2018学年第二学期杭州市高三年级教学质量检测

数学试题参考答案及评分标准

一、选择题:本大题共10小题,每小题4分,共40分.

1	2	3	4	5	6	7	8	9	10
В	A	D	С	В	A	С	A	С	D

二、填空题(本大题共7小题,第11-14题,每小题6分,15-17每小题4分,共36分)

11.
$$2\sqrt{5}$$
, $y=\pm\frac{1}{2}x$

12.
$$\frac{1}{4}$$
, $\frac{\sqrt{2}}{2}$

11.
$$2\sqrt{5}$$
, $y=\pm\frac{1}{2}x$ 12. $\frac{1}{4}$, $\frac{\sqrt{2}}{2}$ 13. $\frac{\sqrt{10}}{4}$, $\sqrt{6}$ $\pm 2\sqrt{6}$

14. 5,
$$\frac{49}{5}$$

17.
$$\frac{\sqrt{3}}{12}$$

- 三、解答题: (本大题共5小题,共74分)
- 18. (本题满分14分)

解: 因为
$$f(x) = 2\sin\left(2x - \frac{\pi}{6}\right) + 1$$
,

(I) 函数f(x)的单调增区间为 $[k\pi - \frac{\pi}{6}, k\pi + \frac{\pi}{3}]$ ($k \in \mathbb{Z}$).

(II) 因为 $x \in [-\frac{\pi}{3}, \frac{\pi}{6}]$,所以 $2x - \frac{\pi}{6} \in [-\frac{5\pi}{6}, \frac{\pi}{6}]$,

所以
$$\sin\left(2x-\frac{\pi}{6}\right) \in [-1,\frac{1}{2}],$$

所以 f(x)的值域为[-1, 2].

- 19. (本题满分15分)
- 解: (I) 因为 \(\angle BAF = 90 \), 所以 \(AF \perp AB \),

又因为平面 ABEF 上平面 ABCD, 且平面 ABEF \cap 平面 ABCD = AB,

所以AF上平面ABCD.

......5 分

(II) 如图,建立以A为坐标原点,AB,AD,AF分别为x,y,z轴的空间直角坐标系.

所以B(1, 0, 0), C(1, 2, 0), D(0, 2, 0).

因为AB上平面ADF,

所以平面 DAP 的法向量为 n_1 =(1, 0, 0).

设 $\overrightarrow{FP} = \lambda \overrightarrow{FD}$, 则 $P(0, 2\lambda, 1-\lambda)$,

所以 $\overrightarrow{AP} = (0, 2\lambda, 1-\lambda), \overrightarrow{AC} = (1, 2, 0),$

设平面 APC 的法向量为 $n_2=(x, y, z)$, 则

$$\begin{cases} 2\lambda y + (1-\lambda)z = 0 \\ x + 2y = 0 \end{cases}, \ \mathbb{R} x = -2, \ y = 1, \ z = \frac{2\lambda}{\lambda - 1}.$$

所以
$$n_2=(-2, 1, \frac{2\lambda}{\lambda-1}),$$

所以
$$\cos \langle \mathbf{n}_1, \mathbf{n}_2 \rangle = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{|\mathbf{n}_1| \cdot |\mathbf{n}_2|} = \frac{2}{\sqrt{(-2)^2 + 1 + \left(\frac{2\lambda}{\lambda - 1}\right)^2}} = \frac{\sqrt{6}}{3}$$
,

20. (本题满分 15 分)

解: (I) 因为 $B_{n+3}=q^3B_n+b_1+b_2+b_3=8B_n+7$,

所以
$$\begin{cases} q^3 = 8 \\ b_1 + b_2 + b_3 = 7 \end{cases}$$
, 解得 $\begin{cases} b_1 = 1 \\ q = 2 \end{cases}$.

所以 $b_n = 2^{n-1}$.

又因为 $a_1=b_2=2$, $a_4=b_4=8$,

(II) 设 $c_n = b_n - A_n = 2^{n-1} - n^2 - n$.

又因为 $c_{n+1}-c_n=2^{n-1}-2(n+1)$,

所以当 $n \le 4$ 时, $c_{n+1} < c_n$,当 $n \ge 5$ 时, $c_{n+1} > c_n$,

所以数列 $\{c_n\}$ 的最小项为 $c_5=-14$.

21. (本题满分 15 分)

解:(I)设直线 *PA* 的方程为 y=k(x-1)+1,与抛物线 $y=x^2$ 联立,得 $x^2-kx+k-1=0$,

易知 $A(k-1, (k-1)^2)$, $B(-k-1, (k+1)^2)$,

所以直线 AB 的斜率 $k_{AB} = -2$ (定值).

(II) 由(I) 得直线 *AB* 的方程为 $y = -2(x-k+1)+(k-1)^2$,

所以点 P 到直线 AB 的距离 $d=\frac{k^2-4}{\sqrt{5}}$.

$$|AP| = \sqrt{1+k^2} \cdot (k-2)$$
, $|BP| = \sqrt{1+k^2} \cdot (k+2)$, $|AB| = 2\sqrt{5}k$.

(i) 求
$$\triangle ABP$$
 的周长 $l=2k\sqrt{1+k^2}+2\sqrt{5}k$;3 分

·····7 分

(ii) 设 $\triangle ABP$ 的内切圆半径为r,则 $r = \sqrt{26} - \sqrt{5}$,

$$r = \frac{|AB| \cdot d}{l} = \frac{k^2 - 4}{\sqrt{1 + k^2} + \sqrt{5}} = \sqrt{1 + k^2} - \sqrt{5}$$
,

即
$$\sqrt{1+k^2} - \sqrt{5} = \sqrt{26} - \sqrt{5}$$
, 解得 $k=5$.

22. (本题满分 15 分)

解: (I) 因为 $f'(x)=xe^x$,

所以函数 f(x)的单调递增区间为 $(0, +\infty)$. ·········3 分

- - ① 当 $a \leq 0$ 时, 因为 $g'(x) \ge 0$, 所以g(x)在 $[0,+\infty)$ 单调递增, 所以 $g(0) = -1 - b \le 0$,得 $b \ge -1$,故 $a^2 + 4b \ge -4$.
 - ② 当a > 0时,

存在 $x_0 > 0$ 使 $g'(x_0) = 0$,即 $a = x_0 e^{x_0}$,且 g(x) 在 $[0, x_0]$ 上单调递减,在 $[x_0, +\infty)$ 上单 调递增.

所以
$$g(x_0) = (x_0 - 1)e^{x_0} - ax_0 - b \le 0$$
,解得 $b \ge (x_0 - 1)e^{x_0} - ax_0 = (x_0 - 1)e^{x_0} - x_0^2 e^{x_0}$,

因此
$$a^2 + 4b \ge x_0^2 e^{2x_0} - 4(x_0^2 - x_0 + 1)e^{x_0}$$
.

设
$$h(x) = x^2 e^{2x} - 4(x^2 - x + 1)e^x$$
, 则 $h'(x) = 2(x^2 + x)e^x(e^x - 2)$,

所以h(x)在 $[0,\ln 2]$ 上单调递减,在 $[\ln 2,+\infty)$ 上单调递增,

所以
$$h(\ln 2) < h(0) = -4$$
, $h(x) \ge h(\ln 2) = -4\ln^2 2 + 8\ln 2 - 8$.

所以当
$$a=2\ln 2$$
, $b=-2\ln^2 2+2\ln 2-2$ 时,

 $a^2 + 4b$ 取到最小值 $-4(\ln 2 - 1)^2$, 此时方程 f(x) = ax + b 有零点 $\ln 2$.

……12分