טבלת התמרת פורייה

התמרת פוריה	אות	
$2\pi\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)$	$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$.1
$2\pi\delta(\omega-\omega_0)$	$e^{j\omega_0 t}$.2
$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$\cos \omega_0 t$.3
$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$\sin \omega_0 t$.4
$2\pi\delta(\omega)$	x(t) = 1	.5
$\sum_{k=-\infty}^{+\infty} \frac{2\sin(k\omega_0 T_1)}{k} \delta(\omega - k\omega_0)$ Where: $\omega_0 = \frac{2\pi}{T_0}$	Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T_0}{2} \end{cases}$ and $x(t+T_0) = x(t)$.6
$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\mathcal{S}\bigg(\omega-\frac{2\pi k}{T}\bigg)$	$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$.7
$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \mathcal{S}\left(\omega - \frac{2\pi k}{T}\right)$ $X(\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	$\frac{W}{\pi}\operatorname{sinc}(Wt) = \frac{\sin Wt}{\pi t}$.8
1	$\delta(t)$.9
$\frac{1}{j\omega} + \pi \delta(\omega)$ $e^{-j\omega t_0}$	u(t)	.10
$e^{-j\omega t_0}$	$\delta(t-t_0)$.11
$\frac{1}{a+j\omega}$	$e^{-at}u(t)$, $\operatorname{Re}(a) > 0$.12
$\frac{1}{\left(a+j\omega\right)^2}$	$te^{-at}u(t), \operatorname{Re}(a) > 0$.13
$\frac{1}{\left(a+j\omega\right)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \ \text{Re}(a) > 0$.14
$\frac{2}{j\omega}$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \text{ Re}(a) > 0$ $sign(t) = f(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}$.15
$2a\operatorname{sinc}(a\omega)$	$x(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$.16

תכונות של התמרת פוריה

יו <i>י</i> התמרת פוריה	ספרור	
$X(\omega)$	x(t)	
$Y(\omega)$	y(t)	
$aX(\omega)+bY(\omega)$	ax(t) + by(t)	1. לינאריות
$e^{-j\omega t_0}X(\omega)$	$x(t-t_0)$	2. הזזה בזמן
$X(\omega-\omega_0)$	$e^{j\omega_0 t}x(t)$	3. הזזה בתדר
$X^*(-\omega)$	$x^*(t)$	4. צמוד
$X(-\omega)$	x(-t)	5. שיקוף
$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$	x(at)	6. שינוי קנה מידה
$X(\omega)\cdot Y(\omega)$	(x*y)(t)	7. קונבולוציה
$\frac{1}{2\pi} (X * Y)(\omega)$ $j\omega X(\omega)$	$x(t) \cdot y(t)$	8. מכפלה
$j\omega X(\omega)$	$\frac{d}{dt}x(t)$	9. נגזרת
$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$	$\int_{-\infty}^{t} x(\tau) d\tau$	10. אינטגרל
$j\frac{d}{d\omega}X(\omega)$	$t \cdot x(t)$	t-ב הכפלה ב-11.
$\int X(\omega) = X^*(-\omega)$	ממשי $x(t)$	12. ממשיות
$Re{X(\omega)} = Re{X(-\omega)}$		
$\left\{ \operatorname{Im} \{ X(\omega) \} = -\operatorname{Im} \{ X(-\omega) \} \right.$		
$ X(\omega) = X(-\omega) $		
$\prec X(\omega) = - \prec X(-\omega)$		
$\operatorname{Re}\{X(\omega)\}$	$x_e(t) = Even\{x(t)\} [x(t) \text{ real}]$	13. החלק הזוגי
$j \cdot \operatorname{Im}\{X(\omega)\}$	$x_o(t) = Odd\{x(t)\}$ [x(t) real]	14. החלק האי זוגי
$2\pi x(-\omega)$	X(t)	15. עקרון הדואליות
$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \frac{1}{2\pi}$	$\int_{-\infty}^{\infty} X(\omega) Y^*(\omega) d\omega$	16. משפט פלנשרל
$\int_{-\infty}^{\infty} \left x(t) \right ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left \frac{1}{2\pi} \int_{-\infty}^{\infty} \left \frac{1}{2\pi} \left \frac{1}{2\pi} \right \right ^2 dt$	$X(\omega) ^2 d\omega$	ומשפט פרסבל (מקרה פרטי)

where:

 $x_{r,e}$ is the real and even part of x(t) $x_{r,o}$ is the real and odd part of x(t) $x_{i,e}$ is the imaginary and even part of x(t) and so on.

