Simulation and Modeling of Dynamic Systems Task 2

On-line estimation of unknown parameters Slope Method-Lyapunov Method

The purpose of the laboratory exercise is the online estimation of unknown parameters with the gradient method and the Lyapunov method.

Topic 1

Consider the system:

$$x = -ax + bu, x(0) = 0$$
 (1)

Where x is the state of the system, u is the input and a, b are fixed but unknown parameters that we want to estimate online.

- a) Design a real-time estimator of the unknown parameters based on the gradient method and simulate its operation. Assume that the input to the system is u = 3. Plot x, x° and the difference of these two, and the estimates a° , b° of a, b respectively.
- b) Design a real-time estimator of the unknown parameters based on the gradient method and simulate its operation. Consider the system input to be u = 3cos(2t). Plot x, x^ and the difference of these two, and the estimates a^, b^ of a, b respectively.

What differences do you notice between the two cases? Assume for your experiments that a = 1.5 and b = 2.

Topic 2

For system (1) and with input $u = 3\cos(2t)$ design a real-time estimator of the unknown parameters i) parallel structure, ii) mixed structure structure, based on the Lyapu nov method and simulate its operation when the state x of the system is measured with noise η (t) = η 0 sin(2 π ft) with η 0 = 0.25 and f = 30. F χ 0 and the difference between these two, as well as the estimates a $\hat{\chi}$ 0 of a, b respectively.

Compare the two methods. What do you notice as $\eta 0$ increases or the frequency f changes? Assume for your experiments that a = 1.5 and b = 2.

1