CHUONG I VECTO

I. VECTO

1. Các định nghĩa

- Vecto là một đoạn thẳng có hướng. Kí hiệu vecto có điểm đầu A, điểm cuối B là \overline{AB} .
- Giá của vectơ là đường thẳng chứa vectơ đó.
- Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ, kí hiệu $|\overrightarrow{AB}|$.
- **Vecto không** là vecto có điểm đầu và điểm cuối trùng nhau, kí hiệu $\vec{0}$.
- Hai vecto đgl cùng phương nếu giá của chúng song song hoặc trùng nhau.
- Hai vecto cùng phương có thể cùng hướng hoặc ngược hướng.
- Hai vecto đgl bằng nhau nếu chúng cùng hướng và có cùng độ dài.

Chú ý: + Ta còn sử dụng kí hiệu \vec{a} , \vec{b} ,... để biểu diễn vecto.

+ Qui $u\acute{o}c$: Vecto $\vec{0}$ cùng phương, cùng hướng $v\acute{o}i$ mọi vecto.

Mọi vectơ $\vec{0}$ đều bằng nhau.

2. Các phép toán trên vecto

a) Tổng của hai vectơ

- Qui tắc ba điểm: Với ba điểm A, B, C tuỳ ý, ta có: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- Qui tắc hình bình hành: Với ABCD là hình bình hành, ta có: AB + AD = AC.
- Tính chất: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$; $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$; $\vec{a} + \vec{0} = \vec{a}$

b) Hiệu của hai vectơ

- **Vector đổi** của \vec{a} là vector \vec{b} sao cho $\vec{a} + \vec{b} = \vec{0}$. Kí hiệu vector đối của \vec{a} là $-\vec{a}$.
- \bullet Vecto đối của $\vec{0}\,$ là $\vec{0}\,$.
- $\bullet \ \vec{a} \vec{b} = \vec{a} + (-\vec{b}).$
- Qui tắc ba điểm: Với ba điểm O, A, B tuỳ ý, ta có: $\overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{AB}$.

c) Tích của một vectơ với một số

- Cho vecto \vec{a} và số $k \in R$. $k\vec{a}$ là một vecto được xác định như sau:
 - $+ k\vec{a}$ cùng hướng với \vec{a} nếu $k \ge 0$, $k\vec{a}$ ngược hướng với \vec{a} nếu k < 0.
 - $+ |k\vec{a}| = |k| . |\vec{a}|.$
- Tính chất: $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$; $(k+l)\vec{a} = k\vec{a} + l\vec{a}$; $k(l\vec{a}) = (kl)\vec{a}$ $k\vec{a} = \vec{0} \iff k = 0 \text{ hoặc } \vec{a} = \vec{0}$.
- Điều kiện để hai vecto cùng phương: \vec{a} $v \grave{a}$ \vec{b} $(\vec{a} \neq \vec{0})$ $c \grave{u}$ ng $phương \Leftrightarrow \exists k \in R : \vec{b} = k\vec{a}$
- Điều kiện ba điểm thẳng hàng: A, B, C thẳng hàng $\Leftrightarrow \exists k \neq 0$: $\overrightarrow{AB} = k\overrightarrow{AC}$.
- Biểu thị một vectơ theo hai vectơ không cùng phương: Cho hai vectơ không cùng phương \vec{a}, \vec{b} và \vec{x} tuỳ ý. Khi đó $\exists !\ m,\ n \in R : \ \vec{x} = m\vec{a} + n\vec{b}$.

Chú ý:

• Hệ thức trung điểm đoạn thẳng:

M là trung điểm của đoạn thẳng AB $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{OA} + \overrightarrow{OB} = 2\overrightarrow{OM}$ (O tuỳ ý).

• Hệ thức trọng tâm tam giác:

G là trọng tâm $\triangle ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0} \Leftrightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$ (O tuỳ ý).

VÁN ĐÈ 1: Khái niệm vectơ

- **Bài 1.** Cho tứ giác ABCD. Có thể xác định được bao nhiều vectơ (khác $\vec{0}$) có điểm đầu và điểm cuối là các điểm A, B, C, D?
- Bài 2. Cho ΔABC có A', B', C' lần lượt là trung điểm của các cạnh BC, CA, AB.
 - a) Chứng minh: $\overrightarrow{BC'} = \overrightarrow{C'A} = \overrightarrow{A'B'}$.
 - b) Tìm các vecto bằng B'C', C'A'.
- **Bài 3.** Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: $\overrightarrow{MP} = \overrightarrow{QN}$; $\overrightarrow{MQ} = \overrightarrow{PN}$.
- Bài 4. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh:
 - a) $\overrightarrow{AC} \overrightarrow{BA} = \overrightarrow{AD}$; $|\overrightarrow{AB} + \overrightarrow{AD}| = AC$.
 - b) Nếu $|\overrightarrow{AB} + \overrightarrow{AD}| = |\overrightarrow{CB} \overrightarrow{CD}|$ thì ABCD là hình chữ nhất.
- **Bài 5.** Cho hai véc to \vec{a} , \vec{b} . Trong trường hợp nào thì đẳng thức sau đúng: $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$.
- **Bài 6.** Cho $\triangle ABC$ đều cạnh a. Tính $|\overrightarrow{AB} + \overrightarrow{AC}|$; $|\overrightarrow{AB} \overrightarrow{AC}|$.
- **Bài 7.** Cho hình vuông ABCD cạnh a. Tính $|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}|$.
- **Bài 8.** Cho \triangle ABC đều cạnh a, trực tâm H. Tính độ dài của các vecto $\overrightarrow{HA}, \overrightarrow{HB}, \overrightarrow{HC}$.
- **Bài 9.** Cho hình vuông ABCD cạnh a, tâm O. Tính độ dài của các vecto $\overrightarrow{AB} + \overrightarrow{AD}$, $\overrightarrow{AB} + \overrightarrow{AC}$, $\overrightarrow{AB} \overrightarrow{AD}$.

