IV Quadratische Reste

10 Quadratische Reste

(10.1) Die Theorie der quadratischen Reste, die in diesem Paragraphen beginnt, ist ein Spezialfall der in §6 dargestellten Theorie der Potenzreste.

(10.2) **Definition:** Es sei m eine natürliche Zahl.

(1) $a \in \mathbb{Z}$ heißt ein quadratischer Rest modulo m, wenn a ein zweiter Potenzrest modulo m ist, also wenn a und m teilerfremd sind und es ein $x \in \mathbb{Z}$ mit $x^2 \equiv a \pmod{m}$ gibt.

(2) $a \in \mathbb{Z}$ heißt ein quadratischer Nichtrest modulo m, wenn a und m teilerfremd sind und für jedes $x \in \mathbb{Z}$ gilt: Es ist $x^2 \not\equiv a \pmod{m}$.

(10.3) Bemerkung: Es sei $m \in \mathbb{N}$, und es sei $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ die Primzerlegung von m; es sei $a \in \mathbb{Z}$. Nach (6.14) ist a genau dann ein quadratischer Rest modulo m, wenn a für jedes $i \in \{1, 2, \ldots, r\}$ ein quadratischer Rest modulo $p_i^{\alpha_i}$ ist; für die Anzahl $N_2(a,m)$ der Lösungen $x \in \{0, 1, \ldots, m-1\}$ von $X^2 \equiv a \pmod{m}$ gilt $N_2(a,m) = N_2(a,p_1^{\alpha_1})N_2(a,p_2^{\alpha_2})\cdots N_2(a,p_r^{\alpha_r})$. Der Beweis in (6.3) zeigt, daß man eine Lösung $x \in \{0,1,\ldots,m-1\}$ der Kongruenz $X^2 \equiv a \pmod{m}$ folgendermaßen erhält, wenn man für jedes $i \in \{1,2,\ldots,r\}$ eine Lösung $x_i \in \mathbb{Z}$ von $X^2 \equiv a \pmod{p_i^{\alpha_i}}$ kennt: Man berechnet nach dem Chinesische Restsatz (vgl. (4.14)) das $x \in \{0,1,\ldots,m-1\}$ mit $x \equiv x_i \pmod{p_i^{\alpha_i}}$ für jedes $i \in \{1,2,\ldots,r\}$. Wie der Beweis in (6.3) zeigt, erhält man auf diese Weise alle Lösungen von $X^2 \equiv a \pmod{m}$, wenn man für jedes $i \in \{1,2,\ldots,r\}$ alle Lösungen von $X^2 \equiv a \pmod{m}$, kennt.

(10.4) Bemerkung: Es sei p eine ungerade Primzahl, und es sei $\alpha \in \mathbb{N}$.

(1) Eine ganze Zahlaist genau dann ein quadratischer Rest modulo $p^{\alpha},$ wenn gilt: Es ist

$$a^{p^{\alpha-1}(p-1)/2} \equiv 1 \pmod{p^{\alpha}}.$$

(2) Wenn $a \in \mathbb{Z}$ ein quadratischer Rest modulo p^{α} ist, so hat die Kongruenz $X^2 \equiv a \pmod{p^{\alpha}}$ genau zwei Lösungen $x_1, x_2 \in \{0, 1, \dots, p^{\alpha} - 1\}$, und damit gilt

(3) In der Menge $\{0, 1, \dots, p^{\alpha} - 1\}$ gibt es $\varphi(p^{\alpha})/2 = p^{\alpha-1}(p-1)/2$ quadratische Reste und ebensoviele quadratische Nichtreste modulo p^{α} .

Beweis: Es ist $ggT(2, \varphi(p^{\alpha})) = 2$, und daher folgen alle drei Aussagen aus dem Satz in (6.16).

