Algorithms Chapter 3 Growth of Functions

Instructor: Ching-Chi Lin 林清池 助理教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Asymptotic notation
- Standard notations and common functions

The purpose of this chapter $_{1/3}$

- ▶ The order of growth of the running time of an algorithm gives us some information about:
 - the algorithm's efficiency
 - the relative performance of alternative algorithms
- ▶ The merge sort, with its $\Theta(n \lg n)$ worst-case running time, beats insertion sort, whose worst-case running time is $\Theta(n^2)$.
- For large enough inputs, the following are dominated by the effects of the input size itself.
 - multiplicative constants
 - lower-order terms of an exact running time

The purpose of this chapter $_{2/3}$

- ▶ When the input size *n* becomes large enough, we are studying the **asymptotic** efficiency of algorithms.
- That is, we are concerned with
 - how the running time of an algorithm increases with the size of the input in the limit, as the size of the input increases without bound.
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

The purpose of this chapter_{3/3}

- We will study how to measure and analyze an algorithm's efficiency for large inputs.
- The next section begins by defining asymptotic notations,
 - ▶ Θ-notation
 - ▶ *O*-notation
 - $ightharpoonup \Omega$ -notation
- ▶ Then, we review
 - the commonly used functions in the analysis of algorithms.

Θ-notation

- For a given function g(n), we denote by $\Theta(g(n))$ the set of functions
 - ▶ $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$
- For $n \ge n_0$, the function f(n) is equal to g(n) to within a constant factor.
- Here, g(n) is an asymptotically tight bound for f(n).
- ▶ Because $\Theta(g(n))$ is a set, we could write " $f(n) \in \Theta(g(n))$ ".
- Usually, we write " $f(n) = \Theta(g(n))$ ".

An example

▶ To show that $n^2/2 - 3n = \Theta(n^2)$, we must determine positive constants c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le n^2/2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$.

Dividing by n² yields

$$c_1 \le 1/2 - 3/n \le c_2$$
.

- $c_1 \le 1/2 3/n$ holds for $n \ge 7$ by $c_1 \le 1/14$
- ▶ $1/2 3/n \le c_2$ holds for $n \ge 1$ by $c_2 \ge 1/2$
- ► Thus, choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$, we can verify that $n^2/2 3n = \Theta(n^2)$.

Another example

- ▶ We show that $6n^3 \neq \Theta(n^2)$ by contradiction.
 - ▶ Suppose c_2 and n_0 exist such that $6n^3 \le c_2n^2$ for all $n \ge n_0$.
 - ▶ Then $n \le c_2/6$, a contradiction.
 - \blacktriangleright Since c_2 is constant, it cannot possibly hold for arbitrary large n,

Summary

- The lower-order terms can be ignored
 - because they are insignificant for large n.
- ▶ The coefficient of the highest-order term can likewise be ignored
 - since it only changes c_1 and c_2 by a constant factor equal to the coefficient.
- In general, for any polynomial $p(n) = \sum_{i=0 \sim d} a_i n^i$, where a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$.
- For example, $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0. Then, we have $f(n) = \Theta(n^2)$.

O-notation

- For a given function g(n), we denote by O(g(n)) the set of functions
 - ▶ $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$
- We write f(n) = O(g(n)) implies f(n) is a member of the set O(g(n)).
- Note that $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)).
 - ▶ any proof showing that $f(n) = \Theta(g(n))$ also shows that f(n) = O(g(n)).
 - ▶ $\Theta(g(n)) \subseteq O(g(n))$.

The meaning of O-notation_{1/2}

- lacktriangle The Θ -notation asymptotically bounds a function from *above* and *below*.
- When we have only an asymptotic upper bound, we use Onotation.
- \blacktriangleright Hence, Θ -notation is a stronger notation than O-notation.

