

Professor

Prof. Dr.-Ing. Hartmut Hetzler

Current developer

Alexander Seifert (M.Sc.), Julian Vogelei (M.Sc.)

Dr.-Ing. Simon Bäuerle, Dr.-Ing. Jonas Kappauf

Website CoSTAR

The MATLAB Toolbox CoSTAR

Institute of Mechanics, Engineering Dynamics Group Department of Mechanical Engineering (FB15) University of Kassel (Germany)

Content

- Overview, Basic Theory and Features
- Flow Chart and Code Structure
- Basic Use and Where To Start
- Outlook, Feedback and Download
- Theoretical Basics / Publications

Website Engineering

Dynamics Group

Continuation of Solution Torus AppRoximations

Computation of stationary solutions of dynamic systems (stationary solution: solution type persists for infinite time interval) $\dot{\mathbf{z}} = \mathbf{f}(t, \mathbf{z}, \mu)$ $\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, \mu)$

- Equilibrium solutions (EQ)
- Periodic solutions (PS)
- Quasi-periodic solutions (QPS) (2 base frequencies)
 - > Rotordynamics:
 - External forcing (e.g. unbalance) and/or self-excitation (e.g. instabilities)
 - Bladed disks (in jet engines)
- Continuation of stationary solution branches

Stable
Unstable

FB 0 0.5Continuation parameter μ

Continuation of periodic solutions (Duffing)

Basic Theory: Solution Types ==

Continuation of Solution Torus AppRoximations

Computation of *stationary* solutions of dynamic systems (*stationary* solution: solution type persists for infinite time interval)

 $\dot{\mathbf{z}} = \mathbf{f}(t, \mathbf{z}, \mu)$ $\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, \mu)$

- Equilibrium solutions (EQ)
 - Zero base frequencies

- Periodic solutions (**PS**)
 - \triangleright One base frequency ν
 - \triangleright Higher harmonics 2ν , 3ν , ...

- Quasi-periodic solutions (QPS)
 - $p \ge 2$ incommensurable (rationally independent) base frequencies

$$\frac{\nu_k}{\nu_j} \in \mathbb{R} \backslash \mathbb{Q} \quad (k \neq j) \qquad \text{e.g.} \quad \frac{\nu_1 = 1}{\nu_2 = \sqrt{2}}$$

$$T \to \infty$$

Basic Theory: Quasi-Periodic Solutions VERSIT & T

Quasi-periodic solutions (QPS)

n: state space dimension

- Quasi-periodic function: $\mathbf{z}_{\mathrm{QP}}(t) = \mathbf{Z}(\nu_1 t, \dots, \nu_p t) : \mathbb{R} \to \mathbb{R}^n$
 - \triangleright 2 π -periodicity: $\mathbf{Z}(\ldots,\nu_k t,\ldots) = \mathbf{Z}(\ldots,\nu_k t + 2\pi,\ldots)$
- Torus function: $\mathbf{Z}(\boldsymbol{\theta}) = \mathbf{Z}(\theta_1, \dots, \theta_p) : \mathbb{T}^p \to \mathbb{R}^n$
 - ightharpoonup Coordinate torus: $\mathbb{T}^p = (\mathbb{R}/2\pi\mathbb{Z})^p = [0,2\pi)^p$
 - \triangleright 2 π -periodicity: $\mathbf{Z}(\ldots,\theta_k,\ldots)=\mathbf{Z}(\ldots,\theta_k+2\pi,\ldots)$

 \triangleright Filled densely by quasi-periodic trajectory $\mathbf{z}_{\mathrm{OP}}(t)$ for $t \to \infty$ (every point on the torus is reached directly or arbitrarily close by $\mathbf{z}_{OP}(t)$)

Parametrisation using torus coordinates: $\theta(t) = \nu t \mod 2\pi$ ("hyper-time")

