Sequences, Integer Functions

Andres Buritica

1 Comments

Even though sequence problems and integer function problems look cosmetically different, a sequence is just a function from \mathbb{N} to (some subset of) \mathbb{R} .

For divisibility problems, try to make one side of the divisibility prime.

If you can find infinitely many values, often you can sub a small unknown number and a large known one, and this gives you the small number.

2 Problems

- 1. Find all completely multiplicative functions $f: \mathbb{N} \to \mathbb{R}$ such that for all $a, b \in \mathbb{N}$, at least two of f(a), f(b), f(a+b) are equal.
- 2. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(n+1) > f(f(n)) for all positive integers n.
- 3. Does there exist a strictly increasing function $f: \mathbb{N} \to \mathbb{N}$ such that f(1) = 2 and f(f(n)) = f(n) + n for all positive integers n?
- 4. Prove that all terms of the sequence $a_1 = a_2 = a_3 = 1$, $a_{n+1} = (1 + a_{n-1}a_n)/a_{n+2}$ are integers.
- 5. Does there exist a strictly increasing function $f: \mathbb{N} \to \mathbb{N}$ such that f(mn) = f(m) + f(n) for all positive integers m and n?
- 6. Let $f: \mathbb{Z} \to \mathbb{N}$ be a function such that for any integers m and n, $f(m-n) \mid f(m) f(n)$. Prove that for all integers m and n, if $f(m) \leq f(n)$ then $f(m) \mid f(n)$.
- 7. Let P(n) be the product of the digits of a positive integer n. Let n_1 be a positive integer, and define $n_{i+1} = n_i + P(n_i)$ for each $i \ge 1$. Prove that this sequence is eventually constant.
- 8. Find all functions $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ such that f(f(f(n))) = f(n+1) + 1 for all $n \in \mathbb{Z}_{\geq 0}$.
- 9. Let a_1, a_2, \ldots be a sequence of integers such that the average of every consecutive group of a_i s is a perfect square. Prove that the sequence is constant.

3 Homework

- 1. Is there a sequence a_1, \ldots, a_n of primes such that for each i we have $10a_i \leq a_{i+1} < 10a_i + 9$?
- 2. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that $m^2 + f(n) \mid mf(m) + n$ for all positive integers m and n.
- 3. Is there a function $f: \mathbb{N} \to \mathbb{N}$ of positive integers such that $\gcd(a_m, a_n) = 1 \iff |m-n| = 1$?