

Termodinâmica

Prof° Me. Flávio Olimpio Sanches Neto

Por que estudar a 1° lei da termodinâmica?

\equiv	Google Académico	first law of thermodynamics	Q	
•	Artigos	Cerca de 1 100 000 resultados (0,10 seg)		
	Sempre Desde 2022 Desde 2021 Desde 2018 Intervalo específico	First law of thermodynamics and Friedm Robertson-Walker universe RG Cai, SP Kim - Journal of High Energy Physics, 2009 Applying the first law of thermodynamics to the apparamic of the second assuming the geometric entropy given by ☆ Guardar 꾀 Citar Citado por 740 Artigos relacions	5 - iopscience.iop.org rent horizon of a Friedmann-Robertson-Walker a quarter of the apparent	[PDF] iop.org
	Ordenar por relevância Ordenar por data Qualquer idioma Pesquisar páginas em Inglês	Student interpretations of equations relate LC Hadfield, <u>CE Wieman</u> - Journal of Chemical Education. thermodynamics and kinetics, interpret equations at thermodynamics interpret the equations for the first ☆ Guardar □ Citar Citado por 66 Artigos relacion	on, 2010 - ACS Publications ssociated with the first law of law of thermodynamics , the mathematical	[PDF] acs.org Full View
Arti	Qualquer tipo Artigos de revisão incluir patentes	Childhood obesity: behavioral aberration of First Law of Thermodynamics RH Lustig - Nature clinical practice Endocrinology & me The First Law of Thermodynamics is routinely inter Accordingly, the First Law of Thermodynamics can be	etabolism, 2006 - nature.com rpreted to imply that weight gain is	[PDF] psu.edu Full View
	✓ incluir citações	☆ Guardar 50 Citar Citado por 219 Artigos relacio	•	
✓ Criar alerta		The first law of thermodynamics for Kern GW Gibbons, <u>MJ Perry</u> , <u>CN Pope</u> - Classical and Quan the first law of thermodynamics . Section 3 is devo obtain analogous results that are consistent with the fir ☆ Guardar 匆 Citar Citado por 442 Artigos relacions	tum, 2005 - iopscience.iop.org ted to the five-dimensional case, where we st law of thermodynamics the first law	[PDF] iop.org

Contexto histórico

Sadi Carnot (1796-1832)

James Joule (1818–1889)

Rudolf Clausius (1822–1888)

William Thomson (1824–1907)

Terminologias

<u>Sistema</u>: é aquela parte do universo físico cujas propriedades estão sob investigação.

O sistema está localizado num espaço definido pela <u>fronteira</u>, que o separa do resto do universo; as <u>vizinhanças</u>.

trocar matéria e/ou energia Um sistema é dito <u>aberto</u> quando ocorre passagem de massa através da fronteira

Um sistema é dito <u>fechado</u> quando isto não ocorre

Um sistema é dito <u>isolado</u> quando a fronteira não permite qualquer interação com as vizinhanças

Universo = sistema + vizinhança

Terminologias

Estado: O conjunto de todas as variáveis necessárias para especificar completamente as condições de um sistema.

<u>Caminho</u>: O conjunto de estados conectando um estado inicial e um estado final.

<u>Função de Estado</u>: Uma variável cujo valor depende somente do estado.

PV = nRT "equação de estado"

 $dx \longrightarrow Diferencial exata (estado)$

<u>Função de Caminho</u>: Uma variável cujo valor depende somente do caminho.

 $\delta x, dx \longrightarrow \text{Diferencial inexata (caminho)}$

A mudança de estado é completamente definida quando os estados inicial e final são especificados.

O caminho é definido fornecendo-se o estado inicial, a sequência de estados intermediários e o estado final.

Um <u>processo</u> é um método de operação através do qual uma mudança de estado é efetuada..

Terminologias

A energia de um sistema isolado é constante

Lei de conservação da energia

$$\Delta E_{universo} = \Delta E_{sis} + \Delta E_{viz}$$

$$\Delta E = q + w$$

1° lei da termodinâmica

<u>Trabalho</u>: entrada de energia da vizinhança para o sistema a partir de forças não balanceadas.

