Informatik C: – Blatt 6

Rasmus Diederichsen

25. Juli 2014

Aufgabe 6.1

Es sei $\Gamma' = \Gamma \cup \{\$\}.$

Aufgabe 6.2

Schritt 1

$$\forall Z \in \mathcal{Z} : S \to R_{(Z_{start}, \#, Z)}$$

Es resultieren die Regeln

$$S \to R_{(Z_1, \#, Z_1)}$$
 $S \to R_{(Z_1, \#, Z_2)}$

Schritt 2

$$\forall Z_0, \overbrace{Z_1} \xrightarrow{a,b/c} \overbrace{Z_2} : R_{(Z_1,b,Z_0)} \to aR_{(Z_2,c,Z_0)}$$

Es resultieren die Regeln

$$R_{(Z_1,b,Z_1)} \to bR_{(Z_1,b,Z_1)} \qquad R_{(Z_1,b,Z_2)} \to bR_{(Z_1,b,Z_2)}$$

$$R_{(Z_2,b,Z_1)} \to cR_{(Z_2,b,Z_1)} \qquad R_{(Z_2,b,Z_2)} \to cR_{(Z_2,b,Z_2)}$$

$$R_{(Z_2,b,Z_1)} \to bR_{(Z_1,c,Z_1)} \qquad R_{(Z_2,b,Z_2)} \to bR_{(Z_1,c,Z_2)}$$

Schritt 3

Es resultieren die Regeln

$$R_{(Z_1,b,Z_1)} \to b \quad R_{(Z_1,\#,Z_1)} \to b$$

 $R_{(Z_1,c,Z_1)} \to c$

$$\forall Z,Z',\, \ddot{\mathsf{U}}\mathsf{berg\"{a}nge}\left(\overline{Z_1}\right) \xrightarrow{\quad a,b/cd \quad} \overline{\left(Z_2\right)}\colon R_{(Z_1,b,Z)} \to aR_{(Z_2,c,Z')}R_{(Z',d,Z)}$$

Gemäß $\forall X,Y:R_{(Z_1,\#,X)}\to aR_{(Z_2,b,Y)}R_{(Y,\#,X)}$ (es gibt im Graphen nur einen solchen Übergang) resultieren die Regeln

$$R_{(Z_1,\#,Z_1)} \to aR_{(Z_2,b,Z_1)}R_{(Z_1,\#,Z_1)}$$

$$R_{(Z_1,\#,Z_1)} \to aR_{(Z_2,b,Z_2)}R_{(Z_2,\#,Z_1)}$$

$$R_{(Z_1,\#,Z_2)} \to aR_{(Z_2,b,Z_1)}R_{(Z_1,\#,Z_2)}$$

$$R_{(Z_1,\#,Z_2)} \to aR_{(Z_2,b,Z_2)}R_{(Z_2,\#,Z_2)}$$

Der gesamte Regelsatz ist also

$$S \to R_{(Z_1,\#,Z_1)} \qquad S \to R_{(Z_1,\#,Z_2)} \\ R_{(Z_1,b,Z_1)} \to bR_{(Z_1,b,Z_1)} \qquad R_{(Z_1,b,Z_2)} \to bR_{(Z_1,b,Z_2)} \\ R_{(Z_2,b,Z_1)} \to cR_{(Z_2,b,Z_1)} \qquad R_{(Z_2,b,Z_2)} \to cR_{(Z_2,b,Z_2)} \\ R_{(Z_2,b,Z_1)} \to bR_{(Z_1,c,Z_1)} \qquad R_{(Z_2,b,Z_2)} \to bR_{(Z_1,c,Z_2)} \\ R_{(Z_1,b,Z_1)} \to b \qquad R_{(Z_1,\pm,Z_1)} \to b \\ R_{(Z_1,\pm,Z_1)} \to c \\ R_{(Z_1,\#,Z_1)} \to aR_{(Z_2,b,Z_1)}R_{(Z_1,\#,Z_1)} \\ R_{(Z_1,\#,Z_2)} \to aR_{(Z_2,b,Z_1)}R_{(Z_1,\#,Z_2)} \\ R_{(Z_1,\#,Z_2)} \to aR_{(Z_2,b,Z_1)}R_{(Z_1,\#,Z_2)} \\ R_{(Z_1,\#,Z_2)} \to aR_{(Z_2,b,Z_2)}R_{(Z_2,\#,Z_2)}$$