- (10.5) Bemerkung: Es sei p eine ungerade Primzahl.
- (1) Aus (6.16)(1) ergibt sich das Kriterium von Euler: $a \in \mathbb{Z} \setminus p\mathbb{Z}$ ist genau dann ein quadratischer Rest modulo p, wenn $a^{(p-1)/2} \equiv 1 \pmod{p}$ gilt, und genau dann ein quadratischer Nichtrest modulo p, wenn $a^{(p-1)/2} \equiv -1 \pmod{p}$ gilt.
- (2) Die $\varphi(p)/2 = (p-1)/2$ quadratischen Reste modulo p in $\{0, 1, \ldots, p-1\}$ sind die Zahlen k^2 mod p mit $k \in \{1, 2, \ldots, (p-1)/2\}$.

Beweis: Daß (2) gilt, ist klar, und (1) folgt so: Für jedes $a \in \mathbb{Z} \smallsetminus p\mathbb{Z}$ gilt im Körper \mathbb{F}_p

$$[\,0\,]_p \ = \ [\,a\,]_p^{p-1} - [\,1\,]_p \ = \ \left([\,a\,]_p^{(p-1)/2} - [\,1\,]_p\right) \cdot \left([\,a\,]_p^{(p-1)/2} + [\,1\,]_p\right)$$

(vgl. (4.21)), also $[a]_p^{(p-1)/2} = [1]_p$ oder $[a]_p^{(p-1)/2} = -[1]_p$, und somit gilt $a^{(p-1)/2} \equiv 1 \pmod{p}$ oder $a^{(p-1)/2} \equiv -1 \pmod{p}$. Die Behauptung folgt daher aus (10.4)(1).

- (10.6) Satz: Es sei p eine ungerade Primzahl, und es sei $a \in \mathbb{Z} \setminus p\mathbb{Z}$. Folgende Aussagen sind äquivalent:
- (1) a ist ein quadratischer Rest modulo p.
- (2) Es gibt ein $\alpha \in \mathbb{N}$ mit: a ist ein quadratischer Rest modulo p^{α} .
- (3) Für jedes $\alpha \in \mathbb{N}$ ist a ein quadratischer Rest modulo p^{α} .

Beweis: Man vergleiche (6.19).

(10.7) Bemerkung: Es sei p eine ungerade Primzahl, es sei α eine natürliche Zahl mit $\alpha \geq 2$, und es sei $a \in \mathbb{Z}$ ein quadratischer Rest modulo p^{α} . Nach (10.4)(2) hat die Kongruenz $X^2 \equiv a \pmod{p^{\alpha}}$ zwei verschiedene Lösungen $x_1, x_2 \in \{0, 1, \ldots, p^{\alpha} - 1\}$. Wegen $(-x_1)^2 = x_1^2 \equiv a \pmod{p^{\alpha}}$ und $-x_1 \not\equiv x_1 \pmod{p^{\alpha}}$ ist $x_2 \equiv -x_1 \pmod{p^{\alpha}}$. Man kann also alle Lösungen von $X^2 \equiv a \pmod{p^{\alpha}}$ angeben, wenn man eine kennt. Da a auch ein quadratischer Rest modulo $p^{\alpha-1}$ ist, gibt es ein $y \in \mathbb{Z}$ mit $y^2 \equiv a \pmod{p^{\alpha-1}}$, und das Rechenverfahren aus dem Beweis von (6.5)(1) liefert, angewandt auf das Polynom $f := X^2 - a \in \mathbb{Z}[X]$, zu y ein $x \in \mathbb{Z}$ mit $x^2 \equiv a \pmod{p^{\alpha}}$: Man ermittelt ein $v \in \mathbb{Z}$ mit

$$2y \cdot v = f'(y) \cdot v \equiv -\frac{f(y)}{p^{\alpha - 1}} = -\frac{y^2 - a}{p^{\alpha - 1}} \pmod{p}$$

und setzt $x := y + vp^{\alpha - 1}$.

Man kann also alle Lösungen von $X^2 \equiv a \pmod{p^{\alpha}}$ finden, wenn man eine Lösung der Kongruenz $X^2 \equiv a \pmod{p}$ kennt oder, was auf dasselbe herauskommt, eine Nullstelle des Polynoms $X^2 - [a]_p \in \mathbb{F}_p[X]$. Eine solche Nullstelle kann man dadurch finden, daß man die Primzerlegung von $X^2 - [a]_p$ im Polynomring $\mathbb{F}_p[X]$ mit Hilfe eines Faktorisierungsalgorithmus berechnet. In Mu-PAD verwendet man dazu die Funktion factor (vgl. (6.7)). Es gibt spezielle Algorithmen zur Berechnung einer Lösung von $X^2 \equiv a \pmod{p}$. Ein solcher Algorithmus wird in (12.5) behandelt werden.

