Week 4 - Software

Student number: 564530

Assignment 4.1: ARM assembly

Screenshot of working assembly code of factorial calculation:

Assignment 4.2: Programming languages

Take screenshots that the following commands work:

javac --version

java --version

gcc --version

python3 --version

bash --version

Assignment 4.3: Compile

Which of the above files need to be compiled before you can run them?

Fibonacci.java, fib.c

Which source code files are compiled into machine code and then directly executable by a processor?

fib.c

Which source code files are compiled to byte code?

Fibonacci.java

Which source code files are interpreted by an interpreter?

fib.py, fib.sh

These source code files will perform the same calculation after compilation/interpretation. Which one is expected to do the calculation the fastest?

fib.c

How do I run a Java program? javac and then java <file> How do I run a Python program? python3 How do I run a C program? gcc -o <file name in future> <file.name> and then ./<filename> How do I run a Bash script? First make it executable sudo chmod a+x <file.name> Then run it ./<file.name>

Will a new file be created if I compile the above source code? If so, which file?

When working with java, yes when you ran a java program for the first time, it is just a source code, you have to execute it and convert to bytecode by a command javac, and only then you can make use of a virtual machine JVM. In addition, with the c files will happen almost the same, however you will just compile c source code into a file that can be directly executed by a processor.

Take relevant screenshots of the following commands:

- Compile the source files where necessary
- Make them executable
- Run them
- Which (compiled) source code file performs the calculation the fastest?

fib.c

Assignment 4.4: Optimize

Take relevant screenshots of the following commands:

- a) Figure out which parameters you need to pass to the gcc compiler so that the compiler performs a number of optimizations that will ensure that the compiled source code will run faster. Tip! The parameters are usually a letter followed by a number. Also read page 191 of your book, but find a better optimization in the man pages. Please note that Linux is case sensitive.
- b) ompile fib.c again with the optimization parameters

- c) Run the newly compiled program. Is it true that it now performs the calculation faster?

 Yes
- d) Edit the file **runall.sh**, so you can perform all four calculations in a row using this Bash script. So the (compiled/interpreted) C, Java, Python and Bash versions of Fibonacci one after the other.

Bonus point assignment - week 4

Like the factorial example, you can also implement the calculation of a power of 2 in assembly. For example you want to calculate $2^4 = 16$. Use iteration to calculate the result. Store the result in r0.

```
Main:
```

mov r1, #2

mov r2, #4

mov r0, r1

Loop:

mul r0, r0, r1

sub r2, r2, #1

cmp r2, #1

bgt Loop

End:

svc #0