

Center for Quantum Networks

Bell States, GHZ States, and W-States: Exploring the Robustness of Entanglement for Noisy Quantum Systems

Agustin Garcia Flores

PI: Dr. Inès Montaño; Mentors: M. Jaden Brewer, Jake Navas, Alexander Hardin Funded by the National Science Foundation Grant #1941583

Motivation

- The production and distribution of entanglement among several users is a prerequisite for building quantum networks
- <u>Net</u>work <u>Simulator for <u>Quantum</u>
 <u>Information using Discrete events</u>
 </u>
 - Models the impact of time on the performance of quantum networks

Coopmans, T., et al. Commun Phys 4, 164 (2021).

Research Project

- How Bell, GHZ, and W-states react to system flaws, and how this affects their viability for QIS applications
 - Utilizing quantum teleportation
 - Fidelity of entangled states can rapidly diminish due to noise
 - E.g. memory decoherence, noisy quantum gates, and noise (or lossy) quantum channels

Teleportation Using GHZ State

State to Teleport	Decay Rate (C)	Plateau (B)	Decay Rate (C)	Plateau (B)
$ 0\rangle$	0.0855	0.4988	0.1568	0.4999
$\frac{1}{\sqrt{2}}\left(0\rangle+ 1\rangle\right)$	0.1147	0.4974	0.2049	0.4966
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.1738	0.5007	0.3084	0.4978

Teleportation Using W-State

Gate Depolarization Processor Depolarization

State to Teleport	Decay Rate (C)	Plateau (B)	Decay Rate (C)	Plateau (B)
$ 0\rangle$	0.1098	0.5004	0.2211	0.4986
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle + \left 1\right\rangle\right)$	0.1433	0.6634	0.2652	0.6666
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.2111	0.6627	0.397	0.6647

Teleportation Using GHZ State

	Gate Denola	rization <mark>-</mark>	Processor Der	olarization
State to Telepor	Decay Rate (C)	Plateau (B)	Decay Rate (C)	Plateau (B)
$ 0\rangle$	0.0855	0.4988	0.1568	0.4999
$\frac{1}{\sqrt{2}}\left(0\rangle+ 1\rangle\right)$	0.1147	0.4974	0.2049	0.4966
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.1738	0.5007	0.3084	0.4978

Teleportation Using W-State

	Gate Denol	arization 🕝	Processor Denolarization		
State to Telepor	Decay Rate (C)	Plateau (B)	Decay Rate (C)	Plateau (B)	
$ 0\rangle$	0.1098	0.5004	0.2211	0.4986	
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle + \left 1\right\rangle\right)$	0.1433	0.6634	0.2652	0.6666	
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.2111	0.6627	0.397	0.6647	

Teleportation Using GHZ State

	Gate Depo	arization	Processor De	nolarization	
State to Teleport	to Teleport Decay Rate (C)		Decay Rate (C)	Plateau (B)	
$ 0\rangle$	0.0855	0.4988	0.1568	0.4999	
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle + \left 1\right\rangle\right)$	0.1147	0.4974	0.2049	0.4966	
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.1738	0.5007	0.3084	0.4978	

Teleportation Using W-State

	Gate Depo	Processor De	polarization	
State to Teleport Decay Rate (C)		Plateau (B)	Decay Rate (C)	Plateau (B)
$ 0\rangle$	0.1098	0.5004	0.2211	0.4986
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle + \left 1\right\rangle\right)$	0.1433	0.6634	0.2652	0.6666
$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	0.2111	0.6627	0.397	0.6647
		_		

How can we use this information to simulate quantum computer noise environments?

Qubit State Teleportation: Quantum Computer

Qubit State Teleportation: NetSquid Simulation & Quantum Computer Comparison

Conclusions

Average Values of All Teleported States

Gate Depolarization

Processor Depolarization

Teleportation Circuit	Fidelity Decay Rate	Fidelity Plateau	Fidelity Decay Rate	Fidelity Plateau
Bell State	0.0921	0.4972	0.1704	0.4996
GHZ State	0.1055	0.4157	0.1899	0.4151
W-State	0.1585	0.6084	0.2967	0.6101

Thank you!

