

Master Computer Science

Title :Discovering quantum communication strategies with multi-agent reinforcement learning

Name: Athanasios Agrafiotis

Student ID: s2029413

Date:

Specialisation: Advanced Data Analytics

1st supervisor: Evert Van Nieuwenburg

2nd supervisor:

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Robring 1

Niels Bohrweg 1 2333 CA Leiden

This dissertation is submitted for the degree of Computer Science(MSc): Advanced Data Analytics

Acknowledgements

Abstract

Communication channel systems are easy to use; however, they are vulnerable to attacks by a third person. The third person can easily penetrate the channel and read or manipulate messages before reaching the receiver from the sender. For this purpose a number of protocols are recommended that can secure the communication between the two parties. Nowadays, quantum computing has been shown to get benefit from such scenarios and introduces protocols that can encrypt and decrypt a message. One of those protocols is the protocol of Bemett and Brassard. The purpose of this Master thesis is to present a simulation of a quantum communication channel using reinforcement learning algorithms. In more details it describes the way the sender and the receiver exchange messages and how they verify the security of the channel with a secret key. The main goal of this Master thesis is to simulate a Quantum key distribution process using an artificial intelligence environment. In each episode the two agents are using a communication channel. The first agent reads a message, and then sends it to the second agent; the receiver verifies the message's correctness. In case the message has been transferred successfully, the episode ends with the maximum reward; in the other cases the reward is negative.

A number of reinforcement learning algorithms were implemented during the Master thesis project. Namely, a Q-learning, deep q learning, evolutionary strategy, and a proximal policy approach that solves artificial environments with optimal solutions. As a result, the agent performs the actions that are required to communicate with each other, avoiding any mistakes.

Table of contents

Li	st of f	figures	xi
Li	st of t	tables	xiii
1	Intr	oduction	1
2	Bac	kground	3
	2.1	Quantum Key distribution Related Work	3
	2.2	Reinforcement learning Related Work	4
3	Met	hods & Data	5
	3.1	Q-learning	5
	3.2	Deep Q-learning	6
	3.3	Proximal Policy Optimization	7
	3.4	Evolution Strategy	9
	3.5	Adaptation of the Code for the Communication Protocol 84	10
		3.5.1 Training procedure	10
4	Resi	ults	11
	4.1	Evaluation criteria	11
5	Disc	cussion	15
	5.1	Summary	15
	5.2	Limitations	15
	5.3	Execution Ideas	15
	5.4	Future Work	15
6	Con	clusion	17
7	Soft	ware	19
R	feren	nces	21

List of figures

4.1	The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.	 11
4.2	The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.	 12
4.3	The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.	 12
44	The overall approach (a) figa: (b) Workflow for figh: (c) Workflow for fige	12

List of tables

4.1 .									13
-------	--	--	--	--	--	--	--	--	----

Introduction

The current project has as a main goal to simulate an artificial environment of quantum key Distribution. The process that describes a communication between two artificial agents that takes place in a quantum channel. For reasons of security, the channel uses a protocol that encrypts and decrypts the messages with some error. Next, the sender and the receiver communicate with a classical communication channel to compare the message and to evaluate the protocol keys. The quantum Channels use quantum gates as keys that produce a small amount of error. In the artificial environment, each of the two agents can perform a number of actions until the episode ends and communication finish. In case each of the agents makes the required actions the episode finishes earlier and gives a positive reward to the agent. The communication channel generates a message that the sender will read it, then will send it to the receiver and compares both messages and saves the key.

To solve the environment, it is proposed reinforcement learning algorithm. Algorithms can Explore the environment until to find an optimal solution playing a large number of episodes. The project focuses on the following research questions:

Does the reinforcement learning environment simulate a Quantum key distribution? Is the communication of a quantum channel that implements the BB84 protocol secure? Is the protocol efficient?

To sum up, the project deploys an artificial environment that represents as states the encryption/decryption between messages of two parties. The implementation of a software that takes as an input plain text (cipher-text) encrypts the message and decrypts it. The implementation includes The quantum polarization base of each bit. An error analysis and the parameters that have been used during the simulation such as bitstream length(encoded message), error correction, number of iterations, the key quality.

