Lab 3

Unit 5: Random variable and mathematical expectation

1. The number of failure of a computer system in a week of operation has the following pmf;

No of failure	0	1	2	3	4	5	6
probab ilit y	0.18	0.28	0.25	0.18	0.06	0.04	0.01

Find E(X), E($\diamondsuit \diamondsuit^2$), Var(X), E(2X+3), Var(2X+3)

2.

٠.							
	Number of compute rs	0	100	200	300	400	500
	Probabilit y	0.05	0.20	0.30	0.25	0.15	0.05

What is the probability of

- a. 300 computers being sold in a given month?
- b. 400 or 500 computers being sold in a given month?
- c. At least 300 computers being sold in a given month?

- d. Determine the expected numbers of computers demanded and standard deviation of computers demanded per month.
- 3. Construct a probability distribution based on the following frequency distribution based on the following frequency distribution and compute the expected value, variance and standard deviation of the outcome.

standard deviation of the outcome.						
Outcome	102	105	108	111	114	117
Frequenc y	10	20	45	15	20	15