Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин

Лабораторная работа №2 «Исследование характеристик биполярного транзистора»

Выполнили ст. гр. 350503

Ганецкий В. В. Губаревич А. В.

Проверил Горченок А. С.

1 ЦЕЛЬ РАБОТЫ

Целью работы является:

- определение коэффициента передачи транзистора по постоянному току;
- получение входной характеристики транзистора в схеме с общим эмиттером;
- получение семейства входных характеристик транзистора в схеме с общим эмиттером;
 - установка рабочей точки транзисторного каскада с общим эмиттером.

2 ХОД РАБОТЫ

2.1 Определение коэффициента передачи биполярного транзистора

- **2.1.1** Установили напряжения источников питания $E_{\rm B}$ и $E_{\rm K}$, измерили значения тока коллектора $I_{\rm K}$, тока базы $I_{\rm B}$ и напряжение коллектор-эмиттер $U_{\rm K9}$. Полученные результаты записали в таблицу 2.1.
- **2.1.2** По формуле $\beta_{DC} = \frac{I_K}{I_{\rm B}}$ вычислили значения статического коэффициента передачи тока $\beta_{\rm DC}$. Вычисленные данные записали в таблицу 2.1.

E_{B} , B	E_K , B	I_K , MA	ІБ, мкА	$U_{K\ni}, B$	$\beta_{ m DC}$	
1,25	5	10,54	32,3	0,12	326,31	
2,5	5	10,53	154,8	0,06	68,02	
5	5	10,52	401,2	0,02	26,22	
1,25	10	10,5	32,1	0,12	327,1	
2,5	10	10,5	153,2	0,06	68,53	
5	10	10,5	400,6	0,02	26,21	

2.2 Получение входной характеристики биполярного транзистора в схеме с общим эмиттером

2.2.1 Установили напряжение питания коллектора $E_K = 5~B$, получили график зависимости входного тока $I_{\rm B}$ транзистора от входного напряжения $U_{\rm B9}$. Полученный график представлен на рисунке 4.1.

ВХОДНАЯ ХАРАКТЕРИСТИКА

Рисунок 2.1 — График зависимости входного тока $I_{\rm B}$ транзистора от входного напряжения $U_{\rm B9}$

2.2.2 Изменяя напряжение источника ЭДС базы $E_{\rm B}$ с помощью ползункового регулятора установили значение тока базы сначала примерно равным 10 мкA, а затем примерно равным 40 мкA. Полученные результаты записали в таблицу 2.2.

Таблица 2.2 – Значения тока базы и напряжения базы эмиттер для точек входной характеристики

І _Б , мкА	10,5	40,34
U_{59}, B	0,61	0,65

2.2.3 Вычислили дифференциальное входное сопротивление транзистора при изменении базового тока от 10 мкA до 40 мкA по формуле $r_{BX} = \Delta U_{\rm F3}/\Delta I_{\rm F}.$

 $r_{BX} = 1340,48 \text{ Om}$

2.3 Получение семейства выходных характеристик биполярного транзистора в схеме с общим эмиттером

2.3.1 Получили график семейства выходных характеристик.

Рисунок 2.2 – Семейство выходных характеристик

- 2.3.2 Каждой кривой соответствуют следующие значения тока базы:
- 1) Синий: $I_{\rm B} = 2$ мкA;
- 2) Красный: $I_{\rm b} = 8,1$ мкA;
- 3) Зеленый: $I_{\rm B} = 14,9$ мкA;
- 4) Голубой: $I_{\rm B} = 25,7$ мкА;
- 5) Желтый: I_Б = 39,0 мкА.
- **2.3.3** При фиксированном коллекторном напряжении, равном Uкэ ≈ 5 В, определим ток коллектора, соответствующий значениям тока базы, при которых снимались выходные характеристики:
 - 1) Синий: Ік = 0,98 мА;
 - 2) Красный: Ік = 4,2 мА;

