

平4-79007 ⑫ 公 開 特 許 公 報 (A)

®Int. Cl. 5

庁内整理番号 識別記号

@公開 平成 4 年(1992) 3 月12日

G 11 B 5/31

Α 7326-5D

審査請求 未請求 請求項の数 2 (全4頁)

薄膜磁気ヘッド 60発明の名称

> 20件 頭 平2-192668

頤 平2(1990)7月20日 **经**出

70発 明 者 大 毛 忠・信 神奈川県鎌倉市上町屋325番地 三菱電機株式会社コンビ

ユータ製作所内

三菱電機株式会社 **创出 願 人**

東京都千代田区丸の内2丁目2番3号

個代 理 人 弁理士 宮園 純一

1. 発明の名称 薄膜磁気ヘッド

2. 特許請求の範囲

(1) 基板上に、順次下部磁極、ギャップ層、第 1の絶縁層、渦巻状の導体コイル、第2の絶縁層。 上部磁極、保護層を積層し、かつ上記導体コイル の両端に接続された接続配線を有する薄膜磁気へ ッドにおいて、上記上部磁極の面積を導体コイル の両端及び後端を被う如く大きくしたことを特徴 とする薄膜磁気ヘッド。

(2) 基板上に、順次下部磁極、ギャップ層、第 1の抵益層、渦巻状の導体コイル、第2の絶縁層、 上部磁極、保護層を積層し、かつ上記導体コイル の両端に接続された接続配線を有する薄膜磁気へ ッドにおいて、接統配線における導体コイルとの 接続部分側を広げて、導体コイルのほぼ全体を被 う被い部分を形成したことを特徴とする薄膜磁気

3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は、薄膜磁気ヘッド、特に放熱構造に 関するものである。

(従来の技術)

第3図は通常の薄膜磁気ヘッドの形状を示す構 成図であり、図において、1は基板、2は第1の 絶縁層、3は導体コイル、4は上部磁極、5は保 護層、6は接続配線であり、この薄膜磁気ヘッド は、菱板1上に下部磁極、ギャップ層、第1の絶 緑層 2. 導体コイル 3. 第2の絶縁層、及び上部 磁極 4. 保護層 5 を順次積圧して成る。この場合、 上部磁極4の大きさは、導体コイル3の前部のみ に形成されており、磁路を形成するのに必要最少 限の大きさである。

次に動作について説明する。第3図において、 接続配線6を介して事体コイル3に通電すること により上部磁極 4 の先端と下部磁極との間に磁束 が発生して磁気媒体に情報の書込みがなされる。 また、磁気媒体からの磁束が下部磁極と上部磁極 4 を介して導体コイル 3 に交鋭し、情報が電気信

出される。導体コイル3に発生したジュール熱は、 上部磁極 4. 第1の絶縁層 2等を介して外部に放 ... ・散される。

(発明が解決しようとする課題)

.....

従来の薄膜磁気ヘッドは、以上のように構成さ れているので、導体コイル3の発熱に対する対策 がされておらず、強い磁界を発生させるため大き な電波を進体コイル3に流した場合、薄膜磁気へ ッドの発熱が問題であった。

また、これによる温度上昇は、記録信号再生時 に導体コイル3より発生する熱雑音をより大きく する問題点があった。

そこで従来技術として「特開昭60-1752 06」が存在するが、この技術は下部磁極の面積 を増大し、進体コイル3と一体化する事により放 熱効果を改善したものである。

しかしながら、この従来の技術では、下部磁極 が退体コイル3の一部をなすため、浮遊容量が増 大し、共振周波数の高い薄膜磁気ヘッドを作る事

号として進体コイル 3 から接続配線 6 を介して取 が難しい欠点がある。また、下部磁極は導体コイ ル3の下地となっているので熱を外部に放散する のに一担蓄熱するので放熱効果があまり得られな いという欠点があった。

> この発明は、上記のような問題点を解決するた めになされたもので、導体コイルよりの発熱を劾 率良く外部に放熱し、薄膜磁気ヘッドの温度上昇 をおさえ、書込み時に大きな磁界発生を可能とす る。また、再生時には、内部発生雑音の小さな薄 膜磁気ヘッドを得る事を目的とする。さらに、導 体コイルの面積増大が無い事より、浮遊容量の増 加が少なく、共振周波数の高い薄膜磁気ヘッドを 得る事を可能とする。

