Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: HW-6 [Sections 10.4, 10.5]
Date: 03/07/22	Course: Math 101 A04 Spring 2022	& 10.61

Use the Ratio Test to determine if the following series converges absolutely or diverges.

$$\sum_{n=1}^{\infty} \frac{13^n}{n!}$$

Let $a_n = \frac{13^n}{n!}$. Since a_n has both powers of 13 and n!, use the Ratio Test to determine convergence or divergence.

Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$. The Ratio Test states that the series converges absolutely if $\rho < 1$ and diverges if $\rho > 1$ or ρ is infinite. The test is inconclusive if $\rho = 1$.

First, determine
$$\left| \frac{a_{n+1}}{a_n} \right|$$
.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(13^{n+1})}{(n+1)!}}{\frac{(13^n)}{n!}} \right|$$
$$= \left| \frac{13^{n+1}}{(n+1)!} \cdot \frac{n!}{13^n} \right|$$

Simplify the factorials.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{13^{n+1}}{13^n} \cdot \frac{n!}{(n+1)!} \right|$$
$$= \left| \frac{13^{n+1}}{13^n} \cdot \frac{1}{n+1} \right|$$

Determine
$$\frac{13^{n+1}}{13^n}$$
.

$$\frac{13^{n+1}}{13^n} = 13$$

Therefore,
$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{13}{n+1} \right|$$
.

Evaluate
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$$
.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{13}{n+1} \right|$$
$$= 0$$

Therefore, ρ = 0. By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{13^n}{n!}$ converges absolutely.