Optimization: Convex Optimization

Convex Optimization

$$\min_{x} f(x)$$
 s.t. $g(x) \leq 0$

with f and g convex \rightarrow local minimum = global minimum

Convex function:

For all $x, y \in \text{dom}(f)$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$$

Convex functions:

$$f(x) = ax$$
 $a \in \mathbb{R}$
 $f(x) = x^{2n}$ $n \in \mathbb{N} \setminus \{0\}$
 $f(x) = e^{x}$
 $f(x) = h(\beta_0 + \beta^T x)$ h is convex
 $f(x) = ||x||$ for any norm function

Norm function $\|\cdot\|$ on \mathbb{R}^n :

- **1** $||u|| \ge 0$
- $||u|| = 0 \Leftrightarrow u = 0$
- $||u+v|| \leq ||u|| + ||v||$ for all $u, v \in \mathbb{R}^n$

Operations that preserve convexity:

Positive-weighted sum:
$$f(x) = \sum \alpha_i f_i(x)$$
 $\alpha_i > 0$

Pointwise maximum:
$$f(x) = \max f_i(x)$$

Composition:
$$f(x) = h(g(x))$$

if
$$g, h$$
 convex and $h \nearrow$

if
$$-g$$
, h convex and $h \searrow$

Test: Convex functions

Are the following functions convex? $(x, y \in \mathbb{R})$:

- $\cos(0.5x + y)$
- $\cosh(x^2 + y^2)$
- |x + y 5|
- $-\log |x + y 5|$

Subgradient of a convex function

$$f(x) \geqslant f(x_0) + \nabla^T f(x_0)(x - x_0)$$

Norms of affine functions

 F_0 : scalar signal, F_1 : vector-valued signal

$$f_{1}(x) = \|F_{0}(n) + F_{1}^{T}(n)x\|_{1} = \sum_{n} |F_{0}(n) + F_{1}^{T}(n)x|$$

$$f_{2}(x) = \|F_{0}(n) + F_{1}^{T}(n)x\|_{2}^{2} = \sum_{n} (F_{0}(n) + F_{1}^{T}(n)x)^{2}$$

$$f_{\infty}(x) = \|F_{0}(n) + F_{1}^{T}(n)x\|_{\infty} = \max_{n} |F_{0}(n) + F_{1}^{T}(n)x|$$

Subgradients:

$$\nabla f_1(x) = \sum_n F_1(n) \operatorname{sign}(F_0(n) + F_1^T(n)x)$$

$$\nabla f_2(x) = \sum_n 2F_1(n) \left(F_0(n) + F_1^T(n)x\right)$$

$$\nabla f_{\infty}(x) = F_1(n_{\text{max}}) \operatorname{sign}(F_0(n_{\text{max}}) + F_1^T(n_{\text{max}})x)$$
with $n_{\text{max}} = \operatorname{arg\,max} |F_0(n) + F_1^T(n)x|$

Linear matrix inequalities

Linear matrix inequality

$$F(x) := F_0 + \sum_i F_i x_i > 0$$

where $F_i = F_i^T$

- $\{x \mid F(x) > 0\}$ is convex set
- Multiple LMIs \Rightarrow one LMI

$$F^{(1)}(x) > 0 , F^{(2)}(x) > 0 , \dots, F^{(p)}(x) > 0$$

$$\Leftrightarrow \begin{bmatrix} F^{(1)}(x) & 0 & \cdots & 0 \\ 0 & F^{(2)}(x) & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & F^{(p)}(x) \end{bmatrix} > 0$$

Linear matrix inequalities (continued)

Linear matrix inequality

$$F(x) := F_0 + \sum_i F_i x_i > 0$$

where $F_i = F_i^T$

Schur complement:

$$\begin{bmatrix} Q(x) & S(x) \\ S^{T}(x) & R(x) \end{bmatrix} > 0$$

$$\Leftrightarrow R(x) > 0 , Q(x) - S(x)R^{-1}(x)S^{T}(x) > 0$$

$$\Leftrightarrow Q(x) > 0 , R(x) - S^{T}(x)Q^{-1}(x)S(x) > 0$$

Lyapunov theory

$$\frac{d}{dt}x(t) = Ax(t)$$
 is stable

is equivalent to

$$A^T P + PA < 0$$
, $P > 0$

Stabilizing state feedback u(t) = Kx(t):

