Dado el circuito RLC serie de la figura y su función transformada de la corriente, complete y responda las consignas :

A) El valor de la pulsación natural	ωο es 4250	~	[rad/seg]	
B) El valor del factor de amortigua	miento ζ es	0,2	•	
C) El valor del resistor "R" es de =	42,5	[Ω]		
D) El valor del capacitor "C" es de	2,214	✓ [uF]		
E) El valor de la Resistencia Crítica	-Rc- es de	212,5	√ [Ω]	
F) El valor de la Tensión de la fuent	te "E" es de	100	× [Voltios]	
G) Las raíces de la ecuación caracte	erística serán	COMPLE	JAS CONJUGADAS	,
H) El comportamiento del circuito	es SUB-AMC			
I) Indique el valor de la corriente i	para t que l		túa 1,00 sobre 1,00 — 	√ [Amperes]
J) Indique el valor de la corriente i(t) para t que	tiende a i	infinito $i_{(0)} _{t\to 0} = 0$	✓ [Amperes]

Para Verificar con SCRIPTS, pero antes necesitamos calcular R: 01_Funciones_De_Segundo_Grado\RLC_Serie.m

 $\omega_0^2 = 18062500 \Rightarrow \omega = 4250$. [rad/seg] B) Factor de Amortgamiento : $29.00 = 1700 \Rightarrow 9 = 1700 = 1700 = 1700$ 9=0;2 c) El vabr del resister R = 42,5 -12 D) H vabr del capacità c= 2,214 mt E) Resistencia Critica Rc = 212,5 IZ F) Valor de la Tension de la tuente Eviz Lde la ec. Gracteristica. G) Las raices de la ecuación característica ærán COMPLEJAS - CONJUGADAS A) SUB - AMORTIGUADO i) Indique el valor de la corriente (14) para t gue tiende a cero c(+)/40 =0 / J) Indique el valor de la corriente (il) poa (que trente a infinito (4)/4,0=0.

RESOLUCION CON SCRIPT de 02_Respuesta_En_Frecuencia_Y_Diagramas_Polares

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

A) Constante =
$$kte = 10^{xdB/20} = 10^{30,8824dB/20} = 35$$

D)
$$F(p)=F(P) = \frac{35.P^2.P.P.8000}{P^2.P^2.10000} = 28$$

$$20.\log(28) = 28,943 \, dB$$

Dada la siguiente función de transferencia F_(P) , responda si las consignas son VERDADERAS o FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{17.5 * (P+30)^{2} * (P+650)^{2} (P+3650)}{P^{2} * (P+425) * (5P^{2}+8250 P+70312500)}$$

CONSIGNAS	Ó FALSO	CORRECTO		
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO	ωmin=0,1 y wmax=100000		
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO	-180° y +180° ✓		
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO ▼	-40 dB/dec ✔		
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de −180 °/década.	FALSO	0°/dec		
5) El Diagrama de Bode de Módulo a <u>altas</u> <u>frecuencias</u> tendrá una pendiente de 0 dB/octava.	VERDADERO	N VERDADERO		
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO	√ 58,199 dB		
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 30 < w < 425 [rad/seg].	VERDADERO ▼	VERDADERO		
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO	7 3750 [rad/seg] ✓		
9) La función de 2º grado del denominador tiene un factor de amortiguamiento ζ = 0,9	FALSO	ζ = 0,22 ✓		
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO ▼	✓ VERDADERO		

1) w_{min} =0.1 porque tengo un polo w_{max} =100.000 porque el ultimo valor mas grande de las raíces es 3650 más una década es 36.500 por lo que la escala máxima es 100.000

6) KTETOTAL =
$$\frac{17,5.30^2.650^2.3650}{425.(5^2+8250+70312500)} = 812,6949$$
$$20 \log(812,6949) = 58,198 \text{ dB}$$

$$F(P) = \frac{17.5 \cdot (P+30)^2}{(P+425) \cdot (5P^2 + 8250P + 70312500)}$$

$$AP^2 + 8P + C$$

$$P^2 + \frac{8250}{5}P + \frac{70312500}{5}$$

$$8 = 2 \cdot \frac{1}{2}wo = \frac{17.5 \cdot 30^2}{5} \cdot \frac{3750V}{5}$$

$$9) 2 \cdot \frac{1}{2}wo = \frac{8250}{5} \cdot \frac{1}{2} \cdot \frac{1}{wo} = 0.72$$

$$P = \frac{17.5 \cdot 30^2}{5} \cdot \frac{650^2}{5} \cdot \frac{3650}{5} = \frac{812.6949}{425 \cdot (5^2 + 8250 + 70312500)}$$

$$7) VERCEADERO. Por que se cancelon las P, en la F(P).
$$F(P) = \frac{17.5}{P^2} \cdot \frac{(P+30)^2}{5} \cdot \frac{1}{2} \cdot \frac{1}{2}wo = \frac{17.5}{2} \cdot \frac{(P+30)^2}{5} \cdot \frac{1}{2} \cdot \frac{1}{2}wo = \frac{17.5}{2} \cdot \frac{(P+30)^2}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$$$