Dr. Inès Montaño
Jake Navas
Jaden Brewer
Alexander Hardin
Alan Valladares

Funded by the National Science Foundation Grant #1941583

NSF | CQN | ERC>

WWW. CQN-ERC.ORG

INFO@CQN-ERC.ORG

Funded by the National Science Foundation Grant #1941583

Background: NetSquid

- <u>Net</u>work <u>Simulator for <u>Quantum</u>
 <u>Information using Discrete events</u>
 </u>
- Nodes
 - Computers
 - Quantum sensors
- Models the impact of time on the performance of quantum networks and quantum computing systems

Fidelity of Quantum States

A measure of the "closeness" of two quantum states

$$F(\rho, \sigma) \equiv \operatorname{tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$$

2.25% Noise = ~20% Error?

If
$$P(A_1) = P(A_2) = \dots = P(A_n)$$
:
$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n (-1)^{i+1} \binom{n}{i} p^i$$
where $p = P(A_1) = P(A_2) = \dots = P(A_n)$.

2.25% Noise = ~20% Error?

When
$$n = 10, p = 0.0225$$
:

$$P(A_1 \cup A_2 \cup \ldots \cup A_{10}) = \sum_{i=1}^{10} (-1)^{i+1} {10 \choose i} 0.0225^i = \boxed{0.2035}.$$

Qubit State Teleportation: Simulator

ibmq_lima: calibration data (Bell - 7/19/2023)

Qubit	T1 (us)	T2 (us)	Frequency (GHz)	Anharmonicity (GHz)	Readout assignment error
0	97.87596485	129.6657947	5.029748739	-0.335741553	0.022
1	142.567242	116.3382729	5.127740171	-0.318349123	0.0408
2	65.70349121	70.81956078	5.247360452	-0.333603661	0.0297
3	111.1314363	85.13604973	5.302580432	-0.331241932	0.0577
4	26.18833536	23.61742353	5.092087686	-0.334469657	0.0451
Mean	88.69329393	85.11542032	5.159903496	-0.330681185	0.03906
Median	97.87596485	85.13604973	5.127740171	-0.333603661	0.0408
Of only t	he first three:				
Mean	102.0488993	105.6078761	5.134949787	-0.329231445	0.030833333
Median	97.87596485	116.3382729	5.127740171	-0.333603661	0.0297

T1: Relaxation time

T2: Dephasing time

Frequency (GHz): The frequency(energy) associated with the transition between the qubit's ground

state ($|0\rangle$) and first excited state ($|1\rangle$).

Readout error: The probability of preparing a $|0\rangle(|1\rangle)$ and measuring a $|1\rangle(|0\rangle)$, ie., of having an

error in your readout

ibmq_lima: calibration data (Bell - 7/19/2023)

	Prob meas0 prep1	Prob meas1 prep0	Readout length (ns)	ID error	\sqrt{x} (sx) error	Pauli-X error
	0.0348	0.0092	5912.888889	0.000570268	0.000570268	0.000570268
	0.0676	0.014	5912.888889	0.00103715	0.00103715	0.00103715
	0.0528	0.0066	5912.888889	0.000825927	0.000825927	0.000825927
	0.084	0.0314	5912.888889	0.001394263	0.001394263	0.001394263
	0.0764	0.0138	5912.888889	0.000656327	0.000656327	0.000656327
Mean	0.06312	0.015	5912.888889	0.000896787	0.000896787	0.000896787
Median	0.0676	0.0138	5912.888889	0.000825927	0.000825927	0.000825927
Of only t	he first three:					
Mean	0.051733333	0.009933333	5912.888889	0.000811115	0.000811115	0.000811115
Median	0.0528	0.0092	5912.888889	0.000825927	0.000825927	0.000825927

ibmq_lima: calibration data (Bell - 7/19/2023)

