DEPARTAMENTO DE CIENCIA E INGENIERÍA DE MATERIALES E INGENIERÍA QUÍMICA

CURSO ACADÉMICO 2016/2017

Introducción a MATLAB

*	dice General	
	Introducción	1
	LL Constartation de MATLAB	- 3
	1.2 Access a MATLAB desde windows	- 3
	1.3 Roghes Generalies en MATLAB	3
	Primeros pasos	i
	2.1 Operaciones Básicus	9
	2.2 Formato de salida. Comando formet	- 9
	2.3 El punto y coma ; en la linea de comandos	- 1
	2.4 Constantes y Variables	- 3
	Gridor y Leer Dates on Ficherus	3
		- 60
	Matrices y vectores 4.1. Introducción de matrices en la linea de manados	10
	4.2 Elementue de matrices y vectores	11
	4.3 Functiones para la construcción de matrices	13
	4.4 Notación de dos puntos :	13
	4.5 Submatrices y Marriess per bloques	14
	15.1 Submarines	1
	45.2 Matrices por Bloques	13
	4.6 Operaciones Marriciales y Puncuales	10
	4.7 Resolución de Sistemas de Ecuaciones Lineales	13
	4.8 Otras operaciones sobre matrices	13
	4.5.1 Operaciones de manipulación de filas y columnas	H
	Graticos	2
	5.1 Criffon 2D	2
	3.2 Gridos 2D Millupies	23
	5.3 Effición de gráficos	2
	5.4 Graties 3D	2
	Programación	20
	(i.) Rogies Generales	28
	6.2 Tipor de m-files	29
	6.2.1 Arctime de instrucciones	25
	6.2.2 Anthiyos de finaciones	2
	6.3 Entructuras de Control del Finjo del Programa.	3
	6.5.1 Bicks for	30
	0.3.2 Sentencia if	3
	6.1.11 Sentencia vh11s 6.4 Operadone Légicis y Operadone Relacionales	33
	6.4 Operadonsi Legicia y Operadimsi Relacionalisi	3,

1 Introducción

MATLAB \Longrightarrow MATrix LABoratory

1.1 Características de MATLAB

- Programa de Cálculo Numérico y Cálculo Simbólico.
 - Se puede considerar como una calculadora programable muy potente.
- Programa muy popular entre **estudiantes**, **ingenieros**, **técnicos** e **investigadores** debido a sus características:
 - Programa **interactivo**.
 - Capacidades Gráficas potentes y sencillas.
 - Posee gran cantidad de **Funciones** de todos los tipos.
 - Lenguaje de programación de alto nivel similar a Fortran, C, Pascal o Basic, pero más fácil de aprender.
- Existen versiones del programa MATLAB desde pequeños **PC's** hasta **superordenadores**.

1.2 Acceso a MATLAB desde windows

- 1. Pulsar con el botón izquierdo del ratón sobre el botón **Inicio**.
- 2. Pulsar con el botón izquierdo del ratón sobre la carpeta de Programas.
- 3. Pulsar con el botón izquierdo del ratón sobre la carpeta de Matlab
- 4. Pulsar con el botón izquierdo del ratón sobre uno de los **iconos** de **MATLAB**.
- 5. Aparecerá una ventana con el prompt: >>

- 6. Crear un directorio
 - >> !mkdir A:\nombre_directorio
 - >> cd A:\nombre_directorio

1.3 Reglas Generales en MATLAB

• MATLAB distingue entre mayúsculas y minúsculas:

NO es lo mismo que:

>> MIN(2,3)

% error

 ◆ Los espacios en blanco SÍ tienen significado para matlab ⇒ separan distintos elementos en una matriz;

>> 12 >> 10e-12

no es lo mismo que:

>> 1 2 >> 10 e-12 % error % error

- Los PARÉNTESIS () y los CORCHETES [] tienen significados distintos.
- Las Flechas: $\uparrow y \downarrow$ permiten recuperar mandatos.
- Las Flechas: \leftarrow y \rightarrow permiten corregir errores.
- Para obtener **AYUDA** en el entorno de MATLAB se utiliza el comando **help**:
 - >> help help
 - >> help for
 - >> help plot

