

The Science of Neural Networks

Ryan Gillard

Machine Learning on Google Cloud Platform

The Art of ML

Hyperparameter Tuning

A Pinch of Science

The Science of Neural Networks

Embeddings

Custom Estimator

Introduction to Neural Networks

Ryan Gillard

Feature crosses help linear models work in nonlinear problems

But there tends to be a limit ...

Combine features as an alternative to feature crossing

Structure the model so that features are combined Then the combinations may be combined

How to choose the combinations? Get the model to learn them

A Linear Model can be represented as nodes and edges

$$= (w_{10} * w_1 + w_{11} * w_2 + w_{12} * w_3) * x_1 + (w_{10} * w_4 + w_{11} * w_5 + w_{12} * w_6) * x_2 + (w_{10} * w_7 + w_{11} * w_8 + w_{12} * w_9) * x_3$$

$$output = w_{10} * h_1 + w_{11} * h_2 + w_{12} * h_3$$

$$= (w_{10} * w_1 + w_{11} * w_2 + w_{12} * w_3) * x_1 + (w_{10} * w_4 + w_{11} * w_5 + w_{12} * w_6) * x_2 + (w_{10} * w_7 + w_{11} * w_8 + w_{12} * w_9) * x_3$$

$$= W_1 * x_1 + W_2 * x_2 + W_3 * x_3$$

$$H_1 = egin{bmatrix} w_1 & w_2 & w_3 \ w_4 & w_5 & w_6 \ w_7 & w_8 & w_9 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

$$H_{2} = \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} \begin{bmatrix} w_{1} & w_{2} & w_{3} \\ w_{4} & w_{5} & w_{6} \\ w_{7} & w_{8} & w_{9} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}_{3\times 1}$$

$$= \begin{bmatrix} W_{1} & W_{2} & W_{3} \\ W_{4} & W_{5} & W_{6} \\ W_{7} & W_{8} & W_{9} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}_{3\times 1}$$

$$= \begin{bmatrix} w_{1} & w_{2} & w_{3} \\ w_{4} & w_{5} & w_{6} \\ w_{7} & w_{8} & w_{9} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}_{3\times 1}$$

$$\hat{y} = \begin{bmatrix} w_{19} & w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} \begin{bmatrix} w_{1} & w_{2} & w_{3} \\ w_{4} & w_{5} & w_{6} \\ w_{7} & w_{8} & w_{9} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} W_1' & W_2' & W_3' \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
1x3 3x1

Adding a Non-Linearity

Adding a Non-Linearity

$$\hat{y} = \begin{bmatrix} w_{19} & w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} f \begin{pmatrix} \begin{bmatrix} w_{1} & w_{2} & w_{3} \\ w_{4} & w_{5} & w_{6} \\ w_{7} & w_{8} & w_{9} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} w_{19} & w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} \begin{bmatrix} max(0, w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3}) \\ max(0, w_{4}x_{1} + w_{5}x_{2} + w_{6}x_{3}) \\ max(0, w_{7}x_{1} + w_{8}x_{2} + w_{9}x_{3}) \end{bmatrix}$$

$$= \begin{bmatrix} w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} \begin{bmatrix} max(0, w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3}) \\ max(0, w_{7}x_{1} + w_{8}x_{2} + w_{9}x_{3}) \end{bmatrix}$$

$$= \begin{bmatrix} w_{13} & w_{20} & w_{21} \end{bmatrix} \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} \\ w_{16} & w_{17} & w_{18} \end{bmatrix} \begin{bmatrix} max(0, w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3}) \\ max(0, w_{7}x_{1} + w_{8}x_{2} + w_{9}x_{3}) \end{bmatrix}$$

Non-linearity Quiz

Why is it important adding non-linear activation functions to neural networks?

- A. Adds regularization
- B. Increases the number of dimensions
- C. Invokes early stopping
- D. Stops the layers from collapsing back into just a linear model

Non-linearity Quiz

Why is it important adding non-linear activation functions to neural networks?

