Wykład 4b Protokoły pomocnicze ARP, DHCP, ICMP

Sieci Komputerowe 2018

ARP

Protokół ARP

→ ARP (Address Resolution Protocol) umożliwia znalezienie adresu fizycznego (MAC) odpowiadającego adresowi IP.

Protokół ARP

- → Zapytanie i odpowiedź ARP zawarte są w ramce Ethernet.
- → Zapytania ARP wysyłane są do wszystkich węzłów w sieci.
 - ◆ Adres MAC docelowy jest ustawiany na wartość: ff:ff:ff:ff:ff
- → Odpowiedzi wysyłane są tylko do pytającego.
- → Jeśli urządzenie zmienia adres IP, może poinformować inne węzły o nowym mapowaniu IP → MAC, wysyłając odpowiedź do wszystkich węzłów w sieci, nawet jeśli nikt nie zapytał.

Polecenie arp

- → Mapowania adresów IP na MAC są przechowywane w pamięci podręcznej ARP systemu (dla zwiększenia wydajności).
- → Polecenie arp służy do manipulowania wpisami do pamięci ARP.
- → Wynik działania polecenia arp -an:

```
(10.1.1.8) at 00:90:27:2A:7A:A2 [ether] on eth0.11 (10.1.2.211) at 00:0E:7B:9A:25:5F [ether] on eth0.12 (10.1.3.83) at 00:E0:7D:84:C8:4B [ether] on eth0.13 (10.1.2.4) at 00:0B:DB:93:10:6B [ether] on eth0.12
```

DHCP

Kiedyś... RARP

→ RARP (Reverse ARP) zapewnia odwzorowanie odwrotne w porównaniu z ARP – MAC na IP

Kiedyś... BOOTP

- → BOOTP dodatkowo udostępnia jeszcze inne dane
 - maskę podsieci, adres bramy, serwera DNS, ...

- → DHCP dodatkowo oferuje przydział dynamiczny
 - Adresy przydzielane są na określony czas, następnie mogą być przydzielone komu innemu

DHCPDISCOVER

- → DHCPDISCOVER (broadcast) kierowany przez klienta
- → Broadcast kierowany na adres IP 255.255.255.255
- → DHCP używa UDP jako protokołu transportowego
 - Port 67
 - Przed poznaniem własnego adresu IP jako adres nadawcy w wysyłanych pakietach IP używany jest 0.0.0.0
- → Discover powoduje, iż serwer lub serwery DHCP powinny przedstawić ofertę

DHCPOFFER

- → Propozycja adresu IP wraz z innymi parametrami:
 - m.in. maska, DNS, nazwa hosta, routing statyczny, adres serwera TFTP, nazwa domeny, ...

DHCPREQUEST

→ DHCPREQUEST jest wysyłany przez klienta jako broadcast i wskazuje wszystkim oferentom, która oferta została wybrana.

DHCPACK

- → Potwierdzenie od serwera, z określeniem czasu ważności przydziału
- → Ostateczne informacje dodatkowe (maska, DNS, ...) są tutaj powtórzone
- → Teraz klient może zacząć korzystać z otrzymanych informacji
 - Np. powinien skonfigurować interfejs sieciowy

DHCP – Zarządzanie adresacją

- → Pula adresów, możliwe przydzielanie dynamiczne (z limitem czasu dzierżawy)
- → Lub przyporządkowanie wg adresu MAC
- → Zalety DHCP:
 - Łatwa konfiguracja stacji roboczych,
 - Łatwość wprowadzania zmian w adresacji.
- → Konfiguracja statyczna jest niewygodna
 - Choć zalecana np. dla serwerów usług

DHCP – Bezpieczeństwo

- → Podstawowy problem to pojawienie się innego serwera DHCP w sieci
 - Może on oferować np. inne adresy serwerów DNS
- → Proste rozwiązanie: brak.
- → Trudne: filtrowanie na zarządzalnych przełącznikach, urządzenia do monitorowania ruchu sieciowego... istnieją takie.

ICMP

Protokół ICMP

- → ICMP (Internet Control Message Protocol) służy do wysyłania komunikatów o problemach związanych z komunikacją, np. z trasowaniem
- → Jest używany także w celach diagnostycznych
- → Komunikaty ICMP są przesyłane wewnątrz pakietów IP
- → Komunikat ICMP o błędzie, za nagłówkiem protokołu ICMP, zawiera kopię nagłówka pakietu IP, który spowodował błąd, oraz 8 bajtów następujących po nim (po tym system może zidentyfikować aplikację, która wysłała ów pakiet)

Protokół ICMP – Nagłówek

Komunikat o nieosiągalności węzła docelowego

ICMP – Typy komunikatów

Тур	Kod	
0 (odpowiedź echo)	0	Odpowiedź echo
3 (przeznaczenie nieosiągalne)	0	Sieć nieosiągalna
3	1	Host nieosiągalny
3	2	Protokół nieosiągalny
3	3	Port nieosiągalny
3	4	Konieczna fragmentacja, lecz włączony bit "nie fragmentować"
3	5	Błąd trasy rutowania
3	6	Nieznana sieć przeznaczenia
3	7	Nieznany host przeznaczenia
3	8	(Przestarzałe – nieużywane)
3	9	Dostęp do sieci przeznaczenia zabroniony
3	10	Dostęp do hosta przeznaczenia zabroniony
3	11	Sieć nieosiągalna dla usługi
3	12	Host nieosiągalny dla usługi
3	13	Komunikacja ograniczona za pomocą filtrowania
8 (zapytanie o echo)	0	Zapytanie o echo
11 (przekroczenie czasu)	0	Podczas przejścia czas życia równy 0

Dziękuję

Za tydzień... TCP

Szymon Acedański WMIM UW accek@mimuw.edu.pl

