Математический анализ

Широков Николай Алексеевич 1

 $07.09.2023 - \dots$

 $^{^1}$ "Записали Сергей Киселев, Гараев Тагир, Александра Ри"

Оглавление

1	Пос	троение множества вещественных чисел	3
	1.1	Множества	3
	1.2	Сечения	3
	1.3	Сумма сечений	4
	1.4	Теоремы сечений	5
2	Вец	цественные числа	9
	2.1	Супремумы и инфимумы	10
	2.2	Неравенство Бернулли	12
	2.3	Определение степени и логарифма	12
3	Пос	ледовательности	14
	3.1	Сопоставление вещественным числам десятичных дробей	14
	3.2	Предел последовательности	15
	3.3	Арифметические операции над пределами	16
	3.4	Расширенное множество вещественных чисел	17
	3.5	Бесконечные пределы	18
	3.6	Единообразная запись определения пределов	18
	3.7	Асимпотика	20
	3.8	Монотонные последовательности	20
	3.9	Число е	22
	3.10	Критерий Коши, существование конечного предела последо-	
		вательности	24
		Подпоследовательности	27
		Верхний и нижний предел последовательности	30
	3.13	Свойства верхних и нижних пределов	31
4	Фун	кции. Предел функции, монотонность, непрерывность	34
	4.1	Предел функции	34
	4.2	Односторонние пределы	35
	4.3	Сущестование предела	36
	4.4	Свойства пределов функции	37
	4.5	Монотонность функции	38
	4.6	Критерий Коши	39
	4.7	Некоторые существенные неравенства	40
	4.8	Замечательные пределы	41
	4.9	Непрерывность функции	44
	4.10		44

	4.11	Непрерывность композиции функций	45
	4.12	Классификация точек разрыва непрерывной функции	48
	4.13	Непрерывность и существование предела обратной функции .	49
	4.14	Теоремы Вейерштрасса	50
	4.15	Теорема Кантора	51
_			53
5	$\mathbf{H}\mathbf{p}\mathbf{o}$	Производная	
	5.1	Дифференцируемость функции	53
	5.2	Свойства дифференцируемых функций	54
	5.3	Таблица производных	57
	5.4	Теоремы Ферма, Ролля, Лагранжа и Коши	60
	5.5	Производнае второго и более порядка	61
	5.6	Формула Тейлора	64
	5.7	Применение формулы Тейлора к элементарным функциям (а=0)	66

Оглавление 2

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множества

```
Определение 1. Множества X и У равны, если: \forall a \in X : a \in Y
```

 $\forall a \in X : a \in Y$ $\forall b \in Y : b \in X$

Определение 2. $X \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \wedge a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in A \land a \notin B$

Определение 4. (Декартово произведение множеств)

 $A \times B = \{(a, b) : \forall a \in A, \forall \in B\}; A, B \neq \emptyset$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

• I. $\alpha \neq \emptyset$

- ullet II. если $p \in \alpha$, то q
- \bullet III. в α нет наибольшего

Пример. 1. $p^* = \{r \in \mathbb{Q} : r < p\}$ - нет наибольшего 2. $\sqrt{2} = \{ p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2 \}$

Теорема 1. (Утверждение 1) Если $p \in \alpha \land q \notin \alpha$, то q > p

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2) $\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Теорема 3. Пусть α, β - сечения. Между ними существует одно из нескольких отношений: $\begin{vmatrix} \alpha \\ \beta > \alpha \\ \alpha = \beta \end{vmatrix}$

Доказательство. Предположим, что
$$\alpha < \beta$$
 и $\beta < \alpha$, тогда:
$$\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$$
 - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

• (III.)

Теорема 4. Пусть α, β - сечения, тогда: $\alpha+\beta=\{p+q:p\in\alpha,q\in\beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть $\exists s \notin \alpha, \exists t \notin \beta$, тогда:

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

 $r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 4

$$\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta$$
 - нет наибольшего

Теорема 5. (Свойства суммы сечений)

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$(\alpha + \beta) + \gamma = \alpha + (\gamma + \beta)$$

3.
$$\alpha + 0^* = \alpha$$
, где $0^* = \{p \in \mathbb{Q} : p < 0\}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p+q , т.е. <math>\alpha+0^* \subset \alpha$
- 2. Пусть $p\in\alpha$, тогда: $\exists p_1>p\Rightarrow p_1\in\alpha, p=p_1+(p-p_1)$, при том $p_1\in\alpha, p-p_1\in0^*\Rightarrow p\in\alpha+0^*\Rightarrow\alpha\subset\alpha+0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r \in \mathbb{Q}^+$, тогда $\exists p \in \alpha \land q \notin \alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 5

Доказательство. (нужно доказать единственность и существование)

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (І.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -р не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p \in \alpha, q \in \beta$ По определению $\beta: -q \notin \alpha \underset{\text{Утв. 1}}{\Rightarrow} -q > p \Leftrightarrow p+q < 0 \Rightarrow p+q \in 0^* \Rightarrow \alpha+\beta \subset 0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$

Лекция 2: Сечения

21.09.2023

Теорема 8. Пусть α, β — сечения. Тогда $\exists ! \gamma$ — сечение : $\alpha + \gamma = \beta$

Доказательство. Пусть имеем $\gamma_1 \neq \gamma_2$, удовлетворяющие условию. Тогда: $\alpha + \gamma_1 = \beta = \alpha + \gamma_2 \Rightarrow \gamma_1 = \gamma_2$ — противоречие.

Положим $\gamma=\beta+(-\alpha)$. Тогда в силу свойств сечений имеем: $\alpha+\gamma=\alpha+(\beta+(-\alpha))=\alpha+((-\alpha)+\beta)=(\alpha+(-\alpha))+\beta=0^*+\beta=\beta$

Определение 7. Сечение γ , построенное в предыдущей теореме обозначается через $\beta-\alpha$

Определение 8. (Абсолютная величина) $|a| = \begin{cases} \alpha, \text{ если } \alpha \geq 0^* \\ -\alpha, \text{ если } \alpha < 0^* \end{cases}$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 6

Определение 9. (Произведение) Пусть α, β — сечения, причем $\alpha \ge$

Тогда $\alpha\beta = \{r \in \mathbb{Q} : r < 0 \lor r = pq, \text{ где } p \in \alpha, q \in \beta\}$

Пример. $\sqrt{2} \cdot \sqrt{2} = 2^*$

Теорема 9. (Любые 3 из них необоходимо доказать самостоятельно) Для любых сечений α, β, γ имеем:

1.
$$\alpha\beta = \beta\alpha$$

2.
$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

3.
$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$

4.
$$\alpha 0^* = 0^*$$

5.
$$\alpha 1^* = \alpha$$

6. если
$$\alpha < \beta$$
 и $\gamma > 0^*$, то $\alpha \gamma < \beta \gamma$

7. если
$$\alpha \neq 0^*$$
, то $\exists \beta : \alpha \cdot \beta = 1^*, \beta = \frac{1^*}{\alpha}$

8. если
$$\alpha \neq 0^*$$
, то $\exists \beta, \gamma : \alpha \cdot \gamma = \beta, \gamma = \frac{\beta}{\alpha}$

Теорема 10. (Свойства рациональных сечений)

1.
$$p^* + q^* = (p+q)^*$$

2.
$$p^*q^* = (pq)^*$$

3.
$$p^* < q^* \Leftrightarrow p < q$$

Доказательство. 1. Возьмем $r \in (p+q)^* \Rightarrow r < p+q$

Положим h = p + q - r:

$$\begin{cases} p_1 = p - \frac{h}{2} \\ q_1 = q - \frac{h}{2} \end{cases} \Rightarrow \begin{cases} p_1$$

Теперь возьмем $r \in p^* + q^* \Rightarrow r = p_1 + q_1$:

$$\begin{cases} p_1 \in p^* \\ q_1 \in q^* \end{cases} \Rightarrow \begin{cases} p_1
$$\begin{cases} p^* + q^* \subset (p + q)^* \\ \Rightarrow p^* + q^* = (p^* + q^*) \end{cases}$$$$

$$\begin{cases} p^* + q^* \subset (p+q)^* \\ (p+q)^* \subset p^* + q^* \end{cases} \Rightarrow p^* + q^* = (p^* + q^*)$$

2. Для умножения доказательство аналогично.

3. Если p < q, то $p \in q^*, p \notin p^* \Rightarrow p^* < q^*$ Если $p^* < q^*$, то $\exists r \in \mathbb{Q}: r \in q^*, r \notin p^* \Rightarrow p \le r < q \Rightarrow p < q$ Значит $p^* < q^* \Leftrightarrow p < q$

Теорема 11. Пусть α, β — сечения, $\alpha < \beta$. Тогда $\exists \ r^*$ — рациональное сечение : $\alpha < r^* < \beta$ **Доказательство.** $\alpha < \beta \Rightarrow \exists \ p : p \in \beta, p \notin \alpha$ Выберем такое r > p, так, что $r \in \beta$. Поскольку $r \in \beta, r \notin r^*$, то

Поскольку $p \in r^*, p \notin \alpha$, то $\alpha < r^*$

Глава 2

Вещественные числа

Определение 10. В дальнейшем сечения будут называться вещественными числами. Рациональные сечения будут отождествляться с рациональными числами. Все другие сечения будут называться иррациональными числами.

Таким образом, множество всех рациональных чисел оказывается подмножеством системы вещественных чисел.

Теорема 12. (Дедекинда) Пусть A и B — такие множества вещественных чисел, что:

- 1. $A \cup B = \mathbb{R}$
- $A \cap B = \emptyset$
- 3. $A, B \neq \emptyset, A \neq B$
- 4. $\forall \alpha \in A, \beta \in B : a < b$

Тогда $\exists ! \ \gamma \in \mathbb{R} : \alpha \leq \gamma \leq \beta \ \forall \alpha \in A, \forall \beta \in B$

Доказательство. 1. Докажем единственность.

Пусть γ_1,γ_2 — два числа, причем $\gamma_1<\gamma_2$. Тогда $\exists \ \gamma_3:\gamma_1<\gamma_3<\gamma_2\Rightarrow\gamma_3\in A,\gamma_3\in B$ — противоречие. Значит $\gamma_1=\gamma_2$.

2. Проверим, является ли γ сечением.

$$\gamma = \{p \in \mathbb{Q} : \exists \alpha \in A : p \in \alpha\}$$

- I. $\gamma \neq \varnothing$, t.k. $A \neq \varnothing$ $\gamma \neq \mathbb{Q}$, t.k. $\exists q \in \mathbb{Q} : q \notin B \Rightarrow q \notin \gamma$
- II. Пусть $p_1 < p, p \in \gamma$. Тогда $\exists \alpha \in A : p_1 \in \alpha \Rightarrow p_1 \in \gamma$
- III. Пусть $p\in\gamma$. Тогда $\exists\alpha\in A:p\in\alpha$. Поскольку α сечение, то $\exists q\in\mathbb{Q}:q\in\alpha,q>p\Rightarrow q\in\gamma$

Ясно, что $\alpha \leq \gamma \forall \alpha \in A$.

Предположим, что $\exists \beta \in B : \beta < \gamma$. Тогда $\exists q \in \mathbb{Q} : q \in \gamma, q \notin \beta \Rightarrow \exists \alpha \in A : q \in \alpha \Rightarrow \alpha > \beta$ — противоречие. Значит $\gamma \leq \beta \ \forall \ \beta \in B$.

2.1 Супремумы и инфимумы

Определение 11. $E\subseteq\mathbb{R}, E\neq\varnothing$ Е - ограничено сверху, если $\exists y\in\mathbb{R}: \forall x\in E: x\leq y$

Определение 12. $G\subseteq \mathbb{R}, G\neq \varnothing$ G - ограничено снизу, если $\exists y\in \mathbb{R}: \forall x\in E: x\geq y$

Замечание. Если множество ограничено сверху и снизу, оно называется ограниченным.

Определение 13. Пусть Е ограничено сверху. Тогда y называется точной верхней границей (верхней гранью) Е, если:

- 1. у верхняя граница множества Е.
- 2. если x < y, то х не является верхней границей множества E.

Определение 14. Пусть Е ограничено снизу. Тогда y называется точной нижней границей (нижней гранью) Е, если:

- 1. у нижняя граница множества Е.
- 2. если x > y, то х не является нижней границей множества E.

Определение 15. Точная верхняя граница — $y \sup E$ Точная нижняя граница — $y \inf E$

Пример. Е состоит из всех чисел $\frac{1}{n}, n=1,2,3,\ldots$ Тогда множество ограничено, верхняя грань равна 1 и принадлежит множеству, а нижняя равна 0 и множеству не принадлежит.

Теорема 13. Пусть E ограничено сверху. Тогда $\sup E$ существует.

Доказательство. Пусть есть множества:

$$\begin{split} A &= \{\alpha \in \mathbb{R} : \exists x \in E : x > \alpha\} \\ B &= \mathbb{R} \setminus A \\ \text{Тогда } A \cap B = \varnothing, A \cup B = \mathbb{R}, A \neq \varnothing, B \neq \varnothing \\ \begin{cases} \beta \in B \\ \alpha \in A \end{cases} \Rightarrow \begin{cases} \forall x \in E : x \leq \beta \\ \exists x_0 \in E : x_0 > \alpha \end{cases} \Rightarrow \alpha < \beta \end{split}$$

Ясно, что никакой элемент множества A не является верхней гра-

ницей множества E, а любой элемент множества B является верхней границей множества E. Поэтому достаточно доказать, что B содержит наименьшее число.

По теореме Дедекинда:
$$\exists \gamma: \begin{cases} \alpha \leq \gamma \ \forall \alpha \in A \\ \beta \geq \gamma \ \forall \beta \in B \end{cases}$$

Предположим, что $\gamma \in A$. Тогда $\exists x \in E : x > \gamma$.

Возьмем $\gamma_1: \gamma < \gamma_1 < x \Rightarrow \gamma_1 \in A$ — противоречие.

Значит
$$\gamma \in B$$
.

Теорема 14. Пусть E ограничено снизу. Тогда inf E существует.

Доказательство. Доказательство тривиально и предоставляется читателю в качестве упражнения $\bigcirc \smile \bigcirc$.

Теорема 15. (Существование корня из вещественного числа) $\forall x \in \mathbb{R}$: $x > 0, \forall n \in \mathbb{N} : n > 0 \exists ! \ y \in \mathbb{R}, y > 0 : y^n = x, y = \sqrt[n]{x}$

Доказательство. 1. Единственность.

Пусть
$$y_2>y_1:y_2^n=x=y_1^n\Rightarrow y_2^n-y_1^n=0$$
 $>0 >0 (y_2-y_1)\cdot (y_2^{n-1}+y_2^{n-2}\cdot y_1+\ldots+y_1^{n-1})=0$ — противоречие.

2. Существование.

Пусть
$$E = \{t \in \mathbb{R} : t \ge 0, t^n < x\}$$

$$0 \in E \Rightarrow E \neq \emptyset$$

Положим $t_0 = 1 + x, t_0^n = (1 + x)^n$

$$\sum_{k=0}^{n}C_{n}^{k}x^{k}=1+nx+\ldots>x\Rightarrow E$$
 — ограничено сверху.

Пусть $y=\sup E$ (она существует по теореме о Существовании супремума).

• Допустим, что $y^n < x$. Возьмем h: 0 < h < 1 и $h < \frac{x-y^n}{(1+y)^n-y^n}$ Тогла

Гогда
$$(y+h)^n = \sum_{k=0}^n C_n^k y^{n-k} h^k =$$

$$= y^n + \sum_{k=1}^n C_n^k y^{n-k} h^k =$$

$$= y^n + h \sum_{k=1}^n C_n^k y^{n-k} h^{k-1} < y^n + h \sum_{k=1}^n C_n^k y^{n-k} =$$

$$= y^n + h \cdot ((1+y)^n - y^n) < (y+1)^n - y^n < y^n + x - y^n = x$$

— у не вехрняя граница.

• Допустим, что $y^n > x$. Возьмем $k: 0 < k < 1, k < \frac{y^n - x}{(1+y)^n - y^n}$ и k < y. Тогда аналогично с $y^n < x$ получаем, что y - k — верхняя граница E, что противоречит тому, что $y = \sup E$.

Значит $y^n = x$.

Лекция 3: Степень, логарифм, десятичные дроби. Последовательности.

28.09.2023

2.2 Неравенство Бернулли

Теорема 16 (Неравенство Бернулли). Пусть x > -1 и $n \in \mathbb{N}$. Тогда $(1+x)^n \ge 1+nx$.

Докажем по индукции. При n=1 неравенство очевидно. Пусть оно верно для n=k. Тогда

$$(1+x)^{k+1} = (1+x)^k(1+x) \ge (1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x.$$

Последнее неравенство выполнено, поскольку $kx^2 \ge 0$.

2.3 Определение степени и логарифма

Определение 16. Пусть $a>0,\,m,n\in\mathbb{Z},m\neq 0; r=\frac{n}{m}$. Тогда $a^r=(a^{\frac{1}{m}})^n$. Если m>0, то: $a^m=a\cdot a\cdot\ldots\cdot a$ Если m<0, то $a^m=\frac{1}{a^{|m|}}$.

Определение 17. Пусть
$$p \in \mathbb{Q}, p \neq 0, a > 1$$
 Тогда $a^p = \sup\{a^r : r \in \mathbb{Q}, r \neq 0, r < p\}$ $a^0 = 1$

Определение 18. Пусть $a>1, \alpha \in \mathbb{R}$ $E=\{a^r: r \in \mathbb{Q}, r<\alpha, r\neq 0\}$ Тогда $\sup E=a^\alpha.$ И $\forall a \in \mathbb{R}: 0< a<1: a^\alpha=(\frac{1}{a})^{-\alpha}$

Определение 19. Пусть
$$a>0, a\neq 0, x>0$$
. Тогда Если $a>1:\log_a x=\sup\{r\in\mathbb{Q}:a^r< x\}.$ Если $0< a<1:\log_a x=-\log_{\frac{1}{a}}x$

Теорема 17. (Без доказательства) Для степени и логарифма справед-

ливы все ранее встречавшиеся свойства. (имеется в виду школьный курс)

Глава 3

Последовательности

Определение 20. Пусть X — множество, $X \neq \emptyset$. Тогда последовательностью элементов множества X называется функция $f: \mathbb{N} \to X$. $x_1, x_2, \ldots, x_n \ldots; x_n \in X$ Последовательность — $\{x_n\}_{n=1}^{\infty}$

3.1 Сопоставление вещественным числам десятичных дробей

Алгоритм. (Построение дроби по числу)

Рассматриваем только $x > 0, x \in \mathbb{R}$

Возьмем $n_0 \in \mathbb{Z}_+ : n_0 \le x, n_0$ — максимальное число с таким свойством.

- Если $n_0 = x$ алгоритм закончен.
- Если $n_0 < x$ продолжаем: выбираем $n_1 \in \mathbb{Z} : n_0 + \frac{n_1}{10} \le x$

Аналогично с n_0 , проверяем равенство с х. Так вплоть до n_k : $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}\leq x$

Если ни на одном шаге равенство не выполняется, то задаем последовательность:

$$\{x_n\}_{n=0}^{\infty} = n_0, \frac{n_1}{10}, \frac{n_2}{10^2}, \dots$$

Теорема 18. (О супремуме десятичных дробей) Рассмотрим $E=\{r: r=\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}, k\in\mathbb{N}\}$ Тогда $\sup E=x$ (из алгоритма).

