Propuesta de una Solución a un Problema de Optimización

Yamile Yetlanetzi Durán Díaz

Heriberto Espino Montelongo

Universidad de las Américas Puebla

P25 LAT4052 2: Optimización Avanzada

Juan Antonio Díaz García

22 de Enero de 2025

Propuesta de una Solución a un Problema de Optimización

El problema planteado es un problema de ubicación de almacenes con el objetivo de minimizar los costos totales. Para esta actividad empezamos buscando nuestra función objetivo.

Variables de Decisión

- $y_i = 1$ si se abre un almacén en la ciudad i, 0 en caso contrario, para $i = 1, 2, \dots, 12$.
- $x_{ij} = \text{cantidad de unidades de demanda de la ciudad } i$ que se transportan a la ciudad j, para $i, j = 1, 2, \dots, 12$.

Función Objetivo

El objetivo es minimizar el costo total, que incluye tanto el costo fijo de abrir los almacenes como el costo de transporte. Según nuestras bases obtenidas en Teoría y Técnicas de Optimización, podemos dividir nuestra f.o. entre costos de apertura y costos de transporte, ambas para todas las combinaciones de ciudades.

$$\min z = \sum_{i=1}^{12} c_i \cdot y_i + 0.35 \sum_{i=1}^{12} \sum_{i=1}^{12} d_{ij} \cdot x_{ij}$$

donde:

- c_i es el costo de apertura del almacén en la ciudad i.
- y_i toma el valor 1 si el almacén se abre en la ciudad i y 0 en caso que no. Es decir, $y_i = \mathbb{1}_{\{\text{almacén abierto}\}}$.
- 0.35 es el costo por milla de transporte.
- d_{ij} es la distancia entre las ciudades i y j.
- x_{ij} es la cantidad transportada desde la ciudad i a la ciudad j.

Restricciones

De manera similar, planteamos nuestras restricciones: se tienen que cumplir las demandas exactas de cada ciudad, sólo se puede transportar a lo máximo la demanda total y la cantidad transportada no puede ser negativa. Todo esto para asegurarnos de que nuestra función objetivo nos dé una solución factible.

- $\sum_{i=1}^{12} x_{ij} = d_i, \quad \forall i = 1, 2, \dots, 12, \text{ donde } d_i \text{ es la demanda de la ciudad } i.$
- $x_{ij} \leq M \cdot y_i$, $\forall i, j = 1, 2, ..., 12$, donde M es la demanda total.
- $x_{ij} \ge 0$, $\forall i, j = 1, 2, ..., 12$, la cantidad de unidades transportadas de la ciudad i a la ciudad j debe ser mayor o igual a cero.
- $y_i \in \{0, 1\}, \quad \forall i = 1, 2, \dots, 12.$

Propuesta de una Solución Válida

Se aplico el algoritmo Dijkstra para encontrar la ruta más corta entre dos ciudades, luego de eso se obtuvieron los siguientes resultados:

Almacenes abiertos:

$$y(1) = 1$$

$$y(4) = 1$$

$$y(11) = 1$$

Unidades transportadas de ciudad i a ciudad j:

$$x(1,1) = 15$$

$$x(1,2) = 10$$

$$x(1,5) = 5$$

$$x(1,7) = 11$$

$$x(4,3) = 12$$

$$x(4,4) = 18$$

$$x(4,6) = 24$$

$$x(11,8) = 16$$

$$x(11,9) = 13$$

$$x(11, 10) = 22$$

$$x(11,11) = 19$$

$$x(11, 12) = 20$$

Con ésto, calculamos el costo de transporte según nuestra función objetivo, resultando en un total de \$859.95. Por otro lado, considerando que los almacenes están abiertos en las ciudades 1, 4 y 11, el costo de apertura es de \$375. Sumando ambas partes, tenemos que el costo total de la solución propuesta, de acuerdo con nuestra función objetivo es de \$1,234.95.