Найти фазовую скорость, длину волны в меди и глубину проникновения. Решение:

F = 2 ГГц	F = 1 MΓц
$f = 2 \cdot 10^9$	$f \coloneqq 1 \cdot 10^6$
$\sigma = 5.7 \cdot 10^7$	$\sigma \coloneqq 5.7 \cdot 10^7$
$\mu \coloneqq 4 \cdot \pi \cdot 10^{-7}$	$\mu \coloneqq 4 \cdot \pi \cdot 10^{-7}$
$\omega \coloneqq 2 \cdot \pi \cdot f$	$\omega := 2 \cdot \pi \cdot f$
$\beta \coloneqq \sqrt{\frac{\omega \cdot \sigma \cdot \mu}{2}} = 670860.612$	$\beta \coloneqq \sqrt{\frac{\omega \cdot \sigma \cdot \mu}{2}} = 15000.899$
$\lambda \coloneqq 2 \cdot \pi \cdot \sqrt{\frac{2}{\omega \cdot \sigma \cdot \mu}} = 9.366 \cdot 10^{-6}$	$\lambda \coloneqq 2 \cdot \pi \cdot \sqrt{\frac{2}{\omega \cdot \sigma \cdot \mu}} = 4.189 \cdot 10^{-4}$
$\lambda 0 \coloneqq \frac{3 \cdot 10^8}{f} = 0.15$	$\lambda 0 \coloneqq \frac{3 \cdot 10^8}{f} = 300$
$\frac{\lambda 0}{\lambda} = 16015.617$	$\frac{\lambda 0}{\lambda} = 716240.183$
$V \coloneqq \lambda \cdot f = 18731.716$	$V \coloneqq \lambda \cdot f = 418.854$
$d \coloneqq \sqrt{\frac{2}{\omega \cdot \sigma \cdot \mu}} = 1.491 \cdot 10^{-6}$	$d \coloneqq \sqrt{\frac{2}{\omega \cdot \sigma \cdot \mu}} = 6.666 \cdot 10^{-5}$

Задача №2

Построить таблицы для сухой земли, влажной почвы, морской воды.

Материал	σ, См/м	3
Сухая земля	0.005	3
Влажная почва	0.03	30
Морская вода	3	80

$$F(f) = 60 * \sigma * \lambda = 60 * \sigma * \frac{c}{f}$$

$\varepsilon >> F(f)$	диэлектрик
$\varepsilon \approx F(f)$	полупроводник
$\varepsilon << F(f)$	проводник (металл)

f, МГц	0.3	0.75	1	3	7.5	15	30	75	150	300	450	900	2000	5000
Сухая земля	300	120	90	30	12	6	3	1.2	0.6	0.3	0.2	0.1	0.045	0.018
Влажная почва	1800	720	540	180	72	36	18	7.2	3.6	1.8	1.2	0.6	0.27	0.108
Морская вода	180000	72000	54000	18000	7200	3600	1800	720	360	180	120	60	27	10.8

Задача №3

Рассчитать глубину проникновения электромагнитного поля в морскую воду и сухую почву.

Материал	σ, См/м	3
Морская вода	5	80
Сухая почва	0.001	5

Вычислим длины волн для заданных частот:

Вычислим значения $60*\sigma*\lambda$, чтобы определить, на каких частотах материал является проводником, а на каких диэлектриком:

$$F \coloneqq 60 \cdot b1 \cdot \frac{c}{f} = \begin{bmatrix} 180 \\ 6 \\ 1.8 \\ 0.18 \\ 0.018 \\ 0.009 \end{bmatrix} \qquad F \coloneqq 60 \cdot b2 \cdot \frac{c}{f} = \begin{bmatrix} 900000 \\ 30000 \\ 9000 \\ 900 \\ 45 \end{bmatrix}$$

Используя заданные формулы запишем выражения для нахождения глубины проникновения электромагнитного поля в сухую почву и в морскую воду:

В итоге были получены следующие результаты:

$fun1 \begin{pmatrix} l_0 \end{pmatrix} = 50.329$	$fun2 \left(l_{\scriptscriptstyle 0}\right) = 0.712$
$fun1 \left(l_{_{1}}\right) = 9.189$	$fun2 \left(l_{_{1}}\right) = 0.13$
$fun1 \left(l_{2}\right) = 5.033$	$fun2\left(l_{2}\right)=0.071$
$fun1 \left(l_{3} \right) = 223.607$	$fun2 \binom{l}{3} = 0.023$
$fun1 \left(l_{4}\right) = 22.361$	$fun2(l_4)=0.007$
$fun1 \left(l_{5}\right) = 11.18$	$fun2\left(l_{\scriptscriptstyle 5}\right)=0.005$

Как можно увидеть морская вода на заданных частотах ведёт себя как проводник и глубина проникновения ЭМП с ростом частоты планомерно снижается.

