

(24.103)
$$E(g(X,Y)) = \begin{cases} \sum_{x} \sum_{y} g(x,y) f(x,y) & [(X,Y) \cup [X,Y)] \\ \sum_{x} \sum_{y} g(x,y) f(x,y) & [(X,Y) \cup [X,Y)] \end{cases}$$

یہاں ہم فرض کرتے ہیں کہ دوہرا مجموعہ حتی مر تکز ہے اور xy مستوی پر |g(x,y)| f(x,y)| کا کمل موجود ہے۔درج ذیل کلیہ کو سوال 24.99 کی طرز پر ثابت کیا جا سکتا ہے۔

(24.104)
$$E(ag(X,Y) + bh(X,Y)) = aE(g(X,Y)) + bE(h(X,Y))$$

اس کے ایک مخصوص صورت E(X+Y)=E(X)+E(Y) ہے اور الکراتی ماخوذ سے درج ذیل حاصل ہوتا ہے۔

مسئلہ 24.16: (مجموعہ اوسط) مل منصوبہ متنج ات کے مجموعے کی اوسط (توقع) ان کے انفرادی اوسط کا مجموعہ ہوگا، لینی:

(24.105)
$$E(X_1 + X_2, \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

مزید درج ذیل ما آسانی حاصل کیا جا سکتا ہے۔

مسكله 24.17: اوسطون كا حاصل ضرب

غہ، تابعہ بلا منصوبہ متغیرات کے حاصل ضرب کی اوسط ان کے انفرادی اوسط کے حاصل ضرب کے برابر ہو گا، یعنی: $E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n)$ (24.106)

ثبوت: فرض کریں کہ X اور Y بلا منصوبہ متغیرات ہیں (جہال دونوں غیر مسلسل یا دونوں استمراری ہیں)۔ تب E(XY) = E(X)E(Y) ہو گا۔ غیر مسلسل صورت میں

$$E(XY) = \sum_{x} \sum_{y} xyf(x,y) = \sum_{x} xf_1(x) \sum_{y} yf_2(y) = E(X)E(Y)$$

 $mathematical\ expectation^{124}$

لکھا جا سکتا ہے اور استمراری صورت میں بھی ثبوت اسی طرح کا ہے۔اس نتیجہ کو n غیر تابع متغیرات تک وسعت دینے سے مساوات 24.106 ثابت ہوتی ہے۔یوں ثبوت مکمل ہوتا ہے۔

ہم اب تغیریت کے مجموعہ پر غور کرتے ہیں۔ فرض کریں کہ Z=X+Y ہے اور Z کی اوسط μ اور تغیریت σ^2 ہے۔ سوال 24.97 سے درج ذیل لکھا جا سکتا ہے۔

$$\sigma^2 = E([Z - \mu]^2) = E(Z^2) - [E(Z)]^2$$

مساوات 24.104 سے دائیں ہاتھ پہلے جزو کو

$$E(Z^2) = E(X^2 + 2XY + Y^2) = E(X^2) + 2E(XY) + E(Y^2)$$

لکھا جا سکتا ہے جبکہ دائیں ہاتھ دوسرے جزو کو مسئلہ 24.17 کی مدد سے

$$[E(Z)]^{2} = [E(X) + E(Y)]^{2} = [E(X)]^{2} + 2E(X)E(Y) + [E(Y)]^{2}$$

کھا جا سکتا ہے۔ انہیں σ^2 کے کلیہ میں پر کرتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$\sigma^{2} = E(X^{2}) - [E(X)]^{2} + E(Y^{2}) - [E(Y)]^{2} + 2[E(XY) - E(X)E(Y)]$$

سوال 24.97 سے ہم دیکھتے ہیں کہ دائیں ہاتھ پہلی کلیر پر دیا گیا تعلق X اور Y کی تغیریت کا مجموعہ ہے جنہیں ہم بالترتیب σ_1^2 اور σ_2^2 سے ظاہر کرتے ہیں۔دوسری لکیر پر مقدار

(24.107)
$$\sigma_{XY} = E(XY) - E(X)E(Y)$$

کو X اور Y کی باہمی تغیریت 125 کہتے ہیں۔اس طرح درج ذیل حاصل ہوتا ہے۔

(24.108)
$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_{XY}$$

اگر X اور Y غیر تابع ہوں تب E(XY) = E(X)E(Y) للذا E(XY) = 0 اور

(24.109)
$$\sigma^2 = \sigma_1^2 + \sigma_2^2$$

ہو گا۔ دو سے زائد متغیرات تک وسعت دیتے ہوئے درج ذیل حاصل ہو گا۔

مسّله 24.18: (تغیرات کا مجموعه)

غیر تابع بلا منصوبہ متغیرات کے مجموعہ کی تغیریت ان متغیرات کے انفرادی تغیریت کے مجموعہ کے برابر ہو گا۔

شكل 24.145: شكل برائے سوال 24.145

سوالات

سوال 24.145: مساوات 24.82 کو ثابت کریں۔

جواب: شکل 24.19 میں (X,Y) اخمال (X,Y) اخمال (X,Y) کے ساتھ (X,Y) کے ساتھ (X,Y) کے اخمال (X,Y) کے ساتھ رہے گئے (X,Y) کے ساتھ رہے گئے (X,Y) کے ساتھ رہے گئے ہوتے ماصل کرنے کا احمال مساوات (X,Y) دایاں ہاتھ دے گا۔

سوال 24.146: شکل 24.17 اور شکل 24.18 میں دیے تقسیم کے حاشیہ تقسیم حاصل کریں۔

f(x,y)=k میں $0\leq y\leq 2$ اور $0\leq x\leq 12$ جبہ باتی P(x,y)=k عوال P(x,y)=k میں $P(y\leq x\leq 12, y\leq 1)$ اور $P(x\leq 11, 1\leq y\leq 1.5)$ ، $p(x\leq 11, 1\leq y\leq 1.5)$ تواتی جواب $P(x\leq 11, 1\leq y\leq 1.5)$ جواب $P(x\leq 11, 1\leq y\leq 1.5)$ جواب $P(x\leq 11, 1\leq y\leq 1.5)$ جواب $P(x\leq 11, 1\leq y\leq 1.5)$

سوال 24.148: ایک کاغذ کی اوسط کمیت 10 g اور معیاری انحراف g 0.05 ہے۔ ایسی 10000 کاغذوں کی ڈھیر کی اوسط کمیت اور تغیریت کیا ہو گی؟

f(x,y)=k يين x+y<3 اور y>0 ، x>0 جبکہ باتی P(Y>X) عول Y=0 ، Y=0 ، Y=0 ، Y=0 جبکہ باتی جبکہوں پر Y=0 جبکہ باتی Y=0 اور Y=0 اور Y=0 ہول پر Y=0 ہول پر Y=0 ہول ہے جبکہ باتی کریں۔ Y=0 ہول ہول ہوگریں۔ Y=0 ہول ہول ہوگریں۔ جواب ہول ہوگریں۔ Y=0 ہول ہول ہوگریں۔ ہول ہوگریں۔ ہول ہوگریں۔ ہول ہوگریں۔ ہوگریں۔

سوال 24.150: ایک خالی ڈبے کی اوسط 2 kg اور معیاری انحراف 0.1 kg ہے۔اس ڈبے میں مال کی اوسط 75 kg اور تغیریت 0.8 kg ہے۔ بھرے ڈبے کی اوسط اور معیاری انحراف کیا ہوں گے؟

f(x,y)= سوال 24.151 خطہ $x \leq 0$ ، $x \leq 0$ ، $x \leq 0$ میں بلا منصوبہ متغیرات کی کثافتیں $y \leq 0$ ، $y \leq 0$ ، خطہ $y \leq 0$ خطہ بیں۔ وکھائیں کہ ان کی حاشیہ تقسیم ایک جیسی ہیں۔ x + y

سوال 24.152: الیی دو مختلف غیر مسلسل تقتیم کی مثال دیں جن کے حاشیہ تقتیم ایک جیبی ہوں۔

سوال 24.153: چار گراریوں کو یوں کیجا کیا جاتا ہے کہ ان کے نی فاصلہ رہے۔ گراریوں کے نی باریک چادر کی طلیا رکھ کر فاصل پیدا کیا جاتا ہے۔ گراری کی موٹائی کی اوسط 5.020 cm اور معیاری انحراف 0.003 cm کئیا کی موٹائی کی اوسط 0.040 cm اور معیاری انحراف 0.002 cm ہے۔ بلا منصوبہ 4 گراریوں اور 3 کئیوں سے بنائی گئی پوری گراری کی موٹائی کی اوسط اور معیاری انحراف کیا ہوں گے۔ جواب: تقریباً 20.200, 0.000

سوال 24.154: لوہے کی چادروں اور کاغذ کو تہہ در تہہ رکھ کر ٹرانسفار مرکا قالب بنایا جاتا ہے۔اگر لوہے کی چادر کی موٹائی کی اوسط 0.05 mm اور معیاری انحراف 0.05 mm اور معیاری انحراف 0.02 mm کی چادروں اور 49 کاغذوں سے بنائے گئے قالب کی موٹائی کی اوسط اور معیاری انحراف کیا ہوں گے؟

سوال 24.156: ایک پنیا اور سوراخ کے قطر بالترتیب X سنٹی میٹر اور Y سنٹی میٹر ہیں۔فرض کریں کہ (X,Y) کی کثافت

f(x,y) = 2500 ہوتب 0.99 < x < 1.01, 1.00 < y < 1.02

ے ورنہ f=0 ہے۔ حاشیہ تقسیمیں حاصل کریں۔ اس بات کا کیا اخمال ہے کہ بلا منصوبہ منتخب کردہ پنیا 1.00 سنٹی میٹر کی سوراخ میں ٹھیک بیٹھے گا؟

سوال 24.158: سوال 24.157 مين حاشيه تقسيم کي کثافتين علاش کريں۔

مہینوں کو کا کہ بین ہو ہوتیاتی پرنے پائے جاتے ہیں۔ فرض کریں کہ پہلا پرزہ X مہینوں تک اور دوسرا پرزہ Y مہینوں تک کام کر سکتا ہے۔ فرض کریں کہ (X,Y) کی احمال کثافت

 $f(x,y) = 0.01e^{-0.1(x+y)}$ x > 0, y > 0

جبکہ اس کے علاوہ f=0 ہے۔ (الف) کیا X اور Y تابع ہیں؟ (ب) حاشیہ تقسیم کی کثافت تلاش کریں۔ (y) پہلے پرزے کی زندگی (y) مہینے یا اس سے زیادہ ہونے کا اختمال کیا ہو گا؟ جواب: غیر تابع، (x) (y) (y)

سوال 24.160: مساوات 24.98 سے مسلک فقرہ ثابت کریں۔

f(0,1)= ، $f(0,0)=f(1,1)=rac{1}{8}$ سوال 24.161: فرض کریں کہ (X,Y) کا تفاعل اختمال اختمال $f(0,1)=\frac{1}{8}$ ور Y غیر تابع ہیں؟ $f(1,0)=rac{3}{8}$ جواب: بی نہیں

سوال 24.162: مسئله 24.16 كو استعال كرتے ہوئے شائی تقسیم كی اوسط لا كا كليد حاصل كريں۔

سوال 24.163: مسئلہ 24.18 کی مدد سے ثنائی تقسیم کی تغیریت σ^2 کا کلیہ تلاش کریں۔

سوال 24.164: مسئلہ 24.16 کی مدد سے بیش ہندسی تقسیم کی اوسط کا کلیہ حاصل کریں۔ کیا مسئلہ 24.18 کی مدد سے اس تقسیم کی تغیریت کا کلیہ حاصل کیا جا سکتا ہے؟

24.12 بلامنصوبه نمونه بندى - بلامنصوبه اعداد

حصہ 24.3 تا حصہ 24.11 میں نظریہ اختال پر غور کیا گیا۔اس باب کے باقی حصوں میں شاریات پر غور کیا جائے گا۔آبادی کے حسابی نمونے بنانے میں نظریہ شاریات مدد دیتا ہے۔شاریاتی تراکیب، جن پر غور کیا جائے گا، نظریہ اور حقیقی مشاہدوں کے مابین تعلقات پیش کرتے ہیں۔یوں نمونہ بندی کے ذریعہ آبادی کے بارے میں نتائج حاصل کیے جا سکتے ہیں (شاریاتی رائے زنی؛ حصہ 24.1)۔

اب تک اتنا جانناکافی تھا کہ آبادی کے نمونہ سے مراد آبادی سے اشیاء کا انتخاب ہے (حصہ 24.1 میں مثالیں) ^{لیکن} اب ہمیں اس تصور کی تعریف باریک بنی سے دینی ہو گی۔حقیقتاً ^{کسی بھی} آبادی سے نمونہ بندی کے ذریعہ معنی خیز نتائج حاصل کرنے کی خاطر ضروری ہے کہ نمونہ بلا منصوبہ انتخاب¹²⁶ ہو، لیعنی آبادی میں ہر چیز کا منتخب ہو کر نمونے میں شامل ہونے کے اخمال کی قیمت معلوم ہو۔ یہ شرط ہر صورت (کم از کم تخمینی طور پر) پوری کرنا لازم ہے ورنہ حاصل نتائج مکمل طور پر بے معنی اور غلط ہو سکتے ہیں۔

لا متناہی نمونی فضاکی صورت میں نمونی قیمتیں غیر تابع ہوں گی، یعنی، کسی بلا منصوبہ تجربہ کو ہ مرتبہ سرانجام دیتے ہوئے حاصل ہ بلا منصوبہ نمونی قیمتیں ایک دوسرے پر اثر انداز نہیں ہوں گی۔ عمومی آبادی سے حاصل نمونوں کے لئے یہ یقینی طور پر درست ہے۔ متناہی نمونی فضاکی صورت میں اگر ہم واپس رکھ کر نمونہ حاصل کریں تب، آبادی کی جسامت کے لحاظ سے نمونی قیمتیں غیر تابع ہوں گی؛ اگر ہم واپس نہ رکھ کر نمونہ حاصل کریں تب، آبادی کی جسامت کے لحاظ سے نمونے کی جسامت جھوٹی رکھتے ہوئے (مثلاً 1000 کی آبادی سے 5 یا 10 کا نمونہ لیتے ہوئے)، حاصل نمونی قیمتیں عملاً غیر تابع ہوں گی۔ اس کے برعکس اگر ہم بغیر واپس رکھتے ہوئے متناہی آبادی سے بڑے نمونے لیں تب تابعت کا بہت زیادہ اثر پایا جائے گا۔

بلا منصوبہ انتخاب کی شرط پر پورا اترنا آسان نہیں ہے۔ کئی وجوہات نمونہ بندی کے عمل پر اثر انداز ہو سکتی ہیں۔ مثال کے طور پر اگر ایک خرید از نے 80 کی ڈھیر سے 10 کا انتخاب کر کے ڈھیر خرید نے یا نہ خرید نے کا فیصلہ کرنا ہوتب وہ طبعی طور پر ان 10 چیزوں کا انتخاب کس طرح کرے گا کہ $\binom{80}{10}$ ممکنات میں سے ہر ایک کے منتخب ہونے کا اختمال ایک جیبیا ہو؟

اس مسئلے کی حل کے لئے مختلف تراکیب تشکیل دی گئی ہیں۔ہم اب ایک ایسے طریقہ کارپر غور کرتے ہیں جس کو عموماً استعال کیا جاتا ہے۔

 $random\ selection^{126}$

ہم اس ڈھیر کے اجزاء کو 1 تا 80 کے شار سے ظاہر کرتے ہیں۔اس کے بعد ہم ضیمہ ج میں بلا منصوبہ اعداد کی جدول استعال کرتے ہوئے 10 اجزاء چنتے ہیں۔بلا منصوبہ اعداد کے جدول کو ہم یوں استعال کرتے ہیں کہ ہم پہلے جدول استعال کرتے ہیں کہ ہم پہلے 0 سے 99 کوئی صف بلا منصوبہ فتخب کرتے ہیں۔بلا منصوبہ صف فتخب کرنے کی غاطر ہم ایک سکہ کو 7 مرتبہ اچھال کر 7 ثنائی ہندسوں پر مبنی عدد حاصل کرتے ہیں جس میں خط کو 1 اور شیر کو 0 سے ظاہر کیا جاتا ہے۔یہ ثنائی عدد 0 تا 127 کو ظاہر کر سکتا ہے۔ 99 سے بڑا عدد حاصل ہونے کی صورت میں عدد کو رد کرتے ہوئے شافی عدد و ارد کرتے ہوئے سکہ دوبارہ 7 مرتبہ اچھالا جاتا ہے حتی کہ ہمیں 0 تا 99 کوئی عدد حاصل ہو جو صف دے گا۔اس کے بعد اسی طرح ہم بلا منصوبہ 0 تا 9 قطار منتخب کرتے ہیں۔بلا منصوبہ قطار منتخب کرنے کی خاطر سکہ 4 مرتبہ اچھال کر فرح ہم بلا منصوبہ 0 تا 9 قطار منتخب کرتے ہیں۔بلا منصوبہ قطار منتخب کرنے کی خاطر سکہ 4 مرتبہ اچھال کر 100 کی ہندسوں کا عدد حاصل کیا جاتا ہے۔فرض کریں کہ صف کے لئے (26 =) 0011010 اور قطار کے لئے (7 =) 1110 حاصل ہو تب جدول کے 26 ویں صف اور 7 ویں قطار سے 44973 حاصل کرتے ہوئے اس کے پہلے دو ہندسوں پر مبنی عدد 44 لیا جاتا ہے جبکہ باقی ہندسوں کو رد کیا جاتا ہے۔اسی قطر میں نیچے چلتے ہوئے اس کے پہلے دو ہندسوں پر مبنی عدد 44 لیا جاتا ہے جبکہ باقی ہندسوں کو رد کیا جاتا ہے۔اسی قطر میں نیچے چلتے ہوئے اعرب

44 44 83 91 55 ...

ہم 80 سے بڑے اعداد رد کرتے ہیں اور کسی بھی عدد کو ایک سے زیادہ مرتبہ شامل نہیں کرتے ہیں۔یوں درکار بلا منصوبہ اعداد کا درج ذیل سلسلہ حاصل ہوتا ہے جس کے تحت اجزاء کو منتخب کیا جائے گا۔

44 55 53 03 52 61 67 78 39 54

زیادہ اجزاء کے نمونہ کے لئے یہ طریقہ کار موزول نہیں ہے۔ اس لئے ایسے اعداد جن کی خاصیت بلا منصوبہ اعداد کی طرح ہو، پیدا کرنے کے کئی طریقے بنائے گئے ہیں جنہیں کمپیوٹر کی زبان میں پیدا کار بلا منصوبہ اعداد 127 کہتے ہیں۔

سوالات

سوال 24.165: فرض کریں کہ مذکورہ بالا مثال میں ہم ضمیمہ جے بلا منصوبہ اعداد کا جدول کے صف 83 اور قطار 2 سے شروع کرتے ہوئے اوپر رخ چلیں۔تب کون سے اجزاء نمونہ میں شامل کیے جائیں گے؟ جواب: 38,69,02,49,23,52,73,29,09,05

random number generator 127

سوال 24.166: ضمیمہ ہے کے بلا منصوبہ اعداد کا جدول استعال کرتے ہوئے 250 کی ڈھیر سے 20 اجزاء بلا منصوبہ منتخب کریں۔

سوال 24.167: منصفانه پانسه کو بلا منصوبه انتخاب کے لئے کس طرح استعال کیا جا سکتا ہے؟

سوال 24.168: ایک بلا منصوبہ متغیر Y پر غور کریں جس کی خطہ 0 < y < 1 میں کثافت یکسال f(y) = 1 جبہ خطہ سے باہر f = 0 ہے۔ہم بلا منصوبہ اعداد کی مدد سے با آسانی Y (یعنی Y کی قیمتوں) کا نقل اتار 128 سکتے ہیں۔ مثال کے طور پر f = 1 اعشاریہ تک کے f = 1 قیمتیں حاصل کرنے کی خاطر ہم ضمیمہ ہے کہ بلا منصوبہ اعداد کے جدول کے کسی بھی (بلا منصوبہ) قطار اور صف سے شروع کرتے ہوئے بنچے چلتے ہوئے، پاپنے ہندسوں پر مشتمل دیے اعداد کے صرف پہلے دو ہندسوں کو لیتے ہوئے ان کے بائیں جانب اعشاریہ پر کرتے ہوئے اعداد حاصل کر سکتے ہیں۔ہم ایک سے زیادہ مرتبہ آنے والے اعداد کو بھی شامل کرتے ہیں۔فرض کریں ہم صف اعداد حاصل کر سکتے ہیں۔ہم ایک سے زیادہ مرتبہ آنے والے اعداد کو بھی شامل کرتے ہیں۔فرض کریں ہم صف مف قطار f = 1 میں۔دکھائیں کہ درج ذیل حاصل ہو گا۔ان کا تعدد کی نقطہ ترسیم کھیجئیں۔

0.89 0.40 0.67 0.86 0.87 0.86 0.06 0.20 0.38 0.12 0.68 0.50 0.53 0.10 0.08 0.90 0.19 0.85 0.53 0.98

سوال 24.169: بلا منصوبہ اعداد کی مدد سے کسی بھی بلا منصوبہ استمراری متغیر X کی نقل اتاری جا سکتی ہے۔اییا کرنے کی خاطر ہم X کی تفاعل تقسیم کو ترسیم کرتے ہیں۔ سوال 24.168 کی طرز پر بلا منصوبہ اعداد کی مدد سے متغیر Y کی قیمتیں حاصل کرتے ہوئے انہیں y محدد پر ترسیم کریں اور ان کے مطابقتی X قیمتیں پڑھیں۔ سوال 24.168 کی قیمتیں استعال کرتے ہوئے عمومی بلا منصوبہ متغیر X ، جس کی اوسط 0 اور تغیر بیت 1 ہو، کے لئے یہ طریقہ کار استعال کریں۔ جماعتی نشان 2 ، 1 ، 0 ، 1 اور 2 گیتے ہوئے 3 کی ان 4 کی منطیلی ترسیم کھینیں۔

جواب: جماعتی تعدد 1، 5، 7، 6، 1 ہیں۔

سوال 24.170: سوال 24.169 کا طریقہ کار غیر مسلسل بلا منصوبہ متغیر کے لئے بھی قابل استعال ہے۔اگر دو منصفانہ یانسہ چینک کر حاصل اعداد کا مجموعہ X ہوتب اس طریقہ کو کس طرح استعال کیا جائے گا؟

 ${\rm simulation}^{128}$

24.13 مقدار معلوم كالندازه لكانا

تقسیمات میں پائی جانے والے مقدار مثلاً ثنائی تقسیم میں p ، عمومی تقسیم میں μ اور σ ، کو مقدار معلوم μ

ایک نقط پر مقدار معلوم کی اندازاً قیمت (نقطی اندازه 130) ایک عدد (حقیقی محور پر نقط) ہو گا جس کو دیے گئے نمونہ سے حاصل کیا جاتا ہے جو مقدار معلوم کی اصل قیمت کی تخمین ہو گی۔ وقفہ اندازه 131 (لیعنی وقفہ اعتاد 132)، جس پر اگلے جھے میں بحث کی جائے گی، کو نمونہ سے حاصل کیا جاتا ہے۔مقدار معلوم کی قیمت کا اندازہ لگانا ایک اہم مسلم ہے۔

آبادی کی اوسط μ کا اندازہ لگانے کی خاطر ہم نمونے کی اوسط \overline{x} لے سکتے ہیں جس سے ہمیں μ کا اندازہ $\widehat{\mu}=\overline{x}$ حاصل ہوتا ہے، یعنی

$$\widehat{\mu} = \overline{x} = \frac{1}{n}(x_1 + \dots + x_n)$$

جہاں نمونہ کی جمامت n ہے۔اس طرح آبادی کی تغیریت کا اندازہ $\widehat{\sigma^2}$ در حقیقت مطابقتی نمونے کی تغیریت s^2 ہو گی، یعنی:

(24.111)
$$\widehat{\sigma^2} = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

ظاہر ہے کہ مساوات 24.110 اور مساوات 24.111 ان تقسیمات کی مقدار معلوم کی اندازاً قیمت دیتے ہیں جن میں $p=\frac{\mu}{n}$ اور $p=\frac{\mu}{n}$ اور اگر اس کوشش میں وقوعہ $p=\frac{\mu}{n}$ ہو تب $p=\frac{\mu}{n}$ ہو گا۔ اس طرح مساوات 24.110 میں $p=\frac{\mu}{n}$ کا اندازہ درج ذیل حاصل ہو گا۔ مساوات 24.110 سے کہ کا اندازہ درج ذیل حاصل ہو گا۔

$$\widehat{p} = \frac{\overline{x}}{n}$$

parameters¹²⁹

point estimate¹³⁰

 $interval\ estimate^{131}$

confidence interval 132

ہم یہاں بتانا چاہتے ہیں کہ مساوات 24.110 تو کیب معیاد اثر 133 کی ایک مخصوص صورت ہے۔اس ترکیب میں جس مقدار معلوم کی اندازاً قیمت درکار ہو، اس کو تقییم کی معیار اثر کی صورت میں لکھا جاتا ہے (حصہ 24.8)۔حاصل کلیات میں ان معیار اثر کی جگہ نمونہ سے حاصل مطابقتی معیار اثر پر کرتے ہوئے درکار اندازے حاصل کیے جاتے ہیں۔ یہاں نمونہ x_1, \dots, x_n کا وال معیار اثر درج ذیل ہے۔

$$m_k = \frac{1}{n} \sum_{j=1}^n x_j^k$$

اندازے حاصل کرنے کی دوسری ترکیب کو زیادہ سے زیادہ امکان کی توکیب 134 کتے ہیں۔اس ترکیب کو سیحضے کی خاطر ہم غیر مسلسل (یا استمراری) بلا منصوبہ متغیر X پر غور کرتے ہیں جس کا تفاعل احمال واحد متغیر θ پر منصوبہ منصر ہے۔ ہم n غیر تالع قیتوں x_1, \dots, x_n کا نمونہ لیتے ہیں۔ تب غیر مسلسل صورت میں n جسامت کے نمونہ میں بالکل یمی قیمتیں حاصل ہونے کا احمال درج ذیل ہو گا۔

(24.113)
$$l = f(x_1) f(x_2) \cdots f(x_n)$$

استمراری صورت میں، چھوٹے چھوٹے وقفوں $x_i \leq x \leq x_i + \Delta x \; (i=1,2,\cdots,n)$ میں قیمتیں حاصل کرنے کا اختال درج ذیل ہو گا۔

(24.114)
$$f(x_1)\Delta x f(x_2)\Delta x \cdots f(x_n)\Delta x = l(\Delta x)^n$$

چونکہ $f(x_i)$ متغیر θ کا تابع ہے المذا نفاعل l متغیرات x_1, \dots, x_n اور θ کا تابع ہو گا۔ ہم فرض کرتے ہیں کہ ہمیں x_1, \dots, x_n دیے گئے ہیں اور یہ مقررہ قیمتیں ہیں۔ تب l متغیر θ کا تابع ہو گا جس کو تفاعل امکان t_1 متغیر t_2 کا تابع ہو گا جس کو تفاعل امکان t_3 کے نیادہ سے زیادہ امکان کی ترکیب کا بنیادی تصور بہت سادہ ہے۔ ہم نا معلوم قیمت t_3 کا قابل تفرق کے لئے وہ تخمین چنتے ہیں جس سے t_3 کی زیادہ سے زیادہ قیمت حاصل ہو۔ اگر نفاعل t_3 متغیر t_4 کا قابل تفرق نفاعل ہو تب t_4 کا تابل تفرق نفاعل ہو تب (سرحد سے ہٹ کر) t_4 کی زیادہ سے زیادہ قیمت کے لئے درج ذیل لازمی شرط ہے۔

$$\frac{\partial l}{\partial \theta} = 0$$

 (x_1,\cdots,x_n) کا بھی تابع ہے۔) مساوات 24.115 کا حل جر کہ یہاں جزوی تفرق کھتے ہیں چونکہ (x_1,\cdots,x_n) اور (x_1,\cdots,x_n) اور (x_1,\cdots,x_n) اور (x_1,\cdots,x_n) اور (x_1,\cdots,x_n)

method of moments¹³³

maximum likelihood method¹³⁴

likelihood function 135

کی زیادہ سے زیادہ قیت عموماً مثبت ہوتی ہے اور ln l یک سر بڑھتا تفاعل ہے للذا مساوات 24.115 کی جگہ درج ذیل بھی استعال کیا جا سکتا ہے

$$\frac{\partial \ln l}{\partial \theta} = 0$$

جس سے عموماً حساب میں آسانی پیدا ہوتی ہے۔

اگر X کی تقسیم میں r مقدار معلوم θ_r , \dots , θ_r پائے جاتے ہوں تب مساوات 24.115 کی جگہ r لاز می شرائط $0=\frac{\partial l}{\partial \theta_1}=0,\dots,\frac{\partial l}{\partial \theta_1}=0$ ہوں گے اور مساوات 24.116 کی جگہ درج ذیل لکھا جائے گا۔

(24.117)
$$\frac{\partial \ln l}{\partial \theta_1} = 0, \quad \cdots, \quad \frac{\partial \ln l}{\partial \theta_r} = 0$$

مثال 24.17: عمومي تقسيم

عمومی تقسیم کی صورت میں μ اور σ کی زیادہ سے زیادہ امکان کا اندازہ تلاش کریں۔ حل: مساوات 24.68 اور مساوات 24.113 سے درج ذیل لکھا جا سکتا ہے۔

$$l = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\sigma}\right)^n e^{-h} \qquad h = \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

دونوں ہاتھ لوگار تھم لیتے ہیں۔

$$\ln l = -n \ln \sqrt{2\pi} - n \ln \sigma - h$$

مساوات 24.117 میں پہلی شرط $0=rac{\partial \ln l}{\partial \mu}=0$ ہے جس سے ورج ذیل لکھا جا سکتا ہے

$$\frac{\partial \ln l}{\partial \mu} = -\frac{\partial h}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0 \qquad \Longrightarrow \qquad \sum_{i=1}^{n} x_i - n\mu = 0$$

جس کا حل μ کا در کار اندازہ $\widehat{\mu}$ ہے، یعنی:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

ماوات 24.117 میں دوسری شرط $\frac{\partial \ln l}{\partial \sigma} = 0$ ہے جس سے درج ذیل کھا جا سکتا ہے۔ $\frac{\partial \ln l}{\partial \sigma} = 0$ ماوات

$$\frac{\partial \ln l}{\partial \sigma} = -\frac{n}{\sigma} - \frac{\partial h}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (x_i - \mu)^2 = 0$$

ے جگہ $\widehat{\mu}$ پر کرتے ہوئے σ^2 کے لئے حل کر کے درج ذیل ملتا ہے۔

$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x - \overline{x})^2$$

دھیان رہے کہ یہ نتیجہ مساوات 24.111 سے مختلف ہے۔ہم اندازوں کی عمد گی کی قواعد پر بحث نہیں کر سکتے ہیں الیکن اتنا جاننا ضروری ہے کہ چھوٹی ہ کے لئے مساوات 24.111 بہتر نتائج دیتی ہے۔

سوالات

f(x)=0 ور x<0 اور x<0 اور x<0 کے گئے کثافت x<0 ور x<0 اور x<0 کی نے دیادہ امکان کا اندازہ حاصل کریں۔ θ

سوال 24.172: سوال 24.171 میں اوسط μ تلاش کر کے f(x) میں پر کریں۔ μ کے زیادہ سے زیادہ امکان کا اندازہ حاصل کرتے ہوئے دکھائیں کہ بیہ وہی ہے جو سوال 24.171 کے θ کے اندازے سے حاصل کیا جا سکتا ہے۔

سوال 24.173: معلوم تغیریت $\sigma^2=\sigma_0^2$ کی عمومی تقسیم کے μ کی زیادہ سے زیادہ امکان کا اندازہ حاصل کریں۔ $\widehat{\mu}=\overline{x}$

سوال 24.174: $\mu=0$ کی صورت میں عمومی تقسیم پر زیادہ سے زیادہ امکان کے اندازے کی ترکیب لاگو کریں۔

