UNVEILING WORD MEANING

A statistical study on primitive semantic features

TOPIC

- Lexical semantics, Psicolinguistics and Neuro-cognitive science
 - Word meaning
 - How meaning is constructed
 - Brain-level organization of meaning
 - Theories of semantic composition and representation
 - Find the optimal way to represent meaning

BACKGROUND

- Classical approaches Vs. Componential approaches
- Toward a brain-based componential semantic representation (Binder et al., 2016)

DATASET (Binder et al., 2016)

- Units → **Lexical items** (i.e., Nouns, Verbs, Adjectives)
- Features -> attributes based on aspects of mental experience (e.g., Visive, Auditive, Spatial, Temporal etc.)

				. – . –								p =60
Units/Features	Vision		Color		Sound		Temperature		Scene	-	••••	Туре
House	***	+	***	+	***	+	***	+	***	+	••••	Thing
Reporter											••••	Thing
Нарру											••••	Property
Scream											••••	Action
Shy											••••	Property
••••	••••		••••		••••		••••		••••		••••	
Gorilla	-									-	••••	Thing
Television											••••	Thing

STEPS OF THE RESEARCH

Data preparation

- Delete duplicates
- Missing values
- Normalization

Data analysis

- Features analysis
- Unsupervised learning
 - Clustering
 - PCA
- Supervised learning
 - Classification task
 - Feature selection

GOALS OF THE RESEARCH

- Prove the validity of such an approach
- Investigate the potential of this componential approach
- Make assumptions on the dynamics of meaning construction

FEATURES ANALYSIS

MULTICOLLINEARITY

- Linear dependency among some predictors
- 4 main groups:
 - Visive + Somatosensory attributes
 - Auditory attributes
 - Temporal + causal attributes
 - Social + Emotion attributes

FEATURES ANALYSIS

FEATURES DISTRIBUTION

- Right-skewed behaviour
 - Skewness_Mean: 1.33952
- Presence of outliers
- Negative impact on next analysis

Histogram of Temperature

Histogram of Sound

CLUSTERING

Can we identify (semantic) similarity structures?

- Search for optimal number of clusters
 - Elbow method/Hartigan Index : 2 clusters
 - AverageSilhouette: 10 clusters
- Balance between results and Silhouette info
- K-means

- Avg. Silhouette = 0.17
- Caotic distinction

- Avg. Silhouette = 0.20
- Semantic classes (e.g. Animals, Food, Sentiment)
- Noisy distinction

CLUSTERING

Can we identify (semantic) similarity structures?

- Search for optimal number of clusters
 - Elbow method/Hartigan Index : 2 clusters
 - AverageSilhouette: 10 clusters
- Balance between results and Silhouette info
- K-means
- Agglomerative Hierarchical Clustering
 - Complete linkage method

- K = 2
- Avg. Silhouette = 0.16
- Negative Vs. Positive/Neutral entities/events/properties

- K = 10
- Avg. Silouette = 0.14
- Shallow semantic classes
 (Qualitative better than kmeans = 10)
 - Food
 - Animals
 - Musical Instruments
 - Sentiment

• .

PCA

Can we identify (semantic) similarity structures?

- PCA as denoising approach?
 - 75% variance → 10 PCs
- Took the first 2 PCs (36% cPVE)
- Features contribution

Contribution of variables to

DIM.1	DIM.2		
Texture	Fast		
Pattern	Sound		
Shape	Pain		
Vision	Attention		
Touch	Loud		
Color	Complexity		
Bright	Unpleasant		
Smell	Fearful		
Temperature	Music		
••••	••••		

Dim.1 → Concreteness
Dim.2 → Abstractness

PCA

Can we identify (semantic) similarity structures?

- PCA as denoising approach?
 - 75% variance → 10 PCs
- Take the first 2 PCs (36% cPVE)
- Features contribution
- Clustering on PCA

PC1

- K = 2
- Avg. Silhouette 0.43
- Abstract Vs. Concrete (Good distinction)

- K = 10
- Avg. Silhouette 0.41
- Exhaustive semantic clusters

CLUSTERING VS. BICLUSTERING

Can we identify (semantic) similarity structures?

- Iterative Signature Algorithm* (isa2-package)
- Find biclusters having correlated rows and columns
- 199 semantic clusters

Locations

Negative Events And Feelings

Human Beings (Jobs) Practical tools

CLASSIFICATION

Can we distinguish morpho-syntactic classes?

- GLMNet package
- Logistic regression model

• Family: Multinomial

• Alpha: 1 → LASSO Penalty

• type.multinomial: Grouped

CLASSIFICATION

Can we distinguish morpho-syntactic classes?

- GLMNet package
- Logistic regression model
- First configurations:
 - Train/ Test → 70:30

LASSO- 65 Features

Accuracy: 0.84

Reference Prediction thing action property thing 130 13 13 action 0 3 0 property 0 0 0

LASSO- 2PCs

Accuracy: 0.82

Reference Prediction thing action property

rrealCtton	CITTING	action	property
thing	130	16	13
action	0	0	0
property	0	0	0

LASSO- 10PCs

Accuracy: 0.82

Reference

Prediction thing action property thing 130 16 13 action 0 0 0 property 0 0 0

Unbalanced classes:

- Thing: 434

- Action: 56

- Property: 44

CLASSIFICATION

Can we distinguish morpho-syntactic classes?

- GLMNet package
- Logistic regression model
- First configurations:
 - Train/Test → 70:30
- Trial&Error approach to solve classes unbalance

- **1. Oversampling** → Action/ Property X2
 - Accuracy: 0.57
 - Confusion Matrix (not good)
 - Overfitting
- **2. CV + optimal** $\lambda \rightarrow cv_fit$ \$lambda.1se: 0.0069
 - Accuracy: 0.94
 - Confusion Matrix (quite better)
 - Likely overfitting behaviour
- 3. a. Stratified CV \rightarrow k=10
 - Accuracy: 0.89
 - Confusion Matrixes (good)
 - Overfitting
 - **b. Stratified CV 2 / 10PCs** \rightarrow k = 10
 - Accuracy: 0.81/0.84
 - Confusion Matrixes (good)
 - Not overfitting

Figure: Accuracy curve

- 4. Change Data Partition → Train/Test 60:40 + optimal \(\)
 - Accuracy: 0.95
 - Confusion Matrix (balanced)

FEATURE SELECTION

Can we distinguish morpho-syntactic classes?

- (Soft) Feature Selection
- LASSO coeff output
- Features -> the most important in PC1/ PC2
- Fit the model again:
 - Train/ Test → 60:40
 - **32 Features** (out of 65)
 - Cv + lambda.1se

Accuracy: 0.91

Reference							
Prediction	thing	action	property				
thing	168	7	6				
action	4	15	1				
property	1	0	10				

CONCLUSION

- Statistical tools positively confirmed goodness of this componential (semantic) approach
 - Features capture a great quantity of semantic + relational information
 - Identification of (macro-)semantic classes = understand word meaning
 - Distinction among lexical classes (nouns vs. verbs vs. adjectives)
- PCA
 - Useful as denoising approach
 - Unveil an important latent information dicotomy in the construction of meaning
- Concrete vs. Abstract as a primitive tool for meaning construction (?)
 - Improve complex semantic distinctions (e.g., Food vs. Time vs. Animal)
 - Contribute indirectly to lexical class identification (see Feature selection)

Future Directions

Thank you for the attention!