Hochschule Karlsruhe

University of Applied Sciences

Fakultät für
Informationsmanagement
und Medien

Entwicklung und Evaluation eines auf künstliche Intelligenz gestützten Systems zur Betriebslenkung von Linienbussen im Störungsfall

Master-Kolloquium

Alltag von Fahrgästen im ÖPNV ...

Hochschule Karlsruhe

... Ursachen?

- Personalbedingte Fahrtausfälle
- Verspätung durch Verkehrsaufkommen, Witterung oder ÖPNV-Betrieb
- Ungeplante Umleitung durch Unfall, Streckensperrung oder Bauarbeiten

Störungsmeldungen

Bus-/Zuglinie auswählen:

1 RSV Stadtverkehr Reutlingen (1)

Walddorf - Markt

Aufgrund des Marktes in Walddorf wird am Donnerstag, 23. Februar 2023, von 05:00 Uhr gefahren und die Haltestelle "Walddorf Rathaus" kann nicht angefahren werden.

Die beschriebenen Fahrplanänderungen sind nicht in der EFA/naldo-App erfasst!

... Ursachen?

- Personalbedingte Fahrtausfälle
- Verspätung durch Verkehrsaufkommen, Witterung oder ÖPNV-Betrieb
- Ungeplante Umleitung durch Unfall, Streckensperrung oder Bauarbeiten

Gliederung

- Zielsetzung
- Künstliche Intelligenz im ÖPNV
- Verschiedene MachineLearning-Verfahren
- Bestärkendes Lernen in der Anwendung
- Konzeption eines Prototyps
- Evaluation und Ergebnisse
- Diskussion

Zielsetzung

Ziel ist ein Grundkonzept für ein ITCS, welches im Störungsfall selbstständig Umleitungen anordnen kann und im Optimalfall aus der Vergangenheit lernt

- Welche Daten werden für das Training benötigt?
- Welche Strategien eignen sich für die automatische Anordnung von Umleitungen in einem ITCS?
- Bietet ein solches System Potenzial für einen zeitnahen Praxiseinsatz?

Künstliche Intelligenz im ÖPNV

十

Verwandte Arbeiten

- Aktuell Forschungsprojekt KARL
 - KI-Forschung mit Schwerpunkt Arbeit und Lernen
 - Teilbereich: KI-Assistent für Leitstellenpersonal
- Forschungsprojekt U-THREAT
 - Resilienz von U-Bahnsystemen bei externen Einflüssen (Brände, Überschwemmungen, ...)
 - Aufrechterhaltung des Betriebes durch Zugriff auf Wissen aus der Vergangenheit
- Routing um Kriminalitätshotspots (Levy et al.)
 - KI trainiert optimale Routen zur Umgehung von Kriminalitätshotspots

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informationsmanagement und Medien

Verschiedene MachineLearning-Verfahren

Verschiedene MachineLearning-Verfahren

+I

Bestärkendes Lernen

- Arbeitet ohne Trainingsdatensatz
- Kein gesondertes Modell erforderlich
- Agent durchläuft verschiedene Zustände innerhalb einer Umgebung
 - Für jeden Zustandsübergang erhält der Agent einen Gewinn
 - Unterwegs gilt es einen möglichst hohen Gewinn zu erhalten
 - Abbruchkriterium: Zeit oder definierter Zielzustand
- Trial-and-Error Verfahren mit mehreren **Episoden**
 - Training findet in einer **Simulationsumgebung** statt
 - Ausreichende Anzahl an Episoden führt zu sichererem Verhalten
- Kombinationen mit verschiedenen ML-Ansätzen (KNN, ...) bekannt

Verschiedene MachineLearning-Verfahren

Bestärkendes Lernen

Quelle: in Anlehnung an Schmitz, 2017

- >>> Gut geeignet, wenn keine gelabelten Daten vorliegen
 - Es wird nur eine Simulationsumgebung mit ihren wichtigsten Rahmenbedingungen benötigt
- >>> Ausgehend von einem bestimmten Systemzustand kann stets die optimale Aktion gewählt werden
 - **Systemzustand**: Streckensperrung / **Aktion**: Dispositionsmaßnahme

Verschiedene MachineLearning-Verfahren

Gewählte ML-Verfahren im Vergleich

Q-Learning

- Off-Policy-Algorithmus
 - Training in ε-Greedystrategie
 - Betrieb in Greedystrategie
- Keine Exploration nach dem Training
- Werte in Q-Tabelle oder durch Funktions-Approximation

(Expected-) SARSA

- On-Policy-Algorithmus
 - Training und Betrieb in derselben Strategiefunktion

- Exploration vor und nach dem Training gleich
- Werte in Q-Tabelle oder durch Funktions-Approximation
- Expected SARSA: Priorisiert bestimmte, wahrscheinlich gewinnbringendere Aktionen aus Erfahrung

Bestärkendes Lernen in der Anwendung

- **Umgebung**: Streckennetz für eine Linie oder eine Fahrt
- **Simulationsumgebung**: Betrieblich wichtige Eigenschaften
 - Dient zur Bewertung von Zustandsübergängen
 - Berücksichtigt bei der Bewertung
 - Zusätzlicher Weg-/Zeitbedarf
 - Anzahl ausgelassener Haltestellen
 - Wird eine gesperrter Abschnitt umfahren oder nicht?
- **Agent**: Fahrzeug auf einer Linie oder Fahrt
- **Zustand**: Wird ausgedrückt durch
 - Streckenzustand (gefahrbar/gesperrt)
 - Fahrtzustand (betroffen/nicht betroffen)

