TD 13: CALCUL MATRICIEL

En l'absence de précisions, la lettre K désigne indifféremment R ou C.

Somme, produit de matrices

EXERCICE 13.1 Si vous découvrez le produit matriciel

On considère les matrices suivantes :

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & -3 \\ -1 & 3 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 \\ 0 & 4 \\ 2 & 5 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

Calculer les produits AB, AC, BC, DA, CD et DC.

Exercice 13.2 Montrer que la somme et le produit de deux matrices nilpotentes de $\mathcal{M}_n(\mathbf{K})$, qui commutent, est encore nilpotente.

PD

AD

PD

AD

AD

EXERCICE 13.3 Multiplication par une matrice élémentaire

Soit $n \in \mathbb{N}^*$. On rappelle que pour $(i,j) \in [1,n]^2$ on note $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont nuls, à l'exception de celui de la $i^{\text{ème}}$ ligne et $j^{\text{ème}}$ colonne qui vaut 1.

- 1. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{K})$. Pour tout $(i,j,k,\ell) \in [[1,n]]^4$, calculer $[AE_{i,j}]_{k,\ell}$ et $[E_{i,j}A]_{k,\ell}$. Comment décrivez-vous en termes simples les matrices $AE_{i,j}$ et $E_{i,j}A$?
- 2. En déduire la matrice $E_{i,j}E_{k,\ell}$. On pourra être amenés à distinguer plusieurs cas.

Exercice 13.4 Matrices stochastiques

Une matrice $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{R})$ est dite stochastique si :

►
$$\forall (i,j) \in [[1,n]]^2, a_{i,j} \ge 0$$

▶
$$\forall i \in [[1, n]], \sum_{j=1}^{n} a_{i,j} = 1.$$

- 1. On note V le vecteur colonne de $\mathcal{M}_{n,1}(\mathbf{R})$ dont tous les coefficients valent 1. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbf{R})$ à coefficients positifs est stochastique si et seulement si AV = V.
- 2. Montrer que si A et B sont deux matrices stochastiques, alors $\frac{1}{2}(A+B)$ et AB le sont aussi.

Exercice 13.5

- 1. Soit $D \in \mathcal{M}_n(\mathbf{K})$ une matrice diagonale dont les coefficients diagonaux sont deux à deux distincts. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbf{K})$ commute avec D si et seulement si elle est diagonale.
- 2. Déterminer $\{M \in \mathcal{M}_n(\mathbf{K}) \mid \forall A \in \mathcal{M}_n(\mathbf{K}), AM = MA\}$, l'ensemble des matrices de $\mathcal{M}_n(\mathbf{K})$ qui commutent à toutes les autres matrices (ensemble appelé le centre de $\mathcal{M}_n(\mathbf{K})$).

Exercice 13.6 Nilpotence des matrices triangulaires strictes

Soit $n \in \mathbb{N}^*$. Pour $k \ge 0$, on note $\mathcal{T}_k^+(\mathbb{K})$ l'ensemble des matrices $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ telles que

$$\forall (i,j) \in [[1,n]]^2, i+k > j \Rightarrow a_{i,j} = 0.$$

- 1. Montrer que pour $k, \ell \geqslant 0$, si $A \in \mathcal{T}_k^+(\mathbf{K})$ et $B \in \mathcal{T}_\ell^+(\mathbf{K})$, alors $AB \in \mathcal{T}_{k+\ell}^+(\mathbf{K})$.
- 2. En déduire qu'une matrice triangulaire (supérieure ou inférieure), à coefficients diagonaux nuls est nilpotente, d'indice de nilpotence inférieur ou égal à n.

Puissances de matrices

EXERCICE 13.7 Calculer les puissances des matrices suivantes :

1.
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 2. $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$

$$2. \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

$$3. \begin{pmatrix} 3 & 1 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$

$$4. \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

EXERCICE 13.8 Soit *J* la matrice de $\mathcal{M}_n(\mathbf{K})$ dont tous les coefficients valent 1.

PD

1. Calculer J^2 . En déduire J^k , pour tout $k \in \mathbb{N}$.

- 2. En déduire $(J + \lambda I_n)^k$, pour $\lambda \in \mathbf{K}$ et $k \in \mathbf{N}$.
- 3. Calculer les puissances de $A = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 5 \end{pmatrix}$.

Exercice 13.9 Soit $A = \begin{pmatrix} 2\cos(\theta) & -1 \\ 1 & 0 \end{pmatrix}$, avec $\theta \in]0, \pi[$.

PD

- 1. Montrer que $A^2 = 2\cos(\theta)A I$.
- 2. En déduire qu'il existe deux suites (a_n) et (b_n) telles que $\forall n \in \mathbb{N}, A^n = a_n A + b_n I$. Donner l'expression de a_{n+1} et de b_{n+1} en fonction de a_n et b_n .
- 3. Montrer que (a_n) est linéaire récurrente d'ordre 2, déterminer son terme général et en déduire l'expression de A^n .

► Trace, transposée

EXERCICE 13.10 Soient $A, B \in \mathcal{M}_n(\mathbf{R})$ deux matrices symétriques. Montrer que AB est symétrique si et seulement si A

EXERCICE 13.11 Soit $A \in \mathcal{M}_n(\mathbf{R})$. Montrer que tr $({}^tAA) = 0$ si et seulement si $A = 0_n$.

PD

EXERCICE 13.12 Montrer qu'il n'existe pas de couple $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que $AB - BA = I_n$.

EXERCICE 13.13 Soient $A, B \in \mathcal{M}_n(\mathbf{K})$ telles que pour tout $M \in \mathcal{M}_n(\mathbf{K})$, $\operatorname{tr}(AM) = \operatorname{tr}(BM)$. Montrer que A et B sont égales.

