Grundlagen der Numerischen Mathematik

Übungen, Blatt 0

Lesen Sie bitte den folgenden Text zur Vorbereitung auf die erste Übung. Es kann nicht schaden, dabei auch selbst schon mit Matlab zu experimentieren, sofern sie dieses zur Hand haben. Diese Ausführungen sind eine leicht überarbeitete Version eines Textes von Herrn Dr. Menck aus dem Arbeitsbereich Mathematik, welcher im Sommersemester 2000 verfaßt wurde und wiederum zu einem beträchtlichen Teil auf einem Text von Herrn Prof. Rump beruht, der sich seinerseits auf den Matlab User's Guide stützt. Dieser Text ist nur als Einführung gedacht, für nähere Informationen verweisen wir auf den erwähnten Matlab User's Guide und auf umfangreiche Literatur im Internet.

1 Was ist Matlab?

Matlab (die Bezeichnung Matlab steht für Matrix Laboratory) ist ein Werkzeug für das numerische Rechnen und zur Visualisierung von numerischen Problemen. Es vereint numerische Analysis, Matrizenrechnung, Signalverarbeitung und Graphik in einer Umgebung, die die Formulierung von Problemen und Lösungen in einer Notation nahe üblicher mathematischer Notation erlaubt.

2 Grundlegendes

Unter anderem ist Matlab eine interaktive Programmiersprache. In diesem Abschnitt werden der grundlegende Datentyp, Elemente zur Steuerung des Programmierflußes und wichtige Funktionen auf den erwähnten Datentypen kurz umrissen.

2.1 Matrizen

Der "klassische" Datentyp in Matlab ist eine Matrix mit reellen oder komplexen Elementen. Dabei werden die 1×1 -Matrizen als Skalare interpretiert, Vektoren sind in Analogie dazu gegeben als $n \times 1$ und $1 \times n$ -Matrizen.

Kleine Matrizen können in expliziten Listen eingegeben werden, die die folgende Form haben:

• Elemente der Liste werden durch Leerzeichen oder Komma getrennt.

- Elemente einer Matrix werden mit eckigen Klammern umgeben.
- Das Ende einer Matrixzeile wird durch ein Semikolon oder durch einen Zeilenwechsel angegeben.

So erzeugt die Eingabe der Kommandozeile

$$A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$$

die Ausgabe

A =

Matlab speichert die Matrix A für den späteren Gebrauch.

2.2 Matrixelemente

Matrixelemente können jeder Matlab–Ausdruck sein. Die Eingabe

$$x = [-1.3 \text{ sqrt}(3) (1+2+3)*4/5]$$

ergibt das Resultat

x =

Einzelne Matrixelemente werden durch Indizes in runden Klammern referenziert. Mit dem obigen Beispiel ergibt

x(5) = abs(x(1))

die Ausgabe

x =

-1.3000 1.7321 4.8000 0 1.3000

Wie Sie sehen können, wird die Länge von x automatisch erhöht, um das neue Element aufzunehmen; die dazwischenliegenden noch undefinierten Elemente werden mit 0 initialisiert.

Große Matrizen können auch aus kleinen Matrizen gebildet werden. So wird die Matrix A aus dem obigen Beispiel folgendermaßen um eine Zeile erweitert:

Dies ergibt die Ausgabe

A =

Teilmatrizen kann man durch Angabe der gewünschten Zeilen- und Spaltenindizes referenzieren: So bezeichnet

die (Unterabschnitts-)Matrix

ans =

Bei größeren, gleichmäßig aufgebauten Indexvektoren ist die Verwendung des Doppelpunkt-Operators nützlich, der einer typischen Laufanweisung entspricht. So erzeugt z.B.

3:10

einen Zeilenvektor mit den Zahlen

ans =

Will man nicht in Einerschritten laufen, so kann man eine Schrittweite als zweiten Parameter einfügen. So ergibt

3:2:10

beispielsweise den Vektor

ans =

3 5 7 9

Bei der Angabe von Indizes bedeutet ein Doppelpunkt ohne umgebende Zahlen den gesamten Bereich. Mit

A(1:3,:)

sind zum Beispiel die ersten drei Zeilen und alle Spalten der Matrix gemeint, also die ursprüngliche Matrix A.

