Solution to Assignment 4

Jeremy Johnson

December 2, 2017

Question 1a

Theorem 1

$$\sum_{i=1}^{n} ba_i = b \sum_{i=1}^{n} a_i$$

Proof. The proof is by induction on n.

Base Case. The base case, n = 1, is proved by evaluating the left and right sides of the statement when n = 1.

$$\sum_{i=1}^{1} ba_i = ba_1 = b \sum_{i=1}^{1} a_i$$

Inductive Case. Assume the inductive hypothesis

$$\sum_{i=1}^{n} ba_i = b \sum_{i=1}^{n} a_i$$

and show

$$\sum_{i=1}^{n+1} ba_i = b \sum_{i=1}^{n+1} a_i$$

$$\sum_{i=1}^{n+1} ba_i = \sum_{i=1}^n ba_i + ba_{n+1} [By definition of \sum]$$

$$= b \sum_{i=1}^n a_i + ba_{n+1} [By inductive hypothesis]$$

$$= b \left(\sum_{i=1}^n a_i + a_{n+1} \right) [By disbributive law]$$

$$= b \sum_{i=1}^{n+1} a_i [By definition of \sum]$$

Question 1b

Theorem 2

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Proof. The proof is by induction on n.

Base Case. The base case, n = 1, is proved by evaluating the left and right sides of the statement when n = 1.

$$\sum_{i=1}^{1} (a_i + b_i) = a_1 + b_1 = \sum_{i=1}^{1} a_i + \sum_{i=1}^{1} b_i$$

Inductive Case. Assume the inductive hypothesis

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

and show

$$\sum_{i=1}^{n+1} (a_i + b_i) = \sum_{i=1}^{n+1} a_i + \sum_{i=1}^{n+1} b_i$$

$$\begin{split} \sum_{i=1}^{n+1}(a_i+b_i) &= \sum_{i=1}^n(a_i+b_i) + (a_{n+1}+b_{n+1}) \text{ [By definition of } \sum \text{]} \\ &= \left(\sum_{i=1}^n a_i + \sum_{i=1}^n b_i\right) + (a_{n+1}+b_{n+1}) \text{[By inductive hypothesis]} \\ &= \left(\sum_{i=1}^n a_i + a_{n+1}\right) + \left(\sum_{i=1}^n b_i + b_{n+1}\right) \text{[By associative law and commutative law]} \\ &= \sum_{i=1}^{n+1} a_i + \sum_{i=1}^{n+1} b_i \text{[By definition of } \sum \text{]} \end{split}$$

Technically we use a lemma that states (x + y) + (w + z) = (x + w) + (y + z), which can be proved by repeated application of the associative and commutative laws.

Question 2

Theorem 3 Prove by induction that

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

You should compute an example to make sure you understand the statement.

Proof. The proof is by induction on n.

Base Case. The base case, n = 1,

$$\sum_{i=1}^{1} i^2 = 1 = \frac{1(1+1)(2+1)}{6}$$

Inductive Case. Assume the inductive hypothesis

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},$$

and show

$$\sum_{i=1}^{n+1} i^2 = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 [\text{ By property of } \sum]$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 [\text{ By inductive hypothesis }]$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} [\text{ By addition of fractions }]$$

$$= \frac{(n+1) [n(2n+1) + 6(n+1)]}{6} [\text{ By factoring }]$$

$$= \frac{(n+1) [2n^2 + 7n + 6]}{6} [\text{ By expanding }]$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} [\text{ By factoring }]$$

Question 3

Theorem 4 A truth table with n variables has 2^n rows.

Proof. The proof is by induction on n the number of variables.

Base Case. The base case, when n = 1 is proved by constructing a truth table with one variable, which has two rows, one with F and one with T.

Inductive Case. Assume the inductive hypothesis that a truth table with n variables has 2^n rows.

To construct a truth table with n+1 variables construct a truth table with all but the first variable and then set the first variable first to F and then to T. By induction the truth with all but the first variable has 2^n rows and there are two copies of this, one when the first variable is F and one when it is T. Thus the number of rows is $2 \cdot 2^n = 2^{n+1}$.

Question 4

Theorem 5 Let x_1, \ldots, x_n be boolean variables. Then

$$x_1 \oplus \cdots \oplus x_n = parity(x_1, \ldots, x_n),$$

where $x_1 \oplus \cdots \oplus x_n = (x_1 \oplus \cdots \oplus x_{n-1}) \oplus x_n$ and in the base case when n = 1 is equal to x_1 .

Proof. The proof is by induction on n the number of variables.

Base Case. The base case, when n = 1 follows from parity(x) = x.

Inductive Case. Assume the inductive hypothesis

$$x_1 \oplus \cdots \oplus x_n = \text{parity}(x_1, \dots, x_n).$$

Then

$$x_1 \oplus \cdots \oplus x_{n+1} = (x_1 \oplus \cdots \oplus x_n) \oplus x_{n+1}$$

which by the inductive hypothesis is equal to

parity
$$(x_1,\ldots,x_n)\oplus x_{n+1}$$
.

When $x_{n+1} = 0$, parity $(x_1, \ldots, x_n) \oplus x_{n+1} = parity(x_1, \ldots, x_n, x_{n+1})$, since $x \oplus 0 = x$, and parity $(x_1, \ldots, x_n, 0) = parity(x_1, \ldots, x_n)$.

