Naive Set Theory

Paul R. Halmos

Contents

Preface by the Editor	1
Preface by the Author	3
1 The Axiom of Extension	5
Index	7

Preface by the Editor

As the book title says, this the famous set theory book *Naive Set Theory* by Paul Richard Halmos, first published in 1960 by D. Van Nostrand Company, INC., part of a series called *The University Series in Undergraduate Mathematics*.

What the title doesn't say is that this version is an independent re-edition. The original work is currently public domain in Hathi Trust Digital Library — the reader probably found (or could find) the original digitized book on Google by just searching for its title. This version was written in LaTeX and first released on July 14, 2023, available for free to download on my Github repository. After the initial release, some people have already made contributions in fixing typos and further improving the re-edition. I extend here my gratitude to these people for helping me and keeping the spirit of the re-edition alive.

Even though the book was freely available online, there are three reasons for this project. First, the book in its digitized state is perfectly readable, but it doesn't allow searching words with Ctrl-F (windows), Ctrl-F (linux), Command-F (mac) and doesn't have a interactable summary with it. The second is to update the book by correcting the errors in the original version, following the published errata - as noticed, and updated in this edition, by Michał Zdunek. The third reason is purely personal, I have a passion and gratitude for this book and, while I want to learn OCR, I decided to re-edit it as a homage.

Some notes on this re-edition are necessary. The book page format is B5 paper with font size 12pt. The margins of the book should be perfectly suitable for printing. The mainly differences with the original editions are the cover and the chapters title page designs. The mathematical symbol which denotes set inclusion in the original is (ϵ) , but I opted to use (ϵ) since it's used regularly nowadays for this case. Besides this, I didn't change anything from the text. Therefore, any mistakes — which I hope are non-existent or, at least, few — are solely mine, and if someone finds any please contact me via e-mail.

As mentioned, the original book is public domain and, so, freely available in the internet. Therefore, the resulting re-edition of the book at the end of this project has no lucrative ends by any means. This re-edition cannot be used for any commercial purposes. I thought about writting a short story about Paul R. Halmos, since it's common for books to do this specially after the author has deceased. However, I couldn't do a better job than someone just searching on Google and/or Wikipedia. So, for now, I will just say that this book has a special place in my heart. It was one of the first works that introduced and helped me push througth writting proofs. And at the end, I fell in love not only with it, but with mathematics overall. I hope that anybody that found this version can have the same outcome as I did. Now read it, absorb it and forget it.

Matheus Girola Macedo Barbosa - 01/07/2024

Preface by the Author

Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set-theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here.

Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, bowever, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

In set theory "naive" and "axiomatic" are contrasting words. The present treatment might best be described as axiomatic set theory from the naive point of view. It is axiomatic in that some axioms for set theory are stated and used as the basis of all subsequent proofs. It is naive in that the language and notation are those of ordinary informal (but formalizable) mathematics. A more important way in which the naive point view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study. Analogously, a study of geometry might be regarded purely naive if it proceeded on the paper-folding kind of intuition alone; the other extreme, the purely axiomatic one, is the one in which axioms for the various non-Euclidean geometries are studied with the same amount of attention as Euclid's. The analogue of the point of view of this book is the study of just one sane set of axioms with the intention of describing Euclidean geometry only.

Instead of Naive set theory a more honest title for the book would have been An outline of the elements of naive set theory. "Elements" would warn the reader that not everything is here; "outline" would warn him that even what is here needs filling in. The style is usually informal to the point of conversational. There are very few displayed theorems; most of the facts are just stated and followed by a sketch of a proof, very much as they might be in a general descriptive lecture. There are only a few exercises, officially so labelled, but, in fact, most of the book is nothing but a long chain of exercises with hints. The reader should continually ask himself whether he knows how to jump from one hint to the next, and, accordingly, he should not be discouraged if he finds that his reading rate is considerably slower than normal.

This is not to say that the contents of this book are unusually difficult or profound. What is true is that the concepts are very general and very abstract, and that, therefore, they may take some getting used to. It is a mathematical truism, however, that the more generally a theorem applies, the less deep it is. The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it.

P. R. H.

1 The Axiom of Extension

A pack of wolves, a bunch of grapes, or a flock of pigeons are all examples of sets of things. The mathematical concept of a set can be used as the foundation for all known mathematics. The purpose of this little book is to develop the basic properties of sets. Incidentally, to avoid terminological monotony, we shall sometimes say *collection* instead of *set*. The word "class" is also used in this context, but there is a slight danger in doing so. The reason is that in some approaches to set theory "class" has a special technical meaning. We shall have occasion to refer to this again a little later.

One thing that the development will not include is a definition of sets. The situation is analogous to the familiar axiomatic approach to elementary geometry. That approach does not offer a definition of points and lines; instead it describes what it is that one can do with those objects. The semi-axiomatic point of view adopted here assumes that the reader has the ordinary, human, intuitive (and frequently erroneous) understanding of what sets are; the purpose of the exposition is to delineate some of the many things that one can correctly do with them.

Sets, as they are usually conceived, have *elements* or *members*. An element of a set may be a wolf, a grape, or a pigeon. It is important to know that a set itself may also be an element of some other set. Mathematics is full of examples of sets of sets. A line, for instance; is a set of points; the set of all lines in the plane is a natural example of a set of sets (of points). What may be surprising is not so much that sets may occur as elements, but that for mathematical purposes no other elements need ever be considered. In this book, in particular, we shall study set, and sets of sets, and similar towers of sometimes frightening height and complexity — and nothing else. By way of examples we might occasionally speak of sets of cabbages, and kings, and the like, but such usage is always to be construed as an illuminating parable only, and not as a part of the theory that is being developed.

The principal concept of set theory, the one that in completely axiomatic studies is the principal primitive (undefined) concept, is that of *belonging*. If x belongs to A (x is an element of A, x is *contained* in A), we shall write

 $x \in A$.

This version of the Greek letter epsilon is so often used to denote belonging that its use to denote anything else is almost prohibited. Most authors relegate \in to its set-theoretic use forever and use ε when they need the fifth letter of the Greek alphabet.

Perhaps a brief digression on alphabetic etiquette in set theory might be helpful. There is no compelling reason for using small and capital letters as in the preceding paragraph; we might have written, and often will write, things like $x \in y$ and $A \in B$. Whenever possible, however, we shall informally indicate the status of a set in a particular hierarchy under consideration by means of the convention that letters at the beginning of the alphabet denote elements, and letters at the end denote sets containing them; similarly letters of a relatively simple kind denote elements, and letters of the larger and gaudier fonts denote sets containing them. Examples: $x \in A$, $A \in X$, $X \in \mathcal{C}$.

A possible relation between sets, more elementary than belonging, is equality. The equality of two sets A and B is universally denoted by the familiar symbol

$$A = B$$
;

the fact that A and B are not equal is expressed by writing

$$A \neq B$$
.

The most basic property of belonging is its relation to equality, which can be formulated as follows.

Index

 $\begin{array}{ccc} \textbf{belonging, 5} & & \textbf{element, 5} \\ & & \textbf{equality, 6} \\ \textbf{class, 5} & & \textbf{member, 5} \\ \textbf{collection, 5} & & \textbf{set, 5} \\ \end{array}$