Самый известный NP-полный язык — это, конечно, ВЫПОЛ-НИМОСТЬ, который состоит из кодировок всех выполнимых булевых формул. Иначе говоря, для каждой формулы 1 из языка ВЫПОЛНИМОСТЬ существуют такие значения переменных, при которых эта формула истинна. Можно считать формулы не произвольными, а, например, КНФ или даже 3-КНФ, у которых в каждый дизъюнкт входит не более 3 переменных. В последнем случае получаем язык 3-ВЫПОЛНИМОСТЬ. Можно дополнительно предполагать, как это делается в [Кормен 1] или [Кормен 2], что в каждый дизтонкт входит ровно три литерала и что все литералы в каждом дизтонкте 3-КНФ различны. Но от этого требования можно и отказаться, если окажется проще строить какие-то сводимости, т. е. рассмотреть более широкий полный язык, в котором литералы в дизъюнктах могут повторяться и в каждый дизъюнкт входит не более трех литералов. Такой трактовки языка 3-ВЫПОЛНИМОСТЬ мы и будем придерживаться в этом задании. Тогда при часто используемом преобразовании 3-КНФ в РОВНО-3-КНФ можно просто дополнить дизъюнкт нужным числом литералов. Например, дизъюнкт $\neg x_2 \lor x_3$ переписывается в эквивалентном виде $\neg x_2 \lor x_3 \lor x_3$ или $\neg x_2 \lor x_3 \lor \neg x_2$. Другое дело, что некоторые сводимости при таком понимании 3-КНФ, возможно, перестанут выполняться, и тогда нужно уточнить и/или изменить сами сводимости.

Приведем несколько примеров NP-полных языков.

ПРОТЫКАЮЩЕЕ МНОЖЕСТВО Дано семейство конечных множеств $\{A_1,\ldots,A_m\}$ и натуральное число k. Существует множество мощности k, пересекающее каждое A_i . Язык остается NP-полным, даже если предположишть, что мощности всех A_i равны 2.

КЛИКА. Даны неориентированый граф G и натуральное число k. В G есть клика (полный подграф) на k вершинах.

ВЕРШИННОЕ ПОКРЫТИЕ

ХРОМАТИЧЕСКОЕ ЧИСЛО. Даны неориентированый граф G и натуральное число k. Вершины G можно раскрасить в k цветов так, чтобы смежные вершины были окрашены в разные цвета. При k=3 получаем язык 3-COLOR и он также NP-полный.

ГАМИЛЬТОНОВ ГРАФ. Дан неориентированый граф G, в котором есть *гамильтонов цикл*. Иными словами, существует циклический обход всех вершин графа, не попадающий ни в какую вершину дважды.

РАЗБИЕНИЕ или ЗАДАЧА О КАМНЯХ Дано конечное множество (куча) камней A, причем вес каждого камня $a \in A$ является целым положительным числом s(a). Можно разбить A на две кучи одинакового веса. Иными словами, существует такое подмножество $A' \in A$, что $\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$. 3-СОЧЕТАНИЕ. Дано множество $M \subseteq W \times X \times Y$, где W, X и

3-СОЧЕТАНИЕ. Дано множество $M \subseteq W \times X \times Y$, где W, X и Y — непересекающиеся множества, содержащие одинаковое число элементов q. В M есть mpexмерное coчеmanue, τ . e. такое подмножество $M' \subseteq M$ мощности q, никакие два элемента которого не имеют ни одной одинаковой координаты.

РЮКЗАК. Дана натуральные числа $\{a_1,\dots,a_n\}$ и натуральное число b, такие что сумма некоторых a_i равна b.

 \max —2-ВЫПОЛНИМОСТЬ. Дана 2-КНФ (т. е. КНФ, в каждую дизъюнкцию которой входит не более двух логических переменных) и двоичное число k. Существует такой набор значений логических переменных, что выполняются k или более дизъюнкпий.

МАКСИМАЛЬНЫЙ РАЗРЕЗ. Дан граф G и натуральное число k. Множество вершин графа можно разбить на два непересекающихся подмножества, между которыми можно провести не менее k ребер.

Иногда говорят о взвешенном варианте задачи. Дан граф G(V,E) с неотрицательной весовой функцией на ребрах $w:E\to \mathbb{Z}_+$ и натуральное число k. Можно найти дизъюнктное разбиение множества $V=V_1\sqcup V_2$, такое что сумма весов ребер, соединяющих V_1 и V_2 , не менее k.

N[ot]A[ll]E[Qual]-SAT. Дана $KH\Phi$ -формула, для которой существует набор, такой что в каждом дизъюнкте есть истинный и ложный литералы.

