Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Intermediate Implementation 2

Final Design

Current State

Remotely Connected Electric Field Generator

for Particle Separation in a Fluid

Presented by *Team May1612* on 27 April 2016

Timothy Dee, Justin Long, Brandon McDonnell Iowa State University

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis (DEP)

Dielectrophoresis

Project Overview

Initial Implementation

Implementation 1

Intermediate Implementation 2

Final Design
Current State

Questions

- A dielectric particle in a non uniform electric field experiences a force
- Different potential fields and frequencies has an effect on the net force
- First studied in 1950s by Herbert Pohl
- Recently revived due to the ability to manipulate micro-particles and cells.

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate

Implementation 1

Intermediate
Implementation 2

Final Design

Current State

Questions

Real World Application

- Potential to separate particles in spinal fluid
- Act as filter
- Research in separating cancerous cells from healthy cells
- Separate platelets from whole blood
- Separate red and white blood cells
- Strains of bacteria and viruses

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

Project Description

- A system to aid in the research of DEP
- Allow for quicker setup times
- · Control Voltage and Frequency via the web
 - 1 to 60 VPP
 - 10k to 1Mhz
- Hold output for long time periods
- Small Form Factor
- Easy to use
- Plug and play

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis Project Overview

.

Initial Implementation

Intermediate
Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

Project Structure

- Raspberry Pi
- Web Interface
- Web Server
- Frequency Control Solution
- Voltage Control Solution

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate Implementation 2

Final Design

. ...a. Dooigi

Current State

Questions

Initial Implementation

- Raspberry Pi
 - Host web server
 - Remote manipulation of circuit output
 - Web interface can provide additional functionality
 - GPIO pins input to circuit
- Circuit Output
 - · Frequency generated by GPIO pin
 - GPIO waveform integrated to get sine wave
 - Sine wave amplified to form output

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Implementation 2
Final Design

Current State

Questions

Minigen Function Generator

- SPI communications
- Small form factor
- Output to

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Questions

Intermediate Implementation

- Raspberry Pi controls Integrated circuit components
- Produces frequency 10 Khz 4 Mhz
- Digital Potentiometers
- SPI communications
- Vary resistance to control amplifier
- Amplifier controls voltage output from circuit

Remotely Connected Electric Field Generator Timothy Dee.

Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

Problems and Setbacks

- Mosfet Amplifier
- Digital Potentiometer
- Resistance drops with AC signal
- · Distorted the sine wave
- Op Amps
- Slew Rates
- Gain Bandwidth
- Minigen
- B23 Bug

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

Digital Potentiometer Amplifier Circuit

ïmage"

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

MOSFET Amplifier

- picture"
- information

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate
Implementation 2

Final Design

Current State

Questions

Problems and Setbacks

- Lost a group member
- BJT Switch
- Control through GPIO pin
- Current Leaks through when logically off
- Relay
- Operating Frequency not sufficient
- Brandon
- We have had to make quite a few adjustments from our original plan.
- This is especially the case with our digital potentiometers.

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Final Design

Current State

Questions

SSR Circuit Implementation

• ïmage"

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Intermediate Implementation 2

Final Design

Current State

Current Sta

Questions

Overview

- Raspberry Pi controls integrated circuit components
- Minigen Function Generator
 - SPI communications
 - Produces frequency 10 Khz 4 Mhz
- Programmable Gain Amplifier(PGA)
 - GPIO communications
 - 8 voltage options (0-7)
- Summing Amplifier
 - Sums output from amplification stages

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Questions

Systems Diagram

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate

Implementation 1

Intermediate Implementation 2

Final Design

Current State

Questions

Amplifier Circuit

- Two stages with PGA and constant gain amplifiers
 - Upper stage constant amplifier Gain 7.5
 - Lower stage constant amplifier Gain 1.07
 - PGA's both having variable gain
- Summing amplifier

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate Implementation 2

Final Design

Current State

Ourient Stat

Questions

Web Interface

- Hosted Locally
- Able to be seen on intranet
- Voltage and Frequency controls
- Provides Additional Functionality

Set Voltage and Frequency

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Questions

Software Components

a

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate

Implementation 1

Intermediate Implementation 2

Final Design

Questions

Current State

Problems

- 1 Minigen B23 Bug
- 2 Current op-amps have insufficient Gain-Bandwidth Product
 - Insufficient frequency
 - 2 Insufficient voltage
- 3 Current draw from Raspberry Pi

Solutions

- 1 Most probably a hardware issue
- 2 An op-amp with necessary specifications exists, 598-1449-ND
- 3 Ensure few additional components connected to the Pi

Cost

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Questions

Itemized Expenditures

Item	Quantity	Price(\$)
Raspberry Pi 3 Kit	1	49.99
Micro SD card	1	9.99
Minigen Functi- on Generator	1	29.95
Op Amps	3	4.41
PGA	2	8.00
Miscellaneous Components	-	10.5
Total	-	104.84

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Questions

Logistical Setbacks

- · Lack of manpower
- Loss of a team member at semester break
- Point of contact left company

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Implementation

Intermediate Implementation 2

Final Design

Current State

Questions

Deliverables

- Raspberry Pi loaded with controlling code
- User manual
- Current circuit implementation
- PCB design
- Simulation files

Remotely Connected Electric Field Generator Timothy Dee.

Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

implementation

Intermediate Implementation 2

Final Design

Current State

Ougation

Questions?

Discussion Points

- Dielectrophoresis (DEP)
- Circuit Design
- Digital Potentiometer/ Operation Amplifier
- MOSFET/ Programmable Gain Amplifiers (PGA)
- Web Interface
- Final Documentation

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Intermediate
Implementation 1

Intermediate

Implementation 2

Final Design

Current State

Question

Work Breakdown

Items

- Initial Planning
- Project Website
- · Reports and documentation
- Circuit Design
- Web Server
- SOC Communications
- PCB Design