Amplificadores de Audio Trabajo práctico 2

Problema 11

Cátedra: CIRCUITOS ELECTRÓNICOS II

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

Para el amplificador de audiofrecuencias, de gran señal, con par complementario de salida, alimentado con $\pm V$ cc $= \pm 15$ V, y mostrado en la figura, se requiere:

- Dibujar un diagrama en bloques del circuito.
- Determinar el tipo y la topología de realimentación.
- Calcular la ganancia de tensión del amplificador.
 - Calcular el potencial estático en los puntos indicados: A, B, C, D, E y F.
 - Calcular la P_{smáx}, P_{Dmáx} y el pico de tensión de la señal de entrada, para obtener la P_{smáx}.
 - Determinar el valor de capacidad necesario para tener una frecuencia cuadrantal inferior de 10 Hz.
 - Calcular la θ D-A necesaria para que el circuito trabaje a una temperatura ambiente de 35 °C.

Cuestionario:

¿Qué ventajas tiene la configuración en clase AB con respecto a los rendimientos de potencia?

¿A qué se debe la distorsión por cruce? ¿De qué manera se puede eliminar?

a) Dibujar un diagrama en bloques del circuito.

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

b) Determinar el tipo y la topología de realimentación.

4

d) Calcular el potencial estático en los puntos A y B

Suponiendo a la corriente I_{BT1-2} despreciable $V_{FT1} = -0.6V$

Suponiendo al diodo zener bien polarizado

$$V_{R3} = 9.4V$$

$$\Rightarrow I_{EE} = \frac{V_{R3}}{R_3} = 2mA$$

$$\Rightarrow I_{R4} = \frac{5V}{R_4} = 3.3mA \Rightarrow I_{DZ} = 1.3mA$$

$$I_{Q1} = I_{Q2} = 1mA \qquad V_{CT1} = 14.32V$$

$$I_{BT1} = \frac{1mA}{H_{FE}} = 3.3\mu A$$

$$V_A = V_B = 33mV \cong 0V$$

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

d) Calcular el potencial estático en los puntos D y F

$$V_F = 0V$$

$$V_D = V_F - 1V = -1V$$

$$V_{BT5} = (1.2 - 15)V = -13.8V$$

$$V_{ET5} = (-13.8 - 0.6)V = -14.4V$$

$$I_{ET5} \cong I_{CT5} = \frac{0.6}{120}A = 5mA$$

Fac. Ingeniería UNLP

6

d) Calcular el potencial estático en los puntos C y E

$$V_{ET3} = 15V - 5mA \cdot 10\Omega = 14.95V$$

$$V_{BT3} = (14.95 - 0.6)V = 14.35V$$

$$V_E = 14.35V \cong 14.32V$$

$$V_C = V_F + 1V = 1V$$

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

Fuente de prepolarización de los transistores de salida

$$Suponemos$$
 $I_{R8} >> I_{BT4}$

$$\Rightarrow I_{R8} = I_{R7} = \frac{0.7V}{2.2k\Omega} = 0.318mA$$

$$I_{CT4} = (5 - 0.318)mA = 4.68mA$$

$$I_{BT4} = \frac{4.68mA}{h_{FE}} = 15.6\mu A$$

$$I_{BT4} = 15.6 \mu A \ll 0.3 mA = I_{R8}$$

$$\overline{V}_{CD} = I_{R8}(R_7 + P_1 + R_8) = 2.1V$$

$$\underline{V}_{CD} = I_{R8}(R_7 + R_8) = 1.4V$$

8

e) 1 - Calcular la Potencia de salida máxima.

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

e) 2 - Calcular la máxima potencia disipada por los transistores de salida.

