Asignatura: Arquitecturas Avanzadas

Curso 2017/2018

Práctica 2 Estudio de Topologías Directas

Objetivo

El objetivo de esta práctica es comprobar, analizar y comparar las característica de diferentes topologías directas. Para ello, se realizarán distintos ejercicios que nos permitirán comprobar las propiedades de cada topología.

En todos los ejercicios de la práctica asumiremos una inyección y extracción ideal, en la que cada nodo de la red es capaz de inyectar 1 flit/ciclo con un *overhead* de transmisión de 0 ciclos, y recibir 1 flit/ciclo con un *overhead* de recepción de 0 ciclos. De la misma forma, asumimos una distribución de tráfico en los destinos uniforme (factor σ = 1). Bajo estas condiciones, el ancho de banda efectivo de todo el sistema se encuentra en la propia red, y viene determinado por la bisección y por la eficiencia de los componentes de la red (factor ρ).

La práctica se evalúa con la entrega de un documento que resuma todos los ejercicios, añadiendo en cada ejercicio dos gráficas (generadas con la herramienta gráfica del simulador; botón derecho del ratón sobre la gráfica). Las gráficas a generar son:

- 1) latencia media de red medida en ciclos contra tráfico generado medido en flits/ciclo/nic
- 2) productividad medida en flits/ciclo/nic contra tráfico generado medido en flits/ciclo/nic.

Ejercicio 1

En primer lugar vamos a analizar la influencia que tiene el aumento del número de nodos por dimensiones sobre las prestaciones de una malla 2D. Para ello simularemos las siguientes mallas bidimensionales: 4 x 4, 6 x 6 y 8 x 8.

Los parámetros serán para todas las simulaciones los siguientes:

Parámetro	Valor				
Sección Configuración					
Puntos de simulación	25				
Número de mensajes transitorios	5000				
Número de mensajes permanentes	5000				
Versión del conmutador	2 (wormhole)				
Tamaño de cola	6 flits				
Tamaño de paquete	0 (no se utiliza en wormhole)				
Sección Control de Flujo					
Control de flujo	Stop & Go				
Umbral Stop	4				
Umbral Go	2				
Tiempo de vuelo enlace	1 ciclo				
Tiempo de ciclo	1.00 ns (1GHz)				
Overhead de cabecera	0.25				
Sección Tráfico					

Tamaño mensaje corto	8 Bytes				
Tamaño mensaje largo	8 Bytes				
Porcentaje de mensajes cortos	100 %				
Tráfico broadcast	No				
Tráfico multicast	No				
Tamaño de flit	2 bytes				
Modo de tráfico CEF	deshabilitado				
Convertir tráfico a CEF	No				
Configuración de tráfico	TRAFFIC_ALL uniform				
	0.025 0.050" (un valor por				
	cada punto de simulación)				
Sección Coherencia de	Memoria				
Coherencia de memoria	Deshabilitado				
Sección Topología y Encaminamiento					
Topología	2Dmesh				
Encaminamiento	XY				
Número de puertos	10				
Número de VNs	1				
Número de VCs	1				

Rellenar la siguiente tabla con los resultados obtenidos en las simulaciones. En las tres primeras columnas calcula el ancho de banda de la red teniendo en cuenta el modelo simplificado visto en clase. Ten en cuenta que el tráfico es uniforme y que el factor σ es 1. En las dos últimas columnas debes obtener los resultados a partir de las gráficas que obtengas de los resultados de simulaciones que realices. **Nota:** Los resultados se deben expresar en flits/ciclo/nic.

	Resultado teórico		Resultado obtenido en simulación		
Topología	Ancho de Banda Bisección (flits/ciclo/nic)	Ancho de Banda Red (flits/ciclo/nic)	Productividad (flits/ciclo/nic)	Factor ρ	Latencia base (ciclos)
Malla 4 x 4					
Malla 6 x 6					
Malla 8 x 8					

Pregunta: Qué tendencia tiene el ancho de banda de la bisección obtenido tanto en términos teóricos como prácticos? Y la latencia?

Ejercicio 2

A continuación comprobaremos el efecto del número de dimensiones sobre las prestaciones de la malla. Para ello trabajaremos con una malla de 64 nodos y cambiaremos el número de dimensiones: 2D y 3D. Rellenar la siguiente tabla considerando los parámetros de simulación del ejercicio anterior.

