Leopold-Franzens-Universität

Master Thesis

Matrix-free Leja based exponential integrators in Python

Maximilian Samsinger

January 8, 2020

Supervised by Lukas Einkemmer and Alexander Ostermann

Leopold-Franzens-Universität Innsbruck

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche kenntlich gemacht.

lch erkläre mich mit der Arcl	hivierung der vorliegenden	Bachelorarbeit einverstanden.
Datum	Un	terschrift

Matrix-free Leja based exponential integrators in Python

Abstract

1 Introduction

Consider the action of the matrix exponential function

$$e^A v$$
, $A \in \mathbb{C}^{N \times N}$, $v \in \mathbb{C}^N$.

Due to computational constraints it can be difficult or impossible to compute e^A in a first step and then the action e^Av in a separate step. This is especially true in applications where N>10000 is not uncommon. Furthermore the matrix exponential of a sparse matrix is in general no longer sparse. Therefore it is more feasible to compute the action of the matrix exponential in a single step. This can be done by approximating the matrix exponential with a matrix polynomial p_m of degree m in A

$$e^A v \approx p_m(A) v$$
.

This approach has many advantages. The cost of the computation of $p_m(A)v$ mainly depends on the calculation of m matrix-vector multiplications with A. Furthermore the explicit knowledge of A itself is no longer required. A can be replaced by a linear operator, which can be more convenient and save memory.

2 The Leja method

This section serves as an introduction to the Leja method for the exponential function. All proofs can be found in a more general form in [4].

2.1 Leja interpolation

Let $K \in \mathbb{C}$ be a compact set in the complex plane and $\xi_0 \in K$ be arbitrary. The sequence $(\xi_k)_{k=0}^{\infty}$ recursively defined as

$$\xi_k = \underset{z \in K}{\operatorname{arg\,max}} \prod_{j=0}^{k-1} |\xi - \xi_j|$$

is called a Leja sequence. Due to the maximum principles all elements in the sequence realize their maximum on the border ∂K . Typically ξ_0 is also chosen on ∂K . For analytical functions $f \colon K \to \mathbb{C}$ the Newton interpolation polynomial p_m with nodes $(\xi_k)_{k=0}^m$ has many beneficial properties.

Convergence properties: The sequence $(p_m)_{m=0}^{\infty}$ converges maximally to f: Let $(p_m^*)_{m=0}^{\infty}$ be the best uniform approximation polynomials for f in K. Then

$$\limsup_{m \to \infty} \|f - p_m\|_K^{1/m} = \limsup_{m \to \infty} \|f - p_m^*\|_K^{1/m} \stackrel{K = \mathbb{C}}{=} 0.$$

Furthermore if f is an entire function, then $(p_m)_{m=0}^{\infty}$ converges superlinearly to f. For entire functions f the corresponding matrix polynomials achieves similar superlinear convergence

$$\limsup_{m \to \infty} ||f(A)v - p_m(A)v||_2^{1/m} = 0,$$

for $A \in \mathbb{C}^{n \times n}$, $v \in \mathbb{C}^n$.

Early termination: The Newton interpolation polynomial p_m can be constructed iteratively since the corresponding Leja interpolation points $(\xi_k)_{k=0}^m$ are defined recursively. Therefore if the approximation $p_n \approx f$ is accurate enough after n < m steps the interpolation can be stopped early to reduce the cost of the interpolation. Note that this is not possible with Chebyshev nodes.

Leja sequence can be stored: For a given K the Leja interpolation nodes only need to be computed once and for all. These values can be stored a priori and loaded once they are needed for the interpolation. If f is fixed the same is also true for the corresponding divided differences.

In summary the Leja points offer convergence properties similar to Chebyshev nodes for interpolation, while having computational advantages. All results hold true for the corresponding matrix interpolation polynomials.

