1 Metrické prostory

Poznámka (Opakovalo se:)

Metrický prostor, otevřená a uzavřená koule, otevřené a uzavřené množiny a jejich vlastnosti, vnitřní body, vnitřek, charakterizace vnitřku, hraniční bod, uzávěr, uzávěr a uzavřené množiny a nakonec vlastnosti uzávěru.

1.1 Konvergence a spojitá zobrazení v metrických prostorech

Definice 1.1 (Konvergence v MP)

Necht (P,ϱ) je MP a $\{x_n\}_{n=1}^{\infty}$ je posloupnost prvků P a $x\in P$. Řekneme, že $\{x_n\}$ konverguje k x (v (P,ϱ)), pokud $\lim_{n\to\infty}\varrho(x_n,x)=0$. Značíme $\lim_{n\to\infty}x_n=x$, nebo $x_n\stackrel{\varrho}{\to}x$.

Věta 1.1 (Vlastnosti konvergence)

Nechť (P, ϱ) je metrický prostor. Pak platí

- 1. Nechť pro posloupnost $\{x_n\}_{n=1}^{\infty}$ z P existuje $n_0 \in \mathbb{N}$ a $x \in P$ tak, že pro všechna $n \geq n_0$ platí $x_n = x$. Pak $\lim_{n \to \infty} x_n = x$.
- 2. $\lim_{n\to\infty} x_n = x \wedge \lim_{n\to\infty} x_n = y \implies x = y$. (Jednoznačnost limity.)
- 3. Nechť $\{x_{n_k}\}_{k=1}^{\infty}$ je vybraná posloupnost z $\{x_n\}_{n=1}^{\infty}$ a nechť $\lim_{n\to\infty} x_n = x$. Pak $\lim_{k\to\infty} x_{n_k} = x$.

Důkaz

- 1. $\forall n \ge n_0 : \varrho(x_n, x) = 0 \implies \lim_{n \to \infty} \varrho(x_n, x) = 0 \implies x_n \to x.$
 - 2. $\varrho(x,y) \le \varrho(x,x_n) + \varrho(x_n,y) \to 0 \implies \varrho(x,y) = 0 \implies x = y$.
- 3. $\varrho(x_{n_k},x)$ je vybraná podposloupnost z $\varrho(x_n,x)$. Podle věty o hodnotě limity vybrané podposloupnost $\lim_{k\to\infty}x_{n_k}=x$.

Definice 1.2 (Spojitost v bodě a na množině)

Nechť (P,ϱ) a (Q,σ) jsou metrické prostory. Nechť $M\subset P,\ f:M\to Q$ a $x_0\in M.$ Řekneme, že f je spojitá v bodě x_0 (vzhledem k M), jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\varrho}(x_0, \delta) \cap M : f(x) \in B_{\sigma}(f(x_0), \varepsilon).$$

Řekneme, že f je spojitá na M (vzhledem kM), jestliže je spojitá v každém bodě M (vzhledem kM).

Nechť pro každé $\delta > 0$ platí $B_{\varrho}(x_0) \cap M \setminus \{x_0\} \neq \emptyset$. Řekneme, že f má v bodě x_0 limitu (vzhledem k M) rovnou $y \in Q$, jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\varrho}(x_0, \delta) \cap M \setminus \{x_0\} : f(x) \in B_{\sigma}(y, \varepsilon).$$

Věta 1.2 (Charakterizace spojitosti)

Nechť (P,ϱ) a (Q,σ) jsou metrické prostory a $f:P\to Q$. Pak následující tvrzení jsou ekvivalentní:

- 1. f je spojitá na P,
- 2. $\forall G \subset Q$ otevřenou, je $f^{-1}(G)$ otevřená,
- 3. $\forall F \subset Q \ uzav \check{r}enou, \ je \ f^{-1}(F) \ uzav \check{r}en \acute{a}.$

Důkaz

1. \Longrightarrow 2.: Nechť G je otevřená. Pokud $f^{-1}(G) = \emptyset$, pak jsme hotovy. Nechť je tedy $x_0 \in f^{-1}(G)$. G je otevřená, tedy $\exists \varepsilon > 0 : B_{\sigma}(f(x_0), \varepsilon) \subset G$. Z definice spojitosti

$$\exists \delta > 0 : f(B_{\varrho}(x_0, \delta)) \subset B_{\sigma}(f(x_0), \varepsilon) \subset G \implies B_{\varrho}(x_0, \delta) \subset f^{-1}(B_{\sigma}(f(x_0), \varepsilon)) \implies$$

 $\implies f^{-1}(G)$ je otevřená.

2. \Longrightarrow 1.: Nechť $x_0 \in P$, chceme spojitost v P. Nechť $\varepsilon > 0$. $B_{\delta}(f(x_0), \varepsilon)$ je otevřená množina, tedy podle 2. je $f^{-1}(B_{\delta}(f(x_0), \varepsilon))$ je otevřená.

 x_0 je prvkem této otevřené množiny $\Longrightarrow \exists \delta > 0 : B_{\varrho}(x_0, \delta) \subset f^{-1}(B_{\sigma}(f(x_0), \varepsilon)) \Longrightarrow f$ je spojitá v x_0 .

2. \implies 3.: Nechť F je uzavřená

$$f^{-1}(F) = f^{-1}(Q \setminus (Q \setminus F)) = f^{-1}(Q \setminus F) = f^{-1}(Q) \setminus \underbrace{f^{-1}(Q \setminus F)}_{\text{otevřená}} = P \setminus \text{ot.} = \text{uzavřená}.$$

 $3. \implies 2.$: Nechť G je otevřená

$$f^{-1}(G) = f^{-1}(Q \setminus (Q \setminus G)) = f^{-1}(Q) \setminus \underbrace{f^{-1}(Q \setminus G)}_{\text{uzavřená}} = P \setminus \text{uz.} = \text{otevřená}.$$

Věta 1.3 (Spojitsot složeného zobrazení)

Nechť (P,ϱ) , (Q,σ) a (Z,τ) jsou metrické prostory. Nechť $f:P\to Q$ je spojité zobrazení a $g:Q\to Z$ je spojité zobrazení. Pak $g\circ f:P\to Z$ je spojité zobrazení.

Pro spojitost $g \circ f$ použijeme předchozí větu 2. \Longrightarrow 1. Nechť $G \subset Z$ je otevřená, potom $g^{-1}(G)$ je otevřená v Q, potom $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ je otevřená v $P \Longrightarrow g \circ f$ je spojité.

Věta 1.4 (Heine)

Nechť (P,ϱ) a (Q,σ) jsou metrické prostory. Nechť $M\subset P,\ x_0\in M$ a $f:M\to Q$. Pak je ekvivalentní:

- $\lim_{x\to x_0,x\in M} f(x) = f(x_0)$, neboli f je spojitá v x_0 ,
- pro každou posloupnost $\{x_n\}_{n=1}^{\infty}$ splňující $x_n \in M$ a $\lim_{n\to\infty} x_n = x_0$ platí

$$\lim_{n \to \infty} f(x_n) = f(x_0).$$

Důkaz

 \Longrightarrow : Mějme $x_n \in M$ tak že $x_n \to x_0$. Nechť $\varepsilon > 0$. Pak existuje $\delta > 0$ tak, že platí:

$$f(B_{\varrho}(x_0,\delta)\cap M)\subset B_{\sigma}(f(x_0),\varepsilon).$$

K tomuto δ existuje $n_0 \in \mathbb{N}$ tak, že $\forall n \geq n_0$ platí $f(x_n) \in B_{\sigma}(f(x_0), \varepsilon)$.

⇒: Sporem:

$$\exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \forall \delta > 0, \delta = \frac{1}{n} \ \exists x_n \in B_{\varrho}\left(x_0, \frac{1}{n}\right) \cap M : f(x_n) \notin B_{\sigma}(f(x_0), \varepsilon).$$

Víme, že $x_n \in B_{\varrho}\left(x_0, \frac{1}{n}\right)$. Z toho plyne, že $x_n \to x_0$, ale $f(x_n)$ nekonverguje k $f(x_0)$. 4. \square

1.2 Kompaktní množiny

Věta 1.5 (Charakterizace kompaktních množin)

 $Necht(P, \varrho)$ je metrický prostor a $F \subset P$. Pak

$$F$$
 je uzavřená $\Leftrightarrow (x_n \stackrel{\varrho}{\to} x \land x_n \in F \implies x \in F).$

 \implies : Sporem: Nechť existuje $x_n \in F$, $x_n \to x$ a $x \notin F$. Pak $x \in P \setminus F$. Množina $P \setminus F$ je otevřená, a tedy existuje r > 0 tak, že $B(x,r) \subset P \setminus F$.

Z toho plyne, že $\forall n$ platí $x_n \notin B(x,r)$, protože $x_n \in F$. Pak ale x_n nekonverguje k x a dostáváme spor.

 \Leftarrow : Sporem: Nechť F není uzavřená. Pak $P \setminus F$ není otevřená a tedy existuje $x \in P \setminus F$ tak, že $\forall r > 0$ platí, že B(x,r) není podmnožinou $P \setminus F$. Této vlastnosti využijeme pro $r = \frac{1}{n}, n \in \mathbb{N}$. Tedy

$$\forall n \in \mathbb{N} \ \exists x_n \in B\left(x, \frac{1}{n}\right) : x_n \notin P \setminus F \Leftrightarrow x_n \in F.$$

Celkem $x_n \to x, x_n \in F$, ale $x \notin F$, jelikož $x \in P \setminus F$. 4.

Definice 1.3 (Kompaktní množina)

Nechť (P, ϱ) je metrický prostor a $K \subset P$. Řekneme, že K je kompaktní, jestliže z každé posloupnosti prvků K lze vybrat konvergentní podposloupnost s limitou v K.

Věta 1.6 (Vlastnosti uzavřených množin)

Nechť (P, ϱ) je MP a $K \subset P$ je kompaktní. Pak platí

- 1. K je uzavřená.
- 2. Je-li $F \subset K$ uzavřená, pak je F kompaktní.
- 3. K je omezená (tedy $\exists x \in P, r > 0$, že $K \subset B(x,r)$).

Důkaz

- 1. Z předchozí věty: Necht $x_n \in K$ a $x_n \to x$. Z definice kompaktnosti existuje posloupnost $x_{n_k} \to y \in K$. Podposloupnost konverguje k tomu samému jako původní posloupnost, tedy $x = y \in K$. K je tedy uzavřená.
- 2. Nechť $x_n \in F$. K je kompaktní, tedy existuje podposloupnost $x_{n_k} \to x \in K$. Dále jistě $x_{n_k} \in F$ a navíc je F uzavřená. To znamená, že $x \in F \implies F$ je kompaktní.
- 3. Sporem: Zvolme $x_0 \in K$ libovolně. K není omezená. Z toho plyne, že $\forall n \in \mathbb{N}$ existuje $x_n \in K$ tak, že $x_n \notin B(x_0, n)$. K je ale kompaktní, a tedy existuje $x_{n_k} \to y \in K$. Tedy:

$$n_k \le \varrho(x_0, x_{n_k}) \le \varrho(x_0, y) + \varrho(y, x_{n_k}).$$

Dále $\varrho(y, x_{n_k}) \to 0$, $\varrho(x_0, y) \to \varrho(x_0, y)$ a $n_k \to +\infty$, tedy $+\infty \le \varrho(x_0, y)$. 4.

Věta 1.7 (Charakterizace kompaktních množin \mathbb{R}^n)

Množina $K \subset \mathbb{R}^n$ je kompaktní, právě když je omezená a uzavřená.

Důkaz

 \implies z předchozí věty. \Leftarrow : víme z dřívějška? (Každá omezená posloupnost v $\mathbb R$ má konvergující podposloupnost (vybereme podposloupnost pro jednu dimenzi, z té pak pro další, ...) a posloupnost nemůže vykonvergovat z uzavřené množiny z charakterizace uzavřených množin)?

Věta 1.8 (Nabývá extrémů na kompaktu)

Nechť (P,ϱ) je metrický prostor a $K\subset P$ je kompaktní. Nechť $f:K\to R$ je spojitá. Pak f nabývá na K svého maxima i minima. Speciálně je tedy f na K omezená.

 $D\mathring{u}kaz$

Dokážeme jen pro maximum (minimum je ze stejného pro -f). Jistě existuje $x_n \in K$ tak, že $f(x_n) \to \sup f$. Dále $x_n \in K$ a K je kompaktní, tedy existuje konvergentní podposloupnost $x_n \to x$. Zároveň f je spojitá v x, tedy dle Heineho věty $f(x) = \lim_{k \to \infty} f_{n_k} = \sup f$.

Věta 1.9 (Spojitý obraz kompaktu)

 $Necht\left(P,\varrho\right)\ a\ (Q,\tau)\ jsou\ metrické\ prostory\ a\ f:P\to Q\ je\ spojité\ zobrazení.\ Necht\ K\subset P$ je kompaktní množina. Potom f(K) je kompaktní.

 $D\mathring{u}kaz$

Necht $y_n \in f(K)$. Pak $\exists x_n \in K$, $f(x_n) = y_n$. Z definice kompaktnosti $\exists x \in K, x_{n_k} \to x \in K$. Podle Heineho věty $f(x_{n_k}) = f(y_{n_k}) \to f(x) \in f(K)$.

Definice 1.4

Nechť (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou metrické prostory, $K \subset \mathbb{P}$ a $f: K \to \mathbb{Q}$. Řekneme, že f je na K stejnoměrně spojitá, pokud

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in K : (\varrho(x, y) < \delta \implies \tau \left(f(x), f(y) \right) \right).$

Věta 1.10 (O vztahu spojitosti a stejnoměrné spojitosti na MP)

Nechť (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou MP, $K \subset \mathbb{P}$ je kompaktní a nechť $f: K \to \mathbb{Q}$ je spojitá. Pak f je stejnoměrně spojitá na K.

Nechť f je spojitá, ale ne stejnoměrně. Potom

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in K : \varrho(x, y) < \delta \wedge \tau (f(x), f(y)) \ge \varepsilon.$$

Zvolíme $\delta_n = \frac{1}{n}$ a pro každé si najdeme x_n, y_n . K je kompaktní, tedy existuje podposloupnost $x_{n_k} \to x_0 \in K$.

$$\varrho(y_{n_k}, x_0) \le \varrho(x_{n_k}, y_{n_k}) + \varrho(x_n, x_0) \le \frac{1}{n_k} + \varrho(x_n, x_0) \to 0 \implies y_{n_k} \to x_0$$

Z Heineho věty $f(x_{n_k}) \to f(x_0)$ a $f(y_{n_k}) \to f(x_0)$. Ale my máme, že jsou od sebe vzdáleny o ε . 4.

2 Úplné metrické prostory

Definice 2.1 (Cauchyovská posloupnost)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z \mathbb{P} . Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m, n \ge n_0 : \varrho(x_n, x_m) < \varepsilon.$$

Důsledek

Každá konvergentní posloupnost je cauchyovská.

Definice 2.2 (Úplný prostor)

Řekneme, že metrický prostor (\mathbb{P},ϱ) je úplný, jestliže každá cauchyovská posloupnost je konvergentní.

Věta 2.1 (Vztah kompaktnosti a úplnosti)

Nechť (\mathbb{P}, ϱ) je MP a \mathbb{P} je kompaktní. Pak \mathbb{P} je úplný metrický prostor.

 $D\mathring{u}kaz$

Nechť $\{x_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. \mathbb{P} kompaktní $\Longrightarrow \exists x_{n_k} \to x \in \mathbb{P}$. Nechť $\varepsilon > 0$. Najdu n_0 z BC podmínky. Z $x_n \to x \exists k_0 \forall k \geq k_0 : \varrho(x_{n_k}, x) < \varepsilon$. Nalezneme n_k , $k \geq k_0$, $n_k \geq n_0$. Pak

$$\forall n \geq n_0 : \varrho(x_n, x) \leq \varrho(x_n, x_{n_k}) + \varrho(x_{n_k}, x) < 2\varepsilon.$$

Věta 2.2 (Úplnost a prostor spojitých funkcí)

Metrický prostor C([0,1]) se supremovou metrikou je úplný.

 $D\mathring{u}kaz$

Nechť $\{f_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. Tedy

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \varrho(f_n, f_m) = \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$
 (*)

Zvolme $x \in [0, 1]$ pevné. Potom máme posloupnost reálných čísel místo funkcí, tedy z BC podmínky v \mathbb{R} je $f_n(x)$ cauchyovská, tedy existuje $\lim_{n\to\infty} f_n(x) = f(x) \in \mathbb{R}$. Takto jsme si zadefinovali novou funkci f.

 $f_n \to f$. Provedeme limitu $n \to \infty$ na (*).

