ABSTRACT

ALGEBRA

THIRD EDITION

DAVID S. DUMMIT

RICHARD M. FOOTE

Dedicated to our families
especially
Janice, Evan, and Krysta
and
Zsuzsanna, Peter, Karoline, and Alexandra

Frequently Used Notation

$f^{-1}(A)$	the inverse image or preimage of A under f
$a \mid b$	a divides b
(a,b)	the greatest common divisor of a, b
	also the ideal generated by a, b
A , x	the order of the set A , the order of the element x
\mathbb{Z},\mathbb{Z}^+	the integers, the positive integers
\mathbb{Q}, \mathbb{Q}^+	the rational numbers, the positive rational numbers
\mathbb{R}, \mathbb{R}^+	the real numbers, the positive real numbers
$\mathbb{C},\mathbb{C}^{\times}$	the complex numbers, the nonzero complex numbers
$\mathbb{Z}/n\mathbb{Z}$	the integers modulo <i>n</i>
$(\mathbb{Z}/n\mathbb{Z})^{\times}$	the (multiplicative group of) invertible integers modulo n
$A \times B$	the direct or Cartesian product of A and B
$H \leq G$	H is a subgroup of G
Z_n	the cyclic group of order n
D_{2n}	the dihedral group of order 2n
S_n, S_{Ω}	the symmetric group on n letters, and on the set Ω
A_n	the alternating group on <i>n</i> letters
Q_8	the quaternion group of order 8
V_4	the Klein 4-group
\mathbb{F}_{N}	the finite field of N elements
$GL_n(F), GL(V)$	the general linear groups
$SL_n(F)$	the special linear group
$A \cong B$	A is isomorphic to B
$C_G(A)$, $N_G(A)$	the centralizer, and normalizer in G of A
Z(G)	the center of the group G
G_s	the stabilizer in the group G of s
$\langle A \rangle, \langle x \rangle$	the group generated by the set A , and by the element x
$G = \langle \ldots \ldots \rangle$	generators and relations (a presentation) for G
$\ker \varphi$, im φ	the kernel, and the image of the homomorphism φ
$N \leq G$	N is a normal subgroup of G
gH, Hg	the left coset, and right coset of H with coset representative g
G:H	the index of the subgroup H in the group G
Aut(G)	the automorphism group of the group G
$Syl_p(G)$	the set of Sylow p -subgroups of G
n_p	the number of Sylow p -subgroups of G
[x, y]	the commutator of x , y
$H \rtimes K$	the semidirect product of H and K
H	the real Hamilton Quaternions
R×	the multiplicative group of units of the ring R
$R[x], R[x_1, \ldots, x_n]$	polynomials in x , and in x_1, \ldots, x_n with coefficients in R
RG, FG	the group ring of the group G over the ring R , and over the field F
\mathcal{O}_K	the ring of integers in the number field K
$\lim_{\infty} A_i, \lim_{\infty} A_i$	the direct, and the inverse limit of the family of groups A_i
$\mathbb{Z}_p, \mathbb{Q}_p$	the p -adic integers, and the p -adic rationals
$A \oplus B$	the direct sum of A and B

```
the leading term of the polynomial f, the ideal of leading terms
LT(f), LT(I)
                                the n \times n, and the n \times m matrices over R
M_{n}(R), M_{n\times m}(R)
M_{\mathcal{B}}^{\mathcal{E}}(\varphi)
                                the matrix of the linear transformation \varphi
                                   with respect to bases {\cal B} (domain) and {\cal E} (range)
tr(A)
                                the trace of the matrix A
\operatorname{Hom}_R(A,B)
                                the R-module homomorphisms from A to B
End(M)
                                the endomorphism ring of the module M
                                the torsion submodule of M
Tor(M)
                                the annihilator of the module M
Ann(M)
M \otimes_R N
\mathcal{T}^k(M), \mathcal{T}(M)
\mathcal{S}^k(M), \mathcal{S}(M)
                                the tensor product of modules M and N over R
                                the k^{\text{th}} tensor power, and the tensor algebra of M the k^{\text{th}} symmetric power, and the symmetric algebra of M the k^{\text{th}} exterior power, and the exterior algebra of M
\bigwedge^k(M), \bigwedge(M)
                                the minimal, and characteristic polynomial of T
m_T(x), c_T(x)
                                the characteristic of the field F
ch(F)
K/F
                                the field K is an extension of the field F
                                the degree of the field extension K/F
[K:F]
F(\alpha), F(\alpha, \beta), etc.
                                the field generated over F by \alpha or \alpha, \beta, etc.
                                the minimal polynomal of \alpha over the field F
m_{\alpha,F}(x)
                                the group of automorphisms of a field K
Aut(K)
                                the group of automorphisms of a field K fixing the field F
Aut(K/F)
                                the Galois group of the extension K/F
Gal(K/F)
                                affine n-space
\mathbb{A}^n
k[\mathbb{A}^n], k[V]
                                the coordinate ring of \mathbb{A}^n, and of the affine algebraic set V
\mathcal{Z}(I), \mathcal{Z}(f)
                                the locus or zero set of I, the locus of an element f
\mathcal{I}(A)
                                the ideal of functions that vanish on A
rad I
                                the radical of the ideal 1
                                the associated primes for the module M
Ass_R(M)
Supp(M)
                                the support of the module M
D^{-1}R
                                the ring of fractions (localization) of R with respect to D
                                the localization of R at the prime ideal P, and at the element f
R_P, R_f
                                the local ring, and the tangent space of the variety V at the point v
\mathcal{O}_{v,V}, \mathbb{T}_{v,V}
                                the unique maximal ideal of \mathcal{O}_{v,V}
m_{v,V}
                                the prime spectrum, and the maximal spectrum of R
Spec R, mSpec R
                                the structure sheaf of X = \operatorname{Spec} R
\mathcal{O}_X
\mathcal{O}(U)
                                the ring of sections on an open set U in Spec R
\mathcal{O}_P
                                the stalk of the structure sheaf at P
                                the Jacobson radical of the ring R
Jac R
                                the n^{th} cohomology group derived from Hom_R
\operatorname{Ext}_{R}^{n}(A,B)
                                the n^{\text{th}} cohomology group derived from the tensor product over R
\operatorname{Tor}_n^R(A,B)
A^{G}
                                the fixed points of G acting on the G-module A
                                the n^{th} cohomology group of G with coefficients in A
H^n(G,A)
                                the restriction, and corestriction maps on cohomology
Res, Cor
Stab(1 \le A \le G)
                                the stability group of the series 1 \le A \le G
                                the norm of the character \theta
||\theta||
\operatorname{Ind}_H^G(\psi)
                                the character of the representation \psi induced from H to G
```

