PROBLEM 1:

SINGLE SAMPLE PERCEPTRON

Algorithm:In every iteration, we add every misclassified sample(yk) to the weight vector for learning;

```
w0 = -6;
a = [ 0.77 0.77];
[a,w0] = sample_perceptron(w, w0, t1);
plotpc(a, w0)
```



```
#CODE
```

```
function [a,b] = sample_perceptron( w1 , b, t1)
a = [0.77, 0.77];
n=14;
cnt = 0;
while(cnt<100000)
  c=0;
  for k = 1:n
     if( misclassified( w1(:,k), a, b,0, t1(k) ) )
       c = c + 1;
       a = a + w1(:,k)';
       b = b - 25;
     end
  end
  if( c == 0)
     break;
  end
  cnt = cnt + 1;
end
end
```

Elapsed time is 7.321561 seconds.

Single Sample Perceptron with Margin

```
b = 0;
w2 = -7;
[a2, w2] = single_margin(w,w2, b , t1);
plotpc(a2, w2);
```



```
function [a,w0] = single_margin( w , w0, b, t )
a = [0.77, 0.77];
n=14;
cnt = 0;
lr = 1;
```

```
while(cnt<10000)
  c=0;
  for k = 1:n
     if( misclassified( w(:,k), a, w0,b, t(k) ) )
       c = c + 1;
       a = a + Ir*w(:,k)';
       % disp(w1(:,k));
       w0 = w0 - 20;
     end
  end
  disp(c);
  if(c == 0)
     break;
  end
  cnt = cnt + 1;
end
end
```

Elapsed time is 1.684404 seconds.

```
BATCH RELAXATION WITH MARGIN

b3 = 0.8;

w3 = -1;

lr = 0.001;

a = [0.7 0.7];

[a3, w3] = batch_relaxation(w, w3, b3, t1, lr,a);

plotpc(a3, w3);
```


function [a,w0] = batch_relaxation(w , w0, b, t , lr, a)

```
n=14;
cnt = 0;
while(cnt<10)

c=0;
y_sum = [
0</pre>
```

```
0
          ];
     for k = 1:n
       if( misclassified( w(:,k), a, w0, b, t(k) ) )
          c = c + 1;
          y = w(:,k);
          factor = ((b - a*y))/(norm(y)*norm(y));
          y_sum = y_sum + factor*y;
       end
     end
      % disp(factor);
      a = a + lr*y_sum';
          % disp(w1(:,k));
      w0 = w0 - 1;
     if( c == 0)
       break;
     end
     cnt = cnt + 1;
  end
end
```

Elapsed time is 0.000680 seconds.

SINGLE RELAXATION WITH MARGIN

```
b = 0.1;
w01 = -1;
a1 = [0.77 0.77];
[a1, w01] = relaxation_margin(w, w01, b, t1);
plotpc(a1, w01);
```



```
function [a,w0] = relaxation_margin( w , w0, b, t )

Ir = 0.001;
a = [0.77, 0.77];
```

```
n=14;
  cnt = 0;
  while(cnt<1000)
     c=0;
     for k = 1:n
        if( misclassified( w(:,k), a, w0, b, t(k) ) )
          c = c + 1;
          y = w(:,k);
          factor = Ir * ( (b - a*y )*(b - a*y ) )/ (norm(y) * norm(y) );
          % disp(factor);
          a = a + factor*y';
          % disp(w1(:,k));
          w0 = w0 - 1;
        end
     end
     disp(c);
     if( c == 0)
        break;
     end
     cnt = cnt + 1;
  end
end
```

Elapsed time is 0.004942 seconds.

function [a, w0] = Ims_hoff(w, w0, b, t, a, lr, theta)

```
n = 14;
factor = 100000000;
while(1)
  c=0;
  for k = 1:n
     y = w(:,k);
     if(misclassified(y ,a , w0, b(:,k), t(:,k) ) )
        factor = Ir*(b(:,k) - a*y);
        a = a + factor*y';
        c = c + 1;
     end
     if(factor < theta)</pre>
        disp(factor);
        c=0;
        break;
     end
  end
  disp(c);
  if( c==0)
     break;
  end
end
```

Elapsed time is 0.001206 seconds.

