Chapter III Simulating random variables

Sampling from U(0,1)

Need to simulate independent random variables uniformly distributed on [0, 1].

Definition: A sequence of pseudo-random numbers $\{u_i\}$ is a deterministic sequence of numbers in [0,1] having the same statistical properties as a similar sequence of random numbers. Ripley 1987.

The sequence $\{u_i\}$ is reproducible provided u_1 is known.

A good sequence would be "unpredictable to the uninitiated".

3.1 Generating Random Variables

- ► Inference techniques used so far have been based on simulation
- We now consider how to simulate X from $f_X(x)$.
- ▶ In semester 1 used MCMC but simpler methods needed in order to do MCMC.
- ightharpoonup Starting point: generate U from U[0,1] distribution
- ▶ Then consider transformation g(U) to obtain a random draw from $f_X(x)$.

How could we generate U[0,1] r.v.s with coin tosses?

Congruential generators (D.H. Lehmer, 1949)

The general form of a congruential generator is

$$N_i = (aN_{i-1} + c) \mod M,$$

 $U_i = N_i/M$, where integers $a, c \in [0, M-1]$

If c = 0, it is called a multiplicative congruential generator (otherwise, mixed).

These numbers are restricted to the M possible values

$$0, \quad \frac{1}{M}, \quad \frac{2}{M}, \quad \dots, \quad \frac{M-1}{M}.$$

Clearly, they are rational numbers, but if M is large they will practically cover the reals in [0,1].

 N_1 : the **seed**. Can be re-set so you can reproduce same set of uniform random numbers. In R, use **set.seed(i)**, where i an integer.

As soon as some N_i repeats, say, $N_i = N_{i+T}$, then the whole subsequence repeats, i.e. $N_{i+t} = N_{i+T+t}$, t = 1, 2, ...

The least such T is called the *period*.

A good generator will have a long period.

The period cannot be longer than M and also depends on a and c.

Several useful Theorems exist concerning periods of congruential generators. For example, for c > 0, T = M if and only if

- 1. c and M have no common factors (except 1),
- 2. $1 = a \pmod{p}$ for every prime number that divides M,
- 3. $1 = a \pmod{4}$ if 4 divides M.

Lattice structure

Notice that for a congruential generator

$$N_i - aN_{i-1} = c - bM,$$

where b > 0 is an integer. Therefore,

$$U_i - aU_{i-1} = \frac{c}{M} - b.$$

The LHS lies in (-a, 1) since $U_i \in [0, 1)$.

Therefore, b can take at most a+1 distinct values.

If we plot points (U_{i-1}, U_i) , all the points will lie on at most a+1 parallel lines.

Usually M is chosen to make the modulus operation efficient, and then a and c are chosen to make the period as long as possible. Ripley suggests c = 0 or c = 1 is usually a good choice.

The NAG Fortran Library G05CAF

$$M = 2^{59}$$
 $a = 13^{13}$ $c = 0$

Another recommended one is

$$M = 2^{32}$$
 $a = 69069$ $c = 1$.

so that

$$N_i = (69069N_{i-1} + 1) \mod 2^{32}$$

and

$$U_i = 2^{-32} N_i$$

All linear congruential generators exhibit this kind of lattice structure, not just for pairs (U_{i-1}, U_i) , but also for triples (U_{i-2}, U_{i-1}, U_i) , and in higher dimensions.

A good generator is expected to have *fine lattice structure*, that is, points $(U_{i-k+1}, \ldots, U_{i-1}, U_i) \in [0,1)^k$ must lie on many hyperplanes in \mathbb{R}^k for all small k $(k \ll M)$.

RANDU - lattice structure

 $M = 2^{31}$, $a = 2^{16} + 3 = 65539$, and c = 0.

Once very popular, RANDU has eventually been found out to be a rather poor generator.

Generation from non-U(0,1)

We have a sequence U_1, U_2, U_3, \ldots of independent uniform random numbers in [0, 1].

We want X_1, X_2, \ldots distributed independently and identically from some specified distribution.

The answer is to transform the U_1, U_2, \ldots sequence into X_1, X_2, \ldots sequence.

The idea is to find a function $g(U_1, U_2, U_3, ...)$ that has the required distribution.

There are always many ways of doing this. A good algorithm should be quick because millions of random numbers may be required.

RANDU - lattice structure II

Let $U_i = N_i/m$ then for this generator

$$U_{i+2} - 6U_{i+1} + 9U_i = k$$
 an integer.

Since $0 \le U_i < 1$

$$-6 < U_{i+2} - 6U_{i+1} + 9U_i < 10.$$

Therefore $k = -5, -4, \dots, -1, 0, +1, \dots, 9$.

Hence k can take on 15 integer values only, and subsequently (U_{i-2}, U_{i-1}, U_i) must lie on at most 15 parallel planes.

This is an example of *coarse lattice structure*, unsatisfactory coverage of $[0,1)^3$.

3.2 The inversion method

Let X be any continuous random variable and define $Y = F_X(X)$, where F_X is the distribution function of X: $F_X(x) = P(X \le x)$.

Claim: $Y \sim U[0, 1]$.