2.3 Anweisungen, Variablen und Funktionen

Matlab interpretiert und evaluiert eingegebene Ausdrücke. Die typische Form einer Matlab–Anweisung hat die Form

Variable = Ausdruck

oder einfach

Ausdruck

Ausdrücke können hierbei aus Operatoren, speziellen Zeichen, Funktionen und Variablennamen gebildet werden. Wird ein Ausdruck nicht an eine Variable mit = zugewiesen, so erzeugt Matlab eine Variable mit Namen ans. Wird eine Anweisung mit Semikolon abgeschlossen, so findet keine Ausgabe des Ergebnisses, wohl aber eine Evaluierung statt. Das Unterdrücken der Ausgabe macht Sinn bei Zwischenausdrücken, die eine längere Ausgabe erzeugen.

Matlab unterscheidet zwischen Groß- und Kleinschreibung. Die Variablen A und a sind nicht dieselben Variablen. Alle Funktionsnamen müssen hingegen klein geschrieben werden.

Ausdrücke können mit den üblichen arithmetischen Operatoren und Vorrangsregeln gebildet werden. Dabei stehen die folgenden Operatoren zur Verfügung:

- + Addition
- Subtraktion
- * Multiplikation
- / rechtsseitige Division
- \ linksseitige Division
- Potenz

Für Matrixoperationen ist es nützlich, zwei Symbole für die Division bereitzustellen. Siehe dazu den Abschnitt über Matrixoperationen. Matlab stellt standardmäßig elementare mathematische Funktionen wie z.B. abs, sqrt, log und sin bereit. Weitere Funktionen können mit Hilfe von sogenannten M-Files hinzugefügt werden, vgl. den folgenden Abschnitt.

Matlab–Funktionen können miteinander kombiniert werden. Die Eingabe

```
x = sqrt(log(x));
```

zeigt die Verwendung zweier ineinander geschachtelter Funktionen. Zwei oder mehr Funktionsargumente sind möglich:

```
theta = atan2(y,x);
```

Jedes Argument kann hierbei auch ein Ausdruck sein.

Einige Funktionen liefern zwei oder mehr Resultate zurück. Die Resultatwerte werden in eckige Klammern eingeschlossen und durch Kommata getrennt:

```
[V,Lambda] = eig(A);
```

Matlab verändert niemals Funktionsargumente. Das Funktionsresultat wird immer an die linke Seite einer Zuweisung zurückgegeben.

2.4 M-Files; Kontrollfluß

M-Files sind Dateien mit der Endung .m, die Matlab-Kommandos enthalten. Man ruft sie durch Eingabe des Namens ohne Endung auf. Damit M-Files gefunden werden, müssen sie im aktuellen Suchpfad liegen, den man mit dem Befehl path anzeigen kann. Ergänzungen lassen sich mit dem Befehl addpath vornehmen.

Es ist zu unterscheiden zwischen M-Files vom *Prozedurtyp*, sogenannte Skripte, die lediglich eine Abfolge von Kommandos bündeln, und solchen vom *Funktionstyp*. Die letzteren können mit Parametern aufgerufen werden und Parameter zurückgeben. Sie legen einen eigenen Satz interner Variable an, auf die von der Kommandozeilenebene nicht zugegriffen werden kann. Beispiel: Die Datei fibfun.m mit dem Inhalt

```
function ret = fibfun(n)
if n > 2
    ret = fibfun(n-1) + fibfun(n-2);
else
    ret = 1;
end;
```

berechnet (rekursiv) Fibonacci–Zahlen. Die zehnte Fibonacci–Zahl wird z.B. als

```
fib10 = fibfun(10);
```

abgerufen. So würde man das Programm aber selbstverständlich nicht implementieren. Geeigneter wäre eine nicht-rekursive Ausarbeitung.

