3	predetermined pattern a second object is moved, thereby
4	exposing sequentially a plurality of defined regions on said
5	<pre>second object, comprising:</pre>
6	effecting an exposure onto one of the plurality of the
7	defined regions on said second object while moving said
8	second object in a predetermined direction, and
9	after finishing the exposure, moving said second object
10	in a direction intersecting with said predetermined
\ _V 11	direction while moving said second object in said
0 12	predetermined direction.
1 .	
W 1	173. A scanning exposure method in which in
2	synchronism with movement of a first object formed with a
3	predetermined pattern a second object is moved, thereby
4	exposing sequentially a plurality of defined regions on said
5	second object, comprising:
6	effecting an exposure onto one of the plurality of the
7	defined regions on said second object while moving said
8	second object in a predetermined direction, and
9	after finishing the exposure, accelerating said second
10	object in a direction intersecting with said predetermined
11	direction while decelerating said second object in said
12	predetermined direction
1	174. A scanning exposure method in which in
2	synchronism with movement of a first object formed with a
3	predetermined pattern a second object is moved, thereby

4	exposing sequentially a plurality ϕ f defined regions on said
5	second object, comprising:
6	a first step of effecting an exposure onto one of the
7	plurality of defined regions on said second object while
8	moving said second object in a predetermined direction,
9	a second step of decelerating said second object in
10	said predetermined direction after finishing the exposure,
11	a third step of accelerating said second object in a
12	reverse direction to said predetermined direction after said
13	second step, and
14	a fourth step of accelerating and decelerating said
15	second object in a direction intersecting with said
16	predetermined direction during said second step and said
17	third step
1	175. A scanning exposure method in which in
2	synchronism with movement of a first object formed with a
3	predetermined pattern a second object is moved, thereby
4	exposing sequentially a plurality of defined regions on said
5	second object, comprising:
6	effecting an exposure onto one of the plurality of
7	defined regions on said second object while moving said
8	second object in a predetermined direction, and
9	after finishing the exposure, moving said second object
10	in a direction inclined with respect to said predetermined
11	direction

1	176. A scanning exposure method in which in
2	synchronism with movement of a first object formed with a
3	predetermined pattern a second object is moved, thereby
4	exposing sequentially a plurality of defined regions on said
5	second object, comprising:
	effecting an exposure onto one of the plurality of the
6	defined regions on said second object while moving said
7	1
8	first object in a first direction and moving said second
9	object in a second direction corresponding to said first
10	direction, and
11	after finishing the exposure, moving said second object
12	in a direction inclined with respect to said second
13	direction while decelerating said first object in said first
14	direction
1	177. A scanning exposure method in which in
2	synchronism with movement of a first object formed with a
3	predetermined pattern a second object is moved, thereby
4	exposing sequentially a plurality of defined regions on said
5	second object, comprising:
6	a first step of effecting an exposure onto one of the
7	plurality of defined regions on said second object while
8	moving said first object in a first direction and moving
9	said second object in a second direction corresponding to
10	said first direction, and
11	a second step of decelerating said second object in
12	said second direction after finishing the first step,

a third step of accelerating said second object in a 13 reverse direction to said second difection after said second 14 15 step, and a fourth step of decelerating said first object and 16 setting said first object to a reference position during 17 said second step and said thind step .--18 -- 178. A scanning exposure method in which in synchronism with movement bf a first object formed with a predetermined pattern a second object is moved, thereby 3 exposing sequentially a/plurality of defined regions on said 4 second object, comprising: 5 effecting an exposure onto one of the plurality of 6 defined regions on said second object while moving said 7 second object in a predetermined direction, and 8 after finishing the exposure, starting accelerating 9 said second object in a reverse direction to said 10 predetermined direction for preparing a scanning exposure 11 onto a next defined region while moving said second object 12 in a direction intersecting with said predetermined 13

14

direction.

