2.2.8.4

A intensidade total da corrente que atravessa o circuito abaixo indicado é de 0,2A.

O valor de R_A é:

Nota: A queda de tensão V, é:

$$V_1 = R_1 I_t$$
 on $V_1 = 100 \times 0.2 = 20 V$

Então a queda de tensão V é:

$$V = V_1 + V_p$$
 or $100 = 20 + V_p \implies V_p = 100 - 20 = 80 V$

Sendo V = 80 V, a corrente em R3 4:

$$V_p = R_3 I_3$$
 ou 80 = 800 $I_3 \Rightarrow I_3 = \frac{80}{800} = 0.1 A$

Então a corrente que passa em R_2 e $R_{\underline{A}}$ é:

$$I_{t} = I_{3} + I_{2,4}$$
 ou 0,2 = 0,1 + $I_{2,4} \implies I_{2,4} = 0,2 - 0,1 = 0,1A$

e a queda de tensão em R₂ é:

$$V_2 = R_2 I_{2.4}$$
 on $V_2 = 200 \times 0.1 = 20 V$

Comp $V_p = 80 \text{ V, vem}_z$

$$V_p = V_2 + V_4$$
 ou $80 = 20 + V_4 \implies V_4 = 80 = 20 = 60 V_4$

e o valor da R_A 6:

$$V_4 = R_4 I_{2,4}$$
 ou $60 = R_4 \times 0.1 \implies R_4 = \frac{60}{0.1} = 600 \Omega$

