O-minimal geometry

Tobias Kaiser

Universität Passau

19. Juli 2016

Contents

- 1. Axiom of o-minimality
 - 1.1 Semialgebraic sets
 - 2.1 Structures
 - 2.2 O-minimal structures
- Tameness
 - 2.1 Cell decomposition
 - 2.2 Smoothness
 - 2.3 Stratification
 - 2.4 Triangulation
 - 2.5 Trivialization
 - 2.6 Parametrization
- 3. The structure \mathbb{R}_{an}
 - 3.1 Semi- and subanalytic sets
 - 3.2 Proof of o-minimality
 - 3.3 Geometric properties

1. Axiom of o-minimality

1.1 Semialgebraic sets

Definition

A subset of \mathbb{R}^n is called **semialgebraic** if it is a finite union of sets of the form

$$\{x \in \mathbb{R}^n \mid f(x) = 0, g_1(x) > 0, \dots, g_k(x) > 0\}$$

where f, g_1, \ldots, g_k are real polynomials in n variables.

Example

The set $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ is semialgebraic.

Remark

- (1) Let $A, B \subset \mathbb{R}^n$ be semialgebraic. Then $A \cap B, A \cup B, \mathbb{R}^n \setminus A$ are semialgebraic.
- (2) Let $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$ be semialgebraic. Then $A \times B$ is semialgebraic.

Theorem (Tarski)

Let $A \subset \mathbb{R}^{n+1}$ be semialgebraic and let $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be the projection onto the first n coordinates. Then $\pi(A)$ is semialgebraic.

1.2 Structures

Definition

A **structure on** \mathbb{R} is a sequence $\mathcal{M} = (\mathcal{M}_n)_{n \in \mathbb{N}}$ such that the following holds for all $n, m \in \mathbb{N}$:

- (S1) \mathcal{M}_n consists of subsets of \mathbb{R}^n such that $A \cap B$, $A \cup B$, $\mathbb{R}^n \setminus A \in \mathcal{M}_n$ for all $A, B \in \mathcal{M}_n$.
- (S2) If $A \in \mathcal{M}_m, B \in \mathcal{M}_n$ then $A \times B \in \mathcal{M}_{m+n}$.
- (S3) \mathcal{M}_n contains the semialgebraic subsets of \mathbb{R}^n .
- (S4) If $A \in \mathcal{M}_{n+1}$ then $\pi(A) \in \mathcal{M}_n$.

Definition

Let $\mathcal{M} = (\mathcal{M}_n)_{n \in \mathbb{N}}$ be a structure on \mathbb{R} .

- (a) We say that $A \subset \mathbb{R}^n$ is definable (in \mathcal{M}) if $A \in \mathcal{M}_n$.
- (b) We say that a function $f:A\to\mathbb{R}^m$ $(A\subset\mathbb{R}^n)$ is **definable** if its graph is definable.

The above notion of a structure on $\mathbb R$ coincides with the logical notion of a structure with respect to a language

$$\{+,\cdot,-,0,1,\leq,\ldots\}$$

extending the language of ordered rings and the reals as universe. Definable sets/functions in the above setting are precisely the definable sets/functions (with parameters from $\mathbb R$) which are defined by formulas in the language.

Translation:

Sets	Formulas
\cap	^
U	V
\	_
π	3

Example

The formula $\exists y \ x = y^2$ defines the set $\{x \in \mathbb{R} \mid x \ge 0\}$.

Remark

Let \mathcal{M} be a structure on \mathbb{R} .

- (1) Let A be definable. Then \overline{A} , \mathring{A} and ∂A are definable.
- (2) Let $f: A \to \mathbb{R}^m$ be definable. Then A and f(A) are definable.

1.3 O-minimal structures

Definition

A structure on \mathbb{R} is called **o-minimal** if the following axiom holds:

 (\mathcal{O}) The definable subsets of $\mathbb R$ are the finite unions of intervals and points.

The axiom of o-minimality means that the unary definable sets have only finitely many connected components.

Examples

- (1) The structure consisting of the semialgebraic sets (which is denoted by \mathbb{R}) is o-minimal.
- (2) The structure \mathbb{R}_{exp} generated by the global exponential function $exp: \mathbb{R} \to \mathbb{R}$ is o-minimal.

