$\exists \Box a$ under strong fairness

does $\mathcal{T} \models_{fair} \exists \Box a \text{ hold } ?$

digraph G_a

analyze the digraph G_a that results from T by removing all states s with $s \not\models a$

$\exists \Box a$ under strong fairness

does $\mathcal{T} \models_{fair} \exists \Box a \text{ hold } ?$

- $\bigcirc \widehat{=} \{b_1\} \quad \bigcirc \widehat{=} \{c_1\}$
- $\bigcirc \widehat{=} \{b_2\} \quad \bigcirc \widehat{=} \{c_2\}$

digraph
$$G_a$$

∃□a under strong fairness

does $\mathcal{T} \models_{fair} \exists \Box a \text{ hold } ?$

$$\bigcirc \widehat{=} \{b_1\} \quad \bigcirc \widehat{=} \{c_1\}$$

$$\bigcirc \widehat{=} \{b_2\} \quad \bigcirc \widehat{=} \{c_2\}$$

digraph G_a

$$s_0 (s_1 s_2)^{\omega} \models \neg \Box \Diamond b_2 \wedge \Box \Diamond c_1$$

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

∃□a under strong fairness

does $\mathcal{T} \models_{fair} \exists \Box a \text{ hold } ?$

$$\bigcirc \widehat{=} \{b_1\} \quad \bigcirc \widehat{=} \{c_1\}$$

$$\bigcirc \widehat{=} \{b_2\} \bigcirc \widehat{=} \{c_2\}$$

digraph G_a

$$s_0 (s_1 s_2)^{\omega} \models \neg \Box \Diamond b_2 \wedge \Box \Diamond c_1$$

$$s_0 (s_1 s_2)^{\omega} \models fair$$

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

 $s \models_{fair} \exists \Box a$ iff there exists a path fragment

$$s_0 s_1 \ldots s_n \ldots s_{n+r}$$

such that $r \geq 1$, $s = s_0$, $s_n = s_{n+r}$ and

- $s_j \models a$ for all $0 \le j \le n + r$
- for all $1 \le i \le k$: $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(b_i) = \emptyset$ or $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(c_i) \ne \emptyset$

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

 $s \models_{fair} \exists \Box a$ iff there exists a path fragment

$$s_0 s_1 \ldots s_n \ldots s_{n+r}$$

such that $r \ge 1$, $s = s_0$, $s_n = s_{n+r}$ and

- $s_j \models a$ for all $0 \le j \le n + r$
- for all $1 \le i \le k$: $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(b_i) = \emptyset$ or $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(c_i) \ne \emptyset$

Thus: $D = \{s_{n+1}, ..., s_{n+r}\}$ is a strongly connected node-set of the digraph G_a

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

 $s \models_{fair} \exists \Box a$ iff there exists a path fragment

$$s_0 s_1 \ldots s_n \ldots s_{n+r}$$

such that $r \ge 1$, $s = s_0$, $s_n = s_{n+r}$ and

- $s_j \models a$ for all $0 \le j \le n + r$
- for all $1 \le i \le k$: $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(b_i) = \emptyset$ or $\{s_{n+1}, ..., s_{n+r}\} \cap Sat(c_i) \ne \emptyset$

Thus: $D = \{s_{n+1}, ..., s_{n+r}\}$ is a strongly connected node-set of the digraph G_a (possibly not an SCC)

Treatment of ∃□ **under strong fairness**

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

 $s \models_{fair} \exists \Box a$ iff there exists a non-trivial strongly connected node-set D of G_a such that

 G_a : digraph that arises from T by removing all states s' with $s' \not\models a$

Treatment of ∃□ **under strong fairness**

$$fair = \bigwedge_{1 \leq i \leq k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

- $s \models_{fair} \exists \Box a$ iff there exists a non-trivial strongly connected node-set D of G_a such that
 - (1) **D** is reachable from **s**
 - (2) for all $1 \le i \le k$: $D \cap Sat(b_i) = \emptyset$ or $D \cap Sat(c_i) \ne \emptyset$

 G_a : digraph that arises from T by removing all states s' with $s' \not\models a$

Treatment of ∃□ **under strong fairness**

$$fair = \bigwedge_{1 \leq i \leq k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

