Sheshinski Specification

James Heckman University of Chicago

Econ 350 This draft, December 30, 2013

Modified Sheshinski Specification

Basic Sheshinski Specification

•
$$\beta=1$$
, $\alpha=1$ in $\dot{H}=AH^{\beta}I^{\alpha}-\sigma H$
$$\dot{H}=AIH-\sigma H$$

$$\mathcal{H}: \quad e^{-rt}R(1-I)H + \mu(AIH - \sigma H)$$

• Bang-Bang: I=1 if

$$\mu(t)AH \ge e^{-rt}RH$$

$$\mu(t)e^{rt} \ge \frac{R}{A}$$

• Let $g(t) = \mu(t)e^{rt}$.

$$\dot{g} = -R + (R - Ag)I + (\sigma + r)g$$
$$g(T) = 0$$

- Transversality: $\mu(T)H(T) = 0$, i.e., g(T)H(T) = 0.
- Observe if $g(0) > \frac{R}{A}$, I(0) = 1.
- When *I* = 1,

$$\dot{g} = (\sigma + r - A)g$$

- If $\sigma + r A > 0$, i.e., $\sigma + r > A$, so $g \uparrow$ and I = 1 ever after.
- Violates the transversality condition.
- Nothing bounds the policy.
- $\sigma + r < A$ implies $g \downarrow$.
- Therefore, after g falls to $\frac{R}{\Delta}$, I = 0. Then

Interior Sheshinski Specification

$$\dot{g} = -R + (\sigma + r)g.$$

• Now with $(\sigma + r)g < R$, if the agent doesn't ever invest again:

$$g(t) = R \int_{t}^{T} e^{(\sigma+r)(t-\tau)} d\tau$$
$$= \frac{R}{\sigma+r} (1 - e^{(\sigma+r)(t-T)}) \le \frac{R}{\sigma+r}$$

• If invest in future at $\hat{t} > t$

$$\dot{g} = (\sigma + r - A/g) \downarrow$$

- g(t) is declining everywhere.
- Thus we never invest again in the future.
- Graphically displaying the rule we obtain:

Interior

Modified Sheshinski Specification

At switching age t*,

$$\frac{R}{A} = \frac{1}{\sigma + r} \left(1 - e^{(\sigma + r)(t^* - T)} \right)$$

$$t^* = T + \frac{1}{\sigma + r} - \frac{1}{A}$$

 t^* is schooling.

- $T \uparrow \Rightarrow t^* \uparrow$
- σ , $r \uparrow \Rightarrow t^* \downarrow$
- $A \uparrow \Rightarrow t^* \uparrow$
- Initial endowments don't affect schooling.

• For $t \in [0, t^*]$,

$$\frac{\dot{H}}{H} = (A - \sigma)t + \varphi, \qquad H(0) = H_0$$
 $H(t) = e^{(A - \sigma)t}H(0).$

Human capital at schooling age t* is

$$H(t^*) = H(0)e^{(A-\sigma)}\left(T + \frac{1}{\sigma+r} - \frac{1}{A}\right).$$

• Coefficient on schooling: Mincer's "r" is $(A - \sigma)$

$$Y(t^*) = RH(0)H(t^*)$$

 $\ln Y(t^*) = \ln RH(0) + (A - \sigma)t^*$
 \uparrow
years of school

Interior Sheshinski Specification

Interior Sheshinski Specification

• Now consider $0 < \alpha < 1$:

$$\dot{H} = AI^{\alpha}H - \sigma H$$
 $g(t) = \mu e^{rt}$ $\mathcal{H} = e^{-rt}R(1-I)H + \mu(AI^{\alpha}H - \sigma H)$

- Therefore, if $g(t) \ge \frac{R}{A}$, person invests, full time I = 1.
- We get Sheshinski-like policy:

$$\dot{g} = (\sigma + r - A)g$$

• Need $(\sigma + r - A) < 0$ to satisfy optimality of investment (g(T) = 0).