Background

Chapter 2 provides an overview of relevant reinforcement learning algorithms. Quantum key distribution are described in theory and the concept of encryption and decryption protocol in Section 2.1. Reinforcement learning approaches are described in Section 2.2. More details regarding the reinforcement learning agent navigation in the artificial environment are presented in Section 3.1, 3.2, 3.3 and section 3.4.

2.1 Quantum Key distribution Related Work

The related work et al Winiarczyk and Zabierowski[10] presents how to ensure risk management despite attacks on communication protocol. Current state-of-the-art-key distribution and management processes face constraints and challenges such as managing numerous encryption keys. The model demonstrates the BB84 (OKD) protocol with two scenarios; the first is without eavesdropper and the second is with eavesdropper via the interception-resend attack model. The simulation is highly dependent on communication over a quantum channel for polarized transmission. The cryptographic part relies on three components. First, the plain text that will be encrypted, key used for the encryption; at last the output (cipher-text) encrypted message. The number of keys is two; one of the keys is public (encryption key) and the private key(decryption key). Two parties communicate with each other, the party A, and party B. The simulation is based on the communication of the two parties and in case the party A wants to send a message to party B is using the Party B's public key for the encryption and Party's B private key for the decryption. The procedure of simulation uses quantum blocks, the Party's A QB transmitter, Party's B QB receiver, and at last the Eve's QB non-authorized access to the quantum channel. The paper concludes that the error is detectable with error correction rate 0.24% and 0.26% with eavesdropper, so the key has improved after each message exchange until to reach the paper's proposed threshold 0.11. Finally, the paper mentions that comparison of two scenarios without and with eavesdroppers is complicated and difficult to compare to previous work, as their analysis does not clearly state their parameters and the error.

4 Background

2.2 Reinforcement learning Related Work

In deterministic environment the agent has full knowledge of the actions states and rewards. Recommended algorithms for deterministic environments is the Bellman equation($Q(s, a) = Reward + \gamma * maxQ(s', a')$) [1].

A non-deterministic environment known as stochastic the agent has no clear mapping between states and actions. It is not known always that the agent being in a specific state and take an action will step to the next defined state, random events can interrupt the agent. At most in stochastic environment the agent navigates with probabilities. Recommended algorithms for stochastic environments Q-learning methods($Q(s, a) = (1 - a)Q(s, a) + a[r + \gamma * maxQ(s', a'))$ [9].

The field of reinforcement learning introduces a number of algorithms that can solve artificial environments. The taxonomy of the reinforcement learning algorithms is model-free, model-based, value-based, policy-based off-policy and on-policy. The model-free use of data from the environment and navigation strategy of the agent express a probability. The model-based agent selects the actions that maximize its reward from the environment predictions. Value-based maximizes reward through navigation in the environment. Policy-based update their parameters through gradient descent by taking the differentiate. Off-policy expresses two separate policies, one of them to participate in the optimization process and the other to explore the environment; in contrast, on-policy expresses a single policy for the exploration and optimization process.

The most known algorithm that solves the artificial environment is the Bellman equation. The equation uses the artificial environment variables s,a,r and γ , which corresponds to the state, action, reward and discount factor. The agent is in an environment that navigates and in case the agent loses, get a negative reward, and in case that the agent performs all the actions without reaching the wining state, get zero, and in case of win takes a positive reward. The Bellman equation helps the agent to go through the environment. The bellman equation

$$(s) = \max_{a} R(s, a) + \gamma V(s') \tag{2.1}$$

Describes how the agent takes an action in a state s, instantly gets a reward by getting in a new state. There are different actions that the agent can take; for every one of the actions the Bellman equation will express a probability. The value of each state is equal to the maximum reward that the next state gives. In case the agent moves to the winning state it takes a reward of 1, in any other case the agent takes an action and calculates the discount factor(γ) plus the differentiate reward of the current state with the winning state et al Bellman [2].

