Summary

- Every idempotent matrix $P^2 = P$ represents a projection. If, in addition, the matrix is self-adjoint $\langle Px, y \rangle = \langle x, Py \rangle$, then the projection is orthogonal.
- If V is expressible as the direct sum of two subspaces $V_1 \oplus V_2$, then the projection onto V is the sum of the projections onto V_1 and onto V_2 .
- The orthogonal projection $\hat{\boldsymbol{u}}$ of \boldsymbol{u} onto a subspace V has two defining properties: (i.) $\hat{\boldsymbol{u}} \in V$ and (ii.) $\boldsymbol{u} - \hat{\boldsymbol{u}} \in V^{\perp}$.
- Every finite dimensional subspace V of a Hilbert space \mathcal{H} is closed.
- If V is a closed subspace of \mathcal{H} , then for any $u \in \mathcal{H}$, there exists a unique closest element in V to u, and that element is the orthogonal projection \hat{u} .

Direct Sums

Definition 2.0.1. Suppose V_1 and V_2 are linear subspaces. The sum $V = V_1 + V_2$ consists of those vectors $\{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$. If V_1 and V_2 are linearly independent, then V is described as the **direct sum** of V_1 and V_2 , written $V = V_1 \oplus V_2$.

Proposition 2.0.1. If $V = V_1 \oplus V_2$, then any $\mathbf{v} \in V$ has a unique representation $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$.

Proof. Since V is the sum of V_1 and V_2 , there exist $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$ such that $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$. Suppose that there exists another representation $\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2$, then:

$$\mathbf{0} = \mathbf{v} - \mathbf{v} = (\mathbf{v}_1 - \mathbf{u}_1) + (\mathbf{v}_2 - \mathbf{u}_2).$$

But $v_1 - u_1 \in V_1$ and $v_2 - u_2 \in V_2$. By linear independence of V_1 and V_2 , $v_1 - u_1 = 0$ and $v_1 - u_1 = 0$. Conclude the representation of v is unique.

Definition 2.0.2. A basis is a collection B of linearly independent vectors that span a linear space V.

Proposition 2.0.2. Suppose B_1 is a basis for V_1 and B_2 is a basis for V_2 , then the union $B = B_1 \cup B_2$ is a basis for $V = V_1 \oplus V_2$.

Proof. Any $v \in V$ is uniquely expressible as $v_1 + v_2$, where $v_1 \in V_1$ and $v_2 \in V_2$. Since B_1 and B_2 are bases for V_1 and V_2 , v_1 has a unique representation with respect to B_1 , and v_2 has a unique representation with respect to B_2 . Thus v is in the span of $B_1 \cup B_2$. Moreover, since V_1 and V_2 are linearly independent, and B_1 and B_2 are each bases, the collection of vectors $B_1 \cup B_2$ is linearly independent.

Corollary 2.0.1. If
$$V = V_1 \oplus V_2$$
, then $\dim(V) = \dim(V_1) + \dim(V_2)$.

Projections

Definition 3.0.1. Suppose $V = V_1 \oplus V_2$, then every $\mathbf{v} \in V$ has a uniform representation $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$. The mapping $\Pi(\mathbf{v}|V_1) = \mathbf{v}_1$ is the **projection** of \mathbf{v} onto \mathbf{V}_1 . Likewise, $\Pi(\mathbf{v}|V_2) = \mathbf{v}_2$ is the projection of \mathbf{v} onto V_2 .

Proposition 3.0.1. Suppose $V = V_1 \oplus V_2$, and $\boldsymbol{v} \in V$. The projection $\Pi(\boldsymbol{v}|V_1)$ of \boldsymbol{v} onto V_1 is a linear mapping.

