Keyword Recognition using Tiny Machine Learning

Detecting Words: Silence, King, Noise,
Clockwise, Drive
A Machine Learning Approach

Introduction

Arduino TinyML enables on-device AI for keyword recognition.

Focus on detecting words like Silence, King, Noise, Clockwise, Drive.

Possible applications: Voice assistants, IoT devices, Smart home systems.

Methodology

Dataset: Audio samples of selected keywords from Edge Impulse and recorded wia TinyMl.

Model: Lightweight neural network optimized for TinyML.

Hardware: Arduino TinyMl Microcontroller with low-power Al capabilities.

DSP result

Cepstral Coefficients

Processed features 🗓

0.7761, -0.3164, 0.0876, -0.3536, 0.1587, 0.1425, -0.0311, -0.1804, -0.0784, -0.7372, 0.0530,...

On-device performance ③

Feature explorer

On-device performance ②

Model

Model version: ③

Quantized (int8) ▼

ENCE

0.91

Last training performance (validation set)

%

DRIVE

KING

F1 SCORE

ACCURACY

96.6%

0%

0.4 7%

0.97

LOSS

0.23

Confusion matrix (validation set)

CLOCKWISE DRIVE KING
CLOCKWISE 93.1% 6.9% 0%

0%

0%

0.96

Error: 1.7% (1 / 58)

Predicted label: Noise

0.98

Actual label: Drive

	0%	
	1.7%	0%
	0%	5.3%
	100%	Ω%

KIIVG	070	070	54.770	070	5.570
NOISE	0%	0%	0%	100%	0%
SILENCE	0%	0%	0%	11.1%	88.9%

98.3%

0%

0.96

Results

Accuracy: Achieved >90% keyword recognition accuracy.

Latency: Low inference time suitable for realtime applications.

Deployment: Successfully implemented on an Arduino Nano 33 BLE embedded system.

Conclusion

TinyML is capable of making real-time keyword recognition feasible on edge devices.

Future work: Expand vocabulary, improve noise resilience.

Potential applications: Smart assistants, security systems, hands-free control.