Bài 10.

a)

VÁN ĐỀ 2: Chứng minh đẳng thức vectơ – Phân tích vectơ

Để chứng minh một đẳng thức vectơ hoặc phân tích một vectơ theo hai vectơ không cùng phương, ta thường sử dụng:

- Qui tắc ba điểm để phân tích các vecto.
- Các hệ thức thường dùng như: hệ thức trung điểm, hệ thức trọng tâm tam giác.
- Tính chất của các hình.
- Bài 1. Cho 6 điểm A, B, C, D, E, F. Chứng minh:
 - a) $\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$
- b) $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{AE} + \overrightarrow{BF} + \overrightarrow{CD}$.
- Bài 2. Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh:
 - a) Nếu $\overrightarrow{AB} = \overrightarrow{CD}$ thì $\overrightarrow{AC} = \overrightarrow{BD}$
- b) $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{IJ}$.
- c) Gọi G là trung điểm của IJ. Chứng minh: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.
- d) Gọi P, Q lần lượt là trung điểm của AC và BD; M, N lần lượt là trung điểm của AD và BC . Chứng minh các đoạn thẳng IJ, PQ, MN có chung trung điểm.
- **Bài 3.** Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của BC và CD. Chứng minh: $2(\overrightarrow{AB} + \overrightarrow{AI} + \overrightarrow{JA} + \overrightarrow{DA}) = 3\overrightarrow{DB}$.
- **Bài 4.** Cho \triangle ABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh: $\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS} = \vec{0}$.
- Bài 5. Cho tam giác ABC, có AM là trung tuyến. I là trung điểm của AM.
 - a) Chứng minh: $2\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$.
 - b) Với điểm O bất kỳ, chứng minh: $2\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 4\overrightarrow{OI}$.

www.MATHVN.com

- Bài 6. Cho ΔABC có M là trung điểm của BC, G là trọng tâm, H là trực tâm, O là tâm đường tròn ngoại tiếp. Chứng minh:
 - a) AH = 2OM
- b) HA + HB + HC = 2HO
- c) OA + OB + OC = OH.
- Bài 7. Cho hai tam giác ABC và A'B'C' lần lượt có các trọng tâm là G và G'.
 - a) Chứng minh AA' + BB' + CC' = 3GG'.
 - b) Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm.
- **Bài 8.** Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh: $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}$.
- Bài 9. Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho CN = 2NA. K là trung điểm của MN. Chứng minh:
 - a) $\overrightarrow{AK} = \frac{1}{4} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}$
- b) $\overrightarrow{KD} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.
- Bài 10. Cho hình thang OABC. M, N lần lượt là trung điểm của OB và OC. Chứng minh rằng:
 - a) $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{OB} \overrightarrow{OA}$
- b) $\overrightarrow{BN} = \frac{1}{2}\overrightarrow{OC} \overrightarrow{OB}$ c) $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{OC} \overrightarrow{OB})$.
- Bài 11. Cho ΔABC. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng:
 - a) $\overrightarrow{AB} = -\frac{2}{3}\overrightarrow{CM} \frac{4}{3}\overrightarrow{BN}$
- c) $\overrightarrow{AC} = -\frac{4}{3}\overrightarrow{CM} \frac{2}{3}\overrightarrow{BN}$ c) $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{BN} \frac{1}{3}\overrightarrow{CM}$.
- Bài 12. Cho ΔABC có trọng tâm G. Gọi H là điểm đối xứng của B qua G.
 - a) Chứng minh: $\overrightarrow{AH} = \frac{2}{3}\overrightarrow{AC} \frac{1}{3}\overrightarrow{AB}$ và $\overrightarrow{CH} = -\frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$.
 - b) Gọi M là trung điểm của BC. Chứng minh: $\overrightarrow{MH} = \frac{1}{6} \overrightarrow{AC} \frac{5}{6} \overrightarrow{AB}$.
- **Bài 13.** Cho hình bình hành ABCD, đặt $AB = \vec{a}$, $AD = \vec{b}$. Goi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vector \overrightarrow{BI} , \overrightarrow{AG} theo \vec{a} , \vec{b} .
- Bài 14. Cho lục giác đều ABCDEF. Phân tích các vectơ BC và BD theo các vectơ AB và AF.
- Bài 15. Cho hình thang OABC, AM là trung tuyến của tam giác ABC. Hãy phân tích vector AM theo các vector OA, OB, OC.
- Bài 16. Cho ΔABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho MB = 3MC, NA = 3CN, $PA + PB = \vec{0}$.
 - a) Tính PM, PN theo AB, AC
- b) Chứng minh: M, N, P thẳng hàng.
- **Bài 17.** Cho \triangle ABC. Gọi A₁, B₁, C₁ lần lượt là trung điểm của BC, CA, AB.
 - a) Chúng minh: $AA_1 + BB_1 + CC_1 = \vec{0}$
 - b) Đặt $\overrightarrow{BB_1} = \overrightarrow{u}, \overrightarrow{CC_1} = \overrightarrow{v}$. Tính $\overrightarrow{BC}, \overrightarrow{CA}, \overrightarrow{AB}$ theo \overrightarrow{u} \overrightarrow{va} \overrightarrow{v} .
- Bài 18. Cho ΔABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI. Gọi F là điểm trên cạnh BC kéo dài sao cho 5FB = 2FC.
 - a) Tính AI, AF theo AB và AC.
 - b) Gọi G là trọng tâm \triangle ABC. Tính AG theo AI và AF.
- Bài 19. Cho ΔABC có trọng tâm G. Gọi H là điểm đối xứng của G qua B.
 - a) Chứng minh: $HA 5HB + HC = \vec{0}$.
 - b) Đặt $AG = \vec{a}$, $AH = \vec{b}$. Tính AB, AC theo \vec{a} $v \hat{a}$ \vec{b} .