--179. A scanning type exposure apparatus in which in synchronism with moving a first object in a predetermined direction relative to an exposure beam, a second object is moved, thereby exposing sequentially a plurality of defined regions on said second object, comprising:

6	a movable body which holds said first object and is
7	movable in said predetermined direction; and
8	a first interferometer system which has a measurement
9	axis passing through a substantial center of an irradiation
10	region of said exposure beam and which measures positional
11	information of said movable body relating to a direction
X1.2	intersecting with said predetermined direction
1	180. An apparatus according to Claim 179, further
2	comprising:
3	a second interferometer system for measuring positional
4	information of said movable body relating to said
5	predetermined direction
1	181. An apparatus according to Claim 180, wherein
1 2	181. An apparatus according to Claim 180, wherein said second interferometer system has a plurality of
2	said second interferometer system has a plurality of
2	said second interferometer system has a plurality of measurement axes and measures rotational information of said
2 3 4	said second interferometer system has a plurality of measurement axes and measures rotational information of said movable body also
2 3 4	measurement axes and measures rotational information of said movable body also 182. An apparatus according to Claim 179, wherein
2 3 4 1 2	measurement axes and measures rotational information of said movable body also 182. An apparatus according to Claim 179, wherein said movable body is rotatable about a predetermined axis
2 3 4 1 2 3	measurement axes and measures rotational information of said movable body also 182. An apparatus according to Claim 179, wherein said movable body is rotatable about a predetermined axis passing through the irradiation region of said exposure
2 3 4 1 2 3 4	said second interferometer system has a plurality of measurement axes and measures rotational information of said movable body also 182. An apparatus according to Claim 179, wherein said movable body is rotatable about a predetermined axis passing through the irradiation region of said exposure beam, while exposing said second object

4	moved, thereby exposing sequentially a piurality of defined
5	regions on said second object, comprising:
6	a movable body which holds said first object;
7	a first interferometer system which has a plurality of
8	measurement axes for detecting positional information of
. 9	said movable body relating to said predetermined direction;
10	and
12X\	a reflection surface disposed separately on said
	movable body in correspondence with said plurality of the
V13	measurement axes
1	184. An apparatus according to Claim 183, further
2	comprising:
3	a second interferometer system having a measurement
4	axis for detecting positional information of said movable
5	body with respect to a direction intersecting with said
6	predetermined direction; and
7	a reflection surface disposed on said movable body for
8	said second interferometer system and extended substantially
9	in parallel with said predetermined direction
1	185. An apparatus according to Claim 184, wherein
2	the measurement axis of said second interferometer system
3	passes through a substantial center of the irradiation
4	region of said exposure beam

said movable body is rotatable about a predetermin passing through the irradiation region of said exp beam	osure /
	,
4 <u>beam.</u>	/ _which_in
	/ which in
	which in
1 187. A scanning type exposure apparatus in	
2 synchronism with moving a first object in a first	direction,
a second object is moved in a second direction, th	ereby
4 exposing sequentially a plurality of defined regio	ns on said
5 second object, comprising:	
6 a first movable stage holding said first obje	ct;
7 a second movable stage holding said second ob	ject;
a first interferometer system outputting posi	tional
1 9 information of said first stage	
10 a second interferometer system outputting pos	itional
11 information of said second stage;	
12 <u>a first drive mechanism for moving said first</u>	stage in
13 said first direction;	
14 <u>a second drive mechanism for moving said seco</u>	nd stage
15 <u>in said second direction;</u>	
16 a projection optical system for projecting an	image of
17 <u>a pattern on said first object onto said second ob</u>	ject; and
18 <u>a controller which converts positional inform</u>	nation in
19 <u>said second direction of said second stage outputt</u>	ed from
20 said second interferometer system to speed informa	tion and
21 speed controls said second drive mechanism so that	<u>said</u>
22 speed information may correspond to a constant spe	ed V, and