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t) = Ax(t) + BKx(t)$$

is equivalent to

$$(A^{T} + K^{T}B^{T})P + P(A + BK) < 0, \quad P > 0$$

$$P^{-1}((A^T + K^T B^T)P + P(A + BK))P^{-1} < 0, \quad P > 0$$

Defining $X = P^{-1}$ and $Y = KP^{-1}$ yields

$$XA^{T} + Y^{T}B^{T} + AX + BY < 0, \quad X > 0$$

Quadratic objective:

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t) = Ax(t) + BKx(t)$$

Given: $x(0) = x_0$. Find state feedback u(t) = Kx(t)

$$\min_{K} \underbrace{\int_{0}^{\infty} (x^{T}Qx + u^{T}Ru) dt}_{J(K)} = \min_{K} \int_{0}^{\infty} x^{T} (Q + K^{T}RK)x dt$$

Find $V(z) = z^T P z$ with P > 0 such that

$$\frac{d}{dt}V(x) < -x^{T}(Q + K^{T}RK)x$$

Note: if $V(x(\infty)) = 0$, then V(x(0)) > J(K)

$$\frac{d}{dt}V(x) = \frac{d}{dt}(x^T P x) = \frac{dx^T}{dt}Px + x^T P \frac{dx}{dt}$$
$$= x^T ((A + BK)^T P + P(A + BK))x$$

Quadratic objective (continued):

Hence,
$$(A + BK)^T P + P(A + BK) + Q + K^T RK < 0$$

Setting $P = \gamma X^{-1}$ and $K = YX^{-1}$ yields

$$XA^T + Y^TB^T + AX + BY + \gamma^{-1}XQX + \gamma^{-1}Y^TRY < 0$$

Schur complement transformation:

$$\begin{bmatrix} -(XA^{T} + Y^{T}B^{T} + AX + BY) & XQ^{1/2} & Y^{T}R^{1/2} \\ Q^{1/2}X & \gamma I & 0 \\ R^{1/2}Y & 0 & \gamma I \end{bmatrix} > 0$$

$$\gamma > 0$$
, $X > 0$

For any solution $X, Y, \gamma \colon V(x_0) = x_0^T P x_0 = \gamma x_0^T X^{-1} x_0 > J(K)$ Extra constraint: $x_0^T X^{-1} x_0 < 1$ or equivalently

$$\left[\begin{array}{cc} 1 & x_0^T \\ x_0 & X \end{array}\right] > 0$$

 $\Rightarrow \min_{X,Y,\gamma} \gamma$ subject to LMIs

Some common convex problems with LMIs

• Entropy maximization:

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to
$$A(x) > 0$$

Determinant maximization:

minimize
$$\log \det \left(A(x)^{-1} \right)$$

subject to $A(x) > 0$, $B(x) > 0$

• Generalized eigenvalue problem:

minimize
$$\lambda$$
 subject to $\lambda B(x) - A(x) > 0$, $B(x) > 0$

Convex optimization algorithms

- Cutting-plane algorithm
- Ellipsoid algorithm
- Interior-point algorithm

Advantages

- Easy to implement
- Guaranteed and fast convergence
- Provide stopping criteria with "hard guarantee":

$$|f(x^*) - f(x)| \le \varepsilon_f$$

 $||x^* - x||_2 \le \varepsilon_x$ (for ellipsoid)

where x^* is the real optimum

Cutting-plane algorithm

Given: k points $x_{(1)}, \ldots, x_{(k)}$

$$f(x) \ge f(x_{(i)}) + \nabla^T f(x_{(i)})(x - x_{(i)})$$

 $\Rightarrow f(x) \ge \max_{i=1,...,k} (f(x_{(i)}) + \nabla^T f(x_{(i)})(x - x_{(i)}))$

Hence,

$$f(x^*) \ge \min_{x} \max_{i=1,...,k} \left(f(x_{(i)}) + \nabla^T f(x_{(i)})(x - x_{(i)}) \right)$$

Cutting-plane algorithm (continued)

