Description et évolution d'un système vers un EF

Grandeur de réaction A,Z

Effets thermiques en réacteur monobare

Evolution et équilibre

Objectif : établir, à l'aide des 3 principes de la thermodynamiques, les conditions d'évolution et d'équilibre vues en PCSI.

Optimisation d'un procédé chimique

Rappel: le second principe

Soit un système en contact avec une seule source de chaleur à la température T_e .

Soit une transformation élémentaire au cours de laquelle le système échange avec la source de chaleur la quantité de chaleur δQ .

Il exite une grandeur d'état extensive appelée entropie et notée S telle que :

$$dS = \delta S_i + \delta S_e \qquad (S en J.K^{-1})$$

où $\delta S_e = \delta Q/T_e$: quantité d'entropie échangée avec l'extérieur

 $\delta S_i \ge 0$: quantité d'entropie crée à l'intérieur du système

si la transformation est réversible :
$$\delta S_i = 0$$

$$dS_{rev} = \delta Q_{rev}/T$$

Un système en réaction chimique évolue spontanément de façon irréversible.

On dispose donc d'un critère d'évolution naturelle : $T_e \delta S_i = T_e dS - \delta Q \ge \theta$ (1).

Potentiels thermodynamiques

on apelle "total thermodynamique" toute granbleur détat 2 astremte à décroître les d'une transformation

a l'equilibre : G a atleint un minimum
$$\left(\frac{\partial G}{\partial S}\right)_{T_1P_1S} = 0$$
 (S) $\Delta_2G(T_1P_1S) = 0$ (T) $\Delta_3G(T_1P_1S) = 0$

Figure 2: Représentation G = $f(\xi)$ à T et p fixées [2]

Pourquoi définir l'affinité chimique ?

Identités thermodynamiques

Si la transformation est modélisée par une réaction unique d'avancement ξ

Relation entre \mathcal{A} et δ iS ?

Que sait-on à ce point de l'étude ?

Si on remplace $\Delta_{\rm r}{\rm G}$ par - ${\mathcal A}$, le critère d'évolution est beaucoup plus général

Le signe de Δ_r G nous renseigne sur le sens d'évolution naturel à partir d'un El donné

il faut maintenant savoir calculer $\Delta_{\rm r}$ G dans un état donné

Potentiel chimique μ_i d'un constituant physicochimique A_i

Par définition

$$\mu_i = (\frac{\delta G}{\delta n_i})_{T,p,n_{j\neq i}}$$
 (μ_i en J.mol⁻¹)

Expression de $\Delta_r G$ en fonction des μ_i

Conséquence de la définition :
$$(dG)_{T,p} = \sum \mu_i dn_i$$

Or $dn_i = \nu_i d\xi$ donc : $dG_{T,p} = \sum \nu_i \cdot \mu_i d\xi$

On en déduit :

$$\Delta_{r}G = \Sigma v_{\iota}\mu_{\iota}$$

Equilibre entre deux phases

$$A(x) = A(\beta)$$

evolution dans le sens $1/ds > 0$ $= 1/4 > 0$
 $(=)$ $1. |\gamma_{(\beta)}(A) - 1. |\gamma_{(x)}(A) < 0$
 $(=)$ $|\gamma_{(\beta)}(A) < |\gamma_{(x)}(A)|$

Lors d'un changement d'état :

da motiere "descend les folcutiels Chimiques a l'equilibre :
$$A = 3xG = 0$$

Sort $f(x)(A) = f(B)(A)$

derere flosses à l'equilibre ont même foteutiel Chimique.

À la température de fusion : $\Delta_{fus}G = 0$