Ambiguity in a certain context-free grammar

Eric Rowland joint work with Bobbe Cooper and Doron Zeilberger

Mathematics Department Tulane University, New Orleans

August 27, 2010

outline of the talk

- introduction
- 2 one-parameter families of trees
- a two-parameter family
- general families
- reducing a pair of trees

the context-free grammar G

start symbols: 0, 1, 2

formation rules: $0 \rightarrow 12$, $0 \rightarrow 21$, $1 \rightarrow 02$, $1 \rightarrow 20$, $2 \rightarrow 01$, $2 \rightarrow 10$

An *n*-leaf tree T parses a length-n word w on $\{0, 1, 2\}$ if T is a valid derivation tree for w under G.

For example, the tree parses 0110212:

The set of possible derivation trees under G is the set of binary trees.

ambiguity

The grammar *G* is ambiguous; there exist distinct trees that parse a common word.

The trees

both parse 010:

another example

The trees

both parse 0110212:

a much stronger statement

Theorem

Let $n \ge 1$, and let T_1 and T_2 be n-leaf binary trees. Then T_1 and T_2 parse a common word under G.

motivation

Theorem (Louis Kauffman, 1990)

The following are equivalent.

- Every pair of n-leaf binary trees parses a common word under G.
- Every planar map is four-colorable.

The four color theorem was proved in 1976 by Appel, Haken, and Koch and employed a case analysis carried out by machine.

Perhaps a word-theoretic proof of the four color theorem will be shorter than known proofs.

a word invariant

Proposition

Let w be a word of length n on $\{0,1,2\}$ and T an n-leaf binary tree that parses w. Then for some permutation (i,j,k) of (0,1,2),

$$|w|_i \equiv |w|_j \not\equiv |w|_k \equiv |w| \mod 2.$$

Moreover, the root of T receives the label k when parsing w.

Proof. The congruence holds for words of length 1, and the formation rules $0 \to 12$, $0 \to 21$, $1 \to 02$, $1 \to 20$, $2 \to 01$, $2 \to 10$ preserve it because all four terms change parity with each rule application.

sketch of correspondence

sketch of correspondence

 $\{e,0,1,2\}$ is the Klein 4-group.

sketch of correspondence

equivalence classes of parse words

Let ParseWords(T_1 , T_2) be the set of equivalence classes of words parsed by both trees T_1 and T_2 .

We abuse notation slightly by writing a representative of each class.

For example, ParseWords(
$$\bigwedge$$
, \bigwedge) = {0121}.

The four color theorem is equivalent to the statement that for every pair of n-leaf binary trees T_1 and T_2 we have ParseWords $(T_1, T_2) \neq \{\}$.

outline of the talk

- introduction
- 2 one-parameter families of trees
- a two-parameter family
- general families
- reducing a pair of trees

path trees

A path tree is a binary tree with at most two vertices on each level.

comb trees

Let LeftCombTree(n) be the n-leaf path tree corresponding to I^{n-2} .

Let RightCombTree(n) be the n-leaf path tree corresponding to r^{n-2} .

a pair of comb trees

Theorem

ParseWords(LeftCombTree(n), RightCombTree(n)) =

$$\begin{cases} \{01^{n-2}2\} & \text{if } n \ge 2 \text{ is even} \\ \{01^{n-2}0\} & \text{if } n \ge 3 \text{ is odd.} \end{cases}$$

crooked trees

Let LeftCrookedTree(n) be the path tree corresponding to $(Ir)^{(n-2)/2}$.

Let RightCrookedTree(n) be the path tree corresponding to $(rl)^{(n-2)/2}$.

a comb tree and a crooked tree

Theorem

ParseWords(LeftCombTree(n), RightCrookedTree(n)) =

$$\begin{cases} \left\{ \bmod(1-n,3) \left((012)^{n/6} \right)^R (012)^{(n-2)/6} \right\} & \text{if } n \ge 2 \text{ is even} \\ \left\{ \bmod(1-n,3) \left((012)^{(n-3)/6} \right)^R (012)^{(n+1)/6} \right\} & \text{if } n \ge 3 \text{ is odd.} \end{cases}$$

if $n \ge 2$ is even

a pair of crooked trees

The number of parse words is generally not constant.

Theorem

For $n \geq 2$,

 $|ParseWords(LeftCrookedTree(n), RightCrookedTree(n))| = 2^{\lfloor n/2 \rfloor - 1}$

outline of the talk

- introduction
- 2 one-parameter families of trees
- a two-parameter family
- general families
- reducing a pair of trees

trees with one turn

Let LeftTurnTree(m, n) and RightTurnTree(m, n) be the (m + n)-leaf path trees corresponding to $I^m r^{n-2}$ and $r^m I^{n-2}$.

For example, LeftTurnTree(2,3) =.

The next three theorems collectively enumerate parse words of LeftTurnTree(m, n) and RightTurnTree(k, m + n - k).

Theorem

For $m \ge 1$, $k \ge 1$, and $\max(2, k - m + 2) \le n \le k$,

|ParseWords(LeftTurnTree(m, n), RightTurnTree(k, m + n - k))| = 1.

trees with one turn

Let

$$a(m, k) = |ParseWords(LeftTurnTree(m, k+1), RightTurnTree(k, m+1))|.$$

By symmetry, a(m, k) = a(k, m).

