Analysis and Implementation of Asynchronous Finite Difference Scheme for Advection - Diffusion Equation

Kumar Saurabh ¹ Prof. S. Sundar¹ Prof. Dr. Martin Frank ²

Department of Mathematics
 IIT Madras

²Math CCES RWTH Aachen

August 31, 2016

Acknowledgement: DAAD, RWTH IT Center

Motivation

- Many natural and engineering systems can be described with PDEs
 - Fluid mechanics, Electromagnetism, Quantum Mechanics
- Analytical Solution not known. Need to solve these problems numerically.

Kumar Saurabh (IIT Madras) Master Thesis August 31, 2016

¹Maitham Alhubail, Qiqi Wan. The swept rule for breaking the latency barrier in time advancing PDEs

²Jagannathan & Donzis (XSEDE 2012), Sankaran et al. (SC 2012), Lee et al. (SC 2013) 🔻 🗇 🔻 🚊 🔻 💈 🛩 🔾 🗬

Motivation

- Many natural and engineering systems can be described with PDEs
 - Fluid mechanics, Electromagnetism, Quantum Mechanics
- Analytical Solution not known. Need to solve these problems numerically.
- Large number of numerical methods: Finite Difference, Finite Volume, Spectral Method, etc.
 - The problem is decomposed into a large number of Processing Element (PEs).
 - Extreme-scale computer clusters can solve PDEs using over 1,000,000 cores.
 - The communication is required between the PEs to solve the PDEs to compute spatial derivatives.

Kumar Saurabh (IIT Madras) Master Thesis August 31, 2016

¹Maitham Alhubail, Qiqi Wan. The swept rule for breaking the latency barrier in time advancing PDEs

²Jagannathan & Donzis (XSEDE 2012), Sankaran et al. (SC 2012), Lee et al. (SC 2013) 🔻 🗇 🔻 🗦 🔻 📜 💉 🗨 🔾 🔾

- Many natural and engineering systems can be described with PDEs
 - Fluid mechanics, Electromagnetism, Quantum Mechanics
- Analytical Solution not known. Need to solve these problems numerically.
- Large number of numerical methods: Finite Difference, Finite Volume, Spectral Method, etc.
 - The problem is decomposed into a large number of Processing Element (PEs).
 - Extreme-scale computer clusters can solve PDEs using over 1,000,000 cores.
 - The communication is required between the PEs to solve the PDEs to compute spatial derivatives.
- Computation rates are much faster than communication
 - Exascale: Communication likely to be bottleneck.
 - Direct Numerical Simulation (DNS): Communication or synchronization takes upto 50 - 70 % of the total computation time.²
- Petascale computation: What if one of the node fails?

2/6

¹ Maitham Alhubail, Qiqi Wan. The swept rule for breaking the latency barrier in time advancing PDEs

Asynchronous Schemes

Asynchronous Scheme for Advection Diffusion Equation

$$\frac{1}{\Delta t}(u_i^{n+1} - u_i^n) + \frac{c}{2\Delta x}(u_{i+1}^{\tilde{n}} - u_{i-1}^n) = \frac{\alpha}{\Delta x^2}(u_{i+1}^{\tilde{n}} - 2u_i^n + u_{i-1}^n)$$
(1)

- Regarding $\tilde{n}^{\Delta l}$
 - Synchronous when $\tilde{n} = n$
 - \tilde{n} can be n, n-1, n-2, ...
 - Concrete value of \tilde{n} depends on hardware, network, traffic, (possible) unpredictable factors,...
 - \tilde{n} is in fact a principle random variable.

Master Thesis August 31, 2016

³Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp. 370-392.

⁴Mudigree, D., Sherleker, S., Ansumali, S., 2014 "Delayed Difference scheme for large scale scientific simulations", Physical Review Letters, 113(21), 218701.

⁵Assumptions and constraints stated in thesis

Asynchronous Schemes

Asynchronous Scheme for Advection Diffusion Equation

$$\frac{1}{\Delta t} (u_i^{n+1} - u_i^n) + \frac{c}{2\Delta x} (u_{i+1}^{\tilde{n}} - u_{i-1}^n) = \frac{\alpha}{\Delta x^2} (u_{i+1}^{\tilde{n}} - 2u_i^n + u_{i-1}^n)$$
• Regarding \tilde{n}

- - Synchronous when $\tilde{n} = n$
 - \tilde{n} can be n, n-1, n-2,...
 - Concrete value of \tilde{n} depends on hardware, network, traffic, (possible) unpredictable factors....
 - \tilde{n} is in fact a principle random variable.

