

UiO Department of Informatics
University of Oslo

Biologically inspired computing

Lecture 3: Eiben and Smith, chapter 5-6

Evolutionary Algorithms - Population management and popular algorithms

Kai Olav Ellefsen

Repetition: General scheme of EAs

Repetition: Genotype & Phenotype

Phenotype:

A solution representation we can **evaluate**

Genotype:

A solution representation applicable to **variation**

Chapter 5: Fitness, Selection and Population Management

- Selection is second fundamental force for evolutionary systems
- Components exist of:
 - Population management models
 - Selection operators
 - Preserving diversity

Scheme of an EA: General scheme of EAs

Population Management Models: Introduction

- Two different population management models exist:
 - Generational model
 - each individual survives for exactly one generation
 - λ offspring are generated
 - the entire set of μ parents is replaced by μ offspring
 - Steady-state model
 - λ (< μ) parents are replaced by λ offspring
- Generation Gap
 - The proportion of the population replaced
 - Parameter = 1.0 for G-GA, $=\lambda/pop_size$ for SS-GA

Population Management Models: Fitness based competition

- Selection can occur in two places:
 - Parent selection (selects mating pairs)
 - Survivor selection (replaces population)
- Selection works on the population
 - -> selection operators are representation-independent!
- Selection pressure: As selection pressure increases, fitter solutions are more likely to survive, or be chosen as parents

UiO Department of Informatics
University of Oslo

Effect of Selection Pressure

Low Pressure

High Pressure

Why Not Always High Selection Pressure?

Scheme of an EA: General scheme of EAs

Parent Selection: Fitness-Proportionate Selection

Example: roulette wheel selection

Stochastic Universal Sampling

Stochastic universal sampling (SUS)

Select multiple individuals by making **one** spin of the wheel with **a number of equally spaced arms**

Parent Selection: Fitness-Proportionate Selection (FPS)

 Probability for individual i to be selected for mating in a population size μ with FPS is

$$P_{FPS}(i) = f_i / \sum_{j=1}^{\mu} f_j$$

- Problems include
 - One highly fit member can rapidly take over if rest of population is much less fit: Premature Convergence
 - At end of runs when finesses are similar, loss of selection pressure
- Scaling can fix the last problem by:
 - Windowing: $f'(i) = f(i) \beta^t$

where β is worst fitness in this (last n) generations

- Sigma Scaling: $f'(i) = \max(f(i) - (\overline{f} - c \bullet \sigma_f), 0)$

where c is a constant, usually 2.0

UiO • Department of Informatics
University of Oslo

Parent Selection: Rank-based Selection

- Attempt to remove problems of FPS by basing selection probabilities on relative rather than absolute fitness
- Rank population according to fitness and then base selection probabilities on rank (fittest has rank μ-1 and worst rank 0)
- This imposes a sorting overhead on the algorithm

Parent Selection: Tournament Selection (1/3)

- All methods above rely on global population statistics
 - Could be a bottleneck esp. on parallel machines, very large population
 - Relies on presence of external fitness function which might not exist: e.g. evolving game players

Parent Selection: Tournament Selection (2/3)

Idea for a procedure using only local fitness information:

- Pick k members at random then select the best of these
- Repeat to select more individuals

Parent Selection: Tournament Selection (3/3)

- Probability of selecting i will depend on:
 - Rank of i
 - Size of sample k
 - higher k increases selection pressure
 - Whether contestants are picked with replacement
 - Picking without replacement increases selection pressure
 - Whether fittest contestant always wins
 (deterministic) or this happens with probability p

Parent Selection: Uniform

$$P_{uniform}(i) = \frac{1}{\mu}$$

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Uniform parent selection is unbiased every individual has the same probability to be selected

Scheme of an EA: General scheme of EAs

Survivor Selection (Replacement)

- From a set of μ old solutions and λ offspring:
 Select a set of μ individuals forming the next generation
- Survivor selection can be divided into two approaches:
 - Age-Based Replacement
 - Fitness is not taken into account
 - Fitness-Based Replacement
 - Usually with deterministic elements

Fitness-based replacement (1/2)

- Elitism
 - Always keep at least one copy of the N fittest solution(s) so far
 - Widely used in both population models (GGA, SSGA)
- Delete Worst
 - The worst λ individuals are replaced
- Round-robin tournament (from Evolutionary Programming)
 - Pairwise competitions in round-robin format:
 - Each individual x is **evaluated against q other** randomly chosen individuals in 1-on-1 tournaments
 - For each comparison, a "win" is assigned if x is better than its opponent
 - The μ solutions with the greatest number of wins are the winners of the tournament
 - Parameter q allows tuning selection pressure

Fitness-based replacement (2/2) (from Evolution Strategies)

- (μ,λ)-selection (best candidates can be lost)
 - based on the set of **children only** ($\lambda > \mu$)
 - choose the **best** μ offspring for next generation
- (μ+λ)-selection (elitist strategy)
 - based on the set of parents and children
 - choose the **best** μ offspring for next generation
- Often (μ,λ)-selection is preferred because it is better in leaving local optima

Multimodality

Most interesting problems have more than one locally optimal solution.

