CHAPTER 2

Categorical Data Analysis

Overview

Unit 1A: Rates I

By the end of this unit you should be able to do the following:

- 1. Identify a categorical variable.
- 2. Understand and interpret tables and plots created from 1 categorical variable.

RECAP

Types of variables

Categorical variables

Ordinal

Nominal

Categories come with some natural ordering and numbers are often used to represent the ordering. E.g.: Happiness level

No intrinsic ordering for the variables. E.g.: Nationality

Numerical variables

Continuous

One that can take on all possible numerical values in a given range or interval. E.g.: Time Discrete

One where possible values of the variable form a set of numbers with "gaps". E.g.: Module credits

THE PROBLEM

A SNAPSHOT OF THE DATA

Size	Gender	Treatment	Outcome
Large	Male	X	Success
Large	Male	X	Success
Small	Male	Υ	Success
Large	Male	Υ	Failure
Small	Male	X	Success
Large	Male	Υ	Success

APPLYING THE PPDAC CYCLE

ANALYSING 1 CATEGORICAL VARIABLE - TABLE

Categories of the "Outcome" variable	Count	Rate	Percentage
Success	831	rate(Success) = $\frac{831}{1050}$ = 0.791	0.791 × 100% = 79.1%
Failure	219	rate(Failure) = $\frac{219}{1050}$ = 0.209	0.209 × 100% = 20.9%
Total	1050	$\frac{1050}{1050} = 1$	1 × 100% = 100%

Analyzing 1 categorical variable - Plot

Analysing 1 categorical variable - Plot

Conclusion

Table and bar plots gave us the same conclusion

79% success

21% failure

Should go for treatment

Summary

We have learned:

- Use of tables and plots to summarize a categorical variable
- Calculation of rates

Unit 1B: Rates II

By the end of this unit you should be able to do the following:

- Understand and interpret tables and plots created from 2 categorical variables.
- 2. Calculate marginal, conditional and joint rates.

Size	Gender	Treatment	Outcome
Large	Male	X	Success
Large	Male	X	Success
Small	Male	Υ	Success
Large	Male	Υ	Failure
Small	Male	X	Success
Large	Male	Υ	Success

WHICH TREATMENT TO CHOOSE?

PPDAC CYCLE – A NEW QUESTION

2 x 2 Table

Outcome Treatment	Success	Failure	Row Total
X	542	158	700
Υ	289	61	350
Column Total	831	219	1050

Marginal rates / proportions / percentages

Outcome Treatment	Success	Failure	Row Total
X	542	158	700
Υ	289	61	350
Column Total	831	219	1050

• What proportion of the total number of patients underwent Treatment Y?

• rate(Y) =
$$\frac{350}{1050} = \frac{1}{3} = 33\frac{1}{3}\%$$

 What proportion of the total number of patients had a successful treatment?

• rate(Success) =
$$\frac{831}{1050}$$
 = 0.791 = 79.1%

 Calculations above are called marginal rates / proportions / percentages.

Conditional rates / proportions / percentages

Outcome Treatment	Success	Failure	Row Total
X	542	158	700
Υ	289	61	350
Column Total	831	219	1050

• If we focus on patients who undergone Treatment X, what proportion of them had a successful treatment?

• rate(Success given X) =
$$\frac{542}{700}$$
 = 0.774 = 77.4%

- Calculation above is known as a conditional proportion / percentage.
- An even shorter way of writing this is to use a vertical bar in place of given: rate(Success | X)

Joint rates / proportions / percentages

Outcome Treatment	Success	Failure	Row Total
X	542	158	700
Υ	289	61	350
Column Total	831	219	1050

- What is the proportion of patients who chose Treatment Y and had a failure?
- rate(Y and failure) = $\frac{61}{1050}$ = 0.0581 = 5.81%
- NOT a conditional rate.
- Calculation is known as a joint rate/ proportion / percentage.

Which treatment is better?

