Tarea 1 Calculo Computacional

Victor Tortolero CI:24.569.609

Respuesta 1

Tenemos que $\frac{A+3}{13}$, como A=9, tendríamos $\frac{9+3}{13}=\frac{12}{13}$. Ahora procedemos a convertir a binario.

$$\begin{array}{l} \frac{12}{13} \times 2 = \frac{24}{13}, \, b_0 = 1 \\ \frac{11}{13} \times 2 = \frac{22}{13}, \, b_1 = 1 \\ \frac{9}{13} \times 2 = \frac{18}{13}, \, b_2 = 1 \\ \frac{5}{13} \times 2 = \frac{10}{13}, \, b_3 = 0 \\ \frac{10}{13} \times 2 = \frac{20}{13}, \, b_4 = 1 \\ \frac{7}{13} \times 2 = \frac{14}{13}, \, b_5 = 1 \\ \frac{1}{13} \times 2 = \frac{2}{13}, \, b_6 = 0 \end{array}$$

Por lo tanto tenemos que:

 $0,111011000100\overline{111011000100}$ **1**...

Observemos que el numero que vendria luego del bit 24 seria un 1. Entonces a la hora de redondear se suma 1. Por lo tanto, tenemos que $Fl(\frac{12}{13})_{Truncado} = 0,111011000100111011000100$, y que $Fl(\frac{12}{13})_{Redondeado} = 0,111011000100111011000101$.

Por Truncamiento tenemos que:

$$E_A = |x - Fl(x)_{Truncado}| = 0, \underbrace{000 \dots 000}_{24 \text{ Ceros}} 111011000100 \dots$$

$$= 0, \underbrace{111011000100111011000100}_{\text{Esto es } \frac{12}{13}} \dots \times 2^{-24}$$

$$= \frac{12}{13} \times 2^{-24} \approx 5, 50196 \times 10^{-8}$$

$$E_R = \frac{E_A}{|x|} = \frac{\frac{12}{13} \times 2^{-24}}{\frac{12}{13}}$$

$$= 2^{-24} \approx 5, 96046 \times 10^{-8}$$

Por Redondeo tenemos que:

$$E_A = |x - Fl(x)_{Redondeado}| = |x - (Fl(x)_{Truncado} + 1 \times 2^{-24})|$$

$$= |x - Fl(x)_{Truncado} - 1 \times 2^{-24}|$$

$$= |\frac{12}{13} \times 2^{-24} - 1 \times 2^{-24}|$$

$$= |\frac{12}{13} - 1| \times 2^{-24}$$

$$= \frac{1}{13} \times 2^{-24} \approx 4,584 \times 10^{-9}$$

$$E_R = \frac{E_A}{|x|} = \frac{\frac{1}{13} \times 2^{-24}}{\frac{12}{13}}$$

$$= \frac{1}{12} \times 2^{-24} \approx 4,9670 \times 10^{-9}$$

Respuesta 2

Tenemos $245696,09_{10}$, procedemos a convertirlo a binario:

■ Parte Entera:

$$\begin{array}{c} \frac{245696}{2} = 122848, \ b_{17} = 0 \\ \frac{122848}{2} = 61424, \ b_{16} = 0 \\ \frac{61424}{2} = 30712, \ b_{15} = 0 \\ \frac{30712}{2} = 15356, \ b_{14} = 0 \\ \frac{15356}{2} = 7678, \ b_{13} = 0 \\ \frac{7678}{2} = 3839, \ b_{12} = 0 \\ \frac{3839}{2} = 1919, \ b_{11} = 1 \\ \frac{1919}{2} = 959, \ b_{09} = 1 \\ \frac{959}{2} = 479, \ b_{09} = 1 \\ \frac{479}{2} = 239, \ b_{08} = 1 \end{array}$$

Por lo tanto tenemos que $245696_{10} = 111011111111111000000_2$.

• Parte Decimal:

$$\begin{array}{c} \frac{9}{100} \times 2 = \frac{18}{100}, \, b_0 = 0 \\ \frac{18}{100} \times 2 = \frac{36}{100}, \, b_1 = 0 \\ \frac{36}{100} \times 2 = \frac{27}{100}, \, b_2 = 0 \\ \frac{72}{100} \times 2 = \frac{144}{100}, \, b_3 = 1 \\ \frac{44}{100} \times 2 = \frac{88}{100}, \, b_4 = 0 \end{array}$$

Por lo tanto tenemos que $0,09_{10} = 00010111$.

Entonces se tiene que $245696,09_{10} \approx 1110111111111000000,0001011_{12}$.