Theorem

For
$$m \ge 1$$
, $k \ge 1$, and $n \ge k + 2$,

$$|ParseWords(LeftTurnTree(m, n), RightTurnTree(k, m + n - k))|$$

= $2a(m, k)$.

recurrence satisfied by a(m, k)

Theorem

For $m \ge 1$ and $k \ge 1$,

$$a(m+3,k)-2a(m+2,k)-a(m+1,k)+2a(m,k)=0.$$

No simple combinatorial proof known.

This recurrence can be written

$$(M-2)(M-1)(M+1) a(m,k) = 0.$$

For fixed k, the solution a(m, k) is a linear combination of $2^m, 1, (-1)^m$.

main component of proof

Consider the labels of the internal vertices rather than of the leaves.

If the internal vertices of a path tree are labeled with v, the labeling can be extended to a parse word precisely when v is alternating — no two consecutive letters are equal.

Let A_m be the set of alternating words of the form $0v_2v_3\cdots v_{m-1}(1|2)$. Let B_m be the set of alternating words of the form $0v_2v_3\cdots v_{m-1}(0|2)$.

Proposition

For
$$m \ge 2$$
, $|A_m| = (2^m + 2(-1)^m)/3$ and $|B_m| = (2^m - (-1)^m)/3$.

outline of the talk

- introduction
- one-parameter families of trees
- a two-parameter family
- general families
- 5 reducing a pair of trees

trees sharing a bottom leaf

Proposition

Let $n \ge 3$. If leaf i is a bottom leaf in two n-leaf path trees, then the trees both parse the word $0^{k-1}10^{n-k}$ for some $2 \le k \le n-1$.

Proof by example.

extending a pair of binary trees

Suppose T_1' and T_2' are n-leaf binary trees parsing w. Fix $1 \le i \le n$. We may assume $w_i = 0$ and that the parent of leaf i in T_2' receives 1.

Obtain T_2 by duplicating leaf i in T_2' by performing the replacement

depending on whether leaf i is a left leaf or right leaf in T'_2 .

Then T_2 parses the word obtained by replacing w_i by 21 or 12.

extending a pair of binary trees

Extend T'_1 by attaching Λ to leaf i, obtaining T_1 . Clearly T_1 parses both of these words.

Moreover, every parse word of T_1 and T_2 arises uniquely in this way.

Proposition

$$|\mathsf{ParseWords}(T_1, T_2)| = |\mathsf{ParseWords}(T_1', T_2')|.$$

In particular, T_1 and T_2 have a common parse word.

corollaries

Theorem

Let $n \ge 2$, and let T be an n-leaf binary tree. Let I be the level of leaf 1 in T. Then $|\mathsf{ParseWords}(T,\mathsf{LeftCombTree}(n))| = 2^{l-1}$.

For example, ParseWords(
$$(1,0,0)$$
) =
$$\left\{ \begin{array}{l} 0100120, \\ 0102102, \\ 0111021, \\ 0112012 \end{array} \right\}.$$

Theorem

Let $n \ge 4$. Let T_1 be an n-leaf binary tree and T_2 an n-leaf left turn tree. Then T_1 and T_2 have a common parse word.

outline of the talk

- introduction
- 2 one-parameter families of trees
- a two-parameter family
- 4 general families
- 5 reducing a pair of trees

decomposable pairs

If two trees have a common branch system in the same position, we can decompose the pair into two smaller pairs. For example,

$$T_1 =$$
 $T_2 =$

share the branch system

$$S = \sum_{i=1}^{n}$$

which we remove to obtain the 5-leaf trees

We can find a parse word for the original pair from a parse word for this smaller pair and any valid labeling of *S*.

decomposable pairs — general trees

Consider the pair

More generally, we only require dangling subtrees S_1 and S_2 with the same set of leaves.

decomposable pairs — general trees

Breaking the trees at levels 2 and 8 as

produces the same partition $\{\{a,l\},\{b,c,h,i,j,k\},\{d,e,f,g\}\}$ of the leaves in both trees.

mutual crookedness

A pair of n-leaf trees T_1 and T_2 is mutually crooked if it cannot be obtained by duplicating some leaf i in a pair of (n-1)-leaf trees.

For example,

are mutually crooked, while the following are not.

weak mutual crookedness

A pair of *n*-leaf trees T_1 and T_2 is weakly mutually crooked if it cannot be obtained by triplicating some leaf i in a pair of (n-2)-leaf trees.

Each tree in the pair

Shortening this comb by two leaves produces the pair

which parses 01220.

weak mutual crookedness

We can re-insert the two leaves and obtain a parse word for the original pair by alternating the internal vertex labels.

Theorem

A pair of trees that is not weakly mutually crooked is reducible.

mutual crookedness

However, it appears that something stronger is true.

Conjecture

A pair of trees that is not mutually crooked is reducible.

The two consecutive leaves conjecturally receive the same label. But there is no obvious relationship between the parse words.

summary

- The parse words of simple parameterized families can often be determined/enumerated.
- The number of parse words of LeftTurnTree(m, n) and RightTurnTree(k, m + n - k) is given by a simple recurrence of order 3.
- To prove the "four color theorem for path trees" it suffices to consider indecomposable, weakly mutually crooked pairs of path trees that do not share a bottom leaf!