An Ordered Set of Arithmetic Functions Representing the least ϵ -number (Hilbert Levitz)

The set S

- Let $\mathcal S$ be the smallest class of functions $\mathbb N \to \mathbb N$ so that:
 - $\mathbf{0}$ $1 \in \mathcal{S}$,
 - ② If $f, g \in \mathcal{S}$ and $n \in \mathbb{N}$, then f + g, $f \cdot g$, x^f , and $n^f \in \mathcal{S}$.
- Levitz : type(S)= ϵ_0 .

Cantor Normal Form

- <u>Cantor Normal Form</u>: Every ordinal $\alpha > 0$ has the unique form $\alpha = \omega^{\beta_1} k_1 + \cdots + \omega^{\beta_n} k_n$, where $n \ge 1$, $\alpha \ge \beta_1 > \cdots > \beta_n$, and $k_1, \ldots, k_n \in \mathbb{N}^{>0}$.
- Note that we can write

$$\alpha = \underbrace{\omega^{\beta_1} + \dots + \omega^{\beta_1}}_{k_1 - \text{terms}} + \dots + \underbrace{\omega^{\beta_n} + \dots + \omega^{\beta_n}}_{k_n - \text{terms}}$$
$$= \omega^{\alpha_1} + \dots + \omega^{\alpha_k},$$

where $\alpha_1 \geq \cdots \geq \alpha_k$ and $k \geq 1$.

• Let $\gamma = \sum_{i=2}^k \omega^{\alpha_i}$. Then $\omega^{\alpha_1} + \gamma$ is called the reduced normal form of α .

Reduced Normal Forms

If α,β have reduced normal forms $\omega^{\alpha_1}+\gamma$ and $\omega^{\beta_1}+\delta$ respectively, then $\alpha<\beta$ iff

- $oldsymbol{\omega}$ $\omega^{\alpha_1}<\omega^{\beta_1}$ (equivalently $\alpha_1<\beta_1$), or

Main Ordinals

- Main ordinals : Ordinals of the form ω^{β} ($\beta \geq 0$).
- If $\alpha \neq 1$ is a main ordinal

$$\alpha = \omega^{\omega^{\alpha_1} n_1} \omega^{\omega^{\alpha_2} n_2} \cdots \omega^{\omega^{\alpha_k} n_k}$$

with $\alpha_1 > \alpha_2 > \cdots > \alpha_k$.

- Write $\beta = \omega^{\alpha_1} k_1 + \cdots + \omega^{\alpha_n} k_n$ with $\beta \ge \alpha_1 > \cdots > \alpha_n$.
- Then $\omega^{\beta} = \omega^{\omega^{\alpha_1} k_1 + \dots + \omega^{\alpha_n} k_n} = \omega^{\omega^{\alpha_1} k_1} \cdots \omega^{\omega^{\alpha_n} k_n}$.
- $\alpha = (\omega^{\omega^{\alpha_1} n_1}) \gamma$, where $\gamma = \prod_{i=2}^k \omega^{\omega^{\alpha_1} n_i}$ $(\gamma = 1 \text{ if } k = 1)$ is called the <u>reduced form</u> of α .

The functions A and B

- Define functions B : On → On and A : On^{>0} → On as follows.
 - **1** B(0) = 0
 - **2** $A(\alpha + 1) = B(\alpha) + 1 \ (\alpha \ge 0)$
 - **3** $B(\alpha + 1) = A(\alpha + 1) + 1 \ (\alpha \ge 0)$

 - **5** $B(\alpha) = A(\alpha) + 1$ if α is a limit.

The functions A and B

Observe that we have

$$B(\alpha) = \begin{cases} 0, & \text{if } \alpha = 0, \\ B(\beta) + 2, & \text{if } \alpha = \beta + 1, \\ \alpha + 1, & \text{if } \alpha \text{ is a limit.} \end{cases}$$

B maps finite ordinals to "even numbers", A maps finite nonzero ordinals to "odd numbers". B maps limits to their successors and A does nothing to limits.

