

HYBRIDNET: CLASSIFICATION AND RECONSTRUCTION COOPERATION FOR SEMI-SUPERVISED LEARNING

Thomas Robert¹, Nicolas Thome², Matthieu Cord¹
¹Sorbonne Université (LIP6) & ²CNAM – Paris, France

1. Context

- ► Improving classification score on partially labeled data (< 5%)
- ► Auto-encoder based semi-sup. with classif. and reconstr.
- ► Problem: antagonists costs
 - ▶ Classification requires information loss
 ⇒ invariant features & good generalization
 - ▶ Reconstruction requires information conservation
 ⇒ correct reconstruction of the input
- Related work:
 - Auto-encoder w/ skip connections (LadderNet^[1], SWWAE^[2])
 - Classifier w/ stability based regularization (no reconstr.)[3,4,5]

2. Intuition & HybridNet architecture

- Explicitly separates discriminative and complementary information into two branches
- ► Classification branch: discriminative info. / partial reconstr.
- Unsupervised branch: complementary info. / complem. rec.

3. Controlling information separation

$$\mathcal{L} = \mathcal{L}_{cls} + \lambda_s \, \mathcal{L}_{stability} + \lambda_r \, \mathcal{L}_{rec}$$

- Controls the behavior of information separation
- lacktriangle Encourage discriminative / invariant features in E_c
 - Classification loss

 $\mathcal{L}_{cls} = CrossEntropy(y, \hat{y})$

► Stability loss^[3-5]

 $\mathcal{L}_{\text{stability}} = \|\hat{\mathbf{y}}^{(k)} - \tilde{\mathbf{z}}^{(k)}\|$ $\tilde{\mathbf{z}}^{(k)} = \text{EMA}(\hat{\mathbf{y}}^{(k)})$

- Extract additional info. & balance branches
 - Reconstruction loss

 $\mathcal{L}_{\text{rec}} = \|\hat{\mathbf{x}} - \mathbf{x}\|$

▶ Branch balancing backpropagate \mathcal{L}_{rec} only in the branch making the largest error btwn $\|\hat{\mathbf{x}}_c - \mathbf{x}\|$ and $\|\hat{\mathbf{x}}_u - \mathbf{x}\|$

Ablation study of the different loss terms

4. Results

Visualization of information separation

Shows loss of information in E_c and correction by E_n

Semi-sup. state-of-the-art results

Dataset	CIFA	R-10	STL-10	SVHN
Nb. of labeled images	1000	4000	1000	1000
Nb. of unlabeled images	~[50k	~100k	~600k
AE-based (Ladder ^[1])		20.40		
AE-based (SWWAE ^[2])			25.7	23.6
Stability only (MT ^[5])	10.10	6.23	16.8	4.2
Classif. baseline	45.22	15.45	18.0	10.0
HybridNet	8.81	6.09	15.9	2.5

- \blacktriangleright ResNet-based model. N labeled samples, $^{N}\!\!/_{10}$ per class, rest of the dataset unlabeled
- Surpasses comparable stability & AE-based baselines on standard benchmarks

5. Future & References

Conditional generative version through latent space manipulation with information disentanglement

- [1] Rasmus *et al.* NIPS 15. SSL with ladder networks
- [2] Zhao et al. ICLR Whp 16. Stacked What-Where Auto-encoders
- [3] Sajjadi *et al.* NIPS 16. Regularization With Stochastic Transfo.
- [4] Laine et al. ICLR 17. Temporal Ensembling for SSL
- [5] Tarvainen *et al*. NIPS 17. Mean teachers are better role models