- (10.8) Bemerkung: (1) $a \in \mathbb{Z}$ ist dann und nur dann ein quadratischer Rest modulo 2, wenn a ungerade ist; ist dies der Fall, so hat die Kongruenz $X^2 \equiv a \pmod{2}$ in $\{0,1\}$ die eine Lösung x=1.
- (2) $a \in \mathbb{Z}$ ist dann und nur dann ein quadratischer Rest modulo 4, wenn $a \equiv 1 \pmod{4}$ gilt; ist dies der Fall, so hat die Kongruenz $X^2 \equiv a \pmod{4}$ in $\{0,1,2,3\}$ die zwei Lösungen x=1 und x=3.
- (10.9) Satz: Es sei $\alpha \in \mathbb{N}$ mit $\alpha > 3$.
- (1) $a \in \mathbb{Z}$ ist dann und nur dann ein quadratischer Rest modulo 2^{α} , wenn $a \equiv 1 \pmod{8}$ gilt; ist dies der Fall, so hat die Kongruenz $X^2 \equiv a \pmod{2^{\alpha}}$ in der Menge $\{0, 1, \ldots, 2^{\alpha} 1\}$ genau 4 verschiedene Lösungen.
- (2) In der Menge $\{0, 1, \ldots, 2^{\alpha} 1\}$ gibt es genau $2^{\alpha-3}$ quadratische Reste und $3 \cdot 2^{\alpha-3}$ quadratische Nichtreste modulo 2^{α} .

Beweis: (1) Es sei $a \in \mathbb{Z}$ ungerade.

- (a) Aus (6.18)(3) folgt: a ist genau dann ein quadratischer Rest modulo 2^{α} , wenn $a \equiv 1 \pmod{8}$ ist.
- (b) Es gelte: a ist ein quadratischer Rest modulo 2^{α} . Dann ist a ungerade, und nach (5.19)(2) existieren eindeutig bestimmte Zahlen $i \in \{0,1\}$ und $j \in \{0,1,\ldots,2^{\alpha-2}-1\}$ mit $a \equiv (-1)^i 5^j \pmod{2^{\alpha}}$. Es gilt

$$a \equiv (-1)^i \, 5^j \equiv \left\{ \begin{array}{l} 1 \pmod 8, \text{ falls } i=0 \text{ und } j \text{ gerade ist,} \\ 7 \pmod 8, \text{ falls } i=1 \text{ und } j \text{ gerade ist,} \\ 5 \pmod 8, \text{ falls } i=0 \text{ und } j \text{ ungerade ist,} \\ 3 \pmod 8, \text{ falls } i=1 \text{ und } j \text{ ungerade ist.} \end{array} \right.$$

Wegen $a \equiv 1 \pmod 8$ gilt daher: Es ist i = 0, und j ist gerade. Es sei $x \in \mathbb{Z}$ ungerade, und es seien $k \in \{0,1\}$ und $l \in \{0,1,\ldots,2^{\alpha-2}-1\}$ die Zahlen mit $x \equiv (-1)^k 5^l \pmod{2^{\alpha}}$. Es gilt $x^2 \equiv a \pmod{2^{\alpha}}$, genau wenn $5^{2l} \equiv 5^j \pmod{2^{\alpha}}$ gilt, also genau wenn $2l \equiv j \pmod{2^{\alpha-2}}$ gilt (denn nach (5.19)(1) ist $\operatorname{ord}([5]_{2^{\alpha}}) = 2^{\alpha-2}$), also genau wenn l = j/2 oder $l = j/2 + 2^{\alpha-3}$ gilt. Die Kongruenz $X^2 \equiv a \pmod{2^{\alpha}}$ hat also in $\{0,1,\ldots,2^{\alpha-1}\}$ die vier verschiedenen Lösungen

