元素及其化合物·二·「铁 (Fe) 及其化合物」

1. 铁单质

1.1 物理性质

- 银白色固体,有金属性光泽
- 容易被磁铁吸引
- 地壳中居第四位

1.2 化学性质

铁元素性质活泼,有较强的还原性,主要化合价为+2 价和+3 价

- 1. 与非金属单质反应
 - $3 \operatorname{Fe} + 2 \operatorname{O}_2 \stackrel{\text{ iny AM}}{=\!\!\!=\!\!\!=} \operatorname{Fe}_3 \operatorname{O}_4$
 - $2 \operatorname{Fe} + 3 \operatorname{Cl}_2 \stackrel{\text{ iny AM}}{=\!\!\!=\!\!\!=} \operatorname{FeCl}_3$
 - Fe + S $\stackrel{\Delta}{=}$ FeS
- 2. 与水反应
 - 铁在高温下与水蒸气反应: $3\operatorname{Fe} + 4\operatorname{H}_2\operatorname{O}(\operatorname{g}) \stackrel{\operatorname{\overline{a}}\mathbb{Z}}{=\!=\!=\!=} \operatorname{Fe}_3\operatorname{O}_4 + 4\operatorname{H}_2$
- 3. 与酸反应
 - 与非还原性酸: $\mathrm{Fe} + 2\,\mathrm{H}^+ = \mathrm{Fe}^{2+} + \mathrm{H}_2 \uparrow$
 - 与少量稀硝酸: $3\,\mathrm{Fe} + 8\,\mathrm{H}^+ + 2\,\mathrm{NO}_3^- \,=\, 3\,\mathrm{Fe}^{2+} + 2\,\mathrm{NO} \uparrow \,+\, 4\,\mathrm{H}_2\mathrm{O}$
 - 与过量稀硝酸: $\mathrm{Fe} + 4\,\mathrm{H}^+ + \mathrm{NO}_3^- \,=\, \mathrm{Fe}^{3+} + \mathrm{NO} \uparrow \,+\, 2\,\mathrm{H}_2\mathrm{O}$
 - 铁遇到冷的浓硫酸或浓硝酸会钝化

常考:对于特定比例的 Fe 与 HNO3 进行反应的方程式

- 1. 当比例大于等于 3:8 ,此时铁过量,生成物全部都是亚铁 $3\operatorname{Fe}(过量) + 8\operatorname{HNO}_3(稀) = 3\operatorname{Fe}(\operatorname{NO}_3)_2 + 2\operatorname{NO} \uparrow + 4\operatorname{H}_2\operatorname{O}$
- 2. 比例介于 3:8 和 1:4 之间,则会有部分二价铁继续被硝酸氧化成三价铁 $3 \, {
 m Fe}({
 m NO}_3)_2 + 4 \, {
 m HNO}_3(稀) = 3 \, {
 m Fe}({
 m NO}_3)_3 + {
 m NO} \uparrow + 2 \, {
 m H}_2{
 m O}$
- 3. 比例小于等于 1:4, 此时稀硝酸足量, 铁单质全都被氧化成三价铁

$$\mathrm{Fe} + 4\,\mathrm{HNO}_3($$
稀 $) = \mathrm{Fe}(\mathrm{NO}_3)_3 + \mathrm{NO} \uparrow + 2\,\mathrm{H}_2\mathrm{O}$

4. 与盐溶液反应

• 置换反应: $\operatorname{Fe} + \operatorname{Cu}^{2+} = \operatorname{Fe}^{2+} + \operatorname{Cu}$

• 与氯化铁溶液: $Fe + 2Fe^{3+} = 3Fe^{2+}$

2. 铁的氧化物

2.1 物理性质

名称	氧化亚铁 FeO	氧化铁 $\mathrm{Fe_2O_3}$	四氧化三铁 Fe ₃ O ₄
俗称	-	铁红	磁性氧化铁
化合价	+2	+3	+2、+3
物理性质	黑色粉末	红褐色粉末	黑色粉末
用途	-	炼铁、铝热剂、油漆、涂料	炼铁

