Exercise: 1) Evaluate $\iint_{R} x \sin(xy) dA$ over the region $R = d(x, y) / 0 \le x \le \pi$, 1 ≤ y ≤ 2 } Ans: 0 a) Find the volume V of solid S that is bounded by elliptic paraboloid $2x^2 + y^2 + z = 27$ over the region $R = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 3\}$ Ans: $\int_{y=0}^{3} (27 - 2x^2 - y^2) dx dy = 0$ 3) Evaluate $\iint (2-3x^2+y^2) dA$ where $R = \int (x,y)/3 \le x \le 5$, $-3 \le y \le 2$ Ang: -13404) Evaluate $\iint (x+y) dA$ where D is bounded by $y=\sqrt{x}$ and $y=x^2$ D Ans: 3/10Determine the value of given integrals by change of order of s ex logy dy dx Ans: e-1 5 siny2 dy dx Aux: 1 2 1-cos 13 $\int_{0}^{a} \int_{ax}^{x} \frac{y^{2} dx dy}{\sqrt{(y^{4}-a^{2}x^{2})}} \qquad \frac{Ans: Ta^{2}}{6}$

Evaluate the following integrals by change of variables: 1) If xy dx dy where D is the portion of circle

D with centre O, radius I that lies in first quadrant a) det D be the region in the first quadrant bounded by xy=1, xy=9 and the lines y= xe and y= 4x Evaluate $\iint \left(\int \frac{y}{x} + \int ny \right) dx dy$ Ant: $8 + \frac{52}{3} \ln 2$ 3) $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$ Ans: $\frac{\pi}{4}$ by changing to polar coordinates 4) Evaluate SS (3x+4y2) dA, where R is the region in the upper half plane bounded by the circles $x^2+y^2=1$ and $x^2+y^2=4$. Ans: $\frac{15\pi}{2}$ Problems on Area enclosed by the curves

1) Find area enclosed by one loop of the four leaved note $n = \cos 2\theta$ (Hint: D. $\frac{1}{2}(x, \theta) - \frac{\pi}{4} \le \theta \le \frac{\pi}{4}$, $0 \le 9 \le \cos 20$) Inv: $\frac{11}{9}$ Aq. units and outside the cardioid $n = a(1 + \cos \theta)$ this $a^{2}(1 - \frac{\pi}{4})$ kg units Find the area bounded by lemniscate $g^2 = a^2 \cos 2\theta$ (Hint: $\int_{0}^{\pi/4} \int_{0}^{\pi/4} A \cos 2\theta$ or $\pi/4$ or $\pi/4$ $\pi/4$

4) Find the area common to the circles $x = a \cos \theta$, $x = a \sin \theta$ Ans: $\frac{a^2}{4}$ 5) Find area enclosed by the cardioid $s = a(1+\cos\theta)$ b = 0 and $c = \pi$. Ans: $\frac{3\pi a^2}{4}$