$\mathrm{TD}\ 5:\mathbb{R}\ \mathrm{et}\ \mathrm{compl\acute{e}tude}$

Exercice 1. Densité de $\mathbb Q$ dans $\mathbb R$

- 1. Soient $x, y \in \mathbb{R}$, x < y. Montrer qu'il existe $n \in \mathbb{N}$ tel que $\frac{1}{n} < y x$.
- 2. Montrer que l'ensemble $E = \{k \in \mathbb{Z} : \frac{k}{n} \leq x\}$ admet un plus grand élément, noté q.
- 3. Conclure en remarquant que $x < \frac{q+1}{n} < y$.

Exercice 2. Une application Soit $f: \mathbb{R} \to \mathbb{R}$ telle que pour tout $x, y \in \mathbb{R}$, on ait f(x+y) = f(x) + f(y).

- 1. Calculer f(0). Montrer que f est impaire.
- 2. Pour $n \in \mathbb{Z}$, exprimer f(n) en fonction de n et de a = f(1).
- 3. Pour $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, exprimer f(p) en fonction de $f(\frac{p}{q})$. En déduire $f(\frac{p}{q})$.
- 4. On suppose que f est continue, montrer que f coincide avec $x \mapsto ax$.

Exercice 3. Approximation d'un réel Pour tout réel a, on notera $\{a\} = a - \lfloor a \rfloor \in [0, 1[$ la partie fractionnaire de a, à savoir la différence entre a et sa partie entière.

- 1. Soit $x \in \mathbb{R}$ et N un entier non-nul. Montrer qu'il existe un entier $r \in [0, N-1]$ et et des entiers k, ℓ entre 0 et N tel que $\{kx\}$ et $\{\ell x\}$ appartiennent tous deux à $\left\lceil \frac{r}{N}, \frac{r+1}{N} \right\rceil$.
- 2. En déduire le Théorème de Dirichlet : pour tout réel x et pour tout entier non nul N, il existe des entiers $p, q \in \mathbb{Z}, q > 0$, tel que

$$\left| x - \frac{p}{q} \right| < \frac{1}{N} \cdot \frac{1}{q}.$$

Exercice 4. Une seconde application Déterminer les morphismes de corps de \mathbb{R} , i.e. les applications $f: \mathbb{R} \to \mathbb{R}$ qui vérifient f(x+y) = f(x) + f(y) et f(xy) = f(x)f(y) pour tout x, y dans \mathbb{R} . On pourra commencer par les déterminer sur \mathbb{Q} , puis montrer qu'ils sont croissants, et conclure par densité de \mathbb{Q} dans \mathbb{R} .

Exercice 5. Suites adjacentes Soient (u_n) et (v_n) deux suites à valeurs réelles. On suppose que

- $-(u_n)$ est croissante et (v_n) est décroissante.
- pour pour tout $n \in \mathbb{N}$, $u_n \leq v_n$
- la suite $(u_n v_n)$ converge vers 0.

Montrer que les suites (u_n) et (v_n) sont de Cauchy. En déduire le théorème des suites adjacentes : (u_n) et (v_n) convergent dans \mathbb{R} , vers la même limite.

Exercice 6. Critère de Cauchy et séries

- 1. Soit (u_n) une suite réelle décroissante, à termes positifs, qui tend vers 0. Montrer que la suite (v_n) définie par $v_n := \sum_{k=0}^n (-1)^k u_k$ est de Cauchy, donc converge dans \mathbb{R} .
- 2. Montrer que la suite (v_n) définie par $v_n := \sum_{k=1}^n \frac{1}{k}$ n'est pas de Cauchy. En déduire qu'elle ne converge pas.

Exercice 7. Sous-groupes de $(\mathbb{R}, +)$

- 1. Montrer qu'un sous-groupe de $(\mathbb{R}, +)$ est soit dense, soit de la forme $\alpha \mathbb{Z}$ pour un certain $\alpha \in \mathbb{R}$ (dans ce cas, on dit que le sous-groupe est discret).
- 2. Donner des exemples de sous-groupes denses.
- 3. Soit $\alpha \in \mathbb{R}$. Que peut-on dire du sous-groupe de $(\mathbb{R}, +)$ engendré par 1 et α (i.e. le sous-groupe $\{n + m\alpha : (n, m) \in \mathbb{Z}^2\}$)? Plus généralement, que dire du sous-groupe de $(\mathbb{R}, +)$ engendré par deux réels x et y? Et d'un sous-groupe engendré par un nombre fini d'éléments x_1, \ldots, x_n ?
- 4. Existe-t-il des sous-groupes de $\mathbb R$ qui ne sont pas engendrés par un nombre fini d'éléments ? Si oui, donner des exemples.

Exercice 8. S oit $k \ge 0$ et $f: [0,1[\to \mathbb{R}$ une fonction vérifiant $|f(x) - f(y)| \le k|x - y|$ pour tout x, y dans [0,1[. On dit que f est k-Lipschitz sur [0,1[.

1. Montrer que f est continue. Montrer qu'on a même a la propriété suivante :

$$\forall \epsilon > 0, \exists \eta > 0, \forall x, y \in [0, 1], |x - y| \le \eta \Rightarrow |f(x) - f(y)| \le \epsilon.$$

On dit alors que f est **uniformément** continue sur [0,1[.

- 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de [0,1[qui tend vers 1. Montrer que la suite $(f(x_n))_{n\in\mathbb{N}}$ est de Cauchy. On définit une fonction \tilde{f} sur [0,1] par $\tilde{f}(x)=f(x)$ pour $x\in[0,1[$ et $\tilde{f}(1):=\lim_{n\to\infty}f(x_n)$.
- 3. Montrer que \tilde{f} est continue. Montrer qu'elle l'est même uniformément.

Exercice 9. Autres exemples d'espaces complets Soit E un espace vectoriel sur \mathbb{R} . On dit que $||\cdot||: E \to \mathbb{R}^+$ est une norme sur E lorsque $||u+v|| \le ||u|| + ||v||$, $||\lambda u|| = |\lambda|||u||$ et $||u|| = 0 \Leftrightarrow u = 0$, pour tout u, v dans E et λ dans \mathbb{R} . La définition de suite convergente ou de suite de Cauchy sur E est la même que sur \mathbb{R} en remplaçant la valeur absolue $|\cdot|$ par la norme $||\cdot||$. Montrer que les espaces suivants, munis d'une norme, sont complets :

- 1. \mathbb{C} muni du module $|\cdot|$.
- 2. L'espace vectoriel des suites réelles bornées muni de la norme $||u|| := \sup_{n \in \mathbb{N}} |u_n|$.
- 3. L'espace vectoriel des fonctions continues sur [0,1] muni de la norme $||f|| = \sup_{x \in [0,1]} |f(x)|$.