

Mars Ascent Vehicle

Jet Propulsion Laboratory
California Institute of Technology

MARSHALL
SPACE FLIGHT CENTER

The Mars Ascent Vehicle & Model-Based Systems Engineering

Isabeta Rountree (MSFC-EV71) ESSCA
April 2022

Sev1Tech LLC | Jacobs Space Exploration Group | ESSCA Contract
NASA Marshall Space Flight Center
Auburn University & JBS Solutions Presentations

Mars Ascent Vehicle (MAV) Overview

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

*Images notional and subject to change

[MAV Intro](#)

[MBSE Intro](#)

[MAV MBSE](#)

MSR Campaign ConOps & MAS

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

MAV Objectives

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

1. Receive sample tubes inside Orbiting Sample (OS) on Mars surface.
2. Launch OS to predefined Mars orbit.
3. Release OS in Mars orbit.

*Images notional and subject to change

MAV Launch Concept Videos - VECTOR

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

- Lander is only twice the mass of MAV so we don't want any points of contact at ignition.
 - Prevents MAV from dragging lander across surface.
- Also offers larger vertical clearance during liftoff.
 - Unknown exact landing terrain.

VECTOR - Vertical Egress,
Controlled Tip-Off Rate

MAV Intro

MBSE Intro

MAV MBSE

*Images notional and subject to change

What is Model-Based Systems Engineering?

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

FIGURE 2.1-1 The Systems Engineering Engine (NPR 7123.1)

Understanding - What is MBSE?

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

- Model Based Systems Engineering (MBSE) is still systems engineering – you do the same processes and develop the same information.

Foundations - Why MBSE?

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Increased precision of the system specification and design resulting in reduced downstream errors.

Improve traceability between system requirements, design, analysis, and verification information to enhance system design integrity.

Improve the ability to maintain and evolve the system specification and design baseline throughout the system lifecycle.

Support reuse across projects.

Provide a shared understanding of the system to reduce miscommunication among the development team and stakeholders.

- *Architecting Spacecraft with SysML, A Model-Based Systems Engineering Approach*, by Sanford Friedenthal and Christopher Oster. Friedenthal & Oster, 2017.

What you need to do MBSE

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Modeling Tool

Team Center,
DNG, Doors,
MagicDraw,
Innoslate....

Modeling Language

Modeling Plan

- Many tools allow graphical representation of traditional SE information.
- Modeling languages are used to build models within tools.
- Modeling languages offer a standardized specification and metamodel as a base for your system class structure (how to treat reqts vs behaviors vs structure).
- A modeling plan dictates what you will do in your SE process/effort. Can be the traditional plan or include the use of specific modeling frameworks and methods.

Model Focus Areas

- Models can serve as an area to manage & baseline SE artifacts.

- Models enable mapping between layers of abstraction and across disciplines.

Integration, Languages, Methods, & Frameworks

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

- Many modeling tools can integrate with other tools to (usually via Open Services for Lifecycle Collaboration (OSLC) to assist with data import, exchange, & analysis.

- Modeling Languages:
 - Integration DEFinition (IDEF) : Method & Language
 - Object Process Methodology (OPM) : Method & Language
 - Systems Modeling Language (SysML) : Language
 - Unified Modeling Language (UML) : Language
- Method: Set of logical processes and practices to model a system. (What & Why)
- Framework: Structured approach to modeling the system. (Box Check)

- Modeling Methodologies (courtesy of omgwiki)
 - Object-Oriented Systems Engineering Method (OOSEM)
 - IBM Rational Telelogic Harmony - SE
 - IBM Rational Unified Process for Systems Engineering (RUP-SE)
 - Vitech Model-Based Systems engineering (MBSE) Methodology|Vitech
 - JPL State Analysis (SA) Methodology
 - Weilkiens Systems Modeling Process (SYSMOD)
 - Pattern-Based Systems Engineering (PBSE)
- Modeling Frameworks
 - Ministry of Defence Architecture Framework (MODAF)
 - Unified Architecture Framework (UAF)
 - MagicGrid

What a Framework Could Look Like

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

System Level	Requirements	Behavior	Structure
	A1. Stakeholder Needs Diagram	B1. Functional Decomposition Diagram	C1. External Interface Diagram
	A2. System Context Diagram	B2. Concept of Operations Diagram	C2. Internal System Interfaces Diagram
	A3. Requirements Context Diagram	B3. Operational Concept Diagram	C3. System Architecture Diagram
	A4. Requirements Diagram	B4. SW Sequence Diagram	C4. Data Architecture Diagram

More About Modeling Tools

- Allow the creation of views and viewpoints tailored to specific audience to aid in communication of system information.

- Many modeling tools include report/publishing capabilities to export documents, spreadsheets, PowerPoints, and web-resources.
- Web publishing and collaboration is a very useful capability.

