alberi binari e ricorsione

cap. 12

un albero binario:

ogni nodo ha al più 2 figli

ogni figlio è destro o sinistro cammini = sequenze di nodi = sequenze di 0 e 1

profondità di un nodo altezza dell'albero=prof. max delle foglie

albero binario completo

ogni livello è completo, se h= altezza l'albero contiene $2^{h+1}-1$ nodi

definizione ricorsiva degli alberi: albero binario è:

- ·un albero vuoto
- nodo(albero sinistro, albero destro)

attraversamenti degli alberi = modi di visitare tutti i loro nodi

in profondità = depth-first

ma anche in larghezza = breath-first

percorso infisso:

- 1. a sinistra
- 2. nodo
- 3. a destra

in profondità da sinistra a destra

percorso prefisso:

- 1. nodo
- 2. a sinistra
- 3. a destra

percorso postfisso:

- 1. a sinistra
- 2. a destra
- 3. nodo

in larghezza


```
come realizzare un nodo di un albero
binario in C++:
struct nodo{
char info;
nodo* left, *right;
nodo(char a='\0', nodo*b=0, nodo* c=0)
{info=a; left=b; right=c;}
```

costruiamo questo albero:

```
nodo * root=new nodo('t',0,0);

root→right=new nodo();

root→right→info='s';

root→right→left=new nodo('p',0,0);

root→right→right=new nodo('o',0,0);
```

 $t(_,s(p(_,_),o(_,_)))$ rappresentazione lineare

```
void stampa_l(nodo *r)
                                  percorso
                                  prefisso
 if(r)
    cout<<r->info<<'(';
    stampa_l(r->left);
    cout<<'.':
    stampa_l(r->right);
    cout<<')';
                         t(_,s(p(_,_),o(_,_)))
 else
  cout<< ' ';
```

stampa in ordine infisso:

```
void infix(nodo *x){
infix(x->left); // stampa albero sinistro
cout << x->info; // stampa nodo
infix(x->right); // stampa albero destro
invocazione: infix(root);
```

trovare e restituire un nodo con un campo info ==y

```
nodo* trova(nodo *x, char y){
if(!x) return 0;
                                     invocazione
if(x->info==y) return x; nodo *w=trova(root,y)
nodo * z= trova(x->left,y);
if(z) return z;
return trova(x->right,y);
```


cerchiamo 'w'

f -> fa -> fag -> fagi -> fag -> fa -> fak -> fa -> f -> fw

altezza di un albero = profondità massima dei suoi nodi = distanza massima tra 2 nodi dell'albero

altezza 0

albero vuoto? per convenzione -1

```
PRE=(albero(x) \hat{e} corretto)
int altezza (nodo *x)
if(!x) return -1; //albero vuoto
else {
     int a=altezza(x->left);
     int b=altezza(x->right);
     if(a>b) return a+1;
     return b+1:
\}\}POST=(restituisce l'altezza di albero(x))
```

proviamo che è corretto:

base albero vuoto x = -1

```
int altezza(nodo *x){
if(!x) return -1;
                          -1 OK
else {
int a=altezza(x->left);
int b=altezza(x->right);
if(a>b) return a+1;
return b+1;}
```

un solo nodo


```
int altezza(nodo *x){
if(!x) return -1;
else {
int a=altezza(x->left);
                              a = -1
                              b = -1
int b=altezza(x->right);
if(a>b) return a+1;
return b+1;}
                          return 0
```

in generale:


```
int altezza(nodo *x){
if(!x) return -1;
                       per ipotesi induttiva
else {
                          altezza di L
int a=altezza(x->left);
int b=altezza(x->right); altezza di R
if(a>b) return a+1;
                           maggiore delle 2
return b+1;}
                           + 1 OK
```

potremmo anche evitare di considerare l'albero vuoto per l'altezza.

