Image & Texture Manipulation using Texture Attributes

CS676: Texture Synthesis Project—Proposal

Avikalp Kumar Gupta Kundan Krishna

Indian Institute of Technology, Kanpur

11th March 2016

Problem Statement

Synthesizing new textures using combinations of existing textures and images

Texture Manipulation Example:

Image Manipulation Example:

input

interlaced

bumpy

veined

marbled

Methodology

Make a joint loss function

$$\min_{\mathbf{x}} \beta \sum_{i=1}^{m} L_2 \left(C_{l_i}(\mathbf{x}), \hat{C} \right) + \gamma \Gamma(\mathbf{x}) + \lambda L_1 \left(F_s(\mathbf{x}), \hat{F}_s \right)$$

Details of the loss function

Similarity from the input image

 $F_s(\mathbf{x})$ are the features taken from a layer of the CNN with generated image \mathbf{x} .

 \hat{F}_s is the activation for the initial input image.

 L_1 is the square loss.

Details of the loss function

Similarity from the specified texture

 $L_2(C_{l_i}(\mathbf{x}), \dot{C})$ is the negative log-likelihood of the activation of the texture class $\dot{C}.$

To get it, we train an SVM texture classifier using the output of a specific layer of the VGG-16 network as the input feature.

Bilinear CNN features

Bilinear CNN Models for Fine-grained Visual Recognition

$$B_{r_i}(I) = \frac{1}{N} \sum_{j=1}^{N} f_j f_j^T$$

Making images smooth

TV regularization

$$\Gamma(x) = X_{i,j}(x_{i,j+1} - x_{i,j})^2 + (x_{i+1,j} - x_{i,j})^2$$

Optimization

Used L-BFGS with gradients computed through backpropagation.

Dataset

Describable Textures Dataset (DTD)

5640 images, categorized into 47 categories.

Sample categories:

- meshed
- knitted
- striped
- **.**.

Lin, T. & Maji, S. (2015). Visualizing and understanding deep texture representations. *CoRR*, *abs/1511.05197*. Retrieved from http://arxiv.org/abs/1511.05197