$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, t)$$

 $\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z})$

$$\begin{array}{c|c}
\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, t) \\
\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z})
\end{array}
\qquad
\begin{array}{c}
\mathbf{z}(\boldsymbol{\theta}(t)) \\
& \sum_{k=1}^{p} \frac{\partial \mathbf{Z}(\boldsymbol{\theta})}{\partial \theta_{k}} \nu_{k} = \mathbf{f}(\mathbf{Z}(\boldsymbol{\theta}), \tilde{\boldsymbol{\theta}})
\end{array}$$

(Hyper-time) Invariance equation

 \mathcal{T}_2

 $\mathbf{z}_{\mathrm{QP}}(t)$

- p = 0: equilibrium solutions
- p = 1: periodic solutions
- p = 2: quasi-periodic solutions (2 base frequencies)

Basic Theory: Approximation Methods WERSLINGT

Approximation methods for (quasi-)periodic solutions in ** Costar

- Finite Difference Method (FDM)
 - Local discretisation (mesh)
 - Approximation of derivatives by weighted sum of torus function values at the nodes

- FOURIER-GALERKIN Method (FGM) ("harmonic balance")
 - Global ansatz functions: Truncated (multi-dimensional) FOURIER series

$$\mathbf{H}^{\top} \boldsymbol{\theta} = H_1 \theta_1 + H_2 \theta_2$$

$$\mathbf{Z}(\boldsymbol{\theta}) pprox \mathbf{C}_0 + \sum_{\parallel \mathbf{H} \parallel \leq N} \left(\mathbf{C}_{\mathbf{H}} \cos \left(\mathbf{H}^{\top} \boldsymbol{\theta} \right) + \mathbf{S}_{\mathbf{H}} \sin \left(\mathbf{H}^{\top} \boldsymbol{\theta} \right) \right)$$

- GALERKIN-projection of residual on ansatz functions
- Error control available (adapting number of higher harmonics)

Basic Theory: Approximation Methods WERSIT'S T

- (Multiple) Shooting Method (SHM)
 - **PS:** Multiple Shooting Method
 - **QPS:** Single Shooting Method
 - Utilise periodic boundaries & numerical time integration
 - Numerical time integration for $t \in [0, t_{\text{end}}], t_{\text{end}} = 2\pi/\nu_1$ produces characteristics
 - > Solver for non-linear equations: Find initial values so that boundaries in θ_1 -direction are periodic

Basic Theory: Stability Analysis

Stability computation of solutions in **COSTAR

Lyapunov stability:
$$\|\mathbf{z}(t) - \mathbf{z}_{\mathrm{R}}(t)\| = \|\Delta \mathbf{z}(t)\| < \varepsilon, \quad \varepsilon > 0$$

- Equilibrium solutions
 - Eigenvalue theory (eigenvalues $\lambda^{\rm J}$ of Jacobian ${\bf J_f}$)

- Periodic solutions
 - FLOQUET theory (eigenvalues λ^{M} of monodromy matrix)
 - Monodromy matrix can be extracted from SHM

Spectrum of 1st order LYAPUNOV exponents $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$

$$\sigma_i = \limsup_{t \to \infty} \frac{1}{t} \ln \|\Delta \mathbf{z}(t)\| = \limsup_{t \to \infty} \frac{1}{t} \ln \|\psi(t, 0)\mathbf{e}_i(0)\|$$

- $ightharpoonup \sigma_k > 0$ indicates unstable behaviour
- Efficient computation possible if **SHM** is used

- "Reshoot" the solution (compute again using SHM)
- Initial values for shooting algorithm from FDM or FGM solution

 $Re\{\lambda^{\mathbf{M}}\}$

 $\operatorname{Im}\{\lambda^{\mathbf{M}}\}$

B

Basic Theory: Numerical Continuation

Continuation of solution branches

- Solutions for varying system parameter μ
 - > Trace solution curve in higher dimensional space
- Predictor-corrector algorithm in CoSTAR
 - Predictor: Predicting new solution
 - Tangent
 - Polynomials of order 1, 2 and 3
 - Parametrisation (subspace constraint)
 - Natural
 - Arclength and pseudo-arclength
 - 1 norm (taxicab / Manhattan distance)
 - Corrector
 - Solver for non-linear equation systems calculates new solution
- Step control in CoSTAR
 - Adapt step length Δs_k to ensure convergence and to reduce overall computation time
 - Various algorithms based on geometrical information and solver iterations

