Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

July 15, 2025

Contents

0		petizer: Using Probability to Cover a Set	3		
	0.1	Covering Geometric Sets	4		
1	A Quick Refresher on Analysis and Probability				
	1.1		6		
	1.2		6		
	1.3		6		
	1.4	Union Bound	7		
	1.5		8		
	1.6	Probabilistic Inequalities	8		
	1.7	Limit Theorems	10		
2	Cor	ncentration of Sums of Independent Random Variables	2		
	2.1	Why Concentration Inequalities?	12		
	2.2	Hoeffding Inequality	13		
	2.3		15		
	2.4	1 0	۱7		
	2.5		19		
	2.6		20		
		2.6.1 The Subgaussian Norm			
	2.7	Θ	22		
			23		
			23		
		· · · · · · · · · · · · · · · · · · ·	24		
			25		
	2.8	9	25		
	2.0	2.8.1 Subexponential Properties			
		2.8.2 The Subexponential Norm			
	2.9	Bernstein Inequality			
	2.5	Definition inequality	,,		
3	Rar	ndom Vectors in High Dimensions 3	31		
	3.1	Concentration of the Norm			
	3.2		32		
			32		
			33		
		3.2.3 Isotropic Distributions			
	3.3	Examples of High-dimensional Distributions			
	0.0	-	34		
			35		
			36		
		•	37		
			37		
	3.4		39		
	J.4				
			39		
		3.4.2 Uniform on the Sphere	39		
	2.5	3.4.2 Uniform on the Sphere	39 40		
	3.5	3.4.2 Uniform on the Sphere 3.4.3 Non-examples 3.4.3 Non-examples 4 Application: Grothendieck Inequality and Semidefinite Programming 4	39 40 41		
	3.6	3.4.2 Uniform on the Sphere 3.4.3 Non-examples 4 Application: Grothendieck Inequality and Semidefinite Programming 4 Application: Maximum Cut for Graphs 4	39 40 41 41		
		3.4.2 Uniform on the Sphere 3.4.3 Non-examples 4.4 Application: Grothendieck Inequality and Semidefinite Programming 4.4 Application: Maximum Cut for Graphs 4.4	39 40 41		
4	3.6 3.7	3.4.2 Uniform on the Sphere	39 40 41 41		
4	3.6 3.7	3.4.2 Uniform on the Sphere	39 40 41 41		
4	3.6 3.7 Rar	3.4.2 Uniform on the Sphere	39 40 41 41 41		
4	3.6 3.7 Rar	3.4.2 Uniform on the Sphere	39 40 41 41 41 42 42		
4	3.6 3.7 Rar	3.4.2 Uniform on the Sphere	39 40 41 41 41 42		
4	3.6 3.7 Rar	3.4.2 Uniform on the Sphere	39 40 41 41 42 42 43		

		V	45
		4.1.7 Isometries	47
	4.2	Nets, Covering, and Packing	47
		4.2.1 Covering Numbers and Volume	49
	4.3	Application: Error Correcting Codes	50
	4.4	Upper Bounds on Subgaussian Random Matrices	50
		4.4.1 Computing the Norm on an ε net	51
		4.4.2 The Norms of Subgaussian Random Matrices	51
		4.4.3 Symmetric Matrices	53
	4.5	Application: Community Detection in Networks	53
	4.6	Two-sided Bounds on Subgaussian Matrices	53
	4.7	Application: Covariance Estimation and Clustering	55
5	Cor	ncentration Without Independence	56
	5.1	Cencentration of Lipschitz Functions on the Sphere	56
		5.1.1 Lipschitz Functions	56
		5.1.2 Concentration via Isoperimetric Inequalities	56
		5.1.3 Blow-up of Sets on the Sphere	57
		5.1.4 Proof of Theorem 5.1.3	58
	5.2	Concentration on Other Metric Measure Spaces	59
		5.2.1 Gaussian Concentration	59
		5.2.2 Hamming Cube	59
		5.2.3 Symmetric Group	60
		5.2.4 Riemannian Manifolds with Strictly Positive Curvature	60
		5.2.5 Special Orthogonal Group	60
		5.2.6 Grassmannian	61
		5.2.7 Continuous Cube and Euclidean Ball	61
		5.2.8 Densities of the Form $e^{-U(x)}$	61
		5.2.9 Random Vectors with Independent Bounded Coordinates	62
	5.3	Application: Johnson-Lindenstrauss Lemma	62
	5.4	Matrix Bernstein Inequality	62
		5.4.1 Matrix Calculus	62
		5.4.2 Trace Inequalities	64
		5.4.3 Proof of Matrix Bernstein Inequality	64
	5.5	Application: Community Detection in Sparse Networks	64
	5.6	Application: Covariance Estimation for General Distributions	64
	5.7	Extra notes	64
6	Qua	adratic Forms, Symmetrization, and Contraction	61
•	-	Decoupling	61
7	Rar	ndom Processes	62
8	Cha	aining	63
9		viations of Random Matrices on Sets Matrix Deviation Inequality	64 64

