ĐẠI SỐ TUYẾN TÍNH

Chương 3

KHÔNG GIAN VECTO

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

Nội dung

Chương 3. KHÔNG GIAN VECTO

- Không gian vectơ
- Tổ hợp tuyến tính
- Cơ sở và số chiều
- Không gian vectơ con
- Không gian nghiệm của hệ phương trình tuyến tính
- Tọa độ và ma trận chuyển cơ sở

3.1. Không gian vectơ

Định nghĩa. Cho V là một tập hợp với phép toán + và phép nhân vô hướng \cdot của \mathbb{R} với V. Khi đó V được gọi là **không gian vectơ** trên \mathbb{R} nếu mọi $u, v, w \in V$ và mọi $\alpha, \beta \in \mathbb{R}$ thỏa 8 tính chất sau:

- (u+v) + w = u + (v+w);
- **1** tồn tại $0 \in V : u + 0 = 0 + u = u;$
- \bullet tồn tại $u' \in V : u' + u = u + u' = 0;$

- 0 1.u = u.

Khi đó ta gọi:

- mỗi phần tử $u \in V$ là một vecto.
- vecto $\mathbf{0}$ là vecto không.
- \bullet vecto u' là vecto $d\hat{o}i$ của u.

Ví dụ. Xét
$$V = \mathbb{R}^3 = \{(x_1, x_2, x_3) \mid x_i \in \mathbb{R}\}$$
. Với

$$u = (x_1, x_2, x_3), v = (y_1, y_2, y_3) \text{ và } \alpha \in \mathbb{R},$$

ta định nghĩa phép cộng + và nhân vô hướng \cdot như sau:

Khi đó \mathbb{R}^3 là không gian vectơ trên \mathbb{R} . Trong đó:

- Vecto không là $\mathbf{0} = (0,0,0)$;
- Vecto đối của u là $\mathbf{u'} = (-x_1, -x_2, -x_3)$.

Ví dụ. Xét
$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i \in \overline{1, n}\}$$
. Với
$$u = (x_1, x_2, \dots, x_n), \ v = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n \text{ và } \alpha \in \mathbb{R},$$

ta định nghĩa phép cộng + và nhân vô hướng \cdot như sau:

Khi đó \mathbb{R}^n là không gian vectơ trên \mathbb{R} . Trong đó:

- Vecto không là $\mathbf{0} = (0, 0, \dots, 0);$
- Vecto đối của u là $\mathbf{u'} = (-x_1, -x_2, \dots, -x_n)$.

Ví dụ. Tập hợp $M_{m \times n}(\mathbb{R})$, với phép cộng ma trận và nhân số thực với ma trận, là một không gian vectơ trên \mathbb{R} . Trong đó:

- Vecto không là ma trận không.
- Vecto đối của A là -A.

Ví dụ. Tập hợp

$$\mathbb{R}[x] = \{p(x) = a_n x^n + \dots + a_1 x + a_0 \, | \, n \in \mathbb{N}, a_i \in \mathbb{R}, i \in \overline{1, n}\}$$

gồm các đa thức theo biến x với các hệ số trong \mathbb{R} , là một không gian vectơ trên \mathbb{R} với:

- phép cộng vectơ là phép cộng đa thức thông thường;
- phép nhân vô hướng với vectơ là phép nhân thông thường một số với đa thức.

Ví dụ. Tập hợp $\mathbb{R}_n[x]$ gồm các đa thức bậc nhỏ hơn hoặc bằng n theo biến x với các hệ số trong \mathbb{R} là một không gian vectơ trên \mathbb{R} .

Ví dụ. (tự làm) Cho
$$V=(0,+\infty)$$
 và \mathbb{R} . Với $\alpha\in\mathbb{R}$ và $u,v\in V,$ ta đặt:

$$u \oplus v = uv$$
 và $\alpha \odot u = u^{\alpha}$.

Chứng minh (V, \oplus, \odot) là không gian vectơ trên \mathbb{R} .

Ví dụ. Cho $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + 3x_2 + x_3 = 0\}.$

Khi đó V là không gian vectơ trên \mathbb{R} .

Ví dụ. Cho
$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 - 2x_3 = 1\}.$$

Khi đó W không là không gian vecto, vì

$$\mathbf{0} = (0, 0, 0) \notin W$$

Mệnh đề. Cho V là một không gian vectơ trên \mathbb{R} . Khi đó với mọi $u \in V$ và $\alpha \in \mathbb{R}$, ta có

- **1** $(-1)u = \mathbf{u'}$. Do đó để đơn giản ta có thể ký hiệu $-\mathbf{u}$ thay cho $\mathbf{u'}$.

3.2. Tổ hợp tuyến tính

- Tổ hợp tuyến tính
- Độc lập và phụ thuộc tuyến tính

3.2.1. Tổ hợp tuyến tính

Định nghĩa. Cho $u_1, u_2, \dots, u_m \in V$. Một tổ hợp tuyến tính của u_1, u_2, \dots, u_m là một vectơ có dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_m u_m$$
 với $\alpha_i \in \mathbb{R}$.

Khi đó, đẳng thức trên được gọi là $dang \ biểu \ diễn$ của u theo các vecto u_1, u_2, \ldots, u_m .

Ví dụ. Vectơ u=(5,4,2) là tổ hợp tuyến tính của các vectơ

$$u_1 = (1, -1, 2), u_2 = (2, 3, -1), u_3 = (0, 1, -2),$$

vì $u = u_1 + 2u_2 - u_3$.

Nhận xét. Vectơ 0 luôn luôn là một tổ hợp tuyến tính của

$$u_1, u_2, ..., u_m \ vi$$

$$\mathbf{0} = 0u_1 + 0u_2 + \cdots + 0u_m$$
.

Ví du. Cho

$$u_1 = (1, 2, -1), u_2 = (0, 1, -1), u_3 = (1, 3, -1)$$

và u=(4,9,-2). Chứng tỏ u là một tổ hợp tuyến tính của u_1,u_2,u_3 .

Giải. Giả sử u là một tổ hợp tuyến tính của $u_1,u_2,u_3,$ khi đó tồn tại $\alpha_1,\alpha_2,\alpha_3$ sao cho

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3.$$

Từ đây ta suy ra được hệ phương trình

$$\begin{cases} \alpha_1 & + \alpha_3 = 4; \\ 2\alpha_1 + \alpha_2 + 3\alpha_3 = 9; \\ -\alpha_1 - \alpha_2 - \alpha_3 = -2. \end{cases}$$

Giải hệ ta được $\alpha_1 = 1, \alpha_2 = -2, \alpha_3 = 3$. Suy ra

$$u = u_1 - 2u_2 + 3u_3.$$

Do đó u là một tổ hợp tuyến tính của u_1, u_2, u_3 .

Ví dụ. Trong không gian $\mathbb{R}_2[x]$, cho

$$f_1 = x^2 + 2x - 1$$
, $f_2 = x - 1$, $f_3 = x^2 + 3x - 1$

và $f = 4x^2 + 9x - 2$. Chứng tỏ f là một tổ hợp tuyến tính của f_1, f_2, f_3 .

Giải. Giả sử f là một tổ hợp tuyến tính của f_1, f_2, f_3 , khi đó tồn tại $\alpha_1, \alpha_2, \alpha_3$ sao cho

$$f = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3.$$

Từ đây ta suy ra được hệ phương trình

$$\begin{cases} \alpha_1 & + \alpha_3 = 4; \\ 2\alpha_1 + \alpha_2 + 3\alpha_3 = 9; \\ -\alpha_1 - \alpha_2 - \alpha_3 = -2. \end{cases}$$

Giải hệ ta được $\alpha_1 = 1, \alpha_2 = -2, \alpha_3 = 3$. Suy ra

$$f = f_1 - 2f_2 + 3f_3.$$

Do đó f là một tổ hợp tuyến tính của f_1, f_2, f_3 .

Phương pháp

Ta có u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ khi phương trình

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m \quad (\star)$$

có nghiệm.

 \mathbf{D} ặc \mathbf{bi} ệt, trong trường hợp không gian \mathbb{R}^n . Giả sử

Khi đó
$$(\star) \Leftrightarrow \begin{cases} u_{11}\alpha_1 + u_{12}\alpha_2 + \dots + u_{1m}\alpha_m &= b_1; \\ u_{21}\alpha_1 + u_{22}\alpha_2 + \dots + u_{2m}\alpha_m &= b_2; \\ \dots & \dots & \dots \\ u_{n1}\alpha_1 + u_{n2}\alpha_2 + \dots + u_{nm}\alpha_m &= b_n. \end{cases}$$
 $(\star\star)$

Ma trận hóa (**) ta được
$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1m} & b_1 \\ u_{21} & u_{22} & \dots & u_{2m} & b_2 \\ \dots & \dots & \dots & \dots \\ u_{n1} & u_{n2} & \dots & u_{nm} & b_n \end{pmatrix}.$$

Tức là

$$\left(u_1^\top \ u_2^\top \ \dots \ u_m^\top \mid u^\top\right)$$

Như vậy, để kiểm tra u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ trong \mathbb{R}^n ta áp dụng các bước sau:

- **Bước 1.** Lập ma trận mở rộng $(u_1^\top u_2^\top \dots u_m^\top \mid u^\top)$ (\star)
- Bước 2. Giải hệ phương trình (*).
 - Nếu (\star) vô nghiệm, thì u không là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$.
 - Nếu (*) có nghiệm $\alpha_1, \alpha_2, ..., \alpha_m$ thì u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ và có dạng biểu diễn là

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m.$$

Ví dụ. Xét xem u=(-3,1,4) có là tổ hợp tuyến tính của các vecto $u_1=(1,2,1), u_2=(-1,-1,1), u_3=(-2,1,1)$ hay không?

Giải. Lập
$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \ | \ u^{\top}) = \begin{pmatrix} 1 & -1 & -2 & -3 \\ 2 & -1 & 1 & 1 \\ 1 & 1 & 1 & 4 \end{pmatrix}$$

$$\xrightarrow{\frac{d_2 - 2d_1}{d_3 - d_1}} \begin{pmatrix} 1 & -1 & -2 & -3 \\ 0 & 1 & 5 & 7 \\ 0 & 2 & 3 & 7 \end{pmatrix} \xrightarrow{\frac{d_1 + d_2}{d_3 - 2d_2}} \begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 5 & 7 \\ 0 & 0 & -7 & -7 \end{pmatrix}$$

$$\xrightarrow{\frac{-1}{7}d_3} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Hệ phương trình có nghiệm duy nhất
$$(\alpha_1, \alpha_2, \alpha_3) = (1, 2, 1)$$
.

Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 .

Dạng biểu diễn của u là $u = u_1 + 2u_2 + u_3$.

Ví dụ. Xét xem u=(4,3,5) có là tổ hợp tuyến tính của các vecto $u_1=(1,2,5), u_2=(1,3,7), u_3=(-2,3,4)$ hay không?

