

ALGEBRA Chapter 05

Grado de un polinomio

-Sabias que

GRADO DE UN POLINOMIO

Es la característica de una expresión algebraica racional entera (polinomio) el cual viene dado por los exponentes que afectan a sus variables.

PARA UN MONOMIO:

$$M(x; y; z) = 3x^{2}y^{5}z^{4}$$

1. Grado Relativo (GR):

Es el exponente de la variable indicada.

$$GR(x) = 2$$

$$GR(y) = 5$$

$$GR(z)=4$$

2. Grado Absoluto (GA):

Es la suma de exponentes de las variables indicadas.

$$G.A = 2 + 5 + 4 = 11$$

PARA UN POLINOMIO DE 2 O MÁS TÉRMINOS:

1. Grado Relativo (GR):

Es el mayor exponente de la variable indicada.

$$P(x; y) = 3m^4x^8y^5 - 7x^5y^9 + 4x^{12}y^4z^6$$

$$GR(x) = 12$$

$$GR(y) = 9$$

2. Grado Absoluto (GA):

Es la mayor suma de exponentes de las variables indicadas, obtenida en uno de sus términos.

$$P(x;y) = 3m^{4}x^{8}y^{5} - 7x^{5}y^{9} + 4x^{12}y^{4}z^{6}$$
13 14 16

$$GA = 16$$

PROPIEDADES DE LOS GRADOS EN OPERACIONES ALGEBRAICAS:

1. Adición y Sustracción:

Dado dos polinomios P y Q, donde:

$$Grado(P + Q) = m$$

$$Grado(P - Q) = m$$

Ejm.:

Dado dos polinomios:

$$P(x) = 2x^4 - 5x^{12} + 3$$
 \longrightarrow $GA = 12$

$$Q(x) = 4x^9 + 9x^4 - 8$$
 \longrightarrow $GA = 9$

$$Grado(P + Q) = 12$$

$$Grado(P - Q) = 12$$

2. Multiplicación y División:

Dado dos polinomios P y Q, donde:..

$$Grado(P) = m$$
 $Grado(Q) = n$

$$Grado(Q) = n$$

$$Grado(P \cdot Q) = m + n$$

$$Grado(P + Q) = m - n$$
, Donde: $m \ge n$

Ejm.:

Dado dos polinomios:

$$P(x) = 2x^4 - 5x^{19} + 3 \longrightarrow GA = 19$$

$$Q(x) = 4x^{12} + 9x^4 - 8$$
 $GA = 12$

$$Grado(P.Q) = 19 + 12 = 31$$

$$Grado(P + Q) = 19 - 12 = 7$$

3. Potenciación y Radicación:

Dado el polinomio P y n un número natural.

$$Grado(P) = m$$

$$Grado(P^n) = m \cdot n$$

$$Grado(\sqrt[n]{P}) = m + n, Donde: n \ge 2$$

Ejm.:

Dado el polinomio:

$$P(x) = 2x^4 - 5x^{24} + 3 \longrightarrow GA = 24$$

Grado(
$$P^3$$
) = 24.3 = 72

Grado(
$$\sqrt[4]{P}$$
) = 24 ÷ 4 = 6

Se tiene el monomio:

$$M(x,y) = 7x^{2a-4}y^{b-3}z^{4+b}$$

de
$$GR(x) = 4$$
 y $GR(y) = 2$.

Calcule a + b.

Resolución:

$$M(x, y) = 7x^{2a-4}y^{b-3}z^{4+b}$$

Evaluamos el exponente de x:

Por dato:
$$GR(x) = 4$$

$$2a - 4 = 4$$
Además: $GR(x) = 2a - 4$

$$a = 4$$

Evaluamos el exponente de y:

Por dato:
$$GR(y) = 2$$

Además: $GR(y) = b - 3$

$$b - 3 = 2$$

$$b = 5$$

Respuesta: a + b = 9

Sea GR(x) = 10 y GR(y) = 8, además

$$M(x,y) = (a+b)x^{a+2}y^{b-2}$$

Indique su coeficiente.