<u>Calor</u>: entrada de energia da vizinhança para o sistema a partir de forças não balanceadas.

ΔE_{sis}	Trabalho	Calor
> 0	realizado no sistema	entra no sistema
< 0	realizado na vizinhança	liberado do sistema

Trabalho

Trabalho - PV

$$w = F \cdot d = (-mg)(h_2 - h_1) = \left(-\frac{mg}{A}\right)(A\Delta h)$$
$$w = -P_{ext}\Delta V$$

$$w = -\int_{V_1}^{V_2} P_{ext} \Delta V$$

Pressão constante

$$w = -P_{ext}\Delta V$$

Pressão varia

$$w = -\int_{V_1}^{V_2} P_{ext}(V) \Delta V$$

expansão

comprensão

Calor

Calor é a transferência de energia, movida pela diferença de temperatura

$$\Delta U = q$$

$$q>0$$
 $\Delta U>0$ Processo Endotérmico

$$q < 0$$
 $\Delta U < 0$ Processo Exotérmico

$$T_1$$
: T_2

$$T_1 = T_2$$

$$q \propto \Delta T$$

$$q = C.\Delta T$$

$$C = \frac{q}{\Delta T}$$

Capacidade calorífica

É a constante de proporcionalidade, entre o calor transferido, e a variação da temperatura Quanto maior for a capacidade calorífica, menor será a variação de temperatura para uma dada transferência de calor

$$c = \frac{C}{m}$$

Calor específico

$$q = m.c.\Delta T$$

$$C_m = \frac{C}{n}$$

Capacidade calorífica molar

$$q = n.C_m.\Delta T$$

	c (J.(°C-1).g-1)	C _m (J.K ⁻¹ .mol ⁻¹)
Etanol	2,42	111
Cobre	0,38	33
Ar	1,01	-
Mármore	0,84	-
Água líquida	4,184	75

Calor

Um calorímetro, de volume constante, foi calibrado com uma reação que libera 1,78 kJ de calor em 0,100L de uma solução colocada no calorímetro, e a temperatura aumenta 3,65°C.

Em seguida, 50,0 mL de uma solução 0,20 mol/L de NaOH(aq) foram misturados a 50,0 mL de uma solução 0,20 mol/L de HCl(aq) no mesmo calorímetro e a temperatura subiu 1,26°C.

Qual a variação de energia interna da reação de neutralização?

Trabalho

Pode haver muitos caminhos diferentes de um estado termodinâmico para outro, então o trabalho realizado por um sistema durante uma transição entre dois estados depende do caminho escolhido.

14 – isocórico ou isovolumétrico

 $\overline{12}$ – isotérmico

15 – adiabático

Pressão constante

Volume constante

Temperatura constante

$$q=0$$

isobárico

isocórico

isotérmico

adiabático

Calor

$$q_P = C_P dT$$

$$q_V = C_V dT$$

$$q_T = w_T = -\int_{V_1}^{V_2} P_{ext} \Delta V$$

$$q_A = 0$$

$$q_T = w_T = -nRT \int_{V_1}^{V_2} \frac{\Delta V}{V}$$

$$q_T = w_T = -nRT ln\left(\frac{V_2}{V_1}\right)$$

$$w_A = -\int_{V_1}^{V_2} P_{ext} \Delta V$$

Trabalho

$$w_P = -P_{ext} \int_{V_1}^{V_2} \Delta V$$

 $w_P = -\int_{V_*}^{V_2} P_{ext} \Delta V$

$$w_P = -P_{ext}(V_2 - V_1)$$

$$w_V = 0$$

$$PV^{\gamma} = C$$
 $P = \frac{C}{V^{\gamma}}$ $w_A = -\int_{V_1}^{V_2} \frac{C}{V^{\gamma}} \Delta V = -C \int_{V_1}^{V_2} V^{\gamma} \Delta V$

$$w_A = -\frac{PV^{\gamma}}{\gamma - 1} - (V_2^{-\gamma} - V_1^{-\gamma})$$
 $w_A = \frac{1}{1 - \gamma} (P_2 V_2 - P_1 V_1)$

$$w_A = \frac{1}{1 - \gamma} (P_2 V_2 - P_1 V_1)$$

Calor e Trabalho

Tanto o calor quanto o trabalho só são reconhecidos quando cruzam a fronteira de um sistema.

