Teoria da Computação – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- 2 Definição
- 3 Linguagens Decidíveis e Reconhecíveis

Sumário

Introdução

- Modelo Proposto por Alan Turing em 1936.
- Máquina de estados + memória infinita.
- Considera-se que faz tudo o que é possível fazer com um computador.

- Neste modelo possuímos uma fita infinita e um controle finito.
- A máquina possui uma cabeça de leitura e escrita que pode ler/escrever símbolos na fita e movimentar-se sobre ela.
- Inicialmente, a fita contém apenas a cadeia de entrada, e está em branco.

- Se a máquina precisa armazenar alguma informação, ela pode escrever algo na fita.
- Para acessar uma informação, basta posicionar a cabeça na posição correta e ler aquele símbolo.

- A computação é feita ao alterar os estados do controle com base na informação contida na fita.
- A computação para quando chega em um estado de aceitação ou de rejeição. Neste caso a saída da máquina para uma entrada pode ser:
 - Aceita.
 - Rejeita.

Recapitulando

- Uma máquina de turing pode tanto escrever sobre a fita quanto ler.
- A cabeça de leitura/escrita pode mover tanto para a esquerda quanto para a direita um passo de cada vez.
- A fita é infinita.
- Os estados especiais para aceitar e rejeitar tem efeito imediato.

ullet Tome uma máquina de Turing M_1 para testar a pertinência na linguagem:

$$B = \{w \# w | w \in \{0, 1\}^*\}$$

- A linguagem das palavras que são seguidas por elas próprias e separadas por cerquilha.
- ullet Como M_1 funcionaria de acordo com a nossa descrição informal?

- Não podemos acessar cada símbolo através de acesso aleatório.
- Mas podemos mover sobre a fita e ler/escrever nela (acesso sequencial).

Estratégia Imediata

 Zigzaguear sobre os dois lados da cerquilha e comparar os caracteres.

Estratégia Imediata

- Faça uma varredura na entrada para assegurar que ela contém uma única ocorrência do símbolo #. Se não, rejeite.
- Faça um zique-zague na fita para casar os símbolos nos dois lados da separação pelo #. Se os símbolos casam, marque eles com um 'x', caso contrário, rejeite.
- Quando todos os símbolos da esquerda forem marcados com um 'x', verifique se existe algum símbolo diferente de 'x' e ⊔ à direita.
 Se resta algum, rejeite, caso contrário, aceite.

ullet Qual seria a estratégia de uma Máquina de Turing M_2 para testar a pertinência na Linguagem

$$B = \{ w \# w^R | w \in \{0, 1\}^* \}$$

Sumário

Sumário

- 2 Definição
 - Definição Formal
 - Representação Gráfica
 - Configuração

 Agora que ganhamos uma noção sobre máquinas de Turing, vamos defini-las formalmente.

- O coração de uma máquina de turing é uma função de transição δ .
- Ela que especifica como a máquina vai de um passo a próximo.

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- ullet Dado um estado e um símbolo na posição apontada pela cabeça, δ mapeia em outro estado, escreve um símbolo na fita de acordo com a posição da cabeça e move para esquerda ou para direita.
- Ex: $\delta(q, a) = (r, b, L)$.

- $\bullet \ \, \mathsf{Ex:} \ \, \delta(q,a) = (r,b,L).$
- ullet A máquina escreve o símbolo b no lugar de a, muda do estado q para o estado r e move a cabeça uma posição para a esquerda.

Definição (Máquinas de Turing)

Uma máquina de turing é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, em que Q, Σ e Γ são conjuntos finitos.

- Q: o conjunto de estados.
- Σ : o alfabeto de entrada, que não contém o símbolo \sqcup .
- Γ o alfabeto da fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$.
- $\bullet \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- q_0 é o estado inicial.
- q_{aceita} é o estado de aceitação.
- $q_{rejeita}$ é o estado de rejeição.

 Uma vez definida a sintaxe sobre máquinas de Turing, podemos discutir a semântica de todos estes símbolos.

Uma máquina de Turing M computa da seguinte forma:

- Inicialmente ela recebe a sua entrada $w = w_1 w_2 \dots w_n \in \Sigma^*$.
- Esta entrada é colocada mais a esquerda na fita.
- Ou seja, a fita só está preenchida com a entrada, e ela está mais a esquerda possível.
- Como $\sqcup \notin \Sigma$ o símbolo em branco marca o final da entrada.

- ullet Se M em algum momento tenta mover a cabeça para a esquerda quando esta está sob a posição mais à esquerda da fita, a cabeça permanece naquele lugar.
- A computação continua até que ela entre nos estados de aceitação ou rejeição, nos quais ela para.
- Se ela nunca atinge estes estados, a computação persiste indefinidamente }:-)

- À medida que uma máquina de Turing computa, ocorrem mudanças no estado atual, no conteúdo da fita e na localização da cabeça.
 - ► Tudo definido pela função δ .