Table 2-1

2.2 化学性质

- 1. 与非氧化性酸(盐酸 HCl)反应:
 - 氧化亚铁 $FeO: FeO + 2H^+ = Fe^{2+} + H_2O$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$
 - 四氧化三铁 $\mathrm{Fe_3O_4}\colon \mathrm{Fe_3O_4} + 8\,\mathrm{H^+} = \mathrm{Fe^{2+}} + 2\,\mathrm{Fe^{3+}} + 4\,\mathrm{H_2O}$
- 2. 与氧化性酸(过量稀硝酸 HNO_3)反应:
 - 氧化亚铁 FeO : $3\,\mathrm{FeO}+10\,\mathrm{H}^++\mathrm{NO}_3^-=3\,\mathrm{Fe}^{3+}+\mathrm{NO}\uparrow +5\,\mathrm{H}_2\mathrm{O}$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$
 - 四氧化三铁 ${
 m Fe_3O_4}\colon \, 3\,{
 m Fe_3O_4} + 28\,{
 m H^+} + {
 m NO_3^-} = 9\,{
 m Fe^{3+}} + {
 m NO}\uparrow \, + 14\,{
 m H_2O}$
- 3. 与氧化性酸(少量稀硝酸 HNO₃)反应:
 - 氧化亚铁 FeO: $FeO + 2 HNO_3 = Fe(NO_3)_2 + H_2O$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6HNO_3 = 2Fe(NO_3)_3 + 3H_2O$
- 四氧化三铁 $\mathrm{Fe_3O_4}\colon \mathrm{Fe_3O_4} + 8\,\mathrm{HNO_3} \ = \ 3\,\mathrm{Fe(NO_3)_3} + 2\,\mathrm{H_2O}$
- 4. 与还原性酸 (氢碘酸 HI) 反应:
 - 氧化亚铁 FeO: $FeO + 2H^+ = Fe^{2+} + H_2O$

- 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ + 2I^- = 2Fe^{2+} + I_2 + 3H_2O$
- 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 8H^+ + 2I^- = 3Fe^{2+} + I_2 + 4H_2O$
- 5. 与还原性物质 (CO)反应:
 - 氧化亚铁 $FeO: FeO + CO = Fe + CO_2$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 3CO = 2Fe + 3CO_2$
 - 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 4CO = 3Fe + 4CO_2$

3. 铁的氢氧化物

3.1 物理性质

名称	氢氧化亚铁 $\mathrm{Fe}(\mathrm{OH})_2$	氢氧化铁 $\mathrm{Fe}(\mathrm{OH})_3$
颜色状态	白色固体	红褐色固体
水溶性	难溶	难溶

Table 3-1

3.2 化学性质

- 1. 与非氧化性酸(盐酸 HCl)反应:
 - 氢氧化亚铁 $Fe(OH)_2$: $Fe(OH)_2 + 2HCl = FeCl_2 + 2H_2O$
 - 氢氧化铁 $Fe(OH)_3$: $Fe(OH)_3 + 3HCl = FeCl_3 + 3H_2O$
- 2. 与氧化性酸 (稀硝酸 HNO₃) 反应:
 - 氢 氧 化 亚 铁 $\operatorname{Fe}(OH)_2$ $\operatorname{Fe}(OH)_2 + 2\operatorname{HNO}_3(少量) = \operatorname{Fe}(NO_3)_3 + 2\operatorname{H}_2O$ $3\operatorname{Fe}(OH)_2 + 10\operatorname{HNO}_3(过量) = 3\operatorname{Fe}(NO_3)_3 + \operatorname{NO} \uparrow + 8\operatorname{H}_2O$
 - 氢氧化铁 $Fe(OH)_3$: $Fe(OH)_3 + 3HNO_3 = Fe(NO_3)_3 + 3H_2O$
- 3. 与还原性酸 (氢碘酸 HI) 反应:
 - 氢氧化亚铁 $Fe(OH)_2$: $Fe(OH)_2 + 2HI = FeI_2 + 2H_2O$
 - 氢氧化铁 $Fe(OH)_3$: $Fe(OH)_3 + 3HI = FeI_3 + 3H_2O$

4. 稳定性

- Fe $(OH)_2$ 不稳定,在空气中易被氧化 $4\operatorname{Fe}(OH)_2 + O_2 + 2\operatorname{H}_2O = 4\operatorname{Fe}(OH)_2$
- $ext{Fe}(ext{OH})_3$ 不稳定(但较 $ext{Fe}(ext{OH})_2$ 稳定),受热分解 $2 ext{Fe}(ext{OH})_3 \stackrel{\Delta}{=\!=\!=} ext{Fe}_2 ext{O}_3 + 3 ext{H}_2 ext{O}$

5. 制备

- $\mathrm{Fe}(\mathrm{OH})_2$: $\mathrm{Fe}^{2+}+2\,\mathrm{OH}^-=\mathrm{Fe}(\mathrm{OH})_2\downarrow$ (将含有 NaOH 的滴管插入到含 Fe^{2+} 的溶液中,防止被空气中的 O_2 氧化)
- $Fe(OH)_3$: $Fe^{2+} + 3OH^- = Fe(OH)_3 \downarrow$
- 6. 转化

$$4 \operatorname{Fe}(OH)_2 + O_2 + 2 \operatorname{H}_2O = 4 \operatorname{Fe}(OH)_3$$

