Exercise 3.4.9a

Let $\{r_1, r_2, r_3, ...\}$ be an enumeration of the rational numbers, and for each $n \in \mathbb{N}$ set $\varepsilon_n = 1/2^n$. Define $O = \bigcup_{n=1}^{\infty} V_{\varepsilon_n}(r_n)$, and let $F = O^c$.

a. Argue that F is a closed, nonempty set consisting only of irrational numbers.

Solution:

Demorgan's law states $(A \cup B)^c = A^c \cap B^c$. F is the complement of an union, therefore it is the intersection of complements of $V_{\varepsilon_n}(r_n)$.

 $V_{\varepsilon_n}(r_n)$ is an open set, so the complement of the neighborhood would make it a closed set. Theorem 3.2.14 states that the arbitrary intersection of closed sets is closed. This proves that F is closed.

No rational number exists in the interval $V_{\varepsilon_n}(r_n)^c$, therefore F would not contain an rational numbers either

The length that was removed is equal to the sum 2(1/2+1/4+1/8+...) (assuming no overlap of intervals), which by the geometric series is equal to $2\frac{1/2}{1-1/2}=2$. This means that the total length that was not included in the intersection is equal to 1. Therefore F is nonempty.

Exercise 4.2.2abc

For each stated limit, find the largest possible δ -neighborhood that is a proper response to the given ε challenge.

a. $\lim_{x\to 3} (5x-6) = 9$, where $\varepsilon = 1$.

Solution:

Given that $\varepsilon = 1$, we have:

$$|f(x) - L| < \varepsilon$$

 $|5x - 6 - 9| < 1$
 $|5x - 15| < 1$
 $|5x - 3| < 1$
 $|x - 3| < 1/5$.

It then follows that there exists a δ such that $|x-c| < \delta$. Thus I get that $|x-3| < \delta \le 1/5$.

Thus (3 - 1/5, 3 + 1/5) is the largest open interval possible.

b. $\lim_{x\to 4} \sqrt{x} = 2$, where $\varepsilon = 1$.

Solution:

Given that $\varepsilon = 1$, we have:

$$|f(x) - L| < \varepsilon$$

$$|\sqrt{x} - 2| < 1$$

$$-1 < (\sqrt{x} - 2) < 1$$

$$1 < \sqrt{x} < 3$$

$$1 < x < 9$$

$$-3 < (x - 4) < 5$$

$$3 < |x - 4| < 5$$

It then follows that there exists a δ such that $|x-c| < \delta$. Thus I get that $|x-4| < \delta \le 3$.

Thus (1, 7) is the largest open interval possible around 4.

c. $\lim_{x\to\pi} \lfloor x \rfloor = 3$, where $\varepsilon = 1$.

Solution:

Given that $\varepsilon = 1$, we have:

$$|f(x) - L| < \varepsilon$$

$$|\lfloor x \rfloor - 3| < 1$$

$$-1 < (\lfloor x \rfloor - 3) < 1$$

$$2 < \lfloor x \rfloor < 4$$

Since $x \to \pi$ I can write $2 < \lfloor x \rfloor < 4$ as,

$$2 < x < 4$$

$$2 - \pi < (x - \pi) < 4 - \pi$$

$$|2 - \pi| < |(x - \pi)| < 4 - \pi$$

It then follows that there exists a δ such that $|x-c| < \delta$. Thus I get that $|x-\pi| < \delta \le |2-\pi|$.

Exercise 4.2.5abc

Use Definition 4.2.1 to supply a proper proof for the following limit statements.

a.
$$\lim_{x\to 2} (3x+4) = 10$$

Solution:

Before the formal proof I will show how to find δ .

$$|f(x) - L| < \varepsilon$$

$$|3x + 4 - 10| < \varepsilon$$

$$3|x - 2| < \varepsilon$$

$$|x - 2| < \varepsilon/3$$

Now the formal proof.

For any $\varepsilon > 0$ let $\delta = \varepsilon/3$. I will show that $0 < |x - c| < \delta$ implies $|f(x) - L| < \varepsilon$.

$$|x-2| < \varepsilon/3$$

$$3|x-2| < \varepsilon$$

$$|3x-6| < \varepsilon$$

$$|(3x+4)-10| < \varepsilon$$

$$|f(x)-L| < \varepsilon$$

Thus $\lim_{x\to 2} (3x+4) = 10$.

b.
$$\lim_{x\to 0} x^3 = 0$$

Solution:

Before the formal proof I will show how to find δ .

$$|f(x) - L| < \varepsilon$$

$$|x^3 - 0| < \varepsilon$$

$$-\varepsilon < x^3 < \varepsilon$$

$$-(\varepsilon)^{1/3} < x < (\varepsilon)^{1/3}$$

$$|x| < (\varepsilon)^{1/3}$$

Now the formal proof.