5 Concentration Without Independence

This chapter mainly explores other approaches to concentration that do not rely on independence.

5.1 Cencentration of Lipschitz Functions on the Sphere

For a random vector X in \mathbb{R}^n and a function $f:\mathbb{R}^n\to\mathbb{R}$. When does the random variable f(X) concentrate, i.e.

$$f(X) \approx \mathbb{E}[f(X)]$$
 with high probability?

If X is normal and f is linear, this is easy: f(X) is normal (Corollary 3.3.2) and concentrates well (Proposition 2.1.2).

What about for general nonlinear functions f? We can't expect good concentration for any f, but if f does not oscillate too wildly, we might get good concentration. Namely, we'll use Lipschitz functions to rule out these oscillations:

5.1.1 Lipschitz Functions

Definition 5.1.1. Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is called Lipschitz if there exists $L \in \mathbb{R}$ such that

$$d_Y(f(u), f(v)) \le L \cdot d_X(u, v)$$
 for every $u, v \in X$.

The infimum of all L in this definition is called the <u>Lipschitz norm</u> because of f and is denoted $||f||_{\text{Lip}}$.

If $||f||_{\text{Lip}} \leq 1$, f is called a <u>contraction</u>.

(**Important**) Technically the Lipschits norm is only a seminorm, since it vanishes on nonzero constant functions. It's called a norm in the book for brevity.

The class of Lipschitz functions sits between differentiable and uniformly continuous:

f is differentiable $\implies f$ is Lipschitz $\implies f$ if uniformly continuous.

Moreover, from Exercise 5.1,

$$||F||_{\text{Lip}} \le \sup_{x \in \mathbb{R}^n} ||\nabla f(x)||_2.$$

Example 5.1.2. Vectors, matries, and norms define natural Lipschitz functions:

(a) For a fixed vector $\theta \in \mathbb{R}^n$, the linear functional

$$f(x) = \langle x, \theta \rangle$$
 has Lipschitz norm $||f||_{\text{Lip}} = ||\theta||_2$.

(b) More generally, any $m \times n$ matrix A, the linear operator

$$f(x) = Ax$$
 has Lipschitz norm $||F||_{\text{Lip}} = ||A||$.

(c) For any norm $\|\cdot\|$ on \mathbb{R}^n , the function

$$f(x) = ||x||$$

has Lipschitz norm equal to the smallest L such that

$$||x|| \le L||x||_2$$
 for all $x \in \mathbb{R}^n$.

Proof. Exercise 5.2. \Box

5.1.2 Concentration via Isoperimetric Inequalities

Any Lipschitz function on the Euclidean sphere $S^{n-1} = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ concentrates:

Theorem 5.1.3. Let $X \sim \text{Unif}(\sqrt{n}S^{n-1})$. Then for any Lipschitz function $f: \sqrt{n}S^{n-1} \to \mathbb{R}$ we have

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le C||f||_{\text{Lip}}.$$

The theorem above works for the geodesic distance metric as well (Exercise 5.4).