2.2 Approximating the matrix exponential function:

Inspired by the previous subsection we try to find a low-cost approximation of the action of the matrix exponential $e^A v$ using Leja interpolation polynomials. From now on, we will fix

$$K = [-c, c], \quad f = e^{\cdot}, \quad \xi_0 = c$$

for c > 0. With $L_{m,c}$ we denote the Leja interpolation polynomial on the interval [-c, c] with Leja points $(\xi_j)_{j=0}^m$. We use the well-known property of the exponential function

$$e^A v = (e^{s^{-1}A})^s v, \quad s \in \mathbb{N}.$$

Now we can approximate the action of the matrix exponential in s substeps

$$v_0 := v, \quad v_{j+1} := L_{m,c}(s^{-1}A)v_j, \quad v_s \approx e^A v.$$

This setup was used in [5]. We summarize some key results.

m	5	10	15	20	25	30	35
half	6.43e-01	2.12e+00	3.55e + 00	5.00e+00	6.37e + 00	7.51e+00	8.91e+00
single	9.62e-02	8.33e-01	1.96e + 00	3.26e + 00	4.69e + 00	5.96e + 00	7.44e + 00
double	1.74e-03	1.14e-01	5.31e-01	1.23e+00	2.16e + 00	3.18e + 00	4.34e+00
m	40	45	50	55	60	65	70
half	1.00e+01	1.10e+01	1.23e+01	1.35e + 01	1.48e + 01	1.59e + 01	1.71e + 01
single	8.71e+00	1.00e + 01	1.15e + 01	1.27e + 01	1.40e + 01	1.52e + 01	1.64e + 01
double	5.48e + 00	6.67e + 00	7.99e + 00	9.24e + 00	1.06e + 01	1.18e + 01	1.32e + 01
m	75	80	85	90	95	100	
half	1.84e + 01	1.94e+01	2.07e+01	2.20e+01	2.30e+01	2.42e+01	
single	1.76e + 01	1.87e + 01	1.99e + 01	2.12e+01	2.23e+01	2.35e + 01	
double	1.46e + 01	1.58e + 01	1.71e + 01	1.86e + 01	1.99e + 01	2.13e+01	

Table 1: Samples of the (rounded) values θ_m with tolerances half, single and double for the real Leja interpolation. (Table taken from [5, Table 1].)

Bounding the backward error For a given matrix A we interpret the Leja interpolation polynomial as the exact solution of a perturbed matrix exponential function

$$L_{m,c}(s^{-1}A)^s v =: e^{A+\Delta A}v$$

Our goal is to bound the backward error

$$\frac{\|\Delta A\|}{\|A\|} \le \text{tol},$$

for a given tolerance tol. Furthermore we want to minimize the cost of the interpolation. A priori it is unclear for which values m, s and c the inequality is satisfied. The authors of [5] conducted a backward error analysis and chose an approach which favors normal matrices. For various tolerances tol they precomputed values θ_m which satisfy

If
$$||s^{-1}A|| \le \theta_m$$
 and $0 < c \le \theta_m$ then $\frac{||\Delta A||}{||A||} \le \text{tol}$.

For our purposes it is important to note that the optimal choice for c is given by $c = \rho(A)$, where $\rho(A)$ is the spectral radius of A. However, computing $\rho(A)$ introduces additional costs for the algorithms proposed in [5]. This will not be the case for our matrix-free implementation.

Choosing cost-minimizing parameters The cost of the Leja interpolation mainly depends on the the number of matrix-vector products

$$C_m = sm$$
.

In order to minimize the costs of the interpolation we select the smallest m such that

$$||s^{-1}A|| \le \theta_m$$

is satisfied for a given s. This leads to the optimal choice for m_* and s_*

$$m_* = \underset{2 < m < m_{max}}{\arg \min} \left\{ \left\lceil \frac{\|A\|}{\theta_m} \right\rceil m \right\}, \quad s_* = \left\lceil \frac{\|A\|}{\theta_m} \right\rceil.$$

In our algorithm we set $m_{max} = 100$ in order to avoid over- and underflow errors.