2 Tameness

Fix an o-minimal structure \mathcal{M} on \mathbb{R} . "Definable" means "definable in \mathcal{M} ".

2.1 Cell decomposition

Theorem (Monotonicity)

Let $-\infty \le a < b \le \infty$ and let $f:]a, b[\to \mathbb{R}$ be definable. Then there are points $a_1 < \ldots < a_k$ in a_i , b such that on each subinterval a_i, a_{i+1} with $a_0 = a, a_{k+1} = b$, the function is either constant, or strictly monotone and continuous.

Proof:

Corollary

Let $f:]a,b[\to \mathbb{R}$ be definable. Then $\lim_{x\to b} f(x)$ exists in $\mathbb{R} \cup \{\pm \infty\}$.

Theorem

Let $f:]a,b[\to \mathbb{R}$ be definable and let $r\in \mathbb{N}$. Then f is C^r up to a finite set.

Definition (Cell)

A (definable) cell in \mathbb{R}^n is recursively defined as follows:

n=1: The cells in $\mathbb R$ are exactly the intervals and points.

 $n \to n+1$: Assume that $X \subset \mathbb{R}^n$ is a cell and $f,g:X \to \mathbb{R}$ are continuous definable functions with f(x) < g(x) for all $x \in X$. The the following sets are cells in \mathbb{R}^{n+1} (with base X):

$$\Gamma(f) := \{(x, y) \in X \times \mathbb{R} \mid y = f(x)\},$$

$$(f, g) := \{(x, y) \in X \times \mathbb{R} \mid f(x) < y < g(x)\},$$

$$(f, \infty) := \{(x, y) \in X \times \mathbb{R} \mid y > f(x)\},$$

$$(-\infty, f) := \{(x, y) \in X \times \mathbb{R} \mid y < f(x)\},$$

$$(-\infty, \infty) := X \times \mathbb{R}.$$

Remark

- (1) There is a natural dimension attached to a cell.
- (2) A cell is connected.

Theorem (Cell decomposition)

- (1) Let $A \subset \mathbb{R}^n$ be a definable set. Then A can be partitioned into finitely many cells.
- (2) Let f: A → R be a definable function. Then A can be partitioned into finitely many cells such that on each cell f is continuous.

Tobias Kaiser

Consequences:

- ▶ There is a natural dimension attached to a definable set.
- ► A definable cell has only finitely many connected components. Each connected component is definable.
- ▶ Uniform finiteness: Let $A \subset \mathbb{R}^m \times \mathbb{R}^n$ be a definable family and assume that for each $t \in \mathbb{R}^m$ the set

$$A_t := \left\{ x \in \mathbb{R}^n \mid (t, x) \in A \right\}$$

is finite. Then there is an $N \in \mathbb{N}$ such that $|A_t| \leq N$ for all $t \in \mathbb{R}^m$.

▶ Curve selection: Let $A \subset \mathbb{R}^n$ be definable and let $x \in \overline{A} \setminus A$. Then there is a continuous definable curve γ :]0,1[$\rightarrow A$ such that $\lim_{t\to 0} \gamma(t) = x$.

Remark

Let $A \subset \mathbb{R}^n$ be definable.

- (1) \overline{A} is definable and $\dim(\overline{A} \setminus A) < \dim(A)$.
- (2) $\dim(A) = n$ if and only if $\mathring{A} \neq \emptyset$.

2.2 Smoothness

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be definable and let $r \in \mathbb{N}$. Then there is an open definable set $U \subset \mathbb{R}^n$ with $\dim(\mathbb{R}^n \setminus U) < n$ such that f is C^r on U.

Theorem (Inverse function)

Let $f: U \to \mathbb{R}^n$ be a definable C^1 -map on a definable open set $U \subset \mathbb{R}^n$. Let $a \in U$ such that Df(a) is invertible. Then there are definable open neighbourhoods $V \subset U$ of a and W of f(a) such that $f: V \to W$ is a definable C^1 -diffeomorphism.

2.3 Stratification

Let $r \in \mathbb{N}$.

Definition (Definable manifold)

Let $X \subset \mathbb{R}^n$. Then X is called a **definable** (C^r -)manifold if X is a submanifold of \mathbb{R}^n and if X is a definable set.

Remark

Let X be a definable manifold. The dimension of X as a definable set coincides with the dimension of X as a submanifold of \mathbb{R}^n .

