Naive Bayes and Sentiment Classification

Classification lies at the heart of both human and machine intelligence. Deciding what letter, word, or image has been presented to our senses, recognizing faces or voices, sorting mail, assigning grades to homeworks, these are all examples of assigning a class or category to an input. The potential challenges of this task are highlighted by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included in this classification, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel's hair brush, (l) others, (m) those that have just broken a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks are tasks of classification, although luckily our classes are much easier to define than those of Borges. In this chapter we present the naive Bayes algorithms classification, demonstrated on an important classification problem: **text categorization**, the task of classifying an entire text by assigning it a

label drawn from some set of labels.

We focus on one common text categorization task, sentiment analysis, the extraction of **sentiment**, the positive or negative orientation that a writer expresses toward some object. A review of a movie, book, or product on the web expresses the author's sentiment toward the product, while an editorial or political text expresses sentiment toward a candidate or political action. Automatically extracting consumer sentiment is important for marketing of any sort of product, while measuring public sentiment is important for politics and also for market prediction. The simplest version of sentiment analysis is a binary classification task, and the words of the review provide excellent cues. Consider, for example, the following phrases extracted from positive and negative reviews of movies and restaurants. Words like great, richly, awesome, and pathetic, and awful and ridiculously are very informative cues:

- + ...zany characters and richly applied satire, and some great plot twists
- It was pathetic. The worst part about it was the boxing scenes...
- + ...awesome caramel sauce and sweet toasty almonds. I love this place!
- ...awful pizza and ridiculously overpriced...

spam detection

text categorization

sentiment

analysis

Spam detection is another important commercial application, the binary classification task of assigning an email to one of the two classes *spam* or *not-spam*. Many lexical and other features can be used to perform this classification. For example you might quite reasonably be suspicious of an email containing phrases like "online pharmaceutical" or "WITHOUT ANY COST" or "Dear Winner".

authorship attribution

Another thing we might want to know about a text is its author. Determining a text's author, authorship attribution, and author characteristics like gender, age, and native language are text classification tasks that are relevant to the digital humanities, social sciences, and forensics as well as natural language processing.

Finally, one of the oldest tasks in text classification is assigning a library subject category or topic label to a text. Deciding whether a research paper concerns epidemiology or instead, perhaps, embryology, is an important component of information retrieval. Various sets of subject categories exist, such as the MeSH (Medical Subject Headings) thesaurus. In fact, as we will see, subject category classification is the task for which the naive Bayes algorithm was invented in 1961.

Classification is important far beyond the task of text classification. We've already seen other classification tasks: period disambiguation (deciding if a period is the end of a sentence or part of a word), word tokenization (deciding if a character should be a word boundary). Even language modeling can be viewed as classification: each word can be thought of as a class, and so predicting the next word is classifying the context-so-far into a class for each next word. In future chapters we will see that a part-of-speech tagger classifies each occurrence of a word in a sentence as, e.g., a noun or a verb, and a named-entity tagging system classifies whether a sequence of words refers to people, organizations, dates, or something else.

The goal of classification is to take a single observation, extract some useful features, and thereby **classify** the observation into one of a set of discrete classes. One method for classifying text is to use hand-written rules. There are many areas of language processing where hand-written rule-based classifiers constitute a state-of-the-art system, or at least part of it.

Rules can be fragile, however, as situations or data change over time, and for some tasks humans aren't necessarily good at coming up with the rules. Most cases of classification in language processing are therefore done via **supervised machine learning**, and this will be the subject of the remainder of this chapter.

Formally, the task of classification is to take an input x and a fixed set of output classes $Y = y_1, y_2, ..., y_M$ and return a predicted class $y \in Y$. For text classification, we'll sometimes talk about c (for "class") instead of y as our output variable, and d (for "document") instead of x as our input variable. In the supervised situation we have a training set of N documents that have each been hand-labeled with a class: $(d_1, c_1), ..., (d_N, c_N)$. Our goal is to learn a classifier that is capable of mapping from a new document d to its correct class $c \in C$. A **probabilistic classifier** additionally will tell us the probability of the observation being in the class. This full distribution over the classes can be useful information for downstream decisions; avoiding making discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. We will discuss one in depth in this chapter: multinomial naive Bayes, and one in the next chapter: multinomial logistic regression, also known as the maximum entropy or MaxEnt classifier. These exemplify two ways of doing classification. **Generative** classifiers like naive Bayes build a model of each class. Given an observation, they return the class most likely to have generated the observation. **Discriminative** classifiers like logistic regression instead learn what features from the input are most useful to discriminate between the different possible classes. While discriminative systems are often more accurate and hence more commonly used, generative classifiers still have a role.

Other classifiers commonly used in language processing include support-vector machines (SVMs), random forests, perceptrons, and neural networks; see the end of the chapter for pointers.

