

UNIVERSITY OF GHANA FACULTY OF ENGINEERING SCIENCES SECOND SEMESTER EXAMINATIONS, 2014/2015 LEVEL 300: BACHELOR OF SCIENCE IN ENGINEERING FPEN 302: SEPARATION PROCESSES TIME ALLOWED: TWO (2) HOURS

Instructions:

- 1. Answer all questions
- 2. Calculators allowed
- 3. Graph paper provided on demand.
 - 1. In a process producing KNO₃ salt 1000kg/h of a feed solution containing 30 wt % KNO₃ is fed to an evaporator, which evaporates some water at 422K to produce a 50 wt % KNO₃ solution. This is then fed to a crystallizer at 311K, where crystals containing 96 wt % KNO₃ are removed. The saturated solution containing 37.5 wt % KNO₃ is recycled to the evaporator. Calculate the amount of recycle stream R in kg/h and the product stream of crystals P in kg/h. Give the process -flow diagram indicating clearly the components.
 - 2. Calculate the vapour and liquid compositions in equilibrium at 95°C (368.2K) for benzene-toluene using the vapour pressure from the following Table at 101.32kPa.

Temperature		Benzene (B)		Toluene (T)		ХB	Ув
K	°C	kPa	mm Hg	kPa	mm Hg		
353.3	80.1	101.32	760				
358.2	85	116.9	877	46	345		
363.2	90	135.5	1016	54	405		
368.2	95	155.7	1168	63.3	475	· · · · · · · · · · · · · · · · · · ·	
373.2	100	179.2	1344	74.3	. 557		
378.2	105	204.2	1532	86	645		
383.8	110.6	240.0	1800	101.32	760		

Table: vapour-pressure and equilibrium Mole-fraction Data for Benzene-Toluene system

- (a) Complete the table with all the values of x_B and y_B .
- (b) Draw the x-y graph for benzene-toluene at 101.32kPa with the 45° line.

Examiner: Dr. Emmanuel Sinayobye

- (c) Draw the T-x-y graph for benzene-toluene at 101.32kPa.
- (d) If the mixture is 50/50 and the feed is at the bubble point, how many plates are needed if we want a product with a purity of 99% whereas the bottom contains 0.5 % of benzene? Reflux ratio: 5:1.
- 3. Ethylene glycol can be catalytically dehydrated to p-dioxane (a cyclic diether) by the reaction 2HOCH₂CH₂OH → H₂CCH₂OCH₂CH₂O+2H₂O. Water and p-dioxane have boiling points of 100°C and 101.1°C, respectively, at 1 atm. and cannot be separated by distillation. However, liquid-liquid extraction at 25°C (298K) using benzene as a solvent is reasonably effective. Assume that 2268 kg/hour (5000lb/hr) of a 25% solution of p-dioxane in water is to be separated continuously by using 3402kg/hr (7500lb/hr) of pure benzene. Assuming benzene and water are mutually insoluble and K_D = 1.5.
 - (a) Determine the effect of the number and arrangement of stages on the percent extraction of p-dioxane by considering 1 vs.3 stages in each case:
 - i. the co-current arrangement,
 - ii. the crosscurrent and
 - iii. the countercurrent.
 - (b) Draw the flowsheet of each arrangement.
- 4. A fuel gas containing 3.1 mol% H₂, 27.2% CO, 5.6% CO₂, 0.5%O₂, and 63.6% N₂ is burned with 20% excess air (i.e., the air over and above that necessary for complete combustion to CO₂ and H₂O). The combustion of CO is only 98% complete. For 100kg mol of fuel gas,
 - (a) Write the balanced equations of the complete combustion of the compounds of the fuel.
 - (b) Calculate the moles of each component in the exit flue gas.
 - (c) Draw the process flow diagram clearly indicating the inflow and outflow compositions.
- 5. A liquid mixture of 100 kgmoles of benzene (B), 100 kgmoles of toluene (T) and 200 kgmoles of water is at equilibrium with its vapor at 52°C. Assuming that benzene and toluene follow Raoult's law, but that neither is miscible with water, calculate:
 - (a) The total pressure above the mixture
 - (b) The composition of the vapor assuming that Dalton's law applies. From the Chemical Engineer's Handbook (Perry et al.) you have:

$$P_a = \exp\left(C_1 + C_2/T + C_3 \ln T + C_4 * T^{C_5}\right) = \exp\left(C_1 + \frac{C_2}{T} + C_3 \ln T + C_4 * T^{C_5}\right)$$

Substance	C_1	C ₂	C ₃	C ₄	C ₅
Water	73.648	-7258.2	-7.3037	4.1653E-6	2
Toluene	80.877	-6902.4	-8.7761	5.8034E-6	2
Benzene	83.918	-6517.7	-9.3453	7.1182E-6	2