MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 8th February 2018 D1 - Lecture 16

Random Attendance

1	170050001	Piyush Dilip Tibarewal
2	170050013	Shrutesh Tapesh Patil
3	170050030	Anurag Arun Kedia
4	170050034	Rajdeep Yadav
5	170050006	Kalsaria Sagar Pareshbhai
6	170050042	Ajay
7	170050066	Manas Shukla
8	170050096	Ramolla Nikhil Reddy
9	170070002	Thorve Rajesh Bhaskar
10	170070033	Anurag Fogawat Absent
1	170070049	Modhugu Rineeth Absent
12	170070053	Ponnada Prem Sekhar
13	17D070010	Shubham Anand Jain
14	17D070013	Paras Vijay Bodake Absent
15	17D070015	Nikhil Arvind Bhaladhare Absent
16	17D070062	Jeetika

Recall: Formula for Determinant

• Using Permutations: For $n \times n$ matrix $A = (a_{ij})$,

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \ldots a_{n\alpha_n}) \det(P).$$

Here a permutation (i_1, i_2, \dots, i_n) of $(1, 2, \dots, n)$ corresponds to the

permutation matrix
$$P = \begin{bmatrix} e_{i_1}^T \\ \vdots \\ e_{i_n}^T \end{bmatrix}$$
.

• Using Cofactors: Let C_{1j} be the coefficient of a_{1j} in the expansion

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \, \ldots \, a_{n\alpha_n}) \det(P)$$

• Then $\det(A) = a_{11}C_{11} + a_{12}C_{12} + \ldots + a_{1n}C_{1n}$.

Note: $C_{1j} = (-1)^{1+j} \det(M_{1j})$, where M_{1j} is obtained from A by deleting the 1st row and j^{th} column.

Recall: Formula for Determinant

• Expansion along *i*th row: If C_{ij} is the coefficient of a_{ij} in the formula of $\det(A)$, then $\det(A) = a_{i1} C_{i1} + \ldots + a_{in} C_{in}$.

Note: $C_{ij} = (-1)^{i+j} \det(M_{ij})$, where M_{ij} is obtained from A by deleting i-th row and j-th column.

Idea: Using i - 1 row exchanges, make A_{i*} the first row.

• Expansion along jth column: $C_{ij}(A^T) = C_{ji}(A)$ and

$$\det(A) = \det(A^T) \Rightarrow \boxed{\det(A) = a_{1j} C_{1j}(A) + \ldots + a_{nj} C_{nj}(A)}.$$

Computing determinants: Exercise

Example: Let
$$F_n = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -1 \\ & \ddots & \ddots & \ddots \\ & & 1 & 1 & -1 \\ & & & 1 & 1 \end{vmatrix}$$
 be a $(1, 1, -1)$ tri-diagonal

 $n \times n$ matrix. Expanding along the first row, we get

$$F_{n} = F_{n-1} + (-1)^{1+2}(-1) \begin{vmatrix} 1 & -1 & & & & \\ & 1 & -1 & & & \\ & 1 & 1 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & 1 & -1 \\ & & & & 1 & 1 \end{vmatrix} = F_{n-1} + F_{n-2},$$

by expanding along first column.

Since $F_1 = ..., F_2 = ...$, the sequence F_n is ..., ..., ...

Computing determinants: Examples

Find the determinants for the following examples

•
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
. Expand along 1st column.

•
$$B = \begin{bmatrix} 3 & 2 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
. Expand along 2nd row.

•
$$E = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
. Find the cofactor matrix C . Compute EC^T .

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} EC^{T} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Note: det(E) = 4 and $EC^T = 4I \Rightarrow E^{-1} = \frac{1}{det(E)}C^T$.