6.1 Naive Bayes Classifiers

naive Bayes classifier

In this section we introduce the **multinomial naive Bayes classifier**, so called because it is a Bayesian classifier that makes a simplifying (naive) assumption about how the features interact.

bag-of-words

The intuition of the classifier is shown in Fig. 6.1. We represent a text document as if it were a **bag-of-words**, that is, an unordered set of words with their position ignored, keeping only their frequency in the document. In the example in the figure, instead of representing the word order in all the phrases like "I love this movie" and "I would recommend it", we simply note that the word *I* occurred 5 times in the entire excerpt, the word *it* 6 times, the words *love*, *recommend*, and *movie* once, and so on.

Figure 6.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the words is ignored (the *bag of words* assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of all classes $c \in C$ the classifier returns the class \hat{c} which has the maximum posterior probability given the document. In Eq. 6.1 we use the hat notation $\hat{}$ to mean "our estimate of the correct class".

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) \tag{6.1}$$

Bayesian inference

This idea of **Bayesian inference** has been known since the work of Bayes (1763), and was first applied to text classification by Mosteller and Wallace (1964). The intuition of Bayesian classification is to use Bayes' rule to transform Eq. 6.1 into other probabilities that have some useful properties. Bayes' rule is presented in Eq. 6.2; it gives us a way to break down any conditional probability P(x|y) into three other

probabilities:

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$
(6.2)

We can then substitute Eq. 6.2 into Eq. 6.1 to get Eq. 6.3:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}$$
(6.3)

We can conveniently simplify Eq. 6.3 by dropping the denominator P(d). This is possible because we will be computing $\frac{P(d|c)P(c)}{P(d)}$ for each possible class. But P(d) doesn't change for each class; we are always asking about the most likely class for the same document d, which must have the same probability P(d). Thus, we can choose the class that maximizes this simpler formula:

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(c|d) = \operatorname*{argmax}_{c \in C} P(d|c) P(c) \tag{6.4}$$

prior probability likelihood We thus compute the most probable class \hat{c} given some document d by choosing the class which has the highest product of two probabilities: the **prior probability** of the class P(c) and the **likelihood** of the document P(d|c):

likelihood prior
$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \overbrace{P(d|c)} \quad \overbrace{P(c)}$$
(6.5)

Without loss of generalization, we can represent a document d as a set of features $f_1, f_2, ..., f_n$:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \underbrace{P(f_1, f_2, \dots, f_n | c)} \underbrace{P(c)}$$
 (6.6)

Unfortunately, Eq. 6.6 is still too hard to compute directly: without some simplifying assumptions, estimating the probability of every possible combination of features (for example, every possible set of words and positions) would require huge numbers of parameters and impossibly large training sets. Naive Bayes classifiers therefore make two simplifying assumptions.

The first is the *bag of words* assumption discussed intuitively above: we assume position doesn't matter, and that the word "love" has the same effect on classification whether it occurs as the 1st, 20th, or last word in the document. Thus we assume that the features $f_1, f_2, ..., f_n$ only encode word identity and not position.

naive Bayes assumption

The second is commonly called the **naive Bayes assumption**: this is the conditional independence assumption that the probabilities $P(f_i|c)$ are independent given the class c and hence can be 'naively' multiplied as follows:

$$P(f_1, f_2, ..., f_n | c) = P(f_1 | c) \cdot P(f_2 | c) \cdot ... \cdot P(f_n | c)$$
(6.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{f \in F} P(f|c)$$
(6.8)

To apply the naive Bayes classifier to text, we need to consider word positions, by simply walking an index through every word position in the document:

positions \leftarrow all word positions in test document

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i \in positions} P(w_i|c)$$
 (6.9)

Naive Bayes calculations, like calculations for language modeling, are done in log space, to avoid underflow and increase speed. Thus Eq. 6.9 is generally instead expressed as

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} \log P(c) + \sum_{i \in positions} \log P(w_i|c)$$
 (6.10)

By considering features in log space Eq. 6.10 computes the predicted class as a linear function of input features. Classifiers that use a linear combination of the inputs to make a classification decision —like naive Bayes and also logistic regression—are called **linear classifiers**.

linear

6.2 Training the Naive Bayes Classifier

How can we learn the probabilities P(c) and $P(f_i|c)$? Let's first consider the maximum likelihood estimate. We'll simply use the frequencies in the data. For the document prior P(c) we ask what percentage of the documents in our training set are in each class c. Let N_c be the number of documents in our training data with class c and N_{doc} be the total number of documents. Then:

$$\hat{P}(c) = \frac{N_c}{N_{doc}} \tag{6.11}$$

To learn the probability $P(f_i|c)$, we'll assume a feature is just the existence of a word in the document's bag of words, and so we'll want $P(w_i|c)$, which we compute as the fraction of times the word w_i appears among all words in all documents of topic c. We first concatenate all documents with category c into one big "category c" text. Then we use the frequency of w_i in this concatenated document to give a maximum likelihood estimate of the probability:

$$\hat{P}(w_i|c) = \frac{count(w_i, c)}{\sum_{w \in V} count(w, c)}$$
(6.12)

Here the vocabulary V consists of the union of all the word types in all classes, not just the words in one class c.