- $s \models_{fair} \exists \Box a$ iff there exists a non-trivial strongly connected node-set D of G_a such that
 - (1) **D** is reachable from **s**
 - (2) for all $1 \le i \le k$: $D \cap Sat(b_i) = \emptyset$ or $D \cap Sat(c_i) \ne \emptyset$

note: if $s \models_{fair} \exists \Box a$ then there might be **no SCC** D where (1) and (2) hold

computation of $Sat_{fair}(\exists \Box a)$

computation of $Sat_{fair}(\exists \Box a)$ by analyzing the digraph G_a

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

Example: computation of $Sat_{fair}(\exists \Box a)$

 $\mathtt{CTLFAIR} 4.4\text{-}22$

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

 $s_0 \models_{fair} \exists \Box a$

Example: computation of $Sat_{fair}(\exists \Box a)$

CTLFAIR4.4-22

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

$$s_0 \models_{fair} \exists \Box a$$
 as $s_0 s_1 s_2 s_1 s_2 ... \models_{LTL} fair$

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

$$s_0 \models_{fair} \exists \Box a$$
 as $s_0 s_1 s_2 s_1 s_2 ... \models_{LTL} fair$

$$Sat_{fair}(\exists \Box a) = \{s_0, s_1, s_2, s_3\}$$

treatment of ∃□ for **CTL** with fairness

treatment of $\exists\Box$ for CTL with fairness

here: explanations only for strong fairness

weak fairness and combinations of weak/strong fairness can be treated in an analogous way

treatment of $\exists\Box$ for CTL with fairness

here: explanations only for strong fairness

case 1: unconditional fairness

case 2:
$$fair = \Box \Diamond b \rightarrow \Box \Diamond c$$

case 3: arbitrary strong fairness assumption

$$fair = \bigwedge_{1 \le i \le k} \left(\Box \lozenge b_i \to \Box \lozenge c_i \right)$$

weak fairness and combinations of weak/strong fairness can be treated in an analogous way

treatment of $\exists\Box$ for CTL with fairness

here: explanations only for strong fairness

case 2:
$$fair = \Box \Diamond b \rightarrow \Box \Diamond c$$

case 3: arbitrary strong fairness assumption

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

weak fairness and combinations of weak/strong fairness can be treated in an analogous way

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a \text{ iff } ?$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

digraph G_a

$$fair = \Box \Diamond c_1 \wedge \Box \Diamond c_2$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

digraph G_a

$$fair = \Box \Diamond c_1 \wedge \Box \Diamond c_2$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

digraph G_a

$$fair = \Box \Diamond c_1 \wedge \Box \Diamond c_2$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

digraph G_a

$$fair = \Box \Diamond c_1 \wedge \Box \Diamond c_2$$

$$fair = \bigwedge_{1 \le i \le k} \Box \Diamond c_i$$

$$s \models_{fair} \exists \Box a$$
 iff there exists a nontrivial SCC C in G_a that is reachable from s and $C \cap Sat(c_i) \neq \emptyset$ for $i = 1, ..., k$

digraph G_a

$$fair = \Box \Diamond c_1 \wedge \Box \Diamond c_2$$

$$s \models_{fair} \exists \Box a$$

CTL model checking with fairness

treatment of $\exists \Box$ for CTL with fairness

here: explanations only for strong fairness

CTL model checking with fairness

treatment of $\exists \Box$ for CTL with fairness

here: explanations only for strong fairness

case 1: unconditional fairness
$$\sqrt{ }$$

case 2: $fair = \Box \Diamond b \rightarrow \Box \Diamond c$

case 3: arbitrary strong fairness assumption

$$fair = \bigwedge_{1 \le i \le b} (\Box \Diamond b_i \rightarrow \Box \Diamond c_i)$$

$$fair = \Box \Diamond b \rightarrow \Box \Diamond c$$

$$fair = \Box \Diamond b \rightarrow \Box \Diamond c$$

digraph G_a

$$\bigcirc \hat{=} \emptyset$$

$$\bigcirc \widehat{} = \{b\}$$

fair =
$$\Box \Diamond b \to \Box \Diamond c$$

digraph G_a
 $\bigcirc = \emptyset$
 $\bigcirc = \{c\}$
 $\bigcirc = \{b\}$
nontrivial SCC C of G_a with $C \cap Sat(c) \neq \emptyset$

