Datum:		Třída:
21. 12. 2023	SPŠ CHOMUTOV	A4
Číslo úlohy: 10.	Vzorkování, rekonstrukce průběhu a FFT analýza	Jméno: Levický

Zadání: Pro měření použijte automatizovaný měřící systém.

Schéma:

Použité přístroje:

Název	Ozn.	Údaje	Inventární číslo	
Generátor	Gn	33120A HP	LE 3104	
Multimetr	ČV	Agilent 34401A	LE 3103	
Generátor	Gx	SIGLENT SDG1020	LE 5080	
Vzorkovací zesilovač			LE2 2326	
Stabilizovaný zdroj U		TSZ 75; \pm 15 V; \pm 5 V	LE2 1027	
Hradlo	&	TESLA MH7400S		

Teorie:

Vzorkování signálu

Z měřeného signálu se odebírají v pravidelných intervalech délky T_S (index je z angl sampling, vzorkování) vzorky čili hodnoty signálu v okamžicích n.Ts, kde n je celé kladné číslo. Tyto hodnoty následně převedou na čísla, uloží do paměti a jsou určeny k číslicovému zpracování nebo k zobrazení. Původní analogový signál z nich můžeme rekonstruovat, bylali dodržena tzv. vzorkovací věta: Je-li vzorkován frekvenčně omezený signál s horní mezní frekvencí f_M v ekvidistantních okamžicích s periodou T_S =1/ f_S , ,pak můžeme původní signál získat zpět bez ztráty informace, jeli splněna podmínka f_S >2. f_M

Pokud dojde porušení podmínky nemůže rekonstrukce proběhnout správně a vznikne tzv. aliasing (zdeformovaný průběh).

Kvantování signálu

Analogově číslicový převodník (analog-to-digital converter) je obvod převádějící hodnotu napětí na svém vstupu na odpovídající číslo. Výstup z analogově číslicového převodníku je číselný kód (zpravidla n-bitový binární nebo binárně-dekadický). Je ukládán do paměti a následně využit pro zobrazení v grafické podobě (číslicový osciloskop), případně před zobrazením zpracován (spektrální analyzátor, analyzátor výkonu). Pokud je použit přímo k číslicovému zobrazení výsledku měření na zobrazovači přístroje (číslicový voltmetr), je číslo zobrazeno v dekadické číselné soustavě a je mu přiřazena desetinná tečka odpovídající použitému vstupnímu rozsahu voltmetru.

Měření základních parametrů periodických signálů

Digitalizace periodického napětí získáme posloupnosti u_n nebo i_n pro $n \in (0,n-1)$. Pro posloupnost vzorků měřeného signálu použijeme společné označení x_n . Vzorkovací frekvenci upravíme tak, že sejmeme právě N vzorků za periodu signálu T. Upravíme definice efektivní hodnoty, stejnosměrné složky a střední aritmetické hodnoty tak, že integrály nahradíme součty dílčích integrací pres sousední vzorkovací intervaly T_S .

1) K čemu se vzorkovací zesilovače používají?

Vzorkovací zesilovače jsou zařízení, která se používají k zesilování signálu vzorkovaného z analogového signálu. Tento proces je obvykle spojen s analogově-číslicovou konverzí (ADC), kdy je analogový signál převeden na digitální formu.

2) V jakých stavech se může vzorkovací zesilovač vyskytovat?

Pracovní stav (Active state)

Standby nebo čekací stav (Standby state)

Vypnutý stav (Off state)

Režim nízké spotřeby (Low-power state)

Testovací režimy (Test modes):

3) Jak zní vzorkovací věta a jaká je podmínka pro správnou rekonstrukci původního signálu?

Je-li vzorkován frekvenčně omezený signál s horní mezní frekvencí f_M v ekvidistantních okamžicích s periodou T_S =1/ f_S , ,pak můžeme původní signál získat zpět bez ztráty informace, jeli splněna podmínka f_S >2. f_M

4) Uveď te vztahy pro určení efektivní hodnoty, střední hodnoty a stejnosměrné složky.

$$X_{ef} = \sqrt{\frac{1}{N} \cdot \sum_{n=0}^{N-1} x_n^2}$$

$$X_0 = \frac{1}{N} \cdot \sum_{n=0}^{N-1} X_n$$

$$X_{st\check{\mathbf{r}}} = \frac{1}{N} \cdot \sum_{n=0}^{N-1} |X_n|$$

5) Popište co je výsledkem FFT analýzy (spektrální analýza).

Analýza je matematická technika používaná k převodu časových signálů na frekvenční domény. Výsledek FFT analýzy je spektrální rozklad signálu, což znamená, že je možné zobrazit, jaké frekvence jsou přítomny v původním časovém signálu a jak silné jsou tyto frekvence.

Naměřené hodnoty:

	Parametry nastavené na generátoru				Parametry naměřené		
Typ průběhu	f [Hz]	Uef [V]	Ustř [V]	U0 [V]	Uef [V]	Ustř [V]	U0 [V]
Sinus	0,5	1	0,900	0	0,988	0,887	0,016
Obdélník	0,5	1	1,000	0	0,991	0,990	0,016
Trojúhelník	0,5	1	0.866	0	0,987	0,855	-0,004

Popis programu:

- 1. Nastavování průběhu na generátoru
- 2. Vstupní hodnota pro vzorkovací frekvenci
- 3. Nastavení frekvence na generátoru
- 4. Nastavení napětí na generátoru
- 5. Nastavení OFFSET na generátoru
- 6. Nastavení generátoru (jeho blok)
- 7. Spoždění mezi generátorem a multimetrem
- 8. Vytvoření vstupní konstantní hodnoty 100 pro výpočty
- 9. Nastavení multimetru
- 10. Formula pro výpočet U₀
- 11. Funkční blok pro vytvoření průběhu napětí v čase
- 12. Formula pro výpočet vzorkovací frekvence
- 13. Formula pro nastavení rozsahu cyklu
- 14. Formula pro výpočet Ustř
- 15. Formula pro výpočet Uef
- 16. Zarovnávací blok pro tabulku
- 17. Krokovací cyklus
- 18. Podmínka
- 19. Gate
- 20. Collector
- 21. Formula pro zjištění frekvence
- 22. Vykreslení tabulky
- 23. Vykreslení průběhu

Závěr:

Měření proběhlo úspěšně. Naměřené hodnoty se velmi blíží nastaveným parametrům.