Problem Statement

The Transactions made by a UK-based,registered,non-store online retailer betweem December 1,2010,and December 9,2011, are all included in the transactional data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. compaly objective using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to terget.

IMPORTING LIBRARIES

In [7]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [8]:

data=pd.read_csv(r"C:\Users\shaha\OneDrive\Desktop\Excel\Online Retail.csv")
data

Out[8]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ł	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ł	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ł	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ	
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0		
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0		
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0		
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0		
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0		
541909	541909 rows × 8 columns								
4)		

In [9]:

data.head()

Out[9]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdorr
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [10]:

data.tail()

Out[10]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4								,

```
In [11]:
```

data.shape

Out[11]:

(541909, 8)

In [12]:

data.describe()

Out[12]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

In [13]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

Column Non-Null Count Dtype ---------0 InvoiceNo 541909 non-null object 1 StockCode 541909 non-null object 2 Description 540455 non-null object 3 Quantity 541909 non-null int64 4 InvoiceDate 541909 non-null object 5 float64 UnitPrice 541909 non-null CustomerID 406829 non-null float64 6 7 Country 541909 non-null object dtypes: float64(2), int64(1), object(5) memory usage: 33.1+ MB

```
In [14]:
data.isnull().sum()
Out[14]:
InvoiceNo
                     0
StockCode
                     0
Description
                  1454
Quantity
                     0
InvoiceDate
                     0
UnitPrice
                     0
CustomerID
               135080
Country
dtype: int64
In [15]:
data.dropna(inplace=True)
In [16]:
data.isnull().sum()
Out[16]:
InvoiceNo
               0
StockCode
               0
Description
               0
Quantity
               0
InvoiceDate
               0
UnitPrice
               0
CustomerID
               0
Country
dtype: int64
In [17]:
data.columns
Out[17]:
```

```
dtype='object')
```

```
In [18]:
```

```
data['CustomerID'].value_counts()
Out[18]:
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
              1
17065.0
               1
              1
16881.0
16995.0
Name: count, Length: 4372, dtype: int64
In [19]:
data['UnitPrice'].value_counts()
Out[19]:
UnitPrice
1.25
          46555
1.65
          37503
2.95
          27211
0.85
          26396
0.42
          22032
3.56
               1
4.37
              1
6.89
              1
0.98
              1
224.69
Name: count, Length: 620, dtype: int64
In [20]:
data['Quantity'].value_counts()
Out[20]:
Quantity
 1
          73314
 12
          60033
 2
          58003
 6
          37688
          32183
           . . .
 828
               1
 560
              1
-408
               1
              1
 512
-80995
Name: count, Length: 436, dtype: int64
```

In [21]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[21]:

In [22]:

```
y_predicted=km.fit_predict(data[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
warnings.warn(

Out[22]:

array([4, 4, 4, ..., 2, 2, 2])

In [23]:

```
data["cluster"]=y_predicted
data.head()
```

Out[23]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdorr
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [24]:

```
data1=data[data.cluster==0]
data2=data[data.cluster==1]
data3=data[data.cluster==2]
plt.scatter(data1["CustomerID"],data1["Quantity"],color="pink")
plt.scatter(data2["CustomerID"],data2["Quantity"],color="indigo")
plt.scatter(data3["CustomerID"],data3["Quantity"],color="purple")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[24]:

Text(0, 0.5, 'Quantity')

In [25]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(data[["Quantity"]])
data["Quantity"]=scaler.transform(data[["Quantity"]])
data.head()
```

Out[25]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [26]:

```
scaler.fit(data[["CustomerID"]])
data["CustomerID"]=scaler.transform(data[["CustomerID"]])
data.head()
```

Out[26]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								•

In [27]:

km=KMeans()

In [28]:

```
y_predicted=km.fit_predict(data[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
warnings.warn(

Out[28]:

array([6, 6, 6, ..., 4, 4, 4])

In [29]:

data["New Cluster"]=y_predicted
data.head()

Out[29]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								•

In [30]:

```
data1=data[data["New Cluster"]==0]
data2=data[data["New Cluster"]==1]
data3=data[data["New Cluster"]==2]
plt.scatter(data1["CustomerID"],data1["Quantity"],color="indigo")
plt.scatter(data2["CustomerID"],data2["Quantity"],color="orange")
plt.scatter(data3["CustomerID"],data3["Quantity"],color="pink")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[30]:

Text(0, 0.5, 'Quantity')

In [31]:

```
km.cluster_centers_
```

Out[31]:

In [32]:

```
data1=data[data["New Cluster"]==0]
data2=data[data["New Cluster"]==1]
data3=data[data["New Cluster"]==2]
plt.scatter(data1["CustomerID"],data1["Quantity"],color="indigo")
plt.scatter(data2["CustomerID"],data2["Quantity"],color="orange")
plt.scatter(data3["CustomerID"],data3["Quantity"],color="pink")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="black",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[32]:

Text(0, 0.5, 'Quantity')

In [33]:

```
k_rng=range(1,10)
sse=[]
```

In [34]:

```
for k in k_rng:
   km=KMeans(n_clusters=k)
   km.fit(data[["CustomerID","Quantity"]])
    sse.append(km.inertia )
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\shaha\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
[33847.22708730174, 8593.142723177269, 3751.717856227737, 2018.33180601552
7, 1286.5232589622271, 868.984760290506, 672.3848200238324, 503.9464808143
947, 398.10153578666166]
```

Out[34]:

Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

From the given Online Retail dataset, Here we have created our final model with 3 clusters and added our cluster labels obtained from kmeans to our Dataframe consisting of Unique customers. With the help of Scatterplots we can visualize the clusters formed on different features

In []:		