Day 4: MTH 144: Precalculus

Combining functions and Inverses

1. Adding, subtracting, multiplying and dividing functions

Two functions f and g can be combined to form new functions f+g, f-g, fg, and f/g in a manner similar to the way we add, subtract, multiply, and divide real numbers.

ALGEBRA OF FUNCTIONS

Let f and g be functions with domains A and B. Then the functions f+g, f-g, fg, and f/g are defined as follows.

$$(f+g)(x) = f(x) + g(x)$$

Domain $A \cap B$

$$(f-g)(x) = f(x) - g(x)$$

Domain $A \cap B$

$$(fg)(x) = f(x)g(x)$$

Domain $A \cap B$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Practice: Perform the following function operations for f and g and find the domains of the resulting functions.

$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sqrt{x}$.

(a)
$$f + g$$

(b)
$$f - g$$

(d)
$$\frac{f}{q}$$

2. Composition of Functions

Another way to combine two functions f and g is to compose them. Composing the function f(x) with the function g(x), denoted $(f \circ g)(x)$, means that the output of g becomes the input of f. In other words $(f \circ g)(x) = f(g(x))$ or the function f is evaluated at g(x).

For example if f(x) = 5x - 3 and $g(x) = 2 - x^2$ then $(f \circ g)(x) =$

What is the domain of $f \circ g$?

Example: Let $f(x) = \frac{1}{x+2}$ and $g(x) = \frac{4}{x-1}$. Find the following:

(a) $f \circ g$ and its domain

(b) $g \circ f$ and its domain

NOTE The domain of $f \circ g$ is the intersection of the domain of inner function g and the resulting function $f \circ g$.

3. Applications with composition of functions

The weekly cost C of producing x units is given by C(x) = 60x + 750. The number x of units produced in t hours is given by x(t) = 50t.

(a) Find and interpret $(C \circ x)(t)$

(b) Find the time that must elapse in order for the cost to increase to \$15,000.

Practice: Exercise 1

Use a graphical approach to answer the following questions about the two functions graphed. Find $(f+g)(0), (f-g)(-1), (fg)(1), (f/g)(2), (f\circ g)(1), (g\circ f)(1)$.

Practice: Exercise 2

Let
$$f(x) = \frac{x}{x+3}$$
 and $g(x) = 8x - 3$. Find the following

1. $(f \circ g)(x)$ and its domain

2. $(g \circ f)(x)$ and its domain

Practice: Exercise 3

Let $f(x) = x^3 + 8$ and g(x) = x - 5 and $h(x) = \sqrt{x}$. Find $f \circ g \circ h$.

Practice: Exercise 5

A spherical balloon is being inflated. The radius of the balloon is increasing at a rate of 3cm/s.

- 1. Find a function f that models the radius as a function of time t, in seconds.
- 2. Find a function g that models the volume as a function of the radius r, in cm.

3. Find and interpret $g \circ f$.

8. One-to-one Functions

A function f is **one-to-one** if there is a one-to-one correspondence between the inputs and the outputs. In other words, f never takes on the same values twice.

4

Examples: Is f one-to-one?

$$f(x) = x^2$$

$$f(x) = x^3$$

How to determine if a function f is one-to-one - Graphically Determine if the functions f and g are one-to-one.

Practice - Restricted Domain

Graph the function $f(x) = (x+2)^2 - 1$ and decide if it is one-to-one on its entire domain.

9. Inverse Functions

A one-to-one function with domain A and range B has an **inverse function** which takes on as domain the range of f and gives as output the domain of f. In other words the inverse of a function f undoes what f does. The inverse, denoted as f^{-1} takes as input the output of f and gives as output the input of f, i.e. if f(x) = y then $f^{-1}(y) = x$.

For example if f is the function that takes the input x multiplies it by 5, adds 2 then takes the 5th power of the result, what would the inverse f^{-1} have to be to undo what f did?

The inverse function f^{-1} reverses the effect of f!

INVERSE FUNCTION PROPERTY

Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies the following cancellation properties:

$$f^{-1}(f(x)) = x$$
 for every x in A

$$f(f^{-1}(x)) = x$$
 for every x in B

Conversely, any function f^{-1} satisfying these equations is the inverse of f.

Practice: Are *f*

and g inverses of each other?

$$f(x) = 8 - 4x$$
, $g(x) = \frac{8 - x}{4}$

NOTE: The function and its inverse switch domain and range:

Domain of f =

Range of f =

10. How to find the inverse of a one-to-one function - Algebraically

Let f be a one-to one function. Then f(x) = y for any x in the domain of f and f has an inverse denoted f^{-1} .

Example: Let $f(x) = \frac{x-9}{x+9}$.

- (a) Is f one-to-one?
- (b) Find the domain of f.
- (c) Can you find the range of *f* without graphing it?
- (d) Find the inverse of f.

(e) Can you find the range of f now using the information you have about f^{-1} ?

Find the inverse $g(x) = \sqrt[11]{7x}$.

11. How to find the inverse of a one-to-one function - Graphically

Let f be a one-to one function. Then f(x) = y for any x in the domain of f and f has an inverse f^{-1} . A point (a,b) on the graph of f is going to become (b,a) on the graph of f^{-1} since the input is switched with the output.

The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

Example: Given the graph of f below find the graph of f^{-1} .

Practice: Exercise 1

Find $(g \circ f^{-1})(2)$

х	0	1	2	3	4
f(x)	1	4	5	2	3

x	- 1	1	2	3	4
g(x)	5	1	4	2	3

Practice: Exercise 2

Find $f(1), f^{-1}(-3), f^{-1}(0), (f^{-1} \circ f)(2)$

