```
1 import pandas as pd
In [1]:
         2 import numpy as np
         1 data = pd.read_csv('creditcard.csv')
In [3]:
In [4]:
         1 data.head()
```

Out[4]:

|   | V6        | V7        | V8        | V9        | <br>V21       | V22       | V23       | V24       | V25       | V26       | V27       | V28       | Amount | Class |
|---|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-------|
| - | 0.462388  | 0.239599  | 0.098698  | 0.363787  | <br>-0.018307 | 0.277838  | -0.110474 | 0.066928  | 0.128539  | -0.189115 | 0.133558  | -0.021053 | 149.62 | 0     |
| i | -0.082361 | -0.078803 | 0.085102  | -0.255425 | <br>-0.225775 | -0.638672 | 0.101288  | -0.339846 | 0.167170  | 0.125895  | -0.008983 | 0.014724  | 2.69   | 0     |
| , | 1.800499  | 0.791461  | 0.247676  | -1.514654 | <br>0.247998  | 0.771679  | 0.909412  | -0.689281 | -0.327642 | -0.139097 | -0.055353 | -0.059752 | 378.66 | 0     |
|   | 1.247203  | 0.237609  | 0.377436  | -1.387024 | <br>-0.108300 | 0.005274  | -0.190321 | -1.175575 | 0.647376  | -0.221929 | 0.062723  | 0.061458  | 123.50 | 0     |
|   | 0.095921  | 0.592941  | -0.270533 | 0.817739  | <br>-0.009431 | 0.798278  | -0.137458 | 0.141267  | -0.206010 | 0.502292  | 0.219422  | 0.215153  | 69.99  | 0     |

localhost:8888/notebooks/Data Science Course/Week 5/Class\_Imbalance\_Case\_Study.ipynb#Dealing-with-Class-Imbalance

In [5]: 1 data.describe()

Out[5]:

| V21          | V22           | V23           | V24           | V25           | V26           | V27           | V28           | Amount        | Cla         |
|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|
| 2.848070e+05 | 2.848070e+05  | 2.848070e+05  | 2.848070e+05  | 2.848070e+05  | 2.848070e+05  | 2.848070e+05  | 2.848070e+05  | 284807.000000 | 284807.0000 |
| 1.537294e-16 | 7.959909e-16  | 5.367590e-16  | 4.458112e-15  | 1.453003e-15  | 1.699104e-15  | -3.660161e-16 | -1.206049e-16 | 88.349619     | 0.0017      |
| 7.345240e-01 | 7.257016e-01  | 6.244603e-01  | 6.056471e-01  | 5.212781e-01  | 4.822270e-01  | 4.036325e-01  | 3.300833e-01  | 250.120109    | 0.0415      |
| 3.483038e+01 | -1.093314e+01 | -4.480774e+01 | -2.836627e+00 | -1.029540e+01 | -2.604551e+00 | -2.256568e+01 | -1.543008e+01 | 0.000000      | 0.0000      |
| 2.283949e-01 | -5.423504e-01 | -1.618463e-01 | -3.545861e-01 | -3.171451e-01 | -3.269839e-01 | -7.083953e-02 | -5.295979e-02 | 5.600000      | 0.0000      |
| 2.945017e-02 | 6.781943e-03  | -1.119293e-02 | 4.097606e-02  | 1.659350e-02  | -5.213911e-02 | 1.342146e-03  | 1.124383e-02  | 22.000000     | 0.0000      |
| 1.863772e-01 | 5.285536e-01  | 1.476421e-01  | 4.395266e-01  | 3.507156e-01  | 2.409522e-01  | 9.104512e-02  | 7.827995e-02  | 77.165000     | 0.0000      |
| 2.720284e+01 | 1.050309e+01  | 2.252841e+01  | 4.584549e+00  | 7.519589e+00  | 3.517346e+00  | 3.161220e+01  | 3.384781e+01  | 25691.160000  | 1.0000      |

| In [6]:   | 1    | <pre>data.isna().sum()</pre> |  |
|-----------|------|------------------------------|--|
| Out[6]: T | ime  | 2 0                          |  |
| V         |      | 0                            |  |
| V         |      | 0                            |  |
| V         |      | 0                            |  |
| V         |      | 0                            |  |
| V         | 5    | 0                            |  |
| V         | 6    | 0                            |  |
| V         |      | 0                            |  |
| V         | 8    | 0                            |  |
| V         | 9    | 0                            |  |
| V         | 10   | 0                            |  |
| V         | 11   | 0                            |  |
|           | 12   | 0                            |  |
|           | 13   | 0                            |  |
|           | 14   | 0                            |  |
| V         | 15   | 0                            |  |
|           | 16   | 0                            |  |
|           | 17   | 0                            |  |
| V         | 18   | 0                            |  |
|           | 19   | 0                            |  |
| V         | 20   | 0                            |  |
|           | 21   | 0                            |  |
| V         | 22   | 0                            |  |
| V         | 23   | 0                            |  |
| V         | 24   | 0                            |  |
|           | 25   | 0                            |  |
| V         | 26   | 0                            |  |
|           | 27   | 0                            |  |
| V         | 28   | 0                            |  |
| Α         | moui |                              |  |
| С         | las  | ss 0                         |  |
| ď         | type | pe: int64                    |  |