Applications: 1. Computing A^{-1}

If
$$C = (C_{ij})$$
: cofactor matrix of A , then $A \subset C = \det(A) \setminus A$ i.e.,
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} = \begin{bmatrix} \det(A) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \det(A) \end{bmatrix}$$

Proof. We have seen that $a_{i1}C_{i1} + \ldots + a_{in}C_{in} = \det(A)$. Now

Froof. We have seen that
$$a_{i1}C_{i1}+\ldots+a_{in}C_{in}=\det(A)$$
. No $a_{11}C_{21}+a_{12}C_{22}+\ldots+a_{1n}C_{2n}=\det\begin{bmatrix} a_{11}&\ldots&a_{1n}\\a_{11}&\ldots&a_{1n}\\a_{31}&\ldots&a_{3n}\\ \vdots&&\ddots&\vdots\\a_{n1}&\ldots&a_{nn} \end{bmatrix}=0.$ Similarly, if $i\neq j$, then $a_{i1}C_{j1}+a_{i2}C_{j2}+\ldots+a_{in}C_{jn}=0$.

Similarly, if
$$i \neq j$$
, then $a_{i1}C_{j1} + a_{i2}C_{j2} + ... + a_{in}C_{jn} = 0$.

Remark. If *A* is invertible, then
$$A^{-1} = \frac{1}{\det(A)}C^T$$
.

For n > 4, this is *not* a good formula to find A^{-1} . Use elimination to find A^{-1} for n > 4.

Reading Slide - Exercise

 $C_{11} = 3$, $C_{12} = 0$, $C_{13} = 0$

Find the inverse of
$$A = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{4} & \mathbf{1} \end{bmatrix}$$
.
$$det(A) = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} + (-1)^{1+2}(2) \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 3$$

$$C_{21}=-2, C_{22}=1, C_{23}=-4$$
 $C_{31}=0, C_{32}=0, C_{33}=3.$
Hence $A^{-1}=rac{1}{\det(A)}C^{T}=rac{1}{3}egin{bmatrix} 3 & -2 & 0 \ 0 & 1 & 0 \ 0 & -4 & 3 \end{bmatrix}$

Check. $AA^{-1} = I$.

Applications: 2. Solving Ax = b

Cramer's rule: If A is invertible, the Ax = b has a unique solution.

$$x = A^{-1}b = \frac{1}{\det(A)} C^T b = \frac{1}{\det(A)} \begin{bmatrix} C_{11} & \cdots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Hence
$$x_j = \frac{1}{\det(A)}(b_1C_{1j} + b_2C_{2j} + \cdots + b_nC_{nj}) = \frac{1}{\det(A)}\det(B_j),$$

where B_j is obtained by replacing j^{th} column of A by b, and $det(B_j)$ is computed along the j^{th} column.

Extra Reading - Applications: 3. A Formula for Pivots

Observation: If row exchanges are not required, then the first k pivots are determined by the top-left $k \times k$ submatrices \widetilde{A}_k of A.

Example. If
$$A = [a_{ij}]_{3\times 3}$$
, then $\widetilde{A}_1 = (a_{11})$, $\widetilde{A}_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $\widetilde{A}_3 = A$.

Assume the pivots are d_1, \ldots, d_n , obtained without row exchange. Then

- $\det(\widetilde{A}_1) = a_{11} = d_1$
- $\det(\widetilde{A}_2) = d_1 d_2 = \det(A_1) d_2$
- $\det(\widetilde{A}_3) = d_1 d_2 d_3 = \det(A_2) d_3 etc.$
- If $det(\widetilde{A}_k) = 0$, then we need a row exchange in elimination.
- Otherwise the k-th pivot is $d_k = \det(\widetilde{A}_k)/\det(\widetilde{A}_{k-1})$

Extra Reading - Example

Example. Find if row exchange is required in Gauss Elimination of

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 4 & 9 \end{pmatrix}$$
 and find the pivots.

Solution.
$$\widetilde{A}_1 = (1), \ \widetilde{A}_2 = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}, \ \widetilde{A}_3 = A$$

$$\det(\widetilde{A}_1)=1, \quad \det(\widetilde{A}_2)=3$$

$$\det(\widetilde{A}_3) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 3 & 8 \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 3 & 8 \end{vmatrix} = 15$$

Therefore row exchange is not required in elimination and the pivots are $d_1 = 1$, $d_2 = 3/1 = 3$, $d_3 = 15/3 = 5$. Verify this directly by elimination!

