### TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CNTT&TT

# BÁO CÁO

Học phần: Thực hành kiến trúc máy tinh

Mã HP: IT3280

Mã lớp: 122032

#### Đề Bài

Tính gần đúng diện tích được giới hạn bởi một đường cong và đường thẳng.

#### Thành viên nhóm

| STT | Họ và tên      | MSSV     |
|-----|----------------|----------|
| 1   | Bùi Vân Anh    | 20184026 |
| 2   | Lê Ngọc Anh    | 20184031 |
| 3   | Đinh Thị Duyên | 20184085 |
| 4   | Trần Quang Nam | 20184161 |

# Mục lục

| 1 | Phân Công Công Việc                                           | . 2 |
|---|---------------------------------------------------------------|-----|
| 2 | Floating-point arithmetic on an MIPS computer (dấu phẩy động) | . 3 |
|   | a. Nguyên tắc chung biểu diễn số thực                         | . 3 |
|   | b. Chuẩn IEEE754                                              | . 3 |
|   | c. Dấu phẩy động trong MIPS                                   | . 4 |
| 3 | Trapezoid method (Phương pháp Hình Thang)                     | . 5 |
|   | a. Thuật toán, ý tưởng.                                       | . 5 |
|   | b. Sơ đồ                                                      | . 6 |
|   | c. Công cụ sử dụng                                            | . 7 |
| 4 | CODE                                                          | . 7 |

# 1 Phân Công Công Việc

| STT | Họ và Tên      | Nội dung công việc                         |  |
|-----|----------------|--------------------------------------------|--|
| 1   | Bùi Vân Anh    | Code hàm tính diện tích                    |  |
|     |                | Viết báo cáo                               |  |
| 2   | Lê Ngọc Anh    | Tìm hiểu về dấu phẩy động                  |  |
|     |                | Làm slide                                  |  |
| 3   | Đinh Thị Duyên | Tìm hiểu thuật toán tính diện tích         |  |
|     |                | Viết báo cáo phần phương pháp hình thang   |  |
| 4   | Trần Quang Nam | Code nhập xuất dữ liệu, kiểm tra điều kiện |  |
|     |                | Làm slide                                  |  |

## 2 Floating-point arithmetic on an MIPS computer (dấu phẩy động)

#### a. Nguyên tắc chung biểu diễn số thực

Trong máy tinh số thực được biểu diễn bằng kiểu số dấu phẩy động (Floating Point Number)

Tổng quát: Một số thực X được biểu diễn theo kiểu số dấu phẩy động như sau:

$$X = \pm M*R^E$$

- M là phần định trị (Mantissa)
- R là cơ số (Radix)
- E là phần mũ (Exponent)

#### b. Chuẩn IEEE754

Chuẩn được dùng để biểu diễn phổ biến trong máy tính là IEEE754-2008

- Cơ số 2
- Các dạng:

#### **Dang 32-bit (single-precision)**



o S là bit dấu:

$$S = 0 \rightarrow S \hat{o}$$
 Dương

$$S = 1 \rightarrow S\hat{o} \hat{A}m$$

o e (8bit) là giá trị dịch chuyển của phần mũ E:

$$e = E + 127 \rightarrow E = e - 127$$

o m (23bit) là phần lẻ của phần định trị M:

$$M = 1.m$$

Công thức:

$$X = (-1)^{S}*1.m*2^{e-127}$$

$$S = 1 \rightarrow S\hat{o} \hat{a}m$$

$$e = 10000010_{(2)} = 130_{(10)} \rightarrow E = 130-127 = 3$$

$$\rightarrow$$
 X = -1.10101100<sub>(2)</sub> \* 23 = -1101.011<sub>(2)</sub> = -13.375<sub>(10)</sub>

#### Dang 64-bit (double-precision)



#### Dang 128-bit (Quadruple precision)

| S           | e      |    | m       |  |
|-------------|--------|----|---------|--|
| <del></del> |        | →- |         |  |
| 1 bit       | 15 bit |    | 112 bit |  |

