Roll No. 22EEACY033

Total Page No.: 3

51N0402

51N0402

B.TECH. V SEMESTER (NEW SCHEME) MAIN/BACK EXAMINATION 2024-25 COMPUTER SCIENCE & ENGINEERING

5CS4-02 - Computer Organization and Architecture

5AI4-02, 5AD4-02, 5AM4-02, 5CA4-02, 5CD4-02, 5DS4-02, 5IO4-02, 5IT4-02 5MC4-02, 5CM4-02, 5CY4-02, Common to CS, AI, AD, AM, CA, CD, DS, IO, IT, MC, CM, CY

[Max. Marks: 70 Time: 3 Hours

[Min. Passing Marks:

Instructions to Candidates:

- Part-A: Short Answer Type Questions (up to 25 words) $10 \times 2 = 20$ marks. All 10 questions are compulsory.
- Part-B: Analytical/Problem Solving questions $5 \times 4 = 20$ marks. Candidates have to answer 5 questions out of 7.
- Descriptive/Analytical/Problem Solving questions 3 × 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/ calculated must be stated clearly.

Use of the following supporting materials is permitted during examination. (Mentioned in form no. 205).

		2
R_366	(1)	P.T.O.

Part-A

			1 11	
	1.	Writ	te features of RISC processor.	
	1		i -ing PU-10.	
	Q. 3.	Dia	at do you mean by SIMD, MIMD, and MISD?	
	19.4.	WII	cuss the need of virtual memory.	
	0.5.	Disc	cuss the need of virtual memory. Color that the following transfer statements:	
	Q. 8.	Exp	MIARI	
			$R2 \leftarrow M[AR]$	
			$M[AR] \leftarrow R3$	
			$R5 \leftarrow M[R6]$ Ferentiate between an isolated I/O and memory mapped I/O.	
			Tag Index and Block in relation to see	
	28.	Expl	ain the terms Tag. Mick, and the operation of computer instructions?	
	2.9.	Wha	t is stack and what is its forest.	
	V Ø. 10.	Diffe	Part-B Part-B Part-B	
	/		Part-B Add R. 1007 Coding of Section 1 and Set are the differences between direct mapping, associative mapping and set Mov R.	
	70.1.			
	1	asso	ociative mapping? blain general register organization of a computer with suitable diagram.	
5	10.2.	Exp	scribe any five addressing modes. Sequelle	
	(Q. 3.)) Des	cribe any five addressing modes. Seem the	
	Q. 4.		en the 16 bit value 1001101011001101. What operation must be performed in	×
		orde	er to:	60
		(a)	Clear to O(zero) the first eight bits	
		(b)	Complement the middle eight bits	
	B-3	66	(2)	

(2) co- ph

- Q. 5. Design a bus system for four 8-bit registers using multiplexers.
- Q. 6. A computer has main memory of 512 bytes. The memory is divided into 16 pages of 32 words each. Suppose CUP gives a logical address (000110011)₂. Identify the physical address for the given logical address.
- 7. Draw a neat diagram of DMA chip and explain its working.

Part-C

Explain Booth's multiplication algorithm for signed 2's complement numbers in detail, with a suitable example.

- Q. 2. What do you mean by instruction pipeline? With a neat diagram explain all the steps, involve in instruction pipeline.
- Q. 3. Perform the arithmetic operation below with binary numbers and with negative numbers in signed 2's complement representation. Use 7bits registers:
 - (a) (+35) + (+40)
 - (b) (-35) + (+40)
- 4. What is register transfer language? Explain basic symbols used in register transfer with examples.
 - Q. 5. Evaluate the aritmetic statement X = (A + B) * (C + D) using general register computer with three address, two address, one address and zero address instruction format.

UXD YXR UX2 YX

B-366

(3)

mo Kpolote