

Mobile communications

Bluetooth

(WPAN)

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

Comparison Between Wireless Technologies

Tradeoff between data rate, range and energy

Comparison Wireless technologies

Peak Data Rate vs Maximum Range

Ahmed, Mobyen & Björkman, Mats & Causevic, Aida & Fotouhi, Hossein & Lindén, Maria. (2015). An Overview on the Internet of Things for Health Monitoring Systems.

Personal Area Networks

- Target deployment environment: communication of personal devices working together
 - Short-range
 - Low Power
 - Low Cost
 - Small numbers of devices
 - Sometimes have more "bus-like" characteristics

PAN Standards

- Bluetooth Industry consortia (Bluetooth SIG)
- IEEE 802.15.1 "Bluetooth" based
- IEEE 802.15.2 Interoperability and coexistence
- IEEE 802.15.3 High data rate WPAN (UWB)
- IEEE 802.15.4 Low data rate WPAN (Zigbee,...)
- IEEE 802.15.5 Mesh Networks
- IEEE 802.15.6 Body Area Network

- Originally for replacing "USB", not "Ethernet"
 - Cable replacement technology
 - Later also used as Internet connection, phone, or headset
- PAN Personal Area Network
 - Started with 1 Mbps connections
 - Includes synchronous, asynchronous, voice connections
 - Piconet routing
- Small, low-power, short-range, cheap, versatile radios
- Master/slave configuration and scheduling

Created by Ericsson; Maintained by the Bluetooth SIG

Bluetooth Versions

	Feature	Data rate	Version
	First widely adopted version	1 Mbps	1.1
	Enhanced Data Rate (EDR)	3 Mbps	2.0 + EDR
2020 Bluetooth v5.2 Added Isochronous Channels (For audio streaming)	High-Speed	24 Mbps	3.0 + HS
, LEPC, and EATT optional features	Bluetooth Low Energy (BLE)	24 Mbps/ 1 Mbps (BLE)	4.0
2019 Bluetooth v5.1 Added Direction Finding to BLE through	Indirect IoT Device Connection	25 Mbps	4.1
Angle of Arrival and Angle of Departure 2017 Bluetooth v5 + Mesh Protocol	Range >100m, IPv6 protocol for direct Internet connection	25 Mbps	4.2
2016 Bluetooth v5	4x range, 2x speed, 8x message capacity + IoT	50 Mbps	5.0
Added 2 new PHYs for BLE 2010 Bluetooth v4.0 + BLE Added Low Energy Feature Enhanced security and MTU for BLE	Uses more antenas do pinpoint location of connected devices	50 Mbps	5.1
This feature is Bluetooth Low Energy (BLE)	Greater range (400m)	50 Mbps	5.2
Bluetooth v3.0 + HS kidded alternate PHY (802.11) feature is called High Speed (HS) Rate)	2004 This for Bluetooth v2.0 + EDR Added 2Mb/s and 3Mb/s data rates. This feature is called EDR (Enhanced Data Riversity) 2002 Bluetooth v1.1 1999 1 Mb/s, first widely adopted version Bluetooth v1.0		

1999 - 2010

Bluetooth (aka: Bluetooth Classic)

Starting for 2010, there are two types of Bluetooth:

Bluetooth Classic(BR,EDR, or HS), and

Bluetooth Low Energy (BLE)

Bluetooth Protocol Timeline

WLAN vs. Bluetooth

	Bluetooth	WLAN / WiFi	
Specifications authority	Bluetooth SIG	IEEE, WiFi Alliance	
Year of development	1994	1991	
Bandwidth	Low (800 Kbps)	Very High (2 Gbps 802.11ax)	
Hardware requirement	Bluetooth adaptor on all the devices connecting with each other	Wireless adaptors on all the devices of the network, a wireless router and/or wireless access points	
Cost	Low	High	
Power Consumption	Low	High	
Frequency	2.4 GHz	2.4/5 GHz	
Security	It is less secure	It is more secure	
Range	10 meters	100 meters	
Primary Devices	Mobile phones, mouse, keyboards, office and industrial automation devices	Notebook computers, desktop computers, servers	
Ease of Use	Fairly simple to use. Can be used to connect up to seven devices at a time. It is easy to switch between devices or find and connect to any device.	It is more complex and requires configuration of hardware and software	

