Fundament

Probability

Theory

Theore

Bayesia

Conditions

Independent

Naive Bayes

Classifier

Example Example

Summar

Bayesian Learning I
Data Science Specialization
Spring 2025

Jens Classen

Roskilde University

26.03.2025

Bayesian Learning I Jens

Classen

Motivation

Probabil

Bayes'

Theore

Prediction

Conditional

Independenc

Naive Bayes

Classifier

Example Example

Summar

Motivation

Bayesian Learning I

Jens Classen

Motivation

Fundamer

Dark-1886

Bayes'

Theore

Prediction

Conditional

Naive Baye

Classifier

A Worked

Summar

A Game of "Find the Lady"

Motivation

_ .

D. I. L.W.

Raves'

There

Bayesian

Conditional

Naive Bave

Classifier

A Worked

Summar

A Game of "Find the Lady"

Initial likelihoods with cards facing down.

Motivation

Baves'

Theor

Prediction

Conditional

Independen

Classifier

Classifier

Example

Summar

A Game of "Find the Lady"

Observation: Dealer prefers right position (19x) over center (8x) and left (3x).

Motivation

Fundament

- 1110019

Bayes

Bayesian

Conditional

Independen

Naive Baye

Classifier

Example

Summary

A Game of "Find the Lady"

Evidence: Wind blows over card on the right.

Motivation

Fundamental

Bayes'

Theore

Prediction

Conditiona

Independen

Classifier

A Worker

Example Example

A Game of "Find the Lady"

Final positions of cards.

Big Idea

- use estimates of likelihoods to determine most likely prediction
- revise predictions based additional data/evidence

Bayesian Learning I Jens

Classen

iviotivatio

Fundamentals

Probabil

Baves'

Theore

Prediction

Conditional

independence

Classifier

Classifier

Example

Summar

Fundamentals

Probability Distributions

Classen

Fundamen

Probability Theory

Theorem

Bayesian Prediction Conditiona Independer

Naive Bayes Classifier

A Worked Example

Summi

P(A) is the probability that A holds. P is called probability function.

We write X = n to say that random variable (feature) X takes value n, taken from a discrete domain.

Example

Random variable *Weather* with values \langle sunny, rain, cloudy, snow \rangle .

```
\begin{array}{lll} P(\mbox{Weather} = \mbox{sunny}) & = & 0.7 \\ P(\mbox{Weather} = \mbox{rain}) & = & 0.2 \\ P(\mbox{Weather} = \mbox{cloudy}) & = & 0.08 \\ P(\mbox{Weather} = \mbox{snow}) & = & 0.02 \end{array}
```

P(Weather) = (0.7; 0.2; 0.08; 0.02) is the probability distribution of Weather.

The sum of a probability distribution must equal 1.0.

Binary features: Instead of using true/false, we write H = h and $H = \neg h$.

Multiple features: P(Weather = sunny, Sprinkler = on, Wet = wet) denotes **joint probability**.

g

Conditional Probabilities

Classen

Probability Theory

Conditional probability: probability of a feature taking a specific value given the value of another feature.

Example: Rolling Dice

P(Roll=3) = 1/6. Let E = "Roll is divisible by 3."

Then we obtain the conditional probability:

$$P(Roll=3 \mid E) = 1/2.$$

E is also called the evidence and may represent background knowledge or observations.

Prior: Probability before evidence.

Probability after the evidence. Posterior:

Probability Theory

 $P(C \mid T) = 0.8$ is read as "the probability of C given T is 0.8."

Formal Definition: Conditional Probability

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$
 or $P(A, B) = P(A \mid B) \cdot P(B)$
(Product Rule)

Dice Roll Example

P(Roll = 3) = 1/6. Let E = "Roll is divisible by 3."

Then P(E) = 2/6 and P(Roll = 3, E) = 1/6. Thus $P(Roll = 3 \mid E) = \frac{1/6}{2/6} = 1/2$.

$$P(X, Y) = P(X \mid Y) \cdot P(Y)$$
 stands for a system of equations of the form:

$$P(X = x_i, Y = y_j) = P(X = x_i | Y = y_j) \cdot P(Y = y_j)$$

for all values x_i , y_i from the domains of X and Y.

The joint probability distribution $P(X_1, X_2, ... X_n)$ assigns a probability to every combination of values for the random variables $X_1, X_2, ... X_n$.

