Université François Rabelais de Tours Département de Mathématiques

Td 5: Endomorphismes des espaces euclidiens

Algèbre Semestre 4, 2020

Exercice 1. Soit $E = M_n(\mathbb{R})$, $n \in \mathbb{N}^*$, muni du produit scalaire $\langle A, B \rangle = \operatorname{tr}({}^t\!AB)$. Déterminer l'adjoint f^* de f dans les trois cas suivants :

- 1. $f(A) = {}^{t}A$,
- 2. $f(A) = \frac{A + {}^{t}A}{2}$,
- 3. f(A) = MA avec $M \in M_n(\mathbb{R})$ une matrice donnée.

Exercice 2. Soient f et g deux endomorphismes symétriques d'un espace euclidien $(E, \langle \cdot, \cdot \rangle)$. Prouver l'équivalence $(g \circ f)$ est symétrique $(g \circ f) = (g \circ f)$ est symétrique $(g \circ f) = (g \circ f)$.

Exercice 3. Soit f un endomorphisme d'un espace euclidien $(E, \langle \cdot, \cdot \rangle)$.

- 1. Prouver l'équivalence entre les assertions suivantes :
 - (i) $f^* = -f$,
 - (ii) $\forall x \in E, \langle x, f(x) \rangle = 0$,
 - (iii) $\forall (x,y) \in E^2$, $\langle f(x), y \rangle = -\langle x, f(y) \rangle$,
 - (iv) La matrice représentant f dans une base orthonormée de E est antisymétrique.

Un endomorphisme vérifiant l'une des quatres propositions ci-dessus est dit antisymétrique. On note $\mathcal{A}(E)$ l'ensemble des endomorphismes antisymétriques de E.

- 2. Etablir que $\mathcal{A}(E)$ est un sous-espace vectoriel de L(E) et en donner sa dimension.
- 3. Prouver que le spectre (sur \mathbb{R}) d'un endomorphisme antisymétrique est soit \emptyset soit réduit à $\{0\}$. En déduire qu'un endomorphisme antisymétrique non nul de E n'est jamais diagonalisable.
- 4. Montrer que si $\dim(E)$ est impaire et f un endomorphisme antisymétrique, 0 est valeur propre de f.
- 5. Soit $f \in \mathcal{A}(E)$. Prouver que $\operatorname{Im}(f) = (\operatorname{Ker}(f))^{\perp}$.
- 6. Soient $f, g \in \mathcal{A}(E)$. Montrer que $f \circ g g \circ f \in \mathcal{A}(E)$.

Exercice 4. Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$. A tout $P \in E$, on associe f(P) = X(X-1)P'' + (2X-1)P' = (X(X-1)P')'.

- 1. Prouver que f est un endomorphisme symétrique de E.
- 2. Déterminer la matrice A représentant f dans la base canonique \mathcal{B}_0 de E. Qu'en déduisez-vous pour \mathcal{B}_0 ?

Exercice 5. Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N}^*$ et f un endomorphisme normal de E, c'est-à-dire tel que $f \circ f^* = f^* \circ f$.

- 1. Vérifier que les endomorphismes symétriques, antisymétriques et orthogonaux de E sont normaux.
- 2. Montrer que $f \in L(E)$ est normal si et seulement si $\forall x \in E, \|f(x)\| = \|f^*(x)\|$.
- 3. En déduire que si x est un vecteur propre pour f alors x est également un vecteur propre pour f^* .

Exercice 6. 1. Déterminer les réels a, b, c, d tels que $A = \frac{1}{7} \begin{pmatrix} 6 & 3 & a \\ -2 & 6 & b \\ 3 & d & c \end{pmatrix} \in O_3^+(\mathbb{R}).$

2. Déterminer les matrices réelles orthogonales triangulaires d'ordre 2 puis d'ordre 3.

Exercice 7. Soit A une matrice de $M_n(\mathbb{R})$ symétrique et orthogonale.

1. Caractériser géométriquement l'endomorphisme f de \mathbb{R}^n canoniquement associé à A.

2. Dans les 2 cas suivants, caractériser géométriquement l'endomorphisme f_i de \mathbb{R}^3 canoniquement associé à

$$A_i$$
, avec $A_1 = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1\\ 4 & 7 & 4\\ 1 & 4 & -8 \end{pmatrix}$ et $A_2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 - 1 \end{pmatrix}$.

Exercice 8. Soit f un endomorphisme symétrique d'un espace euclidien $(E, \langle \cdot, \cdot \rangle)$.

1. Démontrer que si $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ désignent les valeurs propres de f (comptées avec multiplicité) alors, pour tout $x \in E$,

$$\lambda_1 \|x\|^2 \le \langle x, f(x) \rangle \le \lambda_n \|x\|^2$$
.

2. En déduire que, si $\lambda_1 > 0$, l'application $b(x,y) = \langle x, f(y) \rangle$ définit un produit scalaire sur E.

Exercice 9. Soit f un endomorphisme d'un espace euclidien $(E, \langle \cdot, \cdot \rangle)$.

- 1. Prouver que $f \circ f^*$ et $f^* \circ f$ sont des endomorphismes symétriques positifs de E.
- 2. Prouver que f est un automorphisme de E si et seulement si l'un ou l'autre des $f \circ f^*$ et $f^* \circ f$ est symétrique défini positif.

Un endomorphisme symétrique g est dit positif si $\langle x, g(x) \rangle \ge 0$ pour tout $x \in E$ et défini positif si, de plus, $\langle x, g(x) \rangle = 0 \Rightarrow x = 0$.

Exercice 10. 1. Diagonaliser en base orthonormée les matrices suivantes :

$$A_1 = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

2. Dans quelle cas la matrice A_i est-elle positive (resp. définie positive) ?

Exercice 11. A toute permutation σ de l'ensemble $\{1,\ldots,n\}$, on associe la matrice (dite de permutation d'ordre n) $P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n}$.

- 1. Lister toutes les matrices de permutation d'ordre 2 et 3. Donner une caractérisation d'une matrice de permutation et prouver que toute matrice de permutation est orthogonale.
- 2. Calculer $P_{\sigma} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. En déduire qu'il existe une valeur propre (et un vecteur propre) commune à toutes les P_{σ} .
- 3. Calculer $P_{\sigma_1}P_{\sigma_2}$ avec $\sigma_1, \sigma_2 \in S_n$. Qu'en déduisez-vous ?
- 4. Calculer $\det(P_{\sigma})$.