Proof $Y \in [0,1]$ and the distribution function of Y is

$$F_Y(y) = P(Y \le y) = P(F_X(X) \le y)$$

= $P(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y$

which is the distribution function of a uniform random variable on [0, 1].

So whatever the distribution of X, $Y = F_X(X)$ is uniformly distributed on [0,1]. The inversion method turns this backwards. Let $U = F_X(X)$, then $X = F_X^{-1}(U)$.

▶ So to generate $X \sim F_X$ take a single uniform variable U, and set $X = F_X^{-1}(U)$.

Example: exponential distribution

Let $X \sim Exp(1/\lambda)$ (mean λ), i.e.

$$f(x) = \lambda^{-1} e^{-x/\lambda} \quad (x \ge 0)$$

$$F(x) = \int_0^x \lambda^{-1} e^{-z/\lambda} dz = [-e^{-z/\lambda}]_0^x = 1 - e^{-x/\lambda}.$$

Set $U = 1 - e^{-X/\lambda}$ and solve for X

$$X = -\lambda \ln(1 - U).$$

Note that 1-U is uniformly distributed on [0,1], so we might as well use

$$X = -\lambda \ln U$$
.

Question: What are the limitations of the inversion method?

Discrete distributions - example

Let $X \sim \text{Bin}(4, 0.3)$. The probabilities are

$$P(X = 0) = .2401, \quad P(X = 1) = .4116, \quad P(X = 2) = .2646$$

 $P(X = 3) = .0756, \quad P(X = 4) = .0081.$

The algorithm says X=0 if $0 \le U \le .2401$, X=1 if $.2401 < U \le .6517$, X=2 if $.6517 < U \le .9163$, X=3 if $.9163 < U \le .9919$, X=4 if .9919 < U < 1.

Carrying out the binomial algorithm means the following. Let $U \sim U(0,1)$.

- 1. Test $U \leq .2401$. If true, return X = 0.
- 2. If false, test $U \leq .6517$. If true, return X = 1.
- 3. If false, test $U \leq .9163$. If true, return X = 2.
- 4. If false, test $U \leq .9919$. If true, return X = 3.
- 5. If false, return X = 4.

Discrete distributions

The inversion method works for discrete random variables in the following sense.

Let X be discretely distributed with possible values x_i having probabilities p_i . So

$$P(X = x_i) = p_i, \qquad \sum_{i=1}^{k} p_i = 1.$$

Then $F_X(x) = \sum_{x_i \leq x} p_i$ is a step function.

Inversion gives $X = x_i$ if $\sum_{x_j < x_i} p_j < U \le \sum_{x_j \le x_i} p_j$ which clearly gives the right probability values.

▶ Think of this as splitting [0,1] into intervals of length p_i . The interval in which U falls is the value of X.

Question: What problems might we face using this method? Eg Consider a Poisson(100) distribution.

Discrete distributions - example

Consider the speed of this. The expected number of steps (which roughly equates to speed) is

$$1 \times .2401 + 2 \times .4116 + 3 \times .2646 + 4 \times .0756 + 4 \times .0081$$

= $1 + E(X) - 0.0081 = 2.1919$

To speed things up we can rearrange the order so that the later steps are less likely.

- 1. Test $U \leq .4116$. If true return X = 1.
- 2. If false, test $U \leq .6762$. If true return X = 2.
- 3. If false, test U < .9163. If true return X = 0.
- 4. and 5. as before.

Expected number of steps:

 $1 \times .4116 + 2 \times .2646 + 3 \times .2401 + 4 \times (0.0956 + 0.0081) = 1.9959$. Approximate 10% speed increase.

3.3 Transformations

- (a) If $U \sim U(0,1)$ set V = (b-a)U + a then $V \sim U(a,b)$ where a < b.
- (b) If Y_i are iid exponential with parameter λ then

$$X = \sum_{i=1}^{n} Y_i = -\frac{1}{\lambda} \sum_{i=1}^{n} \log U_i = -\frac{1}{\lambda} \log \left(\prod_{i=1}^{n} U_i \right)$$

has a $Ga(n, \lambda)$ distribution.

- (c) If $X_1 \sim Ga(p, 1)$, $X_2 \sim Ga(q, 1)$, X_1 and X_2 independent then $Y = X_1/(X_1 + X_2) \sim Be(p, q)$.
- (d) Composition: if

$$f = \sum_{i=1}^{r} p_i f_i$$

where $\sum p_i = 1$ and each f_i is a density, then we can sample from f by first sampling I from the discrete distribution $p = \{p_1, \dots, p_r\}$ and then taking a sample from f_I .

3.4 Rejection Algorithm

Fundamental Theorem of Simulation:

Simulating

$$X \sim f(x)$$

is equivalent to simulating

$$(X, U) \sim U\{(x, u) : 0 < u < f(x)\}.$$

Note that $f(x, u) = \mathbb{I}_{0 < u < f(x)}$ so that

$$\int f(x, u) du = \int_0^{f(x)} du = f(x)$$

as required.

