We aim to choose stocks to create an **aggressive portfolio** catered towards investors of our age group who can afford to take on more risk. Overall, we have opted for high risk stocks with potential for large abnormal returns. Through our weighting function using the **efficient frontier**, covariances between the stocks will be taken into consideration. Therefore, our portfolio will **consist of both shorts and longs** of a collection of stocks. Despite only choosing stocks we believe have potential for large returns based from a sentimental or speculative point of view, we will let the statistics do the talking when it comes to weighting and which stocks to long or short. Using this approach will further hedge our portfolio against potentially large losses if our sentiment, especially regarding the current COVID-19 situation is wrong.

The first stock we have chosen is **TPG Telecom LTD (TPM)**. This stock has had a log return of 8.68% over the last 1 year period with a standard deviation of 2.41% on the daily returns and a market cap of \$6.74 billion AUD which is significantly less than its competitors like Telstra and Optus (owned by Singtel). Although the average return hasn't been significant, we believe TPM has a lot of potential with their recent partnership with Vodafone for an aggressive rollout of the 5G network. In an age evolving faster and faster towards technological dependence, the reliance on a fast network for ubiquitous computing will become increasingly necessary. This is further exacerbated by the current global pandemic restrictions placing even further strain on our network systems.

To diversify our portfolio, we have decided to include **A2 Milk Company LTD (A2M)**. A2M has by far outperformed the market in the past 12 months, yielding a log return of 18.56% over the last 1 year period with a standard deviation of 2.44% in daily returns. It is clear investor confidence in this company is at a high as well, with the current PE ratio around 43.4. We have chosen A2M as it is a consumer staple, expanding internationally and becoming particularly popular amongst Asian and American shoppers who recognise the brand.

Appen (APX) is a global leader in the development of high-quality training data for machine learning and artificial intelligence. Despite posting a log return of -19% over the past 1 year period and a standard deviation of 3.44% in the daily returns, we are confident prices will correct once the panic sell off ends and as business activity that depends on APX's technology increases again. Furthermore, with a taste of working remotely being embraced by white collar employees, we are confident this will act as a catalyst for more dependence on APX's technology which can facilitate the implementation of more automation and less in person business.

Altium (ALU) is a software company that provides PC-based electronic design software. It has been doing well due to its potential as its plans to accelerate its new cloud platform for its rapidly growing consumer. At the end of the first half of the financial market, its growth is 19% and profit growth has been at 23% with a healthy cash flow. The recent release of 5G

has also aided in its potential by bringing in new opportunities to its cloud based software that is very likely to evolve in the next few years.

The final stock we have chosen is **After Pay Ltd (APT)**, which is a fintech company revolutionizing the concept of use now, pay later. With an overall log return of around -55.6% (simple returns of -42.7%) over the past one year period and a standard deviation of 5.66% in the daily returns, this is definitely one of our most risky stocks. However, it has actually been a very steady stock, consistently outperforming the market prior to the recent crash. After understanding the recent crash was due to investors fearing consumers defaulting on their loans, we have confidence the price will rebound substantially once the stimulus packages take into effect and the economy recovers.

In order to compute the daily portfolio value and the daily return, we had to assign the weightings for each stock. The stock weightings were chosen using the efficient frontier, the explanation on the calculation of weights is provided in **Appendix B2-1.** Using this yields us the following weights for each stock:

A2M: buy 47.78%, **APT**: buy 9.57%, **APX**: short 26.16%,

ALU: borrow and buy 116.74%,

TPM: short 47.92%.

We will be using these weightings throughout the holding period (3 April 2020 to 11 May 2020). Daily value and return of our portfolio are computed based on two-month historical closing prices for each stock starting from the day when the assignment was released to the day before the due date (3 April 2020 to 11 May 2020). The value of the portfolio based on the daily closing price of the stocks in the portfolio and the daily return on the portfolio are documented and provided in **Appendix B2-2** for reference.

The overall return of our portfolio till date is 30.4%. The overall return of the portfolio is computed by taking the average of daily log returns throughout the holding period as shown in **Appendix B2-2**.

In order to test for persistence in portfolio daily returns, we constructed a correlogram of residuals (as shown in Appendix B1a). By looking at ACF, we can see that there are some spikes, but they are all within the 95% confidence band. As such, it appears to have no serial correlation. To confirm, we also looked at the p-values for each lag.

Since the p-values for all 36 lags are greater than 0.05 (level of significance), we do not reject the null hypothesis and conclude that there is insufficient evidence to prove that there is serial autocorrelation (refer to Equation b). Therefore, we can conclude that there are no serial

autocorrelations present in daily log returns of the portfolio as such the daily log returns are not persistent. Furthermore, as shown in Appendix B1b, it can be seen that for the daily return series, the mean of returns is centered around 0 and there are some signs of volatility clustering, with variance being non-constant over time. This indicates that there may be ARCH effects present in the returns. Given that returns keep going to the mean frequently, it indicates that it is a stationary series.

Since there are no autocorrelations observed in daily log returns and the fact that it is a stationary series, therefore a constant mean equation would be sufficient to model the mean component of the returns.

For the daily log return series, the constant mean model equation is (refer to Appendix B1c), $\hat{r_t} = 0.000847 + \hat{u_t}$

As shown in Appendix B1b, there were some signs of volatility clustering observed which indicates that there may be ARCH effects present in the returns. By looking at the correlogram of squared residuals after fitting the constant mean model (as shown in Appendix B2a), we could observe that for the first two lags, the bars are within the 95% confidence band and their -values are slightly greater than 0.05, which therefore indicates there are no serial correlations in the squared residuals (refer to Equation b). But if we were to compare it at 10% level of significance, the p-value for the first lags are less than 0.10 indicating that there are serial correlations present in the squared residuals. Starting from the third lag, large spikes are observed and these bars exceed the 95% confidence bands, which indicates that there are serial correlations observed in the squared residuals of this model. Furthemore, since p-value = 0 < 0.05, we are rejecting the null that says there are no autocorrelations observed (refer to Equation b) in the squared residuals.

All in all, this model displays strong ARCH effects especially in the later lags and hence we can model the variances and improve our model.

ARCH model

We started off by fitting a constant mean model with ARCH(1) errors (refer to Appendix B2b). To determine if there are any excess autocorrelations that are existing in the 5% level of significance, we look at the correlogram because we want to make sure that by fitting an ARCH(1) model, we get rid of all persistence. Referring to Appendix B2c, in this correlogram, there appears to be no serial correlation as the p-values are greater than 5% level of significance for all lags (refer to Equation b). Even though there are big spikes observed, it is within 95% confidence bands. We want to check for leftover ARCH effects to see if the ARCH(1) model is adequate. We can formally test this by doing an ARCH test up to 5 lags. Please refer to Appendix B2d for detailed ARCH tests on ARCH(1) model for upto 5 lags. Based on the ARCH tests, we can observe that there are some leftover ARCH effects present especially in lags 3 and 5 and as such we can conclude the ARCH(1) model is inadequate. So, we decided to fit a constant mean model with ARCH(2) errors (refer to Appendix B2e). To determine if there are any excess autocorrelations that are existing in the 5% level of significance, we look at the correlogram in Appendix B2f, and there appears to be no serial correlation as the p-values are greater than 5% level of significance for all lags. Even though there are big spikes observed, it is within the 95% confidence band. Once again, we want to

check for leftover ARCH effects to assess if the ARCH(2) model is adequate. We can formally test this by doing an ARCH test up to 5 lags. Please refer to Appendix B2g for detailed ARCH tests on ARCH(2) model for upto 5 lags. Based on the ARCH tests, we can see that there are no leftover ARCH effects present over the 5 lags which suggests ARCH(2) specification is adequate.

One of the underlying assumption made when modelling an ARCH model is that u_t follows a non-normal distribution, that is a t-distribution to account for the excess kurtosis (kurtosis >3) displayed by the portfolio returns (Appendix 2h). From standardised residuals, it could be seen that the model has captured this stylized fact of financial data. We can further conclude that the returns are not normal and be tested with a Jarque-Bera test in Appendix B2h.

Therefore, the ARCH(2) model will be (refer to Appendix B2e)

$$\sigma_t^2 = 0.000475 + 0.234\epsilon_{t-1}^2 + 0.466\epsilon_{t-2}^2$$

Since the ARCH(2) model captures the time dependency in the squares of the errors, it means it captures the time variability in the volatility as well. However, we want to assess if adding a lagged variance component would capture the variability in the volatility even better. GARCH model permits a wider range of behaviour, in particular, more persistent volatility, and improves modeling of conditional variance. As such we would be fitting a constant mean model with GARCH(2,1) errors (refer to Appendix B2i).