Proof. Suppose \boldsymbol{u} and \boldsymbol{v} are in V, then $\boldsymbol{u} = \boldsymbol{u}_1 + \boldsymbol{u}_2$ and $\boldsymbol{v} = \boldsymbol{v}_1 + \boldsymbol{v}_2$, with $\boldsymbol{u}_k, \boldsymbol{v}_k \in V_k$. Consider the sum $\boldsymbol{w} \equiv \boldsymbol{u} + \boldsymbol{v} = (\boldsymbol{u}_1 + \boldsymbol{v}_1) + (\boldsymbol{u}_2 + \boldsymbol{v}_2)$. Observe that $\boldsymbol{w}_k = \boldsymbol{u}_k + \boldsymbol{v}_k \in V_k$. Since this representation is unique:

$$\Pi(\boldsymbol{u} + \boldsymbol{v}|V_1) = \Pi(\boldsymbol{w}|V_1) = \boldsymbol{w}_1 = \boldsymbol{u}_1 + \boldsymbol{v}_1 = \Pi(\boldsymbol{u}|V_1) + \Pi(\boldsymbol{v}|V_1).$$

Corollary 3.0.1. $\Pi(\cdot|V_1)$ is expressible as a projection matrix P.

Proposition 3.0.2. Suppose $V = V_1 \oplus V_2$, and $v \in V$. The projection $\Pi(v|V_1)$ mapping is **idempotent**. Consequently, $P^2 = P$.

Proof. The projection of v onto V_1 is:

$$\Pi(\boldsymbol{v}|V_1) = \boldsymbol{v}_1 = \boldsymbol{P}\boldsymbol{v}.$$

Since v_1 already belongs to V_1 , upon projecting again:

$$PPv = Pv_1 = \Pi(v_1|V_1) = v_1 = Pv.$$

Since $P^2v = Pv$ holds for $\forall v \in V$, conclude that $P^2 = P$.

Proposition 3.0.3. Suppose $V = V_1 \oplus V_2$, and $v \in V$. Let P denote projection onto V_1 . Then, Q = I - P is projection onto V_2 and PQ = QP = 0.

Proof. The projection onto V_2 is:

$$\Pi(\boldsymbol{v}|V_2) = \boldsymbol{v}_2 = \boldsymbol{v} - \boldsymbol{v}_1 = \boldsymbol{v} - \Pi(\boldsymbol{v}|V_1) = \boldsymbol{v} - \boldsymbol{P}\boldsymbol{v} = (\boldsymbol{I} - \boldsymbol{P})\boldsymbol{v}.$$

Let Q = I - P, such that $Qv = v - Pv = v - v_1 = v_2 = \Pi(v|V_2)$. By direct calculation:

$$PQ = P(I - P) = P - P^2 = P - P = 0.$$

Likewise, $\mathbf{Q}\mathbf{P} = (\mathbf{I} - \mathbf{P})\mathbf{P} = \mathbf{P} - \mathbf{P}^2 = \mathbf{P} - \mathbf{P} = \mathbf{0}$. Thus:

$$\Pi\big\{\Pi(\boldsymbol{v}|V_1)|V_2\big\}=\boldsymbol{0}=\Pi\big\{\Pi(\boldsymbol{v}|V_2)|V_1\big\}$$

when V_1 is linearly independent of V_2 , or equivalently when $V_1 \cap V_2 = \{0\}$.

Proposition 3.0.4. Suppose $v \in V$ and $P^2 = P$, then $V = V_1 \oplus V_2$ where $V_1 = \operatorname{im}(P)$ and $V_2 = \operatorname{im}(I - P)$.

Proof. Any \boldsymbol{v} in V is expressible as:

$$v = (I - P + P)v = (I - P)v + Pv.$$

Thus $V = V_2 + V_1$. To verify that V is the direct sum, it suffices to show $V_1 \cap V_2 = \{0\}$. Suppose $\mathbf{u} \in V_1 \cap V_2$. Since $\mathbf{u} \in V_2$, there exists a coefficient vector $\boldsymbol{\alpha}$ such that $\mathbf{u} = (\mathbf{I} - \mathbf{P})\boldsymbol{\alpha}$. Moreover, since $\mathbf{u} \in V_1$, $\mathbf{u} = \mathbf{P}\mathbf{u}$. Now:

$$u = Pu = P(I - P)\alpha = (P - P^{2})\alpha = (P - P)\alpha = 0.$$

Proposition 3.0.5. All eigenvalues of a projection matrix are either 0 or 1.