Plot of all the algorithms

Problem 2:

DataSet <u>link</u>

Preprocessing: The dataset had 32x32 bitmaps for each digit. It has been down-sampled to 8x8 by counting number of 1s in each 4x4 grid.

Constructing the neural network:

- 1. number of input units = 64, output units = 2;
- 2. The hidden units are chosen such that total number of weights is atleast (no. Of data

```
points)/10;
3. eta (learning rate): 0.001
4. The digits chosen are 0,1, 7;
5. The target values are [0\ 0] \rightarrow 0; [0\ 1] \rightarrow 1; [1\ 0] \rightarrow 7;
6. The target values are set based on the 65<sup>th</sup> number in the training data set;
7. Initializing the weights: The weights are chosen randomly in the range -1 to 1. ( they should
   be chosen in the range (-1/sqrt(d), -1/sqrt(d)) but that leads to very small values );
   function w = initw(inp , out)
   w = [];
   for k = 1:out
      tmp = [];
      for j = 1:inp
       % tmp = [tmp, -1/sqrt(inp)];
       r = -1 + (1 + 1).*rand(1,1);
       tmp = [tmp, r];
      end
      w = [w; tmp];
    end
   end
8. TRAINING: STOCHASTIC TRAINING
    1. feedforward
       function [out] = feedforward( inp , w, out sz )
          out = [];
          for k = 1:out sz
             netk = net(w,inp, k);
             out = [out; sigmoid(netk)];
          end
       end
   2. backpropagation
       function [w, bl] = backpropagation(w, kj, inp, theta)
          global eta;
          bl = 1;
          %hidden to output
          [r, c] = size(w);
          if( kj == 1)
             for k = 1:r
                netk = net(w, inp, k);
                for i = 1:c
                  cond = deltak(k, netk)*inp(j,:);
                  %disp(deltak(k, netk));
                  if( cond < theta)</pre>
                     bl = 0;
                  end
                  w(k,j) = w(k,j) + eta*cond;
               end
             end
          else
             for j = 1:r
                netj = net(w, inp, j);
                for i = 1:c
                  cond = deltaj(j, netj)*inp(j,:);
                  % if( cond < theta)
                  % bl = 0:
                  % end
```

```
w(j,i) = w(j,i) + eta*cond;
                  end
                end
             end
           end
       3. Deltak
           function dk = deltak(k, netk)
             global t;
             global z;
             global m;
             dk = (t(k,m) - z(k,:))* sigmoid derivative(netk);
           end
       4. Deltaj
           function dj = deltaj(j, netj)
             global wkj;
             global y;
             [r, c] = size(wkj);
             sum = 0;
             for k = 1:r
                netk = net(wkj, y, k);
                sum = sum + wkj(k,j)*deltak(k, netk);
             dj = sum* sigmoid derivative(netj);
           end
       5. finding net
           function net value = net(w, inp, k)
             [r,c] = size(w);
             net_value = 0;
             for j=1:c
                net_value = net_value + w(k,j)*inp(j,:);
             end
           end
       6. Stochastic training
           while(cnt <10000)
             cnt = cnt + 1;
             m = 1 + (COL - 1).*randi(1,1);
             [y] = feedforward(x(:,m), wji, nh);
             [z] = feedforward( y, wkj, c);
             [wkj, bl] = backpropagation(wkj, 1, y, theta);
             [wji, bl] = backpropagation(wji, 0, x(:,m), theta);
6. Testing
       For testing, the ouput z matrix was rounded off to 0 or 1. Hence z matrix is compared
with target matrix to validate;
Report
Case 1:
d = 64, nh = 6, c = 2;
              nh
                             C
```

d

Every hidden layer unit is connected to every output unit and every input unit to every hidden unit.