- Eles estão associados a um processo, não a um estado.
- Ambos são funções dependentes do caminho.
- Um sistema não possui calor ou trabalho.

Entalpia, H

A quantidade de calor absorvido/liberado a pressão constante.

$$(U_2 + PV_2) - (U_1 + PV_1) = q_P$$

$$H_2 - H_1 = q_P$$

$$\Delta H = q_P$$

$$\Delta U = \mathbf{q} + \mathbf{w}$$

$$U_2 - U_1 = q_P - P_{ext}(V_2 - V_1)$$

$$U_2 - U_1 = q_P - PV_2 + PV_1$$

$$U_2 + PV_2 - U_1 - PV_1 = q_P$$

$$(U_2 + PV_2) - (U_1 + PV_1) = q_P$$

$$q > 0$$
 $\Delta H > 0$ Processo Endotérmico

$$q < 0$$
 $\Delta H < 0$ Processo Exotérmico

 $C_P = \frac{(\Delta U + P \Delta V)}{\Delta T}$

Processo isobárico

$$\Delta H = q_P$$

Processo isocórico $\Delta U = q_v$

$$\Delta U = q_V$$

$$\Delta U = \mathbf{q}_{V} - P(V_2 - V_1)$$

$$C = \frac{q}{\Delta T}$$

$$C_P = \frac{q_P}{\Delta T}$$
 $C_P = \frac{\Delta H}{\Delta T}$

$$C_{\nu} = \frac{\mathbf{q}_{\nu}}{\Delta T} \qquad C_{\nu} = \frac{\Delta U}{\Delta T}$$

Para um gás ideal

$$C_P = \frac{(\Delta U + P\Delta V)}{\Delta T}$$

$$C_p = \frac{(\Delta U + nR\Delta T)}{\Delta T}$$

$$C_P = \frac{\Delta U}{\Delta T} + \frac{nR\Delta T}{\Delta T}$$

$$C_P = C_V + nF$$

$$C_P = C_V + nR$$

$$C_P > C_V$$

$$PV = nRT$$

$$C_P = C_V + nR$$
 $C_P - C_V = nR$ $C_{Pm} - C_{Vm} = R$

$$C_{Pm} - C_{Vm} = F$$

$$\begin{split} \Delta H_{vap} &= \Delta H_{m(vapor)} - \Delta H_{m(liquido)} > 0 \\ \Delta H_{fusão} &= \Delta H_{m(liquido)} - \Delta H_{m(s\'olido)} > 0 \\ \Delta H_{sub \lim a \~c\~ao} &= \Delta H_{m(vapor)} - \Delta H_{m(s\'olido)} > 0 \\ \Delta H_{sub \lim a \~c\~ao} &= \Delta H_{m(vapor)} - \Delta H_{m(s\'olido)} > 0 \\ \Delta H_{sub \lim a \~c\~ao} &= \Delta H_{fus\~ao} + \Delta H_{vaporiza\~c\~ao} \\ \Delta H_{processo inverso} &= -\Delta H_{processo direto} \end{split}$$

	P.F. (K)	$\Delta H_{fus}^{0}(kJ/mol)$	P.E. (K)	$\Delta H_{vap}^{0}(kJ/mol)$
Argônio	83,8	1,2	87,3	6,5
Metano	90,7	0,94	111,7	8,2
Metanol	175,2	3,16	337,8	35,3
Água	273,2	6,01	373,2	40,7

