Kernels

Course of Machine Learning
Master Degree in Computer Science

Giorgio Gambosi

a.a. 2018-2019

- Thus far, we have been assuming that each object that we deal with can be represented as a fixed-size feature vector $\mathbf{x} \in \mathbb{R}^d$
- For certain kinds of objects (text document, protein sequence, parse tree, etc.) it is not clear how to best represent them in this way
 - 1. first approach: define a generative model of data (with latent variables) and define an object as the inferred values of latent variables
 - second approach: do not rely on vector representation, but just assume a similarity measure between objects is defined

Representation by pairwise comparison

Idea

- · Define a comparison function $\kappa:\chi\times\chi\mapsto{\rm I\!R}$
- · Represent a set of data items $\mathbf{x}_1, \dots \mathbf{x}_n$ by the $n \times n$ Gram matrix \mathbf{G} such that

$$\mathbf{G}_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$$

• G is always an $n \times n$ matrix, whatever the nature of data: the same algorithm will work for any type of data (vectors, strings, ...)

Kernel definition

Given a set χ , a function $\kappa:\chi^2\mapsto {\rm I\!R}$ is a kernel on χ if there exists a Hilbert space ${\mathcal H}$ (essentially, a vector space with dot product \cdot) and a map $\phi:\chi\mapsto {\mathcal H}$ such that for all ${\bf x}_1,{\bf x}_2\in \chi$ we have

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2)$$

We shall consider the particular but common case when $\mathcal{H} = \mathbb{R}^d$ for some d>0, $\phi(\mathbf{x})=(\phi_1(\mathbf{x}),\ldots,\phi_d(\mathbf{x})$ and $\phi(\mathbf{x}_1)\cdot\phi(\mathbf{x}_2)=\phi(\mathbf{x}_1)^T\phi(\mathbf{x}_2)$

 $oldsymbol{\phi}$ is called a feature map a ${\cal H}$ a feature space of κ

Kernel definition

Positive definitess of κ is a relevant property in this framework.

Positive semidefinitess

Given a set χ , a function $\kappa:\chi^2\mapsto {\rm I\!R}$ is positive semidefinite if for all $n\in {\rm I\!N}$, $({\bf x}_1,\ldots,{\bf x}_n)\in \chi^n$ the corresponding Gram matrix is positive semidefinite, that is ${\bf z}^T{\bf G}{\bf z}\geq 0$ for all vectors ${\bf z}\in {\rm I\!R}^n$

Why is positive semidefinitess relevant?

Let $\kappa: \chi \times \chi \mapsto \mathbb{R}$. Then κ is a kernel iff for all sets $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ the corresponding Gram matrix \mathbf{G} is symmetric and positive semidefinite Only if: $\mathbf{G}_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ then clearly $\mathbf{G}_{ij} = \mathbf{G}_{ji}$. Moreover for any $\mathbf{z} \in \mathbb{R}^d$

$$\mathbf{z}^{T}\mathbf{G}\mathbf{z} = \sum_{i=1}^{d} \sum_{j=1}^{d} z_{i}\mathbf{G}_{ij}z_{j} = \sum_{i=1}^{d} \sum_{j=1}^{d} z_{i}\boldsymbol{\phi}(\mathbf{x}_{i})^{T}\boldsymbol{\phi}(\mathbf{x}_{j})z_{j}$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} z_{i} \left(\sum_{k=1}^{d} \phi_{k}(\mathbf{x}_{i})\phi_{k}(\mathbf{x}_{j})\right) z_{j} = \sum_{k=1}^{n} \sum_{i=1}^{d} \sum_{j=1}^{d} z_{i}\phi_{k}(\mathbf{x}_{i})\phi_{k}(\mathbf{x}_{j})z_{j}$$

$$= \sum_{k=1}^{d} \left(\sum_{i=1}^{d} z_{i}\phi_{k}(\mathbf{x}_{i})\right)^{2} \geq 0$$

Why are positive definite kernels relevant?

