গণিত (Mathematics)

 $|1.|5-rac{2}{3x}|<1$ অসমতাটির সমাধান সেট (The solution set of the inequality $|5-rac{2}{3x}|<1$ is)

A. 3 < x < 4 B. $\frac{1}{9} > x > \frac{1}{10}$ C. $\frac{1}{9} < x < \frac{1}{6}$ D. $\frac{1}{3} < x < \frac{1}{2}$

 $2. \sin A + \cos A = \sin B + \cos B, A + B =$

A. π B. 2π C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$

 $3. \cot^2 \theta - (\sqrt{3}+1)\cot \theta + \sqrt{3} = 0, \ 0 < \theta < \frac{\pi}{2}$ হলে $\theta =$ (If $\cot^2 \theta - (\sqrt{3} + 1) \cot \theta + \sqrt{3} = 0$, $0 < \theta < \frac{\pi}{2}$, then $\theta = 0$

A. $\frac{\pi}{6}, \frac{\pi}{2}$ B. $\frac{\pi}{4}, \frac{5\pi}{2}$ C. $\frac{\pi}{3}, \frac{\pi}{5}$ D. $\frac{\pi}{6}, \frac{\pi}{4}$

 $4.\ f:\mathbb{R}\to\mathbb{R}$ কে $f(x)=e^{x-3}$ দ্বারা সংজ্ঞায়িত করা হলে $f^{-1}(e)$ এর মান (If $f:\mathbb{R}\to\mathbb{R}$ is defined by $f(x) = e^{x-3}$, then the value of $f^{-1}(e)$ is)

A. 4 B. 3 C. 2 D. 0

5. দ্বিমিক সংখ্যা 1111111 কে দ্বিমিক সংখ্যা 101 সংখ্যা দ্বারা ভাগ করলে ভাগশৈষ= (If the binary number 1111111 is divided by the binary number 101, the remainder is)

A. 0 B. 10 C. 11 D. 100 $6. \ x \geq 0, \ y \geq 0, \ x+y \leq 5, \ x+2y \geq 8$ শতানুসারে z=2x-y এর সর্বনিশ্ব মান (The minimum value of z = 2x - y, subjected to the constrains $x \ge 0, y \ge 0, x + y \le 5, x + 2y \ge 8$, is)

- A. 1 B. -1 C. -4 D. -57. $\left(2x-\frac{1}{4x^2}\right)^{12}$ এর বিস্তৃতিতে x^3 এর সহগ (The coefficient of x^3 in the expansion of $\left(2x-\frac{1}{4x^2}\right)^{12}$
- $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ এবং $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ হলে নিমের কোনটি সত্য? (If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$, then which of the following is true?)

A. $a \cdot b = 0$ B. $a \wedge b = 0$ C. $(a + b) \cdot (a - b) = 0$ D. $(a + b) \wedge (a - b) = 0$

9. কোন বিন্দুর পোলার স্থানাংক $3,150^\circ$ হলে ঐ বিন্দুর কার্তেসীয় স্থানাংক (If the polar coordinates of a point is 3,150°, then its Cartesian coordinates are)

A. $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$ B. $\left(\frac{3\sqrt{3}}{2}, -\frac{3}{2}\right)$ C. $\left(-\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$ D. $\left(-\frac{3\sqrt{3}}{2}, -\frac{3}{2}\right)$

 $10. \ y = kx - 1$ সরলরেখাটি $y = x^2 + 3$ বক্ররেখার একটি স্পর্শক হলে k এর একটি মান (The straight line y = kx - 1 will be a tangent to the curve $y = x^2 + 3$ if one of the values of k is)

A. 1 B. $2\sqrt{2}$ C. 3 D. 4

11. (-4.3) এবং (12,-1) বিন্দুদ্বয়ের সংযোষক রেখাকে ব্যাস ধরে অংকিত বৃত্তের সমীকরণ (The equation of the circle whose diameter is the line segment joining the points (-4,3) and (12,-1), is)

A.
$$x^2 + y^2 + 8x - 2y + 51 = 0$$

B. $x^2 + y^2 - 8x - 2y + 51 = 0$
C. $x^2 + y^2 + 8x + 2y - 51 = 0$
D. $x^2 + y^2 - 8x - 2y + 51 = 0$

B.
$$x^2 + y^2 - 8x - 2y + 51 = 0$$

C.
$$x^2 + y^2 + 8x + 2y - 51 = 0$$

D.
$$x^2 + y^2 - 8x - 2y - 51 = 0$$

 $12.\,\,6$ জন বাল 5 জন বালিকার একটি দল থেকে কত উপায়ে 3 জন বালক 2 জন বালিকার একটি দল গঠন করা যেতে পারে? (In how many ways a team of 3 boys and 2 girls can be formed from a group of 6 boys and 5 girls?)

