Дифференциальная геометрия. Неофициальный конспект

Лектор: Нина Дмитриевна Лебедева Конспектировал Леонид Данилевич Редактировал Максим Лаунер

IV семестр, весна 2024 г.

Оглавление

1	Осн	овные понятия
	1.1	Гладкие многообразия
		1.1.1 Гладкие отображения
		1.1.2 Касательное пространство
		1.1.3 Структура векторного пространства на T_pM
	1.2	Касательное расслоение
		1.2.1 Дифференциал гладкого отображения
	1.3	Гладкие векторные поля
	1.4	Гладкие подмногообразия
	1.5	Риманова структура
		1.5.1 Длина путей
		1.5.2 О внутренней метрике
	1.6	Плоскость Лобачевского
		1.6.1 Модель в верхней полуплоскости
		1.6.2 Аксиомы плоскости Лобачевского
		1.6.3 Модель Пуанкаре в круге
	1.7	Касательный вектор как дифференцирование
	1.8	Скобка Ли векторных полей
		1.8.1 Выражение для скобки Ли в координатах
		$1.8.2$ Пространство $\mathcal{X}(M)$ вместе со скобкой Ли, как алгебра Ли
		1.8.3 Специфичные свойства скобки Ли векторных полей
	1.9	Тензоры на многообразии
		1.9.1 Поведение скобки Ли при отображениях
	1.10	Аффинные связности
		1.10.1 Специальные связности
		1.10.2 Символы Кристоффеля
		1.10.3 Существование и единственность связности Леви-Чивиты
	1.11	Ковариантная производная вдоль пути
	1.12	Геодезические в римановых многообразиях
		1.12.1 Уравнение геодезической
		1.12.2 Параллельный перенос вдоль пути
		Лемма Гаусса. Геодезические
	1.14	Кривизна риманового многообразия
		1.14.1 Тензор кривизны
		Полугеодезические координаты
	1.16	Формула Гаусса — Бонне
		1.16.1 Ориентация
		1.16.2 Вращение векторного поля вдоль кривой. Поворот кривой
		1.16.3 Формулировка и доказательство теоремы
	1.17	Пространства постоянной кривизны. Сравнение треугольников
		1.17.1 Построение двумерных многообразий заданной кривизны
		1.17.2 Локальная изометричность поверхностей постоянной кривизны 40
		1.17.3 Теоремы сравнения
	1 18	Полнота Теорема Хопфа — Ринова

Глава 1

Основные понятия

Лекция I 14 февраля 2024 г.

1.1 Гладкие многообразия

Определение 1.1.1 (Топологическое многообразие). Хаусдорфово топологическое пространство M со счётной базой, такое что $\forall x \in M: \exists U \ni x: U \sim \mathbb{R}^n$. Данное число n называется размерностью многообразия, пишут $\dim M = n$, или же часто пишут это число верхним индексом: M^n .

Далее пусть M^n — топологическое многообразие.

Определение 1.1.2 (Карта). Пара из открытого $U \subset M^n$, и гомеоморфизма $\phi: U \to \Omega$, где открытое $\Omega \subset \mathbb{R}^n$. U называется *носителем карты*.

«В половине случаев в литературе картой называется обратное отображение».

Определение 1.1.3 (Атлас). Набор карт (U_i,ϕ_i) , таких, что $\bigcup_i U_i=M$.

Пусть даны две карты (U,ϕ) и (V,ψ) . Далее удобно считать, что их носители пересекаются: $U\cap V\neq\varnothing$, иначе определение не несёт смысла.

Определение 1.1.4 (Отображение перехода). Отображение $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$. Обозначается $f_{\phi\psi}$.

Определение 1.1.5 (Карты (U,ϕ) и (V,ψ) согласованы). Отображение перехода и ему обратное гладкие.

Определение 1.1.6 (Гладкий атлас). Атлас, такой, что любые две карты согласованы.

Далее все атласы предполагаются гладкими.

Определение 1.1.7 (Атласы эквивалентны). Их объединение (то есть все карты из первого и из второго атласа вместе взятые) — тоже гладкий атлас.

Предложение 1.1.1. Эквивалентность атласов — отношение эквивалентности.

Определение 1.1.8 (Гладкая структура на многообразии). Максимальный гладкий атлас (атлас, к которому нельзя добавить карт).

Замечание. К атласу можно добавить произвольное количество карт, согласованных с теми, что в атласе, и они будут согласованы между собой. В частности, для задания гладкой структуры достаточно произвольного атласа A: в A можно добавить всевозможные карты, согласованные с картами из A, и он станет максимальным.

Определение 1.1.9 (Гладкое многообразие). Многообразие с гладкой структурой.

Примеры (Атласы).

- Стандартная гладкая структура на \mathbb{R}^n задаётся атласом $\{(\mathbb{R}^n,\mathrm{id})\}.$
- В частности, стандартная структура на \mathbb{R}^1 задаётся атласом $\{(\mathbb{R}^1, [x \mapsto x])\}$.
- Можно задать нестандартную структуру на \mathbb{R}^1 : $\{(\mathbb{R}^1, [x \mapsto x^3])\}$.

Предостережение. Это действительно гладкая структура, хотя обратное отображение $[x \mapsto x^{1/3}]$ не гладкое. Тем не менее, определение и не требует гладкости от него.

ullet Пусть $f=egin{cases} x,&x\geqslant 0\ rac{1}{2}x,&x\leqslant 0 \end{cases}$. Тогда $\{(\mathbb{R}^1,f)\}$ — тоже гладкий атлас на \mathbb{R}^1 .

Тем не менее, любые два атласа из приведённых выше атласов на \mathbb{R}^1 не эквивалентны — отображения перехода получаются не гладкими.

• Гладкая структура на сфере задаётся двумя картами: пусть S^2 — сфера с северным полюсом N и южным S, пусть f,g — стереографические проекции с данными полюсами. Тогда $\{(S^2\setminus\{N\},f),(S^2\setminus\{S\},g)\}$ — атлас.

Замечание. Если M — гладкое многообразие, и открытое $W \subset M$, то на W естественным образом определена гладкая структура, наследующаяся с M.

1.1.1 Гладкие отображения

Пусть M^m, N^n — гладкие многообразия, A_M, A_N — соответствующие атласы. Рассмотрим отображение $f: M \to N$.

Определение 1.1.10 (Координатное представление f в картах (U,ϕ) на M и (V,ψ) на N). Такое $\widetilde{f}:\phi(U)\to\psi(V)$, что диаграмма коммутативна везде, где определена (то есть $\widetilde{f}=\psi\circ f\circ\phi^{-1}$ на $\phi(U\cap f^{-1}(V))$).

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} V \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ \phi(U) & \stackrel{\widetilde{f}}{\longrightarrow} \psi(V) \end{array}$$

Далее считаем, что $f:M\to N$ непрерывна (эквивалентно, все координатные представления непрерывны).

Определение 1.1.11 (f гладкое). Любое координатное представление — гладкое.

Определение 1.1.12 (f — гладкое в точке $x \in M$). Найдётся окрестность $U_x \ni x$ и карты (U, ϕ) , (V, ψ) (где $V \ni y := f(x)$), такие, что $U_x \subset U$ и сужение на U_x координатного представления f — гладко.

Свойства (Гладкие отображения).

- Гладкость в точке не зависит от выбора карт.
- Гладкость отображения не зависит от выбора атласа в одном классе эквивалентности.
- Отображение гладкое ⇔ оно гладкое в любой точке. На лекции было доказательство ⇐.
- Пусть $f:M \to N, g:N \to K$ гладкие. Тогда их композиция $g \circ f$ гладкая.
- Тождественное отображение гладкое, если в образе и прообразе выбраны эквивалентные атласы.
- Определение гладкости отображения совпадает с определением гладкости из матанализа (если считать, что $M \subset \mathbb{R}^m, N \subset \mathbb{R}^n$ открыты, и порождающие атласы наследуют структуры \mathbb{R}^m и \mathbb{R}^n)

Определение 1.1.13 (Диффеоморфизм $f: M \to N$). Гладкое f, такое, что f^{-1} — тоже гладкое.

Определение 1.1.14 (Многообразия M и N диффеоморфны). Между ними существует диффеоморфизм.

Понятно, что диффеоморфность — отношение эквивалентности.

Утверждение 1.1.1. Если $M^m \overset{\partial u\phi}{\sim} N^n$, то m=n.

Доказательство. Рассмотрим произвольную $x\in M$. Пусть $f:M\to N$ — диффеоморфизм, пусть $\widetilde f$ — его координатное представление. Тогда $\widetilde f^{-1}$ — координатное представление f^{-1} , откуда $\widetilde f^{-1}$ — тоже гладкое. Рассмотрим дифференциал $\mathrm{d}_x\widetilde f(_)$, это изоморфизм векторных пространств, значит, m=n.

По умолчанию всегда считается, что на \mathbb{R}^m введена стандартная гладкая структура.

Предложение 1.1.2. Пусть M- гладкое многообразие, тогда карта — диффеоморфизм между U и $\phi(U)$. Обратно, любой диффеоморфизм между открытым подмножеством $W\subset M$ и областью $\Omega\subset \mathbb{R}^m$ — карта.

Доказательство.

Гладкость карты, как диффеоморфизма, эквивалентна тому, что карта согласована с остальными в атласе: пунктирная стрелка $\psi(U \cap V) \to \phi(U \cap V)$ одновременно является и отображением перехода между картами (U, ϕ) и (V, ψ) , и координатным представлением ϕ в картах (V, ψ) , (U, id) .

Следствие 1.1.1. Диффеоморфизм $f: M \to N$ задаёт естественную биекцию между картами M и картами N (а ещё между (максимальными) атласами M и (максимальными) атласами N).

Лекция II

21 февраля 2024 г.

Пример (Диффеоморфизм). Ранее приводились неэквивалентные карты $(\mathbb{R}, \mathrm{id})$ и $(\mathbb{R}, [x \mapsto x^3])$. Вещественные прямые с данными картами диффеоморфны: $[x \mapsto x^3]$ — диффеоморфизм, ему об-

ратный
$$[x \mapsto \sqrt[3]{x}]$$
 (где, как в школе, $\sqrt[3]{x} = \begin{cases} \sqrt[3]{x}, & x \geqslant 0 \\ -\sqrt[3]{-x}, & x < 0 \end{cases}$).

Таким образом, создать две недиффеоморфные структуры на одном и том же многообразии не то чтобы просто.

 $\mathit{Интересный}\ \phi \mathit{акт}.\ \Pi$ усть M-n-мерное многообразие.

Если
$$\begin{cases} n < 4, & \text{на нём существует единственная гладкая структура} \\ n = 4, & \text{на нём существует бесконечно много гладких структур.} \\ n > 4, & \text{на нём существует конечное число гладких структур} \end{cases}$$

В частности, при n>4: если $M^n=\mathbb{R}^n$, то гладкая структура единственна.

1.1.2 Касательное пространство

Пусть M — гладкое многообразие, $p \in M$. Пусть $\alpha, \beta: (-\varepsilon, +\varepsilon) \to M$ — гладкие (естественно, в смысле отображения многообразий) кривые, такие, что $\alpha(0) = p = \beta(0)$.

Определение 1.1.15 (α и β соприкасаются в p). В любой карте (U, ϕ) (где $U \ni p$) их производные в нуле совпадают: $(\phi \circ \alpha)'(0) = (\phi \circ \beta)'(0)$.

Предостережение. Определение требует совпадение векторов скорости, а не просто параллельности или сонаправленности.

Свойства (Соприкасающиеся кривые).

- Соприкасаемость кривых в какой-то конкретной точке отношение эквивалентности.
- Соприкасаемость не зависит от выбора карты: достаточно проверить в любой одной, содержащей p.

Доказательство. Пусть $(U,\phi), (V,\psi)$ — две карты, содержащие точку p, отображение $f_{\phi\psi} = \psi \circ \phi^{-1}$ гладкое, значит, его дифференциал переводит равные векторы в равные.

Определение 1.1.16 (Касательный вектор в точке $p \in M$). Класс эквивалентности соприкасающихся в точке p кривых.

Множество всех касательных векторов — κ асательное пространство, обозначают T_pM .

Координаты касательного вектора

Пусть $p \in M$, и (U, ϕ) — карта, содержащая p.

Определение 1.1.17 (Координатное представление вектора $v = [\alpha] \in T_p M$). Вектор скорости данной кривой в данной карте $v_{\phi} \stackrel{def}{=} (\phi \circ \alpha)'(0)$.

Понятно, что определение не зависит от выбора представителя — кривой α .

Также координаты v_{ϕ} в \mathbb{R}^n называют координатами v в карте ϕ .

Свойства (Координатное представление).

• $\forall p \in M, \forall (U, \phi) : p \in U \Rightarrow$ координатное представление — биекция $T_pM \to \mathbb{R}^n, v \mapsto v_\phi$.

 ${\it Доказательство}.$ Это инъекция, так как если образы u,v равны, то по определению u и v соприкасаются.

Это сюръекция: $\forall w \in \mathbb{R}^n$ можно рассмотреть кривую $\gamma: \mathbb{R} \to \mathbb{R}^n, \gamma(t) := wt + \phi(p)$. Координаты $[\phi^{-1} \circ \gamma]$ в карте ϕ как раз окажутся равными w.

Преобразование координатного представления в зависимости от карты

Утверждение 1.1.2. Пусть $M^n \ni p$ — гладкое многообразие и точка, (U, ϕ) и (V, ψ) — карты, содержащие p. Тогда $v_{\psi} = \mathrm{d}_{\phi(p)} f_{\phi\psi}(v_{\phi})$.

Доказательство. Пусть $v = [\alpha]$. Тогда $v_{\phi} = (\phi \circ \alpha)'(0)$, $v_{\psi} = (\psi \circ \alpha)'(0)$, и действительно, так как $f_{\phi\psi} = \psi \circ \phi^{-1}$, то $v_{\psi} = (f_{\phi\psi} \circ \phi \circ \alpha)'(0)$. Дифференцируя композицию, получаем утверждение. \square

Следствием данного утверждения является альтернативное определение касательного вектора:

Определение 1.1.18 (Касательный вектор в точке $p \in M$). Отображение из множества всех карт, содержащих точку p (обозначим их \mathcal{M}_p) в \mathbb{R}^n

$$\mathcal{M}_n \to \mathbb{R}^n$$

такое, что выполнены соотношения (утверждение 1.1.2).

Можно показать, что данное определение, и определение через соприкасающиеся кривые, эквивалентны.

Это определение сродни тому определению тензора, которое говорит: «Тензор — это многомерная матрица чисел, преобразующихся при замене базиса следующим образом...»

1.1.3 Структура векторного пространства на $T_p M$

Зафиксируем $p \in M$, и карту (U, ϕ) , содержащую p. Пусть $v, w \in T_pM$.

Определение 1.1.19 (Сумма векторов v и w). Такой вектор v+w, что $(v+w)_{\phi}=v_{\phi}+w_{\phi}$.

Определение 1.1.20 (Растяжение вектора v с коэффициентом α). Такой вектор αv , что $(\alpha v)_{\phi} = \alpha \cdot v_{\phi}$.

Иными словами, у нас была биекция T_pM с векторным пространством, и мы просто перенесли структуру векторного пространства с \mathbb{R}^n на T_pM . Определение не зависит от выбора карты, так как замена координат касательных векторов при переходе между картами — изоморфизм векторных пространств (дифференциал — линейный оператор).

Замечание. Из определения получается, что $v o v_\phi$ — изоморфизм векторных пространств.

1.2 Касательное расслоение

Как множество, $T(M) = \coprod_{p \in M} T_p M$. Оказывается, на T(M) можно естественно ввести топологию и гладкую структуру размерности 2n. Преобразуем определение атласа так, чтобы это случилось одновременно.

Утверждение 1.2.1 (Атлас для множества). Пусть X — множество c картами (U, ϕ) , то есть парами (U, ϕ) где $U \subset X$, и каждая ϕ — биекция $U \to \mathbb{R}^n$. При этом $X = \bigcup U$

Потребуем для любых двух карт (U,ϕ) и (V,ψ) : $\phi(U\cap V)$ открыто (в частности, $\phi(U)$ открыто), и потребуем, чтобы все функции перехода $f_{\phi\psi}=\psi\circ\phi^{-1}$ были гладкими.

Введём на X топологию: $W \subset X$ открыто, если $\forall (U,\phi): \phi(U\cap W)$ открыто, и предположим, что топология получилась хаусдорфовой, и что на X есть счётная база.

Tогда утверждается, что данная процедура задаёт на X одновременно и топологию, и гладкую структуру.

Зададим такую гладкую структуру на T(M). Обозначим $TU = \bigsqcup_{p \in U} T_p M$. Можно рассматривать TU как множество пар, состоящих из точки и вектора: $TU = \{(p,v)|p \in U, v \in T_p M\}$.

Пусть имеется карта (U, ϕ) на M. Построим по ней карту

$$\Phi: TU \to \mathbb{R}^n \times \mathbb{R}^n$$
$$(p, v) \mapsto (\phi(p), v_{\phi})$$

Проверим согласованность: пусть (U,ϕ) и (V,ψ) — две карты на M. По ним построены карты (TU,Φ) и (TV,Ψ) соответственно. Тогда $(\Psi\circ\Phi^{-1})(p,v)=((\psi\circ\phi^{-1})(p),\mathrm{d}_{\phi(p)}f_{\phi\psi}(v))$, видно, что $\Psi\circ\Phi^{-1}$ гладко.

Упражнение 1.2.1. Получилось хаусдорфовое пространство со счётной базой.

1.2.1 Дифференциал гладкого отображения

Пусть M и N — гладкие многообразия, и есть гладкое отображение $f:M\to N$. Зафиксируем $p\in M$.

Определение 1.2.1 (Дифференциал f в точке p). Отображение $\mathrm{d}_p f: T_p M \to T_{f(p)} N$, заданное следующим образом: $\mathrm{d}_p f: [\alpha] \mapsto [f \circ \alpha]$.

Утверждение 1.2.2. Определение дифференциала не зависит от выбора представителей.

Доказательство. Пусть $\alpha \sim \beta$ — две кривые, $\alpha(0) = \beta(0) = p$, $\alpha'(0) = \beta'(0) = v$.

Проверим, что $f \circ \alpha \sim f \circ \beta$. Достаточно проверить, что совпадают координатные представления.

Выберем две карты (U,ϕ) и (V,ψ) (где $U\ni p,\ V\ni f(p)$). Координатное представление f — это $\widetilde{f}=\psi\circ f\circ\phi^{-1}$.

Дифференциал \widetilde{f} переносит координаты представления векторов из T_pM в координаты представления векторов из $T_{f(p)}N$:

$$\psi \circ f \circ \alpha = \widetilde{f} \circ \phi \circ \alpha \quad \text{и} \quad \psi \circ f \circ \beta = \widetilde{f} \circ \phi \circ \beta$$

$$(\psi \circ (f \circ \alpha))'(0) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \alpha)'(0)) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \beta)'(0)) = (\psi \circ (f \circ \beta))'(0)$$

Нетрудно заметить, что $(d_p f(v))_{\psi} = \left(d_{f(p)} \widetilde{f}\right)(v_{\phi})$ в обозначениях из доказательства выше $(u \ v = [\alpha]).$

Следствие 1.2.1. $d_p f$ — линейное отображение.

Лекция III

28 февраля 2024 г.

Замечание. Можно естественным определить дифференциал на всём пространстве TM вот так: $Tf:TM\to TN$. На вектор $v\in T_pM$ отображение Tf действует понятным образом: $v\mapsto \mathrm{d}_pf(v)$.

Если $U \subset \mathbb{R}^n$, то касательное пространство TU естественным образом отождествляется с $U \times \mathbb{R}^n$.

1.3 Гладкие векторные поля

Пусть M — гладкое многообразие, выберем произвольное подмножество $A\subset M$.

Определение 1.3.1 (Непрерывное векторное поле на A). Непрерывное отображение $X:A\to TM$, такое, что $\forall p\in A: X(p)\in T_pM$. Часто пишут X_p вместо X(p).

Определение 1.3.2 (Гладкое векторное поле на A). Векторное поле $X:A\to TM$, такое, что \exists открытое $U\subset M:U\supset A$, и X продолжается на U, как гладкое векторное поле (то есть гладкое отображение $U\to TM$, являющееся непрерывным векторным полем).

Для гладкого многообразия M будем обозначать пространство всех гладких векторных полей за $\mathcal{X}(M)$.

