2. Topological Space and Continuous functions

We will introduce some basic topological space. e.g. Order topology, Product topology, Subspace topology, Metric topology, (Quotient topology)

§ 12 Topological Spaces.

Definition. Let X be a nonempty set $\mathcal{P}(X) = 2^X$ power set of X. We say that $\mathscr{T} \subseteq \mathscr{P}(X)$ is a topology on X if

- (1) $\emptyset, X \in \mathscr{T}$
- $\begin{array}{l} (2) \ U_{\alpha} \in \mathcal{T}, \ \alpha \in I \implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T} \\ (3) \ U_{1}, \cdots, U_{n} \in \mathcal{T} \implies U_{1} \cap \cdots \cap U_{n} \in \mathcal{T} \end{array}$

If \mathscr{T} is a topology on X, then the pair (X,\mathscr{T}) or simply X is called a topological space and members in \mathcal{T} are called open sets in X

Example.

- (1) $X = \{a, b, c\}$
 - (a) The following are topological space on X, $\mathcal{T}_1 = \{\emptyset, X\}$, $\mathscr{T}_2 = \{\emptyset, \{a\}, \{a,b\}, X\}, \mathscr{T}_3 = \mathscr{P}(X)$
 - (b) The following are not topology on X $\mathscr{A} = \{\emptyset, \{a\}, \{b\}, X\} \ (\because \{a\} \cup \{b\} = \{a, b\} \notin \mathscr{A})$ $\mathscr{B} = \{\emptyset, \{a, b\}, \{b, c\}, X\} \ (\because \{a, b\} \cap \{b, c\} = \{b\} \notin \mathscr{B})$
- (2) Any set with more than 1 element has at least two topology $\{\emptyset, X\}$ (in discrete topology) and $\mathscr{P}(X)$ (discrete) and former is smallest one, another is the largest one.

<u>Definition.</u> $\mathscr{T}_{op} = \{ \mathscr{T} \mid \mathscr{T} \text{ is a topology on } X \} \mathscr{T}_1 \leq \mathscr{T}_2 \Leftrightarrow \mathscr{T}_1 \subseteq \mathscr{T}_2$ \overline{Claim} " \leq " is a partial ordering on \mathscr{T}_{op}

- * Reflexive: $\forall \mathcal{T} \in \mathcal{T}_{op}, \ \mathcal{T} \leq \mathcal{T}$ * Anti-symmetry: $\forall \mathcal{T}_1, \mathcal{T}_2 \in \mathcal{T}_{op}, \ \mathcal{T}_1 \leq \mathcal{T}_2 \ and \ \mathcal{T}_2 \leq \mathcal{T}_1 \implies$
- \star Transitive: $\forall \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3 \in \mathcal{T}_{op}, \mathcal{T}_1 \leq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \leq \mathcal{T}_3 \implies$

Example. Let X be a set, $\mathscr{T}_f = \{U \subseteq X, U = \emptyset \text{ or } X - U \text{ is finite } \}$ Then \mathcal{T}_f is a topology on X, called the "finite complement topology" on X

Proof.

- (1) $\emptyset, X \in \mathscr{T}_f (:: X X = \emptyset)$
- (2) $U_{\alpha} \in \mathscr{T}_f, \ \alpha \in I$ If $\bigcup_{\alpha \in I} U_{\alpha} = \emptyset$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$. If $U_{\alpha \in I}U_{\alpha} \neq \emptyset$, then $\exists \alpha_0 \in I \ni U_{\alpha_0} \neq \emptyset$ and $X - U_{\alpha}$ is finite

$$X - \bigcup_{\alpha \in I} U_{\alpha} = \bigcap_{\alpha \in I} (X - U_{\alpha}) \subseteq X - U_{\alpha_0} \implies X - (\bigcup_{\alpha \in I} U_{\alpha})$$
 is finte $\Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$

(3) $U_1, \dots, U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n = \emptyset$, then $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n \neq \emptyset$, then $X - (U_1 \cap \dots \cap U_n) = (X - U_1) \cap \dots \cup (X - U_n)$ is finite since each $X - U_i$ is finite. Thus $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$

From (1)(2)(3), \mathscr{T}_f is a topology on X.

