

Enhanced GNN generalization to Real Network Dataset by Attention Mechanism

Cláudio Matheus Modesto, Rebecca Aben-Athar, Andrey Silva, Silvia Lins

5G & IoT Research Group - Telecommunications, Automation and Electronics Research and Development Center (LASSE) Universidade Federal do Pará (UFPA)

Motivation

Graph Neural Networks (GNNs) are a central tool for applying AI/ML techniques to networking applications due to their unique ability to generalize over graph data.

Motivation

Digital Twin

Digital Twin

Enables to mimic complex environments and to answer what / if questions like:

- What happens if a specific node becomes unreachable?
- In terms of QoS parameters, what is the impact?
- Similarly, if a random node undergoes a failure?

Physical Environment

Problem Statement

Given a real network database

Network Topology L2 and L3 Configuration Routing Configuration Routing Configuration Routing Configuration Routing Configuration Matrix Matrix

Figure 1: Structure of the database

This challenge aims to create a Network Digital Twin based on neural networks that can accurately estimate **QoS** performance metrics given the network state and the input traffic.

Problem Statement

Input/Output relation. A possible

Figure 2: Schematic representation of GNN Model called RouteNet

Given the database, we should apply this in a neural network model.

Or a GNN model such as **RouteNet**.

Problem Statement

Using the predicted mean per-flow delay and the label extracted from the performance matrix

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

Any metric could be used to train and evaluate the model performance, but the **challenge adopted the MAPE** for comparison purposes.

m0b1us solution

02

Feature Selection

Choose the most consistent, non-redundant, and relevant features across large datasets

MAPE: 20.00%

Final Prediction

Z-Score Normalization

Different variables are on a standard scale

Attention Mechanism

Weight a given set of features according to their importance

Z-Score Normalization

The Z-score normalization was used in this work instead of the default feature normalization found in the model baseline, that is, min-max normalization.

Feature Selection

Advanced Techniques for Supervised Learning

Filter-Based

- Ranking the features based on their score
- Computationally fast
- Multi Information (MI) Algorithm

 $MI(x,y) = \sum p(x_i, y_j) \log \left(\frac{p(x_i, y_j)}{p(x_i)p(y_j)} \right)$

Wrapper-Based

- Analyzes the feature set based on ML algorithm
- Computationally expensive
- Exhaustive Algorithm

Attention Mechanism

The attention mechanism would be another layer that provides a fine-tuning to identify the importance of selected features, but in this case, not eliminating definitively, but **decreasing** or **increasing** their relevance from scores.

Attention Mechanism

Our idea focused on exploring the attention layer simultaneously with the structure of multiple-stage message passing present in the baseline.

Attention Coefficient

$$e_{uv} = a^T \text{LeakyReLU}(\mathbf{W}[h_u||h_v])$$

Normalization

$$\alpha_{uv} = \operatorname{softmax}(e_{uv})$$

Normalized Attention Coefficient

$$\alpha_{uv} = \frac{\exp(\mathbf{a}^T \text{LeakyReLU}(\mathbf{W}[\mathbf{h}_u || \mathbf{h}_v]))}{\sum_{k \in \mathcal{N}_u} \exp(\mathbf{a}^T \text{LeakyReLU}(\mathbf{W}[\mathbf{h}_u || \mathbf{h}_k]))}$$

Results and Discussion

Given the variety of tools mentioned, the following table summarizes the model performance on each of them, showing metrics from the training, validation, and test dataset

MAPF Loss Function

						WAI E LOSS I direction			
ID	Experiment	Iterations	Flow Emb. Length	Link Emb. Length	Features	Type of Feature Normalization	Train	Validation	Test
1	Baseline	8	64	64	Average bandwidth, Average packet size, Packets generated, Capacity, Load	Min - Max	28.04%	32.60%	41.42%
2	MSMP + SeLU	8	64	64	Average bandwidth, Average packet size, Packets generated, Load, Capacity, Bitrate per burst, Inter-packet gap mean Inter-packet gap, variance, Packets per burst, Normalized load, Flow length, 90th Packet size percentile	Min - Max	18.20%	22.09%	26.50%
3	MSMP + Attention	12	16	16		Min - Max	16.99%	17.41%	24.02%
4	MSMP + SeLU + Attention	12	16	16		Standardization (Z - Score)	14.83%	15.71%	20.00%

Cláudio Barata

claudio.barata@itec.ufpa.br

Cláudio Matheus

Andrey Silva

andrey.silva@ericsson.com

Rebecca Aben-Athar

rebecca.athar@itec.ufpa.br

Rebecca Aben-Athar

Silvia Lins

silvia.lins@ericsson.com

Acknowledgments

Prof. Aldebaro Klautau

Prof. Glauco Gonçalves