Supporting Information. Grace, J. B., and K. M. Irvine. 2020. Scientist's guide to developing explanatory statistical models using causal analysis principles. Ecology.

Appendix S4

Marine Food Web SEM Analyses

Data and R code for these analyses can be found in "Data S4". Analyses were run using R version 3.5.3 (R Core Team 2019).

Box S1. R code for ANOVA-type Models represented in Figure 6.

```
dat <- read.csv("AppendixS4 data.csv ")</pre>
names (dat)
attach (dat)
###################################
# CONVENTIONAL ANALYSIS
##################################
##### MODELS IN MANUSCRIPT
### Model A Simple ANOVA
modA <- aov(Epiphytes ~ Treatment)</pre>
drop1 (modA, ~., test="F")
### Model B Simple MANOVA
Ygc <- cbind(Gammarids, Caprellids)</pre>
modB <- manova(Ygc ~ Treatment)</pre>
summary.manova(modB)
### Model C Full MANOVA
Yegc <- cbind(Epiphytes, Gammarids, Caprellids)</pre>
modC <- manova(Yegc ~ Treatment)</pre>
summary.manova(modC)
### Model D MANCOVA
modD <-manova(Ygc ~ Treatment + Epiphytes)</pre>
summary.manova(modD)
### Model E ANCOVA #1
modE <- aov(Epiphytes ~ Treatment + Macroalgae + Seagrassdens)</pre>
drop1(modE, ~., test="F")
### Model F ANCOVA #2
modF <- aov(Epiphytes ~ Treatment + Gammarids + Caprellids)</pre>
drop1 (modF, ~., test="F")
### Model G ANCOVA #3
modG <- aov(Epiphytes ~ Treatment + Gammarids + Caprellids +</pre>
Macroalgae + Seagrassdens)
drop1 (modG, ~., test="F")
```

Box S2. R code for ANOVA-type Models represented in Figure 6 run as linear models.

```
# Load library "lm.beta" - has function "lm.beta" to standardize coefs
library(lm.beta)
### Model A Simple ANOVA
modA.lm <- lm(Epiphytes ~ Treatment)</pre>
summary(lm.beta(modA.lm))
### Model B Simple MANOVA
Ygc <- cbind(Gammarids, Caprellids)</pre>
modB.lm <- lm(Ygc ~ Treatment)</pre>
summary(lm.beta(modB.lm))
### Model C Full MANOVA
Yegc <- cbind(Epiphytes, Gammarids, Caprellids)</pre>
modC.lm <- lm(Yegc ~ Treatment)</pre>
summary(lm.beta(modC.lm))
### Model D MANCOVA
modD.lm <-lm(Ygc ~ Treatment + Epiphytes)</pre>
summary(lm.beta(modD.lm))
### Model E ANCOVA #1
modE.lm <- lm(Epiphytes ~ Treatment + Macroalgae + Seagrassdens)</pre>
summary(lm.beta(modE.lm)) # request standardized coefficients
### Model F ANCOVA #2
modF.lm <- lm(Epiphytes ~ Treatment + Gammarids + Caprellids)</pre>
summary(lm.beta(modF.lm))
### Model G ANCOVA #3
modG.lm <- lm(Epiphytes ~ Treatment + Gammarids + Caprellids +</pre>
Macroalgae + Seagrassdens)
summary(lm.beta(modG.lm))
```

Box S3. Results for ANOVA-type models in Box S2 (Part 1 of 3).

```
library(piecewiseSEM)
### Model A Simple ANOVA
> modA.lm <- lm(Epiphytes ~ Treatment)</pre>
Coefficients:
           Estimate Standardized Std. Error t value Pr(>|t|)
                                   0.09987 -6.541 1.03e-07 ***
(Intercept) -0.65328 0.00000
                                   0.15791 6.318 2.09e-07 ***
                        0.71575
Treatment
           0.99767
Residual standard error: 0.4893 on 38 degrees of freedom
Multiple R-squared: 0.5123, Adjusted R-squared: 0.4995
F-statistic: 39.92 on 1 and 38 DF, p-value: 2.088e-07
### Model B Simple MANOVA
Ygc <- cbind(Gammarids, Caprellids)</pre>
modB.lm <- lm(Ygc ~ Treatment)</pre>
Coefficients:
   Estimate Std. Error t value Pr(>|t|)
[1,] 3.2519 0.2545 12.776 2.50e-15 ***
[2,] -2.1959
                0.4024 -5.456 3.17e-06 ***
Residual standard error: 1.247 on 38 degrees of freedom
Multiple R-squared: 0.6004, Adjusted R-squared: 0.5898
F-statistic: 57.08 on 1 and 38 DF, p-value: 4.414e-09
### Model C Full MANOVA
Yegc <- cbind(Epiphytes, Gammarids, Caprellids)</pre>
modC.lm <- lm(Yegc ~ Treatment)</pre>
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
[2,] 0.9977
               0.4323 2.308 0.0266 *
Residual standard error: 1.339 on 38 degrees of freedom
Multiple R-squared: 0.7468, Adjusted R-squared: 0.7401
F-statistic: 112.1 on 1 and 38 DF, p-value: 6.838e-13
```