Remark. If X is a finite set, then \mathscr{T}_f is the discrete topology on X

Example. Let X be a set and $\mathscr{T}_c = \{U \subseteq X \mid U = \emptyset \text{ or } X - U \text{ is countable } \}$. Then as in example above, \mathscr{T}_c is a topology on X, called the countable complement topology on X. Moreover, if X is countable, then \mathscr{T}_c is just a discrete topology on X

<u>Definition.</u> Let \mathscr{T} and \mathscr{T}' be two topologies on X. We say that \mathscr{T}' is (strictly) finer then \mathscr{T} or \mathscr{T} is (strictly) coaser that \mathscr{T}' if $\mathscr{T} \leq \mathscr{T}'(\mathscr{T} < \mathscr{T}')$, i.e. $\mathscr{T} \subseteq \mathscr{T}'(\mathscr{T} \subsetneq \mathscr{T}')$

Remark.

- (1) Two topologies on X need not be comparable
- (2) Other terminology, if $\mathcal{T}' \supset T$, \mathcal{T}' is larger(stronger) than \mathcal{T} and \mathcal{T} is smaller(weaker) than \mathcal{T}

§ 13 Bases for a topology.

<u>Definition.</u> Let X be a set. A base for a topology on X is a collection $\mathscr{B} \subseteq \mathscr{P}(X)$ satisfying

- (1) $U\mathscr{B} = X \left(\bigcup \mathscr{B} = \bigcup_{B \in \mathscr{B}} B \right)$
- (2) Given $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2 \exists B_3 \in \mathscr{B} \ni x \in B_3 \subseteq B_1 \cap B_2$

Members in \mathscr{B} are called basic open sets in X

Given a base \mathcal{B} for a topology on X, we can define the smallest topology \mathcal{T} on X containing \mathcal{B} called the topology on X generated by \mathcal{B} .

Usually, there are two ways to describe it

- (I) $\mathscr{T} = \{U \subseteq X, \forall x \in U \exists B \in \mathscr{B} \ni x \in B \subseteq U\}$. Clearly, $\mathscr{B} \subseteq \mathscr{T}$
- (a) $\emptyset, X \in \mathscr{T}$ (by the definition of bases (1))
- (b) $U_{\alpha} \in \mathscr{T}, \ \alpha \in I \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}. \text{ Given } x \in \bigcup_{\alpha \in I} U_{\alpha}, x \in U_{\alpha_0}$ for some $\alpha_0 \in I, \ \exists B \in \mathscr{B} \ni x \in B \subseteq U_{\alpha_0} \subseteq \bigcup_{\alpha \in I} U_{\alpha}$
- (c) $U_1, \dots, U_n \in \mathscr{T} \implies U_1 \cap \dots \cap U_n \in \mathscr{T}$. By induction on n, we only prove n = 2. Given $x \in U_1 \cap U_2$, $x \in U_1$ and $x \in U_2$ $\implies \exists B_1, B_2 \in \mathscr{B} \ni x \in B_1 \subseteq U_1$ and X in $\mathscr{B}_2 \subseteq U_2 \implies$

 $x \in B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies \exists B_3 \in \mathscr{B} \ni x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies U_1 \cap U_2 \in \mathscr{T}$

(II) $\mathscr{T}' = \{ \bigcup \mathscr{A} \mid \mathscr{A} \subseteq \mathscr{B} \} = \{ \bigcup_{\alpha \in I} A_\alpha \mid A_\alpha \in \mathscr{B} \}$

Clearly, $\mathscr{B} \subseteq \mathscr{T}'$ (only choose one element in \mathscr{B})

