

Daniela Cristina Lübke
COPPE _ Universidade Federal do Rio de Janeiro
danielalubke@cos.ufrj.br

Adilson Elias Xavier
COPPE _ Universidade Federal do Rio de Janeiro
adilson@cos.ufrj.br

Antonio Alberto Fernandes de Oliveira COPPE _ Universidade Federal do Rio de Janeiro oliveira@cos.ufrj.br

Vinicius Layter Xavier COPPE _ Universidade Federal do Rio de Janeiro vinicius@cos.ufrj.br

RESUMO

Consideramos o problema de recobrimento de um corpo por um determinado número de esferas. A modelagem matemática deste problema apresenta uma formulação $\it min-max-min$ com natureza multi-nível intrínseca, além de ser não diferenciável. Para superar as dificuldades do problema, desenvolvemos uma estratégia de suavização utilizando uma classe especial C^{∞} de função suavizada. A solução final é obtida através da resolução de uma sequência de subproblemas que gradualmente se aproximam do problema original. A técnica utilizada, chamada Suavização Hiperbólica, permite que as principais dificuldades apresentadas no problema original sejam superadas e gradualmente o problema se aproxime do original.

PALAVARAS CHAVE. Problemas de localização, Problemas min-max-min, Programação não-diferenciável.

ABSTRACT

We consider the problem of optimally covering solid bodies by a given number of spheres. The mathematical modeling of this problem leads to a *min-max-min* formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to overcome these difficulties, we have developed a smoothing strategy using a special class C^{∞} smoothing function. The final solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original problem. The use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essential of the method is presented. For the purpose of illustrating both the actual working and the potentialities of the method, a set of computational results is presented.

KEYWORDS. Location problems. Min-max-min problems. Non-differentiable programming.

1. Introdução

Seja V um corpo sólido convexo a ser coberto por um conjunto de um dado número q de esferas com diâmetro d.

O recobrimento considerado neste artigo \acute{e} o recobrimento conhecido na literatura como recobrimento do tipo 1, ou seja, cada ponto de V deve estar contido em pelo menos uma esfera

O problema consiste em encontrar um recobrimento de ordem 1 do corpo sólido V com q esferas, que tenha o menor diâmetro d possível, ou seja, deve-se achar os centros das q esferas que ensejam um recobrimento de ordem 1 e que tenha o menor diâmetro possível. Dessa forma, as variáveis são os centros $x_i \in \mathbb{R}^3$ i=1,...,q e o diâmetro d. Portanto esse problema está definido no espaço de 3q+1 dimensões.

Por simplicidade denomina-se a variável por

$$x = (x_1, x_2, ..., x_a, d),$$

ou seja,

$$x\in\mathbb{R}^{3q+1}$$

Para efeitos computacionais o corpo sólido V é discretizado em um conjunto finito de m volumes elementares denominados de voxels: s_j , j=1,...,m. Problemas sobre recobrimento de regiões no \Re^2 por circunferências, no \Re^3 por esferas e em outras dimensões maiores, tem sido estudados durante décadas. Importantes resultados são encontrados em Roger (1964), Toth (1964), Conway e Sloane(1988) e Hales (1992). O recobrimento planar por um conjunto de esferas foi estudado por Galiyev (1995).

O foco central deste artigo é a suavização do problema *min-max-min* engendrado pela modelagem o problema de recobrimento. Entretanto o processo de suavização é uma extensão de um esquema da Suavização Hiperbólica uma adaptação do método de penalização hiperbólica originalmente introduzido por Xavier (1982). Esta técnica de suavização é apresentada em Santos (1997) para problemas não diferenciáveis e em Chaves (1997) para problemas min-max.

Para suavizar substitui-se o problema não diferenciável de level 3 por um problema alternativo que é diferenciável de level 1. Solucionando uma sequência de problemas diferenciáveis que gradualmente se aproximam do problema original.

