

Reinforcement Learning Conference 2024 Kellen Kanarios, Qining Zhang, Lei Ying {kellenkk, qiningz, leiying}@umich.edu

Outline

- 1. Recap MAB Motivations
- 2. Introduce New Formulation
- 3. Tight Asymptotic Lower Bound
- 4. Simple Algorithm
- 5. Results

 $X_{i,t}$ = reward arm i at time t $\mu_i = \mathbb{E}\left[X_{i,t}\right]$

$$X_{i,t}$$
 = reward arm i at time t

$$\mu_i = \mathbb{E}\left[X_{i,t}\right]$$

Goal: Make as much money as possible

Regret Minimization:

Inputs

Time Horizon

 $T \in \mathcal{N}$

Components

Arm sampling rule

 $\pi:\mathcal{H}\to\mathcal{A}$

Objective

Regret

$$\operatorname{Reg}_{\pi}(T) = \max_{j} \sum_{t=1}^{T} \mathbb{E}\left[X_{j,t} - X_{\pi(t),t}\right]$$

 $S_i = i$ th drug trial is a success. $\mu_i = \mathbb{E}\left[\mathbf{1}_{\{S_i\}}\right]$

$$\mu_i = \mathbb{E} \left| \mathbf{1}_{\{S_i\}} \right|$$

 $S_i = i$ th drug trial is a success. $\mu_i = \mathbb{E} \left[\mathbf{1}_{\{S_i\}} \right]$

Goal: Identify best drug as fast as possible.

Inputs

Time Horizon

 $T \in \mathcal{N}$

Components

Arm sampling rule

 $\pi:\mathcal{H}\to\mathcal{A}$

Objective

Regret

$$\operatorname{Reg}_{\pi}(T) = \max_{j} \sum_{t=1}^{T} \mathbb{E}\left[X_{j,t} - X_{\pi(t),t}\right]$$

Inputs

Confidence Level

$$\delta \in [0,1)$$

Components

Arm sampling rule

 $\pi:\mathcal{H}\to\mathcal{A}$

Stopping Rule

 $\tau: \mathcal{H} \to \{0,1\}$

Objective

Sample Complexity

 $\min \tau$ s.t $\Pr(\hat{a} = a^*) \ge 1 - \delta$

Scenario 3: Corporate Health

Scenario 3: Corporate Health

 $c_i = \mathbb{E}\left[\text{cost of trial for drug } i\right]$

Scenario 3: Corporate Health

 $c_i = \mathbb{E}\left[\text{cost of trial for drug } i\right]$

Goal: Identify best drug as cheap as possible.

Assumptions on Rewards

- 1. Single parameter exponential family.
- 2. Unique best arm.

Assumptions on Rewards

- 1. Single parameter exponential family.
- 2. Unique best arm.

Inherited from previous BAI work.

Assumptions on Costs

- 1. Costs are bounded.
- 2. Costs are strictly greater than 0.

"Everything has a price"

"Nothing in life is free"

Assumptions on Costs

- Costs are bounded.
- 2. Costs are strictly greater than 0.

Lower Bound. Let $\delta \in (0,1)$. For any δ - PAC algorithm and any bandit model $\mu \in \mathcal{M}$, we have:

$$\sum_{a} \mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} N_{a} \left(\tau_{\delta} \right) \right] \geq T^{*}(\boldsymbol{\mu}) \log \frac{1}{\delta} + o \left(\log \frac{1}{\delta} \right)$$

where $T^*(\mu)$ is the instance dependent constant satisfying:

$$T^*(\boldsymbol{\mu})^{-1} = \sup_{\boldsymbol{w} \in \Sigma_K} \inf_{\boldsymbol{\lambda} \in \{a^*(\boldsymbol{\lambda}) \neq a^*(\boldsymbol{\mu})\}} \sum_a \frac{w_a}{c_a} d(\mu_a, \lambda_a).$$

Stopping Rule

In CABAI, we still want to stop as soon as possible

• Can reuse **exact** stopping rule from BAI!