Bluetooth features (I)

- Radio network, on the 2.4 GHz, world-wide!
 - ISM; Unlicensed but regulated
- FH (Frequency Hopping) Spread Spectrum:
 - 79 channels of 1 Mhz in the 2.402 GHz to 2.480 GHz range
- Defines a Master that synchronizes everyone to his hop-pattern
- TDD (Time Division Duplex): data is transmitted in one direction at a time with transmission alternating between two directions

Bluetooth features (II)

- Defines two types of networks:
 - Piconets
 - Scatternets (joining multiple piconets via common Master or Slaves)
- Maximum 8 active devices per piconet
 - 1 master + 7 slaves
- Two main types of connections
 - Voice link SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission
 - Connection explicitly set up prior to transmitting
 - Data link ACL (Asynchronous Connection Less)
 - Asynchronous, packets must be acknowledged

Frequency Hopping Spread Spectrum (FHSS)

- Signal broadcast over pseudo random series of frequencies
- Receiver hops between frequencies in sync with transmitter (1600 hops per second)
- Spreading code determines the hopping sequence
 - Must be shared by sender and receiver (e.g. standardized)
- Eavesdroppers hear unintelligible blips
- Jamming on one frequency affects only a few bits
 - Typically large number of frequencies used
 - Improved resistance to jamming

- Bluetooth devices connected in an "ad-hoc" cell
- There is a Master with up to 7 active slaves and several hundreds parked
 - Slaves only communicate with master
 - Slaves must wait for permission from master
 - Communication can be 1-to-1 to 1-tomany
 - No direct communication between slaves
- Each station (Master or Slave), has a 48-bit fixed device address

M = Master S = Slave

P = Parked SB = Standby

- Master defines radio parameters ("clock" and "deviceID")
 - Channel, hopping sequence, timing, ...
- Each piconet has a unique FH pattern (and a single ID)
- Each piconet has a maximum bandwidth
- A slave in one piconet can also be part of another piconet
 - Either as a master or as a slave
 - If master, it can create scatternets

M = Master S = Slave

P = Parked SB = Standby

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

Piconet operation

- FHSS: all devices must share the same hopping pattern:
 - Master provides clock and deviceID such that:
 - The unique deviceID (48-bits) defines hopping pattern

Clock defines phase inside the pattern

 If a device is inside a piconet, and is not connected, it must be in standby

- There are two types of piconet addresses (7+256)
 - Active Member Address (AMA, 3-bits)
 - Parked Member Address (PMA, 8-bits)

Piconet before setup

Piconet in operation

Piconet built!

Device states

- Standby
 - Do nothing; waiting to join a piconet
- Inquire
 - Search for other devices (discover nodes)
- Page
 - Connect to a specific device
- Connected
 - Active on a piconet (Master or Slave)
- Park/Sniff/Hold
 - Low Power connected states

Park: release AMA, get PMA

Sniff: listen periodically, not each slot

Hold: stop ACL, SCO still possible, possibly participate

in another piconet

AMA: Active Member Address **PMA**: Park Member Address

H

Low-Power Operation in BT classic

• 3 modes:

- 1. Hold: node sleeps for specified interval
 - Master can put slaves in hold while searching for new members, attending another piconet, etc
 - No ACL packets (Asynchronous Connection-Less) → general data packets
 - But Synchronous Connection Oriented (SCO) possible → Audio
- 2. Sniff: slave low-duty cycle mode
 - Slave wakes up periodically to talk to master
 - Fixed "sniff" intervals

3. Park:

- Very low power state
- Used to admit more than 7 slaves in piconet
 - Slave gives up its Active Member Address (AMA)
 - Receives "Parked" Member Address (PMA)
- Wakes up periodically listening for broadcasts which can be used to "unpark" node

Device Discovery Illustrated

After inquiry procedure, A knows about others within range

• Device A wants to search for stations

- Device A wants to search for stations
- A does an inquire (page with ID 000)
 - Devices B,C,D are doing an inquire scan

