UNIVERSIDADE DO VALE DO ITAJAÍ ENGENHARIA DE COMPUTAÇÃO FABIO IVO PEREIRA DE OLIVEIRA JUNIOR

CIRCUITOS ELETRÔNICA BÁSICA – M2

Relatório apresentado como requisito parcial para a obtenção da M2 da disciplina de Eletrônica básica do curso de Engenharia de Computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Antonio Gontijo

1. OBJETIVO

O relatório tem como objetivo a simulação, representação e cálculos dos circuitos apresentados em sala durante a M2 da disciplina de eletrônica básica do curso de Engenharia de computação.

Serão demonstrados cálculos relativos aos conteúdos e as simulações realizadas no software NI Multisim e a comparação dos valores entre a teoria e a simulação, para que assim seja possível ver o quão coreto estão os cálculos realizados em sala.

2. INTRODUÇÃO

Transistores são dispositivos semicondutores, feitos com silício ou germânio e usados para amplificar ou atenuar a intensidade da corrente elétrica em circuitos. Eles são um bloco fundamental na construção de circuitos eletrônicos, como chips de computadores e smartphones.

Transistores bipolares não possuem estrutura simétrica e tem suas regiões denominadas n e p e seus polos são considerados como base, emissor e coletor. Os transistores bipolares podem ser classificados em *pnp* e *npn*.

Figura 1 - Demonstração circuitos pnp e npn

Cada uma das junções pode ser polarizada de duas maneiras diferentes, sendo assim, o transistor bipolar possui quatro modos possíveis de operação: Ativa direta, Saturação, Ativa reversa e Corte. Quando está em operação ativa direta, possui boa isolação e alto ganho, enquanto em ativa reversa, o ganho é baixo e o transistor se torna pouco útil. A saturação é necessária ser evitada, uma vez que o dispositivo fica sem isolamento e o corte é quase um circuito aberto, de corrente desprezível.

Neste relatório são apresentados circuitos com diversos funcionamentos dos transistores bipolares, com seus cálculos, simulações e comparações. Todas as simulações foram realizadas no software *Multisim*.

3. CIRCUITOS

3.1 – TRANSISTORES

Utilize o simulador de circuitos e obtenha a curva característica de diferentes transistores.

3.1.1- Transistor 2N2714

Figura 2 - Circuito simulado

Figura 3 - Curva do transistor

Figura 4 - Retas traçadas na curva

Ponto 1 (Vermelho):

Ib =
$$4^{-6}$$
 A
 $Ic = 0,00038$ A
 $Ie = Ib + Ic$
 $Ie = 0,000624$ A

$$\alpha = \frac{Ic}{Ie} = \frac{0,00038}{0,000624} = 0,61$$
 A

$$\beta = \frac{Ic}{Ib} = \frac{0,00038}{4^{-6}} = 1,56$$
 A
 $Vce = 0,5$ V

• Ponto 2 (Laranja):

Ib =
$$1^{-6}$$
 A
 $Ic = -0,00021$ A
 $Ie = Ib + Ic$
 $Ie = 0,99979$ A

$$\alpha = \frac{Ic}{Ie} = \frac{-0,00021}{0,99979} = -0,000021$$
 A

$$\beta = \frac{Ic}{Ib} = \frac{-0,00021}{1^{-6}} = -0,00021$$
 A
 $Vce = 0,9$ V

• Ponto 3 (Roxo):

Ib =
$$2^{-6}$$
 A
 $Ic = -0,0005$ A
 $Ie = Ib + Ic$
 $Ie = 0,015$ A

$$\alpha = \frac{Ic}{Ie} = \frac{-0,0005}{0,015} = -0,033$$
 A

$$\beta = \frac{Ic}{Ib} = \frac{-0,0005}{2^{-6}} = -0,032$$
 A
 $Vce = 0,75$ V

$$Bac = \frac{\Delta Ic}{\Delta Ib} = \frac{0,00038 - (-0,0005)}{4^{-6} - 2^{-6}} = \frac{0,00088}{-0,0154} = -0,057$$

3.1.2- Transistor FZT788B

Figura 5 - Circuito simulado

Figura 6 - Curvas do transistor

Figura 7 - Retas traçadas na curva do transistor

Ponto 1 (Verde):