Exercice 13.14 Montrer par analyse-synthèse que toute matrice de $\mathcal{M}_n(\mathbf{K})$ s'écrit de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

Inverse d'une matrice carrée

EXERCICE 13.15 Déterminer si les matrices suivantes sont inversibles, et le cas échéant, calculer leur inverse :

PD

$$A = \begin{pmatrix} 1+i & i \\ i & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 4 \\ -1 & 0 & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 4 \\ 1 & -1 & 2 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & -1 & -2 & 2 \\ -1 & -1 & 0 & 2 \\ 0 & 2 & 2 & -4 \\ 0 & 1 & 1 & -2 \end{pmatrix}$$

EXERCICE 13.16 Inversibilité à l'aide d'un polynôme annulateur

PD

Soit $A \in \mathcal{M}_n(\mathbf{K})$. On suppose qu'il existe des scalaires $\lambda_0, \lambda_1, \dots, \lambda_p$, avec $\lambda_0 \lambda_p \neq 0$ tels que $\lambda_0 I_n + \lambda_1 A + \lambda_2 A^2 + \dots + \lambda_p A^p = 0_n$. Montrer que A est inversible, et exprimer son inverse en fonction des A^k , $0 \le k \le p-1$.

EXERCICE 13.17 Inverse d'une matrice diagonale par blocs

Soit $A \in GL_n(\mathbf{K})$, $C \in GL_p(\mathbf{K})$ et $B \in \mathcal{M}_{n,p}(\mathbf{K})$.

Montrer que la matrice par blocs $\begin{pmatrix} A & B \\ 0_{n,n} & C \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbf{K})$ est inversible, et déterminer son inverse.

Exercice 13.18

- 1. Montrer que si $A, B \in \mathcal{M}_n(\mathbf{K})$ sont deux matrices qui commutent, alors pour tout $p \in \mathbf{N}, A^p B^p = (A B) \left(\sum_{i=1}^{p-1} A^k B^{p-1-k} \right)$.
- 2. En déduire que si N est nilpotente, alors $I_n + N$ est inversible, et donner son inverse.

EXERCICE 13.19 Soient $A, B \in \mathcal{M}_n(\mathbf{R})$ deux matrices symétriques.

AD

1. Montrer que $tr(A^2) \ge 0$.

2. En étudiant la fonction $\lambda \mapsto \operatorname{tr} ((\lambda A + B)^2)$, prouver que $\operatorname{tr} (AB)^2 \leq \operatorname{tr} (A^2) \operatorname{tr} (B^2)$.

Exercice 13.20 Oral Centrale 2014

D

Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ deux matrices qui commutent, avec B nilpotente. Montrer que A est inversible si et seulement si A + Best inversible.

EXERCICE 13.21 Les matrices suivantes sont-elles inversibles ? Si oui calculer leur inverse

D

1. $A = (\min(i, j))_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbf{R})$

2. $B = (F_{i+j})_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbf{R})$ où $F_0 = 0, F_1 = 1$ et $\forall n \in \mathbf{N}, F_{n+2} = F_{n+1} + F_n$.

D

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbf{R})$ telle que $\forall i \in [1, n], |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}} |a_{i,j}|$. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{R})$ tel que $AX = 0_{n,1}$, et soit

 $i_0 \in \llbracket 1, n \rrbracket$ tel que $|x_{i_0}| = \max_i |x_i|$. Montrer que $x_{i_0} = 0$, et en déduire que A est inversible.

Exercice 13.22 Théorème d'Hadamard sur les matrices à diagonale dominante

MP2I LYCÉE CHAMPOLLION

Correction des exercices du TD 13

SOLUTION DE L'EXERCICE 13.2

Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{K})$ qui commutent, d'indices de nilpotence respectifs p et q.

Alors $(AB)^p = A^p B^p = 0$. Donc AB est nilpotente, et son indice de nilpotence est inférieur ou égal à p. On montrerait de même qu'il est inférieur ou égal à q, et donc inférieur ou égal à min(p,q).

Puisque A et B commutent, par la formule du binôme, on a, pour tout $n \in \mathbb{N}$

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$$

En particulier, pour n = p + q, il vient

$$(A+B)^{p+q} = \sum_{k=0}^{p+q} {p+q \choose k} A^k B^{p+q-k}$$

$$= \sum_{k=0}^{p-1} {p+q \choose k} A^k \underbrace{B^{p+q-k}}_{=0} + \sum_{k=p}^{p+q} {p+q \choose k} \underbrace{A^k}_{=0} B^{p+q-k}$$

$$= 0.$$

Donc A + B est nilpotente, et son indice de nilpotence est supérieur ou égal à p + q.

SOLUTION DE L'EXERCICE 13.3

1. Le résultat se comprend bien en «dessinant» les matrices : les colonnes de $E_{i,j}$ sont toutes nulles à l'exception de la $j^{\text{ème}}$.

Donc déjà, toutes les colonnes de $AE_{i,j}$ sont nulles, sauf éventuellement la $j^{\text{ème}}$. Et alors les coefficients qui se trouvent dans cette $j^{\text{ème}}$ colonne sont ceux de la $i^{\text{ème}}$ colonne de A.

$$i \to \begin{pmatrix} j & & \downarrow & & \\ 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & 0 \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & 0 \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} \dots a_{1,i} \dots a_{1,n} \\ a_{2,1} \dots a_{2,i} \dots a_{2,n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ a_{n,1} \dots a_{n,i} \dots a_{n,n} \end{pmatrix} \qquad \begin{pmatrix} 0 & \dots & a_{1,i} \dots & 0 \\ 0 & \dots & a_{2,i} \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & a_{n,i} \dots & 0 \end{pmatrix}$$

Plus formellement : pour tout $(k, \ell) \in [1, n]^2$,

$$[AE_{i,j}]_{k,\ell} = \sum_{p=1}^{n} a_{k,p} [E_{i,j}]_{p,\ell}.$$

Ce coefficient est nul si $\ell \neq j$, car tous les $[E_{i,j}]_{p,\ell}$ sont nuls.

Et pour $\ell = j$, alors tous les $[E_{,j}]_{p,\ell}$ sont nuls sauf lorsque p = i, et donc il ne reste que le terme correspondant à p = i dans la somme ci-dessus, si bien que $[AE_{i,j}]_{k,j} = a_{k,i}$. Et donc toutes les colonne de $AE_{i,j}$ sont nulles, sauf la $j^{\text{ème}}$, égale à la $i^{\text{ème}}$ colonne de $AE_{i,j}$.