Shifting the matrix The cost of the interpolation can be decreased by employing a shift $\mu \in \mathbb{C}$. Let I be the identity matrix. We replace the matrix A with $A - \mu I$ for all computations. If the shifted matrix $A - \mu I$ satisfies $||A - \mu I|| < ||A||$ then the cost C_{m_*} of the interpolation decreases. We compensate for the shift by multiplying with e^{μ} since

$$e^A = e^{\mu} e^{A - \mu I}$$

A well-chosen shift centers the eigenvalues of $A - \mu I$ around 0. Such a shift can be found by using Gerschgorin's circle theorem.

2.3 Matrix-free implementation

For matrix-free linear operators it can be expensive to compute the matrix norm ||A||. We will circumvent this problem by replacing ||A|| with the spectral radius $\rho(A)$.

First of all note that the backward error analysis in [5] holds true for every matrix norm. Furthermore we can minimize the costs of the interpolation by choosing a norm such that ||A|| is as small as possible. We use a well-known result from the matrix analysis literature [8, Lemma 5.6.10.]. For every A and for every $\varepsilon > 0$ exists an induced matrix norm $||\cdot||_{A,\varepsilon}$ such that

$$\rho(A) \le ||A||_{A,\varepsilon} \le \rho(A) + \varepsilon.$$

The first inequality holds true for every matrix norm. We choose ε small enough, such that

$$||s^{-1}A||_{A,\varepsilon} \le \min_{\rho(s^{-1}A)<\theta_m} \theta_m.$$

For this choice of $\|\cdot\|_{A,\varepsilon}$ the cost-minimizing parameters are given by

$$m_* = \underset{2 \le m \le m_{max}}{\operatorname{arg \, min}} \left\{ \left\lceil \frac{\rho(A)}{\theta_m} \right\rceil m \right\}, \quad s_* = \left\lceil \frac{\rho(A)}{\theta_m} \right\rceil.$$

The explicit knowledge of $\|\cdot\|_{A,\varepsilon}$ is no longer required. Furthermore we can choose $c = \rho(A)$ without introducing additional costs, since we have to compute $\rho(A)$ anyway to determine m_* and s_* . For positive and negative semi-definite operators A we can choose the shift $\mu = -\rho(A)/2$ and $\mu = \rho(A)/2$ respectively. This shift works particularly

well if the absolutely smallest eigenvalue of A is close to 0.

This approach has some drawbacks though. While we able to bound the backward error

$$\frac{\|\Delta A\|_{A,\varepsilon}}{\|A\|_{A,\varepsilon}} \le \text{tol}$$

we can no longer specify in which norm this error has to be bound. Furthermore it is hard to find a good shift μ for non-semi-definite operators.

 $\rho(A)$ can be cheaply approximated using the power iteration algorithm. However, this procedure underestimates the largest eigenvalue and therefore we have to compensate for that by multiplying the estimate with a safety factor.

From now on we denote the Leja method for the matrix exponential function as expleja. Depending on the chosen tolerance (see 1) we will refer to the algorithm as half, single or double precision expleja respectively.

3 Linear advection-diffusion equation

Consider the one-dimensional advection-diffusion equation

$$\partial_t u = a \partial_{xx} u + b \partial_x u \quad a, b \ge 0$$
$$u_0(t) = e^{-80 \cdot (t - 0.45)^2} \quad t \in [0, 0.1]$$

on the domain $\Omega = [0, 1]$. For a fixed $N \in \mathbb{N}$ we approximate the diffusive part of the differential equation with second-order central differences on an equidistant grid with grid size $h = \frac{1}{N-1}$ and grid points $x_i = ih$, i = 0..., N-1

$$\partial_{xx}u(x_i) = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2} + \mathcal{O}(h^2).$$

In order to avoid numerical instabilities we discretize the advective part with forward differences, similar to the upwind scheme

$$\partial_x u(x_i) = \frac{u(x_{i+1}) - u(x_i)}{h} + \mathcal{O}(h).$$

The resulting system of ordinary differential equation is given by

$$\partial_t u = Au.$$

In order to measure the stiffness of the differential equation we employ the Péclet number $Pe = \frac{b}{a}$. The Péclet number is a dimensionless quantities representing the ratio of the advective velocity b to the diffusive velocity a.

