

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

TEST REPORT

FCC ID: 2AAV9-CPITP101

Applicant: Wanxin Image Corporation

Address :4/5F, 518 Zhonghua Rd. Sec.4, Xiangshan Dist., Hsinchu city,

Taiwan

Equipment Under Test (EUT):

Name : Tablet pc

Model : CPITP101

In Accordance with: FCC PART 15, SUBPART C: 2012 (Section 15.247)

Report No : STI130827161-1

Date of Test : September 09-22, 2013

Date of Issue : September 23, 2013

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

FCC ID: 2AAV9-CPITP101 Page 1 of 74

Contents

1.	General Information	4
	1.1. Description of Device (EUT)	4
	1.2. Accessories of device (EUT)	4
	1.3. Test Lab information	5
2.	Summary of test	6
	2.1. Summary of test result	6
	2.2. Assistant equipment used for test	6
	2.3. Block Diagram	6
	2.4. Test mode	7
	2.5. Test Conditions	7
	2.6. Measurement Uncertainty (95% confidence levels, k=2)	7
	2.7. Test Equipment	8
3.	Maximum Peak Output power	9
	3.1. Limit	9
	3.2. Test Procedure	9
	3.3. Test Setup	9
	3.4. Test Result	8
4.	20dB bandwidth	10
	4.1. Limit	10
	4.2. Test Procedure	10
	4.3. Test Result	10
5.	Carrier Frequency Separation	14
	5.1. Limit	14
	5.2. Test Procedure	14
	5.3. Test Result	14
6.	Number Of Hopping Channel	18
	6.1. Limit	18
	6.2. Test Procedure	18
	6.3. Test Result	18
7.	Dwell Time	21
	7.1. Test limit	21
	7.2. Test Procedure	21
	7.3. Test Results	21
8.	Radiated emissions	32
	8.1. Limit	32
	8.2. Block Diagram of Test setup	33
	8.3. Test Procedure	33
	8.4. Test Result	34
9.	Band Edge Compliance	43
	9.1. Block Diagram of Test Setup	43
	9.2. Limit	43
	9.3. Test Procedure	43

Report No.: STI130827161-1

	9.4. Test Result	43
10.	Power Line Conducted Emissions	60
	10.1. Block Diagram of Test Setup	60
	10.2. Limit	60
	10.3. Test Procedure	60
	10.4. Test Result	60
11.	Antenna Requirements	63
	11.1. Limit	63
	11.2. Result	63
12.	Test setup photo	64
	Photos of EUT	

1. General Information

1.1. Description of Device (EUT)

Trade Name : N/A

EUT : Tablet pc CPITP101 Model No.

Radio Technology : Bluetooth 3.0, Bluetooth 4.0

WIFI: IEEE 802..11 b,g,n/HT20,n/HT40

: This report is only test the Bluetooth 3.0, For other transmitters Note

is tested and reported in another radio test report.

For Bluetooth: Integral Antenna, Maximum Gain is 2dBi

Type of Antenna For WIFI: Integral Antenna, Maximum Gain 2dBi

2402MHz-2480MHz for Bluetooth,

Operation · 2412MHz-2462MHz for IEEE 802.11 b,g.n/HT20,

Frequency 2422MHz-2452MHz for IEEE 802.11 n/HT40 for WIFI

79 for BT 3.0

40 for BT 4.0 Channel number

11 for 802.11b.g.n/HT20

7 for 802.11n/HT40

For Bluetooth 3.0: GFSK, π /4 DQPSK, 8- DPSK

For Bluetooth 4.0: GFSK

For WIFI: IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) Modulation type

IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK)

DC 3.7V Supply by battery

Power Supply DC 5V Supply by AC 120V/60Hz adapter

Applicant : Wanxin Image Corporation

Address : 4/5F, 518 Zhonghua Rd. Sec.4, Xiangshan Dist., Hsinchu city,

Taiwan

Manufacturer : Wanxin Image Corporation

Address : 4/5F, 518 Zhonghua Rd. Sec.4, Xiangshan Dist., Hsinchu city,

Taiwan

Accessories of device (EUT)

Accessories 1 : N/A Type : N/A

FCC ID: 2AAV9-CPITP101

1.2. Test Lab information

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FCC Registered No.:197647

FCC ID: 2AAV9-CPITP101

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results		
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) ANSI C63.4 :2003	PASS		
20dB Bandwidth	FCC Part 15: 15.215 ANSI C63.4 :2003	PASS		
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) ANSI C63.4 :2003	PASS		
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4 :2003	PASS		
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4 :2003	PASS		
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.4 :2003	PASS		
Band Edge Compliance	FCC Part 15: 15.247(d) ANSI C63.4 :2003	PASS		
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.4 :2003	PASS		
Antenna requirement	FCC Part 15: 15.203	PASS		
Note: the test with DA00-705 test procedure				

Note: the test with DA00-705 test procedure.

2.2. Assistant equipment used for test

Description : AC ADAPTER

Manufacturer : N/A

Model No. : JY-05200

2.3. Block Diagram

1, For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground. EUT was be set into BT test mode by Bluesuite software before test.

