Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Samples

The finite (fractional) expansion of a structure M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , the set of real numbers, and, for every n, a sort for the functions $s:M^n \to \mathbb{R}$ that are almost always 0.

These functions are interpreted as (signed and fractional) multisets. Namely s(a) interpreted as the number of times a occurs in s. We use the following suggestive notation:

1.
$$a \in s = |s(a)|$$
 this is called the multiplicity of a in s ;

2.
$$|s| = \sum_{a \in M} a \in s$$
 this is called the size of s ;

3.
$$\left|\left\{a \in s : \varphi(a;b)\right\}\right| = \sum_{a \models \varphi(x;b)} a \in s.$$

We call these multisets samples and refer to their sorts collectively as sample-sort.

We will write M^f for the expansion above. The language of M^f is denoted by L^f . It expands L, the language of rings, and the language of vector spaces over \mathbb{R} . Each interpreted in the obvious sort. Moreover, L^f has a symbols for the functions in 1-3 above. In particular, 3 requires a symbol for every $\varphi(x;z) \in L$.

Let \mathcal{U} be a monster model of cardinality κ , a cardinal larger than the cardinality of L. We introduce two elementary extension of \mathcal{U}^f .

2.1 Definition We denote by $\mathfrak{U}^{\mathfrak{f}_*}$ a saturated elementary extension of $\mathfrak{U}^{\mathfrak{f}}$ of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that \mathfrak{U} is the homesort of $\mathfrak{U}^{\mathfrak{f}_*}$. We denote by $\mathfrak{U}^{\mathfrak{f}_*}$ some elementary extension of $\mathfrak{U}^{\mathfrak{f}_*}$ that realizes all types in $S(\mathfrak{U}^{\mathfrak{f}_*})$. Hence we have $\mathfrak{U}^{\mathfrak{f}} \prec \mathfrak{U}^{\mathfrak{f}_*} \prec \mathfrak{U}^{\mathfrak{f}_*}$. Elements of sample-sort in these models are called finite samples, internal samples, and (external) samples respectively.

The use of $\mathcal{U}_{*}^{f_{*}^{+}}$ is not ideal, it is introduced to replace the use of global types of sample-sort which also have drawbacks.

We write $\operatorname{supp}(s)$ for the support of s, that is, the set of those a in \mathcal{U}^{f_*} such that $a \in s$ is positive.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s} \varphi(x;b)$ with $\overline{\varphi}(s;b)$.

Below, ε always ranges over the positive standard reals. If a and b are hyperreals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε . We write $\operatorname{st}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

3 Some formula-by-formula notions

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

- **3.1 Definition** Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\overline{\varphi}(s';b) \approx \overline{\varphi}(s;b)$.
- **3.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is
 - 1. invariant if, for every $b, b' \in \mathcal{U}^{|z|}$ such that $b \equiv_M b'$, we have $\overline{\varphi}(s;b) \approx \overline{\varphi}(s;b')$.
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable over M.
 - 3. satisfiable if, for all $b \in \mathcal{U}^{|z|}$, if $\overline{\varphi}(s;b) > \varepsilon$, then $\varphi(r;b) > \varepsilon$ for some $r \in M^f$.

4. generically stable if all of the above hold.

Smooth roughly means internal and invariant.

- **3.3 Fact** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. there is an invariant internal sample $s' \equiv_M s$.

Proof 1 \Rightarrow 2. Let s be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in \mathcal{U}^{|z|}$ and $b \equiv_M b'$, then b' = fb for some $f \in \operatorname{Aut}(\mathcal{U}^{f_*}/M)$. Then $\overline{\varphi}(s';fb) \approx \overline{\varphi}(f^{-1}s';b)$. Moreover, by smothness $\overline{\varphi}(f^{-1}s';b) \approx \overline{\varphi}(s';b)$. The infariace in s' follows.

2⇒1. It suffices to prove that if *s* is internal and invariant then it is smooth. Suppose

for a contradiction that there is an $s' \equiv_M s$ busuch that $\overline{\varphi}(s';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. Pick a internal sample $s'' \equiv_{M,s} s'$. Then $\overline{\varphi}(s'';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. As $s'' \equiv_M s$ are both in \mathcal{U}^{f_*} , then s'' = fs for some $f \in \operatorname{Aut}(\mathcal{U}^{f_*}/M)$. Hence we obtan $\overline{\varphi}(s;f^{-1}b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$ which contradics the invariance of s.

3.4 Fact For any given $\varphi(x;z) \in L$ and M, smooth samples are generically stable.

Proof Assume *s* is smooth and prove in turn 1-3 of Definition 3.2.

- 1. Invariance follows immediately from Fact 3.3.
- 2. Note that the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable in \mathcal{U}^{f_*} . In fact, by the smoothness of s, we may replace s with any internal sample $s' \equiv_M s$. By what proved above, this set is invariat over M. Therefore it is definable over M^f , or equivalently, over M.
- 3. Let $b \in \mathcal{U}^{|z|}$ be such that $\overline{\varphi}(s;b) > \varepsilon$. Pick a sample s' such that $s \equiv_M s' \downarrow_{M^f} b$. By the smoothness of s, we obtain $\overline{\varphi}(s';b) > \varepsilon$. Let $r \in M^f$ such that $\overline{\varphi}(r;b) > \varepsilon$.

