

भारतीय प्रौद्योगिकी संस्थान दिल्ली INDIAN INSTITUTE OF TECHNOLOGY DELHI

अनुक्रमांक Entry No	CONTRIBUTION FOOLS
पाठ्यक्रम Course	
यह अनुवर This conti	पुस्तिका तभी जांची जायेगी जब सभी उपरोक्त प्रविष्टियाँ पूर्ण होंगी। सभी पृष्ठों पर लिखें। nuation book will be evaluated only if all the above entries are complete. Write on all pages.
1.	To Let the projector project from M' to be subspace M' (W).
1	Now we let us assume that low have two projections of a
-	rector or outo the subspace Widish are w, and wy
	W, EW and W, EW > W, -W, EW
	these w, = P, v w2=12 v P, I, one two projectors
	(w, -v) & math(tot) w.
	(Lz-V) (wordships) W+
	⇒ (ww.) € matthes w w are to matthes is a rubopan (bylonne)
	But (w, -we) 6 W contradiction
	a.w.
	S. W. = W. for oth or
	Time P. = P. as they all the images are some for any Later in &".
	Thus orthogonal projector is unique which projects to subspace wi.
2. 1	1x=6 is so the problem or wanted to police.
	t aince 6 & Range (A) we introduced an error term or s.t.
	bts & Range (A) and they we had to minimize a.
4	nin Nalle An = kar
	min 1 Ax - 511
K	en a surred error in b only hance

Brothern in to Make It X = Y . Where in allow were in A as well as Y to be allowed in coursi der even = 1.4 × -411. with pupindicular distance So wan in P-P' and not P-P". I is a retailor matrix which rotates my & a angle in clockwise direction to for \$ =90° I [6] . [6]. F = [-c 5] = [-1 0] [c -5] A is reflection along y wiss

B to relating anti- of clockwise Many b. In F is motition in articlockwin by 8 than reflection along y axis. apply a mil such that $g_{X}: \begin{bmatrix} 0 \times 0 \\ 0 \end{bmatrix}$. Here g_{ij} is a suffection transformation about an axis such that all but first dimension hat $K = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ now in constant $\theta_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ here $C = (\theta_1\theta_1 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ here $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta_1\theta_2 + \theta_2) = (\theta_1\theta_2 + \theta_2)$ has $C = (\theta$ New or notice that $4, X = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = X'$. Continuing this way $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$ $0 = \begin{bmatrix} 1_{N-3} & 0 & 0 & 0 \\ 0 & 2000 & 2000 \end{bmatrix}$

Duce this is done then we use Householder mothered to find Roadst of H= gr. A = | a, | ... | an | Find 8, s.t. 9, a, = | and apply to A. 8 A = (as | as | as | -- | as | Next we take as and so similar eteps except that instead of disninishing last un dimensions it diminish lest n-2. So Lit me transfermation are found by the mail of a it. to there | x + p = 1 | a'2 | = 1 | a 2 | | = We continue this way to get a, by, ..., In Then & no day ... Of J. A = R when Ris upper triangular metrix Am &' - Day Bran ... R. g. is orthogonal matur which applied nothing but rotations. A = 8" " Lt Q - 9" -1 => A = BR Dis also suttre goval matrix. So we need thousholder algorithm and just modified the way we Tero out the entires in A to gt R. This grips is I'm factorization of matrix of