Доказательство. Так как $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x$, то $\sup E\leq x$ Предположим, что $\sup E< x$. Тогда $\exists r:r=x-\sup E>0$. Выберем такое k, что $\frac{1}{k^9}< r\Leftrightarrow k>\frac{1}{r^9}$. $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x< n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k+1}{10^k}\Rightarrow n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}> x-\frac{1}{10^k}> x-r=\sup E$, значит

$$x = \sup E$$

Лемма 1. (доказать самостоятельно) Пусть есть $E\subset\mathbb{R}, a\in\mathbb{R}, E_a=\{x+a:x\in E\}$ Тогда $\sup E_a=a+\sup E$

Дальше шла какая-то теорема, смысл которой я не понял. Если найдете адекватную запись или сможете объяснить — пишите \bigcirc \smile \bigcirc

3.2 Предел последовательности

Определение 21. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность вещественных чисел. Тогда $a\in\mathbb{R}$ называется пределом последовательности, если $\forall \varepsilon>0 \; \exists N: \forall n>N: |x_n-a|<\varepsilon.$

Замечание. $\forall x,y,z \in \mathbb{R}: |z-x| \leq |z-y| + |y-x|$

Определение 22. Пусть X — множество, функция ρ : $\rho: X \times X \to \mathbb{R}$ X — метрическое пространство, если: $\forall a,b \in X: \rho(a,b) \geq 0$ И выполнены следующие свойства:

- 1. $\rho(a,b) = 0 \Leftrightarrow a = b$
- 2. $\rho(a, b) = \rho(b, a)$
- 3. $\rho(a,b) \le \rho(a,c) + \rho(c,b)$

Тогда ρ — метрика X.

Пример. \mathbb{R} — метрическое пространство, $\rho(x,y) = |x-y|$

Определение 23. Пусть X — метрическое пространство, $a \in X, \{x_n\}_{n=0}^{\infty}, x_n \in X$ $\lim_{n \to \infty} x_n = a, \text{ если } \forall \varepsilon > 0 \; \exists N : \forall n > N : \rho(x_n, a) < \varepsilon$

Теорема 19. (Единственность предела) Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} x_n = b$, то a=b

Доказательство. Пусть $a \neq b$. Тогда $\delta = \rho(a,b) > 0$. Положим $\varepsilon = \frac{\delta}{4}$.

- 1. Так как $\underset{n \to \infty}{x_n} \to a: \exists N_1: \forall n > N_1: \rho(x_n,a) < \varepsilon$
- 2. И так как $\underset{n\to\infty}{x_n} \to b: \exists N_2: \forall n>N_2: \rho(x_n,b)<\varepsilon.$

Пусть $n = N_1 + N_2 + 1$. Тогда для n выполнены (1) и (2) Имеем $0 < \delta = \rho(a,b) \le \rho(a,x_n) + \rho(x_n,b) < \varepsilon + \varepsilon = \frac{\delta}{2}$ — противоре-

Теорема 20. (Ограниченность сходящейся последовательности) X метрическое пространство с метрикой ρ

$$x_n \in X, a \in X$$
 Пусть $x_n \to a$. Тогда $\exists \ R > 0 : \forall n \in \mathbb{N} : \rho(x_n, a) < R$

Доказательство. Возьмем

$$\varepsilon = 1 \Rightarrow \exists N : \forall n > N : \rho(x_n, a) < 1 \ (1)$$
 Определим R как $R = \max(\rho(x_1, a) + 1, \rho(x_2, a) + 1, \dots, \rho(x_N, a) + 1, 1)$ (2)

Тогда:

- если n > N, то из (1) следует (2), значит $R \ge 1$
- если $1 \le n \le N$, то $R \ge \rho(x_n, a)$

В обоих случаях R удовлетворяет условию теоремы.

3.3 Арифметические операции над пределами

Свойства. Для $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, $c \in \mathbb{R}$ справедливы следующие свойства:

- 1. $\forall n \in \mathbb{N} : x_n = a \Rightarrow \lim_{n \to \infty} x_n = a$
- $2. \ c \cdot \lim_{n \to \infty} x_n = c \cdot a$
- $3. \ x_n + y_n \underset{n \to \infty}{\longrightarrow} a + b$
- 4. $x_n \cdot y_n \underset{n \to \infty}{\longrightarrow} a \cdot b$

Доказательство. 1. $\forall \varepsilon > 0, \forall n > 1: |x_n - a| = |a - a| = 0 < \varepsilon$

- 2. $\forall \varepsilon > 0 \exists N : \forall n > N : |x_n a| < \varepsilon \Rightarrow |cx_n ca| = |c(x_n a)| =$ $|c||x_n-a|<|c|\varepsilon$
- $3. \begin{cases} \forall \varepsilon_1 > 0 \exists N_1 : \forall n > N_1 : |x_n a| < \varepsilon_1 \\ \forall \varepsilon_2 > 0 \exists N_2 : \forall n > N_2 : |y_n b| < \varepsilon_2 \end{cases} \Rightarrow \text{при } n > N_1 + N_2 + 1 : |x_n + y_n a b| \leq |x_n a| + |y_n b| < \varepsilon_1 + \varepsilon_2 \end{cases}$
- 4. Аналогично (3) при $n > N_1 + N_2 + 1$: $|x_n y_n ab| = |x_n y_n ay_n + y_n ay_n|$ $|ay_n - ab| \le |x_n y_n - ay_n| + |ay_n - ab| = |x_n - a||y_n| + |a||y_n - b|$ т.к. $\lim_{n\to\infty}y_n=b,$ то $\exists R: \forall n: |y_n|\leq R$ (из предыдущей теоремы)

Тогда $|x_n - a||y_n| + |a||y_n - b| < \varepsilon_1 R + |a|\varepsilon_2$

Лекция 4: Продолжение

27.09.2023

Свойства. (Продолжение)

5
$$x_n \neq c \ \forall n, x_n \rightarrow a, a \neq 0 = > \frac{1}{x_n} \rightarrow \frac{1}{a}$$

$$6 \begin{cases} x_n \to a \text{из п. 5} \\ y_n \to b \end{cases} \Rightarrow \frac{y_n}{x_n} \to \frac{a}{b}$$

$$7 \ x_n \le y_n \forall n, x_n \to a, y_n b \Rightarrow a \le b$$

Доказательство. (5, 6, 7)

5 І. Возьмем $\varepsilon_0 = \frac{|a|}{2} > 0$, тогда:

$$\exists N : \forall n > N : |x_n - a| < \varepsilon_0 \Rightarrow |x_n| \ge |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2}$$

II.
$$\forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : |x_n - a| < \varepsilon$$

 $N_0 = max(N_1,N)$. При $n > N_0$ получаем:

$$\left| \frac{1}{x_n} - \frac{1}{a} \right| = \left| \frac{a - x_n}{x_n \cdot a} \right| = \frac{1}{|a|} \cdot \frac{1}{|x_n|} \cdot |x_n - a| < \frac{1}{(I), (II)} \cdot \frac{2}{|a|} \cdot \varepsilon$$

6
$$\frac{y_n}{x_n} = y_n \cdot \frac{1}{x_n}$$
 — далее по п. (4), (5).

7 Предположим, что
$$a>b$$
. Тогда $\varepsilon_0=\frac{a-b}{2}>0\Rightarrow\begin{cases}\exists N_1:\forall n>N_1:|x_n-a|<\varepsilon_0\\\exists N_2:\forall n>N_2:|y_n-b|<\varepsilon_0\end{cases}$ = $\forall n>N_1+N_2+1:y_n<\varepsilon_0+b=b+\frac{a-b}{2}=a-\frac{a-b}{2}=a-\varepsilon_0<$ $x_n\Rightarrow y_n< x_n$ — противоречие с условием.

$$\forall n > N_1 + N_2 + 1 : y_n < \varepsilon_0 + b = b + \frac{a-b}{2} = a - \frac{a-b}{2} = a - \varepsilon_0 < x_n \Rightarrow y_n < x_n$$
— противоречие с условием.

Замечание. (Различные промежутки)

- 1. $(a,b) = \{x \in R : a < x < b\}$ интервал (открытый промежуток)
- $2. \ [a,b] = \{x \in R : a \le x \le b\} \ \ \text{замкнутный промежуток}$ $3. \ [a,b) = \{x \in R : a \le x < b\} \ \ \text{полуоткрытый промежуток}$
- 4. $(a, b] = \{x \in R : a < x \le b\}$ полуоткрытый промежуток

3.4 Расширенное множество вещественных чисел

Определение 24. $\overline{R} = R \cup \{+\infty, -\infty\}$ — расширенное множество вещественных чисел. При этом:

$$\forall x \in \mathbb{R} : x < +\infty, x > -\infty$$

Замечание. (Еще промежутки)

1.
$$(a, \infty) = \{x \in \mathbb{R} : x > a\}$$

$$[a, \infty) = \{x \in \mathbb{R} : x > a\}$$

2.
$$[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$$

3. $(-\infty, a] = \{x \in \mathbb{R} : x < a\}$

4.
$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

Свойства. (Продолжение свойств пределов)

$$8 \begin{cases} \forall n: x_n \leq y_n \leq z_n \\ x_n \to a \\ z_n \to a \end{cases} \Rightarrow y_n \to a - \text{теорема о двух миллиционерах}$$

Доказательство.
$$\begin{cases} \forall \varepsilon > 0: \exists N_1: \forall n > N_1: |x_n - a| < \varepsilon \Leftrightarrow x \in (a - \varepsilon, a + \varepsilon) \\ \forall \varepsilon > 0: \exists N_2: \forall n > N_2: |z_n - a| < \varepsilon \Leftrightarrow z \in (a - \varepsilon, a + \varepsilon) \end{cases}$$

$$\forall n > \max(N_1, N_2):$$

$$a - \varepsilon < x_n \leq y_n \leq z_n < a + \varepsilon \Rightarrow |y_n - a| < \varepsilon$$

3.5 Бесконечные пределы

Определение 25. (Бесконечные пределы)

• $\{x_n\}_{n=1}^{\infty}, x_n \to \infty, n \to \infty$ $\lim_{n\to\infty} x_n = +\infty$, если:

 $\forall L \in \mathbb{R} \ \exists N : \forall n > N : x_n > L$

• $\{y_n\}_{n=1}^{\infty}, y_n \to -\infty, n \to \infty$

 $\lim_{n\to\infty}y_n=-\infty$, если:

 $\forall L \in \mathbb{R} : \exists N : \forall n > N : y_n < L$ (возможно сокращение записи n-> далее.)

3.6 Единообразная запись определения пределов

Определение 26. Окрестостью вещественного числа a называется любой интервал $(a - \varepsilon, a + \varepsilon)$, где $\varepsilon > 0$ (обозначается как $\omega(a)$).

Определение 27. Окрестность
$$+\infty:(L,+\infty), L\in\mathbb{R}$$
 Окрестность $-\infty:(-\infty,L), L\in\mathbb{R}$

Определение 28. Пусть $\{x_n\}_{n=1}^{\infty}$, тогда $x_n \to a$, если: $\forall \omega(\alpha): \exists N: \forall n > N: x_n \in \omega(\alpha)$

Свойства. (Доказать самостоятельно)

Пусть $\{a_n\}_{n=1}^{\infty}, a \to +\infty, \{b_n\}_{n=1}^{\infty}, b \to -\infty,$ тогда:

1.
$$c > 0 : ca_n \to +\infty, cb_n \to -\infty$$

 $c < 0 : ca_n \to -\infty, cb_n \to +\infty$

2.
$$x_n \to x, x \in \mathbb{R} \cup \{+\infty\} \Rightarrow a_n + x_n \to +\infty$$

 $y_n \to y, y \in \mathbb{R} \cup \{-\infty\} \Rightarrow b_n + y_n \to -\infty$

3. Возьмем x_n, y_n из п. (2), тогда:

$$x > 0 \Rightarrow a_n x_n \to +\infty, b_n x_n \to -\infty$$

 $y < 0 \Rightarrow a_n y_n \to -\infty, b_n y_n \to +\infty$

4. Если $\forall n: a_n \neq 0, b_n \neq 0$, тогда:

$$\frac{1}{a_n} \to 0$$

$$\frac{1}{b_n} \to 0$$

Если
$$x_n > 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to +\infty$$

Если
$$x_n < 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to -\infty$$

5.
$$\forall n : x_n \leq y_n, x \to \alpha, y_n \to \beta; \alpha, \beta \in \overline{\mathbb{R}} \Rightarrow \alpha \leq \beta$$

6.
$$\begin{cases} \forall n : x_n \leq y_n \leq z_n \\ x_n \to \alpha, \alpha \in \mathbb{R} \\ z_n \to \alpha \end{cases} \Rightarrow y_n \to \alpha$$

Замечание. $+\infty = +\infty$

$$-\infty = -\infty$$

$$-\infty < +\infty$$

Доказательство. (2, 6)

$$2 \begin{cases} x \in \overline{\mathbb{R}} \Rightarrow \exists M : \forall n : |x_n - x| < M \Rightarrow x_n > x - M \\ \forall L \in \overline{\mathbb{R}} : \exists N : \forall n > N : a_n > L \end{cases} \Rightarrow a_n + x_n > L + x - M$$
, где правая часть — любое число.

$$6 \ \forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$
$$\forall \varepsilon > 0 : \exists N_2 : \forall n > N_2 : z_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$
$$N_0 = \max(N_1, N_2)$$

$$\forall n > N_0 : x_n \le y_n \le z_n \Rightarrow y_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

3.7 Асимпотика

Определение 29. (О-большая и о-малая)

- 1. $x_n = o(1)$, если $x_n \to 0$
- 2. $y_n = O(1)$, если $\exists C : \forall n : |y_n| \le C$
- 3. Пусть $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \forall n: b_n \neq 0$, тогда: $a_n = o(b_n)$, если $\frac{a_n}{b_n} \to 0$
- 4. Пусть есть $\{c_n\}, \{d_n\}$, тогда: $c_n = O(d_n),$ если $\exists C: |c_n| \leq C|d_n|$

Замечание. Это не равенство в привычном смысле, следует читать его только слева направо.

3.8 Монотонные последовательности

Определение 30. (монотонные последовательности)

- $\{a_n\}_{n=1}^{\infty}$ монотонно возрастает, если $\forall n: a_n \leq a_{n+1}$ (возрастает строго если $a_n < a_{n+1}$)
- $\{b_n\}_{n=1}^{\infty}$ монотонно убывает, если $\forall n: b_n \leq b_{n+1}$

Замечание. Говорят, что поледовательнотсть c_n монотонна, если она либо монотонно возрастает, либо монотонно убывает.

Теорема 21. (Теорема о пределе монотонной последовательности)

- Пусть есть последовательность $\{c_n\}_{n=1}^{\infty}$, тогда $\exists \lim_{n \to \infty} c_n \in \overline{\mathbb{R}}$.
- Для того, чтобы монотонно возрастающая последовательность имела конечный предел, необходимо и достаточно, чтобы последовательность была ограничена сверху.
- Для того, чтобы монотонно убывающая последовательность имела конечный предел необходимо и достаточно, чтобы последовательность была ограничена снизу.

При этом справелдивы неравенства:

- $\forall m: c_m \leq \lim_{n \to \infty} c_n$ если последовательность возрастает. (или < если строго возрастает)
- $\forall m : c_m \ge \lim_{n \to \infty} c_n$ если последовательность убывает.

Доказательство. 1. Предположим, что проследовательность c_n не ограничена сверху, тогда:

$$\forall L \in \mathbb{R} : \exists N : c_N > L$$

$$\forall n>N: c_n\geq c_{n-1}\geq c_{n-2}\geq ...\geq c_N+1\geq c_N>L,$$
 значит $c_n>L$

Значит по определению предела: $\lim c_n = +\infty$

2. Предположим теперь, что последовательность c_n возрастает и ограничена сверху, тогда:

$$\begin{cases} c_n \le c_{n+1} \\ \exists M : \forall n : c_n \le M \end{cases}$$

Пусть $E = \{ \alpha \in \mathbb{R} : \exists n \in \mathbb{N} : \alpha = c_n \}$ — множество из всех элементов последовательности c_n .

Значит E — ограничено сверху. Положим $C = \sup E$, тогда имеем $\forall n: c_n \leq C$

 $\forall \varepsilon > 0: C - \varepsilon$ — не верхняя граница, значит $\exists N: c_N > C - \varepsilon \Rightarrow \forall n > N: c_n \geq c_{n-1} \geq \ldots \geq c_N > C - \varepsilon \Rightarrow C - \varepsilon < c_n \leq C < C + \varepsilon \Rightarrow |c_n - C| < \varepsilon \Rightarrow \lim_{n \to \infty} c_n = C$

В обратную сторону: если $\exists \lim_{n\to\infty} c_n = C \in \mathbb{R} \Rightarrow \exists M: \forall n: |c_n - C| < M \Rightarrow \forall n: c_n \leq C + M$

3. Доказательство для убывающей последовательности аналогично.

Теорема 22. (Теорема о вложенных промежутках)

Пусть
$$\forall n : [a_n, b_n] \supset [a_{n+1}, b_{n+1}]$$
 и $b_n - a_n \underset{n \to \infty}{\longrightarrow} 0$.