Toothache-Cavity Example:

	T = t	$T = \neg t$
C = c	0.04	0.06
$C = \neg c$	0.01	0.89

- Values must add up to 1.0.
- From the table one can calculate all probabilities ("summing out"):

•
$$P(t) = .04 + .01 = .05$$

•
$$P(c \mid t) = P(c, t)/P(t) = .04/.05 = .8$$

• Note: Table grows exponentially in the number of variables.

Classen

Probability Theory

Table 1: A simple dataset for Meningitis diagnosis with descriptive features that describe the presence or absence of three common symptoms of the disease: HEADACHE, FEVER, and VOMITING.

ID	Неадасне	Fever	Vomiting	Meningitis
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
_10	true	false	true	true

Bayesian Learning I

Jens Classen

Motivatio

Fundament

Probability Theory

Bayes'

Theore

Prediction

Conditiona

Naive Baye

Classifier

A Worked

Summar

$$\mathbf{P}(H,F,V,M) = \begin{bmatrix} P(h,f,v,m), & P(\neg h,f,v,m) \\ P(h,f,v,\neg m), & P(\neg h,f,v,\neg m) \\ P(h,f,\neg v,m), & P(\neg h,f,\neg v,m) \\ P(h,f,\neg v,\neg m), & P(\neg h,f,\neg v,\neg m) \\ P(h,\neg f,v,m), & P(\neg h,\neg f,v,m) \\ P(h,\neg f,v,m), & P(\neg h,\neg f,v,m) \\ P(h,\neg f,v,m), & P(\neg h,\neg f,v,\neg m) \\ P(h,\neg f,\neg v,m), & P(\neg h,\neg f,\neg v,m) \\ P(h,\neg f,\neg v,\neg m), & P(\neg h,\neg f,\neg v,\neg m) \end{bmatrix}$$

Motivation

Probability

Bayes' Theorem

Bayesian Prediction Conditional

Naive Bay Classifier

A Worked

Summ

 $P(A,B) = P(A \mid B) \cdot P(B)$ $P(B,A) = P(B \mid A) \cdot P(A)$

Since P(A, B) = P(B, A), have $P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$.

Bayes Theorem

$$P(B \mid A) = \frac{P(A \mid B) \cdot P(B)}{P(A)}$$

Again can write system of equations as

$$P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)},$$

Often there is additional evidence E:

$$P(Y \mid X,E) = \frac{P(X \mid Y,E) \cdot P(Y \mid E)}{P(X \mid E)}$$

Baves' Theorem

Bayes Theorem is particular useful for doing diagnosis:

We want to determine $P(Cause \mid Effect)$, but $P(Effect \mid Cause)$ is easier to assess.

Patient Scenario

A doctor informs their patient that they have bad news and good news.

- bad news: patient tested positive for a serious disease, test is 99% accurate
 - probability of testing positive when having disease is 0.99
 - probability of testing negative when not having disease is 0.99
- good news: the disease is extremely rare, striking only 1 in 10,000 people
- What is the actual probability that the patient has the disease?
- Why is the rarity of the disease good news given that the patient has tested positive for it?

$$P(d \mid t) = \frac{P(t \mid d)P(d)}{P(t)}$$

Have: $P(t \mid d) = 0.99$ and P(d) = 0.0001. But what about P(t) (prior probability of the evidence)?

$$P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)}$$

the factor 1/P(X) is only a normalising constant so that the right-hand side sums to 1.0 over all values of Y.

In the literature, one often uses the following form:

$$P(Y \mid X) = \alpha \cdot P(X \mid Y) \cdot P(Y).$$

In practice one usually calculates the unnormalised case first, and then looks for an appropriate α .

Motivation

Probability

Bayes' Theorem

Prediction Conditional Independe

Naive Bayes Classifier

Example

We can calculate this divisor directly from the dataset.

$$P(Y) = \frac{|\{\text{rows where Y is the case}\}|}{|\{\text{rows in the dataset}\}|}$$

Or, we can use the **Theorem of Total Probability** to calculate this divisor.

$$P(Y) = \sum_{i} P(Y \mid X_i) P(X_i)$$

This is also called "summing out" or "marginalization".