- A. Adds regularization
- B. Increases the number of dimensions
- C. Invokes early stopping
- D. Stops the layers from collapsing back into just a linear model

Our favorite non-linearity is the Rectified Linear Unit

$$f(x) = max(0, x)$$

$$ReLU = f(x) = \begin{cases} 0 & for \ x < 0 \\ x & for \ x \ge 0 \end{cases}$$

$$Softplus = ln(1 + e^x)$$

Leaky ReLU =
$$f(x) = \begin{cases} 0.01x & for \ x < 0 \\ x & for \ x \ge 0 \end{cases}$$

$$PReLU = f(x) = \begin{cases} \alpha x & for \ x < 0 \\ x & for \ x \ge 0 \end{cases}$$

$$ReLU6 = min(max(0, x), 6)$$

$$ELU = f(x) = \begin{cases} \alpha(e^x - 1) & for \ x < 0 \\ x & for \ x \ge 0 \end{cases}$$

Neural Nets Can Be Arbitrarily Complex

Neural Nets Can Be Arbitrarily Complex

Neural Nets Can Be Arbitrarily Complex

Neural Network Complexity Quiz

Neural networks can be arbitrarily complex. To increase hidden dimensions, I can add _____. To increase function composition, I can add _____. If I have multiple labels per example, I can add _____.

- A. Layers, neurons, outputs
- B. Neurons, layers, outputs
- C. Layers, outputs, neurons
- D. Neurons, outputs, layers

Neural Network Complexity Quiz

Neural networks can be arbitrarily complex. To increase hidden dimensions, I can add _____. To increase function composition, I can add _____. If I have multiple labels per example, I can add _____.

- A. Layers, neurons, outputs
- B. Neurons, layers, outputs
- C. Layers, outputs, neurons
- D. Neurons, outputs, layers

Lab

Neural Networks playground

Lab: Neural Networks playground

Solve these problems in two ways: one by feature engineering, the other by adding layers:

https://goo.gl/2eig4q

https://goo.gl/wXbGDW

https://goo.gl/i9r55D

Lab: Neural Networks playground

Camtasia

Training neural networks

DNNRegressor usage is similar to LinearRegressor

Use momentum-based optimizers e.g. Adagrad (the default) or Adam.

Specify number of hidden nodes.

Optionally, can also regularize using dropout

Three common failure modes for gradient descent

Gradients can vanish

Each additional layer can successively reduce signal vs. noise

Using ReLu instead of sigmoid/tanh can help

Problem

Insight

Solution

Three common failure modes for gradient descent

Gradients can vanish	Gradients can explode	Problem
Each additional layer can successively reduce signal vs. noise	Learning rates are important here	Insight
Using ReLu instead of sigmoid/tanh can help	Batch normalization (useful knob) can help	Solution

Three common failure modes for gradient descent

Gradients can vanish	Gradients can explode	ReLu layers can die	Problem
Each additional layer can successively reduce signal vs. noise	Learning rates are important here	Monitor fraction of zero weights in TensorBoard	Insight
Using ReLu instead of sigmoid/tanh can help	Batch normalization (useful knob) can help	Lower your learning rates	Solution

There are benefits if feature values are small numbers

Roughly zero-centered, [-1, 1] range often works well

There are benefits if feature values are small numbers

Roughly zero-centered, [-1, 1] range often works well

Small magnitudes help gradient descent converge and avoid NaN trap

There are benefits if feature values are small numbers

Roughly zero-centered, [-1, 1] range often works well

Small magnitudes help gradient descent converge and avoid NaN trap

Avoiding outlier values helps with generalization

We can use standard methods to make feature values scale to small numbers

We can use standard methods to make feature values scale to small numbers

We can use standard methods to make feature values scale to small numbers

Linear scaling

Hard cap (clipping) to max, min

Log scaling

Gradient Descent Debugging Quiz

Which of these is good advice if my model is experiencing exploding gradients?

- A. Lower the learning rate
- B. Add weight regularization
- C. Add gradient clipping
- D. Add batch normalization
- E. See a doctor
- F. C,D
- G. A,C,D
- H. A,B,C,D

Gradient Descent Debugging Quiz

Which of these is good advice if my model is experiencing exploding gradients?

- A. Lower the learning rate
- B. Add weight regularization
- C. Add gradient clipping
- D. Add batch normalization
- E. See a doctor
- F. C,D
- G. A,C,D
- H. A,B,C,D

Dropout layers are a form of regularization

Dropout works by randomly "dropping out" unit activations in a network for a single gradient step

During training only!
In prediction all nodes are kept

Helps learn "multiple paths" --think: ensemble models,
random forests

Dropout simulates ensemble learning

The more you drop out, the stronger the regularization

Dropout Quiz

Dropout acts as	s another form of	It forces data to flo	w down
paths so	that there is a more	even spread. It also sim	ulates
learning.	Don't forget to scale	e the dropout activation	is by the
inverse of the _	. We remove dro	opout during	

