From Last Time

- Current converges on conductors and diverges at resistors
- More current flows deeper if current electrodes are more spaced

From Last Time

- Current converges on conductors and diverges at resistors
- More current flows deeper if current electrodes are more spaced
- Charges accumulate on boundaries normal to current flow

$$\left(\frac{1}{\sigma_2} - \frac{1}{\sigma_1}\right) \mathbf{J_n} = \left(\rho_2 - \rho_1\right) \mathbf{J_n} = \frac{\tau}{\varepsilon_0}$$

From Last Time

- Current converges on conductors and diverges at resistors
- More current flows deeper if current electrodes are more spaced
- Charges accumulate on boundaries normal to current flow

$$\left(\frac{1}{\sigma_2} - \frac{1}{\sigma_1}\right) \mathbf{J_n} = \left(\rho_2 - \rho_1\right) \mathbf{J_n} = \frac{\tau}{\varepsilon_0}$$

 Accumulation of charges changes the secondary potential

$$\mathbf{V}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{Q_i}{\mathbf{r_i}}$$

 Differences in potential measured by potential electrodes

$$\Delta V = V_N - V_M$$

Today's Topics

- Survey
 - Source and receiver
 - Survey configurations
 - Sounding measurements
 - Profiling measurements
- Data
 - Raw data and apparent resistivity data
 - Pseudo-sections

EOSC 350 '06 Slide 4

Survey

Survey (Source and Receiver)

- Alternating square waveform used for current source (T=2s)
- Potential electrodes measure during the on-time
- Many repetitions averaged to reduce noise

Survey Configurations

- Various electrode configurations exist
- Some configurations used for specific applications
- 3 main types:

Survey Configurations

Some configurations use specific dimensions

Sounding: Layered Earth

Sounding Measurements

Sounding Measurements

Sounding Measurements

Sounding Measurements and Arrays

Geometry

Wenner

4 electrode Array

Schlumberger

Sounding

Sounding: Summary

Schlumberger array

DC Sounding curve

Scale length of array must be large to see deep

x (m)

14

Profiling: Buried Conductor

Profiling: Apparent Resistivity

Fixed geometry: Move laterally

Depth of investigation depends upon offset or array length

Summary: Soundings and Profiles

Sounding

Profiling

Sounding vs. Profiling

Profiling: Current and potential electrodes moved along a line (e.g. Real Section, Wenner and Schlumberger)

→ Lateral changes in resistivity

Sounding: Current and potential electrodes expanded symmetrically about a central point (e.g. Wenner and Schlumberger)

→ Vertical changes in resistivity

General Configuration: Uses a combination of profiling and sounding

→ Vertical and lateral changes in resistivity

Gradient Array: Buried Conductor

Gradient Array: Buried Conductor

Gradient Array: Buried Conductor

Example: Gradient Array

- Consistent electrode spacing
- Detects lateral variations in resistivity

Rapid acquisition of large areas

Example: Gradient Array

- Apparent resistivities show location of most blocks
- Can't find blocks outside array
- Subsequent survey to find depths

Surveys Recap

- Different configurations and spacings for different applications
- Wider electrode spacing → Image deeper
- Sounding → Vertical variations
 Profiling → Horizontal variations
- Significant current must run through target for it to affect measurements

Survey: Recap Questions

If we do a profile survey over a buried conductor, why might we not see it?

What would happen if the sphere were below a conductive overburden?

Data

Raw Data

- Potential electrodes act as a circuit with a resistor
- Records the drop in electric potential (ΔV) between points M and N
- Units: Volts or milliVolts
- Less diagnostic if electrode spacing changes for each reading

Apparent Resistivity Data

 Apparent resistivity: Resistivity if we assume a halfspace:

$$\rho_a = \frac{\Delta V}{IG}$$
 where

$$G = \frac{1}{2\pi} \left\{ \frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right\}$$

- Finds regions of high/low resistivity relative to background
- Easier to interpret than raw potentials
- Units: Ωm

Data as Pseudo-section

Each data point is an apparent resistivity:

$$\rho_a = \frac{2\pi\Delta V}{IG}$$

Pseudo-Sections

- Current electrodes (Tx) and potential electrodes (Rx)
- Pseudo-depth: estimated depth for which Tx-Rx configuration is sensitive
- Larger electrode spacing
 - → Generally sensitive to deeper structures
 - → Larger "pseudo-depth"

Pseudo-Sections

- Visualize apparent resistivities when sounding and profiling
- Apparent resistivity (color scale) plotted as a function of electrode position
- Easy to interpret for simple geologies

Example: Blocks in Halfspace

- Compact bodies → arc signature for dipole-dipole survey
- Depth of arc signature → depth of target
- Thickness of arc → size of target

Example: Blocks in Halfspace

- One block (left) → easy to interpret
- Shallow blocks (right) → mask large buried conductor
 → hard to interpret

Example:

3) The "UBC-GIF model"

Pole-Dipole

Data Recap

- Raw data in Volts or milliVolts
- Easier to interpret raw data as apparent resistivity
- Vertical variations → Sounding curve
 Horiztonal variations → Profile
 Vertical and horizontal variations → Pseudo-section
- Pseudo-sections:
 - Good for simple geology
 - Deep structures masked by surface structures

Recap: Questions

Why use apparent resistivity instead of raw voltage?

 Can horizontal position of buried conductors/resistors be inferred directly from pseudo-section?

Unit Activities

- Labs: (DC)
 - Monday, October 28th
 - Tuesday, October 29th
- Quiz:
 - Friday, November 1st