fair =
$$\Box \Diamond b \to \Box \Diamond c$$

digraph G_a
 $\Rightarrow c$
 $\Rightarrow c$

Strong fairness: 1 fairness requirement

Strong fairness: 1 fairness requirement

fair =
$$\Box \Diamond b \rightarrow \Box \Diamond c$$

digraph G_a

$$\{c\}$$

$$\{b\}$$

$$strongly connected node-set D of G_a with $D \cap Sat(b) = \emptyset$$$

fair =
$$\Box \Diamond b \rightarrow \Box \Diamond c$$

digraph G_a

$$\{c\}$$

$$\{b\}$$

$$nontrivial SCC C of G_a that contains a nontrivial SCC D of $G_a|_C \setminus Sat(b)$$$

CTL model checking with fairness

treatment of $\exists \Box$ for CTL with fairness

here: explanations only for strong fairness

case 1: unconditional fairness
$$\checkmark$$

case 2:
$$fair = \Box \Diamond b \rightarrow \Box \Diamond c$$

case 3: arbitrary strong fairness assumption

$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$

CTL model checking with fairness

treatment of $\exists \Box$ for CTL with fairness

here: explanations only for strong fairness

case 1: unconditional fairness
$$\sqrt{ }$$
 case 2: $fair = \Box \Diamond b \rightarrow \Box \Diamond c \qquad \sqrt{ }$ case 3: arbitrary strong fairness assumption
$$fair = \bigwedge_{1 \leq i \leq k} (\Box \Diamond b_i \rightarrow \Box \Diamond c_i)$$

CTLFAIR4.4-26

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

$$\begin{array}{l} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \text{digraph } G_a \end{array}$$

$$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

$$digraph G_a$$

$$C_1$$

first SCC:
$$C_1 \cap Sat(c_2) = \emptyset$$

$$\begin{array}{l} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \text{digraph } G_a \end{array}$$

first SCC:
$$C_1 \cap Sat(c_2) = \emptyset$$

analyze $C_1 \setminus Sat(b_2)$ w.r.t. $\Box \Diamond b_1 \to \Box \Diamond c_1$

$$\begin{array}{l} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \\ \textit{digraph } G_a \end{array}$$

first SCC:
$$C_1 \cap Sat(c_2) = \emptyset$$

analyze $C_1 \setminus Sat(b_2)$ w.r.t. $\Box \Diamond b_1 \to \Box \Diamond c_1$

$$\begin{array}{l} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \\ \textit{digraph } G_a \end{array}$$

first SCC:
$$C_1 \cap Sat(c_2) = \emptyset$$

analyze $C_1 \setminus Sat(b_2)$ w.r.t. $\Box \Diamond b_1 \to \Box \Diamond c_1$
 \leadsto there is no cycle

$$\begin{array}{c} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \text{digraph } G_a \\ C_1 \end{array}$$

second SCC:

$$\begin{array}{c} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \text{digraph } G_a \\ C_1 \end{array}$$

second SCC: $C_2 \cap Sat(c_1) = \emptyset$

$$\begin{array}{c} \textit{fair} = (\Box \lozenge b_1 \to \Box \lozenge c_1) \ \land \ (\Box \lozenge b_2 \to \Box \lozenge c_2) \\ \\ \textit{digraph } G_a \\ \\ \textit{C}_1 \end{array}$$

second SCC:
$$C_2 \cap Sat(c_1) = \emptyset$$

analyze $C_2 \setminus Sat(b_1)$ w.r.t. $\Box \Diamond b_2 \rightarrow \Box \Diamond c_2$

$$\begin{array}{c} \textit{fair} = (\Box \lozenge b_1 \to \Box \lozenge c_1) \ \land \ (\Box \lozenge b_2 \to \Box \lozenge c_2) \\ \\ \textit{digraph } G_a \\ \\ \textit{C}_1 \end{array}$$

second SCC:
$$C_2 \cap Sat(c_1) = \emptyset$$

analyze $C_2 \setminus Sat(b_1)$ w.r.t. $\Box \Diamond b_2 \rightarrow \Box \Diamond c_2$