Hence, f is the marginal density of the joint distribution $(X, U) \sim U\{(x, u) : 0 < u < f(x)\}.$

The Box-Müller algorithm for the normal distribution

We cannot generate a normal random variable by inversion, because F_X is not known in closed form (nor its inverse). The Box–Müller method (1958). Let $U_1, U_2 \sim U[0, 1]$. Calculate

$$X_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2),$$

$$X_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2).$$

Then X_1 and X_2 are independent N(0,1) variables. The method is not particularly fast, but is easy to program and quite memorable.

Rejection Algorithm Explained

The problem with this result is that simulating uniformly from the set

$$\{(x, u) : 0 < u < f(x)\}$$

may not be possible. A solution is to simulate the pair (X, U) in a bigger set, where simulation is easier, and then take the pair if the constraint is satisfied.

Rejection: Uniform bounding box

Suppose that f(x) is zero outside the interval [a, b] (so that $\int_a^b f(x) dx = 1$) and that f is bounded above by m.

- Simulate the pair $(Y, U) \sim U[a, b] \times [0, m]$ $(Y \sim U[a, b], U \sim U[0, m]$ independently).
- Accept the pair if the constraint 0 < U < f(Y) is satisfied.

This results in the correct distribution for the accepted Y value, call it X.

$$\mathbb{P}(X \le x) = \mathbb{P}(Y \le x | U < f(Y))$$

$$= \frac{\int_a^x \int_0^{f(y)} dudy}{\int_a^b \int_0^{f(y)} dudy}$$

$$= \int_a^x f(y)dy.$$

Note: we can use the rejection algorithm even if we only know f upto a normalising constant (as is often the case in Bayesian statistics - see chapter 4).

Generalising the Rejection Idea

If the support of f is not finite, then bounding it within a rectangle will not work. Instead of using a box to bound the density f(x) (ie requiring f(x) < m for some constant m) we can use a function m(x) such that $f(x) \le m(x)$ for all x.

Suppose the larger bounding set is

$$\mathcal{L} = \{ (y, u) : 0 < u < m(y) \}$$

then all we require is that simulation of a uniform from $\mathcal L$ is feasible. Note

- ightharpoonup The closer m is to f the more efficient our algorithm.
- ▶ Because $m(x) \ge f(x)$, m cannot be a probability density. We write

$$m(x) = Mg(x)$$
 where $\int m(x)dx = \int Mg(x)dx = M$

for some density g.

Example: Sampling from a beta distribution

Consider sampling from $X \sim \text{Beta}(\alpha, \beta)$ for $\alpha, \beta > 1$ which has pdf

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \quad 0 < x < 1.$$

We note

$$f(x) \propto f_1(x) = x^{\alpha - 1} (1 - x)^{\beta - 1}$$
 $0 < x < 1$

and that $M = \sup_{0 < x < 1} x^{\alpha - 1} (1 - x)^{\beta - 1}$ occurs at $x = \frac{\alpha - 1}{\alpha + \beta - 2}$ (mode) and hence

$$M = \frac{(\alpha - 1)^{\alpha - 1}(\beta - 1)^{\beta - 1}}{(\alpha + \beta - 2)^{\alpha + \beta - 2}}.$$

The rejection algorithm is

- 1. Generate $Y \sim U(0,1)$ and $U \sim U(0,M)$.
- 2. If $U \leq f_1(Y) = Y^{\alpha-1}(1-Y)^{\beta-1}$ then let X = Y (accept) else go to 1 (reject).

Generalising the Rejection Idea II

This suggests a more general implementation of the fundamental theorem:

Corollary: Let $X \sim f(x)$ and let g(x) be a density function that satisfies $f(x) \leq Mg(x)$ for some constant $M \geq 1$. Then, to simulate $X \sim f$, it is sufficient to generate

$$Y \sim g$$
 and $U|Y = y \sim U(0, Mg(y))$

and set
$$X = Y$$
 if $U < f(Y)$.

Proof:

$$\mathbb{P}(X \in A) = \mathbb{P}(Y \in A | U \le f(Y))$$

$$= \frac{\int_{A} \int_{0}^{f(y)} \frac{du}{Mg(y)} g(y) dy}{\int \int_{0}^{f(y)} \frac{du}{Mg(y)} g(y) dy}$$

$$= \int_{A} f(y) dy$$

The Rejection Algorithm

The rejection algorithm is usually stated in a slightly modified form:

Rejection Algorithm

If g is such that f/g is bounded, so there exists M such that $Mg(x) \ge f(x)$ for all x then

- 1. Generate Y from density g, and U from U(0,1).
- 2. If $U \le f(Y)/Mg(Y)$ set X = Y. Otherwise, return to step 1.

produces simulations from f

We keep sampling new Y and U until the condition is satisfied.

Exercise: Convince yourself that these two descriptions of the rejection algorithm are the same.

How to simulate Y with pdf $g(y) = \alpha y^{\alpha-1}$?

- We note that the cdf of Y is $G(y) = y^{\alpha}$, 0 < y < 1.
- ▶ Therefore we can use inversion. Let $Z \sim U(0,1)$ then solve $Z = G(Y) = Y^{\alpha}$ and so $Y = Z^{\frac{1}{\alpha}}$.