2 Primeros pasos

2.1 Operaciones Básicas

- + adición
- sustracción
- * multiplicación
- potenciación
- \ división izquierda

١,		1
/	división	derecha

exp	log	log10
sin	cos	tan
asin	acos	atan
abs	sqrt	sign
round	floor	ceil

Ejemplos

>> 2 + 3	>> 2 * 2
ans =	ans =
5	4
>> 2/6	>> 2\6
ans =	ans =
0.3333	3
>> 3*(log10(14.7)	- 4/6)/atan(2.3)
ans =	
1.2940	
>> 1+2i	>> abs(4+3j)
ans =	ans =
1.0000+2.0000i	5
	,

2 PRIMEROS PASOS 5

El comando flops

- El comando flops cuenta el número de operaciones en coma flotante realizadas.
- La instrucción flops (0) pone a cero dicho contador.
- Sumas y restas cuentan un flop en aritmética real y dos flops en aritmética compleja.
- Multiplicaciones y divisiones cuentan un flop en aritmética real y seis flops en aritmética compleja.
- Las funciones elementales cuentan un flop para argumentos reales y más para complejos (depende de la función).

2.2 Formato de salida: Comando format

2 PRIMEROS PASOS

Podemos cambiar la manera en que los resultados numéricos son presentados usando el comando **format**.

2.3 El punto y coma ; en la línea de comandos

En la línea de comandos se utiliza el **punto y coma ;** al final de una instrucción para que MATLAB no imprima en pantalla el resultado correspondiente. Esto **NO** quiere decir que la operación no se haya ejecutado.

2.4 Constantes y Variables

Reglas

- Podemos definir *constantes* y *variables* mediante **nombres**.
- El nombre consiste en una **letra** seguida de otras **letras**, **dígitos** o **subrayados**, hasta un máximo de **31** caracteres en total.
- MATLAB distigue entre **MAYÚSCULAS** y minúsculas.
- Las variables se pueden borrar con clear nombre.

Ejemplos

```
>> a = 2; A = 3;
>> alfa = 30; conf = pi/180;
>> sin(conf*alfa+A*a)
ans =
    0.2381
>> ans^2
ans =
    0.0567
```

Si **no** asignamos un **nombre** a una expresión se crea automáticamente la variable **ans** con la que se puede hacer operaciones posteriores.

3 Grabar y Leer Datos en Ficheros

• La instrucción

graba las variables x, y y z a un fichero (binario) de nombre fname1.mat (archivos mat o MAT-files).

• La instrucción

load fname2 a b

recupera las variables **a** y **b** de un fichero (binario) de nombre **fname2.mat**. En **fname2.mat** podría haber almacenadas más variables aparte de a y b.

• También es posible grabar y recuperar datos a y desde ficheros ASCII: opción -ascii de los comandos load y save.

Ejemplo

```
>> x = 0:pi/5:2*pi;
>> y = sin(x.^2);
>> t = [ x' y' ];
>> save io.mat t
>> clear t
>> x = t(:,1);
??? Undefined function or variable 't'.
>> load io
>> x = t(:,1);
>> y = t(:,2);
>> plot(x,y)
```

El comando diary

La instrucción

diary nombre_fichero

se utiliza para crear un diario de la sesión de MATLAB en el archivo (ASCII) nombre_fichero. A partir de dicha instrucción y hasta la introducción en la línea de comandos de la instrucción

diary off

todos los comandos que ejecutemos, así como los resultados que devuelva MATLAB (salvo los gráficos) quedarán grabados en el archivo nombre_fichero. Luego, podemos abrir y modificar dicho archivo con cualquier editor de texto.

4 Matrices y vectores

4.1 Introducción de matrices en la línea de comandos

selii.

