Stats Yr2 Chapter 3: Distribution-N

Gaussian Probability

Getting normal values from your calculator

Note:

If for some reason you haven't got an fx-CG50, buy one now! These instructions below assume you have a Classwiz. TODO: check andupdate for fx-CG50.

Just like a cumulative frequency graph gives the running total of the frequency up to a given value, a **cumulative distribution** gives the **running total of the probability** up to a given value.

IQ is distributed using $X \sim N(100,15^2)$. Find

- (a) P(X < 109)
- (b) $P(X \ge 93)$
- (c) P(110 < X < 120)
- (d) P(X < 80 or X > 106)
- Press MODE.
- 2. Choose DISTRIBUTION (option 7)
- Choose Normal CD (i.e. "Cumulative Distribution")
- 4. Since the lower value is effectively $-\infty$, use any value at least 5σ below the mean (-100000 will do!). Press = after each value.
- 5. Put the upper value as 109.
- 6. Set $\sigma = 15$ and $\mu = 100$
- 7. You should obtain P(X < 109) = 0.7257 (4dp)

2

Getting normal values from your calculator

```
IQ is distributed using X \sim N(100,15^2). Find
(a) P(X < 109)
(b) P(X \ge 93)
(c) P(110 < X < 120)
(d) P(X < 80 \text{ or } X > 106)
b
                                                                                     Fro Note: \geq vs > makes
                                                                                     no difference as the
                                                                                     distribution is continuous.
```

Getting normal values from your calculator

IQ is distributed using $X \sim N(100,15^2)$. Find

- (a) P(X < 109)
- (b) $P(X \ge 93)$
- (c) P(110 < X < 120)
- (d) P(X < 80 or X > 106)
- Use 93 for the lower limit and something arbitrarily high (e.g. 100000) for the upper limit.

$$P(X \ge 93) = 0.6796 (4dp)$$

Fro Note: ≥ vs > makes no difference as the distribution is continuous.

- P(110 < X < 120) = 0.1613 (4dp)
- From the graph, we can see that we can find the probability between 80 and 106, and take away from 1:

$$P(X < 80 \text{ or } X > 106) = 1 - P(80 < X < 106)$$

= 1 - 0.5642

= 0.4358

Froculator Tip: You will need to switch back to normal calculation mode to do the $1 - \cdots$. Note however that the ANS key will store the last result from the Distribution Mode!

Test Your Understanding

The criteria for joining Mensa is an IQ of at least 131.

Assuming that IQ has the distribution $X \sim N(100,15^2)$ for a population, determine:

- a) What percentage of people are eligible to join Mensa.
- b) If 30 adults are randomly chosen, the probability that at least 3 of them will be eligible to join. (Hint: Binomial distribution?)

Test Your Understanding

The criteria for joining Mensa is an IQ of at least 131.

Assuming that IQ has the distribution $X \sim N(100,15^2)$ for a population, determine:

- a) What percentage of people are eligible to join Mensa.
- b) If 30 adults are randomly chosen, the probability that at least 3 of them will be eligible to join. (Hint: Binomial distribution?)
- a $P(X \ge 131) = 0.01938 (4sf)$
- Let Y be the number of adults among 30 who are eligible to join.

$$Y \sim B(30, 0.0193827)$$

$$P(Y \ge 3) = 1 - P(Y \le 2)$$

= 1 - 0.979986
= 0.02001 (4sf)

Froculator Note: You absolutely can't use tables in a formula booklet here. You'll need to use a calculator.

Exercise 3.2

Pearson Stats/Mechanics Year 2 Pages 22-23

Homework Exercise

1 The random variable $X \sim N(30, 2^2)$.

Find: a P(X < 33)

b P(X > 26)

c $P(X \ge 31.6)$

2 The random variable $X \sim N(40, 9)$.

Find: a P(X > 45)

b $P(X \le 38)$

c $P(41 \le X \le 44)$

Watch out In the normal distribution N(40, 9) the second parameter is the variance. The standard deviation in this normal distribution is $\sqrt{9} = 3$.

