

#### FCC TEST REPORT

# FCC 47 CFR Part 15C Industry Canada RSS-210

## Digital transmission systems operating within the 2400 - 2483.5 MHz band

Testing Laboratory ..... Eurofins Product Service GmbH

Address...... Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation .....:



A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970

IC OATS Filing assigned code: 3470A

Applicant's name...... AED Engineering

Address...... Taunusstraße 51

80807 München GERMANY

Test specification:

Standard ...... 47 CFR Part 15C

KDB Publication No. 558074 D01 v03r02

RSS-210, Issue 8, 2010-12 RSS-Gen, Issue 4, 2014-11

ANSI C63.4:2014

Test scope..... complete Radio compliance test

**Equipment under test (EUT):** 

Product description CAN-WLAN Gateway RH

Model No. GN1001A

Additional Model(s)

Brand Name(s)

Hardware version

None

B0

Firmware / Software version None

FCC-ID: 2AELE-GN1001A IC: 20129-GN1001A

Test result Passed



Possible test case verdicts:

- neither assessed nor tested ...... N/N

- required by standard but not appl. to test object......: N/A

- required by standard but not tested...... N/T

- not required by standard for the test object ...... N/R

- test object does meet the requirement...... P (Pass)

- test object does not meet the requirement...... F (Fail)

Testing:

Test Lab Temperature ...... 20 – 23 °C

Test Lab Humidity ...... 32 – 38 %

Compiled by .....: Matthias Handrik

Approved by (+ signature) .....: Christian Weber

Date of issue .....: 2015-06-30

Total number of pages .....: 163

### General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

#### Additional comments:

The used radio module had a valid certification; the module used a new antenna. Only the radiated spurious measurements were performed. For the conducted measurement see test-report: FR3N2752-01C

c. Weber



# **Version History**

| Version | Issue Date | Remarks         | Revised by |
|---------|------------|-----------------|------------|
| 01      | 2015-06-30 | Initial Release |            |



# **REPORT INDEX**

| 1   | EQUIPMENT (TEST ITEM) DESCRIPTION                                                         | 5         |
|-----|-------------------------------------------------------------------------------------------|-----------|
| 1.1 | Photos – Equipment External                                                               | 7         |
| 1.2 | Photos – Equipment internal                                                               | 8         |
| 1.3 | Photos – Test setup                                                                       | 9         |
| 1.4 | Supporting Equipment Used During Testing                                                  | 10        |
| 1.5 | Test Modes                                                                                | 11        |
| 1.6 | Test Equipment Used During Testing                                                        | 13        |
| 1.7 | Sample emission level calculation                                                         | 14        |
| 2   | RESULT SUMMARY                                                                            | 15        |
| 3   | TEST CONDITIONS AND RESULTS                                                               | 16        |
| 3.1 | Test Conditions and Results – AC power line conducted emissions                           | 16        |
| 3.2 | Test Conditions and Results – Transmitter radiated emissions                              | 19        |
| 3.3 | Test Conditions and Results – Receiver radiated emissions                                 | 26        |
|     | IEX A Transmitter radiated spurious emissions  IEX B Receiver radiated spurious emissions | 28<br>156 |



# 1 Equipment (Test item) Description

| Description                 | CAN-WLAN Gateway RH |                                          |                    |          |  |  |
|-----------------------------|---------------------|------------------------------------------|--------------------|----------|--|--|
| Model                       | GN1001A             | GN1001A                                  |                    |          |  |  |
| Additional Model(s)         | None                |                                          |                    |          |  |  |
| Brand Name(s)               | None                |                                          |                    |          |  |  |
| Serial number               | None                |                                          |                    |          |  |  |
| Hardware version            | B0                  |                                          |                    |          |  |  |
| Software / Firmware version | None                |                                          |                    |          |  |  |
| FCC-ID                      | 2AELE-GN1001        | A                                        |                    |          |  |  |
| IC                          | 20129-GN1001        | 4                                        |                    |          |  |  |
| Equipment type              | End product         |                                          |                    |          |  |  |
| Radio type                  | Transceiver         |                                          |                    |          |  |  |
| Radio technology            | IEEE 802.11 b/g     | ı/n                                      |                    |          |  |  |
| Operating frequency range   | 2412 - 2462 MH      |                                          |                    |          |  |  |
| Assigned frequency band     | 2400 - 2483.5 M     | Hz                                       |                    |          |  |  |
|                             | F <sub>LOW20</sub>  | 2412 MHz                                 | F <sub>LOW40</sub> | 2422 MHz |  |  |
| Main test frequencies       | F <sub>MID20</sub>  | 2437 MHz                                 | F <sub>MID40</sub> | 2437 MHz |  |  |
|                             | F <sub>HIGH20</sub> | 2462 MHz F <sub>HIGH40</sub> 2452 MHz    |                    |          |  |  |
| Spreading                   | CCK, DSSS, OF       | DM                                       |                    |          |  |  |
| Modulations                 | BPSK, QPSK, 1       | 6-QAM, 64-QAN                            | И                  |          |  |  |
| Number of channels          | 11                  |                                          |                    |          |  |  |
| Channel spacing             | 5 MHz               |                                          |                    |          |  |  |
| Number of antennas          | 1                   |                                          |                    |          |  |  |
|                             | Туре                | Type IEEE 802.11 b/g/n Module            |                    |          |  |  |
|                             | Model               | del WL18 MODG B                          |                    |          |  |  |
| Radio Module                | Manufacturer        | Texas Instrum                            | ents               |          |  |  |
|                             | FCC-ID              | Z64-WL18SBN                              | ИOD                |          |  |  |
|                             | IC                  | 451I-WL18SBI                             | MOD                |          |  |  |
|                             | Туре                | external dedica                          | ated               |          |  |  |
| Antenna                     | Model               | ANT-2.4WRT-                              | MON-RPS            |          |  |  |
| Antonia                     | Manufacturer        | Lynx                                     |                    |          |  |  |
|                             | Gain                | Gain +0.8 dBi (manufacturer declaration) |                    |          |  |  |
|                             | AED Engineering     |                                          |                    |          |  |  |
| Manufacturer                | Taunusstraße 5      |                                          |                    |          |  |  |
|                             | 80807 München       |                                          |                    |          |  |  |
|                             | GERMANY             | 041/00                                   |                    |          |  |  |
| Barray armsh                | V <sub>NOM</sub>    | 24 VDC                                   |                    |          |  |  |
| Power supply                | V <sub>MIN</sub>    | 20 VDC                                   |                    |          |  |  |
|                             | V <sub>MAX</sub>    | 28 VDC                                   |                    |          |  |  |



|               | Model  | N/A |
|---------------|--------|-----|
| AC/DC-Adaptor | Vendor | N/A |
| AC/DC-Adaptor | Input  | N/A |
|               | Output | N/A |



