Frederik Rieß Pit-Aurel Ehlers Jascha Schmidt Felix Willrich

[Intelligente Parkplatzerkennung mit künstlichen neuronalen Netzwerken]

Product Backlog Sprint 2

1.	Ziel Sprint 2	2
	Arbeitspakete	
	Tests	
	Hilfsarbeiten	
	Anhänge	

Versionen:

versionen.						
Rev.	Datum	Autor	Bemerkungen	Status		
0.1	24.04.2019	Felix Willrich	1. Entwurf + Eintragen aller	Abgeschlossen		
			Informationen			
0.2	24.04.2019	Frederik Rieß	Eintragen/Verbesserung der	Abgeschlossen		
			Beschreibungen			
1.0	25.04.2019	Felix Willrich	Gantt Diagramm erstellt + Finale	Abgeschlossen		
			Version	-		

1. Ziel Sprint 2

Product_Backlog_Sprint_2_A15.docx

Erkenntnisse für zukünftige Projekte zu gewinnen.

Am 23.04.2019 wurde ein weiteres Treffen mit dem Kunden vereinbart. Dies sollte dazu dienen den Sprint 1 abzuschließen und gleichzeitig den zweiten Sprint zu besprechen. Während dieser Besprechung wurde vom Kunden ausdrücklich geäußert, dass das Testen von verschiedenen Parametern und Einflüssen gewünscht ist. Dies ist auch der Hauptaspekt unseres Teamprojektes und soll dazu führen, das Programm zu optimieren und

Aus diesem Grund werden im Sprint 2 diverse Testreihen bzw. kleine Hilfsarbeiten durchgeführt. Die Arbeitspakete wurden darauf angepasst. Alle Testreihen sollen dokumentiert werden, da diese an den Kunden weitergereicht werden. Unter anderem sollen verschiedene Größen der Samples oder auch die Augmentation der Bilder getestet werden.

2. Arbeitspakete

Die Arbeitspakete werden diesmal unterteilt in Testreihen und in Hilfsarbeiten. Die Tests stehen dabei im Fokus.

2.1. Tests

Bei den Tests kommen alle Aufgaben zu tragen, die sich damit beschäftigen die Parameter bzw. Einflüsse des Programms zu verändern. Ziel dabei ist es, herauszufinden welche Einstellung das bestmöglichste Ergebnis ergibt. Die Arbeitspakete in diesem Bereich sind gröber formuliert, da es während der Arbeit zu verschiedenen Tests kommen kann, die im Nachhinein alle dokumentiert werden.

Arbeitspaket	(Haupt-) Verantwortli- cher	Beschreibung	Benötigte Ressourcen	Abhängigkeiten
Batch- Normalization	Jascha Schmidt	Die Auswirkungen der Batch Normalization auf unsere Ergebnisse soll überprüft und dokumentiert werden.	Jupyter Notebook mit Frameworks	keine
Hyperparameter optimieren	Frederik Rieß	Die Layergrößen des CNNs sollten auf die Umgebung angepasst werden. Eine Libary kann diese Arbeit unterstüzten.	Jupyter Notebook mit Frameworks	https://github.co m/hyperopt/hype ropt
Verschiedene Inputgrößen testen	Pit Ehlers	Die Bilder können in verschiedenen Größen eingelesen werden. Dies gilt zu testen, welches die optimalste Art ist.	Jupyter Notebook mit Frameworks	Skalierte Bilder
Generator benutzen	Frederik Rieß	Generatoren könnten als alternative Methode zum Einlesen und Skalieren der Daten benutzt werden.	Jupyter Notebook mit Frameworks	
Augmentation	Felix Willrich	Die Bilder können verändert werden und dann zum Anlernen benutzt werden. Es soll geschaut werden, ob dies einen Vorteil bringt.	Jupyter Notebook mit Frameworks	https://github.co m/aleju/imgaug
Weitere Tests	Felix Willrich, Frederik Rieß, Pit Ehlers, Jascha Schmidt	Während des Arbeitens werden weitere Tests möglich sein, bzw. überhaupt erst auffallen.	Jupyter Notebook mit Frameworks	Unterschiedlich

2.2. Hilfsarbeiten

Die Hilfsarbeiten haben den Zweck die eigentlichen Tests zu unterstützen. Hierbei werden Skripte geschrieben, Hilfsmittel verstanden bzw. Daten analysiert.

Arbeitspaket	(Haupt-) Verantwortlicher	Beschreibung	Benötigte Ressourcen	Abhängigkeiten
Bilder Ordnerstruktur	Felix Willrich	Verschiedene Pakete zum Anlernen und Testen des Netzes werden erstellt. Möglichst breite Streuung soll angestrebt werden.	Onedrive, Bilder	keine
Ausschneiden der Parkplätze überarbeiten	Felix Willrich, Jascha Schmidt	Zurzeit werden bei dem Skript verschiedene Störfaktoren mit ausgeschnitten. Diese sollen beseitigt werden.	Jupyter Notebook mit Frameworks	Skript zum Ausschneiden der Bilder aus einem großen Parkplatz, Ausgeschnittene Bilder
Skript zum Ermitteln der Größe der Bilder	Pit Ehlers	Ein Skript zum Ermitteln der Größe der ausgeschnittenen Parkplätze soll geschrieben werden. Dies hilft danach, verschiedene Inputgrößen zu wählen.	Python, Bilder	keine
Collab einarbeiten	Felix Willrich, Frederik Rieß, Pit Ehlers, Jascha Schmidt	Da zurzeit keine geeignete Hardware bereitsteht, soll ein öffentliches Netz genutzt werden. Dies soll jeder verstanden haben.	Jupyter Notebook	keine

Product_Backlog_Sprint_2_A15.docx

2.3. Anhänge

1. Gantt Diagramm

Product_Backlog_Sprint_2_A15.docx