Зафиксируем выполнимую КНФ $\psi(x_1,x_2,x_3)=(x_1\vee x_2\vee \neg x_3)$ [зависящую от трех переменных и имеющую 1 дизъюнкт] и НЕвы-

полнимую КНФ $\chi(x_1,x_2)=(x_1\vee x_2)\wedge (x_1\vee \neg x_2)\wedge \neg x_1$ [зависящую от двух переменных и имеющую 3 дизъюнкта].

Везде ниже мы будем иллюстрировать сводимости, используя именно эти ${\rm KH}\Phi.$

33. (0.01) В [Кормен 1] или [Кормен 2] предполагается, что в языке 3-ВЫПОЛНИМОСТЬ (по Кормену) в каждый дизъюнкт входит ровно три литерала и все литералы в каждом дизъюнкте различны. Укажите, как за полиномиальное время преобразовать произвольную 3-КНФ ϕ , в которой в каждом дизъюнкте содержится не более трех литералов, причем литералы могут повторяться, в РОВНО-3-КНФ $\tilde{\phi}$, в которой в каждый дизъюнкт входит РОВНО три неповторяющихся литерала. При этом ϕ должна быть выполнима тогда и только тогда, когда выполнима $\tilde{\phi}$. Иными словами, постройте полиномиальную сводимость языка 3-ВЫПОЛНИМОСТЬ к языку 3-ВЫПОЛНИМОСТЬ (по Кормену).

34. (2×0.01) Постройте сводимость языка ВЫПОЛ-НИМОСТЬ к языку ПРОТЫКАЮЩЕЕ МНОЖЕ-СТВО.

Конструкция такова. Пусть $\phi(x_1,\ldots,x_n)$ КНФ. Построим по КНФ семейство подмножеств \mathcal{A}_{ϕ} базового множества $\{x_1,\ldots,x_n,\neg x_1,\ldots,\neg x_n\}$. Во-первых, включим в \mathcal{A}_{ϕ} n подмножеств вида $A_i=\{x_i,\neg x_i\},\ i=1,\ldots,n$. Во-вторых, для каждого дизъюнкта C, входящего в $\phi(\cdot)$, добавим к \mathcal{A}_{ϕ} подмножество A_C , состоящее из всех входящих в C логических переменных (если в C входит логическая переменная x_i , то включаем в A_C элемент x_i , а если в C входит переменная x_i , то включаем в A_C элемент x_i).

Для обоснования сводимости нужно доказать, что исходная $\mathbf{KH\Phi}\ \phi(\cdot)$ выполнима тогда и только тогда, когда \mathcal{A}_{ϕ} имеет протыкающее множество мощности n. Обоснование легко получить, если решить две следующие задачи.

- (*i*) Укажите для семейства A_{ψ} соответствующее **трех- элементное** протыкающее множество.
- (ii) Докажите, что мощность любого протыкающего множества для семейства \mathcal{A}_χ больше двух.

Если использовать полный язык 3-ВЫПОЛНИМОСТЬ, то из построенной сводимости следует, что язык остается NP-полным, даже если все A_i имеют не более 3 элементов. Но оказывается, что язык остается NP-полным, даже если все A_i двухэлементные. Если отождествить эти пары элементов с ребрами некоторого графа, то соответствующий язык известен как ВЕРШИН-НОЕ ПОКРЫТИЕ: даны неориентированый граф G = (V, E)и натуральное число k. о В G есть вершинное покрытие мощности k, т. е. такое подмножество вершин $V' \subseteq V$ мощности k, что хотя бы *один конец кажедого ребра* входит в V'. Покажем, что этот язык также NP-полон. Для этого сведем к нему язык 3-ВЫПОЛНИМОСТЬ². Во-первых, будем считать, что исходная КНФ дополнена до РОВНО-3-КНФ и в каждый ее дизъюнкт входит ровно три литерала. Построим по КНФ $\phi(x_1,\ldots,x_n)$ граф G_{ϕ} , вершины которого помечены и делятся на литеральные и дизъionimize. Для каждой логической переменной x_i образуем пару **смежных** литеральных вершин, помеченных, соответственно, x_i и $\neg x_i$. Для каждого 3-дизъюнкта C образуем три **смежных** дизъюнктных вершины, помеченных переменными этого дизъюнкта. Каждую дизъюнктную вершину соединим с соответствующей дитеральной вершиной, имеющей ту же метку. Если ϕ имела m дизъюктов, то, по построению, G_{ϕ} имеет 2n + 3m вершин.

Для обоснования сводимости нужно доказать, что ϕ выполнима, если и только если G имеет вершинное покрытие мощности $\mathbf{n} + 2m$. Обоснование может быть построено, если решить

¹Проверьте себя: приведите формальное определение **булевой** формулы. Чем отличается **булева схема** от **булевой формулы**?

