Zadanie domowe z Topologii

Mateusz Rzepecki

7 kwietnia 2020

Zadanie 1

Treść:

Wyznaczyć wnętrze, brzeg i domknięcie następujących zbiorów w \mathbb{R}^2 z metryką euklidesowa:

```
1. A = [0,1) \times \{0\};
```

2.
$$B = \mathbb{N} \times \mathbb{R} \cup \{(x, y) : 0 \le x \le 1, y \in \mathbb{R}\};$$

3.
$$C = \mathbb{Q} \times \mathbb{Q}$$
.

Uzasadnić odpowiedź.

Rozwiązanie:

Przez bd(A) będziemy oznaczali brzeg zbioru $A,\,int(A)$ wnętrze oraz cl(A) domkniecie.

- 1) Dowolne otoczenie punktu (x,0), gdzie $0 \le x \le 1$ kroi się niepusto z A oraz z dopełnieniem A, stąd $(x,0) \in bd(A)$. Ustalmy punkt (x,y) taki, że $y \ne 0$ lub $x \notin [0,1]$, wtedy oczywiście istnieje kula o środku w (x,y) rozłączna ze zbiorem A, ponieważ jeżeli ten punkt nie leży na osi x to wystarczy wiziąć promień równy odległości tego punktu od osi x, a jeżeli ten punkt leży na osi x to wystarczy wiziąć promień równy minimum z odległości punktu (x,y) od punktów (0,0) oraz (1,0), w każdym z tych przypadków kula o środku w (x,y) jest rozłączna ze zbiorem A, zatem punkty (x,y) nie mogą należeć do cl(A), zatem nie należą do bd(A), zatem $bd(A) = [0,1] \times 0$. Dzięki wyznaczeniu bd(A) dostajemy wzory na $cl(A) = A \cup bd(A) = [0,1] \times 0$ oraz $int(A) = A \setminus bd(A) = \emptyset$.
- 2) Ustalmy dowolny punkt (n,b) taki, że $n\in\mathbb{N}$ oraz $b\in\mathbb{R}$, wtedy oczywiście dowolne otoczenie tego punktu tnie się niepusto ze zbiorem B oraz z jego dopełnieniem. Dla dowolnego puktu (a,c) takiego, że $a\in((\mathbb{R}\setminus[0,1])\setminus\mathbb{N})$ kula o środku w (a,c) i promieniu $\min(f(a),1-f(a))$, gdzie f(a) jest częścią ułamkową liczby a, tnie się pusto ze zbiorem B. Oczywiście dla każdego punktu ze zbioru $(0,1)\times\mathbb{R}$ istnieje jego otoczenie zawierające się w zbiorze B, zatem $bd(B)=\mathbb{N}\times\mathbb{R}$, stąd $Int(B)=(0,1)\times\mathbb{R}$ oraz cl(B)=B
- 3) Dowolna kula tnie się niepusto ze zbiorem C i z jego dopełnieniem, zatem $bd(C) = \mathbb{R} \times \mathbb{R}$, $Int(C) = \emptyset$ oraz $cl(C) = \mathbb{R} \times \mathbb{R}$. \square

Zadanie 2

Treść:

Niech X,Y będą przestrzeniami topologicznymi. Wykazać, że funkcja $f:X\to Y$ jest ciągła wtedy i tylko wtedy gdy $f^{-1}[Int(B)]\subseteq Int(f^{-1}[B])$ dla dowolnego $B\subseteq Y$.

Rozwiązanie:

 (\Rightarrow) Ustalmy dowolne $B \subseteq Y$. Wtedy oczywiście

$$f^{-1}[Int(B)] \subseteq f^{-1}[B],$$

ponieważ

$$Int(B) \subseteq B$$
,

stąd

$$Int(f^{-1}[Int(B)]) \subseteq Int(f^{-1}[B]).$$

Skoro Int(B) jest zbiorem otwartym, a f jest funkcją ciągłą, to $f^{-1}[Int(B)]$ jest zbiorem otwartym, zatem