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \sup_{x \in [0,1]} |f(x) - f_n(x)| \le \varepsilon.$$

Tedy $\varrho(f, f_n) \leq \varepsilon \implies f_n \to f$.

f je spojitá: Necht $y \in [0,1]$. Chceme dokázat, že f je spojitá v y. Necht $\varepsilon > 0$. Z BC $\exists n_0 \ \forall x \in [0,1] : |f_n(x) - f_m(x)| < \varepsilon$. Zafixujeme n_0 . f_{n_0} je spojitá v y, tedy $\exists \delta > 0 \ \forall x \in [0,1], |x-y| < \delta : |f_{n_0}(x) - f_{n_0}(y)| < \varepsilon$. Nyní $\forall x \in [0,1], |x-y| < \delta$:

$$|f(x) - f(y)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_n(y)| + |f_{n_0}(y) - f(y)| \le 3\varepsilon.$$

(Třetí člen dostaneme tak, že zafixujeme $m=n_0$ a n pošleme do nekonečna v BC podmínce výše.)

Věta 2.3 (Banachova, o kontrakci)

Nechť (\mathbb{P},ϱ) je úplný MP a $T:\mathbb{P}\to\mathbb{P}$ je kontrakce (tedy $\exists\gamma\in(0,1)\ \forall x,y\in P:$ $\varrho\left(T(x),T(y)\right)\leq\gamma\cdot\varrho(x,y)$). Pak existuje právě jedno $x\in\mathbb{P}$ tak, že T(x)=x.

Zvolme $x_1 \in P$ libovolně. Definujeme indukcí $x_{n+1} = T(x_n)$. Tvrdíme, že x_n je cauchyovská, $\forall n \in \mathbb{N}$:

$$\varrho(x_{n+1}, x_n) = \varrho(T(x_n), T(x_{n+1})) \le \gamma \varrho(x_n, x_{n+1}) \le \gamma^2 \varrho(x_{n-1}, x_n) \le \ldots \le \gamma^n \varrho(x_1, x_2).$$

Necht $\varepsilon > 0$, zvolme n_0 , aby $\varrho(x_2, x_1) \gamma^{n_0 - 1} \frac{1}{1 - \gamma} < \varepsilon$. Nyní $\forall m, n \geq n_0, m < n$:

$$\varrho(x_m, x_n) \le \varrho(x_{m+1}, x_m) + \ldots + \varrho(x_n, x_{n-1}) \le \varrho(x_1, x_2) \cdot (\gamma^{m-1} + \ldots + \gamma^{n-2}) \le$$

$$\le \varrho(x_2, x_1) \gamma^{n_0 - 1} \frac{1}{1 - \gamma}.$$

Tedy x_n je cauchyovská a má limitu.

Tvrdíme, že $T(x_n) \to T(x)$: T je spojité v x. K $\varepsilon > 0$ volme $\delta = \varepsilon$. Pak

$$\forall y \in B(x, \delta) : \varrho(x, y) < \delta \implies \varrho(T(x), T(y)) \le \gamma \cdot \varrho(x, y) \le \gamma \delta < \varepsilon.$$

Podle Heineho věty $x_n \to x \implies T(x_n) \to T(x)$. Víme, že $x_{n+1} = T(x_n)$, tj.

$$\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} T\left(x_n\right).$$

Jednoxznačnost: Nechť $\exists x, y, T(x) = x$ a T(y) = y. Pak

$$\varrho(x,y) = \varrho(T(x),T(y)) \leq \gamma \cdot \varrho(x,y) \implies \varrho(x,y) = 0 \implies x = y.$$

Věta 2.4 (O převedení na integrální tvar)

Nechť $I \subset \mathbb{R}$ je otevřený interval, $x_0 \in I$, $f: I \times \mathbb{R} \to \mathbb{R}$ spojité a $y: I \to \mathbb{R}$ je spojitá. Pak y je řešení ODR y' = f(x, y(x)) na I s počáteční podmínkou $y(x_0) = y_0$ právě tehdy, když $y(x) = y_0 + \int_{x_0}^x f(s, y(s))ds$, $\forall xz \in I$.

Důkaz

 \implies : víme y'(s) = f(s, y(s)) je spojité, tj. lze integrovat:

$$y(x) - y_0 = y(x) - y(x_0) = \int_{x_0}^x y'(s)ds = \int_{x_0}^x f(s, y(s))ds.$$

 \Leftarrow : zderivujeme (integrant je spojitý \Longrightarrow integrál lze zderivovat) y'(x) = f(x, y(x)). Zřejmě také $f(x_0) = y_0$.

Věta 2.5 (Picard)

Nechť $I \subset \mathbb{R}^2$ je otevřený interval a $(x_0, y_0) \in I$. Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči Y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ okolí x_0 a funkce y(x) definovaná na

 $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR y'(x, y(x)) na $(x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jediné řešení na $(y_0 - \delta, y_0 + \delta)$.

 $D\mathring{u}kaz$

Zvolme $\delta, \Delta > 0$, aby $[x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. Definujeme

$$X = \{ y \in C([x_0 - \delta, x_0 + \delta]) | y(x) \in [y_0 - \Delta, y_0 + \Delta] \}.$$

Definujeme operátor $T: C([x_0 - \delta, x_0 + \delta]) \to C([x_0 - \delta, x_0 + \delta])$ tak, že $T[y](x) = y_0 + \int_{x_0}^x f(s, y(s)) ds$.

Klíčové pozorování: y řeší naši ODR $\Leftrightarrow T[y] = y$. (Z předchozí věty.)

X je úplný: Nejprve dokážeme, že X je <u>uzavřená</u> podmnožina $C([x_0 - \delta, x_0 + \delta])$: X lze zapsat (dokáže se velmi přímočaře) jako $\overline{B(y_0, \Delta)}$: Tj. X je uzavřená a úplnost se dědí na uzavřené podmnožiny.

Máme pevné $\delta, \Delta > 0$, že $A := [x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. f spojitá na tomto kompaktu $\Longrightarrow \exists M > 0, |f(x,y)| \leq M$ na A. Z lipschitzovskosti $\exists x > 0 : \forall [x,y] \in A, \forall [x,\tilde{y}]|f(x,y) - f(x,\tilde{y})| \leq K \cdot |y - \tilde{y}|$. Případným zmenšením $\delta > 0$ dosáhneme

$$\delta \le \min \left\{ \frac{\Delta}{M}, \frac{1}{2K} \right\}.$$

Ukážeme $T: X \to X: y \in X, y(x) \in [y_0 - \Delta, y_0 + \Delta].$

$$|T[y](x) - y_0| = |\int_{x_0}^x f(s, y(x))ds| \le |x - x_0|M \le \delta \cdot M \le \Delta.$$

$$\implies T[y](x) \in [y_0 - \Delta, y_0 + \Delta] \implies T[y] \in X.$$

Dokážeme, že je toto zobrazení kontrakce a pak už máme hotovo z věty výše. Kontrakce: Nechť $y, \tilde{y} \in X$ a $x \in [x_0 - \delta, x_0 + \delta]$.

$$T[y](x) - T[\tilde{y}](x)| = |\int_{x_0}^x (f(s, y(s)) - f(s, \tilde{y}(s)))ds| \le \int || \le f(s)| \le f(s)|$$

$$\leq \int_{x_0}^x |K\cdot (y(s)-\tilde{y}(s))| ds < |x_0-x|\cdot K \cdot \sup_{s \in [x_0-\delta,x_0+\delta]} (y(s)-\tilde{y}(s)) \leq \delta \cdot K \cdot \varrho(y,\tilde{y}) \leq \frac{1}{2}\varrho(y,\tilde{y}).$$

Supremum dá
$$\varrho(T[y], T[\tilde{y}]) \leq \frac{1}{2}\varrho(y, \tilde{y}).$$

3 Funkce více proměnných

3.1 Úvodní definice a spojitost

Poznámka

Většina definic je jen "opakování" z letního semestru, nebo z definice spojitých funkcí na metrických prostorech.

Definice 3.1 (Funkce více reálných proměnných, vektorová funkce)

Nechť $M \subset \mathbb{R}^n$. Funkcí více reálných proměnných rozumíme zobrazení $f: M \to \mathbb{R}$.

Vektorovou funkcí více reálných proměnných rozumíme zobrazení $f:M\to\mathbb{R}^m,$ kde $m\in\mathbb{N}.$

Definice 3.2 (Eukleidovská vzdálenost)

Pro $[x_1,\dots,x_n],[y_1,\dots,y_n]\in\mathbb{R}^n$ definujeme eukleidovskou vzdálenost (metriku) jako

$$|x - y| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Definice 3.3 (Koule, prstencové okolí)

$$B(c,r) = \{x \in \mathbb{R}^n | |x-c| < r\}. \ P(c,r) = B(c,r) \setminus \{c\}.$$

Definice 3.4 (Limita funkce)

Nech
t $F:G\to\mathbb{R},$ kde $G\subseteq\mathbb{R}^n$ je otevřená. Řekneme, ž
efmá v bodě $a\in G$ limitu rovnou
 $A\in\mathbb{R}^*,$ jestliže platí

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P(a, \delta) : f(x) \in B(A, \varepsilon).$$

Značíme $\lim_{x\to\infty} f(x) = A$.

Definice 3.5 (Spojitost)

Řekneme, že f je spojitá v a, jestliže $\lim_{x\to a} f(x) = f(a)$.

Definice 3.6 (Spojitost a limita vektorové funkce)

Spojitost a limitu vektorové funkce definujeme po složkách.

Poznámka

Zřejmě platí aritmetika limit, věta o dvou policajtech a věta o spojitosti složené funkce.

Definice 3.7 (Limita posloupnosti bodů)

$$x_j \in \mathbb{R}^n$$
, $\lim_{j \to \infty} x_j = a \in \mathbb{R}^n \equiv \forall \varepsilon > 0 \ \exists j_0 \ \forall j \ge j_0 : |x_j - a| < \varepsilon$.

Poznámka

Následující větu lze dokázat analogicky věty výše.

Věta 3.1 (Heine)

Necht $G \subset \mathbb{R}^n$ otevřená, $a \in G$, $A \in \mathbb{R}^*$ a $f : G \to \mathbb{R}$. Pak je ekvivalentní

- $\lim_{x\to a} f(x) = A$.
- $\forall \ posloupnost \ \{x_j\}_{j=1}^{\infty} \ splňující \ x_j \in G \setminus \{a\}, \ \lim_{j \to \infty} x_j = a \ platí \ \lim_{j \to \infty} f(x_j) = A.$

3.2 Parciální derivace a totální diferenciál

Definice 3.8 (Parciální derivace)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $i \in [n], f: G \to \mathbb{R}$ a $x \in \mathbb{G}$. Parciální derivací funkce f v bodě x podle i-té proměnné nazveme

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x_1, \dots, x_i + t, \dots, x_n) - f(x_1, \dots, x_n)}{t} = \lim_{t \to 0} \frac{f(x + t \cdot e_i) - f(x)}{t},$$

pokud tato limita existuje.

Definice 3.9 (Extrémy)

Nechť $M \subset \mathbb{R}^n$, $f: M \to \mathbb{R}$ a $x_0 \in M$. Řekneme, že f nabývá v bodě x_0 svého minima (resp. lokálního minima, resp. maxima, lokálního maxima) vzhledem k M, jestliže $\forall x \in M: f(x) \geq f(x_0)$ (resp. $\exists \delta > 0 \ \forall x \in B(x_0, \delta)$, resp. $f(x) \leq f(x_0)$).

Věta 3.2 (Nutná podmínka existence extrému)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $i \in [n]$, $a \in G$ a $f : G \to \mathbb{R}$. Má-li f v bodě a lokální minimum (maximum) a existuje-li $\frac{\partial f}{\partial x_i}(a)$, pak $\frac{\partial f}{\partial x_i}(a) = 0$.

Položme $h(t) = f(a + t \cdot e_i)$. Pak h je definováno na okolí 0. f má v a extrém, tedy h má v a extrém. Dále

$$h'(0) = \lim_{t \to 0} \frac{h(t) - h(0)}{t} = \lim_{t \to \infty} \frac{f(a + t \cdot e_i) - f(a)}{t} = \frac{\partial f}{\partial x_i}(a).$$

Podle Fermatovy věty je h'(0) = 0.

Definice 3.10 (Derivace ve směru)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $f: G \to \mathbb{R}$, $x \in G$ a $0 \neq v \in \mathbb{R}^n$. Derivací funkce f v bodě $x \in G$ ve směru v nazveme

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x + t \cdot v) - f(x)}{t},$$

pokud limita existuje.

Definice 3.11 (Totální diferenciál)

Nechť G je otevřená, $f: G \to \mathbb{R}$ a $a \in G$. Řekneme, že lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}$ je totální diferenciál funkce f v bodě a, pokud $\lim_{h\to 0} \frac{f(a+h)-f(n)-L(h)}{|h|} = 0$.

Značíme $D_f(a)$ a hodnotu v bodě $h \in \mathbb{R}^n$ značíme $D_f(a)(h)$.

Poznámka

Lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}$ lze reprezentovat jako $L(h) = A_i h_1 + \ldots + A_n h_n$.

Ekvivalentně lze definovat jako $\lim_{x\to a} \frac{f(x)-f(a)-L(x-a)}{|x-a|} = 0.$

Geometrický význam je, že lineární funkce f(a) + L(x - a) je velmi blízko původní funkce f(x) na okolí a.

Věta 3.3 (O tvaru totálního diferenciálu)

Necht G je otevřené, $a \in G$ a $f: G \to \mathbb{R}$. Necht existuje totální diferenciál f v bodě a. Pak existují parciální derivace $\frac{\partial f}{\partial x_i}(a)$ a pro všechna $h \in \mathbb{R}^n$ platí $D_f(a)(h) = \frac{\partial f}{\partial x_1}h_1 + \ldots + \frac{\partial f}{\partial x_n}h_n$. Navíc pro $\mathbf{o} \neq v \in \mathbb{R}^n$ platí $\frac{\partial f}{\partial v}(a) = D_f(a)(v)$.

Důkaz

Víme $\lim_{h\to 0} \frac{f(a+h)-f(a)-L(h)}{|h|} = 0$. Speciálně pro $h = t \cdot e_i$:

$$0 = \lim_{t \to 0} \frac{f(a+t \cdot e_i) - f(a) - L(t \cdot e_i)}{t} = \lim_{t \to 0} \frac{f(a+t \cdot e_i) - f(a) - A_i \cdot t}{t} = \frac{\partial f}{x_i}(a) - A_i.$$

Tj.
$$\frac{\partial f}{\partial x_i}(a) = A_i$$
. Obdobně pro v .

Definice 3.12 (Gradient)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $f: G \to \mathbb{R}$ a $a \in G$. Nechť f má v bodě a totální diferenciál. Pak definujeme gradient funkce f v bodě a jako vektor

$$\nabla f(a) = \left[\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a) \right].$$

Můžeme tedy psát $Df(a)(h) = \langle \nabla f(a), h \rangle$.

Věta 3.4 (Geometrický význam gradientu)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbb{R}$. Nechť existuje totální diferenciál f v bodě a, pak

$$\max\left\{\frac{\partial f}{\partial v}(a):||v||=1\right\}=||\nabla f(a)||.$$

Důkaz

≤: Z minulé věty a Cauchyovy nerovnosti máme

$$\frac{\partial f}{\partial v}(a) = Df(a)(v) \le \sqrt{\sum_{n=1}^{n} \left(\frac{\partial f}{\partial x_i}(a)\right)^2} \sqrt{\sum_{i=1}^{n} v_i^2} = ||\nabla f(a)|| \cdot ||v||.$$

 \geq : Položme $v = \frac{\nabla f(a)}{||\nabla f(a)||},$ tedy ||v|| = 1. Potom

$$\frac{\partial f}{\partial v}(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) \frac{\frac{\partial f}{\partial x_i}(a)}{||\nabla f(a)||} = \frac{||\nabla f(a)||^2}{||\nabla f(a)||} = ||\nabla f(a)||.$$

Věta 3.5 (O vztahu spojitosti a totálního diferenciálu)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbb{R}$. Nechť existuje totální diferenciál f v bodě a, pak je f v bodě a spojitá.

Důkaz

Přímým výpočtem:

$$\lim_{h \to 0} f(a+h) = \lim_{h \to 0} \frac{f(a+h) - f(a) - Df(a)(h)}{||h||} ||h|| + f(a) + Df(a)(h) =$$

$$= \lim_{h \to 0} \frac{f(a+h) - f(a) - Df(a)(h)}{||h||} ||h|| \lim_{h \to 0} ||h|| + \lim_{h \to 0} f(a) + \lim_{h \to 0} Df(a)(h) =$$

$$= \dots \cdot 0 + f(a) + 0 = f(a).$$

Věta 3.6 (Postačující podmínka pro existenci totálního diferenciálu)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbb{R}$. Nechť f má v bodě $a \in \mathbb{R}^n$ spojité parciální derivace, tedy funkce

$$x \mapsto \frac{\partial f}{\partial x_j}(x), j \in [n]$$

jsou spojité v a. Pak Df(a) existuje.