Methods & Data

Chapter 3 details of the q-learning, the deep q-learning, proximal policy and evolutionary strategies. The section describe in details the theory and the implementation of reinforcement algorithms.

3.1 Q-learning

An agent uses the values of the next states to make a decision on which state to move next et al. Sutton R. and Barto [4]. A tabular representation of the actions is used as Q that represents the quality of the actions. If the environment has a specific number of actions, each of the actions has a quality. $Q(s,a) = R(s,a) + \gamma(Q(s',a'))$ Using q-learning, the agent performs an action; he gets a reward, and also it gets the expected value.

Algorithm 1 Q-learning

```
Initialize Q(s,a), \forall s \in S, \alpha \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0 for episode \in 1..N do  
Initialize S  
for t \in 0..T-1 do  
Choose A from S using policy derived from Q(e.g., e-greedy)  
Take action A, observe R,S'  
Q(S,A) \leftarrow Q(S,A) + a[R + \gamma max_a Q(S',\alpha) - Q(S,A)] 
S \leftarrow S' end for  
until S in terminal  
end for
```

6 Methods & Data

3.2 Deep Q-learning

The Deep Q-learning is similar to the q-learning approach. The agent before proceeding to the next state, calculates the reward and the policy of the new action. As the agent explores the environment understand the values of the states and the q-learning the values of the actions. In the process of deep q-learning, each of the states is used by a neural network that processes the information and the it outputs the actions. It uses the observation of the agent and outputs probabilities for the new actions that the agent should take to maximize its reward. The q-learning is not working in complex environment in contrast to the deep q-learning agent. The temporal difference is the foundation for expressing probabilities, when the agent takes the decision to move to the next state. The agent by taking this action with the maximum policy, receives better rewards than by taking another action.

$$TD(a,s) = R(s,a) + \gamma \max_{a} Q(s',a') - Q(s,a)$$
(3.1)

In more details et al. Mnih Kavukcuoglu [3], Deep q-learning will predict values based on the number of actions. The neural network will compare the values of the current action and current state with the action and state of a previous episode. On the first episode, the agent has to calculate the value of each state in tabular Q(s,a) and then the neural network generates a number of similar values and subtracks them until convergence. The neural network preprocess a sequence of inputs x(1)...x(n), a number of hidden layers and outputs based on the number of environment actions (targets) $Q_1...Q_n$. For the process of propagation measure the loss $L = \sum (Q - Target - Q)$ this is the way that agent learns.

The experience replay gives the agent the opportunity to learn from a sample of the state. It takes a number of samples that are random and uniform, and the network learns from them; each experience has the state that the agent was in, the next state, the action and the reward (four elements) [6]. The most valuable are rare experiences, data that contains states that do not repeat frequently. The inputs in the neural network are the move of the agent from one state to another state. The state goes through the network; the error is calculated and the network backpropagates; then the agent selects which action needs to be taken. The new state is used as the previous and goes through the network.

Once the vector describing the state is used from a neural network, and the learning process ends, it outputs all the q-values. The predictions are the q-values; the activation function selects the best q-value. The q-learning approach selects the one with the highest q-value and takes that action. There is also a number of different action selection function such as the e-greedy and e-soft (1-e) [8]. The e-greedy selects the action with the highest reward when e-greedy is 0.4 with forty percent selects the action random, and 0.6 selects the action with the highest reward. E-soft selects a random action random action; if the e-soft is 0.2 the agent selects the action with the highest reward and with 0.8 selects an action at random. The number of different action selection policies provides different ways for the agent to navigate through

the environment; other times the agent exploits the environment and other times explores it. The different functions prevent the agent to be trapped to the local maximum, so the agent will navigate receiving the best reward, but it might not finish the episode with the maximum reward. So the algorithm works in the following steps. It initializes a batch that is called an experience replay. The size of the memory is chosen manually. At each time, t, repeats the following process, until the end of the epoch. It predicts the q-value or policy of the current state s_t . The agent selects the actions with the highest policy to navigate through the next state using the bellman equation. It receives in return the reward of the new state. The navigation step (transition) (s_t, a, r_t, s_{t+1} is stored in the experience replay storage. Once the capacity of the experience replay is full, the neural network produces new states and the bellman equation produces the target values. The loss between the produced policy of the neural network and the target updates the weights of the neural network.

