

- (19) The Japanese Patent Office
- (12) Laid-Open Patent Application Publication (A)
- (11) Laid-Open Patent Application Publication No. Hei4-251297
- (43) Publication Date: September 7, 1992

Int. Cl.5

Classification Symbol JPO Ref. No.

FI

G10H 7/10

L 8946-5H

G10L 9/02

8622-5H

G10 7/00

Request for Examination: not yet requested Number of Claims: 7 (11 pages in total)16

- (21) Application No. Hei3-162514
- (22) Application Date: June 7, 1991
- (72) Inventor: Tetsuya NIAHIMOTO

c/o Yamaha Corp., No. 10-1, Nakazawa-cho, Hamamatsu-shi, Shizuoka-ken, Japan

- (31) Priority No.: Hei2-410847
- (32) Priority Date: December 15, 1990
- (33) Priority Country: Japan (JP)
- (71) Applicant: Yamaha Corp.

No. 10-1, Nakazawa-cho, Hamamatsu-shi,

Shizuoka-ken, Japan

- (74) Agent: Patent Attorney, Yoshihito IIZUKA
- (54) Title of the Invention: MUSICAL TONE SYNTHESIZER

[00015]

[Embodiment]

Referring to accompanying drawings, an embodiment of the present invention is described in detail. FIG. 1 is a block diagram, showing a hardware constitution as an embodiment of the electronic musical instrument according to the present invention. In this embodiment, the musical tone synthesizer as a whole is controlled with a microcomputer. The microcomputer includes a microprocessor unit (CPU) 10; a program ROM 11 for storing a system program and various parameters or the like that are not required to be changed; and

a data and working RAM 12 that temporarily stores various data and is used as a working RAM.

[0016]

Preset values of formant sequence are stored in the program ROM 11. Regions for storing the order of the formant sequence, pitch sequence, and voiced and voiceless sound level sequence are assigned to the data and working RAM 12. Thus, the preset values of the formant sequence in the program ROM 11 are loaded by the initialization process starting when power is turned on, so that the musical tone synthesizer starts synthesizing musical tones according to the formant sequence from the time power is turned on.

[0017]

To this microcomputer are connected, through a data and address bus 13, various devices such as a keyboard circuit 14, an operation panel 15, a voiced formant synthesizing sound source 17V and a voiceless formant synthesizing sound source 17U as sound sources, a sequence memory 20, an after-touch sensor 21, and a timer 22. These devices are respectively controlled with the microcomputer.

[0018]

The keyboard circuit 14 includes a circuit made of a plural number of key switches provided so as to correspond to respective keys which specify pitches of musical tones to be produced. Sound producing process for assigning a depressed key to any of a plural number of sound producing channels according to the output from the keyboard circuit 14 is performed with the microcomputer. A process of producing an initial touch data ITD by determining the key depression speed is also performed as required when a key is depressed. An after-touch sensor 21 for outputting after-touch data ATD related to each key of the keyboard by detecting the key depression force when a key is depressed and held is also provided next to the keyboard circuit 14.

[0019]

The operation panel 15 includes various operation members

for choosing, setting and controlling tone color, volume, pitch, and effect. The operation panel 15 has a tone color choosing section 16 for choosing tone colors corresponding to various natural musical instruments such as the piano, organ, violin, brass, guitar, etc. and various other tone colors (human voices). The tone color choosing section 16 outputs tone color choosing signals TC.

[0020]

The voiced formant synthesizing sound source 17V is capable of: simultaneously producing musical tone signals in a plural number (n pieces) of channels; receiving various data given through the data and address bus 13 for keys assigned to respective channels, the data including key code KC data, formant parameter data (center frequency data F and its level data L), relative pitch data P, voiced sound level data V (or level ratio UV of voiced to voiceless sound levels), and other data (such as key-on KON, key-off KOF, initial touch data ITD, after-touch data ATD, and tone color choosing signal TC); and producing musical tone signals according to such data.

[0021]

In other words, the formant synthesizing sound source 17V receives: the center frequency data F, level data L, relative pitch data P, and voiced sound level data V (level ratio UV), of each formant, which have been read from the sequence memory 20; and the key code KC given, as the data specifying the pitch of the musical tone to be synthesized, from the keyboard circuit 14, performs formant synthesizing operation, and outputs a musical tone signal characterized by the formant at a level corresponding to the voiced sound level data V (level ratio UV) corresponding to the pitch specified with the key code KC and the relative pitch data P. The pitch of the musical tone is obtained by multiplying the pitch corresponding to the key code KC by the value of the relative pitch data P. As a matter of course, the pitch may be obtained by other method than multiplication. This embodiment will be described assuming that the number of channels in which the voiced formant

synthesizing sound source 17V can produce sounds simultaneously is 8.

[0022]

A sound source 17U for voiceless formant synthesizing is capable of: simultaneously producing musical tone signals in a plural number (n pieces) of channels; receiving formant parameter data (center frequency data F and its level data L), voiceless sound level data U (or 1 - UV), and other data (tone color choosing signal TC, etc.) given through the data and address bus 13; and producing musical tone signals according to such data.

[0023]

In other words, the formant synthesizing sound source 17U receives the center frequency data F, level data L, voiceless sound level data U (or 1 - UV), of each formant read from the sequence memory 20; performs specified formant synthesizing operation, and outputs a musical tone signal characterized by the formant at a level commensurate with the voiceless sound level data U (or 1 - UV). This embodiment is described on the premise that the number of channels in which the sound source 17U for voiceless formant synthesizing can produce sounds simultaneously is 8, the same as that with the sound source 17V for voiced formant synthesizing.

[0024]

Digital musical signals produced with both of the sound sources 17V and 17U for voiced formant synthesizing are converted to analog musical sound signals through a digital-to-analog (D-A) converters 18V and 18U, and outputted through a sound system 19. The sound system 19 is made up of a speaker, an amplifier, etc. to produce musical sounds commensurate with the analog musical sound signals coming from the D-A converters 18V and 18U.

[0025]

The timer 22 is to give interrupt signals regularly to the microcomputer. With this embodiment, the processes of reading formant parameter data, relative pitch data, and voiced and voiceless sound level data, to be described later, are implemented with the timer interrupt. The sequence memory 20 has in store various formant data such as the center frequency data F and level data L for a plural number of formants, relative pitch data, voiced and voiceless sound level data, in the sequence corresponding to intended formant change mode.

[0026]

FIG. 2 shows the storage state (example of memory structure) in the sequence memory 20 of the formant parameter data (center frequency data F and level data L), relative pitch data P and voiced and voiceless sound level data V and U. In FIG. 2, the vertical axis corresponds for example to phonemes of human voice identified with sequence numbers X (from 1 to m). The horizontal axis corresponds to time-serial change in: the center frequency and level of the formant characterizing the phoneme identified with the sequence number X of the vertical axis, pitch, voiced sound level, and voiceless sound level, stored in the order of step numbers Y (from 1 to n).

[0027]

In one step of the sequence memory 20 are stored four pieces of formant parameter data FLXYN (with X denoting a sequence number, Y a step number, and N a number indicating any one of four in one step) consisting of center frequency data F and level data L characteristic of the phoneme of the sequence number X. Also stored are, corresponding to the formant parameter data FLXYN, one for each: relative pitch data PXY representing the relative amount of change in the pitch to a reference pitch (identified with a key code KC) at the time the formant is pronounced; voiced sound level data VXY representing the voiced sound level at the time the formant is pronounced; voiceless sound level data UXY (X denoting a sequence number, and Y a step number) representing the level of a voiceless sound. In this case, the value of n of the step number Y in respective sequence numbers X need not necessarily be the same but may be different from one phoneme to another.

[0028]

The sequence memory 20 may store voiced to voiceless sound level ratio data UV in place of the voiced sound level data VXY and the voiceless sound level data UXY. This voiced to voiceless sound level ratio data UV represents the ratio of the voiced sound to the sum of the voiced level and the voiceless level assumed to be 1. Therefore, the voiceless sound level may be easily obtained by subtracting this level UV from 1, as 1 - UV. Storing the voiced to voiceless sound level ratio data UV in the sequence memory 20 is advantageous in that the amount of data in the sequence memory 20 is greatly reduced.

[0029]

Data read from the step number 1 of the sequence number 1 of the sequence memory 20 are: four pieces of formant parameter data FL111, FL112, FL113, and FL114 respectively made up of center frequency data F and level data L; relative pitch data P11, voiced sound level data V11, and voiceless sound level data U11. Data read out from the step number n are: four pieces of formant data FL1n1, FL1n2, FL1n3, and FL1n4; a piece of relative pitch data P1n, voiced sound level data V1n, and voiceless sound level data U1n. These data are read out in the order of the step number Y.

[0030]

Formant parameter data stored in one step may be adapted to be read either in parallel or in time division. Formant parameter data FL111, FL121,, FL1n1 read in the order of steps are formant sequence data that change in time series, with their center frequencies and levels changing subtly in time series.

[0031]

Relative pitch data P11, P12, ..., P1n read in the order of steps are pitch sequence data that change in time series and that represent the amounts of change in pitch from the reference pitch. Voiced sound level data V11, V12, ..., V1n and voiceless sound level data U11, U12, ..., U1n, read out in the order of steps are voiced and voiceless sound level sequence data that change in time series. Formant parameter data, relative pitch

data, and voiced and voiceless sound level data of respective sequence numbers are constituted similarly.

[0032]

Reading out of the sequence memory 20 is controlled with a sequence number address data X and a step address data Y. The sequence number address data X is to specify the sequence number of a series of sequence formant data and the sequence pitch data to be read from the sequence memory 20. The step address data Y is to specify a step to be currently read out in the sequence specified with the sequence number address data X. As an example, the sequence number address data X is produced in response to an appropriate choosing operation at the operation panel 15, for example in linked motion with the tone color choosing section 16 or in response to a dedicated sequence number choosing operation means. The step address data Y is produced with the CPU 10 and inputted to an address in the sequence memory 20. Producing this step address data will be described later.

[0033]

This embodiment is described as an example on the premise that the formant parameter data are two in number, i.e. the center frequency data F and the level data L, and that one musical tone signal is synthesized from four formants using the voiced formant synthesizing sound source 17V and the voiceless formant synthesizing sound source 17U.

[0034]

Formant parameter data stored in the sequence memory 20 are produced using voice waveform analysis method of conventional description. For example, formant data extracted with a method such as linear prediction analysis (LPC), line spectrum pair analysis (LSP), and complex sine wave model analysis (CSM) are used.

[0035]

Relative pitch data are also extracted at the same time when the formant data are extracted. Extraction of the relative pitch is performed by modified auto correlation or zero

cross-correlation, for example. In other words, when an original voice is to be sampled, a subject is requested to produce a voice of a pitch that is close to a predetermined reference pitch. This voice contains fluctuation component of the pitch. Then, the difference between the reference pitch and the subject pitch is extracted as a relative pitch data. Extracting voiced and voiceless levels is also made similarly to extracting the relative pitch data. Extracting the level ratio UV may be made using Fourier analysis to obtain a ratio of frequency higher than 5 kHz to that below it.

[0036]

The operation panel 15 has a mode switching key (not shown) for choosing one out of a plural number of reading patterns. The CPU 10 produces step address data that change with time to read out formant parameter data, relative pitch data, and voiced and voiceless level data for a plural number of steps according to a reading pattern chosen with the mode switching key. Producing the step address data according to this reading pattern is made according to musical tone producing timing in response to the key-on signal KON from the keyboard circuit 14. The step address data may either be stored in advance in the data and working RAM 12 according to the reading pattern or produced by numerical operation.

[0037]

FIG. 3 is a schematic view, showing one example for values of voiced sound level data V, voiceless sound level data U, and voiced to voiceless sound level ratio UV, stored in the sequence memory 20. FIG. 3(a) shows the voiced sound level data V, FIG. 3(b) the voiceless sound level data U, and FIG. 3(c) the voiced to voiceless sound level ratio UV. In FIGs. 3(a) to 3(c), the horizontal axis represents the step address of the sequence memory 20, and the vertical axis the level values of the voiced and voiceless sound corresponding to the step address.

