MEX #2 - Geyzson Kristoffer

SN:2023-21036

https://uvle.upd.edu.ph/mod/assign/view.php?id=535541

```
In []: import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    from icecream import ic

from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler, LabelEncoder
    from sklearn.metrics import accuracy_score, f1_score, mean_squared_error, confusion_matrix, ConfusionMatrixDisplay
    from sklearn.inspection import DecisionBoundaryDisplay

from sklearn.svm import SVC, SVR
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import LinearRegression

from matplotlib.lines import Line2D
```

Problem #1

```
In [ ]: penguin_data = pd.read_csv('penguins_size.csv')
    penguin_data
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
(Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE
••							
339 340	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN
	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	FEMALE
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	MALE
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	FEMALE
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	MALE

344 rows × 7 columns

Out[]:

```
In [ ]: ic(penguin_data.isna().sum())
        ic(penguin_data.isnull().sum())
       ic| penguin_data.isna().sum(): species
                                                            0
                                      island
                                                            0
                                      culmen_length_mm
                                                            2
                                      culmen_depth_mm
                                                            2
                                      flipper_length_mm
                                                            2
                                      body_mass_g
                                                            2
                                                           10
                                      sex
                                      dtype: int64
       ic| penguin_data.isnull().sum(): species
                                                              0
                                        island
                                                              0
                                        culmen_length_mm
                                                              2
                                        culmen_depth_mm
                                                              2
                                        flipper_length_mm
                                                              2
                                        body_mass_g
                                                              2
                                        sex
                                                             10
                                        dtype: int64
```

```
Out[]: species 0 island 0 culmen_length_mm 2 culmen_depth_mm 2 flipper_length_mm 2 body_mass_g 2 sex 10 dtype: int64
```

Problem #1-a

```
In []: columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g', 'species']
    penguin_data_clean = penguin_data[columns].dropna()
    sns.pairplot(penguin_data_clean, hue='species', palette='Set2', diag_kind='kde', height=2)
    plt.suptitle('Pair Plot of Penguin Features', y=1.02)
    plt.show()
```


Problem #1-b

```
In [ ]: X = penguin_data_clean[['culmen_length_mm', 'flipper_length_mm']]
        y = penguin_data_clean['species']
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, stratify=y, random_state=42)
        model = Pipeline([
            ('scaler', StandardScaler()),
            ('svc', SVC())
        1)
        model.fit(X_train, y_train)
        y_train_pred = model.predict(X_train)
        y_test_pred = model.predict(X_test)
        train_accuracy = accuracy_score(y_train, y_train_pred)
        train_f1 = f1_score(y_train, y_train_pred, average='macro')
        train_confusion = confusion_matrix(y_train, y_train_pred)
        test_accuracy = accuracy_score(y_test, y_test_pred)
        test_f1 = f1_score(y_test, y_test_pred, average='macro')
        test_confusion = confusion_matrix(y_test, y_test_pred)
        cm_train = ConfusionMatrixDisplay(confusion_matrix = train_confusion)
        cm train.plot()
        plt.title('Confusion Matrix for Training Data')
        plt.show()
        print(f'Train Accuracy: \t{train_accuracy:.5f}')
        print(f'Train Macro Avg F1: \t{train_f1:.5f}')
        cm_test = ConfusionMatrixDisplay(confusion_matrix = test_confusion)
        cm test.plot()
        plt.title('Confusion Matrix for Testing Data')
        plt.show()
        print(f'Test Accuracy: \t\t{test_accuracy:.5f}')
        print(f'Test Macro Avg F1: \t{test_f1:.5f}')
```

Confusion Matrix for Training Data - 100 108 0 -- 80 True label - 60 - 40 - 20 91 2 í 2 0

Predicted label

Train Accuracy: 0.94531
Train Macro Avg F1: 0.93380

Confusion Matrix for Testing Data

Test Accuracy: 0.98837 Test Macro Avg F1: 0.98557

Problem #1-c

```
In []:
    label_encoder = LabelEncoder()
    y_train_encoded = label_encoder.fit_transform(y_train)
    y_test_encoded = label_encoder.transform(y_test)

display = DecisionBoundaryDisplay.from_estimator(model, X, alpha=0.8, eps=0.5)
    plt.scatter(X_train['culmen_length_mm'], X_train['flipper_length_mm'], c=y_train_encoded, edgecolors="k", marker='o', label='Train    plt.scatter(X_test['culmen_length_mm'], X_test['flipper_length_mm'], c=y_test_encoded, edgecolors="k", marker='X', label='Testing    plt.title('Decision Boundary with Training and Testing Data')
    plt.xlabel('Culmen Length (mm)')

legend_elements = [
        Line2D([0], [0], marker='o', color='w', markerfacecolor='k', markersize=10, label='Training Data'),
        Line2D([0], [0], marker='X', color='w', markerfacecolor='k', markersize=10, label='Testing Data')
```