There is a problem, however, with maximum likelihood training. Imagine we are trying to estimate the likelihood of the word "fantastic" given class *positive*, but suppose there are no training documents that both contain the word "fantastic" and are classified as *positive*. Perhaps the word "fantastic" happens to occur (sarcastically?) in the class *negative*. In such a case the probability for this feature will be zero:

$$\hat{P}(\text{"fantastic"}|\text{positive}) = \frac{count(\text{"fantastic"},\text{positive})}{\sum_{w \in V} count(w,\text{positive})} = 0$$
 (6.13)

But since naive Bayes naively multiplies all the feature likelihoods together, zero probabilities in the likelihood term for any class will cause the probability of the class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chapter 4. While Laplace smoothing is usually replaced by more sophisticated smoothing algorithms in language modeling, it is commonly used in naive Bayes text categorization:

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)} = \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$
(6.14)

Note once again that it is a crucial that the vocabulary V consists of the union of all the word types in all classes, not just the words in one class c (try to convince yourself why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocabulary at all because they did not occur in any training document in any class? The standard solution for such **unknown words** is to ignore such words—remove them from the test document and not include any probability for them at all.

stop words

Finally, some systems choose to completely ignore another class of words: **stop words**, very frequent words like *the* and *a*. This can be done by sorting the vocabulary by frequency in the training set, and defining the top 10–100 vocabulary entries as stop words, or alternatively by using one of the many pre-defined stop word list available online. Then every instance of these stop words are simply removed from both training and test documents as if they had never occurred. In most text classification applications, however, using a stop word list doesn't improve performance, and so it is more common to make use of the entire vocabulary and not use a stop word list.

Fig. 6.2 shows the final algorithm.

6.3 Worked example

Let's walk through an example of training and testing naive Bayes with add-one smoothing. We'll use a sentiment analysis domain with the two classes positive (+) and negative (-), and take the following miniature training and test documents simplified from actual movie reviews.

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

The prior P(c) for the two classes is computed via Eq. 6.11 as $\frac{N_c}{N_{doc}}$:

```
function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)
                                        # Calculate P(c) terms
for each class c \in C
   N_{doc} = number of documents in D
   N_c = number of documents from D in class c
   logprior[c] \leftarrow \log \frac{N_c}{N_{doc}}
    V \leftarrow vocabulary of D
   bigdoc[c] \leftarrow \mathbf{append}(d) for d \in D with class c
   for each word w in V
                                                     # Calculate P(w|c) terms
      count(w,c) \leftarrow \# of occurrences of w in bigdoc[c]
loglikelihood[\mathbf{w},\mathbf{c}] \leftarrow \ \log \ \frac{count(w,c) + 1}{\sum_{w' \ in \ V} (count \ (w',c) + 1)} return logprior, loglikelihood, V
\textbf{function} \ \ \mathsf{TEST} \ \ \mathsf{NAIVE} \ \ \mathsf{BAYES}(\textit{testdoc}, log prior, log likelihood, \mathsf{C}, \mathsf{V}) \ \textbf{returns} \ \mathsf{best} \ c
for each class c \in C
   sum[c] \leftarrow logprior[c]
   for each position i in testdoc
       word \leftarrow testdoc[i]
       if word \in V
          sum[c] \leftarrow sum[c] + loglikelihood[word,c]
return argmax_c sum[c]
```

Figure 6.2 The naive Bayes algorithm, using add-1 smoothing. To use add- α smoothing instead, change the +1 to + α for loglikelihood counts in training.

$$P(-) = \frac{3}{5}$$
 $P(+) = \frac{2}{5}$

The word *with* doesn't occur in the test set, so we drop it completely (as mentioned above, we don't use unknown word models for naive Bayes). The likelihoods from the training set for the remaining three words "predictable", "no", and "fun", are as follows, from Eq. 6.14 (computing the probabilities for the remainder of the words in the training set is left as Exercise 6.?? (TBD)).

$$\begin{split} P(\text{``predictable''}|-) &= \frac{1+1}{14+20} \quad P(\text{``predictable''}|+) = \frac{0+1}{9+20} \\ P(\text{``no''}|-) &= \frac{1+1}{14+20} \quad P(\text{``no''}|+) = \frac{0+1}{9+20} \\ P(\text{``fun''}|-) &= \frac{0+1}{14+20} \quad P(\text{``fun''}|+) = \frac{1+1}{9+20} \end{split}$$

For the test sentence S = "predictable with no fun", after removing the word 'with', the chosen class, via Eq. 6.9, is therefore computed as follows:

$$P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$

The model thus predicts the class *negative* for the test sentence.

