УСПЕХИ ФИЗИЧЕСКИХ НАУК

из текущей литературы

ФИЗИЧЕСКИЙ МЕТОД СЕПАРАЦИИ ЯДЕРНЫХ ИЗОМЕРОВ

Известно, что разделение изотопов сопряжено со значительными трудностями. Что же касается разделения изомеров, т. е. атомов, ядра которых при одинаковых зарядах и массах несколько отличаются по энергиям, то оно оказывается ещё более затруднительным. До недавнего времени существовал только химический метод разделения изомеров, разра-

ботанный в 1939 г.¹.

Л. И. Русинов и А. С. Карамян разработали физический метод сецарации ядерных изомеров 2, 3,4°. Исследуя превращения изомерных ядер брома, они столкнулись с необходимостью получения крайне тонкослойных радиоактивных препаратов, с тем чтобы по возможности исключить поглощение возникающих в них электронов малых энергий. Первоначально они пытались получить такие препараты, пользуясь обычной методикой 5,6 . Бромистый этил (C_eH_bBr) облучался медленными нейтронами; образующиеся при захвате нейтронов радиоактигные атомы брома в результате отдачи вылетали из молекул бромистого этила; после облучения свободные атомы радиоактивного брома вымывались дестиллерованной водой, которую затем отделяли по удельному весу от бромистого этила и подвергали электролизу; при этом радиоактивный бром высаживался на серебряном аноде. Однако минимальная толщина получавшихся таким образом радиоактивных препаратов была слишком гелика потому, что при эдектролизе на серебряной фольге высаживались и нерадиоактивные атомы брома, а также имеющиеся в воде посторонине примеси. Поэтому анторы применили новый метод выделения радиоактивного брома: электролизпроизводился непосредственно в бромистом этиле. Анодом служил серебряный диск днаметром 15 мм с тщетельно отщлифованной высаживающей поверхностью; противоположная сторона авода была гокрыта целлофаном; во время проведения электролиза диск равномерно вращадся со скоростью около 80 об/мин., а сам эдектродиз продолжался около 30 минут. Полученные этим способом радиоактивные препараты брома имели толщину, составляющую доли микрона, а коэффициент извлечения оказался в несколько раз большим, чем при электролизе в воде. Все дальнейщие эксперименты производились с помощью этого метода выделения радиоактивных препаратов.

Известно, что облучение брома нейтронами приводит к образованию радиоактивных изотопов Вг 80 (период полураспада 18 мин.) и Вг 82 (34 часа), а также изомера Вг 80*, переходящего из метастабильного состояния в основное путём внутренней электронной конверсии с периодом, равным 4.4 часа. Согласно экспериментальным данным ^{7,8}, полученным при облу-

чении брома тепловыми нейтронами, отношение вероятностей образования Br^{80} в основном состоянии (T=18 мин.) и в метастабильном (T=4,4 часа) равно $\sim 2,5$.

Уже в первом опыте по выделению радиоактивного препарата новым способом было обнаружено, что спустя два часа после интенсивного облучения бромистого этила медленными нейтронами, проводившегося в течение времени, достаточного для насыщения 4,4-часового периода, кроме ожидавшихся электронных активностей, спадающих с полупериодами в 4,4 и 34 часа, присутствует также электронная активность с полупериодом, близким к 18 мин. Казалось, что столь короткоживущая активность должна была бы практически исчезнуть за два часа, прошедшие после прекращения облучения. Однако экстраполяция кривых распада радиоактивного брома к моменту окончания облучения дала для отношения начальных интенсивностей, спадающих с полупериодами 18 мин. и 4,4 часа, аномально большое значение ~ 100. Более того, подобная же активность наблюдалась через четыре часа после окончания облучения, причём отношение начальных интенсивностей оказалось больше 1000.

Наличие 18-минутной β-активности после 2- и 4-часовых интервалог, а также её аномально высокая интенсивность могли быть объяснены только в предположении, что она возникает при вторичном процессе — распаде радиоактивных ядер Br 80, образующихся в результате перехода метастабильных ядер Br 80* в основное состояние, ибо, когда изомеры Br 80 и Br 80* образуются в первичном процессе — разрядке компаунд-ядра, — отношение начальных интенсивностей должно быть ~ 2,5 независимо от времени измерения. Дальнейшие опыты подтвердили этот бывод. Вместе с тем аномально высокое отношение интенсивностей указывает на значительное увеличение коэффициента разделения изомеров брома при таком методе выделения радиоактивных атомов. (Аналогичные результаты были независимо получены в работе 9.)

Для выяснения механизма разделения изомеров брома было выполнено множество экспериментов. Прежде всего авторы показали, что разделение происходит и в отсутствии электрического ноля и его, следовательно, нельзя объяснять различной подвижностью ионов Br 80 и Br 80*. С этой целью производилось выделение радиоактивных атомов из 50 см³ C₂H₅Br через 4,7 часа после облучения прямо на опущенную в этил серебряную пластинку, без пропускания тока. Оказалось, что полученные таким путём радиоактивные препараты также содержат β-активность изомера Br 80, спадающую с полупериодом, равным 18 мин. Следующая серия опытов показала, что при определенных условиях разделение изомеров происходит и в первоначальном методе выделения активности с помощью вымывания водой. Таким образом, оказалось, что разделение ядерных изомеров брома не определяется способом выделения радиоактивности, а происходит в результате нарушения радноактивного равновесия в самом бромистом этиле; механизм сепарации совпадает с процессами, нарушающими радиоактивное равновесие изомерных ядер Вг 80* и Вг 80, распадающихся по последовательной схеме 10.

