$\mathbb{Z}/n\mathbb{Z}$ & Unit 20221011

$\mathbb{Z}/n\mathbb{Z}$ & Unit 20221011

Quotient Group: $\mathbb{Z}/n\mathbb{Z}$

Notations

Multiplication

Unit

Definition

Group of Units

Theorem

The Euler's Phi Function

Fermat's Little Theorem

Quotient Group: $\mathbb{Z}/n\mathbb{Z}$

- $(\mathbb{Z},+)$ and Subgroup $n\mathbb{Z}$.
 - We'll study the quotient group $\mathbb{Z}/n\mathbb{Z}, \ (n \geq 2)$.

Notations

- Elements in $\mathbb{Z}/n\mathbb{Z}$ are of form $k+n\mathbb{Z}$.
 - ullet Denote $ar k=k+n\mathbb Z$.
 - $ullet \ \overline{k_1} = \overline{k_2} \iff (-k_1) + k_2 \in n\mathbb{Z} \iff n ext{ devides } k_2 k_1$
 - $ullet (aN=bN \iff a^{-1}b\in N)$
- So $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\ldots,\overline{k-1}\}$
 - \circ The composition is $\bar{a}+\bar{b}=\overline{a+b}$
 - $\circ \ ((a+n\mathbb{Z})+(b+n\mathbb{Z})=(a+b)+n\mathbb{Z})$
- We also say "a is congruent to b modulo n", denoted by $a \equiv b \pmod{n}$ if $\bar{a} = \bar{b}$ in $\mathbb{Z}/n\mathbb{Z}$.

Multiplication

- We can also define another composition, called multiplication on $\mathbb{Z}/n\mathbb{Z}$:
 - \circ $\overline{k} \cdot \overline{l} = \overline{kl}$
- We need to verify this multiplication is "Well-Defined":

$$\circ \ \text{ i.e. } \ \overline{k_1} = \overline{k_2}, \ \overline{l_1} = \overline{l_2} \quad \Rightarrow \quad \overline{k_1} \cdot \overline{k_2} = \overline{l_1} \cdot \overline{l_2}. \quad (\overline{k_1 l_1} = \overline{k_2 l_2})$$

$$egin{aligned} \overline{k_1} = \overline{k_2} & \Rightarrow & k_2 - k_1 = an \ ext{for some} \ a \in \mathbb{Z} \ \hline \overline{l_1} = \overline{l_2} & \Rightarrow & l_2 - l_1 = bn \ ext{for some} \ b \in \mathbb{Z} \end{aligned}$$

$$egin{aligned} k_2l_2-k_1l_1&=(k_1+an)(l_1+bn)-k_1l_1\ &=k_1l_1+al_1n+bk_1n+abn^2-k_1l_1\ &=(al_1+bk_1+abn)n \end{aligned}$$

$$\circ$$
 So $\overline{k_1l_1}=\overline{k_2l_2}$

0

- Question: Is $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$ withe the multiplication a group?
 - $\qquad \text{o Associativity: } (\overline{a}\overline{b})\overline{c} = \overline{ab} \cdot \overline{c} = \overline{abc} =$
 - Identity:
 - o Inverse:
- Conclusion: $(\mathbb{Z}/n\mathbb{Z},\cdot)$ is NOT a group

Q IS Z/nZ= 10, T, ..., n-1} with the multiplication a group?

· Identity: 1 since
$$\overline{a.1} = \overline{a.1} = \overline{a} = \overline{1.a} = \overline{1.a} = \overline{1.a}$$

. Inverse: There're elements having no inverse.

For example. $\overline{0.a}=\overline{1} \Rightarrow \overline{0}=\overline{1}$. so $\overline{0}$ doesn't exist.

Conclusion: (Z/nZ,·) is NOT a group.

