

Konzeption und Entwicklung einer intuitiven Modellierungssprache für digitale Therapien mittels Chatbots

Masterarbeit von

Luisa Christine Andre

Lehrstuhl für Pervasive Computing Systeme/TECO Institut für Telematik Fakultät für Informatik

Erstgutachter: Prof. Dr. Michael Beigl

Zweitgutachter: Prof. Dr.-Ing. Rainer Stiefelhagen

Betreuer: Dr. Anja Exler

Projektzeitraum: 01.03.2019 – 31.08.2019

Zusammenfassung

Zusammenfass (Deutsch)

Abstract

Zusammenfass (Englisch)

Contents

1	Ein	leitung	1
	1.1	Problemstellung und Zielsetzung	3
	1.2		3
	1.3	Methodisches Vorgehen	3
	1.4	<u> </u>	4
2	Gru	ındlagen	5
	2.1	TherapyBuilder	5
		2.1.1 Forscher-Plattform	6
		2.1.2 Therapeuten-Plattform	7
		2.1.3 Backend	7
		2.1.4 App	7
	2.2	Rahmenbedingungen von Psychotherapien	7
	2.3	Chatbots	7
	2.4		9
		2.4.1 Grafische Programmiersprachen	9
			9
		2.4.1.2 Allgemeine grafische Programmiersprachen 1	.0
		2.4.2 Auszeichnungssprachen	.0
		2.4.3 Experience Sampling	. 1
		2.4.4 Fazit	2
3		nzeption 1	
	3.1	Anforderungsanalyse	
	3.2	Ausarbeitung verschiedener Konzepte	.5
4	Ent	wicklung der Modellierungssprache 1	7
4	4.1	Konzept	
	4.1	Umsetzung	
	4.2	Unisetzung	. 1
5	Erg	ebnisbeschreibung 1	9
	5.1	Deskriptive Statistik	9
	5.2	Beschreibung der Ergebnisse der Zwischenfragebögen	21
		5.2.1 Konstruktionsprinzip und Konfigurationsprinzip	
		5.2.1.1 Ergebnisbeschreibung des Konstruktionsprinzips 2	
		5.2.1.2 Ergebnisbeschreibung des Konfigurationsprinzip 2	22
		5.2.2 Sprünge und Sichtbarkeitsregeln	
		5.2.2.1 Ergebnisbeschreibung der Sprünge	
		5 2 2 2 Ergebnisheschreibung der Sichtharkeitsregeln 2	

Contents

	5.3	Ergeb	nisbeschreibung der Abschlussfragerunde	27			
		5.3.1	Ergebnissbeschreibung Konfigurationsprinzip	28			
		5.3.2	Ergebnissbeschreibung Konstruktionsprinzip	28			
		5.3.3	Ergebnissbeschreibung Sprünge	28			
		5.3.4	Ergebnissbeschreibung Sichtbarkeitsregeln	28			
6	Erg	ebnisd	liskussion	37			
	6.1	Zusan	nmenfassung	37			
	6.2	Kritis	che Reflexion	37			
7	Aus	sblick		39			
Bi	Bibliography						

ii Contents

Contents 1

1. Einleitung

Sie geben Auskunft über das Wetter (vgl. [17]), nehmen Bestellungen entgegen (vgl. [20]) oder wirken als Coach (vgl. [38]) - Chatbots werden bereits vielseitig im Alltag eingesetzt. Auch die Psychologie profitiert von diesen Entwicklungen. 1966 entwickelte Joseph Weizenbaum mit ELIZA den ersten Chatbot. ELIZA sollte seinem menschlichen Gesprächspartner das Gefühl geben, dass dieser mit einem Psychiater über eine Chatoberfläche kommuniziert. Entwickelt wurde ELIZA allerdings nicht mit der Absicht Psychotherapie zugänglich zu machen, sondern um ein Modell zur maschinellen Verarbeitung von natürlicher Sprache zu implementieren (vgl. [36]). Was mit Joseph Weizenbaums ELIZA begann, brachte mit der Entwicklung der Forschung und Technik schließlich einige Chatbots, wie Wysa (vgl. [38]), Woebot (vgl. [37]) und Tess (vgl. [33]), im Bereich der psychischen Gesundheit hervor. Sie stellen heutzutage verschiedene Methoden der kognitiven Verhaltenstherapie bereit, die Nutzern helfen können, deren Introspektion zu verbessern. Dabei wirken sie wie ein Coach der jederzeit erreichbar ist (vgl. [15]).

In den 1960-ern hatten nur wenige Zugang zu Computern. Durch ihre Bauweise benötigten diese nicht nur viel Platz, sie waren zu dieser Zeit auch sehr kostspielig (vgl. [8]). Die Technik hat sich allerdings über die Jahrzehnte hinweg stark verändert. Nicht nur wurden Computer erschwinglich und haben eine deutlich größere Rechenleistung, sie begleiten uns mittlerweile auch in Form eines Tablets oder Laptops als Personal Computer durch den Alltag. Seit Apple ihr erstes Smartphone Iphone im Jahr 2007 einführte, eröffneten sich durch diese Geräte noch weitere technische Möglichkeiten. Smartphones entwickelten sich zu kleinen, handlichen Geräten die nahezu in jeder Tasche Platz finden (vgl. [9]). Außerdem beinhalten die Geräte heutzutage verschiedene Sensoren, haben Zugriff auf eine Vielzahl von Anwendungen und können sich mit dem Internet verbinden (vgl. [9][1]). Die Handlichkeit und Vielzahl an mitgebrachten Funktionen führte dazu, dass im Jahre 2018 allein in Deutschland 22,74 Millionen Smartphones verkauft wurden (vgl. [39]). Statistiken der Bitkom Research ermittelten, dass im Jahr 2017 78 Prozent der Deutschen ein Smartphone verwendeten (vgl. [30]).

Entwickler nutzen die technischen Vorteile der Smartphones und Personal Computer. So begleitet Woebot Menschen mit Depressionen oder inneren Unruhen mit

2 1. Einleitung

Techniken aus der kognitiven Verhaltenstherapie als Selbsthilfe durch den Alltag (vgl. [15]). Der Nutzer kann dabei auswählen, ob dieser über eine *Iphone-App*, *Android-App* oder via *Facebook Messenger* mit *Woebot* kommunizieren möchte (vgl. [37]). Letzteres ist auf jedem browserfähigen Gerät nutzbar.

Eine Studie der Stanford School of Medicine untersuchte den Einsatz des Chatbots Woebot hinsichtlich seiner Realisierbarkeit, Nutzerakzeptanz und die vorläufige Wirksamkeit des bereitgestellten Selbsthilfeprogramms. Verglichen wurden dabei zwei Gruppen. Eine dieser Gruppen, bestehend aus 31 Probanden, erhielt Zugriff auf Woebot. Die zweite Gruppe, bestehend aus 25 Probanden, erhielt Zugriff auf das Ebook Depression des National Institute of Mental Health. Die Studiendauer wurde auf zwei Wochen festgelegt. Nach Ablauf der Studie zeigte sich, dass die Mehrheit der Woebot-Gruppe beinhahe täglich den Chatbot nutzte. Auch konnte bei der Nutzung des Woebots im Vergleich zur Nutzung des Ebooks eine größere Zufriedenheit festgestellt werden. Außerdem ließ sich bei dieser Gruppe ein signifikanten, positiven Einfluss hinsichtlich ihrer Depressionsbewältigung und dem Umgang mit inneren Unruhen messen (vgl. [15]).

Eine weitere Studie testete den Einfluss eines virtuellen Akteurs auf das Nutzerverhalten innerhalb eines klinischen Interviews. In dieser Studie wurden 145 Probanden in zwei Gruppen eingeteilt. 57 dieser Probanden führten einen Dialog mit einem virtuellen Akteur, der von einem Menschen gesteuert wurde. Die restlichen 88 Probanden unterhielten sich mit einem virtuellen Akteur, der mittels künstlicher Intelligenz kommunizierte. Das jeweilige Setting der Gruppen war allen Probanden bekannt. Gemessen wurde, unter anderem anhand eines Fragebogens, die Furcht vor negativer Bewertung (FNE), das Selbstdarstellungsverhalten (IM), die Nutzbarkeit des Systems (SU) sowie die Selbsttäuschung der Probanden (SD). Die Ergebnisse zeigten auf, dass signifikante Unterschiede zwischen den Gruppen gemessen werden konnte. So wurde festgestellt, dass Probanden, die Dialoge mit der künstlichen Intelligenz führte, einen niedrigeren FNE und IM Wert aufweisen (vgl. [18]).