CLASS 0: (91 images for digit 0)

Input to hidden weights

Columns 1 through 13

-0.9397	0.5219	0.7924	0.2377	0.4415	-0.0723	0.5178	-0.9857	-0.6130	-0.8171	-0.6641	0.8845	0.6989
-0.2013	0.9601	0.0867	0.8259	-0.3505	-0.4178	0.7591	0.5594	-0.2100	0.7658	-0.1475	-0.0661	-0.1490
0.6605	0.4304	0.7643	-0.6853	-0.6085	0.7530	-0.0870	-0.6369	0.4388	0.7561	0.5851	0.6750	0.0651
-0.1838	0.1952	-0.1486	-0.7564	-0.3001	0.0934	-0.7459	-0.8371	-0.4211	0.3536	-0.0860	-0.0016	-0.8831
0.4136	0.8605	0.6424	-0.9188	0.9339	0.7774	0.2791	-0.9766	0.9560	-0.2274	-0.1992	0.0221	0.1048
-0.5319	-0.7267	-0.3475	-0.3111	0.8535	0.7727	0.5761	-0.8550	-0.1644	-0.2105	-0.1781	0.9439	-0.5282

Columns 14 through 26

-0.7254	0.3215	-0.9230	-0.7037	-0.6305	0.2907	0.7131	0.7068	-0.0119	0.5618	-0.4507	0.9348	0.9811
-0.0884	0.3920	-0.8077	0.4681	-0.7388	-0.0058	-0.4795	0.1845	-0.5436	0.9114	-0.8728	-0.6323	0.2496
-0.5918	0.0499	0.6756	-0.5803	0.4225	0.7144	-0.0684	-0.0900	0.8741	0.2457	0.6018	-0.2079	-0.3682
-0.8528	-0.3243	-0.3279	0.9699	0.5033	0.2930	0.7657	0.0237	-0.2477	0.7675	-0.5085	-0.6720	0.3172
0.9193	0.7123	-0.0451	0.7571	-0.2187	-0.9002	-0.3836	-0.3581	-0.0759	-0.0222	0.4150	-0.2639	0.8844
-0.7868	0.5961	-0.9143	0.9159	0.5993	0.9172	0.5275	0.2125	0.9741	0.1211	-0.0122	-0.4979	-0.6120

Columns 27 through 39

-0.8311	-0.3404	-0.4634	-0.5682	0.5340	-0.2699	-0.6920	-0.6700	0.7867	0.8916	0.0349	-0.9633	-0.1614
-0.4160	-0.7245	-0.6210	0.9144	-0.4056	-0.5244	0.3215	-0.9903	-0.8425	-0.3797	-0.5509	0.3917	0.4016
-0.2534	0.4270	-0.6248	-0.0310	-0.7694	-0.7311	0.8834	0.2509	-0.1337	0.4046	0.0483	0.2939	0.5454
-0.4888	-0.6848	-0.4468	-0.4026	-0.9882	-0.5428	0.3402	0.9633	-0.4878	0.2383	0.9436	-0.0157	-0.3980
-0.4621	0.4923	0.8197	0.1706	0.8145	-0.8851	0.1150	-0.9926	-0.6922	-0.1835	-0.5316	0.0721	-0.3753
-0.0185	0.4178	0.9713	-0.3347	-0.5636	-0.3134	-0.8208	0.2592	-0.2476	0.7708	-0.1509	0.7776	-0.5555

Columns 40 through 52

-0.7558	0.9037	-0.4596	0.7873	0.7904	0.5511	0.8176	-0.9666	0.9186	-0.8495	-0.4297	-0.0238	0.9411
0.7048	0.1193	0.1418	0.0630	0.7189	-0.1062	-0.2321	0.1919	-0.3888	-0.7966	-0.2550	-0.5545	0.2876
0.2251	-0.0068	-0.0402	-0.7907	0.8221	-0.1457	-0.1570	-0.9524	0.0099	0.9164	-0.4603	0.4759	-0.7774
0.1941	0.0867	-0.7405	0.1044	-0.7019	-0.4830	0.0574	0.6267	0.4370	0.0016	0.7879	0.9014	-0.0753
0.4188	0.1756	-0.5201	-0.8704	-0.9918	-0.6203	-0.0161	0.2344	-0.7529	-0.7324	-0.3701	-0.8228	-0.1809
0.5899	0.7126	-0.1498	0.1737	-0.8206	-0.5028	0.1836	0.0372	0.8241	0.3226	-0.0047	0.2656	-0.8313