Regeln, die tatsächlich etwas produzieren, sind aquamarin markiert. Regeln, die etwas produzieren könnten, von der Startvariable aus aber nicht erreichbar sind, sind grau hinterlegt. Wir kürzen ab

$$R_1 := R_{(Z_1, \#, Z_1)}$$

$$R_2 := R_{(Z_1, c, Z_1)}$$

$$R_3 := R_{(Z_1, b, Z_1)}$$

$$R_4 := R_{(Z_2, b, Z_1)}$$

und destillieren hieraus

$$S \rightarrow R_1$$

 $R_1 \rightarrow b \mid aR_4R_1$
 $R_2 \rightarrow c$
 $R_4 \rightarrow cR_4 \mid bR_2$

und notieren, dass R_3 nicht erreichbar ist.

Aufgabe 6.3

Der (vermutlich falsche) Algorithmus läuft in $\mathcal{O}(|V|^2)$ da für jeden Knoten die Suche gestartet wird und in deren Verlauf alle anderen Knoten maximal zweimal besucht werden.

```
class DeCycle {
    static void deCycle(Graph g)
    {
```

```
for(Vertex v : g.getVertices()) v.visited = false;
4
          for(Vertex v : g.getVertices()) traverse(v, new ArrayList<</pre>
              Vertex>());
      }
      static List<Vertex> getTargets(List<Arc>)
7
8
          /* ... map Arcs to their targets */
9
10
      static void print(Graph g)
11
12
      {
          /* output graph */
13
      }
14
      static void traverse(Graph g, Vertex v, List<Vertex> path)
15
16
         path.add(v);
17
          if(v.visited)
18
19
         contractCycle(path.sublist(path.indexOf(v), path.length()));
         else
20
21
         {
             v.visited = true;
22
23
             for (Vertex neighbour : getTargets(g.getOutgoingArcs(v)))
             traverse(g, neighbour, new ArrayList < Vertex > (path));
24
25
26
         v.visited = false; // reset for next search
      }
27
      static void main(String[] argv)
29
          Graph g = new RandomGraph(Integer.parseInt(argv[0]));
30
         DeCycle.deCycle(g);
31
         DeCycle.print(g);
32
33
   }
34
```

Aufgabe 6.4

Die Ausgangsgrammatik ist

G

$$\begin{array}{llll} S \rightarrow D & C \rightarrow eEd & E \rightarrow C \\ S \rightarrow dA & C \rightarrow B \\ A \rightarrow aS & D \rightarrow CdDeB \\ A \rightarrow S & D \rightarrow A \\ A \rightarrow E & D \rightarrow d \\ B \rightarrow db & E \rightarrow B \\ B \rightarrow C & E \rightarrow BB \end{array}$$

Schritt 1: Erzeuge Regeln $A_x \to x$, ersetze a, \ldots, e in G durch A_a, \ldots, A_e .

G'

Schritt 2: Entferne Regeln der Form $V \to V$. Folgende Regeln sind zu eliminieren:

$S \to D$	$C \to A_e E A_d$	$E \to C$
$S \to A_d A$	$C \to B$	$A_a \to a$
$A \to A_a S$	$D \to CA_dDA_eB$	$A_b \to b$
$A \to S$	$D \to A$	$A_d \to d$
$A \to E$	$D \to d$	$A_e \to e$
$B \to A_d A_b$	$E \to B$	
$B \to C$	$E \to BB$	

Wir erstellen den zugehörigen Graphen.

Es existieren Zyklen $S \to D \to A \to S$ und $B \to C \to B$ bzw. $C \to B \to C$. Der kontrahierte Graph ist

Wir eliminieren die Senken beginnend mit B und transformieren so die Regelmenge $\{S \to E, E \to B\}.$

 $E \to B$ wird zu

$$E \to A_d A_b$$

 $E \to A_e E A_d$

 $S \to E$ wird zu

$$S \to BB$$

$$S \to A_d A_b$$

$$S \to A_e E A_d$$
 } vorherize Elimination

Die neue Grammatik ist

G''

$$\begin{split} S &\to A_d S \mid A_a S \mid BB \mid A_d A_b \mid A_e E A_d \mid B A_d S A_e B \mid d \\ B &\to A_d A_b \mid A_e E A_d \\ E &\to A_d A_b \mid A_e E A_d \mid BB \\ A_a &\to a \\ A_b &\to b \\ A_d &\to d \\ A_e &\to e \end{split}$$

