Solució al problema 32

a) Si $A + (\delta A)$ és singular, existeix $x \neq 0$ tal que $(A + (\delta A))x = 0$. Per tant, $Ax = -(\delta A)x$, o $x = -A^{-1}(\delta A)x$ d'on

$$||x|| \le ||-A^{-1}(\delta A)x|| \le ||A^{-1}|| \cdot ||\delta A|| \cdot ||x||.$$

Donat que $x \neq 0$, tenim

$$1 \le ||A^{-1}|| \cdot ||\delta A||.$$

El nombre de condició és $\kappa(A) = \|A\| \|A^{-1}\|$ i tenim $\|A^{-1}\| \ge \frac{1}{\|\delta A\|}$, per tant,

$$\kappa(A) \ge \frac{\|A\|}{\|\delta A\|}.$$

b) Usarem l'apartat a). Com que det $A = -4\epsilon$, A és regular. Prenent

$$\delta A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -\epsilon & -\epsilon \\ 0 & -\epsilon & -\epsilon \end{array}\right)$$

tenim que $A + \delta A$ és singular.

Es verifica $\|\delta A\|_{\infty} = \max\{0, 2|\epsilon|, 2|\epsilon|\}$ i $\|A\|_{\infty} = \max\{3, 1+2|\epsilon|, 1+2|\epsilon|\} = 3$ (ja que $0 < |\epsilon| < 1$), per tant

$$\kappa_{\infty}(A) \ge \frac{3}{2|\epsilon|}$$

Per calcular el valor exacte de $\kappa_{\infty}(A)$, cal calcular A^{-1} :

$$A^{-1} = \frac{-1}{4\epsilon} \begin{pmatrix} 0 & 2\epsilon & -2\epsilon \\ 2\epsilon & \epsilon - 1 & -1 - \epsilon \\ -2\epsilon & -1 - \epsilon & \epsilon - 1 \end{pmatrix}.$$

Calculem la norma de A^{-1} :

$$||A^{-1}||_{\infty} = \frac{1}{4|\epsilon|} \max\{4|\epsilon|, 2|\epsilon| + |1 - \epsilon| + |1 + \epsilon|\}.$$

Sabem que $0 < |\epsilon| < 1$, d'on

$$||A^{-1}||_{\infty} = \frac{1}{4|\epsilon|} \max\{4|\epsilon|, 2|\epsilon| + (1-\epsilon) + (1+\epsilon)\} = \frac{2|\epsilon| + 2}{4|\epsilon|} = \frac{1+|\epsilon|}{2|\epsilon|}$$

Per tant,

$$\kappa_{\infty}(A) = \frac{3(1+|\epsilon|)}{2|\epsilon|}$$