I. Basic probability formulas

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- $P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$
- If A, B independent: $P(A \cap B) = P(A) \cdot P(B)$

II. Discrete random variables

- $\mathcal{M} = E(x) = \sum x_i \cdot P(x=x_i)$
- $\sigma^2 = V(x) = \sum_i (x_i \mathcal{M})^2$. $P(x=x_i)$

=
$$\sum x_i^2$$
 . P(x=x_i) - \mathcal{M}^2

- E(ax + by) = a.E(x) + b.E(y)
- $V(ax + by) = a^2 \cdot V(x) + b^2 \cdot V(y)$
- Probability mass function: $f(x_i) = P(x=x_i)$
- Cumulative distribution function: $F(x_i) = P(x \le x_i)$
- Some special distribution:
 - 1. Discrete uniform distribution

$$\circ$$
 P(x=X_i) = $\frac{1}{n}$

$$\circ$$
 $\mathcal{M} = \frac{a+b}{2}$

$$\circ \quad \sigma^2 = \frac{(b-a+1)^2-1}{12}$$

2. Binomial distribution

$$\circ$$
 P(x=k) = nCk . p^k . (1-p)^{n-k}

$$\circ$$
 $\mathcal{M} = \text{n.p}$

$$\circ \quad \sigma^2 = \text{n.p.} (1-p)$$

3. Poisson distribution

$$\circ$$
 $\mathcal{M} = \lambda.T$

$$\circ$$
 $\sigma^2 = \lambda.T$

4. Hypergeometric distribution

$$\circ$$
 $\mathcal{M} = \text{n.p}$

$$\circ \quad \sigma^2 = \text{n.p.}(1-p). \frac{N-n}{N-1}$$

5. Geometric distribution

$$\circ$$
 P(x=k) = (1-p)^{k-1}.p

$$\circ \quad \mathcal{M} = \frac{1}{p}$$

$$\circ \quad \sigma^2 = \frac{1-p}{n^2}$$

6. Negative binomial distribution

$$\circ$$
 P(x=k) = (k-1)C(r-1) . p^r . (1-p)^{k-r}

$$\circ \quad \mathcal{M} = \frac{r}{p}$$

$$\circ \quad \sigma^2 = \frac{r \cdot (1-p)}{p^2}$$

III. Continuous random variable

- Probability density function f(x): $P(a < x < b) = \int_{a}^{b} f(x) d_{x}$
- Cumulative distribution function F(x):

$$\circ$$
 $F(x_i) = P(x \le x_i)$

$$\circ$$
 $F(x_i)' = f(x_i)$

•
$$\mathcal{M} = E(x) = \int_{-\infty}^{+\infty} x. f(x) d_x$$

•
$$E(x^n) = \int_{-\infty}^{+\infty} x^n \cdot f(x) d_x$$

•
$$\sigma^2 = V(x) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) d_x - \mathcal{M}^2$$

- Some special distribution:
 - 1. Continuous uniform distribution

$$\circ \quad f(x) = \frac{1}{b-a} , \ a \le x \le b$$

$$\circ$$
 $\mathcal{M} = \frac{a+b}{2}$

$$\circ \quad \sigma^2 = \frac{(b-a)^2}{12}$$

2. Normal distribution $N(\mathcal{M}, \sigma^2)$

$$\circ f(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{x^2}{2}}$$

$$\circ$$
 $\varphi(x) = p(z < x_i)$

$$\circ \quad \varphi(-x) = 1 - \varphi(x)$$

3. Normal distribution approximate binomial and poisson distribution

a. Binomial (np > 5 and n(1-p) > 5)

$$z = \frac{x - n.p}{\sqrt{n.p.(1-p)}}$$

$$P(X_{BINORM} < a) = P(X_{NORMAL} < a+0.5)$$

■
$$P(X_{BINORM \ge} a) = P(X_{NORMAL \ge} a-0.5)$$

b. Poisson

$$z = \frac{x - \lambda}{\sqrt{\lambda}}$$

$$P(X_{POISSON} < a) = P(X_{NORMAL} < a+0.5)$$

■
$$P(X_{POISSON \ge} a) = P(X_{NORMAL \ge} a-0.5)$$

4. Exponential distribution

$$\circ \quad f(x) = \lambda \cdot e^{-\lambda T}, \ x > 0$$

$$\circ \mathcal{M} = \frac{1}{\lambda}$$

$$\circ \quad \sigma^2 = \frac{1}{\lambda^2}$$

IV. Descriptive statistic (Take a sample of size n from population N)

• Sample mean:
$$\overline{x} = \frac{\sum x_i}{n}$$

• Sample median: L =
$$\frac{n+1}{2}$$
 so Median = $\frac{x_{ceil(L)} + x_{floor(L)}}{2}$

