Lecture 8

- 1. CPU와 GPU
- 2. Deep Learning Frameworks
 - 2.1 Caffe/ Caffe2
 - 2.2 Theano / TensorFlow
 - 2.3 Torch / PyTorch

CPU(central processing unit): 적은 수의 코어로 처리할 수 있는 작업이 많다.

GPU(graphics processing unit): 코어가 많고, 단순한 계산을 매우 빠르게 처리 가능함.

- -deep learning Framework
- 1. Caffe 에서 Caffe2로 발전.
- 2. Torch에서 PyTorch로 발전.
- 3. Theano가 TensorFlow 로 발전.

딥러닝 프레임워크의 특징:

- 1. 대규모 계산 그래프를 쉽게 구축 가능.
- 2. 계산 그래프에서 기울기 계산 쉽게 가능.
- 3. GPU라이브러리 활용하여 효율적 GPU 실행 가능.

넘파이로는 GPU를 돌릴 수 없어서, TensofFlow, Pytorch 함께 사용.

Numpy

TensorFlow

PyTorch

```
import torch
from torch.autograd import Variable
import numpy as np
np.random.seed(0)
                                                                                                                                                    N, D = 3, 4
                                                                   N, D = 3, 4
N, D = 3, 4
                                                                                                                                                   with tf.device('/gpu:0'):
    x = tf.placeholder(tf.float32)
    y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
                                                                         a = x * y
b = a + z
c = tf.reduce_sum(b)
a = x * y
b = a + z
c = np.sum(b)
                                                                  c = tf.reduce_sum(b) 
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z]) 
c = torch.sum(b)
                                                                   with tf.Session() as sess:
grad c = 1.0
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
                                                                         values = {
    x: np.random.randn(N, D),
    y: np.random.randn(N, D),
    z: np.random.randn(N, D),
                                                                                                                                                  print(x.grad.data)
                                                                                                                                                   print(y.grad.data)
print(z.grad.data)
```

각각의 형태.

Torch:

- 단점: Lua 언어를 사용한다.
- 단점: 자동 미분 기능이 없다.
- 장점: 안정적인 소프트웨어이다.
- 장점: 많은 기존 코드가 있다.
- 공통점: 빠르다.

PyTorch:

- 장점: Python 언어를 사용한다.
- 장점: 자동 미분 기능이 있다.
- 단점: 상대적으로 새로운 프레임워크이며 아직 변화하는 중이다.
- 단점: 기존 코드 양이 적다.
- 공통점: 빠르다.

Static

Once graph is built, can serialize it and run it without the code that built the graph!

Dynamic

Graph building and execution are intertwined, so always need to keep code around

->

Static: Pytorch나 TensorFlow같은 프레임워크 사용하면, 그래프 재사용이 가능.

Dynamic: 계산 그래프의 구성과 실행이 강하게 연결, 그래프 구성 코드를 항상 유지해야 함.

-Lecture 9-

CNN 연구

LeNet-5(1998년):

숫자 인식에 사용.

이미지 Input -> [5 X 5] 필터 사용 -> 스트라이드 1 적용 -> Fully Connect Layer -> output

AlexNet(2012년):

input([227 * 227 * <mark>3]</mark>) -> CONV1(1st 계층, 96개의 <mark>11 * 11</mark> 필터가 스트라이드 4로 적용.)

-> 출력([55 * 55 * <mark>96</mark>])

파라미터: (11 * 11 * 3) * 96 = 35000

ZFNet:

AlexNet과 비슷한 구조.

CONV1(1st 계층):11*11 스트라이드 4에서 7*7 스트라이드 2로 변경.

CONV3,4,5: 384, 384, 256개 필터 대신, 512, 1024, 512개 사용.

-> 오류율 개선.

VGGNet:

더 깊은 계층.

- 1. AlexNet의 8계층에서 16,19계층으로 늘림.
- 2. 작은 필터 사용(더 적은 파라미터, 그걸 더 깊이.) but 더 깊으면 깊을수록 비선형적.
- -> VGG19가 더 좋은데, 더 많은 메모리 사용.
- 더 좋은 효과를 얻으려면, 앙상블 사용.

GoogLeNet:

더 깊은 계층.(22개 계층)

Fully Connected(FC)계층 없음.

인셉션 모듈(좋은 지역 망 위상)차곡차곡 쌓는 느낌.

하나의 필터.

첫번째 conv -> 28*28*128 크기 출력

두번째 conv -> 28*28*192 크기 출력

세 번째 conv -> 28*28*96

예제:퀴즈3: 필터 이어붙이기
(concatenation) 이후 출력 크기는?

28x28x(128+192+96+256) = 28x28x672

Naive Inception module

그래서 결국 최종 필터에는 28*28*672 크기.

-> 점점 계산을 늘려가는 느낌이기 때문에 매우 비쌈.

그래서 이걸 병목(bottleneck)계층 사용해서 해결.

Inception module with dimension reduction

이런식으로 병목 계층 추가.(1*1 conv계층)

실제 최종 필터, [28*28*672]에서 [28*28*480]로 감소.

ResNet:

기존의 망보다 훨씬 더 깊은 망.

152계층 모델. 계층이 깊으면 깊을수록 loss가 더 낮아지는 것은 아님.

해결책: 직접적으로 바라는 기저 사상 (desired underlying mapping)에 맞추려고 하지말고 중복 사상 (residual mapping)에 맞춘 망 계층 사용.

ResNet이 계층이 매우 깊은 것은 사실. 하지만 깊다고 낮은 손실값을 내는 것은 아니기 때문에, 몇 가지 계층은 뛰어넘는 식의 계층 구성.

- 1. CONV계층 이후 배치 정규화
- 2. SGD 모멘텀
- 3. 드랍아웃 사용 안함.
- 4. GoogleNet처럼 병목 계층 사용.

Network in Network(NiN):

Network in Network (NiN)

[Lin et al. 2014]

- Mlpconv 계층은 "micronetwork"가 있어서 각 콘브 계층내에서 지역 패치에 대한 더 추상적인 피쳐들을 계산함
- Micronetwork는
 다계층 퍼셉트론을
 사용 (FC, 즉, 1x1 콘브 계층들)
- GoogLeNet과 ResNet "병목' 계층에 대한 선구자
- GoogLeNet에 대한 철학적 영감을 줌

Figures copyright Lin et al., 2014. Reproduced with permission.

ResNet 개선 연구들.

1. Wide Residual Netrwoks

Basic residual block

Wide residual block

더 넓은 중복 필터 사용.

깊이 대신 넓이 증가하는게 더 효율적.

-> 그래서 이게 계층 50개인데, 계층 152개인 ResNet이김. ㅋㅋ

2. ResNeXt:

같은 ResNet 연구진이 만든 것.

블록 넓이 키우고, 경로는 인셉션 모듈(GoogleNet)과 비슷.

Deep Network with Stochastic Depth:

경사 사라지는 것 줄이고, 훈련동안 짧은 망 거쳐서 훈련 시간 줄임. 훈련 중 임의로 계층 드랍.

테스트 할 때는 또 전체 계층 사용.

FractalNet:

Figures copyright Larsson et al., 2017. Reproduced with permission.

중복표현 사용 안함.

훈련할 땐, 드랍아웃. 테스트엔 전체 계층 사용.

DenseNet:

각 블록, 밀도높게.

피쳐 재사용 구조.

SqueezeNet:

igure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.

squeeze 계층을 expand게층으로 전달.

50배 적은 파라미터로 AlexNet 수준의 정확도.

AlexNet보다 510배 더 작게 압축 가능.