HIGH PERFORMANCE COMPUTING PROFILING

Implementation of Durand Kerner Method to solve Polynomial Equations

-Report By: Sharan SK CED18I049

Serial Code:

```
#include <stdio.h>
#include <math.h>
#include <complex.h>
#include<omp.h>
#define M PI 3.14159265358979323846
#define coff size 500
double R=0;
double complex z[coff size];
double complex deltaZ[coff size];
double deltaZMax;
double epsilon = 1e-6;
double complex QsubJ,fz;
int max iter = 1000;
void durand_kerner(); //Prototypes
void calc_theta();
double max_cof();
void printz();
void update z();
void update fz();
int main() {
   double complex cList[coff size]; //List of coefficients
  double complex z;
  double x,y; //x for real and y for imaginary parts of the coefficient
  int n=0; //n is number degree of polynomial
```

```
printf("Enter coefficients and enter any char other than number when
done: n");
  while(scanf("%lf %lf",&x,&y) == 2) { //Read coefficients from stdin
      cList[n] = (x + y*I);
  x = 1; //Cn = 1, because the equation has to be normalized
  y = 0;
  z = (x + y*I);
  cList[n] = z; //Store in cList[]
  durand kerner(cList,n);
void durand kerner(double complex cList[],int n) {
  float st;
  st=omp_get_wtime();
  R = 1 + max cof(cList,n); //End Equation 5
  calc_theta(n);
  int k;
  for(k=1;k <= max iter;k++) {</pre>
      deltaZMax = 0;
      update_fz(cList,n);
      update z(n);
      if(deltaZMax <= epsilon) {</pre>
```

```
st=omp_get_wtime()-st;
  printf("%d\n",k);
  printz(cList, n);
  printf("Time Taken=%f\n",st);
void calc_theta(int n) {
  for (int j=0; j < n; j++) {
       z[j] = (\cos(j*((2*M_PI)/n)) + (I*\sin(j*((2*M_PI)/n))) *R;
double max cof(double complex cList[],int n)
  double r;
  for (int j=0; j < n; j++) {
      if(cabs(cList[j]) > R) {
          r = cabs(cList[j]);
void printz(double complex cList[], int n)
      printf("Final Output: (Note: if the roots repeat then there exist
less than n-1 roots for the equation) n");
       for(int i=0;i < n;i++) {</pre>
                   printf("z[%d] = %0.10f +
%0.10f*I\n",i,creal(z[i]),cimag(z[i]));
```

```
fflush(stdout);
void update_z(int n)
   for(int j=0; j < n; j++) {</pre>
           z[j] = z[j] + deltaZ[j];
void update_fz(double complex cList[],int n)
   for(int j=0; j < n; j++) {</pre>
           QsubJ = 1;
           for(int i=0;i < n;i++) {</pre>
                   QsubJ = (z[j]-z[i])*QsubJ;
           fz = 1;
           for(int k = n-1; k >= 0; k--) {
               fz = fz*z[j] + cList[k];
           deltaZ[j] = (-fz/QsubJ);
           if(cabs(deltaZ[j]) > deltaZMax) {
               deltaZMax = cabs(deltaZ[j]);
```

Profiling:

Three types of profiling are followed in this report. Namely

- > Function Profiling
- ➤ Line Profiling
- > Hardware Profiling

Function Profiling:

For function profiling we will be using GPROF.GPROF helps to identify the number of times each function is called. Using the following commands, we can get a GPROF report.

Commands Used:

- Use -pg command during gcc compilation to enable profiling
- Execute the binary file to generate the profiling data in the form of gmon.out file

Following is the gprof report:

Flat profile:

```
Flat profile:
Each sample counts as 0.01 seconds.
      cumulative
                    self
                                       self
                                                 total
                                      ms/call
 time
        seconds
                   seconds
                               calls
                                               ms/call
                                                         name
 51.49
            0.19
                      0.19
                                 651
                                         0.29
                                                   0.29
                                                         update fz
 48.78
            0.37
                                                           muldc3
                      0.18
  0.00
            0.37
                      0.00
                                 651
                                                         update z
                                         0.00
                                                   0.00
  0.00
            0.37
                                                         calc theta
                      0.00
                                         0.00
                                                   0.00
            0.37
  0.00
                      0.00
                                                         durand kerner
                                         0.00
                                                 190.53
  0.00
            0.37
                      0.00
                                   1
                                         0.00
                                                   0.00
                                                         max cof
  0.00
            0.37
                      0.00
                                   1
                                         0.00
                                                   0.00
                                                         printz
```

