2.Konu

Matrisler ve matris işlemleri

Kaynaklar:

- 1. **Uygulamalı lineer cebir.** 7. baskıdan çeviri. Bernhard Kollman, David R. Hill/çev. Ed. Ömer Akın, Palma Yayıncılık, 2002
- 2. Lineer Cebir. Feyzi Başar. Surat Universite yayınları, 2012
- 1. Matris toplamının özellikleri
- 2. Matris çarpımının özellikleri
- 3. Skalarla çarpımın özellikleri
- 4. Transpozun özellikleri
- 5. Özel tipte matrisler
- 6. Bölünmüş matrisler
- 7. Singüler olmayan matrisler
- 8. Lineer sistemler ve tersleri

1. Matris toplamının özellikleri

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ & & & & & \\ \vdots & \vdots & \vdots & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \cdots & b_{2n} \\ & & & & & & \\ \vdots & \vdots & \vdots & & & & \\ b_{m1} & b_{m2} & b_{m3} & \cdots & b_{mn} \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \text{ ve } \mathbf{B} = \begin{bmatrix} b_{ij} \end{bmatrix} m \times n \text{ tipindeki matrisler.}$$

1.Teorem: A, B, C $m \times n$ tipinde bir matrisler olsun.

- i. A+B=B+A
- ii. A+(B+C)=(A+B)+C
- iii. Herbir $A m \times n$ matrisi için,

$$A + O_{mn} = A$$

şekilde O_{mn} $m \times n$ tipinde matrisi vardır. O_{mn} matrise sıfır matris denir. m=n olduğunda O_n veya O yazılır.

iv. Herbir $A m \times n$ matrisi için, A+D=O olacak şekilde bir tek D $m \times n$ tipinde matrisi vardır. D = -A şekilde yazacağiz ve -A ye A nın **negatifi** denir.

İspat:

- i. $A = [a_{ij}], B = [b_{ij}], C = A + B = [c_{ij}], D = B + A = [d_{ij}]$ olsun. Tüm i,j ler için $c_{ij} = a_{ij} + b_{ij} = b_{ij} + a_{ij} = d_{ij}$ olduğuna göre C=D.
- ii. A+(B+C)=(A+B)+C

iii.
$$A = [a_{ij}], B = [b_{ij}], = [a_{ij}], C = [c_{ij}],$$
 $F = A + (B + C) = [f_{ij}], H = (A + B) + C = [h_{ij}]$
Tüm i,j ler için $f_{ij} = a_{ij} + (b_{ij} + c_{ij}) = (a_{ij} + b_{ij}) + c_{ij} = h_{ij}$
olduğuna göre F=H.

iv.
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}$$

 $B = A + O = A$
 $a_{ij} + 0 = a_{ij}$
 $A+D=O$ $D = \begin{bmatrix} d_{ij} \end{bmatrix}$
 $a_{ij} + d_{ij} = 0 \Rightarrow d_{ij} = -a_{ij}$

1.Ö.:

$$A = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$$
$$-A = \begin{bmatrix} -4 & 1 \\ -2 & -3 \end{bmatrix}$$

2.Ö.: A 2x3 tipinde matris. $a_{ij} = |i - j|$. -A=?

2. Matris çarpımının özellikleri

- 2.Teorem: Eğer A,B,C birer matris ise,
 - i. A(BC) = (AB)C
 - ii. (A+B)C = AC + BC
- iii. C(A+B) = CA + CB

İspat:

i:

i.
$$A = [a_{ij}], m \times n, B = [b_{ij}], n \times p, C = [c_{ij}], p \times k$$
 tipinde

 $F = A(BC), G = (AB)C, D = BC, H = AB$

$$d_{lj} = \sum_{r=1}^{p} b_{lr}c_{rj}, \quad l = 1, ..., n; j = 1, ..., k$$

$$h_{ir} = \sum_{l=1}^{n} a_{il}b_{lr}, \quad i = 1, ..., m; r = 1, ..., p$$

$$f_{ij} = \sum_{l=1}^{n} a_{il}d_{lj} = \sum_{l=1}^{n} a_{il}\sum_{r=1}^{p} b_{lr}c_{rj} \quad i = 1, ..., m; j = 1, ..., p$$