- Device A wants to search for stations
- A does an inquire (page with ID 000)
 - Devices B,C,D are doing an inquire scan
- B answers with FHS packet
 - Contains DeviceID and Clock

- Device A wants to search for stations
- A does an inquire (page with ID 000)
 - Devices B,C,D are doing an inquire scan
- B answers with FHS packet
 - Contains DeviceID and Clock
- A does an inquire again

- A wants to search for stations
- ...
- A does an inquire again
- C e D answer at the same time with FHS packet
 - Packets are corrupted
 - A does not answer
 - C and D will wait a random number of slots

- A wants to search for stations
- A does an inquire again

- A wants to search for stations
- A does an inquire again
- C answers with FHS packet

- A wants to search for stations
- A does an inquire again

- A wants to search for stations
- ...
- A does an inquire again
- D answers with FHS packet

• A has all the information it needs about the units in the cell

Inquiry scanning: summary

- Inquiry scanning has a common address
 - And a common frequency pattern (from 32 frequencies)
- All devices can page this address (and become masters)
- All machines hearing an inquiry will answer the inquiry request
- There is a detector (correlator hit) in the slaves, that detects inquiries, before answering with a FHS providing:
 - Device ID and Clock
- A machine in low power waits a random time before answering again to a scan
- If there is a collision on answering to a scan, they also wait a random period before answering again

Paging: Will you connect to me?

- Very similar to inquire
- Still have not synchronized clocks or frequencies
- Establishes actual Piconet connection with a device that it knows about
- Connection process involves a 6 steps of communication between the master and the slave

			Hopping	Pattern Source
Step	Message	Direction	Pattern	and Clock
1	Slave ID	Master to Slave	Page	Slave
2	Slave ID	Slave to Master	Page Response	Slave
3	FHS	Master to Slave	Page	Slave
4	Slave ID	Slave to Master	Page Response	Slave
5	1st Master Packet	Master to Slave	Channel	Master
6	1st Slave Packet	Slave to Master	Channel	Master

- Paging:
 - Assumes the master has C deviceID and Clock

- Paging:
 - Assumes the master has C deviceID and Clock
 - A pages C with the deviceID of C

- Paging: master has the Device ID and Clock
 - A pages C with the deviceID of C
 - C answers A with his deviceID

- Paging: master has the Device ID and Clock
 - A pages C with the deviceID of C
 - C answers A with his deviceID
 - A sends C his deviceID and Clock (FHS packet)

Master Paging Slave

- Paging: master has the Device ID and Clock
 - A pages C with the deviceID of C
 - C answers A with his deviceID
 - A send C his deviceID and Clock (FHS packet)
 - A becomes master of C

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

stack Bluetooth

Bluetooth includes:

- A HW description
- An environment for applications

Bluetooth Protocol

audio apps. NW apps. vCal/vCard telephony apps. mgmnt. apps.

TCP/UDP OBEX
AT modem commands
TCS BIN SDP Control
RFCOMM (serial line interface)
Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface
Baseband
Radio

- Radio layer
 - Defines requirements for a Bluetooth radio transceiver
 - Handles conformity to 2.4GHz (ISM) band
 - Establishes specifications for using Spread-Spectrum Frequency Hopping (FHSS)
 - Classifies device into one of three power classes:
 - Long range; Class 1 100mW, 100m
 - Normal/standard range; Class 2 2.5mW, 10m
 - Short range; Class 3 1 mW, 1m

Radio Layer

- Radio: FH SS
 - 79 channels of 1 Mb/s
 - Hoping: per slot
 - Packets have 1, 3, or 5 slots of 625 ms
 - Hoping (nominal) 1600 times per second
 - Frame includes two packets
 - Transmission followed by reception
 - Radio designed to low cost and universal usage
 - noise, synchronous action technology 2.4GHz, etc...,

Baseband in Bluetooth

- Manages physical channels and logical lines
 - Controls device addressing, channel control, power-saving operations, and flow control and synchronization among devices
 - Implements TDD aspects: master and slave switch in communications

- Works closely with Link controller:
 - Manages link (a)synchronism
 - Controls paging and inquiries
 - Controls power save modes

