Partitioning and Floorplanning

Virendra Singh
Indian Institute of Science
Bangalore

E0-285: CAD of VLSI Systems

Partitioning

- Decomposition of a complex system into smaller subsystems
 - Done hierarchically
 - Partitioning done until each subsystem has manageable size
 - Each subsystem can be designed independently
- Interconnections between partitions minimized
 - Less hassle interfacing the subsystems
 - Communication between subsystems usually costly

[©Sherwani]

Example: Partitioning of a Circuit

Input size: 48

Cut 1=4 Cut 2=4

Size 1 = 15 Size 2 = 16 Size 3 = 17

Partitioning: Formal Definition

- Input:
 - Graph or hypergraph
 - Usually with vertex weights
 - Usually weighted edges
- Constraints
 - Number of partitions (K-way partitioning)
 - Maximum capacity of each partition
 OR
 maximum allowable difference between partitions
- Objective
 - Assign nodes to partitions subject to constraints s.t. the cutsize is minimized
- Tractability
 - Is NP-complete ⊗

Kernighan-Lin (KL) Algorithm

- On non-weighted graphs
- An iterative improvement technique
- A two-way (bisection) partitioning algorithm
- The partitions must be balanced (of equal size)
- Iterate as long as the cutsize improves:
 - Find a pair of vertices that result in the largest decrease in cutsize if exchanged
 - Exchange the two vertices (potential move)
 - "Lock" the vertices
 - If no improvement possible, and still some vertices unlocked, then exchange vertices that result in smallest increase in cutsize

W. Kernighan and S. Lin, Bell System Technical Journal, 1970.

Kernighan-Lin (KL) Algorithm

- Initialize
 - Bipartition G into V_1 and V_2 , s.t., $|V_1| = |V_2| \pm 1$
 - n = |V|
- Repeat
 - for i=1 to n/2
 - Find a pair of unlocked vertices v_{ai}∈ V₁ and v_{bi}∈ V₂ whose exchange makes the largest decrease or smallest increase in cut-cost
 - Mark v_{ai} and v_b as locked
 - Store the gain g_i.
 - Find k, s.t. ∑_{i=1..k} g_i=Gain_k is maximized
 - If Gain_k > 0 then move v_{a1},...,v_{ak} from V₁ to V₂ and v_{b1},...,v_{bk} from V₂ to V₁.
- Until Gain_k ≤ 0

Kernighan-Lin (KL) Example

Step No.	Vertex Pair	Gain	Cut-cost
0		0	5
1	{ d, g }	3	2
2	{ c, f }	1	1
3	{ b, h }	-2	3
4	{ a, e }	-2	5

Kernighan-Lin (KL): Analysis

- Time complexity?
 - Inner (for) loop
 - Iterates n/2 times
 - Iteration 1: (n/2) x (n/2)
 - Iteration i: $(n/2 i + 1)^2$.
 - Passes? Usually independent of n
 - $O(n^3)$
- Drawbacks?
 - Local optimum
 - Balanced partitions only
 - No weight for the vertices
 - High time complexity
 - Only on edges, not hyper-edges

$$I_{a_i} = \sum_{x \in A} C_{a_i x}, \qquad E_{a_i} = \sum_{y \in B} C_{a_i y}$$

$$D_{a_i} = E_{a_i} - I_{a_i}$$
 Likewise,
$$D_{b_j} = E_{b_j} - I_{b_j} = \sum_{x \in A} C_{b_j x} - \sum_{y \in B} C_{b_j y}$$

Gain Calculation (cont.)

Lemma: Consider any a_i ∈ A, b_j ∈ B.
 If a_i, b_i are interchanged, the gain is

$$g = D_{a_i} + D_{b_j} - 2C_{a_i b_j}$$

Proof:

Total cost before interchange (T) between A and B

$$T = E_{a_i} + E_{b_j} - C_{a_i b_j} + (\text{cost for all others})$$

Total cost after interchange (T') between A and B

$$T = I_{a_i} + I_{b_j} + C_{a_i b_j} + (\text{cost for all others})$$

Therefore

$$g = T - T' = E_{a_i} - I_{a_i} + E_{b_j} - I_{b_j} - 2C_{a_i b_j}$$

Gain Calculation (cont.)

