

# FUNDAMENTOS EN INGENIERÍA DE DATOS

Grupo III Amalio Cabeza Rafael Delgado Álvaro Navarro Lea Ross



1 Introducción



2
Algoritmo No
supervisado



3 Visualización



Algoritmos Supervisado



5
Detección de anomalías



6 Conclusiones



#### ÍNDICE DE CONTENIDO

# Introducción





# Los datos





kaggle.com



droom.in



# Los datos

Eliminación de texto innecesario

Sobre las columnas kms\_driven, mileage y power 2

Descartar información redundante

Sobre las columnas model\_name

3

Creación de nuevas columnas

Se ha creado una nueva columna para almacenar la cilindrada, la marca del vehículo y si es eléctrico 4

Trasnformación de las columnas de texto a numérico

Sobre las columnas kms\_driven, mileage, power y owner J

Tratamiento preeliminar de NA

Sobre el dataset.

# Aprendizaje No Supervisado

¿Qué técnica hemos empleado?

¿Qué parámetros hemos optimizado?

¿Con qué objetivo?

# ¿Qué técnica hemos empleado?

K-Means Clustering

# ¿Qué parámetros hemos optimizado?

## El número de centroides óptimo

#### 2 Métricas empleadas

Within cluster sum of squares.

Average silhouette width.





# ¿Con qué objetivo?

Mejorar el tratamiento de los datos.

Remplazo de valores nulos

Calculando la media de los valores pertenecientes al mismo cluster



## Visualización

#### **PowerBI**

- Funciona bien con el formato csv
- Tenemos experiencia porque lo hemos utilizado en el seminario
- Acceso gratuito

#### Procedimiento



1 — 2 — 3 — 4 — 5

Conectar los datos en GitHub con PowerBI Cambiar los números a números sin decimales para simplificar la visualización Creación de grupos
de datos para
simplificar la
visualización y
aumentar la
pertinencia (precio,
kilometers driven &
BHP)

Creación de una nueva columna con el precio en euros Visualización de datos con modelos diferentes

#### Average price per location Number of bikes per brand Number of electric bikes price\_euro (bins... • 0 • 5000 • 10000 • 15000 • 20000 • 35000 27 (0,35%) IRAN AFGHANISTAN numero de motos IRAK **Electric Bike?** False True Mahindra Hyosung Yamaha Kawasaki THAILAND. Honda Royal Suzuki Harley JEMEN VIETNAM Arabisches Meer 7799 (99,65%) Mierosoft Bing SOMALIA © 2021 TomTom, © 2022 Mitatosofts Corporation marca Average price per brand Average price per number of owners Average price group per BHP group Triumph Aprilia Ducati euro Average of price\_euro 1000 Average of price\_ Moto Harley Be... Kawasaki Hyos... Jawa **KTM** MV Benel. 0 BMW 50 100 150 200 2 3 4 Husq. BHP (bins of 20) owner Average price per Kilometer driven Average of price 0K 500K 1000K kms\_driven (bins of 20000)

# Aprendizaje Supervisado

## <u>Objetivo</u>

# Training/testing

0.75 / 0.25

**Evaluación** 

# Herramientas











#### Selección de variables

#### Numéricas

# Correlacionadas con el precio

kms\_driven owner cilindrada model\_year BHP consumption

## **GGally**



ggpairs()

## Modelos usados

2. KNN

1. Regresión lineal múltiple

3. Random Forest

#### **Train Control**



#### Resultados

métrica: R2

RLM < KNN < RF

## Resultados

métrica: R2

RLM < KNN < RF



# BigML ANOMALY DETECTION

#### Detección de anomalías



#### Anomalía (outlier)

un valor atípico que es numéricamente distante del resto de los datos



#### Detección de anomalías

una forma de detectar instancias inusuales en su conjunto de datos

#### Aplicación

- Detectar comportamiento malicioso poco común
- · Alerta a los técnicos de servicio
- Filtrado de anomalías para un aprendizaje supervisado "más limpio"
- Evaluación de la competencia del modelo



la interfaz **BigML** permite ver y interactuar fácilmente con las anomalías detectadas en el conjunto de datos

#### paso 1

muestra las 10 anomalías principales en el conjunto de datos



#### paso 2

obtener las puntuaciones de anomalías de todos los puntos en el conjunto de datos



#### Conclusiones

- La importancia de preprocesar los datos.
- Los distintos usos de los algoritmos.
- Aplicar técnicas de detección de anomalías
- Comparaciones con otros lenguajes.
- Aprovechar las variables de texto.



# ¿Alguna pregunta?

