1

GATE 2021 EC

EE:1205 Signals and systems Indian Institute of Technology, Hyderabad

Sai Preetam Umesh Sasankota EE23BTECH11221

Question 47:

The autocorrelation function $R_x(\tau)$ of a wide-sense stationary random process X(t) is shown in the figure. The average power of X(t) is ?

Using this autocorrelation factor,

$$R_{x}(0) = E[X(t)X(t+0)]$$
 (5)

$$= E\left[X(t)X(t)\right] \tag{6}$$

(7)

From equations (1) and (6)

$$P_x = R_x(t) \tag{8}$$

$$\implies P_x = 2W$$
 (9)

Solution: Here $R_x(0) = 2$

Parameter	Description
$R_{x}(\tau)$	Autocorrelation function
X(t)	Stationary random process
P_x	Average power

TABLE 0 VALUES

Average power of X(t) is given as mean square value of X(t), i.e.

$$P_{x} = E\left[X^{2}\left(t\right)\right] \tag{1}$$

$$= E\left[X(t)X(t)\right] \tag{2}$$

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$
 (3)

$$R_{X}(t) = \int_{-\infty}^{\infty} E[X(\tau)X(\tau+t)] dt$$
 (4)