

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Математическая статистика"

Тема _	Гистограмма и эмпирическая функция распределения	
Студе	ент Пересторонин П.Г.	
Групп	паИУ7-63Б	
Препо	одаватель _ Саркисян П.С	

Оглавление

1	Зад	ание		2	
2	Теоретические сведения			3	
	2.1	Форм	улы для вычисления величин	3	
		2.1.1	Минимальное и максимальное значения выборки	3	
		2.1.2	Размах выборки	3	
		2.1.3	Оценки математического ожидания и дисперсии	3	
	2.2	2.2 Определение эмпирической плотности и гистограммы			
	2.3 Определение эмпирической функции распределения		4		
3	3 Результат работы			5	
	3.1	Код п	рограммы	5	
	3.2	Резул	ьтаты расчётов	6	

1 Задание

Цель работы: построение гистограммы и эмпирической функции распределения.

- 1. Для выборки объёма n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - (a) вычисление максимального значения $M_{\rm max}$ и минимального значения $M_{\rm min}$;
 - (b) размаха R выборки;
 - (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - (d) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретические сведения

- 2.1 Формулы для вычисления величин
- 2.1.1 Минимальное и максимальное значения выборки

$$M_{\text{max}} = X_{(n)}$$

$$M_{\text{min}} = X_{(1)}$$

$$(2.1)$$

2.1.2 Размах выборки

$$R = M_{\text{max}} - M_{\text{min}}. (2.2)$$

2.1.3 Оценки математического ожидания и дисперсии

$$\hat{\mu}(\vec{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

$$S^2(\vec{X}_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
(2.3)

2.2 Определение эмпирической плотности и гистограммы

Пусть \vec{x} – выборка из генеральной совокупности X. Если объем n этой выборки велик, то значения x_i группируют в интервальный статистический ряд. Для этого отрезок $J=[x_{(1)},x_{(n)}]$ делят на m равновеликих частей:

$$J_i = [x_{(1)} + (i-1) \cdot \Delta, x_{(1)} + i \cdot \Delta), i = \overline{1; m-1}$$

$$J_m = [x_{(1)} + (m-1) \cdot \Delta, x_{(n)}]$$

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m}$$

Интервальным статистическим рядом называют таблицу:

где n_i – количество элементов выборки \vec{x} , которые $\in J_i$.

Обычно выборку разбивают на $m = [\log_2 n] + 2$ интервалов, где n – размер выборки.

Гистограмма – это график эмпирической плотности.

 \mathcal{D} мпирической плотностью, отвечающей выборке \vec{x} , называют функцию:

$$\hat{f}(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m} \\ 0, \text{иначе} \end{cases}$$
 (2.4)

где J_i – полуинтервал статистического ряда, n_i – количество элементов выборки, входящих в полуинтервал, n – количество элементов выборки.

2.3 Определение эмпирической функции распределения

Пусть $\vec{x}=(x_1,...,x_n)$ – выборка из генеральной совокупности X. Обозначим $n(x,\vec{x})$ – число элементов вектора \vec{x} , которые имеют значения меньше x.

Эмпирической функцией распределения называют функцию $F_n: R \to R$, определенную как:

$$F_n(x) = \frac{n(x, \vec{x})}{n} \tag{2.5}$$

3 Результат работы

3.1 Код программы

```
|X| = [-2.54, -0.79, -4.27, -3.09, -3.82, -0.61, -0.64, -1.24, -1.73, -2.91, -1.48, -1.28, -1.28]
      -0.37, -1.88, -2.19, -1.61, -1.52, -3.17, -1.36, -3.08, -3.11, -3.07, -1.57, -1.51,
      -2.37, -0.58, -3.05, -2.93, -1.01, -1.40, -2.06, -3.05, -1.84, -1.24, -1.89, -2.06,
      -1.59, -2.83, -1.07, -2.96, -3.17, -3.08, -0.49, -3.11, -3.14, -2.30, -3.99, -1.56,
      -1.28, -3.46, -2.63, -0.82, -2.18, -0.89, -3.08, -1.13, -1.62, -1.06, -2.98, -1.55,
      -1.49, -1.65, -1.45, -2.29, -0.85, -1.44, -2.87, -2.40, -2.13, -3.52, -1.42, -3.64,
      -3.47, -2.05, -2.39, -2.07, -0.80, -1.52, -3.92, -2.22, -0.78, -2.60, -1.78, -1.61,
      -1.65, -2.06, -3.33, -3.41, -1.97, -1.74, -2.04, 0.01, -1.37, -3.15, -2.35, -3.66,
      -1.79, -2.56, -1.87, -1.06, -0.64, -2.49, -1.85, -1.40, -0.86, -0.17, -0.62, -2.85,
      -2.12, -1.17, -2.48, -1.65, -3.74, -2.87, -3.15, -1.89, -1.34, -4.33, -0.96, -1.79;
3 %
_{4}|_{M_{max}} = _{max}(X);
_{5}|_{M_{min}} = \min(X);
  %
8 R = M_{max} - M_{min};
10
_{11} MX = mean(X);
12 DX = var(X); % sigma == std == sqrt(var(arg))
14 %
15 m = floor(log2(length(X))) + 2;
16 h = histogram(X, m);
17 %disp(h);
18
19 %
20 sigma = std(X);
21 x = (M_min - 1):(sigma / 100):(M_max + 1);
22 f = normpdf(x, MX, sigma); % normal probability distribution function
23 figure;
24 heights = h.Values / (sum(h.Values) * h.BinWidth);
25 centers = [];
26 for i = 1:(length(h.BinEdges) - 1)
      centers = [centers, (h.BinEdges(i + 1) + h.BinEdges(i)) / 2];
28 end
29 %disp(centers);
30 hold on;
31 bar(centers, heights, 1); % :)
32 plot(x, f, 'g', 'LineWidth', 2);
33
```

```
34 % )
35 F = normcdf(x, MX, sigma); % normal cumulative distribution function
36 figure;
37 hold on;
38 ecdf(X); % empiric cumulative distribution function
39 plot(x, F, 'r');
```

3.2 Результаты расчётов

$$M_{\text{min}} = -4,33$$

 $M_{\text{max}} = 0,01$
 $R = 4,34$
 $\hat{\mu}(\vec{x}_n) = 2,0585$
 $S^2(\vec{x}_n) = 0,994$
 $m = 8$

Рис. 3.1: Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с выборочными мат. ожиданием и дисперсией

Рис. 3.2: График эмперической функции распределения и функции распределения нормальной случайной величины с выборочными мат. ожиданием и дисперсией