Sur le même principe, on a $[E_{i,j}A]_{k,\ell} = \sum_{p=1}^n [E_{i,j}]_{k,p} a_{p,\ell}$, qui vaut 0 si $k \neq i$.

Et pour
$$k = i$$
, $[E_{i,j}A]_{i,\ell} = a_{j,\ell}$.

Détails

Si $k \le p-1$, alors $p+q-k \ge q$, de sorte que $B^{p+q-k} = 0$.

Détails

Faire le produit «avec les deux mains» pour comprendre pourquoi ce sont bien les coefficients de la $i^{\text{ème}}$ colonne de A qui apparaissent. C'est lié au fait que le 1 de la $j^{\text{ème}}$ colonne de $E_{i,j}$ est sur la $i^{\text{ème}}$ ligne.

Donc toutes les lignes de $E_{i,j}A$ sont nulles, à l'exception de la $i^{\text{ème}}$ qui est la $j^{\text{ème}}$ ligne de A.

Alternative: souvenons-nous que $[E_{i,j}]_{p,q} = \delta_{i,p}\delta_{j,q}$. On a donc, pour $(p,q) \in [1,n]^2$,

$$[AE_{i,j}]_{p,q} = \sum_{k=1}^{n} [A]_{p,k} [E_{i,j}]_{k,q} = \sum_{k=1}^{n} [A]_{p,k} \delta_{i,k} \delta_{j,q} = \begin{cases} 0 & \text{si } j \neq q \\ [A]_{p,i} & \text{si } j = q \end{cases}$$

Donc seule la $j^{\text{ème}}$ colonne de $AE_{i,j}$ est nulle, et son coefficient de la $p^{\text{ème}}$ ligne est le coefficient (p,i) de A.

On retrouve bien le fait que la $j^{\text{ème}}$ colonne de $AE_{i,j}$ soit la $i^{\text{ème}}$ colonne de A. On procède de même pour $E_{i,j}A$.

2. On a donc E_{i,j}E_{k,ℓ} qui est nulle, à l'exception de la i^{ème} qui est la j^{ème} de E_{k,ℓ}. Celle-ci est nulle si j ≠ k, et sinon c'est la ligne dont tous les coefficients sont nuls, à l'exception de celui de la ℓ^{ème} colonne qui vaut 1.

En résumé, $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$, où $\delta_{j,k} = \begin{cases} 1 & \text{si } j = k \\ 0 & \text{sinon} \end{cases}$ est le symbole de Kronecker.

SOLUTION DE L'EXERCICE 13.4

1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice à coefficients positifs. Alors, on a

$$AV = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} + a_{1,2} + \dots + a_{1,n} \\ a_{2,1} + a_{2,2} + \dots + a_{2,n} \\ \vdots \\ a_{n,1} + a_{n,2} + \dots + a_{n,n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} a_{1,j} \\ \sum_{j=1}^{n} a_{2,j} \\ \vdots \\ \sum_{j=1}^{n} a_{n,j} \end{pmatrix}.$$

Et donc AV = V si et seulement si pour tout $i \in [1, n], \sum_{i=1}^{n} a_{i,j} = 1.$

Par conséquent, A est stochastique si et seulement si AV = V.

Alternative : si vous n'êtes pas convaincus par les produits avec des pointillés¹, il est également possible, mais plus fastidieux, d'utiliser «proprement» la formule du produit matriciel : pour tout $i \in [1, n]$,

$$(AV)_{i,1} = \sum_{j=1}^{n} a_{i,j} V_{j,1} = \sum_{j=1}^{n} a_{i,j}.$$

Et donc AV = V si et seulement si pour tout $i \in [[1, n]], (AV)_{i,1} = V_{i,1} \Leftrightarrow \sum_{i=1}^{n} a_{i,j} = 1.$

2. Il est clair que si A et B sont stochastiques, alors $\frac{1}{2}(A+B)$ est à coefficients positifs.

Et alors
$$\frac{1}{2}(A+B)V = \frac{1}{2}(AV+BV) = \frac{1}{2}(V+V) = V$$
.

Donc $\frac{1}{2}(A+B)$ est stochastique.

De même, les coefficients de AB sont tous positifs, puisque, pour $(i, j) \in [1, n]^2$, on a

$$(AB)_{i,j} = \sum_{k=1}^{n} \underbrace{a_{i,k}}_{\geqslant 0} \underbrace{b_{k,j}}_{\geqslant 0} \geqslant 0.$$

Et alors ABV = A(BV) = AV = V, donc AB est stochastique.

Alternative: si on ne pense pas à utiliser la question 1, on peut tout de même s'en sortir : pour tout $i \in [1, n]$,

$$\sum_{j=1}^{n} [AB]_{i,j} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,j} = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{i,k} b_{k,j} = \sum_{k=1}^{n} a_{i,k} \sum_{j=1}^{n} b_{k,j} = \sum_{k=1}^{n} a_{i,k} = 1.$$

CORRECTION 3

SOLUTION DE L'EXERCICE 13.5

1. Notons $D = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Alors, pour toute matrice $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{K})$, et pour tout $(i,j) \in [1,n]^2$, on a

$$[AD]_{i,j} = \sum_{k=1}^{n} a_{i,k} [D]_{k,j} = a_{i,j} \lambda_{j}.$$

Et d'autre part, $[DA]_{i,j} = \sum_{k=1}^{n} [D]_{i,k} a_{k,j} = \lambda_i a_{i,j}$.

Donc si AD = DA, pour tout $(i, j) \in [1, n]^2$, $\lambda_i a_{i,j} = \lambda_j a_{i,j} \Leftrightarrow (\lambda_i - \lambda_j) a_{i,j} = 0$.

Si $i \neq j$, puisque $\lambda_i \neq \lambda_j$, on a donc $a_{i,j} = 0$.

Autrement dit, les coefficients hors diagonale de A sont nuls : A est une matrice diagonale. Inversement, deux matrices diagonales commutant toujours entre elles, si A est diagonale, alors elle commute avec D.

Donc A commute à D si et seulement si elle est diagonale.

2. Nous savons que I_n commute à toute matrice, et plus généralement que pour tout $\lambda \in K$, λI_n commute à toute matrice.