Definimos a $R'_{L} = R_{L} + 0.39\Omega$

La potencia entregada a esta es:

$$P_S' = \frac{\hat{V}'ca^2}{2 R_L'}$$

La potencia tomada de la fuente es:

$$Pcc = Vcc \cdot Icc = Vcc \frac{2 \hat{V}'ca}{\pi R'_{L}}$$

potencia disipada por los transistores es:

$$_{l} = P_{CC} - P_{S}' = \frac{2 \, Vcc}{\pi} \frac{\hat{V}'ca}{R_{L}'} - \frac{\hat{V}'ca^{2}}{2 \, R_{L}'}$$

Como buscamos la máxima potencia disipada por los transistores, hacemos:

$$\frac{\partial P_d}{\partial \hat{V}'ca} = \frac{2 \ Vcc}{\pi \ R'_L} - \frac{\hat{V}'ca}{R'_L} = 0$$

10

Fac. Ingeniería UNLP

La tensión pico para la máxima potencia disipada por los transistores es:

$$\Rightarrow \hat{V}'ca_{Pdm\acute{a}x} = \frac{2 \, Vcc}{\pi}$$

La máxima potencia disipada por los transistores es:

$$P_{D\,m\acute{a}x} = \frac{2\,Vcc}{\pi} \frac{2\,Vcc}{\pi} \frac{1}{R_L'} - \frac{4\,Vcc^2}{2\pi^2 R_L'}$$

$$\Rightarrow P_{D\,m\acute{a}x} = \frac{2\,Vcc^2}{\pi^2 R_L'}$$

$$P_{D\,m\acute{a}x} = 10,4W$$

Cálculo del mínimo rendimiento de la etapa.

Para ese punto de funcionamiento:

$$Pcc = Vcc \cdot Icc = Vcc \frac{4 \ Vcc}{\pi^2 \ R'_L} = 20,77W$$

La potencia sobre la carga será:

$$Ps = Vef \cdot Ief = \frac{\hat{V}ca^2}{2 R_I}$$

$$Ps = \left(\frac{2 \cdot Vcc}{(1,1) \cdot \pi}\right)^2 \cdot \frac{1}{2R_L} = 9,42W$$

$$\eta\% = \frac{9,42}{20,77} \cdot 100 = 45\%$$

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

3 - Calcular el pico de tensión de la señal de entrada, para obtener la máxima e)potencia de salida.

 $\hat{Ve} = \frac{\hat{Vca}}{4\pi}$ $= \frac{(R_{11} + R_2)}{R_2} = \frac{(10 \ K\Omega + 1.2 \ K\Omega)}{1.2 \ K\Omega}$

 $\hat{V}e = \frac{10,54}{9.33}V = 1,13V$

Ve = 1.13V

Fac. Ingeniería UNLP

12

f) Determinar el valor de capacidad necesaria para tener una frecuencia cuadrantal inferior de 10 Hz.

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

c) Calcular el θ disipador-ambiente necesario para que el circuito trabaje a una temperatura ambiente de 35 °C.

Calculo de la ganancia de tensión de la primer etapa.

$$G_{1}(s) = \frac{a_{1}}{\left(1 + \frac{s}{p_{1}}\right)}$$

$$a_{1} = -g_{m1}R_{5} \qquad g_{m1} = \frac{I_{C}}{V_{T}}$$

$$I_{T1} = 1mA \Rightarrow g_{m1} \approx 0.04s$$

$$a_{1} = -0.04s \cdot 680\Omega$$

$$a_{1} = -27.2$$

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

Calculo de la ganancia de tensión de la segunda etapa.

$$r_{dT3} = r_{dT4} + r_{dT5} // r_{dref}$$

$$G_2(s) = \frac{a_2}{\left(1 + \frac{s}{p_2}\right)}$$

$$a_2 = -\frac{R_{colectorT3}}{R_{emisorT3}}$$

 $R_{colectorT3} = r_d \ de \ colector$

$$r_{dT3} = r_{dT4} + r_{dT5} // r_{dref}$$

16

Calculo de la ganancia de tensión de la segunda etapa.

$$g_{m5} = \frac{I_C}{V_T}$$
 $hie \cong \frac{hfe}{g_m} = \frac{300}{0.2} = 1500\Omega$ $(R_{10} // hie) \cong R_{10}$

$$vs = \left(is - hfe \cdot ib\right) \frac{1}{ho} + is \left(R_{10} // hie\right) = is \left[\frac{1}{ho} + \left(R_{10} // hie\right)\right] - ib \frac{hfe}{ho}$$

$$ib = -is \frac{R_{10}}{hie}$$
 $\Rightarrow vs = is \left(R_{10} + \frac{1}{ho} + \frac{R_{10}}{hie} \frac{hfe}{ho} \right)$

$$r_{dT5} = \frac{vs}{is} = \frac{1}{ho} (1 + R_{10} \cdot g_m)$$
 $\Rightarrow r_{dT5} \cong 5M\Omega$