$$g_{ij} = \sum_{r=1}^{p} h_{ir}c_{rj} = \sum_{r=1}^{p} \sum_{l=1}^{n} a_{il}b_{lr}c_{rj} \quad i = 1, ..., m; j = 1, ..., p$$

$$f_{ij} = \sum_{l=1}^{n} a_{il}\sum_{r=1}^{p} b_{lr}c_{rj} = \sum_{l=1}^{n} \sum_{r=1}^{n} a_{il}b_{lr}c_{rj} = \sum_{r=1}^{p} \sum_{l=1}^{n} a_{il}b_{lr}c_{rj} = g_{ij}$$

ii.
$$A = [a_{ij}], B = [b_{ij}], m \times n, C = [c_{ij}], n \times p \text{ tipinde}$$

$$D = A + B, F = DC, G = AC, H = BC, M = G + H$$

$$d_{il} = a_{il} + b_{il}, i = 1, ..., m; l = 1, ..., n$$

$$f_{ij} = \sum_{l=1}^{n} d_{il}c_{lj} = \sum_{l=1}^{n} (a_{il} + b_{il})c_{lj} = \sum_{l=1}^{n} (a_{il}c_{lj} + b_{il}c_{lj})$$

$$= \sum_{l=1}^{n} a_{il} c_{lj} + \sum_{l=1}^{n} b_{il} c_{lj} = g_{ij} + h_{ij} = m_{ij}$$

iii. Ödev için bırakılıyor.

3.Ö.:
$$A = \begin{bmatrix} 5 & 2 & 3 \\ 2 & -3 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 0 & 2 & 2 & 2 \\ 3 & 0 & -1 & 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -3 & 0 \\ 0 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$

$$A(BC) = (AB)C = \begin{bmatrix} 43 & 16 & 56 \\ 12 & 30 & 8 \end{bmatrix}$$
4.Ö.: $A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & -1 & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 3 & -1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 3 & -1 \end{bmatrix}$

$$(A + B)C = AC + BC = \begin{bmatrix} 18 & 0 \\ 12 & 3 \end{bmatrix}$$

3. Skalarla çarpımın özellikleri

3.Teorem: Eğer **A,B** birer matris ise ve $r, s \in R$ ise

i.
$$r(sA) = (rs)A$$

ii.
$$(r+s)A = rA + sA$$

iii.
$$r(A+B) = rA + rB$$

iv.
$$A(rB) = r(AB) = (rA)B$$

İspat:

i.
$$C = r(sA), D = (rs)A, C = [c_{ij}], D = [d_{ij}]$$

 $c_{ij} = r(sa_{ij}), d_{ij} = (rs)a_{ij} \Rightarrow c_{ij} = d_{ij} \Rightarrow C = D$
ii. $C = (r+s)A, D = rA + sA, C = [c_{ij}], D = [d_{ij}]$
 $c_{ij} = > (r+s)a_{ij}, d_{ij} = ra_{ij} + sa_{ij} \Rightarrow c_{ij} = d_{ij} \Rightarrow C = D$

iii.
$$C = r(A + B), D = rA + rB, C = [c_{ij}], D = [d_{ij}]$$
 $c_{ij} = r(a_{ij} + b_{ij}), d_{ij} = ra_{ij} + rb_{ij} \Rightarrow c_{ij} = d_{ij} \Rightarrow C = D$
iv. $C = A(rB), D = r(AB), F = (rA)B, C = [c_{ij}], D = [d_{ij}], F = [f_{ij}], A mxn,$
B nxp matris
 $c_{ij} = \sum_{l=1}^{n} a_{il}(rb_{lj}) = r\sum_{l=1}^{n} a_{il}b_{lj} = \sum_{l=1}^{n} (ra_{il})b_{lj}$

$$\Rightarrow c_{ij} = d_{ij} = f_{ij} \Rightarrow C = D = F$$

5.Ö.:
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 2 & -3 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & -2 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$2(3A)=6A=?$$