The functions A and B

The functions A and B have the following properties. If $\alpha < \beta$,

- $B(\alpha) < B(\beta)$
- \bullet $A(\alpha) < B(\beta)$
- $B(\alpha) < A(\beta)$
- **③** Range(A) ∩ Range(B) = \emptyset

\mathcal{S}' -Normal Form

- $\alpha = \omega^{\omega^{\alpha_1} n_1} \cdots \omega^{\omega^{\alpha_k} n_k}$, where $\alpha_1 \ge \cdots \ge \alpha_k$ and $n_i = 1$ if α_i is of the form B(x) for some x. This is called the $\underline{\mathcal{S}'}$ -normal form of α .
- Reduced S'-normal form is $\omega^{\omega^{\alpha_1} n_1} \gamma$, where $\gamma = \omega^{\omega^{\alpha_2} n_2} \cdots \omega^{\omega^{\alpha_k} n_k} \ (\gamma = 1 \text{ if } k = 1).$
- Example :

$$\omega^{\omega^2 2 + \omega 3} = (\omega^{\omega^2})(\omega^{\omega^2})(\omega^{\omega^3}) (\mathcal{S}' - \text{normal form})$$
$$= (\omega^{\omega^2})\gamma \text{ (reduced } \mathcal{S}' - \text{normal form)}$$

$$\omega^{\omega^32+\omega^23}=(\omega^{\omega^32})\underbrace{(\omega^{\omega^2})(\omega^{\omega^2})(\omega^{\omega^2})}_{\gamma}$$

Main Ordinals

Lemma 1

Say $\alpha = (\omega^{\omega^{\alpha_1} n_1}) \gamma$ and $\beta = (\omega^{\omega^{\beta_1} m_1}) \delta$ are reduced S'-normal forms. Then $\alpha < \beta$ if and only if

- **1** $\alpha_1 < \beta_1$,
- **2** $\alpha_1 = \beta_1$ and $n_1 < m_1$, or

- ullet S doesn't have an additive identity 0.
- Put $S' = S \cup \{0\}$.
- $f \in \mathcal{S}'$ is called
 - **1** An additive prime if $f \neq g + h$ for all nonzero $g, h \in \mathcal{S}'$,
 - A multiplicative prime if $f \neq 0$ and $f \neq gh$ for all $g, h \neq 1$ in \mathcal{S}' , and
 - **3** An exponential prime if $f \neq 0$ and $f \neq g^h$ for all $g, h \neq 1$ in S'.
- The only functions that are prime in all three senses are x and
 1.

- \prec is a well-ordering on \mathcal{S}' .
- So every nonzero $f \in \mathcal{S}'$ has a representation $f = p_1 + \cdots + p_k$ $(k \ge 1)$, where $p_1 \succeq p_2 \succeq \cdots \succeq p_k$ are additive primes. This is called the additive normal form of f.
- $f = p_1 + q$, $q = \sum_{i=2}^{k} p_i$ (q = 0 if k = 1) is called the reduced additive normal form of f.
- Each additive prime has a representation $p = q_1 q_2 \cdots q_k \ (k \ge 1)$ with each q_i a multiplicative prime.
- In such representations q_i is also an additive prime.

• Suppose $q \in \mathcal{S}'$ and $q \neq 1$ and q is both an additive and multiplicative prime.

Write $q=p_1+\cdots p_k$ where p_i 's are additive primes with $p_1\succeq\cdots\succeq p_k$. We can write $p_i=u_1^{(i)}\cdots u_{k_i}^{(i)}$ for each i where $u_j^{(i)}$'s are multiplicative primes. Since q is a multiplicative prime p_i 's cannot have common factors other than 1. Since q is an additive prime k=1. So $q=u_1\cdots u_m$ for some m where u_i 's are multiplicative primes with no common factors.