VÂN ĐỀ 3: Xác định một điểm thoả mãn đẳng thức vecto

Để xác định một điểm M ta cần phải chỉ rõ vị trí của điểm đó đối với hình vẽ. Thông thường ta biến đổi đẳng thức vecto đã cho về dạng $\overrightarrow{OM} = \vec{a}$, trong đó O và \vec{a} đã được xác định. Ta thường sử dụng các tính chất về:

- Điểm chia đoạn thẳng theo tỉ số k.
- Hình bình hành.
- Trung điểm của đoạn thẳng.
- Trọng tâm tam giác, ...
- **Bài 1.** Cho \triangle ABC. Hãy xác định điểm M thoả mãn điều kiên: $\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.
- **Bài 2.** Cho đoạn thẳng AB có trung điểm I . M là điểm tuỳ ý không nằm trên đường thẳng AB . Trên MI kéo dài, lấy 1 điểm N sao cho IN = MI.
 - a) Chứng minh: BN BA = MB.
 - b) Tìm các điểm D, C sao cho: $\overrightarrow{NA} + \overrightarrow{NI} = \overrightarrow{ND}$; $\overrightarrow{NM} \overrightarrow{BN} = \overrightarrow{NC}$.
- Bài 3. Cho hình bình hành ABCD.
 - a) Chứng minh rằng: $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}$.
 - b) Xác định điểm M thoả mãn điều kiên: $3\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.
- Bài 4. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
 - a) Chứng minh: $\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{DC})$.
 - b) Xác định điểm O sao cho: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$.
- **Bài 5.** Cho 4 điểm A, B, C, D. Gọi M và N lần lượt là trung điểm của AB, CD, O là trung điểm của MN. Chứng minh rằng với điểm S bất kì, ta có: $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} = 4\overrightarrow{SO}$.
- **Bài 6.** Cho ΔABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
 - a) $2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{0}$

- b) $2\overrightarrow{JA} + \overrightarrow{JC} \overrightarrow{JB} = \overrightarrow{CA}$
- c) $\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} = 2\overrightarrow{BC}$
- d) $3\overrightarrow{LA} \overrightarrow{LB} + 2\overrightarrow{LC} = \overrightarrow{0}$.
- **Bài 7.** Cho ΔABC . Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
 - a) $2\overrightarrow{IA} 3\overrightarrow{IB} = 3\overrightarrow{BC}$

- b) $\overrightarrow{JA} + \overrightarrow{JB} + 2\overrightarrow{JC} = \overrightarrow{0}$
- c) $\overrightarrow{KA} + \overrightarrow{KB} \overrightarrow{KC} = \overrightarrow{BC}$
- d) $\overrightarrow{LA} 2\overrightarrow{LC} = \overrightarrow{AB} 2\overrightarrow{AC}$.
- **Bài 8.** Cho ΔABC . Hãy xác định các điểm I, F, K, L thoả các đẳng thức sau:
 - a) $\overrightarrow{IA} + IB \overrightarrow{IC} = \overrightarrow{BC}$

- b) $\overrightarrow{FA} + \overrightarrow{FB} + \overrightarrow{FC} = \overrightarrow{AB} + \overrightarrow{AC}$
- c) $3\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} = \vec{0}$
- d) $\overrightarrow{3LA} 2\overrightarrow{LB} + \overrightarrow{LC} = \vec{0}$.
- **Bài 9.** Cho hình bình hành ABCD có tâm O. Hãy xác định các điểm I, F, K thoả các đẳng thức sau:
 - a) $\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} = 4\overrightarrow{ID}$