Interior Solution Case

Interior Sheshinski Specification

We have

$$RH = \alpha g(t)AI^{\alpha-1}H$$

$$\dot{g} = -R(1-I) - gAI^{\alpha} + (\sigma + r)g$$

Now

$$g(t) = \int_{t}^{T} e^{-(\sigma+r)(t-\tau)} [(R)(1-I) + \underbrace{gAI^{\alpha}}_{\text{cash}}] d\tau$$
future
flow productivity

• I is obtained from the first order condition:

$$I = \left[\frac{R}{\alpha g(t)A}\right]^{\frac{1}{\alpha-1}} = \left[\frac{\alpha g(t)A}{R}\right]^{\frac{1}{1-\alpha}}$$

$$\dot{g} = -R \left(1 - \left(\frac{\alpha A}{R} \right)^{\frac{1}{1-\alpha}} g(t)^{\frac{1}{1-\alpha}} \right)$$

$$-gA \left(\frac{\alpha A}{R} \right)^{\frac{\alpha}{1-\alpha}} g^{\frac{\alpha}{1-\alpha}} + (\sigma + r)g$$

$$= -R + (g)^{\frac{1}{1-\alpha}} \varphi + (\sigma + r)g$$

$$\dot{g} = -R + (g)^{\frac{1}{1-\alpha}}\varphi + (\sigma + r)g,$$

where

$$\varphi = R \left(\frac{\alpha A}{R}\right)^{\frac{1}{1-\alpha}} - A \left(\frac{\alpha A}{R}\right)^{\frac{\alpha}{1-\alpha}}$$
$$= (A)^{\frac{1}{1-\alpha}} \left(\frac{\alpha}{R}\right)^{\frac{\alpha}{1-\alpha}} (\alpha - 1) < 0.$$

When $\sigma + r = 0$, $\dot{g} < 0$ for sure.

Interior

- Note: Solution does not depend on initial conditions.
- Case $\alpha = \frac{1}{2}$ produces Riccati equation:

$$\dot{g} = -R + g^2 \varphi + (\sigma + r)g$$

Solution: Let

$$g^{2}\varphi + (\sigma + r)g - R = 0$$
$$(g - r_{+})(g - r_{-}) = 0$$

• r_{+} and r_{-} are roots of equation (may be complex). Then, we can easily solve.

• Suppose $r_+ \neq r_-$ (distinct roots)

$$\frac{g(t)-r_+}{g(t)-r_-}=c\ e^{\varphi(r_+-r_-)t}$$

• Transversality $\Rightarrow g(T) = 0$. Therefore,

$$\frac{r_{+}}{r_{-}} = ce^{\varphi(r_{+} - r_{-})T}$$

$$c = \left(\frac{r_{+}}{r_{-}}\right)e^{-\varphi(r_{+} - r_{-})T}$$

• For $r_+ = r_- = r_0 \neq 0$ because $(\sigma + r) > 0$, R > 0;

$$g(t) - r_0 = \frac{1}{c - \varphi t}$$

$$g(t) = r_0 + \frac{1}{c - \varphi t}$$

$$g(T) = 0 \Rightarrow c = \varphi T - y \frac{1}{r_0}$$

Complex case is of economic interest.

$$r_{\pm} = \frac{-(\sigma + r) \pm \sqrt{(\sigma + r)^2 + 4\varphi R}}{2\varphi}$$

for $\alpha = \frac{1}{2}$, $\varphi = -(A)^2 R^{-1} \frac{1}{4}$.

Therefore:

$$(\sigma+r)^2-rac{4R}{4}(A^2)R^{-1}$$
 $(\sigma+r)^2-A^2, \ {
m but} \ <0 \ {
m from \ transversality}$

$$r_{\pm} = \frac{-(\sigma + r) \pm \sqrt{(\sigma + r)^2 - A^2}}{-\frac{1}{2}A^2R^{-1}}$$
$$= \frac{+2R(\sigma + r)}{A^2} \mp \frac{2R\sqrt{(\sigma + r)^2 - A^2}}{A^2}.$$

Now solution is very simple.

