12 函数综合(难题)

高一(6) 班 邵亦成 26 号 2021 年 12 月 8 日

- 1. 设区间 [a,b] 是函数 f(x) 的定义域 D 的子集,定义在 [a,b] 上的函数 $g(x) = |f(x) f(x_0)|(x_0 \in [a,b])$ 记为 $g_{[a,b]}(x,x_0) = |f(x) f(x_0)|$. 若 $f(x) = \begin{cases} 2\sqrt{x}, & 0 \leq x < 1, \\ \frac{1}{x}, & x \geq 1. \end{cases}$
 - (1) 求 f(x) 的值域.

考虑
$$x \in [0,2), f(x) = 2\sqrt{x} \in [0,2).$$

考虑 $x \in [1,+\infty), f(x) = \frac{1}{x} \in (0,1].$
故 $f(x)$ 的值域为 $[0,2).$

(2) 关于 x 的方程 $g_{[0,4]}(x,2) - t = 0$ 恰有 3 个不同的解时, 求实数 t 的取值范围.

$$g_{[0,4]}(x,2) - t = 0 \Leftrightarrow \left| f(x) - \frac{1}{2} \right| = t, x \in [0,4].$$

\$

$$F(x) = \left| f(x) - \frac{1}{2} \right|$$

$$= \begin{cases} \frac{1}{2} - 2\sqrt{x}, & 0 \le x \le \frac{1}{16}, \\ 2\sqrt{x} - \frac{1}{2}, & \frac{1}{16} < x < 1, \\ \frac{1}{x} - \frac{1}{2}, & 1 \le x \le 2, \\ \frac{1}{2} - \frac{1}{x}, & 2 < x \le 4. \end{cases}$$

绘制函数 y = F(x) 的图像, 如下图:

故有
$$t \in \left(\frac{1}{4}, \frac{1}{2}\right]$$
.

- 2. 设 n 为正整数, 规定: $f_n(x) = \underbrace{f\{f[\cdots f(x)\cdots]\}}_{n \uparrow f}$. 已知 $f(x) = \begin{cases} 2(1-x), & 0 \le x \le 1, \\ x-1, & 1 < x \le 2. \end{cases}$
 - (1) 解不等式: $f(x) \leq x$.

考虑
$$0 \le x \le 1$$
, $2(1-x) \le x \Rightarrow x \ge \frac{2}{3}$, 即 $x \in \left[\frac{2}{3}, 1\right]$. 考虑 $1 < x \le 2$, 不等式恒成立, 即 $x \in (1, 2]$. 故 $x \in \left[\frac{2}{3}, 2\right]$.

(2) 设集合 $A = \{0, 1, 2\}$, 对任意 $x \in A$, 证明: $f_3(x) = x$.

考虑
$$x = 0$$
, $f_3(0) = f(f(f(0))) = f(f(2)) = f(1) = 0$.
考虑 $x = 1$, $f_3(1) = f(f(f(1))) = f(f(0)) = f(2) = 1$.
考虑 $x = 2$, $f_3(2) = f(f(f(2))) = f(f(1)) = f(0) = 2$.

(3) 求 $f_{2021}\left(\frac{8}{9}\right)$ 的值.

$$f_{1}\left(\frac{8}{9}\right) = 2\left(1 - \frac{8}{9}\right) = \frac{2}{9},$$

$$f_{2}\left(\frac{8}{9}\right) = f\left(f\left(\frac{9}{9}\right)\right) = f\left(\frac{2}{9}\right) = \frac{14}{9},$$

$$f_{3}\left(\frac{8}{9}\right) = f\left(f_{2}\left(\frac{9}{9}\right)\right) = f\left(\frac{14}{9}\right) = \frac{5}{9},$$

$$f_{4}\left(\frac{8}{9}\right) = f\left(f_{3}\left(\frac{9}{9}\right)\right) = f\left(\frac{5}{9}\right) = \frac{8}{9}.$$

一般的, $\forall k, r \in \mathbb{N}$,

$$f_{4k+r}\left(\frac{8}{9}\right) = f_r\left(\frac{8}{9}\right).$$

故有

$$f_{2010}\left(\frac{8}{9}\right) = f_2\left(\frac{8}{9}\right) = \frac{14}{9}.$$