

Analyzing Weather Data with Python

Greg Filla, Associate Offering Manager Data Science Experience

About me

Working at IBM for ~2 years - Product Management, Analytics

Started career as analyst...started coding

•I Like Python - Pandas, Sklearn, Jupyter, Flask, PySpark, etc.

•Twitter: <a>@gdfilla

• Github: https://github.com/gfilla

Introducing the Data Science Experience

Learn

Built-in learning to get started or go the distance with advanced tutorials

Create

The best of open source and IBM value-add to create state-of-the-art data products

Collaborate

Community and social features that provide meaningful collaboration

http://datascience.ibm.com

Core Attributes of the Data Science Experience

Community

- Find tutorials and datasets
- Connect with Data Scientists
- Ask questions
- Read articles and papers
- Fork and share projects

Open Source

- Code in Scala/Python/R
- Jupyter Notebooks
- RStudio IDE and Shiny apps
- Apache Spark
- Your favorite libraries

IBM Added Value

- Data Shaping/Pipeline UI *
- Auto-data preparation and modeling*

IBM Data Science Experience

- Advanced Visualizations*
- Model management and deployment*
- Documented Model APIs*
- Spark as a Service

Powered by Watson Data Platform

Data Science Methodology Diagram

Data Science Methodology Diagram

Machine Learning

Supervised vs. Unsupervised

Toolbelt of the Data Scientist

- Linear regression (S)
- Logistic regression (S)
- Decision Trees (S)
- Clustering (U)
- Principal component analysis (U)
- Text analysis (S/U)
- SVM/SVR (S)
- Neural networks (S/U)
- Recommender Systems (S)

S == Supervised Learning Technique U == Unsupersved Learning Technique S/U == Can be combination of both

Which weather stations are similar to each other based on weather observations?

Group similar stations together into *k* number of clusters.

Which weather stations are similar to each other based on weather observations?

Group similar stations together into *k* number of clusters.

3) Calculate distance of all points from centroids

4) Find the closest center to each data point

5) Assign each point to the closest centroid

6) Compute the new centroids for each cluster.

7) Repeat until there are no more changes

Free Online Courses

www.BigDataUniversity.com

Let's jump into DSX to look at come code!