All features can be used as required

Stability computation of solutions

- Equilibrium solutions
- Periodic solutions
 - SHM (monodromy matrix is extracted from here)
 - FDM & FGM (reshooted for monodromy matrix)
- Quasi-periodic solutions
 - SHM (LYAPUNOV exponents are extracted from here)
 - FDM & FGM (reshooted for LYAPUNOV exponents)

Detection of bifurcation points

- Fold / Pitchfork / Transcritical (FB)
- Period Doubling (PDB)
- HOPF (**HB**)
- NEIMARK-SACKER (NSB)

Continuation of Periodic Solution (Duffing)

Error Control

- FGM: (PS & QPS) Automatic adaption of number of higher harmonics based on residual

All features can be used as required

Continuation: Predictor-corrector algorithm

- Predictors
 - Tangent
 - Polynomials of order 1, 2 and 3
- Parametrisations
 - Natural
 - Arclength and pseudo-arclength
 - 1 norm (taxicab / Manhattan distance)

- Various algorithms based on geometrical information and solver iterations
- Live plot
 - Creating continuation plot during computation

All features can be used as required

Postprocessing methods

- contplot
 - \triangleright Creates continuation / bifurcation diagrams (plots solution branches with respect to μ)
- solplot
 - Plots individual solutions in different solution spaces (Available solution spaces: time, hypertime, trajectory and frequency domain)

- solget
 - > Returns solution data in different solution spaces

Gatekeeper

cannot be bypassed

- Checks the input (the defined options) from the user
- Reports errors in case of illogical or invalid input

Help

- costarhelp function
 - Quick help in the command window
 - Overview of the available options with a short description
 - Type costarhelp.costar in the command window to start
- Examples
 - Short Matlab scripts
 - > Sample code showing usage of a certain **CoSTAR** module
- Tutorials
 - MATLAB (live) scripts
 - There is one tutorial for each example (identical code)
 - Comprehensive explanations of a certain CoSTAR module

- 1. options
 - Structure array
 - Contains user-defined options for computation
- 2. Gatekeeper
 - Checks options
- 3. DynamicalSystem
 - Stores all options in object DYN
 - Can be used to restart the computation
- Selection of subclasses
 - ApproxMethod
 - Applies approximation method
 - Solution
 - Stores solution data in object S
 - Stability
 - Used for stability computation
- 5. initial_solution
 - Computes the first (initial) solution

In case of no continuation:

Return S and DYN

6. Continuation loop

- 6.1. direction vector
- 6.2. (stepcontrol) (can be skipped)
- 6.3. predictor
 - Computes direction vector, new step width and predictor point
- 6.4. Corrector
 - fsolve solving Fcn(y) = 0
- 6.5. (error_control) (can be skipped)
- 6.6. (bifurcation_stability) (can be skipped)
 - Performs error control and computes stability as well as bifurcation point
- 6.7. IF_arch_data
- 6.8. (plot contplot) (can be skipped)
- 6.9. iterate data
 - Stores data, updates live plot and performs iterations for next loop
- 6.10. check_limits
 - Checks exit conditions

When exit condition is met:

7. Return S and DYN

Code Structure ——

Classes

- All classes and associated methods
- **Functions**
- Functions not belonging to any class

RHS

Functions defining right-hand side of $\dot{\mathbf{z}} = \mathbf{f}(t, \mathbf{z}, \mu)$ or $\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, \mu)$

test

- Scripts to test the code
- **Tutorials**
- Tutorial & example scripts
- Version_Log
- Version log files documenting code development

costar

Main **CoSTAR** function (to be called by the user)