Fac. Ingeniería UNLP

Trabajo práctico Nº 2 Problema Nº11

17

CIRCUITOS ELECTRÓNICOS II

Calculo de la ganancia de tensión de la segunda etapa.

$$r_{dT4} = \frac{v_s}{i_s} \quad si: \quad i_{R8} << h_{fe} i_b \implies i_s \cong h_{fe} i_b$$

$$i_b = \frac{v_e}{h_{ie}} \quad y \quad v_e = \left[\frac{v_s}{(R_8 // h_{ie}) + R_7}\right] (R_8 // h_{ie})$$

$$\implies i_s \cong h_{fe} \frac{v_e}{h_{ie}} = \frac{h_{fe}}{h_{ie}} \left[\frac{v_s}{(R_8 // h_{ie}) + R_7}\right] (R_8 // h_{ie})$$

$$\implies r_{dT4} = \frac{v_s}{i_s} = \frac{h_{ie}}{h_{fe}} \left[\frac{(R_8 // h_{ie}) + R_7}{(R_8 // h_{ie})}\right]$$

$$r_{dT4} = \frac{1}{g_m} \left[\frac{(2200 // 1500) + 4400}{(2200 // 1500)}\right]$$

$$r_{dT4} = \frac{6}{0.2} \Omega \implies r_{dT4} = 30\Omega$$

Fac. Ingeniería UNLP

Calculo de la ganancia de tensión de la segunda etapa.

$$G_{2}(s) = \frac{a_{2}}{\left(1 + \frac{s}{p_{2}}\right)} \qquad a_{2} = -\frac{R_{colectorT3}}{R_{emisorT3}} \qquad R_{colectorT3} = r_{d} \text{ de colector}$$

$$r_{dT3} = r_{dT4} + r_{dT5} / / r_{dref} = 30\Omega + 5M\Omega / / 4K\Omega \cong 4K\Omega$$
 $a_2 = -\frac{4000}{10} = -400$

Calculo de la ganancia de tensión de la tercera etapa.

$$G_3(s) = \frac{a_3}{\left(1 + \frac{s}{p_3}\right)} \implies \frac{G_3(s) = \frac{1}{\left(1 + \frac{s}{p_3}\right)}}{\left(1 + \frac{s}{p_3}\right)}$$

Calculo de la ganancia de tensión total a lazo abierto.

$$G(s) = \frac{-27.2}{\left(1 + \frac{s}{p_1}\right)} \cdot \frac{-400}{\left(1 + \frac{s}{p_2}\right)} \cdot \frac{1}{\left(1 + \frac{s}{p_3}\right)} \qquad G(s) = \frac{10880}{\left(1 + \frac{s}{p_1}\right) \cdot \left(1 + \frac{s}{p_2}\right) \cdot \left(1 + \frac{s}{p_3}\right)}$$

Fac. Ingeniería UNLP

19

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

Ganancia y fase para un amplificador de 3 polos.

Polo dominante

Utilizando el efecto Miller en el transistor T3, ubicamos un polo dominante en alta frecuencia:

$$p_{Hd} = -\frac{1}{R_{tot}} \cdot \frac{1}{C_{\pi} + (C_{\mu} + 47 \, pf)(1 + g_m R_L)}$$

Con lo que la ganancia de tensión total a lazo abierto queda:

$$G(s) = \frac{10880}{\left(1 + \frac{s}{p_{H_{DOMINANTE}}}\right)}$$

21

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

Ganancia y fase para un amplificador de 3 polos compensado.

$$H(s) = \frac{R_2 + \frac{1}{sC_1}}{R_{11} + R_2 + \frac{1}{sC_1}}$$

$$H(s) = \frac{sC_1R_2 + 1}{(R_{11} + R_2)sC_1 + 1}$$

$$H(s) = \frac{R_2}{(R_{11} + R_2)} \left(s + \frac{1}{R_2 C_1} \right)$$
$$\left(s + \frac{1}{(R_{11} + R_2)C_1} \right)$$

$$Como ... C_1 = 22 \mu F$$

$$z_L = -\frac{1}{R_2 C} = 37 \Rightarrow 6Hz$$

$$p_L = -\frac{1}{(R_{11} + R_2)C} = 4 \Rightarrow 0.63Hz$$

23

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Problema Nº11 Trabajo práctico Nº 2