- b) $2\overrightarrow{FA} + 2\overrightarrow{FB} = 3\overrightarrow{FC} \overrightarrow{FD}$
- c) $4\overrightarrow{KA} + 3\overrightarrow{KB} + 2\overrightarrow{KC} + \overrightarrow{KD} = \vec{0}$.
- Bài 10. Cho tam giác ABC và điểm M tùy ý.
 - a) Hãy xác định các điểm D, E, F sao cho $\overrightarrow{MD} = \overrightarrow{MC} + \overrightarrow{AB}$, $\overrightarrow{ME} = \overrightarrow{MA} + \overrightarrow{BC}$, $\overrightarrow{MF} = \overrightarrow{MB} + \overrightarrow{CA}$. Chứng minh D, E, F không phụ thuộc vào vị trí của điểm M.
 - b) So sánh 2 véc tơ $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$ và $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF}$.
- Bài 11. Cho tứ giác ABCD.
 - a) Hãy xác định vị trí của điểm G sao cho: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \vec{0}$ (G đgl trọng tâm của tứ giác ABCD).
 - b) Chứng minh rằng với điểm O tuỳ ý, ta có: $\overrightarrow{OG} = \frac{1}{4} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$.

www.MATHVN.com

- **Bài 12.** Cho G là trọng tâm của tứ giác ABCD. A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh:
 - a) G là điểm chung của các đoạn thẳng AA', BB', CC', DD'.
 - b) G cũng là trọng tâm của của tứ giác A'B'C'D'.
- **Bài 13.** Cho tứ giác ABCD. Trong mỗi trường hợp sau đây hãy xác định điểm I và số k sao cho các vecto \vec{v} đều bằng $k.\overrightarrow{MI}$ với mọi điểm M:
 - a) $\vec{v} = \overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}$
- b) $\vec{v} = \overrightarrow{MA} \overrightarrow{MB} 2\overrightarrow{MC}$
- c) $\vec{v} = \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$
- d) $\vec{v} = 2MA + 2MB + MC + 3MD$.

Bài 14.

a)

VÁN ĐỀ 4: Chứng minh ba điểm thẳng hàng – Hai điểm trùng nhau

- Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh ba điểm đó thoả mãn đẳng thức $\overrightarrow{AB} = k\overrightarrow{AC}$, với $k \neq 0$.
- \overrightarrow{De} chứng minh hai điểm M, N trùng nhau ta chứng minh chúng thoả mãn đẳng thức $\overrightarrow{OM} = \overrightarrow{ON}$, với O là một điểm nào đó hoặc $\overrightarrow{MN} = \overrightarrow{0}$.
- **Bài 1.** Cho bốn điểm O, A, B, C sao cho : $\overrightarrow{OA} + 2\overrightarrow{OB} 3\overrightarrow{OC} = 0$. Chứng tỏ rằng A, B, C thẳng hàng.
- Bài 2. Cho hình bình hành ABCD. Trên BC lấy điểm H, trên BD lấy điểm K sao cho:

$$\overrightarrow{BH} = \frac{1}{5} \overrightarrow{BC}$$
, $\overrightarrow{BK} = \frac{1}{6} \overrightarrow{BD}$. Chứng minh: A, K, H thẳng hàng.

 $HD: \overrightarrow{BH} = \overrightarrow{AH} - \overrightarrow{AB}; \overrightarrow{BK} = \overrightarrow{AK} - \overrightarrow{AB}.$

- **Bài 3.** Cho $\triangle ABC$ với I, J, K lần lượt được xác định bởi: $\overrightarrow{IB} = 2\overrightarrow{IC}$, $\overrightarrow{JC} = -\frac{1}{2}\overrightarrow{JA}$, $\overrightarrow{KA} = -\overrightarrow{KB}$.
 - a) Tính \overrightarrow{IJ} , \overrightarrow{IK} theo \overrightarrow{AB} và \overrightarrow{AC} . (HD: $\overrightarrow{IJ} = \overrightarrow{AB} \frac{4}{3}\overrightarrow{AC}$)
 - b) Chứng minh ba điểm I, J, K thẳng hàng (HD: J là trọng tâm ΔAIB).
- **Bài 4.** Cho tam giác ABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}$, $\overrightarrow{NA} = 3\overrightarrow{CN}$, $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$.
 - a) Tính PM, PN theo AB, AC.
 - b) Chứng minh ba điểm M, N, P thẳng hàng.
- Bài 5. Cho hình bình hành ABCD. Trên các tia AD, AB lần lượt lấy các điểm F, E sao cho

$$AD = \frac{1}{2}AF$$
, $AB = \frac{1}{2}AE$. Chứng minh:

- a) Ba điểm F, C, E thẳng hàng.
- b) Các tứ giác BDCF, DBEC là hình bình hành.
- **Bài 6.** Cho \triangle ABC. Hai điểm I, J được xác định bởi: $\overrightarrow{IA} + 3\overrightarrow{IC} = \overrightarrow{0}$, $\overrightarrow{JA} + 2\overrightarrow{JB} + 3\overrightarrow{JC} = \overrightarrow{0}$. Chứng minh 3 điểm I, J, B thẳng hàng.
- **Bài 7.** Cho ΔABC. Hai điểm M, N được xác định bởi: $3\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$, $\overrightarrow{NB} 3\overrightarrow{NC} = \overrightarrow{0}$. Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm của ΔABC.