Full algorithm is:

- 1. Generate $U \sim U(0,1)$ and $Z \sim U(0,1)$. Let $Y = Z^{\frac{1}{\alpha}}$.
- 2. If $U \leq (1-Y)^{\beta-1}$ then set X=Y else go to 1.

Example: Sampling from a beta distribution revisited

Use rejection to sample from $X \sim \text{Beta}(\alpha, \beta)$. Let $g(y) = \alpha y^{\alpha-1}$, 0 < y < 1, then

$$\frac{f_1(x)}{g(x)} = \frac{(1-x)^{\beta-1}}{\alpha}$$
 is bounded if and only if $\beta \ge 1$

Then
$$M = \sup_{x} \left\{ \frac{f_1(x)}{g(x)} \right\} = \frac{1}{\alpha}$$
 occurs at $x = 0$.

- 1. Simulate Y with pdf $g(y) = \alpha y^{\alpha-1}$, 0 < y < 1 and $U \sim U(0, 1)$.
- 2. If $U \le \frac{f_1(Y)}{Mg(Y)} = \frac{(1-Y)^{\beta-1}}{\left(\frac{1}{\alpha}\right)\alpha} = (1-Y)^{\beta-1}$ then set X = Y else go to 1.

Efficiency of the rejection method

Each time we generate a (Y, U) pair,

$$\operatorname{Prob}(\operatorname{Reject}) = P\big(U \geq f(Y)/Mg(Y)\big) = 1 - \frac{1}{M}, \quad \operatorname{Prob}(\operatorname{Accept}) = \frac{1}{M}.$$

The number of tries until we accept Y is a geometric random variable with expectation M.

Note that M here must be calculated with the normalised density f, i.e., $M = \sup \frac{f(x)}{g(x)}$.

If we used an unnormalised density $f_1(x)$, where $\int f_1(x) dx = c$, so that $f(x) = \frac{1}{c} f_1(x)$, then if we used

$$M = \sup \frac{f_1(x)}{g(x)}$$

the acceptance rate is

$$\mathbb{P}(\text{Accept}) = \frac{c}{M}$$

For maximum efficiency, we want M as small as possible, i.e. $\sup f(x)/g(x)$ as small as possible. This means finding a g that

- (a) we can sample from efficiently, and
- (b) mimics f as closely as possible.

There are many good generators based on rejection from a well-chosen g.

Truncated distributions

Suppose we wish to sample X from the following distribution:

$$f_X(x) \propto \begin{cases} g_X(x) & \text{for } x \in A \\ 0 & \text{otherwise} \end{cases}$$

where $g_X(x)$ is a known density that we can sample from, e.g. $g_X(x)$ is the N(0,1) density, and $A = [0, \infty)$.

$$f_X(x) = \begin{cases} k g_X(x) & \text{for } x \in A \\ 0 & \text{otherwise} \end{cases}$$

where k is a normalising constant, given by

$$k^{-1} = \int_A g_X(x) dx$$

Rejection Example III

Let θ have von Mises distribution with pdf

$$f(\theta) = \frac{\exp(k\cos\theta)}{2\pi I(k)} \quad 0 < \theta < 2\pi \quad (k \ge 0)$$

where I(k) is the normalising constant.

Let
$$f_1(\theta) = \frac{1}{2\pi} \exp(k \cos \theta), 0 < \theta < 2\pi.$$

$$Y \sim U(0, 2\pi)$$
 so that $g(y) = \frac{1}{2\pi}$, $0 < y < 2\pi$.

Then

$$M = \sup_{\theta} \left\{ \frac{f_1(\theta)}{g(\theta)} \right\} = \sup_{\theta} \{ \exp(k \cos \theta) \} = \exp k.$$

Let $U \sim U(0, 1)$.

If

$$U \le \frac{f_1(Y)}{Mg(Y)} = \frac{\exp(k\cos Y)}{2\pi \cdot \frac{1}{2\pi} \cdot \exp k} = \exp\left(k(\cos Y - 1)\right)$$

we accept $\theta = Y$ otherwise reject.

$$f_X(x) \propto \begin{cases} g_X(x) & \text{for } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Consider using rejection method to sample X from $f_X(x)$. We sample Y from the full (non-truncated) density $g_X(x)$.

$$\frac{f_X(x)}{g_X(x)} = \begin{cases} k & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

So
$$M = \sup_{x} \frac{f_X(x)}{g_X(x)} = k$$
.

Rejection algorithm: sample u from U[0,1] and y from $g_Y(y)$, and accept X = y if $u \leq \frac{f_X(y)}{M g_Y(y)}$.

But since

$$\frac{f_X(x)}{M g_X(x)} = \begin{cases} \frac{f_X(x)}{k g_X(x)} = 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

we will always have $u \le \frac{f_X(y)}{M\,g_Y(y)}$ if $y \in A$, and $u \ge \frac{f_X(y)}{M\,g_Y(y)}$ if $y \notin A$.

So we don't need to sample u. Can just do

- 1. generate y from $g_Y(y)$
- 2. if $y \in A$, accept X = y
- 3. otherwise, return to step 1.

