Group B

SO FAR WE'VE BEEN

THE COIL

- We fixed the coil on a wooden plate
 - Radius:
 - Radial width:
 - Width:
 - -> Distance:
- We tested the heating of the coil with high currents (4 Amps)
 - Maximum temperature about 65° C
- Current is stable within 50mA, long term testing still necessary (temperature change negligible at ~4000s

TEMPERATURE-TIME-CURVE

Fitted exponential law because

HALLSENSOR

Last week: Soldering, gluing and testing

HALLSENSOR

HALLSENSOR

- Now: All soldering and gluing finished
- all three Sensors work, while measuring the magnetic Field in a Volume of about (2x2x2)mm³
 - Supply current flows and is constant over time (with Hameg power supply)
 - Hall-voltage is measured at all sensors in presence of magnetic fields
 - Linearity between magnetic field and hallvoltage is given, but the accuracy is still too low (next page)

LINEARITY CURRENT IN COILS VS HALLVOLTAGE

- Hall voltage is linear to the current in the coils, which is linear to the magnetic Field
- High relative errors due to the accuracy of the DMM

TO DO: AMPLIFYING THE VOLTAGE

POSITIONING THE SENSOR

 We fixed two optical banks on the table, aliged them orthogonally, and adjusted lasers, so that the beam

horizontally