GARCH model

The underlying assumption we would be making when modelling a GARCH model is that u_t follows a non-normal distribution, that is a t-distribution. To determine if there are any excess autocorrelations that are existing in the 5% level of significance, we look at the correlogram because we want to make sure that by fitting a GARCH(2,1) model, we get rid of all persistence. Referring to Appendix B2j, in this correlogram, there appears to be no serial correlation as the p-values are greater than 5% level of significance for all lags (refer to equation b above). Once again, we want to check for leftover ARCH effects to assess if the GARCH(2,1) model is adequate. We can formally test this by doing an ARCH test up to 5 lags. Please refer to Appendix B2k for detailed ARCH tests on the GARCH(2,1) model for upto 5 lags. Based on the ARCH tests, we can see that there are no leftover ARCH effects present over the 5 lags which suggests GARCH(2,1) specification is adequate.

As mentioned earlier, we have assumed the u_t follows a t-distribution to account for excess kurtosis displayed by the residuals of daily portfolio returns. When we look at the histogram of standardised residuals as shown in Appendix B21, the distribution is not normal, as it follows t-distribution which is further supported by a formal Jarque Bera test (refer to Appendix B21 for the formal test).

Therefore, the GARCH(2,1) model will be (refer to Appendix B2i)

$$\sigma_t^2 = 0.0000386 + 0.135\epsilon_{t-1}^2 + 0.00348\epsilon_{t-2}^2 + 0.846\sigma_{t-1}^2$$

ARCH(2) vs GARCH(2,1)

We observe that ARCH(2) is nested in the GARCH(2,1) model. Because if we can add a restriction to the GARCH(2,1) specification, it will bring us back to ARCH(2) specification

therefore we can say it is nested. As such we can conduct a likelihood ratio test to formally decide which is a better model.

 H_0 : $\beta_1 = 0$ (if coefficients of GARCH components are 0, then it is just an ARCH model) H_1 : $\beta_1 \neq 0$

 $LR_{stat} = 2 * [LL(\widehat{\theta}_G) - LL(\widehat{\theta}_A)]$, where $LL(\widehat{\theta}_G)$ is likelihood from GARCH(2,1) model and $LL(\widehat{\theta}_A)$ is likelihood from the ARCH(2) model.

$$LR_{stat} = 2 * [188.31-184.90] = 6.82$$
 and $LR_{crit} = \mathcal{X}_{(0.05,1)}^2 = 3.841$

Since $LR_{stat} > LR_{crit}$ (6.82>3.841), we reject H_0 under the 5% level of significance.

Therefore, we can conclude that ARCH(2) is inadequate which means GARCH(2,1) would be a better model specification.

Forecasting

Using a constant mean model with GARCH(2,1) error, we could do forecasting for 11 May 2020. The fitted model for daily portfolio returns are (refer to Appendix B2i):

$$\widehat{r_t} = 0.004512 + \widehat{u_t}$$

$$\sigma_t^2 = 0.0000386 + 0.135\varepsilon_{t-1}^2 + 0.00348\varepsilon_{t-2}^2 + 0.846\sigma_{t-1}^2$$

To forecast 11 May 2020 returns, we have

$$r_{8may} = -0.000790$$
, $\widehat{\varepsilon}_{8may} = -0.005302$, $\widehat{\varepsilon}_{7may} = 0.015099$, $\widehat{\sigma}_{8may}^2 = 0.000819$

Conditional mean: $E[r_{11may}|I_{8may}] = 0.004512$

Conditional variance:

$$\widehat{V}[r_{11may}|I_{8may}] = 0.0000386 + 0.135(-0.005302)^2 + 0.00348(0.015099)^2 + 0.8466(0.000819) = 0.0007365$$
 Volatility:

$$\widehat{\sigma}[r_{11may}|I_{8may}] = \sqrt{0.0007365} = 0.027139$$

If we assume that $u_t \sim N(0,1)$, so that $\varepsilon_t | I_{t-1} \sim N(0,\sigma_t^2)$, then the conditional distribution of returns will also be normally distributed. We can form prediction returns for the return on 11 May 2020. A 95% prediction interval for r_{11may} would be:

$$0.004512 \pm 1.96 (0.027139) = [-0.00487, 0.0577]$$

The actual return on 11 May 2020 is 0.0191 which falls within the 95% prediction interval. This suggests that the constant mean model with GARCH(2,1) is a good model for forecasting the daily returns of this portfolio.

Appendix B2-1

Weight:

A2M	0.47766161
APT	0.09567618
APX	-0.2615537
ALU	1.16741058
TPM	-0.4791947

The weight of each stock in our portfolio is based on the efficient frontier we created. Our group chooses to have an aggressive portfolio with the intention of taking slightly more risk so as to earn higher returns. Therefore, the red spot shown in the graph below is where we decided the weight of each stock to be. We will be using these weightings throughout the holding period.

Explanation on how we get the efficient frontier are provided as follows

Step 1: In order to derive the weights of each stock, we have gathered one year historical data of each stock and we reported the daily closing prices of each stock. We then calculated the log returns from the daily closing prices for each stock ($r_{t+1} = log(\frac{P_{t+1}}{P_t})$). From there, we calculated the excess returns for each stock (return of each stock at time t - average return of the stock over the 1 year period).

- Step 2: Calculated the mean return of each stock.
- Step 3: Transposed the excess return table that was created in Step 1
- Step 4: Created a variance covariance table, also made up two random constants in our case which is 0.0002 and 0.1. Following that, we created two tables called mean constant where we subtracted the mean return of each stock with each of our random constants.

Step 5: Created two portfolios x and y which are the two efficient portfolios sitting on the efficient frontier. The weights of each stock in portfolio x and y is determined by each single z-value divided by the sum of all z-values.