ABSTRACT ALGEBRA Third Edition

David S. Dummit *University of Vermont*

Richard M. Foote *University of Vermont*

ASSOCIATE PUBLISHER Laurie Rosatone

ASSISTANT EDITOR Jennifer Battista

FREELANCE DEVELOPMENTAL EDITOR Anne Scanlan-Rohrer

SENIOR MARKETING MANAGER Julie Z. Lindstrom

SENIOR PRODUCTION EDITOR Ken Santor

COVER DESIGNER Michael Jung

This book was typeset using the Y&Y TeX System with DVIWindo. The text was set in Times Roman using *MathTime* from Y&Y, Inc. Titles were set in OceanSans. This book was printed by Malloy Inc. and the cover was printed by Phoenix Color Corporation.

This book is printed on acid-free paper.

Copyright © 2004 John Wiley and Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Roscwood Drive, Danvers, MA 01923, (508) 750-8400. fax (508) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)748-6011, fax (201)748-6008, E-mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

ISBN 0-471-43334-9 WIE 0-471-45234-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Preliminaries 1		
0.1	Basics 1	
0.2	Properties of the Integers 4	
0.3	$\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo n 8	
Part I – GROUP THEORY 13		
Chapter 1	Introduction to Groups 16	
1.1	Basic Axioms and Examples 16	
1.2	Dihedral Groups 23	
1.3	Symmetric Groups 29	
1.4	Matrix Groups 34	
1.5	The Quaternion Group 36	
1.6	Homomorphisms and Isomorphisms 36	
1.7	Group Actions 41	
Chapter 2	Subgroups 46	
2.1	Definition and Examples 46	
2.2	Centralizers and Normalizers, Stabilizers and Kernels 49	
2.3	Cyclic Groups and Cyclic Subgroups 54	
2.4	Subgroups Generated by Subsets of a Group 61	
2.5	The Lattice of Subgroups of a Group 66	

