2024.03.27

Università di Bologna

Generation of Synthetic Mutation Data of Acute Myeloid Leukemia Patients with Large Language Models

Relatore

Prof. Enrico Giampieri
Correlatore
Prof. Gastone Castellani

Candidato
Alessio Giuseppe Ferraioli

www.synthema.eu

Establish a cross-border hub to develop and validate Artificial Intelligence techniques for anonymisation and synthetic data generation in rare hematological diseases.

SYNTHEMA aims to generate reliable, high-quality synthetic data that can shape new virtual patients to further enhance dia-gnostic capacity, assess treatment options and predict outcomes in rare hematological diseases.

Overview of the presentation

Introduction on Synthetic Data Generation (SDG) in Medical Research

GReaT: application of language models to SDG

The dataset we modeled: AML patients mutations
Why GReaT does not work for this dataset and our solution to overcome this

Results: synthetic patients visualizations

Techniques for analyzing the results:

- UMAP dimensionality reduction
- Kaplan Meier estimator of Survival Function

Comparisons with other techniques for SDG: C-GAN and VAE

Data-driven Medical Research

- Helping diagnosis e.g.: identifying tumors
- Individual tailoring of treatment pathways
- Recognizing patterns in quantities of data too big for a human to analyze

The Applied Physicist contributes to the whole medical data pipeline

- Development of data acquisition, in particular imaging
- Processing and Analysis of data
- Modelling of biological processes

Availability and quality of data are crucial

- Privacy concerns
- Long process and strict requirements to access data
- Data production is costly and unpractical
- Historical data comes usually with biases

Synthetic data could mitigate these problems

see for example:

https://github.com/kathrinse/be_great

GReaT: Generator of Realistic Tabular data

Convert data into **meaningful sentences** in the English language and use **pre-trained language models** to generate new sentences coherent with data.

Language models read the data as a human would

No loss of contextual knowledge

If "Age" is 7, probably "Marital status" will not be "Married", "Divorced" nor "Widowed" This semantic knowledge of the features is lost when encoding them numerically.

Possibility to encode textual diagnosis data

"The patient was pale, jaundiced and dehydrated. She had weak pulse and fever.."

Textual diagnosis are ubiquotous in medical data, but usually ignored in encoding of data

Application on Iris Dataset:

Generating realistic new observations

Application on Titanic Dataset:

Training a Classifier without access to real data

Our Goal: Modeling a dataset of genetic and cytogenetic mutations of Acute Myeloid Leukemia patients

Image by Jarun Ontakrai on Shutterstock.com

Acute Myeloid Leukemia (AML) is an aggressive and often fatal form of leukemia in the bone marrow that obstructs the production of blood cells

Different mutations

Different evolution of disease

Different suggested treatment

The dataset contains 154 mutations as well as the state (dead or alive) and time of the last observation.

We want to model the **time of death of patients depending on their mutations**.

GReaT can not model high-dimensional datasets, such as a **mutation dataset** like this one

The generated sentences are too long to handle and very redundant

senteces like:

"PHF6 is 0, RIT1 is 0, CBL is 0, add_8 is 1, CUL2 is 0, del_18 is 0, t_15_17 is 0, SMG1 is 0, NPM1 is 0, MYC is 0, JAK2 is 0, KANSL1 is 0, KIT is 0, MED12 is 0, MLL is 0, IDH2_R172 is 0, NOTCH1 is 0.

GATA1 is 0, IDH2_p.R140 is 0, FLT3_other is 0, KMT2C is 0, BRAF is 0, CEBPA_mono IS 0, DNMT3A is 0, CUX1 is 0, EED is 0, FBXW7 is 0, t_9_11 is 0, NRAS_p.Q61_62 is 1, ZRSR2 is 0, TP53 is 0, del_16 is 0, NVT1 is 0, add_8 is 1, STAG2 is 0, DIT1 is 0, DUNY1 is 0, DTDN11 is 0, DAD21 is 0.

To ovecome its limitations, we propose to train on just sentences that signal **present mutations**

"PHF6 is 0, RIT1 is 0, CBL is 0, add_8 is 1, CUL2 is 0, del_18 is 0, t_15_17 is 0, SMG1 is 0, NPM1 is 0, MYC is 0, JAK2 is 0, KANSL1 is 0, KIT is 0, MED12 is 0, MLL is 0, IDH2_R172 is 0, NOTCH1 is 0. GATA1 is 0, IDH2_p.R140 is 0, FLTB_other is 0, KMT2C is 0, BRAF is 0, CEBPA_mono IS 0, DNMT3A is 0, CUX1 is 0, EED is 0, FBXW7 is 0, t_9_11 is 0, NRAS_p.Q61_62, ZRSR2 is 0, TP53 is 0, del_16 is 0, WT1 is 0, STAG2 is 0, RIT1 is 0, RUNX1 is 0, PTPN11 is 0, RAD21 is 0, ...

"add_8 is 1, NRAS_p.Q61_62 is 1"

All the others are implictly zero

The modified GReaT model generates realistic patients

Correlations

The modified GReaT model generates realistic patients

It slightly over-represents most common values.

