

4222-SURYA GROUP OF INSTITUTIONS VIKRAVANDI.

Prepared by,

K.SURESH,

422221106016,

ECE-DEP,

3RD YEAR.

AI PHASE 3:

Data preprocessing is the process of cleaning our data set. There might be missing values or outliers in the dataset.

PREPROCESSING THE GIVEN DATASET:

df = pd.read_csv('../input/covid-19-nlp-text-classification/Corona_NLP_train.csv',encoding='ISO-8859-1')

df_test = pd.read_csv('../input/covid-19-nlp-text-classification/Corona_NLP_test.csv')

	UserName	ScreenName	Location	TweetAt	OriginalTweet	Sentiment
0	3799	48751	London	16-03-2020	@MeNyrbie @Phil_Gahan @Chrisitv https://t.co/i	Neutral
1	3800	48752	UK	16-03-2020	advice Talk to your neighbours family to excha	Positive
2	3801	48753	Vagabonds	16-03-2020	Coronavirus Australia: Woolworths to give elde	Positive
3	3802	48754	NaN	16-03-2020	My food stock is not the only one which is emp	Positive
4	3803	48755	NaN	16-03-2020	Me, ready to go at supermarket during the #COV	Extremely Negative

DATA INFO:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 41157 entries, 0 to 41156

Data columns (total 6 columns):

Column Non-Null Count Dtype

-- ----- -----

0 UserName 41157 non-null int64

1 ScreenName 41157 non-null int64 2 Location 32567 non-null object

3 TweetAt 41157 non-null object

4 OriginalTweet 41157 non-null object

5 Sentiment 41157 non-null object

dtypes: int64(2), object(4) memory usage: 1.9+ MB

DUPLICATE TWEET:

df.drop_duplicates(subset='OriginalTweet',inplace=True)

In [93]:

df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 41157 entries, 0 to 41156 Data columns (total 6 columns):

Column Non-Null Count Dtype

--- -----

0 UserName 41157 non-null int64 1 ScreenName 41157 non-null int64 2 Location 32567 non-null object

3 TweetAt 41157 non-null datetime64[ns]

4 OriginalTweet 41157 non-null object

5 Sentiment 41157 non-null object

dtypes: datetime64[ns](1), int64(2), object(3)

TWEETS COUNT BY DATA

TWEETS PER COUNTRY AND CITY

TWEETS DEEP CLEANING

```
df = df[['OriginalTweet', 'Sentiment']]
In [99]:
df_test = df_test[['OriginalTweet', 'Sentiment']]
```

Then we define custom functions to clean the text of the tweets.

```
In [100]:
linkcode
##CUSTOM DEFINED FUNCTIONS TO CLEAN THE TWEETS
#Clean emojis from text
def strip emoji(text):
  return re.sub(emoji.get_emoji_regexp(), r"", text) #remove emoji
#Remove punctuations, links, mentions and \r\n new line characters
def strip_all_entities(text):
  text = text.replace(\mathbf{r'}, '').replace(\mathbf{n'}, '').lower() \#remove \setminus n \ and \setminus r \ and \ lowercase
  text = re.sub(r"(?:\@|https?\://)\S+", "", text) #remove links and mentions
  text = re.sub(r'[^\x00-\x7f]',r'', text) \# remove \ non \ utf8/ascii \ characters \ such \ as \ \x9a\x91\x97\x9a\x92
7'
  banned_list= string.punctuation + 'A'+'±'+'a'+'\4'+'a'+'\*'+'\8'
  table = str.maketrans(", ", banned_list)
  text = text.translate(table)
  return text
```



```
\# clean hashtags at the end of the sentence, and keep those in the middle of the sentence by removing j ust the \# symbol
```

def clean hashtags(tweet):

```
new\_tweet = "`".join(word.strip() for word \textbf{in} re.split('#(?!(?:hashtag)\b)[\w-]+(?=(?:\s+\#[\w-]+)*\s+ \$)', tweet)) #remove last hashtags
```

 $new_tweet2 = "".join(word.strip() \ for \ word \ \textbf{in} \ re.split('\#|_', new_tweet)) \ \#remove \ hashtags \ symbol \ from \ words \ in \ the \ middle \ of \ the \ sentence$

return new_tweet2

TWEETS ROBERT CONFUSION:

```
#Filter special characters such as & and $ present in some words
def filter_chars(a):
    sent = []
    for word in a.split(' '):
        if ('$' in word) | ('&' in word):
            sent.append(")
        else:
            sent.append(word)
    return ' '.join(sent)
```

def remove_mult_spaces(text): # remove multiple spaces
return re.sub("\s\s+", " ", text)

```
text_len_test = []
for text in df_test.text_clean:
    tweet_len = len(text.split())
    text_len_test.append(tweet_len)
```



```
plt.figure(figsize=(7,5))
ax = sns.countplot(x='text_len', data=df_test[df_test['text_len']<10], palette='mako')
plt.title('Test tweets with less than 10 words')
plt.yticks([])
ax.bar_label(ax.containers[0])
plt.ylabel('count')
plt.xlabel(")
plt.show()
```

Test tweets with less than 10 words

SENTIMENT COLUMN ANAYSIS

Positive 11381
Negative 9889
Neutral 7560
Extremely Positive 6618
Extremely Negative 5475
Name: Sentiment, dtype: int64

CONCLUSION:

In this project we tried to show the basic way of classifying tweets into positive or negative category using Naive Bayes as baseline and how language models are related to the Naive Bayes and can produce better results.