

RC电路的频率特性

转移电压比为:

$$H(j\omega) = K_{U}(j\omega) = \frac{\dot{U}_{2}}{\dot{U}_{1}} = \frac{\dot{j}\omega C}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC}$$

称为自然角频率,则

$$\begin{array}{c|c}
R & \dot{I}_2 = 0 \\
\dot{U}_1 & \frac{1}{\mathbf{j}\omega C} & \dot{U}_2
\end{array}$$

$$H(\mathbf{j}\omega) = \frac{1}{1 + \mathbf{j}\frac{\omega}{\omega_{C}}} = |H(\mathbf{j}\omega)| \angle \theta(\omega)$$

其中:
$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_{\rm C}}\right)^2}}$$
 $\theta(\omega) = -\arctan\frac{\omega}{\omega_{\rm C}}$

幅频和相频特性

当
$$\omega$$
=0时,

$$|H(j\omega)| = 1$$

$$\theta(\omega) = 0$$

当
$$\omega = \omega_{\rm C}$$
 时,

$$|H(j\omega)| = 1/\sqrt{2}$$

$$\theta(\omega) = -\pi/4$$

$$当 \omega → ∞ 时,$$

$$|H(j\omega)| \rightarrow 0$$

$$\theta(\omega) \rightarrow -\pi/2$$

具有低通滤波特性, 称为低通滤波器;

具有移相特性,相移范围为 $0^{\circ} \sim -90^{\circ}$

(一阶滯后网络)。

电路分析基础 第9章电路的频率特性

$$\theta(\omega) = -\arctan\frac{\omega}{\omega_{\rm C}}$$

幅频和相频特性曲线如下图所示:

通频带(通带):振幅从最大值下降到0.707(或3dB)的频率范围;在通频带内,信号能顺利通过。

阻带: $\omega > \omega_{\rm C}$ 的范围;

带宽: 通频带宽度。

截止频率: $\omega = \omega_{\text{C}}$ 。 当 $\omega = \omega_{\text{C}}$ 时, $|\mathbf{H}(\mathbf{j}\omega_{\text{C}})| = 0.707 |\mathbf{H}(\mathbf{j}0)|$,又称半功率频率 (或3分贝频率)。($|\mathbf{H}(\mathbf{j}0)|$: 最大值)

无线电波 3×10^4 m ~ 0.1cm 紫外光 400nm ~ 5nm 红外线 6×10^5 nm ~ 760nm x 射线 5nm ~ 0.04nm 可见光 760nm ~ 400nm y 射线 < 0.04nm

低通滤波器的概念:

理想低通滤波器

实际低通滤波器

例9-2 已知 R_1 = R_2 =1K Ω , C=0. 1uF, 试求:

1. 图示网络转移电压比; 2. 定性画出幅频特性曲线; 3. 通频带; 4. 若正弦激励角频率 $\omega=10^4\mathrm{rad/s}$, 有效值10V, 则输出电压的有效值 $U_2=?$

1. 转移电压比:

$$K_{U}(j\omega) = \frac{\dot{U}_{2}}{\dot{U}_{1}} = \frac{R_{2} / \frac{1}{j\omega C}}{R_{1} + R_{2} / \frac{1}{j\omega C}} = \frac{R_{2}}{R_{1} + R_{2}} \cdot \frac{1}{1 + j\omega R_{0}C}$$

$$R_{0} = R_{1} / / R_{0} = 0.5K\Omega$$

式中:
$$R_0 = R_1 / / R_2 = 0.5 \text{K}\Omega$$

令:
$$\omega_{C}=1/(R_{0}C)=2\times10^{4} \text{ rad/s}$$
,则:

$$\boldsymbol{K}_{U}(j\omega) = \frac{\boldsymbol{R}_{2}}{\boldsymbol{R}_{1} + \boldsymbol{R}_{2}} \cdot \frac{1}{1 + \frac{j\omega}{\omega_{C}}}$$

2 幅频特性: $|K_U(j\omega)| = \frac{R_2}{R_1 + R_2} \cdot \frac{1}{1 + (\frac{\omega}{\omega_C})^2}$ 代入参数,得:

$$|\mathbf{K}_{U}(j\omega)| = \frac{1}{2} \cdot \frac{1}{\sqrt{1 + (\frac{\omega}{2 \times 10^4})^2}}$$

