A Gaussian-Process-based framework for high-dimensional uncertainty quantification analysis in thermoacoustic Instability prediction

S. Guo, C. Silva, W. Polifke

38th International Symposium on Combustion PROCI-D-19-01742

Combining a flame model with an acoustic solver is a popular way to predict thermoacoustic instability

Uncertain inputs will lead to unreliable thermoacoustic instability calculations

Uncertainty quantification (UQ) requires running the acoustic solver many times

Surrogate modeling technique can greatly improve the UQ efficiency

Surrogate modeling technique can greatly improve the UQ efficiency

Training surrogate models becomes expensive as more flame parameters need to be considered

Flame impulse response model

$$f^{(\omega)}(h_1,...,h_N; \text{acoustic}) \approx \omega$$

 $f^{(\sigma)}(h_1,...,h_N; \text{acoustic}) \approx \sigma$

Training surrogate models becomes expensive as more flame parameters need to be considered

Flame describing function

Presentation Overview

- Motivation
- ☐ A surrogate-based scheme for thermoacoustic UQ
- ☐ Gaussian Process
- Case studies
 - Thermoacoustic framework
 - Linear case: FIR uncertainty
 - Nonlinear case: FDF uncertainty

Thermoacoustic eigenmode calculations require a coupling between a flame model and an acoustic solver

Thermoacoustic eigenmode calculations require a coupling between a flame model and an acoustic solver

Thermoacoustic eigenmode calculations require a coupling between a flame model and an acoustic solver

Surrogate models can be built to approximate acoustic solver to improve the efficiency

Surrogate models can be built to approximate acoustic solver to improve the efficiency

Presentation Overview

- Motivation
- ☐ A surrogate-based scheme for thermoacoustic UQ
- ☐ Gaussian Process

Gaussian process not only yields prediction, but also estimates prediction uncertainty

Prior

Data

Posterior

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

$$\hat{f}(x) \sim \mathcal{N}(\mu(x), \sigma^2(x))$$

 β : Constant

$$k(x,x') = \sigma^2 \exp(-\theta |x-x'|^2)$$
 : Kernel

Presentation Overview

- Motivation
- ☐ A surrogate-based scheme for thermoacoustic UQ
- ☐ Gaussian Process
- Case studies
 - Thermoacoustic framework
 - Linear case: FIR uncertainty
 - Nonlinear case: FDF uncertainty

Thermoacoustic problem settings

Configuration: EM2C C11¹

Helmholtz solver

First acoustic mode

[1] C. F. Silva et al. Combustion and Flame, 2013.

We train two separate GP models to approximate modal frequency and growth rate

Goal

$$\omega \approx \mathsf{GP}^{(\omega)}(G, \phi, R_{in}, R_{out}, \alpha)$$

$$\sigma \approx \mathsf{GP}^{(\sigma)}(G, \phi, R_{in}, R_{out}, \alpha)$$
 150 samples

Range

Parameter	Range
\overline{G}	$0.5 \sim 3$
ϕ	$0 \sim \pi$
$ R_{in} $	$0.7 \sim 1$
$ R_{out} $	$0.6 \sim 1$
$lpha^{ exttt{1}}$	$100 \sim 160$

[1] C. F. Silva et al. Combustion and Flame, 2013.

Presentation Overview

- Motivation
- ☐ A surrogate-based scheme for thermoacoustic UQ
- ☐ Gaussian Process
- Case studies
 - Thermoacoustic framework
 - Linear case: FIR uncertainty
 - Nonlinear case: FDF uncertainty

The linear case study involves an uncertain FIR model

Configuration: EM2C C11

Helmholtz solver

First acoustic mode

We use GP-based scheme to propagate FIR uncertainties

GP-based scheme achieved highly accurate and efficient linear thermoacoustic UQ analysis

GP 463 s
Helmholtz 463 s
9094 s

Computation Time (single core)

19.6 times faster

Presentation Overview

- Motivation
- ☐ A surrogate-based scheme for thermoacoustic UQ
- ☐ Gaussian Process
- Case studies
 - Thermoacoustic framework
 - Linear case: FIR uncertainty
 - Nonlinear case: FDF uncertainty

The nonlinear case study involves an uncertain FDF model

Configuration: EM2C C11

Helmholtz solver

First acoustic mode

[1] P. Palies et al. Combustion and Flame, 2011.

FDF uncertainty comes from limited and noisy measurements

Experimental FDF data

We assume limited and noisy measurements to introduce FDF uncertainty

Experimental FDF data

Uncertain FDF data

We interpolate FDF data to a finer grid to facilitate limit cycle calculation

Uncertain FDF data

Interpolated FDF data

We calculate growth rate for each amplitude and determine limit cycle based on growth rate trajectory

We use GP-based scheme to propagate FDF uncertainties

GP-based scheme achieved highly accurate and efficient nonlinear thermoacoustic UQ analysis

Mismatch between numerical and experimental results may be induced by the uncertain FDF data and acoustic boundary values

[1] C. F. Silva et al. Combustion and Flame, 2013.

Conclusion & Outlook

Conclusion & Outlook