When $x_{n+1} = 1$, parity $(x_1, \ldots, x_n) \oplus 1 = \overline{\text{parity}}(x_1, \ldots, x_n)$ which is equal to parity $(x_1, \ldots, x_n, 1)$, since $x \oplus 1 = \overline{x}$, where \overline{x} is the complement of x (x inverted).

Question 5

Theorem 6 The binary reflected Gray code G_n is a gray code, i.e. exactly one bit changes from one entry to the next, including the first and last entries, and all n-bit binary numbers are included.

Proof. The proof is by induction on n the number of bits.

Base Case. In the base case, when n = 1 $G_1 = [0, 1]$ which is a Gray code

Inductive Case. Assume the inductive hypothesis that G_{n-1} is a Gray code and show that the recursive construction $G_n = [0G_{n-1}, 1G'_{n-1}]$ is a Gray code.

Observe that if G is a Gray code, then 0G and 1G satisfy the property that exactly one bit changes from one entry to the next. Also observe that if G is a Gray code then G' is a Gray code. Therefore since by induction G_{n-1} is a Gray code $0G_{n-1}$ and $1G'_{n-1}$ satisfy the property that exactly one bit changes from one entry to the next, and since all n-bit numbers are obtained from (n-1)-bit numbers by inserting zero and one bits in front of each (n-1)-bit number all n-bit numbers are contained in the concatenation of $0G_{n-1}$ and $1G'_{n-1}$. Finally, since the first element of G'_{n-1} is equal to the last element of G_{n-1} the last element of $0G_{n-1}$ differs by exactly one bit from the first element of $1G'_{n-1}$. Similarly, since the first element of $0G_{n-1}$ differs by exactly one bit from the last element of $0G'_{n-1}$, the first element of $0G_{n-1}$ differs by exactly one bit from the last element of $0G'_{n-1}$. Thus we conclude that 0 is a Gray code.

Question 6

Let L be a list of length n > 0 with $L = (L_1 \dots L_n)$. Prove using induction that the i-th element of (reverse L) is the (n+1-i)-th element of L. What is the base case?

```
(define (reverse 1)
  (if (null? 1)
   null
     (append (reverse (rest 1)) (cons (first 1) null))))
```

You may assume the following property of append

- $0 < i \le (\text{length } x)$ implies the *i*-th element of (append x y)) = *i*-th element of x.
- (length x) < $i \le$ (length x) + (length y) implies i-th element of (append x y) = (i (length x))-th element of y.

Proof. The proof is by induction on n the length of L. Let R = (reverse L).

Base Case. In the base case, when n = 1 (reverse ' (L_1)) = (append '() (cons (first ' (L_1)) null) = ' (L_1) and $L_{1+1-1} = L_1$.

Inductive Case. For the inductive hypothesis, assume that the property holds for lists of length less than n. In particular that it holds for L' = (rest L) which has length n-1. Let R' = (reverse L'). By property 2

of reverse, the length of R' is equal to the length of L'. The inductive hypothesis becomes $R_i'=L_{n-i}'$.

Show that this implies $R_i = L_{n+1-i}$.

• (reverse L) = (append (reverse L') (cons L_1 null)) [By def of reverse]

By the above property of append there are two cases.

- $0 < i \le n-1$. $R_i = R'_i = L'_{n-i} = L_{n+1-i}$ [By inductive hypothesis and since the *i*-th element of L' is the (i+1)-st element of L.]
- i = n. $R_n = L_1 = L_{n+1-n}$ [By def of reverse.]

Extra Credit

Theorem 7 Let $G_n(i) = i \ \hat{} \ (i >> 1)$ be a function from $[0, \ldots, 2^n - 1]$ to $[0, \ldots, 2^n - 1]$. Then $[G_n(0), \ldots, G_n(2^n - 1)]$ is the binary reflected gray code

Proof. The proof is by induction on n the number of bits.

Base Case. In the base case, when n = 1 $[G_1(0), G_1(1)] = [0, 1]$.

General Case. Assume the inductive hypothesis that $[G_n(0), \ldots, G_n(2^n -$

- 1)] is the binary reflected gray code G_n on n bits and show that $[G_{n+1}(0), \ldots, G_{n+1}(2^{n+1} -$
- 1)] is equal to the binary reflected gray code on n+1 bits.

Let $b_n b_{n-1} \cdots b_1 b_0$ be the binary representation of i. Then $G_{n+1}(i)$ is the bitwise exclusive or of $b_n b_{n-1} \cdots b_1 b_0$ and $0 b_{n-1} \cdots b_1$. When $b_n = 0$ this is equal to $G_n(b_{n-1} \cdots b_0)$ with a zero prepended, and by induction $G_n(0), \ldots, G_n(2^n - 1)$ is a binary reflected gray code.

When $b_n = 1$ this is equal to $G_n(b_{n-1} \cdots b_0)$ with the leading bit complemented by induction and the fact that $b_{n-1} \oplus 1 = \overline{b_{n-1}}$.

Since complementing the leading bit of the binary reflected gray code is the reflected binary gray code we have shown that $[G_{n+1}(0), \ldots, G_{n+1}(2^{n+1}-1)] = [0G_n, 1G'_n] = G_{n+1}$.

The last remark follows from the construction of the binary reflected gray code. Complementing the leading bit of the *n*-bit binary reflected gray code is equal to $[1G_n, 0G'_n]$ which is equal to $[0G_n, 1G'_n]' = [1G''_n, 0G'_n]$ since $G''_n = G_n$.