Im Beispiel erkennt man, daß Matlab auch Sprachelemente bietet, die wie in Programmiersprachen den Fluß des Programms zu kontrollieren gestatten, wie if-Abfragen, for- und while-Schleifen und einiges mehr. Ein Beispiel für eine for-Schleife ist

```
for i = 1:n, x(i) = 0; end
```

Dieses Beispiel setzt die ersten n Elemente von x auf 0. Das Beispiel ist rein zu Demonstrationszwecken, schneller wäre dieses Ziel z.B. mit der Anweisung

```
x(1:n) = 0;
```

zu erreichen.

Schleifen können ineinander geschachtelt werden:

```
for i = 1:m

for j = 1:n

A(i,j) = 1/(i+j-1);

end
```

end

Zu weiteren Informationen über die Sprachkonstrukte von Matlab kann man sich z.B. über

```
help lang
```

vorarbeiten, vgl. dazu auch den nächsten Abschnitt.

2.5 Online–Hilfe; Informationen zu Matlab

Innerhalb einer laufenden Matlab-Sitzung kann man sich Hilfe mit dem Befehl

help

verschaffen. Die simple Eingabe des Befehls listet eine Anzahl von Themenbereichen auf, die man wieder als Parameter an help weitergeben kann, um Unterthemen angezeigt zu bekommen usw.. Auf der untersten Ebene erhält man dann Hilfetexte zu einzelnen Funktionen oder Stichworten.

Sucht man zum Beispiel nach einer Routine zur Eigenwertberechnung, so kann die Suchreihenfolge

help matfun help eig

entstehen. (Man darf natürlich auch direkt help eig eingeben, wenn man schon weiß, wie die Funktion heißt, oder eine Vermutung hat.)

Für die Suche nach Stichworten gibt es den nützlichen Befehl lookfor: Er durchsucht die ersten Zeilen der verschiedenen Hilfetexte nach einem angegebenen Suchbegriff. In unserem Beispiel hätte man z.B. die Funktion eig auch über

lookfor eigenvalue

finden können.

Eine übersichtlichere und weniger an einzelnen Funktionen orientierte Online-Hilfe bietet das Matlab-Helpdesk. Es arbeitet, wenn alles richtig installiert ist, mit dem Standard-Internetbrowser zusammen und wird auf der Matlab-Kommandozeilenebene mit dem Befehl

helpdesk

gestartet. (Unter Umständen empfiehlt es sich, den Browser vorher gesondert zu starten.)

Weitere Dokumentation zu Matlab wird unter anderem auf den Internetseiten der TU unter der URL

http://www.tu-harburg.de/rzt/tuinfo/ software/numsoft/matlab.html

angeboten.

3 Matrixoperationen

Matlab-Matrixoperationen wurden so gestaltet, daß sie der Form nach weitgehend mit den in der Mathematik üblichen Schreibweisen zu realisieren sind.

3.1 Transponieren

Das Apostroph bezeichnet das Transponierte einer Matrix. Die Eingabe

$$y = [-1 \ 0 \ 2],$$
 ergibt

y =

-1

0

2

3.2 Addition und Subtraktion

Addition und Subtraktion sind definiert für Matrizen gleicher Dimension. Im obigen Beispiel ist A + x nicht zulässig, aber A + A'. Addition und Subtraktion sind auch definiert, wenn ein Operand ein Skalar ist. Dieser Skalar wird zu allen Elementen des anderen Operanden addiert bzw. von ihnen subtrahiert.

Dieses Verhalten ist mit Vorsicht zu genießen, schließlich wird in der Mathematik oft die abkürzende Schreibweise $A-\lambda$ für $A-\lambda I$ verwendet, die der Matlab-Konvention deutlich widerspricht. Aus diesem Grund bietet es sich an, immer die Identität mit hinzuschreiben, sowohl in der Mathematik als auch in Matlab. Die Identität in der Dimension n wird durch

$$I = eye(n);$$

erzeugt. Der Name eye ist lautmalerisch für die englische Aussprache des Buchstaben I.

