PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-220526

(43)Date of publication of application: 14.08.2001

(51)Int.CI.

CO9D 11/00

(21)Application number: 2000-031763

(71)Applicant: BROTHER IND LTD

(22)Date of filing:

09.02.2000

(72)Inventor: MAEDA SANENOBU

(54) ENERGY RAY-CURABLE COMPOSITION FOR INK JET RECORDING SYSTEM (57)Abstract:

PROBLEM TO BE SOLVED: To provide an energy ray-curable composition having excellent functions as an ink for ink jet recording system.

SOLUTION: This composition contains (1) a cationic photopolymerization initiator, (2) a compound having at least one oxirane group, (3) a vinyl ether compound, and (4) an oxetane compound having hydroxy group provided that the amount of ingredient B is 47-63 wt.% of the sum of ingredients (2), (3), and (4).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration].

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-220526 (P2001-220526A)

(43)公開日 平成13年8月14日(2001.8.14)

(51) Int.Cl.7

微別記号

FΙ

テーマコート*(参考)

C 0 9 D 11/00

C09D 11/00

4J039

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出膜番号

特願2000-31763(P2000-31763)

(71)出題人 000005267

プラザー工業株式会社

(22)出顧日

平成12年2月9日(2000.2.9)

愛知県名古屋市瑞穂区苗代町15番1号

(72)発明者 前田 実伸

愛知県名古屋市瑞穂区苗代町15番1号 ブ

ラザー工業株式会社内

(74)代理人 100082500

弁理士 足立 勉

Fターム(参考) 4J039 AD21 AE05 BO05 BO07 BC12

BC16 BC29 BC33 BC38 BC54 BC55 BC56 BC58 BC68 BC72 BE27 EA05 EA10 EA43 EA44

GA24

(54) 【発明の名称】 インクジェット記録方式用エネルギー線硬化型組成物

(57)【要約】

【課題】 インクジェット記録方式用インクとして優れた性能を備えたエネルギー線硬化型組成物を提供する。 【解決手段】 本発明のインクジェット記録方式用エネルギー線硬化型組成物は、(1)光カチオン重合開始剤と、(2)分子中に1個以上のオキシラン基を有する化合物と、(3)ビニルエーテル化合物と、(4)分子中にオキセタン環及び1個の水酸基を有する化合物を含有し、上記(2)~(4)の三成分の総重量に対して、上記成分(2)の占める割合が47~63重量%であることを特徴とする。

【特許請求の範囲】

【請求項1】 (1)光カチオン重合開始剤と、

- (2) 分子中に1個以上のオキシラン基を有する化合物 ٤.
- (3) ビニルエーテル化合物と、
- (4) 分子中にオキセタン環及び1個の水酸基を有する 化合物を含有し、

上記成分(2)~(4)の総重量に対して、上記成分 (2) の占める割合が47~63重量%であることを特 徴とするインクジェット記録方式用エネルギー線硬化型 10 組成物。

【請求項2】 上記成分(2)~(4)の総重量に対し て、上記成分(2)の占める割合が48~53重量%で ある請求項1記載のインクジェット記録方式用エネルギ 一線硬化型組成物。

上記成分(2)~(4)の総重量に対し 【請求項3】 て、上記成分(3)の占める割合が17~51.5重量 %、上記成分(4)の占める割合が0.5~20重量% であることを特徴とする請求項1又は2記載のインクジ ェット記録方式用エネルギー線硬化型組成物。

【請求項4】 上記成分(2)が脂環式エポキシドであ

上記成分(3)がジ又はトリビニルエーテル化合物であ

上記成分(4)が3-アルキル-3-ヒドロキシアルキ ルオキセタン(アルキル基及びヒドロキシアルキル基は 炭素数が1~6個)であることを特徴とする請求項1~ 3のいずれかに記載のインクジェット記録方式用エネル ギー線硬化型組成物。

【 請求項5 】 更に、

- (5) 光ラジカル重合開始剤と、
- (6) エチレン性ラジカル重合性不飽和化合物とを含有 することを特徴とする請求項1~4のいずれかに記載の インクジェット記録方式用エネルギー線硬化型組成物。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、良好なインク性能 を有するインクジェット記録方式用エネルギー線硬化型 組成物に関する。

[0002]

【従来の技術】従来、スクリーン印刷用プリンタのイン クには、紫外線等のエネルギー線を照射することにより 硬化するエネルギー線硬化型組成物が使用されている。 このようなエネルギー線硬化型組成物は、通常、希釈溶 媒を使用していないことから速硬化性に優れており、特 に金属やプラスチック等にコーティング印刷するのに適 している。

[0003]

【発明が解決しようとする課題】ところで、近年のイン クジェット記録方式用プリンタの技術向上に伴い、金属 50 フェニルヨードニウム、4-メトキシジフェニルヨード

やプラスチック等にもとのインクジェット記録方式用プ リンタを用いて印刷したいと要望が高まりつつある。こ こでも上述のエネルギー線硬化型組成物をインクとして 使用することが考えられるが、粘度が高いためプリンタ ヘッドから安定して吐出しないという問題があった。こ の問題を解決すべく、溶剤で希釈して粘度を下げること も考えられたが、溶剤で希釈した場合には速硬化性が劣 るため印刷特性上好ましくないという問題があった。

