PreCalculus-Graph Exponential Functions (Learning Targets GE)

APMA Faculty University of Virginia

July 10, 2024

Exponential Functions

 A function of the form y = b^x where b is a real number such that b > 0 and b ≠ 1 is an exponential function.

The graph of an exponential function has the following properties:

- A y-intercept at (0, 1)
- A horizontal asymptote at y = 0
- Increasing when b > 1
- Decreasing when 0 < b < 1

Exponential Functions: Transformations

From the parent function of $y = b^x$, many functions may be graphed using transformations:

Transformations of Functions	
Vertical translation	f(x) + k or $f(x) - k$
Horizontal translation	f(x+h) or $f(x-h)$
Vertical stretch or compression	cf(x)
Reflection over the x-axis	-f(x)
Reflection over the y-axis	f(-x)

Exponential Functions: Transformations

Vertical Translation

Horizontal Translation

Exponential Functions: Transformations

Combinations of Transformations

The function g(x) is obtained from the parent function f(x) by reflecting it over the x-axis and translating it one unit to the right.

Exponential Functions: Reflections

The graph of $y = -b^x$ is the reflection of $y = b^x$ along the x – axis.

The graph of $y = b^{-x}$ is the reflection of $y = b^x$ along the y – axis.

Natural Exponential Functions

The natural base $e \approx 2.71828 \dots$

The number e is irrational, so it cannot be expressed exactly as a decimal, only estimated. Exact values should be in terms of e.

The graph of the parent function $f(x) = e^x$ is an exponential growth function since e > 1.

Example

Example: Graph $h(x) = e^{x+2}$ and $g(x) = e^{x+2}$

