

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3148448 A1

(21) Aktenzeichen: P 31 48 448.4
(22) Anmeldetag: 8. 12. 81
(23) Offenlegungstag: 28. 7. 83

(51) Int. Cl. 3:

C 07 C 69/013
C 07 C 13/28
C 07 C 43/18
C 07 C 23/44
C 07 C 121/46
C 09 K 3/34
G 09 F 9/35

(71) Anmelder:

Merck Patent GmbH, 6100 Darmstadt, DE

(72) Erfinder:

Sucrow, Wolfgang, Prof. Dr., 4790 Paderborn, DE;
Murawski, Hans-Rüdiger, Dr., 6800 Mannheim, DE;
Minas, Hermann, Prof. Dr.; Stegemeyer, Horst, Prof.
Dr., 4790 Paderborn, DE

(54) »Perhydrophenanthrenderivate, Verfahren zu ihrer Herstellung, diese enthaltende flüssigkristalline Dielektrika und elektrooptisches Anzeigeelement«

Die Erfindung betrifft Perhydrophenanthrenderivate der Formel I

worin R₁ Alkyl mit 1-10 C-Atomen und R₂ Alkyl, Alkoxy oder Alkanoyloxy mit 1-10 C-Atomen, H, Br, Cl oder CN bedeuten. Die Verbindungen der Formel I haben eine außerordentlich niedrige optische Anisotropie und sind wertvolle Komponenten für flüssigkristalline Dielektrika.
(31 48 448)

DE 3148448 A1

Merck Patent Gesellschaft
mit beschränkter Haftung
D a r m s t a d t

Patentansprüche:

(1.) Perhydrophenanthrenderivate der Formel I

worin R_1 Alkyl mit 1 - 10 C-Atomen und
 R_2 Alkyl, Alkoxy oder Alkanoyloxy mit
1 - 10 C-Atomen, H, Br, Cl oder CN
bedeuten.

2. Perhydrophenanthrenderivate der Formel I nach
Anspruch 1, worin R_2 Alkyl, Alkoxy oder Alkanoyl-
oxy bedeutet und R_1 und R_2 zusammen 4 - 14 C-Atome
enthalten.

- 2 -

3. Verfahren zur Herstellung der Pernydrophenanthren-
derivate der Formel I

worin R_1 Alkyl mit 1 - 10 C-Atomen und
 R_2 Alkyl, Alkoxy oder Alkanoyloxy mit
 1 - 10 C-Atomen, H, Br, Cl oder CN
 bedeuten,

dadurch gekennzeichnet, daß man
 ein Keton der Formel II

zu einer Verbindung der Formel III

worin $X = O$ oder (H, OH) bedeutet

(gegebenenfalls stufenweise) reduziert und
 III ($X = O$) durch Umsetzung mit einer Verbindung
 der Formel R'_2-M , worin R'_2 Alkyl mit 1 - 10
 C-Atomen, M Li oder MgHal und Hal Chlor, Brom
 oder Jod bedeutet, Hydrolyse, Wasserabspaltung

und Hydrierung in eine Verbindung der Formel I, worin R₂ Alkyl mit 1 - 10 C-Atomen bedeutet, überführt, oder III (X = H,OH) durch Wasserabspaltung und Hydrierung in eine Verbindung der Formel I, in der R₂ H bedeutet, überführt, oder III (X = H,OH) durch Veretherung bzw. Veresterung in eine Verbindung der Formel I, in der R₂ Alkoxy bzw. Alkanoyloxy mit 1 - 10 C-Atomen bedeutet, überführt, oder III (X = H,OH) durch Umsetzung mit einem Chlorierungsmittel bzw. Bromierungsmittel für Hydroxyverbindungen in eine Verbindung der Formel I überführt, in der R₂ Cl bzw. Br bedeutet, und gegebenenfalls eine solche Verbindung oder einen Sulfonsäureester einer Verbindung der Formel III (X = H,OH) durch Umsetzung mit einem Metallcyanid in eine Verbindung der Formel I umwandelt, in der R₂ CN bedeutet.

4. Verwendung eines Perhydrophenanthrenderivats der Formel I nach Anspruch 1 als Komponente eines flüssig-kristallinen Dielektrikums.
5. Flüssigkristallines Dielektrikum für elektrooptische Anzeigeelemente, dadurch gekennzeichnet, daß es mindestens ein Perhydrophenanthrenderivat der Formel I nach Anspruch 1 enthält.
6. Elektrooptisches Anzeigeelement auf der Basis einer Flüssigkristallzelle, dadurch gekennzeichnet, daß die Flüssigkristallzelle ein flüssigkristallines Dielektrikum nach Anspruch 5 enthält.

Perhydrophenanthrenderivate, Verfahren
zu ihrer Herstellung, diese enthaltende
flüssigkristalline Dielektrika und
elektrooptisches Anzeigeelement

5 Für elektrooptische Anzeigeelemente werden in großem
Umfang die Eigenschaften flüssigkristalliner Materialien
ausgenutzt, ihre optischen Eigenschaften wie Lichtab-
sorption, Lichtstreuung, Doppelbrechung, Reflexionsver-
mögen oder Farbe unter dem Einfluß elektrischer Felder
10 signifikant zu verändern. Die Funktion derartiger An-
zeigeelemente beruht dabei beispielsweise auf den Phäno-
menen der dynamischen Streuung, der Deformation auf-
gerichteter Phasen, dem Schadt-Helfrich-Effekt in der
verdrillten Zelle oder dem cholesterisch-nematischen
15 Phasenübergang.