Cutting-plane algorithm (continued)

$$f(x^*) \ge \min_{x} \max_{i=1,...,k} \left(f(x_{(i)}) + \nabla^T f(x_{(i)})(x - x_{(i)}) \right)$$

Solve: $\min_{x, L_k} L_k$

s.t.
$$f(x_{(i)}) + \nabla^T f(x_{(i)})(x - x_{(i)}) \leq L_k$$

= linear program $\rightarrow x_k^*, L_k^*$

Define: $U_k^* = \min_{i=1,...,k} f(x_{(i)})$

$$\Rightarrow$$
 $L_k^* \leqslant f(x_k^*) \leqslant U_k^*$

Define $x_{(k+1)} = x_k^*$ and repeat procedure

$$\Rightarrow$$
 $L_k^* \leqslant L_{k+1}^* \leqslant f(x^*) \leqslant U_{k+1}^* \leqslant U_k^*$

Iterate until $U_k^* - L_k^* \leqslant \varepsilon_f$

Cutting-plane: Handling constraints

$$\min_{x} f(x)$$
 s.t. $g(x) \leq 0$

Since g is convex:

$$g(x) \geqslant g(x_{(i)}) + \nabla^T g(x_{(i)})(x - x_{(i)})$$

So if $g(x) \leq 0$, then certainly $g(x_{(i)}) + \nabla^T g(x_{(i)})(x - x_{(i)}) \leq 0$, i.e.

$$\{g(x) \leq 0\} \subseteq \{g(x_{(i)}) + \nabla^T g(x_{(i)}) (x - x_{(i)}) \leq 0\}$$

Add extra constraints to LP:

$$\nabla^T g(x_{(i)}) x \leq \nabla^T g(x_{(i)}) x_{(i)} - g(x_{(i)})$$

 \rightarrow still LP!

Larger feasible region considered \rightarrow resulting L_k^* is still lower bound for $f(x^*)$

Ellipsoid algorithm

One-dimensional case:

Suppose x^* in interval E_0 with center $x_{(0)}$:

$$E_0 = \{x \mid x_{(0)} - A_0 \leqslant x \leqslant x_{(0)} + A_0\}$$

Recall that

$$f(x) \geqslant f(x_{(0)}) + \nabla^T f(x_{(0)}) (x - x_{(0)})$$

Hence, x^* will be in the half-plane

$$H_0 = \{ x \mid \nabla^T f(x_{(0)}) (x - x_{(0)}) \leq 0 \}$$

Construct

$$E_1 = H_0 \cap E_0$$

= $\{x \mid x_{(1)} - A_1 \le x \le x_{(1)} + A_1\}$

with
$$A_1 = \frac{A_0}{2}$$

 $x_{(1)} = x_{(0)} - A_1 \operatorname{sign}(\nabla f(x_{(0)}))$

Ellipsoid algorithm

Multi-dimensional case:

Suppose x^* in ellipsoid E_0 with center $x_{(0)}$:

$$E_0 = \{ x \mid (x - x_{(0)})^T A_0^{-1} (x - x_{(0)}) \leqslant 1 \}$$

with $A_0 \in \mathbb{R}^{n \times n}$ is non-singular and positive definite. Since

$$f(x) \geqslant f(x_{(0)}) + \nabla^T f(x_{(0)}) (x - x_{(0)})$$

 x^* will be in half-plane

$$H_0 = \{ x \mid \nabla^T f(x_{(0)}) (x - x_{(0)}) \leq 0 \}$$

Construct new ellipsoid

$$E_1 = \{x \mid (x - x_{(1)})^T A_1^{-1} (x - x_{(1)}) \leq 1\}$$

such that $H_0 \cap E_0 \subseteq E_1$

Ellipsoid algorithm (continued)

$$f(x) \geqslant f(x_{(0)}) + \nabla^T f(x_{(0)}) (x - x_{(0)})$$

Ellipsoid algorithm (continued)

For (k+1)st ellipsoid E_{k+1} :

$$x_{(k+1)} = x_{(k)} - \frac{1}{n+1} \frac{A_k \nabla f(x_{(k)})}{\sqrt{\nabla^T f(x_{(k)}) A_k \nabla f(x_{(k)})}}$$

$$A_{k+1} = \frac{n^2}{n^2 - 1} \left(A_k - \frac{2}{n+1} \frac{A_k \nabla f(x_{(k)}) \nabla^T f(x_{(k)}) A_k^T}{\nabla^T f(x_{(k)}) A_k \nabla f(x_{(k)})} \right)$$

