Capítulo 8 - Testes de hipóteses

8.1 Introdução

Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para o parâmetro).

Muitas situações práticas têm uma natureza diferente, requerendo que em função dos valores observados se tomem decisões acerca dos parâmetros (ou de outros aspectos) da população.

Exemplo: Máquina de encher pacotes de açúcar. O peso de cada pacote deve ser $\approx 8g$ (isto é, $\mu = 8$). Será que a máquina está a funcionar correctamente?

Definição: Uma <u>hipótese</u> estatística é uma afirmação acerca dos parâmetros de uma ou mais populações (testes paramétricos) ou acerca da distribuição da população (testes de ajustamento).

Vamos estudar em primeiro lugar os testes paramétricos.

Exemplo (cont.): temos duas hipóteses: a máquina funciona correctamente ($\mu = 8$) ou a máquina não funciona correctamente ($\mu \neq 8$):

 $H_0: \mu = 8$ versus $H_1: \mu \neq 8$ (<u>hipótese nula</u>) (<u>hipótese alternativa</u>)

2

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

1

<u>Hipótese simples</u>: é especificado apenas um valor para o parâmetro.

<u>Hipótese composta</u>: é especificado mais de um valor para o parâmetro.

Vamos considerar sempre H_0 como <u>hipótese</u> simples.

A hipótese alternativa (H_1) é, em geral, uma das três seguintes:

 H_1 : $\mu \neq 8$ hipótese alternativa bilateral

 H_1 : $\mu > 8$ hipótese alternativa unilateral (superior)

 H_1 : μ < 8 hipótese alternativa unilateral (inferior)

Nota: os valores especificados nas hipóteses não devem ter nada a ver com valores observados na amostra.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Definição: <u>Teste de hipóteses</u> é um procedimento que conduz a uma decisão acerca das hipóteses (com base numa amostra).

Exemplo (cont.): X - v.a. que representa o peso de um pacote de açúcar, $E(X) = \mu$, $V(X) = \sigma^2$.

$$H_0: \mu = 8$$
 versus $H_1: \mu \neq 8$

Dispomos de uma amostra de 10 observações:

$$(X_1,\ldots,X_{10})$$
 (a.a.)

Faz sentido decidir com base em \overline{X} , aceitando H_0 se \overline{X} estiver próxima de 8 e rejeitando H_0 se \overline{X} estiver longe de 8.

Região crítica: $\overline{X} < 8 - c$ ou $\overline{X} > 8 + c$

Aos pontos de fronteira chamam-se valores críticos.

Tipos de erro:

Situação:

1				
Decisão:	H_0 é verdadeira	H_0 é falsa		
"Aceitar" H_0	não há erro	erro do tipo II		
Rejeitar H_0	erro do tipo I	não há erro		

5

 $\alpha = P(\text{erro do tipo I}) =$ $= P(\text{Rejeitar } H_0 | H_0 \text{ é verdadeira})$

A α chama-se <u>nível de significância</u>.

$$\beta = P(\text{erro do tipo II}) =$$

$$= P(\text{"Aceitar" } H_0 | H_0 \text{ \'e falsa})$$

Voltando ao exemplo, vamos admitir que fazíamos c = 0.5 e que $\sigma = 1$ e n = 10.

A região crítica é: $\overline{X} < 7.5$ ou $\overline{X} > 8.5$.

Supondo que
$$X \sim N(\mu, 1)$$
 então $\overline{X} \sim N(\mu, \frac{1}{10})$

$$\alpha = P(\overline{X} < 7.5 \text{ ou } \overline{X} > 8.5 | \mu = 8) =$$

$$= \Phi\left(\frac{7.5 - 8}{\sqrt{0.1}}\right) + 1 - \Phi\left(\frac{8.5 - 8}{\sqrt{0.1}}\right) = 0.1142$$

6

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Probabilidades e Estatística

Se aumentarmos n, mantendo os valores críticos, α diminui.