3 The random variable $X \sim N(25, 25)$.

Find: a P(Y < 20)

b P(18 < Y < 26)

c P(Y > 23.8)

4 The random variable X ~ N(18, 10).

Find: a $P(X \ge 20)$

b P(X < 15)

e P(18.4 < X < 18.7)

5 The random variable $M \sim N(15, 1.5^2)$.

a Find: i P(M > 14)

ii P(M < 14)

b Calculate the sum of your answers to **a** i and ii and comment on your answer.

6 The random variable $T \sim N(4.5, 0.4)$.

a Find P(T < 4.2).

b Without further calculation, write down P(T > 4.2).

7 The random variable $Y \sim N(45, 2^2)$. Find:

a P(Y < 41 or Y > 47) **b** P(Y < 44 or 46.5 < Y < 47.5)

Homework Exercise

8 The volume of soap dispensed by a soap-dispenser on each press, X ml, is modelled as $X \sim N(6, 0.8^2)$.

a Find: i P(X > 7) ii P(X < 5) (2 marks)

The soap dispenser is pressed three times.

b Find the probability that on all three presses, less than 5 ml of soap is dispensed. (2 marks)

9 The amount of mineral water, W ml, in a bottle produced by a certain manufacturer is modelled as $W \sim N(500, 14^2)$.

a Find: **i** P(W > 505) **ii** P(W < 490) (2 marks)

A sample of 4 bottles is taken.

b Find the probability that all of the bottles contain more than 490 ml. (2 marks)

- 10 The heights of a large group of women are normally distributed with a mean of 165 cm and a standard deviation of 3.5 cm. A woman is selected at random from this group.
 - a Find the probability that she is shorter than 160 cm.

Problem-solving

For part **c**, formulate a binomial random variable to represent the number of women in the sample who meet Steven's criteria.

Steven is looking for a woman whose height is between 168 cm and 174 cm for a part in his next film.

b Find the proportion of women from this group who meet Steven's criteria.

A sample of 20 women is taken from the group.

c Find the probability that at least 5 of the women meet Steven's criteria.

Homework Exercise

- 11 The diameters of bolts, D mm, made by a particular machine are modelled as $D \sim N(13, 0.1^2)$.
 - a Find the probability that a bolt, chosen at random, has a diameter less than 12.8 mm.

(1 mark)

Bolts are considered to be 'perfect' if the diameter lies between 12.9 mm and 13.1 mm. A random sample of 40 bolts is taken.

- **b** Find the probability that more than 25 of the bolts are 'perfect'. (4 marks)
- 12 The masses, X grams, of a large population of squirrels are modelled as a normal distribution with $X \sim N(480, 40^2)$.
 - a Find the probability that a squirrel chosen at random has a mass greater than 490 g. (1 mark)
 - A naturalist takes a random sample of 30 squirrels from the population.
 - **b** Find the probability that at least 15 of the squirrels have a mass between 470 g and 490 g.

(4 marks)

Homework Answers

For Chapter 3, student answers may differ slightly from those shown here when calculators are used rather than table values.

1	a	0.9332		b	0.97	72	c	0.2119
2	a	0.0478		b	0.25	25	c	0.2782
3	a	0.1587		b	0.49	85	c	0.5948
4	a	0.2635		b	0.17	14	c	0.0373
5	a	i 0.7475		ii	0.25	25		
	b	Sum is 1, combined probabilities include every possible value.						
6	a	0.3176		b	0.68	24		
7	a	0.1814		b	0.42	95		
8	a	i 0.1056	ii	0.1	056	b	0.0012	
9	a	i 0.3605	ii	0.2	375	b	0.3380	
10	a	0.0766		b	0.19	06	c	0.3296
11	a	0.0228		b	0.73	45		
12	a	0.4013		b	0.00	0198	6	