Аля выяснения этих процессов были произведены следующие опыты. Из облучённого бромистого этила удалялись с помощью электрического поля или воды по возможности все радиоактивные атомы, оказавшиеся в свободном состоянии. Затем через шесть часов эта операция новторялась теми же способами. Полученный при повторном отделений радиоактивный препарат в обоих случаях обладает 18-минутной β-активностыю Вг 80, причём её отношение к активности Вг 80 примерно в 10 раз больше, чем у препаратов, полученных из этила, не полвергавшегося предварительному удалению свободных радиоактивных атомов в свободном состоянии и увеличение коэффициента сепара-

ции объясняются тем, что часть метастабильных ядер Br 80* находится в связанном виде в органических молекулах и потому не удаляется после

окончания облучения.

Первоначально практически все атомы радиоактивного брома, образующиеся при захвате нейтронов, вследствие большой энергии отдачи вылетают из молекул C_2H_5Br . Однако вслед за этим часть свободных атомов, в том числе и изомеры Br^{80*} , вновь синтезируется в органические молекулы. При разрядке метастабильного состояния путём внутренней электронной конверсии образующиеся ядра Br^{80} снова вылетают из молекул и обогащают этил изомерами Br^{80} (T=18 мин.) в свободном виде, нарушая радиоактивное равновесие между Br^{80} и Br^{80*} .

Изучив различные пути внедрения свободных радиоактивных атомов брома в органические молекулы, авторы показали, что наиболее вероятным является так называемое «бромирование», т. е. замещение в молекулах C_2H_5Br одного атома водорода свободным атомом брома, ведущее к образованию бромистого этилидена $C_2H_4Br_2$. Чтобы показать, что бромирование действительно происхолит, они прибавляли к облучаемому нейтронами бромистому этилу равное количество необлучённого бромистого этилидена. Спустя некоторое время оба вещества вновь разделялись путём перегонки. В отделённом таким способом бромистом этилидене были обнаружены

радиоактивные атомы всех трёх родов.

Дальнейшие опыты показали, что связанные радиоактивные атомы брома обнаруживаются также и в молекулах бромистого этила. Мы опишем здесь кратко только одну серию подобных опытов. В них облучённый бромистый этил разделялся на две равные части, одна из которых перегонялась при температуре кипения этила (38°C). Затем из перегнанной фракции, остатка и неперегонявшейся части электрическим полем выделяли радиоактивные атомы и исследовали их активности. Оказалось, что перегнанная фракция, состоящая из чистого C₂H₅Br, выделяет на аноде радиоактивность с полупериодом 18 мин., которая могла образоваться лишь при разрядке метастабильных атомов Br^{80*}, захваченных в молекулы бромистого этила. Препараты, выделенные из двух других частей, обнаружили все три присущих брому радиоактивных периода. Эти выводы были подтверждены и при измерении суммарных активностей всех трёх частей. Таким образом, было установлено, что радиоактивные атомы брома имеются в трёх состояниях: свободном и связанном в молекулах C_9H_5Br и $C_9H_4Br_9$.

Чтобы выяснить, происходит ли синтез свободных радиоактивных атомов брома в органические молекулы непрерывно (в процессе тепловой диффузии) или только в момент облучения (при торможении атомов брома, выбитых из молекул при захвате нейтронов), были произведены опыты по определению зависимости числа свободных и связанных радиоактивных атомов брома от времени, прошедияето после окончания облучения. Оказалось, что число свободных радиоактивных атомов уменьшается по экспоненциальному закону с полупериодом ~ 20 часов, в то время как число связанных радиоактивных атомов растёт по тому же закону с полупериодом ~ 25 часов. Авторы полагают, что некоторая разница в полупериодах происходит от того, что часть свободных ядер Br^{80} , возникающих при разрядке связанных в молекулах ядер Br^{80} , вновь присоединяется

к органическим молекулам.

Из этих экспериментов видно, что разделение изомеров брома происходит, независимо ог способа выделения радиоактивных препаратов, в результате нарушения радиоактивного равновесия между изомерными ядрами в самой подвергавшейся облучению нейтронами системе. Это нарушение обусловливается наличием метастабильных изомеров брома, связанных в молекулах $C_2H_8B_1$ и $C_2H_4B_1$, и тем фактом, что энергия разрядки мета-

стабильного состояния достаточна для преодоления химической связи и вылета образующихся радиоактивных ядер Br 80 из молекул.

Таким образом, в результате этой работы было не только обнаружено физическое разделение ядерных изомеров брома, но и выяснен механизм, с помощью которого осуществляется это разделение.

В. Лешковиев

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. E. Segre, R. Halford, G. Seaborg, Phys. Rev. 55, 321 (1939). 2. Л. И. Русинов и А. С. Карамян, ДАН СССР, LV № 7, 603 (1947).
- 3. А. С. Карамян и Л. И. Русинов, ДАН СССР, LVIII, № 4. 573 (1947).
- 4. A. C. Карамян, ДАН СССР, LXIV. № 4, 491 (1949).
- 5. L. Szilard, T. Chalmers, Nature 134, 462 (1934).
- 6. L. Roussinow, A. Yousephovich, Journ. of Physics 3, 281 (1940). 7. R. Fleischman, Zeits. f. Physik 107, 305 (1935).
- 8. Л. Русинов и А. Юзефович, ДАН СССР, XX, 647 (1938).
- 9. P. C. Capron, G. Stokkink a. M. Meersche, Nature 157, 806 (1946).
- 10. Л. И. Русинов и А. А. Юзефович, ДАН СССР, ХХІІ, 580 (1939).