

AlTrans: 智能网络传输竞赛

主办单位: 清华大学计算机系

协办单位:中国计算机学会互联网专委会、中国人工智能学会智能信息网络专委会

合作伙伴: 斯坦福大学计算机系、新加坡国立大学计算机系、华为未来网络理论实验室

清流鼎点

人工智能很热闹

AlphaGo

自动驾驶

癌症检测

谷歌&NASA 发现新 "太阳系" 2545光年

无人零售

网络系统 VS. 机器学习

网络系统 VS. 机器学习

●曾经:

● 最近:

需要使用机器学习,来提升网络技术吗?

机器学习 VS. 网络系统

- 网络的问题在哪里?
 - 一端系统复杂,中间网络简单 -> 交互复杂,难以建模,缺少理论支撑
 - 一 分组交换,统计复用,尽力而为 -> 无法保障各异的应用与用户需求
 - 异构网络状态动态变化 -> 难以有效控制和调度

"Algorithms suffer from a key limitations: they use fixed control rules based on simplified or inaccurate models of the deployment environment. As a result, existing schemes inevitably fail to achieve optimal performance across a broad set of network conditions." $--[SIGCOMM'17\ Pensieve\]$

当前决策方案的局限性

- 以TCP拥塞控制为例
 - 一 假设在真实环境中往往不成立 (丢包 -> 拥塞)
 - 一 状态和动作间的硬映射: TCP的AIMD(加性增窗、乘性减窗)[NSDI'15 PCC]
 - 一 固定的基于规则的启发式算法 vs. 动态复杂的网络环境

如何使用机器学习方法, 来提升网络传输效率?

MIT: Remy UIUC: PCC, PCC vivace Stanford: Indigo

Monday, November 19, 2018

网络领域应用

SIGCOMM 2018 中的 AI

Sigcomm主会

 AuTO: Scaling Deep Reinforcement Learning to Enable Datacenter-Scale Automatic Traffic Optimization [HKUST]

SketchLearn: Relieving User Burdens in Approximate Measurement with Automated

Statistical Inference [CAS]

RF-Based 3D Skeletons [MIT]

Workshop

- NetAI: 12篇
 - > SIGCOMM历史上首次人数破百
- Big-DAMA: 8篇
- _ SelfDN: 2+篇
- Posters and Demos: 4+篇

直播流媒体传输

视频,还是视频! 视频,

视频点播

视频直播

短视频

在线教育

为什么要自适应码率(ABR)?

为什么ABR是一个挑战?

网络带宽变化&难以预测

冲突的体验质量(QoE) 因素

- 高视频质量
- 低卡顿
- 视频质量平滑切换

码率决策的级联效应

视频直播架构

●直播特点

- 一视频实时产生 -> 转码 -> 分发 -> 播放
- 一观看体验:清晰度,卡顿,切换,时延(交互)
- 一时延的主要来源:客户端缓冲区

已填充

比赛内容

- 设计一个算法能够进行直播流媒体自适应码率选择等决策,在不同的网络场景下, 使得用户的体验质量(QoE)最大化。
- 观测量(输入):

变量名	含义	样例
time	物理时间	53.0427 (s)
time_interval	本周期经过的物理时间	0.12 (s)
send_data_size	本周期下载的数据量	28793 (bit)
chunk_len	当前要下载帧的时间长度	0.04 (s)
rebuf	本周期内的卡顿时间	0.00 (s)
buffer_size	当前时刻的缓冲区大小	1.234 (s)
play_time_len	本周期播放的时间长度	0.12 (s)
end_delay	当前端到端时延	2.23 (s)
decision_flag	是否到GOP边界	False
buffer_flag	播放器是否在缓冲	False
cdn_flag	cdn是否有可取的块	True
end_of_video	视频结束标志	False

注: 仅能使用观测量及其推导量作为算法输入

决策量(输出):

变量名	决策量	样例	
Bitrate	码率	500 (kbps)	
Target-buffer	目标缓冲区	3 (s)	

仿真平台

一个简单的例子

- 输入: 仅使用缓冲区大小 输出: 下一个chunk的码率
- 逻辑:缓冲区小 -> 低码率;缓冲区大 -> 高码率;

obbetvactoris = hiv.gee_video_france (breface

```
if observations['buffer_size'] < Lower_bound:
   bit_rate = 0
else
   bit_rate = 1</pre>
```

End

Monday, November 19, 2018

一个简单的例子

- 输入: 仅使用缓冲区大小 输出: 下一个chunk的码率
- 逻辑:缓冲区小 -> 低码率;缓冲区大 -> 高码率;

A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell*, Mark Watson*
Stanford University, Netflix*
{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

提交与测评

- 流媒体平台:
 - 数据集: 视频 + 网络 (官网)
 - 仿真器: LivestreamingEnv (pip)
 - ABR Demo (Github)
 - > 日志
 - > 实时演示
- 网站提交
 - Your_ABR.py

Your_Model (optional)

大赛奖励

- 一等奖1名,奖金¥80000
- 二等奖2名, 奖金¥10000
- 三等奖5名, 奖金¥5000

- 指导教师奖5名,奖金¥5000
- 单项奖10名, 奖金¥1000

大赛福利

- 准备出国深造的同学
 - 为大家积极提供斯坦福、新加坡国立大学交流、实习机会
- 准备找工作的同学
 - 为大家提供去华为(香港)、今日头条、清流鼎点交流实习的机会
- 准备保研清北的同学
 - 为大家提供清华网络所实习机会
- 相关领域的硕士/博士
 - 为大家提供实验平台和真实数据

赛程安排

- 预赛
 - _ 11月下旬-12月中旬
 - 算法设计,系统调试
- 决赛
 - 12月下旬-1月上旬
 - 真实系统

- 答辩
 - 1月12日
 - 决赛答辩,颁奖仪式

联系方式

- 官方网站: <u>www.aitrans.online</u>
- 主办单位:清华大学计算机系
- 赛事组委会:
 - 一 崔勇 (清华大学)
 - 一 Keith Winstein (斯坦福大学)
 - 一Wei Tsang Ooi(新加坡国立大学)
 - 一 张弓 (华为未来网络理论实验室)
 - 李毅 (清流鼎点)
- 联系方式:aitrans.online@gmail.com