Diese Ergebnisse zeigen auf, dass Chatbots im Bereich der Psychologie und Psychotherapie nützliche Werkzeuge sein können. Allerdings ist das Entwickeln solcher Chatbots für Psychologen noch immer eine Hürde. Zwar gibt es zahlreiche Baukästen zur Entwicklung von Chatbots die keine tiefgreifenden Programmierkenntnisse benötigen. Diese sind jedoch überwiegend auf den Bereich des Marketings ausgerichtet, weshalb sie in ihrem Funktionsumfang meist eingeschränkt sind. Baukästen die mehr Funktionalität bieten, benötigen lange Einarbeitungszeit und Expertenwissen in Bezug auf ihre Programmierung. Eine einfache und schnelle Umsetzung ist daher oft nicht möglich. Auch die Entwicklung eines eigenen Produktes birgt für Psychologen und Softwareunternehmen Probleme. So scheitert die Umsetzung unter anderem an Kommunikationshürden zwischen Entwicklern und Psychologen. Aber auch die komplexen Anforderungen des Medizinproduktegesetztes (MPG), die medizinische Produkte für die Herstellung oder Einführung in den Europäischen Wirtschaftsraum zu erfüllen haben, stellen eine Hürde dar (vgl. [22]).

Das Unternehmen movisens GmbH entwickelt derzeit das Projekt TherapyBuilder welches Psychologen und Psychotherapeuten die Möglichkeit bieten soll, Chatbots für Studien sowie zur Therapiebegleitung einzusetzen. Im Rahmen dieser Masterarbeit wird für das Projekt TherapyBuilder ein Modellierungsansatz TMA (Therapy Modelling Approach) entwickelt. Ziel dieses TMA ist es, Psychologen die Autonomie

zu geben, ohne Expertenwissen Chatbots zu erstellen, um diese in Studien und therapiebegleitend einzusetzen.

1.1 Problemstellung und Zielsetzung

Ziel der Arbeit ist die Konzeption einer Therapiemodellierungsansatz (TMA). Diese soll es erlauben, auch technisch wenig versierten Psychologen ihre Therapieideen in einer Art und Weise zu formulieren, die von einer Maschine verarbeitet und ausgeführt werden kann. Dadurch entfällt der hohe und fehleranfällige Abstimmungsaufwand zwischen Forschern und Entwicklern.

Durch den Einsatz der *TMA* sollen *MPG* konforme Anwendungen mit einem Chatbot UI entstehen, welche eine für den Patienten vertraute, dialogähnliche Kommunikation ermöglicht. Dies erlaubt es eine stärkere persönliche Bindung zwischen Appund dem Patienten herzustellen, was den Therapieerfolg unterstützen soll.

In der Arbeit gilt es vor allem die komplexen Konfigurationsmöglichkeiten der Domäne einer digitalen Therapie funktional abzubilden. Durch eine Befragung der Anwendergruppen soll Domänenwissen erarbeitet werden und im Folgenden die TMA und dessen grafische Repräsentation iterativ entworfen werden. Dabei gilt ein hohes Augenmerk der Usability, um sicherzustellen, dass der Aufwand zur Therapieentwicklung und Studiendurchführung nicht größer ist, als derzeitige Methoden zur Therapieentwicklung und Studiendurchführung.

Es werden zwei Modellierungsansätze entwickelt. Einer dieser Ansätze wird in Form eines komplexen Mockups umgesetzt. Ein weiterer in Form eines Prototypen, welcher aus der Anpassung eines Experience Sampling Tools resultiert. Anschließend erfolgt eine Evaluation der Entwürfe in einer Vergleichsstudie.

1.2 Umfeld

Die Arbeit findet im Rahmen des Forschungsprojektes *TherapyBuilder*, der Firma *movisens GmbH*, statt. Ziel des Vorhabens ist die Entwicklung eines Softwaretools, mit dessen Hilfe Anwender (medizinisch therapeutische Experten) prototypische aber studientaugliche digitale Therapiesysteme innerhalb weniger Tage mit minimalem finanziellem Einsatz und ohne Programmierkenntnisse erstellen können. Dies soll eine Evaluation der Wirksamkeit von Methoden und Therapieansätzen in kürzester Zeit ermöglichen.

1.3 Methodisches Vorgehen

Zur Konzeptionierung der Modellierungsansätze müssen zunächst mehrere Punkte betrachtet werden. Da sich die Zielgruppe aus medizinisch therapeutischen Experten zusammensetzt, gilt es herauszufinden, welche technischen Rahmenbedingungen für diese gegeben ist. Hierfür muss zunächst die Gruppe der medizinisch therapeutischen Experten genauer definiert werden. Anschließend werden die Anforderungen für studientaugliche digitale Therapiesysteme ermittelt. Hierfür werden verschiedene Studien betrachtet, die bereits in Form eines Chatbots umgesetzt werden können. Auf dieser Basis werden verschiedene Konzepte ausgearbeitet. Unter anderem werden für die Konzeptionierung Stilmittel betrachtet, die in verschiedenen

4 1. Einleitung

Technologien eingesetzt werden. Diese Technologien werden in Kapitel 2.4 Stand der Technik erörtert. Die entwickelten Konzepte werden prototypisch umgesetzt und abschließend in einer explorativen, qualitativen Studie evaluiert. Die Studie wird dabei so aufgebaut, dass die Probanden verschiedene Konzepte austesten und später Konzepte, die gleiche Informationen umsetzen, miteinander vergleichen und bewerten. Basierend auf den Ergebnissen wird eine Einschätzung abgegeben, welche Konzepte zur Umsetzung der späteren TherapyBuilder-Plattform weiter entwickelt werden und welche weiteren Anpassungen sinnvoll sein könnten. Der Ablauf wird in folgender Grafik nochmals verdeutlicht.

Figure 1.1: Ablauf des methodischen Vorgehens.

1.4 Gliederung

Im folgenden wird die Gliederung der Arbeit vorgestellt. Zunächst werden in 2 grundlegende Definitionen und Rahmenbedingungen erläutert. Dies beinhaltet die Einführung von Begriffen und ihren Definitionen, die im Laufe dieser Arbeit verwendet werden. Aber auch die Rahmenbedingungen von Psychotherapien. Die Rahmenbedingungen setzen sich aus grundlegenden technischen Anforderungen sowie häufig verwendeten Stilmitteln zusammen, die in Psychotherapien eingesetzt werden.

Kapitel 3 betrachtet den Aktuellen Stand der Technik. Hier werden verschiedene Konzepte bewertet, die für eine Umsetzung eines Therapiemodellierungsansatz zur Modellierung von Therapien mit Chatbots in Frage kommen. Dies beinhaltet die Betrachtung von grafischen Programmiersprachen, Auszeichnungssprachen sowie verschiedene Experience Sampling Tools.

Anschließend beginnt in Kapitel 3 die Konzeption verschiedener Therapiemodellierungsansätze. Zur Ausarbeitung der Therapiemodellierungsansätze wird zunächst eine Anforderungsanalyse aufgestellt. Diese betrachtet verschiedene bereits vorhandene Studien, die ein Dialog-Ähnliches Format verwenden. Anschließend werden die daraus resultierenden Konzepte beschrieben und evaluiert.

Kapitel 4 befasst sich mit der Entwicklung verschiedener Konzepte, die später im Modellierungsansatz eingesetzt werden könnten. Beschrieben werden die Konzepte an sich sowie deren Umsetzung. Anschließend wird das Studiendesign beschrieben und die Studienergebnisse vorgestellt und evaluiert.

Abschließend werden in Kapitel ?? die Ergebnisse dieser Arbeit zusammegefasst und bewertet. Diese Ergebnisse bieten die Grundlage für den Ausblick auf die weitere Umsetzung des Therapiemodellierungsansatz.

2. Grundlagen

Zunächst wir das Projekt TherapyBuilder der Firma movisens GmbH näher erläutert. Dies dient zum besseren Verständnis der Forschungsfrage und porträtiert die Rahmenbedingungen dieser Arbeit. Anschließend wird die Expertengruppe näher definiert. Des weiteren werden grundlegende Rahmenbedingungen ermittelt, die für Psychotherapien gelten. Abschließend wird die Definition eines Chatbots erläutert und erklärt, was unter einem Chatbot im Rahmen dieser Arbeit verstanden wird.