# 1.1 Photos – Equipment External





# 1.2 Photos – Equipment internal







# 1.3 Photos - Test setup







# 1.4 Supporting Equipment Used During Testing

| Product<br>Type* | Device                              | Manufacturer | Model No. | Comments |  |  |  |
|------------------|-------------------------------------|--------------|-----------|----------|--|--|--|
| AE               | Laptop                              | Lenovo       | R61       |          |  |  |  |
| AE:              | AE : Auxiliary/Associated Equipment |              |           |          |  |  |  |



## 1.5 Test Modes

| Mode #  |                     | Description                                                                                                            |  |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------|--|
|         | General conditions: | EUT powered by laboratory power supply.                                                                                |  |
| DSSS    | Radio conditions:   | Mode = standalone transmit Spreading = DSSS Modulation = BPSK Data rate = 1 Mbps Bandwidth = 20 MHz Duty cycle = 100 % |  |
|         | General conditions: | EUT powered by laboratory power supply.                                                                                |  |
| OFDM    | Radio conditions:   | Mode = standalone transmit Spreading = OFDM Modulation = BPSK Data rate = 6 Mbps Bandwidth = 20 MHz Duty cycle = 100 % |  |
|         | General conditions: | EUT powered by laboratory power supply.                                                                                |  |
| HT20    | Radio conditions:   | Mode = standalone transmit Spreading = OFDM Modulation = BPSK Data rate = MCS0 Bandwidth = 20 MHz Duty cycle = 100 %   |  |
|         | General conditions: | EUT powered by laboratory power supply.                                                                                |  |
| HT40    | Radio conditions:   | Mode = standalone transmit Spreading = OFDM Modulation = BPSK Data rate = MCS0 Bandwidth = 40 MHz Duty cycle = 100 %   |  |
|         | General conditions: | EUT powered by laboratory power supply.                                                                                |  |
| Receive | Radio conditions:   | Mode = standalone receive<br>Spreading = DSSS / OFDM                                                                   |  |



|              | General conditions: | EUT powered by 120 V AC                                           |
|--------------|---------------------|-------------------------------------------------------------------|
| AC-Powerline | Radio conditions:   | Mode = standalone transmit Spreading = DSSS Power level = Maximum |



# 1.6 Test Equipment Used During Testing

| Measurement Software |                                                         |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| Description          | Description Manufacturer Name Version                   |  |  |  |  |  |  |  |
| EMC Test Software    | EMC Test Software Dare Instruments Radimation 2014.1.15 |  |  |  |  |  |  |  |

| Radiated spurious emissions |              |        |            |           |          |  |  |  |
|-----------------------------|--------------|--------|------------|-----------|----------|--|--|--|
| Description                 | Manufacturer | Model  | Identifier | Cal. Date | Cal. Due |  |  |  |
| Semi-anechoic chamber       | Frankonia    | AC 1   | EF00062    | -         | -        |  |  |  |
| Spectrum<br>Analyzer        | R&S          | FSIQ26 | EF00242    | 2014-03   | 2015-03  |  |  |  |
| Biconical Antenna           | R&S          | HK 116 | EF00012    | 2013-02   | 2016-02  |  |  |  |
| LPD Antenna                 | R&S          | HL 223 | EF00187    | 2014-03   | 2017-03  |  |  |  |
| LPD Antenna                 | R&S          | HL 025 | EF00327    | 2013-02   | 2016-02  |  |  |  |

| AC powerline conducted emissions |                                                              |         |         |         |         |  |  |  |  |
|----------------------------------|--------------------------------------------------------------|---------|---------|---------|---------|--|--|--|--|
| Description                      | Description Manufacturer Model Identifier Cal. Date Cal. Due |         |         |         |         |  |  |  |  |
| AMN                              | R&S                                                          | ESH2-Z5 | EF00182 | 2014-11 | 2016-11 |  |  |  |  |
| EMI Test<br>Receiver             | R&S                                                          | ESCS 30 | EF00295 | 2014-10 | 2015-10 |  |  |  |  |



#### 1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

#### Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

#### A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer (dB $\mu$ V) + A.F. (dB) = Net field strength (dB $\mu$ V/m)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of  $dB\mu V/m$ ). The FCC limits are given in units of  $\mu V/m$ . The following formula is used to convert the units of  $\mu V/m$  to  $dB\mu V/m$ :

Limit (dB $\mu$ V/m) = 20\*log ( $\mu$ V/m)

#### Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

#### Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB $\mu$ V + 26 dB = 47.5 dB $\mu$ V/m : 47.5 dB $\mu$ V/m - 57.0 dB $\mu$ V/m = -9.5 dB



# 2 Result Summary

| Product Specific Standard Section                                     | Requirement – Test                      | Reference<br>Method                            | Result | Remarks                                                      |
|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--------|--------------------------------------------------------------|
| RSS-Gen 6.6                                                           | Occupied Bandwidth                      | RSS-Gen 6.6                                    | N/R    | Informational only;<br>See FCC RF Test Repor<br>FR3N2752-01C |
| FCC § 15.247(a)(2)<br>IC RSS-210 § A8.2                               | 6dB Bandwidth                           | KDB Publication<br>No. 558074                  | PASS   | See FCC RF Test Repor<br>FR3N2752-01C                        |
| FCC § 15.247(b)(3)<br>IC RSS-210 § A8.4                               | Maximum peak conducted power            | KDB Publication<br>No. 558074                  | PASS   | See FCC RF Test Repor<br>FR3N2752-01C                        |
| FCC § 15.247(e)<br>IC RSS-210 § A8.2                                  | Power spectral density                  | KDB Publication<br>No. 558074                  | PASS   | See FCC RF Test Report<br>FR3N2752-01C                       |
| 47 CFR 15.207<br>RSS-Gen 8.8                                          | AC power line conducted emissions       | KDB Publication<br>No. 558074 /<br>ANSI C63.4  | PASS   |                                                              |
| FCC § 15.247(d)<br>IC RSS-210 § A8.5                                  | Band edge compliance                    | KDB Publication<br>No. 558074                  | PASS   | See FCC RF Test Report<br>FR3N2752-01C                       |
| FCC § 15.247(d)<br>IC RSS-210 § A8.5                                  | Conducted spurious emissions            | KDB Publication<br>No. 558074                  | PASS   | See FCC RF Test Report<br>FR3N2752-01C                       |
| FCC § 15.247(d)<br>FCC § 15.209<br>IC RSS-210 A8.5<br>IC RSS-Gen 6.13 | Transmitter radiated spurious emissions | KDB Publication<br>No. 558074 /<br>ANSI C 63.4 | PASS   |                                                              |
| IC RSS-Gen 7.1                                                        | Receiver radiated spurious emissions    | ANSI C 63.4                                    | PASS   |                                                              |