Тогда $\exists ! c : \forall n : c \in [a_n, b_n]$

Доказательство. 1. существование

имеем неравенства:

$$\forall n: \begin{cases} a_n \leq a_{n+1} \\ b_n \geq b_{n+1} \\ a_n < b_n \end{cases} \Rightarrow a_n < b_1, b_n > a_1$$

Тогда в силу возрастания a_n и убывания b_n по предыдущей теореоме $\exists a=\lim_{n\to\infty}a_n$ и $\exists b=\lim_{n\to\infty}b_n$

По свойству перехода к пределу в неравенствах: $a_n < b_n \Rightarrow a \leq b$

Имеем
$$\begin{cases} \forall n: a_n \geq a \\ \forall n: b \leq b_n \end{cases} \Rightarrow \forall n: b-a \leq b_n - a_n \Rightarrow$$

$$\Rightarrow 0 \leq \lim_{n \to \infty} (b-a) \leq \lim_{n \to \infty} (b_n - a_n) = 0 - \text{в силу условия}.$$

Значит
$$b-a=0 \Rightarrow a=b \stackrel{def}{=} c$$

Имеем $a_n \leq c \leq b_n$, т.е. $c \in [a_n,b_n]$

2. Единственность Если бы
$$\exists c_0 \in [a_n,b_n]$$
, то $|c_0-c| \leq b_n-a_n \Rightarrow |c_0-c| < \lim_{n \to \infty} (b_n-a_n)=0 \Rightarrow c_0=c$

Замечание. Условие замкнутости промежутков существенно: Имеем $(0,\frac{1}{n+1}]\supset (0,\frac{1}{n}],\,\frac{1}{n}-0\underset{n\to\infty}{\to}0$

Имеем
$$(0, \frac{1}{n+1}] \supset (0, \frac{1}{n}], \frac{1}{n} - 0 \xrightarrow[n \to \infty]{}$$
 (Но $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}] = \emptyset$

3.9 Число e

Теорема 23. Пусть
$$x_n=(1+\frac{1}{n})^n$$
 и $y_n=(1+\frac{1}{n})^{n+1}$ Тогда $\forall n:x_n< y_n$ и $x_n\to e,y_n\to e,2< e<3$

Доказательство. Рассмотрим:

$$\frac{y_{n-1}}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n}{n+1}\right)^{n+1} \cdot \left(\frac{n}{n-1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n-1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot$$

$$= \frac{n}{n+1} \cdot \left(\frac{n^2}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(\frac{n^2 - 1 + 1}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^n$$

Возьмем за $x = \frac{1}{n^2 - 1}$, тогда по неравенству Бернулли:

$$\frac{n}{n+1}\cdot(1+\frac{1}{n^2-1})^n>\frac{1}{n+1}\cdot(1+\frac{n}{n^2-1})=\frac{1}{n+1}\cdot\frac{n^2-1+n}{n^2-1}=$$

$$\frac{n^3+n^2-n}{n^3+n^2-n-1}>1$$

$$\Rightarrow y_n< y_{n-1}\Rightarrow y_n-\text{ строго монотонно убывающая.}$$

$$\frac{n^3 + n^2 - n}{n^3 + n^2 - n - 1} > 1$$

Теперь рассмотрим x_n : (считаем, что $n \ge 3$)

$$x_n = \left(1 + \frac{1}{n}^n\right) = \sum_{k=0}^n C_n^k \left(\frac{1}{n}^n\right)^k = 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n C_n^k \frac{1}{n^k} = 1 + n$$

(Продолжение на следующей лекции)

Лекция 5: Пролоджение

Доказательство. (Продолжение доказательства)

05.10.2023

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)$$

$$(2)$$

$$\forall r > 0 : 1 - \frac{r}{n+1} > 1 - \frac{r}{n} \Rightarrow \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) > \left(1 - \frac{k-1}{n}\right) \cdot \dots \cdot \left(1 - \frac{1}{n}\right)$$

$$(1)$$

$$\forall r > 0: 1 - \frac{r}{n+1} > 1 - \frac{r}{n} \Rightarrow (1 - \frac{k-1}{n+1}) \cdot \dots \cdot (1 - \frac{1}{n+1}) > (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n}) \cdot \dots \cdot ($$

$$(1),(2) \Rightarrow x_{n+1} > x_n$$

Примем во внимание неравенства для y_n и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$\Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1 \tag{4}$$

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$\exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$\exists \lim_{n \to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

$$\lim_{n \to \infty} (1 + \frac{1}{n}) \cdot \lim_{n \to \infty} (1 + \frac{1}{n})^n = 1 + \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

.

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

$$e = 2.718...$$

Замечание. Число ${\rm e}-{\rm одно}$ из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья — это π

3.10 Критерий Коши, существование конечного предела последовательности

Теорема 24. Пусть имеется некоторая последовательность $\{x_n\}_{n=1}^{\infty}$. Для того чтобы $\exists \lim_{n\to\infty} x_n \in \mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon > 0, \exists N: \forall m, \forall n > N$:

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует. Это так называемая теорема существования.

Примечание. Необходимость означает что предел существует.

Доказательство. Докажем необходимость. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon>0 \exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow$$
при $n > N, m > N$

$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс A — это

$$A = \{ \alpha \in \mathbb{R} : \exists N : \forall n > N : x_n > \alpha \}$$
 (10)

Вернхний класс A'' — это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

• Возьмём $\varepsilon=1$, тогда: $\exists N_0: \forall m,n>N_0: |x_m-x_n|<1$ В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) \Rightarrow x_{N+1} - 1 \in A \tag{12}$$

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A$$
, то-есть, $x_{N+1} + 1 \in A'$ (13)

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

• Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta \in A'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N : \forall n > Nx_n > \alpha \tag{14}$$

Если бы для любого $\forall n > N$ выполнялось $x_n > \beta$, то $\beta \in A$. Однако, это не так, т.к. $\beta \in A'$.

То-есть,

$$\exists n_0 > N : x_{n_0} \le \beta \tag{15}$$

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение.

Теперь можно применить теорему Дедекинда. По теореме Дедекинда:

$$\exists a \in R : \forall \alpha \in A, \forall \beta \in A' : \alpha < a < \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$, тогда:

$$(8) \Rightarrow \exists N$$
 такое, что выполнено (8)

m = N + 1

Тогда, $(8) \Rightarrow \forall n > N+1$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon) \tag{17}$$

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon \text{ if } x_n < x_{N+1} + \varepsilon$$

$$(18)$$

Примечание. при $\forall n > N+1$, выполнена правая счасть неравенства (17) $x_n > x_{N+1} - \varepsilon$.

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит A', потому что если бы принадлежало A, должно было бы быть другое неравенство в другую сторону

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

a (20) $\Rightarrow x_{N+1} - \varepsilon \text{ как } \beta$,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon$$
 (21)

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n > N+1$.

Поэтому, (21) и (17) \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела. По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказана.

3.11 Подпоследовательности

Определение 31. Пусть есть отображение $f: \mathbb{N} \to \mathbb{R}$ и нетождественное отображение $g: \mathbb{N} \to \mathbb{N}$. При этом выполняется: $\forall n < m: g(n) < g(m)$

Тогда последователность отображений $f(g): \mathbb{N} \to \mathbb{R}$ — подпоследовательность.

Примечание. $\{x_n\}_{n=1}^{\infty}$

Берем $g(1)=n_1,g(2)=n_2,\ldots,g(k)=n_k$ и получаем подпоследовательность:

$$x_{n_1}, x_{n_2}, \ldots, x_{n_k}$$

Обозначение. Если эти номера определены, то последовательность обозначают как: $\{x_{n_k}\}_{k=1}^{\infty}$

Определение 32. Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A\in\overline{\mathbb{R}}$ является пределом, то есть $x_{n_k}\to A$, при $k\to\infty$, если $\forall\Omega(A)\ \exists K: \forall k>K: x_{n_k}\in\Omega(A)$

Теорема 25. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$ и пусть мы имеем любую подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$, выбранную из этой последовательности.

Тогда $x_{n_k} \to A$, при $k \to \infty$.

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N : \forall n > N : x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает:

$$n_1 \ge 1, n_2 > n_1, n_2 \ge 2$$

Тогда по индукции:

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То есть, если мы выберем подпоследовательность, то n_k будет больше или равно k. Начиная с какого-то индекса, будет строго больше.

Возьмём k = N.

Тогда, при $k>N:n_k\geq k>N$

То есть, при $k > N : x_{n_k} \in \Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$

Теорема 26. (Больцано-Вейерштрасса)

Пусть имеется некоторая последовательность $\{x_n\}_{n=1}^{\infty}$, которая ограничена, т.е. $\forall n: a \leq x_n \leq b$.

Тогда: $\exists \alpha \in [a,b]$ и $\{x_{n_k}\}_{k=1}^\infty$ такие, что: $x_{n_k} \to \alpha$ при $k \to \infty$

Замечание. Такое α может быть только одним, если последовательность ограниченна и имеет некоторый предел.

Доказательство. определим последовательность промежутков.

$$I_1 = [a, b]$$

$$I_2' = [a, \frac{a+b}{2}], I_2'' = [\frac{a+b}{2}, b]$$

Рассмотрим множества номеров n:

 $\begin{cases} \text{таких, что} : x_n \in I_2' \\ \text{таких, что} : x_n \in I_2'' \end{cases} - \text{какое-то из них, или оба бесконечны}$

Если бы первое и второе множество п выше было конечно, то мы получили бы, что последователность, лежащая в I_1 конечна, что противоречит условию. Тогда возьмем I_2 — одно из множеств из I_1', I_2''

Примечание. Это может быть либо I'_1 , либо I'_2 , либо I''_2 если оба удовлетворяем, то любой возьмем. Произвольно. Можно например всегда брать только I_2' , но по крайней мере для одного, таких номеров будет бесконечно много.

Имеется некоторое множество натуральных чисел, таких что x_n принадлежит I_2

Пусть n_1 - минимальное $n:x_n\in I_2$

Возьмем $I_2=[a_2,b_2]$ и поделим этот отрезок на: $I_3'=[a_2,\frac{a_2+b_2}{2}]$ $I_3''=[\frac{a_2+b_2}{2},b_2]$

$$I_3' = [a_2, \frac{a_2 + b_2}{2}]$$

$$I_3'' = \left[\frac{a_2 + b_2}{2}, b_2\right]$$

По крайней мере в одном из этих отрезков тоже будет находится бесконечное множество номеров n.

Пусть I_3 - тот из I_3' , I_3'' , для которого \exists бесконечно n таких что

 n_2 - минимальное n такое, что $x_n \in I_3$, и $n_2 > n_1$.

И так далее по индукции. Предположим, что мы уже выбрали промежутки

$$I_1 \supset I_2 \supset \cdots \supset I_m$$
 (3')

$$I_{k+1} = \frac{1}{2} \cdot (\frac{b-a}{2^k}) \tag{3'}$$

$$n_1 < n_2 < \dots n_m < n_{m+1} \tag{4}$$

$$x_{n_1} \in I_2, x_{n_2} \in I_2, \dots x_{n_{m-1}} \in I_m$$
 (5)

Предположим, что по индукции такое построение уже произошло Пусть

$$I_m = [a_m, b_m] \tag{6}$$

Существует бесконечно много n, таких что

$$x_n \in I_m \tag{7}$$

Предположим, что это проделано для n и будем выполнять индукционный шаг.

$$I'_{m+1} = [a_m, \frac{a_m + b_m}{2}]$$

$$I_{m+1}'' = \left[\frac{a_m + b_m}{2}, b_m\right]$$

Мы снова взяли и разделили промежуток $[a_m, b_m]$ пополам.

Рассмотрим множество номеров в множестве n таких, что $x_n \in I'_{m+1}$

и
п такие что $x_n \in I''_{m+1}$ Тогда по определению I_{m+1} - тот из I'_m, I''_m , для которого \exists бесконечно много п таких что $x_n \in I_{m+1}$

Пускай n_{m+1} - это наименьшее

н такое что $x_{n_m} \in I_{m+1}$ и $n_{m+1} > n_m$

И так мы получили в итоге этих рассуждений:

$$n_1 < n_2 < \cdots < n_m < \dots$$

$$x_{n_m} \in I_{m+1}$$

$$(3) \Rightarrow$$
 длина $I_m \to 0$, при $m \to \infty$ (8)

Получается, что это вложенные промежутки.

По теореме о вложенных промежутках:

$$\exists!$$
 α τακοέ чτο $\alpha \in I_m \forall m$ (9)

$$(5) \Rightarrow x_{n_m} \in I_{m+1}$$

Точка α лежит на этом промежутке и точка с номером x_{n_m} лежит на этом же промежутке, справедилво неравенство:

$$|x_{n_m} - \alpha| \le \frac{b - a}{2^m} \tag{10}$$

$$\forall \varepsilon > 0: \exists k: \frac{b-a}{2^k} < \varepsilon \tag{11}$$

$$(10),(11)\Rightarrow |x_{n_m}-\alpha|<\varepsilon$$
при $m>k$

Таким образом мы доказали, что существует подпоследовательность у которой есть конечный предел.

$$a \in I_1$$
, r.e. $a \le \alpha \le \varepsilon$

3.12 Верхний и нижний предел последовательности

Определение 33. Пусть есть произвольная последовательность $\{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{R}$

Если $\{x_n\}_{n=1}^\infty$ не ограничена сверху, то верхний предел

$$\overline{\lim}_{n\to\infty} := +\infty$$

Если $\{x_n\}_{n=1}^{\infty}$ ограничена сверху, то верхний предел

$$\overline{\lim}_{n \to \infty} := \lim_{n \to \infty} (\sup \{x_m : m \ge n\})$$

Если $\{x_n\}_{n=1}^{\infty}$ не ограничена снизу, то нижний предел

$$\underline{\lim}_{n\to\infty}:=-\infty$$

Если $\{x_n\}_{n=1}^{\infty}$ ограничена снизу, то нижний предел

$$\underline{\lim}_{n \to \infty} := \lim_{n \to \infty} (\inf\{x_m : m \ge n\})$$

Таким образом,
если мы рассматриваем любую последовательность $x_n,$ то у неё существуют верхний и нижний предел.

Замечание. Нижний и верхний пределы в дальнейшем будут обозначаться как lim inf и lim sup соответственно. (простите, так удобней)

3.13 Свойства верхних и нижних пределов

Замечание. Пусть есть $\{x_n\}_{n=1}^{\infty}$.

Определим E_n как множество $\{x_m: m \geq n\}, h_n = \inf E_n, g_n = \sup E_n$. Справедилво неравенство:

$$h_n \leq g_n$$
, откуда получаем: $\liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n$

Теорема 27. Есть некоторая последовательность $\{x_n\}_{n=1}^{\infty},$ тогда:

$$\exists \lim_{n \to \infty} x_n = a \in \overline{R} \Leftrightarrow \liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n \tag{13}$$

Доказательство. Предположим, что существует предел. Хотим проверить, что верхний предел равен нижнему пределу.

$$\forall \varepsilon > 0 \exists N : \forall n > N | x_n - a | < \varepsilon$$

Посмотрим на определение g_n и h_n .

$$(14) \Rightarrow \text{ при } n > N : E_n \subset (a - \varepsilon, a + \varepsilon) \Rightarrow$$

$$\Rightarrow 0 \le \limsup x_n - \liminf x_n \le 2\varepsilon \tag{15}$$

Получается, что некоторое не отрицательное число не превосходит 2ε при любом положительном ε . Это может быть только тогда, когда это число равно 0.

$$(15) \Rightarrow limsupx_n = \lim \inf x_n = \lim x_n$$

В обратную сторону:

 $\forall n: g_n \le a, h_n \ge a$

Рассмотрим последовательности g_n, h_n , такие, что:

$$q_n \to a, h_n \to a$$

По определенено предела: $\begin{cases} \forall \varepsilon > 0 \ \exists N_1 : a - \varepsilon < g_n < a + \varepsilon \\ \forall \varepsilon > 0 \ \exists N_2 : a - \varepsilon < h_n < a + \varepsilon \end{cases} \Rightarrow$

При $N=\max(N_1,N_2)$ из этого следует, что $\forall n>N: |x_n-a|<arepsilon$

а это значит, что: $\exists \lim_{n \to \infty} x_n = a = \limsup x_n = \liminf x_n$

Лекция 6: Верхний и нижний пределы. Предел функции.

12.10.2023

Теорема 28. (свойства пределов) Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда справедливы следующие утверждения:

$$\exists N : \forall n > N : a_n < \limsup_{n \to \infty} a_n + \varepsilon \tag{1}$$

$$\forall N \exists n > N : a_n > \limsup_{n \to \infty} a_n - \varepsilon \tag{2}$$

$$\exists N_2 : \forall n > N_2 : a_n > \liminf_{n \to \infty} a_n - \varepsilon \tag{3}$$

$$\forall N_3 \exists n > N_3 : a_n < \liminf_{n \to \infty} a_n + \varepsilon \tag{4}$$

Доказательство. (Все пределы при $n \to \infty$)

Докажем только (1) и (2), другие свойства доказываются аналогично.

1. Возьмем $E_n = \{a_n : m \ge n\}$ и $g_n = \sup E_n$.

Тогда $\limsup a_n = \lim g_n$, и $\forall n : a_n \leq g_n$.

При этом $\exists N : \forall n > N : g_n < g_n + \varepsilon$

Имеем $\forall n > N : a_n \leq g_n < g_n + \varepsilon = \limsup a_n + \varepsilon$

2. Имеем $g_N = \sup E_N$ и $g_{N+1} \ge g_N$,

значит $\exists a_n \in E_{N+1} : a_n \geq g_n > g_n - \varepsilon \Rightarrow$

 $\Rightarrow a_n > \limsup a_n - \varepsilon$

Свойства. (Без доказательств)

Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$, тогда:

П

$$\exists \{a_{n_k}\}_{k=1}^{\infty} : a_{n_k} \underset{k \to \infty}{\to} \limsup a_n$$

$$\exists \{a_{n_l}\}_{l=1}^{\infty} : a_{n_l} \underset{l \to \infty}{\to} \liminf a_n$$

Теорема 29. (Последнее свойство) Пусть есть подпоследовательность

$$\{a_{n_m}\}_{m=1}^{\infty}: \exists \lim_{m\to\infty} a_{n_m} \in \overline{\mathbb{R}}$$

Тогда выполнено следующее неравенство:

$$\liminf_{n\to\infty} a_n \le \lim_{m\to\infty} a_{n_m} \le \limsup_{n\to\infty} a_n$$

Доказательство. Пусть $h_n = \inf E_n, g_n = \sup E_n$. Имеем неравенство:

$$h_{n_m} \le a_{n_m} \le g_{n_m} \Rightarrow \lim_{m \to \infty} h_{n_m} \le \lim_{m \to \infty} a_{n_m} \le \lim_{m \to \infty} g_{n_m}$$

В силу существования пределов у последовательностей g_n, h_n имеем:

$$\liminf_{n \to \infty} a_n \le \lim_{m \to \infty} a_{n_m} \le \limsup_{n \to \infty} a_n$$

Глава 4

Функции. Предел функции, монотонность, непрерывность

4.1 Предел функции

Определение 34. Пусть X — метричесткое простанство с метрикой ρ , $\alpha \in X$. Окрестностью точки α называется: $\omega(\alpha) = \{ x \in X : \forall \varepsilon > 0 : \rho(x, \alpha) < \varepsilon \}$

Определение 35. α — точка сгущения множества X, если: $\forall \varepsilon > 0 \ \exists x_1 \in X : x_1 \neq \alpha \land \rho(x_1, \alpha) < \varepsilon \Leftrightarrow \forall \omega(\alpha) \ \exists x_1 \in \omega(\alpha), x_1 \neq \alpha$

Определение 36. α — точка сгущения для $E \subset \overline{\mathbb{R}}$, если: $\forall \omega(\alpha) \; \exists b \in (E \cap \omega(\alpha)), b \neq \alpha$

Пример. $E = \mathbb{N}, +\infty$ — точка сгущения для E.

Теорема 30. Пусть X — метрическое пространство с метрикой $\rho, \alpha \in$ X — точка сгущения, тогда:

$$\exists \{x_n\}_{n=1}^{\infty}, x_n \underset{n \to \infty}{\to} \alpha, \ \forall x_n : x_n \neq \alpha, x_n \in X$$

Доказательство. Возьмем $x_1 \neq \alpha$, пусть $\varepsilon_1 = \rho(x_1, \alpha) > 0$. $\exists x_2 \neq \alpha$: $\rho(x_2,\alpha) < \frac{1}{2}\varepsilon_1$. Положим $\varepsilon_2 = \rho(x_2,\varepsilon)$.

Пусть уже выбрали выбрали x_1,\dots,x_n так, что $x_k \neq \alpha, 2 \leq k \leq$ $n, \varepsilon_k = \rho(x_k, \alpha) < \frac{1}{2} \varepsilon_{k-1}$ Тогда $\exists x_{n+1} \neq \alpha : \rho(x_{n+1}, \alpha) < \frac{1}{2} \varepsilon_n$.

