Αναγνώριση Προτύπων

Επιλογή Χαρακτηριστικών PCA - ISOMAP

Ανδρέας Λ. Συμεωνίδης

Αν. Καθηγητής

Τμήμα Ηλεκτρολόγων Μηχ/κών &

Μηχ/κών Υπολογιστών, Α.Π.Θ.

Email: asymeon@eng.auth.gr

Διάρθρωση διάλεξης

- Ανάλυση κύριων συνιστωσών Principal Component Analysis (PCA) και SVD
- Ισομετρική αντιστοίχιση χαρακτηριστικών Isometric Feature Mapping (ISOMAP) και LLE

Η κατάρα της διαστασιμότητας

- Όταν αυξάνονται οι διαστάσεις, τα δεδομένα γίνονται αυξανόμενα αραιά
- Οι ορισμοί πυκνότητας και απόστασης ανάμεσα στα σημεία τα οποία είναι σημαντικά κριτήρια για ομαδοποίηση και ανίχνευσης outliers, χάνουν το νόημά τους

- Δημουργήστε τυχαία 500 σημεία
- Υπολογίστε την max και min απόσταση ανάμεσα σε οποιοδήποτε ζεύγος σημείων

Μείωση διαστάσεων

- Ο στόχος
 - Οι γεμάτες ουσία δομές χαμηλών διαστάσεων, κρυμμένες μέσα στις υψηλών διαστάσεων παρατηρήσεις τους.
- Κλασικές τεχνικές
 - PCA (Principle Component Analysis)
 - διατηρεί τη διακύμανση
 - MDS (MultiDimensional Scaling)
 - ISOMAP
 - διατηρεί την απόσταση μεταξύ των σημείων
 - LLE (Locally Linear Embedding)

Δεδομένα σε μορφή πίνακα

- Έστω n εγγραφές με d numerical χαρακτηριστικά. Άρα, κάθε εγγραφή περιγράφεται από d αριθμητικές τιμές.
- Αναπαριστούμε τα δεδομένα ως έναν n×d πίνακα A με πραγματικούς αριθμούς.
 - Μπορούμε να χρησιμοποιήσουμε εργαλεία γραμμικής άλγεβρας για να επεξεργαστούμε τον πίνακα
- Στόχος μας είναι να δημιουργήσουμε έναν νέο n×k πίνακα B τέτοιον ώστε:
 - Να διατηρεί όσο περισσότερη πληροφορία από τον αρχικό πίνακα Α
 - Να αποκαλύπτει κάτι από τη δομή των δεδομένων του πίνακα Α

Λίγο από γραμμική άλγεβρα...

- Υποθέτουμε ότι τα διανύσματα είναι διανύσματα στήλη.
- Ορίζουμε ως x^T για τον ανάστροφο του διανύσματος x (διάνυσμα γραμμή)
- Εσωτερικό γινόμενο: $u^T x$ (1×n, n×1 \rightarrow 1×1)
 - Το εσωτερικό γινόμενο είναι η προβολή του διανύσματος x στο u (και αντίστροφα)
- $[1,2,3] \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = 12$
- $u^T x = ||x|| ||u|| \cos(u, x)$
 - Εάν ||u|| = 1 (μοναδιαίο διάνυσμα) τότε το $u^T x$ είναι το μήκος προβολής του x στο u
- $\text{Εάν}\left[-1, 2, 3\right]\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} = 0$ ορθογώνια διανύσματα
 - Ορθοκανονικά διανύσματα: δυο μοναδιαία διανύσματα που είναι ορθογώνια

Ιδιοδιανύσματα

- (Δεξί) Ιδιοδιάνυσμα του πίνακα A: ένα διάνυσμα x τέτοιο ώστε $Ax = \lambda x$
- λ : ιδιοτιμή του ιδιοδιανύσματος x
- Τάξη του Α: ο αριθμός των γραμμικά ανεξάρτητων διανυσμάτων γραμμή (ή στήλη)
- Ένας τετραγωνικός πίνακα A τάξης r, έχει r ορθοκανονικά ιδιοδιανύσματα u_1, u_2, \dots, u_r με ιδιοτιμές $\lambda_1, \lambda_2, \dots, \lambda_r$.
- Τα ιδιοδιανύσματα ορίζουν μια ορθοκανονική βάση για τον χώρο στηλών του Α

