Solution Partie Logique: 19/06/2017: 20h55

Exercice

 $\overline{\mathbf{1}}$. Soient α, β et γ trois formules telles que:

- $\alpha: \forall x \forall y (P(x,y) \to Q(x) \land R(y))$
- $\beta: \forall x R(x) \to \exists x \neg Q(x)$
- $\gamma: \exists x \exists y \neg P(x, y)$
 - 1. Montrer en utilisant la méthode de résolution que $\alpha, \beta \vDash \gamma$.
 - 2. Retrouver le résultat à l'aide d'un arbre sémantique.
 - 1. $\alpha, \beta \vDash \gamma$ ssi $\{\alpha, \beta, \neg \gamma\}$ est inconsistant si et seulement si de l'ensemble de clauses issu de Γ on peut déduire la clause vide.

Etape 1: On renomme les variables: 0.25 point

$$\alpha: \forall x \forall y (P(x,y) \to Q(x) \land R(y))$$
$$\beta: \forall u R(u) \to \exists v \neg Q(v)$$
$$\neg \gamma: \forall w \forall z P(w,z)$$

Etape 2: Mise sous forme prenexe de α, β et $\neg \gamma$: 0.25 point

$$\alpha_p : \forall x \forall y (P(x, y) \to Q(x) \land R(y))$$
$$\beta_p : \exists u \exists v (R(u) \to \neg Q(v))$$
$$(\neg \gamma)_p : \forall w \forall z P(w, z)$$

Etape 3: Mise sous forme de Skolem: 0.5 point

$$\alpha_{ps} : \forall x \forall y (P(x, y) \to Q(x) \land R(y))$$

$$\beta_{ps} : (R(a) \to \neg Q(b))$$

$$(\neg \gamma)_{ps} : \forall w \forall z P(w, z)$$

Etape 4: Mise sous forme clausale: 0.5 point

$$S = \{ \neg P(x, y) \lor Q(x), \neg P(u, v) \lor R(v), \neg R(a) \lor \neg Q(b), P(w, z) \}$$

Etape 5:Déduction de la clause vide à partir de S: 1.25 point

 $S \vdash \Box$ donc par le théorème de correction $\Gamma = \{\alpha, \beta, \neg \gamma\}$ inconsistant donc $\alpha, \beta \vDash \gamma$.

Etape 5:Déduction de la clause vide à partir de S: 1.25 point Deuxième solution.

2. **Arbre sémantique** 1.25 pts