Proof. Suppose P is a projection matrix with eigenvector u, then $Pu = \lambda u$ for some eigenvalue λ . Left multiplying by P:

$$\mathbf{P}^2\mathbf{u} = \mathbf{P}\lambda\mathbf{u} = \lambda\mathbf{P}\mathbf{u} = \lambda^2\mathbf{u}.$$

Yet by idempotency of P, $P^2u = Pu = \lambda u$. Thus $\lambda u = \lambda^2 u$, so $\lambda \in \{0, 1\}$.

Hilbert Space

Definition 4.0.1 (Hilbert Space). A Hilbert space \mathcal{H} is a complete linear space with an inner product norm:

$$||\boldsymbol{v}||^2 = \langle \boldsymbol{v}, \boldsymbol{v} \rangle, \text{ for } \boldsymbol{v} \in \mathcal{H}.$$

Euclidean space is a finite dimensional Hilbert space.

4.1 Orthogonal Complement

Definition 4.1.2. The **orthogonal complement** V^{\perp} to a subspace V consists of those vectors orthogonal to each element of V:

$$V^{\perp} = \big\{ \boldsymbol{u} \in \boldsymbol{\Omega} : \langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0 \text{ for } \forall \boldsymbol{v} \in V \big\}.$$

Proposition 4.1.1. The orthogonal complement V^{\perp} is (always) a closed subspace. \blacklozenge

Proof. Suppose $v \in V$. If u_1 and u_2 are two vectors in V^{\perp} , then any linear combination $u = \alpha_1 u_1 + \alpha_2 u_2$ remains in V^{\perp} since:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \alpha_1 \langle \boldsymbol{u}_1, \boldsymbol{v} \rangle + \alpha_2 \langle \boldsymbol{u}_2, \boldsymbol{v} \rangle = 0.$$

Suppose (u_n) is a Cauchy sequence in V^{\perp} , then (u_n) converges to some limit u. By continuity of the inner product:

$$\langle oldsymbol{u}, oldsymbol{v}
angle = \lim_{n o \infty} \langle oldsymbol{u}_n, oldsymbol{v}
angle = oldsymbol{0}.$$

Proposition 4.1.2. The following inclusions hold:

- i. $V \subseteq V^{\perp \perp}$.
- ii. If $U \subseteq V$, then $V^{\perp} \subseteq U^{\perp}$.

Proof. (i.) If $\mathbf{v} \in V$, then $\langle \mathbf{v}, \mathbf{u} \rangle = 0$ for $\forall \mathbf{u} \in V^{\perp}$, therefore $\mathbf{v} \in V^{\perp \perp}$.

(ii.) If $\mathbf{v}_{\perp} \in V^{\perp}$, then \mathbf{v}_{\perp} is orthogonal to each \mathbf{v} in V. Now $U \subseteq V$, so \mathbf{v}_{\perp} is orthogonal to each $\mathbf{u} \in U$. Conclude $\mathbf{v}_{\perp} \in U^{\perp}$.

4.2 Finite Closure

Theorem 4.2.1. Suppose V is a *finite* subspace of a Hilbert space \mathcal{H} , then V is complete, and therefore closed.

Proof. Suppose V is a finite dimensional subspace with basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$, then every $\mathbf{v} \in V$ is expressible as $\mathbf{v} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$ for some coefficients $(\alpha_1, \dots, \alpha_n)$. There exists a bijection $T: V \to \mathbb{F}^n$ such that $T(\mathbf{v}) = (\alpha_1, \dots, \alpha_n)$, where \mathbf{F} is a complete field. Moreover, this mapping is linear since:

$$T(\boldsymbol{v}_1+\boldsymbol{v}_2)=(\alpha_1+\beta_1,\cdots,\alpha_n+\beta_n)=(\alpha_1,\cdots,\alpha_n)+(\beta_1,\cdots,\beta_n)=T(\boldsymbol{v}_1)+T(\boldsymbol{v}_2).$$

