There will be some True/False problems. If False, in a few lines, state what is False and why.

- 1. Backpropagation is a form of Gradient Descent.
- 2. The solution to the equation $ax^2 + bx + c = 0$ is $x = -b \pm \frac{\sqrt{a^2 4bc}}{2a}$.

There will be some (2 or 3) "turn the crank" problems.

3. Consider this portion of an MLP:

Note that I have not specifically put "(k)" on these variable names to make the diagram less cluttered.

a. Suppose $\delta_1^H = 0.5$, $\delta_2^H = -0.3$, $\delta_3^H = -0.1$; $w_{1i}^H = 0.2$, $w_{2i}^H = -0.1$, $w_{3i}^H = 0.3$; $y_i^{H-1} = 0.4$ assuming a sigmoid activation function with slope parameter 1, compute δ_i^{H-1} .

b. Suppose $\delta_i^{H-1} = 0.4$, $w_{im}^{H-1}(\mathbf{k}) = -0.7$, $y_m^{H-2} = 0.5$. With $\alpha = 0.9$ and $\beta = 0.0$, compute the update of the weight $w_{im}^{H-1}(\mathbf{k}+1)$. Show the update equation first.

c. Suppose $w_{li}^H = 0.2$, $y_i^{H-1} = -0.4$, $y_l^H = 0.1$, $d_1 = 1.0$. Using squared error, ½ e^2 , as the error function and assuming a sigmoid activation function with slope parameter 1, compute the update to the weight w_{li}^H with $\alpha = 0.9$ and $\beta = 0.0$.

There will be some (1 or 2) "derivation" problems.

- 4. For an MLP with sum of squared error and sigmoid activation functions, derive the backpropagation output for λ_j , the parameter in the sigmoid, for both output neurons and hidden neurons.
- 5. Consider a pooling operation at hidden layer h that has the following properties:
 - no pooling window overlap
 - a spatial pooling window size of 3x3
 - function

$$f(a_{11},a_{12},a_{13},a_{21},a_{22},...,a_{33}) = (a_{11}+a_{12}+a_{13}+a_{21}+a_{23}+a_{31}+a_{32}+a_{33})/8 + a_{22}$$

for indexing scheme

a ₁₁	a ₁₂	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a ₃₁	a ₃₂	a ₃₃

Derive the weight update formula for backpropagation at layer h-1; aka the network layer that feeds into this pooling layer.

There may be a single "essay type" question to see if you know the "big picture".

Discuss Rosenblatt's algorithm and explain why it is important in the field of neural networks.

EXAM TOPICS include:

- 1. Multi layer perceptron's and backpropagation
- 2. Convolutional neural networks
- 3. Shared weight networks
- 4. Convolution and correlation
- 5. Deconvolution (matrix convolutional transpose)
- 6. Self organizing maps
- 7. Neural gas
- 8. Growing neural gas
- 9. Hopfield nets