Přednáška 4, 24. října 2014

Limita a monotonie a podposloupnost. Připomeňme si, že posloupnost $(a_n) \subset \mathbb{R}$ splňující $a_1 \leq a_2 \leq \ldots$ se nazývá *neklesající*, při ostrých nerovnostech *rostoucí*. Obrácením nerovností dostáváme *nerostoucí*, respektive *klesající* posloupnost. Neklesající a nerostoucí posloupnosti jsou *monotónní*.

Tvrzení (o limitě monotónní posloupnosti). Je-li $(a_n) \subset \mathbb{R}$ neklesající a shora omezená, pak konverguje.

Důkaz. Supremum

$$a = \sup(\{a_1, a_2, \dots\})$$

je dobře definované díky omezenosti (a_n) shora. Podle definice suprema pro dané $\varepsilon > 0$ existuje n_0 , že

$$a - \varepsilon < a_{n_0} \le a$$
.

Díky monotonii (a_n) a vlastnosti suprema tyto nerovnosti platí i pro každé a_n s $n > n_0$. Ukázali jsme tedy, že $\lim a_n = a$.

Totéž platí, je-li (a_n) nerostoucí a zdola omezená. Snadno se podobně dokáže, že je-li a_n neklesající a shora neomezená, je $\lim a_n = +\infty$. Je-li a_n nerostoucí a zdola neomezená, je $\lim a_n = -\infty$. Monotonii (a_n) stačí vždy předpokládat jen pro každé $n > n_0$.

Posloupnost $(b_n) \subset \mathbb{R}$ je podposloupností posloupnosti $(a_n) \subset \mathbb{R}$, když existuje takové rostoucí zobrazení $f: \mathbb{N} \to \mathbb{N}$, že $b_n = a_{f(n)}$. Jinak napsáno, existuje rostoucí posloupnost přirozených čísel $k_1 < k_2 < \ldots$, že

$$b_n = a_{k_n}, \ n = 1, 2, \dots$$

Je jasné, že pak $k_n \ge n$ pro každé n. Relace "být podposloupností" je tranzitivní a reflexivní, ale ne antisymetrická.

Úloha. Uveďte příklad dvou různých posloupností (a_n) a (b_n) , že (a_n) je podposloupností (b_n) i (b_n) je podposloupností (a_n) .

Tvrzení (o limitě podposloupnosti). Je-li (a_n) podposloupnost (b_n) a $\lim b_n = b \in \mathbb{R} \cup \{+\infty, -\infty\}$, pak $i \lim a_n = b$.

$$extstyle rac{D\mathring{u}kaz.}{U}$$
loha.

Nalezneme-li tedy v posloupnosti (a_n) dvě podposloupnosti s různými limitami, $\lim a_n$ neexistuje. Např. konstantní posloupnosti (1, 1, 1, ...) a

 $(-1, -1, -1, \dots)$ s limitami 1 a -1 jsou podposloupnostmi v $(a_n) = ((-1)^n)$, takže lim $(-1)^n$ neexistuje.

Limita a $+,\cdot,<$. Následující výsledek je základem pro výpočty konkrétních limit.

Tvrzení (aritmetika limit). Nechť $(a_n), (b_n) \subset \mathbb{R}$ jsou konvergentní posloupnosti s $\lim a_n = a \in \mathbb{R}$ a $\lim b_n = b \in \mathbb{R}$. Pak

- 1. posloupnost $(a_n + b_n)$ též konverguje a $\lim(a_n + b_n) = a + b$,
- 2. posloupnost $(a_n b_n)$ též konverguje $a \lim(a_n b_n) = ab$,
- 3. pokud $b \neq 0$, je posloupnost (a_n/b_n) definovaná pro $n > n_0$, konverguje $a \lim_{n \to \infty} (a_n/b_n) = a/b$.

 $D\mathring{u}kaz$. 1. Podle Δ -ové nerovnosti pro absolutní hodnotu,

$$|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b|$$
.

