Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 9 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів обходу масивів» Варіант 30

виконав студент IП-12 Тарасюк Євгеній Сергійович
Іеревірив

Київ 2021

Лабораторна робота 9.

Дослідження алгоритмів обходу масивів

Мета: дослідити алгоритми обходу масивів, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Задача 30.

Завлання

Розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису змінної індексованого типу (двовимірний масив) згідно з варіантом (табл. 1).
- 2. Ініціювання змінної, що описана в п.1 даного завдання.
- 3. Обчислення змінної, що описана в п.1, згідно з варіантом (табл. 1).
- 30 Задано матрицю дійсних чисел А[m,n]. При обході матриці по рядках знайти в ній останній мінімальний елемент X і його місцезнаходження. Порівняти значення X з середньоарифметичним значенням елементів під головною діагоналлю.

Розв'язок.

1. Постановка задачі.

Початкові дані - це дійсні числа, додаткових змінних для розв'язку не потрібно. Додаткові умови: n = m (масив повинен мати головну діагональ). Для обчислення використовуватимемо обхід масиву змійкою. Результатом розв'язку є двовимірний масив та порівняння двох дійсних чисел. Використовуватимемо стандартні логічні та арифметичні операції, цикли з передумовою, функції. Функція randFloat() використовується для знайдення випадкового дійсного числа.

2. Побудова математичної моделі

Таблиця змінних та функцій:

Змінні та функції	Тип	Ім'я	Призначення
Вертикальна позиція мінімального	Ціле число	minVertPos	Зберігає перший індекс елемента з найменшим значенням у масиві
Горизонтальна позиція мінімального	Ціле число	minHorPos	Зберігає другий індекс елемента з найменшим значенням у масиві
Мінімальний елемент	Дійсне число	minElem	Найменше значення, знайдене в масиві
Середнє арифметичне	Дійсне число	average	Середнє арифметичне чисел під головною діагоналлю
n (= m)	Натуральне число	n	Розмір масиву
Двовимірний масив	Двовимірний масив дійсних чисел	array2D	Двовимірний масив
i	Ціле число	i	Змінна для перебору значень
j	Ціле число	j	Змінна для перебору значень
Заповнення масиву	Функція, що не повертає значення	fillArray2D (array2D, n)	Заповнює масив випадковими значеннями
Виведення масиву	Функція, що не повертає значення	print2D (array2D, n)	Виводить у консоль елементи масиву
Середнє арифметичне та мінімум	Функція, що не повертає значення	minAndAvg (array2D, minVertPos, minHorPos, minElem, average, n)	Знаходить середнє арифметичне елементів під головною діагоналлю та мінімальне значення

Кількість	Ціле число	underDiagCo	Лічильник
елементів під		unt	елементів під
діагоналлю			головною
			діагоналлю
Випадкове	Функція, що	randFloat(a,	Генерує випадкове
число	повертає	b)	число на проміжку
	дійсне число		[a; b]

3. Псевдокод алгоритму

```
Початок
                                                                          Функція minAndAvg(array2D, minVertPos, minHorPos, minElem, average, n)
        Введення п
                                                                          Початок
        minVertPos = 0
                                                                                  i = 0
        minHorPos = 0
                                                                                  j = 0
        minElem = 50
                                                                                  underDiagCount = 0
        average = 0
                                                                                   Повторити поки i < n
        fillArray2D(array2D, n)
                                                                                           Повторити поки j < n
        print2D(array2D, n)
                                                                                                    Якщо array2D[i][j] \le minElem
        minAndAvg(array2D, minVertPos, minHorPos, minElem, average, n)
                                                                                                             minElem = array2D[i][j]
        Якщо minElem < average
                                                                                                             minVertPos = i
                 Виведення "minimal element < average"
                                                                                                             minHorPos = j
        Інакше якщо minElem == average
                                                                                                    Все якщо
                 Виведення "minimal element = average"
                                                                                                    Якщо j < i
        Інакше
                                                                                                             average += array2D[i][j]
                 Виведення "minimal element > average"
                                                                                                             underDiagCount += 1
        Все якщо
                                                                                                    Все якщо
Кінець.
                                                                                                    j += 1
                                                                                           Все повторити
Функція fillArray2D(array2D, n)
                                                                                           i += 1
Початок
                                                                                           i -= 1
        Повторити для i на проміжку f(0; n)
                                                                                           Якщо i \le n
                 Повторити для / на проміжку [0; n)
                                                                                                    Повторити поки j > -1
                          array2D[i][j] = randFloat(-50, 50)
                                                                                                             Якщо array2D[i][j] \le minElem
                                                                                                                      minElem = array2D[i][j]
                 Все повторити
        Все повторити
                                                                                                                      minVertPos = i
                                                                                                                      minHorPos = i
        Повернення
Кінець
                                                                                                             Все якщо
                                                                                                             Якщо j < i
Функція print2D(array2D)
                                                                                                                      average += array2D[i][j]
                                                                                                                      underDiagCount += 1
Початок
        Повторити для i на проміжку [0; n)
                                                                                                             Все якщо
                                                                                                            j = 1
                 Повторити для j на проміжку [0; n)
                          Виведення array2D[i][j]
                                                                                                    Все повторити
                                                                                                    j += 1
                 Все повторити
                 Перейти на наступний рядок
                                                                                                    i += 1
        Все повторити
                                                                                           Все якшо
        Повернення
                                                                                   Все повторити
Кінець
                                                                                   Повернення
```

