1 Allgemein

1.1 Trigonometrie

Bogenmaß
$$0$$
 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ π

Winkel 0° 30° 45° 60° 90° 120° 135° 150° 180°
 $\sin x$ 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0
 $\cos x$ 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0 $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ -1

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

$$\sin^2(x) + \cos^2(x) = 1$$

1.2 Potenzgesetze

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$(a^{n})^{m} = a^{nm}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{\frac{b}{n}} = \sqrt[n]{a^{b}}$$

2 Mengen

2.1 Definitionen

Obere/Untere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b, \ \exists c \in \mathbb{R} \ \forall a \in A: \ a \geq c$

Supremum:kleinste obere Schranke $\sup A$ Infimum:grösste untere Schranke inf A

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

2.2 Identitten

$$A+B:=\{a+b|a\in A,b\in B\}$$

$$\sup(A+B)=\sup A+\sup B,\ \inf(A+B)=\inf A+\inf B$$

$$\sup(A\cup B)=\max\{\sup A,\sup B\},\ \inf(A\cup B)=\min\{\inf A,\inf B\}$$

3 Komplexe Zahlen

3.1 Polarform

$$z = x + iy = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi}$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\varphi = \arctan(\frac{y}{x}) \quad \text{(je nach Quadrant)}$$

$$x = r\cos(\varphi)$$

$$y = r\sin(\varphi)$$

$$zw = (re^{i\varphi}) \cdot (se^{i\psi}) = rse^{i(\varphi + \psi)}$$

$$\sqrt[q]{z} = \sqrt[q]{s}e^{i\phi}, \text{ wobei } \phi = \frac{\varphi}{q} \mod \frac{2\pi}{q}$$

$$e^{i(\frac{\pi}{2} + 2\pi k)} = i, \ e^{i\pi} = 1, \ e^{-i\pi} = -1$$

3.2 Identitäten

$$\overline{z} = x - iy$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$|z|^2 = z\overline{z}$$

$$|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$$

4 Grenzwert

4.1 Dominanz

$$\begin{array}{ll} \text{F\"{u}r } x \to +\infty: & \ldots < \log(\log(x)) < \log(x) < x^\alpha < \alpha^x < x! < x^x \\ \text{F\"{u}r } x \to 0: & \ldots < \log(\log(x)) < \log(x) < (\frac{1}{x})^\alpha \end{array}$$

4.2 Fundamentallimes

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = \lim_{x \to a} \frac{\tan \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

4.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

4.4 $e^{\log(x)}$ -Trick

Anforderung: Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞ 0" oder "1 $^{\infty}$ " für $x \to 0$

Grundsatz:
$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{g(x)\cdot\log(f(x))}$$

Tipp: Danach den Limes des Exponenten berechnen. Oft ist Bernoulli-de l'Hôpital dazu ntzlich.

4.5 Satz von Bernoulli-de l'Hôpital

Anforderung: Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$.

Grundsatz:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Term	Anforderung	Umformung
f(x)g(x)	$"0\cdot\infty"$	$\frac{g(x)}{\frac{1}{f(x)}}$
$\frac{f(x)}{g(x)} - \frac{h(x)}{i(x)}$	$\infty-\infty$	$\frac{f(x)i(x) - h(x)g(x)}{g(x)i(x)}$

5 Folgen

5.1 Definition

Konvergenz: $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}, \text{ sodass } \forall n \geq N : |a_n - a| < \varepsilon$ **Divergenz:** $\forall K > 0 \ \exists N = N(K) \in \mathbb{N}, \text{ sodass } \forall n \geq N : |a_n| > K$

5.2 Beweis

- 1. Zeige mittels **Induktion**, dass die Folge **beschrnkt** ist und monoton **steigt/filt**. Benutze dazu z.B. folgende Aussagen: $a_n \le a_{n+1}$ oder $a_{n+1} a_n \ge 0$.
- 2. Schtze den Grenzwert durch die ersten paar Terme ab
- 3. Beweise den Grenzwert (z.B. mit $a_n \ge a$)

