# Teoria Sygnałów w zadaniach



$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

### Podstawowe własności sygnałów

- 1.1 Podstawowe własności sygnałów
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc sygnału

## Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

#### 2.1 Trygonometryczny szerego Fouriera

#### 2.2 Zespolony szerego Fouriera

#### Zadanie 1.

Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału f(t) przedstawionego na rysunku



W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja przedziałowa, którą możemy opisać w następujący sposób:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Współczynnik  $F_0$  wyznaczamy ze wzoru:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left( \int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{A}{T} \left( \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right) =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt =$$

$$= \begin{cases} z = \frac{2\pi}{T} \cdot t \\ dz = \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{\frac{2\pi}{T}} \end{cases} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz =$$

$$= \frac{A}{2\pi} \cdot \left( -\cos(z) \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= -\frac{A}{2\pi} \cdot \left( \cos\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= -\frac{A}{2\pi} \cdot \left( \cos\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right) =$$

$$= -\frac{A}{2\pi} \cdot (\cos(\pi) - \cos(0)) =$$

$$= -\frac{A}{2\pi} \cdot (-1 - 1) =$$

$$= -\frac{A}{2\pi} \cdot (-2) =$$

$$= \frac{A}{\pi}$$

Wartość współczynnika  $F_0$  wynosi  $\frac{A}{\pi}$ .

Współczynniki  $F_k$  wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.3)

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} &=\frac{1}{T}\cdot\left(A\cdot\int_{0}^{\frac{\tau}{2}}\frac{e^{i\frac{\pi}{2}-1}-e^{-j\frac{\pi}{2}-1}}{2j}\cdot e^{-jk\frac{\pi}{2}-t}\cdot dt+0\right)=\\ &=\frac{1}{T}\cdot\left(\frac{A}{2}\cdot\int_{0}^{\frac{\tau}{2}}\left(e^{j\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}\right)\cdot e^{-jk\frac{\pi}{2}-t}\cdot dt\right)=\\ &=\frac{1}{T}\cdot\frac{A}{2}\cdot\int_{0}^{\frac{\tau}{2}}\left(e^{j\frac{\pi}{2}-t}-e^{-jk\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}\cdot e^{-jk\frac{\pi}{2}-t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\tau}{2}}\left(e^{j\frac{\pi}{2}-t}-e^{-jk\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}\cdot e^{-jk\frac{\pi}{2}-t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\tau}{2}}\left(e^{j\frac{\pi}{2}-t}-e^{-jk\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\tau}{2}}\left(e^{j\frac{\pi}{2}-t}-e^{-jk\cdot \frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}-e^{-j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}}\right)\cdot dt=\\ &=\frac{A}{T\cdot2j}\cdot\left(\int_{0}^{\frac{\tau}{2}}e^{j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2j}\cdot\left(\int_{0}^{\frac{\tau}{2}}e^{j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}}\right)=\\ &=\frac{A}{dt}\cdot\frac{1}{j\cdot \frac{\pi}{2}}\cdot (1-k)\cdot t\quad z_{2}=-j\cdot \frac{2\pi}{2}\cdot (1+k)\cdot t\right)=\\ &=\frac{A}{T\cdot2j}\cdot\left(\int_{0}^{\frac{\tau}{2}}e^{j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}\cdot e^{-j\frac{\pi}{2}-t}\cdot e^{-jk\cdot \frac{\pi}{2}-t}}\right)=\\ &=\frac{A}{T\cdot2j}\cdot\left(\int_{0}^{\frac{\tau}{2}}e^{j\frac{\pi}{2}-t}\cdot e^{-j\frac{\pi}{2}-t}\cdot e^{-j\frac{\pi}{2$$