As usual, acceptance probability will be high if M is small, i.e $\int_A g_Y(y) dy$ is near 1. So if the truncated region is large, rejection sampling will be inefficient.

Sequential methods

We can obviously write

$$f(\mathbf{x}) = f_1(x_1)f_2(x_2|x_1)f_3(x_3|x_1,x_2)\dots$$

So we can first generate X_1 from f_1 . Then for that given value of X_1 , generate X_2 from f_2 , and so on.

3.5 Multivariate generators

Now suppose we want to generate a random vector $\mathbf{X} = (X_1, \dots, X_p)$ from density $f(\mathbf{x})$. We can note the following simple points.

1. If the elements of X are to be independent, i.e.

$$f(\mathbf{x}) = f_1(x_1) f_2(x_2) \dots f_p(x_p),$$

then we can separately generate X_1 from f_1 , X_2 from f_2, \ldots, X_p from f_p using different uniforms.

- 2. Inversion no longer works as the theorem can't be generalised.
- 3. Rejection does work. If we can generate from g(x) (and g may be a product of independent components) and find $M \ge \sup_{x} \frac{f(x)}{g(x)}$ and otherwise reject.

Example

REPLACE THIS EXAMPLE WITH Normal inverse gamma instead.

We wish to sample $\{\theta, \phi\}$ from the density function

$$f(\theta, \phi) \propto \phi^3 \exp\{-1(1+5\phi)\theta^2 + 40\phi\theta - 81\phi\}.$$

Firstly, it can be shown that the marginal density of ϕ is

$$f(\phi) \propto \phi^3 (1+5\phi)^{-1/3} \exp\left\{-\phi \left(1 + \frac{80}{1+5\phi}\right)\right\}.$$

Additionally, the conditional distribution of $\theta | \phi$ is normal:

$$\theta | \phi \sim N\left(\frac{20\phi}{1+5\phi}, \frac{1}{2(1+5\phi)}\right).$$

To sample from $f(\theta, \phi)$ we could first sample ϕ from $f(\phi)$, using rejection sampling, then generate Z from N(0, 1), and finally set

$$\theta = \frac{20\phi}{1 + 5\phi} + \frac{1}{\sqrt{2(1 + 5\phi)}}Z.$$

Multivariate normal distributions

Consider generating **X** from $N(\mathbf{m}, V)$, for some non-diagonal matrix V, given a sample of independent standard normal random variables Z_1, Z_2, \ldots

One technique involves the use of the **Cholesky square root** of the matrix V. For any (symmetric, square) positive definite matrix V, we can find a square root U, such that $U^TU = V$.

3.6 Importance sampling

In order to estimate an integral of the form $\int h(x)f(x)dx$ we find that it is sometimes better to generate values not from the distribution f(x), but instead from some other distribution g(x) and to then account for this by using a weighting. This is the idea behind importance sampling. To introduce the idea we consider a simple example.

Multiple solutions for U, but upper triangular matrix U known as the Cholesky square root. To find the Cholesky square root of a matrix V in \mathbb{R} , type chol(V).

Define $\mathbf{Z} \sim N(\mathbf{0}, I)$ (equal dimension to \mathbf{X}), consider $\mathbf{Y} = \mathbf{m} + U^T \mathbf{Z}$. Then have \mathbf{Y} normally distributed, (each element of \mathbf{Y} is linear combination of the elements of \mathbf{Z}), and

$$E(\mathbf{m} + U^T \mathbf{Z}) = \mathbf{m},$$

$$Var(\mathbf{m} + U^T \mathbf{Z}) = U^T I U = V,$$

(with I the identity matrix, the variance of \mathbf{Z}). Hence to generate \mathbf{X} , we generate independent standard normal random variables \mathbf{Z} , and then transform them by $\mathbf{m} + U^T \mathbf{Z}$ to obtain \mathbf{X} .

Example of Monte Carlo/Importance Sampling

Let X be Cauchy $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$. Let $\theta = P(X > 2) = I = \int_2^\infty \frac{1}{\pi(1+x^2)} dx$ (= 0.1476). Use Monte Carlo Methods to estimate θ .

(i) Generate n Cauchy variates, X_1, \ldots, X_n . Let Y_1 be the number that are greater than 2, $Y_1 = \sum \mathbb{I}_{X_i > 2}$. Then $Y_1 \sim B(n, \theta)$ so that

$$E(Y_1) = n\theta, \quad V(Y_1) = n\theta(1 - \theta)$$

$$\hat{\theta}_1 = \frac{Y_1}{n}$$

$$E(\hat{\theta}_1) = \frac{E(Y_1)}{n} = \frac{n\theta}{n} = \theta$$

and

$$V(\hat{\theta}_1) = \frac{V(Y_1)}{n^2} = \frac{n\theta(1-\theta)}{n^2} = \frac{\theta(1-\theta)}{n} = \frac{0.126}{n}.$$

Example of Monte Carlo/Importance Sampling - II

(ii) Note that $\theta = \frac{1}{2}P(|X| > 2)$ - we want to use this to reduce the variance of our estimator $\hat{\theta}$.

Generate n Cauchy variates.

