13E054MAS 2016

Metode analize elektrofizioloških signala

CIKLUS I: 1. Primer

Realizacija filtara u Matlabu (Pythonu i Octaveu)

Ema Pajić

br. Indeksa: 2016/0017

- 1. **Zadatak** Projektovati filter prema uputstvu: niskopropusnik sa parametrima koji su dati u fajlu.
- a) Koriscen je fdatool u Matlabu. U Pythonu ne postoji ovaj GUI, a u Octave-u postoji paket signal u kojem postoje fdatool I fvtool ali trenutno nisu implementirani.

Slika 1, Magnituda filtra 30. reda

Slika 2, Polovi filtra 30. reda

Slika 3, Magnituda filtra minimalnog reda

Slika 4, Polovi filtra minimalnog reda

2. Zadatak – Korišdenjem Export opcije "izvesti" koeficijente filtra u Workspace Matlab-a i vizuelizovati filter sa fvtool() funkcijom ili nekom drugom po izboru. Prikazati rezultat (fazu i magnitudu) na grafiku i u izveštaju. Prikazati vrednosti koeficijenata filtra pomodu funkcije stem().

Slika 5, Magnituda filtra

Slika 6, Faza filtra

Slika 7, Koeficijenti filtra

3. Zadatak – Računanje koeficijenata filtra i njegova implementacija. Filtriranje signala $x = 100\sin(pi/2 *k + pi/8)$

Vrednosti koeficijenata a i b: a0 = 4, a1 = -2, b0 = 1, b1 = 1 Za ovaj zadatak postoje kod u Python-u i u Octave-u.

Grafik iz Pythona:

Slika 8, Izlaz filtra I ulazni signal u vremenskom domenu

Grafik iz Octave-a:

Slika 8, Izlaz filtra I ulazni signal u vremenskom domenu

Slika 9, Filtrirani i nefiltrirani EMG u Pythonu

Slika 10, Filtrirani I nefiltrirani EMG u Octave-u