سوال 24.175: (پوئسن نقسیم) زیادہ سے زیادہ امکان کے اندازہ کی ترکیب کا اطلاق تقسیم پوکس پر کریں۔ $\widehat{\mu}=\overline{x}$

سوال 24.176: (یکسان نقسیم) حصہ 24.8 میں دیے گئے کیساں تقسیم کی صورت میں دکھائیں کہ مقدار معلوم a اور b کو زیادہ سے زیادہ امکان کا اندازہ استعال کرتے ہوئے پہلی جزوی تفرق کو صفر کے برابر پر نہیں کیا جا سکتا ہے؟

سوال 24.177: (ثنائی تقسیم) p کے لئے زیادہ سے زیادہ امکان کا اندازہ حاصل کریں۔ $l=p^k(1-p)^{n-k}, \, \widehat{p}=rac{k}{n}, \, k=1$ جواب: n کو ششوں میں کامیابی کی تعداد

سوال 24.178: وقوعہ A واقع ہونے تک کو ششوں کی تعداد X ہے۔وکھائیں کہ X کا نقاعل اخمال p واقع ہونے کا اخمال p ہے اور p جہاں واحد کو شش میں p واقع ہونے کا اخمال p ہے اور p کی واحد قیمت p کی مشاہدے میں p کا زیادہ سے زیادہ امکان کا اندازہ تال ش کریں۔

سوال 24.179: سوال 24.178 میں نمونہ x_1, \dots, x_n سے p کا زیادہ سے زیادہ امکان کا اندازہ حاصل کریں۔ $\widehat{p} = \frac{1}{\overline{x}}$

سوال 24.180: سوال 24.177 کو وسعت دیتے ہیں۔ فرض کریں کہ n کو ششوں کو m مرتبہ دہرایا جاتا ہے۔ پہلی n کو ششوں میں A واقع ہونے کی تعداد k_1 ہے، دوسری n کو ششوں میں n واقع ہونے کی تعداد k_m ہے۔ ان معلومات سے n کا زیادہ سے زیادہ امکان کا اندازہ حاصل کریں۔

24.14 وقفيراعتماد

گزشته حصه میں مقدار معلوم کی نقطی اندازہ پر غور کیا گیا۔اب ہم وقفی اندازہ 136 پر غور کریں گے۔

حمابی تخمینی کلیات استعال کرتے ہوئے ضروری ہے کہ ہم جانے کی کوشش کریں کہ تخمینی قیمت اور اصل درست قیمت میں کتنا فرق ہے۔ مثال کے طور پر اعدادی تکملی تراکیب میں زیادہ سے زیادہ خلل کے کلیات پائے جاتے ہیں جس سے ہم جان سکتے ہیں کہ تخمینی قیمت اور اصل قیمت میں کتنا فرق پایا جا سکتا ہے۔ فرض کریں کہ ہم کسی تکمل کا اعدادی تخمینی قیمت کی اور اصل قیمت سے زیادہ سے زیادہ مکنہ خلل 0.02 = 0.00 حاصل کریں۔ تب ہم پوری یقین کے ساتھ کہہ سکتے ہیں کہ تکمل کی اصل قیمت 2.45 = 0.02 = 0.02 تا = 0.02 = 0.02

 $interval\ estimate^{136}$

24.14. وقف اعتماد

قیتوں میں شامل ہے، لینی اصل قیمت 2.45 = 2.00 - 2.47 یااس سے زیادہ اور 2.49 = 2.47 + 0.02 = 2.47 یااس سے کم ہو گی۔

مقدار معلوم θ کا اندازہ لگاتے ہوئے ہم نمونی قیتوں پر مخصر ایسے دو مقدار جاننا چاہیں گے جن میں بقین طور پر اصل قیت شامل ہو۔البتہ ہم جانتے ہیں کہ نمونی قیتوں سے % 100 درست نتائج حاصل کرنا ممکن نہیں ہے۔یوں حقیقت پیندی سے کام لیتے ہوئے ہم اس مسلے کو درج ذیل بیان کرتے ہیں۔

احتمال γ کی قیمت کو 1 کے قریب منتخب کریں (مثلاً، $\%99=\gamma$ یا $\%99=\gamma$ ، وغیرہ)۔ اس کے بعد γ احتمال γ الیے دو مقدار γ اور γ اور γ منتخب کریں جن میں مقدار معلوم γ کی اصل قیمت کے شامل ہونے کا احتمال γ ہو۔

ہم سو فی صدیقین کے ساتھ جاننے کی "نا ممکن شرط" کی بجائے تقریباً 1 احمال کی "ممکن شرط" پیش کرتے ہیں۔

دیے گئے نمونہ x_1, \dots, x_n سے ان دو مقداروں کی قیمتوں کا حساب لگایا جائے گا۔ان n قیمتوں کو مشاہدے سے حاصل n بلا منصوبہ متغیرات X_1, \dots, X_n کی قیمتیں تصور کریں۔تب Ω اور Ω ان بلا منصوبہ متغیرات کے نفاعل ہوں گے اور یوں خود بھی بلا منصوبہ متغیرات ہوں گے۔اس طرح ہماری شرط درج ذیل کھی جا کتی ہے۔

$$P(\Theta_1 \le \theta \le \Theta_2) = \gamma$$

 Θ_2 اور Θ_2 معلوم ہوں، تب دیے گئے نمونہ سے ہم Θ_1 کی اعدادی قیمت Θ_1 اور Θ_2 کی اعدادی قیمت Θ_2 اور Θ_3 کی اعدادی قیمت Θ_3 کی اعدادی قیمت Θ_3 کا حساب لگا سکتے ہیں۔وہ وقفہ جس کے سر Θ_3 اور Θ_3 ہوں، نا معلوم مقدار معلوم کا وقفہ اعتماد Θ_3 یا وقفی اندازہ Θ_3 کہلاتا ہے جس کو درج ذیل کھیا جاتا ہے۔

اعتماد
$$\{\theta_1 \leq \theta \leq \theta_2\}$$

و سطح θ_1 کو θ_2 کی نچلی حد اعتماد θ_2 اور θ_2 کو اس کی بالائی حد اعتماد θ_3 ہیں۔ عدد $\gamma=99.9$ منتخب کرتے $\gamma=99.9$ ہیں۔ $\gamma=99.9$ یا $\gamma=99.9$ اور کبھی کھار $\gamma=99.9$ منتخب کرتے $\gamma=99.9$ ہیں۔ $\gamma=99.9$ منتخب کرتے ہیں۔ $\gamma=99.9$ ہیں۔

confidence interval 137

interval estimate¹³⁸

lower confidence limit 139

upper confidence $limit^{140}$

confidence level 141

ظاہر ہے کہ اگر ہم ایک نمونہ حاصل کر کے مطابقتی وقفہ اعتاد تعین کرنا چاہیں، تب مقدار معلوم کی اصل قیمت شامل کرنے والے وقفہ کے حصول کا اختال γ ہو گا۔

مثال کے طور پر اگر ہم $95\% = \gamma$ منتخب کریں، تب ہم توقع کر سکتے ہیں کہ 95% نمونے جو ہم حاصل کریں ایسے اعتادی وقفے دیں گے جن میں θ کی قیت شامل ہو گی اور باقی 5% میں ایسا نہیں ہو گا۔ یوں 20 میں سے تقریباً 19 صورتوں میں بیہ فقرہ کہ "اعتادی وقفہ میں θ شامل ہے" درست ہو گا جبکہ باقی صورتوں میں بیہ فقرہ غلط ہو گا۔

 $\gamma = 95$ کی بجائے $\gamma = 99$ منتخب کرنے سے ہم توقع کریں گے کہ 100 میں سے 99 صور توں میں یہ فقرہ درست ہو گا۔البتہ ہم دیکھیں گے کہ $\gamma = 99$ کے مطابقتی وقفے $\gamma = 95$ کے مطابقتی وقفوں سے لمبے ہوں گے۔ γ بڑھانے کا یہ ایک نقصان ہے۔

کسی حقیق صورت میں ہ کی کیا قیمت منتخب کرنی چاہیے؟ یہ محض حسابی دلچیں کی بات نہیں ہے بلکہ عملی استعال میں، غلط قیمت منتخب کرنے کی صورت دینا ہو گا۔

صاف ظاہر ہے کہ موجودہ ترکیب اور آنے والے دیگر تراکیب میں غیر یقینی صورت حال کی وجہ نمونہ بندی کا طریقہ کار ہے۔ یوں ماہر شاریات کو اپنی غلطیوں کے بارے میں جواب دینے کے لئے تیار ہونا چاہیے۔ تاہم کسی بھی روزگار میں ایسا ہی ہوگا مثلاً قاضی اور ساہو کار بھی امکان کے قواعد سے نہیں نج پاتے۔ ماہر شاریات غلطی کرنے کا اخمال تو جائتا ہے جبکہ قاضی اور ساہو کار کو بیے سہولت میسر نہیں ہے۔

 σ^2 اور کتھیم کے μ اور

ہم اب عمومی تقسیم کی اوسط μ (جدول 24.8، جدول 24.9) اور تغیریت σ^2 (جدول 24.10) کے اعتادی وقفے حاصل کرنا سیکھتے ہیں جس کا مطابقتی نظریہ اس جھے کے آخر میں پیش کیا جائے گا۔

مثال 24.18: معلوم تغیریت کی صورت میں عمومی نقسیم کی اوسط کا وقفہ اعتماد $\overline{x}=5$ والی عمومی تقسیم کے $\sigma^2=9$ والی عمومی تقسیم کے $\overline{x}=5$ والی عمومی تقسیم کے لئے $\sigma^2=9$ وقفہ اعتماد تعین کریں۔

24.14. وقفن اعتب 1625

حدول 24.8:معلوم تغیریت σ^2 والی عمومی تقسیم کے اوسط μ کے وقفہ اعتماد کا تعین

پهلا قدم: وتغداعماد نتخب کریں مثلاً % 99
$$\gamma=9$$
 یا % $\gamma=99$ و غیرہ۔ دوسرا قدم: مطالبقی $\gamma=99$ تا $\gamma=99$ $\gamma=99$ $\gamma=99$ $\gamma=999$ $\gamma=999$

 $\gamma = 0.95$ درکار ہے۔

دوسرا قدم: أس كا مطابقتي c = 1.960 ہے۔

ورسور ما المام: $\overline{x}=5$ ویا گیا ہے۔ $\overline{x}=6$ ویا گیا ہے۔ $\overline{x}=6$ ویا گیا ہے۔ $\overline{x}=6$ ورکار ہے لنذا $\overline{x}=6$ ہوگا قدم: شمیل x+k=6 ورکار ہے لنذا x+k=6 ورکار ہے لنذا x+k=6 ورکار ہے النزا گا جن سے درج ذیل حاصل ہو گا۔

 $\{4.412 \le \mu \le 5.588\}$

مثال 24.19: مخصوص لمبائى كا اعتمادى وقفه حاصل كرنے كے لئے دركار نمونى جسامت گزشتہ مثال میں 95 اعتادی وقفہ جس کی لمبائی L=0.4 ہو جاصل کرنے کیے لئے n کتنا ہو گا؟ $L = 2k = \frac{2c\sigma}{\sqrt{n}}$ على: وقفى كى لمبائى مساوات 24.118 كے تحت تحت $L = 2k = \frac{2c\sigma}{\sqrt{n}}$ ہوئے

$$n = \left(\frac{2c\sigma}{L}\right)^2$$

 $n = (\frac{2 \cdot 1.960 \cdot 3}{0.4})^2 \approx 870$ -2

شکل 24.20 میں آپ دیکھ سکتے ہیں کہ وقفہ اعتاد کی لمبائی L جتنی کم ہو، نمونے کی جمامت n اتنی زیادہ منتخب کرنی ہو گی۔

شكل24.20: وقفه اعتادكي لميائي بالقابل نموني جيامت *n*

جدول 24.8 کی طرح ہے ماسوائے کا قیمتوں کے مزید c کی قیمت n پر منحصر ہے اور اس اس کو ضمیمہ ج میں t تقسیم کے تفاعل کی حدول 10.ء سے حاصل کرنا لاز می ہے جہاں t تقسیم t کے تفاعل t

(24.119)
$$F(z) = K_m \int_{-\infty}^{z} \left(1 + \frac{u^2}{m}\right)^{-(m+1)/2} du$$

کی قیتوں کے مطابقتی z قیمتیں دی گئی ہیں۔ یہاں $[\sqrt{m\pi}\Gamma(\frac{1}{2}m)]$ ایک متعقل کی قیتوں کے مطابقتی ایک متعقل ایک متعقل کی تعلیم ایک متعقل کی تعلیم ایک متعقل کی تعلیم کا تعل ہے اور $\Gamma(\alpha)$ گیما تفاعل (ضمیمہ ب مساوات 22.ب) ہے۔ $m(1,2,\cdots)$ مقدار معلوم ہے جس کو تقسیم کی درجه آزادی کی تعداد ¹⁴³ کہتے ہیں۔

مثال 24.20: نا معلوم تغيريت وإلى عمومي تقسيم كي اوسط كا وقفه اعتماد

حدول 24.2 میں دیا گیا نمونہ استعال کرتے ہوئے مطابقتی آبادی کے لئے اوسط u کا % 99 وقفہ اعتاد تعین کریں۔ فرض کریں کہ آبادی عمومی ہے۔(اس مفروضے کا جواز حصہ 24.18 میں دیا جائے گا۔)

 $\gamma=0.99$ على: پہلا قدم: $\gamma=0.99$ درکار ہے۔ $\gamma=0.99$ کا عل $\gamma=0.99$ کا عل $\gamma=0.99$ دوسرا قدم: چونکہ $\gamma=0.99$ کا عل $\gamma=0.99$ کا علی دوسرا قدم: حاصل ہوتا ہے۔(چونکہ اس کتاب میں 99 درجہ آزادی کا ٹے تقسیم نہیں دیا گیا ہے للذا 100 درجہ آزادی کی قطار سے c حاصل کیا گیا ہے۔)

> t¹⁴² تقسيم كوانگستانی ماہر شاریات ولیم سیلی گوسٹ [1877-1876] نے دریافت کیا۔ number of degrees of freedom¹⁴³

24.14. وقف اعتب ا

جدول 24.9: نامعلوم تغیریت σ^2 والی عمو می تقسیم کے اوسط μ کے وقفہ اعتاد کا تعین

تیسوا قدم: حساب سے
$$\overline{x}=364.70$$
 اور $\overline{x}=364.70$ ملتے ہیں۔ $\overline{x}=364.70$ عاصل کرتے ہیں لہذا وقفہ اعتاد درج ذیل ہو گا۔ چوکھا قدم: ہم $\delta=\frac{26.83\cdot 2.63}{10}=7.06$ عاصل کرتے ہیں لہذا وقفہ اعتاد درج ذیل ہو گا۔

$$357.64 \le \mu \le 371.76$$

 $k = \frac{2.576\cdot 26.83}{\sqrt{100}} = 24.8$ معلوم ہے۔تب جدول 24.8 ہے معلوم کے معلوم معمولی $\sigma = 26.83$ ہمیں کہ جمعیل معمولی معمولی عاصل ہوتا ہے۔دونوں نتائج میں معمولی فرق پایا جاتا ہے۔بڑی n کی صورت میں نتائج میں فرق بہت کم ہوتا ہے لیکن کم n کی صورت میں دونوں نتائج میں واضح فرق پایا جائے گا (شکل 24.21)۔

جدول 24.10 میں عمومی تقسیم کی تغیریت کا وقفہ اعتاد تغین کرنے کے قدم دیے گئے ہیں۔ جو جدول 24.8 اور جدول 24.0 اور c_2 حاصل کرنے ہوں گے۔دونوں مستقل کو ضمیمہ جمدول 24.9 کی طرح ہیں، یہاں دو مستقل کو ضمیمہ جمیں جدول 11.ج سے حاصل کیا جاتا ہے جس میں تفاعل تقسیم

(24.122)
$$F(z) = \begin{cases} C_m \int_0^z e^{-u/2} u^{(m-2)/2} du & z \ge 0\\ 0 & z < 0 \end{cases}$$

کی قیمتوں کے لئے z کے مطابقتی قیمتیں دی گئی ہیں۔اس تقسیم کو z تقسیم (مربع خاتقسیم) کہتے ہیں۔ یہاں $m=1,2,\cdots$ اور $m=1,2,\cdots$ اور $m=1,2,\cdots$ کی تعداد کہتے ہیں۔

شكل 24.21: 24.12 و $\gamma=0.99$ اور $\gamma=0.99$ اور 24.113) و مساوات 24.121) و رساوات 24.113) و مساوات 24.113) كال نسبت بالقابل نمونى جيامت n ، جبال s اور σ ايك جيسے ہيں۔

جدول 24.10: عمو می تقتیم کی تغیریت c² کے وقفہ اعتاد کا تعین جہاں اوسط جاننا ضرور ی نہیں ہے

يه لا قدم: $\gamma = 99\%$ ي $\gamma = 95\%$ ي $\gamma = 95\%$ و نغرود. $\gamma = 95\%$ و نغرود $\gamma = 95\%$ و نغرود و درخ زيل مساوات کے عل $\gamma = 95\%$ و درخ زيل مساوات کے عل $\gamma = 95\%$ و درخ ناتقسيم کی جدول ($\gamma = 1$ و درخ الله و بالله و بالله و درخ الله و بالله و نغرود و نغر

24.14. وقف اعتب ا

مثال 24.21: عمومی تقسیم کے تغیریت کا وقفہ اعتماد جدول 24.22 میں دیا گیا نمونہ استعال کرتے ہوئے مطابقتی آبادی کے تغیریت کا وقفہ اعتماد تلاش کریں۔ $\gamma=0.95$ میں دیا گیا نمونہ استعال کرتے ہوئے مطابقتی آبادی کے تغیریت کا وقفہ اعتماد تلاش کریں۔ دوسوا قدم: چونکہ $c_1=73.4$ ہے لہذا ہم $c_2=128$ اور $c_2=128$ حاصل کرتے ہیں۔ تیسوا قدم: جدول 24.2 سے $c_3=7129$ حاصل ہوتا ہے۔ چوتما قدم: وقفہ اعتماد درج ذیل ہو گا۔

اعتماد $556 \le \sigma^2 \le 972$

П

د یگر تقسهمات

کافی بڑے نمونے لیتے ہوئے دیگر تقسیمات کی اوسط اور تغیریت کے وقفہ اعتاد گزشتہ تراکیب سے حاصل کیے جا سکتے ہیں۔ عملاً، اگر نا معلوم تقسیم کا ترچھاپن کم ہو تب μ کا وقفہ اعتاد حاصل کرنے کے لئے نمونی جسامت کم سے کم n=20 لین چاہیے اور σ^2 کا وقفہ اعتاد کے لئے کم سے کم n=50 لین چاہیے۔ اس کی تفصیل اس جھے کے آخر میں پیش کی جائے گی۔

جدول 24.8، مجدول 24.9 اور جدول 24.10 میں دیے گئے تراکیب کا نظریہ

ہم اب درج ذیل سادہ تصور استعال کرتے ہوئے اس نظریہ پر غور کرتے ہیں جو وقفہ اعتاد حاصل کرنے کی ان تراکیب کو ممکن بناتی ہے۔

اب تک ہم نمونی قیتوں x_1, \dots, x_n کو واحد بلا منصوبہ متغیر X کی مثابہ ہے ہے حاصل x_1, \dots, x_n نصور کرتے رہے ہیں۔ ہم ان x_1, \dots, x_n اللہ منصوبہ متغیرات x_1, \dots, x_n ، کی تقسیم ایک جیسی ہے (جو x_1, \dots, x_n کی تقسیم ہے)، کی ایک مثابہ ہے کی قیمتیں بھی تصور کر سکتے ہیں جنہیں غیر تابع اس لئے نصور کیا جا سکتا ہے کہ نمونی قیمتیں کو غیر تابع تصور کیا گیا ہے۔

جدول 24.8 میں مساوات 24.118 اخذ کرنے کے لئے درج ذیل درکار ہو گا۔

مسكه 24.19: (بلا منصوبه عمومي متغيرات كا مجموعه)

 μ_1, \dots, μ_n بالترتیب X_1, X_2, \dots, X_n بلا منصوبہ غیر تالع عمومی متغیرات ہیں جن کے اوسط بالترتیب X_1, X_2, \dots, X_n اور تغیریت بالترتیب $\sigma_1^2, \dots, \sigma_n^2$ بیں۔ تب بلا منصوبہ متغیر

$$X = X_1 + X_2 + \dots + X_n$$

عمومی ہو گا جس کی اوسط

$$\mu = \mu_1 + \mu_2 + \cdots + \mu_n$$

اور تغيريت

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$$

ہو گی۔ μ اور σ^2 کے فقرے مسلہ 24.16 اور مسلہ 24.18 دیتے ہیں جبکہ χ عمومی ہونے کا ثبوت اس χ تاب میں پیش نہیں کیا جائے گا۔

اس مسئلے سے اور مسئلہ 24.14 اور مسئلہ 24.13 سے درج ذیل حاصل ہوتا ہے۔

 μ مسکلہ 24.20: اگر X_1, \dots, X_n غیر تابع عمومی بلا منصوبہ متغیرات ہوں جن میں سے ہر ایک کی اوسط اور تغیرہت σ^2 ہو، تب بلا منصوبہ متغیر

$$(24.125) \overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

عمومی ہو گا جس کی اوسط μ اور تغیریت $\frac{\sigma^2}{n}$ ہو گی، اور بلا منصوبہ متغیر

$$(24.126) Z = \sqrt{n} \, \frac{\overline{X} - \mu}{\sigma}$$

عمومی ہو گا جس کی اوسط 0 اور تغیریت 1 ہو گی۔

 Θ_1 آئیں مساوات 24.118 اخذ کرتے ہیں۔اس حصے کی شروع میں ہم نے چاہا کہ ہم ایسے دو بلا منصوبہ متغیرات دور Θ_2 اور Θ_2 حاصل کریں جو درج ذیل کو مطمئن کرتے ہوں

$$(24.127) P(\Theta_1 \le \mu \le \Theta_2) = \gamma$$

24.14. وقف اعتماد

جہاں γ منتخب کردہ ہے، اور نمونہ سے مشاہدے کے ذریعہ Θ_1 کی قیمت Θ_1 اور Θ_2 کی قیمت Θ_2 حاصل کرتے ہوئے درج ذیل وقفہ اعتماد حاصل کیا جاتا ہے۔

اعتمار
$$\{ heta_1 \leq \mu \leq heta_2\}$$

$$-c \le \sqrt{n} \, \frac{\overline{X} - \mu}{\sigma} \le c$$

جس کو μ کی عدم مساوات میں تبدیل کیا جا سکتا ہے۔اس کو $\frac{\sigma}{\sqrt{n}}$ سے ضرب کر μ کی عدم مساوات میں تبدیل کیا جا سکتا ہے۔اس کو \overline{X} جن کرتے ہوئے درج ذیل حاصل ہو گا۔ $-k \leq \overline{X} - \mu \leq k$ (24.128) $\overline{X} + k > u > \overline{X} - k$

 $P(\overline{X} - k \leq \mu \leq \overline{X} + k) = \gamma$ سے مراد $P(-c \leq Z \leq c) = \gamma$ ہوں ہے۔ یوں ہمارے مفروضوں کے تحت بلا کی طرز کا ہے جہال $\Theta_1 = \overline{X} - k$ اور $\overline{X} + k = 0$ اور $\overline{X} + k = 0$ ہوں گے۔ یوں ہمارے مفروضوں کے تحت بلا مضوبہ متغیرات $\overline{X} + k = 0$ اور $\overline{X} + k = 0$ ہوں گے۔ یہاں متغیر تالع عمومی بلا منصوبہ متغیرات $\overline{X} + k = 0$ مشاہدہ سے حاصل، جدول 24.8 میں دی گئی، نمونی قبتیں $\overline{X} + k = 0$ مشاہدہ سے حاصل، جدول 24.18 میں ہم دیکھتے ہیں کہ نمونی اوسط \overline{X} مساوات 24.125 کی مشاہدہ سے حاصل قبت ہے جس کو مساوات 24.118 عاصل ہوتا ہے۔

مساوات 24.121 اخذ کرنے کی خاطر ہمیں درج ذیل درکار ہو گا۔

مسکلہ 24.21: فرض کریں کہ X_1, \dots, X_n غیر تابع عمومی بلا منصوبہ متغیرات ہیں جن میں ہر ایک کی اوسط μ اور تغیریت σ^2 ہے۔تب بلا منصوبہ متغیر μ

$$(24.129) T = \sqrt{n} \, \frac{\overline{X} - \mu}{S}$$

کی تقسیم n-1 درجه آزادی کی t تقسیم (صفحه 1626) ہو گی؛ یہاں \overline{X} کو مساوات 24.125 اور

(24.130)
$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{j} - \overline{X} \right)^{2}$$

دیتے ہیں۔ اس مسلے کا ثبوت اس کتاب میں پیش نہیں کیا جائے گا۔

مساوات 24.121 کا ثبوت مساوات 24.118 کی ثبوت کی طرح کا ہے۔ ہم γ کی قیمت 0 اور 1 کے بیچ منتخب کرتے ہوئے ضمیمہ ہے کی جدول 0. ہوت n-1 ورجہ آزادی کا ایسا c حاصل کرتے ہیں جو درج ذیل کو مطمئن کرتا ہو۔

(24.131)
$$P(-c \le T \le c) = F(c) - F(-c) = \gamma$$

چونکہ t تقسیم تشاکلی ہے للذا F(-c)=1-F(c) ہو گا اور یوں مساوات 24.131 سے مساوات 24.120 سے مساوات 24.120 میں پہلے کی طرح $-c \leq T \leq c$ کے تبادلہ سے

(24.132)
$$\overline{X} - K \le \mu \le \overline{X} + K \qquad K = \frac{cS}{\sqrt{n}}$$

حاصل ہو گا اور یوں مساوات 24.131 سے $\gamma=\gamma=24.131$ حاصل ہو گا۔ مساوات 24.131 میں مشاہدے سے حاصل $\overline{x}=\gamma=24.121$ کی قیمت $\gamma=3=3$ پر کرتے ہوئے مساوات 24.131 میں مشاہدے سے حاصل ہو گا۔ حاصل ہو گا۔

مساوات 24.124 ثابت کرنے کی خاطر جمیں درج ذیل کی ضرورت ہو گا۔

مسئله 24.22: مسئله 24.21 کے مفروضوں کے تحت بلا منصوبہ متغیر

(24.133)
$$Y = (n-1)\frac{S^2}{\sigma^2}$$

کا تقسیم n-1 درجہ آزادی کا مربع خاتقسیم (صفحہ 1627) ہو گا؛ یہاں S^2 کو مساوات 24.130 میں پیش کیا n-1 گیا ہے۔

اس مسلے کا ثبوت اس کتاب میں پیش نہیں کیا جائے گا۔

مساوات 24.124 کا ثبوت مساوات 24.118 اور مساوات 24.121 کی ثبوتوں کی طرح ہے۔ ہم 0 اور 1 کے 3 عدد γ نتخب کرتے ہیں۔ ضمیمہ جمیں جدول سے ایسے c_1 اور c_2 کی حاصل کریں جو درج ذیل (مساوات 24.123) کو مطمئن کرتے ہوں۔

$$P(Y \le c_1) = F(c_1) = \frac{1}{2}(1 - \gamma), \quad P(Y \le c_2) = F(c_2) = \frac{1}{2}(1 + \gamma)$$

24.14. وقف اعتماد

تفریق سے

$$P(c_1 \le Y \le c_2) = P(Y \le c_2) - P(Y \le c_1) = \gamma$$

حاصل ہوتا ہے۔ مساوات 24.133 میں دیے Y سے $c_2 \leq C_2$ تبادلہ سے σ^2 کی عدم مساوات عاصل کرتے ہوئے ہم

$$\frac{n-1}{c_2}S^2 \le \sigma^2 \le \frac{n-1}{c_1}S^2$$

 S^2 ما ما کرتے ہیں۔مشاہدے سے حاصل S^2 کی قیمت S^2 کرتے ہوئے مساوات 24.124 حاصل ہو گا۔

دیگر تقسیمات کی اوسطاور تغیریت کے وقفہ اعتماد

دیگر تقسیمات کے لئے بھی ہم وقفہ اعتاد کو جدول 24.8، جدول 24.9 اور جدول 24.10 سے حاصل کر سکتے ہیں، پس نمونوں کی جسامت بڑی رکھنی ہو گی۔یہ درج ذیل مسئلہ کہتا ہے۔

مسّله 24.23: (مسئله وسطى حد)

فرض کریں کہ X_1, \cdots, X_m, \cdots غیر تابع بلا منصوبہ متغیرات ہیں جن کی تقسیم ایک جبیبی ہے لہذا ان کی $Y_n = X_1 + \cdots + X_n$ اوسط μ ایک جبیبی ہو گی اور ان کی تغیریت σ^2 ایک جبیبی ہو گی۔ فرض کریں کہ متغیر σ^2 ایک جبیبی ہو گی۔ فرض کریں کہ متغیر

$$(24.134) Z_n = \frac{Y_n - n\mu}{\sigma\sqrt{n}}$$

متقاربی عمومی 144 ہو گا جس کی اوسط 0 اور تغیریت 1 ہو گی، لیمنی Z_n کا تفاعل تقسیم $F_n(x)$ درج ذیل کو مطمئن کرے گا

$$\lim_{n\to\infty} F_n(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du$$

جس کا ثبوت اس کتاب میں پیش نہیں کیا جائے گا۔

ہم جانتے ہیں کہ اگر X_1,\cdots,X_n غیر تابع بلا منصوبہ متغیرات ہوں جن کی ایک جیسی اوسل μ اور ایک جیسی تغیریت σ^2 ہو، تب ان کے مجموعہ σ^2 ہیں σ^2 کے درج ذیل خواص ہوں گے۔

asymptotically normal¹⁴⁴

- (الف) X کی اوسط $n\mu$ اور تغیریت $n\sigma^2$ ہو گی (مسئلہ 24.16 اور مسئلہ 24.18)۔
 - (ب) اگریه متغیرات عمومی ہوں تب X مجمی عمومی ہو گا (مسله 24.19)۔

ا گریہ متغیرات عمومی نہ ہوں تب مذکورہ بالا شق-ب درست نہیں ہو گا، البتہ بڑی n کی صورت میں X تخمیناً عمومی (مسئلہ 24.23) ہو گا اور یہی وجہ ہے کہ n کی قیمت بڑی لیتے ہوئے ان تراکیب کو دیگر تقسیمات کے لئے بھی استعال کیا جا سکتا ہے۔

سوالات

سوال 24.181: عمومی صورتوں میں نقطی اندازہ سے وقفی اندازہ کیوں زیادہ کار آمد ہوتے ہیں؟

سوال 24.182: 00 جسامت کا نمونہ جس کی اوسط 38.25 ہو استعال کرتے ہوئے عمومی آبادی جس کی تغیر بہت $\sigma^2 = 9$ ہے کی اوسط $\sigma^2 = 9$ ہے گی اوسط $\sigma^2 = 9$ ہو قفہ اعتماد تغیر بہت $\sigma^2 = 9$ ہے گی اوسط $\sigma^2 = 9$ ہو قفہ اعتماد تغیر بہت و

سوال 24.183: نمونی جسامت کو گھٹا کر 25 کرنے سے سوال 24.182 میں وقفہ اعتاد پر کیا اثر ہو گا؟ جواب: وقفہ اعتاد دگنا ہو جائے گا۔

موال 24.184: نمونہ 28,24,31,27,22 استعال کرتے ہوئے معیاری انحراف $\sigma=2.2$ والی عمومی آبادی کی اوسط کے لئے $\sigma=9.2$ وقفی اعتاد تعین کرس

سوال 24.185: اوسط 16.30 اور جسامت 290 والا نمونه استعال کرتے ہوئے شکل 24.20 کی مدد سے تغیر بہت $\sigma^2=0.36$ والی عمومی آبادی کی اوسط کے لئے $\sigma^2=0.36$ وقفی اعتباد تغین کریں۔ جواب: $\{16.21 \leq \mu \leq 16.39\}$

سوال 24.186: مساوات 24.118 میں % 95 وقفہ اعتماد کی لمبائی (الف) σ (ب) σ حاصل کرنے کے لئے درکار نمونی جسامت n تلاش کریں۔

سوال 24.187 تا سوال 24.191 میں فرض کریں کہ دیا گیا نمونہ عمومی آبادی سے حاصل کیا گیا ہے۔ آبادی کی اوسط μ کے لئے % 99 وقفہ اعتماد تعین کریں۔

24.14 و قف اعتب ا

325,320,325,335 :24.187 سوال $307 \le \mu \le 345$ عثاد

سوال 24.188: $\sigma^2 = 0.04 \, \mathrm{cm}^2$ قابلول کا نمونہ جس کی اوسط $\sigma^2 = 0.04 \, \mathrm{cm}^2$ اور تغیریت $\sigma^2 = 0.04 \, \mathrm{cm}^2$

124,127,126,122,124 عوال 124,127,126,122,124 عوال 124,127,126,122,124 عواب: $128.6 \leq \mu \leq 128.6$

سوال 24.190: پٹاور تا لاہور موٹروے پر بلا منصوبہ 500 گاڑیوں کو روک کر ان کے بریک پر کھے جاتے ہیں جن میں سے 87 گاڑیوں کے بریک کمزور ثابت ہوتے ہیں۔اس نمونہ کو استعال کرتے ہوئے موٹروے پر کمزور بریک والی گاڑیوں کی فی صد کے لئے % 95 وقفہ اعتاد تعین کریں۔

سوال 24.191: ثنائی تقسیم کی مقدار معلوم p کے لئے 99 وقفہ اعتماد تعین کریں۔ صفحہ 1554 پر جدول 24.6 کی آخری صف میں مشرف کے نتائج استعال کریں۔ جواب: $\{0.492 \leq p \leq 0.509\}$ اعتماد

سوال 24.192 تا سوال 24.192 میں عمومی آبادی سے نمونے حاصل کیے گیے ہیں۔آبادی کی تغیریت σ^2 کی %

سوال 24.192: 24.192، 145.3, 145.1, 145.4, 146.2

سوال 24.193: نمونی جسامت 30 اور تغیریت 0.0007 ہے۔ جواب: $\sigma^2 \leq 0.00127$ اعتماد

 $(kg cm^{-2})$ درجه حرارت کمره پر ایک مخصوص قشم کی دهات کی حتمی تنثی مضبوطی ($kg cm^{-2}$):

سوال 24.195: يورينيم U^{35} کی انشقاق سے پيدا تاخير کی نيوٹران گروہ (تيسرا گروہ جس کی نصف زندگی U^{35} . U^{35} .