Call Graph:

	C	all grap	h (explana	ation follo	ws)							
aranul	granularity: each sample hit covers 2 byte(s) for 2.70% of 0.37 seconds											
granu	carrey. c				(3) 101 2.70% 01 0.57 Seconds							
index	% time		children	called	name							
[]	53.4	0.19	0.00	651/651	durand_kerner [2]							
[1]	51.4	0.19	0.00	651	update_fz [1]							
		0.00	0.19	1/1	main [3]							
[2]	51.4	0.00	0.19	1	durand_kerner [2]							
		0.19	0.00	651/651	update_fz [1]							
		0.00	0.00	651/651	update_z [5]							
		0.00	0.00	1/1	max_cof [7]							
		0.00	0.00	1/1	calc_theta [6]							
		0.00	0.00	1/1	printz [8]							
					<spontaneous></spontaneous>							
[3]	51.4	0.00	0.19		main [3]							
		0.00	0.19	1/1	durand_kerner [2]							
					<pre><spontaneous></spontaneous></pre>							
[4]	48.6	0.18	0.00		muldc3 [4]							
		0.00	0.00	651/651	durand_kerner [2]							
[5]	0.0	0.00	0.00	651	update_z [5]							
		0.00	0.00	1/1	durand kerner [2]							
[6]	0.0	0.00	0.00	1	calc_theta [6]							
		0.00	0.00	1/1	durand_kerner [2]							
[7]	0.0	0.00	0.00	1	max_cof [7]							
		0.00	0.00	1/1	durand kerner [2]							
[8]	0.0	0.00	0.00	1	printz [8]							

Observation:

- ➤ It is to be noted that the predominant operations are update_fz and _muldc3 which is called 51% and 48% of the time respectively .
- __muldc3 is not a user-built function but rather of the c programming inbuilt function which is invoked when two complex numbers are being multiplied together. The Runtime Function is of the form: complex double __muldc3 (double a, double b, double c, double d) which returns the product of a + ib and c + id, following the rules of C99 Annex G.

Line Based Profiling:

GCOV helps to find the no of times each line is executed ,number of times a branch has been taken and other informations related to each line of the code. Following commands can be used to generate GCOV report:

- Enable profiling using -fprofile-arcs -ftest-coverage during compilation
- Execute binary file to generate the data
- > Execute gcov <filename> with -b -c parameters to generate coverage data
- > Open <filename>.gcov to see the report

```
(base) sharan@Omen:~/Desktop/Sem7/HPC/Project$ cat durand-kerner.c.gcov
              0:Source:durand-kerner.c
              0:Graph:durand-kerner.gcno
              0:Data:durand-kerner.gcda
              0:Runs:1
              1:#include <stdio.h>
2:#include <math.h>
              3:#include <complex.h>
              4:#include<omp.h>
              6:#define M PI 3.14159265358979323846
              7:#define coff size 500
              9:double R=0;
             10:double complex z[coff size];
             11:double complex deltaZ[coff size];
             12:double deltaZMax;
             13:double epsilon = 1e-6;
             14:double complex QsubJ,fz;
             15:int max iter = 1000;
             16:
             18://-----Function Prototypes-----
             19:void durand kerner(); //Prototypes
             20:void calc theta();
             21:double max cof();
             22:void printz();
             23:void update z();
             24: void update fz();
             25:
             26:
             27:int main() {
             28:
             29:
                         double complex cList[coff size]; //List of coefficients
             30:
                         double complex z;
                         double x,y; //x for real and y for imaginary parts of the coefficient
             31:
        1:
                         int n=0; //n is number degree of polynomial
             32:
             33:
             34:
             35://----Read Coefficients-----
                         printf("Enter coefficients and enter any char other than number when done:\n"); while(scanf("%lf %lf",&x,&y) == 2) { //Read coefficients from stdin cList[n] = (x + y*I);
        1:
             36:
      201:
             37:
      200:
      200:
             39:
             40:
                         x = 1; //Cn = 1, because the equation has to be normalized
        1:
             42:
                         y = 0;
                         z = (x + y*I);
cList[n] = z; //Store in cList[]
             43:
             45:
             46:
             47:
                         durand kerner(cList,n);
```

```
46:
                       durand kerner(cList,n);
         48:
         49:
         50:}
                               -----------------------Function Definition--------
        53:
         54:void durand kerner(double complex cList[],int n) {
         55:
                       float st;
                      st=omp get wtime();
R = 1 + max cof(cList,n); //End Equation 5
        56:
57:
  1:
        58:
         59:
                       calc theta(n);
                       int k;
for(k=1;k <= max iter;k++) {</pre>
        60:
651:
        61:
         62:
        63:
                                 //printz(cList,n,k);
         64:
651:
        65:
                                 deltaZMax = 0;
         66:
651:
        67:
                                 update fz(cList,n);
651:
                                 update z(n);
         68:
         69:
651:
         70:
                                 if(deltaZMax <= epsilon) {</pre>
        71:
72:
73:
                                           break;
        74:
                      st=omp get wtime()-st;
printf("%d\n",k);
printz(cList,n);
        76:
  1:
         77:
         78:
                       printf("Time Taken=%f\n",st);
         79:
  1:
        80:}
        82:void calc theta(int n) {
                       for(int j=0; j < n; j++) { z[j] = (cos(j*((2*M PI)/n)) + (I*sin(j*((2*M PI)/n))) *R;
201:
        83:
200:
         84:
        85:
         86:
  1:
        87:}
        88:
         89:double max cof(double complex cList[],int n)
        90:{
                      double r;
for(int j=0;j < n;j++) {
        if(cabs(cList[j]) > R) {
            r = cabs(cList[j]);
            r = cabs(cList[j]);
         91:
201:
         92:
200:
200:
         94:
         96:
```

```
89:double max cof(double complex cList[],int n)
            90:{
            91:
                         double r;
                        for(int j=0;j < n;j++) {
      if(cabs(cList[j]) > R) {
     201:
            92:
     200:
            93:
     200:
            94:
                                         r = cabs(cList[j]);
            95:
            96:
            98:
                         return r;
            99:}
           100:
           101:void printz(double complex cList[],int n)
                                 printf("Final Output:(Note: if the roots repeat then there exist less than n-1 roots for the equation) \n");
                                 for(int i=0;i < n;i++) {
	printf("z[%d] = %0.10f + %0.10f*I\n",i,creal(z[i]),cimag(z[i]));
     201:
           104:
     200:
           105:
                                 fflush(stdout);
     200:
           106:
            107:
           108:}
           109:
           110:void update z(int n)
     651:
           111:{
                        for(int j=0; j < n; j++) { z[j] = z[j] + deltaZ[j];
  130851:
           112:
  130200:
           113:
           114:
     651:
           115:}
     651: 117:void update fz(double complex cList[],int n)
           118:{
  130851:
                        for(int j=0; j < n; j++) {
           119:
           120:
                                          QsubJ = 1;
for(int i=0;i < n;i++) {
  130200:
           121:
26170200:
                                                  if(i != j) {
26040000:
           123:
            124:
                                                           QsubJ = (z[j]-z[i])*QsubJ;
           125:
           126:
  130200:
            127:
                                          for(int k = n-1; k \ge 0; k--) {
26170200:
           128:
                                                   fz = fz*z[j] + cList[k];
26040000:
            130:
           131:
  130200:
                                          deltaZ[j] = (-fz/QsubJ);
           134:
  130200:
                                          if(cabs(deltaZ[j]) > deltaZMax) {
           135:
                                                   deltaZMax = cabs(deltaZ[j]);
   44584:
           136:
           137:
           138:
     651: 139:}
```

Observation:

- ➤ From the above gcov report,we can see that update_fz has lines of code that are being run for the highest no of time.For example:updating fz value executed more no of times.
- > Second most executed lines are updating z value and QsubJ value which belongs to update_fz and update_z function.

Hardware Profiling:

LIKWID tool is used for hardware profiling. Following Commands are used to generate hardware related data:

- > likwid-topology: to generate hardware data
- ➤ likwid-perfctr -c 0-3 -g <Hardware/Option> <binary file>: To generate execution of the program related to Hardware. Example Giving option as L2 gives data related to execution of program and how L2 cache is affected during execution.

Hardware Specification:

```
(base) sharan@Omen:~$ likwid-topology
CPU name: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz
CPU type: Intel Coffeelake processor
CPU stepping: 9
Hardware Thread Topology
Sockets: 1
Cores per socket: 4
Threads per core: 1

    HWThread
    Thread
    Core
    Socket
    Available

    0
    0
    0
    *

    1
    0
    1
    0
    *

    2
    0
    2
    0
    *

    3
    0
    3
    0
    *

Level: 1
Size: 32 kB
Cache groups: (0)(1)(2)(3)
Level:
Size:
Size: 256 kB
Cache groups: (0)(1)(2)(3)
Level:
Size:
                            6 MB
Cache groups: (0123)
```

Likwid FLOPS_DP Report:

```
(base) sharan@Omen:~/Desktop/Sem7/HPC/Project$ sudo likwid-perfctr -c 0-7 -q FLOPS DP ./dk < input.in
[sudo] password for sharan:
CPU name: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz
CPU type: Intel Coffeelake processor
CPU clock: 2.50 GHz
Sleeping longer as likwid sleep() called without prior initialization
Sleeping longer as likwid sleep() called without prior initialization
Enter coefficients and enter any char other than number when done:
Time Taken=0.295464
Group 1: FLOPS DP
             Event | Counter | Core 0 | Core 1 | Core 2 | Core 3 |
             INSTR RETIRED ANY | FIXC0 | 135775957 | 119238819 | 2468335368 | 204992325 | CPU CLK UNHALTED CORE | FIXC1 | 163749715 | 133500282 | 909249738 | 187059720 | CPU CLK UNHALTED REF | FIXC2 | 132371720 | 108792320 | 706702360 | 150110792
  FP ARITH INST RETIRED 128B PACKED DOUBLE | PMC0 | FP ARITH INST RETIRED SCALAR DOUBLE | PMC1 |
                                                                     1060 İ
                                                                                  8343 İ
                                                                                                2112
                                                                                                                  4820
                                                                     198342
                                                                                    20038
                                                                                               315201691
                                                                                                                   39002
  FP ARITH INST RETIRED 256B PACKED DOUBLE | PMC2
                                                                                     0 i
                                                                     2 I
                                                                                               0 |
             INSTR RETIRED ANY STAT | FIXC0 | 2928342469 | 119238819 | 2468335368 | 7.320856e+08
CPU CLK UNHALTED CORE STAT | FIXC1 | 1393559455 | 133500282 | 909249738 | 3.483899e+08
CPU CLK UNHALTED REF STAT | FIXC2 | 1097977192 | 108792320 | 706702360 | 274494298
  FP ARITH INST RETIRED 128B PACKED DOUBLE STAT | PMC0 |
                                                                       16335
                                                                                       1060
                                                                                                      8343 j
                                                                                                                      4083.7500
  FP ARITH INST RETIRED SCALAR DOUBLE STAT | PMC1 | FP ARITH INST RETIRED 256B PACKED DOUBLE STAT | PMC2 |
                                                                                            20038
                                                                                                       315201691
                                                                        315459073
                                                                                                                     7.886477e+07
                                                                                        0 j
                                                                                                      2
                                                                       2
                                                                                                                            0.5000
          -----
```

+		+	+	++
Metric	Core 0	Core 1	Core 2	Core 3
Runtime (RDTSC) [s] Runtime unhalted [s] Clock [MHz] CPI DP [MFLOP/s] AVX DP [MFLOP/s] Packed [MUOPS/s] Scalar [MUOPS/s]	0.3056 0.0656 3087.6345 1.2060 0.6560 2.617983e-05 0.0035 0.6491	0.3056 0.0535 3062.8413 1.1196 0.1202 0 0.0273	0.3056 0.3643 3211.3467 0.3684 1031.5049 0 0.0069	0.3056 0.0749 3110.3475 0.9125 0.1592 0.0158 0.1276
Vectorization ratio	0.5326	29.3964	0.0007	10.9990

		L	L	L
Metric	Sum	Min	Max	Avg
Runtime (RDTSC) [s] STAT Runtime unhalted [s] STAT Clock [MHz] STAT CPI STAT DP [MFLOP/s] STAT AVX DP [MFLOP/s] STAT Packed [MUOPS/s] STAT Scalar [MUOPS/s] STAT Vectorization ratio STAT	1.2224 0.5583 12472.1700 3.6065 1032.4403 2.617983e-05 0.0535 1032.3333 40.9287	0.3056 0.0535 3062.8413 0.3684 0.1202 0 0.0035 0.0656 0.0007	0.3056 0.3643 3211.3467 1.2060 1031.5049 2.617983e-05 0.0273 1031.4910 29.3964	0.3056 0.1396 3118.0425 0.9016 258.1101 6.544957e-06 0.0134 258.0833 10.2322
+	+	+	+	++

LIkwid L3 Report:

(base) sharan@Omen:~/Desktop/Sem7/HPC/Project \$ sudo likwid-perfctr -c 0-7 -g L3 ./dk < input.in											
	PU type: Intel Coffeelake processor										
Sleeping longer as likwid sleep() called without prior initialization Sleeping longer as likwid sleep() called without prior initialization Enter coefficients and enter any char other than number when done: 495 Time Taken=0.292505											
Group 1: L3											
Event		Counter	Core 0	Core 1	Core 2	Core 3					
INSTR RETIRED ANY CPU CLK UNHALTED CORE CPU CLK UNHALTED REF L2 LINES IN ALL L2 TRANS L2 WB		FIXC0 FIXC1 FIXC2 PMC0 PMC1	151683170 139069053 109833568 5043529 858862	80226953 91748366 72960888 4731644 867494	685560512		 				

Event	Counter	<u> </u>	Sum		Min		Max		Avg	
INSTR RETIRED ANY STAT CPU CLK UNHALTED CORE STAT CPU CLK UNHALTED REF STAT L2 LINES IN ALL STAT L2 TRANS L2 WB STAT	FIXC0 FIXC1 FIXC2 PMC0 PMC1	1227 956 14	2818316439 1227903632 950344824 14127916 2584791		80226953 91748366 72960888 333723 68571		2454470654 893507653 685560512 5043529 867494		306975 2 237586 3531	
Metric	-+ Cor	re 0	Core	2 1	 Cor	e 2	 Cor	- e 3		
Runtime (RDTSC) [s] Runtime unhalted [s] Clock [MHz] CPI L3 load bandwidth [MBytes/s] L3 load data volume [GBytes] L3 evict bandwidth [MBytes/s] L3 evict data volume [GBytes] L3 bandwidth [MBytes/s] L3 data volume [GBytes]		0.3228 186.4911		0.2947 0.0368 3138.4495 1.1436 1027.4173 0.3028 188.3655 0.0555 1215.7828 0.3583		0.2947 0.3580 3252.8153 0.3640 72.4638 0.0214 14.8893 0.0044 87.3531 0.0257		0.0415 0.0415 0.0415 0.0415 0.7851 0.7851 0.2572 0.2572 0.0506 0.0		
Metric		Sı	ım	M	in	Ma	ax	A۷	/g	
Runtime (RDTSC) [s] STAT Runtime unhalted [s] STAT Clock [MHz] STAT CPI STAT L3 load bandwidth [MBytes/s] L3 load data volume [GBytes] L3 evict bandwidth [MBytes/s] L3 evict data volume [GBytes] L3 data volume [GBytes] ST	T STAT STAT STAT STAT	0. 12704. 3. 3067. 0. 561. 0. 3628.	. 2095	0; 3138; 0; 72; 0; 14; 0; 87;	.2947 .0368 .4495 .3640 .4638 .0214 .8893 .0044 .3531	0 3252 1 1095 0 188 0	. 2947 . 3580 . 8153 . 1436 . 1393 . 3228 . 3655 . 0555 . 6304 . 3778	0. 3176. 0. 766. 0. 140. 0. 907.	2947 1230 0807 8024 9251 2260 3137 0414 2388 2674	

Observation:

- From the above report it can be seen that the CPI from both L3 and FLOPS_DP report that are not equal across each core ,which confirms that the program is yet to be optimized which is expected from the serial code.
- > The L3 data volume and bandwidth also indicates that the load is not balanced across each core
- > The Clock across each core seems to be stable