6 Reihen

6.1 Konvergenzkriterien

	Eignung	Bemerkung	
Limes des allgemeinen		zeigt nur Divergenz	
Glieds			
Majoranten- und Mino-		ersten Glieder spielen keine	
rantenkriterium		Rolle	
Quotientenkriterium	a_n mit Faktoren wie $n!$,	gleiche Folgerung wie	
	a^n , oder Polynome	Wurzelkriterium	
Wurzelkriterium	$a_n = (b_n)^n$	gleiche Folgerung wie Quo-	
		tientenkriterium	
Leibnitz-Kriterium	$\sin, \cos, \tan, (-1)^n$		
Absolute Konvergenz	$\sin, \cos, \tan, (-1)^n$		
Sandwich-Theorem	\sin , \cos , \tan , $(-1)^n$		

Limes des allgemeinen Glieds

Bemerkung: Mit dieser Methode lsst sich nur die Divergenz beweisen, nicht jedoch die Konvergenz.

- 1. $\sum_{n} a_n$ gegeben
- 2. Grenzwert $\lim_{n\to\infty} a_n$ berechnen
 - falls Grenzwert $\neq 0 \Rightarrow$ divergent
 - falls Grenzwert = $0 \Rightarrow$ keine Aussage

Majoranten- und Minorantenkriterium

Es seien $a_n, b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_{n} \text{ konvergent} \Rightarrow \sum_{n} b_{n} \text{ konvergent} \quad \text{(Majorantenkriterium)}$$

$$\sum_{n} b_{n} \text{ divergent} \Rightarrow \sum_{n} a_{n} \text{ divergent} \quad \text{(Minorantenkriterium)}$$

Vergleichskriterium

- 1. $\sum_{n} a_n$ und $\sum_{n} b_n$ gegeben mit $a_n, b_n > 0$
- 2. Grenzwert $\lim_{n\to\infty} \frac{a_n}{b_n}$ berechnen
 - falls Grenzwert = 0:

 - $-\sum_{n} a_{n}$ divergent $\Rightarrow \sum_{n} b_{n}$ divergent $-\sum_{n} b_{n}$ konvergent $\Rightarrow \sum_{n} a_{n}$ konvergent
 - falls Grenzwert = ∞ :
 - $-\sum_{n} a_{n}$ konvergent $\Rightarrow \sum_{n} b_{n}$ konvergent $-\sum_{n} b_{n}$ divergent $\Rightarrow \sum_{n} a_{n}$ divergent

Quotientenkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n \mapsto \infty} |\frac{a_{n+1}}{a_n}|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Leibniz-Kriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls:
 - (a) $a_n \ge 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Absolute Konvergenz

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls $\sum_{n} |a_n|$ konvergent

6.2 Geometrische Reihe

Reihe der Form $\sum_{k=0}^{\infty} a \cdot r^k$ mit der **Partialsumme**:

$$S_N = \frac{a - ar^{N+1}}{1 - r}$$

Konvergent, falls 0 < |r| < 1 mit Grenzwert:

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

6.3 Potenzreihe

Reihe der Form $\sum_{0}^{\infty} a_n x^n$. Konvergent, falls $|x| < \rho$. In diesem Gebiet darf man die Reihe ableiten und integrieren.

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

6.3.1 Tipps

$$\cos(x) = \sum_{0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$
$$\sin(x) = \sum_{0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$
$$e^{x} = \sum_{0}^{\infty} \frac{x^{n}}{n!}$$

7 Stetigkeit

7.1 Stetigkeitskriterien

Weierstrass-Kriterium

Fr alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$, sodass fr alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon$$

Gleichmssige Stetigkeit

Fr alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$, sodass fr alle $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon$$

Bemerkung: Ist f stetig und kompakt, dann ist sie auch gleichmssig stetig.

