Solid Modeling

Prof. Lizhuang Ma Shanghai Jiao Tong University

Contents

- Regularized Boolean Set Operations
- Boundary Representations
- Spatial-Partitioning Representations
- Constructive Solid Geometry

What is Solid?

Ordinary Boolean Set Operations

The result may not be a solid model!

Regularized Boolean Set Operations

- Boundary / interior points
 - Points whose distance from the object and the object's complement is zero / other points
- Closed set
 - A set contains all its boundary points
- Open set
 - A set contains none of its boundary points

Regularized Boolean Set Operations

Closure

- The union of a set with the set of its boundary points
- Is a closed set

Boundary

- The set of closed set's boundary points
- Interior
 - The complement of the boundary with respect to the object

Regularized Boolean Set Operations

- Regularization
 - The closure of a set's interior points
- Regular set
 - A set is equal to its own regularization
- Regularized Boolean set operator
 - $A op^* B = closure (interior (A op B))$
 - Only produce the regular set when applied to regular sets

Ordinary vs. Regularized Boolean Set Operations

Ordinary Boolean Operations on Subsets of Two Objects

Regularized Boolean Set Operations

set	$A \cup^* B$	$A \cap^* B$	$A-^*B$
$A_i \cap B_i$	Χ	Χ	
$A_i - B$	Χ		X
$B_i - A$	Χ		
$A_b \cap B_i$		Χ	
$B_b \cap A_i$		Χ	X
$A_b - B$	Χ		X
$B_b - A$	Χ		
$A_b \cap B_b$ same	Χ	Χ	
$A_b \cap B_b \ diff$			X

Boundary Representations = b-reps

- Describe an object in terms of its surface boundaries
 - Vertices / edges / faces
 - Some b-reps are restricted to planar, polygonal boundaries, and may require faces to be convex polygons or triangles
 - Some systems support only solids whose boundaries are 2-manifolds

2-Manifolds

- What is 2-manifolds?
 - Every point on a 2-manifold has some arbitrarily small neighborhood of points around it that can be considered topologically the same as a disk in the plane
 - Every edge is shared by exactly two triangles and every triangle shares an edge with exactly three neighboring triangles

2-Manifolds Example

Euler's Formula

- Polyhedron
 - A solid that is bounded by a set of polygons whose edges are each a member of an even number of polygons
- Simple Polyhedron
 - A polyhedron that can be deformed into a sphere
- Euler's Formula
 - A simple polyhedron satisfies V-E+F=2

Simple Polyhedron Example

$$V = 8$$

$$E = 12$$

$$F = 6$$

$$V = 5$$

$$E = 8$$

$$F = 5$$

$$V = 6$$

$$E = 12$$

$$F = 8$$

Euler's Formula

- States necessary but not sufficient conditions for a simple polyhedron
- Additional constraints are needed
 - 1 edge must connect 2 vertices
 - 1 edge must be shared by exactly 2 faces
 - At least 3 edges must meet at 1 vertex
 - faces must not interpenetrate

Euler's Formula Applies to 2-Manifolds with Holes

- V-E+F-H=2(C-G)
- H: the number of holes in the faces
- G: the number of holes that pass through the object
- *C*: the number of separate components

Spatial-Partitioning Representations

- Cell Decomposition
- Spatial-Occupancy Enumeration
- Octrees
- Binary Space-Partitioning Trees

Cell Decomposition

Spatial-Occupancy Enumeration

Quadtree(Octrees)

Quadtree Data Structure

Octree Enumeration

Boolean Set Operations on Quadtrees

Binary Space-Partitioning (BSP) Trees

Binary Space-Partitioning (BSP) Trees

Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG)

