

Presented by Dean Banerjee Prepared by Liam Keese

Phase lock loop (PLL) overview

Input sources

- Crystal oscillator (XO)
- Temperature compensated crystal oscillator (TCXO),
- Oven controlled crystal oscillator (OCXO),
- Clock output from another device

Phase frequency detector/charge pump

Phase detector/charge pump operation

- High Impedance (tri-state) if output frequency/phase is correct (within tolerances)
- Sources Current if output frequency/phase is too low
- Sinks Current if output frequency/phase is too high

Loop filter

Brief overview of loop dynamics

Choosing loop bandwidth

 \bullet Choose optimal jitter loop bandwidth to be BW_JIT to minimize area under the curve

Choosing loop bandwidth

Design Goal	Bandwidth
Minimize Jitter	$BW = BW_{JIT}$
Minimize Phase Noise at offset < BW _{JIT}	BW > BW _{JIT}
Minimize Phase Noise at offset > BW _{JIT}	BW < BW _{JIT}
Minimize Lock Time	$BW > BW_{JIT}$
Minimize Spurs	$BW < BW_{JIT}$

To find more technical resources and search products, visit ti.com/clocks

1. True or False:

The reference input frequency is provided by VCO.

1. True or False:

The reference input frequency is typically fixed frequency and provided by a stable reference source such as crystal oscillator.

2. Choose one:

The phase detector will

- (a) Sink and source current to the loop filter
- (b) Sample the phase error between the R and N counter
- (c) Provide the output frequency

2. Choose one:

The phase detector will

- (a) Sink and source current to the loop filter
- (b) Sample the phase error between the R and N counter
- (c) Provide the output frequency

3. True or False:

Choose loop bandwidth to be the point where VCO noise is equal to PLL noise to minimize jitter.

3. True or False:

Choose loop bandwidth to be the point where VCO noise is equal to PLL noise to minimize jitter.

4. Choose all that apply:

When choosing a loop bandwidth, which of these tradeoff are correct?

- a) To reduce lock time, increase the loop bandwidth
- b) To reduce spurious noise, increase the loop bandwidth
- c) To reduce phase noise at larger frequency offsets, reduce the loop bandwidth

4. Choose all that apply:

When choosing a loop bandwidth, which of these tradeoff are correct?

- a) To reduce lock time, increase the loop bandwidth
- b) To reduce spurious noise, increase the loop bandwidth
- c) To reduce phase noise at larger frequency offsets, reduce the loop bandwidth

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com