Многозадачность: Процессы и потоки

Евгений Иванович Клименков

osisp2019@gmail.com

Белорусский Государственный Университет Информатики и Радиоэлектроники

2019

Классификация моделей жизненного цикла

- Создание
- Разрушение
 - Добровольное
 - Принудительное

Симметричное АРІ!

Создание: CreateTask(entry point, args, schedulling attributes, stack address, stack size, state, source resources) -> task id

K: Killable Tasks

E: Exitable Tasks

E: Exitable Tasks

E: Joinable Tasks

- pid_t fork(void);
- void exit(int status);
 - pid t wait(int *wstatus);
 - pid_t waitpid(pid_t pid, int *wstatus, int options);
- int execl(const char *path, const char *arg, ... /* (char *) NULL */);

Е. И. Клименков 2019 БГУИР 11 / 41

```
int pid = fork();
if (pid == 0) {
    exec("foo");
                          Child process
} else {
    waitpid(pid, &status, options);
};
                   Parent process
```

COW: Copy-On-Write

 Е. И. Клименков
 2019

 12 / 41

- int pthread create(pthread t *thread, const pthread attr t *attr, void *(*start routine) (void *), void *arg);
- void pthread exit(void *retval);
- int pthread join(pthread t thread, void **retval);

Е. И. Клименков 2019 БГУИР 13 / 41

E: Detachable Tasks

E: Detachable Tasks

- Process table: ProcessControlBlock processes[];
- Thread table: ThreadControlBlock threads[];

Организация задач

TCB:

- Ядерный стек*
- Виртуальное адрессное пространство (процесс)
- Контекст процессора
 - FPU регистры
 - SSE регистры
 - CR2 снапшот
 - SP ядерного стека*
- Коммуникационный канал*
 - Адрес
 - Размер
 - Указатель чтения
 - Указатель записи
- Иерархическое положение
 - Родитель
 - Брат-Брат
 - Потомок

Каждый поток в системе имеет:

- Стек пользовательского режима
- Стек ядерного режима
 - Разделяемый
 - Частный (не вытесняемое ядро :-(BKL)

При смене контекста происходит смена активного стека.

TCB:

- Опции планирования
 - Дедлайн
 - Квант времени
 - Эпоха
 - Очередь
- Счетчик ссылок
- Обработка исключений
 - Check Point
 - Обработчик исключения
 - Статус обработки
- Статистика

Организация задач

PCB:

- Физический адрес корня таблицы
- Виртуальные адреса элементов таблицы
- Счетчик ссылок
- Права доступа к портам ввода-вывода
- Обработчик(и) отказов доступа к страницам

Переключение задач

По шагам:

- Каким-то образом вызывается планировщик
 - принудительное перепланирование
 - добровольное перепланирование
 - полудобровольное перепланирование
- Переход в режим ядра
 - прерывание
 - системный вызов
- Процессор производит переключение
 - проверка прав
 - переключение стека
 - передача управления на код ядра
- Сохранение состояния регистров процессора на стеке
- Выполнение первичного запроса/события
- Инициация события приводящего к перепланированию

Переключение задач

По шагам:

- 🕦 Вызов планировщика в ответ на это событие
 - что делать с текущим событием?
 - какой поток запустить?
- Переключение контекста (исходный и целевой ТСВ)
- 3 Определение и сохранение значений активных регистров
- 4 Переключение на новый стек ядра
- Определение и восстановление значений активных регистров
- Переключение адресного пространства (если оно нужно)
- 7 Переключение Thread Local Storage (TLS)
- Установка нового адреса стека для точки входа в режим ядра
- 9 Установка нового значения для системного таймера
- Обор статистики
- 🕦 Продолжение прерванного выполнения запроса

Переключение задач

По шагам:

- 1 Выход из режима ядра
 - восстановление значений регистров
 - переключение стека
 - передача управления на ранее сохраненную точку пользовательского кода
- Опродолжение выполнения прерванной программы

Планирование

Планирование - политика, согласно которой определяется очередность, время выполнения и место выполнения задач.

Е. И. Клименков 2019 БГУИР 24 / 41

Планирование

Планирование - политика, согласно которой определяется очередность, время выполнения и место выполнения задач.

Е. И. Клименков 2019 БГУИР 25 / 41

2019 БГУИР

Планирование

- Статическое планирование
- Динамическое планирование

Планирование

- Справедлиивость каждая задача должна получить справедливую порцию процессорного времени
- Эффективность процессор не должен простаивать
- Максимизация пропускной способности
- Минимизация времени отклика
- Минимизация накладных расходов
- Максимизация использования ресурсов
- Устранение голодания (starvation)
- Пиоритеты
- Равномерная деградация

+: Простота, справедливость
-: Интерактивность, Time-to-Completion

Е. И. Клименков 2019 БГУИР 29 / 41

Shortest Job Next

Наивысший приоритет имеет самый короткий процесс.

- +: Простота, максимальную пропускная способность системы, минимизация среднего времени ожидания
- -: Интерактивность, Starvation, Время выполнения задания должно быть известно

Shortest Remaining Time

Наивысший приоритет имеет процесс с самым коротким оставшимся временем выполнения.

- +: Простота, максимальную пропускная способность системы, минимизация времени ожидания
- -: Интерактивность, Starvation, Время выполнения задания должно быть известно

+: Простота, справедливость, равномерная деградация
-: Интерактивность

Е. И. Клименков 2019 БГУИР 32 / 41

+: Простота, справедливость, равномерная деградация,
Интерактивность
-: выбор приоритета, Starvation

+: Простота, справедливость, равномерная деградация,
Интерактивность+
-: выбор приоритета, Starvation-

Lottery Scheduling (Fair Share)

Задачам назначаются "билеты". Общее количество билетов ограничено и фиксировано. Распределение билетов задает распределени процесорного времени.

+: QoS, Простота

-: Starvation-

Round Robin with Dynamic Quanting

В основе обычный Round Robin.

Две очереди готовых задач (основная и резервная).

Вся история делится на эпохи. В рамках каждой эпохи задачам назначается доля времени в эпохе (динамический квант). При блокировке вызванной исчерпанием кванта, задача заносится в одну очередь готовых задач, при блокировке — в другую. При опустошении активной очереди готовых задач, происходит смена эпохи. Очереди меняются ролями.

+: QoS, Простота

-: Response Time

Отличительные черты ОСРВ

	ОС реального времени	ОС общего назначения
Основная задача		Оптимально распределить ресурсы компьютера между пользователями и задачами
На что ориентирована	Обработка внешних событий	Обработка действий пользователя
Как	Инструмент для создания конкретного аппаратно-программного	Воспринимается пользователем как набор приложений,
позиционируется	комплекса реального времени	готовых к использованию
Кому предназначена	Квалифицированный разработчик	Пользователь средней квалификации

Е. И. Клименков 2019 БГУИР 37 / 41

Rate Monolithic Scheduling

Приоритет определяется цикличностью задачи. Чем короче цикл повторения, тем выше приоритет.

E. И. Клименков 2019 БГУИР 38 / 41

Fixed Priority Scheduling

- +: Масштабируемость +: Динамичность +: Детерменированное поведение при перегрузке
- -: Сложность -: Накладные расходы -: Starvation

Earliest Deadline First Scheduling

Следующая задача – задача с ближайшим дедлайном. Картинки нет :-(

2019 БГУИР 40 / 41

Классические проблемы планирования

Starvation возникает когда задаче постоянно отказывают в процессорном времени.

Overloading (DoS) – перегрузка системы.

Priority Inversion — Низкоприоритетная задача блокирует высокоприоритетную.