$$\begin{array}{c} \textit{fair} = \left(\Box \lozenge b_1 \to \Box \lozenge c_1 \right) \ \land \ \left(\Box \lozenge b_2 \to \Box \lozenge c_2 \right) \\ \\ \textit{digraph } G_a \\ \\ \textit{C}_1 \end{array}$$

second SCC:
$$C_2 \cap Sat(c_1) = \emptyset$$

analyze $C_2 \setminus Sat(b_1)$ w.r.t. $\Box \Diamond b_2 \rightarrow \Box \Diamond c_2$

fair =
$$(\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$$

digraph G_a
 C_1
second SCC: $C_2 \cap Sat(c_1) = \emptyset$

analyze
$$C_2 \setminus Sat(b_1) = \emptyset$$

hence: $\mathbf{s} \models_{fair} \exists \Box \mathbf{a}$

compute the SCCs of the digraph G_a ;

Calculation of $Sat_{fair}(\exists \Box a)$

compute the SCCs of the digraph G_a ;

 $T := \emptyset$;

Calculation of $Sat_{fair}(\exists \Box a)$

compute the SCCs of the digraph G_a ;

 $T := \emptyset$;

FOR ALL nontrivial SCCs C of Ga DO

compute the SCCs of the digraph G_a ;

 $T := \emptyset$;

FOR ALL nontrivial SCCs C of Ga DO

IF CheckFair(C,...) THEN $T := T \cup C$ FI

compute the SCCs of the digraph G_a ;

 $T := \emptyset$;

FOR ALL nontrivial SCCs C of Ga DO

IF CheckFair(C,...) THEN $T := T \cup C$ FI

$$Sat_{fair}(\exists \Box a) := \{s \in S : Reach_{G_a}(s) \cap T \neq \emptyset\}$$

```
compute the SCCs of the digraph G_a;
T := \varnothing:
FOR ALL nontrivial SCCs C of G<sub>2</sub> DO
  IF CheckFair(C,...) THEN T := T \cup C FI
UD
Sat_{fair}(\exists \Box a) := \{s \in S : Reach_{G_a}(s) \cap T \neq \emptyset\}
                   backward search from T
```

```
compute the SCCs of the digraph G_a;
T := \varnothing:
FOR ALL nontrivial SCCs C of G<sub>2</sub> DO
  IF CheckFair(C,...) THEN T := T \cup C FI
UD
Sat_{fair}(\exists \Box a) := \{s \in S : Reach_{G_a}(s) \cap T \neq \emptyset\}
                   backward search from T
```

time complexity: $\mathcal{O}(\operatorname{size}(T) \cdot |\operatorname{fair}|)$

```
compute the SCCs of the digraph G_a;
T := \varnothing:
FOR ALL nontrivial SCCs C of G<sub>2</sub> DO
        CheckFair(C,...) THEN T := T \cup C FI
UD
Sat_{fair}(\exists \Box a) := \{s \in S : Reach_{G_a}(s) \cap T \neq \emptyset\}
                    backward search from T
```

time complexity: $\mathcal{O}(\operatorname{size}(T) \cdot |\operatorname{fair}|)$

algorithm
$$CheckFair(C, k, \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i))$$

algorithm
$$CheckFair(C, k, \bigwedge_{1 \leq i \leq k} (\Box \Diamond b_i \to \Box \Diamond c_i))$$
 returns "true" if there exists a cyclic path fragment $s_0 s_1 \dots s_n$ in C such that
$$(s_0 s_1 \dots s_{n-1})^{\omega} \models \bigwedge_{1 \leq i \leq k} (\Box \Diamond b_i \to \Box \Diamond c_i)$$
 "false" otherwise

IF
$$\forall i \in \{1, ..., k\}$$
. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI

IF $\forall i \in \{1,...,k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1,...,k\}$ with $C \cap Sat(c_j) = \emptyset$;

IF $\forall i \in \{1,...,k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1,...,k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$;

IF $\forall i \in \{1, ..., k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1, ..., k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$;

IF the resulting graph G is acyclic THEN return "false" FI

IF $\forall i \in \{1,...,k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1,...,k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$;

IF the resulting graph ${\it G}$ is acyclic THEN return "false" FI FOR ALL nontrivial SCCs ${\it D}$ of ${\it G}$ DO

