From fam See André Caso

(1)
$$\overrightarrow{Pa}$$
 \overrightarrow{Ca} = \overrightarrow{Pa} \overrightarrow{A} + \overrightarrow{Pa} \overrightarrow{Ca} + \overrightarrow{Fa} (1-1)

(2) \overrightarrow{Pk} \overrightarrow{Ca} = \overrightarrow{Pa} \overrightarrow{A} + \overrightarrow{Pa} (1-1)

(3) $\overrightarrow{V} = \overrightarrow{Ca}$ + \overrightarrow{Ca} + \overrightarrow{Fa} [\overrightarrow{F} + \overrightarrow{Pk} (1-1)

(4) $\overrightarrow{Ca} = \overrightarrow{Fa}$ + \overrightarrow{Ca} + \overrightarrow{Fa} [\overrightarrow{F} + \overrightarrow{Pk} (1-1)

(4) $\overrightarrow{Ca} = \overrightarrow{Fa}$ + \overrightarrow{Ca} + \overrightarrow{Fa} [\overrightarrow{F} + \overrightarrow{Pk} (1-1)

(5) \overrightarrow{F} = \overrightarrow{Fa} + \overrightarrow{Fa} (1-1)

(6) \overrightarrow{F} = \overrightarrow{A} (\overrightarrow{Ka}) \overrightarrow{Pa} + \overrightarrow{Fa} (\overrightarrow{Ka}) \overrightarrow{Fa} (\overrightarrow{Fa}) \overrightarrow{Fa} = \overrightarrow{Fa} + \overrightarrow{Fa} (1-1)

(7) $\overrightarrow{W} = (1-3)$ (\overrightarrow{Ka}) \overrightarrow{Ca} (\overrightarrow{Ka}) \overrightarrow{Ca} (\overrightarrow{Ka}) \overrightarrow{Ca} (\overrightarrow{Fa}) \overrightarrow{Fa} = \overrightarrow{Fa} = \overrightarrow{Fa} + \overrightarrow{Fa} (1-2)

(8) \overrightarrow{F} = \overrightarrow{Pa} + \overrightarrow{Fa} (\overrightarrow{Ka}) \overrightarrow{Fa} (\overrightarrow{Ka}) \overrightarrow{Fa} (\overrightarrow{Fa}) \overrightarrow{Fa} = $\overrightarrow{$

=) : hn + hd + hk = 1

hk = 0.18 hd = 0.11 hn = 0.71

1)
$$\frac{\overline{d}}{\overline{d}}$$
 $e^{\overline{Pd}_{1}}e^{-\overline{C}_{1},t}$ = $e^{\overline{A}}e^{-\overline{d}_{2}}e^{-\overline{d}_{2}}e^{-\overline{Pd}_{3}}e^{-\overline{C}_{3},t}e^{-\overline{C}_{3},t+1}$ (1-3) $e^{\overline{Pd}_{3},t+1-\overline{C}_{3},t+1}+e^{\overline{A}}e^{-\overline{d}_{2}}e^{-\overline{D}_{3}}e^{-\overline{D}_{3},e^{-\overline{C}_{3},t+1}}$ (1-3) $e^{\overline{Pd}_{3},t+1-\overline{C}_{3},t+1}+e^{\overline{A}}e^{-\overline{C}_{3}}e^{-\overline{Pd}_{3}}e^{-\overline{D}_{3},e^{-\overline{C}_{3},t+1}}$ $e^{\overline{Pd}_{3},e^{-\overline{C}_{3},t+1}}$ $e^{\overline{Pd}_{3},e^{-\overline{C}_{3},t+1}}e^{\overline{Pd}_{3},e^{\overline{C}_{3},t+1}}e^{\overline{Pd}_{3},e^{-\overline{C}_{3},t+1}}e^{\overline{Pd}_{3},e^{-\overline{C}_{3},t+1}}e^{\overline{Pd}_{3},e^{-\overline{C}_{3},t+1}}e^{\overline{Pd}_{3},e^{-\overline{C}_$

3)
$$y \cdot y \cdot y = \frac{1}{3} \cdot \frac{1}{3} \cdot$$

Scanned by CamScanner

(16.) Chit = Ze+ Knie 2 + (1-2) Three

(189) = [Ko. - Key (1-1)] x Pk, e Eb - (1-8) Fey + 8 Pk, e - S = = 0

(20). Cn, + l'd, + [d+ d+-1(1-8)] + Pk, + [k+-k+-1(1-8)] = rk k-1+we

Cn + Pa·S d + Pu·S k = r (+ w

Cn e cn + Pa·d · e lar [e de - e de - (1-8)] + rk· | [e le - e l-8] · e le

= rk· e r+ rk-1

- rue

- ru

Concitione) + Paid (I+Pathtale) - Paid (HJ) (I+Pathtale)

+ Prik (I+Pathtale) - Paid (HJ) (I+Pathtale)

Concine + Paid · S Pathtale + Paid · de - Paid (HJ) de (I+We

+ Prik · S Print + Prik · Re - (Prik · CHJ) + FR) · Rent = FR · Tet war we =0

model correation matrx	cn	cd	i	У	
cn	1.00	-0.22	0.23	1.00	
cd	-0.22	1.00	-1.00	-0.20	
i	0.23	-1.00	1.00	0.22	
У	1.00	-0.20	0.22	1.00	
		.	,	,	
real data correlation	cn	cd	i	У	
cn	1.00	0.76	0.60	0.83	
cd	0.76	1.00	0.47	0.55	
i	0.60	0.47	1.00	0.64	
у	0.83	0.55	0.64	1.00	
	cn_y	cd_y	i_y	У	cd_cn
model relative volatility	0.53	2.93	4.58	1.00	5.53
real relative volatility	1.40	5.01	2.96	1.00	3.57
pct captured	2.65	1.71	0.65		0.65