生物

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「生物」を解答する場合は、右のように、解答用紙にある「解答科目」の「生物」を○で囲み、その下のマーク 欄をマークしてください。

科目が正しくマークされていないと、採点されません。

- 問1 細胞膜 (cell membrane) について述べた次の文①~④の中から,正しいものを一つ選びなさい。
 - ① 細胞膜は、1層のリン脂質 (phospholipid) でできている。
 - ② 細胞膜には、タンパク質が存在しない。
 - ③ 細胞膜を通過して細胞外から細胞内へ入る物質は、 O_2 や CO_2 などの小さい分子だけである。
 - ④ 細胞膜が陥入 (invagination) することで大きな物質を取り込むことができる。

理科-40

間2 次の図は、真核細胞 (eukaryotic cell) のミトコンドリア (mitochondria) とその周辺を模式的に示したものである。呼吸 (respiration) で酸素が使われる反応は、どこでおこなわれているか。図を参考にして下の①~④の中から、正しいものを一つ選びなさい。

細胞質基質 (cytosol),内膜 (inner membrane), 膜間腔 (intermembrane space),外膜 (outer membrane)

- ① 細胞質基質
- ② 内膜
- ③ 膜間腔
- ④ 外膜

問3 次の図は、葉緑体(chloroplast)における光合成(photosynthesis)の反応を模式的に示したものである。図中の物質 A~C の正しい組み合わせを、下の①~⑥の中から一つ選びなさい。

光化学系 II (photosystem II), 光化学系 I (photosystem I), カルビン・ベンソン回路 (Calvin-Benson cycle), 有機物 (organic substance), チラコイド (thylakoid), ストロマ (stroma)

b8	Α	В	С
1	C ₆ H ₁₂ O ₆	CO_2	O_2
2	C ₆ H ₁₂ O ₆	CO_2	NH ₄ ⁺
3	C ₆ H ₁₂ O ₆	O_2	CO_2
4	H ₂ O	O_2	CO_2
5	${ m H_2O}$	N_2	$\mathrm{NH_4}^+$
6	$\rm H_2O$	N_2	O_2

な	るか。次の①)~⑦の中か	ら正しいも	らのを一つ	選びた	なさい。			4
1	UGACGU	C @) AGUCG	GAC	3 Т	CUCGTC	4	ACTGCAG	
5	AGAGGTO	G (TGACG	TC	⑦ I	TGAGCAG			
(2)	ONAの2本	鎖のうち,	鋳型(tem	nplate) と	なるこ	方のヌクレス	ナチド鎖の	0塩基配列の-	一部力
AC	TGCAG とい	ハう並びで	あるとき,	その部分に	二対応	する転写(transcrip	otion) された	RNA
の <u>†</u>	塩基配列はと	ごうなるか。	次の①~@	の中から	正しい	ハものを一~	つ選びなる	さい。	5
1	UGACGU	C @	AGUCO	GAC	(3) A	ACTGCAG	4	UGACGTG	
5	UGACGT	C (TGACG	FTC					
問 5	PCR(ポリァ	くラーゼ連続	溑反応,pol	lymerase (chain	reaction)	法に関す	る次の文 a~ (dの ?
5,	誤っている	6もの はどれ	いか。下の(1)~④の中	から	一つ選びなる	さい。		6
а	PCR 法は,	わずかな	DNA を多	量に増幅さ	せる	方法である。			
b	PCR 法に	は, 耐熱性	(thermost	table) の	DNA	ポリメラー	ゼ(DNA	(polymerase)	がリ
	要である。								
С	PCR 法に	は,目的とす	っる DNA の	特定の配列	刊に結	合する短い	1本鎖D	NAが必要でる	ある。
d	PCR 法に	t, DNA	ヽ リカーゼ	(DNA hel	icase)が必要で	ある。		
1	a 2	D b	③ c	4 d					

問4 ヌクレオチド鎖 (nucleotide chain) に関する次の問い(1), (2)に答えなさい。

(1) DNA の 2 本鎖で, 一方のヌクレオチド鎖の塩基配列 (base sequence) の一部が, ACTGCAG

という並び方であるとき、その部分に対応するもう一方のヌクレオチド鎖の塩基配列はどう

問 6 次の図は、染色体(chromosome)の構成が 2n=4 の生物で、減数分裂(meiosis)のある時期での細胞を模式的に示したものである。この図は、減数分裂のどの時期を示したものか。 下の① \sim ⑥の中から、正しいものを一つ選びなさい。

