Quando
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$

• [Teorema/Regra de L'Hôpital]

22:46

Sejam $f, g: I \longrightarrow \mathbb{R}$ funções deriváveis num intervalo aberto I exceto, eventualmente, no ponto $c \in I$ e tais que

$$\lim_{x\to c} f(x) = 0 \qquad \qquad e \qquad \qquad \lim_{x\to c} g(x) = 0.$$

Admita-se que $\forall x \in I, \ g'(x) \neq 0$, exceto, eventualmente, no ponto c.

Se o limite

$$\lim_{x\to c}\frac{f'(x)}{g'(x)}=L,\qquad L\in\mathbb{R},$$

então o limite $\lim_{x\to c} \frac{f(x)}{g(x)}$ também existe e

$$\lim_{x\to c}\frac{f(x)}{g(x)}=L.$$

Não é aplicável quando os limites do numerador ou do denominador existem, mas não são iguais a zero.

• Se
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$$
, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} = \frac{0}{0}$$

• [Exercício]
$$\lim_{x \to +\infty} \frac{x^n}{e^x}$$
?

• Se
$$\lim_{x \to a} f(x) = 0 \wedge \lim_{x \to a} g(x) = \infty$$
, então

$$\lim_{x\to a}[f(x)\cdot g(x)]=\lim_{x\to a}\frac{f(x)}{\frac{1}{g(x)}}=\frac{0}{0}$$

• [Exercício]
$$\lim_{x\to 2} \left(\frac{x^2-4}{x} \cdot \frac{x+1}{x^2-4x+4} \right)$$
?

• Se
$$\lim_{x\to a} f(x) = +\infty \wedge \lim_{x\to a} g(x) = -\infty$$
, então

$$= \lim_{x \to a} \frac{\frac{1}{g(x)} + \frac{1}{f(x)}}{\frac{1}{f(x)} \times \frac{1}{g(x)}} = \frac{0}{0}$$

• [Exercício]
$$\lim_{x\to 0^+} \left(\csc x - \frac{1}{x}\right)$$
?

• Como encontrar os extremantes de uma função?

Seja $f: I \longrightarrow \mathbb{R}$ –com I um intervalo fechado– uma função derivável

Nota (Sobre a deteção de extremantes)

[Teste da 1.ª derivada]

- Sendo x₀ um ponto crítico de f.
 - Se f' muda de sinal negativo para positivo em x_0 , então x_0 é um minimizante local de f (e $f(x_0)$ diz-se um mínimo)
 - Se f' muda de sinal positivo para negativo em x_0 , então x_0 é um maximizante local de f (e $f(x_0)$ diz-se um máximo)

	Nota
	_ [Teste da 2.ª derivada]
	• Seja x ₀ um ponto crítico de f .
	 Se f"(x₀) > 0, então f tem um mínimo local em x₀. Se f"(x₀) < 0, então f tem um máximo local em x₀. Se f"(x₀) = 0, então nada se pode concluir.
	• [Polinómio de Taylor]
	Seja $f:I\longrightarrow \mathbb{R}$ uma função e $a\in I$ tal que a n -ésima derivada de f existe em a . O polinómio
_	$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$
_	é chamado polinómio de Taylor de f , de ordem n , em torno do ponto a .
_	
_	
Г	