Outcome Treatment	Success	Failure	Row Total
X	542	158	700
Y	289	61	350
Column Total	831	219	1050

Treatment X has 542 successful cases.

Treatment Y has 289 successful cases.

"We should recommend Treatment X!"?

More patients choosing Treatment X as compared to Y.

Making it fair!

Compare success rate of Treatments X and Y

Given that I pick some treatment, what is the rate of success?

Fair comparison

Treatment Y is better!

- rate(Success | X) = $\frac{542}{700}$ = 0.774 = 77.4%
- rate(Success | Y) = $\frac{289}{350}$ = 0.826 = 82.6%
- For Treatment X, roughly 77 out of 100 patients had a successful treatment.
- For Treatment Y, roughly 83 out of 100 patients had a successful treatment.

Table with row percentages

Outcome Treatment	Success (row %)	Failure (row %)	Row Total (row %)
X	542 (77.4%)	158 (22.6%)	700 (100%)
Y	289 (82.6%)	61 (17.4%)	350 (100%)
Column Total	831 (79.1%)	219 (20.9%)	1050 (100%)

Analysing 2 categorical variables - plot

Analysing 2 categorical variables - plot

Summary

We have learnt how to analyse 2 categorical variables from the perspective of:

- Tables 2x2 table
- Plots Bar plots / 100% stacked bar plots

Unit 2A: Association I

By the end of this unit, you should be able to do the following:

- 1. Understand and apply association
- 2. Understand and apply symmetry rule

Used rates to conclude that Treatment Y is better than Treatment X.

Relationship between the type of treatment and the outcome of the treatment "Treatment Y is positively associated to the success of the treatment." "Treatment X is negatively associated to the success of the treatment."

Tend to see treatment
Y and successful
treatments go hand in
hand.

Tend to see Treatment X and unsuccessful treatments go hand in hand.

Caution: Association, not causation!

Associative relationship between the 2 variables

Not sure if success of treatment is due to the treatment or not

Continuation from Unit 1

Is there an association?

Suppose we have A and B as characteristics in a population. We shall assume that some people have A, and some do not have A (labelled as NA). We assume the same about B.

Association absent

 $rate(A \mid B) = rate(A \mid NB)$

Rate of A is not affected by the presence or absence of B.

A and B are not associated.

Association present

 $rate(A \mid B) \neq rate(A \mid NB)$

 $rate(A \mid B) > rate(A \mid NB)$ rate(A | B) < rate(A | NB)

Presence of A when B is present is stronger than when B is absent.

Presence of A when B is present is weaker than when B is absent.

Positive association between A and B.

Negative association between A and B.

Linking back to our dataset

Checking for association between 2 variables

- Outcome of treatment
 - A: Success
 - NA: Failure
- Treatment
 - B: Treatment X
 - NB: Treatment Y

Compare

- rate(A | B) = rate(Success | X) = 0.774
- rate(A | NB) = rate(Success | Y) = 0.826

Conclusion

- rate(A | B) < rate(A | NB)
- Presence of A is weaker when B is present.
- Less successful treatments when we see Treatment X: Treatment X is negatively associated to a successful treatment.
- More successful treatments when we see Treatment Y: Treatment Y is positively associated to a successful treatment.

On Establishing Association

 Any of the following comparisons can show positive association between A and B:

rate(A | B) > rate (A | NB) rate(B | A) > rate (B | NA) rate(NA | NB) > rate (NA | B) rate(NB | NA) > rate (NB | A) Likewise, for negative association between A and B:

rate(A | B) < rate (A | NB) rate(B | A) < rate (B | NA) rate(NA | NB) < rate (NA | B) rate(NB | NA) < rate (NB | A) Try it – using the example in the previous slide, you can see that this relation holds true;

Eg. "If success is positively associated with treatment Y, then ..."

- "... success is negatively associated with ???"
- "... failure is positively associated with ???"
- "... failure is negatively associated with ???"

