Simulation Methods Numerical Methods for Ordinary Differential Equations

Joan Carles Tatjer

Departament de Matemàtiques i Informàtica

Universitat de Barcelona

Multistep Formulas

For the Cauchy problem

$$y' = f(t, x), x(t_0) = x_0,$$
 (1)

we compute an approximate value \tilde{x}_{i+k} of $x(t_{i+k})$, $k \geq 2$, using the approximate values \tilde{x}_j of $x(t_j)$, $j = i, i+1, \ldots, i+k-1$, at the points $t_i = t_0 + jh$:

for
$$i = 0, 1, 2, ...$$
:

$$\tilde{x}_i, \tilde{x}_{i+1}, \dots, \tilde{x}_{i+k-1} \Rightarrow \tilde{x}_{i+k}.$$
 (2)

To begin the method we need initial values $\tilde{x}_0, \tilde{x}_1, \dots, \tilde{x}_{k-1}$. For instance, we can use a one-step method to get these values.

Explicit formula I

• From (1), we get:

$$x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(s, x(s)) ds.$$

• Interpolate $t\mapsto g(t)=f(t,x(t))$ at t_{n-k+1},\ldots,t_n : Define $f_i=f(t_i,x_i)$, for $t_i=t_0+ih,\,x_i=x(t_i)$. The interpolating polynomial has the form

$$p(t) = p(t_n + sh) = \sum_{j=0}^{k-1} (-1)^j {-s \choose j} \nabla^j f_n,$$

where $\nabla^0 f_n = f_n$, $\nabla^{j+1} f_n = \nabla^j f_n - \nabla^j f_{n-1}$ are the **backward** differences.

Explicit formula II

Proof.

We know that

$$p(t) = f_n + g[t_n, t_{n-1}](t - t_n) + g[t_n, t_{n-1}, t_{n-2}](t - t_n)(t - t_{n-1}) + \cdots + g[t_n, t_{n-1}, \dots, t_{n-k+1}](t - t_n)(t - t_{n-1}) \cdots (t - t_{n-k+2}).$$

We prove by induction

$$g[t_n,t_{n-1},\ldots,t_{n-j}]=\frac{\nabla^j f_n}{h^j \cdot j!},$$

$$(t-t_n)(t-t_{n-1})\cdots(t-t_{n-j+1})=(-1)^{j}(-s)(-s-1)\cdots(-s-j+1)h^{j}.$$

Explicit formula III

• Integrate the interpolating polynomial.

$$x_{n+1} = x_n + \int_{t_n}^{t_{n+1}} p(t) dt = x_n + h \int_0^1 p(t_n + sh) ds = x_n + h \sum_{j=0}^{k-1} \gamma_j \nabla^j f_n,$$

$$\gamma_j = (-1)^j \int_0^1 \binom{-s}{j} \, ds.$$

Explicit Adams Methods

$$k = 1$$
: $x_{n+1} = x_n + hf_n$ (explicit Euler method)

$$k = 2$$
: $x_{n+1} = x_n + h(\frac{3}{2}f_n - \frac{1}{2}f_{n-1})$

$$k = 3$$
: $x_{n+1} = x_n + h(\frac{23}{12}f_n - \frac{16}{12}f_{n-1} + \frac{5}{12}f_{n-2})$

$$k = 4$$
: $x_{n+1} = x_n + h(\frac{55}{24}f_n - \frac{59}{24}f_{n-1} + \frac{37}{24}f_{n-2} - \frac{9}{24}f_{n-3}).$

Explicit formula IV

Recurrence relation for the coefficients

Denote by G(t) the series (**generating function**)

$$G(t) = \sum_{j=0}^{\infty} \gamma_j t^j = \sum_{j=0}^{\infty} (-t)^j \int_0^1 {\binom{-s}{j}} ds = \int_0^1 \sum_{j=0}^{\infty} (-t)^j {\binom{-s}{j}} ds =$$

$$= \int_0^1 (1-t)^{-s} ds = -\frac{-(1-t)^{-s}}{\log(1-t)} \Big|_{s=0}^1 = -\frac{t}{(1-t)\log(1-t)}.$$

Then

$$-\frac{\log(1-t)}{t}G(t)=\frac{1}{1-t},$$

or, comparing the coefficients of t^m , we get the recurrence relation:

$$\gamma_m + \frac{1}{2}\gamma_{m-1} + \frac{1}{3}\gamma_{m-2} + \dots + \frac{1}{m+1}\gamma_0 = 1.$$