2.1 TherapyBuilder

Das Projekt TherapyBuilder entstand im Rahmen verschiedener Überlegungen der Firma movisens GmbH .Die Firma movisens GmbH bietet Produkte und Dienstleistungen für ambulantes Assessment in der Forschung an. Unter ambulantes Assessment wird hierbei das Erfassen von Daten einer untersuchten Person im Alltag verstanden. Ambulant bedeutet in diesem Zusammenhang, dass sich die Personen in ihrem natürlichen Umfeld im Alltag befinden. Für die Datenerfassung ist kein vorbestimmter Ort notwendig an dem sich der Proband stationär einfinden muss. Diese Erfassung kann über verschiedene Methoden geschehen. Eine Möglichkeit ist das Tracken von Patientenverhalten über verschiedene Sensoren. Diese können beispielsweise am Patienten selbst angebracht sein. Im Laufe der Datenerhebung zeichnen die Sensoren die benötigten Daten auf. Eine weitere Methode ist die Experience Sampling Method (EMS). Bei dieser Methode führt die zu untersuchende Person eine Art Tagebuch zur gezielten Selbstbeobachtung. Diese Methode kann heute leicht mit Hilfe von Smartphones umgesetzt werden. [2]

Das Produkt movisens XS der Firma movisens GmbH bietet bereits verschiedene Funktionen zur Umsetzung von Datenerhebung via EMS. Mit diesem Tool können Forscher Fragebögen erstellen und sie auf den Smartphones ihrer Probanden ausführen lassen. Einige der bereits erstellten Fragebögen verwenden Dialoge in Form von Anleitungen, Fragen von Seiten des Forschers und den darauf folgenden Antworten des Probanden. Diese Fragebögen könnten von den Vorteilen eines Chatbots profitieren. So könnten die Nutzer eine höhere Zufriedenheit bei der Nutzung empfinden und eine größere Bereitschaft zeigen, die Fragebögen auszufüllen und Anleitungen durchzuführen (vgl. [15]).

6 2. Grundlagen

Da die derzeitige EMS-Plattform movisensXS noch keine Chatbot-ähnliche Ausgabe unterstützt, wurde das Projekt TherapyBuilder gestartet. Ziel des TherapyBuilder-Projekts ist die Entwicklung eines Softwaretools, mit dessen Hilfe Anwender (medizinischtherapeutische Experten) prototypische aber studientaugliche digitale Therapiesysteme erstellen können. Dies soll innerhalb weniger Tage mit minimalem finanziellen Einsatz und ohne Programmierkenntnisse realisierbar sein, um so die Wirksamkeit von Methoden und Therapieansätze in kürzester Zeit evaluieren zu können. Dabei soll das Projekt TherapyBuilder derart gestaltet sein, dass der Anwender sich nicht um eine Medizinproduktegesetz (MPG)-konforme Softwareentwicklung kümmern muss.

Das Projekt setzt sich aus den vier Komponentent Forscher-Plattform, Therapeuten-Plattform, Backend und App zusammen. Die Komponenten werden nachfolgend näher beschrieben.

Figure 2.1: Architektur des *TherapyBuilders*

2.1.1 Forscher-Plattform

Auf dieser Plattform wird die Umsetzung eines studientauglichen digitalen Therapiesystems realisiert. Unter einem studientauglichen digitalen Therapiesystem wird ein System verstanden, welches zur Umsetzung von Therapien eingesetzt werden kann. Die Therapien werden in diesem Fall digital, beispielsweise über ein Smartphone, Tablet oder Computer, bereitgestellt. Die Therapie kann dabei in Form einer Studie evaluiert werden.

Die Forscher-Plattform erlaubt Forschern eine digitale Therapie anzulegen. Diese kann später über die Therapeuten-Plattform der entsprechenden Zielgruppe zugänglich gemacht werden. Eine Therapie setzt sich dabei aus verschiedenen Therapiemodulen zusammen. Ein Therapiemodul ist gleichbedeutend mit der Umsetzung einer Therapiemethode. Der Aufbau des Therapiemoduls lässt sich wie folgt versinnbildlichen.

Das Therapiemodul folgt einer Art Skript (engl. Script). In diesem Skript wird festgelegt wann und auf welche Weise ein Dialog zwischen Anwender und Chatbot gestartet wird. Innerhalb des Skripts gibt es verschiedene Handlungsstränge (engl. Storylines). Ein Handlungsstrang beschreibt einen Dialog zwischen Nutzer und Chatbot und dessen Verlauf. Der Handlungsstrang kann neben einem normalen

Dialog auch aus verschiedenen Aktionen (engl. Actions) bestehen, die dem Nutzer bereitgestellt werden um Tagebuch über verschiedene Verhaltensweisen zu führen. Auch kann ein Handlungsstrang Übungen beinhalten, die der Nutzer durchführt. Diese Übungen können dem Nutzer als Werkzeug in einer Art Werkzeugkasten (engl. Toolbox) bereitgestellt werden. Somit kann der Nutzer jederzeit auf diese Übungen zugreifen.

2.1.2 Therapeuten-Plattform

2.1.3 Backend

2.1.4 App

2.2 Rahmenbedingungen von Psychotherapien

- Intervention
- Just in Time
- Psychologischer Psychotherapeut
- Experience Sampling

2.3 Chatbots

- Gabler: Chatbots oder Chatterbots sind Dialogsysteme mit natürlichsprachlichen Fähigkeiten textueller oder auditiver Art. Sie werden, oft in Kombination mit statischen oder animierten Avataren, auf Websites oder in Instant-Messaging-Systemen verwendet, wo sie die Produkte und Dienstleistungen ihrer Betreiber erklären und bewerben respektive sich um Anliegen der Interessenten und Kunden kümmern.
 - 1. Begriff: Chatbots oder Chatterbots sind Dialogsysteme mit natürlichsprachlichen Fähigkeiten textueller oder auditiver Art. Sie werden, oft in
 Kombination mit statischen oder animierten Avataren, auf Websites oder in
 Instant-Messaging-Systemen verwendet, wo sie die Produkte und Services ihrer
 Betreiber erklären und bewerben respektive sich um Anliegen der Interessenten und Kunden kümmern oder einfach dem Amüsement dienen. In sozialen
 Medien treten Social Bots auf, die wiederum als Chatbots fungieren können.
 - 2. Ziele und Merkmale: Ein Chatbot untersucht die Eingaben der Benutzer und gibt Antworten und (Rück-)Fragen aus, unter Anwendung von Routinen und Regeln. In Verbindung mit Suchmaschinen, Thesauri und Ontologien sowie mithilfe der Künstlichen Intelligenz (KI) wird er zu einem breit abgestützten und einsetzbaren System. Ebenfalls unter seinen Begriff fallen Programme, die im Chat neue Gäste begrüßen, die Unterhaltung in Gang bringen sowie für die Einhaltung der Chatiquette (einer speziellen Netiquette) sorgen und beispielsweise unerwünschte Benutzer kicken.
 - 3. Kritik und Ausblick: Chatbots waren um die Jahrtausendwende ein Hype und wurden 15 Jahre später wieder zu einem, allerdings unter neuen Voraussetzungen, wenn man an die Entwicklungen in der KI und die Überlegungen in der

8 2. Grundlagen

Ethik denkt. In der Maschinenethik werden Chatbots entwickelt, die moralisch adäquat agieren und reagieren, etwa Probleme des Gesprächspartners erkennen, eine Notfallnummer herausgeben oder ausdrücklich die Wahrheit sagen. Sie kann ebenso Lügenmaschinen als Artefakte hervorbringen, die sie dann untersucht, um wiederum Erkenntnisse in Bezug auf verlässliche und vertrauenswürdige Maschinen zu gewinnen. Die Informationsethik diskutiert die Auswirkungen des Einsatzes von Chatbots, u.a. mit Blick auf die persönliche und informationelle Autonomie. Die Wirtschaftsethik ist relevant hinsichtlich der Unterstützung und Ersetzung von Arbeitskräften

• Verweis auf Quelle von Jürgen

2.4 Stand der Technik

Für die Bearbeitung der Forschungsfrage werden verschiedene Technologien bewertet. Derzeit existiert noch keine bekannte Sprache, die speziell zur Modellierung von Therapien mit Chatbots entwickelt wurden. Aus diesem Grund werden nachfolgend Ansätze betrachtet, die für eine Umsetzung eines TMA in Frage kommen. Zunächst werden Plattformen beleuchtet, die eine Erstellung von Chatbots ermöglichen, ohne weitere Programmierkenntnisse zu benötigen.

2.4.1 Grafische Programmiersprachen

Diese Art der Programmiersprache bedient sich visueller Elemente um Programmstrukturen verständlich abzubilden. Die visuellen Elemente können auf eine bestimmte Domäne zugeschnitten sein (vgl. [35]) oder beschränken sich auf die Visualisierung gängiger Programmanweisungen (vgl. [5]). In den folgenden Abschnitten werden Chatbot-Plattformen und allgemeine grafische Programmiersprachen betrachtet.

Figure 2.2: Unterschrift

2.4.1.1 Chatbot-Plattformen

Der Konversationsfluss der Chatbots wird auf den Plattformen, wie Dialogflow und IBM Watson unter anderem als eine Art Baum, ähnlich zur bekannten Ordnerstruktur unter Windows Betriebssystemen, angelegt und dargestellt (vgl. [14] [21]). Chatbot-Plattformen, wie ManyChat, Converse.ai und Chatfuel verwenden Diagramme zur Darstellung eines Chatverlaufes (vgl. [12] [24]) oder Blocksysteme mit Referenzen auf nachfolgende Blöcke (vgl. [10]). Andere Plattformen nutzen keine Darstellung des Verlaufs (vgl. [7]). Im Beispiel von Botsify oder Recast.ai werden nur Verhaltensweisen angelegt, die durch bestimmte Nutzereingaben getriggert werden.