Für die technische Anwendung dieser Effekte in elektro-
nischen Bauelementen werden flüssigkristalline Dielek-
trika benötigt, die einer Vielzahl von Anforderungen
genügen müssen. Besonders wichtig sind hier die chemi-
20 sche Beständigkeit gegenüber Feuchtigkeit, Luft und
physikalischen Einflüssen wie Wärme, Strahlung im infra-
roten, sichtbaren und ultravioletten Bereich und elek-
trische Gleich- und Wechselfelder. Ferner wird von tech-
nisch verwendbaren flüssigkristallinen Dielektrika eine
25 flüssigkristalline Mesophase im Temperaturbereich von
mindestens 0°C bis $+50^{\circ}\text{C}$, bevorzugt von -10°C bis 60°C ,
und eine möglichst niedrige Viskosität bei Raumtempe-
ratur, die vorzugsweise nicht mehr als $50 \cdot 10^{-3}$ Pa.s
betragen soll, gefordert. Schließlich dürfen sie im

Bereich des sichtbaren Lichtes keine Eigenabsorption aufweisen, d. h. sie müssen farblos sein.

Es ist bereits eine Anzahl von flüssigkristallinen Verbindungen bekannt, die den an Dielektrika für elektro-
5 nische Bauelemente gestellten Stabilitätsanforderungen genügen und auch farblos sind. Es sind jedoch bisher
keine Einzelverbindungen bekannt geworden, die allen Anforderungen hinsichtlich des Temperaturbereichs der
10 flüssigkristallinen Mesophase, der dielektrischen Anisotropie, der optischen Anisotropie, der Viskosität, des spezifischen Widerstands und des Verlaufs der elektro-optischen Kennlinie genügen.

Deshalb werden Gemische eingesetzt, deren Zusammensetzung den jeweils gestellten Anforderungen angepaßt wird. Zur
15 Variation der Eigenschaften der Gemische benötigt man möglichst viele unterschiedliche Substanzen, möglichst aus verschiedenen Substanzklassen, um genügend Spielraum für die Veränderung der Eigenschaften der Substanzgemische zu haben. Deshalb wird ständig nach neuen
20 Flüssigkristallen mit vorteilhaften Eigenschaften gesucht.

Der Erfindung liegt die Aufgabe zugrunde, flüssigkristalline Dielektrika herzustellen, die eine nematische Phase im geforderten Temperaturbereich aufweisen und in
25 Flüssigkristallzellen bei Raumtemperatur ausreichend kurze Schaltzeiten ermöglichen.

Es wurde nun gefunden, daß die Perhydrophenanthren-
derivate der Formel I

worin R_1 Alkyl mit 1 - 10 C-Atomen und
 5 R_2 Alkyl, Alkoxy oder Alkanoyloxy mit 1 - 10
 C-Atomen, H, Br, Cl oder CN
 bedeuten,
 wertvolle Komponenten flüssigkristalliner Dielektrika
 sind. Insbesondere haben sie günstig liegende Klär-
 10 punkte im Temperaturbereich zwischen etwa 50 und 120°,
 dabei verhältnismäßig niedrige Schmelzpunkte und eine
 außerordentlich niedrige optische Anisotropie im Be-
 reich von etwa 0,02 bis 0,06. Sie sind daher besonders
 15 gut als Komponenten flüssigkristalliner Dielektrika
 für elektrooptische Anzeigeelemente nach der deutschen
 Patentanmeldung 30 22 818 geeignet, weiterhin aber
 auch zur Verbesserung des Kontrastes in Guest-Host-
 Flüssigkristall-Anzeigeelementen. Ferner weisen sie eine
 20 negative diamagnetische Suszeptibilitätsanisotropie auf,
 die sie zur Verwendung in elektrooptischen Modulatoren
 nach der EP-PS 1745 geeignet macht.

Gegenstand der Erfindung sind somit die Perhydrophen-
 anthrenderivate der Formel I und ihre Verwendung als
 Komponenten flüssigkristalliner Dielektrika. Gegenstand
 25 der Erfindung sind weiterhin flüssigkristalline Dielek-
 trika mit einem Gehalt an mindestens einem Perhydrophen-
 anthrenderivat der Formel I sowie elektrooptische An-
 zeigeelemente auf der Basis einer Flüssigkristallzelle,
 die ein derartiges flüssigkristallines Dielektrikum
 30 enthalten.

- Die Verbindungen der Formel I besitzen mehrere Asymmetriezentren. Sie können daher bei ihrer Herstellung als Racemate oder, falls optisch aktive Ausgangsstoffe verwendet werden, auch in optisch aktiver Form erhalten werden. Falls Gemische von Racematen anfallen, können daraus die einzelnen Racemate, beispielsweise durch Umkristallisieren der Racemate selbst oder ihrer diastereomeren Derivate aus inerten Lösungsmitteln, in reiner Form isoliert werden.
- 5 Die Synthese wird jedoch vorzugsweise so geführt, daß überwiegend oder ausschließlich die bevorzugten Racemate der Konfiguration Ia gebildet werden:

- 15 worin beide Substituenten R_1 und R_2 equatorial stehen.

Erhaltene Racemate können, falls erwünscht, nach an sich bekannten Methoden mechanisch oder chemisch in ihre optischen Antipoden getrennt werden.