【0004】一方、特開平9-31186号公報には、 分子中に1個のオキセタン環及び1個の水酸基を有する 化合物と、分子中に1個以上のオキシラン環を有する化 合物と、光カチオン重合開始剤とからなるエネルギー線 硬化型組成物が開示されている。この組成物は、硬化塗 膜が平滑で良好な密着性を有し、速硬化性を有するもの であり、印刷インキ等へ利用できるものである。

【0005】しかし、上述の特開平9-31186号公 報に開示されたエネルギー線硬化型組成物は、スクリー ン印刷用としては有用であるものの、インクジェット記 録方式用として見たときにはまだ粘度が高いため、プリ 20 ンタヘッドから安定して吐出できないという問題があっ た。

【0006】本発明は上記問題点を解決することを課題 とするものであり、インクジェット記録方式用インクと して優れた性能を備えたエネルギー線硬化型組成物を提 供することを目的とする。

[0007]

【課題を解決するための手段、発明の実施の形態及び発 明の効果】上記課題を解決するため、本発明のインクジ ェット記録方式用エネルギー線硬化型組成物は、(1) 30 光カチオン重合開始剤と、(2)分子中に1個以上のオ キシラン基を有する化合物と、(3) ビニルエーテル化 合物と、(4)分子中にオキセタン環及び1個の水酸基 を有する化合物を含有し、上記成分(2)~(4)の総 重量に対して、上記成分(2)の占める割合が47~6 3重量%であることを特徴とする。

【0008】本発明の組成物は、従来に比べて粘度が十 分低いため、インクジェット記録方式用プリンタのプリ ンタヘッドに使用したときのインクの吐出安定性が良好 である。そのうえ、粘度が低いにもかかわらず、エネル 40 ギー線を照射すると素早く硬化し、硬化後の密着性、可 撓性、表面硬度も良好である。

【0009】本発明に使用される成分(1)、つまり光 カチオン重合開始剤としては、従来より知られている化 合物であれば特に限定することなく使用できるが、例え ば芳香族ヨードニウム錯塩や芳香族スルホニウム錯塩な どを挙げることができ、これらの1種を単独で使用して もよいが、2種以上を適宜組み合わせて使用してもよ

【0010】芳香族ヨードニウムの具体例としては、ジ

ニウム、ビス(4-メチルフェニル)ヨードニウム、ビ ス(4-tert-ブチルフェニル)ヨードニウム、ビス (ドデシルフェニル) ヨードニウム等が挙げられる。ま た、芳香族スルホニウムの具体例としては、トリフェニ ルスルホニウム、ジフェニルー4ーチオフェノキシフェ ニルスルホニウム、ビス [4-(ジフェニルスルフォニ オ) -フェニル] スルフィド、ビス [4-(ジ(4-(2-ヒドロキシエチル) フェニル) スルホニオ) -フ ェニル]スルフィド、 $\eta^{5}-2$ 、4-(シクロペンタジチル)-ベンゼン]-鉄(1+)等が挙げられる。

【〇〇11】錯塩を形成するカウンタアニオンの具体例 としては、テトラフルオロボレート (BF 1-)、ヘキサ フルオロホスフェート (PF⁶⁻)、ヘキサフルオロアン チモネート(SbF⁶⁻)、ヘキサフルオロアルセネート (AsF⁶⁻)、ヘキサクロロアンチモネート(SbC1 6-) などが挙げられる。

【0012】本発明に使用される成分(1)は、成分 (2)~(4)の総重量に対して例えば0.01~20 重量%、特に0.1~10重量%の範囲で使用するのが 20 好ましい。この成分(1)が過小すぎると組成物を十分 に硬化させることができず、過大すぎると光透過性が不 ·良になり、均一に硬化させることができなくなる。

【0013】本発明に使用される成分(2)、つまり分 子中に1個以上のオキシラン基を有する化合物として は、オキシラン基を有する化合物のモノマー及びそのオ リゴマーのいずれも使用できる。具体的には、従来公知 の芳香族エポキシド、脂環式エポキシド及び脂肪族エポ キシドが挙げられる。尚、以下エポキシドとは、モノマ ーまたはそのオリゴマーを意味する。本発明におけるオ

リゴマーとしては、低分子量の化合物が好ましく、分子 量が1000未満のオリゴマーがより好ましい。

【0014】芳香族エポキシドとして好ましいものは、 少なくとも1個の芳香族核を有する多価フェノールある いはそのアルキレンオキサイド付加体とエピクロルヒド リンとの反応によって製造されるジまたはポリグリシジ ェニル) $\begin{bmatrix} 1, 2, 3, 4, 5, 6-\eta \end{pmatrix}$ -(メチルエ 10 ルエーテルであり、例えばピスフェノールAあるいはそ のアルキレンオキサイド付加体のジまたはポリグリシジ ルエーテル、水素添加ビスフェノールAあるいはそのア ルキレンオキサイド付加体のジまたはポリグリシジルエ ーテル、ならびにノボラック型エポキシ樹脂等が挙げら れる。ここでアルキレンオキサイドとしては、エチレン オキサイドおよびプロピレンオキサイド等が挙げられ

