Morgan Note for Bang Robins

In this section, let the temporally ordered observed data be $\mathbf{O} = (\mathbf{L} \square_1, \mathbf{L}_2, A_2, ..., \mathbf{L}_K, A_K, \mathbf{L}_{K+1})$ where A_k is a treatment given at time k and \mathbf{L}_k are other variables measured just prior to treatment. Associated with each treatment history $\overline{\mathbf{a}} = (a_1, ..., a_K)$, there is a counterfactual random variable $\mathbf{L}_{\overline{\mathbf{a}}} = \overline{\mathbf{L}}_{\overline{\mathbf{a}},K+1}$ recording a subject's response history if treatment regime $\overline{\mathbf{a}}$ was followed. We link the counterfactual data to the observed data through the consistency assumption $\overline{\mathbf{L}}_{\overline{\mathbf{a}},m} = \overline{\mathbf{L}}_m$ if $\overline{\mathbf{A}}_{m-1} = \overline{\mathbf{a}}_{m-1}$ which states that the observed and counterfactual response through m will be equal if the observed and counterfactual treatments agree through m-1. That is to say, the future cannot determine the past. We impose the assumption of sequential ignorability (i.e., no unmeasured confounders) that for all $\overline{\mathbf{a}}$ and m

$$L_{\overline{\mathbf{a}}} \prod A_m \mid \overline{\mathbf{L}}_m, \overline{\mathbf{A}}_{m-1} = \overline{\mathbf{a}}_{m-1} \tag{1}$$

which implies that sufficient covariates have been recorded in the \mathbf{L}_m so that, as in a sequential randomized trial, the treatment A_m is independent of the counterfactuals given the observed past. Further we assume that, for all a_m in the support of A_m ,

if
$$f(\overline{\mathbf{A}}_{m-1}, \overline{\mathbf{L}}_m) > 0$$
 then $f(a_m \mid \overline{\mathbf{A}}_{m-1}, \overline{\mathbf{L}}_m) > 0$, (2)

which says that there is a positive probability that, in the observed study, any regime $\bar{\mathbf{a}}$ may be followed by a given subject.

We shall consider inference concerning the parameter $E[Y_{\overline{a}}] = E[L_{K+1,\overline{a}}]$

DR Estimation of $E[Y_{\overline{a}}]$

1. .Compute the MLE $\hat{\alpha}$ of α from the observed data by pooled (over persons i and times m) logistic regression

$$\log it \left\{ pr \left(A_{m,i} = 1 \mid \overline{\mathbf{I}}_{m,i}, \overline{\mathbf{a}}_{m-1,i}; \boldsymbol{\alpha} \right) \right\} = w_m \left(\overline{\mathbf{I}}_{m,i}, \overline{\mathbf{a}}_{m-1,i}; \boldsymbol{\alpha} \right)$$

where w_m is a user specified function.

Do three times to test double robustness and efficiency: (i) for the true propensity model generating the data, (ii) a correct super model, and (iii) an incorrect super model

2. Set
$$\hat{T}_{K+1} = \mathbf{L}_{K+1} = Y$$
.

3. Recursively, for $m = K + 1, \dots, 2$,

4. a): specify and fit by IRLS a parametric regression model $h_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}; \boldsymbol{\beta}_{m-1}, \phi_{m-1}) = \Psi\{s_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}; \boldsymbol{\beta}_{m-1}) + \phi_{m-1}\overline{\pi}_{m-1}^{-1}(\hat{\boldsymbol{\alpha}})\}$ for the conditional expectation $E\{\hat{T}_m \mid \overline{\mathbf{A}}_{m-1}, \overline{\mathbf{L}}_{m-1}\}$, where $s_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}; \boldsymbol{\beta}_{m-1})$ is a known function with the unknown parameter $\boldsymbol{\beta}_{m-1}$, Ψ is the canonical link function of a given GLM, and $\overline{\pi}_m(\hat{\boldsymbol{\alpha}}) = \prod_{j=1}^m f(A_j \mid \overline{\mathbf{L}}_j, \overline{\mathbf{A}}_{j-1}; \hat{\boldsymbol{\alpha}})$.

b): Let $\hat{h}_{m-1}\left(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}\right) = \Psi\{s_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}; \hat{\boldsymbol{\beta}}_{m-1}) + \hat{\phi}_{m-1}\overline{\pi}_{m-1}^{-1}(\hat{\boldsymbol{\alpha}})\}$ be the predicted value from IRLS fit of the model. This implies that $(\hat{\boldsymbol{\beta}}'_{m-1}, \hat{\phi}_{m-1})'$ is a solution of

$$\begin{aligned} \mathbf{0} &= \widetilde{E} \left[[\widehat{T}_m - \Psi \{ s_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-1}; \hat{\boldsymbol{\beta}}_{m-1}) + \hat{\phi}_{m-1} \overline{\pi}_{m-1}^{-1}(\hat{\boldsymbol{\alpha}}) \} \right] \\ &\{ \partial s(\overline{\mathbf{L}}_{m-1}; \hat{\boldsymbol{\beta}}_{m-1}) / \partial \boldsymbol{\beta}'_{m-1}, \overline{\pi}_{m-1}^{-1}(\hat{\boldsymbol{\alpha}}) \} \right] \\ \text{where } \widetilde{E}(V) &= n^{-1} \sum_{i=1}^{n} V_i. \end{aligned}$$

c): Set
$$\hat{T}_{m-1} = \hat{h}_{m-1} \left(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-2}, a_{m-1} \right) =$$

$$\Psi\{s_{m-1}(\overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-2}, a_{m-1}; \hat{\boldsymbol{\beta}}_{m-1})$$

$$+\hat{\phi}_{m-1}\prod_{j=1}^{m-2}f(A_j\mid \overline{\mathbf{L}}_j, \overline{\mathbf{A}}_{j-1}; \hat{\boldsymbol{\alpha}})f(a_{m-1}\mid \overline{\mathbf{L}}_{m-1}, \overline{\mathbf{A}}_{m-2}; \hat{\boldsymbol{\alpha}})$$
Note we could write \hat{T}_{m-1} more precisely as $\hat{T}_{m-1}^{a_{m-1}, \dots, a_K}$

5. Finally
$$\widehat{E}[Y_{\overline{a}}] = \widetilde{E}[\widehat{T}_1] = \widetilde{E}[\widehat{T}_1^{\overline{a}}]$$