Properties:

$$\mathsf{Vol}(E_k) o 0$$
 for $k o \infty$
$$f(x_{(k)}) - f(x^*) \leqslant \sqrt{\nabla^T f(x_{(k)}) A_k \nabla f(x_{(k)})}$$

Iterate until
$$\sqrt{\nabla^T f(x_{(k)}) A_k \nabla f(x_{(k)})} \leqslant \varepsilon_f \text{ and/or } \text{Vol}(E_k) \leqslant \varepsilon_x$$

Ellipsoid algorithm: Handling constraints

$$\min_{x} f(x)$$
 s.t. $g(x) \leq 0$

g is convex \Rightarrow $g(x) \geqslant g(x_{(k)}) + \nabla^T g(x_{(k)})(x - x_{(k)})$

So if $g(x_{(k)}) > 0$ then x^* will be in half-plane

$$H_k = \{x \mid \nabla^T g(x_{(k)}) (x - x_{(k)}) \leq 0 \}$$

ightarrow replace ∇f by ∇g and use same formulas

Ellipsoid algorithm:

- If $x_{(k)}$ feasible \to use ∇f in formulas for E_{k+1}
 - ightarrow discard points that are not minimizers
 - "objective iteration"
- If $x_{(k)}$ not feasible \to use ∇g in formulas for E_{k+1}
 - \rightarrow discard infeasible points

[&]quot;constraint iteration"

Interior-point algorithm

$$f(x^*) = \min_{x} f(x)$$
 s.t. $g(x) \leq 0$

Strictly feasible set G:

$$\mathcal{G} := \{ x \mid g_i(x) < 0, i = 1, ..., m \}$$

Barrier function:

$$\phi(x) = \begin{cases} -\sum_{i=1}^{m} \log(-g_i(x)) & x \in \mathcal{G} \\ \infty & \text{otherwise} \end{cases}$$

 \rightarrow convex

Optimization problem for $t \ge 0$: $\min_x t f(x) + \phi(x)$

Central path $x^*(t)$:

$$x^*(t) = \arg\min_{x} (t f(x) + \phi(x))$$
 is always in \mathcal{G}

 $x^*(t)$ will converge to x^* for $t \to \infty$

Interior-point algorithm (continued)

We have
$$\Psi(x,t) = t f(x) + \phi(x)$$
. So

$$abla_{x}\Psi(x^{*},t) = t \, \nabla f(x^{*}(t)) + \sum_{i=1}^{m} \frac{1}{-g_{i}(x^{*}(t))} \nabla g_{i}(x^{*}(t)) = 0$$

$$\Rightarrow \nabla f(x^*(t)) + \sum_{i=1}^m \mu_i^*(t) \nabla g_i(x^*(t)) = 0 \text{ with } \mu_i^*(t) := \frac{1}{-g_i(x^*(t)) t}$$

So
$$x^*(t)$$
 also minimizes $f(x) + \sum_i \mu_i^*(t)g_i(x)$ (*)

Moreover, we have:
$$g(x^*(t)) \leq 0$$
 $\mu_i^*(t) \geq 0$

$$abla f(x^*(t)) + \sum_{i=1}^m \mu_i^*(t)
abla g_i(x^*(t)) = 0$$
 $\mu_i^*(t) g_i(x^*(t)) = -1/t$

So Karush-Kuhn-Tucker conditions satisfied for $t \to \infty$

Interior-point algorithm (continued)

Dual function:

$$d(\mu^*(t)) = \min_{x} \left(f(x) + \sum_{i=1}^{m} \mu_i^*(t) g_i(x) \right)$$

Property: $d(\mu^*(t)) \leqslant f(x^*)$ for any $\mu^*(t) \geqslant 0$

Hence, $f(x^*) \geqslant d(\mu^*(t))$

$$\geqslant \min_{x} \left(f(x) + \sum_{i=1}^{m} \mu_i^*(t) g_i(x) \right)$$

$$\geqslant f(x^*(t)) + \sum_{i=1}^m \mu_i^*(t)g_i(x^*(t))$$
 (by (*))

$$\geqslant f(x^*(t)) - \frac{m}{t}$$
 since $\mu_i^*(t) = \frac{1}{-g_i(x^*(t))t}$