Matriz: Colección de números ordenados por filas y por columnas.

- Las *matrices* se definen mediante **corchetes** [].
- Los elementos dentro de una misma fila se separan mediante **comas** o **espacios en blanco**.
- Para indicar el final de una fila y el comienzo de la siguiente se utiliza el **punto y coma**.
- Un vector fila de n elementos es una matriz $1 \times n$.
- Un vector columna de n elementos es una matriz $n \times 1$.
- Un escalar es una matriz 1×1 .

4

4.2 Elementos de matrices y vectores

- Para extraer el **elemento** A_{ij} de una **matriz** A se escribe A(i,j).
- Para extraer el **elemento** v_k de un **vector** v se escribe $\mathbf{v}(\mathbf{k})$.

4.3 Funciones para la construcción de matrices

eye(n)	matriz identidad de dimensión $n \times n$
zeros(m,n)	matriz de ceros de dimensión $m \times n$
ones(m,n)	matriz de unos de dimensión $m \times n$
diag(v)	matriz diagonal con diagonal $\{v_k\}_{k=1}^n$
rand(m,n)	matriz aleatoria de dimensión $m \times n$

Ejemplos

>> a=eye(2) 0 >> b=zeros(2,5) b = 0 >> c=rand(2,2) c = 0.0579 0.8132 0.3529 0.0099 >> d=diag([-1, 1]) d =0

4.4 Notación de dos puntos :

El operador : es uno de los más importantes en MATLAB. Aparece en diversos contextos:

• Para crear una fila de elementos equidistantes:

- Para extraer la fila i-ésima de una matriz A se escribe A(i,:).
- Para extraer la columna j-ésima de una matriz A se escribe A(:,j).
- Para eliminar la fila (columna) i-ésima de una matriz A se escribe A(i,:)=[] (A(:,i)=[]).
- Para escribir una **matriz** A de dimensiones $m \times n$ como un **vector columna** de mn elementos se escribe A(:)

4.5 Submatrices y Matrices por bloques

4.5.1 Submatrices

13

• La instrucción

$$A([i_1,i_2,...,i_r],[j_1,j_2,...,j_s])$$

extrae la **submatriz** formada por las **filas** $i_1, i_2,..., i_r$ y las **columnas** $j_1, j_2,..., j_s$ de la matriz A.

- La instrucción $A([i_1,i_2,...,i_r],:)$ extrae la **submatriz** formada por las **filas** $i_1, i_2,..., i_r$ de la matriz A.
- La instrucción $A(:,[j_1,j_2,...,j_s])$ extrae la **submatriz** formada por las **columnas** $j_1, j_2,..., j_s$ de la matriz A.

4.5.2 Matrices por Bloques

Supongamos que tenemos una matriz A de dimensiones $m \times n$ definida por bloques, por ejemplo,

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right] ,$$

donde A_{11} , A_{12} , A_{21} y A_{22} son bloques de dimensiones $p \times r$, $p \times s$, $q \times r$ y $q \times s$ respectivamente, tal que p + q = m y r + s = n. Supongamos también que hemos definido estos bloques en MATLAB y los hemos guardado en las variables A11, A12, A21 y A22 respectivamente. Entonces, podemos escribir la matriz A como

Ejemplos

4.6 Operaciones Matriciales y Puntuales

О	peradores Matriciales	Op	peradores Puntuales
+	suma	+	suma
_	resta	_	resta
*	multiplicación	.*	multiplicación
/	división derecha	./	división derecha
\	división izquierda	.\	división izquierda
^	potenciación	. ^	potenciación
,	conjugada traspuesta		traspuesta

- Los operadores matriciales son los definidos en el Álgebra Lineal.
- Los operadores puntuales actúan elemento a elemento. Operan entre matrices con la misma dimensión. El resultado es otra matriz de igual tamaño.