Definition (Nice definable manifold)

A k-dimensional C^r -definable manifold X is called **nice** if there are, after some linear change of coordinates, a definable open subset U of \mathbb{R}^k and a definable C^r -map $f:U\to\mathbb{R}^{n-k}$ with bounded derivative such that X is the graph of f.

Theorem

Let $A \subset \mathbb{R}^n$ be definable set. Then A can be partitioned into finitely many nice definable manifolds, the so-called **strata**.

Corollary

Let $A \subset \mathbb{R}^n$ be a definable set of dimension k that is bounded. Then the k-dimensional volume of A is finite.

2.4 Triangulation

Definition (Simplex)

A simplex is of the form

$$(a_0,\ldots,a_k) := \Big\{ \sum_{j=0}^k t_j a_j \mid t_j > 0 \ \forall j, \sum_{j=0}^k t_j = 1 \Big\},$$

where $a_0, \ldots, a_k \in \mathbb{R}^n$ are affine independent points. These points are called the **vertices** of the simplex.

The topological closure of the simplex is denoted by

$$[a_0,\ldots,a_k] := \Big\{ \sum_{j=0}^k t_j a_j \mid t_j \geq 0 \ \forall j, \sum_{j=0}^k t_j = 1 \Big\}.$$

A **face** of a simplex $(a_0, ..., a_k)$ is a simplex spanned by a nonempty subset of $\{a_0, ..., a_k\}$.

Example

 $[a_0, a_1]$ is the line segment between distinct points a_0 and a_1 . $[a_0, a_1, a_2]$ is the triangle spanned by points a_0, a_1, a_2 not on a line.

Definition (Complex)

A **complex** in \mathbb{R}^n is a finite collection K of simplexes in \mathbb{R}^n , such that for all $\sigma_1, \sigma_2 \in K$ either

(a)
$$\overline{\sigma_1} \cap \overline{\sigma_2} = \emptyset$$

or

(b) $\overline{\sigma_1} \cap \overline{\sigma_2} = \overline{\tau}$ for some common face τ of σ_1 and σ_2 .

Definition (Polyhedron)

The union of simplexes of a complex is called the **polyhedron** spanned by the complex.

Theorem (Triangulation theorem)

Let $A \subset \mathbb{R}^n$ be definable. Then A is definably homeomorphic to a polyhedron spanned by a complex in \mathbb{R}^n .

2.4 Trivialization

A continuous map $f:X\to Y$ between topological spaces is often thought of as describing a "continuous" family of sets $\left(f^{-1}(y)\right)_{y\in Y}$ in X parametrized by the space Y.

From this viewpoint projections are the simplest:

Let $\pi: Y \times Z \to Y$ be the projection onto the first component.

Then $\pi^{-1}(y) = \{y\} \times Z$ for all $y \in Y$.

Definition (Trivial map)

A continuous map $f:X\to Y$ between topological spaces is **trivial** if there is a toplogical space Z and a homeomorphism

 $\varphi: X \to Y \times Z$ such that $f = \pi \circ \varphi$. The map $\varphi: X \to Y \times Z$ is then called a **trivialization** of f.

We also say that f is trivial over a subspace Y' of Y if $f|_{f^{-1}(Y')}: f^{-1}(Y') \to Y'$ is trivial.

Remark

Let $\varphi: X \to Y \times Z$ be a trivialization of $f: X \to Y$. Then all fibers $f^{-1}(y)$ are homeomorphic to Z.

Let $X \subset \mathbb{R}^m$, $Y \subset \mathbb{R}^n$ be definable and let $f: X \to Y$ be a definable continuous function.

Definition

We say that f is **definably trivial** if there is a definable set Z in some \mathbb{R}^k and a definable homeomorphism $\varphi: X \to Y \times Z$ such that $f = \pi \circ \varphi$. The map $\varphi: X \to Y \times Z$ is then called a **definable trivialization** of f.

We also say that f is trivial over a definable subset Y' of Y if $f|_{f^{-1}(Y')}: f^{-1}(Y') \to Y'$ is definably trivial.

Theorem

Let $f: X \to Y$ be definable and continuous. Then Y can be partitioned into finitely many definable sets such that f is definably trivial over each of them.

