多媒體技術概論 Final Project Report

Automatic Chord Transcription

Implementation Procedure

Template Defining

我們定義的和弦種類為大三和弦(X)、小三和弦(Xmin)。 chordTemplate 為儲存和弦模板的矩陣,其內容大致如下:

	С	C#	D	Eb	E	F	F#	G	G#	A	Bb	В
С	1	0	0	0	1	0	0	1	0	0	0	0
C#~B												
Cmin	1	0	0	1	0	0	0	1	0	0	0	0
C#min~Bmin												

先預訂好每個和弦種類的第一列再用迴圈去產生其他和弦的模板,並在最後把每一種和弦的模板 合併成上表。

```
for family = 2:12
    for bin = 1:12
        i = bin-1;
        if i==0, i = 12; end
            X(family, bin) = X(family-1, i);
        Xmin(family, bin) = Xmin(family-1, i);
    end
end

chordTemplate = [X;Xmin];
chordKey = {'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'};
```

Measure Division

我們參考了 http://schall-und-mauch.de/artificialmusicality 切割歌曲的方式,以 1/2 小節為單位 將歌曲分割成好幾段,分析出每個小節可能的和弦,由於其基本單位為 1/2 小節,故理論上和弦的分 析能夠更為準確。此網站提供了完整的轉錄和弦的程式碼,我們只擷取了分割歌曲的程式碼片段,並 進行修改及簡化(即為程式碼中 beattracker 資料夾)。

其分割方式為計算每個拍子的秒數、每個小節的秒數區間、每個小節的拍數,分析原理大概為依 照音量、音量和過零率去抓取音量忽大後漸小的區間作為基本單位。

下表即為用此段程式碼得到的各 小節的起始與結束秒數,可以依此為 切割歌曲的基準進行和弦分析,則可 得出各個小節可能的和弦。

Harmonic Product Spectrum (HPS)

HPS的功能在於分析某段音訊中主要出現的頻率,將一段音訊轉換成頻域之後對其進行每2、3、 4點向下取樣(downsampling),即可得到壓縮 2、3、4倍之資料,再將這些壓縮後的資料與原始資料 相乘,就能得到此段音訊中最主要的幾個基頻。左下圖即為將音訊轉換為頻域後的結果,而右下圖則 是經過 HPS 處理之後的結果,並用紅色圓圈標示六個振幅最大點。

我們也嘗試了 2、4、8 的 downsampling rate,因為高八度的音為基頻的兩倍,即皆為二的次方倍數,以二的次方去做 downsampling 可以取得較精準,也比較可以除去一些不重要的頻率。我們最後決定用 2、4、8 的 downsampling rate。

****Constant Q Transform**

我們採用了 http://www.eecs.qmul.ac.uk/~anssik/cqt 的 toolbox,將做完 HPS 的資料用 ifft 從頻 域轉回時域,然後做 constant Q transform 將其轉換成時頻圖如下,可以顯示在一段時間內各種頻率 的強度,顏色越紅則強度越強,越偏藍則強度越弱,可以很直接看出此時間內主要頻率為何。

但我們實作的結果不甚理想,在計算 chromagram vector 的正確率極低,雖然 HPS 的幾個高峰值都是目標和弦的組成音,但在做完 constant Q transform 之後就錯了,我們猜測可能是在 ifft 轉換的時候出些問題,因為沒能解決,所以我們用另一個較土法煉鋼的方式取代 constant Q transform。

Chromagram Vector Calculation

因為 HPS 的結果是正確的,我們想要用從 HPS 得到的高峰值對應到的頻率範圍的強度總和,直接計算 chromagram vector。

因為頻率不會是單一值,而是在某個範圍內,所以要先訂定C的範圍、D的範圍等。C的頻率為16.352,而C#的頻率為17.324,所以我們取中間值作為分界:若頻率落在15.892~16.838則為C,若頻率落在16.838~17.839則為C#,下圖即為建立的分界表:

✓ Variables - range													
range ×													
⊞ range <8x13 double>													
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	15.8920	16.8380	17.8390	18.8990	20.0230	21.2140	22.4760	23.8120	25.2280	26.7280	28.3170	30	31.7850
2	31.7840	33.6760	35.6780	37.7980	40.0460	42.4280	44.9520	47.6240	50.4560	53.4560	56.6340	60	63.5700
3	63.5680	67.3520	71.3560	75.5960	80.0920	84.8560	89.9040	95.2480	100.9120	106.9120	113.2680	120	127.1400
4	127.1360	134.7040	142.7120	151.1920	160.1840	169.7120	179.8080	190.4960	201.8240	213.8240	226.5360	240	254.2800
5	254.2720	269.4080	285.4240	302.3840	320.3680	339.4240	359.6160	380.9920	403.6480	427.6480	453.0720	480	508.5600
6	508.5440	538.8160	570.8480	604.7680	640.7360	678.8480	719.2320	761.9840	807.2960	855.2960	906.1440	960	1.0171e+03
7	1.0171e+03	1.0776e+03	1.1417e+03	1.2095e+03	1.2815e+03	1.3577e+03	1.4385e+03	1.5240e+03	1.6146e+03	1.7106e+03	1.8123e+03	1920	2.0342e+03
8	2.0342e+03	2.1553e+03	2.2834e+03	2.4191e+03	2.5629e+03	2.7154e+03	2.8769e+03	3.0479e+03	3.2292e+03	3.4212e+03	3.6246e+03	3840	4.0685e+03

