La technologie xDSL

SOMMAIRE

- Introduction
- Différences des technologies xDSL
- Avantages et inconvénients
- Différence entre asymétrie et symetrie
- Comparatifs des technologies xDSL
- Technique de modulation et multiplexage
- Théorie FDM et TDM

INTRODUCTION

- Le terme DSL ou xDSL signifie Digital Subscriber Line (Ligne numérique d'abonné)
- Il regroupe l'ensemble des technologies mises en place pour un transport numérique de l'information sur une simple ligne de raccordement téléphonique.
- a) Il en existe différentes variantes :
- HDSL : High bit rate DSL
- SDSL : Single pair, ou symmetric DSL
- ADSL : Asymmetric DSL
- RADSL : Rate adaptative DSL
- VDSL : Very high DSL

Différences des technologies xDSL:

- a) Les différences entre les technologies xDSL porte sur :
- La vitesse de transmission
- La variation de débit entre le flux montant (Utilisateur/réseau) et flux descendant (Réseau/utilisateur)
- La distance maximale de raccordement
- Le caractère symétrique ou non de la liaison
- Nombre de paires cuivres utilisées
- Type de modulation utilisé

Différences des technologies xDSL:

b) Quelque spécificité des xDSL :

- Les technologies xDSL sont divisées en deux grandes familles, celle utilisant une transmission symétrique et celle utilisant une transmission asymétrique (ADSL)
- Les technologies xDSL permettent des débits de l'ordre de plusieurs mégabits sans bouleverser l'infrastructure existante du réseau.
- Les xDSL utilisent les structures existantes ce qui permet de transférer les données entre l'utilisateur et le réseau, sans nécessité un investissement démesuré des opérateurs de télécommunication.

Avantages des technologie xDSL:

- La technologie xDSL est souvent une bonne solution à un tarif très intéressant pour l'accès à Internet haut débit
- La conservation de l'installation existante
- Un accès à Internet haut débit permanent
- La possibilité (comme avec le câble) de téléphoner tout en naviguant sur le Web

Inconvénients des technologie xDSL:

• L'abonné ne doit pas être éloigné de plus de 5,4 Km de son central téléphonique de rattachement .

Cette technologie est réservé à des zones d'habitat dense.

•Le débit est directement dépendant du trafic de la ligne, les débits sont très variables, donc une technologie destinée aux particuliers plutôt qu'aux entreprises.

Différence asymétrie et symétrie

Le « A » de l'ADSL se distingue des autres technologies DSL par son caractère asymétrique.

Il signifie qu'il existe une différence importante entre :

- le débit descendant (les données reçues par l'utilisateur)
- le débit ascendant (les données envoyées par l'utilisateur).

a) Utilités :

- Un utilisateur moyen consomme d'avantage de données qu'à en envoyer et il est donc logique de réserver un plus grand nombre de fréquences à cette tâche.
- Le signal perd d'avantage en qualité lorsqu'il est envoyé vers le répartiteur plutôt que lorsqu'il en part : cela s'explique par « diaphonie » (interférence entre 2 signaux)

Comparatif des principales technologies xDSL :

Technologie	Mode de	Débit	Mode de	Codage	Distance/Débit	Mode de
xDSL	transmission	Mbit/s	fonctionnement		Km/(Mbit/s)	séparation des
			Canal			canaux
ADSL	Asymétrique	1,5444 à 9	Descendant	DMT, CAP	5,5 / 1,5	FDM, annulation
		0,016 à 0,640	Montant		1,8 / 7	d'écho
HDSL	Symétrique	1.544	Duplex sur 2	CAP, 2B1Q	5,5 / 2,048	Annulation
			paires			d'écho
		2,048	Duplex sur 3			
			paires			
SDSL	Symétrique	0,128 à 2	Duplex	CAP, 2B1Q	3,6 / 2,048	Annulation
						d'écho
VDSL	Asymétrique	13 à 51	Descendant	CAP, DMT	1,5 / 3	FDM
		1,544 à 2,3	Montant		0,3 / 51	
RADSL	Asymétrique	0,600 à 7	Descendant	CAP	5,5 / 1,5	FDM
		0,128 à 1,024	Montant		1,8 / 7	

^{*}canal montant ou liaison montante, précise le sens du flux des données, de l'abonnée vers le réseau.

^{*}canal descendant ou liaison descendant du réseau vers l'abonnée.

Comparatif des principales technologies

xDSL:

LES TECHNOLOGIES DSL					
Technologie	Définition	Mode de transmission	Débit Download	Débit Upload	Distance maximale
HDSL	High data rate DSL	Symétrique	1.544 Mbps 2.048 Mbps	1.544 Mbps 2.048 Mbps	3.6 km
HDSL 2	High data rate DSL 2	Symétrique	1.544 Mbps	1.544 Mbps	3.6 km
SDSL	Single line DSL	Symétrique	768 Kbps	768 Kbps	3.6 km
G.SHDSL	Single-pair High-speed Digital Subscriber Line	Symétrique	2.3 Mbps	2.3 Mbps	3.6 km
ADSL	Asymmetric DSL	Asymétrique	1.544-9 Mbps	16-640 Kbps	5.4 km
ADSL2	Asymmetric DSL	Asymétrique	1.544-10 Mbps	1 Mbps	5.8 km
ADSL2+	Asymmetric DSL	Asymétrique	1.544-25 Mbps	1.2 Mbps	5.8 km
RADSL	Rate Adaptive DSL	Asymétrique	0.6-7 Mbps	0.128-1 Mbps	5.4 km
VDSL	Very high data DSL	Asymétrique	15-53 Mbps	1.544-2.3 Mbps	1.3 km

Asymétriques ADSL

ADSL: Asymmetric Digital Subscriber Line

Cette technologie transporte les données numériques avec un haut débit via des fils de cuivre

l'ADSL peut atteindre 8 Mb/s en flux descendant et 640 Kb/s en flux montant.

