03_Naïve_Bayes

3.0 Why Naïve Bayes?

- Uncertainty
 - Can't conclude something with 100% confidence
- Weak Implications
 - Hard to establish concrete correlations between IF and THEN.
 - Handle vague associations.
- Imprecise Language
 - Natural language is ambiguous.
 - We describe facts with: sometimes, often, frequently, hardly,
 - Difficult to establish IF-THEN rules based on NL.

3.1 Basic Probability Theory

3.1.1 [DEF] Probability

- The probability of an event
 - = the proportion of cases in which the event occurs.
 - Expression: From 0 (absolute impossible) -> Unity (Absolute certain)
 - Mostly strictly between 0 and 1. Each event has at least two outcomes: Success or failure.

•
$$P(success) = \frac{s}{s+f}$$

•
$$P(failure) = \frac{f}{s+f}$$

3.1.2 [DEF] Conditional Probability

- Let: A, B: Event
- Conditional Probability:
 - The probability that: If B occur, then A occur.

•
$$P(A|B) = \frac{num(AandBoccur)}{num(Boccur)}$$

•
$$P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$
 (yields the Bayesian Rule)

3.2 Bayesian Reasoning

3.2.1 Baysian Rule:

- Given: Event E (Evidence)
- Get: The prob. that event H (Hypothesis) will occur, as P.

•
$$P(H|E) = rac{P(E|H)P(H)}{P(E)} = rac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\neg H)P(\neg H)}$$

3.2.2 Variances:

Single Evidence, Multiple Hypothesis:

$$ullet P(H_i|E) = rac{P(E|H_i)P(H_i)}{\sum_{k=1}^m P(E|H_k)P(H_k)}$$

Multiple Evidence, Multiple Hypothesis:

$$P(H_i|E_1,E_2,\ldots,E_n) = \frac{P(E_1,E_2,\ldots,E_n)P(H_i)}{\sum_{k=1}^m P(E_1,E_2,\ldots,E_n|H_k)P(H_k)}$$

$$\approx \frac{P(E_1|H_i)\times P(E_2|H_i)\times\ldots\times P(E_n|H_i)\times P(H_i)}{\sum_{k=1}^m \left[P(E_1|H_k)\times P(E_2|H_k)\times\ldots\times P(E_n|H_k)\times P(H_k)\right]}, \text{ if conditional independence holds.}$$

$$P(H_i)\prod_{a=1}^n P(E_a|H_i)$$

$$ullet = rac{P(H_i) \prod_{a=1}^n P(E_a|H_i)}{\sum_{k=1}^m P(H_k) \prod_{b=1}^n P(E_b|H_k)}$$

Example

Given the prior an conditional probs as follows:

	H_1	H_2	H_3
$P(H_i)$	0.40	0.35	0.25
$P(E_1 H_i)$	0.3	0.8	0.5
$P(E_2 H_i)$	0.9	0.0	0.7
$P(E_3 H_i)$	0.6	0.7	0.9
- Want \$P(H_1	E_3)\$.		
- \$P(H_3	E_3)=P(E_3	H_3)P(H_3)}{P(E_3)}\$	

	H_1	H_2	H_3
- \$P(E_3	H_3)P(H_3)=0.9 \times 0.25=0.36\$		
- \$P(E_3)=P(E_3	H_1)P(H_1)\times P(E_3	H_2)P(H_2)\times P(E_3	H_3)P(H_3)\$

- \$=0.6\times 0.4+0.7\times 0.35+0.9\times 0.25=0.2838\$

3.3 Naïve Bayes Classifier

3.3.1 Maximum A Posteriori

- $egin{aligned} ullet & H_{conclusion} = argmax_{h \in H} P(h|E) \ & ullet & = argmax_{h \in H} rac{P(E|h)P(h)}{P(E)} \ & ullet & = argmax_{h \in H} P(E|h)P(h) \end{aligned}$
- Omit the P(E) since it's constant, which is independent from the hypothesis.