 $5^{j/2} \bmod 2^{\alpha}, \ (-5^{j/2}) \bmod 2^{\alpha}, \ 5^{j/2} \cdot 5^{2^{\alpha-3}} \bmod 2^{\alpha} \ \mathrm{und} \ (-5^{j/2} \cdot 5^{2^{\alpha-3}}) \bmod 2^{\alpha}.$

- (2) Die Überlegung in (1)(b) zeigt: In der Menge $\{0,1,\ldots,2^{\alpha}-1\}$ gibt es $2^{\alpha-3}$ quadratische Reste modulo 2^{α} und $3\cdot 2^{\alpha-3}$ quadratische Nichtreste modulo 2^{α} ; die quadratischen Reste sind die $2^{\alpha-3}$ Zahlen 5^k mod 2^{α} mit $k\in\{0,1,\ldots,2^{\alpha-3}-1\}$, die quadratischen Nichtreste sind die übrigen ungeraden Zahlen in dieser Menge.
- (10.10) Bemerkung: (1) Es sei $a \in \mathbb{Z}$ mit $a \equiv 1 \pmod 8$, und es sei $v \in \mathbb{Z}$ eine Lösung der Kongruenz $X^2 \equiv a \pmod 8$. Zu jedem $\alpha \in \mathbb{Z}$ mit $\alpha \geq 3$ gibt es eine Lösung $y_{\alpha} \in \{0, 1, \ldots, 2^{\alpha} 1\}$ von $X^2 \equiv a \pmod {2^{\alpha}}$ mit $y_{\alpha} \equiv v \pmod 4$. Beweis: Für $\alpha = 3$ ist nicht zu beweisen. Ist $\alpha \geq 4$ und ist bereits eine Zahl $y_{\alpha-1} \in \{0, 1, \ldots, 2^{\alpha-1} 1\}$ mit $y_{\alpha-1}^2 \equiv a \pmod {2^{\alpha-1}}$ gefunden, so setzt man

$$t_{\alpha} := \left(\frac{y_{\alpha-1}^2 - a}{2^{\alpha-1}}\right) \mod 2 \quad \text{und} \quad y_{\alpha} := y_{\alpha-1} + 2^{\alpha-2}t_{\alpha}$$

und erhält $0 \le y_{\alpha} \le 2^{\alpha} - 1$ und $y_{\alpha} \equiv y_{\alpha-1} \equiv v \pmod{4}$ und

$$y_{\alpha}^2 = y_{\alpha-1}^2 + 2^{\alpha-1}t_{\alpha}y_{\alpha-1} + 2^{2\alpha-4}t_{\alpha}^2 \equiv a + 2^{\alpha-1}t_{\alpha}(1 + y_{\alpha-1}) \equiv a \pmod{2^{\alpha}},$$

da $y_{\alpha-1}$ ungerade ist.

- (2) Es sei $\alpha \in \mathbb{N}$ mit $\alpha \geq 3$, und es sei $a \in \mathbb{Z}$ ein quadratischer Rest modulo 2^{α} , d.h. es gelte $a \equiv 1 \pmod{8}$. Der Beweis in (1) liefert ein Verfahren, Lösungen $x_1, x_2 \in \{0, 1, \ldots, 2^{\alpha} 1\}$ der Kongruenz $X^2 \equiv a \pmod{2^{\alpha}}$ mit $x_1 \equiv 1 \pmod{4}$ und $x_2 \equiv 3 \pmod{4}$ zu berechnen. Wie man sieht, sind $x_1, x_2, (-x_1) \pmod{2^{\alpha}}$ und $(-x_2) \pmod{2^{\alpha}}$ die vier Lösungen der Kongruenz $X^2 \equiv a \pmod{2^{\alpha}}$ in $\{0, 1, \ldots, p^{\alpha} 1\}$.
- (10.11) Bemerkung: Aus (10.3), (10.7), (10.8) und (10.10) ergibt sich: Man kann für jedes $m \in \mathbb{N}$ und jeden quadratischen Rest a modulo m alle Lösungen der Kongruenz $X^2 \equiv a \pmod{m}$ berechnen, wenn man für jede ungerade Primzahl p und jeden quadratischen Rest a modulo p eine Lösung der Kongruenz $X^2 \equiv a \pmod{p}$, also im Körper \mathbb{F}_p eine Quadratwurzel aus $[a]_p$ berechnen kann. Ein Algorithmus, der dieses leistet und nicht die Primzerlegung des Polynoms $X^2 [a]_p$ im Polynomring $\mathbb{F}_p[X]$ verwendet, wird in (12.5) behandelt werden. Aus (10.3), (10.7) und (10.9) ergibt sich noch der folgenden Satz, der zu einem $m \in \mathbb{N}$ und einem quadratischen Rest a modulo m die Anzahl der Lösungen $x \in \{0, 1, \ldots, m-1\}$ der Kongruenz $X^2 \equiv a \pmod{m}$ liefert.
- (10.12) Satz: Es sei $m \in \mathbb{N}$, und es sei s die Anzahl der ungeraden Primteiler von m; es sei $a \in \mathbb{Z}$.
- (1) a ist genau dann ein quadratischer Rest modulo m, wenn a für jeden ungeraden Primteiler p von m ein quadratischer Rest modulo p ist und wenn gilt:

Ist $v_2(m) = 1$, so ist $a \equiv 1 \pmod{2}$, ist $v_2(m) = 2$, so ist $a \equiv 1 \pmod{4}$, und ist $v_2(m) \geq 3$, so ist $a \equiv 1 \pmod{8}$.

(2) Ist a ein quadratischer Rest modulo m, so gilt für die Anzahl $N_2(a,m)$ der Lösungen $x \in \{0, 1, \ldots, m-1\}$ der Kongruenz $X^2 \equiv a \pmod{m}$: Es ist

$$N_2(a,m) = \begin{cases} 2^s, & \text{falls } v_2(m) \le 1 \text{ ist,} \\ 2^{s+1}, & \text{falls } v_2(m) = 2 \text{ ist,} \\ 2^{s+2}, & \text{falls } v_2(m) \ge 3 \text{ ist.} \end{cases}$$

11 Legendre-Symbol und Jacobi-Symbol

(11.1) Die in dieses Paragraphen behandelte Theorie des Legendre-Symbols und des Jacobi-Symbols gehört seit Gauß zu den Höhepunkten der Elementaren Zahlentheorie. Das Kriterium von Euler (vgl. (10.5)(1)) erlaubt es zu entscheiden, ob eine ganze Zahl a ein quadratischer Rest modulo einer ungeraden Primzahl p ist. In den folgenden Abschnitten wird gezeigt, wie man diese Entscheidung auf ganz andere Weise treffen kann.

(11.2) **Definition:** Es sei p eine ungerade Primzahl. Für $a \in \mathbb{Z}$ setzt man

$$(a \mid p) \, = \, \left(\frac{a}{p}\right) := \left\{ \begin{array}{l} 1, \text{ falls } a \text{ ein quadratischer Rest modulo } p \text{ ist,} \\ -1, \text{ falls } a \text{ ein quadratischer Nichtrest modulo } p \text{ ist,} \\ 0, \text{ falls } a \text{ durch } p \text{ teilbar ist,} \end{array} \right.$$

und liest dies als "a über p". Die Abbildung

$$a \mapsto \left(\frac{a}{p}\right) : \mathbb{Z} \to \mathbb{C}$$

heißt das Legendre-Symbol modulo p (nach A. M. Legendre, 1752 – 1833).

(11.3) Satz: Es sei p eine ungerade Primzahl. Für jedes $a \in \mathbb{Z}$ gilt

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Beweis: Für jedes $a \in p\mathbb{Z}$ gilt $(a \mid p) = 0 \equiv a^{(p-1)/2} \pmod{p}$, und aus (10.5)(1) folgt für jedes $a \in \mathbb{Z} \setminus p\mathbb{Z}$: Es ist $(a \mid p) \equiv a^{(p-1)/2} \pmod{p}$.

(11.4) Satz: Es sei p eine ungerade Primzahl.

(1) Für $a, b \in \mathbb{Z}$ mit $a \equiv b \pmod{p}$ gilt

$$\left(\frac{a}{p}\right) \ = \ \left(\frac{b}{p}\right).$$