4. Transition Path

Adv. Macro: Heterogenous Agent Models

Nicolai Waldstrøm

2024

• Last time: Stationary equilibrium (steady states)

- Last time: Stationary equilibrium (steady states)
- **Today:** Transition path (dynamic responses away from steady state)

- Last time: Stationary equilibrium (steady states)
- **Today:** Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model

- Last time: Stationary equilibrium (steady states)
- **Today:** Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Code:
 - 1. Based on the **GEModelTools** package
 - Example from GEModelToolsNotebooks/HANC (except stuff on linearized solution and simulation)

- Last time: Stationary equilibrium (steady states)
- Today: Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Code:
 - 1. Based on the **GEModelTools** package
 - Example from GEModelToolsNotebooks/HANC (except stuff on linearized solution and simulation)

Literature:

- Auclert et. al. (2021), »Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models«
- Documentation for GEModelTools (except stuff on *linearized solution* and *simulation*)
- 3. Kirkby (2017)

Example I

- What do we mean by transition path?
- Permanent shock to labor supply (think increase in retirement age)
 in the macroeconomic model of the Ministry of Finance:

 Note: Permanent shock, so transition path between two different steady states

Example II

 Temporary shock to public spending (i.e. fiscal stimulus during recessions)

Note: Temporary shock, so model returns to the same steady state

Standard Ramsey model

Ramsey: Summary

Simplified form:

$$u'(C_t^{hh}) = \beta(1 + F_K(K_t, 1) - \delta)u'(C_{t+1}^{hh})$$
$$K_t = (1 - \delta)K_{t-1} + F(K_{t-1}, 1) - C_t^{hh}$$

- Production function: $\Gamma_t K_t^{\alpha} L_t^{1-\alpha}$
- Utility function: $\frac{\left(C_t^{hh}\right)^{1-\sigma}}{1-\sigma}$
- Steady state:

$$egin{aligned} \mathcal{K}_{ss} &= \left(rac{\left(rac{1}{eta} - 1 + \delta
ight)}{\Gamma_{ss}lpha}
ight)^{rac{1}{lpha - 1}} \ \mathcal{C}_{ss}^{hh} &= (1 - \delta)\mathcal{K}_{ss} + \Gamma_{ss}\mathcal{K}_{ss}^{lpha} - \mathcal{K}_{ss} \end{aligned}$$

Ramsey: As an equation system

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_t^{\alpha - 1} L_t^{1 - \alpha} \\ w_t - (1 - \alpha) \Gamma_t K_t^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} A_t^{hh} - ((1 + r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1 + r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix}$$

Remember: Perfect foresight w.r.t aggregate variables **Unknowns**: $\{r_t^K, w_t, L_t, K_t, r_t, A_t, C_t^{hh}, A_t^{hh}\}$ for $\forall t \in \{0, 1, \dots\}$

Before solving the dynamic Ramsey model, consider a simpler example

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x)=0$$

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x) = 0$$

 How to find x? First-order Taylor approximation around current guess xⁱ:

$$f(x) \approx f(x^{i}) + f'(x^{i})(x - x^{i})$$

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x) = 0$$

 How to find x? First-order Taylor approximation around current guess xⁱ:

$$f(x) \approx f(x^{i}) + f'(x^{i})(x - x^{i})$$

• Set f(x) = 0 and solve for x to get:

$$x = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$$

Newton's method: Given initial guess x_0 update guess for x from i to i+1 as:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

• until $\left| f\left(x^{i}\right) \right| < \epsilon$

Newton's method: Given initial guess x_0 update guess for x from i to i+1 as:

$$x^{i+1} = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?

Newton's method: Given initial guess x_0 update guess for x from i to i+1 as:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?
- Use numerical approximation:

$$f'(x^i) \approx \frac{f(x^i + h) - f(x^i)}{h}$$

For small h.