[0038]

The levels of voiced sound and voiceless sound levels in FIG. 3 respectively correspond to the cases in which human

voices [a], [ka], [sa], and [ta] are synthesized with a musical tone synthesizer. In FIG. 3(a), all the waveforms represent the level Va of a voiced sound (vowel) [a]. In FIG. 3(b), the first waveform represents the level Uk of a voiceless sound (consonant) [k]; the second, the level Us of a voiceless sound (consonant) [s]; and the third, the level Ut of a voiceless sound (consonant) [t], respectively. While the magnitude of the voiced sound level Va in FIG. 3(a) is constant, the magnitudes of the voiceless sound levels Uk, Us, and Ut in FIG. 3(b) are respectively different. Therefore, the musical tone synthesizer can produce human voices [a], [ka], [sa], and [ta] by reading out the waveforms of FIGs. 3(a) and 3(b) in succession in the order of the step address.

[0039]

FIG. 3(c) shows the voiced to voiceless sound level ratio UV stored in the sequence memory 20. In this example, the ratio of the voiced sound level to the sum of the voiced sound level and the voiceless sound level, assumed to be 1, is stored as the voiced to voiceless sound level ratio in the sequence memory In other words, the voiced to voiceless sound level ratio UV is V/(U + V), where V is the voiced sound level and U is the voiceless sound level. Therefore, the magnitude of the voiceless sound level may be easily calculated as (1 - UV) (indicated with broken line in the figure). However, in case the sum of the voiced sound level and the voiceless sound level is not 1 as shown in FIGs. 3(a) and 3(b), as a matter of course it is preferable to store the voiced sound level V and the voiceless sound level U separately in the sequence memory 20. It is also a matter of course even in case the sum of the voiced sound level and the voiceless sound level is not 1, the ratio between them (V/U) may be simply stored.

[0040]

FIG. 4 shows several example patterns of reading the sequence memory 20. In the reading pattern shown in FIG. 4(a), the step address is increased, in succession, from a specified reference address to a specified maximum address (MAX) and held

there. For example, on the assumption that the reference address is the step number 1 and the maximum address is the step number n, the step address increases in the order of the step numbers 1, 2, 3, ..., n with time, and held at n once it is reached. In case for example the sequence number is 1, formant parameter data FL11N, FL12N, ..., FL1nN; relative pitch data P11, P12, ..., P1n; voiced sound level data V11, V12, ..., V1n; and voiceless sound level data U11, U12, ..., U1n, which numbers correspond to the step numbers respectively, are read out in succession, and finally FL1nN, P1n, V1n, and U1n are read out continuously. Incidentally, the term address in the following description is supposed to denote the term step address.

[0041]

According to the reading pattern shown in FIG. 4(b), reading starts from the reference address to a specified loop end address (LOOP END) in specified sequence, thereafter repeating increase in address starting from the loop start address (LOOP START) toward the loop end address (LOOP END).

[0042]

According to the reading pattern shown in FIG. 4(c), reading starts from the reference address to a specified loop end address (LOOP END) in specified sequence, followed by repetition of decrease in address starting from the loop end address (LOOP END) toward the loop start address (LOOP START).

[0043]

According to the reading pattern shown in FIG. 4(d), reading starts from the reference address to a specified loop end address (LOOP END) in specified sequence, followed by repetition of increase and decrease in address between the loop end address (LOOP END) and the loop start address (LOOP START).

[0044]

The reading patterns in FIG. 4 are examples. It is possible to combine these patterns arbitrarily or to variably control the reading speed according to key operation speed information such as the magnitude of the initial touch data ITD and the after-touch data ATD. It is also possible to remarkably

enhance performance effect by pre-registering various patters according to kinds of musical instruments and kinds of human voices.

[0045]

It is also possible to provide a manual operation member on the operation panel 15 to set any step address, or sequentially change the address by changing the amount of manual operation. As such operation members, there are for example a modulation wheel for outputting signals in 128 steps, and a pitch bend wheel for outputting signals having positive and negative directionality.

[0046]

Next, an example process implemented with the microcomputer is described in reference to FIGs. 5, 6, 7, 8, and 9. FIG. 5 shows details of every step of "main process routine" implemented with the microcomputer. This main process routine is implemented sequentially in the following steps.

[0047]

Step 31: All the data of the microcomputer at the time of turning on power are set to specified values. For example, initial values such as the sequence number address data, step address data, and reading pattern are set to respective registers. The preset values of the formant sequence stored in the program ROM 11 as described before are loaded to the data and working RAM 12.

[0048]

Step 32: Key switches in the keyboard circuit 14 are scanned.

Step 33: Presence or absence of a key event is determined from the results of the key scanning in the step 32. A key depression is determined to be a key-on event, and a key release is determined to be a key-off event. When a key event is present (YES), the process goes to the next step 34; when not present (NO), it goes to the step 35.

[0049]

Step 34: Sound production assigning process is implemented according to the kind of the key event in step 33.

Step 35: Operation members of the operation panel 15 are scanned.

Step 36: Presence or absence of panel events with the operation member is determined from the result of panel scanning in the step 35. For example, whether or not a mode switching key has been pressed is determined. In case a panel event is present (YES), the process goes to the next step 37, or in case a panel event is absent (NO), it returns to the step 32.

Step 37: Sound production assigning process is implemented according to the result of the panel event in the step 36.

[0050]

FIG. 6 shows details of steps in the "sound production process" implemented with the microcomputer. This sound production process is implemented in the following order of steps.

Step 41: Whether the key event is in key-on state or key-off state is determined. In case the event is in key-on state (YES), the process goes to the next step 42; in case it is in key-off state (NO), the process goes to the step 47.

Step 42: A vacant channel is searched in which neither the voiced formant synthesizing sound source 17V nor the voiceless formant synthesizing sound source 17U currently implement a sound production assigning process.

[0051]

Step 43: Presence or absence of vacant channel is determined according to the result of the vacant channel search in the step 42. In case it is present (YES), the process jumps to step 45. In case absent (NO), the process goes to the next step 44.

Step 44: When no vacant channel is present, a truncation process is implemented to form a channel that can implement a sound production assigning process.

[0052]

Step 45: Speed of step address reading phase is determined according to the initial touch data ITD, and is set to the speed register SP (ch). This speed register SP (ch) is provided in each channel, with different value set to each channel. As the reading speeds of the formant sequence, pitch sequence, voiced and voiceless level sequence are different by every key depression, an effect is provided that sounds can be separated even when harmonic keys are depressed.

[0053]

Step 46: A key-on flag is set to the vacant channel so that sound production information in interrupt process is controlled, and the process returns. In other words, no sound production assigning process request is made directly in this sound production process.

Step 47: In case the key event in the step 41 results in key-off, a determination is made if the voiced formant synthesizing sound source 17V and the voiceless formant synthesizing sound source 17U have implemented sound production process of the corresponding key, namely if a corresponding key-on is present. If present (YES), the process goes to the step 48; and if not present, the process returns. This is because of the possibility that a depression-processed key is completely halting sound production due to the truncation process in the step 44.

[0054]

Step 48: Key-off information KOF is sent to a channel corresponding to the key-off event.

Step 49: Key-on flag is reset in the channel to which the key-off information KOF was sent.

[0055]

FIG. 7 shows details of steps in the "panel process" implemented with a microcomputer. This panel process is implemented in the following order of steps. Only parts directly related to this invention are shown here.

Step 51: A determination is made if the mode switching key-on the operation panel 15 has been depressed. If depressed (YES),

the process goes to the next step 52; and if not depressed (NO), to the step 56.

[0056]

1

Step 52: The value of the mode register MOD is increased by 1 (one) and the process goes to the next step 53. In other words, the value of the mode register MODE is increased by 1 (one) every time this mode changing switch is pressed, to choose any of the reading patterns shown in FIG. 4. As a matter of course, the mode changing switch key is not limited to this one but may be any other one that can change its value at will with a slidable or turnable key.

[0057]

Step 53: As the number of reading patterns in FIG. 4 is four, a determination is made if the value of the mode register MODE is "5." If "5," the process goes to the next step 54; otherwise the process jumps to the step 55. It has only to change the value of this step according to the number of the reading patterns.

[0058]

Step 54: When the value of the mode register MODE in the step 53 is a maximum of 5, "1" is stored here in the mode register MODE. Thus, the value of the mode register MODE circulates with the values of 1, 2, 3, and 4 without overflowing as the mode changing switch is depressed.

[0059]

Step 55: Interruption process vector is overwritten according to the value stored in the mode register MODE. This embodiment is adapted to create the waveforms for reading the formant sequence data, pitch sequence data, and voiced and voiceless sound level sequence data by software process and adapted to form respective reading waveforms by different interrupt processes. Therefore, destination of interruption is changed according to the stored value in the mode register MODE.

[0060]

Step 56: When the mode switching key (not shown) on the

operation panel 15 has not been pressed, process is implemented with other keys on the operation panel 15. For example, in case a tone color choosing event occurs, sequence address number change or the like is made according to the tone color.

[0061]

FIG. 8 shows details of the process of reading the formant parameter data, relative pitch data, and voiced and voiceless sound level data implemented with the microcomputer. FIG. 8 shows an interrupt process with the reading pattern shown in FIG. 4(a), or when the stored value of the mode register MODE shown in FIG. 7 is "1." This routine is implemented in the following order of steps every time an interrupt signal is given from the timer 22.

[0062]

Step 61: Interrupt is prohibited to prevent multiple coincident interrupts.

Step 62: Value "1" is set to the channel number register channel.

Step 63: A determination is made if a key-on flag of a channel corresponding to the value stored in the channel number register channel is set. If set (YES), the process goes to the next step 64; and if not set (NO), the process jumps to the step 613 to implement the process of the next channel with the value of the channel number register channel increased by "1."

[0063]

Step 64: The value of the step address register Y (ch) is increased by "1," and further a value SP (ch) x SE, obtained by multiplying the speed register SP (ch) by sensitivity SE, is added. When this sensitivity SE is made "0," the step number Y increases by "1" at a time; when the sensitivity SE is made a positive value, the rate of increase in the step number Y increases, and when the sensitivity SE is made a negative value, the rate of increase in the step number Y decreases.

[0064]

In other words, when the sensitivity SE is "0," formant parameter data and relative pitch data are read from the

sequence memory 20 in the order of step numbers such as FL11N, FL12N, FL13N, When the sensitivity SE is a positive value, reading from the sequence memory 20 is made in skipping order of step numbers such as FL11N, FL13N, FL15N, ..., resulting in higher reading speeds of the formant parameter data, relative pitch data, and/or voiced and voiceless sound level data. When negative in contrast, the formant parameter data, relative pitch data, and/or voiced and voiceless sound level data are read for the same step numbers such as FL11N, FL11N, FL12N, FL12N, FL13N, FL13N, ..., resulting in lower reading speed.

[0065]

Incidentally, it may also be adapted to use only the speed register SP (ch) in place of SP (ch) x SE so that positive and negative values commensurate with the touch data may be stored in the speed register SP (ch). It may be alternatively adapted to variably control the values of the sensitivity SE and/or speed register SP (ch) according to the values of the initial touch data ITD and/or after-touch data ATD.

[0066]

Step 65: A determination is made if the sequence number of the step address register Y (ch) is greater than the maximum step value MAX. If greater, the process goes to the step 66; and if smaller, the process goes to the step 67.

Step 66: When no step number greater than the maximum step value MAX of the sequence number is present, the maximum step number MAX of the sequence number is stored in the step address register Y (ch).

[0067]

Step 67: A value 1 is stored in the register N to sequentially read four formant parameter data of each step number Y.

Step 68: Voiced sound level data VXY and voiceless sound level data UXY corresponding to the sequence number X and the step number Y are read from the sequence memory 20 and respectively outputted to the voiced formant synthesizing sound source 17V and the voiceless formant synthesizing sound source

17U. This makes it possible to express subtle changes in the levels of voiced sound and voiceless sound. Further, in case the level ratio UV of the voiced sound of FIG. 3(c) is stored in the sequence memory 20, the level ratio UV is outputted to the voiced formant synthesizing sound source 17V. From the level ratio UV, the voiceless sound level ratio (1 - UV) is calculated and then outputted to the voiceless formant synthesizing sound source 17U.

[0068]

Step 69: Relative pitch data PXY corresponding to the sequence number X and the step number Y are read from the sequence memory 20 and then outputted together with the key code KC to the voiced formant synthesizing sound source 17V. This makes it possible to express subtle displacement in pitch. Incidentally, relative pitch data PXY and the key code KC are not taken into the voiceless formant synthesizing sound source 17U.

