HW3: Asymptotics 3

Gabriel ROMON

Problem 1

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function and $a \in \mathbb{R}^d$.

- 1. Suppose that $||x a||_2 = 1 \implies f(x) > f(a)$. Show that f is bounded below and that its minimum is attained only at points such that $||x a||_2 < 1$.
- 2. More generally, let K be a compact set with $a \in \text{int } K$. Suppose that $x \in \partial K \implies f(x) > f(a)$. Show that f is bounded below and that its minimum is attained only in the interior of K.
- 1. Consider x such that $||x-a||_2 > 1$ and let $\phi: [0,\infty) \to \mathbb{R}^d$, $t \mapsto f(a+t\frac{x-a}{||x-a||_2})$. By definition, ϕ is convex, $\phi(0) = f(a)$, $\phi(1) = f(a+\frac{x-a}{||x-a||_2}) > f(a)$ and $\phi(||x-a||_2) = f(x)$. By the inequality on slopes of convex real functions,

$$\frac{\phi(\|x - a\|_2) - \phi(0)}{\|x - a\|_2} \ge \frac{\phi(1) - \phi(0)}{1}$$

thus
$$\frac{f(x)-f(a)}{\|x-a\|_2} \ge f(a+\frac{x-a}{\|x-a\|_2})-f(a)$$
, hence $f(x)-f(a) \ge \|x-a\|_2 \left(f(a+\frac{x-a}{\|x-a\|_2})-f(a)\right) > 0$

Hence $||x - a||_2 > 1 \implies f(x) > f(a)$.

f is convex on the open set $B(a, \frac{3}{2})$, hence continuous over $B(a, \frac{3}{2})$ and thus continuous over $\overline{B}(a, 1)$. It reaches therefore a minimum over $\overline{B}(a, 1)$, which is also a global minimum since $||x - a||_2 > 1 \implies f(x) > f(a)$. Besides, since $||x - a||_2 = 1 \implies f(x) > f(a)$, the minimum is attained only at points such that $||x - a||_2 < 1$.

2. Consider $x \notin K$ and let $A = \{t \geq 0, \ a + t \frac{x-a}{\|x-a\|_2} \in K\}$. $0 \in A$ so A is non-empty, and since K is bounded, A is bounded above. Let $t_0 = \sup A$. Let us show that $a + t_0 \frac{x-a}{\|x-a\|_2} \in \partial K$. Since K is closed we have clearly $a + t_0 \frac{x-a}{\|x-a\|_2} \in K$. Let $\varepsilon > 0$. Since $t_0 + \varepsilon \notin A$ we have $a + (t_0 + \varepsilon) \frac{x-a}{\|x-a\|_2} \notin K$ and since $||a + (t_0 + \varepsilon) \frac{x-a}{\|x-a\|_2} - \left(a + t_0 \frac{x-a}{\|x-a\|_2}\right)||_2 = \varepsilon$, we have $a + t_0 \frac{x-a}{\|x-a\|_2} \notin \inf K$, thus $a + t_0 \frac{x-a}{\|x-a\|_2} \in \partial K$.

Since $||x - a||_2 \notin A$, we have $||x - a||_2 > t_0$ and the same argument as in 1. shows that

$$f(x) - f(a) \ge \frac{\|x - a\|_2}{t_0} \left(f(a + t_0 \frac{x - a}{\|x - a\|_2}) - f(a) \right) > 0$$

K being compact, it is bounded so there exists an open ball B such that $K \subset B$. f is convex over B, hence continuous over K, so f reaches a minimum over K. Since $x \notin K \implies f(x) > f(a)$, this minimum is global, and since $x \in \partial K \implies f(x) > f(a)$, it is attained only at points in the interior of K.