In the Claims

1

2

3

4 5

6

7.

8

9

10 11

12

13 14

15

1

2

3

4

5

6

7

8

9

10 11

12

13

1415

16

17

Amend claims 32, 34, 36-42, 44, 46, 48, 49, 51, 53 and 55-90 where indicated
--

32. (Allowed) A method of making a magnetic read head, which includes a spin valve sensor, comprising the steps of:

a making of the spin valve sensor comprising the steps of:

forming a free layer structure that has a magnetic moment and an easy axis;

forming a ferromagnetic pinned layer structure that has a magnetic moment;

forming a pinning layer exchange coupled to the pinned layer structure for pinning the magnetic moment of the pinned layer structure;

forming a nonmagnetic conductive spacer layer between the free layer structure and the pinned layer structure;

forming the free layer structure by obliquely ion beam sputtering at least one cobalt or cobalt based layer in the presence of a magnetic field oriented in a direction of said easy axis; and

the oblique ion beam sputtering being at angles $\alpha = 40^{\circ}$ and $\beta = 10^{\circ}$ - 30° , wherein angles α and β form first and second planes respectively which are orthogonal with respect to one another.

J 34. (Allowed) A method of making a magnetic read head, which includes a spin valve sensor, comprising the steps of:

a making of the spin valve sensor comprising the steps of:

forming a free layer structure that has a magnetic moment and an easy axis;

forming a ferromagnetic pinned layer structure that has a magnetic moment;

forming a pinning layer exchange coupled to the pinned layer structure for pinning the magnetic moment of the pinned layer structure;

forming a nonmagnetic conductive spacer layer between the free layer structure and the pinned layer structure;

forming the free layer structure by obliquely ion beam sputtering at least one cobalt or cobalt based layer in the presence of a magnetic field oriented in a direction of said easy axis;

the pinning layer structure being formed by forming a nickel oxide (NiO) layer and an alpha iron oxide (α FeO) layer wherein each of the nickel oxide (NiO) layer and the alpha iron oxide (α FeO) layer has been formed by oblique ion beam sputtering at angles α and β wherein angles α and β form first and second planes respectively which are orthogonal with respect to one another.

C:\998141.AM3 2

1	36. (Allowed) A method as claimed in claim 32 further comprising the steps of
2.	forming the free layer structure with a nickel iron based layer that interfaces the cobalt or
3	cobalt based layer; and
4	said forming of the cobalt or cobalt based layer so that it interfaces the spacer layer
1	37. (Allowed) A method as claimed in claim 36 further comprising the step of:
2	after said oblique ion beam sputtering in the presence of said field oriented in said
3	direction of the easy axis, further forming said at least one cobalt or cobalt based layer by
4	annealing said at least one cobalt or cobalt based layer.
1	38. (Allowed) A method as claimed in claim 36 wherein said cobalt based layer
2	is formed of cobalt iron (CoFe).
1	39. (Allowed) A method as claimed in claim 38 wherein said annealing is at a
2	temperature from 150°C to 270°C.
1	40. (Allowed) A method of making a magnetic read head, which includes a spin
2	valve sensor, comprising the steps of:
3	forming the spin valve sensor as follows:
4	forming a ferromagnetic pinned layer structure that has a magnetic moment;
5	forming a pinning layer exchange coupled to the pinned layer structure for pinning
6	the magnetic moment of the pinned layer structure;
7	forming a nonmagnetic conductive spacer layer between the free layer structure and
8	the pinned layer structure; and
9	forming the pinning layer structure of a nickel oxide (NiO) layer and an alpha iron
10	oxide (α FeO) layer wherein at least one of the nickel oxide (NiO) layer and the alpha iron
11	oxide (α FeO) layer has been obliquely ion beam sputtered at angles α and β wherein angles
12	α and β form first and second planes respectively which are orthogonal with respect to one
13	another.
-1	41 (Allowed) A model of C 11
1	41. (Allowed) A method of making a magnetic read head, which includes a spin
2	valve sensor, comprising:
3	a making of the spin valve sensor including the steps of:
4	forming a free layer structure that has a magnetic moment and an easy axis;
5	forming a ferromagnetic pinned layer structure that has a magnetic moment;