Giải. Lập
$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \mid u^{\top}) = \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 2 & 3 & & 3 & | & 3 \\ 5 & 7 & & 4 & | & 5 \end{pmatrix}$$

$$\xrightarrow[d_3-5d_1]{} \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 7 & | & -5 \\ 0 & 2 & 14 & | & -15 \end{pmatrix} \xrightarrow[d_3-2d_2]{} \begin{pmatrix} 1 & 0 & -9 & | & 9 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & 0 & | & -5 \end{pmatrix}.$$

Hệ vô nghiệm vì

$$0\alpha_1 + 0\alpha_2 + 0\alpha_3 = -5.$$

Vậy u **không** là tổ hợp tuyến tính của u_1, u_2, u_3 .

Ví dụ. Xét xem u=(4,3,10) có là tổ hợp tuyến tính của các vecto $u_1=(1,2,5), u_2=(1,3,7), u_3=(-2,3,4)$ hay không?

Giải. Lập
$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \mid u^{\top}) = \begin{pmatrix} 1 & 1 & -2 & 4 \\ 2 & 3 & 3 & 3 \\ 5 & 7 & 4 & 10 \end{pmatrix}$$

$$\frac{d_2 - 2d_1}{d_3 - 5d_1} \leftarrow \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 7 & | & -5 \\ 0 & 2 & 14 & | & -10 \end{pmatrix} \xrightarrow{d_1 - d_2} \begin{pmatrix} 1 & 0 & -9 & | & 9 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Nghiệm của hệ là

$$(\alpha_1, \alpha_2, \alpha_3) = (9 + 9t, -5 - 7t, t) \text{ v\'oi } t \in \mathbb{R}.$$

Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 , và dạng biểu diễn của u là

$$u = (9+9t) u_1 + (-5-7t) u_2 + t u_3.$$

Ví dụ.(tự làm) Xét xem u=(5,7,-2,5) có là tổ hợp tuyến tính của các vecto $u_1=(1,2,-1,2), u_2=(-2,1,-1,1), u_3=(1,3,-1,2)$ hay không?

Đáp án. $u = u_1 - u_2 + 2u_3$.

 Ví dụ. (tự làm) Xét xem u=(-1,4,-1) có là tổ hợp tuyến tính của các vectơ

$$u_1 = (-2, 3, 1); u_2 = (2, -1, -1); u_3 = (1, 0, -1); u_4 = (2, 1, -1)$$
 hay không?

Đáp án.
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (1 - t, -1 - 2t, 3, t)$$
. Suy ra
$$u = (1 - t)u_1 + (-1 - 2t)u_2 + 3u_3 + tu_4.$$

Ví dụ.(tự làm) Xét xem u=(7,3,0,4) có là tổ hợp tuyến tính của các vecto $u_1=(3,1,1,2), u_2=(2,1,1,2), u_3=(2,1,0,-1)$ hay không?

Đáp án. u không là tổ hợp tuyến tính của u_1, u_2, u_3 .

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^4 cho các vecto

$$u_1 = (1, 1, 1, 1); u_2 = (2, 3, -1, 0); u_3 = (-1, -1, 1, 1).$$

Tìm điều kiện để vecto u=(a,b,c,d) là một tổ hợp tuyến tính của $u_1,u_2,u_3.$

Giải. Lập

$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \mid u^{\top}) = \begin{pmatrix} 1 & 2 & -1 & a \\ 1 & 3 & -1 & b \\ 1 & -1 & 1 & c \\ 1 & 0 & 1 & d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & b - a \\ 0 & -3 & 2 & c - a \\ 0 & -2 & 2 & d - a \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & -a+b \\ 0 & 0 & 2 & -4a+3b+c \\ 0 & 0 & 2 & -3a+2b+d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & -a+b \\ 0 & 0 & 2 & -4a+3b+c \\ 0 & 0 & 0 & a-b-c+d \end{pmatrix}.$$

Để u là một tổ hợp tuyến tính của u_1,u_2,u_3 thì hệ có nghiệm, nghĩa là

$$a - b - c + d = 0.$$

 \mathbf{V} í dụ.(tự làm) Trong không gian \mathbb{R}^3 cho các vectơ

$$u_1 = (1, 2, 1); u_2 = (1, 3, 2); u_3 = (3, 8, 5); u_4 = (2, 7, 5).$$

Tìm điều kiện để vecto u=(a,b,c) là một tổ hợp tuyến tính của $u_1,u_2,u_3,u_4.$

Đáp án. a - b + c = 0.

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 cho các vecto

$$u_1 = (1, 2, 1, 3); u_2 = (2, 3, 2, -2); u_3 = (5, 8, 5, -1).$$

Tìm điều kiện để vecto u=(a,b,c,d) là một tổ hợp tuyến tính của $u_1,u_2,u_3.$

Đáp án. -a + c = 0 và 13a - 8b + d = 0.

3.2.2. Độc lập và phụ thuộc tuyến tính

Định nghĩa. Cho $u_1, u_2, \dots, u_m \in V$. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m = \mathbf{0}. \tag{*}$$

- Nếu (*) chỉ có nghiệm tầm thường $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$ thì ta nói u_1, u_2, \ldots, u_m (hay $\{u_1, u_2, \ldots, u_m\}$) độc lập tuyến tính.
- Nếu (\star) có nghiệm không tầm thường thì ta nói u_1, u_2, \ldots, u_m (hay $\{u_1, u_2, \ldots, u_m\}$) phụ thuộc tuyến tính.

Nói cách khác,

- \bullet Nếu phương trình (\star) có nghiệm duy nhất thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- \bullet Nếu phương trình (\star) có vô số nghiệm thì u_1, u_2, \ldots, u_m phụ thuộc tuyến tính.

Nhận xét. Họ vectơ u_1, u_2, \ldots, u_m phụ thuộc tuyến tính khi và chỉ khi tồn tại vectơ u_i là tổ hợp tuyến tính của các vectơ còn lại.

Giải thích.

 (\Rightarrow) Nếu u_1, \ldots, u_m phụ thuộc tuyến tính thì có $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ không đồng thời bằng 0 sao cho $\sum_{i=1}^m \alpha_i u_i = 0$. Giả sử $\alpha_i \neq 0$, khi đó

$$u_i = -\frac{1}{\alpha_i} \sum_{j \neq i} \alpha_j u_j.$$

Suy ra u_i là tổ hợp tuyến tính các vectơ còn lại.

(\Leftarrow) Giả sử tồn tại u_i là tổ hợp tuyến tính các vectơ còn lại, khi đó $u_i = \sum_{j \neq i} \beta_j u_j$. Suy ra $\sum_{i \neq i} \beta_j u_j - u_i = \mathbf{0}.$

Điều này chứng tổ u_1, u_2, \ldots, u_m phụ thuộc tuyến tính.

Nhắc lại. Cho hệ phương trình tuyến tính thuần nhất AX=0 có m ẩn. Khi đó $r(A)=r(\tilde{A})$ với \tilde{A} là ma trận mở rộng. Hơn nữa áp dụng định lý Kronecker - Capelli ta có

- ${\color{red} \bullet}$ Nếu $r(A)={\color{red} m}$ hệ chỉ có nghiệm tầm thường.
- Nếu r(A) < m hệ có vô số nghiệm.

Nhắc lại. Cho $A \in M_n(\mathbb{R})$. Khi đó các khẳng định sau tương đương:

- $\textcircled{\scriptsize 0}$ Hệ phương trình AX=0 chỉ có nghiệm tầm thường;
- \bullet det $A \neq 0$.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1, 2, -3)$; $u_2 = (2, 5, -1)$; $u_3 = (1, 1, -9)$. Hỏi u_1, u_2, u_3 độc lập hay phụ thuộc tuyến tính?

Giải. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \mathbf{0}$$

$$\Leftrightarrow \alpha_1 (1, 2, -3) + \alpha_2 (2, 5, -1) + \alpha_3 (1, 1, -9) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 0; \\ 2\alpha_1 + 5\alpha_2 + \alpha_3 = 0; \\ -3\alpha_1 - \alpha_2 - 9\alpha_3 = 0. \end{cases}$$

Ma trận hóa hệ phương trình ta có $\tilde{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \\ -3 & -1 & -9 \end{pmatrix}$.

Ta có r(A) = 3 và bằng số vectơ nên hệ có nghiệm duy nhất. Suy ra u_1, u_2, u_3 độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vectơ $u_1 = (1, 1, 1); \ u_2 = (2, 1, 3);$ $u_3 = (1, 2, 0).$ Hỏi u_1, u_2, u_3 độc lập hay phụ thuộc tuyến tính?

Giải. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \mathbf{0}$$

$$\Leftrightarrow (\alpha + 2\alpha_2 + \alpha_3, \alpha + \alpha_2 + 2\alpha_3, \alpha + 3\alpha_2) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \\ \alpha_1 + 3\alpha_2 = 0 \end{cases}$$

Ma trận hóa hệ phương trình ta có
$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 0 \end{pmatrix}$$
.

Ta có r(A)=2<3 nên hệ vô số nghiệm. Suy ra u_1,u_2,u_3 phụ thuộc tuyến tính.

- **Mệnh đề.** Cho V là không gian vectơ trên \mathbb{R} và $S = \{u_1, u_2, \dots, u_m\}$ là tâp hợp các vectơ thuộc V. Khi đó

Nhắc lại. Cho $A \in M_{m \times n}(\mathbb{R})$. Khi đó $r(A^{\top}) = r(A)$.

Mệnh đề. Cho u_1, u_2, \ldots, u_m là m vectơ trong \mathbb{R}^n . Gọi A là ma trận có được bằng cách xếp u_1, u_2, \ldots, u_m thành các cột hoặc thành các dòng. Khi đó u_1, u_2, \ldots, u_m độc lập tuyến tính khi và chỉ khi A có hạng là $\mathbf{r}(A) = \mathbf{m}$.

Từ mệnh đề trên ta sẽ xây dựng thuật toán kiểm tra tính độc lập tuyến tính của các vectơ trong \mathbb{R}^n như sau

Thuật toán kiểm tra tính độc lập tuyến tính của các vectơ u_1, u_2, \ldots, u_m trong \mathbb{R}^n

Bước 1. Lập ma trận A bằng cách xếp u_1, u_2, \ldots, u_m thành các cột hoặc thành các dòng.

Bước 2. Xác định hạng r(A) của A.

- ightharpoonup Nếu r(A) = m thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- ightharpoonup Nếu r(A) < m thì u_1, u_2, \dots, u_m phụ thuộc tuyến tính.

Trường hợp m=n, ta có A là ma trận vuông. Khi đó có thể thay Bước 2 bằng Bước 2' sau đây:

Bước 2'. Tính định thức của A.

