Testo della domanda
The normalized scientific representation of $x = 10.2$ in $\mathbb{F}(10, 5, -10, 10)$ is: Domanda 1 Scegli un'alternativa:
a. none of the other alternatives $b.$ $\widetilde{x} = 10.22222 \cdot 10^{1}$
$\vec{x} = 10.22222 \cdot 10^{2}$ c. $\vec{x} = 0.01022 \cdot 10^{3}$
Feedback La risposta corretta è: none of the other alternatives
Domanda 2
Domanda 2 Scegli un'alternativa: a. 1.24
b. 1.2301 c. 1.231
Feedback La risposta corretta è: 1.2301
Domanda 3 Testo della domanda Which of the following statements for $\Lambda \subset \mathbb{R}^{n \times n}$ is correct?
Which of the following statements for $A \in \mathbb{R}^{n \times n}$ is correct? Domanda 3 Scegli un'alternativa: a. $ A _2 = \text{maximum singular value of } A$
b. $ A _2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$
c. $ A _2 = \mathbb{R}\text{ho}(A^T A)$
Feedback La risposta corretta è: $ A _2 = \text{maximum singular value of } A$ Domanda 4
Testo della domanda Which fo the following matrices is orthogonal: Domanda 4 Scegli un'alternativa:
a. $U = \begin{pmatrix} \frac{1}{2} & 1 \\ 1 & -\frac{1}{2} \end{pmatrix}$
$U = \begin{pmatrix} 1 & 3 \\ 2 & -\frac{3}{2} \end{pmatrix}$
$U = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ (\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$
Feedback $\frac{1}{\sqrt{5}} = -\frac{2}{\sqrt{5}}$
La risposta corretta è: $U = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ (\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$ Domanda 5
Testo della domanda $ \text{If } A \text{ is a matrix } m \times n, m > n \text{ and } \sigma_1 \geq \sigma_2 \ldots \geq \sigma_n \text{ are the singular values of } A, \text{ which of the following sentences is correct:} \\ -\text{Domanda 5 Scegli un'alternativa:} \\ \text{a.} $
$ A _1 = \sigma_n$ b. $ A _2 = \sigma_1$
$\ A\ _2 = \sigma_n$
Feedback La risposta corretta è: $ A _2 = \sigma_1$ Domanda 6
Testo della domanda $ \text{If } A \text{ is a matrix } m \times n, m > n \text{ and } A = U \Sigma V^T \text{ is the SVD of } A, A_p = \sum_{i=1}^p u_i \sigma_i v_i^T \text{, which of the following statements is correct?} $
Domanda 6 Scegli un'alternativa: $ \ A - A_p\ _2 = \sigma_1 $ b.
$ A-A_p _2=\sigma_{p+1}$ c. none of the other alternatives
Feedback La risposta corretta è: $\ A-A_p\ _2 = \sigma_{p+1}$
Domanda 7 Testo della domanda
Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = 3x_1x_2^2 - x_2 + x_1^2$, then $\nabla^2 f(0, 2) =$ Domanda 7 Scegli un'alternativa: a. none of the other alternatives
b. 2 -12 (12 0)
c. 4 0 (0 2)
Feedback La risposta corretta è: none of the other alternatives Domando 9
Domanda 8 Testo della domanda If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1^2 - 3x_2$, $g: \mathbb{R}^2 \to \mathbb{R}^2$, $g(t_1, t_2) = (2t_1, 2t_2)$, and if $h: \mathbb{R}^2 \to \mathbb{R}$ h(t ₁ , t ₂) = $f(g(t_1, t_2))$, then $\nabla h(0, 0) = (2t_1, 2t_2)$
If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1^2 - 3x_2$, $g: \mathbb{R}^2 \to \mathbb{R}^2$, $g(t_1, t_2) = (2t_1, 2t_2)$, and if $h: \mathbb{R}^2 \to \mathbb{R}$ h(t_1, t_2) = $f(g(t_1, t_2))$, then $\nabla h(0, 0) = 0$ Domanda 8 Scegli un'alternativa: a. $(4, -6)$
b. none of the other alternatives c.
(0, 0) Feedback
La risposta corretta è: none of the other alternatives Domanda 9 Testo della domanda
If $f(\theta) = \ \Phi\theta - y\ _2^2$, with $\Phi \in \mathbb{R}^{N \times D}$, $y \in \mathbb{R}^N$, $\theta \in \mathbb{R}^D$, then $\nabla f(\theta) = 0$ Domanda 9 Scegli un'alternativa: a.