3

C:\998141.AM3

6	forming a pinning layer exchange coupled to the pinned layer structure for pinning
7	the magnetic moment of the pinned layer structure;
8	forming a nonmagnetic conductive spacer layer between the free layer structure and
9	the pinned layer structure;
10	a making the free layer structure including the steps of:
l 1	obliquely ion beam sputtering first and second cobalt or cobalt based layers
12	and a nickel iron based layer in the presence of a magnetic field oriented in a
13	direction of said easy axis with the first and second cobalt or cobalt based layers
14	interfacing the spacer layer and a cap layer respectively and the nickel iron based
15	layer being located between and interfacing the first and second cobalt or cobal
16	based layers;
17	the oblique ion beam sputtering being at angles $\alpha = 40^{\circ}$ and $\beta = 10^{\circ}$ - 30°
18	wherein angles α and β form first and second planes respectively which are
19	orthogonal with respect to one another; and
20	after said oblique ion beam sputtering in the presence of said field oriented
21	in said direction on the easy axis, annealing each of the cobalt or cobalt based
22	layers and the nickel iron based layer.
•	
1	42. (Allowed) A method as claimed in claim 41 including:
2	forming nonmagnetic nonconductive first and second read gap layers;
3	forming the spin valve sensor between the first and second read gap layers;
4	forming ferromagnetic first and second shield layers; and
5	forming the first and second read gap layers between the first and second shield layers.
1	44. (Allowed) A method as claimed in claim 42 wherein a forming of the pinned
2	layer structure comprises the steps of:
3	forming ferromagnetic first and second antiparallel (AP) pinned layers with the first AF
4	layer interfacing the pinning layer; and
5	forming an antiparallel (AP) coupling layer between the first and second AP layers.
1	46. (Allowed) A method as claimed in claim 44 wherein the step of oblique ior
2	beam sputtering includes the steps of:
3	providing a sputtering chamber,
4	providing a nonmagnetic conductive target in the sputtering chamber that has a nomina
5	planar surface;

. 6	positioning a substrate in the chamber that has a nominal planar surface at angles α and β
7	to the nominal planar surface of the target;
8	providing an ion beam gun in the chamber for bombarding the target with ions which
9	causes ions of the material to be sputtered from the target and deposited on the substrate to form
10	said cobalt or cobalt based layers; and
. 11	angle $\alpha = 40^{\circ}$ and angle $\beta = 10^{\circ}$ - 30° wherein angles α and β form first and second planes
12	respectively which are orthogonal with respect to one another and are angles between the nominal
. 13	surface planes of the target and the substrate.
1	48. (Allowed/Currently Amended) A method of making magnetic head assembly that
2	includes a write head and a read head, comprising the steps of:
3	a making of the write head including:
4 .	forming ferromagnetic first and second pole piece layers in pole tip, yoke and back
5	gap regions wherein the yoke region is located between the pole tip and back gap regions;
6	forming a nonmagnetic nonconductive write gap layer between the first and second
7	pole piece layers in the pole tip region;
8	forming an insulation stack with at least one coil layer embedded therein between
9	the first and second pole piece layers in the yoke region; and
10	connecting the first and second pole piece layers at said back gap region; and
11	making the read head as follows:
12	forming a spin valve sensor and first and second nonmagnetic first and second read
13	gap layers with the spin valve sensor located between the first and second read gap layers;
14	forming a ferromagnetic first shield layer; and
15	forming the first and second read gap layers between the first shield layer and the
16	first pole piece layer; and
17	a making of the spin valve sensor comprising the steps of:
18	forming a free layer structure that has a magnetic moment and an easy axis;
19	forming a ferromagnetic pinned layer structure that has a magnetic moment;
20	forming a pinning layer exchange coupled to the pinned layer structure for pinning
21	the magnetic moment of the pinned layer structure;
22	forming a nonmagnetic conductive spacer layer between the free layer structure and
23	the pinned layer structure;
24	a making of the free layer structure including the step of:

25	obliquely ion beam sputtering first and second cobalt or cobalt based layers
26	and a nickel iron based layer in the presence of a magnetic field oriented in a
27	direction of said easy axis with the first and second cobalt or cobalt based layers
28	interfacing the spacer layer structure and a gap layer respectively and the nickel
29	iron based layer being located between and interfacing the first and second cobalt
30	or cobalt based layers;
31	the oblique ion beam sputtering being at angles $\alpha = 40^{\circ}$ and $\beta = 10^{\circ} - 30^{\circ}$
32	wherein angles α and β form first and second planes respectively which are
33	orthogonal with respect to one another; and
34	after said oblique ion beam sputtering in the presence of said field oriented
35	in said direction of the easy axis, annealing each of the cobalt or cobalt based
36	layers and the nickel iron based layer.
1	49. (Allowed) A method as described in claim 48 including:
2	forming a ferromagnetic second shield layer;
3	forming a nonmagnetic isolation layer between the second shield layer and the first pole
4	piece layer.
1	51. (Allowed) A method as claimed in claim 48 wherein a forming of the pinned
2	layer structure comprises the steps of:
3	forming ferromagnetic first and second antiparallel (AP) pinned layers with the first AP
4	pinned layer interfacing the pinning layer; and
5	forming an antiparallel (AP) coupling layer located between the first and second AP layers.
1	53. (Allowed) A method as claimed in claim 51 wherein the step of oblique ion
2	beam sputtering includes the steps of:
3	providing a sputtering chamber;
4	providing a nonmagnetic conductive target in the sputtering chamber that has a nominal
5	planar surface;
6	positioning a substrate in the chamber that has a nominal planar surface at an angle to the
7	nominal planar surface of the target;
8	providing an ion beam gun in the chamber for bombarding the target with ions which
9	causes ions of the material to be sputtered from the target and deposited on the substrate to form
10	said cobalt or cobalt based layers.

C:\998141.AM3 6

1	55. (Original) A method of making a magnetic layer and/or an antiferromagnetic
2	(AFM) layer for an electrical device comprising the steps of:
3	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
4	form said magnetic layer and/or antiferromagnetic (AFM) layer;
5	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
6	acute and wherein the angles α and β form first and second planes respectively which are
7	orthogonal with respect to each other.
1	56. (Currently Amended) A method as claimed in claim 55 wherein A method of
2	making a magnetic layer and/or an antiferromagnetic (AFM) layer for an electrical device
3	comprising the steps of:
4	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
5	form said magnetic layer and/or antiferromagnetic (AFM) layer;
6	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
7	acute and wherein the angles α and β form first and second planes respectively which are
8	orthogonal with respect to each other; and
9	the angle β is being 10° to 30°.
1	57. (Currently Amended) A method as claimed in claim 55 wherein A method of
2 .	making a magnetic layer and/or an antiferromagnetic (AFM) layer for an electrical device
3	comprising the steps of:
4	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
5	form said magnetic layer and/or antiferromagnetic (AFM) layer;
5	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
7	acute and wherein the angles α and β form first and second planes respectively which are
3	orthogonal with respect to each other; and
9	the angle β is being 20° and the angle α is being 40°.
1	58. (Currently Amended) A method as claimed in claim 55 wherein A method of
2	making a magnetic layer and/or an antiferromagnetic (AFM) layer for an electrical device
3	comprising the steps of:
4	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
5	form said magnetic layer and/or antiferromagnetic (AFM) layer:

7

6	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
7	acute and wherein the angles α and β form first and second planes respectively which are
8	orthogonal with respect to each other, and
9	the angle β is being 30° and the angle α is being 40°.
1	59. (Original) A method as claimed in claim 55 wherein said at least one material
2	layer is a nickel iron film and first and second cobalt based films with the nickel iron layer being
3	located between the first and second cobalt based films for forming said magnetic layer.
1	60. (Currently Amended) A method as claimed in claim 59 wherein A method of
2	making a magnetic layer and/or an antiferromagnetic (AFM) layer for an electrical device
3	comprising the steps of:
4	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
5	form said magnetic layer and/or antiferromagnetic (AFM) layer;
6	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
7	acute and wherein the angles α and β form first and second planes respectively which are
8	orthogonal with respect to each other;
9	said at least one material layer being a nickel iron film and first and second cobalt based
10	films with the nickel iron layer being located between the first and second cobalt based films for
11	forming said magnetic layer; and
12	a second material layer comprising a nickel oxide film and an α phase iron oxide film that
13	interface one another are being obliquely ion beam sputtered at said angles α and β for forming
14	said antiferromagnetic layer.
1	61. (Original) A method as claimed in claim 60 wherein for each of said magnetic
2	and AFM layers the angle β is 10° to 30°.
1	62. (Original) A method as claimed in claim 61 wherein for said magnetic layer
2	62. (Original) A method as claimed in claim 61 wherein for said magnetic layer the angle β is 20° and the angle α is 40°.
2	the angle p is 20° and the angle α is 40°.
1	63. (Original) A method as claimed in claim 55 wherein the electrical device is a
2	magnetic head assembly and further comprises the steps of:
3	said at least one material layer being a ferromagnetic free layer;
4	a ferromagnetic pinned laver

8

C:\998141.AM3

5	a nonmagnetic spacer layer located between the free and pinned layers, and
6	the pinned and spacer layers being ion beam sputtered at an angle α which is acute and at
7	an angle β which is zero.
1	64. (Currently Amended) A method as claimed in claim 55 wherein the electrical
2	device is a magnetic head assembly and further comprises: A method of making a magnetic layer
3	and/or an antiferromagnetic (AFM) layer for an electrical device comprising the steps of
4	obliquely ion beam sputtering at least one material layer from a target onto a substrate to
5	form said magnetic layer and/or antiferromagnetic (AFM) layer;
6	the oblique ion beam sputtering being at angles α and β wherein each angle α and β is
7	acute and wherein the angles α and β form first and second planes respectively which are
8	orthogonal with respect to each other;
9	said at least one material layer being a ferromagnetic free layer;
10	forming a ferromagnetic pinned layer;
11	forming a nonmagnetic spacer layer between the free and pinned layers; and
12	the pinned and spacer layers being ion beam sputtered at an angle α which is acute and at
13	an angle β which is 10° to 30°.
1	65. (Original) A method as claimed in claim 64 wherein the free layer has a
2	magnetic moment with an easy axis and the oblique sputtering of the free layer is done in the
3	presence of a magnetic field oriented parallel to said easy axis.
1	66. (Original) A method as claimed in claim 65 wherein after oblique sputtering
2	the free layer the free layer is annealed at a temperature from 150°C to 270°C in the presence of
3	said field oriented parallel to said easy axis.
· 1	67. (Original) A method as claimed in claim 66 wherein for the free layer the angle
2	β is 20° and the angle α is 40°.
1	68. (Currently Amended) A method as claimed in claim 67 wherein for the pinned
2	and spacer layers angle α is 40° and angle β is 0°

