- 1. f. the correctness conditions for $f = [repeat \ g \ until \ p]$
- 2. vi. (Found \land Key=List[Index]) V (\neg Found $\land \forall$ ($1 \le i \le Index$) Key \neq List[i])
- 3. a. ii. Suppose P is x=5, S is (x := x+1; y := 17), b is x=0, Q is $(y=17 \land x=0)$, and I is y=17.
 - b. i. $\{y=17\}$ while $(x>0 \ V \ y<>17)$ do $x:=x-1 \ \{x\le 0\}$
 - c. iv. Suppose P is x=0, S is (x := x-17), b is x <= 0, and Q is $x \ge 0$.
- 4. a. M. $y>0 \land x=17-y$
 - b. C. $y \ge 0 \land x = 17-y$
 - c. R. $(x=17-y) V (y \le 0)$
 - d. F. (x=17-y) V (y<0)
 - e. O. $x=7 \land y=0$
 - f. P. "undefined"
 - g. H. $[y'>0 \Rightarrow (y=0 \land x=5+y')] \land (y'\leq 0 \Rightarrow "undefined")$
- 5. (1) term(f,K), (2) $p \Rightarrow (v=v\circ q)$, (3) $\neg p \Rightarrow (v=t)$, and (4) $f=v\circ h$
- 6. f. (none of the above)

```
[P] = (x,y := x,xy) o (y>0 -> x,y := x+y,y | y \le 0 -> x,y := x-y,y) o (x,y := x,3)
= (x,y := x,xy) o (3>0 -> x,y := x+3,3 | 3 \le 0 -> x,y := x-3,3)
= (x,y := x,xy) o (x,y := x+3,3)
= (x,y := x+3,3(x+3))
= (x,y := x+3,3x+9)
```

- 7. Suppose the initial (input) value of z is -5, and the initial input value of y is any value other than -4. Then P is satisfied, S terminates, and Q will be false since z+1 would equal -4 but y would not.
- 8. a. g=(x,y := x-1,2y)
 - b. p: x=0
 - c. i. measure: x
 - ii. All (integer) values of the measure in the domain of f, i.e., for every x>0.
 - iii. 0
 - d. Proof that $\neg(p \circ g) \Rightarrow (f = f \circ g)$:

Two proof approaches are illustrated:

Approach I: determine all cases associated with $\neg(pog)$ and then determine case-specific expressions for f and fog separately for comparison

$$\neg [(x{=}0)o(x{,}y:=x{-}1{,}2y)] \Rightarrow x_0{\neq}1$$

Thus, there are two cases to consider: $x_0 < 1$ and $x_0 > 1$

case a:
$$x_0 < 1$$

 $(x < 1) \Rightarrow (f = undefined)$ by defined of f for $x < 1$
 $(x < 1) \Rightarrow (fog = undefined \circ (x,y := x-1,2y))$

since
$$((x>0) \circ g(x<1)) = \text{false}$$

= **undefined**)

Therefore, $(x<1) \Rightarrow (f=f\circ g)$

case b: $x_0>1$ $(x>1) \Rightarrow (f = (x,y := 0, y2^x))$ by defin of f for x>1 $(x>1) \Rightarrow (f \circ g = (x,y := 0, y2^x) \circ (x,y := x-1,2y)$ since $((x>0) \circ g(x>1)) = \text{true}$ $= (x,y := 0, (2y)2^{x-1})$ $= (x,y := 0, y2^x)$

Therefore, $(x>1) \Rightarrow (f=f \circ q)$

Therefore, $\neg(p \circ g) \Rightarrow (f = f \circ g)$

Approach II: determine fog in general and then compare to f for each case associated with $\neg(pog)$

(1)
$$f \circ g = (x > 0 -> x, y := 0, y > 2^x) \circ (x, y := x - 1, 2y)$$
 (by defn. of f and g)
= $(x - 1 > 0 -> x, y := 0, (2y) > 2^{x-1})$
= $(x > 1 -> x, y := 0, y > 2^x)$)

(2)
$$\neg (p \circ g) = \neg [(x=0)\circ(x,y := x-1,2y)] = x-1 \neq 0 = x-1 \neq 0$$

Therefore, x<1 or x>1 (two cases to consider)

(3) Does $(x>1) \Rightarrow (f=f\circ g)$?

$$(x>1) \Rightarrow (f = (x,y := 0, y2^x))$$
 by defin of f for $x>1$
 $(x>1) \Rightarrow (f \circ g = (x,y := 0, y2^x))$ by defin of $f \circ g$ for $x>1$

Therefore, $(x>1) \Rightarrow (f=f\circ q)$

(4) Does $(x<1) \Rightarrow (f=f\circ g)$?

$$(x<1) \Rightarrow (f = undefined)$$
 by defn of f for $x<1$

$$(x<1) \Rightarrow (f \circ g = undefined)$$
 by defn of $f \circ g$ for $x<1$

Therefore, $(x<1) \Rightarrow (f=f\circ q)$

Therefore, $\neg(poq) \Rightarrow (f=foq)$

9. a. vi. $y=y_0+2(x_0-x) \land x \ge 0$

b.
$$X_0 = (3,3), X_1 = (2,5), X_2 = (1,7), X_3 = X_n = (0,9)$$

c.
$$p(X_0)$$
: true $p(X_2)$: true

$$g(X_0)$$
: (2,5) $f(X_2)$: (0,9) $g(X_2)$: (0,9) $f(X_n)$: (0,9)

$$f(X_2)$$
: (0,9)
 $f(X_n)$: (0,9)

$$q(X_2)$$
: true $q(2,7)$: false

 $p(X_n)$: false

$$g(X_n)$$
: (-1,11)

$$f(g(X_n))$$
: undef

$$q(g(X_n))$$
: false/undef

d. (4,3)

ii. no

- 10. a. false
 - b. false
 - c. true
 - d. false
 - e. true

11. a. false

b. true

c. true d. false

e. true

