Rethinking the Memory Staleness Problem in Dynamic Graphs

 Based on TGN for DL on Dynamic Graphs (Rossi et al)*

Advanced Topics in Deep Learning 236605

Dekel Brav, Hadas Ben Atya, Mor Ventura

April 2022

Introduction

- Accurate representations of dynamic systems using graphs has to consist temporal evolution within them.
- Dynamic graphs:
 - Discrete-time dynamic graphs (DTDG)
 - Continuous-time dynamic graphs (CTDG)
- ▶ TGN Temporal Graph Networks
 - Encoder on CTDG seq. time stamped events time stamped embeddings
- Memory staleness problem

TGN – Core modules

The Staleness Problem

- Node's embedding is based on its memory
- Lack of events (messages)
- Stale memory
- Node's embedding is not up to date
- ▶ Edge prediction performance

User's state

- Temporal deactivating
- User's information is getting not relevant

User's recommendation system

TGN - Flow of Operations

Temporal graph attention – embedding for staleness

- Temporal Neighborhood
- 10 recent
- Attention mechanism
- 1 hop

Temporal Graph Attention (attn): A series of L graph attention layers compute i's embedding by aggregating information from its L-hop temporal neighborhood.

The input to the l-th layer is i's representation $\mathbf{h}_i^{(l-1)}(t)$, the current timestamp t, i's neighborhood representation $\{\mathbf{h}_1^{(l-1)}(t),\ldots,\mathbf{h}_N^{(l-1)}(t)\}$ together with timestamps t_1,\ldots,t_N and features $\mathbf{e}_{i1}(t_1),\ldots,\mathbf{e}_{iN}(t_N)$ for each of the considered interactions which form an edge in i's temporal neighborhood:

$$\mathbf{h}_{i}^{(l)}(t) = \text{MLP}^{(l)}(\mathbf{h}_{i}^{(l-1)}(t) \| \tilde{\mathbf{h}}_{i}^{(l)}(t)),$$
 (5)

$$\tilde{\mathbf{h}}_{i}^{(l)}(t) = \text{MultiHeadAttention}^{(l)}(\mathbf{q}^{(l)}(t), \mathbf{K}^{(l)}(t), \mathbf{V}^{(l)}(t)), \tag{6}$$

$$\mathbf{q}^{(l)}(t) = \mathbf{h}_i^{(l-1)}(t) \| \phi(0), \tag{7}$$

$$\mathbf{K}^{(l)}(t) = \mathbf{V}^{(l)}(t) = \mathbf{C}^{(l)}(t),$$
 (8)

$$\mathbf{C}^{(l)}(t) = [\mathbf{h}_{1}^{(l-1)}(t) \| \mathbf{e}_{i1}(t_{1}) \| \phi(t-t_{1}), \dots, \mathbf{h}_{N}^{(l-1)}(t) \| \mathbf{e}_{iN}(t_{N}) \| \phi(t-t_{N})].$$
 (9)

Tell me who your friends are, and I will tell you who you are

TGN - Flow of Operations + Our Contribution

Our Contribution

Time Difference Threshold (Quantile, relative)

Similarity Metric

Embedding update

Time Difference

Time Difference Threshold (Quantile, relative)

- time differences vector current event & last updated event – for current batch nodes
- Relative threshold
- Different quantiles

$$\Delta T_{th} = Q(p) = \inf\{t \in \Re : p(t)\}\$$

Similarity Metric

Similarity Metric

- KNN- K-nearest Neighbors
 - Ball-Tree
 - Brute Force
- K = 1
- Only others with history (mem)

Embedding Update

Embedding update

- Stales source nodes update
- Sum with memory
- Sum with most similar node

Temporal attention

Datasets

Wikipedia

Reddit

Results

Table : q = 0.975

model	dataset	AUC	precision
TGN	wikipedia	0.963	0.967
Ball-Tree	wikipedia	0.961	0.966
Brute-force	wikipedia	0.963	0.967
TGN	reddit	0.953	0.958
Ball-Tree	reddit	0.957	0.960
Brute-force	reddit	0.953	0.957

Table: Different quantiles

model	quantile	AUC	precision
TGN	-	0.963	0.967
Ball-Tree	0.975	0.961	0.966
Ball-Tree	0.8	0.966	0.970
Ball-Tree	0.7	0.958	0.963

Discussion & Future Steps

- Staleness problem importance
- Temporal neighborhood
- Future work:
 - K > 1
 - Quantiles thresholds
 - Learnable nodes similarity model
 - Specific evaluation metric
 - Hyperparamters and fintuning