3.3 Multiplikation

Matrizen können multipliziert werden, wenn die Spaltenzahl der ersten Matrix gleich der Zeilenzahl der zweiten Matrix ist. Das Produkt ist mit dem in der Mathematik üblichen identisch. Matrix-Vektor-Produkte sind Spezialfälle von Matrix-Matrix-Produkten. Im obigen Beispiel sind sowohl A*x als auch A*A' zulässig. Es darf aber auch ein Skalar mit einer Matrix oder einem Vektor multipliziert werden wie in pi*x.

Beachten Sie bitte den Unterschied zu der elementweisen (engl. pointwise) Operation, wie sie im Abschnitt über Array-Operationen vorgestellt wird.

3.4 "Division"

In Matlab existieren zwei Symbole zur Matrixdivision: \ und /. Ist A eine reguläre quadratische Matrix, so gilt:

$$X = A \setminus B$$
 $l\ddot{o}st$ $A*X = B,$
 $X = B/A$ $l\ddot{o}st$ $X*A = B.$

Division bedeutet hier also die Lösung von linearen Gleichungssystemen. Es werden, wie in der numerischen Mathematik üblich, dabei keine Inversen von den auftretenden Matrizen berechnet. Auch die Division durch einen Skalar ist wiederum erlaubt.

4 Operationen auf Arrays

Array-Operationen sind elementweise arithmetische Operationen auf Vektoren oder Matrizen. Ein Punkt vor einem Operator zeigt eine Array-Operation an. Der Punkt läßt sich mnemorieren, wenn man sich vergegenwärtigt, daß pointwise die englische übersetzung von elementweise ist.

4.1 Addition und Subtraktion

Beim Addieren und Subtrahieren entsprechen die Array-Operationen den vorher besprochenen Matrix-Operationen. Das ist natürlich, da die Addition und Subtraktion von Matrizen und Vektoren eben elementweise definiert wird. Die elementweise Addition wird mit .+, die elementweise Subtraktion mit .- bezeichnet.

4.2 Multiplikation und Division

Die elementweise Multiplikation wird mit dem Symbol .* bezeichnet. Bei gleichen Dimensionen von A und B ist A.*B das Array, das durch Multiplikation der einzelnen Elemente von A mit den entsprechenden Elementen von B entsteht. Ist etwa

$$x = [1 \ 2 \ 3]; y = [4 \ 5 \ 6];$$

dann erzeugt die Eingabe

z = x.*y

das Ergebnis

z =

4 10 18

Das elementweise Produkt zweier Matrizen ist auch unter dem Namen Schur- oder Hada-Mard-Produkt bekannt.

Die elementweise Division wird mit A./B und A.\B bezeichnet. Die Eingabe

$$z = x.\y$$

erzeugt das Ergebnis

z =

4.0000 2.5000 2.0000

4.3 Potenzierung

Das Symbol .^ bezeichnet die elementweise Potenz. Mit den obigen Vektoren erzeugt die Eingabe

$$z = x.^y$$

das Ergebnis

z =

1 32 729

Der Exponent kann ein Skalar sein:

Ebenso darf die Basis ein Skalar sein.

5 Reelle Funktionen

Funktionen, abgesehen von den bereits in Matlab implementierten, sind meist durch eine Rechenvorschrift gegeben, etwa in Form eines M-Files. Die Datei quadrat.m kann z.B. folgendes enthalten:

```
function y = quadrat(x);
y=x.^2;
```

Wenn sie dann im aktuellen Suchpfad von Matlab liegt (also etwa im Arbeitsverzeichnis), kann man sie als "quadrat" aufrufen. Beispiel:

```
x = 2;
y = quadrat(x);
```

Hiernach ist y == 4. Wie man sieht, ist das M-File ist zunächst eine abstrakte Zuordnung, die erst per Argumentzuweisung mit Leben gefüllt werden muß.

5.1 Plotbefehle

Wie macht man jetzt einen Plot? Matlab benötigt dazu zwei Arrays, einen Array von x-Werten und einen zugehörigen Array von y-Werten. Standardmäßig sind das (technisch gesehen) Zeilenvektoren.