Resolución:

$$M(x,y) = (a+b)x^{a+2}y^{b-2}$$

Evaluamos el exponente de x:

Por dato:
$$GR(x) = 10$$

Por dato:
$$GR(x) = 10$$
Además: $GR(x) = a + 2$

$$a + 2 = 10$$

Evaluamos el exponente de y:

Por dato:
$$GR(y) = 8$$

Por dato:
$$GR(y) = 8$$
Además: $GR(y) = b - 2$

$$b-2=8$$

$$b=10$$

Calculando el coeficiente:

$$Coef[M(x,y)] = a + b$$

Respuesta = 18

01

Problema 3

Si
$$GR(x)=12$$
 y $GR(y)=9$, además
$$P(x,y)=4x^{a+6}y^{b+2}+2x^{a+7}y^{b+5}+3x^{a+4}y^{b+1}$$
 determine el grado absoluto.

Resolución:

$$a + b + 12$$

$$a + b + 12$$

$$a + b + 5$$

$$P(x, y) = 4x^{a+6}y^{b+2} + 2x^{a+7}y^{b+5} + 3x^{a+4}y^{b+1}$$

Evaluamos los exponentes de x:

Por dato:
$$GR(x) = 12$$

$$a + 7 = 1$$
Además: $GR(x) = a + 7$

$$a = 5$$

Evaluamos los exponentes de y:

Por dato:
$$GR(y) = 9$$

$$b + 5 = 9$$
Además: $GR(y) = b + 5$

$$b = 4$$

Calculando el grado absoluto:

$$GA = a + b + 12$$

Respuesta = 21

Dado el polinomio $P(x, y) = 2mx^{m+1}y^{n+2} + 2nx^{m+3}y^{n+3} + 3x^{m-1}y^{n+3}$

De grado absoluto igual a 10. Calcule la suma de sus coeficientes.

Resolución:

$$P(x;y) = 2mx^{m+1}y^{n+2} + 2nx^{m+3}y^{n+3} + 3x^{m-1}y^{n+3}$$

Por dato: GA = 10

Además: GA = m + n + 6

$$m+n+6=10$$

$$m+n=4$$

Calculando la suma de coeficientes:

$$\sum Coef = 2m + 2n + 3$$

$$\sum Coef = 2(m+n) + 3$$

$$\sum Coef = 2(4) + 3$$

$$Coef = 2(4) + 3$$

$$\therefore \sum Coef = 11$$

01

Problema 5

Si el polinomio

$$P(x) = (a-3)x^4 + (b-2)x^3 + ax^2 + bx + 7$$

es de segundo grado, la suma de sus coeficientes aumentada en 8 representa la mesada de Luis. ¿Cuál es la mesada de Luis?

Resolución:

$$P(x) = (a-3)x^4 + (b-2)x^3 + ax^2 + bx + 7$$

Por dato sabemos que: GA[P(x)] = 2

$$P(x) = ax^2 + bx + 7$$

$$P(x) = 3x^2 + 2x + 7$$

 \therefore La mesada de Luis es: 12 + 8 = 20

01

Problema 6

Tito participa en una lotería cuyo premio esta representado por 12(mn), si al desarrollar el monomio $H(x; y) = 6(m-1)x^{n+3}y^{3m}$, sabiendo que el GA es 15 y el GRy es igual al coeficiente, se puede encontrar los valores de m y n, halle el valor (en soles) del premio que gano Tito al jugar la lotería.

Resolución:

$$H(x; y) = 6(m-1)x^{n+3}y^{3m}$$

$$m=2$$

remplazando en [1]
$$\begin{cases} n+3(2)=12 \\ n=6 \end{cases}$$

 \therefore Respuesta = 144

Martin le pregunta a Teresa cuantas iglesias visito en su viaje a Ayacucho, a lo que ella le responde, que el grado absoluto del polinomio homogéneo $P(x;y) = 5x^{a+b}y^b + x^{a+6}y^{b+4}$, donde GRX es menor que GRY en dos unidades representa la cantidad de iglesias que visite en mi viaje , si en total hay 37 iglesias en Ayacucho, ¿Cuántas iglesias no visito Teresa en su viaje?

Resolución:

$$P(x;y) = 5x^{a+b}y^b + x^{a+6}y^{b+4}$$

∴ Respuesta: 15