ОПЕРАЦИИ СО СВЕРТКОЙ И СЕГМЕНТАЦИЯ

ЗАДАЧА СЕГМЕНТАЦИИ

ЗАДАЧА СЕГМЕНТАЦИИ

https://www.researchgate.net/profile/Sunando_Sengupta/publication/261400239/figure/fig3/AS:296754114252803 @1447763102273/Semantic-Image-Segmentation-The-top-row-shows-the-input-street-level-images-followed-by.png

МаксПуллинг2D

Слой МаксПуллинг2D осуществляет операцию сжатия (уменьшения размеров) изображения путем выбора максимального значения в блоке пикселей

Карта признаков

4	3	1	5
1	3	4	8
4	5	4	3
6	5	9	4

Новая карта признаков

U N e t

ПЛЮСЫ U-Net

- Вычислительно эффективна
- Обучается на небольшом датасете
- Изначально для биомедицинских изображений

МИНУСЫ U-Net

- Сложнее с многоклассовой сегментацией. FPN and PSPNet более приспособлены
- Проблема границ

SegNet

SegNet, PE3УЛЬТАТЫ

https://arxiv.org/pdf/ 1511.00561.pdf

Loss

- Binary crossentropy
- Categorical crossentropy
- Sørensen-Dice coefficient
- Jaccard coefficient

$$J(A,B) = rac{|A\cap B|}{|A\cup B|}$$

$$DSC = rac{2|X\cap Y|}{|X|+|Y|}$$

Обучающая выборка может быть меньше

Можно делать аугментацию

Не всегда размер картинки умещается в

память: обучаемся на кропах картинки

АУГМЕНТАЦИЯ

Спасибо за внимание