Multimodality

- Often might want to identify several possible peaks
- Different peaks may be different good ways to solve the problem.
- We therefore need methods to preserve diversity (instead of converging to one peak)

Approaches for Preserving Diversity: Introduction

- Explicit vs implicit
- Implicit approaches:
 - Impose an equivalent of geographical separation
 - Impose an equivalent of speciation
- Explicit approaches
 - Make similar individuals compete for resources (fitness)
 - Make similar individuals compete with each other for survival

Explicit Approaches for Preserving Diversity: Fitness Sharing (1/2)

- Restricts the number of individuals within a given niche by "sharing" their fitness
- Need to set the size of the niche σ_{share} in either genotype or phenotype space
- run EA as normal but after each generation set

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i,j))} \quad sh(d) = \begin{cases} 1 - d/\sigma & d \le \sigma \\ 0 & \text{otherwise} \end{cases}$$

Explicit Approaches for Preserving Diversity: Fitness Sharing (2/2)

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i,j))}$$
 $sh(d) = \begin{cases} 1 - d/\sigma & d \leq \sigma \\ 0 & otherwise \end{cases}$

Explicit Approaches for Preserving Diversity: Crowding

- Idea: New individuals replace similar individuals
- Randomly shuffle and pair parents, produce 2 offspring
- Each offspring competes with their nearest parent for survival (using a distance measure)
- Result: Even distribution among niches.

Explicit Approaches for Preserving Diversity: Crowding vs Fitness sharing

Implicit Approaches for Preserving Diversity: Automatic Speciation

- Either only mate with genotypically / phenotypically similar members or
- Add species-tags to genotype
 - initially randomly set
 - when selecting partner for recombination, only pick members with a good match

Implicit Approaches for Preserving Diversity: Geographical Separation

- "Island" Model Parallel EA
- Periodic migration of individual solutions between populations

Implicit Approaches for Preserving Diversity: "Island" Model Parallel EAs

- Run multiple populations in parallel
- After a (usually fixed) number of generations (an *Epoch*), exchange individuals with neighbours
- Repeat until ending criteria met
- Partially inspired by parallel/clustered systems

Island Model: Parameters

- How often to exchange individuals?
 - too quick and all sub-populations converge to same solution
 - too slow and waste time
 - can do it adaptively (stop each pop when no improvement for (say) 25 generations)
- Operators can differ between the subpopulations

Chapter 6: Popular Evolutionary Algorithm Variants

Historical EA variants:

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Algorithm	Chromosome Representation		Mutation
Genetic Algorithm (GA)	Array	X	X
Genetic Programming (GP)	Tree	X	X
Evolution Strategies (ES)	Array	(X)	X
Evolutionary Programming (EP)	No constraints	-	X

Genetic Algorithms: Overview Simple GA (1/2)

- Developed: USA in the 1960's
- Early names: Holland, DeJong, Goldberg
- Typically applied to:
 - discrete function optimization
 - benchmark for comparison with other algorithms
 - straightforward problems with binary representation

Features:

- not too fast
- missing new variants (elitism, sus)
- often modelled by theorists

Genetic Algorithms: Overview Simple GA (2/2)

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

Genetic Algorithms: SGA reproduction cycle

- Select parents for the mating pool
 (size of mating pool = population size)
- Shuffle the mating pool
- Apply crossover for each consecutive pair with probability p_c, otherwise copy parents
- Apply mutation for each offspring (bit-flip with probability p_m independently for each bit)
- Replace the whole population with the resulting offspring

Genetic Algorithms: An example after Goldberg '89

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g., $01101 \leftrightarrow 13$
 - Population size: 4
 - 1-point x-over, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

X² example: Selection

String	Initial	x Value		1 100	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	0 1 1 0 1	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

X² example: Crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	$0\ 1\ 1\ 0\ 0$	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 011	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

X² example: Mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	01100	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	11001	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

Genetic Algorithms: The simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.,
 - Representation is too restrictive
 - Mutation & crossover operators only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model can be improved with explicit survivor selection