Beispiel: Sie wollen die Funktion x^2 über [-1,2] plotten. Sie erzeugen zunächst einen Array mit den x-Werten, z.B. über den Aufruf

```
x = -1:0.2:2;
```

Diese Zeile heißt: Gehe von -1 bis 2 mit der Schrittweite 0.2. Dieser Weg ist mit Vorsicht zu beschreiten. Durch Rundungsfehler kann es sein, daß weniger oder mehr Werte erzeugt werden, als eigentlich gewünscht. Abhilfe schafft hier die Matlab-Funktion linspace. Ein Aufruf der Form linspace(a,b,n) erzeugt einen Vektor der Länge n von äquidistanten Punkten zwischen den Randwerten a und b. Also verwenden Sie statt obigem Aufruf besser

x = linspace(-1, 2, 16)

In beiden Fällen kann man passende y-Werte erzeugen mittels

```
y = x.^2;
```

Der Punkt in .^ war wichtig, denn jeder x-Wert ist Komponente eines Vektors, und es soll jede Komponente für sich bearbeitet werden. Eine andere Möglichkeit ist

```
y = quadrat(x);
```

mit unserer oben definierten Funktion. Dieses zeigt uns, daß das Argument also auch ein Vektor sein kann (allgemeiner: eine Matrix sein kann). Der gewünschte Plot kann jetzt mittels

```
plot(x,y);
```

erzeugt werden.

Matlab druckt alle (x, y)-Paare und verbindet die aufeinanderfolgenden durch eine gerade Linie. Bei zu grober x-Einteilung ist noch deutlich ein Polygonzug erkennbar. Probieren Sie z.B.

```
x = linspace(-1,2,7);
plot(x,x.^2,'g');
```

Hier bewirkt das 'g', daß die Kurve in grün (green) dargestellt wird. Man kann x-Vektoren natürlich auch anders als durch linspace oder die Schleifenanweisung erzeugen; das sind nur einige der am häufigsten auftretenden und gleichzeitig bequemsten Möglichkeiten.

5.2 Funktions-Funktionen

Matlab hat einige eingebaute Funktionen zur Funktionenbearbeitung, siehe

help funfun

Als Beispiel betrachten wir den Befehl fplot. Er erzeugt einen Funktionsplot und wählt dazu die x-Punkte selbst. Hierfür hat man nur die Funktionsvorschrift zu liefern, also etwa den Namen des M-Files oder einen Ausdruck. Unsere Aufgabe von oben wäre mit

```
fplot('quadrat(x)',[-1,2]);
```

oder einfach

```
fplot('x^2',[-1,2]);
```

gelöst. Beachten Sie die Striche um den "symbolischen Ausdruck" 'x^2'. Die Verwendung von fplot sieht zwar sehr praktisch aus, macht aber auch nicht immer, was man will. Als Beispiel hierzu siehe:

```
fplot('tan(x)', [0 2*pi])
```

Hier muß man zunächst die Fensterachsen anpassen, um das Ergebnis zu beurteilen:

```
axis([0 7 -10 10]);
```

Das Ergebnis ist ziemlich indiskutabel. Mit

```
x=0:pi/100:2*pi;
y=tan(x);
plot(x,y);
axis([0 7 -10 10]);
```

bekommt man ein wesentlich vertrauenerweckenderes Bild. (Das Problem ist wahrscheinlich die Beurteilung des Ergebnisses auf Grundlage eines relativen Fehlers, denn der Funktionswert wird ja sehr groß.)

Andere für Sie interessante Funktions-Funktionen sind die folgenden Funktions-Funktionen:

fmin: Berechnet das Minimum einer Funktion in einem vorgegebenen Intervall. Als Beispiel: Berechne das Minimum von $x^2 - 3x$ auf dem Intervall [-1, 2] (Ergebnis 1.5):

```
fmin('x^2-3*x',-1,2)
```

fzero: Berechnung der Nullstelle einer Funktion bei vorgegebenem Startwert für die Iteration. Als Beispiel folgt der Aufruf für die Berechnung der Nullstelle von $x^2 - 2$ mit dem Startwert 1 (Ergebnis $\sqrt{2}$).

```
fzero('x^2-2',1)
```

Außerdem gibt es Integrationsverfahren, Differentialgleichungslöser etc..