Patient Scenario, continued

$$P(t) = P(t \mid d)P(d) + P(t \mid \neg d)P(\neg d)$$

= $(0.99 \times 0.0001) + (0.01 \times 0.9999) = 0.0101$

$$P(d \mid t) = \frac{0.99 \times 0.0001}{0.0101} = 0.0098$$

The probability to have the disease given a positive test is still very small (<1%)!

Motivatio

Fundament

Probabili

Bayes' Theorem

Bayesian Prediction Conditiona

Naive Baye

Classifier A Worked

Example

Possible mistake: forgetting to factor in the prior.

The Paradox of the False Positive

To make predictions about a rare event, the **model** has to be as **accurate** as the **prior** of the event is rare!

Otherwise: significant chance of false positive predictions!

How does one combine evidence consisting of several variables/features?

Generalized Bayes' Theorem

$$P(t=l\mid \mathbf{q}[1],\ldots,\mathbf{q}[m])=\frac{P(\mathbf{q}[1],\ldots,\mathbf{q}[m]\mid t=l)P(t=l)}{P(\mathbf{q}[1],\ldots,\mathbf{q}[m])}$$

Here, $\mathbf{q}[1], \dots, \mathbf{q}[m]$ is the query (evidence) in terms of descripitive features, and t = l is the value of the target feature.

But how to compute $P(\mathbf{q}[1], \dots, \mathbf{q}[m] \mid t = I)P(t = I)$ and $P(\mathbf{q}[1], \dots, \mathbf{q}[m])$?

Motivation

Fundamenta Probability Theory

Bayes' Theoren

> Bayesian Prediction

Naive Baye

Classifier

A Worked Example

6

$$\begin{array}{l} P(\mathbf{q}[2],\mathbf{q}[1]) = P(\mathbf{q}[2] \mid \mathbf{q}[1]) \times P(\mathbf{q}[1]) \\ P(\mathbf{q}[3],\mathbf{q}[2],\mathbf{q}[1]) = P(\mathbf{q}[3] \mid \mathbf{q}[2],\mathbf{q}[1]) \times P(\mathbf{q}[2],\mathbf{q}[1]) \\ P(\mathbf{q}[4],\mathbf{q}[3],\mathbf{q}[2],\mathbf{q}[1]) = P(\mathbf{q}[4] \mid \mathbf{q}[3],\mathbf{q}[2],\mathbf{q}[1]) \times P(\mathbf{q}[3],\mathbf{q}[2],\mathbf{q}[1]) \\ \dots \end{array}$$

Chain Rule

$$P(\mathbf{q}[1],\ldots,\mathbf{q}[m]) = P(\mathbf{q}[1]) \times P(\mathbf{q}[2] \mid \mathbf{q}[1]) \times \cdots \times P(\mathbf{q}[m] \mid \mathbf{q}[m-1],\ldots,\mathbf{q}[2],\mathbf{q}[1])$$

To apply the chain rule to a conditional probability, we just add the conditioning term to each term:

$$P(\mathbf{q}[1],...,\mathbf{q}[m] \mid t = l) = P(\mathbf{q}[1] \mid t = l) \times \cdots \times P(\mathbf{q}[m] \mid \mathbf{q}[m-1],...,\mathbf{q}[2],\mathbf{q}[1],t = l)$$

Bayesian Learning I

Jens Classen

Motivatio

Fundamei

Probabilit Theory

Bayes'

Bayesian Prediction

Conditional

maepenaen

Classifier

A Worked

Example

Summa

ID	Headache	Fever	Vomiting	Meningitis
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
10	true	false	true	true

Headache	Fever	Vomiting	Meningitis
true	false	true	?

$$P(M\mid h,\neg f,v)=?$$

Baves Rule:

$$P(M \mid h, \neg f, v) = \frac{P(h, \neg f, v \mid M) \times P(M)}{P(h, \neg f, v)}$$

Classen

Bavesian Prediction

Reading off values from the dataset gives:

 $P(m) = \frac{|\{\mathbf{d}_5, \mathbf{d}_8, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_5, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_9, \mathbf{d}_{10}\}|} = \frac{3}{10} = 0.3$ $P(h, \neg f, v) = \frac{|\{\mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_9, \mathbf{d}_9, \mathbf{d}_{10}\}|} = \frac{6}{10} = 0.6$ Using chain rule (as exercise) gives:

$$P(h, \neg f, v \mid m) = P(h \mid m) \times P(\neg f \mid h, m) \times P(v \mid \neg f, h, m)$$

$$= \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{5}, \mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}$$

$$= \frac{2}{3} \times \frac{2}{2} \times \frac{2}{2} = 0.6666$$

Hence $P(m \mid h, \neg f, v) = 0.3333$.