# 3 Test Conditions and Results

# 3.1 Test Conditions and Results – AC power line conducted emissions

| Power line conducted emissions acc. to Verdict: PASS FCC 47 CFR 15.207 / IC RSS-Gen |                |              |                       |                 |        |  |
|-------------------------------------------------------------------------------------|----------------|--------------|-----------------------|-----------------|--------|--|
| Test according referenced                                                           |                |              | Reference Method      |                 |        |  |
| standard                                                                            |                |              |                       | ANSI C63.4      |        |  |
| Fully configured sample                                                             | e scanned over |              | Fi                    | requency range  |        |  |
| the following freque                                                                | ency range     |              | 0.19                  | 5 MHz to 30 MHz |        |  |
| Points of Application                                                               |                |              | Application Interface |                 |        |  |
| AC Mains                                                                            |                |              | LISN                  |                 |        |  |
| EUT test me                                                                         | ode            | AC-Powerline |                       |                 |        |  |
|                                                                                     |                | Limits       | and results           |                 |        |  |
| Frequency [MHz]                                                                     | Quasi-Peak [   | dBµV]        | Result                | Average [dBµV]  | Result |  |
| 0.15 to 5                                                                           | 66 to 56       | *            | PASS                  | 56 to 46*       | PASS   |  |
| 0.5 to 5 56                                                                         |                |              | PASS                  | 46              | PASS   |  |
| 5 to 30 60                                                                          |                |              | PASS                  | 50              | PASS   |  |
| Comments:  * Limit decreases linearly with the logarithm of the frequency.          |                |              |                       |                 |        |  |



#### **Conducted Emissions**

## EMI voltage test in the ac-mains according to FCC 15B

Project number: G0M-1411-4293

Manufacturer: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Belz

Test Conditions: Tnom: 23°C, Unom: 120 VAC

LISN: ESH2-Z5 N

Mode: WLAN, LAN active

Test Date: 2015-03-16







## **Conducted Emissions**

# EMI voltage test in the ac-mains according to FCC 15B

Project number: G0M-1411-4293

Manufacturer: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Belz

Test Conditions: Tnom: 23°C, Unom: 120 VAC

LISN: ESH2-Z5 L Mode: WLAN, LAN active Test Date: 2015-03-16

Note:





#### 3.2 Test Conditions and Results – Transmitter radiated emissions

| Transmitter radiated er FCC 47 CFR 15.247 / IC |                      | . to                               |                   | Verdict: PASS      |  |  |  |
|------------------------------------------------|----------------------|------------------------------------|-------------------|--------------------|--|--|--|
| Test according refe                            | erenced              | Reference Method                   |                   |                    |  |  |  |
| standards                                      |                      | FCC 15.24                          | 47(d) / IC R      | SS-210 A8.5        |  |  |  |
| Test according                                 | to                   | Re                                 | eference Me       | thod               |  |  |  |
| measurement refe                               | erence               | FCC KDB Public                     | ation No. 55      | 58074 / ANSI C63.4 |  |  |  |
| Toot from your on our                          | 0000                 | Tested frequencies                 |                   |                    |  |  |  |
| Test frequency r                               | ange                 | 30 MHz – 10 <sup>th</sup> Harmonic |                   |                    |  |  |  |
|                                                |                      | Limits                             |                   |                    |  |  |  |
| Frequency range [MHz]                          | Detector             | Limit [µV/m]                       | Limit<br>[dBµV/m] | Limit Distance [m] |  |  |  |
| 30 – 88                                        | Quasi-Peak           | 100                                | 40                | 3                  |  |  |  |
| 88 – 216                                       | Quasi-Peak           | 150                                | 43.5              | 3                  |  |  |  |
| 216 – 960                                      | 216 – 960 Quasi-Peak |                                    | 46                | 3                  |  |  |  |
| 960 – 1000 Quasi-Peak                          |                      | 500                                | 54                | 3                  |  |  |  |
| > 1000                                         | Average              | 500                                | 54                | 3                  |  |  |  |

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.





## **Test procedure**

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels within restricted bands

|                   |                    |                | Test resul        | ts IEEE80         | 2.11 b  |      |                   |                     |                |
|-------------------|--------------------|----------------|-------------------|-------------------|---------|------|-------------------|---------------------|----------------|
| Channel           | Frequency<br>[MHz] | Mode           | Emission<br>[MHz] | Level<br>[dbµV/m] | Det.    | Pol. | Limit<br>[dbµV/m] | Limit dist.<br>[m]* | Margin<br>[dB] |
| $F_{LOW}$         | 2412               | DSSS           | 2363              | 42.41             | pk      | hor  | 74.00             | 3                   | -31.59         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2363              | 32.11             | RMS     | hor  | 54.00             | 3                   | -21.89         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2386              | 48.73             | pk      | hor  | 74.00             | 3                   | -25.27         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2386              | 41.60             | RMS     | hor  | 54.00             | 3                   | -12.40         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2310              | 40.27             | pk      | ver  | 74.00             | 3                   | -33.73         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2310              | 29.55             | RMS     | ver  | 54.00             | 3                   | -24.45         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2358              | 41.91             | pk      | ver  | 74.00             | 3                   | -32.09         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2358              | 29.95             | RMS     | ver  | 54.00             | 3                   | -24.05         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2386              | 46.29             | pk      | ver  | 74.00             | 3                   | -27.71         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 2386              | 38.17             | RMS     | ver  | 54.00             | 3                   | -15.83         |
| F <sub>LOW</sub>  | 2412               | DSSS           | 3961              | 43.16             | pk      | ver  | 74.00             | 3                   | -30.84         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2484              | 50.66             | pk      | hor  | 74.00             | 3                   | -23.34         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2484              | 41.70             | RMS     | hor  | 54.00             | 3                   | -12.30         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2488              | 49.90             | pk      | hor  | 74.00             | 3                   | -24.10         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2488              | 40.64             | RMS     | hor  | 54.00             | 3                   | -13.36         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2491              | 47.55             | pk      | hor  | 74.00             | 3                   | -26.45         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2491              | 38.94             | RMS     | hor  | 54.00             | 3                   | -15.06         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2499              | 49.55             | pk      | hor  | 74.00             | 3                   | -24.45         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2499              | 39.68             | RMS     | hor  | 54.00             | 3                   | -14.32         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2484              | 48.82             | pk      | ver  | 74.00             | 3                   | -25.18         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2484              | 39.74             | RMS     | ver  | 54.00             | 3                   | -14.26         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2487              | 49.87             | pk      | ver  | 74.00             | 3                   | -24.13         |
| F <sub>HIGH</sub> | 2462               | DSSS           | 2487              | 41.67             | RMS     | ver  | 54.00             | 3                   | -12.33         |
| Comments          | : * Physical d     | istance betwee | n EUT and m       | easurement        | antenna |      |                   |                     |                |



