## Diagrammatic Algebra: from Linear to Concurrent Systems

Filippo Bonchi, Joshua Holland, <u>Robin Piedeleu</u>, Paweł Sobociński and Fabio Zanasi

PoPL '19, Cascais, Portugal

## Question

# What are the Fundamental Structures of Concurrency? We still don't know!

Samson Abramsky <sup>1,2</sup>

Oxford University Computing Laboratory Oxford, U.K.

#### Abstract

Process algebra has been successful in many ways; but we don't yet see the lineaments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets, physics and geometry.

Keywords: Concurrency, process algebra, Petri nets, geometry, quantum information and computation.

Electronic Notes in Theoretical Computer Science, 2006

Process algebras vs. Petri nets



#### In this talk

Towards bridging the gap between the two approaches:

- Start from a compositional diagrammatic language for linear dynamical systems.
- ▶ Give it a *resource-conscious semantics* by changing the domain from a field to the semiring N.
- Provide a sound and complete equational theory for this new semantics.
- ► Showcase the expressiveness of the calculus by embedding Petri nets with their usual operational semantics.

#### Section 1

A simple graphical language

## Drawing open systems



## Drawing open systems



 $[\![ c ]\!]_X \subseteq X \times X^2, [\![ d ]\!]_X \subseteq X \times X \dots$  for some fixed set X.

## Parallel composition



## Parallel composition



## Synchronising composition



## Synchronising composition



## More complex networks



## Only the connectivity matters



## Only the connectivity matters



$$\left[\!\!\left[\begin{array}{c} \\ \end{array}\right]\!\!\right]_X = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} y \\ x \end{pmatrix}\right) \;\middle|\; x, y \in X \right\}$$



## Multiple connections



#### Frobenius monoids

Special boxes/systems:  $-\bullet$  ,  $-\bullet$  ,  $\bullet$  satisfying:

form a special commutative Frobenius monoid.

#### Interpreted as:



If X = R is a semiring we buy ourselves more structure:

$$\rightarrow$$
,  $\leftarrow$  and  $\rightarrow$ r for  $r \in R$ 

Į

If X = R is a semiring we buy ourselves more structure:

$$\rightarrow$$
-,  $\sim$ - and  $-$ r $\rightarrow$ - for  $r \in R$ 

and tranposes for free:



If X = R is a semiring we buy ourselves more structure:

$$\rightarrow$$
,  $\sim$  and  $-$ r $\rightarrow$  for  $r \in R$ 

satisfying:

$$\blacktriangleright$$
  $-$  ,  $-$  ,  $\bigcirc$  ,  $\bigcirc$  form a *bimonoid*.

If X = R is a semiring we buy ourselves more structure:

$$\rightarrow$$
,  $\rightarrow$  and  $\rightarrow$ r for  $r \in R$ 

satisfying:

Encode the additive and multiplicative operations of R.

## Adding state

▶ Introduce —x— that we interpret as a state-holding register.

## Adding state

- ▶ Introduce —x— that we interpret as a state-holding register.
- ▶ A stateful diagram  $c: k \rightarrow l$  is interpreted as a relation

$$[\![ c ]\!] \subseteq \mathsf{R}^{s+k} \times \mathsf{R}^{s+l}$$

where s is the number of -x in c.

Semantics extended inductively with

$$\llbracket - x - \rrbracket_{\mathsf{R}} = \left\{ \left( \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} y \\ x \end{pmatrix} \right) \mid x, y \in \mathsf{R} \right\}$$



#### Section 2

Detour: the Linear Interpretation

#### Linear relations

As relations over a field  $\mathbb{K}$ :

▶ For a diagram  $c: k \to I$ ,  $[\![ c ]\!]_{\mathbb{K}}$  is a linear subspace of  $\mathbb{K}^k \times \mathbb{K}^I$ , i.e., a relation closed under  $\mathbb{K}$ -linear combinations.



## Complete equational theory

#### Interacting Hopf algebras

Filippo Bonchi<sup>a</sup>, Paweł Sobociński<sup>b</sup>, Fabio Zanasi<sup>c,\*</sup>



▶ Addition is also a special commutative Frobenius monoid:

Scalars are invertible:

for  $r \neq 0$ 

## Linear dynamical systems

#### For the stateful linear case:

- $ightharpoonup \mathbb{K} = \mathbb{R}(x)$  susbumes the notion of state we introduced.
- Semantics in terms of generalised streams (Laurent series).
- ▶ Models linear dynamical systems (e.g., filters, amplifiers)
- Generalisation of Shannon's signal flow graphs.
- Reformulates control-theory in diagrammatic terms (e.g., controllability, observability).

## Section 3

## The Resource Interpretation





$$\begin{array}{c|c}
t \\
\hline
s \\
\hline
r
\end{array}
\mapsto \left\{ \left( \begin{pmatrix} s \\ l \end{pmatrix}, \begin{pmatrix} s' \\ r \end{pmatrix} \right) \middle| \exists t \quad \begin{array}{c} s = t + r, \\ s' = t + l \end{array} \right\}$$

Over a field  $\mathbb{K}$ , we can relate any two I and r:

$$\begin{array}{ccc}
t \\
s \\
r
\end{array}
\qquad \mapsto \left\{ \left( \begin{pmatrix} s \\ l \end{pmatrix}, \begin{pmatrix} s' \\ r \end{pmatrix} \right) \middle| \exists t & s = t + r, \\ s' = t + l & s' = t + l \end{array} \right\}$$

Over  $\mathbb{N}$ , we must have  $r \leq s$  so:







Over  $\mathbb{N}$ , we must have r < s so:

$$\left[\!\!\left[\begin{array}{cccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right]\!\!\right]_{\mathbb{N}} \neq \left[\!\!\left[\begin{array}{cccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right]\!\!\right]_{\mathbb{N}}$$

#### Intuition

Without additive inverses, we cannot borrow arbitrary quantities.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (^)



Over  $\mathbb{N}$ , we must have  $r \leq s$  so:



This diagram behaves like the place of a Petri net!



#### Additive relations

For a diagram  $c: k \to I$ ,  $[c]_{\mathbb{N}}$  is an additive relation: a finitely-generated submonoid of  $\mathbb{N}^k \times \mathbb{N}^l$ . i.e., a relation closed under addition and containing (0,0).

### Proposition

Finitely-generated additive relations form a symmetric monoidal category, AddRel.

► The proof that they compose is non-trivial and relies on Dickson's lemma.





## Complete equational theory

The Resource Calculus (RC) := every equation in Section I +

 $\triangleright$   $\bigcirc$  ,  $\bigcirc$  and  $\bigcirc$  ,  $\bigcirc$  form an idempotent bimonoid:

And

## Embedding Petri nets



With new syntactic sugar:

## **Embedding Petri nets**



With new syntactic sugar:

#### Theorem

Firing semantics of Petri nets = semantics of corresponding diagram

We can use RC to (de)compose Petri nets and reason equationally about their behaviour.

## Moral of the story

Seemingly diverse computational models can be studied within the same algebraic/categorical framework.

This is not just another process algebra, with pictures.

## More coming: a graphical assembly language

- Affine extension (done): discrete polyhedral relations to capture non-additive phenomena like mutual exclusion.
- ▶ RC is strictly more expressive than Petri nets: compile other process algebras into it.
- Coarser semantics:
  - trace equivalence
  - bisimulation
- Compositional reachability checking.