Nous allons prouver que seules les matrices scalaires commutent à toutes les matrices.

Soit donc M une matrice du centre de $\mathcal{M}_n(\mathbf{K})$, c'est-à-dire commutant à toute matrice carrée.

Par la question 1, nous savons déjà que M est diagonale, puisqu'elle doit en particulier commuter à $Diag(1, 2, 3, \dots, n)$.

À l'aide du même calcul que dans la question 1, on a donc, pour toute matrice $A \in \mathcal{M}_n(\mathbf{K})$ et pour tout $(i,j) \in [1,n]^2$,

$$[AM]_{i,j} = [MA]_{i,j} \Leftrightarrow [A]_{i,j}[M]_{j,j} = [M]_{i,i}[A]_{i,j}.$$

En particulier, ceci est vrai si $A \in \mathcal{M}_n(\mathbf{K})$ est la matrice dont tous les coefficients valent 1. Et alors on obtient, pour tout $(i,j) \in [1,n]^2$, $[M]_{i,i} = [M]_{j,j}$: tous les coefficients diagonaux de A sont égaux.

Et donc il existe $\lambda \in \mathbf{K}$ tel que $M = \lambda I_n$.

Ainsi, le centre de $\mathcal{M}_n(\mathbf{K})$ est exactement $\{\lambda I_n, \lambda \in \mathbf{K}\}$, l'ensemble des matrices scalaires.

SOLUTION DE L'EXERCICE 13.6

1. Soit donc $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{T}_k^+(\mathbf{K})$ et $B = (b_{i,j})_{1 \le i,j \le n} \in \mathcal{T}_\ell^+(\mathbf{K})$.

Alors pour tout $(i, j) \in [[1, n]]^2$, $[AB]_{i, j} = \sum_{p=1}^n a_{i, p} b_{p, j}$.

Supposons que $i + k + \ell > j$. Alors

$$[AB]_{i,j} = \sum_{p=1}^{i+k-1} \underbrace{a_{i,p}}_{=0} b_{p,j} + \sum_{p=i+k}^{n} a_{i,p} b_{p,j} = \sum_{p=i+k}^{n} a_{i,p} b_{p,j}.$$

Mais puisque $j - \ell < i + k$, pour $p \ge i + k$, $p > j - \ell \Leftrightarrow p + \ell > j$, et donc $b_{p,j} = 0$. Donc $[AB]_{i,j} = 0$.

Ainsi, $\forall (i,j) \in [[1,n]]^2$, $i+k+\ell > j \Rightarrow [AB]_{i,j} = 0$, et donc $AB \in \mathcal{T}^+_{k+\ell}(\mathbf{K})$.

2. Supposons que A soit triangulaire supérieure. Alors elle est dans $\mathcal{T}_0^+(\mathbf{K})$.

Si de plus sa diagonale est nulle, alors elle est dans $\mathcal{T}_1^+(\mathbf{K})$.

En effet, pour i + 1 > j, on a soit i > j, et alors $[A]_{i,j} = 0$ car A est triangulaire supérieure, soit i = j, et alors $[A]_{i,j} = [A]_{i,i} = 0$ car les coefficients diagonaux de A sont nuls.

Par ce qui précède, on a donc $A^2 = AA \in \mathcal{T}_2^+(\mathbf{K})$.

Puis $A^3 = A^2 A \in \mathcal{T}_{2+1}^+(\mathbf{K}) = \mathcal{T}_3^+(\mathbf{K}).$

Une récurrence facile prouve alors que $A^n \in \mathcal{T}_n^+(\mathbf{K})$.

Mais alors pour tout $(i, j) \in [[1, n]]^2$, $i + n \ge n + 1 > j$, et donc $[A^n]_{i,j} = 0$, de sorte que $A^n = 0_n$.

Donc A est bien nilpotente, et son indice de nilpotence est inférieur ou égal à n.

Détails

Les coefficients de la $j^{\text{ème}}$ colonne de D sont tous nuls, à l'exception du coefficient diagonal (d'indice (j, j), qui vaut λ_j).

Rappel

L'indice de nilpotence est le plus petit entier k tel que $A^k = 0_n$.

Donc si on dispose d'une puissance de A qui est nulle, cette puissance est nécessairement inférieure ou égale à l'indice de nilpotence. Dans le cas où A est triangulaire inférieure, alors tA est triangulaire supérieure, à diagonale nulle, et donc $({}^tA)^n = 0$.

Or $({}^tA)^n = {}^t(A^n) = 0_n$, donc de même, $A^n = 0_n$, et donc A est nilpotente, d'indice de nilpotence inférieur ou égal à n.

SOLUTION DE L'EXERCICE 13.7

Par commodité, nous noterons à chaque fois A la matrice dont on cherche à calculer les puissances.

1. Le calcul des premières puissances de A prouve que

$$A^{2} = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix} \text{ et } A^{3} = \begin{pmatrix} \cos(3\theta) & -\sin(3\theta) \\ \sin(3\theta) & \cos(3\theta) \end{pmatrix}.$$

Une récurrence facile prouve alors que pour tout $n \in \mathbb{N}$,

$$A^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}.$$

2. On a $A^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I_2$.

Dès lors, il est évident que pour tout $n \in \mathbb{N}$, $A^{2n} = (A^2)^n = 2^n I_2$. Et $A^{2n+1} = A^{2n}A = 2^n A$.

3. Notons $D = 3I_3$ et $T = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$.

Alors A = D + T, et D et T commutent puisqu'une matrice scalaire commute toujours à toute matrice.

On a alors $T^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $T^3 = 0$.

