

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0
eatures: Rains in m	illimeter ure in °C						

Weights

- □ Each of the feature has different importance
- □ To assign importance to each of the feature, we use weights!
- □ Values of each features are in different order of magnitude
 - Summation is not going to work
 - Scale the features between 0 and 1

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

- □ Note:
 - Variation in features have different bearing on the results
 - ❖ Team members → higher the better
 - ❖ Ground cost → lower the better

11/18/202

Perceptron

- □ In MP Neuron Model,
- All inputs had same weights
- * Threshold ' w_0 ' could take limited values
- Every feature needed to be [0,1]
- □ Perceptron model introduced different weights to different inputs features
- □ Real values are also accepted
 - Temperatures are in tens and ground rent is in hundreds.
 - Min Max Scaler to compensate for huge difference is values
- \Box Threshold ' w_0 ' can take any value
- □ Outputs are still [0, 1]

1/18/202

Perceptron

- □ Loss Function:
 - * A correction is applied on the outputs
 - \star To adjust values of ' w_i ' to reach right results
 - * It would also give us indications of what weights to be fixed to arrive at the solution
- □ Activation function g(x) is applied as follows:

 - $\Rightarrow \quad \text{If } \sum x_i \cdot w_i < w_0 \Rightarrow \hat{y} = 0$

11/18/202

pra-sâmî

Perceptron – Data Preprocessing

□ Lets consider "Ground" and "Team Members" as features and its associated weights to arrive at the solution.

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

11/18/202

pra-sâmî

Consider Single Path... Loss Function □ A function used to evaluate a candidate solution □ Helps to maximize or minimize the objective function □ Estimates how closely the distribution of predictions made by a model matches the ground truth (maximum likelihood) □ Under maximum likelihood framework, the error between two probability distributions is measured using cross-entropy ★ Hence ℓ(ŷ, y) = − [y * log(ŷ) + (1 − y) * log(1 − ŷ)]

