BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI- HYDERABAD CAMPUS

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout

Date: 01.08.2016

In addition to general handout for all courses appended to the time table, this portion gives further specific details regarding the course.

Course No. : EEE F111

Course Title : ELECTRICAL SCIENCES

Instructor-in-charge : Alivelu M Parimi

Instructors : Alivelu M Parimi, Ayyagari Ravi Teja, Sandeep Kumar, Balasubramaniyan

1. Course Description:

Course covers basic passive and active circuit elements; network theorems and analysis; introduction to single and three phase systems; magnetic circuits; transformers; electrical machines; semi-conductor diodes and applications; transistors and applications; Digital electronics and commonly used measuring instruments.

2. Scope and objective of the Course:

A basic understanding of the working of electrical and electronic circuits and instruments is essential for all engineers and scientists. This course is designed to give the students of all branches a preliminary exposure to this field. The need for basic understanding in this field will come for non-electrical or electronic students at a later stage in their career growth. For EEE and ECE students this course acts as a good starting point for their CDCs.

To obtain basic knowledge on:

- a. Electrical and Magnetic Circuits.
- b. Electrical machines.
- c. Semiconductor Diodes and BJTs; Digital electronics.
- 3. Text Books: Leonard S. Bobrow: Fundamentals of Electrical Engineering, Oxford University Press, Second Edition, 2005. Hughes: Electrical and Electronic Technology, Pearson Education, Ninth Edition, 2008.

4. Course Plan:

Lect. No.	Learning Objectives	Topics to be covered	Bobrow Chapters	Hughes Chapters
1	Introduction		1	Î
2	To study basic circuit elements and the laws;	Voltage and current sources, resistors and ohm's law, KCL, KVL; Instantaneous power	2.1 to 2.12 3.1 to 3.8	
3	To study circuit analysis techniques and theorems.	Nodal and Mesh Analysis	2.1, 2.3	4.1 to 4.4
4-5	To study circuit analysis techniques and theorems.	Thevenin's and Norton's Theorems; Maximum Power Transfer Theorem,	2.5	4.6 to 4.8
6-7	To study circuit analysis techniques and theorems.	Linearity and Superposition application in circuit analysis, Source transformation, Independent and Dependent sources	2.6	4.5
8	Inductors and Capacitors	Inductors and capacitors and their integral relationships;	3.1 to 3.2	5.4 to5.7
9-11	To study response of circuits having energy storing elements	First order circuits and natural response; First order circuits and complete response Second Order Circuits	3.3 to 3.6	5.14 to 5.19; 8.1 to 8.3 and 8.6 to 8.10
12	Alternating current circuits	A.C. Voltage & Current	4.1	9.3 to 9.6
13	Alternating current circuits	Complex numbers	4.2	9.8 to 9.9
14-16	Alternating current circuits	Frequency and Domain analysis	4.3	10.2 to 10.4; 10.6 to 10.10; 11.1 to 11.5; 13.1 to 13.8
17-18	Alternating current circuits	Power and Power-factor, OpAmps	4.4 to 4.5	12.2 to 12.8
19	Alternating current circuits	Poly-Phase circuits	4.6 to 4.7	33.1 to 33.9

Lect. No.	Learning Objectives	Topics to be covered	Bobrow Chapters	Hughes Chapters
20-22	Magnetic Circuits	Fundamentals of Electromagnetics, Magnetic fields and their effects, Magnetic Circuits and Materials	gnetic fields and their effects,	
23	Transformers	Introduction	14.3	34.1 to 34.4
24-25	Transformers	Ideal transformer; Equivalent circuit; Non-ideal transformer; ; Regulation and efficiency	14.4-14.5	34.5 to 34.11
26	DC Machines	DC and AC machine Basics	15.4	35.1-35.4, 41.1 to 41.6
27-30	Principles and Applications of Semiconductor Diodes, Diode Circuits	Semiconductors, doping, Diodes, Zener diodes, effects of capacitance, Half-wave and full wave rectifiers	6.1-6.7	20.1to 20.7 21.1 to 21.3
31-36	Bipolar Junction Transistors	<i>pnp</i> and <i>npn</i> transistors, Characteristics and Applications of BJTs, Application to digital logic circuits	7.1-7.4	22.1 to 22.6
37-38	Field Effect Transistors	JFET, MOSFET	8.1-8.2	23.1 to 23.4
39-40	Transistor Amplifiers	H parameters	9.1	22.9 to 22.15
41-42	Digital Systems	Binary numbers, Binary Arithmetic, Digital logic circuits, Boolean Algebra	11.1-11.6, 12.1	27.1 to 27.14

5. Evaluation Scheme:

Component	Duration	Maximum	Date & Time	Remarks	%
		Marks			weightage
Test 1	1 hour	75M	9/9& 2.30- 3.30PM	CB	25%
Test 2	1 hour	75M	24/10 & 2.30- 3.30PM	СВ	25%
Surprise Quiz	In class	30M	Tutorials	CB	10%,
Comprehensive	1.5 hours	60M	05/12 FN	CB	20%,
Examination	1.5 hours	60M	05/12 FN	OB	20%,

^{6.} Make-up policy: Make-up will be given only under exceptional circumstances and with prior permission.
7. Chamber consultation hour: To be announced
8. Notices: Notices concerning the course will be displayed on the EEE notice boards and in CMS.

Instructor-in-charge **EEE F111**