Summary: Determinants

Let A and B $n \times n$, and t a scalar.

- $det(A + B) \neq det(A) + det(B)$, and $det(tA) = t^n det(A)$.
- det(AB) = det(A)det(B).
- $det(A) = det(A^T)$.
- If A is orthogonal, i.e., $AA^T = I$, then det(A) = I
- If $A = [a_{ij}]$ is triangular, then det(A) =
- A is invertible $\Leftrightarrow \det(A) \neq 0$. If this happens, then $\det(A^{-1}) =$
- If A and B are similar, i.e., $B = S^{-1}AS$ for an invertible matrix S, then det(B) =
- If A is invertible, and d_1, \ldots, d_n are the pivots of A, then det(A) =

Eigenvalues and Eigenvectors: Motivation

• Solve for the differential equation for u: du/dt = 3u.

The solution is $u(t) = c e^{3t}$, $c \in \mathbb{R}$ With initial condition u(0) = 2, the solution is $u(t) = 2e^{3t}$.

• Consider the system of linear 1st order differential equations (ODE) with constant coefficients:

$$du_1/dt = 4u_1 - 5u_2,$$

 $du_2/dt = 2u_1 - 3u_2,$

How does one find the solution?

• Write the system in matrix form du/dt = Au,

where
$$u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$$
, $A = \begin{pmatrix} 4 & -\overline{5} \\ 2 & -\overline{3} \end{pmatrix}$.

• Assuming the solution is $u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} = e^{\lambda t} v = \begin{pmatrix} e^{\lambda t} x \\ e^{\lambda t} y \end{pmatrix}$, where

$$v = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$
, we need to find λ and v .

Eigenvalues and Eigenvectors: Definition

We have
$$u'_1 = 4u_1 - 5u_2$$
, $u'_2 = 2u_1 - 3u_2$, where $u_1(t) = e^{\lambda t} x$, $u_2(t) = e^{\lambda t} y$
$$\lambda e^{\lambda t} x = 4e^{\lambda t} x - 5e^{\lambda t} y$$
,
$$\lambda e^{\lambda t} y = 2e^{\lambda t} x - 3e^{\lambda t} y$$
.

Cancelling $e^{\lambda t}$, we get

Eigenvalue problem: Find λ and $v = (x, y)^T$ satisfying

$$4x - 5y = \lambda x,$$

$$2x - 3y = \lambda y$$
.

In the matrix form, it is $Av = \lambda v$. This equation has two unknowns, λ and v.

If there exists a λ such that $Av = \lambda v$ has a non-zero solution v, then λ is called an eigenvalue of A and all *nonzero* v satisfying $Av = \lambda v$ are called eigenvectors of A associated to λ .

Q: Given $A n \times n$, how does one find its eigenvalues and eigenvectors?

Eigenvalues and Eigenvectors: Solving $Ax = \lambda x$

- Write $Av = \lambda v$ as $(A \lambda I)v = 0$.
- λ is an eigenvalue of A
 - \Leftrightarrow there is a nonzero v in the nullspace of $A \lambda I$

$$\Leftrightarrow N(A - \lambda I) \neq 0$$
, i.e., dim $(N(A - \lambda I)) \geq 1$,

- $\Leftrightarrow A \lambda I$ is singular
- $\Leftrightarrow \det(A \lambda I) = 0.$
- $det(A \lambda I)$ is a polynomial in the variable λ of degree n. Hence it has at most n roots \Rightarrow A has atmost n eigenvalues.
- $det(A \lambda I)$ is called the characteristic polynomial of A.
- If λ is an eigenvalue of A, then the nullspace of $A \lambda I$ is called the eigenspace of A associated to eigenvalue λ .
- $\lambda = 0$ is an eigenvalue of $A \Leftrightarrow \det(A) = 0 \Leftrightarrow A$ is singular.

Eigenvalues and Eigenvectors: Example

To summarise: An eigenvalue of *A* is a root of its characteristic polynomial, and any non-zero vector

in the corresponding eigenspace is an associated eigenvector.