> 【0015】脂環式エポキシドとしては、少なくとも1 個のシクロヘキセンまたはシクロベンテン環等のシクロ アルカン環を有する化合物を、過酸化水素、過酸等の適 当な酸化剤でエポキシ化することによつて得られる。シ クロヘキセンオキサイドまたはシクロペンテンオキサイ ド含有化合物が好ましく、具体例としては、以下に示す 化合物等が挙げられる。

[0016]

【化1】

【0017】脂肪族エポキシドの好ましいものとしては、脂肪族多価アルコールあるいはそのアルキレンオキサイド付加体のジまたはポリグリシジルエーテル等があり、その代表例としては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテルまたは1,6-ヘキサンジオールのジグリシジルエーテルをのアルキレングリコールのジグリシジルエーテル、グリセリンあるいはそのアルキレンオキサイド付加体のジまたはトリグリシジルエーテル、ポリエチレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル等が挙げられる。ここでアルキレンオキサイドとして

は、エチレンオキサイドおよびプロピレンオキサイド等 が挙げられる。

【0018】さらに、これらの化合物の他に、分子内に 1個のオキシラン環を有するモノマーである脂肪族高級 0 アルコールのモノグリシジルエーテルおよびフェノー ル、クレゾールのモノグリシジルエーテル等も用いるこ とができる。これらのエポキシドのうち、速硬化性を考 慮すると、芳香族エポキシドおよび脂環式エポキシドが 好ましく、特に脂環式エポキシドが好ましい。本発明で は、上記エポキシドの1種を単独で使用してもよいが、 2種以上を適宜組み合わせて使用してもよい。

【0019】本発明に使用される成分(3)、つまりビニルエーテル化合物としては、例えばエチレングリコールジビニルエーテル、ジエチレングリコールジビニルエラル、プロテル、トリエチレングリコールジビニルエーテル、プ

7

ロビレングリコールジビニルエーテル、ジプロビレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、シクロへキサンジメタノールジビニルエーテル、トリメチロールプロバントリビニルエーテル等のジ又はトリビニルエーテル化合物、エチルビニルエーテル、カクタデシルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロへキシルビニルエーテル、レビニルエーテル、シクロへキサンジメタノールモノビニルエーテル、ロープロビルビニルエーテル、イソプロペニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル等のモノビニルエーテル化合物等が挙げられる。

【0020】これらのビニルエーテル化合物のうち、硬化性、密着性、表面硬度を考慮すると、ジ又はトリビニルエーテル化合物が好ましく、特にジビニルエーテル化合物が好ましい。本発明では、上記ビニルエーテル化合物の1種を単独で使用してもよいが、2種以上を適宜組 20み合わせて使用してもよい。

【0021】本発明に使用される成分(4)、つまり分一子中にオキセタン環及び1個の水酸基を有する化合物と しては、例えば下記式で表される化合物を挙げることができる。

[0022] [(£2]

【0023】CCで、上記式において、R'は水素原 子、メチル基、エチル基、プロビル基またはブチル基等 の炭素数1~6個の直鎖又は分岐を有するアルキル基、 炭素数1~6個のフルオロアルキル基、アリル基、アリ ール基、フリル基またはチエニル基である。R'は、メ チレン、エチレン、プロピレンまたはブチレン等の炭素 数1~6個の直鎖又は分岐を有するアルキレン基であ り、このアルキレン基はエーテル結合を有する基、例え ば、オキシメチレン、オキシエチレン、オキシプロピレ ン、オキシブチレン等のオキシアルキレン基であっても よい。これらの化合物のうち、速硬化性、密着性、表面 硬度を考慮すれば、上記式(1)において、R¹として は炭素数1~6個のアルキル基が好ましく、特に炭素数 1~3個のアルキル基が好ましい。また、R'として は、炭素数1~6個のヒドロキシアルキル基、特に炭素 数1~3個のヒドロキシアルキル基が好ましい。

【0024】上記式で表される化合物の具体例として

は、3-ヒドロキシメチル-3-メチルオキセタン、3 -ヒドロキシメチル-3-エチルオキセタン、3-ヒド ロキシメチルー3ープロピルオキセタン、3ーヒドロキ シメチルー3ーノルマルブチルオキセタン、3ーヒドロ キシメチルー3-フェニルオキセタン、3-ヒドロキシ メチル-3-ベンジルオキセタン、3-ヒドロキシエチ ルー3-メチルオキセタン、3-ヒドロキシエチル-3 -エチルオキセタン、3-ヒドロキシエチル-3-プロ ピルオキセタン、3-ヒドロキシエチル-3-フェニル オキセタン、3-ヒドロキシプロピル-3-メチルオキ セタン、3-ヒドロキシプロピル-3-エチルオキセタ ン、3-ヒドロキシプロピル-3-プロピルオキセタ ン、3-ヒドロキシプロピル-3-フェニルオキセタ ン、3-ヒドロキシブチル-3-メチルオキセタンなど を挙げることができる。これらの化合物のうち、入手の 容易性などの点から、オキセタンモノアルコール化合物 として、3-ヒドロキシメチル-3-メチルオキセタ ン、3-ヒドロキシメチル-3-エチルオキセタンが好 ましい。

