(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-158450

(43)公開日 平成10年(1998) 6月16日

(51) Int.Cl.6

識別記号

FΙ

C08L 27/06 C08K 5/11 C08L 27/06 C08K 5/11

審査請求 未請求 請求項の数1 OL (全 9 頁)

(21)出願番号

特願平8-317472

(71)出願人 000190116

信越ポリマー株式会社

東京都中央区日本橋本町4丁目3番5号

(22)出願日 平成8年(1996)11月28日

(72)発明者 鈴木 秀樹

埼玉県大宮市吉野町1丁目406番地1 信

越ポリマー株式会社東京工場内

(72)発明者 大手 道正

埼玉県大宮市吉野町1丁目406番地1 信

越ポリマー株式会社東京工場内

(72)発明者 真貝 美智子

埼玉県大宮市吉野町1丁目406番地1 信

越ポリマー株式会社東京工場内

(74)代理人 弁理士 山本 亮一 (外1名)

(54) 【発明の名称】 食品包装用ポリ塩化ビニル樹脂組成物

(57)【要約】

(修正有)

【課題】 容器包装に対する可塑剤の移行を防止・抑制し、特に弁当容器蓋のストレスクラッキングを発生させず、しかもポリエステル系可塑剤を使用しても成形加工性が極めて優れた押出加工性の改良された食品包装用ポリ塩化ビニル樹脂組成物を提供することにある。

【解決手段】 水銀圧入法ポロシティメーターによる累積ポロシティが0.220cc/g以上、0.550cc/g以下であるポリ塩化ビニル樹脂100重量部に対し、分子量1000~3000のポリエステル系可塑剤5~50重量部を添加してなる組成物、または、さらに前記組成物に、炭素数が8以上のアルキル基を有するアジピン酸エステル系可塑剤と、炭素数が10以下のアルキル基を有する2種以上の脂肪族アルコールとアジピン酸との混合アジピン酸エステル系可塑剤、の中から選ばれる少なくとも1種の可塑剤35重量部以下、を添加してなるものである。

【特許請求の範囲】

【請求項1】 水銀圧入法ポロシティメーターによる累積ポロシティが0.220cc/g以上、0.550cc/g以上下であるポリ塩化ビニル樹脂100重量部に対し、1)分子量1000~3000のポリエステル系可塑剤5~50重量部を添加してなる組成物、または、さらに前記組成物に、2)A.炭素数が8以上のアルキル基を有するアジピン酸エステル系可塑剤と、B.炭素数が10以下のアルキル基を有する2種以上の脂肪族アルコールとアジピン酸との混合アジピン酸エステル系可塑剤、の中から選ばれる少なくとも1種の可塑剤35重量部以下、を添加してなることを特徴とする食品包装用ポリ塩化ビニル樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、食品容器包装に好適に用いられるストレッチフィルム用のポリ塩化ビニル樹脂組成物に関し、特には、押出加工性が極めて良好で、かつ食品容器包装において、ストレッチフィルムに添加された可塑剤成分が容器の素材に移行するのを抑制する効果を備えたポリ塩化ビニル樹脂組成物に関する。【0002】

【従来の技術】近年、コンビニエンスストアなどで販売される弁当・惣菜類は販売量が急増しており、その包装形態としてはポリプロピレン、ポリスチレン、ポリ塩化ビニルなどの容器が用いられ、その蓋材には蓋の成形性、強度、透明性およびコストなどの理由から二軸延伸ポリスチレン(OPS)が使用されている。さらにその包装は内容物の漏れ防止や、割り箸・スプーンなどを弁当容器に一体包装するためにストレッチフィルムによる、いわゆるラップ包装がなされている。このストレッチフィルムとしては、ポリ塩化ビニルを主成分として、これに可塑剤を添加したものが透明性、包装機械適性、コストなどの面で主に利用されている。

【0003】しかしながら、このポリ塩化ビニルを主成分とするストレッチフィルムに添加されている可塑剤が移行して、上記OPS製の蓋に対し溶剤として作用し、蓋に亀裂を発生させるという現象、いわゆるストレスクラッキング(環境応力亀裂)により、輸送中、店頭陳列中あるいは電子レンジでの加熱調理時に、蓋が割れたりするという欠点が指摘されている。

【0004】可塑剤の移行を防止する従来技術として、特開昭60-179441号公報が開示されている。しかし、この公報に記載のストレッチフィルムでは、OP S製の弁当蓋の亀裂発生を防止することができないばかりでなく、加工性の低下による成形不良やフィルム表面の滑性が低下するために自動包装適性が大幅に低下してしまうという欠点があった。一方、加工性の改良を目的とした食品包装用の塩化ビニル樹脂組成物として、特開平5-59242号公報が開示されている。しかし、こ