The meaning of O-notation_{2/2}

- Any linear function an + b is in $O(n^2)$, which is easily verified by taking c = a + |b| and $n_0 = 1$.
 - ▶ $an + b \le (a + |b|) n^2$ for $n \ge 1$
- f(n) = O(g(n)) merely claims that
 - g(n) is an asymptotic **upper** bound on f(n)
 - does not claim about how tight an upper bound it is
- In practical, O-notation is used to describe the worst-case running time of an algorithm.
- "an algorithm is O(g(n))" means that
 - \blacktriangleright the running time is at most constant times g(n), for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n

Ω -notation

- For a given function g(n), we denote by $\Omega(g(n))$ the set of functions
 - ▶ $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$
- We write $f(n) = \Omega(g(n))$ implies f(n) is a member of the set $\Omega(g(n))$.
- \triangleright Ω -notation provides **asymptotic** lower bound.

The relationship between Θ , O, and Ω

- Theorem 3.1 For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- For example:
 - ► $n^2/2 3n = \Theta(n^2)$ → $n^2/2 3n = O(n^2)$ and $n^2/2 3n = \Omega(n^2)$
 - ► $n^2/2 3n = O(n^2)$ and $n^2/2 3n = Ω(n^2)$ → $n^2/2 3n = Θ(n^2)$

The meaning of Ω -notation

- The Ω -notation is used to bound the **best-case** running time of an algorithm.
- "an algorithm is $\Omega(g(n))$ " means that
 - the running time is at least constant times g(n), for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n

Asymptotic notation in equations and inequalities $_{1/2}$

On the right-hand side of an equation (or inequality)

- the equal sign means set membership
- ▶ $n = O(n^2)$ means that $n \in O(n^2)$

In a formula

- it is interpreted as some anonymous function that we do not care to name
- ▶ $2n^2+3n+1=2n^2+\Theta(n)$ means that $2n^2+3n+1=2n^2+f(n)$, where $f(n) \in \Theta(n)$

On the left-hand side of an equation

- No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid
- ▶ $2n^2 + \Theta(n) = \Theta(n^2)$ means that for **any** function $f(n) \in \Theta(n)$, there is **some** function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$ for **all** n

Asymptotic notation in equations and inequalities_{2/2}

- A number of such relationships can be chained together, as in
 - ► $2n^2+3n+1=2n^2+\Theta(n)$ = $\Theta(n^2)$
 - ► The first equation says that there is **some** function $f(n) \in \Theta(n)$ such that $2n^2+3n+1=2n^2+f(n)$ for all n.
 - ▶ The second equation says that for **any** function $g(n) \in \Theta(n)$, there is **some** function $h(n) \in \Theta(n^2)$ such that $2n^2 + g(n) = h(n)$ for all n.
 - Note that the interpretation implies $2n^2+3n+1$)= $\Theta(n^2)$, which is what the chaining of equations intuitively gives us.

o-notation

- For a given function g(n), we denote by o(g(n)) the set of functions
 - ▶ $o(g(n)) = \{f(n): \text{ for } \mathbf{any} \text{ positive constant } c>0, \text{ there exists a }$ constant $n_0>0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0\}$.
- We use o-notation to denote an upper bound that is not asymptotically tight.
- For example, $2n=o(n^2)$, but $2n^2 \neq o(n^2)$.
- Intuitively, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

ω-notation

- For a given function g(n), we denote by $\omega(g(n))$ the set of functions
 - $\omega(g(n))=\{f(n): \text{ for any positive constant } c>0, \text{ there exists a constant } n_0>0 \text{ such that } 0\leq cg(n)< f(n) \text{ for all } n\geq n_0\}.$
- We use ω -notation to denote a lower bound that is **not** asymptotically tight.
- For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.
- ▶ The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

if the limit exists.

Comparison of functions_{1/4}

Transitivity:

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$,
- f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$,
- f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
- $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Comparison of functions_{2/4}

Reflexivity:

- $f(n) = \Theta(f(n)),$
- f(n) = O(f(n)),
- $f(n) = \Omega(f(n))$.