Implicit formula I

We interpolate also at the point (t_{n+1}, f_{n+1}) :

$$p^*(t) = p^*(t_n + sh) = \sum_{j=0}^k (-1)^j {-s+1 \choose j} \nabla^j f_{n+1}.$$

Then

$$x_{n+1} = x_n + h \sum_{j=0}^k \gamma_j^* \nabla^j f_{n+1},$$

$$\gamma_j^* = (-1)^j \int_0^1 {-s+1 \choose j} ds.$$

The formulas are of the form

$$x_{n+1} = x_n + h(\beta_k f_{n+1} + \cdots + \beta_0 f_{n-k+1}).$$

Implicit formula II

Implicit Adams methods

$$k = 0$$
: $x_{n+1} = x_n + hf_{n+1} = x_n + hf(t_{n+1}, x_{n+1})$

$$k = 1$$
: $x_{n+1} = x_n + h(\frac{1}{2}f_{n+1} + \frac{1}{2}f_n)$

$$k = 2$$
: $x_{n+1} = x_n + h(\frac{5}{12}f_{n+1} + \frac{8}{12}f_n - \frac{1}{12}f_{n-1})$

$$k = 3$$
: $x_{n+1} = x_n + h(\frac{9}{24}f_{n+1} + \frac{19}{24}f_n - \frac{5}{24}f_{n-1} + \frac{1}{24}f_{n-2}).$

$$\gamma_0^* = 1 \text{ and } \gamma_m^* + rac{1}{2}\gamma_{m-1}^* + rac{1}{3}\gamma_{m-2}^* + \dots + rac{1}{m+1}\gamma_0^* = 0.$$

Predictor-corrector methods

To solve the nonlinear equation of the implicit methods we can proceed as follows (PECE):

P: Compute the predictor (explicit Adams or Adams-Bashforth)

$$\hat{x}_{n+1} = x_n + h \sum_{j=0}^{k-1} \gamma_j \nabla^j f_n.$$

E: Evaluate $\hat{f}_{n+1} = f(t_{n+1}, \hat{x}_{n+1})$.

C: Apply the corrector formula (implicit Adams or Adams-Moulton)

$$x_{n+1} = x_n + h(\beta_k \hat{f}_{n+1} + \beta_{k-1} f_n + \dots + \beta_0 f_{n-k+1}).$$

to obtain x_{n+1} .

E: Evaluate the function again: $f_{n+1} = f(t_{n+1}, x_{n+1})$.

Other possibilities: PECECE, PEC.

Explicit Nyström Methods

Consider the identity

$$x(t_{n+1}) = x(t_{n-1}) + \int_{t_{n-1}}^{t_{n+1}} f(t, x(s)) ds.$$

We replace the unknown function f(s,x(s)) by the polynomial p(s), as in th explicit Adams method:

$$x_{n+1} = x_{n-1} + h \sum_{j=0}^{k-1} \kappa_j \nabla^j f_n,$$

$$\kappa_j = (-1)^j \int_{-1}^1 {-s \choose j} ds.$$

$$k = 1$$
: $x_{n+1} = x_{n-1} + 2hf_n$ mid-point rule

$$k = 3$$
: $x_{n+1} = x_{n-1} + h(\frac{7}{3}f_n - \frac{2}{3}f_{n-1} + \frac{1}{3}f_{n-2})$

Milne-Simpson Methods

We proceed as in the case of the Implicit Adams Method:

$$x_{n+1} = x_{n-1} + h \sum_{j=0}^{k} \kappa_j^* \nabla^j f_{n+1},$$

 $f^1 (-s+1)$

$$\kappa_j^* = (-1)^j \int_{-1}^1 \binom{-s+1}{j} ds.$$

$$k=2: \quad x_{n+1}=x_{n-1}+h(\frac{1}{3}f_{n+1}+\frac{4}{3}f_n+\frac{1}{3}f_{n-1}), \text{ (Milne method)}$$

$$k=4: \ x_{n+1}=x_{n-1}+h(\tfrac{29}{90}f_{n+1}+\tfrac{124}{90}f_n+\tfrac{24}{90}f_{n-1}+\tfrac{4}{90}f_{n-2}-\tfrac{1}{90}f_{n-3}).$$

Comment

The Milne method is a generalization of the Simpson rule: we approximate the integral $\int_{t_{n-1}}^{t_{n+1}} f(s, x(s)) ds$ using the Simpson rule.

