Question Number	Answer		Mark
4(a)	 No repeat measurements Inconsistent d.p. for d Or all values of d should be recorded to the same d.p. Or measurements of d are not all recorded to the same resolution (of the device) 	(1)	2
4(b)	 Labels axes with quantities and units Sensible scales Plotting Line of best fit 	(1) (1) (2) (1)	5
	0.0045 0.0040 0.0035 0.0030 0.0025 0.0020 0.0015 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000		

Question	Anguror		Maula
Number	Answer		Mark
4(c)(i)	EITHER		
	• Re-arranges equation and compares to $y = mx$ (+ c)	(1)	
	• Shows that $m = \frac{l^3}{4wh^3E}$	(1)	
	4wn°E		
	OR		
	• Re-arranges equation to $\frac{d}{F} = \frac{l^3}{4wh^3 F}$	(1)	
	• States that $\frac{d}{F} = \text{gradient of the graph plotted}$	(1)	
	States that $\frac{1}{F}$ = gradient of the graph plotted	(1)	2
		(-)	
4(c)(ii)	Calculates gradient using large triangle	(1)	
	• Gradient in the range 1.30×10^{-4} to 1.40×10^{-4} (m N ⁻¹)	(1)	2
	Example of calculation:		
47. \ 7.**	Gradient = $(0.0035 - 0.0010) / (26 - 7.5) = 1.35 \times 10^{-4}$	(4)	
4(c)(iii)	• Use of gradient = $\frac{l^3}{4wh^3E}$	(1)	
	Or use of substituted values of <i>F</i> and <i>d</i> into $E = \frac{l^3 F}{4wh^3 d}$	(1)	2
	E ' O A CD O CO CD	(1)	_
	• E value in the range 2.41 GPa to 2.60 GPa		
	Ecf for gradient value in (c)(ii) – but not power of 10 errors in substitution of		
	I, w, or h		
	Example of calculation:		
	$E = \frac{l^3}{4wh^3m}$		
	$(0.20 \text{ m})^3$		
	$E = \frac{(0.30 \text{ m})^{3}}{4 \times 0.020 \text{ m} \times (0.010 \text{ m})^{3} \times 1.35 \times 10^{-4} \text{ m N}^{-1}} = 2.5 \times 10^{9} \text{ Pa}$		
	4 × 0.020 m × (0.010 m) × 1.33×10 m N		
4(d)	A thinner beam would cause a larger <i>d</i> (for the same force)	(1)	
	Reducing <u>percentage</u> uncertainty (in <i>d</i>)	(1)	2
	MP2 dependent on MP1		
4(e)	Identifies physics relating to health & safety	(1)	
	Suggests a relevant safety issue	(1)	2
	Evamples		
	<u>Examples</u>Glass is brittle, so will snap/break		
	 Glass is brittle, so will snap/break Sharp edges could cause injury by causing cuts 		
	- Sharp cages codia cadse injury by cadsing cats		
	Glass is stiffer, so a larger force/mass would be needed		
	A large mass could cause injury if the mass falls on feet		
	Total for question 4		17