Exam 1

Due Feb 17 at 11:59pm **Points** 27 **Questions** 27

Available Feb 15 at 12:01am - May 3 at 11:59pm Time Limit 60 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	32 minutes	19 out of 27

(!) Correct answers will be available on Feb 18 at 12:01am.

Score for this quiz: **19** out of 27 Submitted Feb 15 at 5:49pm This attempt took 32 minutes.

Incorrect

Question 1 0 / 1 pts

For the stable matching problem (where n men propose to n women), which of the following statements is/are correct?

- I. All executions of the G-S algorithm yield the same matching.
- II. Gale-Shapley matching guarantees to terminate.
- III. All men and women are paired at the end.
 - II and III only

III only

I, II, and III

I and III only			

Question 2	1 / 1 pts
For the stable matching problem (where n men propose to n w what is the time complexity of Gale-Shapley algorithm?	romen),
O(n log n)	
O(n)	
O(n * n)	
O(n^3)	

1 / 1 pts
or merging two ed linked list?

O(log n) O(n * n)	O(n)
O(n * n)	O(log n)
	O(n * n)

Question 4	1 / 1 pts
Which of the following statements is/are true?	
I. The number of distinct pairs among n (n > 2) distinct object	ts is O(n).
II. The best case time complexity of Merge Sort is O(nlogn).	
III. The worst case time complexity for accessing an element table is O(n).	in a hash
II and III only	
I, II, and III	
I and III only	
○ I and II only	

2/15/23, 5:50 PM

Incorrect

Question 5 0 / 1 pts

Which of the following statements is/are *false*?

- I. The operation of sorting n unsorted elements using a heap can be completed in O(logn) time.
- II. If the heap currently has n elements, inserting the item v into heap H takes O(log n) time.
- III. If the heap currently has n elements, identifying the minimum element in the heap H takes O(log n) time.

II only

I only

II and III only

I and III only

Question 6 1 / 1 pts

Suppose that f, g, h are three functions. Which of the following statements are true?

I. If f = O(h) and $g = O(h^2)$, then f + g = O(h).

II. If f = O(g) and g = O(h), then f = O(h).

III. If $f = \Omega(g)$ and $h = \Omega(g)$, then $f = \Omega(h)$

IV. If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$

I and IV only		
I and II only		
II and IV only		
II and IV only		
I, II and IV only		

Question 7

Given a connected, undirected graph with E edges and V vertices, what is the time complexity for a graph traversal using BFS or DFS?

O(E+V)

O(E)

O(V)

O(E*V)

Question 8 1 / 1 pts

Which of the following statements is/are true?

I. Given a graph, if the number of edges of graph is n, and the number of vertices is n-1, then there is no cycle in the graph.

II. A common implementation of BFS uses a queue.

III. A common implementation of DFS uses a stack.

IV. In order to find a connected component in a graph, G, containing node s, we can use either BFS or DFS.

II and III only

I, II, III and IV

Incorrect

Question 9 0 / 1 pts

For a stable matching problem, which of the following statements is/are true?

- I. It's possible for an instance of the stable matching problem to have more than one stable matching.
- II. For the hospital-student domain, the Gale Shapley algorithm is student optimal.
- III. For the hospital-student domain, the Gale Shapley algorithm is hospital optimal.

I and II only

III only		
I and II only		
II and III only		
I and III only		

Question 10	1 / 1 pts
Hospital h and student s form an unstable pair if	
h prefers s to one of its admitted students and s prefers h to assign hospital.	ned
h does not prefer s to one of its admitted students but s prefers h to assigned hospital.	
none of these.	
h prefers s to one of its admitted students but s does not prefer h to assigned hospital.	