Sparse matrix diagrams Real Data Synth. Data mutations mutations

Dimensionality Reduction with UMAP and Kaplan-Meier Survival Curves estimates

UMAP

Dimensionality reduction technique that represents data as vertices of a weighted graph that is projected onto a 2D space

Learn an embedding that preserves the structure of the graph

Dimensionality Reduction with UMAP and Kaplan-Meier Survival Curves estimates

Kaplan Meier Estimate

Estimator for the survival curve *S*(*t*), the fraction of **patients alive at time** *t*, based on maximization of likelihood on discrete observations.

$$\widehat{S}(t) = \prod_{j:t_j < t} (1 - \frac{d_j}{n_j}) \begin{array}{c} \text{number of deaths} \\ \text{happening at time } t_j \\ \text{number of patients} \\ \text{at risk immediately} \\ \text{before } t_j \end{array}$$

Dimensionality Reduction with UMAP and Kaplan-Meier Survival Curves estimates

Comparison with other techniques

Thanks to Adriano Zaghi (adriano.zaghi.2@unibo.it) and Ettore Rocchi (ettore.rocchi3@unibo.it for providing C-GAN and VAE data, and to Mauro Faccin (mauro.faccin@unibo.it) for the contribution in producing this visualization.

In conclusion: the modified GReaT produces promising results comparable to state-of-the-art methods.

Newer and more powerful language models could perform even better.

Thank you for your attention.

1. Convert features into elemental sentences

Occupation	Age	Gender
Sales	59	Male
Developer	33	Female

"Occupation is Sales"
"Age is 59"
"Gender is Male"

"Occupation is Developer"
"Age is 33"
"Gender is Female"

1. Convert features into elemental sentences

2. String them together in random order

Occupation	Age	Gender
Sales	59	Male
Developer	33	Female

"Occupation is Sales"
"Age is 59"
"Gender is Male"

"Occupation is Developer"
"Age is 33"
"Gender is Female"

"Occupation is Sales, Gender is Male, Age is 59"

"Age is 33, Occupation is Developer, Geneder is Female"

1. Convert features into elemental sentences

2. String them together in random order

3. Fine-tune a pre-trained language model on the sentences

Occupation	Age	Gender
Sales	59	Male
Developer	33	Female

"Occupation is Sales"
"Age is 59"
"Gender is Male"

"Occupation is Developer"
"Age is 33"
"Gender is Female"

"Occupaion is Sales, Gender is Male, Age is 59"

"Age is 33, Occupation is Developer, Geneder is Female"

4. Generate new sentences by drawing a random value for a feature and letting the model complete it

"Occupation is Developer, Age is 35, Gender is Male"

4. Generate new sentences by drawing a random value for a feature and letting the model complete it

"Occupation is Developer"

Pre-Trained
Language
Model

"Occupation is Developer, Age is 35, Gender is Male"

5. Convert the sentence back into tabular data

Occupation	Age	Gender
Developer	35	Male

Instances of the same patients

Rows with more than 20 instances

Model	copies of real data	duplicates
50 epochs	23 %	22 %
100 epochs	31 %	27 %
250 epochs	35 %	28 %
Real data	///////	22 %

Real data	50 epochs		100 epochs		250 epochs		
mutations	count	mutations	count	mutations	count	mutations	count
None	50	['DNMT3A', 'ITD', 'IDH2_p.R140', 'NPM1']	40	['DNMT3A', 'ITD', 'IDH2_p.R140', 'NPM1']	31	['DNMT3A', 'IDH2_p.R140', 'NPM1']	22
['DNMT3A', 'ITD', 'NPM1']	39	['DNMT3A', 'ITD', 'NPM1']	34	['DNMT3A', 'ITD', 'NPM1']	39	['DNMT3A', 'ITD',	40
ן זוט, וארואוו]		['DNMT3A', 'ITD', 'NPM1', 'TET2']	29	['DNMT3A', 'ITD', 'NPM1', 'TET2']	36	'NPM1']	

Generation of values not seen at training

Examples of anomalous mutation values

minusy	1.99863107460643
ITD	1.1492128678
ITD	1.0075290896
ITD	1.2621492128679
ITD	1.5667351129
NPM1	1.61533196440794
IT D	1.06776180698152
SF3 B	1.07323750855
NPM1	1.472963723477
F LT3TKD	1.42915811088
F LT3TKD	1.70020533880904
IT D	1.2368240930869
IT D	1.150581793292
NPM1	1.2676249144422
minusy	1.91170431211499
IDH 2_ p.R172	1.16632443531828
NPM1	1.2568788501026
N RAS_p.G12_13	1.4517454132786
ITD	1.109514031485284
PTPN11	1.2087611225188
IDH1	1.936344976044
NPM	1.927446954141
ITD	1.30595482546
IT D	1.3901437371663
ITD	1.007529089664
IT D	1.779603011636
minusy	1.782340862423
IT D	1.2785763175906
NPM1	1.060917180013
KIT	1.092402464065
IT D	1.2765229295
IT D	1.2648870636
IT D	1.147843942505
ITD	1.05065023956

N. of anomalous mutation values

50 epochs		100 epo	ochs	250 epochs	
2.3 ± 1.5	0.0006%	34.5 ± 2.8	0.01%	19.2 ± 3.8	0.006%

Very rarely a completely wrong value

It happened just 3 times on 9 millions generated values

Testing Different

Large Language Models (LLMs)

on the Iris Dataset

LLM	copies from I	real data
distilGPT-2 100 epochs	2.4 ± 1.8	2 %
distilGPT2 300 epochs	9.1 ± 3.3	6 %
GPT-2 100 epochs	3.6 ± 2.4	2 %
GPT-2 300 epochs	38.6 ± 4.3	26 %
DialoGPT 100 epochs	4.7 ± 1.6	3 %
DialoGPT 300 epochs	77.8 ± 6.2	52 %

