Probabilidade

Distribuição discreta

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada

Variância;

$$\sigma^2 = V(X) = E(X - \mu)^2 \ = E(X^2) - (E(X))^2$$

Esperança e variância com duas variáveis aleatórias;

Covariância. Cov(X,Y) = E(XY) - E(X)E(Y)

Distribuição de Probabilidades → Uma tabela, equação ou gráficos que mapeia os resultados possíveis

de um experimento a um valor de probabilidade

Famílias de distribuição

- Motivação
- Aplicação
- Fórmula
- Visualização
- Exemplos
- Propriedades

Para demonstrar que uma certa função é uma distribuição de probabilidades...

- 1. Não deve haver valores negativos;
- 2. Os valores devem somar 1.

Propriedades de uma distribuição

Média

$$E(X) = \sum_{x=0}^{n} x P(x)$$

Variância

$$V(X) = E(X^2) - E(X)^2$$

Distribuição mais simples

Distribuição mais simples não-trivial

Distribuição de Bernoulli

Distribuição de Bernoulli

Distribuição não-trivial mais simples;

Jacob Bernoulli (1655 - 1705)

Base para várias outras distribuições;

- Binomial
- Poisson
- Normal

Distribuição de Bernoulli

$$B_{p}, 0 \le p \le 1$$

Dois valores	0	1
probabilidade	1-p	р

Somatória das probabilidades = 1?

$$P(0) + P(1) = 1 - p + p = 1$$

 $X \sim B_{D}$ (Variável aleatória X distribuído de acordo com a distribuição de Bernoulli)

Quem se importa com apenas dois valores?

Versão binária de eventos complexos:

- Produtos: 80 bons e 20 defeituosos
 - Selecione um, bom ou ruim → ~B_{0.8}
- Próximo bebê será menino
 - ~B_{0,5}

Experimentos repetitivos

- Base para outras distribuições importantes
 - o Binomial, Geométrica, Poisson, Normal...

Média de B_p

$$X \sim B_{p}$$
 $p(0) = 1 - p$ $p(1) = p$

$$p(1) = p$$

$$E(X) = \sum p(x).x = (1-p).0 + p.1 = p$$

$$X \sim B_{0.8} \rightarrow E(X) = 0.8$$

 $E(X) = P(X=1) \rightarrow Fração de vezes que é esperado observar 1$

Variância de B_p

$$X \sim B_p$$
 $p(0) = 1 - p$ $p(1) = p$ $V(X) = E(X^2) - (E(X))^2$ $\sum p(x).x^2 - p^2 = (p(1).1 + p(0).0) - p^2$ $= p - p^2$ $= p(1-p)$ $V(X) = pq$ $\sigma = \sqrt{pq}$

р	EX	V(X)	σ
0	0	0	0
1	1	0	0
1/2	1/2	1/4	1/2

Experimentos independentes

Uma das importâncias da distribuição de Bernoulli é a sua aplicação em experimentos múltiplos;

O mais comum, é que estes experimentos sejam independentes;

$$0 \le p \le 1$$
 $X_1, X_2, X_3 \sim B_p$ $q = 1-p$

$$P(110) = p^2q = P(101) = P(011)$$

De forma geral, X_1 , X_2 , X_3 , ..., $X_n \sim B_p$

$$x^n = x_1, x_2, x_3, ..., x_n \in \{0,1\}^n \ n_0 \to \# \ 0s \ e \ n_1 \to \# \ 1s$$

$$P(x_1,x_2,x_3,...,x_n) = p^{n1}q^{n0}$$
 $P(10101) = p^{n1}q^{n0} = p^3q^2$

Exemplos

Distribuição	Sequência típica	Descrição	Probabilidade
B ₀	000000000	Constante 0	1 ¹⁰ = 1
B ₁	111111111	Constante 1	1 ¹⁰ = 1
B _{0,8}	1110111011	80% de 1s	0,88.0,22
B _{0,5}	1010101010	50% de 1s	0,5 ¹⁰

Distribuição Binomial

Vários experimentos Bernoulli

Conta o número de sucesso em **n** experimentos Bernoulli

$$P(sucesso) = p P(falha) = q = 1 - p$$

 $B_{n,p}$ ou $B_{p,n} \rightarrow$ distribuição do número de sucessos

$$n \rightarrow n$$
úmero de jogadas de moeda (cara = 1, coroa = 0)

$$p(1) \rightarrow p$$

 $B_{n,p} \rightarrow distribuição do número de caras$

Distribuição Binomial

Aplicações

- Resposta positiva a um medicamento
- Componentes com defeitos
- Moedas

B_{n,p} - n pequeno

n experimentos B_p independentes

$$P(Sucesso) = p(1) = p$$
 $P(Falha) = p(0) = 1 - p$

Bn,p(k) - probabilidade de k sucesso

$$n = 0$$

k	B _{p,0} (k)
0	1

k	B _{p,1} (k)
0	q
1	р

$$n = 2$$

k	seq	B _{p,1} (k)
0	00	q ²
1	01,10	2pq
2	11	p ²

$B_{n,p}$ - n e k de modo geral

n experimentos B_n independentes

$$P(Sucesso) = p(1) = p$$
 $P(Falha) = p(0) = 1 - p$

Bn,p(k) - probabilidade de k sucesso # sucesso $0 \le k \le n$

Se eu tenho k sucesso, eu tenho n - k falhas

Probabilidade de uma sequência com k sucesso = p^kq^{n-k}

Número de sequências que possui k sucesso:
$$\binom{n}{k}$$

$$B_{n,p}(k)=inom{n}{k}p^kq^{n-k}$$

É de fato uma distribuição?

$$B_{n,p}(k) = \binom{n}{k} p^k q^{n-k}$$

1. Não deve haver valores negativos;

$$0 \le k \le n$$
 $0 \le p \le 1$

2. Os valores devem somar 1.

$$\sum_{k=0}^n B_{n,p}(k) = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}$$
 Teorema Binomial $= (p+q)^n = 1^n = 1$

Exemplos

n=18

 $B_{p,18}(k)$

Múltiplas escolhas

Um exame possui 6 questões de múltiplas escolhas, cada um contendo 4 alternativas.