טבלת התמרות לפלס

תחום התכנסות ROC	התמרת לפלס (Transform)	(signal) אות	ספרור
All s	1	$\delta(t)$	1
$\operatorname{Re}\{s\} > 0$	$\frac{1}{s}$	u(t)	2
$\operatorname{Re}\{s\} < 0$	$ \frac{\frac{1}{s}}{\frac{1}{s^n}} $	-u(-t)	3
$\operatorname{Re}\left\{ s\right\} >0$	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}u(t)$	4
$\operatorname{Re}\left\{ s\right\} <0$	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}u(t) - \frac{t^{n-1}}{(n-1)!}u(-t)$	5
$\operatorname{Re}\{s\} > -\alpha$	$\frac{1}{s+\alpha}$	$e^{-\alpha t}u(t)$	6
$\operatorname{Re}\{s\} < -\alpha$	$\frac{s+\alpha}{\frac{1}{s+\alpha}}$	$-e^{-\alpha t}u(-t)$	7
$\operatorname{Re}\{s\} > -\alpha$	$\frac{s+\alpha}{1\over \left(s+\alpha\right)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	8
$\operatorname{Re}\{s\} < -\alpha$	$\frac{1}{\left(s+\alpha\right)^n}$	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	9
All s	e^{-sT}	$\delta(t-T)$	10
$\operatorname{Re}\left\{s\right\} > 0$	$\frac{s}{s^2 + \omega_0^2}$	$\left[\cos\omega_0 t\right] u(t)$	11
$\operatorname{Re}\left\{s\right\} > 0$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$[\sin \omega_0 t] u(t)$	12
$\operatorname{Re}\{s\} > -\alpha$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	13
$\operatorname{Re}\left\{s\right\} > -\alpha$	$\frac{\omega_0}{\left(s+\alpha\right)^2+\omega_0^2}$	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	14

תכונות של התמרת לפלס

תחום התכנסות ROC	התמרת לפלס (Transform)	(signal) אות	תכונה
R	X(s)	x(t)	.1
R_1	$X_1(s)$	$x_1(t)$.2
R_2	$X_2(s)$	$x_2(t)$.3
At least $R_1 \cap R_2$	$\alpha X_1(s) + \beta X_2(s)$	$\alpha x_1(t) + \beta x_2(t)$.4
R	$e^{-st_0}X(s)$	$x(t-t_0)$.5
s is in the ROC if (s-s ₀) is in R	$X(s-s_0)$	$e^{s_o t} x(t)$.6
s is in the ROC if (s/α) is in R	$\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$	$x(\alpha t)$.7
At least $R_1 \cap R_2$	$X_1(s) \cdot X_2(s)$	$(x_1 * x_2)(t)$.8
At least R	sX(s)	$\frac{d}{dt}x(t)$.9
R (if $X(s)$ is rational)	$\frac{d}{ds}X(s)$	-tx(t)	.10
At least $R \cap \{Re(s)>0\}$	$\frac{1}{s}X(s)$	$\int_{-\infty}^t x(\tau)d\tau$.11

תכונות של מקדמי פורייה

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation	3.5.1 3.5.2 3.5.6	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$	$Aa_k + Bb_k \ a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0} \ a_{k-M} \ a_{-k}^*$
Time Reversal Time Scaling	3.5.3 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	$a_{-k} \\ a_k$
Periodic Convolution		$\int_{T} x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$ $\begin{cases} a_k = a^* \end{cases}$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{aligned}$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$x(t)$ real and even $x(t)$ real and odd $\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re e\{a_k\}$ $j \Im m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

(עמי 206 בספר הקורס, טבלה 3.1)

טבלת התמרות Z

ROC	התמרת Z	אות	ספרור
All z	1	$\delta(n)$.1
z > 1	1	u(n)	.2
	$1-z^{-1}$		
z < 1	$ \frac{1-z^{-1}}{1-z^{-1}} $ $ z^{-m} $	<i>-u</i> (− <i>n</i> −1)	.3
All z except	$\frac{1-z}{z^{-m}}$	$\delta(n-m)$.4
0 (if m>0) or ∞ (if m<0)	· ·		
z > a	1	$a^n u(n)$.5
	$1 - az^{-1}$		
z < a	$ \frac{1}{1-az^{-1}} $ $ \frac{1}{1-az^{-1}} $ $ az^{-1} $	$-a^n u(-n-1)$.6
z > a	az^{-1}	$na^nu(n)$.7
	$\frac{az}{\left(1-az^{-1}\right)^2}$		
z < a	az^{-1}	$-na^nu(-n-1)$.8
	$\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$		
z > 1	$1 - [\cos \Omega_0] z^{-1}$	$[\cos\Omega_0 n]u(n)$.9
	$\frac{1 - [2\cos\Omega_0]z^{-1} + z^{-2}}{1 - [2\cos\Omega_0]z^{-1} + z^{-2}}$		
z > 1	$[\sin\Omega_0]z^{-1}$	$[\sin\Omega_0 n]u(n)$.10
	$1 - [2\cos\Omega_0]z^{-1} + z^{-2}$		
z > r	$\frac{1 - [r\cos\Omega_0]z^{-1}}{1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}}$	$[r^n\cos\Omega_0 n]u(n)$.11
	$1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}$		
z > r	$[r\sin\Omega_0]z^{-1}$	$[r^n \sin \Omega_0 n] u(n)$.12
	$1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}$		