Singular Value Decomposition (SVD)

 Δεδομένου οποιουδήποτε m×n πίνακα A, ο SVD είναι ένας αλγόριθμος ο οποίος βρίσκει πίνακες U, X, και W τέτοιους ώστε:

$$A = UWX^T$$
 U είναι $m \times n$ και ορθοκανονικός W είναι $n \times n$ και διαγώνιος X είναι $n \times n$ και ορθοκανονικός

$$\begin{pmatrix} A \end{pmatrix} = \begin{pmatrix} U \\ U \end{pmatrix} \begin{pmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{pmatrix} \begin{pmatrix} X \\ \end{pmatrix}^\mathsf{T}$$

SVD (cont...)

- Τα βάρη w_i ονομάζονται singular values του A
- Εάν ο Α είναι singular, μερικά από τα βάρη w_i θα είναι 0
- Γενικά, η τάξη του Α: rank(A) = k, ο αριθμός των μημηδενικών βαρών w_i
- Χρησιμοποιείται συχνά στην Ανάλυση Κυρίων Συνιστωσών (Principal Component Analysis)

Principal Component Analysis

- Ανάλυση Κυρίων Συνιστωσών
 - Η πιο συνηθισμένη μορφή ανάλυσης
- Οι νέες μεταβλητές/διαστάσεις:
 - Είναι γραμμικός συνδυασμός των βασικών
 - Είναι ασυσχέτιστες μεταξύ τους
- Ορθογώνιες στον αρχικό χώρο διαστάσεων
 - Συλλαμβάνουν όσο το δυνατόν μεγαλύτερη από την αρχική διακύμανση στα δεδομένα
 - Ονομάζονται Κύριες Συνιστώσες

Principal Component Analysis (PCA)

Γενική Αρχή

- Μέθοδος Γραμμικής προβολής με στόχο τη μείωση του αριθμού μεταβλητών
- Μεταφέρει ένα σετ από συσχετιζόμενες μεταβλητές σε ένα νέο σετ ασυσχέτιστων μεταβλητών
- Αντιστοίχιση των δεδομένων σε έναν νέο χώρο χαμηλότερης
 διάστασης
- Μια μορφή μη-επιβλεπόμενης μάθησης (π.χ. ομαδοποίηση)

Ιδιότητες

- Μπορεί να θεωρηθεί ως περιστροφή των αξόνων σε νέες θέσεις στο χώρο, οι οποίες ορίζονται από τις μεταβλητές του αρχικού χώρου
- Οι νέοι άξονες είναι ορθογώνιοι και αναπαριστούν τις διευθύνσεις με τη μέγιστη μεταβλητότητα

Ποιοι είναι οι νέοι άξονες;

- Ορθογώνιες διευθύνσεις της μέγιστης διακύμανσης στα δεδομένα
- Οι προβολές κατά μήκος του PC1 διαχωρίζουν μέγιστα τα δεδομένα πάνω σε οποιοδήποτε άξονα.

Κύριες Συνιστώσες

- Η πρώτη κύρια συνιστώσα είναι η διεύθυνση της
 μεγαλύτερης διακύμανσης (συ-διακύμανσης) στα δεδομένα
- Η δεύτερη κύρια συνιστώσα είναι επόμενη ορθογώνια (ασυσχέτιστη) διεύθυνση μεγαλύτερης διακύμανσης στα δεδομένα
- Κατά συνέπεια, πρώτα αφαιρέστε όλη τη μεταβλητότητα ως προς την πρώτη συνιστώσα και στη συνέχεια βρείτε την επόμενη διεύθυνση μέγιστης μεταβλητότητας
- Και ούτω καθεξής...

Υπολογισμός των Συνιστωσών

- Διακύμανση: $var(x) = \frac{1}{N} \sum_{n=1}^{N} \{u^{T}x u^{T}x\}^{2} = u^{T}Su$
- Πίνακας συμμεταβλητότητας: $S = \frac{1}{N} \sum_{n=1}^{N} (x \overline{x})(x \overline{x})^{T}$
- Ο πίνακας S περιέχει τις συσχετίσεις (ομοιότητες) των αρχικών αξόνων, βάσει των προβολών των δεδομένων πάνω τους
- Κατά συνέπεια, θέλουμε να μεγιστοποιήσουμε το u^TSu,
 δεδομένου του ότι το u είναι η νέα μονάδα μέτρησης (u^Tu = 1).

