Code for STM32f411 Nucleo-64 to make Green LED light on (include Assembly)

Feb 22, 2020 Dung-Yi Chao

1. From the STM32 Nucleo-64 boards user Manual (<u>link</u>), you should first locate the port and pin which connect to the green LED (LD2). We can tell from the following image (from the manual) that LD2 connects to PA5 (GPIOA port, pin5)

2. We now first enable the clock for GPIOA according to the following image. Code: RCC->AHB1ENR |= 1U;

RM0383

Reset and clock control (RCC) for STM32F411xC/E

6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

3. Set the mode for GPIOA Pin5. From the following image, you should set MODER5[1:0] to 01 as output mode. Code: **GPIOA->MODER** \models (1U<<10);

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER15[1:0]		MODER14[1:0]		MODER13[1:0]		MODER12[1:0]		MODER11[1:0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODER7[1:0]		MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

4. Now, you are able to make the LED light up. LD2 is pin 5, so you need to make the 5th bit to 1. Code: **GPIOA->ODR** = (1U << 5);

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

5. The overall code will be the following:

6. Assembly code part

A. First, you need to locate the address of **RCC_AHB1ENR** and **GPIOA**. From the following table, you can find the base address of RCC is 0x40023800 and GPIOA is 0x40020000.

2.3 Memory map

See the datasheet corresponding to your device for a comprehensive diagram of the memory map. *Table 1* gives the boundary addresses of the peripherals available in STM32F411xC/E device.

Table 1. STM32F411xC/E register boundary addresses

Boundary address	Peripheral	Bus	Register map					
0x5000 0000 - 0x5003 FFFF	USB OTG FS	AHB2	Section 22.16.6: OTG_FS register map on page 754					
0x4002 6400 - 0x4002 67FF	DMA2		Continuo 5 11: DMA register man an agra 107					
0x4002 6000 - 0x4002 63FF	DMA1		Section 9.5.11: DMA register map on page 19					
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.8: Flash interface registers on page 59					
0x4002 3800 - 0x4002 3BFF	RCC		Section 6.3.22: RCC register map on page 136					
0x4002 3000 - 0x4002 33FF	CRC	100000000000000000000000000000000000000	Section 4.4.4: CRC register map on page 69					
0x4002 1C00 - 0x4002 1FFF	GPIOH	AHB1						
0x4002 1000 - 0x4002 13FF	GPIOE							
0x4002 0C00 - 0x4002 0FFF	GPIOD		0					
0x4002 0800 - 0x4002 0BFF	GPIOC		Section 8.4.11: GPIO register map on page 163					
0x4002 0400 - 0x4002 07FF	GPIOB							
0x4002 0000 - 0x4002 03FF	GPIOA							

Thus, **RCC_AHB1ENR**'s address can be calculated by looking at the following image (ie. 0x40023800 + 0x30 = 0x40023830). GPIOA_MODER and GPIOA_ODR can also be calculated in this manner.

6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserved						DMA1EN	Reserved				
				Reserve	1				rw	rw	Reserved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		CRCEN	Reserved			GPIOH EN	Reserved		GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN	
			rw	rv							rw	rw	rw	rw	rw

Bit 0 **GPIOAEN:** IO port A clock enable

Set and cleared by software.

0: IO port A clock disabled

1: IO port A clock enabled

B. Two pieces of code **initports.s** (subroutine) and **main.s** are in the following.

<mark>main.s</mark>

```
GPIOA ODR
          EQU 0x40020014
               AREA ARMex, CODE, READONLY
               ENTRY
main PROC
               EXPORT main
               IMPORT initports
               bl initports
loop
               b light on
light on
               ldr r0, =GPIOA ODR
               MOV r1, #0x20
               str r1, [R0]
               b loop
               ENDP
               END
initports.s
GPIOA_MODER EQU 0x40020000
RCC_AHB1ENR EQU 0x40023830
                       AREA ARMex, CODE, READONLY
initports PROC
                EXPORT initports
               push {lr}
               LDR r5, = RCC AHB1ENR
                LDR r6, [r5]
               ORR r6, #0x1
                STR r6, [r5]
               LDR r5, = GPIOA MODER
                LDR r6, [r5]
               ORR r6, #0x400
                STR r6, [r5]
                pop {lr} ;restore link register
               bx lr ; return from subroutine
               ENDP
               END
```