Mathematics II

Marcos Bujosa

Universidad Complutense de Madrid

14/01/2023

1 / 24

L-5

L-4

Highlights of Lesson 4

Highlights of Lesson 4

- Elementary transformations
- Indentifying singular matrices by elimination
- Matrix multiplication of Elementary matrices

L-4 L-5

_ Marcos Bujosa. Copyright © 2008–2023
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

1/24

L-4 L-5 Elementary transformations of a matrix

add λ times *i*-th column $(\lambda \mathbf{A}_{|i})$ to *j*-th column $(\mathbf{A}_{|i})$

Type i: $\mathbf{A}_{\underbrace{\tau}_{[(\lambda)i+j]}}$ (with $i \neq j$)

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ [(-2)\mathbf{1}+\mathbf{3}]}} = \begin{bmatrix} 1 & -3 & -2 \\ 1 & -6 & 1 \end{bmatrix}$$

Type *II*: $\mathbf{A}_{\substack{\tau \ [(\alpha)i]}}$ (with $\alpha \neq 0$)

multiply by α the *i*-th column

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\tau \\ [(10)2]}} = \begin{bmatrix} 1 & -30 & 0 \\ 1 & -60 & 3 \end{bmatrix}$$

2 / 24

- Pivot is the first non-zero component of each column.
- *Elimination*: modifies a matrix until all components at the right-hand side of each pivot are zeros

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 8 & 4 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{[(-3)^{1}+2]} \begin{bmatrix} 1 & \mathbf{0} & \mathbf{0} \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \xrightarrow{[(-2)^{2}+3]} \begin{bmatrix} 1 & \mathbf{0} & \mathbf{0} \\ 2 & 2 & \mathbf{0} \\ 1 & -2 & 5 \end{bmatrix} = \mathbf{L}$$

4 / 24

L-5

L-4

5 Elimination: When can't we find n pivots?

 $n \times n$ matrices are **singular** if we can't find n pivots \rightarrow

$$\begin{bmatrix} 0 & 1 & 3 \\ 4 & 2 & 8 \\ 1 & 1 & 1 \end{bmatrix}$$

Has this matrix
$$n$$
 pivots?
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ 1 & 1 & 1 \end{bmatrix}$$

and this one?
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 and this one?
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & -4 \end{bmatrix}$$

L-4

Elimination algorithm on A

modifies A using a sequence of elementary transformations

Goal

to get a (pre)echelon form

- pre-echelon: all components on the right side of each pivot are zero.
- echelon: if any column before a non-null column A_{|j} is non-null column and its pivot is above the pivot of A_{|j}.

It is always possible to find a (pre)echelon form by elimination Rank (rg): the number of pivots in any of its pre-echelon forms

A is singular if its pre-echelon forms have null-columns $(\operatorname{rg} < n)$

L-4

_

6 Matrix multiplication: elementary matrices

$$\begin{bmatrix}
1 & 3 & 0 \\
2 & 8 & 4 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
2 & 2 & 4 \\
1 & -2 & 1
\end{bmatrix}$$

We call I_{τ} "Elementary matrix":

$$\mathsf{A}(\mathsf{I}_{oldsymbol{ au}})=\mathsf{A}_{oldsymbol{ au}}$$

This specific elementary matrix \mathbf{I}_{τ} is written as \mathbf{I}_{τ} $_{[(-3)1+2]}^{\tau}$

$$\mathbf{A}\Big(\mathbf{I}_{[(-3)\mathbf{1}+\mathbf{2}]}^{}\Big) = \mathbf{A}_{[(-3)\mathbf{1}+\mathbf{2}]}^{}$$

5/24

L-5

7 Matrix multiplication: elementary matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 5 \end{bmatrix}$$

This specific elementary matrix \mathbf{I}_{τ} is written as \mathbf{I}_{τ} $_{[(-2)2+3]}^{\tau}$

$$\mathbf{A}\Big(\mathbf{I}_{\stackrel{oldsymbol{ au}}{[(-2)\mathbf{2}+\mathbf{3}]}}\Big) = \mathbf{A}_{\stackrel{oldsymbol{ au}}{[(-2)\mathbf{2}+\mathbf{3}]}}$$