1	69. (Original) A method as claimed in claim 68 further including the steps of:
2	forming said antiferromagnetic (AFM) layer interfacing the pinned layer wherein the AFM
3	layer includes a nickel oxide film and an a phase iron oxide film that interface one another, and
4	ion beam sputtering the nickel oxide film and the α phase iron oxide film at angles α and
5	β wherein each angle α and β are acute and wherein the angles α and β form first and second
6	planes respectively which are orthogonal with respect to one another.
1	70. (Original) A method as claimed in claim 69 wherein for the AFM layer the
2	angle α is 40° and angle β is 10° - 30°.
1	71. (Allowed) A method as claimed in claim 32 wherein the forming of the spacer
2	layer includes oblique ion beam sputtering copper at angles $\alpha=40^{\circ}$ and $\beta=10^{\circ}-30^{\circ}$ with angles
3	α and β being orthogonal.
1	72. (Allowed) A method as claimed in claim 41 wherein the forming of the spacer
2	layer includes oblique ion beam sputtering copper at angles α = 40° and β = 10° - 30° with angles
3	α and β being orthogonal.
1	73. (Allowed) A method as claimed in claim 48 wherein the forming of the spacer
2	layer includes oblique ion beam sputtering copper at angles $\alpha = 40^{\circ}$ and $\beta = 10^{\circ} - 30^{\circ}$ with angles
3	α and β being orthogonal.
1	74. (Original) A method of ion beam sputtering at least one layer comprising the
2	steps of:
3	providing a substrate with a first planar surface;
4	providing at least one target with a second planar surface wherein the target is composed
5	of a desired material for said layer,
6	positioning the planar surfaces at angles α and β with respect to one another wherein angle
7	α forms a first plane intersecting the first and second planar surfaces and angle β forms a second
8	plane intersecting the first and second planar surfaces as well as the first plane with the
9	intersection of the first and second planes being orthogonal with respect to each other; and
10	ion beam sputtering the target so that said material is sputtered from the target onto said
11	substrate to form said layer.
1	75. (Original) A method as claimed in claim 74 wherein a central ion beam lies

C:\998141.AM3 10

within said first plane.

2

1	76. (Currently Amended) A method as claimed in claim 75 wherein A method of
2	ion beam sputtering at least one layer comprising the steps of:
3	providing a substrate with a first planar surface;
4	providing at least one target with a second planar surface wherein the target is composed
5	of a desired material for said layer;
6	positioning the planar surfaces at angles α and β with respect to one another wherein angle
7	α forms a first plane intersecting the first and second planar surfaces and angle β forms a second
8	plane intersecting the first and second planar surfaces as well as the first plane with the
9	intersection of the first and second planes being orthogonal with respect to each other; and
10	ion beam sputtering the target so that said material is sputtered from the target onto said
11	substrate to form said layer;
12	a central ion beam lying within said first plane; and
13	the angle β is being 10° to 30°.
1	77. (Currently Amended) A method as claimed in claim 75 wherein A method of
2	ion beam sputtering at least one layer comprising the steps of:
3	providing a substrate with a first planar surface;
4	providing at least one target with a second planar surface wherein the target is composed
5	of a desired material for said layer;
6	positioning the planar surfaces at angles α and β with respect to one another wherein angle
7	α forms a first plane intersecting the first and second planar surfaces and angle β forms a second
8	plane intersecting the first and second planar surfaces as well as the first plane with the
9	intersection of the first and second planes being orthogonal with respect to each other; and
10	ion beam sputtering the target so that said material is sputtered from the target onto said
11	substrate to form said layer;
12	a central ion beam lying within said first plane; and
13	the angle β is being 20° and the angle α is being 40°.
1	78. (Currently Amended) A-method as claimed in claim 75 wherein A method of
2	ion beam sputtering at least one layer comprising the steps of:
3	providing a substrate with a first planar surface;
4	providing at least one target with a second planar surface wherein the target is composed
5	of a desired material for said layer;
6	positioning the planar surfaces at angles α and β with respect to one another wherein angle
7	α forms a first plane intersecting the first and second planar surfaces and angle β forms a second
8	plane intersecting the first and second planar surfaces as well as the first plane with the
9	intersection of the first and second planes being orthogonal with respect to each other; and