- In den Verbindungen der Formel I ist R_1 eine Alkylgruppe mit 1 - 10 C-Atomen, also Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl. Prinzipiell können dabei die 3 und mehr C-Atome enthaltenden Gruppen geradkettig oder verzweigt sein; wenn eine Alkylgruppe R_1 verzweigtkettig ist, enthält sie jedoch in der Regel nicht mehr als eine Kettenverzweigung. Dabei sind unter den verzweigten Alkylgruppen diejenigen bevorzugt, in denen sich an einer längeren

Kohlenstoffkette in 2- oder 3-Stellung eine Methyl- oder Ethylgruppe befindet, also beispielsweise 2- oder 3-Methylbutyl, 2- oder 3-Methylpentyl oder 2- oder 3-Ethylhexyl. Sofern in den Verbindungen der

5 Formel I auch der Rest R_2 eine Kohlenstoffkette enthält, also Alkyl, Alkoxy oder Alkanoyloxy bedeutet, enthält gewöhnlich nur höchstens einer dieser beiden Reste eine einmal verzweigte Kohlenstoffkette. Wenn

10 R_2 Alkyl, Alkoxy oder Alkanoyloxy bedeutet, können R_1 und R_2 zusammen 2 bis 20 C-Atome enthalten. Dabei sind jedoch die Perhydrophenanthrenderivate der Formel I bevorzugt, in denen R_1 und R_2 zusammen 3 - 16, vorzugsweise 4 - 14 C-Atome enthalten. In den Verbindungen der Formel I,

15 worin R_2 Wasserstoff, Br, Cl oder CN bedeutet, enthält R_1 vorzugsweise mindestens 2, insbesondere aber 3 oder mehr C-Atome.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung der Perhydrophenanthrenderivate der

20 Formel I, dadurch gekennzeichnet, daß man ein Keton der Formel II

zu einer Verbindung der Formel III

25 worin X = O oder (H, OH) bedeutet

(gegebenenfalls stufenweise) reduziert und III ($X = O$) durch Umsetzung mit einer Verbindung der Formel R'_2-M , worin R'_2 Alkyl mit 1 - 10 C-Atomen, M Li oder MgHal und Hal Chlor, Brom oder Jod bedeutet, Hydrolyse, Wasserabspaltung und Hydrierung in eine Verbindung der Formel I, worin R_2 Alkyl mit 1 - 10 C-Atomen bedeutet, überführt, oder III ($X = H, OH$) durch Wasserabspaltung und Hydrierung in eine Verbindung der Formel I, in der R_2 H bedeutet, 5 überführt, oder III ($X = H, OH$) durch Veretherung bzw. Veresterung in eine Verbindung der Formel I, in der R_2 Alkoxy bzw. Alkanoyloxy mit 1 - 10 C-Atomen bedeutet, überführt, oder III ($X = H, OH$) durch Umsetzung mit einem Chlorierungsmittel bzw. Bromierungsmittel für 10 Hydroxyverbindungen in eine Verbindung der Formel I überführt, in der R_2 Cl bzw. Br bedeutet, und gegebenenfalls eine solche Verbindung oder einen Sulfonsäureester einer Verbindung der Formel III ($X = H, OH$) durch Umsetzung mit einem Metallcyanid in eine 15 Verbindung der Formel I umwandelt, in der R_2 CN bedeutet.

Die Verbindungen der Formel I werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie 25 Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart; Organic Reactions, John Wiley & Sons, Inc., New York) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Da- 30 bei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

- 10 -

Die Ausgangsstoffe können gewünschtenfalls auch in situ gebildet werden, derart, daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

- 5 Die Ausgangsstoffe der Formeln II und III sind neu. Sie können beispielsweise wie folgt erhalten werden:

Zunächst wird ein Cyclohexanon der Formel IV

IV

- 10 in Gegenwart einer Base, z.B. Morpholin, mit Methylvinylketon zum Diketon der Formel V

V

kondensiert. Dieses wird anschließend in Gegenwart eines Alkalimetallhydroxids, z.B. NaOH, zum Oktahydronaphthalinderivat der Formel VI

VI

15 cyclisiert.

- An VI wird in Gegenwart einer starken Base in einem polaren aprotischen Lösungsmittel, zum Beispiel Dimethylsulfoxidnatrium in Dimethylsulfoxid, ein Methyl-20 ethylketonderivat der Formel VII

VII

addiert.

In der Formel VII bedeuten Z Chlor oder Brom und R₃ und R₄ Alkyl mit 1 - 4 C-Atomen oder auch zusammen Alkylen mit 2 - 4 C-Atomen.

- In der dabei erhaltenen Verbindung der Formel VIII
 5 wird zunächst die Doppelbindung durch eine Birch-Reduktion selektiv reduziert und dann das Reduktionsprodukt nach Abspaltung der Schutzgruppe durch Behandlung mit einem Alkalimetallhydroxid in einem wasserfreien organischen Lösungsmittel zum Keton II cyclisiert.

10

- Die Reduktion des ungesättigten Ketons II zum gesättigten Keton III (X = O) oder zum Alkohol III (X = H, OH) gelingt bevorzugt nach Art einer Birch-Reduktion mit Lithium in flüssigem Ammoniak. Das gesättigte Keton III (X = O) kann durch Umsetzung mit einer Organometallverbindung der Formel R'₂-M vorzugsweise in einem Ether wie Diethylether, Tetrahydrofuran (THF) oder Dioxan, sowie nachfolgende Hydrolyse, Wasserabspaltung durch Säurebehandlung, zum Beispiel mit p-Toluolsulfonsäure, und anschließende Hydrierung in eine Verbindung der Formel I, in der R₂ Alkyl bedeutet, übergeführt werden.

- Die Perhydrophenanthrenderivate der Formel I, worin R₂ H bedeutet, können erhalten werden, indem entweder das
 25 Keton III (X = O) einer Wolff-Kishner-Reduktion unterworfen wird, oder durch Wasserabspaltung aus dem Alkohol III (X = H, OH) in Gegenwart einer Säure, gefolgt

von Hydrierung der entstandenen ungesättigten Verbindung. Verbindungen der Formel I, worin R_2 eine Alkoxygruppe ist, können aus dem Alkohol III ($X = H, OH$) durch Veretherung hergestellt werden, z.B.

5 durch Umsetzung mit einem Alkylhalogenid in Gegenwart einer Base. Durch Veresterung mit einer Carbonsäure R''_2-COOH , worin R''_2 eine Alkylgruppe mit 1 - 9 Kohlenstoffatomen bedeutet, oder einem reaktionsfähigen Derivat einer solchen Carbonsäure, zum Beispiel einem Carbonsäurechlorid oder Carbonsäureanhydrid, können aus dem Alkohol III ($X = H, OH$) die Perhydrophenanthrenderivate der Formel I hergestellt werden, in denen R_2 eine Alkanoyloxygruppe bedeutet.