Baseband link types

- Polling-based (TDD) frame transmissions
 - 1 slot: 0.625msec (max 1600 slots/sec)
 - Master/slave slots (even-/odd-numbered slots)
 - Polling: master always "polls" slaves
- Synchronous Connection-Oriented (SCO) link
 - "Circuit-switched"
 - Periodic single-slot frame assignment
 - Symmetric 64Kbps full-duplex
- Asynchronous Connection-Less (ACL) link
 - Frame switching
 - Asymmetric bandwidth
 - Variable frame size (1-5 slots)
 - max. 721 kbps (57.6 kbps return channel)
 - 108.8 432.6 kbps (symmetric)

Baseband Packet

- Access Code: time synchronization, offset, paging, inquiry
 - Channel Access Code (CAC), piconet identification, synchronization, DC offset
 - Device Access Code (DAC), paging and replies
 - Inquiry Access Code (IAC), inquiries (GIAC, general; DIAC, dedicated)
- Header: packet acknowledgement and numbering, flow control, slave address, error checking
- Payload: voice, data or both (DV packets)
 - When data, the payload has an additional internal header

Packets (common)

TYPE	NAME	#	DESCRIPTION	
Common	ID	1	Carries device access code (DAC) or inquiry access code (IAC).	
	NULL	1	NULL packet has no payload. Used to get link information and flow control. Not acknowledged.	
	POLL	1	No payload. Acknowledged. Used by master to poll the slaves to know whether they are up or not.	
	FHS	1	A special control packet for revealing Bluetooth device address and the clock of the sender. Used in page master response, inquiry response and frequency hop synchronization. 2/3 FEC encoded.	
	DM1	1	To support control messages in any link type. can also carry regular user data. Occupies one slot.	

Packets: Synchronous Connection-oriented

SCO	HV1	1	Carries 10 information bytes. Typically used for voice transmission. 1/3 FEC encoded.		
	HV2	1	Carries 20 information bytes. Typically used for voice transmission. 2/3 FEC encoded.		
	HV3	HV3 1 Carries 30 information bytes. Typically used for voice transmission. Not FEC encoded.			
	DV	1	Combined data-voice packet. Voice field not protected by FEC. Data field 2/3 FEC encoded. Voice field is never retransmitted but data field can be.		

Packets: Assynchronous Connection-Less

	DM1	1	Carries 18 information bytes. 2/3 FEC encoded.		
	DH1	1	Carries 28 information bytes. Not FEC encoded.		
	DM3	3	Carries 123 information bytes. 2/3 FEC encoded.		
ACL	DH3	3	Carries 185 information bytes. Not FEC encoded.		
DH!	DM5	5	Carries 226 information bytes. 2/3 FEC encoded.		
	DH5	5	Carries 341 information bytes. Not FEC encoded.		
	AUX1	1	Carries 30 information bytes. Resembles DH1 but no CRC code.		

Adaptation protocols

- Link Manager
 - Carries out link setup above baseband, with authentication, link configuration and other protocols
 - Support protocol multiplexing
 - BT may support other protocols besides IP
 - Segmenting and reassembly
- Link Layer Control & Adaptation (L2CAP)
 - Link control protocol, provides connection-oriented and connectionless data services to upper layer protocols
 - Handles ACL and SCO connections
 - Handle QoS specifications per connection (logical channel)
 - Manages concepts as "group of connections"

- Host Controller Interface (HCI)
 - Allows command line access to the baseband layer and LM for control and status information
 - Current interfaces: USB; UART; RS-232
 - Made up of three parts:
 - HCI firmware, HCI driver, Host Controller Transport Layer

Interlayer communication

Protocols (middleware)

a: common protocol

b: Bluetooth

dedicated protocol

SDP: Service Discovery Protocol

OBEX: Facilitates binary transfers between BT devices

TCP-BIN: Telephony-control protocol binary (call control)

- Service Discovery Protocol (SDP)
 - Provides a way for applications to detect which services are available and their characteristics
 - Protocol question <>> answer
 - (search and browsing of services)
 - Defines a format for service registry
 - Information provided by the service attributes, a name (ID) + value
 - IDs can be universal (UUID)
- Protocol reusage
 - BT aims to reuse older protocols (e.g. WAP, OBEX-IrDA)
 - Interaction with applications and phones, as commonly done before

RFCOMM

- Based on GSM TS07.10
- Emulates a serial port, supporting all traditional applications that were able to use a serial port
- Supports multiple ports over a single physical channel between two devices
- Telephony Control Protocol Spec (TCS)
 - Handles call control (setup, release)
 - Group management for gateways, serving multiple devices
 - Audioconference, e.g.