Newton's method: Given initial guess x_0 update guess for x from i to i + 1 as:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?
- Use numerical approximation:

$$f'(x^i) \approx \frac{f(x^i + h) - f(x^i)}{h}$$

- For small h.
- How well does it work?
 - If f(x) is linear this update solves f(x) = 0 in 1 iteration
 - If f (x) is non-linear we typically need more iterations, but works well if initial guess is within basis of attraction

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2), f_2(x_1,x_2)]' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} = (x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2), f_2(x_1,x_2)]' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} = (x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1^i} & \frac{\partial f_1}{\partial x_2^i} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2), f_2(x_1,x_2)]' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} = (x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1^i} & \frac{\partial f_1}{\partial x_2^i} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

• Can calculate this jacobian in the same way as f'(x) in previous example, but need to so for every element in x

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2), f_2(x_1,x_2)]' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} = (x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1^i} & \frac{\partial f_1}{\partial x_2^i} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

- Can calculate this jacobian in the same way as f'(x) in previous example, but need to so for every element in x
- Go through code

• Newton's method updates Jacobian **J** in **every iteration**

- Newton's method updates Jacobian J in every iteration
- If **J** is expensive to calculate, this is a serious bottleneck

- Newton's method updates Jacobian J in every iteration
- If **J** is expensive to calculate, this is a serious bottleneck
- Broyden's method solves this issue by only calculating J around some initial point.

- Newton's method updates Jacobian J in every iteration
- If J is expensive to calculate, this is a serious bottleneck
- Broyden's method solves this issue by only calculating J around some initial point.
- Then apply following (linear) update of $f'(x^{i+1})$ at every iteration i:

$$f'(x^{i+1}) = f'(x^i) + \frac{[f(x^{i+1}) - f(x^i)] - f'(x^i)(x^{i+1} - x^i)}{x^{i+1} - x^i}$$

- 1. Guess \mathbf{x}^0 and set i=0
- 2. Calculate the Jacobian around initial point J_0
- 3. Calculate $\mathbf{f}^i = \mathbf{f}(\mathbf{x}^i)$.
- 4. Stop if $|\mathbf{f}^i|$ below tolerance ϵ
- 5. Calculate Jacobian by

$$\mathbf{J}^{i} = \begin{cases} \mathbf{J_{0}} & \text{if } i = 0\\ \mathbf{J}^{i-1} + \frac{(\mathbf{f}^{i} - \mathbf{f}^{i-1}) - \mathbf{J}^{i-1}(\mathbf{x}^{i} - \mathbf{x}^{i-1})}{|\mathbf{x}^{i} - \mathbf{x}^{i-1}|_{2}} (\mathbf{x}^{i} - \mathbf{x}^{i-1})^{i} & \text{if } i > 0 \end{cases}$$

- 6. Update guess by $\mathbf{x}^{i+1} = \mathbf{x}^i \left(\mathbf{J}^i\right)^{-1} \mathbf{f}^i$
- 7. Increment *i* and return to step 3
- Go through code

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_t^{\alpha - 1} L_t^{1 - \alpha} \\ w_t - (1 - \alpha) \Gamma_t K_t^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1 + r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1 + r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

2 issues:

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_t^{\alpha - 1} L_t^{1 - \alpha} \\ w_t - (1 - \alpha) \Gamma_t K_t^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1 + r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1 + r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

- 2 issues:
 - Many unknowns (8 eqs per period)

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_t^{\alpha - 1} L_t^{1 - \alpha} \\ w_t - (1 - \alpha) \Gamma_t K_t^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1 + r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1 + r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

- 2 issues:
 - Many unknowns (8 eqs per period)
 - In fact, infinitely many since time is infinite, $T o \infty$

Truncated Ramsey, reduced vector form

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{L},\boldsymbol{\Gamma},K_{-1}) &= \begin{bmatrix} A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0,1,\ldots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_0,X_1,\ldots,X_{T-1}), \ A_{-1}^{hh} = K_{-1} \ \text{and}$
$$r_t^K &= \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1} \\ w_t &= (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$$

$$A_t &= K_t \\ r_t &= r_t^K - \delta$$

$$C_t^{hh} &= (\beta(1+r_{t+1}))^{-\sigma} C_{t+1}^{hh} \ (\text{backwards})$$

$$L_t^{hh} &= 1$$

$$A_t^{hh} &= (1+r_t)A_t^{hh} + w_t L_t^{hh} - C_t^{hh} \ (\text{forwards})$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

Further reduced

$$\boldsymbol{H}(\boldsymbol{K},\boldsymbol{\Gamma},K_{-1}) = \begin{bmatrix} \boldsymbol{A} - \boldsymbol{A}^{hh} \end{bmatrix} = \boldsymbol{0}$$
 where $\boldsymbol{X} = (X_0,X_1,\ldots,X_{T-1}),~A_{-1}^{hh} = K_{-1}$ and
$$L_t = L_t^{hh} = 1$$

$$r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$$

$$w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$$

$$A_t = K_t$$

$$r_t = r_t^K - \delta$$

$$C_t^{hh} = (\beta(1+r_{t+1}))^{-\sigma} ~C_{t+1}^{hh} ~(\text{backwards})$$

$$A_t^{hh} = (1+r_t)A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh} ~(\text{forwards})$$
 for $\forall t \in \{0,1,\ldots,T-1\}$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

