DeepSI: Interactive Deep Learning for Semantic Interaction

Authors: Yali Bian and Chris North

Paper URL: https://dl.acm.org/doi/10.1145/3397481.3450670

Conference: 26th International Conference on Intelligent User Interfaces (IUI '21)

Md Samshad Rahman

samshad@dal.ca

B00968344

Introduction

Key Focus:

- Enhancing visual analytics through semantic interaction.
- Integrating deep learning (BERT) into human-in-the-loop pipelines.

Problem Statement:

- Traditional Semantic Interaction (SI) systems rely on fixed, pre-trained representations.
- Limited adaptability to user-specific tasks and intents.
- Inefficient user feedback loops for clustering and sensemaking.

Datasets Overview

Dataset	Domain	Task Description	Labels/Clusters	Data Size
CORD-19	COVID-19 Research	Group articles by risk factors	4 (Cancer, Kidney, etc.)	1,056,660 entries
SST (Sentiment Treebank)	Sentiment Analysis	Classify movie reviews into sentiment	2 (Positive, Negative)	~1,800 reviews
Vispubdata	Academic Papers	Cluster IEEE VIS papers by conference type	3 (InfoVis, SciVis, VAST)	~1,400 papers
20 Newsgroups	Text Categorization	Classify news articles by topics	4 (Autos, Sports, etc.)	~2,400 articles

Framework Overview

- ♦ Pre-trained BERT embeddings as initial input.
- ♦ Users refine visualizations through feedback.
- ♦ Fine-tune BERT using user-driven interaction.
- ♦ Generate 2D visualization from BERT embeddings.
- ♦ Adjust BERT representations via user feedback (fine-tuning)

Proposed Solution and Objective

- **DeepSIfinetune:** A framework to improve SI by fine-tuning BERT representations through human feedback.
- Interactive learning that dynamically adapts to user needs.
- Task-specific, user-driven data representations.
- Enhanced accuracy and efficiency in SI systems.
- Application to real-world datasets (e.g., COVID-19 research).

How It Works

Initial Data Representation:

- ♦ Uses pre-trained BERT embeddings to initialize data representations.
- ♦ Data is visualized in a scatterplot based on these embeddings using MDS (Multidimensional Scaling).

User Interaction:

♦ Users adjust data points by clustering them visually (e.g., dragging articles into groups).

Model Fine-Tuning:

- ♦ User feedback triggers backpropagation to fine-tune BERT representations dynamically.
- ♦ This generates task-specific representations that reflect user-defined relationships.

Feedback Loop:

♦ Updated model generates new, refined visualizations, better aligned with user goals.

Comparison to Baseline (DeepSIvanilla):

♦ DeepSIfinetune embeds fine-tuning directly into the interaction pipeline, while DeepSIvanilla relies on static pre-trained embeddings, limiting adaptability.

Figure 4: DeepSI_{finetune} pipeline: embedding BERT within the SI loop. Semantic interactions are exploited to fine-tune BERT interactively through backpropagation. The tuned BERT is responsible for generating new representations, so as to capture the analyst's intent. Thereby, no external parameters are needed.

Figure 5: Screenshots during the case study using $DeepSI_{vanilla}$: Frame 1 and 2 show the similar initial steps performed by the analyst in Fig. 1. Frame 3 shows the resulting projection updated by $DeepSI_{vanilla}$.

Figure 6: Further case study using DeepSI_{vanilla} in grouping two clusters: Frame 1 is the initial projection layout, Frame 2 shows interactions performed within the projection, and Frame 3 shows the resulting projection updated by DeepSI_{vanilla}.

Why is This Problem Relevant?

- ♦ Increasing complexity and volume of data require intuitive, interactive systems for sensemaking.
- ♦ Static models (e.g., pre-trained features) fail to capture user-specific and task-specific nuances.
- ♦ Efficient feedback loops reduce cognitive and interactional burden.
- ♦ Adapts to diverse domains with minimal user effort.

Bottlenecks and Limitations

Category	Limitation		
Model Dependence	Relies heavily on the quality of pretrained BERT embeddings.		
Computational Complexity	Fine-tuning BERT and MDS scaling are resource-intensive, especially for large datasets.		
Interpretability	Lack of transparency in how internal model updates align with user feedback.		
Scalability	Challenges in adapting to very large datasets and non-textual data domains.		
User Dependency	Relies on high-quality user feedback; effectiveness depends on user expertise.		

Justification of Accuracy

Figure 8: The accuracies of both $DeepSI_{finetune}$ and $DeepSI_{vanilla}$ updated projections over 200 iterations across the three tasks (T_{sst} , T_{vis} , and T_{news}) during the simulation-based experiment.

Thank you

Q&A