【0025】本発明では、上記化合物の1種を単独で使 用してもよいが、2種以上を適宜組み合わせて使用して もよい。本発明のインクジェット記録方式用エネルギー 線硬化型組成物は、以下の性能を満足する必要がある。 即ち第1.化、インクジェット記録方式用ブリンタのブリー ンタヘッドからインクが安定に吐出する程度の粘度であ ることつまり低粘性、第2に、プリンタヘッドから吐出 して印刷媒体(紙、プラスチック、金属等)に付着した インクがエネルギー線によって速やかに反応して硬化す ることつまり速硬化性、第3に、印刷後のインクが印刷。 30 媒体から容易に剥がれないことつまり密着性、第4に、 印刷後のインクが擦れたりしたときに滲んだりしないこ とつまり高硬度性、等の性能を満足する必要がある。 【0026】そのため、本発明では、上記成分(2)~ (4)の総重量に対して、上記成分(2)の占める割合 を47~63重量%の範囲に限定している。これによ り、インクジェット記録方式用のプリンタヘッドからイ ンクが吐出しないといった不具合を招かない低粘度(例 えば35mPa·s以下)が実現される。また、速硬化 性や密着性や硬度についても非常に優れた性能を示す。 40 ちなみに、上記割合が47重量%を下回ると、低粘性を 有するものの速硬化性や密着性の点で性能が劣化するた め好ましくなく、上記割合が63重量%を上回ると、低 粘性が維持できずインクジェット記録方式用のプリンタ ヘッドから安定に吐出されなくなるので好ましくない。 【0027】本発明において、一層優れた吐出安定性を 得ようとすれば、上記割合を48~53重量%の範囲に 限定することが好ましい。この場合には、速硬化性、密 着性、硬度についての優れた性能をそのまま保持しなが ら、従来実現できなかった低粘度(例えば20mPa・ 50 s以下)が実現されるので好ましい。

[0028]ところで、上記成分(2)~(4)は、いずれも光カチオン重合剤の存在下、紫外線等のエネルギー線が照射されると光カチオン重合反応を起こして高分子化するものであるが、この三成分を必須としたのは、各成分の不利な性能・性質を別の成分によって補うことにより、総合的にインクジェット記録方式用組成物として優れた性能を有することを考慮したからである。

【0029】具体的には、上記成分(2)つまり分子中に1個以上のオキシラン基を有する化合物は、一般に、耐熱性、接着性、耐薬品性に優れた性質を示すが、硬化 10速度が遅く粘度が高いという欠点があった。また、上記成分(3)つまりビニルエーテル化合物は、一般に、速硬化性、低粘性に優れた性質を示すが、揮発しやすいという欠点があった。更に、上記成分(4)つまり分子中にオキセタン環及び1個の水酸基を有する化合物は、一般に、耐水性、耐湿性、力学的特性、速硬化性に優れた性質を示す。

【0030】 ことで、上記成分(4)を使用せず、上記成分(2)及び上記成分(3)を組み合わせることも考えられるが、その場合には速硬化性が十分得られず、ま20た硬度が柔らかく成りすぎる傾向にあるため好ましくなく、これらを克服するために上記成分(4)を組み合わせる意義がある。

【0031】また、上記成分(3)を使用せず、上記成分(2)及び上記成分(4)を組み合わせることも考えられるが、インクジェット記録方式用組成物としては吐出安定性が非常に重要な因子であり、優れた吐出安定性を得るためにはかなりの低粘度であることが要求されることから、上記成分(4)に比べて一層粘性の低い上記成分(3)を組み合わせる意義がある。

【0032】 このような観点から、上記成分(2)~(4)のそれぞれの有利な性能・性質を生かしつつ、それぞれの不利な性能・性質を補うためには、上記(2)~(4)の三成分の総重量に対して、上記成分(2)の占める割合が47~63重量%、(特に48~53重量%)、上記成分(3)の占める割合が17~51.5重量%、上記成分(4)の占める割合が0.5~20重量%であることが好ましい。各成分につき下限値を下回ったり上限値を上回ったりした場合には、各成分の有利な性能・性質が十分に生かされず、またそれぞれの不利な性能・性質が表面化するおそれがあるため、好ましくない。

【0033】本発明のインクジェット記録方式用エネルギー線硬化型組成物は、上記成分(1)~(4)に加えて、更に、(5)光ラジカル重合開始剤と、(6)エチレン性ラジカル重合性不飽和化合物とを含有していてもよい。この場合も同様の性能・性質が得られるが、成分(5)、(6)を含有することにより成分の組み合わせが多様化するため、設計の自由度が広がるという利点がある。