 Powerfull since it also applies non-linear, forward-looking and backwards-looking eqs:

$$C_t = a + b_0 Y_t + b_1 \log Y_{t-4} + b_2 Y_{t+4}^2$$

$$\Leftrightarrow \mathbf{C} = g(\mathbf{Y})$$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

 Powerfull since it also applies non-linear, forward-looking and backwards-looking eqs:

$$C_t = a + b_0 Y_t + b_1 \log Y_{t-4} + b_2 Y_{t+4}^2$$

$$\Leftrightarrow \mathbf{C} = g(\mathbf{Y})$$

- As long as we have the sequence Y we can calculate C
 - Will leverage this later when working with the HA model

Solution in sequence space

- Truncation: T = 200 (transition path should have converged to ss by then)
- **Jacobian**: Find **H**_K by numerical differentiation

$$m{H_K} = \left[egin{array}{ccc} rac{\partial (A_0 - A_0^{hh})}{\partial K_0} & rac{\partial (A_0 - A_0^{hh})}{\partial K_1} & \cdots \\ rac{\partial (A_1 - A_1^{hh})}{\partial K_0} & \ddots & \ddots \\ dots & \ddots & \ddots \end{array}
ight]$$

- Transition path: Given Γ and K_{-1} solve $H(K, \Gamma, K_{-1})$ with non-linear equation system solver (e.g. broyden)
- Notebook: Ramsey.ipynb

Example 1: Initially low capital

Initially away from steady state: $K_{-1} = 0.75 K_{ss}$

Example 2: Technology shock

Technology shock: $\Gamma_t=0.01\times\Gamma_{ss}\times0.95^t$ (i.e AR(1) with $\rho=0.95$) (exogenous, deterministic)

Terminology: MIT-shock

Transition path with HA

Equation system

The model can be written as an equation system

$$\begin{bmatrix} r_t^K - F_K(K_{t-1}, L_t) \\ w_t - F_L(K_{t-1}, L_t) \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ \mathbf{D}_t - \Pi_z \underline{\mathbf{D}}_t \\ \underline{\mathbf{D}}_{t+1} - \Lambda_t \mathbf{D}_t \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } \underline{\mathbf{D}}_0 \end{bmatrix} = \mathbf{0}$$

where $\{\Gamma_t\}_{t>0}$ is a given technology path and $\mathcal{K}_{-1}=\int a_{t-1}d\underline{ extbf{\emph{D}}}_0$

Remember: Policies and choice transitions depend on prices

- 1. Policy function: $x_t^* = x^* \left(\left\{ r_\tau, w_\tau \right\}_{\tau \geq t} \right)$ and $X_t^{hh} = \sum_i x_{it}^* D_{it} = \mathbf{x}_t^{*\prime} \mathbf{D}_t$
- 2. Choice transition: $\Lambda_t = \Lambda\left(\left\{r_\tau, w_\tau\right\}_{\tau \geq t}\right)$

Transition path - close to verbal definition

```
For a given \underline{\textbf{\textit{D}}}_0 and a path \{\Gamma_t\}
```

- 1. Quantities $\{K_t\}$ and $\{L_t\}$,
- 2. prices $\{r_t\}$ and $\{w_t\}$,
- 3. the distributions $\{D_t\}$ over β_i , z_t and a_{t-1}
- 4. and the policy functions $\{a_t^*\}$, $\{\ell_t^*\}$ and $\{c_t^*\}$

are such that in all periods

- 1. Firms maximize profits (prices)
- 2. Household maximize expected utility (policy functions)
- 3. D_t is implied by simulating the household problem forwards from \underline{D}_0
- 4. Mutual fund balance sheet is satisfied
- 5. The capital market clears
- 6. The labor market clears
- 7. The goods market clears

Reduce size of equation system

- In the equation system above we have many unknowns and many equations
- Makes finding the solution with Broyden's method since Jacobian is large
 - With truncation T and N equations/unknowns J has size $(T \times N, T \times N,)$
 - ⇒ Ekspensive to calculate

