Q1) What is "parsing" in NLP?

Definition.

Parsing is the process of assigning a **syntactic structure** to a sentence according to a grammar. The output is typically a **parse tree** (constituency parsing) or a **dependency graph** (dependency parsing). The goal is to determine how words group into phrases and how those phrases relate, enabling downstream understanding.

Why it matters.

- **Disambiguation:** resolves multiple possible structures ("I saw the man with a telescope").
- Interfaces to meaning: syntactic structure is a scaffold for semantic role labeling, information extraction, and question answering.
- Downstream utility: improves machine translation, ASR post-processing, IE, coreference, and code generation.

Outputs.

- Constituency parse: hierarchical phrases (e.g., S → NP VP).
- Dependency parse: head-dependent relations (e.g., nsubj(sleeps, cat)).

Q2) Key steps of the CKY (Cocke-Kasami-Younger) algorithm

Dynamic-programming parser for context-free grammars in Chomsky Normal Form (CNF).

1. CNF conversion

Convert grammar so every rule is either $A \rightarrow BC$ or $A \rightarrow a$. (Add ϵ /UNIT-rule handling before conversion.)

2. Initialization (length-1 spans)

For each token w i, fill cell (i,i+1) with all nonterminals A such that $A \rightarrow w$ i.

3. Bottom-up chart filling (longer spans)

For span length $\ell = 2..n$, for start i, let $j = i+\ell$. For every split k with i < k < j, and rules $A \rightarrow B$ C, if $B \in chart[i,k]$ and $C \in chart[k,j]$, then add A to chart[i,j] (store backpointers for reconstruction).

4. Backpointer reconstruction

Recover the highest-scoring or all valid trees from backpointers in chart[0,n] that produce the start symbol (usually s).

5. (Optional) Probabilistic scoring

With PCFG rule probabilities, compute inside scores while filling; select the Viterbi best tree.

Complexity: $O(n^3 \cdot |G|)$ time, $O(n^2 \cdot |N|)$ space (n = sentence length).

Q3) How PCFGs differ from traditional CFGs

Aspect	CFG	PCFG
Rules	Production rules only	Production rules with probabilities $P(A\rightarrow \alpha)$

Aspect	CFG	PCFG
Ambiguity	Returns all parses	Returns ranked parses; enables most- likely parse (Viterbi)
Learning	Manually designed	Estimated from treebanks via relative frequency or Inside–Outside (EM)
Inference	Boolean membership	Weighted parsing (inside/outside probabilities)

Intuition: PCFGs capture preference patterns (e.g., $VP \rightarrow V$ NP more frequent than $VP \rightarrow V$ PP), improving robustness on ambiguous inputs.

Q4) Purpose of the Inside–Outside algorithm in PCFG training

Goal.

Estimate maximum-likelihood rule probabilities $P(A\rightarrow \alpha)$ from unlabeled or partially labeled data when gold parse trees aren't available.

How it works (EM over trees):

• E-step (Expectation):

For each sentence, run dynamic-programming to compute:

- Inside probabilities $\beta(i,j,A) = \text{prob that } A \text{ generates span } (i,j)$.
- Outside probabilities $\alpha(i,j,A)$ = prob of the context around that span. Combine them to get **expected counts** of rule uses over all latent parses.
- M-step (Maximization):

Update rule probabilities by normalizing expected counts:

$$\hat{P}(A \to \alpha) = \frac{E[\#(A \to \alpha)]}{\sum_{\alpha'} E[\#(A \to \alpha')]}.$$

Outcome: Iteratively improves PCFG parameters to better explain the training sentences (monotonic likelihood increase under EM).

Q5) Apply CKY to "the cat sleeps" with a simple CFG

Sentence: the / cat / sleeps (n = 3)

CNF Grammar (toy):

 $S \rightarrow NP VP$ $NP \rightarrow Det N$ $VP \rightarrow V$ $Det \rightarrow the$

```
N → cat
V → sleeps
```

Chart indices: tokens at positions 0..3

Cells are spans (i,j) over half-open intervals.