の公報に記載のものは、押出加工段階において、特に添加した樹脂が溶融状態になったときにスクリュー表面に薄い皮膜状となって発生するため、プレートアウト防止効果が不十分で長時間での安定した押出成形が不可能であった。

【0005】このようにストレッチフィルムの可塑剤の移行の抑制を発揮させるには、分子量が1000~3000のポリエステル系可塑剤が効果的であることは、上記公報(特開昭60-179441号)に開示されているが、この可塑剤単独では押出加工性が不十分であると共に、成形されたストレッチフィルムの特性、伸び易さや包装機械適性が満足に得られないなどの問題があり、これらの問題点に対処するためには必要最小限量の別の可塑剤を併用することが必須条件であった。

【0006】また、一般にポリ塩化ビニル樹脂製ストレッチフィルムは、これら組成物を用いて溶融押出法によりフィルムに成形される。このときの組成物の形態としては、ポリ塩化ビニル樹脂(粒子)に可塑剤・安定剤などを混合・吸収させたものであり、押出加工段階ではこの組成物を粉末混合物のまま押出成形するドライブレンド法と、この組成物を予め混練・造粒してから押し出すペレット押出法とに大別される。この両方法において、上記のようなポリエステル系可塑剤を使用すると押出加工時の成形性、特にゲル化特性の低下・溶融粘度の上昇により極めて加工性が悪くなり、長時間の連続した安定成形が不可能であり、長時間の連続した生産が困難であるなどの生産性の低下や加熱分解物の混入による品質の低下などの不都合が発生していた。

【0007】ここで使用される混合装置としては、ヘンシェルミキサー、リボンブレンダー、ナウタミキサーなどがあり、混合時には混合による発熱などにより通常100~130℃の温度で可塑剤などの吸収を完了させる。しかし、分子量が比較的大きいポリエステル系可塑剤は、一般的にポリ塩化ビニル樹脂に吸収されにくい傾向にある。そのため、ドライブレンド法においては、この吸収性が不十分であることから発生する上記不都合があり、さらに食品包装用ストレッチフィルムに成形した場合、得られたフィルムの透明性が著しく低下し、実用上の不都合が発生してしまうという問題があった。一方、吸収を十分に行うために混練時間を延長すると、より高温域での混練となるために熱の影響を受け、成形加工時に樹脂が分解し易くなってしまうという問題があった。

[0008]

【発明が解決しようとする課題】したがって、本発明の課題は、上記した包装容器に対する可塑剤の移行を防止・抑制し、特に弁当容器蓋のストレスクラッキングを発生させず、しかもポリエステル系可塑剤を使用しても成形加工性に優れ、押出加工性の改良された食品包装用ポリ塩化ビニル樹脂組成物を提供することにある。

[0009]

【課題を解決するための手段】本発明者は、上記従来の問題点を解決するために鋭意研究を重ねた結果、樹脂組成物を作る際のポリエステル系可塑剤のポリ塩化ビニル樹脂に対する吸収性が大きく影響していることを見い出し、特にポリ塩化ビニル樹脂内部に存在する空隙量(ポロシティ)に着目し、特定範囲のポロシティを有するポリ塩化ビニル樹脂を使用することで、ポリエステル系可塑剤の吸収性を改良することにより、必要最小限量の別の可塑剤の使用が可能となり押出加工性が極めて良好で、かつ押出成形により得られるストレッチフィルムの特性が極めて良好なポリ塩化ビニル樹脂組成物を得るに至った。

【0010】すなわち、本発明における食品包装用ポリ 塩化ビニル樹脂組成物は、水銀圧入法ポロシティメータ ーによる累積ポロシティが0.220cc/g以上、 0.550cc/g以下であるポリ塩化ビニル樹脂10 0重量部に対し、1)分子量1000~3000のポリ エステル系可塑剤5~50重量部を添加してなる組成 物、または、さらに前記組成物に、2)A. 炭素数が8 以上のアルキル基を有するアジピン酸エステル系可塑剤 と、B. 炭素数が10以下のアルキル基を有する2種以 上の脂肪族アルコールとアジピン酸との混合アジピン酸 エステル系可塑剤、の中から選ばれる少なくとも1種の 可塑剤35重量部以下、を添加してなることを特徴とす るものである。本発明は、押出加工性が改良されたもの で、特にドライブレンド法では可塑剤その他の材料をポ リ塩化ビニル粒子に極めて容易、かつ十分に吸収させる ことができる。

[0011]