OI

```
IF \forall i \in \{1, ..., k\}. C \cap Sat(c_i) \neq \emptyset THEN return "true" FI
choose j \in \{1, ..., k\} with C \cap Sat(c_i) = \emptyset;
remove all states in Sat(b_i);
IF the resulting graph G is acyclic THEN return "false" FI
FOR ALL nontrivial SCCs D of G DO
   IF CheckFair(D, k-1, \bigwedge (\Box \Diamond b_i \rightarrow \Box \Diamond c_i))
   THEN return "true"
OD
```

```
IF \forall i \in \{1, ..., k\}. C \cap Sat(c_i) \neq \emptyset THEN return "true" FI
choose j \in \{1, ..., k\} with C \cap Sat(c_i) = \emptyset;
remove all states in Sat(b_i);
IF the resulting graph G is acyclic THEN return "false" FI
FOR ALL nontrivial SCCs D of G DO
   IF CheckFair(D, k-1, \bigwedge (\Box \Diamond b_i \rightarrow \Box \Diamond c_i))
   THEN return "true"
UD
return "false"
```

pseudo code for $CheckFair(C, k, \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i))$

IF $\forall i \in \{1,...,k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1,...,k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$; IF the resulting graph G is acyclic THEN return "false" FI FOR ALL nontrivial SCCs D of G DO

IF $CheckFair(D, k-1, \bigwedge_{i \neq j} (\Box \Diamond b_i \rightarrow \Box \Diamond c_i))$ THEN return "true"

OD return "false"

pseudo code for $CheckFair(C, k, \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i))$

choose $j \in \{1, ..., k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$;

IF $\forall i \in \{1, ..., k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI

IF the resulting graph ${\it G}$ is acyclic THEN return "false" FI

FOR ALL nontrivial SCCs D of G DO

IF $CheckFair(D, k-1, \bigwedge (\Box \Diamond b_i \rightarrow \Box \Diamond c_i))$

IF CheckFair($D, k-1, \bigwedge (\sqcup \Diamond b_i \to \sqcup \Diamond c_i))$ THEN return "true" $i \neq j$

recurrence for the time complexity: $T(n, k) = \dots \text{ where } n = size(C)$

pseudo code for $CheckFair(C, k, \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i))$

IF $\forall i \in \{1,...,k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1,...,k\}$ with $C \cap Sat(c_j) = \emptyset$; remove all states in $Sat(b_j)$;

IF the resulting graph ${\it G}$ is acyclic THEN return "false" FI

FOR ALL nontrivial SCCs D of G DO

IF $CheckFair(D, k-1, \bigwedge(\Box \Diamond b_i \rightarrow \Box \Diamond c_i))$

THEN return "true" $i \neq j$

OD return "false" time complexity: $\mathcal{O}(\operatorname{size}(C) \cdot k)$

CTL model checking with fairness

input: finite transition system T

CTL fairness assumption fair

CTL formula •

output: "yes", if $T \models_{fair} \Phi$. "no" otherwise.

CTL model checking with fairness

input: finite transition system *T*

CTL fairness assumption fair

CTL formula •

output: "yes", if $T \models_{fair} \Phi$. "no" otherwise.

here: preprocessing

transform Φ into an equivalent CTL formula in existential normal form

```
input: finite transition system T
```

CTL fairness assumption fair

CTL formula •

output: "yes", if $T \models_{fair} \Phi$. "no" otherwise.

here: preprocessing

transform Φ into an equivalent CTL formula in existential normal form

i.e., with the basic modalities $\exists \bigcirc$, $\exists \mathbf{U}$ and $\exists \Box$

CTLFAIR4.4-30

calculate $Sat_{fair}(\exists \Box true)$; label all states in $Sat_{fair}(\exists \Box true)$ with a_{fair}

```
calculate Sat_{fair}(\exists \Box true); label all states in Sat_{fair}(\exists \Box true) with a_{fair} FOR ALL subformulas \Psi of \Phi DO Sat_{fair}(\Psi) := \dots
```

```
calculate Sat_{fair}(\exists \Box true);
label all states in Satfair (∃□true) with afair
FOR ALL subformulas ♥ of • DO
   CASE \Psi is:
           \exists \bigcirc a : Sat_{fair}(\Psi) := Sat(\exists \bigcirc (a \land a_{fair}));
    \exists (a_1 \cup a_2) : Sat_{fair}(\Psi) := Sat(\exists (a_1 \cup (a_2 \land a_{fair})));
            \exists \Box a : Sat_{fair}(\Psi) := ...
```