- ① 第一分裂中期(metaphase I)
- ③ 第一分裂終期(telophase I)
- ⑤ 第二分裂後期(anaphase II)
- ② 第一分裂後期(anaphase I)
- ④ 第二分裂中期(metaphase II)
- ⑥ 第二分裂終期(telophase II)

問 7	次の文は,	カエル	(frog)	の発生	(development)	につい	て述べたもので	である。	文中の空
	欄 a ~	cにあ	てはま	る語句の	の正しい組み合わ	つせを,	下の①~⑥の中	コからー	つ選びな
	さい。								8

カエルの卵は、卵黄(yolk)の分布状態から a とよばれる。精子(sperm)が侵入すると、その反対側の卵の表面に b が生じる。 b が生じた側は将来の背側となる。受精卵(fertilized egg)は卵割(cleavage)を繰り返して細胞数を増やし、胞胚(blastula)となる。 胞胚期を過ぎると陥入(invagination)がおこり、 c が形成される。

	а	b	С
1	端黄卵 (telolecithal egg)	胞胚腔 (blastocoel)	灰色三日月環 (gray crescent)
2	端黄卵	原口 (blastopore)	胞胚腔
3	端黄卵	灰色三日月環	原口
4	等黄卵 (isolecithal egg)	胞胚腔	灰色三日月環
(5)	等黄卵	原口	胞胚腔
6	等黄卵	灰色三日月環	原口

問8 健康なヒトの血液 1mm³中の有形成分のうち、数の多い順に A>B>C としたとき、赤血球 (erythrocyte), 白血球 (leukocyte), 血小板 (blood platelet) はそれぞれ A, B, C のどれにあたるか。正しい組み合わせを、次の①~⑥の中から一つ選びなさい。

	А	В	С
1	赤血球	白血球	血小板
2	赤血球	血小板	白血球
3	白血球	赤血球	血小板
4	白血球	血小板	赤血球
(5)	血小板	赤血球	白血球
6	血小板	白血球	赤血球

問9 ヒトの血糖濃度 (blood glucose level) の調節に関わるホルモン (hormone) は複数ある。 血糖濃度を上げるホルモンを+の記号で、血糖濃度を下げるホルモンを-の記号で示すと、 グルカゴン (glucagon)、インスリン (insulin)、糖質コルチコイド (glucocorticoid) はそれ ぞれどちらにあてはまるか。正しい組み合わせを、次の①~⑧の中から一つ選びなさい。

10

	グルカゴン	インスリン	糖質コルチコイド
1	+	+	+
2	+	+	_
3	+	_	+
4	+	_	_
5	_	+	+
6	_	+	_
7	_		+
8	_	_	_

問 10	次の a~d のうち,	自然免疫	$(natural\ immunity, in nate\ immunity)$	に関わる細胞はどれ
カ	。正しいものの組み	み合わせを	,下の①~⑥の中から一つ選びなさい。	11

- a マクロファージ (macrophage)
- b T細胞
- c B細胞
- d ナチュラルキラー細胞 (NK 細胞, natural killer cell)
- ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

問11 次の文は、免疫(immunity)の応用について述べたものである。文中の空欄 a

b にあてはまる語句の正しい組み合わせを、下の①~⑥の中から一つ選びなさい。 12

医療では, 免疫のしくみを利用した病気の予防法, 治療法が知られている。

例えば、死滅または弱毒化(attenuated)した病原体(pathogen)などを注射することにより、その病原体への感染(infection)を効率的に予防することができる。このような注射に用いられるものを a という。

また、毒ヘビ (venomous snake) にかまれたときなどに、あらかじめ別の動物にその毒素 (venom) を注射して得られた、ヘビの毒素に対する抗体 (antibody) を含む血清 (serum) を注射して、症状を軽減させる血清療法 (serotherapy) がある。この血清中に含まれる抗体は、 b というタンパク質である。

	а	b
(1)	アレルゲン	アルブミン
(I)	(allergen)	(albumin)
(2)	アレルゲン	フィブリン
(2)) 1/1/1/2	(fibrin)
3	アレルゲン	免疫グロブリン
(3)		(immunoglobulin)
4	ワクチン (vaccine)	アルブミン
4)		1 1/1/2
(5)	ワクチン	フィブリン
6	ワクチン	免疫グロブリン

問 12 次の表は、ヒトのおもな受容器 (receptor) と、その適刺激 (adequate stimulus) を示している。正しい組み合わせを、次の①~⑥の中から一つ選びなさい。

	受容器	適刺激
1	耳のうずまき管 (コルチ器)	からだの傾き
2	鼻の嗅上皮	空気中の化学物質
3	耳の半規管	音
4	眼の網膜	圧力
(5)	耳の前庭	からだの回転
6	舌の味覚芽 (味蕾)	低い温度