【発明の実施の形態】以下、本発明の実施の形態について、具体的に説明する。本発明において、水銀圧入法ポロシティメーターによるポロシティとは、水銀は強制的に加圧しないと細かい空隙に浸入して行けないという原理を基に、具体的にはポリ塩化ビニル樹脂の粒子に対して、その周囲から水銀を一様に加圧し、順次圧力を高めていくと、ポリ塩化ビニル樹脂の粒子内の比較的大きな空隙に水銀が浸入し、次いでより小さな空隙に水銀が浸入し、この浸入量から求められた値のことである。ここで、ボリ塩化ビニル樹脂粒子内の空隙の一つが半径 rの円筒状とすると、この空隙に圧力 r0 であり、この浸入しようとする水銀を押し出そうとする力は r0 であり、この浸入しようとする水銀を押し出そうとする力は r1 で表される空隙半径より大きい空隙に水銀が浸入する。

【0012】 $pr=-2\pi\gamma cos\theta$ (1) $p: 圧力、<math>r: 空隙径、 \gamma: 水銀の表面張力、<math>\theta: 水銀$ とポリ塩化ビニル樹脂との接触角、

【0013】本発明における累積ポロシティとは、水銀の加圧範囲を0psiから1000psiまで順次高め

ていき、圧入された水銀の容量(cc)の累積値であり、測定に供したポリ塩化ビニル樹脂の単位重量当たり(g)に換算して求める。さらに、このとき圧力0psiから20psiまでの範囲は、試料の粒子間隙に起因する水銀の浸入であると考え、累積ポロシティ値は20psiにおける測定値までの累積値とする。

【0014】以上の条件により測定した累積ポロシティ が0.220cc/g以上であるポリ塩化ビニル樹脂を 用いると、分子量が1000~3000である高分子量 のポリエステル系可塑剤をドライブレンド法において容 易に吸収させることが可能となり、押出加工性および成 形して得られるフィルムの品質、特に透明性が極めて良 好なポリ塩化ビニル樹脂組成物が得られる。この累積ポ ロシティの値は、上記したように0.220cc/g以 上であるが、好ましくは0.280cc/g以上であ り、さらに好ましくは0.310cc/g以上である。 この上限値には特に制限はないが、ポリ塩化ビニル樹脂 の生産性を考慮した場合、0.550cc/gである。 一方、この値が0.220cc/g未満であると、ポリ エステル系可塑剤の吸収性が低下し効果が得られない。 【0015】また、このときのポリ塩化ビニル樹脂の他 の特性としては、嵩比重、平均粒子径および比表面積が 挙げられるが、この中で嵩比重は0.45g/cc~ 0.55g/cc、平均粒子径が 80μ m \sim 140μ m のものが押出成形においてフィルム中のフィッシュアイ 発生防止および押出成形時の樹脂吐出量の点で好まし い。嵩比重が上記範囲よりも小さいと樹脂吐出量が低下 し、生産性が低下する一方、この範囲を超えると押出成 形時に樹脂が十分に混練されずに、いわゆるフィッシュ アイが発生してしまう。

【0016】さらに、平均粒子径は上記した範囲のものが好ましいが、累積ボロシティの値と粒子の空隙径(r)との関係においては、空隙径(r)が0.1μm~1.0μmの範囲において高い空隙(ボロシティ)を有することが、本発明における効果をより高めることが可能となる。

【0017】本発明に用いられるポリ塩化ビニル樹脂は、懸濁重合法、塊状重合法、乳化重合法などの従来公知の方法で作られるが、この中で懸濁重合法および塊状重合法が好適に利用され、この重合反応において重合開始剤や分散剤の種類および量(濃度)、撹拌強度を適宜選択して使用すればよい。また、このポリ塩化ビニル樹脂の重合度は、通常700~2000の範囲であり、特に900~1300の範囲のものが好ましく採用される。

【0018】本発明に用いられる第一成分としての分子 量1000~3000のポリエステル系可塑剤は、下記 に示す第二成分の可塑剤の使用量を抑制してもストレッ チフィルムとしての伸びを付与するとともに、第二成分 の可塑剤の移行を抑制するために使用されるもので、本発明において、特に効果的なものであり、その添加量はポリ塩化ビニル樹脂100重量部に対し、5~50重量部の範囲であり、好ましくは11~45重量部、さらに好ましくは15~40重量部の範囲である。この添加量が5重量部未満では、第二成分の可塑剤の移行を抑制する効果が得られず、逆に50重量部を超えると、成形されたストレッチフィルムの粘着性が強くなりすぎて、自動包装機適性が得られなくなってしまう。