A Look into SysML - Diagrams

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

A Look into SysML – Requirements Diagram

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

A Look into SysML – Reqts Relationships

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Requirement Relationships

Diagram Element	Notation	Description
Containment Path		Represents how requirements are contained in specifications (packages) and also used in package diagrams to define the structure of folders in the containment window
Derivation Path		Relation between a source requirement and a derived requirement based on analysis of the source requirement; most commonly used relation for parent/child trace
Satisfaction Path		Assert that a model element corresponding to design or implementation satisfies a requirement
Verification Path		Use between a requirement and a test case or other named element to indicate how to verify that the requirement is satisfied
Refinement Path		Use to reduce ambiguity in a requirement by relating it to another model element that clarifies the requirement
Trace Path		General purpose relationship used to relate a requirement to any other model element, typically a reference document
Copy Path		Relates a copy of a requirement to the original requirement to support reuse of requirements.

How do we Make MBSE Work on MAV?

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

FIGURE 2.1-1 The Systems Engineering Engine (NPR 7123.1)

Lessons learned from EUROPA mission studies:

'Automated Web-Based Model Reports are Critical'

- MAV uses MagicDraw Teamwork Cloud with Cameo Collaborator Publisher to publish model views to a collaborative web portal.

'Keep the Focus on Engineering Products'

- To ensure systems engineering modeling efforts remained focused on products, a product-driven modeling approach was pursued.

'Early Efforts Draw on a Limited Pool of Talent'

- Sometimes it's more efficient to hire outside expertise than train internal talent. A MBSE subject matter expert was hired to help implement model-based practice within the MAV SE team.

'Everyone Needs Training, but to Different Levels'

- MAV team members were trained in modeling as-needed for product development.

MAV MBSE Applications & Products

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Ops – Operations

Req(s) – Requirements

Decomp – Decomposition

Concept of Operations (ConOps) Diagrams

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

act [Activity] Top-Level ConOps [Top-Level ConOps]

Captures input/output flow, commanding, and activity sequencing.

Based on FFBD's, ConOps diagrams defined to address interface definition between MAV and MLP.

Functional Decomposition

To facilitate functional requirement development, a functional decomposition was developed in the model.

- Focus on top-down functional decomposition with reference to ConOps diagrams.
- At level 4, vehicle level, kept as design independent as possible – hinging on high-level concept decisions such as the two-stage-to-orbit design.

Requirements Traceability

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Physical Architecture Definition

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Interface Definition

Traditional Model-Assisted

Interface Definition Cont.

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Traditional Model-Assisted

A	B	C	D	E	F
1	id	Requirement ID	Name	Primary Text	Rationale [S]
2	88035	102465	INTRODUCTION	INTRODUCTION	Artifact Type Document Heading Documentation
3	88036	102466	Purpose and Scope	This specification establishes the performance and design requirements, internal and external interfaces, for the Mars Ascent Vehicle as allocated by the Sample Return Lander (SRL) Project and the Mars Ascent System (MAS).	Document Heading Documentation
4	88037	102467	Change Control	Proposed changes to this document will be submitted via a Change Request (CR) to the MAV Project Control Board (PCB) for consideration and disposition. All such requests will adhere to	Document Heading Documentation

Validation Item Development

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

L4 Validation Effort Process

Models & Simulations (M&S) Database Concept

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

MagicDraw evaluated as a potential cost-free alternative tool option for M&S metadata management against legacy tool capabilities, offering potential cost savings.

The ability to house all standard metadata items.

User-friendly data entry, editing, commenting, & review.

A method of approving metadata records.

The ability to apply appropriate security markings.

A baselining capability with report generation.

Management access and search models & metadata.

- A M&S database concept in MagicDraw was developed using Cameo Collaborator Publisher.
- Before the MAV SRR, the MagicDraw M&S database proof of concept successfully met base capability expectations. Implementation of the tool is being tested with available metadata record information, in preparation for the next milestone review.

M&S Database Concept Cont.

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Approved/Read-Only M&S Data x +

twcloud-oce-stage.na Saved to this PC

JAMIS Software Cor... SLS Home - ICE Por... CP-DMM Home CC M&S Database... Task Team Tracker... DEx Home

M&S Database Menu Search Approved

User Guide

M&S Database Guide

MAV TWO Site Tutorial V2.pptx

M&S Database Site Tutorial PowerPoint

1. Select a View

M&S Database Menu

- User Guide
- Metadata Definitions
- Metadata Records List

Metadata Records List

#	CMSID	Name	Record Status
1	[undefined]	Aerodynamic and Plume Induced Acoustic Environments	Baseline
2	[undefined]	Aerodynamic Buffet	Draft
3	[undefined]	Aerodynamic Heating	Locked for Concurrency
4	[undefined]	Aerodynamic Line Loads and Protuberance Air Loads	[undefined]
5	CMS_INT_001	Discrete Event Simulation (DES) Model	Task Team Review

This is the M&S Database Menu, use it to navigate between views. There are three views at the top-level:

- User Guide (Current View):** Select this view to see instructions for navigating the database
- Metadata Definitions:** Select this view to see definitions for each model metadata item.
- Metadata Description Tables:** Select this view for a list of all active model records in the database.

