Fisica

Forze, Equilibrio, Moti

Gabriel Rovesti

03/08/2023

Partiamo con un po' di esercizi...

Forze e vettori: esercizi (1)

Tip: usare seni e coseni oppure operazioni semplici con i triangoli

Determinare la posizione ed il valore della risultante di due forze parallele cospiranti con intensità F_1 =25N ed F_2 =35N, distanti fra loro d=80cm.

Forze e vettori: esercizi (1)

Graficamente la posizione della risultante si ottiene scambiando i vettori invertendone il verso di uno:

Il valore della risultante è ovviamente pari alla somma delle componenti:

$$R=F_1+F_2=25+35=60N$$

mentre la distanza dalla risultante sarà inversamente proporzionale all'intensità della forza: con d=OA+OB quindi OA=d - OB

ecco come la relazione:

$$\frac{F_2}{F_1} = \frac{OA}{OB}$$
 diventa $\frac{F_2}{F_1} = \frac{d - OB}{OB} = \frac{d}{OB} - 1$

per cui
$$\frac{35}{25} = \frac{80}{OB} - 1$$
 avremo...

$$1 + \frac{7}{5} = \frac{80}{OB}$$

$$\frac{5+7}{5} = \frac{80}{OB} = \frac{12}{5}$$
 quindi $OB = \frac{80 \cdot 5}{12} = 33, \overline{3}$ cm

e

$$OA = d - OB = 80 - 33, \overline{3} = 46, \overline{6} \text{ cm}$$

Forze e vettori: esercizi (2)

Una slitta viene trainata sulla neve applicando due forze di modulo $F_1=85~N$ e $F_2=62~N$. Le due forze formano tra loro un angolo di $\alpha=23^\circ$. Calcola il modulo della somma delle due forze.

Forze e vettori: esercizi (2)

Per calcolare il modulo della somma delle due forze immaginiamo di fissare un piano cartesiano con un asse lungo il vettore $\vec{F_1}$ e l'altro asse perpendicolare al primo, inoltre fissiamo anche il verso crescente delle x come il verso di $\vec{F_1}$. In questo sistema cartesiano avremo:

$$\vec{F}_1 = (85 N; 0)$$

$$\vec{F}_2 = 62 N \cdot (\cos 23^\circ ; \sin 23^\circ)$$

Per cui

$$F_1 + F_2 = \sqrt{(85 N + 62 N \cdot \cos 23^\circ)^2 + (62 N \cdot \sin 23^\circ)^2} \approx 144 N$$

Forze e vettori: esercizi (2)

Per calcolare il modulo della somma delle due forze immaginiamo di fissare un piano cartesiano con un asse lungo il vettore $\vec{F_1}$ e l'altro asse perpendicolare al primo, inoltre fissiamo anche il verso crescente delle x come il verso di $\vec{F_1}$. In questo sistema cartesiano avremo:

$$\vec{F}_1 = (85 N; 0)$$

$$\vec{F}_2 = 62 N \cdot (\cos 23^\circ ; \sin 23^\circ)$$

Per cui

$$F_1 + F_2 = \sqrt{(85 N + 62 N \cdot \cos 23^\circ)^2 + (62 N \cdot \sin 23^\circ)^2} \approx 144 N$$

Forze e vettori: esercizi (3)

Un ragazzo prende la rincorsa e sale con il suo skateboard sulla rampa nella figura, partendo dal punto A. Dopo aver percorso la parte semicircolare fino al punto D spicca un salto in verticale di 70~cm, atterra di nuovo sul bordo nel punto D e ritorna indietro fino a fermarsi nel punto B.

Calcola la distanza totale che percorre lo skateboard prima di fermarsi. Determina il vettore spostamento e calcolane il modulo.