Genetic Algorithms: Simple GA (SGA) summary

Representation	Bit-strings	
Recombination	1-Point crossover	
Mutation	Bit flip	
Parent selection	Fitness proportional – implemented by Roulette Wheel	
Survivor selection	Generational	

Evolution Strategies: Quick overview

- Developed: Germany in the 1960's by Rechenberg and Schwefel
- Typically applied to numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

Evolution Strategies: Example (1+1) ES

- Task: minimise f : Rⁿ → R
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

Evolution Strategies: Representation

- Chromosomes consist of two parts:
 - Object variables: x₁,...,x_n
 - Strategy parameters (mutation rate, etc):
 p₁,...,p_m

• Full size: $\langle x_1, \dots, x_n, p_1, \dots, p_n \rangle$

Evolution Strategies: Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected

$$P_{uniform}(i) = \frac{1}{\mu}$$

Evolution Strategies: Recombination

- Two parents create one child
- Acts per variable / position by either
 - Intermediary crossover, or
 - Discrete crossover
- From two or more parents by either:
 - Local recombination: Two parents make a child
 - Global recombination: Selecting two parents randomly for each gene

Evolution Strategies: Names of recombinations

	Two fixed parents	Two parents selected for each i	
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary	
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete	

Evolution Strategies: ES summary

Representation	Real-valued vectors		
Recombination	Discrete or intermediary		
Mutation	Gaussian perturbation		
Parent selection	Uniform random		
Survivor selection	(μ,λ) or $(\mu+\lambda)$		

Evolutionary Programming: Quick overview

- Developed: USA in the 1960's by Fogel et al.
- Typically applied to:
 - traditional EP: prediction by finite state machines
 - contemporary EP: (numerical) optimization
- Attributed features:
 - very open framework: any representation and mutation op's OK
 - Contemporary EP has almost merged with ES
- Special:
 - no recombination
 - self-adaptation of parameters standard (contemporary) EP)

Evolutionary Programming: Representation

- For continuous parameter optimisation
- Chromosomes consist of two parts:
 - Object variables: x₁,...,x_n
 - Mutation step sizes: $\sigma_1, ..., \sigma_n$
- Full size: $\langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n \rangle$

Evolutionary Programming: Recombination

- None
- Rationale: one point in the search space stands for a species, not for an individual and there can be no crossover between species

Evolutionary Programming: Selection

- Each individual creates one child by mutation
 - Deterministic
 - Not biased by fitness
- Parents and offspring compete for survival in round-robin tournaments.

Evolutionary Programming: Summary

Representation	Real-valued vectors
Recombination	None
Mutation	Gaussian perturbation
Parent selection	Deterministic (each parent one offspring)
Survivor selection	Probabilistic (μ+λ)

Virtual Creatures (Karl Sims, 1994)

Genotype: directed graph. **Phenotype:** hierarchy of 3D parts.

Genetic Programming: Quick overview

- Developed: USA in the 1990's by Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - "automatic evolution of computer programs"
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees
 - mutation possible but not necessary

Trees are a universal form, e.g. consider

• Arithmetic formula:
$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

• Logical formula: $(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$

```
i =1;
while (i < 20)
{
i = i +1
```


60

- In GA, ES, EP chromosomes are linear structures (bit strings, integer string, realvalued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- In GA, ES, EP the size of the chromosomes is fixed
- Trees in GP (Genetic Programming) may vary in depth and width

Example of how to initialize trees: Full initialisation to depth 2

Genetic Programming: Variation Operators

GA flowchart

GP flowchart

Genetic Programming: Mutation

 Most common mutation: replace randomly chosen subtree by randomly generated tree

Genetic Programming: Recombination

a 3 3 + y 12

Parent 1

Child 1

Parent 2

Child 2

Genetic Programming: Bloat

- Average tree sizes in the population tend to increase over time
- Countermeasures:
 - Maximum tree size
 - Parsimonypressure: penaltyfor being oversized

Genetic Programming: Summary

Representation	Tree structures		
Recombination	Exchange of subtrees		
Mutation	Random change in trees		
Parent selection	Fitness proportional		
Survivor selection	Generational replacement		

Summary: The standard EA variants

Name	Representation	Crossover	Mutation	Parent selection	Survivor selection	Specialty
Genetic Algorithm	Usually fixed-length vector	Any or none	Any	Any	Any	None
Evolution Strategies	Real-valued vector	Discrete or intermediate recombination	Gaussian	Random draw	Best N	Strategy parameters
Evolutionary Programming	Real-valued vector	None	Gaussian	One child each	Tournament	Strategy parameters
Genetic Programming	Tree	Swap sub-tree	Replace sub-tree	Usually fitness proportional	Generational replacement	None