- ightharpoonup Nếu $\det A \neq 0$ thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- Nếu $\det A = 0$ thì u_1, u_2, \dots, u_m phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^4 cho các vecto $u_1=(-1,2,-1,2);$ $u_2=(2,2,-4,2);\ u_3=(1,3,1,2).$ Hãy xét xem u_1,u_2,u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Giải.

$$\text{Lập } A = \begin{pmatrix} u_1^\top \ u_2^\top \ u_3^\top \end{pmatrix} = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -4 & 1 \\ 2 & 2 & 2 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 6 & 5 \\ 0 & -6 & 0 \\ 0 & 6 & 4 \end{pmatrix}$$

$$\frac{d_3+d_2}{d_4-d_2} \xrightarrow{d_3+d_2} \begin{pmatrix}
-1 & 2 & 1 \\
0 & 6 & 5 \\
0 & 0 & 5 \\
0 & 0 & -1
\end{pmatrix} \xrightarrow{d_4+\frac{1}{5}d_3} \begin{pmatrix}
-1 & 2 & 1 \\
0 & 6 & 5 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{pmatrix}$$

Ta có r(A) = 3. Suy ra u_1, u_2, u_3 độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^5 cho các vecto $u_1=(1,2,-3,5,1);$ $u_2=(1,3,-13,22,-1)$ và $u_3=(3,5,1,-2,5).$ Hãy xét xem u_1,u_2,u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Giải.

$$\text{Lập} \quad A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 1 & 3 & -13 & 22 & -1 \\ 3 & 5 & 1 & -2 & 5 \end{pmatrix} \\
 \frac{d_2 - d_1}{d_3 - 3d_1} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & -1 & 10 & -17 & 2 \end{pmatrix} \\
 \frac{d_3 + d_2}{d_3 - 3d_1} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ta có r(A) = 2 < 3. Suy ra u_1, u_2, u_3 phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^4 cho các vectơ $u_1 = (1, 2, -1, 3)$; $u_2 = (0, 1, -1, 2)$; $u_3 = (1, 3, -1, 4)$ và $u_4 = (2, 6, -3, 9)$. Hỏi u_1, u_2, u_3, u_4 có phụ thuộc tuyến tính không? Nếu có hãy tìm biểu diễn của một vectơ nào đó qua các vectơ còn lại.

Giải. Xét hệ phương trình AX = 0 với $X = (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)^{\top}$ và

$$A = \begin{pmatrix} u_1^\top & u_2^\top & u_3^\top & u_4^\top \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 2 & 1 & 3 & 6 \\ -1 & -1 & -1 & -3 \\ 3 & 2 & 4 & 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ta có r(A) = 3 < 4. Do đó hệ có vô số nghiệm. Suy ra u_1, u_2, u_3, u_4 phụ thuộc tuyến tính. Hơn nữa nghiệm của hệ là

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (-t, -t, -t, t).$$

Suv ra

$$-tu_1 - tu_2 - tu_3 + tu_4 = 0.$$

$$-tu_1 - tu_2 - tu_3 + tu_4 = 0.$$

Chọn t = -1, ta có

$$u_1 + u_2 + u_3 - u_4 = 0$$

Ta chọn u_4 biểu diễn qua các vectơ còn lại. Do đó

$$u_4 = u_1 + u_2 + u_3.$$

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 cho các vectơ $u_1 = (1, 2, -3, 2)$; $u_2 = (1, 2, -1, 1)$ và $u_3 = (1, 3, -1, 4)$. Hỏi u_1, u_2, u_3 có độc lập tuyến tính không?

Đáp án. Có

Ví dụ. Trong không gian \mathbb{R}^3 cho các vecto $u_1=(2m+1,-m,m+1);$ $u_2=(m-2,m-1,m-2)$ và $u_3=(2m-1,m-1,2m-1).$ Tìm điều kiện để u_1,u_2,u_3 độc lập tuyến tính.

Giải. Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 2m+1 & -m & m+1 \\ m-2 & m-1 & m-2 \\ 2m-1 & m-1 & 2m-1 \end{pmatrix}$$
. Ta có

$$|A| = \begin{vmatrix} 2m+1 & -m & m+1 \\ m-2 & m-1 & m-2 \\ 2m-1 & m-1 & 2m-1 \end{vmatrix} = \frac{c_1-c_3}{c_1-c_3} = \begin{vmatrix} m & -m & m+1 \\ 0 & m-1 & m-2 \\ 0 & m-1 & 2m-1 \end{vmatrix}$$
$$= \frac{c\tilde{o}t \ 1}{m} m(-1)^{1+1} \begin{vmatrix} m-1 & m-2 \\ m-1 & 2m-1 \end{vmatrix} = m(m-1)(m+1).$$

Do đó u_1, u_2, u_3 độc lập tuyến tính khi và chỉ khi

$$|A| \neq 0 \Leftrightarrow m(m-1)(m+1) \neq 0 \Leftrightarrow m \neq 0 \text{ và } m \neq \pm 1.$$

Ví dụ. (tự làm) Trong không gian \mathbb{R}^3 cho các vecto

$$u_1 = (1, 2, m); u_2 = (2, m + 1, 2)$$
 và $u_3 = (m, -2, 1).$

Tìm điều kiện để u_1, u_2, u_3 độc lập tuyến tính.

Đáp án. $m \neq \pm 1$.

Đai Số Tuyến Tính

3.3. Cơ sở và số chiều của không gian vectơ

1 Tập sinh

2 Cơ sở và số chiều

3.3.1. Tập sinh

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, ta kiểm tra xem u có là tổ hợp tuyến tính của u_1,u_2,u_3 không?

Lập hệ phương trình

Hệ có nghiệm, suy ra u là tổ hợp tuyến tính của u_1, u_2, u_3 . Vậy S là tập sinh của \mathbb{R}^3 .

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, -1); u_2 = (2, 3, 1); u_3 = (3, 4, 0)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \begin{pmatrix} 1 & 2 & 3 & x \\ 1 & 3 & 4 & y \\ -1 & 1 & 0 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & x \\ 0 & 1 & 1 & -x + y \\ 0 & 0 & 0 & 4x - 3y + z \end{pmatrix}.$$

Với $u_0 = (1, 1, 1)$ thì hệ trên vô nghiệm. Vậy u_0 không là tổ hợp tuyến tính của u_1, u_2, u_3 . Suy ra S không là tập sinh của \mathbb{R}^3 .

Ví dụ.(tự làm) Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, -2, 3); u_2 = (-2, -1, 2); u_3 = (1, -2, 1), u_4 = (1, -7, 7)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Đáp án. Có.

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 , cho

$$u_1 = (1, 2, -1, 2); u_2 = (2, -1, 2, 1);$$

$$u_3 = (1, -2, 1, 2); u_4 = (4, -1, 2, 5).$$

Hỏi $S = \{u_1, u_2, u_3, u_4\}$ có là tập sinh của \mathbb{R}^4 không?

Hướng dẫn. Giả sử u=(x,y,z,t), tìm điều kiện để u là tổ hợp tuyến tính của u_1,u_2,u_3,u_4 . Ta giải được -2x+y+2z+t=0.

Ta có thể chọn $u_0=(1,0,0,0)$. Rõ ràng u_0 không là tổ hợp tuyến tính của u_1,u_2,u_3,u_4 . Suy ra S không là tập sinh của \mathbb{R}^4 .

3.3.2. Cơ sở và số chiều

Định nghĩa. Cho V là không gian vectơ và \mathcal{B} là tập con của V. Tập \mathcal{B} được gọi là một $c\sigma$ sở của V nếu \mathcal{B} là một tập sinh của V và \mathcal{B} độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = \{ u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1) \}.$$

Kiểm tra \mathcal{B} là cơ sở của \mathbb{R}^3 .

Giải. \mathcal{B} là tập sinh của \mathbb{R}^3 (theo ví dụ trước).

Kiểm tra ${\mathcal B}$ độc lập tuyến tính. Ta lập ma trận

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$
. Ta có $r(A) = 3$ (hoặc $|A| = -1$). Suy ra \mathcal{B}

độc lập tuyến tính. Vậy \mathcal{B} là cơ sở của \mathbb{R}^3 .

 \mathbf{V} í dụ.(tự làm) Trong không gian \mathbb{R}^3 , cho

$$S = \{ u_1 = (1, 1, -2); u_2 = (2, 3, 3); u_3 = (5, 7, 4) \}.$$

Hỏi S có là cơ sở của \mathbb{R}^3 không?

Ví dụ.(tự làm) Trong không gian \mathbb{R}^3 , cho

$$S = \{ u_1 = (1, 1, -1); u_2 = (2, 1, 0); u_3 = (1, 1, 0); u_4 = (1, -4, 1) \}.$$

Hỏi S có là cơ sở của \mathbb{R}^3 không?

Số chiều

Mệnh đề. Giả sử V sinh bởi m vecto, $V = \langle u_1, u_2, \dots, u_m \rangle$. Khi đó mọi tập hợp con độc lập tuyến tính của V có không quá m phần tử.

Hệ quả. Giả sử V có một cơ sở \mathcal{B} gồm n vectơ. Khi đó mọi cơ sở khác của V cũng có đúng n vectơ.

Định nghĩa. Cho V là không gian vectơ. $S \acute{o}$ chiều của V, ký hiệu là $\dim V$, là số vectơ của một cơ sở nào đó của V.

Ví dụ.(tự làm) Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = \{u_1 = (1, 2, -1); u_2 = (2, -1, 2); u_3 = (1, -2, 1)\}.$$

Kiểm tra \mathcal{B} là cơ sở của \mathbb{R}^3 . Tìm dim \mathbb{R}^3 .

 $\mathbf{D\acute{a}p}$ án. $\dim \mathbb{R}^3 = 3$.

Nhận xét. Trong không gian \mathbb{R}^n , xét $\mathcal{B}_0 = \{e_1, e_2, \dots, e_n\}$, trong đó

$$V\acute{o}i \ u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, \ ta \ c\acute{o}$$

$$u = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

Do đó \mathcal{B}_0 là tập sinh của \mathbb{R}^n . Mặt khác \mathcal{B}_0 độc lập tuyến tính nên \mathcal{B}_0 là cơ sở của \mathbb{R}^n . Ta gọi \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^n . Như vậy

$$\dim \mathbb{R}^n = n$$
.

 \mathbf{V} í dụ. Không gian \mathbb{R}^3 có cơ sở chính tắc là

$$\mathcal{B}_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}.$$

- **Mệnh đề.** Cho V là không gian vectơ có $\dim V = n$. Khi đó
- Mọi tập con của V chứa nhiều hơn n vectơ thì phụ thuộc tuyến tính.
- $\textcircled{\scriptsize 0}$ Mọi tập con của V chứa ít hơn n vectơ thì không là tập sinh của V.

Ví dụ. Trong không gian
$$\mathbb{R}^3$$
 cho $u_1 = (-7, 2, -3); \ u_2 = (1, -4, -1); \ u_3 = (1, 4, 3); \ u_4 = (3, 15, 3)$ và

$$S = \{u_1, u_2, u_3, u_4\}; T = \{u_1, u_2\}.$$

Khi đó S phụ thuộc tuyến tính và T không là tập sinh của \mathbb{R}^3 .

Mệnh đề. Cho S là một tập con độc lập tuyến tính của V và $u \in V$ là một vectơ sao cho u không là tổ hợp tuyến tính của S. Khi đó tập hợp $S_1 = S \cup \{u\}$ độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^4 cho $u_1 = (1, 2, 2, 1); \ u_2 = (2, 3, 2, 1); \ u_3 = (0, -2, -3, -1).$

- **1** Tìm một vecto $u_4 \in \mathbb{R}^4$ để u_1, u_2, u_3, u_4 độc lập tuyến tính.