- (a) $\emptyset, X \in \mathcal{T}'(\text{trivial})$
- (b) $U_{\alpha} \in \mathcal{T}', \ \alpha \in I \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$ $\forall \alpha \in I, U_{\alpha} = \bigcup_{\beta \in I_{\alpha}} A_{\beta}. \text{ Then } \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} \bigcup_{\beta \in I_{\alpha}} A_{\beta} \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$
- (c) $U_1, \dots, U_n \in \mathcal{T}' \implies U_1 \cap \dots \cap U_n \in \mathcal{T}'$. By induction on n, we only to prove that n = 2. For $i = 1, 2, \dots, U_i = \bigcup_{\alpha \in I_j} A_{\alpha}$. $U_1 \cap U_2 = \bigcup_{\alpha \in I_2} (A_{\beta}^1 \cap A_{\alpha}^2)$. $\forall x \in U_1 \cap U_2, \ x \in A_{\beta}' \cap A_{\alpha}^2 \implies U_1 \cap U_2 = \bigcup_{x \in U_1 \cap U_2} B_X \in \mathcal{T}'$
- (III) $\mathscr{T} = \mathscr{T}'$
- $(\subseteq) \text{ Given } U \in \mathscr{T}, \ \forall x \in U, \ \exists B_x \in \mathscr{B} \ni x \in B_x \subseteq U \implies U = \bigcup_{x \in U} B_x \in \mathscr{T}'$
- (\supseteq) Given $U \in \mathscr{T}'$ $U = \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \in \mathscr{B}$ $\forall x \in U, x \in A_{\alpha} \text{ for some } \alpha \in I \text{ and } A_{\alpha} \in \mathscr{B}, \text{ i.e. } X \in A_{\alpha} \in U \text{ and } A_{\alpha} \in \mathscr{B} \implies U \in \mathscr{T}. \text{ Hence } \mathscr{T} = \mathscr{T}'$

Example.

- (1) Let \mathscr{B} be the collection of all open balls in \mathbb{R}^n . Then \mathscr{B} is a base for a topology on \mathbb{R}^n , namely, then Euclidean topology on \mathbb{R}^n
- (2) Let \mathscr{B}' be the collection of all n-dimentional open intervals in \mathbb{R} . Then \mathscr{B}' is a base for a topology on \mathbb{R}^n . In fact, β and β' generate the same topology on \mathbb{R}^n

Lemma. Let X be a set, let \mathscr{B} be a basis for a topology \mathscr{T} on X. \mathscr{T} equals the collection if all unions of elements of \mathscr{B} .

Lemma. Let X be a topological space and \mathscr{C} be a collection of open sets of $X \ni \forall$ open set U in X and $\forall x \in U \exists C \in \mathscr{C} \ni x \in C \subseteq U$. Then \mathscr{C} is a base for the topology of X.

- Proof. (1) $\bigcup \mathscr{C} = X$ Since X is open $\forall x \in X$, $\exists C_x \in \mathscr{C} \ni x \in C_x \subseteq X \implies x \in []\mathscr{C} \implies X = []\mathscr{C}$
 - (2) Given $C_1, C_2 \in \mathscr{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, $\exists C \in \mathscr{C} \ni x \in C \subseteq C_1 \cap C_2, \therefore \mathscr{C}$ is a base for a topology of X

Remark. Let \mathscr{T} be the original topology on X and \mathscr{T}' be the topology generated by \mathscr{C} . Then $\mathscr{T}=\mathscr{T}'$

Proof.

- $(\subseteq) \text{ Given } U \in \mathscr{T}, \, \forall x \in U \exists C \in \mathscr{C} \ni x \in C \subseteq U \implies U \in \mathscr{T}'$
- (\supseteq) Given $v \in \mathcal{T}'$, by lemma, $V = \bigcup \mathscr{A}$ for some $A \subseteq \mathscr{C}$. Since $\mathscr{C} \subseteq \mathscr{T}$, $\mathscr{A} \subseteq \mathscr{T}$, $\therefore V = \bigcup \mathscr{A} \in \mathscr{T}$

Lemma. Let \mathcal{B} and \mathcal{B}' be bases for the topology \mathcal{T} and \mathcal{T}' on X respective TFAE

- (1) \mathscr{T} is finer that \mathscr{T} i.e. $\mathscr{T} \subseteq \mathscr{T}'$
- (2) $\forall x \in X \text{ and } B \in \mathcal{B} \text{ with } x \in B, \exists B' \in \mathcal{B} \ni x \in B' \subseteq B$

Proof.