Preface xi

Contents

_	
3.1	Definitions and Examples 73
3.2	More on Cosets and Lagrange's Theorem 89
3.3	The Isomorphism Theorems 97
3.4	•
3.5	Transpositions and the Alternating Group 106
Chapter 4	Group Actions 112
4.1	Group Actions and Permutation Representations 112
4.2	Groups Acting on Themselves by Left Multiplication—Cayley's Theorem 118
4.3	Groups Acting on Themselves by Conjugation—The Class Equation 122
4.4	Automorphisms 133
4.5	The Sylow Theorems 139
4.6	The Simplicity of A _n 149
Chapter 5	Direct and Semidirect Products and Abelian Groups 152
5.1	Direct Products 152
5.2	The Fundamental Theorem of Finitely Generated Abelian Groups 158
5.3	Table of Groups of Small Order 167
5.4	
5.5	Semidirect Products 175
Chapter 6	Further Topics in Group Theory 188
6.1	<i>p</i> -groups, Nilpotent Groups, and Solvable Groups 188
6.2	
6.3	A Word on Free Groups 215
	Part II – RING THEORY 222
Chapter 7	Introduction to Rings 223
7.1	Basic Definitions and Examples 223
7.2	Examples: Polynomial Rings, Matrix Rings, and Group Rings 233
7.3	Ring Homomorphisms an Quotient Rings 239
7.4	
7.5	· ·
7.6	The Chinese Remainder Theorem 265

Chapter 3 Quotient Groups and Homomorphisms 73

vi Contents

	Unique Factorization Domains 270
8.1	Euclidean Domains 270
8.2	Principal Ideal Domains (P.I.D.s) 279
8.3	Unique Factorization Domains (U.F.D.s) 283
	. ,
Chapter 9	Polynomial Rings 295
9.1	Definitions and Basic Properties 295
9.2	Polynomial Rings over Fields I 299
9.3	Polynomial Rings that are Unique Factorization Domains 303
9.4	Irreducibility Criteria 307
9.5	Polynomial Rings over Fields II 313
9.6	Polynomials in Several Variables over a Field and Gröbner
	Bases 315
F	Part III – MODULES AND VECTOR SPACES 336
Chapter 10	Introduction to Module Theory 337
•	·
10.1	•
10.2 10.3	·
	351 ·
10.4	
10.5	Exact Sequences—Projective, Injective, and Flat Modules 378
Chapter 11	Vector Spaces 408
•	·
11.1	Definitions and Basic Theory 408
11.2	The Matrix of a Linear Transformation 415
11.3	Dual Vector Spaces 431
11.4	Determinants 133
11.5	Tensor Algebras, Symmetric and Exterior Algebras 441
Chapter 12	Modules over Principal Ideal Domains 456
12.1	The Basic Theory 458
12.2	
12.3	

Chapter 8 Euclidean Domains, Principal Ideal Domains and

Chapter 13	Field Theory 510
13.1 13.2 13.3 13.4 13.5 13.6	Algebraic Extensions 520 Classical Straightedge and Compass Constructions 531
Chapter 14	Galois Theory 558
14.1	Basic Definitions 558
14.2	The Fundamental Theorem of Galois Theory 567
14.3	Finite Fields 585
14.4	Composite Extensions and Simple Extensions 591
14.5	Cyclotomic Extensions and Abelian Extensions over Q 596
14.6	Galois Groups of Polynomials 606
14.7	Solvable and Radical Extensions: Insolvability of the Quintie 625
14.8	Computation of Galois Groups over Q 640
14.9	Transcendental Extensions, Inseparable Extensions, Infinite Galois Groups 645
Part '	V – AN INTRODUCTION TO COMMUTATIVE RINGS, ALGEBRAIC GEOMETRY, AND HOMOLOGICAL ALGEBRA 655
Chapter 15	Commutative Rings and Algebraic Geometry 656
15.1	Noetherian Rings and Affine Algebraic Sets 656
15.2	Radicals and Affine Varieties 673
15.3	Integral Extensions and Hilbert's Nullstellensatz 691
15.4	Localization 706
15.5	The Prime Spectrum of a Ring 731
Chapter 16	Artinian Rings, Discrete Valuation Rings, and Dedekind Domains 750
16.1	Artinian Rings 750
16.2	Discrete Valuation Rings 755

viii Contents

16.3 Dedekind Domains 764