Quanto a β , não vamos ter um único valor mas uma função, ou seja, para cada μ de H_1 podemos calcular um valor $\beta(\mu)$. Por exemplo, para $\mu = 9$:

$$\beta(9) = P(\text{aceitar } H_0 | \mu = 9) =$$

$$= P(7.5 \le \overline{X} \le 8.5 | \mu = 9) =$$

$$= \Phi\left(\frac{8.5 - 9}{\sqrt{0.1}}\right) - \Phi\left(\frac{7.5 - 9}{\sqrt{0.1}}\right) = 0.0571$$

$$\beta(10) = P(\text{aceitar } H_0 | \mu = 10) =$$

$$= P(7.5 \le \overline{X} \le 8.5 | \mu = 10) =$$

$$= \Phi\left(\frac{8.5 - 10}{\sqrt{0.1}}\right) - \Phi\left(\frac{7.5 - 10}{\sqrt{0.1}}\right) \approx 0$$

Por simetria $\beta(7) = \beta(9)$ e $\beta(6) = \beta(10)$

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Se mudarmos a região crítica, com n fixo:

Se c diminuir, α aumenta e, para cada μ , $\beta(\mu)$ diminui.

Se c aumentar, α diminui e, para cada μ , $\beta(\mu)$ aumenta.

É mais fácil controlar α do que controlar β (que depende de μ em H_1). Logo:

- <u>rejeitar</u> H₀ <u>é uma conclusão "forte"</u>.
- "aceitar" H_0 é uma conclusão "fraca". Em vez de dizer "aceita-se H_0 " é preferível dizer "não se rejeita H_0 ", ou "não há evidência suficiente para rejeitar H_0 ".

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Definição: Chama-se <u>potência</u> do <u>teste</u> à probabilidade de rejeitar a hipótese nula quando a hipótese alternativa é verdadeira $(=1-\beta)$.

No exemplo, a potência do teste quando $\mu = 9$ é 1-0.0571=0.9429, ou seja, se a verdadeira média for 9, a diferença em relação a 8 será detectada 94.29% das vezes.

Como decidir entre alternativa unilateral ou bilateral?

I) $H_0: \mu = 8 \text{ versus } H_1: \mu > 8$

Região crítica: $\overline{X} > 8 + c$

Ponto de vista do fabricante!

Quando rejeitar H_0 pára a produção para afinar a máquina.

II) $H_0: \mu = 8 \text{ versus } H_1: \mu < 8$

Região crítica: $\overline{X} < 8 - c$

Ponto de vista do consumidor!

Quando rejeitar H_0 não aceita a encomenda

III) $H_0: \mu = 8$ versus $H_1: \mu \neq 8$

Região crítica: $\overline{X} < 8 - c$ ou $\overline{X} > 8 + c$

Compromisso entre os dois!

10

9

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Procedimento Geral dos Testes de hipóteses

- **1.** Pelo contexto do problema identificar o parâmetro de interesse
- 2. Especificar a hipótese nula
- 3. Especificar uma hipótese alternativa apropriada
- **4.** Escolher o nível de significância, α
- **5.** Escolher uma estatística de teste adequada
- 6. Fixar a região crítica do teste
- **7.** Recolher uma amostra e calcular o valor observado da estatística de teste
- 8. Decidir sobre a rejeição ou não de H_0

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.2 Testes de hipóteses para a média, variância conhecida

X população tal que:

$$E(X) = \mu$$
 (desconhecido)

$$V(X) = \sigma^2$$
 (conhecido)

 $(X_1,...,X_n)$ a. a. de dimensão n

 $X \sim N(\mu, \sigma^2)$ ou X qq com n grande.

Teste de $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$

Sabemos já que, quando H_0 é verdadeira

$$\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right) \text{ ou } \overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

É conveniente estandardizar e usar como

$$\underline{\text{estatística de teste}}: \qquad Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Quando H_0 é verdadeira $Z_0 \sim N(0,1)$

A região crítica deve ser bilateral porque H_1 é bilateral:

R.C.:
$$Z_0 < -a$$
 ou $Z_0 > a$ com a : $P(Z > a) = \frac{\alpha}{2}$

(recordar que $\alpha = P(\text{Rejeitar } H_0 | H_0 \text{ é verdadeira})$

13

Seja $z_0=rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$ o valor observado da estatística de teste. Então

©Ana Pires, IST, Outubro de 2000

rejeita-se
$$H_0$$
 se $z_0 < -a$ ou $z_0 > a$
e não se rejeita H_0 se $-a \le z_0 \le a$

