MATH 2208: ORDINARY DIFFERENTIAL EQUATIONS

Lecture 5 Worksheet

Spring 2020

Subhadip Chowdhury

Feb 5

TITLE: Phase Line and Equilibria

SUMMARY: We will continue our qualitative analysis of differential equations by learning how to use phase lines and the classification of equilibrium points of autonomous, first-order ODEs.

§A. Motivation

Consider the differential equation

$$\frac{dy}{dt} = -0.5y + 0.1$$

This model comes from a drug dosing problem where your body removes 50% of the drug every hour and an IV drip administers 0.1mg of drug each hour. The value of y is the number of milligrams of drug in the body at time t. If done correctly, the amount of drug in your system will stabilize at a constant level. What is that level? Be sure to fully explain your thinking.

§B. Definitions

EQUILIBRIUM POINT

An **equilibrium point** of an autonomous ODE y' = f(y) is a real number c where the rate of change is **0**. If c is an equilibrium point of an autonomous ODE, then the constant curve y(t) = c is a solution of the DE.

PHASE PORTRAIT

A one dimensional phase portrait of an autonomous DE y' = f(y) is a diagram which indicates the values of the dependent variable for which y is increasing, decreasing or constant. Sometimes the vertical version of the phase portrait is called a **phase line**.

$\S C.$ Algorithm For Drawing A Phase Line

- Step 1. Draw a vertical line.
- Step 2. Find the equilibrium points (i.e. values such that $\frac{dy}{dt} = 0$) and mark them on the line.
- Step 3. Find intervals for which $\frac{dy}{dt} > 0$ and mark them with up arrows \uparrow .
- Step 4. Find intervals for which $\frac{dy}{dt} < 0$ and mark them with down arrows \downarrow .

■ Question 1.

Consider the autonomous differential equation $\frac{dy}{dt} = y(1-3y)(y-2)$.

- (a) Find the equilibrium points of the DE.
- (b) Determine the values of y for which y(t) is increasing and decreasing.
- (c) Draw the phase line for this ODE.

§D. Obtaining Solution Information from Phase Lines

Consider y' = f(y) where f(y) is a **continuously differentiable** function (why do we need this condition?) and y(t) is a solution to an autonomous ordinary differential equation. The following conclusions are consequences of the EUT.

- If f(y(0)) = 0 then y(t) = y(0) for all t and y(0) is an equilibrium point.
- If f(y(0)) > 0 then y(t) is increasing for all t and either $y(t) \to \infty$ as t increases or y(t) tends to the first equilibrium point larger than y(0).
- If f(y(0)) < 0 then y(t) is decreasing for all t and either $y(t) \to -\infty$ as t increases or y(t) tends to the first equilibrium point smaller than y(0).

■ Question 2 (Drawing Phase Lines from Qualitative Information Alone).

Draw the phase line in the space below for the ODE y' = f(y) where the graph of f(y) vs. y looks like the graph on the right.

Then draw graphs of various particular solutions (going both forward and backwards in time) starting at y(0) = -2, y(0) = 0, y(0) = 1, y(0) = 2 and y(0) = 4 in the ty-plane given below.

■ Question 3.

Draw the phase line for the ODE $y' = \frac{1}{1-y}$. Skecth a couple of solution curves.

§E. Classifying Equilibrium Points: Sink, Source or Node

An equilibrium point c splits the phase line into two different regions. So there are four possible scenarios for the behavior of y' near c: (+, 0, +), (+, 0, -), (-, 0, +) and (-, 0, -).

■ Question 4.

In each of the above cases, draw the phase line near the point *c* and then classify the corresponding critical points as asymptotically stable (aka **attractor** or **sink**), unstable (aka **repellor** or **source**) or neither (aka **node**).

■ Question 5.

Then draw graphs of the function f(y) near equilibrium points classified as a sink, source or node corresponding to the phase line in the example above.

Theorem E.1: Linearization Theorem

Suppose y_0 is an equilibrium point of the differential y' = f(y) where f is a continuously differentiable function. Then,

- if $f'(y_0) < 0$, then y is a sink;
- if $f'(y_0) > 0$, then y is a source; or
- if $f'(y_0) = 0$, then more information is needed to classify the equilibrium point.

■ Question 6.

What can you say about the y = 0 equilibrium point of the following ODE?

$$y' = y\left(\cos\left(y^5 + 2y\right) - 27\pi y^4\right)$$

Question 7.

Suppose y' = f(y) has an equilibrium point at $y = y_0$ and

- (a) $f'(y_0) = 0$ and $f''(y_0) > 0$: Is y_0 a source, a sink, or a node?
- (b) $f'(y_0) = 0$ and $f''(y_0) < 0$: Is y_0 a source, a sink, or a node?
- (c) f'(y) = 0, $f''(y_0) = 0$, and f'''(y) > 0: Is y_0 a source, a sink, or a node?
- (d) $f'(y_0) = 0$, $f''(y_0) = 0$, and $f'''(y_0) < 0$: Is y_0 a source, a sink, or a node?