Theorem 5.1.3 has been proved already for linear functions f. Theorem 3.4.5 tells us that X is a subgaussian random vectos, and this by definition means that any lienar function of X is a subgaussian random variable.

To fully prove Theorem 5.1.3, we need to argue that any Lipschitz function concentrates at least as well as a linear function. We'll use the aread of their <u>sublevel sets</u> - regions of the sphere where $f(x) \leq a$ for a given level a. To do this, we'll use the *isoperimetric inequality*, namely the one for subsets on \mathbb{R}^n :

Theorem 5.1.4 (Isoperimetric inequality on \mathbb{R}^n). Among all subsets $A \subset \mathbb{R}^n$ with given volume, the Euclidean balls have minimal area. Moreover, for any $\varepsilon > 0$, the Euclidean balls minimize the volume of the ε -neighborhood of A, defined as

$$A_{\varepsilon} = \{x \in \mathbb{R}^n : \exists y \in A \text{ such that } ||x - y||_2 \le \varepsilon\} = A + \varepsilon B_2^n.$$

The figure below illustrates the isoperimetric inequality:

Figure 5.1 The isoperimetric inequality says that among all sets A with a given volume, Euclidean balls minimize the volume of their ε -neighborhood A_{ε} .

A similar isoperimetric inequality holds for subsets on S^{n-1} , and in this case the minimizers are the spherical caps - neighborhoods of a single point. To state this principle, let σ_{n-1} denote the normalized are on the sphere S^{n-1} (The n-1-dimensional Lebesgue measure).

Theorem 5.1.5 (Isoperimetric inequality on the sphere). Let $\varepsilon > 0$. Then among all subsets $A \subset S^{n-1}$ with given area $\sigma_{n-1}(A)$, the spherical caps minimizer the area of the neighborhood $\sigma_{n-1}(A_{\varepsilon})$, where

$$A_{\varepsilon} := \{ x \in \mathbb{R}^n : \exists y \in S^{n-1} \text{ such that } ||x - y||_2 \le \varepsilon \}.$$

5.1.3 Blow-up of Sets on the Sphere

The isoperimetric inequality leads to a remarkable and counterintuitive result: if a set A covers at least half of the sphere in area, its ε -neighborhood A_{ε} will cover most of the sphere. To simplify things in view of Theorem 5.1.3, we'll operate on the sphere with radius \sqrt{n} .

Lemma 5.1.6 (Blow-up). Let $A \subset \sqrt{n}S^{n-1}$, and let σ denote the normalized are on that sphere. If $\sigma(A) \geq 1/2$, then for every $t \geq 0$,

$$\sigma(A_t) \ge 1 - 2\exp\left(-ct^2\right).$$

Proof. Consider the hemisphere defined by the first coordinate:

$$H := \{x \in \sqrt{n}S^{n-1} : x_1 < 0\}.$$

By assumption, $\sigma(A) \ge 1/2 = \sigma(H)$, hence the isoperimetric inequality (Theorem 5.1.5) implies that

$$\sigma(A_t) \geq \sigma(H_t)$$
.

The neighborhood H_t of the hemisphere H is a spherical cap (a portion of a sphere cut off by a plane), and we could compute its area directly, but it is easier to use Theorem 3.4.5 instead, which states that a random vector $X \sim \text{Unif}(\sqrt{n}S^{n-1})$ is subgaussian, and $||X||_{\psi_2} \leq C$. Since σ is the uniform probability measure on the sphere, it follows that

$$\sigma(H_t) = P(X \in H_t).$$

Now, the definition of the neighborhood implies that

$$\{x \in \sqrt{n}S^{n-1}: x_1 \le t/\sqrt{2}\} \subset H_t.$$

Thus

$$\sigma(H_t) \ge P(X_1 \le t/\sqrt{2}) \ge 1 - 2\exp(-ct^2).$$

The last inequality holds because $||X_1||_{\psi_2} \leq ||X||_{\psi_2} \leq C$. Then the lemma is proved because $\sigma(A_t) \geq \sigma(H_t)$.

