Math 63: Real Analysis

Winter 2024

PSET 1 — 01/09/2024

Prof. Erchenko

Student: Amittai Siavava

Problems

Problem 1.

Let A, B, C be subsets of a set S. Prove that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

To show that the two sets are equal, we will show that each set is a subset of the other. That is, any arbitrary element in the first set must be in the second set, and vice versa.

- (i) Let $x \in A \cup (B \cap C)$. Then either $x \in A$ or $x \in (B \cap C)$.
 - **1.** If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$. Therefore, $x \in (A \cup B) \cap (A \cup C)$.
 - **2.** If $x \in (B \cap C)$, then x is in **both** B and C.

Therefore, $x \in (A \cup B)$ and $x \in (A \cup C)$.

Therefore, $x \in (A \cup B) \cap (A \cup C)$.

(ii) Let $x \in (A \cup B) \cap (A \cup C)$.

Then $x \in (A \cup B)$ and $x \in (A \cup C)$. Since $x \in (A \cup B)$, either $x \in A$ or $x \in B$. Similarly, since $x \in (A \cup C)$, either $x \in A$ or $x \in C$. Thus, either $x \in A$ or $x \in C$.

- **1.** If $x \in A$, then $x \in A \cup (B \cap C)$.
- **2.** If x is in **both** B and C, then $x \in (B \cap C)$, so $x \in A \cup (B \cap C)$.

Problem 2.

If A, B, C are sets, show that

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

To show that the two sets are equal, we will show that each set is a subset of the other. That is, any arbitrary element in the first set must be in the second set, and vice versa.

- (i) Let $x \in (A \cup B) \setminus (A \cap B)$. Then $x \in (A \cup B)$ and $x \notin (A \cap B)$.
 - **1.** If $x \in A$, then $x \notin B$ since $x \notin (A \cap B)$.

Therefore, $x \in (A \setminus B)$.

2. If $x \in B$, then $x \notin A$ since $x \notin (A \cap B)$.

Therefore, $x \in (B \setminus A)$.

Therefore, $x \in (A \setminus B) \cup (B \setminus A)$.

- (ii) Let $x \in (A \setminus B) \cup (B \setminus A)$. Then either $x \in (A \setminus B)$ or $x \in (B \setminus A)$.
 - **1.** If $x \in (A \setminus B)$, then $x \in A$ and $x \notin B$. Therefore, $x \in (A \cup B)$ and $x \notin (A \cap B)$.
 - **2.** If $x \in (B \setminus A)$, then $x \in B$ and $x \notin A$. Therefore, $x \in (A \cup B)$ and $x \notin (A \cap B)$.

Therefore, $x \in (A \cup B) \setminus (A \cap B)$.

Problem 3.

Let $f: X \to Y$ be a function. Let C and D be subsets of Y. Prove that

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D).$$

Recall the definition of the inverse image of a set:

Definition 3.1. Let $f: X \to Y$ be a function. Let $C \subseteq Y$. The *inverse image* of C under f is the set

$$f^{-1}(C) = \{ x \in X \mid f(x) \in C \}.$$

To show that the two sets are equal, we will show that each set is a subset of the other. That is, any arbitrary element in the first set must be in the second set, and vice versa.

- (i) Let $x \in f^{-1}(C \cup D)$. Then $f(x) \in (C \cup D)$.
 - **1.** If $f(x) \in C$, then $x \in f^{-1}(C)$.
 - **2.** If $f(x) \in D$, then $x \in f^{-1}(D)$.

Therefore, $x \in f^{-1}(C) \cup f^{-1}(D)$.

- (ii) Let $x \in f^{-1}(C) \cup f^{-1}(D)$. Then either $x \in f^{-1}(C)$ or $x \in f^{-1}(D)$.
 - **1.** If $x \in f^{-1}(C)$, then $f(x) \in C$.
 - **2.** If $x \in f^{-1}(D)$, then $f(x) \in D$.

Therefore, $f(x) \in (C \cup D)$, so $x \in f^{-1}(C \cup D)$.

This means that $f^{-1}(C \cup D) \subseteq f^{-1}(C) \cup f^{-1}(D)$ and $f^{-1}(C \cup D) \supseteq f^{-1}(C) \cup f^{-1}(D)$, which can only happen if the two sets are equal.

Problem 4.

Let $A = \{1, 2, ..., n\}$.

- (a) Show that the cardinality of $\mathcal{P}(A)$ is 2^n .
- (b) How many functions are there from A to A? Explain.
- (c) How many onto (surjective) functions are there from A to A? Explain.

Problem 5.

Give an example of a countably infinite collection of infinite sets $A_1, A_2, A_3, ...$ with $A_j \cap A_k$ being inifinite for all j and k such that $\bigcap_{j=1}^{\infty} A_j$ is nonempty and finite.