Columns 53 through 64

0.1362	-0.4521	-0.7418	-0.6896	-0.4624	-0.1322	-0.2082	-0.1495	0.2288	-0.1064	-0.9760	-0.9315
0.5545	-0.1388	0.2433	-0.4407	-0.0427	-0.3694	0.6555	0.4875	-0.7102	-0.8623	0.0654	0.4891
0.5277	0.5205	0.0706	-0.6723	0.8493	-0.5945	-0.9714	0.1923	0.2038	-0.0733	0.1817	0.4360
-0.4249	0.8527	-0.0074	0.7546	-0.5736	-0.7713	-0.7514	0.1481	-0.0673	-0.2520	0.5092	-0.0889
-0.4339	0.2627	-0.5590	0.3100	-0.6116	-0.8093	0.8382	0.1180	-0.1632	-0.7776	0.1070	-0.7759
-0.9224	0.4992	-0.3565	-0.8710	0.8425	-0.8953	-0.8681	0.1431	-0.1256	-0.9492	-0.9046	-0.5269

output to hidden weights

CLASS 1: (102 images for digit 1)

Input to hidden weights

Columns 1 through 13

```
        0.9626
        -0.6743
        -0.6868
        -0.6727
        -0.8430
        0.4368
        -0.1075
        0.0202
        0.2103
        0.7661
        -0.7562
        -0.4195
        -0.8753

        -0.6774
        -0.2933
        -0.8840
        -0.1118
        -0.1179
        -0.3466
        0.8288
        -0.0109
        0.4204
        0.3292
        0.6635
        -0.4840
        0.5384

        0.2193
        0.9354
        0.2681
        0.5544
        0.7969
        -0.5470
        -0.7976
        0.6564
        -0.1512
        0.4541
        0.8734
        -0.4071
        -0.3757

        0.5648
        -0.6331
        0.8844
        0.5207
        0.6134
        -0.1676
        -0.4193
        0.3408
        0.6973
        0.7238
        0.7744
        0.6674
        -0.0494

        -0.5153
        -0.6631
        0.7222
        -0.3467
        -0.3497
        -0.1997
        0.5270
        -0.6719
        0.3766
        0.2866
        0.6427
        -0.2429
        -0.7762

        0.3309
        -0.5624
        0.8349
        -0.2318
        -0.9223
        -0.5376
        0.8215
        0.7457
        0.1277
        0.1293
        -0.9901
        -0.7385
        -0.5630
```

Columns 14 through 26

-0.7129	-0.8641	-0.6298	0.5374	0.7954	0.0365	0.6893	-0.5425	-0.1433	-0.2634	0.3921	0.8888	-0.5642
-0.1789	-0.8887	0.7413	0.9446	-0.7661	0.0166	0.5111	-0.7801	-0.9323	-0.1179	-0.7405	0.9432	0.8803
0.0993	0.1050	0.2807	0.1932	-0.6778	-0.1643	-0.2620	-0.8396	-0.5275	0.9885	0.8185	0.5814	-0.7298
-0.0427	-0.8891	-0.1058	0.1714	-0.7996	-0.3322	-0.4916	0.1406	-0.1490	-0.1895	-0.9113	-0.5004	-0.5314
0.7190	0.4264	0.1500	0.4823	0.5073	0.1102	0.6018	0.3407	0.0702	0.3719	0.9104	0.2555	0.6383
0.6614	-0.2170	-0.3561	-0.4687	-0.3992	-0.1359	-0.6074	0.1427	0.3231	0.3789	-0.2848	0.9213	-0.5048

Columns 27 through 39

0.5060	0.0397	0.5201	0.7617	-0.5250	0.8794	-0.9457	0.1230	0.7809	-0.6660	-0.1495	-0.3462	0.1352
0.8662	0.9675	0.3860	0.4049	-0.2574	-0.8718	-0.1131	0.0859	0.0803	0.5725	0.2028	0.8940	0.2624
0.1005	-0.8925	0.3530	0.6444	0.8227	-0.7057	-0.3904	0.5596	-0.0257	0.0982	0.7563	0.9765	-0.9618
0.3984	0.2980	-0.7814	-0.7613	-0.8638	0.4507	0.0926	0.6490	-0.8075	-0.5066	-0.9115	0.2934	-0.4649
-0.6221	0.5030	-0.5568	-0.1671	0.5817	-0.2001	-0.9098	-0.5979	-0.9143	0.2783	-0.4965	-0.1602	-0.6563
0.5043	-0.2118	0.6973	-0.2483	0.4230	-0.3009	0.7621	0.5088	-0.1234	-0.1909	-0.2464	-0.1057	-0.2316