- **Bài 8.** Cho \triangle ABC. Lấy các điểm M N, P: $\overrightarrow{MB} 2\overrightarrow{MC} = \overrightarrow{NA} + 2\overrightarrow{NC} = \overrightarrow{PA} + \overrightarrow{PB} = \vec{0}$
 - a) Tính PM, PN theo AB và \overrightarrow{AC} .
- b) Chứng minh 3 điểm M, N, P thẳng hàng.
- **Bài 9.** Cho ΔABC. Về phía ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh các tam giác RIP và JQS có cùng trọng tâm.
- Bài 10. Cho tam giác ABC, A' là điểm đối xứng của A qua B, B' là điểm đối xứng của B qua C, C' là điểm đối xứng của C qua A. Chứng minh các tam giác ABC và A'B'C' có chung trọng tâm.
- **Bài 11.** Cho \triangle ABC. Gọi A', B', C' là các điểm định bởi: $2\overrightarrow{A'B} + 3\overrightarrow{A'C} = \overrightarrow{0}$, $2\overrightarrow{B'C} + 3\overrightarrow{B'A} = \overrightarrow{0}$, $2\overrightarrow{C'A} + 3\overrightarrow{C'B} = \overrightarrow{0}$. Chứng minh các tam giác ABC và A'B'C' có cùng trọng tâm.
- Bài 12. Trên các cạnh AB, BC, CA của ΔABC lấy các điểm A', B', C' sao cho:

$$\frac{AA'}{AB} = \frac{BB'}{BC} = \frac{CC'}{AC}$$

Chứng minh các tam giác ABC và A'B'C' có chung trọng tâm.

- **Bài 13.** Cho tam giác ABC và một điểm M tuỳ ý. Gọi A', B', C' lần lượt là điểm đối xứng của M qua các trung điểm K, I, J của các cạnh BC, CA, AB.
 - a) Chứng minh ba đường thẳng AA', BB', CC' đồng qui tại một điểm N.
 - b) Chứng minh rằng khi M di đông, đường thẳng MN luôn đi qua trong tâm G của ΔABC.
- **Bài 14.** Cho tam giác ABC có trọng tâm G. Các điểm M, N thoả mãn: $3MA + 4MB = \vec{0}$, $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Chứng minh đường thẳng MN đi qua trọng tâm G của \triangle ABC.
- **Bài 15.** Cho tam giác ABC. Gọi I là trung điểm của BC, D và E là hai điểm sao cho $\overrightarrow{BD} = \overrightarrow{DE} = \overrightarrow{EC}$.
 - a) Chứng minh $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{AE}$.
 - b) Tính $\overrightarrow{AS} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} + \overrightarrow{AE}$ theo \overrightarrow{AI} . Suy ra ba điểm A, I, S thẳng hàng.
- **Bài 16.** Cho tam giác ABC. Các điểm M, N được xác định bởi các hệ thức $\overrightarrow{BM} = \overrightarrow{BC} 2\overrightarrow{AB}$, $\overrightarrow{CN} = x\overrightarrow{AC} \overrightarrow{BC}$.
 - a) Xác định x để A, M, N thẳng hàng.
 - b) Xác định x để đường thẳng MN đi trung điểm I của BC. Tính $\frac{IM}{IN}$.
- **Bài 17.** Cho ba điểm cố định A, B, C và ba số thực a, b, c sao cho $a+b+c \neq 0$.
 - a) Chứng minh rằng có một và chỉ một điểm G thoả mãn $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \vec{0}$.
 - b) Gọi M, P là hai điểm di động sao cho MP = aMA + bMB + cMC. Chứng minh ba điểm G, M, P thẳng hàng.
- **Bài 18.** Cho tam giác ABC. Các điểm M, N thoả mãn MN = 2MA + 3MB MC.
 - a) Tìm điểm I thoả mãn $2IA + 3IB IC = \vec{0}$.
 - b) Chứng minh đường thẳng MN luôn đi qua một điểm cố định.
- **Bài 19.** Cho tam giác ABC. Các điểm M, N thoả mãn MN = 2MA MB + MC.
 - a) Tìm điểm I sao cho $2\overrightarrow{IA} \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$.
 - b) Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định.
 - c) Gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố đinh.

Bài 20.

a)

www.MATHVN.com Trang 6

VÂN ĐỂ 5: Tập hợp điểm thoả mãn đẳng thức vectơ

Để tìm tập hợp điểm M thoả mãn một đẳng thức vectơ ta biến đổi đẳng thức vectơ đó để đưa về các tập hợp điểm cơ bản đã biết. Chẳng hạn:

- Tâp hợp các điểm cách đều hai đầu mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.
- Tập hợp các điểm cách một điểm cố định một khoảng không đổi đường tròn có tâm là điểm cổ định và bán kính là khoảng không đổi.

Bài 1. Cho 2 điểm cố định A, B. Tìm tập hợp các điểm M sao cho:

a)
$$|\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA} - \overrightarrow{MB}|$$

b)
$$|2\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA} + 2\overrightarrow{MB}|$$
.

HD: a) Đường tròn đường kính AB

b) Trung trực của AB.

