→ Actividad 3.5 – → Clasificación de vinos:

El objeto de esta actividad es poner en práctica los conocimientos adquiridos hasta el momento para ellos vamos a utilizar el siguiente dataset que contiene una serie de características físico-químicas que determina la calidad del vino en una escala de valores del 1 al 10.

El enlace donde se encuentran los dataset es el siguiente:

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Como proyecto de partida se puede utilizar el ejemplo:

Título: Ejemplo_3_3_Clasificación_con_Naive_Bayes_(Heart_Diseases)

Url: https://colab.research.google.com/drive/1J_QQh_tkRngskGWRubrmcHC2J5HGLvrH? usp=sharing

Importación de los datasets (utilizar el dataset RedWine)

```
# importación de librerías
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import sklearn.externals
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score, confusion matrix, ConfusionMatrixDisplay
from sklearn.model_selection import KFold
from sklearn.naive bayes import GaussianNB, MultinomialNB, BernoulliNB, ComplementNB, Categor
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.utils.multiclass import unique labels
import joblib
# importación de los datos
# df_wines = pd.read_csv('winequality-red.csv', sep=';')
# Vinos tintos
# df_wines = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quali
```

Vinos blancos
df_wines = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality
df_wines

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3
4893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3
4897	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3

4898 rows × 12 columns

valores unicos de la columna 'quality'

se usa en la matriz de confusión

qualities = df_wines.quality
uniques = sorted(pd.unique(qualities).tolist())
uniques

estadísticas descriptivas

df_wines.describe()

free sulfur dioxide	chlorides	residual sugar	citric acid	volatile acidity	fixed acidity	
4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	count
35.308085	0.045772	6.391415	0.334192	0.278241	6.854788	mean
17.007137	0.021848	5.072058	0.121020	0.100795	0.843868	std
2.000000	0.009000	0.600000	0.000000	0.080000	3.800000	min
23.000000	0.036000	1.700000	0.270000	0.210000	6.300000	25%
34.000000	0.043000	5.200000	0.320000	0.260000	6.800000	50%
46.000000	0.050000	9.900000	0.390000	0.320000	7.300000	75%
289.000000	0.346000	65.800000	1.660000	1.100000	14.200000	max

```
# separamos datos de entrada y salida
```

```
x_wines = df_wines.drop('quality', axis=1)
y_wines = df_wines['quality']
```

 x_{train} , x_{train} , y_{train} , $y_{$

→ Mostrar la matriz de correlación de variables

```
# Mostramos la matriz de correlación
df_wines.corr()
```

[#] separamos train y test

```
free
                                                                                        total
                                                   residual
                     fixed
                            volatile
                                          citric
                                                              chlorides
                                                                            sulfur
                                                                                       sulfur
                   acidity
                              acidity
                                            acid
                                                      sugar
                                                                           dioxide
                                                                                      dioxide
        fixed
                  1.000000
                            -0.022697
                                        0.289181
                                                   0.089021
                                                                          -0.049396
                                                                                      0.091070
                                                               0.023086
        acidity
       volatile
                 -0.022697
                             1.000000
                                       -0.149472
                                                   0.064286
                                                               0.070512
                                                                          -0.097012
                                                                                     0.089261
       acidity
      citric acid
                  0.289181
                                        1.000000
                                                   0.094212
                             -0.149472
                                                               0.114364
                                                                          0.094077
                                                                                      0.121131
       residual
                  0.089021
                             0.064286
                                        0.094212
                                                   1.000000
                                                               0.088685
                                                                          0.299098
                                                                                     0.401439
        sugar
      chlorides
                  0.023086
                                                   0.088685
                                                               1.000000
                             0.070512
                                        0.114364
                                                                          0.101392
                                                                                     0.198910
         free
        sulfur
                 -0.049396
                            -0.097012
                                        0.094077
                                                   0.299098
                                                               0.101392
                                                                          1.000000
                                                                                     0.615501
       dioxide
# Mostramos la matriz de correlación
```

```
# Mostramos la matriz de correlacion
# como un mapa de calor

fig, ax = plt.subplots(figsize=(20,10))
sns.heatmap(df_wines.corr(), annot=True, fmt=".2f")
ax.set_xticklabels(
    labels=df_wines.columns.values,
    rotation=45,
    horizontalalignment='center'
);
plt.show()
```

1.0

- 0.8

0.6

Mostrar comparativa por pares de variables (sns.pairplot)

total sulfur dioxide - 0.09 0.09 0.12 0.40 0.20 0.62 1.00 0.53 0.00 0.13 40.45 40.17

Mostramos los histogramas

df_wines.hist(figsize=(10,10))
plt.show()

df_wines.plot(kind='density', subplots=True, layout=(6,2), figsize=(10,10), sharex=False)
plt.show()

Mostramos el diagrama de pares (pairplot)

sns.pairplot(df_wines, hue='quality')

Realizar una comparativa de la precisión en el entrenamiento de los diferentes modelos NaiveBayes