3.3.2 Naïve Bayes Estimation

- Given:
 - A conjunctive test sample: x_1, x_2, \ldots, x_n

$$\begin{array}{l} \bullet \ \ c_{MAP} = argmax_{c_{j} \in C} P(c_{j}|x_{1},x_{2},\ldots x_{n}) \\ \bullet \ \ = argmax_{c_{j} \in C} \frac{P(x_{1},x_{2},\ldots ,x_{n}|c_{j})P(c_{j})}{P(x_{1},x_{2},\ldots ,x_{n})} \\ \bullet \ \ = argmax_{c_{j} \in C} P(x_{1},x_{2},\ldots ,x_{n}|c_{j})P(c_{j}) \\ \bullet \ \ = argmax_{c_{j} \in C} [P(x_{1}|c_{j}) \times P(x_{2}|c_{j}) \times \ldots \times P(x_{n}|c_{j})] \times P(c_{j}) \\ \bullet \ \ = argmax_{c_{j} \in C} P(c_{j}) \times \prod_{k=1}^{n} P(x_{k}|c_{j}) \end{array}$$

Example

Day	Outlook	Temp	Humitity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes

Day	Outlook	Temp	Humitity	Wind	Play Tennis
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Known: Outlook=sunny, Temp=cool, Humidity=high, Wind=strong.

Want: Play tennis or not?

Do:

 $\bullet MAP(Yes|sunny,cool,high,strong)$

ullet = P(sunny, cool, high, strong|Yes) imes P(Yes)

ullet = P(sunny|Yes) imes P(cool|Yes) imes P(high|Yes) imes P(strong|Yes) imes P(Yes)

$$\bullet = \left[\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9}\right] \times \frac{9}{14}$$

 $\bullet = 0.005291005291$

 $\bullet \ \ MAP(NO|sunny,cool,high,strong) \\$

ullet = P(sunny, cool, high, strong|No) imes P(No)

ullet = P(sunny|No) imes P(cool|No) imes P(high|No) imes P(strong|No) imes P(No)

$$\bullet = \left[\frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5}\right] \times \frac{5}{14}$$

 $\bullet = 0.02057142857$

3.2.3 Add-1 Smoothing

Initially, we have:

$$c_{target} = argmax_{c_j \in C}[P(c_j) \prod_{i=1}^n P(x_i|c_j)]$$

We could observe that:

$$P(x_i|c_j) = rac{\#(x \in c_j, x = x_i)}{\#(x \in c_j)} = rac{n_c}{n}$$

where the number of x that's in class c_i could be 0, yielding $P(x_i|c_i)$ to be 0.

What's worse, if $P(x_i|c_{j_1})$ becomes 0 for j_1 , even if $P(x_i|c_{j_2})$ is very large for j_2 , the entire $MAP = P(c_j) \prod_{i=1}^n P(x_i|c_j)$ would be still cast to 0.

Resolution: Add-1 smoothing.

$$\begin{array}{l} \bullet \ \ \mathsf{Prior} \colon P(c_j) = \frac{(\#.\, c \in C \land c = c_j) + m_{prior} \times p_{prior}}{(\#.\, c \in C) + m_{prior}}, \, \mathsf{where} \,\, m \in \mathbb{R}^+ \,\, \mathsf{and} \,\, p \in [0,1] \\ \bullet \ \ \mathsf{Evidence} \colon P(x_i | c_j) = \frac{(\#.\, x_i \in c_j) + m_{evid} \times p_{evid}}{(\#.\, c_j) + m_{evid}} \end{array}$$

Find Evidence:
$$P(x_i|c_j) = rac{(\#.\,x_i \in c_j) + m_{evid} imes p_{evid}}{(\#.\,c_j) + m_{evid}}$$

3.2.4 Continuous x

Observations may be continuous. Use Gaussian Distribution instead.

$$P(x_i|c_j) = rac{1}{\sigma_{ik}\sqrt{2\pi}}e^{rac{-(x_i-\mu_{ik})^2}{2\sigma_{ik}^2}} = Gaussian(x_i,\mu_{ik},\sigma_{ik})$$

That is, for a specific class c_j , extract all the values $x_i \in c_j$ and form a normal distribution. This determines two variables:

σ, the standard deviation

•
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

• μ , the mean/expectation

-
$$\mu = \frac{1}{n} \sum_{i=1}^n x_i$$

After the two variables are set, the probability $P(x_i|c_i)$ can be thus calculated.