Lab - Viewing Network Device MAC Addresses

This lab has been updated for use on NETLAB+

Topology

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
S1	VLAN 1	192.168.1.1	255.255.255.0	N/A
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1

Objectives

Part 1: Configure Devices and Verify Connectivity

Part 2: Display, Describe, and Analyze Ethernet MAC Addresses

Background / Scenario

Every device on an Ethernet LAN is identified by a Layer 2 MAC address. This address is assigned by the manufacturer and stored in the firmware of the NIC. This lab will explore and analyze the components that make up a MAC address, and how you can find this information on a switch and a PC.

You will cable the equipment as shown in the topology. You will configure the switch and PC to match the addressing table. You will verify your configurations by testing for network connectivity.

After the devices have been configured and network connectivity has been verified, you will use various commands to retrieve information from the devices to answer questions about your network equipment.

Note: The switches used are Cisco Catalyst 2960s with Cisco IOS Release 15.0(2) (lanbasek9 image). Other switches and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and the output produced might vary from what is shown in the labs.

Note: Make sure that the switches have been erased and have no startup configurations. If you are unsure, ask your instructor.

Part 1: Configure Devices and Verify Connectivity

In this part, you will configure basic settings, such as the interface IP addresses and device name. For device name and address information, refer to the Topology and Addressing Table.

Step 1: Configure the IPv4 address for the PC.

- a. Configure the IPv4 address, subnet mask and default gateway address for PC-A.
- b. From the command prompt on PC-A, ping the switch address. Were the pings successful? Explain.

Step 2: Configure basic settings for the switch.

In this step, you will configure the device name and the IP address, and disable DNS lookup on the switch.

a. Console into the switch and enter global configuration mode.

```
Switch> enable
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
```

b. Assign a hostname to the switch based on the Addressing Table.

```
Switch (config) # hostname S1
```

c. Disable DNS lookup.

```
S1(config) # no ip domain-lookup
```

d. Configure and enable the SVI interface for VLAN 1.

```
S1(config) # interface vlan 1
S1(config-if) # ip address 192.168.1.1 255.255.255.0
S1(config-if) # no shutdown
S1(config-if) # end
*Mar 1 00:07:59.048: %SYS-5-CONFIG I: Configured from console by console
```

Step 3: Verify network connectivity.

Ping the switch from PC-A. Were the pings successful?

Part 2: Display, Describe, and Analyze Ethernet MAC Addresses

Every device on an Ethernet LAN has a MAC address that is assigned by the manufacturer and stored in the firmware of the NIC. Ethernet MAC addresses are 48-bits long. They are displayed using six sets of hexadecimal digits that are usually separated by dashes, colons, or periods. The following example shows the same MAC address using the three different notation methods:

00-05-9A-3C-78-00 00:05:9A:3C:78:00 0005.9A3C.7800

Note: MAC addresses are also called physical addresses, hardware addresses, or Ethernet hardware addresses.

You will issue commands to display the MAC addresses on a PC and a switch, and you will analyze the properties of each one.

Step 1: Analyze the MAC address for the PC-A NIC.

Before you analyze the MAC address on PC-A, look at an example from a different PC NIC. You can issue the **ipconfig /all** command to view the MAC address of your NIC. An example screen output is shown below. When using the **ipconfig /all** command, notice that MAC addresses are referred to as physical addresses. Reading the MAC address from left to right, the first six hex digits refer to the vendor (manufacturer) of this device. These first six hex digits (3 bytes) are also known as the organizationally unique identifier (OUI). This 3-byte code is assigned to the vendor by the IEEE organization. To find the manufacturer, you can use a tool like www.macvendorlookup.com or go to the IEEE web site to find the registered OUI vendor codes. The

IEEE web site address for OUI information is http://standards.ieee.org/develop/regauth/oui/public.html. The last six digits are the NIC serial number assigned by the manufacturer.

a. Using the output below from the ipconfig /all command, answer the following questions.

What is the OUI portion of the MAC address for this device?

What is the serial number portion of the MAC address for this device?

