Martin Kleinsteuber: Computer Vision

Kapitel 2 – Bildentstehung

5. Bild, Urbild und Cobild

Motivation

Wiederholung

Projektion von Geraden

Gerade im Raum in homogenen Koordinaten

$$L^{(\text{hom})} = \left\{ \mathbf{P}_0^{(\text{hom})} + \lambda \left[v_1, v_2, v_3, 0 \right]^\top \mid \lambda \in \mathbb{R} \right\}$$

Perspektivische Projektion einer Geraden – Beispiel

Bild und Urbild

Definitionen

- Das Bild eines Punktes bzw. einer Geraden ist deren perspektivische Projektion $\Pi_0\mathbf{P}^{(\mathrm{hom})}$ bzw. $\Pi_0L^{(\mathrm{hom})}$
- Das Urbild eines Punktes P bzw. einer Geraden L sind alle Punkte im Raum, die auf den gleichen Bildpunkt bzw. auf die gleiche Gerade in der BE projiziert werden.

$$Urbild(\mathbf{P}) = \{ \mathbf{Q} \in \mathbb{R}^3 \mid \Pi_0 \mathbf{Q}^{(\text{hom})} \sim \Pi_0 \mathbf{P}^{(\text{hom})} \}$$

$$Urbild(L) = \bigcup_{\mathbf{P} \in L} Urbild(\mathbf{P})$$

Bild und Urbild

Eigenschaften

 Urbilder von Punkten sind Geraden durch den Ursprung

 Urbilder von Geraden sind Ebenen durch den Ursprung

Exkurs: Lineare Algebra

Erzeugnis und Orthogonales Komplement

- Erzeugnis von Spaltenvektoren \mathbf{a}_i einer Matrix $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m] \in \mathbb{R}^{n \times m}$ $\mathrm{span}(\mathbf{A}) = \left\{ \sum_{i=1}^m \lambda_i \mathbf{a}_i \, | \, \lambda_i \in \mathbb{R} \right\}$
- lacktriangle Das Erzeugnis ist ein Untervektorraum vom \mathbb{R}^n

$$\operatorname{span}(\mathbf{A})^{\perp} = \{ \mathbf{v} \in \mathbb{R}^n \mid \langle \mathbf{a}_i, \mathbf{v} \rangle = 0, i = 1, \dots, m \}$$

Exkurs: Lineare Algebra

Dimension, Kern und Rang

- Dimension eines Untervektorraums:
 Anzahl der Elemente eines minimalen Erzeugendensystems
- Rang einer Matrix ist Dimension des Erzeugnisses der Spalten
- Kern einer Matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$

$$Ker(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^m \, | \, \mathbf{A}\mathbf{x} = 0 \}$$

- $\operatorname{Ker}(\mathbf{A})$ ist Untervektorraum im \mathbb{R}^m
- Dimensionssatz:

$$\mathbf{A} \in \mathbb{R}^{n \times m}$$
$$\operatorname{Rang}(\mathbf{A}) + \dim \operatorname{Ker}(\mathbf{A}) = m$$

Cobild

Definition

 Das Cobild von Punkten oder Geraden ist das orthogonale Komplement des Urbildes

Bild, Urbild und Cobild

Zusammenhänge

Äquivalente Darstellung von Bild, Urbild und Cobild

	Bild	Urbild	Cobild
Punkt	$\operatorname{span}(\mathbf{P})\cap\operatorname{BE}$	$\mathrm{span}(\mathbf{P})$	$\mathrm{span}(\mathbf{\hat{P}})$
Linie	$\operatorname{span}(\boldsymbol{\hat{\ell}})\cap\operatorname{BE}$	$\operatorname{span}(\boldsymbol{\hat{\ell}})$	$\operatorname{span}(\boldsymbol{\ell})$

Cobild

Nützliche Eigenschaften

• Sei L eine Gerade im Raum mit $\ell \in \operatorname{Cobild}(L)$, und sei $\mathbf x$ das Bild eines Punktes auf dieser Linie. Dann gilt:

$$\mathbf{x}^{\top} \boldsymbol{\ell} = \boldsymbol{\ell}^{\top} \mathbf{x} = 0$$

• Seien \mathbf{x}_1 und \mathbf{x}_2 Bilder zweier Punkte im Raum. Dann gilt für das Cobild ℓ der Verbindungsgeraden:

$$\ell \sim \mathbf{x}_1 \times \mathbf{x}_2$$

Cobild

Nützliche Eigenschaften

Seien \(\ell_1\) und \(\ell_2\) die Cobilder zweier Geraden.
Dann gilt f\(\text{ur}\) den Schnittpunkt \(\text{x}\)
der Bilder dieser Geraden:

$$\mathbf{x} \sim \boldsymbol{\ell}_1 \times \boldsymbol{\ell}_2$$

Kollinearität von Bildpunkten

Untersuchung mit Hilfe des Ranges

• Die Bildpunkte x_1, \ldots, x_n liegen genau dann auf einer Linie (sind kollinear), wenn

$$\operatorname{Rang}([\mathbf{x}_1,\ldots,\mathbf{x}_n]) \leq 2$$

Allgemein sind für $\mathbf{A} \in \mathbb{R}^{n \times n}$ äquivalent:

- $\det \mathbf{A} = 0$
- $\operatorname{Rang}(\mathbf{A}) < n$

Kollinearität von Bildpunkten

Untersuchung mit Hilfe des Ranges

■ Die Bildpunkte $x_1, ..., x_n$ liegen genau dann auf einer Linie (sind kollinear), wenn

$$\operatorname{Rang}([\mathbf{x}_1,\ldots,\mathbf{x}_n]) \leq 2$$

 Drei Bildpunkte sind genau dann kollinear, wenn

$$\det\left[\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\right]=0$$

Allgemein sind für $\mathbf{A} \in \mathbb{R}^{n \times n}$ äquivalent:

- $\det \mathbf{A} = 0$
- $\operatorname{Rang}(\mathbf{A}) < n$

Eigenwerte und Eigenvektoren

Diagonalisierbarkeit von Matrizen

• Eigenwerte und Eigenvektoren einer Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 falls $\exists \mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$

Eigenvektoren sind nur bis auf Skalierung bestimmt

$$\alpha \mathbf{A} \mathbf{v} = \alpha \lambda \mathbf{v}$$

• Manche Matrizen $\mathbf{A} \in \mathbb{R}^{n \times n}$ sind diagonalisierbar, d.h.

$$\exists \mathbf{S} \in \mathbb{R}^{n \times n}, \mathbf{S} \text{ invertierbar} \qquad \mathbf{D}_A = \mathbf{S}^{-1} \mathbf{A} \mathbf{S}$$

 Reelle symmetrische Matrizen sind diagonalisierbar und haben zueinander orthogonale Eigenvektoren, d.h.

$$\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n], \ \mathbf{v}_i \ \text{EV von } \mathbf{A}$$
 $\mathbf{D}_A = \mathbf{V}^{\top} \mathbf{A} \mathbf{V}$

Positiv (semi-)definite Matrizen

Orthogonale Diagonalisierbarkeit

- Eine symmetrische Matrix $\mathbf{A} = \mathbf{A}^{\top}$ heißt positiv (semi-)definit, wenn $\mathbf{x}^{\top}\mathbf{A}\mathbf{x} \geq 0, \mathbf{x} \neq \mathbf{0}$
- Die Eigenwerte positiv (semi-)definiter Matrizen sind positiv (nicht negativ)
- Also können positiv (semi-)definite Matrizen orthogonal diagonalisiert werden, d.h.

$$\lambda_i \geq 0, \, \forall \, \lambda_i \, \text{EW von } \mathbf{A}$$

$$\mathbf{D}_A = \mathbf{V}^{\top} \mathbf{A} \mathbf{V} \qquad \mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n], \ \mathbf{v}_i \ \mathrm{EV} \ \mathrm{von} \ \mathbf{A}$$

Kollinearität von Bildpunkten

Untersuchung mit Hilfe der Eigenwerte

• Die Bildpunkte x_1, \ldots, x_n liegen genau dann auf einer Linie (sind kollinear), wenn

$$\operatorname{Rang}([\mathbf{x}_1,\ldots,\mathbf{x}_n]) \leq 2$$

Drei Bildpunkte sind genau dann kollinear, wenn

$$\det\left[\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\right]=0$$

■ Die Bildpunkte x_1, \dots, x_n sind genau dann kollinear, wenn der kleinste Eigenwert von

$$\mathbf{M} = \sum_{i=1}^{n} \omega_i \mathbf{x}_i \mathbf{x}_i^{\top}$$

gleich null ist $\forall \omega_i > 0$

Aspekte bei der praktischen Umsetzung Ungenauigkeiten durch Diskretisierung / Rauschen

- In der Praxis sind die Bedingungen
 - $\bullet \det [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3] = 0$
 - Kleinster Eigenwert von $\mathbf{M} = \sum_{i=1}^n \omega_i \mathbf{x}_i \mathbf{x}_i^{\top}$ ist gleich null nicht erfüllt
- Verwendung von Schwellwerten

Zusammenfassung

- Urbilder von Punkten und Geraden sind Untervektorräume
- Cobild ist das orthogonale Komplement des Urbildes
- Darstellung von Linien im Bild mittels Cobildes
- Kriterien zur Kollinearität von Punkten.
- Bild, Urbild und Cobild sind nützlicher Formalismus zum Erklären von einfachen geometrischen Zusammenhängen von Punkten und Geraden im Raum und auf der Bildebene