Giải. b) Theo mệnh đề trên ta chỉ cần tìm vect
ơ u_4 không là tổ hợp tuyến tính của $u_1,u_2,u_3.$

Giả sử $u=(x,y,z,t)\in\mathbb{R}^4$, ta lập hệ phương trình

$$\begin{pmatrix} u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 & x \\ 2 & 3 & -2 & y \\ 2 & 2 & -3 & z \\ 1 & 1 & -1 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & x \\ 0 & -1 & -2 & -2 \, x + y \\ 0 & 0 & 1 & 2 \, x - 2 \, y + z \\ 0 & 0 & 0 & -x + y - z + t \end{pmatrix}$$

Để u không là tổ hợp tuyến tính của u_1, u_2, u_3 thì

$$-x + y - z + t \neq 0.$$

Do đó ta có thể chọn $u_4 = (1, 0, 0, 0)$.

- **Định lý.** Cho V là một không gian vectơ có $\dim V = n$. Khi đó
- Mọi tập con độc lập tuyến tính có n vectơ đều là cơ sở.
- Mọi tập sinh có n vectơ đều là cơ sở.

Nhận diện cơ sở của không gian V có $\dim V = n$

Vì $\mathrm{dim} V=n$ nên mọi cơ sở của V phải gồm n vectơ. Hơn nữa, nếu S là tập con của V và số phần tử của S bằng n thì

S là cơ sở của $V \iff S$ độc lập tuyến tính.

 \iff S là tập sinh của V.

Ví dụ. Kiểm tra tập hợp nào sau đây là cơ sở của không gian \mathbb{R}^3 .

- $B_1 = \{u_1 = (1, 2, 3), u_2 = (2, 3, 4)\}.$
- $B_3 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$

Giải.

a) b) B_1, B_2 không phải là cơ sở của \mathbb{R}^3 vì số vectơ không bằng 3.

c)
$$B_3 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$$

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 3 & 2 \\ -2 & 1 & -2 \end{pmatrix}.$$

Ta có $\det A = 3$. Suy ra B_3 độc lập tuyến tính. Mặt khác số vectơ của B_3 bằng $3 = \dim \mathbb{R}^3$ nên B_3 là cơ sở của \mathbb{R}^3 .

d)
$$B_4 = \{u_1 = (2, -1, 0), u_2 = (1, 2, 3), u_3 = (5, 0, 3)\}$$

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 3 \\ 5 & 0 & 3 \end{pmatrix}.$$

Ta có $\det A = 0$. Suy ra B_4 không độc lập tuyến tính. Vì vậy B_4 không là cơ sở của \mathbb{R}^3 .

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, m-2, -2); u_2 = (m-1, 3, 3); u_3 = (m, m+2, 2)\}.$$

Tìm điều kiệm m để S là cơ sở của \mathbb{R}^3 .

Giải. Do số phần tử của S bằng 3 nên S là cơ sở của \mathbb{R}^3 khi S độc lập tuyến tính.

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & m-2 & -2 \\ m-1 & 3 & 3 \\ m & m+2 & 2 \end{pmatrix}$$
. Ta có $\det A = -m^2 + m$.

Suy ra, S độc lập tuyến tính khi $\det A \neq 0$. Như vậy, để S là cơ sở của \mathbb{R}^3 thì $m \neq 0$ và $m \neq 1$.

Ví dụ.(tự làm) Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 2, m); u_2 = (2, m + 1, 2); u_3 = (m, -2, 1)\}.$$

Tìm điều kiệm m để S không là cơ sở của \mathbb{R}^3 .

3.4. Không gian vectơ con

- Định nghĩa
- Whông gian sinh bởi tập hợp
- 6 Không gian dòng của ma trận
- Không gian tổng

3.4.1. Định nghĩa

Định nghĩa. Cho W là một tập con khác rỗng của không gian vectơ V. Ta nói W là một không gian vecto con (gọi tắt, không gian con) của V, ký hiệu $W \leq V$, nếu W với phép toán $(+, \cdot)$ được hạn chế từ V cũng là một không gian vecto.

Ví dụ. $\{0\}$ và V là không gian vectơ con của V. Ta gọi đây là các không gian con tầm thường của V.

Định lý. Cho W là một tập con khác rỗng của V. Khi đó các mệnh đề sau tương đương:

- \bullet Với mọi $u, v \in W$ và mọi $\alpha \in \mathbb{R}$, ta có $\alpha \cdot u + v \in W$.

- Nhận xét. Cho V là không gian vectơ và W là tập con của V. Khi đó
- \bullet Nếu W là không gian con của V thì \bullet \bullet \bullet
- **6** $N\acute{e}u$ **0** $\notin W$ thì W không là không gian con của V.

Phương pháp kiểm tra không gian con

Cho W là tập con của không gian $V\!.$ Để kiểm tra W là không gian con của V, ta tiến hành như sau:

Bước 1. Kiểm tra vectơ $\mathbf{0} \in W$.

- \bullet Nếu ${\color{red}0} \notin W$ thì kết luận W không là không gian con của V. Dừng.
- Nếu $0 \in W$ thì sang Bước 2.

Bước 2. Với mọi $u, v \in W$ và mọi $\alpha \in \mathbb{R}$.

- Nếu $u + v \in W$ và $\alpha u \in W$ thì kết luận $W \leq V$.
- Ngược lại, ta cần chỉ ra một ví dụ cụ thể chứng tỏ u, v ∈ W nhưng u+v ∉ W hoặc u ∈ W, α ∈ ℝ nhưng α•u ∉ W. Khi đó kết luận W không là không gian con của V.

Ví dụ. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 3x_2 + x_3 = 1\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Giải. Ta có $\mathbf{0}=(0,0,0)\notin W$ (vì $0+3.0+0=0\neq 1$). Suy ra W không là không gian con của \mathbb{R}^3 .

Ví dụ. Cho $W=\{(x_1,x_2,x_3)\in\mathbb{R}^3\mid 2x_1+x_2-x_3=0\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Giải.

- $\mathbf{0} = (0,0,0) \in W$ (vì 2.0 + 0 0 = 0). Suy ra $W \neq \emptyset$.
- \bullet Với mọi $u=(x_1,x_2,x_3),\,v=(y_1,y_2,y_3)\in W$, nghĩa là

$$2x_1 + x_2 - x_3 = 0$$
; $2y_1 + y_2 - y_3 = 0$,

và $\alpha \in \mathbb{R}$, ta có

$$u + v = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$
. Hơn nữa

$$2(x_1 + y_1) + (x_2 + y_2) - (x_3 + y_3) =$$

$$(2x_1 + x_2 - x_3) + (2y_1 + y_2 - y_3) = 0 + 0 = 0.$$

Suy ra $u + v \in W$. (1)

$$2\alpha x_1 + \alpha x_2 - \alpha x_3 = \alpha(2x_1 + x_2 - x_3) = \alpha 0 = 0.$$

Suy ra $\alpha u \in W$. (2)

Từ (1) và (2) suy ra $W \leq \mathbb{R}^3$.

Ví dụ.(tự làm) Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = 2x_2x_3\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Hướng dẫn. Với u=(2,1,1) và v=(4,2,1). Ta có $u,v\in W$, nhưng

 $u+v=(6,3,2)\notin W$ (vì $6\neq 2.3.2).$ Suy raWkhông là không gian con của $\mathbb{R}^3.$

Định lý. Nếu W_1, W_2 là hai không gian con của V thì $W_1 \cap W_2$ cũng là không gian con của V.

Chứng minh.

- \bullet $W_1 \cap W_2 \subset V$ (vì $W_1 \subset V$, $W_2 \subset V$).
- \bullet $0 \in W_1 \cap W_2$ (vì $0 \in W_1, 0 \in W_2$). Suy ra $W_1 \cap W_2 \neq \emptyset$.
- Với mọi $u, v \in W_1 \cap W_2$ và $\alpha \in \mathbb{R}$.
 - \bullet Vì $u, v \in W_1$ nên $\alpha \cdot u + v \in W_1$ (vì $W_1 \leq V$).
 - $lackbox{ Vì } u,v\in W_2 \text{ nên } \alpha \boldsymbol{.} u + v \in W_2 \text{ (vì } W_2 \leq V).$

Suy ra $\alpha \cdot u + v \in W_1 \cap W_2$.

 $V_{ay} W_1 \cap W_2 \leq V$.

 $\mathbf{Dinh} \ \mathbf{l\acute{y}}. \ \ N\acute{e}u \ W_1, W_2 \ l\grave{a} \ không \ gian \ con \ của \ V, \ ta \ dịnh \ nghĩa$

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}.$$

Khi đó $W_1 + W_2$ cũng là một không gian con của V.

Chứng minh.

- \bullet $W_1 + W_2 \subset V$ (vì $W_1 \subset V$, $W_2 \subset V$).
- $\mathbf{0} = \mathbf{0} + \mathbf{0} \in W_1 + W_2 \text{ (vì } \mathbf{0} \in W_1, \mathbf{0} \in W_2). \text{ Suy ra } W_1 + W_2 \neq \emptyset.$
- \bullet Với mọi $u=u_1+u_2, v=v_1+v_2\in W_1+W_2$ và $\alpha\in\mathbb{R}$.
 - $v_1 u_1, v_1 \in W_1$ nên $\alpha \cdot u_1 + v_1 \in W_1$ (vì $W_1 \leq V$).
 - \bullet Vì $u_2, v_2 \in W_2$ nên $\alpha \cdot u_2 + v_2 \in W_2$ (vì $W_2 \leq V$).

Ta có
$$\alpha \cdot u + v = \alpha \cdot (u_1 + u_2) + (v_1 + v_2) = (\alpha \cdot u_1 + v_1) + (\alpha \cdot u_2 + v_2) \in W_1 + W_2$$
. Vậy $\alpha \cdot u + v \in W_1 + W_2$.

Như vây $W_1 + W_2 < V$.

3.4.2. Không gian con sinh bởi tập hợp

Định lý. Cho V là không gian vectơ trên \mathbb{R} và S là tập con khác rỗng của V. Ta đặt W là tập hợp tất cả các tổ tuyến tính của S. Khi đó:

- W là không gian nhỏ nhất trong tất cả các không gian con của V mà chứa S.

Không gian W được gọi là không gian con sinh bởi tập hợp S, ký hiệu $\mathbf{W} = \langle \mathbf{S} \rangle$. Cụ thể, nếu $S = \{u_1, u_2, \dots, u_m\}$ thì

$$W = \langle S \rangle = \{\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m \mid \alpha_i \in \mathbb{R}\}.$$

Ví dụ. Trong không gian \mathbb{R}^2 , ta xét $S = \{u = (1, 2)\}$. Khi đó

$$W = \langle S \rangle = \{ a(1,2) \mid a \in \mathbb{R} \} = \{ (a,2a) \mid a \in \mathbb{R} \}.$$

Ví dụ. Trong không gian \mathbb{R}^3 , ta xét

$$S = \{u_1 = (1, 2, 1), u_2 = (-1, 2, 0)\}.$$

Khi đó

$$\langle S \rangle = \{ t \, u_1 + s \, u_2 \mid t, s \in \mathbb{R} \} = \{ (t - s, \, 2t + 2s, t) \mid t, s \in \mathbb{R} \}.$$

Nhận xét. Vì không gian sinh bởi S là không gian nhỏ nhất chứa S nên ta quy ước $\langle \emptyset \rangle = \{ \mathbf{0} \}.$

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$W = \{(a+2b, a-b, -a+2b) \mid a, b \in \mathbb{R}\}.$$

- **©** Chứng minh W là không gian con của \mathbb{R}^3 .
- \bullet Tìm một tập sinh của W.

