Multi-Purpose Optimization with flexible Simulated-Annealing

by Kai Husmann, Alexander Lange (and Elmar Spiegel)

Abstract An abstract of less than 150 words.

Introduction

As early computer-based optimization methods developed contemporaneously with the first digital computers (Corana et al., 1987), nowadays numerous optimization methods for various purposes are available (Wegener, 2005). One of the main challenges in Operations Research is thus to match the optimization problem with a reasonable method. According to Kirkpatrick et al. (1983), optimization procedures in general can be distinguished into exact methods and heuristics. In case the loss function of the optimization problem shows quite simple responses, exact methods are often meaningful tools of choice. If all assumptions on model loss and restrictions are met, these methods will obligatorily find the exact solution. Exact methods are advantageous since they do not need much parameterizations. The Linear Simplex-Method (Dantzig et al., 1959) as an example only needs the loss-function and optional restrictions as model input. If, however, any of the model assumptions, e. g. linearity or unimodality, is violated, exact methods are unable to solve the problems properly. Practically, they thus lack applicability whenever a loss function is too complex. With developing computer power Heuristics

, more general heuristics must be applied to solve problems properly. While heuristics can be parameterized

the definition by Pronzato et al. (1984), optimization is the finding of an optimum with respect to a vector of parameters.

This section may contain a figure such as Figure 1.

Figure 1: The logo of R.

Another section

There will likely be several sections, perhaps including code snippets, such as:

```
x <- 1:10
result <- myFunction(x)</pre>
```

Summary

This file is only a basic article template. For full details of *The R Journal* style and information on how to prepare your article for submission, see the Instructions for Authors.

Bibliography

- A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm. *ACM Trans. Math. Softw.*, 13(3):262–280, 1987. [p1]
- G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. On a linear-programming, combinatorial approach to the traveling-salesman problem. *Operations Research*, 7(1):58–66, 1959. [p1]

- S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simulated annealing. *science*, 220(4598): 671–680, 1983. [p1]
- L. Pronzato, E. Walter, A. Venot, and J.-F. Lebruchec. A general-purpose global optimizer: Implimentation and applications. *Mathematics and Computers in Simulation*, 26(5):412–422, 1984. ISSN 03784754. doi: 10.1016/0378-4754(84)90105-8. [p1]
- I. Wegener. Simulated annealing beats metropolis in combinatorial optimization. In *International Colloquium on Automata, Languages, and Programming*, pages 589–601. Springer, 2005. [p1]

Author One Affiliation Address Country author1@work

Author Two Affiliation Address Country author 2@work

Author Three Affiliation Address Country author3@work