Also, $P(\neg m \mid h, \neg f, v) = 1 - P(m \mid h, \neg f, v) = 0.6667$.

Twice as probable to have **no** meningitis than to have it, despite headache and vomiting!

Bayesian Prediction

Task: Given query $\mathbf{q} = (\mathbf{q}[1], \dots, \mathbf{q}[m])$ over descriptive features, predict value I for target feature t.

Bayesian MAP Prediction Model

$$\begin{split} \mathbb{M}_{MAP}(\mathbf{q}) &= \underset{l \in \mathit{levels}(t)}{\mathsf{argmax}} \ P(t = l \mid \mathbf{q}[1], \dots, \mathbf{q}[m]) \\ &= \underset{l \in \mathit{levels}(t)}{\mathsf{argmax}} \ \frac{P(\mathbf{q}[1], \dots, \mathbf{q}[m] \mid t = l) \times P(t = l)}{P(\mathbf{q}[1], \dots, \mathbf{q}[m])} \end{split}$$

Note: To determine most likely value for t, normalization is not needed.

Bayesian MAP Prediction Model (without normalization)

$$\mathbb{M}_{MAP}(\mathbf{q}) = \operatorname*{argmax}_{l \in levels(t)} P(\mathbf{q}[1], \dots, \mathbf{q}[m] \mid t = l) \times P(t = l)$$

MAP = maximum a posteriori

Jens Classen

Fundame

Theory Bayes'

Theore

Bayesian Prediction

Condition

Independen

Classifier

A Worked

Example

C.....

Headache Fever Vomiting Meningitis true true false ?

$$P(m \mid h, f, \neg v) = ? \frac{\begin{pmatrix} P(h \mid m) \times P(f \mid h, m) \\ \times P(\neg v \mid f, h, m) \times P(m) \end{pmatrix}}{P(h, f, \neg v)}$$
$$= \frac{0.6666 \times 0 \times 0 \times 0.3}{0.1} = 0$$

$$P(\neg m \mid h, f, \neg v) = \frac{\left(P(h \mid \neg m) \times P(f \mid h, \neg m) \times P(\neg m) \times P(\neg m)\right)}{\times P(\neg v \mid f, h, \neg m) \times P(\neg m)}$$
$$= \frac{0.7143 \times 0.2 \times 1.0 \times 0.7}{0.1} = 1.0$$

There is something odd about these results!

Example

ID	H	F	V	M
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
10	true	false	true	true

Curse of Dimensionality

Curse of Dimensionality

- The more descriptive features, the more potential conditioning events.
- Every new feature requires exponentially many more examples to ensure there are enough instances matching the conditions!
- Probability of a patient with a headache and fever having meningitis should be greater than zero!
- Our dataset is not large enough → our model is over-fitting to the training data.
- The concepts of conditional independence and factorization can help us overcome this.

Stochastic Independence

- If knowledge of one event has no effect on the probability of another event, and *vice versa*, then the two events are **independent** of each other.
- If two events *X* and *Y* are independent then:

$$P(X \mid Y) = P(X)$$

$$P(X, Y) = P(X) \times P(Y)$$

Recall rules for **dependent** variables

$$P(X \mid Y) = \frac{P(X, Y)}{P(Y)}$$

$$P(X, Y) = P(X \mid Y) \times P(Y) = P(Y \mid X) \times P(X)$$

Conditional Independence

• Full independence: rare!

Conditional independence: more common!

X and Y are conditionally independent given Z iff:

$$P(X \mid Y, Z) = P(X \mid Z)$$

$$P(X, Y \mid Z) = P(X \mid Z) \times P(Y \mid Z)$$

Example

If MENINGITIS is given, then FEVER and HEADACHE are independent from each other:

$$P(F \mid H, M) = P(F \mid M)$$

$$P(F, H \mid M) = P(F \mid M) \times P(H \mid M)$$

In general, when a cause (disease) is known, then its effects (symptoms) can often be assumed to be independent.