$$\begin{split} &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-1\cdot e^{-\jmath\cdot\pi\cdot k}-2+k\cdot(-1)\cdot e^{-\jmath\cdot\pi\cdot k}-1\cdot e^{-\jmath\cdot\pi\cdot k}-k\cdot(-1)\cdot e^{-\jmath\cdot\pi\cdot k}}{1-k^2}\right)=\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-e^{-\jmath\cdot\pi\cdot k}-2-k\cdot e^{-\jmath\cdot\pi\cdot k}-e^{-\jmath\cdot\pi\cdot k}+k\cdot e^{-\jmath\cdot\pi\cdot k}}{1-k^2}\right)=\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-2\cdot e^{-\jmath\cdot\pi\cdot k}-2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{2\cdot e^{-\jmath\cdot\pi\cdot k}+2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot2\cdot\left(\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\right)=\\ &=\frac{A}{2\cdot\pi}\cdot\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\end{split}$$

Wartość współczynnika  $F_k$  wynosi  $\frac{A}{2\cdot\pi}\cdot\frac{e^{-j\cdot\pi\cdot k}+1}{1-k^2}$  dla  $k\neq 1 \land k\neq -1$ .

Współczynnik  $F_k$  dla k=1 musimy wyznaczyć raz jeszcze, tak więc wyznaczmy go wprost z definicji  $F_1$ :

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \cdot \left( \int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \sin\left(x\right) \right\} = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2\jmath} \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \\ &= \frac{1}{T} \cdot \left( \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1-1)} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t \cdot (1+1)} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t \cdot 0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t \cdot 2} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) = \\ &=$$

$$\begin{split} &= \begin{cases} z &= -\jmath \cdot \frac{4\pi}{T} \cdot t \\ dz &= -\jmath \cdot \frac{4\pi}{T} \cdot dt \\ dt &= \frac{dz}{-\jmath \cdot \frac{4\pi}{T}} \end{cases} = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-\jmath \cdot \frac{4\pi}{T}} \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_{0}^{\frac{T}{2}} dt - \frac{1}{-\jmath \cdot \frac{4\pi}{T}} \cdot \int_{0}^{\frac{T}{2}} e^{z} \cdot dz \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( t|_{0}^{\frac{T}{2}} + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{z}|_{0}^{\frac{T}{2}} \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \left( \frac{T}{2} - 0 \right) + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{-\jmath \cdot \frac{4\pi}{T} \cdot t}|_{0}^{\frac{T}{2}} \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \left( \frac{T}{2} - 0 \right) + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left( e^{-\jmath \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-\jmath \cdot \frac{4\pi}{T} \cdot 0} \right) \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \frac{T}{2} + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \frac{T}{2} + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \frac{T}{2} + \frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot 0 \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \frac{T}{2} + 0 \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \frac{T}{2} = \\ &= \frac{A}{4\jmath} = \\ &= -\jmath \cdot \frac{A}{4} \end{split}$$

Wartość współczynnika  $F_1$  wynosi  $-\jmath \cdot \frac{A}{4}$ .

Współczynnik  $F_k$  dla k=-1 musimy wyznaczyć raz jeszcze, tak więc wyznaczmy go wprost z definicji  $F_{-1}$ :

$$F_{-1} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{1}{T} \cdot \left( \int_{0}^{\frac{T}{2}} A \cdot \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

$$= \frac{1}{T} \cdot \left( A \cdot \int_{0}^{\frac{T}{2}} \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \left\{ \sin \left( x \right) \right. = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \right\} =$$

$$= \frac{1}{T} \cdot \left( A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2j} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \cdot \left( \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

