3.トランジスタ (transistor)

- ・代表的な半導体素子
- ●種類
 - ■接合トランジスタ(バイポーラトランジスタ, bipolar junction transistor) ■
 - 電界効果トランジスタ (Field effect transistor)
 - ◆接合型FET
 - ◆MOSFET **→**
- ・主な役割
 - ■スイッチング
 - ■増幅

接合トランジスタ

記号

E:エミッタ

B:ベース

C:コレクタ

- ●構造
 - ■p型半導体
 - ◆正孔(hall)が正の電荷を運ぶ
 - ■n型半導体
 - ◆電子が負の電荷を運ぶ

準備:電流源と接地

電流源

電流の大きさ を決める仮想 的な素子 接地記号 (GND記号)

- O[V]となる場所
- ・ 記号の場所同士は 接続されている

電位が Vとなる 場所

トランジスタの基本特性

- ●npn型トランジスタ
 - $\mathbf{I}_C = \beta i_B$
 - *β*: 電流増幅率
 - **◆**50~400
 - $\bullet i_E = i_C + i_B$
- $\bullet v_{BE} \succeq i_B$
 - \mathbf{I}_B を流すためには, v_{RE} がある程度必要

簡易等価回路

トランジスタの基本特性

- pnp型トランジスタ
 - $\mathbf{I}_C = \beta i_B$
 - *β*: 電流増幅率
 - **◆**50~400
 - $\bullet i_E = i_C + i_B$

簡易等価回路

基本回路

V_{cc}: プラス電源

基本回路

$$i_C = \beta i_B$$

$$v_O = V_{CC} - R_C i_C$$

$$= V_{CC} - R_C \beta i_B$$

ただし $v_O \ge 0$ $\rightarrow i_C$ の最大値: $\frac{V_{CC}}{R_C}$

注. 実際はC領域でも v_0 は0にならない

トランジスタの状態と用途

- ●状態
 - A) 遮断領域 (cut-off region)
 - B) 活性領域 (active region)
 - c) 飽和領域 (saturation region)
- ●用途
 - スイッチング
 - ◆状態: 遮断領域か飽和領域
 - ■信号の増幅
 - ◆状態:活性領域

スイッチ回路

- ●*R_C*を動かすスイッチを考える
 - R_Cは負荷一般を表している
- ●デジタルICの出力端子が 接続されていることを想定
 - ■出力low
 - ◆スイッチSを下に接続
 - • $v_{in} = 0$
 - ■出力high
 - ◆スイッチSを上に接続
 - $\bullet v_{in} = V_D$

スイッチ回路

飽和に必要な条件: $\beta i_B > \frac{v_{cc}}{R_C}$, $v_{BE} = V_{BE}$

単純なディジタル回路

- Resistor-transistor logic (RTL)
 - ■抵抗とバイポーラトランジスタによるデジタル回路

