九十二學年度台灣大學電資學院電機系電子學(一)第一次小考

- \(\)(a) For the circuit in Fig. 1, taking the finite open-loop gain A of the op amp into account, show that

$$\frac{V_o}{V_I} = \frac{-G_o}{1 + \left[1 + G_o + \left(R_4 / R_3\right)\right] / A}$$

where G_o is the nominal magnitude of the closed-loop gain (See Example 2.2),

$$G_o = \frac{R_2}{R_1} \left[1 + \frac{R_4}{R_2} + \frac{R_4}{R_3} \right]$$

- (b) Apply this result to the case $G_o=100$, A=1000, and $R_A=R_2=R_I$. Find V_o/V_I .
- (c) Repeat (b) for the same G_o and A values but with $R_4 = R_2 = 10R_1$.
- (d) For comparison, find V_o/V_I for the inverting configuration with the same G_o and A values.

Note: The expression for V_o/V_I above suggests that the effect of finite A can be made approximately equal to that of the inverting configuration by selecting $R_4 \ll R_3$. This component selection, however, defeats the purpose of using the T network in the feedback. Why? (You need to study the design process in Example 2.2 to be able to answer this question.)

= Figure 2 shows a modified version of the difference amplifier studied in Example 2.6. The modified circuit includes a resistor R_{G_i} , which can be used to vary the gain. Show that the differential voltage gain is given by

$$\frac{V_o}{V_d} = -2\frac{R_2}{R_1} \left[1 + \frac{R_2}{R_G} \right]$$

Hint: The virtual short circuit at the op amp input causes the current through the R_1 resistors to be $V_d/2R_1$.

Figure 1

Figure 2