Reduce size of equation system

- In the equation system above we have many unknowns and many equations
- Makes finding the solution with Broyden's method since Jacobian is large
 - With truncation T and N equations/unknowns J has size $(T \times N, T \times N,)$
 - ⇒ Ekspensive to calculate
- We can typically exploit model structure to reduce size of system
 - Did this earlier for Ramsey
 - Now more formally

Truncated, reduced vector form

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{L},\boldsymbol{\Gamma},\underline{\boldsymbol{D}}_{0}) &= \begin{bmatrix} A_{t} - A_{t}^{hh} \\ L_{t} - L_{t}^{hh} \\ \forall t \in \{0,1,\ldots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_{0},X_{1},\ldots,X_{T-1}), \ K_{-1} = \int a_{t-1}d\underline{\boldsymbol{D}}_{0} \text{ and }$
$$r_{t}^{K} &= \alpha \Gamma_{t}(K_{t-1}/L_{t})^{\alpha-1}$$

$$w_{t} &= (1-\alpha)\Gamma_{t}(K_{t-1}/L_{t})^{\alpha}$$

$$r_{t} &= r_{t}^{K} - \delta$$

$$A_{t} &= K_{t}$$

$$\boldsymbol{D}_{t} &= \Pi_{z}^{\prime}\underline{\boldsymbol{D}}_{t}$$

$$\underline{\boldsymbol{D}}_{t+1} &= \Lambda_{t}^{\prime}\boldsymbol{D}_{t}$$

$$A_{t}^{hh} &= a_{t}^{*\prime}\boldsymbol{D}_{t}$$

$$L_{t}^{hh} &= \ell_{t}^{*\prime}\boldsymbol{D}_{t}$$

$$\forall t \in \{0,1,\ldots,T-1\}$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

DAG - Directed Acyclic Graph

- Orange square: Shocks (exogenous)
- Blue square: Unknowns (endogenous)
- **Green circles:** Blocks (with variables and targets inside)

 This DAG implies: Exo. input + guess ⇒ Firm block ⇒ Mutual fund ⇒HHs ⇒ Residuals

Further reduction

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{\Gamma},\underline{\boldsymbol{D}}_{0}) &= \begin{bmatrix} A_{t} - A_{t}^{hh} \\ \forall t \in \{0,1,\ldots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_{0},X_{1},\ldots,X_{T-1}), \ K_{-1} = \int a_{t-1}d\underline{\boldsymbol{D}}_{0} \ \text{and}$
$$\begin{aligned} \boldsymbol{L}_{t} &= 1 \\ r_{t}^{K} &= \alpha \Gamma_{t}(K_{t-1}/L_{t})^{\alpha-1} \\ w_{t} &= (1-\alpha)\Gamma_{t}(K_{t-1}/L_{t})^{\alpha} \\ A_{t} &= K_{t} \\ r_{t} &= r_{t}^{K} - \delta \\ \boldsymbol{D}_{t} &= \Pi_{z}^{\prime}\underline{\boldsymbol{D}}_{t} \\ \underline{\boldsymbol{D}}_{t+1} &= \Lambda_{t}^{\prime}\boldsymbol{D}_{t} \\ A_{t}^{hh} &= a_{t}^{*\prime}\boldsymbol{D}_{t} \\ \forall t \in \{0,1,\ldots,T-1\} \end{aligned}$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

Solve with Broyden

- As with standard Ramsey model from before we have:
 - Equation system with T equations (H)
 - And T unknowns (K)
- If we can calculate the jacobian of H w.r.t K we can solve with Broyden's method as before

- How do we compute the Jacobian of the residuals **H** w.r.t unknowns **K**?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule

- How do we compute the Jacobian of the residuals H w.r.t unknowns K?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule
- Example. Represent model in block form:

$$oldsymbol{w}, oldsymbol{r}^K = Firm\left(oldsymbol{K}
ight), \quad oldsymbol{A}, oldsymbol{r} = MutFund\left(oldsymbol{K}, oldsymbol{r}^K
ight)$$
 $oldsymbol{A}^{hh} = hh\left(oldsymbol{r}, oldsymbol{w}
ight), \quad oldsymbol{A} - oldsymbol{A}^{hh} = oldsymbol{H}\left(oldsymbol{A}, oldsymbol{A}^{hh}
ight)$