8 / 24

L-5

L-4

L-4

9 how do I get from L back to A? Inverses

_

How do I reverse the first step? (it was subtract 3 times $\mathbf{A}_{|1}$ from $\mathbf{A}_{|2}$)

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{I} & \mathbf{T} & \text{``undo''} & \mathbf{I} & \mathbf{T} \\ [(-\lambda)i+j] & \text{``}[(\lambda)i+j] & \mathbf{T} \end{bmatrix}$$

How to undo $\begin{bmatrix} & & ? & & \\ & \tau & ? & & \\ & & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

L-4

8 Elimination by elementary matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 8 & 4 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \xrightarrow{[(-2)\mathbf{2}+\mathbf{3}]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 5 \end{bmatrix} = \mathbf{L}$$

$$\mathbf{A} \xrightarrow{\tau} = \mathbf{A} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}][(-2)\mathbf{2}+\mathbf{3}]} = \left(\mathbf{A} \left(\mathbf{I} \xrightarrow{\tau} \right) \right) \left(\mathbf{I} \xrightarrow{\tau} \right) = \mathbf{L}$$

there is a matrix that does the whole job at once

$$\mathbf{A}_{\substack{\tau \\ [(-3)1+2] \\ [(-2)2+3]}} = \mathbf{A} \left(\left(\mathbf{I}_{\substack{\tau \\ [(-3)1+2]}} \right) \left(\mathbf{I}_{\substack{\tau \\ [(-2)2+3]}} \right) \right) = \mathbf{A} \mathbf{I}_{\substack{\tau \\ [(-3)1+2] \\ [(-2)2+3]}} = \mathbf{L}$$

$$\left| \left. \mathbf{A}_{\tau_1 \cdots \tau_k} = \mathbf{A} \big(\mathbf{I}_{\tau_1 \cdots \tau_k} \big) \, \right| \right.$$

10 Interchange or swap matrices

Which matrix exchanges the columns?

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} & & \\ & b \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$$

Which matrix exchanges the rows? where do we put that matrix?

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} b & d \\ a & c \end{bmatrix}$$

Matrix multiplication is not commutative!

9 / 24

L-5

Interchange of columns:

 $oldsymbol{\mathsf{A}}_{oldsymbol{[i=j]}} o$ swicht columns $oldsymbol{i}$ and j of $oldsymbol{\mathsf{A}}$

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ [\mathbf{2} = 3]}} = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 3 & -6 \end{bmatrix}$$

We can switch two columns by a sequence of elementary transformations

Matrix $\mathbf{I}_{\substack{\tau \ [i = j]}}$ is call a exchange matrix

12 / 24

L-5

L-4

Questions of the Lecture 4

(L-4) Question 1.

- (a) Which three matrices $\begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ [(x)\mathbf{I}+\mathbf{2}] & [(y)\mathbf{I}+\mathbf{3}] \end{bmatrix}$ and $\begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{bmatrix}$ put $\mathbf{A} = \begin{bmatrix} 1 & 4 & -2 \\ 1 & 6 & 2 \\ 0 & 1 & 0 \end{bmatrix}$
- (b) Multiply those \mathbf{I}_{τ_i} to get one matrix \mathbf{E} that does elimination: $\mathbf{A}\mathbf{E}=\mathbf{K}.$

Based on (Strang, 1988, exercise 24 from section 1.4.)

(L-4) QUESTION 2. Consider the matrix

$$\left[\begin{array}{ccc}
1 & 2 & 4 \\
-1 & -3 & -2 \\
0 & 1 & c
\end{array}\right]$$

For what value(s) of c the matrix is singular (we can't find three pivots)?