Пусть в M имеется карта (U,ϕ) . Векторные поля задавались на подмножестве $A\subset M$, а не на всём многообразии, так как один из самых частых примеров гладкого векторного поля — κ оординатное векторное поле — задаётся лишь в карте U:

Определение 1.3.3 (Координатное векторное поле, соответствующее i-й координате). Векторное поле $V_i: U \to TM$, такое, что $\mathrm{d}\phi(V_i) = e_i$ (с координатами $V_i(p)_\phi = e_i$).

Лемма 1.3.1. Пусть имеется открытое $U \subset \mathbb{R}^n$, и компактное $K \subset U$. Утверждается, что $\forall V \supset K : \operatorname{Cl} V \subset U \Rightarrow$ можно построить гладкую функцию $f : \mathbb{R}^n \to \mathbb{R}$, такую, что $f\big|_K = 1$, $f\big|_{\mathbb{R}^n \setminus V} = 0$.

Доказательство. $\mathbb{R}^n\setminus V$ замкнуто, значит, $d\coloneqq \mathrm{dist}(\mathbb{R}^n\setminus V,K)>0$. Функция χ_K почти подходит, только она не гладкая. Немножко увеличим носитель: рассмотрим $W\coloneqq U_{d/2}(K)=\left\{x\in\mathbb{R}^n\left|\mathrm{dist}(x,K)<\frac{d}{2}\right.\right\}$. Для χ_W условие выполняется и в окрестности K, а, значит, подойдёт свёртка $\chi_W\circ g_{\frac{d}{2}}$, где $g_{\frac{d}{2}}$ подходящая аппроксимативная единица, гладкая функция с компактным носителем, равная нулю вне $B_{\frac{d}{3}}(0)$.

Следствие 1.3.1. Пусть V_i — координатное поле карты (U,ϕ) . Тогда $\forall K \subset U: \exists$ векторное поле $\widetilde{V}_i: \widetilde{V}_i\big|_K = V_i, \widetilde{V}_i\big|_{M \setminus U} \equiv 0$.

Иными словами, всегда немного уменьшив карту, можно продолжить координатное векторное поле на всё многообразие.

1.4 Гладкие подмногообразия

Пусть M^m — гладкое многообразие размерности m.

Определение 1.4.1 (Гладкое подмногообразие размерности $n \leq m$). Подмножество $N \subset M$, такое, что $\forall p \in N : \exists$ выпрямляющая карта (U, ϕ) (карта на M), такая, что $U \ni p$ и $\phi(U) \cap \mathbb{R}^n = \phi(N \cap U)$.

Здесь имеется в виду, что ϕ действует в \mathbb{R}^m , и имеется определённое вложение $\mathbb{R}^n \hookrightarrow \mathbb{R}^m$ (скажем, в \mathbb{R}^m выбран базис, и на первые n векторов натянуто \mathbb{R}^n).

Утверждение 1.4.1. На N каноническим образом индуцируется гладкая структура из M. Карты на N- сужения выпрямляющих карт (карте (U,ϕ) отвечает карта $(N\cap U,\psi)$, где $\psi:N\cap U\to \mathbb{R}^n\subset \mathbb{R}^m,\ \psi(x)=\phi(x)$).

Доказательство. Согласованность карт на N следует из согласованности карт на M.

Пусть N^n, M^m — гладкие многообразия.

Определение 1.4.2 (Погружение $f:N\to M$). Гладкое отображение $f:N\to M$, такое, что $\forall p\in N:\mathrm{d}_p f$ — инъекция. Само f не обязано быть инъекцией.

Понятно, что такое возможно только при $n \leq m$.

Определение 1.4.3 (Вложение $f: N \to M$). Погружение $f: N \to M$, которое является топологическим вложением, то есть гомеоморфизмом на образ.

Примеры.

- В случае поверхностей размерности 2 погружение подмногообразия размерности 1 кривой называлось регулярной параметризацией.
- Петля слева является погружением, но даже инъективная петля справа вложением не является: в выделенной точке топология не совпадает с топологией интервала.

Предложение 1.4.1.

- 1. Погружение локально является вложением: $\forall x \in N: \exists U_x \ni x: f\big|_U -$ вложение.
- 2. Образ вложения гладкое подмногообразие.

Доказательство. Достаточно доказать для случая открытых $N \subset \mathbb{R}^n$, $M \cong \mathbb{R}^m$, потому что карты — диффеоморфизмы, и определения сохраняются при диффеоморфизмах.

Зафиксируем $x \in N$. Введём координаты в \mathbb{R}^m , выделив первые n координат, так, чтобы подпространство, натянутое на них, совпадало с $d_x f(\mathbb{R}^n)$.

Также прибавим (в смысле \oplus) к пространству \mathbb{R}^n , содержащему N, слагаемое \mathbb{R}^{m-n} .

Лемма 1.4.1. Существуют $W\ni x,W'\ni f(x)$, и диффеоморфизм $\phi:W\to W':\phi\big|_{N\cap W}=f$ (обе окрестности т-мерные: $W\in\mathbb{R}^n\oplus\mathbb{R}^{m-n},W'\in\mathbb{R}^m$).

Доказательство леммы.

Обозначим координаты в $\mathbb{R}^n \oplus \mathbb{R}^{m-n}$ за (ξ,ζ) , и определим $\phi(\xi,\zeta) = f(\xi) + (0,\zeta)$. Дифференциал $\mathrm{d}_x \phi = (\mathrm{d}_x f,\mathrm{id})$ невырожден (матрица блочно-диагональна), и $\phi|_N = f$.

По теореме об обратной функции $\exists W:\phiig|_W$ — диффеоморфизм. \Box

- 1. Образ $\phi\big|_{N\cap W}$ подмногообразие $W'\cap \mathbb{R}^n\subset N.$ $\phi^{-1}\big|_{W'}$ выпрямляющая карта,
- 2. ϕ гомеоморфизм на образ \Rightarrow $f|_{N\cap W}$ топологическое вложение и гомеоморфизм. Значит, локально погружение вложение.
- 3. Так как f топологическое вложение, то f(N) подмногообразие.

Лекция IV 6 марта 2024 г.

Контример. Тождественное отображение между прямыми с разными атласами $(\mathbb{R}, x^3) \to (\mathbb{R}, \mathrm{id})$ — не вложение (и даже не погружение). Ему соответствует координатное представление $x \mapsto \sqrt[3]{x}$, которое не является гладким в нуле.

Пусть $N\subset M$ — гладкое подмногообразие. Отображение in : $N\hookrightarrow M$ можно рассматривать, как вложение многообразий.

Утверждение 1.4.2. Следующие определения подмногообразия равносильны:

- ullet Подмножество $N\subset M$ с выпрямляющими картами.
- Образ вложения некоторого многообразия.

 $\mathit{Интересный}\ \phi a \kappa m$ (Теорема Уитни). Для любого гладкого многообразия M^m существует вложения $M^m \hookrightarrow \mathbb{R}^{2m}$.

1.5 Риманова структура

Пусть дано гладкое многообразие M^m .

Определение 1.5.1 (Риманова структура на M^m). Совокупность (положительно определённых) скалярных произведений $\{g_x\}_{x\in M}$ $(g_x:T_xM\times T_xM\to\mathbb{R},g_x=\langle_,_\rangle_x)$). Иначе это называют метрическим тензором.

Напомним, что $\mathcal{X}(M)$ — пространство гладких векторных полей на M.

Определение 1.5.2 (Гладкая риманова структура на M^m). Такая риманова структура, что $\forall X,Y\in \mathcal{X}(M)$: отображение $M\to \mathbb{R}, x\mapsto \langle X_x,Y_x\rangle_x$ гладко

Далее везде будем говорить *риманово многообразие* для гладкого многообразия с гладкой римановой структурой.

Пример. Пример (гладкого) метрического тензора для поверхностей — первая квадратичная форма.

Пусть заданы два римановых многообразия $(M,\langle _,_\rangle)$ и $(N,\langle _,_\rangle)$.

Определение 1.5.3 (Изометрия между M и N). Диффеоморфизм $f: M \to N$, сохраняющий скалярные произведения: $\forall x \in M: \forall v, w \in T_x M: \langle v, w \rangle_x = \langle \mathrm{d}_x f(v), \mathrm{d}_x f(w) \rangle_{f(x)}.$

Примеры.

• Пусть имеется вложение гладкого многообразия $f:M^m\to \mathbb{R}^n$. В соответствии с ним на M^m можно естественным образом задать риманову метрику:

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

Так как $d_p f$ инъективен, то скалярное произведение получится невырожденным.

В предыдущем семестре в точности это происходило с вложением поверхности в \mathbb{R}^3 .

• Пусть на многообразии N^n задана риманова структура, и имеется вложение $f:M^m\to N^n$. Тогда абсолютно аналогично можно задать риманову метрику на M^m :

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

• В обеих пунктах можно ослабить требования на f: достаточно, чтобы f было погружением.

Пусть (M^m,g) — риманово многообразие, (U,ϕ) — карта: $\phi:U\to\phi(U)\subset\mathbb{R}^m$. Выберем в \mathbb{R}^m ортонормированный базис $(e_i)_{1\leqslant i\leqslant m}$. Базисный вектор e_i — координатное представление вектора $\mathrm{d}_x\phi^{-1}(e_i)$, и $(\mathrm{d}_x\phi^{-1}(e_i))_{1\leqslant i\leqslant m}$ — базис T_xM .

Для краткости записи в дальнейшем будет использоваться запись $E_i \coloneqq \mathrm{d}_\phi^{-1}(e_i)$, если карта ясна из контекста. В этой карте $E_i - \kappa oop \partial u hamhые$ векторные поля.

Можно записать координаты метрического тензора g_x в данных базисных векторах E_i , получатся метрические коэффициенты для карты (U,ϕ) : $(g_{i,j})_{1\leqslant i,j\leqslant m}$.

Для векторов $X = X_1 E_1 + \dots + X_m E_m$ и $Y = Y_1 E_1 + \dots + Y_m E_m$:

$$\langle X, Y \rangle = \sum_{i,j} X_i g_{i,j} Y_j$$

Теорема 1.5.1. $g_{i,j}$ — гладкие во всех картах \iff метрический тензор g гладок.

Доказательство.

 \Leftarrow . В определении гладкого метрического тензора были $X,Y \in \mathcal{X}(M)$, но на прошлой лекции мы обсудили, что координатное поле можно продлить с любого компакта: (следствие 1.3.1).

Проверим гладкость метрического тензора в карте (U,ϕ) . Пусть $p\in U$, захватим точку p открытым множеством $V\ni p:\operatorname{Cl} V\subset U$. Согласно (следствие 1.3.1), можно продлить координатные векторные поля E_i и E_j , получив некоторые поля \overline{E}_i и \overline{E}_j , совпадающие с E_i и E_j на V.

 $g\left(\overline{E}_i,\overline{E}_j\right)$ — гладкая функция, совпадающая с $g_{i,j}$ на V.

 \Rightarrow . Рассмотрим гладкие векторные поля $X,Y\in \mathcal{X}(M)$.

Проверим гладкость в точке $x \in M$. Рассмотрим произвольную карту (U,ϕ) , содержащую x, Распишем $X = \sum_i \xi_i E_i, Y = \sum_j \eta_j E_j$. Так как поля гладкие, то $\xi_i, \eta_j : M \to \mathbb{R}$ — гладкие функции.

Получается,
$$\langle X,Y \rangle_x = \sum\limits_{i,j} \xi_i \eta_j \, \langle X_i,X_j \rangle = \sum\limits_{i,j} \xi_i \eta_j g_{i,j}.$$

Пример. Пусть многообразие M^m покрыто одной картой (M,ϕ) . Для задание римановой структуры на M необходимо и достаточно ввести $m \times m$ гладких метрических коэффициентов $g_{i,j}: M \to \mathbb{R}$ так, что матрица $(g_{i,j})$ всюду положительно определена.

В случае покрытия M несколькими картами так может не получиться, надо ещё проверять согласованность, что может быть неудобно.

1.5.1 Длина путей

Пусть $v \in T_x M$.

Определение 1.5.4 (Длина вектора v). $|v| \stackrel{def}{=} \sqrt{\langle v, v \rangle_x}$.

Теперь $\gamma:[a,b] \to M$ — кусочно-гладкая кривая (имеется разбиение $a=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=b$, такое, что $\gamma\big|_{[t_i,t_{i+1}]}$ — гладкая).

Определение 1.5.5 (Длина кривой). $L(\gamma) = \sum_{i}^{t_{i+1}} |\gamma'(t)| \, \mathrm{d}t$. Длина γ' определена: из гладкости $\forall t \in (t_i, t_{i+1}) : \gamma'(t) \in T_{\gamma(t)}M$.

Пусть (M,g) — связное риманово многообразие, $x,y \in M$ — две точки.

Определение 1.5.6 (Расстояние между точками x,y). $d_l(x,y) \stackrel{def}{=} \inf_{\gamma} l(\gamma)$, где инфимум берётся по всем кусочно гладким $\gamma : [a,b] \to M$, таким, что $\gamma(a) = x, \gamma(b) = y$.

Теорема 1.5.2.

- 1. d_l метрика
- 2. Топология, порождённая d_l совпадает с исходной топологией ΩM .

Доказательство.

- 1. Проверим три аксиомы метрики.
 - Меняя направление пути, получаем $d_l(x,y) = d_l(y,x)$.
 - Выберем $\varepsilon > 0$, найдутся две кусочно гладкие кривые $\gamma_{x,y}$ и $\gamma_{y,z}$, почти оптимально соединяющие x,y и y,z соответственно $(l(\gamma_{x,y}) \leqslant d(x,y) + \varepsilon; \ l(\gamma_{y,z}) \leqslant d(y,z) + \varepsilon)$. Конкатенируя $\gamma_{x,y} \cdot \gamma_{y,z}$, получаем $d_l(x,z) \leqslant d_l(x,y) + d_l(y,z) + 2\varepsilon$. Устремляя $\varepsilon \to 0$, получаем неравенство треугольника.
 - Проверим положительную определённость.

Лемма 1.5.1. $\forall x \in M: \exists \ \kappa \ apma \ (U,\phi), \ codep$ жащая $x, \ ma$ кая, что $\forall \varepsilon > 0: \exists V \subset U \ (V \ni x), \ npuч$ ём $\phi|_{V}: V \to \phi(V) \ (1 \pm \varepsilon)$ -билипшицево:

$$\forall a, b \in V : (1 - \varepsilon)|\phi(a) - \phi(b)| \leqslant d_l(a, b) \leqslant (1 + \varepsilon)|\phi(a) - \phi(b)|$$

Отсюда сразу получается, что $\forall \gamma: [c,d] \to V$:

$$(1 - \varepsilon) \cdot l(\phi \circ \gamma) \leq l(\gamma) \leq (1 + \varepsilon) \cdot l(\phi \circ \gamma)$$

Доказательство леммы.

Выберем ортонормированный базис X_1, \dots, X_m в $T_x M$ (такой найдётся, так как скалярное произведение положительно определено).

Выберем произвольную карту (U,ϕ) , содержащую $x. d_x \phi(X_1), \ldots, d_x \phi(X_m)$ — базис в \mathbb{R}^m , его можно линейным преобразованием L перевести в ортонормированный. Далее считаем, что он уже ортонормирован (можно заменить карту ϕ на $L \circ \phi$).

Коэффициенты метрического тензора в этой карте $g_{i,j}$ таковы, что $g_{i,j}(x) = \delta_{i,j}$.

Из непрерывности $g_{i,j}: \forall \varepsilon>0: \exists V_{\substack{\ni x}}\subset U: \forall y\in V, v\in T_yM$:

$$(1 - \varepsilon)|v| \le |d_u \phi(v)| \le (1 + \varepsilon)|v| \qquad \Box$$

2. Применяем (лемма 1.5.1) для $\varepsilon=1/2$. Из билипшицевости сразу получается совпадение топологий. \Box

1.5.2 О внутренней метрике

Более частым случаем является определение расстояния, как инфимум длин всех кривых, а не только кусочно-гладких. Однако риманова структура на многообразии определяет лишь метрику в каждой точке, а непосредственных средств для вычисления длин непрерывных путей риманова структура не предоставляет.

Пусть (X,d) — метрическое пространство, $\gamma:[c,d]\to X$ — (непрерывный) путь. Его длину можно определить по формуле $L_d(\gamma)=\sup\sum_i d(\gamma(t_i),\gamma(t_{i+1}))$, где супремум берётся по всем разбиениям $c=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=d$. Пусть $x,y\in X$.

Определение 1.5.7 (Внутренняя метрика, порождённая метрикой d). $d_I(x,y) \stackrel{def}{=} \inf_{\gamma} L_d(\gamma)$, где инфимум берётся по всем непрерывным $\gamma:[a,b] \to M$, таким, что $\gamma(a)=x,\gamma(b)=y$. Не уверен в правильности этого определения.

Из неравенства треугольника сразу получается $d_I \geqslant d$ (для всякой кривой γ , соединяющей точки x и y: $L_d(\gamma) \geqslant d(x,y)$ по определению супремума).

В силу теоремы, которую мы скоро докажем (теорема 1.5.3), имеет место равенство $(d_I)_I = d_I$. Это позволяет ввести следующее определение.

Определение 1.5.8 (Внутренняя метрика). Метрика d, совпадающая с внутренней метрикой, порождённой d.

Конечно, не все метрики — внутренние.

Пример (Не внутренняя метрика). Рассмотрим окружность $S^1 \subset \mathbb{R}^2$. Метрика, индуцированная с \mathbb{R}^2 на S^1 — не внутренняя: расстояние между диаметрально-противоположными точками равно 2, но не существует пути, их соединяющего, длиной меньше π .

Π екция V 13 марта 2024 г.

В этой лекции везде $\widehat{\gamma}$ обозначают кусочно-гладкие кривые, а γ — произвольные (непрерывные) кривые.

Определение 1.5.9 (Длина кусочно-гладкой кривой $\widehat{\gamma}$). Число $L(\widehat{\gamma}) \stackrel{def}{=} \sum \int |\widehat{\gamma}'|$.

Построим внутреннюю метрику, порождённую длинами кривых d_L : $d_L(x,y) = \inf_{\widehat{\gamma}} L(\widehat{\gamma})$. По произвольной метрике d можно определить длину кривых по формуле $L_d(\gamma) = \sup_i \int_i^{\infty} d(\gamma(t_i), \gamma(t_{i+1}))$.

Что будет, если по формуле для длин кривых построить метрику, а потом согласно этой метрике научиться измерять длины кривых?

Утверждение 1.5.1. Для всякой кусочно-гладкой кривой $\widehat{\gamma}: [a,b] \to M$: $L_{d_L}(\widehat{\gamma}) \leqslant L(\widehat{\gamma})$.

 \mathcal{Q} оказательство. Выберем $\varepsilon>0$, по определению длины, построенной по метрике, найдётся разбиение $a=t_0<\dots< t_k=b$, такое, что $L_{d_L}(\widehat{\gamma})\leqslant \sum\limits_{i=0}^{k-1}d_L\left(\widehat{\gamma}(t_i),\widehat{\gamma}(t_{i+1})\right)+\varepsilon.$

Теперь оценим $d_L\left(\widehat{\gamma}(t_i),\widehat{\gamma}(t_{i+1})\right)\leqslant L(\widehat{\gamma}\big|_{[t_i,t_{i+1}]})$. Устремляя $\varepsilon\to 0$, получаем искомое неравенство в силу аддитивности длины.

Теорема 1.5.3. d_L — внутренняя метрика: $\forall x, y \in M : d_L(x, y) = \inf_{\gamma} L_{d_L}(\gamma)$, где инфимум берётся по всем непрерывным путям $\gamma : [a, b] \to M; \gamma(a) = x, \gamma(b) = y$.

 \mathcal{Q} оказательство. Для любой кривой $\gamma:[a,b] \to M$, такой, что $\begin{cases} \gamma(a)=x \\ \gamma(b)=y \end{cases}$ верно, что $d_L(x,y) \leqslant L_{d_L}(\gamma)$: можно в качестве разбиения выбрать $a=t_0 < t_1=b$.

Тем самым, достаточно для всякого $\varepsilon>0$ предъявить кривую $\gamma:[a,b]\to M$, соединяющую x и y, так, что $L_{d_L}(\gamma)\leqslant d_L(x,y)+\varepsilon.$

Лемма 1.5.2. Функция длины L от кусочно-гладких кривых полунепрерывна снизу: если $\widehat{\gamma}_n \xrightarrow[n \to \infty]{} \widehat{\gamma}$ поточечно, то $\varprojlim_{n \to \infty} L(\widehat{\gamma}_n) \geqslant L(\widehat{\gamma})$.

Доказательство леммы.