FCC ID: 2AAV9-CPITP101 Page 6 of 74

2, For Power Line Conducted Emissions Test: EUT was connected to power adapter by 1m line

2.4. Test mode

The test software "Bluesuite" was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

Tested mode, channel, and data rate information				
Mode	Mode Channel			
		(MHz)		
	Low:CH1	2402		
BDR:GFSK	Middle: CH40	2441		
	High: CH79	2480		
	Low:CH1	2402		
EDR:π/4 QPSK	Middle: CH40	2441		
	High: CH79	2480		
	Low:CH1	2402		
EDR:8-DPSK	Middle: CH40	2441		
	High: CH79	2480		

Note: For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with 8-DPSK and GFSK.

2.5. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	

FCC ID: 2AAV9-CPITP101

Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.7. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	Nov. 16, 12	1 Year
Spectrum analyzer	Agilent	E4407B	MY49510055	Oct. 31, 12	1Year
Receiver	R&S	ESCI	101165	Oct. 31, 12	1 Year
Receiver	R&S	ESCI	101202	Oct. 31, 12	1 Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	Feb. 20, 13	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	Feb. 20, 13	1 Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	Feb. 20, 13	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Feb.20, 13	1 Year
L.I.S.N.	SCHWARZBECK	NSLK8126	8126466	Oct. 31, 12	1Year
Cable	Resenberger	N/A	No.1	Oct. 31, 12	1Year
Cable	SCHWARZBECK	N/A	No.2	Oct. 31, 12	1 Year
Cable	SCHWARZBECK	N/A	No.3	Oct. 31, 12	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	Oct. 31, 12	1Year
Power sensor	Anritsu	ML2491A	32516	Oct. 31, 12	1Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	Oct. 31, 12	1 Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	Oct. 31, 12	1 Year

3. Maximum Peak Output power

3.1. Limit

Please refer section 15.247.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

3.2. Test Procedure

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

3.3. Test Setup

3.4. Test Result

EUT: Tablet pc M/N: CPITP101						
Test date: 2013-09-13		Test site: RF site		Tested by: Anna Fan		
Mode	Freq (MHz)	Reading Power (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)
	2402	1.99	0.5	2.49	21	18.51
GFSK	2441	1.97	0.5	2.47	21	18.53
	2480	1.95	0.5	2.45	21	18.55
	2402	1.03	0.5	1.53	21	19.47
π/4 QPSK	2441	1.05	0.5	1.55	21	19.45
	2480	1.01	0.5	1.51	21	19.49
	2402	1.46	0.5	1.96	21	19.04
8-DPSK	2441	1.40	0.5	1.90	21	19.10
	2480	1.43	0.5	1.93	21	19.07
Conclusion: I	PASS					

FCC ID: 2AAV9-CPITP101

4. 20dB bandwidth

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Result

EUT: Tablet	рс	M/N: CPITP101		
Test date: 20	13-09-17	Test site: RF site	Tested by: Anna Fan	
Mode Freq (MHz)		20dB Bandwidth (MHz)	Limit (kHz)	Conclusion
	2402 0		/	PASS
GFSK	2441	0.946	/	PASS
	2480	0.963	/	PASS
	2402	1.288	/	PASS
8-DPSK	2441	1.293	/	PASS
	2480	1.215	/	PASS

FCC ID: 2AAV9-CPITP101

Orginal Test data For 20dB bandwidth **GFSK**

879.1232 kHz

x dB -20.00 dB

Transmit Freq Error 2.032 kHz x dB Bandwidth 965.101 kHz

Agilent 09:53:09 Sep 17, 2013 Ref 10 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 1.5 dB Center 2.441 GHz Span 5 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 5.718 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -20.00 dB 891.1831 kHz

Transmit Freq Error 3.287 kHz x dB Bandwidth 946.341 kHz

Transmit Freq Error

x dB Bandwidth

5.375 kHz

1.288 MHz

Transmit Freq Error 2.022 kHz x dB Bandwidth 1.293 MHz

5. Carrier Frequency Separation

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW.

5.3. Test Result

EUT: Tablet pc M/N: CPITP101				
Test date: 20	13-09-14	Test site: RF site Te	ested by: Anna Fan	
Mode	Channel separation (MHz)	Limit (MHz) 20dB Bandwidth (MHz)	Conclusion	
GFSK	1.0	0.965	PASS	

EUT: Tablet	pc M/N: Cl	PITP101	
Test date: 2013-09-14		Test site: RF site	Tested by: Anna Fan
Mode	Channel separation (MHz)	Limit (MHz) 2/3 20dB bandwidth	Conclusion
8-DPSK	1.0	0.862	PASS

Orginal test data for channel separation GFSK

(1)

Freq

1.0000 MHz

0.121 dB

2∆

6. Number Of Hopping Channel

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 1MHz VBW.

6.3. Test Result

EUT: Tablet	pc M/N: C	CPITP101			
Test date: 20	13-09-14 Test si	te: RF site	Tested by: Anna Fan		
Mode	Number of hopping c	hannel	Limit	Conclusion	
GFSK	79		>15	PASS	
8-DPSK	79		>15	PASS	

8-DPSK

7. Dwell Time

7.1. Test limit

Please refer section 15.247

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 sec- onds multiplied by the number of hopping channel employed.

7.2. Test Procedure

- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW, VBW=1MHz, Span=0Hz, Sweep=auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.