CO کی رفتار سے سفر کرتے ہوئے ایک گاڑی کی فی کلومیٹر خارج کردہ $80 \,\mathrm{km}\,\mathrm{h}^{-1}$ کی رفتار ہوئے ایک گاڑی کی فی کلومیٹر خارج کردہ (گرام): 10.8, 11.1, 11.2, 11, 11.3, 10.8, 10.9, 11.2

جواب: تينول عمومي، اوسط 27,81,133 اور تغيريت 16,144,400 بول گــ

سوال 24.198: اگر X_1 اور X_2 غیر تابع عمومی بلا منصوبہ متغیرات ہوں جن کی اوسط بالترتیب 23 ، 4 اور تغیریت بالترتیب 3 ، 1 ہوں تب $X_1 - X_2$ کی تقسیم ، اوسط اور تغیریت کیا ہوں گے ؟

 $2 \, \mathrm{kg}$ سوال 24.200: اگر سیمنٹ کی بوری کی کمیت X عمومی متغیر ہو جس کی اوسط $40 \, \mathrm{kg}$ اور تغیریت $2 \, \mathrm{kg}$ ہو تب ایک ٹرک میں کتنی بوریاں رکھی جا سکتی ہیں تا کہ بوریوں کی کل کمیت کا $2000 \, \mathrm{kg}$ سے تجاوز کرنے کا احتمال $5 \, \mathrm{kg}$ ہو۔

24.15 قياس کي پر کھ-فيلے

بلا منصوبہ متغیر کی تقسیم کے بارے میں کچھ فرض کرنے کو شاریاتی قیاس ¹⁴⁵ کہتے ہیں۔مثال کے طور پر کسی تقسیم کے بارے میں بھر کہ اس کی اوسط 20.3 ہے شاریات قیاس ہو گا۔ایسا عمل جس سے ہم معلوم کر سکیس کہ آیا ہمارا قیاس ٹھیک ہے اور ہم اس کو منظور 146 کریں یا کہ یہ غلط ہے اور ہم اس کو نا منظور 147 کریں شاریاتی پرکھ 148 کہلاتا ہے۔

یہ پر کھ عموماً استعال کیے جاتے ہیں اور ہم جاننا چاہیں گے کہ یہ کیوں اہم ہیں۔ ہمیں عموماً ایسی صورتوں میں فیصلہ کرنا ہوتا ہے جہاں امکانی تبدیلیاں عمل پیرا ہوتی ہیں۔مثال کے طور پر اگر ہمیں دو ممکنات میں سے ایک کو چننا ہو، ہمارا فیصلہ کسی شاریاتی پر کھ پر منحصر ہو سکتا ہے۔

hypothesis¹⁴⁵

accept, not reject $^{146}\,$

reject¹⁴⁷

test¹⁴⁸

مثال کے طور پر اگر ہمیں ایک خراد کی مثین پر قابلے بنانا ہو جن کی قطر مخصوص حدود میں رہنا ضرور کی ہو اور ہم چاہتے ہیں کہ زیادہ سے زیادہ 2% قابلوں سے 100 قابلوں کا نمونہ حاصل کرتے ہوئے قیاس $\sigma^2 = \sigma_0^2$ کو پر کھ کر دیکھیں گے کہ آیا مطابقی آباد کی گی تغیریت σ^2 کنمونہ حاصل کرتے ہوئے قیاس $\sigma^2 = \sigma_0^2$ کو پول منتخب کیا جاتا ہے کہ زیادہ سے زیادہ σ^2 قابلے عیب دار حاصل مخصوص قیمت $\sigma^2 = \sigma_0^2$ کو بول منتخب کیا جاتا ہے کہ زیادہ سے زیادہ $\sigma^2 = \sigma_0^2$ کو منظور کرتے ہوئے ہوں۔ اس کا متبادل پر کھ $\sigma^2 = \sigma_0^2$ ہے۔ ہم پر کھ کے متیجہ کو دیکھ کر قیاس $\sigma^2 = \sigma_0^2$ کو منظور کرتے ہوئے اس خراد کو استعمال کرتے ہیں یا ہم اس کو نا منظور کرتے ہوئے کہتے ہیں کہ $\sigma^2 > \sigma_0^2$ ہے اور اس سے بہتر خراد استعمال کرتے ہیں یا ہم اس کو نا منظور کرتے ہوئے کہتے ہیں کہ $\sigma^2 = \sigma^2$ کا معنی خیز انجراف قیاباتا ہے، استعمال کرتے ہیں۔ نا نہیں ہے بلکہ خراد کی ناقص پن کی وجہ سے ہے۔

ہو سکتا ہے کہ کسی دوسری جگہ پر ہمیں دو چیزوں کا آپس میں موازنہ کرنا ہو، مثلاً، دو ادویات، ایک کام سرانجام دینے کے دو تراکیب، ناپنے کے دو طریقے، دو مثینوں پر بنائے گئے چیزوں کی معیار، وغیرہ وغیرہ۔ موزوں پر کھ کے نتیجہ کے تحت ہم ایک دوائی کو منتخب کریں گے، کام کرنے کی بہتر ترکیب منتخب کریں گے، وغیرہ۔

قیاس عمومی درج ذیل سے حاصل ہو گا۔

- ضرورت معیاری پیداوار سے قیاس پیش کیا جا سکتا ہے۔ (سخت نگرانی اور احتیاط کے ساتھ زیادہ تعداد کی چیزیں پیدا کرنے سے قابل حصول معیار کے بارے میں تجربہ حاصل ہوتا ہے۔)
 - گزشتہ تجربہ سے حاصل معلوم قیتوں پر قیاس منحصر ہو سکتا ہے۔
 - قیاس ایک نظریہ پر مبنی ہو سکتا ہے جس کو آپ پر کھنا چاہتے ہیں۔
 - بعض او قات اتفاقی مشاہدے پر قیاس مبنی ہو سکتا ہے۔

آئیں ایک تعارفی مثال سے شروع کرتے ہیں۔

مثال 24.22: قياس كا پركھ

ایک بچہ پیدا ہونے کو بلا منصوبہ تجربہ تصور کیا جا سکتا ہے جس کے دو مکنہ انجام ہیں، یعنی لڑکا B اور لڑکی G ۔ وجدانی طور پر ہم قیاس کر سکتے ہیں کہ دونوں کا اختال ایک جیسا ہو گا البتہ کچھ لوگوں کا متبادل قیاس ہے کہ نو زائدہ

significant deviation 149

یچوں میں لڑکوں کی تعداد زیادہ ہوتی ہے۔ہم قیاس کو پر کھنا چاہتے ہیں۔اگر ہم انجام B کے اختمال کو p سے ظاہر کریں تب ہم قیاس 0.5=9=50 کو پر کھا جا سکتا ہے۔متبادل قیاس 0.5=9>0 کو بھی پر کھا جا سکتا ہے۔متبادل قیاس کرتے ہیں۔

اں پر کھ کے لئے ایک شہر میں ایک سال میں پیدا بچوں سے ہم n=3000 نمونہ منتخب کرتے ہیں جن میں سے 1578 گڑے ہیں۔

اگر قیاس درست ہو تب n=3000 کی نمونہ میں اوسطاً تقریباً 1500 نو زائدہ لڑکے متوقع ہوں گے۔اگر متبادل درست ہو تب n=1500 سے اوسطاً زائد لڑکے متوقع ہوں گے۔یوں اگر حقیقتاً نو زائدہ لڑکوں کی تعداد n=1500 سے بہت زیادہ ہو تب ہم اس کو قیاس غلط ہونے کی نثانی تصور کرتے ہوئے قیاس کو نا منظور کریں گے۔

c ہم سب سے پہلے ایک فاصل قیمت c متعین کرتے ہیں۔ متبادل کی بنا c کی قیمت 1500 سے زیادہ ہو گا۔ c تعین کرنے کا ایک طریقہ پنچ پیش کیا گیا ہے۔) تب نو زائد لڑکوں کی تعداد c سے زیادہ ہونے کی صورت میں ہم قیاس کو نا منظور کریں گے۔ اور اگر نو زائد لڑکوں کی تعداد c سے زیادہ نہ ہو تب ہم قیاس کو منظور کریں گے۔

اب ہمیں c کی ایکی قیمت منتخب کرنی ہو گی جو معمولی بلا منصوبہ انحراف اور زیادہ معنی خیز انحراف میں تمیز کرے۔ ہر شخص کی اپنی ایک منفر درائے ہو سکتی ہے لیکن ہمیں حسابی دلائل کے تحت چلنا ہو گا جو موجودہ صورت میں بہت سادہ ہیں (جیسے آپ اب دیکھیں گے)۔

 $X = \sum_{i=1}^{n} X_{i} X_{i}$ کی 3000 پیدائشوں میں لڑکوں کی تعداد

یہ فرض کرتے ہوئے قیاں درست ہے ہم c کی فاصل قیت کو درج ذیل کلیہ سے حاصل کرتے ہیں $P(X>c)_{p=0.5}=\alpha=0.01$

c جہال مفروضے کو زیر نوشت میں p=0.5 سے ظاہر کیا گیا ہے۔اگر لڑکوں کی حقیقی تعداد 1578 منتخب p=0.5 سے زیادہ ہو تب ہم قیاس کو منظور کریں گے۔اگر 0.5 ہو تب ہم قیاس کو منظور کریں گے۔

c=1564 غيل 24.22: درست قياس کي صورت مين X کي تخميني تقتيم (مثال 24.22)۔ فاصل قيت 2564 = =

مساوات 24.135 سے c حاصل کرنے کی خاطر ہمیں c کی تقسیم معلوم ہونی چاہیے۔ موجودہ مثال کے لئے n=300 اور n=300 اور n=300 اور n=300 تنائی تقسیم کافی درست ہے۔ یوں اگر قیاس درست ہو تب ثنائی تقسیم میں c کی c اوسط c اور تغیر بیت ہوں گے۔اس تقسیم کو تخمینی طور پر ایسی عمومی تقسیم سے ظاہر کیا جا سکتا ہے جس کی اوسط c اور تغیر بیت c ورحد c ورحد c این آسانی کی خاطر مساوات c 24.78 میں جزو c کو رد کرتے ہیں۔) تقسیم کی منحنی کو شکل 24.22 میں دکھایا گیا ہے۔ مساوات 24.135 استعمال کرتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$P(X > c) = 1 - P(X \le c) \approx 1 - \Theta\left(\frac{c - 1500}{\sqrt{750}}\right) = 0.01$$

1578>c جو گا۔ چونکہ c=1564 ماصل ہوتا ہے لہذا $\frac{c-1500}{\sqrt{750}}=2.326$ ہو گا۔ چونکہ $\frac{c-1500}{\sqrt{750}}=2.326$ ہے۔ لہذا ہم قیاس کو نا منظور کرتے ہوئے فیصلہ کرتے ہیں کہ p>0.5 ہے۔ لیاں پر کھ مکمل ہوتا ہے۔

300 کے نمونہ کے لئے مساوات 24.135 میں X کو 300 پیدائشوں میں لڑکوں کی تعداد لیتے ہوئے فاصل قیمت c=170 میں ہوگی اور نمونہ میں 158 (جو وہی فی صد ہے جو بڑی جسامت کے نمونہ میں تھی) لڑکے ہونے کی صورت میں c=170 ماصل ہو گا اور ہم قیاس کو منظور کریں گے۔یہ ایک دلچیپ صورت حال ہے جس سے یہ حقیقت اجا گر ہوتی ہے کہ پر کھ کی افادیت نمونی جسامت n بڑھانے سے بڑھتی ہے۔ہمیں n اتنا n بڑا لینا ہو گا کہ عملی صورت میں زیر غور متغیر کے بارے میں درست نتائج حاصل ہوں۔ساتھ ہی ساتھ n زیادہ بڑا بھی نہیں ہونا چاہیے تا کہ وقت اور سرمایہ کا ضیاع نہ ہو۔عموماً صور توں میں پہلے چھوٹا تجربہ کرتے ہوئے بہتر n کو تعین کرنا ممکن ہو گا۔

متبادل کا تصور _ متبادل کی قشمیں

جس قیاس کو پر کھا جا رہا ہو اس کو پسندیدہ قیاس 150 کہتے ہیں اور اس کا مخالفانہ قیاس (مثلاً مثال 24.22 میں 152 بیں مناور 152 کے متبادل قیاس 152 یا مختصراً تبادل کہتے ہیں۔ عدد α (یا 80 کا معنی خیز سطح 153 کہتے ہیں جبکہ α فاصل قیمت 153 کہلاتا ہے۔ جس خطے میں وہ قیمتیں پائی جاتی ہوں جن کے لئے قیاس کو نا منظور کیا جاتا ہے، اس خطے کو خطہ نا منظوری 154 یا خطہ فاصل 155 کہتے ہیں۔ وہ خطہ جس میں پائے جانے والی قیمتوں کے لئے قیاس کو منظور کیا جاتا ہے۔ α کو عموماً α α α α منظور کیا جاتا ہے۔

فرض کریں کہ ایک تقسیم میں مقدار معلوم θ کی قیت نامعلوم ہے۔فرض کریں کہ ہم قیاس $\theta=\theta$ کو پر کھنا $\theta=\theta$ کو پر کھنا $\theta=\theta$ کو پر کھنا $\theta=\theta$ کو پر کھنا ہے ہیں۔

(24.136)	$\theta > \theta_0$
(24.137)	$\theta < \theta_0$

$$(24.138) \theta \neq \theta_0$$

مساوات 24.136 اور مساوات 24.137 کو یک طرفہ متبادل 157 جبکہ مساوات 24.138 کو دو طرفہ متبادل $\theta_0=p>0.5$ اور 24 و یک طرفہ متبادل 27 جباں 27 جباں مثال 24.22 میں دو طرفہ متبادل پر غور کیا گیا (جبال 27 جبال 27 و اور 27 کی دائیں جانب 27 بایا جاتا ہے اور خطہ نا منظور 27 سے لے کر 27 ہو گا اور اس پر کھ کو دایاں طرفہ پر کھ پر کھ 27 کھی ہو گا ور اس پر کھ کو بایاں طرفہ پر کھ کہیں گے۔ان دونوں قسم کے پر کھ کو یک طرفہ 27 کی ہو گیا اور اس پر کھ کو بایاں طرفہ پر کھ کہیں گے۔ان دونوں قسم کے پر کھ کو یک طرفہ پر کھ کہتے ہیں۔مساوات 24.138 کی صورت میں ہمارے پاس دو فاصل قیمتیں 27 اور 27 ہوں گی اور خطہ نا منظور کی 27 ہوں گیا اور پر کھ کو دو طرفہ پر کھ کہیں گے۔

تینوں اقسام کے متبادل عملًا اہم ہیں۔ مثال کے طور پر مساوات 24.137 مادہ کی مضبوطی کی پر کھ میں ہمیں پیش آ سکتا ہے جہاں θ_0 درکار مضبوطی ہو سکتی ہے جبکہ متبادل غیر پہندیدہ کمزوری کو ظاہر کرے گا۔درکار قیمت سے زیادہ

default hypothesis¹⁵⁰

alternative hypothesis 151

significant level 152

critical value¹⁵³

rejection region¹⁵⁴

critical region 155

acceptance region 156

one-sided alternatives 157

two-sided alternative 158

right-sided test 159

شكل 24.23: مساوات 24.136 كى متبادل (بالا كى شكل)، مساوات 24.137 كى متبادل (در ميانى شكل)اور مساوات 24.138 كى متبادل (پچلى شكل) كى صورت مين پر كھ

مضبوطی کی صورت میں مادہ منظور کیا جائے گا للذااس کو علیحدہ سے پر کھنے کی ضرورت نہیں ہو گی۔ مساوات 24.138 الیی صورت میں اہم ہو گا جیسے دھرا کی قطر جہاں ، ھی درکار قطر کو ظاہر کرے گا جبکہ اس سے کم یا زیادہ موٹائی دونوں برابر مسئلہ خیز ہوں گے لہٰذا درکار موٹائی کے دونوں جانب انحراف پر نظر رکھنا ضروری ہو گا۔

پر کھ میں غلطیوں کے اقسام

ہم اب متبادل، جس کو ہم اپنی آسانی کی خاطر واحد عدد θ_1 تصور کرتے ہیں، کے لحاظ سے قیاس $\theta=0$ ک پر کھ سے غلط فاصلوں کے خطرات پر غور کرتے ہیں۔ فرض کریں $\theta_1>\theta_0$ ہے لہٰذا ہمارے پاس دایاں طرفہ پر کھ سے خلط فاصلوں کے خطرات پر کھ کے لئے بھی صورت حال ایسا ہی ہوگا۔) دیے گیے نمونہ x_1, \dots, x_n بر کھ ہو گا۔ (بایاں طرفہ یا دو طرفہ پر کھ کے لئے بھی صورت حال ایسا ہی ہوگا۔) دیے گیے نمونہ $\hat{\theta}=g(x_1,\dots,x_n)$ ہو تب قیاس کو نا منظور کیا جاتا ہے ہم قیمت کو بلا منصوبہ متغیر رحیسا مثال 24.22 میں کیا گیا)۔ اگر $\hat{\theta}=g$ ہو تب قیاس کو منظور کیا جاتا ہے۔ $\hat{\theta}$ کی قیمت کو بلا منصوبہ متغیر

$$\widehat{\Theta} = g(X_1, \cdots, X_n)$$

کی مشاہدے سے حاصل قیمت تصور کیا جا سکتا ہے چونکہ x_j کو X_j کی مشاہدے سے حاصل قیمت تصور کیا جا سکتا ہے، جہال $j=1,\cdots,n$ ہیں۔ سکتا ہے، جہال $j=1,\cdots,n$

ي قشم كاخلل) کی بر کھ میں پہلی اور دوسر ا	$ heta= heta_0$ کے لحاظ سے قیاس $ heta= heta_0$	$ heta= heta_1$ متبادل $ heta= heta_1$	حدول 24.11:
			$-v_1$	جررن ۱۰۱۱ ۵۰

		نا معلوم حقیقت			
		$\theta = \theta_0$	$\theta = \theta_1$		
÷	$\theta = \theta_0$	طیک فیملہ $P = 1 - \alpha$	P=etaدوسری قشم کا خلل $P=eta$		
5 , _	$\theta = \theta_1$	$P = \alpha$ کا خلل	ر طیک فیملہ $P = a - \beta$		

غلطى فتسم اول

جدول 24.11 میں پر کھ درست ہے لیکن Θ قیمت $\widehat{\theta}>c$ اختیار کرتا ہے جس کی بنا اس پر کھ کو نا منظور کیا جاتا ہے (لہٰذا متبادل کو منظور کیا جاتا ہے) ظاہر ہے کہ الیمی غلطی کا اختال

$$(24.139) P(\widehat{\Theta} > c)_{\theta = \theta_0} = \alpha$$

ہو گا جو معنی خیز سطح کے برابر ہے۔

غلطى فتىم دوم

جدول 24.11 پر نظر رکھیں۔ قیاس غلط ہے لیکن اس کو منظور کیا جاتا ہے، چونکہ $\widehat{\Theta}$ قیمت $\widehat{\theta} \leq c$ اختیار کرتا ہے۔ ایس غلطی کرنے کے احتمال کو eta سے ظاہر کیا جاتا ہے؛ للذا

$$(24.140) P(\widehat{\Theta} \le c)_{\theta=\theta_1} = \beta$$

ہو گا۔ eta=1-eta کو پر کھ کی طاقت 160 کہتے ہیں جو نظطی کی قسم دوم سے بچنے کا اختمال ہے۔

مساوات 24.139 اور مساوات 24.140 سے ظاہر ہے کہ α اور β دونوں α پر منحصر ہیں اور ہم چاہیں گ کہ ہم ایسا α منتخب کریں کہ غلطیاں کرنے کے احتمال کم سے کم ہوں۔البتہ شکل 24.24 سے ظاہر ہوتا ہے کہ یہ متصادم ضروریات ہیں۔ α گھٹانے کی خاطر α کو دائیں منتقل کرنا ہو گا جس سے β بڑھتا ہے۔ حقیقت میں ہم α (6 یا 6) منتخب کر α تعین کرتے ہیں اور آخر میں α کا حساب کرتے ہیں۔ اگر α بڑی α وجہ جلد سامنے آگ گی α جو جس سے طاقت α α وجہ جلد سامنے آگ گی α کر پر کھ دہرانا چاہیے۔

 $power^{160}$

شكل 24.24: قياس heta= hetaبالمقابل متبادل $heta= heta_1 \, (> heta_0)$ ير كه مين قسم اول اور دوم غلطيون كي وضاحت

اگر متبادل واحد عدد نه ہو بلکه مساوات 24.136 تا مساوات 24.138 کی طرح ہو تب β نفاعل ہو گا جو θ کا تالیع ہو گا۔ نفاعل β کو پر کھ کی خاصیت کارکر دگی δ افران اس کی منحنی کو منحنی خاصیت کارکر دگی δ کہتے ہیں۔ فرا سر ہے کہ ایک صورت میں δ δ بیک δ بیک δ کے تابع ہو گا اور نفاعل δ کو پر کھ کا نفاعل طاقت δ کہتے ہیں۔ δ کہتے ہیں۔

ظاہر ہے کہ ایسی پر کھ جس کی بنا کوئی قیاس طور ہو سے یہ ظاہر نہیں ہوتا کہ یہی سب سے بہتر یا واحد قیاس ہے۔یوں لفظ "منظور" کی جگہ "نا منظور نہ کرنا" کہنا زیادہ بہتر ہو گا۔

عمومی تقسیم کی صورت میں پر کھ

درج ذیل مثال عملًا اہم قیاس کے پر کھ کی وضاحت کرتا ہے۔

مثال 24.23: (معلوم تغیریت کی عمومی نقسیم کی اوسط کا پرکھ) $\sigma^2 = 0$ بنامت $\sigma^2 = 0$ سیتے ہوئے فرض کریں کہ $\sigma^2 = 0$ بیامت $\sigma^2 = 0$ بیتے ہوئے قیاس $\sigma^2 = 0$ کو درج ذیل تین متبادل کے بالمقابل پر کھیں۔ $\sigma^2 = 0$ بیامتابل پر کھیں۔

(پ)
$$\mu \neq \mu_0$$
 (ب) $\mu < \mu_0$ (لف) $\mu > \mu_0$

operating characteristic ¹⁶¹ power function ¹⁶²

 $^{(24.25)}$ العناقت $\eta(\mu)$ مثال 24.23 الف (نقطه دار خط) اور پ (تهوس خط)

lpha علی نیز سطح lpha=0.05 منتخب کرتے ہیں۔اوسط کی اندازاً قیمت درج ذیل سے حاصل ہو گا۔

$$\overline{X} = \frac{1}{n}(X_1 + \cdots, X_n)$$

$$P(\overline{X} \le c)_{\mu=24} = \Phi\left(\frac{c-24}{\sqrt{0.9}}\right) = 1 - \alpha = 0.95$$

ضمیمہ ہے کی جدول 8۔ جو سے μ_0 ہوتا ہے جو ماصل ہوتا ہے جو گئیت $\frac{c-24}{\sqrt{0.9}} = 1.645$ ہے بڑی قیمت ہے (اور جو شکل 24.23 میں سب سے اوپر دکھائی گئی صورت ہے)۔ اگر $\overline{x} \leq 25.56$ ہو تب قیاس کو منظور کیا جائے گا۔ اگر $\overline{x} > 25.56$ ہو تب قیاس کو نا منظور کیا جائے گا۔ پر کھ کی طاقت درج ذیل ہو گی (شکل 24.25 الف)۔ الگ

(24.141)
$$\begin{split} \eta(\mu) &= P(\overline{X} > 25.56)_{\mu} = 1 - P(\overline{X} \le 25.56)_{\mu} \\ &= 1 - \Phi\Big(\frac{25.56 - \mu}{\sqrt{0.9}}\Big) = 1 - \Phi(26.94 - 1.05\mu) \end{split}$$

صورت ب: فاصل قیمت c کو درج ذیل مساوات سے حاصل کیا جا سکتا ہے۔

$$P(\overline{X} \le c)_{\mu=24} = \Phi\left(\frac{c-24}{\sqrt{0.9}}\right) = \alpha = 0.05$$

ضمیمہ ہو کی جدول 8.ہ ہے ہے $\overline{x} \geq 22.44$ ماتا ہے۔اگر c = 24 - 1.56 = 22.24 ہو تب ہم قیاں کو منظور کرتے ہیں۔ پر کھ کی طاقت درج ذیل ہے۔ کرتے ہیں۔ پر کھ کی طاقت درج ذیل ہے۔

(24.142)
$$\eta(\mu) = P(\overline{X} \le 22.44)_{\mu} = \Phi\left(\frac{22.44 - \mu}{\sqrt{0.9}}\right) = \Phi(23.65 - 1.05\mu)$$

صورت پ: چونکہ عمومی تقسیم تشاکلی ہے، ہم $\mu=24$ سے c_1 اور c_2 کو ایک جیسے فاصلے پر چن کر، مثلاً مثلاً $c_1=24-k$ اور $c_2=24+k$ اور $c_1=24-k$

$$P(24 - k \le \overline{X} \le 24 + k)_{\mu=24} = \Phi\left(\frac{k}{\sqrt{0.9}}\right) - \Phi\left(-\frac{k}{\sqrt{0.9}}\right) = 1 - \alpha = 0.95$$

$$\eta(\mu) = P(\overline{X} < 22.14)_{\mu} + P(\overline{X} > 25.86)_{\mu}$$

$$= P(\overline{X} < 22.14)_{\mu} + 1 - P(\overline{X} \le 25.86)_{\mu}$$

$$= 1 + \Phi\left(\frac{22.14 - \mu}{\sqrt{0.9}}\right) - \Phi\left(\frac{25.86 - \mu}{\sqrt{0.9}}\right)$$

$$= 1 + \Phi(23.34 - 1.05\mu) - \Phi(27.26 - 1.05\mu)$$

$$- \mathcal{J}_{\mathcal{S}} = \mathcal{J}_{\mathcal{S}} =$$

شکل 24.26: دومختلف جسامت 11 کے لئے خاصیت کار کر دگی کے منحنیات۔ (مثال 24.23-پ)

مثال 24.24: نا معلوم تغيريت كي عمومي تقسيم كي اوسط كا پركھ

رس کی تنثی مضبوطی $\overline{x}=4482\,\mathrm{kg}$ اور نمونی معیار کی $\overline{x}=4482\,\mathrm{kg}$ اور نمونی معیار کی $\overline{x}=4482\,\mathrm{kg}$ اور نمونی معیار کی $\overline{x}=115\,\mathrm{kg}$ انتخراف $s=115\,\mathrm{kg}$ معیار کی $s=115\,\mathrm{kg}$ انتخراف $s=115\,\mathrm{kg}$ معیار کی کی معیار کی معیار کی کی معیار کی کی معیار کی کی معیار کی کی معیار ک

عل: ہم معنی خیز سطح $\alpha = 5$ منتخب کرتے ہیں۔اگر قیاس درست ہو تب مسکلہ 24.21 کے تحت بلا منصوبہ منتخبر

$$T = \sqrt{n} \ \frac{\overline{X} - \mu_0}{S} = 4 \ \frac{\overline{X} - 4500}{S}$$

کا ہو گا۔ فاصل قیت c کو درج ذیل مساوات سے حاصل کیا جائے n-1=15 درج ویل مساوات سے حاصل کیا جائے گا۔

$$P(T < c)_{\mu_0} = \alpha = 0.05$$

t= خمیمہ ہے کی جدول 10. ہو ہے c=-1.75 حاصل ہو گا۔ نمونہ ہے c=-1.75 کی مشاہدہ سے حاصل قیمت فیمیمہ ہے کی جدول c=-1.75 ہیں۔ پر کھ c=-1.75 ہیں۔ پر کھ c=-0.626 ہیں کہ ہے۔ ہم دیکھتے ہیں کہ c=-0.626 کی طاقت کی اعدادی قیمتیں حاصل کرنے کی خاطر ہمیں مزید جدول بند قیمتیں درکار ہوں گی جن پر اس کتاب میں غور نہیں کیا جائے گا۔

مثال 24.25: (عمومی تقسیم کی تغیریت کی پرکھ) مثال $\sigma^2 = \sigma_0^2 = 10$ جسامت اور نمونی تغیریت $\sigma^2 = \sigma_0^2 = 10$ کو $\sigma^2 = \sigma_0^2 = 10$ کو میری آبادی کے $\sigma^2 = \sigma_0^2 = 10$ جسامت اور نمونی تغیریت $\sigma^2 = \sigma_0^2 = 10$ کو میری آبادی کے نمونہ سے قیاس

متباول $\sigma^2 = \sigma_1^2 = 20$ میں مقالے میں پر کھیں۔ حل: ہم معنی خیز سطح $\alpha = 5$ نتخب کرتے ہیں۔ اگر قیاس درست ہو تب

$$Y = (n-1)\frac{S^2}{\sigma_0^2} = 14\frac{S^2}{10} = 1.4S^2$$

کا مربع خاتشیم n-1=1 درجه آزادی کا ہو گا (مسکلہ 24.22)۔ضمیمہ ج کی حدول 11.ج اور درج ذیل سے رجہ آزادی کے لئے c = 23.68 حاصل ہو گا

$$P(Y > c) = \alpha = 0.05$$
 \Longrightarrow $P(Y \le c) = 0.95$

 $c^* = 0.714 \cdot 23.68 =$ يو کا مطابقتی فاصل قيت ہے۔يوں $S^2 = rac{\sigma_0^2 Y}{n-1} = 0.714 Y$ يو فاصل قيت ہے۔يوں $S^2 = rac{\sigma_0^2 Y}{n-1} = 0.714 Y$ يو فاصل قيت ہے۔يوں ہو گا۔ چونکہ c^* ہے ہم قباس کو نا منظور نہیں کرتے ہیں، $s^2 < c^*$