Выберем $\varepsilon>0$; согласно (лемма 1.5.1) каждая точка $\widehat{\gamma}$ вместе с некоторой окрестностью покрывается картой, так что

$$(1 - \varepsilon)L_{map}\left(\phi \circ \widehat{\gamma}\big|_{[t_j, t_{j+1}]}\right) \leqslant L\left(\widehat{\gamma}\big|_{[t_j, t_{j+1}]}\right) \leqslant (1 + \varepsilon)L_{map}\left(\phi \circ \widehat{\gamma}\big|_{[t_j, t_{j+1}]}\right)$$

где L_{map} — длина кривой в \mathbb{R}^n .

Так как $\widehat{\gamma}([a,b])$ — компакт, то можно выделить конечное количество таких карт. Начиная с некоторого номера, все точки $\widehat{\gamma}_n$ тоже лежат в соответствующих картах.

В евклидовом пространстве полунепрерывность снизу есть: $\varliminf_{n\to\infty} L_{map}(\phi\circ\widehat{\gamma}_n)\geqslant L_{map}(\phi\circ\widehat{\gamma}),$ значит, $\frac{1}{1-\varepsilon}\varliminf_{n\to\infty} L(\widehat{\gamma}_n)\geqslant \frac{1}{1+\varepsilon}L(\widehat{\gamma}).$ Устремляя $\varepsilon\to 0$, получаем искомое утверждение. \square

Возьмём кусочно-гладкую кривую $\widehat{\gamma}$, соединяющую x и y так, что $d_L(x,y) + \varepsilon \geqslant L(\widehat{\gamma})$ (она берётся из определения d_L). Осталось доказать следующую лемму.

Лемма 1.5.3. Для кусочно-гладких кривых: $L(\widehat{\gamma}) = L_{d_L}(\widehat{\gamma})$.

Доказательство леммы.

В силу (утверждение 1.5.1) достаточно доказать, что $L(\widehat{\gamma}) \leqslant L_{d_L}(\widehat{\gamma}).$

Выберем $\varepsilon>0$. По определению супремума: $L_{d_L}(\widehat{\gamma})\geqslant \sum\limits_{i=1}^N d_L(\widehat{\gamma}(t_i),\widehat{\gamma}(t_{i+1}))$. Теперь для каждой пары точек $\widehat{\gamma}(t_i),\ \widehat{\gamma}(t_{i+1})$ найдётся кривая \widehat{h}_i , соединяющая их так, что $d_L(\widehat{\gamma}(t_i),\widehat{\gamma}(t_{i+1}))\geqslant L(\widehat{h}_i)-\frac{\varepsilon}{N}$. Обозначим за $\widehat{h}=\widehat{h}_1\cdot\ldots\cdot\widehat{h}_{N-1}$, цепочка неравенств показывает $L_{d_L}(\widehat{\gamma})\geqslant L\left(\widehat{h}\right)-\varepsilon$. При стремлении $N\to\infty$ происходит поточечное стремление $\widehat{h}\to\widehat{\gamma}$, откуда согласно (лемма 1.5.2) мы получаем искомое неравенство с точностью до ε . Про поточечное стремление не очень ясно.

1.6 Плоскость Лобачевского

Плоскость Лобачевского — двумерное многообразие постоянной кривизны -1. При этом евклидова плоскость \mathbb{R}^2 имеет постоянную кривизну, равную 0, а сфера S^2 — постоянную положительную кривизну 1. Плоскость Лобачевского по важности сравнима с этими двумя объектами, но вложить в трёхмерное пространство ей не получится. Поэтому мы её изучаем вместе с римановой геометрией, явно определяя метрический тензор.

1.6.1 Модель в верхней полуплоскости

Как гладкое многообразие, *плоскость Лобачевского* $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2 | y > 0\}$ — открытое подмножество евклидовой плоскости, покрываемое одной тождественной картой.

Зададим метрический тензор на \mathbb{H}^2 формулой $g(x,y)=\begin{pmatrix} \frac{1}{y^2} & 0 \\ 0 & \frac{1}{y^2} \end{pmatrix}$. Карта отождествляет касательные пространства \mathbb{H}^2 и верхней полуплоскости \mathbb{R}^2 , как векторные пространства, но скалярное произведение в этих касательных пространствах различается: $\forall v\in T_{(x,y)}\mathbb{H}^2: |v|_{\mathbb{H}}=\frac{1}{y}|v|_E$. Здесь $|-|_{\mathbb{H}}$ и $|-|_E$ — длины векторов в касательной плоскости к точке на плоскости Лобачевского, либо, соответственно, на евклидовой полуплоскости.

У гладкой кривой $\widehat{\gamma}:[a,b]\to\mathbb{H}^2$ (в координатной записи $\gamma(t)=(x(t),y(t))$) вектор скорости равен $(\dot{x}(t),\dot{y}(t))$, а длина кривой в плоскости Лобачевского равна $L(\widehat{\gamma})=\int |\widehat{\gamma}'|_{\mathbb{H}}=\int \frac{\sqrt{\dot{x}^2+\dot{y}^2}}{y}\,\mathrm{d}t.$

Пусть $f:(M,g_M) \to (N,g_N)$ — диффеоморфизм римановых многообразий.

Определение 1.6.1 (f конформно). f сохраняет углы, то есть $\forall p \in M: \mathrm{d}_p f: T_p M \to T_{f(p)} N$ — гомотетия: $\exists \lambda \in \mathbb{R}: \forall v \in T_p M: |\mathrm{d}_p f(v)|_N = \lambda |v|_M$, число λ называют коэффициентом конформности.

Две метрики g_1 и g_2 на одном многообразии M называют конформно эквивалентными, если id_M конформно. В частности, если одна из метрик евклидова (с метрическим тензором $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$), то

метрический тензор второй имеет вид $\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda^2 \end{pmatrix}$, где λ – конформный фактор. Метрики, эквивалентные евклидовой, называют конформными.

Тем самым, плоскость Лобачевского имеет конформную метрику, конформный фактор в точке (x,y) равен $\frac{1}{y}$.

Известное нетривиальное конформное отображение — инверсия.

Определение 1.6.2 (Инверсия \mathbb{R}^n относительно точки $O \in \mathbb{R}^n$ и сферы радиуса R). Отображение $I: \mathbb{R}^n \setminus \{O\} \to \mathbb{R}^n \setminus \{O\}$, при котором точка A переходит в такую точку A' на луче OA, что $|OA| \cdot |OA'| = R^2$. Иначе говоря, $\overrightarrow{OA'} = \frac{R^2}{|OA|^2} \overrightarrow{OA}$.

Замечание. Инверсия — инволюция, то есть $I^2 = id$

Теорема 1.6.1. Инверсия — конформное отображение, его конформный фактор в точке A равен $\lambda(A) = \frac{R^2}{|OA|^2}$. При инверсии плоскости окружности и прямые переходят в окружности и прямые.

Доказательство.

- 2. Сначала покажем, что окружности и прямые переходят в окружности и прямые. На рисунках O центр инверсии, а образы точек при инверсии называются теми же буквами с добавлением штриха.
 - На левом рисунке показано, как окружность, проходящая через центр инверсии, переходит в прямую: если OB диаметр окружности, то прямая, перпендикулярная OB, и проходящая через B' образ окружности. В самом деле, для любой пары точек A и A' треугольники OAB и OB'A' подобны; угол OAB прямой, если и только если A на окружности, а угол OB'A' прямой, если и только если A' на прямой.

- На правом рисунке изображены точки A,B,C,D, лежащие на окружности, не содержащей ни внутри себя, ни на границе, центра инверсии. Тогда (ссылка на факт из школьной геометрии) $|OA| \cdot |OB| = |OC| \cdot |OD|$, применяя определение инверсии получаем $|OA'| \cdot |OB'| = |OC'| \cdot |OD'|$, откуда (применяя обратный факт) точки A', B', C', D' тоже лежат на одной окружности.
- Случай, когда центр инверсии лежит внутри одной из окружностей аналогичен предыдущему, тогда центр инверсии лежит внутри и образа этой окружности.
- Наконец, прямая, проходящая через центр инверсии, при инверсии переходит в себя.
- 1. Для проверки, что $\lambda(A)=\frac{R^2}{|OA|^2}$, достаточно рассмотреть все плоскости, содержащие прямую OA. Пусть γ_1 параметризация одномерной окружности радиуса OA, $\gamma_1(0)=A$, и γ_2 параметризация луча OA, $\gamma_2(0)=A$:

Векторы $\gamma_1'(0)$ и $\gamma_2'(0)$ образуют базис $T_A\mathbb{R}^2$. Применим инверсию к картинке.

- $(I\circ\gamma_1)(t)=rac{R^2}{|OA|^2}\gamma_1(t)$, откуда $|(I\circ\gamma_1)'(0)|=rac{R^2}{|OA|^2}|\gamma_1'(0)|$.
- $(I \circ \gamma_2)(t) = \frac{R^2}{|\gamma_2(t)|^2} \gamma_2(t)$, откуда $|(I \circ \gamma_2)'(0)| = \left|\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \frac{R^2}{|\gamma_2(t)|} = \frac{R^2}{|OA|^2} \cdot |\gamma_2'(0)|$.

Замечание. Стереографическая проекция — сужение инверсии — сохраняет углы.

В модели плоскости Лобачевского в верхней полуплоскости имеется абсолют — прямая $\{(x,y)\subset \mathbb{R}^2|y=0\}$.

Определение 1.6.3 (Изометрия). Диффеоморфизм, сохраняющий метрику ($|_|$ или $\langle_,_\rangle$ — достаточно что-то одно из двух).

Теорема 1.6.2. Следующие отображения — изометрии плоскости Лобачевского:

- 1. Сдвиг $S_c: (x,y) \mapsto (x+c,y)$.
- 2. Отражение $R_c: (x, y) \mapsto (2c x, y)$.
- 3. Гомотетия с центром на абсолюте и положительным коэффициентом.
- 4. Инверсия с центром на абсолюте.

Доказательство. Надо просто проверить, что данные отображения сохраняют |_|.

- 1., 2. Очевидно.
 - 3. Такая гомотетия сопряжена при помощи сдвига гомотетии с центром в (0,0). Пусть $f:(x,y)\mapsto (kx,ky)$, тогда $\forall v\in T_{(x_0,y_0)}\mathbb{H}^2: \left|\mathrm{d}_{(x_0,y_0)}f(v)\right|_E=k|v|_E$, и так как конформный фактор в (kx_0,ky_0) в k раз меньше фактора в (x_0,y_0) , то действительно $\left|\mathrm{d}_{(x_0,y_0)}f(v)\right|_{\mathbb{H}}=|v|_{\mathbb{H}}$.

4. В силу доказанного выше, достаточно проверить для инверсии с центром в O=(0,0) и радиусом R=1. Такая инверсия действует по правилу $I:(x_0,y_0)\mapsto \left(\frac{x_0}{r^2},\frac{y_0}{r^2}\right)$, где $r=\sqrt{x_0^2+y_0^2}$. Согласно (теорема 1.6.1), в евклидовой метрике $\forall v\in T_{(x_0,y_0)}\mathbb{H}^2:\left|\mathrm{d}_{(x_0,y_0)}I(v)\right|_E=\frac{1}{r^2}|v|_E$. Получаем

$$|\operatorname{d}_{(x_0,y_0)}I(v)|_{\mathbb{H}} = \frac{|\operatorname{d}_{(x_0,y_0)}I(v)|_E}{y_0/r^2} = \frac{|v|_E}{y_0} = |v|_{\mathbb{H}}$$

Определение 1.6.4 (Движение плоскости Лобачевского). Изометрия плоскости Лобачевского, получаемая композицией пунктов (1-4) из (теорема 1.6.2).

Когда-нибудь докажем, или нет, что других изометрий у плоскости Лобачевского нет.

Плоскость Лобачевского удобно представлять, как $\mathbb{C}_+\stackrel{def}{=} \{z\in\mathbb{C}|\Im z>0\}$. В этом случае все движения записываются в виде

$$\begin{cases} z \mapsto \frac{az+b}{cz+d}, & \text{где } a,b,c,d \in \mathbb{R}, ad-bc > 0 \\ z \mapsto \frac{a\overline{z}+b}{c\overline{z}+d}, & \text{где } a,b,c,d \in \mathbb{R}, ad-bc < 0 \end{cases}$$

Так как $I(z)=\frac{1}{\overline{z}}$, то несложно проверить, что это группа, и (1-4) из (теорема 1.6.2) — её образующие.

Определение 1.6.5 (Прямые в плоскости Лобачевского). Прямые, перпендикулярные абсолюту, и окружности, перпендикулярные абсолюту (то есть с центром на нём).

Теорема 1.6.3. Через любые две точки плоскости Лобачевского проходит единственная *прямая*, и её отрезок реализует кратчайшее расстояние между данными точками.

Доказательство. При движении прямые переходят в прямые, поэтому достаточно доказать эту теорему для случая двух точек, находящихся на одной вертикальной прямой. В самом деле, несложно построить окружность с центром на абсолюте, проходящую через две данные точки, и инверсией перевести её в вертикальную прямую.

Итак, через две точки (x_0,y_1) и (x_0,y_2) очевидным образом проходит всего одна прямая — вертикальная евклидова прямая. Если кусочно-гладкий путь $\gamma(t)=(x(t),y(t))$ соединяет данные точки, то его длина равна $\sum_{i=0}^{N-1}\int\limits_{t_i}^{t_{i+1}}\frac{\sqrt{\dot{x}^2+\dot{y}^2}|y|}{\mathrm{d}}t\geqslant \sum_{i=0}^{N-1}\int\limits_{t_i}^{t_{i+1}}\frac{\dot{y}|y|}{\mathrm{d}}t,$ и равенство наблюдается только при $x'\equiv 0.$ Иными словами, любой путь при проекции на прямую $x=x_0$ не увеличивает свою длину, причём понятно, что путь будет кратчайшим, если он монотонный.

Лекция VI 20 марта 2024 г.

1.6.2 Аксиомы плоскости Лобачевского

«На самом деле, аксиом много, и их можно по-разному выбирать»

Аксиомы аналогичны евклидовым, выпишем некоторые из них:

- 1. Через любые две точки проходит единственная прямая (евклидова окружность с центром на абсолюте или вертикальная прямая).
- 2. Прямая разбивает плоскость на две части: любой отрезок, соединяющий две точки, пересекает данную прямую не более, чем в одной точке, и точки бьются на два класса эквивалентности относительно данного отношения.
- 3. Аксиома параллельных не верна: через одну точку можно провести много прямых, параллельных данной (не пересекающих данную).

На данной картинке синим нарисованы некоторые прямые, проходящие через точку p, не пересекая данную зелёную прямую l:

Интересный факт. Это равносильно тому, что не существует точки O, в которой можно произвести гомотетию, то есть такое отображение $H:\mathbb{H}^2\to\mathbb{H}^2$ с коэффициентом $\lambda\in\mathbb{R}$, что $H(O)=O,d(H(A),H(B))=\lambda d(A,B).$

4. Однородность движения.

Определение 1.6.6 (Флаг). Тройка из точки, луча и полуплоскости, расположенных так:

Говоря словами, берётся точка, из прямой (в смысле гиперболической плоскости — евклидова прямая либо окружность), проходящей через данную точку, оставляется только одна половина — луч, и так как прямая делит плоскость на две части, то также выбирается одна из частей — полуплоскость.

Аксиома однородности движения говорит, что любой такой флаг (набор из точки, луча и полуплоскости), переводится в любой другой флаг движением.

Предложение 1.6.1. Докажем, что данная аксиома верна в нашей модели.

Доказательство. Достаточно доказать, что в данный флаг можно перевести любой другой. В качестве фиксированного флага выберем флаг [(0,1), вверх, вправо]:

Рассмотрим другой флаг, характеризующийся точкой p, и выберем на луче другую точку q. Пусть $d\coloneqq d(p,q)$. Переведём точки p и q в точки (0,1) и $(0,e^d)$ соответственно:

- Если p и q не лежат на одной вертикальной прямой, то прямая, проходящая через них евклидова окружность с центром на абсолюте. Пусть она пересекает абсолют в точке X (и ещё какой-то), сделав инверсию в X, мы сведёмся к следующему случаю.
- Теперь p и q лежат на одной вертикальной прямой, пересекающей абсолют в точке Y. Если p выше q, то сделаем инверсию в Y, теперь p ниже q.
- Далее гомотетией с центром в Y переведём p в (0,1). Так как все проделанные преобразования изометрии, а последняя сохраняет вертикальную прямую pq, то q перейдёт в точку $(0,e^d)$.
- Чтобы совместить флаги, осталось, если нужно, сделать отражение относительно прямой x=0 (точки и лучи уже совмещены, но надо ещё совместить полуплоскости).
- 5. Неравенство треугольника: $d(x,y) \le d(x,z) + d(z,y)$, и равенство имеет место только когда $z \in [x,y]$ (разумеется, отрезок множество точек гиперболической прямой xy, лежащих между x и y).

1.6.3 Модель Пуанкаре в круге

Обозначим модель Лобачевского в верхней полуплоскости \mathbb{H}_L . Сделаем инверсию I модели Лобачевского относительно A=(0,-1) с коэффициентом $K=\sqrt{2}$.

Абсолют y=0 перешёл в окружность, проходящую через точки (0,1) (образ (0,0)) и (0,-1) (образ бесконечно удалённой). Из симметрии относительно прямой x=0 получаем, что абсолют перешёл в окружность $\omega \coloneqq \{(x,y)|x^2+y^2=1\}.$

Данная модель, получающаяся при инверсии модели Лобачевского в верхней полуплоскости, называется моделью Пуанкаре в круге, обозначим её \mathbb{H}_P . Так как инверсия конформна, а $\langle v,w\rangle_{\mathbb{H}_P}=\langle \mathrm{d}I(v),\mathrm{d}I(w)\rangle_{\mathbb{H}_I}$, то метрика осталась конформной.

Роль прямых теперь играют диаметры ω и дуги окружностей, ортогональных ω (инверсия сохраняет углы, а все прямые ортогональны абсолюту).

Теорема 1.6.4. Конформный фактор метрики равен $\frac{2}{1-x^2-y^2}$. Иными словами, для $v \in T_{(x,y)}\mathbb{H}_P$: $|v|_{\mathbb{H}_P} = \frac{2}{1-x^2-y^2}|v|_E$.

Доказательство. Рассмотрим $(x_0,y_0)\in\mathbb{H}_P$. Пусть $(x_1,y_1)=I(x_0,y_0)$. Конформный фактор гиперболической плоскости в модели Лобачевского в точке (x_1,y_1) равен $\frac{1}{y_1}$.

Пусть при инверсии с центром в точке A=(0,-1) точка B переходит в B'. Тогда имеется равенство $\overrightarrow{AB}=\overrightarrow{AB'}\frac{R^2}{|AB'|^2}$. Выразим y_1 через x_0,y_0 (здесь $r=\sqrt{x_0^2+(y_0+1)^2}$):

$$y_1 = -1 + (y_0 + 1) \cdot \frac{2}{x_0^2 + (y_0 + 1)^2} = \frac{-x_0^2 - y_0^2 + 1}{r^2}$$

С другой стороны, конформный фактор инверсии равен $\lambda_I = \frac{2}{r^2} |v|_E$.

Получаем для $v \in T_{(x_0,y_0)}\mathbb{H}_P$: так как инверсия I сохраняет метрику (мы просто так определили метрику на \mathbb{H}_P), то $|v|_{\mathbb{H}_P} = |\operatorname{d}_{(x_0,y_0)}I(v)|_{\mathbb{H}_L} = \frac{|\operatorname{d}I(v)|_E}{y_1} = \frac{2}{1-x_0^2-y_0^2}|v|_E$.

Можно записать теперь, что матрица Грама имеет вид
$$\begin{pmatrix} \frac{4}{(1-x^2-y^2)^2} & 0 \\ 0 & \frac{4}{(1-x^2-y^2)^2} \end{pmatrix}$$
.

Теперь несложно проверить, что никаких изометрий плоскости Лобачевского, кроме объявленных в (теорема 1.6.2) нет. Так как движения действуют транзитивно на флагах, то достаточно увидеть, что движения содержат стабилизатор любого флага (здесь применяется лемма о действии групп,

доказанная в курсе комплексного анализа при изучении автоморфизмов $\widehat{\mathbb{C}}$). При этом всякая изометрия, оставляющая в модели Пуанкаре центр круга (0,0), оставляет на месте и все окружности $x^2 + y^2 = r^2$ для $r \in (0,1)$. Рассмотрим изометрии, стабилизирующие следующий флаг:

Рассмотрим окружность $x^2 + y^2 = \frac{1}{2}$. Она изометрична евклидовой окружности (конформный фактор во всех точках одинаков), очевидно, что любая изометрия, стабилизирующая данный флаг, действует на ней тождественно.