- (a) \Rightarrow (b) Suppose $\mathscr{T} \subseteq \mathscr{T}'$. Given $x \in X$ and $B \in \mathscr{B}$ with $x \in B$. Since $\mathscr{T} \subset \mathscr{T}'$, $B \in \mathscr{T}, \exists B' \in \mathscr{B} \ni x \in B' \subseteq B$
- $(b) \Rightarrow (a)$ Suppose (b) holds. Given $U \in \mathcal{T}$, $\forall x \in U$, $\exists B_x \in \mathcal{B} \ni x \in B_x \subseteq U$. By (b), $\exists B_x' \in \mathcal{B} \ni x \in B_x' \subseteq B_x \subseteq U \implies U \in \mathcal{T}'$

Example. In $\S 13$, example 1,2

 $\mathcal{B}:$ all open balls in \mathbb{R}^n for a topology on \mathbb{R}^n

 \mathscr{B}' : all open intervals in \mathbb{R}^n for a topology on \mathbb{R}^n

By lemma above, they generate the same Euclidean topology on \mathbb{R}^n We now define 3 topologies on the real line \mathbb{R}

<u>Definition</u>.

- (1) $\mathscr{B} = \{(a,b) \mid -\infty < a < b < \infty\}$: the collection of all open intervals in \mathbb{R} which is the base for the usual topology on \mathbb{R}
- (2) $\mathscr{B}' = \{[a,b) \mid -\infty < a < b < \infty\}$ the collection of all closed-open interval in \mathbb{R} , which is also a base for a topology of \mathbb{R} called the lower limit topology on \mathbb{R} . We denote it by \mathbb{R}_l
- (3) Let $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and $\mathscr{B}'' = \{B \subseteq \mathbb{R} \mid B = (a, b) \text{ or } B = (a, b) K \text{ for } -\infty < a < b < \infty\}$. Claim: \mathscr{B}' is a base for a topology on \mathscr{T}
 - \star Clearly, $U\mathscr{B}'' = \mathbb{R}$
 - \star Given $B_1, B_2 \in \mathscr{B}''$ and $x \in B_1 \cap B_2$. We have 4 cases:
 - (i) B_1 and B_2 are open intervals which is clearly.
 - (ii) $B_1 = (a, b)$ and $B_2 = (c, d) K$. Let $\alpha = \max\{a, c\}$ and $\beta = \min\{b, c\}$. $x \in (\alpha, \beta) K \subseteq B_1 \cap B_2$ and $(\alpha, \beta) K \in \mathcal{B}''$
 - (iii) (3)(4) similarly

The topology on \mathbb{R} generated by B' is called the K-topology on \mathbb{R} and denoted \mathbb{R}_k

Lemma. The topologies of \mathbb{R}_l and \mathbb{R}_k are strictly finer than the Euclidean topology of \mathbb{R} but are not comparable with one another

Proof. Let $\mathcal{T}, \mathcal{T}'$ and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_l, \mathbb{R}_k$ generated by $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ respectly. We use lemma above to prove it.

- * $\mathscr{T} \subsetneq \mathscr{T}'$ Given $(a,b) \in \mathscr{B}$ and $x \in (a,b)$. We have $[x,b) \in \mathscr{B}'$ with $x \in [x,b) \subseteq (a,b)$. By lemma, $\mathscr{T} \subseteq \mathscr{T}'$, $\forall a < b, \ [a,b) \in \mathscr{B}'$ so $[a,b) \in \mathscr{T}'$, but $[a,b)' \notin \mathscr{T}$
- * Clearly, $\mathscr{T} \subseteq \mathscr{T}''$ by $\mathscr{B} \subseteq \mathscr{B}''$. Moreover $B'' = (-1,1) K \in \mathscr{B}''$, so $B'' \in \mathscr{T}''$ but $B'' \notin \mathscr{T}$.
- * \mathscr{T}' and \mathscr{T}'' are not comparable $(-1,1)-K\in\mathscr{T}''$, but $(-1,1)-K\notin\mathscr{T}'(::$ not $[0,c)\in\mathscr{B}'\ni 0\in[0,c)\subseteq(-1,1)-K)$. $[0,1)\in\mathscr{T}$ but no $\mathscr{B}''\in\mathscr{B}''\ni 0\in B''\subseteq[0,1)$

<u>Definition.</u> A subbase \mathscr{S} for a topology on X is a collection of subsets of X with $\bigcup \mathscr{S} = X$ and elements in \mathscr{S} are calle subbasic open sets in X

Given subbase on X

$$\mathscr{B} = \{S_1 \cap \cdots \cap S_k, k \in \mathbb{N}, S_1, \cdots, S_k \in S\}$$

Claim \mathscr{B} is a base for a topology on X

<u>Definition.</u> The topology on X generated by a subbase $\mathscr S$ is defined to be the topology generated by the base $\mathscr B$.