Stopping Rule

In CABAI, we still want to stop as soon as possible

• Can reuse **exact** stopping rule from BAI!

$$\hat{\mu}_{a,b}(t) := \frac{N_a(t)}{N_a(t) + N_b(t)} \hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t) + N_b(t)} \hat{\mu}_b(t)$$

$$Z_{a,b}(t) = N_a(t) d\left(\hat{\mu}_a(t), \hat{\mu}_{a,b}(t)\right) + N_b(t) d\left(\hat{\mu}_b(t), \hat{\mu}_{a,b}(t)\right)$$

$$\tau_{\delta} = \inf \left\{ t \in \mathbb{N} : Z(t) := \max_{a \in \mathcal{A}} \min_{b \in \mathcal{A} \setminus \{a\}} Z_{a,b}(t) > \beta(t,\delta) \right\}$$

Sampling Rule

Proof Snippet:

$$kl(\delta, 1 - \delta) \leq \mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[C \left(\tau_{\delta} \right) \right] \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} N_{a} \left(\tau_{\delta} \right) \right]}{\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} C \left(\tau_{\delta} \right) \right]} d \left(\mu_{a}, \lambda_{a} \right) \right)$$

$$\leq \mathbb{E}_{\boldsymbol{\mu}} \left[C \left(\tau_{\delta} \right) \right] \sup_{w \in \Sigma_{K}} \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{w_{a}}{c_{a}} d \left(\mu_{a}, \lambda_{a} \right) \right),$$

Sampling Rule

Proof Snippet:

$$kl(\delta, 1 - \delta) \leq \mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[C \left(\tau_{\delta} \right) \right] \inf_{\boldsymbol{\lambda} \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} N_{a} \left(\tau_{\delta} \right) \right]}{\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} C \left(\tau_{\delta} \right) \right]} d \left(\mu_{a}, \lambda_{a} \right) \right)$$

$$\leq \mathbb{E}_{\boldsymbol{\mu}} \left[C \left(\tau_{\delta} \right) \right] \overline{\sup_{\boldsymbol{\omega} \in \Sigma_{K}}} \inf_{\boldsymbol{\lambda} \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{w_{a}}{c_{a}} d \left(\mu_{a}, \lambda_{a} \right) \right),$$

Key insight 1: Can compute $w^*(\mu)$ for given μ

Sampling Rule

Proof Snippet:

$$kl(\delta, 1 - \delta) \leq \mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[C \left(\tau_{\delta} \right) \right] \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \left[\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{c}} \left[c_{a} N_{a} \left(\tau_{\delta} \right) \right] \right] d\left(\mu_{a}, \lambda_{a} \right) \right)$$

$$\leq \mathbb{E}_{\boldsymbol{\mu}} \left[C \left(\tau_{\delta} \right) \right] \left[\sup_{\boldsymbol{\nu} \in \Sigma_{K}} \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{w_{a}}{c_{a}} d\left(\mu_{a}, \lambda_{a} \right) \right),$$

Key insight 1: Can compute $\overline{w^*(\mu)}$ for given μ

Key insight 2: Proportion should match $w^*(\mu)$

Sampling Rule

Proof Snippet:

$$kl(\delta, 1 - \delta) \leq \mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{e}} \left[C \left(\tau_{\delta} \right) \right] \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \left[\mathbb{E}_{\boldsymbol{\mu} \times \boldsymbol{e}} \left[c_{a} N_{a} \left(\tau_{\delta} \right) \right] \right] d \left(\mu_{a}, \lambda_{a} \right) \right)$$

$$\leq \mathbb{E}_{\boldsymbol{\mu}} \left[C \left(\tau_{\delta} \right) \right] \left[\sup_{\boldsymbol{\nu} \in \Sigma_{K}} \inf_{\lambda \in Alt(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} \frac{w_{a}}{c_{a}} d \left(\mu_{a}, \lambda_{a} \right) \right),$$