```
plt.legend(handles=legend_elements)
plt.show()
```


Problem #1-d

```
In []: parameters = {
    'svc_C': [0.01, 0.1, 1, 10, 100],
    'svc_kernel': ['linear', 'rbf', 'poly', 'sigmoid'],
    'svc_degree': [2, 3, 4, 5],
    'svc_decision_function_shape': ['ovr', 'ovo']
}

random_search = RandomizedSearchCV(model, parameters, n_iter=5, cv=5, scoring='accuracy', n_jobs=-1, random_state=42)
random_search.fit(X_train, y_train)

best_model = random_search.best_estimator_
```

```
y train pred = best model.predict(X train)
y_test_pred = best_model.predict(X_test)
train accuracy = accuracy score(y train, y train pred)
train f1 = f1 score(y train, y train pred, average='macro')
train confusion = confusion matrix(y train, y train pred)
test_accuracy = accuracy_score(y_test, y_test_pred)
test_f1 = f1_score(y_test, y_test_pred, average='macro')
test confusion = confusion matrix(y test, y test pred)
cm train = ConfusionMatrixDisplay(confusion matrix = train confusion)
cm train.plot()
plt.title('Confusion Matrix for Training Data')
plt.show()
print(f'Train Accuracy: \t{train accuracy:.5f}')
print(f'Train Macro Avg F1: \t{train f1:.5f}')
cm test = ConfusionMatrixDisplay(confusion matrix = test confusion)
cm test.plot()
plt.title('Confusion Matrix for Testing Data')
plt.show()
print(f'Test Accuracy: \t\t{test_accuracy:.5f}')
print(f'Test Macro Avg F1: \t{test f1:.5f}')
```

Confusion Matrix for Training Data - 100 108 0 -- 80 True label - 60 44 - 40 - 20 91 2 í 2 0 Predicted label

Train Accuracy: 0.94922
Train Macro Avg F1: 0.93930

Confusion Matrix for Testing Data

Test Accuracy: 1.00000
Test Macro Avg F1: 1.00000

```
In []: label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)

display = DecisionBoundaryDisplay.from_estimator(best_model, X, alpha=0.8, eps=0.5)
plt.scatter(X_train['culmen_length_mm'], X_train['flipper_length_mm'], c=y_train_encoded, edgecolors="k", marker='D', label='Train
plt.scatter(X_test['culmen_length_mm'], X_test['flipper_length_mm'], c=y_test_encoded, edgecolors="k", marker='X', label='Testing
plt.title('Decision Boundary with Training and Testing Data')
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Flipper Length (mm)')

legend_elements = [
    Line2D([0], [0], marker='D', color='w', markerfacecolor='k', markersize=10, label='Training Data'),
    Line2D([0], [0], marker='X', color='w', markerfacecolor='k', markersize=10, label='Testing Data')
]
plt.legend(handles=legend_elements)
```

plt.show()

Problem #2

```
In [ ]: bike_data = pd.read_csv('SeoulBikeData.csv', encoding='latin1')
    bike_data
```

_		-	
() i i ·	- 1	- 1	
Uи	니		

•		Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Season
	0	01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	Winte
	1	01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	Winte
	2	01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	Winte
	3	01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	Winte
	4	01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	Winte
	•••												
8	755	30/11/2018	1003	19	4.2	34	2.6	1894	-10.3	0.0	0.0	0.0	Autumı
8	756	30/11/2018	764	20	3.4	37	2.3	2000	-9.9	0.0	0.0	0.0	Autumı
8	757	30/11/2018	694	21	2.6	39	0.3	1968	-9.9	0.0	0.0	0.0	Autumı
8	758	30/11/2018	712	22	2.1	41	1.0	1859	-9.8	0.0	0.0	0.0	Autumi
8	759	30/11/2018	584	23	1.9	43	1.3	1909	-9.3	0.0	0.0	0.0	Autumı

8760 rows × 14 columns

In []: ic(bike_data.isna().sum())
 ic(bike_data.isnull().sum())

```
ic| bike_data.isna().sum(): Date
                                    Rented Bike Count
                                    Hour
                                    Temperature(°C)
                                    Humidity(%)
                                    Wind speed (m/s)
                                    Visibility (10m)
                                    Dew point temperature(°C)
                                    Solar Radiation (MJ/m2)
                                    Rainfall(mm)
                                                                  0
                                    Snowfall (cm)
                                                                  0
                                    Seasons
                                    Holiday
                                    Functioning Day
                                    dtype: int64
       ic| bike_data.isnull().sum(): Date
                                                                    0
                                      Rented Bike Count
                                      Hour
                                      Temperature(°C)
                                                                    0
                                      Humidity(%)
                                      Wind speed (m/s)
                                      Visibility (10m)
                                                                    0
                                      Dew point temperature(°C)
                                      Solar Radiation (MJ/m2)
                                      Rainfall(mm)
                                      Snowfall (cm)
                                                                    0
                                                                    0
                                      Seasons
                                      Holiday
                                      Functioning Day
                                      dtype: int64
Out[]: Date
                                       0
         Rented Bike Count
                                       0
                                       0
         Hour
         Temperature(°C)
                                       0
         Humidity(%)
         Wind speed (m/s)
                                       0
         Visibility (10m)
                                       0
```

Dew point temperature(°C)
Solar Radiation (MJ/m2)

0

0

Rainfall(mm)
Snowfall (cm)

Functioning Day dtype: int64

Seasons

Holiday

Problem #2-a