Forze e vettori: esercizi (3)

Per calcolare la distanza percorsa dividiamo il percorso in parti e calcoliamo la lunghezza di ogni singola parte. Partiamo dal tratto AB (per calcolare questo tratto utilizziamo il teorema di Pitagora).

$$\bar{AB} = \sqrt{(6, 2 \, m)^2 + (0, 9 \, m)^2} \approx 6,26 \, m$$

Il tratto CB è un tratto rettilineo quindi la sua lunghezza è pari a $L=4,5\ m$, mentre il tratto CD è una semicirconferenza di raggio $80\ cm$, quindi la sua lunghezza sarà:

$$CD = \frac{2 \cdot r \cdot \pi}{2} = r \cdot \pi = 0,8 \ m \cdot \pi \approx 2,51 \ m$$

Pertanto, considerando che lo skateboard nel punto D salta di $70\ cm$ e che dopo ritorna indietro fino al punto B, risulta che

$$d = 6,26 m + 4,5 m + 2,51 m + 0,7 m + 0,7 m + 2,51 m + 4,5 m = 21,68 m$$

Per determinare il vettore spostamento bisogna semplicemente prendere il vettore che parte dal punto iniziale A e arriva al punto finale B, il modulo di tale vettore lo abbiamo già calcolato ed è $6,26\ m$.

Forze e vettori: esercizi (4)

La figura mostra i vettori \vec{A} e \vec{B} . Il lato di ogni quadratino vale 1.

Calcola il modulo del prodotto vettoriale $\vec{A} \times \vec{B}$. Quale è il verso del vettore $\vec{C} = \vec{A} \times \vec{B}$?

Forze e vettori: esercizi (4)

Il prodotto vettoriale tra due vettori è un vettore del quale verso e direzione sono facili da determinare utilizzando la regola della "mano destra", per quanto invece riguarda il modulo sappiamo che tale modulo si ricava con la formula

$$A \times B = A \cdot B \cdot \sin \widehat{AB}$$

Dove \widehat{AB} è l'angolo compreso tra il vettore \overrightarrow{A} e il vettore \overrightarrow{B} . Siccome conosciamo i moduli dei due vettori l'unica incognita dell'esercizio sarà quindi $\widehat{\sin AB}$, vediamo come possiamo calcolarlo. Usando le formule trigonometriche sul triangolo rettangolo che ha come ipotenusa il vettore \overrightarrow{B} e come cateti due quadratini (lungo il vettore rosso \overrightarrow{A}) e tre quadratini verticalmente dalla punta del vettore \overrightarrow{B} fino al vettore \overrightarrow{A} , possiamo scrivere che

$$3 = B \cdot \sin \widehat{AB} = \sqrt{2^2 + 3^2} \cdot \sin \widehat{AB}$$

Forze e vettori: esercizi (4)

da cui

$$\sin \widehat{AB} = \frac{3}{\sqrt{13}}$$

per cui

$$A \times B = 7 \cdot \sqrt{13} \cdot \frac{3}{\sqrt{13}} = 7 \cdot 3 = 21$$

Per determinare il verso attraverso la regola della mano destra bisogna, utilizzando la mano destra, sovrapporre il pollice al vettore \vec{A} e l'indice al vettore \vec{B} , ricordiamo esplicitamente che il prodotto vettoriale non è commutativo, il verso del prodotto vettoriale è il verso del dito medio. Pertanto in questo esercizio il prodotto vettoriale sarà perpendicolare ai vettori \vec{A} e \vec{B} , come sempre, ed "uscirà" dal foglio.

Forze e vettori: esercizi (5)

Un alpinista che sta risalendo un pendio di 47° può essere schematizzato come nella figura. La massa dell'alpinista è 65~kg.

Trova l'intensità dei due vettori componenti della forza peso lungo le direzioni parallela e perpendicolare al piano inclinato.