〔課題を解決するための手段〕

この発明に係る薄膜磁気ヘッドは、上部磁極 11の面積を導体コイル3の両端及び後端を被う 如く大きくした。

また、本願の別発明に係る薄膜磁気ヘッドは、 接続配線6における導体コイル3の接続部分側を 広げて、導体コイル3のほぼ全体を被う被い部分

を形成した。

(作用)

この発明における薄膜磁気ヘッドは、面積を大 きくした上部磁極11により導体コイル3の両端 及び後端を締う。

また、本顧の別発明に係る薄膜磁気ヘッドは、 導体コイル3の接続部分側を広げて被い部分を形 成し、この被い部分12Aにより導体コイル3の ほぼ全体を被う。

(発明の実施例)

以下、この発明の一実施例を図について説明す る。第1図及び第2図は本発明による薄膜磁気へ ッドを示す図であり、第3図の従来例と同じもの は同一符号を付してその説明を省略する。第1図 において、11は本発明の上部磁極である。この 上部磁極11は、導体コイル3の前部を被う本体 部分11aと、この本体部分11aの後方に延長 するとともに左右に延長して遺体コイル3の面端 及び後端を被う被い部分11bとを有し、この補 い部分11bはその両端が導体コイル3の両端よ りはみ出して基板1の上に被着されている。

以上の構成により、導体コイル3のジュール熱 は上部磁極11に伝播されて保護層5,基板1等 を介して放熟される。この場合、上部磁極11は 導体コイル3の上を被っているので、速く外部に 放熟する。

第2図は本顧の第2の発明を説明するための斜 視図であり、周図において、進体コイル3の接続 部分(端子)13に接続される接続配線12の端 部は、前方及び片方を被う如く広い面積に成形さ れ、その両端が導体コイル3よりはみ出して基板 1まで被っており、被い部分12Aとなっている。

この被い部分12Aにより導体コイル3のジュ ール熟は吸収されて、保護層 5, 基板 1 等を介し て放熟される。この場合も、被い部分12Aが導 体コイル3の上を被っているので、速く外部に放 然する。

これにより、導体コイル3の発熱による各部の 温度上昇がおさえられ、大きな書込み電流を流す 事を可能とし、強い磁界を発生させる事ができる。

A Mayor Street Company

また、再生動作時には、導体コイル3の温度上昇 がおさえられるため、熱による内部雑音の発生が 小さくなり、低雑音薄膜磁気ヘッドが可能となる。

なお、上記実施例では、上部磁極11は、両端が基板1にまで達したが、導体コイル3の両端まで延長するのみでもよく、あるいは、他の部分までを被うより大きなものとしてもよい。さらに、上部磁極11の形状は、自由に作成する事が可能である。

(発明の効果)

以上のようにこの発明によれば、上部磁極の面積を導体コイルの両端及び後端を被う、接続配線に対し、また本願の別発のによれば、接続配線における。はなななが、で、強いで、強いで、強いで、強いで、強いで、強いで、ないによる。というで、強いにより発生する熱性音をからない。また、下部磁極が導体コイルの一部をなされた。

め、浮遊容量が減少し、共振周波数の高い彈膜磁 気ヘッドを作ることができる効果がある。また、 導体コイルの上部側を被っているので、大きな放 熱効果が期待できる。

4. 図面の簡単な説明

第1図はこの発明の薄膜磁気ヘッドの一実施例を示す斜視図、第2図は本顧別発明の薄膜磁気ヘッドの一実施例を示す斜視図、第3図は従来の薄膜磁気ヘッドの従来例を示した斜視図である。

1 は基板、 2 は第 1 絶縁層、 3 は導体コイル、 4、 1 1 は上部磁極、 5 は保護層、 6、 1 2 は接 統配線、 1 2 A は被い部分、 1 3 は接続部分であ る。

なお、図中、同一符号は、同一または相当する 部分を示す。

代理人 弁理士 宫 園 純 一

第1回

- 1. 基 板
- 2.第一絕緣層
- 3.導体コイル
- 5.保 護 層
- 6. 接続配線
- 11 上部磁極

12: 接統配線

13;接続部分

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.