```
In [ ]: winter_data = bike_data[bike_data['Seasons'] == 'Winter']
        columns = [
            'Hour',
            'Temperature(°C)',
            'Humidity(%)',
            'Wind speed (m/s)',
            'Visibility (10m)',
            'Dew point temperature(°C)',
            'Solar Radiation (MJ/m2)',
            'Rainfall(mm)',
            'Snowfall (cm)'
        plt.figure(figsize=(8, 8))
        for i, column in enumerate(columns, 1):
            plt.subplot(3, 3, i)
            sns.boxplot(data=winter_data[[column]])
            plt.title(column)
        plt.tight_layout()
        plt.show()
```


Problem #2-b

Problem #2-b fine tuning

```
In []: param_grid = {
    'svr_kernel': ['linear', 'rbf', 'poly', 'sigmoid'],
    'svr_C': [0.1, 1, 10, 100],
    'svr_epsilon': [0.01, 0.1, 1]
}

grid_search = GridSearchCV(model_svr, param_grid, scoring='neg_mean_squared_error', cv=5, n_jobs=-1)
grid_search.fit(X_train, y_train)

best_params = grid_search.best_params_
best_svr = grid_search.best_estimator_

y_pred_best_svr = best_svr.predict(X_test)

rmse_best_svr = np.sqrt(mean_squared_error(y_test, y_pred_best_svr))

print(f'Best_parameters: {best_params}')
print(f'RMSE: {rmse_best_svr..5f}')
```

```
Best parameters: {'svr__C': 100, 'svr__epsilon': 1, 'svr__kernel': 'rbf'}
RMSE: 112.86469
```

Problem #2-c

```
In [ ]: model_krr = Pipeline([
            ('scaler', StandardScaler()),
            ('krr', KernelRidge(kernel='linear'))
        1)
        model_krr.fit(X_train, y_train)
        y_pred_krr = model_krr.predict(X_test)
        rmse_krr = np.sqrt(mean_squared_error(y_test, y_pred_krr))
        print(f'RMSE original: {rmse_krr:.5f}')
        param_grid_krr = {
            'krr__alpha': [0.001, 0.01, 0.1, 1, 10, 100],
            'krr_kernel': ['linear', 'poly', 'rbf'],
            'krr__degree': [2, 3, 4],
            'krr__coef0': [0, 1, 2],
            'krr__gamma': [0.01, 0.1, 1, 10]
        randsearch_krr = RandomizedSearchCV(model_krr, param_grid_krr, cv=5, scoring='neg_mean_squared_error', n_jobs=-1)
        randsearch_krr.fit(X_train, y_train)
        best_params = randsearch_krr.best_params_
        best_krr = randsearch_krr.best_estimator_
        y_pred_krr = best_krr.predict(X_test)
        rmse_krr = np.sqrt(mean_squared_error(y_test, y_pred_krr))
        print(f'Best parameters: {best_params}')
        print(f'RMSE fine tuned: {rmse_krr:.5f}')
       RMSE original: 253.38630
       Best parameters: {'krr_kernel': 'rbf', 'krr_gamma': 0.1, 'krr_degree': 3, 'krr_coef0': 0, 'krr_alpha': 0.01}
       RMSE fine tuned: 101.27383
```

Problem #2-d

```
('lr', LinearRegression())
 1)
 model_lr.fit(X_train, y_train)
 y pred lr = model lr.predict(X test)
 rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
 print(f'RMSE original: {rmse_lr:.5f}')
 param_grid_lr = {
     'lr__fit_intercept': [True, False]
 grid_lr = GridSearchCV(model_lr, param_grid_lr, cv=5, scoring='neg_mean_squared_error', n_jobs=-1)
 grid_lr.fit(X_train, y_train)
 best_params = grid_lr.best_params_
 best_lr = grid_lr.best_estimator_
 y_pred_lr = best_lr.predict(X_test)
 rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
 print(f'Best parameters: {best_params}')
 print(f'RMSE fine tuned: {rmse_lr:.5f}')
RMSE original: 120.28687
```

RMSE original: 120.28687
Best parameters: {'lr__fit_intercept': True}
RMSE fine tuned: 120.28687