اگر متبادل درست ہو تب متغیر

$$Y_1 = 14 \frac{S^2}{\sigma_1^2} = 0.7S^2$$

کے مربع خاتقسیم کا درجہ آزادی 14 ہو گا۔یوں ہمارے پر کھ کی طاقت

$$\eta = P(S^2 > c^*)_{\sigma^2 = 20} = P(Y_1 > 0.7c^*)_{\sigma^2 = 20} = 1 - P(Y_1 \le 11.84)_{\sigma^2 0} \approx 62\%$$

ہو گی اور ہم دیکھتے ہیں قشم دوم غلطی کا امکان (جو % 38 ہے) بہت زیادہ ہے جس کو کم کرنے کے لئے نمونی جسامت بڑھانی ضروری ہے۔

مثال 24.26: دو عمومی تقسیمات کی تغیریت کا آپس میں موازنہ نامعلوم اوسط μ_2 کی عمومی تقسیم کا نمونہ x_1, \dots, x_{n1} اور دوسری عمومی تقسیم کی اوسط μ_2 نامعلوم ہو کا نمونہ $\mu_1>\mu_2$ استعال کرتے ہوئے ہم قیاس $\mu_1=\mu_2$ کو متبادل مثلاً y_1,\cdots,y_{n2} مقابلے میں پر کھنا چاہتے ہیں۔ تغیرات جاننا ضروری نہیں ہے لیکن انہیں ایک جبیبا¹⁶³ تصور کیا جاتا ہے۔ دو صور تیں عملًا اہم یں پہلی صودت: نمونوں کی جیامت ایک جیسی ہے۔مزید پہلے نمونہ کی ہر قیت کا دوسرے نمونہ میں مطابقتی ٹھیک ایک قیت

¹⁶³ اگرا کھے مثال کاپر کھ واضح کرے کہ تغیرات میں واضح فرق پایاجاتا ہے تب ایک جیسے اسے اس ء مثلاً ہو کے استخبار کرتے ہوئے اس حقیقت کو استعمال کرتے ہوئے کہ مساوات تخیناً عمومی بلامنصوبہ متغیر، جس کی اوسط 0 اور تغیریت 1 ہے، کی مشاہد ہے ہے حاصل قیت ہے،اور مثال 24.23 کی طرزیر حل کری۔

پایا جاتا ہے، چونکہ مطابقتی قیمتیں ایک ہی انسان یا چیز کی بدولت پائی جاتی ہیں (جوڑی دار موازنہ 164) بمثال کے طور پر ایک ہی چیز کی دو آئھوں کی ناپ، یا زیادہ عمومی طور پر جہاں ہم کہہ سکتے ہیں کہ نمونوں کی جوڑی قیمتیں ایک جیسے انسانوں یا چیزوں (مثلاً جڑواں بھائی، گاڑھی کے اگلے ٹائر، وغیرہ) سے حاصل کی گئی ہوں۔ تب ہم مطابقی قیمتوں کا فرق لے کر، مثال 24.24 میں دی ترکیب استعال کرتے ہوئے، اس قیاس کو پر کھیں گے کہ ان فرق کی مطابقی آبادی کی اوسط 0 ہے۔ اگر ممکن ہو تب ہم اسی ترکیب کو استعال کریں گے ورنہ ہمیں درج ذیل ترکیب استعال کرنی ہو گی۔

دوسوی صورت: دونوں نمونے غیر تابع ہیں اور ان کی جسامت مختلف ہو سکتی ہے۔ تب ہم درج ذیل طریقے سے \overline{x} ہوسوی صورت: دونوں نمونے غیر تابع ہیں اور ان کی جسامت مختلف ہو سکتی ہیں۔ ہم نمونی اوسط \overline{x} ہوسے ہیں۔ فرض کریں کہ متبادل \overline{x} ہوں ہیں۔ ہم معنی خیز سطح \overline{x} اور \overline{x} اور \overline{x} نمونی تغیریت ہیں۔ ضمیمہ ہوگی جدول \overline{x} اور \overline{x} میں جہاں \overline{x} اور \overline{x} میں جہاں ہوئے ہم کی جدول \overline{x} ہوں ہوئے ہم کی جو کے ہم کی جو کہ جس کی جو کہ ہم کی جو کہ ہم کی جو کہ ہم کی کو خواند کی جانب کی جو کہ ہم کی کو کو کی خواند کی جانب کی خواند کی خواند کی خواند کی خواند کی خواند کی کو کو کی خواند کی خوان

(24.144)
$$P(T < c) = 1 - \alpha$$

سے تعین کرتے ہیں۔آخر میں ہم درج ذیل کا حساب کرتے ہیں۔

(24.145)
$$t_0 = \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \frac{\overline{x} - \overline{y}}{\sqrt{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}}$$

یہ وکھایا جا سکتا ہے کہ اگر قیاس درست ہو تب ہے t تقسیم کے n_1+n_2-2 درجہ آزادی کے بلا منصوبہ $t_0>c$ متغیر کی مشاہدے سے حاصل قیمت ہے۔اگر $t_0>c$ ہو تب قیاس کو نا منظور نہیں کیا جاتا ہے۔اگر $t_0>c$ ہو تب قیاس کو نا منظور کیا جاتا ہے۔

اگر متبادل $\mu_1
eq \mu_2$ ہو تب مساوات 24.144 کی جگہ درج ذیل استعال کیا جائے گا۔

(24.144*)
$$P(T \le c_1) = 0.5\alpha, \quad P(T \le c_2) = 1 - 0.5\alpha$$

درج کہ ایک جیسی نمونی جسامت $n_1=n_2=n$ کے لئے مساوات 24.145 درج ذیل صورت اختیار کرتی ہے۔

(24.146)
$$t_0 = \sqrt{n} \ \frac{\overline{x} - \overline{y}}{\sqrt{s_1^2 - s_2^2}}$$

paired comparison 164

اس کی وضاحت کے لئے آئیں درج ذیل دو نمونوں پر غور کرتے ہیں جو دو مختلف حالات میں ایک ہی کام پر مزدور کی کار کردگی ہے۔

فرض کریں کہ مطابقتی آبادی عمومی ہے اور ان کی تغیریت ایک جیسی ہے۔آئیں قیاس $\mu_1=\mu_2$ کو متبادل $\mu_1=\mu_2$ کی مقابلے میں پر کھیں۔ (تغیریت کی ایک جیسا ہونے کو اگلی مثال میں استعمال کیا جائے گا۔) حل: ہم درج ذیل حاصل کرتے ہیں۔

$$\overline{x} = 105.125$$
, $\overline{y} = 97.500$, $s_1^2 = 106.125$, $s_2^2 = 84.000$

 $1-0.5\alpha=$ ، $0.5\alpha=2.5\%$ معنی خیز سطح $\alpha=5\%$ منتخب کرتے ہیں۔ مساوات 24.144* میں $\alpha=5\%$ اور $\alpha=5\%$ ماصل $\alpha=5\%$ اور $\alpha=5\%$ ماصل $\alpha=5\%$ اور $\alpha=5\%$ ماصل $\alpha=5\%$ ماصل ہوتی ہے۔ $\alpha=6\%$ میں $\alpha=6\%$ میں۔ $\alpha=6\%$ میں۔ ماوات 24.146 میں $\alpha=6\%$ میں۔ ماصل ہوتی ہے۔

$$t_0 = \frac{\sqrt{8} \cdot 7.625}{\sqrt{190.125}} = 1.56$$

چونکہ $\mu_1=\mu_2$ ہے ہم دونوں صورتوں میں ایک جیسی اوسط کے قیاس $\mu_1=\mu_2$ کو نا منظور نہیں کرتے ہیں۔

پہلی صورت اس مثال پر لاگو ہوتی ہے چوکلہ پہلی دونوں نمونوں کی پہلی نمونی قیت ایک قتم کے کام کے لئے حاصل کی گئی، وغیرہ اوں کی گئی۔اسی طرح دونوں نمونوں کی دوسری نمونی قیت کسی دوسرے کام کے لئے حاصل کی گئی، وغیرہ اوں نمونی قیتوں کا مطابقتی فرق

16 16 2 6 0 0 13 8

اور مثال 24.24 کی ترکیب استعال کرتے ہوئے قیاس $\mu=0$ پر کھ سکتے ہیں جہاں μ اس فرق کی اوسط ہے۔ہم اس کا منطق متبادل $\mu\neq 0$ لیتے ہیں۔نمونی اوسط 7.625 $\overline{d}=7.625$ اور نمونی تغیریت $\mu\neq 0$ ہندا درج ذیل ہو گا۔

$$t = \frac{\sqrt{8}(7.625 - 0)}{\sqrt{45.696}} = 3.19$$

n-1=7 اور ضمیمہ ج کی جدول 10. ج $P(T\leq c_2)=97.5\,\%$ ، $P(T\leq c_1)=2.5\,\%$ درجہ آزادی سے $c_1=-2.37$ اور $c_2=2.37$ یاں لہذا ہم قیاس کو نا منظور کرتے ہیں چو ککہ

t=3.19 معلوم شدہ c_1 اور c_2 کے بی نہیں پایا جاتا ہے۔اس طرح ہمارا موجودہ پر کھ، جو اسی نمونوں پر مبنی ہے۔ t=3.19 ہیں زیادہ معلومات کو استعال کرتا ہے، دکھاتا ہے کہ نتائج میں فرق کافی ہے۔

مثال 24.27: (دو عمومی تقسیمات کی تغیریت کا موازنه)

گزشتہ مثال کے دو نمونے استعال کرتے ہوئے قیاں $\sigma_1^2=\sigma_2^2$ کو پر کھیں۔ فرض کریں کہ مطابقتی آبادیاں عمومی ہیں اور تجربہ کی نوعیت سے متبادل $\sigma_1^2>\sigma_2^2$ ہوگا۔

حل: $\sigma_1 = 106.125$ اور $\sigma_2 = 84.000$ عاصل کرتے ہیں۔ ہم معنی خیز سطح $\sigma_3 = 106.125$ ہنتیب $\sigma_4 = 106.125$ اور $\sigma_2 = 84.000$ اور ضمیمہ ج کی جدول 12. ج میں $\sigma_3 = 106.125$ ہیں۔ $\sigma_4 = 106.125$ کرتے ہیں۔ $\sigma_5 = 106.125$ اور ضمیمہ ج کی جدول 12. ج میں $\sigma_5 = 106.125$ کرتے ہیں۔ $\sigma_5 = 106.125$ ورجہ آزادی سے $\sigma_5 = 106.125$ تعین ہوتا ہے۔ ہم آخر میں $\sigma_5 = 106.125$ عین ہوتا ہم آخر میں کرتے ہیں۔ آخر میں $\sigma_5 = 106.125$ ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر $\sigma_5 = 106.125$ ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر میں $\sigma_5 = 106.125$ ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر میں میں۔ اگر میں میں ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر میں میں ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر میں میں ہوتا ہم آس کو نا منظور کرتے ہیں۔ آگر میں میں ہوتا ہم آپ کو نا منظور کرتے ہیں۔ آگر میں میں ہوتا ہم آپ کو نا منظور کرتے ہیں۔ آگر میں میں ہوتا ہم آپ کو نا منظور کرتے ہیں۔ آپ کو نا منظور کرتے ہیں۔ آپ کی میں کرتے ہیں۔ آپ کی میں کرتے ہیں۔ آپ کی میں کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کی کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کر کرتے ہیں۔ آپ کرتے ہ

قیاں درست ہونے کی صورت میں v_0 ایسے بلا منصوبہ متغیر کی مشاہدے سے حاصل قیمت ہے جس کی تقسیم درجہ آزادی F تقسیم درج زیل ہے

(24.147)
$$F(z) = \begin{cases} K_{mn} \int_0^z t^{\frac{m-2}{2}} (mt+n)^{-\frac{m+n}{2}} dt & z \ge 0\\ 0 & z < 0 \end{cases}$$

سوالات

سوال 24.201: صفحہ 1554 پر جدول 24.6 میں امجد کے مواد کو استعال کرتے ہوئے اس قیاس کو پر کھیں کہ سکہ منصفانہ ہے، یعنی خط اور شیر کا اختال ایک جیسا ہے۔ 0.5 = 0.5 = 0.5 منتخب کریں۔ جواب: اگر قیاس 0.5 = 0.5 = 0.5 درست ہو تب " 0.5 = 0.5 = 0.5 کوششوں میں خط کی تعداد 0.5 = 0.5 = 0.5 ہو

F-distribution 165

¹⁶⁶انگلتانی ماہر جینیات رونلدایلم فشر [1890-1962]

گی جس کی اوسط 2020 $\mu=2020$ اور تغیریت $\sigma^2=1010$ ہو گی (حصہ 24.10)۔ $\mu=2020$ اور تغیریت $P(X\leq c)=\Phi(\frac{c-2020}{\sqrt{1010}})=0.95,\ c=2072>2048$

سوال 24.202: مشرف کا مواد استعال کرتے ہوئے سوال 24.201 کو دوبارہ حل کریں۔

سوال 24.203: عمومیت تصور کرتے ہوئے اور $\theta=4$ لیتے ہوئے قیاس 15.0 (الف) $\mu=15.0$ اور نمونی اوسط $\overline{x}=14$ لیس $\mu=12.0$ اور $\mu=15.8$ لیس $\mu=12.0$ جبکہ $\mu=12.0$ منتخب کریں۔

جواب: (الف) 12.00 < c = 13.96 جواب: (الف) 12.00 < c = 13.96 جواب: (ب) c = 16.04 > 15.80 جواب: (ب)

سوال 24.204: اگر ہڑی نمونی جسامت، مثلاً 100 ، استعال کی جائے تب سوال 24.203 میں باقی مواد ($\alpha=5$ % ، $\alpha=5$ % ، $\alpha=5$ % ، $\alpha=14$

سوال 24.205: دو طرفه پر که، % 5 سطح پر استعال کرتے ہوئے سوال 24.203 میں خطہ نا منظوری تلاش کریں؟

 $\mu > 16.24$ $\mu < 13.76$ $\chi = 10.24$

سوال 24.206: سوال 24.203-الف ميں پر كھ كى طاقت تلاش كريں۔

سوال 24.207: مثال 24.23-الف اور ب کی خاصیت کار کردگی کو ترسیم کریں۔

سوال 24.208: وکھائیں کہ عمومی تقسیم میں قیاں $\mu=\mu_0:\mu=\mu_0$ اور متبادل $H_1:\mu=\mu_1$ کی پر کھ میں دو اقسام کی غلطیوں کو نمونی جسامت کافی بڑھا کر جنتا چاہیں کم (ما سوائے صفر کرنے کے) کیا جا سکتا ہے۔

سوال 24.209: $\mu = 0$ کو $\mu = 0$ کو بالمقابل سطح $\alpha = 5$ پر کھیں۔ عمومیت فرض کرتے ہوئے مونہ نہونہ $\mu = 0$ کیں جو مصنوعی سیارہ ٹلسٹار کی 143 ویں گردش میں مدار سے مصرب 0.01 ریڈیئن انحراف ہے۔

جواب: $t = \sqrt{7} \frac{0.286 - 0}{4.31} = 0.18 < c = 1.94$ جواب:

سوال 24.210: مثال 24.1 میں دیا گیا نمونہ استعال کرتے ہوئے قیاس $\mu=0.80\,\mathrm{cm}$ (ڈی پر درج $\mu\neq0.80\,\mathrm{cm}$ کہائی) کو متبادل $\alpha=5$ شرک مقابل پر کھیں۔ (عمومیت تصور کرتے ہوئے $\alpha=5$ کیں۔)

سوال 24.211: ایک مثین ڈبوں میں ٹی ڈبہ وی 1000 تیل بھرتی ہے۔ آپ جاننا چاہتے ہیں کہ آیا % $\delta=0$ سطح پر اوسط کی درکار کمیت وی 1000 سے تجاوز زیادہ ہے۔ اگر ایسا ہو تب مثین میں مطابقت پیدا کرنی ہو گی۔ایک قیاس اور متبادل بنائیں اور انہیں پر تھیں۔ عمومیت فرض کرتے ہوئے نمونی جسامت 20 جس کی اوسط وی 996 ویاں متبادل بنائیں اور انہیں پر تھیں۔

جواب: متبادل $t = \sqrt{20} \frac{996-1000}{5} = -3.58 < c = -2.09$ ، $\mu \neq 1000$ متبيمه جو جدول 10. جواب: متبادل $\mu = 1000$ و رحم آزادي 19)- قياس $\mu = 1000$ و را منظور کريں۔

سوال 24.212: ایک مخصوص ٹائر کی اوسط زندگی 32 000 km اور معیاری انحراف 4000 km ہے۔ کیا ٹائر کا پیداکار بید دعویٰ کر سکتا ہے کہ اس کے بنائے ہوئے ٹائروں کی اوسط زندگی 30 000 km سے زیادہ ہے۔ متبادل قیاس بناتے ہوئے اس کو گھر پر کھیں۔

سوال 24.213: برقی دباو کو بیک وقت دو عدد وولٹ پیا سے ناپا جاتا ہے۔ ان کے نتائج میں فرق 0.8,0.2, -0.3,0.1,0.0,0.5,0.2

وولٹ ہے۔ عمومیت فرض کرتے ہوئے کیا ہم % 5 سطح کے لحاظ سے وثوق سے کہہ سکتے ہیں کہ دونوں وولٹ پیا کی پیانہ بندی 167 میں کوئی معنی خیز فرق نہیں یایا جاتا ہے۔

جواب: $\mu = 0$ کو متبادل $\mu \neq 0$ کو متبادل $\mu \neq 0$ کے مقابلے میں پر کھیں۔ t = 2.11 < c = 2.37 کو منظور نہ کریں۔

موال 24.214: ایک معیاری دوائی ایک مخصوص مرض میں مبتلا % 70 مریضوں کو صحتیاب کرتی ہے اور ایک نئی دوائی پہلے $\alpha=3$ مریضوں میں سے $\alpha=3$ کو صحتیاب کرتی ہے۔ کیا $\alpha=5$ کیا ہوئے ہم وثوق سے کہہ سکتے ہیں کہ نئی دوائی زیادہ بہتر ہے؟

وال 24.215: ماضی میں ایک مشین جو فی ڈبہ $25\,\mathrm{kg}$ چینی بھرتی تھی کا معیاری انحراف $0.4\,\mathrm{kg}$ تھا۔ قیاس $H_0:\sigma=0.4$ کو متبادل $\sigma>0.4$ کو متبادل $H_1:\sigma>0.4$ کو متبادل $H_0:\sigma=0.4$ کو معیاری انحراف $\sigma=0.4$ ہو لیں اور $\sigma=0.4$ منتخب کریں۔ $\sigma=0.4$ جو اب جس کی معیاری انحراف $\sigma=0.4$ ہو لیں اور $\sigma=0.4$ ہے۔ قیاس کو نا منظور نہ کریں۔ $\sigma=0.4$ ہو اب حالت ہوں۔ $\sigma=0.4$ ہو اب حالت ہوں۔ منظور نہ کریں۔ $\sigma=0.4$ ہوں۔ منظور نہ کریں۔ منظور نہ کریں۔

سوال 24.216: فرض کریں کہ معیاری انحراف کسی مخصوص حدسے کم، مثلاً، 5 گفٹوں سے کم، ہونے کی صورت میں بیٹری سے چلنے والی مثینوں میں تمام بیٹریوں کو مخصوص مدت کے بعد بیک وقت تبدیل کرنا کم مہنگا پڑتا

calibration 167

24.16. ضبط معيار

ہے بہ نسبت ہر بیٹری کو اس وقت تبدیل کرنے کے جب وہ خراب ہو جائے۔ ایک موزوں پر کھ بنا کر اس قیاس کو $\alpha=3.5$ گھٹے ہو استعال کرتے ہوئے $\alpha=5$ گسٹے ہو استعال کرتے ہوئے $\alpha=5$ گسٹے ہو استعال کرتے ہوئے $\alpha=5$ گسٹے ہو استعال کرتے ہوئے کا معیاری انحراف کیا۔ کمیں۔ کسی۔ محمومیت تصور کریں۔

سوال 24.218: ماسوائے عرصہ زندگی، بلب A اور B ایک جیسے ہیں۔ایک خریدار دونوں قسم کے 100 بلب کو پر کھتا ہے۔ قسم A کی اوسط عرصہ زندگی A 1120 اور معیاری انحراف A جبکہ B کی اوسط 1064 اور معیاری انحراف A 82 عاصل ہوتے ہیں۔ کیا عرصہ زندگی میں معنی خیز فرق پایا جاتا ہے؟ (عمومیت فرض کرتے ہوئے $\alpha = 5$ سطح پر پر کھیں۔)

سوال 24.219: نمونی جسامت 10 اور 16 اور تغیریت 50 $s_1^2=50$ اور $s_2^2=30$ اور $s_2^2=30$ اور 30 اور تغیریت تصور $H_1:\sigma_1^2>\sigma_2^2$ اور $H_0:\sigma_1^2=\sigma_2^2$ قیل بر کھیں۔ کرتے ہوئے $\alpha=5\%$ کے بالمقابل پر کھیں۔ جواب: $\sigma_1^2=\sigma_2^2$ ورجہ آزادی $\sigma_2^2=\sigma_2^2$ ایس کو نا منظور نہ کریں۔ جواب: $\sigma_1^2=\sigma_2^2$

سوال 24.220: دو نمونے 80,90,100,90,110,80 اور 110,130,130,130,130, 110,120 میں فرق دیتی ہیں۔ کیا گوھلائی کے دوران دو مختلف بالٹیوں میں دو مختلف وقتوں پر درجہ حرارت ($^{\circ}$ C) میں فرق دیتی ہیں۔ کیا پہلے نمونہ کی تغیریت دوسرے سے زیادہ ہے؟ عمومیت فرض کریں اور $\alpha=5$ کیں۔

24.16 ضبط معيار

پیداوار کا کوئی بھی عمل اتنا ٹھیک نہیں ہوتا ہے کہ تمام پیداوار مکمل طور پر ایک جیسی ہو۔ بہت ساری معمولی، غیر قابو وجوہات کی بنا ان میں ہر صورت معمولی فرق پایا جاتا ہے جس کو امکانی فرق تصور کیا جا سکتا ہے۔یہ ضرور کی ہے کہ پیدادار کی درکار خاصیت کی قیمت درست ہو (مثلاً لمبائی، مضبوطی، یا جو بھی خاصیت کسی مخصوص صورت میں درکار ہو)۔ اس مقصد کے لئے اس قیاس کو پر کھا جاتا ہے کہ پیدادار درکار خاصیت، مثلاً $\mu = \mu_0$ ، رکھتے ہیں جہاں μ_0 درکار قیمت ہے۔ اگر ایسا پوری کھیپ کی پیدادار (مثلاً، 10000 بیچوں کی کھیپ) کے بعد کیا جائے تب پر کھ جمیں بتائے گا کہ پیدادار کتنی اچھی یا کتنی خراب ہے لیکن ظاہر ہے کہ اس نتیجہ کو استعمال کرتے ہوئے ہم کوئی بہتری نہیں لا سکتے ہیں۔ بہتری لانے کے لئے ضروری ہے کہ پر کھ دوران پیدادار کیا جائے۔ ایسا عموماً مقررہ دورانیہ (مثلاً ہم نہیں لا سکتے ہیں۔ بہتری لانے کے لئے ضروری ہے کہ پر کھ دوران پیدادار کیا جائے۔ ایسا عموماً مقررہ دورانیہ (مثلاً ہم ایک جائی بعد جاتا ہے اور اس کو ضبط معیاد 108 کہتے ہیں۔ ہر مرتبہ ایک جیسی جسامت (عملاً 3 یا 10 اجزاء) کا نمونہ لیا جاتا ہے۔ قیاس نا منظور ہونے کی صورت میں عمل پیدادار روک کر اس وجہ کو تلاش کیا جاتا ہے۔ میں کی بنا انحراف پیدا ہوا ہے۔

اگر ہم عمل پیدا وار کو روک دیں اگرچہ سب ٹھیک چل رہا ہو تب ہم غلطی قتم اول کر رہے ہوں گے۔اگر خرابی کے باوجود ہم عمل پیداوار کو ناروکیں تب ہم غلطی قتم دوم کر رہے ہوں گے (حصہ 24.15)۔

ہر پر کھ کا نتیجہ کو ترسیمی صورت میں نقشہ ضبط 169 پر ظاہر ¹⁷⁰ کیا جاتا ہے۔

اوسط كانقشه ضبط

شکل 24.27 میں نقشہ ضبط کی مثال دکھائی گئی ہے۔اوسط کے نقشہ ضبط پر نچلی حد صبط 171 ، وسطی خط ضبط حسلہ 172 اور بالائی حد ضبط ¹⁷³ UCL دکھائے گئے ہیں۔ یہ حدود مثال 24.23-پ میں فاصل قیمتوں اور ₁₇₂ کے مطابقتی ہیں۔ جیسے ہم نمونی اوسط نچلی حد ضبط یا بالائی حد ضبط سے تجاوز کر جائے ہم قیاس کو نا منظور کرتے ہوئے کہتے ہیں کہ عمل پیداوار "بے قابو" ہے، یعنی، ہم کہتے ہیں کہ عمل پیداوار میں تبدیلی رو نما ہوئی ہے۔جب بھی کوئی نقطہ حدود ضبط سے تجاوز کرے عمل پیداوار میں مداخلت کی ضرورت ہو گی۔

اگر ہم حدود ضبط ڈھیلے رکھیں تب ہم عمل پیداوار میں نا پسندیدہ تبدیلی کو پکڑ نہیں پائیں گے۔اس کے برعکس حدود ضبط بہت سخت رکھنے سے ہم بار بار عمل پیداوار کو روک کر نا پسندیدہ تبدیلی کی غیر موجود وجہ تلاش کرتے رہیں

quality $control^{168}$

 $^{{\}rm control}\ {\rm chart}^{169}$

¹⁷⁰ مر کی ماہر شاریات والٹرانڈروشوہارٹ [1891-1891] نے بیانقشہ <u>1924</u> میں تجویز کیا جو معیار کو قابو کرنے میں انتہائی موثر ثابت ہواہے۔

lower control limit (LCL)¹⁷¹

central control line (CL)¹⁷²

upper control limit (UCL)¹⁷³

24.16. ضبط معييار

گے جس سے پیداوار بری طرح متاثر ہو گی۔عموماً معنی خیز سطح ٪ 1 = ۵ منتخب کی جاتی ہے۔صفحہ 1630 پر مسلمہ 24.20 اور ضمیمہ ج کی جدول 8.ج سے ہم دیکھتے ہیں کہ عمومی تقسیم کی صورت میں اوسط کے مطابقتی حد ضبط

(24.148) LCL =
$$\mu_0 - 2.58 \frac{\sigma}{\sqrt{n}}$$
 Jol UCL = $\mu_0 + 2.58 \frac{\sigma}{\sqrt{n}}$

ہوں گے۔ یہاں فرض کیا گیا ہے کہ ہمیں σ معلوم ہے۔ اگر σ نا معلوم ہو تب پہلی 20 یا 30 نمونوں کی معیاری انحراف حاصل کر کے ان کی اوسط کو σ کی تخمینی قیمت تصور کیا جا سکتا ہے۔ شکل 24.27 میں اوسط کو لکیر سے جوڑا جاتا ہے جو محض نتائج کو واضح کرنے میں مدد دیتی ہے۔

تغيريت كانقشه ضبط

اوسط کے ساتھ ساتھ عموماً تغیریت، معیاری انحراف یا سعت کو بھی قابو رکھا جاتا ہے۔عمومی تقییم کی صورت میں معیاری انحراف کا نقشہ ضبط بناتے ہوئے مثال 24.25 میں استعال ترکیب بروئے کار لاتے ہوئے حدود ضبط تعین کیے جا سکتے ہیں۔دوایتی طور پر صرف بالائی حد ضبط استعال کیا جاتا ہے۔مثال 24.25 سے بیہ حد

$$UCL = \frac{\sigma^2 c}{n-1}$$

ہو گا جہال c کو مساوات

$$P(Y > c) = \alpha \implies P(Y \le c) = 1 - \alpha$$

اور ضمیمہ ج کی جدول 11. ج (مربع خاتشیم) سے n-1 درجہ آزادی کے لئے حاصل کیا جاتا ہے؛ یہاں نمونہ سے مشاہدے کے ذریعہ S^2 کی حاصل قیمت S^2 کا بالائی حد ضبط سے تجاوز کا اخمال α (S^2 یا S^2) ہے۔

اگر ہم تغیریت کے نقشہ ضبط میں مجلی حد ضبط اور بالائی حد ضبط استعال کرنا چاہیں تب یہ حدود

(24.150)
$$LCL = \frac{\sigma^2 c_1}{n-1}, \quad UCL = \frac{\sigma^2 c_2}{n-1}$$

ہوں گے جہاں c_1 اور c_2 کو n-1 درجہ آزادی کے لئے ضمیمہ ہوگی جدول c_1 ہوں ہوں تا جہاں مساوات سے حاصل کیا جائے گا۔

(24.151)
$$P(Y \le c_1) = \frac{\alpha}{2}, \quad P(Y \le c_2) = 1 - \frac{\alpha}{2}$$

شكل 24.27: اوسطاور معيارى انحراف كے نقشہ ضبط برائے جدول 24.12

24.16. ضبط معييار

معيارى انحراف كانقشه ضبط

تغیریت کے نقشہ ضبط کی طرح ہمیں بالائی حد ضبط

$$UCL = \frac{\sigma\sqrt{c}}{\sqrt{n-1}}$$

n=5 در کار ہو گا جس کو مساوات 24.149 سے حاصل کیا گیا ہے۔ مثال کے طور پر جدول 24.12 میں $\alpha=5$ منتخب $\alpha=1$ % ہو، $\alpha=0.02$ ہو، $\alpha=1$ % ہوئے آبادی کو عمومی تصور کرتے ہوئے جس کی معیاری انحراف $\alpha=1$ % ہوئے $\alpha=1$ 8 منتخب کرتے ہوئے 4 درجہ آزادی کے لئے ضمیمہ ج کی جدول 11. جاور مساوات

$$P(Y \le c) = 1 - \alpha = 99\%$$

ے فاصل قیمت c=13.28 حاصل ہوتی ہے۔ یوں مساوات c=13.28

$$UCL = \frac{0.02\sqrt{13.28}}{\sqrt{4}} = 0.0365$$

حاصل ہو گا جس کو شکل 24.27 کے نچلے تھے میں دکھایا گیا ہے۔

معیاری انحراف کا نقشہ ضبط جس میں بالائی حد ضبط اور نچلا حد ضبط پائے جاتے ہوں کو مساوات 24.150 سے حاصل کیا جا سکتا ہے۔

سعت كانقشه ضبط

n	2	3	4	5	6	7	8	9	10
$\lambda_n = \sigma/E(R^*)$	0.89	0.59	0.49	0.43	0.40	0.37	0.35	0.34	0.32
n	12	1/	16	10	20	20	40	ΕO	
11	14	1-1	10	10	20	30	40	30	

نمونی شار	نمونی قیمتیں					\overline{x}	s	R
1	4.06	4.08	4.08	4.08	4.10	4.080	0.014	0.04
2	4.10	4.10	4.12	4.12	4.12	4.112	0.011	0.02
3	4.06	4.06	4.08	4.10	4.12	4.084	0.026	0.06
4	4.06	4.08	4.08	4.10	4.12	4.088	0.023	0.06
5	4.08	4.10	4.12	4.12	4.12	4.108	0.018	0.04
6	4.08	4.10	4.10	4.10	4.12	4.100	0.014	0.04
7	4.06	4.08	4.08	4.10	4.12	4.088	0.023	0.06
8	4.08	4.08	4.10	4.10	4.12	4.096	0.017	0.04
9	4.06	4.08	4.10	4.12	4.14	4.100	0.032	0.08
10	4.06	4.08	4.10	4.12	4.16	4.104	0.038	0.10
11	4.12	4.14	4.14	4.14	4.16	4.140	0.014	0.04
12	4.14	4.14	4.16	4.16	4.16	4.152	0.011	0.02

جدول 24.12: بارہ نمونے جہاں ہر نمونہ 5 قیمتوں (چھوٹی نلکیوں کے ملی میٹروں میں قطر) پر مشتل ہے