CNOT error	Gate time (ns)
0_1:0.007159745408065854	0_1:305.777777777777
1_0:0.007159745408065854; 1_3:0.01741388385831824; 1_2:0.007884061799106723	1_0:341.3333333333333; 1_3:497.7777777777777; 1_2:334.222222222222
2_1:0.007884061799106723	2_1:298.6666666666663
3_4:0.030634203062174348; 3_1:0.01741388385831824	3_4:519.111111111111; 3_1:462.22222222222
4_3:0.030634203062174348	4_3:483.555555555554

ibmq_lima: calibration data (GHZ - 8/2/2023)

Qubit	T1 (us)	T2 (us)	Frequency (GHz)	Anharmonicity (GHz)	Readout assignment error
C	127.2228592	192.2952686	5.029744087	-0.335741553	0.0279
1	122.3811919	126.3815463	5.127745261	-0.318349123	0.0169
2	68.41142026	142.5541098	5.247353298	-0.333603661	0.018
3	125.953597	110.8255667	5.302551534	-0.331241932	0.0333
4	17.21016343	18.72160498	5.092086016	-0.334469657	0.047
Mean	92.23584637	118.1556193	5.159896039	-0.330681185	0.02862
Median	122.3811919	126.3815463	5.127745261	-0.333603661	0.0279
Of only	the first four:		-		
14000	110 0022671	142 0141220	E 176040E4E	0.220724067	0.024025

Mean	110.9922671	143.0141228	5.176848545	-0.329734067	0.024025
Median	124.1673945	134.467828	5.18754928	-0.332422796	0.02295

T1: Relaxation time

T2: Dephasing time

Frequency (GHz): The frequency(energy) associated with the transition between the qubit's ground

state ($|0\rangle$) and first excited state ($|1\rangle$).

Readout error: The probability of preparing a $|0\rangle(|1\rangle)$ and measuring a $|1\rangle(|0\rangle)$, ie., of having an

error in your readout

ibmq_lima: calibration data (GHZ - 8/2/2023)

	Prob meas0 prep1	Prob meas1 prep0	Readout length (ns)	ID error	\sqrt{x} (sx) error	Pauli-X error			
	0.0434	0.0124	5912.888889	0.000765315	0.000765315	0.000765315			
	0.0262	0.0076	5912.888889	0.000246975	0.000246975	0.000246975			
	0.0282	0.0078	5912.888889	0.000486996	0.000486996	0.000486996			
	0.048	0.0186	5912.888889	0.000507311	0.000507311	0.000507311			
	0.0758	0.0182	5912.888889	0.000722864	0.000722864	0.000722864			
Mean	0.04432	0.01292	5912.888889	0.000545892	0.000545892	0.000545892			
Median	0.0434	0.0124	5912.888889	0.000507311	0.000507311	0.000507311			
Of only the first four:									
Mean	0.03645	0.0116	5912.888889	0.000501649	0.000501649	0.000499762			
Median	0.0358	0.0101	5912.888889	0.000497154	0.000497154	0.000486996			

ibmq_lima: calibration data (GHZ - 8/2/2023)

CNOT error	Gate time (ns)
0_1:0.008877829144317506	0_1:305.777777777777
1_3:0.015287333729115837; 1_2:0.006275413908105404; 1_0:0.008877829144317506	1_3:497.7777777777777; 1_2:334.222222222223; 1_0:341.3333333333333
2_1:0.006275413908105404	2_1:298.6666666666663
3_4:0.01879316874610462; 3_1:0.015287333729115837	3_4:519.111111111111; 3_1:462.22222222222
4_3:0.01879316874610462	4_3:483.555555555554

Teleportation Circuits

• Bell State:

Teleportation Circuits

• GHZ State:

Teleportation Circuits

• W-State:

