1 Theoretical Background

1.1 Simplices

A collection of k+1 points is affinely independent if the members lie on an affine hyperplane of dimension k. The convex hull of a set $X \subseteq \mathbb{R}^n$ is the smallest convex set containing X. For a finite set $\{x_0, \ldots, x_k\}$ this is the set of combinations $\sum_{i=0}^k \lambda_i x_k$ with $\sum_{i=0}^k \lambda_i = 1$.

Definition 1.1. Given an affinely independent set $X = \{x_0, \ldots, x_k\} \subseteq \mathbb{R}^n$, the k-dimensional simplex (sometimes called a geometric simplex) $\sigma = [x_0, \ldots, x_n]$ spanned by X is the convex hull of X. The points of X are called the vertices of σ , and the simplices spanned by subsets of X (which are necessarily affinely independent) are called the faces of σ .

Definition 1.2. A simplicial complex K is a finite collection of geometric simplices such that

- (i) for any simplex $\sigma \in K$, every face of σ is in K;
- (ii) for any two simplices $\sigma, \tau \in K$, $\sigma \cap \tau$ is either empty, or a face of both σ and τ .

The dimension of K is the largest dimension of any simplex in K. A subcomplex of K is a subset of K which is a simplicial complex.

1.2 Simplicial Homology

Definition 1.3. Given a simplicial complex K, we define a p-chain as a subset of the p-simplices in K.

We can write a p-chain c as the formal sum $c = \sum a_i \sigma_i$ where the sum is over all p-simplices and the coefficients are in \mathbb{Z}_2 . This gives rise to an abelian group $(C_p, +)$, where $c + c' = \sum (a_i + b_i)\sigma_i$ and the coefficients are reduced mod 2. It can be further extended to a vector space by defining scalar multiplication as $a \cdot c = \sum (a \cdot a_i)\sigma_i$.

The boundary of a p-simplex is the set of (p-1)-faces. The boundary of a p-chain is the sum of the boundaries of its p-simplices: $\partial_p c = \sum a_i \partial_p \sigma_i$.

Definition 1.4. This can be formalised as an operation between vector spaces:

$$\partial_p:C_p\to C_{p-1}$$

called the boundary homomorphism.

These vector spaces and maps can be lined up into a sequence

$$\cdots \to \partial_{p+2}C_{p+1} \to \partial_{p+1}C_p \to \partial_pC_{p-1} \to \partial_{p-1}\ldots$$

called the chain complex of K.

Proposition 1.1. $\partial \partial c = 0$.

Proof. Let σ be a p-simplex. The vertices of a (p-2)-face are a subset of size p-1 from the p+1 vertices of σ . There are two subsets of V(p) with size p containing these p-2 vertices. It follows that every (p-2)-face of σ is contained in exactly two (p-1)-faces, and therefore that $\partial \partial$ vanishes on σ as coefficients are reduced mod 2. By homomorphism properties this now follows for p-chains.

Definition 1.5. A p-cycle is a p-chain without boundary, the set of all p-cycles is therefore $\ker \partial_p$. As the kernel of a homomorphism it is a subgroup of C_p , and we denote it by Z_p .

Similarly, we define a p-boundary to be the boundary of a (p+1)-chain, the set of all p-boundaries is therefore im ∂_{p+1} . As the image of a homomorphism it is a subgroup of C_p , and we denote it by B_p .

Note also that $B_p \subseteq Z_p$ because Z_p is abelian, we can therefore take the quotient Z_p/B_p which represents the distinct cycles up to boundary.

Definition 1.6. We say that $z, z' \in Z_p$ are homologous if they fall in the same conjugacy class in Z_p/B_p .

We denote the quotient Z_p/B_p by H_p , and call it the pth homology group. Its members are referred to as homology classes.

The above definitions can be extended to incorporate the vector space structure. Then, the rank-nullity theorem can then be applied to give

$$rank H_p = rank Z_p - rank B_p,$$

which we refer to the pth Betti number of K and notate by $\beta_p = rank H_p$.

Definition 1.7. Define the Euler characteristic of a simplicial complex K by

$$\chi(K) = \sum_{i=0}^{k} (-1)^{i} \operatorname{rank} C_{p},$$

where $k = \dim K$.

The map $\partial_p: C_p \to B_{p-1}$ is surjective, so we can apply the rank-nullity theorem to get rank $B_{p-1} = \operatorname{rank} C_p - \operatorname{rank} Z_p$. We can use this, along with that $B_i = \mathbf{0}$ for i outside $\{0, \ldots, k-1\}$, to rewrite the Euler characteristic:

$$\chi(K) = \sum_{i=0}^{k} (-1)^{i} (\operatorname{rank} Z_{p} + \operatorname{rank} B_{i-1})$$

$$= \sum_{i=0}^{k} (-1)^{i} \operatorname{rank} Z_{p} - \sum_{i=0}^{k} (-1)^{i} B_{i}$$

$$= \sum_{i=0}^{k} (-1)^{i} (\operatorname{rank} Z_{p} - B_{i})$$

$$= \sum_{i=0}^{k} (-1)^{i} \beta_{i}.$$

1.3 Homology

Definition 1.8. The underlying space of a simplicial complex K is defined as the union

$$|K| = \bigcup_{\sigma \in K} \sigma,$$

and equipt with the subspace topology.

Definition 1.9. A triangulation of a topological space X is a simplicial complex K, whose underlying space is homeomorphic to X.

The previous definition of the Euler characteristic can be extended to be a well-defined topological invariant by defining it on a triangulation of a space. It is independent of the specific choice of triangulation. We note that having the same homology groups is weaker than having the same homotopy type, which is again weaker than being homeomorphic:

$$X \approx Y \implies X \simeq Y \implies H_n(X) \cong H_n(Y)$$
 for all p..

The implications of this are that to compute the Betti numbers of X, we may find a space Y with the same homotopy type and compute its Betti numbers.