Так как изометрия сохраняет прямые, в частности, диаметры окружности $x^2+y^2=1$, то изометрия, тождественно действующая на окружности $x^2+y^2=\frac{1}{2}$ тождественно действует на всём круге. Тем самым, стабилизатор каждой точки тривиален, то есть движения совпадают с изометриями.

1.7 Касательный вектор как дифференцирование

Пусть M — гладкое многообразие. $\mathscr{F}(M)$ — множество гладких функций $M \to \mathbb{R}, \ \mathscr{X}(M)$ — множество гладких векторных полей.

Естественным образом, $\mathscr{F}(M)$ и $\mathscr{X}(M)$ образуют векторные пространства над \mathbb{R} . При этом, на $\mathscr{F}(M)$ также есть поточечное умножение, и $\mathscr{F}(M)$ таким образом формируют ассоциативную, коммутативную \mathbb{R} -алгебру. А ещё $\mathscr{X}(M)$ также является модулем над $\mathscr{F}(M)$ — относительно поточечного умножения.

Как известно из курса алгебры, дифференциальный оператор D на \mathbb{R} -алгебре A — это такой \mathbb{R} -линейный оператор $D:A\to A$, что выполнено правило Лейбница: $D(f\cdot g)=D(f)\cdot g+f\cdot D(g)$. Все дифференцирования образуют \mathbb{R} -линейное пространство $\mathrm{Der}(A)$.

Для алгебры $\mathscr{F}(M)$ всякий $X\in \mathscr{X}(M)$ индуцирует дифференцирование D_X :

$$f\in \mathscr{F}(M)\mapsto D_X(f)\in \mathscr{F}(M)$$
, определённый так: $(D_X(f))(x)=\mathrm{d}_x f(X_x)$

Правило Лейбница выполнено, так как оно имеет место при дифференцировании произведения.

Факт 1.7.1. Отображение $\mathcal{X}(M) \to \mathrm{Der}(\mathcal{F}(M)), X \mapsto D_X$ — гомоморфизм \mathbb{R} -векторных пространств.

Доказательство. Несложно проверить.

Далее применение дифференцирования, индуцированного векторным полем X, к функции f обозначается просто X(f).

Теорема 1.7.1. Выше определённое отображение $\mathcal{X}(M) \to \mathrm{Der}(\mathcal{F}(M))$ является изоморфизмом.

Доказательство.

Лемма 1.7.1. Зафиксируем $p \in M$.

Пусть $\overline{D}: \mathcal{F}(M) \to \mathbb{R} - \mathbb{R}$ -линейное отображение, такое, что $\overline{D}(f \cdot g) = \overline{D}(f) \cdot g(p) + f(p) \cdot \overline{D}(g)$. Например, подходит отображение «продифференцировать вдоль данного вектора и взять значение в точке p».

- 1. Тогда $\exists ! v \in T_pM : \overline{D} = D_v \stackrel{def}{=} [f \mapsto d_p f(v)].$
- 2. Несложно получить координаты этого вектора v. Рассмотрим карту (U,ϕ) , содержащую точку p. В \mathbb{R}^n есть координаты x_1,\ldots,x_n , пусть $(\widetilde{x}_i)_{i=1}^n\subset \mathcal{F}(M)$ функции, отвечающие координатам $(\widetilde{x}_i=x_i\circ\phi)$.

Утверждается, что $v_i = \overline{D}(\widetilde{x}_i)$.

Доказательство леммы.

Заметим, что $\overline{D}(\mathrm{const}) = 0$ (проверим для $f \equiv 1 : \overline{D}(1) = \overline{D}(1) \cdot 1 + 1 \cdot \overline{D}(1) = 2\overline{D}(1)$).

Далее проверим, что \overline{D} локально: если $f\big|_{U_p}=g\big|_{U_p}$, то $\overline{D}(f)=\overline{D}(g)$. Сконструируем такую «шапочку» $h\in \mathscr{F}(M)$, что h(p)=1, и $h\big|_{M\setminus U_p}\equiv 0$. Для проверки локальности заметим, что $f\big|_{U_p}=g\big|_{U_p}\iff f\cdot h=g\cdot h$. Выкладка

$$\overline{D}(f \cdot h = g \cdot h) = \begin{cases} \overline{D}(f) \cdot h(p) + f(p) \cdot \overline{D}(h) \\ \overline{D}(g) \cdot h(p) + g(p) \cdot \overline{D}(h) \end{cases}$$

показывает локальность.

Теперь убедимся, что такой вектор $v \in T_pM$, если существует, то единственен. Для этого проверим равенства во втором пункте, явно задающие координаты v. Пусть ϕ — карта, $v = (v_1, \ldots, v_n)$. Так как $D_v(\widetilde{x}_i) = v_i$, то отсюда следует второй пункт.

Теперь докажем существование такого вектора $v \in T_pM$. Зафиксируем карту (U, ϕ) , содержащую p. Положим $v_i \coloneqq \overline{D}(E_i)$, и убедимся, что вектор (v_1, \dots, v_n) задаёт \overline{D} .

Лемма 1.7.2 (Адамар). Пусть $f \in C^{\infty}(\mathbb{R}^n)$. Тогда $\exists g_1, \dots, g_n$ — гладкие, такие, что $f(x) - f(0) = \sum_i g_i(x) \cdot x_i$.

Доказательство леммы.

Положим $g_i(x)\coloneqq\int\limits_0^1 \frac{\partial f}{\partial x_i}(tx)\,\mathrm{d}t.$ Они подходят:

$$f(x) - f(0) = \int_{0}^{1} \frac{\mathrm{d}}{\mathrm{d}t} f(tx) \, \mathrm{d}t = \int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(tx) \cdot x_i \, \mathrm{d}t = \sum_{i=1}^{n} g_i(t) \cdot x_i \quad \Box$$

Можно считать, что $\phi(p)=0\in\mathbb{R}^n$. Выберем $\widetilde{f}\in\mathcal{F}(M)$, применим к $f\coloneqq\widetilde{f}\circ\phi^{-1}\in C^\infty(\mathbb{R}^n)$ лемму Адамара, получим функции $g_i\in C^\infty(\mathbb{R}^n)$. Обозначим $\widetilde{g}_i\coloneqq g_i\circ\phi^{-1}$, получили разложение $\widetilde{f}(x)=\widetilde{f}(p)+\sum\limits_{i=1}^n\widetilde{g}_i(x)\widetilde{x}_i$. Теперь распишем

$$\overline{D}\left(\widetilde{f}\right) = \overline{D}\left(\widetilde{f}(p) + \sum_{i=1}^{n} \widetilde{x}_{i} \cdot \widetilde{g}_{i}\right) = \sum_{i=1}^{n} \overline{D}\left(\widetilde{x}_{i} \cdot \widetilde{g}_{i}\right) =$$

$$= \sum_{i=1}^{n} \overline{D}\left(\widetilde{x}_{i}\right) \cdot \widetilde{g}_{i}(p) + \underbrace{\widetilde{x}_{i}(p)}_{=0} \cdot \overline{D}\left(\widetilde{g}\right) = \sum_{i=1}^{n} v_{i} \cdot \widetilde{g}_{i}(p)$$

Так как
$$\widetilde{g}_i(p) = g_i(0) = \frac{\partial f_i}{\partial x_i}(0) = \frac{\partial \widetilde{f}}{\partial \widetilde{x}_i}(p)$$
, то действительно $\overline{D}(\widetilde{f}) = D_v(\widetilde{f})$.

Рассмотрим дифференцирование $D\in \mathrm{Der}(\mathscr{F}(M))$. Согласно лемме, $\forall p\in M:\exists!v_p\in T_pM$, такой, что отображение $f\mapsto D(f)(p)$ совпадает с $f\mapsto D_{v_p}(f)$. Это показывает инъективность $\mathscr{X}(M)\to \mathrm{Der}(\mathscr{F}(M))$, а для сюръективности надо убедиться, что полученное поле $p\mapsto v_p$ гладкое.

Проверим гладкость $p \mapsto v_p$ в карте. Лемма даёт координатное представление $(v_p)_i = D(\widetilde{x}_i)(p)$, это действительно гладкая функция. Осталось сказать, что для проверки гладкости достаточно проверить гладкость координат.

Лекция VII

27 марта 2024 г.

1.8 Скобка Ли векторных полей

Пусть M — гладкое многообразие, $X,Y \in \mathcal{X}(M)$.

Определение 1.8.1 (Скобка Ли векторных полей). Отображение $[_,_]: \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$, сопоставляющее двум полям X,Y векторное поле, отвечающее дифференцированию

$$X(Y(f)) - Y(X(f)) \tag{[-]}$$

Иными словами, [X, Y]f = X(Y(f)) - Y(X(f)).

Проверим, что ([-]) является дифференцированием. Линейность очевидна; правило Лейбница говорит, что должно быть равенство такого

$$[X,Y](f \cdot g) = ([X,Y]f) \cdot g + f \cdot ([X,Y]g) = (X(Y(f)) - Y(X(f))) \cdot g + f \cdot (X(Y(g)) - Y(X(g)))$$

и такого выражений:

$$[X,Y](f\cdot g)=X(Y(f\cdot g))-Y(X(f\cdot g))=X(Y(f)\cdot g+f\cdot Y(g))-Y(X(f)\cdot g+f\cdot X(g))=X(Y(f))\cdot g+\underbrace{Y(f)-X(g)+X(f)-Y(g)}+f\cdot X(Y(g))-Y(X(f))\cdot g-\underbrace{X(f)-Y(g)-Y(f)-X(g)}-f\cdot Y(X(g))$$

1.8.1 Выражение для скобки Ли в координатах

Пусть X,Y — два гладких векторных поля, $\phi:U\to\Omega$ — карта.

Введём $\widetilde{x}_i \coloneqq x_i \circ \phi$, запишем (где $X^\phi \stackrel{def}{=} \mathrm{d} \phi \circ X \circ \phi^{-1}$ — векторное поле на $\phi(U) \subset \mathbb{R}^n$)

$$[X,Y]_i = D_{[X,Y]}(\widetilde{x}_i) = D_{[X^{\phi},Y^{\phi}]}(x_i) = [X^{\phi},Y^{\phi}]_i = X^{\phi}(Y^{\phi}(x_i)) - Y^{\phi}(X^{\phi}(x_i)) = X^{\phi}(Y_i) - Y^{\phi}(X_i)$$

1.8.2 Пространство $\mathcal{X}(M)$ вместе со скобкой Ли, как алгебра Ли

Чтобы проверить, что $\mathcal{X}(M)$ образует алгебру Ли, убедимся, что выполнены три аксиомы алгебр Ли:

1. Линейность по обеим аргументам: $\forall \alpha_i, \beta_i \in \mathbb{R}, X, Y \in \mathcal{X}(M)$:

$$[\alpha_1 X_1 + \alpha_2 X_2, Y] = \alpha_1 [X_1, Y] + \alpha_2 [X_2, Y]$$

$$[X, \beta_1 Y_1 + \beta_2 Y_2] = \beta_1 [X, Y_1] + \beta_2 [X, Y_2]$$

- 2. Кососимметричность: [X,Y] = -[Y,X], или же (эквивалентно) антисимметричность [X,X] = 0.
- 3. Тождество Якоби [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Все три свойства следуют из того, что изоморфизм \mathbb{R} -векторных пространств $\mathcal{X}(M) \to \mathrm{Der}(\mathscr{F}(M))$ сохраняет скобку Ли (просто по определению скобки Ли на $\mathcal{X}(M)$). То, что для любой алгебры A: $\mathrm{Der}(A)$ — алгебра Ли — известный факт. Проверим тождество Якоби: $\forall X,Y,Z \in \mathrm{Der}(A), \forall a \in A$:

$$\begin{split} [X,[Y,Z]](a) &= X([Y,Z](a)) - [Y,Z](X(a)) = \\ &= X(Y(Z(a))) - X(Z(Y(a))) - Y(Z(X(a))) + Z(Y(X(a))) \end{split}$$

Записывая аналогичные равенства для [Y,[Z,X]] и [Z,[X,Y]], и складывая, получим 0 — всё сократится.

1.8.3 Специфичные свойства скобки Ли векторных полей

Пусть $f, g \in \mathcal{F}(M)$.

Свойства (Скобка Ли векторных полей).

• $[f \cdot X, Y] = f \cdot [X, Y] - Y(f) \cdot X$.

Доказательство. Применим к $h \in \mathcal{F}(M)$:

$$[f \cdot X, Y](h) = (f \cdot X)(Y(h)) - Y((f \cdot X)(h)) = (f \cdot X)(Y(h)) - Y(f \cdot X(h)) \stackrel{\frown}{(=)}$$

Так как $(f \cdot X)(\cdots)$ — это производные по направлению, то это равно $f \cdot X(\cdots)$.

$$= f \cdot (X(Y(h))) - Y(f) \cdot X(h) - f \cdot Y(X(h))$$

 $\bullet \ [X,g\cdot Y]=g\cdot [X,Y]+X(g)\cdot Y.$

Доказательство. Ради разнообразия, выведем из первого и кососимметричности

$$[X,g\cdot Y]=-[g\cdot Y,X]=-(g\cdot [Y,X]-X(g)\cdot Y)=g\cdot [X,Y]+X(g)\cdot Y$$

• $[f \cdot X, g \cdot Y] = f \cdot g \cdot [X, Y] + f \cdot X(g) \cdot Y - g(Y(f)) \cdot X$.

Доказательство.

$$[f \cdot X, g \cdot Y] = g \cdot [f \cdot X, Y] + (f \cdot X)(g) \cdot Y = g \cdot (f \cdot [X, Y] - Y(f) \cdot X) + (f \cdot X)(g) \cdot Y \quad \Box$$

Определение 1.8.2 (Группа Ли). Гладкое многообразие, являющееся топологической группой: умножение $G \times G \to G$ и взятие обратного $G \to G$ — гладкие отображения.

Пример (Группы Ли). Различные линейные группы: $GL(n,\mathbb{R}), SL(n,\mathbb{R}), O(n,\mathbb{R}), \dots$

Всякий элемент $g \in G$ действует на группе левыми и правыми трансляциями: $L_g: x \mapsto gx, R_g: x \mapsto xg$.

Определение 1.8.3 (Левоинвариантное векторное поле X). Такое поле, что $\forall g \in G : dL_g(X) = X$.

Выберем ортонормированный базис $(x_1,\ldots,x_n)\in T_1(G)$ $(1\in G-$ единица в группе), и распространим x_1,\ldots,x_n до левоинвариантных векторных полей X_1,\ldots,X_n соответствующим дифференциалом L_g (действие транзитивно, поэтому, X_1,\ldots,X_n определены всюду). Это будут векторные поля, отвечающие за ортонормированные базисы во всех точках группы.

Можно определить левоинвариантную метрику: для $\widetilde{X},\widetilde{Y}\in T_q(G):\langle \widetilde{X},\widetilde{Y}\rangle=\langle \mathrm{d}_1L_q(X),\mathrm{d}_1L_q(Y)\rangle.$

1.9 Тензоры на многообразии

Пусть V — векторное пространство.

Определение 1.9.1 (Тензор типа
$$(k,m)$$
). Тензор $\underbrace{(V^* \otimes \cdots \otimes V^*)}_k \otimes \underbrace{(V \otimes \cdots \otimes V)}_m$

Мы будем рассматривать только тензоры типа (k,0) и (k,1), что, как известно, можно рассматривать, как полилинейные отображения

$$\underbrace{V \times \cdots \times V}_k \to \mathbb{R}$$
 и $\underbrace{V \times \cdots \times V}_k \to V$ соответственно

Далее в качестве V выступает касательное пространство к данной точке.

Определение 1.9.2 (Тензор (тензорное поле) на M типа (k,0)). Семейство $\{F_x\}_{x\in M}$ тензоров валентности (k,0) вместе со следующим условием гладкости:

$$\forall X_1, \dots, X_k \in \mathcal{X}(M) : F(X_1, \dots, X_k) \in \mathcal{F}(M)$$

Пример (Тензор типа (2,0)).

Риманова метрика на *п*-мерном многообразии.

Контрпример (Не тензор).

Символ Кристоффеля $\Gamma^k_{i,j}$ не является записью какого-то тензора в координатах: отображение $F(X,Y) = \nabla_X Y$ не $\mathscr{F}(M)$ -линейно: $\nabla_X (f \cdot Y) = X \cdot f + f \cdot \nabla_X (Y)$.

Определение 1.9.3 (Тензор (тензорное поле) на M типа (k,1)). Семейство $\{F_x\}_{x\in M}$ тензоров валентности (k,1) вместе со следующим условием гладкости:

$$\forall X_1, \dots, X_k \in \mathcal{X}(M) : F(X_1, \dots, X_k) \in \mathcal{X}(M)$$

Таким образом, тензорному полю на M сопоставляется \mathbb{R} -полилинейное

$$F: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to \begin{bmatrix} \mathcal{F}(M) \\ \mathcal{X}(M) \end{bmatrix}$$

Несложно видеть, что это отображение даже $\mathscr{F}(M)$ -полилинейное (проверяется поточечно), но оказывается, что этого требования достаточно для определения тензора.

Теорема 1.9.1. Если отображение $F: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to \begin{bmatrix} \mathscr{F}(M) \\ \mathcal{X}(M) \end{bmatrix}$ является $\mathscr{F}(M)$ -полилинейным, то F однозначно определяет соответствующее гладкое тензорное поле.

Доказательство. Сначала докажем случай k=1, то есть $F:\mathcal{X}(M) o \begin{bmatrix} \mathcal{F}(M) \\ \mathcal{X}(M) \end{bmatrix} - \mathcal{F}(M)$ -линейное отображение.

- \bullet Чтобы извлечь из F тензор в данной точке, сначала проверим локальность.
 - Рассмотрим $p \in U$. Пусть $X,Y \in \mathscr{F}(M)$, причём $X\big|_U = Y\big|_U$. Рассмотрим h гладкий спуск с единицы в U: $h\big|_{U'} \equiv 1, h\big|_{M\setminus U} \equiv 0$, где $p \in U' \subset U$. Вместо $h\big|_{U'} \equiv 1$ достаточно потребовать h(p) = 1. Теперь $h \cdot F(X) = F(hX) = F(hY) = h \cdot F(Y)$, откуда получаем F(Y)(p) = F(X)(p).
- Достаточно доказать для $X \in \mathcal{X}(M)$, что значение (F(X))(p) зависит только от X_p . Доказав, мы построим семейство, отвечающее F, и оно будет обладать требуемым условием гладкости, так как F бьёт в $\mathcal{F}(M)$ или $\mathcal{X}(M)$.

Зафиксируем карту (U,ϕ) , содержащую точку p. Выберем базис e_1,\dots,e_n , ему отвечают координатные векторные поля E_i . Используя (следствие 1.3.1), можно считать, что E_i определены на всём многообразии.

Пусть $X \in \mathcal{X}(M)$, разложим его по координатным полям: $X = X_1 E_1 + \dots + X_n E_n$ (равенство выполняется в некоторой окрестности p), где $X_i \in \mathcal{F}(M)$. Используя локальность, запишем

$$F(X) = F(X_1E_1 + \dots + X_nE_n) = X_1F(E_1) + \dots + X_nF(E_n)$$

Тем самым, $F(X)(p) = X_1(p) \cdot F(E_1)(p) + \dots + X_n(p) \cdot F_n(E_n)(p)$.

Если $k \neq 1$, то надо доказать сначала локальность ($\forall p \in U: X_1\big|_U = Y_1\big|_U \Rightarrow F(X_1, Z_2, \dots, Z_n)(p) = F(Y_1, Z_2, \dots, Z_n)(p)$, и по всем остальным аргументам аналогично), а потом то, что $F(X_1, \dots, X_n)(p)$ зависит только от $X_1(p), \dots, X_n(p)$ по очереди по каждому аргументу. Это следует из случая k=1, так как при фиксированных k-1 аргументах F линейно по последнему.

Лекция VIII

3 апреля 2024 г.

Пусть E_i, E_j — координатные поля.

Факт 1.9.1. $[E_i, E_j] = 0$.

Доказательство. Запишем выражение для скобки Ли в координатах в карте: (подраздел 1.8.1):

$$[X,Y]_i^{\phi} = (Y_i^{\phi})'_{X^{\phi}} - (X_i^{\phi})'_{Y_{\phi}}$$

При этом X_i^{ϕ}, Y_i^{ϕ} — константы, их производные равны нулю.

