PRACTICE SET

Questions

- **Q3-1.** Fourier series gives the frequency domain of a periodic signal; Fourier analysis gives the frequency domain of a nonperiodic signal.
- Q3-2. A *low-pass channel* has a bandwidth that starts from zero. A *band-pass chan-nel* has bandwidth that can start from any frequency.
- Q3-3. The period of a signal is the inverse of its frequency and vice versa: T = 1/f and f = 1/T.
- **Q3-4.** An alarm system is normally *periodic*. Its frequency domain plot is therefore discrete.
- Q3-5. A fiber-optic cable uses light (very high frequency). Since f is very high, the wavelength, which is $\lambda = c / f$, is very low.
- **Q3-6.** This is *baseband transmission* because no modulation is involved.
- **O3-7.** This is *baseband transmission* because no modulation is involved.
- **Q3-8.** The *Shannon capacity* defines the theoretical highest data rate for a noisy channel.
- **Q3-9.** The *Nyquist theorem* defines the maximum bit rate of a noiseless channel.
- **Q3-10.** Attenuation and noise are two out of three causes of transmission impairment; distortion is the third one.
- **Q3-11.** The frequency domain of a voice signal is normally *continuous* because voice is a nonperiodic signal.

Q3-12.

- **a.** The *amplitude* of a signal measures the value of the signal at any point.
- **b.** The *frequency* of a signal measures how may times the signal repeats itself in a second.
- **c.** The *phase* of a signal represents the position of the signal with respect to time 0.
- **Q3-13.** Baseband transmission means sending a digital or an analog signal without modulation using a low-pass channel. Broadband transmission means to modulate signal using a band-pass channel.
- **Q3-14.** A signal is *periodic* if its frequency domain plot is discrete; a signal is *nonperiodic* if its frequency domain plot is continuous.
- **Q3-15.** This is *broadband transmission* because it involves modulation.

Problems

P3-1. The bit duration is the inverse of the bandwidth. We have

(bit length) = (propagation speed) \times (bit duration)

- **a.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (10 \text{ Mbps}))] = 20 \text{ m}$. This means a bit occupies 20 meters on a transmission medium.
- **b.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (100 \text{ Mbps}))] = 2 \text{ m}$. This means a bit occupies 2 meters on a transmission medium.
- **c.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (1000 \text{ Mbps}))] = 0.2 \text{ m}$. This means a bit occupies 0.2 meters on a transmission medium.
- **P3-2.** The signal makes 8 cycles in 4 ms. The frequency is 8/(4 ms) = 2 kHz
- **P3-3.** 480 s \times 300,000 km/s = 144,000,000 km
- **P3-4.** To represent 1024 color levels, we need $log_21024 = 10$ bits. The total number of bits are, therefore,

Number of bits = $1600 \times 800 \times 10 = 12,800,000$ bits

P3-5. We use the Shannon capacity $C = B \log_2 (1 + SNR)$

 $C = 5,000 \log_2 (1 + 2,000) \approx 54.832 \text{ Kbps}$

P3-6. Each cycle moves the front of the signal λ meter ahead (definition of the wavelength). In this case, we have

$$1 \mu m \times 500 = 500 \mu m = 0.5 mm$$

P3-7.

a. bit rate =
$$1/$$
 (bit duration) = $1/$ (0.001 s) = 1000 bps = 1 Kbps

b. bit rate =
$$1/$$
 (bit duration) = $1/$ (2 ms) = 500 bps

c. bit rate =
$$1/$$
 (bit duration) = $1/(20 \mu s/10) = 1/(2 \mu s) = 500 \text{ Kbps}$

P3-8. The bandwidth of the channel in bits is W_b and the size of the frame is N bits; it takes $t = W_b / N$ seconds to send out the frame. In this case we have

$$t = 1,000,000 \text{ bits } / 5 \text{ Kbps} = 200 \text{ s}$$

P3-9. We can calculate the attenuation as shown below:

$$dB = 10 \log_{10} (80 / 100) \approx -0.97 dB$$

P3-10. We have $dB = log_{10} (P_2/P_1)$.

$$-10 = 10 \log_{10} (P_2 / 10) \rightarrow \log_{10} (P_2 / 10) = -1 \rightarrow (P_2 / 10) = 10^{-1} \rightarrow P_2 = 1 \text{ W}$$

P3-11. There are 8 bits in 16 ns. Bit rate is $8 / (16 \times 10^{-9}) = 0.5 \times 10^{9} = 500 \text{ Mbps}$

P3-12.

a.
$$(10 / 1000)$$
 s = 0.01 s

b.
$$(8 / 1000)$$
 s = 0. 008 s = 8 ms

c.
$$((100,000 \times 8) / 1000)$$
 s = 800 s

P3-13.

- **a.** 90 degrees ($\pi/2$ radians)
- **b.** 0 degrees (0 radians)
- **c.** 90 degrees ($\pi/2$ radians) (Note that it is the same wave as in part a.)
- **P3-14.** Each signal is a simple signal in this case. The bandwidth of a simple signal is zero. So the bandwidth is the same for both signals.
- **P3-15.** The file contains $3,000,000 \times 8 = 24,000,000$ bits.
 - **a.** With a 56-Kbps channel, it takes 24,000,000/56,000 = 428 s

b. With a 1-Mbps channel, it takes 16,000,000/1,000,000 = 16 s.

P3-16.

