Problème du rectangle inscrit

Emanuel Morille

Table des matières

1.	Homologie	2
	1.1. Axiomes d'Eilenberg-Steenrod · · · · · · · · · · · · · · · · · · ·	2
	1.2. Homologie singulière · · · · · · · · · · · · · · · · · · ·	2
	1.2.1. Construction · · · · · · · · · · · · · · · · · · ·	2
	1.2.1.1. Simplexes	2
	1.2.1.2. Chaînes	3

1. Homologie

1.1. Axiomes d'Eilenberg-Steenrod

Définition 1.1. Une *théorie de l'homologie* sur la catégorie des paires d'espaces topologiques Top₂ dans la catégorie des groupes abéliens Ab est une suite :

• de foncteurs, notée $(H_n)_{n\in\mathbb{Z}}$, avec pour tout $n\in\mathbb{Z}$:

$$H_n: \mathsf{Top}_2 \to \mathsf{Ab}$$

• et de transformations naturelles, notée $(\partial_n)_{n\in\mathbb{Z}}$, avec pour tout $n\in\mathbb{Z}$:

$$\partial_n: H_n(X,A) \to H_{n-1}(A) := H_{n-1}(A,\emptyset)$$

vérifiant les axomes suivants pour toutes paires d'espaces topologiques (X,A),(Y,B) et $n \in \mathbb{Z}$:

- Homotopie: Soit $f_0, f_1: (X,A) \to (Y,B)$ deux applications homotopes. Alors les applications induites en homologie $f_{0*}, f_{1*}: H_n(X,A) \to H_n(Y,B)$ sont égales.
- Excision: Soit U un sous-ensemble de A tel que l'adhérence de U est contenue dans l'intérieur de A. On note i: (X \ U,A \ U) → (X,A) l'inclusion canonique. Alors l'application induite en homologie i_{*}: H_n(X \ U,A \ U) → H_n(X,A) est un isomorphisme.
- *Dimension*: Soit P l'espace constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement si n = 0.
- Exactitude : La suite :

$$\dots \to H_{n+1}(X,A) \stackrel{\partial_{n+1}}{\to} H_n(A) \stackrel{i_A}{\to} H_n(X) \stackrel{i_X}{\to} H_n(X,A) \stackrel{\partial_n}{\to} H_{n-1}(A) \to \dots$$

est exacte.

1.2. Homologie singulière

1.2.1. Construction

1.2.1.1. Simplexes

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 1.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison de la forme $t_0p_0 + \cdots + t_np_n$, telle que $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 1.4. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Alors si A est convexe toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0 p_0 + \cdots + t_n p_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0 p_0 + t_1 p_1 = (1-t)p_0 + t p_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 1.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée [A], l'ensemble des combinaisons convexes de sous-ensembles finis de A.

Proposition 1.6. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in [A]$ et $t \in [0, 1]$. Puisque (1 - t)p + tq est une combinaison convexe d'un sous-ensemble fini de A, on a bien $(1 - t)p + tq \in [A]$. Donc [A] est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in [A]$, alors il existe $p_0, ..., p_n \in A$ et $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$ et $x = t_0 p_0 + \cdots + t_n p_n$. D'après la Proposition 1.4 on a bien $x \in B$. Donc $[A] \subset B$.

Définition 1.7. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F et que F et

Définition 1.8. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Définition 1.9. Soit E un \mathbb{R} -espace vectoriel, [F] un n-simplexe et $x = t_0 p_0 + \cdots + t_n p_n$ un élément de [F]. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n$.

1.2.1.2. Chaînes

Définition 1.10. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Définition 1.11. Soit X un espace topologique, $a_0, ..., a_k$ des entiers et $\sigma_0, ..., \sigma_k$ des n-simplexes singuliers sur X. On appelle n-chaîne l'application $a_0\sigma_0 + \cdots + a_k\sigma_k$. On note $C_n(X)$ l'ensemble des n-chaînes.

Proposition 1.12. Soit X et Y deux espaces topologiques, σ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe.

Définition 1.13. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. On appelle *implication induite par* f, notée f_* , le morphisme

Définition 1.14. Soit X un espace topologique et σ un n-simplexe singulier sur X. On appelle *bord* $de \sigma$, noté $\partial_n \sigma$, le (n-1)-simplexe singulier sur X défini par :

$$\partial_n \sigma := \sum_{k=0}^n (-1)^k \sigma|_{[e_0, \dots, e_{k-1}, e_{k+1}, \dots, e_n]}.$$

On appelle *morphisme bord* l'application $\partial_n : C_n(X) \to C_{n-1}(X)$ induite.

Proposition 1.15. Soit X un espace topologique. Alors $\partial_n \circ \partial_{n+1} = 0$.

Démonstration. Soit σ un (n + 1)-simplexe singulier sur X. Alors

$$\begin{split} (\partial_n \circ \partial_{n+1})(\sigma) &= \partial_n \Biggl(\sum_{k=0}^{n+1} (-1)^k \sigma|_{[e_0, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]} \Biggr) \\ &= \sum_{k=0}^{n+1} (-1)^k \partial_n \Bigl(\sigma|_{[e_0, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]} \Bigr) \\ &= \sum_{0 \le k < l \le n} (-1)^{k+l} \sigma|_{[e_0, \dots, e_{k-1}, e_{k+1}, \dots, e_{l-1}, e_{l+1}, \dots, e_{n+1}]} \\ &+ \sum_{0 \le l < k \le n} (-1)^{k+l-1} \sigma|_{[e_0, \dots, e_{l-1}, e_{l+1}, \dots, e_{k-1}, e_{k+1}, \dots, e_{n+1}]} \Bigr) \\ &= 0. \end{split}$$