Project 1

DSP48A1

Submitted by:

1- Abdelrahman Maher Hassan

2- Zyad Mohammed Abd El-Halim

3- Peter Magdy

Table of Contents

1.	RTL	Code 4
	1.1.	D Flip flop Synchronous
	1.2.	D Flip flop Asynchronous
	1.3.	DSP Code5
2.	Test	bench Code8
3.	. Do F	ile10
4.	Sim	ulation "QuestaSim Snippets"11
5.	Con	straint File
6.	Elab	oration13
	6.1.	Messages Tab
	6.2.	Schematic Snippets
7.	Synt	hesis
	7.1.	Messages tab
	7.2.	Utilization Report
	7.3.	Timing Report
	7.4.	Schematic Snippets
8.	. Impl	ementation
	8.1.	Messages tab
	8.2.	Utilization Report
	8.3.	Timing Report
	8 /	Device Spinnets 18

List of Figures

Figure 1: D Flipflop Sync with a mux.	4
Figure 2: D Flipflop Async with a mux	
Figure 3: DSP Code part 1.	5
Figure 4: DSP Code part 2.	
Figure 5: DSP Code part 3.	6
Figure 6: DSP Code part 4.	6
Figure 7: DSP Code part 5.	7
Figure 8: DSP Code part 6.	7
Figure 9: Test Bench code part 1	8
Figure 10: Test Bench code part 2.	8
Figure 11: Test Bench code part 3.	9
Figure 12: Test Bench code part 4.	9
Figure 13: Do File.	. 10
Figure 14: Test bench output.	. 11
Figure 15: Constraint file	. 12
Figure 16: Message tab from elaboration section.	. 13
Figure 17: Schematic from elaboration section.	. 13
Figure 18: Message tab from Synthesis section.	. 14
Figure 19: Utilization from Synthesis section.	. 14
Figure 20: Timing report from Synthesis section.	. 15
Figure 21: Schematic from Synthesis section.	. 15
Figure 22: Schematic from Synthesis section zoomed in.	. 16
Figure 23: Message tab from Implementation section	. 17
Figure 24: Utilization from Implementation section.	. 17
Figure 25: Timing report from Implementation section.	. 18
Figure 26: Device snippets from implementation section.	. 18

1. RTL Code

1.1. D Flip flop Synchronous

```
1  module D_FF (D, EN, CLK, RST, Q);
2
3     parameter width = 18;
4     parameter REG_EN = 1;
5
6     input [width-1:0]D;
7     input EN, CLK, RST;
8     output [width-1:0]Q;
9
10     reg [width-1:0]Q_Reg;
11
12     assign Q = REG_EN ? Q_Reg : D;
13
14     always @(posedge CLK) begin
15     if(RST)
16     Q_Reg <= 0;
17     else if(EN) begin
18     Q_Reg <= D;
19     end
20     end
21
22     endmodule</pre>
```

Figure 1: D Flipflop Sync with a mux.

1.2. D Flip flop Asynchronous

```
module D_FF_ASYNC (D, EN, CLK, RST, Q);

parameter width = 18;
parameter REG_EN = 1;

input [width-1:0]D;
input EN, CLK, RST;
output [width-1:0]Q;

reg [width-1:0]Q_Reg;

assign Q = REG_EN ? Q_Reg : D;

always @(posedge CLK or posedge RST) begin
    if(RST)
        Q_Reg <= 0;
    else if(EN) begin
        Q_Reg <= D;
    end
end</pre>
```

Figure 2: D Flipflop Async with a mux.

1.3. DSP Code

```
ile DSP_Project (A, B, C, D, BCIN, PCIN, CARRYIN, CLK, CECARRYIN, CEM, CEOPMODE, CEP, CEA, CEB, CEC, CED, RSTCARRYIN, RSTM, RSTOPMODE, RSTP, input [17:0] A, B, D, BCIN; input [47:0] C, PCIN; input CEA, CEB, CEC, CED, CARRYIN, CLK, CECARRYIN, CEM, CEOPMODE, CEP; input RSTA, RSTB, RSTC, RSTD, RSTCARRYIN, RSTM, RSTOPMODE, RSTP; input [7:0]OPMODE;
output [17:0]BCOUT;
output [47:0]PCOUT, P;
output [35:0]M;
output CARRYOUT, CARRYOUTF;
wire [35:0]M_out, Mult_out, Mnot;
wire [75:0]m_out; mult_out, mnot;
wire CYI_out;
wire [7:0]OPMODE_wire;
wire [17:0]D_out, A0_Out, B0_Out, B1_out, A1_out;
wire [47:0]C_out;
reg [17:0]Pre_Adder;
reg [47:0]X_out, Z_out, Post_Adder;
reg CYO_IN, CYI_input;
reg [17:0]BREG_in, B1_input;
parameter AOREG = 0,
                       A1REG = 1,
                       BØREG = 0,
B1REG = 1,
                       CREG = 1,
DREG = 1,
                       MREG = 1,
PREG = 1,
                       CARRYINREG = 1,
                      CARRYOUTREG = 1,

OPMODEREG = 1,

CARRYINSEL = 1, //default is OPMODE_wire[5] which in code optained by making CARRYINSEL = 1

B_IMPUT = "DIRECT", //CASCADE

RSTTYPE = "SYNC";
```

