0 L m(1))

Department of Mathematics MAL 522 (Statistical Inference) Major Test (II Semester 2014 - 2015)

Maximum Marks: 50

Answer All Questions

Time: 2 hours

1. A random sample of size n is obtained from a unform distribution on the interval (0,1). Show that $\frac{X_{(1)}}{X_{(2)}}$ and (7 marks)

Let $(X_1, X_2, ..., X_n)$ be a random sample from pdf $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. Is $\sum_{i=1}^{n} X_i$ sufficient for θ ? Find a complete sufficient statistic for θ .

The average weight of 25 new born babies is 2.78 kgms with a standard deviation of 0.72 kgms. Construct a 99% confidence interval for the true mean weight of such babies under the assumption that the population follows normal distribution. (6 marks)

It is desired to test the hypothesis $\mu = 0$ against the alternative $\mu > 0$ on the basis of a random sample of size 9 from a normal population with variance $\sigma^2 = 1$. Show that $\overline{X} > 0.78$ is the critical region of size $\alpha = 0.01$.

State Neyman-Pearson lemma. Find Neyman-Pearson size α test of $H_0: \beta = 1$ against $H_1: \beta = \beta_1 (>1)$ based on a sample of size 1 from $f(x,\beta) = \beta x^{\beta-1}, 0 < x < 1$. (3 + 4 marks)

Show that $f(x,\theta) = \frac{\theta}{x^2}$, $x > \theta$, $\theta > 0$ has MLR in $X_{(1)}$ and obtain a UMP test for $H_0: \theta \geq \theta_0$ against $H_1: \theta < \theta_0$.

Suppose we believe that the life time T of light bulbs is exponential distribution with parameter 0.005. We obtain a sample of 150 bulbs, test them, and record their burning time. The data are given in following table. Test the hypothesis that the data represent a sample from an exponential distribution with parameter 0.005 at 1 percent level of significance. ($\mathcal{X}_{3,0.01}^2 = 11.345$)

Events	Number of occurrence
0 < T < 100	47
$100 \le T \le 200$	40
$200 \le T < 300$	35
$(300 \ge 7)^{-7}$	> 3w 28

(6 marks)

8. A vote is to be taken among the students of MAL 250 course in two sections to determine whether a quiz should be conducted. To determine if there is a significant difference in the proportion of two section voters favouring the proposal, a poll is taken. If 24 out of 40 students in section I favour the proposal and 24 out of 50 students in section II favour it, would you agree that the proportion of section I student voters favouring the proposal is higher than the proportion of section II student voters? Use an $\alpha = 0.05$ level of significance.

(6 marks)