PRE=(albero(x) corretto e non vuoto)

```
PRE=(albero(x) corretto non vuoto)
int altezza(nodo*x)
 if(!x->left && !x->right)
    return 0:
 int a=-1, b=-1;
 if(x->left) a=altezza(x->left);
 if(x->right) b=altezza(x->right);
 if(a \le b) return b+1;
  else return a+1:
} POST=(restituisce l'altezza di albero(x))
```

un cammino di un albero = sequenza di 0 e 1

O=sinistra 1= destra

array int C[] e il valore lung indica la lunghezza della sequenza:

cammino da r a x:

$$C=[010] lung=3$$

cammino darar C=[] e lung =0

Problema

dato un array C che contiene una sequenza di 0 e 1 e un albero restituire il nodo corrispondente....se c'è

invocazione: nodo *z= trova(root, C, lung);

```
PRE=(albero(x) corretto, C[0..lung-1] def e 0/1)

nodo * trova(nodo *x, int* C, int lung)

{ if(!x) return 0; // fallito
 if(!lung) return x; //trovato
```

```
if(*C==0) return trova(x->left, C+1, lung-1);
else
return trova(x->right,C+1, lung-1);
}
```

POST=(restituisce punt. a nodo alla fine del cammino C[0..lung-1], se c'è in albero(x), e altrimenti 0

inserimento di un nuovo nodo in un albero: il nuovo nodo va inserito come figlio di un nodo già esistente e diventa quindi una foglia

o l'unico nodo se l'albero era vuoto

inseriamo sempre nel sotto albero che

contiene meno nodi

cioè conto i nodi di L e di R ed inserisco il nodo nel + piccolo dei due

```
int conta_n(nodo*r)
{
   if(!r) return 0;
   else
   return conta_n(r->left)+conta_n(r->right)+1;
}
```

PRE=(albero(r0) corretto e y def)

nodo* insert(nodo*r0, int y)

POST= sia rn=nodo(y,0,0), insert restituisce albero(r0)+rn t.c. se il cammino dalla radice r0 a rn è [r0,r1,r2,...rn]

1) per ogni i in 1..n, ri è il figlio di r(i-1) nel cui albero ci sono meno nodi,

2) in albero(r0) non c'era nodo al posto di rn

e se r0=0???

```
nodo* insert(nodo*r, int y)
 if(!r) return new nodo(y);
 if(conta_n(r->left)<=conta_n(r->right))
  r->left=insert(r->left,y);
  else
  r->right=insert(r->right,y);
 return r:
```

osservare similarità con l'inserimento in fondo ad una lista concatenata: operazioni inutili

passaggio per riferimento

```
void insert(nodo*& r, int y)
 if(!r) r= new nodo(y);
  else
 if(conta_n(r->left)<=conta_n(r->right))
  insert(r->left,y);
  else
  insert(r->right,y);
```

binary search trees (BST):

ogni nodo è maggiore dei nodi nel suo sottoalbero sinistro e minore di quelli del suo sottoalbero destro

in un BST è facile (efficiente) trovare un nodo con un certo campo info y

e restituire il puntatore a quel nodo se lo troviamo

e 0 altrimenti

non BST:

controllo r, cerco in L e se no in R o viceversa insomma se non c'è devo visitare tutti i nodi!!

in un BST la cosa è più semplice:

- 1. r→info == y restituisco r, altrimenti:
- 2. se r→info > y → cerco solo in L altrimenti cerco solo in R

cerchiamo h:

h<i andiamo a sinistra
h>f destra

h>g destra

trovato !!!

```
ricerca in un BST:
nodo *search(nodo *x,char y){
if(!x) return 0;
if(x->info==y) return x;
if(x->info>y)
return search(x->left,y);
else
return search(x->right,y);
```

quante chiamate ricorsive si fanno al massimo?

seguo un solo cammino: al massimo farò tante invocazioni quant'è l'altezza dell'albero

se l'albero è equilibrato, altezza = log n dove n è il numero dei nodi dell'albero una bella differenza tra n e log n !!!

se h non ci fosse?

inserimento in un BST:

```
nodo * insert(nodo *r, int y){
if(!r) return new nodo(y,0,0);
if(r \rightarrow info > y)
r \rightarrow left=insert(r \rightarrow left, y);
else
r→right=insert(r→right, y);
return r:
```

realizzate la soluzione col passaggio di r per riferimento

sono in ordine!!