 $\Delta H_{vap} > \Delta H_{fus}$ Forças intermoleculares

Quanto mais intensa for a força intermolecular

1

Maior a capacidade calorífica

$$C_P = \frac{q_P}{\Delta T}$$

$$\Delta T = \frac{q_P}{C_P}$$

$$f(x) = ax$$

$$a = \frac{1}{C_P}$$

Entalpia em reações químicas

A quantidade de calor absorvido/liberado, a *pressão constante*, durante uma reação

$$\begin{split} CH_{4(g)} + 2O_{2(g)} &\to CO_{2(g)} + 2H_2O_{(l)} \quad \Delta H = -890kJ \\ \\ 2CH_{4(g)} + 4O_{2(g)} &\to 2CO_{2(g)} + 4H_2O_{(l)} \quad \Delta H = -1780kJ \\ \\ CO_{2(g)} + 2H_2O_{(l)} &\to CH_{4(g)} + 2O_{2(g)} \quad \Delta H = +890kJ \end{split}$$

Equação Termoquímica

Entalpia vs Energia Interna

$$H \equiv U + PV$$
 $PV = nRT$ $V = \frac{nRT}{P}$

$$H = U + n_{gás}RT$$

$$\Delta H = \Delta U + \Delta n_{g\acute{a}s} RT$$

Exercicio

Quando 0,113g de benzeno, C_6H_6 , queima em excesso de oxigênio, em um calorímetro de pressão constante calibrado, cuja capacidade calorífica é 551 J/ $^{\circ}$ C, a temperatura do calorímetro aumenta 8,60 $^{\circ}$ C. Escreva a equação termoquímica e calcule a entalpia da reação.

$$2C_6H_{6(l)} + 15O_{2(g)} \rightarrow 12CO_{2(g)} + 6H_2O_{(l)}$$

$$J.4.10^{3}$$
 mul — 4.74 kJ 4.74

Exercicio

Um calorímetro de volume constante mostrou que a perda de calor que acompanha a combustão de 1,000 mol de moléculas de glicose na reação:

$$C_6H_{12}O_{6(s)} + O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(g)}$$

É 2,559 kJ em 298K, ou seja, ΔU=-2,559kJ. Qual a variação de entalpia da mesma reação?

$$\Delta M = -2.559 \text{ kJ} + (12 - 6) 8.3345 \text{ J}.298 \text{ V}$$

$$= -2.559.10^{3} \text{ J} + 6 \text{ mul}. 8.3345 \text{ J}.298 \text{ W}$$

$$= -2.544 \text{ J}$$

$$= -2.544 \text{ J}$$

$$= -2.544 \text{ J}$$

Entalpia Padrão (∆H⁰_T)

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \Delta H = -802kJ$$

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(I)} \Delta H = -890kJ$$

Estado Padrão

Pressão - 1 bar

Temperatura do sistema

Substância pura

Estado físico mais comum

Forma alotrópica mais comum

Função de estado

Entalpia

Lei de Hess

A entalpia total da reação *é a soma* das entalpias de reação das etapas em que a reação pode ser dividida

$$C_{(gr)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$C_{(gr)} + \frac{1}{2}O_{2(g)} \to CO_{(g)} \Delta H^{0} = -110,5kJ$$

$$+ \frac{1}{2}O_{2(g)} \to CO_{2(g)} \Delta H^{0} = -283,0kJ$$

$$C_{(gr)} + O_{2(g)} \rightarrow CO_{2(g)} \quad \Delta H^0 = -393,5 \; kJ$$

$$3C_{(gr)} + 4H_{2(g)} \rightarrow C_3H_{8(g)} \qquad \Delta H^0 = ?$$

$$\begin{split} C_3H_{8(g)} + 5O_{2(g)} &\to 3CO_{2(g)} + 4H_2O_{(l)} \quad \Delta H^0_{298} = -2220kJ \\ C_{(gr)} + O_{2(g)} &\to CO_{2(g)} \quad \Delta H^0_{298} = -394kJ \\ H_{2(g)} + \frac{1}{2}O_{2(g)} &\to H_2O_{(l)} \quad \Delta H^0_{298} = -286kJ \end{split}$$

$$3CO_{2(g)} + 4H_2O_{(l)} \rightarrow C_3H_{8(g)} + 5O_{2(g)} \qquad \Delta H^0 = 2220 \ kJ$$

$$+ \qquad 3C_{(gr)} + 3O_{2(g)} \rightarrow 3CO_{2(g)} \qquad \Delta H^0 = -1182 \ kJ$$

$$4H_{2(g)} + 2O_{2(g)} \rightarrow 4H_2O_{(l)} \qquad \Delta H^0 = -1144 \ kJ$$

 $\Delta H^0 = -106 \ kJ$

 $3C_{(gr)} + 4H_{2(g)} \rightarrow C_3H_{8(g)}$

Entalpia Padrão de combustão (ΔH⁰_c)