If: Given $\{x_1,x_2,\ldots,x_n\}$ if G is positive definite it is possible to compute an eigenvector decomposition

$$\mathbf{G} = \mathbf{U}^T \mathbf{\Lambda} \mathbf{U}$$

where ${f \Lambda}$ is the diagonal matrix of eigenvalues $\lambda_i>0$ and the columns ${f u}_1,\dots,{f u}_n$ of ${f U}$ are the corresponding eigenvectors. Then,

$$\mathbf{G}_{ij} = (\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{u}_i)^T (\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{u}_j)$$

Then if we define $\phi(\mathbf{x}_i) = \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{u}_i$ we get

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = \mathbf{G}_{ij}$$

This results is valid only wrt the domain $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$. For the general case, consider $n \to \infty$ (as for example in gaussian processes)

Why are positive definite kernels relevant?

Using positive definite kernels allows to apply the kernel trick wherever useful.

Kernel trick

Any algorithm which processes finite-dimensional vectors in such a way to consider only pairwise dot products can be applied to higher (possibly infinite) dimensional vectors by replacing each dot product by a suitable application of a positive definite kernel.

- · Many practical applications
- Vectors in the new space are manipulated only implicitly, through pairwise dot products, computed by evaluating the kernel function on the original pair of vectors

Example: Support vector machines. Also, many linear models for regression and classification can be reformulated in terms of a dual representation involving only dot products.

Dual representations: example

Regularized sum of squares in regression with predefined basis function $oldsymbol{\phi}(\mathbf{x})$

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{i}) - t_{i} \right)^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$
$$= \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{t})^{T} (\mathbf{\Phi} \mathbf{w} - \mathbf{t}) + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

where by definition of $\mathbf{\Phi} \in {\rm I\!R}^{n imes d}$ it is $\mathbf{\Phi}_{ij} = \phi_j(\mathbf{x}_i)$

Setting $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$, the resulting solution is

$$\hat{\mathbf{w}} = (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_d)^{-1}\mathbf{\Phi}^T\mathbf{t} = \mathbf{\Phi}^T(\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1}\mathbf{t}$$

since it is possible to prove that for any matrix $\mathbf{A} \in \mathrm{I\!R}^{r imes c}$ it is

$$(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}_r)^{-1} \mathbf{A}^T = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I}_c)^{-1}$$

Dual representations: example

If we define the dual variables $\mathbf{a}=(\mathbf{\Phi}\mathbf{\Phi}^T+\lambda\mathbf{I}_n)^{-1}\mathbf{t}$, we get $\mathbf{w}=\mathbf{\Phi}^T\mathbf{a}$. By substituting $\mathbf{\Phi}^T\mathbf{a}$ to \mathbf{w} we express the cost function in terms of \mathbf{a} , instead of \mathbf{w} , introducing a dual formulation of J.

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} + \frac{1}{2} \mathbf{t}^T \mathbf{t} - \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a}$$
$$= \frac{1}{2} \mathbf{a}^T \mathbf{G} \mathbf{G} \mathbf{a} + \frac{1}{2} \mathbf{t}^T \mathbf{t} - \mathbf{a}^T \mathbf{G} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^T \mathbf{G} \mathbf{a}$$

where $\mathbf{G} = \mathbf{\Phi}\mathbf{\Phi}^T$ is the Gram matrix, such that by definition $\mathbf{G}_{ij} = \sum_{k=1}^d \phi_k(\mathbf{x}_i) \phi_k(\mathbf{x}_j) = \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_j)$

Dual representations: example

Setting the gradient of $\dfrac{\partial J(\mathbf{a})}{\partial \mathbf{a}} = \mathbf{0}$ it results $\hat{\mathbf{a}} = (\mathbf{G} + \mathbf{I}\lambda_n)^{-1}\mathbf{t}$