Suppose (v_n) is a Cauchy sequence in V. For $\epsilon > 0$, define $\delta = \epsilon/||T||$, where:

$$||T|| = \sup_{\{v \neq 0\}} \frac{||T(x)||}{||x||}.$$

Since v_n is Cauchy, there exist a threshold ν such that when $n, m \geq \nu$:

$$||\boldsymbol{v}_n - \boldsymbol{v}_m|| < \frac{\epsilon}{||T||}.$$

Updated: Mar 2020

Now for $n, m \ge \nu$:

$$||T(\boldsymbol{v}_n) - T(\boldsymbol{v}_m)|| = ||T(\boldsymbol{v}_n - \boldsymbol{v}_m)|| \le ||T|| \cdot ||\boldsymbol{v}_n - \boldsymbol{v}_m|| = \epsilon.$$

Conclude that $\{T_n \equiv T(\boldsymbol{v}_n)\}$ is Cauchy. Since \mathbb{F}^n is complete, (T_n) converges to some limit $T_0 \in \mathbb{F}^n$, and:

$$\lim_{n\to\infty} ||T(\boldsymbol{v}_n) - T_0|| = 0.$$

Since T is a bijection, there exists $v_0 \in V$ such that $T(v_0) = T_0$. Now:

$$0 \le \lim_{n \to \infty} ||\boldsymbol{v}_n - \boldsymbol{v}_0|| = \lim_{n \to \infty} ||T^{-1}T(\boldsymbol{v}_n) - T^{-1}T_0|| \le ||T^{-1}|| \lim_{n \to \infty} ||T(\boldsymbol{v}_n) - T_0|| = 0.$$

Since (\boldsymbol{v}_n) converges to a limit in V, conclude that V is complete.

Orthogonal Projection

Definition 5.0.1. Let V denote a closed subspace of a Hilbert space \mathcal{H} . The **orthogonal** projection of $u \in \mathcal{H}$ onto V is the element $\Pi_0(u|V)$ with these properties:

- i. the projection resides in $V: \Pi_0(\boldsymbol{u}|V) \in V$.
- ii. the residual is orthogonal to $V: \mathbf{u} \Pi_0(\mathbf{u}|V) \in V^{\perp}$.

Remark 5.0.1. The notation Π_0 distinguishes the orthogonal projection from the potentially oblique projection Π .

Lemma 5.0.1.

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$
 (5.0.1)

Proof is by direct expansion.

Theorem 5.0.1 (Projection Theorem). Suppose V is a closed subspace of a Hilbert space \mathcal{H} . For any $u \in \mathcal{H}$, there exists a unique closest element in V to u:

$$\hat{\boldsymbol{u}} = \arg\min_{\boldsymbol{v} \in V} ||\boldsymbol{v} - \boldsymbol{u}||^2,$$

and $\hat{\boldsymbol{u}}$ is the *orthogonal projection* of \boldsymbol{u} onto V.

Proof. (EXISTENCE) If $\mathbf{u} \in V$, then $\hat{\mathbf{u}} = \mathbf{u}$. Suppose not. Let $\delta^2 = \inf_{\mathbf{v} \in V} ||\mathbf{v} - \mathbf{u}||^2$. Construct a sequence $\mathbf{v}_n \in V$ such that:

$$||\boldsymbol{v}_n - \boldsymbol{u}||^2 \le \delta^2 + \frac{1}{n}.$$

By (5.0.1):

$$||(\boldsymbol{v}_n - \boldsymbol{u}) + (\boldsymbol{u} - \boldsymbol{v}_m)||^2 + ||(\boldsymbol{v}_n - \boldsymbol{u}) - (\boldsymbol{u} - \boldsymbol{v}_m)||^2 = 2||\boldsymbol{v}_n - \boldsymbol{u}||^2 + 2||\boldsymbol{u} - \boldsymbol{v}_m||^2$$

Upon rearranging:

$$||\boldsymbol{v}_n - \boldsymbol{v}_m||^2 + 4 \left| \left| \frac{\boldsymbol{v}_n + \boldsymbol{v}_m}{2} - \boldsymbol{u} \right| \right|^2 = 2||\boldsymbol{v}_n - \boldsymbol{u}||^2 + 2||\boldsymbol{u} - \boldsymbol{v}_m||^2,$$

