HOJA DE EJERCICIOS 1 Análisis Matemático. CURSO 2021-2022.

Problema 1. Denotamos por ||x|| la norma euclídea asociada al producto escalar en \mathbb{R}^N ,

$$\langle x, y \rangle = \sum_{i=1}^{N} x_i y_i.$$

- Prueba las dos identidades siguientes, y da una interpretación geométrica: 1) Identidad del Paralelogramo: $2||x||^2 + 2||y||^2 = ||x+y||^2 + ||x-y||^2$. 2) Identidad de Polarización: $4 < x, y >= ||x+y||^2 ||x-y||^2$.

1. 11×+31/2+11×-31/2 = <x+y, x+y="">+<x-y, th="" x-y<=""></x-y,></x+y,>
= 11×112+2 <x,y>+11y112+11×112-7<x,y>+11y112</x,y></x,y>
$=211\times11^{2}+21111^{2}$
2. 11x+y11 - 11x-y11 = 4 <x,y></x,y>
= 4 (× ×)
porque (x,y) = < y, x > y a que es un producto escalar sobre R

Problema 2. Considera la siguiente matriz:

$$A \ = \ \left[\begin{array}{cc} 1 & 1 \\ -7 & 1 \end{array} \right] \ .$$

El determinante 1×1 formado por la esquina superior izquierda es positivo. El determinante 1×1 formado por la esquina inferior derecha es positivo. El determinante 2×2 es positivo. Comprueba que, sin embargo, existen vectores $\mathbf{v} \in \mathbb{R}^2$ tales que $\mathbf{v}^t A \mathbf{v} < 0$. ¿Contradice esto al criterio de Sylvester?

$(x,y)\begin{pmatrix} 1 & 1 \\ -7 & 1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = (x-7y, x+y)\begin{pmatrix} x \\ y \end{pmatrix} =$
$= x^{2} - 7xy + xy + y^{2} = x^{2} - 6xy + y^{2} = (x-3)^{2} - 8y^{2}$
No contradice Sylverster pq. A no os simétrica

<u>Problema</u> 3. Sea E un espacio vectorial real dotado de una norma $||\cdot||$ que satisface la *Identidad del paralelo*gramo (ver ej.1). Definimos

$$B(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2).$$

Demuestra que $B(\cdot,\cdot)$ es un producto escalar en E.

(3.1):
$$B(x,x) = ||x||^2$$
 $B(y,x) = B(x,y)$, $B(0,x) = 0 = B(x,0)$

A) Proban que
$$2B(x,y) = B(x+2,y) + B(x-2,y)$$
. En particular deducia

$$2B(x,y) = B(2x,y) \tag{3.2}$$

$$B(x+2,4) = B(x,4) + B(2,4)$$
 (3-3)

$$\frac{(1P)}{=\frac{1}{4}(2||x+y||^2+2||z||^2)-\frac{1}{4}(2||x-y||^2+2||z||^2)}$$

En particular, con
$$Z=X$$
, $2B(X,Y)=B(2X,Y)+B(0,Y)$
 $\Rightarrow B(2X,Y)=2B(X,Y)$

$$B(p+1)\times,y) = B(p\times+\times,y) = B(p\times,y) + B(\times,y)$$

```
C) Brucha que si p, q \in \mathbb{N}, q \neq 0, B(\frac{p}{q}x, y) = \frac{p}{q}B(x, y)
pB(x,y)=B(px,y)=B(pq英,y)= qB(学,y)
D) Vsando que para y fijo, la función X -> B(x,y) es
  continua de (E, 1111) en 1R, concluir que
        B(2x,y) = 2B(x,y) Y2 = Rt
 ∃rn= Pn ∈ Q t.q. lim rn=2. Por la continuidad de B(·,y)
 B(\lambda x,y) = B(\lim_{n\to\infty} r_n) \times_3 y) = \lim_{n\to\infty} B(\frac{p_n}{q_n} x,y) = \lim_{n\to\infty} \frac{p_n}{q_n} B(x,y)
           = lin (2B(xy) = 2B(x,y)
E) Demostran que para todo 261R, 2<0, se trene
                \lambda B(x,y) = B(\lambda x, y)
Primero observon que B(-x,y) = -B(x,y). Esto se deduce de la
definición.
B(-x,y) = \frac{1}{4} (11-x+y1)^2 - 11-x-y11^2) = \frac{1}{4} (-114+x1)^2 + 114-x11^2) =
      =-去(11×+×112-11y-×112)=-B(×,y)
Ahora es fácil proban E) usando D): si 1/0
B(2x,y) = B(-12k,y) = -B(12k,y) = -121B(x,y) = 2B(x,y)
F) Demostron que B(x,y) es lineal en la praimeza variable
(es deux (3,3)) usando A)
De A) obtenemos
 2B(x,y) = B(x+z,y) + B(x-z,y)
  2B(2,y) = B(z+x,y) + B(z-x,y) = B(x+Z,y) - B(x-Z,y)
Sumando estes dos igualdades se obtiene
    B(x,y) + B(Z,y) = B(X+Z,y).
```

Problema 4. Dadas las funciones definidas en \mathbb{R}^2 :

$$A(x,y) = \max \{2|x|, \sqrt{x^2 + y^2}\},$$

 $B(x,y) = \max \{|y|, |x - y|\},$

- a) Demuestra que son normas en \mathbb{R}^2 .
- b) Dibuja la bola unidad en cada una de ellas.
- c) Comprueba que para A(x,y) la desigualdad triangular puede ser una igualdad, incluso para vectores linealmente independientes.