ラジカル重合開始剤としては、従来より知られている化 合物であれば特に限定することなく使用できるが、例え ば、ベンジルまたはそのジアルキルアセタール系化合 物、アセトフェノン系化合物、ベンゾインまたはそのア ルキルエーテル系化合物、ベンゾフェノン系化合物、チ オキサントン系化合物などを挙げることができる。 【0035】具体的には、ベンジルまたはそのジアルキ ルアセタール系化合物としては、例えば、ベンジルジメ チルケタール、ベンジル-B-メトキシエチルアセター ル、1-ヒドロキシシクロヘキシルフェニルケトンなど を挙げることができる。また、アセトフェノン系化合物 としては、例えば、ジエトキシアセトフェノン、2-ヒ ドロキシメチルー1-フェニルプロパン-1-オン、 4'-イソプロビル-2-ヒドロキシ-2-メチループ ロピオフェノン、2-ヒドロキシ-2-メチループロピ オフェノン、pージメチルアミノアセトフェノン、pー tertープチルジクロロアセトフェノン、p-ter t-ブチルトリクロロアセトフェノン、p-アジドベン ザルアセトフェノンなどを挙げることができる。そし て、ベンゾイン系化合物としては、例えば、ベンゾイ ン、ベンゾインメチルエーテル、ベンゾインエチルエー テル、ベンゾインイソプロピルエーテル、ベンゾインノ ·-ルマルブチルエーテル、·-ベンゾインイソブチルエーテル· などを挙げることができる。また、ベンゾフェノン系化 合物としては、例えば、ベンゾフェノン、oーベンゾイ ル安息香酸メチル、ミヒラースケトン、4,4′-ビス ジエチルアミノベンゾフェノン、4,4'-ジクロロベ ンゾフェノンなどを挙げることができる。そして、チオ 30 キサントン系化合物としては、例えば、チオキサント ン、2-メチルチオキサントン、2-エチルチオキサン トン、2-クロロチオキサントン、2-イソプロピルチ オキサントンなどを挙げることができる。本発明では、

チレン性ラジカル重合性不飽和化合物としては、従来より知られている化合物であれば特に限定することなく使用できるが、例えば、(メタ)アクリレート系化合物、不飽和ポリエステル化合物、アリルウレタン系化合物、ポリチオール化合物などを挙げることができ、これらのうちの1種または2種以上を用いることができる。そのうちでも、1分子中に少なくとも1個の(メタ)アクリル基を有する化合物が好ましく用いられ、例えば、具体例としては、エポキシ化合物と(メタ)アクリル酸との反応生成物、アルコール類の(メタ)アクリル酸エステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート おどを挙げることができる。

1種または2種以上のラジカル重合開始剤を所望の性能

【0036】本発明に使用される成分(6)、つまりエ

に応じて配合して使用することができる。

50 【0037】上記したエポキシ化合物と(メタ)アクリ

ル酸との反応生成物としては、芳香族エポキシ化合物、 脂環族エポキシ化合物および/または脂肪族エポキシ化 合物と、(メタ)アクリル酸との反応により得られる (メタ) アクリレート系反応生成物を挙げることができ る。上記した(メタ)アクリレート系反応生成物のうち でも、芳香族エポキシ化合物と(メタ)アクリル酸との 反応により得られる (メタ) アクリレート系反応生成物 が好ましく用いられ、具体例としては、ピスフェノール AやビスフェノールSなどのビスフェノール化合物また はそのアルキレンオキサイド付加物とエピクロルヒドリ 10 ンなどのエポキシ化剤との反応によって得られるグリシ ジルエーテルを、(メタ)アクリル酸と反応させて得ら れる(メタ)アクリレート、エポキシノボラック樹脂と (メタ) アクリル酸を反応させて得られる (メタ) アク リレート系反応生成物などを挙げることができる。

【0038】また、上記したアルコール類の(メタ)ア クリル酸エステルとしては、分子中に少なくとも1個の 水酸基をもつ芳香族アルコール、脂肪族アルコール、脂 環族アルコールおよび/またはそれらのアルキレンオキ サイド付加体と、(メタ)アクリル酸との反応により得 20 テルアクリレートを挙げることができる。 られる(メタ)アクリレートを挙げることができる。よ り具体的には、例えば、2-エチルヘキシル(メタ)ア ¹クリレート、2 -ヒドロキシエチル (メタ) アクリレー ト、2-ヒドロキシプロピル (メタ) アクリレート、ラ ウリル (メタ) アクリレート、ステアリル (メタ) アク リレート、イソオクチル(メタ)アクリレート、テトラ ヒドロフルフリル (メタ) アクリレート、イソボルニル (メタ) アクリレート、ベンジル (メタ) アクリレー ト、1、4-ブタンジオールジ(メタ)アクリレート、 1,6-ヘキサンジオールジ(メタ)アクリレート、ジ 30 エチレングリコールジ (メタ) アクリレート、トリエチ レングリコールジ (メタ) アクリレート、トリプロピレ ングリコールジ (メタ) アクリレート、ネオペンチルグ リコールジ (メタ) アクリレート、ポリエチレングリコ ールジ (メタ) アクリレート、ポリプロピレングリコー ルジ (メタ) アクリレート、トリメチロールプロパント リ(メタ)アクリレート、ペンタエリスリトールトリ (メタ) アクリレート、ジベンタエリスリトールヘキサ (メタ) アクリレート、上記したジオール、トリオー ル、テトラオール、ヘキサオールなどの多価アルコール 40 のアルキレンオキシド付加物の(メタ)アクリレートな どを挙げることができる。そのうちでも、アルコール類 の(メタ)アクリレートとしては、多価アルコールと (メタ) アクリル酸との反応により得られる1分子中に 2個以上の(メタ)アクリル基を有する(メタ)アクリ レートが好ましく用いられる。また、(メタ)アクリレ ート化合物のうちで、メタクリレート化合物よりも、ア クリレート化合物が重合速度の点から好ましく用いられ