Date	Adi Close A	2M Adi Clos	e APT Adi C	nse APX Ad	Close_ALU A	Adi Close TPI	м	return_A2M	return AP	return Af	X return	All ret	urn TPM S	TEP 1	exce	ss_return A	2M	APT	APX	ALU	TPM
6/5/19					31.757648	6.812149			AI	ctarri_Ai	retain_				CAUC						
7/5/19					31.925732	6.971032		0.0255836	0.034313	6 0.0203	59 0.005	2788 0	.0230556				0.02468	0.0332	0.0201	0.005	0.02295
8/5/19					31.292952	6.027659				3 -0.01912							-0.0139				-0.145
9/5/19					31.579681	6.007799			-0.004906				.0033003				-0.0095	-0.006			-0.0034
10/5/19		.99 26.20	9999 23	.767736	31.569794	6.305706		-0.0079735	-0.008358	-0.00668	34 -0.0003	3131 0	.0483965				-0.0089	-0.0094	-0.0069	-6E-04	0.04829
13/5/19	9 14	.83	26.17 2	3.87731	30.956787	6.256055		-0.0107312	-0.001527	3 0.00459	96 -0.019	6085 -0	.0079051				-0.0116	-0.0026	0.0043	-0.02	-0.008
14/5/19	9 15	.02	26 24	.046652	30.472315	6.265985		0.0127305	-0.006517	2 0.00706	71 -0.015	7737	0.001586				0.01183	-0.0076	0.0068	-0.016	0.00148
15/5/19	9 1	5.4 26.1	9999 24	.076536	31.846634	6.246124		0.0249849	0.005370	0.0012	42 0.044	1131 -0	.0031747				0.02408	0.0043	0.001	0.0439	-0.0033
16/5/19	9 15	.38 25.4	9999 24	.176149	31.975168	6.226264		-0.0012995	-0.026358	0.00412	88 0.0040	0279 -0	.0031846				-0.0022	-0.0274	0.0039	0.0038	-0.0033
17/5/19	9 15	.39	25.6 25	.092592	32.242123	6.196473		0.00065	0.005483	8 0.03720	61 0.008	3142 -0	.0047962				-0.0003	0.0044	0.0369	0.0081	-0.0049
20/5/19	9 15	.34 25.9	9999 24	.634371	30.749157	6.246124		-0.0032542	0.014349	-0.018	43 -0.047	4112 0	.0079809				-0.0042	0.0133	-0.0187	-0.048	0.00788
21/5/19	9 15	.25 24.70	00001 24	.026731	30.086716	6.196473		-0.0058843	-0.050138	7 -0.02497	57 -0.021	7788 -0	.0079809						-0.0252	-0.022	-0.0081
22/5/19	9 15	.13 24.3	9999 24	.136305	30.20536	6.246124		-0.0079	-0.013040	0.00455	0.0039	9356 0	.0079809				-0.0088	-0.0141	0.0043	0.0037	0.00788
23/5/19			25.08 25	.132439	30.551413	6.246124		-0.0033102	0.028307		23 0.011		0				-0.0042	0.0272	0.0402	0.0112	-0.0001
24/5/19					29.266077	6.206403			-0.044850		45 -0.0429								-0.0058		-0.0065
27/5/19					30.304234	6.45466			-0.002087		56 0.034						-0.0157				0.03912
28/5/19					31.065546	6.265985		0.0107963			12 0.024						0.0099	0.0399			-0.0298
29/5/19					31.085321	6.206403		0.0013414			01 0.000						0.00044				-0.0097
30/5/19					30.561298	6.256055			-0.041154		32 -0.0170							-0.0422			0.00787
31/5/19					30.581076	6.246124			0.004565		98 0.000						0.00593				-0.0017
3/6/19					30.175701	6.216334				-0.01392									-0.0142		-0.0049
4/6/19					28.880478	6.216334			-0.037806		05 -0.043		0				-0.0911				-0.0001
5/6/19		.48			29.493484	6.246124		0.0339527					.0047808				0.03305				0.00468
6/6/19					30.294346	6.226264			-0.019007		76 0.026						-0.0031			0.0266	-0.0033
7/6/19					30.966675	6.345427		0.0140275		7 0.02118							0.01313				0.01886
11/6/19					31.886185	6.405008		0.0224729		0 0.00597							0.02157				0.00924
12/6/19					32.390427	6.444729				4 0.02281							-0.0031			0.0155	
13/6/19					31.727989	6.424869			-0.128418		85 -0.020								-0.0734		-0.0032
14/6/19					32.271782	6.47452			-0.043504				.0076982				0.01128				0.0076
17/6/19	13	.86	20.27 25	.799847	32.261898	6.45466		-0.0129034	-0.063088	0.00309	36 -0.000	3063 -0	.0030721				-0.0138	-0.0642	0.0028	-5E-04	-0.0032
STEP 2		A2M	APT	APX	ALU	TPM															
	mean	0.00090033	0.00107552	0.00025656	0.00023699	0.00010187															
STEP 3	transpose of			0.0004671	0.0000720	0.0116316	0.01193016	0.02408453	0.0021000	0.0003503	.0.0041545	0.0067	946 -0.009	2002	0042105	-n nneeen	7 0015	154 00	000000	0.00044105	-0.0239
								0.00429461												0.00372637	
			-0.0193822					0.00098542								-0.00582				0.00010355	
		0.00504177						0.04387614													
		0.02295377	-0.1455064	-0.0034021	0.04829461	-0.008007	0.00148413	-0.0032766	-0.0032865	-0.0048981	0.00787898	-0.0080	827 0.0078	7898 -0	.0001019	-0.006481	0.03911	.898 -0	0297684	-0.0096562	0.00786
STEP 4	var-co table		APT	APX		TPM		mean													
	A2M APT				0.00026209			0.00090033													
	APX				0.00065284			0.00107552													
	ALU				0.00070025			0.00023699													
	TPM				0.00030357			0.00010187													
		set two con																			
	constant	0.0002		0.1																	
		mean-const		-0.0990997																	
		0.00070033																			
		0.00070033																			
		0.00087552		-0.0989245																	
		0.00087552 5.6563E-05		-0.0989245 -0.0997434																	
		0.00087552 5.6563E-05 3.6987E-05		-0.0989245 -0.0997434 -0.099763 -0.0998981																	
STEP 5		0.00087552 5.6563E-05 3.6987E-05 -9.813E-05	x(weight)	-0.0989245 -0.0997434 -0.099763 -0.0998981	y(weight)																
STEP 5	A2M	0.00087552 5.6563E-05 3.6987E-05 -9.813E-05 2 1.35294386	x(weight) 0.48668668	-0.0989245 -0.0997434 -0.099763 -0.0998981 z -106.53393	y(weight) 0.39643605																
STEP 5	APT	0.00087552 5.6563E-05 3.6987E-05 -9.813E-05 2 1.35294386 0.25882798	x(weight) 0.48668668 0.11291846	-0.0989245 -0.0997434 -0.099763 -0.0998981 z -106.53393 15.9905311	y(weight) 0.39643605 -0.0595043																
STEP 5	APT APX	0.00087552 5.6563E-05 3.6987E-05 -9.813E-05 2 1.35294386 0.25882798 -0.1518813	x(weight) 0.48668668 0.11291846 -0.292641	-0.0989245 -0.0997434 -0.099763 -0.0998981 z -106.53393 15.9905311 -4.8995794	y(weight) 0.39643605 -0.0595043 0.01823241																
STEP 5	APT APX ALU	0.00087552 5.6563E-05 3.6987E-05 -9.813E-05 2 1.35294386 0.25882798 -0.1518811 -0.2570154	x(weight) 0.48668668 0.11291846 -0.292641 1.26990443	-0.0989245 -0.0997434 -0.099763 -0.0998981 z -106.53393 15.9905311 -4.8995794 -65.829483	y(weight) 0.39643605 -0.0595043 0.01823241 0.24496589																
STEP 5	APT APX	0.00087552 5.6563E-05 3.6987E-05 -9.813E-05 2 1.35294386 0.25882798 -0.1518811 -0.2570154	x(weight) 0.48668668 0.11291846 -0.292641 1.26990443	-0.0989245 -0.0997434 -0.099763 -0.0998981 z -106.53393 15.9905311 -4.8995794 -65.829483 -107.45671	y(weight) 0.39643605 -0.0595043 0.01823241																

Step 6: We assume the two portfolios we created as two single stocks and computed their portfolio expected return, variance, covariance and correlation.

Step 7 and Step 8: We created a data table to get all the possible proportions of portfolio x and outline them all in the table. We can get a series of data representing how different weights of x in the portfolio affect the overall portfolio risk and return. Using that we created an efficient frontier where the x axis represents risk of the portfolio (i.e. standard deviation) and the y axis represents the return of the portfolio (i.e mean).

Appendix B2-2

	Adj Close_A2M	Adj Close_APT	Adj Close_APX	Adj Close_ALU	Adj Close_TPM	weight		Date	portfolio value	log return(p)	overall return
/4/20	16.620001	19.549999	19.959999	27.030001	6.991151	A2M	0.47766161	3/4/20	32.79358153	#VALUE!	0.30405928
/4/20	16.879999	20.120001	21.25	29.879999	7.27	APT	0.09567618	6/4/20	35.82839857	0.08850802	7
/4/20	17.049999	21.059999	21.219999	30.450001	7.369589	APX	-0.2615537	7/4/20	36.62508718	0.02199261	
/4/20	16.82	19.879999	21.66	30.23	7.27	ALU	1.16741058	8/4/20	36.07813475	-0.0150465	
/4/20	16.92	22	22.76	30.93	7.3	TPM	-0.4791947	9/4/20	36.84383706	0.02100136	
/4/20	17.48	28.4	24.110001	31.34	7.76			14/4/20	37.62876621	0.02108046	
/4/20	18.1	27.879999	23.85	31.719999	7.77			15/4/20	38.38199182	0.01981957	
/4/20	19	27.280001	23.809999	31.549999	7.65			16/4/20	38.62398773	0.00628514	
/4/20	19	29	24.719999	32.349998	7.81			17/4/20	39.40779298	0.02009006	
/4/20	18.73	29	24.83	32.110001	7.59			20/4/20	39.07530099	-0.008473	
/4/20	18.309999	27.32	23.18	30.700001	7.47			21/4/20	37.55696462	-0.0396317	
/4/20	18.620001	26.57	23.440001	30.860001	7.32			22/4/20	37.82394423	0.00708351	
/4/20	18.59	27.15	23.01	30.84	7.39			23/4/20	37.92068141	0.0025543	
/4/20	18.65	27.01	22.799999	31.299999	7.37			24/4/20	38.53746457	0.01613423	
/4/20	18.77	27.75	23.83	33.209999	7.64			27/4/20	40.49655544	0.04958605	
/4/20	18.93	28.309999	24.1	33.029999	7.5			28/4/20	40.41289373	-0.002068	
/4/20	18.6	28.15	24.190001	33.360001	7.52			29/4/20	40.59208115	0.00442412	
/4/20	18.219999	31.200001	25.83	34.150002	7.36			30/4/20	41.27236066	0.01662004	
/5/20	17.950001	29.16	25.35	33.029999	7.06			1/5/20	39.91001429	-0.0335658	
/5/20	18.9	36.099998	25.84	33.720001	6.99			4/5/20	41.73868285	0.04480107	
/5/20	18.77	38.18	26.59	35.009998	7.14			5/5/20	43.11350519	0.03240795	
/5/20	18.540001	39.799999	28.940001	35.299999	7.33			6/5/20	42.79149071	-0.007497	
/5/20		39.5	29.049999	36.119999	7.2			7/5/20		0.01961083	
/5/20		39.880001	30	36.349998	7.26			8/5/20	The second secon	-0.00079	
/5/20		42.209999	29.68	36.860001	7.275			11/5/20	The second least tension to the last tension of tension of tension of tension of tensi	0.01913204	

