GIS 类上机考核试题

1. 题目: 克里金方法插值估计

假设某一区域实测采样点有 n 个,分别是 x_1 , x_2 ... x_n , 其三维坐标分别为 (X_1, Y_1, Z_1) , (X_2, Y_2, Z_2) ... (X_n, Y_n, Z_n) ,所要估算的点为 x_0 ,其二维坐标是 (X_0, Y_0) ,如下图所示,其中 $x_1(37)$, $x_2(42)$, x_3 (36) , $x_4(35)$ 表示已知采样点,其括号内为相应的 Z 值,请试用克里金(kriging)插值方法估算 x_0 点的第三维坐标值。

2. 主要数学公式

$$\begin{cases} Z^*(x0) = \sum_{i=1}^n \lambda_i Z^*(x_i) \\ \lambda = K^{-1}D \end{cases}$$

$$\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \qquad K = \begin{bmatrix} c_{11} & c_{12} & \cdots c_{1n} \\ c_{21} & c_{22} & \cdots c_{2n} \\ \vdots & \vdots & \vdots \\ c_{n1} & c_{n2} & \cdots c_{nn} \end{bmatrix} \qquad D = \begin{bmatrix} c(x_1, x) \\ c(x_2, x) \\ \vdots \\ c(x_n, x) \end{bmatrix}$$

$$c_{ij} = 3.202 - r^*(h_{ij})$$

$$r^*(h) = \begin{cases} 0 & h = 0\\ 2.048 + 1.154(\frac{3}{2} * \frac{h}{8.535} - \frac{1}{2} * \frac{h^3}{8.535^3}) & 0 < h \le 8.535\\ 3.202 & h > 8.535 \end{cases}$$

式中: $Z^*(x0)$ 为待估计点 x_0 的第三维坐标; λ_i 为第 i 个已知点的权重,表示采样点到 待估计点分配的权重; K 和 D 分别代表权重 λ 的系数, K^{-1} 为求 K 的逆矩阵; c_{ii} 表示行列 式 K 的 i 行 j 列项, $c(x_i, x_j) = c_{ij}$; r^* 表示球状变异函数模型,用来计算 c_{ij} 的值; h_{ij} 是搜索半径,即采样点 i 与待估计点 j 在水平面上的投影距离,如: x_4 与 x_0 的水平投影距离为 $\sqrt{1^2+1^2} = \sqrt{2}$, x_2 与 x_0 的水平投影距离为 $\sqrt{2^2+1^2} = \sqrt{5}$ 。

3. 基本要求

- (1) 以测试数据作为源数据,对待估计点 x_0 的Z值进行估计;
- (2) 要求以 x_1 、 x_2 、 x_3 、 x_4 四个采样点估计待插点 x_0 的Z 值。

4. 上交成果

- (1)程序(包括源程序和可执行程序);
- (2) 程序设计和开发报告

5. 测试数据(TestData.txt)及数据格式说明

TestData. txt数据格式为: 其中一至四行表示已知采样点的(X, Y, Z)坐标, 并以 x_4 点为坐标原点。即 x_4 点的(X₄, Y₄) 坐标为(0,0), x_3 点的(X₃, Y₃) 坐标为(1,4), x_2 点的(X₂, Y₂) 坐标为(3,2), x_1 点的(X₁, Y₁) 坐标为(2,1)。第五行表示待估计点 x_0 的(X, Y) 坐标(1,1)。

6. 结果数据(Result.txt)及数据格式说明 将计算结果直接输出到Result.txt中即可。