

Homework for the Lecture

Functional Analysis

Stefan Waldmann Christopher Rudolph

Winter Term 2024/2025

$\underset{\text{revision: } 2025\text{-}01\text{-}27}{\text{Homework Sheet No } 14}$

Last changes by christopher.rudolph@jmu on 2025-01-27 Git revision of funkana-ws2425: 1a5341a (HEAD -> master, origin/master)

> 27. 01. 2025 (23 Points. Discussion 03.02.2025)

Homework 14-1: The Lax-Milgram Theorem

Let $(\mathfrak{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $B: \mathfrak{H}^2 \to \mathbb{C}$ be a continuous sesquilinear map.

i.) (5 Points) Show that there is a unique bounded linear operator $T \in L(\mathfrak{H})$ such that

$$B(\psi, \phi) = \langle \psi, T\phi \rangle \tag{14.1}$$

for all $\phi, \psi \in \mathfrak{H}$.

- ii.) (4 Points) Conclude that the set of continuous sesquilinear functionals (endowed with the operator norm topology) on \mathfrak{H} is isometrically isomorphic to $L(\mathfrak{H})$.
- iii.) (6 Points) Assume that B is coercive, i.e. there exists a constant m>0 such that

$$B(\phi, \phi) \ge m \|\phi\|^2 \tag{14.2}$$

for every $\phi \in \mathfrak{H}$. Prove that in this case the corresponding operator T is invertible. Moreover, show that T^{-1} is continuous with $||T^{-1}|| \leq \frac{1}{m}$.

 $\it Hint: Show that the orthogonal complement of the image of T does only contain the zero vector.$

Homework 14-2: The Bargmann-Fock space: Part II

Consider the Bargmann-Fock space \mathfrak{H}_{BF} from Homework 11-3.

i.) (2 Points) Prove that the orthonormal system $\{e_{k_1...k_n}(\overline{z}): k_1,\ldots,k_n \in \mathbb{N}_0\} \subset \mathfrak{H}_{BF}$ from Homework 11-3, iii.) is complete.

ii.) (2 Points) For $i \in \{1, ..., n\}$, define the map

$$a_i^{\dagger}: \mathfrak{H}_{BF} \supset \mathbb{C}[\overline{z}_1, \dots, \overline{z}_n] \ni p \mapsto \overline{z}_i p \in \mathbb{C}[\overline{z}_1, \dots, \overline{z}_n].$$
 (14.3)

Show that $a_i^{\dagger} p \in \mathfrak{H}_{BF}$ for every polynomial function p.

Hint: Consider the integral $\frac{1}{(2\pi\hbar)^n} \int_{(B_r(0)^{cl})^n} |z_i|^2 |p(\overline{z})|^2 e^{-\frac{\overline{z}z}{2\hbar}} dz d\overline{z}$ in the limit $r \to \infty$.

- iii.) (2 Points) Determine the adjoint operator $a_i := (a_i^{\dagger})^*$ of a_i^{\dagger} and compute the commutator $[a_i, a_j^{\dagger}]$ for $i, j \in \{1, \dots, n\}$.
- iv.) (2 Points) Study continuity of a_i and a_i^{\dagger} .