

Mateusz Borowiec

Kierunek: informatyka

Specjalność: informatyka stosowana

Ścieżka dydaktyczna: Sztuczna inteligencja

Numer albumu: 382765

Zastosowanie ABM do analizy procesu formowania opinii w wielowymiarowej przestrzeni opinii

Praca magisterska

wykonana pod kierunkiem Dr hab. Tomasz Gwizdałła, prof. UŁ W Katedrze Systemów Inteligentnych WFiIS UŁ

Spis treści

1	Wstęp	5	
2	2 Podstawy teoretyczne		
3	Opis metod (algorytmy, założenia, warunki graniczne)	9	
	3.1 Rozkład trójkątny	. 9	
	3.2 Nowy modyfikator środka rozkładu	. 10	
	3.3 Odpowiedzi na pytania - kartka nr 3	. 10	
4	Opis technologii wykorzystanych w pracy	11	
5	Opis implementacji	13	
	5.1 Klasa Network	. 13	
	5.2 Klasa Agent	. 13	
	5.3 Implementacja części algorytmicznej	. 13	
	5.4 Dokumentacja projektu jak dla prac inżynierskich (jeśli potrzeba)	. 13	
6	Opis wykonanych w ramach pracy badań, symulacji, eksperymen-		
	tów	15	
7	Analiza otrzymanych wyników	17	
8	Podsumowanie	19	
Sŗ	pis tabel	20	
Sr	pis rysunków	20	

Wstęp

Podstawy teoretyczne

TYMCZASOWY TEKST Z OPISU PRACY

Metody agentowe (Agent Based Modelling) są jedną z popularnych metod analizy wielu procesów zachodzących w społecznościach. Jednym z takich procesów jest rozprzestrzenianie się opinii, przy czym opinia może być reprezentowana w różny sposób. W prezentowanej pracy ma ona być przedstawiona w formie położenia w znormalizowanej przestrzeni wielowymiarowej (przykładem takiej przestrzeni jest dwuwymiarowy diagram Nolana). Społeczność zostanie przedstawiona w formie typowych grafów społecznościowych (BA, WS, ER). Celem pracy jest określenie stanów końcowych takich modeli dla wybranych funkcji modyfikacji opinii oraz czasów dojścia do tych stanów. Wśród pytań, które pojawiają się w trakcie rozwiązywania takiego problemu są takie jak: pytanie o istnienie (dla danej funkcji modyfikacji) krytycznej wielkości próbki, dla której struktura rozwiązania ulega zmianie (np. pojawiają się odstępstwa od jednomyślności) czy pytanie o możliwość włączenia czynników zewnętrznych.

Opis metod (algorytmy, założenia, warunki graniczne)

Agent posiada następujące parametry:

Zmienna	Zakres wartości	Rozkład
Wpływ na innych	0-1	równomierny
Elastyczność jednostki	0,1-1	beta
Opinia początkowa	0-1	równomierny

Tabela 3.1: Parametry agenta

Aktualizacja opinii składa się z następujących zmiennych:

\mathbf{Z} mienna	Zakı
Średnia opinii sąsiadów	
Srednia wpływu sąsiadów	
Udział znajomych agenta w populacji	
Odległość opinii agenta i średniej znajomych	
Modyfikator środka rozkładu	Elastyczność agenta * (udział znajomych agenta

Tabela 3.2: Parametry aktualizacji opinii

3.1 Rozkład trójkątny

Opinia sąsiadów:

- średnia opinii sąsiadów: 0-1- średnia wpływu sąsiadów: 0-1

Centrum rozkładu trójkątnego: (stopień jednostki + średnia wpływu sąsiadów)

^{*} elastyczność jednostki

10

Minimum rozkładu: opinia jednostki

Maksimum rozkładu: średnia opinii sąsiadów

Odległość między opiniami = abs(opinia jednostki - średnia opinii sąsiadów)

3.2 Nowy modyfikator środka rozkładu

Elastyczność agenta * średnia([udział znajomości agenta w populacji, wpływ sąsiadów]) = [0-1] * ([0-1] * [0-1] / [0-1] * [0-1] = [0-1]. Średnia wpływu sąsiadów będzie średnią ważoną.

3.3 Odpowiedzi na pytania - kartka nr 3

Opis technologii wykorzystanych w pracy

W pracy został wykorzystany język Python do implementacji zarówno sieci społecznych, zapisu wyników, jak i wykresów obrazujących wyniki.

Główną biblioteką wykorzystywaną do implementacji sieci społecznych jest biblioteka NetworkX.

Biblioteką do tworzenia wykresów została biblioteka Matplotlib.

Do odczytu / zapisu plików CSV została użyta biblioteka 'csv'.

Opis implementacji

5.1 Klasa Network

Każda sieć społeczna składa się z grafu NetworkX oraz listy agentów, przypisanych do każdego wierzchołka.

Typ aktualizacji opinii jest również zdefiniowany w klasie.

Ponadto, do celów logowania, klasa zawiera nazwę sieci społecznej.

5.2 Klasa Agent

Każdy agent ma następujące parametry:

- Wpływ na innych (influence) Ten parametr osiąga wartości 0-1 i określa wartość wpływu na innych agentów
- Elastyczność (flexibility) Osiąga wartości 0-1 i określa podatność agenta na zmianę opinii pod wpływem swoich sąsiadów
- Opinia (opinion) Osiąga wartości 0-1 i określa wartość opinii agenta w zależności od opinii sąsiadów

5.3 Implementacja części algorytmicznej

5.4 Dokumentacja projektu jak dla prac inżynierskich (jeśli potrzeba)

Opis wykonanych w ramach pracy badań, symulacji, eksperymentów

Analiza otrzymanych wyników

Podsumowanie

SPIS RYSUNKÓW 20

Spis tabel

3.1	Parametry agenta	9
3.2	Parametry aktualizacji opinii	9

Spis rysunków

BIBLIOGRAFIA 21

Bibliografia