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

Interoperability: Profiles

- Profile: base for BT interoperability (BT too much flexible!)
- "vertical cut" in Bluetooth stack
- A given usage model (typical solution)
- Each BT device supports one or more profiles

Profiles (v.1)

- Generic Access
 - Profile SDA (Service Discovery Application)
 - Profiles for serial port, including:
 - Profile Dial-up
 - Profile Fax
 - Profile headset
 - LAN Access (uses PPP)
 - Profile for generic object exchange (OBEX)
 - File transfer
 - Data synchronization
 - Push-pull
- Profile of cordless phone (TCS-BIN)
 - Profile interphone
 - Profile Cordless Telephony

Profiles (v.2)

- Radio 2 (next generation radio)
 Compatible with existing systems
- Car Profile
- PAN Profile
- GPS Profile
- Printing Profile
- Still image Profile

(globally better facilities in audio/voice/video)
(better service discovery)
(improved human interfaces)
(improved interoperation with other devices at the 2.4GHz ISM)

Bluetooth: security

- Devices can be:
 - "Trusted"
 - "Untrusted"
 - Also "unknown" devices
- Services security types:
 - Open services cypher only
 - Authentication only machine ID
 - Authentication and authorization (ID+explicit service grant)
- Levels of security:
 - Mode 1
 - No security
 - Mode 2
 - Security guaranteed at service level
 - Mode 3
 - Security guaranteed at link level

Bluetooth: security features

- Mechanisms used in BT for security
 - Fast frequency hopping
 - Low range
 - Authentication
 - Two way challenge/response mechanism
 - Cypher (to ensure privacy)
 - Data between two devices can be encrypted
 - Keys used
 - Cypher size configurable (0-16bytes) by the devices, but there are security constrains (goverment)
 - Keys using standard well-known algorithms
 - Security initialization device pairing
 - PIN (user input)
 - Shared key

Link keys in a Piconet

- Link keys are generated via a PIN entry
- A different link key for each pair of devices is allowed
- Authentication:
 - Challenge-Response Scheme
- Permanent storage of link keys

User input (initialization)

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- BT 4.0 BLE

Bluetooth 4.0: Low Energy

Short range wireless application areas

	Voice	Data	Audio	Video	State
Bluetooth ACL/HS	x	Y	Y	X	X
Bluetooth SCO/eSCO	Υ	x	x	X	X
Bluetooth low energy (BLE)	×	x	x	X	Υ
Wi-Fi	(VoIP)	Υ	Υ	Υ	X
Wi-Fi Direct	Υ	Υ	Υ	X	X
ZigBee	X	X	X	X	Υ

State = low bandwidth, average/low latency data

Low Power

What is Bluetooth Low Energy (BLE)?

- Bluetooth Low Energy is an open, short range radio technology
 - Blank sheet of paper design
 - Different to Bluetooth classic (BR/EDR)
 - Optimized for ultra low power
 - Enable coin cell battery use cases
 - < 20mA peak current
 - < 5 uA average current

Basic concepts of BLE

- Everything is optimized for lowest power consumption
 - Short packets reduce TX peak current
 - Short packets reduce RX time
 - Less RF channels to improve discovery and connection time
 - Simple state machine
 - Single protocol
 - Etc.

Bluetooth Low Energy factsheet

Range:	~ 150 meters open field
Output Power:	~ 10 mW (10dBm)
Max Current:	~ 15 mA
Latency:	3 ms
Topology:	Star
Connections:	> 2 billion
Modulation:	GFSK @ 2.4 GHz
Robustness:	Adaptive Frequency Hopping, 24 bit CRC
Security:	128bit AES CCM
Sleep current:	~ 1µA
Modes:	Broadcast, Connection, Event Data Models, Reads, Writes