Důkaz

Bez důkazu?

Věta 3.7 (O aritmetice totálního diferenciálu)

Nechť $a \in \mathbb{R}^n$, $f, g : \mathbb{R}^n \to \mathbb{R}$ a Df(a), Dg(a) existují. Pak existují i D(f+g)(a), D(cf)(a) pro $c \in \mathbb{R}$, D(fg)(a), a pokud $g(a) \neq 0$ pak i D(f/g)(a) a platí

- D(f+g)(a) = Df(a) + Dg(a),
- D(cf)(a) = cD(f)(a),
- D(fg)(a) = f(a)Dg(a) + Df(a)g(a),
- $D(f/g)(a) = \frac{Df(a)g(a) f(a)Dg(a)}{g(a)^2}$.

Důkaz (Pouze třetí bod)

f(a)Dg(a) + Df(a)g(a) je zřejmě lineární zobrazení. Navíc platí

$$\lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a+h) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a+h) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a+h) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - Df(a)(h)g(a) - f(a+h)g(a) + f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - f(a)Dg(a)(h) - f(a)Dg(a)(h)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - f(a)Dg(a)(h)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h) - f(a)Dg(a)(h)}{||h||} = \frac{f(a+h)g(a) - f(a)Dg(a)(h)}{||h||} = \frac{f(a+h)g(a)}{||h||} = \frac{f(a)}{||h||} = \frac{f(a+h)g(a)}{||h||} = \frac{f(a+h)g(a)}{||h||} = \frac{f(a+h$$

$$= \lim_{h \to 0} g(a) \frac{f(a+h) - f(a) - Df(a)(h)}{||h||} + \lim_{h \to 0} f(a+h) \frac{g(a+h) - g(a) - Dg(a)(h)}{||h||} + \lim_{h \to 0} \frac{(f(a+h) - f(a)) Dg(a)(h)}{||h||} = 0,$$

jelikož první dva členy jsou 0 z definice diferenciálu a pro třetí platí:

$$0 \le |f(a+h) - f(a)| \left| \frac{Dg(a)(h)}{||h||} \right| \le |f(a+h) - f(a)| \frac{||\nabla g(a)|| \cdot ||h||}{||h||} \to 0.$$

Definice 3.13

Nechť $G \subset \mathbb{R}^n$ je otevřená, $f: G \to \mathbb{R}^k$ a $a \in G$. Řekneme, že lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}^k$ je derivací funkce f v bodě a, jestliže

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - L(h)|}{|h|} = 0.$$

Značíme Df(a) a hodnotu v bodě $h \in \mathbb{R}^n$ značíme Df(a)(h).

Poznámka

Nechť $L:\mathbb{R}^n\to\mathbb{R}^k$ je lineární zobrazení. Potom existuje právě jedna $n\times k$ matice A tak, že L(h)=Ah.

Věta 3.8 (Reprezentace derivace maticí)

Necht $G \subset \mathbb{R}^n$ je otevřená a $f = [f_1, \dots, f_k] : G \to \mathbb{R}^k$ má derivaci v bodě $a \in G$. Pak Df(a) je reprezentováno maticí

$$\begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \cdots & \frac{\partial f_1(a)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k(a)}{\partial x_1} & \cdots & \frac{\partial f_k(a)}{\partial x_n} \end{pmatrix}.$$

Máme $\lim_{h\to 0} \frac{\|f(a+h)-f(a)-Df(a)(h)\|}{\|h\|} = 0$, tedy

$$\lim_{h \to 0} \frac{f_i(a+h) - f_i(a) - Df_i(a)(h)}{||h||} = 0,$$

tudíž f_i má totální diferenciál v bodě a a ten můžeme zapsat jako

$$(Df(a))_i(h) = \frac{\partial f_i}{\partial x_1}(a)h_1 + \ldots + \frac{\partial f_i}{\partial x_n}(a)h_n.$$

PoznámkaNechť $L=Ah:\mathbb{R}^n\to\mathbb{R}^k$ je lineární zobrazení reprezentované maticí A. Pak existuje C>0 tak, že

$$||Ah|| \le C||h||$$

Lemma 3.9

 $\overline{Necht\ f: \mathbb{R}^n \to \mathbb{R}^k}$ má derivaci v bodě $a \in \mathbb{R}^n$. Pak existuje $\delta_0 > 0$ a $C \in \mathbb{R}$ tak, že

$$||f(a+h) - f(a)|| \le C||h||, \qquad \forall h \in B(0, \delta_0).$$

Důkaz

Z $\lim_{h\to 0} \frac{||f(a+g)-f(a)-Df(a)(h)||}{||h||}$ existuje $\delta_0>0$ tak, že $\forall h\in B$ platí

$$\frac{||f(a+g) - f(a) - Df(a)(h)||}{||h||} < 1 \implies$$

$$\implies ||f(a+h) - f(a)|| = \left| \left| \frac{||f(a+g) - f(a) - Df(a)(h)||}{||h||} ||h||| + Df(a)(h) \right| \right| \le$$

$$\le ||h|| + ||Df(a)(h)|| \le (1 + \tilde{C})||h|| =: C||h||.$$

Věta 3.10 (Derivace složeného zobrazení)

Nechť $f: \mathbb{R}^n \to \mathbb{R}^k$, $g: \mathbb{R}^k \to \mathbb{R}^s$, f má derivaci v $a \in \mathbb{R}^n$ a g má derivaci v $b = f(a) \in \mathbb{R}^k$. Pak existuje derivace $Dg \circ f(a)$ a platí

$$Dg \circ f(a) = Dg(b) \cdot Df(a) = Dg(f(a)) \cdot Df(a).$$

Důkaz

Podle předchozího lemmatu $\exists \delta_0 > 0$ a C > 0 tak, že $\forall h \in B(0, \delta)$ platí $||f(a+h) - f(a)|| \leq C||h||$. Necht $\varepsilon > 0$. Z definice Dg(b) existuje $\eta > 0$ tak, že $\forall y \in B(0, \eta)$ platí $||g(b+y) - g(b) - Dg(b)(y)|| < \varepsilon ||y||$.

Z definice Df(a) existuje $\delta > 0$, $\delta < \delta_0$, $\delta < \frac{\eta}{C}$, tak, že $\forall h \in B(0, \delta)$ platí

$$||f(a+h) - f(a) - Df(a)(h)|| < \varepsilon ||h|| \implies ||f(a+h) - f(a)|| \le C||h|| \le C\delta \le \eta.$$

Položme y = f(a+h) - f(a). Potom:

$$||g(b+f(a+h)-f(a))-g(b)-Dg(b)(f(a+h)-f(a))|| \le \varepsilon ||f(a+h)-f(a)|| \le \varepsilon C||h||.$$

$$||Dg(b)(f(a+h)-f(a))-Dg(b)Df(a)(h)|| \leq \tilde{C}||f(a+h)-f(a)-Df(a)(h)|| \leq \varepsilon \tilde{C}||h||.$$

Dohromady

$$\begin{aligned} \frac{||g(f(a+h))-g(f(a))-Dg(b)Df(a)(h)||}{||h||} &\leq \\ &\leq \frac{||g(b+f(a+h)-f(a))-g(f(a))-Dg(b)(f(a+h)-f(a))||}{||h||} + \\ &+ \frac{||Dg(b)(f(a+h)-f(a))-Dg(b)Fg(a)(h)||}{||h||} &\leq \\ &\leq \varepsilon C + \varepsilon \tilde{C} = \varepsilon (C+\tilde{C}). \end{aligned}$$

Lemma 3.11 (Řetízkové pravidlo)

Nechť $f: \mathbb{R}^n \to \mathbb{R}^k$ má derivaci v $a \in \mathbb{R}^n$ a $g: \mathbb{R}^k \to \mathbb{R}$ má totální diferenciál v bodě $b = f(a) = [f_1(a), \dots, f_k(a)]$. Pak funkce

$$h(x) = g(f_1(x), \dots, f_k(x))$$

má totální diferenciál v a a platí

$$\frac{\partial h}{\partial x_i}(a) = \sum_{j=1}^k \frac{\partial g}{\partial y_j}(b) \frac{\partial f_j}{\partial x_i}(a).$$

 $D\mathring{u}kaz$

L

Z minulé věty:

$$\begin{pmatrix} \frac{\partial h}{\partial x_1}(a) \\ \vdots \\ \frac{\partial h}{\partial x_n}(a) \end{pmatrix} = Dg(a) = Dg(b)Df(a) = \begin{pmatrix} \frac{\partial g}{\partial y_1}(b), \dots, \frac{\partial g}{\partial y_k}(b) \end{pmatrix} \begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \dots & \frac{\partial f_1(a)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k(a)}{\partial x_1} & \dots & \frac{\partial f_k(a)}{\partial x_n} \end{pmatrix}.$$

Věta 3.12 (O přírůstku funkce)

Necht $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}$ má totální diferenciál v každém bodě G. Necht $a, b \in G$ a necht úsečka L spojující a, b je obsažena v G, tj. $L = \{(1-t) \cdot a + t \cdot b | t \in [0,1]\} \subset G$. Pak existuje $\zeta \in L$ tak, že $f(b) - f(a) = Df(\zeta) \cdot (b-a)$.

 $D\mathring{u}kaz$

Položme F(t) = f(a+t(b-a)). Podle Lagrangeovy věty $\exists \zeta_2 \in (0,1)$ tak, že $f(b) - f(a) = F(1) - F(0) = F'(\zeta_2)$. Položme $\zeta = a + \zeta_2(b-a)$.

Podle řetízkového pravidla $\frac{\partial F}{\partial t}(\zeta) = \sum_{j=1}^{n} \frac{\partial f}{\partial y_j}(\zeta)(b_j - a_j) = Df(\zeta)(b - a).$

3.3 Parciální derivace vyšších řádů

Definice 3.14

Nechť f má na otevřené množině $G \subset \mathbb{R}^n$ parciální derivaci

$$\frac{\partial f}{\partial x_i}$$
, $i \in [n]$,

pak definujeme pro $a \in G$ a $j \in [n]$ druhou parciální derivaci

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(a), i \neq j,$$

$$\frac{\partial^2 f}{\partial x_i^2}(a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (a), i = j.$$

Obdobně definujeme derivace vyšších řádů.

Definice 3.15 $(C^k(\mathbb{R}))$

Nechť $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}$. Řekneme, že $f \in C^1(G) = C^1(G, \mathbb{R})$, pokud existují parciální derivace $\frac{\partial f}{\partial x_i}$, $i \in [n]$, a jsou to spojité funkce.

Řekneme, že $f \in C^k(G) = C^k(G, \mathbb{R})$, $k \in \mathbb{N}$, pokud existují všechny parciální derivace f až do řádu k včetně a jsou to spojité funkce.

Dusledek

Nechť $G \subset \mathbb{R}^n$ je otevřená. Z věty dříve dostáváme, že je-li $f \in C^1(G)$, pak existuje totální diferenciál f na G.

Věta 3.13 (Záměnnost parciálních derivací)

Necht $G \subset \mathbb{R}^n$ je otevřená, $a \in G$ a $f \in C^2(G, \mathbb{R})$. Pak

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a).$$

 $D\mathring{u}kaz$

SLÚNO n=2. Vezměme t dost malé, aby $B_{\max}([a_1,a_2],t)\subset G$. Položme $W(t)=\frac{f(a_1+t,a_2+t)-f(a_1,a_2+t)-f(a_1+t,a_2)+f(a_1,a_2)}{t^2}$. Položme $\varphi(x)=f(x,a_2+t)-f(x,a_2)$. Pak $W(t)=\frac{1}{t^2}(\varphi(a_1+t)-\varphi(a_1))$.

 φ je spojitá a $\exists \varphi'$. Lagrange: $\exists c_1 \in (a_1, a_1 + t)$:

$$\frac{1}{t^2} \cdot \varphi'(c_1) \cdot (a_1 + t - a_1) = \frac{1}{t} \left(\frac{\partial f}{\partial x}(c_1, a_2 + t) - \frac{\partial f}{\partial x}(c_1, a_2) \right) = \frac{1}{t} (h(a_2 + t) - h(a_2)),$$

 $h(a) = \frac{\partial f}{\partial x}(c_1, z)$ je spojitá a derivovatelná, tedy použijeme Lagrange:

$$= \frac{1}{t} \cdot h'(c_2) \cdot (a_2 + t - a_2) = \frac{\partial^2 f}{\partial y \partial x}(c_1, c_2) \leftarrow \frac{\partial^2 f}{\partial y \partial x}(a_1, a_2).$$

(fmá spojité druhé derivace, tedy můžeme prohodit fa limitu.) Totéž provedeme pro zaměněné souřadnice. $\hfill\Box$

Definice 3.16 (Hessova matice)

Nechť $G \subset \mathbb{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Definujeme Hessovu matici f jako

$$D^{2}f(a) = \begin{pmatrix} \frac{partial^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{partial^{2}f}{\partial x_{1}\partial x_{n}}(a) \\ \vdots & \ddots & \vdots \\ \frac{partial^{2}f}{\partial x_{n}\partial x_{1}}(a) & \dots & \frac{partial^{2}f}{\partial x_{n}^{2}}(a) \end{pmatrix}.$$

Podle předchozí věty je matice symetrická, a proto můžeme pracovat s následující kvadratickou formou

$$D^2 f(a)(\mathbf{u}, \mathbf{v}) = u^T D^2 f(a) \cdot v, \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^2.$$

Definice 3.17

Nechť $G \subset \mathbb{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Pak definujeme Taylorův polynom stupně 2 jako

$$T_2^{f,a}(x) := f(a) + Df(a)(x-a) + \frac{1}{2}D^2f(a)(x-a,x-a).$$

Věta 3.14 (Taylorova věta pro druhý řád)

Nechť $f: \mathbb{R}^n \to \mathbb{R}$ je třídy C^2 na okolí bodu $a \in \mathbb{R}^n$. Pak

$$\lim_{x \to 0} \frac{f(x) - T_2^{f,a}(x)}{|x - a|^2} = 0.$$

 $D\mathring{u}kaz$

Bez důkazu.

Poznámka

Lze definovat i Taylorovy polynomy řádu k pomocí k-tých parciálních derivací.

Věta 3.15 (O pozitivně definitní kvadratické formě)

Nechť $Q: \mathbb{R}^n \to \mathbb{R}$ je pozitivně definitní kvadratická forma. Potom

$$\exists \varepsilon > 0 \ \forall h \in \mathbb{R}^n : Q(h, h) \ge \varepsilon ||h||^2.$$

Důkaz

Funkce $A(h) = Q(h, h) = \sum_{i,j=1}^{n} a_{ij}h_{j}h_{i}$ je spojitá. Množina $M\{h \in \mathbb{R}^{n}|||h||=1\}$ je omezená a uzavřená, tedy kompaktní. Funkce A(h) tedy nabývá na M svého minima v bodě h_{0} . Označme $\varepsilon = Q(h_{0}, h_{0}) > 0$.

Nyní $\forall h \in \mathbb{R}^n$:

$$Q(h,h) = Q\left(\frac{h}{||h||}||h||, \frac{h}{||h||}||h||\right) = ||h||^2 Q\left(\frac{h}{||h||}, \frac{h}{||h||}\right) \ge ||h||^2 Q(h_0, h_0) = ||h||^2 \varepsilon.$$

Věta 3.16 (Postačující podmínky pro lokální extrém)

Nechť $G \subset \mathbb{R}^n$ je otevřená množina, $a \in G$ a nechť $f \in \mathcal{C}^2(G)$. Nechť Df(a) = 0 (tedy je bod podezřelý na lokální extrém).

- 1. Je-li $D^2f(a)$ pozitivně definitní, pak a je bod lokálního minima.
- 2. Je-li $D^2f(a)$ negativně definitní, pak a je bod lokálního maxima.
- 3. Je-li $D^2f(a)$ nedefinitní, pak v a nemá extrém.