Lipschitz-Stetigkeit

Es existiert eine Konstante $L \in \mathbb{R}$, sodass:

$$|f(x) - f(y)| \le L|f(x) - f(y)| \quad \forall x, y \in \Omega$$

Bemerkung: Ist f' auf Ω beschrukt, so ist f Lipschitz-stetig. Lipschitz-Stetigkeit impliziert gleichmssige Stetigkeit.

Punktweise Konvergenz

 $f_n(x)$ konvergiert punktweise falls:

$$\forall x \in \Omega \quad \lim_{n \to \infty} f_n(x) = f(x)$$

Gleichmssige Konvergenz

Grundsatz: Falls eine Folge stetiger Funktionen f_n gleichmssig gegen f konvergiert, ist f stetig.

 $f_n(x)$ konvergiert gleichmssig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0$$

Bemerkung: Gleichmssige Konvergenz impliziert punktweise Konvergenz.

8 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

8.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

8.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

8.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

8.4 Hauptsatz von Calculus

$$f(x) = \int_{l}^{m(x)} g(t)dt$$
$$f'(x) = g(m(x)) \cdot \frac{d}{dx} m(x)$$

wobei m(x) der Form ax^b ist mit $l \in \mathbb{R}$

9 Integration

9.1 Elementare Integrale

f'(x)	f(x)	F(x)
0	c	cx
$r \cdot x^{r-1}$	x^r	$\frac{x^{r+1}}{r+1}$
$-\frac{1}{x^2} = -x^{-2}$	$\frac{1}{x} = x^{-1}$	$\ln x $
$\frac{-\frac{1}{x^2} = -x^{-2}}{\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{2}{3}x^{\frac{3}{2}}$
$\cos(x)$	$\sin(x)$	$-\cos(x)$
$-\sin(x)$	$\cos(x)$	$\sin(x)$
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) $
e^x	e^x	e^x
$c \cdot e^{cx}$	e^{cx}	$\frac{1}{c} \cdot e^{cx}$
$\ln(c) \cdot c^x$	c^x	$\overline{\ln(c)}$
$\frac{1}{x}$	$\ln x $	$x(\ln x -1)$
$\frac{1}{\ln(a)\cdot x}$	$\log_a x $	$\frac{x}{\ln(a)}(\ln x -1)$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \cdot \arcsin(x) + \sqrt{1 - x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \cdot \arccos(x) - \sqrt{1 - x^2}$
$\frac{1}{1+x^2}$	$\arctan(x)$	$x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2)$

9.2 Regeln

$$\begin{array}{ll} \textbf{Direkter Integral} & \int f(g(x))g'(x) \; dx = F(g(x)) \\ \textbf{Partielle Integration} & \int f' \cdot g \; dx = f \cdot g - \int f \cdot g' \; dx \\ \textbf{mit Polynomen} & \int \frac{p(x)}{q(x)} \; dx \Rightarrow \; \text{Partialbruchzerlegung} \\ \textbf{Substitution} & \int_a^b f(\varphi(t))\varphi'(t) \; dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \; dx \; \text{mit } x = \varphi(t) \\ \end{array}$$

9.3 Tipps

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos(x)|$$

$$\int \frac{1}{x - \alpha} \, dx = \log(x - \alpha)$$

$$\int \frac{\frac{1}{\alpha}}{1 + (\frac{x}{\alpha})^2} \, dx = \arctan(x)$$

$$\int \sin^2(x) \, dx = \frac{1}{2}(x - \sin(x)\cos(x)) + C$$

$$\int \cos^2(x) \, dx = \frac{1}{2}(x + \sin(x)\cos(x)) + C$$

10 Differentialgleichungen

10.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

10.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

10.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$
 umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen
$$y(x) \equiv 0$$
 erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = Ce^{\frac{-x^2}{2}}$$

Anfangsbedingung gebrauchen
$$\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

