Importing the Packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.metrics import accuracy_score
```

In [2]: df = pd.read_csv('diabetes.csv') #Dataframe

Dataset

In [3]: df.head(7)

Out[3]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
	5	5	116	74	0	0	25.6	0.201	30	0
	6	3	78	50	32	88	31.0	0.248	26	1

Correlation Matrix

In [4]: corrMatrix = df.corr()
 df.corr()

Out[4]:		Pregnancies		BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221898

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.466581
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.065068
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074752
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130548
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.292695
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173844
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.238356
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.000000
4									

Visual Representation of Confusion Matrix

In [5]: sns.heatmap(corrMatrix, annot=True)
 plt.show()


```
max_depth=10,
    random_state=42)
clf1.fit(X=X_train, y=y_train)
```

```
In [10]: y_pred = clf1.predict(X=X_test)
```

Confusion Matrix

In [11]: from sklearn.metrics import plot_confusion_matrix
 plot_confusion_matrix(clf1, X_test, y_test)
 plt.show()

Accuracy Score

```
In [12]: print(f'{round(accuracy_score(y_test, y_pred)*100,2)}%')
74.03%
```

In []: