WEEK 9

Pilapil, Nina Camille D. 10695066

Task 1. Use a weather forecast website and utilize the psychrometric chart and the formula we went through in the class to determine the **absolute humidity**, **wet-bulb temperature**, and the **mass of water vapor in the air** in Aula A of Piacenza campus in the moment you are solving this exercise. Provide the input that you utilized.

Data Used (December 2, 2019, 1pm)

Source	https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacenza/
Relative Humidity	79%
Atmospheric Pressure	1016 hPa = 101.6 kPa
Effective Temperature	10°C
Aula A Dimensions	10 x 5 x 4m

	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud
Effective temperature	10 ° C	10 ° C	9 ° C	6 ° C	7 ° C	7 ° C	8 ° C
Perceived temperature	10 ° C	10 ° C	8 ° C	5 ° C	7 ° C	6 ° C	7 ° C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Humidity	79 %	77 %	89 %	90 %	90 %	92 %	91 %
Atmospheric pressure	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa
Wind intensity	8 km / h	6 km / h	6 km / h	6 km / h	3 km / h	6 km / h	5 km / h
Wind direction	\	\hookrightarrow	\	\hookrightarrow	Ĵ	>	\leftarrow
	NO	OR	NO	OR	S	SELF	IS
Probability of fog	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Dew point	6 ° C	6 ° C	7 ° C	5 ° C	5 ° C	6 ° C	6 ° C
Clouds	65 %	55 %	16 %	24 %	86 %	100 %	76 %
Low clouds	4 %	0 %	15 %	7 %	38 %	100 %	49 %
		I					
Medium clouds	34 %	54 %	2 %	23 %	84 %	85 %	70 %

Psychrometric Chart Method

Using the psychrometric chart and the weather data provided, the following values can be concluded:

Absolute Humidity	0.006
Wet-Bulb Temperature	8°C

Formula Method

Saturation Pressure of Water at 10°C = 1.227 kPa

www.engineeringtoolbox.com says

Water saturation pressure at 10 degree C:

1.227 kPa

0.0123 bar

0.0121 atm

0.178 psi

25.6 psf

$$\phi = \frac{m_v}{m_g}$$
 where $m_g =$ the mass of water at sat condition

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$
 where $P_g = P_{sat} 10^{\circ} \text{C} = 1.227 \; k\text{Pa}$

Partial Pressure of Water Vapor

$$\phi = \frac{P_v}{P_g} \rightarrow P_v = \phi \times P_g$$

$$\begin{aligned} P_v &= \phi \times P_g \\ P_v &= 0.79 \times 1.227 kPa = 0.97 \ kPa \end{aligned}$$

Partial Pressure of Dry Air

$$\begin{array}{l} P_a = P \, - P_v \\ P_a = 101.6 \, kP\alpha - 0.97 \, kP\alpha = 100.63 \, kP\alpha \end{array}$$

Absolute Humidity

$$\omega = (0.622) \left(\frac{P_v}{P_a}\right)$$

$$\omega = (0.622) \left(\frac{0.97 \text{ kPa}}{100.63 \text{ kPa}}\right)$$

$$\omega = 0.0059 \frac{kg_{vapor}}{kg_{DryAlr}}$$

Mass of Water Vapor in the Air

For ideal gases:
$$m = \frac{PV}{R_{sp},T}$$

For air: $m_a = \frac{P_a V_a}{R_a T}$
 $m_v = \frac{P_v V_v}{R_v T} = \frac{(0.97 kPa)(10 m*5 m*4 m)}{(0.4615)(273 K+10)}$
 $m_v = \mathbf{1.48 kg}$

Enthalpy

$$\begin{split} h &= h_a + \omega h_v \\ \text{where } h_a &= C_{pa}T = \left(1.005 \frac{kJ}{kg^sC}\right) (T \ in \ ^{\circ}C) \ \text{and } h_v = h_g(T) \approx 2501.3 + 1.82T \\ h &= \left(1.005 \frac{kJ}{kg^{\circ}C}\right) (10^{\circ}C) + \left(0.0059 \frac{kg_{vapor}}{kg_{DryAir}}\right) \left[2501.3 + (1.82)(10^{\circ}C) \frac{kJ}{kg_{vapor}}\right] \\ h &= 24.91505 = 24.92 \frac{kJ}{kg_{DryAir}} \end{split}$$

Task 2. Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

							BRINDIS	SI, Italy						WMO#:	163200
Lat			17.95E	Ele		StdF	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999
Coldest	eating and Heating	Manager 1	ion Design C	5	midification DF	/MCDB an	I HR		1 0	Coldest mon	th WS/MCE	08	MCWS	WPCWD	
Month				99.6%			99%		0.4	4%	8.5	%	to 99.	6% DB	
moriui	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1
(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	
2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250	
Annual C	ooling, Dehu	midification	on, and Enth	alpy Desig	gn Conditions										
	Hottest			Cooling	DB/MCWB			1		Evaporation	n WB/MCDE	3		MCWS	PCWD
Hottest	Month	0	.4%		1%	- 2	%		0.4%	1	%	1 2	2%	to 0.4	% DB
Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)
8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180