Schritt 3: Kürzung zu langer Regeln. Wir führen für Regeln $V \to V_1, \dots, V_k$ mit k>2 Regeln $V \to V_1U_1, U_1 \to V_2U_2, \dots, U_k \to V_{k-1}V_k$ ein und erhalten so

G'''

$$\begin{split} S &\rightarrow A_d S \mid A_a S \mid BB \mid A_d A_b \mid A_e U_1 \mid B U_2 \\ U_1 &\rightarrow E A_d \\ U_2 &\rightarrow A_d U_3 \\ U_3 &\rightarrow S U_4 \\ U_4 &\rightarrow A_e B \\ B &\rightarrow A_d A_b \mid A_e U_1 \\ E &\rightarrow A_d A_b \mid A_e U_1 \mid B B \\ A_a &\rightarrow a \\ A_b &\rightarrow b \\ A_d &\rightarrow d \\ A_e &\rightarrow e \end{split}$$

Diese Grammatik ist nun in Chomsky Normal Form.

Aufgabe 6.5

Man nehme an, das Pumping Lemma gilt, n bezeichne die zugehörige Wortmindestlänge. Sei $z=1^n21^n21^n$. Es existiert nach Vorraussetzung eine Zerlegung uvwxy von z, sodass $|vx| \geq 1, |vwx| \leq n$ und $uv^iwx^iy \in L \forall i$

Die Fälle, in denen v, x verschiedene Symbole beinhalten (also sowohl 1en als auch 2en), braucht man gar nicht zu betrachten, da auf diese Weise Teilwörter der Form $(1^k2)^i$ o.Ä. entstehen können, was natürlich nicht für alle i in L enthalten ist.

Es gibt vier Möglichkeiten, aus welchen Zeichen vwx bestehen kann.

- 1. $vwx=1^k, k \leq n$. In diesem Fall kann durch Pumpen eine beliebige Anzahl 1en erzeugt werden, $uv^iwx^iy=1^l21^n21^n$ für $l\neq n\not\in L$.
- 2. $vwx = 1^k 2, k \le n-1$. In diesem Fall können durch Pumpen beliebig viele 1en erzeugt werden falls |v| > 0 und eventuell 2en, falls |x| > 0. Daher $uv^i wx^i y \notin L$.
- 3. $vwx=1^k21^l, 1\leq k+l\leq n-1$. In diesem Fall können durch Pumpen beliebig viele 1en erzeugt werden, eventuell auch beliebig viele 2en, falls |v|>1 oder |x|>1. Daher $uv^iwx^iy\not\in L$, da der letzte Teil 1^n nicht mitgepumpt wird.
- 4. $vwx = 21^k, k \le n-1$. In diesem Fall können durch Pumpen beliebig viele 1en erzeugt werden, eventuell 2en, falls $|v| \ge 1$. Mithin $uv^iwx^iy \notin L$.

In keinem Fall ist $uv^iwx^iy\in L$, was einen Widerspruch zur Annahme darstellt.

Aufgabe 6.6

Bei der Umwandlung eines NDKA-AdLK in eine kontextfreie Grammatik können Regeln der folgenden Arten generiert werden

- 1. $V \to \Sigma$
- 2. $V \rightarrow V$
- 3. $V \to \Sigma \times V$
- 4. $V \to \Sigma \times V \times V$
- 5. $(V \to \varepsilon)$

Dieses Problem ist nur dann lösbar, wenn die Grammatik nicht linksrekursiv ist (also kein Regeln der Form $A \to AB$ enthält).

Um die Grammatik in GNF zu überführen, geht man wie folgt vor:

```
entferne Kreise in Regeln V_i -> V_j
2
    while exists Regel A -> \mathrm{V}_i
       forall Regeln V_i -> *
          kreiere Regel A \rightarrow rhs(V_i)
       end
       entferne A -> V_i
6
       entferne Regel V_i -> * falls !exists Regel R := V -> V^* mit V_i in
            rhs(R)
   end
   while exist Regel A -> V_1V_2
       forall Regeln V_1 -> * kreiere Regel A -> rhs(V_1)V_2
10
11
       entferne Regel A-> V_1V_2
   end
```