AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently Amended) A method for manipulating a window within a
2	three-dimensional (3D) display model, comprising:
3	displaying a view into the 3D display model through a two-dimensional
4	(2D) display;
5	receiving a command to manipulate the window within the 3D display
6	model, wherein the window provides a 2D user interface for a 2D application;
7	in response to the command, manipulating the window within the 3D
8	display model so that the manipulation is visible within the 2D display; and
9	wherein manipulating the window involves rotating the window around at
10	least one of a horizontal or vertical axis so that the window's contents remain
11	visible while the window occupies less space
12	wherein manipulating the window involves rotating the window within the
13	3D display model around a viewpoint or around another point within the 3D
14	display model.
15	
1	2. (Original) The method of claim 1, wherein if the command moves the
2	window in close proximity to an edge of the 2D display, the method further
3	comprises tilting the window so that the window appears at an oblique angle in
4	the 2D display, whereby the contents of the window remain visible, while the

5 window occupies less space in the 2D display and is less likely to overlap other 6 windows. 1 3. (Original) The method of claim 2, wherein if the window is selected, 2 the method further comprises untilting the window so that the window is parallel 3 with the 2D display. 1 4 (Canceled). 1 5. (Previously Presented) The method of claim 38, wherein the 2 information associated with the 2D application includes at least one of: 3 application version information; 4 application settings; 5 application parameters; 6 application properties; and 7 notes associated with a file or a web page that is displayed in the window. 1 6. (Previously Presented) The method of claim 38, wherein the backside of 2 the window includes the ability to accept user input, including change settings, parameters, properties and/or notes. 3 1 7. (Original) The method of claim 1, wherein if the command is to 2 minimize the window, manipulating the window involves: 3 tilting the window so that a spine located on a side edge of the window is

visible and the contents of the window remains visible, wherein the spine contains

moving the minimized window to an edge of the 2D display;

identification information for the window; and

4

5

6

7	wherein the operations of turning and moving the window are animated as
8	a continuous motion.
1	8. (Original) The method of claim 1, further comprising:
2	receiving a predefined gesture through a pointing device, and
3	in response to the predefined gesture, minimizing a top-level window in
4	the 2D display, whereby repeating the predefined gesture causes subsequent top-
5	level windows to be minimized.
1	9. (Original) The method of claim 8, wherein upon receiving a window
2	restoration command, the method further comprises restoring minimized windows
3	to their expanded state.
1	10. (Original) The method of claim 1, wherein if the command is entered
2	through a pointing device and the command throws the window by moving the
3	window quickly and releasing it, the method further comprises throwing the
4	window by moving the window in a continuous animated motion.
1	11. (Previously Presented) The method of claim 10, wherein throwing the
2	window involves at least one of:
3	locating the window farther from the viewpoint;
4	scaling down the size of the window;
5	iconizing the window; and
6	deleting the window.
1	12. (Original) The method of claim 1, wherein receiving the command
2	involves:

3	rotating the window so that window controls on the edge of the window
4	become visible in response to a cursor moving close to an edge of a window;
5	receiving the command through a window control; and
6	rotating the window back to its original orientation.
1	13. (Currently Amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for manipulating a window within a three-dimensional (3D) display
4	model, the method comprising:
5	displaying a view into the 3D display model through a two-dimensional
6	(2D) display;
7	receiving a command to manipulate the window within the 3D display
8	model, wherein the window provides a 2D user interface for a 2D application;
9	in response to the command, manipulating the window within the 3D
0	display model so that the manipulation is visible within the 2D display; and
1	wherein manipulating the window involves rotating the window around a
2	least one of a horizontal or vertical axis so that the window's contents remain
13	visible while the window occupies less space
4	wherein manipulating the window involves rotating the window within
15	the 3D display model around a viewpoint or around another point within the 3D
6	display model.
1	14. (Original) The computer-readable storage medium of claim 13,
2	wherein if the command moves the window in close proximity to an edge of the
3	2D display, the method further comprises tilting the window so that the window
4	appears at an oblique angle in the 2D display, whereby the contents of the
5	window remain visible, while the window occupies less space in the 2D display

and is less likely to overlap other windows.

6

1	15. (Original) The computer-readable storage medium of claim 14,
2	wherein if the window is selected, the method further comprises untilting the
3	window so that the window is parallel with the 2D display.
1	16 (Canceled).
1	17. (Previously Presented) The computer-readable storage medium of
2	claim 39, wherein the information associated with the 2D application includes at
3	least one of:
4	application version information;
5	application settings;
6	application parameters;
7	application properties; and
8	notes associated with a file or a web page that is displayed in the window.
1	18. (Previously Presented) The computer-readable storage medium of
2	claim 39, wherein the backside of the window includes the ability to accept user
3	input, including change settings, parameters, properties and/or notes.
1	19. (Original) The computer-readable storage medium of claim 13,
2	wherein if the command is to minimize the window, manipulating the window
3	involves:
4	tilting the window so that a spine located on a side edge of the window is
5	visible and the contents of the window remains visible, wherein the spine contain
6	identification information for the window; and
7	moving the minimized window to an edge of the 2D display;
8	wherein the operations of turning and moving the window are animated as
9	a continuous motion.