Bài 2. Cho ΔABC. Tìm tập hợp các điểm M sao cho:

a)
$$|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}| = \frac{3}{2} |\overrightarrow{MB} + \overrightarrow{MC}|$$
 b) $|\overrightarrow{MA} + \overrightarrow{BC}| = |\overrightarrow{MA} - \overrightarrow{MB}|$

b)
$$|\overrightarrow{MA} + \overrightarrow{BC}| = |\overrightarrow{MA} - \overrightarrow{MB}|$$

c)
$$|2\overrightarrow{MA} + \overrightarrow{MB}| = |4\overrightarrow{MB} - \overrightarrow{MC}|$$

d)
$$|4\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}| = |2\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC}|$$
.

HD: a) Trung trực của IG (I là trung điểm của BC, G là trọng tâm $\triangle ABC$).

b) Dưng hình bình hành ABCD. Tập hợp là đường tròn tâm D, bán kính BA.

Bài 3. Cho \triangle ABC.

- a) Xác định điểm I sao cho: $3IA 2IB + IC = \vec{0}$.
- b) Chứng minh rằng đường thẳng nối 2 điểm M, N xác định bởi hệ thức:

$$\overrightarrow{MN} = 2\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC}$$

luôn đi qua một điểm cố đinh.

- c) Tìm tập hợp các điểm H sao cho: $|3\overrightarrow{HA} 2\overrightarrow{HB} + \overrightarrow{HC}| = |\overrightarrow{HA} \overrightarrow{HB}|$.
- d) Tìm tập hợp các điểm K sao cho: $2|\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC}| = 3|\overrightarrow{KB} + \overrightarrow{KC}|$

Bài 4. Cho ΔABC.

- a) Xác định điểm I sao cho: $IA + 3IB 2IC = \vec{0}$.
- b) Xác định điểm D sao cho: $3DB 2DC = \vec{0}$.
- c) Chứng minh 3 điểm A, I, D thẳng hàng.
- d) Tìm tập hợp các điểm M sao cho: $|MA + 3\overline{MB} 2\overline{MC}| = |2\overline{MA} \overline{MB} \overline{MC}|$.

Bài 5.

a)

II. TOA ĐỘ

1. Trục toạ độ

- Trục toạ độ (trục) là một đường thẳng trên đó đã xác định một điểm gốc O và một vector đơn vị \vec{e} . Kí hiệu $(O; \vec{e})$.
- Toạ độ của vecto trên trục: $\vec{u} = (a) \Leftrightarrow \vec{u} = a.\vec{e}$.
- Toạ độ của điểm trên trục: $M(k) \Leftrightarrow \overrightarrow{OM} = k.\vec{e}$.
- Độ dài đại số của vecto trên trục: $\overrightarrow{AB} = a \Leftrightarrow \overrightarrow{AB} = a.\vec{e}$.

Chú ý: $+ N\acute{e}u \stackrel{\longrightarrow}{AB} cùng hướng với <math>\vec{e}$ thì $\stackrel{\longrightarrow}{AB} = AB$.

Nếu \overrightarrow{AB} ngược hướng với \overrightarrow{e} thì $\overrightarrow{AB} = -AB$.

 $+ N\acute{e}u A(a), B(b) thi \overline{AB} = b - a.$

+ Hê thức Sa-lơ: Với A, B, C tuỳ ý trên truc, ta có: $\overline{AB} + \overline{BC} = \overline{AC}$.

2. Hệ trục toạ độ

- Hệ gồm hai trục toạ độ Ox, Oy vuông góc với nhau. Vectơ đơn vị trên Ox, Oy lần lượt là \vec{i} , \vec{j} . O là gốc toạ độ, Ox là trục hoành, Oy là trục tung.
- Toạ độ của vectơ đối với hệ trục toạ độ: $\vec{u} = (x;y) \Leftrightarrow \vec{u} = x.\vec{i} + y.\vec{j} \ .$
- Toạ độ của điểm đối với hệ trục toạ độ: $M(x;y) \Leftrightarrow \overrightarrow{OM} = x.\overrightarrow{i} + y.\overrightarrow{j}$.
- Tính chất: Cho $\vec{a}=(x;y), \ \vec{b}=(x';y'), \ k\in R$, $A(x_A;y_A), \ B(x_B;y_B), \ C(x_C;y_C)$:

$$+ \vec{a} = \vec{b} \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases} + \vec{a} \pm \vec{b} = (x \pm x'; y \pm y') + k\vec{a} = (kx; ky)$$

 $+ \vec{b}$ cùng phương với $\vec{a} \neq \vec{0} \iff \exists k \in \mathbb{R}: \ x' = kx \ v \ a \ y' = ky$.

$$\Leftrightarrow \frac{x'}{x} = \frac{y'}{y} \text{ (n\'eu } x \neq 0, y \neq 0).$$

- $+ \overrightarrow{AB} = (x_B x_A; y_B y_A).$
- + Toạ độ trung điểm I của đoạn thẳng AB: $x_I = \frac{x_A + x_B}{2}$; $y_I = \frac{y_A + y_B}{2}$.
- + Toạ độ trọng tâm G của tam giác ABC: $x_G = \frac{x_A + x_B + x_C}{3}$; $y_G = \frac{y_A + y_B + y_C}{3}$.
- + Toạ độ điểm M chia đoạn AB theo tỉ số $k \ne 1$: $x_M = \frac{x_A kx_B}{1 k}$; $y_M = \frac{y_A ky_B}{1 k}$. (M chia đoạn AB theo tỉ số $k \Leftrightarrow \overrightarrow{MA} = k\overrightarrow{MB}$).

www.MATHVN.com Trang 8

VÁN ĐỀ 1: Toạ độ trên trục

Bài 1. Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -2 và 5.

