

Single Deep CNN Features to Detect Neurodegenerative Diseases: Alzheimer's, Parkinson's and Dementia

Capstone Project (CSE 498)

Supervised by

Mr. M M Fazle Rabbi

Assistant Professor

Department of CSE

Bangladesh University of Business and Technology (BUBT)

Submitted by				
Mohammad Sabbir Ahmed	17183103004			
Syeda Nowshin Ibnat	17183103020			
Rakibul Ahasan	17183103022			
Sk. Abu Hanif	17183103043			
Nusrat Jahan Anka	17183103008			
Intake: 39(1), Dept. of CSE, BUBT				

Presented Date: 05-12-2022

Contents

01.	Introduction	07.	Problem Analysis	13.	Ethics
02.	Problem Statement	08.	Research Flow	14.	Impact on Society
03.	Problem Background	09.	Research Methodology	15.	Sustainability
04.	Motivation	10.	Proposed Model	16.	Conclusion
05.	Objectives	11.	Why We Used ResNet-50 Model	17.	Reference
06.	Literature Review	12.	Some Challenges in Our Project		

Introduction

Neurodegenerative diseases occur when nerve cells in the brain or peripheral nervous system lose function over time and ultimately die. Alzheimer's disease, Parkinson's disease, and dementia are most common examples of neurodegenerative disease. We can detect these three diseases with a single DL model through our work.

Problem Statement

Identifying neurodegenerative diseases with proper explanation using one model is quite challenging.

Problem Background

Identifying neurodegenerative diseases is a deadly problem that needs to be solved.

Due to the similarities in disease phenotypes, accurate detection of neurodegenerative diseases, including the context behind the detection is problematic.

Motivation

Detect the disease in early stage.

Detect three diseases with a single model.

To reduce wasting time & cost.

Objectives

Identifying present difficulty to work with neuroimaging data.

Build a DL model to detect three Neurodegenerative
Diseases named Alzheimer's, Parkinson's and Dementia.

Get decent accuracy using a suitable MRI dataset.

Comparing the existing architectures with the proposed work for neurodegenerative diseases detection.

Literature Review

Disease	Model	Dataset	Accuracy
AD	Deep CNN	Kaggle	99.38%
AD	CNN	ADNI	99%
AD	CNN based end-to-end	ADNI	97.5%
DD	Feed Forward ANN	OASIS	97.5%
DD	Deep CNN + TL	OASIS	81.94%
DD	DEMNET	ADNI	95.23%
PD	LeNet-5	PPMI	97.92%
PD	AlexNet	PPMI	88.9%
	AD AD AD DD DD DD PD	AD Deep CNN AD CNN AD CNN based end-to-end DD Feed Forward ANN DD Deep CNN + TL DD DEMNET PD LeNet-5	AD Deep CNN Kaggle AD CNN ADNI AD CNN based end-to-end ADNI DD Feed Forward ANN OASIS DD Deep CNN + TL OASIS DD DEMNET ADNI PD LeNet-5 PPMI

Problem Analysis

The existing approaches can detect one disease at a time.

2

Costly and time consuming.

3

Accuracy rate is not satisfactory.

Research Flow

Research Methodology

Proposed Model

Why did we use the resnet 50 model?

ResNet-50 is a 50-layer convolutional neural network (48 convolutional layers, one MaxPool layer, and one average pool layer).

ResNet-50 has fewer filters and is less complex than a VGGNet.

ResNet-50 is significantly faster than a Vgg-19 Network with 19.6 billion FLOPs.

ResNet-50 model pre-trained machine learning model.

ResNet-50 model helps achieve higher performance even if the model is trained on a smaller dataset.

Some challenges in our project

Converting all disease images to the same format.

Finding a good model.

ResNet50 model arise an overfitting problem.

Ethics

For our work we got our datasets from Kaggle, PPMI & OASIS. Our collected datasets are open source. From their written description these datasets were approved to show openly. In that case, we can say we didn't break any law or regulation.

Impact on Society

It is essential in order to treat patients at an early stage.

It can also be used as a tool for raising awareness.

Sustainability

From previous works obtaining highest result we took inspiration and made a decision of using Deep Learning to get better result.

Through our proposed approach we can detect three diseases which wasn't been done yet so with huge hope, we think our work can fulfill the sustainability.

Conclusion

In our society, there are a significant number of senior persons who suffer from neurodegenerative diseases. Through this work, we can detect three diseases with a single model which will be beneficial for medical professionals & an extensive field of research.

Reference

[1] M. Biswas, M. K. Mahbub, and M. A. M. Miah, "An Enhanced Deep Convolution Neural Network Model to Diagnose Alzheimer's Disease Using Brain Magnetic Resonance Imaging," *Commun. Comput. Inf. Sci.*, vol. 1576 CCIS, pp. 42–52, 2022, doi: 10.1007/978-3-031-07005-1_5.

[2] A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya, "A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI," *Proc. - Int. Conf. Smart Electron. Commun. ICOSEC 2020*, no. lcosec, pp. 156–161, 2020, doi: 10.1109/ICOSEC49089.2020.9215402.

Reference cont.

[3] Y. AbdulAzeem, W. M. Bahgat, and M. Badawy, "A CNN based framework for classification of Alzheimer's disease," *Neural Comput. Appl.*, vol. 33, no. 16, pp. 10415–10428, 2021, doi: 10.1007/s00521-021-05799-w.

[4] J. A. Akhila, C. Markose, and R. P. Aneesh, "Feature extraction and classification of Dementia with neural network," *2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017*, vol. 2018-Janua, pp. 1446–1450, 2017, doi: 10.1109/ICICICT1.2017.8342782.

Reference cont.

[5] A. Bidani and M. S. Gouider, "Dementia Detection and Classi fi cation from MRI Images Using Deep Neural Networks and Transfer Learning," vol. 1, pp. 925–933, doi: 10.1007/978-3-030-20521-8.

[6] S. Murugan, C. Venkatesan, M. G. Sumithra, S. Member, and X. Gao, "DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia From MR Images," *IEEE Access*, vol. 9, pp. 90319–90329, 2021, doi: 10.1109/ACCESS.2021.3090474.

Reference cont.

[7] W. Wang, J. Lee, F. Harrou, and Y. Sun, "Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning," *IEEE Access*, vol. 8, pp. 147635–147646, 2020, doi: 10.1109/ACCESS.2020.3016062.

[8] S. Sivaranjini and C. M. Sujatha, "Deep learning based diagnosis of Parkinson's disease using convolutional neural network," 2019, [Online]. Available: https://doi.org/10.1007/s11042-019-7469-8.