Auch in der Handhabung der Nutzereingaben gibt es verschiedene Ansätze. So bieten manche Plattformen die Möglichkeit Antworten für den Nutzer des Chatbots vorzugeben (vgl. [10] [24]). Andere hingegen verwenden natürliche Sprachverarbeitung um Schlagwörter einzutrainieren. Der Ersteller des Chatbots legt fest, wie der Chatbot auf die entsprechenden Schlagwörter reagiert (vgl. [7]. [14] [21]) Die Chatbot-Plattform *Chatfuel* verwendet beide Ansätze. So können hier Antworten vordefiniert oder Schlagwörter festgelegt werden (vgl. [10]).

Damit Nutzerdaten abgespeichert und verarbeitet werden können, bieten einige Plattformen Variablen an. Dort können unter anderem Nutzername sowie Aufenthaltsort des Nutzers gespeichert und weiterverwendet werden. Der Nutzer kann auf bereits definierte Variablen zurückgreifen oder eigene anlegen (vgl. [10] [12] [14] [21] [24]).

10 2. Grundlagen

Figure 2.3: Unterschrift

2.4.1.2 Allgemeine grafische Programmiersprachen

Neben dem Einsatz von grafischer Programmierung von Chatbots, gibt es noch weitere Domänen die ebenfalls die grafische Programmierung verwenden. Die grafische Programmiersprache *Labview* beispielsweise, konzentriert sich auf die Domäne System-, Steuer- und Regelungstechnik (vgl. [35]). Programmiert wird, indem Elemente miteinander kombiniert werden, die als Schaltzeichen aus der Elektrotechnik bekannt sind. Nach diesem Prinzip arbeiten auch die Editoren *Matlab Simulink* und *Choreograph* (vgl. [11] [29]).

Ist keine domänenspezifische grafische Programmiersprache gewünscht oder bekannt, ist es dennoch möglich ohne tiefgreifende Programmierkenntnisse Programme zu entwickeln. Ermöglicht wird dies durch Programmiersprachen, die Programmanweisungen durch Diagramme oder Blöcke visualisieren. Für Diagramme werden unter anderem Zustandsdiagramme oder eine Form von Flussdiagrammen verwendet (vgl. [32] [13] [27]). Durch diese Vorgehensweisen lassen sich Schleifen oder bedingte Anweisungen leicht erkennen. Eine Visualisierung mit Blöcken hingegen folgt dem Steckprinzip. So können Anweisungen in Blockform nebeneinander wie untereinander angeordnet werden. Schleifen oder Bedingungen werden durch Blöcke dargestellt, die andere Blöcke beinhalten. Diese Blöcke stellen Anweisungen dar, die innerhalb dieser Schleife oder jeweiligen Bedingung ausgeführt werden (vgl. [6] [25] [31] [41]). Lego Mindstorms NXT verbindet das Steckprinzip der Blöcke mit domänenspezifischen Elementen der Lego Mindstorms Bausätze. Insbesondere Schleifen und Bedingungen werden als eine Art Blocksystem genutzt (vgl. [25]).

Figure 2.4: Unterschrift

2.4.2 Auszeichnungssprachen

Eine weitere Möglichkeit zur komplexen Programmierung sind die sogenannten vereinfachten Auszeichnungssprachen. Diese arbeiten mit Text der anhand einfacher

Befehle formatiert und strukturiert wird. So kann anhand eines vorangehenden Symbols Text als Überschrift definiert werden. Insbesondere *Markdown* verwendet Sonderzeichen um Textabschnitte zu formatieren und strukturieren (vgl. [16]).

Auch YAML nutzt Sonderzeichen, um Listen und größere Mengen von Daten zu beschreiben (vgl. [34]). BBCode hingegen verwendet einfache Anweisungen die mit eckigen Klammern eingeleitet und abgeschlossen werden. Die Anweisung selbst wird in Form eines Buchstabens angegeben (vgl. [3]).

HTML ist die geläufigste Auszeichnungssprache. Diese wird zur Strukturierung von Websites benötigt. Dabei können verschiedene Bereiche definiert und deren Inhalte strukturiert werden. HTML hat die Fähigkeit durch die Verwendung von Tags komplexe Inhalte, wie Texte, Bilder, Listen und Tabellen zu strukturieren und zu formatieren. Die Tags werden mit spitzen Klammern gekennzeichnet. Im Rahmen einer Studie wurde HTML eingesetzt um Ambulante Assesment Protokolle zu erstellen, die sowohl vom Menschen lesbar als auch vom Computer ausführbar sind (vgl. [4]).

Figure 2.5: Unterschrift

2.4.3 Experience Sampling

Psychotherapeuten und Psychologen haben die Möglichkeit anhand bestimmter Experience Sampling Software Fragebögen für mobile Geräte zu entwickeln (vgl. [26]). Hierbei werden auch Lösungen angeboten, die Auszeichnungssprachen verwenden. Die Software Experience Sampler verwendet die Auszeichnungssprache JSON, aufbauend auf YAML, um Fragen, Anzeige- sowie Eingabeformate zu definieren (vgl. [26]). MyExperience verwendet einen ähnlichen Ansatz. Als Auszeichnungssprache zur Entwicklung der Fragebögen wird hier auf XML zurückgegriffen (vgl. [42]).

Ein weiteres Projekt zur Erstellung von Experience Sampling ist Jeeves. Fragebögen werden mit diesem Programm über eine grafische Programmiersprache definiert. Verwendet wird hauptsächlich die grafische Programmierung mit Blöcken. Über eine weitere Oberfläche werden die Eingabeformate der Antworten festgelegt. So ist es möglich Formate wie Likert Skala, Checkboxes, Radiobuttons, Ortsabfragen und weitere zu verwenden (vgl. [28]).

Die Experience Sampling Software movisensXS nutzt Diagramme zur Beschreibung des Ablaufs eines Fragebogens. Diese werden nach einem Puzzle-Prinzip angeordnet. Die Fragen selbst, sowie Formate der Antworten, werden separat angelegt und können später im Diagramm ausgewählt werden (vgl. [40]).

2. Grundlagen

Figure 2.6: Unterschrift

2.4.4 Fazit

Zwar bieten Chatbot-Plattformen bereits einige Funktionen, allerdings fokussieren diese sich vornehmlich auf Marketing, Vertrieb und Support (vgl. [10] [12] [23]). Dies kann die Umsetzung einer komplexen Therapie erschweren. Übliche Elemente, wie visuelle Analogskalen und Likert-Skalen, die häufig in der Psychologie Verwendung finden, können nur schwer oder gar nicht umgesetzt werden. Die Darstellungsformen der Konversationen verschiedener Chatbot-Plattformen haben unterschiedliche Vorund Nachteile. Bäume und Diagramme bieten eine visuelle und leicht verständliche Übersicht eines Konversationsablaufs. Je größer und komplexer dieser Ablauf allerdings wird, umso unübersichtlicher wird eine Konversation. Bei großen Bäumen und Diagrammen werden in der Gesamtansicht die einzelnen Komponenten und Schriften zu klein und somit schwer Lesbar für das menschliche Auge. Ist die Funktion eines hinein- und herauszoomens implementiert, erschwert sich das verorten der Komponenten im Gesamtsystem (vgl. [19]). Blocksysteme bieten zusätzlich die visuelle Darstellung von Bedingungen, aber auch hier ist ein großer Konversationsablauf schnell unübersichtlich (vgl. [19]). Viele Elemente, die in Chatbot-Plattformen eingesetzt werden, könnten für einen Therapiemodellierungsansatz nützlich sein, da diese leicht nachvollziehbar und leicht in der Handhabung sind. Allerdings ist keine der bisherigen Chatbot-Plattformen derzeit geeignet, um eine komplexe Therapie umzusetzen ohne lange Einarbeitungszeit oder Einschränkungen in der Gestaltung.

Auch eine Umsetzung mit den sogenannten grafischen Programmiersprachen wäre möglich um eigene Chatbots zu entwickeln. Überwiegend gibt es diese für spezielle Domänen wie Elektrotechnik. Das Baukastenprinzip ist hier besonders interessant, da es verschiedene Funktionen visuell darstellt und später in Code übersetzt. Die visuelle Darstellung ist leicht verständlich und schnell zu Erlernen. Blockly bedient sich diesem Prinzip, um verschiedene Arten der Programmanweisungen verständlicher darzustellen. Allerdings erhält in dieser Form der Umsetzung ein komplexeres Programm oder System die zuvor genannten Probleme (vgl. [19]). Es gibt ebenfalls noch keine grafische Programmiersprache, die zur Umsetzung eines Therapiemodellierungsansatzes geeignet wäre.

