A Stochastic Approach to Fractional Diffusion help I'm trapped in a LaTeX compiler

Ed McDonald & Adam Gray

School of Mathematics and Statistics University of New South Wales

October 21, 2014

Outline

- Standard diffusion
- Super diffusion
- Sub diffusion
- Solving a fractional differential equation

Central Limit Theorem and Random Walks

Random Walk

Let $X_1, \ldots X_n$ be a sequence of random variables, then

$$S_n = \sum_{k=1}^n X_n \tag{1}$$

represents the position after *n* steps.

If $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = 2$ then the central limit theorem gives us that

$$\frac{S_n}{\sqrt{n}} \longrightarrow Z \tag{2}$$

weakly as $n \longrightarrow \infty$, where $Z \sim \mathcal{N}(0,2)$

Central Limit Theorem and Random Walks

We can extend this idea by introducing a scaling paramter γ .

$$S_{\lfloor \gamma t \rfloor} = \sum_{k=1}^{\lfloor \gamma t \rfloor} X_k. \tag{3}$$

 γ has the effect of changing the *timescale* that we are considering the process running over.

We can calculate the characteristic function of

$$\frac{S_{\lfloor \gamma t \rfloor}}{\sqrt{\gamma}}$$
. (4)

By the convolution theorems we can say that it is

$$\left(1 - \frac{k^2}{\gamma} + o(\gamma^{-1})\right)^{\lfloor \gamma t \rfloor} \tag{5}$$

Long Time Limit

We can rearrange

$$\left(1 - \frac{k^2}{\gamma} + o(\gamma^{-1})\right)^{\lfloor \gamma t \rfloor} = \left[\left(1 - \frac{k^2}{\gamma} + o(\gamma^{-1})\right)^{\gamma}\right]^{\frac{\lfloor \gamma t \rfloor}{\gamma}} \tag{6}$$

and then take $\gamma \longrightarrow \infty$ to get that

$$\left[\underbrace{\left(1 - \frac{k^2}{\gamma} + o(\gamma^{-1})\right)^{\gamma}}_{\circledast}\right]^{\frac{\lfloor \gamma t \rfloor}{\gamma}} \longrightarrow e^{-tk^2}$$
 (7)

by using the well known result

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x. \tag{8}$$

Fourier Transform and a PDE

Notice that e^{-tk^2} is just the CF of $Z_t \sim \mathcal{N}(0,2t)$. Further we can say that $\frac{S_{\lfloor \gamma t \rfloor}}{\sqrt{\gamma}} \longrightarrow Z_t$ by LCT.

We can also regard e^{-tk^2} as the FT of the density of Z_t . Rather usefully we have also have that e^{-tk^2} is a solution to

$$\frac{d\hat{u}}{dt} = -k^2\hat{u} \tag{9}$$

We can actually use a analogous result from last week's homework to invert the Fourier transform of u to get

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \tag{10}$$

A More General Result

We can generalise this result a bit and say that if $\mathbb{E}[X_i^2] = \sigma^2$ then $\frac{S_{\lfloor \gamma t \rfloor}}{\sqrt{\gamma}} \longrightarrow Z_t$, but now $Z_t \sim \mathcal{N}(0, 2\sigma^2 t)$.

Further the Fourier transform of the density of Z_t is $e^{-t\sigma^2k^2}$ which means the density is now a solution to

$$\frac{\partial u}{\partial t} = \underbrace{\frac{\sigma^2}{2}}_{D} \frac{\partial^2 u}{\partial x^2}.$$
 (11)

What this says is that as particles jump around more, they diffuse more rapidly.

A Plot

Recap

- All we have done to get this result is require that the random variables that represent the *jumps* fullfill the requirements of the CLT.
- ▶ What if we relax the *finite second moment* condition?

Pareto Distribution

- ► Consider a random variable P with density $Cx^{-\alpha-1}$ for some normalising constant C.
- ▶ If we require $1 < \alpha < 2$ then we have $\mathbb{E}[P]$ exists but $\mathbb{E}[P^2] = \infty$ does not.
- ▶ It can be shown (with very lengthy computation) that the FT of the density of P is $1 + (ik)^{\alpha} + O(k^2)$.
- ▶ The idea is to setup a sequence of random variables $Y_1, \ldots Y_n$, all iid with Pareto distribution with parameter α and use these as the *jumps* in the random walk.

Pareto Distribution

Setup $S_n = \sum_{k=1}^n Y_k$ as before.

By the convolution theorems for FTs we can calculate the FT of the density of $\frac{S_n}{n^{\frac{1}{\alpha}}}$ to be

$$\left(1 + \frac{(ik)^{\alpha}}{n} + O(n^{-\frac{2}{\alpha}})\right)^n \tag{12}$$

Notice that as $n \longrightarrow \infty$ this has limit $e^{(ik)^{\alpha}}$.