7.3. Test Results

PASS.

A period time = 0.4 (s) * 79 = 31.6(s)

```
CH Low: DH1 time slot =0.400 \text{ (ms)} * (1600/(1*79)) * 31.6 = 256 \text{ (ms)}
```

DH3 time slot =
$$1.662$$
 (ms) * $(1600/(3*79))$ * $31.6 = 354.56$ (ms)

DH5 time slot =
$$2.900 \text{ (ms)} * (1600/(5*79)) * 31.6 = 371.2 \text{ (ms)}$$

3-DH1 time slot =
$$0.400 \text{ (ms)} * (1600/(1*79)) * 31.6 = 256 \text{ (ms)}$$

3-DH3 time slot =
$$1.650 \text{ (ms)} * (1600/(3*79)) * 31.6 = 352 \text{ (ms)}$$

3-DH5 time slot =
$$2.913$$
 (ms) * $(1600/(5*79))$ * $31.6 = 372.86$ (ms)

CH Mid: DH1 time slot =
$$0.400 \text{ (ms)} * (1600/(1*79)) * 31.6 = 256 \text{ (ms)}$$

DH3 time slot =
$$1.663$$
 (ms) * $(1600/(3*79))$ * $31.6 = 354.77$ (ms)

DH5 time slot =
$$2.900 \text{ (ms)} * (1600/(5*79)) * 31.6 = 371.2 \text{ (ms)}$$

3-DH1 time slot =
$$0.400$$
(ms) * $(1600/(1*79))$ *31.6= 256 (ms)

3-DH3 time slot =
$$1.650$$
 (ms) * $(1600/(3*79))$ * $31.6 = 352$ (ms)

3-DH5 time slot =
$$2.900 \text{ (ms)} * (1600/(5*79)) * 31.6 = 371.2 \text{ (ms)}$$

CH High: DH1 time slot =
$$0.3875$$
 (ms) * $(1600/(1*79))$ * $31.6 = 248$ (ms)

DH3 time slot =
$$1.650 \text{ (ms)} * (1600/(3*79)) * 31.6 = 352 \text{ (ms)}$$

DH5 time slot =
$$2.900 \text{ (ms)} * (1600/(5*79)) * 31.6 = 371.2 \text{ (ms)}$$

3-DH1 time slot =
$$0.400$$
(ms) * $(1600/(1*79))$ *31.6= 256 (ms)

3-DH3 time slot =
$$1.663$$
 (ms) * $(1600/(3*79))$ * $31.6 = 354.77$ (ms)

3-DH5 time slot =2.913 (ms) * (1600/(5*79)) * 31.6 = 372.86 (ms)

Detailed information please see the following page.

DH1: CH Low

DH1: CH Mid

DH1: CH High

DH3: CH Low:

DH3: CH Mid

DH3 CH High

DH5 CH Low

DH5 CH Mid

DH5 CH High

3-DH1: CH Low

3-DH1: CH Mid

3-DH1: CH High

3-DH3: CH Low

3-DH3: CH Mid

3-DH3: CH High

3-DH5: CH Low

3-DH5: CH Mid

3-DH5: CH High

8. Radiated emissions

8.1. Limit

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

MHz	MHz	MHz	GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)	

15.209 Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	μV/m	dB(μV)/m	
0.009-0.490	300	2400/F(KHz)	/	
0.490-1.705	30	24000/F(KHz)	/	
1.705-30	30	30	29.5	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	74.0 dB(μV)/m (Peak)		
Above 1000		54.0 dB(μV)/m (Average)		

8.2. Block Diagram of Test setup

8.2.1. In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

8.2.2. In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

(1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.

FCC ID: 2AAV9-CPITP101

- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Change power supply range from 85% to 115% of the rated supply voltage for AC power supply.
- (d) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.

8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

FCC ID: 2AAV9-CPITP101 Page 34 of 74

Shenzhen Certification Technology Service Co., Ltd 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15 B 3m POL: HORIZONTAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : Charging

Power ; DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Store Remark : Temp : 24.2℃ Hum : 54%

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	72.59	36.13	10.21	26.77	0.21	19.78	40.00	-20.22	QP
2	145.35	37.97	13.77	26.90	0.44	25.28	43.50	-18.22	QP
3	217.54	44.94	10.53	27.06	0.59	29.00	46.00	-17.00	QP
4	364.26	44.73	14.12	27.31	0.70	32.24	46.00	-13.76	QP
5	506.48	42.00	16.65	27.64	0.88	31.89	46.00	-14.11	QP
6	798.98	38.17	20.69	27.65	1.49	32.70	46.00	-13.30	QP

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Shenzhen Certification Technology Service Co., Ltd.
2F, Building B, East Area of Nanchang Second Industrial Zone,
Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China
Tel: 4006786199 FAX: +86-755-26736857
Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15 B 3m POL: VERTICAL