- a) Tìm tọa độ của AB.
- b) Tìm tọa độ trung điểm I của đoạn thẳng AB.
- c) Tìm tọa độ của điểm M sao cho $2MA + 5MB = \vec{0}$.
- d) Tìm toa đô điểm N sao cho 2NA + 3NB = -1.

Bài 2. Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -3 và 1.

- a) Tìm tọa độ điểm M sao cho 3MA 2MB = 1.
- b) Tîm toa đô điểm N sao cho $\overline{NA} + 3\overline{NB} = \overline{AB}$.

Bài 3. Trên truc x'Ox cho 4 điểm A(-2), B(4), C(1), D(6).

- a) Chứng minh rằng: $\frac{1}{AC} + \frac{1}{AD} = \frac{2}{AB}$.
- b) Gọi I là trung điểm của AB. Chứng minh: $\overline{IC}.\overline{ID} = \overline{IA}^2$.
- c) Gọi J là trung điểm của CD. Chứng minh: AC.AD = AB.AJ.

Bài 4. Trên trục *x'Ox* cho 3 điểm A, B, C có tọa độ lần lượt là a, b, c.

- a) Tìm tọa độ trung điểm I của AB.
- b) Tìm tọa độ điểm M sao cho $\overrightarrow{MA} + \overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{0}$.
- c) Tìm toa đô điểm N sao cho $2\overrightarrow{NA} 3\overrightarrow{NB} = \overrightarrow{NC}$.

Bài 5. Trên trục x'Ox cho 4 điểm A, B, C, D tuỳ ý.

- a) Chứng minh: AB.CD + AC.DB + DA.BC = 0.
- b) Gọi I, J, K, L lần lượt là trung điểm của các đoạn AC, BD, AB, CD. Chứng minh rằng các đoạn IJ và KL có chung trung điểm.

Bài 6.

a)

VÂN ĐÊ 2: Toạ độ trên hệ trục

Bài 1. Viết tọa độ của các vecto sau:

a)
$$\vec{a} = 2\vec{i} + 3\vec{j}$$
; $\vec{b} = \frac{1}{3}\vec{i} - 5\vec{j}$; $\vec{c} = 3\vec{i}$; $\vec{d} = -2\vec{j}$.

b)
$$\vec{a} = \vec{i} - 3\vec{j}$$
; $\vec{b} = \frac{1}{2}\vec{i} + \vec{j}$; $\vec{c} = -\vec{i} + \frac{3}{2}\vec{j}$; $\vec{d} = -4\vec{j}$; $\vec{e} = 3\vec{i}$.

Bài 2. Viết dưới dạng $\vec{u} = x\vec{i} + y\vec{j}$ khi biết toạ độ của vecto \vec{u} là:

- a) $\vec{u} = (2, -3); \vec{u} = (-1, 4); \vec{u} = (2, 0); \vec{u} = (0, -1).$
- b) $\vec{u} = (1,3); \vec{u} = (4,-1); \vec{u} = (1,0); \vec{u} = (0,0).$

Bài 3. Cho $\vec{a} = (1; -2)$, $\vec{b} = (0; 3)$. Tìm toạ độ của các vecto sau:

a)
$$\vec{x} = \vec{a} + \vec{b}$$
; $\vec{y} = \vec{a} - \vec{b}$; $\vec{z} = 2\vec{a} - 3\vec{b}$. b) $\vec{u} = 3\vec{a} - 2\vec{b}$; $\vec{v} = 2 + \vec{b}$; $\vec{w} = 4\vec{a} - \frac{1}{2}\vec{b}$.

Bài 4. Cho
$$\vec{a} = (2;0), \vec{b} = \left(-1; \frac{1}{2}\right), \vec{c} = (4;-6).$$

a) Tìm toạ độ của vecto $\vec{d} = 2\vec{a} - 3\vec{b} + 5\vec{c}$.

- b) Tîm 2 số m, n sao cho: $m\vec{a} + \vec{b} n\vec{c} = \vec{0}$.
- c) Biểu diễn vector \vec{c} theo \vec{a}, \vec{b} .

Bài 5. Cho hai điểm A(3,-5), B(1,0).

