Комби-разнобой с ЮМТ

- 1. По n коробкам как-то разложены n^2 конфет. За один ход можно взять две коробки, содержащие суммарно чётное число конфет, и разложить эти конфеты поровну в эти коробки. При каких натуральных n за несколько ходов заведомо можно разложить конфеты поровну по всем n коробкам?
- 2. Петя и Вася играют на доске $n \times n$, начинает Петя. Каждый игрок выбирает столбец или строку и красит её в свой цвет (не обращая внимание на предыдущие цвета). Один и тот же столбец или строку нельзя выбирать дважды. Петя хочет, чтобы после n ходов Пети и n ходов Васи клеток его цвета было как можно больше. Какого наилучшего результата он может добиться при правильной игре?
- **3.** В правильном 1000-угольнике проведены диагонали, разбивающие его на треугольники с вершинами в вершинах многоугольника. Докажите, что среди них есть не менее девяти различных по длине.
- 4. Решите эту задачу симпатично. Без неприятного перебора случаев в бесконечных конструкциях. Рассмотрим граф, в котором каждое ребро принадлежит не более чем трём циклам. Докажите, что его вершины можно раскрасить в три цвета так, чтобы любые две вершины, соединённые ребром, имели разные цвета.
- 5. Даны три кучи, в которых изначально содержится 2000, 4000 и 4899 камней соответственно. Али и Баба делают ходы по очереди, первый ход делает Али. За один ход игрок может выбрать две кучи и переложить несколько камней из одной кучи в другую, при условии, что в конце хода в куче, из которой перекладываются камни, будет не меньше камней, чем в куче, в которую они перекладываются. Игрок, который не может сделать ход, проигрывает. Есть ли у кого-нибудь из игроков выигрышная стратегия, и если да, то у кого?
- **6.** Пусть n натуральное число. Каково наименьшее число m (m > n), при котором множество всех натуральных чисел от n до m (включительно) можно разбить на подмножества так, чтобы в каждом подмножестве одно из чисел равнялось сумме других чисел этого подмножества?