Υπολογισμός των Συνιστωσών (συν.)

• Εισαγωγή ενός Langrange πολλαπλασιαστή λ:

$$u^{\mathsf{T}} S u + \lambda (1 - u^{\mathsf{T}} u)$$

 Παραγωγίζουμε και θέτουμε το διάνυσμα των μερικών παραγώγων ίσο με μηδέν:

$$Su - \lambda u = (S - \lambda I) u = 0$$

- Καθώς *u ≠ 0* το *u* πρέπει να είναι ιδιοδιάνυσμα του *xx^T* με ιδιοτιμή λ
- Η ιδιοτιμή δηλώνει το βαθμό μεταβλητότητας που περικλείεται κατά μήκος της διεύθυνσης αυτής

Πόσες Κύριες Συνιστώσες;

Για n αρχικές διαστάσεις, ο πίνακας συσχέτισης είναι nxn, και έχει μέχρι n ιδιοδιανύσματα. Οπότε, n KΣ.

- Μπορούν να αγνοηθούν οι ΚΣ με μικρότερη σημασία:
 - η διαστάσεις στα αρχικά δεδομένα
 - υπολογισμός n ιδιοδιανυσμάτων και ιδιοτιμών
 - επιλέξτε μόνο τα πρώτα p ιδιοδιανύσματα, βάσει των ιδιοτιμών τους
 - Το τελικό σετ έχει ρ διαστάσεις

- Έστω σετ δεδομένων με 2 μεταβλητές x1, x2.
- Αφαίρεση της μέσης τιμής από κάθε μια από τις μεταβλητές. Για όλες τις x1 τιμές αφαιρείται το $\overline{x1}$ και για όλες τις x2 τιμές αφαιρείται το $\overline{x2}$. Αυτό παράγει ένα σετ με μέσο όρο μηδέν.

Με την αφαίρεση αυτή γίνεται πιο εύκολος ο υπολογισμός της διακύμανσης και της συμμεταβλητότητας. Διακύμανση και συμμεταβλητότητα δεν επηρρεάζονται από τη μέση τιμή.

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

	C		,		
/\ <u>'</u>	ድለ	ΛI	ιέν	. 10	γ.
	-	い ト	ユ し	V	л.

Δεδομένα με μέση τιμή μηδέν:

	l ⁻		
<u>x1</u>	<u>x2</u>	<u>x1</u>	<u>x2</u>
2.5	2.4	.69	.49
0.5	0.7	-1.31	-1.21
2.2	2.9	.39	.99
1.9	2.2	.09	.29
3.1	3.0	1.29	1.09
2.3	2.7	.49	.79
2	1.6	.19	31
1	1.1	81	81
1.5	1.6	31	31
1.1	0.9	71	-1.01

Α. Συμεωνίδης ΤΗΜΜΥ – ΑΠΘ

• Υπολογισμός του πίνακα συμμεταβλητότητας

Θυμηθείτε ότι cov =1/n*
$$E(x_1, x_1)$$
 $E(x_1, x_2)$, $E(x, y) = xy^T$ $E(x_2, x_1)$ $E(x_2, x_2)$

Καθώς στα στοιχεία του πίνακα συμμεταβλητότητας που δεν είναι στη διαγώνιο είναι θετικά, περιμένουμε ότι x1 και x2 αυξάνονται παράλληλα.

Υπολογίστε τα ιδιοδιανύσματα και τις ιδιοτιμές του πίνακα συμμεταβλητότητας

- Τα ιδιοδιανύσματα σχεδιάζονται ως διαγώνιες διακεκομένες γραμμές στον χώρο.
- Παρατηρείστε ότι είναι κάθετες η μια στην άλλη.
- Παρατηρείστε ότι ένα από τα ιδιοδιανύσματα περνά από τη μέση των σημείων, σα να τραβά μια γραμμή βέλτιστης απεικόνισης.
- Το δεύτερο ιδιοδιάνυσμα δηλώνει το άλλο, λιγότερο σημαντικό πρότυπο στα δεδομένα, ότι όλα τα σημεία ακολουθούν την κύρια συνιστώσα, αλλά απέχουν από αυτή σε κάποιο ποσοστό.

