LC20 – Application du premier principe de la thermodynamique à la réaction chimique

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

Introduction

I. Description thermodynamique d'une réaction

1. Etat standard et enthalpie standard de réaction

- Constituant gazeux, pur ou dans un mélange : Gaz parfait sous la pression standard $P^{\circ} = 1$ bar
- Constituant en phase condensée (liquide, solide), pur, dans un mélange, ou solvant : Constituant pur, dans le même état physique, sous la pression standard $P^{\circ} = 1$ bar
- Soluté :

État du composé, sous la pression standard, dans une solution idéale à $C^{\circ} = 1$ mol. L⁻¹

I. Description thermodynamique d'une réaction

1. Etat standard et enthalpie standard de réaction

À 50 °C,

- Eau vapeur → gaz parfait à 50 °C sous 1 bar (état hypothétique)
- Eau solide → glace pure à 50 °C sous 1 bar (état hypothétique)
- Eau liquide \rightarrow liquide pur à 50 °C sous 1 bar *(état réalisable en pratique)*

II. Influence d'une réaction sur la température

2. Détermination expérimentale d'une enthalpie de réaction

III.1) Enthalpie standard de formation

 \circ L'état standard de référence d'un élément, à la température T, est l'état standard du corps simple, dans l'état physique le plus stable, à cette température.

Cas particuliers :

- H_2 , N_2 , O_2 , F_2 , Cl_2 : gaz parfait diatomique à toute température
- Carbone : graphite à toute température

Température	État standard de référence
Eau à $T>100^{\circ}C$	Gaz parfait pur
Eau à $0~^{\circ}C < T < 100~^{\circ}C$	Eau liquide pure
Eau à $T < 0~^{\circ}C$	Glace pure

III.3) Détermination de $\Delta_r H^o$ par un cycle de Hess

Nog
$$CO_3(s)$$
 + 10 H₂O(l) $\Delta_{hydra}H^{\circ}$ (No₂CO₃, 10 H₂O)_(S)

$$\Delta_{r}H_{1}^{\circ}$$

$$\Delta_{r}H_{2}^{\circ}$$

Cycle de Hess pour la dissolution des sels dans l'eau

III.3) Détermination de $\Delta_r H^\circ$ par un cycle de Hess