6.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis, some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks, whether a word occurs or not seems to matter more than its frequency. Thus it often improves performance to clip the word counts in each document at 1. This variant is called **binary multinominal naive Bayes** or **binary NB**. The variant uses the same Eq. 6.10 except that for each document we remove all duplicate words before concatenating them into the single big document. Fig. 6.3 shows an example in which a set of four documents (shortened and text-normalized for this example) are remapped to binary, with the modified counts shown in the table on the right. The example is worked without add-1 smoothing to make the differences clearer. Note that the results counts need not be 1; the word *great* has a count of 2 even for Binary NB, because it appears in multiple documents.

NB **Binary** Counts Counts Four original documents: and - it was pathetic the worst part was the boxing 0 boxing scenes film 0 0 no plot twists or great scenes great + and satire and great plot twists 0 it 0 + great scenes great film no 0 0 After per-document binarization: 0 part 0 1 pathetic 0 0 1 - it was pathetic the worst part boxing plot 1 scenes 0 0 satire no plot twists or great scenes 2 scenes 2 + and satire great plot twists the twists 1 1 + great scenes film was

Figure 6.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for sentiment is to deal with negation. Consider the difference between *I really like this movie* (positive) and *I didn't like this movie* (negative). The negation expressed by *didn't* completely alters the inferences we draw from the predicate *like*. Similarly, negation can modify a negative word to produce a positive review (*don't dismiss this film*, *doesn't let us get bored*).

A very simple baseline that is commonly used in sentiment to deal with negation is during text normalization to prepend the prefix NOT_{-} to every word after a token of logical negation (n't, not, no, never) until the next punctuation mark. Thus the phrase

binary NB

didnt like this movie, but I

becomes

didnt NOT_like NOT_this NOT_movie , but I

Newly formed 'words' like *NOT_like*, *NOT_recommend* will thus occur more often in negative document and act as cues for negative sentiment, while words like *NOT_bored*, *NOT_dismiss* will acquire positive associations. We will return in Chapter 20 to the use of parsing to deal more accurately with the scope relationship between these negation words and the predicates they modify, but this simple baseline works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to train accurate naive Bayes classifiers using all words in the training set to estimate positive and negative sentiment. In such cases we can instead derive the positive and negative word features from **sentiment lexicons**, lists of words that are preannotated with positive or negative sentiment. Four popular lexicons are the **General Inquirer** (Stone et al., 1966), **LIWC** (Pennebaker et al., 2007), the opinion lexicon of Hu and Liu (2004) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and 4912 negative, each marked for whether it is strongly or weakly biased. Some samples of positive and negative words from the MPQA lexicon include:

- + : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
- : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Chapter 18 will discuss how these lexicons can be learned automatically.

A common way to use lexicons in the classifier is to use as one feature the total count of occurrences of any words in the positive lexicon, and as a second feature the total count of occurrences of words in the negative lexicon. Using just two features results in classifiers that are much less sparse to small amounts of training data, and may generalize better.

6.5 Naive Bayes as a Language Model

Naive Bayes classifiers can use any sort of feature: dictionaries, URLs, email addresses, network features, phrases, parse trees, and so on. But if, as in the previous section, we use only individual word features, and we use all of the words in the text (not a subset), then naive Bayes has an important similarity to language modeling. Specifically, a naive Bayes model can be viewed as a set of class-specific unigram language models, in which the model for each class instantiates a unigram language model.

Since the likelihood features from the naive Bayes model assign a probability to each word P(word|c), the model also assigns a probability to each sentence:

$$P(s|c) = \prod_{i \in positions} P(w_i|c)$$
(6.15)

Thus consider a naive Bayes model with the classes *positive* (+) and *negative* (-) and the following model parameters:

sentiment lexicons

General Inquirer LIWC

W	P(w +)	P (w -)
I	0.1	0.2
love	0.1	0.001
this	0.01	0.01
fun	0.05	0.005
film	0.1	0.1

Each of the two columns above instantiates a language model that can assign a probability to the sentence "I love this fun film":

```
P(\text{"I love this fun film"}|+) = 0.1 \times 0.1 \times 0.01 \times 0.05 \times 0.1 = 0.0000005

P(\text{"I love this fun film"}|-) = 0.2 \times 0.001 \times 0.01 \times 0.005 \times 0.1 = .0000000010
```

As it happens, the positive model assigns a higher probability to the sentence: P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes model; once we multiply in the prior a full naive Bayes model might well make a different classification decision.

6.6 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let's first consider some simple binary *detection* tasks. For example, in spam detection, our goal is to label every text as being in the spam category ("positive") or not in the spam category ("negative"). For each item (email document) we therefore need to know whether our system called it spam or not. We also need to know whether the email is actually spam or not, i.e. the human-defined labels for each document that we are trying to match. We will refer to these human labels as the **gold labels**.

gold labels

Or imagine you're the CEO of the *Delicious Pie Company* and you need to know what people are saying about your pies on social media, so you build a system that detects tweets concerning Delicious Pie. Here the positive class is tweets about Delicious Pie and the negative class is all other tweets.

contingency table In both cases, we need a metric for knowing how well our spam detector (or pie-tweet-detector) is doing. To evaluate any system for detecting things, we start by building a **contingency table** like the one shown in Fig. 6.4. Each cell labels a set of possible outcomes. In the spam detection case, for example, true positives are documents that are indeed spam (indicated by human-created gold labels) and our system said they were spam. False negatives are documents that are indeed spam but our system labeled as non-spam.

