# DISCO

### **Quiz Time**

- 1. Disco is a \_\_\_\_ ?
- a) Hardware Architecture
- b) Operating System
- c) Virtual Machine
- d) Virtual Machine Manager

#### **Quiz Time**

2. How does Disco virtualize memory? What would be held in TLB? What happens on a TLB miss w/o and w/ Disco? What data structure does Disco add?

#### Fun Fact

Disco was published in 1997

VMWare was founded in 1998 by authors of Disco, now one of the biggest virtualization and cloud computing software providers

#### **Timeline**

https://en.wikipedia.org/wiki/Timeline\_of\_virtualization\_development







- Hardware was expensive
  - Multiplex an expensive machine
- IBM initiated VM idea to support legacy binary code
  - Support an old machine's on a newer machine

- Hardware got cheaper
  - Could deploy new OS on different machine
- OS got powerful
  - no need to use VMs to provide multi-user support

 People's attentions were drawn back to VMs

#### Motivation

- Innovative Hardware in the market
  - Existing commodity OSes are not suited for a scalable multiprocessor.
- Gap between hardware innovations and the adaptation of system software
  - Hardware development faster than system software
  - System software for these machines has often trailed hardware in reaching the functionality and reliability expected by modern computer users.
- Customized OS are late, incompatible, unscalable, and possibly buggy
  - OS cannot leverage the potential of hardwares
  - Extensive modifications to OS are required to efficiently support scalable machines
  - Do not scale due to unawareness of system architecture
  - Error Prone

Why existing OS not scalable?

# 2 Types of VMMs

native / bare-metal hypervisors



Apps Apps Apps Apps OS OS OS OS VM VM VM VM Hypervisor **Host OS Processors** Memory Network Disks Cards **Physical Hardware** 

hosted hypervisors

Type 1

Type 2

# 2 Types of VMMs

Eg:

IBM VM/370, Disco, VMware's ESXi, Xen





Eg:

VirtualBox VMWare Workstation, VMWare Server, Kernel-Based Virtual Machine (KVM)

Type 1

Type 2

#### Disco's Idea

Virtual Machine Monitor between hardware and VM running commercial OS



#### Disco's Goal

Run multiple commodity operating systems on a scalable multiprocessor (large-scale shared-memory multiprocessors), with a small implementation effort

Trading off between performance and development costs

make multiple resources appear like a single resource

hides NUMA-ness from non-NUMA aware OSes

# The Stanford FLASH Multiprocessor

The FLASH multiprocessor consists of a collection of nodes each containing a processor, main memory, and I/O devices.

Each Node has its own RAM and MMU associated. With ccNUMA systems, all memory is visible to and accessible from any node.



#### UMA VS. NUMA



Which one is the architecture used in your laptop?

# UMA / SMP (symmetric multiprocessors)

Each processor accesses the same physical memory:

### **Uniform Memory Access (UMA)**



- UMA typically features few cores.
   E.g., your laptop or desktop at home.
- This allows for hardware implementations with symmetric access to memory

#### **Evolution from UMA to NUMA**



What drives Mainframe computers (or even Supercomputers) switch from UMA to NUMA pattern?

# NUMA / DSM (Distributed Shared Memory)

A set of processors have direct access to their own physical memory:

## Non-Uniform Memory Access (NUMA)



- Support large processor counts requires distributed shared memory.
- Have multiple sockets
   (separate units) to release the
   pressure on the bus. (avoid
   high mem access latencies)

```
[yw118@bc10u19n4 workplace]$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
node 0 size: 96965 MB
node 0 free: 81636 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
node 1 size: 98304 MB
node 1 free: 92031 MB
node distances:
node 0 1
 0: 10 21
      21 10
```

#### How to Build a VMM?

Disco exports a more conventional hardware interface, so that each virtual machine can run a standard OS that manages its virtualized resources independently.

What should be inside such a hardware interface for a general purpose computer?

#### Disco's Interface

- Processors
  - emulation of a MIPS R10000 processor, optimized for trap emulation.
- Physical Memory
  - an abstraction of main memory
- I/O Devices
  - disks, network interfaces, periodic interrupt timers, clock, and a console. Disco must intercept all communication to and from I/O devices to translate or emulate the operation.

# Disco Implementation - Virtual CPUs

- Register File
- PC Reg

 Disco runs most of instructions directly on the hardware to achieve reasonable performance. Is there any Security Issues?

# Disco Implementation - Virtual CPUs

- Disco runs in kernel mode
- All OS code runs in supervisor mode which does not allow execution of privileged instructions.
- Attempts to execute privileged instructions trap to Disco. Disco executes them on behalf of the OS, limiting access to that OS's VM resources

# Disco Implementation - Memory Translation



# Disco Implementation - Memory Translation



# Disco Implementation - Memory Translation



# Disco Implementation - Virtual Physical Memory

vCPU Switch

- -> Flush TLB
- -> secondary page table



# Disco Implementation - NUMA Memory Management

dynamic page migration and page replication to maintain locality



#### **Evaluations**



FIGURE 5. Overhead of Virtualization. The figure compares, for four uniprocessor workloads, the execution time when running IRIX directly on the simulated hardware with IRIX running in a Disco virtual machine. The execution time is separated between the time spent in user programs, the IRIX kernel, Disco, and the idle loop.

- Experimented on a uni-processor, once running IRIX directly on the h/w and once using disco running IRIX in a single virtual machine.
- Overhead of virtualization ranges from 3% - 16%.

#### Contributions

- VMWare
- Start of modern research on VM
- Novel way of hiding NUMA-ness