Assignment 3 for Survival Analysis

Course STAT229

Name Zihao Huang

Date 4/06/2017

1.

(a)

7.59 0.0059	=	2(1) chi2	LR chi Prob >		7851	d = -1223 .	Log likelihoo
Interval]	Conf.	[95%	P> z	z	Std. Err.	Haz. Ratio	t
1.91729	8058	1.118	0.006	2.77	.2014392	1.464118	gender
Interval]	Conf.	[95%	P> z	Z	Std. Err.	Coef.	t
. 6509128	5935	.1115	0.006	2.77	.137584	.3812532	gender

Figure 1.1 The hazard model with the coefficient of gender

The hazard model containing gender is shown above and the β gender=0.3813, the 95% confident interval is (0.1116, 0.6509). The hazard ratio of gender is 1.4641 and 95% confident interval is (1.1181, 1.9173).

For gender "1" is female, which means: in this model, the rate of heart attack among female is 46.41% higher than male, and this could be from 11.80% to 91.73% higher with 95% confidence.

(b)

. Interval]	[95% Conf.	P> z	Z	Std. Err.	Coef.	_t
. 6509128	.1115935	0.006	2.77	.137584	. 3812532	gender
Interval]	[95% Conf.	P> z	Z	Std. Err.	Coef.	_t
.4960106 063663	0582795 1220968	0.122 0.000	1.55 -6.23	.1414031 .0149069	.2188656 0928799	gender bmi
Interval]	[95% Conf.	P> z	Z	Std. Err.	Coef.	_t
.6961205 071033 .1001869	-2.30282 1629908 0181671	0.294 0.000 0.174	-1.05 -4.99 1.36	.7650499 .0234591 .0301929	8033496 1170119 .0410099	gender bmi genderxbmi

Figure 1.2 The hazard model with the coefficient of gender, bmi and their interaction

. di (.3812532-.2188656)/(.2188656)*100 74.195122

From fig 1.2 we have the change of gender; the change is 74.20%. It is larger than 20%. We consider that the BMI is a confounder of gender.

(c)

The adjusted hazard model with gender and bmi is shown in the figure 1.2 The hazard ratio of gender is 1.4641 and 95% confident interval is (1.1181, 1.9173).

(d)

According to the figure 1.2, the WALD test shows the p-value of the interaction is 0.174, which is larger than 0.10. We consider that the interaction is not significant.

(f)

Consider the effect of modifier, from the figure 1.2 we know that the interaction change the coefficient of gender is large (from part (b)), the results for interaction model show that the p-value for Wald test is not significant, p=0.174 (in 90% significance).

(g)

Gender	BMI	Hazard Ratio	95% CI
Male	20	.0963047	.0383955 .2415546
Female	20	.0449332	.0048181 .4190396
Male	25	.0536487	.0169961 .1693437
Female	25	.0669775	.0201469 .2226635
Male	30	.0298862	.0075235 .1187197
Female	30	.0458029	.013503 .1553653

Table 2 Hazard ratio estimation for 1(g)

(a)

Log likelihood	likelihood = -1128.987			LR chi2 Prob > 0			197.18 0.0000
t	Haz. Ratio	Std. Err.	z	P> z	[95% Co	nf. Int	erval]
gender	9.291733	9.186587	2.25	0.024	1.3382	2 64	.51579
age	1.074137	.009176	8.37	0.000	1.05630	2 1.	092273
miord	1.072418	.1660183	0.45	0.652	.791756	5 1.	452568
mitype	.7912096	.1623408	-1.14	0.254	. 529226	5 1.	182882
genderxage	. 9696224	.0120855	-2.47	0.013	. 946222	1 .9	936013
mitypexmiord	1.249924	.5068383	0.55	0.582	.564579	9 2.	767208
hr	1.008324	.0029103	2.87	0.004	1.00263	6 1.	014044
chf	2.187101	.3192416	5.36	0.000	1.64294	4 2.	911488

Figure 2.1 the proportional hazards model with eight variables

and the risk score is:

$$R = 2.229 * Gender + 0.072 * Age + 0.070 * Miord - 0.234 * Mitype - 0.31 * Gender * Age + 0.223 * Mitype * Miord + 0.008 * Hr + 0.783 * Chf$$

From the hazards model we know that miord, mitype, mitype* miord are not significant.