ては、例えば、水酸基含有(メタ)アクリル酸エステル とイソシアネート化合物を反応させて得られる(メタ) アクリレートを挙げることができる。水酸基含有(メ タ)アクリル酸エステルとしては、脂肪族2価アルコー ルと (メタ) アクリル酸とのエステル化反応によって得 られる水酸基含有(メタ)アクリル酸エステルが好まし く、具体例としては、2-ヒドロキシエチル (メタ) ア クリレートなどを挙げることができる。また、上記イソ シアネート化合物としては、トリレンジイソシアネー ト、ヘキサメチレンジイソシアネート、イソホロンジイ ソシアネートなどのような 1 分子中に2 個以上のイソシ アネート基を有するポリイソシアネート化合物が好まし

【0040】さらに、ポリエステル(メタ)アクリレー トとしては、水酸基含有ポリエステルと(メタ)アクリ ル酸との反応により得られるポリエステル(メタ)アク リレートを挙げることができる。また、上記したポリエ ーテル (メタ) アクリレートとしては、水酸基含有ポリ エーテルとアクリル酸との反応により得られるポリエー

【0041】本発明のインクジェット記録方式用エネル ギー線硬化型組成物は、上記各成分のほかに、本発明の 効果を損なわない限り、必要に応じて着色剤(染料、顔 料等)、充填剤(シリカ、ガラス粉、セラミックス粉、 金属粉等)、消泡剤、難燃剤、酸化防止剤等の1種又は 2種以上を適量含有していてもよい。

【0042】本発明のインクジェット記録方式用エネル ギー線硬化型組成物を製造するには、例えば上記各成分 が常温で液状の場合には常温で混合すればよく、常温で 固体の成分がある場合にはその成分を加熱溶融して他の 液状成分と混合すればよい。本発明のインクジェット記 録方式用エネルギー線硬化型組成物を使用するには、ま ずこの組成物をインクジェット記録方式用プリンタのブ リンタヘッドに供給し、とのプリンタヘッドから印刷媒 体(金属、ゴム、プラスチック、成形部品、フィルム、 紙、木、ガラス、布、コンクリート、セラミック等の基 材)上に吐出し、その後紫外線又は電子線等の活性エネ ルギー線を照射する。これにより印刷媒体上の組成物は 速やかに硬化する。

【0043】なお、活性エネルギー線の光源としては、 紫外線を照射する場合には、例えば水銀アークランプ、 キセノンアークランプ、螢光ランプ、炭素アークラン プ、タングステンーハロゲン複写ランプおよび太陽光を 使用することができる。紫外線を照射する場合には、基 材に対する照射強度は、通常少なくとも0.01ワット 平方センチであって、1~20秒以内に組成物の硬化を 行い、硬化を例えば紙または金属コーティングラインで 連続的に行うことが好ましい。電子線により硬化させる 場合には、通常300eVの以下のエネルギーの電子線 【0039】また、ウレタン(メタ)アクリレートとし 50 で硬化させるが、1~5Mradの照射量で瞬時に硬化 させることも可能である。

[0044]

【実施例】以下の説明における成分(1)~(6)は、 特許請求の範囲の成分(1)~(6)と一致している。 即ち、成分(1)は光カチオン重合開始剤、成分(2) は分子中に1個以上のオキシラン基を有する化合物、成 分(3)はビニルエーテル化合物、成分(4)は分子中 にオキセタン環及び1個の水酸基を有する化合物、成分 (5)は光ラジカル重合開始剤、成分(6)はエチレン 性ラジカル重合性不飽和化合物である。

* o. 1~12につき、成分(2)~(4)を下記表1に 示す重量部秤量して混合し、その混合物を暗室へ移し、 暗室にてその混合物に成分(1)を添加してインクジェ ット記録方式用エネルギー線硬化型組成物とした。な お、ことで用いた各成分はすべて室温で液状であったた め、加熱溶融することなく室温で混合した。