由此表就可以從HPS的結果中找到屬於C的所有頻率的振幅,並全部加總存入CH(1),直到CH(1)~Ch(12)都建立,即完成chromagram vector。

左下圖為G和弦的chromagram,右下圖則為A和弦的chromagram。

Pattern Matching

將上一步得出的CH vector先normalize到0~1之間,然後去跟chordTemplate中的每一個模板做correlation,結果值最大的即為所求,再依照出現最大值的模板的index去輸出結果。

```
CH = (CH-min(CH))./(max(CH)-min(CH));
%figure, plot(CH);
%set(gca, 'XTick', 1:12);
%set(gca, 'XTickLabel', chordKey);
for i=1:24
    Chord(i) = CH*chordTemplate(i, :)';
end
[~, maxInd] = max(Chord);
outNum(c)=maxInd;
```

```
outChord = '';
outChord{1} = 'N';
for c=2:N-1
    if mod(outNum(c), 12)==0, outChord{c} = chordKey{12};
    else outChord{c} = chordKey{mod(outNum(c), 12)};
    end
    if( outNum(c)>12 ) outChord{c} = strcat(outChord{c},':min');
    else outChord{c} = strcat(outChord{c},':maj');
    end
end
outChord{N} = 'N';
```

```
outChord =

Columns 1 through 10

'N' 'D:min' 'G:maj' 'D:min' 'G:min' 'A:maj'

Columns 11 through 19

'G:maj' 'D:maj' 'G:min' 'A:maj' 'G:maj' 'D:min'
```

最後輸出如右圖:

Implementation Result

除了我們自身演算法的誤差,以及只定義了基本模板之外,主要影響正確率的因素皆來自答案格式的不一致性:

- 1. 有些大三和弦並無輸出maj => LetLoveBeYourEnergy
- 2. 有些和弦查不到其結構 => LoveCallingEarth (Cmaj/b7)
- 3. 有些和弦是相通的但並沒有標準輸出 => Db==C#
- 4. 有些和弦以不合理的格式出現 => EgoAGoGo (Cb)

以下為兩大組測資之結果:

```
The 2002-Escapology/02-FeelGTChords.txt currect rate:69.148936 %
The 2002-Escapology/03-Something BeautifulGTChords.txt currect rate:70.491803 %
The 2002-Escapology/04-MonsoonGTChords.txt currect rate:93.750000 %
The 2002-Escapology/05-Sexed UpGTChords.txt currect rate:75.652174 %
The 2002-Escapology/06-Love SomebodyGTChords.txt currect rate:64.912281 %
The 2002-Escapology/07-RevolutionGTChords.txt currect rate:56.896552 %
The 2002-Escapology/08-Handsome ManGTChords.txt currect rate:13.669065 %
The 2002-Escapology/09-Come UndoneGTChords.txt currect rate:98.809524 %
The 2002-Escapology/10-Me and My MonkeyGTChords.txt currect rate:75.675676 %
```

```
The 2005-Intensive Care (Special Edition)/01-GhostsGTChords.txt currect rate:86.000000 %

The 2005-Intensive Care (Special Edition)/02-TrippingGTChords.txt currect rate:74.766355 %

The 2005-Intensive Care (Special Edition)/03-Make Me PureGTChords.txt currect rate:86.153846 %

The 2005-Intensive Care (Special Edition)/04-Spread Your WingsGTChords.txt currect rate:55.813953 %

The 2005-Intensive Care (Special Edition)/05-Advertising SpaceGTChords.txt currect rate:95.945946 %

The 2005-Intensive Care (Special Edition)/06-Please Don't DieGTChords.txt currect rate:75.000000 %

The 2005-Intensive Care (Special Edition)/07-Your Gay FriendGTChords.txt currect rate:74.218750 %

The 2005-Intensive Care (Special Edition)/08-Sin Sin SinGTChords.txt currect rate:81.012658 %

The 2005-Intensive Care (Special Edition)/09-Random Acts Of KindnessGTChords.txt currect rate:47.586207 %

The 2005-Intensive Care (Special Edition)/10-The Trouble With MeGTChords.txt currect rate:72.173913 %
```

Program Execution

1. 將beattracker及cqttoolbox以及其子目錄加入目前路徑

執行指定測試資料:

開啟finalProject.m,將InputAudioGTChords.txt換成要進行找尋和弦程式的時間分割檔,如:GhostsGTChords.txt,並且將InputAudio.mp3換成要進行找尋和弦程式的音檔,如:Ghosts.mp3,以及檔案最下方的InputAudio.txt改成輸出和弦的檔案名稱,如:Ghosts.txt。

執行其他測試資料:

開啟finalProject.m,將15~19註解,將11~12、21~25行去掉註解,並在audioread及getmeasures2裡面輸入欲分析的音檔。

2. 改好上述的地方後,執行程式,會輸出一個txt檔,如: Ghosts.txt,裡頭資料便是經由程式找 尋到的和弦。

Reference

http://stackoverflow.com/questions/19765486/matlab-code-for-harmonic-product-spectrum

http://cnx.org/content/m11714/latest/

http://chur.chu.edu.tw/bitstream/987654321/577/1/GM094020080.pdf

http://en.wikipedia.org/wiki/Harmonic_pitch_class_profiles

http://schall-und-mauch.de/artificialmusicality/2014/04/matlab-chord-transcription-code-dbn/

http://lac.linuxaudio.org/2009/cdm/Saturday/21_Fugal/21.pdf

http://hans.fugal.net/research/cq-octave/cq.m

http://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/

http://robotics.ee.uwa.edu.au/theses/2012-MusicTranscription-Gouws.pdf

http://www.eecs.qmul.ac.uk/~anssik/cq

http://home.deib.polimi.it/zanoni/Site/Research.html

https://ccrma.stanford.edu/~kglee/pubs/klee-icmc06.pdf