VECKOPLANERING 16 – 20 MARS S7PHY

DENNA VECKA

Tisdag Inlämningsuppgift – Övningsprov: Kärnfysik

Genomför provet hemma på vanligt sätt. Redovisa ordentliga lösningar på rutat papper och skanna in (eller fotografera). **Provet öppnas i TEAMS kl 13:00 tisdag 17 mars och lämnas in där senast**

kl 16:00 samma eftermiddag.

Torsdag Förhoppningsvis har jag rättat provet och har postat det, inkl.

lösningsförslag, på TEAMS. Studera ditt prov och jämför med

lösningsförslagen. Notera vad du behöver öva mer på!

Därefter: En orientering om modern partikelfysik – den s.k. standardmodellen. Vi har redan berört detta lite i undervisningen. Avsnittet är tänkt som en orientering och ingår inte i kommande kursprov. Välj ett av videoklippen nedan och titta igenom. Det första är kortare, på engelska och mer grundläggande. Det andra klippet är på svenska, men också längre och innehåller mer

detaljer och abstraktion.

https://www.youtube.com/watch?v=V0KjXsGRvoA

https://www.youtube.com/watch?v=oXvwmwK6mZw

Fredag Vi fortsätter arbeta med BAC-uppgifter inom elektromagnetism.

Gör Bac2012:2 (finns längre ner i detta dokument) till nästa vecka.

NÄSTA VECKA

Nästa vecka innehåller en orientering om relativitetsteori och sedan ska vi arbeta med fler BAC-uppgifter inom elektromagnetism.

	Uppgift 2			
	Sida 1/2	Poäng		
	Försöksuppställningen på nedanstående bild befinner sig i vakuum. Gravitationskrafter kan försummas.			
a)	En stråle av elektroner emitteras med försumbar begynnelsehastighet av en källa S. Elektronerna accelereras av potentialskillnaden U mellan två metallplattor P_1 och P_2 (se ovanstående figur). När elektronerna passerar genom spalten O_1 har de farten $v_1 = 2,05 \cdot 10^7 \text{ m·s}^{-1}$.			
	i. Visa att farten, v_1 , hos en elektron som accelererats av en potentialskillnad U ges av följande uttryck			
	$v_1 = \sqrt{\frac{2eU}{m_e}}$ där m_e är elektronmassan och e är elementarladdningen.	3 poäng		
	$f{i}$. Bestäm potentialskillnaden U .	2 poäng		

VECKOPLANERING 16 – 20 MARS S7PHY

Uppgift 2			
	Sida 2/2	Poäng	
b)	Efter att ha passerat O_1 kommer elektronerna in i ett område med ett likform magnetiskt fält B_1 och följer en cirkulär bana från O_1 till O_2 .	igt	
	i. Visa att elektroner med hastigheten v , som infaller vinkelrät mett magnetiskt fält B , rör sig i en bana med radie, R , givet av: $R = \frac{m_{\rm e} v}{e B} \ .$	not 3 poäng	
	ii. Beräkna storleken B_1 på magnetfältet B_1 när $R_1 = 2,50$ cm.	2 poäng	
	iii. Ange riktningen på B_1 . Motivera svaret.	3 poäng	
c)	Avståndet mellan metallplattorna, P_3 och P_4 , är 3,00 cm. Mellan plattorna finns ett magnetfält Fel! Objekt kan inte skapas genom redigering av fältkoder. , med samma riktning som B_1 , och med storleken $B_2 = 4,67$ mT. En potentialskillnad, Fel! Objekt kan inte skapas genom redigering av fältkoder. , mellan de två plattorna justeras så att elektronerna följer en rät linje O_2O_3 .		
	i. Bestäm potentialskillnaden Fel! Objekt kan inte skapas genom redigering av fältkoder.	a 3 poäng	
	ii. Bestäm polariteten på plattorna P₃ och P₄. Motivera svaret.	3 poäng	
d)	Spalten O_2 ligger mittemellan plattorna P_3 och P_4 . Magnetfältet B_2 avlägsnas nu. Efter att ha passerat O_2 , så kommer elektronerna att träffa en av plattorna. Beräkna avståndet till träffpunkten från vänstra ändan av plattan som träffas.	. 6 poäng	

Givet:

Elementarladdningen $e = 1,60 \cdot 10^{-19} \,\mathrm{C}$

Elektronens massa $m_{\rm e} = 9.11 \cdot 10^{-31} \, \rm kg$