A. 10 B. 20 C. 50 D. 200

13. এককের একটি কাল্পনিক ঘনমূল ω হলে $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ এর মান (If ω is a complex cube root of unity, then the value of $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ is)

A. 18 B. 6 C. -9 D. 9

14. $\sec^2(\cot^{-1} 3) + \csc^2(\tan^{-1} 2) =$

A.
$$\frac{85}{26}$$
 B. $\frac{36}{85}$ C. $\frac{10}{9}$ D. $\frac{9}{10}$

 $15. \ y = \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \ \text{RF} \ \frac{dy}{dx} = (\text{If} \ y = \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}}, \ \text{then} \ \frac{dy}{dx} =)$

A. $2\sin 2x$ B. 0 C. 1 D. $\cos 2x$

16.
$$\int_{0}^{10} |x - 5| dx =$$

A.
$$\frac{25}{2}$$
 B. 25 C. 50 D. 5

16.
$$\int_{0}^{10} |x - 5| dx =$$
A. $\frac{25}{2}$ B. 25 C. 50 D. 5

17.
$$\int \frac{e^{x}(1+x)}{\cos^{2}(xe^{x})} dx = f(x) + c; \ f(x) =$$

A. $\sin(xe^x)$ B. $\tan(xe^x)$ C. $\cot(xe^x)$ D. $\sec(xe^x)$

$$18. \int_{0}^{x} f(p)f'(p)dp =$$

A.
$$\frac{1}{2}f^2(x)$$
 B. $\frac{1}{2}x^2$ C. $\frac{1}{2}[\{f(x)\}^2 - \{f(0)\}^2]$ D. $f(x) - f(0)$

19. $y=\frac{1}{\sqrt{4-x}}$ ফাংশনের ডোমেইন ও রেঞ্জ (The domain and range of the function $y=\frac{1}{\sqrt{4-x}}$) A. $-\infty < x \le 4;\ 0 \le y < \infty$ B. $-\infty < x < 4;\ 0 < y < \infty$

B.
$$-\infty < x < 4; \ 0 < y < \infty$$

C. $-\infty < x < 4$; $0 < y < \infty$

D.
$$-\infty < x \le 4$$
; $0 < y < \infty$

$$20. \lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x} =$$

A.
$$\frac{7}{6}$$
 B. $-\frac{7}{6}$ C. 1 D. -1

21. ABC অভুজ a:b:c=3:7:5 হলে $\angle B=$ (In the triangle ABC, if a:b:c=3:7:5, then $\angle B =)$

A. 60° B. 30° C. 90° D. 120°

 $22. \ 2x^2-7x+5=0$ সমীকরণের মূলদ্বয় lpha এবং eta, এবং $x^2-4x+3=0$ সমীকরণের মূলদ্বয় eta এবং γ , হলে $(\gamma + \alpha): (\gamma - \alpha) = (\text{If } \alpha \text{ and } \beta \text{ are the roots of the equation } 2x^2 - 7x + 5 = 0 \text{ and, } \beta \text{ and } \gamma$ are the roots of equation $x^2 - 4x + 3 = 0$, then

A. 6:5 B. 5:6 C. 11:1 D. 1:6

 $(x-2)^2+(y-3)^2=16$ এবং $(x-2)^2+(y-10)^2=9$ বৃত্তদ্বয়ের স্পর্শবিন্দুর স্থানাংক (The coordinates of the point of contact of the circle $(x-2)^2 + (y-3)^2 = 16$ and $(x-2)^2 + (y-10)^2 = 9$

A. (2,3) B. (16,9) C. (2,10) D. (2,7)

 $z=1-rac{1}{1-rac{1}{1+i}}$ জটিল সংখ্যাটির মডুলাস ও আর্গ্রমেন্ট (The modulus and the argument of the complex number $z=1-rac{1}{1-rac{1}{1+i}}$ are)

A. 1,0 B. 1, $\frac{\pi}{2}$ C. 1, π D. 1, $\frac{3\pi}{2}$

25. k এর কোন মানের জন্য y=kx(1-x) বক্ররেখার মূলবিন্দুতে স্পর্শকটি x-অক্ষের সাথে 30° কোণ উৎপন্ন করে $({
m For}$ what value of k the tangent to the curve y = kx(1-x) at the origin makes an angle 30° with

A. $\sqrt{3}$ B. $\frac{1}{\sqrt{3}}$ C. $\frac{\sqrt{3}}{2}$ D. 1

 $26. \ -7 < x < -1$ কে প্রম্মানের সাহায্যে লিখলে দাঁড়ায়(expressed in terms of absolute value, -7 < x < -1becomes)

A. |x+3| < 4 B. |x+1| < 3 C. |x+4| < 3 D. |x-4| < 1

- 27. ABC একটি সমকোণী ত্রিভুজ হলে(If ABC is a right angled triangle then) $\cos^2 A + \cos^2 B + \cos^2 C =$ A. $\frac{1}{2}$ B. 1 C. 0 D. -1
- $28. \ y^2 = 16x$ এবং y = 4x দারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল (The area of the region bounded by $y^2 = 16x$ and y = 4x is)

A. $\frac{2}{3}unit^2$ B. $-\frac{2}{3}unit^2$ C. $\frac{3}{2}unit^2$ D. $\frac{1}{3}unit^2$

 $29.\,$ 8N এবং 3N দুইটি বল একটি বিন্দুতে 60° কোণে একটি বস্তুতে ক্রিয়ারত। বলদ্বয়ের লদ্ধির মান $({
m Two~forces~8N~and}$ 3N are acting on an object at a point with 60° angle. The magnitude of the resultant of two force is)

A. $\sqrt{73}N$ B. $\sqrt{93}N$ C. $\sqrt{55}N$ D. 11N

$$30. \ 1+(1+2)+(1+2+3)+\cdots+n$$
 তম পদ পর্যন্ত (to n terms) = A. $\frac{1}{6}n(n+1)(2n+1)$ B. $\frac{1}{6}n(n+1)(n+2)$ C. $\frac{1}{2}n(n+1)(n+2)$ D. $\frac{1}{6}n(n+1)(n+2)(n+3)$

7,32,31