Box S4. Results for ANOVA-type models in Box S2 (Part 2 of 3).

```
### Model D MANCOVA
modD.lm <-lm(Ygc ~ Treatment + Epiphytes)</pre>
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
     2.8927 0.3551 8.145 8.97e-10 ***
[1,]
                 0.5515 -2.987 0.00498 **
[2,] -1.6473
[3,] -0.5499
                0.3956 -1.390 0.17284
Residual standard error: 1.193 on 37 degrees of freedom
Multiple R-squared: 0.6437, Adjusted R-squared: 0.6244
F-statistic: 33.42 on 2 and 37 DF, p-value: 5.122e-09
### Model E ANCOVA #1
modE.lm <- lm(Epiphytes ~ Treatment + Macroalgae + Seagrassdens)</pre>
Coefficients:
           Estimate Standardized Std. Error t value Pr(>|t|)
(Intercept) -1.1154 0.0000 0.2595 -4.298 0.000125 ***
Treatment
             0.9761
                          0.7003
                                     0.1503 6.496 1.52e-07 ***
                                     0.1318 -0.934 0.356638
Macroalgae
            -0.1230
                         -0.1017
                          0.2355
                                     0.2812 2.168 0.036818 *
Seagrassdens 0.6097
Residual standard error: 0.4637 on 36 degrees of freedom
Multiple R-squared: 0.585, Adjusted R-squared: 0.5504
F-statistic: 16.91 on 3 and 36 DF, p-value: 5.082e-07
### Model F ANCOVA #2
modF.lm <- lm(Epiphytes ~ Treatment + Gammarids + Caprellids)</pre>
Coefficients:
          Estimate Standardized Std. Error t value Pr(>|t|)
(Intercept) -0.11060 0.00000 0.28808 -0.384
Treatment
           0.64326
                       0.46148 0.23670 2.718
                                                     0.010 *
Gammarids -0.09928
                       -0.20144
                                   0.09234 -1.075
                                                     0.289
Caprellids -0.15824
                       -0.21899
                                   0.09537 -1.659
                                                     0.106
Residual standard error: 0.4621 on 36 degrees of freedom
Multiple R-squared: 0.5878, Adjusted R-squared: 0.5535
F-statistic: 17.11 on 3 and 36 DF, p-value: 4.499e-07
```

Box S5. Results for ANOVA-type models in Box S2 (Part 3 of 3).

```
### Model G ANCOVA #3
modG.lm <- lm(Epiphytes ~ Treatment + Gammarids + Caprellids +
Macroalgae + Seagrassdens)
Coefficients:
           Estimate Standardized Std. Error t value Pr(>|t|)
(Intercept) -0.37790 0.00000 0.31629 -1.195 0.240436
            0.21825
                         0.15658
                                    0.25558 0.854 0.399106
Treatment
                                    0.10181 -2.637 0.012524 *
Gammarids
            -0.26845
                        -0.54466
Caprellids -0.24635
                                    0.08864 -2.779 0.008809 **
                        -0.34092
Macroalgae 0.36969
                        0.30572
                                    0.17086 2.164 0.037607 *
Seagrassdens 0.99497
                         0.38422
                                    0.26024 3.823 0.000536 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3953 on 34 degrees of freedom
Multiple R-squared: 0.7151, Adjusted R-squared: 0.6732
F-statistic: 17.07 on 5 and 34 DF, p-value: 1.964e-08
```

Box S6. R code for SE Models shown in Figure 7 using 'piecewiseSEM' package.

```
##### piecewiseSEM modeling####
######################################
library(piecewiseSEM)
### Model A - a priori model
pw.modA <- psem(lm(Gammarids ~ Treatment, data=dat),</pre>
                lm(Caprellids ~ Treatment, data=dat),
                lm(Epiphytes ~ Gammarids + Caprellids + Macroalgae
                             + Seagrassdens, data=dat))
dSep(pw.modA)
### Model B.1 - add links 'Gammarids ~ Macroalgae'
### and 'Caprellids ~ Macroalgae based on modification indices
pw.modB.1 <- psem(lm(Gammarids ~ Treatment + Macroalgae, data=dat),</pre>
                  lm(Caprellids ~ Treatment + Macroalgae, data=dat),
                  lm(Epiphytes ~ Gammarids + Caprellids + Macroalgae
                             + Seagrassdens, data=dat))
dSep(pw.modB.1)
### Model B.final - final model, with 'Gammarids ~ Seagrassdens' added
pw.modB.final <- psem(lm(Gammarids ~ Treatment + Macroalgae</pre>
                                   + Seagrassdens, data=dat),
                 lm(Caprellids ~ Treatment + Macroalgae, data=dat),
                 lm(Epiphytes ~ Gammarids + Caprellids + Macroalgae
                            + Seagrassdens, data=dat))
dSep(pw.modB.final)
summary(pw.modB.final)
```