【0019】このポリエステル系可塑剤は、二塩基酸と 二価アルコールとの反応物であり、必要に応じて末端停 止成分として一価アルコールにより縮合させたものとし てもよい。具体的には二塩基酸としては、アジピン酸、 セバシン酸、フタル酸などであり、また二価アルコール としては、エチレングリコール、プロピレングリコー ル、ブタンジオール、1,6-ヘキサンジオールなどが あり、これら1種類の2塩基酸と1種類または2種類以 上の二価アルコールとの反応生成物であり、加工性およ びストレスクラッキング防止効果の面から選択され、具 体的にはポリ(プロピレングリコール、アジピン酸)エ ステル、ポリ (プロピレングリコール、セバシン酸) エ ステル、ポリ (ブタンジオール、アジピン酸) エステ ル、ポリ (ブタンジオール、セバシン酸) エステル、ポ リ (エチレングリコール、アジピン酸) エステル、ポリ (1,6-ヘキサンジオール、ブタンジオール、アジピ ン酸) エステル、ポリ (ブタンジオール、エチレングリ コール、アジピン酸) エステル、ポリ (エチレングリコ ール、プロピレングリコール、ブタンジオール、アジピ ン酸) エステルなどが挙げられる。また末端停止成分と しては、オクチルアルコール、デシルアルコールなどが 挙げられるが、成形して得られるフィルムの耐寒性を考 慮した場合、オクチルアルコールが好ましい。

【0020】本発明に用いられる上記ポリエステル系可塑剤の分子量は、1000~3000のものが効果的に使用されるが、この分子量が1000未満では、第二成分の可塑剤の移行抑制効果が低く、さらに、第一成分の可塑剤自体が移行しやすくなり効果が得られない。一方、分子量が3000を超えると加工性が大幅に低下し、またストレッチフィルム表面の粘着性が強くなってしまい、包装適性が得られなくなってしまう。これらの不都合を防止し、さらに加工性、移行抑制、包装適性および耐寒性を低下させない点において、分子量1500~2500のものがより好適に使用される。特に第二成分の可塑剤を添加しない場合には、第一成分の可塑剤として分子量1000~2000のものを使用するのが好ましい

【0021】次に、本発明に用いられる第二成分としての可塑剤は、A. 炭素数が8以上のアルキル基を有するアジピン酸エステル系可塑剤と、B. 炭素数が10以下のアルキル基を有する2種以上の脂肪族アルコールとア

ジピン酸との混合アジピン酸エステル系可塑剤、の中か ら選ばれる少なくとも1種の可塑剤であって、前記Aの アジピン酸エステル系可塑剤としては、アジピン酸ジオ クチル (n-オクチル、2-エチルヘキシル:炭素数8 のアルキル基を有するアルコールとのエステル)、アジ ピン酸ジイソノニル (同9のもの)、アジピン酸ジデシ ル (同10のもの)、アジピン酸ジイソデシル (同10 のもの)などが挙げられ、また前記Bの混合アジピン酸 エステル系可塑剤としては、C_{8.10}アジペート(炭素数 8、10のアルキル基を有するアルコールの混合エステ ν)、 $C_{7.9}$ アジペート(同7、9のもの)、 $C_{6.8.10}$ アジペート (同6、8、10のもの) などが挙げられ る。第二成分としての可塑剤は、前記AおよびBの中か ら少なくとも1種選択されて添加されるが、Aの可塑剤 として、アジピン酸ジイソノニルが、またBの可塑剤と して、C_{6.8.10}アジペートが、それぞれフィルムの成形 性および包装機械適性を満足するストレッチ性を付与し やすく、またストレスクラッキング防止の面で好適に用 いられる。

【0022】この可塑剤の添加量は、上記ボリ塩化ビニル樹脂100重量部に対し、35重量部以下であることが重要である。この添加量が35重量部を超えると、容器への移行を抑制することができなくなるので好ましくない。また、その移行を抑制するともに、加工性、ストレスクラッキング防止、さらには自動包装機適性を効果的にするために、好ましくは10~30重量部、さらに好ましくは15~28重量部の範囲である。本発明においては、上記した特定のボリ塩化ビニル樹脂を用いているため、この可塑剤の添加量を抑制でき、第一成分のポリエステル系可塑剤を適宜選択して添加することにより、第二成分の可塑剤を添加しなくてもよい。

【0023】本発明の食品包装用ポリ塩化ビニル樹脂組 成物は、上記各成分の他にエポキシ化植物油、Ca-Z n系安定剤、非イオン系界面活性剤、高級脂肪酸、ハイ ドロタルサイト化合物などの添加剤を必要に応じて添加 することができる。エポキシ化植物油としては、エポキ シ化大豆油、エポキシ化アマニ油などが挙げられ、その 添加量は、ポリ塩化ビニル樹脂100重量部に対し、3 ~20重量部の範囲が好ましい。またCa-Zn系安定 剤は、ポリ塩化ビニル樹脂100重量部に対し、添加量 0.5~3.0重量部の範囲が好ましい。非イオン系界 面活性剤としては、グリセリン脂肪酸エステル、ポリグ リセリン脂肪酸エステル、ソルビタン脂肪酸エステル、 ポリオキシエチレン脂肪酸アルコールエーテル、ポリオ キシエチレンソルビタン脂肪酸エステルなどが挙げら れ、これらの中から1種または2種以上選択して使用さ れるが、その添加量は、ポリ塩化ビニル樹脂100重量 部に対し、1~5重量部の範囲が好ましい。高級脂肪酸 は、滑剤として使用されるが、これには炭素数18のス テアリン酸、イソステアリン酸、オレイン酸、炭素数1

