Assume that we have an absorbing Markov chain with

- absorbing states S_1, \ldots, S_M
- non-absorbing states S_{M+1}, \ldots, S_N
- the transition matrix

$$P = \begin{bmatrix} I & S \\ 0 & Q \end{bmatrix}$$
abs.
non-abs.

Questions:

- 1) If the chain starts in an non-absorbing state S_i , how many steps it will take on the average before it transitions to an absorbing state?
- 2) If the chain starts in an non-absorbing state S_i , how many times, on the average, it will visit a non-absorbing state S_i before being absorbed?

Question: What does "on the average" mean?

Random variables and expected values

Example. In a certain game a player can:

- loose \$2 with the probability 0.5
- win \$2 with the probability 0.3
- win \$10 with the probability 0.2

How much will the player win per game on the average?

Answer:

$$(-2) \cdot 0.5 + 2 \cdot 0.3 + 10 \cdot 0.2 = -1 + 0.6 + 2 = 1.6$$

the expected value of minnings in the game

Definition

A discrete random variable X consists of

- A set of values (outcomes) $v_i \in \mathbb{R}$ for $i = 1, 2, \ldots$
- Probabilities p_i that X assumes each of the values v_i :

$$P(X = v_i) = p_i$$

We have $0 \le p_i \le 1$ and $\sum p_i = 1$.

Example:

Values of X:
$$-2, 2, 10$$

 $P(X=-2) = 0.5$
 $P(X=2) = 0.3$
 $P(X=10) = 0.2$

Definition

If X is a discrete random variable with values $v_i \in \mathbb{R}$ then the *expected* value of X is the number

$$E[X] = \sum_{i} v_i P(X = v_i)$$

For the random variable from the previous example:

$$E[X] = (-2) \cdot P(X = -2) + 2 \cdot P(X = 2) + 10 \cdot P(X = 10)$$

= $-2 \cdot 0.5 + 2 \cdot 0.3 + 10 \cdot 0.2 = 1.6$

Note:

If
$$X_1$$
 - random variables with values $V_1, ..., V_N$
 X_2 - random variables with values $W_1, ..., W_M$
then $X_1 + X_2$ - random variable with values $V_1 + W_1$
for all i,j .

Definition

If X_1,\ldots,X_m are discrete random variables with values in $\mathbb R$ then

$$E[X_1 + \ldots + X_m] = E[X_1] + \ldots + E[X_m]$$

Back to absorbing Markov chains

Recall: We have an absorbing Markov chain with

- absorbing states S_1, \ldots, S_M
- ullet non-absorbing states S_{M+1},\ldots,S_N
- the transition matrix

$$P = \begin{bmatrix} I & S \\ 0 & Q \end{bmatrix}$$
abs. non-abs.

Question. If the chain starts in an non-absorbing state S_i , how many times, on the average, it will visit a non-absorbing state S_i before being absorbed?

Define: X = the random variable for the number of times that the Markov chain starting at Si will visit Sj before being absorbed Values of $X : O_{1} ...$ We ment: $E[X] = O \cdot P(X=0) + 1 \cdot P(X=1) + 2 \cdot P(X=2) + ...$ Problem: Difficult to compute P(X=n).

Simplification.

$$\mathcal{P}^{n} = \left\{ \begin{array}{c|c} I & * \\ \hline O & Q^{n} \end{array} \right\} - n - step transition$$
matrix

$$Q^{n} : [q_{ij}^{(n)}] \quad (Note: Q^{0} = I)$$

$$E[X_{n}] = 1 \cdot q_{ji}^{(n)} + O \cdot (1 - q_{ji}^{(n)}) = q_{ji}^{(n)}$$

This gives:

$$E[X] = E[X_0] + E[X_1] + E[X_2] + \dots$$
the ji - th entry of the matrix

Example. The gambling model (with $p \neq 0, 1$):

the number of steps
it will take on the average
to get an absorbing state
from each of non-absorbing
154
States.

Example. Toy collecting:

Question. How many steps, on the average it will take to collect all toys?

Transit time

Example. Consider a random walk on the following directed network:

How many steps will it take on the average to get from node 2 to node 3?

Solution:

1) Make the node 3 absorbing:

2) Use the previous method to compute how many steps it will take to get from state 2 to an absorbing state.