2.3 二次函数与一元二次方程、不等式

一、选择题

1.不等式 $9x^2+6x+1≤0$ 的解集是(

$$A.\left\{x|x\neq -\frac{1}{3}\right\}$$

$$B.\left\{x|-\frac{1}{3} \leqslant x \leqslant \frac{1}{3}\right\}$$
$$D.\left\{x|x=-\frac{1}{3}\right\}$$

 $C.\varnothing$

$$\mathbf{D}.\left\{x|x=-\frac{1}{3}\right\}$$

解析 原不等式可化为 $(3x+1)^2 \le 0$,

$$\therefore 3x + 1 = 0$$
, $\therefore x = -\frac{1}{3}$.

答案 D

2.不等式 $\frac{1+x}{1-x} \ge 0$ 的解集为()

A.
$$\{x | -1 \le x \le 1\}$$

B.
$$\{x | -1 \le x < 1\}$$

$$C.\{x|-1 \le x \le 1\}$$

$$D.\{x|-1 < x < 1\}$$

解析 原不等式
$$\Leftrightarrow$$
 $\begin{cases} (x+1)(x-1) \leq 0, \\ x-1 \neq 0, \end{cases}$

∴ - 1≤*x*<1.

答案 B

3.如果关于 x 的不等式 $x^2 < ax + b$ 的解集是 $\{x | 1 < x < 3\}$,那么 b^a 等于(

$$A. - 81$$

$$C. - 64$$

解析 不等式 $x^2 < ax + b$ 可化为

$$x^2$$
 - ax - b <0 , 其解集是 $\{x|1 < x < 3\}$, 由根与系数的关系得 $\begin{cases} 1+3=a \text{ ,} \\ 1 \times 3=-b \text{ ,} \end{cases}$

解得 a=4 , b=-3 ; 所以 $b^a=(-3)^4=81$.故选 B.

答案 B

4.不等式
$$\frac{3x-1}{2-x} \ge 1$$
 的解集是()

$$A.\left\{x \left| \frac{3}{4} \leqslant x \leqslant 2\right\}\right\}$$

$$B.\left\{x \middle| \frac{3}{4} \leqslant x < 2\right\}$$

$$D.\left\{x \mid x \geqslant \frac{3}{4}\right\}$$

解析 不等式
$$\frac{3x-1}{2-x} \ge 1$$
,移项得 $\frac{3x-1}{2-x} - 1 \ge 0$,即 $\frac{x-\frac{3}{4}}{x-2} \le 0$,可化为 $\begin{cases} x-\frac{3}{4} \ge 0 \\ x-2 \le 0 \end{cases}$,或

$$\begin{cases} x - \frac{3}{4} \leqslant 0 \\ x - 2 > 0 \end{cases}$$

解得 $\frac{3}{4} \leqslant x \leqslant 2$,则原不等式的解集为 $\left\{x \middle| \frac{3}{4} \leqslant x \leqslant 2\right\}$,

故选 B.

答案 B

5.对于任意实数 x,不等式 $(a-2)x^2-2(a-2)x-4<0$ 恒成立,则实数 a 的取值范围为()

A.
$$\{a | a < 2\}$$

B. $\{a|a \leq 2\}$

$$C.\{a|-2 \le a \le 2\}$$

D. $\{a \mid -2 \le a \le 2\}$

解析 当 a - 2 = 0,即 a = 2时,-4<0,恒成立;

当
$$a - 2 \neq 0$$
 时,
$$\begin{cases} a - 2 < 0, \\ 4(a - 2)^2 + 16(a - 2) < 0, \end{cases}$$

解得 - 2<a<2 , : - 2<a≤2 , 故选 D.

答案 D

二、填空题

6.不等式
$$\frac{x+5}{(x-2)^2}$$
>0 的解集为_____.

答案 $\{x|x>-5 \ \ \ \ \ x\neq 2\}$

7.不等式 $\frac{x+1}{x} \le 3$ 的解集是_____.

解析 由
$$\frac{x+1}{x} \le 3$$
,得 $\frac{x+1}{x} - 3 \le 0$,即 $\frac{2x-1}{x} \ge 0$,则 $\begin{cases} x \ne 0 \\ x (2x-1) \ge 0 \end{cases}$,解得 $x < 0$ 或

$$x \geqslant \frac{1}{2}$$
. ∴不等式 $\frac{x+1}{x} \leqslant 3$ 的解集是 $\left\{x \mid x \leqslant 0$ 或 $x \geqslant \frac{1}{2}\right\}$.

答案
$$\left\{x \mid x < 0 \text{ 或} x \ge \frac{1}{2}\right\}$$

8.某产品的总成本 y(万元)与产量 x(台)之间的函数关系是 $y=3~000+20x-0.1x^2(0<x<240)$,若每台产品的售价为 25 万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是_____.

解析 依题意得 25x≥3 000 + 20x - 0.1x²,

整理得 x² + 50x - 30 000≥0,

解得 x≥150 或 x≤ - 200(舍去).