• Sample variance:
$$s^2 = \frac{\sum (\bar{x} - x_i)^2}{n - 1}$$

$$\circ \quad L_1 = \frac{n+1}{4} \text{ so } Q_1 = \frac{x_{ceil(L_1)} + x_{floor(L_1)}}{2}$$

$$\circ$$
 $L_2 = \frac{n+1}{2}$ so $Q_2 = \frac{x_{ceil(L_2)} + x_{floor(L_2)}}{2}$

o
$$L_3 = \frac{3.(n+1)}{4}$$
 so $Q_3 = \frac{x_{ceil(L_3)} + x_{floor(L_3)}}{2}$

V. Sampling distribution

- Population mean \mathcal{M} , variance σ^2 . Sample size n. (Normal distribution or n > 30):
 - \circ Phân phối của \overline{X} có dạng: $N(\mathcal{M}, \frac{\sigma^2}{n})$
 - \circ Phân phối của $\overline{X_1}$ $\overline{X_2}$ có dạng: $N(\mathcal{M}_1$ \mathcal{M}_2 , $\frac{{\sigma_1}^2}{n_1}$ + $\frac{{\sigma_2}^2}{n_2}$)
- For proportion of population p, sample size n. $(np \ge 5 \text{ or } n.(1-p) \ge 5)$:
 - o Phân phối của $\stackrel{\smallfrown}{P}$ có dạng: $N(P,\frac{P.(1-P)}{n})$
 - $\qquad \qquad \text{ Phân phối của $\hat{P_1}$ $\hat{P_2}$ có dạng: $N(P_1 P_2$, $\frac{P_1 \cdot (1 P_1)}{n_1}$ + $\frac{P_2 \cdot (1 P_2)}{n_2}$)}$

VI. Statistical intervals - Test claims for one sample

- $(I, u) = (\overline{X} E, \overline{X} + E)$
- width = 2E
- P-value = 2 . $P(Z > |Z_0|)$
- 1. Population variance known

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

- 2. Population variance unknown
 - o n > 30:

$$\blacksquare$$
 $E = z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$

$$z_0 = \frac{\overline{X} - \mathcal{M}}{S / \sqrt{n}}$$

$$\circ$$
 n \leq 30:

$$\blacksquare \quad \mathsf{E} = t_{\alpha/2, \, n-1} \cdot \frac{s}{\sqrt{n}}$$

• For propotion:

$$\circ \quad (\mathsf{I},\,\mathsf{u}) = (\stackrel{\smallfrown}{P} - \mathsf{E},\, \stackrel{\smallfrown}{P} + \mathsf{E})$$

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \sqrt{\frac{P.(1-P)}{n}}$$

$$\circ z_0 = \frac{\hat{P} - P}{\sqrt{\frac{P \cdot (1 - P)}{n}}}$$

 \circ Nếu đề không cho $\stackrel{\circ}{P}$, mặc định $\stackrel{\circ}{P}$ = 0.5

• Nếu là one-side thì tương tự nhưng thay $\alpha/2$ thành α

VII. Test claims for 2 samples (2 population independent, normal distribution or both n_1 , $n_2 > 30$)

•
$$(I, u) = (\overline{X_1} - \overline{X_2} - E, \overline{X_1} - \overline{X_2} + E)$$