Columns 40 through 52

0.6540	-0.2166	0.2427	0.9303	0.6569	0.6268	0.9102	-0.6338	0.3409	0.4712	0.6391	0.3620	-0.3399
0.7576	-0.7547	0.6271	0.9552	-0.5376	0.8254	0.3527	0.4501	0.3715	0.5934	0.0592	0.5092	0.0071
-0.2975	0.0692	0.4955	0.9399	0.3902	-0.4536	0.9021	0.8152	-0.0853	0.4662	0.1163	0.9877	-0.2215
0.3985	-0.7592	0.0282	-0.9280	-0.8171	-0.0819	0.4015	0.1829	-0.6099	0.2178	0.3786	-0.3901	0.5898
0.7689	-0.3180	-0.5898	0.5908	-0.9511	-0.9204	0.0596	0.8667	0.2044	0.2024	0.2877	0.8439	-0.5615
-0.8468	-0.1117	0.2208	-0.3827	-0.1790	-0.7902	-0.0385	-0.4074	-0.9597	0.7766	-0.5716	0.3750	-0.6835

Columns 53 through 64

-0.9306	-0.7596	-0.4326	0.6765	0.8027	-0.1001	0.9771	-0.9324	0.7189	0.0571	0.9509	0.7544
0.8140	-0.7528	0.7044	-0.6500	0.5283	-0.0814	0.2121	-0.2720	-0.1962	0.4601	0.9102	0.7576
0.7632	0.7864	-0.2281	0.4550	0.8252	0.8081	-0.8372	-0.9334	0.1447	-0.9816	-0.6035	-0.9588
-0.6637	-0.5371	0.1697	0.7167	0.6176	0.1604	-1.0152	0.8693	0.5652	-0.2211	0.7272	0.3290
0.7698	-0.9024	0.6241	-0.9348	-0.1699	0.1893	-0.6064	0.5922	-0.5780	-0.6512	0.2277	0.8821
0.9564	0.0131	0.7906	0.4607	0.0021	0.2222	-0.2937	0.0602	0.6016	-0.4449	-0.4069	-0.2959

Output to hidden weights

```
0.9082 -0.0703 0.7096 0.2599 -0.6980 -0.8975 -0.9553 -0.4668 0.1747 -0.6747 -0.8487 0.1117
```

CLASS7: (98 images for digit 7)

hidden to input

Columns 1 through 13

```
        -0.0625
        -0.5132
        0.8398
        0.4317
        -0.0227
        -0.8439
        0.0601
        0.3321
        0.2154
        -0.1609
        -0.7784
        0.6332
        -0.5014

        0.5461
        -0.2151
        0.2105
        -0.5052
        -0.4196
        -0.9614
        -0.3054
        -0.7164
        -0.1770
        -0.6939
        0.6580
        0.4784
        -0.8023

        0.5981
        0.8058
        -0.3750
        -0.4368
        -0.9864
        -0.0083
        0.9770
        0.4759
        -0.3786
        0.2008
        0.5633
        -0.7769
        0.1586

        0.9916
        -0.1268
        -0.3911
        -0.5070
        0.9217
        -0.5542
        -0.2088
        -0.5510
        -0.4600
        -0.1631
        0.9955
        0.8221
        0.1009

        -0.1772
        -0.6432
        0.9864
        0.0359
        0.7677
        0.2916
        -0.0724
        -0.8143
        0.9308
        0.2353
        -0.6929
        -0.2081
        0.7601

        -0.1765
        0.4263
        -0.7981
        0.6210
        0.2767
        0.7972
        0.2447
        -0.1697
        0.2026
        -0.0204
        -0.8114
        0.2757
        0.9016
```

