

C L A I M S

1. A process for preparing a compound of the formula (III) :

5

(III)

wherein R^2 is lower alkoxy or higher alkoxy,

R^4 is carboxy

10 A^1 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group, and

A^2 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group,

which comprises:

15 hydrolyzing a compound of the general formula (II) :

(II)

wherein R^2 , A^1 and A^2 are each as defined above, and

R^1 is protected carboxy,

20 with aqueous potassium hydroxide to give a compound of the general formula (I) :

(I)

wherein R^2 , A^1 and A^2 are each as defined above, and

R^3 is a potassium salt of carboxy,
and reacting this compound (I) with hydrochloric acid to
obtain the compound (III).

5 2. A process of claim 1, wherein
 R^2 is lower alkoxy,
 A^1 is an aromatic bivalent group or heterocyclic
bivalent group, and
 A^2 is an aromatic bivalent group or heterocyclic
10 bivalent group.

15 3. A process of claim 2, wherein
 A^1 is an aromatic bivalent group, and
 A^2 is an aromatic bivalent group.

20 4. A process of claim 3, wherein
 A^1 is phenylene, and
 A^2 is phenylene.

25 5. A process for preparing a compound of the formula
(I) :

(I)

wherein R^2 is lower alkoxy or higher alkoxy,

25 R^3 is a potassium salt of carboxy,
 A^1 is an aromatic bivalent group, heterocyclic bivalent
group or cyclo(lower)alkane bivalent group, and
 A^2 is an aromatic bivalent group, heterocyclic bivalent
group or cyclo(lower)alkane bivalent group,

30 which comprises:
hydrolyzing a compound of the general formula (II) :

(II)

wherein R^2 , A^1 and A^2 are each as defined above, and

R^1 is protected carboxy,

5 with aqueous potassium hydroxide to give the compound (I).

6. A process of claim 5, wherein

R^2 is lower alkoxy,

A^1 is an aromatic bivalent group or heterocyclic
10 bivalent group, and

A^2 is an aromatic bivalent group or heterocyclic
bivalent group.

7. A process of claim 6, wherein

15 A^1 is an aromatic bivalent group, and

A^2 is an aromatic bivalent group.

8. A process of claim 7, wherein

A^1 is phenylene, and

20 A^2 is phenylene.

9. A process for preparing a compound of the formula

(III):

(III)

25

wherein R^2 is lower alkoxy or higher alkoxy,

R^4 is carboxy

A^1 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group, and

A^2 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group,

5

which comprises:

reacting a compound of the general formula (I):

(I)

10 wherein R^2 , A^1 and A^2 are each as defined above, and

R^3 is a potassium salt of carboxy,

with hydrochloric acid to obtain the compound (III).

15 10. A process of claim 9, wherein

R^2 is lower alkoxy,

A^1 is an aromatic bivalent group or heterocyclic bivalent group, and

A^2 is an aromatic bivalent group or heterocyclic bivalent group.

20

11. A process of claim 10, wherein

A^1 is an aromatic bivalent group, and

A^2 is an aromatic bivalent group.

25

12. A process of claim 11, wherein

A^1 is phenylene, and

A^2 is phenylene.

30

13. A process for preparing a compound of the formula

(V) :

wherein R^2 is lower alkoxy or higher alkoxy,

A^1 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group, and

A^2 is an aromatic bivalent group, heterocyclic bivalent group or cyclo(lower)alkane bivalent group, or salt thereof,

10 which comprises:

hydrolyzing a compound of the general formula (II) :

(II)

wherein R^2 , A^1 and A^2 are each as defined above, and

15 R^1 is protected carboxy,

with aqueous potassium hydroxide to give a compound of the general formula (I) :

wherein R^2 , A^1 and A^2 are each as defined above, and
 R^3 is a potassium salt of carboxy,
5 and reacting this compound (I) with hydrochloric acid to give
the compound of the general formula (III):

wherein R^2 , A^1 and A^2 are each as defined above, and
10 R^4 is carboxy, and if necessary, converting the compound
(III) into its reactive derivative at the carboxy group or a
salt thereof in a conventional manner,
and reacting the compound (III) or its reactive derivative at
the carboxy group or a salt thereof with the compound of the
15 formula (IV):

or its reactive derivative at the amino group or a salt thereof to obtain the compound (V) or a salt thereof.

5 14. A process of claim 13, wherein
R² is lower alkoxy,
A¹ is an aromatic bivalent group or heterocyclic bivalent group, and
A² is an aromatic bivalent group or heterocyclic bivalent group.
10

15 15. A process of claim 14, wherein
A¹ is an aromatic bivalent group, and
A² is an aromatic bivalent group.

15 16. A process of claim 15, wherein
A¹ is phenylene, and
A² is phenylene.

20 17. 4-[5-(4-Pentyloxyphenyl)isoxazol-3-yl]benzoic acid prepared by the process of claim 1 and substantially not including 5-(4-pentyloxyphenyl)-3-[4-[5-(4-pentyloxyphenyl)isoxazol-3-yl]phenyl]isoxazole.