WHAT IS CLAIMED IS:

1	1. A method comprising:			
2	fabricating a first plurality of FPGA integrated circuits with a first secret			
3	key embedded by way of a first mask set; and			
4	fabricating a second plurality of FPGA integrated circuits with a second			
5	secret key embedded by way of a second mask set.			
1	2. The method of claim 1 wherein a first secure bitstream will			
2	configure properly user-configurable logic of the first plurality of FPGA integrated			
3	circuits, but not the second plurality of FPGA integrated circuits.			
1	3. The method of claim 1 further comprising:			
2	loading an unencrypted bitstream into one of the first plurality of FPGA			
3	integrated circuits to generate a secure bitstream using the first secret key.			
1	4. The method of claim 1 wherein the first plurality of FPGA			
2	integrated circuits with the first secret key are assigned to a first geographic area and the			
3	second plurality of FPGA integrated circuits with the second secret key are assigned to a			
4	second geographic area.			
1	5. The method of claim 1 wherein the first plurality of FPGA			
2	integrated circuits with the first secret key are fabricated in a first time period and the			
3	second plurality of FPGA integrated circuits with the second secret key are fabricated in a			
4	second time period, different from the first time period.			
1	6. The method of claim 1 wherein only one mask differs between the			
2	first and second mask sets.			
1	7. The method of claim 1 wherein the first plurality of FPGA			
2	integrated circuits with the first secret key are assigned exclusively to a first customer.			
1	8. The method of claim 5 wherein the first time period is about the			
2	same duration as the second time period.			
1	9. The method of claim 5 wherein the first time period is a different			
2	duration from the second time period			

. . .

1	10.	The method of claim 6 wherein the one mask is a contact mask.		
1	11.	The method of claim 1 wherein there are random differences		
2	between artwork of	the first and second plurality of FPGA integrated circuits in addition		
3	to the different embe	edded secret keys.		
1	12.	The method of claim 1 wherein the first and second secret keys are		
2	presented on wires o	f respective plurality of FPGA integrated circuits for only a limited		
3	duration.			
1	13.	The method of claim 1 wherein the first secret key is embedded by		
2	setting an initial state of a selection of memory cells in a device configuration memory of			
3	the FPGA integrated circuit.			
1	14.	The method of claim 1 wherein the first secret key is embedded by		
2	changes to a relatively large block of logic in the first plurality of FPGA integrated			
3	circuits and its value extracted using a CRC algorithm.			
1	15.	The method of claim 13 further comprising:		
2	extrac	cting the first secret key by using a CRC algorithm to compute a		
3	checksum of the initial state of the device configuration memory.			
1	16.	The method of claim 1 further comprising:		
2	loadir	ng an unencrypted bitstream into one of the first plurality of FPGA		
3	integrated circuits to generate a secure bitstream based on the first secret key and an on-			
4	chip generated random number.			
1	17.	The method of claim 1 further comprising:		
2	loadin	ng an unencrypted bitstream into one of the first plurality of FPGA		
3	integrated circuits to generate a secure bitstream based on the first secret key and an on-			
4	chip generated random number, wherein the secure bitstream includes a message			
5	authentication code.			
1	18.	A method comprising:		
2	embed	dding a first secret key within the artwork of an FPGA integrated		
3	circuit;			

4	storing a user-defined second secret key within an encrypted FPGA			
5	bitstream stored in an external nonvolatile memory accessible by the FPGA;			
6	decrypting the user-defined second secret key using the first secret key;			
7	and			
8	setting up a secure network link between the FPGA and a server using the			
9	user-defined second secret key.			
1	19. The method of claim 18 further comprising:			
2	downloading an FPGA bitstream using the secure network link;			
3	encrypting the downloaded FPGA bitstream using the first secret key; an			
4	storing the encrypted downloaded bitstream in the external memory.			
1	20. The method of claim 18 wherein the secure network link is created			
2	using a standard internet security protocol.			
1	21. The method of claim 18 further comprising:			
2	configuring the FPGA using the encrypted downloaded bitstream stored i			
3	the external memory.			
1	22. A method comprising:			
2	storing a first secret key on an FPGA chip;			
3	causing the FPGA to calculate a message authentication code (MAC)			
4	corresponding to a user design; and			
5	storing the message authentication code with bitstream information in a			
6	nonvolatile memory.			
1	23. The method of claim 22 further comprising:			
2	storing copyright messages with the bitstream information;			
3	detecting unauthorized alterations to the bitstream using the message			
4	authentication code; and			
5	preventing bitstreams which have been altered from being used to			
6	configure an FPGA.			
1	24. The method of claim 22 further comprising:			
2	recording the message authentication code along with corresponding			
3	identification information for a product containing the FPGA; and			

examining the message authentication code stored in the nonvolatile
memory of a product containing a pirated FPGA design, which will enable determining
the identity of the customer to whom the pirated FPGA was originally supplied using a
record of MACs and corresponding product identification.

4gg C)