Lemma:

Let D_x', D_y' be the new D values for elements of A - {a_i} and B - {b_i}. Then after interchanging a_i & b_i,

$$D_{x}' = D_{x} + 2C_{xa_{i}} - 2C_{xb_{j}}, x \in A - \{a_{i}\}$$

$$D_{y}' = D_{y} + 2C_{yb_{j}} - 2C_{ya_{i}}, y \in B - \{b_{j}\}$$

Proof:

- The edge x-a_i changed from internal in D_x to external in D_x'
- The edge y-bj changed from internal in D_x to external in D_x'
- The x-b_i edge changed from external to internal
- The y-a_i edge changed from external to interna

_[©Kang]

Clarification of the Lemma Oct 20,2008 CAD of VLSI @ SERC 12

Example: KL

Step 1 - Initialization

$$A = \{2, 3, 4\},$$
 $B = \{1, 5, 6\}$
 $A' = A = \{2, 3, 4\},$ $B' = B = \{1, 5, 6\}$

Step 2 - Compute D values

$$D_1 = E_1 - I_1 = 1 - 0 = +1$$

$$D_2 = E_2 - I_2 = 1 - 2 = -1$$

$$D_3 = E_3 - I_3 = 0 - 1 = -1$$

$$D_4 = E_4 - I_4 = 2 - 1 = +1$$

$$D_5 = E_5 - I_5 = 1 - 1 = +0$$

$$D_6 = E_6 - I_6 = 1 - 1 = +0$$

_[©Kang]

Initial partition

Example: KL (cont.)

Step 3 - compute gains

$$g_{21} = D_2 + D_1 - 2C_{21} = (-1) + (+1) - 2(1) = -2$$

$$g_{25} = D_2 + D_5 - 2C_{25} = (-1) + (+0) - 2(0) = -1$$

$$g_{26} = D_2 + D_6 - 2C_{26} = (-1) + (+0) - 2(0) = -1$$

$$g_{31} = D_3 + D_1 - 2C_{31} = (-1) + (+1) - 2(0) = 0$$

$$g_{35} = D_3 + D_5 - 2C_{35} = (-1) + (0) - 2(0) = -1$$

$$g_{36} = D_3 + D_6 - 2C_{36} = (-1) + (0) - 2(0) = -1$$

$$g_{41} = D_4 + D_1 - 2C_{41} = (+1) + (+1) - 2(0) = +2$$

$$g_{45} = D_4 + D_5 - 2C_{45} = (+1) + (+0) - 2(+1) = -1$$

$$g_{46} = D_4 + D_6 - 2C_{46} = (+1) + (+0) - 2(+1) = -1$$

• The largest g value is $g_{41} = +2$

 \Rightarrow interchange 4 and 1 $(a_1, b_1) = (4, 1)$

$$(a_1, b_1) = (4, 1)$$

$$A' = A' - \{4\} = \{2, 3\}$$

$$B' = B' - \{1\} = \{5, 6\}$$
 both not empty

Example: KL (cont.) Step 4 - update D values of node connected to vertices (4, 1)

$$D_2' = D_2 + 2C_{24} - 2C_{21} = (-1) + 2(+1) - 2(+1) = -1$$

 $D_5' = D_5 + 2C_{51} - 2C_{54} = +0 + 2(0) - 2(+1) = -2$
 $D_6' = D_6 + 2C_{61} - 2C_{64} = +0 + 2(0) - 2(+1) = -2$

Assign $D_i = D_i$, repeat step 3:

$$g25 = D_2 + D_5 - 2C_{25} = -1 - 2 - 2(0) = -3$$

 $g26 = D_2 + D_6 - 2C_{26} = -1 - 2 - 2(0) = -3$
 $g35 = D_3 + D_5 - 2C_{35} = -1 - 2 - 2(0) = -3$
 $g36 = D_3 + D_6 - 2C_{36} = -1 - 2 - 2(0) = -3$

All values are equal;

arbitrarily choose
$$g_{36} = -3 \Rightarrow$$
 (a2, b2) = (3, 6)

$$\{5\} = \{5\}$$

$$A' = A' - \{3\} = \{2\}.$$
 $B' = B' - \{6\} = \{5\}.$

New D values are:

$$D_2' = D_2 + 2C_{23} - 2C_{26} = -1 + 2(1) - 2(0) = +1$$

$$D_5' = D_5 + 2C_{56} - 2C_{53} = -2 + 2(1) - 2(0) = +0$$

New gain with $D_2 \leftarrow D_2$, $D_5 \leftarrow D_5$

$$g_{25} = D_2 + D_5 - 2C_{52} = +1 + 0 - 2(0) = +1 \Rightarrow (a3, b3) = (2, 5)$$

Example: KL (cont.)

 Step 5 - Determine the # of moves to take

$$g_1 = +2$$

 $g_1 + g_2 = +2 - 3 = -1$
 $g_1 + g_2 + g_3 = +2 - 3 + 1 = 0$

The value of k for max G is 1

$$X = \{a_1\} = \{4\}, Y = \{b_1\} = \{1\}$$

• • • • •

• The final solution is $A = \{1, 2, 3\}, B = \{4, 5, 6\}$

Subgraph Replication to Reduce Cutsize

- Vertices are replicated to improve cutsize
- Good results if limited number of components replicated

C. Kring and A. R. Newta, ICCAD, 1991. CAD of VLSI @ SERC

17

Clustering

- Clustering
 - Bottom-up process
 - Merge heavily connected components into clusters
 - Each cluster will be a new "node"
 - "Hide" internal connections (i.e., connecting nodes within a cluster)
 - "Merge" two edges incident to an external vertex, connecting it to two nodes in a cluster
- Can be a preprocessing step before partitioning
 - Each cluster treated as a single node