Giải. a) Ta có $\mathbf{0} \in W$ vì $\mathbf{0} = (0,0,0) = (0+2.0,0-0,-0+2.0)$

Với $u, v \in W$ và $\alpha \in \mathbb{R}$,

$$u=(a_1+2b_1,\,a_1-b_1,\,-a_1+2b_1)$$
 với $a_1,\,b_1\in\mathbb{R}$
$$v=(a_2+2b_2,\,a_2-b_2,\,-a_2+2b_2)$$
 với $a_2,b_2\in\mathbb{R}$. Khi đó:

•
$$u + v = ((a_1 + a_2) + 2(b_1 + b_2), (a_1 + a_2) - (b_1 + b_2).$$

 $-(a_1 + a_2) + 2(b_1 + b_2)) \in W \text{ (vì } a_1 + a_2, b_1 + b_2 \in \mathbb{R}).$

Vậy $u + v, \alpha u \in W$. Suy ra $W \leq \mathbb{R}^3$.

b) Ta có
$$W = \{(a+2b, a-b, -a+2b) \mid a, b \in \mathbb{R}\}\$$
$$= \{a(1,1,-1) + b(2,-1,2) \mid a, b \in \mathbb{R}\}.$$

Vì mọi vectơ thuộc W đều là tổ hợp tuyến tính của

$$u_1 = (1, 1, -1), u_2 = (2, -1, 2)$$

nên $S = \{u_1, u_2\}$ là tập sinh của W.

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^4 cho các vecto

$$u_1 = (1, 2, 1, 1), u_2 = (1, 2, 2, 3), u_3 = (2, 4, 3, 4).$$

Đặt $W=\langle u_1,u_2,u_3\rangle$ và $u=(x,y,z,t)\in\mathbb{R}^4$. Tìm điều kiện để $u\in W$.

Giải. Để $u \in W$ thì u phải là tổ hợp tuyến tính của u_1, u_2, u_3 . Xét hệ phương trình

$$(u_1^\top \quad u_2^\top \quad u_3^\top \mid u^\top) = \begin{pmatrix} 1 & 1 & 2 \mid x \\ 2 & 2 & 4 \mid y \\ 1 & 2 & 3 \mid z \\ 1 & 3 & 4 \mid t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \mid x \\ 0 & 1 & 1 \mid x - z \\ 0 & 0 & 0 \mid -2x + y \\ 0 & 0 & 0 \mid x - 2z + t \end{pmatrix}.$$

Do đó, hệ phương có nghiệm khi -2x + y = 0 và x - 2z + t = 0.

Như vậy, để $u \in W$ thì

$$-2x + y = 0$$
 và $x - 2z + t = 0$.

Định lý. Cho V là không gian vectơ và S_1, S_2 là tập con của V. Khi đó, nếu mọi vectơ của S_1 đều là tổ hợp tuyến tính của S_2 và ngược lại thì $\langle S_1 \rangle = \langle S_2 \rangle$.

Chứng minh. Vì mọi vectơ của S_1 đều là tổ hợp tuyến tính của S_2 nên $S_1 \subset \langle S_2 \rangle$. Mặt khác $\langle S_1 \rangle$ là không gian nhỏ nhất chứa S_1 nên $\langle S_1 \rangle \subset \langle S_2 \rangle$. Lý luận tương tự ta có $\langle S_2 \rangle \subset \langle S_1 \rangle$.

 \mathbf{V} í dụ.(tự làm) Trong không gian \mathbb{R}^3 cho

$$S_1 = \{u_1 = (1, -1, 4), u_2 = (2, 1, 3)\},\$$

$$S_2 = \{v_1 = (-1, -2, 1), v_2 = (5, 1, 10)\}.$$

Chứng minh $\langle S_1 \rangle = \langle S_2 \rangle$.

Hướng dẫn. Ta có $v_1 = u_1 - u_2; v_2 = u_1 + 2u_2$ và

$$u_1 = \frac{2}{3}v_1 + \frac{1}{3}v_2; u_2 = -\frac{1}{3}v_1 + \frac{1}{3}v_2.$$

Định lý. [về cơ sở không toàn vẹn] Cho V là một không gian vectơ và S là một tập con độc lập tuyến tính của V. Khi đó, nếu S không là cơ sở của V thì có thể thêm vào S một số vectơ để được một cơ sở của V.

Ví dụ. Trong không gian \mathbb{R}^4 , cho

$$S = \{u_1 = (1, 0, 2, 1), u_2 = (1, 0, 4, 4)\}.$$

Chứng tỏ S độc lập tuyến tính và thêm vào S một số vecto để S trở thành cơ sở của $\mathbb{R}^4.$

Giải. Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 0 & 4 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 3 \end{pmatrix}.$$

Ta có r(A) = 2 bằng số vectơ của S. Suy ra S độc lập tuyến tính.

Dưa vào A ta có thể thêm vào S hai vecto

$$u_3 = (0, 1, 0, 0), u_4 = (0, 0, 0, 1).$$

Rõ ràng $S = \{u_1, u_2, u_3, u_4\}$ đ
ltt. Suy ra S là cơ sở của \mathbb{R}^4 .

Định lý. Cho V là một không gian vectơ sinh bởi S. Khi đó tồn tại một cơ sở \mathcal{B} của V sao cho $\mathcal{B} \subset S$. Nói cách khác, nếu S không phải là một cơ sở của V thì ta có thể loại bỏ ra khỏi S một số vectơ để được một cơ sở của V.

Ví dụ. Trong không gian \mathbb{R}^3 , cho W sinh bởi

$$S = \{u_1 = (1, 1, 1), u_2 = (2, 1, 3), u_3 = (1, 2, 0)\}.$$

Tìm một tập con của S để là cơ sở của W.

Giải. Xét phương trình

$$\alpha_{1}u_{1} + \alpha_{2}u_{2} + \alpha_{3}u_{3} = \mathbf{0}$$

$$\Leftrightarrow (\alpha_{1} + 2\alpha_{2} + \alpha_{3}, \alpha_{1} + \alpha_{2} + 2\alpha_{3}, \alpha_{1} + 3\alpha_{2}) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_{1} + 2\alpha_{2} + \alpha_{3} = 0 \\ \alpha_{1} + \alpha_{2} + 2\alpha_{3} = 0 \\ \alpha_{1} + 3\alpha_{2} = 0 \end{cases}$$

Ma trận hóa hệ phương trình,

$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Suy ra hệ có nghiệm là $\alpha_1=-3t, \alpha_2=t, \alpha_3=t.$ Vậy $-3tu_1+tu_2+tu_3={\color{red}0}.$

Cho
$$t=1$$
, ta có $-3u_1+u_2+u_3={\color{red}0}$ nên

$$u_2 = 3u_1 - u_3$$
.

Suy ra u_2 là tổ hợp tuyến tính của u_1, u_3 . Do đó $\{u_1, u_3\}$ là tập sinh của W, hơn nữa nó độc lập tuyến tính nên nó là cơ sở của W.

 \mathbf{V} í dụ.(tự làm) Trong không gian \mathbb{R}^4 , cho W sinh bởi

$$S = \{u_1 = (1, 2, 1, 2), u_2 = (2, 1, 1, 2), u_3 = (3, 0, 1, 2), u_4 = (5, 7, 4, 8)\}.$$

Tìm một tập con của S để là cơ sở của W.

Hướng dẫn. Xét phương trình $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_4 u_4 = 0$.

Ma trận hóa phương trình ta có

$$\tilde{A} = \begin{pmatrix} u_1^\top & u_2^\top & u_3^\top & u_4^\top \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 1 & 0 & 7 \\ 1 & 1 & 1 & 4 \\ 2 & 2 & 2 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra hệ có nghiệm là $\alpha_1=t-3s, \alpha_2=-2t-s, \alpha_3=t, \alpha_4=s.$ Vậy

$$(t-3s)u_1 + (-2t-s)u_2 + tu_3 + su_4 = 0.$$

- **©** Cho t = 1, s = 0 ta có $u_1 2u_2 + u_3 = 0$ nên $u_3 = -u_1 + 2u_2$.
- Cho t = 0, s = 1 ta có $-3u_1 u_2 + u_4 = 0$ nên $u_4 = 3u_1 + u_2$.

Như vậy u_3 và u_4 là tổ hợp tuyến tính của u_1, u_2 . Do đó $\{u_1, u_2\}$ là tập sinh của W, hơn nữa nó độc lập tuyến tính nên nó là cơ sở của W.

3.4.3. Không gian dòng của ma trận

Định nghĩa. Cho ma trận $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

và

$$W_A = \langle u_1, u_2, \dots, u_m \rangle.$$

Ta gọi u_1, u_2, \ldots, u_m là các vecto dòng của A, và W_A được gọi là không gian dòng của A.

Bổ đề. Nếu A và B là hai ma trận tương đương dòng thì $W_A = W_B$, nghĩa là hai ma trận tương đương dòng có cùng không gian dòng.

Định lý. Giả sử $A \in M_{m \times n}(\mathbb{R})$. Khi đó, $\dim W_A = r(A)$ và tập hợp các vectơ khác không trong một dạng bậc thang của A là cơ sở của W_A .

 \mathbf{V} í dụ. Tìm số chiều và một cơ sở của không gian dòng của ma trận

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 1 & 4 \\ 5 & 11 & -2 & 8 \\ 9 & 20 & -3 & 14 \end{pmatrix}.$$

Giải.
$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 1 & 4 \\ 5 & 11 & -2 & 8 \\ 9 & 20 & -3 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra $\dim W_A = r(A) = 3$ và một cơ sở của W_A là

$${u_1 = (1, 2, -1, 1); u_2 = (0, 1, 3, 2); u_3 = (0, 0, 0, 1)}.$$

Thuật toán tìm số chiều và cơ sở của một không gian con của \mathbb{R}^n khi biết một tập sinh

Giả sử $W = \langle u_1, u_2, \dots, u_m \rangle \leq \mathbb{R}^n$, để tìm số chiều và một cơ sở của W ta tiến hành như sau:

Bước 1. Lập ma trận A bằng cách xếp u_1, u_2, \ldots, u_m thành các dòng.

Bước 2. Dùng các phép BĐSCTD đưa A về dạng bậc thang R_A .

Bước 3. Số chiều của W bằng số dòng khác 0 của R_A (= r(A)) và các vectơ dòng khác 0 của R_A tạo thành một cơ sở của W.

Ví dụ. Cho W sinh bởi $S = \{u_1, u_2, u_3, u_4\}$ trong đó $u_1 = (1, 2, 1, 1);$ $u_2 = (3, 6, 5, 7);$ $u_3 = (4, 8, 6, 8);$ $u_4 = (8, 16, 12, 20).$ Tìm một cơ sở của không gian W.