10.2.2 Variation der Konstanten

Grundsatz:
$$y(x) = y_{\text{homo}}(x) + y_p(x)$$

$$y' - y = 1, \ y(0) = 0$$

homogener Ansatz y' = y

konstante Lösungen $y(x) \equiv 0$

Trennung
$$\frac{dy}{y} = dx \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x$$

homogene Lösung
$$y_{\text{homo}}(x) = Ae^x, \ A = e^C \in \mathbb{R}$$

partikulärer Ansatz
$$y_p(x) = A(x)e^x$$

einsetzen
$$A'e^x + Ae^x - Ae^x = 1 \Rightarrow A' = e^{-x} \Rightarrow A(x) = \int e^{-x} dx = -e^{-x}$$

partikuläre Lösung $y_p(x) = -1$

Lösung
$$y(x) = Ae^x - 1$$
 mit Anfangsbedingung $A = 1$
 $\Rightarrow y(x) = e^x - 1$

10.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz
$$y(x) = e^{\lambda x}$$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

Nullstellen 4, -2

allgemeine Lösung
$$y(x) = Ae^{4x} + Be^{-2x}$$

Anfangsbedingung gebrauchen
$$y(1) = Ae^4 + Be^{-2} = 1$$
, $y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung
$$y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

Komplexe Nullstellen:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ein komplexes Nullstellenpaar der Form $\alpha \pm \beta i$ liefert folgende homogene Lsung:

$$y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$$

10.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

Bemerkung: Kommt der gewhlte Ansatz schon in der homogenen Lsung vor, so multipliziert man den Ansatz einfach mit x.

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

11 Vektorfelder

11.1 Differential

$$df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

11.2 Gradient

$$\operatorname{grad}(f) = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Der Gradient zeigt in die Richtung der maximalen Zuwachsrate von f und seine L
nge ist gleich der maximalen nderung von f.

Bemerkung: $f:\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}$

11.3 Hessematrix

$$\operatorname{Hess}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Falls a hat in x0 nur positive eigenwerte dann ist es eine maximalstelle, falls sie hat nur negative eingewerte dann ist es eine minimalstelle, falls sie hat beide dann ist es ein sattelpunkt.

11.4 Rotation

In
$$\mathbb{R}^3$$
: $\operatorname{rot}(\vec{v}) = \nabla \times \vec{v} = \begin{pmatrix} \frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \\ \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \\ \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \end{pmatrix}$, in \mathbb{R}^2 : $\operatorname{rot}(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$

Bemerkung: Falls $rot(\vec{v}) = 0$, dann ist \vec{v} konservativ (Potenzialfeld).

11.5 Divergenz

$$\operatorname{div}(v) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \dots$$

11.6 Potenzialfeld

Ein Potenzialfeld ist konservativ. Das Potenzial Φ eines Potenzialfeldes ist gleich:

$$\nabla \Phi = \vec{v}$$

Fr ein Potenzialfeld gilt $rot(\vec{v}) = 0$ und es erflit die **Integrabilittsbedinungen**:

$$\frac{\partial v_i}{\partial x_j} = \frac{\partial v_j}{\partial x_i}, \forall i \neq j$$

12 Wegintegral

12.1 Standardmethode

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) dt$$

12

$$\vec{v} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0, 2\pi] \mapsto \mathbb{R}^2, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix}$$
 parametrisieren hier bereits gegeben
$$\gamma \text{ ableiten } \dot{\gamma} = \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix}$$
 in Formel einsetzen
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (1 - \cos(t))^2 \ dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^2(t)) \ dt$$
 Lösung
$$2\pi - 0 + \pi = 3\pi$$

12.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist **konservativ**(= Potenzialfeld, der Weg ist egal). Es existiert ein Potenzial.