Кінець

4. Блок-схема алгоритму

5. Код програми (С++)

```
#include <iostream>
#include <random>
#define range 100
#define halfRange 50
using namespace std;
void fillArray2D(float**, int);
void minAndAvg(float**, int&, int&, float&, float&, int);
void print2D(float**, int);
int main()
  int n;
  int minVertPos = 0;
  int minHorPos = 0;
  float minElem = 50;
  float average = 0;
  float **array2D;
  cout << "n: ";
  cin >> n;
  array2D = new float* [n];
  for (int i = 0; i < n; i++)
     array2D[i] = new float [n];
  fillArray2D(array2D, n);
  print2D(array2D, n);
  minAndAvg(array2D, minVertPos, minHorPos, minElem, average, n);
   printf("minimal element of the array: %.2f \nvertical position: %d \nhorizontal position: %d \n", minElem,
minVertPos, minHorPos);
  printf("average of elements under main diagonal: %.2f \n", average);
  if (minElem < average)
    cout << "minimal element < average of elements under main diagonal\n";</pre>
  else if (minElem == average)
    cout << "minimal element = average of elements under main diagonal\n";</pre>
  else
    cout << "minimal element > average of elements under main diagonal\n";
  for (int i = 0; i < n; i++)
     delete[] array2D[i];
  delete[] array2D;
void fillArray2D(float** array2D, int n)
  srand(time(NULL));
  for (int i = 0; i < n; i++)
```

```
for (int j = 0; j < n; j++)
       array2D[i][j] = -halfRange + float(rand()) / float(RAND_MAX) * range;
  }
}
void minAndAvg(float** array2D, int& minVertPos, int& minHorPos, float& minElem, float& average, int n)
  int i = 0;
  int j = 0;
  int underDiagCount = 0;
  average = 0;
  minElem = array2D[0][0];
  while (i \le n)
    while (j \le n)
       if (array2D[i][j] <= minElem)</pre>
         minElem = array2D[i][j];
         minVertPos = i;
         minHorPos = j;
       if (j < i)
         average += array2D[i][j];
         underDiagCount++;
       j++;
    i++;
    j--;
    if (i \le n)
       while (j > -1)
         if (array2D[i][j] \le minElem)
            minElem = array2D[i][j];
            minVertPos = i;
            minHorPos = j;
         if (j < i)
            average += array2D[i][j];
            underDiagCount++;
       i++;
  average /= underDiagCount;
void print2D(float** array2D, int n)
```

```
{
  for (int i = 0; i < n; i++)
  {
    for (int j = 0; j < n; j++)
    {
      printf("%7.2f", array2D[i][j]);
    }
    cout << endl;
  }
  cout << endl;
}</pre>
```

6. Випробування коду

Результати випробування:

```
n: 6
30.14 -39.59 -39.54 -9.04 47.75 -38.02
27.18 -27.13 -33.08 -23.66 -31.37 -5.67
-33.05 -22.21 -24.52 -7.30 -42.54 22.27
-24.53 48.10 -41.89 20.77 -24.30 -31.01
4.26 34.83 38.69 -23.52 -43.24 -40.33
-4.62 -22.29 43.96 10.73 48.23 -30.65

minimal element of the array: -43.24
vertical position: 4
horizontal position: 4
average of elements under main diagonal: 5.59
minimal element < average of elements under main diagonal
```

7. Висновки

Було досліджено алгоритми обходу масивів, набуто практичних навичок використання цих алгоритмів під час складання програми для пошуку мінімального елемента та середнього значення окремої групи елементів.