Estas regras podem ser expressas em termos de \bar{x}

rejeita-se
$$H_0$$
 se $\bar{x} < \mu_0 - a \frac{\sigma}{\sqrt{n}}$ ou $\bar{x} > \mu_0 + a \frac{\sigma}{\sqrt{n}}$

e não se rejeita
$$H_0$$
 se $\mu_0 - a \frac{\sigma}{\sqrt{n}} \le \bar{x} \le \mu_0 + a \frac{\sigma}{\sqrt{n}}$

Exemplo (cont.): X - v.a. que representa o peso de um pacote de açúcar (supõe-se que $X \sim N(\mu,1)$). A máquina está afinada quando $\mu = 8$. Numa amostra de 25 pacotes (recolhida aleatoriamente) observou-se $\bar{x} = 8.5$.

14

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Quer-se saber se, ao nível de significância de 5%, se pode afirmar que a máquina continua afinada.

$$H_0: \mu = 8 \text{ versus } H_1: \mu \neq 8$$
 (1. 2. e 3.)

Estatística de teste:
$$Z_0 = \frac{\overline{X} - 8}{1/\sqrt{25}}$$
 (5.)

$$\alpha = 0.05 \Rightarrow a = 1.96$$
 donde

R.C.:
$$Z_0 < -1.96$$
 ou $Z_0 > 1.96$ (6.)

Com
$$\bar{x} = 8.5$$
 obtém-se $z_0 = \frac{8.5 - 8}{1/\sqrt{25}} = 2.5$ (7.)

Como $z_0 > 1.96$ rejeita-se H_0 , ou seja, existe evidência (ao nível de significância considerado) de que a máquina está desafinada.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Alternativas unilaterais

1) Se fosse $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$ estatística de teste: $Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

R.C.: $Z_0 > a'$ onde a': $P(Z > a') = \alpha$

2) Se fosse H_0 : $\mu = \mu_0$ versus H_1 : $\mu < \mu_0$ estatística de teste: a mesma

R.C.: $Z_0 < -a'$ onde a': $P(Z > a') = \alpha$

Outro método: valor-p

Em vez de fixar α , determinar a região crítica e, em seguida, verificar se o valor observado pertence à região crítica, pode olhar-se directamente para o valor observado da estatística de teste e determinar para que nível de significância a decisão muda.

Definição: Dado o valor observado da estatística de teste, o **valor-p** (*p-value*) é o maior nível de significância que levaria à não rejeição da hipótese nula (ou o menor que levaria à rejeição).

No exemplo, $z_0 = 2.5$, para este valor H_0 não é rejeitada se $\alpha \le 2[1 - \Phi(2.5)] = 0.0124$, ou seja,

p = 0.0124

17

Quanto mais baixo for o valor-p maior é a evidência contra a hipótese nula.

Relação entre intervalos de confiança e testes de hipóteses:

Parâmetro desconhecido θ .

I.C. a $100 \times (1-\alpha)\%$ para $\theta = [l,u]$, baseado numa dada amostra e v. a. fulcral, então a mesma amostra leva à rejeição de

$$H_0$$
: $\theta = \theta_0$ contra H_1 : $\theta \neq \theta_0$,

ao nível de significância α , se e só se $\theta_0 \notin [l,u]$

ou à não rejeição de H_0 se e só se $\theta_0 \in [l,u]$

Nota: é necessário que a v.a fulcral e a estatística de teste sejam da mesma forma.

18

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Vamos ver que isto é verdade para o teste que estamos a estudar (teste para a média com variância conhecida):

$$H_0$$
: $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$

Não se rejeita H_0 , ao nível de significância α , se e só se

$$\mu_{0} - a \frac{\sigma}{\sqrt{n}} \leq \overline{x} \leq \mu_{0} + a \frac{\sigma}{\sqrt{n}} \Leftrightarrow$$

$$\Leftrightarrow \overline{x} - a \frac{\sigma}{\sqrt{n}} \leq \mu_{0} \leq \overline{x} + a \frac{\sigma}{\sqrt{n}} \Leftrightarrow$$

$$\Leftrightarrow \mu_{0} \in I.C_{\cdot 100 \times (1 - \alpha)\%}(\mu)$$

No exemplo, n = 25, $\bar{x} = 8.5$, $\sigma = 1$, I.C. a 95% $(\alpha = 0.05) \Rightarrow a = 1.96$

 $I.C._{95\%}(\mu) = [8.108; 8.892],$ como $\mu_0 = 8$ não pertence ao I.C., rejeita-se $H_0: \mu = 8$ (contra $H_1: \mu \neq 8$) ao nível $\alpha = 5\%$.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Nota: o teste que acabámos de estudar é aplicável com σ^2 desconhecida (substituída por S^2) desde que a dimensão da amostra seja grande (n > 30).

