Matemàtiques Segon Batxillerat

Artur Arroyo

curs 2009-2010

Matemàtiques segon batxillerat

- Sistemes d'equacions lineals
 - Expressió matricial d'un sistema d'equacions
 - Teorema de Rouché-Fröbenius
 - Regla de Cramer
 - Sistemes homogenis
 - Sistemes amb paràmetres

Sistema d'equacions lineals

Definició

Un sistema de m equacions lineals amb n incògnites es pot representar com:

$$\begin{vmatrix}
a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = b_1 \\
a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = b_2 \\
\vdots & & & & & & \\
a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = b_m
\end{vmatrix}$$

Anomenem solució del sistema d'equacions lineals a qualsevol conjunt de valors que verifiqui totes les equacions del sistema.

opressió matricial d'un sistema d'equacions sorema de Rouché-Fröbenius egla de Cramer stemes homogenis stemes amb paràmetres

Classificació dels sistemes d'equacions

Segons el nombre de solucions, anomenarem al sistema:

```
\begin{cases} \text{Sistema compatible} & \text{Determinat } (\exists ! \text{ solució}) \\ \text{Indeterminat } (\exists \infty \text{ solucions}) \end{cases} Sistema incompatible (\nexists solució)
```

Forma matricial

Notem que un sistema de m equacions lineals amb n incògnites es pot escriure com un producte de matrius de la forma:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$A \qquad X \qquad B$$

On A és la matriu dels coeficients, X la matriu de les incògnites i B la matriu dels termes independents.

Matriu ampliada

Definició

Anomenem $matriu\ ampliada,\ A^*,\ del sistema,\ la matriu\ formada per la matriu de coeficients ampliada amb una columna, la dels termes independents.$

$$A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Discussió de sistemes

Per tal de discutir les solucions que puguin tenir els sistemes d'equacions lineals farem servir el Teorema de Rouché-Fröbenius.

Teorema

La condició necessària i suficient perquè un sistema $A \cdot X = B$ tingui solució és que la matriu dels coeficients del sistema, A, i l'ampliada, A^* , tinguin el mateix rang. Si a més aquest rang és igual al número d'incògnites, n, llavors la solució és única.

Aplicació de Rouché-Fröbenius I

Per la matriu
$$A_1^* = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
 tenim que

 $rang(A_1) = rang(A_1^*) = 3 \Rightarrow$ el sistema és compatible determinat.

Per la matriu
$$A_2^* = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 tenim que rang $(A_1) < \text{rang}(A_1^*) \Rightarrow$ el sistema és incompatible.

Aplicació de Rouché-Fröbenius II

Per la matriu
$$A_3^* = \left(\begin{array}{ccc|c} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right)$$
 tenim que

 $rang(A_3) = rang(A_3^*) = 2 < nombre d'incògnites \Rightarrow el sistema és indeterminat.$

Per la matriu
$$A_4^* = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 tenim que

 $rang(A_4) < rang(A_4^*) = 1 < nombre d'incògnites <math>\Rightarrow$ el sistema és indeterminat.

Sistemes d'equacions lineals

Expressió matricial d'un sistema d'equacions Teorema de Rouché-Fröbenius Regla de Cramer Sistemes homogenis Sistemes amb paràmetres

Atenció!

Noteu que l'aplicació del teorema de Rouché-Fröbenius depèn de que la matriu ampliada estigui correctament triangulada, i que hi ha dos graus d'indeterminació diferents, segons el rang sigui 1 ó 2. Al tema següent, quan tractem de la geometria a \mathbb{R}^3 , podrem interpretar geomètricament aquesta diferència.

Regla de Cramer

Considerem el sistema:

$$\begin{vmatrix}
a_{11}x + a_{12}y + a_{13}z = b_1 \\
a_{21}x + a_{22}y + a_{23}z = b_2 \\
a_{31}x + a_{32}y + a_{33}z = b_3
\end{vmatrix}$$
(1)

format per 3 equacions i 3 incògnites, a on suposem que la matriu dels coeficients A és regular, és a dir $|A| \equiv \Delta \neq 0$.

Tal com hem vist abans, aquest sistema es pot escriure de forma abreujada com

$$AX = B \tag{2}$$

on A és la matriu de coeficients i X, B són les matrius columna

$$X = \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \quad B = \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right)$$

Per ser A regular existeix A^{-1} . Multiplicant per l'esquerra en (2) per A^{-1} , obtenim:

$$X = A^{-1}B \tag{3}$$

Els sistemes (2) i (3) són equivalents, és a dir, tenen les mateixes solucions. Si fem les operacions corresponents a (3) obtenim:

$$x = \frac{\begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{|A|} \equiv \frac{\Delta_x}{\Delta} \qquad y = \frac{\begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}}{|A|} \equiv \frac{\Delta_y}{\Delta}$$
$$z = \frac{\begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}}{|A|} \equiv \frac{\Delta_z}{\Delta}$$

Atenció!