Si denotamos por $\circ = \{+, -, *, /, \setminus, \hat{}\}$ a un operador matricial y por $.\circ = \{+, -, .*, ./, .\setminus, \hat{}\}$ al operador puntual correspondiente. Si A y B son dos matrices cuyos elementos son a_{ij} y b_{ij} respectivamente, entonces los elementos de la matriz $A. \circ B$ son $a_{ij} \circ b_{ij}$.

• Las funciones intrínsecas de MATLAB (sin, cos, tan, exp, log, sqrt, abs, ...) cuando se aplican a una matriz actúan elemento a elemento.

4 MATRICES Y VECTORES 17 4 MATRICES Y VECTORES

4.7 Resolución de Sistemas de Ecuaciones Lineales

A Matriz Cuadrada $n \times n$. (**¡e Invertible!**)

 $x=A \ b \implies Solución de A * x = b \ (x y b vectores$ **columna**)

 $x=b/A \implies \text{Solución de } x*A = b \text{ (x y b vectores fila)}$

4.8 Otras operaciones sobre matrices

inv(A)	inversa de la matriz cuadrada A
pinv(A)	pseudoinversa (Moore-Penrose) de A
<pre>det(A)</pre>	determinante de la matriz cuadrada A
rank(A)	rango de la matriz A
[n,m] = size(A)	dimensiones de la matriz A
tril(A)	parte triangular inferior de A
triu(A)	parte triangular superior de A
trace(A)	traza de la matriz A
null(A)	base ortogonal del núcleo de A
orth(A)	base ortogonal de la imágen de A
[L,U,P] = lu(A)	factorización LU de A: P*A = L*U
R=chol(A)	factorización Cholesky de A: A = R'*R
[S,D] = eig(A)	vectores/valores propios de A: A*S = S*D
poly(A)	coeficientes del polinomio característico
[U,T]=schur(A)	factorización Schur de A: A = U'*T*U
[Q,R] = qr(A)	factorización QR de A: Q*R = A
[U,S,V] = svd(A)	SVD de A: U*S*V'= A
norm(A,p)	norma p=1,2 de A
norm(A,inf)	norma ∞ de A
norm(A,'fro')	norma de Frobenius de A
cond(A,p)	Condicionamiento en norma p de A

18

4.8.1 Operaciones de manipulación de filas y columnas

• Para intercambiar las filas i—ésima y j—ésima de una matriz A se escribe

• Para intercambiar las columnas i—ésima y j—ésima de una matriz A se escribe

• Para **insertar** una **fila vf** (vector fila) entre las filas k-ésima y (k+1)-ésima de una matriz A $m \times n$ se escribe

$$>> A = [A(1:k,:); vf; A(k+1:m,:)];$$

• Para **insertar** una **columna** vc (vector columna) entre las columna k-ésima y (k + 1)-ésima de una matriz $A m \times n$ se escribe

$$>> A = [A(:,1:k), vc, A(:,k+1:n)];$$

Ejemplos con Vectores

19

Ejercicios

Define dos vectores filas a y b de 3 elementos.

1. Compara a.^b a^b
2. Compara a\b a/b a.\b a./b
3. Compara a*b' b'*a a*b.' a.'.*b.'

Ejemplos con Matrices

Ejercicios

Define una matriz ${\tt A}$ de $2{\times}2$ y un vector columna ${\tt x}$ de 2 elementos.

- 1. Compara A.^2 A^2 A*x x*A
- 2. Calcula sin(A) cos(x)*(A+1)
- 3. Compara A\x x/A

5 Gráficos

5.1 Gráficos 2D

Representación de los vectores x e y.

Ejemplo

Intentar:

- $y = e^{-x^2}$ sobre el intervalo [-1.5, 1.5]
- \bullet Gráfica en paramétricas: $x=cos(3t) \ y=sen(2t)$ $t=[0,2\pi]$

5 GRÁFICOS

5.2 Gráficos 2D Múltiples

Forma 1

```
>> x=0:.01:2*pi;y1=sin(x);
>> y2=sin(2*x);y3=sin(4*x);
>> plot(x,y1,x,y2,'--',x,y3,'.')
```

Forma2

```
>>x=0:.01:2*pi;Y=[sin(x)',sin(2*x)',sin(4*x)'];
>>plot(x,Y)
```

Opciones

- hold on permite modificar el último gráfico.
- hold off desactiva este modo.