The LCT implies that $\frac{S_n}{n^{\frac{1}{\alpha}}} \longrightarrow Z$ where Z has FT $e^{(ik)^{\alpha}}$.

Notice that in some way this is an *Extended Central Limit* Theorem.

Long Time Limit

Like before we can introduce a time scale paramter γ and write

$$S_{\lfloor \gamma t \rfloor} = \sum_{k=1}^{\lfloor \gamma t \rfloor} Y_k. \tag{13}$$

Again by considering the FT of

$$\frac{S_{\lfloor \gamma t \rfloor}}{\gamma^{\frac{1}{\alpha}}} \tag{14}$$

which is

$$\left(1 + \frac{(ik)^{\alpha}}{\gamma} + o(\gamma^{\frac{-2}{\alpha}})\right)^{\lfloor \gamma t \rfloor}.$$
 (15)

Long Time Limit

$$\left(1 + \frac{(ik)^{\alpha}}{\gamma} + o(\gamma^{\frac{-2}{\alpha}})\right)^{\lfloor \gamma t \rfloor} \tag{16}$$

By taking $\gamma \longrightarrow \infty$ we get that the Fourier transform converges to

$$e^{t(ik)^{\alpha}} \tag{17}$$

and by the LCT this gives us that

$$\frac{S_{\lfloor \gamma t \rfloor}}{\gamma^{\frac{1}{\alpha}}} \longrightarrow Z_t \tag{18}$$

where Z_t has FT $\hat{u}(k) = e^{t(ik)^{\alpha}}$.

Notice that this is a stable distribution.

It is clear that $\hat{u}(t) = e^{t(ik)^{lpha}}$ is a solution to

$$\frac{d\hat{u}}{dt} = (ik)^{\alpha}\hat{u}. \tag{19}$$

Unfortunately we can't use *last week's homework* to invert this FT and this is where we introduce fractional calculus.

Motivations

Cauchy Formula for Repeated Integration

$$\int_{a}^{x} \int_{a}^{y_{1}} \cdots \int_{a}^{y_{n-1}} f(y_{n}) dy_{n} \cdots dy_{2} dy_{1} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$

Motivations

Cauchy Formula for Repeated Integration

$$\int_{a}^{x} \int_{a}^{y_{1}} \cdots \int_{a}^{y_{n-1}} f(y_{n}) dy_{n} \cdots dy_{2} dy_{1} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$

The idea is to replace the factorials with gamma functions to define an integral of arbitrary order

Motivations

Cauchy Formula for Repeated Integration

$$\int_{a}^{x} \int_{a}^{y_{1}} \cdots \int_{a}^{y_{n-1}} f(y_{n}) dy_{n} \cdots dy_{2} dy_{1} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$

The idea is to replace the factorials with gamma functions to define an integral of arbitrary order

Riemann-Liouville Fractional Integral

$$(I_a^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt$$

Motivations (Derivatives)

Riemann-Liouville Fractional Derivative

$$(\mathcal{D}_{a}^{\alpha}f)(x) = \frac{d^{\lceil \alpha \rceil}}{dx^{\lceil \alpha \rceil}} \left(I_{a}^{\lceil \alpha \rceil - \alpha} f \right)(x)$$
$$= \frac{1}{\Gamma(1 - \alpha)} \frac{d^{n}}{dx^{n}} \int_{a}^{x} \frac{f(t)dt}{(x - t)^{\alpha - n + 1}}$$

where $n = \lfloor \alpha \rfloor + 1$.

Motivations (Derivatives)

Caputo Fractional Derivative

$$\begin{pmatrix} {}^{C}\mathcal{D}_{a}^{\alpha}f \end{pmatrix}(x) = \left(I_{a}^{\lceil \alpha \rceil - \alpha} \frac{d^{\lceil \alpha \rceil}}{dx^{\lceil \alpha \rceil}}f \right)(x)$$
$$= \frac{1}{\Gamma(1 - \alpha)} \int_{a}^{x} \frac{\frac{d^{t}}{dt^{n}}f(t)dt}{(x - t)^{\alpha - n + 1}}$$

where $n = \lfloor \alpha \rfloor + 1$.

Riemann-Liouville vs Caputo Derivative

- ► The Caputo derivative is often used in fractional differential equations because it can be coupled with integer order initial conditions, whereas often the Riemann-Liouville derivative can't be coupled with integer order initial conditions.
- ▶ When we set $a = -\infty$ for a large class of functions these derivatives are the same.