1. Population variance known

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$$

2. Population variance unknown

$$\circ \quad \text{Assume } \sigma_1^{\ 2} = {\scriptstyle \sigma_2^{\ 2}}$$

■ Degree of freedom:
$$df = n_1 + n_1 + 2$$

$$S_p^2 = \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{n_1 + n_2 - 2}$$

$$\blacksquare \quad \mathsf{E} = t_{\alpha/2, \, df} \cdot \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}$$

$$\circ \quad \text{Not assume } \sigma_1^{\ 2} = \frac{2}{\sigma_2}$$

■ Degree of freedom: df =
$$\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{S_2^4}{n_2^2 \cdot (n_2 - 1)}}$$

$$\blacksquare \quad \mathsf{E} = t_{\alpha/2, \, df} \cdot \sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}$$

For propotion:

o (I, u) =
$$(\hat{P}_1 - \hat{P}_2 - E, \hat{P}_1 - \hat{P}_2 + E)$$

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \sqrt{\frac{\hat{P_1} \cdot (1 - \hat{P_1})}{n_1} + \frac{\hat{P_2} \cdot (1 - \hat{P_2})}{n_2}}$$

$$\circ \quad \hat{P} = \frac{x_1 + x_2}{n_1 + n_2} \text{ (trong $d\acute{o}$ $x_i = n$. \hat{P}_i)}$$

VIII. Linear Regression

•
$$S_{XY} = \sum \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right) = \sum x_i y_i - n \cdot \overline{x} \cdot \overline{y}$$

•
$$S_{xx} = \sum \left(x_i - \overline{x}\right)^2 = \sum x_i^2 - n \cdot \overline{x}^2$$

•
$$S_{YY} = \sum_{i} \left(y_i - \overline{y} \right)^2 = \sum_{i} y_i^2 - n \cdot \overline{y}^2$$

• Slope:
$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} = \frac{\sum x_i y_i - n.\bar{x}.\bar{y}}{\sum x_i^2 - n.\bar{x}^2}$$

• Intercept:
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \cdot \overline{x}$$

• Error sum of square:
$$SS_E = \sum_{i=1}^{\infty} (y_i - y_i^*)^2$$

• Regression sum of square:
$$SS_R = \sum_{i=1}^{n} \left(y_i - y_i \right)^2$$

• Total sum of square:
$$SS_T = \sum_i \left(y_i - \overline{y}\right)^2$$

•
$$SS_E + SS_R = SS_T$$

• Standard error:
$$\hat{\sigma} = \sqrt{\frac{SS_E}{n-2}}$$

• Coefficient of correlation:
$$R = \sqrt{\frac{SS_R}{SS_T}} = \frac{S_{\chi \gamma}}{\sqrt{S_{\chi \chi} \cdot S_{\gamma \gamma}}}$$

• Test claims about the slope (df = n-2):

$$\circ \operatorname{se}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{XX}}}$$

$$0 t_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{se(\hat{\beta}_1)}$$

• Test claims about the intercept (df = n-2):

$$\circ \operatorname{se}(\hat{\beta_0}) = \sqrt{\hat{\sigma}^2 \cdot \left(\frac{1}{n} + \frac{x^2}{S_{XX}}\right)}$$

$$\circ \quad t_0 = \frac{\hat{\beta_0} - \beta_{0,0}}{se(\hat{\beta_0})}$$

• Test claims about the coefficient of correlation (df = n-2): $t_0 = \frac{R-0}{\sqrt{\frac{1-R^2}{n-2}}}$

Thứ ngày .
s - MAS (1)
· fogulation
fanameter: characteristic of population 1
- Sample Sample
- statistics: characteristic of sample
characteristic of elements
- data : value of variable
The same special array all same
· Phirring phaps collect data
netro spective study: cac data có trẻ qua khưể
experiment study: dark tu quansat, do tac
experment study: data this three righter - simulation study: using models -> data
- Shavey: F sample
- Population CENSUS
- AND AND A MANAGE !
· Type of data
qualitative (dish tinh): gender, color, major,
place, size ("thung their da' de phân loai)
quatitative discrete (de roi rac)
(dinh living) continuous (lien tuc)
· Sampling method
- representative: lay suo che du dien de population
a color amount / with out of placement:
chan xq bo'sa (k" lay nx) / chan xq to hi (to the lay lixp)
non landom (not representative)
- Landon sampling:
+ simple random
+ simple andom + shatified: boc'teir tu'ac' nhom (class), moi + shatified: boc'teir tu'ac' nhom (class), moi dass simple random
dass simple remediate

