intro

Ben Bolker

04 Sep 2018

Licensed under the Creative Commons attribution-

noncommercial license Please share & remix noncommercially, mentioning its origin.

Logistics

- contact info, e-mail policies
- textbook
- · assignments & grading
- policies: group work, take-home exams, etc.

Scope

- Topics
 - core:
 - * linear models: design matrices, contrasts, etc.
 - * core GLMs: binary (logistic/probit), binomial, Poisson regression
 - * weird GLMs and further topics: complete separation, overdispersion, Gamma models, non-standard links, use of offsets
 - * more weird GLMs: ordinal, negative binomial, zero-inflated
 - * GL mixed Ms: longitudinal / hierarchical / multilevel models
 - * Bayesian methods
 - "extraneous"
 - * data wrangling, visualization, and reproducible research: R, ggplot, tidyverse, Rmarkdown
 - * best practices/ethics for data analysis

Procedures

- data exploration
- model fitting (estimation)
- graphical and numerical diagnostics
- inference \ (Wald, likelihood, bootstrapping, AIC, ...)
- verbal and graphical presentation/interpretation of results

What is a GLM?

- handles any linear model
- *link function* specifies nonlinearity between linear predictor and response
- response distribution from the *exponential family* (Gaussian, binomial, Poisson, Gamma, . . .)

Why GLMs?

- robust
- fast
- sensible, flexible statistical models
- "sweet spot" in generality and power

300

time (ms)

500

Example

glm.fit

100

Using data on AIDS diagnoses from Australia (Dobson and Barnett p. 69). Read in data and inspect it:

Some basic pictures: base graphics

with(aids,plot(date,cases))

or with ggplot2

```
library(ggplot2)
```


Now pictures with nonparametric and GLM fits superimposed:

Fit a model using glm():

```
g1 <- glm(cases~date, data=aids, family=poisson)
   Diagnostic plots:
## set 2x2 grid of plots, tweak margins, label orientation
op <- par(mfrow=c(2,2),mar=c(3,3,2,2),</pre>
```


plot(g1) ## plot standard diagnostics

par(op) ## restore parameter settings

Check for temporal autocorrelation:

acf(residuals(g1))

Series residuals(g1)

We have some problems. Will a quadratic fit help?

```
## poly(.,2) sets up a degree-2 (quadratic) polynomial
g2 <- glm(cases~poly(date,2),aids,family=poisson)
summary(g2) ## quadratic term significantly negative</pre>
```

##

```
## Call:
## glm(formula = cases ~ poly(date, 2), family = poisson, data = aids)
##
## Deviance Residuals:
       Min
                 10
                    Median
                                   30
                                           Max
## -3.3290 -0.9071 -0.0761
                               0.8985
                                        2.3209
##
## Coefficients:
##
                  Estimate Std. Error z value
## (Intercept)
                   3.86859
                              0.03887 99.528
## poly(date, 2)1 3.82934
                              0.19545 19.592
## poly(date, 2)2 -0.68335
                              0.15315 -4.462
##
                  Pr(>|z|)
## (Intercept)
                   < 2e-16 ***
## poly(date, 2)1 < 2e-16 ***
## poly(date, 2)2 8.12e-06 ***
## ---
## Signif. codes:
     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 677.264 on 19 degrees of freedom
## Residual deviance: 31.992 on 17 degrees of freedom
## AIC: 150.29
##
## Number of Fisher Scoring iterations: 4
  A picture of the same model fit:
(p0
    +geom_smooth(method="glm",
                 formula=y \sim poly(x, 2),
                 method.args=list(family=poisson))
)
```


Looks like the diagnostics and autocorrelation are better now \dots Series residuals(g2)

par(op) ## restore parameter settings

Power-law model

Despite stating that "[i]n the early phase of the epidemic, the numbers of cases seemed to be increasing exponentially", Dobson and Barnett (2008) suggest fitting a power-law model of the form $Y \sim \text{Poisson}(\lambda = t^{\theta})$ to the data instead:

```
g3 <- glm(cases~log(index),data=aids,family=poisson)</pre>
```

This fits pretty well, in fact much better than even the Gaussian (quadratic-exponential) model (not shown ...).

```
##
               Estimate Std. Error z value
## (Intercept)
                  0.9960
                             0.1697
                                        5.87
                  1.3266
## log(index)
                             0.0646
                                      20.53
##
               Pr(>|z|)
## (Intercept)
                4.4e-09 ***
## log(index)
                < 2e-16 ***
## Signif. codes:
     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- The intercept is near 1; did we already know that 1984 was the origination year of AIDS in Australia (in which case AIDS(1)=1)?
- The power law model is AIDS(t) $\propto t^{1.33}$, with 95% confidence intervals on the exponent of $\{1.2, 1.46\}$ what does that mean biologically/epidemiologically?

This turns out, like almost every problem, to be interesting and a bit challenging when you look at it carefully (see Andrew Gelman on "god is in every leaf of every tree" - but also consider Tukey "Far better an approximate answer to the *right* question, which is often vague, than an exact answer to the wrong question, which can always be made precise" or Grenfell "don't overegg the pudding"

References

Dobson, Annette J., and Adrian Barnett. 2008. An Introduction to Generalized Linear Models, Third Edition. 3rd ed. Chapman; Hall/CRC.