Giải. Lập

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 20 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W có $\dim W = 3$ và có một cơ sở

$${v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2); v_3 = (0, 0, 0, 1)}.$$

Nhận xét. Vì dimW=3, hơn nữa, có thể kiểm chứng u_1,u_2,u_4 độc lập tuyến tính nên ta cũng có $\{u_1,u_2,u_4\}$ là một cơ sở của W.

Ví dụ. Tìm một cơ sở cho không gian con của \mathbb{R}^4 sinh bởi các vectơ $u_1,u_2,u_3,$ trong đó

$$u_1 = (1, -2, -1, 3); u_2 = (2, -4, -3, 0); u_3 = (3, -6, -4, 4).$$

Giải. Lập

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 & 3 \\ 2 & -4 & -3 & 0 \\ 3 & -6 & -4 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -1 & 3 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Do đó có $\dim W = 3$ và có một cơ sở

$$\{v_1 = (1, -2, -1, 3); v_2 = (0, 0, -1, -6); v_3 = (0, 0, 0, 1)\}.$$

Nhận xét. Trong ví dụ trên, vì r(A) = 3 nên u_1, u_2, u_3 độc lập tuyến tính, và do đó $\{u_1, u_2, u_3\}$ cũng là một cơ sở của W.

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 cho không gian con W sinh bởi các vecto $u_1=(1,2,-2,1); u_2=(2,1,4,3); u_3=(3,2,4,3)$

$$u_4 = (1, 3, -4, 2); u_5 = (-3, 3, -16, -2); u_6 = (-4, -1, -10, -5).$$

Tìm một cơ sở của W.

3.4.4. Không gian tổng

Định lý. Cho V là không gian vectơ trên \mathbb{R} và W_1, W_2 là hai không gian con của V. Nếu $W_1 = \langle S_1 \rangle$ và $W_2 = \langle S_2 \rangle$ thì

$$W_1 + W_2 = \langle S_1 \cup S_2 \rangle.$$

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^4 cho các vecto

$$u_1 = (1, 2, 1, 1); u_2 = (3, 6, 5, 7); u_3 = (4, 8, 6, 8); u_4 = (8, 16, 12, 16);$$

$$u_5 = (1, 3, 3, 3); u_6 = (2, 5, 5, 6); u_7 = (3, 8, 8, 9); u_8 = (6, 16, 16, 18).$$

Đặt $W_1 = \langle u_1, u_2, u_3, u_4 \rangle$ và $W_2 = \langle u_5, u_6, u_7, u_8 \rangle$. Tìm một cơ sở và xác định số chiều của mỗi không gian W_1, W_2 và $W_1 + W_2$.

Giải.

• Tìm cơ sở của W_1

$$\text{Lập } A_1 = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 16 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W_1 có số chiều là 2 và một cơ sở của W_1 là

$${v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2)}.$$

• Tìm cơ sở của W_2

$$\text{Lập } A_2 = \begin{pmatrix} u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 & 3 \\ 2 & 5 & 5 & 6 \\ 3 & 8 & 8 & 9 \\ 6 & 16 & 16 & 18 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W_2 có số chiều là 2 và một cơ sở của W_2 là

$$\{v_3 = (1,3,3,3); v_4 = (0,1,1,0)\}.$$

• Tìm cơ sở của $W_1 + W_2$

Ta có $W_1 + W_2$ sinh bởi các vectơ

$$v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2); v_3 = (1, 3, 3, 3); v_4 = (0, 1, 1, 0).$$

$$\text{Lập } A = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra $W_1 + W_2$ có số chiều là 3 và một cơ sở của $W_1 + W_2$ là

$${w_1 = (1, 2, 1, 1); w_2 = (0, 1, 1, 0); w_3 = (0, 0, 1, 2)}.$$

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 xét các vectơ sau đây:

$$u_1 = (1, 2, 0, 1); u_2 = (2, 1, 3, 1); u_3 = (7, 8, 9, 5); u_4 = (1, 2, 1, 0),$$

$$u_5 = (2, -1, 0, 1); u_6 = (-1, 1, 1, 1); u_7 = (1, 1, 1, 1).$$

Đặt $U=\langle u_1,u_2,u_3\rangle, W=\langle u_4,u_5,u_6,u_7\rangle.$ Hãy tìm một cơ sở cho mỗi không gian con U,W và U+W.

3.5. Không gian nghiệm của hệ phương trình tuyến tính

- Mở đầu
- Tìm cơ sở của không gian nghiệm
- Không gian giao

3.5.1. Mở đầu

Ví dụ. Cho W là tập tất cả các nghiệm (x_1, x_2, x_3, x_4) của hệ phương trình tuyến tính thuần nhất sau

$$\begin{cases} 3x_1 + 6x_2 - x_3 + 5x_4 = 0; \\ 2x_1 + 4x_2 - x_3 + 4x_4 = 0; \\ x_1 + 2x_2 - 2x_3 + 5x_4 = 0. \end{cases}$$

Giải. Ma trận hóa hệ phương trình, ta có

$$\tilde{A} = \begin{pmatrix} 3 & 6 & -1 & 5 \\ 2 & 4 & -1 & 4 \\ 1 & 2 & -2 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Vậy hệ có nghiệm là

$$(x_1, x_2, x_3, x_4) = (-2t - s, t, 2s, s) \text{ v\'oi } t, s \in \mathbb{R}.$$

Do đó

$$\begin{split} W &= \{\, (-2t-s,t,2s,s) \,|\, t,s \in \mathbb{R} \} \\ &= \{\, (-2t,t,0,0) + (-s,0,2s,s) \,|\, t,s \in \mathbb{R} \} \\ &= \{\, t(-2,1,0,0) + s(-1,0,2,1) \,|\, t,s \in \mathbb{R} \}. \end{split}$$

Đặt $u_1 = (-2, 1, 0, 0), u_2 = (-1, 0, 2, 1)$. Theo biểu thức trên, với $u \in W$ thì u là tổ hợp tuyến tính của u_1 và u_2 . Suy ra

$$W = \langle u_1, u_2 \rangle.$$

Hơn nữa $\{u_1, u_2\}$ độc lập tuyến tính, nên $\{u_1, u_2\}$ là cơ sở của W. Suy ra $\dim W = 2$.

Nhận xét. Vectơ u_1 và u_2 có được bằng cách cho lần lượt t=1, s=0 và t=0, s=1. Ta gọi nghiệm u_1, u_2 được gọi là nghiệm cơ bản của hệ phương trình.

Định lý. Gọi W là tập hợp nghiệm $(x_1, x_2, ..., x_n)$ của hệ phương trình tuyến tính thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0; \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0. \end{cases}$$

Khi đó, W là không gian con của \mathbb{R}^n và số chiều của W bằng số ẩn tự do của hệ. Như vậy

$$W = \{ u \in \mathbb{R}^n \mid Au^\top = \mathbf{0} \}$$

với A là ma trận cho trước và $u=(x_1,x_2,\ldots,x_n)$.

3.5.2. Tìm cơ sở của không gian nghiệm

Thuật toán

Bước 1. Giải hệ phương trình, tìm nghiệm tổng quát.

Bước 2. Lần lượt cho bộ ẩn tự do các giá trị

$$(1,0,\ldots,0),\ldots,(0,0,\ldots,1)$$

ta được các nghiệm cơ bản u_1, u_2, \dots, u_m .

Bước 3. Khi đó không gian nghiệm có cơ sở là $\{u_1, u_2, \dots, u_m\}$.

Ví dụ. Tìm cơ sở và số chiều của không gian nghiệm sau

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 0; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = 0; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 0; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 0. \end{cases}$$

Giải. Ma trận hóa hệ phương trình, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 2 & -3 & 5 \\ 1 & 3 & -13 & 22 \\ 3 & 5 & 1 & -2 \\ 2 & 3 & 4 & -7 \end{pmatrix} \xrightarrow{d_2 - d_1} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -10 & 17 \\ 0 & -1 & 10 & -17 \\ 0 & -1 & 10 & -17 \end{pmatrix}$$
$$\xrightarrow{d_1 - 2d_2} \xrightarrow{d_3 + d_2} \begin{pmatrix} 1 & 0 & 17 & -29 \\ 0 & 1 & -10 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra nghiệm của hệ là

$$u = (x_1, x_2, x_3, x_4) = (-17t + 29s, 10t - 17s, t, s) \text{ v\'oi } t, s \in \mathbb{R}.$$

Các nghiệm cơ bản của hệ là

$$u_1 = (-17, 10, 1, 0), u_2 = (29, -17, 0, 1).$$

Do đó, nếu W là không gian nghiệm thì $\mathcal{B} = \{u_1, u_2\}$ cơ sở của W và $\dim W = 2$.

Ví dụ.(tự làm) Tìm cơ sở và số chiều của không gian nghiệm sau

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 = 0 \\ 4x_1 + 5x_2 + 6x_3 + 7x_4 = 0. \end{cases}$$

Ví dụ.(tự làm) Tìm cơ sở và số chiều của không gian nghiệm sau

$$\begin{cases} 5x_1 + 6x_2 - 2x_3 + 7x_4 + 4x_5 = 0; \\ 2x_1 + 3x_2 - x_3 + 4x_4 + 2x_5 = 0; \\ 7x_1 + 9x_2 - 3x_3 + 5x_4 + 6x_5 = 0; \\ 5x_1 + 9x_2 - 3x_3 + x_4 + 6x_5 = 0. \end{cases}$$

3.5.3. Không gian giao

Nhận xét. Cho V là không gian vectơ và W_1, W_2 là hai không gian con của V. Nếu $W_1 = \langle S_1 \rangle, W_2 = \langle S_2 \rangle$ thì $u \in W_1 \cap W_2$ khi và chỉ khi u là tổ hợp tuyến tính của S_1 và u là tổ hợp tuyến tính của S_2 .

Ví dụ. Trong không gian \mathbb{R}^4 cho các vecto $u_1=(1,2,1,1),$ $u_2=(1,2,2,3),\ u_3=(2,4,3,4),\ u_4=(1,3,3,3),\ u_5=(0,1,1,0).$ Đặt $W_1=\langle u_1,u_2,u_3\rangle,\ W_2=\langle u_4,u_5\rangle.$ Tìm cơ sở của không gian $W_1\cap W_2.$

Giải. Giả sử $u=(x,y,z,t)\in W_1\cap W_2$.

