Name:		
	ID:	
]	Profs.	Grochow & Layer
\mathbf{S}	pring	2019, CU-Boulder

Hyperlinks for convenience: $1a\ 1b\ 1c\ 1d$ 2 $3a\ 3b\ 3c\ 3d$

1.	(20 p)	ots total) S	Solve	the followi	ng recurren	ce rel	lations us	sing a	iny of the f	ollow	$wing \ meth$
	ods:	unrolling,	tail	recursion,	recurrence	tree	(include	tree	diagram),	or	expansion
	Each	n case, sho	w yo	ur work.							

(a)
$$T(n) = T(n-4) + C n$$
 if $n > 1$, and $T(n) = C$ otherwise

Name:			
	ID:		
1	Profs.	Grochow	& Laver

Profs. Grochow & Layer Spring 2019, CU-Boulder

(c)	$T(n) = T(n-1) + 2^n$ if $n > 1$, and $T(1) = 3$
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise
(d)	$T(n) = T(n^{1/2}) + 1$ if $n > 2$, and $T(n) = 0$ otherwise

Name:		
	ID:	

Profs. Grochow & Layer Spring 2019, CU-Boulder

2. (10 pts) Consider the following function:

```
def foo(n) {
    if (n > 1) {
        print( ''hello'' )
        foo(n/3)
        foo(n/3)
        foo(n/3)
    }
}
```

In terms of the input n, determine how many times is "hello" printed. Write down a recurrence and solve using the Master method.

Name:			
	ID:		
]	Profs.	Grochow	& Layer
\mathbf{S}	pring	2019, CU	-Boulder

- 3. (30 pts) Professor Flitwick asks you to help him with some arrays that are slumped. An array A is slumped if A[1..i] has the property that, for some C>0, A[j+1]=A[j]-C for $1 \leq j < i$, and A[i..n] has the property that, for some D>0 where $C \neq D$, A[j+1]=A[j]+D for $i \leq j < n$. Using his wand, Flitwick writes the following slumped array on the board A=[7,3,-1,-5,0,10,15,20,25], as an example.
 - (a) Flitwick found that one of his slumped arrays had an identical adjacent value (i.e., A[j] = A[j+1]) and no longer trusts any of his slumped arrays. Write a recursive algorithm that takes asymptotically sub-linear time to ensure that there are no identical adjacent elements in A.

	Name:
	ID:
CSCI 3104, Algorithms	Profs. Grochow & Layer
Problem Set 2	Spring 2019, CU-Boulder

(b) Prove that your algorithm is correct. (Hint: prove that your algorithm's correctness follows from the correctness of another correct algorithm we already know.)

	3.7
	Name:
	ID:
CSCI 3104, Algorithms	Profs. Grochow & Layer
Problem Set 2	Spring 2019, CU-Boulder

(c) Now consider the multi-slumped generalization, in which the array contains k local minima, i.e., it contains k subarrays, each of which is itself a slumped array. Let k=2 and prove that your algorithm can fail on such an input.

	Name:
	ID:
CSCI 3104, Algorithms	Profs. Grochow & Layer
Problem Set 2	Spring 2019, CU-Boulder

(d) Suppose that k=2 and we can guarantee that neither local minimum is closer than n/3 positions to the middle of the array, and that the "joining point" of the two singly-slumped subarrays lays in the middle third of the array. Now write an algorithm that tests A for identical adjacent values in sublinear time. Prove that your algorithm is correct, give a recurrence relation for its running time, and solve for its asymptotic behavior.