Step 610: Formant parameter data FLXY1 corresponding to the sequence number X and the step number Y are read from the sequence memory 20 and then outputted to the voiced formant synthesizing sound source 17V and the voiceless formant synthesizing sound source 17U.

Step 611: The value of the register N is increased by "1."

Step 612: If the value of the register N is greater than "4" or not is determined. If greater, as the four formant parameter data FLXY1 - FLXY4 of the step number Y have been read, the process goes to the next step 613. If smaller, as the four formant parameter data have not been read yet, the process returns to the step 610 to implement the process until the four formant parameter data are read.

[0070]

Step 613: The value of the channel number register channel is increased by "1."

Step 614: If the value of the channel number register channel is greater than "8" or not is determined. If greater,

the process goes to the next step 615. If smaller, the process returns to the step 63 to apply the same process to the next channel.

Step 615: The interrupt prohibited in the step 61 is allowed to return to the normal process.

[0071]

FIG. 9, like FIG. 8, shows details of the process of reading formant parameter data, relative pitch data, and voiced and voiceless sound level data implemented with the microcomputer. It shows an interrupt process for the case in which the stored value of the mode register MODE shown in FIG. 7 is "2," or for the case of the reading pattern shown in FIG. 4(b). The steps 71 - 74, 77 - 715 are the same as the steps 61 - 64, 67 - 615. Therefore, their explanations are omitted.

[0072]

Step 75: A determination is made if the value of the step address register Y (ch) is greater or not than the loop end address value LE at the sequence number. If greater, the process goes to the step 76. If smaller, the process goes to the step 77.

Step 76: A loop start address value LS at the sequence number is stored in the step address register Y (ch).

[0073]

Through these steps 75 and 76, it is possible to read formant parameter data, relative pitch data, and voiced and voiceless sound level data in succession according to the reading pattern as shown in FIG. 4(b) from the sequence memory 20. Incidentally, reading patterns of FIGs. 4(c) and 4(d) may be easily realized by modifying the flow of FIGs. 8 and 9. Therefore, their explanations are omitted here.

[0074]

The embodiment described above makes it possible to produce musical tones by changing formants in time series and to change musical tone pitch and voiced and voiceless sound levels in time series. There is also an effect at that time to freely control the rate of change in the formant, pitch, and

voiced and voiceless sound levels by changing the reading speed.
[0075]

Further, any type of musical tone synthesizing method may be used in the voiced formant synthesizing sound source 17V. For example, an amplitude modulation (AM) as described in JP-B-Sho-59-19352 or a frequency modulation (FM) as described in JP-B-Sho-62-42515 may be used. FIG. 10 shows an example of the voiced formant synthesizing sound source 17V that synthesizes the voiced formant according to the amplitude modulation (AM) using a window function.

[0076]

A phase generator 81 shown in FIG. 10 produces phase data corresponding to the center frequency by successively adding up the center frequency data F for setting the formant center frequency. Therefore, the successive addition speed is low when the formant center frequency value is small, and the successive addition speed is high when the formant center frequency value is great. When the added-up value overflows, the value returns to the initial value and repeats successive addition. When a reset pulse RS of a specified time duration is given, the sum value is reset to zero, and output is held to zero for only the specified time duration. The sum output of the phase generator 81 is supplied as address data through a selector 85 to a logarithmic sine (log sin) function table 86.

[0077]

A phase generator 82 is of an accumulator structure and takes in basic pitch frequency data f0 corresponding to the key code KC, and successively adds up the basic pitch frequency data f0. Also this phase generator 82, when its value overflows, returns to the initial value and repeats adding action. The phase generator 82 is adapted to output an overflow pulse (for example a most significant bit MSB) to a differentiating circuit 83.

[0078]

The differentiation circuit 83 is made of a mono-stable

multi-vibrator to output, when an overflow pulse rises up, a reset pulse signal RS of a specified time duration to the phase generators 81 and 84. In other words, the differentiating circuit 83 detects the time point when the output value of the phase generator 82 becomes zero and outputs a reset pulse signal RS at the time point. Therefore, the phase data of the formant center frequency produced with the phase generator 81 are reset for a specified period of time at a frequency corresponding to the pitch of the musical tone to be produced according to the reset pulse RS. As a result, amplitude modulation is performed with the formant center frequency used as the carrier frequency and with the musical tone pitch frequency used as the modulation frequency.

[0079]

The phase generator 84 is a circuit for adding up phoneme modulation wave phase constant K supplied from a tone color parameter supply circuit (not shown) synchronously with specified clock pulses. The phase generator 84 is adapted to retain the final value of the added-up sum when the sum overflows. Then, it resets its contents when a reset pulse RS is supplied and starts adding up again from the initial value. The added-up result of the phase generator 84 is supplied as address data through the selector 85 to the logarithmic sine (log sin) function table 86. Here, the phoneme modulation wave phase constant K is set so that the adding up speed of the phase generator 84 is far lower in comparison with the adding up speed of the phase generator 81.

[0080]

The selector 85 chooses output data of the phase generator 81 when action choice signal SEL is supplied, chooses output data of the phase generator 84 when no action choice signal SEL is supplied, and supplies them as address data to the sine function table 86.

[0081]

The sine function table 86 is a table storing sine function data in logarithmic expression for one period (or may be 1/2

period or 1/4 period) and is adapted to output sine function values in logarithmic expression commensurate with address data supplied through the selector 85. Therefore, the sine function table 86 outputs sine function values at a rate commensurate with the added up value at the phase generator 81 or 84.

[0082]

A data shifter 87 is a circuit that shifts the output data of the sine function table 86 according to shift amount data S which is a tone color parameter. The shift amount data S is supplied also from the tone color parameter supply circuit (not shown). The data shifter 87 performs shifting action when an action signal SFT is supplied; when the action signal SFT is not supplied, outputs data as they are coming from the sine function table 86. The shift in the data shifter 87 is an action of shifting on more significant side by the value of the shift amount data S.

[0083]

An adder 88, when an action signal ADD1 is supplied, adds up the output data of the data shifter 87 and the output data of a register 89. When no action signal ADD1 is supplied, the data supplied to the adder 88 are outputted as they are from an output terminal. The register 89 is also adapted to store data that have passed intact through the adder 88. In this case, addition with the adder 88 is made with logarithmic data, which means multiplication for antilogarithms.

[0084]

An adder 810, when an action signal ADD2 is supplied to it, adds up the output data of the adder 88 and level-converted level data L. The addition with the adder 810 is made with logarithmic data, which means multiplication for antilogarithms.

[0085]

A logarithmic-linear (log-linear) conversion circuit 811 is a circuit that converts data supplied from the adder 810 in logarithmic expression into antilogarithms. Data outputted from the logarithmic-linear conversion circuit 811 are given

to an accumulator 812. Four formant parameter data F and L for synthesizing a musical tone are given in time division, and phoneme signals corresponding to respective formants are outputted in succession from the logarithmic-linear conversion circuit 811, added up in the accumulator 812, and outputted as a musical tone to a multiplier 813. The multiplier 813 receives voiced sound level data V (or UV), multiplies it by a musical tone signal coming from the accumulator 812, and outputs the result as a musical tone signal of a voiced sound.

[0086]

The above description is on an example of the voiced formant synthesizing sound source 17V. As detailed description on the voiced formant synthesizing sound source 17V appears in the specification of Japanese patent application No. Hei-1-77383, it is omitted here. Additionally, in the voiced formant synthesizing sound source 17V in FIG. 10, the phase generator 84, the selector 85, and the data shifter 87 may be omitted.

[0087]

FIG. 11 shows an example of the voiceless formant synthesizing sound source 17U. As details of this voiceless formant synthesizing sound source 17U appear in the specification of Japanese patent application No. Hei-2-271397, simplified description is given here. In FIG. 11, a white noise generating circuit 91 is to generate white noise having a flat spectrum. A digital filter 92 is a low-pass filter called IIR filter to convert flat spectrum white noise into noise having a specified band width. The digital filter 92 is made up of: an inverter 93, a band width parameter generator 94, a delay circuit 95, adders 96, 97, 98, and a multiplier 99. The digital filter 92 converts white noise into noise signal having a spectrum characteristic sloping down toward the right and outputs it to a multiplier 910.

[8800]

A periodic waveform generating circuit 911 outputs a sinusoidal sequential sample point amplitude value sin2mfot

having a formant center frequency fo transitioning according to center frequency data F for setting formant center frequency. The periodic waveform generating circuit 911 is made up of a phase accumulator 912 and a sine table 913. The phase accumulator 912 adds up center frequency data F synchronously with specified clock pulses. As the center frequency data F correspond to the formant center frequency fo of noise sound intended to be produced, the phase accumulator 912 outputs its added-up value as a reading address signal of the sine table 913.

[0089]

The sine table 913 is a table having stored sine function data for one period (or may be 1/2 or 1/4 period) to be read out with reading address signals. Therefore, from the sine table 913 comes out a sine wave of a frequency fo corresponding to the reading address signal (added-up value) of the phase accumulator 912. The multiplier 910 multiplies the noise signal of the digital filter 92 by the sine wave of the periodic waveform generating circuit 911 and outputs the product. Therefore, noise signal having specified formant characteristic comes out of the multiplier 910.

[0090]

An envelope generator 914 outputs envelope signals, for controlling the amplitude of noise signals outputted from the multiplier 910, synchronously with clock pulses and according to the level data L of the formant parameter, to a multiplier 915. The multiplier 915 multiplies the envelope signal by the noise signal from the multiplier 910 and outputs the product to a next-step multiplier 916. The multiplier 916 receives the voiceless sound level data U (or 1 - UV), multiplies it by the noise signal from the multiplier 915, and outputs the product as the musical sound signal of the voiceless sound.

[0091]

While the above embodiment is described as realized with software, embodying the invention is not limited to the above but may be realized with hardware. It may also be adapted that

specific values of formant parameter data in the sequence memory 20 can be arbitrarily overwritten by operation on the operation panel 13.

[0092]

The above embodiment is described on the assumption that the step number of FIG. 2 is read according to the reading pattern of FIG. 4. The manner of reading is not limited to the above. That is, formant parameter data may be read out sequentially according to the reading pattern of FIG. 4, moving from the step number to the sequence number. Additionally, while the above embodiment is described assuming that all of the formant parameter data, relative pitch data, and voiced and voiceless sound level data are read, it may be assumed that any one kind of data are read.

[0093]

Amounts of change in the pitch and the voiced and voiceless sound levels are small in comparison with the formant parameter data, and the speed of change is also low. Therefore, relative pitch data and voiced and voiceless sound levels need not be provided for every step number. Instead, it may be adapted to provide relative pitch data and voiced and voiceless sound levels at intervals of several steps, or to store formant parameter data, relative pitch data, and voiced and voiceless sound levels in different sequence memories to be read at different sequence speeds, or to provide different step numbers.

[0094]

Relative pitch data used may be extracted by analysis, or produced with a dedicated editor or the like. A switch may be provided to bring the output of the relative pitch data or voiced and voiceless sound level data to an off state; or a switch may be provided to vary the depth (magnitude) of the relative pitch data or voiced and voiceless sound level data. This is in preparation for a possible need of producing a flat sound without any change both in pitch and in voiced and voiceless sound levels. As for the formant parameter data, like the pitch

data, it may be adapted that the amount of change relative to a certain reference formant data are stored sequentially in time series.

[0095]

While the above embodiment is described assuming that parameters of the center frequency and level for specifying formant are stored as formant parameter data in the sequence memory 20, in case the formant is synthesized by frequency modulation operation, it may be adapted to have in store various parameters for that purpose such as the center frequency, modulation frequency, modulation index, and level, to be read out. As a matter of course, this applies to synthesizing formants of rhythm sounds or the like as well as scale sounds.

[0096]

[Effects of the Invention]

According to the invention, formant parameter data, relative pitch data, or voiced and voiceless sound level data, changing in time series, are pre-stored over a plural number of steps in a memory means. The formant parameter data, relative pitch data, or voiced and voiceless sound level data are sequentially read with a reading means over a plural number of steps. This makes it possible to naturally change the formant, pitch or voiced and voiceless sound levels of musical tones like actual musical instrument sound or human voice.

[Brief Description of Drawings]

FIG. 1 is a block diagram, showing a hardware constitution as an embodiment of the electronic musical instrument according to the present invention.