 $||\boldsymbol{v}_n - \boldsymbol{v}_m||^2 = 2||\boldsymbol{v}_n - \boldsymbol{u}||^2 + 2||\boldsymbol{u} - \boldsymbol{v}_m||^2 - 4 \left| \left| \frac{\boldsymbol{v}_n + \boldsymbol{v}_m}{2} - \boldsymbol{u} \right| \right|^2.$

Now, for all $(n,m) \in \mathbb{N}^2$, the midpoint $\boldsymbol{\mu}_{nm} = (\boldsymbol{v}_n + \boldsymbol{v}_m)/2$ is in V since V is convex. Therefore, $||\boldsymbol{\mu}_{nm} - \boldsymbol{u}||^2 \geq \delta^2$, and:

$$||\boldsymbol{v}_n - \boldsymbol{v}_m||^2 \le 2||\boldsymbol{v}_n - \boldsymbol{u}||^2 + 2||\boldsymbol{v}_m - \boldsymbol{u}||^2 - 4\delta^2.$$

By construction $\lim_{n\to\infty} ||\boldsymbol{v}_n-\boldsymbol{u}||^2 = \delta^2$, thus:

$$\lim_{(n,m)\to\infty} ||\boldsymbol{v}_n - \boldsymbol{v}_m||^2 \le 2\delta^2 + 2\delta^2 - 4\delta^2 = 0.$$

Conclude that (\boldsymbol{v}_n) is a Cauchy sequence. Since V is a closed subspace of a Hilbert space, (\boldsymbol{v}_n) converges to a limit in V. Call this limit $\hat{\boldsymbol{u}}$. By continuity of the norm:

$$||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 = \lim_{n \to \infty} ||\boldsymbol{v}_n - \boldsymbol{u}||^2 \le \lim_{n \to \infty} \left(\delta^2 + \frac{1}{n}\right) = \delta^2.$$

Moreover since $\hat{\boldsymbol{u}} \in V$, $||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 \ge \delta^2$ by definition of the infimum. Conclude that $||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 = \delta^2$, and therefore $\hat{\boldsymbol{u}} = \arg\min_{\boldsymbol{v} \in V} ||\boldsymbol{v} - \boldsymbol{u}||^2$.

(ORTHOGONAL PROJECTION) Since $\hat{\boldsymbol{u}}$ is in V, to establish $\hat{\boldsymbol{u}}$ is the orthogonal projection of \boldsymbol{u} onto V, it remains to show that $\boldsymbol{u} - \hat{\boldsymbol{u}}$ is in V^{\perp} . Suppose to the contrary that there exists \boldsymbol{v} in V not orthogonal to $\boldsymbol{u} - \hat{\boldsymbol{u}}$. WLOG let $||\boldsymbol{v}||^2 = 1$, and set $\theta = \langle \boldsymbol{u} - \hat{\boldsymbol{u}}, \boldsymbol{v} \rangle$. Define $\tilde{\boldsymbol{u}} = \theta \boldsymbol{v} + \hat{\boldsymbol{u}}$, which is in V. Then:

$$||\tilde{\boldsymbol{u}} - \boldsymbol{u}||^2 = ||\theta \boldsymbol{v} + \hat{\boldsymbol{u}} - \boldsymbol{u}||^2 = ||\theta \boldsymbol{u}||^2 + ||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 + 2\theta \langle \boldsymbol{v}, \hat{\boldsymbol{u}} - \boldsymbol{u} \rangle$$
$$= \theta^2 + ||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 - 2\theta^2 = ||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2 - \theta^2 \le ||\hat{\boldsymbol{u}} - \boldsymbol{u}||^2.$$

Thus, if $\boldsymbol{u} - \hat{\boldsymbol{u}}$ is not in V^{\perp} , then $\hat{\boldsymbol{u}}$ is not the closest point in V to \boldsymbol{u} . Since $\hat{\boldsymbol{u}} \in V$ and $\boldsymbol{u} - \hat{\boldsymbol{u}} \in V^{\perp}$ if $\hat{\boldsymbol{u}} = \arg\min_{\boldsymbol{v} \in V} ||\boldsymbol{v} - \boldsymbol{u}||^2$, conclude that $\hat{\boldsymbol{u}} = \Pi_0(\boldsymbol{u}|V)$.