6) •
$$A(0,0)=0$$
; si $A(x,y)=0$, • $2|x|=0$ y $\sqrt{x^2+y^2}=0$
 $x=0,y=0$
• $A(x,y)=0$; si $A(x,y)=max + 2|xx|$, $\sqrt{x^2+x^2+y^2}$)
 $= 121 max + 2|x|$, $\sqrt{x^2+x^2}=121 A(x,y)$
• $A((x_1,y_1)+(x_2,y_2))=A((x_1+x_2), y_2+y_2)=$
 $M(x_1,y_1)+(x_2,y_2)+(y_1+y_2)^2=$
 $|x_1+x_2|=|x_1|+|x_2|$
 $|x_1+x_2|=|x_1|+|x_1|+|x_2|=|x_1|+|x_1|+|x_2|=|x_1|+|x_1|+|x_1|=|x_1|+|x_1|+|x_1|+|x_1|=|x_1|+|x_1|+|x_1|+|x_1|=|x_1|+|x_1|+|x_1|+|x_1|+|x_1|+|x_1|+|x_1|+|x_1|+|x_1$

 $A(\vec{z}) = \max\{2, 1\} = 2, A(\vec{y}) = \max\{2, \sqrt{2}\} = 2$

Problema 8. Consideramos en \mathbb{R}^n la norma

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

donde $1 \le p < +\infty$.

- a) Dados $1 \leq p < q < +\infty,$ demuestra que si $||x||_p \leq 1$ entonces $||x||_q \leq 1.$
- b) Demuestra que para todo $x \in \mathbb{R}^n$ se verifica $||x||_q \le ||x||_p$.
- c) Sea $||x||_{\infty} = \max\{|x_i|: i=1,2,\ldots,n\}$. Demuestra que para todo $x \in \mathbb{R}^n$ se satisface:

$$\lim_{p \to +\infty} ||x||_p = ||x||_{\infty}$$

Indicaciones. Dividiendo por la norma infinito en los dos miembros, podemos asumir que $||x||_{\infty} = 1$. Separa las componentes con $|x_i| = 1$ de las componentes con $|x_i| < 1$. Usa (después de demostrarla) la desigualdad $|a^{\alpha} - b^{\alpha}| \le |a - b|^{\alpha}$, $0 < \alpha < 1$, $0 < a, b \in \mathbb{R}$.

a) Sea
$$||x||_{p \le 1} \Rightarrow |x|_{p \ge 1} \Rightarrow |x|_{$$

Como (14) = 1

C) Como $||X||_{\infty} = \max\{|Xi|: i=1,-n\}$ teremos $|Xi| \leq ||X||_{\infty}$ para todo i=1,-,n, Tenemos que existe $i \in \{1,-,n\}$ t=1,-,n t=1,-,n

 $||X||_{P} = \left(\sum_{i=1}^{n} |X_{i}|^{p}\right)^{p} \ge \left(|X_{i}|^{p}\right)^{p} = |X_{i}| = ||X||_{\infty}$

Ademas,

$$||x||_{p} = \left(\frac{\sum_{i=1}^{n} |x_{i}|^{p}}{\sum_{i=1}^{n} |x_{i}|^{p}}\right)^{p} = \left(\frac{\sum_{i=1}^{n} |x_{i}|^{p}}{\sum_{i=1}^{n} |x_{i}|^{p}}\right)^{p}$$

Problema 9. Sea $D: X \times X \to [0, \infty)$ cumpliendo las dos condiciones	siguientes:
---	-------------

 $D(x,y) = 0 \Leftrightarrow x = y \quad , \quad D(x,y) \leq D(z,x) + D(z,y) \quad \text{para cualesquiera} \ \ x,y,z.$

Demuestra que D es una distancia en X.

Probin que D(x,y) = D(y,x) \times x,y &X
Toman Z=y en la desigualdad
$D(x,y) \leq D(y,x) + D(y,y) = D(y,x)$
Intercombien x e y en la détiqualded probada:
$D(y,x) \leq D(x,y)$

a, $b, c \in X$, $y, r, s > 0$: a) $ d(a, b) - d(b, c) \le d(a, c)$. b) Si $a, b \in B(c, r)$, entonces $d(a, b) < 2r$. c) Si $B(a, r) \cap B(b, s) \ne \emptyset$, entonces $d(a, b) < r + s$.		
)	$d(a,b) \leq d(a,c) + d(c,b) =>$	
	$d(a,b) - d(c,b) \le d(a,k)$ $d(a,b) - d(b,c) \le d(a,c)$	
	$d(b,c) \leq d(b,a) + d(a,c) \Leftrightarrow$	
	$-d(a,c) \leq d(b,a) - d(b,c)$	
	$-d(a,c) \leq d(a,b) - d(b,c)$	

 $\underline{\mathbf{Problema}}$ 12. Sea (X,d) un espacio métrico. Demuestra las propiedades siguientes, válidas para cualesquiera