Node embeddings

We can define each node by its connections

Each node is represented by a vector

You can use it to predict something about the node:

- but that would mean thousands or millions of parameters!
- and it only provides information at the local level

Node embeddings

Idea: Create a low(er)-dimension representation of the node

→ Similar nodes should have a similar representation

What do we mean with similar nodes?

- Nodes with the same neighborhood (useful to predict e.g. clustering or assortative attributes)
- Nodes with the same role (useful to predict e.g. structural equivalence or disassortative attributes)
- Nodes with the same metadata

Supervised vs unsupervised

The supervised learner doesn't know much

The unsupervised learner knows what it is doing

Unsupervised vs supervised learning

Supervised learning: Output is available. Performance = discrepancy between predicted output and real output

- Regression
- Classification (e.g. link prediction)

Unsupervised learning: No labels/output. Performance = reduction of some error

- Clustering (e.g. cluster points so they are as close as possible within clusters, as far as possible between clusters)
- Dimensionality reduction (e.g. combine variables to maximize the amount of variability explained)

Option 1: Spectral methods

Related to characteristic eigenvectors of matrices associated with the network

Principal Component Analysis (PCA)

- Correlated variables → Linear combination of orthogonal variables
- Eigenvectors corresponding to the largest k eigenvectors of the covariance matrix (calculated from the adjacency matrix)

Singular Value Decomposition (SVD)

Eigenvectors corresponding to the largest k eigenvectors of A^TA

Laplacian Eigenmaps (LE)

- Assumes that the nodes lie on a low-dimensional (with some constrains)
- Tries to find an embedding that minimizes the distances between connected nodes
- That mapping is created by the eigenvectors corresponding to the smallest k eigenvectors of the normalized Laplacian matrix D⁻¹(D-A)

Option 2: Matrix factorization

Singular Value Decomposition (SVD)

Non-negative Matrix Factorization (NMF)

Option 3: Shallow Neural Networks

In text analysis and image recognition we have a lot of neural network tools because the data is regular

- Text analysis: Chain (nodes = words)
- Images: Lattices (nodes = pixels)

Word2vec (SkipGram/CBOW)

Distributional hypothesis: similar words will be surrounded by similar words (you will know a word by the company it keeps)

What words appear around "Network" in text?

- Network Science
- Network Analysis
- → Words *science* and *analysis* are similar

Word2Vec

Step 1: Create co-occurrance matrix

- I like deep learning
- I like NLP
- I enjoy flying

counts	1	like	enjoy	deep	learning	NLP	flying	
I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Word2Vec

Step 2: Train the model

- Positive examples: word i used to predict word j (context word in the co-ocurrance matrix)
- *Negative examples*: word i used as a negative example to predict word k (not a context word)

Two vectors are similar if they have a high dot product (~cosine similarity)

- Vector associated to "deep": w1["deep",:]
- Vector associated to "learning": w2[:,"learning"]

Intuition:

 Modify W1 and W2 so target embeddings are close (have a high dot product) to context embeddings for nearby words and further from context embeddings for noise words that don't occur nearby

Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition (Jurafsky and Dan, 2009)

In networks: node2vec (deepwalk)

Generate "sentences" using random walks.

The more times two nodes appear closeby in the same random walk, the more similar their embeddings will be

Node2Vec (deepwalk)

Step 1: Create co-occurrance matrix

Pazzi -> Salviati -> Medici -> Albizzi

Medici -> Albizzi -> Guadagni -> Medici

• • •	Pazzi	Salviati	Guadagni	Medici	Albizzi
Pazzi		1		1	1
Salviati	1				
Guadagni					
Medici	1		1	1	1
Albizzi	1			1	

Step 2: Create embeddings representing how similar the neighbors of each node are

node2vec

Difference with deepwalk: generate "sentences" using biased random walks.

Q = controls probability of going to new nodes

P = controls probability of going back to previous node

Using node2vec (deepwalk)

Figure 3: Complementary visualizations of Les Misérables coappearance network generated by *node2vec* with label colors reflecting homophily (top) and structural equivalence (bottom).

