$12a_{1120} (K12a_{1120})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 4.98637 \times 10^{30} u^{53} - 5.22392 \times 10^{30} u^{52} + \dots + 3.76717 \times 10^{30} b - 2.97716 \times 10^{30},$$

$$5.96153 \times 10^{29} u^{53} - 5.96332 \times 10^{30} u^{52} + \dots + 3.76717 \times 10^{30} a - 1.91291 \times 10^{30}, \ u^{54} - 2u^{53} + \dots - u + 1 \rangle$$

$$I_2^u = \langle b + 1, \ a - 1, \ u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 4.99 \times 10^{30} u^{53} - 5.22 \times 10^{30} u^{52} + \dots + 3.77 \times 10^{30} b - 2.98 \times 10^{30}, \ 5.96 \times 10^{29} u^{53} - 5.96 \times 10^{30} u^{52} + \dots + 3.77 \times 10^{30} a - 1.91 \times 10^{30}, \ u^{54} - 2u^{53} + \dots - u + 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.158250u^{53} + 1.58297u^{52} + \cdots - 4.25488u + 0.507784 \\ -1.32364u^{53} + 1.38670u^{52} + \cdots - 1.95767u + 0.790290 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.325199u^{53} + 1.65590u^{52} + \cdots - 5.74265u + 0.513674 \\ -1.15669u^{53} + 1.31376u^{52} + \cdots - 0.469892u + 0.784399 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.210151u^{53} + 1.38312u^{52} + \cdots - 5.45196u + 0.243522 \\ -1.10881u^{53} + 1.16850u^{52} + \cdots - 0.141966u + 0.636692 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.270302u^{53} - 0.634518u^{52} + \cdots - 9.79695u + 0.917907 \\ -0.0490456u^{53} - 0.234591u^{52} + \cdots - 5.02262u + 0.936311 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.353877u^{53} + 0.509159u^{52} + \cdots - 10.3335u + 1.46507 \\ -0.614164u^{53} + 0.364566u^{52} + \cdots - 5.18084u + 1.68406 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.476022u^{53} 2.58830u^{52} + \cdots 14.0755u 1.06185$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{54} - 3u^{53} + \dots - 321u + 25$
c_2	$u^{54} + 3u^{53} + \dots - 75u - 75$
c_4, c_5, c_6 c_9, c_{10}	$u^{54} + 2u^{53} + \dots + u + 1$
c_7, c_{12}	$u^{54} - 20u^{52} + \dots + 3u + 1$
c_8	$15(15u^{54} + 126u^{53} + \dots + 675u - 223)$
c_{11}	$15(15u^{54} + 114u^{53} + \dots + 155u - 17)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{54} - 33y^{53} + \dots - 13641y + 625$
c_2	$y^{54} - 9y^{53} + \dots - 165825y + 5625$
c_4, c_5, c_6 c_9, c_{10}	$y^{54} - 72y^{53} + \dots + 9y + 1$
c_7, c_{12}	$y^{54} - 40y^{53} + \dots + 9y + 1$
c_8	$225(225y^{54} - 11196y^{53} + \dots - 230395y + 49729)$
c_{11}	$225(225y^{54} - 15156y^{53} + \dots + 8581y + 289)$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.954693 + 0.114732I		
a = -1.07360 + 0.95925I	1.57417 - 1.88622I	7.17160 + 3.60080I
b = 0.18824 - 1.51024I		
u = -0.954693 - 0.114732I		
a = -1.07360 - 0.95925I	1.57417 + 1.88622I	7.17160 - 3.60080I
b = 0.18824 + 1.51024I		
u = -0.820169 + 0.442176I		
a = 1.36851 - 0.53320I	1.107040 - 0.620193I	11.81390 + 3.24095I
b = -0.737742 + 0.980815I		
u = -0.820169 - 0.442176I		
a = 1.36851 + 0.53320I	1.107040 + 0.620193I	11.81390 - 3.24095I
b = -0.737742 - 0.980815I		
u = -1.052830 + 0.228694I		
a = -0.085060 - 0.679778I	2.57681 - 6.14024I	0