L-4

12 Permutation matrices

Product between exchange matrices $\mathbf{I}_{\underbrace{\tau}}$ is a permutation matrix $\mathbf{I}_{\underbrace{\tau}}$

 $\mathbf{I}_{\underset{[\mathfrak{S}]}{\boldsymbol{\tau}}} = \text{ Identity matrix } \mathbf{I} \text{ with rearranged columns }$

Let's see the 3×3 case

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{bmatrix}, \quad \mathbf{I}_{\underbrace{\mathbf{1} = 2}}^{\mathbf{T}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

How many 3×3 permutations can we find?

what happens if I multiply two permutation matrices?

13 / 24

L-5

L-4

(L-4) QUESTION 3. Consider the following 3 by 3 matrices.

- (a) $\binom{\mathbf{I}}{\tau}$ subtracts column 1 from column 2 and then $\binom{\mathbf{I}}{\tau}$ exchanges columns 2 and 3. What matrix **E** does both steps at once?
- (b) $\left(\mathbf{I}_{\frac{\tau}{[2=3]}}\right)$ exchanges columns 2 and 3 and then $\mathbf{I}_{\frac{\tau}{[(-1)1+3]}}$ subtracts column 1 from column 3. What matrix $\mathbf{N} = \left(\mathbf{I}_{\frac{\tau}{[2=3]}}\right)\left(\mathbf{I}_{\frac{\tau}{[(-1)1+3]}}\right)$ does both steps at once? Explain why \mathbf{M} and \mathbf{N} are the same but the \mathbf{I}_{τ} 's are different.

Based on (Strang, 1988, exercise 28 from section 1.4.)

(L-4) QUESTION 4. Elimination matrices I and I will reduce A to triangular form. Find E so that AE = L is lower triangular (echelon), if A is

$$\left[\begin{array}{ccc} 2 & 2 & 0 \\ 1 & 4 & 9 \\ 1 & 3 & 9 \end{array}\right]$$

L-4

(L-4) QUESTION 5. Although we will only consider as elementary the *Type I* and II transformations, in most of the Linear Algebra books appears a third type: the exchange of columns

$$\mathbf{A}_{\begin{subarray}{c} \pmb{\tau} \\ [\pmb{p} \rightleftharpoons \pmb{s}] \end{subarray}} \to \mathsf{Exchanges} \ \mathsf{columns} \ p \ \mathsf{and} \ s \ \mathsf{of} \ \mathbf{A}.$$

Prove that a column exchange is, in fact, a sequence of $\mathit{Type\ I}$ and II elementary transformations. Try transforming $\begin{matrix} \mathbf{I} \\ 2\times 2 \end{matrix}$ in $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ by elementary transformations of the columns.

 $(L\mbox{-}4)$ QUESTION 6. Write down the 3 by 3 matrices that produce these elimination steps:

- (a) I_{τ} substracts 5 times column 1 from column 2,
- (b) I $_{\mathcal{T}}$ substracts 7 times column 2 from column 3,
- (c) I $_{\tau}$ exchanges columns 1 and 2, and then columns 2 and 3. $^{[\mathfrak{S}]}$

(Strang, 2003, exercise 1 from section 2.3.)

13 / 24

L-5

L-4

(L-4) QUESTION 10. If every column of **A** is a multiple of (1, 1, 1,), then $\mathbf{A}x$ is always a multiple of (1, 1, 1,). Do a 3 by 3 example. How many pivots are produced by elimination? (Strang, 1988, exercise 26 from section 1.4.)

L-4

(L-4) QUESTION 7. Consider the matrices of QUESTION 6:

- (a) when multiplying by I and then by I the matrix $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ we get $\mathbf{A}_{\begin{bmatrix} (-5)1+2\\ [(-7)2+3]\end{bmatrix}}$ and then by I the matrix $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ the matrix $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and then by I the matrix $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ are the matrix $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ and $\mathbf{A}=\begin{bmatrix}1&0&0&0\end{bmatrix}$ are the matrix $\mathbf{A}=\begin{bmatrix}1&0&0&0\\0&1&1&0\\0&1&1&1&0\\$
- (b) But, when multiplying by I before and then by I we get $\mathbf{A} = \begin{bmatrix} & & \\ &$
- (c) When $\frac{\tau}{[(-7)2+3]}$ comes first, the column _____ feels no effect from column _____. This property will become very important in the LU factorization! (Strang, 2003, exercise 2 from section 2.3.)
- (L-4) QUESTION 8. What matrix \mathbf{M} sends $\boldsymbol{v}=\begin{pmatrix}1,&0,\end{pmatrix}$ to $\begin{pmatrix}0,&1,\end{pmatrix}$, es decir $\boldsymbol{v}\mathbf{M}=\begin{pmatrix}0,&1,\end{pmatrix}$; and also sends $\boldsymbol{w}=\begin{pmatrix}0,&1,\end{pmatrix}$ to $\begin{pmatrix}1,&0,\end{pmatrix}$, es decir $\boldsymbol{w}\mathbf{M}=\begin{pmatrix}1,&0,\end{pmatrix}$?
- (L-4) QUESTION 9. Consider a permutation (interchange) matrix $\mathbf{I}_{\substack{[i=j]\\[i=j]}}$, if we compute the product $\mathbf{A}(\mathbf{I}_{\substack{[i=j]\\[i=j]}})$, we get a new matrix like \mathbf{A} , but with exchanged columns. What happen if we compute the product $(\mathbf{I}_{\substack{\tau\\[i=j]}})\mathbf{A}$? Check your answer with a 2 by 2 example.

13 / 24

L-4

1 Highlights of Lesson 5

Highlights of Lesson 5

- Inverse of A
- Gauss-Jordan elimination / finding A⁻¹
- Inverse of AB, A^T

2 Inverse of a matrix (square matrices)

A squared of order n has inverse (is *invertible*) if exists **B** such that

$$AB = BA = I$$
.

Then

L-4

$$\mathbf{B} = \mathbf{A}^{-1}$$
 and $\mathbf{A} = \mathbf{B}^{-1}$.

Not all matrices have inverse

Squared matrices with no inverse are called singular matrices

15 / 24

L-5

4 Singular case (no inverse)

Can we find $x \neq 0$ such that Ax = 0?

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} & \\ & \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

If $\mathbf{A}x = \mathbf{0}$ and $x \neq \mathbf{0} \quad \Rightarrow \quad \mathsf{there} \ \mathsf{is} \ \mathsf{no} \ \ \mathbf{A}^{-1}$

The existence of A^{-1} leads to a contradiction

If
$$\mathbf{A}x = \mathbf{0}$$
 and $\mathbf{x} \neq \mathbf{0} \quad \Rightarrow \quad \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}\mathbf{0} \quad \Rightarrow \quad \mathbf{x} = \mathbf{0}$.

When \mathbf{A}^{-1} does exist the only solution to $\mathbf{A}x=\mathbf{0}$ is $x=\mathbf{0}$.

L-4

3 Singular case (no inverse)

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 4 \\ 1 & 2 \end{array} \right]$$

Is it possible to find a matrix \mathbf{B} such that $\mathbf{AB} = \mathbf{I}$? ... columns of \mathbf{I} should be linear combinations of columns of \mathbf{A} ... but both columns lie on the same line.

So

A is singular

L-4 L-5

5 Calculating the inverse matrix

$$\mathbf{A}(\mathbf{A}^{-1}) = \mathbf{I}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So... we are solving m systems (of m equations each)

$$\begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

16 / 24

L-4

Gauss-Jordan: solving two linear systems at once

Gauss-Jordan elimination (obtaining a reduced echelon form R)

apply elementary transformations until a echelon matrix with only zeros to the left of each pivot (and all pivots equal to 1) is achieved

Let's solve the linear systems

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

applying Gauss-Jordan elimination on A stacked with I

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow$$

$$\rightarrow$$

If $\mathbf{R} = \mathbf{I}$, we have found \mathbf{A}^{-1}

19 / 24

L-5

Inverse of a product

When **A** and **B**, of order n, are invertible, (**AB**) is invertible.

what matrix gives me the inverse of **AB**? lets try with $(\mathbf{B}^{-1}\mathbf{A}^{-1})$:

$$AB(B^{-1}A^{-1}) =$$

$$\left(\mathbf{B}^{\text{-}1}\mathbf{A}^{\text{-}1}\right)\mathbf{A}\mathbf{B}=$$

L-4

Gauss-Jordan: Why does it work?

