Линейная регрессия

Сергей Николенко НИУ ВШЭ — Санкт-Петербург 15 февраля 2020 г.

Random facts:

- 15 февраля на Вануату День Джона Фрума, центрального персонажа в культе карго, изображаемого в виде американского военнослужащего Второй мировой войны; возможно, «Джон Фрум» — это искажение «John from (America)»; последователи Джона Фрума соорудили на острове Танна символическую взлётно-посадочную полосу с макетами самолётов и символическими вышками, на которых дежурили «диспетчеры»
- 15 февраля в США День Сьюзен Б. Энтони (Susan B. Anthony), одной из главных суфражисток XIX века; в 1863 году они с Элизабет Стэнтон организовали Women's Loyal National League, которая собрала 400 тысяч подписей в поддержку отмены рабства, а затем лоббировала равноправие всех граждан США и женщин, и афроамериканцев (но не вылоббировала, в 14-й и 15-й поправках про женщин ничего нет)
- · 15 февраля 1717 г. в Петербурге было впервые напечатано «Юности честное зерцало»
- 15 февраля 2013 г. астероид диаметром ≈ 17 метров и массой ≈ 10000 тонн вошёл в атмосферу Земли на скорости ≈ 18 км/с и разрушился на высоте 15—25 км в окрестностях Челябинска; снятое на видеорегистратор падение было показано в начальных титрах фильмов World War Z и Edge of Tomorrow

Напоминание

- Напоминаю, что основная наша задача как обучить параметры распределения и/или предсказать следующие его точки по имеющимся данным.
- В байесовском выводе участвуют:
 - $p(x \mid \theta)$ правдоподобие данных;
 - $p(\theta)$ априорное распределение;
 - $p(x) = \int_{\Theta} p(x \mid \theta) p(\theta) d\theta$ маргинальное правдоподобие;
 - $p(\theta \mid X) = \frac{p(X|\theta)p(\theta)}{p(X)}$ апостериорное распределение;
 - $p(x' \mid x) = \int_{\Theta} p(x' \mid \theta) p(\theta \mid x) d\theta$ предсказание нового x'.
- Задача обычно в том, чтобы найти $p(\theta \mid x)$ и/или $p(x' \mid x)$.

Априорные распределения

- Когда мы проводим байесовский вывод, у нас, кроме правдоподобия, должно быть ещё *anpuopнoe pacnpedeneнue* (prior distribution) по всем возможным значениям параметров.
- Мы раньше к ним специально не присматривались, но они очень важны.
- Задача байесовского вывода как подсчитать $p(\theta \mid x)$ и/или $p(x' \mid x)$.
- Но чтобы это сделать, сначала надо выбрать $p(\theta)$. Как выбирать априорные распределения?

- Разумная цель: давайте будем выбирать распределения так, чтобы они оставались такими же и *a posteriori*.
- · До начала вывода есть априорное распределение $p(\theta)$.
- После него есть какое-то новое апостериорное распределение $p(\theta \mid x)$.
- Я хочу, чтобы $p(\theta \mid x)$ тоже имело тот же вид, что и $p(\theta)$, просто с другими параметрами.

- Не слишком формальное определение: семейство распределений $p(\theta \mid \alpha)$ называется семейством сопряжённых априорных распределений для семейства правдоподобий $p(x \mid \theta)$, если после умножения на правдоподобие апостериорное распределение $p(\theta \mid x, \alpha)$ остаётся в том же семействе: $p(\theta \mid x, \alpha) = p(\theta \mid \alpha')$.
- α называются zunepnapamempamu (hyperparameters), это «параметры распределения параметров».
- Тривиальный пример: семейство всех распределений будет сопряжённым чему угодно, но это не очень интересно.

- Разумеется, вид хорошего априорного распределения зависит от вида распределения собственно данных, $p(x \mid \theta)$.
- Сопряжённые априорные распределения подсчитаны для многих распределений, мы приведём несколько примеров.

Испытания Бернулли

- Каким будет сопряжённое априорное распределение для бросания нечестной монетки (испытаний Бернулли)?
- Ответ: это будет бета-распределение; плотность распределения нечестности монетки θ

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}.$$

Испытания Бернулли

· Плотность распределения нечестности монетки heta

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha-1} (1-\theta)^{\beta-1}}{B(\alpha, \beta)}.$$

• Тогда, если мы посэмплируем монетку, получив s орлов и f решек, получится

$$p(s, f \mid \theta) = {s+f \choose s} \theta^s (1-\theta)^f$$
, и

$$p(\theta|s,f) = \frac{\binom{s+f}{s}\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}/B(\alpha,\beta)}{\int_0^1 \binom{s+f}{s}x^{s+\alpha-1}(1-x)^{f+\beta-1}/B(\alpha,\beta)dx} = \frac{\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}}{B(s+\alpha,f+\beta)}.$$

4

Испытания Бернулли

• Итого получается, что сопряжённое априорное распределение для параметра нечестной монетки θ – это

$$p(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
.

• После получения новых данных с s орлами и f решками гиперпараметры меняются на

$$p(\theta \mid s + \alpha, f + \beta) \propto \theta^{s+\alpha-1} (1-\theta)^{f+\beta-1}$$
.

 На этом этапе можно забыть про сложные формулы и выводы, получилось очень простое правило обучения (под обучением теперь понимается изменение гиперпараметров).

Бета-распределение

Мультиномиальное распределение

- Простое обобщение: рассмотрим мультиномиальное распределение с n испытаниями, k категориями и по x_i экспериментов дали категорию i.
- · Параметры $heta_i$ показывают вероятность попасть в категорию i:

$$p(x \mid \theta) = \binom{n}{x_1, \dots, x_n} \theta_1^{x_1} \theta_2^{x_2} \dots \theta_k^{x_k}.$$

• Сопряжённым априорным распределением будет распределение Дирихле:

$$p(\theta \mid \alpha) \propto \theta_1^{\alpha_1-1}\theta_2^{\alpha_2-1}\dots\theta_k^{\alpha_k-1}.$$

Мультиномиальное распределение

• Сопряжённым априорным распределением будет распределение Дирихле:

$$p(\theta \mid \alpha) \propto \theta_1^{\alpha_1-1} \theta_2^{\alpha_2-1} \dots \theta_k^{\alpha_k-1}.$$

Упражнение. Докажите, что при получении данных x_1, \dots, x_k гиперпараметры изменятся на

$$p(\theta \mid X, \alpha) = p(\theta \mid X + \alpha) \propto \theta_1^{x_1 + \alpha_1 - 1} \theta_2^{x_2 + \alpha_2 - 1} \dots \theta_k^{x_k + \alpha_k - 1}.$$

Распределение Дирихле

Линейная регрессия

Метод наименьших квадратов

• Линейная регрессия: рассмотрим линейную функцию

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{p} x_j w_j = \mathbf{x}^{\top} \mathbf{w}, \quad \mathbf{x} = (1, x_1, \dots, x_p).$$

• Таким образом, по вектору входов $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ мы будем предсказывать выход у как

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^{p} x_j \hat{w}_j = \mathbf{x}^{\top} \hat{\mathbf{w}}.$$

Метод наименьших квадратов

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(\mathbf{x}_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$\mathrm{RSS}(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2.$$

• Как минимизировать?

Метод наименьших квадратов

• Можно на самом деле решить задачу точно – записать как

$$RSS(w) = (y - Xw)^{\top}(y - Xw),$$

где X – матрица $N \times p$, продифференцировать по \mathbf{w} , получится

$$\hat{\mathbf{W}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y},$$

если матрица $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ невырожденная.

- Замечание: $(X^TX)^{-1}X^T$ называется *псевдообратной* матрицей Мура-Пенроуза (Moore-Penrose pseudo-inverse) матрицы X; это обобщение понятия обратной матрицы на неквадратные матрицы.
- Много ли нужно точек, чтобы обучить такую модель?

- Теперь давайте поговорим о линейной регрессии по-байесовски.
- Основное наше предположение в том, что шум (ошибка в данных) распределён нормально, т.е. переменная t, которую мы наблюдаем, получается как

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

Иными словами,

$$p(t \mid \mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \sigma^2).$$

• Здесь пока у – любая функция.

 Чтобы не повторять совсем уж то же самое, мы рассмотрим не в точности линейную регрессию, а её естественное обобщение – линейную модель с базисными функциями:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x})$$

(М параметров, М - 1 базисная функция, $\phi_0(\mathbf{x}) = 1$).

- Базисные функции ϕ_i это, например:
 - результат feature extraction;
 - расширение линейной модели на нелинейные зависимости (например, $\phi_i(x) = x^i$);
 - локальные функции, которые существенно не равны нулю только в небольшой области (например, гауссовские базисные функции $\phi_j(\mathbf{x}) = e^{-\frac{(\mathbf{x} \mu_j)^2}{2s^2}}$);

• ..

- Рассмотрим набор данных $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ со значениями $\mathbf{t} = \{t_1, \dots, t_N\}.$
- Будем предполагать, что данные взяты независимо по одному и тому же распределению:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N} \left(t_n \mid \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right).$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n))^2.$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2.$$

 И вот мы получили, что для максимизации правдоподобия по w нам нужно как раз минимизировать среднеквадратичную ошибку!

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n).$$

• Решая систему уравнений $\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = 0$, получаем то же самое, что и раньше:

$$W_{\text{ML}} = \left(\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\right)^{-1}\boldsymbol{\Phi}^{\top}t.$$

· Здесь $\mathbf{\Phi} = (\phi_j(\mathbf{x}_i))_{i,j}$.

• Теперь можно и относительно σ^2 максимизировать правдоподобие; получим

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}_{ML}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2,$$

т.е. как раз выборочная дисперсия имеющихся данных вокруг предсказанного значения.

Оверфиттинг

в линейной регрессии

• Мы говорили о регрессии с базисными функциями:

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}).$$

• Давайте для примера рассмотрим такую регрессию для $\phi_j(x) = x^j$, т.е.

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M.$$

- И будем, как раньше, минимизировать квадратичную ошибку.
- Пример с кодом.

Значения RMS

Можно собрать больше данных...

Можно собрать больше данных...

Значения коэффициентов

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Оверфиттинг

- Итак, мы увидели, что даже в линейной регрессии может наступить оверфиттинг.
- Что же делать?..

регрессии

Регуляризация в линейной

Регуляризация

- Итак, получается, что у нас сильно растут коэффициенты.
- Давайте попробуем с этим бороться. Бороться будем прямолинейно и простодушно: возьмём и добавим размер коэффициентов в функцию ошибки.

Регуляризация

• Было (для тестовых примеров $\{(x_i,y_i)\}_{i=1}^N$):

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2$$
.

Стало:

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \|\mathbf{w}\|^2$$
,

где α – коэффициент регуляризации (его надо будет как-нибудь выбрать).

• Как оптимизировать эту функцию ошибки?

Регуляризация

• Да точно так же – запишем как

$$\mathrm{RSS}(\mathbf{w}) = \frac{1}{2} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)^{\top} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right) + \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}$$

и возьмём производную; получится

$$\mathbf{w}^* = \left(\mathbf{X}^\top \mathbf{X} + \alpha \mathbf{I}\right)^{-1} \mathbf{X}^\top \mathbf{y}.$$

• Это гребневая регрессия (ridge regression); кстати, добавление α I к матрице неполного ранга делает её обратимой; это и есть регуляризация, и это и было исходной мотивацией для гребневой регрессии.

Гребневая регрессия: $\ln \alpha = -\infty$

Гребневая регрессия: $\ln \alpha = -18$

Гребневая регрессия: $\ln \alpha = 0$

Гребневая регрессия: коэффициенты

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\bar{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Гребневая регрессия: RMS

Другая регуляризация

- Почему именно так? Почему именно $\frac{\alpha}{2} \|\mathbf{w}\|^2$?
- Мы сейчас ответим на этот вопрос, но, вообще говоря, это не обязательно.
- Лассо-регрессия (lasso regression) регуляризует L_1 -нормой, а не L_2 :

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \alpha \sum_{j=0}^{M} |w_j|.$$

• Есть и другие типы; об этом будем говорить позже.

Регрессия по-байесовски

- А теперь давайте посмотрим на регрессию с совсем байесовской стороны.
- Напомним основу байесовского подхода:
 - 1. найти апостериорное распределение на гипотезах/параметрах:

$$p(\theta \mid D) \propto p(D|\theta)p(\theta)$$

(и/или найти максимальную апостериорную гипотезу $\arg\max_{\theta} p(\theta \mid D)$);

2. найти апостериорное распределение исходов дальнейших экспериментов:

$$p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D|\theta) p(\theta) d\theta.$$

- В нашем рассмотрении пока не было никаких априорных распределений.
- Давайте какое-нибудь введём; например, нормальное (почему так позже):

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0).$$

• Рассмотрим набор данных $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ со значениями $\mathbf{t} = \{t_1, \dots, t_N\}$. В этой модели мы предполагаем, что данные независимы и одинаково распределены:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N} \left(t_n \mid \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right).$$

• Тогда наша задача – посчитать

$$\begin{split} p(\mathbf{w} \mid \mathbf{t}) &\propto p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w}) \\ &= \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \prod_{n=1}^N \mathcal{N} \left(t_n \mid \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right). \end{split}$$

• Давайте подсчитаем.

• Получится

$$p(\mathbf{w} \mid \mathbf{t}) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_{N}, \boldsymbol{\Sigma}_{N}),$$

$$\mu_{N} = \boldsymbol{\Sigma}_{N} \left(\boldsymbol{\Sigma}_{0}^{-1} \mu_{0} + \frac{1}{\sigma^{2}} \boldsymbol{\Phi}^{\top} \mathbf{t} \right),$$

$$\boldsymbol{\Sigma}_{N} = \left(\boldsymbol{\Sigma}_{0}^{-1} + \frac{1}{\sigma^{2}} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \right)^{-1}.$$

• Теперь давайте подсчитаем логарифм правдоподобия.

• Если мы возьмём априорное распределение около нуля:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \frac{1}{\alpha}\mathbf{I}),$$

то логарифм правдоподобия получится

$$\ln p(\mathbf{w} \mid \mathbf{t}) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} + \text{const},$$

то есть в точности гребневая регрессия.

Лассо

• Теперь давайте рассмотрим лассо-регрессию:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} |w_j|.$$

- Главное отличие теперь форма ограничений (т.е. форма априорного распределения) такова, что весьма вероятно получить строго нулевые w_i .
- · Кстати, что значит «форма ограничений»?

Лассо

 Мы можем переписать регрессию с регуляризатором по-другому:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} |w_j| \right\},$$

эквивалентно

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{W}) - y_i)^2 \right\} \text{ при } \sum_{j=0}^{p} |w_j| \le t.$$

Упражнение. Докажите это.

Гребень и лассо

Гребень и лассо

Обобщение

 Можно рассмотреть обобщение гребневой и лассо-регрессии:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} (|w_j|)^q.$$

Упражнение. Какому априорному распределению на параметры **w** соответствует эта задача?

Разные q

Спасибо!

Спасибо за внимание!