Für das Beschreiben einer Konversation wäre auch die Nutzung einer Auszeichnungssprache möglich. Das Schreiben eines Konversationsfluss wirkt hier sehr natürlich, da es dem Chatten nahe kommt. Aber auch hier kann man leicht die Übersicht verlieren, da Verzweigungen in Konversationen nicht entsprechend dargestellt werden können, wie es beispielsweise bei Diagrammen möglich ist. Auch liefern nicht alle Auszeichnungssprachen den Umfang von Funktionen um komplexe Therapien darzustellen. Auch die Syntax und Fehlersuche wird zeitaufwändig sofern das

genutzte Programm zur Beschreibung keine oder eine rudimentäre Fehlerbehandlung mit sich bringt.

Im Bereich des Experience Samplings werden bereits verschiedene Ansätze verwendet, die eine grafische Programmierung oder das Verwenden einer Auszeichnungssprache integrieren. Hier liegt der Fokus auf der Entwicklung von Fragebögen die zu verschiedenen Zeiten getriggert werden. Derzeit gibt es keine Experience Sampling Software die Therapien gezielt in Form von Konversationen umsetzt. Jedoch können Fragebögen ein wichtiges Stilmittel einer Therapie darstellen.

Aufgrund der verschiedenen Vor- und Nachteile der vorgestellten Ansätze, wäre eine Kombination verschiedener Ansätze denkbar.

2. Grundlagen

3. Konzeption

3.1 Anforderungsanalyse

Nur Fokus auf Funktionale Anforderungen

- Konversationen: Arten (Fragebogen, JIT Intervention, getriggerte Intervention, On-demand Intervention, Self-Monitoring, Notfallkoffer)
- Fragebogen (Offene und geschlossene Fragen)
- Eingabeformate der Nutzer (Text, Likert-Skala,...)

3.2 Ausarbeitung verschiedener Konzepte

16 3. Konzeption

4. Entwicklung der Modellierungssprache

- 4.1 Konzept
- 4.2 Umsetzung

5. Ergebnisbeschreibung

Nach der Durchführung der Studie gilt es, die Ergebnisse dieser auszuwerten und einzuordnen. Hierfür werden mehrere erhobenen Daten betrachtet. Die Evaluation der Studienergebnisse besteht zunächst aus der Beschreibung der Charakteristika der Probandengruppe. Anschließend werden die Ergebnisse der Erhebungen beschrieben. Eingegangen wird hierbei auf die Ergebnisse der Fragebögen, sowie der Abschließenden Fragerunde. Abschließend werden die Ergebnisse der Fragebögen mit den Einschätzungen der Fragerunde in Verbindung gebracht.

5.1 Deskriptive Statistik

Es nahmen acht Probanden an der Vergleichsstudie teil. Diese befinden sich zum Zeitpunkt der Durchführung im Alter von 23 bis 37 Jahren. Das durchschnittliche Alter beträgt 29. Die Probandengruppe setzt sich aus fünf Frauen und 3 Männern zusammen. Die Probanden sind wissenschaftliche Mitarbeiter, Promotionsstudenten oder Doktoren aus dem medizinischen Bereich.

Folgende Aussagen lassen sich über die Gewohnheiten und Technologienutzung der Probanden ableiten. Die Mehrheit verwendet ein- oder mehrmals am Tag Chat-Technologien. Ein Proband nutzt Chat-Technologien einmal im Monat oder seltener. Die verwendeten Chat-Technologien setzen sich aus Whatsapp, Telegram, Facebook Messenger, Instagram, Threema, Apple Nachrichten, Line und Slack zusammen. Die meistgenutzten Chat-Technologien innerhalb der Probandengruppe sind Whatsapp und Facebook Messenger. Verwendet werden diese Anwendungen hauptsächlich auf dem Smartphone oder Laptop bzw. Desktop Computer.

Die Nutzung von Chatbots ist innerhalb der Probandengruppe wenig verbreitet. Diese werden von zwei Probanden einige Male pro Woche und einmal im Monat oder weniger genutzt. Genutzt werden der Nachrichtenbot der Tagesschau und ein Chatbotdienst für den Kundenservice der Firma ASOS. Bedient werden diese Chatbotdienste auf dem Smartphone sowie Laptop bzw. Desktop Computer.

Innerhalb der Probandengruppe wurde Experience Sampling bereits mehrheitlich genutzt. Drei Probanden gaben an noch nie oder nur gelegentlich Experience Sampling verwendet zu haben. Fünf Probanden haben bereits Experience Sampling

öfters bis regelmäßig genutzt. Für Experience Sampling kamen die Anwendungen MovisensXS, Menthal und Whatsanalyzer zum Einsatz. Genutzt wurden diese auf dem Smartphone oder Laptop bzw. Desktop Computer.

Hinsichtlich der Vorerfahrungen bezüglich MovisensXS lassen sich für die Probandengruppe folgende Aussagen treffen. Wie in Grafik 5.1 zu sehen ist, besitzt ein Proband keinerlei Erfahrungen mit MovisensXS. Die restlichen Probanden nutzen das Programm gelegentlich bis regelmäßig. Die Nutzung von MovisensXS beschränkt sich auf das Zuordnen von Probanden, Teilnahme an Studien, sowie kleinen Anpassungen einer bereits bestehenden Studie.

Figure 5.1: Angaben der Probanden bezüglich ihrer Erfahrungen mit dem Programm Movisens XS

Basierend auf dieser Probandengruppe ist es für die Überprüfung der aufgestellten Hypothesen bedeutend, die jeweiligen Probanden zu framen. Hierfür werden zunächst Sinn der Studie und diverse Begriffe erläutert. Anschließend machen sich die Probanden zunächst mit dem jeweiligen Programm vertraut, welches betrachtet werden soll. Hierfür wird eine Aufgabe gestellt, die durch das Programm führt und den Probanden beim explorieren des jeweiligen Programms und dessen Funktionen anleitet. Während der Nutzung und der Bearbeitung der gestellten Aufgaben, werden Emotionen und Motivationen durch Kommentare des Probanden erfasst. Abschließend wird nach der aufgabengesteuerten Nutzung eines Programms eine erste Einschätzung in Form eines Fragebogens erfasst. Nach Bearbeitung aller Aufgaben und Verwendung beider Programme, werden die Programme in einer abschließenden Fragerunde miteinander verglichen. Dabei wird auf wesentliche Unterschiede beider Programme eingegangen. Erfasst werden hierbei die Einschätzung der Probanden, welche Eigenschaften sie im Vergleich als besonders Hilfreich, nicht Hilfreich empfanden. Auch welche Eigenschaften ihnen gefallen oder welche sie vermisst haben. Diese Einschätzungen werden in Relation zu den Ergebnissen der Fragebögen gesetzt um diese zu verargumentieren.

5.2 Beschreibung der Ergebnisse der Zwischenfragebögen

Zunächst werden die Ergebnisse der Fragebögen betrachtet. Diese werden in verschiedene Kategorien eingeordnet, in denen sich die Ansätze maßgeblich unterscheiden. Die Einschätzungen der abschließenden Fragerunde der Studie werden ebenfalls betrachtet. Abschließend werden die Ergebnisse verknüpft und im Kontext der aufgestellten Hypothesen diskutiert.

5.2.1 Konstruktionsprinzip und Konfigurationsprinzip

Die Prototypen TherapyBuilder und MovisensXS, der Studie, unterscheiden sich maßgeblich in der Herangehensweise der Einstellung der Trigger. Während TherapyBuilder das Konfigurationsprinzip verfolgt, nutzt MovisensXS das Konstruktuionsprinzip. Die Studienergebnisse beider Ansätze werden zunächst getrennt betrachtet. Für diese Betrachtung werden vorerst die Ergebnisse der Fragebögen herangezogen. Abschließend erfolgt die Gegenüberstellung beider Ansätze.

5.2.1.1 Ergebnisbeschreibung des Konstruktionsprinzips

Das Konstruktionsprinzip bietet das Einstellen der Trigger durch das Zusammensetzen und Verschalten einzelner Blöcke mit unterschiedlichen Funktionen. Wie in Abbildung 5.2 dargestellt, bildet sich aus der Anordnung ein Baum aus verschiedenen Blöcken. Die Blöcke unterscheiden sich farblich und folgen dem Ampelprinzip.

Figure 5.2: Das Konstruktionsprinzip des MovisensXS. Blöcke werden miteinander verschaltet.

