d his

```
(FILE 'HOME' ENTERED AT 12:26:45 ON 22 OCT 2004)
```

```
FILE 'CASREACT' ENTERED AT 12:27:04 ON 22 OCT 2004
             STRUCTURE UPLOADED
L1
            17 S L1
L2
            288 S L1 FULL
L3
    FILE 'CAPLUS' ENTERED AT 12:28:11 ON 22 OCT 2004
           289 S L3
L4
            38 S L4 AND AROMATIC?
L5
             70 S L4 AND ACYLAT?
Lб
            43 S L6 AND (BENZOYL? OR ACETYL?)
L7
^{L8}
              0 S L7 AND ?SOLID CATALYST
             0 S L7 AND (SILICON? OR CLAY)
L9
              0 S L7 AND SAPO
L10
              0 S L7 AND MCM?
L11
              3 S L7 AND (ALUMINUM OR GALLIUM OR INDIUM OR THALLIUM OR IRON)
L12
L13
         227635 S AROMATIC?
L14
         61829 S L13 AND (?BENZENE OR ?NAPHTHALENE)
           667 S L14 AND ACYLAT?
L15
            308 S L15 AND (BENZOYL? OR ACETYL?)
L16
            47 S L16 AND (ALUMINUM OR GALLIUM OR INDIUM OR THALLIUM)
L17
             2 S L17 AND SOLID CATALYST
L18
         146282 S SAPO OR ALPO? OR CLAY
L19
           5 S L17 AND L19
L20
```

L1 STRUCTURE UPLOADED

=> d

L1 HAS NO ANSWERS

L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11

SAMPLE SEARCH INITIATED 12:27:26 FILE 'CASREACT'

SCREENING COMPLETE - 239 REACTIONS TO VERIFY FROM

46 DOCUMENTS

100.0% DONE 239

239 VERIFIED

41 HIT RXNS

17 DOCS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED VERIFICATIONS:

3853 TO 5707

PROJECTED ANSWERS:

93 TO 587

L2 17 SEA SSS SAM L1 (41 REACTIONS)

=> d scan

L2 17 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

TI Rhodium catalyzed addition of boronic acids to anhydrides: a new method for the synthesis of ketones

RX(4) OF 5

$$O_2N$$
B-OH
C:12122-73-5, Dioxane
OH

 O_2N
 O_2N

NOTE: optimization, regioselective

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):3

L2 17 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

 ${\tt TI}$ Synthesis and pharmacology of potential metabolites of Loprazolam RX(7) OF 11

L2 17 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

TI Stable arylcopper compounds containing 2-(dimethylamino)methyl or 2-methoxymethyl groups at the aryl nucleus

RX(3) OF 4

NOTE: Classification: C-Acylation; Condensation

L2 17 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

TI Triazolo- and imidazophthalazines, are they non-competitive AMPA antagonists?

RX(18) OF 201

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):0

=> s l1 full

FULL SEARCH INITIATED 12:27:44 FILE 'CASREACT' SCREENING COMPLETE - 5036 REACTIONS TO VERIFY FROM

844 DOCUMENTS

100.0% DONE 5036 VERIFIED

964 HIT RXNS

288 DOCS

SEARCH TIME: 00.00.01

Andrew Lines Corrected

288 SEA SSS FUL L1 (964 REACTIONS)

=> d scan

L3

L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

TI Non-thiol farmesyltransferase inhibitors: the concept of benzophenone-based bisubstrate analogue farmesyltransferase inhibitors

RX(1) OF 13

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):3

L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN

TI Alkylation and acylation of some activated aromatic substrates by organosilicon compounds

RX(35) OF 41 - 2 STEPS

- 1. 18-Crown-6, KF, THF
- 2.1. Bromosuccinimide,
- 2.2. HCl, Water

- L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN
- TI Electrophilic aromatic substitution. 25. Carboxylic trifluoromethanesulfonic anhydrides as highly effective acylation agents. Perfluoroalkanesulfonic acid catalyzed acylation of arenes

RX(6) OF 20

- L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN
- TI Ortho-hydroxylation of phenols. A new case of the Smiles rearrangement

RX(1) OF 1

NOTE: Classification: Hydroxylation; Regioselective; Chemoselective; # Conditions: H2SO4; H2O2 AcOH; 3h 20 deg

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):3

- L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN
- TI Trifluoromethanesulfonic Acid Catalyzed Novel Friedel-Crafts Acylation of

10/814,849

Aromatics with Methyl Benzoate

RX(7) OF 13

- L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN
- TI Reactions of 4-chloro-1-nitrobenzene with o-substituted phenylacetonitriles; synthesis of 8-chloro-1-methyl(and methylthiomethyl)-6-(2-substituted phenyltriazolo[4,3-a]-1,4-benzodiazepines

RX(10) OF 144

C1
$$\frac{\text{CH}_2-\text{CN}}{\text{SMe}}$$
 $\frac{\text{KOH, MeOH, Benzene}}{\text{MeS}}$ $+$ $\frac{\text{C1}}{\text{MeS}}$ $+$ $+$ $\frac{\text{MeS}}{36\$}$ $+$ $\frac{\text{MeS}}{27\$}$

RX(10) OF 144

- L3 288 ANSWERS CASREACT COPYRIGHT 2004 ACS on STN
- TI Pyrazolobenzazepines

RX(14) OF 43

$$\begin{array}{c|c}
 & \text{NO}_2 \\
 & \text{NO}_$$