1	20. (Original) The computer-readable storage medium of claim 13,
2	wherein the method further comprises:
3	receiving a predefined gesture through a pointing device, and
4	in response to the predefined gesture, minimizing a top-level window in
5	the 2D display, whereby repeating the predefined gesture causes subsequent top
6	level windows to be minimized.
1	21. (Original) The computer-readable storage medium of claim 20,
2	wherein upon receiving a window restoration command, the method further
3	comprises restoring minimized windows to their expanded state.
1	22. (Original) The computer-readable storage medium of claim 13,
2	wherein if the command is entered through a pointing device and the command
3	throws the window by moving the window quickly and releasing it, the method
4	further comprises throwing the window by moving the window in a continuous
5	animated motion.
1	23. (Previously Presented) The computer-readable storage medium of
2	claim 22, wherein throwing the window involves at least one of:
3	locating the window farther from the viewpoint;
4	scaling down the size of the window;
5	iconizing the window; and
6	deleting the window.
1	24. (Original) The computer-readable storage medium of claim 13,
2	wherein receiving the command involves:
3	rotating the window so that window controls on the edge of the window
4	become visible in response to a cursor moving close to an edge of a window;

5	receiving the command through a window control; and
6	rotating the window back to its original orientation.
1	25. (Currently Amended) An apparatus that manipulates a window within
2	a three-dimensional (3D) display model, comprising:
3	a two-dimensional (2D) display configured to display a view into the 3D
4	display model;
5	a window manipulation mechanism configured to receive a command to
6	manipulate the window within the 3D display model, wherein the window
7	provides a 2D user interface for a 2D application;
8	wherein in response to the command, the window manipulation
9	mechanism is configured to manipulate the window within the 3D display model
10	so that the manipulation is visible within the 2D display; and
11	wherein when manipulating the window, the window manipulation
12	mechanism is configured to rotate the window around at least one of a horizontal
13	or vertical axis so that the window's contents remain visible while the window
14	occupies less space
15	wherein manipulating the window involves rotating the window within the
16	3D display model around a viewpoint or around another point within the 3D
17	display model.
1	26. (Original) The apparatus of claim 25, wherein if the command moves
2	the window in close proximity to an edge of the 2D display, the window
3	manipulation mechanism is configured to tilt the window so that the window
4	appears at an oblique angle in the 2D display, whereby the contents of the
5	window remain visible, while the window occupies less space in the 2D display
6	and is less likely to overlap other windows.

1	27. (Original) The apparatus of claim 26, wherein if the window is
2	selected, the window manipulation mechanism is configured to untilt the window
3	so that the window is parallel with the 2D display.
1	28 (Canceled).
1	29. (Previously Presented) The apparatus of claim 40, wherein the
2	information associated with the 2D application includes at least one of:
3	application version information;
4	application settings;
5	application parameters;
6	application properties; and
7	notes associated with a file or a web page that is displayed in the window.
1	30. (Previously Presented) The apparatus of claim 40, wherein the
2	backside of the window includes the ability to accept user input, including change
3	settings, parameters, properties and/or notes.
1	31. (Original) The apparatus of claim 25, wherein if the command is to
2	minimize the window, the window manipulation mechanism is configured to:
3	tilt the window so that a spine located on a side edge of the window is
4	visible and the contents of the window remains visible, wherein the spine contains
5	identification information for the window; and to
6	move the minimized window to an edge of the 2D display;
7	wherein the operations of turning and moving the window are animated as
8	a continuous motion.

1	32. (Original) The apparatus of claim 25, wherein the window
2	manipulation mechanism is additionally configured to:
3	receive a predefined gesture through a pointing device, and
4	in response to the predefined gesture, to minimize a top-level window in
5	the 2D display, whereby repeating the predefined gesture causes subsequent top-
6	level windows to be minimized.
1	33. (Original) The apparatus of claim 32, wherein upon receiving a
2	window restoration command, the window manipulation mechanism is configured
3	to restore minimized windows to their expanded state.
1	34. (Original) The apparatus of claim 25, wherein if the command is
2	entered through a pointing device and the command throws the window by
3	moving the window quickly and releasing it, the window manipulation
4	mechanism is configured to throw the window by moving the window in a
5	continuous animated motion.
1	35. (Previously Presented) The apparatus of claim 34, wherein throwing
2	the window involves at least one of:
3	locating the window farther from the viewpoint;
4	scaling down the size of the window;
5	iconizing the window; and
6	deleting the window.
1	36. (Original) The apparatus of claim 25, wherein while receiving the
2	command, the window manipulation mechanism is configured to:
3	rotate the window so that window controls on the edge of the window
4	become visible in response to a cursor moving close to an edge of a window;

5	receive the command through a window control; and to
6	rotate the window back to its original orientation.
1	37. (Currently Amended) A means for manipulating a window within a
2	three-dimensional (3D) display model, comprising:
3	a two-dimensional (2D) display means for displaying a view into the 3D
4	display model;
5	a window manipulation means configured to receive a command to
6	manipulate the window within the 3D display model, wherein the window
7	provides a 2D user interface for a 2D application;
8	wherein in response to the command, the window manipulation means
9	manipulates the window within the 3D display model so that the manipulation is
10	visible within the 2D display; and
11	wherein when manipulating the window, the window manipulation means
12	rotates the window around at least one of a horizontal or vertical axis so that the
13	window's contents remain visible while the window occupies less space
14	wherein manipulating the window involves rotating the window within the
15	3D display model around a viewpoint or around another point within the 3D
16	display model.
1	38. (Previously Presented) The method of claim 1, wherein if the
2	command rotates the window so that the backside of the window is visible, the
3	method further comprises displaying information associated with the 2D
4	application on the backside of the window.
1	39. (Previously Presented) The computer-readable storage medium of
2	claim 13, wherein if the command rotates the window so that the backside of the

- 3 window is visible, the method further comprises displaying information
- 4 associated with the 2D application on the backside of the window.
- 1 40. (Previously Presented) The apparatus of claim 25, wherein if the
- 2 command rotates the window so that the backside of the window is visible, the
- 3 method further comprises displaying information associated with the 2D
- 4 application on the backside of the window.