Unit

Definition

 $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ is called a <u>unit</u> if it has multiplicative inverse.

i.e.
$$(\exists \overline{b} \in \mathbb{Z}/n\mathbb{Z}, \overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a} = \overline{1})$$

Def. DE Z/mz is called a unit if it has multiplicative inverse (i.e., =] = Z/mz, a. b =]. a =])

Prop. If a, c are both units of Znz, then a.c is also a unit of Znz

Pf. $\exists \vec{b}, \vec{d} \in \mathbb{Z}_{nZ}$. $\vec{a} \vec{b} = \vec{b} \vec{a} = \vec{1}$. $\vec{c} \vec{d} = \vec{d} \vec{c} = \vec{1}$ Then $\vec{a} \vec{c} \cdot \vec{b} \vec{d} = (\vec{a} \vec{c} \times \vec{b} \vec{d}) = (\vec{a} \vec{b})(\vec{c} \vec{d}) = \vec{a} \vec{b} \cdot \vec{c} \vec{d} = \vec{1} \cdot \vec{1} = \vec{1}$.

Similarly $\vec{b} \vec{d} \cdot \vec{a} \vec{c} = \vec{1}$. $\vec{b} \cdot \vec{d}$ is the inverse of $\vec{a} \vec{c}$, so $\vec{a} \cdot \vec{c}$ is a unit.

Group of Units

Def. The set of units of Znz with multiplication forms a group, called the group of units, denoted by (Znz)

 $\frac{2q}{\sqrt{3}} = \{0,1\}. \quad (\mathbb{Z}_{2Z})^{2} = \{1\}.$ $\mathbb{Z}_{3Z} = \{0,1,2\}. \quad (\mathbb{Z}_{3Z})^{2} = \{1,2\}.$ $\mathbb{Z}_{4Z} = \{0,1,2\}. \quad (\mathbb{Z}_{4Z})^{2} = \{1,2\}.$ $\mathbb{Z}_{4Z} = \{0,1,2,3\}. \quad (\mathbb{Z}_{4Z})^{2} = \{1,3\}.$ $\mathbb{Z}_{4Z} = \{0,1,2,3\}. \quad (\mathbb{Z}_{4Z})^{2} = \{1,3\}.$ $\mathbb{Z}_{3Z} = \{0,1,2,3\}. \quad (\mathbb{Z}_{4Z})^{2} = \{1,3\}.$

Theorem

Theorem. ac 2/12. The following are equivalent:

- (i). a is a unit.
- (ii). gcd(a,n)=1. i.e., a & n are relatively prime
- (iii) a is a generator for Z/nZ.
- (iv). $f_a: \mathbb{Z}_{n\mathbb{Z}} \to \mathbb{Z}_{n\mathbb{Z}}$, $f_a(\overline{x}) = \overline{ax}$ is an automorphism.

P. we will prove: (i) ⇒ (iv) ⇒ (ii) ⇒ (ii)

(i)=)(iv) Given a (Z/nz).

 $f_{\overline{a}}(\overline{x}+\overline{y})=\overline{a}.(\overline{x}+\overline{y})=\overline{\alpha}.\overline{x+y}=\overline{\alpha(x+y)}=\overline{\alpha x+\alpha y}=\overline{\alpha x}+\overline{\alpha y}$ so fis a honomorphism.

a is a unit. denote its multiplicative inverse by I.

The $f_{\overline{a}} \cdot f_{\overline{b}}(\overline{x}) = \overline{a}(\overline{b}.\overline{x}) = \overline{a}\overline{1}.\overline{x} = \overline{x}$ \Rightarrow $f_{\overline{b}}$ is the inverse $f_{\overline{a}} \cdot f_{\overline{a}}(\overline{x}) = \overline{b}(\overline{a}.\overline{x}) = \overline{b}a.\overline{x} = \overline{x}$ \Rightarrow function of $f_{\overline{a}}$.

(iv) => (iii). for is an automorphism. In particular, it's sujective For any KEZMZ. 3 x EZMZ K=fa(x) = ax we can take x to be positive, then $k = \overline{\alpha}x = \overline{\alpha + \dots + \alpha}$ $x = \overline{\alpha} + \dots + \overline{\alpha}$ $x = \overline{\alpha} + \dots + \overline{\alpha}$ so a generates ZnZ.