• Vì $u \in W_1$ nên u là tổ hợp tuyến tính của u_1, u_2, u_3 .

$$(u_1^\top \quad u_2^\top \quad u_3^\top \mid u^\top) = \begin{pmatrix} 1 & 1 & 2 \mid x \\ 2 & 2 & 4 \mid y \\ 1 & 2 & 3 \mid z \\ 1 & 3 & 4 \mid t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \mid x \\ 0 & 1 & 1 \mid x - z \\ 0 & 0 & 0 \mid x - 2x + y \\ 0 & 0 & 0 \mid x - 2z + t \end{pmatrix}.$$

Suy ra để
$$u \in W_1$$
 thì $-2x + y = 0$ và $x - 2z + t = 0$ (1)

• Vì $u \in W_2$ nên u là tổ hợp tuyến tính của u_4, u_5 .

$$(u_4^{\top} \quad u_5^{\top} \mid u^{\top}) = \begin{pmatrix} 1 & 0 \mid x \\ 3 & 1 \mid y \\ 3 & 1 \mid z \\ 3 & 0 \mid t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \mid x \\ 0 & 1 \mid -3x + y \\ 0 & 0 \mid -y + z \\ 0 & 0 \mid -3x + t \end{pmatrix}$$

Suy ra để $u \in W_2$ thì -y + z = 0 và -3x + t = 0 (2)

Từ (1) và (2) ta có

$$\begin{cases}
-2x + y & = 0; \\
x - 2z + t = 0; \\
-3x + t = 0.
\end{cases}$$

Ma trận hóa hệ phương trình

$$\tilde{A} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} d_1 - d_4 \\ d_2 - d_1 \\ d_4 - 3d_1 \end{array}} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & -2 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 3 & 0 & -2 \end{pmatrix}$$

$$\xrightarrow{\begin{array}{c} -d_2 \\ d_1 - d_2 \\ d_3 - d_2 \\ d_4 - 3d_2 \end{array}} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -6 & 4 \end{pmatrix} \xrightarrow{\begin{array}{c} \frac{1}{3}d_3 \\ d_1 + 2d_3 \\ d_2 - 2d_3 \\ d_4 + 6d_3 \end{array}} \begin{pmatrix} 1 & 0 & 0 & -1/3 \\ 0 & 1 & 0 & -2/3 \\ 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Suy ra nghiệm của hệ là

$$u=(x,y,z,t)=\left(rac{1}{3}a,rac{2}{3}a,rac{2}{3}a,a
ight)$$
 với $a\in\mathbb{R}.$

Nghiệm cơ bản của hệ là $v=\left(\frac{1}{3},\frac{2}{3},\frac{2}{3},1\right)$. Suy ra $W_1\cap W_2$ có cơ sở là $\left\{v=\left(\frac{1}{3},\frac{2}{3},\frac{2}{3},1\right)\right\}.$

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 xét các vectơ sau đây:

$$u_1 = (1, 2, 0, 1); u_2 = (2, 1, 3, 1); u_3 = (7, 8, 9, 5); u_4 = (1, 2, 1, 0),$$

 $u_5 = (2, -1, 0, 1); u_6 = (-1, 1, 1, 1); u_7 = (1, 1, 1, 1).$

Đặt $U=\langle u_1,u_2,u_3\rangle, W=\langle u_4,u_5,u_6,u_7\rangle.$ Hãy tìm một cơ sở của không gian $U\cap W.$

Ví dụ. (tự làm) Gọi W_1 , W_2 lần lượt là tập hợp các vecto (x_1, x_2, x_3, x_4) trong \mathbb{R}^4 thỏa các hệ phương trình tuyến tính thuần nhất

$$(W_1): \begin{cases} x_1 + x_2 - 2x_3 &= 0; \\ x_1 - x_2 - 2x_4 &= 0, \end{cases}$$
 $(W_2): x_1 = x_2 = x_3.$

Tìm một cơ sở và số chiều của không gian $W_1 \cap W_2, W_1 + W_2$.

Định lý. Cho W_1, W_2 là hai không gian con của V. Khi đó

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$$

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 cho các vecto $u_1 = (1, 2, 1, 1)$, $u_2 = (2, 4, 3, 4)$, $u_3 = (1, 2, 2, 3)$, , $u_4 = (1, -1, -1, 3)$ $u_5 = (1, 3, 3, 3)$, $u_6 = (0, 1, 1, 0)$, $u_7 = (1, 5, 5, 3)$. Đặt $W_1 = \langle u_1, u_2, u_3 \rangle$ và $W_2 = \langle u_4, u_5, u_6, u_7 \rangle$. Tìm số chiều của không gian $W_1 \cap W_2$.

Đáp án.

$$\dim(W_1 \cap W_2) = \dim W_1 + \dim W_2 - \dim(W_1 + W_2)$$
$$2 + 2 - 3 = 1$$

3.6. Tọa độ và ma trận chuyển cơ sở

Tọa độ

2 Ma trận chuyển cơ sở

3.6.1. Tọa độ

Định nghĩa. Cho V là không gian vectơ và $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là một cơ sở của V. Khi đó \mathcal{B} được gọi là **cơ sở được sắp** của V nếu thứ tự các vectơ trong \mathcal{B} được cố định. Ta thường dùng ký hiệu

$$(u_1,u_2,\ldots,u_n)$$

để chỉ cơ sở được sắp theo thứ tự u_1, u_2, \ldots, u_n .

Định lý. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là cơ sở của V. Khi đó mọi vectơ $u \in V$ đều được **biểu diễn một cách duy nhất** dưới dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n.$$

Chứng minh. • Sự tồn tại. Vì \mathcal{B} là cơ sở của V nên \mathcal{B} là tập sinh. Do đó, với $u \in V$ thì u là tổ hợp tuyến tính của \mathcal{B} . Suy ra, tồn tại $\alpha_1, \alpha_2, \ldots \alpha_n \in \mathbb{R}$ để

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n.$$

 \bullet Sự duy nhất. Giả sử u có một dạng biểu diễn khác là

$$u = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n.$$

Nghĩa là:

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n.$$

Khi đó

$$(\alpha_1 - \beta_1)u_1 + (\alpha_2 - \beta_2)u_2 + \dots + (\alpha_n - \beta_n)u_n = 0.$$

Do \mathcal{B} là cơ sở nên \mathcal{B} độc lập tuyến tính, suy ra

$$\alpha_1 - \beta_1 = \alpha_2 - \beta_2 = \dots = \alpha_n - \beta_n = 0$$

hay

$$\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_n = \beta_n.$$

Điều này chứng tỏ u có một dạng biểu diễn duy nhất.

Định nghĩa. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là một cơ sở của V và $u \in V$. Khi đó u sẽ được biểu diễn duy nhất dưới dạng:

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n.$$

 $\mathrm{Ta}~\mathrm{d} \ddot{\mathrm{a}} \mathrm{t}$

$$[\boldsymbol{u}]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Khi đó $[u]_{\mathcal{B}}$ được gọi là toa $d\hat{\varrho}$ của u theo cơ sở \mathcal{B} .

Ví dụ. Trong không gian \mathbb{R}^2 cho $u_1=(1,2)$ và $u_2=(2,1)$. Chứng tỏ $\mathcal{B}=(u_1,u_2)$ là cơ sở của \mathbb{R}^2 . Tìm tọa độ của vecto u=(10,11) theo cơ sở \mathcal{B} .

Hướng dẫn. Ta có $u = 4u_1 + 3u_2$. Suy ra $[u]_{\mathcal{B}} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

Ví dụ. Trong không gian \mathbb{R}^3 , ta có cơ sở chính tắc

$$\mathcal{B}_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}.$$

Với $u = (x_1, x_2, x_3)$ ta có: $u = x_1e_1 + x_2e_2 + x_3e_3$. Suy ra

$$[u]_{\mathcal{B}_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{u}^\top.$$

Nhận xét. Đối với cơ sở chính tắc $\mathcal{B}_0 = (e_1, e_2, \dots, e_n)$ của không gian \mathbb{R}^n và $u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ ta có

$$[u]_{\mathcal{B}_0} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = u^{\top}.$$

Phương pháp tìm $[u]_{\mathcal{B}}$

Cho V là không gian vectơ có cơ sở là $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ và $u\in V$. Để tìm $[u]_{\mathcal{B}}$ ta đi giải phương trình

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n \quad (*)$$

với ẩn $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$. Do \mathcal{B} là cơ sở nên phương trình (*) có nghiệm duy nhất

$$(\alpha_1,\alpha_2,\ldots,\alpha_n)=(c_1,c_2,\ldots,c_n).$$

Khi đó
$$[u]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
.

Lưu ý. Khi V là không gian con của \mathbb{R}^m , để giải phương trình (*) ta lập hệ

$$\left(u_1^ op\ u_2^ op\dots\ u_n^ op\mid u^ op
ight)$$

Ví dụ. Trong không gian \mathbb{R}^3 , cho các vecto

$$u_1 = (1, 2, 1), u_2 = (1, 3, 1), u_3 = (2, 5, 3).$$

- a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- b) Tìm tọa độ của vecto $u = (a, b, c) \in \mathbb{R}^3$ theo cơ sở \mathcal{B} .

Giải.

a) Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 5 & 3 \end{pmatrix}$$
. Ta có $\det A = 1$, suy ra u_1, u_2, u_3 độc

lập tuyến tính. Hơn nữa số vectơ của $\mathcal B$ bằng dim $\mathbb R^3$ nên $\mathcal B$ là cơ sở của $\mathbb R^3$.

b) Với u=(a,b,c), để tìm $[u]_{\mathcal{B}}$ ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \begin{pmatrix} 1 & 1 & 2 & a \\ 2 & 3 & 5 & b \\ 1 & 1 & 3 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4a - b - c \\ 0 & 1 & 0 & -a + b - c \\ 0 & 0 & 1 & -a + c \end{pmatrix}.$$

Vậy
$$[u]_{\mathcal{B}} = \begin{pmatrix} 4a - b - c \\ -a + b - c \\ -a + c \end{pmatrix}$$
.

 \mathbf{V} í dụ.(tự làm) Trong không gian \mathbb{R}^4 cho

$$u_1 = (1, 2, 1, 2); u_2 = (-1, -1, 2, 1); u_3 = (-2, -2, 3, 1).$$

Gọi W là không gian sinh bởi u_1, u_2, u_3 .

- ① Chứng tỏ $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở của W.
- **O** Cho $u=(x,y,z,t)\in\mathbb{R}^4$. Tìm điều kiện để $u\in W$, sau đó tìm $[u]_{\mathcal{B}}$.

Hướng dẫn. b) Để $u \in W$ thì u là tổ hợp tuyến tính của u_1, u_2, u_3 . Ta xét hệ phương trình

$$\begin{pmatrix} u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 & | \ x \\ 2 & -1 & -2 & | \ y \\ 1 & 2 & 3 & | \ z \\ 2 & 1 & 1 & | \ t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | \ -x + y \\ 0 & 1 & 0 & | \ 8x - 5y + 2z \\ 0 & 0 & 1 & | \ -5x + 3y - z \\ -x - z + t \end{pmatrix}.$$

Như vậy để $u \in W$ thì -x - z + t = 0. Hơn nữa

$$[u]_{\mathcal{B}} = \begin{pmatrix} -x+y\\ 8x-5y+2z\\ -5x+3y-z \end{pmatrix}.$$

 $\begin{array}{l} \mathbf{Vi} \ \mathbf{du.}(\mathrm{tự} \ \mathrm{làm}) \ \mathrm{Cho} \ \mathcal{B}_1 = (u_1 = (1,2,3), u_2 = (2,1,1), u_3 = (2,1,3)) \ \mathrm{và} \\ \mathcal{B}_2 = (v_1 = (2,5,-2), v_2 = (1,3,-2), v_3 = (-1,-2,1)) \ \mathrm{là} \ \mathrm{hai} \ \mathrm{co} \ \mathrm{sở} \ \mathrm{của} \\ \mathbb{R}^3 \ \mathrm{và} \ [u]_{\mathcal{B}_1} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}. \ \mathrm{Tìm} \ [u]_{\mathcal{B}_2}.$

Đáp án. $[u]_{\mathcal{B}_2} = (10 -4 \ 18)^{\top}$.

