Advanced Data Structure and Algorithm

Randomized algorithms and QuickSort

WHAT IS A RANDOMIZED ALGORITHM?

- An algorithm that incorporates randomness as part of its operation.
- Basically, we'll make random choices during the algorithm:
 - Sometimes, we'll just hope that it works!
 - Other times, we'll just hope that our algorithm is fast!
- Let's formalize this...

LAS VEGAS vs. MONTE CARLO

LAS VEGAS ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.

(i.e. there's a chance the runtime could take awhile)

LAS VEGAS vs. MONTE CARLO

LAS VEGAS ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.

(i.e. there's a chance the runtime could take awhile)

MONTE CARLO ALGORITHMS

Correctness is a random variable.

(i.e. there's a chance the output is wrong)

But the runtime is guaranteed!

LAS VEGAS vs. MONTE CARLO

LAS VEGAS ALGORITHMS

Guarantees correctness!

But the runtime is a random variable.

(i.e. there's a chance the runtime could take awhile)

We'll focus on these algorithms today (BogoSort, QuickSort, QuickSelect)

MONTE CARLO ALGORITHMS

Correctness is a random variable.

(i.e. there's a chance the output is wrong)

But the runtime is guaranteed!

We'll see some examples of these later in the semester!

How do we measure the runtime of a randomized algorithm?

Scenario 1

- 1. You publish your algorithm.
- 2. Bad guy picks the input.
- You run your randomized algorithm.

Scenario 2

- 1. You publish your algorithm.
- 2. Bad guy picks the input.
- 3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In Scenario 1, the running time is a random variable.
 - It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
 - We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a randomized algorithm?

Scenario 1

in both cases, we are still thinking about the WORST-CASE INPUT

Scenario 2

- 1. You publish your algorithm.
- Bad guy picks the input.
 - You run your randomized algorithm.

- You publish your algorithm.
- 2. Bad guy picks the input.
- 3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In Scenario 1, the running time is a random variable.
 - It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
 - We call this the worst-case running time of the randomized algorithm.

How do we measure the runtime of a randomized algorithm?

Scenario 1

in both cases, we are still thinking about the

Scenario 2

Don't get confused!!!

Even with randomized algorithms, we are still considering the *WORST CASE INPUT*, regardless of whether we're computing expected or worst-case runtime.

Expected runtime <u>IS NOT</u> runtime when given an expected input! We are taking the expectation over the random choices that our algorithm would make, <u>NOT</u> an expectation over the distribution of possible inputs.

- In Scenario 2, the running time is not random.
 - We call this the worst-case running time of the randomized algorithm.

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1\left(\frac{1}{100}\right) + 0\left(\frac{99}{100}\right) = \frac{1}{100}$$

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1\left(\frac{1}{100}\right) + 0\left(\frac{99}{100}\right) = \frac{1}{100}$$

b. Suppose you draw n independent random variables $\mathbf{X_1}, \mathbf{X_2}, ..., \mathbf{X_n}$, distributed like X. What is the expected value $\mathbb{E}[\sum_{i=1}^n X_i]$?

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1\left(\frac{1}{100}\right) + 0\left(\frac{99}{100}\right) = \frac{1}{100}$$

b. Suppose you draw n independent random variables $\mathbf{X_1}, \mathbf{X_2}, ..., \mathbf{X_n}$, distributed like X. What is the expected value $\mathbb{E}[\sum_{i=1}^n X_i]$?

By linearity of expectation:
$$\mathbb{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbb{E}[X_i] = rac{n}{100}$$

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1\left(\frac{1}{100}\right) + 0\left(\frac{99}{100}\right) = \frac{1}{100}$$

b. Suppose you draw n independent random variables $\mathbf{X_1}, \mathbf{X_2}, ..., \mathbf{X_n}$, distributed like X. What is the expected value $\mathbb{E}[\sum_{i=1}^n X_i]$?

By linearity of expectation:
$$\mathbb{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbb{E}[X_i] = rac{n}{100}$$

c. Suppose I draw independent random variables $X_1, X_2, ..., X_n$, and I stop when I see the first "1". Let N be the last index that we draw. What is the expected value of N?