The Order Topology. (which provides many counterexample in topology)

<u>Definition</u>. A relation C on a set is called an "order relation" (or a simple order) if it satisfies

- (1) Comparable: $\forall x \neq y \text{ in } X \text{ either } xCy \text{ or } yCx$
- (2) Non-reflexivity: no xCx
- (3) Transitivity: xCy and $yCz \implies xCz$

Given a simple order set (X, <) and $a, b \in X$ with a < b (Note: $a \le b$ means a < b or a = b). We can define:

$$(a,b) = \{x \in X \mid a < x < b\}$$
 open interval

$$(a, b] = \{x \in X \mid a < x \le b\}$$
 open interval

$$[a,b) = \{x \in X \mid a \le x < b\}$$
 open interval

$$[a,b] = \{x \in X \mid a \le x \le b\}$$
 open interval

We assume that $|X| \geq 2$. Let \mathscr{B} be the collection of all subsets of the following types

(1) All open intervals (a, b) in X

- (2) All intervals of the forms $[a_0, b)$ where a_0 is the smallest elements of X
- (3) All intervals of the forms $(a, b_0]$ where b_0 is the largest elements of X

<u>Definition</u>. The topology generated by \mathcal{B} is called the order topology on X

Example.

- (1) If X is an order set and $T \subseteq X$, then so is Y
- (2) In \mathbb{R} we give the usually ordering and the order topology on \mathbb{R} is the usual topology on \mathbb{R}
- (3) In $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$ with the usual ordering is an order set.
- (4) In $\mathbb{R} \times \mathbb{R}$ with the dictionary order is an order set whose basis for the order topology is of the form
- (5) \mathbb{N} with the usual ordering is an order set with the smallest element 1. What is the order topology?
 - ★ $[1,b): b \in \mathbb{N}$ and (a,b), a < b. In particular, $\{1\} = [1,2)$ and $\{n\} = (n-1,n+1), n > 1$ are basic open sets in \mathbb{N} \therefore the order topology on \mathbb{N} is the discrete topology on \mathbb{N}
- (6) The set $X = \{1, 2\} \times \mathbb{N} = \{1 \times n\}_{n=1}^{\infty} = a_n \cup b_n = \{2 \times n\}_{n=1}^{\infty}$ in the dictionary order with the smallest element 1×1 . The order topology on X is not discrete topology on X

$$X: a_1, a_2, \dots, b_1, b_2, \dots, a_i < a_{i+1}, b_j < b_j + 1, a_i < b_j$$

$$\star \{a_1\} = [a_1, a_2)$$

$$\star \{a\}n\} = (a_{n-1}, a_{n+1}), n \ge 2$$

$$\star \{b_n\} = (b_{n-1}, b_{n+1}), n \ge 2$$

But $\{b_1\}$ is not open, b_1 is not the smallest elements any basic open set in the order topology containing b_1 must of the form a_l, b_j for some $l \geq 1$ and j > 1

<u>Definition</u>. Let X be an ordered set and $a \in X$. We define the rays determine by a

$$\star (a, \infty) = \{ x \in X \mid x > a \}$$

$$\star \ (-\infty, a) = \{ x \in X \mid x < a \}$$

$$\star (a, \infty) = \{x \in X \mid x \ge a\}$$

$$\star \ (\infty, a] = \{ x \in X \mid x \le a \}$$

Some facts:

(1) open rays in X are open in the order topology of X. In fact, $(a, \infty) = (a, b_0]$ if X has the largest element which is a basic open set in the order topology of X. If X has no largest element, then $(a, \infty) = \bigcup_{a < x} (a, x)$ which is open in the order topology of X

- (2) closed rays is close
- (3) The order topology of X is contained in the topology on X generated by open rays in X. \therefore $(a,b) = (a,\infty) \cap (-\infty,b)$. If X has the smallest element a_0 , $[a_0,b) = (-\infty,b)$ If X has the largest element b_0 , $(a,b_0] = (a,\infty)$