Rules of **Probability**

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

$$P(X \cap Y) = P(Y \cap X) = P(X) \cdot P(Y \mid X)$$

$$= P(Y) \cdot P(X \mid Y)$$

$$= P(Y \cap X) = P(X) \cdot P(Y)$$

$$= P(Y) \cdot P(X)$$

$$P(Y) = 1 - P(Y')$$

$$= P(Y \cap A) + P(Y \cap B) + \dots + P(Y \cap Z)$$

$$= P(Y \cap X) + P(Y \cap !X)$$

$$= P(X) \cdot P(Y \mid X) + P(!X) \cdot P(Y \mid !X)$$

$$= P(Y) \cdot P(X \mid Y) + P(Y) \cdot P(!X \mid Y)$$

$$\begin{split} P(X \mid Y) &= \frac{P(X \cap Y)}{P(Y)} \\ &= \frac{P(X) \cdot P(Y \mid X)}{P(Y)} = \frac{P(Y) \cdot P(X \mid Y)}{P(Y)} \\ &= \frac{P(X) \cdot P(Y \mid X)}{P(X) \cdot P(Y \mid X)} = \frac{P(Y) \cdot P(X \mid Y)}{P(X) \cdot P(Y \mid X) + P(!X) \cdot P(Y \mid !X)} \\ &= \frac{P(X) \cdot P(Y \mid X)}{P(Y) \cdot P(X \mid Y) + P(Y) \cdot P(!X \mid Y)} = \frac{P(Y) \cdot P(X \mid Y)}{P(Y) \cdot P(X \mid Y) + P(Y) \cdot P(!X \mid Y)} \end{split}$$

$$P(X \cap Y \cap Z) = P(Y) \cdot P(X \mid Y) \cdot P(Z \mid X \cap Y)$$

$$P(X \cup Y \cup Z) = P(X) + P(Y) + P(Z) - P(X \cap Y) - P(X \cap Z) - P(Y \cap Z) + P(X \cap Y \cap Z)$$

$$P(A) + P(B) + P(C) = 1$$
 if mutually exhausive

discrete

1. probability mass function (PMF)

list all possible probabilities of **x**

$$p_X(x) = P(X = x)$$

- (a) probability of x must be in [0, 1]
- (b) sum of all probabilities must equal to 1
- (c) R: hist(x) with x in x-axis and $p_X(x)$ in y-axis

2. cumulative distribution function (CDF)

probability that a random variable is less than or equal to $\mathbf x$

$$F_X(x) = P(X \le x)$$

- (a) $\lim_{x\to-\infty} F_X(x) = 0$
- (b) $\lim_{x\to\infty} F_X(x) = 1$
- (c) non-decreasing

3. $E_X(x)$ = theoretical mean

For random variable x,

$$E_X(x) = \sum_{all \ x} x \cdot p_X(x)$$

For function g(x),

$$E_X(g(x)) = \sum_{all \ x} g(x) \cdot p_X(x)$$

continuous

1. probability density function (PDF)

list all possible probabilities of x

$$f_X(x) = \frac{\partial}{\partial x} F_X(x)$$

- (a) $f_X(x) \ge 0$ for all x
- (b) area under the curve is equal to 1
- (c) R: plot(density(x)) with x in x-axis and $f_X(x)$ in y-axis

2. cumulative distribution function (CDF)

probability that a random variable is less than or equal to x

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(x) \ dx$$

 $P(a \le X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) \ dx$

- (a) $\lim_{x\to-\infty} F_X(x) = 0$
- (b) $\lim_{x\to\infty} F_X(x) = 1$
- (c) non-decreasing

3. $E_X(x)$ = theoretical mean

For random variable x,

$$E_X(x) = \int_{-\infty}^{\infty} x \cdot f_X(x)$$

For function g(x),

$$E_X(g(x)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x)$$

1. Rules of Expectation

(a)
$$E(aX + b) = a \cdot E(X) + b$$

(b)
$$E(Y \mid X) = \int_{-\infty}^{\infty} y \cdot f_{Y \mid X}(y \mid x) dy$$

(c)
$$E(XY) = E(E(XY \mid X)) = E(X \cdot E(Y \mid X))$$

(d)
$$E(XY) == E(X) \cdot E(Y)$$
 if X, Y independent

(e)
$$E(XY \mid X) = X \cdot E(Y \mid X)$$

(f)
$$E(Y) = E(E(Y | X))$$

(g)
$$E_X(x^2) = \int_{-\infty}^{\infty} x^2 \cdot f_X(x)$$

2. Rules of Variance

(a)
$$var(X) = \sigma^2 = E(X^2) - E(X)^2$$

(b)
$$var(X+c) = var(X)$$

(c)
$$var(cX) = c^2 \cdot var(X)$$

(d)
$$var(X + Y) = var(X) + var(Y) + 2 \cdot cov(X, Y)$$

(e)
$$var(X + Y) = var(X) + var(Y)$$
 if X, Y independent

3. Rules of Standard Deviation

(a)
$$\sigma = \sqrt{var(X)}$$

4. Rules of Normal Distribution

(a)
$$E(X) = 0$$

(b)
$$E(X^2) = 1$$

(c)
$$E(X)^2 = 0$$

(d)
$$\sigma = 1$$

(e)
$$var(X) = 1$$

5. Rules of **Joint Distribution**

Remember the rules of probability above (for discrete) applies here.