Die Probanden gaben nach der Aufgabenbearbeitung an, dass sie die Darstellung der Trigger als zumeist verständlich empfanden mit einer leichten Tendenz zu zum Teil verständlich. Dies wird auch durch die Freitext-Aussagen der Probanden gestützt. Fünfundsiebzig Prozent der Probanden gingen auf die positive Auswirkung der farblichen Kodierung ein. Zum einen wurde beschrieben, dass diese die Orientierung

innerhalb des Baumes erleichtern und die Funktion sowie Abfolge der Bausteine gut beschreiben.

Die Verständlichkeit der Einstellungsmöglichkeiten der Trigger wurde von den Probanden sehr unterschiedlich bewertet. Im Schnitt wird diese als zum Teil verständlich und zumeist verständlich empfunden. Positiv wurde von einem Probanden die vielen möglichen Trigger-Optionen hervorgehoben.

Während des Durcharbeitens der Aufgaben wurden die Probanden in der Trigger-Ansicht mit Verzweigungen zwischen einzelner Konversationen konfrontiert. Diese wurden im MovisensXS als zum Teil verständlich empfunden. Diese Auswertung findet sich auch in den Aussagen wieder. Die Hälfte der Probanden gibt an, dass die Baumdarstellung bei vielen Bausteinen schnell unübersichtlich wirkt.

Innerhalb des Baumes kann abgeleitet werden, welche Konversationen im Laufe des Therapiemoduls gestartet werden. Das Auffinden dieser Konversationen bewerteten die Probanden als eher gut. Dies findet sich auch in der bereits erwähnten Aussage der Probanden über die Unübersichtlichkeit der Darstellung wieder.

Auch empfanden es die Probanden als eher schwierig die zeitliche Abfolge der Konversationen nachzuvollziehen. Im Schnitt bewerteten sie auch diese eher gut mit leichter Tendenz zu mäßig. Ein Proband beschrieb, dass der Baum nicht auf den ersten Blick erkennen lässt, was dieser Bedeutet. Ein weiterer merkte an, dass die Darstellung für den entsprechenden Zweck nicht sehr intuitiv ist.

Das Anordnen der Bausteine zur Konfiguration der Trigger empfanden die Probanden im Schnitt gut verständlich. Dies wurde auch von den Probanden positiv hervorgehoben. Zwei Probanden beschreiben, dass das Baukasten-Prinzip die Konfiguration erleichtert. Ein Proband weißt ebenfalls auf die bereits erwähnte Vielfalt der Trigger-Optionen hin. Darüber hinaus wurde von knapp achtunddreißig Prozent die Anordnung der Bausteine via Drag and Drop positiv hervorgehoben.

Die Abhängigkeiten ließen sich hingegen nicht so gut erkennen. Im Schnitt tendiert die Einschätzung der Probanden eher zu einer eher guten Darstellung der Abhängigkeiten zwischen verschiedenen Konversationen. Dies kann erneut mit der, von den Probanden mehrfach genannten, Unübersichtlichkeit in Verbindung gebracht werden.

Insgesamt empfanden die Probanden die Übersichtlichkeit der Therapie und deren Verlauf als eher mäßig. Ein Proband gab an, dass die Therapie für ihn schlecht zu überschauen ist. Die restlichen Probanden hingegen bewerteten diese zwischen sehr gut bis eher gut. Dies spiegelt sich wiederum in der Aussage über die fehlende Übersichtlichkeit innerhalb der Baum-Darstellung wieder. Dies wurde - wie bereits erwähnt - von fünfzig Prozent der Probanden angemerkt.

5.2.1.2 Ergebnisbeschreibung des Konfigurationsprinzip

Im Vergleich zum oben beschriebenen Konstruktionsprinzip, verwendet das Konfigurationsprinzip hauptsächlich eine Oberfläche in der Einstellungen via Steuerelemente vorgenommen werden. Diese werden durch Formulare bereitgestellt wie in Abbildung 5.3 verdeutlicht. Verschachteln von Triggern geschieht durch das Hinzufügen eines neuen Triggers zur jeweiligen Konversation. Basierend auf diesen Einstellungen wird ein Element im Zeitstrahl erzeugt, welches darstellt, wann eine Konversation

gestartet wird, die Anzahl der Wiederholungen, Dauer sowie die Abhängigkeiten zu anderen Konversationen aufzeigt.

Figure 5.3: Architektur des konfiguration

Im Falle des Konfigurationsprinzip zeigte sich, dass die Probanden die Darstellung der Trigger als zumeist verständlich empfanden mit leichter Tendenz zu voll und ganz verständlich. Die Freitext-Aussagen unterstützen diese Angaben. Fünfundsiebzig Prozent der Probanden gaben an, dass ihnen die zeitliche Übersicht gut gefiel. Allerdings war hier nicht alles direkt verständlich. So fehlten knapp achtunddreißig Prozent eine Erklärung der Farben und Symbole die zum Einsatz kamen.

Die Einstellungsmöglichkeiten der Trigger empfanden die Probanden im Konfigurationsprinzip zumeist verständlich mit leichter Tendenz zu voll und ganz verständlich. Ein Proband beschrieb, dass die Umsetzung des Konfigurationsprinzips viele Einstellungsmöglichkeiten bietet, ohne mit diesen zu erschlagen. Drei Probanden gaben an, dass die Einstellungen der Trigger zunächst irritierten.

Innerhalb der zeitlichen Ansicht wurden Verzweigungen zwischen Konversationen mit Hilfe von Linien dargestellt. Die Linien führten von einer Konversation zur nächsten. Diese Darstellung empfanden die Probanden zu fünfzig Prozent als voll und ganz verständlich. Die restlichen fünfzig Prozent gaben an, dass sie diese zumeist verständlich empfanden. Dies lässt sich auch mit den Freitext-Aussagen über die Übersichtlichkeit des Systems in Verbindung bringen. Keiner der Probanden ging allerdings näher auf die Verzweigungen zwischen Konversationen ein.

Das Konfigurationsprinzip stellt in der zeitlichen Übersicht alle Konversationen in Form einer Liste dar. Die Probanden bewerteten diese Form der Auflistung anhand ihrer Übersichtlichkeit. Im Schnitt wurde diese als voll und ganz verständlich bewertet. Auch hier wurde im Freitext nicht weiter darauf eingegangen. Alle Probanden merkten in dieser allerdings an, dass die Gesamtdarstellung der Trigger übersichtlich ist.

Die zeitliche Darstellung der Konversationen wurde von den Probanden mehrheitlich, zu fünfundsiebzig Prozent, mit "Sehr gut" bewertet. Auch innerhalb der Freitexte äußerten sich die Hälfte der Probanden explizit zur zeitlichen Darstellung der Konversationsabläufe. Über sechzig Prozent der Probanden merkten diese als positiven Punkt an.

Eine Aufgabe konfrontierte die Probanden mit der Konfiguration eines Triggers. Hier gaben die Probanden an, dass sie diese im Schnitt als gut verständlich empfanden mit leichter Tendenz zu eher gut verständlich. Innerhalb der Freitext-Aussagen wurden diesbezüglich mehrere Kritikpunkte geäußert. So gaben knapp achtunddreißig Prozent der Probanden an, dass die Konfiguration nicht ganz klar verständlich ist.

Die Abhängigkeiten zwischen Konversationen ließen sich, laut den Probandenaussagen, im Schnitt gut nachvollziehen. Die Hälfte der Probanden gab an, dass diese sehr gut verständlich seien. Die andere Hälfte empfand die Darstellung als gut verständlich. Bezüglich dieser Abhängigkeiten wurde in einer Freitext-Aussage angegeben, dass der Therapieverlauf und die logischen Verknüpfungen als positiv empfunden wurde.

Im Gesamten wurde die Übersichtlichkeit der Therapie innerhalb des Konfigurationsprinzips als gut bewertet. Wobei sich hier eine leichte Tendenz zu sehr gut andeutet. Dies lässt sich auch aus den Freitext-Aussagen der Probanden ableiten. Hundert Prozent der Probanden gaben an, dass die Darstellung der Therapie in Form einer Timeline übersichtlich ist und ihnen gut gefallen hat. Außerdem lässt sich der gesamte Therapieverlauf gut ableiten.

5.2.2 Sprünge und Sichtbarkeitsregeln

Die Steuerung eines Konversationsverlaufs anhand verschiedener Bedingungen wird in beiden Prototypen auf unterschiedliche Art und Weise umgesetzt. movisensXS verwendet Sichtbarkeitsregeln die angeben, wann ein Element, innerhalb einer Konversation, für eine bestimmte Gruppe sichtbar wird. Im TherapyBuilder hingegen wurden Sprünge verwendet. Diese geben an wann eine Konversation aufgrund verschiedener Bedingungen verschiedene Verläufe annehmen kann. Auch die Darstellung einer Konversation unterscheidet sich in beiden Prototypen. Nachfolgend werden auch hier die Daten der Fragebögen hinsichtlich dieser beider Ansätze betrachtet und beschrieben.

