CS156 (Introduction to AI), Fall 2022

Homework 4 submission

Roster Name: Preet LNU

Student ID: 014755741

Email address: preet.lnu@sjsu.edu

References and sources

 $\underline{https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html}$

SVM.Breast.ipynb

np.random.seed(42)

SVM.Iris.ipynb

Solution

▼ Load libraries and set random number generator seed

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import classification_report
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.decomposition import PCA
```

Code the solution

▼ 1.Load the data.

	ASS1	SPX	C6orf141	SP5	SP6	ITGA8	i
count	4336.000000	4336.000000	4336.000000	4336.000000	4336.000000	4336.000000	4336.
mean	6.493217	0.875979	2.547433	2.024070	2.788808	2.838891	2.
std	1.341540	1.322937	1.712000	1.442751	1.385994	1.147753	1.
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	5.697111	0.000000	1.105780	0.999840	1.810114	2.055747	1.
50%	6.588478	0.279846	2.391468	1.710090	2.679240	2.630627	2.
75%	7.415357	1.159160	3.819411	2.976235	3.748897	3.439166	2.
max	10.753816	6.531445	8.714974	7.458509	7.685174	7.041480	10.

8 rows × 3000 columns

▼ 2. Produce a PCA plot of the input data, using the colors specified above.

```
CS156_assignment4.ipynb - Colaboratory
         "Colon": '#80d941',
         "Glioblastoma": '#179933',
         "Head&Neck": '#f07e78',
         "Kidney": '#f01e13',
         "Leukemia": '#f0841f',
         "LungAdeno": '#db5209',
         "LungSquamous": '#ce8ced',
         "Ovarian": '#551075',
         "Rectal": '#e3d329',
         "Uterine": '#cc3423'}
pca_cancer = PCA(n_components=2)
principalComponents = pca_cancer.fit_transform(X)
pca_df = pd.DataFrame(data = principalComponents, columns=['pc1', 'pc2'])
pca df
                pc1
                           pc2
       0
           82.045989
                      46.713045
       1
           76.722515
                      37.919089
       2
           76.643204
                      39.867660
       3
           74.817222
                     36.351110
       4
           79.694762 43.781024
       ...
     4331
            -0.807812 -18.340427
     4332 26.635546
                     6.047577
     4333 -6.453130
                      -2.468526
     4334
           1.549730
                      3.374944
     4335
                      9.490036
            9.115588
    4336 rows × 2 columns
print('Explained variation per principal component: {}'.format(pca cancer.explained v
    Explained variation per principal component: [0.09 0.08]
plt.figure(figsize=(15,10))
plt.xlabel('Principal Component - 1')
plt.ylabel('Principal Component - 2')
```

indicesToKeep = df['Class'] == tumor

for tumor in colors:

```
plt.scatter(pca_df.loc[indicesToKeep, 'pc1'], pca_df.loc[indicesToKeep, 'pc2'], c
plt.title('PCA of 12 tumor types')
plt.show()
```


▼ 3. Normalize the data using StandardScaler.

```
scaler = StandardScaler()
X_rescaled = scaler.fit_transform(X)
```

▼ 4. Break the data into the training and test datasets at 80/20 proportion.

▼ 5. Define SVM model hyperparameters of your choice

```
model = LinearSVC(multi class='ovr', class weight='balanced').fit(X train, Y train)
```

▼ 6. Run and report results from 5-fold cross-validation.