(a) Marginal

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$
$$= \int_{-\infty}^{\infty} f_X(x) \cdot f_{Y|X}(y \mid x) \, dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$
$$= \int_{-\infty}^{\infty} f_Y(y) \cdot f_{X|Y}(x \mid y) \, dx$$

(b)
$$f_{X|Y} = \frac{f_{X,Y}(X,Y)}{f_Y(y)}$$

(c)
$$f_{X,Y} == f_X(x) \cdot f_Y(y)$$
 if X, Y independent

6. Rules of Covariance

Measure the strength of linear relationship b/w 2 variables

(a)
$$cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X) \cdot E(Y)$$

(b)
$$cov(X, X) = var(X)$$

(c)
$$cov(aX, bY) = ab \cdot cov(XY)$$

(d)
$$cov(X, Y + Z) = cov(X, Y) + cov(X, Z)$$

7. Rules of Correlation

Normalize Covariance by scaling it b/w -1 and 1

(a)
$$corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$

9. Rules of Complement

(a)
$$P(X > 3) = 1 - P(X \le 3)$$

(b)
$$P(2 \le X \le 5) = P(X \le 5) - P(X \le 1)$$

(c)
$$P(2 < X < 5)$$

= $P(3 \le X \le 4) = P(X \le 4) - P(X \le 2)$

10. Rules of **Sum**

(a) Finite Arithmetic i.e. 3, 7, 11, ..., 51 $S_n = \frac{n}{2}(a_1 + a_n) = n[a_1 + \frac{n-1}{2}d]$

(b) Finite Geometric,
$$r = \frac{a_n}{a_n - 1}$$

i.e. 1, 2, 4, ..., 64
 $S_n = a_1 \frac{1 - r^n}{1 - r} = \frac{a_1 - ra_n}{1 - r}$

(c) Infinite Geometric, $r=\frac{a_n}{a_n-1},$ -1 < r < 1 i.e. $3,1,\frac13,\frac19,\frac1{27},\dots$ $S=\frac{a_1}{1-r}$

(d) Infinite Arithmetic and Infinite Geometric w/ $r \le -1$ or $1 \le r$ No formula

11. Rules of Log

$$log_2(2^k) = log_2(9801)$$
$$k = \frac{log_{10}(9801)}{log_{10}(2)}$$

Discrete Joint Probability Table

	y_1	y_2	 y_n	
x_1	$f_{X,Y}(x_1,y_1)$	$f_{X,Y}(x_1,y_2)$	 $f_{X,Y}(x_1,y_n)$	$f_X(x_1)$
x_2	$f_{X,Y}(x_2,y_1)$	$f_{X,Y}(x_2,y_2)$	 $f_{X,Y}(x_2,y_n)$	$f_X(x_2)$
x_m	$f_{X,Y}(x_m,y_1)$	$f_{X,Y}(x_m,y_2)$	 $f_{X,Y}(x_m,y_n)$	$f_X(x_m)$
	$f_Y(y_1)$	$f_Y(y_2)$	 $f_Y(y_n)$	1

Distribution	Type	Description	PMF or PDF	$E_X(x)$	var(x)
Bernoulli	Discrete	Binomial with $n = 1$	$p^x(1-p)^{1-x}$	p	1-p
Binomial	Discrete	n independent Bernoulli trials	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Geometric	Discrete	get first success in independent Bernoulli trials	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative Binomial	Discrete	get r^{th} success in independent Bernoulli trials	$\binom{x-1}{n-1}p^r(1-p)^{x-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Hypergeometric	Discrete	sampling objects w/o replacement	$\frac{\binom{A}{a}\binom{B}{b}}{\binom{N}{n}} = \frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}$	$\frac{n \cdot a}{N}$	$\frac{n \cdot a \cdot (N-a) \cdot (N-n)}{N^2 \cdot (N-1)}$
Poisson	Discrete	# of occurences of an event	$\frac{\lambda^x \cdot e^{-\lambda}}{x!}$	λ	λ
Uniform	Continuous	constant probability	$\frac{1}{b-a}, a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$