Linux commands

- cd
- cd ~ change working directory to home directory
- o cd - change working directory to old working directory
- o cd .. change working directory to parent directory
- Is
- Is list the contents of present working directory
- o Is path list the contents of given path
- o Is -I list the contents in detail format
 - type and permissions
 - Types of files
 - Regular file (-)
 - Directory file (d)
 - Link file (I)
 - pipe file (p)
 - socket file (s)
 - character special file (c)
 - block specical file (b)
 - Permissions of files
 - r read, w write, x execute
 - (rwx)user/owner, (rwx)group, (rwx)others
 - link count
 - user/owner
 - group
 - size
 - timestamp
 - name
- o Is -a list all contents along with hidden
- Is -A list all contents along with hidden except . and ..
- o Is -i list contents with indoe number
 - inode number is unique number given to every file
- Is -s list content with size (number of blocks)
- o Is -S list content in descending order of their sizes
- touch
 - if file does not exist, empty file is created
 - o if file exist, timestamp of that file is changed
- stat
 - o stat file display information of file
 - stat file1 file2 display information of file1 and file2
 - stat -c "format" file display file information in given format

- head
 - head file display first 10 lines
 - head -5 file display first 5 lines
- tail
 - o tail file display last 10 lines
 - o tail -4 file display last 4 lines
- sort
 - o sort file sort the content by alphabetically
 - o sort -n file sort the content by their value
 - sort command do not modify file content
- uniq
 - uniq file display contents uniquely (truncate duplicate)
 - truncate duplicate content if it is consecutive
- rev filepath
 - Print each line reversed.
 - · File contents are not modified.
- tac filepath
 - Print all lines in reverse order. The first line printed at last, while last line printed first.
- stat path
 - Display info about file or directory.
- alias
 - o alias list="Is -I"
 - list will be alias/nick name to Is -I
 - list will give output same as ls -l
- unalias
 - o unalias list
- which
 - which command
 - display the location of command executable.
- whereis
 - o whereis command
 - display the location of command executable and also manual paage location.

Types of commands

- Internal commands
 - o commands are part of shell program only.
 - o No seperate executable is present
 - o eg. alias, unalias, cd
- External commands
 - o commands are not part of shell program
 - Seperate executable is available in any one of the bin directory
 - o eg. ls, cp, mv

Redirection

- for every command input is taken from terminal, output is printed on terminal and error is also printed on terminal
- Standard streams (by defualt for every process, three files are opened)
 - stdin
 - stdout
 - stderr
- There are three types of redirections
 - o input redirection
 - input will be taken from file instead of stdin
 - to do input redirection '<' symbol is used
 - command < file</p>
 - o utput redirection
 - output will be written into file instead of stdout
 - to do output redirection '>' or '>>' symbol is used
 - command > file
 - older content of file will be over written
 - command >> file
 - content will be appneded into file at the end
 - error redirection
 - error will be written into file instead of stderr
 - to do output redirection '2>' or '2>>' symbol is used
 - command 2> file
 - older content of file will be over written
 - command 2>> file
 - content will be appneded into file at the end

Pipe

- Using pipe, we can redirect output of any command to the input of any other command.
- Two processes are connected using pipe operator (|).

• Two processes runs simultaneously and are automatically rescheduled as data flows between them.

- If you don't use pipes, you must use several steps to do single task.
- command1 | command2
 - o output of command1 will be given as input to command 2
- E.g.
 - o who wc

Shell meta characters

- '*' zero or more occurances of any character
- '?' one occurance of any character

File Permissions/Mode

- File permission types: r (read), w (write), x (execute)
- Permission levels: u (user), g (group), o (other)
- File mode: u-rwx g-rwx o-rwx
- Example: hello.txt -- user can read/write and execute, group can read and execute, other can only read.
 - hello.txt mode: u=rwx g=r-x o=r-
 - rwx r-x r--
 - **111 101 100 = 754**
 - o chmod 754 hello.txt
- Decimal and Binary
 - o 000 -- 0
 - 001 -- 1
 - 010 -- 2
 - o 011 -- 3
 - o 100 -- 4
 - o 101 -- 5
 - o 110 -- 6
 - o 111 -- 7
- File mode/permissions
 - o read=4, write=2, execute=1
 - \circ user -- rwx -- 4+2+1 = 7
 - \circ group -- r-x -- 4+1 = 5
 - o other -- r-- -- 4 = 4
- File mode can be changed by the file owner (or superuser).
 - o rw- rw- r--
 - 110 110 100

- 0 664
- o chmod 664 f1.txt
- o rw-rw-r--
- o 110 110 100
- o 111 100 100
- 0 744
- o chmod 744 f1.txt
- chmod +/- r/w/x file
 - to add or remove permissions of file
- chmod u/g/o +/- r/w/x
 - to add or remove permissions of specific level

Directory permissions/Mode

- From end user perspective, directory is a container that contains subdirectories and files.
- From kernel perspective, directory is a special file (d) that contains directory entries for each subdirectory and file.
- Directory entry = File/Subdir name + Inode number
- Default directory permissions: rwx rwx r-x
- Dir read permission: Can list dir contents (i.e. can read dir entries)
- Dir write permission: Can add, delete or modify dir entries i.e. Create new subdir/file in it, Can delete subdir/file in it, Can rename subdir/file in it.
- Dir execute permission: Can changed to that directory (cd command).

Kernel

- The core OS that does basic minimal functionalities of the kernel is referred as "kernel".
- These basic functionalities are
 - CPU scheduling
 - Process Management
 - Memory Management
 - File & IO Management
 - Hardware abstraction layer
- Kernel has four types (as per architecture)
 - Monolithic kernel
 - Micro kernel
 - Modular kernel
 - Hybrid kernel

Monolithic kernel

- All source files are compiled into a single binary kernel image.
- This is kernel is very fast (all components in the same file).
- However if any component fails, whole OS (kernel) crash.
- Modifying any component needs to rebuild whole kernel and redeploy it.
- e.g. Linux (vmlinuz), UNIX.

Microlithic kernel

- Kernel is very small including minimal functionalities. So referred as micro-kernel.
- All additional functionalities are implemented as independent processes (called as servers).
- All these servers and kernel communicate with each other by message passing. This reduce performance.
- If any component fails, the rest of system can continue to function. So this kernel is robust.
- Modifying any component needs to rebuild and redeploy only that component.
- e.g. Symbian.

Modular kernel

- Modular kernel is small. Additional functionalities are implemented as dynamically loadable modules (.sys/.ko).
- These modules are loaded into the kernel process at runtime and execute.
- This kernel execute faster, as all modules are part of same kernel process.
- If any component fails, whole OS (kernel) crash.
- Modifying any component needs to rebuild and redeploy only that component.
- e.g. Windows (ntoskrnl.exe)

Hybrid kernel

- This kernel is made by combining source code of multiple kernels.
- e.g. Mac OS X kernel is made up of MACH kernel and BSD UNIX kernel.

Linux kernel

- Linux kernel has static and dynamic components.
- Static components are
 - Scheduler
 - Process management
 - Memory management
 - IO subsystem (core)
 - System calls
- Dynamic components are
 - File systems (like ext3, ext4, xfs)
 - Device drivers
- Static components are compiled into the kernel binary image. They are kernel components. The kernel image is /boot/vmlinuz.
- Dynamic components are compiled into kernel objects (*.ko files). They are non-kernel components. They are located in /lib/modules/kernel-version.