- Μειώστε τις διαστάσεις και φτιάξτε το διάνυσμα μεταβλητών
 feature vector
 - το ιδιοδιάνυσμα με την μεγαλυτερη ιδιοτιμή είναι η κύρια συνιστώσα του σετ δεδομένων.
- Στην περίπτωση του παραδείγματος, το ιδιοδιάνυσμα με την μεγαλυτερη ιδιοτιμή είναι αυτό που περνά μέσα από τα δεδομένα.
- Ταξινομήστε τα ιδιοδιανύσματα απο αυτό με τη μεγαλύτερη ιδιοτιμή σε αυτό με τη μικρότερη ιδιοτιμή. Αυτό δηλώνει και τη σημασία των συνιστωσών.

- Τώρα μπορείτε να επιλέξετε να αγνοήσετε τις συνιστώσες μικρότερης σημασίας.
- Χάνετε πληροφορία, που είναι λιγότερη όσο μικρότερες είναι οι ιδιοτιμές.
- Feature Vector = (eig₁ eig₂ eig₃ ... eig_n)
 Μπορείτε να επιλέξετε να φτιάξετε ένα feature vector και με τα δυο ιδιοδιανύσματα:

```
    (-.677873399
    -.735178656

    -.735178656
    .677873399
```

ή μπορείτε να αγνοήσετε το μικρότερο ιδιοδιάνυσμα:

```
(- .677873399
- .735178656
```


Εξαγωγή των νέων δεδομένων

FinalData = RowFeatureVector x RowZeroMeanData

όπου:

- RowFeatureVector είναι ένας πίνακας με τα ιδιοδιανύσματα στις στήλες ανεστραμμένα, ώστε τα ιδιοδιανύσματα να είναι σε γραμμές, με το πιο σημαντικό ιδιοδιάνυσμα στην πρώτη γραμμή
- RowZeroMeanData είναι τα κανονικοποιημένα (ως προς τη μέση τιμή)
 δεδομένα ανεστραμμένα, δηλαδή τα σημεία σε κάθε στήλη, με κάθε γραμμή να περιέχει μια διάσταση.

FinalData αναστροφή: οι διαστάσεις στις στήλες

x1	x2		
827970186	175115307		
1.77758033	.142857227		
992197494	.384374989		
274210416	.130417207		
-1.67580142	209498461		
912949103	.175282444		
.0991094375	349824698		
1.14457216	.0464172582		
.438046137	.0177646297		
1.22382056	162675287		

Ανακατασκευή των αρχικών δεδομένων

 Κατά την ανασκευή των δεδομένων η πληροφορία των διαστάσεων που μειώσαμε χάνεται. Έστω ότι κρατήσαμε μόνο την x1 διάσταση...

x1

-.827970186

1.77758033

-.992197494

-.274210416

-1.67580142

-.912949103

.0991094375

1.14457216

.438046137

1.22382056

Η σημασία του ΡCΑ

- Σε δεδομένα με πολλές διαστάσεις όπου η γραφική αναπαράσταση είναι δύσκολη, η PCA είναι ένα δυνατό εργαλείο για την ανάλυση των δεδομένων και την εύρεση προτύπων μέσα σε αυτά.
- Η PCA χρησιμεύει πολύ στη συμπίεση δεδομένων
- Η πιο αποδοτική έκφραση δεδομένων είναι με τη χρήση ορθογώνιων συνιστωσών, όπως γίνεται στην PCA.

