Betting on the NHL

By: Dylan M, Shawn G, and Michael G

Motivation

- Increased popularity in sports gambling
 - o 13 states have legal, online sports gambling
 - Large state tax revenue (<u>source</u>)
 - NJ -> \$61,484,646 (since June 2018)
 - amount wagered -> \$6,865,133,129
- As popularity 1, available data 1
- More data -> better chance of finding trends!

bet365

Overarching Question

By looking over historical NHL sports book lines, can we find trends/arbitrage opportunities?

Data Source

Historical lines were found on: SportsBook Reviews

Format: CSV

NHL Seasons (by Year): 2014-15 -> 2015-16 -> 2017-18 -> 2018-19

	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N	0	Р
1 [Date	Rot	VH	Team	1st	2nd	3rd	Final	Open	Close	Puck Line		Open OU		Close OU	
2	1003	1	V	Montreal	1	1	0	2	184	210	1.5	-125	6	-110	6	-110
3	1003	2	Н	Toronto	1	1	0	3	-220	-240	-1.5	105	6	-110	6	-110
4	1003	3	V	Boston	0	0	0	0	115	105	1.5	-290	5.5	-110	5.5	-120
5	1003	4	Н	Washington	2	4	1	7	-135	-115	-1.5	230	5.5	-110	5.5	100
6	1003	5	V	Calgary	0	0	2	2	-130	-130	-1.5	200	5.5	-110	5.5	-115
7	1003	6	Н	Vancouver	1	0	4	5	110	120	1.5	-240	5.5	-110	5.5	-105
8	1003	7	V	Anaheim	1	1	3	5	148	160	1.5	-185	5.5	-110	5.5	100
9	1003	8	Н	SanJose	1	1	0	2	-170	-180	-1.5	165	5.5	-110	5.5	-120
10	1004	51	V	Washington	3	1	2	6	140	145	1.5	-200	6	-110	6	-125
11	1004	52	Н	Pittsburgh	2	3	1	7	-160	-160	-1.5	170	6	-110	6	105
12	1004	53	V	NYIslanders	0	1	0	2	120	150	1.5	-200	6	-110	6.5	105
13	1004	54	Н	Carolina	0	0	1	1	-140	-165	-1.5	170	6	-110	6.5	-125
14	1004	55	V	Boston	2	1	1	4	-120	-135	-1.5	185	5.5	-110	6	100
15	1004	56	Н	Buffalo	0	0	0	0	100	125	1.5	-215	5.5	-110	6	-120
16	1004	57	V	Columbus	1	1	0	3	-140	-130	-1.5	210	5.5	-110	5.5	-125
17	1004	58	Н	Detroit	0	2	0	2	120	120	1.5	-260	5.5	-110	5.5	105

Data Cleaning

- 6 rows out of 13340 rows have data that was input wrong (Puck Line over 1.5 and -1.5)
- To remove them, used Df.drop(condition) to remove unwanted data that would skew our data.

Win Rate of Home Teams

- See if there was an advantage for home teams in terms of how often they win.
- Split the data with groupby("VH")
- Calculate the difference between the two teams
- Set team to win or lost
- Add columns to dataframe

```
for i in range(0, home.shape[0]):
    home_dif = home['Final'].iloc[i] - away['Final'].iloc[i]
    h_dif.append(home_dif)
    if home_dif > 0:
        winloss.append("Won")
    else:
        winloss.append("Lost")
```

	VH	Team	1st	2nd	3rd	Final	Point Dif	Result
0	Н	Toronto	2	0	1	3	-1	Lost
1	Н	Boston	1	0	1	2	1	Won
2	Н	LosAngeles	0	0	0	0	-4	Lost
3	Н	Calgary	0	2	0	2	-2	Lost
4	Н	Washington	1	0	0	1	-1	Lost

