mod4_assigment-uc2

November 3, 2024

1 Module4: Numpy, Pandas, Matplotlib

1.1 Assignment: Use-Case II

```
[27]: #1 Load the Data
     import pandas as pd
     from matplotlib import pyplot as plt
     # Load the data
     ds_data = pd.read_csv('DSScoreTerm1.csv')
     maths_data = pd.read_csv('MathScoreTerm1.csv')
     physics_data = pd.read_csv('PhysicsScoreTerm1.csv')
     # Print basic information about the data (Optional)
     print("\nData-Strucutre:\n-----")
     print(ds_data.info())
     print(ds_data.head())
     print("\nMaths:\n-----")
     print(maths_data.info())
     print(maths_data.head())
     print("\nPhysics:\n-----")
     print(physics_data.info())
     print(physics_data.head())
```

Data-Strucutre:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 599 entries, 0 to 598
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Name	599 non-null	object
1	Score	591 non-null	float64
2	Age	599 non-null	int64
3	Ethinicity	599 non-null	object

4 Subject 599 non-null object 5 Sex 599 non-null object 6 ID 599 non-null int64 dtypes: float64(1), int64(2), object(4)

memory usage: 32.9+ KB

None

	Name	Score	Age	Ethinicity	Subject	Sex	ID
0	AI-KYUNG CHUNG	82.0	18	White American	Data Structue	M	1
1	ALAN HARVEY	79.0	19	European American	Data Structue	M	2
2	ALAN REYNAUD	39.0	19	European American	Data Structue	M	3
3	ALBERT CENDANA	76.0	18	White American	Data Structue	M	4
4	ALBERT HOLT JR	76.0	18	White American	Data Structue	F	5

Maths:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 599 entries, 0 to 598
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Name	599 non-null	object
1	Score	596 non-null	float64
2	Age	599 non-null	int64
3	Ethinicity	599 non-null	object
4	Subject	599 non-null	object
5	Sex	599 non-null	object
6	ID	599 non-null	int64
34	47+ 64 (1) ====================================	· + (1)

dtypes: float64(1), int64(2), object(4)

memory usage: 32.9+ KB

None

	Name	Score	Age	Ethinicity	Subject	Sex	ID
0	AI-KYUNG CHUNG	88.0	18	White American	Maths	M	1
1	ALAN HARVEY	85.0	19	European American	Maths	M	2
2	ALAN REYNAUD	45.0	19	European American	Maths	M	3
3	ALBERT CENDANA	82.0	18	White American	Maths	M	4
4	ALBERT HOLT JR	82.0	18	White American	Maths	F	5

Physics:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 599 entries, 0 to 598
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Name	599 non-null	object
1	Score	593 non-null	float64
2	Age	599 non-null	int64
3	Ethinicity	599 non-null	object

```
Subject
                      599 non-null
                                      object
      4
      5
          Sex
                      599 non-null
                                      object
          ID
                      599 non-null
                                      int64
     dtypes: float64(1), int64(2), object(4)
     memory usage: 32.9+ KB
     None
                  Name Score Age
                                           Ethinicity Subject Sex
                         84.0
                                       White American Physics
       AI-KYUNG CHUNG
                                18
                                                                     1
           ALAN HARVEY
                         81.0
                                19 European American Physics
                                                                     2
     1
                                                                 М
                                19 European American Physics
                                                                     3
     2
          ALAN REYNAUD
                        41.0
                                                                Μ
     3 ALBERT CENDANA
                         78.0
                                                       Physics
                                                                     4
                                18
                                       White American
                                                                 Μ
     4 ALBERT HOLT JR
                        78.0
                                18
                                       White American Physics F
                                                                     5
[28]: #2 Remove Confidential Columns: Drop the Name and Ethnicity columns to maintain
      \hookrightarrow confidentiality.
      # Remove 'Name' and 'Ethnicity' columns
      ds_data = ds_data.drop(columns=['Name', 'Ethinicity'])
      maths data = maths data.drop(columns=['Name', 'Ethinicity'])
      physics_data = physics_data.drop(columns=['Name', 'Ethinicity'])
[29]: #3 Fill Missing Score Data: Replace any missing Score values with 0.
      # Fill missing 'Score' values with 0
      ds_data['Score'] = ds_data['Score'].fillna(0)
      maths_data['Score'] = maths_data['Score'].fillna(0)
      physics_data['Score'] = physics_data['Score'].fillna(0)
[30]: #4 Merge the Files: Combine the three datasets based on the common column ID.
      # Rename 'Score' column to reflect each subject for clarity
      ds_data = ds_data.rename(columns={'Score': 'DS_Score'})
      maths data = maths data.rename(columns={'Score': 'Math Score'})
      physics_data = physics_data.rename(columns={'Score': 'Physics_Score'})
      # Drop the 'Subject' column as it is redundant
      ds_data = ds_data.drop(columns=['Subject'])
      # Merge data on 'ID' (each dataset contains the same students)
      merged_data = ds_data.merge(maths_data[['ID', 'Math_Score']], on='ID').

merge(physics_data[['ID', 'Physics_Score']], on='ID')
[31]: #5 Convert Sex Column: Change Sex column values to 1 for males and 2 for
       ⇔females.
      # Convert 'Sex' column from 'M'/'F' to 1/2
      merged_data['Sex'] = merged_data['Sex'].map({'M': 1, 'F': 2})
```

Data has been processed and saved to 'ScoreFinal.csv' <class 'pandas.core.frame.DataFrame'> RangeIndex: 599 entries, 0 to 598

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	DS_Score	599 non-null	float64
1	Age	599 non-null	int64
2	Sex	599 non-null	int64
3	ID	599 non-null	int64
4	Math_Score	599 non-null	float64
5	Physics_Score	599 non-null	float64

dtypes: float64(3), int64(3)

memory usage: 28.2 KB

None

	DS_Score	Age	Sex	ID	Math_Score	Physics_Score
0	82.0	18	1	1	88.0	84.0
1	79.0	19	1	2	85.0	81.0
2	39.0	19	1	3	45.0	41.0
3	76.0	18	1	4	82.0	78.0
4	76.0	18	2	5	82.0	78.0