Fractional Derivative Fourier Transform

It can be shown that

$$\mathcal{F}\left\{-\infty \mathcal{D}^{\alpha} f(x)\right\} = (ik)^{\alpha} \mathcal{F}\{f(x)\} \tag{20}$$

and it is precisely this result that we use to *invert* the Fourier transform we had before. That is we can say that

$$\frac{\partial u}{\partial t}(x,t) = {}_{-\infty}\mathcal{D}_x^{\alpha}u(x,t) \tag{21}$$

where u is the density of $Z_t = \lim_{\gamma \longrightarrow \infty} \frac{Y_1 + Y_2 + \cdots + Y_{\lfloor \gamma t \rfloor}}{\gamma^{\frac{1}{\alpha}}}$. It can be shown that $u(x,t) = Ax^{-\alpha-1} + o(x^{-\alpha-1})$ as $x \longrightarrow \infty$ with A depending on t and α .

A Quick Note on the Laplace Transform

Definition

We the define the Laplace transform of a function f to be the function F given by

$$F(s) := \int_0^\infty e^{-st} f(t) dt$$

We often write $F(s) = \mathcal{L}\{f(t)\}.$

A Quick Note on the Laplace Transform

The Laplace transform is particularly useful as it allows us to transform a differential equation into an "algebraic" equation. Lerch's theorem guarantees, with minor caveats, that the Laplace transform of a function is unique.

Basic Idea of the Laplace Transform Method

- Apply the Laplace transform to both sides of the differential equation to get and "algebraic" equation.
- Apply the Laplace transform to the initial conditions.
- Sub the transformed initial conditions into the transformed equation.
- Rearrange to get an expression for the Laplace transform of the function of interest.
- Invert. (This is possible, and guaranteed with minor caveats by Lerch's theorem)

The Laplace Transform of the Riemann-Liouville Integral

Lemma

The Laplace transform of the Riemann-Liouville integral of a function f is given by

$$\mathcal{L}\left\{I_{0}^{\alpha}f\right\}=s^{-\alpha}\mathcal{L}\left\{f\right\}.$$

The Laplace Transform of the Riemann-Liouville Integral[Proof]

Since

$$(I_0^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t f(u)(t-u)^{\alpha-1} du$$

is just $\frac{1}{\Gamma(\alpha)}$ times the convolution of f with $t^{\alpha-1}$ then by the convolution theorem for Laplace transforms we have that

$$\mathcal{L}\left\{I_0^{\alpha}f\right\} = \frac{1}{\Gamma(\alpha)} \mathcal{L}\left\{\int_0^t f(u)(t-u)^{\alpha-1} du\right\}$$
$$= \frac{1}{\Gamma(\alpha)} \mathcal{L}\left\{f(t)\right\} \underbrace{\mathcal{L}\left\{t^{\alpha-1}\right\}}_{=s^{-\alpha}\Gamma(\alpha)}$$
$$= s^{-\alpha} \mathcal{L}\left\{f\right\}.$$

The Laplace Transform of the Caputo Derivative

The Laplace transform of the Caputo derivative of a function f is given by

$$\mathcal{L}\left\{\left({}^{C}\mathcal{D}_{0}^{\alpha}f\right)\right\} = s^{\alpha-n}\left[s^{n}\mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1}s^{n-k-1}\left(\frac{d^{k}f}{dt^{k}}\right)\left(0\right)\right].$$

The Laplace Transform of the Caputo Derivative [Proof]

See that

$$\mathcal{L}\left\{ \begin{pmatrix} {}^{C}\mathcal{D}_{0}^{\alpha}f \end{pmatrix} \right\} = \mathcal{L}\left\{ \begin{pmatrix} I_{0}^{n-\alpha}\frac{d^{n}f}{dt^{n}} \end{pmatrix} \right\}$$
$$= \underbrace{\frac{1}{\Gamma(n-\alpha)}\mathcal{L}\left\{ \int_{0}^{t}(t-u)^{n-\alpha-1}\frac{d^{n}f}{dt^{n}}du \right\}}_{\text{(find)}}$$

The Laplace Transform of the Caputo Derivative [Proof]

* is just the Laplace transform of a convolution so

$$\begin{split} \circledast &= \mathcal{L}\left\{t^{n-\alpha-1}\right\} \mathcal{L}\left\{\frac{d^n f}{dt^n}\right\} \\ &= \frac{1}{n-\alpha} \left(s^{-(n-\alpha)} \Gamma(n-\alpha)\right) \\ &\times \left(s^n \mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1} s^{n-k-1} \left(\frac{d^k f}{dt^k}\right)(0)\right) \\ &= s^{\alpha-n} \left[s^n \mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1} s^{n-k-1} \left(\frac{d^k f}{dt^k}\right)(0)\right]. \end{split}$$