To the bottom right of the table is the equation for *accuracy*, which asks what percentage of all the observations (for the spam or pie examples that means all emails or tweets) our system labeled correctly. Although accuracy might seem a natural metric, we generally don't use it. That's because accuracy doesn't work well when the classes are unbalanced (as indeed they are with spam, which is a large majority of email, or with tweets, which are mainly not about pie).

To make this more explicit, imagine that we looked at a million tweets, and let's say that only 100 of them are discussing their love (or hatred) for our pie, while the other 999,900 are tweets about something completely unrelated. Imagine a

		gold standa	rd labels	
		gold positive	gold negative	
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{\mathrm{tp}}{\mathrm{tp} + \mathrm{fp}}$
labels	system negative	false negative	true negative	
		$\mathbf{recall} = \frac{\mathbf{tp}}{\mathbf{tp} + \mathbf{fn}}$		$\mathbf{accuracy} = \frac{\mathbf{tp+tn}}{\mathbf{tp+fp+tn+fn}}$

Figure 6.4 Contingency table

simple classifier that stupidly classified every tweet as "not about pie". This classifier would have 999,900 true positives and only 100 false negatives for an accuracy of 999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should be happy with this classifier? But of course this fabulous 'no pie' classifier would be completely useless, since it wouldn't find a single one of the customer comments we are looking for. In other words, accuracy is not a good metric when the goal is to discover something that is rare, or at least not completely balanced in frequency, which is a very common situation in the world.

precision

That's why instead of accuracy we generally turn to two other metrics: **precision** and **recall**. **Precision** measures the percentage of the items that the system detected (i.e., the system labeled as positive) that are in fact positive (i.e., are positive according to the human gold labels). Precision is defined as

$$\mathbf{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

recall

Recall measures the percentage of items actually present in the input that were correctly identified by the system. Recall is defined as

$$\mathbf{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

Precision and recall will help solve the problem with the useless "nothing is pie" classifier. This classifier, despite having a fabulous accuracy of 99.99%, has a terrible recall of 0 (since there are no true positives, and only 10 false negatives, the recall is 0/10). You should convince yourself that the precision at finding relevant tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize true positives: finding the things that we are supposed to be looking for.

F-measure

F1

In practice, we generally combine precision and recall into a single metric called the *F*-measure (van Rijsbergen, 1975), defined as:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

The β parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application. Values of $\beta > 1$ favor recall, while values of $\beta < 1$ favor precision. When $\beta = 1$, precision and recall are equally balanced; this is the most frequently used metric, and is called $F_{\beta=1}$ or just F_1 :

$$F_1 = \frac{2PR}{P+R} \tag{6.16}$$

F-measure comes from a weighted harmonic mean of precision and recall. The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of reciprocals:

$$Harmonic Mean(a_1,a_2,a_3,a_4,...,a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}} \tag{6.17}$$

and hence F-measure is

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \text{or } \left(\text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 (6.18)

Harmonic mean is used because it is a conservative metric; the harmonic mean of two values is closer to the minimum of the two values than the arithmetic mean is. Thus it weighs the lower of the two numbers more heavily.

6.7 More than two classes

Up to now we have been assuming text classification tasks with only two classes. But lots of classification tasks in language processing have more than two classes. For sentiment analysis we generally have 3 classes (positive, negative, neutral) and even more classes are common for tasks like part-of-speech tagging, word sense disambiguation, semantic role labeling, emotion detection, and so on.

any-of

There are two kinds of multi-class classification tasks. In **any-of** or **multi-label classification**, each document or item can be assigned more than one label. We can solve *any-of* classification by building separate binary classifiers for each class c, trained on positive examples labeled c and negative examples not labeled c. Given a test document or item d, then each classifier makes their decision independently, and we may assign multiple labels to d.

one-of multinomial classification More common in language processing is **one-of** or **multinomial classification**, in which the classes are mutually exclusive and each document or item appears in exactly one class. Here we again build a separate binary classifier trained on positive examples from c and negative examples from all other classes. Now given a test document or item d, we run all the classifiers and choose the label from the classifier with the highest score. Consider the sample confusion matrix for a hypothetical 3-way *one-of* email categorization decision (urgent, normal, spam) shown in Fig. 6.5.

