Fluid Simulation for Computer Animation

Greg Turk

Why Simulate Fluids?

- Feature film special effects
- Computer games
- Medicine (e.g. blood flow in heart)
- Because it's fun

Fluid Simulation

- Called Computational Fluid Dynamics (CFD)
- Many approaches from math and engineering
- Graphics favors finite differences
- Jos Stam introduced fast and stable methods to graphics [Stam 1999]

Navier-Stokes Equations

 $\nabla \cdot \mathbf{u} = 0$ Incompressibility

Navier-Stokes Equations

 $\nabla \cdot \mathbf{u} = 0$ Incompressibility

Finite Differences Grids

- All values live on regular grids
- Need scalar and vector fields
- Scalar fields: amount of smoke or dye
- Vector fields: fluid velocity
- Subtract adjacent quantities to approximate derivatives

Scalar Field (Smoke, Dye)

1.2	3.7	5.1	• • •	
	c _{ij}			

Diffusion

Diffusion

$$c_{ij}^{\text{new}} = c_{ij} + k \Delta t (c_{i-1j} + c_{i+1j} + c_{ij-1} + c_{ij+1} - 4c_{ij})$$

Diffusion = Blurring

Some Diffusion

Original

More Diffusion

Vector Fields (Fluid Velocity)

Vector Field Diffusion

$$\mathbf{u}_t = \mathbf{k} \nabla^2 \mathbf{u}$$
viscosity

Two separate diffusions:

$$\mathbf{u}^{\mathbf{x}}_{t} = \mathbf{k} \nabla^{2} \mathbf{u}^{\mathbf{x}}$$
$$\mathbf{u}^{\mathbf{y}}_{t} = \mathbf{k} \nabla^{2} \mathbf{u}^{\mathbf{y}}$$

... blur the x-velocity and the y-velocity

Effect of Viscosity

Low Medium High Very High

• Each one is ten times higher viscosity than the last

"Melting and Flowing"
Mark Carlson, Peter J. Mucha, Greg Turk
Symposium on Computer Animation 2002

Low Viscosity

High Viscosity

Variable Viscosity

- Viscosity can vary based on position
- Viscosity field k can change with temperature
- Need implicit solver for high viscosity

Wax

Navier-Stokes Equations

 $\nabla \cdot \mathbf{u} = 0$ Incompressibility

Advection = Pushing Stuff

Advection

Advection

0.3-		0.3	

Scalar Field Advection

Vector Field Advection

$$\mathbf{u}_t = -(\mathbf{u} \cdot \nabla)\mathbf{u}$$

Two separate advections:

$$\mathbf{u}^{\mathbf{X}}_{t} = -(\mathbf{u} \cdot \nabla)\mathbf{u}^{\mathbf{X}}$$

$$\mathbf{u}^{\mathbf{y}}_{t} = -(\mathbf{u} \cdot \nabla)\mathbf{u}^{\mathbf{y}}$$

... push around x-velocity and y-velocity

Advection

- Easy to code
- Method stable even at large time steps
- Important for water and smoke

Navier-Stokes Equations

$$\nabla \cdot \mathbf{u} = 0$$
 Incompressibility

Divergence

Low divergence

Zero divergence

Enforcing Incompressibility

- First do velocity diffusion and advection
- Find "closest" vector field that is divergence-free
 - Need to calculate divergence
 - Need to find and use pressure

Measuring Divergence

$$\nabla \cdot \mathbf{u}_{ij} = (u^{x}_{i+1j} - u^{x}_{i-1j}) + (u^{y}_{ij+1} - u^{y}_{ij-1})$$

Pressure Term

$$\mathbf{u}^{new} = \mathbf{u} - \nabla p$$

Take divergence of both sides...

$$\nabla \cdot \mathbf{u}^{new} = \nabla \cdot \mathbf{u} - \nabla \cdot \nabla p$$
zero

$$\nabla \cdot \mathbf{u} = \nabla^2 p$$

Pressure Term

$$\nabla \cdot \mathbf{u} = \nabla^2 p$$

$$known \quad unknown \qquad 1$$

$$p^{\text{new}} = p + \varepsilon(\nabla \cdot \mathbf{u} - \nabla^2 p) \qquad 1 \qquad -4 \qquad 1$$

$$\text{Let } d_{ij} = \nabla \cdot \mathbf{u}_{ij} \qquad 1$$

$$p^{\text{new}}_{ij} = p_{ij} + \varepsilon (d_{ij} - (p_{i-1j} + p_{i+1j} + p_{ij-1} + p_{ij+1} - 4p_{ij}))$$

Pressure Term

$$\mathbf{u}^{new} = \mathbf{u} - \nabla p$$

...and velocity is now divergence-free

Found "nearest" divergence-free vector field to original.

Fluid Simulator

- 1) Diffuse velocity
- 2) Advect velocity
- 3) Add body forces (e.g. gravity)
- 4) Pressure projection
- 5) Diffuse dye/smoke
- 6) Advect dye/smoke

"Real-Time Fluid Dynamics for Games" Jos Stam, March 2003 (CDROM link is to source code)

www.dgp.toronto.edu/people/stam/reality/Research/pubs.html

Rigid Objects

- Want rigid objects in fluid
- Use approach similar to pressure projection

"Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid"
Mark Carlson, Peter J. Mucha and Greg Turk
Siggraph 2004

Rigid Fluid Method

- 1) Solve Navier-Stokes on entire grid, treating solids *exactly* as if they were fluid
- 2) Calculate forces from collisions and relative density
- 3) Enforce rigid motion for cells inside rigid bodies

Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid

Mark Carlson Peter J. Mucha Greg Turk

Georgia Institute of Technology

Sound FX by Andrew Lackey, M.P.S.E.

Small-scale liquid-solid Interactions

What makes large water and small water behave differently?

Surface Tension (water: 72 dynes/cm at 25° C)

Viscosity (water: 1.002 x 10⁻³ N·s/m² at 20° C)

Lake (>1 meter)

Water drops (millimeters)

Surface Tension

Normal (always pointing outward)Surface Tension Force

Water/Surface Contact

hydrophillic

hydrophobic

Water Drops on Surfaces

Huamin Wang, Peter J. Mucha, Greg Turk Georgia Institute of Technology

Physically-Inspired Topology Changes for Thin Fluid Features

submission ID 0304

A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation

Yitong Deng

Mengdi Wang

Xiangxin Kong

Shiying Xiong

Zangyueyang Xian

Bo Zhu

Dartmouth College

End