Τι είναι η ΙCA;

- Στην ICA, μια ανεξάρτητη συνθήκη βελτιστοποιείται (αντί μόνο για τη διακύμανση), η οποία συχνά δίνει πιο κατανοητές συνιστώσες από την PCA.
- Οι συνιστώσες αυτές ονομάζονται ανεξάρτητες (Independent Components - ICs) και αναπαριστούν μη-επικαλυπτόμενη πληροφορία.
- Για την εφαρμογή ICA θεωρούμε ότι τα δεδομένα έχουν καθοριστεί από κάποιους βασικούς παράγοντες, οι οποίοι είναι ανεξάρτητοι μεταξύ τους
- Η αναζήτηση συνιστωσών οι οποίες είναι όσο πιο στατιστικά ανεξάρτητες γίνεται, μπορούν να ανιχνευτούν οι παράγοντες αυτοί.
- Οι παράγοντες λέγονται Sources και το σχετικό πεδίο εφαρμογής
 Blind source separation BSS

Οπτική σύγκριση PCA-ICA

Διαφορές με την PCA

- Πρακτικά, δεν είναι τεχνική μείωσης διαστάσεων
- Δεν υπάρχει μια μοναδική λυση για τις συνιστώσες.
 Χρησιμοποιεί διαφορετικούς αλγορίθμους (FastICA, PearsonICA, MLICA)
- Τα ICs είναι ασυσχέτιστα, αλλά και όσο πιο ανεξάρτητα γίνεται
- Μη χρήσιμη για μεταβλητές που ακολουθούν κανονική κατανομή

Μη γραμμικές τεχνικές μείωσης διαστάσεων

- Πολλά σετ δεδομένων περιέχουν μη γραμμικές δομές, οι οποίες δε μπορούν να ανιχνευτούν με PCA και MDS
- Χρήση μη γραμμικών τεχνικών μείωσης διαστάσεων

ISOMAP

- Παράδειγμα μη γραμμικής δομής (Swiss roll)
 - Μόνο οι γεοδεσικές αποστάσεις αναπαριστούν τη γεωμετρία του αντικειμένου.
- ISOMAP (Isometric feature Mapping)
 - Αναγνωρίζει και διατηρεί τη γεωμετρία των δεδομένων.
 - Χρησιμοποιεί γεοδεσικές αποστάσεις ανάμεσα σε όλα τα σημεία.

Βήμα 1

- Καθορισμός των γειτονικών σημείων μέσα σε προκαθορισμένη ακτίνα βάσει των αποστάσεων στον αρχικό χώρο $d_{x}(i, j)$.
- Αυτές οι σχέσεις γειτνίασης αναπαριστώνται ως ένας γράφος με βάρη G για τα δεδομένα.

Βήμα 2

• Υπολογισμός των γεοδεσικών αποστάσεων $d_G(i,j)$ ανάμεσα σε όλα τα ζεύγη σημείων στη δομή με τον υπολογισμό των αποστάσεων μικρότερης διαδρομής μέσα στον γράφο G.

Βήμα 3

 Κατασκευή μιας δομής στον d-διάστατο Ευκλείδειο χώρο Y ο οποίος αναπαριστά βέλτιστα τη γεωμετρία της αρχικής δομής.

- Βήμα 1
 - Καθορισμός των γειτονικών σημείων μέσα σε προκαθορισμένη ακτίνα βάσει των αποστάσεων στον αρχικό χώρο $d_{\rm x}(i,j)$.

Αυτές οι σχέσεις γειτνίασης αναπαριστώνται ως ένας γράφος με

βάρη G για τα δεδομένα.

Βήμα 2

- Υπολογισμός των γεοδεσικών αποστάσεων d_G(i, j) ανάμεσα σε όλα τα ζεύγη σημείων στη δομή με τον υπολογισμό των αποστάσεων μικρότερης διαδρομής μέσα στον γράφο G.
- Μπορεί να γίνει με την εφαρμογή του αλγορίθμου του Dijkstra.

$$d_G(i, j) = d(i, j)$$
 neighboring i, j
 $d_G(i, j) = \infty$ othewise

for
$$k = 1,2,..., N$$

 $d_G(i, j) = \min\{d_G(i, j), d_G(i, k) + d_G(k, j)\}$

- Βήμα 3
 - Κατασκευή μιας δομή στον d-διάστατο Ευκλείδειο χώρο Y ο οποίος αναπαριστά βέλτιστα τη γεωμετρία της αρχικής δομής.
 - Ελαχιστοποίηση της συνάρτησης κόστους.

