Examen Extraordinario, 24 de Junio de 2010

APELLIDO	os, Nom	BRE					
D.N.I					Gru	PΩ	
D.111.1. <u> </u>					_ 010		

La puntuación de los ejercicios contados del 1 al 6 es de 2, 1, 2, 2, 2 y 1 puntos respectivamente.

1.- a) Decide razonadamente si cada una de las proposiciones siguientes es verdadera o falsa:

- $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} \ (n \cdot m \equiv 0 \mod 2 \ \land \mod(n, m) = 1)$
- $\exists n \in \mathbb{N} \ \forall m \in \mathbb{N} \ (n \cdot m \equiv 0 \mod 2 \land \mod(n, m) = 1)$
- b) Escribe la negación de la proposición

$$\forall n \in \mathbb{N} \ (n > 10 \ \lor \ n^2 - 11n + 10 \le 0)$$

en forma afirmativa, SIN USAR ningún símbolo de negación.

2.- Se consideran los siguientes polinomios en $(\mathbb{Z}/2\mathbb{Z})[x]$:

$$p(x) = x^4 + x^3 + x^2 + \overline{1}, \qquad q(x) = x^2 + \overline{1}$$

- a) Factoriza $p \neq q$ como producto de polinomios irreducibles.
- b) Halla el máximo común divisor de p y q.
- **3.-** Sea $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, dada por f(n, m) = 9n + 14m.
 - a) Halla todos los elementos del conjunto $f^{-1}\{3\}$.
 - b) Decide si f es inyectiva y/o sobreyectiva.

4.- Sea n un natural, $n \geq 2$, y $\mathbb{Z}/n\mathbb{Z}$ el conjunto de los enteros módulo n. Consideremos el subconjunto de $\mathbb{Z}/n\mathbb{Z}$ dado por $A = \{\overline{1}, \overline{n-1}\}$. Se define en $\mathbb{Z}/n\mathbb{Z}$ la siguiente relación:

Dados $x, y \in \mathbb{Z}/n\mathbb{Z}$ se dice $x\mathcal{R}y$ si existe $\lambda \in A$ tal que $\lambda \cdot x = y$

- a) Demuestra que \mathcal{R} es una relación de equivalencia. Justifica cada uno de los pasos de tu demostración.
- b) Indica cuántas clases de equivalencia hay en el caso n=8, y describe la partición de $\mathbb{Z}/8\mathbb{Z}$ dada por las clases de equivalencia.
- c) Indica cuántas clases de equivalencia hay en el caso n=7, y describe la partición de $\mathbb{Z}/7\mathbb{Z}$ dada por las clases de equivalencia.
- **5.-** a) Indica cuántas unidades tiene $\mathbb{Z}/100\mathbb{Z}$.
- b) Decide si $\overline{21}$ pertenece a las unidades de $\mathbb{Z}/100\mathbb{Z}$ y, en caso afirmativo, calcula su inverso multiplicativo.
- **6.-** Decide si existe algún número entero $n \in \mathbb{Z}/100\mathbb{Z}$ que cumpla las dos condiciones siguientes simultáneamente:
 - $\overline{n} \not\equiv \overline{0}$ en $\mathbb{Z}/100\mathbb{Z}$.
 - $\overline{n} \cdot \overline{98} \equiv \overline{0}$ en $\mathbb{Z}/100\mathbb{Z}$.

En caso afirmativo, calcula un tal número n.