چونکہ R صرف دو نمونی قیتوں پر منحصر ہے الہذا یہ نمونے کے بارے میں s کے لحاظ سے کم معلومات فراہم کرتا ہے۔ ظاہر ہے کہ نمونی جسامت n جتنی بڑی ہوگ، s کی جگہ R استعال کرنے سے، اتنی زیادہ معلومات ہم ضائع کریں گے۔ عملًا اگر n کی قیمت n کی تیمت n کی قیمت n کی قیمت n کی قیمت n کی استعال کیا جاتا ہے۔

دھیان رہے کہ سعت سے معیاری انحراف کا جلدی سے اندازہ لگانا عملی استعال میں کار آمد ثابت ہوتا ہے۔

سوالات

سوال 24.221: ایک مشین چکنا تیل کو ٹین کی بوتل میں یوں بھرتی ہے کہ عمومی آبادی حاصل ہو جس کی اوسط 1 کٹر اور معیاری انحراف 0.03 کٹر ہو۔ اوسط کے لئے شکل 24.27 کی طرح نقشہ در کار ہے۔ نمونی جسامت 6 فرض کرتے ہوئے کچلی حد ضبط اور بالائی حد ضبط تلاش کریں۔

UCL = 1.032 جواب: $\frac{5}{2}$ لى حد ضبط $\frac{5}{2}$ 0.968 جواب: بالائى حد ضبط $\frac{5}{2}$ 0.968 جواب: بالائى عد ضبط

سوال 24.222: سوال 24.221 میں دکھائیں کہ $\alpha=0.3$ سطح سے درج ذیل حاصل ہوتے ہیں۔ان کی اعدادی قیمتیں علاش کریں۔

$$LCL = \mu - \frac{3\sigma}{\sqrt{n}}, \quad UCL = \mu + \frac{3\sigma}{\sqrt{n}}$$

24.16. ضبط معب ا

سوال 24.223: معنی خیز سطح تبدیل کیے بغیر ہمیں سوال 24.221 میں نمونی جسامت کتنی رکھنی ہوگی تا کہ بالائی اور نجلی حد ضبط قریب ہوں، مثلاً UCL-LCL=0.05

سوال 24.224: اگر ہم غیر عمومی آبادی کے لئے مساوات 24.148 کے حدود ضبط والا نقشہ ضبط استعال کریں تب ان حدود کا کیا مطلب ہو گا؟

سوال 24.225: عمومی آبادی کی اوسط قابو کرتے ہوئے UCL – LCL کو نصف کرنے کی خاطر نمونی جہامت کو کس طرح تبدیل کرنا ہو گا؟ جہامت کو کس طرح تبدیل کرنا ہو گا؟ جواب: نمونی جہامت کو 4 گنا بڑھانا ہو گا۔

سوال 24.226: قابلوں کی پیداوار میں سے 2 جسامت کے 10 نمونے لئے گئے۔ان کی لمبائی ملی میٹروں میں درج زیل ہے۔

فرض کریں کہ آبادی عمومی ہے جس کی اوسط 27.5 اور تغیریت 0.024 ہے۔مساوات 24.148 استعال کرتے ہوئے اوسط کے لئے نقش ضبط بنائیں اور نمونی اوسط اس پر ترسیم کریں۔ جواب: $0.258\sqrt{0.024}=0.283$, 0.283, 0.283

سوال 24.227: اوہے کی چادر موٹائی کے درج ذیل نموے 30 منٹ کے و تفول پر حاصل کیے گئے۔ان کی اوسط کو نقش ضبط پر ترسیم کریں۔فرض کریں کہ آبادی عمومی ہے جس کی اوسط 5 اور معیاری انحراف 1.55 ہے۔

سوال 24.228: سعت کے نقشہ ضبط پر سوال 24.227 کے نمونی سعت کو ترسیم کریں۔

سوال 24.229 ناک مرکب المقابل $\lambda_n = \frac{\sigma}{E(R^*)}$ عایک سر گھٹتا تفاعل ہے۔اس کی وجہ بیان کریں۔

20 حد، منتخب کریں تب ہم کتنی بار نظام میں غیر موجود خرانی کو تلاش کرنے کی کو شش کریں گے۔(عمومیت فرض کریں۔) جواب: تقریباً (%5) %30 صورتوں میں

سوال 24.231: ایک خود کار خراد کی مشین پر قابلے بنائے جاتے ہیں۔ مسلسل رگڑ سے پیدا تبدیلی، اوسط کی نقش ضبط پر کس طرح رونما ہو گی؟ خراد کی مشین میں یک دم تبدیلی کس طرح نقش ضبط پر نظر آئے گی؟

سوال 24.232: (عیب داروں کی تعداد) عهداد) اور اللہ CL ، UCL کاظ سے 24.232 اور کے کلیات عیب دار کے نقشہ ضبط کے لئے تلاش کریں۔ (فرض کریں کہ شاریاتی ضبط میں p عیب دار کو ظاہر کرتا

 $UCL = np + 3\sqrt{np(1-p)}$, CL = np, $LCL = np - 3\sqrt{np(1-p)}$

سوال 24.233: خاصیت کی نقش ضبط برتوں کی پیداوار سے جمامت 100 کے نمونے حاصل کیے گئے۔عیب دار (رستا پر تنوں) کی تعداد (اسی ترتیب سے) درج ذیل تھی۔

3 7 6 1 4 5 4 9 7 0 5 6 13 4 9 0 2 1 12 8

گزشتہ تجربہ سے ہم جانتے ہیں کہ اگر عمل پیداوار میں خرائی نہ ہو تب عیب دار کی اوسط تعداد 🍿 ہوتی ہے۔ ثنائی تقسیم استعال کرتے ہوئے عیب دار نقشہ ضبط (جس کو p نقشہ بھی کہتے ہیں) بنائمیں، یعنی، LCL = 0 کیس اور مدود کے لئے حاصل عیب دار (فی صد) کو $\frac{1}{2}$ لیں، جہال بلا منصوبہ متغیر \overline{X} = نمونہ میں فی صد عیب 3σ دار کی تغیریت σ^2 ہے۔ کیا عمل پیداوار قابو میں ہے؟

سوال 24.234: فی اکائی عیب دار کی تعداد فی اکائی عیب دار کے نقشہ (جس کو c نقشہ بھی کہتے ہیں) کو فی اکائی عیب دار X (مثلاً 10 میٹر کاغذ میں عیبوں کی تعداد، جہاز کے ایک پر میں غیر موجود کیلوں کی تعداد، وغیرہ) کو قابو کرنے کے لئے استعال کیا جاتا ہے۔ (الف) X کی تقییم کو یوئس تقییم تصور کرتے ہوئے اور $\mu = 3\sigma$ کارات بنائیں۔ (پ) شیشے کی جادر میں عیب کے لئے لئے لکت بنائیں۔ اور $\mu = 3\sigma$ عمل قابو 174 کے لئے LCL ، CL اور UCL تلاش کریں؛ فرض کریں کہ جب عمل پیداوار شاریاتی قابو میں ہو تب اوسطاً یہ عدد 2.5 فی حادر ہے۔

 $[\]rm control\ process^{174}$

24.17. ت-بوليت نمونه

24.17 قبوليت نمونه

 $\frac{\eta'}{2} = \frac{\eta}{2}
 \frac{\eta}{2}$

فرض کریں کہ کھیپ قبول ہونے کا وقوعہ A ہے۔ ظاہر ہے کہ مطابقتی اختال P(A) نا صرف n اور c بلکہ کھیپ میں عیب داروں کی تعداد بلا منصوبہ کھیپ میں عیب داروں کی تعداد بلا منصوبہ متغیر X ہے اور ہم بغیر واپس رکھے نمونہ حاصل کرتے ہیں۔ تب (حصہ 24.9)

(24.153)
$$P(A) = P(X \le c) = \sum_{x=0}^{c} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

ہو گا۔اگر M=0 کی قیت لازماً 0 ہو گا اور X ہو تاب کی قیت لازماً M=0 ہو گا۔اگر

$$P(A) = \frac{\binom{0}{0}\binom{N}{n}}{\binom{N}{n}} = 1$$

ہو گا۔ مقررہ n اور c اور بڑھتے M کی صورت میں احتمال P(M) گھٹتا ہے۔ اگر M=N کھیپ مقررہ n اور n اور n کی قیمت لازماً n ہو گی اور $P(X\leq c)=0$ ہو گا چونکہ $P(A)=P(X\leq c)=0$ ہو گا چونکہ C< n

defectives 175

acceptance number 176

sampling plan¹⁷⁷

single sampling plan¹⁷⁸

نبت $\theta=\frac{M}{N}$ کو کھیپ میں نسبت عیب دار $\theta=\frac{M}{N}$ کہتے ہیں۔ دھیان رہے کہ $\theta=\frac{M}{N}$ ہے اور مساوات 24.153 کو درج ذیل کھا جا سکتا ہے۔

(24.154)
$$P(A;\theta) = \sum_{x=0}^{c} \frac{\binom{N\theta}{x} \binom{N-N\theta}{n-x}}{\binom{N}{n}}$$

چو ککہ θ کی قیمت N+1 قیمتوں $N, \frac{1}{N}, \frac{2}{N}, \cdots, \frac{N}{N}$ میں سے ایک ہو سکتی ہے، اخمال P(A) صرف ان قیمتوں کے لئے معین ہو گا۔ مقررہ n اور c کے لئے ہم P(A) بالمقابل θ ترسیم کر سکتے ہیں۔ یہ N+1 نقطے ہوں گے۔ان نقطوں سے ہموار منحنی گزاری جا سکتی ہے جس کو مد نظر نمونی منصوبہ کی منحنی خاصیت کارکردگی N+1 کارکردگی N+1 منحنی کہتے ہیں۔

$$P(A;\theta) = \frac{\binom{20\theta}{0}\binom{20-20\theta}{2}}{\binom{20}{2}} = \frac{(20-20\theta)(19-20\theta)}{380}$$

اعدادی قیمتیں درج ذیل ہیں۔

منحنی خاصیت کار کرو گی کو شکل 24.28 میں و کھایا گیا ہے۔

fraction defective¹⁷⁹ operating characteristic curve¹⁸⁰

24.17. ت-بوليت نمونه

شكل 24.28: منحنيات خاصيت كاركر دگى برائے مثال 24.28اور مثال 24.29

ہو، تب ہم اس تقسیم کو $\mu=np$ اوسط کی پوئس تقسیم سے ظاہر کر سکتے ہیں۔یوں مساوات 24.154 سے درج ذیل حاصل ہو گا۔

(24.155)
$$P(A;\theta) \sim e^{-\mu} \sum_{x=0}^{c} \frac{\mu^{x}}{x!} \qquad (\mu = n\theta)$$

n=20 مثال 24.29: فرض کریں کہ بڑی کھیپ کے لئے مذکورہ ذیل واحد نمونی منصوبہ استعمال کیا جاتا ہے۔ n=20 نمونہ لیا جاتا ہے۔ اگر نمونہ میں n=20 نمونہ لیا جاتا ہے۔ اگر نمونہ میں n=20 نمونہ لیا جاتا ہے۔ اگر نمونہ میں n=20 و میں میاوات 24.155 درج ذیل دیتا ہے۔ اس سے زیادہ عیب دار ہوں تب کھیپ کو مستر دکیا جاتا ہے۔ اس منصوبہ میں میاوات 24.155 درج ذیل دیتا ہے۔

$$P(A;\theta) \sim e^{-20\theta} (1 + 20\theta)$$

جس کی مطابقتی منحنی شکل 24.28 میں و کھائی گئی ہے۔

ہم اب قبولیت نمونہ میں دو اقسام کے غلطیوں پر غور کرتے ہیں اور n اور c منتخب کرنے کی تفصیل پیش کرتے ہیں۔ قبولیت نمونہ میں پیداکار اور خریدار کے غرض مختلف ہوں گے۔پیداکار چاہے گا کہ "اچھی" یا " قابل قبول" کھیپ کی مستر د ہونے کا احتمال، جس کو ہم n سے ظاہر کرتے ہیں، کم سے کم عدد ہو۔ خریدار چاہے گا کہ " خراب" یا " نا قابل قبول" کھیپ کے قبول ہونے کا احتمال، جس کو ہم n سے ظاہر کرتے ہیں، کم سے کم عدد ہو۔ یہ کہنا زیادہ درست ہو گا کہ دونوں اس پر اتفاق کرتے ہیں کہ جس کھیپ کے لئے n کی قبت ایک مخصوص عدد n

شکل 24.29: منحنی خاصیت کار کردگی، خطی پیداکاراور خطر خریدار

 θ_1 تجاوز نہ کرے تب کھیپ " قابل قبول " ہو گا جبکہ وہ کھیپ جس کے لئے θ کی قیمت ایک مخصوص عدر θ_1 کے برابر یا اس سے زیادہ ہو تب کھیپ "نا قابل قبول " ہو گا۔ تب وہ کھیپ جس کے لئے θ ہو کے مسرو ہونے کا اختال θ ہو گا جس کو خطر پیدا کارا 181 کہتے ہیں۔ یہ قیاس کی پر کھ کی قسم اول غلطی کے متر ادف ہے (حصہ 24.15)۔ وہ کھیپ جس کے لئے θ کو θ ہو کے قبول ہونے کا اختال θ ہو گا جس کو خطر خریدار θ کہتے ہیں۔ یہ حصہ 24.15 میں قسم دوم غلطی کے متر ادف ہے۔ شکل 24.29 میں ان کی وضاحت کی گئی ہے۔ θ کو سطح قابل قبول معیار θ اور θ کو سطح قابل مسترد معیار θ کہتے ہیں جبکہ کھیپ θ کو θ کو تعلق کھیپ θ کو نظلی کے متر ادب معیار θ کو نظلی کے متر ادبی کو نظلی کے نہیں جبکہ کھیپ θ کو نظلی کھیپ θ کو نظلی کھیپ کار

شکل 24.29 سے ہم دیکھتے ہیں کہ نقطہ $(\theta_0, 1 - \alpha)$ اور نقطہ (θ_1, β) منحنی خاصیت کارکردگی پر پائے جاتے ہیں۔ یہ دکھایا جا سکتا ہے کہ بڑی کھیپ کے لئے ہم θ_0 ، θ_0 ، θ_0 ، θ_0 ، θ_0 نتخب کرتے ہوئے θ_0 ، θ_0 ،

پر کھ قیاس اور معائنہ نمونہ میں قریبی تعلق پایا جاتا ہے جس کو جدول 24.13 میں دکھایا گیا ہے۔

producer's risk¹⁸¹

consumer's risk¹⁸²

acceptable quality level 183

rejectable quality level¹⁸⁴

indifferent lot 185

24.17. ت-بوليت نمونه

جدول 24.13: ير كه قياس اور معائنه نمونه كا تعلق

پر كھ قياس	معائنه نمونه
$ heta= heta_0$ قياس $ heta= heta_0$	$ heta= heta_0$ تابل قبول معيار $ heta=0$
$ heta= heta_1$ متبادل	$ heta= heta_1$ تابل مستر د معیار $ heta= heta$
c فاصل قیمت	عیب دار کی قابل قبول تعداد <i>c</i>
قشم اول غلطی کااحتال α (معنی خیز سطے)	lpha کھیپ مستر دہونے کا احتمال $lpha$ (خطرپیداکار) $ heta$
etaقشم دوم غلطی کااختمال	$eta \geq heta$ کھیپ قبول ہونے کااحتال eta (خطر خریدار)

نمونی عمل ازخود خریدار کو مکمل تحفظ فراہم نہیں کرتا ہے۔در حقیقت اگر پیداکار کو اجازت ہو کہ وہ خراب کھیپ کو دوبارہ قبول ہو نے کے لئے پیش کرے تب آخر کار خراب کھیپ بھی قبول ہو جائیں گے۔ خریدار کو اس صورت حال سے بچانے کی خاطر پیداکار اس بات سے اتفاق کر سکتا ہے کہ مسترد کھیپ کو سدھارا 186 جائے گا لینی اس کا 000 معائنہ کرتے ہوئے ہر جزد کو پر کھا جائے گا اور کھیپ میں تمام عیب دار اشیاء کی جگہ بے عیب اشیاء رکھے جائیں گے 000 عیب دار اشیاء بناتا ہے اور مسترد کھیپ کو سدھارا جاتا ہے۔ تب جائیں گے 000 ہیں میں 000 ہوں گا اور کھیپ میں سے 000 عیب دار ہوں گے۔ کھیپوں میں 000 ہوں گے۔ کھیپوں میں 000 ہوں گور نہیں گیا جاتا ہے۔ تب 000 ہوں گریں ایک کارخانہ میں کل 000 ہوں گے۔ مسترد اور سدھارے کے کھیپ میں کوئی عیب دار جزو نہیں پایا جاتا ہے۔ یوں سدھارنے کے بعد 000 کھیپ میں عیب دار کا تناسب کے خام کی اس نقاعل کو اوسط خارجی معیار 000 کھیپ میں جس کو 000 کا ماتا ہے، یعنی جس کو اوسط خارجی معیار 000 کی جاتم کی دار نواعل کو اوسط خارجی معیار 000 کی جاتم کی دار کا تناسب کے ظام کیا جاتا ہے، یعنی دار کا تناسب کے خام کیا جاتا ہے، یعنی دار کا تناسب کی خام کیا جاتا ہے، یعنی دار کا تناسب کی خام کیا جاتا ہے، یعنی دار کیا ہوگا ہے گئی ہیں جس کو کار کیا جاتا ہے، یعنی دار کا تناسب کیا جاتا ہے، یعنی دار کیا ہوگیا ہے کیا ہی کیا ہی کیا ہوگیا ہی دار کیا ہوگیا ہی دار کیا ہوگیا ہی کیا ہی کیا ہی کیا ہوگیا ہوگیا ہی در کیا ہوگیا ہی کیا ہوگیا ہی کیا ہی کیا ہیں کو کیا ہی کیا ہی کیا ہوگیا ہی کیا ہوگیا ہی کیا ہوگیا ہوگیا ہی کیا ہوگیا ہوگیا ہوگیا ہیں کو کیا ہوگیا ہو

(24.156)
$$AOQ(\theta) = \theta P(A; \theta)$$

اگر نمونی منصوبہ دیا گیا ہو تب یہ تفاعل اور منحنی اوسط خارجی معیار کو $P(A;\theta)$ اور منحنی خاصیت کار کردگی سے حاصل کیا جا سکتا ہے۔ اس کی مثال شکل 24.30 میں دکھائی گئی ہے۔

ظاہر ہے کہ AOQ(0)=0 ہو گا۔ چونکہ P(A;1)=0 ہو گا۔ اس سے اور AOQ(0)=0 ہو گا۔ اس سے اور AOQ(0)=0 ہو گا۔ اس سے اور $AOQ(\theta)\geq 0$ ہے ہم یہ نتیجہ حاصل کرتے ہیں کہ کی $\theta=\theta$ پر اس تفاعل کی زیادہ سے زیادہ قیمت پائی جائے گی جس کی مطابقتی قیمت $AOQ(\theta^*)$ کو اوسط خارجی حد معیاد $AOQ(\theta^*)$ ہوں۔ یہ خراب ترین معیاد ہو جو سدھارنے کے عمل کے ساتھ قابل قبول ہو گا۔

rectified¹⁸⁶

¹⁸⁷ ظاہر ہے کہ اگر معائنہ سے اشیاء تباہ ہوتے ہوں یاہر جزو کا معائنہ کرناشیاء کی قیت نے زیادہ مہنگائی تاہوت ہر جزو کے معائنے کی بجائے مسترد کھیپ کو کم دام فروخت کیاجائے گا۔

average outgoing quality¹⁸⁸

average outgoing quality limit 189

شكل 24.30: منحنى خاصيت كاركرد گى اور اوسط خارجى حد معياركى منحنى برائے شكل 24.28 ميں مثال 24.28 كاديا كيانمونى منصوب

کئی نمونی منصوبے ایک ہی اوسط خارجی حد معیار دے سکتے ہیں۔یوں اگر خریدار صرف اوسط خارجی حد معیار میں دلچیپ ہو تب پیداکار وہ نمونی منصوبہ منتخب کر سکتا ہے جس میں نمونے کا حصول کم سے کم ہو، یعنی نمونی معائنے کی تعداد کم سے کم ہو۔یہ تعداد درج ذیل ہے

$$nP(A;\theta) + N(1 - P(A;\theta))$$

جہاں پہلا جزو قبول شدہ کھیپوں اور دوسرا جزو مسترد اور سدھارے گئے کھیپ کے مطابقتی اجزاء ہیں؛ حقیقت میں سدھارنے کے عمل میں کھیپ کے تمام N اجزاء کو پر کھا جاتا ہے، اور کھیپ مسترد ہونے کا اختال N اجزاء کو پر کھا جاتا ہے، اور کھیپ مسترد ہونے کا اختال N اجزاء کو پر کھا جاتا ہے، اور کھیپ مسترد ہونے کا اختال N اجزاء کو پر کھا جاتا ہے، اور کھیپ مسترد ہونے کا اختال ہوں۔

ہم بتانا چاہتے ہیں کہ معائنے کے عمل کو دوہوا نھونی منصوبہ 190 استعال کرتے ہوئے کم کیا جا سکتا ہے جس میں جسامت n_1 اور n_2 اور جہال n_1 اور n_2 اور جہال n_1 اور n_2 اور جہال ہمتر د کرنے کا فیصلہ ایک نمونے کو دکھ کر کیا جا سکتا ہے۔ اگر کھیپ بہت اچھی یا بہت خراب ہو تب کھیپ قبول یا مسترد کرنے کا فیصلہ ایک نمونے کو دکھ کر کیا جا سکتا ہے چونکہ توقع کی جا سکتی ہے کہ دوسرے نمونے کا معیار در میانہ ہو گا۔ ہم دوہرا نمونی منصوبہ اور سدھارنے کا عمل استعال کرتے ہوئے درج ذبل قسم کے منصوبے استعال کر سکتے ہیں جہاں نمونوں میں عیب دار کی تعداد بالترتیب n_1 استعال کر سکتے ہیں جہاں نمونوں میں عیب دار کی تعداد بالترتیب n_2 اور n_3 کے منصوبہ اور سکتے ہیں جہاں نمونوں میں عیب دار کی تعداد بالترتیب استعال کر سکتے ہیں جہاں نمونوں میں عیب دار کی تعداد بالترتیب n_2

اگر $x_1 > c_2$ ہو، کھیپ قبول کریں۔اگر $x_1 > c_2$ ہو، کھیپ مسترد کریں۔

double sampling plan¹⁹⁰

24.17. مشبوليت نمونه

و اگر $x_1+x_2 \leq c_2$ ہو، ووسرا نمونہ مجھی استعال کریں۔اگر $x_1+x_2 \leq c_2$ ہو، کھیپ قبول $x_1+x_2 \leq c_2$ ہو، کھیپ مسترد کریں۔

سوالات

سوال 24.235: ایک صارف قلم پر کھنے کے لئے واحد نمونی منصوبہ استعال کرتا ہے جس میں نمونی جسامت 0.25%, 0.5%, 10% ورتعداد قبولیت 1 ہے۔ ضمیمہ ج کی جدول 6.ج استعال کرتے ہوئے % 10%, 5%, 5%, 10% ورتعب کے قبول ہونے کا احتمال تلاش کریں۔ منحنی OC کو ترسیم کریں۔ جواب: 0.9953, 0.9825, 0.9384, \cdots

سوال 24.236: حسابی کیکولیٹر کی بیٹریوں کی بڑی کھیپوں کو مذکورہ ذیل منصوبہ کے تحت پر کھا جاتا ہے۔ کھیپ سے بلا منصوبہ 30 بیٹریاں منتخب کر کے پر کھی جاتی ہیں۔ اگر اس نمونہ میں زیادہ سے زیادہ 1 عیب دار بیٹری ہو تب اس کھیپ کو قبول کیا جاتا ہے ورنہ اس کر مستر دکیا جاتا ہے۔ پوئس تقسیم استعال کرتے ہوئے اس منصوبے کی OC منحنی کو ترسیم کریں۔

سوال 24.237: سوال 24.236 میں AOQ منحنی ترسیم کریں۔سدھارنے کے عمل کے ساتھ اوسط خارجی عد معیار تعین کریں۔ جواب $\theta=0.054$ پر $\theta=0.054$

سوال 24.238 : n=50 اور c=0 کی صورت میں سوال 24.236 کو دوبارہ حل کریں۔

سوال 24.239: مثال 24.28 میں بیش ہندسی تقسیم کی تخمینی ثنائی تقسیم علاش کرتے ہوئے تخمینی اور اصل قیمت کا موازنہ کریں۔ جواب: $(1-\theta)^2$

سوال 24.240: مثال 24.28 میں سطح قابل قبول معیار 0.1 اور سطح قابل مسترد معیار 0.6 ہونے کی صورت میں خطی پیداکار اور خطر خریدار کیا ہوں گے؟

سوال 24.241: پیچوں کی کھیپ میں θ تناسب عیب دار ہیں۔اس کھیپ سے 5 کا نمونہ حاصل کیا جاتا ہے۔اس کھیپ کو قبول کیا جاتا ہے اگر نمونہ میں (الف) کوئی بھی عیب دار نہ ہو، (ب) زیادہ سے زیادہ ایک عیب

دار ہو۔ ثنائی تقسیم استعال کرتے ہوئے OC منحنیات تلاش کرتے ہوئے انہیں ترسیم کریں اور ان کا آپس میں مواز نہ کریں۔ OC جواب: OC OC منحنیات OC منحنیات علاقی مواز نہ کریں۔ جواب: OC OC OC OC منحنیات علاقی میں مواز نہ کریں۔ جواب OC OC منحنیات علاقی منحنیات علاقی منحنیات علاقی منحنیات علاقی میں مورد نہ میں مورد نہ میں میں منحنیات میں میں منحنیات میں میں منحنیات میں منحنیات

سوال 24.242: برتی فتیلہ کی کھیپ سے 3 کا نمونہ حاصل کیا جاتا ہے۔اگر نمونہ میں ایک سے زیادہ عیب دار نہ ہوں تب اس کھیپ کو قبول کیا جاتا ہے۔اس نمونی منصوبہ پر تقید کریں۔بالخصوص % 50 عیب دار کی کھیپ قبول ہونے کا اختال حاصل کریں۔ (ثنائی تقییم استعال کریں۔)

سوال 24.243: c=0 اور n کی بڑھتی قیمت (مثلاً $n=2,3,4,\cdots$) کی نمونی منصوبوں کا موازنہ کریں اور ان کو ترسیم کریں۔ (ثنائی تقسیم استعال کریں۔) جواب: $P(A;\theta)=(1-\theta)^n$

سوال 24.244: c=1 کیتے ہوئے سوال 24.243 کو دوبارہ حل کریں۔

سوال 24.245: OC منحنی میں اچھی معیار اور خراب معیار کو علیحدہ کرنے کا انتصابی حصہ کیوں نہیں پایا جاتا ہے؟ ہے؟ جواب: چونکہ n متناہی ہے۔

سوال 24.246: n=5 اور c=10 اور c=10 اور n=5 اور AOQ منحنیات ترسیم کریں۔

سوال 24.247: خطر خریدار % 5 کے لئے سوال 24.246 کی منحنی سے θ_0 تلاش کریں۔ خطر پیداکار θ_1 تداکار کی منحنی سے θ_1 تلاش کریں۔ θ_2 سوال 24.246 کی منحنی سے θ_3 تلاش کریں۔ جواب: θ_2 θ_3 θ_4 θ_5 θ_6 θ_6 θ_7 θ_8 θ_7 θ_8 θ_8 θ_8 θ_9 θ_9

سوال 24.248 کو دوبارہ حل کریں۔ c=1 اور c=1 اور n=4

سوال 24.249: ہم گھڑیوں کی بڑی کھیپوں سے 100 جسامت کے نمونے لیتے ہیں۔ہم چاہتے ہیں کہ سطح قابل قبول معیار %5 اور خطر پیدا کار %2 ہو۔ ہمیں تعداد قبولیت c کی کیا قبت منتخب کرنی ہو گی؟ (عمومی تقسیم استعال کریں۔) جواب: 9

24.18. عمد گی موافقت

سوال 24.251: n=5 اور c=0 کی صورت میں سطح قابل قبول معیار $\theta_0=1$ اور سطح قابل مستر د معیار $\theta_1=15$ فرض کرتے ہوئے واحد نمونی منصوبہ میں خطر تلاش کریں۔ $\alpha=5$ $\beta=44$ $\alpha=5$

سوال 24.252: n=5 اور c=0 لیتے ہوئے بڑی کھیپ کے لئے واحد نمونی منصوبہ استعال کرتے ہوئے بڑی کھیپ کے لئے واحد نمونی منصوبہ استعال کرتے ہوئے ترسیم کریں۔ اوسط غارجی سطح معیار بھی تلاش کریں۔

24.18 عمر گی موافقت

ہم نمونہ x_1, \dots, x_n استعال کرتے ہوئے اس قیاس کو پر کھنا چاہتے ہیں کہ جس آبادی سے نمونہ لیا گیا ہو اس کا تفاعل تقسیم F(x) ہے۔ ظاہر ہے کہ نمونے کا تفاعل تقسیم $\tilde{F}(x)$ اصل تفاعل تقسیم F(x) کی "اچھی تخمین" دیتا ہو تب ہم اس قیاس کو نا منظور نہیں کریں گے کہ تفاعل F(x) اس آبادی کا تفاعل تقسیم ہے۔ اگر $\tilde{F}(x)$ تفاعل $\tilde{F}(x)$ سے بہت زیادہ انحراف کرتا ہو تب ہم اس قیاس کو نا منظور کریں گے۔

اس طرح فیصلہ کرنے کے لئے ضروری ہے ہم جانتے ہوں کہ قیاس درست ہونے کی صورت میں F(x) سے F(x) کا انحراف F(x) کتنا انحراف کر سکتا ہے۔ اس خاطر ہم ایک مقدار متعارف کرتے ہیں جو F(x) سے درکار ہو گا۔ آئیں اس کو ناپتا ہے اور ہمیں اس مفروضہ کے تحت، کہ قیاس درست ہے، اس مقدار کا تفاعل احتمال درکار ہو گا۔ آئیں اس کو حاصل کرتے ہیں۔ ہم عدد c یوں تعین کرتے ہیں کہ، قیاس درست ہونے کی صورت میں، c سے زائد انحراف کا ایک چھوٹا بینگلی مختص احتمال ہو۔ ہم حال، اگر c سے زیادہ انحراف پایا جاتا ہو تب ہمیں قیاس درست ہونے پر شک و شبہ ہو گا اور ہم قیاس کو نا منظور کریں گے۔ اس کے برعکس اگر انحراف c سے تجاوز نہ کرتا ہو، تا کہ f(x) تفاعل f(x) کی اچھی تخمین ہو، ہم قیاس کو نا منظور نہیں کرتے ہیں۔ ظاہر ہے کہ قیاس نا منظور نہ کرنے کی صورت میں ہمارے پاس قیاس نا منظور کرنے کا ناکا فی ثبوت ہے اور یہ اس امکان کو خارج نہیں کرتی ہے کہ پر کھ میں دیگر تفاعل بھی نا منظور نہیں ہوں گے۔ یوں صورت حال کا فی حد تک حصہ 24.15 کی طرح ہے۔

جدول 24.14 میں اس طرز کی پر کھ دکھائی گئی ہے 191 اس پر کھ کا جواز کچھ یوں ہے کہ اگر قیاس درست ہو، تب χ^2 اس بلا منصوبہ متغیر کی مشاہدے سے حاصل قیمت ہو گی جس کی تفاعل تقسیم K-1 درجہ آزادی (یا χ^2 اس بلا منصوبہ متغیر کی مشاہدے سے حاصل قیمت ہو گ

جدول 24.14: جس آبادی سے نمونہ x_1, \cdots, x_n حاصل کیا گیا ہواس آبادی کا تفاعل تقسیم F(x) ہونے کی قیاس کا مربع خاپر کھ

پہلا قلدم: x محور کو K و تفوں K و تفوں K یہ بیں یوں تقسیم کریں کہ ہر وقفہ میں دیے گئے نمونہ K میں کہ سروق قلم نے میں میں اور تقول کی جاتی ہوں۔ وقفہ K یہ بین نمونی قیت دوو تفول کی سے کم K قیمتیں پائی جاتی ہوں۔ وقفہ K میں نمونی قیمتوں کی شار کی جہاں کا معترک سرحد پر پائی جاتی ہوت دونوں مطابقتی K میں K میں کریں۔