Code Structure =====

Classes

- @Continuation
- @costarhelp
- @DynamicalSystem
- @Gatekeeper
- ApproxMethod_SC
 - @AM_EQ
 - @AM_PS_FDM
 - @AM_PS_FGM
 - @AM_PS_SHM
 - @AM_QPS_FDM
 - @AM_QPS_FGM
 - @AM_QPS_SHM
 - @ApproxMethod
- Solution_SC
- Stability_SC

All classes and associated methods

- Class and methods to perform the continuation
- Class and methods for the costarhelp feature
- Class for storing the options structure
- Class and methods for the Gatekeeper feature
- Classes and methods to construct the residuum function

Subclasses and methods

Superclass

Code Structure ———

Classes

- @Continuation
- @costarhelp
- @DynamicalSystem
- @Gatekeeper
- ApproxMethod_SC
- Solution SC
 - @SOL EO

 - @Solution
- Stability_SC
 - @ST_EQ
 - @ST_PS_SHM
 - @ST_QPS_SHM
 - @Stability

All classes and associated methods

- Class and methods to perform the continuation
- Class and methods for the **costarhelp** feature
- Class for storing the **options** structure
- Class and methods for the Gatekeeper feature
- Classes and methods to construct the residuum function
- Classes and methods to save computed data
 - Subclasses and methods (analogous to ApproxMethod_SC)
 - **Superclass**
- Classes and methods to compute stability
 - Subclass and methods for equililibrium solutions
 - Subclass and methods for periodic shooting method
 - Subclass and methods for quasi-periodic shooting method
 - Superclass and methods

Code Structure ==

^ c

costar

```
function [S,DYN] = costar(options)
                                                                 options structure
                                                        Input:
                                                        Output: Solution object S, DynamicalSystem object DYN
    %% Gatekeeper
    GC = Gatekeeper();
    options = GC.m_gatekeeper(options);
                                                        Gatekeeper checks all input options
    clear GC;
    %% Dynamical System class
    DYN = DynamicalSystem(options);
                                                        Save all options in Dynamical System object DYN
    %% Approximation Method class
    AM = ApproxMethod.s_method_selection(DYN);
                                                        Create ApproxMethod object AM
                                                        (methods construct the residuum function)
    %% Solution class
    S = Solution.s solution selection(DYN,AM);
                                                        Create Solution object S
                                                        (stores all solution data)
    %% Stability class
    ST = Stability.s stability selection(DYN,AM);
                                                        Create Stability object ST
                                                        (methods compute the stability of a solution)
    %% Calculate initial solution
    [S,AM,DYN] = initial_solution(DYN,S,AM,ST);
                                                        Compute the initial (first) solution
    %% Continuation
    if strcmpi(DYN.cont,'on')
        CON = Continuation(options.opt_cont);
                                                        Create Continuation object CON
        S = CON.m continuation(DYN,S,AM,ST);
                                                        Do the continuation
    end
```

Define important parameters and functions

(not necessarily needed, but it helps to keep the overview)

```
%% 1. Define important parameters and functions (not necessarily needed, but it helps to keep the overview)
                                                    % Parameters needed for the Duffing differential equation
D = 0.05;
              kappa = 0.3;
                               g = 1;
                                                    % Limits of the continuation
mu_limit = [0.01, 2.5];
eta0 = mu limit(1);
                                                    % Value of continuation parameter at start of continuation
param = {kappa, D, eta0, g};
                                                    % Parameter array
active parameter = 3;
                                                    % Location of continuation parameter within the array
IC = [1; 0];
                                                    % Initial condition (point in state space) for fsolve
% Functions
non_auto_freq = @(mu) mu;
                                                    % Non-autonomous excitation frequency
Fcn = @(t,z,param) duffing_ap(t,z,param);
                                                    % Right-hand side of dz/dtau = f(tau,z,kappa,D,eta,g)
```

2. Define the options structure

(it comprises all information that CoSTAR needs)

3. Call CoSTAR (and do the continuation)

4. Individual postprocessing

```
\ensuremath{\text{\%}} 4. Individual postprocessing \ensuremath{\text{\%}} ...
```


If you are new to CoSTAR or certain modules

- Tutorials
 - Comprehensive explanations of a certain CoSTAR module
 - Currently available:

Start with one of these if you have not used CoSTAR yet

- ✓ Equilibrium solutions (Tutorial_EQ)
- ✓ Periodic and quasi-periodic solutions approximated by FDM, FGM and SHM (Tutorial_PS_FDM, Tutorial_PS_FGM, ..., Tutorial_QPS_SHM)
- ✓ Postprocessing methods contplot, solplot and solget (Tutorial_Postprocessing_contplot, ...)

