Name:	Sort #:

Written Homework 3

MATH 2205: Calculus II, Fall 2018 Page ____ of ____

Problem 1: Find the area of the region \mathcal{R} indicated in the picture. Use that result to determine the limit of the area of \mathcal{R} as b goes to infinity.

Problem 2: Let \mathcal{R}_1 be the infinite region between the x-axis and the curve $y = x^{-2}$ on the interval $[1, \infty)$. Let \mathcal{R}_2 be the infinite region between the x-axis and the curve $y = x^{-2}\cos^2(x)$ on the interval $[1, \infty)$. What can you conclude about the area of \mathcal{R}_2 based on its relationship to the area of \mathcal{R}_1 ? (Note: you do not need to calculate the area of \mathcal{R}_2 explicitly, just establish the relationship between \mathcal{R}_1 and \mathcal{R}_2).

Problem 3: Compute the area of the region \mathcal{R} bounded by the curves $f = x^2 e^{-x}$ and $g = x e^{-x}$ on the interval $[1, \infty)$.

Problem 4: Consider the infinite region \mathcal{R} in the first quadrant bounded by the x-axis and the curve $y = \frac{\ln(x)}{x^2}$ on the interval $[1, \infty)$. Compute the volume of the solid obtained when \mathcal{R} is revolved about the y-axis.

Written Homework 3

MATH 2205, Fall 2018

Page ____ of ____