Appendix B1a

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
ıdı	- (d -)	1	-0.071	-0.071	0.4594	0.498	
	1 🗇	2	0.180	0.176	3.4559	0.178	
1 101	1 10	3	0.104	0.132	4.4711	0.215	
1 10 1	1 0 1	4	0.081	0.069	5.0879	0.278	
1 1	1 1	5	0.161	0.138	7.5548	0.183	
1 0 1	10	6	-0.077	-0.097	8.1203	0.229	
	1 🗀	7	0.230	0.161	13.312	0.065	
1 (1	111	8	-0.028	-0.010	13.391	0.099	
1 1 1	141	9	0.032	-0.039	13.496	0.141	
141	10 1	10	-0.052	-0.104	13.766	0.184	
1 10 1	1 10 1	11	0.096	0.092	14.723	0.196	
1 10 1	1 10 1	12	0.083	0.073	15.440	0.218	
1 10 1	1 1	13	0.094	0.149	16.379	0.229	
1 1	101	14		-0.060	16.379	0.291	
1 11 1	1 11	15		-0.020	16.445	0.353	
1 11 1	141	16		-0.031	16.565	0.414	
1 11 1	1 10 1	17	0.031	0.057	16.670	0.477	
1 1	191	18		-0.078	16.699	0.544	
' P'	' P'	19	0.161	0.169	19.689	0.413	
' 9 '	' -		-0.104		20.949	0.400	
191	191	100	-0.069		21.516	0.428	
'9'	G '		-0.130		23.550	0.371	
' 📙 '	191		-0.103		24.850	0.358	
' 9 '	'E'		-0.056		25.233	0.393	
' 🗓 '	1 1		-0.064	0.108	25.743	0.421	
' 9 '	9 '		-0.108		27.242	0.397	
'9 '	1 11		-0.119	0.018	29.070	0.358	
' 1 '	141		-0.036		29.243	0.400	
<u>'</u> 9 !	1 11		-0.136	0.024	31.729	0.332	
12 1	19!		-0.002		31.730	0.380	
<u>'</u> ¶ '	1 !!!		-0.124		33.859	0.331	
<u>'</u> ":	! ! !	32	0.081	0.002	34.782	0.337	
-	! !!	1	-0.239		43.028	0.114	
! 5 !	! 9 !		-0.121		45.191	0.095	
! !!	1 111		-0.068	0.007	45.876	0.103	
101	1111	1 30	-0.109	-0.049	47.671	0.092	

Appendix B1b

Appendix B1c

Dependent Variable: LOG_RETURN_P_ Method: Least Squares Date: 05/29/20 Time: 07:34 Sample (adjusted): 1/03/2020 5/08/2020 Included observations: 88 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000847	0.003391	0.249714	0.8034
Root MSE	0.031629	R-squared		0.000000
Mean dependent var	0.000847	Adjusted R-so	uared	0.000000
S.D. dependent var	0.031811	S.E. of regres	sion	0.031811
Akaike info criterion	-4.046729	Sum squared	0.088037	
Schwarz criterion	-4.018577	Log likelihood	1	179.0561
Hannan-Quinn criter.	-4.035387	Durbin-Watso	n stat	2.142048

Appendix B2a

	Correlogram of Re	sidu	als Squ	ared	2200	10
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 10 1	1 1 1 1	1	0.042	0.042	0.1634	0.686
		2	0.247	0.246	5.7912	0.055
1		3	0.217	0.212	10.197	0.01
1 1 1	141	4	0.022	-0.046	10.245	0.03
		5	0.387	0.316	24.539	0.00
1 (1)	IE	6	-0.057	-0.117	24.848	0.00
1 101	1 1	7	0.126	-0.016	26,400	0.00
1 (1)	1 11	8	0.111	0.025	27.626	0.00
1 0 1	101	9	-0.052	-0.053	27.892	0.00
		10	0.281	0.156	35.925	0.00
1 1	1 1 1	11	-0.038	0.011	36.073	0.00
1) 1	1 4	12	0.019	-0.104	36.111	0.00
· 🗀	1 10	13	0.194	0.152	40.074	0.00
1 1	1 11 1	14	0.000	0.060	40.074	0.00
1 🗀	141	15	0.175	-0.027	43.391	0.00
1 1	1111	16	-0.024	-0.030	43.456	0.00
1 🗀 1		17	0.138	0.146	45.589	0.00
1 10 1	101	18	0.084	-0.081	46.384	0.00
1 ()	1 1	19	-0.021	-0.023	46.434	0.00
1 1	'E '	20	-0.001	-0.165	46.434	0.00
101	101	21	-0.073	-0.057	47.059	0.00
10 1	1 1	22	-0.103	-0.143	48.321	0.00
1 (1	101	23	-0.045	-0.050	48.563	0.00
1 (1	1 1 1	24	-0.060	0.010	49.009	0.00
101	1 1 1	25	-0.069	0.034	49.602	0.00
10 1	101	26	-0.100	-0.063	50.877	0.00
10 1	101	27	-0.118	-0.096	52.677	0.00
10 1	101	28	-0.100	-0.089	53.991	0.00
101	1 1 1	29	-0.075	0.030	54.738	0.00
101	1 1	30	-0.071	-0.014	55.428	0.00
· 🗖 ·	16 1	31	-0.149	-0.122	58.529	0.00
101	1 1	32	-0.098	-0.023	59.892	0.00
141		33	-0.034	0.148	60.055	0.00
1 10 1	1 10	34	0.042	0.115	60.319	0.00
' -	101	35	-0.117	-0.081	62.376	0.00
10 1	101	36	-0.106	-0.053	64.093	0.00

Appendix B2b

Sample (adjusted): 1/03/2020 5/08/2020 Included observations: 88 after adjustments Convergence achieved after 20 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)*2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.003626	0.002832	1.280687	0.2003
	Variance	Equation		
С	0.000859	0.000577	1.489676	0.1363
RESID(-1) ²	0.427657	0.483538	0.884432	0.3765
T-DIST. DOF	3.706023	2.786848	1.329826	0.1836
Root MSE	0.031751	R-squared		-0.007723
Mean dependent var	0.000847	Adjusted R-so	quared	-0.007723
S.D. dependent var	0.031811	S.E. of regres	sion	0.031933
Akaike info criterion	-4.025609	Sum squared	resid	0.088717
Schwarz criterion	-3.913003	Log likelihood	d	181.1268
Hannan-Quinn criter.	-3.980243	Durbin-Watso	n stat	2.125632

Appendix B2c

	Correlogram of Sta	ndar	dized R	esiduals	S	
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
141	l idi	1	-0.060	-0.060	0.3278	0.567
· 🗀 ·		2	0.143	0.140	2.2222	0.329
1 10 1	()	3	0.078	0.096	2.7828	0.426
1 (1)	()	4	0.082	0.075	3.4217	0.490
1 🛅 1	<u> </u> -	5	0.137	0.128	5.2180	0.390
1 1	1 (1	6	-0.022	-0.034	5.2652	0.510
· 🗀		7	0.220	0.176	9.9764	0.190
1 1 1	1 11	8	0.034	0.045	10.090	0.259
1 1	101	9	-0.006	-0.069	10.093	0.343
101	III	10	-0.081	-0.148	10.763	0.376
ı 🗀 ı	1 1	11	0.155	0.130	13.248	0.277
1 11 1	1 1 1	12	0.036	0.039	13.384	0.342
1 🛅 1		13	0.112	0.118	14.720	0.325
1 (101	14	-0.032	-0.069	14.831	0.390
1 1 1	1 (1)	15	0.009	-0.047	14.840	0.463
1 1	1 11	16	-0.002	-0.043	14.840	0.536
1 1 1	()	17	0.020	0.077	14.885	0.604
1 1	101	18	-0.008	-0.072	14.892	0.669
· 🗀		19	0.202	0.207	19.589	0.420
10 1	1 1	20	-0.102	-0.152	20.795	0.409
1 1	1 1	21	-0.024	-0.024	20.863	0.467
10 1		22	-0.138	-0.196	23.131	0.394
1 1	10 1	23	-0.138	-0.126	25.455	0.327
1 (1 1	24	-0.025	-0.143	25.531	0.377
101	1 10	25	-0.053	0.108	25.877	0.414
10 1		26	-0.094	-0.196	26.995	0.410
1 1	1 1	27	-0.140	0.002	29.522	0.336
1 (1 1 1	28	-0.026	-0.012	29.608	0.382
' - '	1 1 1	29	-0.149	0.036	32.591	0.295
1 1	1 1	30	0.005	-0.054	32.595	0.340
1 1	1 1	31	-0.143	-0.019	35.453	0.266
1 🛅 1	1 1	32	0.100	-0.004	36.857	0.254
	1 1	33	-0.235	-0.103	44.825	0.082
1 1	1 🖂 1	34	-0.146	-0.126	47.953	0.057
101	1 1	35	-0.065	0.003	48.576	0.063
10 1	1 (1)	36	-0.091	-0.061	49.847	0.062