Corollary

Let $A \subset \mathbb{R}^m \times \mathbb{R}^n$ be definable. Consider the definable family $(A_t)_{t \in \mathbb{R}^m}$ where

$$A_t := \big\{ x \in \mathbb{R}^n \mid (t, x) \in A \big\}.$$

Then this family has only finitely many homoemorphism types.

2.4 Parametrization

Let I :=]0, 1[.

Theorem (Parametrization theorem)

Let $A \subset \mathbb{R}^n$ be definable and bounded. Then for every $p \in \mathbb{N}$ there is a finite set Φ of definable C^p -maps $\varphi : I^{k_{\varphi}} \to \mathbb{R}^n$ with

$$A = \bigcup_{\varphi \in \Phi} \varphi(I^{k_{\varphi}})$$

such that $|D^{\alpha}\varphi|$ is bounded for every $\varphi \in \Phi$ and every $\alpha \in \mathbb{N}_0^{k_{\varphi}}$ with $||\alpha|| \leq p$.

Theorem (Reparametrization theorem)

Let $f: I^n \to \mathbb{R}^q$ be a definable map with bounded image. Then for every $p \in \mathbb{N}$ there is a finite set Φ of definable C^p -maps $\varphi: I^n \to \mathbb{R}^n$ with

$$I^n = \bigcup_{\varphi \in \Phi} \varphi(I^n)$$

such that the following holds for every $\varphi \in \Phi$ and every $\alpha \in \mathbb{N}_0^n$ with $||\alpha|| \leq p$:

- (1) $|D^{\alpha}\varphi|$ is bounded,
- (2) $f \circ \varphi$ is C^p ,
- (3) $|D^{\alpha}(f \circ \varphi)|$ is bounded.

3. The structure \mathbb{R}_{2n}

3.1 Semi- and subanalytic sets

Definition

Let $U \subset \mathbb{R}^n$ be open. A function $f: U \to \mathbb{R}$ is called real analytic if for every $a \in U$ there is a convergent real power series p(x) in n variables such that f(x) = p(x - a) on a neighbourhood of a.

Definition

A subset A of \mathbb{R}^n is called **semianalytic** if for every $a \in \mathbb{R}^n$ there is an open neighbourhood U of a such that $A \cap U$ is a finite union of sets of the form

$$\{x \in U \mid f(x) = 0, g_1(x) > 0, \dots, g_k(x) > 0\}$$

where f, g_1, \ldots, g_k are real analytic on U.

Examples

- (1) A semialgebraic set is semianalytic.
- (2) The graphs of the exponential function and of the sine function are semianalytic.

Remarks

- (1) Let $A, B \subset \mathbb{R}^n$ be semianalytic. Then $A \cap B, A \cup B, \mathbb{R}^n \setminus A$ are semianalytic.
- (2) Let $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$ be semianalytic. Then $A \times B$ is semianalytic.

Definition

A subset A of \mathbb{R}^n is called **subanalytic** if for every $a \in \mathbb{R}^n$ there is a neighbourhood U of a, some $p \in \mathbb{N}$ and a bounded semianalytic subset $B \subset \mathbb{R}^{n+p}$ such that $A \cap U = \pi_n(B)$ where $\pi_n : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection onto the first factor.

Remark

A semianalytic set is subanalytic. A subanalytic set is not necessarily semianalytic.

Remarks

- (1) Let $A, B \subset \mathbb{R}^n$ be subanalytic. Then $A \cap B, A \cup B$ are subanalytic.
- (2) Let $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$ be subanalytic. Then $A \times B$ is subanalytic.
- (3) Let $A \subset \mathbb{R}^{n+1}$ be subanalytic and bounded and let $\pi : \mathbb{R}^{n+1} \to \mathbb{R}$ be the projection onto the first n coordinates. Then $\pi(A)$ is subanalytic.

Remark

The projection of a subanalytic set is not necessarily subanalytic.

Theorem (Gabrielov)

The complement of a subanalytic set is subanalytic.

Remark

The structure generated by the subanalytic sets is not o-minimal.

Remark

The map

$$\varphi_n: \mathbb{R}^n \to]-1, 1[^n, x=(x_1,\ldots,x_n) \mapsto \left(\frac{x_1}{\sqrt{x_1^2+1}},\ldots,\frac{x_n}{\sqrt{x_n^2+1}},\right),$$

is an analytic diffeomorphism that is semialgebraic.