FIG. 2 shows the state of the formant parameter data and relative pitch data stored in the sequence memory shown in FIG. 1.

FIG. 3 schematically shows an example of values of voiced sound level data and voiceless sound level data stored in the sequence memory.

FIG. 4 shows several example patterns of reading the sequence memory shown in FIG. 1.

FIG. 5 shows a flowchart of an exemplary main routine implemented with the microcomputer shown in FIG. 1.

FIG. 6 shows a flowchart of detailed sound production process of FIG. 4 implemented with the microcomputer of FIG. 1.

FIG. 7 shows detailed example of panel process of FIG. 4 implemented with the microcomputer of FIG. 1.

FIG. 8 shows a flowchart of detailed process of reading formant parameter data, relative pitch data, and voiced and voiceless sound level data according to the reading pattern of FIG. 3(a).

FIG. 9 shows a flowchart of detailed process of reading formant parameter data, relative pitch data, and voiced and voiceless sound level data according to the reading pattern of FIG. 3(b).

FIG. 10 shows an example of voiced formant synthesizing sound source of FIG. 1.

FIG. 11 shows an example of voiceless formant synthesizing sound source of FIG. 1.

[Description of Reference Numerals and Symbols]

10: CPU

11: program ROM

12: data and working RAM

13: data and address bus

14: keyboard circuit

15: operation panel

16: tone color choosing section

17V: voiced formant synthesizing sound source

17U: voiceless formant synthesizing sound source

18: D-A converter

19: sound system

20: sequence memory

21: after-touch sensor

22: timer

Fig. 1

10: CPU

11: Program ROM

12: Data & working RAM

13: Data & address bus

14: Keyboard circuit

15: Operation panel

16: Time color choosing section

17U: Voiceless formant synthesizing section (n channels)

17V: Voiced formant synthesizing section (n channels)

18U: D/A

18V: D/A

19: Sound system

20: Sequence memory

21: After-touch sensor

22: Timer

Fig. 5

Main process routine

S1: Initialize

S2: Key scanning

S3: Is event present?

S4: Sound production process

S5: Panel scanning

S6: Is event present?

S7: Panel process

Fig. 6

Sound production process

41: Is key-on present?

42: Vacant channel search

43: Is vacant channel present?

44: Truncate process

45: Set SP(ch) according to IT

46: Set key-on plug of corresponding channel

47: Is corresponding key-on present?

48: Send key-off information to corresponding channel

49: Reset key-on plug of corresponding channel

Fig. 7

Panel process

51: Mode switched?

52: MODE=MODE+1

53: MODE=5?

54: MODE=1

55: Rewrite interrupt process vector according to MODE

56: Process to other keys

Return

Fig. 8

Interrupt process 1

61: Interrupt prohibit

62: ch=1

63: Is key-on flag present?

64: Y(ch) = Y(ch) + 1 + SP(ch) *SE

65: Y(ch) > MAX

66: Y(ch)=MAX

67: N=1

68: Obtain VXY and UXY from level sequence memory, output them to each sound generator

69: Obtain PXY from pitch sequence memory, output it together with KC to sound generator

610: Output FLXYN from formant sequence memory to sound generator

611: N=N+1

612: N>4?

613: ch=ch+1

614: ch>8?

615: Allow interrupt

Return interrupt

Fig. 9

Interrupt process 1

71: Interrupt prohibit

72: ch=1

73: Is key-on flag present?

74: Y(ch) = Y(ch) + 1 + SP(ch) * SE

75: Y(ch) > LE

76: Y(ch) = LS

77: N=1

78: Obtain VXY and UXY from level sequence memory, output them to each sound generator

79: Obtain PXY from pitch sequence memory, output it together with KC to sound generator

710: Output FLXYN from formant sequence memory to sound generator

711: N=N+1

712: N>4?

713: ch=ch+1

714: ch>8?

715: Allow interrupt

Return interrupt

Fig. 10

81: Phase generator

82: Phase generator

83: Differentiation

84: Phase generator

85: Selector

86: Log sin table

87: Data shifter

89: Register

811: Log linear conversion circuit

812: Accumulator

Musical tone signal

FIG. 11

Fig. 11

91: White noise producing circuit

93: Inverter

912: Phase accumulator

912: Sine table

914: Envelope generator

Musical tone signal

9

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-251297

(43)公開日 平成4年(1992)9月7日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
G10H	7/10					
G10L	9/02	L	8946-5H			
			8622-5H	G 1 0 H	7/00	

審査請求 未請求 請求項の数7(全 16 頁)

			· · _ · · · · · · · · · · · · · ·
(21)出顧番号	特顯平3-162514	(71)出願人	000004075
(22)出願日	平成3年(1991)6月7日		ヤマハ株式会社 静岡県浜松市中沢町10番1号
•		(72)発明者	西元 哲夫
(31)優先権主張番号	特願平2-410847		静岡県浜松市中沢町10番1号 ヤマハ株式
(32) 優先日	平 2 (1990)12月15日		会社内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 飯塚 義仁
		l	

(54) 【発明の名称】 楽音合成装置

(57)【要約】

【目的】自然楽器の楽音や人声音等のフォルマント、ピッチ及び有声無声音レベルの微妙な時間的変化を楽音合成装置で忠実に再現できるようにする。

【構成】自然楽器の楽音や人声音等の時系列的に変化するフォルマント、ピッチ及び有声無声音レベルに関するパラメータデータを複数ステップにわたって予めメモリ上に記憶する。楽音を発生すべきときに、そのメモリからパラメータデータを複数ステップにわたって時系列的に読み出し、読み出されたパラメータデータに応じて決定されるフォルマント特性、ピッチ特性又は有声無声音レベル特性をそれぞれ有する楽音信号を楽音合成装置で全成する

【効果】楽音信号のフォルマント、ピッチ乂は有声無声音レベルを自然楽器の楽音や人声音等と同様に時間的に 彼妙に変化させることができる。

(2)

特開平4-251297

【特許請求の範囲】

【請求項1】 時系列的に変化するフォルマントに関す るパラメータデータを複数ステップにわたって予め記憶 している記憶手段と、楽音を発生すべきときに、前記記 億手段から前記パラメータデータを前記複数ステップに わたって時系列的に読み出す読み出し手段と、読み出さ れた前記パラメータデータを入力し、前記パラメータデ ータに応じて決定されるフォルマント特性を持つ楽音信 号を合成するフォルマント合成手段とを備え、前記楽音 とする楽音合成装置。

【請求項2】 基準ピッチに対して時系列的に変化する 相対ピッチデータを複数ステップにわたって予め記憶し ている記憶手段と、楽音を発生すべきときに、前記記憶 手段から前記相対ピッチデータを前記複数ステップにわ たって時系列的に読み出す読み出し手段と、所定のフォ ルマント特性に従った音高を有する楽音信号を合成する ものであり、前記読み出し手段によって読み出された前 記相対ピッチデータを入力し、この相対ピッチデータに 合成手段とを備えたことを特徴とする楽音合成装置。

【請求項3】 時系列的に変化する有声音及び無声音の レベルデータを複数ステップにわたって予め記憶してい る記憶手段と、楽音を発生すべきときに、前記記憶手段 から前記レベルデータを前記複数ステップにわたって時 系列的に読み出す読み出し手段と、所定のフォルマント 特性に従った有声音及び無声音の特徴を有する楽音信号 を合成するものであり、前配読み出し手段によって読み 出された前記レベルデータを入力し、このレベルデータ に応じて前記楽音信号の有声音及び無声音のレベルを時 30 系列的に変化させる楽音合成手段とを備えたことを特徴 とする楽音合成装置。

【鯖求項4】 時系列的に変化する有声音及び無声音の レベルデータと基準ピッチに対して時系列的に変化する 相対ピッチデータとの少なくとも一方のデータを時系列 的に変化するフォルマントに関するパラメータデータと 共に複数ステップにわたって予め配憶している記憶手段 と、楽音を発生すべきときに、前記レベルデータ及び前 記相対ピッチデータの少なくとも一方と前記パラメータ データとを前記記憶手段から前記複数ステップにわたっ て時系列的に読み出す読み出し手段と、読み出された前 記レベルデータ及び前配相対ピッチデータの少なくとも 一方と前記パラメータデータとを入力し、入力された前 記レベルデータ及び前記相対ピッチデータの少なくとも 一方と前記パラメータデータに応じて決定される有声無 声音レベル及びピッチの少なくとも一方とフォルマント 特性とを有する楽音信号を合成するフォルマント合成手 段とを備え、前記楽音信号の有声無声音レベル及びピッ チの少なくとも一方とフォルマントとを時系列的に変化 させることを特徴とする楽音合成装置。

【請求項5】 前記読み出し手段は、キー操作情報に応 じた読み出し速度で前記記憶手段の読み出しを行うこと

を特徴とする請求項1、2、3又は4に記載の楽音合成 装置。 【請求項6】 前記レベルデータは時系列的に変化する

有声音及び無声音のレベルをそれぞれ別々に示すもので あることを特徴とする請求項3又は4に記載の楽音合成 装置。

【請求項7】 前記レベルデータは時系列的に変化する 信号のフォルマントを時系列的に変化させることを特徴 10 有声音及び無声音のレベル比を示すものであることを特 徴とする請求項3又は4に記載の楽音合成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、所望のフォルマント に従う楽音合成を実現する楽音合成装置に関する。

[0002]

【従来の技術】一般に自然楽器には、その楽器固有の構 造 (例えばピアノの響板の形状等) によって生じるフォ ルマントが存在することが知られている。また、人声音 **応じて前記楽音信号の音高を時系列的に変化させる楽音 20 にも人体の構造(例えば声帯、声道及び口腔の形状等)** によって所定のフォルマントが存在し、これによって人 声特有の音色等が特徴づけられている。電子楽器におい て、自然の楽器音又は人声音により近い音色を合成する ためには、それぞれの音に固有のフォルマントに従って **楽音合成を行わなければならない。このようなフォルマ** ントによって楽器音や人声音等の楽音を合成する装置と して特公昭59-19352号公報に示されたものが知 られている。

[0003]

【発明が解決しようとする課題】上述のように自然楽器 や人声の音色は、その楽器に固有のフォルマントによっ て特徴付けられている。ところで、自然楽器の演奏時に は、その発生音のフォルマントが時間的に変化してお り、このようなフォルマントの時間的な変化によってそ の楽器固有の音色が奏でられる。また、人声音において も同様であり、フォルマントが時間的に変化することに より、微妙な人声の特徴が出される。

【0004】フォルマントを時間的に変化させて、この ような楽音及び人声音等を電子楽器で合成する場合に 40 は、フォルマントを特定するための中心周波数やレベル **等のパラメータを時間的に変化させればよいわけである** が、一般的にパラメータの時間的変化を実現する手法と しては、適宜のエンペロープ信号によって連続的にこれ を変化させるということが行われている。しかし、この ような単純な方法では望みのフォルマント変化を得るこ とが困難であった。

【0005】一方、人声音は、発音時にピッチがゆらい だり、音の立上り時にピッチが不安定になったり、音素 から音素に移り変わるときにピッチが変化するなどの独 50 特のピッチ変化を有する。しかし、従来の楽音合成装置

(3)

は鍵盤等からのビッチ情報に基づいたビッチを単に発音するか、フォルマントの時間的変化を実現する手法と同様にビッチエンベローブ信号発生回路やビッチゆらぎ回路によって基準ビッチを連続的に変化させるだけであった。従って、楽音合成装置でフォルマントに基づいて人声音を発音してもそれは実際の人声音の近似であり、実際の人声音とは程遠い自然性に全く欠けるものであった。

3

【0006】また、人声音は、有声フォルマント(母音)及び無声フォルマント(子音)からなり、音素から 10音素に移り変わるときに有声フォルマント及び無声フォルマントのそれぞれのレベルが微妙に変化している。しかし、従来の楽音合成装置はこのような有声フォルマント及び無声フォルマントを人声音に応じて交互に発音処理するだけであり、発音された人声音は実際の人声音とは程達い自然性に全く欠ける機械的なものであった。自然楽器の楽音も、鍛スペクトル成分と非線スペクトル成分とからなり、そのレベルがそれぞれ敬妙に変化しているのだが、従来の楽音合成装置は、このようなスペクトル成分のレベル制御を行っていなかった。 20