Calculo de la ganancia de tensión del amplificador.

$$T(s) = \frac{G(s)}{1 + G(s) \cdot H(s)}$$

$$T(s) = \frac{a_{Total} \left(\frac{1}{1 + \frac{s}{p_{Hd}}}\right)}{1 + a_{Total} \left(\frac{1}{1 + \frac{s}{p_{Hd}}}\right) \cdot \left(\frac{1 + \frac{s}{z_L}}{1 + \frac{s}{p_L}}\right)} = \frac{a_{Tot} \left(1 + \frac{s}{p_L}\right)}{\left(1 + \frac{s}{p_{Hd}}\right) \left(1 + \frac{s}{p_L}\right) + a_{Tot} \left(1 + \frac{s}{z_L}\right)}$$

$$T(s) = \frac{a_{Tot} \left(1 + \frac{s}{p_L}\right)}{\left(1 + \frac{s}{p_{Hd}}\right) \left(1 + \frac{s}{p_L}\right) + a_{Tot} \left(1 + \frac{s}{z_L}\right)} = \frac{a_{Tot} \left(1 + \frac{s}{p_L}\right)}{s^2 \left(\frac{1}{p_{Hd} \cdot p_L}\right) + s \left(\frac{a_{Tot}}{z_L} + \frac{1}{p_L} + \frac{1}{p_{Hd}}\right) + (a_{Tot} + 1)}$$

Despreciando los términos que suman en los paréntesis frente a atot ,multiplicando por pl.phd y calculando luego las raíces

$$T(s) = \frac{\left(a_{Tot} \cdot p_L \cdot p_{Hd}\right)\left(1 + \frac{s}{p_L}\right)}{s^2 + s\left(\frac{a_{Tot} \cdot p_{Hd} \cdot p_L}{z_L}\right) + \left(a_{Tot} \cdot p_L \cdot p_{Hd}\right)} = \frac{\left(a_{Tot} \cdot p_L \cdot p_{Hd}\right)\left(1 + \frac{s}{p_L}\right)}{\left(s + \frac{a_{Tot} \cdot p_{Hd} \cdot p_L}{z_L}\right) + \left(s + z_L\right)}$$

Calculo de la ganancia de tensión del amplificador.

Acomodando la ecuación para interpretarla a frecuencias muy bajas

$$T(s) = \frac{\left(1 + \frac{s}{p_L}\right)}{\left(1 + \frac{s}{z_L}\right)\left(1 + \frac{s}{(p_{Hd} \cdot p_L \cdot a_{Total}) \div z_L}\right)}$$

Acomodando la ecuación para interpretarla a frecuencias medias

$$T(s) = \frac{\frac{z_L}{p_L}(s + p_L)}{\left(s + z_L\right)\left(1 + \frac{s}{(p_{Hd} \cdot p_L \cdot a_{Total}) \div z_L}\right)}$$

La ganancia de tensión a frecuencias medias es:

$$A_{V} = \frac{z_{L}}{p_{L}} - \frac{\frac{1}{R_{2}C}}{\frac{1}{(R_{11} + R_{2})C}} = \frac{(R_{11} + R_{2})}{R_{2}} \Rightarrow$$

$$A_V = \frac{(R_{11} + R_2)}{R_2} = \frac{(10 K\Omega + 1.2 K\Omega)}{1.2 K\Omega} \Rightarrow A_V = 9.33$$

$$A_V = 9.33$$

Fac. Ingeniería UNLP

Fac. Ingeniería UNLP

CIRCUITOS ELECTRÓNICOS II

Trabajo práctico Nº 2 Problema Nº11

25

Ganancia y fase para un amplificador compensado y realimentado. $20\log_{10}|G(s)|$ -6 dB/octava Ganancia de lazo Ganancia de lazo = 0 dB $20\log_{10}|T(s)|$ -12 dB/octava Ph $a(j\omega)$ -90° -135° $|p_{HLC}| = p_{Hd} \left(\frac{p_L a_{Total}}{z_T} \right)$ -180° -270° Fase de la Ganancia de lazo -360°