- 3) Зеленый: Ік = 8,2 мА;
- 4) Голубой: Iк = 14 мA;
- 5) Желтый: Ік = 18 мА.
- **2.3.4** Определим коэффициент передачи тока β_{AC} при изменении тока базы в диапазоне от 10 мкА до 40 мкА по формуле $\beta_{AC} = \frac{\Delta I_K}{\Delta I_E}$.

$$\beta_{AC} = 13.8 \text{ mA} / 30.9 \text{ mkA} = 446.6.$$

2.3.5 Выберем сопротивление коллектора равным $R\kappa = 300$ Ом, а ЭДС коллекторного источника питания $E\kappa = 5$ В, и построим на графике выходных характеристик транзистора линию нагрузки по двум точкам: точка $E\kappa = 5$ В на оси абсцисс и точка $I\kappa = E\kappa / R\kappa = 16,67$ мА на оси ординат.

Рисунок 2.3 – Семейство выходных характеристик

2.3.6 По выходным характеристикам и линии нагрузки оценим значения тока коллектора Ік и тока базы Іб в рабочей точке, для которой Uк = $E_K / 2 = 2,5$ В. Так как рабочая точка лежит на зеленой кривой, то ток коллектора в ней соответствует току базы данной кривой, $I_B = 14,9$ мкА.

2.4 Установка рабочей точки транзисторного каскада с общим эмиттером

2.4.1 С помощью органов управления ВП установили амплитуду напряжения источника входного гармонического напряжения $U_{BX.m}=0$, и величину напряжения источника ЭДС коллектора $E_K=5$ В.

После нажатия кнопки «Измерение» на графике выходных характеристик транзистора появилось изображение линии нагрузки.

Рисунок 2.4 – Изображение линии нагрузки

2.4.2 Регулируя ЭДС источника смещения базы $E_{\rm B}$, установили значение тока базы $I_{\rm B}^*$, равное значению, полученному в **п. 2.3.6**. Параметры статического режима транзисторного усилителя с общим эмиттером измерили и записали в табл. 2.3.

Таблица 2.3

<i>Iь</i> , мкА	<i>U</i> _Б э, В	I _K , MA	<i>U</i> к, В
14,9	0,61	8,15	2,6

2.4.3 Плавно увеличивая амплитуду входного сигнала $U_{BX.m}$, получили на графическом индикаторе ВП максимальный неискаженный выходной сигнал.

Рисунок 2.5 – Изображения входного и выходного сигналов

- **2.4.4** Для определения амплитуды сигналов использовали формулу $U_m = (U_{max} U_{min}) / 2$. Полученные значения амплитуд: $U_{BbIXm} = (4,25-2,58) / 2 = 0,835$ B, $U_{BXm} = (0,625-0,584) / 2 = 0,02$ B.
- **2.4.5** Используя полученные значения амплитуды входного и выходного сигналов, определим по формуле $K_y = \frac{U_{\text{ВЫХ}m}}{U_{\text{ВХ}m}}$ коэффициент усиления транзисторного каскада $K_y = 41,75$.
- **2.4.6** Исследуем, как влияет положение рабочей точки на работу транзисторного каскада с общим эмиттером. Для этого, регулируя напряжение ЭДС источника смещения базы E_b , изменим значение тока базы примерно на 30% от величины I_b^* , полученной в **п. 2.3.6**, сначала в сторону увеличения (рисунок 2.6), а затем в сторону уменьшения (рисунок 2.7).

Рисунок 2.6 — Изображение выходного сигнала при увеличении тока базы ${\rm I_{\rm B}}^*$ на 30%

Рисунок 2.7 — Изображение выходного сигнала при уменьшении тока базы ${\rm I_{\rm B}}^*$ на 30%

3 ВЫВОДЫ

Основными факторами, влияющими на силу тока, протекающего через коллектор биполярного транзистора, являются напряжение коллекторэмиттер U_{K9} (чем больше U_{K9} , тем сильнее протекает ток коллектора), коэффициент передачи тока β (характеризует отношение тока коллектора к току базы) и ток базы $I_{\rm B}$ (является прямым показателем силы тока коллектора).