8.3 Testes de hipóteses sobre a igualdade de duas médias, variâncias conhecidas

$$X_1$$
, população 1, com $E(X_1) = \mu_1$ e $V(X_1) = \sigma_1^2$ (conhecida)

$$X_2$$
, população 2, com $E(X_2) = \mu_2$ e $V(X_2) = \sigma_2^2$ (conhecida)

 $(X_1 e X_2 independentes)$

a. a. da população 1 $(X_{11},...,X_{1n_1})$ com média \overline{X}_1

a. a. da população 2 $\left(X_{21},\dots,X_{2n_2}\right)$ com média $\,\overline{\!X}_{\!2}$

(e a a.a. $(X_{11},...,X_{1n_1})$ é independente da a.a. $(X_{21},...,X_{2n_n})$)

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Queremos testar

 H_0 : $\mu_1 = \mu_2$ contra uma das alternativas

 $H_1: \mu_1 \neq \mu_2$ (bilateral) ou

 $H_1: \mu_1 > \mu_2$ (unilateral superior) ou

 $H_1: \mu_1 < \mu_2$ (unilateral inferior)

já sabemos que

$$\overline{X}_1 - \overline{X}_2 \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$

Então, quando H_0 é verdadeira ($\mu_1 - \mu_2 = 0$)

$$Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

21

Daqui em diante é tudo semelhante ao caso anterior, ou seja, dadas as amostras concretas calcula-se

$$z_0 = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Com $H_1: \mu_1 \neq \mu_2$, rejeita-se H_0 para o nível de significância α se

$$z_0 < -a$$
 ou $z_0 > a$ com a : $P(Z > a) = \frac{\alpha}{2}$

etc.

Nota: este teste é válido para variâncias desconhecidas (substituídas por S_1^2 e S_2^2) desde que $n_1 > 30$ e $n_2 > 30$.

22

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.4 Testes de hipóteses para a média de uma população normal, variância desconhecida

Se n < 30 só é possível efectuar testes para a média se for possível assumir que $X \sim N(\mu, \sigma^2)$.

Nesse caso para testar

 H_0 : $\mu = \mu_0$ contra uma das alternativas

 $H_1: \mu \neq \mu_0$ (bilateral) ou

 $H_1: \mu > \mu_0$ (unilateral superior) ou

 $H_1: \mu < \mu_0$ (unilateral inferior)

usa-se a estatística de teste $T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$

Quando H_0 é verdadeira $T_0 \sim t_{n-1}$

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Então para H_1 : $\mu \neq \mu_0$, rejeita-se H_0 ao nível de significância α se

$$t_0 = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} < -a$$
 ou $t_0 > a$

com
$$a: P(T_{n-1} > a) = \frac{\alpha}{2}$$

etc.

Nota: Para os testes em que a estatística de teste tem distribuição normal o valor-p é fácil de determinar. Para outras distribuições (*t* e chiquadrado) esse valor só pode ser obtido usando um programa de computador ou em certas calculadoras. Recorrendo às tabelas o melhor que se consegue é obter um intervalo que contém (de certeza) o valor-p.

