

Complexidade de Algoritmos

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Análise de Algoritmos

Analisar um algoritmo significa prever os recursos que algoritmo necessita. Por exemplo, memória, largura de banda e mais frequentemente o tempo de computação.

Para analisar um algoritmo é necessário definir um modelo de computação. O modelo de computação do computador tradicional é o RAM (*Random Access Machine*) onde as instruções são executadas em sequência, sem concorrência, e os dados são armazenados em células de memória com acesso aleatório.

Análise de Algoritmos

Contar o número de todas as instruções que são executadas pelo algoritmo.

Por exemplo: m load, n store, o add, p sub, q div, r mul, s call, t ret, u cmp, v jump, etc.

O número de instruções e o tempo de execução depende do processador, compilador, velocidade de acesso à memória, tamanho de memória (cache e ram) etc.

Comparação de desempenho na resolução de sistemas lineares considerando tempos de operações de um computador real:

n	Método de Cramer	Método de Gauss
2	22 µs	50 µs
3	100 µs	159 µs
4	463 µs	353 µs
5	2,15 ms	666 µs
10	4,62 s	4,95 ms
20	247 dias	38,63 ms
40	1,45 * 10 ¹³ anos	0,315 s

• Ok, mas e o avanço tecnológico, produzindo máquinas cada vez mais rápidas não faz o estudo de complexidade perder importância?

100x mais rápido

2^b mais rápido

Computador 19xx

Computador 2016

Computador quântico

• Análise de impacto do aumento de velocidade dos computadores para o Método de Cramer:

n	Computador 19xx	Computador 2016
3	100 µs	1 µs
5	2,15 ms	21,5 µs
7	46,274 ms	463 µs
10	4,62 s	46,2 ms
12	1,66 min	1 s
15	2,76 horas	1,656 min
20	247 dias	2,47 dias
40	1,45 * 10 ¹³ anos	1,45 * 10 ¹¹ anos

Análise de Algoritmos

Prever os recursos de que o algoritmo necessitará

A complexidade vem ganhando destaque a ponto de que alguns autores dizem que este tema é o coração da Computação [Toscani e Veloso, 2001].

- Complexidade na fase de projeto do algoritmo
- Intratabilidade de problemas:
 - Problemas NP-Completos e NP-Difícil
 - Soluções alternativas (aproximações), uso de programação dinâmica.

Programa e Plano de Ensino

- Plano de Ensino
 - Objetivos e ementa
 - Conteúdo programático
 - Avaliação
 - Bibliografia
- Plano de Aulas

Disponível na página!

Bibliografia

Algoritmos. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein. Campus. [**Bíblia**]

Algorithms. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani. McGraw Hill.

Complementar:

Complexidade de Algoritmos. Toscani, L.V. e Veloso, P.A.S. Instituto de Informática da UFRGS. Editora Sagra.

Atividade 1

- Elabore o melhor algoritmo para receber uma sequencia de 'n' números inteiros e dizer quantas vezes o número 'm' apareceu nesta sequência.
- NOTA: existe alguma consideração diferente caso 'm' seja um inteiro entre 0 e 10.000, ou um inteiro entre 0 e 1.000.000.000.000?