One Parameter Mittag-Lefler Function

Definition

The one parameter Mittag-Lefler E_{α} function is defined by its power series.

$$E_{\alpha}(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma(\alpha k + 1)}$$

Laplace Transform of $E_{\alpha}(\beta t^{\alpha})$

Lemma

$$\mathcal{L}\left\{ \mathsf{E}_{lpha}(eta t^{lpha})
ight\} = rac{\mathsf{s}^{lpha-1}}{\mathsf{s}^{lpha}-eta}$$

Laplace Transform of $E_{\alpha}(\beta t^{\alpha})$ [Proof]

See that

$$\mathcal{L}\left\{E_{\alpha}(\beta t^{\alpha})\right\} = \int_{0}^{\infty} e^{-st} \sum_{k=0}^{\infty} \frac{(\beta t^{\alpha})^{k}}{\Gamma(\alpha k + 1)} dt$$

and because the series converges absolutely for all $t \in \mathbb{R}$ we may interchange the integral and the sum to get

$$\int_0^\infty e^{-st} \sum_{k=0}^\infty \frac{(\beta t^\alpha)^k}{\Gamma(\alpha k+1)} dt = \sum_{k=0}^\infty \int_0^\infty e^{-st} \frac{(\beta t^\alpha)^k}{\Gamma(\alpha k+1)} dt$$
$$= \sum_0^\infty \frac{\beta^k}{\Gamma(\alpha k+1)} \int_0^\infty e^{-st} t^{\alpha k} dt.$$

Laplace Transform of $E_{\alpha}(\beta t^{\alpha})$ [Proof]

By performing the change of variables x = st we get that

$$\sum_{0}^{\infty} \frac{\beta^{k}}{\Gamma(\alpha k + 1)} \int_{0}^{\infty} e^{-st} t^{\alpha k} dt = \sum_{0}^{\infty} \frac{\beta^{k} s^{-(k+1)}}{\Gamma(\alpha k + 1)} \underbrace{\int_{0}^{\infty} e^{-x} x^{\alpha k} dx}_{\Gamma(\alpha k + 1)}$$
$$= \sum_{k=0}^{\infty} \beta^{k} s^{-(\alpha k + 1)}$$
$$= \frac{s^{\alpha - 1}}{s^{\alpha} - \beta}.$$

Summary of Important Results

$$\mathcal{L}\left\{\left({}^{C}\mathcal{D}_{0}^{\alpha}f
ight)
ight\} = s^{\alpha-n}\left[s^{n}\mathcal{L}\left\{f
ight\} - \sum_{k=0}^{n-1}s^{n-k-1}\left(rac{d^{k}f}{dt^{k}}
ight)\left(0
ight)
ight] \\ \mathcal{L}\left\{E_{\alpha}(\beta t^{\alpha})\right\} = rac{s^{\alpha-1}}{s^{\alpha}-\beta}$$

The Solution to the Differential Equation

Lemma

The fractional differential equation,

$$({}^{C}\mathcal{D}_{0}^{\alpha}y)(t) = \beta y(t)$$
 (22)

along with the initial conditions

$$y^{(k)}(0) = \begin{cases} 1 & k = 0 \\ 0 & 1 \le k \le \lfloor \alpha \rfloor - 1 \end{cases}$$
 (23)

has solution $y(t) = E_{\alpha}(\beta t^{\alpha})$

Proof of Proposed Solution

Taking the Laplace transform of both sides of (22) yields

$$\mathcal{L}\left\{ \begin{pmatrix} {}^{C}\mathcal{D}_{0}^{\alpha}y \end{pmatrix} \right\} = \beta \mathcal{L}\left\{ y \right\}$$
$$s^{-(n+\alpha)} \left[s^{n}\mathcal{L}\left\{ y \right\} - \sum_{k=0}^{n-1} s^{n-k-1}y^{(k)}(0) \right] = \beta \mathcal{L}\left\{ y \right\}$$

Proof of Proposed Solution

Then taking into account (23) (the initial conditions) we get

$$s^{-(n+\alpha)}\left[s^{n}\mathcal{L}\left\{y\right\}-s^{n-1}\right]=\beta\mathcal{L}\left\{y\right\}$$

and so

$$\mathcal{L}\left\{y\right\} = \frac{s^{\alpha-1}}{s^{\alpha} - \beta}.$$

Proof of Proposed Solution

By by noticing that

$$\mathcal{L}\left\{y\right\} = \frac{s^{\alpha-1}}{s^{\alpha}-\beta}.$$

is the Laplace transform of $E_{lpha}(eta t^{lpha})$ we have that

$$y(t) = E_{\alpha}(\beta t^{\alpha})$$