EUT : Tablet pc Model No : CPITP101 Test Mode : Charging

Power : DC 5V Supply by AC 120V/60Hz adapter Test Engineer : Store

44.27

Remark : 24.2°C Hum : 54%

506.48

Read Preamp Cable Factor Loss Item Freq Antenna Level | Limit Margin Remark Level. Factor dBuV dBuV MHz dBuV dB dB dB dBuV - -----____ SHEET HOLE ____ 72.85 10.21 26.77 0.21 26.83 40.00 -13.17 1 43.18 QP 144.84 38.48 13.77 26.90 0.46 25.81 43.50 -17.69 QP 181.28 42.00 11.68 26.93 0.51 27.26 43.50 -16.24 QP 43.74 27.06 27.84 46.00 -18.16 QP 218.31 10.53 0.63 44.30 27.31 361.71 14.07 0.86 31.92 46.00 -14.08 QP

0.88

34.16

46.00

-11.84

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

27.64

16.65

		1GI	Iz—25GI	Hz Radi	iated en	nissison Te	st result					
EUT	Tablet	рс	M/N: C	PITP10)1							
Pow	er: DC 5	V From PC	with AC	120V/6	60Hz ad	apter						
Test date: 2013-09-17 Test site: 3m Chamber Tested by: Anna Fan												
Test	Test mode: GFSK Tx CH1 2402MHz											
Ante	enna pola	rity: Vertica	al									
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
1	4804	47.12	34.08	10.12	34.18	57.14	74.00	16.86	PK			
2	4804	33.56	34.08	10.12	34.18	43.58	54.00	10.42	AV			
3	7206	/										
4	9608	/										
5	12010	/										
Ante	enna Pola	rity: Horizo	ontal									
1	4804	47.93	34.08	10.12	34.18	57.95	74.00	16.05	PK			
2	4804	34.15	34.08	10.12	34.18	44.17	54.00	9.83	AV			
3	7206	/										
4	9608	/										
5	12010	/										
Moto												

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GHz—25GHz Radiated emissison Test result											
EUT:	EUT: Tablet pc M/N: CPITP101											
Power	Power: DC 5V From PC with AC 120V/60Hz adapter											
Test c	late: 2013	3-09-17 T	Test site:	3m Cha	mber	Tested by:	Anna Far	1				
Test r	node: GF	SK Tx CH	40 2441M	Hz								
Anten	ına polari	ty: Vertical										
N.T.	Freq	Read	Antenna		Amp	Result	Limit	Margin	D 1			
No	(MHz)	Level (dBuV/m)	Factor (dB/m)	loss(d B)	Factor (dB)	(dBuV/m)	(dBuV/ m)	(dB)	Remark			
1	4882	48.33	34.10	10.14	34.20	58.37	74.00	15.63	PK			
2	4882	35.69	34.10	10.14	34.20	45.73	54.00	8.27	AV			
3	7323	/										
4	9764	/										
5	12205	/										
Anten	ına Polari	ty: Horizon	ıtal									
1	4882	47.95	34.10	10.14	34.20	57.99	74.00	16.01	PK			
2	4882	33.82	34.10	10.14	34.20	43.86	54.00	10.14	AV			
3	7323	/										
4	9764	/										

12205

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GI	Hz—25G1	Hz Rad	iated en	nissison Tes	st result		
T: Tablet	pc M/N	N: CPITP	101					
ver: DC 5	V From PC	with AC	120V/6	60Hz ad	lapter			
t date: 20	13-09-17	Test site	e: 3m C	hamber	Tested by	y: Anna F	an	
t mode: C	GFSK Tx C	H79 2480	MHz					
enna pola	arity: Vertic	al						
Freq	Read Level	Antenna Factor		Amp Factor	Result	Limit (dBuV/	Margin	Remark
(MHz)	(dBuV/m)	(dB/m)	B)	(dB)	(dBuV/m)	m)	(dB)	
4960	48.14	34.09	10.13	34.19	58.17	74.00	15.83	PK
4960	33.52	34.09	10.13	34.19	43.55	54.00	10.45	AV
7440	/							
9920	/							
12400	/							
enna Pola	arity: Horiz	ontal						
4960	49.23	34.09	10.13	34.19	59.26	74.00	14.74	PK
4960	34.25	34.09	10.13	34.19	44.28	54.00	9.72	AV
7440	/							
9920	/							
12400	/							
	ver: DC 5 t date: 20 t mode: C enna pola Freq (MHz) 4960 4960 7440 9920 12400 enna Pola 4960 7440 9920	T: Tablet pc M/N ver: DC 5V From PC t date: 2013-09-17 t mode: GFSK Tx Cl enna polarity: Vertice Freq (MHz) Read Level (dBuV/m) 4960 48.14 4960 33.52 7440 / 9920 / 12400 / enna Polarity: Horize 4960 49.23 4960 34.25 7440 / 9920 /	T: Tablet pc M/N: CPITP ver: DC 5V From PC with AC t date: 2013-09-17 Test site t mode: GFSK Tx CH79 2480 enna polarity: Vertical Read Antenna Level (dBuV/m) (dB/m) 4960 48.14 34.09 4960 33.52 34.09 7440 / enna Polarity: Horizontal 4960 49.23 34.09 4960 34.25 34.09 7440 / 9920 /	T: Tablet pc M/N: CPITP101 ver: DC 5V From PC with AC 120V/6 t date: 2013-09-17 Test site: 3m Cr t mode: GFSK Tx CH79 2480MHz enna polarity: Vertical Freq (MHz) Read Level Factor (dBuV/m) (dB/m) B) 4960 48.14 34.09 10.13 4960 33.52 34.09 10.13 7440 / enna Polarity: Horizontal 4960 49.23 34.09 10.13 4960 34.25 34.09 10.13 7440 / 9920 /	T: Tablet pc M/N: CPITP101 ver: DC 5V From PC with AC 120V/60Hz additional to the date: 2013-09-17 Test site: 3m Chamber to mode: GFSK Tx CH79 2480MHz enna polarity: Vertical Read Antenna Cable Amp Factor loss(d GBuV/m) (dB/m) B) (dB) 4960 48.14 34.09 10.13 34.19 4960 33.52 34.09 10.13 34.19 7440 / enna Polarity: Horizontal 4960 49.23 34.09 10.13 34.19 4960 34.25 34.09 10.13 34.19 7440 / 9920 /	T: Tablet pc M/N: CPITP101 ver: DC 5V From PC with AC 120V/60Hz adapter t date: 2013-09-17 Test site: 3m Chamber Tested by t mode: GFSK Tx CH79 2480MHz enna polarity: Vertical Freq Read Level Factor (dBuV/m) (dB/m) B) (dB) 4960 48.14 34.09 10.13 34.19 58.17 4960 33.52 34.09 10.13 34.19 43.55 7440 / 9920 / 12400 / enna Polarity: Horizontal 4960 49.23 34.09 10.13 34.19 59.26 4960 34.25 34.09 10.13 34.19 59.26 4960 49.23 34.09 10.13 34.19 59.26 4960 34.25 34.09 10.13 34.19 44.28 7440 / 9920 /	ver: DC 5V From PC with AC 120V/60Hz adapter t date: 2013-09-17	T: Tablet pc M/N: CPITP101 ver: DC 5V From PC with AC 120V/60Hz adapter t date: 2013-09-17 Test site: 3m Chamber Tested by: Anna Fan t mode: GFSK Tx CH79 2480MHz enna polarity: Vertical Freq (MHz) Read Level (dBuV/m) (dB/m) B) (dB) Result (dBuV/m) (dB) (dB) 4960 48.14 34.09 10.13 34.19 58.17 74.00 15.83 4960 33.52 34.09 10.13 34.19 43.55 54.00 10.45 7440 /