【0007】この発明は上述の点に鑑みてなされたものであり、自然楽器の楽音や人声音等の時間的変化を忠実に再現することのできる楽音合成装置を提供することを目的とする。

[0008]

【課題を解決するための手段】第1の発明に係る楽音合成装置は、時系列的に変化するフォルマントに関するパラメータデータを複数ステップにわたって予め記憶している記憶手段と、楽音を発生すべきときに、前記記憶手段から前記パラメータデータを前記複数ステップにわた30って時系列的に読み出す読み出し手段と、読み出された前記パラメータデータを入力し、前記パラメータデータに応じて決定されるフォルマント特性を持つ楽音信号を合成するフォルマント合成手段とを備え、前配楽音信号のフォルマントを時系列的に変化させることを特徴とするものである。

【0009】第2の発明に係る楽音合成装置は、基準ピッチに対して時系列的に変化する相対ピッチデータを複数ステップにわたって予め記憶している記憶手段と、楽音を発生すべきときに、前記記憶手段から前記相対ピッ40 チデータを前記複数ステップにわたって時系列的に読み出す読み出し手段と、所定のフォルマント特性に従った音高を有する楽音信号を合成するものであり、前記読み出し手段によって読み出された前記相対ピッチデータを入力し、この相対ピッチデータに応じて前記楽音信号の育高を時系列的に変化させる楽音合成手段とを備えたことを特徴とするものである。

【0010】第3の発明に係る楽音合成装置は、時系列的に変化する有声音及び無声音のレベルデータを複数ステップにわたって予め記憶している記憶手段と、楽音を 50

発生すべきときに、前記記憶手段から前記レベルデータを前記複数ステップにわたって時系列的に読み出す読み出し手段と、所定のフォルマント特性に従った有声音及び無声音の特徴を有する楽音信号を合成するものであり、前記読み出し手段によって読み出された前記レベルデータを入力し、このレベルデータに応じて前記楽音信号の有声音及び無声音のレベルを時系列的に変化させる楽音合成手段とを備えたことを特徴とするものである。

[0011]

【作用】第1の発明では、記憶手段は時系列的に変化す るフォルマントに関するバラメータデータを複数ステッ プにわたって記憶し、読み出し手段は楽音を発生すべき ときに、記憶手段からパラメータデータを複数ステップ にわたって時系列的に競み出し、フォルマント合成手段 に供給し、フォルマント合成手段はそのパラメータデー 夕に応じて決定されるフォルマント特性を持つ楽音信号 を合成している。従って、フォルマント特性が自然の楽 器音又は人声音に従って変化するようにパラメータデー タを複数ステップにわたって予め記憶手段に記憶し、こ 20 のパラメータデータを読み出し手段で複数ステップにわ たって読み出すことによって、楽音信号のフォルマント を実際の楽器音又は人声音と同様に自然に変化させるこ とができる。このパラメータデータは主にフォルマント 中心周波数データとそのフォルマントレベルデータとか ら構成される。

[0012] 第2の発明では、基準ピッチ対して時系列的に変化する相対ピッチデータを前記第1の発明のバラメータデータと同様に記憶し、それを時系列的に読み出して楽音信号を合成しているので、楽音信号のピッチを実際の楽器音又は人声音と同様に自然に変化させることができる。

[0013] 第3の発明では、時系列的に変化する有声音及び無声音のレベルデータを前配第1の発明のパラメータデータと同様に配憶し、それを時系列的に銃み出して楽音信号を合成しているので、楽音信号の有声音及び無声音のレベルを実際の楽器音又は人声音と同様に自然に変化させることができる。

[0014] なお、第2の発明の相対ピッチデータ及び 第3の発明の有声無声音レベルデータの少なくとも一方 を第1の発明のパラメータデータと共に記憶し、それを 時系列的に読み出して楽音信号を合成することによっ て、楽音信号をより自然の楽器音又は人声音に近づける ことができる。

[0015]

【実施例】以下、この発明の実施例を添付図面に従って詳細に説明する。図1はこの発明に係る電子楽器の一実施例のハードウェア構成を示すプロック図である。この実施例において、楽音合成装置全体の制御は、マイクロプロセッサユニット(CPU)10と、システムプログラムや変更の必要のない各パラメータ等を格納するプロ

(4)

5

グラムROM11と、各種データを一時的に格納し、ワーキング用RAMとして用いられるデータ及びワーキングRAM12とを含むマイクロコンピュータによって行われる。

【0016】プログラムROM11にはフォルマントシーケンスのプリセット値が格納され、またデータ及びワーキング用RAM12にはフォルマントシーケンス、ピッチシーケンス及び有声無声音レベルシーケンスの配列を配憶する領域が割り当てられている。従って、電源投入時のイニシャライズ処理で、プログラムROM11内 10のフォルマントシーケンスのプリセット値がロードされるので、楽音合成装置は電源投入時からフォルマントシーケンスによる楽音合成を行う。

【0017】このマイクロコンピュータには、データ及びアドレスパス13を介して、鍵盤回路14、操作パネル15、音源となる有声フォルマント合成音源17V及び無声フォルマント合成音源17U、シーケンスメモリ20、アフタタッチセンサ21及びタイマ22等の各種装置が接続されており、これらの各装置はマイクロコンピュータによってそれぞれ制御される。

【0018】鍵盤回路14は、発生すべき楽音の音高を 指定する鍵盤のそれぞれの鍵に対応して設けられた複数 のキースイッチからなる回路を含む。マイクロコンピュ ータにより、この鍵盤回路14の出力に基づき押圧鍵を 複数の発音チャンネルのいずれかに割り当てるための発 音処理が行われる。また、必要に応じて押し下げ時の押 鍵操作速度を判別してイニシャルタッチデータITDを 生成する処理も行われる。また、鍵盤の各鍵に関連し て、鍵押圧持続時における押圧力を検出してアフタタッ チデータATDを出力するアフタタッチセンサ21が鍵 30 盤回路14に隣接して設けられている。

【0019】操作パネル15は、音色、音量、音高、効果等を選択・設定・制御するための各種操作子を含むものであり、ピアノ、オルガン、パイオリン、金管楽器、ギター等の各種自然楽器に対応する音色やその他各種の音色(人声音)を選択するための音色選択部16を有する。この音色選択部16は音色選択信号TCを出力する。

【0020】有声フォルマント合成音源17Vは、複数のnチャンネルで楽音信号の同時発生が可能であり、デ 40 ータ及びアドレスパス13を経由して与えられる各チャンネルに割り当てられた鍵のキーコードKC、フォルマントパラメータデータ(中心周波数データF及びそのレベルデータL)、相対ピッチデータP、有声音レベルデータV(又は有声無声音のレベル比UV)及びその他のデータ(キーオンKON、キーオフKOF、イニシャルタッチデータITD、アフタタッチデータATD、音色選択信号TC等)を入力し、これらの各種データに基づき楽音信号を発生する。

【0021】すなわち、フォルマント合成音源17Vは 50

シーケンスメモリ20から読み出された各フォルマントの中心周波数データF、レベルデータL、相対ピッチデータP、有声音レベルデータV (レベル比UV)、合成すべき楽音の音高を指定するデータとして鍵盤回路14から与えられるキーコードKC等を入力し、所定のフォルマント合成演算を行い、そのフォルマントで特徴付けられる楽音信号をキーコードKC及び相対ピッチデータPで指定された音高に対応して、有声音レベルデータV(レベル比UV)に応じたレベルで出力する。楽音の音はキーコードKCに対応するピッチに相対ピッチデータPの値を乗算することによって得る。乗算以外の方法で音高を求めてもよいことはいうまでもない。この実施例では有声フォルマント合成音源17Vが同時発音可能なチャンネル数は8個として説明する。

[0022] 無声フォルマント合成音源17Uは、複数のnチャンネルで楽音信号の同時発生が可能であり、データ及びアドレスパス13を経由して与えられるフォルマントパラメータデータ (中心周波数データF及びそのレベルデータL)、無声音レベルデータU(又は1-UV)及びその他のデータ(音色選択信号TC等)を入力し、これらの各種データに基づき楽音信号を発生する。

[0023] すなわち、フォルマント合成音源17Uはシーケンスメモリ20から読み出された各フォルマントの中心周波数データF、レベルデータL、無声音レベルデータU(又は1-UV)を入力し、所定のフォルマント合成演算を行い、そのフォルマントで特徴付けられる來音信号を無声音レベルデータU(又は1-UV)に応じたレベルで出力する。この実施例では無声フォルマント合成音源17Uが同時発音可能なチャンネル数は、有声フォルマント合成音源17Vと同じ8個として説明する。

【0024】有声フォルマント合成音源17V及び無声フォルマント合成音源17Uから発生されたデジタル楽音信号はデジタル/アナログ(D/A)変換器18V、18Uによって、アナログの楽音信号に変換され、サウンドシステム19に出力される。サウンドシステム19はスピーカ及び増幅器等で構成され、D/A変換器18V、18Uからのアナログの楽音信号に応じた楽音を発生する。

[0025] タイマ22はマイクロコンピュータに対してインタラブト信号を定期的に与えるもである。この実施例では後述するフォルマントパラメータデータ、和対ピッチデータ及び有声無声音レベルデータの読み出し処理がタイマインタラブトによって実行される。シーケンスメモリ20は、複数のフォルマントに関する中心周波数データFやレベルデータ上等の種々のフォルマントバラメータデータや相対ピッチデータ及び有声無声音レベルデータを所望のフォルマント変化態様に対応するシーケンスで記憶してなるものである。

【0026】図2はシーケンスメモリ20に記憶される

(5)

特開平4-251297 R

いるフォルマントパラメータデータ(中心用波数データ FやレベルデータL)、相対ピッチデータP及び有声無 **声音レベルデータV, じの格納状態(メモリ構成例)を** 示す図である。図2において、縦軸は例えば人声音の音 素等にそれぞれ対応しており、シーケンス番号X(1~ m) で特定される。横軸はこの縦軸のシーケンス番号X で特定された音素を特徴付けるフォルマントの中心周波 数及びレベル、ピッチ、有声音レベル並びに無声音レベ ルの時系列的な変化に対応しており、ステップ番号Y (1~n) の順番に格納されている。

【0027】そして、シーケンスメモリ20の1個のス テップには、シーケンス番号Xの音素を特徴付けるため の中心周波数データFとレベルデータしからなる4個の フォルマントパラメータデータFLXYN (「X」はシ ーケンス番号、「Y」はステップ番号、「N」は1ステ ップ内の4個のうちの任意のものを示す番号) が格納さ れており、また、フォルマントパラメータデータFLX YNに対応して、そのフォルマント発音時の基準ピッチ (キーコードKCで特定されるもの) に対するピッチの ォルマント発音時の有声音のレベルを示す有声音レベル データVXYと、無声音のレベルを示す無声音レベルデ ータUXY(「X」はシーケンス番号、「Y」はステッ ブ番号を示す)がそれぞれ1個ずつ格納されている。こ の場合、各シーケンス番号Xにおけるステップ番号Yの 数nの値は必ずしも同じでなくてもよく、各音素毎に異 なっていてもよい。

【0028】また、シーケンスメモリ20は有声音レベ ルデータVXY及び無声音レベルデータUXYの代わり に有声無声音レベル比データUVを記憶してもよい。こ 30 の有声無声音レベル比データUVは有声音レベルと無声 音レベルの合計値を1とした場合における有声音の比率 を示すものである。従って、無声音のレベルは1からこ のレベル比UVを減算した値(1-UV)を演算するこ とによって容易に求めることができる。シーケンスメモ リ20に有声無声音レベル比データUVを記憶すること によって、シーケンスメモリ20のデータ量を大幅に削 減できるという利点がある。

【0029】シーケンスメモリ20のシーケンス番号1 のステップ番号1から読み出されるデータは、中心周波 40 のとして説明する。 数データFとレベルデータしからそれぞれ構成される4 個のフォルマントパラメータデータFL111、FL1 12, FL113, FL114と、相対ピッチデータP 11と、有声音レベルデータV11と、無声音レベルデ ータU11とであり、ステップ番号nから読み出される のは、4個のフォルマントデータFL1n1、FL1n 2, FL1n3, FL1n4と、1個の相対ピッチデー タP1nと、有声音レベルデータV1nと、無声音レベ ルデータU1nである。そして、これらのデータがステ ップ番号Yの順番に読み出される。

