1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
102	8	8
89	-5	5
89	-5	5
109	15	15
93	-1	1
94	0	0
82	-12	12
=======	======	=======
$\sum x = 658$ $\bar{x} = 94$		$\sum x - \bar{x} = 46$

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{46}{7}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
95	-5	25
109	9	81
103	3	9
95	-5	25
98	-2	4
=======	=======	======
$\sum_{\bar{X}} x = 500$ $\bar{x} = 100$		$\sum (x - \bar{x})^2 = 144$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{144}{5 - 1}}$$
$$= \sqrt{36}$$
$$= \boxed{6}$$