Results of Home Team Statistics

Total Games: 6670

Expected Value: 3335

Home Wins: 3633 Home Losses: 3037

Degrees of Freedom: 1 Critical Value: 3.84146

Chi-squared Statistic: 53.25577

P-value: 2.92826 e-13

Chi-squared test confirms statistically significant difference

Conclusion

- Teams have a statistically significant advantage when playing on their home rink
- Home team wins 54.47% of the time
- A limitation is that we are only looking at hockey and that we only have 5 years worth of data.
- This conclusion may not apply to all sports or might only be a trend of the last 5 years.
- Lot of other confounding variables can impact if a home team wins or not
 - o Travel of the away team
 - Ratio of number of home fans vs number of away fans
 - How loudly each team is cheered for compared to the other (motivation)

Point Differential of Games versus Closing Odds

- How accurate are Closing Odds at predicting game outcomes?
- Benefits to predicting outcomes:
 - Smarter bets
- Find a correlation between:
 - closing odds (independent)
 - o point differential (dependent)
- Data:
 - Create 'Point Differential' Column using by looping through Final scores

```
p_dif = []

for i in range(1, df.shape[0], 2):
          home_dif = df['Final'].iloc[i] - df['Final'].iloc[i-1]
          away_dif = df['Final'].iloc[i-1] - df['Final'].iloc[i]
          p_dif.append(away_dif)
          p_dif.append(home_dif)

df['Point_Dif'] = p_dif
```

	VH	Team	Final	Close	Point_Dif
0	٧	Montreal	4	-105	1
1	Н	Toronto	3	-115	-1
2	٧	Philadelphia	1	165	-1
3	Н	Boston	2	-185	1
4	٧	SanJose	4	130	4

Results

r-value = -0.22r-squared = 0.05

Conclusions

- There is a negative correlation between the value of the Closing Odds and the Point Differential
 - The more favored a team is to win, the more goals they win by
- A linear regression can only account for 5% of the data
 - \circ r-squared = 0.05
- Limitations:
 - Model does not take into account style of play
 - Favored team might be defensively focused
 - Wins by less goals than offensively focused team
 - The league is competitive
 - It is not uncommon for "underdogs" to win

Home and Away Games for the favored team

- Find if there was a significant advantage to being the home team when favored.
- The data I used were sub tables of our original Data Frame.
 - First iterated through our original table and looked at the game (row i and i+1) and looked at the Close and whose ever was lower was declared the favorite.
 - Then from our favored table, I split it into two tables one with home favored and away favored.

```
# Create favored team table
fav = []

# Iterate through the table and see which team had the lower number in closing (Favored to win)
for i in range(1,df.shape[0], 2):
    if (df['Close'].iloc[i] < df['Close'].iloc[i-1]):
        fav.append(df.iloc[i])
    else:
        fav.append(df.iloc[i-1])</pre>
```

Results

Total Favored Home

Games: 4789 Expected Value: 2394.5

Favored Home Wins:

2835

Home Losses: 1954

Degrees of Freedom: 1 Critical Value: 3.84146

Chi-squared Statistic: 162.03800

P-value: 4.05971e-37

Total Favored Away Games: 1881

Expected Value: 940.5

Favored Home Wins:

1083

Home Losses: 798

Degrees of Freedom: 1 Critical Value: 3.84146

Chi-squared Statistic:

43.15904

P-value: 5.04564e-11

Findings / Conclusion

• Found that 58.74% of the time that the favored team wins.

The chi test results show a number with a greater critical value and very low p value thus we can reject the null hypothesis which is that the team would win and lose the same amount while playing at home.

Conclusion

- Teams that are favored have a statistical advantage to those of the underdogs when both home and away.
- The favored team is 72% the home team.
- The favored team wins about 59% of the time.
- We were limited with just being able to use 5 of the most recent seasons.

Win Percentage and Expected Payout by Closing Odds Groups

Expected Payout for \$100 bet on the close group = (Win % * Avg Payout)+(Loss % * -\$100)

Conclusion

While home teams and favored team win more, this has been taken into account in the odds

• Expected payouts are still variable/mostly negative

High Favorites and Low Underdogs are unreliable

- Not enough data to support a stance
 - Only 16 games with a team at -400 or worse odds

Best bets are:

- Moneyline: +200 to +300 (home or away)
- Puck Line: +200 to +250 (home team)

Thanks for Listening! Any Questions?