Podle předpokladu pro dané $\varepsilon > 0$ existuje n_0 , že pro $n > n_0$ je každá z obou posledních absolutních hodnot menší než ε . Tedy $n > n_0 \Rightarrow |(a_n + b_n) - (a + b)| < 2\varepsilon$, což dokazuje tvrzení o limitě součtu.

2. Nyní

$$|a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)| \le |a_n - a| \cdot |b_n| + |a| \cdot |b_n - b|$$
.

Pro dané ε , $0 < \varepsilon < 1$, existuje n_0 , že pro $n > n_0$ je $|a_n - a|, |b_n - b| < \varepsilon$, tedy i $|b_n| < |b| + 1$. Tedy $n > n_0 \Rightarrow |a_n b_n - ab| < \varepsilon(|a| + |b| + 1)$, což dokazuje tvrzení o limitě součinu.

3. Konečně

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| = \frac{|(a_n - a)b + a(b - b_n)|}{|b_n| \cdot |b|} \\ \leq (|b_n| \cdot |b|)^{-1} (|a_n - a| \cdot |b| + |a| \cdot |b - b_n|).$$

Pro dané ε , $0 < \varepsilon < |b|/2$, existuje n_0 , že pro $n > n_0$ je $|a_n - a|, |b_n - b| < \varepsilon$, tedy i $|b_n| > |b|/2$ (speciálně $b_n \neq 0$). Tedy $n > n_0 \Rightarrow |a_n/b_n - a/b| < \varepsilon (|a| + |b|)(2/b^2)$, což dokazuje tvrzení o limitě podílu.

Lze rozšířit i na nevlastní limity, jak podrobně vyložím později. Důležité je, že aritmetika limit funguje jen jednosměrně, rovnice jako $\lim(a_n + b_n) =$

 $\lim a_n + \lim b_n$ lze použít jen při čtení zprava doleva. Není rozhodně obecně pravda, že když $(a_n + b_n)$ konverguje k a, pak konvergují i (a_n) a (b_n) a $\lim (a_n + b_n) = \lim a_n + \lim b_n = a$ (viz např. $a_n = (-1)^n$ a $b_n = -(-1)^n$). Totéž pro součin a podíl. V tom se při zběsilém počítání limit občas dělají chyby.

V jednom případě limity součinu postačují slabší předpoklady:

Tvrzení (násobení limitní nulou). Nechť (a_n) je omezená a (b_n) konverguje k 0. Pak $\lim(a_nb_n)=0$.

$$D\mathring{u}kaz$$
. Úloha.

Příklad. Nechť je (a_n) dána rekurencí $a_1 = 2$ a $a_{n+1} = a_n/2 + 1/a_n$. Existuje $\lim a_n$? Pokud ano, čemu se rovná?

Prvních pár hodnot posloupnosti je $a_1=2,\ a_2=\frac{3}{2},\ a_3=\frac{17}{12}$ a $a_4=\frac{577}{408}$. Zřejmě vždy $a_n>0$. Zdá se, že (a_n) je nerostoucí. Dokážeme to. Potřebujeme, aby pro každé $n\in\mathbb{N}$ platilo, že $a_{n+1}\leq a_n$, to jest $a_n/2+1/a_n\leq a_n$, což je ekvivalentní nerovnosti $\sqrt{2}\leq a_n$. Potřebujeme tedy ukázat, že naše posloupnost má tuto lepší dolní mez. Pro n=1 tato nerovnost jistě platí a pro n>1 rovněž: $a_n=a_{n-1}/2+1/a_{n-1}=(a_{n-1}+2a_{n-1}^{-1})/2\geq \sqrt{a_{n-1}2a_{n-1}^{-1}}=\sqrt{2}$ (toto není důkaz indukcí). Použili jsme pro $a=a_{n-1}$ a $b=2a_{n-1}^{-1}$ nerovnost $(a+b)/2\geq \sqrt{ab}\ (a,b\geq 0)$ mezi aritmetickým a geometrickým průměrem. Takže (a_n) je nerostoucí. Protože je (zdola) omezená, má podle tvrzení výše vlastní limitu lim $a_n=a\in\mathbb{R}$. Patrně $a\geq \sqrt{2}$. Tvrdím, že tato limita splňuje rovnici, jež vznikne z rekurence $a_{n+1}=a_n/2+1/a_n$ smazáním indexů. Limita levé strany je lim $a_{n+1}=\lim a_n=a$ podle tvrzení o limitě podposloupnosti a limita pravé strany je $\lim (a_n/2+1/a_n)=(\lim a_n)/2+1/\lim a_n=a/2+1/a$ podle tvrzení o aritmetice limit. Takže

