ELEN30013 Electronic System Implementation

Week 6/1: Review +
Driving Actuator +
Introduce to Signal Conditioning

Presenter: Jie (Jack) Li

Email: jie.li@unimelb.edu.au

Sep 2016

- DC Analysis
 - Identify the operation conditions for different mode
 - → Design circuit to meet design requirement

- Temperature variation impact
 - Notice the variation and taken it into your design calibration

- Why Emitter Degeneration?
 - Gain is a strong function of both temperature and bias current
 - gain becomes unpredictable and unstable
 - Low input dynamic range limits small-signal gain
 - ightharpoonup Voltage gain Av \approx Rc/Re rather than BJT's intrinsic characteristics

- Transfer Function Analysis
 - Identify Operation Conditions
 - Input / Output Impedance
 - Voltage Gain

	Definition	Expression with emitter degeneration	Exp. w/o emitter deg. (Re=0)
Current Gain	$A_i = i_{out}/i_{in}$	β	$oldsymbol{eta}$
Voltage Gain	$A_{v} = v_{out}/v_{in}$	$-\frac{\beta R_C}{r_{\pi} + (\beta + 1)R_E}$	$pprox$ - $g_m R_C$
Input Impedance	$r_{in}=v_{in}/i_{in}$	$r_{\pi} + (\beta + 1)R_{E}$	r_{π}
Output Impedance	r _{out} =v _{out} /i _{out}	R_{C}	R_{C}

- AC Analysis
 - Identify the operation conditions (voltage controlled device - Difference compare to BJT?)
 - Gain/Phase vs. frequency

Project Overview

Drive the Actuator

High frequency/ current?

- H-bridge
 - PWM Run simulation first!
 - Important: which transistor to pick (BC337!?)
- Push-Pull

Sh-Pull bc337: max input current?

PWM + LPF(what value to pick?)

Push Pull; pnp&npn H-bridge:?

- Which solution to pick
 - component counts, power consumption, accuracy, etc. which has less component? speed to change the temp?

Drive the Actuator using 555 Timer

- 555 timer can time from microseconds to hours
- Adjustable duty cycle
 - → Modulated output based on input voltage

Figure 19. Pulse-Width-Modulation Waveforms

Can be used for both driving the actuator and signal conditioning

Phase Shift Oscillator

Single stage CE BJT amplifier (Class A) → 180 phase shift (v_{out} vs v_{in})

An oscillator sufficient feedback of the correct phase (i.e, "Positive Feedback")

Resistance-Capacitance Oscillator (RC Oscillator)

Phase Shift Oscillator

RC Phase Angle:

•
$$X_C = \frac{1}{2\pi fc}$$
, $R=R$

$$\Rightarrow Z = \sqrt{R^2 + X_C^2}, \quad \emptyset = tan^{-1} \frac{X_C}{R}$$

- RC oscillator frequency
 - $f_r = \frac{1}{2\pi RC\sqrt{2N}}$
 - N: number of RC stages (i.e. 3)

Phase Shift Oscillator

- Phase Shift Oscillator as temperature sensor
 - Replace R in filter section with a thermistor
 - Frequency and period become temperature dependent
 - Measure period using time for subsequent transitions to HIGH
 - How can we quantify quality of this measurement technique

R=10000*exp(-14.141963+4430.783/V(temperature)-34078.983/V(temperature)/V(temperature)-8894192.9/V(temperature)