Algorithm 2 Deep Q-learning Experience Replay

3.3 Proximal Policy Optimization

Instead of having model value, we have a neural network model, the policy itself it called the distribution π which is parametrized by theta et al [7]. Action (a) is the random variable that determines the distribution for a given state (s) actor network. In this case the input to the neural network is the state where the output is the probability distribution that is expressed in order to take the best action. The policy network methods use the gradient method that depends on the neural network . The gradient of our objective is the expected value of the advantage multiplied by the gradient of the log policy; the advantage is equal to the action value minus the state value.

8 Methods & Data

In practice there is an estimation of the expected value by sample mean, by collecting a pair of samples through playing the game and dividing by the number of samples. The way to produce π depends on the aggregation of total rewards. Rewards are just samples drawn from playing the game, so there is no correlation of the rewards with the weights of the neural networks. Consider a sequence of state-action pairs in an episode $(s_1, a_1)(s_2, a_2)(s_3, a_3)$ By performing the state action pairs, the agent collects the rewards.

The objective $j(\theta)$ is a function of the neural network weights. θ is equal to the expected value of the rewards collects through the states under the distribution π_{θ} . The π_{θ} that is, the output of the neural network that called policy distribution. Therefore, the expected value is with respect to the policy distribution. So when the agent plays, an episode is using the policy that is expressed from the neural network. The probability distribution can be expressed as a markov chain; that is, the transition probability of the environment expresses the state and action returns the new state and the policy, that is, the output of the neural network that corresponds to the action given the state.

$$\pi(s_{t+1}|s_t,a_t)\pi_{\theta}(a_t|s_t)$$

The deriving of policy represents the future rewards after the action has performed.

$$\delta_{\theta}J(\theta) = E\left[\sum_{t=1}^{T} \delta_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t=t+1}^{T} R(s_t, a_t)\right]$$
(3.2)

The future rewards can be replaced the second part of future rewards. The modification on the rewards can vary even using a q-learning approach, but in the case of actor and critic The agent does not care about absolute reward but to improve current policy. So it makes use of the advantage function prediction, the value of the new state and subtracted by the current state of the agent, in case that gives a bigger number and makes the action more probable.

$$A(s,a) = Q(s,a) - V(s)$$
(3.3)

$$A(s,a) = R + \gamma V(s') - V(s)$$
(3.4)

The actor critic plays a number of episodes and stores the states and the actions calculate the advantage function and follow the direction of the gradient. The gradient is updating from the loss function.

$$L(\theta) = -\frac{1}{M} \sum_{i=1}^{M} log \pi_{\theta}(a^{i}|s^{i}) A(s^{i}, \alpha^{i})$$
(3.5)

To be able to limit the parameters of the policy in the same batch generates a probability of selecting a specific action in a specific state and use it as a reference to limit the change of our policy.

$$r_t(\theta) = \pi_{\theta}(a_t s_t) \pi_{\theta old}(a_t s_t) \tag{3.6}$$

This means that the agent would have selected the current action (a) when it was in the state (t) with probability which was initial 12% and after some iterations the agent would choose the action (a) of the state (t) with probability 90%. The ratio (r) is the $\frac{90}{12}$. The ratio and a parameter called epsilon will limit policy changes. With this way a new Loss function is computed

$$L(\theta) = E[min(r_k(\theta)A, clip(r_t(\theta), 1 - e, 1 + e)A]$$
(3.7)

The loss function selects lower value value between the $clip(r_t(\theta), 1-e, 1+e)A$. The parameters A and 1+e, 1-e will help to constrain the policy formula increase and make it even less probable. So an agent will not take actions that lead to positive advantage and negative advantage more times than suppose to. Many steps of learning in a sample of data but setting limit on the policy changes. The proximal policy learning through a specific number of episodes and run the policy for specific timesteps while the policy is optimized calculating the loss function.

