

Alberto Parravicini

Rhicheek Patra

Davide Bartolini

Marco Santambrogio

2019-05-{17-31}, NGCX

Entity Linking

Entity Linking (EL): connecting words of interest to unique identities (e.g. Wikipedia Page)

"The Indiana Pacers and Miami Heat [...] meet at Miami's American Airlines Arena"

en.wikipedia.org/wiki/Miami_Heat .../wiki/American_Airlines_Arena

en.wikipedia.org/wiki/Indiana_Pacers en.wikipedia.org/wiki/Miami

Use Cases

Component of applications that require high-level representations of text:

- 1. Search Engines, for semantic search
- 2. Recommender Systems, to retrieve documents similar to each other
- 3. Chat bots, to understand intents and entities

The EL Pipeline (1/2)

An EL system requires 2 steps:

- Named Entity Recognition (NER): spot mentions (a.k.a. Named Entities)
 - High-accuracy in the state-of-the-art^[1]

"Trump will answer Clinton's claims about the Wall"

Text: Trump,
Type: PER,
Offset: 0

Clinton,
PER,
LOC,
7

[1] Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging."

The EL Pipeline (2/2)

An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities

The EL Pipeline (2/2)

An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities

```
"Trump will answer Clinton's claims about the Wall"

Text: Trump,
Type: PER

PER

LOC

.../wiki/Donald_Trump .../wiki/Hillary_Clinton

.../wiki/Defensive_wall
.../wiki/Berlin_wall
.../wiki/Mexico-United_States_barrier
```


The EL Pipeline (2/2)

An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities

Our contributions

- Novel unsupervised framework for EL
 - No dependency on NLP
- First EL algorithm to use graph embeddings
 - Accuracy similar to supervised SoA techniques
- Highly scalable and real-time execution time
 - < 1 sec to process text with 30+ mentions</p>

Our EL Pipeline

Graph Creation

We obtain a large graph from DBpedia

- All the information of Wikipedia, stored as triples
- 12M entities, 170M links

Graph Creation

From DBPedia, we build two graphs

Property Graph

Redirects Graph

Step 2/4

Embeddings Creation (1/2)

- Graph embeddings encode vertices as vectors
 - "Similar" vertices have "similar" embeddings
- Idea: entities with the same context should have low embedding distance

Step 2/4

Embeddings Creation (2/2)

• In our work, we use **DeepWalk**[1]

- Like word2vec^[2], it leverages random walks (i.e. vertex sequences) to create embeddings
 - Embedding size 170, walk length 8
- DeepWalk uses only the graph topology
 - Simple baseline, we can use better algorithms
 and leverage graph features [1] Bryan Perozzi et al.2014. Deepwalk
 [2] Tomas Mikolov et al. 2013. Distribute

[1] Bryan Perozzi et al. 2014. Deepwalk [2] Tomas Mikolov et al. 2013. Distributed representations of words and phrases and their compositionality

Candidates Finder

Idea: for each mention, select a few candidate vertices with index- based **string similarity**

 Solve ambiguity following redirect and disambiguation edges

Candidates Finder

Idea: for each mention, select a few candidate vertices with index- based **string similarity**

 Solve ambiguity following redirect and disambiguation edges

Disambiguation (1/3)

- We want to pick the "best" candidate for each mention
 - In a "good" solution, candidates are related to each other (e.g. *Donald Trump, Hillary Clinton*)
- Observation: a good tuple of candidates has embeddings close to each other Trump
- Evaluating all combinations is infeasible
 - 10 mentions with 100 candidates \longrightarrow 100¹⁰

Hillary_Clinton

Disambiguation (2/3)

 We use an heuristic state-space search algorithm to maximize:

$$Best \ Tuple = \operatorname*{argmax} \left(\sum_{t_i \in T} Local(t_i) + Global(T) \right)$$

$$Sum \ of \ string$$

$$similarities$$

$$\bar{\mathbf{e}}(T) = \frac{1}{|T|} \sum_{t_i \in T} \mathbf{e}(t_i)$$

$$Global(T) = \sum_{t_i \in T} \frac{\langle \mathbf{e}(t_i), \bar{\mathbf{e}}(T) \rangle}{\|\mathbf{e}(t_i)\|_2 \|\bar{\mathbf{e}}(T)\|_2}$$

$$Sum \ of \ embedding$$

$$cosine \ similarities$$

$$w.r.t. \ tuple \ mean$$

$$Donald \ Trump$$

$$O \rightarrow Mexico \ United \ States$$

$$barrier$$

$$Hillary \ Clinton$$

Disambiguation (3/3)

Iterative state-space heuristic

```
Function optimizer(candidates):
```

```
T = find_initial_state(candidates)
while stop condition not met do
                                                             Greedy
    // Create num children new tuples by modifying
                                                             iterative
     random elements of T.
    T = new_tuples(T, num_children)
                                                             procedure
    T = optimize_tuple(T)
    s = compute\_score(T)
   if curr score \ge best score then
                                                    \underset{T}{\operatorname{argmax}} \left( \sum_{t_i \in T} Local(t_i) + Global(T) \right)
        best_tuple = T
        best score = s
    end
end
return best_tuple, best_score
```


Results: accuracy

- We compared against 6 SoA EL algorithms, on 5 datasets
- Our Micro-averaged F1 score is comparable with SoA supervised algorithms

Data Set	Ours	DoSeR	WK	AIDA	WAT	BB	SL
ACE2004	0.84	0.90	0.83	0.81	0.80	0.56	0.71
AQUAINT	0.86	0.84	0.86	0.53	0.77	0.65	0.71
MSNBC	0.92	0.91	0.85	0.78	0.78	0.60	0.51
N3-Reuters	0.82	0.85	0.70	0.60	0.64	0.53	0.58
N3-RSS-500	0.72	0.75	0.73	0.71	0.68	0.63	0.62

WK is Wikifier, BB is Babelfy, SL is Spotlight

Results: exec. time

- Different settings enable real-time EL, with minimal loss in accuracy
 - E.g. number of iterations, early stop

Total exec. time by configuration

Results: exec. time of single steps

 Execution time is well divided between Candidate Finder and Disambiguation

Time distribution - Fast Configuration

Thank you! Fast Entity Linking via Graph Embeddings

- Novel unsupervised framework for EL
- First EL algorithm to use graph embeddings
 - Accuracy similar to supervised SoA techniques
- Real-time execution time

Alberto Parravicini, alberto.parravicini@polimi.it

Rhicheek Patra
Davide Bartolini
Marco Santambrogio

2019-05-{17-31}, NGCX

Step 2/4

Embeddings

- Turn topology and properties of each vertex into a vector
- "Similar" vertices have "similar" embeddings

Graph Creation

New_York_City ... and join them together NYC redirects redirects New_York 1946 The_Trump_Building NY partOf redirects birthDate owne Queens birthPlace Trump,_Donald redirects Donald_Trump disambiguates child parent Trump grandFather disambiguates Ivanka Trump Fred_Trump

Candidates Finder

Idea: for each mention, select a small number of candidate vertices with **string similarity**

- We use a simple index-based string search
- Fuzzy matching with 2-grams and 3-grams
- This provide a simple baseline (60-70% accuracy)