C:\998141.AM3 11

10	ion beam sputtering the target so that said material is sputtered from the target onto said
11	substrate to form said layer;
12	a central ion beam lying within said first plane; and
13	the angle β is being 30° and the angle α is being 40°.
1	79. (Original) A method as claimed in claim 75 wherein said at least one layer is
2	a nickel iron film and first and second cobalt based films with the nickel iron film being located
3	between the first and second cobalt based films for forming said layer.
1	80. (Currently Amended) A method as claimed in claim 79 wherein A method of ion
2	beam sputtering at least one layer comprising the steps of:
3	providing a substrate with a first planar surface;
4	providing at least one target with a second planar surface wherein the target is composed
5	of a desired material for said layer;
6	positioning the planar surfaces at angles α and β with respect to one another wherein angle
7	α forms a first plane intersecting the first and second planar surfaces and angle β forms a second
8	plane intersecting the first and second planar surfaces as well as the first plane with the
9	intersection of the first and second planes being orthogonal with respect to each other; and
10	ion beam sputtering the target so that said material is sputtered from the target onto said
11	substrate to form said layer;
12	a central ion beam lying within said first plane;
13	said at least one layer being a nickel iron film and first and second cobalt based films with
14	the nickel iron film being located between the first and second cobalt based films for forming said
15	layer; and
16	a second layer comprising a nickel oxide film and an α phase iron oxide film that interface
17	one another are being obliquely ion beam sputtered at said angles α and β for forming another
18	layer.
1	81. (Original) A method as claimed in claim 80 wherein for each of said layer and
2	said other layer the angle β is 10° to 30°.
1	82. (Original) A method as claimed in claim 81 wherein for said layer the angle
2	β is 20° and the angle α is 40°.

1	83. (Original) A method as claimed in claim 75 wherein said method forms a
2	magnetic head assembly further comprising:
3	said at least one layer being a ferromagnetic free layer;
4	forming a ferromagnetic pinned layer;
5	forming a nonmagnetic spacer layer between the free and pinned layers; and
6	the pinned and spacer layers being ion beam sputtered at an angle α which is acute and at
7	an angle β which is zero.
1	84. (Original) A method as claimed in claim 83 wherein for the free layer the angle
2	β is 10° to 30°.
1	85. (Original) A method as claimed in claim 84 wherein the free layer has a
2	magnetic moment with an easy axis and the oblique sputtering of the free layer is done in the
3	presence of a magnetic field oriented parallel to said easy axis.
1	86. (Original) A method as claimed in claim 85 wherein after oblique sputtering
2	the free layer the free layer is annealed at a temperature from 150°C to 270°C in the presence of
3	said field oriented parallel to said easy axis.
1	87. (Original) A method as claimed in claim 86 wherein for the free layer the angle
2	β is 20° and the angle α is 40°.
1	88. (Original) A method as claimed in claim 87 wherein for the pinned and spacer
2	layers angle α is 40° and angle β is 0°.
1	89. (Original) A method as claimed in claim 88 further comprising:
2	forming an antiferromagnetic (AFM) layer interfacing the pinned layer wherein the AFM
3	layer includes a nickel oxide film and an a phase iron oxide film that interface one another; and
4	ion beam sputtering the nickel oxide film and the α phase iron oxide film at angles α and
5	β wherein each angle α and β are acute and wherein the angles α and β form first and second
6	planes respectively which are orthogonal with respect to one another.
1	90. (Original) A method as claimed in claim 89 wherein for the AFM layer the
2	angle α is 40° and angle β is 10° - 30°.

Add new claims 91-93.

1	91.	(New)	A method as claimed in claim 55 wherein each of angles α and β is greater
2	than zero.		
1	92.	(New)	A method as claimed in claim 74 wherein each of angles α and β is greater
2	than zero.	٠	
1	93.	(New)	A method as claimed in claim 83 wherein each of angles α and β is greater
2	than zero.		