Die Verbindungen der Formel I, in denen $R_2 = Cl$ oder
15 Br bedeutet, sind aus dem Alkohol III ($X = H, OH$) durch Behandlung mit einem Chlorierungs- oder Bromierungsmittel, zum Beispiel Thionylchlorid oder -bromid, erhältlich.

Die Herstellung der Perhydrophenanthrenderivate der
20 Formel I, worin $R_2 = CN$ bedeutet, kann durch Umsetzung der Chlor- oder Bromverbindungen mit einem Cyanid, z.B. Kaliumcyanid oder Silbercyanid erfolgen. Anstelle der Chlor- oder Bromverbindungen I ($R_2 = Cl, Br$) können auch reaktionsfähige Ester des Alkohols III
25 ($X = H, OH$), z.B. das Tosylat, verwendet werden.

Die erfindungsgemäßen Dielektrika bestehen aus 2 bis
15, vorzugsweise 3 bis 12 Komponenten, darunter mindestens einem Perhydrophenanthrenderivat der Formel I. Die anderen Bestandteile werden ausgewählt
30 aus den nematischen oder nematogenen Substanzen aus

den Klassen der Azoxybenzole, Benzylidenaniline, Biphenyle, Terphenyle, Phenyl- oder Cyclohexylbenzoate, Cyclohexancarbonsäure-phenyl- oder -cyclohexyl-ester, Phenylcyclohexane, Cyclohexyl-
5 biphenyle, Cyclohexylcyclohexane, Cyclohexylnaphthaline, 1,4-Bis-cyclohexylbenzole, 4,4'-Bis-cyclohexylbiphenyle, Phenyl- oder Cyclohexyl-pyrimidine, Phenyl- oder Cyclohexyldioxane, ggf. halogenierten Stilbene, Benzylphenylether, Tolane und substituierten
10 Zimtsäuren. Die wichtigsten als Bestandteile derartiger flüssigkristalliner Dielektrika in Frage kommenden Verbindungen lassen sich durch die Formel IX charakterisieren,

15 worin C und D je ein carbo- oder heterocyclisches Ringsystem aus der aus 1,4-disubstituierten Benzol- und Cyclohexanringen, 4,4'-disubstituierten Biphenyl-, Phenylcyclohexan- und Cyclohexylcyclohexansystemen, 2,5-disubstituierten Pyrimidin- und 1,3-Dioxanringen,
20 2,6-disubstituierten Naphthalin, Di- und Tetrahydro-naphthalin, Chinazolin und Tetrahydrochinazolin gebildeten Gruppe,

B	-CH=CH-	-N(O)=N-
	-CH=CY-	-CH=N(O)-
25	-C≡C-	-CH ₂ -CH ₂ -
	-CO-O-	-CH ₂ -O-
	-CO-S-	-CH ₂ -S-

oder eine C-C-Einfachbindung,

Y Halogen, vorzugsweise Chlor, oder -CN, und R₅ und R₆ Alkyl, Alkoxy, Alkanoyloxy oder Alkoxyacarbonyloxy mit bis zu 18, vorzugsweise bis zu 8 Kohlenstoffatomen, oder einer dieser Reste auch -CN, 5 -NC, -NO₂, -CF₃, F, Cl oder Br bedeuten. Bei den meisten dieser Verbindungen sind R₅ und R₆ voneinander verschieden, wobei einer dieser Reste meist eine Alkyl- oder Alkoxygruppe ist. Aber auch andere Varianten der vorgesehenen Substituenten sind gebräuchlich. Viele solcher Substanzen oder auch Gemische davon sind im Handel erhältlich.

Die erfindungsgemäßen Dielektrika enthalten in der Regel mindestens 30, vorzugsweise 50 - 99, insbesondere 60 - 98 Gewichtsteile der Verbindungen der Formel I und IX. Hiervon entfallen bevorzugt mindestens 5 Gewichtsteile, meist auch 10 - 40 Gewichtsteile auf eine oder mehrere Verbindungen der Formel I. Jedoch werden von der Erfindung auch solche flüssigkristallinen Dielektrika umfaßt, denen beispielsweise zu Dotierungszwecken nur weniger als 5 Gewichtsteile, zum Beispiel 0,1 bis 3 Gewichtsteile einer oder mehrerer Verbindungen der Formel I zugesetzt worden sind. Andererseits können die Verbindungen der Formel I bis zu 60 Gewichtsprozent der erfindungsgemäßen Dielektrika ausmachen. Vorzugsweise enthalten die flüssigkristallinen Dielektrika nach der Erfindung 10 bis 30 Gewichtsprozent einer oder mehrerer Verbindungen der Formel I.

Die Herstellung der erfindungsgemäßen Dielektrika erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestanteil ausmachenden Komponente gelöst, zweckmäßig bei erhöhter Temperatur

Wenn dabei eine Temperatur oberhalb des Klärpunkts des Hauptbestandteils gewählt wird, kann die Vollständigkeit des Lösevorgangs besonders leicht beobachtet werden.

- 5 Durch geeignete Zusätze können die flüssigkristallinen Dielektrika nach der Erfindung so modifiziert werden, daß sie in allen bisher bekannt gewordenen Arten von Flüssigkristallanzeigeelementen verwendet werden können. Derartige Zusätze sind dem Fachmann
10 bekannt und sind in der einschlägigen Literatur ausführlich beschrieben. Beispielsweise können dichroische Farbstoffe oder Substanzen zur Veränderung der dielektrischen Anisotropie, der Viskosität, der Leitfähigkeit und/oder der Orientierung der nematischen
15 Phasen zugesetzt werden. Derartige Substanzen sind zum Beispiel in den DE-OS 22 09 127, 22 40 864, 23 21 632, 23 38 281, 24 50 088, 26 37 430, 28 53 728 und 29 02 177 beschrieben.