Вообще, скобка Ли — мера некоммутативности векторных полей, что мы докажем позже.

1.9.1 Поведение скобки Ли при отображениях

Пусть M, N — гладкие многообразия, $X \in \mathcal{X}(M), Y \in \mathcal{X}(N), F : M \to N$ — гладкое.

Определение 1.9.4 (F переводит X в Y). $\forall p \in M : d_p F(X_p) = Y_{F(p)}$.

Вообще говоря, если дано отображение $F: M \to N$, и векторное поле $X \in \mathcal{X}(M)$, то не всегда найдётся $Y \in \mathcal{X}(N)$ такой, что X переходит в Y (например, F(p) = F(q), и $\mathrm{d}_p F(X_p) \neq \mathrm{d}_p F(X_q)$), а если и найдётся, то может быть не единственно, если F не сюръективно.

Пусть $F: M \to N$ переводит $X \in \mathcal{X}(M)$ в $Y \in \mathcal{X}(N)$.

Лемма 1.9.1. F переводит X в $Y \iff \forall$ гладкого $f: N \to \mathbb{R}: Y(f) \circ F = X(f \circ F)$.

Доказательство.

$$\Rightarrow$$
. $X(f \circ F)(p) = d_p(f \circ F)(X_p) = (d_{F(p)}f \circ d_pF)(X_p) = d_{F(p)}f(Y_{F(p)}) = (Y(f))(F(p))$.

 \Leftarrow . Выберем локально $f \coloneqq x_i$ — координатная функция.

$$Y_i(F(p)) = (Y(x_i) \circ F)(p) = X(x_i \circ F)(p) = d_p(x_i \circ F)(X_p) = (d_{F(p)}x_i \circ d_p F)(X_p) = (d_p F(X))_i(p)$$

Совпали i-е координаты полей, значит, сами поля совпали.

Если F переводит X в Y, то будем писать F(X) = Y.

Теорема 1.9.2. Пусть $F:N\to M$ гладкое, $X_1,X_2\in\mathcal{X}(M),Y_1,Y_2\in\mathcal{X}(N)$. Если $F(X_1)=Y_1$ и $F(X_2)=Y_2$, то $F([X_1,X_2])=[Y_1,Y_2]$.

Доказательство. Пусть $f:N\to\mathbb{R}$ — произвольная гладкая. Проверим, что $F([X_1,X_2])$ и $[Y_1,Y_2]$ одинаково действуют на f:

$$[Y_1, Y_2](f) \circ F = Y_1(Y_2(f)) \circ F - Y_2(Y_1(f)) \circ F = X_1(Y_2(f) \circ F) - X_2(Y_1(f) \circ F) = X_1(X_2(f \circ F)) - X_2(X_1(f \circ F)) = [X_1, X_2](f \circ F)$$

Конечно, $F([X_1, X_2])$ априори даже может быть не определено, но выкладка выше корректна, и согласно (лемма 1.9.1), её достаточно для проверки.

Следствие 1.9.1. Пусть M — гладкое многообразие, $N \subset M$ — гладкое подмногообразие.

Eсли $X,Y \in \mathcal{X}(M)$ касательны к N, то и [X,Y] — касательно к N.

Доказательство. Рассмотреть $F=\operatorname{in}-\operatorname{вложение} N\hookrightarrow M.$

1.10 Аффинные связности

Пусть M — гладкое многообразие

Определение 1.10.1 (Аффинная связность ∇). Отображение

$$\mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$$

$$V.W \mapsto \nabla_V W$$

со следующими свойствами:

- 2. $\mathscr{F}(M)$ -линейность по первому аргументу: $\nabla_{f \cdot V} W = f \cdot \nabla_V W$.
- 3. Правило Лейбница по второму аргументу: $\nabla_V(f\cdot W)=V(f)\cdot W+f\cdot \nabla_V W.$

Примеры.

- Обычное дифференцирование: на \mathbb{R}^n могут быть заданы векторные поля.
- Ковариантная производная на поверхности $\Sigma^2\subset\mathbb{R}^3$
- Покоординатное дифференцирование в карте. (U,ϕ) карта, E_i координатные векторные поля, $Y=\sum\limits_{i=1}^n Y_i E_i$, тогда $\nabla_Y^\phi X(p)=\sum\limits_{i=1}^n X(Y_i)(p)\cdot E_i=\sum\limits_{i=1}^n \mathrm{d}_p Y_i(X_p)E_i$

Теорема 1.10.1 (О пространстве связностей). Пусть M — гладкое многообразие, $\nabla, \widetilde{\nabla}$ — две аффинные связности.

- 1. $\nabla \widetilde{\nabla}$ тензор типа (2,1).
- 2. Если T тензор типа $(2,1), \nabla$ связность, то $T+\nabla$ связность.

Доказательство.

• Достаточно проверить $\mathcal{F}(M)$ -линейность по второму аргументу:

$$\nabla_V(f \cdot W) - \widetilde{\nabla}_V(f \cdot W) = \underline{V(f)} \cdot W + f \cdot \nabla_V W - \underline{V(f)} \cdot W - f \cdot \widetilde{\nabla}_V W$$

• Достаточно проверить правило Лейбница:

$$(\nabla + T)_V(f \cdot W) = f(V) \cdot W + f \cdot \nabla_V W + T(V, f \cdot W) = f(V) \cdot W + f \cdot (\nabla + T)_V(W) \quad \Box$$

Предложение 1.10.1 (Локальность аффинной связности). Пусть ∇ — аффинная связность. $\forall V, W \in \mathcal{X}(M) : \nabla_V(W)$ зависит только от V_p и W в окрестности p.

Доказательство. При фиксированном втором аргументе $\nabla_{-}(W)$ — тензор типа (1,1), значит, зависит только от V_p .

Пусть имеются два поля W_1,W_2 , совпадающие в окрестности $U_p\ni p$. Пусть h- гладкий спуск с единицы в окрестности $p,\ h\big|_{U^0_{\mathfrak{o}}}\equiv 0.$

$$h \cdot (\nabla_V W_2) + \underbrace{(W_2(h) \cdot V)_p}_0 = \nabla_V (h \cdot W_2) = \nabla_V (h \cdot W_1) = h \cdot (\nabla_V W_1) + \underbrace{(W_1(h) \cdot V)_p}_0 \qquad \Box$$

Следствие 1.10.1. Для аффинной связности ∇ и открытого $U\subset M$ имеет смысл говорить о сужении $\nabla\big|_U$.

Рассмотрим карту $\phi:(U\subset M)\to \mathbb{R}^n$. Пусть ∇ – аффинная связность на M, а ∇^ϕ — покоординатное дифференцирование в карте. Тогда $\nabla-\nabla^\phi$ — некоторый тензор Γ типа (2,1).

Пусть E_1, \ldots, E_n — координатные векторные поля. Обозначим $\Gamma_{i,j} := \Gamma(E_i, E_j)$.

Определение 1.10.2 (Символы Кристоффеля). $\Gamma_{i,j} = \Gamma(E_i, E_j)$.

В отличие от символов Кристоффеля прошлого семестра, эти отвечают координатам тензора, и имеют смысл не на всём многообразии, а только в данной карте.

1.10.1 Специальные связности

Симметричная связность

Определение 1.10.3 (∇ — симметричная связность). Такая аффинная связность ∇ , что $\forall X, Y \in \mathcal{X}(M): \nabla_X Y - \nabla_Y X = [X,Y].$

Утверждение 1.10.1. $T := \nabla_X Y - \nabla_Y X - [X,Y]$ — тензор типа (2,1).

Доказательство. Выражение антисимметрично ($\nabla_X X - \nabla_X X - [X, X] = 0$) и \mathbb{R} -билинейно. Проверим $\mathscr{F}(M)$ -билинейность по второму аргументу:

$$\nabla_X(f \cdot Y) - \nabla_{f \cdot Y}X - [X, f \cdot Y] = \underbrace{X(f) \cdot Y} + f \cdot \nabla_X Y - f \cdot \nabla_Y X - (f \cdot [X, Y] + \underbrace{X(f) \cdot Y}) =$$

$$= f \cdot (\nabla_X Y - \nabla_Y X - [X, Y])$$

Билинейность по первому аргументу следует из антисимметричности.

Этот тензор T называется mензор κ ручения.

Следствие 1.10.2. Проверку того, что связность симметрична, достаточно осуществлять на координатных полях. Для координатных полей $\nabla_{E_i} E_j - [E_i, E_j] = \nabla_{E_i} E_j = \Gamma_{i,j}$. Более того, $\nabla^{\phi}_{E_i}(E_j) = 0$. Тем самым, связность симметрична $\iff \Gamma_{i,j} = \Gamma_{j,i}$.

Риманова связность

Пусть $(M,\langle_,_\rangle)$ — многообразие с римановой метрикой.

Определение 1.10.4 (Риманова связность ∇). Аффинная связность ∇ , согласованная с римановой метрикой: $X\langle Y,Z\rangle = \langle \nabla_XY,Z\rangle + \langle Y,\nabla_XZ\rangle$.

Утверждение 1.10.2. $S := X \langle Y, Z \rangle - \langle \nabla_X Y, Z \rangle - \langle Y, \nabla_X Z \rangle$ — тензор типа (3,0).

 \mathcal{A} оказательство. \mathbb{R} -полилинейность по всем аргументам и $\mathcal{F}(M)$ -линейность по первому очевидны.

По второму и третьему аргументам симметрично, проверим $\mathcal{F}(M)$ -линейность по второму:

$$X \langle f \cdot Y, Z \rangle - \langle \nabla_X (f \cdot Y), Z \rangle - \langle f \cdot Y, \nabla_X Z \rangle =$$

$$= \underbrace{X(f) \cdot \langle Y, Z \rangle}_{} + f \cdot X \langle Y, Z \rangle - \underbrace{\langle X(f) \cdot Y, Z \rangle}_{} - f \langle \nabla_X (Y), Z \rangle - f \langle Y, \nabla_X Z \rangle \quad \Box$$

Следствие 1.10.3. Можно проверять римановость связности только на координатных полях.

Связность Леви-Чивиты

Определение 1.10.5 (Связность Леви-Чивиты). Симметричная риманова связность.

Лекция IX 10 апреля 2024 г.

1.10.2 Символы Кристоффеля

Дадим второе определение, и поймём, что оно совпадает с первым. У нас зафиксирована аффинная связность ∇ , и карта (U, ϕ) .

Определение 1.10.6 (Символы Кристоффеля в карте). $\Gamma_{i,j}^{\phi} = \nabla_{E_i} E_j$.

Опять же, символы первого рода $\Gamma_{i,j;k} \stackrel{def}{=} \langle \Gamma_{i,j}, E_k \rangle$, и символы второго рода — координаты в разложении: $\Gamma_{i,j} = \sum_{l} \Gamma_{i,j}^k E_k$.

Это совпадает с (определение 1.10.2), так как $\Gamma^{\phi}(E_i,E_j) = \nabla_{E_i}E_j - \underbrace{\nabla_{E_i}^{\phi}E_j}_{0}.$

Факт 1.10.1. Одни символы Кристоффеля гладкие тогда и только тогда, когда гладкие — другие.

Доказательство. Они выражаются друг через друга и матрицу Грама (координаты метрического

тензора):
$$(g_{n,m})$$
 $\begin{pmatrix} \Gamma_{i,j}^1 \\ \vdots \\ \Gamma_{i,j}^n \end{pmatrix} = \begin{pmatrix} \Gamma_{i,j;1} \\ \vdots \\ \Gamma_{i,j;n} \end{pmatrix}$, откуда $\begin{pmatrix} \Gamma_{i,j}^1 \\ \vdots \\ \Gamma_{i,j}^n \end{pmatrix} = (g_{n,m})^{-1} \begin{pmatrix} \Gamma_{i,j;1} \\ \vdots \\ \Gamma_{i,j;n} \end{pmatrix}$.

1.10.3 Существование и единственность связности Леви-Чивиты

Теорема 1.10.2 (Основная теорема римановой геометрии). Пусть $(M, \langle _, _ \rangle)$ — риманово многообразие. Тогда существует и единственна связность Леви-Чивиты ∇ .

Доказательство. Зафиксируем карту (U,ϕ) , в ней имеется n^2 гладких функций $g_{i,j}$. В силу римановости связности Леви-Чивиты:

$$E_k(g_{i,j}) = E_k \langle E_i, E_j \rangle = \langle \Gamma_{k,i}, E_j \rangle + \langle E_i, \Gamma_{k,j} \rangle = \Gamma_{k,i;j} + \Gamma_{k,j;i}$$

Переставляя индексы циклически, получаем $\begin{cases} E_k(g_{i,j}) = \langle \Gamma_{k,i}, E_j \rangle + \langle E_i, \Gamma_{k,j} \rangle = \Gamma_{k,i;j} + \Gamma_{k,j;i} \\ E_i(g_{j,k}) = \langle \Gamma_{i,j}, E_k \rangle + \langle E_j, \Gamma_{i,k} \rangle = \Gamma_{i,j;k} + \Gamma_{i,k;j} \\ E_j(g_{k,i}) = \langle \Gamma_{j,k}, E_i \rangle + \langle E_k, \Gamma_{j,i} \rangle = \Gamma_{j,k;i} + \Gamma_{j,i;k} \end{cases}$

Так как символы симметричны, то есть $\Gamma_{i,j;k} = \Gamma_{j,i;k}$, то

$$\Gamma_{i,j;k} = \frac{E_j(g_{i,k}) + E_i(g_{j,k}) - E_k(g_{i,j})}{2} \tag{*}$$

Это показывает единственность в каждой карте, значит, и глобальную единственность.

Докажем существование. Зафиксируем карту, и проверим, что выражение через (*) корректно определяет связность Леви-Чивиты формулой $\nabla = \nabla^{\phi} + \Gamma^{\phi}$. Симметричность ∇ очевидна (проверяем на базисных векторах). По модулю симметричности, римановость в точности значит (*) (достаточно проверить на базисных векторах).

Понятно, что при замене карты на ей согласованную, ковариантная производная не изменится — она единственная удовлетворяет условиям симметричности и римановости, и эти условия не зависят от координат карты.

Доказали существование связности Леви-Чивиты в карте, согласованность следует из единственности (пересечение карт — карта). \Box

Ковариантное дифференцирование из прошлого семестра — эта самая связность.

1.11 Ковариантная производная вдоль пути

Пусть $\gamma:[a,b]\to M$ — гладкая (необязательно регулярная) кривая на гладком многообразии M.

Определение 1.11.1 (Гладкое векторное поле вдоль пути γ). Гладкое отображение $V:[a,b] \to TM$, такое, что $\forall t \in [a,b]: V(t) \in T_{\gamma(t)}M$.

Пусть M — гладкое многообразие, ∇ — связность, γ — гладкая кривая, V — векторное поле вдоль γ .

Определение 1.11.2 (Ковариантная производная V вдоль γ). Отображение $V \mapsto \frac{\nabla}{\mathrm{d}t} V$ (сопоставляющее одному векторному полю вдоль γ другое векторное поле вдоль γ) со следующими свойствами:

- 1. $\frac{\nabla}{dt}(V+W) = \frac{\nabla}{dt}V + \frac{\nabla}{dt}W$.
- 2. $\forall f \in C^{\infty}([a,b] \to \mathbb{R}) : \frac{\nabla}{dt}(f \cdot V) = f' \cdot V + f \cdot \frac{\nabla}{dt}V$.
- 3. Если $\exists \widetilde{V} \in \mathcal{X}(M)$, такое, что $\forall t \in [a,b]: \widetilde{V}(\gamma(t)) = V(t)$, то $\left(\frac{\nabla}{\mathrm{d}t}V\right)(t) = (\nabla_{\gamma'(t)}\widetilde{V})(\gamma(t))$. Запись корректна, здесь мы пользуемся тем, что ∇ по первому аргументу зависит только от его значения в точке (предложение 1.10.1)

Определение выглядит, как обычная ковариантная производная (по теореме о выпрямлении данный регулярный путь γ можно разрезать на куски, покрытые такими картами, что $\gamma' \uparrow \uparrow E_1$, и $\frac{\nabla}{\mathrm{d}t}V = \nabla_{E_1}V$ подойдёт), но если $\gamma' = 0$, то придётся действовать по-другому.

Теорема 1.11.1. Ковариантная производная вдоль пути существует и единственна.

Доказательство. Сначала докажем единственность. Разложим покоординатно: $V(t) = \sum_i V_i(t) \cdot E_i(\gamma(t))$.

$$\frac{\nabla}{\mathrm{d}t}V = \frac{\nabla}{\mathrm{d}t}\left(\sum_{i}V_{i}(t)\cdot E_{i}(\gamma(t))\right) = \sum_{i}V'_{i}\cdot E_{i} + \sum_{j}V_{j}\cdot \frac{\nabla}{\mathrm{d}t}E_{j}$$

Обозначим $\gamma'(t) = \sum_i \alpha_i(t) \cdot E_i(\gamma(t))$. Так как координатное векторное поле вдоль пути отвечает обычному координатному векторному полю, то

$$\frac{\nabla}{\mathrm{d}t}E_j = \nabla_{\gamma'}E_j = \sum_k \alpha_k \nabla_{E_k} E_j = \sum_k \alpha_k \Gamma_{k,j}$$

Отсюда уже видна единственность — получили выражение для $\frac{\nabla}{\mathrm{d}t}$, не использующее этот символ.

Распишем подробнее, чтобы показать существование (из симметричности $\Gamma_{k,j} = \Gamma_{j,k}$):

$$\frac{\nabla}{\mathrm{d}t}V = \sum_{i} V_i' \cdot E_i + \sum_{i,j,k} V_j \alpha_k \Gamma_{j,k}^i E_i \tag{**}$$

Дальше, надо опять проверить, что данная формула задаёт $\frac{\nabla}{\mathrm{d}t}$ в карте корректно. Линейность по V и правило Лейбница очевидны из формулы (**). Третье условие — согласованность с обычной ковариантной производной — мне менее очевидно, но, видимо, если расписать, то всё тоже получится.

Существование, опять же, получается из единственности и соответствующей формулы: покроем носитель открытыми множествами W_i , таких, что $\forall W_i: \exists (U,\phi): U\supset W_i$. На пересечениях всё согласовано из единственности.

1.12 Геодезические в римановых многообразиях

Далее везде на гладком многообразии M определён гладкий метрический тензор, и ∇ — связность Леви-Чивиты.

Пусть $\gamma:[a,b]\to M$ — гладкая кривая.

Определение 1.12.1 (γ — геодезическая). Такая кривая γ , что ковариантная производная её вектора скорости вдоль неё самой нулевая: $\frac{\nabla}{\mathrm{d}t}\gamma'=0$.

Пусть кривая натурально параметризована: $|\gamma'| \equiv 1$. Тогда кривизна $K_{\gamma} \stackrel{def}{=} |\frac{\nabla}{dt} \gamma'|$.

Утверждение 1.12.1. Кривая геодезическая $\iff K_{\gamma} \equiv 0$.

Свойства.

- Если γ геодезическая, то $|\gamma'|=\mathrm{const}$: $\frac{\mathrm{d}}{\mathrm{d}t}\langle\gamma',\gamma'\rangle=\left\langle\frac{\nabla}{\mathrm{d}t}\gamma',\gamma'\right\rangle+\left\langle\gamma',\frac{\nabla}{\mathrm{d}t}\gamma'\right\rangle=0$ (позже докажем, почему имеет место равенство: (утверждение 1.12.2))
- Если γ геодезическая, то $\widetilde{\gamma}(t) := \gamma(at+b)$ тоже.

Доказательство.
$$\widetilde{\gamma}'=a\cdot\gamma'$$
, откуда $\frac{\nabla_{\widetilde{\gamma}}}{\mathrm{d}t}\widetilde{\gamma}'=a^2\frac{\nabla_{\gamma}}{\mathrm{d}t}\gamma'=0.$

1.12.1 Уравнение геодезической

Пусть в карте $\widetilde{\gamma} = \phi \circ \gamma = (a_1(t), \dots, a_n(t))$, тогда $\widetilde{\gamma}'(t) = (a_1'(t), \dots, a_n'(t))$. Запишем (**):

$$\frac{\nabla}{\mathrm{d}t}\widetilde{\gamma}' = \sum_{i} a_i'' \cdot E_i + \sum_{i,j,k} a_i' a_j' \cdot \Gamma_{i,j}^k \cdot E_k$$

Фиксируя E_k , получаем n уравнений, проиндексированных при помощи k: $a_k'' + \sum_i a_i' a_j' \Gamma_{i,j}^k = 0$.