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GHz—25GHz Radiated emissison Test result										
EU'.	Γ: Tablet	pc	M/N:	CPITP	101						
Pow	Power: DC 5V From PC with AC 120V/60Hz adapter										
Test	t date: 20	13-09-17	Test site	e: 3m C	hamber	Tested by	y: Anna F	an			
Test	t mode: 8	-DPSK Tx	CH1 2402	2MHz							
Ant	enna pola	rity: Vertic	al								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/ m)	Margin (dB)	Remark		
1	4804	47.62	34.08	10.12	34.18	57.64	74.00	16.36	PK		
2	4804	33.17	34.08	10.12	34.18	43.19	54.00	10.81	AV		
3	7206	/									
4	9608	/									
5	12010	/									
Ant	enna Pola	arity: Horiz	ontal								
1	4804	48.22	34.08	10.12	34.18	58.24	74.00	15.76	PK		
2	4804	34.19	34.08	10.12	34.18	44.21	54.00	9.79	AV		
3	7206	/									
4	9608	/									
5	12010	/									

- 1,Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3,Result = Read level + Antenna factor + cable loss-Amp factor
- 4,All the other emissions not reported were too low to read and deemed to comply with FCC limit.

		1GI	Hz—25G	Hz Rad	iated en	nissison Tes	st result					
EU	Γ: Tablet	pc	M/N: C	CPITP1	01							
Power: DC 5V From PC with AC 120V/60Hz adapter												
Test	Test date: 2013-09-17 Test site: 3m Chamber Tested by: Anna Fan											
Test	mode: 8	-DPSK Tx	CH40 244	41MHz								
Anto	enna pola	rity: Vertic	al									
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
1	4882	49.21	34.10	10.14	34.20	59.25	74.00	14.75	PK			
2	4882	34.79	34.10	10.14	34.20	44.83	54.00	9.17	AV			
3	7323	/										
4	9764	/										
5	12205	/										
Ante	enna Pola	arity: Horizo	ontal									
1	4882	50.05	34.10	10.14	34.20	60.09	74.00	13.91	PK			
2	4882	34.37	34.10	10.14	34.20	44.41	54.00	9.59	AV			
3	7323	/										
4	9764	/										
5	12205	/										
NIat												

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

		1GH	z—25GH	Iz Radia	ated em	issison Test	result		
EUT:	Tablet po	M/N:	CPITP10)1					
Powe	r: DC 5V	From PC v	vith AC 1	20V/60	Hz adaj	oter			
Test d	date: 2013	3-09-17 <i>-</i>	Test site:	3m Cha	ımber	Tested by:	Anna Far	1	
Test r	node: 8-I	OPSK Tx C	H79 2480	MHz					
Anter	na polari	ty: Vertical							
No	Freq (MHz)	Read Level	Antenna Factor	loss(d	Amp Factor	Result (dBuV/m)	Limit (dBuV/	Margin (dB)	Remark
	, ,	(dBuV/m)	` ′	B)	(dB)	, ,	m)	, ,	
1	4960	47.81	34.09	10.13	34.19	57.84	74.00	16.16	PK
2	4960	33.96	34.09	10.13	34.19	43.99	54.00	10.01	AV
3	7440	/							
4	9920	/							
5	12400	/							
Anter	nna Polari	ty: Horizon	tal						
1	4960	48.22	34.09	10.13	34.19	58.25	74.00	15.75	PK
2	4960	34.30	34.09	10.13	34.19	44.33	54.00	9.67	AV

