EE 231 – Homework 6 Due October 8, 2010

1. Problem 4.16

Define the carry propagate and carry generate as

$$P_i = A_i + B_i$$

$$G_i = A_i B_i$$

respectively. Show that the output carry and the output sum of a full adder becomes

$$C_{i+1} = (C'_i G'_i + Pi')'$$

$$S_i = (P_i G'_i) C_i$$

Define $P_i = A_i + B_i$ and $G_i = A_i B_i$. Show that $C_{i+1} = (C'_i G'_i + P'_i)'$ and $S_i = (P_i G'_i) \oplus C_i$

The output of a full adder is

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = A_i B_i + A_i C_i + B_i C_i$$

$$S_i = (P_i G'_i) \oplus C_i$$

= $[(A_i + B_i)(A_i B_i)'] \oplus C_i$

$$= [(A_i + B_i)(A'_i + B'_i)] \oplus C_i$$

= $[A_i A'_i + A_i B'_i + B_i A'_i + B_i B'_i] \oplus C_i$

$$= [A_i B_i' + A_i' B_i] \oplus C_i$$

- $A_i \oplus B_i \oplus C_i$ OED

$$= A_i \oplus B_i \oplus C_i \text{ QED}$$

$$C_{i+1} = (C'_i G'_i + P'_i)'$$

= $(C'_i G'_i)' P_i$

$$= (C_i G_i)' P_i$$

 $= (C_i + C_i)'$

$$= (C_i + G_i)P_i$$

$$= (C_i + A_i B_i)(A_i + B_i)$$

$$= C_i A_i + C_i B_i + A_i B_i A_i + A_i B_i B_i$$

$$= A_i C_i + B_i C_i + A_i B_i + A_i B_i$$

$$= A_i C_i + B_i C_i + A_i B_i$$
 QED

2. Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions:

(a)
$$F_1 = x'y'z + xz'$$

 $F_2 = x'yz' + xy'$
 $F_3 = xyz' + xy$
Truth table:

а	c	y	z	F_1	F_2	F_3
()	0	0	0	0	0
()	0	1	1	0	0
()	1	0	0	1	0
()	1	1	0	0	0
1	l	0	0	1	1	0
1	l	0	1	0	1	0
1	l	1	0	1	0	1
1	l	1	1	0	0	1
				1		
]			

(b)
$$F_1 = (x + y')z'$$

 $F_2 = xz + y'z + yz'$
 $F_3 = (y + z')x$
Truth table:

		\boldsymbol{x}	y	z	$ F_1 $	F_2	F_3	
		0	0	0	1	0	0	
		0	0	1	0	1	0	
		0	1	0	0	1	0	
		0	1	1	0	0	0	
		1	0	0	1	0	1	
		1	0	1	0	1	0	
		1	1	0	1	1	1	
		1	1	1	0	1	1	
xyz	2 ² 2 ¹ 2 ⁰		0 1 2 3 4 5 6					

3. Implement the following Boolean functions with a multiplexer:

(a)
$$F(w, x, y, z) = \Sigma(2, 3, 5, 6, 11, 14, 15)$$

	w	\boldsymbol{x}	y	z	$\mid F \mid$		
	0	0	0	0	0	F = 0	=
	0	0	0	1	0		
	0	0	1	0	1	F = 1	_
	0	0	1	1	1		
	0	1	0	0	0	F=z'	_
	0	1	0	1	1		
	0	1	1	0	1	F = z	_
	0	1	1	1	0		
	1	0	0	0	0	F = 0	_
	1	0	0	1	0		
	1	0	1	0	0	F=z'	_
	1	0	1	1	1		
	1	1	0	0	0	F = 0	_
	1	1	0	1	0		
	1	1	1	0	1	F = 1	_
	1	1	1	1	1		
z —		0 1 0 0 1	_		0 1 2 3 4 5 6 7 8 ₂ S	S ₁ S ₀	F

(b) $F(w, x, y, z) = \Pi(3, 10, 11)$

	w	\boldsymbol{x}	y	z	F		_
	0	0	0	0	1	F = 1	_
	0	0	0	1	1		
	0	0	1	0	1	F = z	_
	0	0	1	1	0		
	0	1	0	0	1	F = 1	_
	0	1	0	1	1		
	0	1	1	0	1	F = 1	_
	0	1	1	1	1		
	1	0	0	0	1	F = 1	_
	1	0	0	1	1		
	1	0	1	0	0	F = 0	_
	1	0	1	1	0		
	1	1	0	0	1	F = 1	_
	1	1	0	1	1		
	1	1	1	0	1	F = 1	_
	1	1	1	1	1		
7			1 —		0		
z			1		1 2 3 4 5 6 7 7 S		
			1 — 1 —		3 4		
			0 — 1 —		5		
			i —		7		
					$\frac{S_2}{I}$	$S_1 S_0$	
			1	v			

F

4. Write a Verilog dataflow description to implement the Boolean functions of Problem 3.

5. Implement a full adder with two 4x1 multiplexers. Note: the truth table for the full adder is:

\boldsymbol{x}	y	C_{in}	C_{out}	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

6. An 8x1 multiplexer has inputs A, B and C connected to the selection inputs S_2 , S_1 , and S_0 respectively. The data inputs through I_0 through I_7 are as follows:

(a)
$$I_1 = I_2 = I_4 = 0$$
; $I_3 = I_5 = 1$; $I_0 = I_7 = D$; and $I_6 = D'$.