Thus, we have to eliminate these variables. Then we have the new model as figure 2.2:

Log likelihood	d = -1130 .:	1462		LR chi2 Prob >		194.87 0.0000
t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf	. Interval]
gender age genderxage hr chf	9.758308 1.076442 .9690341 1.008903 2.173622	9.537314 .0089161 .0119631 .0028706 .3163306	2.33 8.89 -2.55 3.12 5.33	0.020 0.000 0.011 0.002 0.000	1.436977 1.059108 .9458682 1.003292 1.634208	66.26727 1.09406 .9927674 1.014545 2.891084
t	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
gender age genderxage hr chf	2.278119 .0736609 0314555 .0088634 .7763947	.9773532 .0082829 .0123454 .0028453 .1455316	2.33 8.89 -2.55 3.12 5.33	0.020 0.000 0.011 0.002 0.000	.3625419 .0574267 0556521 .0032868 .491158	4.193696 .0898952 0072589 .01444 1.061631

Figure 2.2 the proportional hazards model with five variables

And the Risk score is:

 $R=2.278 * Gender + 0.0737 * Age \\ -0.315 * Gender * Age + 0.009 * Hr + 0.776 * Chf$

Figure 2.3 Baseline survival function estimate

The baseline survival function is shown above.

Let's substitute age=65, hr=85 into the risk score function:

$$R = 2.278 * Gender + 0.0737 * Age \\ -0.315 * Gender * Age \\ + 0.009 * Hr \\ + 0.776 * Chf$$

For chf = 0, the risk score for male is 5.541, for female is 5.775;

For chf = 1, the risk score for male is 6.318, for female is 6.551.

(b) Then we focus on two levels of CHF:

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
chf	1.198303	.1380289	8.68	0.000	.9277713	1.468835

Thus, we will have the covariate adjusted survival functions:

Figure 2.4 Covariate adjusted survival functions at two levels of CHF

```
Appendix
```

1.

(a)

gen fyear= lenfol/365.25

stset fyear, fail(fstat)

stcox gender

(b)

di (.3812532-.2188656)/(.2188656)*100

gen genderxbmi=gender*bmi

(g)

. lincom _b[gender]*0+_b[bmi]*20+_b[genderxbmi]*0, hr

(1) 20*bmi = 0

(1)	.0963047	.0451844	-4.99	0.000	.0383955	.2415546
_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]

. lincom _b[gender]*1+_b[bmi]*20+_b[genderxbmi]*1, hr

(1) gender + 20*bmi + genderxbmi = 0

					[95% Conf.	
(1)	.0449332	.0511879	-2.72	0.006	.0048181	.4190396

. lincom _b[gender]*1+_b[bmi]*25+_b[genderxbmi]*25, hr

(1) gender + 25*bmi + 25*genderxbmi = 0

_t			[95% Conf.	
/11	.0669775			

. lincom _b[gender]*0+_b[bmi]*25+_b[genderxbmi]*0, hr

(1) 25*bmi = 0

_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	.0536487	.0314637	-4.99	0.000	.0169961	.1693437

. lincom _b[gender]*0+_b[bmi]*30+_b[genderxbmi]*0, hr

(1) 30*bmi = 0

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.0298862	.0210331	-4.99	0.000	.0075235	.1187197

. lincom _b[gender]*1+_b[bmi]*30+_b[genderxbmi]*30, hr

(1) gender + 30*bmi + 30*genderxbmi = 0

_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	.0458029	.0285439	-4.95	0.000	.013503	.1553653

2.

gen genderxage=gender*age

gen mitypexmiord= mitype* miord

stset fyear, fail(fstat)

stcox gender age miord mitype genderxage mitypexmiord hr chf

predict hc0, basehc

```
replace age=65
replace hr=85
predict double xb, xb
gen double hcmean = (1-(1-hc0)^exp(xb))
drop if hc0==.
sort _t
by _t: keep if _n==1
summ _t, meanonly
local tmin = r(min)
local\ tmax = r(max)
local N = N
local N1 = N' + 1
local obs = N'+101
set obs 'obs'
gen t0 = \text{`tmin'} + (\text{`tmax'-`tmin'})*(_n-\text{`N1'})/100 \text{ in `N1'}/1
gen t1 = t0
kdensity _t [iweight=hcmean] if _d, at(t1) generate(hmean) nograph
twoway line hmean t1
(b)
gen genderxage=gender*age
stcox chf, nohr basesurv(hw1)
gen hw1_c0 = hw1^(exp(-1.198))
sort fyear
twoway line hw1 hw1_c0 fyear, legend(row(2) col(1) pos(7) order(1 "No chf" 2 "chf")
ring(0) size(medsmall)) ylabel(0(0.2)1)
```