Trosabilidades e Estatisti

Exemplo: Determinação da constante de acidez do ácido orto-hidroxibenzóico. O valor tabelado é 2.81. Queremos saber se o valor determinado experimentalmente está de acordo com o valor tabelado. Ou seja, em termos de testes de hipóteses e sendo *Y* a v.a. que representa um valor da constante determinado experimentalmente, queremos testar

$$H_0: \mu_Y = 2.81$$
 contra $H_1: \mu_Y \neq 2.81$

Admitindo que $Y \sim N(\mu_Y, \sigma_Y^2)$

Temos as seguintes 5 observações (que podem ser consideradas como obtidas por amostragem aleatória):

$$y_1 = 3.0935$$
 $y_2 = 3.0894$ $y_3 = 3.1111$
 $y_4 = 3.1113$ $y_5 = 3.1262$
 $n = 5$ $\bar{y} = 3.1063$ $s_y = 0.014946$

Probabilidades e Estatística

Valor observado da estatística de teste:

$$t_0 = \frac{3.1063 - 2.81}{0.014946 / \sqrt{5}} = 44.33$$

O percentil mais elevado (tabelado) para a distribuição t_4 é $t_{4,0.9995} = 8.61$, o que corresponde a um nível de significância

$$\alpha = 2 \times (1 - 0.9995) = 0.001 = 0.1\%$$

Mesmo para este nível de significância a hipótese H_0 é rejeitada pois 44.33 > 8.61. Podemos ainda afirmar que valor-p < 0.001.

26

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

25

8.5 Testes de hipóteses sobre a igualdade das médias de duas populações normais, variâncias desconhecidas

Exemplo: Pretende-se saber se o efeito médio de dois catalizadores em determinado processo químico pode ser considerado igual ou diferente.

Resultados das experiências:

Catalizador 1: 91.50 94.18 92.18 95.39 91.79 89.07 94.72 89.21 $n_1 = 8$

Catalizador 2: 85.19 90.95 90.46 93.21 97.19 97.04 91.07 92.75 $n_2 = 8$

Sejam

 X_1 - v.a. que representa o resultado com o cat. 1

 X_2 - v.a. que representa o resultado com o cat. 2

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Admitimos que (hipóteses de trabalho):

- A primeira amostra é uma concretização de uma a.a. da população $X_1 \sim N(\mu_1, \sigma_1^2)$;
- A segunda amostra é uma concretização de uma a.a. da população $X_2 \sim N(\mu_2, \sigma_2^2)$;
- X_1 e X_2 são independentes;
- $\sigma_1^2 = \sigma_2^2 = \sigma^2$ (é razoável se s_1^2 e s_2^2 forem da mesma ordem de grandeza).

Pretende-se testar:

$$H_0: \mu_1 = \mu_2$$
 contra $H_1: \mu_1 \neq \mu_2$

Sabemos que:

$$T = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \sim t_{n_{1} + n_{2} - 2}$$

Então a estatística de teste é:

$$T_0 = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad \text{sob } H_0 \quad T_0 \sim t_{n_1 + n_2 - 2}$$

com
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Cálculos:
$$\bar{x}_1 = 92.255$$
 $\bar{x}_2 = 92.733$ $s_1 = 2.39$ $s_2 = 2.98$

Valor observado da estatística de teste:

$$t_0 = \frac{92.255 - 92.733}{\sqrt{\frac{7 \times 2.39^2 + 7 \times 2.98^2}{14}} \sqrt{\frac{1}{8} + \frac{1}{8}}} = -0.35$$

29

$$n_1 + n_2 - 2 = 14$$

©Ana Pires, IST, Outubro de 2000

Para $\alpha = 5\%$ vem $a = t_{14,0.975} = 2.145$.

Como -2.145 < -0.35 < 2.145 não se rejeita H_0 ao nível de significância de 5%.

Também se poderia concluir que 0.6< valor-p < 0.8

Output do Excel para este teste:

t-Test: Two-Sample Assuming Equal Variances

	Variable 1	Variable 2
Mean	92.255	92.7325
Variance	5.68831429	8.90099286
Observations	8	8
Pooled Variance	7.29465357	
Hyp. Mean	0	
Difference		
df	1 4	
t	-0.3535909	
P(T<=t) one-tail	0.36445681	
t Critical one-tail	1.76130925	
P(T<=t) two-tail	0.72891362	
t Critical two-tail	2.1447886	

30

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.6 Testes de hipóteses para a variância de uma população normal

$$X \sim N(\mu, \sigma^2)$$
 e $(X_1, ..., X_n)$ a.a.