А сухая почва на частотах 0.1 до 10 МГц ведёт себя как проводник, а на более высоких частотах ведёт себя как диэлектрик, но результаты не соответствуют действительности, на высоких частотах глубина проникновения ЭМП в сухую почву резко возрастает и также резко снижается, значит, формула глубины проникновения ЭМП в сухую почву, как для диэлектрика, неверна.

Дополнительное задание

Найти или эмпирически вывести формулу глубины проникновения ЭМП в диэлектриках. В данном случае для сухой почвы, характеристики которой описаны выше в задаче №3.

Решение:

В интернете была найдена формула для расчёта глубины проникновения ЭМП:

$$e = \frac{1}{\sqrt{\pi \cdot \mu_0 \cdot \mu_r \cdot f \cdot \sigma}},$$
 где e — глубина проникновения (м); μ_0 — магнитная проницаемость вакуума; μ_r — относительная магнитная проницаемость материала (безразмерная); σ — проводимость материала (Ом-1·м-1) f — частота переменного тока (Гц)

(https://avatars.mds.yandex.net/getzen_doc/1064817/pub_5c7548d9317b9c00b411c5ca_5c754c7bc873bc00afc52386/scale_1200)

Приняв, что относительная магнитная проницаемость для сухой почвы $\mu=1$, получаем следующую формулу:

$$\Delta = \frac{1}{\sqrt{\pi * \mu_0 * f * \sigma}}, (M) \tag{1}$$

Случай 1, мы рассматриваем применение этой формулы для сухой почвы, которая на частотах от 0.1 до 10 МГц ведёт себя как проводник, а на более высоких частотах, как диэлектрик: Функция изменится следующим образом:

$$\begin{array}{c|c} fun1(l)\coloneqq \text{if } l\!<\!4\\ & \| \operatorname{return}\left(\frac{1}{\sqrt{\pi\cdot\frac{c}{l}\cdot b1\cdot\mu_{0}}}\right) \\ & \| \operatorname{else} \\ & \| \operatorname{return}\frac{1}{\left(2\cdot\pi\cdot\sqrt{\frac{30\cdot b1}{l}}\right)} \end{array}$$

А результаты получатся следующие:

$fun1 \begin{pmatrix} l \\ 0 \end{pmatrix} = 50.329$	
$fun1 \begin{pmatrix} l_1 \end{pmatrix} = 9.189$	
$fun1 \binom{l}{2} = 5.033$	
$fun1 \binom{l}{3} = 1.592 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$	
$fun1 \binom{l}{4} = 0.503 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$	
$fun1 \binom{l}{5} = 0.356 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$	

Как можно увидеть, с ростом частоты глубина проникновения в сухую почву планомерно уменьшается.

Случай 2, мы рассматриваем, что сухая почва на всех заданных в задаче №3 частотах ведёт себя как диэлектрик:

$$fun1 \binom{l}{0} = 50.329 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

$$fun1 \binom{l}{1} = 9.189 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

$$fun1 \binom{l}{2} = 5.033 \frac{s \cdot A}{\frac{1}{1} \cdot 1}$$

$$kg^{2} \cdot m^{2}$$

$$fun1 \binom{l}{3} = 1.592 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

$$fun1 \binom{l}{4} = 0.503 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

$$fun1 \binom{l}{4} = 0.356 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

$$fun1 \binom{l}{5} = 0.356 \frac{s \cdot A}{\frac{1}{2} \cdot m^{\frac{1}{2}}}$$

Как можно увидеть, значения на частотах от 0.1 до 10 МГц совпадают с найденными по формуле для проводников. Но также, они примерно равны со значениями из практики:

f(MΓų)	Морская вода ε =80, σ =4 См/м	Сухая почва $\varepsilon = 5, \ \sigma = 10^{-5} \ ^{C_{M/M}}$
	Δ (M)	<u>Δ (</u> M)
0,1	0,8	59
3	0,14	17
10	0,08	9

Также, если сравнивать со значениями с графика из рекомендации МСЭ-R Р.527-4:

РИСУНОК 1 Глубина проникновения для разных типов поверхности в зависимости от частоты

То на частотах 100, 1000, 2000 МГц значения глубины проникновения совпадают с полученными по найденной в интернете формуле (1) в пределах допустимой ошибки.