Columns 14 through 26

0.0184	0.6083	0.0197	-0.3946	0.7239	-0.8852	0.4615	0.8018	-0.0719	-0.0613	-0.6924	0.9236	0.7525
0.6412	-0.5458	-0.7862	0.3255	0.9091	0.6291	0.2465	-0.3435	-0.4453	-0.1313	-0.2994	0.7555	-0.9877
0.7407	0.3795	-0.5141	-0.3146	0.0909	-0.8649	-0.1791	-0.5250	-0.0221	0.6121	-0.2443	0.0359	-0.8108
0.1927	-0.8417	0.1533	0.7963	-0.0734	-0.2032	-0.7911	0.3045	0.9834	0.3561	-0.1430	0.3096	0.1775
0.0731	0.0825	-0.1200	-0.6374	-0.5064	-0.4347	0.0541	0.1148	-0.1746	0.8065	-0.3946	0.2947	-0.4273
-0.0462	0.2067	0.1840	-0.5484	0.3379	-0.6858	0.5496	-0.5728	-0.6607	0.4526	-0.4866	-0.6734	0.2526

Columns 27 through 39

-0.0227	-0.1858	-0.7468	0.8509	-0.9888	-0.6272	-0.3519	-0.8996	-0.7109	0.4587	-0.0354	-0.3239	-0.5265
0.3929	-0.3239	-0.3901	0.2962	0.8423	0.7861	0.9943	-0.8543	-0.7408	0.9631	-0.8196	0.3723	0.8579
0.8182	-0.5848	-0.2359	0.3205	0.5167	-0.6539	0.0347	0.9907	0.4152	-0.8389	-0.9134	-0.0177	-0.1068
0.4901	0.2817	0.0074	0.8761	0.2107	0.2778	0.4053	0.7219	-0.2407	0.4242	0.0470	-0.2730	-0.1306
-0.4944	-0.2885	0.6070	0.0730	0.1752	-0.5426	-0.8010	0.2844	0.9554	-0.8014	-0.6291	-0.9861	0.6717
-0.4974	-0.4730	0.6889	-0.2041	-0.7898	-0.6112	-0.2728	0.7501	0.2006	-0.4827	-0.2821	0.7761	0.8021

Columns 40 through 52

-0.0983	-0.6291	-0.3515	-0.4721	0.6602	0.3927	-0.3329	0.1605	-0.4243	-0.4721	-0.4802	0.3542	0.0397
-0.7164	0.7688	-0.9605	-0.3147	-0.5234	0.9691	0.6932	0.5890	0.8005	0.5602	0.6730	-0.3578	0.4855
-0.0264	-0.6682	-0.2787	0.7614	0.4887	-0.1665	0.8147	-0.8114	-0.6374	0.8932	-0.7983	-0.2239	-0.4216
0.3752	-0.5463	0.9580	0.9513	-0.4210	-0.3231	0.9929	0.5779	0.5898	0.2647	0.6229	-0.1038	0.6612
-0.0422	-0.0678	0.8122	-0.1706	0.0834	0.3931	-0.8468	0.0140	-0.0311	0.7069	0.2239	-0.7701	0.2089
-0.1030	-0.4612	0.1087	-0.6412	0.7205	-0.5350	-0.6627	-0.9455	-0.3541	0.1114	0.6501	0.6096	-0.9501

Columns 53 through 64

-0.8465	-0.8883	-0.4825	-0.1201	-0.4314	0.3575	0.8992	0.5479	0.2723	0.5072	0.4936	0.1721
0.3290	-0.4217	-0.3253	0.8172	-0.9355	0.3927	-0.5825	0.6483	-0.5636	-0.8008	0.2390	-0.7924
-0.8538	-0.6108	-0.1650	-0.4142	0.4043	-0.5206	0.9190	-0.3891	-0.6902	0.1110	0.5811	-0.1123
-0.7467	0.0265	0.4319	-0.5037	0.0638	-0.2356	0.6035	0.3417	0.9657	0.8736	0.1525	-0.8396
-0.6765	-0.2068	0.0598	0.7455	0.3132	0.5704	-0.7528	0.0451	0.7941	-0.7867	0.2643	-0.8432
-0.2559	-0.0152	-0.0668	-0.9155	0.2351	0.1571	-0 4013	-0 1276	-0.7257	-0 3995	0.5238	-0.9283

output to hidden

Accuracy:

On testing, the network correctly classifies 60% of the data.