

Bases de Données

Types de Bases de Données.

□ Qu'est ce qu'une Base de Données ?

Collection d'informations stockées sur lesquelles des opérations pourront être réalisées

Choix du type de Bases de Données.

☐ Performance d'accès aux informations

- Volume de données
- Structuration des données
- Types de traitements
- Scalabilité de l'architecture

☐ Intégrité des données

Information présente une seule fois

☐ Contraintes

Les informations d'une entreprise

- Ont un sens (sémantique)
- Ne doivent pas être dupliquées
- Ne doivent pas être corrompues, altérées, ...

☐ Spécificités d'une Base de Données relationnelle

Collection d'informations

- Elémentaires
- Définies
- Structurées

dans un référentiel

☐ Types de traitements

- Ajouter
- Sélectionner
- Modifier
- Supprimer

des données

□ Informations

 On ne peut pas rechercher de façon détermiste une information spécifique dans des phrases :

Jean Dupont, né le 12/02/1985, s'est inscrit le 10/09/2006 au cours d'informatique dont la durée est de 40 heures

- La Base de Données n'a pas connaissance de la signification des mots et des phrases.
- Il est indispensable d'appliquer des règles pour réaliser le référencement.

☐ Méthode de conception, MERISE

□ Règles

- Décomposer les informations en différents champs élémentaires dont chacun doit disposer d'un sens (sémantique)
 - Jean Dupont, né le 12/02/1985, s'est inscrit le 10/09/2006 au cours d'informatique dont la durée est de 40 heures

- Prénom : Jean

- Nom : Dupont

- Date de naissance -> Jour : 12, Mois : 02, Année : 1985

- Date d'inscription -> Jour : 10, Mois : 09, Année : 2006

- Titre du cours : informatique

- Durée du cours : 40 heures

□ Règles

 Grouper les différents champs élémentaires en fonction de leur appartenance

• Étudiant :

- Prénom : Jean

- Nom: Dupont

- Date de naissance / Jour : 12, Mois : 02, Année : 1985

Inscription :

- Date d'inscription au cours / Jour : 10, Mois : 09, Année : 2006

Cours :

- Titre: informatique

- **Durée**: 40 heures

₽ Règles

Pouvoir identifier de façon unique chaque exemplaire d'un groupe

• Étudiant :

- Code: 125

- Prénom : Jean

- Nom : Dupont

- Date de naissance / Jour : 12, Mois : 02, Année : 1985

Cours:

- Référence : 25

- **Titre**: informatique

- **Durée**: 40 heures

₽ Règles

Donner un type à chaque composant (ultérieurement / MLD)

• Étudiant :

- **Code**: 125 (3 chiffres)

- **Prénom**: Jean (20 caractères)

- Nom : Dupont (20 caractères)

- Date de naissance / Jour : 12, Mois : 02, Année : 1985 (date)

Cours :

- **Référence**: 25 (2 chiffres)

- **Titre**: informatique (20 caractères)

- **Durée**: 40 heures (3 chiffres)

Concepts et formalisme du

Modèle Conceptuel de Données MCD

Formalisme du MCD.

☐ Concepts de base

- Entité,
- Propriété identifiant,
- Relation ou association,
- Cardinalités.

₽ Formalisme

Entité.

☐ Objet concret ou abstrait

 Association logique d'informations équivalente à un objet ou à une information manipulée.

☐ Caractéristiques

- Décrite par un ensemble indissociable de propriétés,
- Repérée par une propriété caractéristique, unique par sa valeur, appelée identifiant.

₽ Formalisme

1

Étudiant
Code étudiant
Nom
Prénom
Date de naissance

Propriété - identifiant

☐ Particule élémentaire d'information

· A un sens en elle-même.

☐ Caractéristiques

- · Associée à une seule entité ou relation,
- Sélectionnée pour être identifiant de l'entité dans le cas de l'unicité de ses valeurs.

₽ Formalisme

Entité A

Identifiant A
Propriété 1
Propriété 2

Relation
Propriété 1

Occurrence d'une entité.

Entité A Identifiant A Propriété 1 Propriété 2 Entité A Entité A Finité A Finité A Finité A Plu Entité A Plu Entité A Propriété 1 Propriété 1 Propriété 2

☐ Exemple

☐ Commentaires

- Existence de plusieurs occurrences de l'entité « Étudiant »,
- L'identifiant (non nul) prend une valeur unique pour chaque occurrence.

☐ Lien sémantique

Relie des entités (2 ou 3 maximum).

☐ Caractéristiques

- · N'a d'existence qu'au travers des entités en relation,
- Ne possède pas d'identifiant propre mais est repérée par la concaténation des identifiants des entités en relation,
- Décrite par un ensemble indissociable de propriétés.