Forze e vettori: esercizi (5)

Quando si studia un oggetto sopra un piano inclinato, di inclinazione α rispetto alla direzione orizzontale, è molto utile scomporre il vettore forza peso, quello disegnato in rosso, nelle due componenti parallela e perpendicolare al piano inclinato. Nel disegno sopra la componente perpendicolare è quella che dall'alpinista va verso la montagna, mentre la componente parallela è quella che va verso destra, in questa situazione le due componenti si calcolano facendo

$$F_{\perp} = \cos \alpha \cdot F_p = \cos \alpha \cdot m \cdot g = \cos 47^{\circ} \cdot 65 \ kg \cdot 9,81 \ N/kg \approx 435 \ N$$

$$F_{\parallel} = \sin\alpha \cdot F_p = \sin\alpha \cdot m \cdot g = \sin 47^{\circ} \cdot 65 \ kg \cdot 9,81 \ N/kg \approx 466 \ N$$

Forze elastiche: esercizi (1)

Tip: sapere la formula della legge di Hooke $\rightarrow F = K_{el} * \Delta l$

Una massa **m** agganciata ad una molla produce un **allungamento** pari a 0,08 m.

Se la costante elastica è 0,65 N/cm , calcolare il valore della massa.

[R: 265 g]

Dati:

allungamento: $\Delta l = 0.08 \text{ m}$

costante elastica: $K_e = 0,65 \text{ N/cm}$

Calcolare:

la massa: m

Forze elastiche: esercizi (1)

Nella costante elastica K_e compaiono i centimetri mentre il valore della lunghezza risulta in metri per uniformità trasformiamo i metri in centimetri:

$$\Delta I = 0.08 \text{ m} = 8 \text{ cm}$$

La <u>legge di Hooke</u> ci dice che la forza elastica è data dal prodotto della costante elastica per la variazione di lunghezza:

$$F = K_e \cdot \Delta I$$

Sostituendo i valori:

 $F = 0.65 \text{ N/cm} \cdot 4 \text{ cm}$

F = 2.6 N

Sappiamo, inoltre, che la forza è data dal prodotto della massa m per l'accelerazione di gravità (9,81 m/s²)

 $F = m \cdot g$

Da cui:

m = F/g

 $m = 2,6 \text{ N}/(9,81 \text{ m/s}^2)$

m = 0,265 kg

m = 265 g

Forze e momento: esercizi (1)

Tip: sapere la formula del momento \rightarrow M = $F_P * b$

Un trampolino della piscina è lungo 25 dm, al suo estremo libero, troviamo un uomo avente massa di 72 kg.

Calcola il valore del momento che il peso dell'uomo esercita rispetto al punto **0**, che corrisponde al punto di fissaggio del trampolino nella struttura fissa.

[R: 1766 N·m]

Dati:

Lunghezza del trampolino: I = 25 dm

Massa dell'uomo: m = 72 kg

Calcolare:

Il momento della forza peso rispetto al punto O, M = ?

Forze e momento: esercizi (1)

Il momento della forza peso rispetto al punto O, **M** = ?

Svolgimento:

Riportiamo la lunghezza del trampolino nell'unità di misura del Sistema Internazionale:

$$I = 25 \text{ dm} = 2.5 \text{ m}$$

La forza peso F_D dell'uomo é:

$$F_p = m \cdot g$$

Dove $g = 9,81 \text{ m/s}^2$ è l'accelerazione di gravità

$$F_p = 72 \text{ kg} \cdot 9,81 \text{ m/s}^2$$

$$F_p = 706,32 \text{ N}$$

Forze e momento: esercizi (1)

Il momento della forza peso rispetto al punto O, **M** = ?

Svolgimento:

Il braccio **b** della forza è pari alla lunghezza **I** del trampolino

$$b = 1 = 2,5 \text{ m}$$

Il momento M risulta:

$$M = F_p \cdot b$$

 $M = 706,32 \text{ N} \cdot 2,5 \text{ m}$

$$M = 1765,8 \text{ N} \cdot \text{m}$$

Riportiamo la lunghezza del trampolino nell'unità di misura del Sistema Internazionale:

$$I = 25 \text{ dm} = 2,5 \text{ m}$$

La forza peso F_p dell'uomo é:

$$F_p = m \cdot g$$

Dove $g = 9,81 \text{ m/s}^2$ è l'accelerazione di gravità

$$F_{\rm p} = 72 \, \text{kg} \cdot 9,81 \, \text{m/s}^2$$

$$F_D = 706,32 \text{ N}$$

Forze e momento: esercizi (2)

Consideriamo un'asta libera, alla cui estremità vengono applicate due forze di uguale intensità, parallele e con verso opposto (coppia di forze). Se il momento di tale coppia vale 80 N·m e ciascuna forza ha un'intensità pari a 100 N, calcolare la lunghezza dell'asta.