6のパルミチン酸、炭素数12のラウリン酸などがあり、炭素数18のイソステアリン酸、オレイン酸が好適に使用される。この添加量は、ポリ塩化ビニル樹脂100重量部に対し、0.1~1.0重量部の範囲で使用するのが好ましい。

【0024】本発明によるポリ塩化ビニル樹脂組成物からなるストレッチフィルムは、押出成形法により製膜され、具体的にはインフレーション法またはTダイ法を用いて、その厚さが5~50μmのフィルムに成形できる。この厚さが5μmより薄いと使用時にフィルムが伸長されたときに破れやすくなり、一方厚さが50μmを超えると包装機械適性が低下するとともに、ストレスクラッキング防止効果が低下する傾向になる。ところで、本発明のポリ塩化ビニル樹脂組成物からなるストレッチフィルムは、いわゆる腰がでるため、伸長時に破れにくくなり、従来のストレッチフィルムと比較すると相対的にその厚さを薄くすることが可能になるという効果もあ

る。

[0025]

【実施例】次に、本発明の実施例および比較例を挙げる。

(実施例1~96、比較例1~8)累積ポロシティの異なるポリ塩化ビニル樹脂に対して、第一成分のポリエステル系可塑剤として、ポリ(ブタンジオール)アジピン酸エステル、第二成分のアジピン酸エステル系可塑剤として、アジピン酸ジイソノニル(DINA)、混合アジピン酸エステル系可塑剤として、C_{6.8.10}アジペート(C_{6.8.10}A)、および表1に示すその他の添加剤を加えて、ポリ塩化ビニル樹脂組成物を作製した。この組成物について、表2~表10の配合割合のものを下記に示す方法で物性および評価を行なったところ、表2~表10に示すような結果が得られた。

[0026]

【表1】

A) 配合処方

材	料	配合部数(PHR)
ポリ塩化ビニル樹脂(エ	重合度1300)	100
第一成分のポリエステル系可 (ポリ (プタンジオール)		別表に示す
第二成分の可塑剤 A) アジピン酸ジイソノニノ	ν(DINA)	別表に示す
B) Cs, s, toアジベート ((Ce. e. 10A)	別表に示す
その他の添加剤 ・エポキシ化大豆油 ・Ca-Zn系安定剤 ・ポリグリセリン脂肪酸エステリ ・ポリオキシエチレンアルギ・イソステアリン酸	ı	12. 0 1. 0 1. 5 1. 0 1. 0 0. 3

【0027】B)ポリ塩化ビニル樹脂の累積ポロシティ 測定方法

装置:水銀圧入式細孔分布測定装置

AUTOSCAN-60 (湯茂アイオニクス社製、商品名)

試料(ポリ塩化ビニル粒子)を0.1g使用し、上記装置を使用して累積ポロシティを測定した。

累積ポロシティ | c c / g | = (20 p s i から100 0 p s i までの測定値) | c c | / サンプル量 | g | なお、水銀の接触角は130°として求めた。

【0028】C)ドライブレンド性 (可塑剤吸収性) の評価

各配合において、ヘンシェルミキサー(75リットル) に攪拌羽根を回転させながら、ポリ塩化ビニル樹脂を入 れた後、直ちに可塑剤などを各配合処方に応じて入れ る。攪拌による発熱によって温度が115℃となった時 点で、混合を中止し、配合物の混合状態を目視および触 感により評価した。評価は、ポリ塩化ビニル樹脂に可塑 剤などを十分に吸収されていて乾いた状態(○)、吸収 が不十分で樹脂が湿った状態(×)のどちらかであるか により行った。

【0029】D) ゲル化時間測定方法

装置: ラボプラストミル (東洋精機製作所社製、商品名)

温度: 160℃

上記条件にて混合した配合物を用いて、上記装置および 条件によりゲル化時間を測定した。混練による最大トル ク発生時間をゲル化時間として測定した。

【0030】E)溶融粘度

装置: 高化式フローテスター CFT-500(島津製作所社製、商品名)

温度: 200℃ 荷重: 50kgf 上記条件で混合した組成物を用いて、上記装置および条件により、溶融粘度を測定した。

: ◎

 $: \times$

【0031】F)成形性

上記した各組成物について、ロール径6インチの二本ロールを用いて185℃で混練試験を行い、ロールから剥離しなくなるまでの時間を測定した。この時間が長い方が成形性が良好と評価した。

【0032】G)蓋の亀裂発生防止および抑制効果の評

実施例および比較例の組成物を使用して、Tダイ法により押出成形し、厚さ11μmのフィルムを製膜した。得られた各フィルムを使用して、PP製のトレーおよびOPS製の蓋からなる容器を各フィルムで包装し、蓋の亀製発生状況を経時的に目視観察した。