Bestärkendes Lernen in der Anwendung

Die nε-Greedystrategie

- Klassische Greedystrategie
 - Es wird stets jenes Element mit der höchsten Bewertung gewählt
- Klassische ε-Greedystrategie
 - Mit einer Wahrscheinlichkeit von ε wird jenes Element mit der höchsten Bewertung gewählt
 - Mit einer Wahrscheinlichkeit von (1ε) wird ein beliebiges anderes Element gewählt
- Experiment ne-Greedystrategie
 - Mit einer Wahrscheinlichkeit von ε wird jenes Element mit der höchsten Bewertung gewählt
 - Mit einer Wahrscheinlichkeit von (1ε) wird <u>eines der n nächstbesten</u> Element gewählt

Bestärkendes Lernen in der Anwendung

+I

Bewertungsfunktion

- Liefert Werte im Intervall [-1; 1]
- Das Fahrzeug ist nicht von einer Störung betroffen
 - Es wird keine Umleitung gewählt >>> Bewertung = 1
 - Es wird eine Umleitung gewählt >>> Bewertung = -1
- Das Fahrzeug ist von einer Störung betroffen
 - Es wird keine Umleitung gewählt >>> Bewertung = -1
 - Es wird eine Umleitung gewählt
 - Kriterium 1: Fahrweglänge und Zeitbedarf

$$f_l = (\frac{L"ange\ Regelf\ ahrweg}{L"ange\ Regelf\ ahrweg\ mit\ Umleitung})^{\frac{g_l}{4}}$$

- Kriterium 2: Anzahl ausgelassener Haltestellen

$$f_s = (\frac{Anzahl\ erreichte\ Haltestellen}{Anzahl\ planmäßige\ Haltestellen})^{\frac{g_s}{4}}$$

- Gesamtbewertung

$$r = 1 * f_l * f_s$$

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informationsmanagement und Medien

Konzeption eines Prototyps

Konzeption eines Prototyps

+

Verfügbare Datenquellen

- Kartendaten und Routing
 - OpenStreetMap als Hauptdatenquelle
 - Mehrstufige Ableitung eines für Busse geeigneten Netzes

Konzeption eines Prototyps

+

Verfügbare Datenquellen

- Störungsmeldungen
 - Meldungen aus dem ITCS
 - SmartCity (wenn verfügbar und zuverlässig)

Konzeption eines Prototyps

十

Beispiel-Szenarien

Vorortszenario

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informationsmanagement und Medien

Evaluation und Ergebnisse

Vergleich der gewählten ML-Algorithmen

- Q-Learning
 - Langsamer
 - Sinkende Exploration durch fallendes ε
- SARSA und Expected SARSA
 - Mit konstanter ne-Greedystrategie
 - Schneller
 - Höhere Exploration

Einfluss der nε-Greedystrategie

- Exploration findet generell statt
- Einbrüche des Gewinns deutlich kleiner
 - Gesamtschaden in produktivem ITCS überschaubar

Auszug aus Aktionsbewertungen am Beispiel des Vorortszenarios

Auszug aus Aktionsbewertungen am Beispiel des Vorortszenarios

Auszug aus Aktionsbewertungen am Beispiel des Vorortszenarios

Aktion	Q-Learning	SARSA	Expected SARSA
Keine Umleitung	-0,3244	-1,1596	-1,0105
Stadt #1	-0,7765	-1,0000	-1,0000
Stadt #2	-1,0885	-1,0000	-1,0000
Stadt #3	-1,2499	-1,0000	-1,0000
Stadt #4	-1,0855	-1,0000	-1,0000
Land #1	-0,7764	-1,0000	-1,0000
Land #2	-0,8840	-1,0000	-1,0000
Land #3	-1,1318	-1,0000	-1,0000
Land #4	-1,0000	-1,0000	-1,0000
Land #5	-1,0809	-1,0000	-1,0000
Vorort #1	-0,7773	-1,0000	-1,0000
Vorort #2	0,4989	0,4989	0,4989
Vorort #3	1,0040	1,0040	1,0040
Vorort #4	0,1709	0,1780	0,1780

十

Zusammenfassung und Fazit

- Umsetzung komplett mit bestehenden / einfach zu beschaffenden Daten möglich
- Beste Ergebnisse mit SARSA und nε-Greedystrategie
 - Alternativ Q-Learning, allerdings ohne fortlaufende Exploration
- Umsetzung nach derzeitigem Stand möglich
 - ITCS muss vorhanden sein
 - Daten müssen aufgezeichnet werden
- Weiterer Forschungsbedarf
 - Einbettung in ein produktives Gesamtsystem
 - SmartCity als Quelle für Störungsmeldungen
 - Berücksichtigung von Teilsperrungen
 - Berücksichtigung von mehreren Sperrungen pro Fahrweg

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informationsmanagement und Medien

Offene Fragen ... ?