- 1. Calculate the flux of the vector $\vec{F} = x\hat{x} + y\hat{y} + z\hat{z}$ over the surface of a right circular cylinder of radius R bounded by the surfaces z=0 and z=h with the centre of the base of the cylinder situated at origin. Calculate it directly as well as by use of the divergence theorem.
- 2. Let $\vec{F} = 2xz\hat{x} x\hat{y} + y^2\hat{z}$. Evaluate $\int_{\mathcal{V}} \vec{F} d\tau$ where \mathcal{V} is the region bounded by the surfaces $x = 0, y = 0, y = 6, z = x^2, z = 4$, as pictured in Figure 1.

Figure 1: Volume element

3. Check the fundamental theorem for gradients using $T = x^2 + 4xy + 2yz^3$ joining the points a = (0, 0, 0), b = (1, 1, 1) following three different paths as shown in Figure 2.

Figure 2: Three different paths

- (a) $(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1)$
- (b) $(0,0,0) \to (0,0,1) \to (0,1,1) \to (1,1,1)$
- (c) The parabolic path $z = x^2, x = y$.
- 4. (a) Using Stoke's theorem calculate the line integral of $\vec{F} = 2z\hat{x} + x\hat{y} + y\hat{z}$ over a circle of radius R in the xy plane centered at the origin. Take the open surface to be a hemisphere in z>0 (Fig. 3).
 - (b) Calculate the same using Divergence theorem imagining the hemispherical surface as well as the disc on the x-y plane to form a closed surface.

Figure 3: Hemisphere

- 5. Prove that the cylindrical coordinate system is orthogonal and express velocity and acceleration of a particle in cylindrical polar coordinates.
- 6. In PH 101 you encountered the momentum operator in quantum mechanics. Recall that the momentum operator had the form $p = \frac{\hbar}{i} \frac{d}{dx}$ in one dimension. Now that we have discussed everything in general in three dimensions, $\vec{p} = \frac{\hbar}{i} \vec{\nabla}$. Hence the angular momentum operator $\vec{L} = \vec{r} \times \vec{p} = \frac{\hbar}{i} (\vec{r} \times \vec{\nabla})$. Show that the angular momentum operator in spherical polar coordinate is of the form

$$\vec{L} = \frac{\hbar}{i} \left(-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} + \hat{\phi} \frac{\partial}{\partial \theta} \right)$$