b = 0.378348 - 0.402776I		
u = -1.052830 - 0.228694I		
a = -0.085060 + 0.679778I	2.57681 + 6.14024I	0
b = 0.378348 + 0.402776I		
u = 0.903461 + 0.179518I		
a = 1.46868 + 0.05196I	-2.49578 + 3.75084I	0 6.34793I
b = -0.282897 - 1.203480I		
u = 0.903461 - 0.179518I		
a = 1.46868 - 0.05196I	-2.49578 - 3.75084I	0. + 6.34793I
b = -0.282897 + 1.203480I		
u = 0.909362		
a = 3.13396	0.433211	12.4360
b = -1.83771		
u = 1.105440 + 0.194944I		
a = -0.386284 - 0.500062I	5.87997 + 2.18326I	0
b = -0.0018704 - 0.1304650I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.105440 - 0.194944I		
a = -0.386284 + 0.500062I	5.87997 - 2.18326I	0
b = -0.0018704 + 0.1304650I		
u = 1.054560 + 0.387125I		
a = -1.75458 - 0.73634I	3.53124 + 6.84405I	0
b = 0.99610 + 1.48113I		
u = 1.054560 - 0.387125I		
a = -1.75458 + 0.73634I	3.53124 - 6.84405I	0
b = 0.99610 - 1.48113I		
u = -1.092340 + 0.372866I		
a = 1.85396 - 0.88170I	-1.45842 - 12.26440I	0
b = -0.91541 + 1.72790I		
u = -1.092340 - 0.372866I		
a = 1.85396 + 0.88170I	-1.45842 + 12.26440I	0
b = -0.91541 - 1.72790I		
u = 0.455278 + 0.634993I		
a = -1.262020 - 0.389416I	-5.45797 - 4.61873I	-0.99770 + 3.60735I
b = 0.003555 + 1.381020I		
u = 0.455278 - 0.634993I		
a = -1.262020 + 0.389416I	-5.45797 + 4.61873I	-0.99770 - 3.60735I
b = 0.003555 - 1.381020I		
u = -0.748769		
a = -2.10016	-3.87941	-0.406540
b = -0.0211096		
u = 0.318419 + 0.649836I		
a = -0.662849 + 0.251720I	-5.85021 + 8.79187I	-1.25205 - 7.85625I
b = 0.44752 + 1.63240I		
u = 0.318419 - 0.649836I		
a = -0.662849 - 0.251720I	-5.85021 - 8.79187I	-1.25205 + 7.85625I
b = 0.44752 - 1.63240I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.221871 + 0.671219I		
a = 0.335155 + 0.012761I	-0.45577 - 3.26840I	4.20658 + 8.69995I
b = -0.34810 + 1.38867I		
u = -0.221871 - 0.671219I		
a = 0.335155 - 0.012761I	-0.45577 + 3.26840I	4.20658 - 8.69995I
b = -0.34810 - 1.38867I		
u = -1.290900 + 0.340769I		
a = 1.31057 - 0.77757I	0.033603 + 1.175310I	0
b = -0.532843 + 0.817367I		
u = -1.290900 - 0.340769I		
a = 1.31057 + 0.77757I	0.033603 - 1.175310I	0
b = -0.532843 - 0.817367I		
u = -0.478853 + 0.294895I		
a = 0.927174 - 0.540157I	1.006850 - 0.374600I	9.52818 + 2.20824I
b = -0.241342 + 0.376066I		
u = -0.478853 - 0.294895I		
a = 0.927174 + 0.540157I	1.006850 + 0.374600I	9.52818 - 2.20824I
b = -0.241342 - 0.376066I		
u = 0.299222 + 0.419209I		
a = -0.97060 - 1.29997I	-1.63498 + 3.92306I	0.88103 - 8.15922I
b = -0.383803 + 0.085272I		
u = 0.299222 - 0.419209I		
a = -0.97060 + 1.29997I	-1.63498 - 3.92306I	0.88103 + 8.15922I
b = -0.383803 - 0.085272I		
u = 0.238190 + 0.367958I		
a = 0.400758 - 0.042252I	-1.72767 - 1.34489I	0.52459 - 1.53353I
b = 0.692395 + 0.425963I		
u = 0.238190 - 0.367958I		
a = 0.400758 + 0.042252I	-1.72767 + 1.34489I	0.52459 + 1.53353I
b = 0.692395 - 0.425963I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.089832 + 0.399750I		
a = 0.23684 - 2.50659I	-5.47596 - 1.75188I	-7.48810 + 4.25133I
b = 0.195200 - 1.035880I		
u = -0.089832 - 0.399750I		
a = 0.23684 + 2.50659I	-5.47596 + 1.75188I	-7.48810 - 4.25133I
b = 0.195200 + 1.035880I		