${f Z}$ תכונות של התמרת

התמרת Z	אות	ספרור
X(z)	x(n)	.1
$X_1(z)$	$x_1(n)$.2
$X_2(z)$	$x_2(n)$.3
$aX_1(z) + bX_2(z)$	$ax_1(n) + bx_2(n)$.4
$z^{-n_0}X(z)$	$x(n-n_0)$.5
$X(e^{-j\Omega_0}z)$	$e^{j\Omega_0 n}x(n)$.6
$X(a^{-1}z)$	$a^n x(n)$.7
$X(z^{-1})$	x(-n)	.8
$X(z^k)$	$\int x(r), n = rk$.9
	$w(n) = \begin{cases} 0, & n \neq rk \end{cases}$	
$X_1(z) \cdot X_2(z)$	$x_1(n) * x_2(n)$.10
$-z \frac{dX(z)}{z}$	nx(n)	.11
dz		
$\frac{1}{1-z^{-1}}X(z)$	$\sum x(k)$.12
	$X(z)$ $X_{1}(z)$ $X_{2}(z)$ $aX_{1}(z)+bX_{2}(z)$ $z^{-n_{0}}X(z)$ $X(e^{-j\Omega_{0}}z)$ $X(z^{-1})$ $X(z^{k})$ $X_{1}(z)\cdot X_{2}(z)$ $-z\frac{dX(z)}{dz}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

להתמרה החד-צדדית:

$$Z_{+}(\sigma^{-1}x)(z) = z^{-1}Z_{+}(x)(z) + x(-1)$$

. מאשר σ היא הזזה.

טבלת התמרת פורייה בזמן בדיד

התמרת פוריה	אות	ספרור
$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\Omega - \frac{2\pi k}{N})$	$\sum_{k=0}^{N-1} a_k e^{jk(2\pi/N)n}$.1
$2\pi\sum_{l=-\infty}^{\infty}\delta(\Omega-\Omega_0-2\pi l)$	$e^{j\Omega_0 n}$.2
$\pi \sum_{l=-\infty}^{\infty} \left\{ \left[\delta(\Omega - \Omega_0 - 2\pi l) + \delta(\Omega + \Omega_0 - 2\pi l) \right] \right\}$	$\cos(\Omega_0 n)$.3
$\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \left\{ \left[\delta(\Omega - \Omega_0 - 2\pi l) - \delta(\Omega + \Omega_0 - 2\pi l) \right] \right\}$	$\sin(\Omega_0 n)$.4
$2\pi\sum_{l=-\infty}^{\infty}\delta(\Omega-2\pi l)$	x(n) = 1	.5
$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\!\left(\Omega\!-\!\frac{2\pi k}{N}\right)$	•	.6
$X(\Omega) = \begin{cases} \frac{\pi}{W}, & 0 \le \Omega \le W \\ 0, & W < \Omega \le \pi \end{cases}$	$\operatorname{sinc}(Wn) = \left\{ \frac{\sin Wn}{Wn}, n \neq 0 \right\}$.7
$ 0, W < \Omega \le \pi$	$ \begin{vmatrix} 1 & n=0 \\ 0 < W < \pi \end{vmatrix} $	
1	$\delta(n)$.8
$\frac{1}{1 - \exp(-j\Omega)} + \sum_{k=-\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$	u(n)	.9
$e^{-j\Omega n_0}$	$\delta(n-n_0)$.10

תכונות של התמרת פוריה בזמן בדיד

התמרת פוריה	סיגנל	ספרור
$X(\Omega)$	x(n)	.1
$Y(\Omega)$	y(n)	.2
$aX(\Omega)+bY(\Omega)$	ax(n) + by(n)	.3
$e^{-j\Omega n_0}X(\Omega)$	$x(n-n_0)$.4
$X(\Omega-\Omega_0)$	$e^{j\Omega_0 n}x(n)$.7
$X^*(-\Omega)$	$x^*(n)$.8
$X(\Omega) \cdot Y(\Omega)$	x(n) * y(n)	.9
$\frac{1}{2\pi} \int_{2\pi} X(\tilde{\Omega}) Y(\Omega - \tilde{\Omega}) d\tilde{\Omega}$	$x(n) \cdot y(n)$.10
$\left(1\!-\!e^{-j\Omega} ight)\!X\!\left(\Omega ight)$	x(n)-x(n-1)	.11
$\frac{1}{1 - e^{-j\Omega}} X(\Omega) + \pi X(\Omega) \sum_{k = -\infty}^{\infty} \delta(\Omega - 2\pi k)$	$\sum_{k=-\infty}^{n} x(k)$.12
$j\frac{d}{d\Omega}X(\Omega)$	$n \cdot x(n)$.11
$\int X(\Omega) = X^*(-\Omega)$	ממשי $x(n)$.12
$\operatorname{Re}\{X(\Omega)\}=\operatorname{Re}\{X(-\Omega)\}$		
$\left\{\operatorname{Im}\{X(\Omega)\} = -\operatorname{Im}\{X(-\Omega)\}\right\}$		
$ X(\Omega) = X(-\Omega) $		
$\sphericalangle X(\Omega) = - \sphericalangle X(-\Omega)$		
$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) Y^*(\Omega) d\Omega$	פרסבל	.13
$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega$		