- In the last lecture:
 - Introduction to Set Theory
 - Determining the elements of a set
 - Cardinality of sets, finite and infinite sets
 - Union and Intersection of sets
 - Cartesian product, relations, functions

- Characteristics of functions (the following are informal definitions):
 - Injective function(one-to-one): each element of the codomain must appear at most once as the second element of an ordered pair.
 - Surjective function(onto): each element of the codomain appears at least once as an element of an ordered pair.
 - Bijective function (one-to-one and onto): is both injective and surjective
- Give examples of each of these three types of functions. Remember you need to specify the domain and codomain

- Reminder: A function is a SET of ordered pairs
- Therefore a function's domain or codomain (or both) could also be a function)

e.g.
$$f:A \rightarrow B$$

$$g:(A\to B)\to C$$

$$g_1: (A \times B) \to C$$

- What does $f:A \rightarrow B$ mean?
- What does $A \rightarrow B$ mean?

- ullet Function composition: $f:A \to B$ and $g:B \to C$
 - $-g \circ f : A \to C$
 - Applicable when f,g are one-to-one or onto
- Inverse of a one-to-one function:
 - $-f:A\to B$
 - $Inv(f), f^{-1}: B \to Pow(A)$
 - Applicable when f is one-to-one

- Back to sets
 - The universal set
 - The complement of a set
- Discrepancies of definitions with Discrete Maths?

- Computer Representation of Sets(see book: Discrete Maths by Rosen)
- Storing sets in an unordered(unsorted) fashion (e.g. in an array)
- Advantages:
 - Direct representation
 - Easier to reason about

- Computer Representation of Sets
- Storing sets in an unordered fashion
- Disadvantages:
 - Manipulating an unsorted list (i.e. the set, stored in an array) is inefficent
 - Lots of searching for elements is necessary
- Suppose you have two sets:
 A = {1,2,3} and B = {2,3,4,5}.
 Write a code segment which will store these two sets in two arrays of integers

- Computer Representation of Sets: Using bit strings
 - Need to know universal set, ${\cal U}$ and have some ordering for it
 - Suppose $U = \{a, b, c, ..., z\}$ and $C = \{a, e, i, o, u\}$
 - Bit string representation of ${\cal C}$ is: 10 0010 0010 0000 1000 0010 0000
 - Suppose $U = \{0, 1, 2, ..., 10\}$. Write a code segment which will store the bit string representation of A and B(from previous slide) as integer arrays of size 11, each entry being a 0 or a 1.

- Computer Representation of Sets:
 - Problem: Using each of the representations above, write a java function that will examine the arrays and ouput the union of the sets A and B.