Donc par la formule du binôme de Newton, il vient, pour $n \ge 2$,

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} T^{k} D^{n-k}$$

$$= \sum_{k=0}^{2} \binom{n}{k} T^{k} 3^{n-k}$$

$$= 3^{n} I_{3} + 3^{n-1} n T + \frac{n(n-1)}{2} 3^{n-2} T^{2}$$

$$= \binom{3^{n}}{0} \frac{3^{n-1} n}{0} \frac{n 3^{n} + 2n(n-1) 3^{n-2}}{0} \cdot \binom{n 3^{n}}{0} \cdot \binom{n 3^{n}}{0} \cdot \binom{n 3^{n}}{0}.$$

4. Nous supposons ici que *n* est la taille de la matrice *A*. On a alors

$$A^{2} = \begin{pmatrix} n-1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 0 & 1 & \dots & 1 \end{pmatrix}.$$

Puis
$$A^3 = \begin{pmatrix} 0 & n-1 & \dots & n-1 \\ n-1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ n-1 & 0 & \dots & 0 \end{pmatrix} = (n-1)A.$$

Il vient ensuite $A^4 = (n-1)A^2$, puis $A^5 = (n-1)A^3 = (n-1)^2A$, etc. Une récurrence prouve alors que pour tout $k \in \mathbb{N}$,

$$A^{2k} = (n-1)^{k-1}A^2 = \begin{pmatrix} (n-1)^k & 0 & \dots & 0\\ 0 & (n-1)^{k-1} & \dots & (n-1)^{k-1}\\ \vdots & & \vdots & & \vdots\\ 0 & (n-1)^{k-1} & \dots & (n-1)^{k-1} \end{pmatrix}$$

– Remarque –

ou égal à n.

Nous prouverons plus tard

qu'une matrice nilpotente de $\mathcal{M}_n(\mathbf{K})$ a nécessairement un

indice de nilpotence inférieur

et

$$A^{2k+1} = (n-1)^k A = \begin{pmatrix} 0 & (n-1)^k & \dots & (n-1)^k \\ (n-1)^k & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ (n-1)^k & 0 & \dots & 0 \end{pmatrix}.$$

SOLUTION DE L'EXERCICE 13.8

1. On a

$$J^{2} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix} = \begin{pmatrix} n & n & \dots & n \\ n & n & \dots & n \\ \vdots & \vdots & & \vdots \\ n & n & \dots & n \end{pmatrix} = nJ.$$

On en déduit que $J^3=J^2J=nJ^2=n^2J$, puis $J^4=J^3J=n^2J^2=n^3J$, et une récurrence facile prouve que pour tout $k\in {\bf N}, J^k=n^{k-1}J$.

Si $\lambda = 0$, nous venons de répondre.

Supposons donc $\lambda \neq 0$.

Puisque I_n commute à toute matrice, elle commute en particulier avec J et donc la formule du binôme de Newton s'applique:

$$(J + \lambda I_n)^k = \sum_{i=0}^k \binom{k}{i} J^i \lambda^{k-i} I_n$$

$$= \lambda^k I_n + \left(\sum_{i=1}^k \binom{k}{i} n^{i-1} \lambda^{k-i}\right) J$$

$$= \lambda^k I_n + \frac{1}{n} \left(\sum_{i=1}^k \binom{k}{i} n^i \lambda^{k-i}\right) J$$

$$= \lambda^k I_n + \frac{1}{n} \left((n+\lambda)^k - \lambda^k\right) J.$$

Détails

On a reconnu un binôme auquel manque un terme.

3. Ici, on a $A = 2\begin{pmatrix} 5/2 & 1 & 1 \\ 1 & 5/2 & 1 \\ 1 & 1 & 5/2 \end{pmatrix}$, donc on prend n = 3, et $\lambda = 3/2$. Et donc pour tout $k \in \mathbf{N}$,

$$A^{k} = 2^{k} \left(\left(\frac{3}{2} \right)^{k} I_{3} + \frac{1}{3} \left(\left(3 + \frac{3}{2} \right)^{k} - \left(\frac{3}{2} \right)^{k} \right) J \right) = 3^{k} I_{3} + \frac{1}{3} \left(9^{k} - 3^{k} \right) J$$

$$= \begin{pmatrix} 2 \cdot 3^{k-1} + 3 \cdot 9^{k-1} & 3 \cdot 9^{k-1} - 3^{k-1} & 3 \cdot 9^{k-1} - 3^{k-1} \\ 3 \cdot 9^{k-1} - 3^{k-1} & 2 \cdot 3^{k-1} + 3 \cdot 9^{k-1} & 3 \cdot 9^{k-1} - 3^{k-1} \\ 3 \cdot 9^{k-1} - 3^{k-1} & 3 \cdot 9^{k-1} - 3^{k-1} & 2 \cdot 3^{k-1} + 3 \cdot 9^{k-1} \end{pmatrix}$$

- Solution de L'exercice 13.9 On a $A^2 = \begin{pmatrix} 4\cos^2(\theta) 1 & -2\cos(\theta) \\ 2\cos(\theta) & -1 \end{pmatrix} = 2\cos\theta A I_2$.
- Pour n = 0, n = 1, n = 2, la propriété est évidemment vérifiée, avec

$$a_0 = 0, b_0 = 1, a_1 = 1, b_1 = 0$$
 et $a_2 = 2\cos(\theta), b_2 = -1$.

Par récurrence sur n: supposons que $A^n = a_n A + b_n I_2$. Alors

$$A^{n+1} = A^n A = (a_n A + b_n I)A = a_n A^2 + b_n A = a_n (2\cos\theta A - I_2) - b_n A = (2a_n\cos(\theta) + b_n)A - a_n I_2.$$

Et donc $a_{n+1} = 2\cos(\theta)a_n + b_n$ et $b_{n+1} = -a_n$.

On a donc, pour $n \ge 1$, $a_{n+1} = 2\cos(\theta)a_n - a_{n-1}$. La suite (a_n) est donc récurrente linéaire d'ordre 2, et son équation caractéristique est $r^2 - 2\cos(\theta)r + 1 = 0$, de discriminant $\Delta = -4\sin^2\theta < 0$. Donc l'équation possède deux racines complexes conjuguées, qui sont

$$r_1 = \frac{2\cos\theta + 2i\sin\theta}{2} = e^{i\theta}$$
 et $r_2 = \overline{r_1} = e^{-i\theta}$.

Donc il existe deux réels λ et μ tels que

$$\forall n \in \mathbf{N}, a_n = \lambda \cos(n\theta) + \mu \sin(n\theta).$$

Or,
$$a_0 = \lambda = 0$$
 et $a_1 = \mu \sin(\theta) = 1$. Donc $a_n = \frac{\sin(n\theta)}{\sin \theta}$.