$\begin{aligned} & \Phi\theta - y \\ & b. \\ & 2\Phi^T\Phi\theta - 2\Phi^Ty \end{aligned}$
c. $-2\Phi^{\mathrm{T}}y + 2\Phi^{\mathrm{T}}\theta$
Feedback La risposta corretta è: $2\Phi^T\Phi\theta - 2\Phi^Ty$ Domanda 10
Testo della domanda $ \text{If } f: \mathbb{R}^n \to \mathbb{R}, x^* \text{is a global minimum for } f \text{ if:} \\ $
a. $f(x^*) \le f(x), \forall x \in \mathbb{R}^n$ b.
$f(x) \le f(x^*), \forall x : x - x^* < \epsilon, \epsilon > 0$ c. $f(x) \le f(x^*), \forall x \in \mathbb{R}^n$
Feedback La risposta corretta è: $f(x^*) \leq f(x), \forall x \in \mathbb{R}^n$
Domanda 11 Testo della domanda If $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x_1, x_2, x_3) = x_1^2 x_2^2 + x_3^3 - 2x_1 x_2$, which of the following is NOT a stationary point for f ?
Domanda 11 Scegli un'alternativa: a.
$(\frac{1}{2}, 1, 0)$
$(\frac{1}{2}, 1, 0)$ b. $(1, 1, 0)$ c.
b. (1, 1, 0)
b. $(1,1,0)$ c. $(0,0,0)$ Feedback La risposta corretta è: $(\frac{1}{2},1,0)$
b. $(1,1,0)$ c. $(0,0,0)$ Feedback La risposta corretta è: $(\frac{1}{2},1,0)$ Domanda 12 Testo della domanda If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2) = e^{x_1} + x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)} = (0,0)^T$ and $\alpha > 0$, then: Domanda 12 Scegli un'alternativa:
b. $(1,1,0)$ c. $(0,0,0)$ Freedback
Feedback La risposta corretta è: $(\frac{1}{2}, 1, 0)$ Domanda 12 Testo della domanda If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = e^{x_1} + x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)} = (0, 0)^T$ and $\alpha > 0$, then: Domanda 12 Scegli un'alternativa: a. $x^{(1)} = (-\alpha, 0)^T$.
b. $(1,1,0)$ c. $(0,0,0)$ Feedback La risposta corrett & $(\frac{1}{2},1,0)$ Domanda 12 Testo della domanda If $f: \mathbb{R}^2 - \mathbb{R}, f(x_1,x_2) = e^{x_1} + x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)} = (0,0)^T$ and $\alpha > 0$, then: $x^{(1)} = (-\alpha,0)^T.$ b. $x^{(1)} = (-\alpha,2)^T.$ c. $x^{(1)} = (0,0)^T.$ Feedback La risposta corrett & $x^{(1)} = (-\alpha,0)^T.$
b. $(1,1,0)$ c. $(0,0,0)$ Feedback La risposta corrett & $(\frac{1}{2},1,0)$ Domanda 12 Tests della domanda If $f: \mathbb{R}^2 \to \mathbb{R} f(x_i,x_2) = e^{x_i} + x_2'$, then if the initial guess for a gradient descent iteration is $x^{(0)} = (0,0)^T$ and $\alpha \ge 0$, then: $\begin{bmatrix} Domanda 1 2 & Step1 and alternatives: \\ \alpha & x^{(1)} = (-\alpha,0)^T. \\ b. \\ x^{(2)} = (-\alpha,2)^T. \\ c. \\ x^{(1)} = (0,0)^T. \end{bmatrix}$ Feedback La risposta corrett & $x^{(1)} = (-\alpha,0)^T$. Domanda 13 Tests della domanda If Ω the sample space, Δ the event space and $T = [0,1]$, a random variable X is: $\begin{bmatrix} Domanda 13 \\ Tests della domanda \\ if \Omega so the sample space, \Delta the event space and T = [0,1], a random variable X is: \begin{bmatrix} Domanda 13 \\ Tests della domanda \\ if \Omega so the sample space, \Delta the event space and T = [0,1], a random variable X is:$
Feedback La risposta correta è $(\frac{1}{2}, 1, 0)$ Domanda 12 Tiesto della domanda If $(x, x, y) = e^{x_0} + x_0^2$, then it the initial guess for a gradient descret idention is $x^{(0)} = (0, 0)^T$ and $\alpha \ge 0$, then: Domanda 12 Sregil un'alternativa: $x^{(1)} = (-\alpha, 0)^T$. $x^{(1)} = (-\alpha, 0)^T$. $x^{(1)} = (-\alpha, 0)^T$. La risposta correta è $x^{(2)} = (-\alpha, 0)^4$. Domanda 13 Testo della domanda If (0) is the sample space, (0) the event space and (0)