Ejemplo:

```
>> x=0:.01:2*pi;

>> y1=sin(x);y2=sin(2*x);y3=sin(4*x);

>> plot(x,y1)

>> hold on

>> plot(x,y2)

>> plot(x,y3)

>> hold off
```

5.3 Edición de gráficos

23

• Cambiar el tipo de **línea**, **color**, etc:

```
>> x=0:.01:2*pi; y1=sin(x);
>> y2=sin(2*x); y3=sin(4*x);
>> plot(x,y1,'--',x,y2,':',x,y3,'+')
```

Ver help plot para tipos de líneas y colores

- grid dibuja una retícula cuadrada.
- Escalado de la ventana gráfica:

 axis([xmin,xmax,ymin,ymax])

 axis, congela el escalado actual.

 Escribiendo axis de nuevo volvemos al autoescalado.
- Añadir títulos y comentarios:

```
title título del gráfico
xlabel comentario en el eje x
ylabel comentario en el eje y
gtext texto posicionado interactivamente
text texto posicionado mediante coordenadas
```

- Ejemplos:
 - 1. Escribir: title('El Titulo')
 - 2. Escribir: gtext('La mancha') y marcar con el ratón donde se desea que aparezca el comentario.

Ejecutar help axis

5.4 Gráficos 3D

- meshgrid(xx,yy) crea una retícula a partir de los vectores xx e yy
- mesh(xx,yy,z) representa la función z(xx,yy) sobre la retícula.

Ejemplo

Dibujar $z = e^{-x^2 - y^2}$ en el dominio $[-2, 2] \times [-2, 2]$:

Forma 1

```
>> xx = -2:.1:2;
>> yy = xx;
>> [x,y] = meshgrid(xx,yy);
>> z = exp(-x.^2 - y.^2);
>> mesh(z)
```

Forma 2

```
>> [x,y] = meshgrid(-2:.1:2, -2:.1:2);
>> z = exp(-x.^2 - y.^2);
>> mesh(z)
```

Consultar la ayuda para otras funciones gráficas como: plot3, mesh, y surf.

6 Programación

MATLAB permite ejecutar ficheros de instrucciones llamados **m-files**.

nombre.m

6.1 Reglas Generales

- Los ficheros deben ser formato ASCII.
 NUNCA formato Word, WordPerfect, Write, etc.
- MATLAB debe conocer el directorio de trabajo (donde están los ficheros). Para ello utilizar el comando:

>> cd nombre_directorio

• El símbolo porcentaje % se utiliza para **comentarios**. Es importante comentar los ficheros indicando su misión.

6.2 Tipos de m-files

- Archivos de Instrucciones
- Archivos de Funciones

6.2.1 Archivos de instrucciones

- \bullet Secuencia de instrucciones dentro de un m-file.
- Para ejecutar uno llamado nombre.m : >> nombre
- Son muy **útiles**, ya que permiten depurar y reutilizar sentencias **fácilmente**.
- Las líneas de comentario % serán mostradas al escribir:

>> help nombre_fichero

Ejemplo: Fichero figura.m

```
% Fichero ejemplo de m-files
% Tipo Instrucciones
% Genera la figura de 5.2

x=0:.01:2*pi;y1=sin(x);

y2=sin(2*x);y3=sin(4*x);

plot(x,y1,x,y2,'--',x,y3,'.')

xlabel('X'); ylabel('Y')
title('Grafico multiple')
```

>> figura

6.2.2 Archivos de funciones

- Estos ficheros crean **nuevas funciones** definidas por el usuario.
- Una vez creadas, pueden utilizarse como una función intrínseca de MATLAB.

