ALL-IN-ONE STREAMS FOR CONTENT CENTRIC NETWORKS

Marc Mosko, Palo Alto Research Center (PARC)

CONNET 2015

The International Symposium on Advances in Content-oriented Networks and Systems

Computer networks started as wires or virtual wires

Then evolved to **Novell NetWare Protocols** distributing SAP NetBIOS Applications NCP content SPX (Internetwork packet exchange) ETHER XNS /ETHERNET NETWORK ETHERNET XNS HIGHER LAYERS INTERNET SUBLATER DITERMET SUBLATER JSON / REST / HTTP HETWORK-STECURG SUNLATED Tier 1 Networks MCD letworks But-Messelfin's 1972 steam of his original "otherwel" vision linear provided courters of Pale Alto Fasserch Cantar Inc., a Xeros Compare "city": "Paris", "units": "C"}] Server Request Tier 2 ISP HTTP POST **JSON** /service/weather Response (REST Interface) [{"low": "16", "high": "23"}] Exabytes per Month Web/Data (24.2%, 18.9%) ■ File Sharing (15.7%, 8.1%) Managed IP Video (21.8%, 21.0%) ■ Internet Video (38.3%, 52.0%)

2012

Source: Cisco VW, 2013

2014

2015

The percentages within parenthesis next to the legend denote the relative traffic shares in 2012 and 2017

2016

We no longer connect wires

We move content (information)

INFORMATION CENTRIC NETWORKS

Name the data

Transfer data based on the names

Break end-to-end paradigm

Ted Nelson's Project Xanadu (1979)

CONTENT CENTRIC NETWORKS (CCNX)

TRIAD (1999) / DONA (2006)

CCNx at PARC in 2007 (Van Jacobson)

CCNx 0.1 Software (2009-2013)

Named Data Networking Project (2010)

CCNx 1.0 (2012-present)

HOW IT WORKS

Application

lci:/com/xerox/parc/pubs/connet2015.pptx

Service Frameworks Ici:/com/xerox/parc/pubs/connet2015.pptx, Publisher key = 0x184839a3eff90...

Transport

Ici:/com/xerox/parc/pubs/connet2015.pptx, Publisher key = 0x184839a3eff90... Chunks = 0, 1, ...

Forwarder

Name Forwarding Table
Pending Interest Table (reverse path)

REQUEST/RESPONSE PROTOCOL

Client

Cache / Producer

Client sends "Interest" with name

Cache/Producer sends "Content Object"

Transfer using "window" of outstanding Interests

MULTIPLE WINDOW PROBLEMS

Responder(s) Requester /foo/page/s0, ..., /foo/page/s3 Markup Read Markup and request embedded objects /foo/file1.js/s0, ..., /foo/file1.js/s3 File1.js /foo/file2.js/s0, ..., /foo/file2.js/s3 File2.js

COMBINE ALL OBJECTS TO ONE STREAM

SINGLE WINDOW FOR ALL OBJECTS

Requester

Responder(s)

No need to read Markup, read a single stream

manifests

Implicit signature realized by hash chain from Manifest

ENCAPSULATION

/foo/markup/c0

/foo/page/all-in-one/c3

What about caching?

CACHING ORIGINAL OBJECTS

MODELING PERFORMANCE

- Compare All-In-One with TCP-like behavior.
- Each stream is 3, 10, or 30 embedded objects.
- Each object is uniformly 1KB 50KB.
- Content Objects chunked to 1400 bytes (to fit in 1500 byte MTU).
- 10 Mbps bottleneck link.
- Doubling Interest window until bottleneck saturated.

Average 86 KB

Average 905KB

CONCLUSION

- All-in-one streams addresses slow start on multiple windows when downloading multiple related objects.
- Uses hash chains from manifests, so only manifest objects need to be signed.
- Including metadata in manifest allows intermediate caches to reconstruct stream contents from cached copies of embedded objects.
- As expected, performance benefit seen primarily for smaller streams (under 1 MB) when using larger initial window.

Darc[®] A Xerox Company

THANK YOU.