[R: 80 cm]

Dati:

Momento della coppia di forze: M = 80 N·m

Intensità della forza: F = 100 N

Calcolare:

La lunghezza (braccio) dell'asta, b = ?

Forze e momento: esercizi (2)

La lunghezza (braccio) dell'asta, b = ?

Svolgimento:

Il momento della coppia di forze sarà:

 $M = F \cdot b$

Da cui

b = M/F

 $b = 80 \text{ N} \cdot \text{m} / 100 \text{ N}$

 $b = 0.8 \, \text{m}$

b = 80 cm

Prima di andare avanti...

• Il **baricentro** di un corpo è il punto di applicazione della forza peso.

Un corpo appoggiato su un piano è in equilibrio se la retta verticale che passa per il suo baricentro cade nella propria base di appoggio.

Dato un corpo rigido appeso a un punto P, il corpo sarà in equilibrio se la retta verticale che passa per il suo baricentro passa per il punto P.

- Se il punto di sospensione si trova sopra il baricentro allora l'equilibrio sarà stabile: spostando di poco il corpo dalla sua posizione di equilibrio il corpo tende naturalmente a ritornarvi;
- Se il punto di sospensione si trova sotto il baricentro allora l'equilibrio è instabile: spostando di poco il corpo dalla sua posizione di equilibrio il corpo tende ad allontanarvisi ancora di più;
- Se il punto di sospensione coincide col baricentro l'equilibrio è indifferente: spostando di poco il corpo dalla sua posizione di equilibrio il corpo tende a mantenere la nuova posizione.

Ma in che modo è possibile determinarne con esattezza la posizione? Si può ricorrere a un metodo sperimentale.

Cosí come illustrato in figura , tale metodo consiste nell'appendere il corpo di cui si vuole determinare il baricentro secondo due diverse direzioni, determinando le rette d'azione a_1 e a_2 della forza peso nei due casi.

In ciascuna delle due prove il corpo, appeso a un vincolo tramite un filo, è in equilibrio meccanico sotto l'azione del peso \overrightarrow{P} e della forza \overrightarrow{F} esercitata dal filo. La retta d'azione del peso coinciderà, dunque, con quella di \overrightarrow{F} , cioè con la direzione del filo. Poiché il baricentro del corpo deve trovarsi sia sulla retta a_1 sia sulla retta a_2 , dovrà coincidere con la loro intersezione.

- Le **leve** sono formate da un punto fermo, che può trovarsi al centro della leva o ai suoi estremi, e da un'asta rigida che ruota intorno a questo punto.
- Su questa macchina agiscono due forze:
 - La forza motrice F_m
 - La forza resistente F_r

• In equilibrio quando $M_m=M_r$

Come si calcolano le leve?

Dati:

- b_m = braccio motore
- b_r = braccio resistente
- F_m = forza motrice
- F_r = forza resistente

la formula delle leve è semplice:

$$b_m \cdot F_m = b_r \cdot F_r$$

- Il rapporto $V = \frac{R}{P}$ è chiamato **vantaggio** della leva
- Se V > 1 la leva viene definita *vantaggiosa*
- Le leve vantaggiose sono leve in cui la forza motrice è minore di quella resistente, come nel nostro esempio numerico. Per avere questo tipo di leva, è necessario che il braccio motore sia maggiore di quello resistente; in questo modo si ha un effetto di moltiplicazione della forza che ci è utile, ad esempio, per sollevare i pesi.
- Le leve svantaggiose funzionano al contrario: la forza resistente è minore di quella motrice e il braccio resistente è maggiore di quello motore.
- Le leve indifferenti si hanno quando le due forze, motrice e resistente, sono uguali così come i relativi bracci.

