

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Discussion Course <u>Progress</u> <u>Dates</u> **Resources**

Course / Unit 0. Brief Prerequisite Reviews, Homework 0, and Project 0 / Homework 1

< Previous 11 of 15 v

11. Matrix Multiplication

 \square Bookmark this page

Homework0 due Feb 8, 2023 08:59 -03 Completed

Matrix Multiplication

6/6 points (graded)

Let
$${f A}=egin{pmatrix}1&-1&2\\0&3&-4\end{pmatrix}$$
 and let ${f B}=egin{pmatrix}-1&0&0\\2&0&1\\0&1&3\end{pmatrix}$. The dimensions of the product

More generally, let ${f A}$ be an m imes n matrix and ${f B}$ be an n imes k matrix. What is the size

m ✓ rows × k

In addition, if ${f C}$ is a ${f k} imes {f j}$ matrix, what is the size of ${f ABC}$?

m ✓ rows × j

Submit

You have used 1 of 3 attempts

Vector Inner product

1/1 point (graded)

Suppose $\mathbf{u}=\begin{pmatrix}1\\3\end{pmatrix}$ and $\mathbf{v}=\begin{pmatrix}-1\\1\end{pmatrix}$. The product $\mathbf{u}^T\mathbf{v}$ evaluates the **inner product** product) of \mathbf{u} and \mathbf{v} , which evaluates to

$$\mathbf{u}^T\mathbf{v} = \boxed{2}$$

The inner product of \mathbf{u} and \mathbf{v} is sometimes written as $\langle \mathbf{u}, \mathbf{v} \rangle$.

Submit

You have used 1 of 3 attempts

Vector Outer product

edX

Previous

Next >

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

Do Not Sell My Personal Information

Connect

Blog

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 粤ICP备17044299号-2