A quantidade de calor **liberado**, a *pressão constante*, durante a queima de *um mol de combustível*

$$C_{(gr)} + O_{2(g)} \to CO_{2(g)} \Delta H_c^0 = -394kJ$$

 $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)} \Delta H_c^0 = -286kJ$

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(l)} \Delta H_c^0 = -2220kJ$$

Combustível – Espécie que vai ser oxidada Comburente – Espécie que vai ser reduzida

	Fórmula	$\Delta H_c^0(kJ/mol)$	Entalpia específica (kJ/g)
hidrogênio	H _{2(g)}	-286	142
etanol	C ₂ H ₅ OH _(I)	-1368	29,7
acetileno	$C_2H_{2(g)}$	-1300	49,9
metano	CH _{4(g)}	-890	55
octano	C ₈ H _{18(I)}	-5471	48

Entalpia Padrão de formação (ΔH⁰_f)

A quantidade de calor absorvido/liberado, a pressão constante, durante a formação de um mol de uma substância a partir de seus elementos em sua forma mais estável (exceto fósforo)

$$\begin{split} 2C_{(gr)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} &\to C_2H_5OH_{(l)} \quad \Delta H^0 = -277,69kJ \\ \Delta H^0_{f(C_2H_5OH_{(l)})} = -277,69kJ \ / \ mol \\ \\ C_{(gr)} &\to C_{(gr)} \quad \Delta H^0_f = 0 \\ \\ C_{(gr)} &\to C_{(dia)} \quad \Delta H^0_f = +1,9kJ \end{split}$$

	$\Delta H_f^0(kJ/mol)$
amônia	-46,11
água líquida	-285,3
benzeno	+49,0
glicose	-1268
metano	-74,81

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$$

$$\Delta H^{0} = \sum n\Delta H^{0}_{f(produto)} - \sum n\Delta H^{0}_{f(reagente)}$$

Exercicio

Aminoácidos podem ser usados como fonte de energia para o corpo? Determine a entalpia padrão da oxidação de glicina, gerando ureia, dióxido de carbono e água, usando os valores de entalpia padrão de formação.

$$2NH_{2}CH_{2}COOH_{(s)} + 3O_{2(g)} \rightarrow H_{2}NCONH_{2(s)} + 3CO_{2(g)} + 3H_{2}O_{(l)} \qquad \Delta H^{0} = ?$$

$$\Delta H_{f(H_2O_{(I)})}^0 = -529,9kJ / mol$$

$$\Delta H_{f(H_2NCONH_{2(I)})}^0 = -333,51kJ / mol$$

$$\Delta H_{f(CO_{2(I)})}^0 = -393,51kJ / mol$$

$$\Delta H_{f(H_2O_{(I)})}^0 = -285,83kJ / mol$$

Exercicio

Determine a entalpia padrão de formação do propano, conhecendo sua entalpia padrão de combustão.

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(I)} \Delta H_c^0 = -2220kJ$$

$$\Delta H_{f(CO_{2(g)})}^{0} = -393,51 kJ / mol$$

$$\Delta H_{f(H_2O_{(1)})}^0 = -285,83kJ / mol$$

Entalpia Padrão de Ligação (∆H⁰_L)

A quantidade de calor absorvido, a *pressão constante*, para quebrar um ligação química específica

$$X - Y_{(g)} \to X \cdot_{(g)} + \cdot Y_{(g)}$$

$$\Delta H^{0}_{L(X-Y)} = [H^{0}_{L(X,g)} + H^{0}_{L(Y,g)}] - H^{0}_{L(XY,g)}$$

$$H_{2(g)} \rightarrow 2H_{(g)} \Delta H_L^0 = +436kJ$$
 endotérmico
 $2H_{(g)} \rightarrow H_{2(g)} \Delta H_L^0 = -436kJ$ exotérmico

$$I_{2(s)} \rightarrow 2I_{(g)}$$
 $I_{2(g)} \rightarrow 2I_{(g)} \Delta H_L^0 = 150kJ / mol$
 $I_{2(g)} \rightarrow I_{2(g)} \Delta H_{sub}^0 = 65,52kJ / mol$
 $I_{2(s)} \rightarrow 2I_{(g)} \Delta H^0 = 215,52 kJ$