各時間後において亀裂発生の無いもの : ◎

亀裂が発生しないが、表面が変色したもの:○

僅かに亀裂が発生したもの : △亀裂が成長し広がったもの : ×亀裂が成長し割れたもの : ××

【0033】H)自動包装機適性

上記容器に内容物500gを入れ、A-18K(フジキカイ社製、商品名)を用いて、包装速度40パック/分の条件で自動包装機適性を評価した。

全く問題なく包装できたもの

フィルムが破れずにほぼ問題なく包装できたもの: ○ やや不十分だが実用上問題なく包装できたもの: △

包装不適のもの

【0034】 【表2】

No.	1	2	3	4	5	6	7	8	9	10	11	12
累積ポロシティ	0. 230	0.230	0. 230	0.230	0. 230	0. 230	0. 230	0. 230	0. 230	0. 230	0. 230	0.230
分 子 量	1500	1500	1500	1500	1500	1500	1500	15D0	1500	1500	1500	1500
添加量PHR	25	25	25	25	25	25	25	35	35	35	35	35
添加量PHR	15	5	10	0	15	10	0	15	5	10	0	15
添加量PHR	0	10	5	15	10	15	0	0	10	5	15	10
吸 収性	0	0	0	0	0	0	0	0	0	0	0	0
分	4.0	3.6	3. 9	3.8	3. 4	3.1	4.2	3. 7	3.3	3.4	3. 1	2.9
×10° poise	3.20	3.50	3.44	3.53	2. 89	2.90	3. 95	3. 03	2.86	2.79	3. 20	2.85
分	50	49	50	49	50	5D	46	55	53	55	54	55
	0	0	0	0	0	0	0	0	0	0	0	0
	0			0	\sim	0	Δ		0	$\overline{\Delta}$		0
	深積ポロシティ 分 子 量 添加量PHR 添加量PHR 添加量PHR 添加量PHR 分	深積ポロシティ 0.230 分 子 量 1500 逐加量PHR 25 逐加量PHR 15 添加量PHR 0 吸 収 性 ○ 分 4.0 ×10* poise 3.20 分 50	深積ポロシティ 0.230 0.230 分 子 量 1500 1500 胚加量PHR 25 25 胚加量PHR 0 10 吸 収 性 〇 〇 分 4.0 3.6 ×10* poise 3.20 3.50 分 50 49	深積ポロシティ 0.230 0.230 0.230 分 子 量 1500 1500 1500 1500 添加量PHR 25 25 25 25 25	深稿ポロシティ 0.230 0.230 0.230 0.230 分 子 量 1500 1500 1500 1500 1500 添加量PHR 25 25 25 25 25 添加量PHR 0 10 5 15 吸 収 性 ○ ○ ○ ○ ○ ○ ○ 分 49 50 49	深積ポロシティ 0.230 0.230 0.230 0.230 0.230 0.230 分 子 量 1500 1500 1500 1500 1500 1500 1500 15	深積ポロシティ 0.230 0.230 0.230 0.230 0.230 0.230 0.230 分 子 量 1500 1500 1500 1500 1500 1500 1500 15	深積ポロシティ 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 の	深積ポロシティ 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 分 子 量 1500 1500 1500 1500 1500 1500 1500 15	深積ポロシティ 0.230 0.	深積ポロシティ 0.230 0.	深積ポロシティ 0.230 0.

【0035】 【表3】

実 施 🖁	N No.	13	14	15	16	17	18	19	20	21	22	23	24
ポリ塩化ビニル樹脂	累積ポロシチィ	0. 230	0. 230	0. 230	0. 230	0. 230	0. 230	0. 230	0. 230	0.230	0. 230	0. 230	0. 230
第一成分の可塑剤	分 子 量	1500	1500	2000	2000	2009	2000	2000	2000	2000	2000	2000	2000
第一成分の可型剤	添加量PHR	35	35	25	25	25	25	25	25	25	35	35	35
第二成分の可塑剤A)	添加量PHR	10	0	15	5	10	0	15	10	0	15	5	10
第二成分の可塑剤B)	添加量PHR	15	0	0	10	5	15	10	15	0	0	10	5
ドライブレンド	吸 収 性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	9	2.7	4.0	4.4	4.1	4.2	4.0	3. 6	3. 1	4.8	4.3	3.8	3.7
溶 融 粘 度	×10 ⁸ poise	2.92	3. 47	3.48	3, 65	3. 69	3. 80	2.93	2. 96	4.01	3.11	3.41	3. 25
成 形 性	Э	55	50	58	57	58	56	58	58	55	63	61	62
蓋の亀裂発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装機適性評価		0	0	0	0	0	0	0	0	Δ	0	Ó	0