On en déduit que

$$A^{n} = \begin{pmatrix} 2a_{n}\cos\theta + b_{n} & -a_{n} \\ a_{n} & b_{n} \end{pmatrix} = \begin{pmatrix} a_{n+1} & -a_{n} \\ a_{n} & b_{n} \end{pmatrix} = \frac{1}{\sin\theta} \begin{pmatrix} \sin((n+1)\theta) & -\sin(n\theta) \\ \sin(n\theta) & -\sin((n-1)\theta) \end{pmatrix}$$

SOLUTION DE L'EXERCICE 13.10

On a ${}^{t}(AB) = {}^{t}B{}^{t}A = BA$, qui est donc égale à AB si et seulement si A et B commutent.

Solution de l'exercice 13.11

Il est évident que si A est la matrice nulle, alors tr $({}^tAA) = 0$.

D'autre part, pour $A \in \mathcal{M}_n(\mathbf{R})$, on a

$$\operatorname{tr}({}^{t}AA) = \sum_{i=1}^{n} \left[{}^{t}AA\right]_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[{}^{t}A\right]_{i,j} [A]_{j,i}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} a_{j,i} = \sum_{1 \le i,j \le n} a_{j,i}^{2}.$$

Et donc tr $({}^tAA) = 0$ si et seulement si $\sum_{1 \le i, j \le n} a_{j,i}^2 = 0$.

Mais une somme de nombres positifs est nulle si et seulement si chacun de ces nombres est nul, donc tr $({}^tAA) = 0$ si et seulement si $\forall (i,j) \in [\![1,n]\!]^2, a_{i,i} = 0$. Soit si et seulement si A est la matrice nulle.

SOLUTION DE L'EXERCICE 13.12

Quelles que soient les matrices $A, B \in \mathcal{M}_n(\mathbf{K})$, on a

$$\operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB) - \operatorname{tr}(AB) = 0 \neq n = \operatorname{tr}(I_n).$$

Donc on ne peut avoir $AB - BA = I_n$.

SOLUTION DE L'EXERCICE 13.13

Il s'agit, une fois de plus, d'utiliser les matrices élémentaires.

Soient donc $(i, j) \in [1, n]$. Alors toutes les colonnes de $AE_{i,j}$ sont nulles², à l'exception de la j^{ème}. Et le coefficient diagonal de cette j^{ème} colonne est

$$[AE_{i,j}]_{j,j} = \sum_{k=1}^{n} A_{j,k} [E_{i,j}]_{k,j} = a_{j,i}.$$

Et par conséquent, $\operatorname{tr}(AE_{i,j}) = a_{j,i}$.

De même, on a tr $(BE_{i,j}) = b_{j,i}$.

Ces deux traces étant égales par hypothèse, on a donc, pour tout $(i,j) \in [1,n]^2$, $a_{j,i} = b_{j,i}$,

SOLUTION DE L'EXERCICE 13.14

Soit $M \in \mathcal{M}_n(\mathbf{K})$.

Supposons qu'il $(S, A) \in \mathcal{S}_n(\mathbf{K}) \times \mathcal{A}_n(\mathbf{K})$ telles que M = S + A.

Alors ${}^tM = {}^tS + {}^tA = S - A$.

Il vient donc $S = \frac{M + {}^t M}{2}$ et $A = \frac{M - {}^t M}{2}$

Donc si deux telles matrices S et A existent, elles sont uniques, et nous venons de trouver leur expression en fonction de M.

Passons à présent à l'existence, et posons $S = \frac{M + {}^{t}M}{2}$ et $A = \frac{M - {}^{t}M}{2}$.

Alors ${}^{t}S = \frac{{}^{t}M + M}{2} = S$, donc S est symétrique.

De même, ${}^{t}A = -A$, donc A est antisymétrique.

Plus généralement -

Le même résultat reste valable si on remplace I_n par n'importe quelle matrice de trace non nulle.

Méthode

La définition de symétrique/antisymétrique fait apparaître des transposées. Il est donc naturel de chercher à exploiter ces transposées, et donc de considérer tM .

² Car les colonnes correspondantes de $E_{i,j}$ le sont.

7 Correction

Et
$$S + A = \frac{M + {}^{t}M}{2} + \frac{M - {}^{t}M}{2} = M.$$

Donc il existe bien au moins une manière d'écrire M comme somme d'une matrice symétrique et d'une matrice antisymétrique.

Et donc toute matrice de $\mathcal{M}_n(\mathbf{K})$ s'écrit de manière unique comme somme d'une matrice symétrique et d'une matrice antisymétrique.

SOLUTION DE L'EXERCICE 13.15

- Utilisons le déterminant : det $A = 1 + i i^2 = 2 + i \neq 0$, donc A est inversible. Son inverse est alors $A^{-1} = \frac{1}{2+i} \begin{pmatrix} 1 & -i \\ -i & 1+i \end{pmatrix}$.
- Il est possible de procéder avec n'importe laquelle des deux méthodes vues dans le cours : la résolution de système ou des opérations élémentaires sur les lignes de B.

On trouve dans les deux cas que *B* est inversible et $B^{-1} = \begin{pmatrix} -3 & -3 & 4 \\ -4 & -3 & -4 \end{pmatrix}$.

- De même, *C* est inversible et $C^{-1} = \begin{pmatrix} -2 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix}$.
- Plutôt que de se lancer dans des calculs, remarquons que les deux dernières lignes de D sont proportionnelles : $L_3 = 2L_4$.

Et donc la famille des lignes de D n'est pas libre, puisque

$$0 \cdot L_1 + 0 \cdot L_2 + \underbrace{1}_{\neq 0} \cdot L_3 + (-2) \cdot L_4 = 0_{1,n}$$

est une combinaison linéaire nulle dont tous les coefficients sont non nuls. Donc *D* n'est pas inversible.