This yields:

$$f(x^*(t)) \ge f(x^*) \ge f(x^*(t)) - \frac{m}{t}$$

Interior-point algorithm (continued)

$$f(x^*(t)) \geqslant f^* \geqslant f(x^*(t)) - \frac{m}{t}$$

Stopping criterion: $|f^* - f(x^*(t))| \leq \varepsilon_f$

Take $t = \frac{m}{\varepsilon_f} \rightarrow$ one unconstrained optimization problem

slow \rightarrow gradually increase t

Sequential unconstrained minimization technique:

Given: $x \in \mathcal{G}$, t > 0 and tolerance ε_f

Step 1: Compute $x^*(t)$ starting from x:

$$x^*(t) = \arg\min_{x} (t f(x) + \phi(x))$$

Step 2: Set $x = x^*(t)$

Step 3: If $\frac{m}{t} \leqslant \varepsilon_f$, return x and stop

Step 4: Increase t and goto step 1

Interior-point algorithm: Example

$$f(x_{1}, x_{2}) = (x - x_{0})^{T} C(x - x_{0}) \text{ with } C = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, x_{0} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

$$t = 0$$

$$t = 0.01$$

$$t = 0.05$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$6$$

$$4$$

$$2$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

Example from control theory

$$\begin{array}{c|c}
u(n) & y(n) + r(n) \\
\hline
h(n) & e(n)
\end{array}$$

$$h(n) = \begin{cases} 2^{-n} & \text{for } 0 \leq n \leq 5, & n \in \mathbb{Z} \\ 0 & \text{else} \end{cases}$$

Reference signal: r(n) = 1

Input:
$$u(n) = 0$$
 for $n \in [6, 10]$

Output:
$$y(n) = \sum_{m=0}^{5} h(n-m) u(m) = F_1^T(n) x$$

 $x = \begin{bmatrix} u(0) & u(1) & \dots & u(5) \end{bmatrix}^T$
 $F_1^T(n) = \begin{bmatrix} h(n) & h(n-1) & \dots & h(n-5) \end{bmatrix}$

By defining $F_0(n) = -r(n)$, we obtain the error signal

$$e(n) = y(n) - r(n) = F_0(n) + F_1^T(n) x$$

Cost functions:

$$f_1(x) = || e(n) ||_1$$

 $f_2(x) = || e(n) ||_2^2$
 $f_{\infty}(x) = || e(n) ||_{\infty}$

Optimization using cutting-plane algorithm yields:

f(x)	# iterations	$f_1(x^*)$	$f_2(x^*)$	$f_{\infty}(x^*)$
1-norm	12	4.083	3.480	0.979
2-norm	8	4.141	3.157	0.959
∞ -norm	7	8.650	7.567	0.922

Summary

- Convex functions + properties
- Linear matrix inequalities (LMIs)
- Convex optimization problem: Standard form

$$\min_{x} f(x)$$
s.t. $g(x) \le 0$
with f and g convex functions

- Algorithms for convex optimization:
 - cutting-plane
 - ellipsoid
 - interior-point
- Provide stopping criterion with hard guarantee: $|f(x^*) f(x_k)| \leq \varepsilon_f$

34 / 35

Convex Functions - Recapitulation

Convex functions:

$$f(x) = ax$$
 $a \in \mathbb{R}$
 $f(x) = x^{2n}$ $n \in \mathbb{N} \setminus \{0\}$
 $f(x) = e^{x}$
 $f(x) = h(\beta_0 + \beta^T x)$ h is convex
 $f(x) = ||x||$ for any norm function

Operations that preserve convexity:

Positive-weighted sum:
$$f(x) = \sum \alpha_i f_i(x)$$
 $\alpha_i > 0$

Pointwise maximum:
$$f(x) = \max f_i(x)$$

Composition:
$$f(x) = h(g(x))$$

if
$$g, h$$
 convex and $h \nearrow$
if $-g, h$ convex and $h \searrow$