|                   |                 |      | Test resul        | Its IEEE80 | 2.11 a |      |                   |                     |                |
|-------------------|-----------------|------|-------------------|------------|--------|------|-------------------|---------------------|----------------|
| Channel           | Frequency [MHz] | Mode | Emission<br>[MHz] | Level      | Det.   | Pol. | Limit<br>[dbµV/m] | Limit dist.<br>[m]* | Margin<br>[dB] |
| F <sub>LOW</sub>  | 2412            | OFDM | 2379              | 54.39      | pk     | hor  | 74.00             | 3                   | -19.61         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2379              | 32.40      | RMS    | hor  | 54.00             | 3                   | -21.60         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2383              | 61.91      | pk     | hor  | 74.00             | 3                   | -12.09         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2383              | 35.86      | RMS    | hor  | 54.00             | 3                   | -18.14         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2387              | 67.14      | pk     | hor  | 74.00             | 3                   | -06.86         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2387              | 40.06      | RMS    | hor  | 54.00             | 3                   | -13.94         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2484              | 66.18      | pk     | ver  | 74.00             | 3                   | -07.82         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2484              | 43.86      | RMS    | ver  | 54.00             | 3                   | -10.14         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2484              | 73.33      | pk     | hor  | 74.00             | 3                   | -00.67         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2484              | 49.26      | RMS    | hor  | 54.00             | 3                   | -04.74         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2487              | 61.32      | pk     | ver  | 74.00             | 3                   | -12.68         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2487              | 37.91      | RMS    | ver  | 54.00             | 3                   | -16.09         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2489              | 61.55      | pk     | hor  | 74.00             | 3                   | -12.45         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2489              | 38.17      | RMS    | hor  | 54.00             | 3                   | -15.83         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2490              | 59.77      | pk     | ver  | 74.00             | 3                   | -14.23         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2490              | 37.41      | RMS    | ver  | 54.00             | 3                   | -16.59         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2496              | 54.56      | pk     | ver  | 74.00             | 3                   | -19.44         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2496              | 32.90      | RMS    | ver  | 54.00             | 3                   | -21.10         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2498              | 50.82      | pk     | ver  | 74.00             | 3                   | -23.18         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2498              | 31.04      | RMS    | ver  | 54.00             | 3                   | -22.96         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2498              | 51.09      | pk     | hor  | 74.00             | 3                   | -22.91         |
| F <sub>HIGH</sub> | 2462            | OFDM | 2498              | 31.67      | RMS    | hor  | 54.00             | 3                   | -22.33         |
| F <sub>MID</sub>  | 2437            | OFDM | 2383              | 51.79      | pk     | hor  | 74.00             | 3                   | -22.21         |
| F <sub>MID</sub>  | 2437            | OFDM | 2385              | 53.44      | pk     | ver  | 74.00             | 3                   | -20.56         |
| F <sub>MID</sub>  | 2437            | OFDM | 2385              | 34.16      | RMS    | ver  | 54.00             | 3                   | -19.84         |
| F <sub>MID</sub>  | 2437            | OFDM | 2389              | 54.89      | pk     | ver  | 74.00             | 3                   | -19.11         |
| F <sub>MID</sub>  | 2437            | OFDM | 2389              | 53.99      | pk     | ver  | 74.00             | 3                   | -20.01         |
| F <sub>MID</sub>  | 2437            | OFDM | 2389              | 33.78      | RMS    | ver  | 54.00             | 3                   | -20.22         |
| F <sub>MID</sub>  | 2437            | OFDM | 2390              | 54.19      | pk     | ver  | 74.00             | 3                   | -19.81         |
| F <sub>MID</sub>  | 2437            | OFDM | 2390              | 34.05      | RMS    | ver  | 54.00             | 3                   | -19.95         |
| F <sub>MID</sub>  | 2437            | OFDM | 2487              | 53.49      | pk     | hor  | 74.00             | 3                   | -20.51         |
| F <sub>LOW</sub>  | 2412            | OFDM | 4816              | 38.77      | pk     | hor  | 74.00             | 3                   | -35.23         |
| F <sub>LOW</sub>  | 2412            | OFDM | 2369              | 50.23      | pk     | ver  | 74.00             | 3                   | -23.77         |
| $F_{LOW}$         | 2412            | OFDM | 2369              | 29.68      | RMS    | ver  | 54.00             | 3                   | -24.32         |



| F <sub>LOW</sub> | 2412 | OFDM | 2384 | 59.30 | pk  | ver | 74.00 | 3 | -14.70 |
|------------------|------|------|------|-------|-----|-----|-------|---|--------|
| $F_{LOW}$        | 2412 | OFDM | 2384 | 33.77 | RMS | ver | 54.00 | 3 | -20.23 |
| $F_{LOW}$        | 2412 | OFDM | 2400 | 76.38 | pk  | ver | 95.00 | 3 | -18.62 |

Comments: \* Physical distance between EUT and measurement antenna.