	ΔH _L 0(kJ/mol)	
C-H	412	
C-C	348	
C=C	612	
C≡C	837	
N-N	163	

Exercicio

Estime a variação de entalpia da reação entre o iodo-etano, na fase gás, e o vapor de água:

$$CH_3CH_2I_{(g)} + H_2O_{(v)} \rightarrow CH_3CH_2OH_{(g)} + HI_{(g)} \qquad \Delta H^0 = ?$$

$$C-I \Delta H_L^0 = 238kJ / mol$$

$$O-H \Delta H_I^0 = 463kJ/mol$$

$$H - I \Delta H_L^0 = 299kJ / mol$$

$$C - O \Delta H_L^0 = 360kJ / mol$$

T (°C)

 T_2

Como a Entalpia varia com a temperatura?

$$C_p = \frac{dq_p}{dT} = \frac{dH}{dT}$$

$$dH = C_p dT$$

$$\int_{H_{1}}^{H_{2}} dH = \int_{T_{1}}^{T_{2}} C_{p} dT$$

$$\int_{H_1}^{H_2} dH = C_p \int_{T_1}^{T_2} dT$$

Function
$$\Delta H_{T_2}^0$$
 R $\Delta H_{T_1}^0$ R R R P

 T_1

$$H_2 - H_1 = C_p(T_2 - T_1)$$
 $H_2 = H_1 + C_p(T_2 - T_1)$

$$\Delta H^{0}(T_{2}) = \Delta H^{0}(T_{1}) + \Delta C_{p}(T_{2} - T_{1})$$

$$\Delta H^{0}(T_{2}) = \Delta H^{0}(T_{1}) + \Delta C_{p}(T_{2} - T_{1})$$

$$\Delta C_{p} = \sum_{p,m(produce)} -\sum_{p,m(resegonze)} nC_{p,m(resegonze)}$$

Lei de Kirchhoff

Exercicio

A entalpia de reação padrão da síntese da amônia, libera -92,22 kJ/mol, a 25°C. A síntese industrial ocorre a 450°C. Qual a entalpia padrão nessa temperatura?

$$C_{p(NH_{3g})} = 35,06J / Kmol$$

 $C_{p(N_{2g})} = 29,12J / Kmol$
 $C_{p(H_{2g})} = 28,82J / Kmol$

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} \Delta H^0 = -92,22kJ/mol$$

Qual o sentido de um processo natural?

- Derretimento do gelo;
- Expansão de gás;
- Transferência de calor de um corpo quente para um corpo frio;

Processos espontâneos

Ocorrem sem influência externa, e aumentam a desordem

Segunda Lei da Termodinâmica

Todo processo espontâneo é acompanhado por um aumento na desordem do universo

Universo = sistema + vizinhanças

Entropia (S)

"Medida da desordem do sistema"

Entropia elevada

 \longrightarrow

Maior desordem

$$\Delta S = \frac{q_{rev}}{T}$$

Função de estado

$$\Delta S = \frac{q_{rev}}{T}$$

1) Um sapo-boi sedentário está sendo estudado no aquário de um laboratório mantido na temperatura constante de 25°C. O animal transferiu 100. J de energia de forma reversível à água em 25°C. Qual é a variação de entropia da água?