5.2.2.1 Ergebnisbeschreibung der Sprünge

Zunächst werden die zugehörigen Daten der Methode, die im *TherapyBuilder* zum Einsatz kam, untersucht. Wie in Abbildung 5.4 zu erkennen ist, wird der Konversationsverlauf, ähnlich eines herkömmlichen Chatverlaufs bekannter Technologien, versetzt dargestellt.

Die Ausgaben des Chatbots werden in einer grauen Sprechblase abgebildet. Die Sprechblase ist nach links orientiert ausgerichtet. Die Eingabeformate des Anwenders werden in einer blauen Sprechblase dargestellt. Diese sind nach rechts orientiert. Der Gesprächsverlauf wird in sogenannten Lanes dargestellt. Zunächst wird dieser innerhalb einer Lane angelegt. Wird ein alternativer Gesprächsverlauf dargeboten, so wird dies durch eine Condition, in Form eines runden Elements, angedeutet. Dieses runde Element kann entsprechend der Bedingung eingestellt werden und bestimmt, in welcher Lane der alternative Gesprächsverlauf weitergeführt wird.

Figure 5.4: Architektur des spruenge

Hinsichtlich der Darstellung der Konversationen beurteilten die Probanden diese als voll und ganz verständlich. Dies lässt sich auch in den Freitexten der Probanden wiederfinden. Knapp achtundachtzig Prozent der Aussagen äußern sich positiv über die Darstellung der Konversationen. So gefällt im allgemeinen die zeitliche Abfolge, die Gestaltung wie auch die Übersichtlichkeit.

Die Einstellungsmöglichkeiten der Konversationen empfanden die Probanden im Schnitt als voll und ganz verständlich. Sie tendierten leicht zu zumeist verständlich. Ein Proband äußerte sich auch positiv über die Möglichkeit, die Konversation in dem dargestellten Ablauf zu bearbeiten. Ein weiterer merkte die vielen Einstellungsmöglichkeiten an, die dennoch nicht visuell erschlagen.

Bezüglich des Konversationsverlaufs und dessen Übersichtlichkeit äußerten die Probanden, dass diese im Schnitt als sehr gut empfunden wird. Dabei gibt es eine sehr leichte Tendenz zu als gut empfunden. Die Freitext-Aussagen bekräftigen dies. Hier wird vermehrt auf die Übersichtlichkeit eingegangen. Die Hälfte der Probanden-Aussagen gaben dies unter den Punkten an, die ihnen am System am besten gefallen haben. Die Hälfte der Probanden gaben unter diese Punkt allgemein an, dass ihnen die Darstellung der Konversationen gefallen hat.

Antwortoptionen eines Konversationsverlaufs wurden im Allgemeinen als Übersichtlich wahrgenommen. Im Schnitt wurde diese als sehr gut bewertet. Keiner der Probanden ging innerhalb der Freitext-Angaben weiter darauf ein.

Verzweigungen innerhalb eines Konversationsverlaufs wurden ebenfalls im Schnitt als sehr gut verständlich empfunden. Es ließ sich hier eine leichte Tendenz zur Einschätzung gut verständlich erkennen. Ein Proband schrieb, dass die Konditionen Sinn ergeben. Eine weitere Anmerkung weißte allerdings auf die Befürchtung hin, dass die Lane-Anordnung, die bei einer Verzweigung entsteht, bei mehr als drei Verzweigungen kompliziert werden könnte. Außerdem konnte ein Proband aus der Grafik nicht genau ableiten, welche Bedingungen und Entscheidungen zusammenhängen.

Die Werkzeugpalette zur Erstellung des Konversationsverlaufs wurde im Schnitt als sehr Übersichtlich, mit einer Tendenz zu gut Übersichtlich, wahrgenommen. Hier wurde von einem Probanden angemerkt, dass viele Einstellungsmöglichkeiten angeboten werden, ohne mit diesen visuell zu erschlagen. Auch die Aussage, dass die Konditionen Sinn ergeben, bekräftigen das Ergebnis der Fragebogen-Auswertung.

5.2.2.2 Ergebnisbeschreibung der Sichtbarkeitsregeln

Die Sichtbarkeitsregeln unterscheiden sich maßgeblich von dem Konzept der Sprünge, die zuvor betrachtet wurden. Die Sichtbarkeit eines Elements, welches einen Teil einer Konversation darstellt, wird anhand eines Icons, in Form eines Auges, angedeutet. Die Einstellungsmöglichkeit der Sichtbarkeit erscheint, sobald der Nutzer den Mauszeiger über eines der Elemente bewegt. Anschließend kann, durch ein Klick auf das Auge, die Einstellung der Sichtbarkeitsregel vorgenommen werden. Hier wird entschieden, für welche Gruppe das entsprechende Element im Gesprächsverlauf erscheint. Diese Einstellung wird anhand einer Regel festgelegt. Diese Regel prüft ein oder mehrere Variablen ab. Wurde eine solche Regel einem Element hinterlegt, so erscheint an diesem das Augensymbol dauerhaft, wie in Abbildung 5.5 zu sehen ist. Darüber hinaus werden die Dialoge des Konversationsverlaufs anhand von Forms zusammengesetzt. Diese beinhalten entweder nur einen Chatbot-Output oder Chatbot-Output und Input des Nutzers.

Figure 5.5: Architektur des sichtbarkeit

Dieses Konzept wurde ebenfalls von den Probanden bewertet. Aus der Bewertung lassen sich folgende Aussagen treffen.

Auf Basis der Sichtbarkeitsregel und dem Design des Konversationsverlaufs wurde die Darstellung der Konversationen generell als zumeist verständlich bewertet. Es lässt sich eine leichte Tendenz erkennen, die angibt, dass die Darstellung zum Teil verständlich ist. Die Probandenaussagen der Freitexte untermauern die Bewertung. Es wurden bezüglich der Darstellung keine Punkte genannt, die den Probanden besonders positiv hervorstach. Hingegen wurden mehrere Aussagen getroffen, welche

die Darstellung der Konversationen bemängeln. Etwas mehr als sechzig Prozent der Nutzer haben sich diesbezüglich negativ geäußert.

Die Einstellungmsöglichkeiten der Konversationen wurde von den Probanden ebenfalls als zumeist verständlich, mit leichter Tendenz zu zum Teil verständlich, wahrgenommen. Hier wurde in knapp achtunddreißig Prozent der Aussagen die Vielfalt der Einstellungsmöglichkeiten positiv hervorgehoben. Auch die Kategorisierung der Einstellungsmöglichkeiten wurde einmal positiv erwähnt. Hingegen wurde ebenfalls in achtunddreißig Prozent der Aussagen die Unterscheidbarkeit zwischen Chatbot-Output und Patient-Input Elementen, innerhalb des Werkzeugkastens, bemängelt. Diese unterscheiden sich kaum.

Als gut, mit starker Tendenz zu eher gut, wurde im Schnitt die Übersichtlichkeit des Konversationsverlaufs bewertet. Vier der Freitextaussagen bemängeln die Übersicht der Konversationen. Zum einen sei der zeitliche sowie der generelle Verlauf schwer nachvollziehbar.

Die Übersichtlichkeit der Antwortoptionen innerhalb eines Konversationsverlauf wurden von den Probanden im Schnitt als gut empfunden. Die durchschnittliche Bewertung weist dabei eine starke Tendenz zu *eher gut* auf. Dies lässt sich auch in den schriftlichen Aussagen der Probanden wiederfinden. Vier Aussagen äußern sich negativ zur Darstellung des Verlaufs. Keine Aussage geht speziell auf die Antwortoptionen ein.

Als eher gut bewerteten die Probanden im Schnitt die Verständlichkeit der Verzweigungen innerhalb einer Konversation. Hierzu passen die Freitext-Aussagen der Probanden, die angaben, dass die Übersicht des zeitlichen Verlaufs fehle und somit für diese Probanden eher schwer nachvollziehbar ist. Diese Aussage trafen fünfzig Prozent. Ein Proband wies außerdem darauf hin, dass ihm unklar ist, woher die Variable stammt, die für die Verzweigung überprüft wird.

Im Schnitt bewerteten die Probanden die Ubersichtlichkeit der Werkzeugpalette zur Erstellung des Konversationsverlaufs als gut. Auch hier zeigte sich eine starke Tendenz zur schlechteren Bewertung. Hier merkte ein Probanden an, dass der Zustand der Werkzeugpalette beim Öffnen des Konversationsreiters, hinderlich ist. Die Einstellungsmöglichkeiten des Chatbot-Outputs sind durch diesen leicht zu übersehen.

