ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno Tobiáš Vacek		Datum měření 29. 4. 2025		
Stud. rok 2024-2025	Ročník První	Datum odevzdání 18. 5. 2025		
Stud. skupina 1101L	Lab. skupina 9.	Klasifikace		

Číslo úlohy Název úlohy Stanovení měrného náboje elektronu

1 Úkol měření

1. Ze zakřivení drah elektronů pohybujících se v magnetickém poli stanovte $m \check{e}rn\acute{y}$ $n\acute{a}boj$ elektronu.

2 Použité přístroje

Počet	Pomůcka	číslo	Přesnost	Rozsah
1	ampérmetr	MY-65	$\pm 2\% (\pm 5)$	10 A
			digitů)	
1	voltmetr	MY-64	$\pm 0.8\% (\pm 2)$	1000 V
			digity)	

3 Naměřené hodnoty a vypočtené hodnoty

Poloměr zakřivení [cm]	2	2	2	2	3	3	3	3
Urychlovací napětí [V]	129	174	210	250	135	175	210	250
Proud cívkou [A]	2.66	3.33	3.69	3.99	1.64	2.16	2.38	2.60
Magnetická indukce [mT]	1,84	2,31	2,55	2,76	1,14	1,50	1,65	1,80
Měrný náboj $[10^{11} \ C \cdot kg^{-1}]$	1.90	1.63	1.60	1.63	2.32	1.73	1.71	1.71
Poloměr zakřivení [cm]	4	4	4	4	5	5	5	5
Urychlovací napětí [V]	150	190	220	250	150	190	220	250
Proud cívkou [A]	1.41	1.66	1.81	1.93	1.13	1.32	1.46	1.56
Magnetická indukce [mT]	0,98	1,15	1,25	1,34	0,78	0,91	1,01	1,08
Měrný náboj $[10^{11} \ C \cdot kg^{-1}]$	1.96	1.79	1.75	1.75	1.96	1.81	1.72	1.71

4 Výpočet

4.1 Měrný náboj

Magnetickou indukci B jsme vypočetli podle vzorce:

$$B = \frac{8}{5\sqrt{5}} \frac{\mu_0 NI}{a}$$

kde $\mu_0 = 4\pi \cdot 10^{-7} N \cdot A^{-2}$ je magnetická konstanta, N=154 je počet závitů cívky, I je proud procházející cívkou a $a=0.2\,m$ je poloměr cívky.

S pomocí magnetické indukce jsme vypočetli měrný náboj elektronu $\frac{e}{m_e}$ podle vzorce:

$$\frac{e}{m_e} = \frac{2U}{B^2 R_c^2}$$

kde U je urychlovací napětí, B je magnetická indukce a R_c je poloměr zakřivení dráhy elektronu.

Výpočet průměrné hodnoty měrného náboje a směrodatné odchylky:

$$\frac{\overline{e}}{m_e} = \frac{\sum_{i=0}^n \frac{e}{m_e_i}}{n} = 1.7979 \cdot 10^{11} C \cdot kg^{-1}$$

$$\sigma = \sqrt{\frac{\sum_{i=0}^{n} (\overline{x} - x_i)^2}{n(n-1)}} = 1.23 \cdot 10^{10} C \cdot kg^{-1}$$

pro zpřesnění výpočtu měrného náboje, byly z výpočtu odstraněny hodnoty, které se od průměru liší o více než je směrodatná odchylka.

Obrázek 4.1: Graf měrného náboje elektronu s vyznačenou směrodatnou odchylkou

Po odstranění těchto hodnot se průměrná hodnota měrného náboje elektronu, změnila na:

$$\overline{\frac{e}{m_e}} = 1.7629 \cdot 10^{11} C \cdot kg^{-1}$$

4.2 Nejistoty

4.2.1 Nejistota magnetické indukce

$$u_b(I) = \frac{\text{nejmenš\acute{i} d\'ilek}}{\sqrt{12}} = \frac{0.01}{\sqrt{12}} = 0.003A$$
$$u_c(B) = \sqrt{(\frac{\partial B}{\partial I} \cdot u_b(I))^2} = 0.69mT$$

4.2.2 Nejistota měrného náboje

$$u_b(U) = \frac{\text{nejmenš\'i d\'ilek}}{\sqrt{12}} = \frac{1}{\sqrt{12}} = 0.28V$$

$$u_c(\frac{e}{m_e}) = \frac{\sum_{i=0}^n \sqrt{(\frac{\partial \frac{e}{m_e}}{\partial U_i} \cdot u_b(U))^2 + (\frac{\partial \frac{e}{m_e}}{\partial B_i} \cdot u_c(B))^2}}{n} = 1.11 \cdot 10^9 C \cdot kg^{-1}$$

5 Závěr

Ze zakřivení drah elektronů jsme určili, že měrný náboj elektronu je $\frac{e}{m_e} = (1.76 \pm 0.01) \cdot 10^{11} C \cdot kg^{-1}$. Tato hodnota se od tabulkové hodnoty $\frac{e}{m_e} = 1.75 \cdot 10^{11} C \cdot kg^{-1}$ liší o 0,2%.

6 Literatura

- 1. https://physics.nist.gov/cgi-bin/cuu/Value?esme|search_for=electron+charge
- 2. https://planck.fel.cvut.cz/praktikum/downloads/navody/mernab.pdf
- 3. https://planck.fel.cvut.cz/praktikum/pristroje.php