5.3 Themenkreis Plotten

Für weitere Einzelheiten zum Plotten siehe

help graph2d

Einige Andeutungen:

semilogy

funktioniert wie "plot", nimmt aber eine semilogarithmische y-Skala.

axis

nimmt Einfluß auf das Anzeigefenster eines Plots, s.o.. Explizite Angabe:

axis([links rechts unten oben])

wie oben im Beispiel. Alternativen:

axis('auto')

wählt eine Standardeinstellung.

axis('equal')

wählt übereinstimmende x– und y– Skalierungen, was für die Darstellung geometrischer Objekte wie Kreise oft wünschenswert ist.

zoom on

kann zum manuellen Vergrößern des Bildausschnitts per Maus benutzt werden.

hold on

bietet sich an, falls mehrere Plots in ein Bild sollen. Immer vorzuziehen ist allerdings der Aufruf von plot mit mehreren Argumenten, gemäß

```
plot(x1,y1,c1,...
x2,y2,c2,...
x3,y3,c3);
```

Die Ellipsen (...) teilen Matlab nur mit, daß die Eingabezeile noch nicht hier endet, sondern in der nächsten Zeile weitergeht. Diese erweisen sich auch in anderen Fällen als nützlich, wo die Eingabezeilen zu lang und zu unübersichtlich werden.

figure

öffnet ein neues Bild. Mit

figure (Nummer)

bearbeitet man (wieder) das Bild mit der angegebenen Nummer.

Es gibt auch noch die Möglichkeit, dreidimensionale Plots zu erstellen, dazu lesen Sie am besten die Hilfeseiten zu den Befehlen mesh, surf oder contour.

6 Erweiterungen

Es gibt zusätzlich zu der eingebauten Funktionalität viele Erweiterungen in Form sogenannter Toolboxen. Toolboxen vereinen mehrere Programme unter einem Gesichtspunkt, so gibt es eine Optimierungstoolbox, eine Toolbox zur Lösung von gewöhnlichen Differentialgleichungen etcpp. Viele dieser Toolboxen sind bereits im Lieferumfang von Matlab enthalten, einige freie Toolboxen findet man im Internet.

Aufgabensammlung

Es folgen nun ein paar Aufgaben, die dazu dienen sollen, Ihnen den Umgang mit Matlab und seinen Sprachkonstrukten zu erleichtern. Diese Aufgaben sind allerdings keine Übungen im eigentlichen Sinne, d.h. Sie lernen aus Ihnen nichts was später in einer Prüfung (mündlich oder Klausur) abgefragt wird. Dieses macht es uns aber möglich, (hoffentlich) interessante Aufgaben zu stellen, die Ihnen den Spaß an Mathematik und Matlab vermitteln. Unnötig zu sagen, daß die Aufgaben deutlich schwieriger sind als alle später zu bearbeitenden ;-)

Aufgabe 1:

Diese Aufgabe soll Ihnen Matlabs Sprachkonstrukte etwas näher bringen. Außerdem lernen Sie einige schwer vermittelbare (und schwer beweisbare) Inhalte über Zufallsmatrizen. Sie sollten das Erlernte aber ruhig im Hinterkopf behalten, falls Sie einmal in die Lage kommen, neue Algorithmen mit "Zufalls"—matrizen testen zu wollen.

- Generieren Sie eine Matrix $A \in \mathbb{R}^{n \times n}$ für ein selbstbestimmtes $n \in \mathbb{N}$, so daß die Einträge zufällig (Gleichverteilung) zwischen [0,1] verteilt sind (help rand). Wählen Sie n nicht zu klein, wählen Sie z.B. n = 100.
- Berechnen Sie alle Eigenwerte von A (help eig). Visualisieren Sie diese in einer geeigneten Form (help plot).
- "Philosophieren" Sie über den einen reellen, gut separierten und betragsmaximalen Eigenwert (der ungefähr bei n/2 liegen wird).
- Wenn Sie die anderen Eigenwerte ansehen, wird Ihnen auffallen, daß diese sich ungefähr gleichmäßig in einem Kreis mit Radius $\sqrt{n}/2$ um die Null verteilen.
- Generieren Sie eine Matrix $B \in \mathbb{R}^{n \times n}$ für ein selbstbestimmtes $n \in \mathbb{N}$, so daß die Einträge zufällig (Normalverteilung) mit Varianz 3/10 verteilt sind (help randn).
- Berechnen Sie alle Eigenwerte von B (help eig). Visualisieren Sie diese in einer geeigneten Form (help plot).
- Vergleichen Sie die beiden Plots. Was fällt Ihnen auf?