Even though A can be represented as a sparse matrix, it is more memory-efficient to treat it as a matrix-free linear operator. The solution of the differential equation is given by $e^{0.1A}u_0$, which can be approximated using the Leja method. For the matrix-free case we need to compute the spectral radius of A, which can be done using the power method.

Figure 1: Approximation of $e^{0.1A}u_0$ using single precision expleja for a fixed interpolation degree m=100 and varying number of substeps s. The relative error is measured in the Eucledian norm. The reference solution was computed using the double precision expleja algorithm.

3.1 Power iteration analysis

The eigenvalues of discretized one-dimensional Laplace operator $A_{Dif} \in \mathbb{R}^{N \times N}$ on the interval [0,1] with periodic boundary conditions are given by

$$\lambda_j = \begin{cases} -\frac{4}{h^2} \sin^2 \left(\frac{\pi(j-1)}{2(N+1)} \right), & \text{if j is odd} \\ -\frac{4}{h^2} \sin^2 \left(\frac{\pi j}{2(N+1)} \right), & \text{if j is even} \end{cases}, \quad j = 1, \dots, N.$$

We investigate the rate of convergence for the power method given A_{Dif} and an initial vector v. Consider $v = \frac{1}{N} \sum_{j=1}^{N} v_j$, where each v_j is the normalized eigenvector corresponding to the eigenvalue λ_j . Let N be even. After n power iteration we underestimate

Figure 2: The spectrum of A. For this visualization we assume periodic boundary conditions. For Dirichlet boundary conditions all eigenvalues are negative real numbers.

the absolutely largest eigenvalue λ_N by a factor of

$$\frac{\|A_{Dif}^{n-1}v\|_{2}}{\|A_{Dif}^{n}v\|_{2}}|\lambda_{N}| = \sqrt{\frac{\sum_{j=1}^{N}\lambda_{j}^{2(n-1)}}{\sum_{j=1}^{N}\lambda_{j}^{2n}}}|\lambda_{N}|$$

$$= \sqrt{\frac{\sum_{j=1}^{N/2}\sin^{4(n-1)}\left(\frac{\pi j}{N+1}\right)}{\sum_{j=1}^{N/2}\sin^{4n}\left(\frac{\pi j}{N+1}\right)}}\sin^{2}\left(\frac{\pi N}{2(N+1)}\right).$$

The first equality holds since A_{Dif} is symmetric. Therefore all eigenvectors are orthogonal. In order to continue our analysis and get some asymptotic bounds we interpret the sum of sine functions as an integral approximated by the trapezoidal rule. We use the nodes j/(N+1) for $j=0,\ldots,N+1$.

$$\int_0^1 \sin^{4n} \left(\frac{\pi x}{2} \right) = \frac{1}{(N+1)} \left(2 \sum_{j=1}^N \sin^{4n} \left(\frac{\pi j}{(N+1)} \right) + \frac{1}{2} \right) + \mathcal{O}\left(\frac{1}{12(N+1)^2} \right)$$

Note that the error of the approximation is strictly positive since the second derivative math.stackexchange¹ we can blissfully accept the identity

$$I_n := \int_0^1 \sin^{4n} \left(\frac{\pi x}{2} \right) = \frac{\Gamma(2n+0.5)}{\sqrt{\pi} \Gamma(2n+1)}.$$

 $^{^1}$ https://math.stackexchange.com/questions/50447/integration-of-powers-of-the-sin-x

In order to simplify our calculations we take the limit of N

$$\frac{\|A_{Dif}^{n-1}v\|}{\|A_{Dif}^{n}v\|}|\lambda_{N}|\xrightarrow{N\to\infty}\sqrt{\frac{I_{n}}{I_{n-1}}},$$

