The Scala programming ecosystem

Leveraging functional, OO, libraries and frameworks

Markus Dale, 2016

Scala - The Good

The Scala Programming Language

- Martin Odersky, EPFL, Switzerland
 - ▶ Worked on javac (1.3)
 - Java Generics
- Lightbend (formerly Typesafe)
- ► Multi-paradigm language
 - Functional and Object-Oriented
- Statically typed
- Scalable language script to large program
- Stretch your mind functions and immutability

Sca(lable) la(nguage)

- Apache Kafka (LinkedIn)
- Apache Spark (Databricks)
- Finagle (Twitter)
- Akka (Lightbend)
- ► Lucid Software scala.js presentation
- Play Web Framework
 - Lichess Online Chess
- Lightbend customers: Walmart, Verizon, Twitter, LinkedIn, Coursera, The Guardian, Airbnb...

Scala to Java bytecode

- Leverage Java Virtual Machine (JVM)
 - ▶ Over 20 years of optimizations
 - Java Interpreter and Just-in-time (JIT) compilers
 - Portability and Security
 - Ever-evolving garbage collectors
- Full interoperability with Java and Java libraries

Exploration - Scala Shell and Worksheet

Scala Tour

- Conciseness
- Mixed Paradigms
 - ► Object Oriented
 - Functional
- Options, Collections
- Functional Pattern Matching
- Implicits
- Spark

Vals and vars but no semicolons

```
val helloWorld = "Hello, Scala World!"
//vals are immutable
//helloWorld2 = "this is a different string"
val names = List("Markus", "Joe", "Jane")
//vars are mutable
var allHellos = ""
names.foreach(name =>
    allHellos += s"Hello, ${name}! ")
println(allHellos)
> Hello, Markus! Hello, Joe! Hello, Jane!
```

Defining a function, higher-order functions

```
def hasAtLeastThreeLetters(input: String): Boolean = {
   if ((input != null) && (!input.isEmpty)) {
      val letters = input.filter(c => c.isLetter)
      letters.size >= 3
   } else {
      false
   }
}
```

Calling a function - syntactic sugar

```
val testInputs = List(null, "", "lower", "Upper")
testInputs.map((input: String) =>
    hasAtLeastThreeLetters(input))
testInputs.map((input) =>
        hasAtLeastThreeLetters(input))
testInputs.map(input => hasAtLeastThreeLetters(input))
testInputs.map(hasAtLeastThreeLetters(_))
testInputs.map(hasAtLeastThreeLetters)
> res0: List[Boolean] = List(false, false, true, true)
```

Assigning functions/function literals to variables

```
val vowels = List('a','e','i','o','u')
val threeLs: String => Boolean = hasAtLeastThreeLetters
threeLs("abcd")
> res1: Boolean = true
val removeVowels: (String) => String = { (str) =>
    str.filter(c => !vowels.contains(c))
}
val removeNonLetters: String => String = { str =>
    str.filter(c => c.isLetter)
}
removeVowels("wabbit")
> res2: String = wbbt
```

Everything's an object, more syntactic sugar, == equality

```
3 * 10
3.*(10)
1 to 10
1.to(10)
> res2: scala.collection.immutable.Range.Inclusive =
 Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
val foo = "foo"
val bar = new String("foo")
foo == bar
```

Built-in tuples

```
val tuple = ("hello", 42)
val tuple2: (String, Int) = ("hello", 42)
val tuple3: Tuple2[String, Int] = ("hello", 42)
val triple = ("123-22-2111", "Joe", "443.998.8899")
tuple. 1
tuple. 2
val (word, count) = tuple
> word: String = hello
> count: Int = 5
```

Options - no more NullPointerExceptions!

```
val portOpt: Option[Int] = Some(5123)
val port20pt: Option[Int] = None
portOpt.get
> res0: Int = 5123
port20pt.get -
> java.util.NoSuchElementException: None.get
port20pt.get0rElse(3306)
> res1: Int = 3306
portOpt.foreach(port => println(s"opening port ${port}"))
> res2: Unit = ()
Option(null)
> res3: Option[Null] = None
```

scalatour/06-Collections

- Array
- ▶ Immutable, mutable data structures
 - List
 - ► Higher-order functions
 - ▶ filter, map, flatMap, reduce, fold...
 - Map
 - ▶ Set, Vector...

Scala Docs

scalatour/07-MultilineStrings

- ▶ Triple quotes
- substitution (f for printf formatting)

scalatour/08-FunctionalPatternMatching

- match construct
- match by type, structure
- default case or MatchError

scalatour/09-ParsingConfig

- ► Match on regular expressions
- ► Go Options

scalatour/10-ClassesTraitsMixins

- class constructor/body
- constructor args val, var, no modifier
- traits

scalatour/11-CaseClasses

- provide val accessors
- apply/unapply, hashCode, toString
- pattern matching

scalatour/12-Scripting

- ► In the small
- sys.process
- sys.env
- sys.props

scalatour/13-JavaInterop

- ▶ to/from Java/Scala collections
- ► BeanProperty for getters/setters

scalatour/14-Implicits

- Use sparingly!
- ► Powerful way to extend closed classes

scalatour/Spark15

- ► Implemented in Scala
- ▶ Powerful functional primitives for scalable cluster processing

Resources

- Coursera/EPFL Functional Programming in Scala Specialization
- Odersky et al., Programming in Scala, 3rd Edition
- ▶ Payne, Wampler, Programming Scala, 2nd Edition
- Alexander, Scala Cookbook
- ► Chiusano, Bjarnason, Functional Programming in Scala
- Twitter Scala School