We want to check for leftover ARCH effects to see if the ARCH(1) model is adequate. We can formally test this by doing an ARCH test up to 5 lags.

A LM test for ARCH effect (5 lags) will be used, desired hypothesis:

Auxiliary equation:

$$\sigma_t^2 = \gamma_0 + \gamma_1 \widehat{\varepsilon}_{t-1}^2 + \gamma_2 \widehat{\varepsilon}_{t-2}^2 + \dots + \gamma_5 \widehat{\varepsilon}_{t-5}^2 + \nu_t$$

$$H_0: \gamma_1 = \gamma_2 = \dots = \gamma_5 = 0 \text{ [No ARCH]}$$

$$H_1: \text{At least one of } \gamma_i \neq 0 \text{ [ARCH]}$$

Lag 1

Heteroskedasticity Test	: ARCH							
F-statistic Obs*R-squared	1.132376 1.143783	Prob. F(1,85) Prob. Chi-Sq		0.2903 0.2849				
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/31/20 Time: 23:10 Sample (adjusted): 1/06/2020 5/08/2020 Included observations: 87 after adjustments Variable Coefficient Std. Error t-Statistic Prob.								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
C WGT_RESID^2(-1)	0.966357 -0.114652	0.182918 0.107743	5.283019 -1.064132	0.0000 0.2903				
Root MSE Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	1.450040 0.866975 1.468129 3.627037 3.683724 3.649863 1.956121	R-squared Adjusted R-s S.E. of regres Sum squared Log likelihood F-statistic Prob(F-statis	ssion d resid d	0.013147 0.001537 1.467001 182.9277 -155.7761 1.132376 0.290283				

The p-value = 0.2849 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 1.

F-statistic Obs*R-squared	2.157452 4.249924	Prob. F(2,83) Prob. Chi-Sq		0.1221 0.1194					
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/31/20 Time: 23:12 Sample (adjusted): 1/07/2020 5/08/2020 Included observations: 86 after adjustments Variable Coefficient Std. Error t-Statistic Prob.									
Variable Coefficient Std. Error t-Statistic Prob.									
C WGT_RESID^2(-1) WGT_RESID^2(-2)	0.795781 -0.096595 0.189022	0.210891 0.107792 0.107675	3.773414 -0.896119 1.755486	0.0003 0.3728 0.0829					
Root MSE Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	1.428922 0.876220 1.474190 3.621486 3.707103 3.655943 2.084237	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)		0.049418 0.026512 1.454517 175.5965 -152.7239 2.157452 0.122060					

The p-value = 0.1194 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 2.

Lag 3

F-statistic	2.846131	Prob. F(3,81)		0.042
Obs*R-squared	8.105611	Prob. Chi-Squ	uare(3)	0.043
Test Equation:				
Dependent Variable: W	GT RESID^2			
Method: Least Squares	01_1,20,0 2			
Date: 05/31/20 Time: 2	3:13			
Sample (adjusted): 1/08	3/2020 5/08/20	20		
included observations:	85 after adjust	ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Occincient	Old. Elloi	Cotatione	1 100.
C	0.632712	0.227379	2.782628	0.006
-				
WGT_RESID^2(-1)	-0.141153	0.108399	-1.302167	0.196
THE RESIDENCE OF THE PARTY OF T	-0.141153 0.206922	0.108399 0.106955	-1.302167 1.934665	0.196
WGT_RESID^2(-1)				
WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	0.206922	0.106955	1.934665	0.056
WGT_RESID^2(-1) WGT_RESID^2(-2)	0.206922 0.220757	0.106955 0.108246	1.934665 2.039408	0.056 0.044
WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var	0.206922 0.220757 1.399821	0.106955 0.108246 R-squared	1.934665 2.039408 quared	0.056 0.044 0.09536
WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	0.206922 0.220757 1.399821 0.885360	0.106955 0.108246 R-squared Adjusted R-s	1.934665 2.039408 quared sion	0.056 0.044 0.09536 0.06185
WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var S.D. dependent var Akaike info criterion	0.206922 0.220757 1.399821 0.885360 1.480486	0.106955 0.108246 R-squared Adjusted R-s S.E. of regres	1.934665 2.039408 quared sion tresid	0.056 0.044 0.09536 0.06185 1.43396
WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var S.D. dependent var	0.206922 0.220757 1.399821 0.885360 1.480486 3.604683	0.106955 0.108246 R-squared Adjusted R-s S.E. of regres Sum squared	1.934665 2.039408 quared sion tresid	0.056 0.044 0.09536 0.06185 1.43396 166.557

The p-value = 0.0439 < 0.05 (level of significance) and therefore we reject the null concluding that there is sufficient evidence to prove that there are leftover ARCH effects present in lag 3.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.649808	0.243266	2.671178	0.0092
WGT_RESID^2(-1)	-0.141521	0.112594	-1.256918	0.2125
WGT_RESID^2(-2)	0.205731	0.110984	1.853708	0.0675
WGT_RESID^2(-3)	0.217350	0.110844	1.960865	0.0534
WGT_RESID^2(-4)	-0.007614	0.112306	-0.067794	0.9461
Root MSE	1.407022	R-squared		0.094006
Mean dependent var	0.894248	Adjusted R-s	quared	0.048133
S.D. dependent var	1.487095	S.E. of regres	sion	1.450865
Akaike info criterion	3.639875	Sum squared	resid	166.2956
Schwarz criterion	3.784566	Log likelihoo	d	-147.8747
Hannan-Quinn criter.	3.698040	F-statistic		2.049258
Durbin-Watson stat	1.993223	Prob(F-statist	tic)	0.095449

The p-value = 0.0954 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 4.

Lag 5

Heteroskedasticity Test: ARCH				
F-statistic	2.817354	Prob. F(5,77)	0.0217	
Obs*R-squared	12.83613	Prob. Chi-Square(5)	0.0250	

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 05/31/20 Time: 23:15
Sample (adjusted): 1/10/2020 5/08/2020
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.490122	0.250509	1.956505	0.0540
WGT_RESID^2(-1)	-0.140281	0.110231	-1.272607	0.2070
WGT_RESID^2(-2)	0.148056	0.111461	1.328317	0.1880
WGT_RESID^2(-3)	0.162387	0.111114	1.461442	0.1480
WGT_RESID^2(-4)	0.027801	0.111039	0.250367	0.8030
WGT_RESID^2(-5)	0.259195	0.109955	2.357286	0.0210
Root MSE	1.366997	R-squared		0.154652
Mean dependent var	0.897527	Adjusted R-squared		0.099760
S.D. dependent var	1.495830	S.E. of regression		1.419258
Akaike info criterion	3.607689	Sum squared resid		155.1006
Schwarz criterion	3.782545	Log likelihood		-143.7191
Hannan-Quinn criter.	3.677936	F-statistic		2.817354
Durbin-Watson stat	1.979444	Prob(F-statist	tic)	0.021721

The p-value = 0.0217 < 0.05 (level of significance) and therefore we reject the null concluding that there is sufficient evidence to prove that there are leftover ARCH effects present in lag 5.