Em cada questão, o estudante seleciona de forma aleatória uma das 4 alternativas.

Para passar, ele necessita 4 ou mais questões corretas. Qual a probabilidade dele passar?

Múltiplas escolhas

Um exame possui 6 questões de múltiplas escolhas, cada um contendo 4 alternativas.

Em cada questão, o estudante seleciona de forma aleatória uma das 4 alternativas.

Para passar, ele necessita 4 ou mais questões corretas. Qual a probabilidade dele passar?

$$P(4)={6\choose 4}.\ {1\over 4}^4.\ {3\over 4}^2=0,0329$$
 $P(5)={6\choose 5}.\ {1\over 4}^5.\ {3\over 4}^1=0,00439$ $P(X\ge 4)=P(4)+P(5)+P(6)=0,03759$

$$P(6) = {6 \choose 6}.\,rac{1}{4}{}^6.\,rac{3}{4}{}^0 = 0,000244$$

Média e Variância de B_{n,p}

$$E(X) = np$$

$$Var(X) = E(X^2) + E(X)^2 = npq$$

Média de B_{n,p}

$$E(X) = \sum_{x=0}^n x P(x)$$

Média de B_{n,p}

$$egin{aligned} E(X) &= \sum\limits_{x=0}^{n} x P(x) \ &= \sum\limits_{x=0}^{n} k inom{n}{x} p^{x} q^{n-x} \ &= x_{0} inom{n}{x_{0}} p^{x_{0}} q^{n-x_{0}} + x_{1} inom{n}{x_{1}} p^{x_{1}} q^{n-x_{1}} + \dots \ &= \sum\limits_{x=1}^{n} x inom{n}{x} p^{x} q^{n-x} \ &= \sum\limits_{x=1}^{n} x inom{n!}{x!(n-x)!} p^{x} q^{n-x} \end{aligned}$$

 $igg|=np\sum_{b=0}^nig(^a_big).\,p^bq^{a-b}$ $\Big| = \sum_{x=1}^n (rac{n!}{(x-1)!(n-x)!}) p^x q^{n-x}$ $=x_0inom{n}{x_0}p^{x_0}q^{n-x_0}+x_1inom{n}{x_1}p^{x_1}q^{n-x_1}+\dotsigg|=\sum\limits_{x=1}^n(rac{n(n-1)!}{(x-1)!(n-x)!})p.\,p^{x-1}q^{n-x}\quadigg|=np(p+q)^n\ =np$ $= np \sum_{x=1}^n (rac{(n-1)!}{(x-1)!(n-x)!}). \, p^{x-1} q^{n-x}$

 $= np\sum_{b=0}^n (rac{(a)!}{(b)!(a-b)!}).\, p^b q^{a-b}$

Variância de $B_{n,p}$

$$E(X(X-1))=\sum\limits_{x=0}^{n}x(x-1)p(x)$$

$$E(X(X-1))=\sum\limits_{x=0}^{n}x(x-1)inom{n}{x}p^{x}q^{(n-x)}$$

$$V(X) = E(X^2) - E(X)^2$$

Para calcular a variância é mais fácil calcular a E(X(X-1)) para obter $E(X^2)$

$$E(X(X-1)) = E(X^2) - E(X)$$

Variância de B_{n,p}

$$V(X) = E(X^2) - E(X)^2$$

Para calcular a variância é mais fácil calcular a E(X(X-1)) para obter $E(X^2)$

$$E(X(X-1))=E(X^2)-E(X)$$

$$egin{aligned} E(X(X-1)) &= \sum_{x=0}^n x(x-1)p(x) \ E(X(X-1)) &= \sum_{x=0}^n x(x-1)inom{n!}{x!p^x}q^{(n-x)} \ &= \sum_{x=0}^n x(x-1)(rac{n!}{x!(n-x)!})p^xq^{n-x} \ &= \sum_{x=2}^n x(x-1)(rac{n(n-1)(n-2)!}{x(x-1)(x-2)!(n-x)!})p^2p^{x-2}q^{n-x} \ &= p^2n(n-1)\sum_{x=2}^n (rac{(n-2)!}{(x-2)!(n-x)!})p^{x-2}q^{n-x} \ &= p^2n(n-1)\sum_{b=0}^n (rac{(a)!}{(b)!(a-b)!})p^bq^{a-b} \ &= p^2n(n-1)(p+q)^n \ &= p^2n(n-1) \end{aligned}$$

Variância de $B_{n,p}$

$$egin{split} E(X(X-1)) &= E(X^2) - E(X) \ p^2 n(n-1) &= E(X^2) - np \ E(X^2) &= p^2 n(n-1) + np \end{split}$$

$$egin{aligned} V(X) &= E(X^2) - E(X)^2 \ V(X) &= p^2 n (n-1) + n p - n^2 p^2 \ V(X) &= p^2 n^2 - p^2 n + n p - n^2 p^2 \ V(X) &= n p (1-p) \ V(X) &= n p q \end{aligned}$$

Revisão

Distribuição de Bernoulli

- Média: p
- Variância: pq

Distribuição Binomial

- Média: np
- Variância: npq