Имеем
$$\varepsilon_n < \frac{1}{2}\varepsilon_{n-1} < \frac{1}{2^2}\varepsilon_{n-2} < \dots < \frac{1}{2^{n-1}}\varepsilon_1$$
, т.е. $\rho(x_n, \alpha) \underset{n \to \infty}{\to} 0 \Rightarrow$ $\Rightarrow x_n \underset{n \to \infty}{\to} \alpha$

Определение 37. (Предел функции) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция f: $X \to \mathbb{R}$ и $A \in \overline{\mathbb{R}}$, тогда:

$$f(x)\underset{x \to \alpha}{\to} A \Leftrightarrow \lim_{x \to \alpha} f(x) = A$$
, если выполнено:

$$\forall \omega(A) \ \exists \Omega(\alpha) : \forall x \in \Omega(\alpha), x \neq \alpha : f(x) \in \omega(A)$$

Теорема 31. (единственность предела) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $f:X\to\mathbb{R}$. Тогда:

$$\exists ! A \in \overline{\mathbb{R}} : \lim_{x \to \alpha} f(x) = A$$

Доказательство. Предположим, что есть $A,B\in\overline{\mathbb{R}},B\neq A$ и

$$\lim_{x \to \alpha} f(x) = A, \lim_{x \to \alpha} f(x) = B.$$

Тогда:
$$\exists \omega_1(A), \omega_2(B) : (\omega_1(A) \cap \omega_2(B)) = \emptyset$$

А также:
$$\begin{cases} \exists \Omega_1(\alpha) : \forall x \in \Omega_1(\alpha) : f(x) \in \omega_1(A) \\ \exists \Omega_2(\alpha) : \forall x \in \Omega_2(\alpha) : f(x) \in \omega_2(B) \end{cases}$$

Тогда:
$$\exists \omega_1(A), \omega_2(B) : (\omega_1(A) \cap \omega_2(B)) = \varnothing$$
А также:
$$\begin{cases} \exists \Omega_1(\alpha) : \forall x \in \Omega_1(\alpha) : f(x) \in \omega_1(A) \\ \exists \Omega_2(\alpha) : \forall x \in \Omega_2(\alpha) : f(x) \in \omega_2(B) \end{cases}$$
Рассмотрим $\Omega(\alpha) = \Omega_1(\alpha) \cap \Omega_2(\alpha)$:
$$\exists x \in \Omega(\alpha), x \neq \alpha : \begin{cases} f(x) \in \omega_1(A) \\ f(x) \in \omega_2(B) \end{cases}$$
— противоречие, т.к. $\omega_1(A) \cap \Omega_2(A) \in \varnothing$.

4.2 Односторонние пределы

Определение 38. Пусть есть $E = (p, q), p, q \in \mathbb{R}, a \in E, E_- = (p, a), E_+ =$ (a,q)

А также определены функции:

 $f: E \to \mathbb{R}$.

$$f_-:E_- o\mathbb{R},\quad f_-(x)=f(x),$$
 при $x\in E_-$

$$f_+: E_+ \to \mathbb{R}, \quad f_+(x) = f(x), \text{ при } x \in E_+$$

Тогда пределом справа функции f в точке a называется:

$$\lim_{x \to a+0} f(x) = c_+$$

А пределом слева функции f в точке a называется:

$$\lim_{x \to a-0} f(x) = c_-$$

Теорема 32. (обозначения из определения выше)

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$$

Доказательство.

$$\Rightarrow$$
: Пусть $\lim_{x \to a} f(x) = c$. Тогда: $\forall \omega(c) \; \exists \Omega(a) : \forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$ При этом $\begin{cases} \Omega(a) \cap E_+ \in \Omega(a) \cap E \\ \Omega(a) \cap E_- \in \Omega(a) \cap E \end{cases}$ $\forall x \in \Omega(a) \cap E$

Значит получаем
$$\begin{cases} \forall x \in \Omega(a) \cap E_+ : f(x) \in \omega(c) \\ \forall x \in \Omega(a) \cap E_- : f(x) \in \omega(c) \end{cases} \Rightarrow \lim_{x \to a + 0} f(x) = \lim_{x \to a - 0} f(x)$$

$$\Leftarrow$$
: Пусть $\lim_{x\to a+0} f(x) = \lim_{x\to a-0} f(x) = c$. Тогда:
$$\begin{cases} \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_1(a) \cap E_+, x \neq a : f(x) \in \omega(c) \\ \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_2(a) \cap E_-, x \neq a : f(x) \in \omega(c) \end{cases}$$
 Возьмем $\Omega(a) = \Omega_1(a) \cap \Omega_2(a)$ Имеем $((\Omega_1(a) \cap E_+) \setminus \{a\}) \cup ((\Omega_2(a) \cap E_-) \setminus \{a\}) = ((\Omega(a) \cap E) \setminus \{a\})$ Тогда справедливо: $\forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$

4.3 Сущестование предела

Теорема 33. (Соответствие предела функции пределу последовательности) Пусть есть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $F: X \to \mathbb{R}$.

И пусть $E\subset\overline{\mathbb{R}}, a$ — точка сгущения, определена функция $f:E\to\mathbb{R}$.

Рассмотрим последовательности:

$$\{F(x_n)\}_{n=1}^{\infty}, x_n \to \alpha, \forall n: x_n \neq \alpha$$
 $\{f(b_n)\}_{n=1}^{\infty}, b_n \to a, \forall n: b_n \neq a$ Тогда:

$$\exists \lim_{x \to \alpha} F(x) = A \Leftrightarrow \forall \{x_n\} : F(x_n) \underset{n \to \infty}{\longrightarrow} A$$

$$\exists \lim_{b \to a} f(x) = c \Leftrightarrow \forall \{b_n\} : f(b_n) \underset{n \to \infty}{\to} A$$

Доказательство. (Будем доказывать для метрического пространства, для множества E доказательство аналогично)

$$\Rightarrow$$
: Пусть $\lim_{x\to a} F(x) = A$. Тогда:

$$\forall \omega(A) \ \exists \Omega(\alpha) : \forall x \in \dot{\Omega}(\alpha) : F(x) \in \omega(A)$$

Поскольку
$$x_n \to \alpha$$
, то $\exists N : \forall n > N : x_n \in \Omega(\alpha)$

Имеем, что
$$\forall n > N : F(x_n) \in \omega(A) \Rightarrow F(x_n) \to A$$

 \Leftarrow : Предположим, что $\forall \{x_n\}: F(x_n) \to A$ — неверно. Тогда:

$$\exists \omega_0(A) : \forall \Omega_0(\alpha) \ \exists x \in \dot{\Omega}_0(\alpha) : F(x) \notin \omega_0(A)$$

Будем брать
$$\Omega_{1/n}(\alpha) = \{x \in X : \rho(x,\alpha) < \frac{1}{n}\}$$

$$\exists x_n \in \dots \Omega_{1/n}(\alpha) : F(x) \notin \omega_0(A)$$

Это означает, что $x_n \underset{n \to \infty}{\to} \alpha \Rightarrow F(x_n) \underset{n \to \infty}{\to} A$ — противоречие.

4.4 Свойства пределов функции

Свойства. (обозначения как в теореме выше) Для метрического пространства и для множества E:

- 1. $F(x) \equiv A \Rightarrow F(x) \to A, A \in \overline{\mathbb{R}}$
- 2. $\lim qF(x) = q \lim F(x), q \in \mathbb{R}$
- 3. $\lim(F(x) + G(x)) = \lim F(x) + \lim G(x)$
- 4. $\lim(F(x) \cdot G(x)) = \lim F(x) \cdot \lim G(x)$
- 5. $\lim \frac{1}{F(x)} = \frac{1}{\lim F(x)}$, если $\lim F(x) \neq 0$
- 6. $\lim \frac{F(x)}{G(x)} = \frac{\lim F(x)}{\lim G(x)}$, если $\lim G(x) \neq 0$
- 7. $\forall x : F(x) \le G(x) \Rightarrow \lim F(x) \le \lim G(x)$
- 8. $F(x) \leq G(x) \leq H(x)$ и $\lim F(x) = \lim H(x) \Rightarrow \exists \lim G(x) = \lim F(x)$

UPD: для множества E свойства аналогичны.

Доказательство. Все эти свойства доказываются аналогично свойствам пределов последовательностей, так как была доказана теорема о соответствии предела функции пределу последовательности.

Докажем 5 свойство для метрического пространства: Возьмем последовательность $\{x_n\}$ из теоремы.

По теореме:
$$F(x_n) \to A, A \neq 0$$

Получаем, что $\forall n : F(x_n) \neq 0 \Rightarrow \lim_{T \to \infty} \frac{1}{F(x_n)} = \frac{1}{A} \Rightarrow$
$$\Rightarrow \lim_{T \to \infty} \frac{1}{F(T)} = \frac{1}{A}$$

Лекция 7: Монотонность функции. Критерий Коши. Замечательные пределы.

19.10.2023

4.5 Монотонность функции

Определение 39. Пусть задана функция $f:E\subset\mathbb{R}\to\mathbb{R}$

Функция называвется (строго, если строгий знак) монотонно возрастающей, если:

 $\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$

И (строго, если строгий знак) монотонно убывающей, если:

 $\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$

Замечание. Если функция монотонна, то она либо возрастающая, либо убывающая.

Теорема 34. Пусть a — точка сгущения множества E и $\forall x \in E : x < a$. Задана функция $f: E \to \mathbb{R}, f$ — монотонна, тогда $\exists \lim_{x \to a} f(x) \in \overline{\mathbb{R}}$ Если f — монотонно возрастающая, то:

$$\lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \exists M : \forall x \in E : f(x) \le M \tag{1}$$

Если f — монотонно убывающая, то:

$$\lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \exists M : \forall x \in E : f(x) \ge M$$
 (2)

Пусть $a_1 \in \overline{\mathbb{R}}$ — точка сгущения множества E_1 и $\forall x \in E: x>a$. Если f — монотонно возрастающая, то:

$$\lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \exists M : \forall x \in E : f(x) \ge M$$
 (3)

Если f — монотонно убывающая, то:

$$\lim f(x) \in \mathbb{R} \Leftrightarrow \exists M : \forall x \in E : f(x) \le M \tag{4}$$

Доказательство. Докажем (1). Остальные доказываются аналогично. Пусть $\not\exists M$ из (1), тогда $\forall L>0: \; \exists x_0 \in E: f(x_0)>L \Rightarrow \forall x>x_0: f(x) \geq f(x_0)>L \Rightarrow f(x) \underset{x\to\infty}{\to} +\infty$

Пусть $\exists M \in \mathbb{R} : \forall x \in E : f(x) \leq M$. Пусть $c = \sup\{y \in \mathbb{R} : \exists x \in E : f(x) = y\}$. Тогда: $c \leq M, \forall x \in E : f(x) \leq c$. Возьмем $\forall \varepsilon > 0$, тогда $\exists x_1 \in E : f(x_1) > c - \varepsilon$. Имеем неравенство: $c - \varepsilon < f(x_1) \leq f(x) \leq c < c + \varepsilon \Rightarrow f(x) \underset{x \to \infty}{\to} c$, при этом $f(x) \leq \lim_{x \to \infty} f(x)$

4.6 Критерий Коши

Теорема 35. (Критерий Коши) Пусть есть множество $E\subset \mathbb{R},\, a\in \overline{\mathbb{R}}$ — точка сгущения E. Тогда:

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \forall \varepsilon > 0 \ \exists \omega(a) : \forall x_1, x_2 \in \dot{\omega}(a) \cap E : |f(x_2) - f(x_1)| < \varepsilon$$

Доказательство.

 \Rightarrow : Пусть $\lim_{x \to a} f(x) = c \in \mathbb{R}$.

Тогда $\forall \varepsilon > 0 \; \exists \omega(a) : \forall x \in \dot{\omega}(a) \cap E : |f(x) - c| < \frac{\varepsilon}{2}$ Имеем, что $\forall x_1, x_2 \in \dot{\omega}(a) \cap E : |f(x_2) - f(x_1)| = |(f(x_2) - c) - (f(x_1) - c)| \leq |f(x_2) - c| + |f(x_1) - c| < \varepsilon$

 \Leftarrow : Возьмем $\forall \{x_n\}_{n=1}^{\infty}, x_n \in E, x_n \neq a, x_n \underset{x \to \infty}{\to} a$. Возьмем окрестность из условия, тогда:

 $\exists N: \forall n>N: x_n\in \omega(a),$ значит, $\forall n,m>N, \varepsilon>0: |f(x_m)-f(x_n)|<\varepsilon$ — выполнен критерий Коши для последовательностей. А значит:

 $\exists \lim_{\substack{n \to \infty \\ \text{вательности сходятся к } c}} f(x_n) = c \in \mathbb{R}$ — необоходимо проверить, что все последовательности сходятся к c.

Предположим, что есть такая последовательность $\{x_n'\}_{n=1}^\infty, x_n' \in E, x_n' \neq a, x_n' \xrightarrow[x' \to \infty]{} a$, что $\lim_{n \to \infty} f(x_n') = c' \neq c$

Тогда возьмем последовательность: $\begin{cases} \overline{x}_{2n-1} = x_n \\ \overline{x}_{2n} = x_n' \end{cases}$

 $\overline{x}_n \to a\overline{x}_n \in E, \overline{x}_n \neq a$, тогда по критерию Коши $\lim_{n \to \infty} f(\overline{x}_{2n-1}) = \lim_{n \to \infty} f(\overline{x}_{2n}) = \overline{c}$, но $\lim_{n \to \infty} f(\overline{x}_{2n-1}) = \lim_{n \to \infty} f(x_n) = c$ противоречие.

4.7 Некоторые существенные неравенства

Свойство. (неравенство для $\ln(1+x)$) Пусть $0 < x \le \frac{1}{2}, n \in \mathbb{N} : \frac{1}{n+1} < x \le 1$ $\frac{1}{n}, n \geq 2$. Тогда имеем неравенства:

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}, n \geq 1 \Leftrightarrow n \ln\left(1+\frac{1}{n}\right) < 1 < (n+1) \ln\left(1+\frac{1}{n}\right) < 1 <$$

$$\frac{1}{n+1} < x \le \frac{1}{n} \tag{2}$$

$$\frac{1}{x} - 1 < n \le \frac{1}{x} \tag{3}$$

$$(1), (2) \Rightarrow \ln(x+1) \le \ln\left(1+\frac{1}{n}\right) < \frac{1}{n} < \frac{1}{\frac{1-x}{x}} = \frac{x}{1-x}$$
 (4)

$$(1),(2),(3) \Rightarrow \ln(x+1) > \ln\left(1 + \frac{1}{n+1}\right) > \frac{1}{n+2} \ge \frac{1}{\frac{1}{x}+2} = \frac{x}{1+2x}$$
 (5)

т.е. при
$$0 < x < \frac{1}{2}$$
 имеем: $\frac{x}{1+2x} < \ln(1+x) < \frac{1}{1-x}$ (6)

Пусть теперь $-\frac{1}{3} \le x < 0$ (7), y > 0 и выполнено $1 + x = \frac{1}{1+y}$ (8)

$$(7), (8) \Rightarrow 0 < y \le \frac{1}{2}$$
 (9)

$$(6), (8), (9) \Rightarrow \ln(1+x) = \ln\left(\frac{1}{1+y}\right) = -\ln(1+y) < -\frac{1}{1+2y} = \frac{-\frac{x}{1+x}}{1-\frac{2x}{1+x}} = \frac{x}{1-x}$$

$$(10)$$

$$(10) \Rightarrow \ln(1+x) < \frac{x}{1-x} \tag{11}$$

$$(6), (8), (9) \Rightarrow \ln(1+x) = -\ln(1+y) > -\frac{y}{1-y} = \frac{-\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x}$$
 (12)

$$(10), (12) \Rightarrow \frac{1}{1+2x} < \ln(1+x) < \frac{x}{1-x}$$
 (13)

$$(6), (13) \Rightarrow \text{ при } -\frac{1}{3} \le x \le \frac{1}{2}, x \ne 0 : \frac{1}{1+2x} < \ln(1+x) < \frac{x}{1-x}$$
 (14)

Замечание. (2 полезных неравенства (15)) при
$$x>0: \frac{1}{1+2x} \leq \frac{1}{4} \Leftrightarrow x \leq \frac{1}{2}$$
 при $x<0: -\frac{1}{4} \leq \frac{x}{1-x} \Leftrightarrow -\frac{1}{4} \leq x$

Свойство. (неравенство для экспоненты)

Возьмем $y = \ln(1+x)$, тогда $x = e^y - 1$:

$$(15) \Rightarrow \text{ при } y \in \left[-\frac{1}{4}, \frac{1}{4} \right], y \neq 0 \Rightarrow x \in \left[-\frac{1}{3}, \frac{1}{2} \right], x \neq 0 \tag{16}$$

при (16:)(13)
$$\Leftrightarrow \frac{e^y - 1}{1 + 2(e^y - 1)} < y < \frac{e^y - 1}{1 - (e^y - 1)} \Leftrightarrow \frac{e^y - 1}{2e^y - 1} < y < \frac{e^y - 1}{-e^y + 2}$$
 (17)

$$(17) \Rightarrow e^y - 1 > y(2 - e^y) \Leftrightarrow e^y(1 + y) > 1 + 2y \Leftrightarrow e^y > \frac{1 + 2y}{1 + y}$$
 (18)

$$(17) \Rightarrow e^y - 1 < y(2e^y - 1) \Leftrightarrow e^y < \frac{1 - y}{1 - 2y} \tag{19}$$

$$(18), (19) \text{ при } y \in \left[-\frac{1}{4}, \frac{1}{4} \right], y \neq 0 : \frac{1+2y}{1+y} < e^y < \frac{1-y}{1-2y} \tag{20}$$

$$(20) \Rightarrow \text{ при } |x| \le \frac{1}{3} : \frac{-2|x|}{1 - 2|x|} < \frac{\ln(1+x)}{x} - 1 < \frac{2|x|}{1 - 2|x|} \tag{21}$$

Замечание

$$|x| \le \frac{1}{10}, x \ne 0 \Rightarrow \frac{2|x|}{1 - 2|x|} \le \frac{1}{4}$$
 (22)

