MA 562 - Introduction to Differential Geometry and Topology

Introduction to Smooth Manifolds by John M. Lee Student: Ralph Razzouk

ordaem. Italph Italzoun

Homework 15

Problem 16-18

Let (M,g) be an oriented Riemannian *n*-manifold. This problem outlines an important generalization of the operator $*: C^{\infty}(M) \to \Omega^n(M)$ defined in this chapter.

(a) For each k = 1, ..., n, show that g determines a unique inner product on $\Lambda^k \left(T_p^* M \right)$ (denoted by $\langle \cdot, \cdot \rangle_q$, just like the inner product on $T_p M$) satisfying

$$\left\langle \omega^{1} \wedge \dots \wedge \omega^{k}, \eta^{1} \wedge \dots \wedge \eta^{k} \right\rangle_{g} = \det \left(\left\langle \left(\omega^{i}\right)^{\#}, \left(\eta^{j}\right)^{\#} \right\rangle_{q} \right)$$

whenever $\omega^1,\ldots,\omega^k,\eta^1,\ldots,\eta^k$ are covectors at p. [Hint: define the inner product locally by declaring $\left\{\left.\varepsilon^I\right|_p:I$ is increasing $\right\}$ to be an orthonormal basis for $\Lambda^k\left(T_p^*M\right)$ whenever $\left(\varepsilon^i\right)$ is the coframe dual to a local orthonormal frame, and then prove that the resulting inner product is independent of the choice of frame.]

- (b) Show that the Riemannian volume form dV_g is the unique positively oriented n-form that has unit norm with respect to this inner product.
- (c) For each k = 0, ..., n, show that there is a unique smooth bundle homomorphism $*: \Lambda^k T^*M \to \Lambda^{n-k} T^*M$ satisfying

$$\omega \wedge *\eta = \langle \omega, \eta \rangle_a dV_a$$

for all smooth k-forms ω, η . (For k = 0, interpret the inner product as ordinary multiplication.) This map is called the Hodge star operator. [Hint: first prove uniqueness, and then define * locally by setting

$$*(\varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_k}) = \pm \varepsilon^{j_1} \wedge \cdots \wedge \varepsilon^{j_{n-k}}$$

in terms of an orthonormal coframe (ε^i) , where the indices j_1, \ldots, j_{n-k} are chosen so that $(i_1, \ldots, i_k, j_1, \ldots, j_{n-k})$ is some permutation of $(1, \ldots, n)$.

- (d) Show that $*: \Lambda^0 T^*M \to \Lambda^n T^*M$ is given by $*f = f \, dV_q$.
- (e) Show that $**\omega = (-1)^{k(n-k)}\omega$ if ω is a k-form.

Solution. (a) Let (ε^i) be the coframe dual to a local orthonormal frame and let $\{\varepsilon^I|_p: I \text{ is increasing}\}$ to be an orthonormal basis for $\Lambda^k(T_n^*M)$.

To prove independence of the choice of frame, let $(\tilde{\varepsilon}^i)$ be another orthonormal coframe. Then $\tilde{\varepsilon}^i = \sum_j A_{ij} \varepsilon^j$ where (A_{ij}) is an orthogonal matrix. For multi-indices I and J,

$$\left\langle \tilde{\varepsilon}^{I}, \, \tilde{\varepsilon}^{J} \right\rangle_{g} = \left\langle \sum_{i_{1}} A_{i_{1}, j_{1}} \varepsilon^{i_{1}}, \dots, \sum_{i_{k}} A_{i_{k}, j_{k}} \varepsilon^{i_{k}} \right\rangle_{g}$$

$$= \det \left((A_{i_{\alpha}j_{\beta}}) \right)_{\alpha, \beta=1}^{k} \left\langle \varepsilon^{I}, \varepsilon^{J} \right\rangle_{g}$$

$$= \det(A) \left\langle \varepsilon^{I}, \varepsilon^{J} \right\rangle_{g}.$$

This shows the inner product is well-defined and independent of the choice of frame.

(b) The Riemannian volume form dV_g is locally given by $\varepsilon^1 \wedge \cdots \wedge \varepsilon^n$ where (ε^i) is an orthonormal coframe. By definition, this has unit norm. It's also positively oriented. Uniqueness follows from the fact that any other such form would differ by a positive scalar multiple, which would change its norm.

(c) For uniqueness, suppose $*_1$ and $*_2$ are two such operators. Then for any k-forms ω and η ,

$$\omega \wedge *_1 \eta = \langle \omega, \eta \rangle_g dV_g = \omega \wedge *_2 \eta$$

$$\omega \wedge (*_1 \eta - *_2 \eta) = 0$$

This implies $*_1\eta = *_2\eta$ for all η , so $*_1 = *_2$.

For existence, define * locally as suggested in the hint. Then verify that

$$\varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_k} \wedge *(\varepsilon^{j_1} \wedge \cdots \wedge \varepsilon^{j_k}) = \delta_{i_1 j_1} \cdots \delta_{i_k j_k} \, \mathrm{d}V_g,$$

which is equivalent to the required property.

(d) For $f \in C^{\infty}(M)$, we have

$$f \wedge *g = \langle f, g \rangle_g \, dV_g = fg \, dV_g$$

for all $g \in C^{\infty}(M)$. This implies $*f = f \, dV_g$.

(e) In an orthonormal coframe, applying * twice to a basis k-form gives

$$**(\varepsilon^{i_1}\wedge\cdots\wedge\varepsilon^{i_k})=(-1)^{k(n-k)}(\varepsilon^{i_1}\wedge\cdots\wedge\varepsilon^{i_k})$$

The sign comes from the number of transpositions needed to bring $(i_1, \ldots, i_k, j_1, \ldots, j_{n-k})$ back to $(1, \ldots, n)$ after reversing it. This property then extends linearly to all k-forms.