 $m{c}$ وسوا قدم: F(x) استعال کرتے ہوئے زیر غور بلامنصوبہ متغیر X کا وقفہ I_j میں کوئی بھی قیت اختیار کرنے کا حمال کریں ہوتیہ درجہ نامی کریں جہاں $j=1,\cdots,K$ کی صورت میں وقفہ $j=1,\cdots,K$ میں نمونی قیمتوں کا نظیری متوقع شارے)۔

$$e_j = np_j$$

تيسوا قدم: درج ذيل انحراف كاحباب كرير_

(24.157)
$$\chi_0^2 = \sum_{j=1}^K \frac{(b_j - e_j)^2}{e_j}$$

چو تھا قدم: منی نیز سط (% 1, % 5 ، وغیره) منتخب کریں۔

پانچوان قده: درج زیل مساوات کاحل c ، ضمیمه چی جدول k-1 ، جیس k-1 درجه آزادی لیتے ہوئے، تلاش کریں۔

$$P(\chi^2 \le c) = 1 - \alpha$$

K-) استعال کیے جارہ ہوں تبرین معلوم نہ ہوں اور ان کی زیادہ سے زیادہ امکانی اندازے (حصہ 24.13) استعال کیے جارہ ہوں تبری معلوم نہ ہوں اور ان کی زیادہ سے زیادہ اگر کا منظور نہ کریں۔ اگر K-r-1 ورجہ آزادی استعال کریں۔ اگر $\chi_0^2 \leq c$ ہو، قیاس کو نامنظور نہ کریں۔ کریں۔ کریں۔

مثال 24.30: عمومیت کا پرکھ کیا صفحہ 1533 پر جدول 24.2 میں دیا گیا نمونہ عمومی آبادی سے لیا گیا ہے؟ حل: μ اور σ^2 کی زیادہ سے زیادہ امکانی اندازے 364.7 $\widehat{\pi}=\overline{x}=3$ اور 712.9 $\widehat{\sigma}^2$ ہیں۔جدول 24.18ء ممد گی موافقت

جدول 24.15: حساب برائے مثال 24.15

x_{j}	$\frac{x_j - 364.7}{26.7}$	$\Phi\left(\frac{x_j - 364.7}{26.7}\right)$	$e_j = 100p_j$	b_j	اجزاء مساوات 157.24
$-\infty \cdots 325$	$-\infty \cdots - 1.49$	$0.0000 \cdots 0.0681$	6.81	6	0.096
$325 \cdots 335$	$-1.49 \cdot \cdot \cdot - 1.11$	$0.0681 \cdots 0.1335$	6.54	6	0.045
$335 \cdots 345$	$-1.11 \cdot \cdot \cdot - 0.74$	$0.1335 \cdots 0.2296$	9.61	11	0.201
$345 \cdots 355$	$-0.74 \cdot \cdot \cdot - 0.36$	$0.2296 \cdots 0.3594$	12.98	14	0.080
$355 \cdots 365$	-0.36 0.00	$0.3594 \cdots 0.5000$	14.06	16	0.268
$365 \cdots 375$	$0.00\cdots0.39$	$0.5000 \cdots 0.6517$	15.17	15	0.002
$375 \cdots 385$	$0.39 \cdots 0.76$	$0.6517 \cdots 0.7764$	12.47	8	1.602
$385 \cdots 395$	$0.76 \cdots 1.13$	$0.7764 \cdots 0.8708$	9.44	10	0.033
$395 \cdots 405$	$1.13 \cdots 1.51$	$0.8708 \cdots 0.9345$	6.37	8	0.417
$405\cdots\infty$	1.51 · · · ∞	$0.9345 \cdots 1.0000$	6.55	6	0.046
				χ_0^2	= 2.790

K=10 منتخب کرتے ہیں۔ چونکہ $\alpha=5$ % دیتا ہے۔ ہم $\alpha=5$ % دیتا ہے۔ ہم $\alpha=5$ % دیتا ہے۔ ہم مقدار معلوم کا اندازہ c=10 لگتے ہیں، ہم c=10 کا گلتے ہیں، ہم مقدار معلوم کا اندازہ c=110 کا طل c=110 کا طل c=110 کا طل کرتے ہیں۔ چونکہ c=14.07 کا طل کرتے ہیں۔ چونکہ c=14.07 کا معمومی ہونے کا قیاس نا منظور نہیں کرتے ہیں۔ c=14.07 کا معمومی ہونے کا قیاس نا منظور نہیں کرتے ہیں۔

سوالات

سوال 24.253: تین مشینوں میں سے ہر ایک مشین پر بنائے جانے والے کیلوں سے 200 جسامت کے نمونے ماصل کیے گئے۔ ان نمونوں میں عیب دار کیلوں کی تعداد 7,8,12 تھی۔ کیا یہ فرق معنی خیز ہے؟ (% 5 = α استعال کریں۔)

 $p=rac{27}{600}=4.5\,\%$ جواب: آيينوں مشينوں ميں عيب دار کيلوں کی تعداد ايک جيسا کو قياس H_0 ڪي H_0 عيداد ايک جيسا کو قياس $\alpha=3$ ، اور درجہ آزادی اندازہ حاصل ہو گا۔ يوں $\alpha=3$ ، اور درجہ آزادی $\chi_0^2=rac{1}{9}(2^2+1^2+3^2)=1.56<5.9$ ، اور درجہ آزادی $\chi_0^2=\frac{1}{9}(2^2+1^2+3^2)=1.56<5.9$ ، اور درجہ آزادی $\chi_0^2=\frac{1}{9}(2^2+1^2+3^2)=1.56$

92, 60, 66, 62, 90 دو پہر ایک بجے سے دو بجے تک ایک دکان پر متواتر پانچ دنوں میں بالترتیب 92, 60, 66, 62, 90 صار فین آئے۔اس قیاس کو پر کھیں کہ ان دنوں میں صار فین کی تعداد ایک جیسی ہے۔ ($\alpha = 5$ کیں۔)

سوال 24.255: گرگر یوبان مینڈل کے ایک کلائیکی تجربہ کے نتیجہ میں 355 پیلے مٹر اور 123 سبز مٹر کے دانے حاصل ہوئے۔کیا یہ نظریہ مینڈل کے مطابق ہے جس کے تحت نسبت پیلے مٹر:سبز مٹر کی قیمت 3:1 ہونی چاہیے۔

 $K=2, n=355+123=478, e_1=478\cdot \frac{3}{4}=358.5, e_2=478\cdot \frac{1}{4}=119.5,$ وواب: c=3.84 ورجه آزادی و آغیزی قیمتوں سے انجراف مخص بلا منصوبہ اثرات ہیں۔ c=3.84

سوال 24.256: ایک پیدا کار دعوی کرتا ہے کہ عمل پیداوار میں صرف % 2.5 استرے تیز دھار نہیں ہوتے ہیں۔ اس قیاس کو متبادل: % 2.5 سے زیادہ تعداد تعداد تیز دھار نہیں ہوتے، پر کھیں۔ 400 استروں کا نمونہ استعال کریں جن میں 17 تیز دھار نہیں ہیں۔ (% 5 = α استعال کریں۔)

سوال 24.257: بلا منصوبہ اعداد کی جدول میں طاق اور جفت اعداد کی تعداد تقریباً ایک جیسی ہونی چاہیے۔ ضمیمہ ہ $\alpha=6$ کی جدول 9. ہوئے اس قیاس کو پر کھیں۔ (6 0 عنداد کو استعال کرتے ہوئے اس قیاس کو پر کھیں۔ (6 0 0 استعال کریں۔)

جواب: $\chi^2=2<3.84$ بهذا قیاس کو نا منظور نه جواب: $\chi^2=2<3.84$ بهذا قیاس کو نا منظور نه کرس۔

سوال 24.258: ایک سکہ کو 50 بار اچھالا جاتا ہے۔خط کی کم سے کم تعداد (25 سے زیادہ) کیا ہو گی جس پر سکہ منصفانہ ہونے کی قیاس کو % 5 کی سطح پر نا منظور کیا جائے گا۔

سوال 24.259: ایک معیاری طریقہ پر پیدا کردہ لوہے کی ایک مخصوص قسم کی سلاخوں میں سے % 25 سلاخ 900 kg کی بوجھ ڈالنے سے ٹوٹ جاتے ہیں۔ایک نئے طریقہ سے پیدا 80 سلاخوں پر اتنا ہی بوجھ ڈالنے سے 27 سلاخ ٹوٹ جاتے ہیں۔ کیا نئے طریقہ سے پیدا سلاخوں کے ٹوٹ جانے کی شرح وہی ہے؟ جواب: $\alpha = 3.27 < c = 3.84$ جواب: $\alpha = 3.27 < c = 3.84$ بال $\alpha = 3.27 < c = 3.84$ بال ہوں۔

سوال 24.260: موٹروے کی تین لینوں میں ایک مخصوص دورانیہ کے دوران، ایک ہی رخ چلتی گاڑیوں کی تعداد بالترتیب 910 ، 850 اور 720 گاڑیاں گئی گئیں۔ کیا ہم وثوق کے ساتھ کہہ سکتے ہیں کہ تینوں لینوں پر سے ایک جنٹنی گاڑیاں گزریں؟

سوال 24.261: ایک کلایکی تجربه میں پانسہ 20000 مرتبہ پھیکا گیا جس میں 6, \dots ہندسوں کی حتی تعدد 24.261، ماصل ہوئی۔ $\alpha=5$ ماصل ہوئی۔ $\alpha=5$ استعال کرتے ہوئے پانسہ کے تعدد

24.18. عمد گی موافقت

منصفانه ہونے کی قیاس کو پر کھیں۔ منصفانہ ہونے کی قیاس کو پر کھیں۔ جواب: $K=6, \chi_0^2=94.19, c=11.07$

سوال 24.262: کیا صفحہ 1538 پر جدول 24.4 میں دیا گیا نمونہ عمومی آبادی سے لیا گیا؟ $\chi^2_0 = 0.7 < (-\infty, 95, 95, 105, 115, \infty) \quad \overline{x} = 99.4, \quad \widetilde{\sigma} = 15.8, \quad K = 5$ جواب: $c = 5.99 \ (\alpha = 5\%)$

سوال 24.263: درج زیل نمونہ جس آبادی سے لیا گیا اس آبادی کو عمومیت کے لئے پر کھیں جہاں 0.3 mm موٹی فولادی چادروں کی تنشی مضبوطی x [kg mm⁻²] ہے۔

\boldsymbol{x}	حتمى تعدد	\boldsymbol{x}	حتمى تعدد
< 42.0	15	43.5 - 44.0	22.5
42.0 - 42.5	11	44.0 - 44.5	19.5
42.5 - 43.0	15	44.5 - 45.0	12
43.0 - 43.5	14	> 45.0	19

سوال 24.264: درج ذیل مواد استعال کرتے ہوئے آبادی کو پوئن تقسیم کے لئے پر کھیں۔ 7.5 سینڈ میں الفا ذرات کی تعداد x اور a(x) ان کی حتمی تعدد (=و قفوں کی تعداد جن میں ٹھیک x ذرے دیکھے گئے) a(x) تجربہ ارنسٹ ردر فورڈ اور ہانس گائیگر نے 1910 سرانجام دیا۔

\boldsymbol{x}	a(x)	\boldsymbol{x}	a(x)	x	a(x)
0	57	5	408	10	10
1	203	6	273	11	4
2	383	7	139	12	. 2
3	525	8	45	≥ 13	0
4	532	9	27		

جواب: آخری تینوں صفوں کو ایک ساتھ لیتے ہوئے K-r-1=7 ہو گا جہاں r=1 ہے چو نکہ اوسط کا اندازہ حاصل کیا گیا ہے۔ قیاس کو نا منظور نہ کا اندازہ حاصل کیا گیا ہے۔ قیاس کو نا منظور نہ کریں۔

سوال 24.265: پوکئن تقسیم کی آبادی سے 1000 کاغذ کئے گئے۔اس قیاس کو پر کھیں۔درج ذیل ایک کاغذ a(x) وجوں کی تعداد x جہوں والے کاغذوں کی تعداد x جہوں اور x دھبوں والے کاغذوں کی تعداد x جہوں والے کاغذوں کی تعداد کی ت

سوال 24.266: کیا یہ ممکن ہے کہ ہم $\chi_0^2=0$ حاصل کریں اگرچہ نمونی تفاعل تقییم پر کھے جانے والے تقاعل تقییم F(x) سے مختلف ہو؟

24.19 غير مقدار معلوم پر كھ

حصہ 24.15 کے پر کھ عمومی آبادی کے لئے تھے۔ کئی بار آبادی کی تقسیم غیر عمومی یا نا معلوم تقسیم رکھتی ہے۔ ایس صورت میں ہم غیر مقدار معلوم پرکھ ¹⁹² یا تقسیم پاک پرکھ ¹⁹³ استعال کر سکتے ہیں جس کی بنیاد شاریات رجان ¹⁹⁴ ہے۔ البتہ عمومی تقسیم کے لئے حصہ ¹⁹⁴ ہے۔ البتہ عمومی تقسیم کے لئے حصہ 24.15 کے پر کھ بہتر نتائج دیتے ہیں۔ تقسیم یاک پر کھ کو سبحنے کی خاطر ایک مثال پر غور کرتے ہیں۔

مثال 24.31: پرکھ برائے علامت وسطانیہ

مساوات F(x)=0.5 تفاعل تقسیم ہے۔ مثال 24.26 کا میونی فرق، یعنی،

16 16 2 6 0 0 13 8

استعال کرتے ہوئے ہم قیاں $\tilde{\mu}=0$ کو پر کھتے ہیں جو کہتا ہے کہ کام کرنے کے دو مختلف حالات میں مزدور کی کار کردگی تقریباً ایک جیسی ہے۔

 $\alpha=5$ منتج کرتے ہوئے۔اگر قیاس درست ہو تب مثبت $\tilde{\mu}>0$ منتج کرتے ہوئے۔اگر قیاس درست ہو تب مثبت فرق کا احتمال p=0.5 اور منفی فرق کا احتمال ایک جیسے ہوں گے۔ یوں p=0.5 ہو گا اور بلا منصوبہ متغیر

$$X =$$
قیتوں میں مثبت قیمتوں کا مجموعہ n

کا تقسیم ثنائی ہو گا جس کا p=0.5 ہو گا۔ہمارے نمونے میں 8 قیمتیں ہیں۔ہم p=0.5 قیمتوں کو خارج کرتے ہیں چونکہ ان کا فیصلہ پر کوئی اثر نہیں پایا جاتا ہے۔تب p=0.5 قیمتیں رہ جاتی ہیں۔یہ تمام قیمتیں مثبت ہیں۔۔چونکہ

$$P(X=6) = {6 \choose 6} (0.5)^6 (0.5)^0 = 0.0156 = 1.56 \% < \alpha$$

nonparametric test¹⁹²

distribution-free test 193

order statistics¹⁹⁴

ہے للذا ہم قیاس نا منظور کرتے ہیں۔

ا گران 6 قیمتوں میں صرف 1 قیمت منفی ہوتی تب

$$P(X \ge 5) = {6 \choose 5} (0.5)^5 \cdot 0.5 + {6 \choose 6} (0.5)^6 = 10.9 \%$$

ہوتا اور ہم قیاس کو نا منظور نہ کرتے۔

مثال 24.32: بلا منصوبہ رجحان کیے لئے پرکھ تار کو کاٹنے کے لئے ایک مثین استعال کی جاتی ہے۔لگاتار کئی لمبائیاں درج ذیل ہیں۔

29 31 28 30 32

اس نمونہ کو استعال کرتے ہوئے اس قیاس کو پر کھیں کہ مثین تار کو بغیر کسی رجمان کا ٹتی ہے، یعنی مثلیل بڑھتی یا مسلسل کھٹتی لمبائی کی تار نہیں کا ٹتی ہے۔ فرض کریں کہ مثین کی قشم سے ایسا ظاہر ہوتا ہے کہ یہ مسلسل بڑھتی لمبائی کی تار کاٹے گی (مثبت رجمان)۔

۔ حل: جتنی بار کوئی بڑی قیت کسی چھوٹی قیت سے پہلے رونما ہو، ہم ان تبدیلیوں کی تعداد گئتے ہیں۔ 29 قیت سے پہلے آتی ہے: (1 تبدیلی)

31 كى قيت 28 اور 30 سے پہلے آتی ہے: (2 تبديلياں)

باقی تین قیمتیں بڑھتی رجحان رکھتی ہیں۔یوں نمونہ میں 0=1+2 تبدیلیاں پائی جاتی ہیں۔ہم اب بلا منصوبہ متغیر

تعداد تبدیلیال T

پر غور کرتے ہیں۔اگر قیاس درست ہو (غیر رجانی)، تب پانچ اجزاء 5 4 3 2 1 کے 120 = !5 ترتیبی اجماعات

میں ہر ایک کا احمال 100 ہو گا۔ ہم ان ترتبی اجماعات کو ان کی تبدیلیوں کے لحاظ سے کھتے ہیں:

ان سے ہم درج ذیل حاصل کرتے ہیں

$$P(T \le 3) = \frac{1}{120} + \frac{4}{120} + \frac{9}{120} + \frac{15}{120} = \frac{29}{120} = 24\%$$

للذا ہم قیاس کو نا منظور نہیں کرتے ہیں۔

سوالات

سوال 24.267: 10 کوششوں میں سے 7 کوششوں میں قتم الف ہوئی چھلنی نے قتم بہ ہوائی چھلنی سے زیادہ صاف ہوا پیدا کی جبکہ 2 کوششوں میں چھلنی بے زیادہ صاف ہوا پیدا کی جبکہ 2 کوششوں میں دونوں کے

نتائج ایک جیسے تھے۔ کیا چھلنی الف زیادہ بہتر ہے؟

جواب: قیاس: الف اور ب ایک جیسی معیار رکھتی ہیں۔ تب 8 کو ششوں میں 7 یا 8 بار الف کے حق میں وقوعہ کا اختال % 3.5 ہے۔ قیاس کو نا منظور کریں۔

سوال 24.268: کن صور توں میں ہم پر کھ علامت کو استمراری تقسیم کی اوسط پر کھنے کے لئے استعال کر سکتے ہیں۔

سوال 24.269: پر کھ علامت کو سوال 24.209 کے نمونہ پر لاگو کریں۔ $\tilde{\mu}=0$ فیاں $P(X\leq 2)=0.5^6(1+6+15)=34$ کو نا منظور نہ کریں۔

سوال 24.270: اگر $\tilde{\mu}=0$ کی بجائے قیاں $\tilde{\mu}=\tilde{\mu}_0$ ہو تب آپ پر کھ علامت کو کس طرح استعال کریں گے۔ (μ_0 کوئی بھی عدد ہو سکتا ہے۔)

سوال 24.271: 16 جسامت کے نمونہ میں 10 مثبت، 4 منفی اور 2 قیمتیں صفر ہیں۔ (ضمیمہ ہ کی جدول 5. ہ میں درکار قیمتیں نہیں دی گئ ہیں۔ آپ کو یہ قیمتیں حاصل کرنی ہوں گی۔)

سوال 24.272: $\tilde{\mu} = 5$ میٹر لمبائی سلاخ پیدا کرنے کے عمل کے ایک نمونہ میں 4 سلاخوں کی لمبائی گھیک ہے، 15 کی لمبائی کم اور 3 کی لمبائی زیادہ ہے۔ کیا اس عمل کو درست کرنے کی ضرورت ہے؟ (عمومی تقسیم کو ثنائی تقسیم کا تخمین لیں۔ حصہ 24.10)

سوال 24.273: مئلہ 24.15 استعال کیے بغیر سوال 24.272 کو حل کریں۔ جواب: 3 یا اس سے کم سلاخوں کی لمبائی 5 میٹر سے زیادہ ہونے کا ٹھیک اختال % 0.38 ہے۔ یہ سوال 24.272 میں حاصل تخمینی اختال سے کچھ کم ہے۔

سوال 24.274: 10 مریضوں میں سے ہر ایک کو دو مختلف نیند کی دوائیاں دی گئی۔درج ذیل جدول ان کے اثرات (سونے کے دورانے میں گھنٹوں میں اضافہ) پیش کرتا ہے۔ پر کھ علامت کی مدد سے دیکھیں کہ آیاان میں فرق معنی خیز ہے۔

$$A$$
1.90.81.10.1-0.14.45.51.64.63.4 B 0.7-1.6-0.2-1.2-0.13.43.70.80.02.0 $\ddot{\psi}$ 1.22.41.31.30.01.01.80.84.61.4

سوال 24.275: مثال 24.24 میں سمجھائے گیے پر کھ کو سوال 24.274 پر لاگو کریں ۔(سوال میں دیے گیے نمونہ کی آبادی کو عمومی تصور کریں۔)

 $\pi=1.58$ ، $\mu>0$ ؛ نتبادل $\mu=0$ ، قیاس و باید : $\mu=0$ ، نتبادل $\mu=0$ ؛ نیاس نا منظور $t=\sqrt{10}\cdot\frac{1.58}{123}=4.06>c=1.83$

سوال 24.276: منجلی چوتھائی q_{25} (جس کی تعریف $F(q_{25})=0.25$ ہے) کے لئے پر کھ علامت بنائیں۔

سوال 24.277: 8 قیمتوں کا نمونہ جس میں 7 کی قیمت 20° C سے کم اور 1 کی قیمت 20° C سے زیادہ ہو استعال کرتے ہوئے خود کار حراری سوئچ ٹھیک 20° C پر مقرر ہونے کے قیاس کو بالمقابل کہ سوئچ کم درجہ حرارت پر مقرر ہے، پر کھیں۔

جواب: $P(X \geq 1) = 0.5^8 (1+8) = 3.5\% < \alpha = 5\%$ اس قیاس کو نا منظور کریں کہ سونگ کھیک درجہ حرارت پر مقرر ہے۔

سوال 24.278: وولٹ پیا کی پیائش درجہ حرارت $T[^{\circ}C]$ سے آزاد ہے کے قیاس کو بالمقابل کہ اس کی پیائش بڑھتے T کے ساتھ بڑھتی ہے پر کھیں۔ مستقل برقی دباو مہیا کرتے ہوئے حاصل درج ذیل پیائشوں کا نمونہ استعمال کریں۔

T[°C] درجه ترارت				40	50
V[V] يبيائش	99.8	101.0	100.4	100.8	101.5

سوال 24.279 d پنائیں۔ n=4 لیتے ہوئے مثال 24.32 میں دی گئی جدول کی طرح جدول بنائیں۔

سوال 24.280: کیا کھاد سے گندم کی استعال سے پیداوار [رقبہ/X [kg بڑھتی ہے؟ کھاد کی بڑھتی مقدار کے کاظ سے مرتب درج ذیل نمونہ استعال کریں۔

15.2 16.8 13.2 16.6 17.2 17.5 17.3 18.1

x سوال 24.281: مثال 24.32 کے پر کھ کو درج ذیل نمونہ پر لاگو کریں۔(اون میں ڈائی سلفائڈ کی مقدار y جس کو کیمیائی عمل سے نا گزاری گئی اوون میں مقدار کے فی صد میں ناپا گیا ہے۔اون میں پانی کی فی صد مقدار y ہے۔)

24.20 يبائشوں كى جوڑياں۔سيدھے خطوط كوموافق بنانا

ہم اب ایسی تجربات پر غور کرتے ہیں جن میں ہم جوڑی مقدار ناپتے یا ان کا مشاہدہ کرتے ہیں۔ہم تجربات کو درج ذیل دو اقسام میں تقسیم کر سکتے ہیں۔

- تجزیہ باہھی دشتہ 195 میں دونوں متغیرات بلا منصوبہ ہوں گے اور ہم ان کے درمیان رشتہ میں دلچین رکھتے ہیں۔(اس کتاب میں شاریات کی اس شاخ پر غور نہیں کی جائے گی۔)
- رجعی تجزیہ 196 میں دو میں سے ایک متغیر، مثلاً x ، کو عام متغیر تصور کیا جاتا ہے، یعنی، اس کی ناپ میں خاطر خواہ خلل نہیں پایا جاتا ہے۔ دوسرا متغیر، Y ، بلا منصوبہ متغیر ہے۔ x کو غیر تابع متغیر کہتے ہیں اور ہم جاننا چاہتے ہیں کہ y ، متغیر x کا کتنا تابع ہے؟ اس کی ایک اچھی مثال فشار خون y ہے جو انسان کے عمر x کی تابع ہے، جس کو ہم اب سے x y y کی رجعت کہیں گے۔

تجربہ کرنے والا پہلے x کی n قیمتیں x نتخب کرتا ہے اور اس کے بعد ان x پر x کی قیمتیں مشاہدے سے حاصل کرتا ہے۔ یوں اس کو درج ذیل صورت کا نمونہ ملتا ہے۔

 $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

رجعی تجزیہ میں فرض کیا جاتا ہے کہ Y کی اوسط μ ، متغیر x کے تابع ہے، لینی ، ان کے مابین عام تعلق $\mu = \mu(x)$ کی منحیٰ کو χ کی χ پر رجعی منحیٰ کہتے ہیں۔اس حصہ میں χ مادہ ترین صورت پر غور کرتے ہیں جہال χ خطی تفاعل χ فاعل χ χ χ χ χ χ خونی قیمتوں کو χ مستوی صورت پر غور کرتے ہیں جہال χ خطی تفاعل χ فاعل χ χ χ χ کی خاط سے χ کی اندازاً χ χ χ χ کی اندازاً χ χ χ کی اندازاً χ χ χ کی خطر کرنا چاہیں گے تا کہ کسی بھی χ χ χ χ کی متوقع قیمت ہم جان سکیں۔اگر نقطی بھر χ ہوں تب، خط کو آئکھ کی مدد سے ٹھیک بٹھانا غیر تھیٰ ہوگا لہذا ہمیں صابی طریقہ درکار ہوگا جو صرف نقطوں پر منحصر کیتا نتیجہ دے۔ایک بہت زیادہ استعال ہونے والی ترکیب، جس کو گاوس نے بنایا، کھٹر موبعوں کی توکیب χ کہلاتی سے۔مارے موجودہ ضرورت کو مد نظر رکھتے ہوئے اس کو درج ذیل بیان کیا جا سکتا ہے۔

correlation analysis¹⁹⁵ regression analysis¹⁹⁶

method of least squares¹⁹⁷

شكل 24.31: نقطه (x_i,y_i) سيدهي خطy=a+bx انتصابي فاصله

نقطوں پر سیرھا خط یوں بھایا جائے کہ نقطوں کا سیر ھی لکیر سے فاصلوں کا مربع کم سے کم ہو، جہاں نقطہ اور سید ھی لکیر کے مابین فاصلہ انتصابی رخ (17 محور کے متوازی) نایا جاتا ہے۔

> مفروضه (الف) :

مونہ $(x_1,y_1),\cdots,(x_n,y_n)$ میں تمام x قیمتیں $(x_1,y_1),\cdots,(x_n,y_n)$ مونہ

جسامت n کے نمونہ $(x_1,y_1),\cdots,(x_n,y_n)$ پر غور کریں۔نمونی قبت $(x_1,y_1),\cdots,(x_n,y_n)$ کی سیدھی کلیر y=a+bx (شکل y=a+bx)۔ یوں ان فاصلوں کے مربع کا مجموعہ

(24.158)
$$q = \sum_{j=1}^{n} (y_j - a - bx_j)^2$$

q ہو گا۔ کمتر مربعوں کی ترکیب میں ہم a اور b یوں منتخب کرتے ہیں کہ q کی قیمت کم سے کم حاصل ہو۔ q کی قیمت a اور b یور اس کی کم سے کم قیمت درج ذیل لازمی شرائط سے حاصل ہو گی۔

(24.159)
$$\frac{\partial q}{\partial a} = 0 \quad \text{let} \quad \frac{\partial q}{\partial b} = 0$$

ہم دیکھیں گے کہ ان شرائط سے درج ذیل کلیہ حاصل ہوتا ہے

$$(24.160) y - \overline{y} = b(x - \overline{x})$$

جہاں

(24.161)
$$\overline{x} = \frac{1}{n}(x_1 + \dots + x_n)$$
 let $\overline{y} = \frac{1}{n}(y_1 + \dots + y_n)$

ہیں۔مساوات 24.159 کو نمونے کی y قیمتوں کا نمونے کی x قیمتوں پر رجعی خط 198 کہتے ہیں۔اس کی ڈھلوان y کو x کو y کا تجزی عددی سر 199 کہتے ہیں۔ہم دیکھیں گے کہ

$$(24.162) b = \frac{s_{xy}}{s_1^2}$$

ہو گا جہاں

(24.163)
$$s_1^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \overline{x})^2 = \frac{1}{n-1} \left[\sum_{j=1}^n x_j^2 - \frac{1}{n} \left(\sum_{j=1}^n x_j \right)^2 \right]$$

اور

(24.164)

$$s_{xy} = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x})(y_j - \overline{y}) = \frac{1}{n-1} \left[\sum_{j=1}^{n} x_j y_j - \frac{1}{n} \left(\sum_{j=1}^{n} x_j \right) \left(\sum_{j=1}^{n} y_j \right) \right]$$

 s_{xy} کو نمونے کی باہمی تغیریت 200 کہتے ہیں۔ ظاہر ہے کہ مساوات 24.160 میں دیا گیا رجعی خط نقطہ $(\overline{x}, \overline{y})$ سے گزرے گا۔

مساوات 24.160 کو حاصل کرنے کی خاطر ہم مساوات 24.158 اور مساوات 24.159 استعال کرتے ہوئے

$$\frac{\partial q}{\partial a} = -2\sum (y_j - a - bx_j) = 0$$

$$\frac{\partial q}{\partial b} = -2\sum x_j (y_j - a - bx_j) = 0$$

کھتے ہوئے (جہاں j یر l تا n مجموعے لیے جاتے ہیں)۔یوں

$$na + b \sum x_j = \sum y_j$$

$$a \sum x_j + b \sum x_j^2 = \sum x_j y_j$$

حاصل ہو گا۔مفروضہ-الف کے تحت خطی مساوات کے نظام (مساوات 24.163)

$$n\sum x_j^2 - \left(\sum x_j\right)^2 = n(n-1)s_1^2$$

 $\begin{array}{c} {\rm regression~line^{198}} \\ {\rm regression~coefficient^{199}} \end{array}$

covariance²⁰⁰

جدول 24.16: چڑے کی ججم میں کی y[%] کا دباو x پر رجعت

دی گئی قیمتیں		معاون قيمتين		
x_j	y_j	x_i^2	$x_j y_j$	
4000	2.3	16 000 000	9200	
6000	4.1	36 000 000	24600	
8000	5.7	64 000 000	45600	
10 000	6.9	100 000 000	69 000	
28 000	19.0	216 000 000	148 400	

كا مقطع غير صفر جو كا اور اس نظام كا يكتا عل (ماوات 24.161، ماوات 24.163، ماوات 24.164)

(24.165)
$$a = \overline{y} - b\overline{x}, \quad b = \frac{n\sum x_j y_j - \sum x_j \sum y_j}{n(n-1)s_1^2}$$

24.164 تا مساوات 24.160 ما میں میں مل کی قیمت مساوات 24.162 ما مساوات 24.164 مساوات 24.164 مساوات s_{xy} ویتے ہیں (سوال 24.294) اس طرح s_{xy} کے لئے بھی آپ کر سکتے ہیں (سوال 24.294) کے لئے بھی آپ کر سکتے ہیں)

ہاتھ سے نتائج حاصل کرنے کو آسان بنانے کی خاطر ہم

(24.166)
$$x_j = c_1 x_j^* + l_1, \quad y_j = c_2 y_j^* + l_2$$

استعال کرتے ہیں جن میں جن میں y_j^* ، x_j^* میں کہ متبادل قیمتیں y_j^* ، x_j^* ، $x_j^$

مثال 24.33: رجعی خط

ایک مخصوص چڑے کی جم میں فی صد کمی y بالمقابل مقررہ دباو x ناپے گیے۔ کرہ ہوائی کے دباو کو دباو کی اکائی لیگئی ہے۔ نتائج جدول 24.16 میں پیش کیے گئے ہیں۔ y کا x پر رجعی خط تلاش کریں۔

