CSC 111 Fall 2014 Midterm 2 Solutions

Your Name	UVicID	

Instructions

- Turn in your completed midterm at the front of the class and show your UVic ID.
- Leave through the front left door only.
- This midterm consists of 6 pages and 12 questions.
- The marks per question are listed in square brackets for a total of 100 points.
- You have 70 minutes for this midterm. Time management—approximately 5 minutes per question.
- Attempt all questions.
- This is a closed books, closed notes, no gadgets, and no electronic devices midterm.
- 1. In the C programming language, which of the following functions can be used to read an entire line of text from a file with one function call? [5]

\bigcirc	fopen()
\bigcirc	scanf()
\checkmark	fgets()
\bigcirc	fgetc()

2. A point in three dimensional Cartesian space consists of three coordinates: x, y, and z. Which of the following code fragments defines a syntactically correct struct type Point? [5]

\bigcirc	<pre>structure { float x; float y; float z; } Point;</pre>
√	<pre>typedef struct {float x, y, z; } Point;</pre>
\bigcirc	struct Point (float x, y, z;);
\bigcirc	typedef struct Point {float x, y, z}

3. Which of the following is true? [4]

\bigcirc	Each component of a struct is assigned the same area of storage space.
\bigcirc	The syntax for structs is basically the same as for arrays.
\checkmark	Components of structs may have different types.
\bigcirc	Each component of a struct must have the same type.

4. How much storage (i.e., number of bytes) is allocated on a 32 bit machine (i.e., 4 bytes are used to allocate an int, float, or pointers variable; 8 bytes for a long or double variable; 1 byte for a bool variable) for the following syntactically correct C array variable declarations? [8]

```
double Table[4][4];

bool Vector[8];

4000     int* BigData[10][10][10];

typedef int Matrix [4][4]; Matrix M[10];
```

- 5. Assuming the following declarations, write two syntactically correct C function calls to:
 - [1] read from file identified by ifp the three dimensional coordinates of two line segments (i.e., six coordinates) into six float variables and
 - [2] output the six float values read onto the console with a precision of two digits beyond the decimal point. [10]

```
#include <stdio.h>
#include <stdlib.h>
int main(void) {
   float x1, y1, z1, x2, y2, z2;
   FILE* ifp = fopen("LineSegments.txt", "r");
```

```
fscanf(ifp, "%f %f %f %f %f",&x1, &y1, &z1, &x2, &y2, &z2); printf("%.2f %.2f %.2f %.2f %.2f %.2f\n", x1, y1, z1, x2, y2, z2);
```

```
return EXIT_SUCCESS;
} /*main*/
```

6. Assume the following syntactically correct C declarations. Evaluate the expressions and compute the values of the Boolean variables b, c, d, and e. [8]

```
#include <stdio.h>
                  #include <stdlib.h>
b:
     false
                 #include <stdbool.h>
                 #include <string.h>
                 char* str = "CSC111";
                  int p = 23;
     true
                  int q = 39;
                 int x = 49;
d:
     true
                 int y = 52;
                  int z = 29;
                 bool b = (strcmp(str, "CSC116") == 0);
     false
                 bool c = (p / 7 == 3);
e:
                 bool d = !(b \&\& c);
                 bool e = ((p \le z \&\& x \le q) \mid | (y % 17 == 0));
```

7. Complete the following C function findMin() so that it returns the minimum value of array A? [10]

```
int findMin(int A[], int len) {
    int k;
    int min = A[0];

for (k=1; k<len; k++) {
        if (A[k] < min) min = A[k];
    } /*for*/

return min;</pre>
```

} /*findMin*/

8. Complete the following C function shiftArrayRight() so that it shifts all components in array A one position to the right. [10]

```
void shiftArrayRight(double A[], int len) {
   int k;

   double temp = A[len-1];
   for (k=len-1; k>0; k--) A[k] = A[k-1];
   A[0] = temp;
} /*shiftArrayRight*/
```

- 9. Complete the following C function printUppercase() so that it
 - [1] outputs all the upper case characters stored in array A on the console;
 - [2] counts the number of upper case letters in array A;
 - [3] outputs L: 37; UC: 8 where 37 and 8 are the number of characters and uppercase letters stored in array A, respectively.

Use the <string.h> function strlen() and the <ctype.h> function isupper(). [10]

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

void printUppercase(char A[]) {
```

```
int k;
int uc = 0;
int len = strlen(A);
for (k=0; k<len; k++) {
    if (isupper(A[k])) {
        printf("%c", A[k]);
        uc++;
    } /*if*/
} /*for*/</pre>
```

```
printf("\n");
    printf("L: %d UC: %d\n", len, uc);
} /*printUppercase*/
int main(void) {
        printUppercase("Once Upon A Time There Was Polar Bear");
        return EXIT_SUCCESS;
} /*main*/
Here is the output produced by the following function call:
        printUppercase("Once Upon A Time There Was Polar Bear");
OUATTWPB
L: 37; UC: 8
```

10. Consider the following syntactically correct C program called alice.c. Describe the effect and the exact output of this program when executing this program. [10]

```
#include <stdio.h>
#include <stdlib.h>
#define LINEMAX (300)
int main(void) {
     char line[LINEMAX];
     FILE *ifp = fopen("alice.c", "r");
     if (ifp == NULL) exit(EXIT_FAILURE);
     int n = 0;
     while(!feof(ifp)) {
           if (fgets(line, LINEMAX, ifp)) {
              if (n<3) printf(">>>%s", line);
              n++;
           } /*if*/
     } /*while*/
     printf("n = %d\n", n);
     fclose(ifp);
     return EXIT_SUCCESS;
} /*main*/
```

```
The program outputs itself, but only the first three lines. It also counts the number of lines in the program. The output is as follows:
>>>#include <stdio.h>
>>>#include <stdlib.h>
>>>#define LINEMAX (300)
n = 18
```

11. What is the output of the following syntactically correct C program? [10]

```
#include <stdio.h>
#include <stdlib.h>
#define AMAX (27)
int main(void) {
   char alphabet[AMAX];
   int k;
   char ch = 'A';
   for (k=0; k<=AMAX-1; k++) { alphabet[k] = ch; ch++; }
   alphabet[26] = '\0';
   printf("%s\n", alphabet);
   return EXIT_SUCCESS;
} /*main*/</pre>
```

ABCDEFGHIJKLMNOPORSTUVWXYZ

12. Consider the following syntactically correct C program. [10]

```
#include <stdio.h>
#include <stdlib.h>
#define MAX (15)
typedef int Index;
typedef int Item;
void initRand(Item A[], Index len) {
     Index k;
     for (k=0; k<len; k++) { A[k] = rand() % len; }
} /*initRand*/
void printArray(Item A[], Index len) {
   Index k;
   for (k=0; k<len; k++){ printf("%d ", A[k]); }</pre>
   printf("\n");
} /*printArray*/
int main(void) {
   Item A[MAX];
   initRand(A, MAX);
   printArray(A, MAX);
   return EXIT_SUCCESS;
} /*main*/
     7
           How many variable declarations are in this C program?
           How many function declarations are in this C program?
     3
```

- 5 How many function calls are in this C program?
- 2 How many type declarations are in this C program?

3

How many preprocessor directives are in this C program?