

# Turtlebot 3 Connection



### What are we going to use?









### In Simulation

### Run Docker Container

Access a new folder

cd <Folder name>

Check the files within a folder

Is

#### **Command window comands**

| 1 | Access Docker folder                          | cd ros-2023-thd/                               |
|---|-----------------------------------------------|------------------------------------------------|
| 2 | to access the docker<br>environment           | home/tcc/ros2_turtlebot3\$ bash run_docker.sh  |
| 3 | to access a new tab in the docker environment | home/tcc/ros2_turtlebot3\$ bash into_docker.sh |



### Run turtlebot3 Gazebo simulation

Access a new folder

cd <Folder name>

Check the files within a folder

Is

### Each commands should be run in a new terminal or new tab of the current terminal

to launch Simulation World (inside Docker)

/ws\_slam# ros2 launch turtlebot3\_gazebo
turtlebot3\_world.launch.py

/ws\_slam# ros2 launch turtlebot3\_cartographer
cartographer.launch.py use\_sim\_time:=True

to launch a control Node
(inside Docker)

/ws\_slam# ros2 run turtlebot3\_teleop
teleop\_keyboard



Windows after launching Gazebo and SLAM nodes



6

### Control Turtlebot to create the map of World environment



## Control Your Turtlebot3 Moving around

w asd x

w/x : increase/decrease linear velocity a/d : increase/decrease angular velocity

space key, s : force stop

CTRL-C to quit



Until the entire map is created

### Save the map

Open a new terminal

ros2 run nav2\_map\_server map\_saver\_cli -f /ws\_slam/map

### **Enjoy navigation**

**Close the SLAM node** 

CTRL + C

**Run Navigation node** 

ros2 launch turtlebot3\_navigation2 navigation2.launch.py use\_sim\_time:=True map:=/ws\_slam/map.yaml

### **Estimate Initial Pose**

The goal is to tell the Navigation node where the current pose of the robot on the map

- 1. Click the **2D Pose Estimate** button in the RViz2 menu
- 2.Click on the map where the actual robot is located and drag the large green arrow toward the direction where the robot is facing.



### **Estimate Initial Pose**

The goal is to tell the Navigation node where the current pose of the robot on the map

3. Repeat step 1 and 2 until the LDS sensor data is overlayed on the saved map.



### **Set Navigation Goal**

The goal is to tell the Navigation node where the destination is

- 1. Click the Navigation 2 Goal button in the RViz2 menu.
- 2.Click on the map to set the destination of the robot and drag the green arrow toward the direction where the robot will be facing.



# Simulation ends

### In real Arena







Connect PC to Turtlebot via Ethernet cable Configure Turtlebot to connect to WLAN











Connect your PC to "Access Point" and connect Turtlebot to the common "Access Point"



Check the Turtlebot's IP Address using the monitor (Slide 5)

turtlebot's\_IP\_Address

# Network Configuration Get into Turtlebot via Ethernet cable

The goal is to configure Turtlebot to connect to WLAN

**Before** turning ON the Turtlebot

Connect

ETHERNET cable: Turtlebot to Laptop

Turn ON Turtlebot Turn OFF WLAN on Laptop





# Network Configuration Get into Turtlebot via Ethernet cable

- 1. Click on the network icon in your system tray (on the upper top of the screen).
- 2. Select **Settings** → **Network**.
- 3. Choose your **Network** and click the **\$\pi\$** gear/settings button at the **Wired** section.
- 4. Go to the IPv4 tab.
  - Change the **Method** from Automatic (DHCP) to **Manual**.
  - Under **Addresses**, click Add and enter:
    - Address: 192.168.0.5
    - Netmask: 255.255.255.0
    - Gateway: 192.168.0.1
- 5. Click Apply, then disconnect and reconnect the wired connection.





# Network Configuration Get into Turtlebot via Ethernet cable

The goal is to configure Turtlebot to connect to WLAN



**Before** turning ON the Turtlebot

Connect

**ETHERNET** cable: Turtlebot to Laptop





Turn ON Turtlebot
Turn OFF WLAN on Laptop

verify IP discovery

\$ ping 192.168.0.12

**Until receive** 

PING 192.168.0.12 (192.168.0.12) 56(84) bytes of data. 64 bytes from 192.168.0.12: icmp\_seq=1 ttl=117 time=5.92 ms 64 bytes from 192.168.0.12: icmp\_seq=2 ttl=117 time=7.07 ms

••

get into Turtlebot via SSH

\$ ssh ubuntu@192.168.0.12

**Login User** 

Username: ubuntu Password: turtlebot







Connect PC to Turtlebot via Ethernet cable Configure Turtlebot to connect to WLAN

**WLAN: Tutututu** 

**Password: 12345678Cham** 

open WLAN configuration via netplan Yaml file

ubuntu@192.168.0.12\$ sudo nano /etc/netplan/

press Tab

after modification save files and reboot

press Ctrl + S press Ctrl + X

ubuntu@192.168.0.12\$ sudo reboot

After rebooting, Get into Turtlebot one more time Check Turtlebot WLAN IP Address



**ubuntu@192.168.0.12\$** ip a

2: wlan0: <BROADCAST, MULTICAST, UP, LOWER\_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000 link/ether AA:BB:CC:DD:EE:FF brd ff:ff:ff:ff:ff
inet 192.168.XXX.YYY/24 brd 192.168.XXX.255 scope global dynamic noprefixroute wlan0 valid\_lft 53412sec preferred\_lft 53412sec

Turtlebot3\_IP\_Address: 192.168.XXX.YYY

Connect LAPTOP to the same WLAN







**WLAN: Tutututu** 

Password: 12345678Cham

### DOMAIN ID in ROS2

ROS2 communication between Nodes requires them to be in the same **DOMAIN ID**.

**Nodes** could be either Robots or Computational Unit

The **DOMAIN ID** is used to compute the UDP ports that will be used for discovery and communication



# Get into Turtlebot via WLAN using Turtlebot3 IP Address



verify IP discovery

**\$** ping 192.168.XXX.YYY

#### **Until receive**

PING 192.168.0.12 (192.168.0.12) 56(84) bytes of data. 64 bytes from 192.168.0.12: icmp\_seq=1 ttl=117 time=5.92 ms 64 bytes from 192.168.0.12: icmp\_seq=2 ttl=117 time=7.07 ms

• •

get into Turtlebot via SSH

\$ ssh ubuntu@192.168.XXX.YYY

#### **Login User**

Username: ubuntu Password: turtlebot

### Define ROS Domain ID in Turtlebot

\$ nano ~/.bashrc

A Note file will open

The following lines must be added for setting the communication

\$ source ~/.bashrc

After Saving and Closing, the file needs to be sourced

NOTE: Should be different from your colleagues

### Define IP Addresses within Docker

\$ gedit ~/.bashrc

A Note file will open

The following lines must be added for the set communication

\$ export ROS\_DOMAIN\_ID=<Your\_desired\_ID>

\$ source ~/.bashrc

After Saving and Closing, the file needs to be sourced

NOTE: Should be different from your colleagues

### **Bringup Turtlebot**

\$ ssh ubuntu@Turtlebot3\_IP\_Address Example: ssh ubuntu@198.168.122.18

The command window will show the next message

password: turtlebot

Then

ros2 launch turtlebot3\_bringup robot.launch.py

### **SLAM** and Navigation

Follow the same procedure as in Simulation from Page 4

## DEGENDORF INSTITUTE OF TECHNOLOGY