where

$$\begin{split} \frac{I_n}{I_{n-1}} &= \frac{\Gamma(2n-1)\Gamma(2n+0.5)}{\Gamma(2n+1)\Gamma(2n-1.5)} \\ &= \frac{(2n-2)!}{(2n)!} \frac{\Gamma(2n+0.5)}{\Gamma(2n-1.5)} \frac{\Gamma(2n)}{\Gamma(2n)} \frac{\Gamma(2n-2)}{\Gamma(2n-2)} \\ &= \frac{1}{2n(2n-1)} \frac{2^{1-4n}\sqrt{\pi}}{2^{5-4n}\sqrt{\pi}} \frac{\Gamma(4n)}{\Gamma(4n-4)} \frac{\Gamma(2n-2)}{\Gamma(2n)} \\ &= \frac{1}{32n(2n-1)} \frac{(4n-1)!}{(4n-5)!} \frac{(2n-3)!}{(2n-1)!} \\ &= \frac{(4n-1)(4n-2)(4n-3)(4n-4)}{32n(2n-1)^2(2n-2)} \\ &= \frac{(4n-1)(4n-3)}{8n(2n-1)} \\ &= \frac{4n-1}{4n} \frac{4n-3}{4n-2} \\ &= \left(1 - \frac{1}{4n}\right) \left(1 - \frac{1}{4n-2}\right) \end{split}$$

For the third equality we applied the duplication formula for the gamma function. All in all we underestimate the absolutely largest eigenvalue λ_N by a factor of

$$\lim_{N \to \infty} \frac{\|A_{Dif}^{n-1}v\|}{\|A_{Dif}^{n}v\|} |\lambda_N| = \sqrt{\left(1 - \frac{1}{4n}\right)\left(1 - \frac{1}{4n-2}\right)} \approx 1 - \frac{1}{4n-1}$$

at the limit $N \to \infty$.

4 Matrix-free Leja based exponential integrators

Exponential integrators are a class of numerical integrators which excel at solving stiff differential equations. Unlike most numerical ordinary differential equation (ODE) solvers their construction is based on the variation-of-constants formula. Consider the semilinear initial value problem

$$\partial_t u = F(u) = Au + g(u)$$

$$u(0) = u_0$$

where $A = \partial_u F$ and g(u) = F(u) - Au is the linear and nonlinear part of F respectively. The solution of the ODE is given by the variation-of-constants formula

$$u(t) = e^{At}u_0 + \int_0^t e^{(t-\tau)A}g(u(\tau))d\tau.$$

Similar to Runge-Kutta methods we replace the integrand with a polynomial approximation. Unlike Runge-Kutta methods we leave the matrix exponential untouched and only replace g. The most well-known Rosenbrock-type exponential integrator, the exponential Rosenbrock-Euler method, can be obtained by using the left hand rule. By replacing g with $g(u_0)$ we get

$$u(t) \approx e^{At}u_0 + \int_0^t e^{(t-\tau)A}g(u_0)d\tau = e^{Lt}u_0 + \varphi_1(tA)g(u_0),$$

where $\varphi_1(z) = \frac{e^z - 1}{z}$. Higher order exponential integrators rely on the efficient computation of the entire functions

$$\varphi_{k+1}(z) = \frac{\varphi_k(z) - 1}{z}, \quad \varphi_0(z) = e^z, \quad k \in \mathbb{N}.$$

This can be done by slightly expanding A, see [2, Theorem 2.1].

Computing the action of the φ functions Let $A \in \mathbb{C}^{N \times N}$, $U = [U_p \dots U_2, U_1] \in \mathbb{C}^{N \times p}$, $u \in \mathbb{C}^{N \times 1}$, $\tau \in \mathbb{C}$ and

$$\tilde{A} = \begin{bmatrix} A & U \\ 0 & J \end{bmatrix}, \quad J = \begin{bmatrix} 0 & I_{p-1} \\ 0 & 0 \end{bmatrix},$$

where I_n is the $n \times n$ identity matrix. Let e_n denote the n-th $p \times 1$ unity vector. Then

$$\begin{bmatrix} I_N & 0 \end{bmatrix} e^{\tau \tilde{A}} \begin{bmatrix} u \\ e_j \end{bmatrix} = e^{\tau A} u + \sum_{k=1}^{j} \tau^k \varphi_k(\tau A) U_{p-j+k}, \quad j \in \{1, \dots, p\}.$$

In particular for j = p we have

$$\begin{bmatrix} I_N & 0 \end{bmatrix} e^{\tau \tilde{A}} \begin{bmatrix} u \\ e_p \end{bmatrix} = e^{\tau A} u + \sum_{k=1}^p \tau^k \varphi_k(\tau A) U_k$$

Many exponential Rosenbrock methods can use this relation to reduce computational costs. For most practical integrators each stage only requires a single action of an expanded matrix exponential has to be evaluated. This is in particular true for the exponential Rosenbrock-Euler methods which can be solved in a single step.