Figure 3: DSP Code part 1.

```
if (RSTTYPE == "SYNC") // SYNC

D_FF #(.width(18),.REG_EN(DREG)) DREG_FF_SYNC ( .D(D), .EN(CED), .CLK(CLK), .RST(RSTD), .Q(D_out) );
            se // ASYNC
D_FF_ASYNC #(.width(18),.REG_EN(DREG)) DREG_FF_ASYNC ( .D(D), .EN(CED), .CLK(CLK), .RST(RSTD), .Q(D_out) );
endgenerate
//B input
always@(*) begin
   if (B_INPUT == "DIRECT")
        BREG_in = B;
   else if(CARRYINSEL == "CASCADE")
             BREG_in = BCIN;
             BREG_in = 0;
generate
       if (RSTTYPE == "SYNC")
       D_FF #(.width(18),.REG_EN(BOREG)) BOREG_FF_SYNC ( .D(BREG_in), .EN(CEB), .CLK(CLK), .RST(RSTB), .Q(BO_Out) );
else // ASYNC
D_FF_ASYNC #(.width(18),.REG_EN(BOREG)) BOREG_FF_ASYNC ( .D(BREG_in), .EN(CEB), .CLK(CLK), .RST(RSTB), .Q(BO_Out) );
//A0 REG
      erate
if (RSTTYPE == "SYNC") // SYNC

D_FF #(.width(18),.REG_EN(A0REG)) A0REG_FF_SYNC ( .D(A), .EN(CEA), .CLK(CLK), .RST(RSTA), .Q(A0_Out) );

else // ASYNC

D_FF_ASYNC #(.width(18),.REG_EN(A0REG)) A0REG_FF_ASYNC ( .D(A), .EN(CEA), .CLK(CLK), .RST(RSTA), .Q(A0_Out) );
 //C REG
```

Figure 4: DSP Code part 2.

Figure 5: DSP Code part 3.

Figure 6: DSP Code part 4.

Figure 7: DSP Code part 5.

Figure 8: DSP Code part 6.

2. Testbench Code

```
| module DSP_Project_T8();
| reg [17:0]A, B, D, BCIN;
| reg [47:0] A, PCIN;
| reg CEA, CEB, CEC, CED, CARRYIN, CEM, CECARRYIN, CEM, CEOPMODE, CEP;
| reg CEA, CEB, CSC, CED, CARRYIN, RSTM, RSTOPMODE, RSTP;
| reg [7:0]DPMODE;
| wire [17:0]BCOUT;
| wire [35:0]N;
| wire CARRYOUT, CARRYOUTF;
| mire [35:0]N;
| wire CARRYOUT, CARRYOUTF;
| BBRGG = 0,
| BIRGG = 1,
| DBEG = 1,
| DBEG = 1,
| DBEG = 1,
| PEG = 1,
| PEG = 1,
| CARRYINES = 1
```

Figure 9: Test Bench code part 1.

```
initial begin
CED = 1;
CARRYIN = 1;
CECARRYIN = 1;
CEOPMODE = 1;
CEP = 1;
 RSTB = 1;
 RSTC = 1;
 RSTD = 1;
 RSTCARRYIN = 1;
RSTM = 1;
RSTOPMODE = 1;
 RSTP = 1;
@(negedge CLK);
 RSTA = 0;
 RSTB = 0;
 RSTC = 0;
 RSTD = 0;
 RSTCARRYIN = 0;
RSTM = 0;
RSTOPMODE = 0;
 RSTP = 0;
 @(negedge CLK);
B = 2;
C = 20;
OPMODE[6] = 0; //add
OPMODE[4] = 1; //choose the output from the pre adder
 A = 2:
```

Figure 10: Test Bench code part 2.