$$\begin{split} &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot e^{J \cdot \frac{2\pi}{T} \cdot t} - e^{-J \cdot \frac{2\pi}{T} \cdot t} \cdot e^{J \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{J \cdot \frac{2\pi}{T} \cdot t} + J \cdot \frac{2\pi}{T} \cdot t} - e^{-J \cdot \frac{2\pi}{T} \cdot t} + J \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{J \cdot \frac{2\pi}{T} \cdot t} + J \cdot \frac{2\pi}{T} \cdot t} - e^{-J \cdot \frac{2\pi}{T} \cdot t \cdot t} - J \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot t \cdot dt - \int_{0}^{\frac{T}{2}} e^{-J \cdot \frac{2\pi}{T} \cdot t \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot e^{J \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{J \cdot \frac{4\pi}{T} \cdot t} - \left( \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{J \cdot \frac{4\pi}{T} \cdot t} \right) - \left( \frac{T}{2} - 0 \right) \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} \frac{J \cdot \frac{4\pi}{T} \cdot t} \cdot (e^{J \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{J \cdot \frac{2\pi}{T} \cdot t} - e^{J \cdot \frac{2\pi}{T} \cdot t} \right) - \left( \frac{T}{2} - 0 \right) \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} \frac{J \cdot \frac{4\pi}{T} \cdot t} \cdot (e^{J \cdot \frac{2\pi}{T} \cdot \frac{T}{T} \cdot \frac{T}{2}} - e^{J \cdot \frac{2\pi}{T} \cdot t} \cdot (e^{J \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{J \cdot \frac{2\pi$$

Wartość współczynnika  $F_{-1}$  wynosi  $j \cdot \frac{A}{4}$ .

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$F_0 = \frac{A}{\pi}$$

$$F_k = \frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^2}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_1 = -\jmath \cdot \frac{A}{4}$$

Możemy wyznaczyć kilka wartości współczynników  $F_k$ 

| $F_k$   | -6                 | -5 | -4                 | -3 | -2                | -1                         | 0               | 1                     | 2                | 3 | 4                 | 5 | 6                 |
|---------|--------------------|----|--------------------|----|-------------------|----------------------------|-----------------|-----------------------|------------------|---|-------------------|---|-------------------|
| $F_k$   | $-\frac{A}{35\pi}$ | 0  | $-\frac{A}{15\pi}$ | 0  | $-\frac{A}{3\pi}$ | $-\jmath\cdot \frac{A}{4}$ | $\frac{A}{\pi}$ | $j \cdot \frac{A}{4}$ | $\frac{A}{3\pi}$ | 0 | $\frac{A}{15\pi}$ | 0 | $\frac{A}{35\pi}$ |
| $ F_k $ | $\frac{A}{35\pi}$  | 0  | $\frac{A}{15\pi}$  | 0  | $-\frac{A}{3\pi}$ | $\frac{A}{4}$              | $\frac{A}{\pi}$ | $\frac{A}{4}$         | $\frac{A}{3\pi}$ | 0 | $\frac{A}{15\pi}$ | 0 | $\frac{A}{35\pi}$ |

Podstawiając to wzoru aproksymacyjnego funkcję f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \frac{A}{\pi} + \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} + \sum_{\substack{k=-\infty\\k \neq 0\\k \neq -1 \land k \neq 1}}^{\infty} \left[ \frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^2} \right] \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$(2.4)$$

W przypadku sumowania od  $k_{min} = -1$  do  $k_{max} = 1$  otrzymujemy:



W przypadku sumowania od  $k_{min}=-2$  do  $k_{max}=2$  otrzymujemy:



W przypadku sumowania od  $k_{min}=-4$  do  $k_{max}=4$  otrzymujemy:



W przypadku sumowania od  $k_{min}=-6$  do  $k_{max}=6$  otrzymujemy:



W przypadku sumowania od  $k_{\min}=-12$  do  $k_{\max}=12$ otrzymujemy:



W granicy sumowania od  $k_{min}=-\infty$  do  $k_{max}=\infty$  otrzymujemy oryginalny sygnał.

Na podstawie wyznaczonych współczynników  $F_k$  możemy narysować widmo aplitudowe  $|F_k|$  sygnału f(t).



Widmo aplitudowe sygnału rzeczywistego jest zawsze parzyste.

Podobnie n podstawie wyznaczonych współczynników  $F_k$  możemy narysować widmo fazowe  $\arg\{F_k\}$  sygnału f(t).



Widmo fazowe sygnału rzeczywistego jest zawsze nieparzyste.

#### 2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

## Analiza sygnałów nieokresowych. Transformata Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

## Przetwarzanie sygnałów za pomocą układów LTI

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