We can use this to make predictions in a different way

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{t}^T (\mathbf{G} + \mathbf{I} \lambda_n)^{-1} \Phi \phi(\mathbf{x})$$
$$= \mathbf{k}(\mathbf{x}) (\mathbf{G} + \mathbf{I} \lambda_n)^{-1} \mathbf{t}$$

where

$$\mathbf{k}(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^T \boldsymbol{\Phi} = (\boldsymbol{\phi}(\mathbf{x}_1)^T \boldsymbol{\phi}(\mathbf{x}), \dots, \boldsymbol{\phi}(\mathbf{x}_n^T \boldsymbol{\phi}(\mathbf{x}))^T$$
$$= (\kappa(\mathbf{x}_1, \mathbf{x}), \dots, \kappa(\mathbf{x}_n, \mathbf{x}))^T$$
$$= (\kappa_1(\mathbf{x}), \dots, \kappa_n(\mathbf{x}))^T$$

The prediction can be done in terms of **dot products** between different pairs of $\phi(\mathbf{x})$, or in terms of the kernel function $\kappa(\mathbf{x}_i,\mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

Dual representations: another example

- · As well known, a perceptron is a linear classifier with prediction $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- · Its update rule is: If \mathbf{x}_i is misclassified, that is $\mathbf{w}^T \mathbf{x}_i t_i < 0$, then $\mathbf{w} := \mathbf{w} + t_i \mathbf{x}_i$
- If we assume a zero initial value for all w_k , then ${\bf w}$ is the sum of all items that have been considered as misclassified by the algorithm, where each item is weighted by the number of times it has been considered.
- · We may then define a dual formulation by setting $\mathbf{w} = \sum_{k=1}^n a_k \mathbf{x}_k$, which results in prediction $y(\mathbf{x}) = \sum_{k=1}^n a_k \mathbf{x}_k^T \mathbf{x}$
- · and update rule: if \mathbf{x}_i is misclassified, that is $\sum_{k=1}^n a_k \mathbf{x}_k^T \mathbf{x}_i < 0$, then $a_i := a_i + 1$
- a kernelized perceptron can be defined with $y(\mathbf{x}) = \sum_{k=1}^n a_k \phi(\mathbf{x}_k)^T \phi(\mathbf{x})$ or with $y(\mathbf{x}) = \sum_{k=1}^n a_k \kappa(\mathbf{x}_k, \mathbf{x})$, by just using a positive definite kernel κ

Kernelization: one more example

 \cdot The k-nn classifier selects the label of the nearest neighbor: assume the Euclidean distance is considered

$$||\mathbf{x}_i - \mathbf{x}_j||^2 = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j$$

 We can now replace the dot products by a valid positive definite kernel and we obtain:

$$d(\mathbf{x}_i, \mathbf{x}_j)^2 = \kappa(\mathbf{x}_i, \mathbf{x}_i) + \kappa(\mathbf{x}_j, \mathbf{x}_j) - 2\kappa(\mathbf{x}_i, \mathbf{x}_j)$$

- · This is a kernelized nearest-neighbor classifier
- · We do not explicitly compute vectors

Why referring to the dual representation?

- While in the original formulation of linear regression \mathbf{w} can be derived by inverting the $m \times m$ matrix $\mathbf{\Phi}^T \mathbf{\Phi}$, in the dual formulation computing \mathbf{a} requires inverting the $n \times n$ matrix $\mathbf{G} + \mathbf{I}\lambda$.
- Since usually $n \gg m$, this seems to lead to a loss of efficiency.

Dealing with kernels

Since not all functions $f:\chi\mapsto {\rm I\!R}^d$ are positive definite kernel, some method to define them must be applied.