Aufgabe 2:

- Generieren Sie eine reelle symmetrische Tridiagonalmatrix. Sollte Ihnen keine geeignete einfallen, wählen Sie eine Zufallsmatrix (help rand und/oder help hess).
- Berechnen Sie die Eigenwerte und Eigenvektoren (help eig).
- Sortieren Sie die Eigenwerte und Eigenvektoren nach der Größe der Eigenwerte (help sort).
- Plotten Sie die (dekadischen) Logarithmen der Absolutbeträge der so sortierten Eigenvektormatrix (help mesh, help abs, help log10).

Aufgabe 3:

Wählen Sie ein beliebiges (aber nicht zu kleines und nicht zu großes) $n \in \mathbb{N}$. Werten Sie die Funktion

$$f(x) := 2 - 2\cos(x)$$

an n+2 äquidistanten Stellen in $[0,\pi]$ aus, wobei 0 und π vorkommmen. Speichern Sie das Ergebnis in der Variablen xa ab. Werten Sie dieselbe Funktion jetzt an den Stellen

$$x_k = \pi \cdot \frac{2k+1}{2n}, \quad k \in \{0, 1, \dots, n-1\}$$

aus. Speichern Sie das Ergebnis in der Variablen xb.

Berechnen und plotten Sie

• die Eigenwerte der $n \times n$ Matrix

$$T := \operatorname{tridiag}(-1, 2, -1) := \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}$$

gegen die Elemente 2-(n+1) von xa. Tipp: help ones, help diag.

- die Realteile n+2 äquidistanter Punkte auf der um zwei skalierten und von plus zwei abgezogenen oberen Hälfte des Einheitskreises gegen xa (help exp, help real, help linspace). Der erste Wert sollte Null sein, der letzte Wert sollte Vier sein.
- die Nullstellen des nten Chebyshev-Polynomes (erster Art) für das Intervall [a, b] := [0, 4] gegen xb (help conv, help root, help fzero).

Wenn nötig, sortieren Sie die erhaltenen Werte einmal der Größe nach aufsteigend. Vergleichen Sie die erhaltenen Plots. Haben Sie ein Gefühl dafür, warum das Ergebnis gerade so ausfällt?

Falls Sie nicht vertraut sind mit Chebyshev-Polynomen, folgt hier eine kurze Zusammenfassung: Chebyshev-Polynome auf dem Intervall [a, b] = [-1, 1] werden häufig definiert durch

$$C_n(x) := \cos(n\arccos(x)), \quad x \in [-1, 1].$$

Daß diese Definition auch wirklich Polynome erzeugt, folgt aus den Additionstheoremen für trigonometrische Funktionen, es gilt eine sogenannte Drei-Term-Rekursion:

$$C_0(x) = 1,$$
 $C_1(x) = x,$ $C_{n+1}(x) = 2x \cdot C_n(x) - C_{n-1}(x).$

Alternativ kann man die Chebyshev-Polynome auch in der geschlossenen Form

$$C_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right]$$

angeben. Chebyshev-Polynome $C_n^{[a,b]}$ für andere Intervalle [a,b] findet man durch simple lineare Transformation,

$$C_n^{[a,b]}(x) := C_n \left(\frac{2}{b-a} x + \frac{a+b}{a-b} \right).$$

Sie sollten eine der beiden expliziten Darstellungen (oder die Drei-Term-Rekursion) ausnutzen und dann z.B. mit fzero arbeiten. Ein Tipp dazu: Alle Nullstellen sind im Intervall [-1,1] zu finden. Weiterhin handelt es sich um Polynome, die $ausschlie\betalich$ reelle Nullstellen haben.