Die folgenden Beispiele sollen die Erfindung erläutern,
20 ohne sie zu begrenzen. In den Beispielen bedeuten F. den Schmelzpunkt und K. den Klärpunkt einer flüssigkristallinen Substanz in Grad Celsius; Siedetemperaturen sind mit Kp. bezeichnet. Wenn nichts anderes angegeben ist, bedeuten Angaben von Teilen oder Prozent
25 Gewichtsteile bzw. Gewichtsprozent. "Übliche Aufarbeitung" bedeutet: Man gibt, falls erforderlich, Wasser hinzu, extrahiert mit Ether, trennt ab, trocknet die organische Phase über Natriumsulfat, filtriert, dampft ein und reinigt gegebenenfalls durch Säulenchromatographie (in Klammern angegeben: Sorptions- und Elutionsmittel).

In den nachstehenden Beispielen wird 4a β ,4b α ,8a β ,10a α -Perhydrophenanthren kurz als "Perhydrophenanthren" bezeichnet.

Herstellungsbeispiele:

5 Beispiel 1

Eine Lösung von 2,9 g 7 α -Hexylperhydrophenanthren-2 β -ol (F. 126°; erhältlich durch Reaktion von 4-Hexylcyclohexanon mit Morpholin zu 4-n-Hexyl-1-morpholino-1-cyclohexen (Kp. 143°/0,01 Torr), Umsetzung mit Methylvinylketon zu 4-Hexyl-2-(3-oxobutyl)-cyclohexanon (Kp. 158°/0,01 Torr), Cyclisierung zu 6 α -Hexyl-4a β -2,3,4,4a,5,6,7,8-oktahydronaphthalin-2-on (Kp. 136 - 140°/1,5 Torr), Umsetzung mit 1-Brom-3,3-ethylendioxybutan zu 1-(3,3-Ethylendioxybutyl)-6 α -hexyl-4a β -2,3,4,4a,5,6,7,8-oktahydronaphthalin-2-on, Reduktion mit Li/NH₃ zu 1 α -(3,3-Ethylendioxybutyl)-6 α -hexyl-4a β ,8a α -dekahydronaphthalin-2-on, Ketalspaltung und Cyclisierung zu 7 α -Hexyl-4a β ,4b α ,8a β -dodekahydrophenanthren-2-on (F. 77°), Birch-Reduktion zu 7 α -Hexyl-perhydrophenanthren-2-on (F. 49°) und weitere Birch-Reduktion nach Zusatz von Methanol) und 0,3 g p-Toluolsulfonsäure in 30 ml Toluol wird 2 Std. am Wasserabscheider gekocht. Man lässt abkühlen, filtriert über Al₂O₃ und dampft ein. Der Rückstand wird in 30 ml THF an 0,5 g 5%igem Pd-C bei 60° und 6 bar bis zum Stillstand hydriert. Nach dem Filtrieren und Eindampfen erhält man 7 α -Hexyl-perhydrophenanthren.

Beispiele 2 bis 10

Analog Beispiel 1 erhält man aus den entsprechenden 4-R₁-cyclohexanonen über die entsprechenden 7α-R₁-perhydrophenanthren-2-one und 7α-R₁-perhydrophenanthren-2-ole:

- 5 2. 7α-Methyl-perhydrophenanthren.
- 10 3. 7α-Ethyl-perhydrophenanthren.
- 15 4. 7α-Propyl-perhydrophenanthren.
- 20 5. 7α-Butyl-perhydrophenanthren.
- 25 6. 7α-Pentyl-perhydrophenanthren.
- 30 7. 7α-Heptyl-perhydrophenanthren.
- 35 8. 7α-Octyl-perhydrophenanthren.
- 40 9. 7α-Nonyl-perhydrophenanthren.
- 45 10. 7α-Decyl-perhydrophenanthren.

15 Beispiel 11

Zu einer aus 85 g Hexylbromid und 13 g Magnesium in 400 ml Ether bereiteten Grignard-Lösung tropft man unter Rühren und Kühlen eine Lösung von 145 g 7α-Hexyl-perhydrophenanthren-2-on in 200 ml Ether. Nach einstündigem Kochen gießt man auf verdünnte Salzsäure/Eis, extrahiert mehrfach mit Ether, wäscht die Extrakte neutral, trocknet über Natriumsulfat und dampft ein. Das erhaltene rohe Gemisch aus 2α,7α-Dihexyl-perhydrophenanthren-2β-ol und 2β,7α-Dihexyl-perhydrophenanthren-2α-ol wird in 400 ml Toluol gelöst. Nach Zugabe von 10 g p-Toluolsulfonsäure kocht man 3 Std. am Wasserabscheider, lässt abkühlen, filtriert über Al₂O₃ und dampft ein. Das erhaltene rohe Gemisch von 2,7α-Dihexyl-dodekahydrophenanthrenen wird in 1 l Tetrahydrofuran mit 50 g 5%igem Pd-C bei 60° und 6 bar bis zum Stillstand hydriert. Nach dem Filtrieren und Eindampfen erhält man ein Gemisch aus 2α,7α- und 2β,7α-Dihexyl-perhydrophenanthren, das durch HPLC getrennt werden kann.