macroaveraging

microaveraging

The matrix shows, for example, that the system mistakenly labeled 1 spam document as urgent, and we have shown how to compute a distinct precision and recall value for each class. In order to derive a single metric that tells us how well the system is doing, we can combine these values in two ways. In **macroaveraging**, we compute the performance for each class, and then average over classes. In **microaveraging**, we collect the decisions for all classes into a single contingency table, and then compute precision and recall from that table. Fig. 6.6 shows the contingency table for each class separately, and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in this case spam), since the counts are pooled. The macroaverage better reflects the

	g	old labels	7	
	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
system output normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precision s= $\frac{200}{3+30+200}$
	recallu =	recalln =	recalls =	
	8	60	200	
	8+5+3	10+60+30	1+50+200	

Figure 6.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2

Class 1: Urgent			t Cl	Class 2: Normal			Class 3: Spam			Pooled		
	true urgent	true not		true normal	true		true spam	true not		true yes	true no	
system urgent		11	system normal		55	system spam	200	33	system yes	268	99	
system not	8	340	system not	40	212	system not	51	83	system no	99	635	
precisio	$n = \frac{8}{8+1}$	= .42	precision =	$=\frac{60}{60+5}$	- 5 = .52	precision	$=\frac{200}{200+}$	$\frac{0}{33} = .8$	6 microaverage precision	$=\frac{2}{268}$	68 8+99 =	73
$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$												

Figure 6.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contingency table and the microaveraged and macroaveraged precision.

statistics of the smaller classes, and so is more appropriate when performance on all the classes is equally important.

6.8 Test sets and Cross-validation

development test set The training and testing procedure for text classification follows what we saw with language modeling (Section ??): we use the training set to train the model, then use the **development test set** (also called a **devset**) to perhaps tune some parameters, and in general decide what the best model is. Once we come up with what we think is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed training set, devset, and test set creates another problem: in order to save lots of data for training, the test set (or devset) might not be large enough to be representative. It would be better if we could somehow use **all** our data both for training and test. We do this by **cross-validation**: we randomly choose a training and test set division of our data, train our classifier, and then compute the error rate on the test set. Then we repeat with a different randomly selected training set and test set. We do this sampling process 10 times and average these 10 runs to get an average error rate. This is called **10-fold cross-validation**.

cross-validation

10-fold cross-validation

The only problem with cross-validation is that because all the data is used for testing, we need the whole corpus to be blind; we can't examine any of the data to suggest possible features and in general see what's going on. But looking at the corpus is often important for designing the system. For this reason, it is common to create a fixed training set and test set, then do 10-fold cross-validation inside the training set, but compute error rate the normal way in the test set, as shown in Fig. 6.7.

Figure 6.7

10-fold crossvalidation

6.9 Statistical Significance Testing

In building systems we are constantly comparing the performance of systems. Often we have added some new bells and whistles to our algorithm and want to compare the new version of the system to the unaugmented version. Or we want to compare our algorithm to a previously published one to know which is better.

We might imagine that to compare the performance of two classifiers A and B all we have to do is look at A and B's score on the same test set—for example we might choose to compare macro-averaged F1— and see whether it's A or B that has the higher score. But just looking at this one difference isn't good enough, because A might have a better performance than B on a particular test set just by chance.

Let's say we have a test set x of n observations $x = x_1, x_2, ..., x_n$ on which A's performance is better than B by $\delta(x)$. How can we know if A is really better than B? To do so we'd need to reject the **null hypothesis** that A isn't really better than B and this difference $\delta(x)$ occurred purely by chance. If the null hypothesis was correct, we would expect that if we had many test sets of size n and we measured A and B's performance on all of them, that on average A might accidentally still be better than B by this amount $\delta(x)$ just by chance.

More formally, if we had a random variable X ranging over test sets, the null hypothesis H_0 expects $P(\delta(X) > \delta(x)|H_0)$, the probability that we'll see similarly big differences just by chance, to be high.

If we had all these test sets we could just measure all the $\delta(x')$ for all the x'. If we found that those deltas didn't seem to be bigger than $\delta(x)$, that is, that p-value(x) was sufficiently small, less than the standard thresholds of 0.05 or 0.01, then we might

null hypothesis

reject the null hypothesis and agree that $\delta(x)$ was a sufficiently surprising difference and A is really a better algorithm than B. Following Berg-Kirkpatrick et al. (2012) we'll refer to $P(\delta(X) > \delta(x)|H_0)$ as p-value(x).

In language processing we don't generally use traditional statistical approaches like paired t-tests to compare system outputs because most metrics are not normally distributed, violating the assumptions of the tests. The standard approach to computing p-value(x) in natural language processing is to use non-parametric tests like the **bootstrap test** (Efron and Tibshirani, 1993)— which we will describe below—or a similar test, **approximate randomization** (Noreen, 1989). The advantage of these tests is that they can apply to any metric; from precision, recall, or F1 to the BLEU metric used in machine translation.

bootstrap test approximate randomization

The intuition of the bootstrap is that we can actually create many pseudo test sets from one sample test set by treating the sample as the population and doing Monte-Carlo resampling from the sample. The method only makes the assumption that the sample is representative of the population. Consider a tiny text classification example with a test set x of 10 documents. The first row of Fig. 6.8 shows the results of two classifiers (A and B) on this test set, with each document labeled by one of the four possibilities: (A and B both right, both wrong, A right and B wrong, A wrong and B right); a slash through a letter (B) means that that classifier got the answer wrong. On the first document both A and B get the correct class (AB), while on the second document A got it right but B got it wrong (AB). If we assume for simplicity that our metric is accuracy, A has an accuracy of .70 and B of .50, so $\delta(x)$ is .20. To create each pseudo test set of size N = 10, we repeatedly (10 times) select a cell from row x with replacement. Fig. 6.8 shows a few examples.