【0046】各組成物につき、粘度、吐出安定性、硬化 性(パス)、鉛筆硬度、密替性、可撓性を調べた。その 結果を表1の下段に示す。

[0047] 10 【表1】

【0045】[実験No.1~12について]実験N *

成分		NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	NO. 9	NO. 10	NO. 11	NO. 12
	UVI-6990*1	6	6	6	6	6	6	6	6	6	6	6	- (
(2)	UVR-6110*2	45	46	47	48	49	50	60	62	65	70	100	6
3)	DVE-3 * 3	40	40	40	40	40	40	30	28	25	20	-	4
4)	EOXA*4	15	14	13	12	11	10	10	10	10	10		
5)	APG-200*5					_							
6)	IRGACURE651 **							_				_	
	粘度(aPa·s)	13.2	14.1	14.6	15.0	15. 9	17.7	25. 4	34.4	40. 5	50.6	289.4	22.
物	吐出安定性	0	0	0	0	0	0	Δ	Δ	×	×	×	
- 1	硬化性(パス)	3	2	2	1	1	1	1	1	1	1	1	
_	鉛筆硬度	В	В	В	HB	HB	HB		н	H	H	ŽH	
性	密着性	0	0	6) = C	10	19 C	10 C	10	10	10	10	
	可撓性	×	×				0						C
	総合辞価	×	×		6	(3)	6	0		×	×	×	,

「UVI-6990」(ユニオンオーバイト社製):トリアリーよスはエウムヘキサフはロネスフェート塩の混合物

(ピス【4ージフェニルスルホニオフェニル】スルフィトでスペキサフルオロホスフェイトと ジフェニルー4ーチオフェノキシフェニルスルホニウムペキサフルオロホスフェイトの混合物)

- TUVR-6110」(ユニナンカーハ・イト・社会): 3,4-エネ・キシラクロヘキシカメチル-3,4-エネ・キシラクロヘキタンカルキ・ナンルート 「DVE-3」(ISP社会): トリエチレング・リコールジ・ピーニルエーテル *2
- *3
- *****5
- 「EOXA」(東西合成制): 3-174-3-ヒト ロキッグチルオキャッ 「APG-200」(新中村化学器): 1-174-2-ヒト ロネッグチルオキャッ 「IRCACURE651」(チャ、スペ・シャルティクミルト社器): ペ・ンジ・ルジ・メチルケール

【0048】なお、各種物性の測定方法や評価方法は下 記の通りである。

·粘度

回転型粘度計(BROOKFIELD社製MODEL DV-II+)を用いて測定温度25℃で測定した。

・吐出安定性

インクジェット記録方式用プリンタ(ブラザー工業 (株) 製HS-5000) のプリンタヘッドを用いて評 価を行い、吐出できなかったものは×、吐出できたが印 字ムラがあったものは△、吐出でき印字ムラがなかった ものは〇とした。

・硬化性(パス)

組成物をPET (ポリエチレンテレフタレート) に約1 5 μmとなるように塗布したあと、80W/cmの高圧 水銀灯を設置した紫外線照射装置(アイグラフィックス (株) 製アイミニグランデージECS-151Uコンベ アタイプ)に通過させ、表面の粘りがなくなるまでの通

過回数を測定し、この回数(これをパスという)を速硬 化性を表す指標とした。なお、パスの測定のことをTF T(Tack Free Time) 測定ともいう。

・鉛筆硬度

TFT測定と同条件で作製した塗膜に更に1パス紫外線 照射したサンプルを用い、JIS K5400に従い、 鉛筆硬度を測定した。

・密着性

TFT測定と同条件で作製した塗膜に更に1パス紫外線 照射したサンプルを用い、JIS K5400に従い、 密着性の試験を行った。密着性試験は、Xカットテープ 40 法で行い、セロハンテープを剥がした後のXカット部の

状態で密着性を評価した。密着性評価基準は下記表2の

[0049]

.【表2】

15

<密着性評価基準(6段階評価)>

評価点数	×カット部の状態						
1 0	剝がれが全くない						
8	交点に剝がれがなく、Xカット部にわずかに剝がれがある						
6	Xカット部の交点からいずれかの方向に 1. 5 mm以内の剝 がれがある						
4	Xカット部の交点からいずれかの方向に3.0mm以内の割がれがある						
2	テープを貼ったXカット部の大部分に剝がれがある						
0	Xカット部よりも大きく剝がれる						

【0050】·可撓性

TF T測定と同条件で作製した塗膜に更に 1 バス紫外線 照射したサンブルの裏側から爪で引っ掻き、剥がれの有 無を調べた。剥がれがあった場合を×、剥がれがなかっ 20 た場合を○と評価した。

・総合評価

・インクジェット記録方式用プリンタのインクとしてみた

-ときに、いずれかの物性が許容範囲を越えていた場合には

は×、すべての物性が許容範囲内の場合には○、○の評価を得たもののうち特に諸性能が優れていた場合には◎

と評価した。

【0051】次に、表1について説明する。No.1~2、No.9~11は、いずれも総合評価が×であった。即ち、成分(2)~(4)の総重量に対する成分(2)の占める割合が過小であるNo.1~2では、20mPa・s以下の低粘度であり吐出安定性に優れているものの、密着性に問題があった。一方、上記割合が過大であるNo.9~11は、速硬化性、鉛筆硬度、密着性、可撓性で良好な結果を示したが、粘度が高く吐出安定性が悪かった。