 $A(2B)=2(AB)=?$

4.Transpozun özellikleri

4.Teorem: Eğer r bir skalar ve A, \overline{B} matrisler ise

i.
$$(A^T)^T = A$$

ii.
$$(A + B)^T = A^T + B^T$$

iii. $(AB)^T = B^T A^T$

iii.
$$(AB)^T = B^T A^T$$

iv.
$$(rA)^T = rA^T$$

İspat:

i.
$$C = A^T, D = C^T$$
. $C = [c_{ji}], D = [d_{ij}]$
 $c_{ii} = a_{ii}, d_{ii} = c_{ii} \implies a_{ii} = d_{ii}$

ii.
$$C = (A + B)^T, D = A^T + B^T.$$
 $C = [c_{ji}], D = [d_{ij}]$

$$c_{ij} = (a_{ij} + b_{ij})^T = a_{ij}^T + b_{ij}^T = d_{ij} \Rightarrow c_{ij} = d_{ij}$$

iii.
$$C = AB, D = B^T A^T$$

$$c_{ij}^{T} = c_{ji} = \sum_{k=1}^{n} a_{jk} b_{ki} = \sum_{k=1}^{n} a_{kj}^{T} b_{ik}^{T} = \sum_{k=1}^{n} b_{ik}^{T} a_{kj}^{T} = d_{ij}$$

iv.
$$(ra_{ij})^T = r(a_{ij})^T$$

iv.
$$(ra_{ij})^T = r(a_{ij})^T$$

6.Ö.: $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 3 & 2 & -1 \end{bmatrix}$
 $A^T = ? B^T = ? (A + B)^T = ? A^T + B^T = ?$

7.Ö.:
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 2 & 2 \\ 3 & -1 \end{bmatrix}$$

$$AB = ?, (AB)^{T} = ?B^{T} = ?A^{T} = ?B^{T}A^{T} = ?B^{$$

8.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$
 $AB = 0 \Rightarrow A = 0 \text{ veya } B = 0$

9.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 1 \\ 3 & 2 \end{bmatrix}, C = \begin{bmatrix} -2 & 7 \\ 5 & -1 \end{bmatrix}$$

$$AB = AC = \begin{bmatrix} 8 & 5 \\ 16 & 10 \end{bmatrix} \Rightarrow B = C$$

Uyari:

Matris çarpımı ile reel sayıların çarpımı arasındaki farkların bir kısmı:

1. AB nin BA eşit olması gerekmez.

- 2. $A \neq 0$ ve $B \neq 0$ olmak üzere AB sıfır matris olabilir
- 3. $B \neq C$ iken AB=AC olabilir

5.Özel tipte matrisler

1.Tanım: $A = [a_{ij}], n \times n$ kare matris olsun. $i \neq j$ için $a_{ij} = 0$ ise A matrisine kösegen matris denir. Kösegen elemanların birbirine esit olduğu matrisine skalar matris denir.

O köşegenmidir?

2.Tanım: $I_n = [a_{ij}], n \times n$ kare matrisi köşegen ise ve $i \neq j$ için $a_{ij} = 0$, i = j için $a_{ij} = 1$ ise I_n matrise ösdeşlik (birim) matris denir. 10.Ö.:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \mathbf{I_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A, B, \mathbf{I_3} \text{ köşegen}, B, \mathbf{I_3} \text{ skalar}, \mathbf{I_3} \text{ ösdeşlik}$$

5.Teorem: A, mxn tipinde bir matris ise $A I_n = A$ ve $I_m A = A$ olur.

6.Teorem: Eğer A bir skalar matris ise bir r skaları için $A = r I_n$ olur.

3.Tanım: $A = [a_{ij}], n \times n$ kare matrisi ise

$$A^p = A \cdot A \cdot \cdots \cdot A$$
 (p çarpan).

 $A^0 = I_n$ şekilde tanımlanır.

Özellikleri:

i.
$$A^p A^q = A^{p+q}$$

ii.
$$(A^p)^q = A^{pq}$$

ii.
$$(A^p)^q = A^{pq}$$

iii. $(AB)^p = A^pB^p$

4.Tanım: Eğer i > j için $a_{ij} = 0$ ise $A = [a_{ij}], n \times n$ kare matrisine **üst** üçgen matris denir.

5.Tanım: Eğer i < j için $a_{ij} = 0$ ise $A = [a_{ij}], n \times n$ kare matrisine alt üçgen matris denir.

11.Ö.:

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 5 & 2 \end{bmatrix}$$

A üst üçgen, B alt üçgen

6.Tanım: Eğer $A^T = A$ ise A matrisine simetrik matris denir.

7.Tanım: Eğer $A^T = -A$ ise A matrisine **ters-simetrik matris** denir.

5

12.Ö.:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 2 \end{bmatrix}$$
 simetriktir.