Remark 5.1.7 (A more dramatic blow-up). The 1/2 value for the area in Lemma 5.1.6 was arbitrary, and can be replaced with any constant, or even an exponentially small quantity (Exercise 5.3)!

Remark 5.1.8 (A zero-one law). The blow-up phenomenen we just saw can be quite counterintuitive at first. However, this is a typical p phenomenon in high dimensions. It is similar to zero-one laws in probability theory, which basically say that events influenced by many random variables tend to have probabilities zero or one.

5.1.4 Proof of Theorem 5.1.3

WLOG, we can assume that $||f||_{\text{Lip}} = 1$. Let M denote the median of f(X), which by definition satisfies

$$P(f(X) \le M) \ge \frac{1}{2}$$
 and $P(f(X) \ge M) \ge \frac{1}{2}$.

Consider the sublevel set

$$A := \{ x \in \sqrt{n} S^{n-1} : \ f(x) \le M \}.$$

Since $P(X \in A) \geq \frac{1}{2}$, Lemma 5.1.6 implies that

$$P(X \in A_t) \ge 1 - 2\exp\left(-ct^2\right).$$

On the other hand, we claim that

$$P(X \in A_t) \le P(f(X) \le M + t).$$

Indeed, if $X \in A_t$ then $||X - y||_2 \le t$ for some point $y \in A$. By definition, $f(y) \le M$. Since f is Lipschitz with $||f||_{\text{Lip}} = 1$, it follows that

$$f(X) \le f(y) + ||X - y||_2 \le M + t.$$

Combining the two bounds above, we conclude that

$$P(f(X) \le M + t) \ge 1 - 2\exp(-ct^2).$$

Repeating the argument for -f, we obtain a similar bound for the probability that $f(x) \ge M - t$ (do). Combining the two, we get a similar bound for the probability that $|f(X) - M| \le t$, and conclude that

$$||f(X) - M||_{\psi_2} \le C.$$

Then we can replace the median by the mean, which follows by centering (Lemma 2.7.8). Therefore the proof is complete. \Box

5.2 Concentration on Other Metric Measure Spaces

We can extend concentration from the sphere to other spaces as well. The proof of Theorem 5.1.3 relied on two ingredients:

- (a) an isoperimetric inequality,
- (b) a blow-up of its minimizers.

There are not unique to the sphere - many spaces satusfy them hence we can derive similar concentration results.

Remark 5.2.1. Concentration keeps the mean, median, and L^p norms close. Therefore, we can always replace the mean $\mathbb{E}[f(X)]$ with the median (Exercise 5.6), or, if the mean is nonnegative, with the L^p norm for any $p \geq 1$, though the constant may depend on p (Exercise 5.10).

5.2.1 Gaussian Concentration

The Gaussian measure of a Borel set $A \subset \mathbb{R}^n$ is defined as

$$\gamma_n(A) := P(X \in A) = \frac{1}{(2\pi)^{n/2}} \int_A e^{-\|x\|_2^2/2} dx$$

where $X \sim N(0, I_n)$ is the standard normal random vector in \mathbb{R}^n .

Theorem 5.2.2 (Gaussian isoperimetric inequality). Let $\varepsilon > 0$. Then among all sets $A \subset \mathbb{R}^n$ with given gaussian measure $\gamma_n(A)$, the half-spaces minimize the Gaussian measure of the neighborhood $\gamma_n(A_{\varepsilon})$.

Theorem 5.2.3 (Gaussian concentration). Consider a random vector $X \sim N(0, I_n)$ and a Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ (with respect to the Euclidean metric). Then

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le C||f||_{\text{Lip}}.$$

Example 5.2.4. Two special cases of Theorem 5.2.3 should already be familiar:

- (a) For linear functions f, it follows since $X \sim N(0, I_n)$ is subgaussian.
- (b) For the Euclidean norm $f(x) = ||x||_2$, it follows from norm concentration (Theorem 3.1.1).

