Лекция 3. Классификация Основы интеллектуального анализа данных

Полузёров Т. Д.

БГУ ФПМИ

- 🕕 Байесовские методы
 - Оптимальный классификатор
 - Параметрическое восстановление плотности

Вероятностная постановка задачи

 \mathbb{X} - множество объектов, \mathbb{Y} - множество классов. $(\mathbb{X} \times \mathbb{Y})$ - вероятностное пространство с совместной плотностью p(x,y) = P(y)p(x|y) $P_y := P(y)$ - априорные вероятности классов (prior) $p_y(x) := p(x|y)$ - функции правдоподобия классов (likelihood)

Задачи:

- lacktriangled По выборке $(X,Y)\in (\mathbb{X},\mathbb{Y})$ построить оценки распределений $\hat{P_y}$ и $p_y(x)$
- ② По известным распределениям $p_y(x)$ и P_y построить алгоритм $a: \mathbb{X} \to \mathbb{Y}$ минимизирующий вероятность ошибочной классификации

Функционал среднего риска

Алгоритм a(x) разбивает $\mathbb X$ на непересекающиеся области $A_y = \{x \in \mathbb X | a(x) = y\}$

Каждой паре $(y,s)\in (\mathbb{Y}\times\mathbb{Y})$ соответствует величина потери λ_{ys} при классификации объекта класса y к классу s, $\lambda_{yy}=0$ и $\lambda_{ys}>0$ при $y\neq s$

Функционал среднего риска:

$$R(a) = \sum_{y \in \mathbb{Y}} \sum_{s \in \mathbb{Y}} \lambda_{ys} P_y P(A_s | y)$$

где $P(A_s|y) = \int_{A_s} p_y(x) dx$ - вероятность отнесения к классу s объекта класса y.

Оптимальное байесовское решающее правило

Если известны априорные вероятности P_y и функции правдоподобия $p_y(x)$, то минимум среднего риска R(a) достигается алгоритмом

$$a(x) = \arg\min_{y \in \mathbb{Y}} \sum_{y \in \mathbb{Y}} \lambda_{ys} P_y \rho_y(x)$$

Если предположить что потери от ошибочной классификации зависят только от истинного класса объекта, т.е. $\lambda_{ys}=\lambda_y$, то алгоритм называется **Байесовским решающим правило**:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P_y p_y(x)$$

Апостериорные вероятности

Вероятность P(y|x) - называется апостериорной вероятностью (posterior).

Зная $p_{y}(x)$ и P_{y} , то по формуле Байеса:

$$P(y|x) = \frac{p(x,y)}{p(x)} = \frac{p_y(x)P_y}{\sum_{s \in \mathbb{Y}} p_s(x)P_s}$$

Величина ожидаемых потерь на объекте x:

$$R(x) = \sum_{y \in \mathbb{Y}} \lambda_y P(y|x)$$

Принцип максимума апостериорной вероятности

Оптимальный байесовский классификатор через апостериорные вероятности:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P(y|x)$$

Если классы равнозначны $(\lambda_y = \lambda_s \forall y, s \in \mathbb{Y})$, то байесовское решающее правило называют принципом максимума апостериорной вероятности.

В случае равновероятных (сбалансированных) классов $(P_y=rac{1}{|\mathbb{Y}|})$, объект x просто относится к классу с наибольшим значением плотности $p_y(x)$.

Параметрический подход

Имеется выборка $X=(x_1,...,x_\ell)\in\mathbb{X}$. Предполагается, что плотность, порождающая данные, известна **с точностью до параметра**, $p(x)=\phi(x;\theta)$. Подбор параметров θ приводится по выборке X с помощью **метода максимального** правдоподобия.

Нормальный дискриминантный анализ - случай байесовской классифицакии в предположении о нормальном распределениии всех классов, $p_y(x) \sim N(\mu_y, \sigma_y^2), y \in \mathbb{Y}$.