Given Information

Building Height	2.50m
Floor Area	$200m^{2}$
No. of Occupants	2
No. of Bedrooms	1
Wall Area	144m ²

Internal Gains

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + (2.2)(A_{cf}) + (22)(N_{oc}) \\ \dot{Q}_{ig_{sensible}} &= 136 + (2.2)(200m^2) + (22)(2) \\ \dot{Q}_{ig_{sensible}} &= 620 \, W \\ \\ \dot{Q}_{ig_{sensible}} &= 20 + (0.22)(A_{cf}) + (12)(N_{oc}) \\ \dot{Q}_{ig_{latent}} &= 20 + (0.22)(200m^2) + (12)(2) \\ \dot{Q}_{ig_{latent}} &= 88 \, W \end{split}$$

Infiltration

Find maximum flow of air. Find leakage area and use unit leakage area chart.

Unit Leakage for Good Construction

$$A_{ul} = 1.40 \ cm^2/m^2$$

Leakage Area

$$A_l = A_{es}A_{ul}$$

 $A_l = (200m^2 + 144m^2)(1.40 cm^2/m^2)$
 $A_l = (344m^2)(1.40 cm^2/m^2)$
 $A_l = 481.6cm^2$

Infiltration Rate

Table 5	Typical	IDF V	alues, I	L/(s	·cm ²
---------	---------	-------	----------	------	------------------

								100	
Н.			ting De			Cooling Tempera	g Design ature, °C	2	
m	-40	-30	-20	-10	0 1.5	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

$$Q_i = (A_l)(IDF)$$

$$IDF_{heating} = 0.065 \frac{L}{s \times cm^2}$$

$$IDF_{cooling} = 0.032 \frac{L}{s \times cm^2}$$

Infiltration Rate - Winter

$$\dot{V}_{i_{heating}} = (481.6cm^2) \left(0.065 \frac{L}{s \times cm^2} \right)$$

$$\dot{V}_{i_{heating}} = 31.30 L/s$$

Infiltration Rate - Summer

$$\begin{split} \dot{V}_{i_{cooling}} &= (481.6cm^2) \left(0.032 \frac{L}{s \times cm^2} \right) \\ \dot{V}_{i_{cooling}} &= \mathbf{15.41} \ L/s \end{split}$$

Ventilation

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

 Q_v = required ventilation flow rate [L/s] A_{cf} = building conditioned floor area [m²] N_{br} = no. of bedrooms, not less than 1

$$\dot{V}_{ventilation} = (0.05)(200) + (3.5)(1+1) = 17.0 \; L/s$$

 $\dot{V}_{infiltration-ventilation_{heatins}} = 31.30 \ L/s + 17 \ L/s$

 $\dot{V}_{infiltration-ventilation_{heating}} = 48.3 \ L/s$

 $\dot{V}_{infiltration-ventilation_{cooling}} = 15.41 \ L/s + 17 \ L/s$

 $\dot{V}_{infiltration-ventilation_{cooling}} = 32.41 L/s$

Sensible and Latent Load

$$C_{sensible} = 1.23$$

 $C_{latent} = 3010$

$$\begin{array}{l} \Delta T_{heating} = 20^{\circ}C - 4.1^{\circ}C = 15.9^{\circ}C \\ \Delta T_{cooling} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C \end{array}$$

$$\begin{split} \dot{Q}_{inf-vent_{heating_{sensible}}} &= C_{sensible} \dot{V} \Delta T_{heating} \\ \dot{Q}_{inf-vent_{heating_{sensible}}} &= (1.23)(48.3~L/s)(15.9^{\circ}) \end{split}$$

$$\dot{Q}_{inf-vent_{heating_{sensible}}} = 944.60 W$$

$$\dot{Q}_{inf-vent_{cooling_{sensible}}} = C_{sensible} \dot{V} \Delta T_{cooling}$$

$$\dot{Q}_{inf-vent_{cooling_{sensible}}} = (1.23)(32.41 L/s)(7.1^{\circ}C)$$

$$\dot{Q}_{inf-vent_{cooling_{sensible}}} = 283.04 W$$

$$\dot{Q}_{inf-vent_{cooling_{latent}}} = C_{latent} \dot{V} \Delta \omega_{cooling}$$

$$\dot{Q}_{inf-vent_{cooling_{latent}}} = c_{latent} \dot{V}(\omega_{out} - \omega_{in})$$

$$\dot{Q}_{inf-vent_{cooling_{latent}}} = (3010)(32.41 \; L/s)(0.014 - 0.0095 \; kg_{vapor}/kg_{dryair})$$

$$\dot{Q}_{inf-vent_{cooling_{latent}}} = 438.99 W$$