Свойство. (неравенство для $(1+x)^{\frac{1}{x}}$)

$$(22) \Rightarrow (1+x)^{\frac{1}{x}} = e^{\frac{\ln(1+x)}{x}} = e^{1+\left(\frac{\ln(1+x)}{x}-1\right)}$$

$$(21) \Rightarrow e^{1 - \frac{2|x|}{1 - 2|x|}} < (1 + x)^{\frac{1}{x}} < e^{1 + \frac{2|x|}{1 - 2|x|}}$$
(23)

$$(18), (22) \Rightarrow (1+x)^{\frac{1}{x}} > e \cdot \frac{1+2 \cdot \left(-\frac{2|x|}{1-2|x|}\right)}{1+\left(-\frac{2|x|}{1-2|x|}\right)} = e \cdot \frac{1-6|x|}{1-4|x|}$$
(24)

$$(18), (22), (23) \Rightarrow (1+x)^{\frac{1}{x}} < e \cdot \frac{1 - \left(-\frac{2|x|}{1-2|x|}\right)}{1 - 2 \cdot \left(-\frac{2|x|}{1-2|x|}\right)} = e \cdot \frac{1 - 4|x|}{1 - 6|x|}$$
 (25)

$$(24), (25) \Rightarrow e \cdot \frac{1 - 6|x|}{1 - 4|x|} < (1 + x)^{\frac{1}{x}} < e \cdot \frac{1 - 4|x|}{1 - 6|x|}$$

$$(26)$$

4.8 Замечательные пределы

Теорема 36. (Следствие из второго замечательного предела)

$$\frac{\ln(1+x)}{x} \underset{x \to 0}{\to} 1$$

Доказательство. Возьмем $f(x)=1-\frac{2|x|}{1-2|x|},$ g(x)=, $h(x)=1+\frac{2|x|}{1-2|x|},$ $\lim_{x\to 0}f(x)=1$ $\lim_{x \to 0} h(x) = 1$ Из (21) имеем неравенство:

$$1 - \frac{2|x|}{1 - 2|x|} < \frac{\ln(1+x)}{x} < 1 + \frac{2|x|}{1 - 2|x|}$$

По теореме о двух милиционерах получаем, что:

$$\frac{\ln(1+x)}{x} \underset{x\to 0}{\to} 1$$

Теорема 37. (Снова следствие из второго замечательного предела)

$$\frac{e^x - 1}{x} \underset{x \to 0}{\longrightarrow} 1$$

Доказательство. Из (20) получаем:

$$\frac{1+2x}{1+x}-1 < e^x-1 < \frac{1-x}{1-2x}-1 \Rightarrow$$

$$\frac{x}{1+x} < e^x-1 < \frac{x}{1-2x} \Rightarrow$$

$$1-\frac{2|x|}{1-2|x|} < \frac{e^x-1}{x} < 1+\frac{2|x|}{1-2|x|} \Rightarrow$$

$$\Rightarrow \frac{e^x-1}{x} \xrightarrow[x\to0]{} 1 - \text{аналогично пределу выше}$$

Теорема 38. (Второй замечательный предел)

$$(1+x)^{\frac{1}{x}} \xrightarrow[x \to 0]{} e$$

Доказательство. (23):

$$e^{1-\frac{2|x|}{1-2|x|}} < (1+x)^{\frac{1}{x}} < e^{1+\frac{2|x|}{1-2|x|}}$$

Значит, по теореме о двух милиционерах аналогично двум предыдущим пределам:

$$(1+x)^{\frac{1}{x}} \underset{x\to 0}{\to} e$$

Теорема 39. (И снова следствие из второго замечательного предела)

$$\frac{(1+x)^r - 1}{x} \underset{x \to 0}{\to} r$$

Доказательство. Пусть $x_n \to 0, \forall n: x_n \neq 0$ и $y_n = \ln(1+x_n), y_n \neq 0$ При $x_n \to 0, y_n \to 0$:

$$\frac{(1+x_n)^r - 1}{x_n} = \frac{e^{r\ln(1+x_n)}}{x_n} = \frac{e^{ry_n} - 1}{x_n} = \frac{e^{ry_n} - 1}{r \cdot y_n} \cdot r\frac{y_n}{x_n} = r$$

Теорема 40. (Первый замечательный предел)

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

Доказательство. (Простите за шакалов, я не смог засунуть сюда вектор, поэтому это всратая растровая картинка. (может исправим...))

Пусть дан угол $x : 0 < x < \frac{\pi}{2}$, тогда.

$$S_{\triangle OAB} < S_{\text{сектора }OAB} < S_{\triangle AOC} \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2} < \tan x \Rightarrow$$

$$\Rightarrow \sin x < x < \tan x$$

При $1 < x \le 1$:

Глава 4. ФУНКЦИИ. ПРЕДЕЛ ФУНКЦИИ, МОНОТОННОСТЬ, 43 НЕПРЕРЫВНОСТЬ

$$\cos x = \sqrt{1 - \sin^2 x} > \sqrt{1 - x^2} \ge 1 - x \Rightarrow$$

$$\Rightarrow \sin x > x \cos x > x(1-x)$$

Значит получаем неравенство:

$$1 - x < \frac{\sin x}{x} < 1$$

При $|x| < 1, x \neq 0$ неравенство имеет вид:

$$1 - |x| < \frac{\sin x}{x} < 1$$

А значит по теореме о двух милиционерах:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Лекция 8: Непрерывность. Точки разрыва.

26.10.2023

4.9 Непрерывность функции

Определение 40. Пусть $f: E \to \mathbb{R}, \ a \in E$ и X — метрическое пространство с метрикой $\rho, \ A$ — точка сгущения. Тогда f непрерывна в точке сгущения a, если $\lim_{x\to a} f(x) = f(a)$.

Определение 41. (определение в другом виде)

- на языке $\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in X, \rho(x,A) < \delta \Rightarrow |f(x) f(A)| < \varepsilon;$
- окрестности: $\forall \omega(f(A)) \exists \Omega(A) : \forall x \in \Omega(A) : f(x) \in \omega(f(A))$

4.10 Арифметические свойства функций, непрерывных в точке

Свойства. Задано метрическое пространство X и функция f. Справедливы следующие свойства:

- 1. $f(x) \equiv c, \forall x \in X \Rightarrow f$ непрерывна в A
- 2. f непрерывно в $A\Rightarrow cf$ непрерывно в A
- 3. f,g непрерывны в $A\Rightarrow f+g$ непрерывна в A
- 4. f,g непрерывна в $A\Rightarrow fg$ непрерывна в A

Глава 4. ФУНКЦИИ. ПРЕДЕЛ ФУНКЦИИ, МОНОТОННОСТЬ, 44 НЕПРЕРЫВНОСТЬ

- 5. f непрерывна в $A,\,f(x)\neq 0, \forall x\in X\Rightarrow \frac{1}{f}$ непрерывна в A
- 6. f, как и в 5 g непрерывна в $A\Rightarrow \frac{g}{f}$ непрерывна в A

Доказательство. Докажем (5), остальное предоставляется читателю в качестве упражнения $\bigcirc \smile \bigcirc$.

$$\lim_{x \to a} f(x) = f(A) \neq 0 \Rightarrow \lim_{x \to A} \frac{1}{f(x)} = \frac{1}{f(x)}$$

4.11 Непрерывность композиции функций

Теорема 41. (Теорема о непрерывности композиции функций)

Пусть $E\subset\mathbb{R}, a\in E, a$ — точка сгущения $E, F\subset\mathbb{R}, b\in F, b$ — точка сгущения F и определены неперывные в a и b соответственно функции $f:E\to\mathbb{R}, \forall x\in E, f(x)\in F, f(a)=b, g:F\to\mathbb{R}.$

Тогда $h(x) = g(f(x)), h : E \to \mathbb{R}$ непрерывна в a.

Доказательство.

$$h(a) = g(f(a)) = g(b) \tag{5}$$

Возьмем $\forall \omega : (h(a)) = \omega(g(b))$ по (5). Тогда:

$$\exists \Omega(b) : \forall y \in \Omega(b) \cap F : g(y) \in \omega(g(b)) \tag{6}$$

По условию: b = f(a), тогда: $\Omega(b) = \Omega(f(a))$

$$\exists \lambda(a)$$
 — окрестность a: $\forall x \in E \cap \lambda(a) : f(x) \in \Omega(f(a))$ (7)

$$(7) \Rightarrow \forall x \in E \cap \lambda(a) : f(x) \in \Omega(f(a)) \cap F = \Omega(b) \cap F$$

 $(6) \Rightarrow g(f(x)) \in \omega(g(b)) = \omega(h(a))$

Значит имеем:

$$g(f(x)) = h(x) \in \omega(h(a))$$

Определение 42. $f: X \to \mathbb{R}, f$ непрерывно на X, если она непрерывна в каждой точке сгущения множества X

Обозначается как $f \in C(X)$ (a,b) = [a,b]

Пример. (Непрерывные функции)

- 1. $f(x) \equiv c, x \in \mathbb{R}$
- 2. $f(x) = x, f \in C(\mathbb{R})$
- 3. $x^2 = x \cdot x \in C(\mathbb{R}), x^{n+1} = x^n \cdot x \in C(\mathbb{R})$

Глава 4. ФУНКЦИИ. ПРЕДЕЛ ФУНКЦИИ, МОНОТОННОСТЬ, 45 НЕПРЕРЫВНОСТЬ

- 4. $c_0 + c_1 x + \ldots + c_n x^n \in C(\mathbb{R})$
- 5. $x \neq 0 \Rightarrow x^n \neq 0, n \in \mathbb{N} \Rightarrow \frac{1}{x^n} \in C(\mathbb{R} \setminus \{0\})$
- 6. Пусть $p(x) = c_0 + c_1 x + \ldots + c_n x^n$, пусть $a_1, \ldots, a_m, m \le n, a_k \ne a_e, k \ne l$ все числа: $p(a_k) = 0 \Rightarrow \frac{1}{p(x)} \in C(\mathbb{R} \setminus U_{k=1}^m \{a_k\}$
- 7. p(x), как в (6), $q(x) = b_0 + b_1 x + \ldots + b_x x^t$ $\frac{q(x)}{p(x)} \in C(\mathbb{R} \setminus U_{k=1}^m \{a_k\})$
- 8. $f(x) = e^x$ из прошлой лекции: $\lim_{h \to 0} e^h = 1 = e^0 \Rightarrow e^x$ непрерывна в 0 Рассмотрим $\forall x_0 \neq 0 \Rightarrow e^x = e^{x_0} \cdot e^{x-x_0} (x-x_0 \in C(\mathbb{R})) \Rightarrow$ непрерывно в $x_0 \Rightarrow e^x \in C(\mathbb{R})$
- 9. $(\lim_{h\to 0} \ln (1+h) = 0 = \ln 1 \quad \ln (1+h) = \frac{\ln (1+h)}{h} h \Rightarrow \ln x$ непрерывно при x=1) $x_0 \neq_1, x_0 > 0, \ln x = \ln \frac{x}{x_0} + \ln x_0$ $\frac{x}{x_0} \in C(\mathbb{R}), \quad \frac{x_0}{x_0} = 1 \Rightarrow \ln x$ непрерывен при $x = x_0 \Rightarrow \ln x \in C(\{x:x>0\})$
- 10. $x > 0, r \in \mathbb{R}, \Rightarrow x^r \in C(\{x : x > 0\}) \Rightarrow x^r = e^{r \ln x}$
- 10' Пусть $r > 0, 0^r := 0 \Rightarrow x^r$ непрерывно при x = 0

Доказательство 10': если x^r монотонно возрастает при x>0 $\forall \varepsilon>0, \delta^r=\varepsilon \Rightarrow \delta=\varepsilon^r \Rightarrow \text{при } x<\delta: 0< x^r<\delta^r=(\varepsilon^{\frac{1}{2}})^2=\varepsilon(r=\frac{1}{2})$

- 11. $\sin x, \cos x$ непрерывно при x=0 $\sin x = \frac{\sin x}{x} = x \to 0 (x \to 0), \sin 0 = 0$ $\sqrt{1-x^2} \le \cos x = \sqrt{1-\sin^2 x} \le 1$ $\cos x \to 1 (x \to 0), \cos 0 = 1$
- 12. $\sin x, \cos x$ непрерывно при $x = x_0, x_0 \neq 0$ $\sin x = \sin((x x_0) + x_0) = \sin(x x_0)\cos(x_0) + \cos(x x_0)\sin(x_0)$ $\cos x = \cos((x x_0) + x_0) = \cos(x x_0)\cos x \sin(x x_0)\sin(x_0)$ $\sin x \cdot \cos x \in C(\mathbb{R})$
- 13. $\tan x = \frac{\sin x}{\cos x}$ непрерывен при $x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

14. $\cot x = \frac{\cos x}{\sin x}$ непрерывен при $x \neq \pi n$

Теорема 42. (об обращении непрерывной функции в 0 (Коши)) Пусть $f \in C([a,b]), f(a) \cdot f(b) < 0 \Rightarrow \exists c \in (a,b) : f(c) = 0$

Доказательство. Пусть $a_1=a, b_1=b,$ значит $f(a_1)\cdot f(b_1)<0$ (3)

$$c_1 = \frac{a+b}{2} = \frac{a_1 + b_1}{2}$$

 $c_1 = rac{a+b}{2} = rac{a_1+b_1}{2}$ если $f(c_1) = 0$, то полагаем $c = c_1$

если $f(c_1) \neq 0$, то по $f(c_1) \neq 0$ по $f(c_1) \neq 0$ по $f(c_1) \neq 0$ по $f(c_1) \neq 0$

 $[a_2,b_2]$ — тот из $[a_1,c_1],[c_1,b_1]$ для которого $f(a_2)f(b_2)<0$ (4) $c_2=rac{a_2+b_2}{2},$ если $f(c_2)=0,$ то полагаем $c=c_2$ если $f(c_2)\neq 0,$ то $f(a_2)f(c_2)<0$ или $f(c_2)f(b_2)<0$ в силу (4)

 $[a_n,b_n]:f(a_n)f(b_n)<0, c_n=rac{a_n+b_n}{2},$ если $f(c_n)=0,$ полагаем $c=c_n,$ если $f(c_n)
eq 0,$ то либо $f(a_n)f(c_n)<0,$ либо $f(c_n)f(b_n)<0$ $[a_{n+1},b_{n+1}]$ — тот из $[a_n,c_n],[c_n,b_n]$ для которого $f(a_{n+1})f(bn+1)<0$

Пусть $\forall n, c_n = \frac{a_n + b_n}{2}$ и $f(c_n) \neq 0$ и $f(a_n)f(b_n) < 0$ $b_n - a_n = \frac{b-a}{2^{n-1}} \to 0 (n \to \infty)$ (7) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \forall n$ (8) $(7), (8) \Rightarrow \exists c \in [a_n, b_n] \forall n$ (9)

$$b_n - a_n = \frac{b - a}{2^{n-1}} \to 0 (n \to \infty)$$
 (7)

$$\begin{cases} a_n \to c(n \to \infty) \\ b_n \to c(n, \infty) \end{cases} \tag{10}$$

$$\begin{cases} (1),(8) \Rightarrow \exists c \in [a_n, b_n] \lor h \text{ (9)} \\ a_n \to c(n \to \infty) \\ b_n \to c(n,\infty) \end{cases}$$

$$f \in C([a,b]) \Rightarrow f \text{ непрерывно в c (11)}$$

$$(10),(11) \Rightarrow \begin{cases} f(a_n) \to f(c)(n \to \infty) \\ f(b_n) \to f(c)(n \to \infty) \end{cases}$$

$$(12) \Rightarrow f(a_n)f(b_n) \to f^2(c)(n \to \infty)$$

$$(13)$$

$$(12) \Rightarrow f(a_n)f(b_n) \to f^2(c)(n \to \infty)$$
 (13)

 $f(a_n)f(b_n) < 0 \Rightarrow \lim_{n \to \infty} f(a_n)f(b_n) \le 0$ (14) (13),(14) $\Rightarrow f^2(c) \le 0 \Rightarrow f(c) = 0$

Теорема 43. (Теорема о промежуточных значениях)

Пусть $f \in C([a,b])$ и $f(a) = q \neq f(b) = pm \in (p,q) < r < \max(p,q) \Rightarrow$ $\exists c \in [a, b] : f(c) = r$

Доказательство. Рассмотрим g(x) = f(x) - r:

$$g(a)g(b) = (f(a)-r)(f(b)-r) = (p-r)(q-r) < 0 \Rightarrow$$

$$\Rightarrow \exists c \in [a, b] : g(c) = 0 \Rightarrow f(c) - r = 0$$

4.12 Классификация точек разрыва непрерывной функции

Определение 43. Пусть $E \subset \mathbb{R}, a \in E, a$ — точка сгущения $E, f : E \to$ \mathbb{R} , f ненепрерывна в aТогда точка a — точка разрыва функции f

Свойства. (Классификация точек разрыва)

1. $a \in (p,q), f:(p,q) \to \mathbb{R}$ $\exists\lim_{x\to a-0}f(x)\in\mathbb{R}$ и $\lim_{x\to q+0}f(x)\in\mathbb{R}:\lim_{x\to a-0}f(x)=\lim_{x\to a+0}f(x),$ но $f(a) \neq \lim_{x \to a} f(x)$ тогда a — устранимая точка разрыва

$$f(x) = egin{cases} f(x), x
eq a \ \lim_{x o a} f(x) \end{cases} \Rightarrow f$$
 непрерывна в a

2. разрыв 1 рода или скачок: $a\in(p,q),\exists\lim_{x\to a-0}f(x)\in\mathbb{R},\exists\lim_{x\to a+0}f(x)\in$

$$\begin{split} \mathbb{R} & \text{ id} \lim_{x \to a-0} f(x) \neq \lim_{x \to a+0} f(x) \\ f : [a,q] \to \mathbb{R}, \exists \lim_{x \to a+0} f(x) \neq f(a) \\ f : (p,a] \exists \lim_{x \to a-0} f(x) \neq f(a) \end{split}$$

3. разрыв 2 рода: — если по крайней мере $\lim_{x \to a-0} f(x)$ или $\lim_{x \to a+0} f(x)$ не существует или бесконечен

Теорема 44. (Теорема о разрывах монотонной фукнции) f:[a,b]и монотонна $\Rightarrow \forall x_0 \in [a,b] \ f$ либо непрерывна в $x_0,$ либо имеет в x_0 разрыв 1 рода

Доказательство. Пусть f возрастает и $x_0 \in (a,b)$ Предположим, что x_0 — точка разрыва f (*)

Рассматрим
$$a < x < x_0 \Rightarrow f(x) \le f(x_0)$$
 (17)

$$(17) \Rightarrow \exists \lim_{x \to x_0 - 0} f(x) \le f(x_0) \Rightarrow (18)$$

Пусть
$$x_0 < x < b$$
, тогда $f(x_0) \le f(x)$ (19)

$$(19) \Rightarrow \exists \lim_{x \to x_0 + 0} f(x) \ge f(x_0) \tag{20}$$

$$(18), (20): \lim_{x \to x_0 - 0} f(x) \le f(x_0) \le \lim_{x \to x_0 + 0} f(x)$$
(21)

```
(*), (21) \Rightarrow \lim_{x \to x_0 - 0} f(x) < \lim_{x \to x_0 + 0} f(x)
Теорема 45. (Об отображении отрезков)
    Пусть f:[a,b], f монотонна, f(a)=p, f(b)=q, p \neq q, тогда
                f([a,b]) = [\min(p,q), \max(p,q)] \Leftrightarrow f \in C([a,b])
Доказательство. Пусть f непрерывна на [a, b]
\forall r : \min(p, q) < r < \max(p, q)
по теореме о промежуточных значениях: \exists c \in (a,b) : f(c) = r \ (23)
\forall x \in [a, b] : min(p, q) \le f(x) \le map(p, q)
то есть f([a,b]) \subset [\min(p,q),\max(p,q)]
(23) \Rightarrow f([a, b]) = [\min(p, q), \max(p, q)]
Пусть f([a,b]) = [\min(p,q), \max(p,q)] (24)
\exists x_0 \in [a, b] : f разрывна в x_0 (25)
Пусть x_0 \in (a,b) и f возрастает
по доказанной теормеме x_0 — развыв первого рода
 \lim_{x \to x_0 - 0} f(x) = A < B = \lim_{x \to x_0 + 0} f(x)  (26)
Рассмотрим y \in (A, B), y_0 \neq f(x_0) (27)
По теореме о пределе монотонной функции (когда возрастает): \forall x <
x_0, f(x) \le A (28)
По той же теореме \forall x > x_0 : f(x) \ge B (29)
(27),(28),(29) \Rightarrow \forall x \in [a,b], x \neq x_0будет f(x) \neq y_0 (30) и A < y_0 < B
если x = x_0, то f(x_0) \neq y_0 (31)
(30),(31) \Rightarrow y_0 \notin f([a,b]) (32)
(24) и (32) противоречат
```

Лекция 9: Непрерывность и производная.