- How do we compute the Jacobian of the residuals H w.r.t unknowns K?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule
- Example. Represent model in block form:

$$oldsymbol{w}, oldsymbol{r}^K = Firm\left(oldsymbol{K}\right), \quad oldsymbol{A}, oldsymbol{r} = MutFund\left(oldsymbol{K}, oldsymbol{r}^K\right)$$
 $oldsymbol{A}^{hh} = hh\left(oldsymbol{r}, oldsymbol{w}\right), \quad oldsymbol{A} - oldsymbol{A}^{hh} = oldsymbol{H}\left(oldsymbol{A}, oldsymbol{A}^{hh}\right)$

• Let $\mathcal{J}^{y,x}$ be Jacobian of y w.r.t x. Then:

$$egin{aligned} oldsymbol{H}_{oldsymbol{K}} &\equiv \mathcal{J}^{A-A^{hh},K} = \mathcal{J}^{A-A^{hh},A}\mathcal{J}^{A,K} \ &+ \mathcal{J}^{A-A^{hh},A^{hh}}\mathcal{J}^{A^{hh},r}\mathcal{J}^{r,r^k}\mathcal{J}^{r^k,K} \ &+ \mathcal{J}^{A_t-A^{hh},A^{hh}}\mathcal{J}^{A^{hh},w}\mathcal{J}^{w,K} \end{aligned}$$

- If we have individuals Jacobians, easy to compute $oldsymbol{H}_{oldsymbol{\mathcal{K}}}$
 - Also very efficient just matrix mulitiplication

- If we have individuals Jacobians, easy to compute $oldsymbol{H}_{oldsymbol{\mathcal{K}}}$
 - Also very efficient just matrix mulitiplication

- How to get individual Jacobians?
 - Some are easy: For $\mathcal{J}^{w,K}$, $\mathcal{J}^{r^k,K}$ we just have to diff. $r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$, $w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$
 - Cheap, and can often be vectorized
 - What about HH Jacobians $\mathcal{J}^{A_{hh},r}, \mathcal{J}^{A_{hh},w}$?

Bottleneck: How do we find the Jacobian?

- Naive approach: For each input i into HH block $i \in \{r, w\}$
 - For each $s \in \{0, 1, ..., T 1\}$
 - 1. Shock input i in period s by small amount Δ
 - 2. Solve household problem backwards along transition path
 - 3. Simulate households forward along transition path
 - 4. Calculate column s, row t of jacobian as $\frac{\partial \mathcal{J}_t^{Ahh,i}}{\partial i_s} = \frac{A_t^{hh} A_{ss}^{hh}}{\Delta}$ for all t

Bottleneck: We need T^2 solution steps and simulation steps for each input $\{r, w\}$!

Bottleneck: How do we find the Jacobian?

- **Naive approach:** For each input i into HH block $i \in \{r, w\}$
 - For each $s \in \{0, 1, ..., T-1\}$
 - 1. Shock input i in period s by small amount Δ
 - 2. Solve household problem backwards along transition path
 - 3. Simulate households forward along transition path
 - 4. Calculate column s, row t of jacobian as $\frac{\partial \mathcal{J}_t^{Ahh,i}}{\partial i_s} = \frac{A_t^{hh} A_{ss}^{hh}}{\Delta}$ for all t

Bottleneck: We need T^2 solution steps and simulation steps for each input $\{r, w\}$!

Solution: Fake news algorithm - only need T steps! (later today)

Summary

- Conditional on being able to compute HH jacobian efficiently we can compute transition path through following steps:
 - 1. Compute stationary state of model
 - 2. Formulate transition path as DAG
 - Reduce number of unknowns and residual equations
 - Not essential, but often good idea
 - 3. Compute Jacobian of residuals \boldsymbol{H} w.r.t unknowns \boldsymbol{K}
 - 4. Formulate shock (i.e. TFP increases by 1% for 4 years)
 - 5. Use Broyden's method to solve for transition path

Assumptons and interpretation

• Underlying assumption: No aggregate uncertainty

Assumptons and interpretation

- Underlying assumption: No aggregate uncertainty
- »Shock«, Γ: A fully unexpected non-recurrent event ≡ MIT shock
 - Unexpected before occuring at time 0
 - From time 0 and onwards agents have perfect foresight w.r.t transition dynamics