X is a Bernoulli/indicator random variable which is **1** with probability 1/100 and **0** with prob. 99/100.

a. What is the expected value $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1\left(\frac{1}{100}\right) + 0\left(\frac{99}{100}\right) = \frac{1}{100}$$

b. Suppose you draw n independent random variables $\mathbf{X_1}, \mathbf{X_2}, ..., \mathbf{X_n}$, distributed like X. What is the expected value $\mathbb{E}[\sum_{i=1}^n X_i]$?

By linearity of expectation:
$$\mathbb{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbb{E}[X_i] = rac{n}{100}$$

c. Suppose I draw independent random variables $X_1, X_2, ..., X_n$, and I stop when I see the first "1". Let N be the last index that we draw. What is the expected value of N?

N is a *geometric random variable*. We can use the formula:

$$\mathbb{E}[N] = rac{1}{p} = rac{1}{1/100} = 100$$

GEOMETRIC RANDOM VARIABLE

If **N** represents "number of trials/attempts", and **p** is the probability of "success" on each trial, then:

$$\mathbb{E}[N] = \frac{1}{p}$$

GEOMETRIC RANDOM VARIABLE

If **N** represents "number of trials/attempts", and **p** is the probability of "success" on each trial, then:

$$\mathbb{E}[N] = \frac{1}{p}$$

$$egin{aligned} \mathbb{E}[N] &= 1(p) + (1 + \mathbb{E}[N])(1-p) \ &= p + (1-p) + (1-p)\mathbb{E}[N] \ &= 1 + (1-p)\mathbb{E}[N] \end{aligned}$$

$$\mathbb{E}[N](1-(1-p))=1 \ \mathbb{E}[N](p)=1 \ \mathbb{E}[N]=rac{1}{p}$$

BOGOSORT

A bit silly, but a great pedagogical tool!

BOGOSORT

```
BOGOSORT(A):
  while True:
    A.shuffle()
    sorted = True
    for i in [0,...,n-2]:
        if A[i] > A[i+1]:
            sorted = False
        if sorted:
            return A
```

What is the expected number of iterations?

BOGOSORT(A): while True: A.shuffle() sorted = True for i in [0,...,n-2]: if A[i] > A[i+1]: sorted = False if sorted: return A

What is the expected number of iterations?

Let X_i be a Bernoulli/Indicator variable, where

X_i = 1 if A is sorted on iteration i

• $X_i = 0$ otherwise

What is the expected number of iterations?

Let X_i be a Bernoulli/Indicator variable, where

• X_i = 1 if A is sorted on iteration i

• $X_i = 0$ otherwise

Probability that $X_i = 1$ (A is sorted) = 1/n!

since there are n! possible orderings of A and only one is sorted (assume A has distinct elements) \Rightarrow E[X_i] = 1/n!

What is the expected number of iterations?

Let X_i be a Bernoulli/Indicator variable, where

- X_i = 1 if A is sorted on iteration i
- $X_i = 0$ otherwise

Probability that $X_i = 1$ (A is sorted) = 1/n!

since there are n! possible orderings of A and only one is sorted (assume A has distinct elements) \Rightarrow E[X_i] = 1/n!

```
E[ # of iterations/trials ] = 1/(prob. of success on each trial) = 1/(1/n!) = n!
```

```
BOGOSORT(A):
  while True:
    A.shuffle()
    sorted = True
    for i in [0,...,n-2]:
        if A[i] > A[i+1]:
            sorted = False
        if sorted:
            return A
```

E[runtime on a list of length n]

```
= E[ (# of iterations) * (time per iteration) ]
= (time per iteration) * E[ # of iterations ]
= O(n) * E[ # of iterations ]
= O(n) * (n!)
= O(n * n!)
= REALLY REALLY BIG
```

BOGOSORT: WORST-CASE RUNTIME?

BOGOSORT: WORST-CASE RUNTIME?

```
BOGOSORT(A):
  while True:
    A.shuffle()
    sorted = True
    for i in [0,...,n-2]:
        if A[i] > A[i+1]:
            sorted = False
        if sorted:
            return A
```

Worst-case runtime =

This is as if the "bad guy" chooses all the randomness in the algorithm, so each shuffle could be unlucky... forever...