Beispiele 12 bis 20

Analog Beispiel 11 erhält man aus den entsprechenden
 7α -R₁-perhydrophenanthren-2-onen:

12. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Dimethyl-perhydrophenanthren.
- 5 13. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Diethyl-perhydrophenanthren.
14. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Dipropyl-perhydrophenanthren.
15. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Dibutyl-perhydrophenanthren.
16. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Dipentyl-perhydrophenanthren.
17. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Diheptyl-perhydrophenanthren.
- 10 18. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Diocetyl-perhydrophenanthren.
19. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Dinonyl-perhydrophenanthren.
20. $2\alpha,7\alpha$ - und $2\beta,7\alpha$ -Didecyl-perhydrophenanthren.

Beispiel 21

- Zu einer Lösung von 150 mg 7α -Hexyl-perhydrophenanthren- 2β -ol in 25 ml THF gibt man 30 mg 55%ige NaH-Dispersion zu und röhrt eine Stunde unter N₂. Dann wird eine Lösung von 100 mg n-Brompentan in 5 ml THF zugefügt und über Nacht unter Röhren gekocht. Nach dem Abkühlen werden die ausgefallenen Salze abfiltriert, das Filtrat eingeengt und der Rückstand chromatographiert (Kieselgel 60; Petrolether : Ether = 95 : 5). Man erhält 7α -Hexyl- 2β -pentyloxy-perhydrophenanthren, F. 55°, K. 64° (aus Methanol).

Beispiele 22 bis 50

- 25 Analog Beispiel 21 erhält man durch Veretherung:

22. 7α -Ethyl- 2β -propyloxy-perhydrophenanthren.
23. 2β -Butyloxy- 7α -ethyl-perhydrophenanthren.

24. 7α -Ethyl- 2β -pentyloxy-perhydrophenanthren.
25. 7α -Ethyl- 2β -hexyloxy-perhydrophenanthren.
26. 7α -Ethyl- 2β -heptyloxy-perhydrophenanthren.
27. 7α -Propyl- 2β -propyloxy-perhydrophenanthren.
5 28. 2β -Butyloxy- 7α -propyl-perhydrophenanthren.
29. 2β -Pentyloxy- 7α -propyl-perhydrophenanthren.
30. 2β -Hexyloxy- 7α -propyl-perhydrophenanthren.
31. 2β -Heptyloxy- 7α -propyl-perhydrophenanthren.
32. 7α -Butyl- 2β -propyloxy-perhydrophenanthren.
10 33. 7α -Butyl- 2β -butyloxy-perhydrophenanthren.
34. 7α -Butyl- 2β -pentyloxy-perhydrophenanthren.
35. 7α -Butyl- 2β -hexyloxy-perhydrophenanthren.
36. 7α -Butyl- 2β -heptyloxy-perhydrophenanthren.
37. 7α -Pentyl- 2β -propyloxy-perhydrophenanthren.
15 38. 2β -Butyloxy- 7α -pentyl-perhydrophenanthren.
39. 7α -Pentyl- 2β -pentyloxy-perhydrophenanthren.
40. 2β -Hexyloxy- 7α -pentyl-perhydrophenanthren.
41. 2β -Heptyloxy- 7α -pentyl-perhydrophenanthren.
42. 7α -Hexyl- 2β -propyloxy-perhydrophenanthren.
20 43. 2β -Butyloxy- 7α -hexyl-perhydrophenanthren.
44. 7α -Hexyl- 2β -hexyloxy-perhydrophenanthren.
45. 7α -Hexyl- 2β -heptyloxy-perhydrophenanthren.
46. 7α -Heptyl- 2β -propyloxy-perhydrophenanthren.
47. 2β -Butyloxy- 7α -heptyl-perhydrophenanthren.
25 48. 7α -Heptyl- 2β -pentyloxy-perhydrophenanthren.
49. 2β -Hexyloxy- 7α -heptyl-perhydrophenanthren.
50. 7α -Heptyl- 2β -heptyloxy-perhydrophenanthren.

Beispiel 51

30 Man tropft zu einer Lösung von 60 mg 7α -Hexyl-perhydrophenanthren- 2β -ol in 2 ml Pyridin ca. 50 mg Hexanoylchlorid und röhrt über Nacht. Danach wird auf Eis ge-

gossen. Nach üblicher Aufarbeitung (Kieselgel;
 Petrolether : CH_2Cl_2 : Ether = 5,0 : 3,5 : 1,5)
 erhält man 2 β -Hexanoyloxy-7 α -hexyl-perhydrophenanthren,
 F. 57°, K. 76° (aus Ethanol).

5 Beispiele 52 bis 103

Analog Beispiel 51 erhält man aus den entsprechenden
 Alkoholen mit den entsprechenden Säurechloriden:

- 52. 2 β -Acetoxy-7 α -propyl-perhydrophenanthren.
- 53. 2 β -Acetoxy-7 α -butyl-perhydrophenanthren.
- 10 54. 2 β -Acetoxy-7 α -pentyl-perhydrophenanthren.
- 55. 2 β -Acetoxy-7 α -hexyl-perhydrophenanthren,
 F. 74°, K. 65° (monotrop).
- 56. 2 β -Acetoxy-7 α -heptyl-perhydrophenanthren.
- 57. 2 β -Propionyloxy-7 α -propyl-perhydrophenanthren.
- 15 58. 7 α -Butyl-2 β -propionyloxy-perhydrophenanthren.
- 59. 7 α -Pentyl-2 β -propionyloxy-perhydrophenanthren.
- 60. 7 α -Hexyl-2 β -propionyloxy-perhydrophenanthren,
 F. 73°, K. 85°.
- 61. 7 α -Heptyl-2 β -propionyloxy-perhydrophenanthren.
- 20 62. 2 β -Butyryloxy-7 α -propyl-perhydrophenanthren.
- 63. 7 α -Butyl-2 β -butyryloxy-perhydrophenanthren.
- 64. 2 β -Butyryloxy-7 α -pentyl-perhydrophenanthren.
- 65. 2 β -Butyryloxy-7 α -hexyl-perhydrophenanthren,
 F. 53°, K. 82°.
- 25 66. 2 β -Butyryloxy-7 α -heptyl-perhydrophenanthren.
- 67. 2 β -Pantanoyloxy-7 α -propyl-perhydrophenanthren.
- 68. 7 α -Butyl-2 β -pananoyloxy-perhydrophenanthren.
- 69. 2 β -Pantanoyloxy-7 α -pentyl-perhydrophenanthren.
- 70. 7 α -Hexyl-2 β -pananoyloxy-perhydrophenanthren,
 F. 57°, K. 76°.