Este trabalho esta organizado da seguinte forma. Na seção 2 introduzimos o problema de recobrimento. A metodologia é descrita na seção 3. O algoritmo simplificado e os resultados computacionais são apresentados nas seções 4 e 5.

2. Problema de recobrimento formulação min-max-min

Sejam $x_i,\ i=1,\cdots,q$ os centros das esferas que devem cobrir um domínio $V\subseteq \Re^3$. O conjunto dos centros das esferas será representado por $X\in \Re^{3q}$. Dado um ponto genérico v de V, devemos calcular a distância de v ao centro da esfera em X mais próxima.

$$d(v,X) = \min_{i=1,\dots,q} \|v - x_i\|_2$$
 (1)

A distância d(v,X) fornece uma medida da cobertura para um ponto específico $v \in V$. Para cobrir o corpo V com q esferas deve-se encontrar a maior distância d(v,X), que corresponda exatamente à cobertura mais crítica:

$$D(X) = \max_{v \in V} d(v, X) \tag{2}$$

A localização ótima dos centros deve fornecer a melhor qualidade na cobertura *V*, isto é, deve minimizar a cobertura mais crítica:

$$\min_{X} \quad D(X) \tag{3}$$

Temos, assim, o problema:

$$\min_{\mathbf{x}} \max_{\mathbf{v} \in \mathbf{V}} \min_{i=1,...,q} \|v - x_i\|_2$$
(4)

Assim formulamos o problema *min-max-min*.

3. Transformando o Problema

Para resolver numericamente o problema (4) discretiza-se o corpo V em um conjunto finito de m pontos, v_j , $j=1,\cdots,m$. Assim o problema pode ser reescrito da seguinte forma:

$$\min_{\mathbf{x}} \max_{\mathbf{j}=1,\dots,\mathbf{m}} \min_{\mathbf{i}=1,\dots,\mathbf{q}} \left\| v_j - x_i \right\|_2 \tag{5}$$

Se para j fixo deixarmos z_j denotar o mínimo profundo da equação (5) que é

$$z_j(x) = \min_{i=1,...,q} \|v_j - x_i\|_2,$$
 (6)

então $z_i(x)$ deve satisfazer as seguintes desigualdades:

$$z_{j}(x) - \|v_{j} - x_{i}\|_{2} \le 0, \quad i = 1, \dots, q.$$
 (7)

Da mesma maneira, se z(X) denotar o máximo na equação (5) para X fixo, que é

$$z(X) = \max_{j=1,\dots,m} z_j(X), \tag{8}$$

então z(X) deve satisfazer a seguinte restrição

$$z(X) \ge z_j(X), \quad j = 1, \dots, m. \tag{9}$$

e a solução do problema mais externo de (5), não é alterada se dissociarmos z e X obtendo assim o problema equivalente:

minimize z

sujeito a:
$$z_{j} = \min_{i=1,\dots,q} \|v_{j} - x_{i}\|_{2}, \quad j = 1,\dots,m$$
 (10)
 $z \ge z_{j}, \quad j = 1,\dots,m$

Agora, considere o seguinte problema similar de otimização sobre as mesmas variáveis $z, z_1, \dots, z_m, x_1, \dots, x_q$

minimize z

sujeito a:
$$z_j - \|v_j - x_i\|_2 \le 0$$
, $j = 1, ..., m$, $i = 1, ..., q$ (11)
 $z \ge z_i$, $j = 1, ..., m$

Este problema não é equivalente ao problema (10) pois as variáveis z_j não possuem limite inferior, assim também z não possui limite inferior. Para encontrar a equivalência necessária é preciso modificar o problema (11). Deixe $\varphi(y)$ denotar max $\{0,y\}$ e, em seguida, observe que se o primeiro conjunto de desigualdades (11) são válidas, então

$$\sum_{i=1}^{q} \varphi(z_{j} - ||v_{j} - x_{i}||_{2}) = 0, \quad j = 1, ..., m$$
(12)

Para j fixado e assumindo $d_1 < \cdots < d_q \mod d_i = \left\| v_j - x_i \right\|_2$, a Figura 1 ilustra as três primeiras parcelas do somatório (12) como função de z_i

Figura 1: Parcelas do Somatório em (12)

Usando (12) no lugar do conjunto de restrições de desigualdades em (11), obteríamos um problema equivalente, mantendo a propriedade indesejável de que z e z_j ainda não terem limite inferior.