Initialization (length 1):

- (0,1): Det (because Det→the)
- (1,2): N (because N→cat)
- (2,3): V (because V→sleeps)

Length 2 spans:

- (0,2) with split k=1: we have Det in (0,1) and N in (1,2); rule NP → Det N fires → add NP.
- (1,3) with split k=2: we have N and V, but no rule $X \rightarrow N V \rightarrow \text{no addition}$.

Length 3 span (0,3):

- Try splits:
 - k=1: (0,1) = Det, $(1,3) = \emptyset \rightarrow \text{no rule}$.
 - k=2: (0,2) = NP, (2,3) = V; rule VP \rightarrow V is unary, so first ensure (2,3) includes VP (via VP \rightarrow V). Then S \rightarrow NP VP with (0,2)=NP and (2,3)=VP \rightarrow add S.

Result: chart[0,3] contains S.

Parse tree (constituency):

Exam tip: If your version of CKY strictly disallows unary rules inside the DP step, pre-convert unary VP>V by binarization or handle unary-closure per cell after fills.

Q6) Demonstrate transition-based parsing with SHIFT/REDUCE

Below are two quick demonstrations—one **constituency** (classic shift-reduce) and one **dependency** (arc-standard). In exams, state which paradigm you're using.

A) Constituency shift-reduce (for the same sentence)

Sentence: "the cat sleeps"

Goal tree: $S \rightarrow NP \ VP$, $NP \rightarrow Det \ N$, $VP \rightarrow V$

Actions and configurations (Stack | Buffer):

```
    [] | the cat sleeps — SHIFT → [the] | cat sleeps
    [the] | cat sleeps — SHIFT → [the, cat] | sleeps
    [the, cat] | sleeps — REDUCE→N (using N→cat) → [the, N] | sleeps
    [the, N] | sleeps — REDUCE→Det (using Det→the) → [Det, N] | sleeps
    [Det, N] | sleeps — REDUCE→NP (NP→Det N) → [NP] | sleeps
    [NP] | sleeps — SHIFT → [NP, sleeps] |
    [NP, sleeps] | — REDUCE→V (V→sleeps) → [NP, V] |
    [NP, V] | — REDUCE→VP (VP→V) → [NP, VP] |
    [NP, VP] | — REDUCE→S (S→NP VP) → [S] | Ø (accepted)
```

Notes.

- A practical system uses a learned classifier to decide whether to SHIFT or which REDUCE to apply.
- Unary reductions can be handled via separate UNARY-REDUCE or by applying closures.

B) Dependency parsing (arc-standard variant)

Target dependencies: nsubj(sleeps, cat), det(cat, the)

Actions (Stack | Buffer | Arcs):

```
    [] | the cat sleeps | Ø — SHIFT → [the] | cat sleeps | Ø
    [the] | cat sleeps — SHIFT → [the, cat] | sleeps | Ø
    [the, cat] | sleeps — LEFT-ARC(det) makes det(cat, the) and pops the → [cat] | sleeps | {det(cat,the)}
    [cat] | sleeps — SHIFT → [cat, sleeps] | Ø | {...}
    [cat, sleeps] | Ø — RIGHT-ARC(nsubj) makes nsubj(sleeps, cat) and pops cat → [sleeps] | Ø | {det(cat,the), nsubj(sleeps,cat)}
    [sleeps] | Ø — REDUCE (or ROOT-attach depending on formalism) → done.
```

Takeaway.

Transition-based parsers use small, local actions to build structure incrementally; learned policies (e.g., perceptron, MLP, BiLSTM encoders, transformers) choose actions based on stack/buffer features.

Practical applications of parsing (for exam answers)

- **Information extraction:** Identify subject–verb–object triples from parsed structure for knowledge graph population.
- Question answering: Map wh-phrases to their governing predicates to extract precise answers.
- Machine translation: Syntactic constraints reduce reordering errors in phrase-based/Neural MT (syntax-aware models).
- Text simplification & grammar checking: Detect malformed structures and propose repairs.
- Voice assistants: Parse user commands to semantic frames (e.g., Book → [Agent, Theme, Time]).