Figure 11: Test Bench code part 3.

```
OPMODE[6] = 1; //add
113
114
         OPMODE[4] = 1; //choose the output from the pre adder
115
116
117
118
         BCIN = 4;
119
120
         PCIN = 55;
         CARRYIN = 0;
         OPMODE[5] = 0;
123
         OPMODE[3:2] = 0;
         OPMODE[1:0] = 3;
126
127
         OPMODE[7] = 0;
         repeat (10) @(negedge CLK);
128
130
        $stop;
131
        end
    endmodule
133
```

Figure 12: Test Bench code part 4.

3. Do File

```
vlib work
vlog D_FF.v D_FF_ASYNC.v DSP_Project.v DSP_Project_TB.v
vsim -voptargs=+acc work.DSP_Project_TB
add wave *
run -all
affine #quit -sim
```

Figure 13: Do File.

4. Simulation "QuestaSim Snippets"

Figure 14: Test bench output.

5. Constraint File

Figure 15: Constraint file.

6. Elaboration

6.1. Messages Tab

- - ✓ □ General Messages (22 warnings, 19 infos, 7 status messages)
 - > (1) [Synth 8-6157] synthesizing module 'DSP_Project' [DSP_Project.v:1] (6 more like this)
 - > (1 [Synth 8-6155] done synthesizing module 'D_FF' (1#1) [D_FF.v:1] (6 more like this)
 - > 1 [Synth 8-226] default block is never used [DSP_Project.v:150] (1 more like this)
 - > (§) [Synth 8-3331] design D_FF__parameterized0 has unconnected port EN (21 more like this)
 - (Project 1-570) Preparing netlist for logic optimization
 - > (i) Processing XDC Constraints (6 more like this)
 - 1 [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
 - (†) [Project 1-111] Unisim Transformation Summary: No Unisim elements were transformed.

Figure 16: Message tab from elaboration section.

6.2. Schematic Snippets

Figure 17: Schematic from elaboration section.

7. Synthesis

7.1. Messages tab

> (i) Command: synth_design -top DSP_Project -part xc7a200tffg1156-3 (10 more like this) (Common 17-349) Got license for feature 'Synthesis' and/or device 'xc7a200t' > 1 [Synth 8-6157] synthesizing module 'DSP_Project' [DSP_Project.v.1] (6 more like this) > (1 [Synth 8-6155] done synthesizing module 'D_FF' (1#1) [D_FF.v.1] (6 more like this) > (1) [Synth 8-226] default block is never used [DSP_Project.v:150] (1 more like this) (9 [Synth 8-3331] design D_FF_parameterized0 has unconnected port EN (40 more like this) (1) [Device 21-403] Loading part xc7a200tffg1156-3 • [Froject 1-233] Implementation specific constraints were found while reading constraint file [E/Courses/Digital IC Design/Project 1/basys_master.xdc]. These constraints will be ignored for synthesis but will be used in implementation. Impacted constraints are listed in the file [JUIUSP_Project_propring]. As a synthesis with the used_in_synthesis property (File Properties dialog in GUI) and re-run elaboration/synthesis. (in [Synth 8-5818] HDL ADVISOR - The operator resource <adder> is shared. To prevent sharing consider applying a KEEP on the output of the operator [DSP_1] [Synth 8-5842] Cannot pack DSP OPMODE registers because of constant '1' value. Packing the registers will cause simulation mismatch at initial cycle [D_FF.v.12] (Project 1-571) Translating synthesized netlist (1) [Netlist 29-17] Analyzing 220 Unisim elements for replacement (i) [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds > 1 [Project 1-570] Preparing nettist for logic optimization (1 more like this) (a) [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s). > (i) [Project 1-111] Unisim Transformation Summary: No Unisim elements were transformed. (1 more like this) () [Common 17-83] Releasing license: Synthesis () [Constraints 18-5210] No constraint will be written out [Ommon 17-1381] The checkpoint E:/Courses/Digital IC Design/Codes/project1_DSP_/project1_DSP_runs/synth_2/DSP_Project.dcp' has been generated. 1 [runtcl-4] Executing : report_utilization -file DSP_Project_utilization_synth.rpt -pb DSP_Project_utilization_synth.pb (Common 17-206) Exiting Vivado at Thu Feb 29 11:45:10 2024...

Figure 18: Message tab from Synthesis section.

7.2. Utilization Report

Figure 19: Utilization from Synthesis section.

7.3. Timing Report

Setup		Hold		Pulse Width					
Worst Negative Slack (WNS):	5.216 ns	Worst Hold Slack (WHS):	0.182 ns	Worst Pulse Width Slack (WPWS):	4.500 ns				
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns				
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0				
Total Number of Endpoints:	106	Total Number of Endpoints:	106	Total Number of Endpoints:	162				
All user specified timing constraints are met.									

Figure 20: Timing report from Synthesis section.

