LCD (liquid crystal display)

LCD

- LCD quiere decir "liquid crystal display"
- La mayoría de los LCDs alfanuméricos tienen una luz de fondo (backlight) basada en LED
- Los displays tienen un número de renglones y columnas. Aglunos ejemplos: 8x1, 8x2, 16x1, 16x2, 16x4, 20x1, 20x2, 20x4, 40x1, 40x2, y 40x4.

LCD

• Comúnmente los LCDs utilizan un controlador Hitachi (HD44780 o KS0066)

Señales del LCD

Interface Signals

Pin No.	Symbol	Level	Description			
1	Vss	0V	Ground			
2	Vcc	5.0V	Power supply voltage for logic and LCD(+)			
3	Vo	0.3V	Power supply voltage for LCD(-)			
4	RS	H/L	Selects registers			
5	R/W	H/L	Read/Write Signal			
б	Е	H/L	Chip enable Signal			
7	DB0	H/L	Data bit0			
8	DB1	H/L	Data bit1			
9	DB2	H/L	Data bit2			
10	DB3	H/L	Data bit3			
11	DB4	H/L	Data bit4			
12	DB5	H/L	Data bit5			
13	DB6	H/L	Data bit6			
14	DB7	H/L	Data bit7			
15	LED+		+4.3V Anode			
16	LED-		GND Cathode			

LED Backlight will work on 5VDC if through a 1N4001 Diode. This gives approximately 4.3VDC

Mapa de Caracteres

CHARACTERTON	I IADEE												
UPPER LOWER 4 BITS 4 BITS	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)		0	a	P	`	P		_	9	Ę	α	þ
0001	(2)	ļ	1	A	Q	a	9	•	7	Ŧ	4	ä	q
0010	(3)	11	2	В	R	Ь	r		1	ŋ	×	ß	Θ
0011	(4)	#	Ŋ	C	5	C	S	L	Ţ	Ŧ	ŧ	ω	69
0100	(5)	\$	4	D	T	d	ŧ.	N.	I	ŀ	þ	μ	Ω
0101	(6)	Ν	15	E	U	е	u	•	7	Ŧ	ュ	G	ü
0110	(7)	ωŏ	Φ	F	V	Ł.	V	7	Ħ	-	3	ρ	Σ
0111	(8)		7	G	W	æ	W	7	#	Z	Ŧ	g	π
1000	(1)	Y	00	H	X	h	×	4	7	礻	IJ	Ļ	X
1001	(2))	9		Υ	i	У	÷	ን	J	լի	_	У
1010	(3)	*	•	J	Z	j	Z	I	J	ŋ	V	j	Ŧ
1011	(4)	+	•,	K		k	{	7	Ħ	L		×	Б
1100	(5)	7	Y	L	¥	1		t	Ð	J	7	ф	Ħ
1101	(6)	1		М]	M	}	ュ	Z	ኅ	Þ	Ł	÷
1110	(7)	•	^	N	^	n	÷	3	t	#	*	ñ	
1111	(8)	/	?	0	_	0	÷	·y	y	₹		Ö	

Conexión LCD

LCD1 LM016LBL

Uso de librería display.h

- Se debe bajar la librería de siquiros y copiar en el directorio /inc de Codevision
- Al inicio del programa antes de los #include poner:

```
#asm
  .equ __lcd_port=0x05
  .equ __lcd_EN=1
  .equ __lcd_RS=0
  .equ __lcd_D4=2
  .equ __lcd_D5=3
  .equ __lcd_D6=4
  .equ __lcd_D7=5
#endasm
#include <io.h>
#include <delay.h>
#include <display.h>
```

Puerto (ATmega328P)	lcd_port
PORTB	0x05
PORTC	0x08
PORTD	0x0B

Todos los pines del display se tienen que conectar al mismo puerto (B,C o D)

 Antes de cualquier acceso a algún procedimiento del LCD se tiene que iniciar con la siguiente instrucción:

```
SetupLCD();
```

• Se pueden crear hasta 8 caracteres especiales. Para crear uno se debe poner un arreglo con la información del dibujo:

```
unsigned char corazon[8]=\{0x00,0x0A,0x15,0x11,0x0A,0x04,0x00,0x00\};
```

Al inicio del programa se debe programar en la RAM del display el

caracter propio:

```
CreateChar(0,corazon);
```

Para desplegar en el LCD se pondría:

```
CharLCD(0);
```


• El display siempre escribirá carateres en donde se encuentre el cursor (aunque sea invisible). Para mover el cursor se utiliza el procedimiento:

```
MoveCursor(x,y);
```

Donde para un LCD de 16 caracteres por 2 los rangos serían:

```
x: 0 a 15
y: 0 o 1
```

• Para escribir una letra en el LCD se puede usar:

```
CharLCD('H'); //Escribe una letra H en el LCD
CharLCD(0); //Escribe el caracter especial 0
CharLCD(1); //Escribe el caracter especial 1
```

 Para escribir un string fijo (que no cambia durante la ejecución) se usa:

```
StringLCD("HOLA");
```

El string se escribirá donde esté el cursor.

 Para escribir un string fijo con un retardo entre letra y letra (como máquina de escribir) se usa:

```
StringLCD2("MUNDO",200);
```

Donde el primer parámetro es el string y el segundo el tiempo entre letras en milisegundos.

• Para escribir un string variable (que cambia durante la ejecución) se usa usa:

```
StringLCDVar(Cadena);
```

Donde el argumento es un string variable que se puede cambiar durante la ejecucción.

Para borrar el LCD se usa:

```
EraseLCD ( ) ;
Se borrará el LCD y el cursor se moverá a la posición inicial (0,0)
```

• Por default el cursor es invisible. Sin embargo se puede cambiar con las siguientes opciones:

```
UnderscoreCursor().- pone el cursor "underscore"
NoUnderscoreCursor().- quita el cursor "underscore"
BlinkCursor().- pone el cursor intermitente
NoBlinkCursor().- quita el cursor intermitente
```


- 1. Desarrollar un programa que permita tener una animación de 2 pantallas en el LCD. El tiempo entre pantallas deberá ser de 2 segundos y se utilizará al menos la generación de un carácter especial (utilizar el proyecto demo)
- 2. Hacer un programa que despliegue el número de segundos que han transcurrido desde que se inició la aplicación.

Si la variable seg es:

- unsigned char seg (rango 0 a 255seg) ~4 min reiniciaría
- unsigned char int (rango 0 a 65535seg) ~18h reiniciaría
- unsigned long (rango 0 a 2³²-1) ~136 años se reiniciaría

- 3. Se deberá desarrollar un cronómetro por medio del LCD y el microcontrolador ATMega328P. El formato del cronómetro será "MM:SS:D" donde MM, SS y D denotan minutos, segundos y décimas de segundo respectivamente. Se deberán tener dos botones para control del cronómetro, uno de "start/stop" y el otro de "reset".
- 4. Agregar al problema 3 una animación con un carácter especial que cuando el cronómetro este andando se mueva y permanezca quieto cuando este en "stop" (Tarea Individual).

5. Hacer un programa donde se ponga un mensaje en 2 renglones y luego un PACMAN se los coma.

Pasos a seguir para cada par (i=0 a 7) Cursor seleccionado: Underscore para visualizar el algoritmo

6. Hacer un programa que permita a usuarios A y B jugar *Piedra*, *Papel o Tijeras*

Bibliografía

Hoja de datos de HANDTRONIX LCD