Math 416: Abstract Linear Algebra

Date: Oct. 20, 2025

Lecture: 21

Announcements

- 11 practice exams available
- # review on wednesday (bring questions!)
- A Midterm 2: Fri, Oct 24 @ 1pm

Last time

TEXISTENCE of elgenvals & upper-triangular matrices

This time

□ Upper-triangular matrices

Reading /watching

\$50 of Axier

We are approximately half way through the coarse

The author's top ten

Listed below are the author's ten favorite results in the book, in order of their appearance in the book. Students who leave your course with a good understanding of these crucial results will have an excellent foundation in linear algebra.

- any two bases of a vector space have the same length $(2.34) \lor$
- fundamental theorem of linear maps (3.21)
- existence of eigenvalues if F = C (5.19)
- upper-triangular form always exists if F = C (5.47) $\frac{1}{2}$
- Cauchy–Schwarz inequality (6.14)
- Gram–Schmidt procedure (6.32)
- spectral theorem (7.29 and 7.31)
- singular value decomposition (7.70)
- generalized eigenspace decomposition theorem when F = C (8.22)
- dimension of alternating *n*-linear forms on *V* is 1 if dim V = n (9.37)

Warm-up

Define $T \in LCF^3$) by T(x,y,z) = (2x+y,5y+3z,8z).What are the eigenvalues of T?

Solve and eigenvectors!

Soin. Start wil eigenvalue def. $T(x_1y_1z_1=\lambda(x_1y_1z)$

(2xty, 5y+3z, 8z) = (2x, 2y, 2z)

8z=λz: If Z≠0, λ=8.

To find eigenvector, plug $\lambda = 8$ into other eqs.

 $5y+3z = 8z \implies 5y = 5z \implies y = z$ and $2x+y = 8x \implies y = 6x \implies 6x = y$

Thus, elgenvectors are scarar multiples
of (1,0,6)

Check! T(1,6,6) = (8,48,48)=8(1,6,6)

If
$$Z=0$$
, $5y+3Z=\lambda y \Rightarrow 5y=\lambda y$

$$5y = \lambda y$$
: If $y \neq 0$, $\lambda = 5$

$$2x + y = 5x \Rightarrow y = 3x$$
 ξ $Z=0$

So Scarar multiples of (1,3,0) are eigenvectors ω_1 eigenval $\lambda=5$

Check!
$$T(1,3,0) = (5,15,0) = 5(1,3,0)$$

If
$$y=0$$
, $2x+y=\lambda x \Rightarrow 2x=\lambda x$

$$2x = \lambda y$$
: x cannot be zero at this point or we would have $(x_i y_i z) = (0_i 0_i 0)$. Thus, $x \neq 0$ & $\lambda = 2$

and the eightspace is Simply Spanned by (1,0,0).

Check!
$$T(1,0,0) = (2,0,0) = 2(1,0,0)$$

Opper-trianquar matrices

Example. The map above is apper triangular

$$T(x,y,z) = (2x+y,5y+3z,8z).$$

Standard basis

 $M(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$

A matrix $A \in M_n(F)$ is carred upper-triangular if $A_{ij} = 0$ whenever is j. That is,

$$A = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

$$\begin{array}{c} * \text{ denotes potentially} \\ \text{non-zero entries} \\ \text{use do not} \\ \text{core about} \end{array}$$

When can we achieve this form?

Prop. 5.39 (conditions for upper-triangular)
Let $T \in L(V) \notin V_{1,...,} V_{n}$ be a basis of V_{n} .
Then, the following are equivalent.

a) M(T) w.r.t V,,..., Vn is apper-tri

b) Spun $(v_1,...,v_j)$ is invariant under $T \forall j = 1,...,n$

C) TUj ∈ Span (V, ..., Vj) ∀ j=1,...,n

Proof. We win show a to & b to C.

(a) (=> c) Recan def of A = M(T):

 $T(V_j) = \sum_{i=1}^{n} A_{ij} V_i$. Then, we have

A upper-tri \iff Aij =0 \forall i>j \iff $\top (v_j) = \sum_{i=1}^{j} Aij v_i$

 \Leftrightarrow T $(v_j) \in Span(v_1,...,v_j)$

(b) \Rightarrow c)) If span($v_1,...,v_j$) is invar. under T, then $Tv_j \in Span(v_1,...,v_j)$ trivially.

$$Tv_1 \in Span(v_1) \subset Span(v_1,...,v_j)$$

$$Tv_2 \in Span(v_1,v_2) \subset Span(v_1,...,v_j)$$
:

Tyj
$$\in$$
 Span $(v_1,...,v_j)$

Thus
$$\forall j$$
, $\forall \epsilon \text{ Span}(v_1,...,v_j)$ is of the form
$$V = \sum_{i=1}^{j} \lambda_i v_i$$

$$T_{V} = \sum_{i=1}^{j} \lambda_{i} T_{V_{i}}$$

$$\in Spen (v_{1,...,V_{i}})$$

=> Spon(V1,...,Vj) is invasiont under T.

Great! We have conditions for upper-triangularity... but will all TELCUI admit this form?

Prop 5.47 (Every $T \in \mathcal{L}(V_{\ell})$ has upper-triang.)

Suppose V is a finite-dim complex vector space. Then T has an upper-triang.

Note: I prefer the proof in the third edition of Axier bic it is Slightly more self contained.

Proof. We will use induction on dim V.

Base case (dimV=1): Triviary true.

matrix w.r.t some basis.

Induction hypothesis: Suppose dim V > 1 & result holds for an complex V > 1 & dimension Strictly less than dim V.

In any such space, we know an eigenvalue of T will exist. Let λ be said eigenvalue ξ let $U = range(T - \lambda I)$

Brc λ is an eigenval => $T-\lambda I$ is not suj. thus dim U λ dim V. Moreover, U is invariant under T. To See this, let $U \in U \cdot Then$ $TJ = TJ - \lambda U + \lambda U$ $= (T - \lambda I)U + \lambda U$ $\in U \in U$

This establishes that TIU is an operator on U. By ind. hyp., J basis

U1,..., Um of U S.L. TIU is upper-tri.

Then, Using Prop 5.39. \ j \ \{1, ..., m}

$$T \cup_{j} = (T |_{U})(\cup_{j}) \in Span (\cup_{i},...,\cup_{j})$$

Extend $U_{1,...,Um}$ to a basis $U_{1,...,Um}, V_{1,...,Vm}$ of V. For each $K \in \{1,...,m,m+1,...,m+n\}$, we have

$$TV_{k} = TV_{k} - \lambda V_{k} + \lambda V_{k}$$

$$= (T - \lambda I) V_{k} + \lambda V_{k}$$

$$\in Spen(U_{1},...,U_{m}) \subset Spen(U_{1},...,V_{k})$$

Two, again by 5.39, we have that T has an opper-triang. w.r.t U,,..., Vm, V,,..., Vn.

If we can find this basis, which is not arways easy, we can simply read off the eigenvais.

Example. From before,

T (x,y,z) = (2x+y, 5y+3z, 8z).

Standard basis

 $\mathcal{M}(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$

Trus, eigenvalues ere simply 2,5,8. See Axier 5.41 for proof.

Note: An upper diag. matrix of TEL(V)

w.r.t basis V.,..., vn of V

will name eigenvals along diag. &

VI will be an eigenvec. However, Vz,..., vn

need not be eigenvectors! We will

see the case when they are after

the exam!