Symmetry:

• $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

- f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$,
- f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

Comparison of functions_{3/4}

- Analogy between the asymptotic comparison and the real number comparison:
 - $f(n) = \Theta(g(n)) \approx a = b$
 - ▶ $f(n) = O(g(n)) \approx a \leq b$
 - $f(n) = \Omega(g(n)) \approx a \ge b$
 - $f(n) = o(g(n)) \approx a < b$
 - $f(n) = \omega(g(n)) \approx a > b$

Comparison of functions_{4/4}

- Trichotomy property of real numbers does not carry over to asymptotic notation:
 - ▶ **Trichotomy:** For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, or a > b.
- Not all functions are asymptotically comparable.
 - For two functions f(n) and g(n), it may be the case that neither f(n) = O(g(n)) nor $f(n) = \Omega(g(n))$.
 - For example, the function n and $n^{1+\sin n}$ cannot be compared, since the value of $n^{1+\sin n}$ oscillates between 0 and 2.

Outline

- Asymptotic notation
- > Standard notations and common functions

Monotonicity

- ▶ A function f(n) is monotonically increasing if $m \le n$ implies $f(m) \le f(n)$.
- ▶ A function f(n) is **monotonically decreasing** if $m \le n$ implies $f(m) \ge f(n)$.
- A function f(n) is **strictly increasing** if m < n implies f(m) < f(n).
- A function f(n) is strictly decreasing if m < n implies f(m) > f(n).

Floors and ceilings

- For any real number x, we denote the **greatest** integer less than or equal to x by $\lfloor x \rfloor$ and the **least** integer greater than or equal to x by $\lceil x \rceil$.
- For all real x,
 - $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$

For any integer *n*,

$$\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$$

- ▶ For any real number $n \ge 0$ and integers a, b > 0
 - Arr $\lceil n/a \rceil/b \rceil = \lceil n/ab \rceil$, and $\lfloor \lfloor n/a \rfloor/b \rfloor = \lfloor n/ab \rfloor$
 - ▶ $\lceil a/b \rceil \le (a+(b-1))/b$, and $\lfloor a/b \rfloor \ge (a-(b-1))/b$
- ▶ The floor and ceiling functions are monotonically increasing.

Modular arithmetic

- ▶ For any integer a and any positive integer n, the value a mod n is the remainder (or residue) of the quotient a/n:
 - $\rightarrow a \mod n = a \lfloor a/n \rfloor n$
- If $(a \mod n) = (b \mod n)$, we write $a \equiv b \pmod n$ and say that a is equivalent to b, modulo n.
- $a \equiv b \pmod{n}$
 - ▶ If a and b have the same remainder when divided by n
 - ▶ If and only if n is a divisor of b-a
- ▶ We write $a \neq b$ (mod n) if a is not equivalent to b, modulo n.

Polynomials

▶ A polynomial in n of degree d is a function

$$P(n) = a_d n^d + a_{d-1} n^{d-1} + \dots + a_2 n^2 + a_1 n + a_0$$

- d is a nonnegative integer
- \triangleright a_d , ..., a_0 are constants called the coefficients of the polynomial
- $a_d \neq 0$
- ▶ An **asymptotically positive function** is one that is positive for all sufficiently large *n*.
- ▶ A polynomial is asymptotically positive if and only if $a_d > 0$.
- For any real constant $a \ge 0$ (respectively, $a \le 0$), the function n^a is monotonically increasing (respectively, decreasing).
- A function f(n) is **polynomially bounded** if $f(n)=O(n^k)$ for some constant k.

Exponentials_{1/2}

- For all real a>0, m, and n, we have the following identities:
 - \bullet $a^0 = 1$, $a^1 = a$, $a^{-1} = 1/a$
 - $(a^m)^n = (a^n)^m = a^{mn}$
 - $a^m a^n = a^{m+n}$
 - $ightharpoonup 0^0 = 1$ (for convenient)
- For all real constants a and b such that a > 1, $\lim_{n \to \infty} \frac{n^b}{a^n} = 0$, from which we conclude that $n^b = o(a^n)$.
- ▶ Thus, any exponential function with a base strictly greater than 1 grows faster than any polynomial function.