0D

```
calculate Sat_{fair}(\exists \Box true);
label all states in Satfair (∃□true) with afair
FOR ALL subformulas \Psi of \Phi DO
  CASE \Psi is:
           \exists \bigcirc a : Sat_{fair}(\Psi) := Sat(\exists \bigcirc (a \land a_{fair}));
    \exists (a_1 \cup a_2) : Sat_{fair}(\Psi) := Sat(\exists (a_1 \cup (a_2 \land a_{fair})));
            \exists \Box a : Sat_{fair}(\Psi) := ...
   replace \Psi with a fresh atomic proposition a_{\Psi}
0D
```

FT

```
calculate Sat_{fair}(\exists \Box true);
label all states in Sat_{fair}(\exists \Box true) with a_{fair}
FOR ALL subformulas ♥ of • DO
  CASE V is:
           \exists \bigcirc a : Sat_{fair}(\Psi) := Sat(\exists \bigcirc (a \land a_{fair}));
    \exists (a_1 \cup a_2) : Sat_{fair}(\Psi) := Sat(\exists (a_1 \cup (a_2 \land a_{fair})));
           \exists \Box a : Sat_{fair}(\Psi) := ...
   replace \Psi with a fresh atomic proposition a_{\Psi}
0D
IF S_0 \subseteq Sat_{fair}(\Phi) THEN
                                         return "yes"
                              ELSE return "no"
```


$$\Phi = \exists \Diamond \ \forall \bigcirc (lost \lor del)$$

$$fair = \Box \Diamond \exists \Diamond del \quad \leadsto \Box \Diamond c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true)$$

 $Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$
$$\equiv \exists \lozenge \ \neg \exists \bigcirc (\neg lost \land \neg del)$$

existential normal form

$$fair = \Box \Diamond \exists \Diamond del \implies \Box \Diamond c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

 $Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \boxed{\exists \bigcirc a}$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \bigcirc a)$$

$$\Phi = \exists \Diamond \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \Diamond \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \Diamond \neg \boxed{\exists \bigcirc a}$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \bigcirc a) = Sat(\exists \bigcirc (a \land a_{fair}))$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \boxed{\exists \bigcirc a}$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \bigcirc a) = Sat(\exists \bigcirc (a \land a_{fair}))$$

$$\Phi = \exists \Diamond \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \Diamond \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \Diamond \neg \boxed{\exists \bigcirc a}$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \bigcirc a) = Sat(\exists \bigcirc (a \land a_{fair}) = \{start, lost, del\}$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$$

$$Sat_{fair}(\exists \bigcirc a) = Sat(\exists \bigcirc (a \land a_{fair}) = \{start, lost, del\}$$

$$Sat_{fair}(\neg \exists \bigcirc a)$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$
 $Sat_{fair}(\exists \Box true) = Sat(a_{fair}) = S \setminus \{error\}$
 $Sat_{fair}(\exists \bigcirc a) = Sat(\exists \bigcirc (a \land a_{fair}) = \{start, lost, del\}$
 $Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\}$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \ \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \Diamond \exists \Diamond del \implies \Box \Diamond c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \Diamond b)$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \Diamond \exists \Diamond del \implies \Box \Diamond c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \Diamond b) = Sat(\exists \Diamond (b \land a_{fair}))$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \ \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \lozenge b) = Sat(\exists \lozenge (b \land a_{fair}))$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \lozenge b) = Sat(\exists \lozenge (b \land a_{fair}))$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \lozenge b) = Sat(\exists \lozenge \underbrace{(b \land a_{fair})})$$

$$= \{start, try, lost, del\}$$

$$\Phi = \exists \lozenge \ \forall \bigcirc (lost \lor del)$$

$$\equiv \exists \lozenge \neg \exists \bigcirc \ (\neg lost \land \neg del)$$

$$\rightsquigarrow \exists \lozenge \neg \exists \bigcirc a$$

$$\rightsquigarrow \exists \lozenge b$$

$$fair = \Box \lozenge \exists \lozenge del \implies \Box \lozenge c \text{ where } Sat(c) = S \setminus \{error\}$$

$$Sat_{fair}(\neg \exists \bigcirc a) = \{try, error\} = Sat(b)$$

$$Sat_{fair}(\exists \lozenge b) = Sat(\exists \lozenge (b \land a_{fair}))$$

$$= \{start, try, lost, del\}$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

wrong.