Let Y_2 be the number that are greater than 2 in modulus then $Y_2 \sim B(n, 2\theta)$

and
$$\hat{\theta}_2 = \frac{1}{2} \frac{\hat{Y_2}}{n}$$

$$\implies E(\hat{\theta}_2) = \frac{1}{2} \frac{E(Y_2)}{n} = \frac{1}{2} \cdot \frac{n2\theta}{n} = \theta$$

and

$$V(\hat{\theta}_2) = \frac{V(Y_2)}{2^2 n^2} = \frac{n2\theta(1-2\theta)}{2^2 n^2} = \frac{\theta(1-2\theta)}{2n} = \frac{0.052}{n}.$$

Example of Monte Carlo/Importance Sampling - IV

We can see that

$$\mathbb{E}(\hat{\theta}_3) = \frac{1}{2} - \frac{1}{n} \sum_{i=1}^n \int_0^2 \frac{2}{\pi(1+x^2)} dx = \frac{1}{2} - \mathbb{P}(0 < X < 2)$$

where $X \sim \text{Cauchy}$, so that it too is an unbiased estimator.

The variance of $\hat{\theta}_3$ is Var(h(U))/n and we can see that

$$\mathbb{E}h(U) = \int_0^2 h(x) \frac{1}{2} dx = 0.5 - 0.1475 = 0.3525$$

$$\mathbb{E}h(U)^2 = \int_0^2 h(x)^2 \frac{1}{2} dx = \int_0^2 \frac{2}{\pi^2 (1 + x^2)^2} dx$$

$$= \frac{1}{\pi^2} \left[\frac{x}{x^2 + 1} + \tan^{-1}(x) \right]_0^2 = 0.1527$$

Hence $Var(h(x)) = 0.1527 - 0.3525^2 = 0.02851$ and thus

$$Var(\hat{\theta}_3) = \frac{0.02851}{n}$$

Example of Monte Carlo/Importance Sampling - III

(iii) The relative inefficiency of these methods is due to generation of values outside the domain of interest $[2, \infty)$. Alternatively note we can write

$$\theta = \frac{1}{2} - \int_0^2 \frac{1}{\pi(1+x^2)} \, \mathrm{dx}.$$

This integral can be considered the expectation of $h(X) = \frac{2}{\pi(1+x^2)}$ where $X \sim U[0,2]$ as the density of U[0,2] is g(x) = 1/2.

An alternative method of evaluation of θ is therefore

$$\hat{\theta}_3 = \frac{1}{2} - \frac{1}{n} \sum_{i=1}^n h(U_i)$$

where $U_i \sim U[0,2]$.

Example of Monte Carlo/Importance Sampling - V

(iv) Finally, note that another possibility is to note that if $y = \frac{1}{x}$

$$\theta = \int_{+2}^{\infty} \frac{1}{\pi(1+x^2)} dx = \int_{0}^{\frac{1}{2}} \frac{y^{-2} dy}{\pi(1+y^{-2})} = \int_{0}^{\frac{1}{2}} h(y) dy.$$

This can be seen as the expectation of $h(X) = \frac{X^{-2}}{2\pi(1+X^{-2})}$ where $X \sim U[0, \frac{1}{2}]$. We can estimate this as

$$\hat{\theta}_4 = \frac{1}{n} \sum_{i=1}^n h(U_i)$$

where $U_1, ..., U_n \sim U[0, 1/2]$.

Again, we have $\mathbb{E}\hat{\theta_4} = \theta$ and now

$$\mathbb{E}h(U)^{2} = \int_{0}^{1/2} h(x)^{2} \cdot 2dx = \frac{1}{4\pi^{2}} \left[\frac{x}{x^{2} + 1} + \tan^{-1}(x) \right]_{0}^{1/2} = 0.02188$$
Hence $\mathbb{V}ar(\hat{\theta}_{4}) = \frac{0.02188 - 0.1476^{2}}{2} = \frac{0.0000955}{2}$

Summary of Example

We found 4 unbiased estimators of θ , each with a different variance.

$$Var(\hat{\theta}_1) = \frac{0.126}{n} \qquad Var(\hat{\theta}_2) = \frac{0.052}{n}$$
$$Var(\hat{\theta}_3) = \frac{0.02851}{n} \qquad Var(\hat{\theta}_4) = \frac{0.0000955}{n}$$

The best estimator is the one with the smallest variance, namely $\hat{\theta}_4$.

Compared with $\hat{\theta}_1$, the evaluation of $\hat{\theta}_4$ requires $\sqrt{(0.126/0.000955)} \approx 36$ times fewer simulations to achieve the same precision.

By carefully considering our simulation method we can hope to get more accurate estimates.

Estimate $\hat{\theta}_2$ and $\hat{\theta}_4$ are both types of importance sampling.

Some comments:

- ▶ g(x) is called the importance function, and $w(X_i)$ are called the importance weights.
- ► The sum (1) will converge for the same reasons the Monte Carlo sum does.
- ▶ Notice that this sum is valid for any choice of the distribution g, as long as $supp(f) \subseteq supp(g)$.
- ▶ This is a very general representation that expresses the fact that a given integral is not intrinsically associated with a given distribution.
- \triangleright Because very little restriction is put on the choice g, we can choose a distribution which is easy to sample from, and one which gives nice properties for the sum.

