HANDWRITTEN LETTER RECOGNITION

Work done by:

• Ricardo cruz: 93118

• Pedro Amaral: 93283

Subject: Tópicos de Aprendizagem Automática

INTRODUCTION

Handwritten Letter Recognition is a deep learning classification problem that consists in recognizing handwritten capital letters, lowercase letters and numbers from images.

Deep learning algorithms in general have a high potential into the future since they can help sparing people's time and work.

This subject raised interest in us due to the fact it can help in a lot real life situations such as filling forms to banks, ensurances, etc.

ANALYZING DATA SET

Data set with over 3000 images

Each class with homogeneous number of images

Major obstacle is calligraphy variations

PRE-PROCESSING DATA

- Transformation from RGB(1) to grayscale(2)
- Cropping white space(3)
- Resizing(4)
- Normalizing

MODEL DESCRIPTION

Modelo 1:

- Convolutional
- MaxPooling
- Convolutional
- MaxPooling
- Convolutional
- MaxPooling
- > Flatten
- Dense
- Dense

Modelo 2:

- Convolutional
- Convolutional
- MaxPooling
- Dropout
- > Dropout
- > Flatten
- Dense
- Dense
- Dense

MODEL TRAINING

Traditional Data split:

K-fold Cross Validation Data split:

Cross Validation:

- Test set

Validation set

- Train set

RESULTS (MODEL 1)

RESULTS (MODEL 2)

MODEL COMPARISON

	Model 1	Model 2
Train Accuracy	0.9479	0.9124
CV Accuracy	0.7815	0.7797
Test Accuracy	0.7654	0.7639
Train Loss	0.1544	0.2390
CV Loss	0.8673	0.8269
Test Loss	0.9538	0.9569

HYPERPARAMETER SELECTION

Learning rate

Kernel size

Dropout rate

LEARNING RATE

KERNEL SIZE

DROPOUT RATE

PREVIOUS WORK

Compared to the accuracy we saw on kaggle, we increased the accuracy of the first model.

We are unable to know if we managed to improve the second model because its values were tested in a much bigger dataset.

CONCLUSION

- We implemented 2 models that allowed us to recognize with some accuracy handwritten letters and numbers.
- Just like in real life, our dataset also included incomprehensible or dubious letters.
- We faced a lack of computing power to test some parameters.

QUESTIONS

