INITIATION RESEAU NETWORK INITIATION

TP2 – Network Interconnection

22 MAI 2018

Aakash SONI

OVERVIEW

- NETWORK LAYER
- IP ADDRESS
- ROUTING

OSIMODEL

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP/IP MODEL

Application

Transport

Internet / Network

Network Access / Link

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

- Devices:
 - Routers
 - Bridges
 - Firewalls
 - Switches

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

- Logical connection is abstract.
 - Virtual LAN
 - IP subnets
 - Tunnel/VPN

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

- Provides data routing paths for network communication.
- Data transmission in form of packets in an ordered format.
- Functions:
 - Logical connection setup.
 - Data forwarding.
 - Routing.
 - Delivery error reporting.

 Internet Control Message Protocol (ICMP)

IP ADDRESS

An IPv4 address (dotted-decimal notation)

10101100 .00010000 .11111110 .00000001

One byte=Eight bits

Thirty-two bits (4 x 8), or 4 bytes

Thirty-two bits (4 x 8), or 4 bytes

172 . 16 . 254

32 bit long number made up of 4 octetes Notation

8 bit data => 0 to 255

IP ADDRESS HIERARCY

Bit # 0 31

network prefix host number

IP ADDRESS HIERARCY

IP ADDRESS HIERARCY

Bit # 0 31
network prefix host number

Static

Dynamic

Automatic IP address assignment: Dynamic Host Configuration Protocol (DHCP)

A highly structured series of fields that are strictly defined.

Base IP Datagram =>

Header

Data

A highly structured series of fields that are strictly defined.

• Base IP Datagram => Header Data

0 4 8 16 19					
Version	Header Length	Service Type	Total Length		
Identification			Flags	Fragment Offset	
TTL Protoco		Protocol	Header Checksum		
Source IP Addr					
Destination IP Addr					
Options Padding				Padding	

• A highly structured series of fields that are strictly defined.

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data

• A highly structured series of fields that are strictly defined.

• A highly structured series of fields that are strictly defined.

Header

• Base IP Datagram

Data

Length of datagram = Head + Data

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data

Length of datagram = Head + Data

What can be the size of largest IP datagram?

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data

Length of datagram = Head + Data

What can be the size of largest IP datagram?

16 bit number => max 65535

- A highly structured series of fields that are strictly defined.
- Base IP Datagram =>

Unique ID for group of splitted packet

0	4	1	8 1	16 19	9	31
Ve	ersion	Header Length	Service Type	Total Length		
Identification		Flags	Fragment Offset			
	TTL Protocol		Header Checksum			
	Source IP Addr					
Destination IP Addr						
	Options				Padding	

A highly structured series of fields that are strictly defined.

A highly structured series of fields that are strictly defined.

Fragmentation offset value to reassemble data.

- A highly structured series of fields that are strictly defined.
- Base IP Datagram =>

Header Data

Time To Live => Number of hops allowed.

0 4	ı	8 1	16 19	9 31	
Version	Header Length	Service Type	Total Length		
Identification			Flags	Fragment Offset	
TTL Protocol		Header Checksum			
Source IP Addr					
Destination IP Addr					
Options Padding				Padding	

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header

) 4	1	8 1	16 19	9	3:
Version	Header Length	Service Type	Total Length		
Identification			Flags	Fragment Offset	t
TTL		Protocol	Header Checksum		
Source IP Addr					
Destination IP Addr					
Options				Padding	

Error Detection

• A highly structured series of fields that are strictly defined.

A highly structured series of fields that are strictly defined.

Base IP Datagram

Header

Data

Optional flags for testing

Padding to Options field

A highly structured series of fields that are strictly defined.

Base IP Datagram =>

Header

Data

A highly structured series of fields that are strictly defined.

• Base IP Datagram => Header Data

How does it relate to communication process?

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data
- How does it relate to communication process?
 - IP datagram encapsulates at Network layer and serves as payload to Ethernet frame.

- A highly structured series of fields that are strictly defined.
- Base IP Datagram => Header Data
- How does it relate to communication process?
 - IP datagram encapsulates at Network layer and serves as payload to Ethernet frame.

IP ADDRESS CLASSES

Network
Prefix
Host ID

Α	N.H.H.H	0 – 126	16 Million
В	N.N.H.H	128 – 191	65000
С	N.N.N.H	192 – 223	254
D	Multicast	224 – 239	-
E	Testing & Research	240 - 255	-
Class	IP address split	Range 1 st octet	Host per network

Address Resolution Protocol (ARP)

Send ARP request

- Send ARP request
- Check ARP table.

- Send ARP request
- Check ARP table.
 - MAC address found?
 - Return with destination MAC address.

- Send ARP request
- Check ARP table.
 - MAC address found?
 - Return with destination MAC address.
 - Otherwise
 - MAC Broadcast address (FF-FF-FF-FF-FF)

- Send ARP request
- Check ARP table.
 - MAC address found?
 - Return with destination MAC address.
 - Otherwise
 - MAC Broadcast address (FF-FF-FF-FF-FF)
- ARP response with destination MAC address.
 - Update ARP table.

ROUTING

- Router is a network device that forwards traffic depending upon destination address of traffic.
 - Find most effective path from source to destination.

Receive data packet

Forward traffic to:

- Destination
- The network closest to destination.

OUT

- Examine destination IP.
- Look up for destination network in routing table