13.Ö.:

$$A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix}$$
 simetriktir.

6.Bölünmüş matrisler

mxn tipindeki $A = [a_{ij}]$ matrisini göz önüne alalım. Bu matrisin bazı satır veya sütunlarını çıkarırsak, A matrisin bir alt matrisini elde ederiz.

14.Ö.:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{bmatrix} = \begin{bmatrix} \widehat{A_{11}} & \widehat{A_{12}} & \widehat{A_{13}} \\ \widehat{A_{21}} & \widehat{A_{22}} & \widehat{A_{23}} \end{bmatrix}$$
(1)

A ve B matrislerin her ikisi de aynı yolla bölünmüş mxn tipindeki matrisler ise, A+B matris A ve B alt matrislerin toplamı ile basitçe elde edilir. A bölünmüş matris ise cA skalar carpımı, her bir alt matrisi bir c skaları ile carpmak sureti ile bulunur.

Eğer A matrisi (1) de gösterildiği gibi bölünmüş bir matris ve

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{21} & b_{21} & b_{21} \\ \hline b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \\ \hline b_{51} & b_{52} & b_{53} & b_{54} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

biçimde bölünmüş bir matris ise bu iki matrisin çarpımı
$$AB = \begin{bmatrix} \widehat{A_{11}}B_{11} + \widehat{A_{12}}B_{21} + \widehat{A_{13}}B_{31} & \widehat{A_{11}}B_{12} + \widehat{A_{12}}B_{22} + \widehat{A_{13}}B_{32} \\ \widehat{A_{21}}B_{11} + \widehat{A_{22}}B_{21} + \widehat{A_{23}}B_{31} & \widehat{A_{21}}B_{12} + \widehat{A_{22}}B_{22} + \widehat{A_{23}}B_{32} \end{bmatrix}$$

15.Ö.:

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & -1 \\ 2 & 0 & -4 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} 2 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 & 2 & 2 \\ 1 & 3 & 0 & 0 & 1 & 0 \\ -3 & -1 & 2 & 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

AB=C=
$$\begin{bmatrix} 3 & 3 & 0 & 1 & 2 & -1 \\ 6 & 12 & 0 & -3 & 7 & 5 \\ 0 & -12 & 0 & 2 & -2 & -2 \\ -9 & -2 & 7 & 2 & 2 & -1 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$
$$C_{11} = A_{11}B_{11} + A_{12}B_{21} = ?$$

7. Singüler olmayan matrisler

8.Tanım: $AB = BA = I_n$ olarak şekilde bir B matrisi mevcut ise nxn tipindeki bir A matrisine singüler değildir veya tersi alınabilir denir. B ye de A nın tersi denir. Aksi takdirde A matrise singüler veya tersi alınamazdir denir.

16.Ö.:

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{bmatrix}$$

$$AB = BA = I_2$$

7.Teorem: Bir matrisin tersi mevcut ise tektir.

Ispat: B ve C matrisler A nın tersi olsun.

$$AB = BA = I_n, AC = CA = I_n$$

Buradan $B = BI_n = B(AC) = (BA)C = I_nC = C$

Sigulyar olmayan A nın tersi A^{-1} şekilde gösterilir.

$$AA^{-1} = A^{-1}A$$

17.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

17.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Eğer A^{-1} mevcut ise $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Buradan $AA^{-1} = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a + 2c = 1, b + 2d = 0, 3a + 4c = 0, 3b + 4d = 1$$

$$a + 2c = 1, b + 2d = 0, 3a + 4c = 0, 3b + 4d = 1$$

$$a = -2, b = 1, c = \frac{3}{2}, d = -\frac{1}{2}$$

$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

18.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Eğer A^{-1} mevcut ise $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Buradan $AA^{-1} = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$a + 2c = 1, b + 2d = 0, 2a + 4c = 0, 2b + 4d = 1$$

Bu lineer sistemin çözümü yoktur.