- a) Tìm toạ độ điểm C sao cho: OC = -3AB.
- b) Tìm điểm D đối xứng của A qua C.
- c) Tìm điểm M chia đoạn AB theo tỉ số k = -3.
- **Bài 6.** Cho ba điểm A(-1; 1), B(1; 3), C(-2; 0).
 - a) Chứng minh ba điểm A, B, C thẳng hàng.
 - b) Tìm các tỉ số mà điểm A chia đoạn BC, điểm B chia đoạn AC, điểm C chia đoạn AB.
- **Bài 7.** Cho ba điểm A(1; -2), B(0; 4), C(3; 2).
 - a) Tìm toạ độ các vecto \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC} .
 - b) Tìm tọa độ trung điểm I của đoạn AB.
 - c) Tìm tọa độ điểm M sao cho: CM = 2AB 3AC.
 - d) Tìm tọa độ điểm N sao cho: $AN + 2BN 4CN = \vec{0}$.
- **Bài 8.** Cho ba điểm A(1; -2), B(2; 3), C(-1; -2).
 - a) Tìm toạ độ điểm D đối xứng của A qua C.
 - b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C.
 - c) Tìm toạ độ trọng tâm G của tam giác ABC.

Bài 9.

a)

BÀI TẬP ÔN CHƯƠNG I

- **Bài 1.** Cho tam giác ABC với trực tâm H, B' là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác. Hãy xét quan hệ giữa các vector \overrightarrow{AH} và $\overrightarrow{B'C}$; $\overrightarrow{AB'}$ và \overrightarrow{HC} .
- Bài 2. Cho bốn điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD.
 - a) Chứng minh: $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{IJ}$.
 - b) Gọi G là trung điểm của IJ. Chứng minh: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \vec{0}$.
 - c) Gọi P, Q là trung điểm của các đoạn thẳng AC và BD; M, N là trung điểm của các đoạn thẳng AD và BC. Chứng minh rằng ba đoạn thẳng IJ, PQ và MN có chung trung điểm.
- Bài 3. Cho tam giác ABC và một điểm M tuỳ ý.
 - a) Hãy xác định các điểm D, E, F sao cho MD = MC + AB, ME = MA + BC, $\overrightarrow{MF} = \overrightarrow{MB} + \overrightarrow{CA}$. Chứng minh các điểm D, E, F không phụ thuộc vào vị trí của điểm M.
 - b) So sánh hai tổng vecto: MA + MB + MC và MD + ME + MF.
- **Bài 4.** Cho ΔABC với trung tuyến AM. Gọi I là trung điểm AM.
 - a) Chứng minh: $2\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$.
 - b) Với điểm O bất kì, chứng minh: $2\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 4\overrightarrow{OI}$.
- **Bài 5.** Cho hình bình hành ABCD tâm O. Gọi I là trung điểm BC và G là trọng tâm ΔABC. Chứng minh:

a) $2\overrightarrow{AI} = 2\overrightarrow{AO} + \overrightarrow{AB}$.

b) $3\overrightarrow{DG} = \overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC}$.

www.MATHVN.com Trang 10

Bài 6. Cho hình bình hành ABCD tâm O. Gọi I và J là trung điểm của BC, CD.

- a) Chứng minh: $\overrightarrow{AI} = \frac{1}{2} (\overrightarrow{AD} + 2\overrightarrow{AB})$ b) Chứng minh: $\overrightarrow{OA} + \overrightarrow{OI} + \overrightarrow{OI} = \overrightarrow{0}$.
- c) Tìm điểm M thoả mãn: $\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.

Bài 7. Cho tam giác ABC có trọng tâm G. Gọi D và E là các điểm xác định bởi $\overrightarrow{AD} = 2\overrightarrow{AB}$, $\overrightarrow{AE} = \frac{2}{5}\overrightarrow{AC}$.

- a) Tính \overrightarrow{AG} , \overrightarrow{DE} , \overrightarrow{DG} theo \overrightarrow{AB} và \overrightarrow{AC} .
- b) Chứng minh ba điểm D, E, G thẳng hàng.

Bài 8. Cho \triangle ABC. Gọi D là điểm xác định bởi $\overrightarrow{AD} = \frac{2}{5} \overrightarrow{AC}$ và M là trung điểm đoạn BD.

- a) Tính \overrightarrow{AM} theo \overrightarrow{AB} \overrightarrow{va} \overrightarrow{AC} .
- b) AM cắt BC tại I. Tính $\frac{IB}{IC}$ và $\frac{AM}{AI}$.

Bài 9. Cho ΔABC. Tìm tập hợp các điểm M thỏa điều kiện:

a) $\overrightarrow{MA} = \overrightarrow{MB}$

- b) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$
- c) $|\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA} \overrightarrow{MB}|$
- d) $|\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA}| + |\overrightarrow{MB}|$
- e) $|\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA} + \overrightarrow{MC}|$

Bài 10. Cho \triangle ABC có A(4; 3), B(-1; 2), C(3; -2).

- a) Tìm tọa độ trọng tâm G của ΔABC .
- b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 11. Cho A(2; 3), B(-1; -1), C(6; 0).

- a) Chứng minh ba điểm A, B, C không thẳng hàng.
- b) Tìm tọa độ trọng tâm G của $\triangle ABC$.
- c) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

Bài 12. Cho A(0; 2), B(6; 4), C(1; -1). Tìm toạ độ các điểm M, N, P sao cho:

- a) Tam giác ABC nhận các điểm M, N, P làm trung điểm của các cạnh.
- b) Tam giác MNP nhận các điểm A, B, C làm trung điểm của các cạnh.