Le leve di primo genere hanno il fulcro che si trova tra le due forze, come in figura.

Esse possono essere vantaggiose se il fulcro è più vicino alla forza resistente; svantaggiose se il fulcro è più vicino alla forza motrice; indifferenti se il fulcro si trova esattamente a metà tra le due forze. Un esempio di leva di primo genere è fornito dalle forbici.

Le leve di secondo genere hanno la forza resistente che si trova tra quella motrice e il fulcro. Esse sono sempre vantaggiose e un esempio è dato dallo schiaccianoci.

Infine, le leve di terzo genere hanno la forza motrice che si trova tra il fulcro e la forza resistente. Esse sono sempre svantaggiose e un esempio è dato dalle pinzette per sopracciglia.

Ora un po' di esercizi...

Esercizi sulle leve (1)

Una trave lunga 120 cm appoggia su di un fulcro posto a 40 cm da un suo estremo sul quale agisce una forza resistente del peso di 30 N. Quale forza deve essere applicata all'altro estremo per equilibrare l'asta?

immagine tratta da Wikipedia

Esercizi sulle leve (1)

$$b_p = asta - b_r = 120 - 40 = 80 \text{ cm}$$

Una leva è in equilibrio quando il prodotto dell'intensità della potenza per il suo braccio è uguale al prodotto dell'intensità della resistenza per il suo braccio:

$$\vec{P} \cdot b_p = \vec{R} \cdot b_r$$

essendo un'uguaglianza di due rapporti si ottiene la seguente proporzione

$$\vec{R}$$
: $\vec{P} = b_p$: b_r

da cui

$$30 : \vec{P} = 80 : 40$$

$$\vec{P} = \frac{30 \cdot 40}{80} = 15 \, N$$

Esercizi sulle leve (2)

Due ragazzi giocano su un'altalena lunga 8 m, il cui fulcro e posto al centro dell'asse. Se uno dei ragazzi pesa 40 kg e siede a 2 m dal fulcro, a quale distanza dovrà sedere il compagno che pesa 20 kg?

Esercizi sulle leve (2)

Una leva è in equilibrio quando il prodotto dell'intensità della potenza per il suo braccio è uguale al prodotto dell'intensità della resistenza per il suo braccio:

$$\vec{P} \cdot b_p = \vec{R} \cdot b_r$$

essendo un'uguaglianza di due rapporti si ottiene la seguente proporzione

$$\vec{R}$$
: $\vec{P} = b_p$: b_r

da cui

$$20:40=2:b_r$$

$$b_r = \frac{40 \cdot 2}{20} = 4 \, m$$

Esercizi sulle leve (3)

Una sbarra di ferro lunga 2,10 metri viene utilizzata per sollevare un peso di 60 N posto a 30 cm dal fulcro. Quale forza occorre esercitare all'altro estremo della leva per avere l'equilibrio?

Esercizi sulle leve (3)

Una leva è in equilibrio quando il prodotto dell'intensità della potenza per il suo braccio è uguale al prodotto dell'intensità della resistenza per il suo braccio:

$$\vec{P} \cdot b_p = \vec{R} \cdot b_r$$

essendo un'uguaglianza di due rapporti si ottiene la seguente proporzione

$$\vec{R}$$
: $\vec{P} = b_p$: b_r

da cui

$$60: \vec{P} = (210 - 30): 30$$

$$\vec{P} = \frac{60 \cdot 30}{180} = \frac{60}{6} = 10 \ kg$$

Esercizi sulle leve (3)

Una leva è in equilibrio quando il prodotto dell'intensità della potenza per il suo braccio è uguale al prodotto dell'intensità della resistenza per il suo braccio:

$$\vec{P} \cdot b_p = \vec{R} \cdot b_r$$

essendo un'uguaglianza di due rapporti si ottiene la seguente proporzione

$$\vec{R}$$
: $\vec{P} = b_p$: b_r

da cui

$$60: \vec{P} = (210 - 30): 30$$

$$\vec{P} = \frac{60 \cdot 30}{180} = \frac{60}{6} = 10 \ kg$$

Cinematica

Per descrivere il moto dei corpi usiamo:

- La posizione *s*
- Il tempo *t*

Come grandezze usiamo:

- La velocità v misurata in $\frac{m}{s}$
- L'accelerazione a misurata in $\left(\frac{m}{s}\right)^2$

Velocità media

Veniamo ora alla **definizione di velocità media**. Supponiamo di effettuare uno spostamento Δs in un intervallo di tempo Δt : la velocità media è definita come il rapporto tra lo spostamento e l'intervallo di tempo necessario effettuarlo.

La formula per il calcolo della velocità media è la seguente

$$v_m = \frac{\Delta s}{\Delta t} \quad (\bullet)$$

Spostamento e distanza percorsa sono grandezze che non coincidono necessariamente.

Velocità media

la velocità media v di un corpo relativa all'intervallo di tempo Δt è il rapporto tra la distanza Δs percorsa dal corpo e l'intervallo di tempo Δt impiegato a percorrerla, cioè:

$$v = \frac{\Delta s}{\Delta t} = \frac{s - s_0}{t - t_0}$$

 $\overrightarrow{\Delta s}$

Il vettore velocità e il vettore spostamento sono sempre concordi.

Accelerazione

L'accelerazione è la rapidità con la quale cambia la velocità. Il suo valore numerico corrisponde alla variazione di velocità nell'unità di tempo.

$$a = \frac{\Delta v}{t} = \frac{v - v_0}{t}$$

Definizione 5.3 [Accelerazione media]

l'accelerazione di un corpo relativa all'intervallo di tempo Δt è il rapporto tra la variazione di velocità Δv del corpo e il tempo Δt in cui essa si verifica:

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

Moto rettilineo uniforme

- Il moto è detto rettilineo uniforme quando, dato un corpo in movimento su una retta, la sua velocità è costante, ossia percorre sempre la stessa quantità di spazio nel medesimo arco di tempo.
- Per conoscere la posizione in un certo momento del tempo, usiamo la cosiddetta legge oraria.

$$S(t) = V \cdot t + S_O$$
, dove:

- V è la velocità, sempre costante
- tèil tempo
- S_O è la posizione di partenza

$$s = v\Delta t + s_i$$

ossia

$$s = v(t - t_i) + s_i$$

dove t_i , s_i indicano rispettivamente l'istante iniziale e la posizione all'istante iniziale, mentre s indica la posizione al tempo t.

Moto uniformemente accelerato

• Il moto è detto **rettilineo uniformemente accelerato** quando il corpo che si muove mantiene la propria accelerazione costante.

Pertanto, la formula del moto rettilineo uniformemente accelerato è:

$$V(t) = a \cdot t + V_{O_i}$$
 in cui:

- a è l'accelerazione, costante ed espressa in m/s²
- t è il tempo
- V_O è la velocità iniziale

Posizione (legge oraria)

$$x(t) = x_0 + v_0(t-t_0) + rac{1}{2}a(t-t_0)^2$$

Dove t_0 è l'istante iniziale, x_0 è la posizione iniziale, v_0 è la velocità iniziale, a_0 è l'accelerazione iniziale.

Accelerazione di gravità

L'accelerazione di gravità è l'accelerazione (indicata con il simbolo *g*) cui è soggetto un qualsiasi corpo quando viene lasciato libero di cadere, e che concorre al calcolo della forza peso.

Un moto di caduta libera (o moto di caduta di un grave) è un particolare tipo di moto in cui un corpo, partendo inizialmente da fermo, cade sotto l'azione dell'accelerazione di gravità.

L'accelerazione di gravità terrestre può considerarsi costante in prossimità della superficie, e vale approssimativamente:

$$g_{Terra} \simeq 9,81 \frac{\mathrm{m}}{\mathrm{s}^2}$$