2 rules that govern rates

Suppose we have A and B as characteristics in a population. We shall assume that some people have A, and some do not have A (labelled as NA). We assume the same about B.

Symmetry rule

Basic rule on rates (to be discussed in Unit 2B:
Association II)

Symmetry Rule

```
rate(A | B) > rate(A | NB) \Leftrightarrow rate(B | A) > rate(B | NA).
```

$$rate(A \mid B) < rate(A \mid NB) \Leftrightarrow rate(B \mid A) < rate(B \mid NA)$$
.

$$rate(A \mid B) = rate(A \mid NB) \Leftrightarrow rate(B \mid A) = rate(B \mid NA).$$

$rate(A \mid B) > rate(A \mid NB) \Leftrightarrow rate(B \mid A) > rate(B \mid NA)$

	В	Not B	Row Total
Α	W	X	W + X
Not A	У	Z	y + z
Column Total	w + y	X + Z	W + X + Y + Z

$$\frac{w}{w+y} > \frac{x}{x+z}$$

$$w(x+z) > x(w+y)$$

$$wx + wz > xw + xy$$

$$\frac{w}{w+x} > \frac{y}{y+z}$$

$$w(y+z) > y(w+x)$$

$$wy + wz > yw + yx$$

 $rate(A | B) > rate(A | NB) \Leftrightarrow rate(B | A) > rate(B | NA)$

 $rate(A \mid B) > rate(A \mid NB) \rightarrow rate(B \mid A) > rate(B \mid NA)$

 $rate(B \mid A) > rate(B \mid NA) \rightarrow rate(A \mid B) > rate(A \mid NB)$

$rate(A \mid B) > rate(A \mid NB) \rightarrow rate(B \mid A) > rate(B \mid NA)$

Rate of A given B is more than rate of A given NB.

Positive association between A and B.

More likely to see A when B is present as compared to when B is absent.

Also more likely to see B when A is present as compared to when A is absent.

Rate of B given A is more than rate of B given NA.

$rate(B \mid A) > rate(B \mid NA) \rightarrow rate(A \mid B) > rate(A \mid NB)$

Rate of B given A is more than rate of B given NA.

Positive association between B and A.

More likely to see B when A is present as compared to when A is absent.

Also more likely to see A when B is present as compared to when B is absent.

Rate of A given B is more than rate of A given NB. $rate(A \mid B) > rate(A \mid NB) \rightarrow rate(B \mid A) > rate(B \mid NA)$ $rate(B \mid A) > rate(B \mid NA) \rightarrow rate(A \mid B) > rate(A \mid NB)$ $rate(A | B) > rate(A | NB) \Leftrightarrow rate(B | A) > rate(B | NA)$

Consequence of the symmetry rule

To identify if there is any association, check for either:

- 1. $rate(A \mid B) \neq rate(A \mid NB) OR$
- 2. $rate(B | A) \neq rate(B | NA)$

rate(Success | X) < rate(Success | Y):

Negative association between successful treatments and Treatment X

Check:

rate(X | Success) < rate(X | Failure)

Summary

We have learned:

- How to identify association
- Symmetry rule and its consequence on identifying association

Unit 2B: Association II

By the end of this unit, you should be able to do the following:

1. Understand and apply basic rule on rates

BASIC RULE ON RATES

The overall rate(A) will always lie between rate(A | B) and rate(A | NB).

Consequences of the basic rule on rates

- The closer rate(B) is to 100%, the closer rate(A) is to rate(A | B).
- 2. If rate(B) = 50%, then $rate(A) = \frac{rate(A \mid B) + rate(A \mid NB)}{2}.$
- 3. If $rate(A \mid B) = rate(A \mid NB)$, then $rate(A) = rate(A \mid B) = rate(A \mid NB)$.