$$\begin{aligned} \mathbf{Grundsatz:} & \int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\mathrm{Ende}) - \Phi(\mathrm{Anfang}) \\ \vec{v} &= \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0) \\ \text{gleichsetzen:} & \vec{v} &= \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi \\ & \frac{\partial \Phi}{\partial y} &= e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x) \\ \text{ableiten:} & \frac{\partial \Phi}{\partial x} &= e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy} \\ &\Rightarrow C' &= 0 \Rightarrow C = \text{const.} \end{aligned}$$

$$\begin{aligned} \mathbf{Potenzial:} & \Phi &= xe^{xy} + \text{const.} \\ \mathbf{L\ddot{o}sung:} & \int_{\gamma} \vec{v} \cdot d\vec{s} &= \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2 \end{aligned}$$

12.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\begin{aligned} \textbf{Grundsatz:} \quad & \int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \; dx dy \\ & \vec{v} = \binom{x+y}{y}, \; \text{Kreisbogen mit Radius 1 um } (0,0) \\ \text{Rotation berechnen:} \quad & rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1 \\ \text{Normalbereich:} \quad & E = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\} \\ \text{in Formel einsetzen:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{E} -1 \; dx dy = -\mu(E) = -\pi \end{aligned}$$

13 Flächenintegral

13.1 Koordinatentransformationen

13.1.1 Polarkoordinaten (\mathbb{R}^2)

Variablen: $\begin{array}{ll} x = r\cos(\phi) \\ y = r\sin(\phi) \end{array}$ Volumenelement: $dxdy = r\ drd\phi$

13.1.2 Elliptische Koordinaten (\mathbb{R}^2)

Variablen: $\begin{array}{ll} x = ra\cos(\phi) \\ y = rb\sin(\phi) \end{array}$ Volumenelement: $dxdy = abr \ drd\phi$

13.1.3 Zylinderkoordinaten (\mathbb{R}^3)

 $x = r\cos(\phi)$ Variablen: $y = r\sin(\phi)$ Volumenelement: $dxdydz = r\ drd\phi dz$ z = z

13.1.4 Kugelkoordinaten (\mathbb{R}^3)

 $x = r\sin(\theta)\cos(\phi)$ Variablen: $y = r\sin(\theta)\sin(\phi)$ Volumenelement: $dxdydz = r^2 dr \sin(\theta) d\theta d\phi$ $z = r\cos(\theta)$

13.2 Normalbereich

Grundsatz: $\Omega = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$ $\int_{\Omega} F \ d\mu = \int_{a}^{b} dx \int_{f(x)}^{g(x)} dy \ F(x,y)$

 $\int_{\Omega} xy\ d\mu,\ \Omega=\{(x,y)\in\mathbb{R}^2|y\geq x^2,x\geq y^2\}$ als Normalbereich schreiben: $\Omega=\{(x,y)\in\mathbb{R}^2|0\leq x\leq 1,x^2\leq y\leq \sqrt{x}\}$

in Formel einsetzen: $\int_{\Omega} xy \ d\mu = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy xy = \int_0^1 dx \ x \Big[\frac{y^2}{2} \Big]_{x^2}^{\sqrt{x}}$ $= \int_0^1 \Big(\frac{x^2}{2} - \frac{x^5}{2} \Big) dx = \frac{1}{12}$

Bemerkung: Soll nur die Flche ausgerechnet werden, so whle F(x,y) = 1. Werden Polarkoordinaten benutzt, so whle $F(r,\phi) = r$.