For a matrix-free implementation of \tilde{A} given an operator A we can simply compute the action of \tilde{A} as follows

$$\tilde{A} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} Av \\ 0 \end{bmatrix} + \begin{bmatrix} Uw \\ Jw \end{bmatrix}, \quad v \in \mathbb{C}^{N \times 1}, w \in \mathbb{C}^{p \times 1}$$

The Leja method only relies on matrix-vector multiplications with A and therefore the explicit knowledge of A is not required.

5 Nonlinear Advection-Diffusion-Reaction Equation

Consider the one-dimensional advection-diffusion-reaction equation

$$\partial_t u = \alpha \partial_x ((u + \partial_x u)) + \beta \partial_x (u^2) + u(u - 0.5) \quad \alpha, \beta, \ge 0$$

 $u_0(t) = e^{-80 \cdot (t - 0.45)^2} \quad t \in [0, 0.1]$

on the domain $\Omega = [0, 1]$.

6 Numerical experiments

For the first experiments we will discretize multiple one-dimensional advection-diffusion-reaction equations with hybrid difference schemes.² We will always choose an equidistant grid with grid size $h = \frac{1}{N}$, $N \in \mathbb{N}$ and grid points $x_i = ih$ for $i = 0 \dots, N$ on the domain $\Omega = [0, 1]$. The resulting ordinary differential equations (ODEs) will be solved with four different integrators. Our goal is to investigate the respective computational costs of these methods while achieving a prescribed relative tolerance tol.

Crank-Nicolson method: We refer to the Crank-Nicolson method of order 2 as cn2. In our implementation of cn2, we used the SciPy[7] package scipy.sparse.linalg.gmres to solve linear equations. We set the relative tolerance to tol/s, where s is the total number of substeps taken for solving the ODE. This choice guarantees that the sum of errors made by gmres is always lower than our specified tolerance tol, since we have to solve exactly one linear equation per substep. No preconditioner was used for gmres. The Crank-Nicolson method is unconditionally stable and therefore does not have to satisfy the Courant-Friedrichs-Lewy (CFL) conditions imposed by the advective and diffusive part of the differential equations.

Exponential Rosenbrock-Euler method: We refer to the Exponential Rosenbrock-Euler method of order 2 as exprb2. The approximate the action of the matrix exponential with the Leja method. No hump reduction is used. The maximal interpolation degree is set to 100. Note that the total number of matrix-vector multiplication per time step can still exeed 100 since we have to compute a single matrix norm. This typically happens for s=1.

Explicit midpoint method: We refer to the explicit midpoint method of order 2 as rk2.

Classical Runge-Kutta method: We refer to the classical Runge-Kutta method of order 4 as rk4.

²Need a source, https://en.wikipedia.org/wiki/Hybrid_difference_scheme

For our experiments we will often fix one of two different Péclet numbers

$$extsf{Pe} = rac{b}{a}, \quad extsf{pe} = rac{hb}{2a},$$

The Péclet numbers are dimensionless quantities representing the ratio of the advective velocity b to the diffusive velocity a. While Pe characterizes the original partial differential equation, the grid Péclet number pe is the dimensionless quantity for the resulting ODE after discretization. Note that by fixing pe for varying grid sizes, we have to change the original partial differential equantion. Unless otherwise noted we accomplish that by replacing b with b0 and b1 with b2 and b3.