Motivatio

Fundament

Bayes'

Theoren

Conditional

Conditional Independence

Classifier

A Worked

Example

Summary

• If the event t = l causes the events $\mathbf{q}[1], \dots, \mathbf{q}[m]$ to happen then the events $\mathbf{q}[1], \dots, \mathbf{q}[m]$ are conditionally independent of each other given knowledge of t = l and the chain rule definition can be simplified as follows:

$$P(\mathbf{q}[1], \dots, \mathbf{q}[m] \mid t = I)$$

$$= P(\mathbf{q}[1] \mid t = I) \times P(\mathbf{q}[2] \mid t = I) \times \dots \times P(\mathbf{q}[m] \mid t = I)$$

$$= \prod_{i=1}^{m} P(\mathbf{q}[i] \mid t = I)$$

 Using this we can simplify the calculations in Bayes' Theorem, under the assumption of conditional independence between the descriptive features given the level / of the target feature:

$$P(t = l \mid \mathbf{q}[1], \dots, \mathbf{q}[m]) = \frac{\left(\prod_{i=1}^{m} P(\mathbf{q}[i] \mid t = l)\right) \times P(t = l)}{P(\mathbf{q}[1], \dots, \mathbf{q}[m])}$$

Withouth conditional independence

$$P(X, Y, Z \mid W) = P(X \mid W) \times P(Y \mid X, W) \times P(Z \mid Y, X, W) \times P(W)$$

With conditional independence

$$P(X, Y, Z \mid W) = \underbrace{P(X \mid W)}_{Factor1} \times \underbrace{P(Y \mid W)}_{Factor2} \times \underbrace{P(Z \mid W)}_{Factor3} \times \underbrace{P(W)}_{Factor4}$$

• The joint probability distribution for the meningitis dataset.

$$\mathbf{P}(H,F,V,M) = \begin{bmatrix} P(h,f,v,m), & P(\neg h,f,v,m) \\ P(h,f,v,\neg m), & P(\neg h,f,v,\neg m) \\ P(h,f,\neg v,m), & P(\neg h,f,\neg v,m) \\ P(h,f,\neg v,\neg m), & P(\neg h,f,\neg v,m) \\ P(h,f,\neg v,\neg m), & P(\neg h,f,v,m) \\ P(h,\neg f,v,m), & P(\neg h,\neg f,v,m) \\ P(h,\neg f,v,m), & P(\neg h,\neg f,v,m) \\ P(h,\neg f,\neg v,m), & P(\neg h,\neg f,\neg v,m) \\ P(h,\neg f,\neg v,\neg m), & P(\neg h,\neg f,\neg v,\neg m) \end{bmatrix}$$

Motivatio

Eundamental

Probabi Theory Bayes'

Bayes' Theore

Prediction

Conditional Independence

Naive Baye Classifier

Classifier A Worked

Example

Summar

Assuming the descriptive features are conditionally independent of each other given MENINGITIS
we only need to store four factors:

$$\begin{aligned} \textit{Factor}_1 : &< P(\textit{M}) > \\ \textit{Factor}_2 : &< P(\textit{h} \mid \textit{m}), P(\textit{h} \mid \neg \textit{m}) > \\ \textit{Factor}_3 : &< P(\textit{f} \mid \textit{m}), P(\textit{f} \mid \neg \textit{m}) > \\ \textit{Factor}_4 : &< P(\textit{v} \mid \textit{m}), P(\textit{v} \mid \neg \textit{m}) > \\ P(\textit{H}, \textit{F}, \textit{V}, \textit{M}) = P(\textit{M}) \times P(\textit{H} \mid \textit{M}) \times P(\textit{F} \mid \textit{M}) \times P(\textit{V} \mid \textit{M}) \end{aligned}$$

Motivation

Probability

Baves'

Theore

Prediction Conditional

Independence

Classifier

A Worke

Summa

$^{\mathrm{ID}}$	Headache	Fever	Vomiting	Meningitis
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
10	true	false	true	true

• Calculate the factors from the data:

$$Factor_1 : < P(M) >$$

$$Factor_2 : \langle P(h \mid m), P(h \mid \neg m) \rangle$$

$$Factor_3 : \langle P(f \mid m), P(f \mid \neg m) \rangle$$

$$\textit{Factor}_4: < \textit{P(v} \mid \textit{m)}, \textit{P(v} \mid \neg \textit{m)} >$$