Appendix B2e

Dependent Variable: LOG_RETURN_P_

Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)
Date: 05/31/20 Time: 19:58

Sample (adjusted): 1/03/2020 5/08/2020 Included observations: 88 after adjustments Convergence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.004278	0.002603	1.643532	0.1003
	Variance	Equation		
С	0.000475	0.000204	2.325957	0.0200
RESID(-1)^2	0.234458	0.235306	0.996397	0.3191
RESID(-2) ²	0.465957	0.353722	1.317298	0.1877
T-DIST. DOF	5.111721	4.139773	1.234783	0.2169
Root MSE	0.031815	R-squared		-0.011768
Mean dependent var	0.000847	Adjusted R-squared		-0.011768
S.D. dependent var	0.031811	S.E. of regression		0.031997
Akaike info criterion	-4.088742	Sum squared	resid	0.089073
Schwarz criterion	-3.947984	Log likelihood	i	184.9046
Hannan-Quinn criter.	-4.032034	Durbin-Watso	n stat	2.117133

Appendix B2f

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
ıdı	l (d)	1	-0.059	-0.059	0.3207	0.571	
1 1 1	1 1	2	0.059	0.056	0.6408	0.726	
1 1	1 61	3	0.103	0.111	1.6336	0.652	
1 1 1	1 11	4	0.061	0.072	1.9833	0.739	
1 11 1	1 11	5	0.051	0.048	2.2275	0.817	
1 1 1	1 1	6	0.017	0.005	2.2568	0.895	
i 🗀 i		7	0.135	0.120	4.0336	0.776	
1 1	1 1	8	0.005	0.008	4.0362	0.854	
1 1	1 1 1	9	-0.006	-0.028	4.0395	0.909	
- (-	101	10	-0.035	-0.071	4.1606	0.940	
· 🗀 ·		11	0.162	0.145	6.8719	0.809	
1 1	1 1 1	12	0.006	0.026	6.8758	0.866	
(🛅)	1 🗖	13	0.136	0.138	8.8214	0.786	
1 1	1 1	14	0.002	-0.024	8.8219	0.842	
1 j i 1	1 1 1	15	0.051	0.025	9.0988	0.872	
1 1 1	1 1 1	16	0.019	-0.014	9.1377	0.908	
1 11 1	1 11	17	0.036	0.034	9.2825	0.931	
141	'E '	18	-0.036		9.4258	0.949	
' 		19	0.171	0.165	12.789	0.849	
' = '	' '		-0.116		14.345	0.813	
' ('	' '		-0.038		14.516	0.846	
' - '	_ '		-0.177		18.274	0.690	
' - '	' '		-0.143		20.764	0.595	
' [' '		-0.060		21.216	0.626	
1 1			-0.014	0.095	21.239	0.679	
1 🛮 1	'5 '		-0.069		21.839	0.697	
' - '	1 1 1		-0.134		24.162	0.621	
1 11 1	1 1	28		-0.001	24.522	0.654	
' - '	']'		-0.116	0.034	26.334	0.608	
111	' '		-0.013		26.358	0.657	
<u> </u>			-0.077	0.013	27.192	0.663	
<u>'_</u> P'	<u> </u>	32	0.146	0.091	30.200	0.558	
5 !	! !!		-0.247		38.963	0.219	
<u> </u>	! 9 !		-0.115		40.907	0.193	
1 🛛 1	1 [] 1	135	-0.090	-0.053	42.120	0.190	

Appendix B2g

We want to check for leftover ARCH effects to see if the ARCH(2) model is adequate. We can formally test this by doing an ARCH test up to 5 lags.

A LM test for ARCH effect (5 lags) will be used, desired hypothesis:

Auxiliary equation:

$$\sigma_t^2 = \gamma_0 + \gamma_1 \widehat{\varepsilon}_{t-1}^2 + \gamma_2 \widehat{\varepsilon}_{t-2}^2 + \dots + \gamma_5 \widehat{\varepsilon}_{t-5}^2 + v_t$$

$$H_0: \gamma_1 = \gamma_2 = \dots = \gamma_5 = 0 \text{ [No ARCH]}$$

$$H_1: \text{At least one of } \gamma_i \neq 0 \text{ [ARCH]}$$

Lag 1

F-statistic	0.448768	Prob. F(1,85)		0.5047
Obs*R-squared	0.456915	Prob. Chi-Square(1)		0.4991
Test Equation:				
Dependent Variable: Wo	GT_RESID^2			
Method: Least Squares				
Date: 05/31/20 Time: 2	3:22			
Sample (adjusted): 1/06	6/2020 5/08/20	20		
Included observations:	87 after adjust	ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.035402	0.210487	4.919073	0.0000
WGT_RESID^2(-1)	-0.072462	0.108169	-0.669902	0.5047
		San Particular of College Control of Control		
Root MSE	1.685077	R-squared		0.005252
	1.685077 0.965465	R-squared Adjusted R-sc	quared	0.005252 -0.00645
Root MSE Mean dependent var S.D. dependent var		The second secon	*	-0.00645
Mean dependent var	0.965465	Adjusted R-so	sion	-0.00645 1.70478
Mean dependent var S.D. dependent var	0.965465 1.699313	Adjusted R-so S.E. of regres	sion I resid	
Mean dependent var S.D. dependent var Akaike info criterion	0.965465 1.699313 3.927476	Adjusted R-so S.E. of regres Sum squared	sion I resid	-0.00645 1.70478 247.035

The p-value = 0.4991 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 1.

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 05/31/20 Time: 23:23

Sample (adjusted): 1/07/2020 5/08/2020 Included observations: 86 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.113191	0.242660	4.587448	0.0000
WGT_RESID^2(-1)	-0.080545	0.109591	-0.734963	0.4644
WGT_RESID^2(-2)	-0.061115	0.109498	-0.558139	0.5783
Root MSE	1.688880	R-squared		0.009481
Mean dependent var	0.975084	Adjusted R-s	quared	-0.014387
S.D. dependent var	1.706896	S.E. of regres	sion	1.719131
Akaike info criterion	3.955776	Sum squared	resid	245.2991
Schwarz criterion	4.041392	Log likelihoo	d	-167.0984
Hannan-Quinn criter.	3.990232	F-statistic		0.397211
Durbin-Watson stat	1.989504	Prob(F-statis	tic)	0.673463

The p-value = 0.6652 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 2.

<u>Lag 3</u>

Heteroskedasticity Test: ARCH					
F-statistic	0.448464	Prob. F(3,81)	0.7191		
Obs*R-squared	1.388765	Prob. Chi-Square(3)	0.7082		

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 05/31/20 Time: 23:25

Sample (adjusted): 1/08/2020 5/08/2020 Included observations: 85 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.044652	0.276661	3.775934	0.0003
WGT_RESID^2(-1)	-0.079085	0.110823	-0.713618	0.4775
WGT_RESID^2(-2)	-0.058696	0.110925	-0.529151	0.5981
WGT_RESID^2(-3)	0.077133	0.110737	0.696545	0.4881
Root MSE	1.690559	R-squared		0.016338
Mean dependent var	0.984748	Adjusted R-s	quared	-0.020093
S.D. dependent var	1.714658	S.E. of regression		1.731799
Akaike info criterion	3.982114	Sum squared resid		242.9293
Schwarz criterion	4.097062	Log likelihood		-165.2398
Hannan-Quinn criter.	4.028349	F-statistic		0.448464
Durbin-Watson stat	2.004782	Prob(F-statist	tic)	0.719061

The p-value = 0.7082 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 3.

Lag 4

Heteroskedasticity Test: ARCH					
F-statistic	0.358941	Prob. F(4,79)	0.8371		
Obs*R-squared	1.499384	Prob. Chi-Square(4)	0.8268		

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 05/31/20 Time: 23:26

Sample (adjusted): 1/09/2020 5/08/2020 Included observations: 84 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.026582	0.306661	3.347615	0.0013
WGT_RESID^2(-1)	-0.084784	0.112546	-0.753322	0.4535
WGT_RESID^2(-2)	-0.059763	0.112554	-0.530975	0.5969
WGT_RESID^2(-3)	0.076459	0.112565	0.679240	0.4990
WGT_RESID^2(-4)	0.034915	0.112319	0.310852	0.7567
Root MSE	1.697481	R-squared		0.017850
Mean dependent var	0.993317	Adjusted R-s	quared	-0.031879
S.D. dependent var	1.723124	S.E. of regression		1.750374
Akaike info criterion	4.015215	Sum squared	resid	242.0410
Schwarz criterion	4.159906	Log likelihood	d	-163.6390
Hannan-Quinn criter.	4.073380	F-statistic		0.358941
Durbin-Watson stat	1.999446	Prob(F-statist	tic)	0.837084

The p-value = 0.8268 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 4.