C'est la technologie la plus utilisée parmi les DSL

Avantages ADSL:

- -Plusieurs services : Internet, téléphone, télévision...
- -Installation facile
- -Connexion permantante sans coupures

ADSL, ADSL 2 et ADSL 2+

inconvenient ADSL:

- -La force du signal diminue avec la distance.
- les fréquences les plus hautes sont les plus touchés par l'affaiblissement du signal.

ADSL 2 et ADSL 2+:

L'ADSL 2 et 2+ sont une des versions plus performantes que l'ADSL classique mais en contrepartie les équipements doivent être équiper d'un adaptateur ADSL 2

	ADSL	ADSL 2	ADSL 2+
Débits montants (max théoriques)	1 Mbps	1 Mbps	1,2 Mbps
Débits descendants (max théoriques)	8 Mbps	10 Mbps	25 Mbps
Temps d'initialisation de la connexion	10 s	3 s	3 s
Segmentation en canaux(oui/non)	non	oui	oui
Distance maximale de raccordement	5 km	(5à 10% sup)	(5à 10% sup)

VDSL et VDSL2

VDSL: Very-high-bit-rate Digital Subscriber Line

Il s'agit de la plus rapide des technologies xDSL.

Cette technologie à un débit entre 15 et 50 mégabits/seconde.

La VDSL se révèle plus performante en terme de débit que l'ADSL quand la connexion est inférieure à 1 kilomètre.

Débit montant (Mbits/s)	Débit descendant (Mbits/s)	Distance (km)
2,048	12,96	1,5
2,048	25,92	1
2,048	51,84	0,3
12,96	12,96	0,8
25,92	25,92	0,5

La VDSL2 permettrait d'obtenir un débit théorique de 100 mégabits par seconde mais en contrepartie elle est plus sensible aux perturbations électromagnétiques.

RADSL

RADSL: Rate-Adaptive Digital Subscriber Line

Adapte son débit en fonction de la qualité de ligne téléphonique.

Cela permet un débit constant avec un débit ascendant de 128Kbits/s à 1Mbits/s et un débit descendant de 288 Kbits/s à 8 Mbits/s pour une distance maximale est de 5,4km.

Cette technologie n'est pas utilisé en Europe

Elle est principalement utilisé dans :

- Les architectures client/serveur.
- L'accès aux réseaux à distance.
 - L'Internet et le multimédia.

Symétriques HDSL et HDSL 2

HDSL: High-bit-rate digital subscriber line

l'une des premières technologies DSL.

Son principe est de diviser le tronc numérique du réseau sur plusieurs paires de fils.

Cette technologie utilise le Full Duplex

ce débit peut rapidement diminuer en fonction de la qualité de la ligne et de la distance.

Le HDSL 2 est très similaire au HDSL, il permet d'avoir un débit équivalent en utilisant qu'une seule paire de fil.

SDSL

SDSL : Symmetric Digital Subscriber Line

Dérivé du HDSL, elle offre les mêmes performances que le HDSL mais en utilisant une seule paire de cuivre.

LE SDSL utilise le DSLAM

elle ne permet pas le transport simultané de la téléphonie analogique mais elle permet le transport d'un débit symétrique allant de 2 à 64 Mbits/s

Débit montant – débit descendant (kbits/s)	Distance (km)
128	7
256	6,5
384	4,5
7 6 8	4
1024	3,5
2048	3

G.SHDSL

G.SHDSL: (Single-pair High-speed Digital Subscriber Line)

Dernière technologie DSL (dérivé du SDSL) qui atteint un débit symétrique jusqu'à 2,3Mbits/s sur de plus grandes distances que les autres technologies DSL.

Le G.SHDSL utilise la norme G.991.2. Cette norme internationale prévoit l'envoi et la réception de flux symétriques sur une seule paire cuivre.

Débit montant – débit descendant (kbits/s)	Distance (km)
144	5,3
272	4,6
528	4
1040	3,7
2064	3

LES TECHNIQUES DE MODULATION

• Le but des technologies xDSL est de booster la communication sur le réseau téléphonique existant.

Il s'agit de mettre en œuvre de nouvelles techniques de traitement du signal qui permet d'augmenter le débit.

Par exemple:

• Pour l'ADSL, la solution réside dans la modulation. Il existe différentes façons de traiter la porteuse Haute Fréquence, en fonction de la donnée à transmettre

(techniques Carrier Amplitude/Phase Modulation, Discret Multitone Modulation.)

LES TECHNIQUES DE MULTIPLEXAGE

Multiplexage FDM:

- Le Multiplexage FDM (Frequency Division Multiplexing) est une technique de multiplexage par répartition de fréquence (MRF)
- Cette technologie est utilisée pour accroître les débits sur paires torsadées et plus particulièrement des lignes téléphoniques

LES TECHNIQUES DE MULTIPLEXAGE

Multiplexage TDM:

- Le multiplexage TDM (Time Division Multiplexing) ou MRT (Multiplexage à répartition dans le temps)
- Cette technologie consiste à affecter à un utilisateur unique la totalité de la bande passante pendant un court instant et à tour de rôle pour chaque utilisateur.
- Il permet de regrouper plusieurs canaux de communications à bas débits sur un seul canal à débit plus élevé.

Théorie FDM et TDM

WEBOGRAPHIE

http://deptinfo.cnam.fr/Enseignement/Memoires/LUSTEAU.Franck/Pages/Les_multiplexages.htm