# Low-Rank Constraint for Fast Inference in Structured Models

Justin Chiu\* and Yuntian Deng\* and Alexander Rush

October 14, 2021

#### Structured Models

- Explicitly model output associations
  - Directly or through <u>latent variables</u>
- Focus on combinatorially large latent discrete structures
  - Complementary to distributed representations

### Scaling Structured Models

- ► Prior work demonstrated: Size ↑ Performance ↑
  - ► Hidden Markov Models (HMM)
  - Probabilistic Context-Free Grammars (PCFG)
- Prior work scaled via
  - Sparsity for HMMs<sup>1</sup>
  - Low-rank tensor decompositions for PCFGs<sup>2</sup>
- ► This work: low-rank matrix constraints
  - More general
  - Less speedup

<sup>&</sup>lt;sup>1</sup>Chiu and Rush, Scaling Hidden Markov Language Models.

<sup>&</sup>lt;sup>2</sup>Yang, Zhao, and Tu, 'PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols'.

### Inference as Matrix-Vector Products

- ► Inference: sequence of matrix-vector products
- ► Speed up via fast mat-vecs
- ► Applies to a large family of structured models

### Fast Matrix-Vector Products

- ▶ Mat-vecs take  $O(L^2)$  computation
- Various fast methods
  - Sparsity (nnz entries)
  - ► Fast Fourier Transform (*L* log *L*)
  - Low-Rank factorization (LR)
- Connected to work in efficient attention and low-dimensional kernel approximations<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Choromanski et al., *Rethinking Attention with Performers*; Peng et al., *Random Feature Attention*; Blanc and Rendle, *Adaptive Sampled Softmax with Kernel Based Sampling*.

### Roadmap

- Speeding up HMM inference
- ► Speeding up PCFG inference
- ► Generalization to hypergraph inference
- Experiments

### Two Examples

some text here some text here some text here some text here Blah some text here

### Hidden Markov Models (HMMs)

For times t, model states  $z_t \in [Z]$ , and tokens  $x_t \in [X]$ ,



with joint distribution

$$p(x,z) = \prod_{t} p(x_t \mid z_t) p(z_t \mid z_{t-1})$$

#### Inference

Given observed  $x = (x_1, \dots, x_T)$  We wish to maximize

$$p(x) = \sum_{z_1} \cdots \sum_{z_T} p(x, z) = \alpha_1^{\top} \Lambda_2 \Lambda_3 \cdots \Lambda_T \mathbf{1},$$

where we have the

start, 
$$[\alpha_1]_{z_1} = p(x_1 \mid z_1)p(z_1),$$
 and transition operators, 
$$[\Lambda_t]_{z_{t-1},z_t} = p(x_t \mid z_t)p(z_t \mid z_{t-1})$$

### Inference: Backward Algorithm

▶ Performing multiplications from right to left

$$p(x) = \alpha_1^{\top}(\Lambda_2(\Lambda_3 \mathbf{1}))$$

Recursively

$$\beta_t = \Lambda_t \beta_{t+1}$$

▶ Requires  $O(TZ^2)$  operations in total

#### Low-Rank Factorization

Factor matrices  $\Lambda \in \mathbb{R}^{Z \times Z}$  into product of  $U, V \in \mathbb{R}^{Z \times R}$ 

resulting in two matrix-vector products of cost O(ZR) each

# Hypergraph Marginalization

# Hypergraph Marginalization Algorithm

# Experiments

### **Experiments**

► Language modeling on PTB

▶ Feature map  $\phi(U) = \exp(UW)$ , with learned  $W \in \mathbb{R}^{R \times R}$ 

Baseline: Softmax HMM

### **HMM** Performance





# **HMM** Accuracy

# HMM Speed vs Accuracy Frontier

## HMM Accuracy vs Rank



### HMM Speed vs Rank



### **HMM Music Results**

### **HSMM** Results

### **PCFG** Results

### Citations

- Blanc, Guy and Steffen Rendle. Adaptive Sampled Softmax with Kernel Based Sampling. 2018. arXiv: 1712.00527 [cs.LG].
- Chiu, Justin T. and Alexander M. Rush. Scaling Hidden Markov Language Models. 2020. arXiv: 2011.04640 [cs.CL].
- Choromanski, Krzysztof et al. Rethinking Attention with Performers. 2021. arXiv: 2009.14794 [cs.LG].
- Peng, Hao et al. *Random Feature Attention*. 2021. arXiv: 2103.02143 [cs.CL].
- Yang, Songlin, Yanpeng Zhao, and Kewei Tu. 'PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols'. In: *CoRR* abs/2104.13727 (2021). arXiv: 2104.13727. URL: https://arxiv.org/abs/2104.13727.