NCERT Discrete - 11.9.3.30

EE23BTECH11007 - Aneesh Kadiyala*

Question 11.9.3.30: The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour 4^{th} hour and n^{th} hour?

Solution:

1) Let number of bacteria initially be $a_0 = 30$ Let number of bacteria at the end of n^{th} hour be a_n .

Since number of bacteria doubles every hour,

$$a_n = 2a_{n-1}$$

$$a_n = 2(2a_{n-2})$$

. . .

$$a_n = 2^n a_0 = 2^n (30)$$

$$\implies a_2 = 2^2(30) = 120 \text{ and } a_4 = 2^4(30) = 480$$

Therefore, number of bacteria at the end of the 2^{nd} hour is 120, 4^{th} hour is 480, and n^{th} hour is $30(2^n)$.

2) Finding x(n)

The series is a geometric progression.

$$x(n) = x(0)(r^n)$$

where r is the common ratio.

From the solution, x(0) = 30, r = 2.

$$\implies x(n) = 30(2^n)(u(n))$$

as $x(n) = 0 \forall n < 0$.

3) **Z-transform of** x(n)

Let Z-transform of x(n) be X(z).

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)u(n)z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} (30)(2^n)(z^{-n})$$

$$X(z) = 30 \lim_{n \to \infty} \sum_{i=0}^{n} (\frac{2}{z})^{i}$$

a) If |z| > 2:

$$X(z) = \frac{30}{1 - \frac{2}{z}}$$

1

$$X(z) = 30z(z-2)^{-1}$$

b) If $|z| \le 2$:

$$X(z) \to \infty$$

Region of Convergence (ROC) of z is |z| > 2.