- Các quy ước đặc biệt
  - $\circ$  Các bit của e bằng 0, các bit của m bằng 0, thì  $X = \pm 0$  $\times 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ a$   $X = \pm 0$

  - Các bit của e bằng 1, còn m có ít nhất một bit bằng 1, thì nó không biểu diễn cho số nào cả (NaN - not a number)

#### c. Dấu phẩy động trong MIPS

MIPS có bộ xử lý dấu phẩy động (Coprocessor 1) (FTU). Bộ xử lý này có thanh ghi riêng

- 32 thanh ghi 32-bit (single-precision):  $f0,f1,f2,...,f31 \rightarrow Float$
- - $\rightarrow$  Double

Các lệnh số dấu phẩy động chỉ thực hiện trên các thanh ghi số dấu phẩy động Môt số lênh cơ bản:

• Lệnh load và store:

lwc1, ldc1,swc1,sdc1 VD: ldc1 \$f8,32(\$s2)

• Các lệnh số học với số FP 32-bit (single-precision)

add.s, sub.s, mul.s, div.s

VD: add.s \$f0,\$f1,\$f6

• Các lênh số học với số FP 64-bit (doule-precision)

add.d, sub.d, mul.d, div.d

VD: mul.d \$f4, \$f4, \$f6

• Các lênh so sánh

c.xx.s, c.xx.d (trong đó xx là eq, lt, le, ...)

Thiết lập hoặc xóa các bit mã điều kiện

VD: c.lt.s \$f3, \$f4

• Các lênh rẽ nhánh dưa trên mã điều kiên

bc1t, bc1f

VD: bc1t TargetLabel

#### 3 Trapezoid method (Phương pháp Hình Thang)

#### a. Thuật toán, ý tưởng.

Dữ kiện đề bài:

b : giá trị lớn nhất mà x nhận được

 $(b:2, 2 \le b \le 4)$ 

n: Số hình thang nhỏ hơn được chia ra.

 $(n \subset \mathbb{N}, 10 \le n \le 20).$ 

5

Biểu thức y  $y = f(x) = \frac{4}{x^2 + 1}$ 

**Yêu cầu**: tính gần đúng diện tích giữa đường cong được xác định bởi hàm f(x), trục Ox và hai đường thẳng x = 0 và x = 0 tức là phần màu xanh như hình.



#### Phương pháp hình thang:

Chia hình thành n hình thang nhỏ hơn sao cho mỗi hình thang nhỏ có chiều cao bằng nhau.

$$h = b/n$$

Đáy bé và đáy lớn của các hình thang lần lượt là kết quả của biểu thức :

$$f(x) = \frac{4}{x^2 + 1}$$

Diễn tích hình thang nhỏ có độ dài cạnh là  $x_1, x_2$ 

$$S_{12} = \frac{f(x_1) + f(x_2)}{2} \times h$$

Tổng diện tích của n hình thang chính là kết quả cần tìm:

$$S = \frac{f(x_0) + f(x_1)}{2} \times h + \frac{f(x_1) + f(x_2)}{2} \times h + \dots + \frac{f(x_{n-1}) + f(x_n)}{2} \times h$$
  
$$S = h \times \left(\frac{f(x_0) + f(x_n)}{2} + f(x_2) + f(x_3) + \dots + f(x_{n-1})\right)$$

Với  $x_0 = 0$ ;  $x_n = b$ 

$$S = h \times \left(\frac{f(0) + f(b)}{2} + f(x_1) + f(x_2) + \dots + f(x_{n-1})\right)$$
$$x_i = i * h \text{ v\'oi } h = \frac{b}{n}$$

### b. Sơ đồ



#### c. Công cụ sử dụng

System function : In ra thông báo nhập và xuất các dữ liệu.

Stack: Lưu dữ liệu trong quá trình thực hiện tính toán.

Chia chương trình thành các chương trình con để tính toán.

#### 4 CODE

https://husteduvn-

 $\underline{my.sharepoint.com/:u:/g/personal/anh\_bv184026\_sis\_hust\_edu\_vn/EV7jBO1kWppAi\_LE2NNCb2vcBQ3a38z3MNVh7Bxbh0pgzUg?e=FNifoj}$