CSE 4510/5400 Data Mining

Due 5pm, Apr 27

Submit Server: Class = datamining, Assignment = hw5

- 1. Written assignment (from textbook) [pdf file or hardcopy in class]:
 - (a) Ch10, Q10, p682, use different scenarios in your comparison; plus how would you use Silhouette coefficient as an anomaly score?
 - (b) Ch10, Q11, p682
 - (c) Ch10, Q12, p682
 - (d) Related to parts 2(f) and 2(g) of the programming assignment (CSE 5400: for each algorithm and option):
 - i. Experiment 1
 - A. plot the anomaly scores of all instances in descending order (y-axis: anomaly score; x-axis: rank)
 - B. explain your recommendation for j, where top-j are considered anomalies.
 - ii. Experiment 2
 - A. discuss your expected behavior of AUC when k increases and your reasoning,
 - B. plot k vs AUC,
 - C. discuss your observed behavior of AUC from your plot when k increases and possible reasons for the difference (if any) in your observed and expected behavior, and
 - D. explain your recommendation for k.
 - (e) CSE 5400 only: In the spirit of Ch10, Q4, p680, but use Algorithms 6.1-6.3. How would you use association rules for anomaly detection? How would you use their support and/or confidence values to generate an anomaly score?
- 2. Programming assignment:
 - (a) Implement Algorithm 10.2 (p669)
 - i. line 7: use the reciprocal of Equation 10.7 [see lecture notes]
 - (b) CSE 5400 only:
 - i. Implement Example 10.3 (p672)—using k-means, allow both options for the outlier score.
 - (c) Allow k and score threshold as user-specified parameters
 - (d) Print performance of an algorithm based on:
 - i. true-positive (TP) rate and false-postive (FP) rate
 - ii. accuracy
 - (e) Datasets are on the course website:
 - i. toy-anom
 - ii. Breast cancer
 - (f) Experiment 1: for the Breast Cancer data and k = 5, print the anomaly scores of all instances in descending order
 - (g) Experiment 2: for the Breast Cancer data, vary k from 3 to 10 and for each k, print:
 - i. k,
 - ii. pairs of (TP and FP rates) and
 - iii. Area under the curve (AUC) of Receiver Operating Characteristic (ROC) Curve (p298-301) [add up the area of trapezoids]
 - (h) Implementation:
 - i. The same implementation should be able to handle the two different data sets
 - ii. Use C (GNU gcc), C++ (GNU g++), Java (Oracle Java), LISP (CLISP), or Pythoan. If you don't have a preference, use Java since it's more portable.
 - iii. Your program preferably runs on code01.fit.edu (linux).
 - (i) Submission:
 - i. README.txt:
 - what the different files are
 - how to compile and run your program with the two data sets with a different k for k nearest neighbors (and for k-means for CSE 5400) (preferably on code01.fit.edu).
 - how to compile and run the experiments parts 2(f) and 2(g) above.
 - ii. source code files