Machine Learning: Classification

Dr. Wendy Bong Chin Wei

Learning Outcome

- By the end of this lesson, the student shall be able to:
 - Understand the concept of classification
 - Understand how decision tree works
 - Evaluate the model based on confusion matrix

01
What is
Classification?

Type of Supervised Learning

Regression

Predicting a continuous output

Classification

Predicting a categorical/discrete output

- Given a collection of records (training set)
 - \square Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
 - $\square x$: attribute, predictor, independent variable, input

A schematic illustration of a classification task.

 $\bigcup y$: class, response, dependent variable, output

Classification

- A classification model is an abstract representation of the relationship between the attribute set and the class label.
- As will be seen in the next chapters, the model can be represented in many ways, e.g., as a tree, a probability table, or simply, a vector of real-valued parameters.
- More formally, we can express it mathematically as a target function f that takes as input the attribute set and produces an output corresponding to the predicted class label.

Classification

- serves two important roles in data mining.
- a predictive model
 - to classify previously unlabeled instances. A good classification model must provide accurate predictions with a fast response time.
- a descriptive model
 - to identify the characteristics that distinguish instances from different classes.
- This is particularly useful for critical applications, such as medical diagnosis, where it is insufficient to have a model that makes a prediction without justifying how it reaches such a decision.

Classification Task

Task	Attribute set, x	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from x-rays or MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

General Framework

- Classification is the task of assigning labels to unlabeled data instances and a classifier is used to perform such a task.
- A classifier is typically described in terms of a model
- The model is created using a given a set of instances, known as the training set, which contains attribute values as well as class labels for each instance.
- The systematic approach for learning a classification model given a training set is known as a learning algorithm.

General Framework

- The process of using a learning algorithm to build a classification model from the training data is known as induction.
- This process is also often described as "learning a model" or "building a model."
- This process of applying a classification model on unseen test instances to predict their class labels is known as deduction.
- Thus, the process of classification involves two steps:
 - applying a learning algorithm to training data to learn a model,
 - and then applying the model to assign labels to unlabeled instances..

Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks / Deep Learning
- Naïve Bayes and Bayesian Belief Networks
- □■ Support Vector Machines

Decision Tree

Decision Tree Classifier

- It has three types of nodes:
 - A root node, with no incoming links and zero or more outgoing links.
 - Internal nodes, each of which has exactly one incoming link and two or more outgoing links.
 - Leaf or terminal nodes, each of which has exactly one incoming link and no outgoing links Every leaf node in the decision tree is associated with a class label.
- The non-terminal nodes, which include the root and internal nodes, contain attribute test conditions that are typically defined using a single attribute.
- Each possible outcome of the attribute test condition is associated with exactly one child of this node link and no outgoing links.

Example: Mammal

Apply Model to Test Data

Start from the root of tree.

Test Data

			Defaulted Borrower
No	Married	80K	?

Test Data

			Defaulted Borrower
No	Married	80K	?

< 80K

NO

> 80K

YES

Another Example of Decision Tree

categorical categorical continuous

_				
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Design Issues of Decision Tree Induction

How should training records be split?

- Method for expressing test condition depending on attribute types
- Measure for evaluating the goodness of a test condition

How should the splitting procedure stop?

- Stop splitting if all the records belong to the same class or have identical attribute values
- Early termination

How to Specify Test Condition

Depends on attribute types

Binary

Nominal

(name only, no ordering)

Direction: North, East, South, West

Ordinal

(ordered, not measurable)
First, second, third ...
Hot, warm, cold

Continuous

(allows arithmetic operations) -123, 29.56, ...

Test Condition for Nominal Attributes

Multi-way split:

Use as many partitions as distinct values.

Binary split:

Divides values into two subsets

Marital Status

Divorced

Single

Married

Test Condition for Ordinal Attributes

- Multi-way split:
 - Use as many partitions as distinct values

Binary split:

Divides values into two subsets

 Preserve order property among attribute values

This grouping violates order property

Shirt

Size

{Small} {Medium, Large, Extra Large}

Shirt

Size

Test Condition for Continuous Attributes

(i) Binary split

Advantages of Decision Tree Based Classification

Inexpensive To Construct

Extremely Fast At Classifying Unknown Records

Easy To Interpret For Small-sized Trees

Accuracy Is
Comparable To
Other
Classification
Techniques For
Many Simple
Data Sets

Model **Evaluation and** Comparison

Metrics for Performance Evaluation: Confusion Matrix

- Focus on the predictive capability of a model (not speed, scalability, etc.)
- Here we will focus on binary classification problems!

Confusion Matrix	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation: Statistical Test

From Statistics: Null Hypotheses H0 is that the actual class is yes

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes		Type I error
CLASS	Class=No	Type II error	

Type I error: $P(NO \mid H0 \text{ is true})$ Type II error: $P(Yes \mid H0 \text{ is } false)$

Metrics for Performance Evaluation: Accuracy

Most widely-used metric: How many do we predict

correct (in percent)?

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{N}$$

Limitation of Accuracy

Consider a 2-class problem

- Number of Class 0 examples = 9990
- Number of Class 1 examples = 10

If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %

- Accuracy is misleading because the model does not detect any class 1 example
- → Class imbalance problem!

Cost Matrix

Different types of error can have different cost!

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PRED	ICTED (CLASS
ACTUAL CLASS	C(i j)	+	-
	+	-1	100 _
	-	1	0

Missing a + case is really bad!

Model M ₁	PREDICTED CLASS		
ACTUAL		+	-
CLASS	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL		+	-
CLASS	+	250	45
	•	5	200

$$Cost = 4255$$

Cost-Biased Measures

$Precision(p) = \frac{a}{a+c}$	
$Recall(r) = \frac{a}{a+b}$	
$F - measure(F) = \frac{2rp}{}$	$\frac{2a}{2a+b+c}$

	PREDICTED CLASS		
ACTUAL CLASS		Class Yes	Class No
	Class Yes	a (TP)	b (FN)
	Class No	c (FP)	d (TN)

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- **F**-measure is biased towards all except C(No|No)

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals to characterize the trade-off between positive hits and false alarms.
- Works only for binary classification (two-class problems). The classes are called the positive and the other is the negative class.
- ROC curve plots TPR (true positive rate) on the y-axis against FPR (false positive rate) on the x-axis.
- Performance of each classifier represented as a point. Changing the threshold of the algorithm, sample distribution or cost matrix changes the location of the point and forms a curve.

ROC Curve

Example with 1-dimensional data set containing 2 classes (positive and negative)

Any points logated at x > t is classified as positive.

TPR=0.5, FNR=0.5, **FPR=0.12**, FNR=0.88

Move t to get the other points on the ROC curve.

ROC Curve

(TPR, FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

Diagonal line:

- Random guessing
- Below diagonal line: prediction is opposite of the true class

Using ROC for Model Comparison

No model consistently outperform the other

- -M1 is better for small FPR
- -M2 is better for large FPR

Area Under the ROC curve (AUC)

- -Ideal:
 - AUC = 1
- -Random guess:
 - AUC = 0.5