7.4. Schematic Snippets

Figure 21: Schematic from Synthesis section.

Figure 22: Schematic from Synthesis section zoomed in.

8. Implementation

8.1. Messages tab

- ∨

 implementation (1 warning, 88 infos, 219 status messages)
 - > Design Initialization (7 infos, 7 status messages)
 - > 🚞 Opt Design (24 infos, 45 status messages)
 - > 🚞 Place Design (23 infos, 90 status messages)
 - Route Design (1 warning, 34 infos, 77 status messages)
 - > (i) Command: route_design (76 more like this)
 - (Common 17-349) Got license for feature 'Implementation' and/or device 'xc7a200t'
 - > DRC (1 warning
 - () [Vivado_Tcl 4-198] DRC finished with 0 Errors, 1 Warnings
 - (vivado_Tcl 4-199) Please refer to the DRC report (report_drc) for more information.
 - 1 [Route 35-254] Multithreading enabled for route_design using a maximum of 2 CPUs
 - > 1 [Route 35-416] Intermediate Timing Summary | WNS=4.134 | TNS=0.000 | WHS=-0.108 | THS=-0.132 | (2 more like this)
 - (Route 35-57) Estimated Timing Summary | WNS=3.265 | TNS=0.000 | WHS=0.246 | THS=0.000 |
 - [Route 35-327] The final timing numbers are based on the router estimated timing analysis. For a complete and accurate timing signoff, please run report_timing_summary.
 - [Route 35-16] Router Completed Successfully
 - (1) [Common 17-83] Releasing license: Implementation
 - (1) [Timing 38-480] Writing timing data to binary archive.
 - [Common 17-1381] The checkpoint 'E:/Courses/Digital IC Design/Codes/project1_DSP_/project1_DSP_roject1_DSP_Project_outed.dcp' has been generated.
 - > (1 more like this)
 - [Coretcl 2-168] The results of DRC are in file DSP_Project_drc_routed.rpt.
 - > 1 [runtol-4] Executing : report_drc -file DSP_Project_drc_routed.rpt -pb DSP_Project_drc_routed.pb -rpx DSP_Project_drc_routed.rpx (7 more like this)
 - > 1 [Timing 38-35] Done setting XDC timing constraints. (2 more like this)
 - (1) [DRC 23-133] Running Methodology with 2 threads
 - [Coretcl 2-1520] The results of Report Methodology are in file DSP_Project_methodology_drc_routed.rpt.
 - [Vivado_Tcl 4-545] No incremental reuse to report, no incremental placement and routing data was found.
 - > (1) [Timing 38-91] UpdateTimingParams: Speed grade: -3, Delay Type: min_max, Timing Stage: Requireds. (1 more like this)
 - > 1 [Timing 38-191] Multithreading enabled for timing update using a maximum of 2 CPUs (1 more like this)
- ∨
 ☐ Implemented Design (9 infos, 4 status messages)
 - > 🚞 General Messages (9 infos, 4 status messages)

Figure 23: Message tab from Implementation section.

8.2. Utilization Report

Name 1	Slice LUTs (133800)	Slice Registers (267600)	Slice (3345 0)	LUT as Logic (133800)	LUT Flip Flop Pairs (133800)	DSP s (740)	Bonded IOB (500)	BUFGCTRL (32)
∨ N DSP_Project	254	179	108	254	26	1	327	1
A1REG_FF_SYNC (D	0	18	6	0	0	0	0	0
■ B1REG_FF_SYNC (D	0	36	12	0	0	0	0	0
CREG_FF_SYNC (D_F	0	48	15	0	0	0	0	0
CYI_SYNC (D_FFpa	1	1	1	1	1	0	0	0
■ DREG_FF_SYNC (D_F	0	18	11	0	0	0	0	0
■ MREG_FF_SYNC (D_F	0	0	0	0	0	1	0	0
■ OPMODE_SYNC (D_F	253	8	77	253	0	0	0	0
PREG_SYNC (D_FF	0	48	14	0	0	0	0	0
■ PREG_SYNC0 (D_F	0	2	1	0	0	0	0	0

Figure 24: Utilization from Implementation section.

8.3. Timing Report

Setup		Hold		Pulse Width				
Worst Negative Slack (WNS):	3.269 ns	Worst Hold Slack (WHS):	0.263 ns	Worst Pulse Width Slack (WPWS):	4.500 ns			
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns			
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0			
Total Number of Endpoints:	125	Total Number of Endpoints:	125	Total Number of Endpoints:	181			
All upon enocified timing constraints are mot								

Figure 25: Timing report from Implementation section.

8.4. Device Snippets

Figure 26: Device snippets from implementation section.