Důkaz

1) Z předchozí věty víme, že

$$\exists \varepsilon > 0 \ \forall h \in \mathbb{R}^n : D^2 f(a)(h, h) \ge \varepsilon ||h||^2.$$

Z té ještě předchozejší víme, že

$$\lim_{x \to a} \frac{f(x) - f(a) - Df(a)(x - a) - \frac{1}{2}D^2 f(a)(x - a, x - a)}{||x - a||^2} = 0.$$

K zadanému $\varepsilon > 0$ nalezneme $\delta > 0$:

$$\forall x \in P(a, \delta) : \frac{f(x) - f(a) - Df(a)(x - a) - \frac{1}{2}D^2f(a)(x - a, x - a)}{||x - a||^2} > -\frac{1}{4}\varepsilon.$$

Odtud
$$f(x) - f(a) - \frac{1}{2}D^2 f(a)(x - a, x - a) > -\frac{1}{4}\varepsilon||x - a||^2 \implies$$

$$f(x) > f(a) + \frac{1}{2}D^2 f(a)(x - a, x - a) - \frac{1}{4}\varepsilon||x - a||^2 \ge$$

$$\ge f(a) + \frac{1}{2}\varepsilon||x - a||^2 - \frac{1}{4}\varepsilon||x - a||^2 > f(a).$$

- 2) obdobně.
- 3) Tedy existují $h_1,h_2\in\mathbb{R}^n$ tak, že $D^2f(a)(h_1,h_1)>0$ a $D^2f(a)(h_2,h_2)<0$. Uvažme funkci $\varphi(t)=f(a+t\cdot h_1)$, pak $\varphi'(t)=\sum_{i=1}^n\frac{\partial f}{\partial x_1}\left(a+t\cdot h_1\right)\cdot (h_1)_i=Df(a+t\cdot h_1)\cdot h_1$. $\varphi'(0)=Df(a)h_1=0$.

Dále $\varphi''(t) = D^2 f(a+t\cdot h_1)(h_1,h_1)$, tedy $\varphi''(0) = D^2 f(a)(h_1,h_1) > 0$. Tedy φ má v t=0 lokální minimum, tj. f nemá v bodě a lokální maximum. Analogicky pro h_2 , z čehož dostaneme, že f nemá v a ani lokální minimum.

3.4 Implicitní funkce a vázané extrémy

Věta 3.17 (O implicitní funkci)

Nechť $p \in \mathbb{N}$, $G \subset \mathbb{R}^{n+1}$ je otevřená množina, $F : G \to \mathbb{R}$, $\tilde{x} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$, $[\tilde{x}, \tilde{y}] \in G$ a nechť platí

- 1. $F \in \mathcal{C}^p(G)$,
- $2. F(\tilde{x}, \tilde{y}) = 0,$
- 3. $\frac{\partial F}{\partial y}(\tilde{x}, \tilde{y}) \neq 0$,

pak existuje okolí $U \subset \mathbb{R}^n$ bodu \tilde{x} a okolí $V \subset \mathbb{R}$ bodu \tilde{y} tak, že

$$\forall x \in U \ \exists ! y \in V : F(x, y) = 0.$$

Píšeme-li $y=\varphi(x),\; pak\; \varphi\in\mathcal{C}^p(U)$ a platí

$$\frac{\partial \varphi}{\partial x_j}(x) = -\frac{\frac{\partial F}{\partial x_j}(x,\varphi(x))}{\frac{\partial F}{\partial y}(x,\varphi(x))}, \forall x \in U \ \forall j \in [n].$$

 \Box Důkaz

4 kroky: a) $\exists \varphi$, b) φ je spojitá, c) $\varphi \in \mathcal{C}^1$, d) $\varphi \in \mathcal{C}^p$.

a) BÚNO $\frac{\partial F}{\partial y}(\tilde{x}, \tilde{y}) = 0$. F je C^2 , a tedy $\exists \delta_1 > 0 \ \exists \zeta_1 > 0$, tak $\forall x \in B(\tilde{x}, \delta_1) \ \forall y \in B(\tilde{y}, \zeta_1), \ \frac{\partial F}{\partial y}(x, y) > 0$. $\forall B(\tilde{y}, \zeta_1) : \frac{\partial F}{\partial y}(\tilde{x}, y) > 0 \Longrightarrow \text{funkce } y \mapsto F(\tilde{x}, y) \text{ je rostouci,}$ tj. $F(\tilde{x}, \tilde{y} + \zeta_1) > 0$, $F(\tilde{x}, \tilde{y} - \zeta_1) < 0$. Nalezneme $\delta_2 < \delta_1$ tak, že $F(x, \tilde{y} + \zeta_1) > 0$, $F(x, \tilde{y} - \zeta_1) < 0$, $\forall x \in B(\tilde{x}, \delta_2)$. Položme $U = B(\tilde{x}, \delta_2)$ a $V = B(\tilde{y}, \zeta_1)$.

Nechť $x \in B(\tilde{x}, \delta_2)$ je libovolné pevné. Víme, že $\frac{\partial F}{\partial y}(x, y) > 0$, tedy $y \mapsto F(x, y)$ je rostoucí a spojitá, tedy podle Darbouxovy věty (o nabývání mezihodnot) $\exists ! y \in (\tilde{y} - \zeta_1, \tilde{y} + \zeta_1)$ tak, že F(x, y) = 0. Označme $y = \varphi(x)$.

- b) Necht $\varepsilon > 0$, $\varepsilon < \zeta_1$. Mohu použít větu část a) na F a $G^* = U \times (\tilde{y} \varepsilon, \tilde{y} + \varepsilon)$. Dostaneme $\exists U^*$ okolí \tilde{x} a V^* okolí \tilde{y} , že $\forall x \in U^* \exists ! y \in V^* F(x,y) = 0$. Speciálně $\varphi(U^*) \subset V^* \subset (\tilde{y} \varepsilon, \tilde{y} + \varepsilon)$. Tedy φ je spojité.
 - c) Chceme ukázat, že φ má totální diferenciál v \tilde{x} , tedy

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B(\tilde{x}, \delta) \subset \mathbb{R}^n : |\varphi(\tilde{x} + h) - \varphi(\tilde{x}) - \sum_{i=1}^n -\frac{\frac{\partial F}{\partial x_j}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))} h_i| < \varepsilon \sum_{i=1}^n |h_i|.$$

Zvolme $\varepsilon>0,\, \varepsilon_{\frac{\partial F}{\partial n}(\tilde{x},\tilde{y})}<\frac{1}{2}.$ Víme, že F má totální diferenciál v $[\tilde{x},\tilde{y}],$ tedy $\exists \delta>0$

$$\forall h \in B(0,\delta)|F(\tilde{x}-\tilde{y},\tilde{y}+h_{n+1})-F(\tilde{x},\tilde{y})-\sum_{i=1}^{n}\frac{\partial F}{\partial x_{i}}(\tilde{x},\tilde{y})h_{i}-\frac{\partial F}{\partial y}(\tilde{x},\tilde{y})h_{n+1}|<\varepsilon\sum_{i=1}^{n+1}||h_{i}||,$$

$$\left| F(\tilde{x} + \tilde{h}, \varphi(\tilde{x} + \tilde{h})) - F(\tilde{x}, \tilde{y}) - \sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}(\tilde{x}, \tilde{y}) \cdot h_{i} - \frac{\partial F}{\partial y}(\tilde{x}, \tilde{y}) \cdot (\varphi(\tilde{x} + \tilde{h}) - \varphi(\tilde{x})) \right| \leq$$

$$\leq \varepsilon \cdot (\sum_{i=1}^{n} |h_i| + |\varphi(\tilde{x} + \tilde{h}) - \varphi(\tilde{x})|).$$

$$|(\varphi(\tilde{x}+\tilde{h})-\varphi(\tilde{x}))-\frac{\frac{\partial F}{\partial x_i}(\tilde{x},\tilde{y})}{\frac{\partial F}{\partial y}(\tilde{x},\tilde{y})}\cdot h_i| \leq \frac{\varepsilon}{\frac{\partial F}{\partial y}(\tilde{x},\tilde{y})}\cdot (\sum_{i=1}^n |h_i|+|\varphi(\tilde{x}+\tilde{h})-\varphi(\tilde{x})|).$$

Tudíž stačí jen odhadnout $|\varphi(\tilde{x} + \tilde{h}) - \varphi'(\tilde{x})|$.

$$|\varphi(\tilde{x}+\tilde{h})-\varphi'(\tilde{x})| \leq |\varphi(\tilde{x}+\tilde{h})-\varphi'(\tilde{x})| - \sum_{i=1}^{n} \frac{-\frac{\partial F}{\partial x_{i}}(\tilde{x},\tilde{y})}{\frac{\partial F}{\partial y}(\tilde{x},\tilde{y})} \cdot h_{i}| + |\sum_{i=1}^{n} \frac{-\frac{\partial F}{\partial x_{i}}(\tilde{x},\tilde{y})}{\frac{\partial F}{\partial y}(\tilde{x},\tilde{y})} \cdot h_{i}| \leq$$

$$\leq \frac{\varepsilon}{\frac{\partial F}{\partial y}(\tilde{x}, \tilde{y})} \left(\sum_{i=1}^{n} |h_i| + |\varphi(\tilde{x} + \tilde{h}) - \varphi'(\tilde{x})| \right) + c_i \sum_{i=1}^{n} |h_i| \leq$$

Důkaz (Pokračování)

$$\leq \frac{1}{2} \left(\sum_{i=1}^{n} |h_i| + |\varphi(\tilde{x} + \tilde{h}) - \varphi'(\tilde{x})| \right) + c_i \sum_{i=1}^{n} |h_i| \implies |\varphi(\tilde{x} + \tilde{h}) - \varphi'(\tilde{x})| \leq c_2 \sum_{i=1}^{n} |h_i|.$$

Kombinací dosažených nerovností už dostaneme chtěnou nerovnost. Tedy

$$\frac{\partial \varphi}{\partial x_j}(x) = -\frac{\frac{\partial F}{\partial x_i}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))}.$$

d) $F \subset \mathcal{C}^p \implies \varphi \in \mathcal{C}^p$. Indukcí: p=1 víme. Dále nechť víme $\varphi \in \mathcal{C}^{p-1}$ a $F \in \mathcal{C}^p$. Víme, že

$$\frac{\partial \varphi}{\partial x_j}(x) = -\frac{\frac{\partial F}{\partial x_i}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))}.$$

Toto (p-1)krát zderivujeme. Tím na pravé straně dostaneme výraz, kde bude F nanejvýš v ((1+p-1)=p)-té derivaci a φ bude nanejvýš v (p-1)-té derivaci (podle vzorce pro derivaci složené funkce).

Věta 3.18 (O implicitních funkcích)

Nechť $n,m\in\mathbb{N},\ p\in\mathbb{N},\ G\subset\mathbb{R}^{n+m}$ otevřená, $F_j:G\to\mathbb{R},\ j\in[m],\ \tilde{x}\in\mathbb{R}^n,\ \tilde{y}\in\mathbb{R}^m,$ $[\tilde{x},\tilde{y}]\in G$ a nechť platí

- $F_j \in \mathcal{C}^p(G) \ pro \ j \in [m],$
- $F_j(\tilde{x}, \tilde{y}) = 0, \forall j \in [m],$
- determinant $m \times m$ matic parciálních derivací F_j je nenulový.

Pak existuje $U \subset \mathbb{R}^n$ okolí \tilde{x} a $V \subset \mathbb{R}^m$ okolí \tilde{y} tak, že

$$\forall x \in U \ \exists ! y \in V, F_j(x, y) = 0 \ \forall j \in [m], (y_j = \varphi_j(x)) \implies \varphi_j \in \mathcal{C}^p(U), j \in [m].$$

Věta 3.19 (Lagrangeova věta o vázaných extrémech)

Necht $G \subset \mathbb{R}^n$ je otevřená množina, m < n, f, $g_1, \ldots, g_m \in \mathcal{C}^1(G)$ a mějme množinu $M = \{z \in \mathbb{R}^n | g_1(z) = \ldots = g_m(z) = 0\}$. Je-li $a \in M$ bodem lokálního extrému f vzhledem k M a vektory $(\frac{\partial g_1}{\partial z_1}(a), \ldots, \frac{\partial g_1}{\partial z_n}(a))$, ..., $(\frac{\partial g_m}{\partial z_1}(a), \ldots, \frac{\partial g_m}{\partial z_n}(a))$ jsou lineárně nezávislé, pak existují čísla x_1, \ldots, x_m tak, že

$$Df(a) + \lambda_1 Dg_1(a) + \ldots + \lambda_m \cdot Dg_m(a) = 0.$$

Položme k = n - m, $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^m$. Víme, že $Dg_1(a), \ldots, Dg_m(a)$ jsou LN $\implies \exists m$ lineárně nezávislých sloupců, BÚNO jsou to poslední sloupce. Podle věty o implicitních funkcích $\exists U$ okolí \tilde{x} a V okolí \tilde{y} tak, že $\forall x \in U \ \exists ! y \in V : g_j(x,y) = 0, j \in [m]$. Píšeme $y_j = \varphi_j(x) \in \mathcal{C}^1, j \in [m]$.

Položme $\psi(x) = f(x_1, \dots, x_k, \varphi_1(x_1, \dots, x_k), \dots) \in \mathcal{C}^1$. Víme f má extrém vzhledem k $M \implies \psi$ má extrém $\implies \frac{\partial \psi}{\partial x_j}(x) = 0, j \in [k]$.

$$0 = \frac{\partial \psi}{\partial x_j}(a) = \sum_{i=1}^k \frac{\partial f}{\partial z_i} a \frac{\partial (x_i)}{x_j} + \sum_{i=1}^m \frac{\partial f}{\partial z_{k+i}}(a) \frac{\partial \varphi_i(\tilde{x})}{\partial x_j} = 0 + \dots$$

Zderivováním $g_l(x_1,\ldots,\varphi\ldots)=0,\ l\in[m],$ dostaneme

$$\frac{\partial}{\partial z_j}g(x) = \frac{\partial g_l}{\partial z_j}(a) + \sum_{i=1}^m \frac{\partial g_l}{\partial z_{k+i}}(a) \cdot \frac{\partial \varphi_i(\tilde{x})}{\partial x_j} = 0.$$

Označme si vektory $v_j = (0, \dots, 1, \dots, 0, \frac{\partial \varphi_1}{\partial x_j}(\tilde{x}), \dots, \frac{\partial \varphi_m}{\partial x_j}(\tilde{x}))$ (1 je na j-tém místě), $j \in [k]$. Označme $A = \text{LO}\{v_1, \dots, v_k\}$. dim A = k. Z toho plyne $A^{\perp} = n - k = m$. Derivace ψ říká, že $Df(a) \in A^{\perp}$. Derivace g říká, že $Dg_l(a) \in A^{\perp}$, $\forall l \in [m]$. Z předpokladu tvoří $Dg_l(a)$ bázi A^{\perp} (jelikož jsou LN). Tj. Df(a) lze napsat jako L kombinaci prvků báze, tj. $Dg_l(a)$.

3.5 Regulární zobrazení

Definice 3.18 (Difeomorfismus)

Nechť $G \subset \mathbb{R}^n$ je otevřené a $f: G \to \mathbb{R}^n$. Řekneme, že f je difeomorfismus na G, jestliže je f prostá na G, U = f(G) je otevřená v \mathbb{R}^n , $f \in C^1(G)$ a $f^{-1} \in C^1(U)$.

Definice 3.19 (Regulární zobrazení)

Necht $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}^n$. Řekneme, že f je regulární zobrazení, jestliže $f \in \mathcal{C}^1(G)$ a pro každé $a \in G$ a pro každé $a \in G$ platí $J_f(a) \neq 0$.

Věta 3.20 (O lokálním difeomorfismu)

Nechť $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}^n$ je třídy \mathcal{C}^1 . Nechť pro $a \in G$ platí $J_f(a) \neq 0$. Pak existuje $V \subset G$ okolí a takové, že $f|_V$ je difeomorfismus na V.

Definujeme $\Omega = \mathbb{R}^n \times G \subset \mathbb{R}^{2n}$ a $F: \Omega \to \mathbb{R}^n$, $F(y,x) = f(x) - y \in \mathbb{C}^1$. Označme b = f(a), pak F(b,a) = f(a) - b = 0. Dále Jacobián F podle druhých n souřadnic je roven $J_f(a) \neq 0$. Podle věty o implicitních funkcích existuje U_1 okolí bodu b a V_1 okolí bodu a v \mathbb{R}^n , že $\forall y \in U_1 \exists ! x \in V_1 : F(y,x) = 0$. Tj. při označení $x = \varphi(y)$ je $\varphi \in \mathcal{C}^1(U_1)$ a $0 = f(x) - y = f(\varphi(y)) - y \implies \varphi = b^{-1} \in \mathcal{C}^1$. (Na $A = V_1 \cap f^{-1}(U_1)$, což je otevřená množina jako průnik otevřené a vzoru otevřené při spojitém zobrazení. Nyní $f|_A$ je difeomorfismus a zobrazení A na otevřenou U_1 .)

4 Metrické prostory vol. II

4.1 Více o kompaktních a úplných prostorech

Definice 4.1 (Kompaktní prostor podruhé)

 (P, ϱ) MP a $K \subset P$. Řekneme, že K je kompaktní, jestliže z každé posloupnosti bodů z K lze vybrat konvergentní podposloupnost s limitou v K.