5.2.2 Hamming Cube

The method based on isoperimetry also works on the Hamming cube $(\{0,1\}^n, d, \mathbb{P})$ (Definition 4.2.14), where d(x,y) is the normalized Hamming distance:

$$d(x,y) = \frac{1}{n} |\{i : x_i \neq y_i\}|.$$

The measure \mathbb{P} is the uniform probability measure on the cube:

$$\mathbb{P}(A) = \frac{|A|}{2^n} \text{ for any } A \subset \{0,1\}^n.$$

Theorem 5.2.5 (Concentration on the Hamming cube). Consider a random vector $X \sim \{0,1\}^n$. Then for any function $f: \{0,1\}^n \to \mathbb{R}$ we have

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{n}}$$

5.2.3 Symmetric Group

A similar result holds for the symmetric group S_n , a set of all n! permutations of $\{1,\ldots,n\}$. We can view the symmetric group as a metric measure space (S_n,d,\mathbb{P}) , where $d(\pi,\rho)$ is the normalized Hamming distance - the fraction of the symbols on which permutations π and ρ differ:

$$d(\pi, \rho) = \frac{1}{n} |\{i : \pi(i) \neq \rho(i)\}|.$$

The measure \mathbb{P} is the uniform probability measure on S_n :

$$\mathbb{P}(A) = \frac{|A|}{n!}$$
 for any $A \subset S_n$.

Theorem 5.2.6 (Concentration on the symmetric group). Consider a random permutation $X \sim \text{Unif}(S_n)$ and a function $f: S_n \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{n}}.$$

5.2.4 Riemannian Manifolds with Strictly Positive Curvature

(Feel free to skip this if not familiar with differential geometry)

A compact connected Riemannian manifold (M,g) comes with the geodesic distance d(x,y), which is the shortest length of a curve connecting the points. Then we can define a metric measure space (M,d,\mathbb{P}) where \mathbb{P} is the uniform probability measure derived by normalizing the Riemannian volume.

Let c(M) denote the infimum of the Ricci curvature tensor over all tangent vectors. Assuming c(M) > 0, then it can be proved that

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{c(M)}}$$

for any Lipschitz function $f: M \to \mathbb{R}$.

To give an example, $c(S^{n-1}) = n - 1$. Then the above gives another approach for the concentration inequality of the sphere.

5.2.5 Special Orthogonal Group

The special orthogonal group SO(n) consists of all $n \times n$ orthogonal matrices with determinant 1. We can treat it as a metric measure space $(SO(n), \|\cdot\|_F, \mathbb{P})$, with distance given by the Frobenius norm $\|A - B\|_F$ and \mathbb{P} as the uniform probability measure.

Theorem 5.2.7 (Concentration on the special orthogonal group). Consider a random orthogonal matrix $X \sim \text{Unif}(SO(n))$ and a function $f : SO(n) \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{n}}.$$

The result above can be deduced from the concentration on general Riemannian manifolds.

Remark 5.2.8 (Haar measure). To generate a random orthogonal matrix $X \sim \text{Unif}(SO(n))$, one way is to start with an $n \times n$ Gaussian random matrix G with N(0,1) independent entries, and compute its SVD $G = U\Omega V^T$. Then the matrix of left singular vectors is uniformly distributed in SO(n).

The uniform probability distribution on SO(n) is given by

$$\mu(A) := P(X \in A) \text{ for } A \subset SO(n).$$

This is the unique rotation-invariant probability measure on SO(n), called the <u>Haar measure</u>.

5.2.6 Grassmannian

The Grassmannian manifold $G_{n,m}$ consists of all m-dimensional subspaces of \mathbb{R}^n . When m=1, it can be identified with the sphere S^{n-1} . Therefore the concentration on the Grassmannian includes the concentration on the sphere.