	Resultado teórico		Resultado obtenido en simulación		
Topología	Ancho de Banda Bisección (flits/ciclo/nic)	Ancho de Banda Red (flits/ciclo/nic)	Productividad (flits/ciclo/nic)	Factor ρ	Latencia base (ciclos)
Malla 8 x 8					
Malla 4 x 4 x 4					

Pregunta: Has obtenido algún beneficio de la malla 3D? Justifica la respuesta tanto en términos de productividad como de latencia (porqué).

Ejercicio 3

A continuación compararemos mallas y toros. Para ello, compararemos las siguientes topologías: malla 8 x 8, toro 8 x 8, malla 4 x 4 x 4 y toro 4 x 4 x 4. Para las simulaciones, asumir los parámetros del ejercicio 1 pero **para la configuración de toro utilizad 2 canales virtuales** para evitar bloqueos al encaminar (encaminamiento xy o xyz). Rellenar la siguiente tabla.

	Resultado teórico		Resultado obtenido en simulación		
Topología	Ancho de Banda Bisección (flits/ciclo/nic)	Ancho de Banda Red (flits/ciclo/nic)	Productividad (flits/ciclo/nic)	Factor ρ	Latencia base (ciclos)
Malla 8 x 8					
Toro 8 x 8					
Malla 4 x 4 x 4					
Toro 4 x 4 x 4					

Pregunta: Ha mejorado la productividad al utilizar un toro? Justifica la respuesta.

Ejercicio 4

Por último, vamos a dar una mayor versatilidad a los conmutadores en todas las topologías. Para ello, vamos a crear cuatro nuevas configuraciones de malla 2D 8 x 8, malla 3D 4 x 4 x 4, toro 2D 8 x 8, y toro 3D 4 x 4 x 4 pero en este caso utilizamos 4 redes virtuales (VN = 4). Con esto obtendremos una menor contención en los conmutadores, lo que redundará en una mayor eficiencia del conmutador. Obtener las simulaciones y rellenar la siguiente tabla:

	Resultado teórico		Resultado obtenido en simulación		
Topología	Ancho de Banda Bisección (flits/ciclo/nic)	Ancho de Banda Red (flits/ciclo/nic)	Productividad (flits/ciclo/nic)	Factor ρ	Latencia base (ciclos)
Malla 8 x 8 1 VN					
Toro 8 x 8 1 VN					
Malla 4 x 4 x 4 1 VN					
Toro 4 x 4 x 4 1 VN					
Malla 8 x 8 4 VNs					
Toro 8 x 8 4 VNs					
Malla 4 x 4 x 4 4 VNs					
Toro 4 x 4 x 4 4 VNs					

Ha mejorado la productividad? Justifica la respuesta.

Boletín de evaluación de la práctica

El alumno debe entregar una memoria de la práctica atendiendo a los siguientes requisitos:

- Las prácticas son individuales (una memoria por alumno)
- Entregar un documento PDF, enviado por correo electrónico al profesor
- El documento debe contener una portada con el nombre del alumno y el título de la práctica
- El documento debe incluir las gráficas generadas para cada ejercicio realizado
- Debajo de cada gráfica el alumno debe aportar una descripción de las gráficas adjuntas y un texto explicativo justificando los resultados obtenidos y porqué se han obtenido esos resultados. La explicación debe ser razonada.
- El alumno puede añadir otros análisis o resultados si lo cree necesario.
- Los ejercicios adicionales son optativos pero suponen un mayor esfuerzo por parte del alumno, por lo que serán tenidos en cuenta de manera positiva en la evaluación
- No hay límite en el tamaño del documento, pero se sugiere una página por ejercicio realizado.

MUY IMPORTANTE

La memoria debe traerse a la sesión de laboratorio impresa

La memoria debe ser leída antes de la sesión de laboratorio

La detección de memorias duplicadas o copiadas será tenido en cuenta de forma negativa en la evaluación de los alumnos implicados.

La fecha de entrega de la práctica es el día anterior al día del examen de la parte de redes de interconexión. Se recomienda, sin embargo, una pronta finalización y entrega de la práctica.

Abstenerse de enviar Hojas Excel con los resultados o documentos sin una presentación mínima de estilo.

Se valorará positivamente la asistencia regular y continuada a las sesiones de laboratorio (sólo para los alumnos sin dispensa).