Prostor P je kompaktní, pokud je jako svá podmnožina (K = P) kompaktní.

Definice 4.2 (ε -sít, totálně omezený)

Nechť (P,ϱ) je metrický prostor. Nechť $\varepsilon>0$ a $H\subset P$. Řekneme, že H je ε -síť prostoru P, pokud $P\subset \bigcup_{x\in H}B(x,\varepsilon)$.

Řekneme, že P je totálně omezený, pokud $\forall \varepsilon > 0 \; \exists$ konečná ε -síť prostoru P.

Věta 4.1 (Omezenost a totální omezenost)

Nechť (P, ϱ) je totálně omezený metrický prostor. Potom je P omezený.

 $D\mathring{u}kaz$

P je TO, a tedy existuje konečná 1-síť x_1, \ldots, x_n . Označme $d = \max \{ \varrho(x_i, x_j) | i, j \in [n] \}$. Nechť $x, y \in P$, pak $\exists i, j \in [n] : x \in B(x_i, 1), y \in B(x_j, 1)$. Nyní

$$\varrho(x,y) \le \varrho(x,x_i) + \varrho(x_i,x_j) + \varrho(x_j,y) < 1 + d + 1.$$

Volme x_0 libovolně, pak $P \subset B(x_0, d+2)$.

Věta 4.2 (Kompaktnost a totální omezenost)

 $Necht(P, \varrho)$ je kompaktní metrický prostor. Potom je P totálně omezený.

 \Box $D\mathring{u}kaz$

Sporem: Nechť $\exists \varepsilon > 0 \ \forall x_1, \ldots, x_n \in P : P \not\subset \bigcup_{i=1}^n B(x_i, \varepsilon)$. Zvolme $x_1 \in P$ libovolně. Víme $P \not\subset B(x_1, \varepsilon)$, tedy $\exists x_2 : \varrho(x_2, x_1) \geq \varepsilon$. Indukcí: Mějme x_1, \ldots, x_{n-1} tak, že $\varrho(x_i, x_j) \geq \varepsilon \ \forall i \neq j$. Víme $P \not\subset \bigcup_{i=1}^n B(x_i, \varepsilon)$, tedy $\exists x_n \varrho(x_n, x_i) \geq \varepsilon \forall i \in [n-1]$. Nakonec máme posloupnost $\{x_n\}_{n=1}^{\infty}$.

Z definice kompaktnosti $\exists x_{n_k} \to x \in P$. Ale toto není možné, protože $\varrho(x_i, x_j) \ge \varepsilon \forall i \ne j$.

Věta 4.3 (Kompaktnost a otevřené pokrytí)

Metrický prostor (P, ϱ) je kompaktní právě tehdy, když z každého otevřeného pokrytí lze vybrat konečné podpokrytí. Tedy platí (pro libovolnou indexovou množinu a G_{α} otevřené)

$$P \subset \bigcup_{\alpha \in A} G_{\alpha} \implies \exists kone\check{c}n\acute{a} \ A_0 \subset A : P \subset \bigcup_{\alpha A_0} G_{\alpha}.$$

" \Longrightarrow ": Tvrdím, že $\exists m \in \mathbb{N}$ tak, že $\forall x \in P \ \alpha \in A : x \in B(x, \frac{1}{m}) \subset G_{\alpha}$. To dokážeme sporem: Nechť $\exists x_m \in P \ \forall \alpha \in A : \ B(x_m, \frac{1}{m}) \not\subset G_{\alpha}$. P je kompaktní, tedy $\exists x_{m_k} \to x$. Z otevřeného pokrytí $\exists \alpha \in A : x \in G_{\alpha}, G_{\alpha}$.

 G_{α} je otevřená, tedy $\exists \delta>0: B(x,\delta)\subset G_{\alpha}$. Zvolme k, aby $\frac{1}{m_k}\in B(x,\frac{\delta}{2})$. Nyní $\forall y\in B(x_{m_k},\frac{1}{m_k})$ platí

$$\varrho(x,y) \leq \varrho(x,x_{m_k}) + \varrho(x_{m_k},y) < \frac{\delta}{2} + \frac{1}{m_k} < \delta \implies y \in B(x,\delta) \implies B(x_{m_k},\frac{1}{m_k}) \subset G_\alpha, 4.$$

Takže tvrzení výše platí. (P, ϱ) je kompaktní, tedy podle věty 11.2 (ve výuce) je totálně omezený. Tedy pro naše $m \in \mathbb{N} \exists$ konečná $\frac{1}{m}$ -sít x_1, \ldots, x_n . Nyní z toho tvrzení výše $\forall j \in [n] \exists G_{\alpha_j} : B(x_j, \frac{1}{m}) \subset G_{\alpha_j}$. Nyní $P \subset \bigcup_{j=1}^n B(x_j, \frac{1}{n}) \subset \bigcup_{j=1}^n G_{\alpha_j}$.

" \Leftarrow ": Necht $\{x_n\} \in P$. Chceme $x_{n_k} \to x \in P$. Označme $D = \{x_n, n \in \mathbb{N}\}$. Je-li D konečná, pak se nějaké x_n opakuje a je snadné vybrat konvergentní (= konstantní) podposloupnost.

Dále nechť D je nekonečná. Máme 2 možnosti:

$$A\exists y \in P \ \forall r > 0 : B(y,r) \cap D$$
 je nekonečná, nebo

$$D \forall y \in P \ \exists r_y > 0 : B(y, r_y) \cap D$$
konečná.

 $A: r = 1: \exists x_{n_1} \in B(y,1) \cap D, r = \frac{1}{2}$, protože prvků v libovolné kouli je nekonečno, tak $\exists n_2 > n_1, x_{n_2} \in B(y, \frac{1}{2}) \cap D$. Dále pokračujeme indukcí a dostaneme $\{x_{n_k}\}_{k=1}^{\infty}, x_{n_k} \stackrel{k \to \infty}{\to} y$.

B: Víme $P \subset \bigcup_{y \in P} B(y, r_y)$ je otevřené pokrytí, tedy $\exists y_1, \dots, y_n : P \subset \bigcup_{i=1}^n B(y_1, r_{y_i})$. $D = D \cap P \subset \bigcup_{i=1}^n (B(y_i, r_{y_i}) \cap F)$. D je nekonečné, ale podle B je vpravo konečné sjednocení konečných množin, tedy konečná množina. 4.

Důsledek (Borelova věta)

Nechť $a, b \in \mathbb{K}$, a < b a $\{I_{\alpha}\}$ je systém otevřených intervalů. Pak

$$[a,b] \subset \bigcup_{\alpha \in A} I_\alpha \implies \exists A_0 \subset \text{ konečná } [a,b] \subset_{\alpha \in A_0} I_\alpha.$$

Důsledek

Spojitá funkce na [a, b] je omezená.

Důsledek

f je spojitá na $[a,b] \implies f$ je stejnoměrně spojitá na [a,b].

Definice 4.3 (B-C podmínka)

Nechť (P, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z P. Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, \ m, n \geq n_0 : \varrho(x_n, x_m) < \varepsilon.$$

Definice 4.4 (Úplný prostor)

Řekneme, že metrický prostor (P, ϱ) je úplný, jestliže každá cauchyovská posloupnost bodů z P je konvergentní

Věta 4.4 (Cantorova, o uzavřených množinách)

Nechť (P, ϱ) je úplný metrický prostor a F_n je posloupnost uzavřených neprázdných množin $v \ P \ tak$, že $F_{n+1} \subset F_n \ a \lim_{n \to \infty} \operatorname{diam} F_n = 0$. $Pak \ |\bigcap_{n=1}^{\infty} F_n| = 1$.

Důkaz (Viz OM2/MetPro/MetPro.pdf Věta 6.1)

Zvolme $x_n \in F_n$. Tvrdíme, že $\{x_n\}_{n=1}^{\infty}$ je cauchyovská. At $\varepsilon > 0$. $\exists n_0 : \text{diam } F_{n_0} < \varepsilon$. Nyní

$$\forall m, n \ge n_0 : x_n \in F_n \subset F_{n_0}, x_m \in F_m \subset F_{n_0} : \varrho(x_n, x_m) \le \operatorname{diam} F_{n_0} < \varepsilon.$$

P je úplný, a tedy $x_n \to x \in P$. Nechť $j \in \mathbb{N}$ je pevné a $n \geq j$, pak $x_n \in F_n \subset F_j$ a $x_n \to x$, tedy $(F_j$ je uzavřené) $x \in F_j \forall j$, tedy $x \in \bigcap_{j=1}^{\infty} F_j$. Naopak pokud $x, y \in \bigcap_{j=1}^{\infty} F_j$, pak zvolíme j tak, aby diam $F_j < \varrho(x, y)$, tedy buď $x \notin F_j$ nebo $y \notin F_j$.

Věta 4.5 (O totální omezenosti a úplnosti)

Metrický prostor (P, ϱ) je kompaktní právě tehdy, když je totálně omezený a úplný.

 $D\mathring{u}kaz$

 \implies už máme hotové z věty výše a věty Kompaktnost a totální omezenost. \Leftarrow : Necht $\{x_n\}_{n=1}^{\infty} \subset P$, chceme $\exists x_{n_k} \to x$. P je totálně omezený, tedy existuje konečná 1-sít $P \subset \bigcup_{i=1}^{h_1} B(s_i, 1)$. $\{x_n\}$ je nekonečná $\implies \exists$ kulička $B_1 = B(s_i, 1)$ tak, že $|\{x_n|x_n \in B_1\}| = +\infty$. Zvolme $x_{n_1} \in B_1$.

Dále indukcí: Mějme B_1, \ldots, B_{k-1} kuličky o poloměrech $1, \ldots, \frac{1}{k-1}$ tak, že pro $A_{k-1} = B_1 \cap \ldots \cap B_{k-1}$ platí $|\{x_n | x_n \in A_{k-1}\}| = +\infty$, a mějme $n_1 < \ldots < n_{k-1}$ tak, že $x_{n_j} \in A_j$, $\forall j \in [k-1]$. P je totálně omezený $\implies \exists$ konečná $\frac{1}{k}$ -sít $A_{k-1} \subset P \subset \bigcup_{i=1}^{h_k} B(s_i, \frac{1}{k})$. V A_{k-1} je nekonečně mnoho x_n , tedy $\exists B_k = B(s_i, \frac{1}{k})$, že pro $A_k = A_{k-1} \cap B_k$ platí $|\{x_n | x_n \in A_k\}| = +\infty$. Dále zvolme n_k tak, aby $n_k > n_{k-1}$ a $x_{n_k} \in A_k$.

 x_{n_k} je cauchyovská, neboť pro $\varepsilon > 0$ $\exists n_0 : \frac{1}{n_0} < \varepsilon$, necht $k, l \ge n_0$, pak $x_{n_k} \in A_k \subset A_{n_0}$ a $x_{n_l} \in A_l \subset A_{n_0}$, tedy jelikož $A_{n_0} \subset B_{n_0}$, $\varrho(x_{n_k}, x_{n_l}) < \frac{2}{n_0} < 2\varepsilon$. P je úplný, tedy existuje x tak, že $x_{n_k} \to x$.

Věta 4.6 (O zúplnění metrického prostoru)

Nechť (P,ϱ) je metrický prostor. Pak existuje úplný metrický prostor $(\tilde{P},\tilde{\varrho})$ tak, že $P\subset \tilde{P}$ a $\forall x,y\in P$ platí $\varrho(x,y)=\tilde{\varrho}(x,y)$.

 $D\mathring{u}kaz$

Bez důkazu.

Věta 4.7 (Arzela-Ascoli)

Nechť $A \subset C([0,1])$. Pak \overline{A} je kompaktní právě tehdy, když jsou funkce z A stejně omezené a stejně stejnoměrně spojité. Tedy pokud $\exists K > 0$:

$$\forall f \in A \ \forall x \in [0,1] : |f(x)| \le K,$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in [0, 1] \ \forall f \in A : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Důkaz

 $\Longrightarrow:\overline{A}$ je kompaktní $\Longrightarrow \overline{A}$ je omezená $\Longrightarrow A$ je omezená $\subset B(0,K).$ Tedy $\forall f\in A\; \forall x\in [0,1]: |f(x)|\leq K.$

 \overline{A} je kompaktní $\Longrightarrow \overline{A}$ je totálně omezená. Nechť $\varepsilon > 0 \Longrightarrow \exists$ konečná ε -síť $\overline{A} \subset \bigcup_{i=1}^k B(f_i, \varepsilon)$. Funkce f_i je spojitá na $[0, 1] \Longrightarrow f$ je stejnoměrně spojitá na [0, 1]. Tedy

$$\exists \delta_i > 0 \ \forall x, y : |x - y| < \delta_i \implies |f_i(x) - f_i(y)| < \varepsilon.$$

Položme $\delta = \min \{\delta_1, \dots, \delta_k\}$. Necht $f \in A$, $x, y \in [0, 1]$: $|x - y| < \delta$. K tomuto $f \in A$ najdu f_i , aby $f \in B(f_i, \varepsilon)$. Potom

$$|f(x) - f(y)| \le |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)| < 2\varepsilon + \varepsilon = 3\varepsilon$$

 \Leftarrow : Chceme dokázat, že pro $\{f_n\}_{n=1}^{\infty}\subset \overline{A}\ \exists f_{n+k}\to f.$ 1. krok, volba C: Necht $m\in\mathbb{N}$. Ze stejnoměrné spojitosti pro $\varepsilon=\frac{1}{m}$

$$\exists \delta_m \ \forall x, y \ \forall n : |x - y| < \delta_m \implies |f_n(x) - f_n(y)| < \varepsilon = \frac{1}{m}.$$

Nyní [0,1] pokryjeme $[0,1] \subset \bigcup_{j=1}^{k_m} B(c_j^m, \delta_m)$. Položme $C = \{C_j^m | m \in \mathbb{N}, j \in [k_m]\}$. C je zřejmě spočetné (spočetné sjednocení konečných).

2. krok, volba f_{n_k} , aby $\forall c \in C : f_{n_k}(c)$ konverguje. C je spočetná, tedy $C = \{c_i, i \in \mathbb{N}\}$. Ze stejné omezenosti $|f_n(c_1)| \leq K$, tedy existuje podposloupnost $f_{n_{k,1}}(c_1)$ posloupnosti $f_{n_k}(c_1)$, která konverguje. Nyní ze stejné omezenosti víme, že $|f_{n_{k,1}}(c_2)| \leq K$, tedy opět vybereme podposloupnost $f_{n_{k,2}}(c_2)$, která konverguje. Dále pokračujeme indukcí.

Položme $f_{n_k} = f_{n_{k,k}}$. Tato vybraná podposloupnost z f_n konverguje ve všech bodech C.

3. krok, f_{n_k} je cauchyovská. Nechť $\varepsilon>0$, k čemuž nalezneme $\frac{1}{m}<\varepsilon$. Z 1. kroku máme δ_m a $c_1^m,\ldots,c_{k_m}^m$. Z 2. kroku víme, že $f_{n_k}(c_j^m)\to\ldots(c_j^m),\,\forall j\in[k_m]$. Tedy z BC podmínky v těchto bodech

$$\exists k_0 \ \forall k, l \ge k_0 : |f_{n_k}(c_j^m) - f_{n_k}(c_j^m)| < \varepsilon, \qquad \forall j \in [k_m].$$

Nechť nyní $x \in [0,1]$. Nalezneme $c_j^m \cdot |x - c_j^m| < \delta_m$:

$$|f_{n_k}(x) - f_{n_l}(x)| \le |f_{n_k}(x) - f_{n_k}(c_j^m)| + |f_{n_k}(c_j^m) - f_{n_l}(c_j^m)| + |f_{n_l} - f_{n_l}(c_j^m)| < \frac{1}{m} + \varepsilon + \frac{1}{m} \le 3\varepsilon.$$

Tedy f_{n_k} je cauchyovská a jelikož C([0,1]) je úplný, tak $\exists f \in C([0,1]) f_{n_k} \to f$. Nyní z uzavřenosti \overline{A} je $f \in \overline{A}$.

4.2 Prostory L^p

Poznámka

Většina vět této podsekce i s důkazy se dá najít v W. Radim – Analýza v reálném a komplexním oboru.

Poznámka (Slovníček pro MIT a slabší povahy) "Tyto skupiny nejsou totéž."

- $\int_{x} f d\mu$ čteme $(R) \int_{0}^{1} f(x) dx$.
- f je měřitelná čteme f je spojitá.
- f = 0, μ -s. v. čteme jako f = 0 všude.
- (X, \mathcal{A}, μ) čteme jako ([0, 1], dx).