Exponentials_{2/2}

▶ The natural logarithm function for all real *x*,

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- e = 2.71828
- For all real x, we have $e^x \ge 1 + x$
 - equality holds only when x = 0
- When $|x| \le 1$, we have $1+x \le e^x \le 1+x+x^2$
- ▶ When $x\rightarrow 0$, we have $e^x = 1 + x + \Theta(x^2)$
- For all x, $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$

Logarithms_{1/4}

We shall use the following notations:

```
▶ \lg n = \log_2 n (binary logarithm)

▶ \lg n = \log_e n (natural logarithm)

▶ \lg^k n = (\lg n)^k (exponentiation)

▶ \lg \lg n = \lg(\lg n) (composition)
```

- Note that $\lg n + k$ means $(\lg n) + k$, not $\lg (n+k)$.
- If we hold b > 1 constant, then for n > 0, the function $\log_b n$ is strictly increasing.

Logarithms_{2/4}

For all real a, b, c > 0, and n, if the logarithm bases are not 1, then, we have

$$\log_b a^n = n \log_b \qquad \log_b a = \frac{\log_c a}{\log_c b}$$

$$a^{\log_b c} = c^{\log_b a} \qquad a = b^{\log_b a}$$

$$\log_b \frac{1}{a} = -\log_b a \qquad \log_b a = \frac{1}{\log_a b}$$

$$\log_c(ab) = \log_c a + \log_c b$$

Logarithms_{3/4}

If |x| < 1, then

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

We also have the following inequalities for x > -1:

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

• the equality holds only for x = 0

Logarithms_{4/4}

- ▶ f(n) is called **polylogarithmically bounded** if $f(n) = O(\lg^k n)$ for some constant k.
- By substituting $\lg n$ for n and 2^a for a in $\lim_{n\to\infty}\frac{n^n}{a^n}=0$
 - $\lim_{n \to \infty} \frac{\lg^b n}{(2^a)^{\lg n}} = \lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0$
- \blacktriangleright So, for any constant a > 0

 - any positive function grows faster than any polylogarithmic function

Factorials

- $n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$
- Stirling's approximation: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \theta\left(\frac{1}{n}\right)\right)$
 - e is the base of the natural logarithm
 - give a tighter upper bound, and a tighter low bound
- One can prove

 - $n! = \omega(2^n)$
- For all $n \ge 1$, we have
 - $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n}$, where $\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}$

Functional iteration

Let f(n) be a function over the reals. Then, for nonnegative integer i, we recursively define

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0, \\ f(f^{(i-1)}(n)) & \text{if } i > 0. \end{cases}$$

For example, if f(n) = 2n, then $f^{(i)}(n) = 2^{i}n$

The iterated logarithm function

- Let $\lg^{(i)}n$ be defined as above, with $f(n) = \lg n$
- Note that $\lg^i n = (\lg n)^i \neq \lg^{(i)} n$
- Because the logarithm of a nonpositive number is undefined, $\lg^{(i)}n$ is defined only if $\lg^{(i-1)}n > 0$
- ▶ The iterated logarithm function, is defined as

$$\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\}$$

- $|g^*2| = 1$ $|g^*4| = 2$ $|g^*16| = 3$
- $|g*65536 = 4 |g*2^{65536} = 5 |$
- a very slowly growing function

Fibonacci numbers_{1/2}

▶ The Fibonacci numbers are defined by the recurrence relation

$$F_0 = 0,$$

 $F_1 = 1,$
 $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2.$

- ▶ The Fibonacci numbers are : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- Fibonacci numbers are related to the **golden ratio** ϕ and to its conjugate $\hat{\phi}$.
- One can prove that

•
$$F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$$
, where $\phi = \frac{1 + \sqrt{5}}{2} = 1.61803...$ and $\hat{\phi} = \frac{1 - \sqrt{5}}{2} = -.61803...$

Fibonacci numbers_{2/2}

- Since $|\hat{\phi}| < 1$, we have $\frac{\hat{\phi}^i}{\sqrt{5}} < \frac{1}{\sqrt{5}} < \frac{1}{2}$.
- So that the *i*th Fibonacci number $F_i = \frac{\phi^i \hat{\phi}^i}{\sqrt{5}}$ is equal to $\frac{\phi^i}{\sqrt{5}}$ round to the nearest integer.
- ▶ Thus, Fibonacci number grow exponentially.