4

7440

9920 12400

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz and 5725MHz to 5850MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

Same with clause 6.3 except change investigated frequency range from 2310MHz to 2415MHz, 2475MHz to 2500MHz and 5725MHz to 5850MHz

9.4. Test Result

PASS. (See below detailed test data)

GFSK CH LOW:

Shenzhen Certification Technology Service Co., Ltd 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : GFSK IX 2402MHz

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark : Temp :

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390,00	41.19	27.62	34.97	3.92	37.76	74.00	-36,24	Peak
2	2400.00	50.72	27.62	34.97	3.94	47.31	54.00	-6.69	Average
3	2400.00	63.82	27.62	34.97	3.94	60.41	74.00	-13.59	Peak
4	2402.00	86.47	27.62	34.97	3.94	83.06	74.00	9.06	Peak

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FAX: +86-755-26736857 Tel: 4006786199 Website: http://www.cessz.com Email: Service@cessz.com

: FCC PART 15_18G PEAK 3m Condition POL: VERTICAL

EUT : Tablet pc Model No Test Mode

: CPITP101 : GFSK TX 2402MHz : DC 5V Supply by AC 120V/60Hz adapter Power

Test Engineer : Anna Remark Temp Hum

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	41.66	27.62	34.97	3.92	38.23	74.00	-35.77	Peak
2	2400.00	51.93	27.62	34.97	3.94	48.52	54.00	-5.48	Average
3	2400.00	63.43	27.62	34.97	3.94	60.02	74.00	-13.98	Peak
4	2402.00	86.01	27.62	34.97	3.94	82.60	74.00	8.60	Peak

CH High:

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com Email: Service@cessz.com

: FCC PART 15_18G PEAK 3m POL: HORIZONTAL Condition

EUT : Tablet pc Model No : CPITP101 Test Mode : GFSK TX 2480MHz

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Temp Hum

Item	Freq	Read Level	Antenna	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	Factor dB	dB	dB	dBuV	dBuV	dBuV	
1	2480.00	87.50	27.59	34.97	4.00	84.12	74.00	10.12	Peak
2	2483.50	53.27	27.59	34.97	4.00	49.89	74.00	-24.11	Peak

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857
Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : GFSK IX 2480MHz

Power ; DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna

Remark : Temp : Hum :

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	₫B	dB	dBuV	dBuV	dBuV	F10140000000000000000000000000000000000
1	2480.00	84.52	27,59	34.97	4.00	81.14	74.00	7.14	Peak
2	2483.50	50.51	27.59	34.97	4.00	47.13	74.00	-26.87	Peak

Hopping mode

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel. 4006786199 FAX: +86-755-26736857 Website http://www.cessz.com/Email: Service@cessz.com/

Factor Loss

dB

3.92

3.94

3.94

dB

34.97

34.97

34.97

dBuV

38.63

48.77

dBuV

74.00

54.00

dBuV

-35.37

-5.23

-11.67

Peak

Peak

Average

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Level

dBuV

42.06

52.18

65.74

MHz

1 2390.00

2 2400.00

3 2400.00

Factor

dB

27.62

27.62

27.62

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FAX: +86-755-26736857 Tel: 4006786199 Website http://www.cessz.com Email: Service@cessz.com

Condition EUT

: Tablet pc Model No : CPITP101 : GFSK TX Hopping Test Mode

Power ; DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna

Remark Temp

Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
2390,00	43.67	27.62	34.97	3.92	40.24	74.00	-33.76	Peak
2400.00	50.47	27.62	34.97	3.94	47.06	54.00	-6:94	Average
2400.00	56.99	27.62	34.97	3.94	53.58	74.00	-20,42	Peak
	MHz 2390.00 2400.00	Level dBuV 2390.00 43.67 2400.00 50.47	Level Factor dBuV dB 2390.00 43.67 27.62 2400.00 50.47 27.62	Level Factor Factor MHz dBuV dB dB 2390.00 43.67 27.62 34.97 2400.00 50.47 27.62 34.97	Level Factor Factor Loss MHz dBuV dB dB dB 2390.00 43.67 27.62 34.97 3.92 2400.00 50.47 27.62 34.97 3.94	Level Factor Factor Loss MHz dBuV dB dB dB dBuV 2390.00 43.67 27.62 34.97 3.92 40.24 2400.00 50.47 27.62 34.97 3.94 47.06	Level Factor Factor Loss MHz dBuV dB dB dB dBuV dBuV 2390.00 43.67 27.62 34.97 3.92 40.24 74.00 2400.00 50.47 27.62 34.97 3.94 47.06 54.00	Level Factor Factor Loss MHz dBuV dB dB dB dBuV dBuV dBuV 2390.00 43.67 27.62 34.97 3.92 40.24 74.00 -33.76 2400.00 50.47 27.62 34.97 3.94 47.06 54.00 -6.94

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857
Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : GFSK TX Hopping