Depending on q

~ similiarity reflecting clusters

~ similiarity reflecting structural roles

What to do with the embeddings

1) Node classification

X = Embedding

Y = whatever we want to predict

2) Link prediction

X = combination of the two embeddings (e.g. dot product, or np.abs(v1-v2))

Y = link/no link

Option 4: Deep neural networks

We created the embeddings in an unsupervised (or self-supervised) way. But we can do it in a supervised way, so **node embeddings are similar if they are related to the same outcome.**

Many methods (GCN, GAT, graphSAGE...)

Option 4: Deep neural networks

Primer on machine learning

Machine learning

"A computer program is said **to learn from experience** *E* with respect to some class of **tasks** *T* and **performance measure** *P* if its performance at task *T*, as measured by *P*, improves with experience *E*." (Samuel/Mitchell, 1959)

• Experience: Data

Task: Goal

• Performance measure: Accuracy, R², etc

Machine learning

 Typically focuses on large, high-dimensional datasets with complex interactions between features

Output-driven:

- Typically aims to solve a problem (rather than to test a hypothesis): e.g. link prediction
- Emphasizes predictive accuracy: Uses theory (to build new features) if it improves accuracy
- The model works as intended, on new data

Cannot and should not replace thinking about causation

One use in link prediction: stacking classifiers

- No best algorithm: Stacking models for nearly optimal link prediction in complex networks;
 Ghasemian, Galstyan, Airoldi, Clauset (2020)
- Each algorithm gives you a score: we can combine them in a model
- Methods for this: (Penalized) logistic regression; Support Vector Machines; Boosting

Main issues in Machine Learning

Issue 1: Overfitting

- Lots of data and features → can be a recipe for disaster
- Evaluation of overfitting: cross-validation
- Prevention of overfitting: Regularization, weak learners, dropout, etc.

Issue 2: Interpretability of the model

- Complex models are more difficult to interpret
- New measures of interpretability

Issue 1: Overfitting

1: Evaluate overfitting using a validation dataset

Training dataset → Use to train different models **Validation dataset** → Evaluate out-of-sample

prediction error

(Test dataset) → Evaluate out-of-sample prediction

error of final model

1: Evaluate overfitting using a validation dataset

Model complexity

But with this:

- We reduce the training dataset (number of observations)
- We validate on a small dataset (maybe not representative)

Solution → Cross-validation

1: Evaluate overfitting using cross-validation

Do you want to understand the error due to the splitting? → Run this procedure several times with random splittings

1: Hyperparameter tuning

Hyperparameter tuning using cross-validation → Balance between flexibility and overfitting:

- Regularization (e.g. sum of |coefs| < l)
- Ensembles:
 - Train trees with different data
 - Bootstrap
 - Subset of predictors
 - Use shallow trees
- Neural networks:
 - Train disabling neurons (dropout)
- Early stopping

Issue 2: Interpretability

Typical workflow

```
# Split data into training and testing to evaluate generalization error (more on this later)
X train, X test, y train, y test = train test split(X, y, test size=0.1, random state=42)
# Hyperparameter tuning using your model: e.g., linear model.LogisticRegression(), svm.SVC(),
ensemble. HistGradientBoostingClassifier()
parameters = { 'kernel':('linear', 'rbf'), 'C':[1, 10]} # (e.g. for a SVC)
clf = GridSearchCV(model() , parameters)
clf.fit(X train, y train)
print(clf.best params )
# Use the best model to predict the labels (link/no link) in the testing data
y pred = clf.best estimator .transform(X test)
print(F1 score(y test, y pred))
```

Structure of the challenge

Protein-protein interaction network in S. cerevisiae Clustering ~ 0; Assortativity ~ -0.2

We have removed some edges, your objective is to predict those accurately.

We give you:

- Graph: Used for training
- Test dataset (a series of node pairs, some with a link associated)

How:

- Methods based on common neighbors
- Methods based on paths
- Methods based on embeddings
 - Spectral methods
 - Matrix factorization
 - Node2vec
 - GraphSAGE

Evaluation

 $FPR = \frac{No\text{-links predicted as links}}{Node pairs with no link}$