Heteroskedasticity Test: ARCH

F-statistic	0.330989	Prob. F(5,77)	0.8928
Obs*R-squared	1.746366	Prob. Chi-Square(5)	0.8830

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 05/31/20 Time: 23:26

Sample (adjusted): 1/10/2020 5/08/2020 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.970400	0.333892	2.906325	0.0048
WGT_RESID^2(-1)	-0.087050	0.114046	-0.763292	0.4476
WGT_RESID^2(-2)	-0.064468	0.114455	-0.563261	0.5749
WGT_RESID^2(-3)	0.079490	0.114271	0.695629	0.4888
WGT_RESID^2(-4)	0.039455	0.114214	0.345452	0.7307
WGT_RESID^2(-5)	0.057018	0.113836	0.500880	0.6179
Root MSE	1.704900	R-squared		0.021041
Mean dependent var	0.993365	Adjusted R-squared		-0.042528
S.D. dependent var	1.733599	S.E. of regression		1.770078
Akaike info criterion	4.049468	Sum squared resid		241.2547
Schwarz criterion	4.224324	Log likelihood		-162.0529
Hannan-Quinn criter.	4.119715	F-statistic		0.330989
Durbin-Watson stat	1.978493	Prob(F-statist	tic)	0.892780

The p-value = 0.8830 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 5.

Appendix B2h

Residuals of Portfolio Returns

Standardised Residuals of ARCH(2)

Jarque-Bera test would be used for normality testing, hypothesis testing:

$$H_0$$
: Skewness $(x) = 0$ and Kurtosis $(x) = 3$
 H_1 : Skewness $(x) \neq 0$ or Kurtosis $(x) \neq 3$

$$JB \ stat = \frac{n}{6} (\widehat{Sk}(x)^2 + \frac{(\widehat{K}(x)-3)^2}{4}) \sim \mathcal{X}_{(\alpha,m)}^2 \text{ under } H_0$$

JB stat= 6.90. Under chi square distribution, the critical value at 5% level of significance and 2 degrees of freedom, $\mathscr{X}^2_{(0.05,2)}$ is 5.99. Since 6.90 > 5.99 (JB stat > $\mathscr{X}^2_{(0.05,2)}$), we reject the null hypothesis and conclude that there is sufficient evidence to prove that the distribution of the regression model is not normal.

Appendix B2i

Dependent Variable: LOG_RETURN_P_ Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)

Date: 05/31/20 Time: 18:43

Sample (adjusted): 1/03/2020 5/08/2020 Included observations: 88 after adjustments

Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.004512	0.002744	1.643939	0.1002
	Variance	Equation		
С	3.86E-05	3.49E-05	1.105753	0.2688
RESID(-1)^2	0.134628	0.197346	0.682196	0.4951
RESID(-2)^2	0.003481	0.210535	0.016534	0.9868
GARCH(-1)	0.845603	0.117775	7.179796	0.0000
T-DIST. DOF	6.142670	4.866835	1.262149	0.2069
Root MSE	0.031841	R-squared		-0.013424
Mean dependent var	0.000847	Adjusted R-so	quared	-0.013424
S.D. dependent var	0.031811	S.E. of regres	sion	0.032024
Akaike info criterion	-4.143402	Sum squared	resid	0.089219
Schwarz criterion	-3.974493	Log likelihood	i	188.3097
Hannan-Quinn criter.	-4.075353	Durbin-Watso	n stat	2.113673

Appendix B2j

Correlogram of Standardized Residuals							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	•
141	1 141	1	-0.031	-0.031	0.0850	0.771	
· 🗀 ·	<u> </u> -	2	0.138	0.137	1.8303	0.400	
ı b ı	1 11	3	0.076	0.085	2.3668	0.500	
1 10 1	1 10 1	4	0.094	0.082	3.1977	0.525	
ı b ı	1 10	5	0.137	0.126	4.9867	0.418	
1 j 1	1 1	6	0.026	0.010	5.0538	0.537	
1 🛅 1	1 1 1 1	7	0.105	0.063	6.1222	0.526	
1 1	1 1	8	0.004	-0.020	6.1238	0.633	
1 1	1 1 1	9	-0.013	-0.062	6.1400	0.726	
1 (1	101	10	-0.046	-0.084	6.3504	0.785	
1 🗖 1	1 🛅	11	0.153	0.144	8.7610	0.644	
1 1	1 1	12	-0.020		8.8014	0.720	
, b ,	1 🗖	13	0.157	0.148	11.389	0.578	
1 1	1 1	14	0.011	0.026	11.401	0.654	
ı b ı	1 1	15	0.079	0.050	12.079	0.673	
1 [1	1 1	16		-0.042	12.087	0.738	
1 10 1	1 1 1	17		0.046	12.724	0.754	
, , ,			-0.075		13.357	0.770	'n
,]	I ,T.,	19	0.173	0.156	16.779	0.605	
	1 I	100	-0.104		18.029	0.585	
	17.		-0.025		18.106	0.642	
			-0.209		23.372	0.381	
	101		-0.132		25.493	0.325	
17	1 1		-0.030		25.601	0.374	
1 🖟 1			-0.067	0.101	26.170	0.399	
	100		-0.069		26.779	0.421	
			-0.176		30.794	0.280	
		28		-0.027	30.813	0.325	
			-0.170		34.696	0.215	
17.	1 1	30		-0.103	34.709	0.253	
i d	1 11		-0.096	0.031	35.983	0.247	
191	1 1	32		0.050	37.683	0.225	
			-0.229		45.208	0.076	
a :			-0.125		47.485	0.062	
13 1	1 (7.)		-0.123	0.010	48.521	0.064	
i 🖁 i	1 1		-0.099		50.013	0.060	
.4 .	1 '4'	100	0.000	0.000	30.013	0.000	1

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
•				CT-01-01-01		
' ['	'['	1			0.0850	0.771
' 🗗 '	" "	2	0.138	0.137	1.8303	0.400
1 j a 1	<u> </u>	3	0.076	0.085	2.3668	0.500
1 p 1	I	4	0.094	0.082	3.1977	0.525
1 🗀 1	1 1	5	0.137	0.126	4.9867	0.418
1 11 1	1 1	6	0.026	0.010	5.0538	0.537
י 🗐 י	ו לו ו	7	0.105	0.063	6.1222	0.526
1 1	1 ()	8	0.004	-0.020	6.1238	0.633
1 1	1 (1)	9	-0.013	-0.062	6.1400	0.726
1 (1	1 0 1	10	-0.046	-0.084	6.3504	0.785
1 🗀 1		11	0.153	0.144	8.7610	0.644
1 1 1	1 1	12	-0.020	-0.005	8.8014	0.720
· 🗀 ·	<u> </u> -	13	0.157	0.148	11.389	0.578
1 1 1	1 11 1	14	0.011	0.026	11.401	0.654
1 10 1	1 11 1	15	0.079	0.050	12.079	0.673
1 1	1 (1	16	0.008	-0.042	12.087	0.738
ı <u>b</u> ı	1 11	17	0.076	0.046	12.724	0.754
101	I	18	-0.075	-0.165	13.357	0.770
1 1	1 🗀	19	0.173	0.156	16.779	0.605
1 🗖 1	1 1	20	-0.104	-0.135	18.029	0.585
1 (1	1 1	21	-0.025	-0.021	18.106	0.642
		22	-0.209	-0.286	23.372	0.381
1 🗖 1	101	23	-0.132	-0.080	25.493	0.325
1 1	1 1	24	-0.030	-0.120	25.601	0.374
101	1 10 1	25	-0.067	0.101	26.170	0.399
1 🗖 1	1 1		-0.069		26.779	0.421
I .	1 (1			-0.025	30.794	0.280
1 1	1 1	28		-0.027	30.813	0.325
ı = ı	1 1		-0.170		34.696	0.215
1 1	1 1	30		-0.103	34.709	0.253
1 🗹 1	1 1		-0.096	0.031	35.983	0.247
, <u>Ta</u> ,	1 61	32	0.110	0.050	37.683	0.225
-	161		-0.229		45.208	0.076
· ·		1000		-0.140	47.485	0.062
· 🖥 ·			-0.083	0.010	48.521	0.064
ı 🔒 ı	1 1		-0.099		50.013	0.060

Appendix B2k

We want to check for leftover ARCH effects to see if the GARCH(2,1) model is adequate.

We can formally test this by doing an ARCH test up to 5 lags.

