ECE 3020 Introduction to Electronics

Section 9: Circuit Simulation Software (*TopSpice*)

Spring 2024

Tawfiq Musah, Assistant Professor

Dept. of Electrical & Computer Engineering
The Ohio State University

Acknowledgement

◆ The instructor would like to acknowledge and thank Prof. Nima Ghalichechian and Prof. Asimina Kiourti for kindly providing these TopSpice notes.

Virtual Machine/Lab Access

- ◆ For students who don't have access to a Windows device, access to TopSpice demo has been arranged (To be confirmed):
 - ➤ 1. Virtual: ECE-HNC217492D, ECE-HNC217493D (from https://labstatus.coeit.osu.edu)
 - ➤ 2. Physical: ECE-HNC217487D, ECE-HNC217488, and ECE-HNC217499D from the front section of CL 260.

What is SPICE?

- ◆ SPICE: Simulation Program with Integrated Circuit Emphasis
- ◆ It is a general-purpose circuit simulator for analog electronics used to check the integrity of circuit designs and to predict circuit behavior.
 - > In layman's terms: SPICE is a program that simulates electronic circuits on your PC.
 - ➤ For example, circuits may contain resistors, capacitors, inductors, mutual inductors, independent or dependent voltage/current sources, transmission lines, switches, diodes, transistors, etc.
 - > You can view any voltage or current waveform in your circuit.
- Developed at the University of California, Berkeley during the mid-70s as a way to test and tweak circuit designs before the expensive fabrication process.

Why use SPICE?

- Acts like a "virtual" breadboard much cheaper and faster to test than using an actual breadboard.
- Great tool for learning electronics.
 - You can increase your understanding of circuits as you play and tinker with them, e.g., change a resistor value and see the effect on a circuit in seconds.

Software Packages that Implement SPICE

- Many software packages available that implement SPICE
 - Different graphical user interfaces
 - Different model libraries
 - Different interfaces to other tools
 - > etc.
 - ...and eventually --- different cost
- We will be doing demonstrations using <u>TopSpice</u> from Penzar Development (http://www.penzar.com/)
 - They have a free demonstration version
 - Fully functional but limits on circuit size and reduced model libraries
 - Windows platform

TopSpice by Penzar

TopSpice 8

For Windows XP/Vista/7/8/10

Copyright © 1991-2016 Penzar Development. All rights reserved.

TopSpice is an affordable integrated computer-aided circuit design software package offering advanced native mixed-mode mixed-signal analog/digital/behavioral simulation based on the industry standard SPICE simulator program.

SPICE – Types of Analysis

- DC Analysis: Determines the DC operating point of the circuit with inductors shorted and capacitors opened.
- ◆ AC Small-Signal Analysis: Computes the AC output variables as a function of frequency. The program first computes the DC operating point of the circuit and determines linearized, small-signal models for all the non-linear devices in the circuit. The resultant linear circuit is then analyzed over a user-specified range of frequencies. (i.e., view voltages and currents vs. frequency)
- ◆ Transient Analysis: Computes the transient output variables as a function of time over a user-specified time interval. (i.e., view voltages and currents vs. time)
- Pole-Zero Analysis: Computes the poles and/or zeros in the small-signal AC transfer function.
- Sensitivity Analysis: Calculates the difference in an output variable by perturbing each parameter of each device independently.
- ◆ Noise Analysis: Calculates the noise contributions of each device to the output port.
- Small-Signal Distortion Analysis: Computes steady-state harmonic and intermodulation products for small input signal magnitudes.

How does SPICE work?

- Describe your circuit in a text file (".cir" extension) called a netlist
 OR draw the circuit using graphical symbols on a schematic page. Number each node, Label each component and give it a value.
- Decide on the type of analysis you want performed. (AC, Transient, DC, noise, etc.)
- 3. Run the simulation. SPICE reads the netlist and then performs the requested analysis: (e.g., AC, DC, or TRANSIENT RESPONSE). The results are stored in a text output file (".out" extension) or a binary data file.
- **4. View the results** of the simulation in a text output file (".out") using a text editor. Most SPICE programs provide a graphical viewer to plot the waveforms stored in the binary data file.

Inside a Typical SPICE File

◆ The heart of your SPICE file is the netlist, which is simply a list of components and the nets (or nodes) that connect them together).