Juliu iu sigi	neme rume	011 UE EUZO AUI		uuce er bie	grama rott	n y upuque crue	···[
ae Nyquist.	kesponaa a	las consignas $GH\left(P ight)$		$\frac{5 \cdot P - 30}{6 \cdot P^2 + 10}$). <i>P</i>		
<u>NOTA :</u> en l	ugar de <u>infü</u>	<u>nito</u> escriba <u>1e</u>	20 donde con	responda.			
1) Inicio del a	liagrama par	a P → 0 . MÓDU	JLO 1e20	✓ FAS	SE -270	✓ Grade	os
2) Final del d	iagrama par	a P → ∞ . MÓDU	J LO 0	✓ FAS	E -180	✓ Grados	:
3) Existe cor	te al eje Rea	1? SI 🗸					
4) Si existe c	orte al eje re	eal, indique el	valor positive	o de la pulsa	ción de cort	<u>e,</u> si no existe co	rte, escriba el <u>NO</u>
1,581	•						
5) Si existe c 6) Existe cor		eal, indique el	valor de cort	<u>e,</u> si no exist	e corte, escr	iba <u>NO</u> 2	•
7) Si existe c	orte al eje Ir	naginario, ind	ique el <u>valor</u>	<u>positivo de l</u>	a pulsación	de corte, si no e	xiste corte, escriba <u>NO</u>
4,690	~						
8) Si existe c	orte al eje Ir	naginario, ind	ique el <u>valor</u>	de corte (No	escriba la "	j ", solo valor y s	signo) , si no existe corte,
escriba <u>NO</u>	-0,533	~					
9) Indique la	cantidad de l	rodeos que se p	roducen al pu	nto -1+j0 , al	cerrar el Dia	grama Polar y ap	olicar Criterio de Nyquist =
10) Signo de l	los rodeos al	punto -1+j0 =	POSITIVO	~			
11) Aplicando	o el Criterio d	le Nyquist el sis	tema será =	INESTABLE	•		
12) Si el Siste	ma fuera Ine	stable, podría e	estabilizarse re	educiendo la g	ganancia ?	SI	×

Función de Lazo Abierto (11p). H(p) troce el Diagrama Polar y aplique criterio de Nyguist. GH(P) = 15(P-2) P3+6P2+10P = 7pk([2],[0-3+1-3-i],15) $GH(P) = \frac{15P - 30}{P^3 + 6P^2 + 10P}$ F(P)/P->0 Paso1: Origen del diagrama polar. $F(P)/P \rightarrow 0 = \frac{K\pi E}{P^{K}}/P = \frac{-30}{p^{M}} = \frac{-30}{p^{M}}$ $F(P)/P = \frac{k+E}{(9e^{i\theta})^{K}/P_{\infty}} = \infty / -90.^{\circ}K - 180^{\circ} = \infty / -90.1 - 180^{\circ}$ $= \infty / -90.K - 180^{\circ} = \infty / -90.1 - 180^{\circ}$ $= \infty / -270^{\circ}$ Paso 2: Punto Final del diagrama polar. P->00 I'm 15\$ = 01-90° K = 0 1-90°.2 = 01-180°

Paso 3. Cambio P-> 160 $P^{3} = -j\omega^{3} \Big|_{=} \frac{15j\omega - 30}{-j\omega^{3} - 6\omega^{2} + 10j\omega} = \frac{-30 + 15j\omega}{-6\omega^{2} - j(\omega^{3} - 10\omega)}$ = -30 +15 jw . -6 w = j(w 3 - 10 w) -6w2- 1(w3- 10w) -6w2+ j(w3-10w) - 1800 - 130 w3+1300 w 4- 190 w3-15w4+150 w2
36 w9 - 16 w5+160 w3+16 w5+ w6+10 w4+160 w3-310 w+100 w = 180 W + 150W - 15W4 + 1 (-120 W3 + 300 W) Eag we mow y (don't 36w + (w3 - 10w)2 = -15 W + 330 W2 + J (-120 W3 + 300 W) 35 N W 6 - 16 W 4 + 100 W2 $= \frac{-15 \omega^{4} + 330 \omega^{2}}{\omega^{6} + 16 \omega^{4} + 100 \omega^{2}} + j \left[\frac{-120 \omega^{3} + 300 \omega}{\alpha^{6} + 16 \omega^{4} + 100 \omega^{2}} \right] \frac{Paso 4}{Re + j Ilm}$ Paso 5 : Saco la raíz de la parte real. $-15 \omega^4 + 380 \omega^2 = 0$ W (-15W2 +330) = 0 w, = 122 Evaluo en la parte Ilma para carte WI = 4,690 schre eje Img. (tomo snempre raiz positiva).