うずまき管 (cochlea), コルチ器 (Corti's organ), 嗅上皮 (olfactory epithelium), 半規管 (semicircular canal), 網膜 (retina), 前庭 (vestibule), 味覚芽 (taste bud)

問 13 次の文 a~d は、単一のニューロン (neuron) の刺激 (stimulation) に対する興奮 (excitation) と、発生する活動電位 (action potential) について述べたものである。a~d のうち、正しいものの組み合わせを、下の①~⑥の中から一つ選びなさい。

- a 発生する活動電位の大きさは、 閾値 (threshold value) を超えた刺激においては、刺激の強さに関係なく一定である。
- b 発生する活動電位の頻度 (frequency) は、閾値を超えた刺激においては、刺激の強さに 関係なく一定である。
- c 発生する活動電位は全か無かの法則 (all-or-none law) に従うため, どのニューロンでも, 閾値は同じである。
- d 閾値を超える刺激をニューロンの軸索(axon)の途中に与えると、活動電位は刺激を受けた部位から隣接する両方向に伝導(conduction)する。

① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

問 14	! 次の文は,	種子植物	(seed plant)	の発芽	(germination)	に関する	植物ホルモン	(plant
	hormone) 0	の働きについ	ハて述べたもの	つである。	文中の空欄	a , b	このではまる	語句の
	正しい組み台	合わせを,	下の①~⑥の中	コから一	つ選びなさい。			15

種子は成熟すると a が蓄えられ、この a の働きで休眠 (dormancy) 状態となる。 種子には、光や一定期間の低温などの刺激を与えられると、 a が減少し、 b が増加することによって休眠が終わり、発芽するようになるものがある。

	а	b .
1	ジベレリン (gibberellin)	オーキシン (auxin)
2	ジベレリン	アブシシン酸 (abscisic acid)
3	アブシシン酸	オーキシン
4	アブシシン酸	ジベレリン
(5)	オーキシン	ジベレリン
6	オーキシン	アブシシン酸

問15 次の図は、生態系 (ecosystem) における窒素循環 (nitrogen cycle) を示す模式図である。 これに関する下の問い(1)と次ページの(2)に答えなさい。

脱窒素細菌 (denitrifying bacteria), 植食性動物 (herbivorous animal), 肉食性動物 (carnivorous animal), 枯死体 (dead plant tissue), 排出物 (defecation)

(1) 図中の生物 A は、大気中の窒素をもとに、ある物質を生成する。その生物 A と、生成される物質の正しい組み合わせを、次の① \sim ⑥の中から一つ選びなさい。

	А	生成される物質
	根粒菌	アンモニウムイオン
(1)	(root nodule bacteria)	(ammonium ion, NH ₄ ⁺)
2	根粒菌	亜硝酸イオン (nitrite ion,NO2 ⁻)
3	根粒菌	硝酸イオン (nitrate ion,NO ₃ ⁻)
4	硝酸菌 (nitrate-forming bacteria)	アンモニウムイオン
(5)	硝酸菌	亜硝酸イオン
6	硝酸菌	硝酸イオン

(2) 図中の生物 B, C, Dにあてはまるものの正しい組み合わせを, 次の①~⑥の中から一つ選びなさい。

	В	С	D	
1)	細菌(bacteria)・ 菌類(fungi)	植物	硝化菌 (nitrifying bacteria)	
2	細菌・菌類	硝化菌	植物	
3	硝化菌	植物	細菌・菌類	
4	硝化菌	細菌・菌類	植物	
(5)	植物	細菌・菌類	硝化菌	
6	植物	硝化菌	細菌・菌類	

問 16 次の図は、ある場所の植生(vegetation)が時間とともに変化していく過程を示したものである。図の A~C にあてはまる語句の最も適当な組み合わせを、下の①~④の中から一つ選びなさい。

裸地 ightarrow A などの荒原 ightarrow ススキなどの草原 ightarrow 低木林 ightarrow B ightarrow C

裸地 (bare rock), 荒原 (wasteland), ススキ (eulalia)

	А	В	С
1	シダ植物(pteridophytes)	陰樹(shade tree)林	陽樹(sun tree)林
2	シダ植物	陽樹林	陰樹林
3	地衣類 (lichens)・ コケ植物 (bryophytes)	陰樹林	陽樹林
4	地衣類・コケ植物	陽樹林	陰樹林

生物の問題はこれで終わりです。解答欄の $\boxed{19} \sim \boxed{75}$ はマークしないでください。解答用紙の科目欄に「生物」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。