

NoAxiom OS: 设计与实现

前言

- 从零 自主设计操作系统内核
- 41229 行 Rust 代码, 1116 次commit记录
- 初赛阶段基础测例满分
- 现场赛物理上板综合排名第 1

前言

一年开发周期: 2024/9/1 - 2024/8/21

Part.01

系统架构

松-州電子科技大学

HANGZHOU DIANZI UNIVERSITY

内核层

硬件抽象层

机器层

Part.02

硬件抽象层

为了解耦: 硬件抽象层

内核视角: 高度解耦

硬件视角: 消除架构差异

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

林州電子科技大学

林州電子科找大学

HANGZHOU DIANZI UNIVERSITY

杭州電子科技大学

特判架构行为: 逻辑复杂,维护困难

```
#[cfg(target_arch = "riscv64")]
copy_nonoverlapping(&value as *const us
#[cfg(target_arch = "loongarch64")]
copy_to_user(to: opt_addr, from:
   *opt_len = len as u32;
;
```

统一HAL接口: 逻辑精简,易于维护

```
if self.is_null() {
    warn!("[write] write null pointer");
    return Err(Errno::EFAULT);
}
match Arch::check_write(self.addr()) {
    Ok(()) => Ok(()),
    Err(trap_type: TrapType) =>
        match trap_type {
```


杭州電子科技大学

HANGZHOU DIANZI UNIVERSITY

已发布于Github

期待开源为社区带来新的活力

Part.03

进程调度

为了性能:多级实时性调度

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

实时队列 提高响应速度

为了性能:多级实时性调度

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

单线程响应速度提升 10.27倍! 多线程响应速度提升8.96倍!

Part.04

文件系统与驱动

硬件抽象层

进程调度

文件系统与驱动

4.1 文件系统框架

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

硬件抽象层

进程调度

文件系统与驱动

林州電子科技大学

原创潮汐页缓存

动态维护总容量

4.2 内存卫士: 页缓存

传统设计:

2024年一等奖Phoenix-OS

若文件一旦存在于VFS树中, Pagecache将**永久占用**内存空间 直到用户删除

潮汐页缓存设计: 2025年NoAxiom-OS

永远保证页缓存内存占用在阈值之内

4.2 内存卫士: 页缓存

传统设计:

2024年特等奖Phoenix-OS

若文件一旦存在于VFS树中, Pagecache将**永久**占用内存空间 直到用户删除

潮汐页缓存设计: 2025年NoAxiom-OS

永远保证页缓存内存占用在阈值之内 , 平均内存占用全程不超过30%!

杭州電子科技大学

HANGZHOU DIANZI UNIVERSITY

Qemu平台本地测试结果

无页缓存

I/O-Zone测试中,吞吐量提升至原先的21倍!

在决赛排行榜中,该测例NoAxiom位列<mark>前二</mark>

吞吐量

提升

4.3 性能基石: 块缓存

无块缓存

4.4 性能底座: 异步驱动&异步EXT4文件系统

Fork开源virtio-driver仓库 实现异步特征块设备驱动 支持通过外部中断唤醒!

改动1600+行

Fork官方推荐开源仓库ext4_rs 实现异步特征EXT4文件系统

提交11次, 累计改 动1000+行

4.4 性能底座: 异步驱动&异步EXT4文件系统

在初赛文档设计的<mark>高并发</mark>大文件 传输场景下

基于异步特征的FS在页缓存外具有200%以上I/O性能提升

Part.05

网络模块

5.1 网络模块概述

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

支持TCP、UDP套接字

硬件抽象层

进程调度

文件系统与驱动

5.2 网络高并发示例

林州電子科技大学

HANGZHOU DIANZI UNIVERSITY

传统设计: 阻塞式等待连接

无栈协程异步调度:

Part.06

总结

6.1 与参考作品对比和优势

NoAxiom	Pantheon	优势
硬件抽象层 支持双架构	单Riscv架构	令系统具备 跨架构 运行稳定性
多级实时调度队列	朴素FIFO调度	提升 实时响应 速度
异步网络模块 全局端口管理器实现 端口复用	异步网络模块	更高的网络数据处理的 并发性能 更高的CPU的 有效使用率
全局定时器队列 IO多路复用 异步文件系统及驱动	同步文件系统 及驱动	更高的系统的 实时性能 高并发场景拥有 更高吞吐率

未来展望

- · 完善NoAxiom-HAL库,引入KVM虚拟化功能
- 添加完整的图形化界面,提升用户交互体验
- 完善多核一致性维护,添加众核调度器支持
- ·探索异构融合计算技术,实现软硬协同加速

追打追!