Definition

A subset A of \mathbb{R}^n is called **globally subanalytic** if $\varphi_n(A)$ is subanalytic.

A function $f: A \to \mathbb{R}^m$ is called globally subanalytic if its graph is a globally subanalytic set.

Examples

- (1) A semialgebraic set is globally subanalytic.
- (2) A bounded subanalytic set is globally subanalytic.
- (3) The exponential function and the sine function are not globally subanalytic.

Definition

A function f is called **restricted analytic** if there is a real power series p(x) that converges on an open neighbourhood of $[0,1]^n$ such that

$$f(x) = \begin{cases} p(x), & x \in [0,1]^n, \\ & \text{if} \\ 0, & \text{else.} \end{cases}$$

Let $\mathcal{L}_{\mathrm{an}}$ be the language which extends the language $\left\{+,\cdot,-,0,1,\leq,\dots\right\}$ by function symbols for every restricted analytic function and let \mathbb{R}_{an} be the natural $\mathcal{L}_{\mathrm{an}}$ -structure on \mathbb{R} .

Remark

Let $A \subset \mathbb{R}^n$.

- (1) Then A is definable in \mathbb{R}_{an} if and only if A is globally subanalytic.
- (2) A function $f: A \to \mathbb{R}^m$ is definable in \mathbb{R}_{an} if and only if it is globally subanalytic.

Theorem

The structure \mathbb{R}_{an} is o-minimal.

3.2 Proof of o-minimality

Thom's lemma

Let $f_1, \ldots, f_k \in \mathbb{R}[T]$ be nonzero polynomials such that if $f_j' \neq 0$, then $f_j' \in \{f_1, \ldots, f_k\}$. Let $\varepsilon : \{1, \ldots, k\} \to \{-1, 0, 1\}$ (a "sign condition"), and set

$$A_{\varepsilon} := \Big\{ t \in \mathbb{R} \mid \operatorname{sign}(f_j(t)) = \varepsilon(j), 1 \leq j \leq k \Big\}.$$

Then A_{ε} is empty, a point, or an interval. If $A_{\varepsilon} \neq \emptyset$, then its closure is given by

$$\overline{A_{\varepsilon}} = \Big\{ t \in \mathbb{R} \mid \operatorname{sign}(f_j(t)) \in \{\varepsilon(j), 0\}, 1 \leq j \leq k \Big\}.$$

If $A_{\varepsilon} = \emptyset$, then

$$\left\{t \in \mathbb{R} \mid \operatorname{sign}(f_j(t)) \in \{\varepsilon(j), 0\}, 1 \leq j \leq k\right\}$$

is empty or a point.

Let X be a nonempty topological space, E a ring of continuous real-valued functions $f: X \to \mathbb{R}$, the ring operations being pointwise addition and multiplication, with multiplicative identity the function on X that takes the constant value 1.

A subset A of X is called an E-set if A is a finite union of sets of the form

$$\{x \in X \mid f(x) = 0, g_1(x) > 0, \dots, g_k(x) > 0\}$$

where $f, g_1, \ldots, g_k \in E$.

Theorem

Let $f_1(T), \ldots, f_M(T) \in E[T]$. Then the list f_1, \ldots, f_M can be augmented to a list $f_1, \ldots, f_N \in E[T]$ $(M \le N)$, and X can be partitioned into finitely many E-sets X_1, \ldots, X_k such that for each connected component C of each X_j there are continuous real-valued functions $\xi_{C,1} < \ldots < \xi_{C,m(C)}$ on C with the following properties:

- (1) Each function f_n has constant sign on each of the graphs $\Gamma(\xi_{C,j})$ and on each of the sets $(\xi_{C,j}, \xi_{C,j+1})$ (where $\xi_{C,0} \equiv -\infty$ and $\xi_{C,m(C)+1} \equiv +\infty$).
- (2) Each of the sets $\Gamma(\xi_{C,j})$ and $(\xi_{C,j},\xi_{C,j+1})$ is of the form

$$\{(x,t)\in C\times\mathbb{R}\mid \mathrm{sign}\big(f_n(x,t)\big)=\varepsilon(n) \text{ for } 1\leq n\leq N\}$$

for a suitable sign condition $\varepsilon: \{1, \dots, N\} \to \{-1, 0, 1\}$.

