

11) Publication number: 0 585 083 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 93306628.4

(51) Int. CI.5: C12N 15/54, C12N 9/10

2 Date of filing: 20.08.93

(30) Priority: 21.08.92 JP 243984/92

(43) Date of publication of application : 02.03.94 Bulletin 94/09

84 Designated Contracting States : DE FR GB

(1) Applicant : TAKARA SHUZO CO. LTD. 609 Takenakacho Fushimi-ku Kyoto (JP) (2) Inventor: Nishikawa, Atsushi 3-8-A5-401, Shinsenri Minamimachi Toyonaka-shi, Osaka-fu (JP) Inventor: Taniguchi, Naoyuki 2-19-32-201, Ueno Higashi Toyonaka-shi, Osaka-fu (JP)

(74) Representative: Wakerley, Helen Rachael Reddle & Grose, 16 Theobalds Road London WC1X 8PL (GB)

- (54) Human glycosyltransferase gene.
- (57) A human GnT-III gene having a specific restriction map represented by Fig. 1 of the attached Drawings and a length of approximately 1.6 kb is disclosed, together with a human GnT-III gene which is hybridizable with said gene. A process for producing human GnT-III is provided, which comprises incubating a transformant wherein one of the above-mentioned genes is used and harvesting. The sequencing listing shows a part of the base sequence.

and examining the capability of the transformant to express human GnT-III. Examples of usable expression cells includ COS-1 cells (ATCC CRL 1650). For example, the COS-1 cells can be transformed by the above expression plasmid EX20F. Then the transformant is incubated and the activity of GnT-III expressed in the transformant is determined to specify a gene coding for human GnT-III. This gene is integrated into EX20F and a part of its base sequence is located on a DNA fragment represented by SEQ ID NO. 1. Human GnT-III can be produced by genetic engineering technique by incubating the above transformant.

By effecting hybridization with the use of the gene thus obtained as a probe under strict conditions, it is anticipated that genes for enzymes analogous to that of the present invention, which are different therefrom in sequence but expected to have a similar activity, may be obtained. The term "under stringent conditions" as used herein means that the hybridization of a nylon membrane having DNAs immobilized thereon with the probe is conducted in a solution containing 6 x SSC (1 x SSC means a solution prepared by dissolving 8.76 g of sodium chloride and 4.41 g of sodium citrate in 1 liter of water), 1% of sodium lauryl sulfate, 100 µg/ml of salmon sperm DNA, and 5 x Denhardt's (containing bovine serum albumin, polyvinylpyrrolidone and Ficoll each at a concentration of 0.1%) at 65°C for 20 hours.

As described above in detail, the present invention enables a gene coding for human GnT-III to be isolated and provides a process for producing human GnT-III by using the gene. This gene and its decomposition products are usable in the determination of human GnT-III during the expression process in vivo and, therefore, useful in the genetic diagnosis of cancer, and so forth. In addition, various antibodies can be immunologically prepared by using polypeptides coded for by the gene of the present invention. These antibodies are also useful in the field of diagnosis and for the purification of human GnT-III.

Brief Description of the Drawings

Figure 1 is a drawing showing a restriction map of a gene coding for human GnT-III. Figure 2 is a drawing showing relationships among four DNAs H2, H3, H15 and H20. Figure 3 is a drawing showing the construction of a plasmid EX20F.

Example

10

15

20

25

30

35

40

45

50

55

To further illistrates the present invention in greater detail, and not by way of limitation, the following Examples will be given.

Example 1

(1) Screening of cDNA library

SV3 was prepared from Escherichia coli XL1-Blue SV3 (FERM BP-4325) transformed by a plasmid SV3 and the plasmid was digested with HindIII to give a DNA fragment of approximately 1.4 kb. This DNA fragment was radiolabeled with [α - 32 p] dCTP (3000 Ci/mmol, Amersham) by using a Multiprime DNA Labeling System (Amersham) to thereby give a probe. By using the obtained probe, a human cDNA library [Human Fetal Liver < λ gt10>, Clonetech] was screened for the target clone by plaque hybridization. As a result, two positive clones were obtained from 3 x 106 plaques. From these clones, DNAs were extracted and digested with EcoRI. The digestion products thus obtained were subcloned into Bluescript IISK+ and the DNAs thus subcloned (approximately 1.3 kb and approximately 1.5 kb) were respectively named H2 and H3, while the plasmids were respectively named pBluescript II (H2) and pBluescript II (H3). Figure 2 shows the restriction maps of these DNAs and a relationship between them.

(2) Cloning of upstream region containing initiator codon

H2 and H3 were radiolabeled in the same manner as the one described in the above Example 1-(1) to thereby give probes. By using these probes, screening of a human cDNA library was carried out in the same manner as the one described in the above Example 1-(1) to obtain four positive clones from 7 x 10⁵ plaques. The EcoRI-digestion products thereof were subcloned into Bluescript IISK*. The base sequences of the DNAs thus subcloned were identified and two DNAs containing an initiator codon (approximately 1.6 kb and approximately 1.5 kb) were named respectively H15 and H20, while the plasmids corresponding thereto were named respectively pBluescript II (H15) and pBluescript II (H20). Figure 2 shows the restriction maps of these DNAs and a relationship between thereof with H2 and H3.

Example 2

(1) Construction of expression plasmid

3

5	Sequence Li	sting :													
	SEQ ID NO:1														
	LENGTH: 2247														
10	TYPE: nucleic acid														
	STRANDEDNESS: double														
	TOPOLOGY: linear														
15	MOLECULE TYPE: cDNA to mRNA														
		•				•									
			SEQ 10 NO:1:	CGCTGCCGCC	CCACCCCCC	ATCCCCCCAC	60								
20							120								
				CGGGGACCCC											
				GCGGGCGATG			180								
25				CIGIGCCICA			240								
				GAACTGGCCT			300								
				ACGCCCCAGG		•	360								
30				CACTCGCCCC			420								
	AGCAAGGCGG	CCGAGGAGCT	CCACCGGGTG	GACTIGGIGC	TGCCCGAGGÀ	CACCACCGAG	480								
	TATTICGTGC	GCACCAAGGC	CGGCGGCGTC	TGCTTCAAAC	CCGGCACCAA	GATGCTGGAG	540								
35	AGGCCGCCCC	CGGGACGGCC	GGAGGAGAAG	CCTGAGGGGG	CCAACGCCTC	CTCGGCCCGG	600								
	CCCCCACCCC	GGTACCTCCT	GAGCGCCCGG	GAGCGCACGG	GGGGCCGAGG	CGCCGGCGC	660								
40	AAGTGGGTGG	AGTGCGTGTG	CCTGCCCGGC	TGGCACGGAC	CCAGCTGCGG	CGTGCCCACT	720								
10	GTGGTGCAGT	ACTCCAACCT	GCCCACCAAG	GAGCGGCTGG	TGCCCAGGGA	GGTGCCGCGC	780								
	CGCGTCATCA	ACGCCATCAA	CGTCAACCAC	GAGTTCGACC	TGCTGGACGT	GCGCTTCCAC	840								
45	GAGCTGGGCG	ACGTGGTGGA	CGCCTTTGTG	GTGTGCGAGT	CCAACTTCAC	GGCTTATGGG	900								
	GAGCCGCGGC	CGCTCAAGTT	CCGGGAGATG	CTGACCAATG	GCACCTTCGA	GTACATCCGC	960								
	CACAAGGTGC	TCTATGTCTT	CCTGGACCAC	TTCCCGCCCG	GCGGCCGGCA	CGACGGCTGG	1020								
50	ATCGCCGACG	ACTACCTGCG	CACCTTCCTC	ACCCAGGACG	GCGTCTCGCG	GCTGCGCAAC	1080								
	CTGCGGCCCG	ACGACGTCTT	CATCATTGAC	GATGCGGACG	AGATCCCGGC	CCGTGACGGC	1140								
	GTCCTTTTCC	TCAAGCTCTA	CGATGGCTGG	ACCGAGCCCT	TCGCCTTCCA	CATGCGCACG	1200								

55

	TGC	CTC	ATC	TCC	TTC	CTG	CAC	TTC	TTC	AAG	ACC	CTG	TCC	TAT	GTC	90
5	Cys	Leu	lle	Ser	Phe	Leu	Нis	Phe	Phe	Lys	Thr	Leu	Ser	Туг	V a l	
					20					25					30	
10	A CC	TTC	ccc	CGA	GAA	CTG	GCC	TCC	CTC	AGC	CCT	AAC	CTG	GTG	TCC	135
	Thr	Phe	Pro	Arg	Glu	Leu	Ala	Ser	Leu	Ser	Pro	Asn	Leu	Val	Ser	
					35					40					45	
15	A GC	TTT	TTC	TGG	AAC	AAT	GCC	CCG	GTC	ACG	CCC	CAG	GCC	AGC	CCC	180
	Ser	P h e	Phe	Trp	Åsn	λsn	Ala	Pro	V a l	Thr	Pro	Gln	Ala-	Ser	Pro	
					5 O			•	•	55					60	
20	GAG	CCY	GGY	GGC	CCT	GYC	CTG	CTG	CGT	ACC	CCY	CTC	TAC	TCC	CYC	225
	Glu	Pro	Gly	Gly	Pro	Хsр	Leu	Leu	Arg	Thr	Pro	Leu	Tyr	Ser	His	•
a.					65					70					75	·
25	TCG	CCC	CTG	CTG	CAG	CCG	CTG	CCG	CCC	AGC	ÅÅG	GCG	GCC	GAG	GAG	270
	Ser	Pro	Leu	Leu	Gln	Pro	Leu	Pro	Pro	Ser	Lys	Ala	Ála	Glu	Glu	
30					80					8 5					90	
	CTC	CAC	CCC	GTG	GAC	TTG	GTG	CTG	CCC	GAG	GAC.	YCC	ACC	GAG	TAT	315
	Leu	His	Årg	Yai	Asp	Leu	V a l	Leu	Pro	Glu	Ásp	Thr	Thr	Glu	Tyr	
35					95					100					105	
	TTC	GTG	CGC	ACC	AAG	GCC	GGC	GGC	GTC	TGC	TTC	AAA	ccc	GGC	ACC	360
10	Phe	V a l	Årg	Thr	Lys	Ala	Gly	Gly	Yal	Cys	Phe	lys	Pro	Gly	Thr	
40					110					115					120	
	AAG	ATG	CTG	GAG	AGG	CCG	CCC	CCG	GGY	CGG	CCG	GAG	GAG	-À À G	CCT	405
45	Lys	Met	Leu	Glu	Arg	Pro	Pro	Pro	Gly	Årg	Pro	Glu	Glu	Lys	Pro	
					125					130					135	
	GAG	GGG	CCC	AAC	GGC	TCC	TCG	GCC	CGG	CGG	CCA	CCC	CGG	TAC	CTC	450
50	Glu	Gly	Ala	Åsn	Gly	Ser	Ser	Ala	ÅГg	Arg	Pro	Pro	Årg	Tyr	Leu	
					140					145					150	
	CTG	AGC	GCC	CGG	GAG	CGC	ACG	GGG	GGC	CGA	GGC	CCC	CGG	CGC	AAG	495
55	Leu	Ser	Ala	Arg	Glu	Arg	Thr	Gly	Gly	Arg	Gly	Ala	Arg	yrg	Lys	

5	ccc															
	ccc				305					310)				315	•
	•••	GAC	GAG	ATC	ccc	GCC	CGT	GAC	GGC	GTC	стт	TTC	сто	. AAC	CTC	990
	Ala	Asp	Glu	Ile	Pro	Ala	Arg	Ásp	Gly	Yal	Leu	Phe	Lei	ı Lys	leu	
10				•	320					325	,				330	
	TAC	GAT	GGC	TGG	ACC	G A G	ccc	TTC	GCC	TTC	CAC	ATO	CGC	: ACC	TCG	1035
	Tyr	Åsр	Gly	Trp	Thr	Glu	Pro	Phe	A l a	Phe	His	Met	Arg	Thr	Ser	
15					335					340					345	
	CTC	TAC	GGC	TTC	TTC	TGG	AAG	CAG	CCG	GGC	ACC	CTG	GAG	GTG	GTG	1080
20	Leu	Туг	Gly	Phe	Phe	Trp	Lys	Gln	Pro	Gly	Thr	Leu	Glu	Yal	V a l	
20					350					355					360	
	TCA	GGC	TGC	ACG	GTG	GAC	ATG	CIG	CAG	GCA	GTC	TAT	GGG	CTG	GAC	1125
25	Ser	Gly	Cys	Thr	V a 1	Åsp	Met	Leu	Gln	Ala	Ya 1	Tyr	Gly	Leu	Åsp	
					365					370					375	
	GGC	ATC	CGC	CTG	CGC	CGC	CGC	CAG	TAC	TAC	ACC	ATG	ccc	AAC	TTC	1170
30	Gly	Île	Årg	Leu	Arg	Arg	Arg	Gln	Tyr	Tyr	Thr	Met	Pro	Åsn	Phe	
					380					385					390	
35	AGA	CAG	TAT	GAG	AAC	CCC	ACC	GGC	CYC	ATC	CTG	GTG	CAG	TGG	TCG	1215
35	Arg	Gln	Tyr	Glu	Asn	Åгg	Thr	Gly	His	He	Leu	V a l	Gln	Trp	Ser	
					395					400			•		405	
40	CTG	GGC	AGC	ccc	CTG	CAC	TTC	GCC	GGC	TGG	CAC	TGC	TCC	TGG	TGC	1260
	Leu	Gly	Ser	Pro	Leu	His	Phe	Ala	Gly	Trp	His	Суѕ	Ser	Trp	Cys	
					410					415					420	
45	TTC	ACG	CCC	GAG	GGC	ATC	TAC	TTC	A A G	CTC	GTG	TCC	CCC	CAG	AAT	1305
	Phe	Thr	Pro	Glu	Gly	Ile	Τýг	Phe	Lys	Leu	Yal	Ser	Ala	Gin	ksn	
					425					430					435	
50	GGC	GAC	TTC	CCA	CGC	TGG	GGT	GAC	TAC	GAG	GAC	AAG	CGG	GAC	CTG	1350
	Gly	Åsp	Phe	Pro	Årg	Trp	Gly.	Asp	Tyr.	Glu	Åsp	Lys	Arg	Asp	Leu	
55					440					445					450	

Figure 1

Figure 3