Math 21C

Kouba

Discussion Sheet 8

1.) Evaluate the following limits or determine that the limit does not exist.

a.)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2-4}{x+y+2}$$
b.)
$$\lim_{(x,y)\to(1,1)} \frac{xy-y-2x+2}{x-1}$$
c.)
$$\lim_{(x,y)\to(2,2)} \frac{x+y-4}{\sqrt{x+y}-2}$$
d.)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$
e.)
$$\lim_{(x,y)\to(1,1)} \frac{\sin(x^2-y^2)}{x-y}$$
f.)
$$\lim_{(x,y)\to(1,-1)} \arcsin\frac{xy}{\sqrt{x^2+y^2}}$$
g.)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^3+y^3}$$
h.)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
i.)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
j.)
$$\lim_{(x,y)\to(2,-2)} \frac{4-xy}{4+xy}$$
k.)
$$\lim_{(x,y)\to(0,0)} (1+3xy^2)^{2/xy^2}$$
l.)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
m.)
$$\lim_{(x,y)\to(1,-2)} \frac{(x-1)^2+3(y+2)^2}{x-1+(y+2)^2}$$
n.)
$$\lim_{(x,y)\to(1,2)} \frac{xy+2x-y-2}{xy-y+3x-3}$$

2.) Compute z_x and z_y for each of the following functions.

a.)
$$z = xy^2 + \ln x + e^y + 5$$
 b.) $z = xe^{2y} \arctan x$ c.) $z = \sqrt{x - y^2}$ d.) $z = \frac{x^3}{y^2} + \sin(xy)$ e.) $z = \frac{x + 4}{x^2 + y^2}$ f.) $z = \{e^{x^2y} + \tan(3y + 4x)\}^5$ f.) $z = y^{1+x^3}$

3.) Show that $z = \ln(1 + x^2 + y^2)$ satisfies the equation $z_{xy} + z_x z_y = 0$.

4.) Verify that
$$w_{xy} = w_{yx}$$
 for $w = y + \frac{x}{y}$.

5.) Determine functions z whose partial derivatives are given, or state that this is impossible.

a.)
$$z_x = 2x$$
 and $z_y = 3y^2 + 1$ b.) $z_x = xy^2 - y$ and $z_y = x^2y - x$ c.) $z_x = e^x y - 1$ and $z_y = e^x - x$ d.) $z_x = ye^x \cos(xy) + e^x \sin(xy) - 2$ and $z_y = xe^x \cos(xy) + 1$

6.) Consider the function
$$f(x,y) = \begin{cases} \frac{\sin(x^3 + y)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$
.

- a.) Determine $f_x(x,y)$ when $(x,y) \neq (0,0)$
- b.) Determine $f_x(0,0)$ (Use limit definition of partial derivative.).
- c.) Determine $f_y(0,0)$ (Use limit definition of partial derivative.).

7.) Plane A, parallel to the xz-plane, and plane B, parallel to the yz-plane, pass through the surface determined by the equation $z = xy^2 - x^3 + 7$. Both planes include the point

- (1,0,6), which lies on the surface.
- a.) Determine the slope of the line tangent to the surface at the point (1,0,6) if the line lies in
 - i.) plane A.
 - ii.) plane B.
 - b.) Determine an equation of the plane tangent to the surface at the point (1,0,6).
- 8.) Compute z_x and z_y for each of the following functions.

a.)
$$z = x^3y + y^4 - 2x + 5$$
 b.) $z = f(x) + g(y)$ c.) $z = f(x^3) + g(4y)$ d.) $z = f(x^2 + y^3) + g(xy^2)$ e.) $y^2 + z^2 + \sin(xz) = 4$ f.) $z = f(u, v)$ where $u = \ln(x - y)$ and $v = e^{xy}$

d.)
$$z = f(x^2 + y^3) + g(xy^2)$$
 e.) $y^2 + z^2 + \sin(xz) = 4$

f.)
$$z = f(u, v)$$
 where $u = \ln(x - y)$ and $v = e^{xy}$

9.) Find
$$\frac{\partial w}{\partial t}$$
 and $\frac{\partial w}{\partial s}$ if $w = f(4t^2 - 3s)$ and $f'(x) = \ln x$.

- 10.) Assume that f is differentiable function of one variable with z = xf(xy). Show that $xz_x - yz_y = z .$
- 11.) Assume that f and g are twice differentiable functions of one variable. Show that u = f(x + at) + g(x - at) satisfies $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, where a is a constant.
- 12.) Consider the paraboloid given by $f(x,y) = 25 x^2 y^2$.
 - a.) Sketch the surface.
- b.) Let point P=(2,-2). Compute the derivative of the function f at the point P in the direction

i.)
$$\overrightarrow{A} = (-3,4)$$

ii.)
$$\overrightarrow{A} = (3, -4)$$

iii.)
$$\overrightarrow{A} = (1,0)$$

ii.)
$$\overrightarrow{A} = (3, 4)$$

iii.) $\overrightarrow{A} = (3, -4)$
iii.) $\overrightarrow{A} = (1, 0)$
iv.) $\overrightarrow{A} = (0, -1)$

- c.) In what directions is the derivative of f at point P = (2, -2) equal to zero?
- d.) In what directions is the derivative of f at point P = (-1, 1) equal to 2?

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

13.) Determine the exact value of the "continued" square root:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}$$