Fiduccia-Mattheyses (FM) Algorithm

- Modified version of KL
- A single vertex is moved across the cut in a single move
 - Unbalanced partitions
- Vertices are weighted
- Concept of cutsize extended to hypergraphs
- Special data structure to improve time complexity to O(n²)
 - (Main feature)
- Can be extended to multi-way partitioning

The FM Algorithm: Data Structure

- Pmax
 - Maximum gain
 - p_{max} = d_{max} . w_{max}, where
 d_{max} = max degree of a vertex (# edges incident to it)
 w_{max} is the maximum edge weight
 - What does it mean intuitively?
- -Pmax .. Pmax array
 - Index i is a pointer to the list of unlocked vertices with gain i.
- Limit on size of partition
 - A maximum defined for the sum of vertex weights in a partition (alternatively, the maximum ratio of partition sizes might be defined)

The FM Algorithm

- Initialize
 - Start with a balance partition A, B of G
 (can be done by sorting vertex weights in decreasing order, placing them in A and B alternatively)
- Iterations
 - Similar to KL
 - A vertex cannot move if violates the balance condition
 - Choosing the node to move:
 pick the max gain in the partitions
 - Moves are tentative (similar to KL)
 - When no moves possible or no more unlocked vertices available, the pass ends
 - When no move can be made in a pass, the algorithm terminates

Other Partitioning Methods

- KL and FM have each held up very well
- Min-cut / max-flow algorithms
 - Ford-Fulkerson for unconstrained partitions
- Ratio cut
- Genetic algorithm
- Simulated annealing

Partitioning

- Input:
 - A set of blocks, both fixed and flexible.
 - Area of the block A_i = w_i x h_i
 - Constraint on the shape of the block (rigid/flexible)
 - Pin locations of fixed blocks.
 - A netlist.
- Requirements:
 - Find locations for each block so that no two blocks overlap.
 - Determine shapes of flexible blocks.
- Objectives:
 - Minimize area.
 - Reduce wire-length for critical nets.

Difference between FP and Placement

- The problems are similar in nature.
- Main differences:
 - In floorplanning, some of the blocks may be flexible, and the exact locations of the pins not yet fixed.
 - In placement, all blocks are assumed to be of well-defined geometrical shapes, with defined pin locations.
- Points to note:
 - Floorplanning problem is more difficult as compared to placement.
 - Multiple choice for the shape of a block.
 - In some of the VLSI design styles, the two problems are identical.

Examples of Rigid Block

Module	Width	Height
Α	1	1
В	1	3
С	1	1
D	1	2
E	2	1

Some of the Feasible Floorplans

Design Style Specific Issues

- Full Custom
 - All the steps required for general cells.
- Standard Cell
 - Dimensions of all cells are fixed.
 - Floorplanning problem is simply the placement problem.
 - For large netlists, two steps:
 - First do global partitioning.
 - Placement for individual regions next.
- Gate Array
 - Floorplanning problem same as placement problem.

Cost of Floorplanning

- The number of feasible solutions of a floorplanning problem is very large.
 - Finding the best solution is NP-hard.
- Several criteria used to measure the quality of floorplans:
 - a) Minimize area
 - b) Minimize total length of wire
 - c) Maximize routability
 - d) Minimize delays
 - e) Any combination of above

Cost of FP

- How to determine area?
 - Not difficult.
 - Can be easily estimated because the dimensions of each block is known.
 - Area A computed for each candidate floorplan.
- How to determine wire length?
 - A coarse measure is used.
 - Based on a model where all I/O pins of the blocks are merged and assumed to reside at its center.
 - Overall wiring length $L = \Sigma_{i,j} (c_{ij} * d_{ij})$

where c_{ii}: connectivity between blocks i and j

d_{ii}: Manhattan distances between the

centres of rectangles of blocks i and j

Cost of FP

Typical cost function used:

Cost = w1*A + w2*L

where w1 and w2 are user-specified parameters.

Slicing Structure

Definition

 A rectangular dissection that can be obtained by repeatedly splitting rectangles by horizontal and vertical lines into smaller rectangles.

Slicing Tree

- A binary tree that models a slicing structure.
- Each node represents a vertical cut line (V), or a horizontal cut line (H).
 - A third kind of node called Wheel (W) appears for nonsliceable floorplans (discussed later).
- Each leaf is a basic block (rectangle).

Slicing Structure

Slicing Tree is not Unique

FP Algorithms

- Several broad classes of algorithms:
 - Integer programming based
 - Rectangular dual graph based
 - Hierarchical tree based
 - Simulated annealing based
 - Other variations

ILP Formulation

- The problem is modeled as a set of linear equations using 0/1 integer variables.
- Given:
 - Set of n blocks S = {B₁, B₂, ...,B_n} which are rigid and have fixed orientation.
 - 4-tuple associated with each block (x_i, y_i, w_i, h_i)