Bayesian Learning I

Jens Classen

Motivatio

Fundamer

Probabilit

Theor

I neor

Prediction

Conditional Independence

Naive Bayes

Classifier

A Worked Example

Summar

$$Factor_1 : < P(m) = 0.3 >$$

$$\textit{Factor}_2: <\textit{P(h} \mid \textit{m)} = 0.6666, \textit{P(h} \mid \neg \textit{m)} = 0.7413 >$$

$$Factor_3 : < P(f \mid m) = 0.3333, P(f \mid \neg m) = 0.4286 >$$

$$Factor_4: < P(v \mid m) = 0.6666, P(v \mid \neg m) = 0.5714 >$$

Motivatio

rundame

Probabilit

Bayes'

Theor

Predic

Conditional Independence

Naive Baye Classifier

A Worke Example

Summary

 $Factor_1 : < P(m) = 0.3 >$

 $\textit{Factor}_2 : < \textit{P(h} \mid \textit{m)} = 0.6666, \textit{P(h} \mid \neg \textit{m)} = 0.7413 >$

 $Factor_3 : < P(f \mid m) = 0.3333, P(f \mid \neg m) = 0.4286 >$

 $\textit{Factor}_4 : < P(\textit{v} \mid \textit{m}) = 0.6666, P(\textit{v} \mid \neg \textit{m}) = 0.5714 >$

Using the factors above calculate the probability of MENINGITIS='true' for the following query.

Headache	Fever	Vomiting	Meningitis
true	true	false	?

Jens Classen

Motivatio

rundame

Probabili Theory

Bayes' Theore

Bavesia

Prediction

Conditional Independence

Naive Baye Classifier

A Worked

Example

Summar

$$P(m \mid h, f, \neg v) = \frac{P(h \mid m) \times P(f \mid m) \times P(\neg v \mid m) \times P(m)}{\sum_{i} P(h \mid M_{i}) \times P(f \mid M_{i}) \times P(\neg v \mid M_{i}) \times P(M_{i})} = \frac{0.6666 \times 0.3333 \times 0.3333 \times 0.3333 \times 0.3}{(0.6666 \times 0.3333 \times 0.3333 \times 0.3) + (0.7143 \times 0.4286 \times 0.4286 \times 0.7)} = 0.194$$

Fundame

Probabilit

Bayes'

Theor

Predi

Conditional Independence

Naive Baye

A Worked

A Worke Example

Summary

 $Factor_1 : < P(m) = 0.3 >$

 $Factor_2 : < P(h \mid m) = 0.6666, P(h \mid \neg m) = 0.7413 >$

Factor₃: $< P(f \mid m) = 0.3333, P(f \mid \neg m) = 0.4286 >$

 $Factor_4: < P(v \mid m) = 0.6666, P(v \mid \neg m) = 0.5714 >$

Using the factors above calculate the probability of MENINGITIS='false' for the same query.

Headache	Fever	Vomiting	Meningitis
true	true	false	?

Jens Classen

Motivatio

Eundamonta

Probabilit

Bayes'

Theore

Prediction

Conditional Independence

Naive Baye

Classifier

Example

Julilliary

$$P(\neg m \mid h, f, \neg v) = \frac{P(h \mid \neg m) \times P(f \mid \neg m) \times P(\neg v \mid \neg m) \times P(\neg m)}{\sum_{i} P(h \mid M_{i}) \times P(f \mid M_{i}) \times P(\neg v \mid M_{i}) \times P(M_{i})} = \frac{0.7143 \times 0.4286 \times 0.4286 \times 0.7}{(0.6666 \times 0.3333 \times 0.3333 \times 0.3) + (0.7143 \times 0.4286 \times 0.4286 \times 0.4286 \times 0.7)} = 0.8053$$

Fundame

Probability

Bayes'

Theor

Predict

Conditional Independence

Naive Baye

Classifier A Worked

Lxample

$$P(m \mid h, f, \neg v) = 0.1948$$

$$P(\neg m \mid h, f, \neg v) = 0.8052$$

- As before, the MAP prediction would be MENINGITIS = 'false'
- The posterior probabilities are not as extreme!