【0030】1個のステップに格納されたフォルマント パラメータデータは、パラレルに読み出されるようにな っていてもよいし、時分割的に読み出されるようになっ ていてもよい。そして、ステップ順に読み出されるフォ ルマントパラメータデータFL111, FL121, ・ · · FL1n1が時系列的に変化するフォルマントシ ーケンスデータであり、それぞれの中心周波数及びレベ ルが時系列的に微妙に変化している。

【0031】また、ステップ順に読み出される相対ピッ チデータP11、P12、・・・、P1mが時系列的に 変化するピッチシーケンスデータであり、基準ピッチに 対するピッチの変化量を示すデータである。ステップ順 に読み出される有声音レベルデータV11, V12, ・ ··, V1n及び無声音レベルデータU11, U12, ・・・, U1nが時系列的に変化する有声無声音レベル シーケンスデータである。各シーケンス番号のフォルマ ントパラメータデータ、相対ピッチデータ及び有声無声 音レベルデータも同様に構成されている。

【0032】シーケンスメモリ20は、シーケンス番号 相対的変化量を示す相対ピッチデータPXYと、そのフ 20 アドレスデータXとステップアドレスデータYとによっ て読出し制御される。シーケンス番号アドレスデータX は、シーケンスメモリ20から読み出すべき一連のシー ケンスフォルマントデータ及びシーケンスピッチデータ のシーケンス番号を指定するものである。ステップアド レスデータYは、シーケンス番号アドレスデータXによ って指定されたシーケンスにおいて現在読み出すべきス テップを指定するものである。一例として、シーケンス 番号アドレスデータXは、操作パネル15における適宜 の選択操作に応じて、例えば音色選択部16に連動し て、あるいは専用のシーケンス番号選択操作手段に応じ て、発生される。また、ステップアドレスデータYは、 CPU10によって発生され、シーケンスメモリ20に アドレス入力される。このステップアドレスデータの発 生については後述する。

> 【0033】なお、この実施例では、一例として、フォ ルマントパラメータデータは、中心周波数データFとレ ベルデータレの2つであるとし、1つの楽音信号は4つ のフォルマントによって有声フォルマント合成音源17 V及び無声フォルマント合成音源17Uで合成されるも

> 【0034】シーケンスメモリ20に格納されるフォル マントパラメータデータは、従来記述の音声波形分析法 を用いて生成する。例えば、線形予測分析法(LP C)、線スペクトル対分析法(LSP)又は複合正弦波 モデル分析法(CSM)等の方法によって抽出されたフ ォルマントデータを用いる。

【0035】フォルマントデータの抽出と同時に相対ビ ッチデータの抽出も行う。相対ピッチの抽出は、変形自 己相関法又はゼロクロス法等によって行う。即ち、原音 50 声を採取する時、ある基準ピッチを定めておき、その近

(6)

特開平4-251297

,

傍のピッチにて発声してもらう。これに、ピッチのゆらぎ成分が含まれている。そこで、基準ピッチと分析ピッチとの差分をとり、これを相対ピッチデータとして抽出する。有声無声音レベルの抽出も相対ピッチデータの抽出と同様に行う。また、レベル比UVはフーリエ分析により約5 KH z 以上とそれ以下のパワー比を求めることによって抽出できる。

【0036】操作パネル15には、複数の読出しパターンの中から1つの読出しパターンを選択するためのモード切換えキー(図示せず)を有する。CPU10はモー 10ド切換えキーによって選択された読出しパターンに従って複数ステップに関するフォルマントパラメータデータ、相対ピッチデータ及び有声無声音レベルデータを読み出すための時間的に変化するステップアドレスデータを発生する。この読出しパターンに従うステップアドレスデータの発生は、離盤回路14からのキーオン信号KONに応じて、楽音発音タイミングに対応して行われる。複数の読出しパターンに対応してステップアドレスデータはデータ及びワーキングRAM12内に予め記憶しておいてもよいし、あるいは演算により発生するよう 20にしてもよい。

【0037】図3はシーケンスメモリ20に格納される 有声音レベルデータV、無声音レベルデータU及び有声 無声音のレベル比UVの値の一例を模式的に示す図である。図3(a)は有声音レベルデータVを示し、図3 (b)は無声音レベルデータUを示し、図3(c)は有 声無声音レベル比UVを示す。図3(a)~(c)の機 軸はシーケンスメモリ20のステップアドレスを示し、 縦軸はそのステップアドレスに対応した有声無声音のレ ベル値を示す。

【0038】図3の有声音及び無声音のレベルは、それぞれ『あ,か,さ,た』([a],[ka],[sa],[ta])の人声音を楽音合成装置で合成発音する場合に対応している。図3(a)の各被形は全て有声音(母音)[a]のレベルVaを示し、図3(b)の各被形の第1番目は無声音(子音)[k]のレベルUをを、第2番目は無声音(子音)[s]のレベルUをを、第3番目は無声音(子音)[t]のレベルリセをそれぞれ示す。図3(a)において有声音レベルVaの大きさは一定であるが、図3(b)においては無声音レベルVaの大きさは一定であるが、図3(b)においては無声音レベルレル、Us,Utの大きさはそれぞれ異なっている。従って、楽音合成装置は図3(a)及び(b)の被形をステップアドレスの順に次々と読み出すことによって、『あ,か,さ,た』([a],[ka],[sa],[ta])の人声音を発音することができる。

【0039】図3(c)は、シーケンスメモリ20に格納される有声無声音のレベル比UVを示すものである。この例では、有声音レベルと無声音レベルの合計値を1とした場合に、有声音レベルがその合計に占める割合が

10

格納されている。即ち、有声音レベルをV、無声音レベルをUとした場合のV/(U+V)が有声無声音レベル比UVである。従って、無声音レベルの大きさは1-UV(図では点線で示してある)を演算することによって容易に求めることができる。但し、図3(a)及び(b)に示すように、有声音レベルと無声音レベルの合計値が1でない場合には、有声音レベルVと無声音レベルUとを別々にシーケンスメモリ20に格納する方がよいことは信うまでもない。また、有声音レベルと無声音レベルの合計が1でない場合でも、単純に両者の比率(V/U)を格納してもよいことはいうまでもない。

【0040】図4はシーケンスメモリ20の読出しパタ ーンの幾つかの例を示す図である。 図4(a)に示す読 出しパターンは、所定の基準アドレスから所定の最大ア ドレス(MAX)まで、ステップアドレスを順次増加さ せ、その後は最大アドレス (MAX) を維持するもので ある。例えば、基準アドレスをステップ番号1、最大ア ドレスをステップ番号nとすると、発音開始後、ステッ プ番号1,2,3……nの順で時間的にステップアドレ スが増加し、ステップ番号nに到達すると、以後はステ ップ番号nを維持する。この場合、例えば、シーケンス 番号1の場合は、各ステップ番号1, 2, 3……nに対 応するフォルマントパラメータデータFL11N, FL 12N,・・・, FL1nN、相対ピッチデータP1 1, P12, ···, P1n、有声音レベルデータV1 1, V12, ・・・, V1n及び無声音レベルデータU 11, U12, ・・・, U1nが順次読み出され、最後 にFL1nN、P1n、V1n及びU1nが持統的に読 み出される。なお、これ以後の説明の中でアドレスとい う場合は、ステップアドレスを指すものとする。

[0041] 図4(b) の読み出しパターンは所定の基準アドレスから所定のループエンドアドレス (LOOP

END)まで所定の順序で読み出し、その後はループスタートアドレス(LOOP START)からループエンドアドレス(LOOPEND)に向かってアドレスを増加するというパターンを繰り返すものである。

【0042】図4 (c) の読み出しパターンは所定の基準アドレスから所定のループエンドアドレス (LOOP

END)まで所定の順序で読み出し、その後はループ エンドアドレス(LOOP END)からループスター トアドレス(LOOP START)に向かってアドレ スを減少するというパターンを繰り返すものである。

[0043] 図4(d)の読み出しパターンは所定の基準アドレスから所定のループエンドアドレス (LOOP

END) まで所定の順序で読み出し、その後はループエンドアドレス(LOOP END)とループスタートアドレス(LOOP START)との間をアドレスが増加減少するように繰り返すものである。

とした場合に、有声音レベルがその合計に占める割合が 【0044】図4に示した読み出しパターンは一例であ 有声無声音レベル比UVとしてシーケンスメモリ20に 50 り、これらのパターンを任意に組み合わせることもでき

30

(7)

るし、読み出し速度をイニシャルタッチデータITD、 アフタタッチデータATDの大きさ等のキー操作情報に 応じて可変制御してもよい。また、楽器の種類、人声の 種類に応じて種々のパターンを予め登録しておくことに よって、演奏効果を格段に向上することができる。

【0045】なお、操作パネル15にマニュアル操作子 を設け、このマニュアル操作子で任意のステップアドレ スを設定し、また操作量を変化することにより順次変化 させることもできる。このマニュアル操作子として、例 えば128段階の信号を出力するモジュレーションホイ 10 ールや正負の方向性を持った信号を出力するピッチベン ドホイール等がある。

【0046】次に、マイクロコンピュータによって実行 される処理の一例を図5、図6、図7、図8及び図9に 基づいて説明する。図5はマイクロコンピュータが処理 する「メイン処理ルーチン」の各ステップの処理内容を 示す図である。このメイン処理ルーチンは次のようなス テップで順番に実行される。

【0017】ステップ31:電源投入時におけるマイク る。例えば、シーケンス番号アドレスデータ、ステップ アドレスデータ及び読み山しバターン等の初期値を各レ ジスタに設定する。また、前述のようにプログラムRO M11に格納されているフォルマントシーケンスのプリ セット値をデータ及びワーキング用RAM12にロード

【0048】ステップ32:鍵盤回路14における各キ ースイッチのスキャンを行う。

ステップ33:ステップ32のキースキャンの結果、キ ーイベントの有無を判断する。鍵が押し下げられたとき 30 ステップ47:ステップ41の結果、キーイベントがキ はキーオンイペントが判断され、離鍵されたときはキー オフイベントが判断される。キーイベント有り(YE S) の場合は、次のステップ34に進み、キーイベント 無し(NO)の場合はステップ35に進む。

【0049】ステップ34:ステップ33のキーイベン トの種類に応じた発音割当て処理を行う。

ステップ35:操作パネル15の各操作子のスキャンを 行う.

ステップ36:ステップ35のパネルスキャンの結果、 操作子によるパネルイベントの有無を判断する。例え 40 ば、モード切換えキーが押されているかどうかを判断す る。パネルイベント有り (YES) の場合は、次のステ ップ37に進み、パネルイベント無し(NO)の場合 は、ステップ32に戻る。

ステップ37:ステップ36のパネルイベントの結果に 応じて発音割当て処理を行う。

【0050】次に、図6はマイクロコンピュータが処理 する「発音処理」の各ステップの処理内容を示す図であ る。この発音処理は次のようなステップで順番に実行さ れる。

12

ステップ41:キーイベントがキーオン又はキーオフの どちらなのかを判断する。キーイベントがキーオン(Y ES) の場合は次のステップ42に進み、キーオフ(N O) の場合はステップ47に進む。

ステップ42:有声フォルマント合成音源17V及び無 声フォルマント合成音源17Uのそれぞれが発音割当て 処理を行っていない空きチャンネルをサーチする。

【0051】ステップ43:ステップ42の空きチャン ネルサーチの結果、空きチャンネルの有無を判断し、空 きチャンネル有り (YES) の場合はステップ 45 にジ ャンプし、空きチャンネル無し(NO)の場合は次のス テップ44に進む。

ステップ44:空きチャンネルが無かったので、トラン ケート処理を行い、発音割当て処理可能なチャンネルを 作成する。

【0052】ステップ45:イニシャルタッチデータ1 TDに応じたステップアドレスの読み出し位相のスピー ドを決定し、これをスピードレジスタSP (ch) に設 定する。このスピードレジスタSP(ch)はチャンネ ロコンピュータの全てのデータに所定の値をセットす 20 ル毎に設けられており、チャンネル毎に異なった値が設 定される。従って、押鍵毎にフォルマントシーケンス、 ピッチシーケンス、有声無声音レベルシーケンスの読み 出し速度が変化するので、和音等が押鍵された場合でも 各音間の分離性が向上するという効果がある。