$$fair = \Box \Diamond b$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

wrong.

$$fair = \Box \Diamond b$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

$$\begin{aligned}
fair &= \Box \Diamond b \\
s \not\models \forall \bigcirc (a \land a_{fair})
\end{aligned}$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \not\models \forall \bigcirc (a \land a_{fair})$$

$$s \models_{fair} \forall \bigcirc a$$

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \not\models \forall \bigcirc (a \land a_{fair})$$

$$s \models_{fair} \forall \bigcirc a$$

but correct is:

$$s \models_{fair} \forall \bigcirc a$$
 iff ?

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a \land a_{fair})$$

$$fair = \Box \lozenge b$$
$$s \not\models \forall \bigcirc (a \land a_{fair})$$
$$s \models_{fair} \forall \bigcirc a$$

but correct is:

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a_{fair} \rightarrow a)$$

$$s \models_{fair} \forall \Box a \quad \text{iff} \quad s \models \forall \Box (a_{fair} \rightarrow a)$$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a)
iff there is <u>no</u> state s' reachable
from s with s' \models \neg a \land a_{fair}
```

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a$$
 iff $s \models \forall \Box (a_{fair} \rightarrow a)$ iff there is no state s' reachable from s with $s' \models \neg a \land a_{fair}$

$$s \models_{fair} \forall \Box a$$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a \text{ iff } s \models_{fair} \neg \exists \Diamond \neg a$$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a \text{ iff } s \models_{fair} \neg \exists \Diamond \neg a$$

 $\text{iff } s \not\models_{fair} \exists \Diamond \neg a$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a \text{ iff } s \models_{fair} \neg \exists \Diamond \neg a$$

$$\text{iff } s \not\models_{fair} \exists \Diamond \neg a$$

$$\text{iff } s \not\models \exists \Diamond (\neg a \land a_{fair})$$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a \text{ iff } s \models_{fair} \neg \exists \Diamond \neg a$$

$$\text{iff } s \not\models_{fair} \exists \Diamond \neg a$$

$$\text{iff } s \not\models \exists \Diamond (\neg a \land a_{fair})$$

$$\text{iff } s \models \neg \exists \Diamond (\neg a \land a_{fair})$$