A LM test for ARCH effect (5 lags) will be used, desired hypothesis:

Auxiliary equation:

$$\sigma_t^2 = \gamma_0 + \gamma_1 \widehat{\varepsilon}_{t-1}^2 + \gamma_2 \widehat{\varepsilon}_{t-2}^2 + \dots + \gamma_5 \widehat{\varepsilon}_{t-5}^2 + v_t$$

$$H_0: \gamma_1 = \gamma_2 = \dots = \gamma_5 = 0 \text{ [No ARCH]}$$

$$H_1: \text{At least one of } \gamma_i \neq 0 \text{ [ARCH]}$$

<u>Lag 1</u>

F-statistic Obs*R-squared	0.046578 0.047648	Prob. F(1,85) Prob. Chi-Squ	are(1)	0.8296					
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/31/20 Time: 23:31 Sample (adjusted): 1/06/2020 5/08/2020 Included observations: 87 after adjustments									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
С	0.964315	0.234382	4.114295	0.0001					
WGT_RESID^2(-1)	0.023405	0.108447	0.215820	0.8296					
Root MSE	1.921955	R-squared		0.000548					
1 toot mor	0.987436	Adjusted R-so	uared	-0.011211					
	0.501 450	/ lajaotoa i t ot	100,00						
Mean dependent var	1.933627	S.E. of regres		1.94443					
Mean dependent var S.D. dependent var Akaike info criterion	1.933627 4.190540	S.E. of regress	sion resid	321.370					
Mean dependent var S.D. dependent var	1.933627	S.E. of regres	sion resid	1.944435 321.3704 -180.2885 0.046578					

The p-value = 0.8272 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 1.

Lag 2

F-statistic	0.057725	Prob. F(2,83)		0.9439
Obs*R-squared	0.119456	Prob. Chi-Squ	uare(2)	0.9420
Test Equation:				
Dependent Variable: W	ST RESID^2			
Method: Least Squares	DI_INEOID 2			
Date: 05/31/20 Time: 2	3:33			
Sample (adjusted): 1/07	//2020 5/08/20	20		
Included observations:				
The second terror		***************************************	- 12.5 (C. 20.5 (C. 10.5 (C. 1	19.01.9-1
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.000758	0.261584	3.825764	0.0003
WGT_RESID^2(-1)	0.022638	0.109825	0.206124	0.8372
WGT RESID^2(-2)	-0.030126	0.109772	-0.274437	0.784
	1.931498	R-squared		0.001389
Root MSE	1.931498 0.993346	R-squared Adjusted R-s	quared	
Root MSE Mean dependent var S.D. dependent var			•	0.001389 -0.022674 1.966099
Root MSE Mean dependent var	0.993346	Adjusted R-s	sion	-0.022674
Root MSE Mean dependent var S.D. dependent var	0.993346 1.944177	Adjusted R-se S.E. of regres	sion resid	-0.022674 1.96609
Root MSE Mean dependent var S.D. dependent var Akaike info criterion	0.993346 1.944177 4.224236	Adjusted R-se S.E. of regres Sum squared	sion resid	-0.022674 1.966099 320.838

The p-value = 0.9420 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 2.

F-statistic Obs*R-squared	0.047177	Prob. F(3,81) Prob. Chi-Squ	120(2)	0.9863
Obs R-squareu	0.140200	FIOD. CIII-3QI	iaie(3)	0.9000
Test Equation:				
Dependent Variable: Wo	GT_RESID^2			
Method: Least Squares				
Date: 05/31/20 Time: 2		20		
Sample (adjusted): 1/08 Included observations:				
moidada obbottations.	oo anor aajaon	TIOTIO		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.993501	0.289632	3.430221	0.0010
MOT DECIDACE 4)	0.022214	0.111193	0.199781	0.8422
WGT_RESID^2(-1)				
WGT_RESID^2(-1)	-0.032252	0.111205	-0.290027	0.7725
	-0.032252 0.016985	0.111205 0.111217	-0.290027 0.152720	0.7725 0.8790
WGT_RESID^2(-2)				
WGT_RESID^2(-2) WGT_RESID^2(-3)	0.016985	0.111217	0.152720	0.8790
WGT_RESID^2(-2) WGT_RESID^2(-3)	0.016985 1.941373	0.111217 R-squared	0.152720 quared	0.8790
WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var	0.016985 1.941373 1.000425	0.111217 R-squared Adjusted R-sc	0.152720 quared sion	0.8790 0.001744 -0.035228
WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var S.D. dependent var	0.016985 1.941373 1.000425 1.954600	0.111217 R-squared Adjusted R-se S.E. of regres	0.152720 quared sion resid	0.8790 0.001744 -0.035228 1.988731
WGT_RESID^2(-2) WGT_RESID^2(-3) Root MSE Mean dependent var S.D. dependent var Akaike info criterion	0.016985 1.941373 1.000425 1.954600 4.258786	0.111217 R-squared Adjusted R-sc S.E. of regres Sum squared	0.152720 quared sion resid	0.8790 0.001744 -0.035228 1.988731 320.3590

The p-value = 0.9855 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 3.

<u>Lag 4</u>

F-statistic Obs*R-squared	0.037644 0.159801	Prob. F(4,79) Prob. Chi-Squ	0.9972 0.9970					
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/31/20 Time: 23:34 Sample (adjusted): 1/09/2020 5/08/2020 Included observations: 84 after adjustments								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	0.985197	0.316523	3.112561	0.0026				
WGT_RESID^2(-1)	0.021436	0.112654	0.190278	0.8496				
WGT_RESID^2(-2)	-0.032243	0.112687	-0.286132	0.7755				
WGT_RESID^2(-3)	0.015882	0.112774	0.140827	0.8884				
WGT_RESID^2(-4)	0.013400	0.112616	0.118992	0.9056				
Root MSE	1.952480	R-squared		0.001902				
Mean dependent var	1.003887	Adjusted R-se	quared	-0.048634				
wealt dependent var	1.966077	S.E. of regres	sion	2.013319				
S.D. dependent var	1.900077		200 0000					
	4.295125	Sum squared	resid	320.222				
S.D. dependent var	4.295125 4.439817	Sum squared Log likelihood		320.2229 -175.3953				
S.D. dependent var Akaike info criterion	4.295125							

The p-value = 0.9970 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 4.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.966024	0.340801	2.834568	0.0059
WGT_RESID^2(-1)	0.022736	0.113839	0.199722	0.8422
WGT_RESID^2(-2)	-0.029527	0.113933	-0.259162	0.7962
WGT_RESID^2(-3)	0.017806	0.114031	0.156151	0.8763
WGT_RESID^2(-4)	0.017375	0.113953	0.152475	0.8792
WGT_RESID^2(-5)	-0.006392	0.113930	-0.056106	0.9554
Root MSE	1.959040	R-squared		0.002041
Mean dependent var	0.988545	Adjusted R-s	quared	-0.062761
S.D. dependent var	1.972964	S.E. of regres	sion	2.033935
Akaike info criterion	4.327365	Sum squared resid		318.5407
Schwarz criterion	4.502221	Log likelihood	d	-173.5856
Hannan-Quinn criter.	4.397612	F-statistic		0.031502
Durbin-Watson stat	1.987100	Prob(F-statist	tic)	0.999482

The p-value = 0.994 > 0.05 (level of significance) and therefore we do not reject the null concluding that there is insufficient evidence to prove that there are leftover ARCH effects present in lag 5.

Appendix B2lStandardised Residuals of GARCH(2,1)

Jarque-Bera test would be used for normality testing, hypothesis testing:

$$H_0$$
: Skewness $(x) = 0$ and Kurtosis $(x) = 3$
 H_1 : Skewness $(x) \neq 0$ or Kurtosis $(x) \neq 3$

$$JB \ stat = \frac{n}{6} (\widehat{Sk}(x)^2 + \frac{(\widehat{K}(x)-3)^2}{4}) \sim \mathcal{X}_{(\alpha,m)}^2 \text{ under } H_0$$

JB stat= 14.54. Under chi square distribution, the critical value at 5% level of significance and 2 degrees of freedom, $\mathscr{X}^2_{(0.05,2)}$ is 5.99. Since 14.54 > 5.99 (JB stat $> \mathscr{X}^2_{(0.05,2)}$), we reject the null hypothesis and conclude that there is sufficient evidence to prove that the distribution of the regression model is not normal.

Equation b:

Auxiliary regression for serial correlation : $\widehat{u_t} = \gamma_0 + \rho_1 \widehat{u}_{t-1} + ... + \rho_{36} \widehat{u}_{t-36} + v_t$ where i > 1

Hypotheses: $H_0: \rho_1 = \rho_2 = \dots = \rho_{36} = 0$ [No autocorrelation]

 H_1 : any $\rho_i \neq 0$ [Autocorrelation]