Time: 1 hour November 2010

Answer All Questions

- 1. For propositional expressions P, Q and R prove that:
 - a) $(P \vee Q) \equiv (\neg P \rightarrow Q)$.
 - b) $(P \rightarrow Q) \equiv (\neg Q \rightarrow \neg P).$
 - c) $\neg (P \lor Q) \equiv (\neg P \to \neg Q)$.
 - d) $P \vee (O \wedge R) \equiv (P \vee O) \wedge (P \vee R)$
 - The logical operator " \leftrightarrow " is read "if and only if." $P \leftrightarrow Q$ is defined as being equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$. Based on this definition, show that $P \leftrightarrow Q$ is logically equivalent to $(P \lor Q) \rightarrow (P \land Q)$ By using truth tables.
 - Prove that implication is transitive in the propositional calculus, that is, that $((P \to Q) \land (Q \to R)) \to (P \to R)$.
- 2. Represent the following English sentences in predicate calculus:
 - a) If it doesn't rain on Friday we will go to the park.
 - b) Emma is a Doberman pinscher and a good dog
 - c) All basketball players are tall.
 - d) Nobody likes taxes.
- 3. Given the following

i. if it is sunny and it is warm, then Samy is happy.

- ii. if there is blue sky then it is sunny.
- iii. there is blue sky.
- iv. it is warm.
- v. is Samy happy?

Use resolution to show Samy is happy

Good Luck