We can treat $G_{n,m}$ as a metric space $(G_{n,m}, d, \mathbb{P})$, where the distance between subspaces is given by the operator norm

$$d(E,F) = ||P_E - P_F||$$

where P_E and P_F are the orthogonal projections onto the subspaces. The probability measure is the Haar measure (Remark 5.2.8). A random subspace E can hence be computed by computing the image of the random $n \times m$ Gaussian random matric with i.i.d. N(0,1) entries.

Theorem 5.2.9 (Concentration on the Grassmannian). Consider a random subspace $X \sim \text{Unif}(G_{n,m})$ and a function $f: G_{n,m} \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{n}}.$$

Proof. The proof is a bit involved: Express the Grassmannian as the quotient via the special orthogonal group:

$$G_{n,m} = SO(n)/(SO(m) \times SO(n-m))$$

and use the fact that concentration carries over to quotients.

5.2.7 Continuous Cube and Euclidean Ball

Theorem 5.2.10 (Concentration on the continuous cube and ball). Let T be either the cube $[0,1]^n$ or the ball $\sqrt{n}B_2^n$. Consider a random vector $X \sim \text{Unif}(T)$ and a Lipschitz function $f; T \to \mathbb{R}$, where the Lipschitz norm is with respect to the Euclidean distance. Then

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le C||f||_{\text{Lip}}.$$

Proof. Exercises 5.12 & 5.13.

5.2.8 Densities of the Form $e^{-U(x)}$

The push forward method from the previous section can be applied to many other distributions in \mathbb{R}^n . For example, suppose a random vector X has a density of the form

$$f(x) = e^{-U(x)}$$

for some function $U: \mathbb{R}^n \to \mathbb{R}$. For example, $X \sim N(0, I_n)$, the normal density gives $U(x) = ||x||_2^2 + c$ where c is constant (dependent on n but not on x), and Gaussian concentration holds for X. In general, we would expect that if U has curvature at least like $||x||_2^2$, then there would be at least Gaussian concentration. As the theorem below shows, this depends on the Hessian of U:

Theorem 5.2.11. Consider a random vector X in \mathbb{R}^n whose density has the form $e^{-U(x)}$ for some function $U: \mathbb{R}^n \to \mathbb{R}$. Assume there exists $\kappa > 0$ such that

$$\nabla^2 U(x) \geq \kappa I_n \text{ for all } x \in \mathbb{R}^n.$$

Then any Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{\kappa}}$$

Proof. The proof uses semigroup methods, which are not covered in the text.

5.2.9 Random Vectors with Independent Bounded Coordinates

There is a remarkable partial generalization of Theorem 5.2.10 for random vectors X with independent coordinates that have arbitrary bounded distributions (not just uniform). By scaling, we can assume WLOG that $|X_i| \leq 1$.

Theorem 5.2.12 (Talagrand concentration inequality). Consider a random vector in \mathbb{R}^n , $X = (X_1, \ldots, X_n)$ whose coordinates are independent and satisfy $|X_i| \leq 1$ almost surely. Then for any Lipschitz function $f : [-1, 1]^n \to \mathbb{R}$,

$$||f(X) - \mathbb{E}[f(X)]||_{\psi_2} \le C||f||_{\text{Lip}}.$$

5.3 Application: Johnson-Lindenstrauss Lemma

5.4 Matrix Bernstein Inequality

We extend generalized concentration inequalities from sums of independent random variables to sums of independent random matrices. We'll make a matrix version of Bernstein inequality (Theorem 2.9.5) by replacing random variables by random matrices, and absolute value by the operator norm. No need for independence of entries, rows, or columns within each random matrix!

Theorem 5.4.1 (Matrix Bernstein inequality). Let X_1, \ldots, X_N be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \le K$ almost surely for all i. Then for every $t \ge 0$,

$$P\left(\|\sum_{i=1}^{N} X_i\| \ge t\right) \le 2n \exp\left(-\frac{t^2/2}{\sigma^2 + Kt/3}\right)$$

where $\sigma^2 = \|\sum_{i=1}^N \mathbb{E}[X_i^2]\|$ is the operator norm of the matrix variance of the sum.

