- 7 Compute the gradient, ∇f , for the following functions:
 - (a) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$,
 - (b) f(x,y,z) = xy + yz + xz,
 - (c) $f(x, y, z) = 1/(x^2 + y^2 + z^2)$.
- 8 Show that $\underline{h}(s) = \left(s/\sqrt{2}, \cos(s/\sqrt{2}), \sin(s/\sqrt{2})\right)$ is the arc-length parameterisation of a helix, that is that $\left|\frac{d\underline{h}}{ds}\right| = 1 \quad \forall s$.

Calculate the directional derivative of the scalar field $f(\underline{x}) = (\log(x^2 + y^2 + z^2))$ along $\underline{h}(s)$ at $s = \sqrt{2}\pi$.

- 9 Draw a sketch of the contour plot of the scalar field on \mathbb{R}^2 $f(\underline{x}) = xy$, as well as the gradient of f. What do you notice?
- 10 Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be scalar fields on \mathbb{R}^3 , $h : \mathbb{R} \to \mathbb{R}$ be a function on \mathbb{R} and a be a constant in \mathbb{R} . Show (using the definition of ∇) that

$$\underline{\nabla}(af(\underline{x})g(\underline{x}) + h(f(\underline{x}))) = a(\underline{\nabla}f)g + af\underline{\nabla}g + \underline{\nabla}f\frac{dh}{df}.$$

- 11 Exam question June 2001 (Section B): You are given the following family of scalar functions labelled by a real parameter λ : $\Phi_{\lambda}(x,y,z) = (y-\lambda)\cos x + zxy$.
 - (a) What are their derivatives in the direction $V = e_1 + 2(e_2 + e_3)$?
 - (b) Which member of the family has its gradient at the point $(\frac{\pi}{2}, 1, 1)$ equal to $\frac{\pi}{2}(e_1 + e_2 + e_3)$?
 - (c) Calling this particular member of the family Φ_{λ_0} , in which direction is Φ_{λ_0} decreasing most rapidly when starting at the point $(\frac{\pi}{2}, 1, 1)$?
- 12 Exam question June 2002 (Section A): Give the unit vector normal to the surface of equation $x^2/a^2 + y^2/b^2 + z^2/c^2 = 4$ where a, b, c are three real constants. What is the unit vector normal to a sphere of radius 2 at the point $(x, y, z) = (\sqrt{2}, 0, \sqrt{2})$?
- 13 Find the vector equations of tangent and normal lines in \mathbb{R}^2 to the following curves at the given points
 - (a) $x^2 + 2y^2 = 3$ at (1, 1),
 - (b) xy = 1 at (2, 1/2),
 - (c) $x^2 y^3 = 3$ at (2, 1).
- 14 Exam question June 2003 (Section A): Find the directional derivative of the function $\phi(x,y,z)=xy^2z^3$ at the point P=(1,1,1) in the direction from P towards Q=(3,1,-1). Starting from P, in which direction is the directional derivative maximum and what is the value of this maximum?
- 15 Exam question June 2002 (Section A): What is the derivative of the scalar function $\phi(x,y,z) = x\cos z y$ in the direction $\mathbf{V} = \mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}$? What is the gradient at the point $(x,y,z) = (0,1,\pi/2)$? In which direction is ϕ increasing the most when moving away from this point?

- 16 A marble is released from the point (1, 1, c a b) on the elliptic paraboloid defined by $z = c ax^2 by^2$, where a, b, c are positive real numbers and the z-coordinate is vertical. In which direction in the (x, y) plane does the marble begin to roll?
- 17 In which direction does the function $f(x,y) = x^2 y^2$ increase fastest at the points (a) (1,0), (b) (-1,0), (c) (2,1)? Illustrate with a sketch.
- 18 Let $f(x,y) = (x^2 y^2)/(x^2 + y^2)$.
 - (a) In which direction is the directional derivative of f at (1,1) equal to zero?
 - (b) What about at an arbitrary point (x_0, y_0) in the first quadrant?
 - (c) Describe the level curves of f and discuss them in the light of the result in (b).