```
s \models_{fair} \forall \Box a iff s \models \forall \Box (a_{fair} \rightarrow a) iff there is <u>no</u> state s' reachable from s with s' \models \neg a \land a_{fair}
```

$$s \models_{fair} \forall \Box a \text{ iff } s \models_{fair} \neg \exists \Diamond \neg a$$

$$\text{iff } s \not\models_{fair} \exists \Diamond \neg a$$

$$\text{iff } s \not\models \exists \Diamond (\neg a \land a_{fair})$$

$$\text{iff } s \models \neg \exists \Diamond (\neg a \land a_{fair}) \equiv \forall \Box (a_{fair} \rightarrow a)$$

We just saw:

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a_{fair} \rightarrow a)$$

 $s \models_{fair} \forall \Box a \text{ iff } s \models \forall \Box (a_{fair} \rightarrow a)$

We just saw:

$$s \models_{fair} \forall \bigcirc a \text{ iff } s \models \forall \bigcirc (a_{fair} \rightarrow a)$$

 $s \models_{fair} \forall \Box a \text{ iff } s \models \forall \Box (a_{fair} \rightarrow a)$

Is the following statement correct?

$$s \models_{fair} \forall (b \cup a) \text{ iff } s \models \forall (b \cup (a_{fair} \rightarrow a))$$

We just saw:

$$s \models_{fair} \forall \bigcirc a \quad \text{iff} \quad s \models \forall \bigcirc (a_{fair} \rightarrow a)$$
$$s \models_{fair} \forall \Box a \quad \text{iff} \quad s \models \forall \Box (a_{fair} \rightarrow a)$$

Is the following statement correct?

$$s \models_{fair} \forall (b \cup a) \text{ iff } s \models \forall (b \cup (a_{fair} \rightarrow a))$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models \exists \bigcirc ((\exists \Diamond a) \land a_{fair})$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models \exists \bigcirc ((\exists \Diamond a) \land a_{fair})$$

$$regard s \rightarrow s$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models \exists \bigcirc ((\exists \Diamond a) \land a_{fair})$$

regard $s \rightarrow s$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$fair = \Box \Diamond b$$

$$s \models \exists \bigcirc ((\exists \Diamond a) \land a_{fair})$$

$$regard s \rightarrow s$$

$$s \not\models_{fair} \exists \bigcirc \exists \lozenge a$$
(note $Sat_{fair}(\exists \lozenge a) = \varnothing$)

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists (a \ W \ c) \quad \text{iff} \quad s \models \exists (a \ W \ (c \land a_{fair}))$$

remind: W = weak until

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists (a \ W \ c) \quad \text{iff} \quad s \models \exists (a \ W \ (c \land a_{fair}))$$

remind: W = weak until

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists (a \ W \ c) \quad \text{iff} \quad s \models \exists (a \ W \ (c \land a_{fair}))$$

remind: W = weak until

$$fair = \Box \Diamond b$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists (a \ W \ c) \quad \text{iff} \quad s \models \exists (a \ W \ (c \land a_{fair}))$$

remind: W = weak until

$$fair = \Box \Diamond b$$
$$s \models \exists (a \lor (c \land a_{fair}))$$

$$s \models_{fair} \exists \bigcirc \exists \lozenge a \text{ iff } s \models \exists \bigcirc ((\exists \lozenge a) \land a_{fair})$$

$$s \models_{fair} \exists (a \ W \ c) \quad \text{iff} \quad s \models \exists (a \ W \ (c \land a_{fair}))$$

remind: W = weak until

$$fair = \Box \Diamond b$$

$$s \models \exists (a \, \mathsf{W}(c \land a_{fair}))$$

$$s \not\models_{fair} \exists (a \, \mathsf{W} \, c)$$

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTLFAIR4.4-34

Summary: fairness in CTL

CTL fairness assumptions: formulas similar to LTL

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTL satisfaction relation with fairness:

$$s \models_{fair} \exists \varphi$$
 iff there exists $\pi \in Paths(s)$ with $\pi \models fair$ and $\pi \models_{fair} \varphi$

CTLFAIR4.4-34

CTL fairness assumptions: formulas similar to **LTL**

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTL satisfaction relation with fairness:

$$s \models_{fair} \exists \varphi$$
 iff there exists $\pi \in Paths(s)$ with $\pi \models fair$ and $\pi \models_{fair} \varphi$

model checking for **CTL** with fairness:

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTL satisfaction relation with fairness:

$$s \models_{fair} \exists \varphi$$
 iff there exists $\pi \in Paths(s)$ with $\pi \models fair$ and $\pi \models_{fair} \varphi$

model checking for **CTL** with fairness:

∃○, ∃U, ∀○, ∀□ via CTL model checker

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTL satisfaction relation with fairness:

$$s \models_{fair} \exists \varphi$$
 iff there exists $\pi \in Paths(s)$ with $\pi \models fair$ and $\pi \models_{fair} \varphi$

model checking for **CTL** with fairness:

- ∃○, ∃U, ∀○, ∀□ via CTL model checker
- analysis of SCCs for ∃□, ∀U

e.g.,
$$fair = \bigwedge_{1 \le i \le k} (\Box \Diamond \Psi_i \to \Box \Diamond \Phi_i)$$

CTL satisfaction relation with fairness:

$$s \models_{fair} \exists \varphi$$
 iff there exists $\pi \in Paths(s)$ with $\pi \models fair$ and $\pi \models_{fair} \varphi$

model checking for CTL with fairness:

- ∃○, ∃U, ∀○, ∀□ via CTL model checker
- analysis of SCCs for ∃□, ∀U
- complexity: $\mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot |\Phi| \cdot |\operatorname{fair}|)$