A2018

A2018

- a. Gegeben Sie in jeder Teilaufgabe ein Beispiel an für Folgen, die die angegebenen Aussagen erfüllen:
- a1. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist divergent
- a2. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- a
3. (a_n) ist divergent und (b_n) ist divergent und
 $(a_n\ast b_n)$ ist divergent
- a4. (a_n) ist divergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- b. Es seinen $(a_n), (b_n)$ konvergente reelle Folgen mit $a = \lim_{x \to \infty} a_n$ und $b = \lim_{x \to \infty} b_n$. Was kann man über die Folge $(a_n * b_n)$ aussagen? (Ohne Beweis!)
- c. Es seinen (a_n) eine gegen a konvergente Folge. Beweisen Sie durch Induktion bezüglich m, dass für alle $m \in \mathbb{N}$ gilt: Die Folgen (a_n^m) konvergiert gegen a^m . Hinweis: Verwenden Sie die Aussage aus Teil b.

at.
$$a_n = \frac{A}{h}$$
 $b_n = h^2$

$$a2. a_n = 0 b_n = n$$

$$as. a_n = b_n = n$$

$$a_1 = (-1)^n, b_n = (-1)^n$$

c) I.A.: m=1 an konveziert gezen a mar Voranssetzung