If you already used CoSTAR

- Examples
 - Sample code showing usage of a certain CoSTAR module
 - Good rescue point to restart working with CoSTAR
 - There is one example for each tutorial (examples are labelled Example_[...])
- costarhelp feature
 - Overview of the available options with a short description
 - Quick help in the command window while using CoSTAR
 - > Type costarhelp.costar in the command window to start

Note: The following list may be incomplete and only lists <u>ideas</u> for future improvements to the toolbox. There is no guarantee for actual implementation.

Approximation methods

Multiple Shooting Method for quasi-periodic solutions

Features

- Stability computation
 - PS: Directly from solution data when using FDM or FGM without JACOBIAN of SHM

Error control

- Finite Difference Method (PS & QPS)
- o Handle different exit flags from fsolve when computing new solution with updated discretization

Step control

Algorithm(s) based on convergence of solver (when self-written solver is available)

Postprocessing

FGM & SHM (QPS hypertime plots): [1x2] array for options structure field 'resolution'

Tutorials & Examples

- Update default-script tutorials to live scripts
- o Tutorials and examples for continuation options, step control and stability computation

Note: The following list may be incomplete and only lists <u>ideas</u> for future improvements to the toolbox. There is no guarantee for actual implementation.

- Initial value (for the solver to compute the initial solution)
 - Standardise the parameters, which create an initial value, for all approximation methods
 - Use of a solution of a different approximation method as initial value
 - Homotopy methods

Continuation

- Predictor: Polynomials of order > 3
- Additionally compute the solution at specified (desired) μ -values

Computational effort

Make parallel computing available to enhance performance

Solver

Self-written solver to remove the need of MATLAB'S Optimization Toolbox

Dynamic System

Computation of non-hyperbolic manifolds (solutions of Hamiltonian systems)

Feedback and Download —

Download

- CoSTAR is available for free as GitHub repository
- CoSTAR is licenced under the *Apache 2.0* licence

Report of bugs

- Please create a GitHub issue, labelled as bug, if you experience a new bug
- If a GitHub issue already exists for your bug, no action is required

Suggestions for improvement, wishes and ideas for future releases

Please create a GitHub issue for any wishes, improvements and ideas for future releases and label it accordingly

Website CoSTAR

Website Engineering Dynamics Group

Theoretical basics can be found in following publications:

- FIEDLER, R., HETZLER, H. & BÄUERLE, S. Efficient numerical calculation of LYAPUNOV-exponents and stability assessment for quasi-periodic motions in nonlinear systems. Nonlinear Dyn 112, 8299-8327 (2024). https://doi.org/10.1007/s11071-024-09497-9
- HETZLER, H. & BÄUERLE, S. Stationary solutions in applied dynamics: A unified framework for the numerical calculation and stability assessment of periodic and quasi-periodic solutions based on invariant manifolds. GAMM-Mitteilungen 46 (2023), e202300006, https://doi.org/10.1002/gamm.202300006
- BÄUERLE, S., SEIFERT, A., KAPPAUF, J. & HETZLER, H. A continuation framework for quasi-periodic solution branches based on different torus discretization strategies. Proceedings of ISMA Conference, Leuven, Belgien, 12.-14. September 2022.
- BÄUERLE, S., FIEDLER, R. and HETZLER, H. An engineering perspective on the numerics of quasi-periodic oscillations. Nonlinear Dyn 108 (2022), no. 4, 3927-3950. https://doi.org/10.1007/s11071-022-07407-5