보다나은 정부	보도자료	작성과	국가정보자원관리원 빅데이터분석과
	2019년 1월 29일(화) 조간	담당자	과 장 하민상 사무관 박인창
행정안전부	(1.28.16:00 이후)부터 보도하여 주시기 바랍니다.	연락처	042-250-5650 042-250-5655

미세먼지, 빅데이터로 예측한다.

- 국가정보자원관리원과 UN글로벌펄스가 협업하여 미세먼지 예측 및 주요 요인 피악 -

- □ 세계보건기구(WHO)에서 1급 발암물질로 분류한 미세먼지의 고농도 현상이 잦아지는 등 국민건강과 생명을 직접적으로 위협하는 미세먼지는 이제 온 국민의 관심사이자 국가적 재난의 문제로 대두되고 있다.
- □ 행정안전부 국가정보자원관리원(원장 김명희)은 UN 글로벌 펄스(UN Global Pulse)* 자카르타 연구소와 업무협력(MOU)을 체결('18.4.19)하고, 동북아 지역의 미세먼지 예측 및 주요 요인을 데이터에 기반하여 분석하였다.
 - * 빅데이터를 이용해 위기 및 재난으로부터 취약계층을 보호하기 위해 마련된 UN사무총장 직속 프로그램으로 현재 뉴욕, 인도네시아 자카르타, 우간다 캄팔라에 Pulse Lab을 운용 중
 - 국내외 요인을 정확히 파악하기 위하여 서해안의 인구 밀집지역인 인천지역을 분석대상으로 선정하였으며,
 - 기존의 수치예측모델과 달리 머신러닝을 활용하여 ①내일의 미세먼지 예측을 위한 미세먼지 예측모델을 개발하고 ②미세먼지에 영향을 미치는 주요 요인을 파악한 것이다.

- □ 이번 분석에는 '15.1월부터 '18.3월까지의 ①인천 지역 미세먼지·대기 오염 데이터(환경부, 28,464건), ②미국항공우주국(NASA)에서 제공하는 동북아 지역의 위성 센서 데이터* 및 ③에어로넷(AERONET)**의 지상 관측 센서 데이터를 활용하였으며,
 - * NASA Aqua 위성의 MODIS(중간해상도 영상 분광계) 센서 데이터로 미세먼지 와 같이 공기 중에 떠 있는 작은 입자인 에어로졸을 관측
 - ** NASA가 운영하는 국제 공동 에어로졸 관측 네트워크로 지상에서 관측
 - UN 글로벌 펄스 자카르타 연구소에서는 인도네시아 대기오염 관련 데이터 분석* 경험을 바탕으로 기술 자문을 제공하였다.
 - * Nowcasting Air Quality by Fusing Meteorological Data, Insights from Satellite Imagery and Photos Shared on Social Media Using Deep Learning (2018)
- □ 먼저 미세먼지 예보에 최적의 성능을 보인 그래디언트 부스팅* 기반의 예측 모델을 구현하였으며,
 - 이를 통해 '18년 1분기를 예측한 결과, 미세먼지(PM₁₀) 84.4%, 초미세 먼지(PM₂₅) 77.8%의 정확도를 보여 <u>기존 국내 미세먼지 예보에 비해</u> 정확도가 약 15% 높아진 것을 확인할 수 있었다.
 - * 약한 예측 모델을 결합하여 예측도를 향상시키는 기계 학습 모델
- □ 주요 예측변수로는, 미세먼지의 경우 풍향, 강우량, 서해안 및 중국 산둥성 지역의 에어로졸 농도로,

초미세먼지의 경우 풍속, 풍향 및 중국 내몽골, 베이징·허베이성 지역의 에어로졸 농도로 나타났다.

- 상세 분석 결과, 미세먼지가「나쁨」일 경우 풍향은 서풍이 불며 산둥성, 산시성, 베이징·허베이성 등의 중국 지역의 에어로졸 농도가 매우 높다는 것을 확인할 수 있었다.
- 특히 인천지역 20개 관측소의 미세먼지 예측 연관성을 비교한 결과, 인천 도심 지역이 아닌 백령도 지역의 미세먼지 및 이산화질소 (NO₂)가 가장 높은 연관성을 보였으며, 이는 국내 요인보다 국외 요인이 상대적으로 높음을 보여주는 결과이다.
- □ 또한 데이터에서 국외 요인을 제거 후 '18년 1분기를 예측한 결과, 「좋음」등급은 20일에서 30일로 50%나 증가하는 것으로 나타났다.
- □ 향후 국가정보자원관리원은 보다 정확한 예측을 위해 에어로졸 분석 성능이 뛰어난 국내 정지 위성(천리안 2A·2B) 데이터를 추가로 확보하고 다른 분석 모델과의 결합을 통해 예측 정확도를 높인다는 계획이다.
- □ 김명희 행정안전부 국가정보자원관리원장은 "이번 분석은 국민의 생존권과 직결되는 미세먼지 문제를 빅데이터로 접근한 아주 의미 있는 사례"라고 말하며, "미세먼지 예보에 기계학습 예측모델이 적극적으로 활용되기를 기대하며 향후에도 재난·안전 등 사회적 가치가 높은 분석과제를 지속적으로 수행하여 정부정책에 대한 국민의 신뢰를 얻고 국민의 삶이 개선되도록 노력할 계획"이라고 밝혔다.