Methods Based on Differentiation (BDF) I

Assume that the approximations x_{n-k+1}, \ldots, x_n are known.

• We consider the polynomial q(t) which interpolates the values (t_i, x_i) , $i = n - k + 1, \dots, n + 1$:

$$q(t) = q(t_n + sh) = \sum_{j=0}^{k} (-1)^j {-s+1 \choose j} \nabla^j x_{n+1}.$$

• We impose that q(t) satisfies the ode at $t = t_{n+1-r}$ (r = 1 explicit, r = 0 implicit):

$$q'(t_{n+1-r}) = f(t_{n+1-r}, x_{n+1-r}).$$

Methods Based on Differentiation (BDF) II

Explicit formulas

k = 1: Explicit Euler Method

k = 2: Mid-point rule

k = 3: $\frac{1}{3}x_{n+1} + \frac{1}{2}x_n - x_{n-1} + \frac{1}{6}x_{n-2} = hf_n$.

Implicit BDF formulas I

We have

$$\sum_{j=0}^k \delta_j^* \nabla^j x_{n+1} = h f_{n+1},$$

$$\delta_j^* = (-1)^j \frac{d}{ds} \binom{-s+1}{j} \bigg|_{s=1}.$$

As

$$(-1)^j {-s+1 \choose j} = rac{1}{j!} (s-1)s(s+1)\cdots(s+j-2),$$
 $\delta_0^* = 0, \qquad \delta_j^* = rac{1}{j} ext{ for } j \geq 1.$

Then the implict formulas have the form

Implicit BDF formulas II

Backward differentiation formulas or BDF methods

$$\sum_{j=1}^k \frac{1}{j} \nabla^j x_{n+1} = h f_{n+1}.$$

$$k = 1$$
: $x_{n+1} - x_n = hf_{n+1}$

$$k = 2$$
: $\frac{3}{2}x_{n+1} - 2x_n + \frac{1}{2}x_{n-1} = hf_{n+1}$

$$k = 3$$
: $\frac{11}{6}x_{n+1} - 3x_n + \frac{3}{2}x_{n-1} - \frac{1}{3}x_{n-2} = hf_{n+1}$

Local error of a multistep method I

Consider a linear multistep method:

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \dots + \alpha_0 x_n = h(\beta_k f_{n+k} + \dots + \beta_0 f_n), \quad (3)$$

where

$$f_i = f(t_i, x_i),$$
 $t_i = t_0 + ih,$ $\alpha_k \neq 0,$ $|\alpha_0| + |\beta_0| > 0.$

Definition (local error)

The local error of (3) is defined by

$$x(t_k)-x_k$$

where x(t) is the exact solution of x' = f(t, x), $x(t_0) = x_0$ and x_k is the numerical solution obtained from (3) by using the exact starting values $x_i = x(t_i)$, (i = 0, 1, ..., k - 1).

Local error of a multistep method II

Comment

This definition is a generalization of the definition for one-step methods.

Let L be defined by

$$L(x,t,h) = \sum_{i=0}^{k} (\alpha_i x(t+ih) - h\beta_i x'(t+ih)).$$

Lemma

Suppose that f(t,x) is C^1 . Then

$$x(t_k) - x_k = \left(\alpha_k I - h\beta_k \frac{\partial f}{\partial x}(t_k, \eta)\right)^{-1} L(x, t_0, h).$$

Here $\eta \in \langle x(t_k), t_k \rangle$ if f is a scalar function, and in general the matrix $\frac{\partial f}{\partial x}(t_k, \eta)$ has rows evaluated at different values in $\overline{x(t_k), x_k}$.

Local error of a multistep method III

Proof.

By definition 1,

$$\sum_{i=0}^{k-1} (\alpha_i x(t_i) - h\beta_i f(t_i, x(t_i))) + \alpha_k x_k - h\beta_k f(t_k, x_k) = 0.$$

Then

$$L(x,t_0,h) = \alpha_k(x(t_k)-x_k) - h\beta_k(f(t_k,x(t_k))-f(t_k,x_k)),$$

and we apply the MVT.

Local error of a multistep method IV

Comment

The lemma shows that $\alpha_k^{-1}L(x,t_0,h)$ is essentially equal (or equal if the method is explicit) to the local error. Sometimes this term is also called the local error (Dahlquist).

