Audio Replay Spoof Attack Detection Using Segmentbased Hybrid Feature And Densenet-LSTM Network

Chi Man Pun

Outline

- 1. Introduction
- 2. Segment-based Hybrid Feature Extraction
- 3. The Proposed DenseNet-LSTM Classifier
- 4. Experimental Results
- 5. Conclusion and Future Work

Introduction

- Automatic speaker verification (ASV) system have experienced explosive growth.
- The highest risk is that spoofed speech may gain unauthorized access.
- The genuine and spoofing discriminative ability is one of the key issues in multimedia information security.

➤ It is well known that ASV systems can be vulnerable to spoofing

There are four main types of audio spoof attacks.

Speech synthesis (SS)

Voice conversion (VC)

Impersonation

Replay

- 2015 'Automatic Speaker Verification Spoofing and Countermeasures Challenge' (ASVspoof 2015)
 - SS, VC, or other unknown spoof attacks
 - MFCC and CFCCIF features achieved EER of 1.211%
 - Mel-frequency cepstral coefficient (MFCC)
 - Cochlear filter cepstral coefficients and change in instantaneous frequency(CFCCIF)
 - CQCC based features with average EER of 0.255%
 - Constant-Q cepstral coefficient(CQCC)
 - CNN,RNN

- 2017 'Automatic Speaker Verification Spoofing and Countermeasures Challenge' (ASVspoof 2017)
 - Focus on replay spoof attack
 - Baseline system: CQCC+GMM (EER 24.77%)
 - Gaussian mixture model (GMM)
 - Fusion CQCC GMM+MFCC ResNet+CQCC ResNet (EER 13.30%)
 - CQCC+DNN, CQCC+ResNet,MFCC+ResNet

> The implementation process of the replay attack

- > The audio spoof detection methods are divided into two steps:
 - a) Extract the features of speech fragments

 CQT, MFCC, CFCCIF, CQCC or spectrum (by STFT)
 - b) Classify all input speech based on their features GMM, DNN, LSTM

- Contributions
 - a) A segment-based hybrid feature extraction method is proposed
 - b) Compared to traditional features, the hybrid feature is much better for distinguishing between genuine and replay spoof speech.
 - c) A novel DenseNet-LSTM architecture is proposed as back-end classifier.

- Speech segmentation
- Feature extraction (Respectively)
- Concatenate to Hybrid
 Features

Waveforms of the genuine speech and the replayed speech

- Speech Segmentation Using Short-term Zero Cross Rate and Energy
 - a) Short-Term Zero Crossing Rate (ZCR)

$$st_{zcr} = \frac{1}{T-1} \sum_{t=1}^{T-1} \pi \{ S_t S_{t-1} < 0 \}$$

a) Short-Term Energy

$$E_n = \sum_{\substack{m = -\infty \\ n}}^{+\infty} [S(m)W(n - m)]^2$$

$$= \sum_{\substack{m = n - (N-1)}}^{+\infty} [S(m)W(n - m)]^2$$

The value of the sample point

T is frame length

 π {A} is 1 when A is true, otherwise 0

N is the window length

W is a Hamming window

> Short-term zero-crossing rate and energy segmentation

- MFCC Features Extraction
 - a) Mel Frequency Cepstral Coefficients:
 - pre-emphasis (sub-frame and adding window)
 - Fast Fourier Transform
 - absolute value and square operation
 - Mel-scaled triangle filters
 - a Logarithmic operation
 - Discrete cosine transform
 - b) MFCC feature is extracted in the approximate silent segment

- CQCC Features Extraction
- It provides a higher frequency resolution for low frequencies and a higher time resolution for high frequencies

The Proposed DenseNet-LSTM Classifier

- CNN, DNN and RNN Architectures
 - CNN and DNN particularly dependent on the availability of large quantities of training data.
 - The replay spoof audio dataset is smaller than other datasets
 - LSTM can extract more useful information
 - The use of CNN, DNN or RNN architecture directly in the replay spoof attack detection does not yield convincing results

The Proposed DenseNet-LSTM Classifier(Cont.)

- Dense Convolutional Network (DenseNet)
 - Create short paths from early layers to later layers (ResNet)
 - Each layer takes all preceding feature-maps as input (Feature Reuse)
 - Reduce Vanishing-gradient
 - Good resistance to overfitting without enough samples

The Proposed DenseNet-LSTM Classifier(Cont.)

- DenseNet-LSTM Classifier
- Modify the last layer of DenseNet and add two more LSTM layers before the linear layer

Experimental Results

- Dataset: BTAS2016 & ASVspoof 2017
- ➤ All audio signals have a resolution of 16 bits and a sampling rate of 16 kHz
 - BTAS2016 dataset (selected the spoof type of replay)

Biometrics Theory Applications and Systems 2016

Subsets	#utterances		
	#genuine	#replay	
Train	4973	2800	
Dev	4995	2800	
Eval	5576	4800	
Total	15544	10400	

- ➤ The ASVspoof 2017 dataset
 - The dataset is only for replay spoof attack
 - The replay speech is re-recorded using different recording devices in different acoustic environments.

