[Durée 1h - Aucun document - Calculatrice interdite - Répondre directement sur le sujet]

MODELISATION DES SLCI PAR LA TRANSFORMEE DE LAPLACE

Exercice

On donne l'équation différentielle suivante :

$$\frac{d^2s(t)}{dt^2} + 2\frac{ds(t)}{dt} + 10 \cdot s(t) = 10 \cdot e(t) + \frac{de(t)}{dt}$$
 (E₁)

Les conditions initiales sont les suivantes :

•
$$s(0) = 0$$

$$s'(0) = 0$$

• e(0) = 1

Question 1 Donner l'équation (E_1) dans le domaine de Laplace.

Pour tout t>0,
$$\mathcal{L}[e(t)] = E(p)$$
, $\mathcal{L}\left[\frac{de(t)}{dt}\right] = p \cdot E(p) - 1$, $\mathcal{L}[s(t)] = S(p)$, $\mathcal{L}\left[\frac{ds(t)}{dt}\right] = p \cdot S(p)$, $\mathcal{L}\left[\frac{d^2s(t)}{dt^2}\right] = p^2 \cdot S(p)$.

Au final:
$$p^2S(p) + 2pS(p) + 10S(p) = 10E(p) + pE(p) - 1$$

Question 2 On considère maintenant que e(0) = 0. Donner l'équation (E_1) dans le domaine de Laplace. On note l'équation obtenue (E_2) .

$$p^2S(p) + 2pS(p) + 10S(p) = 10E(p) + pE(p)$$

Question 3 Mettre (E_2) sous la forme $S(p) = F(p) \cdot E(p)$. F(p) est une fonction rationnelle qu'on explicitera.

$$S(p) \cdot [p^2 + 2p + 10] = E(p)[10 + p]$$

$$\Leftrightarrow \frac{S(p)}{E(p)} = F(p) = \frac{10 + p}{p^2 + 2p + 10}$$

Question 4 E(p) est un échelon d'amplitude 2. Donner la valeur de E(p) puis de S(p).

E(p) étant un échelon d'amplitude 2, on a : $E(p) = \frac{2}{p}$

En conséquence

$$S(p) = \frac{10+p}{p^2 + 2p + 10} \cdot \frac{2}{p}$$

Indépendamment de ce qui a été trouvé précédemment, on utilisera :

$$S(p) = \frac{20 + 2p}{p(p^2 + 2p + 10)}$$

Question 5 Donner la valeur initiale de s(t).

Application du théorème de la valeur initiale :

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p \cdot S(p) = \lim_{p \to +\infty} 2 \cdot \frac{10 + p}{p^2 + 2p + 10} = 0$$

JP PUPIER X. PESSOLES 1 DS_02_Corr

Ouestion 6 Donner la valeur finale de s(t).

Application du théorème de la valeur finale :

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} p \cdot S(p) = S(p) = \lim_{p \to +\infty} 2 \cdot \frac{10 + p}{p^2 + 2p + 10} = 2$$

Question 7 Donner la valeur initiale de $\frac{ds(t)}{dt}$.

Application du théorème de la valeur initiale :

$$\lim_{t \to 0} \frac{ds(t)}{dt} = \lim_{p \to +\infty} p^2 \cdot S(p) = \lim_{p \to +\infty} 2 \cdot p \cdot \frac{10 + p}{p^2 + 2p + 10} = 2$$

S(p) peut se mettre sous la forme suivante

$$S(p) = \frac{\alpha}{p} + \frac{\beta + \gamma \cdot p}{p^2 + 2p + 10}$$

Question 8 On donne $\gamma = -2$. Déterminer α et β

En multipliant les deux expressions de S(p) par p et en posant p=0, on a : $\alpha=2$

Prenons une valeur particulière : p=1. On a donc :

$$\frac{22}{13} = 2 + \frac{\beta - 2}{13} \Leftrightarrow 22 = 26 + \beta - 2 \Leftrightarrow \beta = -2$$

On a donc:

PISI

$$S(p) = \frac{2}{p} - \frac{2 + 2 \cdot p}{p^2 + 2p + 10}$$

Question 9 En utilisant les transformées de Laplace inverse, déterminer s(t).

Pour t > 0, $\mathcal{L}^{-1} \left[\frac{2}{n} \right] = 2$.

Par ailleurs:

$$-\frac{2+2\cdot p}{p^2+2p+10} = -2\frac{p+1}{p^2+2p+10} = -2\frac{p+1}{(p+1)^2+9}$$

Au final:

2

$$\mathcal{L}^{-1}\left[-2\frac{p+1}{(p+1)^2+3^2}\right] = -2e^{-t}\cos 3t$$

Pour t > 0

$$s(t) = 2 - 2e^{-t}\cos 3t$$

Question 10 Donner l'allure de s(t). – 2 pts

JP PUPIER 2 DS_02_Corr