[0036]

実施 化	A) No.	25	26	27	28	29	30	31	32	33	34	35	36
ポリ塩化ビニル樹脂	累積ポロシティ	0.230	0. 230	0. 230	0. 230	0. 290	0. 290	0. 290	0. 290	0.290	0. 290	0. 290	0. 290
第一成分の可塑剤	分 子 量	2000	2000	2000	2000	1500	1500	1500	1500	1500	1500	1500	1500
第一成分の可型別	添加量PHR	35	35	35	35	25	25	25	25	25	25	25	35
第二成分の可塑剤A)	添加量PHR	0	15	10	10	15	5	10	0	15	10	0	15
第二成分の可塑剤B)	添加量PHR	15	10	15	0	0	10	5	15	10	15	0	0
ドライブレンド	吸 収 性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	Я	3.4	3. 2	2.9	4.5	4.3	3.8	4.1	3. 0	3.2	3.0	4.4	3.0
海 融 粘 度	×10° poise	3.50	2. 50	2. 53	3.91	3. OB	3.40	3. 25	3. 38	2.97	3.08	3.84	2.90
成 形性 (ローリングテスト)	9	62	65	65	60	58	57	58	59	56	58	56	67
整の亀製発生状況		0	0	0	0	0	0	٥	0	0	0	0	0
包装機適性評価		0	0	0	0	0	0	0	0	0	0	0	0

[0037]

【表5】

実施 後	No.	37	38	39	40	41	42	43	44	45	46	47	48
ポリ塩化ビニル樹脂	累徴ポロシティ	0.290	0.290	0. 290	0. 290	0. 290	0. 290	0. 290	0. 290	0.290	0. 290	0. 290	0. 290
第一成分の可塑剤	分子 量	1500	1500	1500	1500	1500	1500	2000	2000	2000	2000	2000	2000
衆 成力の可型剂	添加量PHR	35	35	35	3 5	35	35	25	25	25	25	26	25
第二成分の可塑剤A)	添加量PHR	5	10	0	15	10	0	15	Б	10	0	15	10
第二成分の可塑剤 日)	添加量PHR	10	5	15	10	15	0	0	10	5	15	10	15
ドライブレンド	吸収性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	Я	2.7	2. 9	2.8	2.5	2.2	3.6	4.3	3. 8	4.0	3.6	3.4	3. 1
溶融 粘度	×10° poise	2.81	2. 76	2.98	2. 78	2.88	3.10	3. 44	3. 33	3.50	3.58	3.10	3. 20
成 形性	Я	66	68	67	65	65	64	69	70	70	70	69	71
蓋の亀製発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装機適性評価		0	0	0	0	0	0	0	0	0	0	0	0

[0038]

【表6】

実 施 🛭	利 No.	49	50	51	52	53	54	55	56	57	58	59	60
ポリ塩化ビニル樹脂	累積ポロシティ	0. 290	0. 290	0. 290	0.290	0. 290	0. 290	0.290	0. 290	0.330	0. 330	0. 330	0.330
第一成分の可塑剤	分 子 量	2000	2000	2000	2000	2000	2000	2008	2000	1500	1500	1600	1500
赤 成刀の甲型剤	添加量PHR	25	35	35	35	35	35	35	35	25	25	25	25
第二成分の可塑剤A)	添加量PHR	0	16	5	10	0	15	10	0	15	5	10	0
第二成分の可塑剤B)	添加量PHR	0	0	10	5	15	10	15	D	0	10	5	15
ドライブレンド	吸 収 性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	9	4.4	3.8	3. 2	3.4	3. 0	2.8	2.6	4.0	3.5	2.8	3.1	2.6
海 融 粘度	X10° poise	3.80	3.06	3. 19	3.10	3. 30	2. 43	2.60	3.80	2.99	3. 32	3. 20	3. 18
成 形 性 (ローリングテスト)	₽	67	73	72	73	72	74	75	71	74	73	74	72
蹇の亀製発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装機適性評価		Δ	0	0	0	0	0	0	0	0	0	0	0

[0039]

実施 8	ij No.	61	62	63	64	65	66	67	68	69	70	71	72
ポリ塩化ビニル樹脂	累積ポロシティ	0.330	0.330	0. 330	0. 330	0. 330	0. 330	0. 330	D. 330	0.330	0. 330	0. 330	D. 330
m	分 子 量	1500	1500	1500	1500	1500	1500	1200	1600	1500	1600	2000	2000
第一成分の可塑剤	添加量PHR	26	25	25	96	35	35	35	35	3 5	35	25	25
第二成分の可塑剤A)	添加量PHR	15	10	0	15	5	10	0	15	10	0	15	5
第二成分の可塑剤B)	添加量PHR	10	15	0	0	10	5	15	10	15	0	a	10
ドライブレンド	吸収性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	9	2.4	2.2	3. 4	3.0	2. Z	2.6	2.0	2.1	1.8	3.1	3.9	3. 4
溶 融 粘 度	×10° poise	2.96	3.10	4.80	2.76	2. 81	2.79	2. 88	2.48	2.65	3.08	2.9 9	3.10
成 形 性 (ローリングテスト)	Я	74	75	71	77	76	77	75	78	79	74	72	71
盤の亀裂発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装機適性評価		0	0	Δ	0	0	0	0	0	0	0	0	0

