ЗАДАЧИ БЕЗУСЛОВНОЙ ОПТИМИЗАЦИИ

Рассмотрим задачу

$$f(x) \to \min(\max), \quad x \in \mathbf{R}^n,$$
 (1)

в предположении, что скалярная функция f(x) определена и непрерывна в каждой точке $x \in \mathbf{R}^n$ вместе со всеми частными производными по x_1, \ldots, x_n , т. е. $f \in C^{(1)}(\mathbf{R}^n)$. Задача (1) называется задачей на безусловный минимум (максимум).

Классический метод поиска безусловного экстремума основан на следующих утверждениях.

Теорема 1 (необходимое условие первого порядка). *Если* x^0 — локально оптимальный план задачи (1), то x^0 является решением уравнения

$$\frac{\partial f(x)}{\partial x} = 0. {2}$$

Решения векторного уравнения (2) называются *стационарными планами* (точками) задачи (1) (функции f(x)).

Теорема 2 (необходимое условие второго порядка). *Пусть* $f \in C^{(2)}(\mathbf{R}^n)$. Тогда:

а) если x^0 — локально оптимальный план задачи f(x) \rightarrow min, $x \in \mathbf{R}^n$, то

$$\frac{\partial^2 f(x^0)}{\partial x^2} \ge 0;$$

б) если x^0 — локально оптимальный план задачи f(x) \to max, $x \in \mathbf{R}^n$, то

$$\frac{\partial^2 f(x^0)}{\partial x^2} \le 0.$$

Теорема 8.3 (достаточное условие второго порядка). *Пусть* $f \in C^{(2)}(\mathbf{R}^n)$. *Если на стационарном плане* x^* *выполняется условие*

$$\frac{\partial^2 f(x^*)}{\partial x^2} > 0 \left(\frac{\partial^2 f(x^*)}{\partial x^2} < 0 \right),$$

то $x^* = x^0$ — локально оптимальный план задачи (1).

Замечание 8.1. Если x^0 ∈intX, X⊂ \mathbf{R}^n , то все сформулированные утверждения справедливы для задачи f(x)→min(max), x∈X.

Замечание **8.2.** При исследовании на знакоопределенность матриц вторых производных функции f(x) используются критерии Сильвестра

Схема поиска оптимальных планов задачи (1):

- 1) решается система алгебраических уравнений (2) и находятся стационарные планы x^i , $i = \overline{1,l}$;
- 2) на стационарных планах исследуется знакоопределенность матриц вторых производных целевой функции (стационарные планы, на которых

матрица $\partial^2 f/\partial x^2$ положительно (отрицательно) определена, — локально оптимальные планы задачи (1));

- 3) анализируются те стационарные планы, на которых матрица вторых производных не является строго знакоопределенной $\partial^2 f/\partial x^2 \ge 0$ (≤ 0);
- 4) среди найденных локально оптимальных планов (путем сравнения на них значений целевой функции) находят глобально оптимальные планы.

Пример 8.1. Решить задачу

$$f(x) = \frac{1}{2}x_1^2 + 2x_2^3 - x_1x_2 \rightarrow \min(\max), \ x \in \mathbf{R}^2.$$

Составляем систему уравнений (2):

$$\frac{\partial f(x)}{\partial x_1} = x_1 - x_2 = 0,$$

$$\frac{\partial f(x)}{\partial x_2} = 6x_2^2 - x_1 = 0.$$

Стационарные планы: $x_1^{(1)} = 0$, $x_2^{(1)} = 0$; $x_1^{(2)} = 1/6$, $x_2^{(2)} = 1/6$. Подсчитаем матрицу вторых производных в точках $x_1^{(1)}$, $x_2^{(2)}$:

$$\frac{\partial^2 f(x^{(1)})}{\partial x^2} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}, \qquad \frac{\partial^2 f(x^{(2)})}{\partial x^2} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

Применяя критерии Сильвестра, заключаем, что $\frac{\partial^2 f(x^{(1)})}{\partial x^2}$ не является

знакоопределенной, т. е. стационарный план x^1 не локально оптимальный. Поскольку матрица $\frac{\partial^2 f(x^{(1)})}{\partial x^2}$ положительно определена, то $x^{(2)} = x^0$ — локально оптимальный

план
$$(f(x^0) = \min f(x), x \in \mathbf{R}^2)$$
, $f(x^0) = = \frac{1}{2} \cdot \frac{1}{36} + 2\frac{1}{6 \cdot 36} - \frac{1}{36} = -\frac{1}{216}$. Глобальных

оптимальных планов нет, поскольку, например, $f(x^0) = -\frac{1}{216} > f(0; -1) = -2$.