Věta 4.8 (Jensenova nerovnost)

Necht (X, \mathcal{A}, μ) je pravděpodobnostní prostor $(\mu \text{ nezáporná}), f \in L^1(\mu), a, b \in [-\infty, \infty]$ $a f : X \to (a, b).$ Je-li $\varphi : (a, b) \to \mathbb{R}$ konvexní funkce, pak

$$\varphi\left(\int_X f d\mu\right) \le \int_X (\varphi \circ f) d\mu.$$

Důkaz

"Integrál je vlastně průměr a konvexní funkce je v průměru menší, než průměr jejich hodnot."

Označme
$$t = \int_x f d\mu$$
. $\mu(X) = 1 \implies a < t < b$. φ je konvexní $\implies \exists \beta \in \mathbb{R} : \varphi(s) > \varphi(t) + \beta(s - t) \qquad \forall s \in (a, b)$.

Toto použijeme pro s = f(x):

$$\varphi(f(x)) \ge \varphi(t) + \beta \cdot (f(x) - t).$$

f je měřitelná a φ spojitá (neboť je konvexní) $\implies \varphi(f(x))$ je měřitelná.

Zintegrujeme:

$$\int_{X} \varphi(f(x))\mu(x) \ge \int_{X} \varphi(t)d\mu(x) + \beta \int_{X} (f(x) - t)d\mu(x),$$
$$\int_{X} \varphi(f(x))\mu(x) \ge \varphi(t) + \beta \cdot 0 = \varphi(t).$$

Příklad

Při $f(x_i) = a_i \in \mathbb{R}$, $\mu = \sum_{i=1}^n \frac{1}{n} \delta_{x_i}$, $\varphi = \exp$ dostaneme z minulé věty AG nerovnost.

Příklad

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

, kde $\frac{1}{p}+\frac{1}{q}=1$ a $a,b\geq 0.$

 ⊢ Řešení

$$\exp(\frac{1}{p}x + \frac{1}{q}y) \le \frac{1}{p}e^x + \frac{1}{q}e^y,$$
$$e^{\frac{x}{p}} \cdot e^{\frac{y}{q}} \le \frac{1}{p}e^x + \frac{1}{q}e^y.$$

K zadanému a, b > 0 vezmeme x, y aby $e^{\frac{x}{p}} = a$ a $e^{\frac{y}{q}} = b$. Pak

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

Pro a=0 nebo b=0 je důkaz triviální.

Definice 4.5 (Sdružený index)

Nechť 1 , pak číslo <math>q splňující $\frac{1}{p} + \frac{1}{q} = 1$ nazveme sdružení. Pro p = 1 definujeme $q = \infty$ a opačně.

Věta 4.9 (Hölderova a Minkowského)

Nechť X, \mathcal{A}, μ je prostor s mírou, 1 , <math>q je sdružený exponent k p a $f, g: X \to [0, \infty]$ jsou měřitelné funkce. Potom platí Hölderova nerovnost:

$$\int_X f \cdot g dx \le \left(\int_X f^p d\mu \right)^{\frac{1}{p}} \cdot \left(\int_X g^q d\mu \right)^{\frac{1}{q}}$$

a Minkowského nerovnost

$$\left(\int_X (f+g)^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_X f^p d\mu\right)^{\frac{1}{p}} + \left(\int_X g^p d\mu\right)^{\frac{1}{p}}.$$

Důkaz

Označme $A = \left(\int_X f^p d\mu\right)^{\frac{1}{p}}$ a $B = \left(\int_X g^q d\mu\right)^{\frac{1}{q}}$. Pokud A = 0 (nebo B = 0), pak f = 0 skoro všude a nerovnost platí. Pokud $A = \infty$ nebo $B = \infty$, pak nerovnost také triviálně platí.

Položme $F(x) = \frac{1}{A}f(x)$ a $G(x) = \frac{1}{B} \cdot g(x)$. Pak

$$\int_{X} F(x)^{p} d\mu = \frac{1}{A^{p}} \int_{X} f(x)^{p} d\mu = 1, \qquad \int_{X} G(x)^{q} d\mu = 1.$$

Z $F(x) \cdot G(x) \leq \frac{1}{p} (F(x))^p + \frac{1}{q} (G(x))^q$ (Jangova? nerovnost: $\forall a, b \geq 0 : ab \leq \frac{1}{p} a^p + \frac{1}{q} b^q$) dostaneme:

$$\int_{X} F(x)G(x)d\mu(x) \le \frac{1}{p} \int_{X} (F(x))^{p} + \frac{1}{q} \int_{X} (G(x))^{q} = \frac{1}{p} + \frac{1}{q} = 1, \qquad / \cdot AB$$

$$\int_{X} f(x)g(x)d\mu(x) \le AB = \left(\int_{X} f^{p}d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} g^{q}d\mu \right)^{\frac{1}{q}}.$$

$$\int_{X} (f+g)^{p} d\mu = \int_{X} f \cdot (f+g)^{p-1} + g \cdot (f+g)^{p-1} d\mu \le
\le \left(\int_{X} f^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{X} (f+g)^{(p-1)q} \right)^{\frac{1}{q}} + \left(\int_{X} g^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{X} (f+g)^{(p-1)q} \right)^{\frac{1}{q}} \le
\le \left[\left(\int_{X} f^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{X} g^{p} d\mu \right)^{\frac{1}{p}} \right] \cdot \left(\int_{X} (f+g)^{p} d\mu \right)^{\frac{1}{q}}.$$

Je-li $\int_X (f+g)^p d\mu \neq 0$ (triviální) a $\neq \infty$ vydělíme

$$\left(\int_X (f+g)^p d\mu\right)^{p=1-\frac{1}{q}} \le \left(\int_X f^p d\mu\right)^{\frac{1}{p}} + \left(\int_X g^p d\mu\right)^{\frac{1}{p}}.$$

Pokud je integrál výše roven ∞ , pak využijeme konvexity funkce $t \mapsto t^p$:

$$\infty = \int_X \left(\frac{f(x) + g(x)}{2} \right)^p d\mu \le \int_X \left(\frac{f(x)^p}{2} + \frac{g(x)^p}{2} \right) d\mu \implies \int f^p = \infty \lor \int g^p = \infty.$$

Definice 4.6 (L^p prostory)

Nechť (X, \mathcal{A}, μ) je prostor s mírou a $1 \leq p < \infty$. Definujeme prostor L^p jako

$$L^p(X,\mu) := \{ f : X \to \mathbb{R} | ||f||_{L^p} < \infty \}, \text{ kde } ||f||_{L^p} := \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}}.$$

34

Nechť $g:X\to [0,\infty]$ je měřitelná. Esenciální supremum g definujeme jako

$$\operatorname{esssup} g := \inf \{ \alpha | \mu(q > \alpha) = 0 \}.$$

(Pro $p = \infty$) tedy definujeme

$$L^{\infty}(X,\mu) := \{ f : X \to \mathbb{R} | ||f||_{L^{p}} < \infty \}, \text{ kde } ||f||_{L^{\infty}} := \text{esssup}_{x} |f|.$$

Věta 4.10 (Trojúhelníková nerovnost v L^p)

Nechť $1 \le p \le \infty$. Pak pro $f, g \in L^p(X, \mu)$ platí

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}.$$

Důkaz

Pro $1 \le p < \infty$ viz Minkowski: f(x) = a(x) - c(x), g(x) = c(x) - b(x), f(x) + g(x) = a(x) - b(x):

$$\left(\int_X |a(x)-b(x)|^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_X |a(x)-c(x)|^p d\mu\right)^{\frac{1}{p}} + \left(\int_X |c(x)-b(x)|^p d\mu\right)^{\frac{1}{p}}.$$

Pro $p=\infty$: z definice esssup $\exists N_1,N_2,N_3,\; \mu(N_1)=\mu(N_2)=\mu(N_3)=0,\; (N=N_1\cup N_2\cup N_3)$

$$||f||_{L^{\infty}} = \sup_{x \in X \setminus N_1} |f(x)|, ||g||_{L^{\infty}} = \sup_{X \setminus N_2} |g(x)|, ||f + g||_{L^{\infty}} = \sup_{x \in X \setminus N_3} |f(x) + g(x)|.$$

$$\sup_{x \in X \backslash N} |f(x)| + g(x)| \leq \sup_{x \in X \backslash N} |f(x)| + |g(x)| \leq \sup_{x \in X \backslash N} |f(x)| + \sup_{x \in X \backslash N} |g(x)|.$$

Poznámka

L

Pokud budeme uvažovat L_p jako jeho kvocient podle rovnosti skoro všude, pak je $||\cdot||_{L^p}$ norma a L^p je metrický prostor s metrikou.

Věta 4.11 (Úplnost L^p prostorů)

Nechť $1 \le p \le \infty$. Pak je prostor $L^p(X, \mu)$ úplný.

 $1 \leq p < \infty$. Mějme f_n cacuhyovskou nerovnost v L^p . Tj.

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \left(\int_X |f_n(x) - f_m(x)|^p d\mu \right)^{\frac{1}{p}}.$$

Najdeme f(x) jako bodovou limitu (skoro všude) vhodně vybrané podposloupnost. Z cauchyovskosti $\exists k_1 < k_2 < \ldots < k_j < \ldots$ tak, že

$$\forall j: \int_X |f_{k_j}(x) - f_{k_{j+1}}(x)|^p d\mu \le \frac{1}{2^j}.$$

Položme $g_n(x) = \sum_{j=1}^n |f_{k_j}(x) - f_{k_{j+1}}(x)|$ a $g(x) = \sum_{j=1}^\infty |f_{k_j}(x) - f_{k_{j+1}}(x)|$. Pak z Minkowského nerovnosti $||g_n||_{L^p} \leq \sum_{j=1}^n ||f_{k_j} - f_{k_{j+1}}||_{L^p} \leq \sum_{j=1}^n \left(\frac{1}{2^j}\right)^{\frac{1}{p}} \leq C_p$.

Z Fatouova lemmatu

$$\int_{X} \liminf_{n \to \infty} g_n^p d\mu(x) \le \liminf_{n \to \infty} \int_{X} g_n^p(x) d\mu \le C_p.$$

Tedy řada $\sum_{j=1}^{\infty} (f_{k_j}(x) - f_{k_{j+1}}(x))$ konverguje absolutně skoro všude \Longrightarrow funkce $f(x) = f_{k_1}(x) - \sum_{j=1}^{\infty} (f_{k_j} - f_{k_{j+1}})$ je definována skoro všude. Nyní

$$f_{k_n}(x) = f_{k_1}(x) - \sum_{j=1}^{n-1} (-f_{k_j}(x) - f_{k_j}(x)) \to f(x)$$
 skoro všude.

Zbývá $f \in L^p$ a $f_n \stackrel{L^p}{\to} f$. Víme, že f_n je cauchyovská. Z Fatouova lemmatu

$$\int_{X} |f(x) - f_n(x)|^p d\mu = \int_{X} \liminf_{n \to \infty} |f_{k_n} - f_m|^p d\mu \le \liminf_{n \to \infty} \int_{X} |f_{k_n} - f_m|^p d\mu \le \varepsilon \implies$$

$$\implies f - f_m \in L^p \implies (f - f_m) + f_m \in L^p \land \varrho(f, f_m) \le \varepsilon^{\frac{1}{p}}.$$

Tedy
$$f_n \to f$$
.

 $D\mathring{u}kaz$ $(p = \infty, \text{ nebude na zkoušce})$

Nechť $f_n \in L^{\infty}(X, \mu)$ je cauchyovská posloupnost. Pak existují N_n , $\mu(N_n)$, $||f_n||_{L^{\infty}} = \sup_{x \in X \setminus N_n} |f_n(x)| = \sup_{x \in X \setminus N_n} |f_n(x)|$.

Dokazovali jsme, že C([0,1]) je úplný metrický prostor. Analogicky to lze dokázat zde. \Box

4.3 Husté a řídké množiny

Definice 4.7 (Hustá množina)

Nechť (P, ϱ) je metrický prostor. Řekneme, že $A \subset P$ je hustá, pokud $\overline{A} = P$.

Věta 4.12 (Charakterizace hustých množin)

Nechť (P, ϱ) je metrický prostor a $A \subset P$. Potom je A hustá v P právě tehdy, když pro každou otevřenou neprázdnou $G \subset P$ platí $G \cap A \neq \emptyset$.

 $D\mathring{u}kaz$

" \Longrightarrow ": Sporem: Nechť $\exists G \subset P$ otevřená, $G \cap A = \emptyset$, tedy $\exists B(x,r) \subset G$. Pak dist $(x,A) \ge r \implies x \notin \overline{A}$. 4.

"

—": Sporem: Anení hustá $\implies P \backslash \overline{A} \neq \emptyset.$
 $G = P \backslash \overline{A}$ je otevřená. Podle předpokladu
 $(P \backslash \overline{A}) \cap A \neq \emptyset.$

Důsledek

Nechť $G_1, G_2 \subset P$ jsou otevřené a husté v (P, ϱ) . Pak $G_1 \cap G_2$ je otevřená a hustá v P.

Důkaz

Necht $G \subset P$, $G \neq \emptyset$ je otevřená, potom $G_1 \cap G \neq \emptyset$ otevřená, $G_2 \cap G_1 \cap G \neq \emptyset$, tedy $G_1 \cap G_2$ je hustá. (Libovolné G tedy protne $G_1 \cap G_2$.)

Definice 4.8 (Řídká množina)

Nechť (P,ϱ) je metrický prostor. Řekneme, že $A\subset P$ je řídká, jestliže je $P\setminus \overline{A}$ hustá.

Věta 4.13 (Vlastnosti řídkých množin)

Nechť (P,ϱ) je metrický prostor a nechť $A,B\subset P$. Potom

- 1. Je-li A řídká v P a B \subset A, pak je také B řídká v P.
- 2. Jsou-li A, B řídké v P, pak $A \cup B$ je řídké v P.
- 3. A je řídká v $P \Leftrightarrow \overline{A}$ je řídká v P.

 $D\mathring{u}kaz$

1.
$$B \subset A \implies \overline{B} \subset \overline{A} \implies P \setminus \overline{A} \subset P \setminus \overline{B} \implies P = \overline{P \setminus \overline{A}} \subset \overline{P \setminus \overline{B}} \implies P = \overline{P \setminus \overline{B}}.$$

3. Víme
$$\overline{\overline{A}} = \overline{P} \implies P \setminus \overline{A} = P \setminus \overline{\overline{A}} \implies \overline{\overline{A}} = \overline{\overline{\overline{A}}}$$
.

2. $\overline{A \cup B} = \{x | \varrho(x, A \subset B) = 0\} = \{x | \varrho(x, A) = 0\} \cup \{x | \varrho(x, B) = 0\} = \overline{A} \cup \overline{B}$. Tedy $P \setminus \overline{A \cup B} = P \setminus (\overline{A} \cup \overline{B}) = (P \setminus \overline{A}) \cup (P \setminus \overline{B})$. Tato množina už je zřejmě hustá (průnik dvou otevřených hustých množin), tedy $A \cup B$ je řídká. \square

Definice 4.9 (Množiny 1. kategorie a 2. kategorie)

Nechť (P,ϱ) je metrický prostor. Řekneme, že $A\subset P$ je 1. kategorie, jestliže existují řídké množiny A_n tak, že $A=\bigcup_{n=1}^\infty A_n$. Řekneme, že $C\subset P$ je 2. kategorie, jestliže C není 1. kategorie.

Věta 4.14 (Baire)

Nechť (P, ϱ) je úplný metrický prostor. Nechť $G_{n,m} \in \mathbb{N}$ jsou otevřené a husté $v(P, \varrho)$. Pak $\bigcup_{n=1}^{\infty} G_n$ je hustá $v(P, \varrho)$.

Důkaz

Příště.

Důsledek

Úplný metrický prostor není 1. kategorie sám v sobě.

 $D\mathring{u}kaz$

Sporem necht $P = \bigcup_{n=1}^{\infty} A_n$, A_n řídké. Pak $P \setminus \overline{A_n}$ jsou husté a otevřené $\Longrightarrow \bigcup_{n=1}^{\infty} P \setminus \overline{A_n} \neq \emptyset$. Ale $\emptyset = P \setminus \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (P \setminus A_n) \supset \bigcup_{n=1}^{\infty} (P \setminus \overline{A_n})$. 4.

Důkaz (Bairova věta (o kategoriích))

Podle věty výše stačí ukázat, že $\forall G \subset P$ otevřenou $G \cap \bigcap_{n=1}^{\infty} G_n \neq \emptyset$. Máme G otevřenou a G_1 je hustá tedy $\exists B(x_1, 2r_1) \subset G_1 \cap G$, $r_1 < 1$. Tedy $\overline{B(x_1, r_1)} \subset G_1 \cap G$.