$$Int(f^{-1}[Int(B)]) = f^{-1}[Int(B)].$$

Łącząc powyższe zależności dostajemy

$$f^{-1}[Int(B)] \subseteq Int(f^{-1}[B]).$$

 (\Leftarrow) Ustalmy dowolny zbiór Botwarty w Y. Korzystając z założenia oraz tego, że Int(B)=B dostajemy

$$f^{-1}[B] = f^{-1}[Int(B)] \subseteq Int(f^{-1}[B]).$$

Wiemy, że wnętrze dowolnego zbioru się w nim zawiera, zatem

$$Int(f^{-1}[B]) \subseteq f^{-1}[B].$$

Łącząc powyższe fakty dostajemy

$$Int(f^{-1}[B]) \subseteq f^{-1}[B] \subseteq Int(f^{-1}[B]),$$

zatem

$$f^{-1}[B] = Int(f^{-1}[B]),$$

czyli $f^{-1}[B]$ jest zbiorem otwartym. Skoro B było dowolny zbiorem otwartym w Y, to f jest funkcją ciągłą. \square

Zadanie 3

Treść:

Niech Fbędzie zbiorem domkniętym w przestrzeni topologicznej. Udowodnić, że

$$Int(F \cup Int(A)) = Int(F \cup A)$$

Rozwiązanie:

Skoro $(F \cup Int(A)) \subseteq (F \cup A)$, to

$$Int(F \cup Int(A)) \subseteq Int(F \cup A).$$

Pokażemy teraz inkluzję w drugą stronę. Ustalmy dowolny zbiór otwarty U, taki że $U\subseteq (F\cup A)$. Zapiszmy U w postaci $U=(F\cap U)\cup (F^c\cap U)$, gdzie F^c jest dopełnieniem zbioru F. Dostajemy wtedy, że

$$(F^c \cap U) \subseteq (F \cup A).$$

Skoro $(F^c \cap U) \cap F = \emptyset$, to

$$(F^c \cap U) \subseteq A$$
.

Na mocy założenia, że F jest zbiorem domkniętym oraz tego, że U jest zbiorem otwartym dostajemy, że $F^c\cap U$ jest zbiorem otwartym, zatem

$$(F^c \cap U) \subseteq Int(A)$$
.

Łącząc to z faktem, że $F \cap U \subseteq F$ dostajemy, że

$$U = (F \cap U) \cup (F^c \cap U) \subseteq F \cup Int(A).$$

Skoro U był dowolnym zbiorem otwartym zawartym w $(F \cup A)$, to

$$Int(F \cup A) \subseteq Int(F \cup Int(A)),$$

zatem

$$Int(F \cup A) = Int(F \cup Int(A)).$$

Zadanie 4

Treść:

Niech $f: X \to Y$ będzie przekształceniem ciągłym przestrzeni topologicznej (X, T_X) w przestrzeń (Y, T_Y) i rozpatrzymy wykres $W(f) = \{(x, f(x)) : x \in X\} \subseteq X \times Y$ przekształcenia f jako podprzestrzeń iloczynu kartezjańskiego $(X \times Y, T)$ przestrzeni (X, T_X) i (Y, T_Y) .

- 1. Wykazać, że przestrzeń (X, T_X) jest homeomorficzna z W(f)
- 2. Wykazać, że jeśli (Y, T_Y) jest przestrzenią Hausdorffa, to W(f) jest domkniętym podzbiorem $(X \times Y, T)$.

Rozwiązanie:

1) Pokażemy, że funkcja $g:X\to W(f)$ zadana wzorem g(x)=(x,f(x)) jest homeomorfizmem. Ta funkcja jest oczywiście bijekcją. Pokażemy, że jest ona ciągła oraz, że g^{-1} również jest ciągłe. Zbiór $\{U\times V:U\in T_X,V\in T_Y\}$ jest bazą topologii T, zatem zbiór $\{(U\times V)\cap W(f):U\in T_X,V\in T_Y\}$ jest bazą podprzestrzeni topologii T wyznaczonej przez zbiór W(f). Ustalmy dowolny element $(U\times V)\cap W(f)$ tej bazy, gdzie $U\in T_X,V\in T_Y$. Oczywiście ten zbiór możemy zapisać innej postaci jako $(U\times V)\cap W(f)=\{x\in U:f(x)\in V\}$. Zatem $g^{-1}[(U\times V)\cap W(f)]=f^{-1}[V]\cap U$. Skoro f jest ciągła to jest to zbiór otwarty, zatem g jest funkcją ciągłą. Pokażemy teraz, że g^{-1} jest ciągłe. Ustalmy dowolny zbiór $U\in T_X$ popatrzmy na przeciwobraz tego zbioru wyznaczony przez funkcję g^{-1} , jest on równy $(g^{-1})^{-1}[U]=g[U]=(U\times Y)\cap W(f)$, skoro U był zbiorem otwartym, Y jako cała przestrzeń jest zbiorem otwartym, zatem g^{-1} jest przekształceniem ciągłym. Dostajemy stąd, że g jest homeomorfizmem. \square

2) Ustalmy dowolny punkt (x,y) taki, że $f(x) \neq y$. Skoro (Y,T_Y) jest przestrzenią Hausdorffa, to istnieją zbiory $V_1, V_2 \in T_Y$ takie, że $f(x) \in V_1, y \in V_2$ oraz $V_1 \cap V_2 = \emptyset$. Skoro f jest ciągła to dla punktu $x \in X$ oraz otoczenia V_1 punktu f(x) istnieje zbiór $U \in T_X$ taki, że $x \in f(U) \subseteq V_1$. Popatrzmy na zbiór $U \times V_2$. Oczywiście punkt (x,y) do niego należy. Ustalmy dowoly punkt (a,f(a)), wtedy jeżeli $a \in U$, to z definicji U dostajemy, że $f(a) \in V_1$, zatem $f(a) \notin V_2$, stąd dla dowolnego $a \in X$ punkt $(a,f(a)) \notin U \times V_2$, czyli $(U \times V_2) \cap W(f) = \emptyset$. Dostajemy stąd, że dla dowolnego punktu spoza zbioru W(f) istnieje jego pewne otocznie, które jest rozłączne z W(f), zatem cl(W(f)) = W(f), zatem W(f) jest zbiorem domkniętym w $(X \times Y, T)$. \square

Zadanie 5

Treść:

Pokazać, że topologia strzałki w \mathbb{R} , zob. Przykład 1.2.10 w skrypcie, nie ma przeliczalnej bazy. Wywnioskować, że strzałka nie jest metryzowalna.

Rozwiązanie:

Załóżmy nie wprost, że istnieje przeliczalna baza tej topologii. Nazwijmy ją B. Wtedy ocziwiście dla dowolnego $a \in (0,1]$ istnieje zbiór A_a taki, że $a \in A_a \subseteq (a/2,a]$ oraz $A_a \in B$. Wynika to z definicji bazy. Zauważmy dodatkowo, że sup $A_a = a$. Wynika to wprost z poprzedniej zależności. Ustalmy funkcję $f:(0,1] \to B$ taką, że $f(a) = A_a$. Pokażemy, że ta funkcja jest różnowartościowa. Ustalmy $a,b \in (0,1]$ takie, że $a \neq b$, wtedy sup $A_a = a$, a sup $A_b = b$, zatem $A_a \neq A_b$. Dostajemy stąd, że $f(a) \neq f(b)$, zatem f jest funkcją różnowartościową, zatem moc zbioru B nie może być przeliczalna, ponieważ zbiór (0,1] nie jest przeliczalny. Dostajemy sprzeczność, która dowodzi, że nie istnieje przeliczalna baza topologii strzałkiw $\mathbb R$. Oczywiście dowolny zbiór otwarty w tej topologii zawiera pewną liczbę wymierną lub jest zbiorem pustym, stąd zbiór $\mathbb Q$ jest zbiorem przeliczalnym i gęstym w tej topologii, zatem ta przestrzeń jest ośrodkowa. Z wykładu wiemy, że każda metryzowalna przestrzeń ośrodkowa posiada przeliczalną bazę, skoro nasza topologia nie ma przeliczalnej bazy, a jest ośrodkowa, to nie może być metryzowalna. \square