Definition

The pair (X, E) has the **Łojasiewicz property** if each E-set has only finitely many connected components, and each component is also an E-set.

Corollary

If (X, E) has the Łojasiewicz property then $(X \times \mathbb{R}, E[T])$ has also the Łojasiewicz property.

Tobias Kaiser

By $\mathbb{R}\{x_1,\ldots,x_n\}$ we denote the ring of convergent real power series in the variables x_1,\ldots,x_n .

Definition

A convergent real power series $f \in \mathbb{R}\{x_1, \dots, x_n\}$ is called **regular** of order d in x_n if

$$f(0,x_n) = a_d x_n^d + \text{higher terms}$$

where $a_d \neq 0$.

Remark

Let $f \in \mathbb{R}\{x_1, \dots, x_n\}$ be nonzero. Then there is a linear coordinate transformation φ of \mathbb{R}^n such that $f \circ \varphi$ is regular in x_n .

Definition

A power series $p \in \mathbb{R}\{x_1, \dots, x_{n-1}\}[x_n]$ of the form

$$p(x',x_n) = a_0(x') + a_1(x')x_n + \dots + a_{n-1}(x')x_n^{d-1} + x_n^d$$

is called a Weierstraß polynomial of degree d in x_n if

$$a_0(0) = \ldots = a_{d-1}(0) = 0.$$

Weierstraß preparation theorem

Let $f \in \mathbb{R}\{x_1, \dots, x_n\}$ be regular of order d in x_n . Then there are uniquely determined $u \in \mathbb{R}\{x_1, \dots, x_n\}$ with $u(0) \neq 0$ and a Weierstraß polynomial p of degree d in x_n such that f = up.

Gabrielov's theorem

Model theoretic formulation:

The \mathcal{L}_{an} -theory of the \mathcal{L}_{an} -structure \mathbb{R}_{an} is **model complete**; i.e. every definable set can be described by an existential formula.

3.3 Geometric properties

Definition

A convergent real Puiseux series is of the form $f(t^{1/p})$ where f is a convergent real power series in one variable and $p \in \mathbb{N}$.

Theorem

Let $f:]0,\infty[\to\mathbb{R}$ be definable in \mathbb{R}_{an} . Then there is a convergent real Puiseux series g, some $r\in\mathbb{Q}$ and some $\varepsilon>0$ such that $f(t)=t^rg(t)$ on $]0,\varepsilon[$.

Tobias Kaiser

Theorem (Lion-Rolin preparation)

Let $q \in \mathbb{N}_0$, let $A \subset \mathbb{R}^q \times \mathbb{R}$ and let $f : A \to \mathbb{R}, (x, t) \mapsto f(x, t)$, be definable in \mathbb{R}_{an} .

Then there is a cell decomposition \mathcal{C} of A such that the following holds. Let $C \in \mathcal{C}$ and let B denote the base of C. Assume that C is fat over the last variable t; i.e. C_x is a nonempty open interval (and not just a point) for every $x \in B$. Then the function $f|_C$ can be written as

$$f|_{C}(x,t) = a(x)|t - \theta(x)|^{r}u(x,t - \theta(x))$$

where $r \in \mathbb{Q}$, the functions $a, \theta : B \to \mathbb{R}$ are definable and real analytic, $t \neq \theta(x)$ on C, and u(x,t) is a so-called special unit on

$$C^{\theta} := \big\{ (x, t - \theta(x)) \mid (x, t) \in C \big\};$$

i.e. u is of the following form:

$$u(x,t) = v(b_1(x), \dots, b_M(x), b_{M+1}(x)|t|^{1/q}, b_{M+2}(x)|t|^{-1/q})$$

where

$$\varphi: B \times \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}^{M+2},$$

$$(x,t) \mapsto \left(b_1(x), \dots, b_M(x), b_{M+1}(x)|t|^{1/q}, b_{M+2}(x)|t|^{-1/q}\right)$$

is a definable and real analytic function with $\varphi(C_{\theta}) \subset [-1,1]^{M+2}$ and v is a real power series in M+2 variables that converges on an open neighbourhood of $[-1,1]^{M+2}$ and does not vanish there.

Tobias Kaiser