u = -0.397661		
a = -2.03586	-4.03946	8.30440
b = -1.12513		
u = 1.68917		
a = 1.87072	5.02402	0
b = -0.736564		
u = -1.70299 + 0.03507I		
a = -1.25795 + 0.67361I	6.81119 - 4.51765I	0
b = 0.495516 - 1.319840I		
u = -1.70299 - 0.03507I		
a = -1.25795 - 0.67361I	6.81119 + 4.51765I	0
b = 0.495516 + 1.319840I		
u = 0.121737 + 0.263787I		
a = 0.57633 - 2.28178I	-1.69045 + 0.57106I	-4.72601 + 0.62327I
b = 0.358359 - 0.939016I		
u = 0.121737 - 0.263787I		
a = 0.57633 + 2.28178I	-1.69045 - 0.57106I	-4.72601 - 0.62327I
b = 0.358359 + 0.939016I		
u = -1.71294		
a = -3.64511	9.89130	0
b = 2.91465		
u = 1.71293 + 0.11942I		
a = -2.01031 - 0.80822I	10.21160 + 2.85652I	0
b = 1.45413 + 1.05839I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.71293 - 0.11942I		
a = -2.01031 + 0.80822I	10.21160 - 2.85652I	0
b = 1.45413 - 1.05839I		
u = 1.71703 + 0.02443I		
a = 1.13619 + 1.52937I	11.16480 + 2.40805I	0
b = -0.57778 - 1.87863I		
u = 1.71703 - 0.02443I		
a = 1.13619 - 1.52937I	11.16480 - 2.40805I	0
b = -0.57778 + 1.87863I		
u = -1.72389		
a = -8.95841	9.78120	0
b = 8.34748		
u = 1.73658 + 0.05830I		
a = 0.267916 - 0.025740I	12.5688 + 7.3202I	0
b = -0.380396 - 0.762948I		
u = 1.73658 - 0.05830I		
a = 0.267916 + 0.025740I	12.5688 - 7.3202I	0
b = -0.380396 + 0.762948I		
u = -1.73758 + 0.10229I		
a = 2.10706 - 1.16433I	13.4357 - 8.8604I	0
b = -1.44637 + 1.54521I		
u = -1.73758 - 0.10229I		
a = 2.10706 + 1.16433I	13.4357 + 8.8604I	0
b = -1.44637 - 1.54521I		
u = -1.74855 + 0.05158I		
a = 0.1406020 - 0.0077622I	16.1419 - 3.2325I	0
b = 0.059463 - 0.541387I		
u = -1.74855 - 0.05158I		
a = 0.1406020 + 0.0077622I	16.1419 + 3.2325I	0
b = 0.059463 + 0.541387I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.74671 + 0.09995I		
a = -2.04887 - 1.38157I	8.6391 + 14.2502I	0
b = 1.28385 + 1.80212I		
u = 1.74671 - 0.09995I		
a = -2.04887 + 1.38157I	8.6391 - 14.2502I	0
b = 1.28385 - 1.80212I		
u = 1.76453		
a = -0.974558	11.7892	0
b = 0.804257		
u = 1.78233		
a = -0.925833	11.7819	0
b = 0.645888		

II.
$$I_2^u=\langle b+1,\; a-1,\; u+1
angle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	u
$c_4, c_5, c_6 \\ c_7, c_8, c_9 \\ c_{10}, c_{12}$	u-1
c_{11}	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3	y
c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	1.64493	6.00000
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$u(u^{54} - 3u^{53} + \dots - 321u + 25)$
c_2	$u(u^{54} + 3u^{53} + \dots - 75u - 75)$
c_4, c_5, c_6 c_9, c_{10}	$(u-1)(u^{54}+2u^{53}+\cdots+u+1)$
c_7, c_{12}	$(u-1)(u^{54} - 20u^{52} + \dots + 3u + 1)$
c ₈	$15(u-1)(15u^{54} + 126u^{53} + \dots + 675u - 223)$
c_{11}	$15(u+1)(15u^{54}+114u^{53}+\cdots+155u-17)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y(y^{54} - 33y^{53} + \dots - 13641y + 625)$
c_2	$y(y^{54} - 9y^{53} + \dots - 165825y + 5625)$
c_4, c_5, c_6 c_9, c_{10}	$(y-1)(y^{54}-72y^{53}+\cdots+9y+1)$
c_7, c_{12}	$(y-1)(y^{54}-40y^{53}+\cdots+9y+1)$
c ₈	$225(y-1)(225y^{54} - 11196y^{53} + \dots - 230395y + 49729)$
c_{11}	$225(y-1)(225y^{54} - 15156y^{53} + \dots + 8581y + 289)$