因为 0<x<240, 所以 150≤x<240,

即最低产量是 150 台.

答案 150

三、解答题

9.若关于x的不等式 $ax^2+2x+2>0$ 在R上恒成立,求实数a的取值范围.

解 当 a=0 时,原不等式可化为 2x+2>0,其解集不为 R,故 a=0 不满足题意,

舍去;

当 $a\neq 0$ 时,要使原不等式的解集为 $\mathbf R$,

只需
$$\begin{cases} a > 0 \ , \\ \Delta = 2^2 - 4 \times 2a < 0 \ , \end{cases}$$
解得 $a > \frac{1}{2}$.

综上,所求实数 a 的取值范围为 $\left\{a|a>\frac{1}{2}\right\}$.

10.已知不等式 $x^2+x-6<0$ 的解集为 A,不等式 $x^2-2x-3<0$ 的解集为 B.

- (1)求 $A \cap B$;
- (2)若不等式 $x^2 + ax + b < 0$ 的解集为 $A \cap B$,求不等式 $ax^2 + bx + 3 < 0$ 的解集.

解 (1)由 $x^2 + x - 6 < 0$ 得 - 3 < x < 2.

∴
$$A = \{x \mid -3 \le x \le 2\}$$
. $\Rightarrow x^2 - 2x - 3 \le 0$, $\Rightarrow x \le 3$,

$$\therefore B = \{x \mid -1 < x < 3\} . \therefore A \cap B = \{x \mid -1 < x < 2\}.$$

(2)由已知得
$$\begin{cases} 1-a+b=0 , \\ 4+2a+b=0 , \end{cases}$$
 解得
$$\begin{cases} a=-1 , \\ b=-2 . \end{cases}$$

解得 x< - 3 或 x>1.

- :.原不等式的解集为 $\{x|x< -3$ 或 $x>1\}$.
- 11.解关于 x 的不等式 $ax^2-2(a+1)x+4>0$.

解 (1)当 a = 0 时,原不等式可化为 -2x + 4 > 0,

解得x<2,所以原不等式的解集为 $\{x|x<2\}$.

(2)当 a>0 时,原不等式可化为(ax - 2)·(x - 2)>0,

对应方程的两个根为 $x_1 = \frac{2}{a}$, $x_2 = 2$.

①当 0 < a < 1 时, $\frac{2}{a} > 2$,

所以原不等式的解集为 $\left\{x \mid x > \frac{2}{a}$ 或 $x < 2\right\}$;

- ②当 a=1 时, $\frac{2}{a}=2$,所以原不等式的解集为 $\{x|x\neq 2\}$;
- ③当 a>1 时, $\frac{2}{a}<2$,所以原不等式的解集为 $\left\{x \mid x>2$ 或 $x<\frac{2}{a}\right\}$.
- (3)当 a<0 时,原不等式可化为(ax + 2)(x 2)<0,对应方程的两个根为 $x_1 = \frac{2}{a}$, x_2

= 2 , 则
$$\frac{2}{a}$$
<2 , 所以原不等式的解集为 $\left\{x \middle| \frac{2}{a} < x < 2\right\}$.

综上, a<0 时, 原不等式的解集为 $\left\{x\left|\frac{2}{a} < x < 2\right\}\right\}$;

a=0时,原不等式的解集为 $\{x|x<2\}$;

 $0 < a \le 1$ 时,原不等式的解集为 $\left\{x \middle| x > \frac{2}{a}$ 或 $x < 2\right\}$;

a>1 时,原不等式的解集为 $\left\{x \mid x>2$ 或 $x<\frac{2}{a}\right\}$.

12.(1)当 1≤x≤2 时,不等式 x^2+mx+4 <0 恒成立,求实数 m 的取值范围.

(2)对任意 $-1 \le x \le 1$,函数 $y = x^2 + (a-4)x + 4 - 2a$ 的值恒大于 0,求 a 的取值范围.

解 (1)令
$$y = x^2 + mx + 4$$
.

 $\because y < 0$ 在 $1 \le x \le 2$ 上恒成立.

 $\therefore y = 0$ 的根一个小于 1, 另一个大于 2.

如图,可得
$$\begin{cases} m + 5 < 0, \\ 4 + 2m + 4 < 0. \end{cases}$$

∴ m 的取值范围是{m|m< - 5}.

$$(2)$$
: $x^2 + (a - 4)x + 4 - 2a > 0$ 恒成立,

即 $x^2 + ax - 4x + 4 - 2a > 0$ 恒成立.

$$(x-2)\cdot a > -x^2 + 4x - 4$$
.

$$\therefore$$
 - 1 \leq $x \leq$ 1, \therefore x - 2 \leq 0.

$$\therefore a < \frac{-x^2 + 4x - 4}{x - 2} = \frac{x^2 - 4x + 4}{2 - x} = 2 - x.$$

令y=2-x,则当 $-1 \le x \le 1$ 时,y的最小值为1,a < 1.

故 a 的取值范围为{a|a<1}.