Малая теорема Ферма

- $\boxed{1}$ Докажите, что $7^{120}-1$ делится на 143.
- $\boxed{2}$ Докажите, что $60^{111} + 111^{60}$ делится на 61.
- [3] Пусть p простое число. Докажите, что $(a+b)^p \equiv a^p + b^p \pmod p$ для любых целых a и b.
- [4] Пусть p > 5 простое число. Докажите, что $\underbrace{11 \dots 1}_{p-1}$ делится на p.
- $\boxed{5}$ Докажите, что если p- простое число и p>2, то 7^p-5^p-2 делится на 6p.
- [6] Андрей берет натуральное число a и сначала прибавляет к нему число a^2 , потом a^3 , потом a^4 и т.д. Докажите, что когда-нибудь его сумма поделится на простое число p.
- 7 Докажите, что ни при каком целом k число $k^2 + k + 1$ не делится на 101.
- $\boxed{8}$ Известно, что $a^{12}+b^{12}+c^{12}+d^{12}+e^{12}+f^{12}$ делится на 13 (a,b,c,d,e,f целые числа). Докажите, что abcdef делится на 4826809.
- [9] Пусть p = 4k + 3 простое, а $m^2 + n^2 \, \vdots \, p$. Докажите, что $m, n \, \vdots \, p$.
- 10 Пусть n натуральное число, не кратное 17. Докажите, что либо $n^8 + 1$, либо $n^4 + 1$, либо $n^2 + 1$, либо n + 1, либо n 1 делится на 17.
- 11 Докажи, что $a^{73} a$ делится на $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73$.
- 12 Найти все такие натуральные числа p, что p и p^6+6 простые
- [13] а) Докажите, что равенство $\frac{10^n-1}{m} = \overline{a_1 a_2 \dots a_n}$ равносильно тому, что десятичная запись дроби 1/m имеет вид $0, (a_1 a_2 \dots a_n)$.
 - b) Пусть p > 5 простое число. Докажите, что $1/p = 0, (a_1 a_2 \dots a_n)$ (т.е. дробь не имеет предпериода).
 - с) Запишем $1/p = 0, (a_1 a_2 \dots a_n)$. Докажите, что p-1 делится на n.
 - d) Запишем $1/p = 0, (a_1a_2 \dots a_n)$. Докажите, что дробь $0, (a_2a_3 \dots a_na_1)$ тоже дробь со знаменателем p.
- 14 Найдите такое шестизначное число x, что x, 2x, 3x, 4x, 5x и 6x записываются одинаковым набором цифр, но в различном порядке.