- A. Hyperparameter tuning, similar, deep, drop probability, training
- B. Hyperparameter tuning, multiple, deep, drop probability, inference
- C. Regularization, multiple, ensemble, keep probability, training
- D. Regularization, multiple, ensemble, drop probability, inference
- E. Regularization, multiple, ensemble, keep probability, inference
- F. Hyperparameter tuning, multiple, deep, keep probability, inference
- G. Regularization, similar, ensemble, keep probability, inference

Dropout Quiz

- A. Hyperparameter tuning, similar, deep, drop probability, training
- B. Hyperparameter tuning, multiple, deep, drop probability, inference
- C. Regularization, multiple, ensemble, keep probability, training
- D. Regularization, multiple, ensemble, drop probability, inference
- E. Regularization, multiple, ensemble, keep probability, inference
- F. Hyperparameter tuning, multiple, deep, keep probability, inference
- G. Regularization, similar, ensemble, keep probability, inference

Lab

Using Neural Networks to build a ML model

Ryan Gillard

Lab: Using Neural Networks to build ML model

In this lab, you will use the DNNRegressor class in TensorFlow to predict median housing price

The data is based on 1990 census data from California.

This data is at the city block level, so these features reflect the total number of rooms in that block, or the total number of people who live on that block, respectively

Lab: Using Neural Networks to build ML model

Camtasia

Multi-class neural nets

Ryan Gillard

Logistic regression provides useful probabilities for binary-class problems

There are lots of multi-class problems

Pit

Stalls

Circle

Suite

How do we extend the logits idea to multi-class classifiers?

There are lots of multi-class problems

Model 1	
Positive Class	Negative Class
Pit	Other

Model 2	
Positive Class	Negative Class
Stalls	Other

Model 3	
Positive Class	Negative Class
Circle	Other

Model 4	
Positive Class	Negative Class
Suite	Other

There are lots of multi-class problems

Model 1	
Positive Class	Negative Class
Pit	Stalls

Model 2	
Positive Class	Negative Class
Pit	Circle

Model 3	
Positive Class	Negative Class
Pit	Suite

Model 4	
Positive Class	Negative Class
Stalls	Circle

Model 5	
Positive Class	Negative Class
Stalls	Suite

Model 6	
Positive Class	Negative Class
Circle	Suite

Idea: Use separate output nodes for each possible class

Add additional constraint, that total of outputs = 1.0

$$p(y = j | \mathbf{x}) = \frac{exp(\mathbf{w}_j^T \mathbf{x} + b_j)}{\sum_{k \in K} exp(\mathbf{w}_k^T \mathbf{x} + b_k)}$$

Use one softmax loss for all possible classes

Use one softmax loss for all possible classes

Use softmax only when classes are mutually exclusive

"Multi-Class, Single-Label Classification"

An example may be a member of only one class.

Are there multi-class settings where examples may belong to more than one class?

If you have hundreds or thousands of classes, loss computation can become a significant bottleneck

Need to evaluate every output node for every example

Approximate versions of softmax exist

Candidate Sampling calculates for all the positive labels, but only for a random sample of negatives: tf.nn.sampled_softmax_loss

Noise-contrastive approximates the denominator of softmax by modeling the distribution of outputs: tf.nn.nce_loss

Softmax Quiz

```
For our classification output, if we have both mutually exclusive labels and probabilities, we should use _____. If the labels are mutually exclusive, but the probabilities aren't, we should use _____. If our labels aren't mutually exclusive, we should use _____.
```

```
I. tf.nn.sigmoid_cross_entropy_with_logits
II. tf.nn.sparse_softmax_cross_entropy_with_logits
III. tf.nn.softmax_cross_entropy_with_logits_v2
```

- A. III, II, I
- B. I, II, III
- C. III, I, II
- D. II, III, I

Softmax Quiz

```
For our classification output, if we have both mutually exclusive labels and probabilities, we should use _____. If the labels are mutually exclusive, but the probabilities aren't, we should use _____. If our labels aren't mutually exclusive, we should use _____.
```

```
I. tf.nn.sigmoid_cross_entropy_with_logits
II. tf.nn.sparse_softmax_cross_entropy_with_logits
III. tf.nn.softmax cross_entropy_with_logits_v2
```

- A. III, II, I
- B. I, II, III
- C. III, I, II
- D. II, III, I

cloud.google.com