 G_2 je hustá, $B(x_1,r_1)$ otevřená, tedy $\exists B(x_2,2r_2)\subset G_2\cap B(x_1,r_1)\subset G_2\cap G_1\cap G$.

Dále indukcí. (P, ϱ) je úplný, $\overline{B(x_k, r_k)}$ jsou uzavřené, $\operatorname{diam}_{k \to \infty} \overline{B(x_k, r_k)} = 0$. Podle věty ještě výše $\exists a \in \bigcap_{k=1}^{\infty} \overline{B(x_k, r_k)} \subset \bigcap G_k \cap G \neq \emptyset$. Tedy $\bigcap_{k=1}^{\infty} G_k$ je hustá.

Věta 4.15 (O nediferencovatelné funkce)

Existuje spojitá funkce $f:[0,1] \to \mathbb{R}$, která nemá derivaci v žádném bodě z (0,1).

 $D\mathring{u}kaz$

Pro $n \in \mathbb{N}$ definujeme

$$A_n := \{ f \in C([0,1]) | \exists t \in [0,1], \forall s \in [0,1] : |f(t) - f(s)| \le n \cdot |t - s| \}.$$

Plán: Dokážeme, že A_n je uzavřená. Dále, že f má derivaci v nějakém bodě t, pak $\exists n: f \in A_n$. Potom dokážeme A_n řídká. Potom již $Dif \subset \bigcup_{n=1}^{\infty} A_n$, tedy Dif jsou 1. kategorie \Longrightarrow (z důsledku Baira) $\exists f \in C([0,1]) \setminus Dif$.

 $D\mathring{u}kaz$ (1. krok – A_n uzavřená)

Podle věty ze dříve stačí ukázat $f_k \in A_n, f_k \to f \implies f \in A_n$.

$$f_k \in A_n \implies \exists t_k \in [0,1] \ \forall s \in [0,1] : |f_k(t_k) - f_k(s)| \le n|t_k - s|.$$

Podle Weistrassovy věty \exists podposloupnost $t_{k_j} \to t,$ označme ji $t_k.$

Nyní $\forall s \in [0, 1]$:

$$|f(t) - f(s)| \le |f(t) - f_k(t)| + |f_k(t) - f_k(t_k)| + |f_k(t_k) - f_k(s)| + |f_k(s) - f(s)| \le |f(t) - f_k(t)| + |f_k(t) - f_k(t_k)| + |f_k(t_k) - f_k(s)| + |f_k(t_k) - f_k($$

To odhadneme podle nerovnosti výše (jednou s s = s a jednou s s = t):

$$\leq |f(t) - f_k(t)| + n \cdot |t_k - t| + n \cdot |t_k - t| + |f_k(s) - f(s)|$$

$$\lim_{k \to \infty} |f(t) - f(s)| \le 0 + n \cdot 0 + n \cdot |t - s| + 0.$$

Tedy $f \in A_n$.

 $D\mathring{u}kaz$ (2. krok – derivovatelné jsou v A_n)

Mějme $f \in C([0,1]), \exists f'(t) = a.$ Z definice derivace pro

$$\varepsilon = 1 \ \exists \delta > 0 \ \forall s \in (t - \delta, t + \delta) : \left| \frac{f(t) - f(s)}{t - s} - a \right| < 1$$

$$\implies \left| \frac{f(t) - f(s)}{t - s} \right| \le \left| \frac{f(t) - f(s)}{t - s} - a \right| + |a| \le 1 + |a| \implies$$
$$\implies |f(t) - f(s)| \le (1 + |a|) \cdot |t - s|.$$

Dále $\forall s \in [0,1] \setminus (t - \delta, t + \delta)$:

$$|f(t) - f(s)| \le 2 \sup_{[0,1]} f \le \frac{2 \sup f}{\delta} |t - p|.$$

Zvolme $n > \max \{|a| + 1, \frac{2\sup f}{\delta}\}, \text{ pak } f \in A_n.$

 $D\mathring{u}kaz$ (3. krok – A_n řídká)

Chceme $P \setminus \overline{A_n} = P \setminus A_n$ je hustá. Podle věty výše tedy stačí ukázat, že

$$\forall g \in C([0,1]) \ \forall r \in 0 (P \setminus A_n) \cap B(g,r) \neq \emptyset.$$

gje spojitá \implies stejnoměrně spojitá na [0,1]. Tedy k zadanému r

$$\exists \delta > 0 \forall x, y \in [0, 1] : |x - y| < \delta \implies |g(x) - g(y)| < \frac{r}{10}.$$

Tím jsme omezili "kmitání" g, aby nám nevyrušilo následné přičtení kmitající funkce: Definujme funkci $p: / \backslash / \backslash / \backslash$ (zubatě kmitající funkce) tak, aby $p' = \pm c$, kde $c = \max\left\{3n, \frac{r}{2\delta}\right\}$. Definujeme f(x) = g(x) + p(x). Zřejmě $f \in C([0,1])$ a $f \in B(g,r)$.

Tvrdíme $f \notin A_n$: Pro spor nechť

$$\exists t \in [0,1] \ \forall s \in [0,1] : |f(x) - f(t)| \le n \cdot |t - s|.$$

K tomuto t nalezneme s "na stejném zubu", aby $|p(s)-p(t)|=\frac{r}{2}, \left|\frac{p(s)-p(t)}{s-t}\right|=c$ a $|s-t|\leq \delta$.

Nyní
$$\frac{r}{2} = |p(s) - p(t)| = c \cdot |t - s| \ge 3n|t - s|$$
.

$$|f(t) - f(s)| \ge |p(t) - p(s)| - |g(t) - g(s)| \ge \frac{r}{2} - \frac{r}{10} = \frac{2}{5}r \ge \frac{2}{5}6n|t - s| > n \cdot |t - s|.$$

5 Hilbertovy prostory

Poznámka

Většina vět této sekce i s důkazy se dá najít v knize W. Rudim: Analýza v reálném a komplexním oboru.

5.1 Základní definice

Definice 5.1

Necht H je reálný vektorový prostor. Řekneme, že H je prostor se skalárním součinem, jestliže existuje zobrazení $\langle\cdot,\cdot\rangle:H^2\to\mathbb{R}$ takové, že

- $\langle x, y \rangle = \langle y, x \rangle, \, \forall x, y \in H,$
- $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle, \, \forall x,y,z\in H,$
- $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle, \forall x, y \in H \ \forall \alpha \in \mathbb{R},$

- $\langle x, x \rangle \ge 0, \forall x \in H$,
- $\langle x, x \rangle = 0 \Leftrightarrow x = 0.$

Definujeme $||x||=\sqrt{\langle x,x\rangle}$. Řekneme, že prvek $x\in H$ je ortogonální k $y\in H$, značeno $x\perp y$, pokud $\langle x,y\rangle=0$.

Věta 5.1 (Schwarzova nerovnost)

Pro každé $x, y \in H$ platí $\langle x, y \rangle \leq ||x|| \cdot ||y||$.

 $D\mathring{u}kaz$

 $\forall t \in \mathbb{R} \text{ plati } h(t) = \langle x - ty, x - ty \rangle > 0.$

$$h(t) = \langle x, x - ty \rangle - \langle ty, x - ty \rangle = \langle x, x \rangle - t \langle x, y \rangle - t \langle y, x \rangle + t \langle y, y \rangle =$$
$$= ||x||^2 - 2t \langle x, y \rangle + t^2 ||y||^2 \ge 0.$$

Toto je nezáporná kvadratická funkce s determinantem $4 < x, y >^2 -4||x||^2 \cdot ||y||^2 > 0$, tedy $||x||^2 \cdot ||y||^2 \ge < x, y >^2$.

Věta 5.2 (Trojúhelníková nerovnost)

Pro každé $x, y \in H$ platí $||x + y|| \le ||x|| + ||y||$. Speciálně $(H, ||\cdot||)$ tvoří metrický prostor.

 $D\mathring{u}kaz$

L

$$\begin{aligned} ||x+y||^2 &= \langle x+y, x+y \rangle = < x, x> + < x, y> + < y, x> + < y, y> \leq \\ &\leq ||x||^2 + ||x|| \cdot ||y|| + ||y|| \cdot ||x|| + ||y||^2 = (||x|| + ||y||)^2. \end{aligned}$$

Definice 5.2

Nechť H je prostor se skalárním součinem. Řekneme, že H je Hilbertův prostor, pokud je metrický prostor $(H, ||\cdot||)$ úplný.

Věta 5.3 (Spojitost skalárního součinu)

 $Nechť \ H \ je \ Hilbertův \ prostor, \ potom \ jsou \ zobrazení \ x \mapsto < x,y > \ a \ x \mapsto ||x|| \ spojitá \ na \ H.$

 □ Důkaz

$$|\langle x_1, y \rangle - \langle x_2, y \rangle| = |\langle x_1 - x_2, y \rangle| \le ||x_1 - x_2|| \cdot ||y|| \implies \text{spojitost.}$$

Druhá část: Z trojúhelníkové nerovnosti plyne $||x_1|| - ||x_2|| \le ||x_1 - x_2||$ a $||x_2|| - ||x_1|| \le ||x_2 - x_1|| \implies$ spojitost $||\cdot||$.

Definice 5.3

Necht H je Hilbertův prostor a $E \subset H$. Řekneme, že E je konvexní, jestliže $\forall x, y \in E \ \forall t \in [0,1]$ platí $t \cdot x + (1-t) \cdot y \in E$.

Věta 5.4 (O existenci prvku s nejmenší normou)

Nechť H je Hilbertův prostor a $E \subset H$ je konvexní, neprázdná a uzavřená. Potom existuje právě jeden prvek E s nejmenší normou.

 $D\mathring{u}kaz$

Platí tzv. rovnoběžníkové pravidlo (dokážeme rozepsáním přes skalární součin, platí pouze pro normy ze skalárního součinu):

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2$$

Označme $\delta=\inf_{y\in E}||y||.$ Jednoznačnost nejbližšího prvku: Nech
t $y_1,y_2\in E,\,||y_1||=||y_2||=\delta.$

$$||y_1 - y_2||^2 = 2 \cdot ||y_1||^2 + 2 \cdot ||y_2||^2 - 4 \cdot ||\underbrace{\frac{y_1 + y_2}{2}}_{\in E}||^2 \le 2 \cdot ||y_1||^2 + 2||y_2||^2 - 4\delta^2 = 0 \implies y_1 = y_2.$$

Existence: Mějme $y_n \in E$, že $||y_n|| \stackrel{n \to \infty}{\to} \delta$. $||y_n - y_m||^2 = 2 \cdot ||y_n||^2 + 2 \cdot ||y_m||^2 - 4||\frac{y_n + y_m}{2}||^2 \le 2||y_n||^2 - 2||y_m||^2 - 4\delta^2 \implies y_n$ je cauchyovská posloupnost. H je úplný, takže $\exists y \in H: y_n \to y$. E je uzavřená, tedy $y \in E$.

Definice 5.4

Nechť $M \subset H$ je lineární podprostor Hilbertova prostoru H. Definujeme ortogonální podprostor $M^{\perp} = \{y \in H | \langle x, y \rangle = 0 \ \forall x \in M \}.$

Věta 5.5 (O projekci na podprostor)

Nechť M je uzavřený podprostor Hilbertova prostoru H.

- 1. Každý prvek z H má jednoznačný rozklad x=P(x)+Q(x) tak, že $P(x)\in M$ a $Q(x)\in M^{\perp}$.
- 2. P(x) je bod z M nejbližší k x, Q(x) je bod z M^{\perp} nejbližší k x.
- 3. Zobrazení $P: H \to M$ a $Q: H \to M^{\perp}$ jsou lineární.
- 4. $||x||^2 = ||P(x)||^2 + ||Q(x)||^2$.

 $D\mathring{u}kaz$

1. Jednoznačnost: Necht $x = x_1 + y_1 = x_2 + y_2, x_1, x_2 \in M$ a $y_1, y_2 \in M^{\perp}$

$$\implies M \ni x_1 - x_2 = y_2 - y_1 \in M^{\perp} \implies 0 = x_1 - x_2 = y_2 - y_1.$$

Existence: x+M je uzavřený podprostor \implies podle předchozí věty $\exists Q(x) \in x+M$ s nejmenší normou. Položme P(x)=x-Q(x), tj. P(x)+Q(x)=x.

$$P(x) \in M : Q(x) \in x + M \implies Q(x) - x \in M \implies P(x) \in M.$$

 $Q(x)\in M^\perp$: Neboli $\forall y\in M$: $\langle y,Q(x)\rangle=0.$ BÚNO $y\in M$ a ||y||=1. Q(x) je nejbližší v $x+M\implies$

$$||Q(x)||^2 \le ||Q(x) - \alpha y||^2 = \langle Q(x) - \alpha y, Q(x) - \alpha y \rangle = ||Q(x)||^2 - 2\alpha \langle Q(x), y \rangle + \alpha^2 \langle y, y \rangle$$
$$\implies 0 \le -2\alpha \langle Q(x), y \rangle + \alpha^2.$$

Pro
$$\alpha = \langle Q(x), y \rangle$$
 je $0 \le -\langle Q(x), y \rangle^2$, tedy $\langle Q(x), y \rangle = 0$.

2. Nechť $y \in M$ je libovolné. Pak

$$||x - y||^2 = ||Q(x) + P(x) - y||^2 = \langle Q(x) + P(x) - y, Q(x) + P(x) - y \rangle =$$
$$= ||Q(x)||^2 + ||P(x) - y||^2,$$

takže je to nejmenší právě tehdy, když y=P(x). Stejně se ověří i y=Q(x) pro libovolné $y\in M^{\perp}$.

- 4. $||x||^2 = \text{skalární součiny, jeden je nulový} = ||P(x)||^2 + ||Q(x)||^2$.
- 3. Chceme $P(\alpha x + \beta y) = \alpha \cdot P(x) + \beta \cdot P(y)$. x = P(x) + Q(x), y = P(y) + Q(y). $\alpha x + \beta y = P(\alpha x + \beta y) + Q(\alpha x + \beta y)$. Odečteme α a β násobek rovnic od třetí, tím dostaneme

$$M^{\perp} \ni \alpha Q(x) + \beta Q(y) - Q(\alpha x + \beta y) = P(\alpha x + \beta y) - \alpha P(x) - \beta P(y) \in M.$$

A protože $M\cap M^\perp=\{\emptyset\},$ tak se to rovná 0, tedy

$$P(\alpha x + \beta y) = \alpha P(x) + \beta P(y), Q(\alpha x + \beta y) = \alpha Q(x) + \beta Q(y).$$

 $D \mathring{u}slede k$

Nechť M je uzavřený podprostor Hilbertova prostoru H a $M \neq H$. Pak existuje $y \in M^{\perp}$, $y \neq 0$.

Věta 5.6 (O reprezentaci lineárního funkcionálu)

Nechť H je Hilbertův prostor a $L: H \to \mathbb{R}$ je spojité lineární zobrazení. Pak existuje právě

 $jedno y \in H \ tak, \ \check{z}e \ L(x) = \langle x, y \rangle.$

 $D\mathring{u}kaz$

Jednoznačnost: Necht $L(x) = \langle x, y_1 \rangle = \langle x, y_2 \rangle$. Pak $\forall x : \langle x, y_1 - y_2 \rangle = 0 \implies ||y_1 - y_2|| = 0$.

Existence: Pro L=0 zvolme y=0. Jinak mějme $M=\{x\in H|\ L(x)=0\}$. Toto je lineární podprostor a je uzavřený $(M=L^{-1}(\{0\}))$. Podle předchozího důsledku $\exists a\in M^{\perp},$ $a\neq 0$. BÚNO ||a||=1. Položme z=xL(a)-L(x)a, pak $L(z)=L(x)\cdot L(a)-L(x)\cdot L(a)=0 \implies z\in M$. Nyní $0=\langle a,z\rangle=\langle a,xL(a)-L(x)a\rangle=\langle a,x\rangle L(a)-L(x)\langle a,a\rangle \implies L(x)=\langle a,x\rangle L(a)=\langle x,aL(a)\rangle.$

5.2 Rozklad do Schauderovy báze

Definice 5.5 (Ortogonální a ortonormální množina, Fourierovy koeficienty)

Nechť H je Hilbertův prostor a A je indexová množina. Množina prvků $u_{\alpha} \in H$, kde $\alpha \in A$, se nazývá ortogonální, pokud je $\langle u_{\alpha}, u_{\beta} \rangle = 0 \ \forall \alpha, \beta \in A$ různé.