- a. Number of bits = bandwidth \times delay = 1 Mbps \times 2 ms = 2000 bits
- **b.** Number of bits = bandwidth \times delay = 10 Mbps \times 2 ms = 20,000 bits
- **c.** Number of bits = bandwidth \times delay = 100 Mbps \times 2 ms = 200,000 bits
- **P3-17.** We can approximately calculate the capacity as

a.
$$C = B \times (SNR_{dB}/3) = 20 \text{ KHz} \times (40/3) = 267 \text{ Kbps}$$

b.
$$C = B \times (SNR_{dB}/3) = 200 \text{ KHz} \times (4/3) = 267 \text{ Kbps}$$

c.
$$C = B \times (SNR_{dB}/3) = 1 \text{ MHz} \times (20/3) = 6.67 \text{ Mbps}$$

P3-18.

- **a.** Using the first harmonic, data rate = 2×6 MHz = 12 Mbps
- **b.** Using three harmonics, data rate = $(2 \times 6 \text{ MHz})/3 = 4 \text{ Mbps}$
- c. Using five harmonics, data rate = $(2 \times 6 \text{ MHz})/5 = 2.4 \text{ Mbps}$
- **P3-19.** We have

SNR =
$$(200 \text{ mW}) / (20 \times 2 \times \mu\text{W}) = 5,000$$

SNR_{dB} = $10 \log_{10} \text{SNR} = 10 \log_{10} 5000 \approx 37$

P3-20. See below:

P3-21. The bandwidth is $5 \times 5 = 25$ Hz.

P3-22.

a.
$$f = 1/T$$
 $= 1/(5 s)$ $= 0.2 Hz$
b. $f = 1/T$ $= 1/(12 \mu s)$ $= 83.333 \text{ KHz}$
c. $f = 1/T$ $= 1/(220 \text{ ns})$ $= 4.55 \text{ MHz}$

P3-23. The total gain is $3 \times 4 = 12$ dB. To find how much the signal is amplified, we can use the following formula:

$$12 = 10 \log (P_2/P_1)$$
 $\rightarrow \log (P_2/P_1) = 1.2$ $\rightarrow P_2/P_1 = 10^{1.2} = 15.85$

The signal is amplified almost 16 times.

P3-24. We have **SNR** = (**signal power**)/(**noise power**). However, power is proportional to the square of voltage. This means we have

SNR =
$$[(\text{signal voltage})^2] / [(\text{noise voltage})^2] = 20^2 = 400$$

SNR_{dB} = $10 \log_{10} \text{SNR} = 10 \log_{10} 400 = 26$

P3-25. We know the bandwidth is 2000. The highest frequency must be 100 + 2000 = 2100 Hz. See below:

P3-26. SNR is the ratio of the powers. The power is proportion to the voltage square $(P = V^2/R)$. Therefore, we have SNR = $(10)^2 / (10 \times 10^{-3})^2 = 10^6$. We then use the Shannon capacity to calculate the maximum data rate.

$$C = 4,000 \log_2 (1 + 10^6) \approx 80 \text{ Kbps}$$

P3-27. The signal is nonperiodic, so the frequency domain is made of a continuous spectrum of frequencies as shown below:

P3-28.

- **a.** The data rate is doubled $(C_2 = 2 \times C_1)$.
- **b.** When the SNR is doubled, the data rate increases slightly. We can say that, approximately, $(C_2 = C_1 + 1)$.

P3-29. We can use the approximate formula

$$C = B \times (SNR_{dB}/3)$$
 or $SNR_{dB} = (3 \times C)/B$

We can say that the minimum of SNR_{dB} is

$$SNR_{dB} = 3 \times 100 \text{ Kbps} / 4 \text{ KHz} = 75$$

This means that the minimum

$$SNR = 10 SNR_{dB}/10 = 107.5 \approx 31,622,776$$

P3-30. The signal is periodic, so the frequency domain is made of discrete frequencies with the bandwidth of 30 - 10 = 20 kHz. See below:

P3-31.

a.
$$T=1/f$$
 = 1 / (24 Hz) = 0.0417 s = 41.7 ms
b. $T=1/f$ = 1 / (8 MHz) = 0.000000125 s = 0.125 ms
c. $T=1/f$ = 1 / (140 kHz) = 7.14 × 10⁻⁶ s = 7.14 ms

P3-32. We have

transmission time = (packet length in bits)/(bandwidth) =
$$(8,000,000 \text{ bits}) / (200,000 \text{ bps}) = 40 \text{ s}$$

P3-33. We have Latency =
$$Delay_{pr} + Delay_{qu} + Delay_{tr} + Delay_{pg}$$

$$\begin{split} \text{Delay}_{pr} &= 10 \times 1 \ \mu \text{s} = 10 \ \mu \text{s} & \text{// Processing delay} \\ \text{Delay}_{qu} &= 10 \times 2 \ \mu \text{s} = 20 \ \mu \text{s} & \text{// Queuing delay} \\ \text{Delay}_{tr} &= 5,000,000 \ / \ (5 \ \text{Mbps}) = 1 \ \text{s} & \text{// Transmission delay} \\ \text{Delay}_{pg} &= (2000 \ \text{Km}) \ / \ (2 \times 10^8) = 0.01 \ \text{s} & \text{// Propagation delay} \end{split}$$

This means

Latency =
$$10 \mu s + 20 \mu s + 1s + 0.01 s \approx 1.01 s$$

The transmission time is dominant here because the packet size is huge.