(24.168)

ہم درج ذیل دو مفروضے فرض کرتے ہیں۔

مفروضہ (ب) ہم مقررہ x کے لئے بلا منصوبہ متنیر x عمومی ہے جس کی اوسط $\mu(x)=lpha+eta x$

اور تغیریت σ^2 ہے جہال تغیریت x کا تابع نہیں ہے۔

مفروضہ (پ) مفروضہ $(x_1,y_1),\cdots,(x_n,y_n)$ مفروضہ $(x_1,y_1),\cdots,(x_n,y_n)$ مفروضہ اللہ علی اللہ علی میں معروضہ اللہ کے لئے ماریخ

زیر مفروضہ الف تا پ دکھایا جا سکتا ہے کہ β کا زیادہ سے زیادہ امکانی اندازہ مساوات 24.162 میں دیا گیا رجعی عددی سر b ہو گا۔اسی لئے β کو آبادی کا رجعی عددی سر b ہیں۔

زیر مفروضہ الف تا پ، جیسا جدول 24.17 میں دکھایا گیا ہے، ہم کا وقفہ اعتاد حاصل کر سکتے ہیں۔

مثال 24.34: رجعی عددی سرکا وقفہ اعتماد جدول 24.16 میں دی گئ نمونی قیمتیں استعال کرتے ہوئے جدول 24.17 میں دی گئی ترکیب سے β کا وقفہ اعتماد

 $^{{\}it regression coefficient}^{201}$

جدول 24.17: زیر مفروضہ الف تاب مساوات 24.168 میں دیے گئے eta کا وقفہ اعتماد

 $n=\frac{1}{2}$ پهلا قده: سطح اعتاد γ (95 %،99%،وغیره) منتنب کریں۔ n=1 ورجہ آزادی کے لئے ضمیمہ ہے کہ جدول 10. ہے درج ذیل مساوات کا حل n=1 الش کریں۔ (نمونی جسامتn=1)

(24.169)
$$F(c) = \frac{1}{2}(1+\gamma)$$

تیسوا قدم: نمونہ $(n-1)s_1^2$ یستوا کی میاوات $(x_1,y_1),\cdots,(x_n,y_n)$ استعال کرتے ہوئے میاوات $(n-1)s_1^2$ عماوات b=24.162 میاوات b=24.162

(24.170)
$$(n-1)s_2^2 = \sum_{j=1}^n y_j^2 - \frac{1}{n} \left(\sum_{j=1}^n y_j\right)^2$$

اور

(24.171)
$$q_0 = (n-1)(s_2^2 - b^2 s_1^2)$$

 $k=c\sqrt{rac{q_0}{(n-2)(n-1)s_1^2}}$ ها کوبزریعه حماب حاصل کرین ـ وقفه اعتاد در ن تیل بوگاه چو نقا قدم :

(24.172)
$$b-k \leq \beta \leq b+k$$

تلاش کریں۔

 $\gamma=0.95$ منتخب کرتے ہیں۔ $\gamma=0.95$ منتخب کرتے ہیں۔

n-2=2 مساوات 24.169 کو F(c)=0.975 کو سکتے ہیں۔ ضمیمہ ج کی جدول 10. ج=2 عاصل ہوتا ہے۔ =2 حاصل ہوتا ہے۔ ورجہ آزادی کے لئے =2 عاصل ہوتا ہے۔

24.16 ویتی ہے۔ جدول $3s_1^2=20\,000\,000$ ویتی ہے۔ جدول $3s_1^2=30\,000\,000$ ویتی ہے۔ جدول $3s_1^2=30\,000\,000$ ورج ذیل بذریعہ حساب حاصل کرتے ہیں۔

$$3s_2^2 = 102.2 - \frac{19^2}{4} = 11.95, \quad q_0 = 11.95 - 20\,000\,000 \cdot 0.000\,77^2 = 0.092$$

چو تھا قدم: یوں
$$0.000\,206=0.000\,200=0.000\,200$$
 جا صاصل ہو گا لہذا وقفہ اعتماد درج ذیل ہو گا۔ $k=4.30\sqrt{\frac{0.092}{2\cdot20\,0000000}}=0.000\,206$ چو تھا قدم:

П

سوالات

سوال 24.282: آنکھ سے سیدھا خط تلاش کریں۔ایک گاڑی $15 \, \mathrm{km} \, \mathrm{km}^{-1}$ کی رفتار سے چل رہی ہے جبکہ گاڑی کی (کلو میٹر فی گھنٹہ) رفتار x بالقابل (میٹروں میں) رکنے کے لئے درکار فاصلہ y درج ذیل ہے۔

جواب: تقريباً m 120 m

 $y_j = 0.1 y_j^* + 5$ اور $x_j = 2000 x_j^* + 4000$ اور $y_j = 0.1 y_j^* + 5$ اور $y_j = 0.1 y_j^* + 5$ حاصل کریں۔

سوال 24.284: ایبانمونہ حاصل کریں جس کے لئے b=0 ہو۔

سوال 24.285 تا سوال 24.289 میں x پر y کی نمونی رجعی خط ترسیم کریں۔

سوال 24.285: سوال 24.281 كانمونه استعال كرين ـ

(1,1), (2,1.7), (3,3) :24.286 y = x - 0.1 :۶واب:

y وال y واثن y ورج ذیل زاویائی رفتار y واثن y ورج ذیل زاویائی رفتار y واثن y ورج ذیل زاویائی رفتار y واثن y و

 $y [
m kg \, mm^{-2}]$ ایک مخصوص فولاد کی بد شکلی x [
m mm] اور برینل سختی 202 :24.288 ایر $\frac{x \mid 6 \quad 9 \quad 11 \quad 13 \quad 22 \quad 26 \quad 28 \quad 33 \quad 35}{y \mid 68 \quad 67 \quad 65 \quad 53 \quad 44 \quad 40 \quad 37 \quad 34 \quad 32}$

y - 48.89 = -1.32(x - 20.33) : 3.39 = -1.32(x - 20.33)

 $y \, [\%]$ اور دیکم کی اموات $x \, [\%]$ اور دیکم کی اموات [%]

زیر مفروضہ ب اور پ، سوال 24.290 تا سوال 24.295 میں دیا گیا نمونہ استعال کرتے ہوئے، رجعی عددی سر β کا %95 وقفہ اعتماد تلاش کرس۔

سوال 24.291: سوال 24.287 كانمونه-

Brinell hardness²⁰²

حوال 24.292: سوال 24.288 كا نمونه-
$$q_0=76, k=2.37\sqrt{\frac{76}{7.944}}=0.254,$$
 اعتماد $\beta=\{-1.58\leq \beta\leq -1.06\}$

سوال 24.294: مساوات 24.163 میں ایک ہاتھ سے دوسرا ہاتھ حاصل کریں۔ اشارہ۔ مربع لے کر \overline{x} کی تعریف پر کرتے ہوئے سادہ صورت حاصل کریں۔

سوال 24.295: مساوات 24.164 میں دائیں ہاتھ کو بائیں ہاتھ سے حاصل کریں۔

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

ثبوت: کیتائی (مئله 2.2) تصور کریں کہ کھلے وقفے I پر ابتدائی قیت مئلہ

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

چونکہ مساوات 1.1 خطی اور متجانس ہے للذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ y_1 اور ونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

1690 صميه الراضا في ثبوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل بین لهذا هم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 3.1 کا استعال کیا گیا ہے۔مساوات 7.1-ب کو z=-z کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=-z کھا جا سکتا ہے۔یوں مساوات 5.1 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = \left| q \right| \left| 2yy' \right| \le \left| q \right| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ |p| استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہوئے ور مساوات کی 2447 جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا ہے۔اب

$$z' \leq (1+\big|p\big|+\big|q\big|)z$$

ملتا ہے۔ اس میں 1+|q|+|p|=h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 1.7 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ ایک مطلب

1692 صمير المنافى ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(...2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{if } e^{\ln x} = x \quad \text{if } e^x$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

(5.ب)

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

ال کا الث $\log x = 10^{\log x} = 10^{\log x}$ اور $\log x = 10^{\log x} = 10^{\log x}$ کا الث $\log x$

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احسائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا دور کی عرصہ $\sin x$ ہوگا۔ $\sin x$ طاق ہے لیخی $\sin x$ $\sin x$ ہوگا۔ $\sin x$ میں $\cos x$ بیکہ $\cos x$ جفت ہے لیخی $\cos x$ ہوگا۔

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

$$(-.9) \sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$$

(.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(ب.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

ٹینجنٹ، کوٹینجنٹ، سیکنٹ، کوسیکنٹ (شکل 3.ب-الف، ب)

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹينجنٺ اور كو ٹينجنٺ

بذلولى تفاعل (بذلولى سائن sin hx وغيره - شكل 4.ب-الف، ب

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.19)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(21)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما تفاعل (شکل 5.ب اور ضمیمہ ہے کی جدول 3. ہے) کی تعریف درج ذیل کمل ہے
$$\Gamma(\alpha)=\int_0^\infty e^{-t}t^{\alpha-1}\,\mathrm{d}t \qquad (\alpha>0)$$

-2 coth x ہے۔ نقطہ دار خط tanh x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب ہے α کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 22.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 23.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جے دوبارہ مساوات 23.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times1$ ملتا ہے۔ای طرح بار بار مساوات 23.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 23.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.25) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 22.ب اور مساوات 25.ب منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔ مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے یعنی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 25.ب اور مساوات 26.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علی مساوات 26. میں مساوات کے بیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

$$(-.27)$$
 $\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.29) \qquad P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(ب.30)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.31) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

(...32)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل (شكل 6.ب اور ضميمه جكى جدول 14.ج)

$$(-.33) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 33.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شلسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

(...34)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $\operatorname{erf} \infty = 1$

(-.35)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.س)

(-.36)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 6.ب: تفاعل خلل بـ

$$1$$
اور $\frac{\pi}{8}$ اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(5.38) s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

$$(-.39) Si(x) = \int_0^x \frac{\sin t}{t} dt$$

ا کے برابر ہے۔ تکملہ تفاعل Si
$$\infty = \frac{\pi}{2}$$

(.40)
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions 1

تكمل كوسائن (ضميمه وكي جدول 14. و)

(i.41)
$$\operatorname{ci}(x) = \int_{x}^{\infty} \frac{\cos t}{t} \, \mathrm{d}t \qquad (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتهمي

(i.43)
$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$

ضمیمه *ج* جدول

ضميم ۽. جدول

جدول 1. ج: بيسل تفاعل (قشم اول)

х	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
0	1.0000	0.0000	3.4	-0.3643	0.1792	6.8	0.2931	-0.0652
0.1	0.9975	0.0499	3.5	-0.3801	0.1374	6.9	0.2981	-0.0349
0.2	0.9900	0.0995	3.6	-0.3918	0.0955	7	0.3001	-0.0047
0.3	0.9776	0.1483	3.7	-0.3992	0.0538	7.1	0.2991	0.0252
0.4	0.9604	0.1960	3.8	-0.4026	0.0128	7.2	0.2951	0.0543
0.5	0.9385	0.2423	3.9	-0.4018	-0.0272	7.3	0.2882	0.0826
0.6	0.9120	0.2867	4	-0.3971	-0.0660	7.4	0.2786	0.1096
0.7	0.8812	0.3290	4.1	-0.3887	-0.1033	7.5	0.2663	0.1352
0.8	0.8463	0.3688	4.2	-0.3766	-0.1386	7.6	0.2516	0.1592
0.9	0.8075	0.4059	4.3	-0.3610	-0.1719	7.7	0.2346	0.1813
1.0	0.7652	0.4401	4.4	-0.3423	-0.2028	7.8	0.2154	0.2014
1.1	0.7196	0.4709	4.5	-0.3205	-0.2311	7.9	0.1944	0.2192
1.2	0.6711	0.4983	4.6	-0.2961	-0.2566	8	0.1717	0.2346
1.3	0.6201	0.5220	4.7	-0.2693	-0.2791	8.1	0.1475	0.2476
1.4	0.5669	0.5419	4.8	-0.2404	-0.2985	8.2	0.1222	0.2580
1.5	0.5118	0.5579	4.9	-0.2097	-0.3147	8.3	0.0960	0.2657
1.6	0.4554	0.5699	5	-0.1776	-0.3276	8.4	0.0692	0.2708
1.7	0.3980	0.5778	5.1	-0.1443	-0.3371	8.5	0.0419	0.2731
1.8	0.3400	0.5815	5.2	-0.1103	-0.3432	8.6	0.0146	0.2728
1.9	0.2818	0.5812	5.3	-0.0758	-0.3460	8.7	-0.0125	0.2697
2	0.2239	0.5767	5.4	-0.0412	-0.3453	8.8	-0.0392	0.2641
2.1	0.1666	0.5683	5.5	-0.0068	-0.3414	8.9	-0.0653	0.2559
2.2	0.1104	0.5560	5.6	0.0270	-0.3343	9	-0.0903	0.2453
2.3	0.0555	0.5399	5.7	0.0599	-0.3241	9.1	-0.1142	0.2324
2.4	0.0025	0.5202	5.8	0.0917	-0.3110	9.2	-0.1367	0.2174
2.5	-0.0484	0.4971	5.9	0.1220	-0.2951	9.3	-0.1577	0.2004
2.6	-0.0968	0.4708	6	0.1506	-0.2767	9.4	-0.1768	0.1816
2.7	-0.1424	0.4416	6.1	0.1773	-0.2559	9.5	-0.1939	0.1613
2.8	-0.1850	0.4097	6.2	0.2017	-0.2329	9.6	-0.2090	0.1395
2.9	-0.2243	0.3754	6.3	0.2238	-0.2081	9.7	-0.2218	0.1166
3	-0.2601	0.3391	6.4	0.2433	-0.1816	9.8	-0.2323	0.0928
3.1	-0.2921	0.3009	6.5	0.2601	-0.1538	10.8	-0.2032	-0.1422
3.2	-0.3202	0.2613	6.6	0.2740	-0.1250	11.8	0.0020	-0.2323
3.3	-0.3443	0.2207	6.7	0.2851	-0.0953	12.8	0.1887	-0.1114

ی پر پائے جاتے ہیں۔
$$x=2.405,5.520,8.654,11.792,14.931,\cdots$$
 پر پائے جاتے ہیں۔ $J_0(x)$ عرفر $J_0(x)$ عرفر $J_1(x)$ عرفر $J_1(x)$

(مساوات 24.59)

جدول2. ج: بييل نفاعل (قتم دوم) ۲. (۲) ۲. (۲)

x	$Y_0(x)$	$Y_1(x)$	x	$Y_0(x)$	$Y_1(x)$	x	$Y_0(x)$	$Y_1(x)$
0	$(-\infty)$	$(-\infty)$	2.5	0.498	0.146	5	-0.309	0.148
0.5	-0.445	-1.471	3	0.377	0.325	5.5	-0.339	-0.024
1	0.088	-0.781	3.5	0.189	0.410	6	-0.288	-0.175
1.5	0.382	-0.412	4	-0.017	0.398	6.5	-0.173	-0.274
2	0.510	-0.107	4.5	-0.195	0.301	7	-0.026	-0.303

جدول 3. ج: گیما تفاعل (ضمیمه ب میں مساوات 22. ب)

α	$\gamma(\alpha)$								
1	1.000 000	1.22	0.913 106	1.44	0.885 805	1.66	0.901 668	1.88	0.955 071
1.02	0.988 844	1.24	0.908 521	1.46	0.885 604	1.68	0.905 001	1.9	0.961766
1.04	0.978 438	1.26	0.904397	1.48	0.885747	1.7	0.908 639	1.92	0.968774
1.06	0.968744	1.28	0.900718	1.5	0.886 227	1.72	0.912 581	1.94	0.976 099
1.08	0.959 725	1.3	0.897 471	1.52	0.887 039	1.74	0.916826	1.96	0.983 743
1.10	0.951 351	1.32	0.894 640	1.54	0.888 178	1.76	0.921 375	1.98	0.991708
1.12	0.943 590	1.34	0.892 216	1.56	0.889 639	1.78	0.926 227	2	1.000 000
1.14	0.936416	1.36	0.890 185	1.58	0.891 420	1.8	0.931 384	2.02	1.008 621
1.16	0.929 803	1.38	0.888 537	1.6	0.893 515	1.82	0.936 845	2.04	1.017 576
1.18	0.923 728	1.4	0.887 264	1.62	0.895 924	1.84	0.942 612	2.06	1.026 868
1.2	0.918 169	1.42	0.886356	1.64	0.898 642	1.86	0.948 687	2.08	1.036 503

جدول4. ۾: فيکٽوريل تفاعل

n	n!	$\log(n!)$	n	n!	$\log(n!)$	n	n!	$\log(n!)$
1	1	0.000 000	6	720	2.857332	11	39 916 800	7.601 156
2	2	0.301 030	7	5040	3.702 431	12	479 001 600	8.680 337
3	6	0.778 151	8	40 320	4.605 521	13	6 227 020 800	9.794 280
4	24	1.380 211	9	362 880	5.559763	14	87 178 291 200	10.940 408
5	120	2.079 181	10	3 628 800	6.559763	15	1 307 674 368 000	12.116 500

F(x) جدول 5. جه: ثنائی تقتیم - تفاعل احتمال f(x) (مساوات 24.59) اور تفاعل تقتیم

-		p =	0.1		0.2	p =	0.3	p =	0.4		0.5
n	X	f(x)									
1	0	0.9000	0.9000	0.8000	0.8000	0.7000	0.7000	0.6000	0.6000	0.5000	0.5000
	1	0.1000	1.0000	0.2000	1.0000	0.3000	1.0000	0.4000	1.0000	0.5000	1.0000
	0	0.8100	0.8100	0.6400	0.6400	0.4900	0.4900	0.3600	0.3600	0.2500	0.2500
2	1	0.1800	0.9900	0.3200	0.9600	0.4200	0.9100	0.4800	0.8400	0.5000	0.7500
	2	0.0100	1.0000	0.0400	1.0000	0.0900	1.0000	0.1600	1.0000	0.2500	1.0000
	0	0.7290	0.7290	0.5120	0.5120	0.3430	0.3430	0.2160	0.2160	0.1250	0.1250
3	1	0.2430	0.9720	0.3840	0.8960	0.4410	0.7840	0.4320	0.6480	0.3750	0.5000
'	2	0.0270	0.9990	0.0960	0.9920	0.1890	0.9730	0.2880	0.9360	0.3750	0.8750
	3	0.0010	1.0000	0.0080	1.0000	0.0270	1.0000	0.0640	1.0000	0.1250	1.0000
	0	0.6561	0.6561	0.4096	0.4096	0.2401	0.2401	0.1296	0.1296	0.0625	0.0625
	1	0.2916	0.9477	0.4096	0.8192	0.4116	0.6517	0.3456	0.4752	0.2500	0.3125
4	2	0.0486	0.9963	0.1536	0.9728	0.2646	0.9163	0.3456	0.8208	0.3750	0.6875
	3	0.0036	0.9999	0.0256	0.9984	0.0756	0.9919	0.1536	0.9744	0.2500	0.9375
	4	0.0001	1.0000	0.0016	1.0000	0.0081	1.0000	0.0256	1.0000	0.0625	1.0000
	0	0.5905	0.5905	0.3277	0.3277	0.1681	0.1681	0.0778	0.0778	0.0313	0.0313
	1	0.3281	0.9185	0.4096	0.7373	0.3602	0.5282	0.2592	0.3370	0.1563	0.1875
5	2	0.0729	0.9914	0.2048	0.9421	0.3087	0.8369	0.3456	0.6826	0.3125	0.5000
1 9	3	0.0081	0.9995	0.0512	0.9933	0.1323	0.9692	0.2304	0.9130	0.3125	0.8125
	4	0.0005	1.0000	0.0064	0.9997	0.0284	0.9976	0.0768	0.9898	0.1563	0.9688
	5	0.0000	1.0000	0.0003	1.0000	0.0024	1.0000	0.0102	1.0000	0.0313	1.0000
	0	0.5314	0.5314	0.2621	0.2621	0.1176	0.1176	0.0467	0.0467	0.0156	0.0156
	1	0.3543	0.8857	0.3932	0.6554	0.3025	0.4202	0.1866	0.2333	0.0938	0.1094
	2	0.0984	0.9842	0.2458	0.9011	0.3241	0.7443	0.3110	0.5443	0.2344	0.3438
6	3	0.0146	0.9987	0.0819	0.9830	0.1852	0.9295	0.2765	0.8208	0.3125	0.6563
	4	0.0012	0.9999	0.0154	0.9984	0.0595	0.9891	0.1382	0.9590	0.2344	0.8906
	5	0.0001	1.0000	0.0015	0.9999	0.0102	0.9993	0.0369	0.9959	0.0938	0.9844
	6	0.0000	1.0000	0.0001	1.0000	0.0007	1.0000	0.0041	1.0000	0.0156	1.0000
	0	0.4783	0.4783	0.2097	0.2097	0.0824	0.0824	0.0280	0.0280	0.0078	0.0078
	1	0.3720	0.8503	0.3670	0.5767	0.2471	0.3294	0.1306	0.1586	0.0547	0.0625
	2	0.1240	0.9743	0.2753	0.8520	0.3177	0.6471	0.2613	0.4199	0.1641	0.2266
7	3	0.0230	0.9973	0.1147	0.9667	0.2269	0.8740	0.2903	0.7102	0.2734	0.5000
'	4	0.0026	0.9998	0.0287	0.9953	0.0972	0.9712	0.1935	0.9037	0.2734	0.7734
	5	0.0002	1.0000	0.0043	0.9996	0.0250	0.9962	0.0774	0.9812	0.1641	0.9375
	6	0.0000	1.0000	0.0004	1.0000	0.0036	0.9998	0.0172	0.9984	0.0547	0.9922
	7	0.0000	1.0000	0.0000	1.0000	0.0002	1.0000	0.0016	1.0000	0.0078	1.0000
	0	0.4305	0.4305	0.1678	0.1678	0.0576	0.0576	0.0168	0.0168	0.0039	0.0039
	1	0.3826	0.8131	0.3355	0.5033	0.1977	0.2553	0.0896	0.1064	0.0313	0.0352
	2	0.1488	0.9619	0.2936	0.7969	0.2965	0.5518	0.2090	0.3154	0.1094	0.1445
	3	0.0331	0.9950	0.1468	0.9437	0.2541	0.8059	0.2787	0.5941	0.2188	0.3633
8	4	0.0046	0.9996	0.0459	0.9896	0.1361	0.9420	0.2322	0.8263	0.2734	0.6367
	5	0.0004	1.0000	0.0092	0.9988	0.0467	0.9887	0.1239	0.9502	0.2188	0.8555
	6	0.0000	1.0000	0.0011	0.9999	0.0100	0.9987	0.0413	0.9915	0.1094	0.9648
	7	0.0000	1.0000	0.0001	1.0000	0.0012	0.9999	0.0079	0.9993	0.0313	0.9961
	8	0.0000	1.0000	0.0000	1.0000	0.0001	1.0000	0.0007	1.0000	0.0039	1.0000

ضميم ۽. جدول

جدول6. ۾: پوئسن تقشيم

F(x) تفاعل احتمال f(x) (مساوات 24.62) اور تفاعل تقسیم

[μ =	0.1	$\mu = 0.2$		$\mu = 0.3$		$\mu = 0.4$		$\mu = 0.5$	
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.9048	0.9048	0.8187	0.8187	0.7408	0.7408	0.6703	0.6703	0.6065	0.6065
1	0.0905	0.9953	0.1637	0.9825	0.2222	0.9631	0.2681	0.9384	0.3033	0.9098
2	0.0045	0.9998	0.0164	0.9989	0.0333	0.9964	0.0536	0.9921	0.0758	0.9856
3	0.0002	1.0000	0.0011	0.9999	0.0033	0.9997	0.0072	0.9992	0.0126	0.9982
4	0.0000	1.0000	0.0001	1.0000	0.0003	1.0000	0.0007	0.9999	0.0016	0.9998
5							0.0001	1.0000	0.0002	1.0000

	$\mu =$	0.6	$\mu = 0.7$		μ =	$\mu = 0.8$		0.9	$\mu = 1$	
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.5488	0.5488	0.4966	0.4966	0.4493	0.4493	0.4066	0.4066	0.3679	0.3679
1	0.3293	0.8781	0.3476	0.8442	0.3595	0.8088	0.3659	0.7725	0.3679	0.7358
2	0.0988	0.9769	0.1217	0.9659	0.1438	0.9526	0.1647	0.9371	0.1839	0.9197
3	0.0198	0.9966	0.0284	0.9942	0.0383	0.9909	0.0494	0.9865	0.0613	0.9810
4	0.0030	0.9996	0.0050	0.9992	0.0077	0.9986	0.0111	0.9977	0.0153	0.9963
5	0.0004	1.0000	0.0007	0.9999	0.0012	0.9998	0.0020	0.9997	0.0031	0.9994
6			0.0001	1.0000	0.0002	1.0000	0.0003	1.0000	0.0005	0.9999
7									0.0001	1.0000

	$\mu =$	1.5	μ =	= 2	μ =	= 3	μ =	= 4	μ =	= 5
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.2231	0.2231	0.1353	0.1353	0.0498	0.0498	0.0183	0.0183	0.0067	0.0067
1	0.3347	0.5578	0.2707	0.4060	0.1494	0.1991	0.0733	0.0916	0.0337	0.0404
2	0.2510	0.8088	0.2707	0.6767	0.2240	0.4232	0.1465	0.2381	0.0842	0.1247
3	0.1255	0.9344	0.1804	0.8571	0.2240	0.6472	0.1954	0.4335	0.1404	0.2650
4	0.0471	0.9814	0.0902	0.9473	0.1680	0.8153	0.1954	0.6288	0.1755	0.4405
5	0.0141	0.9955	0.0361	0.9834	0.1008	0.9161	0.1563	0.7851	0.1755	0.6160
6	0.0035	0.9991	0.0120	0.9955	0.0504	0.9665	0.1042	0.8893	0.1462	0.7622
7	0.0008	0.9998	0.0034	0.9989	0.0216	0.9881	0.0595	0.9489	0.1044	0.8666
8	0.0001	1.0000	0.0009	0.9998	0.0081	0.9962	0.0298	0.9786	0.0653	0.9319
9			0.0002	1.0000	0.0027	0.9989	0.0132	0.9919	0.0363	0.9682
10					0.0008	0.9997	0.0053	0.9972	0.0181	0.9863
11					0.0002	0.9999	0.0019	0.9991	0.0082	0.9945
12					0.0001	1.0000	0.0006	0.9997	0.0034	0.9980
13							0.0002	0.9999	0.0013	0.9993
14							0.0001	1.0000	0.0005	0.9998
15									0.0002	0.9999
16									0.0000	1.0000

جدول 7. ج: عمو مي تقييم به تفاعل تقييم $\Phi(z)$ (مساوات 24.71)

 $\Phi(0) = 0.5000$ $\Phi(-z) = 1 - \Phi(z)$

				- 0.500	`	-2) -		-,			
z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.01	0.9778	2.51	0.9940
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.02	0.9783	2.52	0.9941
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.03	0.9788	2.53	0.9943
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.04	0.9793	2.54	0.9945
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.05	0.9798	2.55	0.9946
											0.9948
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.06	0.9803	2.56	
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.07	0.9808	2.57	0.9949
0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.08	0.9812	2.58	0.9951
0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.09	0.9817	2.59	0.9952
0.10	0.5398	0.6	0.7257	1.10	0.8643	1.60	0.9452	2.1	0.9821	2.60	0.9953
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.11	0.9826	2.61	0.9955
0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.12	0.9830	2.62	0.9956
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.13	0.9834	2.63	0.9957
0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.14	0.9838	2.64	0.9959
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.15	0.9842	2.65	0.9960
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515 0.9525	2.16	0.9846	2.66	0.9961
0.17	0.5675	0.67	0.7486	1.17	0.8790	1.67		2.17	0.9850	2.67	0.9962
0.18	0.5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.18	0.9854	2.68	0.9963
0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.19	0.9857	2.69	0.9964
0.20	0.5793	0.70	0.7580	1.20	0.8849	1.7	0.9554	2.20	0.9861	2.70	0.9965
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.21	0.9864	2.71	0.9966
0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.22	0.9868	2.72	0.9967
0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.23	0.9871	2.73	0.9968
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.24	0.9875	2.74	0.9969
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.25	0.9878	2.75	0.9970
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.26	0.9881	2.76	0.9971
0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.27	0.9884	2.77	0.9972
0.28	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.28	0.9887	2.78	0.9973
0.29	0.6141	0.79	0.7852	1.29	0.9915	1.79	0.9633	2.29	0.9890	2.79	0.9973
0.29	0.6179	0.80	0.7832	1.30	0.9013	1.80	0.9633	2.30	0.9893	2.80	0.9974
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.31	0.9896	2.81	0.9975
0.32	0.6255	0.82	0.7939	1.32	0.9066	1.82	0.9656	2.32	0.9898	2.82	0.9976
0.33	0.6293	0.83	0.7967	1.33	0.9082	1.83	0.9664	2.33	0.9901	2.83	0.9977
0.34	0.6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.34	0.9904	2.84	0.9977
0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	2.35	0.9906	2.85	0.9978
0.36	0.6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	2.36	0.9909	2.86	0.9979
0.37	0.6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	2.37	0.9911	2.87	0.9979
0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	2.38	0.9913	2.88	0.9980
0.39	0.6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	2.39	0.9916	2.89	0.9981
0.40	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	2.4	0.9918	2.90	0.9981
0.41	0.6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	2.41	0.9920	2.91	0.9982
0.42	0.6628	0.92	0.8212	1.42	0.9222	1.92	0.9726	2.42	0.9922	2.92	0.9982
0.43	0.6664	0.93	0.8238	1.43	0.9236	1.93	0.9732	2.43	0.9925	2.93	0.9983
0.44	0.6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	2.44	0.9927	2.94	0.9984
0.45	0.6736	0.95	0.8289	1.45	0.9265	1.95	0.9744	2.45	0.9929	2.95	0.9984
0.46	0.6772	0.96	0.8315	1.46	0.9279	1.96	0.9750	2.46	0.9931	2.96	0.9985
0.47	0.6808	0.97	0.8340	1.47	0.9292	1.97	0.9756	2.47	0.9932	2.97	0.9985
0.48	0.6844	0.98	0.8365	1.48	0.9306	1.98	0.9761	2.48	0.9934	2.98	0.9986
0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	2.49	0.9936	2.99	0.9986
0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772	2.50	0.9938	3.00	0.9987

جدول8. ج: عمو مي تقتيم

ر ساوات 24.71)اور $\Phi(z) = \Phi(z) - \Phi(-z)$ اور $\Phi(z) = \Phi(z)$ کی گیشتین $\Phi(z)$ مثال کے طور پر $\Phi(z) = 0.860$ پر $\Phi(z) = 61$ ہوگا۔