Sumário

- 2 Definição
 - Definição Formal
 - Representação Gráfica
 - Configuração

Máquinas de Turing: Representação Gráfica

 Agora que definimos uma máquina de Turing, vamos construir uma que aceite as palavras que estão em

$$B = \{ w \# w^R | w \in \{0, 1\}^* \}$$

- e rejeite as que não estão.
- Utilizaremos uma representação gráfica da nossa definição formal.

Representação Gráfica

- Os círculos representarão os estados, sendo o estado inicial, e de aceitação explicitamente indicados.
- Cada mapeamento da função de transição é representado por uma seta que liga um estado a outro. Esta seta possui um rótulo que indica que, ao ler um símbolo da fita, escreve-se outro no lugar, movimenta-se o cabeçote para a esquerda ou para a direita e, finalmente, vamos para outro estado.
- Para simplificar, podemos assumir que as transições que não constarem no gráfico, estão apontando para o estado de rejeição (implícito).

Representação Gráfica

Sumário

- 2 Definição
 - Definição Formal
 - Representação Gráfica
 - Configuração

Máquinas de Turing: Configuração

Definição

Configuração Uma configuração é uma combinação de três informações:

- O estado.
- O conteúdo da fita.
- A posição da cabeça.

Denotas uma configuração por uqv, em que q é o estado atual, uv é o conteúdo da fita, e a cabeça está apontando para o primeiro símbolo de v.

Figura: Configuração $1011q_701111$.

- Dizemos que uma configuração C_1 produz uma C_2 se a máquina pode legalmente sair de C_1 e ir para C_2 .
- Suponha $a,b,c\in\Sigma$ e $u,v\in\Sigma^{\star}$.
- Formalmente: uaq_ibv produz uq_jacv , se $\delta(q_i,b)=(q_j,c,L)$.
- Simetricamente: uaq_ibv produz $uacq_jv$, se $\delta(q_i,b)=(q_j,c,R)$.
- ullet Exceção: q_ibv produz q_jcv se a transição for para a esquerda.

- A configuração inicial de M sobre a entrada é a configuração q_0w .
- Em uma configuração de aceitação, o estado da configuração é $q_{aceita}.$
- \bullet Em uma configuração de rejeição, o estado da configuração é $q_{rejeita}.$

Definição (Aceitação)

Uma máquina de Turing M aceita a entrada w se uma sequência de configurações C_1, C_2, \ldots, C_k existe onde:

- C_1 é a configuração inicial de M sobre w.
- ② Cada C_i produz C_{i+1} .
- \odot C_k é uma configuração de aceitação.

Notação (Aceitação)

A coleção de cadeias que M aceita é a linguagem de M , denotada por ${\cal L}(M).$

Sumário

3 Linguagens Decidíveis e Reconhecíveis

Linguagens Turing-Reconhecíveis

Definição (Linguagens Turing-Reconhecíveis)

Uma linguagem L é chamada de Turing-reconhecível se existe alguma máquina de Turing que receba como entrada $w \in L$ e M para em um estado de aceitação.

Se $w \notin L$, então M pode:

- Parar no estado de rejeição.
- Entrar em loop.

Definição (Linguagens Turing-Decidíveis)

Uma linguagem L é chamada de Turing-decidível se existe alguma máquina de Turing que receba como entrada $w \in L$ e M para em um estado de aceitação.

Se a $w \notin L$, então M:

Para no estado de rejeição.

Linguagens Turing-Decidíveis e Reconhecíveis

- Obviamente toda linguagem Turing-Decidível é
 Turing-Reconhecível, mas existem algumas linguagens que são
 Turing-Reconhecíveis, mas não Turing-Decidíveis.
- Qual a vantagem de Linguagens Turing-decidíveis?

Linguagens Turing-Decidíveis e Reconhecíveis

- Obviamente toda linguagem Turing-Decidível é
 Turing-Reconhecível, mas existem algumas linguagens que são
 Turing-Reconhecíveis, mas não Turing-Decidíveis.
- Qual a vantagem de Linguagens Turing-decidíveis?
- Se uma Linguagem é Turing-reconhecível, mas não Turing-decidível. como podemos verificar se a máquina que está demorando para dar o resultado ou se ela entrou em loop?

Linguagens Turing-Decidíveis e Reconhecíveis

Por enquanto, vamos nos focar em Linguagens Turing-decidíveis.

Exemplo

Verifique que a linguagem

$$L = \{w | w \in \{0, 1\}^*\}$$

Exemplo

Verifique que a linguagem

$$L = \{w|w \in \{0,1\}^* \land w \text{ \'e um n\'umero \'impar}\}$$

Exemplo

Verifique que a linguagem

$$L = \{w | w \in \{0, 1\}^* \land w = w^R\}$$

Exemplo

Verifique que a linguagem

$$L = \{w | x \in \{0, 1\}^* \land w = x \# x\}$$

Exemplo

Verifique que a linguagem

$$L = \{w | w = 0^{2n}\}$$