Two cases now - (1) $u_i = x$ for some i; (2) $u_i \neq x$ for each i. If $u_i = x$ for some i then $u_j = x$ for all $j \leq m$ because otherwise q would have at least two distinct factors. So q has the form x^m . But now m must be an additive prime because otherwise x^m would split into two smaller factors x^{m_1} and x^{m_2} with $m_1 + m_2 = m$. Therefore $q = x^h$ for some additive prime h.

```
If u_i \neq x for each i then u_i must be a constant \geq 2 (q = f^m \implies q \text{ not a multiplicative prime}). Say u_i = n \ (n \geq 2). So q = n^m. Now if m were not a multiplicative prime we'd have m = m_1 m_2, and q = n^{m_1 m_2} = \underbrace{n^{m_1} \cdots n^{m_1}}_{m_2-\text{terms}}.
```

- If $q \in \mathcal{S}'$ and $q \neq 1$ and q is both an additive and multiplicative prime, then q is of one of the following forms.

 - ② $n^{h(x)}$ with $n \ge 2$ and $h(x) \ne 1$ a multiplicative prime.
- So each additive prime $f \neq 1$ can be written as

$$f = u_1^{f_1} u_2^{f_2} \cdots u_k^{f_k} \ (k \ge 1),$$

where each u_i is of the form 1 or 2.

 We can ensure that each u_i has a distinct exponent. Multiply together any two such factors - group the exponents.

Frame Title

- Summary : $f \neq 1$ is an additive prime. Then f can be written as $f = u_1^{f_1} u_2^{f_2} \cdots u_k^{f_k}$ $(k \geq 1)$, where
 - \bullet Each f_i is an additive prime
 - 2 $\leq u_i$ for all i
 - $u_i \in \mathbb{N} \cup \{x\}$
 - $u_i, u_i \in \mathbb{N} \ (i \neq j) \implies f_i \neq f_i$

Reduced Multiplicative Form

• Reduced multiplicative form of f is $f = u_1^{f_1} y$, where $y = u_2^{f_2} \cdots u_k^{f_k}$ (y = 1 if k = 1).

Results

Lemma 2

If $f \succeq x$, then $\lim f(x) = +\infty$.

Proof.

Suppose $f \succeq x$. Then $\exists n_0 \in \mathbb{N} \ \forall x \geq n_0 \ x \leq f(x)$. Therefore since $\lim x = +\infty$ we have $\lim f(x) = +\infty$.

Multiplicative normal form - Results

Theorem 3

Let $g \neq 1$ be an additive prime.

- For every additive prime $f \neq 1$, if f, g have reduced multiplicative normal forms $f = u_1^{f_1} y$ and $g = v_1^{g_1} z$, then $f \prec g$ if and only if one of the following holds.

 - **1** $f_1 = g_1 \text{ and } u_1 \prec v_1$
- **2** For any additive prime f, if $f \prec g$ then $f \cdot x \leq g$.
- The multiplicative normal form representation for g is unique.

By transfinite induction on g over the well ordering \prec . The inductive hypothesis is

Items 1, 2, 3 hold for all additive primes $\psi \neq 1$ with $\psi \prec g$.

Sufficiency of conditions in 1:

<u>Case 1</u>: $f_1 \prec g_1$. Let $f = u_1^{f_1} \cdots u_k^{f_k}$ be in normal form with $u_1^{f_1} \succeq \cdots \succeq u_k^{f_k}$. Thus $f \preceq u_1^{kf_1}$. By IH for 2 we get $f_1 x \preceq g_1$. Since $u_1 \preceq x$ get

$$\frac{\log f}{\log v_1^{g_1}} \preceq \frac{\log u_1^{kf_1}}{\log v_1^{g_1}} \preceq \frac{kf_1 \log u_1}{g_1 \log v_1} \preceq \frac{kf_1 \log u_1}{f_1 x \log v_1} \preceq \frac{k \log u_1}{x \log v_1} \preceq \frac{k \log x}{x \log v_1}$$
$$\preceq \frac{k \log x}{x} \left(\frac{1}{\log v_1}\right)$$

Since $\lim_{x\to\infty}\frac{k\log x}{x}\Big(\frac{1}{\log v_1}\Big)=0$ we have $\log f\preceq \log v_1^{g_1}$. So $f\prec v_1^{g_1}\preceq v_1^{g_1}z=g$.

