VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung	3
	3.1 Emissionsspektrum von Kupfer	3
	3.2 Transmission T des Aluminium absorbers	3
	3.3 Ermittlung der Compton-Wellenlänge	5
4	Diskussion	6
	4.1 Emissionsspektrum	6
	4.2 Compton-Wellenlänge	6

1 Theorie

2 Durchführung

3 Auswertung

Im folgenden wird mit den Konstanten

$$h = 4,136 \cdot 10^{-15} eVs$$
$$c = 2,99 \cdot 10^8 m/s$$
$$d = 201, 4 \cdot 10^{-12} m$$

gerechnet. h ist das Planck'sche Wirkungsquantum, c die Lichtgeschwindigkeit, d die Gitterkonstante des Lithium-Flourid-Kristalls.

Die Beugungsordnung n beträgt n = 1.

3.1 Emissionsspektrum von Kupfer

In Abbildung 1 ist das Bremsspektrum der Röntgenstrahlung, die auf das Kupfer trifft, zu sehen.

Es wird die Zählrate N der Impulse pro Sekunde gegen die Wellenlänge λ in Metern aufgetragen.

Es sind die Peaks K_{α} und K_{β} bei den Winkeln $\alpha(K_{\alpha})=22,5^{\circ}$ und $\alpha(K_{\beta})=20,02^{\circ}$ zu erkennen.

Mit Hilfe der Formel — lassen sich die zu den Peaks gehörigen Energien

$$E(K_{\alpha}) = (8043 \pm 34)eV$$

 $E(K_{\beta}) = (8910 \pm 40)eV$

3.2 Transmission T des Aluminiumabsorbers

Die Funktion der Transmisson $T(\lambda)$ beschreibt die Transmission der Röntgenstrahlung durch die Aluminiumplatte des Aufbaus in Abhängigkeit von der Wellenlänge.

Es wird die Totzeit τ des Geiger-Müller-Zählrohrs als $\tau=90\cdot 10^{-6}$ angenommen. Die Integrationszeit der einzelnen Messungen lautet t=200s. Es gilt der Fehler $\Delta N=\frac{\sqrt{N\cdot t}}{t}$.

Die Ausgleichsgerade in Abbildung 2 hat eine Gleichung der Form $T(\lambda) = a \cdot \lambda + b$ mit den Parametern $a = (-1, 519 \pm 0, 024) \cdot 10^{10} m^{-1}$ und $b = 1, 225 \pm 0, 014$.

Abbildung 1: Das Emissionsspektrum von Kupfer mit gekennzeichneten Peaks. Der erste Peak stellt K_β dar, der zweite K_α .

Abbildung 2: Die Transmission T in Abhängigkeit der Wellenlänge λ mit linearer Ausgleichsgeraden.

Abbildung 3: Die Transmission T in Abhängigkeit der Wellenlänge λ mit linearer Ausgleichsgeraden und Fehlerbalken.

3.3 Ermittlung der Compton-Wellenlänge

Die Intensität $I_0=2731\pm50$ wird ohne Absorber, $I_1=1180\pm34$ und $I_2=1024\pm32$ mit Aluminiumabsorber zwischen Röntgenröhre und Plexiglas-Streuer bzw. zwischen Plexiglas-Streuer und Geiger-Müller-Zählrohr gemessen.

Die dazugehörige Integrationszeit beträgt t = 300s.

Aus den Intensitäten lassen sich die Transmissionen der Aufbauten mit ---- berechnen.

Diese ergeben sich zu $T_1=0,423\pm0,015$ und $T_2=0,375\pm0,014.$

Schleißlich wird die Compton-Wellenlängen λ_C aus den Transmissionen und den Parametern der Ausgleichsgerade in Abbildung 2 bestimmt. Mit

$$\lambda = \frac{T - b}{a}$$

ergeben sich

$$\begin{split} \lambda_1 &= (52, 2 \pm 1, 6) \cdot 10^{-12} m \\ \lambda_2 &= (55, 9 \pm 1, 6) \cdot 10^{-12} m, \end{split}$$

sodass die Compton-Wellenlänge sich auf $\lambda_C=\lambda_2-\lambda_1=(3,8\pm1,1)\cdot 10^{-12}m$ beläuft.

4 Diskussion

4.1 Emissionsspektrum

$$E(K_{\alpha,exp}) = 8043eV$$
 $E(K_{\alpha,lit}) = 8048, 1$ $E(K_{\beta,exp}) = 8910eV$ $E(K_{\beta,lit}) = 8906, 9$

Somit liegen die experimentiell bestimmten Werte mit einer prozentualen Abweichung von jeweils 0,1% auffällig genau an den Literaturwerten.

Dies bestätigt die Eignung des Versuchsaufbaus zur Bestimmung des Emissionsspektrums. Da die Messung mit einem Röntgenapparat durchgeführt wird, welcher auch die Winkel des LiF-Kristalls einstellt, ist mit kleinen systematischen Fehlern zu rechnen.

4.2 Compton-Wellenlänge

$$\lambda_{C.theo} = 2,42 \cdot 10^{-12} m \qquad \qquad \lambda_{C.exp} = 3,8 \cdot 10^{-12} m$$

Hier beläuft sich die prozentuale Abweichung auf den sehr hohen Wert von 54,9%. Eine solche Abweichung könnte auf einen Fehler in der Erhebung der Messwerte hindeuten, was jedoch nicht untersucht werden kann, da der Versuch nicht selbst durchgeführt wurde.

Der Compton-Effekt findet nicht im sichtbaren Spektrum statt, da die Zunahme der Wellenlänge relativ zur Wellenlänge geringfügig ist.

Darum scheint die Streuung ohne Energieverlust zu passieren und es ist kein Compton-Effekt wahrzunehmen.

Bei Wellenlängen im sichtbaren Bereich würde die Wechselwirkung mit Elektronen zu andern Effekten führen.