6.1 Experiment 1: Linear advection diffusion equation

Consider the one-dimensional advection-diffusion equation

$$\partial_t u = a \partial_{xx} u + b \partial_x u \quad a, b \ge 0$$
$$u_0(t) = e^{-80 \cdot (t - 0.45)^2} \quad t \in [0, 0.1]$$

with homogeneous Dirichlet boundary conditions on the domain $\Omega = [0, 1]$. For a fixed $N \in \mathbb{N}$ we approximate the diffusive part with second-order central differences on an equidistant grid with grid size $h = \frac{1}{N}$ and grid points $x_i = ih$, i = 0..., N.

$$\partial_{xx} u(x_i) = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2} + \mathcal{O}(h^2)$$

In order to limit numerical instabilities we discretize the advective part with forward differences, similar to the upwind scheme.³

$$\partial_x u(x_i) = \frac{u(x_{i+1}) - u(x_i)}{h} + \mathcal{O}(h)$$

The resulting system of ordinary differential equation is given by

$$\partial_t u = Au$$
.

Some eigenvalues of A can have an extremely large negative real part. Therefore, since no explicit Runge-Kutta method is A-stable, this imposes very stingend conditions on the time step size τ for rk2 and rk4.⁴ We will refer to the Courant-Friedrich-Lewy (CFL) conditions imposed by the advective and diffusive part of A respectively by C_{adv} and C_{dif} .

$$C_{adv} = \frac{b\tau}{h} \le 1, \quad C_{dif} = \frac{a\tau}{h^2} \le \frac{1}{2}$$

In our case the problem is fully linear and therefore exprb2 simplifies to the computation of the action of the matrix exponential function with the Leja method. We

 $^{^{3}}$ Maybe create a separate section on hybrid difference schemes? There we can also analyze the resulting matrix A itself and plot the eigenvalues. I need sources for that though.

⁴See section ??

write expleja for the single precision Leja method approximation. Note that reference solution was computed with double precision and therefore uses different nodes.

In order to keep the solution from vanishing, we fix b = 1 and only consider coefficients $a \in [0, 1]$. The advection-diffusion ratio scaled by the grid size h is represented by the grid Péclet number

6.2 Experiment 2: 1D Nonlinear advection diffusion equation

$$\partial_t u = \alpha \partial_x ((u+1)\partial_x u) + \partial_x (u^2) + u(u-0.5)$$

We discretize, solve again with rk2, rk4, cn2 and exprb2.

7 Appendix

Matrix analysis, Horn and Johnson, Lemma 5.6.10

$$\rho(A) = \inf\{\|A\| : \|\cdot\| \text{ is an induced matrix norm}\}\$$

7.1 Experiment 1

7.2 Experiment 1.5

In the matrix-free case the linear operator A is not explicitly given. In order to compute the matrix norm $||A||_2$ we use power iterations to estimate the absolutely largest eigenvalue of A. A priory it is not clear how many power iterations it are necessary for a good approximation.

Figure 3: Space dimension N vs costs mv per timestep s for the exponential Rosenbrock method exprb2. Results are only shown if they achieve single precision.

7.3 Experiment 2

1, single, =0.01, =0.01

References

- [1] M. Caliari, A. Ostermann. Implementation of exponential Rosenbrock-type integrators, Applied Numerical Mathematics 59 (2009), 568-581.
- [2] A. Al-Mohy, N. Higham. Computing the action of the matrix exponential, with an application to exponential integrators, SIAM Journal on Scientific Computing 33 (2011), 488-511.
- [3] L. Reichel. Newton interpolation at Leja points, BIT Numerical Mathematics 30 (1990), 332-346.
- [4] M. Caliari, M. Vianello, L. Bergamaschi. Interpolating discrete advection-diffusion propagators at Leja sequences, Journal of Computational and Applied Mathematics 172 (2004), 79-99.
- [5] M. Caliari, P. Kandolf, A. Ostermann, S. Rainer. The Leja method revisited: backward error analysis for the matrix exponential, SIAM Journal on Scientific Computation, Accepted for publication (2016). arXiv:1506.08665.
- [6] Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org. Manual at https://docs.python.org/2/. [Online; accessed 2015-12-14]
- [7] E. Jones, E. Oliphant, P. Peterson, SciPy: Open Source Scientific Tools for Python, Available at http://www.scipy.org/. [Online; accessed 2015-12-14]
- [8] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press (2012).