▼ Sin CrossValidation

```
# DA FALLO SI AÑADO EL MODELO CategoricalNB()

# Modelos NaiveBayes
names = ["GaussianNB", "MultiNomialNB", 'BernouilliNB', 'ComplementNB']
classifiers = [GaussianNB(), MultinomialNB(), BernoulliNB(), ComplementNB()]

for name, clf in zip(names, classifiers):

# Entrena el modelo
clf.fit(x_train, y_train)
```

```
# Predice y puntua
# Devuelve la precisión media de las etiquetas y los datos de prueba proporcionados
score = clf.score(x_test, y_test)
print ("Modelo: %s = %6.2f" % (name, score))

Modelo: GaussianNB = 0.45
   Modelo: MultiNomialNB = 0.40
   Modelo: BernouilliNB = 0.45
   Modelo: ComplementNB = 0.37
```

Con CrossValidation

```
cv = KFold(n_splits = 5, shuffle = True)
total scores = []
for name, clf in zip(names, classifiers):
 fold accuracy = []
 for train_fold, test_fold in cv.split(x_train):
   # División train test aleatoria
   # Extrae la información (iloc), atendiendo a los indices obtenidos por CrossValidation
   f train x = x train.iloc[train fold]
   f_train_y = y_train.iloc[train_fold]
   # Entrenamiento y ejeución del modelo
   clf.fit(f_train_x, f_train_y)
   # Realizamos la predicción (Final evaluation)
   # y guardamos la precisión para calcular la media posteriormente
   y_pred = clf.predict(x_train.iloc[test_fold])
   # Evaluación del modelo
   acc = accuracy_score(y_train.iloc[test_fold], y_pred)
   fold accuracy.append(acc)
 total_scores.append(sum(fold_accuracy)/len(fold_accuracy))
for i in range(len(names)):
 print ("Modelo: %s = %6.2f" % (names[i], total scores[i]))
    Modelo: GaussianNB =
    Modelo: MultiNomialNB = 0.40
    Modelo: BernouilliNB = 0.45
    Modelo: ComplementNB = 0.35
```

Una vez decides el modelo que consideras mejor, entonces realizar las siguientes tareas:

```
# Elegimos el modelo: GaussianNB() sin CrossValidation
# El que obtiene más puntuación
```

▼ Entrenarlo y obtener la matriz de confusión

```
# Instanciamos el modelo
model = GaussianNB()
# Entrenamiento con los datos
model.fit(x_train, y_train)
     GaussianNB()
# Predicción con nuevos datos
y_model = model.predict(x_test)
y model
     array([5, 5, 7, ..., 6, 6, 7])
# Evaluación y precisión del modelo
accuracy_score(y_test, y_model)
     0.454421768707483
# Matriz de confusión
cm = confusion_matrix(y_test, y_model)
print(cm)
display_cm = ConfusionMatrixDisplay(cm, display_labels=uniques)
fig, ax = plt.subplots(figsize=(8,8))
display_cm.plot(ax=ax)
plt.show()
```

```
1
         1
             2
                      0]
       13
            14
                      0]
2
   23 225 139
                      1]
1
   11 177 237 227
                      2]
        22
            65 196
                      3]
                      2]]
```


▼ Exportar a un fichero los parámetros del modelo entrenado

```
# Exportamos el modelo

joblib.dump(model,'vinos.pkl')

['vinos.pkl']
```

▼ Importar los parámetros del modelo

Aplicar el modelo (predict) a todos los datos del dataset y obtener la matriz de confusión

```
# Realizamos la predicción
```

```
y_pred_import = import_model.predict(x_test)
# Matriz de Confusión
cm_import = confusion_matrix(y_test, y_pred_import)
print(cm_import)
display_cm_import = ConfusionMatrixDisplay(cm_import, display_labels=uniques)
fig, ax = plt.subplots(figsize=(8,8))
display_cm_import.plot(ax=ax)
plt.show()
     [[
                   1
                       2
                                 0]
 Г⇒
              7 13
                                 0]
                     14
          2
            23 225 139 48
                                 1]
                                 2]
             11 177 237 227
                  22
                      65 196
                                 3]
                   2
                       8
                                 2]]
              1
                           35
                                                                       200
        3 -
        4 -
                                        14
                                                                      - 150
        5 -
                       23
                               225
                                        139
      True label
                       11
                               177
                                        237
                                                 227
                                                                      - 100
                                                 196
        7 -
                                                                      - 50
                                                  'n
              ż
                       4
                                         6
                                                          8
                               Predicted label
```

Comparar el resultado obtenido con el valor de calidad indicado en el dataset por medio de una matriz de confusión

```
# Matriz de Confusión
cm_import = confusion_matrix(y_model, y_pred_import)
```

```
print(cm_import)
display_cm_import = ConfusionMatrixDisplay(cm_import, display_labels=uniques)
fig, ax = plt.subplots(figsize=(8,8))
display_cm_import.plot(ax=ax)
plt.show()
                 0
                              0]
            42
         0
                 0
                      0
                              0]
         0
             0 440
                      0
                              0]
                              0]
         0
                 0 465
             0
                 0
                      0 511
                              0]
                              8]]
                                                                  500
```


Obtener la precisión del resultado obtenido, para determinar si coincide con la precisión que se calculó durante el entrenamiento

Probar a utilizar el cuaderno con el dataset de los vinos blancos y concluir si hay variaciones en los métodos gausianos utilizados y en

Colab paid products - Cancel contracts here

×

✓ 0s completed at 7:54 AM