Ib =
$$1^{-6}$$
 A
 $Ic = 0,00022$ A
 $Ie = Ib + Ic$
 $Ie = 1,00022$ A
 $\alpha = \frac{Ic}{Ie} = \frac{0,00022}{1,00022} = 0,00022$ A
 $\beta = \frac{Ic}{Ib} = \frac{0,00022}{1^{-6}} = 0,00022$ A
 $Vce = 0,9$ V

• Ponto 2 (Amarelo):

Ib =
$$4^{-6}$$
 A
 $Ic = 0,0001$ A
 $Ie = Ib + Ic$
 $Ie = 0,000344$ A
 $\alpha = \frac{Ic}{Ie} = \frac{0,0001}{0,000344} = 0,29$ A
 $\beta = \frac{Ic}{Ib} = \frac{0,0001}{4^{-6}} = 0,41$ A
 $Vce = 0,65$ V

• Ponto 3 (Vermelho):

Ib =
$$4^{-6}$$
 A
 $Ic = -0,0002$ A
 $Ie = Ib + Ic$
 $Ie = 0,000044$ A

$$\alpha = \frac{Ic}{Ie} = \frac{-0,0002}{0,000044} = -4,54$$
 A

$$\beta = \frac{Ic}{Ib} = \frac{-0,0002}{4^{-6}} = -0,82$$
 A
 $Vce = 0,75$ V

$$Bac = \frac{\Delta Ic}{\Delta Ib} = \frac{0,00022 - (-0,0002)}{1^{-6} - 4^{-6}} = 0,000176$$

3.2 – ANÁLISE DE CIRCUITOS

3.2.1- Polarização Fixa

Figura 8 - Circuito proposto

Figura 9 - Circuito simulado

Figura 10 - Circuito mensurado

$$Ib = \frac{Vcc - Vbe}{Rb}$$

$$Ib = \frac{12 - 0.7}{240k} = 47 \mu A$$

$$Ic = 50 * 47\mu A$$

$$= 2.35 mA$$

$$Vce = Vcc - Ic * Rc$$

$$Vce = 12 - 2.35 mA * 2200$$

$$= 6.83 V$$

$$Vbe = Vb$$

$$Vbe = Vb$$

$$Vbc = 0.7 V$$

$$Vbc = 0.7 - 6.83$$

$$= -6.13 V$$

Componente	Valor	Valor
	calculado	simulado
Ib	47 μΑ	46,7 μ <i>A</i>
Ic	2,35 mA	2,33 mA
Vce	6,85 V	6,85 V
Vbe	0,7 V	0,7 V
Vb	0,7 V	0,7 V

3.2.2- Reta de Carga

Utilize o método da reta de carga e analise o circuito, trace a reta de carga sobre a curva característica do TBJ e obtenha do gráfico (curva característica e reta de carga) o ponto de operação do TBJ para diferentes valores de VI. Por exemplo, 0,8V; 2,7V, 12V e 15V

Figura 11 - Circuito proposto

Vi = 0,8 V:

Figura 12 - Circuito simulado

Com o circuito simulado, foi descoberto o valor de IB:

Figura 13 - Ib

```
Vce = 0
Ic = \frac{Vcc}{Rc} = \frac{12}{2200}
= 5,45 \text{ mA}
Vcc = Vce
Vce = 12V
```


Figura 14 - Circuito para obtenção das curvas

Figura 15 – Curvas do transistor

Figura 16 - Reta de carga traçada

Para o valor de IB localizado por meio de simulação de 1,01 μ A, foi possível localizar o IC através da reta de carga, sendo IC equivalente a 15 μ A. Portanto, os valores teóricos se tornam:

$$Ib = \frac{Vi - Vbe}{Rb}$$

$$Ib = \frac{0.8 - 0.7}{240k} = 0.416 \,\mu\text{A}$$

$$Ic = 1 \,\mu\text{A}$$

$$Vce = 12 - 2200 * 15 \,\mu\text{A}$$

$$= 11.967 \,\text{V}$$

$$Vc = 12 - Ic * Rc$$

$$Vc = Vce$$

Valor	Calculado	Simulado
Ib	0,416 μΑ	1,01 μΑ
Ic	15 μΑ	312 μΑ
Vce	11,9 V	11,3 V
Vbe	0,7 V	0,58 V
Vc	11,9 V	11,3 V

Vi = 2,7 V:

Figura 17 - Reta com ponto quiescente para V = 2,7

Para este valor de Vi, o valor simulado de IB foi obtido através da seguinte mensuração:

$$Ib = \frac{Vi - Vbe}{Rb}$$

$$Ib = \frac{2.7 - 0.7}{240k} = 8.3 \,\mu\text{A}$$

$$Ic(\text{ret. carg.}) = 25 \,\mu\text{A}$$

$$Vce = 12 - 2200 * 25 \,\mu\text{A}$$

$$= 11.967 \,\text{V}$$

$$Vc = 12 - Ic * Rc$$

$$Vc = Vce$$

Valor	Calculado	Simulado
Ib	8,3 μΑ	8,53 μΑ
Ic	15 μΑ	2,8 mA
Vce	11,9 V	5,85 V
Vbe	0,7 V	0,65 V
Vc	11,9 V	5,85 V

3.3.1 – TRANSISTOR OPERANDO COMO CHAVE

Figura 18 - Circuito proposto

Figura 19 - Circuito simulado

$$Vi = Ib * Rb + Vbe$$

$$Ib = \frac{Vi - Vbe}{Rb} = \frac{5 - 0.7}{68k}$$

$$= 63.2 \ \mu A$$

$$Ic = 125 * Ib$$

$$= 7.8mA$$

$$Vb = Vi - Ib * Rb$$

$$= 5 - 63.2 \ \mu A * 68k$$

$$= 0.7 \ V$$

$$Ve = Vbe - 0.7$$

$$= 0 \ V$$

$$Vc = Vcc - Ic * Rc$$

$$= 5 - (7.8 \ mA * 820)$$

$$= -1.39 \ V$$

$$Ic(sat.) = \frac{Vcc}{Rc} = \frac{5}{820}$$

$$= 6.09 \ mA$$

Vi(V)	IB(uA)	IC(mA)	Vb(V)	Ve(V)	Vc(V)	R_ope
0	0	0	0	0	0	Corte
5	63,2	7,8	0,7 v	0	0	Saturação

Tanto no circuito simulado como nos cálculos é possível observar valores inesperados e maiores ou menores do que o imaginado, isso se deve as operações de corte e saturação, ocorridas no transistor.

3.3-2 POLARIZAÇÃO DO EMISSOR

Figura 21 - Circuito simulado

Figura 22 - Mensuração IC, VC, IB, VB e VCE

```
Vcc - Ib * Rb - Vbe - Ie * Re = 0
Ie = (\beta + 1) * Ib
Vcc - Ib * Rb - Vbe - (\beta + 1) * Ib * Re = 0
Ib = \frac{Vcc - Vbe}{Rb + (\beta + 1) * Re}
          20 - 0.7
= \frac{1}{510k + (\beta + 1) * 1.5k} = \frac{1}{510k + (\beta + 1) * 1.5k}
= 29 \, \mu A
Vb = Vcc - Ib * Rb
= 20 - 29 \,\mu A * 510000
= 5.21 V
Ic = 100 * 29 \,\mu A = 2.9 \,mA
Ic \cong Ie
Ve = Vb - Vbe
Ve = 5,21 - 0,7
= 4,51 V
Vc = Vcc - Ic * Rc
= 20 - 2.9 \, mA * 2400
= 13,04 V
Vce = Vcc - Ic * (Rc + Re)
= 20 - 2.9 \, mA * 3900
= 8.69 V
```

Valor	Calculado	Simulado
Ib	29 μΑ	29 μΑ
Ic	2,9 mA	2,9 <i>mA</i>
le	2,9 mA	2,9mA
Vc	13,04 V	13 V
Vb	5,21 V	5,2 V
Ve	4,51 V	4,4 V
Vce	8,69 V	8,638 V

3.3.3 – POLARIZAÇÃO POR DIVISOR DE TENSÃO

Figura 23 - Circuito proposto

Considere VCC = 22V, R1 =39K, R2=3k9, RC=10k, RE= 1k5, B=hfe =140. Calcule: IB, IC, VB, VE, VC e VCE.