Reglas y Consejos

- Fichero ASCII con extensión .m (m-file).
- Empezar **siempre** con **comentarios** (%).
- La primera palabra después de los comentarios debe ser: function
- El nombre de la función debe ser el **mismo** que el nombre del fichero **sin** extensión .m
- Los parámetros de entrada deben ser los argumentos de la función, encerrados entre paréntesis ().
- Los **parámetros de salida** van **delante** del nombre de la función.
- Se pueden poner líneas en blanco en cualquier sitio.
- Las variables definidas **dentro** del fichero son **locales**, es decir, sólo valen dentro de la función, fuera **no** existen.
- Los nombres de los parámetros de entrada y salida son **variables mudas**, es decir, su nombre puede ser **cualquiera**.

Ejemplo 1

```
% Fichero: rand10.m
% rand10(m,n) produce una matriz m x n
% de numeros aleatorios enteros entre 0 y 9
function a = rand10(m,n)
a = floor(10*rand(m,n));
```

Llamada

```
>> matriz=rand10(3,4)
```

Ejemplo 2

```
% Fichero: sr2.m
% Funcion ejemplo de varios parametros
% de entrada y salida.
% Las dos entradas x e y son dos numeros.
% Las dos salidas s y r son la suma y la resta
% de sus cuadrados respectivamente
% [s,r]=sr2(x,y)

function [out1,out2] = sr2(in1,in2)
out1=in1.^2+in2.^2;
out2=in1.^1-in2.^2;
```

Llamada

```
>> [s,r]=sr2(3,4)
```

6.3 Estructuras de Control del Flujo del Programa

Permiten cambiar el orden de ejecución **secuencial** de las sentencias (una detrás de otra) en un programa.

6.3.1 Bucles for

Repite un conjunto de instrucciones un determinado número de veces.

for i= vector fila de índices
 instrucciones(i)
end

```
x = []; \text{ for } i = 1:n, x(i)=i^2, \text{ end}
x = [];
for i = 1:n
x(i) = i^2;
end
```

Bucles Anidados

```
for i = 1:m
    for j = 1:n
        H(i, j) = 1/(i+j-1);
    end
end
```

6.3.2 Sentencia if

Las instrucciones se ejecutarán sólo si la relación es cierta

if relación

instrucciones

end

Expresiones más Complicadas

6.3.3 Sentencia while

Ejecuta unas instrucciones **mientras** la relación sea **cierta**.

6.4 Operadores Lógicos y Operadores Relacionales

• Operadores Relacionales

<	menor que	>	mayor que
<=	menor o igual que	>=	mayor o igual que
==	igual	~=	no igual.

• Operadores Lógicos

& y	1 0	~ no
----------------	-----	------

- Se utilizan con for, if y while.
- Se pueden utilizar con escalares o matrices. Cuando se utilizan matrices, el operador actúa componente a componente.

Programa Ejemplo

```
function [P,nops] = mult(A,B)
% [P,nops] = mult(A,B) calcula el producto de
% matrices P = A*B, con A y B de dimensiones
% adecuadas (si no, se obtiene un mensaje de
% error) y el numero de operaciones en coma
% flotante 'nops' realizadas
[mA,nA] = size(A);
[mB,nB] = size(B);
if nA^{=}mB
    disp('Matrices de dimensiones inadecuadas')
else
    P = zeros(mA, nB);
    flops(0);
    for i=1:mA
        for j=1:nB
            for k=1:nA
                P(i,j) = P(i,j) + A(i,k)*B(k,j);
            end
        end
    end
nops = flops;
```

7 Bibliografía

- D. Hanselman and B. Littefield, *The Student edition of MATLAB: version 4*, Prentice-Hall, 1995.
- A. Biran and M. Breiner, *Matlab for Engineers*, Addison-Wesley, 1995.
- Eva Pärt-Enander, Anders Sjöberg, Bo Melin and Pernilla Isaksson, *The Matlab Handbook*, Addison-Wesley, 1996.