02.11.2023

4.13 Непрерывность и существование предела обратной функции

```
Теорема 46. \begin{cases} f \in C([a,b]) \\ f\text{- строго монотонна} & \Rightarrow \exists g: [p,q] \to \mathbb{R}, g \in C([p,q]) \\ [p,q] = f([a,b]) \end{cases} И g — обратная функция к f, то есть: \forall x \in [a,b]: \quad g(f(x)) = x \forall y \in [p,q]: \quad f(g(y)) = y если f возрастает, то g возрастает (убывание аналогично)
```

```
Доказательство. Возьмем \forall y \in (p,q) \Rightarrow \exists x \in (a,b) : f(x) = y \begin{cases} \text{если } x_1 < x \Rightarrow f(x_1) < f(x) = y \\ \text{если } x_2 > x \Rightarrow f(x_2) > f(x) \end{cases} \exists x \in (a,b) : f(x) = y \exists
```

Свойства. (Из теоремы следуют свойства:)

- 1. $f(x) = \sin x$, f определена на $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, f строго возрастает. Тогда обратной к f будет функция $g(f(x)) = \arcsin(f(x))$, $f(x) \in [-1, 1]$
- 2. $f(x)=\cos x, f$ определена на $[0,\pi], f$ строго возрастает. Тогда обратной к f будет функция $g(f(x))=\arccos(f(x)), f(x)\in [-1,1]$
- 3. Возьмем $a_n = -\frac{\pi}{2} + \frac{\pi}{4n}, b_n = \frac{\pi}{2} + \frac{\pi}{4n} \ \forall n: [a_n,b_n] \subset [a_{n+1},b_{n+1}]$ $f(x) = \tan x, f: [a_n,b_n] \to [p_n,q_n], p_n = \tan a_n, q_n = \tan b_n$ Обратной к f будет функция $g(f(x)) = \arctan(f(x))$ причем g определена на $\bigcup_{n=1}^{\infty} [p_n,q_n] = \mathbb{R}$
- 4. Аналогично пункту выше, возьмем $a_n = \frac{\pi}{4n}, b_n = \pi \frac{\pi}{4n}, f(x) = \cot x, f$ определена на $[a_n, b_n]$ и получим обратную к f функцию $g = \operatorname{arccot}(f(x))$, опрделенная на $\bigcup_{n=1}^{\infty} [p_n, q_n] = \mathbb{R}$

4.14 Теоремы Вейерштрасса

Теорема 47 (I Теорема Вейерштрасса). Пусть $f \in C([a,b])$, тогда $\exists M,L: \forall x \in [a,b]:$ $L \leq f(x) \leq M$

Доказательство. Пусть $\not\exists M: f(x) \leq M; \quad \forall x \in [a,b],$ тогда:

```
\exists x_1 \in [a,b]: f(x_1) > 1 \exists x_2 \in [a,b]: f(x_2) > f(x_1) + 2 \Rightarrow \vdots \exists x_n \in [a,b]: f(x_n) > f(x_{n-1}) + n \Rightarrow f(x_n) \to +\infty \Rightarrow \exists x^* \in [a,b] \text{ и } \exists \{x_{n_k}\}_{k=1}^{\infty}: x_{n_k} \to x^*(k \to \infty) \text{ по принципу выбора Больцано-Вейерштрасса} f непрерывна в x^* по определению, а значит: \Rightarrow f(x_{n_k}) \to f(x^*) \quad (k \to \infty) \Rightarrow \exists A: |f(x_{n_k})| \leq A; \quad \forall k из выбора x_1, \ldots, x_n в начале следует, что: f(x_{n_k}) > n_k \geq k \Rightarrow k < A; \quad \forall k — противоречие. \Box
```

Теорема 48 (II Теорема Вейерштрасса). Пусть $f \in C([a,b])$ тогда $\exists x_- \in [a,b]$ и $\exists x_+ \in [a,b]$ такие, что:

$$f(x_{-}) \le f(x) \le f(x_{+}); \quad \forall x \in [a, b]$$

Доказательство. Пусть $\not\exists x_+ \in [a,b] \colon f(x) \leq f(x_+); \quad \forall x \in [a,b]$ Возьем $E = f([a,b]) = \{y \in \mathbb{R} : \exists x \in [a,b], f(x) = y\}$ По $47 \colon \exists M : f(x) \leq M; \quad \forall x \in [a,b] \Rightarrow E$ ограничено сверху Путсь $y_0 = \sup E$, тогда $\forall x \in [a,b] : f(x) \leq y_0$ Т.к. мы предположили в начале, что $\not\exists x_+,$ то: $f(x) < y_0; \quad \forall x \in [a,b]$ Возьмем $\varphi \colon \varphi(x) = y_0 - f(x) > 0 \quad \forall x \in [a,b] \Rightarrow \varphi \in C([a,b])$ Значит, $\varphi^{-1}(x) = \frac{1}{\varphi(x)} \in C([a,b])$ По $47 \colon \exists Q > 0 \colon \frac{1}{\varphi(x)} \leq Q; \quad \forall x \in [a,b]$, т.е. $\frac{1}{Q} \leq \varphi(x) \Leftrightarrow \forall x \in [a,b] : \frac{1}{Q} \leq y_0 - f(x)$ Значит, $y_0 - \frac{1}{Q}$ — верхняя граница E, но это противоречит, тому, что $y_0 = \sup E$. Для x_- доказательство аналогично.

4.15 Теорема Кантора

```
Определение 44. E\subset\mathbb{R};\quad f:E\to\mathbb{R} f равномерно непрерывна на E, если \forall \varepsilon>0, \exists \delta>0: \forall x_1,x_2\in E: |x_2-x_1|<\delta\Rightarrow |f(x_2)-f(x_1)|<\varepsilon
```

Теорема 49. Если $f \in C([a,b])$, то f равномерно непрерывна на [a,b]

Доказательство. пусть f(x) неравномерно непрерывна на [a,b], тогда $\exists \varepsilon_0$ и последовательности $\{x_n'\}_{n=1}^{\infty}, \{x_n''\}_{n=1}^{\infty}, \forall n: x_n', x_n'' \in [a,b]$ такие,

$$\forall n: |x_n'' - x_n'| \underset{n \to \infty}{\longrightarrow} 0, \qquad f(x_n'') - f(x_n')| \ge \varepsilon_0$$

По принципу выбора Больцано-Вейерштрасса $\exists x^* \in [a,b]$ и $\exists \{x'_{n_k}\}_{k=1}^{\infty}: x'_{n_k} \underset{k \to \infty}{\to} x^*.$ Поскольку $\forall k: a \leq x'_{n_k} \leq b,$ то $a \leq x^* \leq b.$ Поскольку $|x''_n - x'_n| \underset{n \to \infty}{\to} 0,$ то $x''_{n_k} \underset{k \to \infty}{\to} x^*.$ Так как f непрерывна в $x^*,$ то:

$$\exists \delta_0 > 0 : \forall x \in \omega_{\delta_0}(x^*) \cap [a, b] : |f(x) - f(x^*)| < \frac{\varepsilon_0}{4}$$

Тогда $\forall x_1, x_2 \in \omega_{\delta_0}(x^*) \cap [a, b]$ имеем:

Поскольку
$$x'_{n_k} \underset{k \to \infty}{\to} x^*$$
 и $x''_{n_k} \underset{k \to \infty}{\to} x^*$, то:
$$\exists N : \forall k > N : x'_{n_k}, x''_{n_k} \in \omega_{\delta_0}(x^*) \cap [a,b] \Rightarrow |f(x'_{n_k}) - f(x''_{n_k})| < \frac{\varepsilon_0}{4} + \frac{\varepsilon_0}{4} = \frac{\varepsilon_0}{2}$$
Противоречие

$$\exists N : \forall k > N : x'_{n_k}, x''_{n_k} \in \omega_{\delta_0}(x^*) \cap [a, b] \Rightarrow |f(x'_{n_k}) - f(x''_{n_k})| < \frac{\varepsilon_0}{2}$$

Глава 5

Производная

5.1 Дифференцируемость функции

Определение 45. $f:(a,b)\to \mathbb{R}; \quad x_0\in (a,b)$ f имеет производную в точке x_0

$$\exists \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \in \mathbb{R}$$

Определение 46. $f:[a,b) \to \mathbb{R}$ имеет правую производную в a, если

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}$$

Определение 47. $f:(a,b]\to\mathbb{R}$ имеет левую производную в b, если

$$\exists \lim_{h \to 0} \frac{f(b+h) - f(b)}{h} \in \mathbb{R}$$

Теорема 50. Пусть f имеет производную, тогда $\exists \delta>0$ и M>0 : при $x\neq x_0:|x-x_0|<\delta$ и $|f(x)-f(x_0)|< M|x-x_0|.$

Доказательство. По определению производной: $\Rightarrow \exists \delta > 0: h \neq 0, |h| < \delta$ имеем:

$$\left| \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right| < 1 \Rightarrow$$

$$\Rightarrow |f(x_0 + h) - f(x_0) - f'(x_0)h| < |h| \Rightarrow$$

$$\Rightarrow |f(x_0 + h) - f(x_0)| \le |f(x_0 + h) - f(x_0) - f'(x_0)h| +$$

$$+|f'(x_0)h| < |h| + |f'(x_0)|h| = (1 + f'(x_0))|h|$$

Выберем $M=1+|f'(x_0)|$ и $x-x_0=h$: $|x-x_0|<\delta\Leftrightarrow |h|<\delta$

Следствие. f непрерывна в x_0 .

Определение 48.
$$f:(a,b)\to\mathbb{R}; \quad x_0\in(a,b)$$
 f дифференцируема в x_0 , если:

$$\exists A \in \mathbb{R}, r: (a,b) \rightarrow \mathbb{R}: f(x) - f(x_0) = A(x - x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) \text{ if } \frac{r(x)}{x - x_0} \rightarrow 0 \\ (x \rightarrow x_0) + r(x) + r(x$$

Теорема 51. f дифференцируема в $x_0 \Leftrightarrow \exists f'(x_0)$, при этом для A из (8)(8') имеем $A = f'(x_0)$ (10)

Доказательство.
$$\exists f'(x_0) \Rightarrow \delta(h) = \frac{f(x_0+h)-f(x_0)}{h} - f'(x_0) \rightarrow 0 (h \rightarrow 0) \ (11)$$
 $\rho(h) = h\delta(h) \ (12)$ $(11)(12) \Rightarrow f(x_0+h)-f(x_0)-f'(x_0)h = h\delta(h) = \rho(h) \ (13)$ $(13'): \ f(x_0+h)-f(x_0) = f'(x_0)h + \rho(h)$ $\frac{\rho(h)}{h} = \delta(h) \rightarrow 0 (h \rightarrow 0) \ (14)$ $A = f'(x_0)$ Доказали, что если f имеет $f'(x)$, то она дифференцируема и $A = f'(x_0)$

Доказательство. Докажем в обратную сторону Пусть
$$f$$
 дифференцируема в $x_0, h \neq 0$ (8') $\Rightarrow \frac{f(x_0+h)-f(x_0)}{h} = A + \frac{\rho(h)}{h} \to A \in \mathbb{R}(h \to 0)$ (15) $(15) \Rightarrow \exists f'(x_0) = A$

5.2 Свойства дифференцируемых функций

1. (a,b); $x_0 \in (a,b)$

$$f$$
дифференцируема в $x_0 \Rightarrow cf$ дифферованна в x_0

$$(cf)'(x_0) = cf'(x_0)$$

$$cf(x_0 + h) - cf(x_0)$$

$$\frac{cf(x_0 + h) - cf(x_0)}{h} = cf'(x_0)$$

2. f,gдифференцированны в $x_0\Rightarrow f+g$ дифференцированна в x_0

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$\frac{f(x_0+h)+g(x_0+h)-(f(x_0)+g(x_0))}{h}=f'(x_0)+g'(x_0)$$

Лекция 10: Продолжение свойств производных

9.11.2023

Свойства. (дальнейшие свойства производных)

- 3 (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- 4 Пусть $\forall x \in (a, b) : f(x) \neq 0$, тогда:

$$\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)}$$

5 Пусть f как в (4), и есть g тогда:

$$\left(\frac{g}{f}\right)'(x) = \frac{g'(x)f(x) - g(x)f'(x)}{f^2(x)}$$

6 Производная суперпозиции: пусть $f:(a,b)\to \mathbb{R}, f(x)\in (p,q)$

$$g:(p,q)\to\mathbb{R}, f(x)\stackrel{\mathrm{def}}{=}y\in(p,q)$$

Положим $\varphi(x) = g(f(x))$, Тогда:

$$\varphi'(x) = g'(y) \cdot f'(x)$$

7 Производная обратной функции: пусть f непрерывна на отрезке (a,b) и строго монотонна, $x_0 \in (a,b)$, f имеет производную в x_0 , не равную нулю. g — обратная к f функция. Положим $f(x_0) = y_0$, тогда:

$$g'(y_0) = \frac{1}{f'(x_0)}$$

Доказательство. (Доказательства свойств)

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} g(x+h) + f(x) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} =$$

$$= f'(x)g(x) + f(x)g(x)$$

$$\left(\frac{1}{f}\right)'(x) = \lim_{h \to 0} \frac{\frac{1}{f(x+h)} - \frac{1}{f(x)}}{h} =$$

$$= -\frac{1}{f(x)} \cdot \lim_{h \to 0} \frac{1}{f(x+h)} \cdot \lim_{h \to 0} \frac{f(x+h)f(x)}{h} = \frac{f'(x)}{f^2(x)}$$

5 Используя (3) и (4) получаем:

$$\left(\frac{g}{f}\right)'(x) = \left(g \cdot \frac{1}{f}\right)(x) = g'(x) \cdot \frac{1}{f(x)} + g(x) \left(\frac{1}{f}\right)'(x) =$$

$$= \frac{g'(x)}{f(x)} - \frac{g(x)f'(x)}{f^2(x)} = \frac{g'(x)f(x) - g(x)f'(x)}{f^2(x)}$$

6 используя связь производной с дифференцируемостью функции, получаем:

$$g(y+l)=g(y)+g'(y)\cdot l+g(l),$$
 где $\lim_{l\to 0}rac{g(l)}{l}=0$

Положим $\delta(l) \stackrel{\text{def}}{=} \frac{g(l)}{l}, l \in \dot{\omega}(0)$

Положим $\delta(0)=0,$ тогда функция $\delta(l)$ определена в $\omega(0)$ и непрерывна в 0, $\omega(0)$ — окрестость из определения дифференцируемости функции g.

Возьмем теперь $h \neq 0$ и положим

$$l \stackrel{\text{def}}{=} f(x+h) - f(x) = f(x+h) - y$$

В отличие от h, возможно, что l=0 при каких-то значениях h. Теперь имеем, используя дифференцируемость f:

$$arphi(x+h)=g(f(x+h))=g(f(x)+f'(x)h+\overline{
ho}(h)),$$
 где $\lim_{l\to 0}rac{\overline{
ho}(l)}{l}=0$

Пусть $f'(x)h + \overline{\rho}(h) = q$, тогда:

$$g(f(x) + q) = g(y + q) = g(y) + g'(y)q + q\delta(q) =$$

$$= \varphi(x) + g'(y)(f'(x)h + \overline{\rho}(h)) + (f'(x)h + \overline{\rho}(h)) \cdot \delta(f'(x)h + \overline{\rho}(h)) \stackrel{\text{def}}{=}$$

$$\stackrel{\text{def}}{=} \varphi(x) + g'(y)f'(x) + R(h)$$

Где
$$R(h)=g'(y)\overline{\rho}(h)+f'(x)h\cdot\delta(f'(x)h+\overline{\rho}(h))+\overline{\rho}(h)\cdot\delta(f'(x)h+\overline{\rho}(h))$$
 При $h\to 0$ имеем $f'(x)h+\overline{\rho}(h)\to 0$, поэтому $\frac{R(h)}{h}\to g'(y)\cdot 0+f'(x)\cdot 0+0=0$

Таким образом, функция φ дифференцируема в x, и по теореме о связи производной и дифференцируемости:

$$\varphi'(x) = g'(y)f'(x)$$

7 Возьмем последовательность $\{h_n\}_{n=1}^{\infty}, \forall n: h_n \neq 0$ и $h_n \to 0$. Положим $l_n = f(x+h_n) - f(x)$. В силу строгой монотонности функции f имеем $\forall n: l_n \neq 0$ и $l_n \to 0$ при $n \to \infty$ в силу непрерывности f на [a,b]. l_n и h_n связаны также соотношением:

$$\begin{cases} f(x+h) = f(x) + l_n = y + l_n \\ g(f(x+h)) = g(y+l_n) \\ x + h_n = g(y+l_n) \\ h_n = g(y+l_n) - x = g(y+l_n) - g(y) \end{cases}$$

Это соотношение показывает, что мы можем произвольно задать $l_n, \forall n: l_n \neq 0, l_n \underset{n \to \infty}{\to} 0$ и получим $h_n \neq 0, h_n \underset{n \to \infty}{\to} 0$. Возьмем теперь произвольную последовательность $\{l_n\}_{n=1}^{\infty}, \forall n: l_n \neq 0, l_n \underset{n \to \infty}{\to} 0, h_n$ — соответствующая ей последовательность имеет:

$$\frac{g(y+l) - g(y)}{l_n} = \frac{h_n}{l_n} = \frac{h_n}{f(x+h_n) - f(x)} = \frac{1}{\frac{f(x+h) - f(x)}{h_n}} \xrightarrow[n \to \infty]{} \frac{1}{f'(x)}$$

В силу произвольности $\{l_n\}_{n=1}^\infty$ получаем: $g'(y) = \frac{1}{f'(x)}$

Лекция 11: Таблица производных, экстремум, производные высших порядков.