 $^{^2}$ В книге [Кормен 1, §36.5.2] строится другая сводимость, использующая NP-полный язык КЛИКА.

окрашенные графы.

следующую задачу.

- **35.** (2×0.01) (i) Укажите для графа G_{ψ} соответствующее $(n_{new}(\psi) + 2m_{new}(\psi))$ -вершинное покрытие.
- (*ii*) Докажите, что мощность любого вершинного покрытия для графа G_{χ} больше $(n_{new}(\chi) + 2m_{new}(\chi))$.

Здесь $n_{new}(\cdot), m_{new}(\cdot)$ обозначают, соответственно, число переменных и число дизъюнктов КНФ после ее преобразования в РОВНО-3-КНФ.

- В [Кормен 1, §36.5.1] или [Кормен 2, §34.5.1] описано построение по любой РОВНО-3-КНФ $\phi(x_1,\ldots,x_n)$ с m дизъюнктами графа \tilde{G}_{ϕ} на 3m вершинах, в котором имеется клика размера m тогда и только тогда, когда $\phi(x_1,\ldots,x_n)$ выполнима. Следующая задача посвящена этой сводимости. Конструкция такова. Каждому дизъюнкту отвечает тройка вершин-переменных, а ребро соединяет вершины u и v тогда и только тогда, когда они приписаны разным дизъюнктам, а отвечающие им переменные не являются отрицанием друг друга. Следующая задача посвящена этой сводимости. Сначала ψ и χ нужно преобразовать в РОВНО-3-КНФ, которые содержат m и n 3-дизъюнктов, соответственно.
- **36.** (2×0.01) (i) Укажите для графа \tilde{G}_{ψ} соответствующую m-клику.
- (ii) Докажите, что мощность любой клики в графе \tilde{G}_χ меньше n.
- О *NP*-полноте языков ГАМИЛЬТОНОВ ГРАФ и РАЗБИ-ЕНИЕ см.: **[Кормен 1, §36.5.4]** и **[Кормен 1, задача 36.5-4]** (соответственно, **[Кормен 2, §34.5.3]** и **[Кормен 1, задача 34.5-5]**).

Опишем полиномиальную сводимость NP-полного языка 3-ВЫПОЛНИМОСТЬ к языку \max —2-ВЫПОЛНИМОСТЬ (этим будет доказана полнота языка \max —2-ВЫПОЛНИМОСТЬ в \mathcal{NP} , поскольку его принадлежность \mathcal{NP} очевидна).

Сначала преобразуем 3-КНФ в эквивалентную 3-КНФ, в которой каждая дизъюнкция содержит в точности 3 переменные. Для любой 3-КНФ $\alpha = \bigwedge_{1}^{n} (a_i \vee b_i \vee c_i)$, где a_i, b_i, c_i — это либо некоторая логическая переменная, либо ее отрицание, построим 2-КНФ у следующим образом: для i-й дизъюнкции ($a_i \lor b_i \lor c_i$) включим $\neg c_i, \neg b_i \lor \neg c_i, \neg a_i \lor \neg d_i, b_i \lor \neg d_i, c_i \lor \neg d_i$, где $d_i, i = 1, \ldots, n$ это новые логические переменные. Таким образом, осталось проверить, что если i-я дизъюнкция выполнима [в 3-КН Φ], то можно так подобрать значение переменной d_i , что не менее q дизъюнкций из L_i будут выполнимы. А если i-я дизъюнкция невыполнима [в 3-КНФ], то при любом значении переменной d_i , меньше q дизъюнкций из L_i будут выполнимы. (q - это параметр, который выдолжны найти самостоятельно.) Таким образом, если исходная 3-КНФ α выполнима, то в 2-КНФ $\bigwedge_{i=1}^{n} L_{i}$ будет выполнено не менее qn 2-дизъюнктов. И наоборот, для любой невыполнимой 3-КНФ α в 2-КНФ $\bigwedge_{1}^{n} L_{i}$ менее qn дизъюнктов будет выполнено.

- **37.** (2×0.02) (*i*) Преобразуйте ψ в РОВНО-3-КНФ [в которой образовалось k 3-дизъюнктов] и вычислите результирующую 2-КНФ $\tilde{\psi}$ при указанной полиномиальной сводимости, указав пороговое значение kq.
- (ii) Укажите какой-нибудь набор значений логических переменных, при которых в $\tilde{\psi}$ выполнено $\geq kq$ дизюнктов.
- **38.** (0.02) Покажите, что если язык 3-COLOR∈ \mathcal{P} , то за полиномиальное время можно не только определить, что граф допускает раскраску вершин в три цвета, но и найти какую-то 3-раскраску (если она существует). Обратите внимание, что на вход процедуры, проверяющей 3-раскрашиваемость, нельзя подавать частично