Considerando, não obstante, que a função objetivo do problema (11) irá forçar para baixo cada z e, consequentemente, cada z_j , $j=1,\cdots,m$ pode-se limitar inferiormente as últimas variáveis considerando ">" em lugar de "=" em (12) e considerando o problema "não canônico" resultante

minimize z

sujeito a:
$$\sum_{i=1}^{q} \varphi(z_{j} - \|v_{j} - x_{i}\|_{2}) > 0, \quad j = 1,...,m$$
 (13)
 $z \geq z_{j}, \quad j = 1,...,m$

Limitando inferiormente (13) através da inclusão de uma perturbação $\varepsilon>0$ encontra-se o seguinte problema modificado:

minimize z

sujeito a:
$$\sum_{i=1}^{q} \varphi(z_{j} - \|v_{j} - x_{i}\|_{2}) \ge \varepsilon, \quad j = 1, ..., m$$

$$z \ge z_{i}, \quad j = 1, ..., m$$
(14)

Uma vez que o conjunto viável do problema (13) é o limite de (14) quando $\varepsilon \to 0_+$, podemos então considerar a resolução (13) através da resolução de uma sequência de problemas como (14) com uma sequência decrescente de valores ε que se aproxima de 0.

No trabalho de Xavier (2005) é apresentado em detalhes um conjunto de resultados teóricos associados à resolução do problema (14). Estes resultados garantem a equivalência do problema (14) com o problema (10), no que concerne a solução ótima e a existência de pelo menos uma solução ótima (no problema (14), onde todos os raios são iguais, ou seja, $z_i^* = z^*$, $j = 1, \cdots, m$.

Com base nestes resultados, pode-se reduzir consideravelmente a dimensão do problema. Considere então o seguinte problema:

minimize z

sujeito a:
$$\sum_{i=1}^{q} \varphi(z - \|v_j - x_i\|_2) > 0, \quad j = 1, ..., m$$
 (15)

Deve ser enfatizado que o problema (15) é definido no espaço de dimensão (3q+1), que é muito menor que o espaço do problema (13), definido no espaço de dimensão (3q+m+1). Assim é mais vantajoso, computacionalmente, resolver o problema (15) em vez do problema (13).

4. Suavizando o Problema

O problema (15), apesar de computacionalmente mais vantajoso, apresenta uma estrutura fortemente não-diferenciável, logo sua solução computacional torna-se muito difícil. Portanto para solucionar o problema (15) adota-se a estratégia de suavização apresentada no trabalho de Xavier (2005).

$$\phi(y,\tau) = (y + \sqrt{y^2 + \tau^2})/2 \tag{16}$$

para $y \in \Re$ e $\tau > 0$.

A função, suavizada, ϕ apresenta as seguintes propriedades:

- (a) $\phi(y,\tau) > \varphi(y) \quad \forall \tau > 0$;
- (b) $\lim_{\tau \to 0} \phi(y, \tau) = \varphi(y)$;
- (c) $\phi(y,\tau)$ é uma função convexa crescente de classe C^{∞}

Portanto a função ϕ constitui uma aproximação da função ϕ . Adotando as mesmas ideias iniciais utilizadas na Figura 1, as três primeiras parcelas do somatório na equação (12) e suas aproximações suavizadas correspondentes, apresentadas na equação (16) estão representados na Figura 2.

