Efficient Online Decision Tree Learning with Active Feature Acquisition

Arman Rahbar¹, Ziyu Ye², Yuxin Chen², Morteza Haghir Chehreghani¹

¹Chalmers University of Technology ²University of Chicago

IJCAI 2023

Agenda

- Introduction
- Proposed framework
- Results

Introduction

Decision trees:

Interpretable

Online variants of decision trees:

- Medical diagnosis
- Intrusion detection

Classical online DT learners:

- Require all features of incoming data points
- Not fully online

Proposed framework

We take feature acquisition cost into account:

At each time step t

- 1. Receive a data point with unknown features
- 2. Make prediction (i.e., classify) with low feature acquisition cost
- 3. Receive correct prediction for learning

Example: medical diagnosis:

At time *t*:

- 1. Patient \mathbf{x}^t comes in
 - *n* medical tests: $x_1^t, x_2^t, \dots, x_n^t$, results unknown initially and can be measured at a cost
- 2. Predict accurate treatment with a low cost

A New Problem Formulation

Data point: ${m x} = (x_1, x_2, \dots, x_n)$

R.V. for feature values: $X_i \in \mathcal{X} \triangleq \{0, 1\}$

Random variable for labels: $Y_j \in \mathcal{Y} \triangleq \{y_1, y_2, \dots, y_m\}$

Naive Bayes assumption

• Joint distribution: $\mathbb{P}[Y_j] \prod_{i=1}^n \mathbb{P}[X_i \mid Y_j]$

$$\theta_{ij} \triangleq \mathbb{P}[X_i = 1 \mid Y_j], \theta_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$$

A New Problem Formulation

Random variable for *hypothesis* of data points:

full realization of features

$$H = [X_1, \dots, X_n], h \in \mathcal{H} \triangleq \{0, 1\}^n$$

H partitioned into m disjoint decision regions / labels / classes

Query q has cost c(q)

prediction \hat{y} has loss $l(\hat{y}, y)$

Goal: low c(q) and low $l(\hat{y}, y)$

$$\theta_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$$

$$\theta_{ij} \triangleq \mathbb{P}[X_i = 1 \mid Y_j]$$

Assume:

 θ_{ij} for all ij and P(Y) are known

• We know the distribution of *H*

Decision regions are known

Task: find decision region with low cost

Instance of:

Decision Region Determination (DRD)

Decision Region Determination

Policy: mapping from current observations to features

Goal of DRD:

$$\pi^* = \underset{\pi}{\operatorname{arg min cost}}(\pi)$$

s.t. π finds correct decision region

NP-hard

 EC^2 [1] finds near-optimal policy and gives a sequence of features to query

We only have some prior knowledge (distributions):

• Use posterior sampling

1

1 Sample the environment and receive data point

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

2

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe
$$oldsymbol{x}_{\mathcal{F}}^t$$

3

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

- Sample decision regions and use EC^2 on the sampled environment
 - Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_{i}^{t}

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

$$y_j^t$$

4

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_j^t

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \text{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_j^t

$$\begin{aligned} & \textbf{for each } (i, x_i) \in \boldsymbol{x}_{\mathcal{F}}^t \, \textbf{do} \\ & \textbf{if } x_i = 1 \, \textbf{then } \alpha_{ij}^t \leftarrow \alpha_{ij}^{t-1} + 1 \\ & \textbf{else } \beta_{ij}^t \leftarrow \beta_{ij}^{t-1} + 1 \end{aligned}$$

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \text{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_j^t

for each
$$(i, x_i) \in \boldsymbol{x}_{\mathcal{F}}^t$$
 do

if $x_i = 1$ then $\alpha_{ij}^t \leftarrow \alpha_{ij}^{t-1} + 1$
else $\beta_{ij}^t \leftarrow \beta_{ij}^{t-1} + 1$

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_j^t

for each
$$(i, x_i) \in \boldsymbol{x}_{\mathcal{F}}^t$$
 do

if $x_i = 1$ then $\alpha_{ij}^t \leftarrow \alpha_{ij}^{t-1} + 1$
else $\beta_{ij}^t \leftarrow \beta_{ij}^{t-1} + 1$

1 Sample the environment and receive data point

$$\boldsymbol{\theta}^t \sim \mathrm{Beta}(\boldsymbol{\alpha}^{t-1}, \boldsymbol{\beta}^{t-1})$$

Sample decision regions and use EC^2 on the sampled environment

Observe $oldsymbol{x}_{\mathcal{F}}^t$

3 Make prediction and observe true label

 y_j^t

4 Update the knowledge

Extensions:

- Real-valued features
- Concept drift

for each
$$(i, x_i) \in \boldsymbol{x}_{\mathcal{F}}^t$$
 do if $x_i = 1$ then $\alpha_{ij}^t \leftarrow \alpha_{ij}^{t-1} + 1$ else $\beta_{ij}^t \leftarrow \beta_{ij}^{t-1} + 1$

Results

Theoretical analysis:

$$\Delta^t \triangleq \mathbb{U}(\pi_{m{ heta}^\star}^*) - \mathbb{U}(\pi_{m{ heta}^t}^{\mathrm{EC}^2})$$
 $Regret(T) = \sum_{t=1}^T \Delta^t$

Theorem: $\mathbb{E}[\operatorname{Regret}(T)] = O(LS\sqrt{nLT\log(SnLT)})$

Results

References

[1] Daniel Golovin, Andreas Krause, and Debajyoti Ray. 2010. Near-optimal Bayesian active learning with noisy observations. In Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 1 (NIPS'10). Curran Associates Inc., Red Hook, NY, USA, 766–774.