71. 7α -Heptyl- 2β -pentanoyloxy-perhydrophenanthren.
 72. 2β -Hexanoyloxy- 7α -propyl-perhydrophenanthren.
 73. 7α -Butyl- 2β -hexanoyloxy-perhydrophenanthren,
 F. 68° , K. 60° (monotrop).
 5 74. 2β -Hexanoyloxy- 7α -pentyl-perhydrophenanthren,
 F. 70° , K. 78° .
 75. 7α -Heptyl- 2β -hexanoyloxy-perhydrophenanthren,
 F. 66° , K. 80° ,
 10 76. 2β -Hexanoyloxy- 7α -octyl-perhydrophenanthren,
 F. 57° , K. 79° .
 77. 2β -Hexanoyloxy- 7α -nonyl-perhydrophenanthren.
 78. 7α -Decyl- 2β -hexanoyloxy-perhydrophenanthren,
 F. 65° , K. 78° .
 15 79. 2β -Heptanoyloxy- 7α -propyl-perhydrophenanthren.
 80. 7α -Butyl- 2β -heptanoyloxy-perhydrophenanthren.
 81. 2β -Heptanoyloxy- 7α -pentyl-perhydrophenanthren.
 82. 2β -Heptanoyloxy- 7α -hexyl-perhydrophenanthren,
 F. 59° , K. 73° .
 20 83. 2β -Heptanoyloxy- 7α -octyl-perhydrophenanthren.
 84. 2β -Octanoyloxy- 7α -propyl-perhydrophenanthren.
 85. 7α -Butyl- 2β -octanoyloxy-perhydrophenanthren.
 86. 2β -Octanoyloxy- 7α -pentyl-perhydrophenanthren.
 87. 7α -Hexyl- 2β -octanoyloxy-perhydrophenanthren,
 F. 69° , K. 68° (monotrop).
 25 88. 7α -Heptyl- 2β -octanoyloxy-perhydrophenanthren.
 89. 2β -Octanoyloxy- 7α -octyl-perhydrophenanthren.
 90. 2β -Nonanoyloxy- 7α -propyl-perhydrophenanthren.
 91. 7α -Butyl- 2β -nonanoyloxy-perhydrophenanthren.
 92. 2β -Nonanoyloxy- 7α -pentyl-perhydrophenanthren.
 30 93. 7α -Hexyl- 2β -nonanoyloxy-perhydrophenanthren,
 F. 68° , K. 72° .
 94. 7α -Heptyl- 2β -nonanoyloxy-perhydrophenanthren.
 95. 2β -Nonanoyloxy- 7α -octyl-perhydrophenanthren.
 96. 2β -Decanoyloxy- 7α -propyl-perhydrophenanthren.

97. 7α -Butyl- 2β -decanoxy-perhydrophenanthren.
 98. 2β -Decanoxyloxy- 7α -pentyl-perhydrophenanthren.
 99. 2β -Decanoxyloxy- 7α -hexyl-perhydrophenanthren,
 F. 70° , K. 72° .
 5 100. 2β -Decanoxyloxy- 7α -heptyl-perhydrophenanthren.
 101. 2β -Decanoxyloxy- 7α -octyl-perhydrophenanthren.
 102. 2β -Decanoxyloxy- 7α -nonyl-perhydrophenanthren.
 103. 2β -Decanoxyloxy- 7α -decyl-perhydrophenanthren.

Beispiel 104

- 10 Zu einer Lösung von 1,19 g N-Bromsuccinimid in 5 ml THF tropft man unter Stickstoff eine Lösung von 1,74 g Triphenylphosphin in 5 ml THF. Dazu wird eine Lösung von 7α -Hexyl-perhydrophenanthren- 2α -ol (erhältlich aus 7α -Hexylperhydrophenanthren-2-on und Kalium-tris-sek.-butylborhydrid in THF) in 5 ml THF gegeben. Es wird 4 Std. gekocht, danach über Nacht bei 20° nachgerührt und wie üblich aufgearbeitet. (Kieselgel 60; n-Hexan). Man erhält 2β -Brom- 7α -hexyl-perhydrophenanthren, F. 92° (aus Aceton).

20 Beispiele 105 bis 123

Analog Beispiel 104 erhält man aus den entsprechenden Alkoholen mit N-Chlorsuccinimid oder N-Bromsuccinimid:

105. 2β -Chlor- 7α -methyl-perhydrophenanthren.
 106. 2β -Chlor- 7α -ethyl-perhydrophenanthren.
 25 107. 2β -Chlor- 7α -propyl-perhydrophenanthren.
 108. 7α -Butyl- 2β -chlor-perhydrophenanthren.
 109. 2β -Chlor- 7α -pentyl-perhydrophenanthren.
 110. 2β -Chlor- 7α -hexyl-perhydrophenanthren.

- 111. 2β -Chlor- 7α -neptyl-perhydrophenanthren.
- 112. 2β -Chlor- 7α -octyl-perhydrophenanthren.
- 113. 2β -Chlor- 7α -nonyl-perhydrophenanthren.
- 114. 2β -Chlor- 7α -decyl-perhydrophenanthren.
- 5 115. 2β -Brom- 7α -methyl-perhydrophenanthren.
- 116. 2β -Brom- 7α -ethyl-perhydrophenanthren.
- 117. 2β -Brom- 7α -propyl-perhydrophenanthren.
- 118. 2β -Brom- 7α -butyl-perhydrophenanthren.
- 119. 2β -Brom- 7α -pentyl-perhydrophenanthren.
- 10 120. 2β -Brom- 7α -heptyl-perhydrophenanthren.
- 121. 2β -Brom- 7α -octyl-perhydrophenanthren.
- 122. 2β -Brom- 7α -nonyl-perhydrophenanthren.
- 123. 2β -Brom- 7α -decyl-perhydrophenanthren.

