

Advanced Process Simulation for Chemicals & Petrochemicals

Maarten Nauta – Senior Consultant

A **new** product

...based on the gPROMS Platform

...for the **Chemicals & Petrochemicals** sector

...delivering new levels of functionality, usability & efficiency

Technical overview

- Drag-and-drop flowsheeting
- Comprehensive library of unit operation models
- Custom modelling
- Advanced thermodynamics
- Steady-state & dynamic simulation
 - ...and transition from one to the other
- Process optimisation

gPROMS ProcessBuilder This morning's presentations

- Overview
 - Dr Maarten Nauta
- Distillation/absorption
 - Dr Charles Brand
- Pressure Swing Adsorption (PSA)
 - Dr Mayank Patel
- gSAFT physical properties
 - Dr Tom Lafitte
- Conclusion & perspective
 - Prof C.C. Pantelides

Overview of this presentation

- Content
 - Model libraries
- Workflow
 - Steady-state flowsheeting
 - From steady state to dynamics
- Advanced capabilities for flowsheet simulation

gPROMS ProcessBuilder Model libraries

Model Libraries - I. Separation

Separations – Fluid-Fluid	Steady- state	Dynamic
Component splitter		
Flash drum	\square	\square
Decanter		$\overline{\mathbf{Q}}$
3-phase separator		
Distillation column (tray, equilibrium)	\square	
Distillation column (packed-bed, HETP)		
Distillation column (packed-bed, 1D rate-based)	Ø	Ø
Distillation column (packed-bed, 2D rate-based)		\square
Distillation column (reactive)		

Separations – Adsorption	Steady- state	Dynamic
Adsorption bed		$\overline{\square}$
Schedule for periodic processes (PSA, TSA)		\square
Schedule for self-interacting bed approach		$\overline{\square}$

Separations – Membranes	Steady- state	Dynamic
Membrane module	Ø	Ø

Separation

Reaction

Heat exchange

Flow transportation

Model Libraries - II. Reaction

Reaction	Steady- state	Dynamic
Conversion reactor	Ø	
Gibbs reactor		
CSTR (kinetic & equilibrium reactions)	Ø	Ø
PFR (kinetic & equilibrium reactions)		Ø
Fixed-bed catalytic reactor (1D)	Ø	Ø
Fixed-bed catalytic reactor (2D)	\square	\square
Fixed-bed catalytic reactor (2D + intra-particle)	Ø	
STR (kinetic & equilibrium reactions) FR (kinetic & equilibrium reactions) ixed-bed catalytic reactor (1D) ixed-bed catalytic reactor (2D) ixed-bed catalytic reactor (2D + intra-particle) eaction mechanisms: Arrhenius		
Reaction mechanisms:		✓

Separation

Reaction

Heat exchange

Flow transportation

Model Libraries - III. Heat exchange

Heat exchange	Steady- state	Dynamic
Heater		
Cooler		
Two-stream heat exchanger	Ø	
Multi-stream heat exchanger	$\overline{\mathbf{V}}$	\square

Separation

Reaction

Heat exchange

Flow transportation

Model Libraries - IV. Flow transportation

Flow transportation	Steady- state	Dynamic
Pipe		Ø
Pump	$\overline{\mathbf{V}}$	Ø
Valve	$\overline{\mathbf{V}}$	

Compression	Steady- state	Dynamic
Compressor		$\overline{\square}$
Expander		\square
Compressor section	Ø	\square
Electric drive		\square
Surge valve		\square

Reaction

Heat exchange

Flow transportation

Model Libraries - V. Instrumentation & control

Instrumentation and control	Steady- state	Dynamic
Controllers ■ Gain, PID, delays	\square	
Logic ■ Switches		
Linear systems ■ Transfer function, state-space model		
Discrete ■ Dead zone, hysteresis, saturation		
Mathematics ■ Functions, basic operations		
Signal Sources ■ Constant, ramp, step signal, function generator, time signal	Ø	Ø
Signal Sinks ■ Display, plot, X-Y plot	\square	
Data ■ Lookup table, file read, file write		
FunctionalitySystem identification, linearisation,Mixed-integer optimisation	Ø	Ø

Separation

Reaction

Heat exchange

Flow transportation

Model Libraries

- Separation
 - fluid/fluid: distillation, absorption
 - fluid/solid: adsorption, membrane
- II. Reaction
- III. Heat exchange
- IV. Flow transportation
- V. Instrumentation & control

- VI. Custom models & model libraries
 - proprietary, third-party,

gPROMS ProcessBuilder Steady-state flowsheeting

Overview of modelling workflow

Example: Methanol production

1. Basic mass & energy balances

- Drag & drop models on the flowsheet
- Enter output specifications for model in dialogs

Determine processmass & energy balances

Sequential flowsheet initialisation

Problem: In equation-based flowsheet model initialisation, during the first steps, unit operation models are sometimes "fed" with a non-physical feed