$$egin{split} (g(t)-r_+) &= \left(rac{r_+}{r_-}
ight)e^{arphi(r_+-r_-)(t-T)}(g(t)-r_-) \ & \ g(t)\left[1-rac{r_+}{r_-}e^{arphi(r_+-r_-)(t-T)}
ight] = r_+(1-e^{arphi(r_+-r_-)(t-T)}) \ & \ g(t) &= r_+rac{1-e^{arphi(r_+-r_-)(t-T)}}{1-rac{r_+}{r_-}e^{arphi(r_+-r_-)(t-T)}}. \end{split}$$

Now,

$$r_{+} = a + bi$$
, $r_{+} - r_{-} = (2bi)$, $r_{-} = a - bi$

• Set $\theta = \varphi(2b)(t - T)$ (in radians)

$$g(t) = r_{+} \frac{(1 - e^{i\theta})}{1 - \frac{r_{+}}{r_{-}} e^{i\theta}}$$

$$= (r_{+} r_{-}) \frac{(1 - e^{i\theta})}{(r_{-} - r_{+} e^{i\theta})}$$

• $r_+r_-=a^2+b^2$. Now multiply by $e^{-i\theta/2}$,

$$g(t) = (r_{+}r_{-})\frac{(e^{-i\theta/2} - e^{i\theta/2})}{(r_{-}e^{-i\theta/2} - r_{+}e^{i\theta/2})}$$

Using
$$\cos(-x) = \cos x$$
 $\sin(-x) = -\sin x$,
 $e^{ix} = \cos x + i \sin x$
 $g(t) = (r_+ r_-) \left[\frac{\cos(\theta/2) - i \sin \theta/2 - \cos(\theta/2) - i \sin \theta/2}{-2ai \sin \theta/2 - 2b_i \cos \theta/2} \right]$
 $= (r_+ r_-) \left[\frac{\sin \theta/2}{a \sin \theta/2 + b \cos \theta/2} \right]$
 $= \left(\frac{r_+ r_-}{a} \right) \left[\frac{1}{1 + \frac{b}{a} \cot \theta/2} \right]$

Therefore,

$$g(t) = rac{(a^2+b^2)}{a} \left[rac{1}{1+rac{b}{a}\cotarphi b(t-T)}
ight]$$

$$\frac{b}{a} = \frac{2R(A^2 - (\sigma^2 + r^2))^{1/2}/A^2}{2\frac{(\sigma + r)R}{A^2}} = \frac{[A^2 - (\sigma^2 + r^2)]^{1/2}}{\sigma + r}$$

When $\sigma + r = 0$,

$$r_{\pm} = \pm \frac{\sqrt{4\varphi R}}{2\varphi} = \pm \sqrt{\frac{R}{\varphi}} = \pm \sqrt{\frac{4R}{-A^2R^{-1}}} = \left(\frac{2R}{A}\right)i$$
$$\varphi b = \left[-(A)^2 \frac{R^{-1}}{4}\right] \left[\frac{2R}{A^2}A\right] = -\frac{A}{2}$$

• From definition of θ , we obtain

$$g(t) = \left(\frac{2R}{A}\right) \tan \left(\frac{A}{2}(T-t)\right)$$

Modified Sheshinski Specification (More Interesting)

$$\dot{H} = AI - \sigma$$

$$\mathcal{H} = e^{-rt}R(1-I)H + \mu(t)(AI - \sigma H)$$

- I = 1 if $\mu A \ge e^{-rt}R$
- I = 0 otherwise

$$egin{align} g(t) &= \mu(t)e^{rt} \ \dot{g} &= -R(1-I) + g(\sigma+r) \ g(t) &= R\int_t^T e^{+(\sigma+r)(t- au)}(1-I)\,d au \ g &\geq rac{R}{A}H, \qquad I=1 \ \end{align}$$

- When I=1, $\dot{g}=g(\sigma+r)>0$ and $g\uparrow$
- Intuition: as $t \uparrow$ agent is getting nearer the payoff period.
- While the agent invests he/she gets no return.