| In [7]: | 1    | data.dtypes |
|---------|------|-------------|
| Out[7]: | Time | float64     |
|         | V1   | float64     |
|         | V2   | float64     |
|         | V3   | float64     |
|         | V4   | float64     |
|         | V5   | float64     |
|         | ٧6   | float64     |
|         | V7   | float64     |
|         | V8   | float64     |
|         | V9   | float64     |
|         | V10  | float64     |
|         | V11  | float64     |
|         | V12  | float64     |
|         | V13  | float64     |
|         | V14  | float64     |
|         | V15  | float64     |
|         | V16  | float64     |
|         | V17  | float64     |
|         | V18  | float64     |
|         | V19  | float64     |
|         | V20  | float64     |
|         | V21  | float64     |
|         | V22  | float64     |
|         | V23  | float64     |
|         | V24  | float64     |
|         | V25  | float64     |
|         | V26  | float64     |
|         | V27  | float64     |
|         | V28  | float64     |
|         | Amou |             |
|         | Clas |             |
|         | dtyp | e: object   |
|         |      |             |



```
In [11]: 1 print(f"The percentage of data in class 0 : {100*data['Class'].value_counts()[0]/data.shape[0]}")
2 print(f"The percentage of data in class 1 : {100*data['Class'].value_counts()[1]/data.shape[0]}")
```

The percentage of data in class 0 : 99.827251436938
The percentage of data in class 1 : 0.1727485630620034

```
In [13]: 1 f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
2 ax1 = sns.distplot(data['Time'], ax=ax1, color='y')
3 ax2 = sns.distplot(data['Amount'], ax=ax2, color='r')
4 ax1.set_title('Distribution of Time', fontsize=13)
5 ax2.set_title('Distribution of Amount', fontsize=13)
```

Out[13]: Text(0.5,1, 'Distribution of Amount')



```
In [14]: 1 from sklearn.preprocessing import RobustScaler
```

```
In [15]: 1 scaler = RobustScaler()

In [18]: 1 data['Amount'] = scaler.fit_transform(data['Amount'].values.reshape(-1,1))
2 data['Time'] = scaler.fit_transform(data['Time'].values.reshape(-1,1))

In [19]: 1 f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
2 ax1 = sns.distplot(data['Time'], ax=ax1, color='y')
3 ax2 = sns.distplot(data['Amount'], ax=ax2, color='r')
4 ax1.set_title('Distribution of Time', fontsize=13)
5 ax2.set_title('Distribution of Amount', fontsize=13)
```

Out[19]: Text(0.5,1,'Distribution of Amount')



In [20]: 1 from sklearn.model\_selection import train\_test\_split

```
In [21]:
           1 X train, X test, y train, y test= train test split(data.drop('Class',1),data['Class'],stratify=data['Class'],random sta
In [32]:
           1 from sklearn.ensemble import RandomForestClassifier
           2 from sklearn.linear model import LogisticRegression
In [33]:
           1 rf = LogisticRegression(n jobs = -1, verbose = 2)
In [34]:
           1 rf.fit(X train, y train)
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done  1 out of  1 | elapsed:
                                                                 13.6s finished
Out[34]: LogisticRegression(n jobs=-1, verbose=2)
In [35]:
           1 predictions = rf.predict(X test)
In [ ]:
             from sklearn.metrics import classification report
             print(classification report(predictions,y test))
```

## **Dealing with Class Imbalance**

### **Random OverSampling**

Randomly oversample the minority class to even out the distribution

#### Pros:

1. Easier than smote

#### Cons:

1. Random oversampling repeatation of the same data(redundant learning)



# **Random Undersampling**

Removing over-represented/majority class data points till the distribution is fixed

### Pros:

- 1. Easier than smote
- 2. No redundant learning

### Cons:

1. loss of information(Should not be used alone for fixing class imbalance)



## **Smote**

Synthetic Minority over sampling technique

Pros:

- 1. No redundant learning
- 2. Better assumptions

### Cons:

- 1. Synthetic data and hence not proper representation
- 2. Very sensitive to outliers
- 3. Fails for datasets with higher dimensions



In [ ]: 1