Example for RC Low-Pass-Filter:

Transient analysis for a duration of 500 us and print out the results at 5 us intervals.

for the time analysis.

TopSpice Installation

11

STEP 1: Go to Penzar's Website

TopSpice 8

For Windows XP/7/8/10

Copyright © 1991-2019 Penzar Development. All rights reserved.

STEP 2: Download TopSpice (Demo Version)

Free Software Downloads

Demo Software For Windows XP/7/8/10

TopSpice 8 Demo version 8.85 [ts885demosetup.exe] (25MB, 2021-2-18)

If using Edge browser, please download it as ZIP file ts885demosetup.zip

To install the product, either run or open the downloaded setup file ts885demosetup.exe in your computer and follow the setup program screen prompts.

If you download it as a ZIP file, extract the setup file first.

Do not run the installation setup file directly from this webpage.

DEMO VERSION LIMITATIONS

Simulator limits: number of nodes 64; number of top level transistors and subcircuits 20; number of subcircuit transistors 20; total number of top level components 30 (excluding resistors and capacitors); number of subcircuit definitions (macromodels) 15; maximum data memory usage 10MB.

Schematic Editor limits: schematic files with more than 3 pages cannot be created but they can be viewed and edited. Model encryption utility not included.

Post-processor plot limits: maximum number of simulated data points per trace 32,000.

The demo model library only includes the device models needed to run the demo example files (they are found under Help).

The manuals cannot be printed (they are found under Help).

Penzar Development Home

STEP 3: Install TopSpice on your PC

STEP 3: Install TopSpice on your PC

STEP 4: TopSpice Launch Screen

The recommended way to start TopSpice is to open the "TopSpice 8" icon/tile in the Start menu "TopSpice 8" folder or on the Windows desktop.

The TopSpice launch screen menu simplifies the task of starting a new or previously saved circuit design project, switching between schematic or circuit file editors, and opening the example circuit files.

TopSpice Example #1 Simulate a simple DC circuit using a Netlist

Example #1 [1 / 2]

Example #1 [2 / 2]

TopSpice Example #2 Simulate an IDEAL inverting amplifier configuration using a circuit schematic

REVIEW: Inverting Configuration with Infinite Gain

21

Example #2 [1 / 7]

22

Example #2 [2 / 7]

Example #2 [3 / 7]

Example #2 [3 / 7]

Example #2 [4 / 7]

Enter R1 value

Label Input and output voltages

Example #2 [5 / 7]

Example #2 [6 / 7]

Example #2 [7/7]

TopSpice Example #3 Simulate a NON-IDEAL inverting amplifier configuration using a circuit schematic

REVIEW: Non-Ideal Inverting Configuration

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1} \times \frac{1}{1 + \left(1 + \frac{R_2}{R_1}\right) \frac{1}{A}}$$

REVIEW: Non-Ideal Inverting Configuration

Calculate GBW for the inverting amplifier configuration when:

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_b}} \qquad \boxed{\omega_t \equiv A_0 \omega_b}$$

$$\frac{V_o(s)}{V_i(s)} = \frac{-R_2/R_1}{1 + \left(1 + \frac{R_2}{R_1}\right) \frac{1}{A(s)}}$$

For
$$A_0 >> 1 + \frac{R_2}{R_1}$$

$$V_o(s) \approx \frac{-R_2/R_1}{1 + \left(1 + \frac{R_2}{R_1}\right) \frac{s}{\omega_t}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_{3dB}}} \text{ with } \omega_{3dB} = \frac{\omega_t}{1 + \frac{R_2}{R_1}}$$
The Ohio State University

ECE 3020: Introduction to Electronics, Section 9

Example #3 [1 / 4]

		1.1	
💞 Iron Transformer.sch	6/23/2014 8:33 AM	TopSpice Demo S	19 KB
💞 LC Tank.sch	6/23/2014 8:33 AM	TopSpice Demo S	17 KB
💞 LTRA Lossy Line Model.sch	6/23/2014 8:33 AM	TopSpice Demo S	20 KB
Monte Carlo.sch	6/23/2014 8:33 AM	TopSpice Demo S	35 KB
Op Amp Noise.SCH	4/25/2016 1:52 PM	TopSpice Demo S	20 KB
❖ Op Amp.SCH	4/25/2016 1:56 PM	TopSpice Demo S	25 KB
Open Loop Gain Measurement.sch	5/1/2011 11:38 AM	TopSpice Demo S	24 KB
₹ PLL.sch	6/23/2014 8:34 AM	TopSpice Demo S	29 KB
PWM OpAmp.sch	6/23/2014 8:34 AM	TopSpice Demo S	23 KB
❖ Sample.sch	3/2/2017 1:18 PM	TopSpice Demo S	22 KB
Schmitt trigger.sch	6/23/2014 8:34 AM	TopSpice Demo S	21 KB
Shift Register.sch	6/23/2014 8:34 AM	TopSpice Demo S	14 KB

