

Escola Superior de Tecnologia e de Gestão de Bragança Departamento de Matemática

Análise Matemática I 2005/2006

Cursos: CA, GE

1^a Chamada - 27/1/2006

Duração: 2h 30 min Com Consulta de Formulário

Resolva os 3 grupos em folhas ou conjuntos de folhas SEPARADOS. Apresente todos os cálculos necessários, e, dê boa apresentação à prova.

Grupo I

Cotação do grupo por questão/alínea: 1, 1.25, 1; 1, 1.25, 1; 1 valores

- 1. Sejam $f \in g$ duas funções definidas por $f(x) = x^2 2x 3$ e $g(x) = 1 3\ln(1 x)$.
 - (a) Mostre que g é injectiva.
 - (b) Caracterize g^{-1} , indicando a sua expressão analítica, o domínio e o contradomínio (ou imagem).
 - (c) Caracterize $g \circ f$, indicando a sua expressão analítica e seu o domínio.
- 2. Seja h definida por

$$h(x) = \begin{cases} \ln\left(\frac{1}{x+1}\right) & \text{se } x > 0\\ 1 + e^{3x} & \text{se } x \le 0 \end{cases}$$

- (a) Analise h quanto à continuidade (em todo o seu domínio).
- (b) Determine $\frac{dh}{dx}(x)$, justificando convenientemente a existência, ou não, de h'(0).
- (c) Determine a equação da recta tangente ao gráfico da função h no ponto de abcissa x=-2.
- 3. Segundo o Teorema de Rolle: "Seja $f:[a,b]\to\mathbb{R}$ é uma função contínua em [a,b] e derivável em]a,b[. Se f(a)=f(b), então existe $c\in]a,b[$ tal que f'(c)=0."
 - Seja $f(x) = e^x \sin(\pi x)$, usando o teorema de Rolle, mostre que f' tem pelo menos um zero no intervalo]-2,-1[.
- 4. Na figura seguinte está, parcialmente, representado o gráfico da função g. Determine a expressão analítica que define a função.

Grupo II

Cotação do grupo por questão/alínea: 1.3; 0.3, 1.3, 0.3, 1.3; 1 valores

- 5. Calcule o seguinte limite $\lim_{x\to 0} (e^x + 3x)^{\frac{1}{2x}}$.
- 6. Considere a função h definida por $h\left(x\right)=\frac{e^{x}}{x^{2}-3}$
 - (a) Calcule o domínio de h.
 - (b) Determine, caso existam, as assímptotas do gráfico de h.
 - (c) Mostre que $h'(x) = \frac{e^x(x^2-2x-3)}{(x^2-3)^2}$.
 - (d) Estude a monotonia da função h, e indique os seus extremos relativos.
- 7. Seja g uma função real de variável real. Proponha um esboço para o gráfico da função g que verifique as seguintes caracteristicas:
 - g é contínua e tem apenas tem um zero em x=1;
 - g tem um único ponto de inflexão e $\lim_{x\to+\infty} g(x) = 1$;
 - x = 0 é uma assimptota vertical ao gráfico de g;

			-2		0		3	
•	sinal de g'	_	0	+	n.d.	+	n.d.	_
	sinal de g''	+	+	+	n.d.		n.d.	+

Grupo III

Cotação do grupo por questão/alínea: 1.25; 1, 1.25, 1.25, 1.25 valores

- 8. Determine a função f cuja derivada é $f'(x) = \frac{e^{2x}}{(e^{2x}+2)^3}$ e que verifica f(0) = 0.
- 9. Calcule as seguintes primitivas

(a)
$$\int \frac{\sqrt{x}+2}{x} dx =$$

(b)
$$\int (x^2 + 3x + 2) \ln x \ dx$$

(c)
$$\int \frac{x-1}{x^3+x^2} dx$$

(d)
$$\int \frac{1}{x^2\sqrt{16-4x^2}} dx$$
 fazendo a substituição $x=2\cos t$.