Теорема 1.12.1. Пусть $(M, \langle _, _ \rangle)$ — гладкое риманово многообразие, ∇ — связность Леви-Чивиты, $p \in M, v \in T_pM$.

Тогда $\exists \varepsilon>0, \gamma:(-\varepsilon,\varepsilon)\to M$ — такая геодезическая. что $\gamma(0)=p, \gamma'(0)=v.$

Доказательство. Решаем систему дифференциальных уравнений второго порядка при заданном начальном условии. □

1.12.2 Параллельный перенос вдоль пути

Пусть $\gamma:[a,b]\to M$ — гладкая кривая, V — гладкое векторное поле вдоль $\gamma.$

Определение 1.12.2 (V параллельно вдоль γ). $\frac{\nabla}{\mathrm{d}t}V\equiv0$.

В частности, вектор скорости геодезической параллелен вдоль неё.

Теорема 1.12.2. Пусть $p \in M, v_0 \in T_pM$. $\gamma(0) = p$. Утверждается, что $\exists ! V(t)$ — векторное поле вдоль γ , параллельное вдоль γ , такое, что $V(0) = v_0$.

Доказательство. Опять запишем (**):

$$0 = \frac{\nabla}{\mathrm{d}t}V = \sum_{i} V_i' \cdot E_i + \sum_{i,j,k} V_j a_k \Gamma_{j,k}^i \cdot E_i$$

Получили n уравнений первого порядка с необходимым количеством начальных данных. Значит, $\exists !$ решение на всей области определения.

Определение 1.12.3 (Параллельный перенос вектора v_0 вдоль γ в точку $\gamma(t_*)$). Значение векторного поля вдоль γ , параллельного γ , в точке t_* .

Обозначим за $P_{t_1}^{t_2}: T_{\gamma(t_1)}M \to T_{\gamma(t_2)}M$ отображение переноса вектора.

Замечание. Параллельный перенос — линейное отображение, так как свойство быть параллельным вдоль пути сохраняется при взятии линейных комбинаций.

Предложение 1.12.1. Пусть X,Y — векторные поля, параллельные вдоль γ . Тогда $\langle X(t),Y(t)\rangle=$ const.

Доказательство. Опять воспользуемся пока ещё не доказанным (утверждение 1.12.2):

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \langle X(t), Y(t) \rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla Y}{\mathrm{d}t} \right\rangle$$

Следствие 1.12.1. Вдоль пути наблюдается изоморфизм векторных пространств T_pM и T_qM .

Предложение 1.12.2. Пусть
$$t_0\in[a,b]$$
 Тогда $(\frac{\nabla}{\mathrm{d}t}X)(t_0)=\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=t_0}(P_t^{t_0}X(t))$

 \mathcal{L} оказательство. Выберем базис $(B_i)_i$ в какой-то точке пути, и и разнесём его параллельными переносами. Получили на всей кривой базис из параллельных векторных полей.

Запишем $X = \sum_i X_i B_i$. Тогда

$$\frac{\nabla X}{\mathrm{d}t} = \sum_{i} X_i' \cdot B_i + \sum_{i} X_i \cdot \underbrace{\frac{\nabla}{\mathrm{d}t} B_i}_{0}$$

Зафиксируем $p \in M, v \in T_pM$.

Определение 1.12.4 (Экспоненциальное отображение). Частично определённое отображение $\exp_p:$ ($\subset T_pM) \to M$, такое, что $\exp_p(v)$ — это $\gamma_v(1)$, где γ_v — геодезическая с начальными данными $\gamma_v(0)=p, \gamma_v'(0)=v.$ $\exp_p(v)$ определено если и только если геодезическая с такими параметрами определена в 1.

Также определяют $\exp: (\subset TM) \to M$, определённое поточечно. В курсе дифференциальных уравнений доказывались соответствующие теоремы, из которых видно, что \exp — гладкое отображение, однозначно определённое на некотором открытом подмножестве TM.

Лекция X 17 апреля 2024 г.

Докажем утверждение, уже использовавшееся не раз.

Утверждение 1.12.2. Пусть $\gamma:[0,1]\to M$ — кривая на римановом многообразии, ∇ — связность Леви-Чивиты, X,Y — гладкие векторные поля вдоль γ . Тогда

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle X, Y \right\rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla}{\mathrm{d}t} Y \right\rangle$$

Доказательство. Пусть (U,ϕ) — карта, и E_i — координатные векторные поля. Разложим $X=\sum_i x_i E_i$ и $Y=\sum_i y_j E_j$. Преобразуем левую часть $(\widetilde{\gamma}=\phi\circ\gamma)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle x_i E_i, y_j E_j \right\rangle = \left(x_i \cdot y_j \right)' \cdot g_{i,j} + x_i y_j \cdot \frac{\mathrm{d}g_{i,j}}{\mathrm{d}t}, \text{ где } \frac{\mathrm{d}g_{i,j}}{\mathrm{d}t} = \sum_k \underbrace{\widetilde{\gamma}_k'}_{a_k} \cdot (g_{i,j})_{x_k}' = \sum_k a_k \cdot (\Gamma_{i,k;j} + \Gamma_{j,k;i})$$

Теперь преобразуем правую часть, воспользовавшись (**):

$$\left\langle \sum_{i} x_{i}' E_{i} + \sum_{i,k} a_{k} x_{i} \Gamma_{i,k}, \sum_{j} y_{j} E_{j} \right\rangle + \left\langle \sum_{i} x_{i} E_{i}, \sum_{j} y_{j}' E_{j} + \sum_{j,k} a_{k} y_{j} \Gamma_{j,k} \right\rangle$$

Несложно видеть, что выражения равны.

Пусть M^2 — риманово многообразие, γ — геодезическая. Вектор γ' параллелен вдоль γ . Выберем какой-нибудь вектор $v\in T_{\gamma(0)}M, v\perp \gamma'(0)$, и разнесём его вдоль γ . Повторив так нужное количество раз (выбирая вектор в $T_{\gamma(0)}M$, ортогональный всем предыдущим), мы получим ортонормированный базис вдоль γ .

Свойства (Экспонента).

- Прямо по определению получаем $\exp(tv) = \gamma_v(t)$. Тем самым, для фиксированного $v \in TM$: отображение $t \mapsto \exp(tv)$ геодезическая с вектором скорости v в нуле.
- $\forall p \in M: \mathrm{d}_0 \exp_p = \mathrm{id}$ напрямую следует из предыдущего (дифференциал берётся в нуле касательного пространства).

Следствие 1.12.2. По теореме об обратной функции \exp_p — локальный диффеоморфизм окрестностей $0 \in T_pM$ и $p \in M$.

Рассматриваем риманово многообразие со связностью Леви-Чивиты $(M, \langle _, _ \rangle, \nabla)$.

Определение 1.12.5 (Радиус инъективности M в точке p). Число

$$r_{\mathrm{inj}}(p) \stackrel{def}{=} \sup \left\{ r \in \mathbb{R}_{>0} \middle| \exp_p : (B_r(0) \subset T_pM) o M - \mathsf{диффеоморфизм} \ \mathrm{на} \ \mathrm{oбраз}
ight\}$$

Бывают различные причины того, что радиус инъективности конечен:

- В неодносвязном многообразии геодезические встречаются: так, в цилиндре $S^1 \times \mathbb{R}$ со стандартной метрикой две геодезические, пущенные по окружности вращения в противоположных направлениях, встречаются, поэтому $\forall p: r_{\mathrm{ini}} p \leqslant \pi$.
- В некомпактном они могут уткнуться в «край»: в открытом круге D_1 со стандартной метрикой любая геодезическая, пущенная из нуля, имеет длину не более 1, поэтому $r_{\rm ini} 0 \leqslant 1$.
- Геодезические могут сойтись: на сфере S^2 со стандартной метрикой (вообще говоря, на любом многообразии с положительной кривизной, но об этом будет речь чуть позже) любые две геодезические, пущенные из одной точки, встречаются в диаметрально противоположной точке сферы, поэтому $\forall p: r_{\rm inj}p\leqslant \pi.$

Определение 1.12.6 (Радиус инъективности многообразия M). Число $r_{\mathrm{inj}}(M) = \inf_{p \in M} r_{\mathrm{inj}}(p)$.

Теорема 1.12.3. Радиус инъективности локально отделён от нуля: $\forall p \in M: \exists \varepsilon > 0, U \ni p: \inf_{x \in U} r_{\text{inj}}(x) > \varepsilon.$

 \mathcal{A} оказательство. Пусть (U,ϕ) — карта, $\phi:U\to\mathbb{R}^n$. ϕ задаёт локальный диффеоморфизм между M и \mathbb{R}^n , а ещё — между TM и \mathbb{R}^{2n} . Определим $F:TM\to M\times M$, $\underbrace{v_p}_{\in T_pM}$, $p\mapsto (\exp_p v_p,p)$.

Изучим его дифференциал (в смысле отображения $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$) в точке $\xi = (\xi_1, \dots, \xi_n) \in T_p M$, где $p = (x_1, \dots, x_n)$. F(0, x) = (x, x) и $F(\xi_p, p) = (\exp_p \xi_p, p)$, откуда

$$\frac{\partial F}{\partial (x,\xi)} = \begin{pmatrix} E & 0 \\ E & E \end{pmatrix}$$
 — невырожден

Получаем, что F — локальный диффеоморфизм.

Тем самым, имеется открытое подмножество в TM, и в нём есть параллелепипед $V \times W$, где $p \in V \subset M$ и $0 \in W \subset T_pM$. Отсюда получаем, что и требовалось доказать.

Пусть D — декартовы координаты в T_pM , P — полярные (координаты — отображения $T_pM \to \mathbb{R}^n$). $U \ni p$ — окрестность, на которую \exp_p отображается диффеоморфизм.

Определение 1.12.7 (Нормальные геодезические координаты в окрестности $p \in M$). $D \circ (\exp_n^{-1})$

Определение 1.12.8 (Полярные геодезические координаты в окрестности $p \in M$). $P \circ (\exp_p^{-1})$

1.13 Лемма Гаусса. Геодезические

Пусть $(M,\langle_,_\rangle,\nabla)$ — риманово многообразие со связностью Леви-Чивиты, $\gamma:[a,b]\to M$ — гладкая кривая.

Определение 1.13.1 (Гладкая вариация γ). Гладкое отображение $Q:[a,b] \times [-\varepsilon,\varepsilon] \to M$, такое, что $Q(_,0) \equiv \gamma$. Отображения $\gamma_\tau \coloneqq Q(_,\tau)$ называют продольными линиями вариациями, а $\delta_t \coloneqq Q(t,_)$ — поперечными линиями. Вариация называется геодезической, если все продольные линии γ_τ — геодезические.

Определение 1.13.2 (Поле вариации Q). Векторы скорости поперечных линий δ' (можно рассматривать его, как гладкое поле вдоль γ , заданное по формуле $\delta'_t(0)$, можно — как семейство гладких полей вдоль γ_{τ} , заданных по формуле $\delta'_t(\tau)$)

Заметим, что $\frac{\partial Q}{\partial t}$ — векторные поля вдоль соответствующих поперечных линий, и $\frac{\partial Q}{\partial \tau}$ — векторные поля вдоль продольных линий.

Лемма 1.13.1. $\frac{\nabla}{\mathrm{d}t} \frac{\partial Q}{\partial \tau} = \frac{\nabla}{\mathrm{d}\tau} \frac{\partial Q}{\partial t}$. Если бы векторные поля индуцировались из соответствующего поля на многообразии, то это была бы обычная перестановка производных, но Q необязательно инъективно.

Доказательство. Разложим в карте $\phi \circ Q = (x_1(t,\tau),\ldots,x_n(t,\tau))$

Посмотрим на векторы скорости поперечных линий $\frac{\partial Q}{\partial \tau} = \delta_t'(\tau) = \sum_j \frac{\partial x_j}{\partial \tau}(t,\tau) E_j$. Подставим их в (**) $(a_i = \frac{\partial x_i}{\partial t})$, получаем

$$\frac{\nabla}{\mathrm{d}t} \frac{\partial Q}{\partial t} = \sum_{j} \frac{\partial}{\partial t} \frac{\partial x_{j}}{\partial \tau} E_{j} + \sum_{i,j} \frac{\partial x_{i}}{\partial t} \cdot \frac{\partial x_{j}}{\partial \tau} \Gamma_{i,j}$$

Выражение симметрично относительно t и τ .

Теорема 1.13.1 (Лемма Гаусса). $(M, \langle _, _ \rangle, \nabla)$ — риманово многообразие со связностью Леви-Чивиты, $v \in T_p M$ таков, что определена $\exp_p(v)$.

Отождествим $T_pM = T_vT_pM$. Утверждается, что $\forall w \in T_pM : w \perp v \Rightarrow d_v \exp_p(v) \perp d_v \exp(w)$.

Доказательство. Построим вариацию $V(\tau) \coloneqq \cos \tau \cdot v + \sin \tau \cdot w$, далее $Q(t,\tau) \coloneqq \exp(t \cdot V(\tau))$. Так как экспонента \exp_p определена в некоторой окрестности v, то вариация Q определена в некоторой окрестности (1,0) (где Q(1,0)=v).

Заметим, что Q — геодезическая вариация. Обозначим соответствующие векторные поля $X\coloneqq \frac{\partial Q}{\partial t}$ и $Y\coloneqq \frac{\partial Q}{\partial \tau},\ \gamma_0$ — геодезическая $t\mapsto \exp_p(tv)$.

Продифференцируем $\langle X, Y \rangle$ вдоль γ_0 :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle X, Y \right\rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla}{\mathrm{d}t} Y \right\rangle = 0 + \left\langle X, \frac{\nabla}{\mathrm{d}\tau} X \right\rangle = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}\tau} \underbrace{\left\langle X, X \right\rangle}_{|V(\tau)|^2 = 1} = 0$$

Тем самым, $\langle X,Y \rangle = \mathrm{const.}$ Так как $|Y| \underset{t \to 0}{\longrightarrow} 0$, то $\langle X,Y \rangle \equiv 0$.

В точке $t=1, \tau=0$ это как раз означает ортогональность соответствующих производных.

Следствие 1.13.1. Применяя экспоненту к сфере с радиусом, получим сферу на многообразии, которая будет перпендикулярна радиусу, входящему в неё.

Лекция XI 24 апреля 2024 г.

Пусть $a,b \in M$, где M — риманово многообразие со связностью Леви-Чивиты ∇ .

Определение 1.13.3 (Кратчайшая между a и b). Кусочно-гладкая кривая $\gamma:[c,d]\to M$, реализующая расстояние между точками: $L(\gamma)=\mathrm{dist}(a,b)=\inf_{\widetilde{\gamma}}L(\widetilde{\gamma})$, где $\gamma,\widetilde{\gamma}$ соединяют a и b. Также кратчайшие называют ompesками.

Теорема 1.13.2 (Геодезические — локально кратчайшие). Пусть $p \in M, v \in T_pM, |v| =: r_0 < r_{\text{inj}}p$. Тогда кривая $\gamma_0 : t \mapsto \exp_p(t \cdot v)$, определённая на [0,1] — единственная (с точность до перепараметризации) кратчайшая между своими концами.

Доказательство. Убедимся, что $\forall \gamma: [0,L] \to M: \gamma(0) = p, \gamma(L) = \gamma_0(1) \Rightarrow L(\gamma) \geqslant L(\gamma_0)$, и равенство имеет место лишь тогда, когда γ — перепараметризация γ_0 .

В полярных координатах, индуцированных экспонентой, γ_0 идёт по радиусу, и мы сейчас будем проецировать γ на этот же радиус.

Итак, пусть $\gamma:[0,L]\to M$ — кривая. Рассмотрим даже более широкий класс кривых, чем соединяющие p и $\gamma_0(1)$: потребуем только $\gamma(0)=p, \left|\exp_p^{-1}(\gamma(L))\right|=r_0$. Можно считать, что $\forall t\in(0,L):0<|\exp^{-1}(\gamma(0))|< r_0$: удовлетворяя этим границам, мы только уменьшаем длину γ (надо обрезать γ после первого пересечения сферы радиуса r_0).

Поднимем γ до $\widetilde{\gamma} := \exp_p^{-1} \circ \gamma$, и представим $\widetilde{\gamma} = \rho(t) \cdot u(t)$, где $\rho(t) = |\widetilde{\gamma}|, u(t) = \frac{\widetilde{\gamma}}{|\widetilde{\gamma}|}$. Вычислим производную: $\widetilde{\gamma}' = \rho' \cdot u + \rho \cdot u'$, и так как $\langle u, u \rangle = 1$, то $u' \perp u$.

Так как
$$\gamma = \exp_p \circ \widetilde{\gamma}$$
, то $\gamma'(t) = \underbrace{\mathrm{d}_{\widetilde{\gamma}(t)} \exp(u)}_{v_1} \cdot \rho' + \underbrace{\mathrm{d}_{\widetilde{\gamma}(t)} \exp(u')}_{v_2} \cdot \rho$. По лемме Гаусса (теорема 1.13.1)

 $v_1 \perp v_2$, а дифференциал экспоненты тождественный, откуда $|\gamma'|^2 = (\rho')^2 + \rho^2 \cdot |u'|^2$. Тем самым, $|\gamma'| \geqslant |\rho'|$, и равенство на всей области определения достигается только при $u \equiv \text{const.}$ Также понятно, что ρ должен монотонно возрастать, иначе $\int |\rho'|$ будет больше минимума.

Определение 1.13.4 (Кривая $\gamma:(0,L)\to M$ — локально кратчайшая). $\forall t_0\in(0,L):\exists \varepsilon:\gamma|_{[-\varepsilon-t_0:\varepsilon+t_0]}$ — кратчайшая.

Контрпример (Локально кратчайшая, но не кратчайшая). Экватор на сфере.

Следствие 1.13.2.

- Геодезические локально кратчайшие.
- $\forall p \in M: \exists U_p: p \in U_p \subset M: \, \forall x,y \in U_p$: между x и y имеется единственная кратчайшая.

Доказательство. Воспользуемся тем, что радиус инъективности локально отделён от нуля (теорема 1.12.3). В таком случае, если в окрестности $U\ni p$: $r_{\rm inj}U\geqslant \varepsilon$, то в качестве U_p подойдёт $U\cap B_{\frac{\pi}{2}}(p)$.

В этой окрестности
$$U_p: \forall x \in U_p: U_p \subset B_{r_{\text{ini}}x}(x).$$

 \bullet γ — геодезическая \iff γ — локально кратчайшая.

Доказательство. Согласно предыдущему пункту, кратчайшие локально единственны. Геодезические тоже, и согласно (теорема 1.13.2), они локально совпадают. □

1.14 Кривизна риманового многообразия

1.14.1 Тензор кривизны

M — риманово многообразие со связностью Леви-Чивиты ∇ .

Пусть $X, Y, Z, W \in \mathcal{X}(M)$.

Определение 1.14.1 (Преобразование кривизны). $R(X,Y)Z \stackrel{def}{=} \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$.

Лемма 1.14.1. Преобразование кривизны — тензор типа (3,1).

Доказательство. \mathbb{R} -полилинейность очевидна из формулы, надо проверить $\mathcal{F}(M)$ -полилинейность. Пусть $f \in \mathcal{F}(M)$, проверим линейность по Z:

$$\begin{split} R(X,Y)(f\cdot Z) &= \nabla_X (Y(f)\cdot Z + f\cdot \nabla_Y Z) - \nabla_Y (X(f)Z + f\cdot \nabla_X Z) - (([X,Y](f))\cdot Z + f\cdot \nabla_{[X,Y]} Z) = \\ &= \left(\underline{X(Y(f))\cdot Z} + \underline{Y(f)\cdot \nabla_X Z} + \underline{X(f)\cdot \nabla_Y Z} + f\cdot \nabla_X \nabla_Y Z\right) - \\ &- \left(\underline{Y(X(f))\cdot Z} + \underline{X(f)\cdot \nabla_Y Z} + \underline{Y(f)\cdot \nabla_X Z} + f\cdot \nabla_Y \nabla_X Z\right) - \left(f\cdot \nabla_{[X,Y]} + [X,Y](f)\right) Z \end{split}$$

Теперь убедимся в линейности по Y:

$$\begin{split} R(X,f\cdot Y)Z &= \nabla_X(f\cdot \nabla_Y Z) - f\cdot \nabla_Y \nabla_X Z - \nabla_{[X,f\cdot Y]} Z = \\ &= \underbrace{X(f) - \nabla_Y Z} + f\cdot \nabla_X \nabla_Y Z - f \nabla_Y \nabla_X Z - f \nabla_{[X,Y]} Z - \underbrace{X(f) - \nabla_Y Z} \end{split}$$

Линейность по X следует из кососимметричности по X и Y.