Si usamos redondeo:

$$Fl(245696,09)_{Redondeado} = 0,11101111111111000000000110 \times 2^{18}$$

Si representamos este numero de vuelta en decimal:

$$11101111111111000000,000110_2 = 245696,09375_{10}.$$

Error absoluto y relativo:

$$E_A = |x - Fl(x)_{Redondeado}| = |245696, 09 - 245696, 09375|$$

= 3.75×10^{-3}
 $E_R = \frac{E_A}{|x|} = \frac{3.75 \times 10^{-3}}{245696, 09} \approx -1.526275815 \times 10^{-8}$

Respuesta 3

Después de correr el programa, se obtuvieron los siguientes datos

• Para simple precisión: $\epsilon = 0,0000001192092895507812500000000000$

Iteracion	t	ϵ
1	1.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	0.2500000000000000000000000000000000000
3	1.12500000000000000000000000000000000000	0.12500000000000000000000000000000000000
4	1.062500000000000000000000000000000000000	0.06250000000000000000000000000000000000
5	1.031250000000000000000000000	0.0312500000000000000000000000000000000000
6	1.015625000000000000000000000	0.0156250000000000000000000000000000000000
7	1.00781250000000000000000000	0.0078125000000000000000000000000000000000000
8	1.00390625000000000000000000	0.0039062500000000000000000000000000000000000
9	1.00195312500000000000000000	0.00195312500000000000000000000000000000000000
10	1.00097656250000000000000000	0.00097656250000000000000000000000000000000000
11	1.00048828125000000000000000	0.00048828125000000000000000000000000000000000
12	1.00024414062500000000000000	0.00024414062500000000000000000000000000000000000
13	1.0001220703125000000000000	0.000122070312500000000000000000000000000000000000
14	1.0000610351562500000000000	0.000061035156250000000000000000000000
15	1.0000305175781250000000000	0.000030517578125000000000000000000000
16	1.000015258789062500000000	0.000015258789062500000000000000000000

17	1.000007629394531200000000	0.00000762939453125000000000000000000
18	1.000003814697265600000000	0.00000381469726562500000000000000000
19	1.000001907348632800000000	0.00000190734863281250000000000000000
20	1.000000953674316400000000	0.00000095367431640625000000000000000
21	1.000000476837158200000000	0.00000047683715820312500000000000000
22	1.000000238418579100000000	0.00000023841857910156250000000000000
23	1.000000119209289600000000	0.0000001192092895507812500000000000
24	1.0000000000000000000000000000000000000	0.00000005960464477539062500000000000

\bullet Para doble precisión: $\epsilon = 0,000000000000002220446049250313100$

Iteracion	t	ϵ
1	1.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	0.2500000000000000000000000000000000000
3	1.12500000000000000000000000000000000000	0.12500000000000000000000000000000000000
4	1.062500000000000000000000000000000000000	0.06250000000000000000000000000000000000
5	1.0312500000000000000000000000000000000000	0.0312500000000000000000000000000000000000
6	1.0156250000000000000000000000000000000000	0.0156250000000000000000000000000000000000
7	1.00781250000000000000000000	0.0078125000000000000000000000000000000000000
8	1.00390625000000000000000000	0.0039062500000000000000000000000000000000000
9	1.00195312500000000000000000	0.00195312500000000000000000000000000000000000
10	1.00097656250000000000000000	0.00097656250000000000000000000000000000000000
11	1.00048828125000000000000000	0.00048828125000000000000000000000000000000000
12	1.00024414062500000000000000	0.00024414062500000000000000000000000000000000000
13	1.0001220703125000000000000	0.000122070312500000000000000000000000000000000000
14	1.0000610351562500000000000	0.000061035156250000000000000000000000000000000000
15	1.0000305175781250000000000	0.000030517578125000000000000000000000000000000000000
16	1.000015258789062500000000	0.000015258789062500000000000000000000000000000000000
17	1.000007629394531250000000	0.0000076293945312500000000000000000000000000000000000
18	1.000003814697265625000000	0.000003814697265625000000000000000000000000000000000
19	1.000001907348632812500000	0.000001907348632812500000000000000000000000000000000000
20	1.000000953674316406250000	0.000000953674316406250000000000000000000000000000000000
21	1.000000476837158203125000	0.0000004768371582031250000000000000000000000000000000000
22	1.000000238418579101562500	0.0000002384185791015625000000000000000000000000000000000
23	1.000000119209289550781250	0.00000011920928955078125000000000000000000000000000000000000
24	1.000000059604644775390625	0.00000005960464477539062500000000000000000000000000000000000
25	1.000000029802322387695312	0.000000029802322387695312500000000000000000000000000000000000
26	1.000000014901161193847656	0.000000014901161193847656250000000000000000000000000000000000
27	1.000000007450580596923828	0.0000000074505805969238281250000000000000000000000000000000000