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{[(-3)\mathbf{1} + \mathbf{2}]} \xrightarrow{[(-2)\mathbf{2} + 1]}$$

that is, since $\mathbf{A}_{\tau_1 \cdots \tau_k} = \mathbf{A}(\mathbf{I}_{\tau_1 \cdots \tau_k})$:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\tau_1 \cdots \tau_k} = \begin{bmatrix} \mathbf{A}_{\tau_1 \cdots \tau_k} \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A}(\mathbf{I}_{\tau_1 \cdots \tau_k}) \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix},$$

who is
$$\mathbf{I}_{ au_1 \cdots au_k}$$
?

therefore $\mathbf{A}^{-1} =$

Inverse of a transpose matrix

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

let me transpose both sides

$$\left(\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right) \mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

then

L-4

the inverse of A^T is

L-5

20 / 24

L-5

10 Interchanges and permutations

Are interchange matrices $\mathbf{I}_{\underbrace{\tau}}$, invertible?

It is easy to check that

$$\left(\mathbf{I}_{\substack{\tau \ [\mathfrak{S}]}}\right)^{\mathsf{T}}\left(\mathbf{I}_{\substack{\tau \ [\mathfrak{S}]}}\right) = \mathbf{I} \qquad \Longrightarrow$$

23 / 24

L-5

L-4

Questions of the Lecture 5

(L-5) QUESTION 1. Use the Gauss-Jordan method to invert

(a)
$$\mathbf{A}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.
(b) $\mathbf{A}_2 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.
(c) $\mathbf{A}_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

(Strang, 1988, exercise 6 from section 1.6.)

(L-5) Question 2.

- (a) If A is invertible and AB = AC, prove quickly that B = C.
- (b) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, find an example with AB = AC, but $B \neq C$.

(Strang. 1988, exercise 4 from section 1.6.)

(L-5) QUESTION 3. Use the Gauss-Jordan method to invert the generic matrix 2×2

$$\mathbf{M} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

The matrix is invertible (not singular) only when ...

11 Caracterización of invertible matrices

Given $\bf A$ of order n, the following statements are equivalent

- 1. No zero columns in $\mathbf{A}_{ au_1 \cdots au_p} = \mathbf{K}$ (pre-echelon matrix).
- 2. A has inverse.
- 3. A is product of elementary matrices.

$$\mathbf{A}_{\tau_1\cdots\tau_k} = \mathbf{A}\big(\mathbf{I}_{\tau_1\cdots\tau_k}\big) = \mathbf{I} \qquad \Rightarrow \qquad \mathbf{A} = \big(\mathbf{I}_{\tau_1\cdots\tau_k}\big)^{-1}$$

where

$$\left(\mathbf{I}_{\tau_1\cdots\tau_k}\right)^{\!-1} \;=\; \left((\mathbf{I}_{\tau_1})\cdots(\mathbf{I}_{\tau_k})\right)^{\!-1} \;=\; (\mathbf{I}_{\tau_k^{\!-1}})\cdots(\mathbf{I}_{\tau_1^{\!-1}}) \;=\; \mathbf{I}_{\tau_k^{\!-1}\cdots\tau_1^{\!-1}}$$

24 / 24

L-4

(L-5) QUESTION 4. Use the Gauss-Jordan method to invert the following matrices.

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & 6 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 4 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$

(L-5) QUESTION 5. If the 3 by 3 matrix $\bf A$ has $\bf A_{|1}+\bf A_{|2}=\bf A_{|3}$, show that $\bf A$ is not invertible, by two different methods:

- (a) Find a nonzero solution x to Ax = 0.
- (b) Elimination keeps $column \ 1 + column \ 2 = column \ 3$. Explain why there is no third pivot.

(Strang, 1988, exercise 26 from section 1.6.)