Dada la siguiente función $G_{(P)}$ $H_{(P)}$. Aplique criterio de Routh Hourwitz e indique: número de raices a parte real positiva, de numerador y denominador de $G_{(P)}$ $H_{(P)}$ + 1, indique si el sistema es estable (SI), inestable (NO) o no se sabe (N / S). Indique cuantos rodeos tendría el diagrama de Nyquist correspondiente, alrededor de -1+j0.

$$G(p)H(p) = \frac{30 \cdot P + 45}{12P^7 + 14P^6 + 12P^5 + 10P^4 + 24P^3 + 21P^2}$$

RESOLUCION CON SCRIPT (routh main)

Dado el cuadripolo de la figura responda a las consignas planteadas :

ATENUACIÓN = 1,321

RESOLUCION CON SCRIPT (cuadripolo_T)

✓ [NEPERS]

ATENUACIÓN = 11,48

≭ [dB]

- A) Tipo de cuadripolo ADAPTADOR DE Z Y ATENVADOR
- B) Justifique su respuesta. El cuadripolo es Asimétrica .
- c) Impedancia de Entrada ZIN.

III = I+ I = 93,6158

Z12 = Z21 = Z2 = 48, 96421

Z22 = Z2 + Z3 = 338,05711

$$\Delta Z = (Z_{11}, Z_{22}) - (Z_{12})^2 = 29249,9963$$

 $A = \frac{Z11}{Z12} = 1,9119 \ [Adim.] B = \frac{\Delta z}{Z12} = 597,375 \ [-12]$

C= 1=0,0204 [mho] D= == 6,9042 [Adim

ZW= \(\begin{aligned} A.B & = 90 [a] \end{aligned} \] \(\begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} B.D & = 324,997 [a] \\ \begin{aligned} \begin{aligne

Func_prop= [A (/A,D + (A.D) - 1) = 3,75 [Adim] /

d = 20 log (Fun prop) = - 11,48

Dado el filtro de la figura indique : Tipo de Filtro, pulsación de resonancia (ω o) , Ancho de Banda (BW), pulsación de corte inferior (ω _{C1}), pulsación de corte superior (ω _{C2}) y calcule el valor de la impedancia característica Zo.

RESOLUCION CON SCRIPT (\07_Filtros\Kcte\ filtro_componentes)

Dado el siguiente filtro, indique Tipo de Filtro, pulsación de corte (ω_c), frecuencia de corte (fc), valor de la impedancia característica Zo, valor de "m" y valor de la pulsación a la cual la atenuación es infinita (ω_∞).

RESOLUCION CON SCRIPT (m-deriv)

Dado el siguiente filtro Pasa Banda (PB) normalizado de Chevischev, calcule los valores de los componentes, para una frecuencia de corte inferior f_{C1} = 477,465 (Hertz), una frecuencia de corte superior f_{C2} = 1273,24 (Hertz), y una impedancia de carga Ro = 600 Ω .

RESPONDA A LAS CONSIGNAS EMPLEANDO TRES DECIMALES SIN REDONDEO DONDE CORRESPONDA Y PRESTE MUCHA ATENCIÓN A LAS UNIDADES INDICADAS DE LOS COMPONENTES.

RESOLUCION CON SCRIPT (cheby_desnormalizado)

```
() Won = Wes-Wes = 2000 +7000 = 0,36
     (Wez-West (7000-2000)2
a) WO: WCL. WCZ = 3741,65738
b) Valor de Ancho de Bonda:
 BW= Wcz-Wc1 = 7000 - 2000 = 5000 rad/sq
 BW= A Ro= b
0.5000 Ro= 600
Di= (1 = 662,757 mF = 394,498 hF) 
Worlab 0,56.5000.600
e) L2 = L2.6 = 1,50895H. 600 = 181,062 [ H]
             5000
F) 13 = 13.6 = 750,052 mH -600= 160,725(mH)
9 C4= C4 = 1,33324F = 444,413 p.F]
4) 03 = C5 = 938,341 mb = 588, 2982/0F
          Workers
```

B) Wel= 2T. 318, 30988 = 1999, 999 = 2000 [Fad/39]
F) Wel= 2T. 1119, 0846 = 6999, 999 = 7000 [Fad/39]