|                  |                    | Te   | est results IE    | EE802.11          | gn (HT | 40)  |                   |                     |                |
|------------------|--------------------|------|-------------------|-------------------|--------|------|-------------------|---------------------|----------------|
| Channel          | Frequency<br>[MHz] | Mode | Emission<br>[MHz] | Level<br>[dbµV/m] | Det.   | Pol. | Limit<br>[dbµV/m] | Limit dist.<br>[m]* | Margin<br>[dB] |
| F <sub>LOW</sub> | 2422               | OFDM | 2357              | 55.39             | pk     | hor  | 74.00             | 3                   | -18.61         |
| $F_{LOW}$        | 2422               | OFDM | 2357              | 29.63             | RMS    | hor  | 54.00             | 3                   | -24.37         |
| $F_{LOW}$        | 2422               | OFDM | 2358              | 58.08             | pk     | ver  | 74.00             | 3                   | -15.92         |
| F <sub>LOW</sub> | 2422               | OFDM | 2358              | 39.77             | RMS    | ver  | 54.00             | 3                   | -14.23         |
| F <sub>LOW</sub> | 2422               | OFDM | 2367              | 57.13             | pk     | hor  | 74.00             | 3                   | -16.87         |
| F <sub>LOW</sub> | 2422               | OFDM | 2367              | 31.80             | RMS    | hor  | 54.00             | 3                   | -22.20         |
| F <sub>LOW</sub> | 2422               | OFDM | 2372              | 59.12             | pk     | hor  | 74.00             | 3                   | -14.88         |
| F <sub>LOW</sub> | 2422               | OFDM | 2372              | 34.36             | RMS    | hor  | 54.00             | 3                   | -19.64         |
| F <sub>LOW</sub> | 2422               | OFDM | 2374              | 59.96             | pk     | ver  | 74.00             | 3                   | -14.04         |
| F <sub>LOW</sub> | 2422               | OFDM | 2374              | 41.22             | RMS    | ver  | 54.00             | 3                   | -12.78         |
| F <sub>LOW</sub> | 2422               | OFDM | 2380              | 68.65             | pk     | hor  | 74.00             | 3                   | -05.35         |
| F <sub>LOW</sub> | 2422               | OFDM | 2380              | 43.29             | RMS    | hor  | 54.00             | 3                   | -10.71         |
| F <sub>LOW</sub> | 2422               | OFDM | 2382              | 68.73             | pk     | ver  | 74.00             | 3                   | -05.27         |
| F <sub>LOW</sub> | 2422               | OFDM | 2382              | 46.33             | RMS    | ver  | 54.00             | 3                   | -07.67         |
| F <sub>LOW</sub> | 2422               | OFDM | 2385              | 71.10             | pk     | hor  | 74.00             | 3                   | -02.90         |
| $F_{LOW}$        | 2422               | OFDM | 2385              | 47.64             | RMS    | hor  | 54.00             | 3                   | -06.36         |
| $F_{LOW}$        | 2422               | OFDM | 2388              | 70.63             | pk     | hor  | 74.00             | 3                   | -03.37         |
| $F_{LOW}$        | 2422               | OFDM | 2388              | 50.24             | RMS    | hor  | 54.00             | 3                   | -03.76         |
| $F_{LOW}$        | 2422               | OFDM | 2390              | 70.41             | pk     | ver  | 74.00             | 3                   | -03.59         |
| $F_{LOW}$        | 2422               | OFDM | 2390              | 49.35             | RMS    | ver  | 54.00             | 3                   | -04.65         |
| $F_{MID}$        | 2437               | OFDM | 2344              | 44.42             | pk     | ver  | 74.00             | 3                   | -29.58         |
| $F_{MID}$        | 2437               | OFDM | 2344              | 27.07             | RMS    | ver  | 54.00             | 3                   | -26.93         |
| $F_{MID}$        | 2437               | OFDM | 2364              | 52.00             | pk     | ver  | 74.00             | 3                   | -22.00         |
| $F_{MID}$        | 2437               | OFDM | 2364              | 28.18             | RMS    | ver  | 54.00             | 3                   | -25.82         |
| $F_{MID}$        | 2437               | OFDM | 2367              | 49.27             | pk     | ver  | 74.00             | 3                   | -24.73         |
| $F_{MID}$        | 2437               | OFDM | 2367              | 28.20             | RMS    | ver  | 54.00             | 3                   | -25.80         |
| $F_{MID}$        | 2437               | OFDM | 2370              | 54.91             | pk     | hor  | 74.00             | 3                   | -19.09         |
| $F_{MID}$        | 2437               | OFDM | 2370              | 29.69             | RMS    | hor  | 54.00             | 3                   | -24.31         |
| $F_{MID}$        | 2437               | OFDM | 2374              | 57.48             | pk     | hor  | 74.00             | 3                   | -16.52         |
| $F_{MID}$        | 2437               | OFDM | 2374              | 30.69             | RMS    | hor  | 54.00             | 3                   | -23.31         |
| $F_{MID}$        | 2437               | OFDM | 2376              | 53.93             | pk     | ver  | 74.00             | 3                   | -20.07         |
| F <sub>MID</sub> | 2437               | OFDM | 2376              | 29.06             | RMS    | ver  | 54.00             | 3                   | -24.94         |
| $F_{MID}$        | 2437               | OFDM | 2378              | 55.11             | pk     | ver  | 74.00             | 3                   | -18.89         |
| F <sub>MID</sub> | 2437               | OFDM | 2380              | 56.20             | pk     | hor  | 74.00             | 3                   | -17.80         |