Определение 1.14.2 (Тензор кривизны). Тензор типа (4,0), определённый формулой $\langle R(X,Y)Z,W\rangle$.

Теперь пусть $p \in M$, и зафиксирована двумерная плоскость $\sigma \leqslant T_p M$ с базисом (u,v). Преобразование и тензор кривизны — вещи, с которыми просто работать, а геометрический смысл кривизны заключается в секционной кривизне (определена ниже).

Интересный факт. Тензор кривизны восстанавливается из секционной кривизны.

Определение 1.14.3 (Секционная кривизна). $K_{\sigma}(u,v) \stackrel{def}{=} \frac{\langle R(u,v)v,u \rangle}{|u \wedge v|^2}$, где $u \wedge v$ — смешанное произведение, то есть $|u \wedge v| = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$, если $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ и $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ в некотором **ортонормированном** базисе. По-другому можно сказать, что $|u \wedge v|^2 = |u|^2 |v|^2 - \langle u,v \rangle^2$.

Замечание. Тензор кривизны — $\mathcal{F}(M)$ -линейное отображение, значит, согласно (теорема 1.9.1), ему соответствует некоторое тензорное поле. При определении секционной кривизны векторы u и v, конечно, подставляются не в само определение тензора кривизны через ∇ , а в тензор данного поля в соответствующей точке.

Можно вспомнить выражение для гауссовой кривизны из предыдущего семестра

$$K = \frac{\langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y, X \rangle}{\det I}$$

в котором не было скобки Ли, но для координатных полей скобка Ли равна нулю, так что аналогия получается полная. Тем самым, можно сразу сказать, что $K_{\sigma}(S^n)=1$, и вскоре мы покажем, что $K_{\sigma}(\mathbb{H}^n)=-1$.

//геометрический смысл — сходящиеся и расходящиеся геодезические

Лемма 1.14.2. Тензор кривизны антисимметричен по 1-му и 2-му аргументам; также он антисимметричен по 3-му и 4-му аргументам:

Доказательство. Антисимметричность по 1-му и 2-му аргументам очевидна из определения.

Для проверки кососимметричности билинейной формы $Z,W\mapsto \langle R(X,Y)Z,W\rangle$ достаточно проверить, что $\langle R(X,Y)Z,Z\rangle=0$. Запишем

$$\begin{split} X\left\langle Z,Z\right\rangle &=2\left\langle \nabla_{X}Z,Z\right\rangle \quad \Rightarrow \quad Y(X\left\langle Z,Z\right\rangle) =2(\left\langle \nabla_{Y}\nabla_{X}Z,Z\right\rangle +\left\langle \nabla_{X}Z,\nabla_{Y}Z\right\rangle) \\ \left[X,Y\right]\left\langle Z,Z\right\rangle &=\begin{cases} 2\left\langle \nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z,Z\right\rangle \\ 2\left\langle \nabla_{[X,Y]}Z,Z\right\rangle \end{cases} \end{split}$$

Сравнивая два значения для $[X,Y]\langle Z,Z\rangle$, получаем искомое тождество.

Теорема 1.14.1 (Независимость секционной кривизны от выбора базиса). Секционная кривизна K_{σ} не зависит от выбора базиса (u,v).

Доказательство. R(u,v) можно рассматривать, как линейный оператор $T_pM \to T_pM$.

Пусть $\widetilde{u},\widetilde{v}$ — базис плоскости, натянутой на u и v, то есть $\begin{pmatrix} \widetilde{u} \\ \widetilde{v} \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$, где матрица невырождена. Из линейности и кососимметричности

$$R(\widetilde{u},\widetilde{v}) = R(\alpha u + \beta v, \gamma u + \delta v) = \alpha \delta R(u,v) + \beta \gamma R(v,u) = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} R(u,v)$$

Далее, согласно (лемма 1.14.2), $\langle R(u,v)\widetilde{v},\widetilde{u}\rangle = \langle R(u,v)\gamma u + \delta v, \alpha u + \beta v \rangle = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} \langle R(u,v)v,u \rangle.$

С другой стороны, из определения понятно, что $|\widetilde{u}\wedge\widetilde{v}|=\left|\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right||u\wedge v|.$

1.15 Полугеодезические координаты

Пусть M^2 — двумерное многообразие, $X,Y\in \mathcal{F}(M)$ — координаты (координатные векторные поля).

Определение 1.15.1 (Полугеодезические координаты). Такие координаты, что |X|=1 и $X\perp Y$.

Метрический тензор в этом базисе имеет вид $\begin{pmatrix} 1 & 0 \\ 0 & G \end{pmatrix}$, где $G = \langle Y, Y \rangle$.

Пример (Полугеодезические координаты). Полярные координаты вне нуля (то есть координаты (ρ, ϕ) на $\mathbb{R}^2 \setminus \{0\}$).

Задача 1.15.1. Общий вид полугеодезических координат — эквидистанты от некоторой глад-кой регулярной кривой.

Лекция XII

8 мая 2024 г.

Теорема 1.15.1. В полугеодезических координатах первая координатная линия — геодезическая: $\nabla_X X = 0$, причём $\nabla_X Y = \nabla_Y X = \frac{G_X'}{2G} Y$.

Доказательство.

- 1. Для координатных векторных полей $[X,Y]=0=\nabla_X Y \nabla_Y X$, так что $\nabla_X Y = \nabla_Y X$.
- 2. $0 = X \langle X, X \rangle = 2 \langle \nabla_X X, X \rangle$, откуда $\nabla_X X \perp X$.
- 3. $0=Y\left\langle X,X\right\rangle =2\left\langle
 abla_{Y}X,X\right\rangle$, откуда $abla_{X}Y\perp X$.
- 4. $0=X\left\langle X,Y\right\rangle =\left\langle \nabla_{X}X,Y\right\rangle +\underbrace{\left\langle X,\nabla_{X}Y\right\rangle }_{0}$, откуда $\nabla_{X}X\perp Y.$
- 5. Так как X и Y базис, а $\nabla_X X \perp X, Y$, то $\nabla_X X = 0$.
- 6. $\langle Y,Y \rangle = G \Rightarrow G_X' = 2 \langle \nabla_X Y,Y \rangle$. Из (3) получаем $\langle \nabla_X Y,X \rangle = 0 \Rightarrow \nabla_X Y \parallel Y$. Тем самым, $\nabla_X Y = \frac{\langle \nabla_X Y,Y \rangle \cdot Y}{\langle Y,Y \rangle} = \frac{G_X'}{2G} Y$.

Теорема 1.15.2 (О выражении секционной кривизны в полугеодезических координатах). В полугеодезических координатах $K = -\frac{\sqrt{G}_{X,X}^{"}}{\sqrt{G}} = -\frac{|Y|_{X,X}^{"}}{|Y|}$.

Доказательство. Посчитаем по определению гауссову кривизну $K = K_{X \wedge Y} = -\frac{\langle R(X,Y)X,Y \rangle}{|X \wedge Y|^2}$. Вопервых, $|X \wedge Y|^2 = G$. Далее скобка Ли отсутствует, так как поля координатные:

$$\begin{split} R(X,Y)X &= \nabla_X \nabla_Y X - \nabla_Y \underbrace{\nabla_X X}_0 = \nabla_X \left(\frac{G_X'}{2G}Y\right) = \\ &= \frac{1}{2} \left(\frac{G_{X,X}''G - G_X'^2}{G^2} \cdot Y + \frac{G_X'}{G} \nabla_X Y\right) = \frac{1}{2} \left(\frac{G_{X,X}'''G - \frac{1}{2}G_X'^2}{G^2}\right) Y \end{split}$$

Сравним с выражением $\frac{\sqrt{f}''}{\sqrt{f}}=\frac{1}{2}\left(\frac{f''}{f}-\frac{(f')^2}{2f^2}\right)$.

Утверждение 1.15.1. $K(\mathbb{H}^2) = -1$.

Доказательство. Возьмём модель в верхней полуплоскости. Введём полугеодезические координаты, запараметризовав $r(u,v)=(v,e^u)$. Это действительно полугеодезические координаты: $X=r_u'=(0,e^u), Y=r_v'=(1,0),$ и $X\perp Y, |X|_{\mathbb{H}^2}^2=\frac{e^{2u}}{e^{2u}}=1.$

Посчитаем
$$G=|Y|_{\mathbb{H}^2}^2=\frac{1}{e^{2u}}.$$
 Воспользуемся формулой: $K=-\frac{\frac{\mathrm{d}^2}{\mathrm{d}u^2}(e^{-u})}{e^{-u}}=-1.$

Итак, $K(S^2) = 1, K(\mathbb{H}^2) = -1$. Немного порисовав, видим, что кривизна показывает, сходятся или расходятся геодезические.

1.16 Формула Гаусса — Бонне

1.16.1 Ориентация

Пусть V-n-мерное пространство над \mathbb{R} , и $\mathcal{B}(V)-$ множество всевозможных базисов. Напомним следующие определения:

Определение 1.16.1 $(B_1, B_2 \in \mathcal{B}(V))$ одинаково ориентированы). $\det(B_1 \leadsto B_2) > 0$.

Определение 1.16.2 $(B_1, B_2 \in \mathcal{B}(V))$ противоположно ориентированы). $\det(B_1 \leadsto B_2) < 0$.

Определение 1.16.3 (Ориентация V). Отображение $\tau : \mathcal{B}(V) \to \{-1,1\}$, такое, что $\tau(B_1) \cdot \tau(B_2) = \operatorname{sign}(\det(B_1 \leadsto B_2))$.

Пусть M^n — гладкое многообразие. Обозначим за $\mathcal{B}(TM) = \bigcup_{x \in M} \mathcal{B}(T_xM)$ все базисы во всех касательных пространствах. Введём на нём топологию подмножества, индуцированную с $\underbrace{TM \times \cdots \times TM}_{x}$.

Определение 1.16.4 (Ориентация M). Непрерывное отображение $\tau:\mathcal{B}(TM)\to\{-1,1\}$, такое, что $\forall x\in M:\tau\big|_{\mathcal{B}(T_xM)}$ — ориентация на T_xM . Если ориентация существует, то многообразие ориентируемо.

1.16.2 Вращение векторного поля вдоль кривой. Поворот кривой

Пусть $(M^2,\langle_,_\rangle)$ — ориентированное (в частности, имеются понятия *лево, право, по часовой стрелке, против часовой стрелки*) двумерное риманово многообразие, и $\gamma:[a,b]\to M$ — кусочногладкая кривая, W — векторное поле вдоль γ .

Определение 1.16.5 (W — кусочно-гладкое и кусочно-непрерывное). $\exists a=t_0\leqslant\ldots\leqslant t_n=b:W|_{[t_i,t_{i+1}]}$ — гладкое. Данное разбиение может никак не соотноситься с разбиением кусочной гладкости для самой кривой γ .

При этом для точки t_i $(1\leqslant i < n)$ из разбиения гладкости для W обозначим $W(t_i-)\coloneqq \lim_{\varepsilon\to 0_-}W(t_i+\varepsilon)$ и $W(t_i+)\coloneqq \lim_{\varepsilon\to 0_+}W(t_i+\varepsilon)$. По техническим причинам потребуем $W(t_i-)\neq -W(t_i+)$. Пусть в

 t_i имеется излом векторного поля W, обозначим за $\theta_i \in (-\pi,\pi)$ ориентированный угол между W_- и W_+ :

$$\theta_i = egin{cases} \angle(W_-, W_+), & W_- \curvearrowright W_+ \ \text{поворачивается против часовой стрелки} \\ -\angle(W_-, W_+), & W_- \curvearrowright W_+ \ \text{поворачивается по часовой стрелке} \end{cases}$$

Теперь W — кусочно гладкое векторное поле вдоль γ , |W|=1. Пусть \widetilde{W} — другое векторное поле вдоль γ такое, что $\left(W,\widetilde{W}\right)$ — ортонормированный положительно ориентированный базис вдоль γ .

Определение 1.16.6 (Вращение
$$W$$
 вдоль γ). $\operatorname{rot}_{\gamma}W\stackrel{def}{=}\int\limits_{a}^{b}\left\langle \frac{\nabla}{\mathrm{d}t}W,\widetilde{W}\right\rangle \mathrm{d}t+\theta_{1}+\cdots+\theta_{n}.$

Пусть γ — кусочно-гладкая, $|\gamma'|=1, W=\gamma'.$ Тогда $m\coloneqq \widetilde{W}$ — ориентированная нормаль к $\gamma.$

Определение 1.16.7 (Геодезическая кривизна). $K_{\gamma} \stackrel{def}{=} \left\langle \frac{\nabla \gamma'}{\mathrm{d}t}, m \right\rangle$. Ещё её называют *кривизной кривой со знаком*.

Определение 1.16.8 (Полная кривизна γ со знаком). $\psi(\gamma) \stackrel{def}{=} \mathrm{rot}_{\gamma} \gamma'$. Ещё говорят *поворот кривой.*

Теорема 1.16.1. Пусть $\gamma:[0,L]\to M$ — кусочно-гладкая петля, $\gamma'(0)=\gamma'(L)$, W — кусочно-непрерывное кусочно-гладкое векторное поле вдоль γ (|W|=1, и тоже W(0)=W(L)).

Тогда параллельный перенос $P_0^L: T_{\gamma(0)}M \to T_{\gamma(L)}M$ — поворот против часовой стрелки на угол — $\mathrm{rot}_{\gamma}W$ (или на $\mathrm{rot}_{\gamma}W$ по часовой стрелке).

Доказательство. Пусть E — векторное поле вдоль γ , параллельное вдоль γ , такое, что E(0) = W(0), |E| = 1.

Сопоставим $E\leadsto \widetilde{E}$, так что (E,\widetilde{E}) — положительно ориентированный ортонормированный базис. Положим $\begin{cases} W=\cos\alpha\cdot E+\sin\alpha\cdot \widetilde{E} \\ \widetilde{W}\coloneqq -\sin\alpha\cdot E+\cos\alpha\cdot \widetilde{E} \end{cases}$. Можно выбрать α (единственным образом с точностью до глобального сдвига на $2\pi k$) так, что это — кусочно-гладкий аргумент с разрывами в точках излома меньше π .

$$\tfrac{\nabla W}{\mathrm{d}t} = -\sin\alpha \cdot \alpha' E + \cos\alpha \cdot \alpha' \widetilde{E}, \text{ откуда } \left\langle \tfrac{\nabla W}{\mathrm{d}t}, \widetilde{W} \right\rangle = \alpha'.$$

Так как многообразие ориентировано, а базис $\left(E,\widetilde{E}\right)$ параллелен вдоль γ , то $P_0^L(\xi E(0)+\zeta \widetilde{E}(0))=\xi E(L)+\zeta \widetilde{E}(L)$. Так как базис $\left(E,\widetilde{E}\right)$ положительно ориентирован, то P_0^L — линейное отображение двумерной плоскости в себя, сохраняющее ориентацию. Тем самым, это поворот, и для выяснения угла поворота посмотреть, на какой угол повернулся какой-то данный конкретный вектор.

Сначала пусть W- гладкое. $\operatorname{rot}_{\gamma}W=\int\limits_{0}^{L}\left\langle \frac{\nabla W}{\mathrm{d}t},\widetilde{W}\right\rangle \mathrm{d}t=\int\limits_{0}^{L}\alpha'=\alpha(L)-\alpha(0)=\alpha(L).$ Получается, что в начале W(0)=E(0), а в конце W(L)- это E(L), повёрнутое на $\alpha(L)$. Но так как W(0)=W(L), а E параллельно вдоль γ , то E(L) получено из E(0) поворотом на угол $-\alpha(L)$.

Теперь если W лишь кусочно-гладкое — имеются изломы в точках $a=t_0\leqslant\ldots\leqslant t_s=b$ — тогда

$$\operatorname{rot}_{\gamma} W = \sum_{i=0}^{s-1} \int_{t_{i}}^{t_{i+1}} \left\langle \frac{\nabla W}{\mathrm{d}t}, \widetilde{W} \right\rangle \mathrm{d}t + \sum_{i=1}^{s} \theta_{i} = \\
= \sum_{i=0}^{s-1} [\alpha(t_{i+1}-) - \alpha(t_{i}+)] + \sum_{i=1}^{s-1} [\alpha(t_{i}+) - \alpha(t_{i}-)] = \alpha(L-) - \alpha(0+) = \alpha(L)$$

сумма телескопируется.

Следствие 1.16.1. Если W_1 , $W_2 - \kappa a \kappa$ в условии теоремы, то $\operatorname{rot}_{\gamma} W_1 \equiv \operatorname{rot}_{\gamma} W_2 \pmod{2\pi}$.

Лекция XIII

15 мая 2024 г.

1.16.3 Формулировка и доказательство теоремы

Напомним, что для клеточного пространства M, состоящего из конечного числа клеток, определена эйлерова характеристика $\chi(M)$. Если M составлено из n_k клеток размерности k, то $\chi(M) = n_0 - n_1 + n_2 - \dots$ В частности, для двумерного $M: \chi(M) = B - P + \Gamma$, где B — количество вершин, P — рёбер, а Γ — граней графа замощения.

Теорема 1.16.2 (Формула Гаусса — Бонне).

- 1. Пусть двумерная риманова поверхность M^2 ориентирована, $\Delta \subset M$ диск, и путь $\gamma \coloneqq \partial \Delta$ кусочно-гладкая граница Δ , и Δ остаётся слева при обходе γ . Тогда $\psi(\partial \Delta) + \iint\limits_{\Delta} K \,\mathrm{d}A = 2\pi$.
- 2. Если диски Δ_1,\dots,Δ_k замостили какую-то область $\Delta\subset M^2$, и γ_i куски ориентированной границы Δ (Δ остаётся слева при обходе γ_i), то $\psi(\gamma_1)+\dots+\psi(\gamma_k)+\iint\limits_{\Delta}K=2\pi\chi(\Delta)$.

Доказательство.

• Докажем аддитивность формулы Гаусса — Бонне для дисков. Введём отображение Гаусса — Бонне $GB(\Delta) \coloneqq \psi(\partial \Delta) + \iint\limits_{\Delta} K \, \mathrm{d}A - 2\pi$, достаточно доказать, что $GB(\Delta) = 0$.

Пусть Δ_1, Δ_2 — два диска с ориентированными границами $\gamma_1 \cdot \gamma_3^-$ и $\gamma_2 \cdot \gamma_3$ соответственно, пересекающихся по связной части границы, и $\Delta = \Delta_1 \cup \Delta_2$ — тоже диск. Пусть $\alpha_1, \beta_1, \alpha_2, \beta_2$ — углы между концами разных путей:

Тогда
$$\begin{cases} \psi(\partial\Delta_1) = \psi(\gamma_1) - \psi(\gamma_3) + (\pi - \alpha_1) + (\pi - \beta_1) \\ \psi(\partial\Delta_1) = \psi(\gamma_2) + \psi(\gamma_3) + (\pi - \alpha_2) + (\pi - \beta_2) \\ \psi(\partial\Delta) = \psi(\gamma_1) + \psi(\gamma_2) + (\pi - (\alpha_1 + \alpha_2)) + (\pi - (\beta_1 + \beta_2)) \end{cases}$$

Получаем $GB(\Delta) = GB(\Delta_1) + GB(\Delta_2)$, что показывает аддитивность формулы.

• Сначала докажем для диска $\Delta \subset U$, где в U есть карта $\phi: U \to \mathbb{R}^2 = \langle X, Y \rangle$ с полугеодезическими координатами. Пусть $s = \phi^{-1}, X = \mathrm{d}s(e_1), Y = \mathrm{d}s(e_2)$.

Лемма 1.16.1 (Формула Грина). Пусть в \mathbb{R}^2 есть область D, гомеоморфная диску, с кусочно-гладкой границей $\gamma=(x,y)$, при обходе вдоль которой D остаётся слева. Пусть $P,Q:\mathbb{R}^2\to\mathbb{R}$ — гладкие функции, тогда

$$\iint\limits_D Q'_x - P'_y \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int\limits_a^b (x'P + y'Q) \, \mathrm{d}t$$

Доказательство леммы.

Сначала докажем для простых областей, проинтегрировав формулу Ньютона — Лейбница, а затем всё сложим. A что такое простая область?

Лемма 1.16.2. Пусть γ обходит область Δ , в которой введены полугеодезические координаты. Тогда $\operatorname{rot}_{\gamma} X + \iint\limits_{\Delta} K \,\mathrm{d} A = 0.$

Доказательство леммы.