1. The closer rate(B) is to 100%, the closer rate(A) is to rate(A | B).

- 2 Cups of bubble tea
- Let A be the level of sweetness
 - Represented by the colour "Green" in the cup.
- Let B / NB be the cups: "Cup 1" vs. "Cup 2"

Cup 1

Size: Large cup

Sweetness: 90%

Cup 2

Size: Small cup

Sweetness: 20%

Size: Cup 1 + Cup 2

Sweetness: In between 20%

to 90%, but closer to Cup 1

1. The closer rate(B) is to 100%, the closer rate(A) is to rate(A | B).

Sweetness in the final cup is between Sweetness | Cup 1 and Sweetness | Cup 2

Cup 1 takes up most of the final cup.

Expect sweetness of the final cup to be nearer to the sweetness of Cup 1.

Overall rate(A) to be between rate(A | B) and rate(A | NB)

Overall rate(A) to be closer to rate(A | B) if B takes up a majority of the overall.

2. If rate(B) = 50%, then
$$rate(A \mid B) + rate(A \mid NB)$$

$$2$$

Cup 1

Size: Small cup

Sweetness: 20%

Size: Cup 1 + Cup 2

Sweetness: Exactly in between

$$20\%$$
 to $90\% = \frac{20\% + 90\%}{2} = 55\%$

Cup 2

Size: Small cup

Sweetness: 90%

3. If $rate(A \mid B) = rate(A \mid NB)$, then rate(A) = rate(A | B) = rate(A | NB).

Cup 1

Size: Small / Large cup

Sweetness: 20%

Size: 2 Cups added together

Sweetness: Exactly 20%

Cup 2

Size: Small / Large cup

Sweetness: 20%

Linking back to Consequences 2 and 3

If cups are of the same size, sweetness will be exactly half of the original cups.

• If Rate(B) = 50%, overall rate of A will be exactly in between the rate of A given B and the rate of A given NB.

If sweetness is the same for both cups, the sweetness of the final cup will also be the same, regardless of the sizes of the original cups.

 If rate(A | B) = rate(A | NB), then rate(A) is the same as the 2 rates.

Linking back to dataset at hand

Overall rate of successful treatments

rate(Success) = 0.79

Groups: Treatment X and Treatment Y

- rate(Success | X) = 0.774
- rate(Success | Y) = 0.826
- rate(Success) in between the conditional rates

Overall rate of success closer to rate(Success | X)

- Treatment X takes up a majority of the treatments.
- rate(X) = $\frac{700}{1050}$ = 0.667 = 66 $\frac{2}{3}$ %
- Follows statement (1)

Summary

We have learned:

- What is the basic rule on rates
- The consequences of basic rule on rates

Unit 3A: Simpson's Paradox I

By the end of this unit you should be able to do the following:

- 1. Identify Simpson's paradox
- 2. Analysis using the slicing method

PPDAC CYCLE – A RECAP

Are the treatments are helping?

Yes. In general, there is a high rate of success.

More specifically, which treatment is better?

Treatment Y is positively associated to success rate

Size	Gender	Treatment	Outcome
Large	Male	X	Success
Large	Male	X	Success
Small	Male	Υ	Success
Large	Male	Υ	Failure
Small	Male	X	Success
Large	Male	Υ	Success

WHAT ABOUT OTHER VARIABLES?

Exploring the "stone size" variable

What would be a useful visualisation?

Analysing 2 categorical variables - Plot

100% Stacked Bar plot for "Outcome" by "Treatment"

All stones	Success	Failure	Total
X	542	158	700
Υ	289	61	350
Total	831	219	1050

Plot across large stones only

Across large stones, Treatment X is better

Large stones	Success	Failure	Total
X	381	145	526
Υ	55	25	80
Total	436	170	606

rate(Success | X) > rate(Success | Y)

Exercise

Across large stones, Treatment X is better

rate(Success X) = $\frac{381}{526}$ = 0.724
rate(Success Y) = $\frac{55}{80}$ = 0.688

Large stones	Success	Failure	Total
X	381	145	526
Υ	55	25	80
Total	436	170	606

rate(Success | X) > rate(Success | Y)