[0040]

【表8】

実施 4	No.	73	74	75	76	77	78	79	80	81	82	83	84
ポリ塩化ビニル樹脂	累積ポロシティ	0.330	0.330	0. 330	0. 330	0.330	0. 330	0. 330	0. 330	0.330	0.330	0.330	0.330
MY -#-0	分 子 量	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
第一成分の可塑剤	添加量PHR	25	25	25	25	25	35	35	35	35	35	35	35
第二成分の可塑剤A)	添加量PHR	10	0	15	10	0	15	5	10	0	15	10	0
第二成分の可塑剤B)	添加量PHR	5	15	10	15	0	0	10	5	15	10	15	0
ドライブレンド	吸 収 性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	9	3. 6	3.3	2.8	2.7	3.9	2.7	2. 5	2. 4	2.3	2. 2	1.9	2.9
潜融 粘度	×10° poise	2.94	3. 10	2.94	3.05	3.40	2.60	2. 80	2. 67	2.84	2.41	2. 53	3.18
成 形性 (ローリングテスト)	分	72	73	74	74	70	74	75	74	73	77	78	72
羞の亀裂発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装機適性評価		0	0	0	0	Δ	0	0	0	0	0	0	0

[0041]

【表9】

実施 化	No.	85	86	87	88	89	90	91	92	93	94	95	96
ポリ塩化ビニル樹脂	累積ポロシティ	0.510	0. 510	0.510	0. 510	0.330	0. 330	0.330	0. 330	0.330	0.330	0. 330	0. 330
笠 ぱんの可簡約	分 子 量	1500	1500	2000	2000	1500	1500	2000	2000	1100	1100	2800	2800
第一成分の可塑剤	添加量PHR	25	26	25	25	10	48	10	48	25	35	25	35
第二成分の可塑剤A)	添加量PHR	10	15	10	15	15	15	15	15	15	15	15	15
第二成分の可塑剤B)	抵加量PHR	5	10	5	10	10	10	10	10	10	10	10	10
ドライブレンド	吸収性	0	0	0	0	0	0	0	0	0	0	0	0
ゲル化時間	€	3.7	3. 4	3. 9	3.6	4.03	3. 1	4.2	3.9	2.78	2.68	3.7	3.4
溶 融 粘 度	×10 ⁴ poise	3. 15	2. 87	3. 30	2. 93	3.50	3. 10	3.60	3. 35	2,90	2.81	3. 49	3.51
成 形 性 (ローリングテスト)	9	81	83	79	80	68	78	69	81	80	81	63	67
整の亀裂発生状況		0	0	0	0	0	0	0	0	0	0	0	0
包装横適性評価		0	0	0	٥	0	0	0	0	0	0	0	0

[0042]

【表10】

比 較 (No.	1	2	3	4	5	6	7	8
ポリ塩化ビニル樹脂	累積ポロシティ	0. 290	0. 290	0. 290	0. 290	0.290	0. 290	0.290	0.200
第一成分の可塑剤	分 子 量	1500	1500	1500	1500	1500	900	3200	1500
第一成分の可型則	添加量PHR	35	35	35	3	55	35	35	35
第二成分の可塑剤A)	添加量PHR	36	0	18	15	15	15	15	11
第二成分の可塑剤 B)	添加量PHR	0	36	18	18	18	10	10	10
ドライブレンド	吸 収 性	0	0	0	0	0	0	0	×
ゲル化時間	ਜ਼ੇ	2.9	1.7	1.9	4.3	1.8	5.8	7.2	6.4
溶 融 粘 度	×10° poise	2. 50	2.85	2. 70	3. 03	2.78	2. 38	4.30	4. 03
成 形 性 (ローリングテスト)	Я	73	70	78	58	77	82	70	59
蓋の亀裂発生状況	,	×	×	×	××	×	××	×	××
包装機適性評価		Δ	Δ	×	×	×	Δ	Δ	×

[0043]

【発明の効果】本発明によれば、包装容器に対する可塑 剤の移行を防止・抑制し、特に弁当容器蓋のストレスク ラッキングの発生を防止でき、しかもポリエステル系可 塑剤を使用しても成形加工性が良好で、かつ押出成形により得られるストレッチフィルムの自動包装機適性の優れた実用上望ましい食品包装用ポリ塩化ビニル樹脂組成物を提供することができる。