Sequential flowsheet initialisation

Solution: initialise flowsheet sequentially

2. Sizing

- Switch unit operations to design mode
- Refine unit specifications
 - e.g. choose specific type of equipment
- Impose performance specs
 - e.g. separation to be achieved

- Determine
 - sizing
 - operating point
- Video

3. Performance rating

Switch unit operations to performance mode

Determine process performance for given input specifications

4. Costing

- Switch unit operations to costing mode
 - models incorporate fixed & variable cost calculations

- Simulation: Compute cost for given specifications
- Optimisation: minimise cost by adjusting process design and operation parameters

From steady state to dynamics

Overview of modelling workflow

5. Pressure-driven mode

- Switch all units to pressure-driven mode
- Specify downstream pressures

- Determine pressure-driven
 <u>steady-state</u> operating point
- Video

6. Dynamic mode operation

- Switch all units to dynamic mode
- Add controllers to enforce unit outlet specifications

- Fully dynamic flowsheet
 - use steady state as default initial condition...
- Video dynamic no control
- Video dynamic control

6. Dynamic mode operation

- Switch all units to dynamic mode
- Add controllers to enforce unit outlet specifications

- Fully dynamic flowsheet
 - use steady state as default initial condition...
 - ...or specify initial condition via dialog

gPROMS ProcessBuilder Advanced capabilities for flowsheet simulation

Complex flowsheets with multiple recycles

Ethylene plant model with refrigeration, 70k+ equations

gPROMS ProcessBuilder Sensitivity studies — II

Integration with custom models

Add custom models easily using the gPROMS language

Templates for constructing

ProcessBuilder -compliant

custom models

provided

Flowsheets with high-fidelity unit models

Auto-thermal reforming process

- 2 multitubular reactors
- 2D fixed-bed catalytic reactor models

Advanced Model Libraries now integrated within ProcessBuilder

- AML:FBCR
- AML:GLC

A **new** product

...based on the gPROMS Platform

...for the **Chemicals & Petrochemicals** sector

...delivering new levels of functionality, usability & efficiency

gPROMS ProcessBuilder This morning's presentations

- Overview
 - Dr Maarten Nauta
- Distillation/absorption
 - Dr Charles Brand
- Pressure Swing Adsorption (PSA)
 - Dr Mayank Patel
- gSAFT physical properties
 - Dr Tom Lafitte
- Conclusion & perspective
 - Prof C.C. Pantelides

Handling of multiple recycles

Solution time with no user-provided initial guesses: 37 CPU s (Intel i7 laptop)

K. Y. Cheung, Site-wide and supply chain optimisation for continuous chemical processes, PhD thesis, Imperial College, 2008

Basic steady-state flowsheeting

Cavett problem

Dynamics (1)

MODELLING FORUM 2014

Transition from steady-state to dynamics

Flow-driven steady-state flowsheet

Pressure-driven dynamic flowsheet at steady-state with control

Flow-driven steady-state flowsheet with design specifications

Pressure-driven steady-state flowsheet with design specifications

Dynamic applications, Pressure Swing Adsorption (PSA)

Detailed design of individual units

- Detailed design of individual unit operations using flowsheeting
 - Multistream heat exchanger
 - Multilayer adsorption bed
 - Fixed bed-catalytic reactor configurations
 - Custom distillation column configurations

Specification trade-offs across units

I	adj_spec001 (adj_spec)	×
	Specify	
	Adjusted variable type Scalar	
	Adjust signal variables Boilup molar ratio	
	Adjusted variable initial guess 3	
1	Target Adjust (Initial guesses) Numerics	_
	OK Cancel Reset all	

Specify		
Operation mode	Initialisation procedure	
Initialisation procedure	Automatic (Robust)	
Typical values for target variable	e 1	
Typical value for adjusted varial	ble 1	
Target Adjust (Initial guesses) Nume	rics	
OK Ca	ncel Reset all	

gPROMS ProcessBuilder Sensitivity studies — II

0.984 0.982 0.98

O2 flow, t/yr (x 10E3)

ProcessBuilder key benefits

Key benefits

- Rapidly construct flowsheet models of a wide array of chemical processes
 - Drag-and-drop construction of flowsheets
 - Easy configuration of unit models
- Built-in optimisation capability
- Seamless integration with custom modelling
 - Processes with custom unit operations
 - Detailed characterisation of kinetics, mass transfer, isotherms....
 - Custom cost calculations
- Steady-state and dynamic simulation using a single library
- Only "true equation oriented" flowsheeting tool
 - Rapid convergence of process flowsheets, even with multiple recycles
 - Full exploitation of recent developments on Model Initialisation Procedures
 - Ensure robustness of solution with little/no user intervention

ProcessBuilder Roadmap

ProcessBuilder Roadmap

Flowsheet diagnostics

Batch processes and plant start-up

Extend number of distillation column initialisation algorithms

Documentation, testing and quality control