Mệnh đề. Cho \mathcal{B} là cơ sở của V. Khi đó, với mọi $u, v \in V, \alpha \in \mathbb{R}$ ta có:

3.6.2. Ma trận chuyển cơ sở

 \mathbf{Dinh} nghĩa. Cho V là một không gian vectơ và

$$\mathcal{B}_1 = (u_1, u_2, \dots, u_n), \, \mathcal{B}_2 = (v_1, v_2, \dots, v_n)$$

là hai cơ sở của V. Đặt

$$P = ([v_1]_{\mathcal{B}_1} \ [v_2]_{\mathcal{B}_1} \dots [v_n]_{\mathcal{B}_1}).$$

Khi đó P được gọi là ma trận chuyển cơ sở từ cơ sở \mathcal{B}_1 sang cơ sở \mathcal{B}_2 và được ký hiệu $(\mathcal{B}_1 \to \mathcal{B}_2)$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = (u_1 = (1, -2, 3), u_2 = (2, 3, -1), u_3 = (3, 1, 3))$$

là cơ sở của \mathbb{R}^3 . Gọi \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^3 . Khi đó

$$(\mathcal{B}_0 \to \mathcal{B}) = ([u_1]_{\mathcal{B}_0} \ [u_2]_{\mathcal{B}_0} \ [u_3]_{\mathcal{B}_0}) = \begin{pmatrix} u_1^\top \ u_2^\top \ u_3^\top \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 3 & 1 \\ 3 & -1 & 3 \end{pmatrix}.$$

Nhận xét. Nếu $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là một cơ sở của \mathbb{R}^n và \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^n thì $(\mathcal{B}_0 \to \mathcal{B}) = \begin{pmatrix} u_1^\top & u_2^\top & \dots & u_n^\top \end{pmatrix}$

Phương pháp tìm $(\mathcal{B}_1 \to \mathcal{B}_2)$

Giả sử $\mathcal{B}_1 = (u_1, u_2, \dots, u_n)$ và $\mathcal{B}_2 = (v_1, v_2, \dots, v_n)$ là hai cơ sở của V. Để tìm $(\mathcal{B}_1 \to \mathcal{B}_2)$, ta thực hiện như sau:

- Cho u là vectơ bất kỳ của V, xác định $[u]_{\mathcal{B}_1}$.
- \bullet Lần lượt thay thế u bằng v_1, v_2, \ldots, v_n ta xác định được

$$[v_1]_{\mathcal{B}_1}, [v_2]_{\mathcal{B}_1}, \ldots, [v_n]_{\mathcal{B}_1}.$$

Khi đó

$$(\mathcal{B}_1 \to \mathcal{B}_2) = ([v_1]_{\mathcal{B}_1} \ [v_2]_{\mathcal{B}_1} \dots [v_n]_{\mathcal{B}_1}).$$

Đặc biệt, khi $V = \mathbb{R}^n$, để xác định $(\mathcal{B}_1 \to \mathcal{B}_2)$ ta có thể làm như sau:

- $lackbox{ }$ Lập ma trận mở rộng $(u_1^{ op}\ u_2^{ op}\ ...\ u_n^{ op}\ |\ v_1^{ op}\ v_2^{ op}\ ...\ v_n^{ op})$
- lacktriangle Dùng các phép biến đổi sơ cấp trên dòng đưa ma trận trên về dạng $(I_n|P)$.
- lacktriangle Khi đó $(\mathcal{B}_1 \to \mathcal{B}_2) = P$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho hai cơ sở

$$\mathcal{B}_1 = (u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (2, 3, 1))$$

và

$$\mathcal{B}_2 = (v_1 = (1, -3, 2), v_2 = (-1, -2, 4), v_3 = (3, 3, -2)).$$

Tìm ma trận chuyển cơ sở từ \mathcal{B}_1 sang \mathcal{B}_2 .

Giải. Cho $u=(a,b,c)\in\mathbb{R}^3$, xác định $[u]_{\mathcal{B}_1}$. Ta lập hệ phương trình

$$\left(u_1^\top \ u_2^\top \ u_3^\top | u^\top \right) = \begin{pmatrix} 1 & 1 & 2 & a \\ 1 & 2 & 3 & b \\ 1 & 1 & 1 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & a - b + c \\ 0 & 1 & 0 & -2a + b + c \\ 0 & 0 & 1 & a - c \end{pmatrix}.$$

Như vậy $[u]_{\mathcal{B}_1} = \begin{pmatrix} a-b+c \\ -2a+b+c \\ a-c \end{pmatrix}$. Thay lần lượt u bởi v_1, v_2, v_3 ta có

$$[v_1]_{\mathcal{B}_1} = \begin{pmatrix} 6 \\ -3 \\ -1 \end{pmatrix}, [v_2]_{\mathcal{B}_1} = \begin{pmatrix} 5 \\ 4 \\ -5 \end{pmatrix}, [v_3]_{\mathcal{B}_1} = \begin{pmatrix} -2 \\ -5 \\ 5 \end{pmatrix}.$$

Vây
$$(\mathcal{B}_1 \to \mathcal{B}_2) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix}$$
.

Cách khác. Lập ma trận mở rộng

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ v_1^\top \ v_2^\top \ v_3^\top) = \begin{pmatrix} 1 & 1 & 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & -3 & -2 & 3 \\ 1 & 1 & 1 & 2 & 4 & -2 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 6 & 5 & -2 \\ 0 & 1 & 0 & -3 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 5 \end{pmatrix}. \text{ Suy ra } (\mathcal{B}_1 \to \mathcal{B}_2) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix}.$$

Định lý. Cho V là một không gian vectơ n chiều và $\mathcal{B}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ là những cơ sở của V. Khi đó

- $(\mathcal{B}_2 \to \mathcal{B}_1) = (\mathcal{B}_1 \to \mathcal{B}_2)^{-1}.$
- $(\mathcal{B}_1 \to \mathcal{B}_3) = (\mathcal{B}_1 \to \mathcal{B}_2)(\mathcal{B}_2 \to \mathcal{B}_3).$

Nhắc lại. Cho $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ là một cơ sở của \mathbb{R}^n . Khi đó

$$(\mathcal{B}_0 \to \mathcal{B}) = \left(u_1^\top \ u_2^\top \dots u_n^\top \right).$$

Hệ quả. Cho $\mathcal{B}, \mathcal{B}_1, \mathcal{B}_2$ là những cơ sở của không gian \mathbb{R}^n . Khi đó

- $(\mathcal{B} \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B})^{-1}.$

Ví dụ. Cho W là không gian con của \mathbb{R}^4 sinh bởi các vectơ:

$$u_1 = (1, 2, 2, 1), u_2 = (0, 2, 0, 1), u_3 = (-2, 3, -4, 1).$$

- **©** Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.
- **O** Cho u = (a, b, c, d), tìm điều kiện để $u \in W$. Khi đó tìm $[u]_{\mathcal{B}}$.
- Cho $v_1 = (1, 0, 2, 0); v_2 = (0, 2, 0, 1); v_3 = (0, 0, 0, 1)$. Chứng minh $\mathcal{B}' = (v_1, v_2, v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' .

Giải.

a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.

Lập
$$A=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}=\begin{pmatrix}1&2&2&1\\0&2&0&1\\-2&3&-4&1\end{pmatrix}$$
. Ta có $r(A)=3,$ suy ra $\mathcal B$ độc lập

tuyến tính. Vì $W = \langle \mathcal{B} \rangle$ nên \mathcal{B} là cơ sở của W.

b) Cho u = (a, b, c, d), tìm điều kiện để $u \in W$. Khi đó tìm $[u]_{\mathcal{B}}$.

Ta có $u \in W$ khi u là tổ hợp tuyến tính của \mathcal{B} . Lập hệ phương trình

$$\begin{pmatrix} u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & | \ a \\ 2 & 2 & 3 & | \ b \\ 2 & 0 & -4 & | \ c \\ 1 & 1 & 1 & | \ d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | \ a+2b-4d \\ 0 & 1 & 0 & | \ -a-3b+7d \\ 0 & 0 & 1 & | \ b-2d \\ 0 & 0 & 0 & | \ -2a+c \end{pmatrix}.$$

Dựa vào hệ phương trình, ta thấy để $u \in W$ thì

$$-2a + c = 0$$

Hơn nữa

$$[u]_{\mathcal{B}} = \begin{pmatrix} a+2b-4d\\ -a-3b+7d\\ b-2d \end{pmatrix}.$$

c) Cho $v_1 = (1,0,2,0); v_2 = (0,2,0,1); v_3 = (0,0,0,1)$. Chứng minh $\mathcal{B}' = (v_1,v_2,v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' .

Ta thấy các vectơ v_1, v_2, v_3 đều thỏa điều kiện -2a + c = 0 nên theo câu b), các vectơ này thuộc W.

Mặt khác, dễ thấy rằng $\mathcal{B}'=(v_1,v_2,v_3)$ độc lập tuyến tính nên \mathcal{B}' cũng là cơ sở của W (do dim $W=|\mathcal{B}|=3=|\mathcal{B}'|$). Dùng kết quả ở câu b) ta có

$$[v_1]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, [v_2]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, [v_3]_{\mathcal{B}} = \begin{pmatrix} -4 \\ 7 \\ -2 \end{pmatrix}.$$

Suy ra
$$(\mathcal{B} \to \mathcal{B}') = \begin{pmatrix} 1 & 0 & -4 \\ -1 & 1 & 7 \\ 0 & 0 & -2 \end{pmatrix}$$
.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = (u_1 = (1, 1, 3), u_2 = (1, -2, 1), u_3 = (1, -1, 2))$$

$$T = (v_1 = (1, -2, 2), v_2 = (1, -2, 1), v_3 = (1, -1, 2))$$

- **9** Chứng tỏ S và T là cơ sở của \mathbb{R}^3 .
- \bullet Tìm ma trận chuyển cơ sở từ S sang T.
- Cho $u \in \mathbb{R}^3$ thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tìm $[u]_S$.

a) Chứng tỏ S và T là cơ sở của \mathbb{R}^3 .

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & -2 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Ta có $r(A) = 3$, suy ra S độc lập

tuyến tính. Hơn nữa $\dim \mathbb{R}^3 =$ số vectơ của S. Vậy S là cơ sở của \mathbb{R}^3 . Làm tương tư cho T.

b) Tìm ma trận chuyển cơ sở từ S sang T.

Lập ma trận mở rộng

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{pmatrix}. \text{ Suy ra } (S \rightarrow T) = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}.$$

c) Cho
$$u \in \mathbb{R}^3$$
 thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tìm $[u]_S$.

Ta có
$$[u]_S = (S \to T)[u]_T = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ 4 \end{pmatrix}.$$