Importance Sampling

Consider calculating the integral

$$I = \mathbb{E}_f h(X) = \int h(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}.$$

Importance sampling

Let X_1, X_2, \ldots, X_n be independently and identically distributed random variables with common density g(x).

Define $w(\mathbf{x}) = f(\mathbf{x})/g(\mathbf{x})$, so that

$$\mathbb{E}_g\{h(\boldsymbol{X}_i)w(\boldsymbol{X}_i)\} = \int h(\boldsymbol{x})w(\boldsymbol{x})g(\boldsymbol{x}) \; \mathrm{d}\boldsymbol{x} = \int h(\boldsymbol{x})f(\boldsymbol{x}) \; \mathrm{d}\boldsymbol{x} = \mathrm{I}.$$

Therefore

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} w(\boldsymbol{X}_i) h(\boldsymbol{X}_i)$$
(1)

is an unbiased estimator of I.

Cauchy example revisited

We can now understand the estimator $\hat{\theta}_4$ in the Cauchy example. Recall that we want to estimate

$$\mathbb{E}\mathbb{I}_{X>2} = \int h(x)f(x)\mathrm{dx}$$

where $h(x) = \mathbb{I}_{x>2}$ and $f(x) = \frac{1}{\pi(1+x^2)}$.

Noticing that for large x, f(x) is similar to the density

$$g(x) = 2/x^2 \text{ for } x > 2.$$

suggests g() might be a good importance density. We can sample from g by letting $X_i = 1/U_i$ where $U_i \sim U[0, \frac{1}{2}]$ (inversion method). Thus our estimator is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \frac{f(x_i)}{g(x_i)} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i^2}{2\pi (1 + x_i^2)}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{u_i^{-2}}{2\pi (1 + u_i^{-2})} = \hat{\theta}_4$$

The variance of the estimator

Since the X_i s are iid, $\operatorname{Var}(\hat{I}) = \frac{\sigma^2}{n}$, where

$$\sigma^{2} = \operatorname{Var}_{g}\{h(\boldsymbol{X})w(\boldsymbol{X})\} = \mathbb{E}\{h(\boldsymbol{X})^{2}w(\boldsymbol{X})^{2}\} - \mathbb{E}\{h(\boldsymbol{X})w(\boldsymbol{X})\}^{2}$$

$$= \int h(\boldsymbol{x})^{2}w(\boldsymbol{x})^{2}g(\boldsymbol{x}) d\boldsymbol{x} - I^{2}$$

$$= \int \frac{h(\boldsymbol{x})^{2}f(\boldsymbol{x})^{2}}{g(\boldsymbol{x})} d\boldsymbol{x} - I^{2} \quad \text{since} \quad g(\boldsymbol{x}) = \frac{f(\boldsymbol{x})}{w(\boldsymbol{x})}.$$

We do not of course know σ^2 in practice, but we can see that \hat{I} will be a better estimator if we can make $w(\mathbf{X})$ less variable. Our objective, therefore, is to find a distribution $g(\mathbf{x})$ that we know how to obtain independent samples from, and which mimics $h(\mathbf{x})f(\mathbf{x})$ as closely as possible.

Unnormalised densites

Suppose we only know f upto a normalising constant, i.e., we know

$$f(x) = \frac{f_1(x)}{c}$$
 where $c = \int f_1(x) dx$

We can still use importance sampling

Importance sampling with unnormalised densites Let $X_1, X_2, ..., X_n$ be independently and identically distributed random variables with common density g(x). Define $\tilde{w}(x) = f_1(x)/g(x)$. Estimate I by

$$\hat{I} = \frac{\sum_{i=1}^{n} \tilde{w}(\boldsymbol{X}_i) h(\boldsymbol{X}_i)}{\sum_{i=1}^{n} \tilde{w}(\boldsymbol{X}_i)}$$

Alternatively, we can write this as

$$\hat{I} = \sum_{i=1}^{n} w_i h(\boldsymbol{X}_i)$$
 where $w_i = \frac{\tilde{w}(X_i)}{\sum \tilde{w}(X_i)}$

Optimal choice of g

Theorem The choice of $g = g^* = \frac{|h(x)|f(x)}{\int |h(z)|f(z)dz}$ minimises the variance of the estimator (1).

Proof We've seen that it is sufficient to minimise

$$\int \frac{h^2(\boldsymbol{x})f^2(\boldsymbol{x})}{g(\boldsymbol{x})} d\boldsymbol{x} = \mathbb{E}_{g}\left(\frac{h^2(X)f^2(X)}{g^2(X)}\right)$$

and using Jensen's inequality we can see that

$$\mathbb{E}_{g}\left(\frac{h^{2}(X)f^{2}(X)}{g^{2}(X)}\right) \ge \left(\mathbb{E}_{g}\left[\frac{|h(X)|f(X)}{g(X)}\right]\right)^{2}$$
$$= \left(\int |h(x)|f(x)dx\right)^{2}$$

and that this lower bound is achieved by choosing $g = g^*$. NB: We won't be able to calculate g^* ! But the theorem suggests

that choosing q to look like hf will be a good choice.