| F <sub>MID</sub>  | 2437 | OFDM | 2384 | 59.10 | pk  | hor | 74.00 | 3 | -14.90 |
|-------------------|------|------|------|-------|-----|-----|-------|---|--------|
| F <sub>MID</sub>  | 2437 | OFDM | 2384 | 34.41 | RMS | hor | 54.00 | 3 | -19.59 |
| F <sub>MID</sub>  | 2437 | OFDM | 2388 | 59.71 | pk  | ver | 74.00 | 3 | -14.29 |
| F <sub>MID</sub>  | 2437 | OFDM | 2388 | 36.99 | RMS | ver | 54.00 | 3 | -17.01 |
| F <sub>MID</sub>  | 2437 | OFDM | 2389 | 60.52 | pk  | hor | 74.00 | 3 | -13.48 |
| F <sub>MID</sub>  | 2437 | OFDM | 2389 | 39.22 | RMS | hor | 54.00 | 3 | -14.78 |
| F <sub>MID</sub>  | 2437 | OFDM | 2390 | 60.33 | pk  | ver | 74.00 | 3 | -13.67 |
| F <sub>MID</sub>  | 2437 | OFDM | 2390 | 39.16 | RMS | ver | 54.00 | 3 | -14.84 |
| F <sub>MID</sub>  | 2437 | OFDM | 2392 | 64.01 | pk  | hor | 95.00 | 3 | -30.99 |
| F <sub>MID</sub>  | 2437 | OFDM | 2484 | 54.88 | pk  | ver | 74.00 | 3 | -19.12 |
| F <sub>MID</sub>  | 2437 | OFDM | 2484 | 59.20 | pk  | ver | 74.00 | 3 | -14.80 |
| F <sub>MID</sub>  | 2437 | OFDM | 2484 | 38.71 | RMS | ver | 54.00 | 3 | -15.29 |
| F <sub>MID</sub>  | 2437 | OFDM | 2484 | 62.37 | pk  | hor | 74.00 | 3 | -11.63 |
| F <sub>MID</sub>  | 2437 | OFDM | 2484 | 41.84 | RMS | hor | 54.00 | 3 | -12.16 |
| F <sub>MID</sub>  | 2437 | OFDM | 2487 | 57.67 | pk  | hor | 74.00 | 3 | -16.33 |
| F <sub>MID</sub>  | 2437 | OFDM | 2488 | 59.18 | pk  | hor | 74.00 | 3 | -14.82 |
| F <sub>MID</sub>  | 2437 | OFDM | 2488 | 37.35 | RMS | hor | 54.00 | 3 | -16.65 |
| $F_{MID}$         | 2437 | OFDM | 2489 | 56.14 | pk  | ver | 74.00 | 3 | -17.86 |
| $F_{MID}$         | 2437 | OFDM | 2489 | 33.81 | RMS | ver | 54.00 | 3 | -20.19 |
| $F_{MID}$         | 2437 | OFDM | 2491 | 56.58 | pk  | ver | 74.00 | 3 | -17.42 |
| $F_{MID}$         | 2437 | OFDM | 2491 | 31.91 | RMS | ver | 54.00 | 3 | -22.09 |
| F <sub>MID</sub>  | 2437 | OFDM | 2492 | 60.33 | pk  | hor | 74.00 | 3 | -13.67 |
| $F_{MID}$         | 2437 | OFDM | 2492 | 35.43 | RMS | hor | 54.00 | 3 | -18.57 |
| $F_{MID}$         | 2437 | OFDM | 2494 | 55.97 | pk  | ver | 74.00 | 3 | -18.03 |
| $F_{MID}$         | 2437 | OFDM | 2494 | 30.83 | RMS | ver | 54.00 | 3 | -23.17 |
| $F_{MID}$         | 2437 | OFDM | 2495 | 60.07 | pk  | hor | 74.00 | 3 | -13.93 |
| $F_{MID}$         | 2437 | OFDM | 2495 | 34.80 | RMS | hor | 54.00 | 3 | -19.20 |
| $F_{MID}$         | 2437 | OFDM | 2499 | 58.71 | pk  | hor | 74.00 | 3 | -15.29 |
| $F_{MID}$         | 2437 | OFDM | 2499 | 33.49 | RMS | hor | 54.00 | 3 | -20.51 |
| $F_{MID}$         | 2437 | OFDM | 2500 | 55.39 | pk  | ver | 74.00 | 3 | -18.61 |
| $F_{MID}$         | 2437 | OFDM | 2500 | 29.39 | RMS | ver | 54.00 | 3 | -24.61 |
| F <sub>HIGH</sub> | 2452 | OFDM | 2385 | 54.81 | pk  | hor | 74.00 | 3 | -19.19 |
| F <sub>HIGH</sub> | 2452 | OFDM | 2385 | 30.54 | RMS | hor | 54.00 | 3 | -23.46 |
| F <sub>HIGH</sub> | 2452 | OFDM | 2386 | 53.03 | pk  | ver | 74.00 | 3 | -20.97 |
| F <sub>HIGH</sub> | 2452 | OFDM | 2386 | 57.43 | pk  | hor | 74.00 | 3 | -16.57 |
| F <sub>HIGH</sub> | 2452 | OFDM | 2386 | 30.91 | RMS | hor | 54.00 | 3 | -23.09 |



| F <sub>HIGH</sub> | 2452           | OFDM           | 2387          | 57.30      | pk      | hor | 74.00 | 3 | -16.70 |
|-------------------|----------------|----------------|---------------|------------|---------|-----|-------|---|--------|
| F <sub>HIGH</sub> | 2452           | OFDM           | 2387          | 31.11      | RMS     | hor | 54.00 | 3 | -22.89 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2389          | 54.71      | pk      | hor | 74.00 | 3 | -19.29 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2390          | 55.98      | pk      | hor | 74.00 | 3 | -18.02 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2390          | 31.80      | RMS     | hor | 54.00 | 3 | -22.20 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2484          | 69.81      | pk      | ver | 74.00 | 3 | -04.19 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2484          | 49.80      | RMS     | ver | 54.00 | 3 | -04.20 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2484          | 67.57      | pk      | hor | 74.00 | 3 | -06.43 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2484          | 49.48      | RMS     | hor | 54.00 | 3 | -04.52 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2487          | 68.36      | pk      | ver | 74.00 | 3 | -05.64 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2487          | 46.03      | RMS     | ver | 54.00 | 3 | -07.97 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2490          | 65.70      | pk      | ver | 74.00 | 3 | -08.30 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2490          | 45.90      | RMS     | ver | 54.00 | 3 | -08.10 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2492          | 64.59      | pk      | hor | 74.00 | 3 | -09.41 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2492          | 43.27      | RMS     | hor | 54.00 | 3 | -10.73 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2495          | 65.44      | pk      | ver | 74.00 | 3 | -08.56 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2495          | 41.85      | RMS     | ver | 54.00 | 3 | -12.15 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2495          | 65.85      | pk      | hor | 74.00 | 3 | -08.15 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2495          | 41.46      | RMS     | hor | 54.00 | 3 | -12.54 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2500          | 56.47      | pk      | ver | 74.00 | 3 | -17.53 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2500          | 35.35      | RMS     | ver | 54.00 | 3 | -18.65 |
| F <sub>HIGH</sub> | 2452           | OFDM           | 2500          | 57.36      | pk      | hor | 74.00 | 3 | -16.64 |
| Comments          | : * Physical d | istance betwee | en EUT and me | easurement | antenna |     |       |   |        |



## 3.3 Test Conditions and Results - Receiver radiated emissions

| Receiver radiated emissions acc. to IC RSS-210 Verdict: PASS |           |                  |                    |                                |                    |  |  |  |  |  |
|--------------------------------------------------------------|-----------|------------------|--------------------|--------------------------------|--------------------|--|--|--|--|--|
| Test according refere                                        | enced     |                  |                    | Reference Method               |                    |  |  |  |  |  |
| standards                                                    |           | IC RSS-210 A8.5  |                    |                                |                    |  |  |  |  |  |
| Test according t                                             |           | Reference Method |                    |                                |                    |  |  |  |  |  |
| measurement refer                                            | ence      | ANSI C63.4       |                    |                                |                    |  |  |  |  |  |
| Test frequency rar                                           |           |                  | Tested frequencies | 3                              |                    |  |  |  |  |  |
| rest frequency far                                           | ige       |                  | 30                 | 0 MHz – 5 <sup>th</sup> Harmor | nic                |  |  |  |  |  |
| EUT test mode                                                |           |                  |                    | Receive                        |                    |  |  |  |  |  |
|                                                              |           |                  | Limits             |                                |                    |  |  |  |  |  |
| Frequency range [MHz]                                        | Detector  |                  | Limit [µV/m]       | Limit [dBµV/m]                 | Limit Distance [m] |  |  |  |  |  |
| 30 – 88                                                      | Quasi-Pea | ık               | 100                | 40                             | 3                  |  |  |  |  |  |
| 88 – 216                                                     | Quasi-Pea | ık               | 150                | 43.5                           | 3                  |  |  |  |  |  |
| 216 – 960                                                    | Quasi-Pea | ık               | 200                | 46                             | 3                  |  |  |  |  |  |
| 960 – 1000                                                   | Quasi-Pea | ık               | 500                | 54                             | 3                  |  |  |  |  |  |
| > 1000                                                       | Average   |                  | 500                | 54                             | 3                  |  |  |  |  |  |
|                                                              |           |                  | Test setup         |                                |                    |  |  |  |  |  |
| Semi-anechoic Chamber  EUT  Turn table                       |           |                  |                    |                                |                    |  |  |  |  |  |
| Amplifier Measurement Receiver                               |           |                  |                    |                                |                    |  |  |  |  |  |