Literature Cited

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Box S7. Select results from SEM code in Box S6: d-separation test results.

```
> dSep(pw.modA)
                            Independ.Claim Test.Type DF Crit.Value
                                                                                              P.Value
         Epiphytes ~ Treatment + ... coef 34 0.8539570 3.991056e-01
2 Gammarids ~ Macroalgae + ... coef 37 5.3596554 4.622501e-06 ***
3 Caprellids ~ Macroalgae + ... coef 37 3.6578135 7.870962e-04 ***
4 Gammarids ~ Seagrassdens + ... coef 37 0.9795621 3.336642e-01
5 Caprellids ~ Seagrassdens + ... coef 37 0.6943843 4.917786e-01
6 Caprellids ~ Gammarids + ... coef 37 2.8369984 7.346110e-03 **
> dSep(pw.modB.1)
                            Independ.Claim Test.Type DF Crit.Value
                                                                                          P.Value
         Epiphytes ~ Treatment + ... coef 34 0.8539570 0.39910564
2 Gammarids ~ Seagrassdens + ... coef 36 2.2045815 0.03395976 *
3 Caprellids ~ Seagrassdens + ... coef 36 1.3723662 0.17844018
4 Caprellids ~ Gammarids + ... coef 36 0.7714145 0.44549545
dSep(pw.modB.final)
                            Independ.Claim Test.Type DF Crit.Value
                                                                                       P.Value
        Epiphytes ~ Treatment + ... coef 34
                                                                      0.8539570 0.3991056
2 Caprellids ~ Seagrassdens + ...
                                                         coef 36 1.3723662 0.1784402
                                                   coef 35 0.3277904 0.7450229
       Caprellids ~ Gammarids + ...
Global goodness-of-fit:
   Fisher's C = 5.873 with P-value = 0.438
```

Box S8. Results from SEM code in Box S6: final model coefficients and R-squares.

```
> # request range-standardized coefficients
> coefs(pw.modB.final, standardize = "range")
    Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1 Gammarids Treatment -2.0993
2 Gammarids Macroalgae 1.0857
3 Gammarids Seagrassdens 0.8665
                                       0.4562 ***
                                                   2.2046 0.0340
                                        0.3930 36
                                                                             0.2283
4 Caprellids Treatment -0.7837
5 Caprellids Macroalgae 0.7745
6 Epiphytes Gammarids -0.3398
                                                                            -0.2500 **
                                        0.2441 37
                                                   -3.2112 0.0027
                                                                             0.5540 ***
                                        0.2117 37
                                                       3.6578 0.0008
                                                   -5.8707 0.0000
                                        0.0579 35
                                                                            -0.7029 ***
                                                                            -0.3202 **
7 Epiphytes Caprellids -0.2636
                                        0.0860 35 -3.0652 0.0042
8 Epiphytes Macroalgae 0.4572
9 Epiphytes Seagrassdens 1.0690
                                                     3.3567 0.0019
4.3738 0.0001
                                                                             0.3974 **
                                        0.1362 35
9 Epiphytes Seagrassdens
                                        0.2444 35
                                                                             0.5825 ***
> # request r-squares
> rsquared(pw.modB.final)
    Response family
                          link method R.squared
1 Gammarids gaussian identity none 0.8030290
2 Caprellids gaussian identity none 0.4122171
3 Epiphytes gaussian identity none 0.7090204
```

Box S9. Bonus code for those that wish to be convinced that conditioning on a collider induces correlation between the parent variables.

```
##### CONDITIONING ON A COLLIDER SIMULATION STUDIES
##### Three-variable model A-> M <- B
### Simulate the Data
n = 10000
set.seed(1)
### create independent exogenous predictors
A <- rnorm(n, 0, 0.25)
B < - rnorm(n, 0, 0.30)
# coefficients for model
bexd = 0.60
      = -0.50
bexp
      = -0.55
bcmp
      = -0.35
bend
benc = -0.45
# collider is M variable
M \leftarrow 0.60*A + 0.30*B + rnorm(n, 0, 0.20)
dat <- data.frame(A, B, M)</pre>
print(cor(dat), digits=4) # note A and B effectively uncorrelated
##### Regression Models
### Model 1: M \sim A + B
summary(lm(M \sim A + B))
### Model 2: A ~ M + B - Illustrates that conditioning A on M induces (non-
causal) association between A and B
summary(lm(A \sim M + B))
##### Two-Stage Conditioning
## Stage 1 conditioning of A and B on M
A.res1 <- resid(lm(A \sim M))
B.res1 < - resid(lm(B \sim M))
## Residual Correlation Illustrates conditioning A and/or B on M induces
correlation between A.res and B.res
## this extends to induced correlations between A.res and B, and A and B.res
cor.test(A.res1, B.res1)
cor.test(A.res1, B)
cor.test(A, B.res1)
```