Trabalho 1 séries temporais

Daniel Krügel

2023-09-05

Questão 1

```
set.seed(156) # Escolhendo uma seed para reprodutibilidade
#a)
s = c(rep(0,100), 10*exp(-(1:100)/20)*cos(2*pi*(101:200)/4))
x = s + rnorm(200) # Adicionando componente aleatório
plot.ts(x)
```



```
#b)
sb = c(rep(0,100), 10*exp(-(1:100)/200)*cos(2*pi*(101:200)/4))
xb = s + rnorm(200)
plot.ts(xb)
```



```
a1 <- plot.ts(x, col = "red", ylim = c(-8,8))
par(new = T)
b1 <- plot.ts(xb, col = "black", ylim = c(-8,8))</pre>
```


Após o início da parcela exclusivamente aleatória, a alteração do modulador não alterou tanto a amplitude

do sinal.

c)

```
sc = c(rep(0,100), 10*exp((1:100)/200)*cos(2*pi*(101:200)/4))
xc = s + rnorm(200)
plot.ts(xc, col = "blue")
par(new = TRUE)
plot.ts(xb)
```


ação do sinal não alterou a informação da série, algo que cogitei que poderia acontecer seria a inversão da série, porém acredito que isso só aconteceria caso opuvesse mudança na função coseno para a seno

A comparação direta com a figura disponibilizada no material se parece com a série temporal relacionada a explosões, dado ao aumento repentino da variancia.

```
v = filter(x, sides=2, rep(1/3,3)) # médias móveis
plot.ts(v, col = "red", ylim = c(-8,8), main = "gráfico suavizado I")
```

gráfico suavizado I


```
vb = filter(xb, sides=2, rep(1/3,3)) # médias móveis
plot.ts(vb, col = "black", ylim = c(-8,8), main = "gráfico suavizado II")
```

gráfico suavizado II


```
v1 <- plot.ts(vb, col = "black", ylim = c(-8,8))
par(new = TRUE)
v2 <- plot.ts(v, col = "red", ylim = c(-8,8))</pre>
```


par(new = F)

Questão 2

```
w = rnorm(150,0,1) # 50 extras para evitar problemas de inicialização
x = filter(w, filter=c(-.9), method="recursive")[-(1:50)] # removendo os primeiros 50
x_2plot <- plot.ts(x, xlab="Tempo", main="Autoregressão questão 2")</pre>
```

Autoregressão questão 2


```
v_2 \leftarrow filter(x, sides = 1, rep(1/4,4))

V_2plot \leftarrow plot.ts(v_2, col = "red", ylim = c(-8,8), main = "gráfico suavizado I")
```

gráfico suavizado I


```
x_2plot <- plot.ts(x, ylim = c(-8,8))
par(new = T)
V_2plot<- plot.ts(v_2,ylab = "", col = "red", ylim = c(-8,8), main = "Sobreposto", type = "o")</pre>
```

Sobreposto

Suavisou a função de mais, neste ponto não é possível se obter informações sobre o comportamento da série.

b)

```
c <- c(cos((2*pi*1:100)/4))
plot.ts(c)</pre>
```


Vt_b <- filter(c, sides = 1, rep(1/4,4)) # Criação de média móvel
plot.ts(Vt_b)</pre>

Sobrepostos

suavisação foi tão forte que se perdeu completamente o padrão apresentado pela função

 X_t

A

 $\mathbf{c})$

```
c <- c(cos((2*pi*1:100)/4))
x <- rnorm(100,0,1)
xt_c <- c + x
plot.ts(xt_c)</pre>
```


Sobrepostos

num geral ficou bem errática, não encontrei nenhuma comparação no material que se compare, porém a suavisação aqui não pareceu diminuir suficientemente o padrão da série.

d)

Tanto no caso a) quanto no caso c) tivemos situações em que houve um aumento repentino na variância da série, podendo indicar um evento porém a média móvel não conseguiu captar essa mudança.

```
Vt_c2 <- filter(xt_c, sides = 2, rep(1/3,3)) # Criação de média móvel
plot.ts(Vt_c2)</pre>
```


Média móvel centrada

Enquanto a criação da média móvel centrada em zero como no exemplo I.13 vêmos uma série melhor descrita utilizando a média móvel centrada em 0.

 $\# {\rm Quest\~{a}o}~3$

$$E[X_t] = E[X_s X_t - X_s \mu_t - X_t \mu_s + \mu_s \mu_t]$$

$$= E[X_s X_t] - E[X_s \mu_t] - E[X_t \mu_s] + E[\mu_s \mu_t]$$

$$= E[X_s X_t] - \mu_t \mu_s - \mu_s \mu_t + \mu_s \mu_t$$

$$= E[X_s X_t] - \mu_t \mu_s$$

#Questão 4

```
w4 = rnorm(250,0,1) # 50 extras para evitar problemas de inicialização
x4 = filter(w, filter=c(-.9), method="recursive")[-(1:50)] # removendo os primeiros 50

xbar_4 <- sum(x4)/ length(x4) #Função de médias
x <- 1:200

df <- data.frame(x = x, y = xbar_4)
plot.ts(x4)
with(df, lines(y ~ x), col = 'red')</pre>
```


acf(x4)

Series x4

Questão 5

$$X_t = \beta_0 + \beta_1 t + W_t$$

$$E[X_t] = E[\beta_0] + E[\beta_1 t] + E[W_t]$$

$$E[X_t] = \beta_0 + \beta_1 t + 0$$

Como a esperança depende do instante $\$ t $\$ a série não pode ser estacionária $\#\mathbf{b}$

$$\beta_0 + \beta_1 t + W_t - (\beta_0 + \beta_1 (t - 1) + W_t (t - 1))$$

$$\beta_0 + \beta_1 t + W_t - (\beta_0 + \beta_1 t - \beta_1 + W_{t-1})$$

$$Y_t = \beta_1 + W_t + W_{t-1}$$

$$E[Y_t] = \beta_1 + 0 + 0$$

Como a esperança não depende de $\$ t $\$ a série poderá ser considerada estacionária se a covariância depender de $|s-t|\}$

$$Cov[s,t] = E[(\beta_0 + W_s - W_{s-1} - \beta_0) * (\beta_0 + W_t - W_{t-1})]$$
$$E[(W_s - W_{s-1}) * (W_t - W_{t-1})]$$