- the straighforward way is just to define a basis function ϕ and define $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$. κ is a positive definite kernel since
- 1. $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2) = \phi(\mathbf{x}_2)^T \phi(\mathbf{x}_1)$
- 2. $\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \kappa(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = \|\sum_{i=1}^{n} c_i \phi(\mathbf{x}_i)\|^2 \ge 0$

Dealing with kernels

• a second method defines a possible kernel function κ directly: in order to ensure that such function is a valid kernel, apply Mercer's theorem and prove that κ is a positive definite kernel by showing it is simmetric and the corresponding Gram matrix ${\bf G}$ is positive definite for all possible sets of items. In this case we do not define ${\boldsymbol \phi}$

A simple positive definite kernel

Let $\chi = {\rm I\!R}$: the function $\kappa : {\rm I\!R}^2 \mapsto {\rm I\!R}$ defined as

$$\kappa(x_1, x_2) = x_1 x_2$$

is a positive definite kernel. In fact,

- $\cdot \ x_1 x_2 = x_2 x_1$
- $\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \kappa(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i x_j = (\sum_{i=1}^{n} c_i x_i)^2 \ge 0$

Another simple positive definite kernel

Let $\chi = {\rm I\!R}^d$: the function $\kappa : \chi^2 \mapsto {\rm I\!R}$ defined as

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^T \mathbf{x}_2$$

is a positive definite kernel. In fact,

$$\cdot \ \mathbf{x}_1^T \mathbf{x}_2 = \mathbf{x}_2^T \mathbf{x}_1$$

Dealing with kernels

· a third method defines again a possible kernel function κ directly: in order to ensure that such function is a valid kernel, a basis function ϕ must be found such that $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$ for all $\mathbf{x}_1, \mathbf{x}_2$

A polynomial kernel in 2d: $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = (x_{11}^2, \sqrt{2}x_{11}x_{12}, x_{12}^2)^T (x_{21}^2, \sqrt{2}x_{21}x_{22}, x_{22}^2)$$

$$= x_{11}^2 x_{21}^2 + 2x_{11}x_{12}x_{21}x_{22} + x_{12}^2 x_{22}^2$$

$$= ||\mathbf{x}_1^T \mathbf{x}_2||^2$$

Example

If
$$\mathbf{x}_1,\mathbf{x}_2\in\mathbb{R}^d$$
 define $\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2)^2=\phi(\mathbf{x}_1)^T\phi(\mathbf{x}_2)$, where $\phi(\mathbf{x})=(x_1^2,\ldots,x_d^2,x_1x_2,\ldots,x_1x_d,x_2x_1,\ldots,x_dx_{d-1})^T$

$$\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2)^2$$
 is a valid kernel function, since

$$\kappa(\mathbf{x}_{1}, \mathbf{x}_{2}) = (x_{11}x_{21} + x_{12}x_{22})^{2}$$

$$= x_{11}^{2}x_{21}^{2} + x_{12}^{2}x_{22}^{2} + 2x_{11}x_{12}x_{21}x_{22}$$

$$= (x_{11}^{2}, x_{12}^{2}, x_{11}x_{12}, x_{11}x_{12}) \cdot (x_{21}^{2}, x_{22}^{2}, x_{21}x_{22}, x_{21}x_{22})$$

$$= \phi(\mathbf{x}_{1}) \cdot \phi(\mathbf{x}_{2})$$

The basis function thus results $\phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, x_1x_2)^T$.

- · In general, if $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{I\!R}^d$ then $\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2)^2 = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2) \text{, where}$ $\phi(\mathbf{x}) = (x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_1 x_d, x_2 x_1, \dots, x_d x_{d-1})^T$
- \cdot the d-dimensional input space is mapped onto a space with dimension $m=d^2$
- · observe that computing $\kappa(\mathbf{x}_1, \mathbf{x}_2)$ requires time O(d), while deriving it from $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$ requires $O(d^2)$ steps

$$\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2+c)^2$$
 is a kernel function, since

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^2$$

$$= \sum_{i=1}^n \sum_{j=1}^n x_{1i} x_{1j} x_{2i} x_{2j} + \sum_{i=1}^n (\sqrt{2}c x_{1i})(\sqrt{2}c x_{2i}) + c^2$$

$$= \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$$

for

$$\phi(\mathbf{x}) = (x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_1 x_d, x_2 x_1, \dots, x_d x_{d-1}, \sqrt{2c} x_1, \dots, \sqrt{2c} x_d)$$

This implies a mapping from a d-dimensional to a $(d+1)^2$ -dimensional space.