Figura 2: Parcelas originais e suavizadas do somatório em (12)

Utilizando a função ϕ e substituindo no problema (14), encontra-se o seguinte problema:

minimize z

sujeito a:
$$\sum_{i=1}^{q} \phi\left(z - \left\|v_{j} - x_{i}\right\|_{2}, \tau\right) \geq \varepsilon, \qquad j = 1, ..., m$$
 (17)

A solução do problema original pode ser obtido utilizando o Algoritmo de Suavização Hiperbólica, descrito abaixo

Algoritmo Simplificado

Passo de Inicialização: Escolha de valores: $0 < \rho_2 \le \rho_1 < 1$ faça k = 1 e escolha os valores iniciais: x^0, ε^1 e τ^1 .

Passo Principal: Repita Indefinidamente

Resolva o problema (17) com $\tau = \tau^k$ e $\mathcal{E} = \mathcal{E}^k$, começando no ponto inicial x^{k-1} e seja x^k a solução obtida.

Faça
$$\tau^{k+1} = \rho_1 \tau^k$$
, $\varepsilon^{k+1} = \rho_2 \varepsilon^k$ e $k := k+1$.

Assim como em outros métodos de suavização, a solução para o problema de cobertura é obtido através da resolução de uma sequência infinita de subproblemas de minimização restrita ($k = 1, 2, \cdots$ no Passo Principal).

Observe que o algoritmo faz com que τ e ε se aproximem de zero, fazendo com que as restrições dos subproblemas que ele resolve, dadas como em (17), tendam a aqueles de (15). Além disso, o algoritmo assume que x^k é uma solução global para k^{th} subproblema suavizada que resolve. Nesta hipótese, e devido à propriedades de continuidade de todas as funções envolvidas, a sequencia Z^1, Z^2, \cdots de valores ótimos tende para o valor ótimo de (15). Além disso, como $\rho_2 \le \rho_1$ a solução ideal de um subproblema é viável para o próximo, fazendo com que o valores ótimos para diminuir monótona, já que a função objetivo é sempre o mesmo.

5. Resultados Computacionais

Para demonstrar o funcionamento do método, apresentamos alguns resultados computacionais obtidos a partir de um teste sintético em que o volume inicial foi discretizado em 546240 volumes elementares, denominados também por voxels. Assim, trata-se de um problema de programação não linear com 546240 restrições.

Estes testes foram gerados apenas para validar o método.

q	$f_{{\scriptscriptstyle Min}}$	$CPU_{\it Time}$
2	2.014002	1.80
3	2.007518	5.75
4	1.875150	19.87
5	1.776259	57.63
6	1.784842	22.66
7	1.550009	95.20
8	1.546656	158.11

Referências

CHAVES, A.M.V. (1997). Resolução do Problema Minimax Via Suavização,

Tese de M.Sc. - COPPE - UFRJ, Rio de Janeiro.

CONWAY, J. H. e SLOANE, N. J. A., (1988), Sphere Packings, Lattices and Groups, Springer, New York.

Physics, Vol. 35, No. 5, pp 609-617, Elsevier

HALES, T.C., (1992), The Sphere Packing Problem, J. Computational Applied Math, *Vol. 44*, pp 41-76.

ROGERS, C. A. (1964), Packing and Covering, *Cambridge University Press, Cambridge*.

SANTOS, A.B.A.(1997). Problemas de Programação Não-Diferenciável: Uma Metodologia de Suavização, Dissertação de M.Sc. - COPPE - UFRJ, Rio de Janeiro.

TOTH, L. F. (1964), Regular Figures, Pergamon Press, New York.

XAVIER, A.E. (1982).Penalização Hiperbólica. Um novo Método para Resolução de Problemas de Otimização. Tese de M.Sc.- COPPE – UFRJ, Rio de Janeiro.

XAVIER, A.E. (2001). Hyperbolic Penality: Method for Nonlinear Programming with Inequalities. *International Transactions in Operational Research, 8, 659-672.*

XAVIER, A.E. e OLIVEIRA, A. (2005). Optimum Covering of Plane Domains by Circles Via Hyperbolic Smoothing Method. *Journal of Global Optimization*, 31(3), 493-504.