LES SHORT TANDEM REPEATS (STR)

<u>Vocabulaire essentiel</u>: marqueur génétique, STR, motif, nombre de répétitions, allèle, motif incomplet, population, fréquences alléliques, mutation (changement du nombre de répétitions), mutation (motif)

GENERALITES

Un marqueur génétique est une séquence de nucléotides située à une position fixe dans le génome (un locus) présentant plusieurs allèles, permettant de distinguer des individus, des populations, des espèces ou des gènes. Les *Short Tandem Repeats*, ou STR, sont les marqueurs standards de l'identification génétique médico-légale, en France et dans le monde. Leur nomenclature est soumise à des règles internationales communes.

STRUCTURE DES STR

Les STR sont définis par un **motif**, une séquence de 1 à 6 nucléotides, répété entre une et plusieurs dizaines de fois pour une région chromosomique ou un locus. Dans leur définition la plus simple, les **allèles** d'un locus STR sont donc un **nombre de répétitions** du motif.

MOTIFS STR INCOMPLETS

Il peut arriver que l'un des nucléotides d'un motif STR manque (motif incomplet). La nomenclature prévoit la notation suivante : « [nombre de motifs complets] [point] [taille du motif incomplet] ». L'allèle conserve toutefois les autres caractéristiques des allèles aux motifs complets.

LES FREQUENCES ALLELIQUES

Une **population** est un ensemble d'individus partageant une ou plusieurs caractéristiques. Chaque population est définie par les **fréquences des allèles** à chaque locus STR (figure de droite, pourcentage d'apparition de chaque allèle dans une population).

MUTATIONS DES STR

La variabilité des STR est d'abord la conséquence de **mutations modifiant le nombre de répétitions**. Le gain ou la perte d'une répétition est appelé mutation d'un *step* (par exemple, 12 muté en 13). Il peut également exister des mutations de plusieurs *steps* au sein d'une seule génération. Il existe également des **mutations du motif STR** (substitutions, délétions, insertions).

Références supplémentaires :

Gill, P., Fereday, L., Morling, N., & Schneider, P. M. The evolution of DNA databases—recommendations for new European STR loci. *Forensic Science International*, 156(2-3), 242-244; 2006

Butler, John M. Forensic DNA typing: biology, technology, and genetics of STR markers. Elsevier, 2005.