16.11.2023

5.3 Таблица производных

Свойства. 1. c; \mathbb{R} $c' = \lim_{h \to 0} \frac{c - c}{h} = 0$ 2. x; \mathbb{R} $x' = \lim_{h \to 0} \frac{x + h - x}{h} = 1$ Следствие: (f(ax + b))' = f'(ax + b)(ax + b)' = af'(ax + b)3. x^2 ; \mathbb{R} $(x^2)' = (x * x)' = x' * x + x * x' = 2x$ $n \ge 2: \quad (x^n)' = nx^{n-1}, x \in \mathbb{R}$ $(x^{n+1})' = (x * x^n)' = x'x^n + x(x^n)' = x^n + xnx^{n-1} = (n-1)x^n$ 4. $n \in \mathbb{N}$; x^{-n} ; $\mathbb{R} \setminus \{0\}$ $(x^{-n})' = (\frac{1}{x^n})' = -\frac{(x^n)'}{x^{2n}} = -\frac{nx^{n-1}}{x^{2n}} = -nx^{-n-1}$ 5. e^x ; \mathbb{R}

$$(e^x)' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

$$(\ln x)' = \lim_{h \to 0} \frac{\ln x + h - \ln x}{h} = \lim_{h \to 0} \frac{\ln \frac{x + h}{x}}{h} = \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{h} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\ln 1 + \frac{h}{x}}{\frac{h}{x}} = \frac{1}{x}$$

7.
$$r \notin \mathbb{Z}$$
; $x > 0$
 $(x^r)' = (e^{r \ln x})' = (e^y)'(r \ln x)'|_{y=r \ln x} = e^{x \ln x} \frac{r}{x} = rx^{r-1}$

$$(sinx)' = \lim \frac{sin(x+h) - sinx}{h} = \lim \frac{2sin\frac{h}{2}cos(x+\frac{h}{2})}{h} = \lim_{h \to 0} cos(x+\frac{h}{2}) * \lim_{h \to 0} \frac{sin\frac{h}{2}}{\frac{h}{2}} = cosx$$

9.
$$cosx$$
; \mathbb{R}

$$cosx = sin(x + \frac{\pi}{2})$$

$$(cosx)' = (sin(x + \frac{\pi}{2}))' = (siny)' \mid_{y=x+\frac{\pi}{2}} *1 = cos(x + \frac{\pi}{2}) = -sinx$$
10. tgx ; $\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}} \{\frac{\pi}{2} + \pi n\}$

10.
$$tgx$$
; $\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}} \{\frac{\pi}{2} + \pi n\}$

$$(tgx)' = (\frac{\sin x}{\cos x})' = \frac{(\sin x)' \cos x - \sin x(\cos x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

11.
$$ctgx$$
; $\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}} \{\pi n\}$

$$(ctg)' = (\frac{cosx}{sinx})' = \frac{(cosx)'sinx - cosx(sinx)'}{sin^2x} = \frac{-sin^2x - cos^2x}{sin^2x} = \frac{1}{-sin^2x}$$

12.
$$arcsinx$$
; $(-1,1)$
 $f(x) = arcsinx$; $g(y) = siny \mid_{[-\frac{\pi}{2}, \frac{\pi}{2}]}$
 $x \in (-1,1)$; $arcsinx = y \Leftrightarrow x = siny$
 $(arcsinx)' = \frac{1}{(sint)'\mid_{t=y}} = \frac{1}{cosy} = \frac{1}{\sqrt{1 - sin^2y}} = \frac{1}{\sqrt{1 - x^2}}$

13.
$$arccosx$$
; $(-1,1)$
 $f(x) = arccosx$; $g(y) = cosy \mid_{[0,\pi]}$
 $y = arccosx \Leftrightarrow x = cosy$
 $(arccosx)' = \frac{1}{(cost)'\mid_{t=y}} = -\frac{1}{siny} = -\frac{1}{\sqrt{1-cos^2y}} = -\frac{1}{\sqrt{1-x^2}}$

14.
$$arctgx$$
; \mathbb{R}
 $f(x) = arctgx$; $g(y) = tgy \mid_{(-\frac{\pi}{2}, \frac{\pi}{2})}$
 $y = arctgx \Leftrightarrow x = tgy$
 $(arctgx)' = \frac{1}{(tgt)' \mid_{t=y}} = \frac{1}{\frac{1}{\cos^2 y}} = \cos^2 y$
 $x^2 + 1 = tg^2y + 1 = \frac{\sin^2 y}{\cos^2 y} + 1 = \frac{1}{\cos^2 y}$
 $\cos^2 y = \frac{1}{1+x^2}$
 $(arctgx)' = \frac{1}{1+x^2}$

15. $arcctgx$; \mathbb{R}
 $f(x) = arcctgx$; $g(y) = ctgy \mid_{(0,\pi)}$
 $y = arcctgx$; $x = ctgy (arcctgx)' = \frac{1}{(ctgt) \mid_{t=y}} = -\frac{1}{\frac{1}{\sin^2 y}} = -\sin^2 y$
 $x^2 + 1 = ctg^2y + 1 = \frac{\cos^2 y}{\sin^2 y} + 1 = \frac{1}{\sin^2 x}$
 $\sin^2 y = \frac{1}{1+x^2}$
 $\Rightarrow (arcctgx)' = -\frac{1}{1+x^2}$

Определение 49.
$$f:[a,b]\to\mathbb{R}$$
 $x_0\in[a,b]$ x_0 — точка локального максимума $f,$ если $\exists\omega(x_0)\mid\forall xin\omega(x_0)\cap[a,b]$ $f(x)\leq f(x_0)$

Определение 50. x_0 — точка строгого локального максимума, если $\forall x \neq x_0, x \in \omega(x_0) \cap [a,b]; \quad f(x) < f(x_0)$

Определение 51.
$$g:[a,b]\to\mathbb{R}$$
 $x_1\in[a,b]$ x_1 — точка локального минимума, если $\exists \omega_1(x_1)\mid \forall x\in\omega_1(x_1)\cap[a,b]$ $g(x)\geq g(x_1)$

Определение 52. x_1 — точка строгого локального минимума, если $\forall x \neq x_1, x \in \omega_1(x_1) \cap [a,b] \mid g(x) > g(x_1)$

Определение 53.
$$h:[a,b]\to\mathbb{R}$$
 $x_2\in[a,b]$ x_2 — точка (строгого)локального экстренума (либо точка (строгого)

локального минимума либо точка (строгого) локального максимума)

5.4 Теоремы Ферма, Ролля, Лагранжа и Коши

```
Теорема 52. f:(a,b)\to \mathbb{R} x_0\in (a,b) x_0 — локальный экстренум f \exists f'(x_0)\Rightarrow f'(x_0)=0 (1)
```

```
Доказательство. x_0 — локальный максимум f\Rightarrow\exists\varepsilon>0: при x\in(x_0-\varepsilon,x_0+\varepsilon)\cap(a,b) f(x)\leq f(x_0) (2) Пояснение: Пусть (x_0-\varepsilon,x_0+\varepsilon)\subset(a,b) 0<h<\varepsilon (2) \Rightarrow f(x_0+h)\leq f(x_0)\Rightarrow \frac{f(x_0+h)-f(x_0)}{h}\leq 0 \Rightarrow \lim_{h\to+0}\frac{f(x_0+h)-f(x_0)}{h}\leq 0 (3) -\varepsilon<h<0 (2) \Rightarrow f(x_0+h)\leq f(x_0)\Rightarrow \frac{f(x_0+h)-f(x_0)}{h}\geq 0 \Rightarrow \lim_{h\to-0}\frac{f(x_0+h)-f(x_0)}{h}\geq 0 (4) (3), (4) \Rightarrow (1) x_0 — локальный минимум f(x_0)=f(x_0) f(x_0)=f(x_0)
```

```
Теорема 53. f \in C([a,b]) \forall x \in (a,b); \quad \exists f'(x) \ f(a) = f(b) \Rightarrow \exists x_0 \in (a,b) : f'(x_0) = 0 \ (5)
```

```
Доказательство. 1. f(x) = f(a) \forall x \in [a,b] \Rightarrow \forall x \in (a,b) : f'(x) = 0
2. f(x) \not\equiv f(a) \Rightarrow x_1 \in (a,b) : f(x_1) \not\equiv f(a)
\not\equiv - нетождевственна либо f(x_1) > f(a) либо f(x_1) < f(a)
Рассмотрим f(x_1) > f(a)
Теорема 2 Вейерштрасса: \exists x_0 \in [a,b] : \forall x \in [a,b] : f(x) \leq f(x_0) (6) в частности (6) \Rightarrow f(x_1) \leq f(x_0) (7) (7) \Rightarrow f(x_0) > f(a), f(x_0) > f(b) \Rightarrow x_0(a,b) (7)
```

```
\exists f'(x_0) \ (8)
       По теореме Ферма: (6)(7)(8) \Rightarrow f'(x_0) = 0
Теорема 54. f \in C([a,b])
\forall x \in (a, b); \quad \exists f'(x)
\Rightarrow \exists x_0 \in (a,b) : f(b) - f(a) = f'(x_0)(b-a)  (1)
Доказательство. g(x) = (f(x) - f(a))(b - a) - (f(b) - f(a))(x - a) (2)
(2) \Rightarrow g \in C([a,b]) (2')
(2) \Rightarrow \forall x \in (a,b); \quad \exists g'(x)
g'(x) = (b-a)f'(x) - (f(b) - f(a))(x-a)' = (b-a)f'(x) - (f(b) - f(a))
g(a) = 0, g(b) = 0 \Rightarrow g(a) = g(b) = 0 (4)
Применяя теореме Ролля: (2')(3)(4) \Rightarrow \exists x_0 \in (a,b) : g'(x_0) = 0  (5)
(3)(5) \Rightarrow (b-a)f'(x_0) - (f(b) - f(a)) = 0 \Rightarrow (1)
                                                                                               Свойства. Из теоремы Лангранжа
Пусть f \in C([a,b]), \forall x \in (a,b) \exists f'(x) и f'(x) \neq 0, \forall x \in (a,b) \Rightarrow f(b) \neq 0
f(a)
Доказательство. Из теоремы Лагранжа \exists x_0 \in (a,b) : f(b) - f(a) =
f'(x_0)(b-a)
f'(x_0) \neq 0 \Rightarrow f(b) \neq f(a)
Теорема 55. f \in C([a,b]), g \in C([a,b])
\forall x \in (a, b), \exists f'(x), \exists g'(x)
g'(x) \neq 0, \forall x \in (a, b)
\Rightarrow \exists x_0 \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}  (6)
Доказательство. h(x) = (g(x) - g(a))(f(b) - f(a)) - (f(x) - f(a))(g(b) - g(a))
g(a)) (7)
(7) \Rightarrow h \in C([q, b]) (8)
(7) \Rightarrow \forall x \in (a,b), \exists h'(x) = (f(b) - f(a))g'(x) - (g(b) - g(a))f'(x) \tag{9}
(7) \Rightarrow h(a) = 0, h(b) = 0 \Rightarrow h(a) = h(b) = 0
```

5.5 Производнае второго и более порядка

По теореме Ролля $(8)(9)(10) \Rightarrow \exists x_0 \in (a,b) : h'(x_0) = 0$ (11) $(9)(11) \Rightarrow (f(b) - f(a))g'(x_0) - (g(b) - g(a))f'(x_0) = 0$ (12)

 $(12) \Leftrightarrow (6)$

```
Определение 54. f:(a,b)\to\mathbb{R} \forall x\in(a,b),\exists f'(x) x_0\in(a,b) f':(a,b)\to\mathbb{R} f':(a,b)\to\mathbb{R} f':(a,b)\to\mathbb{R} f':(a,b)\to\mathbb{R} f'':(a,b)\to\mathbb{R} f^{(a)}(x)=f''(x)=f''(x) f^{(a)}(x)=f''(x)=f''(x) f^{(a)}(x)=f''(x)=f''(x) f^{(a)}(x)=f''(x)=f''(x) f^{(a)}(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=f''(x)=
```

Теорема 56. О линейности и аддитивности nнных производных $f,g:(a,b)\to\mathbb{R}$ $\forall x\in(a,b),\exists f'(x),f^{(2)}(x),\ldots,f^{(n-1)}(x)$

 $\forall x \in (a, b), \exists f'(x), f^{(2)}(x), \dots, f^{(n-1)}(x)$ $\exists g'(x), g^{(2)}(x), \dots, g^{(n-1)}(x)$ $x_0 \in (a, b), \exists f^{(n)}(x_0), \exists g^{(n)}(x_0)$ $\Rightarrow (f+g)^{(n)}(x_0) = f^{(n)}(x_0) + g^{(n)}(x_0)$ $c \in \mathbb{R}; \quad \exists (cf)^{(n)}(x_0) = cf^{(n)}(x_0)$

Доказательство. Индукция

Basa n = 1: $(f+g)'(x_0) = f'(x_0) + g'(x_0)$ $(cf)'(x_0) = cf'(x_0)$ $\forall x \in (a,b), \exists f'(x), f^{(2)}(x), \dots, f^{(n)}(x)$ $\exists g'(x), g^{(2)}(x), \dots, g^{(n)}(x)$ $\exists f^{(n+1)}(x_0), \exists g^{(n+1)}(x_0)$ $(f+g)^{(n)}(x) = f^{(n)}(x) + g^{(n)}(x), x \in (a,b)$ $(f+g)^{(n+1)}(x_0) = ((f+g)^{(n)})'(x_0) = (f^{(n)} + g^{(n)})'(x_0) = (f^{(n)})'(x_0) + (g^{(n)})'(x_0) = f^{(n+1)}(x_0) + g^{(n+1)}(x_0)$ $n = 1; \quad (cf)'(x_0) = cf'(x_0)$ $n \quad \forall x \in (a,b) : \quad (cf)^{(n)}(x) = cf^{(n)}(x)$ $(cf)^{(n+1)}(x_0) = ((cf)^{(n)})'(x_0) = (cf^{(n)})'(x_0) = c(f^{(n)})'(x_0) = cf^{(n+1)}(x_0)$

Лекция 12: Формула Тейлора.

23.11.2023

```
Свойства.  (e^x)' = e^x; \quad (e^x)'' = ((e^x)')' = (e^x)' = e^x   (e^x)^{(n)} = e^x; \quad (e^x)^{(n+1)} = ((e^x)^n)' = (e^x)' = e^x
```

Свойства.

```
(\sin(x))' = \cos(x); \quad (\sin(x))'' = ((\sin(x))')' = (\cos(x))' = -\sin(x)
(\sin(x))''' = ((\sin(x))'')' = (-\sin(x))' = -\cos(x)
(\sin(x))^{(4)} = ((\sin(x))''')' = (-\cos(x))' = \sin(x)
(\sin(x))^{(4n)} = \sin(x); \quad (\sin(x))^{(4n+r)} = (\sin(x))^{(r)}, 1 < r < 3
```

Свойства.

$$\begin{array}{ll} (\cos(x))' = -\sin(x); & (\cos(x))'' = ((\cos(x))')' = (-\sin(x))' = -\cos(x) \\ (\cos(x))''' = ((\cos(x))'')' = (-\cos(x))' = \sin(x) \\ (\cos(x))^{(4)} = ((\cos(x))''')' = (\sin(x))' = \cos(x) \\ (\cos(x))^{(4n)} = \cos(x); & (\cos(x))^{(4n+r)} = (\cos(x))^{(r)}, 1 \le r \le 3 \end{array}$$

Свойства.

$$(x+a)^r, r \notin \mathbb{N}$$
 если $r \notin \mathbb{Z}$, то $x > -a$ если $r \in \mathbb{Z}$, то $x \neq -a$ $((x+a)^{(r)})' = r(x+a)^{r-1}$ $((x+a)^r)'' = (r(x+a)^{r-1})' = r(r-1)(x-a)^{r-2}$ $((x+a)^r)''' = (r(r-1)(x+a)^{r-2})' = r(r-1)(r-2)(x+a)^{r-3}$ $r-1 \neq 0, r-2 \neq 0$ $((x+a)^r)^{(n)} = r(r-1)\dots(r-n+1)(x+a)^{r-n}, r-k \neq 0, \forall k \in \mathbb{N}$

CBONCTBA.
$$(\ln(x+a))' = \frac{1}{x+a} = (x+a)^{-1}, x > -a$$

$$(\ln(x+a))^{(n)} = ((x+a)^{-1})^{(n-1)} = (-1)(-2)\dots(-1-(n-1)+1)(x+a)^{-n} =$$

$$= (-1)^{n-1}(n-1)!(x+a)^{-n}$$

Свойства.

$$(x+a)'=1; \quad (x+a)''=1'=0, (x+a)^{(n)}=0, n\geq 2$$

$$((x+a)^2)'=2(x+a), ((x+a)^2)''=(2(x+a))'=2$$

$$((x+a)^2)'''=0; \quad ((x+a)^2)^{(n)}=0, n\geq 3$$

$$k\geq 3: \quad ((x+a)^k)'=k(x+a)^{k-1}$$

$$((x+a)^k)''=(k(x+a)^{k-1})'=k(k-1)(x+a)^{k-2}$$

$$((x+a)^k)'''=k(k-1)(k-2)(x+a)^{k-3}$$

$$l< k-1 \quad ((x+a)^k)^{(l)}=k(k-1)\dots(k-l+1)(x+a)^{k-l}$$

$$((x+a)^k)^{(k-1)}=k(k-1)\dots 2(x+a)$$

$$((x+a)^k)^{(k)}=k!(x-a)'=k!$$

$$((x+a)^k)^{(k)}=k!(x-a)'=k!$$

$$((x+a)^k)^{(k+1)}=0; \quad ((x+a)^k)^{(n)}=0, n\geq k+1$$

$$\text{при } l< k: ((x+a)^k)^{(l)}\mid_{x=-a}=0$$

$$\text{при } l> k: ((x+a)^k)^{(l)}\mid_{x=-a}=0$$

при
$$l = k : ((x+a)^k)^{(k)} \mid_{x=-a} = k!$$

$$(\frac{1}{k!}(x\pm a)^k)^{(l)} \mid_{x=\mp a} = \begin{cases} 0, l \neq k \\ 1, l = k \end{cases}$$

5.6 Формула Тейлора

Определение 55.
$$b_0,\ldots,b_n\in\mathbb{R},a\in\mathbb{R}$$
 $p(x)=b_0+b_1(x-a)+\frac{b_2}{2!}(x-a)^2+\ldots+\frac{b_n}{n!}(x-a)^n$ $p(a)=b_0$ $p'(a)=b'_0+(b_1(x-a))'\mid_{x=a}+\ldots+(\frac{b_n}{n!}(x-a)^n)'\mid_{x=a}=b_1$ $1\leq k\leq n: \quad p^{(k)}(a)=b_0^{(k)}+(b_1(x-a))^{(k)}\mid_{x=a}+\ldots+(\frac{b_k}{k!}(x-a)^k)^{(k)}\mid_{x=a}+\ldots+(\frac{b_n}{n!}(x-a)^n)^{(k)}\mid_{x=a}=b_k$ $p(x)=p(a)+p'(a)(x-a)+\ldots+\frac{p^{(n)}(a)}{n!}(x-a)^n$ (1)

Лемма 2.
$$g \in C((p,q))$$
 g если $n=1:g'(x)=0, g(a)=0$ если $n>1$, то $\forall x \in (p,q), \exists g^{(n-1)}(x)$ и $\exists g^{(n)}(a),$ при этом $g(a)=0,g'(a)=0,\ldots,g^{(n-1)}(a)=0,g^{(n)}(a)=0 \Rightarrow$
$$\frac{g(x)}{(x-a)^n} \to_{x\to a} 0 \quad (4)$$