We can rewrite the RHS of the inequality as the mixture of subgaussian and subexponential tail, like in the scalar Bernstein inequality:

$$P\left(\left\|\sum_{i=1}^{N} X_{i}\right\| \geq t\right) \leq 2n \exp\left[-c \cdot \min\left(\frac{t^{2}}{\sigma^{2}}, \frac{t}{K}\right)\right].$$

The proof is similar to that of the scalar version: Repeat the MGF argument, swapping scalars with matrices. However, there is a big problem: Matrix multiplication is not commutative! Therefore we need some matrix calculus knowledge first.

5.4.1 Matrix Calculus

For an $n \times n$ symmetric matrix X, operations such as inversion or squaring only affect eigenvalues. For example, if the spectral decomposition of X is $X = \sum_{i=1}^{n} \lambda_i u_i u_i^T$, then

$$X^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} u_i u_i^T, \ X^2 = \sum_{i=1}^{n} \lambda_i^2 u_i u_i^T, \ 2I_n - 5X^3 = \sum_{i=1}^{n} (2 - 5\lambda_i^3) u_i u_i^T.$$

This suggest that for symmetric matrices, applying arbitrary functions on the matrices is equivalent to applying them to the eigenvalues:

Definition 5.4.2 (Functions of matrices). For a function $f : \mathbb{R} \to \mathbb{R}$ and an $n \times n$ symmetric matrix X with spectral decomposition as above, define

$$f(X) := \sum_{i=1}^{n} f(\lambda_i) u_i u_i^T.$$

This definition agrees with matrix addition and multiplication, and with Taylor series (Exercise 5.16). Of course, matrices can be compared with each other via a partial ordering:

Definition 5.4.3 (Loewner order). We write $X \succeq 0$ if X is a symmetric positive semidefinite matrix. We write $X \succeq Y$ and $Y \preceq X$ if $X - y \succeq 0$.

This is a partial ordering because there are matrices for which neither $X \succeq Y$ nor $Y \succeq X$ holds.

Proposition 5.4.4 (Simple properties of Loewner order). We have

- (a) (Eigenvalue monotonicity) $X \leq Y$ implies $\lambda_i(X) \leq \lambda_i(Y)$ for all i.
- (b) (Trace monotonicity) For a (weakly) increasing function $f: \mathbb{R} \to \mathbb{R}$,

$$X \prec Y \implies \operatorname{tr}(f(X)) < \operatorname{tr}(f(Y)).$$

(c) (Operator norm) For any $a \ge 0$,

$$||X|| \le a \iff -aI_n \le X \le aI_n.$$

(d) (Upgrading scalar to matrix inequalities) For functions $f, g : \mathbb{R} \to \mathbb{R}$,

$$f(x) \le g(x) \forall x \text{ with } |x| \le a \implies f(X) \le g(X) \forall X \text{ with } ||X|| \le a.$$

Proof. (a) If $X \leq Y$, then $Y - X \succeq 0$ hence all eigenvalues of Y - X are greater than equal to 0, and the result follows.

- (b) The eigenvalues of f(X) are $f(\lambda_i(X))$. The same can be said for f(Y). By part (a) and the assumption, $f(\lambda_i(X)) \leq f(\lambda_i(Y))$. Summing these gives the result since the trace is the sum of the eigenvalues.
- (c) From Remark 4.1.12, $||X|| \le a$ implies $u^T X u \le a$ for all unit vectors u. Therefore $u^T (aI_n X)u \ge 0$ for all u, meaning $aI_n X \succeq 0$, thus $X \le aI_n$. For the other inequality, again from Remark 4.1.12, $u^T X u \ge -a$ for all unit vectors u. Following the exact procedure above gives $X \succeq -aI_n$.
- (d) By considering g f, we can assume that f = 0. If $||X|| \le a$, then all eigenvalues of X satisfy $|\lambda_i| \le a$, which implies $g(\lambda_i) \ge 0$ by assumption. So, by definition, g(X) has nonnegative eigenvalues $g(\lambda_i)$ and so $g(X) \succeq 0$.