Assumptons and interpretation

- Underlying assumption: No aggregate uncertainty
- »Shock«, Γ: A fully unexpected non-recurrent event ≡ MIT shock
 - Unexpected before occuring at time 0
 - From time 0 and onwards agents have perfect foresight w.r.t transition dynamics
- Transition path, K: Non-linear perfect foresight response to
 - 1. Initial distribution, $\underline{\boldsymbol{D}}_0 \neq \boldsymbol{D}_{ss}$ or $K_0 \neq K_{ss}$ (convergence to steady state)
 - 2. Shock, $\Gamma_t \neq \Gamma_{ss}$ for some t (i.e. impulse-response)

The HANC example from GEModelToolsNotebooks

• Presentation: I go through the code

Interpreting the household Jacobians

Jacobian of consumption wrt. wage: What happens to consumption in period t when the wage (and thus income) increases in period s?

$$\mathcal{J}^{\mathcal{C}^{hh},w} = \left[egin{array}{ccc} rac{\partial \mathcal{C}^{hh}_0}{\partial w_0} & rac{\partial \mathcal{C}^{hh}_0}{\partial w_1} & \cdots \ rac{\partial \mathcal{C}^{hh}_1}{\partial w_0} & \ddots & \ddots \ dots & \ddots & \ddots \end{array}
ight]$$

Columns: The full dynamic response to a unit shock in period s

Decomposition of GE response

- **GE transition path:** r^* and w^*
- PE response of each:
 - 1. Set $(r, w) \in \{(r^*, w_{ss}), (r_{ss}, w^*)\}$
 - 2. Solve household problem backwards along transition path
 - 3. Simulate households forward along transition path
 - 4. Calculate outcomes of interest

Fake News Algorithm

Household block:

$$\boldsymbol{Y}^{hh} = hh(\boldsymbol{X}^{hh})$$

• i.e. $\boldsymbol{Y}^{hh} = C^{hh}, A^{hh}$ and $\boldsymbol{X}^{hh} = w, r$

Household block:

$$\boldsymbol{Y}^{hh} = hh(\boldsymbol{X}^{hh})$$

- i.e. $\mathbf{Y}^{hh} = C^{hh}, A^{hh}$ and $\mathbf{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

Household block:

$$m{Y}^{hh} = hh(m{X}^{hh})$$

- i.e. $\mathbf{Y}^{hh} = C^{hh}, A^{hh}$ and $\mathbf{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

- Naive approach:
 - Shock at time s = 0, solve + simulate HH block for T periods
 - Repeat until s = T 1
 - Requires T² solution and simulation steps

Household block:

$$m{Y}^{hh} = hh(m{X}^{hh})$$

- i.e. $\mathbf{Y}^{hh} = C^{hh}, A^{hh}$ and $\mathbf{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

- Naive approach:
 - Shock at time s = 0, solve + simulate HH block for T periods
 - Repeat until s = T 1
 - Requires T² solution and simulation steps
- Next slides: Sketch of much faster approach

Initial step

- Note that aggregate is (matrix) product of individual policy function \boldsymbol{y}_t and distribution \boldsymbol{D}_t .
- Linearize (first-order Taylor) around ss:

$$m{Y}^{hh} = (m{y}_t') \, m{D}_t$$

$$\Rightarrow rac{d \, m{Y}^{hh}}{d \, m{X}^{hh}} = \left(rac{d \, m{y}_t}{d \, m{X}^{hh}}'
ight) \, m{D}_{ss} + (m{y}_{ss}') \, rac{d \, m{D}_t}{d \, m{X}^{hh}}$$

• What can we say about policy function term $d\mathbf{y}_t$?

Pertubation of policy function

• The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_{\rm t}/d\mathbf{X}^{hh}$ efficiently

Pertubation of policy function

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y^s_t be policy function at time t following a shock in period s. Then:

$$\mathbf{y}_t^s = egin{cases} \mathbf{y}_{ss} & t > s \ \mathbf{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

Pertubation of policy function

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y_t^s be policy function at time t following a shock in period s.
 Then:

$$oldsymbol{y}_t^s = egin{cases} oldsymbol{y}_{ss} & t > s \ oldsymbol{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

- Verbally: The response of the policy function y at time t to a shock at s is the as the response at time t + j to a shock at s + j
 - Policy function does not depend on the absolut time of shock only the relative distance between s and the shock, s-t.