【0052】これに対して、No.3~8は上記割合が適正なものであり、いずれも総合評価が○又は◎であった(つまりNo.3~8が本発明の実施例に当たる)。即ち、35mPa・s以下の低粘度であり、吐出安定性 40が比較的良好なうえ、速硬化性、鉛筆硬度、密着性、可撓性のすべてにおいて良好な結果を示した。特に、No.4~6は、20mPa・s以下の低粘度であり、吐出安定性が極めて良好であった。

【0053】ところで、粘度と吐出安定性との間に相関関係があることはNo.1~11の結果から明らかである。即ち、粘度が35mPa·sを越えた場合には吐出安定性が悪化しているのに対して、粘度が35mPa・

s以下の場合には比較的良好な吐出安定性が得られており、特に粘度が20mPa·s以下の場合には極めて良好な吐出安定性が得られている。

20 【0054】 ここで、図1は成分(2)~(4)の総重 量に対する成分(2)の占める割合を横軸にとり、組成 物の粘度を縦軸にとったグラフである。また、図2はこの図1の部分拡大図である。このグラフにおいて、粘度 が3-5・m・P・a・・・のときの上記割合を求めたとごろ、6・3 重量%であった。つまり、吐出安定性が比較的良好な 領域は上記割合が63重量%以下の範囲であることが分かった。また、このグラフにおいて、粘度が20mPa・sのときの上記割合を求めたところ、53重量%であった。つまり、吐出安定性が極めて良好な領域は、上記 30 割合が53重量%以下の範囲であることが分かった。

【0055】なお、No. 12は成分(1)~(3)を含有し成分(4)を含有しない組成物であるが、この場合粘度は比較的低いものの、密着性で好ましくない結果が得られた。

[実験No.13~16について]実験No.13~16につき、成分(2)~(4)及び(6)を下記表2に示す重量部秤量して室温にて混合し、その混合物を暗室へ移した。そして、暗室にて成分(5)をその混合物へ投入し、加熱溶融した。ここで加熱溶融したのは、成分(5)が室温で固体だからである。その後室温になるまで冷ました後、成分(1)を添加してインクジェット記録方式用エネルギー線硬化型組成物とした。

【0056】各組成物につき、粘度、吐出安定性、硬化性(バス)、鉛錐硬度、密 発性、可撓性を調べた。その結果を表3の下段に示す。なお、各物性については既に説明済みである。

[0057]

【表3】

成分	商品名	NO. 13	NO. 14	NO. 15	NO. 16
	UVR-6990*1		4	4	4
(2)	UVI-6110*2		42 (60. 0)	50 (62.5)	56 (73. 7)
(3)	DVE-3° S	-	18 (25.7)	20 (25.0)	20 (26.3)
(4)	EOXA*4		10 (14. 3)	10 (12.5)	
(5)	APG-200*5	100	30	20	24
(6)	IRGACURE651*8	4	Ź	2	2
	粘度(mPa·s)	12.0	17.4	27.0	56.0
物	吐出安定性	O	0	Δ	×
	硬化性(パス)	1	!!!	1,	1
性	鉛筆硬度 海兽性	2H	10	10	10 10
"	可提性	×	Ö	Ö	
	総合評価	×	©	0	×

*1~*6は表1の機外を参照。 なお、NO. 14~18の()内の数値は、成分(2)~(4)の総置量に対する 成分(2)の占める割合である。

【0058】ここで表3について説明する。No. 13は本発明の必須成分である(1)~(4)を欠くもの、No. 16は成分(2)~(4)の総重量に対する成分(2)の占める割合が73.7重量%のものであるが、いずれも総合評価が×であった。即ち、本発明の必須成分が欠落したNo. 13では、20mPa・s以下の低 20粘度であり吐出安定性に優れているものの、密替性、可撓性が悪かった。一方、上記割合が過大なNo. 16では、速硬化性、鉛筆硬度、密替性、可撓性で良好な結果を示したが、粘度が高く吐出安定性が悪かった。

17

【0059】これに対して、No. 14、15は上記割合が適正なもの(No. 14は60. 0重量%、No. 15は62.5重量%)であり、いずれも総合評価が○又は◎であった(つまりNo. 14、15は本発明の実*

*施例に当たる)。即ち、いずれも35mPa・s以下の低粘度であり、吐出安定性が比較的良好なうえ、速硬化性、鉛筆硬度、密着性、可撓性のすべてにおいて良好な結果を示した。特に、No.14は、20mPa・s以下の低粘度であり、吐出安定性が極めて良好であった。【0060】尚、本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。

【図面の簡単な説明】

【図1】 成分(2)~(4)の総重量に対する成分(2)の占める割合と粘度との関係を表すグラフである。

【図2】 図1の部分拡大図である。

【図1】

粘度と成分(2)の含有割合との相関

【図2】

粘度と成分(2)の含有割合との相関