													$\delta()$
х	AB	AB	AB	ΑB	AB	ΑB	AB	AB	XB	AB	.70	.50	.20
$x^{*(1)}$	AB	AB	AB	K B	K B	AB	K B	AB	XB	AB	.60	.60	.00
$x^{*(2)}$	AB	AB	AB	∠ B	∠ B	AB	∠ B	AB	AB	AB	.60	.70	10
$x^{*(b)}$													

Figure 6.8 The bootstrap: Examples of b pseudo test sets being created from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an individual sample is a single cell, a document with its gold label and the correct or incorrect performance of classifiers A and B.

Now that we have a sampling distribution, we can do statistics. We'd like to know how often A beats B by more than $\delta(x)$ on each $x^{*(i)}$. But since the $x^{*(i)}$ were drawn from x, the expected value of $\delta(x^{*(i)})$ will lie very close to $\delta(x)$. To find out if A beats B by more than $\delta(x)$ on each pseudo test set, we'll need to shift the means of these samples by $\delta(x)$. Thus we'll be comparing for each $x^{(i)}$ whether $\delta(x^{(i)}) > 2\delta(x)$. The full algorithm for the bootstrap is shown in Fig. 6.9.

6.10 Summary

This chapter introduced the **naive Bayes** model for **classification** and applied it to the **text categorization** task of **sentiment analysis**.

```
function BOOTSTRAP(x, b) returns p-value(x)

Calculate \delta(x)

for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x^{*(i)} of size n

Select a member of x at random and add it to x^{*(i)}

Calculate \delta(x^{*(i)})

for each x^{*(i)}

s \leftarrow s + 1 if \delta(x^{*(i)}) > 2\delta(x)

p-value(x) \approx \frac{s}{b}

return p-value(x)
```

Figure 6.9 The bootstrap algorithm

- Many language processing tasks can be viewed as tasks of **classification**. learn to model the class given the observation.
- Text categorization, in which an entire text is assigned a class from a finite set, comprises such tasks as sentiment analysis, spam detection, email classification, and authorship attribution.
- Sentiment analysis classifies a text as reflecting the positive or negative orientation (sentiment) that a writer expresses toward some object.
- Naive Bayes is a generative model that make the bag of words assumption (position doesn't matter) and the conditional independence assumption (words are conditionally independent of each other given the class)
- Naive Bayes with binarized features seems to work better for many text classification tasks.

Bibliographical and Historical Notes

Multinomial naive Bayes text classification was proposed by Maron (1961) at the RAND Corporation for the task of assigning subject categories to journal abstracts. His model introduced most of the features of the modern form presented here, approximating the classification task with one-of categorization, and implementing add- δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayesian analysis of text seem to have been arisen multiple times. The same year as Maron's paper, Minsky (1961) proposed a naive Bayes classifier for vision and other artificial intelligence problems, and Bayesian techniques were also applied to the text classification task of authorship attribution by Mosteller and Wallace (1963). It had long been known that Alexander Hamilton, John Jay, and James Madison wrote the anonymously-published *Federalist* papers. in 1787–1788 to persuade New York to ratify the United States Constitution. Yet although some of the 85 essays were clearly attributable to one author or another, the authorship of 12 were in dispute between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian probabilistic model of the writing of Hamilton and another model on the writings of Madison, then computed the maximum-likelihood author for each of the disputed essays. Naive Bayes was first applied to spam detection in Heckerman et al. (1998).

Metsis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show that using boolean attributes with multinomial naive Bayes works better than full

counts. Binary multinomial naive Bayes is sometimes confused with another variant of naive Bayes that also use a binary representation of whether a term occurs in a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead estimates P(w|c) as the fraction of documents that contain a term, and includes a probability for whether a term is not in a document McCallum and Nigam (1998) and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive Bayes doesn't work as well as the multinomial algorithm for sentiment or other text tasks.

There are a variety of sources covering the many kinds of text classification tasks. There are a number of good overviews of sentiment analysis, including Pang and Lee (2008), and Liu and Zhang (2012). Stamatatos (2009) surveys authorship attribute algorithms. The task of newswire indexing was often used as a test case for text classification algorithms, based on the Reuters-21578 collection of newswire articles.

There are a number of good surveys of text classification (Manning et al. 2008, Aggarwal and Zhai 2012).