For any $\varepsilon > 0$ let $\delta = \varepsilon^{1/3}$. I will show that $0 < |x - c| < \delta$ implies $|f(x) - L| < \varepsilon$.

$$|x - 0| < \varepsilon^{1/3}$$

$$-\varepsilon^{1/3} < x < \varepsilon^{1/3}$$

$$-\varepsilon < x^3 < \varepsilon$$

$$|x^3 - 0| < \varepsilon$$

$$|f(x) - L| < \varepsilon$$

Thus $\lim_{x\to 0} x^3 = 0$.

c.
$$\lim_{x\to 2} (x^2 + x - 1) = 5$$

Solution:

Before the formal proof I will show how to find δ .

$$|x^{2}+x-1-5| < \varepsilon$$

$$|x^{2}+x-6| < \varepsilon$$

$$|x-2||x+3| < \varepsilon$$

We are finding the limit as x approaches 2. I do not want $\delta > 1$, therefore if I choose x = 3, then $|x+3| \le |3+3| = 6 < \varepsilon$, which leads to the inequality $|x+3| < \varepsilon/6$ for all x values close to 2, or $x \in V_1(2)$.

We have limited δ by 1, but it could also be smaller, depending on ε . We can let $\delta = \min\{\varepsilon/6, 1\}$. The rest of the proof is as follows,

$$|x-2| < \delta$$

$$|x-2| < \varepsilon/6$$

Since $|x+3| \le 6$

$$|x-2||x+3| < (6)\frac{\varepsilon}{6}$$

 $|(x^2+x-1)-5| < \varepsilon$

Thus, the limit is proved.

Exercise 4.2.6

Decide if the following are true or false, and give short justifications for each conclusion.

a. If a particular δ has been constructed as a suitable response to a particular ε challenge, then any smaller positive δ will also suffice.

Solution:

True. δ is typically the largest possible delta, so any smaller will still be within the interval set by the epsilon challenge.

b. If $\lim_{x\to a} f(x) = L$ and a happens to be in the domain of f, then L = f(a).

Solution:

False, the function could be a piece-wise function, where f(a) is defined as something other than the limit.

c. If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} 3[f(x) - 2]^2 = 3(L-2)^2$.

Solution:

This is true. Since $3(L-2)^2$ is found through a limit it avoids the issue discussed in part (c). This is also supported by the algebraic limit theorem for function limits.

d. If $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} f(x)g(x) = 0$ for any function g (with domain equal to the domain of f.)

Solution:

True. Since the domains are the same the algebraic limit theorem for functional limit applies. In which, $\lim_{x\to a} f(x)g(x) = 0(\lim_{x\to a} g(x)) = 0$

Exercise 4.3.1

Let
$$g(x) = \sqrt[3]{x}$$

a. Prove that g is continuous at c = 0.

Solution:

g is continuous at c if if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ it follows that $|f(x) - f(c)| < \varepsilon$.

I will let $\delta = \varepsilon^3$. Then it follows that

$$|x - c| < \delta$$

$$|x - 0| < \varepsilon^{3}$$

$$|\sqrt[3]{x} - 0| < \varepsilon$$

$$|\sqrt[3]{x} - \sqrt[3]{0}| < \varepsilon$$

Thus we see that g is continuous at 0.

b. Prove that g is continuous at a point $c \neq 0$. (The Identity $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ will be helpful.)

Solution:

First to find an appropriate δ let, $|\sqrt[3]{x} - \sqrt[3]{c}| < \varepsilon$

$$|\sqrt[3]{x} - \sqrt[3]{c}| \cdot |\frac{x^{2/3} + x^{1/3}c^{1/3} + c^{2/3}}{x^{2/3} + x^{1/3}c^{1/3} + c^{2/3}}| < \varepsilon$$

$$|\frac{x - c}{x^{2/3} + x^{1/3}c^{1/3} + c^{2/3}}| < \varepsilon$$

Note that if x > 0 then we get that

$$\begin{aligned} |\sqrt[3]{x} - \sqrt[3]{c}| &= |\frac{x - c}{x^{2/3} + x^{1/3}c^{1/3} + c^{2/3}}| < |\frac{x - c}{c^{2/3}}| < \varepsilon \\ |\sqrt[3]{x} - \sqrt[3]{c}| &< |\frac{x - c}{c^{2/3}}| < \varepsilon \\ |x - c| &< \varepsilon |c^{2/3}| \end{aligned}$$

Now this shows that $\delta = |c^{2/3}|$. This inequality leads to show that

$$\begin{aligned} |x-c| &< \varepsilon |c^{2/3}| \\ |\frac{x-c}{c^{2/3}}| &< \varepsilon \\ |x^{1/3} - c^{1/3}| &< |\frac{x-c}{c^{2/3}}| &< \varepsilon \\ |\sqrt[3]{x} - \sqrt[3]{c}| &< \varepsilon \end{aligned}$$

Thus this shows that when ever x > 0, regardless of the c (positive or negative), then g(x) is continuous. Since this is an odd function, if a negative variable was entered in the function, then the result would be negative. This is the same as using positive x values but multiplying by -1. The algebraic continuous theorem states that this product will also be continuous as well.