Идентификаторы

Идентификаторы используются для обозначения любых объектов Java: переменных, констант, классов, объектов, интерфейсов, методов.

Правила построения идентификаторов:

- 1. Первый символ любая буква латинского алфавита (или символ подчеркивания _).
- 2. Следующие символы: буквы латинского алфавита, цифры или символ подчеркивания.
- 3. Максимальная длина имени не ограничена, но значащими являются первые 255 символов.
 - 4. Нельзя использовать в качестве идентификаторов зарезервированные слова Java:
 - названия типов: int, long, boolean;
 - ключевые слова операторов: if, else, for, while и т.п.;
- 5. Java регистрочувствительный язык. В имени можно использовать заглавные и маленькие буквы (Bbb, BBB, BbB – разные идентификаторы).

Правила записи арифметических выражений

Арифметические операции

Указаны в порядке уменьшения приоритета

Математическое обо-	Java
значение	
a+1	а++ постфиксная форма (операция применится к операнду после вычисления всего выражения, в которое операнд входит) ++а префиксная форма (операция применится до вычисления выра-
	жения) Пример 1:
	$\frac{1100 \text{ Mep 1.}}{\text{int a=10;}}$
	b=a++*2; // b = 20;
	<u>Пример 2:</u> int a=10;
	b=++a*2; // b=22;
a-1	a
	a
ab	a*b
а	a/b
\overline{b}	Результат зависит от типов операндов. Для целочисленных – деление нацело
	Пример: $15/2=7$, $15.0/2=7.5$
$\left(\frac{a}{\cdot}\right)$	а % b Пример: 5 % 2 = 1
(в) остаток от	
деления	
a + b	a+b
a - b	a-b

Примеры:

$$2x + \frac{3}{4} \implies 2*x + 3.0/4.0$$

$$\frac{2x+3y}{3x^2} \implies (2*x+3*y)/(3*x*x)$$

$$\frac{3x}{2y} \implies 3*x/(2*y)$$

Арифметическое выражение вычисляется слева направо с учетом приоритетов арифметических операций.

Встроенные функции

Класс Math.

Математическое	Java
обозначение	
x	Math.abs(x)
\sqrt{X}	Math.sqrt(x)
$\sqrt[3]{X}$	Math.cbrt(x)
sin x	Math.sin(x)
cos x	Math.cos(x)
tg x	Math.tan(x)
arcsin x	Math.asin(x)
arccos x	Math.acos(x)
arctg x	Math.atan(x)
ln x	Math.log(x)
lg x	Math.log10(x)
log_ab	Math.log(b) / Math.log(a)
e ^x	Math.exp(x)
a^{b}	Math.pow(a,b)
Число π	Math.PI
е (натуральное основание)	Math.E
Округление до целого	Math.round(x)
Целая часть числа	(int)x
Дробная часть числа	x-((int)x)

$$\cos^2 x^6 \stackrel{\underline{\Pi} \underline{\text{римеры:}}}{=>} \text{Math.pow}(\text{Math.cos}(\text{Math.pow}(x,6)),2)$$

$$\frac{3 \lg x^2 + e^{-3x}}{\sqrt{2x+1} \cdot tg3x} = > \frac{(3*Math.log10(Math.pow(x,2)) + Math.exp(-3*x))/(Math.sqrt(2*x+1)*Math.tan(3*x))}{(3*Math.log10(Math.pow(x,2)) + Math.exp(-3*x))/(Math.sqrt(2*x+1)*Math.tan(3*x))}$$

$$e - 2x => Math.E-2*x$$

Чтобы не писать каждый раз Math перед названием функции, можно добавить в начало программы строчку: import static java.lang.Math.*;

Операции и операторы Java

Операция присваивания

```
x=2*y+1
```

Кроме простой операции присваивания еще есть *составные* операции: +=, -=, *=, /=, %= a+=10; // a=a+10;

В составных операциях перед присваиванием, при необходимости, автоматически про-изводится приведение типа:

Операторы ввода-вывода

Для ввода с клавиатуры необходимо

- 1) подключить библиотеку java.util.*.
- 2) создать объект Scanner и связать его со стандартным входным потоком System.in Scanner inp = new Scanner (System.in);
- 3) Использовать один из методов:

```
nextLine() — ввод строки текста с клавиатуры
```

next () — ввод слова из строки текста с клавиатуры

nextInt() — ввод целочисленного значения из строки текста с клавиатуры nextDouble() — ввод вещественного значения из строки текста с клавиатуры

Пример

```
double d = inp.nextDouble();
int a = inp.nextInt();
4) Закрыть консоль
inp.close()
```

 $\ensuremath{\mathcal{A}}$ ля вывода в консоль используется стандартный выходной поток System.out и один из методов:

1) неформатированный вывод - методы println и print. println отличается от print тем, что после вывода переводит курсор на новую строку.

```
Пример
System.out.println("x="+x);
Pезультат x=5

Пример:
System.out.println("a");
System.out.println("b");
System.out.println("c");
Pезультат:
a
b
c

Пример:
System.out.print("a");
System.out.print("a");
System.out.print("b");
System.out.print("b");
```

Результат:

abc

2) форматированный вывод - метод printf

printf("строка форматирования" [,аргумент1,аргумент2, ...])

Строка форматирования имеет вид:

текст%[флаг][число позиций][.точность]символ форматирования

Флаги управляют форматом вывода данных (например, выравнивание числовых полей по левому краю, вывод знака для положительных чисел и т.д.).

Символы форматирования:

d – целое

Пример: System.out.printf("x=%3d",x)

Результат x=5

f - вещественное число

Пример: System.out.printf("x=%8.3f",x)

Результат x =2,955

s – строка

Пример: System.out.printf("x=%s",x)

Результат x=abc

Пример программы, вычисляющей арифметическое выражение

Пример: $z = tg\sqrt[y]{x}$


```
package lab1;
import java.util.Scanner;
public class Primer1 {
      public static void main(String[] args) {
             double x, y, z; // <u>объявление</u> <u>переменных</u>
             // ввод переменных
             Scanner inp = new Scanner(System.in);
             System.out.print("x="); x = inp.nextDouble();
             System.out.print("y="); y = inp.nextDouble();
             inp.close();
             // вычисление выражения
             z = Math.tan(Math.pow(x,1/y));
             // вывод результата
             System.out.printf("z=%1.4f",z);
       }
}
                                  Составной оператор
{
      <операторы>;
```

Битовый сдвиг

1) значение << количество - сдвигает последовательность битов на заданное число позиций влево. При каждом сдвиге самый старший бит смещается за пределы допустимого значения и теряется, а освободившиеся справа биты заполняются нулями. Если операнд имеет тип long, биты теряются после сдвига за пределы 63 позиции. Если int - после сдвига за пределы 31 позиции.

20 << 3

Переводим 20 из десятичной системы в двоичную 20_{10} =16+4= 2^4+2^2 = 10100_2

Сдвигаем получившееся число на три бита влево 10100_{2} <- 10100000_{2}

Переводим число из двоичной системы в десятичную $10100000_2 = 128 + 32 = 160_{10}$

2) >> - сдвигает последовательность битов на заданное число позиций вправо. При этом освободившиеся слева биты заполняются единицами при сдвиге отрицательных значений и нулями в случае положительных значений. Биты, которые выходят за разрядную сетку, теряются.

20 >> 3

Выполняется по аналогии с предыдущим примером

$$20_{10} = 16 + 4 = 2^4 + 2^2 = 10100_2 - > 10_2 = 2_{10}$$