 $\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^t$ is a kernel function corresponding to a mapping from a d-dimensional space to a space of dimension

$$m = \sum_{i=0}^{t} d^{i} = \frac{d^{t+1} - 1}{d - 1}$$

corresponding to all products $x_{i_1}x_{i_2}\dots x_{i_l}$ with $0 \le l \le t$.

Observe that, even if the space has dimension $O(d^t)$, evaluating the kernel function requires just time O(d).

Constructing kernels from kernels

More complex kernels can be derived from simpler ones by appying suitable transormation and composition rules. In fact, given kernel functions $\kappa_1(\mathbf{x}_1,\mathbf{x}_2)$, $\kappa_2(\mathbf{x}_1,\mathbf{x}_2)$, the function $\kappa(\mathbf{x}_1,\mathbf{x}_2)$ is a kernel in all the following cases

- $\kappa(\mathbf{x}_1,\mathbf{x}_2) = e^{\kappa_1(\mathbf{x}_1,\mathbf{x}_2)}$
- $\cdot \ \kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_1(\mathbf{x}_1, \mathbf{x}_2) + \kappa_2(\mathbf{x}_1, \mathbf{x}_2)$
- $\cdot \kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_1(\mathbf{x}_1, \mathbf{x}_2) \kappa_2(\mathbf{x}_1, \mathbf{x}_2)$
- $\kappa(\mathbf{x}_1,\mathbf{x}_2)=c\kappa_1(\mathbf{x}_1,\mathbf{x}_2)$, for any c>0
- \cdot $\kappa(\mathbf{x}_1,\mathbf{x}_2)=\mathbf{x}_1^T\mathbf{A}\mathbf{x}_2$, with \mathbf{A} positive definite
- $\kappa(\mathbf{x}_1,\mathbf{x}_2) = f(\mathbf{x}_1)\kappa_1(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_2)$, for any $f,g:\mathbb{R}^n\mapsto\mathbb{R}$
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = p(\kappa_1(\mathbf{x}_1, \mathbf{x}_2))$, for any polynomial $p: \mathbb{R}^q \mapsto \mathbb{R}$ with non-negative coefficients
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_3(\phi(\mathbf{x}_1), \phi(\mathbf{x}_2))$, for any vector ϕ of m functions $\phi_i : \mathbb{R}^n \to \mathbb{R}$ and for any kernel function $\kappa_3(\mathbf{x}_1, \mathbf{x}_2)$ in \mathbb{R}^m

Costructing kernel functions

$$\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2+c)^d$$
 is a kernel function. In fact,

- 1. $\mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_1^T \mathbf{x}_2$ is a kernel function corresponding to the base functions $\boldsymbol{\phi} = (\phi_1, \dots, \phi_n)$, with $\phi_i(\mathbf{x}) = \mathbf{x}$
- 2. c is a kernel function corresponding to the base functions $m{\phi}=(\phi_1,\dots,\phi_n)$, with $\phi_i(\mathbf{x})=rac{\sqrt{c}}{n}$
- 3. $\mathbf{x}_1 \cdot \mathbf{x}_2 + c$ is a kernel function since it is the sum of two kernel functions
- 4. $(\mathbf{x}_1\cdot\mathbf{x}_2+c)^d$ is a kernel function since it is a polynomial with non negative coefficients (in particular $p(z)=z^d$) of a kernel function

Costructing kernel functions

$$\kappa(\mathbf{x}_1,\mathbf{x}_2)=e^{-rac{||\mathbf{x}_1-\mathbf{x}_2||^2}{2\sigma^2}}$$
 is a kernel function. In fact,

1. since $||\mathbf{x}_1 - \mathbf{x}_2||^2 = \mathbf{x}_1^T \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{x}_2 - 2\mathbf{x}_1^T \mathbf{x}_2$, it results