Key insight 1: Can compute $\overline{w}^*(\overline{\mu})$ for given μ

Key insight 2: Proportion should match $w^*(\mu)$

Sampling Rule:
$$\pi(t) \in \arg\max_{i} |C(t)w^*(\widehat{\boldsymbol{\mu}}(t)) - \widehat{c_i}(t)N_i(t)|$$

Optimal Cost Aware Best Arm Identification

$$\pi(t) \in \arg\max_{i} |C(t)w^*(\widehat{\boldsymbol{\mu}}(t)) - \widehat{c_i}(t)N_i(t)|$$

Optimal Cost Aware Best Arm Identification

$$\pi(t) \in \arg\max_{i} |C(t)w^*(\widehat{\boldsymbol{\mu}}(t)) - \widehat{c_i}(t)N_i(t)|$$

Asymptotic Optimality in Expectation.

For suitably chosen $\beta(t, \delta)$ we have

$$\limsup_{\delta \to 0} \frac{\mathbb{E}\left[C(\tau_{\delta})\right]}{\log(1/\delta)} \le T^*(\boldsymbol{\mu})$$

Optimal Cost Aware Best Arm Identification

$$\pi(t) \in \arg\max_{i} |C(t)w^*(\widehat{\boldsymbol{\mu}}(t)) - \widehat{c_i}(t)N_i(t)|$$

$$\left\{ \pi(t) \in \arg\max_{i} |C(t)w^*(\widehat{\boldsymbol{\mu}}(t)) - \widehat{c_i}(t)N_i(t)| \right\} \qquad \left\{ \tau_{\delta} = \inf\left\{ t \in \mathbb{N} : Z(t) := \max_{a \in \mathcal{A}} \min_{b \in \mathcal{A} \setminus \{a\}} Z_{a,b}(t) > \beta(t,\delta) \right\} \right\}$$

Algorithm Optimal? $w_1(t) (1.5, 1) w_2(t) (1, 0.1)$	$w_3(t) \ (0.5, 0.01)$
TAS \times 0.46 0.46	0.08
CTAS \checkmark 0.23 0.72	0.05

Optimal proportions of Cost Aware vs. non Cost Aware algorithm.

- Solving lower bound optimization HARD
- Computing confidence regions EASY

- Solving lower bound optimization HARD
- Computing confidence regions EASY

- Solving lower bound optimization HARD
- Computing confidence regions EASY

• Idea: Most reduced overlap for the cost $\frac{\Delta_1 - \Delta_0}{c_1}$

• **Idea**: Most reduced overlap for the cost $\frac{\Delta_1 - \Delta_0}{c_1}$

Sampling Rule:

$$a_t \in \arg\max_i \frac{\Delta_{t+1}^{\hat{a}, a_i} - \Delta_t^{\hat{a}, a_i}}{c_i}$$

Elimination Rule:

Eliminate i at t if $\Delta_t^{\hat{a},a_i}=0$

Stopping Rule:

Stop at t if $\max_i \Delta_t^{\hat{a}, a_i} = 0$

• **Observation**: sampling rule can be approximated by $a_t \in \arg\max_i \sqrt{c_i} N_i(t)$

Theoretical Result. For any 2-armed Gaussian bandit model with rewards $\{\mu_1, \mu_2\}$ and costs $\{c_1, c_2\}$, we have with probability 1:

$$\limsup_{\delta \to 0} \frac{\sum_{a} \mathbb{E}\left[c_{a} N_{a}\left(\tau_{\delta}\right)\right]}{\log(1/\delta)} \leq \frac{2\alpha \left(\sqrt{c_{1}} + \sqrt{c_{2}}\right)^{2}}{\left(\mu_{1} - \mu_{2}\right)^{2}}$$

• **Observation**: sampling rule can be approximated by $a_t \in \arg\max_i \sqrt{c_i} N_i(t)$

	СО	CTAS	TAS	d-LUCB
Gaussian	85	1712	2410	82
Bernoulli	58	1995	2780	60
Poisson	96	3260	4633	101

Process time (sec) over 1000 trajectories.

Results

Results

Thanks!