Analysis

- Stability Stable if the Synchronous Scheme is stable, irrespective of delay statistics.
- Truncation Error: Not homogeneous in space and random.
 - Need for statistical description of the truncation error.
 - Strong Scaling: ⟨Ē⟩ ~ O(Δx)
 - Weak Scaling: ⟨E⟩ ~ O(1)
 - Verified by numerical experiments.
 - $\langle \overline{E} \rangle \propto \tilde{k}$: Higher the delay, higher will be the error.
- Asynchrony Tolerant Schemes
 - Need for higher order schemes that are capable to maintain accuracy.
 - Truncation Error Analysis.
 - Previous work by Mudigree et al. 4, Donzis and Aditya³ proposed such schemes.⁵

³Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp: 370-392.

Mudigree, D., Sherleker, S., Ansumali, S., 2014 "Delayed Difference scheme for large scale scientific simulations". Physical Review Letters, 113(21), 218701.

Implementation of Asynchronous Scheme

Algorithms

- Deterministic Asynchronous Scheme
 - Error: Deterministic Independent of runs
 - Exchange the information after a certain amount of steps. (SYNC_STEP)
 - Naive way of Implementation
- Stochastic Asynchronous Scheme
 - Error: Different for different runs.
 - Do not wait for the communication to complete.
 - Use the latest time values.
 - Dependent on delay statistics.

Implementation of Asynchronous Scheme

Algorithms

- Deterministic Asynchronous Scheme
 - Error: Deterministic Independent of runs
 - Exchange the information after a certain amount of steps. (SYNC_STEP)
 - Naive way of Implementation
- Stochastic Asynchronous Scheme
 - Error: Different for different runs.
 - Do not wait for the communication to complete.
 - Use the latest time values.
 - Dependent on delay statistics.

MPI Implementation

- Two Sided Non blocking Communication
 - Achieved using MPI Isend / MPI Irecv / MPI Test
 - Data to be transferred is stored in the buffer.
 - Buffering of data takes place.
 - Handshaking occurs Matching tags and rank.
- One Sided RMA
 - Achieved using MPI_Put / MPI_Lock / MPI_Unlock
 - Target processor exposes its location to memory.
 - No buffering Source processor writes into the target location before returning.
 - Redundancy of data is prevented by MPI_Lock.
 - No handshaking Consent of target processor is not required.

4/6

Figure : Asynchronous Schemes

Figure : Asynchrony Tolerant (AT) Schemes

Figure : Asynchronous Schemes

Figure : Asynchrony Tolerant (AT) Schemes

Figure : Effect of load and SYNC_STEP on speedup

Figure : Asynchronous Schemes

Figure : Asynchrony Tolerant (AT) Schemes

Figure : Effect of load and SYNC_STEP on speedup

		Stochastic Implement with 2048 Grid Points per p	
SYNC_STEP	Speedup	Maximum Allowable Delay	Speedup
5	1.3615	5	1.8589
10	1.4474	10	2.6174
20	1.4889	20	3.7192
30	1.5300	30	6.0154
	with 2048 Grid SYNC_STEP 5 10 20	5 1.3615 10 1.4474 20 1.4889	with 2048 Grid Points per processor with 2048 Grid Points per processor SYNC_STEP Speedup Maximum Allowable Delay 5 1.3615 5 10 1.4474 10 20 1.4889 20

Table : Comparison of Deterministic and Stochastic Asynchronous Implementation

Figure: Asynchronous Schemes

Figure : Asynchrony Tolerant (AT) Schemes

Figure : Effect of load and SYNC_STEP on speedup

	Deterministic Implementation with 2048 Grid Points per processor		Stochastic Implementation with 2048 Grid Points per processor	
ĺ	SYNC_STEP	Speedup	Maximum Allowable Delay	Speedup
ĺ	5	1.3615	5	1.8589
	10	1.4474	10	2.6174
	20	1.4889	20	3.7192
	30	1 5200	20	6.0154

Table: Comparison of Deterministic and Stochastic Asynchronous Implementation

Effect of Computer Architecture on High Load

RMA operation

•	Two-sided Non blocking Send and Receive

Processor per node	Time (s)	Maximum Delav	Average Delav
per node		,	
8	204.288266	38	0.152375
4	162.511951	42	0.013750
2	122.102558	44	0.075125
1	93.667287	20	0.132000

Processor	l Ime	Maximum	Average
per node	(s)	Delay	Delay
8	151.922679	65	10.7976
4	112.257639	123	20.1246
2	111.381462	137	17.8507
1	84.915095	110	13.0063

Conclusion

- Original Scheme:
 - Second Order Convergence without delays.
 - First Order Convergence in presence of delays.
- Second Order Convergence in presence of delays.
 - Newer Scheme Asynchrony Tolerant Scheme.
- Fewer Communication calls ⇒ More speedup.
- Higher Load on processor ⇒ Communication cost less significant.
- Stochastic Implementation More Speedup.
- Study of Delay Statistics.
 - MPI RMA: better for asynchronous case in terms of average delay statistics.
 - Dependence of load on the processor. More frequent communication ⇒ Larger Delays.
 - Impact of Computer Architecture.

6/6