> 【0053】ステップ46:当該空きチャンネルにキー オンフラグをセットして、割り込み処理における発音情 報の制御が行われるようにし、リターンする。 すなわ ち、この発音処理では直接には発音割当て要求は行わな

ーオフであった場合、対応するキーの発音処理を有声フ オルマント合成音源17V及び無声フォルマント合成音 源17Uが行っているかどうか、すなわち対応するキー オンが存在するかどうかを判断し、存在する(YES の)場合は次のステップ48に進み、存在しない場合は リターンする。これは、キーオン処理されたキーがステ ップ44のトランケート処理によってその発音が完全に 停止していることがあり得るからである。

【0054】ステップ48:キーオフイベントの該当す るチャンネルに対してキーオフ情報KOFを送出する。 ステップ49:キーオフ情報KOFの送出されたチャン ネルのキーオンフラグをリセットする。

【0055】図7はマイクロコンピュータが処理する 「パネル処理」の各ステップの処理内容を示す図であ る。このパネル処理は次のようなステップで順番に実行 される。ここでは、この発明に直接関係する部分のみが 示されている。

ステップ51:操作パネル15上のモード切換えキーが 押されたかどうかを判断し、押された(YES)場合は 50 次のステップ52に進み、押されていない (NO) 場合

(8)

特開平4-251297

はステップ56に進む。

【0056】ステップ52:モードレジスタMODEの 値を「1」だけインクリメントし、次のステップ53に 進む。すなわち、このモード切換えスイッチは一回押す たびにモードレジスタMODEの値を増加させ、図4の 読み出しパターンの中から任意のものを選択するもので ある。モード切換えキーはこれに限らずスライド又は回 転によってその値を任意に変えられるようなものであっ てもよいことはいうまでもない。

【0057】ステップ53:図4の読み出しパターンは 10 4種類なので、モードレジスタMODEの値がモード数 の最大値「5」であるかどうかを判断し、「5」の場合 は次のステップ54に進み、そうでない場合はステップ 55にジャンプする。 読み出しパターンの数に応じてこ のステップの値を変更してやればよい。

【0058】ステップ54:ステップ53でモードレジ スタMODEの値が最大値「5」だったので、ここでモ ードレジスタMODEに「1」を格納する。このように してモードレジスタMODEの値はオーパーフローする 1, 2, 3, 4の値を循環する。

【0059】ステップ55:モードレジスタMODEに 格納されている値に応じて割り込み処理ベクタを書き換 える。この実施例では、フォルマントシーケンスデー タ、ピッチシーケンスデータ及び有声無声音レベルシー ケンスデータの読み出し波形をソフトウェア処理で作り 出しており、更にそれぞれの読み出し波形を異なる割り 込み処理で形成するようにしているので、モードレジス タMODEの格納値に応じて割り込み処理先を変更して いる。

【0060】ステップ56:操作パネル15上のモード 切換えキー (図示せず) が押されていない場合、操作バ ネル15上のその他のスイッチキーに対する処理を行 う。例えば、音色選択イベントが発生した場合等は、そ の音色に応じてシーケンス番号アドレスを変更したりす

【0061】図8はマイクロコンピュータが処理するフ ォルマントパラメータデータ、相対ピッチデータ、有声 無声音レベルデータの読み出し処理の詳細を示す図であ る。図8に示した処理は図7のモードレジスタMODE 40 の格納値が「1」の場合、すなわち図4 (a) の読み出 レバターンの場合における割り込み処理を示すものであ る。このルーチンはタイマ22からインタラプト信号が 与えられる毎に次のようなステップの順番に実行され

【0062】ステップ61:割り込みの多重化を防止す るために割り込み禁止を行う。

ステップ62:チャンネルナンバレジスタchに「1: を設定する。

ステップ63: チャンネルナンバレジスタchに格納さ 50 ジスタNに「1」を格納する。

れている値に対応するチャンネルのキーオンフラグがセ ットされているかどうかを判断し、セットされている (YES) 場合は次のステップ64に進み、セットされ ていない (NO) 場合はステップ613にジャンプレ、 チャンネルナンパレジスタ c h の値を 1 だけインクリメ ントして、次のチャンネルの処理を行う。

14

【0063】ステップ64:ステップアドレスレジスタ Y (ch) の値を「1」だけインクリメントし、さらに スピードレジスタSP(ch)にセンシティビティーS Eを乗じた値SP (ch) ×SEを加算する。このセン シティピティーSEを「0」にすると、スピードレジス タSP (ch) の値には無関係にステップ番号Yは1ず つ増加し、センシティビティーSEを正の値にすると、 ステップ番号Yの増加率は大きくなり、逆にセンシティ ビティーSEを負の値にすると、ステップ番号Yの増加 率は小さくなる。

【0064】すなわち、センシティピティーSEが 「0」だと、シーケンスメモリ20からはFL11N, FL12N, FL13N, ・・・のようにステップ番号 ことなく、モード切換えスイッチの押圧動作によって 20 の順番通りにフォルマントパラメータデータ及び相対ピ ッチデータが読み出される。センシティピティーSEが 正の値だと、シーケンスメモリ20からは例えばFL1 1N, FL13N, FL15N, · · · のように飛び飛 びのステップ番号順に読み出されフォルマントパラメー タデータ、相対ピッチデータ又は/及び有声無声音レベ ルデータの読み出し速度が早くなる。逆に負の値だと、 例えばFL11N, FL11N, FL12N, FL12 N, FL13N, FL13N, ・・・のように同じステ ップ番号が読み出されフォルマントパラメータデータ、 相対ピッチデータ又は/及び有声無声音レベルデータの 銃み出し速度が遅くなる。

> 【0065】なお、SP (ch) ×SEの代わりに、ス ピードレジスタSP(ch)だけを使用し、このスピー ドレジスタSP (ch) にタッチデータに応じた正負の 値を格納できるようにしてもよいし、センシティピティ -SEの値及び/又はスピードレジスタSP (ch)の 値をイニシャルタッチデータITD及び/又はアフタタ ッチデータATDの値に応じて可変制御してもよい。

【0066】ステップ65:ステップアドレスレジスタ Y(ch)がそのシーケンス番号における最大ステップ 値MAXよりも大きいかどうかを判断し、大きい場合は ステップ66に進み、小さい場合はステップ67に進

ステップ66:シーケンス番号の最大ステップ値MAX よりも大きいステップ番号は存在しないので、ステップ アドレスレジスタY (ch) にそのシーケンス番号の最 大ステップ値MAXを終納する。

【0067】ステップ67:各ステップ番号Yの4個の フォルマントパラメータデータを順次読み出すためにレ

(9)

ステップ68:シーケンスメモリ20からシーケンス番号X及びステップ番号Yに対応する有声音レベルデータVXY及び無声音レベルデータUXYを読み出し、それぞれ有声フォルマント合成音源17V及び無声フォルマント合成音源17Uに出力する。これによって、有声音及び無声音の微妙なレベル変化を表現することができる。なお、シーケンスメモリ20に図3(c)の有声音のレベル比UVが格納されている場合には、そのレベル比UVを有声フォルマント合成音源17Vに出力し、有声音のレベル比1-UVを演算し、それを無声フォルマ 10ント合成音源17Uに出力する。

15

【0068】ステップ69:シーケンスメモリ20からシーケンス番号X及びステップ番号Yに対応する相対ピッチデータPXYを読み出し、キーコードKCと共に有声フォルマント合成音版17Vに出力する。これによって、微妙な音程のズレを表現できる。なお、相対ピッチデータPXY及びキーコートKCは無声フォルマント合成音源17Uには取り込まれない。

ステップ610:シーケンスメモリ20からシーケンス 番号 X 及びステップ番号 Y に対応したフォルマントパラ 20 メータデータ F L X Y 1 を読み出し、有声フォルマント 合成音源 17 V 及び無声フォルマント合成音源 17 Uに出力する。

ステップ611:レジスタNを「1」だけインクリメントする。

【0069】ステップ612:レジスタNが「4」よりも大きいかどうか判断し、大きい場合はステップ番号Yの4個のフォルマントパラメータデータFLXY1~FLXY4を読み出しているので、次のステップ613に進むが、小さい場合は未だ4個のフォルマントパラメー 30 タデータを読み出していないので、ステップ610に戻り、4個のフォルマントパラメータデータを読み出すまで処理を実行する。

【0070】ステップ613:チャンネルナンパレジスタchを「1」だけインクリメントする。

ステップ614:チャンネルナンバレジスタchが「8」より大きいかどうか判断し、大きい場合は次のステップ615に進み、小さい場合はステップ63に戻り次のチャンネルに対して同様の処理を実行する。

ステップ615:ステップ61で禁止していた割り込み を許可し、通常の処理にリターンする。

【0071】図9は図8と同様、マイクロコンピュータが処理するフォルマントパラメータデータ、相対ピッチデータ及び有声無声音レベルデータの読み出し処理の詳細を示す図であり、図7のモードレジスタMODEの格納値が「2」の場合、すなわち図4(b)の読み出しパターンの場合における割り込み処理を示すものである。ステップ71~74、77~715は図8のステップ61~64、67~615と同じなので、その説明は省略する。

16

【0072】ステップ75:ステップアドレスレジスタ Y (ch) がそのシーケンス番号におけるループエンド アドレス値LEよりも大きいかどうかを判断し、大きい場合はステップ76に進み、小さい場合はステップ77に進む。

ステップ76:ステップアドレスレジスタY(ch)に そのシーケンス番号におけるループスタートアドレス値 LSを格納する。

[0073] このステップ75,76によって、図4(b) のような読み出しパターンに従って、フォルマントパラメータデータ、相対ピッチデータ及び有声無声音レベルデータをシーケンスメモリ20から順次読み出すことができる。なお、図4(c)及び(d)の読み出しパターンは図8及び図9のフローを変形することによって容易に実現できるので、ここでは省略する。

【0074】以上のようにこの実施例によれば、フォルマントを時系列的に変化させて発生することができると共に楽音のピッチ及び有声無声音レベルも時系列的に変化させることができる。また、そのときに読み出し速度を変更することによって、フォルマント、ピッチ及び有声無声音レベルの変化の割合を自由に制御できるという効果がある。

【0075】なお、有声フォルマント合成音源17Vにおける楽音合成方式にはいかなる方式のものを用いてもよい。例えば、特公昭59-19352号公報又は特公昭62-14834号公報に記載されているような振幅変調(AM)方式、又は特公昭62-42515号公報に記載されているような周波数変調(FM)方式などを使用することができる。この有声フォルマント合成音源17Vの一例として窓関数を用いた振幅変調(AM)方式により、有声フォルマントを合成するものを図10に示す

【0076】図10において、位相発生器81は、フォルマント中心周波数を設定するための中心周波数データ Fを逐次累算することによりフォルマント中心周波数に 対応する位相データを発生するものである。従って、フォルマント中心周波数が大きい時は累算の速度は 速くなる。そして、累算値がオーパーフローしたとき は、再び初期値に戻って累算を繰り返す。また、所定時間幅のリセットパルスRSが与えられたときは、累算値が0にリセットされ、該所定時間幅の間だけ出力0を維持する。この位相発生器81の累算出力はセレクタ85を介して対数表現の正弦関数(10g sin)テーブル86にアドレスデータとして供給される。

【0077】 付相発生器82は、アキュムレータ構成であり、キーコードKCに対応する基本ピッチ周波数データf0を取り込み、この基本ピッチ周波数データf0を 順次累算する。この位相発生器82もオーパーフローす 50 ると初期値に戻って累算動作を繰り返す。また、位相発

(10)

20

生器82はオーバーフローパルス(例えば、最上位ビットMSB)を微分回路83に出力するようになっている。

【0078】 微分回路83は、ワンショットマルチバイプレータから構成され、オーパーフローバルスが立ち上がると、所定時間幅のリセットバルス信号RSを位相発生器81及び84に出力する。すなわち、微分回路83は、位和発生器82の出力値が0になるタイミングを検出し、そのタイミングでリセットバルス信号RSを出力する。従って、位相発生器81で発生するフォルマント中心周波数の位相データは、このリセットバルス信号RSに応じて発生すべき楽音の音高に応じた周期で所定時間幅の間リセットされ、これによりフォルマント中心周波数を搬送周波数とし、楽音の音高周波数を変調周波数とする振幅変調が行われる。