2017 'Automatic Speaker Verification Spoofing and Countermeasures Challenge'

Subsets	#speakers	#utterances		
		#genuine	#replays	
Training	10	1508	1508	
Devel.	8	760	950	
Eval.	24	1298	12008	
Total	42	3566	14466	

- Baseline system
 - Based on the CQCC feature and the Gaussian mixture model (GMM)
 - It focuses on estimating a likelihood ratio

$$\omega(u) = \frac{P(u|H_g)}{P(u|H_s)}$$

For a speech utterance u, it will decide whether u belongs to the genuine speech H_g or to the spoof speech H_s

Metrics

- Evaluating the system by Equal Error Rate (EER)
- EER is the error rate when a certain threshold θ is taken and FRR (false rejection rate) == FAR (false acceptance rate), FAR and FRR can be calculated using θ as follows:

$$FAR(\theta) = \frac{\#\{replay\ trials\ with\ score > \theta\}}{\#\{Total\ replay\ trials\}}$$

$$FRR(\theta) = \frac{\#\{non-replay\ trials\ with\ score \le \theta\}}{\#\{Total\ non-replay\ trials\}}$$

EER corresponds to the threshold θ_{EER} at which EER == FAR(θ_{EER}) == FRR(θ_{EER}) (To be determined in development dataset)

Details of DenseNet-LSTM architecture

Layers	Output Size	Layer config		
Convolution	30×63	7×7 conv, stride 2		
Pooling	15×32	3×3 max pool, stride 2		
Dense Block 1	15×32	$\left[\begin{array}{c} 1 \times 1 \ conv \\ 3 \times 3 \ conv \end{array}\right] \times 6$		
Transition Layer 1	15×32	1×1 conv, stride 1		
Transition Layer 1	7×16	2×2 average pool, stride 2		
Dense Block 2	7×16	$\left[\begin{array}{c} 1 \times 1 \ conv \\ 3 \times 3 \ conv \end{array}\right] \times 6$		
Transition Layer 2	7×16	1×1 conv, stride 1		
Transition Layer 2	3×8	2×2 average pool, stride 2		
Dense Block 3	3×8	$\left[\begin{array}{c} 1 \times 1 \ conv \\ 3 \times 3 \ conv \end{array}\right] \times 6$		
LSTM	1×48	2 Layers		
Classification	1×1	1×48 global average pool		
Layer	(None,1)	Linear		

> Evaluation results in ASVspoof 2017 Dataset

	EER(%)		
Individual System	Dev set	Eval set(T)	Eval set(T+D)
Baseline (CQCC+GMM)	10.83	30.60	24.77
CQCC+DenseNet ¹	7.65	17.73	15.27
MFCC+DenseNet ¹	6.77	15.86	13.45
CQCC+DenseNet-LSTM ¹	6.87	12.64	11.67
CQCC+DNN ²	5.18	19.41	-
CQCC+ResNet ²	5.05	18.79	-
MFCC+ResNet ²	10.95	16.26	-
CQCC GMM+MFCC ResNet+CQCC ResNet ²	2.58	13.30	-
Hybrid Feature+GMM ³	8.67	25.63	18.11
Hybrid Feature+DenseNet ³	5.62	12.39	11.08
Hybrid Feature+LSTM ³	9.45	15.64	14.78
Hybrid Feature+DenseNet-LSTM (Proposed) ³	3.32	9.56	8.84

> Evaluation results in BTAS2016 Dataset

	EER(%)		
Individual System	Dev set	Eval set(T)	Eval set(T+D)
Baseline (CQCC+GMM)	2.36	8.42	6.37
CQCC + DenseNet ¹	1.32	1.67	1.24
MFCC + DenseNet ¹	0.26	1.53	1.20
CQCC + DenseNet-LSTM ¹	0.42	1.35	1.12
CQCC+DNN ²	1.25	2.08	-
CQCC+ResNet ²	1.18	1.87	-
MFCC+ResNet ²	1.12	1.97	-
CQCC GMM+MFCC ResNet + CQCC ResNet ²	0.89	1.27	-
Hybrid Feature + GMM ³	1.87	7.92	5.43
Hybrid Feature + DenseNet ³	0.04	1.42	1.34
Hybrid Feature + LSTM ³	0.28	2.25	1.25
Hybrid Feature+DenseNet-LSTM (Proposed) ³	0.31	0.96	0.89

Models loss in training

Models loss in testing

Segmentation's effect on EER

The EER based on CQCC with different models. (left) Evaluation results in ASVspoof 2017 Dataset. (right) Evaluation results in BTAS2016 Dataset.

> The impact of false segmentation rate on the EER

Conclusion and Future Work

Conclusion:

- ➤ Proposed a novel feature extraction method: Segment-based Hybrid Feature Extraction.
- The hybrid feature extraction method emphasizes the background noise characteristics and the results show that it can improve the performance in detecting replay spoofed speech.
- > The proposed DenseNet-LSTM classifier enhance the classification accuracy.
- > The DenseNet-LSTM classifier can reduce the overfitting problem.

Conclusion and Future Work (Cont.)

Future work:

- With high-quality hardware in replay spoofing, we may need to explore in the future work.
- Further research with raw-wave and end-to-end approach may simplify the detection process.
- ➤ It may need to explore a detection method with better generalization capability.

Publication

- Lian Huang and Chi-Man Pun, "Audio replay spoof attack detection using segment-based hybrid feature and densenet-LSTM network," in IEEE ICASSP 2019, pp. 2567–2571.
- L. Huang and C.-M. Pun, "Audio Replay Spoof Attack Detection by Joint Segment-Based Linear Filter Bank Feature Extraction and Attention-Enhanced DenseNet-BiLSTM Network," *IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)*, 28(6), pp. 1813 1825, 2020.