Figura 24 - Circuito simulado

Figura 25 - Circuito mensurado

$$Rth = \frac{R1}{R2}$$
= 10
$$Vth = \frac{R2}{R2 + R1} * Vcc$$

$$= \frac{3k9}{389 + 39k} * 22$$

$$= 2V$$

$$Vth - Ib * Rth - Vbe - Ie * Re = 0$$

$$Vth - Ib * Rth - Vbe - (\beta + 1) * Ib * Re = 0$$

$$Ib = \frac{Vth - Vbe}{Rth + (\beta + 1) * Re}$$

$$= \frac{2 - 0.7}{10 + (\beta + 1) * 1500}$$

$$Ib = 6.14 \mu A$$

$$Vb = Vth - Ib * Rth$$

$$= 2 - 6.14 \mu A * 10$$

$$= 1.99 V$$

$$Ve = Vb - Vbe$$

$$= 1.29 V$$

$$Ic = 140 * 6.14 \mu A$$

$$= 0.86 mA$$

$$Vb = Vcc - Ib * Rb$$

$$= 22 - 6.14 \mu A * 39k$$

$$= 20.76 V$$

$$Vcc - Ic * Rc - Vce - Ie * Re = 0$$

$$Ic \cong Ie$$

$$Vce = 22 - 0.86 mA * (10k + 1k5)$$

$$= 12.11 V$$

$$Vc = Vcc - Ic * Rc$$

$$= 22 - 0.86 mA * 10k$$

$$= 13.4 V$$

	Valores	Calculado	Simulado	
Ib		6,14 μ <i>A</i>	5,73 μ <i>A</i>	
Ic		0,86 mA	0,807 mA	
Vb		1,99 V	1,98 V	
Vc		13,4 V	14 V	
Vce		12,11 V	12,77 V	

3.3.4 - ANÁLISE SIMPLIFICADA

Figura 26 - Circuito proposto

Figura 27 - Circuito simulado

$$Vb = \frac{R2 * Vcc}{R1 + R2}$$

$$= \frac{3k9 * 22}{42k9}$$

$$= 2V$$

$$Ve = Vb - Vbe$$

$$= 1,3 V$$

$$Ie = \frac{Ve}{Re}$$

$$= \frac{1,3}{1k5}$$

$$= 0,860 mA$$

$$Ic \cong Ie$$

$$Vce = Vcc - Ic * (Rc + Re)$$

$$= 22 - 0,860 mA * 11k5$$

$$= 12,11 V$$

$$Vc = Vcc - Ic * Rc$$

$$= 22 - 0,860 mA * 10k$$

$$= 13,4 V$$

Valores	Calculado	Simulado
Ib	6,14 μ <i>A</i>	5,73 μ <i>A</i>
Ic	0,86 mA	0,807 mA
Vb	2 V	1,98 V
Vc	13,4 V	14 V
Vce	12,11 V	12,77 V

3.4.5 – POLARIZAÇÃO POR REALIMENTAÇÃO DE TENSÃO

Figura 28 - Circuito proposto

Figura 29 - Circuito simulado e mensurado

$$Ib = \frac{Vcc - Vbe}{Rb + \beta(Rc + Re)} = \frac{10 - 0.7}{250k + \beta(4k7 + 1k2)}$$

$$= 11.9 \mu A$$

$$Ic = 90 * 11.9 \mu A$$

$$= 1.07 mA$$

$$Vb = Vcc - Ic * Rc - Ib * Rb$$

$$= 10 - 1.07 mA * 4k7 - 11.9 \mu A * 250k$$

$$= 1.996 V$$

$$Vce = Vcc - Ic * (Rc + Re)$$

$$= 10 - 1.07 mA * 5k9$$

$$= 3.687 V$$

$$Vc = Vcc - Ic * Rc$$

$$= 10 - 1.07 mA * 4k7$$

$$= 4.971 V$$

$$Ve = Vb - Vbe$$

$$= 1.996 V - 0.7$$

$$= 1.299 V$$

Valores	Calculado	Simulado
Ib	11,9 μ <i>A</i>	9,28 μΑ
Ic	1,07 mA	1,17 mA
Vb	1,996 V	2,18 V
Vc	4,971 V	4,5 V
Vce	3,687 V	3,1 V
Ve	1,299 V	1,4 V

CONCLUSÃO

Com o presente relatório foram consolidados os conhecimentos adquiridos ao longo de sete aulas de Eletrônica Básicas equivalentes a M2. Foram visualizados na prática o funcionamento de transistores com circuitos *pnp* e *npn*, análises simplificadas entre outras atuações vistas em aula.

Através dos cálculos e comparações com as simulações foram vistos resultados semelhantes e positivos, indicando que o uso dos componentes e das fórmulas estavam corretos e contribuindo ainda mais para a aprendizagem.