Using the example above, find the name of the vendor that manufactured this NIC.

b. From the command prompt on PC-A, issue the **ipconfig /all** command and identify the OUI portion of the MAC address for the NIC of PC-A.

Identify the serial number portion of the MAC address for the NIC of PC-A.

Identify the name of the vendor that manufactured the NIC of PC-A.

Step 2: Analyze the MAC address for the S1 F0/6 interface.

You can use a variety of commands to display MAC addresses on the switch.

a. Console into S1 and use the **show interfaces vlan 1** command to find the MAC address information. A sample is shown below. Use output generated by your switch to answer the questions.

S1# show interfaces vlan 1

```
Vlan1 is up, line protocol is up
  Hardware is EtherSVI, address is 001b.0c6d.8f40 (bia 001b.0c6d.8f40)
  Internet address is 192.168.1.1/24
  MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
      reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive not supported
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output 00:14:51, output hang never
  Last clearing of "show interface" counters never
```

```
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
     Queueing strategy: fifo
     Output queue: 0/40 (size/max)
     5 minute input rate 0 bits/sec, 0 packets/sec
     5 minute output rate 0 bits/sec, 0 packets/sec
        O packets input, O bytes, O no buffer
        Received 0 broadcasts (0 IP multicasts)
        0 runts, 0 giants, 0 throttles
        0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
        34 packets output, 11119 bytes, 0 underruns
        0 output errors, 2 interface resets
        0 unknown protocol drops
        O output buffer failures, O output buffers swapped out
   What is the MAC address for VLAN 1 on S1?
   What is the MAC serial number for VLAN 1?
   What is the OUI for VLAN 1?
   Based on this OUI, what is the name of the vendor?
   What does bia stand for?
   Why does the output show the same MAC address twice?
b. Another way to display the MAC address on the switch is to use the show arp command. Use the show
   arp command to display MAC address information. This command maps the Layer 2 address to its
   corresponding Layer 3 address. A sample is shown below. Use output generated by your switch to
   answer the questions.
   S1# show arp
   Protocol Address
                             Age (min) Hardware Addr Type Interface
                                           001b.0c6d.8f40 ARPA Vlan1
   Internet 192.168.1.1
   Internet 192.168.1.3
                                           5c26.0a24.2a60 ARPA Vlan1
   What Layer 2 addresses are displayed on S1?
   What Layer 3 addresses are displayed on S1?
```

Step 3: View the MAC addresses on the switch.

Issue the **show mac address-table** command on S1. A sample is shown below. Use output generated by your switch to answer the questions.

S1# show mac address-table

Mac Address Table

Vlan	Mac Address	Туре	Ports
All	0100.0ccc.ccc	STATIC	CPU
All	0100.0ccc.cccd	STATIC	CPU
All	0180.c200.0000	STATIC	CPU
All	0180.c200.0001	STATIC	CPU
All	0180.c200.0002	STATIC	CPU
All	0180.c200.0003	STATIC	CPU
All	0180.c200.0004	STATIC	CPU
All	0180.c200.0005	STATIC	CPU
All	0180.c200.0006	STATIC	CPU
All	0180.c200.0007	STATIC	CPU
All	0180.c200.0008	STATIC	CPU
All	0180.c200.0009	STATIC	CPU
All	0180.c200.000a	STATIC	CPU
All	0180.c200.000b	STATIC	CPU
All	0180.c200.000c	STATIC	CPU
All	0180.c200.000d	STATIC	CPU
All	0180.c200.000e	STATIC	CPU
All	0180.c200.000f	STATIC	CPU
All	0180.c200.0010	STATIC	CPU
All	ffff.ffff.ffff	STATIC	CPU
1	5c26.0a24.2a60	DYNAMIC	Fa0/6

Did the switch display the MAC address of PC-A? If you answered yes, what port was it on?

Reflection

1. Can you have broadcasts at the Layer 2 level? If so, what would the MAC address be?

2. Why would you need to know the MAC address of a device?

Total Mac Addresses for this criterion: 21