Case 2: $f_1 = g_1$ and $u_1 \prec v_1$. Since $u_1, v_1 \in \{2, 3, ..., x\}$ we have $u_1 = n$ for some natural number n > 2. Because if $u_1 = x$ then no room for v_1 in $\{2,3,\ldots,x\}$ as $u_1 \prec v_1$. By IH-2 $u_1^{f_1} \prec g$. Let $i \geq 2$. If $f_1 \prec f_i$ we'd have by IH-1 that $u_i^{f_i} \prec u_1^{f_1}$ which is impossible as $f = u_1^{f_1} y$ is the multiplicative normal form of f. Therefore $f_1 > f_i$. Now claim that $f_i < f_1$. If $f_1 = f_i$, since $u_1^{f_1} \succeq u_i^{f_i}$, we'd have $n^{f_1} \succeq u_i^{f_1}$, so $u_i = m$ for some natural number $m \geq 2$. But this contradicts the fact that in multiplicative normal forms the factors with numerical bases have distinct exponents. Therefore $f_i \prec f_1$. Since by definition of multiplicative normal form $f_1 \neq 1$, by IH-2 $f_i \times f_1$.

$$\frac{\log \prod_{i=1}^k u_i^{f_i}}{\log v_1^{g_1}} = \frac{\sum_{i=1}^k f_i \log u_i}{g_i \log v_1} = \frac{\sum_{i=1}^k f_i \log u_i}{f_1 \log v_1} = \sum_{i=1}^k \frac{f_i \log u_i}{f_1 \log v_1}.$$

 $\frac{f_1 \log u_1}{f_1 \log v_1} = \frac{\log u_1}{\log v_1}. \text{ If } v_1 = x, \text{ since the numerator is a constant,} \\ \frac{f_1 \log u_1}{f_1 \log v_1} \to 0 \text{ as } x \to \infty. \text{ If } v_1 \text{ is a constant, then since } u_1 \prec v_1 \\ \text{(hypothesis of case 2), } \frac{f_1 \log u_1}{f_1 \log v_1} \text{ tends to a limit (constant) less} \\ \text{than 1. For } i \geq 2, \text{ since } f_i x \leq f_1 \text{ we have}$

$$\frac{f_i \log u_i}{f_1 \log v_1} \preceq \frac{f_i \log u_i}{f_i x \log v_1} = \frac{\log u_i}{x} \left(\frac{1}{\log v_1}\right).$$

Since
$$v_1 \leq x$$
 and $u_i \leq x$, $\frac{\log u_i}{x} \left(\frac{1}{\log v_1} \right) \to 0$ as $x \to \infty$. Hence $f \prec v_1^{g_1} \leq g$.

Case 3: $f_1 = g_1$, $u_1 = v_1$, and $y \prec z$. Trivial.

Necessity follows from sufficiency. Why? if conditions a,b,c fail and $f \neq g$, then one of a,b,c holds with roles of f,g reversed giving $g \prec f$. This completes the proof of 1.

Now want to show that 3 holds for g. Suppose $g=\prod v_i^{g_i}=\prod w_i^{h_i}$ are two representations of g in multiplicative normal form. Then have reduced forms $g=v_1^{g_1}y=w_1^{h_1}z$. By 1 we have $g_1=h_1$, because otherwise we'd have $g\prec g$. Now by IH, y and z have the same normal form. This proves 3.

Finally want to show that 2 holds for g. Use the fact that 1 and 3 hold for g. Let f be an additive prime such that $f \prec g$. If f = 1, then done since $x \preceq g$. So suppose $f \neq 1$. Consider the unique normal form representations for f and g. Let w be the product of the common factors. Then f = f'w and g = g'w, where f' = 1, or $f' \neq 1$ and f', g' have normal forms with no common factors. We'll show $f'x \preceq g'$. If f' = 1, done since $x \preceq g'$. If $f' \neq 1$, let $s_1^{t_1}h$ and $r_1^{q_1}l$ be the reduced normal forms for f', g' respectively. From $f' \prec g'$ and 1 one of the following holds.