Order of a Multistep Method I

Definition

The multistep method

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = h(\beta_k f_{n+k} + \cdots + \beta_0 f_n),$$

has **order** p, if $L(x, t, h) = O(h^{p+1})$, for all sufficiently regular functions x(t).

Definition

The **generating** or **characteristic** polynomials of the multistep method are

$$\rho(\mu) = \alpha_k \mu^k + \alpha_{k-1} \mu^{k-1} + \dots + \alpha_0,$$

$$\sigma(\mu) = \beta_k \mu^k + \beta_{k-1} \mu^{k-1} + \dots + \beta_0,$$

Order of a Multistep Method II

Theorem

The multistep method is of order p, iff one of the following equivalent conditions is satisfied:

- **1** $\rho(1) = 0$ and $\sum_{i=0}^{k} \alpha_i i^q = q \sum_{i=0}^{k} \beta_i i^{q-1}$, for q = 1, ..., p,

Order of a Multistep Method III

- To see the equivalence between $L(x, t, h) = O(h^{p+1})$ and 1), we expand x(t + ih) and x'(t + ih) into a Taylor series.
- To see the equivalence between 1) and 2) we us that

$$L(\exp, 0, h) = \rho(e^h) - h\sigma(e^h)$$

and

Proof.

$$L(\exp, 0, h) = \sum_{i=0}^{k} \alpha_i + \sum_{q \ge 1} \frac{h^q}{q!} \left(\sum_{i=0}^{k} \alpha_i i^q - q \sum_{i=0}^{k} \beta_i i^{q-1} \right).$$

• To see the equivalence between 2) and 3) we use the transformation $\mu=e^h$ in condition 2). Then

$$\rho(\mu) - (\log \mu)\sigma(\mu) = O((\log \mu)^{p+1}), \text{ for } \mu \to 1.$$

The result follows from $\log \mu = (\mu - 1) + O((\mu - 1)^2)$ for $\mu \to 1$.

Orders of classical methods

explicit Adams	k
implicit Adams	k+1
midpoint rule	2
Nyström, $k > 2$	k
Milne, $k = 2$	4
Milne-Simpson, $k > 3$	k+1
BDF	k

Zero-stability and the first Dahlquist barrier I

Among all explicit 2-step methods, the formula

$$x_{n+1} + 4x_{n+1} - 5x_n = h(4f_{n+1} + 2f_n)$$

has maximum order equal to 3.

Consider the Cauchy problem x' = x, x(0) = 1. Then we obtain the linear difference relation

$$x_{n+2} + 4(1-h)x_{n+1} - (5+2h)x_n = 0,$$

with starting values $x_0 = 1$ and $x_1 = \exp(h)$.

The general solution of the relation recurrence is

$$x_n = A\mu_1(h)^n + B\mu_2(h)^n,$$

where A=1+O(h) and B depend on x_0 and x_1 and $\mu_1(h)$ and $\mu_2(h)$ are the roots of the characteristic polynomial

$$\mu^2 + 4(1-h)\mu - (5+2h)$$
,

Zero-stability and the first Dahlquist barrier II

$$\mu_1(h) = 1 + h + O(h^2), \qquad \mu_2(h) = -5 + O(h).$$

Since $\mu_1(h)$ approximates $\exp(h)$, the first term approximates $\exp(t)$ at t = nh. The second term (**parasitic solution**) becomes very large!!

Definition

A multistep method is called **zero-stable**, if the generating polynomial $\rho(\mu)$ satisfies the **root condition**, that is

- **1** The root of $\rho(\mu)$ lie on or within the unit circle.
- 2 The roots on the unit circle are simple.

Zero-stability and the first Dahlquist barrier III

Comment

The relation

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = 0,$$

can be interpreted as the numerical solution of the method for the ode x'=0. The fact that the general solution of this difference equation is

$$x_n = p_1(n)\mu_1^n + \cdots + p_\ell(n)\mu_\ell^n,$$

where μ_i is a root of multiplicity i of the characteristic polynomial and $p_i(n)$ are polynomials of degree $m_i - 1$, justifies the previous definition.

Zero-stability and the first Dahlquist barrier IV

Theorem (The first Dalhquist barrier)

The order p of a stable linear k-step method satisfies

- $p \le k + 2$ if k is even,
- $p \le k+1$ if k is odd,
- $p \le k$ if $\beta_k/\alpha_k \le 0$ (in particular if the method is explicit).