Pertubation of policy function

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y_t^s be policy function at time t following a shock in period s.
 Then:

$$m{y}_t^s = egin{cases} m{y}_{ss} & t > s \ m{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

- Verbally: The response of the policy function y at time t to a shock at s is the as the response at time t + j to a shock at s + j
 - Policy function does not depend on the absolut time of shock only the relative distance between »today« and the shock, s - t.
- Implication: We need to only do a single backwards iteration to a shock at s = T 1.
 - Can then construct change in policy function dy_t^s/dX^{hh} for different s by shifting policy function around

Numerical illustration

Graphically. Response of c_t to income shock at s = 3, 5

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for *policy* function, but not **distribution**
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = \begin{cases} \mathcal{F}_{t,s} & \text{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & \text{for } t, s > 0 \end{cases}$$

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = egin{cases} \mathcal{F}_{t,s} & ext{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & ext{for } t, s > 0 \end{cases}$$

• where $\mathcal{F}_{t,s}$ is the **fake news** matrix.

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for *policy* function, but not **distribution**
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = egin{cases} \mathcal{F}_{t,s} & ext{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & ext{for } t, s > 0 \end{cases}$$

- where $\mathcal{F}_{t,s}$ is the **fake news** matrix.
- Element (t, s) in matrix \mathcal{F} for t > 0 is

$$\mathcal{F}_{t,s} = (\mathbf{y}_{ss})' \left(\mathbf{\Lambda}_{ss}'\right)^t \frac{d\mathbf{D}_1^s}{d\mathbf{X}^{hh}}$$

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = egin{cases} \mathcal{F}_{t,s} & ext{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & ext{for } t, s > 0 \end{cases}$$

- where $\mathcal{F}_{t,s}$ is the **fake news** matrix.
- Element (t, s) in matrix \mathcal{F} for t > 0 is

$$\mathcal{F}_{t,s} = (\mathbf{y}_{ss})' \left(\mathbf{\Lambda}_{ss}'\right)^t \frac{d\mathbf{D}_1^s}{d\mathbf{X}^{hh}}$$

- Why »fake news«? $\mathcal{F}_{t,s}$ captures effect of announcing a date-s shock at time 0, and retracting the annountment at date 1
 - Policy variables revert to steady state after period 1, but distribution changes since dy₀ ≠ 0

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{s}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{s}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{s}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{1}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

- t = 0 element: Easy to compute when we have $d\mathbf{y}_0^s/d\mathbf{X}^{hh}$
 - Can get this from a single backwards run (T periods) due to logic from before

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{s}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{1}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

- t = 0 element: Easy to compute when we have $d\mathbf{y}_0^s/d\mathbf{X}^{hh}$
 - Can get this from a single backwards run (T periods) due to logic from before
- t > 0 elements: Only involves basic matrix multiplication once we have $d \mathbf{D}_1^s / d \mathbf{X}^{hh}$
 - Since we have derivatives of policy function for all $t, s \, dy_t^s/dX^{hh}$ can get dD_1^s/dX^{hh} easily
 - Note: Not too expensive since histogram method for distribution is fast and efficient

- Auclert et. al (2021) introduce an efficient alogirthm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast

- Auclert et. al (2021) introduce an efficient alogirthm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method

- Auclert et. al (2021) introduce an efficient alogirthm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method
- Why did we need this?
 - Allows us to compute Jacobian of aggregate model by »chaining« together individual jacobians along DAG
 - Can then use Quasi-Newton methods to solve dynamic GE model!

- Auclert et. al (2021) introduce an efficient alogirthm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method
- Why did we need this?
 - Allows us to compute Jacobian of aggregate model by »chaining« together individual jacobians along DAG
 - Can then use Quasi-Newton methods to solve dynamic GE model!
- GEModeltools does all of this »under the hood« when you compute HH Jacobians
 - You just tell GEModeltools the inputs and outputs of the household block
 - Entire algorithm is automated

Exercises

Exercises: HANCGovModel

Same model. Your choice of τ_{ss} . New questions:

- 1. Define the transition path.
- 2. Plot the DAG
- 3. What do the Jacobians look like?
- 4. Find the transition path for $G_t = G_{ss} + 0.01G_{ss}0.95^t$
- 5. What explains household savings behavior?
- 6. What happens to consumption inequality?

Summary

Summary and next week

- Today:
 - 1. The concept of a transition path
 - 2. Details of the GEModelTools package
- Homework: Work on completing the model extension exercise
- Next week: Begin working on Assignment 1