- $0 t_1 \prec q_1$

But III is impossible because otherwise f',g' would have a common factor $s_1^{t_1}$. So I or II holds. In either case $s_1^{t_1}(hx)$ is a reduced normal form for f'x. So by 1

$$f'x = s_1^{t_1}(hx) \prec r_1^{q_1}I = g'.$$

This completes the proof. ■

Additive normal form - Results

Theorem 4

If f and g have reduced additive normal forms $f = f_1 + v$ and $f = g_1 + w$, then $f \prec g$ if and only if one of the following holds.

Additive normal forms are unique

Corollary 5

Additive normal form representation for nonzero members of \mathcal{S}' is unique.

The Principal Mapping

- Exhibit an order preserving mapping G from S' into the initial segment of **On** determined by ϵ_0 .
- Skolem : A subset of S' has order type ϵ_0 .
- So type(S') = ϵ_0 .
- Define $P : \mathbf{On} \to \mathbf{On}$ as follows.

$$P(\alpha) = \begin{cases} \beta \text{ if } \alpha = \omega^{\beta} \text{ for some } \beta \in \mathbf{On}, \\ 0 \text{ otherwise.} \end{cases}$$

• The function P sort of ignores non-main-ordinals.

The Principal Mapping

Define $G: \mathcal{S}' \to \mathbf{On}$ by recursion as follows.

- G(0) = 0.
- G(1) = 1.
- **3** $G(x^g) = \omega^{\omega^{B(P(G(g)))}}$ if g is an additive prime.
- **3** $G((n+1)^g) = \omega^{\omega^{A(P(G(g)))}n}$ if $g \neq 1$ is an additive prime and $n \geq 1$.
- **1** If $f \neq 1$ is an additive prime with multiplicative normal form $f = u_1^{f_1} \cdots u_k^{f_k}$, then $G(f) = G(u_1^{f_1}) \cdots G(u_k^{f_k})$.
- If f has additive normal form $f = p_1 + \cdots + p_k$ then $G(f) = G(p_1) + \cdots + G(p_k)$.
 - The mapping G is well-defined as the normal forms are unique.

Examples

$$G(x) = \omega^{\omega^{B(P(G(1)))}} = \omega^{\omega^{B(P(1))}} = \omega^{\omega^{B(0)}} = \omega^{\omega^0} = \omega^1 = \omega.$$

$$G(x^n) = \underbrace{G(x)\cdots G(x)}_{n-\text{terms}} = \omega^n.$$

$$G(2^{\times}) = G((1+1)^{\times})$$

$$= \omega^{\omega^{A(P(G(x)))}}$$

$$= \omega^{\omega^{A(P(\omega))}} (:: G(x) = \omega)$$

$$= \omega^{\omega^{A(1)}} (:: P(\omega) = 1)$$

$$= \omega^{\omega} (:: A(1) = 1).$$

Examples

$$G(3^{\times})=\omega^{\omega 2}.$$

$$G(x^{x}) = \omega^{\omega^{B(P(G(x)))}}$$

$$= \omega^{\omega^{B(P(\omega))}} (:: G(x) = \omega)$$

$$= \omega^{\omega^{B(1)}} (:: P(\omega) = 1)$$

$$= \omega^{\omega^{2}} (:: B(1) = 2).$$

$$G(2^{x^2}) = G((1+1)^{x^2})$$

$$= \omega^{\omega^{A(P(G(x^2)))}}$$

$$= \omega^{\omega^{A(P(\omega^2))}} (\because G(x^2) = 2)$$

$$= \omega^{\omega^{A(2)}} (\because P(\omega^2) = 2) = \omega^{\omega^3}.$$

The Principal Mapping

Theorem 6

If $f \prec g$, then G(f) < G(g).

 \star $G(f) < \epsilon_0$ by transfinite induction on f. Important : Initial segment of **On** determined by ϵ_0 is closed under ordinal addition, multiplication and exponentiation.