(UNIQUENESS) Suppose $\hat{\boldsymbol{u}}_1$ and $\hat{\boldsymbol{u}}_2$ are both orthogonal projections of \boldsymbol{u} onto V, then $\boldsymbol{u} - \hat{\boldsymbol{u}}_1 \in V^{\perp}$ and $\boldsymbol{u} - \hat{\boldsymbol{u}}_2 \in V^{\perp}$. Thus $(\boldsymbol{u} - \hat{\boldsymbol{u}}_1) - (\boldsymbol{u} - \hat{\boldsymbol{u}}_2) = \hat{\boldsymbol{u}}_2 - \hat{\boldsymbol{u}}_1 \in V^{\perp}$. But $\hat{\boldsymbol{u}}_2 \in V$ and $\hat{\boldsymbol{u}}_1 \in V$, so $\hat{\boldsymbol{u}}_2 - \hat{\boldsymbol{u}}_1 \in V \cap V^{\perp} = \{\boldsymbol{0}\}$. Conclude $\hat{\boldsymbol{u}}_1 = \hat{\boldsymbol{u}}_2$.

Corollary 5.0.1. If V is a closed linear subspace of a Hilbert space \mathcal{H} , then:

$$\mathcal{H} = V \oplus V^{\perp}$$
.

Proposition 5.0.1. Suppose V is a closed subspace of Hilbert space \mathcal{H} and that V is the direct sum of two orthogonal subspaces: $V = V_0 \oplus V_1$ with $V_0 \perp V_1$. Then, for any $u \in \mathcal{H}$, the projection onto V is the sum of the projections onto V_0 and onto V_1 :

$$\Pi_0(\boldsymbol{u}|V) = \Pi_0(\boldsymbol{u}|V_0) + \Pi_0(\boldsymbol{u}|V_1).$$

Proof. Let $\hat{\boldsymbol{u}}_0$ and $\hat{\boldsymbol{u}}_1$ denote orthogonal projection onto V_0 and V_1 . Consider the sum $\hat{\boldsymbol{u}} = \hat{\boldsymbol{u}}_0 + \hat{\boldsymbol{u}}_1$. Since $V = V_0 \oplus V_1$, $\hat{\boldsymbol{u}} \in V$. Moreover, for any $\boldsymbol{v} = \boldsymbol{v}_0 + \boldsymbol{v}_1 \in V$:

$$egin{aligned} \langle oldsymbol{u} - \hat{oldsymbol{u}}, oldsymbol{v}
angle &= \langle oldsymbol{u} - \hat{oldsymbol{u}}_0 - \hat{oldsymbol{u}}_1, oldsymbol{v}_0
angle - \langle \hat{oldsymbol{u}}_1, oldsymbol{v}_0
angle + \langle oldsymbol{u} - \hat{oldsymbol{u}}_1, oldsymbol{v}_1
angle - \langle \hat{oldsymbol{u}}_0, oldsymbol{v}_1
angle = oldsymbol{0}. \end{aligned}$$

Since $\hat{\boldsymbol{u}} \in V$ and $\boldsymbol{u} - \hat{\boldsymbol{u}} \in V^{\perp}$, $\hat{\boldsymbol{u}}$ is the orthogonal projection onto V.

Proposition 5.0.2. Suppose P is the matrix for orthogonal projection onto a closed linear subspace V. P is self-adjoint:

$$\langle \boldsymbol{P}\boldsymbol{u}_1, \boldsymbol{u}_2 \rangle = \langle \boldsymbol{P}\boldsymbol{u}_1, \boldsymbol{P}\boldsymbol{u}_2 \rangle = \langle \boldsymbol{u}_1, \boldsymbol{P}\boldsymbol{u}_2 \rangle.$$

Proof. Since $u_2 = Pu_2 + (I - P)u_2$ with $Pu_2 = \hat{u}_2 \in V$ and $(I - P)u_2 = u_2 - \hat{u}_2 \in V^{\perp}$,

$$\langle Pu_1, u_2 \rangle = \langle Pu_1, Pu_2 + (I - P)u_2 \rangle = \langle Pu_1, Pu_2 \rangle.$$

