

TwinCAT System Manager

Konfiguracja funkcji Sync Units

Poziom trudności: średni

Wersja dokumentacji: 1.0

Aktualizacja: 19.05.2011

Beckhoff Automation Sp. z o. o.

Spis treści

Spis treści					
1		Wstęp			
2		Topologia przykładowej sieci EtherCAT			
3		Różnice między funkcją Sync Units a HotConnect			
4		Przykład z wykorzystaniem funkcji Sync Unit – krok po kroku			
	4.1	Konfiguracja sieci	4		
	4.2	Dodanie projektu	4		
	4.3	Komendy w ramce EtherCAT	4		
	4.4	Konfiguracja funkcji Sync Unit	5		
5		Diagnostyka	7		

1 Wstęp

Dokument krok po kroku prezentuje konfigurowanie funkcji *Sync Units* sieci EtherCAT dla przykładowej topologii sieci składającej się z panelu sterującego CP7202 oraz trzech szaf z wyspami EK1100.

2 Topologia przykładowej sieci EtherCAT

3 Różnice między funkcją Sync Units a HotConnect

Funkcja *Sync Units* pozwala na prawidłową wymianę danych z częścią sieci EtherCAT w przypadku, gdy inna część tej sieci jest odłączona. Dla tej funkcji nie jest możliwa rekonfiguracja sieci Online oznacza to, iż topologia sieci nie może zostać zmieniona.

Funkcja HotConnect z kolei pozwala na ingerencję w topologię sieci w czasie działania programu, to znaczy możemy rozłączać i podłączać wyspy dowolnie. Np. *Szafę 2* zamienimy miejscami z *Szafą 3*. Konfiguracja funkcji Hot Connect nie jest uwzględniona w tym dokumencie.

4 Przykład z wykorzystaniem funkcji Sync Unit – krok po kroku

W tym punkcje zostanie przeprowadzona konfiguracja za pomocą TwinCAT NC I v2.11.1551 funkcji *Sync Units* dla topologii sieci pokazanej w punkcie 2.

4.1 Konfiguracja sieci

Konfiguracja sieci opisana jest szczegółowo w materiałach dostępnych na stronie: ftp://ftp.beckhoff.com/poland/Pomoc/Podstawy_obslugi_programu_TwinCAT_System_Manager.pdf

Topologie sieci możemy sprawdzić w zakładce *Devices 1(EtherCAT) → Topology...* W naszym przykładzie topologia wygląda następująco:

4.2 Dodanie projektu

Dodawanie i linkowanie zmiennych jest przedstawione w dokumencie znajdujący się pod adresem:

 $\underline{ftp://ftp.beckhoff.com/poland/Pomoc/Podstawy_obslugi_programu_TwinCAT_System_Mana}\\ \underline{ger.pdf}$

4.3 Komendy w ramce EtherCAT

Ramka protokołu EtherCAT składa się z różnego rodzaju komend odczytu i zapisu. Komendy te można zobaczyć w polu Cmd, na zakładce EtherCAT urządzenia EtherCAT Master. Maksymalnie ramka może się składać z 15 komend.

Poniższa tabela pokazuje podział komend ze względu na adresy.

Typ Adresu	Nazwa komendy			Komentarz
Typ Adresu	Odczyt	Zapis	Odczyt i zapis	
Adres logiczny	LRD LWR	LRW	Podstawowa komenda, wynika z mapowania	
Logical (L)		LWK	LKW	
Wszystkie adresy	BRD	BWR	BRW	Komendy dla wszystkich adresów slave
Broadcast (B)				

W naszym przypadku występują komendy:

- 1. LWR zapis modułów wyjść
- 2. LRD odczyt modułów wejść
- 3. BRD ogólny odczyt parametrów

4.4 Konfiguracja funkcji Sync Unit

Na poniższym rysunku w polu nr 1 pokazano, że funkcja *Sync Unit* nie jest skonfigurowana - napis (<default>) w kolumnie SyncUnit.

Stworzymy trzy *Sync Units*. Pierwszy *Sync Unit* będzie odpowiedzialny za *Szafę 1*, drugi za *Szafę 2* a trzeci będzie obsługiwał *Szafę 3*.

Sync Unit dodaje się kliknięciem LPM przycisku Sync Unit Assignment..., przywoła to okno Sync Unit Assignment.

Wybieramy w danym oknie moduły, które będą synchronizowane przez *Sync Unit*. Jednostka *Sync Unit 1* będzie odpowiedzialna za moduły *Term: 2,3*. Klikając LPM na odpowiednie pole trzymając klawisz *ctrl* możemy zaznaczyć jednocześnie kilka modułów. Następnie w polu *Sync Unit Names* nadajemy nazwę dla danego *Sync Unit*. Nazwa ta pojawi się automatycznie w polu *Sync Unit Name obok zaznaczonych modułów*.

Podobnie robimy to dla drugiego oraz trzeciego Sync Unit.

Na rysunku poniżej przedstawiono końcowy rezultat konfigurowania funkcji Sync Unit.

5 Diagnostyka

Zmienna *Frm0WcState* jest zmienną typu *UINT*, która pokazuje diagnostykę danych dla poszczególnych komend ramki cyklicznej EtherCAT (lista komend pokazana jest w tabeli na rysunku powyżej). Dla każdej komendy rezerwowany jest bit tej zmiennej zgodnie z listą rozkazów – numer komendy odpowiada numerowi bitu. Gdy komenda działa prawidłowo mamy w bicie wartość 0, gdy jest błąd to wartość 1.

Dzięki temu możemy łatwo zdiagnozować połączenie. Wartość zmiennej *Frm0WcState* równa 0 oznacza, że cała sieć EtherCAT działa prawidłowo, wartość różna od 0 oznacza, że gdzieś występuje problem.

W naszym przykładzie odłączamy *Szafę 3*. Zmienna *Frm0WcState* przyjmie binarnie wartość 000000001110000b. Oznacza to, że:

- 1. Bit 0 = 0 LWR dla Sync Unit 1 działa zapis dla Szafy 1
- 2. Bit 1 = 0 LRD dla Sync Unit 1 działa odczyt dla Szafy 1
- 3. Bit 2 = 0 LWR dla Sync Unit 2 działa zapis dla Szafy 2
- 4. Bit 3 = 0 LRD dla Sync Unit 2 działa odczyt dla Szafy 2
- 5. Bit 4 = 1 LWR dla Sync Unit 3 nie działa zapis dla Szafy 3
- 6. Bit 5 = 1 LRD dla Sync Unit $3 \underline{\text{nie działa}}$ odczyt dla Szafy 3
- 7. Bit 6 = 1 BRD nie działa odczyt ze wszystkich adresów