$$E = \left\| \tau(D_G) - \tau(D_Y) \right\|_{L^2}$$

where
$$D_{Y}(i,j) = \left\| y_i - y_j \right\|$$

$$D_{G}(i,j) = d_{G}(i,j)$$
 and

$$\tau(D) = \frac{-1}{2}(I - \frac{1}{N})D^{-2}(I - \frac{1}{N})$$

Λύση: πάρε τα πρώτα d ιδιοδιανύσματα του πίνακα $\tau(D_G)$

LLE (Local Linear Embedding)

- Διατηρεί τα πρότυπα γειτνίασης
- Αντιστοιχίζει σε ένα γενικό σύστημα συντεταγμένων λίγων διαστάσεων
- Ανακτά ολικές μη-γραμμικές δομές από τοπικά γραμμικές αντιστοιχίσεις
- Κάθε σημείο και οι γείτονές του αναμένεται να βρίσκονται πάνω ή δίπλα σε ένα τοπικά γραμμικό τμήμα.
- Κάθε σημείο κατασκευάζεται από τους γείτονές του:

$$ec{\hat{X}}_i = \sum_j W_{ij} ec{X}_j$$

 $W_{ij}=0$ εάν \vec{X}_{j} δεν είναι γείτονας στο \vec{X}_{i}

- Όπου τα W_{ij} συνοψίζουν τη συμμετοχή του j^{-th} σημείου στην αναπαράσταση του i^{-th} σημείου
- Κάθε σημείο ανακατασκευάζεται μόνο από τους γείτονές του

LLE (σύνοψη αλγορίθμου)

- Βήμα 1
 - Υπολογίστε τους γείτονες για κάθε σημείο, *X*_i
- Βήμα 2
 - Υπολογίστε τα βάρη W_{ij} που ανακατασκευάζουν βέλτιστα κάθε σημείο X_i από τους γείτονές του, μειώνοντας το κόστος στη συν (1) με τη χρήση περιορισμένων γραμμικών τμημάτων.

$$\mathbf{1} \quad \varepsilon(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

- Step 3
 - Υπολογίστε τα διανύσματα Y_i τα οποία ανακατασκευάζονται βέλτιστα από τα βάρη W_{ij} , ελαχιστοποιώντας την τετραγωνική μορφή της συν (2) με τα κάτω μη-μηδενικά ιδιοδιανύσματα.

 2 $\phi(Y) = \sum_i \left| \vec{Y}_i \sum_i W_{ij} \vec{Y}_j \right|^2$

ISOMAP – σύνοψη...

- Ο Isomap διαχειρίζεται μη γραμμικές δομές.
- Ο Isomap έχει τα πλεονεκτήματα των PCA και MDS.
 - Μη επαναληπτική διαδικασία
 - Πολυωνυμική διαδικασία
 - Εγγυημένη σύγκλιση
- Ο Isomap αναπαριστά τη γενική δομή των δεδομένων σε ένα μοναδικό σύστημα συντεταγμένων.

ISOMAP και LLE: σύνοψη

ISOMAP και LLE

Διαχειρίζονται μη γραμμικές δομές.

ISOMAP

 Χρησιμοποιεί τις γεωδαισικές αποστάστεις ανάμεσα σε όλα τα ζευγάρια.

LLE

 Ανακτά ολικές μη-γραμμικές δομές από τοπικά γραμμικές αντιστοιχίσεις

ISOMAP vs LLE

- Ο LLE χρειάζεται μεγάλα σετ δεδομένων εισόδου και πρέπει να βάρη αντίστοιχων διαστάσεων
- Ο Isomap είναι πολύ γρήγορος λόγω του αλγορίθμου του dijkstra
- Ο Isomap είναι πιο πρακτικός από τον LLE

Επιλογή χαρακτηριστικών - Σύνοψη

- Κατά τη διαδικασία καθορισμού και προ-επεξεργασίας των δεδομένων χρειάζεται πολλές φορές και η μείωση του αριθμού των μεταβλητών στο σετ.
- Οι τεχνικές χωρίζονται (κλασικά) σε γραμμικές και μηγραμμικές.
- Γνωστότερη γραμμική μέθοδος: PCA.
- Γνωστότερη μη-γραμμική μέθοδος: ISOMAP
- Πέρα από αυτές, υπάρχουν και μέθοδοι που εφαρμόζουν παρόμοια λογική, αλλά ακολουθούν άλλες προσεγγίσεις (ICA).