 $\frac{1}{n}\sum \tilde{w}(\boldsymbol{X}_i)$ is an unbiased estimator of c as

$$\mathbb{E}_g \tilde{w}(X) = \int \frac{f_1(x)}{g(x)} g(x) dx = \int f_1(x) dx = c.$$

When we use unnormalised densities, \hat{I} is a biased estimator of I, however it is possible to prove that we still have $\hat{I} \to I$ almost surely as $n \to \infty$.

This will be important when we use importance sampling to estimate Bayesian quantities.

Effective sample size

How variable the weights are tells us how efficient our choice of g is. s

In the best case, where g = f, then $\tilde{w}(X) = 1$ so that $w_i = \frac{1}{n}$, which is the case in plain Monte Carlo. In this case $\mathbb{V}ar(w(X)) = 0$.

If f and g are very different, then the weights will be very variable, and we can find that one or two particles (X_i) dominate the sum.

We often calculate the **effective sample size**

$$ESS = \frac{1}{\sum w_i^2}$$

- ▶ In the best case, $w_i = \frac{1}{n}$ and ESS= n so we have an effective sample size equal to the true sample size.
- ▶ The worst case is when one of the $w_i = 1$ and all the others are equal to zero. Then ESS= 1, i.e., we effectively have only a single sample.

We want to choose g so that the ESS is large.

Antithetic variables - II

We need to find two estimators which are negatively correlated. This can be done as follows:

- If $U \sim U[0,1]$ then $1 U \sim U[0,1]$ also.
- ▶ If F is the distribution function of X then $X_1 = F^{-1}(U)$ and $X_2 = F^{-1}(1 - U)$ are both distributed according to F
- ▶ and $\mathbb{C}ov(X_1, X_2) < 0$.

Proof (non-examinable):

Let $h(u) = F^{-1}(u)$. Then h(u) is a non-decreasing function. We need to show

$$\mathbb{E}h(U)h(1-U) \le (\mathbb{E}h(U))^2$$

Let $Q = \mathbb{E}h(U)$. The since h is non-decreasing on [0,1]

$$h(0) \le Q \le h(1)$$

3.7 Variance reduction techniques

Antithetic variables

The method of antithetic variables uses two correlated estimators and combines them to get an estimator with a lower variance (i.e. a better estimator).

Suppose we have two different estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ ,

- ▶ with the same mean and variance
- ▶ but which are negatively correlated

Define $\hat{\theta}_3 = \frac{1}{2}(\hat{\theta}_1 + \hat{\theta}_2)$. Then

$$Var(\hat{\theta}_3) = \frac{1}{4}(Var(\hat{\theta}_1) + Var(\hat{\theta}_2) + 2Cov(\hat{\theta}_1, \hat{\theta}_2))$$
$$= \frac{1}{2}(Var(\hat{\theta}_1) + Cov(\hat{\theta}_1, \hat{\theta}_2))$$
$$< \frac{1}{2}Var(\hat{\theta}_1)$$

This is twice the cost of computing $\hat{\theta}_1$ but the variance is more than halved!

Let
$$f(y) = \int_0^y h(1-x)dx - Qy$$
 on $[0,1]$
Then $f(0) = f(1) = 0$ and

$$f'(y) = h(1-y) - Q$$

is also a non-increasing function.

Since $f'(0) = h(1) - Q \ge 0$ and $f'(1) = h(0) - Q \le 0$ we must have

$$f(u) > 0$$
 on $[0, 1]$

Therefore

$$0 \le \int_0^1 f(y)h'(y)dy = [fh]_0^1 - \int f'h(y)dy$$
$$= -\int_0^1 f'(y)h(y)dy$$

Therefore

$$\int_0^1 f'(y)h(y) = \int_0^1 h(y)(h(1-y) - Q)dy = \int_0^1 h(y)h(1-y)dy - Q^2 \le 0$$

Hence $\int_0^1 h(y)h(1-y)dy \leq Q^2$ as required.

Cauchy Example Revisited

Above we used

$$\hat{\theta}_3 = \frac{1}{2} - \frac{2}{n} \sum_{i=1}^n \left[\frac{1}{\pi (1 + u_i^2)} \right]$$

as an estimator of $\mathbb{P}(X > 2)$ where $X \sim Cauchy$.

An estimator with a smaller variance can be found using antithetic variables

$$\frac{1}{2} \left(\frac{1}{2} - \frac{2}{n} \sum_{i=1}^{n} \left[\frac{1}{\pi (1 + u_i^2)} \right] + \frac{1}{2} - \frac{2}{n} \sum_{i=1}^{n} \left[\frac{1}{\pi (1 + (2 - u_i)^2)} \right] \right)$$

which gives

$$\hat{\theta}_{antithetic} = \frac{1}{2} - \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{\pi (1 + u_i^2)} + \frac{1}{\pi (1 + (2 - u_i)^2)} \right]$$

The for n=10 we find the variance of $\hat{\theta}_3$ is 2.7×10^{-4} whereas the variance of $\hat{\theta}_{antithetic}$ is 5.5×10^{-6} - a substantial improvement.