#### **Test procedure**

- 1. EUT set to receive mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels

|                  |                    |                   | Test re                 | sults                 |      |                 |                  |
|------------------|--------------------|-------------------|-------------------------|-----------------------|------|-----------------|------------------|
| Channel          | Frequency<br>[MHz] | Emission<br>[MHz] | Emission Level [dbµV/m] | Emission Level [µV/m] | Det. | Limit<br>[µV/m] | Margin<br>[µV/m] |
| F <sub>MID</sub> | 2437               | 30                | 27.74                   | 24.38                 | pk   | 100.00          | -75.62           |
| F <sub>MID</sub> | 2437               | 31.02             | 28.38                   | 26.24                 | pk   | 100.00          | -73.76           |
| F <sub>MID</sub> | 2437               | 32.04             | 27.45                   | 23.58                 | pk   | 100.00          | -76.42           |
| F <sub>MID</sub> | 2437               | 106.84            | 32.89                   | 44.11                 | pk   | 150.00          | -105.89          |
| F <sub>MID</sub> | 2437               | 165.66            | 32.27                   | 41.07                 | pk   | 150.00          | -108.93          |
| F <sub>MID</sub> | 2437               | 187.08            | 31.79                   | 38.86                 | pk   | 150.00          | -111.14          |
| F <sub>MID</sub> | 2437               | 197.28            | 31.38                   | 37.07                 | pk   | 150.00          | -112.93          |
| F <sub>MID</sub> | 2437               | 197.96            | 31.52                   | 37.67                 | pk   | 150.00          | -112.33          |
| F <sub>MID</sub> | 2437               | 198.64            | 31.50                   | 37.58                 | pk   | 150.00          | -112.42          |
| F <sub>MID</sub> | 2437               | 199.66            | 31.28                   | 36.64                 | pk   | 150.00          | -113.36          |
| F <sub>MID</sub> | 2437               | 220.8             | 31.89                   | 39.31                 | pk   | 200.00          | -160.69          |
| F <sub>MID</sub> | 2437               | 224               | 34.52                   | 53.21                 | pk   | 200.00          | -146.79          |
| F <sub>MID</sub> | 2437               | 249.6             | 20.01                   | 10.01                 | pk   | 200.00          | -189.99          |
| F <sub>MID</sub> | 2437               | 273.6             | 21.07                   | 11.31                 | pk   | 200.00          | -188.69          |
| $F_{MID}$        | 2437               | 524.8             | 22.67                   | 13.60                 | pk   | 200.00          | -186.40          |
| F <sub>MID</sub> | 2437               | 524.8             | 24.25                   | 16.31                 | pk   | 200.00          | -183.69          |
| F <sub>MID</sub> | 2437               | 600               | 27.62                   | 24.04                 | pk   | 200.00          | -175.96          |
| $F_{MID}$        | 2437               | 878.4             | 33.49                   | 47.26                 | pk   | 200.00          | -152.74          |
| F <sub>MID</sub> | 2437               | 915.2             | 31.06                   | 35.73                 | pk   | 200.00          | -164.27          |
| F <sub>MID</sub> | 2437               | 3688              | 43.41                   | 148.08                | pk   | 500.00          | -351.92          |
| F <sub>MID</sub> | 2437               | 3898              | 42.87                   | 139.16                | pk   | 500.00          | -360.84          |
| F <sub>MID</sub> | 2437               | 3940              | 42.87                   | 139.16                | pk   | 500.00          | -360.84          |
| F <sub>MID</sub> | 2437               | 7736              | 52.76                   | 434.51                | pk   | 500.00          | -65.49           |
| F <sub>MID</sub> | 2437               | 7808              | 51.39                   | 371.11                | pk   | 500.00          | -128.89          |

## Comments:

<sup>\*</sup> Physical distance between EUT and measurement antenna.

<sup>\*\*</sup> Emission level corresponds to ambient noise floor



# ANNEX A Transmitter radiated spurious emissions

## Spurious emissions according to FCC part 15 Subpart C § 15.247

Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 1; 2412 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 6; 2437 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.6; 2437 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11b; Ch. 11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 1; 2412 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 1; 2412 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 6; 2437 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 6; 2437 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11b; Ch. 11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 r

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20

Note: EUT vertical; lower band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 r

Mode: TX; IEEE 802.11b; Ch. 1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.6; 2437 MHz; 1 Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 6; 2437 MHz; 1 Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 n

Mode: TX; IEEE 802.11b; Ch. 11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11b; Ch. 11; 2462 MHz; 1Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.1; 2412 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.6; 2432 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11b; Ch.11; 2462 MHz; 1 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 n

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower bandedge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower bandedge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 n

2.487 GHz

Mode: TX; IEEE 802.11g; Ch. 6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical

53.49 dBµV/m

Index 97



 $74 \; dB\mu V/m$ 

-20.51 dB

**Pass** 



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11g; Ch. 11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge

ndex 99





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6 Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

FCC 15.209 AV r19

10 G

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical

FCC 15 209 AV r18

30

8 G

FCC 15 209 AV r23 — FCC 15 209 AV r24 — FCC 15 209 AV r25 — FCC 15 247 Peak v1

110

90

90

70

40

Name of the standard of t

12 G

Frequency (Hz)

FCC 15 209 AV r20

FCC 15 209 AV r21

14 G

16 G

18 G

Index 66

FCC 15 209 AV r22



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

10 G

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical

8 G

FCC 15.209 AV r19 FCC 15 209 AV r21 FCC 15 209 AV r22 FCC 15 209 AV r18 FCC 15 209 AV r20 FCC 15.209 AV r23 FCC 15.209 AV r24 FCC 15.209 AV r25 FCC 15.247 Peak v1 RBW: 1 MHz, Vertical Max Peak 110 100 90 Electrical Field (dBµV/m) 80 70 60 50 40 30