Beispiel 124

- 15 Eine Lösung von 410 mg 7α -Hexyl- 2β -p-toluolsulfonyloxy-perhydrophenanthren (F. 71°) und 724 mg Natriumcyanid in 50 ml N-Methylpyrrolidon wird 20 Stunden bei 90° gerührt. Nach dem Abkühlen verdünnt man mit Wasser und arbeitet wie üblich auf (Kieselgel 60; Petrolether : Ether = 95 : 5). Man erhält 2β -Cyan- 7α -hexyl-perhydrophenanthren, F. 89° , K. 91° .
- 20

Beispiele 125 bis 134

Analog Beispiel 124 erhält man aus den entsprechenden Chloriden, Bromiden oder p-Toluolsulfonaten mit NaCN:

- 25 125. 2β -Cyan- 7α -methyl-perhydrophenanthren.
 126. 2β -Cyan- 7α -ethyl-perhydrophenanthren.
 127. 2β -Cyan- 7α -propyl-perhydrophenanthren.

128. 7α -Butyl- 2β -cyan-perhydrophenanthren.
 129. 2β -Cyan- 7α -pentyl-perhydrophenanthren.
 130. 2β -Cyan- 7α -hexyl-perhydrophenanthren.
 131. 2β -Cyan- 7α -heptyl-perhydrophenanthren.
 5 132. 2β -Cyan- 7α -octyl-perhydrophenanthren.
 133. 2β -Cyan- 7α -nonyl-perhydrophenanthren.
 134. 2β -Cyan- 7α -decyl-perhydrophenanthren.

Die folgenden Beispiele betreffen Gemische von Verbindungen der Formel I untereinander oder mit anderen
 10 flüssig-kristallinen Substanzen, die erfindungsgemäß als Dielektrika verwendet werden können.

Beispiel A

Ein Gemisch aus

- 18 % 7α -Butyl- 2β -hexanoyloxy-perhydrophenanthren
 15 17 % 2β -Hexanoyloxy- 7α -pentyl-perhydrophenanthren
 23 % 2β -Hexanoyloxy- 7α -hexyl-perhydrophenanthren
 20 % 7α -Heptyl- 2β -hexanoyloxy-perhydrophenanthren
 22 % 7α -Decyl- 2β -hexanoyloxy-perhydrophenanthren
 zeigt folgende Daten: F. 5° , K. 75° , Viscosität $41 \text{ mm}^2 \cdot$
 20 sec $^{-1}$ bei 20° , dielektrische Anisotropie -0,5, optische Anisotropie +0,05.

Beispiel B

Ein Gemisch aus

- 10 % 7α -Butyl- 2β -hexanoyloxy-perhydrophenanthren
 25 10 % 2β -Hexanoyloxy- 7α -pentyl-perhydrophenanthren
 13 % 2β -Hexanoyloxy- 7α -hexyl-perhydrophenanthren
 11 % 7α -Heptyl- 2β -hexanoyloxy-perhydrophenanthren
 25 % trans,trans-4-Ethylcyclohexyl-cyclohexan-4'-carbonitril

4 % trans,trans-4-Propylcyclohexyl-cyclohexan-4'-carbonitril
 23 % trans,trans-4-Butylcyclohexyl-cyclohexan-4'-carbonitril
 5 4 % trans,trans-4-Pentylcyclohexyl-cyclohexan-4'-carbonitril

zeigt folgende Daten: F. -20°, K. 68°, Viscosität
 56 mm². sec⁻¹ bei 20°, dielektrische Anisotropie +2,3,
 optische Anisotropie +0,057.

10 Beispiel C

Ein Gemisch aus

9 % 7α-Butyl-2β-hexanoyloxy-perhydrophenanthren
 9 % 2β-Hexanoyloxy-7α-pentyl-perhydrophenanthren
 13 % 2β-Hexanoyloxy-7α-hexyl-perhydrophenanthren
 15 11 % 7α-Heptyl-2β-hexanoyloxy-perhydrophenanthren
 25 % trans,trans-4-Ethylcyclohexyl-cyclohexan-4'-carbonitril
 23 % trans,trans-4-Butylcyclohexyl-cyclohexan-4'-carbonitril
 20 10 % trans,trans-4-Butylcyclohexyl-cyclohexan-4'-carbonsäure-trans-4-propylcyclohexylester

zeigt folgende Daten: F. -5°, K. 77°, Viscosität
 52 mm². sec⁻¹, dielektrische Anisotropie +2, optische
 Anisotropie +0,056.

Beispiel D

Ein Gemisch aus

- 18 % 4-(trans-4-Pentylcyclohexyl)-benzonitril
13 % 2 β -Hexanoyloxy-7 α -hexyl-perhydrophenanthren
5 11 % 7 α -Heptyl-2 β -hexanoyloxy-perhydrophenanthren
25 % trans,trans-4-Ethylcyclohexyl-cyclohexan-4'-carbonitril
23 % trans,trans-4-Butylcyclohexyl-cyclohexan-4'-carbonitril
10 10 % trans,trans-4-Butylcyclohexyl-cyclohexan-4'-carbonsäure-trans-4-propylcyclohexylester
zeigt folgende Daten: F. -6°, K. 74°, Viscosität
47 mm². sec⁻¹, dielektrische Anisotropie +3,8,
optische Anisotropie +0,07.