Treatment X is positively associated to success

Plot across small stones only

100% Stacked Bar plot for "Outcome" by "Treatment" for small stones

Across small stones, Treatment X is better

Small stones	Success	Failure	Total
X	161	13	174
Υ	234	36	270
Total	395	49	444

Analysing 3 categorical variables - plot

A paradox on our hands

Overall,
Treatment Y is better

Across large stones, Treatment X is better

Across small stones, Treatment X is better

Unit 3B: Simpson's Paradox II

By the end of this unit you should be able to do the following:

1. Explain a Simpson's paradox

A paradox on our hands

Overall,
Treatment Y is better

Across large stones, Treatment X is better

Across small stones, Treatment X is better

A paradox explained

Analysing 3 categorical variables - Table

		Large ston	es		Small stor	nes	Tot	al (Large +	Small)
		Total number of treatments	•	treatments			Successful treatments	Total number of treatments	rate(Success) in %
X	381	526	<mark>72.4%</mark>	161	174	<mark>92.5%</mark>	542	700	77.4%
Y	55	80	68.8%	234	270	86.7%	289	350	<mark>82.6%</mark>

Analysing 3 categorical variables - Table

		Large sto	nes		Small sto	nes	Tot	al (Large + S	Small)
			,	Successful treatments	_			Total number of treatments	•
X	381	<mark>526</mark>	72.4%	161	<mark>174</mark>	92.5%	542	700	77.4%
Y	55	<mark>80</mark>	68.8%	234	<mark>270</mark>	86.7%	289	350	82.6%

Analysing 3 categorical variables - Table

ANALOGY

— View from Association ——

Simpson's paradox ⇒ confounder Confounder ⇒ Simpson's paradox

Summary

We learnt how to analyse 3 categorical variables from the perspective of:

- Tables slicing by subgroups
- Graphs sliced bar graph

Unit 4 Confounders

By the end of this unit you should be able to do the following:

- Define a confounder (ie. confounding variable)
- Identify possible confounding variables in a study

Introduction

Definition:

A confounder is a third variable that is associated to both the independent and dependent variable whose relationship we are investigating

Stone size associated to treatment type

	Large	Small	Total
X	526	174	700
Υ	80	270	350
Total	606	444	1050

rate(Large | X) =
$$\frac{526}{700}$$
 = 0.751
rate(Large | Y) = $\frac{80}{350}$ = 0.229

Since 0.751 > 0.229, Large stones **positively** associated to treatment X

Stone size associated to success

	Success	Failure	Total
Large	436	170	606
Small	395	49	444
Total	831	219	1050

Since 0.719 < 0.890, Large stones **negatively** associated to success

— View from Association ——

Recall:

Size	Treatment Type	Outcome
Large	X	Success
Large	X	Success
Small	Υ	Success
Large	Υ	Failure
Small	X	Success
Large	Υ	Success

After slicing, Treatment X is better

Size	Treatment Type	Outcome
l.arge	X	Success
Large	X	Success
Small	Υ	Success
Large	Υ	Failure
Small	X	Success
Large	Υ	Success

DO WE STILL OBSERVE SIMPSONS PARADOX?

We have to measure a variable in order to check if it is a confounder!

THE PROBLEM

We must measure a variable in order to check if it is a confounder

We need to collect data on lots of variables

This is not feasible (costly, difficult to analyse)

THE PROBLEM

We must measure a variable in order to check if it is a confounder

RANDOMISATION

We need to collect data on lots of variables

This is not feasible (costly, difficult to analyse)

The effect of randomly assigning stone size to treatment type

Randomisation is not always possible

I want Treatment X!

Summary

Main variables

Confounding variable

(prove using association)

Proving Association

 $rate(A \mid B) \neq rate(A \mid NB)$

OR

 $rate(B | A) \neq rate(B | NA)$

OR

Chapter 2 end

We learnt how to analyse categorical variables from the perspective of:

- Tables
- Graphs