A számításelmélet alapjai I. (Kilencedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. április 16.

Tematika

- A CYK algoritmus.
- Bar-Hillel vagy pumpáló lemma.

Példa 1

Tekintsük a $G = (\{S, A, B, X, Y, Z\}, \{a, b\}, P, S)$ grammatikát, ahol $P = \{S \rightarrow AY, Y \rightarrow XB, X \rightarrow BA, X \rightarrow ZA, Z \rightarrow BX, A \rightarrow a, B \rightarrow b\}!$ Döntsük el, benne van-e a grammatika által generált nyelvben az abbaab szó?

Példa 1

Megjegyzés

Bármely környezetfüggetlen grammatika és $w \in T^*$ esetében el tudjuk dönteni, hogy $w \in L(G)$ teljesül-e vagy sem.

A CYK (Cocke-Younger-Kasami) algoritmus:

- 1 Legyen G = (N, T, P, S) Chomsky normálformájú grammatika.
- 2 Kitöltünk egy háromszög alakú táblázatot, amelyben a sorok az $a_1 ldots a_n$ szót reprezentálják.
- 3 A táblázat $x_{i,j}$ eleme azon A nemterminálisokat tartalmazza, amelyekre $A \Longrightarrow^* a_i \dots a_j$ teljesül.

Példa 1

Megjegyzés

- 4 Az első sorban (alulról-felfelé) x_{ii} minden olyan A nemterminálist tartalmaz, amelyre $A \rightarrow a_i \in P$ teljesül.
- 5 A (j-i+1)-edik sorban levő x_{ij} -t a következőképpen számítjuk ki. Az x_{ij} minden olyan A nemterminálist tartalmaz, amelyre $A \Longrightarrow^* a_i \dots a_j$ teljesül. Ennek megfelelően minden olyan A nemterminálist tartalmazni fog, amelyre $A \to BC \in P$ fennáll, ahol $B \in x_{ik}$ és $C \in x_{k+1i}$, ahol $i \le k < j$.
- 6 $w = a_1 \dots a_n \in L(G)$, akkor és csak akkor, ha $S \in x_{1n}$.

Példa 2

Tekintsük a $G = (\{S, A, B, C, D\}, \{a, b, c\}, P, S)$ grammatikát, ahol $P = \{S \rightarrow AB, A \rightarrow CA, A \rightarrow SS, B \rightarrow CD, A \rightarrow b, D \rightarrow a, C \rightarrow c, C \rightarrow b\}$. Döntsük el, benne van-e a grammatika által generált nyelvben az *abcacb* és a *bbcbba* szó?

Lemma 1

Minden L környezetfüggetlen nyelvhez meg tudunk adni két természetes számot, p-t és q-t úgy, hogy minden olyan szó L-ben, amely hosszabb, mint p, uvxyz alakú, ahol $|vxy| \le q$, $vy \ne \varepsilon$, és minden uv $^ixy^iz$ szó is benne van az L nyelvben minden $i \ge 0$ egész számra $(u, v, x, y, z \in T^*)$.

Példa 3

Bizonyítsuk be, hogy az alábbi nyelvek nem környezetfüggetlenek!

•
$$L_1 = \{a^n b^m a^n \mid n \geq m\}.$$

•
$$L_2 = \{ww \mid w \in \{a, b\}^*\}.$$

•
$$L_3 = \{a^{n^2} \mid n \ge 1\}.$$

Példa 4

Bizonyítsuk be, hogy az $L = \{w \mid w \in \{a, b, c\}^*, |w|_a = |w|_b = |w|_c\}$ nyelv nem környezetfüggetlen!

Példa 5

Bizonyítsuk be, hogy az

- $L_1 = \{a^i b^{2i} c^j \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
- $L_2 = \{a^i b^j c^{2j} \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
- $L = L_1 \cap L_2$ nyelv nem környezetfüggetlen!