☐ Formalisme

- Peut mettre en relation deux entités.
- Exemple:

☐ Formalisme (suite)

• Peut mettre en relation trois entités maximum (l'une étant lié au temps ou à un lieu).

☐ Formalisme (suite)

 Peut être réflexive, chaque patte de la relation joue alors un rôle particulier.

☐ Formalisme (suite)

 Peut exister plusieurs relations de nature différente entre les mêmes entités.

Occurrence d'une relation.

□ Occurrences

□ Exemple

☐ Commentaires

- Existence de deux occurrences de la relation « Étudiant -Cours »,
- L'identifiant, concaténation des identifiants des entités en relation, prend une valeur unique pour chaque occurrence.

☐ Couple de valeurs

 Représente le nombre de fois qu'une même occurrence de l'entité peut intervenir dans les occurrences d'une association (min, max).

➡ Minimum

- 0 : certaines occurrences de l'entité peuvent ne pas participer à la relation,
- 1 : toute occurrence de l'entité participe obligatoirement à la relation,

- 1 : toute occurrence de l'entité participe une fois au plus à la relation,
- n : toute occurrence de l'entité peut participer plusieurs fois à la relation.

₽ Formalisme

☐ Exemple

□ Exemple (suite)

 Chaque étudiant est tenu de suivre au moins un cours et peut en suivre plusieurs.

☐ Exemple (suite)

 Un cours peut ne pas être retenu ou être suivi par plusieurs étudiants.

Cas spécifiques.

□ Attention

- Un même composant peut prendre des significations différentes.
 - Prix d'articles indépendants

- Prix d'articles par lot

Cas spécifiques.

- Un même évènement peut se produire plusieurs fois dans le temps.
 - Inscription unique

- Multiples inscriptions identiques

Modèle Logique de Données MLD

☐ Implémentation des entités et des relations

☐ Transformation du MCD en MLD en vue d'implémenter les données dans des tables d'une base de données relationnelle.

☐ Implémentation des entités

Étudiant		
Code étudiant		
Nom		
Prénom		
Date de naissance		

- ☐ Table étudiant (Code étudiant, Nom, Prénom, Date de naissance)
- **₽** Table

<u>Code</u> <u>Étudiant</u>	Nom	Prénom	Date naissance

☐ L'identifiant est appelé clé primaire et joue un rôle particulier (unicité et accès rapide). La clé primaire est soulignée en trait plein.

☐ Implémentation des entités (suite)

Cours		
Code cours		
Intitulé		
Durée		
Coefficient		

- ☐ Table cours (Code cours, Intitulé, Durée, Coefficient)
- **₽** Table

<u>Code</u> <u>Cours</u>	Intitulé	Durée	Coefficient

□ Implémentation des entités (suite)

Étudiant	
<u>125</u>	
Dupont	
Jean	
12/02/1985	

Étudiant
<u>129</u>
Dupont
Pierre
24/07/1984

Cours
25 Informatique 40 heures 5

Cours
<u>17</u>
Télécom
50 heures
5

□ Tables

<u>Code</u> <u>Étudiant</u>	Nom	Prénom	Date naissance
<u>125</u>	Dupont	Jean	12/02/1985
<u>129</u>	Dupont	Pierre	24/07/1984

Code Cours	Intitulé	Durée	Coefficient
<u>25</u>	Informatique	40	5
<u>17</u>	Télécom	50	5

Implémentation des relations(*)

- ☐ Chaque relation (x,n) (x,n) donne lieu à la création d'une table

 Table inscrire (Code étudiant, Code cours, Date inscription)
- ☐ Table

<u>Code</u> Étudiant	Code Cours	Date inscription

Les liens sont appelés clés étrangères et jouent un rôle particulier (unicité). Les clés étrangères sont soulignées en pointillés.

☐ Implémentation des relations(*) (suite)

Inscrire 10/09/2000

Inscrire 17/09/2000

Inscrire 18/09/2000

☐ Chaque occurrence donne lieu à la création d'une ligne dans la table

Code Étudiant	Code Cours	Date inscription
125	25	10/09/2000
<u>129</u>	_17_	17/09/2000
<u> 129</u>	<u>25</u>	18/09/2000

☐ Implémentation des relations(*) (suite)

Cas particuliers des relations (x,n) (x,1)

- Aucune table supplémentaire n'est crée, le lien est importé dans l'entité fille, coté (x,1), avec ses éventuelles propriétés.
- Table étudiant (<u>Code étudiant</u>, Nom, Prénom, Date de naissance, <u>Code école</u>)

☐ Implémentation des relations(*) (suite)

<u>Code</u> <u>Étudiant</u>	Nom	Prénom	Date naissance	Code École

<u>Code</u> <u>École</u>	Nom École

[☐] D'éventuelles propriétés portées par la relation, seraient intégrées dans l'entité fille.