Inequalities

Munir Uz Zaman

Date: May 9, 2022

Contents

1	AM-	-GM Inequality	5					
2	Jens	ensen's Inequality						
	2.1	Convex and Concave Functions	9					
	2.2	Jensen's Inequality	9					

1 AM-GM Inequality

Theorem 1.0.1 (AM-GM Inequality)

For all positive real numbers a_1, a_2, \dots, a_n where $n \in \mathbb{N}$ and $n \geq 2$ the following inequality holds.

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Equality occurs if and only if $a_1 = a_2 = \cdots = a_n$.

Proof: We will prove this theorem using a special type of induction know as $Cauchy\ Induction$. Here's how we'll prove it, (let P_n be the statement for n numbers.)

- We will first show that P_2 is true.
- We will show that $P_n \implies P_{2n}$
- Then we will show that $P_n \implies P_{n-1}$

When these are verified, all the assertions P_n with $n \geq 2$ are shown to be true. First we need to prove that if a_1, a_2 are two positive reals then

$$\frac{a_1 + a_2}{2} \ge \sqrt[2]{a_1 a_2}$$

This can be easily shown from the fact that $(\sqrt{a_1} - \sqrt{a_2})^2 \ge 0$. Next we need show that $P_n \implies P_{2n}$. This is also very easy.

$$a_1 + a_2 + \dots + a_{2n} \ge n \sqrt[n]{a_1 a_2 \cdots a_n} + n \sqrt[n]{a_{n+1} a_{n+2} \cdots a_{2n}} \ge 2n \sqrt[2n]{a_1 a_2 \cdots a_{2n}}$$

Now we just need to show that $P_n \implies P_{n-1}$. Let $g = \sqrt[n-1]{a_1 a_2 \cdots a_{n-1}}$. Now,

$$a_1 + \dots + a_{n-1} + g \ge n \sqrt[n]{a_1 \dots a_{n-1} \times g}$$

$$\implies a_1 + \dots + a_{n-1} + g \ge n \sqrt[n]{g^{n-1}g}$$

$$\implies a_1 + \dots + a_{n-1} + g \ge ng$$

$$\implies a_1 + \dots + a_{n-1} \ge (n-1)g$$

$$\implies a_1 + \dots + a_{n-1} \ge (n-1) \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

By Cauchy induction, the inequality is true for every natural number $n \ge 2$. Equality occurs if and only if $a_1 = a_2 = \cdots = a_n$.

Theorem 1.0.2 (Weighted AM-GM Inequality)

If a_1, a_2, \dots, a_n are positive real numbers with $n \geq 2$ and x_1, x_2, \dots, x_n are n non-negative real numbers such that $\sum_{i=1}^n x_i = 1$ then

$$a_1x_1 + \dots + a_nx_n \ge a_1^{x_1} \cdots a_n^{x_n}$$

Inequalities Munir Uz Zaman

Problem 1.0.3 (BDMO 2019)

Show that if a, b, c are positive real numbers then

$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \ge 2\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right)$$

Solution:

$$(a+b-c)^{2} \ge 0$$

$$\Rightarrow a^{2} + b^{2} + c^{2} + 2(ab-bc-ca) \ge 0$$

$$\Rightarrow a^{2} + b^{2} + c^{2} \ge 2(bc+ca-ab)$$

$$\Rightarrow \frac{a^{2} + b^{2} + c^{2}}{abc} \ge 2\left(\frac{bc+ca-ab}{abc}\right)$$

$$\Rightarrow \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \ge 2\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right)$$

Problem 1.0.4

Show that if a_1, a_2, \dots, a_n are n positive real numbers such that $a_1 a_2 \dots a_n = 1$ then

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 2^n$$

Solution: Using the AM-GM Inequality, we have $(1 + a_i) \ge 2\sqrt{a_i}$ for all $1 \le i \le n$. Now multiplying the inequalities for all values of i we get

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 2^n\sqrt{a_1a_2\cdots a_n} = 2^n$$

Problem 1.0.5

Show that if x_1, x_2, \dots, x_n are n real numbers then

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$$

Solution: Using the AM-GM Inequality, we have

$$(x_1 + x_2 + \dots + x_n) \ge n \sqrt[n]{x_1 x_2 \dots x_n}$$
$$\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right) \ge n \sqrt[n]{\frac{1}{x_1 x_2 \dots x_n}}$$

Multiplying the two inequalities we get

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$$

ď,

Munir Uz Zaman Inequalities

Problem 1.0.6 (Russia MO 2004)

Let a, b, c be positive real numbers with sum 3. Show that

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$$

Solution: We know that

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \implies 2ab + 2bc + 2ca = 9 - (a^2 + b^2 + c^2)$$

The inequality is therefore equivalent to

$$a^2 + b^2 + c^2 + 2\sqrt{a} + 2\sqrt{b} + 2\sqrt{c} \ge 9$$

Now using the AM-GM Inequality we have

$$(a^{2} + \sqrt{a} + \sqrt{a}) \ge 3a$$
$$(b^{2} + \sqrt{b} + \sqrt{b}) \ge 3b$$
$$(c^{2} + \sqrt{c} + \sqrt{c}) \ge 3c$$

Adding the 3 inequalities we get

$$a^{2} + b^{2} + c^{2} + 2\sqrt{a} + 2\sqrt{b} + 2\sqrt{c} \ge 9$$

Problem 1.0.7

Let x, y, z be three positive real numbers such that xyz = 1. Prove that

$$\frac{x^3}{(1+y)(1+z)} + \frac{y^3}{(1+x)(1+z)} + \frac{z^3}{(1+x)(1+y)} \ge \frac{3}{4}$$

2 Jensen's Inequality

§2.1 Convex and Concave Functions

Definition 2.1.1. A function f is said to be **convex** in an interval if and only if for all x and y in the interval and for any 0 < t < 1

$$(1-t)f(x) + tf(y) \ge f((1-t)x + ty)$$

If the function is **concave** then

$$(1-t)f(x) + tf(y) \le f((1-t)x + ty)$$

Theorem 2.1.2

If $f: \mathbb{R} \to \mathbb{R}$ is a function then f is concave if and only if $f''(x) \leq 0$ for all x and similarly f is convex if and only if $f''(x) \geq 0$ for all x.

Example 2.1.3

The function $\sin(x)$ is convex in the interval $[0,\pi]$ and concave in the interval $[\pi,2\pi]$.

§2.2 Jensen's Inequality

TODO