%	$z(\Phi)$	z(D)	%	$z(\Phi)$	z(D)	%	$z(\Phi)$	z(D)
1	-2.326	0.013	41	-0.228	0.539	81	0.878	1.311
2	-2.054	0.025	42	-0.202	0.553	82	0.915	1.341
3	-1.881	0.038	43	-0.176	0.568	83	0.954	1.372
4	-1.751	0.050	44	-0.151	0.583	84	0.994	1.405
5	-1.645	0.063	45	-0.126	0.598	85	1.036	1.440
6	-1.555	0.075	46	-0.100	0.613	86	1.080	1.476
7	-1.476	0.088	47	-0.075	0.628	87	1.126	1.514
8	-1.405	0.100	48	-0.050	0.643	88	1.175	1.555
9	-1.341	0.113	49	-0.025	0.659	89	1.227	1.598
10	-1.282	0.126	50	0.000	0.674	90	1.282	1.645
11	-1.227	0.138	51	0.025	0.690	91	1.341	1.695
12	-1.175	0.151	52	0.050	0.706	92	1.405	1.751
13	-1.126	0.164	53	0.075	0.722	93	1.476	1.812
14	-1.080	0.176	54	0.100	0.739	94	1.555	1.881
15	-1.036	0.189	55	0.126	0.755	95	1.645	1.960
16	-0.994	0.202	56	0.151	0.772	96	1.751	2.054
17	-0.954	0.215	57	0.176	0.789	97	1.881	2.170
18	-0.915	0.228	58	0.202	0.806	97.5	1.960	2.241
19	-0.878	0.240	59	0.228	0.824	98	2.054	2.326
20	-0.842	0.253	60	0.253	0.842	99	2.326	2.576
21	-0.806	0.266	61	0.279	0.860	99.1	2.366	2.612
22	-0.772	0.279	62	0.305	0.878	99.2	2.409	2.652
23	-0.739	0.292	63	0.332	0.896	99.3	2.457	2.697
24	-0.706	0.305	64	0.358	0.915	99.4	2.512	2.748
25	-0.674	0.319	65	0.385	0.935	99.5	2.576	2.807
26	-0.643	0.332	66	0.412	0.954	99.6	2.652	2.878
27	-0.613	0.345	67	0.440	0.974	99.7	2.748	2.968
28	-0.583	0.358	68	0.468	0.994	99.8	2.878	3.090
29	-0.553	0.372	69	0.496	1.015	99.9	3.090	3.291
30	-0.524	0.385	70	0.524	1.036			
31	-0.496	0.399	71	0.553	1.058	99.91	3.121	3.320
32	-0.468	0.412	72	0.583	1.080	99.92	3.156	3.353
33	-0.440	0.426	73	0.613	1.103	99.93	3.195	3.390
34	-0.412	0.440	74	0.643	1.126	99.94	3.239	3.432
35	-0.385	0.454	75	0.674	1.150	99.95	3.291	3.481
36	-0.358	0.468	76	0.706	1.175	99.96	3.353	3.540
37	-0.332	0.482	77	0.739	1.200	99.97	3.432	3.615
38	-0.305	0.496	78	0.772	1.227	99.98	3.540	3.719
39	-0.279	0.510	79	0.806	1.254	99.99	3.719	3.891
40	-0.253	0.524	80	0.842	1.282			7.07.2
	_		1					

جدول 9. ج: بلا منصوبه اعداد

شار					.10	شار ق				
سمار صف	0	1	2	3	عار 4	5 5	6	7	8	9
0	87331	82442	28104	26432	83640	17323	68764	84728	37995	96106
1	33628	17364	01409	87803	65641	33433	48944	64299	79066	31777
2	54680	13427	72496	16967	16195	96593	55040	53729	62035	66717
3	51199	49794	49407	10774	98140	83891	37195	24066	61140	65144
4	78702	98067	61313	91661	59861	54437	77739	19892	54817	88645
5	55672	16014	24892	13089	00410	81458	76156	28189	40595	21500
6	18880	58497	03862	32368	59320	24807	63392	79793	63043	09425
7	10242	62548	62330	05703	33535	49128	66298	16193	55301	01306
8	54993	17182	94618	23228	83895	73251	68199	64639	83178	70521
9	22686	50885	16006	04041	08077	33065	35237	05502	94755	72062
10	42349	03145	15770	70665	53291	32288	41568	66079	98705	31029
11	18093	09553	39428	75464	71329	86344	80729	40916	18860	51780
12	11535	03924	84252	74795	40193	84597	42497	21918	91384	84721
13	35066	73848	65351	53270	63341	70177	92373	17604	42204	60476
14	57477	22809	73558	96182	96779	01604	25748	59553	64876	94611
15	48647	33850	52956	45410	88212	05120	99391	32276	55961	41775
16	86857	81154	22223	74950	53296	67767	55866	49361	66937	81818
17	20182	36907	94644	99122	09774	29189	27212	79000	50217	71077
18	83687	31231	01133	41432	54542	60204	81618	09586	34481	87683
19	81315	12390	46074	47810	90171	36313	95440	77583	28506	38808
20	87026	52826	58341	76549	04105	66191	12914	55348	07907	06978
21	34301	76733	07251	90524	21931	83695	41340	53581	64582	60210
22	70734	24337	32674	49508	49751	90489	63202	24380	77943	09942
23	94710	31527	73445	32839	68176	53580	85250	53243	03350	00128
24	76462	16987	07775	43162	11777	16810	75158	13894	88945	15539
25	14348	28403	79245	69023	64196	46398	05964	64715	11330	17515
26	74618	89317	30146	25606	94507	98104	04239	44973	37636	88866
27	99442	19200	85406	45358	86253	60638	38858	44964	54103	57287
28	26869	44399	89452	06652	31271	00647	46551	83050	92058	83814
29	80988	08149	50499	98584	28385	63680	44638	91864	96002	87802
30	07511	79047	89289	17774	67194	37362	85684	55505	97809	67056
31	49779	12138	05048	03535	27502	63308	10218	53296	48687	61340
32	47938	55945	24003	19635	17471	65997	85906	98694	56420	78357
33 34	15604 12307	06626 27726	14360 21864	79442 00045	13512 16075	87595 03770	08542 86978	03800 52718	35443 02693	52823 09096
35	02450	28053	66134	99445	91316	25727	89399	85272	67148	78358
36 37	57623 91762	54382 78849	35236 93105	89244	27245 99431	90500 03304	75430	96762	71968 21287	65838
38	87373	31137		40481	64309	44914	21079 80711	86459		76566 24288
39	67094	41485	31428 54149	67050 86088	10192	21174	39948	61738 67286	61498 29938	32476
40	94456	66767	76922	87627	71834	57688	04878	78348	68970	60048
41	68359	75292	27710	86889	81678	57688 79798	58360	78348 39175	75667	65782
42	52393	31404	32584	06837	79762	13168	76055	54833	22841	98889
43	59565	91254	11847	20672	37625	41454	86861	55824	79793	74575
44	48185	11066	20162	38230	16043	48409	47421	21195	98008	57305
45	19230	12187	86659	12971	52204	76546	63272	19312	81662	96557
46	84327	21942	81727	68735	89190	58491	55329	96875	19465	89687
47	77430	71210	00591	50124	12030	50280	12358	76174	48353	09862
48	12462	19108	70512	53926	25595	97085	03833	59806	12351	64253
49	11684	06644	57816	10078	45021	47751	38285	773520	08434	65627

ضميم ج. جدول

بلا منصوبه اعداد (جدول 9.ج)

				و.9	اعداد (جدول	•				
شار					قطار	شار				
صف	0	1	2	3	4	5	6	7	8	9
50	12896	36576	68686	08462	65652	76571	70891	09007	04581	01684
51	59090	05111	27587	90349	30789	50304	70650	06646	70126	15284
52	42486	67483	65282	19037	80588	73076	41820	46651	40442	40718
53	88662	03928	03249	85910	97533	88643	29829	21557	47328	36724
54	69403	03626	92678	59460	15465	83516	54012	80509	55976	46115
55	56434	70543			32092	95505	62091	39549		98209
1			38696	98502			25150		30117	
56	58227	62694	42837	29183	11393	68463		86338	95620	39836
57	41272	94927	15413	40505	33123	63218	72940	98349	57249	40170
58	36819	01162	30425	15546	16065	68459	35776	64276	92868	07372
59	31700	66711	26115	55755	33584	18091	38709	57276	74660	90392
60	69855	63699	36839	90531	97125	87875	62824	03889	12538	24740
61	44322	17569	45439	41455	34324	90902	07978	26268	04279	76816
62	62226	36661	87011	66267	78777	78044	40819	49496	39814	73867
63	27284	19737	98741	72531	52741	26699	98755	19657	08665	16818
64	88341	21652	94743	77268	79525	44769	66583	30621	90534	62050
65	53266	18783	51903	56711	38060	69513	61963	80470	88018	86510
66	50527	49330	24839	42529	03944	95219	88724	37247	84116	23023
67	15655	07852	77206	35944	71446	30573	19405	57824	23576	23301
68	62057	22206	03314	83465	57466	10465	19891	32308	01900	67484
69	41769	56091	19892	96253	92808	45785	52774	49674	68103	65032
70	25993	72416	44473	41299	93095	17338	69802	98548	02429	85238
71	22842	57871	04470	37373	34516	04042	04078	35336	34393	97573
72	55704	31982	05234	22664	22181	40358	28089	15790	33340	18852
73	94258	18706	09437	96041	90052	80862	20420	24323	11635	91677
74	74145	20453	29657	98868	56695	53483	87449	35060	98942	62697
75	88881	12673	73961	89884	73247	97670	69570	88888	58560	72580
76	01508	56780	52223	35632	73347	71317	46541	88023	36656	76332
77	92069	43000	23233	06058	82527	25250	27555	20426	60361	63525
78	53366	35249	02117	68620	39388	69795	73215	01846	16983	78560
79	88057	54097	49511	74867	32192	90071	04147	46094	63519	07199
80	85492	82238	02668	91854	86149	28590	77853	81035	45561	16032
81	39453	62123	69611	53017	34964	09786	24614	49514	01056	18700
1							07353			
82	82627	98111	93870	56969	69566	62662		84838	14570	14508
83	61142	51743	38209	31474	96095	15163	54380	77849	20465	03142
84	12031	32528	61311	53730	89032	16124	58844	35386	45521	59368
85	31313	59838	29147	76882	74328	09955	63673	96651	53264	29871
86	50767	41056	97409	44376	62219	35439	70102	99248	71179	26052
87	30522	95699	84966	26554	24768	72247	84993	85375	92518	16334
88	74176	19870	89874	64799	03792	57006	57225	36677	46825	14087
89	17114	93248	37065	91346	04657	93763	92210	43676	44944	75798
90	53005	11825	64608	87587	05742	31914	55044	41818	29667	77424
91	31985	81539	79942	49471	46200	27639	94099	42085	79231	03932
92	63499	60508	77522	15624	15088	78519	52279	79214	43623	69166
93	30506	42444	99047	66010	91657	37160	37408	85714	21420	80996
94	78248	16841	92357	10130	68990	38307	61022	56806	81016	38511
						29752			54547	
95	64996	84789	50185	32200	64382		11876	00664		62597
96	11963	13157	09136	01769	30117	71486	80111	09161	08371	71749
97	44335	91450	43456	90449	18338	19787	31339	60473	06606	89788
98	42277	11868	44520	01113	11341	11743	97949	49718	99176	42006
99	77562	18863	58515	90166	78508	14864	19111	57183	85808	59385

جدول 10. ہے: t تقیم جدول z کے لئے کے کہ تیمیں۔ F(z) (مساوات 24.119) کے لئے کے کہ تیمیں۔ مثال کے طور پر z=1.83 زادی کے لئے z=0.95 تب ہو گا جب z=1.83 ہو۔

F(z)		درجه آزادی													
F(2)	1	2	3	4	5	6	7	8	9	10					
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
0.6	0.32	0.29	0.28	0.27	0.27	0.26	0.26	0.26	0.26	0.26					
0.7	0.73	0.62	0.58	0.57	0.56	0.55	0.55	0.55	0.54	0.54					
0.8	1.38	1.06	0.98	0.94	0.92	0.91	0.90	0.89	0.88	0.88					
0.9	3.08	1.89	1.64	1.53	1.48	1.44	1.41	1.40	1.38	1.37					
0.95	6.31	2.92	2.35	2.13	2.02	1.94	1.89	1.86	1.83	1.81					
0.975	12.71	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23					
0.99	31.82	6.96	4.54	3.75	3.36	3.14	3.00	2.90	2.82	2.76					
0.995	63.66	9.92	5.84	4.60	4.03	3.71	3.50	3.36	3.25	3.17					
0.999	318.31	22.33	10.21	7.17	5.89	5.21	4.79	4.50	4.30	4.14					

Γ(~)		درجه آزادی													
F(z)	11	12	13	14	15	16	17	18	19	20					
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26					
0.7	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.53	0.53					
0.8	0.88	0.87	0.87	0.87	0.87	0.86	0.86	0.86	0.86	0.86					
0.9	1.36	1.36	1.35	1.35	1.34	1.34	1.33	1.33	1.33	1.33					
0.95	1.80	1.78	1.77	1.76	1.75	1.75	1.74	1.73	1.73	1.72					
0.975	2.20	2.18	2.16	2.14	2.13	2.12	2.11	2.10	2.09	2.09					
0.99	2.72	2.68	2.65	2.62	2.60	2.58	2.57	2.55	2.54	2.53					
0.995	3.11	3.05	3.01	2.98	2.95	2.92	2.90	2.88	2.86	2.85					
0.999	4.02	3.93	3.85	3.79	3.73	3.69	3.65	3.61	3.58	3.55					

E(~)					ُزاد ی	درجه آ				
F(z)	22	24	26	28	30	40	50	100	200	∞
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.25
0.7	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52
0.8	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.85	0.84	0.84
0.9	1.32	1.32	1.31	1.31	1.31	1.30	1.30	1.29	1.29	1.28
0.95	1.72	1.71	1.71	1.70	1.70	1.68	1.68	1.66	1.65	1.64
0.975	2.07	2.06	2.06	2.05	2.04	2.02	2.01	1.98	1.97	1.96
0.99	2.51	2.49	2.48	2.47	2.46	2.42	2.40	2.36	2.35	2.33
0.995	2.82	2.80	2.78	2.76	2.75	2.70	2.68	2.63	2.60	2.58
0.999	3.50	3.47	3.43	3.41	3.39	3.31	3.26	3.17	3.13	3.09

جدول 11.ج: مرلع خاتشیم جدول F(z) (مساوات 24.122) کے لئے z کی قیمتیں۔ تفاعل تقیم F(z) (مساوات 24.122) کے لئے z=11.34 تب ہو گا جب z=11.34 ہمثال کی طور پر z=11.34 درجہ آزادی کے لئے z=11.34 تب ہو گا جب

Γ(~)					زادی	ورجه آ				
F(z)	1	2	3	4	5	6	7	8	9	10
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16
0.01	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25
0.05	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94
0.95	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48
0.99	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19

E(~)					ُزاد ی	درجه آ				
F(z)	11	12	13	14	15	16	17	18	19	20
0.005	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43
0.01	3.05	3.57	4.11	4.66	5.23	5.81	6.41	7.01	7.63	8.26
0.025	3.82	4.40	5.01	5.63	6.26	6.91	7.56	8.23	8.91	9.59
0.05	4.57	5.23	5.89	6.57	7.26	7.96	8.67	9.39	10.12	10.85
0.95	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87	30.14	31.41
0.975	21.92	23.34	24.74	26.12	27.49	28.85	30.19	31.53	32.85	34.17
0.99	24.72	26.22	27.69	29.14	30.58	32.00	33.41	34.81	36.19	37.57
0.995	26.76	28.30	29.82	31.32	32.80	34.27	35.72	37.16	38.58	40.00

Γ(~)					'زاد ی	درجه آ				
F(z)	21	22	23	24	25	26	27	28	29	30
0.005	8.03	8.64	9.26	9.89	10.52	11.16	11.81	12.46	13.12	13.79
0.01	8.90	9.54	10.20	10.86	11.52	12.20	12.88	13.56	14.26	14.95
0.025	10.28	10.98	11.69	12.40	13.12	13.84	14.57	15.31	16.05	16.79
0.05	11.59	12.34	13.09	13.85	14.61	15.38	16.15	16.93	17.71	18.49
0.95	32.67	33.92	35.17	36.42	37.65	38.89	40.11	41.34	42.56	43.77
0.975	35.48	36.78	38.08	39.36	40.65	41.92	43.19	44.46	45.72	46.98
0.99	38.93	40.29	41.64	42.98	44.31	45.64	46.96	48.28	49.59	50.89
0.995	41.40	42.80	44.18	45.56	46.93	48.29	49.64	50.99	52.34	53.67

F(z)		1			جه آزادی	פנ	1	
1 (2)	40	50	60	70	80	90	100	خنين)100 >
0.005	20.71	27.99	35.53	43.28	51.17	59.20	67.33	$\frac{1}{2}(h-2.58)^2$
0.01	22.16	29.71	37.48	45.44	53.54	61.75	70.06	$\frac{1}{2}(h-2.33)^2$
0.025	24.43	32.36	40.48	48.76	57.15	65.65	74.22	$\frac{1}{2}(h-1.96)^2$
0.05	26.51	34.76	43.19	51.74	60.39	69.13	77.93	$\frac{1}{2}(h-1.64)^2$
0.95	55.76	67.50	79.08	90.53	101.88	113.15	124.34	$\frac{1}{2}(h+1.64)^2$
0.975	59.34	71.42	83.30	95.02	106.63	118.14	129.56	$\frac{1}{2}(h+1.96)^2$
0.99	63.69	76.15	88.38	100.43	112.33	124.12	135.81	$\frac{1}{2}(h+2.33)^2$
0.995	66.77	79.49	91.95	104.21	116.32	128.30	140.17	$\frac{1}{2}(h+2.58)^2$

آخرى قطاريل $m = \sqrt{2m-1}$ ورجه آزادى ہے۔

ضميم ۽. جدول

جدول 12. ج. (m,n) درجہ آزادی کے F تقسیم

کی وہ قیمتیں جن پر تفاعل تقتیم F(z) (مساوات 24.147) کی قیمت 50.0 ہو گی۔ z مثال کے طور پر (7,4) ورجہ آزاد کی کے لئے F(z)=0.95 ہو۔

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m = 9 240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3	19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 <td>8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71</td>	8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	3.68 3.39 3.18 3.02 2.90 2.80 2.71
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	3.68 3.39 3.18 3.02 2.90 2.80 2.71
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	3.39 3.18 3.02 2.90 2.80 2.71
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	3.18 3.02 2.90 2.80 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	3.02 2.90 2.80 2.71
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	2.90 2.80 2.71
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85	2.80 2.71
	2.71
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77	
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70	2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64	2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59	2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55	2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51	2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48	2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45	2.39
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40	2.34
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36	2.30
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32	2.27
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29	2.24
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27	2.21
32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24	2.19
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23	2.17
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21	2.17
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19	2.13
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18	2.14
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13	2.07
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10	2.04
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07	2.02
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06	2.00
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04	1.99
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03	1.97
150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00	1.94
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98	1.93
1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95	1.89
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94	1.88

ورجه آزادی کی
$$F$$
 تقتیم (جدول 12.مِ) (m,n) ورجه آزادی کی $F(z)=0.95$ ہے۔ z

n	m = 10	m = 15	m = 20	m = 30	m = 40	m = 50	m = 100	$m = \infty$
1	241.88	245.95	248.01	250.10	251.14	251.77	253.04	254.31
2	19.40	19.43	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.70	8.66	8.62	8.59	8.58	8.55	8.53
4	5.96	5.86	5.80	5.75	5.72	5.70	5.66	5.63
5	4.74	4.62	4.56	4.50	4.46	4.44	4.41	4.37
6	4.06	3.94	3.87	3.81	3.77	3.75	3.71	3.67
7	3.64	3.51	3.44	3.38	3.34	3.32	3.27	3.23
8	3.35	3.22	3.15	3.08	3.04	3.02	2.97	2.93
9	3.14	3.01	2.94	2.86	2.83	2.80	2.76	2.71
10	2.98	2.85	2.77	2.70	2.66	2.64	2.59	2.54
11	2.85	2.72	2.65	2.57	2.53	2.51	2.46	2.40
12	2.75	2.62	2.54	2.47	2.43	2.40	2.35	2.30
13	2.67	2.53	2.46	2.38	2.34	2.31	2.26	2.21
14	2.60	2.46	2.39	2.31	2.27	2.24	2.19	2.13
15	2.54	2.40	2.33	2.25	2.20	2.18	2.12	2.07
16	2.49	2.35	2.28	2.19	2.15	2.12	2.07	2.01
17	2.45	2.31	2.23	2.15	2.10	2.08	2.02	1.96
18	2.41	2.27	2.19	2.11	2.06	2.04	1.98	1.92
19	2.38	2.23	2.16	2.07	2.03	2.00	1.94	1.88
20	2.35	2.20	2.12	2.04	1.99	1.97	1.91	1.84
22	2.30	2.15	2.07	1.98	1.94	1.91	1.85	1.78
24	2.25	2.11	2.03	1.94	1.89	1.86	1.80	1.73
26	2.22	2.07	1.99	1.90	1.85	1.82	1.76	1.69
28	2.19	2.04	1.96	1.87	1.82	1.79	1.73	1.65
30	2.16	2.01	1.93	1.84	1.79	1.76	1.70	1.62
32	2.14	1.99	1.91	1.82	1.77	1.74	1.67	1.59
34	2.12	1.97	1.89	1.80	1.75	1.71	1.65	1.57
36	2.11	1.95	1.87	1.78	1.73	1.69	1.62	1.55
38	2.09	1.94	1.85	1.76	1.73 1.71	1.68	1.61	1.53
40	2.08	1.92	1.84	1.74	1.69	1.66	1.59	1.51
50	2.03	1.87	1.78	1.69	1.63	1.60	1.52	1.44
60	1.99	1.84	1.75	1.65	1.59	1.56	1.48	1.39
70	1.97	1.81	1.72	1.62	1.57	1.53	1.45	1.35
80	1.95	1.79	1.70	1.60	1.54	1.51	1.43	1.32
90	1.94	1.78	1.69	1.59	1.53	1.49	1.41	1.30
100	1.93	1.77	1.68	1.57	1.52	1.48	1.39	1.28
150	1.89	1.73	1.64	1.54	1.48	1.44	1.34	1.22
200	1.88	1.72	1.62	1.52	1.46	1.41	1.32	1.19
1000	1.84	1.68	1.58	1.47	1.41	1.36	1.26	1.08
∞	1.83	1.67	1.57	1.46	1.39	1.35	1.24	1.01

ضميم ۽. جدول

ورجہ آزادی کی F تفتیم (جدول 12.ج) (m,n) ورجہ آزادی کی F کی وہ قیمتیں جن پر z

n	m=1	m=2	m=3	m=4	m = 5	m=6	m = 7	m=8	m=9
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
16 17	8.40	6.23	5.29	4.77	4.44	4.20	3.93	3.79	3.78
18	8.29	6.01	5.16	4.57	4.34	4.10	3.93	3.79	3.60
19	8.18	5.93	5.09	4.50	4.23	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.17	3.94	3.70	3.56	3.46
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
32	7.50	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02
34	7.44	5.29	4.42	3.93	3.61	3.39	3.22	3.09	2.98
36	7.40	5.25	4.38	3.89	3.57	3.35	3.18	3.05	2.95
38	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.92
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
50	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.78
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.64
90	6.93	4.85	4.01	3.53	3.23	3.01	2.84	2.72	2.61
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59
150	6.81	4.75	3.91	3.45	3.14	2.92	2.76	2.63	2.53
200	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50
1000	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.43
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41
	0.00	1.01	0.70	0.02	0.02	2.00	2.01	2.01	2.11

ورجه آزادی کی
$$F$$
 تقتیم (جدول 12.مِ) (m,n) ورجه آزادی کی $F(z)=0.99$ ہے۔ z

n	m = 10	m = 15	m = 20	m = 30	m = 40	m = 50	m = 100	$m = \infty$
1	6055.85	6157.28	6208.73	6260.65	6286.78	6302.52	6334.11	6365.85
2	99.40	99.43	99.45	99.47	99.47	99.48	99.49	99.50
3	27.23	26.87	26.69	26.50	26.41	26.35	26.24	26.13
4	14.55	14.20	14.02	13.84	13.75	13.69	13.58	13.46
5	10.05	9.72	9.55	9.38	9.29	9.24	9.13	9.02
6	7.87	7.56	7.40	7.23	7.14	7.09	6.99	6.88
7	6.62	6.31	6.16	5.99	5.91 5.12 4.57	5.86	5.75	5.65
8	5.81	5.52	5.36	5.20	5.12	5.07	4.96	4.86
9	5.26	4.96	4.81		4.57	4.52	4.41	4.31
10	4.85	4.56	4.41	4.25	4.17	4.12	4.01	3.91
11	4.54	4.25	4.10	3.94	3.86	3.81	3.71	3.60
12	4.30	4.01	3.86	3.70	3.62	3.57	3.47	3.36
13	4.10	3.82	3.66	3.51	3.43	3.38	3.27	3.17
14	3.94	3.66	3.51	3.35	3.27	3.22	3.11	3.00
15	3.80	3.52	3.37	3.21	3.13	3.08	2.98	2.87
16	3.69	3.41	3.26	3.10	3.02	2.97	2.86	2.75
17	3.59	3.31	3.16	3.00	2.92	2.87	2.76	2.65
18	3.51	3.23	3.08	2.92	2.84	2.78	2.68	2.57
19	3.43	3.15	3.00	2.84	2.76	2.71	2.60	2.49
20	3.37	3.09	2.94	2.78	2.69	2.64	2.54	2.42
22	3.26	2.98	2.83	2.67	2.58	2.53	2.42	2.31
24	3.17	2.89	2.74	2.58	2.49	2.44	2.33	2.21
26	3.09	2.81	2.66	2.50	2.42	2.36	2.25	2.13
28	3.03	2.75	2.60	2.44	2.35	2.30	2.19	2.06
30	2.98	2.70	2.55	2.39	2.30	2.25	2.13	2.01
32	2.93	2.65	2.50	2.34	2.25	2.20	2.08	1.96
34	2.89	2.61	2.46	2.30	2.21	2.16	2.04	1.91
36	2.86	2.58	2.43	2.26	2.18	2.12	2.00	1.87
38	2.83	2.55	2.40	2.23	2.14	2.09	1.97	1.84
40	2.80	2.52	2.37	2.20	2.11	2.06	1.94	1.80
50	2.70	2.42	2.27	2.10	2.01	1.95	1.82	1.68
60	2.63	2.35	2.20	2.03	1.94	1.88	1.75	1.60
70	2.59	2.31	2.15	1.98	1.89	1.83	1.70	1.54
80	2.55	2.27	2.12	1.94	1.85	1.79	1.65	1.49
90	2.52	2.24	2.09	1.92	1.82	1.76	1.62	1.46
100	2.50	2.22	2.07	1.89	1.80	1.74	1.60	1.43
150	2.44	2.16	2.00	1.83	1.73	1.66	1.52	1.33
200	2.41	2.13	1.97	1 79	1.69		1.48	1.28
1000	2.34	2.06	1.90	1.72	1.61	1.63 1.54	1.38	1.11
∞	2.32	2.04	1.88	1.70	1.59	1.52	1.36	1.01

جدول 13.ج: بلا منصوبہ منتخبر
$$T$$
 کا تفاعل تقتیم $F(x)=P(T\leq x)$ جدول 13.ج: بلا منصوبہ منتخبر T کا تفاعل تقتیم $F(2)=1-0.167=0.833$ ہوگا۔ $F(2)=1-0.167=0.833$ ہوگا۔ $F(3)=1-0.375=0.625$ ہوں گے۔

x	n = 3	x	n = 4	x	n = 5	x	n = 6	x	n = 7	x	n = 8	x	n = 9	x	n = 10	x	n = 11
	0.		0.		0.		0.		0.		0.		0.		0.		0.
0	167	0	042	0	008	0	001	1	001	2	001	4	001	6	001	8	001
1	500	1	167	1	042	1	008	2	005	3	003	5	003	7	002	9	002
		2	375	2	117	2	028	3	015	4	007	6	006	8	005	10	003
				3	242	3	068	4	035	5	016	7	012	9	008	11	005
				4	408	4	136	5	068	6	031	8	022	10	014	12	008
						5	235	6	119	7	054	9	038	11	023	13	013
						6	360	7	191	8	089	10	060	12	036	14	020
						7	500	8	281	9	138	11	090	13	054	15	030
								9	386	10	199	12	130	14	078	16	043
								10	500	11	274	13	179	15	108	17	060
										12	360	14	238	16	146	18	082
										13	452	15	306	17	190	19	109
												16	381	18	242	20	141
												17	460	19	300	21	179
														20	364	22	223
														21	431	23	271
														22	500	24	324
																25	381
																26	440
																27	500

	n																
x	= 20																
	0.		n	l													
50	001	x	= 19														
51	002		0.	ĺ													
52	002	43	001														
53	003	44	002		n												
54	004	45	002	x	= 18												
55	005	46	003		0.												
56	006	47	003	38	001		n										
57	007	48	004	39	002	x	= 17										
58	008	49	005	40	003		0.										
59	010	50	006	41	003	32	001	x	n								
60	012	51	008	42	004	33	002	^	= 16								
61	014	52	010	43	005	34	002		0.								
62	017	53	012	44	007	35	003	27	001	×	n						
63	020	54	014	45	009	36	004	28	002		= 15						
64	023	55	017	46	011	37	005	29	002		0.	x	n				
65	027	56	021	47	013	38	007	30	003	23	001		= 14				
66	032	57	025	48	016	39	009	31	004	24	002		0.				
67	037	58	029	49	020	40	011	32	006	25	003	18	001	x	n		
68	043	59	034	50	024	41	014	33	008	26	004	19	002		= 13		
69	049	60	040	51	029	42	017	34	010	27	006	20	002	١	0.		
70	056	61	047	52	034	43	021	35	013	28	008	21	003	14	001	x	n 12
71	064	62	054	53	041	44	026	36	016	29	010	22	005	15	001	-	= 12
72	073	63	062	54	048	45	032	37	021	30	014	23	007	16	002	11	0.
73 74	082 093	64	072 082	55 56	056 066	46 47	038 046	38 39	026 032	31 32	018 023	24 25	010 013	17 18	003 005	11 12	001 002
75	104		093	57	076	48	054	40	032	33	023	26	013	19	005	13	002
76	104	66	105	58	076	48	064	40	039	34	029	26	018	20	007	13	003
77	130	68	119	59	100	50	076	42	058	35	046	28	031	20	015	15	004
78	144	69	133	60	115	51	088	43	070	36	057	29	040	22	021	16	010
79	159	70	149	61	130	52	102	44	083	37	070	30	051	23	029	17	016
80	176	71	166	62	147	53	118	45	097	38	084	31	063	24	038	18	022
81	193	72	184	63	165	54	135	46	114	39	101	32	079	25	050	19	031
82	211	73	203	64	184	55	154	47	133	40	120	33	096	26	064	20	043
83	230	74	223	65	205	56	174	48	153	41	141	34	117	27	082	21	058
84	250	75	245	66	227	57	196	49	175	42	164	35	140	28	102	22	076
85	271	76	267	67	250	58	220	50	199	43	190	36	165	29	126	23	098
86	293	77	290	68	275	59	245	51	225	44	218	37	194	30	153	24	125
87	315	78	314	69	300	60	271	52	253	45	248	38	225	31	184	25	155
88	339	79	339	70	327	61	299	53	282	46	279	39	259	32	218	26	190
89	362	80	365	71	354	62	328	54	313	47	313	40	295	33	255	27	230
90	387	81	391	72	383	63	358	55	345	48	349	41	334	34	295	28	273
91	411	82	418	73	411	64	388	56	378	49	385	42	374	35	338	29	319
92	436	83	445	74	441	65	420	57	412	50	423	43	415	36	383	30	369
93	462	84	473	75	470	66	452	58	447	51	461	44	457	37	429	31	420
94	487	85	500	76	500	67	484	59	482	52	500	45	500	38	476	32	473

جدول 14. ج: تفاعل خلل، سائن اور كوسائن تكملات

تفاعل خلل، سائن اور كوسائن تكملات (بالترتيب ضميمه ب مين مساوات 33.ب، مساوات 39.ب اور مساوات 41.ب)

x	erf x	Si(x)	ci(x)	x	erf x	Si(x)	ci(x)
0.0	0.0000	0.0000	8	2.0	0.9953	1.6054	-0.4230
0.2	0.2227	0.1996	1.0422	2.2	0.9981	1.6876	-0.3751
0.4	0.4284	0.3965	0.3788	2.4	0.9993	1.7525	-0.3173
0.6	0.6039	0.5881	0.0223	2.6	0.9998	1.8004	-0.2533
0.8	0.7421	0.7721	-0.1983	2.8	0.9999	1.8321	-0.1865
1.0	0.8427	0.9461	-0.3374	3.0	1.0000	1.8487	-0.1196
1.2	0.9103	1.1080	-0.4205	3.2	1.0000	1.8514	-0.0553
1.4	0.9523	1.2562	-0.4620	3.4	1.0000	1.8419	0.0045
1.6	0.9763	1.3892	-0.4717	3.6	1.0000	1.8219	0.0580
1.8	0.9891	1.5058	-0.4568	3.8	1.0000	1.7934	0.1038
2.0	0.9953	1.6054	-0.4230	4.0	1.0000	1.7582	0.1410