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark :

Remark : Temp : Hum :

Item	Freq	Read	Antenna	Preamp	Cable	Leve1	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	54.00	27.59	34.97	4.00	50.62	74.00	-23,38	Peak

Shenzhen Certification Technology Service Co., Ltd 2F. Building B. East Area of Nanchang Second Industrial Zone. Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FAX: +86-755-26736857 Tel: 4006786199 Website: http://www.cessz.com Email: Service@cessz.com

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT : Tablet pc EUT : rable ge
Model No : CPITP101
Test Mode : GFSK IX Hopping
Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Hum

Item Freq Preamp Cable Level Limit Margin Remark Read Antenna Level Factor Factor Loss MHz dB dBuV dBuV dB dB dBuV dBuV 1 2483.50 48.75 27.59 34.97 4.00 45.37 74.00 -28.63 Peak

8-DPSK

CH LOW:

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FAX: +86-755-26736857 Tel: 4006786199 Website: http://www.cessz.com Email: Service@cessz.com

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL

EUT : Tablet pc Model No : CPITP101

Test Mode : DPSK TX 2402MHz

: DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Temp Hum

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
	2222	300.400	07.60	204 000	0.00	27 05	74.00	25.05	Develo
+	2390.00	40.48	27.62	34.97	3.92	37.05	74.00	-36.95	Peak
2	2400.00	51.85	27.62	34.97	3.94	48.44	54.00	-5.56	Average
3	2400.00	63.95	27.62	34.97	3.94	60.54	74.00	-13.46	Peak
4	2402.00	86,29	27.62	34.97	3.94	82.88	74.00	8.88	Peak

Shenzhen Certification Technology Service Co., Ltd.
2F, Building B, East Area of Nanchang Second Industrial Zone,
Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China
Tel: 4006786199 FAX: +86-755-26736857
Website http://www.cessz.com/Email/Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL EUT : Tablet pc

EUT : Tablet pc
Model No : CPITP101
Test Mode : DPSK TX 2402MHz

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark : Temp :

Item Freq Read Read Antenna Preamp Cable Level Factor Factor Loss Level Limit Margin Remark dBuV dB dB dB dBuV dBuV dBuV 42,28 27,62 34,97 52,47 27,62 34,97 Peak Average 1 2390.00 3.92 38.85 74.00 -35.15 2 2400.00 52.47 3.94 49.06 54.00 -4.94 27.62 74.00 -14.15 3 2400.00 63.26 34.97 3.94 59.85 Peak 74.00 34.97 4 2402.00 84.47 27.62 3.94 81.06 7.06 Peak

CH High:

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857

Website: http://www.cessz.com Email: Service@cessz.com

: FCC PART 15_18G PEAK 3m POL: HORIZONTAL Condition EUT : Tablet pc

Model No : CPITP101 Test Mode : DPSK TX 2480MHz

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Temp Hum

Item	Freq	Read Level	Antenna Factor	Preamp	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2480.00	87.23	27.59	34.97	4.00	83.85	74.00	9.85	Peak
	2483.50	53.68	27.59	34.97	4.00	50.30	74.00	-23.70	Peak

Shenzhen Certification Technology Service Co., Ltd 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website http://www.cessz.com Email: Service@cessz.com

: FCC PART 15_18G PEAK 3m POL: VERTICAL Condition

EUT : Tablet pc Model No : CPITP101
Test Mode : DPSK IX 2480MHz
Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark Temp Hum

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2480.00	82.92	27.59	34.97	4.00	79.54	74.00	5.54	Peak
2	2483.50	49.45	27.59	34.97	4.00	46.07	74.00	-27.93	Peak

Hopping mode:

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857

Website: http://www.cessz.com Email: Service@cessz.com

: FCC PART 15_18G PEAK 3m POL: HORIZONTAL Condition EUT : Tablet pc

Model No : CPITP101 Test Mode : DPSK TX Hopping

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Temp Hum

Freq	Read Level	Antenna Factor	Preamp	Cable Loss	Level	Limit	Margin	Remark
MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
2390,00	41.60	27.62	34.97	3.92	38.17	74.00	-35.83	Peak
2400.00	52.37	27.62	34.97	3.94	48.96	54.00	-5.04	Average
2400.00	64.59	27.62	34.97	3.94	61.18	74.00	-12.82	Peak
	2390.00	Level dBuV 2390.00 41.60 2400.00 52.37	Level Factor dBuV dB 2390.00 41.60 27.62 2400.00 52.37 27.62	Level Factor Factor MHz dBuV dB dB 2390.00 41.60 27.62 34.97 2400.00 52.37 27.62 34.97	Level Factor Factor Loss MHz dBuV dB dB dB 2390.00 41.60 27.62 34.97 3.92 2400.00 52.37 27.62 34.97 3.94	Level Factor Factor Loss MHz dBuV dB dB dB dBuV 2390,00 41.60 27.62 34.97 3.92 38.17 2400.00 52.37 27.62 34.97 3.94 48.96	Level Factor Factor Loss MHz dBuV dB dB dB dBuV dBuV 2390,00 41.60 27.62 34.97 3.92 38.17 74.00 2400.00 52.37 27.62 34.97 3.94 48.96 54.00	Level Factor Factor Loss MHz dBuV dB dB dB dBuV dBuV dBuV 2390.00 41.60 27.62 34.97 3.92 38.17 74.00 -35.83 2400.00 52.37 27.62 34.97 3.94 48.96 54.00 -5.04