WHAT HAVE WE LEARNED?

EXPECTED RUNNING TIME

- 1. You publish your randomized algorithm
- 2. Bad guy picks an input
- 3. You get to roll the dice (leave it up to randomness)

WORST-CASE RUNNING TIME

- 1. You publish your randomized algorithm
- 2. Bad guy picks an input
- 3. Bad guy "rolls" the dice (will choose the randomness in the worst way possible)

WHAT HAVE WE LEARNED?

EXPECTED RUNNING TIME

- 1. You publish your randomized algorithm
- 2. Bad guy picks an input
- 3. You get to roll the dice (leave it up to randomness)

WORST-CASE RUNNING TIME

- 1. You publish your randomized algorithm
- 2. Bad guy picks an input
- 3. Bad guy "rolls" the dice (will choose the randomness in the worst way possible)

Don't use BogoSort.

QUICKSORT

A much better randomized algorithm

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

In practice, it works great! It's competitive with MergeSort (& often better in some contexts!), and it runs *in place* (no need for lots of additional memory)

Let's use DIVIDE-and-CONQUER again!

Select a pivot at random

Partition around it

Recursively sort L and R!

Select a pivot

Select a pivot

3 2 7 6 1 5 4 8

Pick this pivot uniformly at random!

Partition around it

Select a pivot

3 2 7 6 1 5 4 8

Pick this pivot uniformly at random!

Partition around it

Recurse!

Select a pivot

3 2 7 6 1 5 4 8

Pick this pivot uniformly at random!

Partition around it

Recurse!

QUICKSORT: PSEUDO-PSEUDOCODE

Here's the high level outline:

(I've posted an IPython Notebook on the course website with actual code for QuickSort)

```
QUICKSORT(A):
   if len(A) <= 1:
      return
   pivot = random.choice(A)
   PARTITION A into:
      L (less than pivot) and
      R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

RECURRENCE RELATION

```
QUICKSORT(A):
   if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
      L (less than pivot) and
      R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)</pre>
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

IDEAL RUNTIME?

```
QUICKSORT(A):
   if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)</pre>
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

Ideal Runtime?

IDEAL RUNTIME?

```
QUICKSORT(A):
   if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)</pre>
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

In an ideal world, the pivot would split the array exactly in half, and we'd get:

$$T(n) = T(n/2) + T(n/2) + O(n)$$

IDEAL RUNTIME?

QUICKSORT(A): if len(A) <= 1: return pivot = random. PARTITION A int L (less than R (greater th Replace A with L QUICKSORT(L) QUICKSORT(R)</pre>

Recurrence Relation for QUICKSORT

In an ideal world:

$$T(n) = 2 \cdot T(n/2) + O(n)$$
$$T(n) = O(n \log n)$$

rld, the pivot would split the array exactly in half, and we'd get:

$$T(n) = T(n/2) + T(n/2) + O(n)$$

WORST-CASE RUNTIME

```
QUICKSORT(A):
   if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)</pre>
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

Worst-Case Runtime?

WORST-CASE RUNTIME

```
QUICKSORT(A):
   if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)</pre>
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

With the unluckiest randomness, the pivot would be either min(A) or max(A):

$$T(n) = T(0) + T(n-1) + O(n)$$

WORST-CASE RUNTIME

QUICKSORT(A): if len(A) <= 1 return pivot = ranc PARTITION A L (less th R (greater Replace A wi QUICKSORT(L) QUICKSORT(R)</pre>

Recurrence Relation for QUICKSORT

With the worst "randomness"

$$T(n) = T(n-1) + O(n)$$
$$T(n) = O(n^2)$$

(recursion tree/table or substitution method!)

either min(A) or max(A):

$$T(n) = T(0) + T(n-1) + O(n)$$

QUICKSORT O(n log n) EXPECTED RUNTIME

In order to prove this expected runtime:

Lets compute

How many times are any two items compared, in expectation?

to 5 once in this first step... and then never again with **5**.