Para testar H_0 : $\sigma^2 = \sigma_0^2$ contra H_1 : $\sigma^2 \neq \sigma_0^2$

usa-se a estatística de teste

$$Q_0 = \frac{(n-1)S^2}{\sigma_0^2}$$

Quando H_0 é verdadeira $Q_0 \sim \chi_{n-1}^2$

Então, rejeita-se H_0 ao nível de significância α se

$$q_0 = \frac{(n-1)s^2}{\sigma_0^2} < a$$
 ou $q_0 > b$

com a:
$$P(Q_0 < a) = \frac{\alpha}{2}$$
 e b: $P(Q_0 > b) = \frac{\alpha}{2}$

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.7 Testes de hipóteses para uma proporção

 $(X_1,...,X_n)$ amostra aleatória de uma população muito grande ou infinita.

Seja $Y(\leq n)$ o número de observações desta amostra que pertencem a uma dada categoria de interesse.

Seja *p* a proporção de indivíduos na população que pertencem a essa categoria de interesse.

Exemplos:

População Categoria

Peças ser defeituosa

Eleitores vota no partido X

O estimador pontual de $p \in \hat{P} = \frac{Y}{n}$.

Já vimos que se *n* for grande

$$Z = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

Probabilidades e Estatística

Logo para testar H_0 : $p = p_0$ contra H_1 : $p \neq p_0$ (ou H_1 : $p < p_0$, ou H_1 : $p > p_0$) usa-se a <u>estatística</u> de teste

$$Z_0 = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \quad \text{sob } H_0 \quad Z_0 \sim N(0, 1)$$

Para $H_1: p \neq p_0$, rejeita-se H_0 ao nível α se

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} < -a \text{ ou } z_0 > a$$

$$\left(a: P(Z > a) = \frac{\alpha}{2}\right)$$

33

Exemplo: População de eleitores portugueses. Sondagem (aleatória) a 1200 eleitores revelou que 683 tencionam votar no partido ABC. Entretanto o presidente do partido tinha afirmado "estou convencido que vamos obter mais de 50% dos votos". Concordamos com esta afirmação?

$$\hat{p} = 683/1200 = 0.569$$

Podemos testar $H_0: p = 0.5$ contra $H_1: p > 0.5$

Se rejeitarmos a hipótese nula (e isso é uma conclusão "forte") então a afirmação é corroborada pela sondagem.

$$z_0 = \frac{0.569 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{1200}}} = 4.79 \quad \text{valor-p} = 0.000001$$

Como o valor-p é muito baixo rejeita-se H_0 para os níveis de significância usuais.

34

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.8 Teste do qui-quadrado de ajustamento

O objectivo é testar a hipótese de que as observações seguem uma determinada distribuição (discreta ou contínua, com ou sem parâmetros desconhecidos)

Exemplo: O lançamento de um dado 1000 vezes conduziu à seguinte tabela de frequências observadas (o_i)

x_i'	O_i
1	174
2	174
3	154
4	179
5	154
6	165
Total	1000

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Será que os resultados obtidos sustentam a hipótese de que o "dado é perfeito"?

X - v.a. que representa o número de pontos obtido num lançamento

$$H_0$$
: $P(X = i) = \frac{1}{6}$, $i = 1,...,6$ ou
 $X \sim Unif.Disc.(1,...,6)$

 H_1 : negação de H_0

Quando H_0 é verdadeira sabemos calcular a probabilidade de cada valor (ou classe, em geral), que designamos por p_i , e o valor esperado para o número de observações em cada classe (abreviadamente, frequências esperadas),

$$E_i = np_i$$

onde n é a dimensão da amostra, neste caso n = 1000

Vamos acrescentar essas duas colunas à tabela:

x_i'	O_i	p_{i}	$E_i = np_i$
1	174	1/6	166.67
2	174	1/6	166.67
3	154	1/6	166.67
4	179	1/6	166.67
5	154	1/6	166.67
6	165	1/6	166.67
Total	1000	1	1000.02

Mesmo quando H_0 é verdadeira não estamos à espera que as colunas o_i e E_i coincidam. É então necessário medir o afastamento entre o_i e E_i e saber até que ponto esse afastamento é razoável para H_0 verdadeira (se determinarmos que o afastamento é razoável não rejeitamos H_0 , caso contrário rejeitamos H_0).