【0079】位相発生器84は、図示していない音色パラメータ供給回路から供給される音素変調波位相定数K を所定クロックに同期して累算する回路である。この位相発生器84は、累算値がオーパーフローすると、その最終値を保持し、次いでリセットバルス信号RSが供給されると、その内容をリセットし、再び初期値から累算を開始するようになっている。この位相発生器84の累算結果は、セレクタ85を介して対数表現の正弦関数(10g sin)テーブル86にアドレスデータとして供給される。この場合、位相発生器84の累算速度は、位相発生器81の累算速度に比べて極めて遅くなるように音素変調波位相定数Kの値が設定されている。

【0080】セレクタ85は動作選択信号SELが供給されたときに位相発生器81の出力データを選択し、動作選択信号SELが供給されていないときに位相発生器84の出力データを選択し、正弦関数テーブル86にアドレスデータとして供給する。

【0081】正弦関数テーブル86は、対数表現の正弦 関数データが1周期分(又は1/2周期あるいは1/4 周期分でもよい)配憶されているテーブルであり、セレ クタ85を介して供給されるアドレスデータに応じた正 弦関数値を対数表現で出力するようになっている。従っ て、正弦関数テーブル86は、位相発生器81又は84 における累算値に応じたレートで正弦関数値を出力する。

【0082】データシフタ87は、正弦関数テーブル86の出力データを、音色パラメータであるシフト量データSに従ってシフトする回路である。このシフト量データSも図示しない音色パラメータ供給回路から供給される。このデータシフタ87は、動作信号SFTが供給されているときにシフト動作を行い、動作信号SFTが供給されていないときは正弦関数テーブル86からのデータがそのまま出力する。また、データシフタ87におけるシフトは、シフト量データSの値だけ上位側にシフトする動作となる。

18

【0083】加算器88は、動作信号ADD1が供給されると、データシフタ87の出力データとレジスタ89の出力データとを加算する。動作信号ADD1が供給されていない場合は、加算器88に供給されるデータは、そのまま出力端から出力される。また、レジスタ89には、加算器88をそのまま通過したデータが配憶されるようになっている。この場合、加算器88による加算は、対数データについての加算であるから、真数に対しては乗算を行うことになる。

【0084】加算器810は、動作信号ADD2が供給されると、加算器88の出力データとレベル変換されたレベルデータLとを加算する。この加算器810における加算は、対数値の加算であるから真数に対しては乗算を行っていることとなる。

[0085]対数/リニア(log linear)変換回路811は、加算器810から供給される対数表現のデータを真数に変換する回路である。対数/リニア変換回路811が出力するデータは、アキュムレータ812に与えられる。1つの楽音信号を合成するための4つのフォルマントパラメータデータF, Lが時分割的に与えられ、各フォルマントに応じた部分音信号が対数/リニア変換回路811から順次出力され、これがアキュムレータ812で累算され、楽音信号として乗算器813に出力される。乗算器813は有声音レベルデータV(又はUV)を入力し、それをアキュムレータ812からの楽音信号に乗算して、有声音の楽音信号として出力する。

【0086】以上が有声フォルマント合成音源17Vの一例であるが、この詳細については特願平1-77383号明細書に記載してあるので、ここでは省略する。なお、図10の有声フォルマント合成音源17Vのうち、位相発生器84、セレクタ85及びデータシフタ87は省略してもよい。

【0087】図11は、無声フォルマント合成音源17 Uの一例を示す図である。この詳細については特願平2 -271397号公報の明細番に記載してあるので、こ こでは簡単に説明する。図11において、ホワイトノイ ズ発生回路91はフラットなスペクトルを持つホワイト ノイズを発生する回路である。デジタルフィルタ92は I1Rフィルタと呼ばれるローパスフィルタであり、フ ラットなスペクトルを持つホワイトノイズを所定のパンド幅を有するノイズに変換するものである。デジタルフィルタ なルタ92はインパータ93、パンド幅パラメータ発生 器94、遅延回路95、加算器96,97,98及び乗 算器99からなる。デジタルフィルタ92は、ホワイト ノイズを右下がりスペクトル特性を有するノイズ信号に 変換して乗算器910に出力する。

【0088】周期波形発生回路911はフォルマント中心周波数を設定するための中心周波数データFに対応して遷移するフォルマント中心周波数foを有する正弦波

(11)

の順次サンプル点振幅値 s in 2π fot を出力する。 周期波形発生回路911は位相アキュムレータ912及 びサインテーブル913からなる。位相アキュムレータ 912は所定のクロックパルスに同期して中心周波数デ ータFを累算する。この中心周波数データFは発生しよ うとするノイズ音のフォルマント中心周波数 foに対応 しているので、位相アキュムレータ912はその累算値 をサインテーブル913の読み出しアドレス信号として 出力する。

【0089】サインテーブル913には、正弦関数デー 10 夕が1周期分(又は1/2周期あるいは1/4周期分で もよい)記憶されているテーブルであり、読み出しアド レス信号によって読み出される。従って、サインテーブ ル913からは位相アキュムレータ912の読み出しア ドレス信号(累算値)に応じた周波数 foの正弦波が出 力する。乗算器910はデジタルフィルタ92のノイズ 信号と周期波形発生回路911の正弦波とを乗算して出 力する。従って、乗算器910からは所定のフォルマン ト特性を持ったノイズ信号が出力されるようになる。

マントパラメータのレベルデータLに従ってクロックパ ルスのタイミングで乗算器910から出力されるノイズ 信号の振幅を制御するエンペローブ信号を乗算器915 に出力する。乗算器915は乗算器910からのノイズ 信号にこのエンベローブ信号を乗算して次段の乗算器9 16に出力する。乗算器916は無声音レベルデータU (又は1-UV) を入力し、それを乗算器915からの ノイズ信号に乗算して、無声音の楽音信号として出力す

【0091】なお、上述の実施例ではソフトウェアによ 30 って実施する場合について説明したが、これに限らずハ ードウェア等で実施するようにしてもよい。シーケンス メモリ20内のフォルマントパラメータデータの内容は 操作パネル13の操作によって任意に書換え可能として

【0092】上述の実施例では、図2のステップ番号を 図4の読み出しバターンに従って読み出す場合について 説明したが、これに限らず図4の読み出しパターンに応 じてステップ番号からシーケンス番号にまたがってフォ ルマントパラメータデータを順次読み出すようにしても 40 よい。また、フォルマントパラメータデータ、相対ビッ チデータ及び有声無声音レベルデータの全てを読み出す 場合について説明したが、いずれか一つを読み出すだけ でもよい。

【0093】また、フォルマントパラメータデータに比 べてピッチ及び有声無声音レベルの変化量も少なく、変 化速度も遅いので、ステップ番号毎に相対ビッチデータ 及び有声無声音レベルを有しなくてもよく、数ステップ 毎に相対ピッチデータ及び有声無声音レベルを設けるよ うにしてもよいし、フォルマントパラメータデータ、相 50 の発音処理の詳細例を示すフローチャート図である。

対ピッチデータ及び有声無声音レベルを別々のシーケン スメモリに記憶し、別々のシーケンススピードで読み出 すようにしてもよいし、異なるステップ番号を与えるよ うにしてもよい。

20

【0094】相対ピッチデータは分析によって抽出して もよく、又は専用のエディター等により作成したピッチ データを用いてもよい。相対ビッチデータ又は有声無声 音レベルデータの出力をオフ状態にするスイッチを設け てもよいし、相対ビッチデータ又は有声無声音レベルデ **一夕の深さ(大きさ)を増減するスイッチを設けてもよ** い。これはピッチ変化や有声無声音レベル変化の全くな いフラットな楽音の発音が欲しい場合もあるからであ る。フォルマントパラメータデータもピッチデータと同 様にある基準フォルマントデータに対する相対変化量を 時系列的に脳次記憶するようにしてもよい。

【0095】また、実施例では、シーケンスメモリ20 に記憶するフォルマントパラメータデータとして、フォ ルマントを特定するための中心周波数及びレベルのパラ メータを記憶する場合について説明したが、周波数変調 【0090】エンベロープジェネレータ914はフォル 20 演算によってフォルマントを合成する場合はそのための 中心周波数、変闘周波数、変闘指数及びレベル等の各バ ラメータを記憶しておき、これを読み出すようにしても よい。また、音階音に限らず、リズム音等のフォルマン トを合成する場合にも適用できることは言うまでもな

[0096]

【発明の効果】この発明によれば、時系列的に変化する ようなフォルマントパラメータデータ相対ビッチデータ 又は有声無声音レベルデータを複数ステップにわたって 予め記憶手段に記憶し、このフォルマントパラメータデ ータ、相対ビッチデータ又は有声無声音レベルデータを 読み出し手段で複数ステップにわたって順次読み出すこ とによって、楽音信号のフォルマント、ピッチ又は有声 無声音レベルを実際の楽器音又は人声音と同じように自 然に変化させることができる。

【図面の簡単な説明】

【図1】 この発明に係る電子楽器の一実施例のハード ウェア構成を示すブロック図である.

【図2】 図1のシーケンスメモリに記憶されているフ ォルマントパラメータデータ及び相対ピッチデータの状 態を示す図である。

【図3】 シーケンスメモリに格納される有声音レベル データ及び無声音レベルデータの値の一例を模式的に示 す図である。

【図4】 図1のシーケンスメモリの読み出しパターン のいくつかの例を示す図である。

【図5】 図1のマイクロコンピュータが処理するメイ ンルーチンの一例を示すフローチャート図である。

【図6】 図1のマイクロコンピュータが処理する図4

特開平4-251297

(12)

21 【図7】 図1のマイクロコンピュータが処理する図4 のパネル処理の詳細例を示すフローチャート図である

【図8】 図3(a)の読み出しパターンに従ったフォ ルマントバラメータデータ、相対ピッチデータ及び有声 無声音レベルデータの読み出し処理の詳細例を示すフロ ーチャート図である。

【図9】 図3 (b) の読み出しパターンに従ったフォ ルマントパラメータデータ、相対ピッチデータ及び有声 無声音レベルデータの読み出し処理の詳細例を示すフロ ーチャート図である。

【図10】 図1の有声フォルマント合成音源の一例を

示す図である。

【図11】 図1の無声フォルマント合成音源の一例を 示す図である。

【符号の説明】

10…CPU、11…プログラムROM、12…データ 及びワーキングRAM、13…データ及びアドレスパ ス、14…鮭盤国路、15…操作パネル、16…音色選 択部、17 V…有声フォルマント合成音源、17 U…無 声フォルマント合成音源、18…D/A変換器、19… 10 サウンドシステム、20…シーケスメモリ、21…アフ タタッチセンサ、22…タイマ

【図1】

[図5]

[図2]

abla								Z -	罗 ,	, 7	-785	号	Y	-		_					
		1							2						ם						
1		1	2	8	4	P	٧	บ	1	2	3	4	P	•		Т	4	P	ν	υ	
5	1	FLIII	7L112	FL113	FL114	PII	¥13	013	FL121	FL122	F1.123	FL124	P12	:	: :	F	L184	Pla	Yln	ממט	
1	2	FL211	FL212	FL213	FL214	P21	V21	1221	F1.223	FL222	F1.228	FL224	P22	•	: <u>:</u>	F	1264	P2a	72n	U2:	
5	3	FL311	FL912	FL313	FL814	P31	Y3 1	U31	FL821	PL322	F1.323	FL324	P322		::	7	L304	P3a	73 2	ug _n	
ン	4	F1411	FL412	FL413	FL414	F41	743	841	F1.421	FL422	FL428	FL424	142	•		Tr	14n4	F4n	Yán	U4n	
ス	5	FL511	FL512	FL513	FL514	P51	V 51	USI	F1.521	FL522	FL525	FL524	P52	-		T	L514	P5a	Yān	U5n	
#											•	Γ, [٠.	•	Ţ					
*														:	:	į	:				
\mathbf{x}	<u> </u>	61	 _{87 - 10}	10	1	-		· · ·	1	51.00				-		+		<u>.</u>			
<u></u>	m	FLall	PLD12	flm13	Fla14	Pal	Yesl	Uml	PL=21	FLm22	FLn23	FLm24	P±2		<i>: :</i>	1,	Lma4	Pna	Yapa	Uzan	

(13)

特開平4-251297

(14)

特開平4-251297

162計可

\$6\tb65

6 1 5 ~

(15)

特開平4-251297

(16)

特開平4-251297

[図11]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLÁCK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
· 🗆 other·

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.