M&S Database Menu Search CC M&S Database Template Test

Approval 1 Status [undefined]

Hyperlinks Model B

Open in Model Editor 015 Discrete Event Simulation (DES) Model

Rows per page: 20 21 - 29 of 29

Archived Discrete Event Simulation Model Records

#	CMSID	Model Version	Metadata Version	Name	Record Status
1	CMS_INT_001	DES V2.2	3	010 Discrete Events Simulation (DES) Model	Archive
2	CMS_INT_001	DES V1.7	2	007 Discrete Events Simulation (DES) Model	Archive
3	CMS_INT_001	DES V1.2	1	001 Discrete Events Simulation (DES) Model	Archive

Model Release Date 6/14/23

Metadata Version [undefined]

Name 030 First Stage Loads Model (Sample)

Classification EAR Limited Rights

Sensitive But Unclassified (SBU)

ITAR

EAR

Limited Rights

[undefined]

MAV Intro MBSE Intro MAV MBSE

Conclusions

Increased precision of the system specification and design resulting in reduced downstream errors.

Improve traceability between system requirements, design, analysis, and verification information to enhance system design integrity.

Improve the ability to maintain and evolve the system specification and design baseline throughout the system lifecycle.

Support reuse across projects.

Provide a shared understanding of the system to reduce miscommunication among the development team and stakeholders.

- *Architecting Spacecraft with SysML, A Model-Based Systems Engineering Approach*, by Sanford Friedenthal and Christopher Oster. Friedenthal & Oster, 2017.

Conclusions – MBSE Over Time

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

ConOps – Concept of Operations

DNG – Doors Next Generation

M&S – Modeling & Simulation

MBSE Takes Time

Avoid Work Duplication

Helpful Steps for New Modeling Applications

1. Identify modeling methods for application.
2. Identify relations to existing model information and weigh potential benefit.
3. Consider method/process for sharing information contained in the potential application.
4. Consider how to address baselining/configuration management and security needs.
5. Assess issues for the implementation and refine application details.
6. Obtain necessary approvals to implement modeling applications.
7. Implement modeling application and continue to refine as necessary.

Forward Work

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

- Human Factors & Flight Software artifact integration.
- Use model generated Interface Information to develop interface documents.
- Continue to implement MBSE as we progress through project lifecycle.

*Images notional and subject to change

Questions

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

BONUS – Trade Study!

Visibility Trade - Configurations Overview

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Option 1: Extended S2 forward structure/aft skirt length

Option 2: Moveable shell

Option 3: Snap spring panels

Option 4: Tritium/other paint/coatings

Option 5: Folded fan panels

Unweighted Scoring

National Aeronautics and Space Administration
 Jet Propulsion Laboratory / Marshall Space Flight Center
 Mars Sample Return / Mars Ascent Vehicle

Option	High Albedo Paint	Spring Panels	Fan Panels	Extended 2nd Stage
Mass	3	2	1	2
Stowed Volume/OML	3	2	2	3
Complexity	3	2	2	3
Schedule	3	3	3	3
Cost	3	3	3	3
Safety	3	3	3	3
Reliability	5	4	4	5

Score	1	2	3	4	5
Mass	<0.5kg added	<0.5g added	No change	<0.5kg subtracted	>0.5 kg subtracted
Stowed Volume/OML	Major increase in OML	Minor increase in OML	No change	Minor decrease in OML	Major decrease in OML
Complexity	Major increase in complexity	Minor increase in complexity	Small procedures added/ almost no change	Minor decrease in complexity	Major decrease in complexity
Schedule	Major delay, exceeding margin	Minor delay, within margin	Very minor delay/ no change	Minor improvement	Major improvement
Cost	Major cost increase	Minor cost increase	No change	Minor cost decrease	Major cost decrease
Safety	Will require range safety waivers	Will require tailoring of NASA-STDs	No change	Existing safety concerns reduced	Existing safety concerns eliminated
Reliability	TRL 1-2	TRL 3-4	TRL~5	TRL 6-7	TRL 8-9

*Images notional and subject to change

Weighted Scoring + Totals

National Aeronautics and Space Administration
Jet Propulsion Laboratory / Marshall Space Flight Center
Mars Sample Return / Mars Ascent Vehicle

Option	High Albedo Paint	Spring Panels	Fan Panels	Extended 2nd Stage
Mass	85.71	57.14	28.57	57.14
Stowed Volume/OML	71.43	47.62	47.62	71.43
Complexity	42.86	28.57	28.57	42.86
Schedule	14.29	14.29	14.29	14.29
Cost	14.29	14.29	14.29	14.29
Safety	28.57	28.57	28.57	28.57
Reliability	71.43	57.14	57.14	71.43
Total	329	248	219	300

*Images notional and subject to change