```
cross_vals = cross_val_score(model, X_train, Y_train, cv=5)
print('Individual cross-validation accuracies: ' + str(cross_vals))
print('Mean cross validation accuracy: ' + str(cross_vals.mean()))

Individual cross-validation accuracies: [0.96 0.97 0.96 0.97 0.97]
Mean cross validation accuracy: 0.9639574002686395
```

7. Train the final model on all the training data and assess model performance on the test set.

▼ 8. Plot two confusion matrices for test set predictions

```
CS156_assignment4.ipynb - Colaboratory
Confusion matrix, without normalization
   66
          0
                0
                           0
                                                           0
                                                                0]
11
     0
        175
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0 ]
     0
          0
               69
                     0
                          0
                                0
                                           0
                                                0
                                                     0
                                                           5
                                                                01
 [
     0
          0
                0
                    21
                          0
                                0
                                           0
                                                     0
                                                           0
                                                                2]
 ſ
                0
                                           0
     0
          0
                     0
                         83
                                0
                                                     0
                                                           0
                                                                0]
 ſ
     0
                0
                     0
                          0
                               84
                                           0
                                                     0
                                                           0
                                                                0]
          0
                                     0
                                0
                                          0
                                                     0
     0
          0
                0
                     0
                          0
                                    20
                                                0
                                                           0
                                                                0]
                                                2
     0
          0
                0
                     0
                                0
                                     0
                                         83
                                                     0
                                                           0
                                                                0]
                          0
     0
          0
                0
                     0
                                0
                                     2
                                          2
                                               74
                                                     0
                                                          0
                                                                0]
                          0
                                          0
     0
          0
                0
                     0
                                0
                                     0
                                                0
                                                    68
                                                           0
                                                                0 ]
                          0
     0
          0
                8
                     0
                          0
                                0
                                     0
                                          0
                                                0
                                                     0
                                                         18
                                                                0 ]
          0
                0
                     0
 [
     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                               86]]
/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa
  warnings.warn(msg, category=FutureWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa
  warnings.warn(msg, category=FutureWarning)
Normalized confusion matrix
[[1.
                0.
                      0.
                                                 0.
                                                        0.
                                                               0.
                                                                     0.
                                                                            0.
         0.
                             0.
                                           0.
                                                                                  1
                0.
 0.
         1.
                      0.
                             0.
                                    0.
                                           0.
                                                 0.
                                                        0.
                                                               0.
                                                                     0.
                                                                            0.
                                                                                  1
 [0.
         0.
                0.93 0.
                                    0.
                                           0.
                                                               0.
                                                                     0.07
                                                                            0.
                             0.
                                                 0.
                                                        0.
 [0.
         0.
                0.
                      0.91
                             0.
                                           0.
                                                               0.
                                                                     0.
                                                                            0.091
 0.
                0.
                      0.
                             1.
                                                               0.
                                                                     0.
                                                                            0.
         0.
                                    0.
                                           0.
                                                 0.
                                                        0.
                                           0.
                                                        0.
                                                               0.
 [0.
         0.
                0.
                      0.
                             0.
                                    1.
                                                 0.
                                                                     0.
                                                                            0.
 [0.
                0.
                      0.
                                    0.
                                           1.
                                                 0.
                                                        0.
                                                               0.
                                                                     0.
         0.
                             0.
                                                                            0.
                                                 0.98 0.02
                                                                     0.
 [0.
         0.
                0.
                      0.
                             0.
                                    0.
                                           0.
                                                              0.
                                                                            0.
 [0.
         0.
                Λ.
                      0.
                             0.
                                    0.
                                          0.03 0.03 0.95
                                                              0.
                                                                     0.
                                                                            0.
                                                 0.
                             0.
                                                        0.
 [0.
         0.
                0.
                      0.
                                    0.
                                           0.
                                                               1.
                                                                     0.
                                                                            0.
                                                                                  ]
 [0.
         0.
                0.31 0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                               0.
                                                                     0.69
                                                                           0.
                             0.
                                                                                 ]
 [0.
                                           0.
                                                 0.
                                                        0.
                                                               0.
                                                                     0.
                                                                            1.
                                                                                 ]]
```


Normalized confusion matrix 1.0 0 0 0 0 0 Breast Colon 0 00.0680 - 0.8 0 0.91 0 0 0 0 0 0 0 0 00.08 Glioblastoma Head&Neck - 0 0 0 0 1 0 0 0 0 0 0 0

Predicted label

Colab paid products - Cancel contracts here

✓ 1s completed at 1:13 AM

×