<mark>참고 1 NASA 기상 위성 및 MODIS 센서</mark>

□ 미세먼지 분석과 위성 데이터

- 미세먼지 등 대기 중 오염물질의 발생 및 이동은 특정 지역에 국한되지 않고 넓은 영역을 통해 이동 및 확산되는 특성을 가짐
 - ⇒ 미세먼지 분석을 위해 위성관측을 통한 광범위한 영역의 데이터 활용 필요

□ NASA 기상 위성

- 지구 대기 환경 및 기후 연구를 위해 Terra 및 Aqua 위성을 각각 '99년 '02년에 발사하여 현재 운용 중
- 상기 위성은 특정 시간대에 해당하는 지역을 탐사하도록 설계
 - Terra 위성은 10시 30분경 적도 상공을 북→남 방향으로, Aqua 위성의 경우 13시 30분경 남→북 방향 탐사 (탐사범위 : 2,800 km)

■ MODIS란?

- 미국 NASA의 지구감시계획(EOS : Earth Observing System)에 의해 Aqua(해양)와 Tera(지형·대기) 위성에 탑재된 관측 센서
- MODIS* 데이터는 저작권이 없어 다양한 글로벌 연구에 활용되며 육상과 해양의 표면 온도, 해류의 흐름, 대기 관측 등의 데이터로 구성
 - * MODerate resolution Imaging Spectroradiometer : 중간해상도 영상 분광계

참고 2 NASA 위성 데이터

□ 위성 관측 데이터

구분		Dataset	제공 해상도
NASA위성 Aqua, Terra	Image Optical Depth Land And Ocean	3KM	
		Dark Target Deep Blue Combined (분석활용)	10KM
		Image Optical Depth Land And Ocean	TOVIVI

- 수집 기간 / 범위 : 2015~2018년 3월 / 몽골, 중국, 한국 지역 ※ 수집 좌표 : N 46.7, S 32.9, W 110.4, E 130.4
- 데이터 형태 / 단위 : 이미지 파일(TIFF) 또는 HDF 파일 / 일 단위

참고 3 미세먼지 예보

□ 미세먼지 예보

- 환경부에서 하루 4회 (오전 5, 11시, 오후 5, 11시) 미세먼지 예보
 - 예보 등급은 좋음, 보통, 나쁨, 매우나쁨의 4단계로 구분

- 광역시도 기준으로 PM10과 PM2.5 예보

참고 4 인천지역 미세먼지

□ 미세먼지 농도

○ (PM10) 3~5월의 미세먼지 평균 농도가 높고, 특히 해당기간의 월별 최대 미세먼지 농도가 크게 높아지는 특징을 보임

○ (PM2.5) PM10과 유사하게 3~5월의 미세먼지 평균 농도가 높고, 월별 최대 미세먼지 농도가 점차 높아지는 추세임

□ 미세먼지 예보 등급

○ 데이터 수집 기간('15~'18. 3) 중 미세먼지 등급 비율은 「보통」이 PM10 75.7%, PM2.5 56.0%로 가장 많은 편임

구분		예보 등급 (일평균, <i>μg</i> /m³)			
1 년		좋음	보통	나쁨	매우나쁨
PM 2.5	기준	0~15	16~35	36~75	76~
	건수	238 (20.1%)	663 (56.0%)	277 (23.4%)	5 (0.4%)
PM 10	기준	0~30	31~80	81~150	151~
PIVI IU	건수	196 (16.6%)	895 (75.7%)	86 (7.3%)	6 (0.5%)

※ 인천지역 23개 측정망 중 도시 대기 15개소의 PM10 및 PM25 수치를 평균하여 대기 질을 4단계로 예보. 미세먼지 농도(일평균, μg/m³) 예보 기준

참고 5 GBM 기반 미세먼지 예측 모델

☐ GBM (Gradient Boosting Machine)

- 여러 개의 의사 결정 모델을 연결하여 강력한 모델을 만드는 부스팅 방식의 앙상블 기법
 - 이전에 만들어진 의사결정 모델의 오차를 보완하는 방식으로 순차적으로 모델이 연결되어 뒤로 갈수록 오차가 작아짐

□ GBM 기반 미세먼지 예측 모델

○ NASA Aqua 위성 MODIS 센서 데이터 및 인천지역 관측 데이터를 전처리하여 GBM 모델을 학습하여 최적의 모델 구성

참고 6 PM10 예측 모델 결과

□ 변수 중요도

○ GBM 모델에서 미세먼지 4단계의 정확한 예측을 위해 필요한 주요 변수의 중요도 제공

변수명	변수설명
wd_mean	풍향 평균
rain_f	비 예보
SL_2_4	서해안 및 인천
SL_2_2	중국 산둥성 위성 센서데이터
wd_std	풍향 표준편차
SL_0_0	중국 내몽골 자치구 위성 센서데이터
WS	풍속
SL_2_0	중국 산시성 위성 센서 데이터
meanPM10_hourkurtosis	PM10 일 척도
SL_1_3	중국 랴오닝성 위성 센서 데이터

□ 주요변수 특성

○ 예보 등급이「나쁨」일 경우 전날 풍향은 서풍이며, 산둥성 지역의 위성 센서 데이터의 분포도 높은 편임

□ 변수 중요도

○ PM2.5 미세먼지 4단계의 정확한 예측을 위해 필요한 주요 변수 중요도

변수명	변수설명
WS	풍속 평균
ws_f	풍속 예보
wd_mean	풍향 평균
meanCO백 령 도	백령도 CO
rain	강수량
SL_0_1	중국 내몽골 자치구 위성 센서 데이터
wd_f	풍향 예보
SL_1_2	중국 베이징 및 허베이성 위성 센서 데이터
meanPM25_hourskew	PM10 일 왜도
wd_std	풍향 편차

□ 주요변수 특성

○ 예보 등급이「나쁨」일 경우 전날 풍향은 서풍이며, 풍속도 상대적으로 느림. 또한 베이징·허베이성 센서 데이터와 백령도 지역의 일산화탄소 데이터 값이 높음