Solution de l'exercice 13.16

La relation donnée par l'énoncé s'écrit encore

$$\lambda_p A^p + \lambda_{p-1} A^{p-1} + \dots + \lambda_1 A = -\lambda_0 I_n \Leftrightarrow -\frac{1}{\lambda_0} \left(\lambda_p A^p + \lambda_{p-1} A^{p-1} + \dots + \lambda_1 A \right) = I_n.$$

Mais on peut alors factoriser par A, aussi bien à droite qu'à gauche :

$$A\left(-\frac{1}{\lambda_0}\left(\lambda_pA^{p-1}+\lambda_{p-1}A^{p-2}+\cdots+\lambda_1I_n\right)\right)=\left(-\frac{1}{\lambda_0}\left(\lambda_pA^{p-1}+\lambda_{p-1}A^{p-2}+\cdots+\lambda_1I_n\right)\right)A=I_n.$$

Donc *A* est inversible, et son inverse est $\left(-\frac{1}{\lambda_0}\left(\lambda_p A^{p-1} + \lambda_{p-1} A^{p-2} + \cdots + \lambda_1 I_n\right)\right)$.

SOLUTION DE L'EXERCICE 13.17

Cherchons son inverse sous forme d'une matrice triangulaire par blocs $\begin{pmatrix} A' & B' \\ 0 & C' \end{pmatrix}$.

On a alors

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \begin{pmatrix} A' & B' \\ 0 & C' \end{pmatrix} = \begin{pmatrix} AA' & AB' + BC' \\ 0 & CC' \end{pmatrix}.$$

Donc si cette matrice est égale à I_{n+p} alors

$$\begin{cases} AA' = I_n \\ CC' = I_p \\ AB' + BC' = 0_{n,p} \end{cases}$$

On en tire facilement que $A' = A^{-1}$ et $C' = C^{-1}$. Et alors $AB' + BC' = 0 \Leftrightarrow AB' = -BC^{-1} \Leftrightarrow B' = -A^{-1}BC^{-1}$.

Donc si un inverse existe sous la forme citée précédemment, c'est $\begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ 0 & C^{-1} \end{pmatrix}$.

Intuition

L'inverse d'une matrice triangulaire inversible étant encore triangulaire, il est plutôt logique de chercher un inverse sous cette forme.

Remarque

Notons que nous procédons par implication, et par pas équivalence : c'est la phase d'analyse (si il y a un inverse, alors....)

Reste à procéder à la synthèse, en prouvant que : $\begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ 0 & C^{-1} \end{pmatrix}$ est bien l'inverse de

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
. On a alors

$$\begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ 0 & C^{-1} \end{pmatrix} \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \begin{pmatrix} A^{-1}A & A^{-1}B - A^{-1}BC^{-1}C \\ 0_{p,n} & C^{-1}C \end{pmatrix} = \begin{pmatrix} I_n & 0_{n,p} \\ 0_{p,n} & I_p \end{pmatrix} = I_{n+p}.$$

Et de même.

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ 0 & C^{-1} \end{pmatrix} = \begin{pmatrix} AA^{-1} & -AA^{-1}BC^{-1} + BC^{-1} \\ 0_{p,n} & CC^{-1} \end{pmatrix} = \begin{pmatrix} I_n & 0_{n,p} \\ 0_{p,n} & I_p \end{pmatrix} = I_{n+p}.$$

Donc $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ est bien inversible, d'inverse égale à $\begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ 0 & C^{-1} \end{pmatrix}$.

SOLUTION DE L'EXERCICE 13.18

1. Soit $p \in \mathbb{N}$. Alors

$$(A - B) \sum_{k=0}^{p-1} A^k B^{p-1-k} = \sum_{k=0}^{p-1} A^{k+1} B^{p-k-1} - \sum_{k=0}^{p-1} A^k B^{p-k}$$
$$= \sum_{i=1}^{p} A^i B^{p-i} - \sum_{k=0}^{p-1} A^k B^{p-k}$$
$$= A^p - B^p$$

2. Supposons donc que *N* soit nilpotente, d'indice de nilpotence *p*. Alors –*N* est également nilpotente, d'indice de nilpotence *p*, et donc

$$I_n = I_n^p - (-N)^p = (I_n + N) \left(\sum_{k=0}^{p-1} (-N)^{p-1-k} \right).$$

Et sur le même principe³, $\left(\sum_{k=0}^{p-1} (-N)^{p-1-k}\right) (I_n + N) = I_n$.

Donc $I_n + N$ est inversible, et son inverse est $\sum_{k=0}^{p-1} (-N)^{p-1-k}$.

³ Soit on prouve que la formule de la question 1 reste valable en échangeant l'ordre des termes soit on prouve par un calcul direct que $(I_n + N)$ et $\sum_{k=0}^{p-1} (-N)^{p-1-k}$ commutent.

SOLUTION DE L'EXERCICE 13.19

1. On a

$$tr(A^{2}) = \sum_{i=1}^{n} [A^{2}]_{i,i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} a_{j,i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}$$

$$\geq 0.$$

A est symétrique donc $a_{i,j} = a_{j,i}$.

2. Notons $f: \lambda \mapsto \operatorname{tr}((\lambda A + B)^2)$.

Puisque pour tout $\lambda \in \mathbf{R}$, $\lambda A + B$ est encore symétrique, le raisonnement de la première question s'applique encore, et prouve que $f(\lambda) \ge 0$. Mais d'autre part, on a

$$f(\lambda) = \operatorname{tr}\left(\lambda^2 A^2 + \lambda A B + \lambda B A + B^2\right) = \lambda^2 \operatorname{tr}\left(A^2\right) + \lambda \left(\operatorname{tr}(AB) + \operatorname{tr}(BA)\right) + \operatorname{tr}\left(B^2\right) = \lambda^2 \operatorname{tr}\left(A^2\right) + 2\lambda \operatorname{tr}(AB) + \operatorname{tr}\left(B^2\right).$$

▶ Si tr $(A^2) \neq 0$, alors f est une fonction polynomiale de degré 2, de signe constant. C'est donc que son discriminant est négatif ou nul⁴.

Soit encore $(2\operatorname{tr}(AB))^2 - 4\operatorname{tr}(A^2)\operatorname{tr}(B^2) \le 0 \Leftrightarrow \operatorname{tr}(AB)^2 \le \operatorname{tr}(A^2)\operatorname{tr}(B^2)$.