4. 铁盐与亚铁盐

$4.1 \, \mathrm{Fe}^{2+}$

含有 Fe^{2+} 的溶液呈浅绿色,既有氧化性又有还原性

1. 氧化性: $Zn + Fe^{2+} = Fe + Zn^{2+}$

2. 还原性: $Cl_2 + 2 Fe^{2+} = 2 Fe^{3+} + 2 Cl^{-}$

3. 特性:含有 ${
m Fe^{2+}}$ 的盐溶液遇铁氰化钾 ${
m K_3[Fe(CN)_6]}$ 生成蓝色沉淀

4.2 Fe³⁺

含有 Fe^{3+} 的溶液呈黄色,有较强的氧化性

- 1. 氧化性
 - 1. 铁离子与铜(Cu)的反应: $Fe^{3+} + Cu = Fe^{2+} + Cu^{2+}$
 - 2. 铁离子与碘离子(${
 m I}^-$)的反应: $2\,{
 m Fe}^{3+}+2\,{
 m I}^-\,=\,2\,{
 m Fe}^{2+}+{
 m I}_2$
 - 3. 铁离子与硫离子(S^{2-})的反应: $2 \operatorname{Fe}^{3+} + 3 \operatorname{S}^{2-} = \operatorname{Fe}_2 S_3$
- 2. 特性:含有 Fe^{3+} 的盐溶液遇 KSCN 溶液 变成红色

4.3 常见的铁盐与亚铁盐

- 1. 三氯化铁 ${
 m FeCl_3}$: 棕黄色固体,一种常见的氧化剂,能与多种还原剂发生氧化还原反应,能回收 废 铜 , 刻 制 印 刷 电 路 板 时 作 腐 蚀 液 , 其 反 应 的 离 子 方 程 式 为 $2\,{
 m Fe^{3+}}+Cu\,=\,2\,{
 m Fe^{2+}}+Cu^{2+}$
 - 制备无水 $FeCl_3$: 在 HCl 气氛中加热蒸干 $FeCl_3$ 溶液,抑制 $FeCl_3+3H_2O \Longrightarrow Fe(OH)_3+3HCl$ 正移
 - 制备 ${
 m Fe}({
 m OH})_3$ 胶体:向沸水中滴入饱和 ${
 m FeCl}_3$ 溶液并煮沸至溶液呈红褐色为止
- 2. 绿矾 $FeSO_4 \cdot 7H_2O$: 一种重要的还原剂,可用作补血剂及植物的补铁剂

- 3. 高铁酸钾 K_2FeO_4 : 深紫色晶体,具有强氧化性,可用作水处理剂和高能电池
- 4. 铁铵矾 $\mathrm{NH_4Fe}(\mathrm{SO_4})_2 \cdot 12\,\mathrm{H_2O}$: 无色晶体,易溶于水,常用作化学分析试剂药物和织物媒 染剂
- 5. 赤血盐 $K_3[\mathrm{Fe}(\mathrm{CN})_6]$: 红色晶体,易溶于水,常用于检验 Fe^{2+} ,生成蓝色沉淀

4.4 盐溶液保存

- ${
 m Fe}^{2+}$ 的盐溶液:加入少量铁粉,防止 ${
 m Fe}^{2+}$ 被氧化;加入少量对应的酸,抑制 ${
 m Fe}^{2+}$ 水解
- Fe^{3+} 的盐溶液:加入少量对应的酸,抑制 Fe^{3+} 水解

5. Fe^{2+} 与 Fe^{3+} 的检验

- 1. 直接观察颜色
 - 含有 Fe^{2+} 的溶液呈浅绿色
 - 含有 Fe^{3+} 的溶液呈黄色
- 2. 利用显色反应
 - KSCN 溶液
 - 溶液变红色: Fe³⁺
 - 溶液不变色,加入 HCl / 氯水,变红色: Fe²⁺
 - 苯酚
 - 溶液呈紫色: Fe²⁺
- 3. 利用 Fe(OH)₃ 沉淀的颜色
 - NaOH 溶液
 - 红褐色沉淀: Fe³⁺
 - 生成白色絮状沉淀,白色沉淀变为灰绿色,最后变为红褐色:Fe²⁺
- 4. 利用 Fe^{3+} 的氧化性
 - Cu 片
 - 铜被腐蚀,溶液变为蓝绿色: Fe³⁺
 - 淀粉-KI 试纸
 - 变蓝: Fe³⁺
 - H₂S 水溶液
 - 产生淡黄色沉淀: Fe³⁺
- 5. 利用 Fe^{2+} 的还原性
 - 溴水
 - 溴水褪色: Fe²⁺

- KMnO₄ 溶液
 - 紫色褪去: Fe²⁺
- 6. 利用 ${
 m Fe}^{2+}$ 的特殊反应
 - K₃ [Fe(CN)₆]
 - 生成蓝色沉淀: KFe [Fe(CN)₆]

6. 铁及其重要化合物的转化

Figure 6-1