Zero-stability of classical methods

- Adams methods: $\rho(\mu) = \mu^k \mu^{k-1}$ and zero stable.
- Nyström and Milne-Simpson methods: $\rho(\mu) = \mu^k \mu^{k-2}$ and zero-stable.
- The k-step BDF formula is zero-stable for $k \le 6$ and zero-unstable for k > 7.

Convergence of Multistep Methods

Suppose that we consider the CP x' = f(t, x), $x(t_0) = x_0$ s.t.

- f is continuous on $D = \{(t, x); t \in [t_0, \hat{t}], ||x(t) x|| \le b\}$
- $||f(t,x)-f(t,y)|| \le L||x-y||, (t,x), (t,y) \in D.$

If we apply the multistep method

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = h(\beta_k f_{n+k} + \cdots + \beta_0 f_n),$$

with step size h, we obtain a sequence $\{x_i\}$. For given t and h s.t. $(t-t_0)/h=n$ is an integer, we introduce

$$x_h(t) = x_n$$
 if $t - t_0 = nh$.

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = h(\beta_k f_{n+k} + \cdots + \beta_0 f_n),$$

Definition (Convergence)

• The LMM is called **convergent**, if for all initial value problems as defined

$$x(t)-x_h(t)\to 0 \qquad \text{for } h\to 0, \ t\in [t_0,\hat t],$$

whenever the starting values satisfy

$$x(t_0 + ih) - x_h(t_0 + ih) \to 0$$
 for $h \to 0, i = 0, 1, ..., k - 1$.

② The LMM is convergent of order p, if to any problem as defined with f differentiable enough, $\exists h_0 > 0$ s.t.

$$||x(t)-x_h(t)|| \le Ch^p$$
 for $h \le h_0$

whenever the starting values satisfy

$$||x(t_0+ih)-x_h(t_0+ih)|| \le C_0 h^p$$
 for $h \le h_0, i = 0, 1, \dots, k-1$.

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = h(\beta_k f_{n+k} + \cdots + \beta_0 f_n),$$

Theorem (Convergence)

- The multistep method is convergent iff it is zero-stable and of order 1 (consistent).
- ② If the method is zero-stable and of order p then it is convergent of order p.

Linear stability I

Consider

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \cdots + \alpha_0 x_n = h(\beta_k f_{n+k} + \cdots + \beta_0 f_n),$$

with generating polynomials:

$$\rho(\mu) = \alpha_k \mu^k + \alpha_{k-1} \mu^{k-1} + \dots + \alpha_0,$$

$$\sigma(\mu) = \beta_k \mu^k + \beta_{k-1} \mu^{k-1} + \dots + \beta_0.$$

We assume that it is convergent. If we apply the method to $x'=\lambda x$ and define $\tilde{h}=\lambda h,$

$$\alpha_k x_{n+k} + \alpha_{k-1} x_{n+k-1} + \dots + \alpha_0 x_n = \tilde{h}(\beta_k x_{n+k} + \dots + \beta_0 x_n),$$

or

$$(\alpha_k - \tilde{h}\beta_k)x_{n+k} + (\alpha_{k-1} - \tilde{h}\beta_{k-1})x_{n+k-1} + \dots + (\alpha_0 - \tilde{h}\beta_0)x_n = 0,$$

Linear stability II

with characteristic polynomial $\pi(\mu, \tilde{h}) = \rho(\mu) - \tilde{h}\sigma(\mu)$.

Definition

We call $\pi(\mu, \tilde{h})$ the **stability polynomial** of the LMSF. We say that the LMSF is **stable** for $\tilde{h} \in \mathbb{C}$ iff the roots r_s of $\pi(\cdot, \tilde{h})$ satisfy $|r_s| < 1$. The **stability domain** is

$$D = \{\tilde{h} \in \mathbb{C}; \text{ the LMSF is stable for } \tilde{h}\}.$$

The method is **A-stable** iff $\{\tilde{h} \in \mathbb{C}; Re \ \tilde{h} < 0\} \subset D$.

Linear stability III

Second Dalhquist barrier

An A-stable multistep method must be of order $p \leq 2$. The trapezoidal rule

$$x_{n+1} = x_n + \frac{h}{2}(f_n + f_{n+1})$$

is the only A-stable method of order 2.