

Finding the Complexely class

Tens = \(\frac{\S}{\S} \\ \frac{\S}{\Sigma} \\ \frac{\S}{\Sigm # Solve for loop @ Execution using [U-L+1] friendly = E . [V-L+1] = \(\frac{1}{2} \cdot \big[(n-1) - (\frac{1}{2} + 1) + 1] \\ \frac{1}{2} \\ \fr 3 = [n-1-17-1] - S = · [n-1-i] $=\sum_{i=0}^{n-2} (n-1-i)$ # Open brachet (\(\S_miltiplies (n - 1 - i)) $= \sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} i - \sum_{i=0}^{n-2} i$ you get Σ (sommation) with 2(i3) ih Whenever the position 5 (i), you must replace it with = 2 n

Glorious Home Call of a Mother with a Heart of Gold

ROSELINE EDEH

Buried on Saturday 2nd April, 2022

$$= (n-2-0+1) - (n-2-0+1) - \frac{1}{2}n^2$$

$$= n-2-0+1 - n+2+0-1 - \frac{1}{2}n^2$$

__ cancel out __

$$= n-2-0$$
 $-n+2+0$ $-\frac{1}{2}n^2$

remove Zeros

$$= n-2$$
 $-n+2$ $-\frac{1}{2}n^2$

- cancel at

$$= n \qquad -n \qquad -\frac{1}{2}n^{2}$$

Complexely

class found

Lastly, remove the Coefficient (-½) since
"Complexity Class" solv bions don't permit it

Final Answer

T = 12 //

The can now say the Complexity Class of our above algorithm is $\Theta(n^2)$ # Theta of 12

TIP: Try solving it by yourself 3 to 5 times and

TIP: Try solving it by yourself 3 to 5 times and j
you should get How it works

W--- 1-0+ T+0- 1 +0- 1