Writing $u_1 = Pu_1 + (I - P)u_1$ likewise gives:

$$\langle u_1, Pu_2 \rangle = \langle Pu_1 + (I - P)u_1, Pu_2 \rangle = \langle Pu_1, Pu_2 \rangle.$$

Corollary 5.0.2. For Euclidean space:

$$u_1'P'u_2 = \langle Pu_1, u_2 \rangle = \langle u_1, Pu_2 \rangle = u_1'Pu_2.$$

That is, \boldsymbol{P} is symmetric.

5.1 Euclidean Space

Proposition 5.1.3. Suppose $V_0 \subseteq V$ are closed linear subspaces of Euclidean space. Let P_0 and P denote orthogonal projection onto V_0 and V, then:

$$\boldsymbol{P}\boldsymbol{P}_0 = \boldsymbol{P}_0 = \boldsymbol{P}_0\boldsymbol{P}.$$

That is, projection onto V_0 is equivalent to projection onto V, followed by projection onto $V_0 \subseteq V$. The operator P_0P is an *iterated projection*.

Proof. For any $v \in \mathcal{H}$, since $P_0v \in V_0 \subseteq V$, $P(P_0v) = P_0v$. Thus, $PP_0 = P_0$. Further, since P_0 and P are symmetric in Euclidean space:

$$P_0 = P'_0 = (PP_0)' = P'_0P' = P_0P.$$

Proposition 5.1.4. Suppose $V_0 \subseteq V$ are closed linear subspaces of Euclidean space. Let P_0 and P denote orthogonal projection onto V_0 and V. Define V_1 as the subspace of V that is orthogonal to V_0 , $V_1 = V_0^{\perp} \cap V$. Then:

- i. $V = V_0 \oplus V_1$ with $V_0 \perp V_1$.
- ii. $P_1 = P P_0$, where P_1 is orthogonal projection onto V_1 .

Proof. (i.) Suppose $\mathbf{v} \in V$, and let $\hat{\mathbf{v}}_0 = \mathbf{P}_0 \mathbf{v}$. Since $\mathbf{v} - \hat{\mathbf{v}}_0 \in V$ and $\mathbf{v} - \hat{\mathbf{v}}_0 \in V_0^{\perp}$, $\mathbf{v} - \hat{\mathbf{v}}_0 \in V_1$. Writing $\mathbf{v} = \hat{\mathbf{v}}_0 + (\mathbf{v} - \hat{\mathbf{v}}_0)$ demonstrates $\mathbf{v} \in V_0 + V_1$. Conversely, since $V_0 \subseteq V$ and $V_1 \subseteq V$, $V_0 + V_1 \subseteq V$. Moreover, since $V_1 = V_0^{\perp} \cap V \subseteq V_0^{\perp}$, $V_1 \perp V_0$, and the sum $V = V_0 \oplus V_1$ is direct.

(ii.) Since V is the direct sum of two orthogonal subspaces, the orthogonal projection onto V is expressible as $\mathbf{P} = \mathbf{P}_0 + \mathbf{P}_1$.

Example 5.1.1. Suppose \mathbb{E}^n is Euclidean space and $V \subset \mathbb{E}^n$ is a linear subspace, then \mathbb{E}^n is expressible as $V \oplus V^{\perp}$. Every $\mathbf{u} \in \mathbb{E}^n$ is uniquely expressible as $\hat{\mathbf{u}} + \mathbf{u}_{\perp}$, where $\hat{\mathbf{u}} = \mathbf{P}\mathbf{u}$ is the orthogonal projection onto V, and $\mathbf{v}_{\perp} = (\mathbf{I} - \mathbf{P})\mathbf{u}$ is the orthogonal projection onto V^{\perp} . The orthogonal projections are guaranteed to exist to by closure of V and V^{\perp} . Moreover, the two projections are orthogonal $\langle \hat{\mathbf{u}}, \mathbf{u}_{\perp} \rangle = 0$.