(L-5) QUESTION 6. Find the inverses of

$$\begin{aligned} \textbf{(a)} \ \mathbf{A}_1 &= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix} \,. \\ \textbf{(b)} \ \mathbf{A}_2 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/2 & 1 & 0 & 0 \\ 0 & -2/3 & 1 & 0 \\ 0 & 0 & -3/4 & 1 \end{bmatrix} \\ \textbf{(c)} \ \mathbf{A}_3 &= \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \,. \end{aligned}$$

(Strang, 1988, exercise 10 from section 1.6.)

24 / 24

L-4

(L-5) QUESTION 10. The 3 by 3 matrix **A** reduces to the identity matrix **I** by the following three column operations (in order):

au: Subtract 4 times column 1 from column 2.

au: Subtract 3 times column 1 from column 3.

au: Subtract column 3 from column 2. [(-1)3+2]:

- (a) Write \mathbf{A}^{-1} in terms of elementary matrices $\mathbf{I}_{\boldsymbol{\tau}}$. Then compute \mathbf{A}^{-1} .
- (b) What is the original matrix A?

(Based on MIT Course 18.06 Quiz 1, October 4, 2006)

L-4

(L-5) QUESTION 7. Find the inverse of

$$\mathbf{A} = \begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix}$$

What values of a and b make the matrix singular? (Strang, 1988, exercise 42 from section 1.6.)

(L-5) QUESTION 8. Find
$$\mathbf{E}^2$$
, \mathbf{E}^8 and \mathbf{E}^{-1} if $\mathbf{E} = \begin{bmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix}$ (Strang, 1988, exercise 6 from section 1.5.)

(L-5) QUESTION 9. Consider the following permutation matrix:

$$\mathbf{I}_{\widetilde{\mathfrak{S}}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Find I $_{\tau}$ $^{-1}.$ Can you say something else about the relationship between I $_{\tilde{[\mathfrak{S}]}}$ and I $_{\tau}$ $^{-1}$?

24 / 24

L-4

(L-5) QUESTION 11. The 3 by 3 matrix **A** reduces to the identity matrix **I** by the following three **row** operations (in order):

au: Subtract 4 times row 1 from row 2.

au: Subtract 3 times row 1 from row 3. [(-3)1+3]

au: Subtract row 3 from row 2. [(-1)3+2]

- (a) Write A^{-1} in terms of the E's. Then compute A^{-1} .
- (b) What is the original matrix A?

L-4

(L-5) Question 12.

(a) Find the inverse of
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

(b) Find the inverse of the following matrix using the Gauss-Jordan method

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d \end{array}\right]$$

(Poole, 2004, exercise 36, 38 and 59 from section 3.3.)

(L-5) QUESTION 13. Consider the squared matrices A, B, and C. True or false?

- (a) If AB = I and CA = I then B = C.
- (b) $(AB)^2 = A^2B^2$.

24 / 24

L-5

24 / 24

L-5

L-4

Poole, D. (2004). Álgebra lineal. Una introducción moderna. Thomson Learning, Mexico D.F. ISBN 970-686-272-2.

Strang, G. (1988). *Linear algebra and its applications*. Thomson Learning, Inc., third ed. ISBN 0-15-551005-3.

Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.

L-4

(L-5) QUESTION 14. Consider the matrix
$$\mathbf{A} = \left[\begin{array}{cccc} 0 & 1 & 0 & 2 \\ 1 & a & 0 & 2a \\ a & 0 & 1 & 0 \\ 1 & 0 & a & 1 \end{array} \right]$$

- (a) Prove that **A** is invertible for any value of a.
- (b) Compute A^{-1} when a=0.

$$\text{(L-5) QUESTION 15. Consider the matrix } \mathbf{A} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{array} \right]. \text{ Find } \mathbf{A}^{-1}.$$

(L-5) QUESTION 16. Find (if it is possible) the inverse of the following inverses

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}.$$

(L-5) QUESTION 17. There is a finite number (n!) of $n\times n$ permutation matrices. In addition, any power of a permutation matrix is a another permutation matrix. Use these facts to prove that $\left(\mathbf{I}_{\tau}\right)^r=\mathbf{I}$ for some integer numbers r.

 $24 \, / \, 24$