Como é a variação de entropia quando uma substância é aquecida ?

$$\Delta S = C_P \ln \frac{T_2}{T_1}$$

 $\Delta S = C_V ln \frac{T_2}{T_1}$

$$\Delta S = \frac{q_{rev}}{T}$$

- Válida para Temperatura constante
- Transferências infinitesimais de calor

$$\mathrm{d}S = \frac{q_{rev}}{T}$$

$$\int_{S_1}^{S_2} \mathrm{d}S = \int_{T_1}^{T_2} \frac{C \cdot dT}{T}$$

$$q = C \cdot dT$$

$$\Delta S = C \int_{T_1}^{T_2} \frac{dT}{T}$$

$$dS = \frac{C \cdot dT}{T}$$

$$\Delta S = C \ln \frac{T_2}{T_1}$$

Como é a variação de entropia quando uma substância tem seu volume expandido ?

- Processo isotérmico
- Gás ideal

$$\Delta U = q + w \qquad \qquad V$$

$$w_{rev} = -\frac{nRT}{V}dV$$

$$\Delta U = 0$$

$$\int w_{rev} = \int_{V_1}^{V_2} -\frac{nRT}{V} dV$$

$$q = -w$$

$$w_{rev} = -nRT \ln \frac{V_2}{V_1}$$

$$q_{rev} = -w_{rev}$$

$$\Delta S = \frac{q_{rev}}{T} = \left(-\frac{w_{rev}}{T}\right)$$

$$\Delta S = -\frac{\left(-nRT \ln \frac{V_2}{V_1}\right)}{T}$$

$$\Delta S = nR \, ln \frac{V_2}{V_1}$$

3) Qual é a variação de entropia do gás quando 1,00 mol de N₂(g) se expande isotermicamente de 22,0 até 44,0 L?

Como é a variação de entropia com a variação da pressão?

$$\Delta S = nR \, ln \, \frac{V_2}{V_1}$$

Lei de Boyle

$$P_1V_1 = P_2V_2$$

$$\frac{P_1}{P_2} = \frac{V_2}{V_1}$$

$$\Delta S = nR \ln \frac{P_1}{P_2}$$

4) Calcule a variação de entropia quando a pressão de 1,50 mol de Ne(g) diminui isotermicamente de 20,00 até 5,00 bar. Considere ideal o comportamento do gás.

5) Em um experimento, 1,00 mol de $O_2(g)$ foi comprimido rapidamente (e irreversivelmente) de 5,00 L até 1,00 L por um pistão e, no processo, sua temperatura aumentou de 20,0°C para 25,2°C. Qual é a variação de entropia do gás?

Condição de Espontaneidade

$$\Delta S_{total} > 0$$

$$\Delta S_{total} = \Delta S_{sis} + \Delta S_{viz}$$

$$\Delta S_{viz} = -\frac{\Delta H_{sis}}{T}$$

$$\Delta S_{total} = \Delta S_{sis} - \frac{\Delta H_{sis}}{T}$$

Energia Livre de Gibbs

$$G = H - TS$$

$$\Delta G = \Delta H - T \Delta S$$

$$\frac{\Delta G}{T} = \frac{\Delta H}{T} - \frac{T\Delta S}{T}$$

$$\frac{\Delta G}{T} = -\Delta S_{viz} - \Delta S_{sis}$$

$$\frac{\Delta G}{T} = -(\Delta S_{sis} + \Delta S_{sis})$$

$$\frac{\Delta G}{T} = -\Delta S_{total}$$

$$\Delta G_{sis} = -\Delta S_{total} T$$

$$\Delta G_{sis} > 0$$
 $\Delta S_{total} < 0$

$$\Delta G_{sis} < 0$$
 $\Delta S_{total} > 0$

Se a pressão e a temperatura permanecem constantes, é possível predizer se um processo é espontâneo somente em termos das propriedades termodinâmicas do sistema.

$$\Delta G = \Delta H - T \Delta S$$

ΔH	ΔS	Espontaneidade
-	+	<0
+	_	>0
•		
-	-	<0, se TΔS < ΔH
+	+	<0, se TΔS > ΔH

6) Calcule a variação de energia livre molar, ΔG_m , do processo $H_2O(s) \rightarrow H_2O(l)$ em 1 atm e (a) $10^{\circ}C$, (b) $0^{\circ}C$. Verifique, para cada temperatura, se a fusão é espontânea em pressão constante. Trate ΔH_{fus} e ΔS_{fus} como independentes da temperatura.