

UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE) Course Syllabus

1	Course Title	Algorithms Laboratory						
2	Course Code	CSI 228						
3	Trimester and Year	Spring 2018						
4	Pre-requisites	CSI 217: Data Structure, CSI 219: Discrete Mathematics						
5	Credit Hours	1.00						
6	Section	В						
7	Class Hours	Sunday: 01:40 PM – 03:50 PM						
8	Class Room	PC Computer Lab 5						
9	Instructor's Name	Arif Arman						
10	Email	arman@cse.uiu.ac.bd						
11	Office	####						
12	Counselling Hours	Monday 10:20 AM - 11:50 AM Wednesday 10:20 AM - 11:50 AM						
13	Text Book	Introduction to Algorithms (3 rd edition) by Cormen, Leiserson, Rivest and Stein						
14	Reference	http://www.shafaetsplanet.com/ [For Bengali resources] https://www.geeksforgeeks.org/ [Implementation resources]						
15	Course Contents (approved by UGC)	Laboratory works based on CSI 227.						
16	Course							
	Outcomes (COs)	COs Description						
		[CO1 Implement correct algorithms to handle large datasets efficiently.						
		Analyze worst-case running times of algorithms using asymptotic analysis.						
		CO3 Describe different algorithm paradigms and explain when						
		algorithmic design situations call for them. Recite algorithms that						
		employ these paradigms. Synthesize such algorithms. Derive and						
		solve problems describing the performance of the algorithms.						
17	Teaching Methods	Lecture, Case Studies.						

18	CO with
	Assessment
	Methods

CO	Assessment Method	(%)
-	Attendance	05%
CO1, CO3	Class Performance	25%
CO1, CO3	Exams	30%
CO1	Assignments	25%
CO2, CO3	Final Quiz	15%

19 Mapping of COs and Program outcomes

COs					Progr	am Ou	tcomes	(POs)				
	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO1			С									
CO2		С										
CO3			С									

20 Lab Outline

Class	Topics/Assignments	COs	Lab Outcomes/Activities			
Lab1	Practice 1: Review of Recursive Functions	CO1	Lecture, Graded practice			
Lab2	Exam 1: Review of Recursive Functions	CO1	Exam			
Lab3	Practice 2: Divide-and-Conquer	CO1, CO3	Lecture, Graded practice			
Lab4	Exam 2: Divide-and-Conquer	CO1,	Exam;			
La04	Assignment 1	CO3	Lecture			
		CO1,				
Lab5	Practice 3: Greedy Algorithms	CO3	Lecture, Graded practice			
		CO1,				
Lab6	Assignment 2: Greedy Algorithms; Practice 4: Dynamic Programming		Lecture, Graded practice			
	MIDTERM WEEK					
Lab7	Exam 3: Dynamic Programming	CO1, CO3	Exam			
Lab8	Practice 5: Disjoint-Sets Forests	CO1, CO3	Lecture, Graded practice			
Lab9	Exam 4: Disjoint-Sets Forests;	CO1,	Exam			
Lauy	Minimum Spanning Trees		Exalli			
Lab10	Practice 6: Single-Source Shortest Paths	CO1, CO3	Lecture, Graded practice			
Lab11	Exam 5: Single-Source Shortest Paths	CO1,	Exam			
Lauri	Assignment 3		Exam			

		Lab12	Practice 7: String Matching	CO1, CO3	Lecture, Graded practice	
--	--	-------	-----------------------------	-------------	--------------------------	--

Appendix 1: Assessment Methods

Assessment Types	Marks
Attendance	05%
Class Performance	25%
Exams	30%
Assignments	25%
Final Quiz	15%

Appendix 2: Grading Policy

Letter Grade	Marks %	Grade Point	Letter Grade	Marks%	Grade Point
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

POs	Program Outcomes
PO1	An ability to apply knowledge of mathematics, science, and engineering
PO2	An ability to identify, formulate, and solve engineering problems
PO3	An ability to design a system, component, or process to meet desired needs within realistic
	constraints such as economic, environmental, social, political, ethical, health and safety,
	manufacturability, and sustainability
PO4	An ability to design and conduct experiments, as well as to analyze and interpret data
PO5	An ability to use the techniques, skills, and modern engineering tools necessary for
	engineering practice
PO6	The broad education necessary to understand the impact of engineering solutions in a
	global, economic, environmental, and societal context
PO7	A knowledge of contemporary issues
PO8	An understanding of professional and ethical responsibility
PO9	An ability to function on multidisciplinary teams
PO10	An ability to communicate effectively
PO11	Project Management and Finance
PO12	A recognition of the need for, and an ability to engage in life-long learning