ESTIMAÇÃO PONTUAL

Problema 1. Admite-se que o número de pessoas que chegam a uma caixa multibanco por hora segue uma distribuição de Poisson com parâmetro 20. Determine a probabilidade de ao recolher-se uma amostra aleatória em cinco intervalos de uma hora se obterem os seguintes valores 21,20,18,22,19.

Problema 2.

Suponha que X_1, X_2, X_3, X_4, X_5 representam uma amostra aleatória de uma população com média μ e variância σ^2 . Considere os seguintes estimadores de μ :

$$\hat{\Theta}_1 = X_1, \qquad \hat{\Theta}_2 = \frac{X_1 + X_3 + X_5}{3}, \qquad \hat{\Theta}_3 = \frac{X_1 + X_2 + X_3 + X_4 - 2X_5}{3}.$$

- a) Classifique os estimadores quanto ao enviesamento.
- b) Determine o melhor estimador.

Problema 3.

Suponha que $\widehat{\Theta}_1$, $\widehat{\Theta}_2$, $\widehat{\Theta}_3$ são estimadores de θ . Sabe-se que $E[\widehat{\Theta}_1] = E[\widehat{\Theta}_2] = \theta$, $E[\widehat{\Theta}_3] \neq \theta$, $V[\widehat{\Theta}_1] = 12$, $V[\widehat{\Theta}_2] = 10$ e $E[(\widehat{\Theta}_3 - \theta)^2] = 6$. Compare os estimadores. Qual prefere? Justifique.

Problema 4.

Sejam \bar{X}_1 e \bar{X}_2 , as médias de duas amostras aleatórias de dimensões n_1 e n_2 , respectivamente, extraídas de um população normal com média μ e variância σ^2 .

a) Mostre que

$$\bar{X} = a\bar{X}_1 + (1-a)\bar{X}_2, \qquad 0 < a < 1$$

é um estimador não enviesado de μ .

b) Suponha que \bar{X}_1 e \bar{X}_2 são independentes. Determine a variância do estimador \bar{X} e o valor de a que minimiza a variância.

Problema 5.

Considere duas amostras aleatórias independentes, de dimensões n_1 e n_2 , obtidas da mesma população e os seguintes estimadores da média μ da população:

$$\widehat{\Theta}_1 = \frac{\overline{X}_1 + \overline{X}_2}{2}$$
 e $\widehat{\Theta}_2 = \frac{1 + n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$

em que \overline{X}_1 e \overline{X}_2 são as médias da primeira e da segunda amostra, respectivamente. Suponha que $n_2=kn_1$ e $k\geq 1$ é um número inteiro.

- a) Verifique se os estimadores são não enviesados.
- b) Indique o estimador com menor variância.
- c) Determine o erro médio quadrático de cada um dos estimadores e compare a eficiência dos estimadores quando $n_1=10,\ k=4$ e $\sigma^2=1$.

Problema 6.

Suponha que a voltagem que um cabo eléctrico, com um certo isolamento, pode suportar, varia de acordo com uma distribuição normal. Numa amostra de 10 cabos ocorrem os seguintes níveis de voltagem:

- a) Determine as estimativas para média e variância da população.
- b) Determine a probabilidade de um cabo suportar níveis inferiores à voltagem máxima registada na amostra acima.

1

Problema 7.

O conteúdo (em litros) de garrafas de água segue uma distribuição normal com média 0.99 e desvio padrão 0.02.

- a) Suponha que é obtida uma amostra aleatória de 16 garrafas. Determine a probabilidade do conteúdo médio da amostra ser superior a 1 litro.
- b) Determine a dimensão da amostra, para que seja de pelo menos 0.95 a probabilidade de que a média da amostra não se afaste da média da população por mais do que 0.01.

Problema 8.

O tempo de espera de um passageiro no *check-in* de um aeroporto é uma variável aleatória com média 8.2 minutos e desvio padrão 1.5 minutos. Suponha que uma amostra aleatória com 49 passageiros é obtida. Determine a probabilidade de o tempo médio de espera desses passageiros ser inferior a 10 minutos.

Problema 9.

Seja X_1, X_2, \ldots, X_{40} uma amostra aleatória proveniente de uma população com distribuição uniforme em [0, 1]. Calcule a probabilidade da média amostral ser superior a 0.8.