Три теоремы о выпуклых оболочках

Малый мехмат

Индукция

• Задача. Докажите, что для любого $n\geqslant 3$ единицу можно представить в виде суммы n попарно различных дробей вида $\dfrac{1}{k}$, где $k\in\mathbb{N}$

• Задача. Физрук скомандовал стоящим в шеренгу детям: «Нале-во!». В эту секунду каждый школьник повернулся либо налев, либо направо. Каждую следующую секунду школьники, оказавшиеся лицом друг к другу, одновременно поворачивались кругом. Может ли так случиться, что дети не перестанут никогда крутиться?

• Докажите, что последовательность

$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, ...

- Ограничена
- Возрастающая
- Каков её предел?

• **Задача.** Докажите, что квадрат можно разрезать на любое число квадратов, начиная с 6

Векторное пространство

- Векторное пространство V это множество векторов v, которые можно складывать и умножать на числа (*аксиомы выписывать не буду*)
- ullet У нас оно будет конечномерным, т. е. $V = \{\lambda_1 e_1 + \ldots + \lambda_n e_n\} n$ -мерное векторное пространство с базисом e_1, \ldots, e_n
- Примеры

Аффиное пространство

- Аффинное пространство \mathbb{A}^n это множество точек a, для которых определено смещение на векторы $v \in V$: $a_1 + v = a_2$. Примеры
- Разность двух точек это вектор

Аффиное пространство

- Сумма точек имеет смысл не всегда
- Аффинная оболочка точек a_1, \ldots, a_n натягиваем на $a_1 a_0, \ldots, a_n a_0$ плоскость, проходящую через точку a_0
- Значит имеют смысл суммы точек $\{\mu_1a_1+\ldots+\mu_na_n\mid \mu_1+\ldots+\mu_n=1\}$ это плоскости в аффинном пространстве \mathbb{A}^n

Выпуклая линейная комбинация точек

- lacktriangle Оной для точек x_1, \ldots, x_k называется сумма
- $\bullet \lambda_1 x_1 + \ldots + \lambda_k x_k, \ \lambda_i \geqslant 0, \ \lambda_1 + \ldots + \lambda_k = 1$
- **Вопрос.** Что даст выпуклая линейная комбинация для двух точек? а для трёх? а для четырёх? а для n?

Выпуклые множества

 Множество называется выпуклым, если любые его две точки принадлежат этому множеству вместе сотрезком с концами в этих точках:

$$x, y \in X \Rightarrow \{\lambda x + (1 - \lambda)y\} \subset X$$

- Пересечение выпуклых выпукло
- lacktriangle Напоминание. Про \mathbb{R}^n можно думать, как про строки, состоящие из n чисел
- lacktriangle Выпуклая оболочка точек $\{x_1, \ldots, x_k\}$ в \mathbb{R}^n это наименьшее по включению выпуклое подмножество в \mathbb{R}^n , содержащее все эти точки
- Примеры

Теорема Каратеодори

- Примеры

Доказательство

- lack Пусть $x = \mu_1 x_1 + \ldots + \mu_k x_k, \ k \geqslant n+2, \ \mu_i \geqslant 0, \ \mu_1 + \ldots + \mu_k = 1$
- Покажем, что одно из слагаемых можно занулить $x = s_1x_1 + \ldots + s_kx_s$, $s_1 \ldots s_k = 0$
- $k-1\geqslant n+1\Rightarrow$ что с векторами $x_2-x_1,\,x_3-x_1,\,\ldots,\,x_k-x_1$?
- lack Они зависимы, т. е. $0=\lambda_2(x_2-x_1)+\ldots+\lambda_k(x_k-x_1)=\lambda_1x_1+\ldots+\lambda_kx_k$
- lacktriangle Ho $\lambda_1+\ldots+\lambda_k=0\Rightarrow$ есть хотя бы одна $\lambda_i>0$
- ullet Вычтем нуль: $x=x-0=\sum \mu_i x_i-lpha \sum \lambda_i x_i=\sum (\mu_i-lpha\lambda_i)x_i$
- ullet Возьмём $lpha = \min_{1\leqslant j\leqslant k} \left\{ rac{\lambda_j}{\mu_j} : \mu_j > 0
 ight\}$ \Box

Теорема Радона

- **Теорема (Радон).** Любые n+2 точки в \mathbb{R}^n можно разбить на два непустых непересекающихся подмножества, выпуклые оболочки которых пересекаются
- Примеры
- **Вопрос.** А если точек будет больше, чем n+2, теорема останется верной?

Доказательство

- Идея знака
- $a_1 a_{n+2}, \ldots, a_{n+1} a_{n+2}$ зависимы:
- $\sum \lambda_i (a_i a_{n+2}) = 0 \Rightarrow \sum \lambda_i a_i = 0, \ \lambda_{n+2} = -\sum \lambda_i, \ \lambda_1 + \ldots + \lambda_{n+2} = 0$
- Разобьём точки на 2 подмножества: положительные и отрицательные:
- lacktriangle Положительные (I_+) это те, при которых знак лямбды положителен
- lacktriangle Отрицательные (I_{-}) ... отрицателен
- lack Пусть $\Lambda = \sum_{i \in I_+} \lambda_i$. Тогда точка $x = \sum_{i \in I_+} \frac{\lambda_i}{\Lambda} a_i = -\sum_{i \in I_-} \frac{\lambda_i}{\Lambda} a_i$

Теорема Хелли

- **Теорема (Хелли).** Пусть C_1, \ldots, C_k выпуклые подмножества в \mathbb{R}^n и $k \geqslant n+1$. Предположим, что любые n+1 из них пересекаются. Тогда все C_i пересекаются
- Примеры

Доказательство

- lacktriangle Что будет при k=n+1?
- Пусть k=n+2. Тогда после выкидывания любого множества C_i из C_1, \ldots, C_k по предположению все остальные пересекуться $\ni a_i$
- lacktriangle Мы получим набор точек a_1, \ldots, a_{n+2} . Что дальше?
- lacktriangle По теореме Радона есть I_1 и I_2
- Дальше по индукции 🔲