Shenzhen Certification Technology Service Co., Ltd 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857
Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : DPSK TX Hopping

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark :

Remark : Temp : Hum :

ltem	freq	Read	Antenna	Preamp		Level	Limit	Margin	Remark
	MHz	Level dBuV	Factor dB	Factor dB	Loss	dBuV	dBuV	dBuV	
1	2390,00	42.54	27.62	34.97	3.92	39,11	74.00	-34.89	Peak
2	2400.00	50.16	27.62	34.97	3.94	46.75	54.00	-7.25	Average
3	2400.00	64.61	27.62	34.97	3.94	61.20	74.00	-12.80	Peak

Shenzhen Certification Technology Service Co., Ltd 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website http://www.cessz.com Email: Service@cessz.com

EUT : Tablet pc Model No : CPITP101
Test Mode : DPSK TX Hopping
Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark

Temp Hum

Item	Freq	Read Level	Antenna Factor	Preamp		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	52.37	27.59	34.97	4.00	48.99	74.00	-25.01	Peak

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857
Website: http://www.cessz.com/Email: Service@cessz.com/

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT : Tablet pc
Model No : CPITP101
Test Mode : DPSK TX Hopping

Power : DC 5V Supply by AC 120V/60Hz adapter

Test Engineer : Anna Remark :

Remark : Temp : Hum :

Item	Freq	Read	Antenna	Preamp	Cable	Leve1	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	52.23	27.59	34.97	4.00	48.85	74.00	-25,15	Peak

10. Power Line Conducted Emissions

10.1.Block Diagram of Test Setup

10.2.Limit

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	$dB(\mu V)$	$dB(\mu V)$				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.3. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

10.4. Test Result

PASS. (See below detailed test data)

FCC ID: 2AAV9-CPITP101

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com/Email:Service@cessz.com/

: FCC PART 15 B QP Condition POL: LINE

EUT : Tablet pc Model No : CPITP101 Test Mode

: Charging : DC 5V Supply by AC 120V/60Hz adapter Power

Test Engineer: Store Remark

Item	Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.186	48.70	0.03	0.00	0.10	48.83	64.20	-15.37	QP
2	0.186	32.70	0.03	0.00	0.10	32.83	54.20	-21.37	Average
3	0.285	44.20	0.03	0.00	0.10	44.33	60.68	-16.35	QP
4	0.285	28.20	0.03	0.00	0.10	28.33	50.68	-22.35	Average
5	1.535	38.70	0.05	0.00	0.10	38.85	56.00	-17.15	QP
6	1.535	22.70	0.05	0.00	0.10	22.85	46.00	-23.15	Average
7	4.672	37.20	0.09	0.00	0.12	37.41	56.00	-18.59	QP
8	4.672	24.20	0.09	0.00	0.12	24.41	46.00	-21.59	Average
9	10.452	34.46	0.20	0.00	0.21	34.87	60,00	-25.13	QP
10	10,452	23.46	0.20	0.00	0.21	23.87	50.00	-26.13	Average
11	22.896	28.94	0.42	0.00	0.43	29.79	60.00	-30.21	QP
12	22.896	17.94	0.42	0.00	0.43	18.79	50.00	-31 21	Average

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com

: FCC PART 15 B QP Condition

POL: NEUTRAL Temp:24 °C Hum:56 %

: Tablet pc EUT : CPITP101 Model No Test Mode

: Charging : DC 5V Supply by AC 120V/60Hz adapter Power

Test Engineer: Store

Remark

Item	Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.233	47.02	0.03	0.00	0.10	47.15	62.35	-15.20	QP
2	0.233	30.02	0.03	0.00	0.10	30.15	52.35	-22.20	Average
3	0.375	40.62	0.03	0.00	0.10	40.75	58.39	-17.64	QP
4	0.375	26.62	0.03	0.00	0.10	26.75	48.39	-21.64	Average
5	1.585	42.33	0.05	0.00	0.10	42.48	56.00	-13.52	QP
6	1.585	26.33	0.05	0.00	0.10	26.48	46.00	-19.52	Average
	2.765	38.80	0.07	0.00	0.12	38.99	56.00	-17.01	QP
8	2.765	23.80	0.07	0.00	0.12	23.99	46.00	-22.01	Average
9	4.269	36.91	0.08	0.00	0.12	37.11	56.00	-18.89	QP
10	4.269	20.91	0.08	0.00	0.12	21.11	46.00	-24.89	Average
11	8.546	35.99	0.15	0.00	0.17	36.31	60.00	-23.69	QP
12	8.546	20.99	0.15	0.00	0.17	21.31	50.00	-28.69	Average

Remarks: Level = Read + LISN Factor - Freamp Factor + Cable loss

-3-

Note: If QP Result comply with AV limit, AV Result is deemed to comply with AV limit

11. Antenna Requirements

11.1.Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The antennas used for this product are Integral Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2dBi.

FCC ID: 2AAV9-CPITP101 Page 63 of 74

12. Test setup photo

13. Photos of EUT

END OF THE REPORT