12 G

Frequency (Hz)

14 G

16 G

18 G



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.1; 2412 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.6; 2437 MHz; 6Mbps; Pmax

Test Date: 2015-02-20

Note: EUT horizontal; worst case





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11g; Ch.11; 2462 MHz; 6Mbps; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 n

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 r

2.388 GHz

Mode: TX; IEEE 802.11gn; Ch. 3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical: lower band edge

Index 108



Test Report No.: G0M-1411-4293-TFC247WF-V01

-3.76 dB

54 dBµV/m

50.24 dBµV/m

Pass





Project number: G0M-1411-4293

Applicant: **AED Engineering** 

**EUT Name:** CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

**Test Conditions:** Tnom: 22°C, Vnom: 24 VDC Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance:

TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax Mode:

Test Date: 2015-02-23 **EUT** vertical Note:





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; lower band edge

39.16 dBµV/m

2.39 GHz

Index 96



Test Report No.: G0M-1411-4293-TFC247WF-V01

-14.84 dB

54 dBµV/m

Pass





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 r

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge

Index 97



Test Report No.: G0M-1411-4293-TFC247WF-V01



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 n

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

2.384 GHz

2.389 GHz

34.41 dBµV/m

39.22 dBµV/m

Mode: TX; IEEE 802.11gn; Ch. 6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical: lower band edge

Index 106



-19.59 dB

-14.78 dB

54 dBµV/m

54 dBµV/m

**Pass** 

Pass



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 n

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher band edge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

2.39 GHz

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical: lower band edge

Index 102



-22.2 dB

54 dBµV/m

31.8 dBµV/m

Pass



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; IEEE 802.11gn; Ch. 9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-23

Note: EUT vertical; higher bandedge





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT horizontal





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

FCC 15.209 AV r19

FCC 15.209 AV r24

10 G

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical

FCC 15 209 AV r18

FCC 15.209 AV r23

110

100

90

80

70

60

50

40

30

8 G

Electrical Field (dBµV/m)

— RBW: 1 MHz, Horizontal Max Peak

FCC 15 209 AV r20

FCC 15.209 AV r25

FCC 15 209 AV r21

14 G

16 G

18 G

FCC 15.247 Peak v1

12 G

Frequency (Hz)

Index 75

FCC 15 209 AV r22



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.3; 2422 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.6; 2437 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 24°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; IEEE 802.11gn; Ch.9; 2452 MHz; MCS0; Pmax

Test Date: 2015-02-20 Note: EUT vertical





# ANNEX B Receiver radiated spurious emissions Spurious emissions according to IC RSS-Gen

Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical

Index 132



Frequency (Hz)

| Frequency  | Peak         | Peak Limit  | Peak Difference | Status |
|------------|--------------|-------------|-----------------|--------|
| 106.84 MHz | 32.89 dBµV/m | 43.5 dBµV/m | -10.61 dB       | Pass   |
| 165.66 MHz | 32.27 dBµV/m | 43.5 dBµV/m | -11.23 dB       | Pass   |
| 187.08 MHz | 31.79 dBµV/m | 43.5 dBµV/m | -11.71 dB       | Pass   |
| 197.28 MHz | 31.38 dBµV/m | 43.5 dBµV/m | -12.12 dB       | Pass   |
| 198.64 MHz | 31.5 dBµV/m  | 43.5 dBµV/m | -12 dB          | Pass   |



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical



| Frequency  | Peak         | Peak Limit  | Peak Difference | Status |
|------------|--------------|-------------|-----------------|--------|
| 30 MHz     | 27.74 dBµV/m | 40 dBμV/m   | -12.26 dB       | Pass   |
| 31.02 MHz  | 28.38 dBµV/m | 40 dBµV/m   | -11.62 dB       | Pass   |
| 32.04 MHz  | 27.45 dBµV/m | 40 dBµV/m   | -12.55 dB       | Pass   |
| 197.96 MHz | 31.52 dBµV/m | 43.5 dBµV/m | -11.98 dB       | Pass   |
| 199.66 MHz | 31.28 dBµV/m | 43.5 dBµV/m | -12.22 dB       | Pass   |



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical



| Frequency | Peak         | Peak Limit | Peak Difference | Status |
|-----------|--------------|------------|-----------------|--------|
| 220.8 MHz | 31.89 dBµV/m | 46 dBμV/m  | -14.11 dB       | Pass   |
| 249.6 MHz | 20.01 dBµV/m | 46 dBμV/m  | -25.99 dB       | Pass   |
| 273.6 MHz | 21.07 dBµV/m | 46 dBµV/m  | -24.93 dB       | Pass   |
| 524.8 MHz | 22.67 dBµV/m | 46 dBµV/m  | -23.33 dB       | Pass   |
| 600 MHz   | 27.62 dBµV/m | 46 dBµV/m  | -18.38 dB       | Pass   |
| 878.4 MHz | 33.49 dBµV/m | 46 dBµV/m  | -12.51 dB       | Pass   |



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical



| Frequency | Peak         | Peak Limit | Peak Difference | Status |
|-----------|--------------|------------|-----------------|--------|
| 224 MHz   | 34.52 dBµV/m | 46 dBµV/m  | -11.48 dB       | Pass   |
| 524.8 MHz | 24.25 dBµV/m | 46 dBµV/m  | -21.75 dB       | Pass   |
| 915.2 MHz | 31.06 dBµV/m | 46 dBµV/m  | -14.94 dB       | Pass   |



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical

Index 135



Frequency 3.898 GHz 3.94 GHz Peak 42.87 dBμV/m 42.87 dBμV/m Peak Limit 53.98 dBµV/m 53.98 dBµV/m Peak Difference -11.11 dB -11.11 dB Peak Status Pass Pass



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical

Index 137



Frequency 3.688 GHz Peak 43.41 dBµV/m Peak Limit 53.98 dBµV/m Peak Difference -10.57 dB Peak Status Pass



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical

Index 136



Frequency 7.736 GHz Peak 52.76 dBµV/m Peak Limit 53.98 dBµV/m Peak Difference -1.22 dB Peak Status Pass



Project number: G0M-1411-4293

Applicant: AED Engineering

EUT Name: CAN-WLAN Gateway RH

Model: GN1001A

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Vnom: 24 VDC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; IEEE 802.11b,g,n; Ch.6; 2437 MHz

Test Date: 2015-02-23 Note: EUT vertical

Index 138



Frequency 7.808 GHz Peak 51.39 dBµV/m Peak Limit 53.98 dBµV/m Peak Difference -2.59 dB Peak Status Pass