CIS*4720 Image Processing and Vision

Assignment 1

Maneesh Wijewardhana (1125828)

I have read and understood the Academic Misconduct section in the course outline. I assert this work is my own.

1a)

- For any image f, we need to find two total functions $s \land t \in 0..L-1 \rightarrow 0..L-1 \mid f=s \ o \ f \land f=t \ o \ g$
- To do this, we will use the identity function i. The identity function is a total function where it returns the value that was used as its argument without being changed. (ex. f(x) = x)
- Let's say s = t = i where $s(x) = x \wedge t(x) = x, \forall x \in 0..L-1$
- From this, we have

$$(f = s \ o \ f = i \ o \ f = f) \land (f = t \ o \ f = i \ o \ f = f)$$

• \therefore we have shown f R f meaning it is reflexive

1b)

- For any image $f \land g$, we need to find two total functions $s \land t \in 0..L-1 \rightarrow 0..L-1 \mid g = s \text{ o } f \land f = t \text{ o } g$, then \exists two total functions $u \land v \in 0..L-1 \rightarrow 0..L-1 \mid f = u \text{ o } g \land g = v \text{ o } f$
- Now let's define $u = t \wedge v = s$, then we have

$$f = u \circ g = t \circ g \land g = v \circ f = s \circ f$$

• \therefore We have shown f R g then g R f meaning it is symmetric

1c)

- Let's assume that $fRg \wedge gRh$. \exists total functions $s \wedge t \in 0..L-1 \rightarrow 0..L-1 \mid g=s \text{ o } f \wedge f=t \text{ o } g$
- Let's also assume that \exists total functions $u \land v \in 0..L-1 \rightarrow 0..L-1 \mid g=u \ o \ h \land h=v \ o \ g$
- Then we want to show that that \exists two total functions $m \land n \mid f = m \ o \ h \land h = n \ o \ f$
- To do this let's define $m \wedge n$ as the following:

$$m = u \ o \ s$$

 $n = t \ o \ v$

We can compose these two functions and use the associative property to show that

$$f = m \ o \ h = (u \ o \ s) \ o \ h = u \ o \ (s \ o \ h) \land h = n \ o \ f = (t \ o \ v) \ o \ f = t \ o \ (v \ o \ f)$$

• : we have shown
$$f R g \wedge g R h$$
, then $f R h$

2. There are $3^6 = 729$ total images since for each value of $M \times N$, we have 3 possible values of L to choose from $\therefore L^{MN}$

2a)

base imag		
0	1	2
2	1	0
- 1	0	2
2	0	1
2	1	0
0	1	2

- $\begin{array}{cccc} \hline 0 & 2 & 1 \\ 1 & 2 & 0 \\ \hline \end{array}$
- $\begin{array}{cccc} \hline 1 & 2 & 0 \\ 0 & 2 & 1 \\ \hline \end{array}$
- $\begin{array}{c|cc} \hline 2 & 0 & 1 \\ 1 & 0 & 2 \\ \hline \end{array}$

2b)

base image

- 1 1 1 1 1 1
- $\begin{array}{cccc}
 2 & 2 & 2 \\
 2 & 2 & 2
 \end{array}$