• First take case when $\sigma = 0$

$$\dot{g} = -R(1-I) + rg$$

• For t = 0, if $g(t) \ge \frac{R}{4}H(t)$; I = 1; H = A,

$$H(t) = At + H(0)$$

- Let \hat{t} be the age of the first interior solution.
- At \hat{t} , $g(\hat{t}) = \frac{R}{4}H(\hat{t})$,

$$g(0)e^{r\hat{t}} = \frac{R}{A}[A\hat{t} + H(0)]$$

Observe that

$$g(t) \le R \int_t^T e^{+(\sigma+r)(t-\tau)} d\tau$$

(i.e. set
$$I(\tau) = 0$$
).

- Therefore, $g(t) \le \frac{R}{\sigma + r} \left(1 e^{+(\sigma + r)(t \tau)} \right) \le \frac{R}{\sigma + r}$
- Therefore, $\dot{g} < 0$ (after the period of investment)
- Thus at most one period of specialization and it comes at the beginning of life if at all. Will not arise if $g(0) < \frac{R}{A}$, i.e. A < r precludes this (return by investment < return by saving in lending market.
- This is a model of schooling.

$$\frac{R}{r} (1 - e^{r(t^* - T)}) = \frac{R}{A} (At^* + H_0)$$
$$(1 - e^{r(t^* - T)}) = \frac{r}{A} (At^* + H_0)$$

- The higher H_0 , the lower t^* .
- Need r < A for feasibility.
- Human capital stock at end of school:

$$H = At^* + H_0$$
$$Y(t^*) = R(At^* + H_0)$$

- Take case where $\sigma > 0$. Now, by the previous logic, $g \leq \frac{R}{\sigma + r}$.
- Therefore, $\dot{g} < 0$.
- Now investment pattern may be more complex.
- Suppose $g(0) \ge \frac{R}{A}H(0)$. Then I(0) = 1.

$$\frac{\dot{g}}{g} = (\sigma + r)$$
$$\dot{H} = A - \sigma H$$

$$H(t) = A \int_0^t e^{-\sigma(t-\tau)} d\tau + H(0)e^{-\sigma t}$$
$$= \frac{A}{\sigma}(1 - e^{-\sigma t}) + H(0)e^{-\sigma t}$$
$$= \frac{A}{\sigma} + \left[H(0) - \frac{A}{\sigma}\right]e^{-\sigma t}$$

$$g(0)e^{(\sigma+r)\hat{t}} = \frac{R}{A}\left(\frac{A}{\sigma}(1-e^{-\sigma\hat{t}}) + H(0)e^{-\sigma\hat{t}}\right)$$
$$= R\left(\frac{H(0)}{A} - \frac{1}{\sigma}\right)e^{-\sigma\hat{t}} + \frac{R}{\sigma}$$

• To ensure $\dot{H} > 0$ at t = 0, need $A - \sigma H(0) > 0 \Rightarrow A > \sigma H(0) \Rightarrow \frac{1}{\sigma} > \frac{H(0)}{A}$.

For intersection to occur, we have:

$$g(0) \ge \frac{R}{A}H(0)$$

$$H(t) = \frac{A}{\sigma} + \left[H(0) - \frac{A}{\sigma}\right]e^{-\sigma t}$$

- t_1 is the first point where $g(t_1) = \frac{R}{A}H(t_1)$
- $\dot{g}(t) = (\sigma + r)g$ so $g(t_1) = e^{(\sigma + r)t_1}g(0)$.
- Then,

$$\frac{R}{\sigma} + \frac{R}{A} \left[H(0) - \frac{A}{\sigma} \right] e^{-\sigma t_1} = g(0)e^{(\sigma+r)t_1}.$$

• Then at t_1 , I = 0,

$$\begin{array}{lcl} \dot{g} & = & -R + (\sigma + r)g \\ H(t) & = & H(t_1)e^{-\sigma(t-t_1)} & t_1 < t < t_2 \\ g(t) & = & \frac{R}{\sigma + r} \left(1 - e^{+(\sigma + r)(t-t_2)}\right) + g(t_2)e^{(\sigma + r)(t-t_2)} \end{array}$$

• At t_2 , we have that

$$\frac{RH(t_2)}{A} = RH(t_1)e^{-\sigma(t_2-t_1)}
= g(t_2) = \int_{t_2}^{T} e^{-(\sigma+r)(t_2-\tau)} (1 - I(\tau)) d\tau$$

- Then person bangs in at I = 1 and, possibly a sequence of intervals of specialization.
- $t_2 < t < t_3$; etc.