$ \begin{aligned} & \text{Feedback} \\ & \text{La risposas covera} & \text{dis}\left(\frac{1}{2}, 1, 0\right) \\ & \textbf{Domanda 12} \\ & \textbf{Testo della domanda} \\ & \text{If } : R^2 \sim R, \left[(x_1, x_2) - e^{x_1} + x_2^2, \text{ then if the initial gives for a gradient dear entire attain is } X^{(0)} - (0, 0)^T, \text{ and } \alpha \geq 0, \text{ there} \end{aligned} $ $ & \textbf{Domanda 12} \\ & \textbf{Domanda 12} \\ & \textbf{Domanda 12} \\ & \textbf{Domanda 13} \\ & \textbf{La risposas convent } & \textbf{de } X^{(1)} - (-\alpha, 0)^T, \\ & \textbf{de } \\ & \textbf{x}^{(1)} = (-\alpha, 0)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(1)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(2)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{x}^{(3)} = (-\alpha, 2)^T, \\ & \textbf{c.} \\ & \textbf{a supple space. A the even space and T = [0, 1], a madom variable X is: \\ & \textbf{Domanda 13} \\ & \textbf{150} = \textbf{c.} \\ & \textbf{a struction X : } \mathbf{A} \sim \mathbf{T} \\ & \textbf{b.} \\ & \textbf{a struction X : } \mathbf{A} \sim \mathbf{T} \\ & \textbf{b.} \\ & \textbf{a struction X : } \mathbf{A} \sim \mathbf{T} \\ & \textbf{b.} \\ & \textbf{a struction X : } \mathbf{A} \sim \mathbf{T} \\ & \textbf{c.} \\ & \textbf{c.} \end{aligned}$
The collisate The collisa
$ \begin{bmatrix} x \\ (1,1,0) \\ x \\ (0,0,0) \end{bmatrix} $ Leefback La risposts converte is $(\frac{1}{2},1,0)$ Domanda 12 Texts delta domanda If $(\pi^2)^2 = R(x_0,x_0) = e^{-\tau x_0^2}$, then if the lattical guess for a guidest domand iteration in $x^{(0)} = (0,0)^T$ and $x \ge 0$, these $ \begin{bmatrix} D_{Dataset L} 12 \log \mu \text{ to the bounds} + e^{-\tau x_0^2} \\ x^{(0)} = (-\alpha,0)^T, \\ x^{(0)} = (-\alpha,2)^T, \\ x^{(0)} = (-\alpha,2)^T, \\ x^{(1)} = (0,0)^T, \end{bmatrix} $ Feetback La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Domanda 13 Texts delta domanda If $x^{(1)} = (-\alpha,0)^T$, and $x^{(1)} = (-\alpha,0)^T$. La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Domanda 13 Texts delta domanda If $x^{(1)} = (-\alpha,0)^T$, and $x^{(1)} = (-\alpha,0)^T$. Leefback La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Leefback La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Leefback La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Leefback La risposta conventur is $x^{(1)} = (-\alpha,0)^T$. Leefback La risposta conventur is a function $x^{(1)} = (-\alpha,0)^T$.
$ \begin{bmatrix} k \\ (1,1,0) \\ c \\ (0,0,0) \end{bmatrix} $ Firstland. Let accordance to $\{c_1,1,0\}$. Dominated a $\{L,L\}$ and the formulation of the transition of
$ \begin{aligned} & \text{Freedmant} \\ & \text{The state of the controls of } & \mathcal{C}_{2}^{+}(1,0) \\ & \text{Demants of } & \mathcal{C}_{2}^{+}(1,0) \\ & \text{Demants of } & \mathcal{C}_{2}^{+}(1,0) \\ & \text{Demants of } & \mathcal{C}_{2}^{+}(1,0) \\ & \text{The state of the controls of } & \mathcal{C}_{2}^{+}(1,0) \\ & \text{The state of the controls of } & \mathcal{C}_{2}^{+}(1,0) \\ & \mathcal{C}_{2}^{+}(1,0)^{2} \\ & \mathcal{C}_{3}^{+}(1,0)^{2} \\ & \mathcal{C}_{3}^{+}(1,0)^$
$ \begin{aligned} & (1,1,0) \\ & c \\ & c \\ & (0,0,0) \end{aligned} $ For this $c \\ & (0,0,0)$ For the
To contact the formula of the state of the
terribode
$ \begin{bmatrix} 016 \\ 016 $
$ \begin{array}{l} 1.1.0 \\ 2.1.0 \\ 3.1.0 $
The state of the
$ \begin{array}{c} 1 \\ (3.6.6) \\ (3.6$
##
$ \begin{array}{c} 0 \\ 0.1.05 \\ 0.0.05 \\ $
A.
1
Totals From Stores From From From Stores From From From From From From From From
C.
Description
Testing
Table
Act
Section 1995 And Sectio
1
1995
March Marc
Company Comp
Description