Question 11	1 / 1 pts
Which of the following algorithms serves as a method of solvin matching problem?	g the stable
Dijkstra's algorithm	
Ford-Fulkerson algorithm	
Gale-Shapley algorithm	
Prim's algorithm	

Question 12	1 / 1 pts
A matching M is if M = H = S = n.	
Stable	
Imperfect	

Perfect		
Proper		

Question 13	1 / 1 pts
Big O notation provides an asymptotic	
Tight bound	
Loose bound	
Lower bound	
Upper bound	

Question 14 1 / 1 pts

If f = O(g) and g = O(h), then f = O(h). This property is known as

Transitivity			
None of the	ese		
Associativit	у		
Commutativ	vity		

Question 15	1 / 1 pts
Binary search algorithm runs in	
Linear time	
Exponential time	
Quadratic time	
Logarithmic time	

Question 16 1 / 1	
A path p is called if all its vertices are distinct from	each other.
Complex	
Simple	
None of these	
Unique	
Question 17	1 / 1 pts
A directed graph is strongly connected if for every two nodes,	u and v:

there is no path from u to v and but a path from v to u.

there is a path from u to v and but no path from v to u.

https://canvas.wpi.edu/courses/46354/quizzes/56986

Question 18	1 / 1 pts
A(n) graph is a tree if it is connected and does a cycle.	not contain
Bidirectional	
Unidirectional	
Undirected	
O Directed	

Question 19

1 / 1 pts

The idea of rooting a tree encodes the notion of a

C	vcle
Hi	erarchy
Si	ze
Di	rection

8								4
	m	\sim	\sim	m	m	a	m.	и.
		No.	w			5	li or i	ш.

Question 20	0 / 1 pts
Consider the following preference rankings:	
X-A,B,C.	
Y-B,A,C.	
Z-A,B,C.	
and	
A-YXZ,	
B-XYZ,	
C-XYZ	
Is the following matching stable: X-A, Y-B, Z-C?	
○ Yes	
Cannot be determined	

No
 None of these options

Incorrect

Question 21 0 / 1 pts

Consider the following algorithm:

```
int i, j, k = 0;
for (i = n / 2; i <= n; i++) {
  for (j = 2; j <= n; j = j * 2) {
     k = k + n / 2;
  }
}</pre>
```

What is the time complexity of this algorithm?

- O(n)
- O(n^2)
- O(nlogn)
- O(logn)

Question 22 1 / 1 pts

Consider the following algorithm:

```
int a = 0, i = N;
while (i > 0) {
  a += i;
  i /= 2;
}
What is the time complexity of this algorithm?
    O(n^2)
    O(logn)
    O(n)
    O(nlogn)
```

Incorrect

Question 23 0 / 1 pts

```
int fun(int n)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j < n; j += i)
        {
            // Some O(1) task
        }
    }
}</pre>
```

Th	e Big O notation is:
	O log(log n)
	O n/2
	n*n
	O nlog n

Incorrect

Question 24 0 / 1 pts

In this graph assume both dfs and bfs choose leftmost node first if there is a choice

Starting from green and ending in yellow, which algorithm visits least number of nodes

neither
O bfs
dfs
equally

Question 25 1 / 1 pts

Suppose we're doing a BFS traversal starting with node A. Assume that within a layer we order letters alphabetically. What is the correct traversal order for this BFS?

- ABDCEGHF
- ABDCGEFH
- ABDCEFHG
- ADBCEGHF

Incorrect

Question 26 0 / 1 pts

-	ppose we are doing a DFS traversal of this graph starting with node A. at is the correct order for this traversal?
	ABCEHFGD
	O None
	O ABCHEFGD
	ABCDGFE

Question 27	1 / 1 pts
By the time you have shoot the first n balloons, n-1 new ballobeen inserted on the board. After shooting those n-1 balloons 2 new balloons are inserted on the board. After checking out balloons, there are n-3 new balloons on the board. This same continues until on new balloon are inserted on the board. How balloons do you shoot before the board is empty?	s, there are n- those n-2 ne pattern
O(n^2)	
O(log n)	
O(n/2)	
O(n)	

Quiz Score: 19 out of 27