28	1.000000003725290298461914	0.000000003725290298461914062500000000000000000000000000000000000
29	1.000000001862645149230957	0.0000000018626451492309570312500000000000000000000000000000000000
30	1.000000000931322574615479	0.0000000009313225746154785156250000000000000000000000000000000000
31	1.000000000465661287307739	0.000000004656612873077392578125000000000000000000000000000000000000
32	1.000000000232830643653870	0.00000000232830643653869628906250000000000000000000000
33	1.000000000116415321826935	0.000000001164153218269348144531250000000000000000000000
34	1.000000000058207660913467	0.0000000005820766091346740722656250000000000000000000000000000000
35	1.000000000029103830456734	0.000000000029103830456733703613281250000000000000000000000
36	1.000000000014551915228367	0.0000000001455191522836685180664062500000000000000000000
37	1.000000000007275957614183	0.0000000000727595761418342590332031250000000000000000000000000000000
38	1.000000000003637978807092	0.0000000000363797880709171295166015625000000000000000000000000000000
39	1.000000000001818989403546	0.00000000001818989403545856475830078125000000000000000000000000000000000000
40	1.0000000000000909494701773	0.000000000000909494701772928237915039062500000000000000000000000000000000000
41	1.000000000000454747350886	0.000000000004547473508864641189575195312500000000000000
42	1.000000000000227373675443	0.0000000000022737367544323205947875976562500000000000000
43	1.000000000000113686837722	0.000000000001136868377216160297393798828125000000000000
44	1.000000000000056843418861	0.00000000000056843418860808014869689941406250000000000
45	1.000000000000028421709430	0.00000000000028421709430404007434844970703125000000000
46	1.000000000000014210854715	0.00000000000014210854715202003717422485351562500000000
47	1.0000000000000007105427358	0.000000000000007105427357601001858711242675781250000000
48	1.000000000000003552713679	0.000000000000003552713678800500929355621337890625000000
49	1.000000000000001776356839	0.00000000000001776356839400250464677810668945312500000
50	1.0000000000000000888178420	0.000000000000000888178419700125232338905334472656250000
51	1.000000000000000444089210	0.000000000000000444089209850062616169452667236328125000
52	1.0000000000000000222044605	0.000000000000000222044604925031308084726333618164062500
53	1.0000000000000000000000000000000000000	0.00000000000000111022302462515654042363166809082031250

El valor de ϵ es distinto de 10^{-308} , porque como estamos continuamente sumando 1 con ϵ , y ϵ se vuelve mas pequeño con cada iteración, y su magnitud es muy pequeña comparada con la de 1 y la suma de $1 + \epsilon$ deja de ser significativa.

Para precisión simple $\delta=0,\!00097656250$

. Para precisión doble $\delta = 0,\!000000000181898940354585650$

Los valores de ϵ y δ son distintos ya que la magnitud de 10000 es mucho mayor a la de 1 y por lo tanto al sumarle números pequeños se llega de manera rápida a uno que no afecte la suma.

Respuesta 4

- 1. Ascendente precisión simple: -3,2499442100524902343750
- 2. Ascendente precisión doble: -2,71828182823017350244754197774454951286315917968750

- 3. Descendente precisión simple: -3,1726074218750
- 4. Descendente precisión doble: -2.718281828156705159926787018775939941406250
- 5. Mayor a menor precisión simple: -3,250
- 6. Mayor a menor precisión doble: -2,71828182833269238471984863281250
- 7. Menor a mayor precisión simple: -3,250
- 8. Menor a mayor precisión doble: -2,7182818278670310974121093750

El resultado de (6) esta mas cerca del valor exacto, ya que es doble precisión y porque al sumar los números pequeños primero hay cierta probabilidad de que luego al tener esta suma parcial y sumarla con el resto de los números no se pierda información y tengamos un resultado mas preciso.

Respuesta 5

El mayor valor que llego a tomar la sumatoria fue **15.4036827087402343750**. Fueron sumados **2097152 términos** antes de que la computadora dejara de "sumar".

La computadora no llega infinito al realizar la sumatoria debido a la precisión decimal, llega a un punto en que la computadora al sumar dos números, las magnitudes entre ellos son muy distintas y por lo tanto se queda con el numero mas grande y es como si no se le sumara nada.

Respuesta 6

Para x = 10, con precisión simple tenemos que $e^{10} = 22026,4667968750$, este resultado se obtuvo al sumar los términos desde un n = 0, y hasta que la suma dejara de "sumar", usando al final 33 iteraciones.

Y para precisión doble tenemos $e^{10} = 22026,46579480671061901375651359558105468750$, con 47 iteraciones.

En este caso por como crece la sumatoria (o la exponencial), es mejor sumar en orden ascendente ya que los valores al principio tienen menos diferencia de magnitud y es mas probable obtener un resultado mas exacto.