Remark 5.4.5 (Operator norm as matric absolute value). (c) of Proposition 5.4.4 looks quite familiar... It is a matrix version of the basic fact about absolute values: for $x \in \mathbb{R}$,

$$|x| \le a \iff -a \le x \le a.$$

This makes the operator norm $\|\cdot\|$ a natural matrix version of the absolute value $|\cdot|$, and that's why it appears in the matrix Bernstein inequality (Theorem 5.4.1).

Remark 5.4.6 (Matrix monotonicity). Can we strengthen trace monotonicity (Proposition 5.4.4 (b)) to matrix monotonicity, i.e.

$$X \leq Y \implies f(X) \leq f(Y)$$
 for any weakly increasing $f: \mathbb{R} \to \mathbb{R}$?

If X and Y commute, yes - but in general, no (Exercise 5.17).

However, some functions, like 1/x and $\log x$ on $[0, \infty)$, are <u>matrix monotone</u>, meaning that the above holds even for non-commuting matrices:

$$0 \prec X \prec Y \implies X^{-1} \succ Y^{-1} \succ 0$$
 and $\log X \prec \log Y$

whenever X is invertible (Exercise 5.18).

5.4.2 Trace Inequalities

Here is another identity that works for real numbers but not for matrices in general: $e^{x+y} = e^x e^y$ for scalars, but in Exercise 5.19, there are $n \times n$ symmetric matrices X, Y such that

$$e^{X+Y} \neq e^X e^Y$$
.

This is unfortunate, because when using the exponential moment method, we relied on this property to split the MGF via independence.

Nevertheless, there are useful substitutes for the missing identity. In particular, this subsection covers two of them, both belonging to the rich family of *trace inequalities*.

Theorem 5.4.7 (Golden-Thompson inequality). For any $n \times n$ symmetric matrices A and B,

$$\operatorname{tr}(e^{A+B}) \le \operatorname{tr}(e^A e^B).$$

Note that this does not hold for three or more matrices (we can find counterexamples)!

Theorem 5.4.8 (Lieb inequality). Let H be an $n \times n$ symmetric matrix. Define the function on matrices

$$f(X) := \operatorname{tr}(\exp(H + \log X)).$$

Then f is concave on the space on PSD $n \times n$ symmetric matrices.

If X is a random matrix, then Lieb and Jensen inequalities imply that

$$\mathbb{E}[f(X)] \le f(\mathbb{E}[X]).$$

Applying this with $X = e^{Z}$, we obtain the following:

Lemma 5.4.9 (Lieb inequality for random matrices). Let H be a fixed $n \times n$ symmetric matrix and Z be a random $n \times n$ symmetric matrix. Then

$$\mathbb{E}[\operatorname{tr}(\exp(H+Z))] \le \operatorname{tr}(\exp(H+\log \mathbb{E}[e^Z])).$$

- 5.4.3 Proof of Matrix Bernstein Inequality
- 5.5 Application: Community Detection in Sparse Networks
- 5.6 Application: Covariance Estimation for General Distributions
- 5.7 Extra notes

There are lots of other concentration theorems not went over in the text. A very useful one is the McDiarmid inequality, which generalizes the Hoeffding inequality:

Theorem 5.7.1 (McDiarmid inequality). Let $X = (X_1, ..., X_N)$ be a random vector with independent entries. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function. Assume that the value of f(x) can change by at most $c_i > 0$ under an arbitrary change of a single coordinate of $x \in \mathbb{R}^n$. Then for any t > 0,

$$P(f(X) - \mathbb{E}[f(X)] \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{N} c_i^2}\right).$$

64