(b)
$$I_2 = I_3 = 0; I_4 = I_5 = I_7 = 1; I_0 = I_6 = D;$$
 and $I_1 = D'.$

Determine the Boolean function that the multiplexer implements.

(a)

$$I_1 = I_2 = I_4 = 0; I_3 = I_5 = 1; I_0 = I_7 = D;$$
 and $I_6 = D'.$

<u>A</u>	B	C	D	F	
0	0	0	0	1	F = D
0	0	0	1	0	
0	0	1	0	0	F = 0
0	0	1	1	0	
0	1	0	0	0	F = 0
0	1	0	1	0	
0	1	1	0	1	F=1
0	1	1	1	1	
1	0	0	0	0	F = 0
1	0	0	1	0	
1	0	1	0	1	F=1
1	0	1	1	1	
1	1	0	0	0	F = D'
1	1	0	1	1	
1	1	1	0	1	F = D
1	1	1	1	0	

$$F = A'B'C'D' + A'BCD' + A'BCD + AB'CD' + AB'CD + ABC'D + ABCD'$$

$$F = A'B'C'D' + A'BC + AB'C + ABC'D + ACD'$$

(b)
$$I_2 = I_3 = 0; I_4 = I_5 = I_7 = 1; I_0 = I_6 = D; \text{ and } I_1 = D'.$$

A	B	C	D	F	
0	0	0	0	1	F = D
0	0	0	1	0	
0	0	1	0	0	F = D'
0	0	1	1	1	
0	1	0	0	0	F = 0
0	1	0	1	0	
0	1	1	0	0	F = 0
0	1	1	1	0	
1	0	0	0	1	F = 1
1	0	0	1	1	
1	0	1	0	1	F = 1
1	0	1	1	1	
1	1	0	0	1	F = D
1	1	0	1	0	
1	1	1	0	1	F = 1
1	1	1	1	1	

$$F = A'B'C'D' + A'B'CD + AB'C'D' + AB'C'D + AB'CD' + ABC'D' + ABC'D' + ABCD$$

$$F = B'C'D' + B'CD + AB' + AD' + AC$$

7. Problem 4.39. Use a behavioral description to implement the problem. Do not write a gate level or dataflow description.

Write an HDL behavioral description of a four-bit comparator with a six-bit output Y[5:0]. Bit 5 of Y is for "equals", bit 4 is for "not equal to", bit 3 is for "greater than", bit 2 is for "less than", bit 1 for "greater than or equal to", and bit 0 for "less than or equal to".

```
module four_bit_comparator(input [3:0] A, B, output reg [5:0] Y);
```

```
always @(A, B) begin

Y = 6'b000000;

if (A == B) Y[5] = 1'b1;

if (A != B) Y[4] = 1'b1;

if (A > B) Y[3] = 1'b1;

if (A >= B) Y[2] = 1'b1;

if (A < B) Y[1] = 1'b1;

if (A <= B) Y[0] = 1'b1;

end
```

endmodule

8. Problem 4.50.

Using a case statement, develop and simulate a behavioral model of the 84-2-1 to BCD code converter described in Problem 4.8.

```
module code_converter(input [3:0] C84_2_1, output reg [3:0] BCD);
always @(C84_2_1)
    case (C84_2_1)
       4'b0000: BCD = 4'b0000;
       4'b0111: BCD = 4'b0001;
       4'b0110: BCD = 4'b0010;
       4'b0101: BCD = 4'b0011;
       4'b0100: BCD = 4'b0100;
       4'b1011: BCD = 4'b0101;
       4'b1010: BCD = 4'b0110;
       4'b1001: BCD = 4'b0111;
       4'b1000: BCD = 4'b1000;
       4'b11111: BCD = 4'b1001;
default: BCD = 4'bxxxx;
endcase
endmodule
```


9. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic-logic unit (ALU). The ALU needs to implement the 10 functions listed below. The inputs are two eight-bit numbers A and B, and select inputs S (where S has enough bits to select the ten functions). The outputs are the eight-bit result R, a zero-bit Z, and a carry bit C. The C bit is described in the table below. (X means Don't Care.) The zero bit Z is 1 if all the bits of the eight-bit result are 0, and is 0 otherwise.

Name	Description	R	С	Z
LOAD	Load input A	A	X	1 if $R == 0$
ADDA	Add inputs	A + B	Carry	1 if $R == 0$
SUBA	Subtract inputs	A - B	Borrow	1 if $R == 0$
ANDA	AND inputs	A&B	X	1 if $R == 0$
ORAA	OR inputs	A B	X	1 if $R == 0$
COMA	Bitwise Complement input A	$\sim A$	1	1 if $R == 0$
INCA	Increment input A	A+1	X	1 if $R == 0$
LSRA	Logical Shift Right	0 => R[7]	A[0]	1 if $R == 0$
	input A	A[7:1] => R[6:0]		
LSLA	Logical Shift Left	0 => R[0]	A[7]	1 if $R == 0$
	input A	A[6:0] => R[7:1]		
ASRA	Arithmetic Shift Right	A[7] => R[7]	A[0]	1 if $R == 0$
	input A	A[7:1] => R[6:0]		