Pump it Up: Data Mining the Water Table

· User: Jiang Li

URL: https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/ (https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/)

Goal

We will use Python/Tensorflow to do ML analysis

- Exploratory Data Analysis(EDA): Looking at features which will include
 - What is the missing value for each of the feature
 - What is the correlations between each feature
- Transform the data: Given EDA result, transform the feature data to make it work for the ML Pipeline
- ML Analysis: use the feature to predict whether a Pump is functional or not

Challenge Summary

Can you predict which water pumps are faulty?

Using data from Taarifa (http://taarifa.org/) and the Tanzanian Ministry of Water (http://maji.go.tz/), can you predict which pumps are functional, which need some repairs, and which don't work at all? This is an intermediate-level practice competition. Predict one of these three classes based on a number of variables about what kind of pump

is operating, when it was installed, and how it is managed. A smart understanding of which waterpoints will fail can improve maintenance operations and ensure that clean, potable water is available to communities across Tanzania.

The features in this dataset

Your goal is to predict the operating condition of a waterpoint for each record in the dataset. You are provided the following set of information about the waterpoints:

- amount_tsh Total static head (amount water available to waterpoint)
- date_recorded The date the row was entered
- funder Who funded the well
- gps_height Altitude of the well
- installer Organization that installed the well
- longitude GPS coordinate
- latitude GPS coordinate
- wpt_name Name of the waterpoint if there is one
- · num_private -
- basin Geographic water basin
- **subvillage** Geographic location
- region Geographic location
- region code Geographic location (coded)
- district_code Geographic location (coded)
- Iga Geographic location
- ward Geographic location
- population Population around the well
- **public_meeting** True/False
- recorded_by Group entering this row of data

- scheme_management Who operates the waterpoint
- scheme_name Who operates the waterpoint
- · permit If the waterpoint is permitted
- construction_year Year the waterpoint was constructed
- extraction_type The kind of extraction the waterpoint uses
- extraction_type_group The kind of extraction the waterpoint uses
- extraction_type_class The kind of extraction the waterpoint uses
- management How the waterpoint is managed
- management_group How the waterpoint is managed
- payment What the water costs
- payment_type What the water costs
- water_quality The quality of the water
- quality_group The quality of the water
- quantity The quantity of water
- quantity_group The quantity of water
- · source The source of the water
- source_type The source of the water
- source_class The source of the water
- · waterpoint_type The kind of waterpoint
- waterpoint_type_group The kind of waterpoint

The labels in this dataset

Distribution of Labels

The labels in this dataset are simple. There are three possible values:

- functional the waterpoint is operational and there are no repairs needed
- functional needs repair the waterpoint is operational, but needs repairs
- non functional the waterpoint is not operational

Submission format

The format for the submission file is simply the row id and the predicted label (for an example, see **SubmissionFormat.csv**) on the data download page.

Your .csv file that you submit would look like:

id,status_group
50785,functional
51630,functional
17168,functional
45559,functional

...