

MM54HC534/MM74HC534 TRI-STATE® Octal D-Type Flip-Flop with Inverted Outputs

General Description

These high speed Octal D-Type Flip-Flops utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the TRI-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

These devices are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time requirements, are inverted and transferred to the $\overline{\mathbb{Q}}$ outputs on positive going transitions of the CLOCK (CK) input. When a high logic level is applied to the OUTPUT CONTROL (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The 54HC/74HC logic family is speed, function, and pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 23 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads

Connection Diagram

TL/F/5340-1

Order Number MM54HC534 or MM74HC534

Truth Table

Output Control	Clock	Data	Output	
L	1	Н	L	
L	↑	L	Н	
L	L	X	\overline{Q}_{0}	
Н	Х	Х	Z	

H = High Level, L = Low Level

X = Don't Care

↑ = Transition from low-to-high

Z = High impedance state

 $\overline{Q}_0 = \text{The level of the output before steady state}$ input conditions were established

TRI-STATE® is a registered trademark of National Semiconductor Corp

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Storage Temperature Range (T_{STG}) Power Dissipation (P_D)

DC V_{CC} or GND Current, per pin (I_{CC})

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)
(Soldering 10 seconds

(Soldering 10 seconds) 260°C

Operating Conditions								
	Min	Max	Units					
Supply Voltage (V _{CC})	2	6	V					
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V					
Operating Temp. Range (TA)								
MM74HC	-40	+85	°C					
MM54HC	-55	+125	°C					
Input Rise or Fall Times								
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns					
$V_{CC} = 4.5V$		500	ns					
$V_{CC} = 6.0V$		400	ns					

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 6.0$ mA $ I_{OUT} \le 7.8$ mA	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 6.0$ mA $ I_{OUT} \le 7.8$ mA	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	± 1.0	± 1.0	μΑ
loz	Maximum TRI-STATE Output Leakage Current	$V_{IN} = V_{IH}$ or V_{IL} , $OC = V_{IH}$ $V_{OUT} = V_{CC}$ or GND	6.0V		±0.5	±5	±10	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

 $\pm\,70~mA$

 -65°C to $+\,150^{\circ}\text{C}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

 $[\]textbf{Note 3:} \ \ Power \ Dissipation \ temperature \ derating \\ -- plastic "N" \ package: \\ -12 \ mW/^{\circ}C \ from \ 65^{\circ}C \ to \ 85^{\circ}C; \ ceramic "J" \ package: \\ -12 \ mW/^{\circ}C \ from \ 100^{\circ}C \ to \ 125^{\circ}C.$

Note 4: For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{CH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC}=5V, T_A=25^{\circ}C, t_f=t_f=6 \text{ ns}$ Parameter Conditions Guaranteed Limit Symbol Тур Units Maximum Operating Frequency MHz f_{MAX} Maximum Propagation Delay Clock to $\overline{\mathbb{Q}}$ $C_L = 45 pF$ 23 32 t_{PHL}, t_{PLH} ns $R_L = 1 k\Omega$ $C_L = 45 pF$ Maximum Output Enable Time 28 $t_{PZH},\,t_{PZL}$ 21 ns $R_L = 1 k\Omega$ $C_L = 5 pF$ Maximum Output Disable Time 19 25 $t_{PHZ},\,t_{PLZ}$ ns Minimum Setup Time 10 20 ns t_{S} Minimum Hold Time 0 5 ns t_{H} Minimum Pulse Width 9 16 ns t_{W}

$\textbf{AC Electrical Characterist} \underline{\textbf{ics}} \ \ v_{CC} = 2.0 - 6.0 \ \text{V}, \ C_L = 50 \ \text{pF}, \ t_f = t_f = 6 \ \text{ns} \ \text{(unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
f _{MAX}	Maximum Operating Frequency	C _L =50 pF	2.0V 4.5V 6.0V		6 30 35	5 24 28	4 20 23	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	68 110	180 230	225 288	270 345	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	22 30	36 46	45 57	48 69	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	20 28	31 40	39 50	46 60	ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L=1 k\Omega$						
f _{MAX}		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	50 80	150 200	189 250	225 300	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	21 29	30 40	37 50	45 60	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	19 25	26 35	31 44	39 53	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 50 pF$	2.0V 4.5V 6.0V	50 21 19	150 30 26	189 37 31	225 45 39	ns ns ns
ts	Minimum Setup Time		2.0V 4.5V 6.0V		50 9 9	60 13 11	75 15 13	ns ns ns
t _H	Minimum Hold Time		2.0V 4.5V 6.0V		5 5 5	5 5 5	5 5 5	ns ns ns
t _W	Minimum Pulse Width		2.0V 4.5V 6.0V		80 16 14	100 20 18	120 24 20	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time Clock				1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per flip-flop) OC = V _{CC} OC = Gnd		30 50				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance		ſ <u></u> '	15	20	20	20	pF

 $\textbf{Note 5:} \quad C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC^2} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \text{ and } I_{CC} \ V_{CC} \$

Ceramic Dual-In-Line Package (J) Order Number MM54HC534J or MM74HC534J NS Package J20A

LIFE SUPPORT POLICY

Molded Dual-In-Line Package (N) Order Number MM74HC534N NS Package N20A

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408