Jens Classen

Naive Bayes Classifier

Naive Bayes Classifier

Naive Bayes Classifier

Naive Bayes' Classifier

$$\mathbb{M}(\mathbf{q}) = \operatorname*{argmax}_{I \in levels(t)} \left(\prod_{i=1}^{m} P(\mathbf{q}[i] \mid t = I) \right) \times P(t = I)$$

Naive Bayes' is simple to train!

- 1 calculate the priors for each of the target levels
- 2 calculate the conditional probabilities for each feature given each target level.

Jens Classen

Motivation

Fundamen

Probabilit Theory

Bayes' Theore

Prediction

Independen

Naive Bay

Classifier

A Worked Example

Summary

Table 2: A dataset from a loan application fraud detection domain.

	Credit	Guarantor/		
$^{\mathrm{ID}}$	History	CoApplicant	ACCOMODATION	Fraud
1	current	none	own	true
2	paid	none	own	false
3	paid	none	own	false
4	paid	guarantor	rent	true
5	arrears	none	own	false
6	arrears	none	own	true
7	current	none	own	false
8	arrears	none	own	false
9	current	none	rent	false
10	none	none	own	true
11	current	coapplicant	own	false
12	current	none	own	true
13	current	none	rent	true
14	paid	none	own	false
15	arrears	none	own	false
16	current	none	own	false
17	arrears	coapplicant	rent	false
18	arrears	none	free	false
19	arrears	none	own	false
20	paid	none	own	false

P(fr)	=	0.3	$P(\neg fr)$	=	0.7
$P(CH = 'none' \mid fr)$	=	0.1666	$P(CH = 'none' \mid \neg fr)$	=	0
$P(CH = 'paid' \mid fr)$	=	0.1666	$P(CH = 'paid' \mid \neg fr)$	=	0.2857
$P(CH = 'current' \mid fr)$	=	0.5	$P(CH = 'current' \mid \neg fr)$	=	0.2857
$P(CH = 'arrears' \mid fr)$	=	0.1666	$P(CH = 'arrears' \mid \neg fr)$	=	0.4286
$P(GC = 'none' \mid fr)$	=	0.8334	$P(GC = 'none' \mid \neg fr)$	=	0.8571
$P(GC = 'guarantor' \mid fr)$	=	0.1666	$P(GC = 'guarantor' \mid eg fr)$	=	0
$P(GC = 'coapplicant' \mid fr)$	=	0	$P(GC = 'coapplicant' \mid \neg fr)$	=	0.1429
P(ACC = 'own' fr)	=	0.6666	$P(ACC = 'own' \mid \neg fr)$	=	0.7857
$P(ACC = 'rent' \mid fr)$	=	0.3333	$P(ACC = 'rent' \mid \neg fr)$	=	0.1429
P(ACC = 'free' fr)	=	0	$P(ACC = 'free' \mid \neg fr)$	=	0.0714

Table 3: The probabilities needed by a Naive Bayes prediction model calculated from the dataset. Notation key: FR=FRAUDULENT, CH=CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT, ACC = ACCOMODATION, T='true', F='false'.

Eundamon

Probability Theory

Bayes' Theore

Bayesian Prediction

Condition: Independe

Classifier

A Worked

Example

Summar

P(fr)	=	0.3	$P(\neg fr)$	=	0.7
$P(CH = 'none' \mid fr)$	=	0.1666	$P(CH = 'none' \mid \neg fr)$	=	0
$P(CH = 'paid' \mid fr)$	=	0.1666	$P(CH = 'paid' \mid \neg fr)$	=	0.2857
$P(CH = 'current' \mid fr)$	=	0.5	$P(CH = 'current' \mid \neg fr)$	=	0.2857
$P(CH = 'arrears' \mid fr)$	=	0.1666	$P(CH = 'arrears' \mid \neg fr)$	=	0.4286
$P(GC = 'none' \mid fr)$	=	0.8334	$P(GC = 'none' \mid \neg fr)$	=	0.8571
$P(GC = 'guarantor' \mid fr)$	=	0.1666	$P(GC = 'guarantor' \mid eg fr)$	=	0
$P(GC = 'coapplicant' \mid fr)$	=	0	$P(GC = 'coapplicant' \mid \neg fr)$	=	0.1429
P(ACC = 'own' fr)	=	0.6666	$P(ACC = 'own' \mid \neg fr)$	=	0.7857
$P(ACC = 'rent' \mid fr)$	=	0.3333	$P(ACC = 'rent' \mid \neg fr)$	=	0.1429
$P(ACC = 'free' \mid fr)$	=	0	$P(ACC = 'free' \mid \neg fr)$	=	0.0714

Credit History	Guarantor/CoApplicant	ACCOMODATION	FRAUDULENT
paid	none	rent	?