当
$$\omega$$
=0时,

当
$$\omega = \omega_{\rm C}$$
 时,

$$|K_U(j\omega)| = \frac{1}{2}$$

$$|\mathbf{K}_{U}(j\omega)| = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = 0.35$$

$$|K_U(j\omega)| \rightarrow 0$$

低通特性

3. 由于
$$|K_U(j\omega_C)| = \frac{1}{\sqrt{2}} \cdot |K_U(j0)|$$
 所以,截止频率为 ω_C

通频带为: 0~2×10⁴ rad/s

4. 因为
$$U_2 = U_1 \cdot \frac{1}{2} \frac{1}{\sqrt{1 + (\frac{\omega}{2 \times 10^4})^2}}$$

代入 $\omega=10^4$ rad/s, $U_1=10$ V, 得:

$$U_2 = 10 \cdot \frac{1}{2} \frac{1}{\sqrt{1 + \left(\frac{1}{2}\right)^2}} = 4.47 \text{ V}$$

● RC高通网络

RC串联电路,网络函数为电阻电压对输入电压的转移电压比:

$$\dot{\vec{U}}_1$$
 $\dot{\vec{V}}_2$

$$H(j\omega) = K_U(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{R}{R + \frac{1}{j\omega C}} = \frac{1}{1 + \frac{1}{j\omega RC}}$$

$$\Leftrightarrow \omega_C = \frac{1}{RC} = \frac{1}{\tau}$$

$$H(\mathbf{j}\omega) = \frac{1}{1 + \frac{\omega_{C}}{\mathbf{j}\omega}} = |H(\mathbf{j}\omega)| \angle \theta(\omega)$$

其中:
$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega_{\rm C}}{\omega}\right)^2}}$$

$$\begin{array}{c|c}
\hline
1 \\
\hline
\mathbf{j}\omega C \\
\dot{U}_1 \\
\hline
R \\
\dot{U}_2
\end{array}$$

$$\theta(\omega) = \arctan \frac{\omega_{\rm C}}{\omega}$$

当
$$\omega$$
=0时,

$$|H(\mathbf{j}\boldsymbol{\omega})| = 0$$

$$\theta(\omega) = \frac{\pi}{2}$$

当
$$\omega = \omega_{\rm C}$$
 时,

$$|H(j\omega)| = \frac{1}{\sqrt{2}}$$

$$\theta(\omega) = \frac{\pi}{4}$$

$$|H(\mathbf{j}\omega)| \to 1$$

$$\theta(\omega) \rightarrow 0$$

幅频和相频特性曲线,如下图所示。

具有高通滤波特性,称 为高通滤波器;

截止频率: $\omega = \omega_{0}$

通频带: w> w_C

阻带: 0<0×0c

具有移相特性,相移范围 为90°到0°(一阶超前网络)

转移电压比

$$\begin{array}{c|c}
R & j\omega C \\
\hline
\dot{U}_1 & \frac{1}{j\omega C} + R & \dot{U}_2 \\
\hline
\end{array}$$

$$K_{U}(j\omega) = \frac{\dot{U}_{2}}{\dot{U}_{1}} = \frac{\frac{\dot{J}\omega C}{R + \frac{1}{j\omega C}}}{R + \frac{1}{j\omega C} + \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}} = \frac{\frac{R}{1 + j\omega RC}}{1 + \frac{1}{j\omega C} + \frac{R}{1 + j\omega RC}}$$

$$K_{U}(j\omega) = \frac{1}{3 + j(\omega RC - \frac{1}{\omega RC})}$$

即:
$$\omega = \omega_0 = \frac{1}{RC}$$
时: $K_U(j\omega_0) = \frac{1}{3}$

中心频率: 00

截止频率:

$$\omega_{\rm C1} = 0.3 \omega_{0}, \omega_{\rm C2} = 3.3 \omega_{0}$$

通频带:
$$\omega_{\text{C1}} < \omega < \omega_{\text{C2}}$$

双T带阻网络

转移电压比

$$K_{U}(j\omega) = \frac{\dot{U}_{2}}{\dot{U}_{1}} = \frac{1}{1 + \frac{4}{j(\omega RC - \frac{1}{\omega RC})}}$$

带阻

转移电压比

$$K_{U}(j\omega) = \frac{U_{2}}{\dot{U}_{1}}$$

$$= \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} - \frac{R}{R + \frac{1}{j\omega C}}$$

$$= \frac{1 - j\omega RC}{1 + j\omega RC}$$

$$|K_U(j\omega)|=1$$
 $\theta(\omega)=-2\arctan(\omega RC)$ 也称 移相网络。