Доказательство. По индукции:
$$n=1: \quad g(x)=g(a)+g'(a)(x-a)+r(x)=r(x)$$
 (5) $\frac{r(x)}{(x-a)^n} \to_{x\to a} 0$ Индукционное предположение: $n-1\geq 1:$ $h(a)=0,\ldots,h^{(n-1)}(a)=0$ и $\forall x\in (p,q),\exists h^{(n-2)}(x),$ то $\Rightarrow \frac{h(x)}{(x-a)^{n-1}} \to_{x\to a} 0$ (6) $h(x)=g'(x); \quad (g')^{(n-1)}(x)=g^{(n)}(x)$ $\delta(x)=\frac{g'(x)}{(x-a)^{n-1}}; \quad \delta(a)=^{def}0; \quad \delta$ неопределена на точке a (6) $\Rightarrow \delta(x) \to_{x\to a} 0$ $g(x)=g(x)-g(a)=g'(c)(x-a)$ (7) $\exists c=c(x) \ (c$ зависит от $x), c$ между x и a (Теорема Лагранжа) $|c-a|<|x-a|$ $g'(x)=\delta(x)(x-a)^{n-1}$ $c(x)\to_{x\to a} 0$ (7) $\Rightarrow g(x)=\delta(c)(c-a)^{n-1}(x-a)$ (8)

$$(8) \Rightarrow \frac{g(x)}{(x-a)^n} = \delta(c(x)) \frac{(c(x)-a)^{n-1}}{(x-a)^{n-1}} \Rightarrow$$
$$\Rightarrow \left| \frac{g(x)}{(x-a)^n} \right| \le \left| \delta(c(x)) \right| \to_{x \to a} 0 \Leftrightarrow \frac{g(x)}{(x-a)^n} \to_{x \to a} 0$$

Теорема 57 (Формула Тейлора с остатком в форме Пеано). $f \in C((p,q)), a \in (p,q)$ если n=1, то $\exists f'(a)$ если n>1, то $\forall x \in (p,q), \exists f^{(n-1)}(x)$ и $\exists f^{(n)}(a)$ $f(x)=f(a)+f'(a)(x-a)+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^n+r(x) \quad (2)$ $\frac{r(x)}{(x-a)^n} \to_{x\to a} 0 \quad (3)$

Доказательство.
$$p(x) = f(a) + f'(a)(x-a) + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$
 (9) $(9) \Rightarrow p(a) = f(a)$ (10) $(9) \Rightarrow p(a) = f(a)$ (11) $(9) \Rightarrow p(a) = f(a)$ (11) $(9) \Rightarrow p(a) = f(a)$ (12) $(9) \Rightarrow p(a) = f(a)$ (12) $(9) \Rightarrow p(a) = f(a)$ (12) $(9) \Rightarrow p(a) = f(a)$ (13) $(9) \Rightarrow p(a) = f(a)$ (14) $(9) \Rightarrow p(a) = f(a)$ (15) $(9) \Rightarrow p(a) = f(a)$ (16) $(9) \Rightarrow p(a) = f(a)$ (17) $(9) \Rightarrow p(a) = f(a)$ (18) $(9) \Rightarrow p(a) = f(a)$ (19) $(9) \Rightarrow p(a) = f($

Теорема 58 (Формула Тейлора с остатком в форме Лагранжа). $f:(p,q) \to \mathbb{R}; \quad n \geq 1, \forall x \in (p,q), \exists f^{(n+1)}(x)$ $a \in (p,q), x \in (p,q), x \neq a$ $\Rightarrow \exists c$ между x и a: $f(x) = f(a) + f'(a)(x-a) + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad (1)$

Доказательство. фиксируем
$$x$$
, рассмотрим функцию от y : $\varphi(y) = f(x) - f(y) - f'(y)(x-y) - \frac{f''(y)}{2!}(x-y)^2 - \ldots - \frac{f^{(n)}(y)}{n!}(x-y)^n$ (2) $\varphi: (p,q) \to \mathbb{R}$ (2) $\Rightarrow \forall y \in (p,q), \exists \varphi'(y)$ (2) $\Rightarrow \varphi'(y) = (f(x))'_y - f'(y) - (f'(y)(x-y))' - (\frac{f''(y)}{2!}(x-y)^2)' - \ldots - (\frac{f^{(n)}(y)}{n!}(x-y)^n)' = 0 - f'(y) - (f''(y)(x-y) - f'(y) * 1) - (\frac{f'''(y)}{2!}(x-y)^2 - 2\frac{f''(y)}{2!}(x-y)) - \frac{f'''(y)}{2!}(x-y)^2 - \frac{f''(y)}{2!}(x-y) - \frac{f''(y$

$$- \dots - (\frac{f^{(n+1)}(y)}{n!}(x-y^n) - \frac{n}{n!}f^{(n)}(y)(x-y)^{n-1}) = -\frac{f^{(n+1)}(y)}{n!}(x-y)^n$$
 (3)
$$\varphi(x) = 0; \quad \varphi(a) = ^{def} r$$

$$\psi(y) = (x-y)^{n+1}, \quad y \in [\min(a,x), \max(a,x)]$$

$$\psi(x) = 0; \quad \psi(a) = (x-a)^{n+1}$$

$$\psi'(y) = -(n+1)(x-y)^n, \psi(y) \neq 0; \quad y \in (\min(a,x), \max(a,x))$$

$$\exists c \text{ между a и } x, \text{ такое что}$$

$$\frac{\varphi(a) - \varphi(x)}{\psi(a) - \psi(x)} = \frac{\varphi'(c)}{\psi'(c)} (4)$$

$$\frac{r-0}{(x-a)^{n+1}-0} = \frac{-\frac{f^{(n+1)}(c)}{-(n+1)(x-c)^n}(x-c)^n}{-(n+1)(x-c)^n} = \frac{f^{(n+1)}(c)}{(n+1)!} \Rightarrow$$

$$\Rightarrow r = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} (5)$$
 (2)(5) $\Rightarrow (1)$

5.7 Применение формулы Тейлора к элементарным функциям (a=0)

Свойства.
$$e^x: (e^x)^{(n)}|_{x=0}=1$$

$$e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\ldots+\frac{x^n}{n!}+\frac{e^cx^{n+1}}{(n+1)!}; \quad (cx>0,|c|<|x|)$$

Свойства.
$$\sin(x)$$
: $(\sin(x))^{(2n)}|_{x=0} = 0$; $(\sin(x))^{(2n-1)}|_{x=0} = (-1)^{n-1}$ $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \pm \sin(c) \frac{x^{2n}}{(2n)!}$

Свойства.
$$\cos(x)$$
: $(\cos(x))^{(2n-1)}|_{x=0} = 0$; $(\cos(x))^{(2n)}|_{x=0} = (-1)^n$ $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} \pm \sin(c) \frac{x^{2n+1}}{(2n+1)!}$

Свойства.
$$r \neq 0$$
; $r \notin \mathbb{N}$; $x \in (-1,1)$ $((1+x)^r)^{(n)}|_{x=0} = r(r-1)\dots(r-n+1)$ $(1+x)^r = 1+rx+\frac{r(r-1)}{2!}x^2+\dots+\frac{r(r-1)\dots(r-n+1)}{n!}x^n+\frac{r(r-1)\dots(r-n+1)(r-n)}{(n+1)!}(1+c)^{r-n-1}x^{n+1}$

```
Свойства. \ln(1+x); \quad x \in (-1,1) (\ln(1+x))'\mid_{x=0}=1 n \geq 2: \quad (\ln(1+x))^{(n)}\mid_{x=0}=(-1)^{n-1}(n-1)! Замечание: \frac{(n-1)!}{n!}=\frac{1}{n}
```

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \dots + (-1)^{n-1} \frac{x^n}{n!} + (-1)^n \frac{1}{n+1} (1+x)^{-n-1} x^{n+1}$$
T.K. $(\ln(1+x))^{(n+1)} = (-1)^n n! (1+x)^{-n-1}$

Лекция 13: Экстремум и производная. Правило Лопиталя.

30.11.2023

5.8 Достаточное условие локального экстремума с второй производной

```
Теорема 59. f:(a,b)\to\mathbb{R}
\forall x \in (a,b), \exists f'(x) x_0 \in (a,b), \exists f''(x_0) f'(x_0) = 0, f''(x_0) > 0 \Rightarrow x_0 — строгий локальный минимум f
```

Теорема 60.
$$g:(a,b) \to \mathbb{R}$$
 $\exists g'(x)$ $\exists g''(x_0)$ $g'(x_0)=0, g''(x_0)<0 \Rightarrow x_0$ — строгий локальный максимум g

Доказательство. Формула Тейлора с остатком в форме Пиано $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + r(x)$ (1)

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + r(x)$$
(1)
$$\frac{r(x)}{(x - x_0)^2} \xrightarrow[x \to x_0]{} 0$$
(2)
$$f'(x_0) = 0 : \quad (1) \Rightarrow f(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + r(x)$$
(3)
$$\varepsilon = \frac{1}{4}f''(x_0)$$
(2) \Rightarrow \frac{1}{2}\omega(x_0) : \frac{1}{2}\

$$\left| \frac{r(x)}{(x-x_0)^2} \right| < \varepsilon = \frac{1}{4} f''(x)$$
 (4)

$$x \neq x_0, x \in \omega$$

$$(3)(4) \Rightarrow f(x) \ge f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 - |r(x)| > f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 - \frac{1}{4}f''(x_0)(x - x_0)^2 = f(x_0) + \frac{1}{4}f''(x_0)(x - x_0)^2 > f(x_0)$$

5.8.1 Теорема о достаточном условии локального экстренума четной производной

Теорема 61. $f:(a,b)\to\mathbb{R}$

$$n \geq 2$$
: $\forall x \in (a,b), \exists f'(x), f''(x), \dots, f^{(2n-1)}(x)$ $x_0 \in (a,b), \exists f^{(2n)}(x_0)$ $f'(x_0) = 0, f''(x_0) = 0, \dots, f^{(2n-1)}(x_0) = 0$ $f^{(2n)}(x_0) \neq 0$ если $f^{(2n)}(x_0) > 0$, то x_0 — строгий локальный минимум если $f^{(2n)}(x_0) < 0$, то x_0 — строгий локальный максимум

Доказательство.
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f'''(x - x_0)^3 + \dots + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} + r(x)$$
 (5)
$$\frac{r(x)}{(x - x_0)^{2n}} \underset{x \to x_0}{\longrightarrow} 0 \quad (6)$$
 (5) $\Rightarrow f(x) = f(x_0) + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} + r(x)$ (7)
$$\varepsilon = \frac{1}{2} * \frac{1}{(2n)!} * f^{(2n)}(x_0)$$
 (6) $\Rightarrow \exists \omega(x_0) : \forall x \in \omega(x_0) :$
$$|\frac{r(x)}{(x - x_0)^{2n}}| < \varepsilon \quad (8)$$

$$x \in \omega(x_0), x \neq x_0$$
 (7)(8) $\Rightarrow f(x) \geq f(x_0) + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} - |r(x)| >$
$$> f(x_0) + \frac{1}{(2m)!}f^{(2n)}(x_0)(x - x_0)^{2n} - \frac{1}{2} * \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} =$$

$$= f(x_0) + \frac{1}{2} * \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} > f(x_0)$$

5.8.2 Достаточное условие отсутствия локального экстренума с нечетной производной

```
Теорема 62. f:(a,b)\to\mathbb{R} Предположим x_0\in(a,b) n\geq 1: \quad \forall x\in(a,b), \exists f'(x),f''(x),\dots,f^{(2n)}(x); \quad \exists f^{(2n+1)}(x_0) f'(x_0)=0,f''(x_0)=0,\dots,f^{(2n)}(x_0)=0 f^{(2n+1)}(x_0)\neq 0 Тогда x_0 — не является точкой локального экстренума
```

Доказательство.
$$f(x)=f(x_0)+\dfrac{1}{(2n+1)!}f^{(2n+1)}(x_0)(x-x_0)^{2n+1}+r(x)$$

$$\begin{vmatrix} \frac{r(x)}{(x-x_0)^{2n+1}} | \xrightarrow{x \to x_0} 0 \\ \text{Возьмем окрестность } x_0 - \omega(x_0) : |\frac{r(x)}{(x-x_0)^{2n+1}}| < \frac{1}{2} * \frac{1}{(2n+1)!} |f^{(2n+1)}(x_0)| \\ x > x_0 : \\ f(x) > f(x_0) + \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} - \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} > f(x_0) \\ x < x_0 : \\ f(x) < f(x_0) + \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} + \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)|(x-x_0)^{2n+1}| = \\ = f(x_0) + \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} < f(x_0)$$

5.9 Правило Бернулли-Лопиталя

```
Теорема 63. Номер 1
       Пусть f, g: (a, b) \to \mathbb{R}
Пусть f, g: (a, b) \to \mathbb{R}

Пусть f(x) \neq 0, \forall x \in (a, b)

\forall x \in (a, b), \exists f'(x), \exists g'(x)

Предположим f'(x) \neq 0, \forall x \in (a, b)

f(x) \underset{x \to a+0}{\to} 0, g(x) \underset{x \to a+0}{\to} 0

\exists \lim_{x \to a+0} \frac{g'(x)}{f'(x)} = A \in \overline{\mathbb{R}} (1)

\Rightarrow \frac{g(x)}{f(x)} \underset{x \to a+0}{\to} A (2)
```

Доказательство.
$$f(a) = ^{def} 0, g(x) = ^{def} 0$$
 $f, g \in C([a,b))$
 $b > x > a : [a,x]$ по теореме Коппи $\Rightarrow \exists c \in (a,x) :$

$$\frac{g(x) - g(a)}{f(x) - f(a)} = \frac{g'(c)}{f'(c)} \quad (3)$$
 $(3) \Rightarrow \frac{g(x)}{f(x)} = \frac{g'(c)}{f'(c)} \quad (4)$
 $\forall \omega(A), \exists \delta > 0 : \forall y \in (a, a + \delta) :$

$$(1) \Rightarrow \frac{g'(y)}{f'(y)} \in \omega(A) \quad (5)$$
 $x \in (a, a + \delta); \quad c \in (a, x) \Rightarrow c \in (a, a + \delta)$
 $(5) \Rightarrow \frac{g'(c)}{f'(c)} \in \omega(A) \quad (6)$
 $(4)(6) \Rightarrow \frac{g(x)}{f(x)} \in \omega(A) \Rightarrow (2)$

Теорема 64. Номер 1' Пусть $f, g: (a, b) \to \mathbb{R}$ Пусть $f(x) \neq 0, \forall x \in (a, b)$ $\forall x \in (a, b), \exists f'(x), \exists g'(x)$ Предположим $f'(x) \neq 0, \forall x \in (a, b)$ $f(x) \underset{x \to b - 0}{\to} 0, g(x) \underset{x \to b - 0}{\to} 0$ $\exists \lim_{x \to b - 0} \frac{g'(x)}{f'(x)} = A \in \overline{\mathbb{R}}$ $\Rightarrow \frac{g(x)}{f(x)} \underset{x \to b - 0}{\to} A$

Доказательство. Аналогично

Теорема 65. Номер 2
$$f,g:(a,+\infty)\to\mathbb{R}$$

$$f(x)\neq 0, \forall x\in (a,+\infty)$$

$$f(x)\xrightarrow[x\to+\infty]{}+\infty (7)$$

$$\forall x\in (a,+\infty), \exists f'(x), g'(x)$$
Пусть $f'(x)\neq 0, \forall x\in (a,+\infty)$

$$\frac{g'(x)}{f'(x)}\xrightarrow[x\to+\infty]{}A (8)$$

$$\Rightarrow \frac{g(x)}{f(x)}\xrightarrow[x\to+\infty]{}A (9)$$

Доказательство.
$$\forall \varepsilon > 0$$

(8) $\Rightarrow \exists L_1 : \forall x > L_1 : \frac{g'(x)}{f'(x)} \in (A - \varepsilon, A + \varepsilon)$ (10)
Возьмем $x > L_1, x > x_0$
По теореме Коши $\exists c \in (x_0, x) : \frac{g(x) - g(x_0)}{f(x) - f(x_0)} = \frac{g'(c)}{f'(c)}$ (11)

 $L_1 < x > x_0 \Rightarrow c > L_1$
 $\varepsilon < \frac{1}{2} \frac{g'(c)}{f'(c)} \in (A - \varepsilon, A + \varepsilon)$ (12)

 $\frac{g(x) - g(x_0)}{f(x) - f(x_0)} = \frac{\frac{g(x)}{f(x)} - \frac{g(x_0)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}}$ (13)

 $L_2 \ge L_1$, при $x > L_2$
 $|\frac{g(x_0)}{f(x)}| < \varepsilon$, $|\frac{f(x_0)}{f(x)}| < \varepsilon$ (14)

(14) $\Rightarrow -2\varepsilon = -\frac{\varepsilon}{1 - \frac{1}{2}} < \frac{\frac{g(x_0)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}} < \frac{\varepsilon}{1 - \frac{1}{2}} = 2\varepsilon$ (15)

$$(11)(12)(13) \Rightarrow x > L_2 : A - 3\varepsilon < \frac{\frac{g(x)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}} < A + \varepsilon + \frac{\frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} < A + 3\varepsilon$$

$$(16)$$

$$(14)(16) \Rightarrow \frac{g(x)}{f(x)} < (A + 3\varepsilon)(1 - \frac{f(x_0)}{f(x)}) < (A + 3\varepsilon)(1 + \varepsilon) = A + (A + 3)\varepsilon + 3\varepsilon^2$$

$$(17)$$

$$\frac{g(x)}{f(x)} > (A - 3\varepsilon)(1 - \frac{f(x_0)}{f(x)}) > (A - 3\varepsilon)(1 - \varepsilon) = A - (A + 3)\varepsilon + 3\varepsilon^2$$

$$(18)$$

$$(17)(18) \Rightarrow (9)$$

Следствие: $x > 1, g(x) = \ln x, f(x) = x^r, r > 0$

$$g'(x) = \frac{1}{x}, f'(x) = rx^{r-1}$$

$$\frac{g'(x)}{f'(x)} = \frac{\frac{1}{x}}{rx^{r-1}} = \frac{1}{rx^r} \underset{x \to +\infty}{\to} 0 \Rightarrow \frac{\ln x}{x^r} \underset{x \to +\infty}{\to} 0$$

<mark>Теорема 66</mark>. Номер 3

Георема 66. Номер 3
$$f,g:(a,b)\to\mathbb{R}$$
 $x_0\in(a,b)$
 $f(x)\neq0$, если $x\neq x_0$
 $n\geq 2: \quad \forall x\in(a,b), \exists f'(x),\dots,f^{(n)}(x); \quad \exists g'(x),\dots,g^{(n-1)}(x); \quad \exists f^{(n)}(x_0),g^{(n)}(x_0)$
 $f(x_0)=f'(x_0)=\dots=f^{(n-1)}(x_0)=0$
 $g(x_0)=g'(x_0)=\dots=g^{(n-1)}(x_0)=0$
Пусть $f^{(n)}\neq0$

$$\frac{g(x)}{f(x)}\underset{x\to x_0}{\to}\frac{g^{(n)}(x_0)}{f^{(n)}(x_0)} \quad (19)$$

$$\frac{g(x)}{f(x)} = \frac{\frac{g^{(n)}(x_0)}{n!}(x - x_0)^n + r_1(x)}{\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_2(x)} = \frac{g^{(n)}(x_0) + n! \frac{r_1(x)}{(x - x_0)^n}}{f^{(n)}(x_0) + n! \frac{r_2(x)}{(x - x_0)^n}} \xrightarrow[x \to x_0]{} \frac{g^{(n)}(x_0)}{f^{(n)}(x_0)}$$