More on classification can be found in machine learning textbooks (Hastie et al. 2001, Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were first introduced into natural language processing in the MUC competition (Chinchor et al., 1993). Our description of the bootstrap draws on the description in Berg-Kirkpatrick et al. (2012).

Exercises

6.1 Assume the following likelihoods for each word being part of a positive or negative movie review, and equal prior probabilities for each class.

	pos	neg
I	0.09	0.16
always	0.07	0.06
like	0.29	0.06
foreign	0.04	0.15
films	0.08	0.11

What class will Naive bayes assign to the sentence "I always like foreign films."?

- 6.2 Given the following short movie reviews, each labeled with a genre, either comedy or action:
 - 1. fun, couple, love, love **comedy**
 - 2. fast, furious, shoot action
 - 3. couple, fly, fast, fun, fun **comedy**
 - 4. furious, shoot, shoot, fun action
 - 5. fly, fast, shoot, love action

and a new document D:

fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use add-1 smoothing for the likelihoods.

6.3 Train two models, multinominal naive Bayes and binarized naive Bayes, both with add-1 smoothing, on the following document counts for key sentiment words, with positive or negative class assigned as noted.

doc	"good"	"poor"	"great"	(class)
d1.	3	0	3	pos
d2.	0	1	2	pos
d3.	1	3	0	neg
d4.	1	5	2	neg
d5.	0	2	0	neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Do the two models agree or disagree?

- Aggarwal, C. C. and Zhai, C. (2012). A survey of text classification algorithms. In Aggarwal, C. C. and Zhai, C. (Eds.), *Mining text data*, pp. 163–222. Springer.
- Bayes, T. (1763). An Essay Toward Solving a Problem in the Doctrine of Chances, Vol. 53. Reprinted in Facsimiles of Two Papers by Bayes, Hafner Publishing, 1963.
- Berg-Kirkpatrick, T., Burkett, D., and Klein, D. (2012). An empirical investigation of statistical significance in NLP. In EMNLP 2012, pp. 995–1005.
- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
- Borges, J. L. (1964). *The analytical language of John Wilkins*. University of Texas Press. Trans. Ruth L. C. Simms
- Chinchor, N., Hirschman, L., and Lewis, D. L. (1993). Evaluating Message Understanding systems: An analysis of the third Message Understanding Conference. *Computational Linguistics*, 19(3), 409–449.
- Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. CRC press.
- Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). *The Elements of Statistical Learning*. Springer.
- Heckerman, D., Horvitz, E., Sahami, M., and Dumais, S. T. (1998). A bayesian approach to filtering junk e-mail. In Proceeding of AAAI-98 Workshop on Learning for Text Categorization, pp. 55–62.
- Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In *KDD*, pp. 168–177.
- Liu, B. and Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Aggarwal, C. C. and Zhai, C. (Eds.), *Mining text data*, pp. 415–464. Springer.
- Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge.
- Maron, M. E. (1961). Automatic indexing: an experimental inquiry. *Journal of the ACM (JACM)*, 8(3), 404–417.
- McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text classification. In *AAAI/ICML-98 Workshop on Learning for Text Categorization*, pp. 41–48.
- Metsis, V., Androutsopoulos, I., and Paliouras, G. (2006). Spam filtering with naive bayes-which naive bayes?. In *CEAS*, pp. 27–28.
- Minsky, M. (1961). Steps toward artificial intelligence. *Proceedings of the IRE*, 49(1), 8–30.
- Mosteller, F. and Wallace, D. L. (1963). Inference in an authorship problem: A comparative study of discrimination methods applied to the authorship of the disputed federalist papers. *Journal of the American Statistical Association*, 58(302), 275–309.
- Mosteller, F. and Wallace, D. L. (1964). *Inference and Disputed Authorship: The Federalist*. Springer-Verlag. A second edition appeared in 1984 as *Applied Bayesian and Classical Inference*.
- Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT press.
- Noreen, E. W. (1989). Computer Intensive Methods for Testing Hypothesis. Wiley.

- Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. *Foundations and trends in information retrieval*, 2(1-2), 1–135.
- Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In *EMNLP* 2002, pp. 79–86.
- Pennebaker, J. W., Booth, R. J., and Francis, M. E. (2007). Linguistic Inquiry and Word Count: LIWC 2007. Austin, TX
- Stamatatos, E. (2009). A survey of modern authorship attribution methods. *JASIST*, 60(3), 538–556.
- Stone, P., Dunphry, D., Smith, M., and Ogilvie, D. (1966). The General Inquirer: A Computer Approach to Content Analysis. Cambridge, MA: MIT Press.
- van Rijsbergen, C. J. (1975). *Information Retrieval*. Butterworths
- Wang, S. and Manning, C. D. (2012). Baselines and bigrams: Simple, good sentiment and topic classification. In ACL 2012, pp. 90–94.
- Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In *HLT-EMNLP-05*, pp. 347–354.
- Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd Ed.). Morgan Kaufmann.