计算机组成原理

第六章 中央处理器

6.13 单周期MIPS CPU (1)

- 1 MIPS CPU控制器设计
 - 定长指令周期: 单周期实现
 - ◆ 所有指令均在一个时钟周期内完成, CPI=1
 - ◆ 性能取决于最慢的指令,时钟周期过长
 - 变长指令周期:多周期实现
 - 缩短时钟周期,复用器件或数据通路
 - 可支持流水操作,提升性能

2 MIPS

MIPS指令格式

3 R型指令格式

4

I型指令格式

5 取指令数据通路

$Mem[PC++] \rightarrow IR$

- 单周期不能设置AR, DR, IR寄存器
- 程序和数据分开存放---哈佛结构
 - ◆ 指令存储器 数据存储器
 - ◆ 指令cache 数据cache
- 运算器和PC累加器分离

6 R型指令数据通路

add \$s0,\$s1,\$s2

6.14 单周期MIPS CPU (2)

7 w指令数据通路

6.14 单周期MIPS CPU (2)

8 sw指令数据通路

6bits 5bits 16bits

sw \$s0,32(\$s1)

OP R_s R_t 立即数

谢谢!