37

A variável que é usada para medir o afastamento é

$$X_0^2 = \sum_{i=1}^k \frac{\left(O_i - E_i\right)^2}{E_i}$$
 (Estatística de teste)

Pode mostrar-se que, quando H_0 é verdadeira,

$$X_0^2 \sim \chi_{k-\beta-1}^2$$

onde k é o n°. de classes (no exemplo, 6) e β é o nº. de parâmetros estimados (no exemplo, 0)

Deve rejeitar-se H_0 se o valor observado de X_0^2 for muito elevado, ou seja a região crítica do teste é da forma

$$R.C.: X_0^2 > a$$

onde
$$a: P(X_0^2 > a) = \alpha$$

e α é o nível de significância do teste.

38

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Tabela incluindo os cálculos para obter o valor observado de X_0^2 :

x_i'	O_i	p_{i}	$E_i = np_i$	$\frac{\left(o_i - E_i\right)^2}{E_i}$
1	174	1/6	166.67	0.322
2	174	1/6	166.67	0.322
3	154	1/6	166.67	0.963
4	179	1/6	166.67	0.912
5	154	1/6	166.67	0.963
6	165	1/6	166.67	0.017
Total	1000	1	1000.02	3.499

O valor observado de X_0^2 é 3.499. Se fixarmos $\alpha = 0.05$, com $k - \beta - 1 = 5$, obtém-se a = 11.07.

Uma vez que 3.499 < 11.07, não se rejeita H_0 ao nível de significância de 5%.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Exemplo: Pensa-se que o número de defeitos por circuito, num certo tipo de circuitos, deve seguir uma distribuição de Poisson. De uma amostra (escolhida aleatoriamente) de 60 circuitos obtiveram-se os resultados seguintes:

N°. de def.	O_i
0	32
1	15
2	9
3	4
Total	60

X - v.a. que representa o nº. de defeitos num circuito

 H_0 : $X \sim Poisson(\lambda)$ contra H_1 : $X \sim outra\ dist.$

 λ é desconhecido, então λ deve ser estimado (pelo método da máxima verosimilhança)

Probabilidades e Estatística

$$\hat{\lambda} = \overline{x} = \frac{32 \times 0 + 15 \times 1 + 9 \times 2 + 4 \times 3}{60} = 0.75$$

donde

$$\hat{p}_1 = \hat{P}(X=0) = \frac{e^{-0.75} \cdot 0.75^0}{0!} = 0.472$$
 $e_1 = 28.32$

$$\hat{p}_2 = \hat{P}(X=1) = \frac{e^{-0.75}0.75^1}{1!} = 0.354$$
 $e_2 = 21.24$

$$\hat{p}_3 = \hat{P}(X=2) = \frac{e^{-0.75} \cdot 0.75^2}{2!} = 0.133$$
 $e_3 = 7.98$

$$\hat{p}_4 = \hat{P}(X \ge 3) = 1 - (\hat{p}_1 + \hat{p}_2 + \hat{p}_3) = 0.041$$

$$e_4 = 2.46$$

Deve ter-se $e_i \ge 5$, \forall_i , se para algum i $e_i < 5$, deve fazer-se um agrupamento de classes.

41

Obtém-se então a tabela final:

N°. de def.	O_i	\hat{p}_i	$e_i = n\hat{p}_i$	$\left rac{\left(o_i-e_i ight)^2}{e_i} ight $
0	32	0.472	28.32	0.478
1	15	0.354	21.24	1.833
≥ 2	13	0.174	10.44	0.628
Total	60	1.000	60.00	2.939

$$k - \beta - 1 = 3 - 1 - 1 = 1$$

$$\alpha = 0.05$$

$$\Rightarrow a = 3.841$$

Como 2.939 < 3.841, não se rejeita H_0 ao nível de significância de 5%.

42

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Observações:

- 1) Para variáveis contínuas o procedimento é semelhante:
- As observações devem previamente ser agrupadas em classes (intervalos). Podem usarse as regras para construção de histogramas e, à partida, classes de amplitude constante.
- p_i 's são as probabilidades das classes.
- **2**) É necessário *n* relativamente elevado para fazer este teste (pelo menos 5 observações por classe).
- 3) Existem outros testes que não requerem tantas observações (teste de Kolmogorov-Smirnov e papel de probabilidade) mas não fazem parte do programa.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

8.9 Teste do qui-quadrado de independência em tabelas de contingência

O objectivo é testar a hipótese de que duas variáveis (discretas ou contínuas) são independentes. Para isso devemos ter observações relativas à ocorrência simultânea dos valores possíveis das duas variáveis. Essas observações organizam-se numa tabela de frequências a que se chama tabela de contingência.