Recall: The ODE system we want to solve is

$$u_1'=4u_1-5u_2,\quad u_1(0)=8, \qquad \qquad u_2'=2u_1-3u_2, \quad u_2(0)=5.$$

The solutions are $u_1(t) = e^{\lambda t} x$, $u_2(t) = e^{\lambda t} y$, where $(x, y)^T$ is a solution of:

$$\begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad (Av = \lambda v)$$

The characteristic polynomial of A is

$$\det(A - \lambda I) = \det\begin{pmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{pmatrix}$$
$$= (4 - \lambda)(-3 - \lambda) + 10$$
$$= \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$$

The eigenvalues of *A* are $\lambda_1 = -1$, $\lambda_2 = 2$.

Eigenvalues and Eigenvectors: Example

Eigenvectors v_1 and v_2 associated to $\lambda_1 = -1$ and $\lambda_2 = 2$ respectively, are in:

$$N(A - \lambda_1 I) = N(A + I)$$
, and $N(A - \lambda_2 I) = N(A - 2I)$.

Solving
$$(A+I)v=0$$
, i.e., $\begin{pmatrix} 5 & -5 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$, we get

$$N(A+I) = \left\{ \begin{pmatrix} y \\ y \end{pmatrix} \mid y \in \mathbb{R} \right\}$$
 and $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector associated to $\lambda_1 = -1$.

Similarly, solving
$$(A-2I)v=0$$
 gives $N(A-2I)=\left\{\begin{pmatrix} \frac{5y}{2}\\ y\end{pmatrix}\mid y\in\mathbb{R}\right\}$.

In particular, $v_2 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ is an eigenvector associated to $\lambda_2 = 2$.

Thus, the system du/dt=Au has two special solutions $e^{-t}v_1$ and $e^{2t}v_2$.

Reading Slide - Complete Solution to ODE

Note: When two functions satisfy du/dt = Au, then so do their linear combinations.

Complete solution: $u(t) = c_1 e^{-t} v_1 + c_2 e^{2t} v_2$,

i.e.
$$\begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} = c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
.

i.e.
$$u_1(t) = c_1 e^{-t} + 5c_2 e^{2t}$$
, $u_2(t) = c_1 e^{-t} + 2c_2 e^{2t}$.

If we put initial conditions (IC) $u_1(0) = 8$ and $u_2(0) = 5$, then

$$c_1 + 5c_2 = 8$$
, $c_1 + 2c_2 = 5 \Rightarrow c_1 = 3$, $c_2 = 1$.

Hence the solution of the original ODE system with the given IC is

$$u_1(t) = 3e^{-t} + 5e^{2t}, \quad u_2(t) = 3e^{-t} + 2e^{2t}.$$

Examples

In some cases it is easy to find the eigenvalues.

Example:
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
 is diagonal. Characteristic polynomial $(3 - \lambda)(2 - \lambda)$.

Eigenvalues: $\lambda_1 = 3$, $\lambda_2 = 2$.

Eigenvectors: $(A-3I)v_1=0 \Rightarrow Av_1=3v_1 \Rightarrow v_1=e_1$

Similarly, an eigenvector associated to λ_2 is $v_2 = e_2$

Further, \mathbb{R}^2 has a basis consisting of eigenvectors of A: $\{e_1, e_2\}$.

General case: If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then

Eigenvalues: $\lambda_1, \dots, \lambda_n$ Eigenvectors: e_1, \dots, e_n ,

which form a basis for \mathbb{R}^n .

Examples

Example: Projection onto the line
$$x = y$$
: $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. $v_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ projects onto itself $\Rightarrow \lambda_1 = 1$ with eigenvector v_1 . $v_2 = \begin{pmatrix} 1 & -1 \end{pmatrix}^T \mapsto 0 \Rightarrow \lambda_2 = 0$ with eigenvector v_2 . Further, $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .

Q: Do a collection of eigenvectors always form a basis of \mathbb{R}^n ?