Algorithm 3 Proximal Policy Optimization

```
\begin{array}{l} \textbf{for iteration} \in 1, 2...\, \textbf{do} \\ \textbf{for } actor = 1, 2, ..., N \, \textbf{do} \\ \text{Run policy } \pi_{\theta_{old}} \text{ in environment for } T \text{ timesteps} \\ \text{Compute advantage estimates } \hat{A_1}...\hat{A_T} \\ \textbf{end for} \\ \text{Optimize surrogate } Lwrt\theta, \text{ with K epochs and minibatch size } M \leq NT \\ \theta_{old} \leftarrow \theta \\ \textbf{end for} \\ \end{array}
```

3.4 Evolution Strategy

The algorithm generates an offspring one at a time with some gaussian noise that has been multiplied by standard deviation and added to the weight. The new policy will be examined by the fitness function that will produce the reward for an episode. This the optimization of the evolution strategy et al Salimans, T.Ho [5]. That ends with the update of the new policy based on the previous policy. In more details adds, the learning rate times the population size multiplied by the noise standard deviation times all the rewards multiplied by the corresponding noise vector. It is actually a multiplication of two vectors, the vector of noise and the vector, the policy that was previously evaluated by the fitness function to produce the new policy. This update is highly dependent on the fitness function in case the reward is positive after the update is expected to be more positive.

$$\theta(t+1) = \theta(t) + \eta \frac{1}{N\sigma}$$
(3.8)

A summary evolutionary strategy update is an approximation of the gradient descent or ascent based on the reward that the fitness function produces. Similar to the advantage actor critic, the evolutionary strategy standardized the rewards because the rewards it might be positive but

10 Methods & Data

not always better than the previous rewards. So by standardizing the rewards, the evolutionary strategy tries to improve the results. The evolutionary strategies in reinforcement learning they do not make use of the value function and the discounting rewards. The evolutionary strategies are highly depend in the learning rate, the population size (the number of offsprings) and the noise deviation that shows how different is the offspring(θ_{t+1}) for the parent(θ_t).

$$\nabla_{\theta} E_{\varepsilon} \sim_{N(0,I)} F(\theta + \sigma \varepsilon) = \frac{1}{\sigma} E_{\varepsilon} \sim_{N(0,I)} F(\theta + \sigma \varepsilon) \varepsilon$$
 (3.9)

Algorithm 4 Evolution Strategies

```
Input:Learning rate = \alpha
noise standard deviation=\sigma
initial policy parameters=\theta_0
for t=0,1,2,... do
Sample_{\mathcal{E}_1..\mathcal{E}_n\sim N(0,I)}
Compute returns F_i=F(\theta_t+\sigma\mathcal{E}_i)
for i=1...n do
\text{set }\theta_{t+1}\leftarrow\theta_{t+1}+\alpha\frac{1}{n\sigma}\sum_{i=1}^nF_i\mathcal{E}_i
end for
end for
```

To sum up, the evolution strategy makes use of a neural network architecture. Initializes its weight with random values in the new iteration the network calculates through matrix multiplication (feed-forward process) an action. Next, this action will be evaluated by the fitness function and based on the reward the agent will receive, the network weights will be updated. The weights network represents the offspring of the population and are updated from the objective function. The evolution strategy algorithm is a loop that uses specific variables the learning rate η the noise stand deviation σ and the initial policy parameters θ .

3.5 Adaptation of the Code for the Communication Protocol 84

The code represents a simulation, a communication channel. Whereas the agents need to take specific number of actions so the communication to be successful.

3.5.1 Training procedure

The agent learns for N epochs, s time steps. During the training time, the exploration rate was initialized to e-G,. The convergence of Q-values is an indicator of the convergence of the deep Q-network controlling the behavior of the agent. Hence, we monitor the average maximal Q-value for a number of selected games situations.