Example #3 [2 / 4]

Example #3 [3 / 4]

Example #3 [4 / 4]

TopSpice Additional Resources

37

Additional Resources

Model Library: Available Parts

Part number	Model name	SPICE dev.	Symbol	Device type	Description
1N4001	1N4001	D (D)	D	DEMO	Diode
1N4148	1N4148	D (D)	D	DEMO	Diode
1N750	1N750	D (D)	DZ	DEMO	Zener diode
2N2222	2N2222	Q (NPN)	QNPN	DEMO	Bipolar transistor
2N2907A	2N2907A	Q (PNP)	QPNP	DEMO	Bipolar transistor
2N6851	2N6851	M (PMOS)	MPMOS	DEMO	MOSFET
2N7000	2N7000	M (NM	MNMOS	DEMO	MOSFET
555	555	X	X555	DEMO	Timer IC behavioral model
7400	7400	X	XNAND	DEMO	2-input NAND
7402	7402	X	XNOR	DEMO	2-input NOR
7404	7404	X	XINV	DEMO	inverter
*	74HC	U (UG	*	DEMO	CMOS 74HC series delay model
74HC00	74HC00	X	XNAND	DEMO	2-input NAND
74HC02	74HC02	X	XNOR	DEMO	2-input NOR
74HC04	74HC04	X	XINV	DEMO	inverter
74HC05	74HC05	X	XINV	DEMO	inverter open drain
74HC08	74HC08	X	XAND	DEMO	2-input AND
*	74HCAD	O (ATOD)	*	DEMO	CMOS 74HC series I/O model
*	74HCDA	O (DTOA)	*	DEMO	CMOS 74HC series I/O model
*	74HCODIO	O (UIO)	*	DEMO	CMOS 74HC series I/O model
*	74HCUIO	O (UIO)	*	DEMO	CMOS 74HC series I/O model
*	COMP	X	XCOMP	ANALOG	Generic comparator
*	DAC4BIT	X	XDAC4BIT	DEMO	4-bit DAC
*	DBRIDGE	X	XDBRIDGE	Diode	Rectifier diode bridge
*	LXFMRCT	X	XXFMRCT	DEMO	Linear transformer with center tapped secondary
MPS3903	MPS3903	Q (NPN)	QNPN	DEMO	Bipolar transistor
*	OPAMP	X	XOPAMP	DEMO	Generic op amp model (floating supplies)
*	OPAMPA	X	XOPAMPA	DEMO	Generic op amp model IN- top
*	OPAMPF	Х	XOPAMPF	DEMO	Ideal op amp function
*	OPENLOOPGAIN	Х	XMETEROLG	ANALOG	Open loop gain measurement macro
*	SPARAM2P	X	X2PORT	DEMO	General 2-port s-parameters table network model
*	ST	X	XST	ANALOG	Schmitt trigger
*	STI	X	XSTI	ANALOG	Schmitt trigger inverting
*	THERMISTOR	X	XRES	DEMO	Thermistor table model
TLC393	TLC393	X	XCOMP	DEMO	TLC393 comparator
*	TTL	U (UG	*	DEMO	TTL 7400 series I/O model
*	TTLAD	O (ATOD)	*	DEMO	TTL 7400 series I/O model
*	TTLDA	O (DTOA)	*	DEMO	TTL 7400 series I/O model
*	TTLUIO	O (UIO)	*	DEMO	TTL 7400 series I/O model
UA741	UA741	Х	XOPAMP	DEMO	UA741 op amp
*	VCO	Х	XFUN	DEMO	Analog behavioral model of VCO
*	XFMR	X	XXFMR	ANALOG	Ideal linear transformer (no losses)
*	XFMRI	X	XXFMR	ANALOG	Ideal transformer

Adding from Model Library

