Research review

Important historical developments in the field of AI planning and search

Jaehwan Park

1. STRIPS (Stanford Research Institute Problem Solver)

STRIPS is the first major planning system that attempts to find a sequence of operators in a space of world models to transform a given initial world model into a model in which a given goal formula can be proven to be true. [1]

STRIPS represents a world model as an arbitrary collection of first-order predicate calculus formulas and is designed to work with models consisting of large numbers of formulas. It employs a resolution theorem prover to answer questions of models and uses means-ends analysis to guide it to the desired goal-satisfying model. [2]

The representation language used by STRIPS has been far more influential than its algorithmic approach; what we call the "classical" language is close to what STRIPS used. [1]

2. PDDL (Planning Domain Definition Language)

PDDL was introduced as a computer-parsable, standardized syntax for representing planning problems and has been used as the **standard language** for the International Planning Competition since 1998. [1]

PDDL is intended to express the physics of a domain, that is, what predicates there are, what actions are possible, what the structure of compound actions is, and what the effects of actions are. [3]

3. SATPLAN (Planning as Satisfiability)

SATPLAN represents a similar range of mutex relations, but does so by using the general CNF form rather than a specific data structure. [1]

It uses a formal model of planning **based on satisfiability** rather than deduction. The satisfiability approach not only provides a more flexible framework for stating different kinds of constraints on plans, but also accurately reflects the theory behind modern constraint-based planning systems. [4]

References

- 1. Artificial Intelligence: A Modern Approach by Norvig and Russell (2nd Edition) 2002
- 2. Richard E. Fikes, Nils J. Nilsson (Winter 1971). "STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving"
- 3. McDermott, Drew; Ghallab, Malik; Howe, Adele; Knoblock, Craig; Ram, Ashwin; Veloso, Manuela; Weld, Daniel; Wilkins, David (1998). "PDDL---The Planning Domain Definition Language"
- 4. H. A. Kautz and B. Selman (1992). Planning as satisfiability. In Proceedings of the Tenth European Conference on Artificial Intelligence (ECAl'92), pages 359-363.