Let $A = \mathbb{Z}_{\geq 0} = \{0, 1, 2, 3, \ldots\}$ be the set of all nonnegative integers. For each $i \in \mathbb{N}$, define $A_i = \{a \in A \mid i \text{ divides } a\}$. That is, the A_i is the set of all nonnegative integers that are divisible by i. Then:

$$A_1 = \{0, 1, 2, 3, \ldots\} = A$$

$$A_2 = \{0, 2, 4, 6, \ldots\}$$

$$A_3 = \{0, 3, 6, 9, \ldots\}$$

$$A_4 = \{0, 4, 8, 12, \ldots\}$$

$$A_5 = \{0, 5, 10, 15, \ldots\}$$

$$\vdots$$

(i) First, we'll show that $A_j \cap A_k$ is infinite for all j and k. For any arbitrary $j, k \in \mathbb{N}$;

$$(A_j \cap A_k) = \{0, jk, 2 \cdot jk, 3 \cdot jk, \ldots\} = \{n \cdot jk \mid n \in \mathbb{Z}_{\geq 0}\}.$$

Since $\mathbb{Z}_{>0}$ is infinite, $(A_i \cap A_k)$ is also infinite.

- (ii) We'll then show that $\bigcap_{j=1}^{\infty} A_j$ is nonempty yet finite.
 - **1.** $\bigcap_{j=1}^{\infty} A_j$ is nonempty. Since $0 \in A_j$ for all $j \in \mathbb{N}$, then $0 \in \bigcap_{j=1}^{\infty} A_j$.
 - 2. $\bigcap_{j=1}^{\infty} A_j$ is finite. Precisely, $\bigcap_{j=1}^{\infty} A_j = \{0\}$. Suppose, for contradiction, that $\bigcap_{j=1}^{\infty} A_j$ contains a non-zero element x. This implies that x is in every A_j , thus x is divisible by every positive integer j. Take y = 2x, then clearly $\frac{x}{y} = \frac{x}{2x} = \frac{1}{2}$, which is not an integer, so x is not divisible by y, contradicting the assumption that x is divisible by every positive integer.

Problem 6.

Prove that a function is invertible if and only if it is a bijection.

Definition 6.1. A function $f: A \to B$ is *invertible* if there exists a function $g: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

For the sake of contradiction, suppose that $f: A \to B$ is invertible but not a bijection. Let $g: B \to A$ be its inverse.

- (i) Suppose f is not an injection. Then there exists some $a_1, a_2 \in A$, $a_1 \neq a_2$, and some $b \in B$ such that $f(a_1) = f(a_2) = b$. Since g is the inverse of f, g(f(x)) = x for all $x \in A$, which implies that $g(b) = a_1$ and $g(b) = a_2$. However, a function cannot map an element to two different elements, so either f is an injection or it must not be invertible.
- (ii) Suppose f is not a surjection. Then there exists some $b \in B$ such that $f(a) \neq b$ for all $a \in A$. However, g, the inverse of f, acts from B to A, so it must assign some element $a' \in A$ to b. This implies that g(b) = a' for some $a' \in A$. But g was taken to be the inverse of f, so it must map $f(a') \mapsto a'$, where $f(a') \neq b$. Therefore g is not an injection (and, by the previous result, not invertible). This contradicts the assumption that $g = f^{-1}$ as that would imply that g is also invertible (with f being its inverse).

Problem 7.

Let \mathbb{F} be a field. Prove that for any $a \in \mathbb{F}$ there exists a unique $b \in \mathbb{F}$ such that a + b = 0.

Definition 7.1. A *field* is a set \mathbb{F} with two binary operations + and × such that:

- $(\mathbb{F}, +)$ is an abelian group with identity 0.
- $(\mathbb{F} \setminus \{0\}, \times)$ is an abelian group with identity 1.
- × distributes over +.

Useful results in a field \mathbb{F} :

- $0 \times a = a \times 0 = 0$ for all $a \in \mathbb{F}$.
- (i) First, we show that for any element $a \in \mathbb{F}$, there exists some element $b \in \mathbb{F}$ such that a + b = 0. Let $a \in \mathbb{F}$ be arbitrary. Then:

$$a \times 0 = 0$$

$$a \times (1 + (-1)) = 0$$

$$a \times 1 + a \times (-1) = 0$$

$$a + (-a) = 0$$

(ii) Next, we show that this element b is unique by demonstrating that if any two elements $b_1, b_2 \in \mathbb{F}$ satisfy $a+b_1=0$ and $a+b_2=0$, then $b_1=b_2$. Let $b_1,b_2\in \mathbb{F}$ be selected as above. Then:

$$b_1 = b_1 + 0$$

$$= b_1 + (a + b_2)$$

$$=(b_1+a)+b_2$$

$$= 0 + b_2$$

$$= b_2$$