The following is a useful characterization of smoothness.

- **3.5 Lemma** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. for every $b \in \mathcal{U}^{|z|}$ there is a finite sample $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ (the sample r depends on ε and b);
 - 3. there are some finite samples $r_1, \ldots, r_n \in M^f$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r_i;b)$ for some r_i (the samples r_1, \ldots, r_n as well as the number n depend on ε , but not on b);
 - 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\bar{\vartheta}_j(s) \bar{\vartheta}_i(s) < \varepsilon$ for some i,j.

Proof 1 \Rightarrow 2. Let $b \in \mathcal{U}^{|z|}$ be arbitrary. Let μ be the standard part of $\overline{\varphi}(s;b)$. Let s' be a sample such that $s \equiv_M s' \downarrow_{M^f} b$. By smoothness, $\overline{\varphi}(s';b) \approx \mu$. As $s' \downarrow_{M^f} b$ there is an $r \in M^f$ such that $\overline{\varphi}(r;b) \approx_{\varepsilon} \mu$.

1⇒3. Let $s' \equiv_M s$ be an internal sample. By smoothness we it suffices to prove 3 with s' for s. The type

$$p(z) \ = \ \left\{ \overline{\varphi}(s';z) \not\approx_{\varepsilon} \overline{\varphi}(r;z) \, : \, r \in M^{\mathrm{f}} \right\}$$

is inconsistent by 2 (clearly s' is smooth). Hence compatness yields the required $r_1, \ldots, r_n \in M^f$.

The proof of equivalence $3\Leftrightarrow 4$ is left to the reader. The other implications are evident.

3.6 Definition Let $\varphi(x;z) \in L$ and M be given. Let $\mathbb{B} \subseteq \mathcal{U}^{|z|}$ be arbitrary. We say that s

	is (uniformly) approximable on $\mathbb B$ if for every ε there is a finite sample $r \in M^{\mathfrak f}$ such that $\overline{\varphi}(s,b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathbb B$. (The sample r depends on ε , not on b .)	
3.7	Lemma Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on \mathbb{B} and such that $\overline{\varphi}(s;b) > \varepsilon$ for every $b \in \mathbb{B}$. Then there is a finite cover of \mathbb{B} , say $\mathbb{B}_1, \ldots, \mathbb{B}_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathbb{B}_i\}$ are consistent.	
	Proof Let $r \in M^f$ be as in Definition 3.6. As r is finite, we may assume that $\operatorname{supp}(r) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\overline{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} .	
3.8	Corollary Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\overline{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.	
3.9	Corollary Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathfrak C$. Then for every ε there is a pair of distict $c,c' \in \mathfrak C$ such that $\operatorname{Av}_{x/s} \big[\varphi(x;c) \not\leftrightarrow \varphi(x;c') \big] < \varepsilon$	
	Proof Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \not\leftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $c,c' \in \mathbb{C}$. Apply Lemma 3.7 to the folmula $\psi(x;z,z') = [\varphi(x;z) \not\leftrightarrow \varphi(x;z')]$ and the set $\mathbb{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathbb{B}_i obtained from Lemma 3.7 induce a finite coloring of the complete graph on \mathbb{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathbb{C}$. Hence $\{\varphi(x;a) \not\leftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is consistent. As $ A > 2$, this is impossible.	
4	The nip formulas	
4.1	Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M .	
	Proof Questo è Vapnik-Chervonenkis.	
	For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{ z }$.)	
4.2	Corollary Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on $\mathbb U$ over M .	
	Proof By Theorem 4.1, there is an $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in M^{ z }$.	
	Suppose for a contradiction that $\overline{\varphi}(s;b')\not\approx_{\varepsilon}\overline{\varphi}(r;b')$ for some $b'\in\mathcal{U}^{ z }$. Pick a $s'\subseteq\mathcal{U}^{ x }$ such that $b'\downarrow_{M}s'\equiv_{M}s$. By the smoothness of s , we obtain $\overline{\varphi}(s';b')\not\approx_{\varepsilon}\overline{\varphi}(r;b')$. As $b'\downarrow_{M}s'$, the same formula holds for some $b\in M^{ z }$. Once again by smoothness,	
	$\overline{\varphi}(s;b) \not\approx_{\varepsilon} \overline{\varphi}(r;b)$. A contradiction.	

4.3 Definition We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,...z_n) \in L$

such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{|x|}$ there are $b_1, \ldots, b_n \in B$ such that $\psi(a; b_1, \ldots, b_n)$ and $\psi(x; b_1, \ldots, b_n)$ decides all formulas $\vartheta(x) \in L(B)$.

4.4 Theorem (false) The following are equivalent

- 1. $\varphi(x;z) \in L$ is distal;
- 2. for every sample $s \in \mathcal{U}^{f_*^+}$, if s is generically stable then s is smooth.