8.Teorem: A ve B nxn tipinde singüler olmayan matrisler ise, bu taktirde AB matrisi de singüler değildir ve $(AB)^{-1} = B^{-1}A^{-1}$

Ispat:
$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = (AI_n)A^{-1} = AA^{-1} = I_n$$

1.Sonuç: Eğer $A_1, A_2, ..., A_r$ nxn tipinde singüler olmayan ik matris ise, bu taktirde A_1A_2 ... A_r matrisi de singüler değildir ve $(A_1A_2$... $A_r)^{-1} = A_r^{-1} ... A_2^{-1} A_1^{-1}$

9.Teorem: A matrisi singüler olmayan matris ise, bu taktirde A^{-1} matrisi de singüler değildir ve $(A^{-1})^{-1} = A$

Ispat: $A^{-1}A = AA^{-1} = I_n$

10.Teorem: A matrisi singüler olmayan matris ise, bu taktirde A^T matrisi de singüler değildir ve $(A^{-1})^T = (A^T)^{-1}$

Ispat: $AA^{-1} = I_n$.

Eşitliğin her iki yanının transpozu alınırsa

$$(AA^{-1})^T = (A^{-1})^T A^T = I_n^T = I_n.$$

 $A^{-1}A = I_n$ eşitliğin transpozu alınırsa

$$(A^{-1}A)^T = A^T(A^{-1})^T = I_n^T = I_n$$

 $(A^{-1})^T A^T = A^T(A^{-1})^T = I_n$

19.Ö.:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix}$$

$$(A^{T})^{-1} = \begin{bmatrix} -2 & \frac{3}{2}\\ 1 & -\frac{1}{2} \end{bmatrix}$$

8.Lineer sistemler ve tersleri

A, nxn tipinde bir matris ise, bu takdirde AX = B sistemi n – bilinmeyenli, ndenklemli bir sistemdir. A matrisin singüler olmadığını kabul edelim. A^{-1} mevcuttur.

AX=B eşitliğin her iki tarafı A^{-1} ile çarpılsa $A^{-1}AX = A^{-1}B$ veya $I_nX = X = A^{-1}B$ bulunur. **20.Ö.:**

$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Eğer $B = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$ ise, AX=B lineer sistemin çözümü

$$X = A^{-1}B = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 8\\ 6 \end{bmatrix} = \begin{bmatrix} -10\\ 9 \end{bmatrix} \text{ olur. Diğer yandan } B = \begin{bmatrix} 10\\ 20 \end{bmatrix} \text{ ise,}$$

buradan
$$X = A^{-1} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

2.Hafta Ödevler:

 $A = [a_{ij}], B = [b_{ij}], m \times n, C = [c_{ij}], n \times p$ tipindeki matrisler ve

 $r, s \in R$ ise (sA + rB)C = sAC + rBC olduğunu ğösteriniz.

2.2. A simetrik matris ise A^T matrisinin de simetrik olduğunu gösteriniz.

2.3.
$$A^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B^{-1} = \begin{bmatrix} 2 & 5 \\ 3 & -2 \end{bmatrix}$ ise $(AB)^{-1}$ bulunuz.

2.4. Aşağıdaki matrislerin tersini bulunuz:

a)
$$A = \begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix}$$
, b) $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

2.5. Eğer A,B,C nxn tipinde singüler olmayan matrisler ise, bu taktirde ABC matrisi de singüler olmayacağını ve $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ olduğunu gösteriniz.

2.6.
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & -1 \\ 2 & 0 & -4 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
ve

$$2.6. \ A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & -1 \\ 2 & 0 & -4 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \text{ve}$$

$$B = \begin{bmatrix} 3 & 3 & 0 & 1 & 2 & -1 \\ 6 & 12 & 0 & -3 & 7 & 5 \\ 0 & -12 & 0 & 2 & -2 & -2 \\ -9 & -2 & 7 & 2 & 2 & -1 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \text{b\"ol\"unm\"u\'s matrisleri}$$

$$AB = C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

biçimindedir. Aşağıdakileri bulunuz:

- (i)
- (ii)
- (iii) C_{21}
- (iv) C_{22}
- 2.7. A ve B simetrik matris olsun. A+B matrisin simetrik olduğunu gösteriniz.

2.8.
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 4 & 6 & 2 \\ 5 & 1 & 3 \end{bmatrix}$$
 ise A=S+K olarak S simetrik ve K ters simetrik

matrisi bulunuz.

2.9. $A = \begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix}$ olmak üzere AX=B sistemi için X i bulunuz.

(i)
$$B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, (ii) $B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

2.10. AB=AC ve A matrisi singüler değilse, bu taktirde B=C olduğunu gösteriniz.

9