좋은 모형이란?

1. 적합이 좋은 모형

- 회귀직선이 데이터에 완전히 들어맞고, 잔차가 작음
- 설명변수를 증가시킴으로써 적합도를 높일 수 있음 --> 과하면 과적합: 데이터에 지나치게 적합되어 일반 적인 예측성을 잃음

2. 예측이 좋은 모형

• 미지의 데이터 (모르는 데이터의 설명변수)라도 모형이 반응변수를 정확하게 예측 --> 일반화

좋은 모형

• 보통 적합이 좋은 모형보다 예측이 좋은 모형을 고름

모형의 좋고 나쁨을 측정하는 지표들

· statsmodels

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from scipy import stats
```

In [2]:

```
df = pd.read_csv('./ch12_scores_reg.csv')
df
```

Out[2]:

	quiz	final_test	sleep_time	school_method
0	4.2	67	7.2	bus
1	7.2	71	7.9	bicycle
2	0.0	19	5.3	bus
3	3.0	35	6.8	walk
4	1.5	35	7.5	walk
5	0.9	40	7.6	bus
6	1.9	23	4.3	walk
7	3.5	37	4.2	bicycle
8	4.0	39	4.7	bicycle
9	5.4	55	7.5	walk
10	4.2	40	4.4	bus
11	6.9	70	5.7	bus
12	2.0	29	7.8	bus
13	8.8	88	6.1	bicycle
14	0.3	47	6.8	walk
15	6.7	77	5.3	bus
16	4.2	52	6.7	walk
17	5.6	55	7.3	walk
18	1.4	18	4.1	walk
19	2.0	60	7.0	bicycle

In [3]:

```
x = np.array(df["quiz"])
y = np.array(df["final_test"])
formula = "final_test ~ quiz" # final_test: 반응변수, quiz: 설명변수
result = smf.ols(formula, df).fit()
# Ordinary Least Square (OLS): 잔차제곱합을 최소화하는 가중치 벡터를 행렬 미분으로 구하는 방
법...
result.summary()
```

Out[3]:

OLS Regression Results

final_test 0.676 Dep. Variable: R-squared: Adj. R-squared: Model: OLS 0.658 Method: Least Squares F-statistic: 37.61 **Date:** Tue, 24 Nov 2020 Prob (F-statistic): 8.59e-06 Time: 17:59:29 Log-Likelihood: -76.325 No. Observations: 20 AIC: 156.7 Df Residuals: 18 BIC: 158.6 Df Model: 1 **Covariance Type:** nonrobust coef std err [0.025 0.975] P>|t| t 4.714 5.028 0.000 13.796 33.603

Intercept 23.6995 1.069 6.133 0.000 4.309 quiz 6.5537 8.799

Omnibus: 2 139 **Durbin-Watson:** 1.478 Prob(Omnibus): 0.343 Jarque-Bera (JB): 1.773 **Skew:** 0.670 Prob(JB): 0.412 Kurtosis: 2.422 Cond. No. 8.32

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [4]:

```
y_hat = np.array(result.fittedvalues) # 예측값
y_hat
```

Out [4]:

```
array([51.22517229, 70.88637011, 23.69949535, 43.36069316, 33.53009426,
       29.59785469, 36.1515873, 46.63755947, 49.91442577, 59.08965142,
      51.22517229, 68.92025033, 36.80696056, 81.37234228, 25.66561513,
      67.60950381, 51.22517229, 60.40039794, 32.874721 , 36.80696056])
```

In [5]:

```
eps_hat = np.array(result.resid) # 잔차
eps_hat
```

Out[5]:

In [6]:

```
np.sum(eps_hat ** 2) # 잔차제곱합
```

Out[6]:

2417.227825229262

• 잔차제곱합은 동일한 모형 중에서 상대적으로 비교할 때만 사용 가능

결정계수 (R-squared)

- 모형의 데이터에 대한 **적합도**를 나타내는 지표
- 0~1:1에 가까울수록 데이터에 잘 들어맞는 것
- 결정계수 = 회귀변동 / 총변동 = 1 (잔차변동 / 총변동)

총변동 (Total variation)

• 관측값의 분산값

회귀변동 (Regression var.)

- 예측값이 관측값의 평균값에 대해 어느 정도 분산되어 있는지
- 예측값이 관측값에 가까울수록 총변동에 가까워짐

잔차변동 (Residual var.)

- 잔차제곱합
- 예측값이 관측값에 가까울수록 잔차변동이 0에 가까워짐

총변동 = 회귀변동 + 잔차변동

주의!

• 관련 없는 변수가 들어가도 설명변수가 증가하면 결정계수는 증가 ==> 조정결정계수

In [7]:

```
total_var = np.sum((y - np.mean(y)) ** 2) # 총변동
exp_var = np.sum((y_hat - np.mean(y)) ** 2) # 회귀변동
unexp_var = np.sum(eps_hat ** 2) # 잔차변동
total_var, exp_var + unexp_var
```

Out[7]:

(7468.55, 7468.54999999999)

In [8]:

```
exp_var / total_var # 결정계수
```

Out[8]:

0.6763457665504996

조정결정계수 (Adjusted R-square; Adj. R-squared)

- 자유도조정 결정계수라고도 함: 자유도를 고려한 결정계수
- page 366 식 참고

In [9]:

```
n = len(df)
p = 1 # 설명변수의 개수
1 - (unexp_var / (n - p - 1)) / (total_var / (n - 1))
```

Out [9]:

0.6583649758033057

F 검정 (F test; F-statistic)

- 절편 이외의 회귀계수에 관해서 수행되는 검정
- 귀무가설: 회귀계수 = 0, 대립가설: 적어도 하나의 회귀계수는 0이 아님
- page 367 식 참고: 모형의 적합도가 좋을수록 잔차변동보다 회귀변동이 커짐
- F 검정통계량이 일정 값보다 커지면, 모형이 데이터에 적합되어 있다!
- 분산 분석 (ANalysis Of VAriance; ANOVA): 통계학 강의!

In [10]:

```
f = (exp_var / p) / (unexp_var / (n - p - 1))
f
```

Out[10]:

37.61490671126522

In [11]:

rv = stats.f(p, n - p - 1) # F 분포 1 - rv.cdf(f) # p 값: 귀무가설이 기각되므로 설명변수 증 적어도 하나는 반응변수에 영향을 준다고 해석

Out[11]:

8.590875866687497e-06

분산이 같은 두 정규모집단으로부터 크기 n1과 크기 n2의 확률표본을 반복하여 독립적으로 추출한 후 구한 두 표본분산의 비율들의 표본분포는 자유도 v1이고 자유도 v2인 F 분포를 따른다.

F 분포는 항상 양의 값을 가지며, 비대칭(오른쪽으로 긴 꼬리)적인 분포모양을 가집 니다.

최대로그우도, AIC

- 앞서 결정계수, 조정결정계수, F검정은 모형의 데이터에 대한 **적합도**를 나타내는 지표
- 아카이케 정보량 기준 (AIC; Akaike's Information Criterion)은 모형의 예측 성능에 관한 지표

우도 (Likelihood)

- 어떤 관측값을 얻을 확률
- 예: 동전(앞면의 확률이 0.3)의 앞면을 1, 뒷면을 0이라 할 때, 동전을 5 번 던져 [0, 1, 0, 0, 1]로 나올 확률

$$L = \prod_{i=1} f(x_i)$$

In [12]:

```
p = 0.3
coin_result = [0, 1, 0, 0, 1]

rv = stats.bernoulli(p)
ps = rv.pmf(coin_result)
ps
```

Out[12]:

```
array([0.7, 0.3, 0.7, 0.7, 0.3])
```

In [13]:

```
L = np.prod(ps) # np.prod: Array 내부 곱
L # 즉, L(우도 함수)는 p에 대한 함수
```

Out[13]:

0.030870000000000005

• 예: p를 알지 못하는 상황에서, p를 0에서 1로 변화시킬 때의 우도함수 L은

In [14]:

```
ps = np.linspace(0, 1, 100)
Ls = [np.prod(stats.bernoulli(p).pmf(coin_result)) for p in ps]

fig, sub = plt.subplots(figsize = (10, 6))
sub.plot(ps, Ls, label = "Likelihood function", c = "gray")
sub.legend(fontsize = 16)
sub.set_xlabel("p")
sub.set_ylabel("L(p)")
plt.show()
```


- p가 0.4에서 우도함수가 최대
- 관측값에 의해 p = 0.4로 추정 => **최우추정법**, **최우추정값**

로그우도 (Log-likelihood)

- 우도는 확률의 곱이므로, 곱할수록 0에 가까워짐
- 계산 오차를 줄이기 위해 우도에 로그를 취해 사용.

$$\log L = \sum_{i=1} \log f(x_i)$$

최대로그우도 (Maximum log-likelihood)

- 우도함수가 최대 -> 로그우도함수도 최대 => 최대로그우도
- 최대로그우도 값이 **클수록** 모형의 적합도가 높다
- 로그우도도 모형의 **적합도**를 나타내는 지표

OLS Regression Results

OLO INGGIOSSION INCOMIS							
Dep. \	/ariable:		final_tes	t	R-squa	ared:	0.676
	Model:		OLS	6 A o	dj. R-squa	ared:	0.658
	Method:	Least	Square	S	F-stati	istic:	37.61
	Date:	Tue, 24 1	Nov 202	Prol	o (F-statis	stic):	8.59e - 06
	Time:		17:59:2	9 Lo	g-Likelih	ood:	-76.325
No. Observations:			2	0	AIC:		
Df Residuals:			1	3		BIC:	158.6
D	f Model:		8	1			
Covariance Type:		nonrobust		t			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	23.6995	4.714	5.028	0.000	13.796	33.60	3
auiz	6.5537	1.069	6.133	0.000	4.309	8.79	9

	CO	ef st	d err	t	P> t	[0.025	0.975]
Intercept	23.699	95 4	1.714	5.028	0.000	13.796	33.603
quiz	6.553	37	1.069	6.133	0.000	4.309	8.799
Omi	nibus:	2.139) [Ourbin-V	Vatson:	1.478	
Prob(Omn	ibus):	0.343	3 Jai	rque-Be	ra (JB):	1.773	
;	Skew:	0.670)	Pr	ob(JB):	0.412	
Kur	tosis:	2.422	2	Co	nd. No.	8.32	

AIC (Akaike's Information Criterion)

- 예측성에 대한 지표
- 실제로 모형을 선택할 때 AIC을 고려하는 경우가 많음

 $AIC = -2 \times$ 최대로그우도 $+2 \times$ 회귀계수의수

- 회귀계수의 수를 페널티로 부과하여 설명변수를 늘린 모형이 좋은 모형으로 선택되지 않게 함
- AIC 값이 작을수록 모형의 예측 정확도가 좋음

베이지안 정보 기준 (BIC; Bayesian Information Criterion)

• 회귀계수의 수에 더해 표본 크기(n)에 대해서도 페널티를 부과

BIC = -2 imes 최대로그우도 $+\log n imes$ 회귀계수의수

• BIC가 작을수록 모형의 예측 정확도가 좋음