PLAN-SPACE PLANNING

Chapter 10

Outline

- Motivation
- > Partial plans / plans that are not complete
- Flaws
- Plan-space planning algorithm
- Example

Motivation

State-space search produces inflexible plans.

Part of the ordering in an action sequence is not related to causality:

sequence:

 $\langle \mathsf{unstack}(\mathsf{R1},\mathsf{A},\mathsf{B}), \mathsf{unstack}(\mathsf{R2},\mathsf{D},\mathsf{E}), \mathsf{putdown}(\mathsf{R1},\mathsf{A}), \mathsf{stack}(\mathsf{R2},\mathsf{D},\mathsf{B}) \rangle$

 $\begin{array}{l} \underline{\text{partially ordered plan only needs: unstack}}(R1,A,B) \leq \underline{\text{putdown}}(R1,A),\\ \underline{\text{unstack}}(R2,D,E) < \underline{\text{stack}}(R2,D,B), \text{ and } \underline{\text{unstack}}(R1,A,B) < \underline{\text{stack}}(R2,D,B). \end{array}$

Sog. of action of the control of the

Motivation

State-space search wastes time examining many different orderings of the same set of actions:

Not ordering actions unecessarily can speed up planning

Motivation

<u>dy A→B</u>:

1) A would be massay for B

Plan space search:

• no notion of states, just partial plans

- adopts a least-commitment strategy: don't commit to orderings, instantiations, etc, unless necessary
- produces a partially ordered plan: represents all sequences of actions compatible with the partial ordering
- benefits: speed-ups (in principle), flexible execution, easier replanning

Plan space search: basic idea

Plan-space search builds a partial plan: basic notion (nodes)

- set < of ordering constraints $o_i < o_j$ (with transitivity built in)
- set B of binding constraints x = y, $x \neq y$, $x \in D$, $x \notin D$, substitutions
- L of causal links $o_i \stackrel{p}{\rightarrow} o_j$ stating that (effect p) of o_i establishes precondition p of o_i , with $o_i < o_i$ and binding constraints in B for parameters of o_i and o_j appearing in p

riples (0: .0j · P) b(y) pre: p(y), q(y) eff: ... a(x)pre: ... eff: p(x),not q(x) pre: p(z)

Plan-space search: basic idea

Nodes are partial plans

l'empty pourieur plan

• initial node is $(O: \{ \text{start}, \text{end} \}, \{ \text{start} < \text{end} \}, B: \{ \}, L: \{ \})$ with $\text{EFF}(\text{start}) = s_0$ and PRE(end) = g. The only ordering constraints

Successors are determined by plan refinment operations

 $\hbox{ each operation add elements to $O,<$,B,L to resolve a flaw in the plan }$

Search through the plan space until a partial plan is found which has no flaw:

- ullet no open precondition: all preconditions of all operators in O are established by causal links in L
- no threat (each linearisation is safe): for every causal link $o_i \stackrel{p}{\to} o_j$, every o_k with $\text{EFF}^-(o_k)$ unifable with p is such that $o_k < o_i$ or $o_j < o_k$
- < and B are consistent

Flaw: an operator o in the plan has a precondition p which is not established

p 0 putdown(r,A) holding(r,A) pre: holding(r,A) eff: ...

Flaw: an operator o in the plan has a precondition p which is not established Resolving the flaw:

1. find an operator o' (either already in the plan or insert it) which can be used to establish p, i.e. o' can be ordered before o and one of its effects can unify with p

Flaw: an operator o in the plan has a precondition p which is not established Resolving the flaw:

- 1. find an operator o' (either already in the plan or insert it) which can be used to establish p, i.e. o' can be ordered before o and one of its effects can unify with p
- 2. add to B binding constraints to unify the effect of o' with p

Flaw: an operator o in the plan has a precondition p which is not established Resolving the flaw:

- 1. find an operator o' (either already in the plan or insert it) which can be used to establish p, i.e. o' can be ordered before o and one of its effects can unify with p
- 2. add to B binding constraints to unify the effect of o' with p
- 3. add to L the causal link $o' \stackrel{p}{\rightarrow} o$ (and the ordering constraint o' < o).

Flaw: An operator a establishes a condition p for operator b, but another operator c is capable of deleting p before b gets to use it

Flaw: An operator a establishes a condition p for operator b, but another operator c is capable of deleting p before b gets to use it

Resolving the flaw - 3 possibilities:

1. order c after b

Flaw: An operator a establishes a condition p for operator b, but another operator c is capable of deleting p before b gets to use it

Resolving the flaw - 3 possibilities:

- 1. order c after b
- 2. order c before a

Flaw: An operator a establishes a condition p for operator b, but another operator c is capable of deleting p before b gets to use it

Resolving the flaw - 3 possibilities:

- 1. order c after b
- 2. order c before a
- 3. add a binding constraint preventing c to delete p

Plan-space planning algorithm

```
function \operatorname{PLAN-SPACE-PLANNING}(\pi) returns a plan, or failure F \leftarrow \operatorname{OPEN-PRECONDITIONS}(\pi) \cup \operatorname{THREATS}(\pi) four to be vestward if F = \{\} then return \pi select a flaw f \in F just choose any [ though there could be efficient selections ] R \leftarrow \operatorname{RESOLVE}(f,\pi) if R = \{\} then return failure expensive bit. choose a resolver r \in R \pi' \leftarrow \operatorname{REFINE}(r,\pi) return \operatorname{PLAN-SPACE-PLANNING}(\pi')
```

PLAN-SPACE-PLANNING is sound and complete

Grounded variant: no binding constraints needed

```
• operator Start
  - precondition: { }
  - effect: \{At(Home), Sells(MM,Drill), Sells(WH,Milk), Sells(WH,Bananas)\}
• operator End
  - precondition: \{At(Home), Have(Drill), Have(Milk), Have(Bananas)\}
  - effect: { }
ullet operator \mathsf{Go}(l,l')
  - precondition: \{At(l)\}
  - effect: \{At(l'), \neg At(l)\}
ullet operator \mathsf{Buy}(i,s)
  - precondition: \{At(s), Sells(s, i)\}
  - effect: \{Have(i)\}
```

Initial Plan

The only possible ways to establish the "Have" preconditions

The only possible ways to establish the "Sells" preconditions

The only ways to establish $\mathsf{At}(\mathsf{MM})$ and $\mathsf{At}(\mathsf{WH}).$ Note the threats

To resolve the 3rd threat, order ${\rm Go}(l2,{\rm WH})$ after ${\rm Buy}({\rm Drill}).$ This resolves all three threats.

Add binding constraint l1 = Home and causal link to establish At(l1)

Add binding constraint l2 = MM and causal link to establish At(l2)

Establish At(Home) for end. Note the threats.

Order Go(Home) after Buy(Milk) and Buy(Banana) to remove the threats.

Add binding constraint $l3={\rm WH}$ and causal link to establish ${\rm At}(l3).$ The plan is flawless.