Everything is compared to 5 once in this first step... and then never again with **5**.

to 5 once in this first step... and then never again with **5**.

to 5 once in this first step... and then never again with **5**.

Only 1, 3, & 4 are compared to **2**.

And only 7 & 8 are compared with **6**.

No comparisons ever happen between two numbers on opposite sides of 5.

Seems like whether or not two elements are compared has something to do with pivots...

to 5 once in this first step... and then never again with **5**.

Only 1, 3, & 4 are compared to **2**.

And only 7 & 8 are compared with **6**.

No comparisons ever happen between two numbers on opposite sides of 5.

Each pair of elements is compared either 0 or 1 times.

Let $X_{a,b}$ be a Bernoulli/indicator random variable such that:

 $X_{a,b} = 1$ if **a** and **b** are compared

 $X_{a,b} = 0$

otherwise

Each pair of elements is compared either **0** or **1** times.

Let $X_{a,b}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

$$X_{a,b} = 0$$
 otherwise

In our example, $X_{2,5}$ took on the value 1 since 2 and 5 were compared. On the other hand, $X_{3,7}$ took on the value 0 since 3 and 7 are *not* compared.

Each pair of elements is compared either **0** or **1** times.

Let $X_{a,b}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

$$X_{a,b} = 0$$
 otherwise

In our example, $X_{2,5}$ took on the value 1 since 2 and 5 were compared. On the other hand, $X_{3,7}$ took on the value 0 since 3 and 7 are *not* compared.

Total number of comparisons =

$$\mathbb{E}\left[\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}X_{a,b}
ight]$$

Each pair of elements is compared either **0** or **1** times.

Let $X_{a,b}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

$$X_{a,b} = 0$$
 otherwise

In our example, $X_{2,5}$ took on the value 1 since 2 and 5 were compared. On the other hand, $X_{3,7}$ took on the value 0 since 3 and 7 are *not* compared.

Total number of comparisons =

$$\mathbb{E}\left[\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}X_{a,b}\right] \overset{n-2}{\underset{\text{expectation!}}{=}} \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}\left[X_{a,b}\right]$$

Each pair of elements is compared either **0** or **1** times.

Let $X_{a,b}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

$$X_{a,b} = 0$$
 otherwise

In our example, $X_{2,5}$ took on the value 1 since 2 and 5 were compared. On the other hand, $X_{3,7}$ took on the value 0 since 3 and 7 are *not* compared.

Total number of comparisons = We need to figure out this value!
$$\mathbb{E}\left[\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}X_{a,b}\right] = \sum_{\substack{\text{by linearity of expectation!}}} \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}\left[X_{a,b}\right]$$

So, what's $E[X_{a,b}]$?

So, what's $E[X_{a,b}]$?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $E[X_{a,b}]$?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $P(X_{a,b} = 1)$?

It's the probability that **a** and **b** are compared. Consider this example:

So, what's
$$E[X_{a,b}]$$
?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $P(X_{a,b} = 1)$?

It's the probability that **a** and **b** are compared. Consider this example:

 $P(X_{3,7} = 1)$ is the probability that 3 and 7 are compared.

So, what's $E[X_{a,b}]$?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $P(X_{a,b} = 1)$?

It's the probability that **a** and **b** are compared. Consider this example:

 $P(X_{3,7} = 1)$ is the probability that 3 and 7 are compared.

This is exactly the probability that either 3 or 7 is first picked to be a pivot out of the highlighted entries.

So, what's $E[X_{a,b}]$?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $P(X_{a,b} = 1)$?

It's the probability that **a** and **b** are compared. Consider this example:

 $P(X_{3,7} = 1)$ is the probability that 3 and 7 are compared.

This is exactly the probability that either 3 or 7 is first picked to be a pivot out of the highlighted entries.

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 would be separated and never see each other again.

So, what's $E[X_{3,k}]$?

$$P(X_{a,b} = 1)$$
 aka probability that $a \& b$ are compared

probability that either **a** or **b** are selected as a pivot before elements between **a** and **b**.

2

(# elements from a to b, inclusive)

first

2S.

3

3

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 would be separated and never see each other again.