One possible trajectory

- We could also have one shot indefinitely (but last shots are "short").
- Observe:

$$g(t) = R \int_{t_1}^{t_2} e^{(\sigma+r)(t-\tau)} d\tau + \cdots + \int_{t_3}^{t_4} e^{(\sigma+r)(t-\tau)} d\tau + \cdots$$

- For $t < t_1$, $t \uparrow$, $g \uparrow$ can happen.
- For this to occur:
 - In a neighborhood of t_1 :

$$\left.\dot{g}(t_1)<\left.\dfrac{R\dot{H}(t)}{A}\right|_{t=t_1}$$

(demand price less than opportunity cost).

 The curves must cross. Otherwise, we get failure of transversality.

- Whether or not such investment activity occurs depends on initial H(0) and other parameters.
- Thus, at time t_1 , for this to arise, we need:

$$\left.\dot{g}\right|_{t=t_1}<\left.\frac{R\dot{H}(t)}{A}\right|_{t=t_1}.$$

• g is continuous at t_1 (but not necessarily differentiable and, in our case, definitely not).

• At
$$t_1$$
, $g(t_1)=rac{R}{A}H(t_1)$ $\dot{g}=-R+(\sigma+r)g$ (from right) $rac{R}{A}\dot{H}(t_1)=-\sigmarac{R}{A}H(t_1)=-\sigma g(t_1)$

• Therefore, we need:

$$-R+(\sigma+r)g(t_1)<-\sigma g(t_1)=\left.rac{R\dot{H}(t)}{A}
ight|_{t=t_1}$$

• However, this is not guaranteed by $\frac{R}{\sigma+r}>g$. We need a tighter bound.

• For specialization to occur at 0, we need:

$$g(0) \geq \frac{R}{A}H(0),$$

but we need the slope of $\frac{RH(t)}{A}\Big|_{t=0}$ to exceed $\dot{g}\Big|_{t=0}$ (otherwise, g curve and $\frac{R}{A}H(t)$ curves do not intersect).

• For the required condition we need (using expression for RH(t) in a neighborhood of t=0):

$$R\left(1-\frac{\sigma H(0)}{A}\right)>g(0)(\sigma+r)$$

Sufficient condition:

$$\left(1 - \frac{\sigma H(0)}{A}\right) \ge 1 - e^{(\sigma + r)T}$$

(but this is way too strong)

Necessary condition:

$$\frac{\sigma H(0)}{A} < 1$$

(otherwise, never pays to specialize)

- Therefore, if H(0) is too high, agent never specializes.
- At g(0), we must have:

$$\frac{R}{\sigma+r}\left(1-\frac{\sigma H(0)}{A}\right)>g(0)>\frac{RH(0)}{A}.$$

If H(0) big enough, cannot happen.

Observe that:

$$g(t) = R \int_t^T e^{-(\sigma+r)(t- au)} (1-I(au)) d au$$

Recall that I switches between 0 and 1. Therefore:

• For $0 < t < t_1$ (person invests),

$$g(t) = \frac{R}{\sigma + r} e^{(\sigma + r)t} \sum_{k \geq 1} (-1)^{k+1} e^{-(\sigma + r)t_k}$$

• For $t_1 < t < t_2$ (person does not invest),

$$g(t) = \frac{R}{\sigma + r} \left[1 - e^{(\sigma + r)(t - t_2)} \right] + \frac{R}{\sigma + r} e^{(\sigma + r)t} \sum_{k \geq 3} (-1)^{k+1} e^{-(\sigma + r)t_k}$$

• For $t_2 < t < t_3$ (etc.),

$$g(t) = \frac{R}{\sigma + r} e^{(\sigma + r)t} \sum_{k>3} (-1)^{k+1} e^{-(\sigma + r)t_k}$$

- Cannot prove that $g(t_3) < g(t_1)$ for all policies.
- Person may build up stock of human capital over the lifetime.