Вспомним формулу $K=-rac{\left(\sqrt{G}
ight)_{X,X}^{\prime\prime}}{\sqrt{G}}.$ Будем считать, что γ натурально параметризована. Теперь

$$\operatorname{rot}_{\gamma} X = \int_{\gamma} \left\langle \frac{\nabla X}{\mathrm{d}t}, \frac{Y}{|Y|} \right\rangle = \int \left\langle \nabla_{\gamma'} X, \frac{Y}{|Y|} \right\rangle \textcircled{=}$$

Пусть в карте $\phi\circ\gamma=\widetilde{\gamma}=(x(t),y(t)).$ Тогда $\gamma'=x'\cdot X+y'\cdot Y,$ и

$$\underbrace{\left\{ \nabla_X X, \frac{Y}{|Y|} \right\}}_{0} + y' \left\langle \nabla_Y X, \frac{Y}{|Y|} \right\rangle =$$

$$= \int y' \left\langle \frac{G'_X}{2G} Y, \frac{Y}{\sqrt{G}} \right\rangle = \int y' \cdot \frac{G'_X \cdot G}{2G \cdot \sqrt{G}} = \int y' \left(\sqrt{G} \right)'_X dt =$$

Применяя формулу Грина для $P=0, Q=G_X'$, получаем

Введём два векторных поля $V=\gamma'$ и W=X, и согласно (следствие 1.16.1): $\psi(\gamma')+\iint K\,\mathrm{d}A=2\pi n, n\in\mathbb{Z}$. Теперь осталось доказать, что n=1.

Введём непрерывное семейство метрик $g_{i,j}^{\tau}=(1-\tau)g_{i,j}+\tau\delta_{i,j}$, и заметим, что так как поворот плоской кривой равен 2π (мы это доказывали в предыдущем семестре для гладких кривых, но это верно и для кусочно-гладких — можно сгладить, либо адаптировать доказательство), то из непрерывности n=1.

Теперь осталось сказать, что любой диск можно триангулировать так мелко, что каждый треугольник лежит в какой-то карте. И ещё что-то про то, как ввести полугеодезические координаты. Кстати, а как? Из аддитивности получаем (1).

• Теперь выведем (2). Примем без доказательства такой факт, что у любой области с кусочногладкими границами существует триангуляция с кусочно-гладкими границами треугольников.

Разобьём поверхность на треугольники $\Delta_1,\ldots,\Delta_\Gamma$, и будем использовать, что все $GB(\Delta_i)=0.$

Складывая, получаем
$$\psi(\partial \Delta_1) + \dots + \psi(\partial \Delta_{\Gamma}) = \left(\iint\limits_{\Delta_1} + \dots + \iint\limits_{\Delta_{\Gamma}}\right) K \, \mathrm{d}A = 2\pi \Gamma$$
. Докажем, что
$$\psi(\gamma_1) + \dots + \psi(\gamma_n) - \psi(\partial \Delta_1) - \dots - \psi(\partial \Delta_{\Gamma}) \stackrel{?}{=} 2\pi (\chi(\Delta) - \Gamma) = 2\pi (\mathsf{B} - \mathsf{P}).$$

Все интегралы по отрезкам кривых сокращаются, и остаются лишь углы. Посмотрим по очереди на все вершины треугольников.

- Внутренняя вершина p степени d (соприкасающаяся с d треугольниками) вносит вклад в сумму $-\sum\limits_{i=1}^d (\pi-\alpha_i) = -\pi d + \sum\limits_i \alpha_i = \pi(2-d).$
- Граничная вершина p степени d (соприкасающаяся с d-1 треугольником) вносит вклад $-\sum_{i=1}^d (\pi-\alpha_i) + \alpha = \pi(1-d) + \sum_{i=1}^d \alpha_i + \alpha = \pi(2-d).$

Осталось увидеть, что сумма по всем вершинам
$$p$$
 величины $\pi(2-d_p)$ даёт вклад $2\pi B - \sum_{j=1}^B d_j \pi = 2\pi (B-P).$

1.17 Пространства постоянной кривизны. Сравнение треугольников

1.17.1 Построение двумерных многообразий заданной кривизны

Теорема 1.17.1. У любой замкнутой (компактной) поверхности существует метрика постоянной кривизны, причём знак кривизны равен знаку эйлеровой характеристики.

Доказательство. $\iint K = 2\pi \chi$, так что утверждение про знак тривиально.

Воспользуемся теоремой о классификации двумерных поверхностей.

- Если поверхность ориентируема, то это сфера с g ручками. При g=0 это сфера, на ней есть структура постоянной кривизны (стандартная метрика на $S^2 \subset \mathbb{R}^3$). При g=1 это тор, на нём есть плоская метрика (тор можно склеить из квадрата $\subset \mathbb{R}^2$). При $g\geqslant 2$ кривизна отрицательна, об этом позже.
- Если поверхность неориентируема, то (m=1) проективная плоскость получается, как фактормногообразие сферы, а при m=2 бутылка Клейна склеивается из квадрата.
- Иначе кривизна отрицательная. Нарисуем каноническую развёртку (после склейки имеющую одну вершину, одну грань, n рёбер) в виде правильного n-угольника, и поместим на гиперболической плоскости так, чтобы все углы были $\frac{2\pi}{n}$. На практиках обсуждалось, что у правильного n-угольника на гиперболической плоскости могут быть углы любой угловой меры из $\left(0, \frac{n-2}{n}\pi\right)$.

Чтобы это увидеть, надо рассмотреть модель Пуанкаре в круге, а в ней — семейство многоугольников, инвариантных относительно поворота круга на $\frac{2\pi}{n}$:

Так как кривизна равна -1, то согласно формуле Гаусса — Бонне (теорема 1.16.2), сумма внешних углов такого многоугольника равна $S+2\pi$, где S — его площадь. Из непрерывности понятно, что найдётся многоугольник с углами (или с площадью) требуемой величины. \square

Лекция XIV

1.17.2 Локальная изометричность поверхностей постоянной кривизны

Пусть M — двумерное многообразие, $K = -\frac{\left(\sqrt{G}\right)_{X,X}^{\prime\prime}}{\sqrt{G}} \equiv \mathrm{const.}$ Тогда $\left(\sqrt{G}\right)_{X,X}^{\prime\prime} = -K\sqrt{G}$. Рассмотрим это уравнение — уравнение Якоби — как дифференциальное уравнение на \sqrt{G} второго порядка. Поле Y зовётся *полем Якоби*, и уравнение Якоби можно записать и решать для произвольных размерностей.

Введём полярные координаты при помощи экспоненты. Они полугеодезические вне центра координат. Покажем, что $\sqrt{G} \underset{x \to 0}{\longrightarrow} 0$, и $\left(\sqrt{G}\right)_x' \underset{x \to 0}{\longrightarrow} 1$. Из симметрии достаточно доказать для произвольного луча \overrightarrow{v} . Пусть $\overrightarrow{w} \perp \overrightarrow{v}$, |w| = 1. $Y = \mathrm{d}_{xv} \exp_p(xw)$.

Пусть $f(x) = \mathrm{d}_{xv} \exp_p(wx)$. Так как $\mathrm{d}_0 \exp_p = \mathrm{id}$, то в окрестности 0 функция |f| положительна, значит, гладкая. $|Y|_x' = x \cdot |f|' + |f| \underset{x \to 0}{\longrightarrow} |\mathrm{d}_0 \exp_p(w)| = 1$.

Получили начальные данные на дифференциальное уравнение $\sqrt{G}(0) = 0, \left(\sqrt{G}\right)_{\pi}'(0) = 1.$

При постоянной кривизне решениями являются $\begin{cases} \sqrt{G}=x, & K\equiv 0\\ \sqrt{G}=\sin x, & K\equiv 1\\ \sqrt{G}=\sinh x, & K\equiv -1 \end{cases}$

Подправляя на положительную константу, получаем $\begin{cases} \sqrt{G} = \frac{1}{\sqrt{K}} \sin \sqrt{K} x, & K>0 \\ \sqrt{G} = \frac{1}{\sqrt{-K}} \sinh \sqrt{-K} x, & K<0 \end{cases}$

Это доказывает следующую теорему:

Теорема 1.17.2. Пусть (M^2,g_M) и (N^2,g_N) — два двумерных многообразия, их кривизны равны и постоянны $K_N \equiv K_M \equiv {\rm const}, \ p \in M, q \in N, \$ и $r < \min \left(r_{\rm inj} p, r_{\rm inj} q \right)$. Введём на шарах $B_r(0) \subset T_p M$ и $B_r(0) \subset T_q N$ полярные координаты, и зафиксируем некоторую изометрию $I: T_p M \to T_q N$. Тогда $\exp_q \circ I \circ \exp_p^{-1}$ — изометрия окрестностей p и q. В частности, она сохраняет кривизну.

Глобальной изометрии, конечно, не будет — например, имеется множество не изометричных поверхностей с нулевой кривизной (цилиндр, плоскость, тор, бутылка Клейна...).

1.17.3 Теоремы сравнения

Теорема 1.17.3. Пусть $p \in M, r < r_{\text{ini}}p$, кривизна на многообразии одного знака, но не факт, что постоянна. Следующие условия связывают длины кривых в $B_r(0)$ и $B_r(p)$, между которыми действует экспонента.

- 1. Если $K \ge 0$, то \exp_n не увеличивает длины кривых.
- 2. Если $K \le 0$, то \exp_p не уменьшает длины кривых.

Доказательство.

1. Запишем уравнение $\left(\sqrt{G}\right)_{x,x}''=-K\sqrt{G}$. Пусть G_1 — решение на плоскости, а G_2 — на исходном многообразии: $\sqrt{G_1}_{x,x}''=0,\ \sqrt{G_2}_{x,x}''\leqslant 0.$ В первом случае $\sqrt{G_1}=x$, значит, во втором случае $\sqrt{G_2} \leqslant x$.

Тем самым, в соответствующих точках $\sqrt{G_1} \geqslant \sqrt{G_2}$. Используя формулу длины кривой $l(\gamma)=\sqrt{(x')^2+G(y')^2}\,\mathrm{d}t$, получаем, что $G_1\geqslant G_2\Rightarrow$ длина кривых не увеличивается.

Пусть на многообразии M взяты точки O,A,B — вершины треугольника Δ , рёбра которого кратчайшие (отрезки).

Определение 1.17.1 (Треугольник сравнения с углом). Треугольник на плоскости со сторонами AO, OB, и углом $\angle AOB$ между ними.

Определение 1.17.2 (Треугольник сравнения). Треугольник на плоскости со сторонами AO, OB, AB(если он существует).

Будем соответствующий треугольник сравнения (или треугольник сравнения с углом) обозначать $\bar{O}\bar{A}\bar{B}$.

Определение 1.17.3 (Маленький треугольник OAB). $P(OAB) \leq \min(r_{\text{inj}}A, r_{\text{inj}}B, r_{\text{inj}}O)$, здесь P — периметр.

Следствие 1.17.1. Пусть $r < r_{ini}O$, $A, B \in B_r(O)$.

- 1. Если $K\geqslant 0$, то в треугольнике сравнения с углом $|ar{A}ar{B}|_{\mathbb{R}^2}\geqslant |AB|_M.$
- 2. Если $K \leq 0$, то в треугольнике сравнения с углом $|\bar{A}\bar{B}|_{\mathbb{R}^2} \leq |AB|_M$.

Если же треугольник ОАВ маленький, то

- 1. Если $K\geqslant 0$, то в треугольнике сравнения $\angle AOB\geqslant \widetilde{\angle} ar{A}ar{O}ar{B}$. (Углы в треугольнике сравнения по традиции принято обозначать волной)
- 2. Если $K \leqslant 0$, то в треугольнике сравнения $\angle AOB \leqslant \tilde{\angle} \bar{A} \bar{O} \bar{B}$.

Доказательство.

- Пункты про треугольник сравнения с углами сразу вытекают из (теорема 1.17.3).
- Пункты про треугольник сравнения вытекают из предыдущих и теоремы косинусов (скажем, если в треугольнике сравнения с углом $|\bar{A}\bar{B}|_{\mathbb{R}^2}\geqslant |AB|_M$, то при уменьшении стороны $\bar{A}\bar{B}$ до длины |AB| угол $\bar{A}\bar{O}\bar{B}$ по теореме косинусов тоже уменьшится).

Интересный факт (Теорема Топоногова). Если M^n — полное многообразие, и $K\geqslant 0$, то для него верно заключение теоремы для больших треугольников. Если M^n — полное многообразие, $K\leqslant 0$, и M односвязно, то для него верно заключение теоремы для больших треугольников.

Односвязность важна — например, можно рассмотреть цилиндр отрицательной кривизны, скажем, поверхности вращения графика $y=\operatorname{ch} x$ относительно оси x. Там есть треугольник с углами, равными π — любая окружность вращения. Для него заключение теоремы не выполнено.

1.18 Полнота. Теорема Хопфа — Ринова

Пусть $(X, d_X), (Y, d_Y)$ — два пока просто метрических пространства, которые для удобства будем считать компактными. Это автоматически влечёт полноту (в первом семестре доказали, что в метрических пространствах компактность эквивалентна полноте вместе с вполне ограниченностью).

Имеется множество C(X,Y) непрерывных функций, на котором вводится метрика по правилу $d(f,g)=\sup_{x\in X}d_Y(f(x),g(x)).$

Теорему Арцела — Асколи можно сформулировать в таком виде:

Теорема 1.18.1 (Арцела – Асколи). Если f_n — последовательность равностепенно непрерывных функций, то $\exists f_\infty \in C(X,Y), \{n_k\}_{k=1}^\infty : f_{n_k} \underset{k \to \infty}{\Rightarrow} f_\infty$.

Далее все пространства с внутренней метрикой: $d(x,y) = \inf_{\gamma} L(\gamma)$.

Определение 1.18.1 (Кратчайшая γ (параметризованная длиной)). $\forall t_1, t_2 : \operatorname{dist}(\gamma(t_1), \gamma(t_2)) = |t_1 - t_2|$.

Определение 1.18.2 (M — собственное пространство). Все замкнутые шары $\overline{D_r}(p) = \{x \in M | \mathrm{dist}(x,p) \leqslant r\}$ компактны

Теорема 1.18.2. Пусть M — компактное пространство с внутренней метрикой, тогда любые две точки можно соединить кратчайшей.

Доказательство. Рассмотрим две точки $a,b\in M$. Пусть расстояние между ними $d\coloneqq d(a,b),$ тогда кратчайшая (если есть) лежит внутри компактного шара $\overline{D_{2d}}(a)$.

Пусть $\gamma_n:[0,1]\to M$ — последовательность кривых, минимизирующая расстояние. Можно считать, что они равномерно параметризованы ($|\gamma_n|'={
m const}$), так как их длины ограничены, то можно применить теорему Арцела — Асколи. Далее применяем полунепрерывность длины снизу.

Определение 1.18.3 (Риманово многообразие полное). Оно полное, как метрическое пространство.

Определение 1.18.4 (Риманово многообразие геодезически полное). Любая геодезическая продолжима на интервал $(-\infty, +\infty)$.

Следующая теорема, разумеется, формулируется для многообразий без края.

Теорема 1.18.3 (Хопф — Ринов). Многообразие M метрически полное \iff многообразие M геодезически полное.

Если M полное, то M собственное, $\exp_p(\overline{D}_R^{T_pM}(0)) = \overline{D}_R^M(p)$ и любые две точки соединены кратчайшей.

Доказательство.

Лемма 1.18.1. Пусть (X,d) — локально компактное пространство с внутренней метрикой, $p \in X, R > 0$, и выполнено следующее условие: \forall кратчайшей $\gamma: [0,1) \to B_R(p)$: можно продолжить до кратчайшей $\gamma: [0,1] \to X$. Тогда $\overline{D_R}(p)$ компактен.

Доказательство леммы.

- Из локальной компактности $r \coloneqq \sup \left\{ \overline{r} > 0 \middle| \overline{D_{\overline{r}}}(p) \right\}$ компактен > 0. Докажем, что супремум достигается: $\overline{D_r}(p)$ компактен. Будем доказывать, что $\overline{D_r}(p)$ полный и вполне ограниченный ($\forall \varepsilon > 0 : \exists$ конечная ε -сеть).
 - Замечание. Так как метрика внутренняя, то $\forall \varepsilon > 0 : \overline{D_r}(p) \subset U_{\varepsilon}(B_r(p))$.

Пусть $\{x_n\}_{n\in\mathbb{N}}$ — фундаментальная последовательность точек $x_n\in\overline{D_r}(p)$. Убедимся, что у неё есть предел. Согласно замечанию, можно считать, что $x_n\in B_r(p)$ (можно подвинуть точку x_n на $\frac{1}{n}$ так, чтобы она попала внутрь шара).

Пусть $d(p,x_n)=r-\varepsilon_n$. Можно считать, что $\varepsilon_n \underset{n\to\infty}{\longrightarrow} 0$ (в противном случае $\exists \delta>0$: бесконечно много x_n лежат в компактном шаре радиуса $r-\delta$; но $\overline{D_{r-\delta}}(p)$ полон, значит, предел есть). Прорежая последовательность x_n , можно считать, что $\varepsilon_n\searrow 0$.

Согласно (теорема 1.18.2), внутри $B_r(p)$ точки можно соединять кратчайшими. Для каждого n определим кратчайшую $\gamma_n:[0,r-\varepsilon_n]\to X$, соединяющую p и x_n . Считаем, что γ_n параметризованы длинами.

Рассмотрим $\left\{\gamma_n\big|_{[0,r-arepsilon_1]}\right\}_{n=1}^{\infty}$. Выберем по теореме Арцела — Асколи подпоследовательность $\{(n_1)(j)\}_{j=1}^{\infty}$ так, что $\gamma_{n_1(j)}\big|_{[0,r-arepsilon_1]} \stackrel{\Longrightarrow}{\underset{j\to\infty}{\longrightarrow}} \gamma_{1,\infty}$. Повторяя этот процесс счётное число раз, получим вложенные последовательности $n_1(j)\supset n_2(j)\supset\ldots$, такие, что $\gamma_{n_k(j)}\big|_{[0,r-arepsilon_k]} \stackrel{\Longrightarrow}{\underset{j\to\infty}{\longrightarrow}} \gamma_{k,\infty}$, и возьмём диагональ. Из вложенности можно построить $\gamma_{\infty,\infty}:[0,1)\to X$ поточечно: $\forall x\in[0,1):\gamma_{\infty,\infty}(x)=\gamma_{k,\infty}(x)$ при достаточно больших k. Она кратчайшая, как предел кратчайших. Согласно условию теоремы γ_{∞} можно продолжить в точку 1, и несложно проверить, что этот конец — $\lim_{n\to\infty} x_n$.

- Компактность $\overline{D_r}(p)$ следует из вполне ограниченности: $\overline{D_{r-\frac{\varepsilon}{2}}}(p)$ компактен, значит, в нём есть $\frac{\varepsilon}{2}$ -сеть.
- Если r=R, то лемма доказана. Иначе докажем, что $\exists \varepsilon>0:\overline{D_{r+\varepsilon}}(p)$ тоже компактен, приходя к противоречию с определением супремума.

Из локальной компактности $\forall x \in X : \exists r(x) > 0 : \overline{D_{r(x)}}(x)$ компактен.

Устроим покрытие $\overline{D_r(p)}\subset\bigcup_{x\in\overline{D_r(p)}}B_{r(x)}(x)$, и выберем из него конечное подпокрытие $B_{r(x_1)}(x_1),\dots,B_{r(x_n)}(x_n).$

Из открытости $\exists \varepsilon > 0: B_{r(x_1)}(x_1) \cup \cdots \cup B_{r(x_n)}(x_n) \supset U_{\varepsilon}\left(\overline{D_r}(p)\right)$, откуда и подавно $\overline{D_{r(x_1)}}(x_1) \cup \cdots \cup \overline{D_{r(x_n)}}(x_n) \supset U_{\varepsilon}\left(\overline{D_r}(p)\right)$, то есть $\overline{D_{r+\frac{\varepsilon}{2}}}$ компактен.

Пусть $\gamma:[0,L) o X$ — геодезическая в параметризации длиной. Из полноты $\exists x_0\coloneqq \lim_{t o L} \gamma(t).$

Так как радиус инъективности отделён от нуля числом $\frac{1}{2}r_{\rm inj}x_0$, то достаточно близко к x_0 геодезическую можно продолжить за x_0 . Из геодезической полноты выполнено условие леммы, откуда любой шар компактен.