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = e^{-\frac{\mathbf{x}_1^T \mathbf{x}_1}{2\sigma^2}} e^{-\frac{\mathbf{x}_2^T \mathbf{x}_2}{2\sigma^2}} e^{\frac{\mathbf{x}_1^T \mathbf{x}_2}{\sigma^2}}$$

- 2. $\mathbf{x}_1^T \mathbf{x}_2$ is a kernel function (see above)
- 3. then, $\frac{\mathbf{x}_1^T\mathbf{x}_2}{\sigma^2}$ is a kernel function, being the product of a kernel function with a constant $c=\frac{1}{\sigma^2}$
- 4. $e^{\frac{\mathbf{x}_1^T \mathbf{x}_2}{\sigma^2}}$ is the exponential of a kernel function, and as a consequence a kernel function itself
- kernel function itself 5. $e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{\sigma^2}}e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{2\sigma^2}}e^{\frac{\mathbf{x}_1^T\mathbf{x}_1}{\sigma^2}}e^{\frac{\mathbf{x}_1^T\mathbf{x}_2}{\sigma^2}}$ is a kernel function, being the product of a kernel function with two functions $f(\mathbf{x}_1)=e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{2\sigma^2}}$ and $\frac{\mathbf{x}_2^T\mathbf{x}_2}{\sigma^2}$

Relevant kernel functions

Polynomial kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + 1)^d$$

Sigmoidal kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \tanh\left(c_1 \mathbf{x}_1 \cdot \mathbf{x}_2 + c_2\right)$$

· Gaussian kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{||\mathbf{x}_1 - \mathbf{x}_2||^2}{2\sigma^2}\right)$$

where $\sigma \in {\rm I\!R}$

Observe that a gaussian kernel can be derived also starting from a non linear kernel function $\kappa(\mathbf{x}_1, \mathbf{x}_2)$ instead of $\mathbf{x}_1^T \mathbf{x}_2$.

Kernels of structured objects

Kernels are particularly useful when applied to structured objects.

Consider the case of strings (for example sequences of DNA bases or amino acids).

Given two strings $\mathbf{x}_1, \mathbf{x}_2$ on a same alphabet \mathcal{A} , we can define their similarity to be equal to the number of substrings they have in common.

More formally, let $\phi_s(\mathbf{x})$ be the number of times substring s occurs in \mathbf{x} and let $\phi(\mathbf{x})$ the corresponding vector of such functions for all substrings s: a kernel can be defined as

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2) = \sum_{s \in \mathcal{A}^*} w_s \phi_s(\mathbf{x}_1) \phi_s(\mathbf{x}_2)$$

where $w_s \geq 0$ are predefined weights.

Kernels of structured objects

If $w_s=1$ for all considered substrings and we define $\phi'(\mathbf{x})=\frac{\phi(\mathbf{x})}{||\phi(\mathbf{x})||^2}$ as a normalized version of ϕ , we get

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \frac{\boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_2)}{||\boldsymbol{\phi}(\mathbf{x}_1)||^2 ||\boldsymbol{\phi}(\mathbf{x}_2)||^2}$$

that is, the well known cosine similarity measure.

Borrowing from information retrieval methods, a better similarity measure can be obtained by defining $\phi_s(\mathbf{x})$ through more sophisticated measures, such as tf-idf, instead of occurrences counting

Kernels of structured objects

Special cases:

- $w_s = 0$ if |s| > 1 is a bag-of-chars kernel, with $\phi_c(\mathbf{x})$ being the number of occurrences of character c in \mathbf{x}
- If only s delimited by white spaces are considered, we get a bag-of-words kernel.
- If only strings of fixed length $\vert s \vert = k$ are considered, we have a k-spectrum kernel

• ...

The approach can be extended to the case of trees, in order to deal with, for example, parse or evolutionary trees

More complex kernel construction techniques have been defined.