Complex Fourier Series

Hannah Ellis

June 2017

Contents

Der	rivation	5
1.1	The Series	ļ
1.2	An interesting result	ļ
	1.2.1 Summary	,
1.3	Extracting cooefficents	-
	1.3.1 Summary	8
Soli	utions to a few common functions	(
	1.1 1.2 1.3	1.3 Extracting cooefficents

4 CONTENTS

Chapter 1

Derivation

1.1 The Series

For a function f(x) with range $-\frac{a}{2} < x < \frac{a}{2}$ we assume that it can be reproduced by a sum of complex exponentials of the form

$$exp(ik_nx) (1.1)$$

Where $k = \frac{2n\pi}{a}$ so that n periods of a complex exponential fit's into the range $-\frac{a}{2} < x < \frac{a}{2}$. Along with complex coefficients for each term, we get the equation

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{2ni\pi}{a}x\right)$$
 (1.2)

This is the complex Fourier series.

1.2 An interesting result

To calculate any particular coefficient, it will be important to evaluate the following integral.

$$I_{nm} = int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2in\pi}{a}x\right) \exp\left(\frac{-2im\pi}{a}x\right) dx$$
 (1.3a)

$$= int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2i(n-m)\pi}{a}x\right) dx \tag{1.3b}$$

letting p = (n - m)

$$I_{nm} = int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2ip\pi}{a}x\right) dx \tag{1.3c}$$

$$= \frac{a}{2ip\pi} \left[\exp\left(\frac{2ip\pi}{a}x\right) \right]_{-\frac{a}{2}}^{\frac{a}{2}} \tag{1.3d}$$

$$= \frac{a}{2ip\pi} \left[\exp\left(\frac{2ip\pi}{a}\frac{a}{2}\right) - \exp\left(-\frac{2ip\pi}{a}\frac{a}{2}\right) \right]$$
 (1.3e)

$$= \frac{a}{2ip\pi} \left[\exp\left(ip\pi\right) - \exp\left(-ip\pi\right) \right] \tag{1.3f}$$

using $\exp(ix) = \cos(x) + i\sin(x)$

$$I_{nm} = \frac{a}{2ip\pi} \left[\cos(p\pi) + i\sin(p\pi) - (\cos(p\pi) - i\sin(p\pi)) \right]$$
 (1.3g)

$$= \frac{a}{2ip\pi} \left[\cos(p\pi) + i\sin(p\pi) - \cos(p\pi) + i\sin(p\pi) \right]$$
 (1.3h)

$$= \frac{a}{2ip\pi} \left[2i\sin(p\pi) \right] \tag{1.3i}$$

$$= \frac{a}{p\pi} \sin(p\pi) \tag{1.3j}$$

$$= a \frac{\sin(p\pi)}{p\pi} \tag{1.3k}$$

$$= a \operatorname{sinc}(p\pi) \tag{1.31}$$

$$= a\delta_{nm} \tag{1.3m}$$

Figure 1.1: plot of $sinc(x\pi)$

7

1.2.1 Summary

$$I_{nm} = \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2in\pi}{a}x\right) \exp\left(\frac{-2im\pi}{a}x\right) dx = a\delta_{nm}$$

Where

$$\delta_{nm} = \left\{ \begin{array}{ll} 1 & n = m \\ 0 & n! = m \end{array} \right.$$

1.3 Extracting cooefficents

Multiplying equation 1.2 by $\exp\left(-\frac{2mi\pi}{a}\right)$ and integrating over the range $-\frac{a}{2} < x < \frac{a}{2}$ gives

$$\int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \exp\left(-\frac{2mi\pi}{a}\right) dx = \int_{-\frac{a}{2}}^{\frac{a}{2}} \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{2ni\pi}{a}x\right) \exp\left(-\frac{2mi\pi}{a}\right) dx$$

$$= \sum_{n=-\infty}^{\infty} c_n \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2ni\pi}{a}x\right) \exp\left(-\frac{2mi\pi}{a}\right) dx$$

$$= \sum_{n=-\infty}^{\infty} c_n \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2ni\pi}{a}x\right) \exp\left(-\frac{2mi\pi}{a}\right) dx$$

$$= \sum_{n=-\infty}^{\infty} c_n \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left(\frac{2ni\pi}{a}x\right) \exp\left(-\frac{2mi\pi}{a}\right) dx$$
(1.4b)

$$=\sum_{n=-\infty}^{\infty} c_n I_{nm} \tag{1.4c}$$

$$=\sum_{n=-\infty}^{\infty}c_na\delta_{nm}$$
(1.4d)

$$= ac_m (1.4e)$$

Taking the result from equation 1.4 and rearranging gives us

$$c_m = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \exp\left(-\frac{2mi\pi}{a}\right) dx \tag{1.5}$$

1.3.1 Summary

Assuming that a function on the range $-\frac{a}{2} < x < \frac{a}{2}$ can be expressed as a sum of complex exponentials of the form

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{2ni\pi}{a}x\right)$$

The value of a cooefficent c_n is given by the following intergral

$$c_n = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \exp\left(-\frac{2ni\pi}{a}\right) dx$$

Chapter 2

Solutions to a few common functions