▶ Si tr $(A^2) = 0$, alors f est une fonction affine, de signe constant, positive. Ce n'est possible que si tr(AB) = 0 et que tr $(B^2) \ge 0$.

Et alors, on a bien l'inégalité annoncée (qui est même une égalité dans ce cas).

⁴ Car s'il y avait deux racines, f changerait de signe entre ces racines.

Remarque

Le calcul de la question 1 permet de prouver que la condition tr(A²) = 0 n'est vérifiée que loiMueVAENNEY Correction 9

SOLUTION DE L'EXERCICE 13.20

Comme à l'exercice 18, on prouve que $I_n + B$ est inversible.

Et alors, si A est inversible, $A + B = A(I_n + A^{-1}B)$.

Mais puisque AB = BA, en multipliant cette égalité à gauche et à droite par A^{-1} , il vient $A^{-1}B = BA^{-1}$.

Et donc A^{-1} et B commutent, de sorte que, si p désigne l'indice de nilpotence de B, $(A^{-1}B)^p = A^{-p}B^p = 0$.

Donc $A^{-1}B$ est encore nilpotente. On prouve alors, comme à l'exercice 17, que $I_n + A^{-1}B$ est inversible, et donc que A + B est inversible car produit de deux matrices inversibles.

Inversement, si A + B est inversible, alors A + B commute avec -B, et -B est nilpotente. Par ce qui a été fait précédemment, A = A + B + (-B) est inversible.

SOLUTION DE L'EXERCICE 13.21

1. Commençons par essayer d'écrire explicitement *A* :

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & \dots & 2 \\ 1 & 2 & 3 & \dots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \dots & n \end{pmatrix}.$$

Calculons son inverse par opérations élémentaires. Commençons par réaliser l'opération $L_n \leftarrow L_n - L_{n-1}$. Alors

- Méthode

Nous ne suivons pas ici l'algorithme du pivot. Peu importe : celui-ci fournit une méthode, qui fonctionne toujours, pour transformer notre matrice en l'identité. Si vous voyez d'autres opérations qui permettent d'arriver plus simplement au même résultat, il ne faut pas vous priver de les utiliser.

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 2 & 2 & \dots & 2 & 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n-1 & \vdots & \dots & \ddots & 1 & 0 \\ 1 & 2 & 3 & \dots & n & 0 & 0 & 0 & \dots & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 2 & 2 & \dots & 2 & 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n-1 & \vdots & \dots & \ddots & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Passons ensuite à $L_{n-1} \leftarrow L_{n-1} - L_{n-2}$. Alors

Réalisons alors l'opération $L_{n-1} \leftarrow L_{n-1} - L_n$

De proche en proche, en réalisant à chaque fois les opérations $L_i \leftarrow L_i - L_{i-1}$ puis $L_i \leftarrow L_i + L_{i+1}$, on arrive à

$$\begin{pmatrix}
1 & 1 & 1 & \dots & 1 & 1 & 1 & 0 & \dots & \dots & 0 & 0 \\
0 & 1 & 0 & \dots & 0 & 0 & -1 & 2 & \ddots & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & & & & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 2 & -1 & 0 \\
0 & 0 & \dots & \dots & 1 & 0 & \vdots & \vdots & & -1 & 2 & -1 \\
0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 & \dots & 0 & -1 & 1
\end{pmatrix}$$

Ne reste plus qu'à soustrait chacune des L_i à L_1 :

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 1 & 1 & 2 & -1 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & -1 & 2 & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & & & & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 2 & -1 & 0 \\ 0 & 0 & \dots & \dots & 1 & 0 & \vdots & \vdots & & -1 & 2 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$

Donc A est inversible et
$$A^{-1} = \begin{pmatrix} 2 & -1 & \dots & 0 & 0 \\ -1 & 2 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$
.

2. Si
$$n = 2$$
, on a $B = \begin{pmatrix} F_2 & F_3 \\ F_3 & F_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ qui est inversible⁵, d'inverse $\begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$

⁵ Car de déterminant égal à

En revanche, si $n \ge 3$, alors la troisième ligne de B vérifie $L_3 = L_1 + L_2$. En effet, pour tout $j \in [1, n]$, on a $F_{3+j} = F_{2+j} + F_{1+j}$.

Et donc la famille des lignes de B n'est pas libre, donc B n'est pas inversible.

SOLUTION DE L'EXERCICE 13.22

Puisque $AX = 0_{n,1}$, alors tous les coefficients de AX sont nuls, et en particulier, le i_0 ^{ème} coefficient de AX est nul.

Soit encore⁶
$$\sum_{j=1}^{n} a_{i_0, j} x_j = 0$$
.

En isolant le coefficient diagonal de la i_0 ème ligne de A, on a donc $a_{i_0,i_0}x_{i_0}=-\sum_{\substack{j=1\\j\neq i_0}}^n a_{i_0,j}x_j$.

En passant à la valeur absolue, l'inégalité triangulaire nous donne alors

$$|a_{i_0,i_0}| \cdot |x_{i_0}| \le \sum_{\substack{j=1 \ j \ne i_0}}^n a_{i_0,j} |\cdot |x_j| \le \sum_{\substack{j=1 \ j \ne i_0}}^n |a_{i_0,j}| \cdot |x_{i_0}|.$$

Si $x_{i_0} \neq 0$, alors, en divisant par $|x_{i_0}|$, il vient $|a_{i_0,i_0}| \leq \sum_{\substack{j=1 \ j \neq i_0}}^n |a_{i_0,j}|$, ce qui contredit l'hypothèse

faite sur A.

Donc $x_{i_0} = 0$. Ceci implique alors que tous les coefficients de X soient nuls, et donc que X = 0.

Autrement dit, nous avons prouvé que $AX = 0_{n,1} \Rightarrow X = 0_{n,1}$, ce qui est une des caractérisations de l'inversibilité, et donc A est inversible.

Détails

Par définition, i_0 est le numéro d'une ligne portant le plus grand coefficient (en valeur absolue) de X. Donc pour tout $j \in [1, n]$,

 $|x_j| \leq |x_{i_0}|.$

⁶ En utilisant la formule du produit matriciel.