$$a = a/2 + 1/a$$
, to jest $a^2/2 = 1$ a $a = \sqrt{2}$.

Dokázali jsme, že $\lim a_n = a = \sqrt{2}$.

Tvrzení (limita a uspořádání). Nechť posloupnosti $(a_n), (b_n) \subset \mathbb{R}$ mají vlastní limity $\lim a_n = a \in \mathbb{R}$ a $\lim b_n = b \in \mathbb{R}$.

- 1. $Kdy\check{z} \ a < b$, tak existuje n_0 , $\check{z}e \ n > n_0 \Rightarrow a_n < b_n$.
- 2. $Kdy\check{z} a_n \leq b_n \text{ pro } ka\check{z}d\acute{e} n > n_0, \text{ pak } a \leq b.$

 $D\mathring{u}kaz$. 1. Pro ε , $0 < \varepsilon < (b-a)/2$, existuje n_0 , že pro $n > n_0$ je $a_n < a + \varepsilon < (a+b)/2 < b - \varepsilon < b_n$, takže $a_n < b_n$.

2. Kdyby bylo a > b, pro velké n by podle 1 platilo $a_n > b_n$, což je ve sporu s předpokladem.

Toto tvrzení platí beze změny i pro nevlastní limity (kde bereme $-\infty < a < +\infty$ pro každé $a \in \mathbb{R}$). Je třeba nezapomínat, že ostrá nerovnost může v limitě přejít v rovnost: $a_n = 1 - 1/n < b_n = 1$ pro každé n, ale $\lim a_n = \lim b_n = 1$.

Tvrzení (věta o 2 policajtech). Nechť posloupnosti $(a_n), (b_n), (c_n) \subset \mathbb{R}$ splňují, že $\lim a_n = \lim b_n = a \in \mathbb{R}$ a pro každé $n > n_0$ je $a_n \le c_n \le b_n$. Pak (c_n) konverguje $a \lim c_n = a$.

 $D\mathring{u}kaz$. Pro každé $\varepsilon > 0$ je

$$U(a,\varepsilon) := \{x \in \mathbb{R} \mid |x-a| < \varepsilon\} = (a-\varepsilon, a+\varepsilon) = \{x \in \mathbb{R} \mid a-\varepsilon < x < a+\varepsilon\} .$$

Protože to je interval, platí: $c, d \in U(a, \varepsilon), c \leq e \leq d \Rightarrow e \in U(a, \varepsilon)$. Pro dané $\varepsilon > 0$ existuje n_0 , že $n > n_0 \Rightarrow a_n, b_n \in U(a, \varepsilon)$ a $a_n \leq c_n \leq b_n$. Tedy i $c_n \in U(a, \varepsilon)$, takže $\lim c_n = a$.

I toto tvrzení se snadno rozšíří na nevlastní limity: pro $a = +\infty$ stačí pouze jeden policajt a_n a pro $a = -\infty$ stačí pouze policajt b_n . Smysl tvrzení je geometrický: ε -ové okolí $U(a, \varepsilon)$ bodu a je konvexní, s každými dvěma body obsahuje i je spojující úsečku (zde interval, jsme v jedné dimenzi).