5.3 Ergebnisbeschreibung der Abschlussfragerunde

Zur Gesamtbewertung der Systeme wurden die Probanden abschließend zur Studie über die Eigenschaften der Systeme befragt. Die Probanden sollten erläutern was sie innerhalb der verschiedenen Konzepte als hilfreich und nicht hilfreich empfunden haben. Außerdem sollten sie erläutern welche Punkte sie in den Ansätzen vermisst haben und was ihnen besonders gut gefallen hat. Befragt wurden sie direkt zum Konfigurations- und Konstruktionsprinzip sowie den Ansätzen der Steuerung des Konversationsflusses durch Sichtbarkeitsregeln und Sprüngen. Nachfolgend werden die Ergebnisse dargestellt.

5.3.1 Ergebnissbeschreibung Konfigurationsprinzip

Hilfreich

Nicht hilfreich

Gefallen

Gefehlt

5.3.2 Ergebnissbeschreibung Konstruktionsprinzip

Hilfreich

Nicht hilfreich

Gefallen

Gefehlt

5.3.3 Ergebnissbeschreibung Sprünge

Hilfreich

Nicht hilfreich

Gefallen

Gefehlt

5.3.4 Ergebnissbeschreibung Sichtbarkeitsregeln

Hilfreich

Nicht hilfreich

Gefallen

Gefehlt

Figure 5.6: Architektur des konfiguration

Figure 5.7: Architektur des konfiguration

Figure 5.8: Architektur des konfiguration

Figure 5.9: Architektur des konfiguration

Figure 5.10: Architektur des konfiguration

Figure 5.11: Architektur des konfiguration

Figure 5.12: Architektur des konfiguration

Figure 5.13: Architektur des sichtbarkeit

Figure 5.14: Architektur des konfiguration

Figure 5.15: Architektur des konfiguration

Figure 5.16: Architektur des konfiguration

Figure 5.17: Architektur des konfiguration

Figure 5.18: Architektur des konfiguration

Figure 5.19: Architektur des konfiguration

6. Ergebnisdiskussion

- 6.1 Zusammenfassung
- 6.2 Kritische Reflexion

7. Ausblick

40 7. Ausblick

- [1] App Store Apple (DE). https://www.apple.com/de/ios/app-store/. (Accessed on 03/05/2019).
- [2] Assessment, ambulantes Dorsch Lexikon der Psychologie Verlag Hans Huber. https://m.portal.hogrefe.com/dorsch/assessment-ambulantes/. (Accessed on 08/08/2019).
- [3] BBCode.org, bbcode users guide and tricks on implementing it. https://www.bbcode.org/. (Accessed on 11/28/2018).
- [4] Nikolaos Batalas et al. "Formal representation of ambulatory assessment protocols in HTML5 for human readability and computer execution". In: *Behavior Research Methods* (2018). ISSN: 15543528.
- [5] Blockly | Google Developers. https://developers.google.com/blockly/. (Accessed on 11/27/2018).
- [6] Blockly | Google Developers. https://developers.google.com/blockly/. (Accessed on 11/28/2018).
- [7] Botsify Create artificial intelligent chatbots without coding. https://botsify.com/. (Accessed on 11/27/2018).
- [8] Martin Campbell-Kelly and William Aspray. Computer: a history of the information machine. 2. ed. Previous ed.: New York: Basic Books, 1996. Boulder: Westview, 2004. ISBN: 0-8133-4264-3.
- [9] Martin Campbell-Kelly and Daniel D. [author] Garcia-Swartz, eds. From main-frames to smartphones: a history of the international computer industry. Includes bibliographical references and index. Print version record; The aim of this book is to provide a compact and up-to-date business and economic history of the computer industry. The reader we have in mind is someone who wants to make a quick study of the computer industry... In our quest for brevity, we have assumed that our readers are themselves information-technology users and are familiar with the everyday vocabulary of computing (such as operating systems, disk drives, and broadband), and that they are aware of recent gadgetry such as tablet computers and smartphones—Page 1. Cambridge, Massachusetts, 2015.
- [10] Chatfuel dashboard. https://dashboard.chatfuel.com/#/bot/5bea8fd30ecd9f4c8c0dd458/structure/5bea8fd30ecd9f4c8c0dd466. (Accessed on 11/27/2018).
- [11] Choregraphe Suite Aldebaran 2.4.3.28-r2 documentation. http://doc.aldebaran. com/2-4/software/choregraphe/index.html. (Accessed on 11/28/2018).
- [12] Converse.AI. http://www.converse.ai/. (Accessed on 11/27/2018).

[13] $DRAKON\ Editor$. http://drakon-editor.sourceforge.net/. (Accessed on 11/28/2018).

- [14] Dialogflow. https://console.dialogflow.com/api-client/#/login. (Accessed on 11/27/2018).
- [15] Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. "Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial". In: *JMIR Mental Health* 4.2 (2017), e19. ISSN: 2368-7959. arXiv: 9809069v1 [arXiv:gr-qc].
- [16] Getting Started | Markdown Guide. https://www.markdownguide.org/getting-started/. (Accessed on 11/28/2018).
- [17] Google Allo A smart messaging app. https://allo.google.com/. (Accessed on 02/27/2019).
- [18] Jonathan Gratch and Gale Lucas. "It's Only a Computer: The Impact of Human-agent Interaction in Clinical Interviews". In: Aamas (2014).
- [19] Kasper Hornbæk et al. "NAVIGATION PATTERNS AND USABILITY OF ZOOMABLE USER INTERFACES WITH AND WITHOUT". In: (2003).
- [20] Kassen-Schnittstelle Table Duck: Bestellen via Messenger | GASTROFIX. https://www.gastrofix.com/de/kassen-schnittstelle-table-duck/. (Accessed on 02/27/2019).
- [21] Katalog IBM Cloud. https://console.bluemix.net/catalog/?category=ai&search=label:lite. (Accessed on 11/27/2018).
- [22] MPG nichtamtliches Inhaltsverzeichnis. http://www.gesetze-im-internet.de/mpg/. (Accessed on 05/28/2019).
- [23] ManyChat Startseite. https://www.facebook.com/ManyChat/. (Accessed on 03/06/2019).
- [24] ManyChat. https://manychat.com. (Accessed on 11/27/2018).
- [25] NXT Software Download Downloads Mindstorms LEGO.com. https://www.lego.com/de-de/mindstorms/downloads/nxt-software-download. (Accessed on 11/28/2018).
- [26] OSF | Sabrina Thai ExperienceSampler SPSP San Antonio 2017 Draft 1 FINAL To Post.pdf. https://osf.io/3am7g/. (Accessed on 11/28/2018).
- [27] Pure Data Pd Community Site. https://puredata.info/. (Accessed on 11/28/2018).
- [28] Daniel Rough and Aaron Quigley. "Jeeves An Experience Sampling Study Creation Tool". In: *BCS Health Informatics Scotland (HIS)* (2017), pp. 1–10.
- [29] Simulink Simulation und Model-Based Design MATLAB & Simulink. https://de.mathworks.com/products/simulink.html. (Accessed on 11/28/2018).
- [30] Smartphone-Markt: Konjunktur und Trends. https://www.bitkom.org/sites/default/files/file/import/Bitkom-Pressekonferenz-Smartphone-Markt-Konjunktur-und-Trends-22-02-2017-Praesentation.pdf. (Accessed on 05/28/2019).
- [31] Snap! (Build Your Own Blocks) 4.2. https://snap.berkeley.edu/. (Accessed on 11/28/2018).

[32] SwissEduc - Informatik - JavaKara: Einführung in Java. https://www.swisseduc.ch/informatik/karatojava/javakara/. (Accessed on 11/28/2018).

- [33] Tess: Artificial Intelligence Mental Health Support. https://www.x2ai.com/. (Accessed on 02/27/2019).
- [34] The Official YAML Web Site. http://yaml.org/. (Accessed on 11/28/2018).
- [35] Was ist LabVIEW? National Instruments. http://www.ni.com/de-de/shop/labview.html. (Accessed on 11/27/2018).
- [36] Joseph Weizenbaum. "ELIZA-A Computer Program For the Study of Natural Language Communication Between Man and Machine". In: (1966), pp. 1–7.
- [37] Woebot Your charming robot friend who is ready to listen, 24/7. https://woebot.io/. (Accessed on 02/27/2019).
- [38] Wysa your 4 am friend and AI life coach. https://www.wysa.io/. (Accessed on 02/27/2019).
- [39] Zukunft der Consumer Technology 2018. https://www.bitkom.org/sites/default/files/file/import/180822-CT-Studie-2018-online.pdf. (Accessed on 03/06/2019).
- [40] movisensXS eXperience Sampling for Android! https://xs.movisens.com/. (Accessed on 11/28/2018).
- [41] squeakland: home of squeak etoys. http://www.squeakland.org/. (Accessed on 11/28/2018).
- [42] the MyExperience tool. http://myexperience.sourceforge.net/. (Accessed on 11/28/2018).