Fundame

Probabilit

Bayes'

Prediction

Conditional Independen

Classifier

A Worked

Example

$$P(fr) = 0.3 P(\neg fr) = 0.7$$

$$P(CH = 'paid' | fr) = 0.1666 P(CH = 'paid' | \neg fr) = 0.2857$$

$$P(GC = 'none' | fr) = 0.8334 P(GC = 'none' | \neg fr) = 0.8571$$

$$P(ACC = 'rent' | fr) = 0.3333 P(ACC = 'rent' | \neg fr) = 0.1429$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] | fr)\right) \times P(fr) = 0.0139$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] | \neg fr)\right) \times P(\neg fr) = 0.0245$$

Credit History	Guarantor/CoApplicant	ACCOMODATION	Fraudulent
paid	none	rent	?

Fundamen

Probability

Bayes'

Bayesia

Conditional

Independen

Classifier

A Worked

Example

Summary

$$P(fr) = 0.3 P(\neg fr) = 0.7$$

$$P(CH = 'paid' | fr) = 0.1666 P(CH = 'paid' | \neg fr) = 0.2857$$

$$P(GC = 'none' | fr) = 0.8334 P(GC = 'none' | \neg fr) = 0.8571$$

$$P(ACC = 'rent' | fr) = 0.3333 P(ACC = 'rent' | \neg fr) = 0.1429$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] | fr)\right) \times P(fr) = 0.0139$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] | \neg fr)\right) \times P(\neg fr) = 0.0245$$

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMODATION	Fraudulent
paid	none	rent	'false'

4

Jens Classen

Eundamo

Probabili Theory

Theorer

Prediction Condition:

Independe

Classifier

A Worked Example

Summary

The model is generalizing beyond the dataset!

	History	Coapplicant	A ~ ~ ~ ~ ~ ~ ~ ~ · ~ · ~ · ~ · ~ · ~ ·	
1		COMMI	ACCOMMODATION	Fraud
1	current	none	own	true
2	paid	none	own	false
3	paid	none	own	false
4	paid	guarantor	rent	true
5	arrears	none	own	false
6	arrears	none	own	true
7	current	none	own	false
8	arrears	none	own	false
9	current	none	rent	false
10	none	none	own	true
11	current	coapplicant	own	false
12	current	none	own	true
13	current	none	rent	true
14	paid	none	own	false
15	arrears	none	own	false
16	current	none	own	false
17	arrears	coapplicant	rent	false
18	arrears	none	free	false
19	arrears	none	own	false
20	paid	none	own	false

•	Credit History	GUARANTOR/COAPPLICANT	ACCOMMODATION	Fraudulent
	paid	none	rent	'false'

> Jens Classen

Motivatio

E La Contract

Probabili

Theory

Theore

Prediction

Conditional

Independen

Naive Baye

Classifier

Example Example

Summary

Summary

Summary

Summary

$$P(t \mid \mathbf{d}) = \frac{P(\mathbf{d} \mid t) \times P(t)}{P(\mathbf{d})}$$

- Naive Bayes' classifier assumes that all descriptive features are conditionally independent from one another, given the target feature.
- Although often wrong, the assumption enables to maximally factorise the representation.
- Surprisingly, Naive Bayes' models often perform reasonably well, despite their "naivety".
- Naive Bayes' models are often used as baseline classifier to compare other methods against.

Summary

Reading

- Mitchell, T. M. (1997). Machine Learning (Vol. 1). McGraw-Hill New York. Chapter 6.
- Russell S. J. & Norvig P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. Chapter 13.
- Kelleher, Mac Namee, B., & D'Arcy, A. (2020). Fundamentals of Machine Learning for Predictive Data Analytics Algorithms, Worked Examples, and Case Studies. MIT Press. Chapter 6.

Acknowledgements

In addition to the authors above, some slides are adapted from or inspired by a course by Gerhard Lakemeyer (RWTH Aachen University).