Results

This chapter provides details of the results. The evaluation criteria and the adjustment of hyper-parameters.

4.1 Evaluation criteria

Pics Q-values/epochs(episode)

Qualitatively we can report that by the end of training both agents are capable of communicate with each other reasonably well. First of all, both players are capable to exchange messages regardless the message length. Secondly, the exchanges can last for considerable amount of steps. Figure ?? illustrates how the agent's predictions of their rewards evolve during message exchange. An observation of the q-value and how is correlated with the prediction.

Pics Rewards/epochs(episode)

The emergent strategy after N number of epochs of training can be characterized:

Fig. 4.1 The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.

12 Results

Fig. 4.2 The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.

Fig. 4.3 The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.

Fig. 4.4 The overall approach. (a) figa; (b) Workflow for figb; (c) Workflow for figc.

Pics steps/epochs(episode)

The figure display the agent reward during each episode. In figure ?? is the q-learning approach for deterministic environment that achieves the maximum reward. In figure ?? is the neural network approach that achieves the maximum reward the half of the time. In figure ?? is deep

4.1 Evaluation criteria

	Average number of steps 100 episodes					
	Q-learning	Q-learning Temporal Difference	Neural Network	Deeep-Qlearning	Evolution Strategy	Proximal Policy Optimization
steps	2	2	2	1	1	0

	l •	10	15
Q-learning	0.45	0.49	0.51
Deep q-learning	0.35	0.55	0.45
Proximal Policy Optimization	0.12	-0.04	0.46
Q-learning Deep q-learning Proximal Policy Optimization Evolutionary Strategy	0.47	0.52	0.6

Table 4.1

q-learning approach that achieves the maximum reward the 55% of one hundred episodes. In figure ?? is evolution strategy approach that achieves the maximum reward the 65% of one hundred episodes. In figure ?? the proximal policy gradient approach achieves to finish 30 episodes 80% successfully.

Discussion

This chapter provides details of the project. A summary of the project in the first Section. Limitations, implications during the implementation Section 5.2, Section ?? respectively. At future work in Section 5.4.

5.1 Summary

A main object of this project was the simulation of quantum protocol using reinforcement learning algorithms. Using different approaches the result improved.

5.2 Limitations

One of the constraints is the cpu usage as is correlated with the training process. For the training process was used a personal computer.

5.3 Execution Ideas

The majority of the implementation focused on the communication between two parties. The amount of words in the message that represents the main problem was tested. And the number of steps that the reinforcement learning algorithm requires to complete the communication.

5.4 Future Work

Conclusion

In the present Master Thesis, existing....

Software

The data for this project were retrieved from the artificial environment. All the experiments and feature engineering tasks were implemented using the Python programming language. Details of the primary thrid-party Python libraries that simplified the modelling and data handling tasks are provided below.

References

- [1] Barfuss, W., Donges, J. F., and Kurths, J. (2019). Deterministic limit of temporal difference reinforcement learning for stochastic games. *Phys. Rev. E*, 99:043305.
- [2] Bellman, R. (1954). The theory of dynamic programming. *Bulletin of the American Mathematical Society*, 60:503–515.
- [3] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
- [4] S. Sutton, R. and G. Barto, A. (2014). Reinforcement learning: An introduction second edition: 2014, 2015.
- [5] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies as a scalable alternative to reinforcement learning.
- [6] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay.
- [7] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms.
- [8] Tokic, M. (2010). Adaptive ε-greedy exploration in reinforcement learning based on value differences. In Dillmann, R., Beyerer, J., Hanebeck, U. D., and Schultz, T., editors, *KI* 2010: Advances in Artificial Intelligence, pages 203–210, Berlin, Heidelberg. Springer Berlin Heidelberg.
- [9] van Otterlo, M. and Wiering, M. A. (2012). Markov decision processes: Concepts and algorithms.
- [10] Winiarczyk, P. and Zabierowski, W. (2011). Bb84 analysis of operation and practical considerations and implementations of quantum key distribution systems. In 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pages 23–26.