Al aplicar el mètode de Cramer a un sistema com el d'abans pot ser útil fer servir la següent notació. Al determinant de la matriu de coeficients l'anomenem Δ , i als altres Δ_x , Δ_y , Δ_z .

Exemple

$$\Delta = 32$$
, $\Delta_x = 32$, $\Delta_y = 32$, $\Delta_z = -32$

De forma que

$$x = 1, \quad y = 1, \quad z = -1$$

Aplicació de Cramer a sistemes indeterminats

La regla de Cramer es pot aplicar a sistemes indeterminats

Exemple

Donat el sistema

$$3x + y - z = 2$$
$$-2x + y - z = 1$$

podem parametritzar per la variable z i tenim

$$3x + y = 2 + z$$

$$-2x + y = 1 + z$$

que es pot resoldre per Cramer per donar

$$x = \frac{1}{5}, \quad y = \frac{7 + 5z}{5}$$

Expressió matricial d'un sistema d'equacions Teorema de Rouché-Fröbenius Regla de Cramer Sistemes homogenis

Atenció

Noteu que en l'exemple anterior hem pogut parametritzar per la variable z perque el determinant

$$\left|\begin{array}{cc} 3 & 1 \\ -2 & 1 \end{array}\right|$$

que involucrava les altres variables, **no** era zero. També podiem haver parametritzat per la variable y, ja que

$$\left|\begin{array}{cc} 3 & -1 \\ -2 & -1 \end{array}\right| \neq 0$$

però no per la variable x, ja que $\begin{vmatrix} 1 & -1 \\ 1 & -1 \end{vmatrix} = 0$.

Sistemes homogenis

Definició

Diem que un sistema és homogeni si tots els termes independents són zero:

$$\begin{vmatrix} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = 0 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = 0 \\ \vdots & & & & & & \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = 0 \end{vmatrix}$$

Aquests tipus de sistemes admeten trivialment la solució

$$x_1 = x_2 = \cdots = x_n = 0$$

Sistemes homogenis

D'aquesta forma, els sistemes homogenis sempre són compatibles. La condició per a que un sistema homogeni tingui altres solucions a part de la trivial o impròpia és que el rang de la matriu de coeficients sigui menor que el nombre d'incògnites.

Exemple

Sistemes amb paràmetres

Sistemes amb paràmetres

Estudiem amb un exemple com discutir aquests tipus de sistemes.

Exemple

Donat el sistema

$$\begin{cases} x + y - z = \lambda \\ \lambda x + 2y - z = 3\lambda \\ 2x + \lambda y - z = 6 \end{cases}$$

Comencem calculant el determinant de la matriu de coeficients, A.

$$\begin{vmatrix} 1 & 1 & -1 \\ \lambda & 2 & -1 \\ 2 & \lambda & -1 \end{vmatrix} = -\lambda^2 + 2\lambda = -\lambda(\lambda - 2)$$

Sistemes amb paràmetres

Exemple

De forma que tenim, que per

$$\lambda \neq \left\{ \begin{array}{l} 0 \\ 2 \end{array} \right.$$

llavors $rang(A) = 3 = rang(A^*) = n \Rightarrow$ Sistema compatible determinat.

Ara, per $\lambda = 0$, triangulant la matriu ampliada, obtenim

$$\left(\begin{array}{cc|c}1&1&-1&0\\0&2&-1&0\\0&0&0&6\end{array}\right)\Rightarrow\operatorname{\mathsf{rang}}(A)=2<3=\operatorname{\mathsf{rang}}(A^*)\Rightarrow$$

Sistema incompatible

Sistemes amb paràmetres

Exemple

Ara, per $\lambda = 2$, triangulant la matriu ampliada, obtenim

$$\left(\begin{array}{cc|c} 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{array}\right) \Rightarrow \mathsf{rang}(A) = 2 = \mathsf{rang}(A^*) \Rightarrow$$

Sistema compatible indeterminat, que es resol per Cramer,

$$\begin{cases}
 x + y - z &= 2 \\
 -z &= -2
 \end{cases}$$

parametritzant per y, queda $x=4-y,\ z=2$ de forma que les solucions es poden posar com $(4-\lambda,\lambda,2)$ $\lambda\in\mathbb{R}$