Exemplo: Um estudo sobre a ocorrência de falhas numa certa componente electrónica revelou que podem ser considerados 4 tipos de falhas (A, B, C e D) e duas posições de montagem. Em 134 componentes seleccionadas aleatoriamente obtiveram-se as frequências absolutas registadas na tabela (de contingência) da página seguinte.

Será que o tipo de falha é independente da posição de montagem?

Falha C Montagem A В D Total 1 22 46 18 9 95 2 17 6 12 39 24 21 **Total** 26 63 134

Designamos por o_{ij} , (onde i se refere à linha e j à coluna) os valores do interior da tabela. Por $n_{i\bullet}$ os totais das colunas e por $n_{\bullet j}$ os totais das linhas.

Tabela genérica (com as mesmas dimensões):

	j				
i	1	2	3	4	$n_{i\bullet}$
1	011	<i>o</i> ₁₂	<i>o</i> ₁₃	<i>O</i> ₁₄	$n_{1\bullet}$
2	021	022	023	024	$n_{2\bullet}$
$n_{ullet j}$	$n_{\bullet 1}$	$n_{\bullet 2}$	$n_{\bullet 3}$	$n_{\bullet 4}$	n

45

A hipótese nula (independência) pode ser escrita como:

$$H_0: P(X=i, Y=j) = P(X=i)P(Y=j) \ \forall_{i,j}$$
ou
$$H_0: p_{ij} = p_{i\bullet}p_{\bullet j} \ \forall_{i,j}$$

Seguindo raciocínio semelhante ao usado no teste de ajustamento, precisamos de calcular a tabela de frequências esperadas sob a hipótese nula e compará-la com a de frequências observadas. Para isso é necessário primeiro estimar $p_{i\bullet}$ e $p_{\bullet j}$ $\forall_{i,j}$:

$$\hat{p}_{i\bullet} = \frac{n_{i\bullet}}{n}$$
 $\hat{p}_{\bullet j} = \frac{n_{\bullet j}}{n}$,

donde se obtém

$$e_{ij} = n\hat{p}_{i\bullet}\hat{p}_{\bullet j} = n\frac{n_{i\bullet}}{n}\frac{n_{\bullet j}}{n} = \frac{n_{i\bullet}n_{\bullet j}}{n}$$

46

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Probabilidades e Estatística

No exemplo em consideração obtém-se então a seguinte tabela de frequências esperadas:

	Falha					
Montagem	A B C D					
1	18.4	44.7	17.0	14.9		
2	7.6	18.3	7.0	6.1		

A variável que é usada para medir o afastamento (entre a tabela de frequências observadas e a tabela de frequências esperadas) é

$$X_0^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ii}}$$
 (Estatística de teste)

Pode mostrar-se que, quando H_0 é verdadeira,

$$X_0^2 \sim \chi_{(r-1)(s-1)}^2$$

com $r=n^{\circ}$ de linhas e $s=n^{\circ}$ de colunas da tabela.

©Ana Pires, IST, Outubro de 2000

Probabilidades e Estatística

Valor observado da estatística de teste no exemplo:

$$x_0^2 = \frac{(22 - 18.4)^2}{18.4} + \dots + \frac{(12 - 6.1)^2}{6.1} = 10.78$$

Decisão:
$$((r-1)(s-1)=3)$$

$$\alpha = 1\% \implies a$$
: $P(\chi_3^2 > a) = 0.99 \iff a = \chi_{3,0.99}^2 = 11.34$

$$\alpha = 2.5\% \Rightarrow a = \chi_{3.0.975}^2 = 9.348$$

ou seja, 0.01 < valor - p < 0.025

O resultado não é muito conclusivo, embora vá no sentido da não independência. Para ter um resultado mais convincente seria necessário repetir a experiência, eventualmente com mais observações.