Ortogonální množina se nazývá ortonormální, pokud navíc $||u_{\alpha}|| = 1, \forall \alpha \in A.$

Jestliže $\{u_{\alpha}|\alpha\in A\}$ je ortonormální množina, pak pro každé $x\in H$ definujeme Fourierovy x vzhledem k u_{α} jako

$$\hat{x}(a) = \langle x, u_{\alpha} \rangle.$$

Věta 5.7 (O konečné ortonormální množině)

Nechť H je Hilbertův prostor, $\{u_{\alpha}\}_{{\alpha}\in A}$ je ortonormální množina a $F\subset A$ je konečná množina. Označme $M_F=\operatorname{span}\{u_{\alpha}|\alpha\in F\}$.

- 1. Nechť $\varphi: A \to \mathbb{R}$ je 0 mimo F. Pro vektor $y = \sum_{\alpha \in F} \varphi(\alpha) \cdot u_{\alpha}$ platí $\hat{y}(\alpha) = \varphi(\alpha)$ $a ||y||^2 = \sum_{\alpha \in F} |\varphi(\alpha)|^2$.
- 2. Je-li $x \in H$ a $s_F(x) = \sum_{\alpha \in F} \hat{x}(\alpha) \cdot u_{\alpha}$, pak $s_F(x) = P(x)$ je projekce na M. Navíc platí $\sum_{\alpha \in F} |\hat{x}(\alpha)|^2 \le ||x||^2$ (Besselova nerovnost).

$$\begin{array}{l} D\mathring{u}kaz\\ 1.\ (\hat{\alpha})=\langle y,u_{\alpha}\rangle=\left\langle \sum_{\beta\in F}\varphi(\beta)u_{\beta},u_{\alpha}\right\rangle =\text{(jelikož suma je konečná)}\\ \\ =\sum_{\beta\in F}\varphi(\beta)\cdot\langle u_{\beta},u_{\alpha}\rangle=\varphi(\alpha). \end{array}$$

$$||y||^2 = \left\langle \sum_{\beta \in F} \varphi(\beta) u_\beta, \sum_{\alpha \in F} \varphi(\alpha) u_\alpha \right\rangle = \sum_{\alpha, \beta \in F} \varphi(\alpha) \cdot \varphi(\beta) \cdot \langle u_\alpha, u_\beta \rangle = \sum_{\alpha \in F} (\varphi(\alpha))^2.$$

2.
$$\langle x - s_F(x), u_\alpha \rangle = \langle x, u_\alpha \rangle - \left\langle \sum_{\beta \in F} \hat{x}(\beta) \cdot u_\beta, u_\alpha \right\rangle = \langle x, u_\alpha \rangle - \hat{x}(\alpha) = 0$$
. Tedy $x - s_F(x) \in M_F^{\perp}$.

Nechť $y \in M_F$: $||x-y||^2 = \langle x-s_f+s_f-y, x-s_F+s_F-y\rangle = \langle x-s_F, x-s_F\rangle + 2 \cdot \langle x-s_F, s_F-y\rangle + \langle s_F-y, s_F-y\rangle = ||x-s_F||^2 + ||s_F-y|| \ge ||x-s_F||^2$. Tedy $s_F(x)$ je nejbližší kx v M_F , tedy projekce.

Pro
$$y = 0$$
 máme $||x||^2 \ge ||x - s_F||^2 + ||s_F||^2 \ge ||s_F||^2 = \sum_{\alpha \in F} |\hat{x}(\alpha)|^2$.

Definice 5.6 (Izometrie)

Nechť (X,ϱ) a (Y,τ) jsou MP. Pak $f:X\to Y$ je izometrie, když $\forall x_1,x_2\in X:\varrho(x_1,x_2)=\tau(f(x_1),f(x_2))$

Lemma 5.8

Nechť X, Y jsou metrické prostory, X je úplný a $f: X \to Y$ je spojité. Nechť X_0 je hustá podmnožina X a nechť $f(X_0)$ je hustá podmnožina Y. Nechť f je izometrie na X_0 , pak f je izometrie X na Y.

 $D\mathring{u}kaz$

Izometrie: Nechť $x, a \in X$, X_0 hustá $\Longrightarrow \exists x_n (\in X_0) \to x$, $a_n (\in X_0) \to a$. Víme, že f je izometrie na X_0 : $\varrho(x_n, a_n) = \tau(f(x_n), f(a_n)), \ \varrho(x_n, a_n) \to \varrho(x, a), \ \tau(f(x_n), f(a_n)) \to \tau(f(x), f(a))$.

Na: Nechť $y \in Y$, $f(X_0)$ je hustá v $Y \Longrightarrow \exists x_n \in X$, $f(x_n) \to y \Longrightarrow f(x_n)$ je cauchyovská v Y, ale f je izometrie, tedy i x_n je cauchyovská a X je úplný, tedy $\exists x \in X : x_n \to x$. Tudíž nutně $f(x_n) \to f(x) = y \leftarrow f(x_n)$, jelikož f je spojitá. \square

Věta 5.9 (Riesz-Fischerova věta)

Nechť H je Hilbertův prostor a $\{u_i\}_{i=1}^{\infty}$ je ortonormální množina. Nechť P je prostor všech

konečných lineární kombinací vektorů u_i . Potom pro každé $x \in H$ platí

$$\sum_{i=1}^{\infty} |\hat{x}(i)|^2 \le ||x||^2.$$

Zobrazení $x \to \hat{x}$ je spojité lineární zobrazení H na l_2 , jehož restrikce na \overline{P} je izometrie \overline{P} na l^2 .

 $D\mathring{u}kaz$

Z předchozí věty víme, že $\sum_{i=1}^n |\hat{x}(i)|^2 \leq ||x||^2 \implies$

$$\implies \sum_{i=1}^{\infty} |\hat{x}(i)|^2 \le ||x||^2.$$

Tedy $x \mapsto \hat{x}$ je z H do l^2 . Toto zobrazení je lineární

$$x + y(i) = \langle x + y, u_i \rangle = \langle x, u_i \rangle + \langle y, u_i \rangle = \hat{x}(i) + \hat{y}(i).$$

Spojitost: $\forall x, y \in H$

$$||x - y||^2 \ge \sum_{i=1}^{\infty} |\hat{x}(i) - \hat{y}(i)|^2$$

a z toho již plyne spojitost $x \mapsto \hat{x}$.

Podle předchozí věty je $x \mapsto \hat{x}$ izometrie na P.

Použijeme předchozí lemma na $X = \overline{P}$, $X_0 = P$, $Y = l^2$. (X je uzavřená podmnožina úplného, tedy úplný, X_0 je husté v X z definice uzávěru a $x \mapsto \hat{x}$ je spojité). $f(X_0) = \{\{a_n\}_{n=1}^{\infty} \in l^2 | \exists k a_n = 0 \forall n > k\}$ je podle příkladu na přednášce husté v l^2 .

Důsledek

 $L^2(0,1)$ je izometricky izomorfní l^2 .

Definice 5.7

Necht H je Hilbertův prostor a $h_i \in H$, $i \in \mathbb{N}$. Řekneme, že $\sum_{i=1}^{\infty} h_i$ konverguje k $s \in H$, pokud $\lim_{n\to\infty} ||s-\sum_{i=1}^n h_i||_H=0$.

Věta 5.10 (O maximální ortonormální množině)

Nechť H je Hilbertův prostor a $\{u_i\}_{i=1}^{\infty}$ je ortonormální množina. NPJE

- 1. $\{u_i\}_{i=1}^{\infty}$ je maximální ortonormální množina.
- 2. Množina P všech konečných lineárních kombinací prvků $z \{u_i\}$ je hustá v H.
- 3. $\forall x \in H: ||x||^2 = \sum_{i=1}^{\infty} |\hat{x}_i|^2$.

4. $\forall x, y \in H : \langle x, y \rangle = \sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i$.

 $5. \ x = \sum_{i=1}^{\infty} \hat{x}_i u_i.$

 $D\mathring{u}kaz$

"1. \Longrightarrow 2.": Sporem: Nechť $\overline{P} \neq H$. \overline{P} je uzavřený lineární podprostor H. Podle důsledku jedné z předchozích vět $\exists u \in \left(\overline{P}\right)^{\perp}, \ u \neq 0$. Pak ale $\langle u, u_i \rangle = 0, \ \forall i$. 4.

"2. \Longrightarrow 3.": Podle předchozí věty $x\mapsto \hat{x}$ je izometrie na $\overline{P}=H$ na l^2 . Tedy $||x||^2=||\hat{x}||_{l^2}=\sum_{i=1}^\infty |\hat{x}_i|^2$.

"3. \implies 4.":

$$||x+y||^2 - ||x-y||^2 = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle - (\langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle) = 4\langle x, y \rangle.$$

Analogicky

$$||\hat{x} + \hat{y}||^2 - ||\hat{x} - \hat{y}||^2 = 4\sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i.$$

Podle 3. pak dokazovaná rovnost platí.

"4. \implies 3.": Prostým dosazením x = y.

"5. \implies 1.": Pro spor at máme $x \perp u_i$, $\forall u_i$. Pak $x = \sum_{i=1}^{\infty} \hat{x}_i u_i = \sum_{i=1}^{\infty} \mathbf{o} = \mathbf{o}$.

",3. \implies 5.": Cheeme $y^n = \sum_{i=1}^n \hat{x}_i \cdot u_i \to x \Leftrightarrow ||y^n - x||_H \to 0$.

$$x - y^n, i \le n : \langle x - y^n, u_i \rangle = \langle x, u_i \rangle - \sum_{j=1}^n \hat{x}_j \langle u_j, u_i \rangle = \langle x, u_i \rangle - \hat{x}_i = 0.$$

$$i > n : \langle x - y^n, u_i \rangle = \langle x, y_i \rangle - \sum_{j=1}^n \hat{x}_i \langle u_j, u_i \rangle = \langle x, u_i \rangle.$$

Použijeme 3. pro $x-y^n$:

$$||x - y^n||_H^2 = \sum_{i=n+1}^{\infty} |\hat{x}_i|^2 \to 0.$$

Poznámka

Obdoba této věty platí i pro Hilbertův prostor s "nespočetnou" bází.

5.3 Trigonometrické řady

Definice 5.8 (Fourierovy koeficienty funkce, Fourierova řada)

Nechť $f \in L^2(0, 2R)$. Potom čísla

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx, \qquad k \in \mathbb{N}_0 \text{ a}$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx dx, \qquad k \in \mathbb{N}$$

nazýváme Fuourierovy koeficienty funkce f. Trigonometrickou řadu

$$F_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos kx + b_k \cdot \sin kx)$$

nazýváme Fourierovou řadou funkce f.

Věta 5.11 (O maximalitě trigonometrických funkcí)

Systém trigonometrických funkcí

$$\left\{\frac{1}{\sqrt{\pi}}\sin(nx)\right\}_{n=1}^{\infty}, \quad \left\{\frac{1}{\sqrt{\pi}}\cos(nx)\right\}, \quad \frac{1}{\sqrt{2\pi}}$$

tvoří maximální ortonormální množinu v $L^2(0,2\pi)$. Tedy existuje jediné $f\in L^2(0,2\pi)$ takové, že

$$\int_0^{2\pi} f(x)\sin(nx)dx = 0 \ \forall n \in \mathbb{N} \land \int_0^{2\pi} f(x)\cos(nx)dx = 0 \ \forall n \in \mathbb{N}_0$$

je identicky nulová funkce.

 $D\mathring{u}kaz$

Bez důkazu.

Dusledek

Pro každé $f\in L^2(0,2\pi)$ a a_k,b_k Fourierovy koeficienty f. Pak platí

$$f(x) = F_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

ve smyslu rovnosti rovnosti L^2 funkcí. Tedy v příslušném metrickém prostoru platí

$$f(x) = \frac{a_0}{2} + \lim_{n \to \infty} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx).$$

Navíc platí Parsevalova rovnost

$$\int_0^{2\pi} |f(x)|^2 dx = \pi \frac{a_0^2}{2} + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2).$$

Speciálně tedy dostáváme, že trigonometrické polynomy jsou husté v L^2 , a tedy spojité funkce $C([0, 2\pi])$ jsou husté v $L^2(0, 2\pi)$.

5.4 Separabilní metrické prostory

Definice 5.9 (Separabilní prostor)

Metrický prostor (P, ϱ) se nazývá separabilní, jestliže existuje spočetná množina $A \subset P$, která je hustá v P.

Věta 5.12 (Nutná podmínka separability)

Nechť (P,ϱ) je metrický prostor. Nechť existují nespočetná množina A a $\delta>0$ taková, že pro každá $x,y\in A,\ x\neq y,\ platí\ \varrho(x,y)\geq \delta.$ Potom P není separabilní.

 $D\mathring{u}kaz$

Sporem: Nechť Λ a δ jsou jako ve znění a $M \subset P$ je spočetná množina taková, že $\overline{M} = P$. Pro $a \in A$ uvažujeme $B(a, \frac{\delta}{2})$. Tyto koule jsou po dvou disjunktní. Z $\overline{M} = P$ víme, že existuje, že existuje $m_a \in M \cap B(a, \frac{\delta}{2})$. Jelikož jsou koule disjunktní, tak zobrazení $a \mapsto m_a$ je prosté. Je to ale zobrazení nespočetné množiny do spočetné. 4.

Definice 5.10

Nechť (P, ϱ) je metrický prostor a \mathcal{B} je nějaký systém otevřených podmnožin P. Řekneme, že \mathcal{B} je báze otevřených množin (P, ϱ) , jestliže pro každou otevřenou množinu $G \subset P$ existuje $\mathcal{B}^* \subset \mathcal{B}$ taková, že $\bigcup \mathcal{B}^* = G$.

Věta 5.13 (Charakterizace separabilních prostorů)

Metrický prostor je separabilní právě tehdy, když v něm existuje spočetná báze otevřených množin.

 $D\mathring{u}kaz$

 \Longrightarrow : Necht A je spočetná a $\overline{A}=P$. Položme $\mathcal{B}=\{B(a,r)|a\in A\land r\in Q\land r>0\}$. \mathcal{B} je spočetná. Dokážeme, že \mathcal{B} je báze. Necht $G\subset P$ je otevřená. Položme $\mathcal{B}^*=\{B(a,r)\in\mathcal{B}|B(a,r)\subset G\}$. Dokážeme, že $\bigcup\mathcal{B}^*=G$:

Zřejmě $\bigcup \mathcal{B} \subset G$. Zbývá ověřit druhou inkluzi. Nechť $z \in G$. Chceme ukázat, že $z \in \mathcal{B}^*$. G je otevřená, a tedy existuje $B(z,r) \subset G$. A je hustá, tudíž existuje $a \in A \cap B\left(z,\frac{r}{4}\right)$. Dále existuje $r^* \in \mathbb{Q} \cap \left(\frac{r}{2},\frac{3}{4}r\right)$. Pak $B(a,r^*) \in \mathcal{B}$. Navíc $r^* > \frac{r}{2}$, takže $z \in B(a,r^*)$. Dále $\varrho(a,z) < \frac{r}{4}$ a $r^* < \frac{3}{4}r$, a tedy $B(a,r^*) \subset B(z,r)$, z čehož dostáváme, že $B(a,r^*) \subset G$. Pak také $B(a,r^*) \in \mathcal{B}^*$, tudíž $\{z\} \in \bigcup \mathcal{B}^*$. Nakonec máme, že $G = \subset \mathcal{B}^*$.

 \Leftarrow : Nechť \mathcal{B} je spočetná báze otevřených množin, tedy $\mathcal{B} = \bigcup_{i=1}^{\infty} \{S_i\}$. A zvolíme tak, že z každé množiny vybereme libovolně jeden prvek. Pak A je spočetná. Chceme ukázat, že $\overline{A} = P$:

Necht $G \subset P$ je otevřená. Dále existuje $\mathcal{B}^* \subset \mathcal{B}$ tak, že $G = \bigcup \mathcal{B}^*$. Pak existuje S_i tak, že $S_i \subset G$, a tedy prvek vybraný z S_i je v G. Z toho máme, že $G \cap A \neq \emptyset$, tudíž A je hustá.

Věta 5.14 (Vztah totální omezenosti a separability)

Nechť je metrický prostor (P, ϱ) totálně omezený. Pak je separabilní.

□ Důkaz

Je-li (P,ϱ) totálně omezený, pak $\forall \varepsilon > 0$ existuje konečná ε -síť. Speciálně $\forall n \in \mathbb{N}$ existuje konečná $\frac{1}{n}$ -síť tak, že $P \subset \bigcup_{i=1}^{k_n} B\left(c_i^n, \frac{1}{n}\right)$. Pak $A = \{c_i^n | n \in \mathbb{N} \land i \in [k_n]\}$. Tato množina je spočetná. Dokážeme, ze $\overline{A} = P$. Nechť $x \in P$. Z definice $\frac{1}{n}$ -sítě existuje $x_n = c_i^n$ tak, že $\varrho(x_n, x) < \frac{1}{n}$. Pak jistě $x_n \to x$, což znamená, že A je hustá.