So, what's $E[X_{3,k}]$?

$$P(X_{a,b} = 1)$$
 aka probability that $a \& b$ are compared

probability that either **a** or **b** are selected as a pivot before elements between **a** and **b**.

first

es.

3

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 would be separated and never see each other again.

Total number of comparisons =

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}ig[X_{a,b}ig]$$

Total number of comparisons =

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}ig[X_{a,b}ig] = \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}rac{2}{b-a+1}$$

We just computed

$$E[X_{a,b}] = P(X_{a,b,} = 1)$$

Total number of comparisons =

$$egin{aligned} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \end{aligned}$$

We just computed

$$E[X_{a,b}] = P(X_{a,b,} = 1)$$

Introduce c = b – a to make notation nicer

Total number of comparisons =

$$egin{align} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{c=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \end{aligned}$$

We just computed

$$E[X_{a,b}] = P(X_{a,b,} = 1)$$

Introduce c = b - a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Total number of comparisons =

$$egin{align} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b,} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

Total number of comparisons =

$$egin{aligned} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b,} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

Total number of comparisons =

$$egin{aligned} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \ &= O(n \log n) \end{aligned}$$

We just computed

$$E[X_{a,b}] = P(X_{a,b,} = 1)$$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

Total number of comparisons =

$$\sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] = \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1}$$

If E[# comparisons] =
O(n log n), does this
mean E[running time] is
also O(n log n)?

YES! Intuitively, the runtime is dominated by comparisons.

$$egin{align} &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \ &= O(n \log n) \ \end{pmatrix}$$

We just computed

$$E[X_{a,b}] = P(X_{a,b,} = 1)$$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

QUICKSORT

```
QUICKSORT(A):
   if len(A) <= 1:</pre>
      return
   pivot = random.choice(A)
   PARTITION A into:
      L (less than pivot) and
      R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

Worst case runtime: O(n²)

Expected runtime: O(n log n)

QUICKSORT IN PRACTICE

How is it implemented? Do people use it?

IMPLEMENTING QUICKSORT

In practice, a more clever approach is used to implement PARTITION, so that the entire QuickSort algorithm can be implemented "in-place"

(i.e. via swaps, rather than constructing separate L or R subarrays)

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Increment until it sees something smaller than pivot, swap the things ahead of the bars & increment both bars

Choose pivot & swap with last element so pivot is at the end.

Initialize and Increment until it sees something smaller than pivot, swap the things ahead of the bars & increment both bars

Choose pivot & swap with last element so pivot is at the end.

Initialize and Increment until it sees something smaller than pivot, swap the things ahead of the bars & increment both bars

Choose pivot & swap with last element so pivot is at the end.

Initialize and Increment until it sees something smaller than pivot, swap the things ahead of the bars & increment both bars

Choose pivot & swap with last element so pivot is at the end.

Increment until it sees something smaller than pivot, swap the things ahead of the bars & increment both bars

IMPLEMENTING QUICKSORT

There's another in-place partition algorithm called Hoare Partition that's even more efficient as it performs less swaps.

(you're not responsible for knowing it in this class)

Check out these <u>Hungarian Folk Dancers</u> showing you how it's done!

QUICKSORT vs. MERGESORT

		QuickSort (random pivot)	MergeSort (deterministic)
You do not need to understand any of this stuff	Runtime	Worst-case: O(n²) Expected: O(n log n)	Worst-case: O(n log n)
	Used by	Java (primitive types), C (qsort), Unix, gcc	Java for objects, perl
	In-place? (i.e. with O(log n) extra memory)	Yes, pretty easily!	Easy if you sacrifice runtime (O(nlogn) MERGE runtime). Not so easy if you want to keep runtime & stability.
	Stable?	No	Yes

RECAP

- Runtimes of **randomized algorithms** can be measured in two main ways:
 - Expected runtime (you roll the dice)
 - Worst-case runtime (the bad guy gets to fix the dice)

QUICKSORT!

- Another DIVIDE and CONQUER sorting algorithm that employs randomness
- Elegant, structurally simple, and actually used in practice!

NEXT TIME

• Can we sort faster than $\Theta(n \log n)$???

Acknowledgement

Stanford University