

ejercicio 1 (sección 6.7; álgebra lineal Kollman); determine las coordenadas de 'v' con respecto a S.

donde $S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ y $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

partimos de la formula $c_1v_1 + c_2v_2 = v$; donde v_1 y v_2 son los vectores en el espacio y c_1 y c_2 los coeficientes que determinaran como pasar el vector 'v' a el espacio S.

$$c_1(1, 0) + c_2(0, 1) = (3, -2)$$

asi mismo decimos que

$$c_1 = 3$$

$$c_2 = -2$$

de esto obtenemos que las coordenadas de 'v' con respecto a S, son:

$$[v]_s = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$