(iii) => (ii) If a generates \mathbb{Z}_{nZ} . Then $\overline{1} = \overline{a} + \overline{a} + \cdots + \overline{a} = \overline{al}$ l copies. so ∃k∈Z. 1-al=kn \Rightarrow kn+la=1 \Rightarrow gcd(a,n)=1. (ii)⇒(i) If gcd(a,n)=1. ∃ k,l∈Z, ka+ln=1. => ka-l ENZ => Ta.K=I

The Euler's Phi Function

Def The Euler's Phi Function
$$\phi(n) = \# \{k \in \mathbb{N} \mid 1 \le k \le n, \gcd(k, n) = 1\}$$

$$\underbrace{e.g.}_{\{1,2,3,6,4\}} \phi(1) = 1. \quad \phi(2) = 1 \quad \phi(3) = 2. \quad \phi(4) = 2.$$

Since $\overline{0} = \overline{n} \in \mathbb{Z}_{n\mathbb{Z}}$. $\beta(n)$ gives us the number of elements among $\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}$ that are units. (we just proved $g(d(a,n)=1) \Longrightarrow \overline{a}$ is a unit). i.e., $|(\mathbb{Z}_{n\mathbb{Z}})^{n}| = |\beta(n)|$

Fermat's Little Theorem

Fernat's Little Theorem $n \ge 2$, gcd(a,n)=1. Then $a^{b(n)}=1$ (mod n)

Pf. $gcd(a,n)=1 \Rightarrow \overline{a}$ is a unit. i.e. $\overline{a} \in \mathbb{Z}_{n\mathbb{Z}}^{\infty}$. $|\overline{a}| | (\overline{\mathbb{Z}}_{n\mathbb{Z}})^{\times}| = \phi(n)$. $\overline{a} = \overline{1} \Rightarrow \overline{a} = \overline{1} \Rightarrow \overline{a} = \overline{1} = \overline{1} \Rightarrow \overline{a} = \overline{1} = \overline{1} \Rightarrow \overline{a} \Rightarrow \overline{a} = \overline{1} \Rightarrow \overline{a} \Rightarrow \overline{$

Gr. p is a prime, p doesn't divide a. then $A^{P-1} \equiv 1 \pmod{p}$.

Pf. p prime. $\phi(p) = P^{-1}$ $\{1, 2, ..., P^{-1}, \mathbb{X}\}$ pha, p prime $\Rightarrow \gcd(a,p) \equiv 1$. so $\overline{a} \in (\mathbb{Z}_{h\mathbb{Z}})^{\times}$.

By Fernat's Little Theorem. $\overline{A}^{P-1} \equiv \overline{a}^{\phi(p)} \equiv \overline{1}$

Theorem. Aut $(\mathbb{Z}_{n\mathbb{Z}}) \cong (\mathbb{Z}_{n\mathbb{Z}})^{\times}$.

If $f \in Aut(\mathbb{Z}_{n\mathbb{Z}})$. $f : \mathbb{Z}_{n\mathbb{Z}} \to \mathbb{Z}_{n\mathbb{Z}}$.

For any K, (we can assume K > 0). $f(K) = f(\overline{1+1+\dots+1}) = f(\overline{1+7}+\dots+\overline{1}) = f(\overline{1})+f(\overline{1})+\dots+f(\overline{1})$ $K = \overline{1+1+\dots+1} = f(\overline{1+1+\dots+1}) = f(\overline{1+1+$

=> f(k) = a.k

so all the automorphisms f: 7/2 = a.k

k copies = a.k

 $f(\overline{k}) = \overline{a.k}$ so all the automorphisms $f: \mathbb{Z}_{n\mathbb{Z}} \to \mathbb{Z}_{n\mathbb{Z}}$ have to be if the form $f(\overline{k}) = \overline{a.k}$.

And well proved this kind of map is an automorphism iff a is a unit.

we see Aut (The)= {fa: The > The | a + (The) }.

Define $F: (\overline{I_{NZ}})^{\times} \longrightarrow Aut(\overline{I_{NZ}})$ $\overline{a} \longmapsto f_{\overline{a}}$. It's clear that f is a bijection by the discussion above.

It's also a homomorphin:

 $\forall k \in \mathbb{Z}_{L}$, $F(a.b)(k) = f_{\overline{a}\overline{b}}(k) = (\overline{a}.\overline{b})(k) = \overline{a}(\overline{b}.\overline{k})$

 $= f_{\overline{a}}(f_{\overline{b}}(\overline{k}))$ $= f_{\overline{a}}(f_{\overline{b}}(\overline{k}))$ $= f_{\overline{a}}(f_{\overline{b}}(\overline{k}))$

F is an isomorphism, (Z/nZ) = F(a)-F(b) (E)