13.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

Grundsatz: $\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$, falls $rot(\vec{v}) = 1$

14

Flächeninhalt der Ellipse E, berandet durch $x = a\cos(\theta), y = b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen: $\mu(E) = \pi ab$

14 Oberflchenintegral

gegeben:
$$\vec{F}(x,y,z) = \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 + 3z^2 - 3 \end{pmatrix}$$

gesucht: Fluss durch die Mantelfiche des Kegels

(von Innen nach Aussen)

Vorgehen: Fluss durch den ganzen Kegel

mit Satz von Gauss berechnen

Fluss durch Deckel

mit Standardmethode berechnen

14.1 Standardmethode

Grundsatz:
$$\int_{\partial V} \vec{v} \cdot \vec{n} \ do$$

Normalvektor:
$$\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Vektorfeld anpassen:
$$z = 1 \Rightarrow \vec{F} = \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 \end{pmatrix}$$

Grundsatz anwenden:
$$\iint_{D} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 \end{pmatrix} dxdy = \iint_{D} x^2 dxdy$$

Koordinatentransformation:
$$\int_0^{2\pi} \int_0^1 r^3 \cos(\phi) \ dr d\phi = \frac{\pi}{4}$$

14.2 Satz von Gauss

Grundsatz:
$$\int_{\partial V} \vec{v} \cdot \vec{n} \ do = \int_{V} \operatorname{div}(\vec{v}) \ d\mu$$

wobei \vec{n} die nach aussen gerichtete Normale lngs ∂V bezeichnet.

Divergenz berechnen: $\operatorname{div}(\vec{F}) = 6z$

Grundsatz anwenden:
$$\int_{-1}^{1} dz \int_{0}^{2\pi} d\phi \int_{0}^{\frac{z+1}{2}} 6zr \ dr = 2\pi$$

Bemerkung: In diesem Beispiel wurden zylindrische Koordinaten benutzt.

15 Kurvendiskussion

kritischer Punkt: $p_0 \in \Omega$ für welchen $\operatorname{rank}(df(p_0)) < \min\{m, n\}$ gilt

Kandidaten fr Extrema: $p_0 \in \Omega$ fr welchen $df(p_0) = 0$ gilt

15.1 Extremwertaufgaben ohne Nebenbedingungen

- 1. Kandidaten fr Extrema finden df(x) = 0
- 2. Bestimmung:
 - (a) $\operatorname{Hess}(f)(p_0)$ positiv definit \Rightarrow lokales Minimum
 - (b) $\operatorname{Hess}(f)(p_0)$ negativ definit \Rightarrow lokales Maximum
 - (c) $\operatorname{Hess}(f)(p_0)$ indefinit \Rightarrow Sattelpunkt

Bemerkung: Falls alle Eigenwerte von A grsser als 0 sind, dann ist A **positiv definit**. Hat A sowohl positive als auch negative Eigenwerte, so ist sie **indefinit**.

15.2 Extremwertaufgaben mit Nebenbedingungen

gegeben: f = xyz mit Nebenbedinung $x^2 + y^2 + z^2 = 1$

Lagrange-Bedingung: $L = f - \lambda g = xyz - \lambda(x^2 + y^2 + z^2 - 1)$

kritische Punkte von L: dL = 0

$$\frac{\partial L}{\partial x} = 0 \Rightarrow \lambda = \frac{yz}{2x}$$
$$\frac{\partial L}{\partial y} = 0 \Rightarrow \lambda = \frac{xz}{2y}$$
$$\frac{\partial L}{\partial z} = 0 \Rightarrow \lambda = \frac{xy}{2z}$$

Lambdas gleichsetzen: $x^2 = y^2 = z^2 \wedge g \Rightarrow 3x^2 = 1 \Rightarrow x = \pm \frac{1}{\sqrt{3}}$

Kandidaten: $\left(\pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}\right)$

in f einsetzen: $f\left(\pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}\right) = \pm\frac{1}{3\sqrt{3}}$

Vorgehen um alle Kandidaten zu finden:

- 1. Lagrange-Bedinung anwenden (mssen alle Nebenbedingung erfllen)
- 2. Kandidaten der Nebenbedingung falls g differenzierbar:
 - (a) nicht-regulre Punkte finden mit dg = 0
 - (b) gefundene Punkte mit Nebenbedingung berprfen

falls g nicht differenzierbar:

- (a) nicht-regulre Punkte der Teilstcke des Randes
- (b) Eckpunkte des Gebietes berprfen