CE394M: Introduction to the Finite Element Method

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

January 31, 2020

Krishna Kumar (UT Austin)

CE394M: Intro to FEN

January 31 2020

Overview

- Numerical analysis of engineering problems
- @ Galerkin methods
- Strong form
- Weak form
- Finite Element formulation
- 6 Shape functions

Numerical analysis of engineering problems

Finite Element Analysis

Singapore Nicoll highway excavation FE analysis

Finite Element Analysis

Krishas Karasa (HT Arasia

CE394M: Intro to FEI

January 31, 2020 5

Galerkin:Ritz method

Finite Element Approximations

Krishna Kumar (UT Austin)

CE394M: Intro to FEN

January 31, 2020

- ---

Strong form of the equilibrium equation for a 1-D bar

where f is a distributed force and h as a force applied at the end of the bar

The equilibrium equation can be derived by considering an infinitesimal bar:

where ${\it N}$ is the normal force in the bar and ${\it f}$ is the distributed force along the bar.

Krishna Kumar (UT Austin)

CE394M: Intro to FEM

January 31, 2020

Boundary value problem of a 1-D bar

For linear elasticity

where A(x) is the area of the bar, E(x) is Young's modulus u is the displacement and $\varepsilon = du/dx$ is the strain.

which is a second-order differential equation. BCs:

Krishna Kumar (UT Austin)

CE394M: Intro to FEM

January 31 2020

Weak form of the equilibrium equations of a 1D bar

The general derivation of the weak form of any equation from the strong form follows a standard procedure:

- Multiply the strong equation by a weight function v which is equal to zero where Dirichlet (displacement) boundary conditions are applied, but is otherwise arbitrary (Another condition is that it must be sufficiently continuous. The degree of continuity required depends on the properties of the equation being considered.)
- Use integration by parts to 'shift' derivatives to the weight function
- Insert the Neumann (force) boundary conditions

We then want to find a solution u to the weak form that holds for all v . The weight function is also known as the 'test' function.

Weak form of the equilibrium equations of a 1D bar

Multiplying equilibrium equation by an arbitrary weight function v and integrating along the bar:

$$-\int_0^L v \frac{dN}{dx} \, \mathrm{d}x. = \int_0^L v f \, \mathrm{d}x.$$

we require that v(0) = 0 because of the displacement boundary condition at x = 0.

$$\int_0^L \frac{dv}{dx} N dx = \int_0^L vf dx + vN|_{x=0}^{x=L}.$$

Since v(0)=0, inserting the constitutive relationship and taking into account the force boundary condition at x=L.

$$\int_0^L \frac{dv}{dx} EA \frac{du}{dx} dx = \int_0^L vf dx + v(L)h.$$

The task is to find u with u(0) = 0 such that this equation is satisfied for all v.

Krishna Kumar (UT Austin)

CE394M: Intro to FEM

any 31 2020 11 / 25

FE formulation of a 1-D bar

Basis functions

The approximate displacement field u_h is represented by a set of 'basis functions' $N_i(x)$:

The approximate strain field:

Krishna Kumar (UT Austin)

CE394M: Intro to FEM

January 31, 2020

FE shape functions

The simplest finite element basis functions in 1D hat-like continuous, piece-wise linear polynomials.

FE shape functions

For a bar divided into three elements, the displacement and strain fields could have the form

Krishna Kumar (IIT Austin)

CE394M: Intro to FEN

January 31, 2020

45 /05

FE formulation of a 1-D bar

Weak form:

$$\int_0^L EA \frac{dv_h}{dx} \frac{du_h}{dx} dx = \int_0^L v_h f dx + v_h(L)h.$$

Using basis functions for u_h and v_h :

since a_i^* and a_j are not a function of x, we take it out.

$$\sum_{i}^{n} a_{i}^{*} \left(\sum_{j}^{n} a_{j} \int_{0}^{L} EA \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx \right) = \sum_{i}^{n} a_{i}^{*} \int_{0}^{L} N_{i} f dx + \sum_{i}^{n} N_{i}(L) a_{i}^{*} h$$

FE formulation of a 1-D bar

Since $a_{k=i}^*$ is arbitrary for each i we set $a_{k=i}^*=1$ and $a_{k\neq i}^*=0$. Then for each i we have an equation with n unknowns (the values of a_j):

$$i = 1: \sum_{j}^{n} a_{j} \int_{0}^{L} EA \frac{dN_{1}}{dx} \frac{dN_{j}}{dx} dx = \int_{0}^{L} N_{1} f dx + N_{i}(L) h,$$

$$i=2: \quad \sum_{j}^{n} a_{j} \int_{0}^{L} EA \frac{dN_{2}}{dx} \frac{dN_{j}}{dx} dx = \int_{0}^{L} N_{2} f dx + N_{i}(L)h,$$

:

$$i=n: \quad \sum_{j}^{n} a_{j} \int_{0}^{L} EA \frac{dN_{n}}{dx} \frac{dN_{j}}{dx} dx = \int_{0}^{L} N_{n} f dx + N_{i}(L) h,$$

Krishna Kumar (UT Austin)

CE394M: Intro to FEI

January 31, 2020

17 / OF

FE formulation of a 1-D bar

A system of linear equations is most conveniently expressed as a matrix:

Stiffness matrix:

right-hand side vector:

Finite Element Method: Formulation

$$[K] \mathbf{u} = F$$
$$\mathbf{u} = [K]^{-1} F$$

	Property [K]	Behavior {u}	$\textbf{Action}~\{\textbf{F}\}$
Elastic	stiffness	displacement	force
Thermal	conductivity	temperature	heat source
Fluid	viscosity	velocity	body force

Krishas Kassas (UT Assets)

CE394M: Intro to FEN

January 31, 2020

10 / OF

Linear shape functions

The displacement field inside the element is given by

Linear shape functions: displacements

Writing displacement field using matrices and vectors:

Witting displacement lied daing matrices and vectors.
where the matrix ${f N}$ has the shape functions:
Matrix $\mathbf{a_e}$ contains the degrees of freedom for an element:
Krishna Kumar (UT Austin) CE394M: Intro to FEM January 31, 2020 21/25
Linear shape functions: strains
Linear shape functions: strains The strain field is written as:
The strain field is written as:

Continuity of finite element functions

For a bar divided into three elements, the displacement and strain fields could have the form:

Krishas Kussas (IIT Austin)

CE394M: Intro to FEN

January 31, 2020

- ---

Quadratic element: shape functions

The shape functions:

$$N_1 = a_1 + b_1 x + c_1 x^2$$
,
 $N_2 = a_2 + b_2 x + c_2 x^2$,
 $N_3 = a_3 + b_3 x + c_3 x^2$

$$x_1 = -1$$
, $x_2 = 1$ and $x_3 = 0$:

$$N_1 = \frac{x^2}{2} - \frac{x}{2},$$

 $N_2 = \frac{x^2}{2} + \frac{x}{2},$
 $N_3 = -x^2 + 1$

Quadratic element: shape functions

The shape functions must satisfy three conditions and will be cubic polynomials of the form $N_i = a_i + b_i \, x + c_i \, x^2$. The SF must be equal to one at their node and zero at all others:

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} N_i(x_1) \\ N_i(x_2) \\ N_i(x_3) \end{bmatrix}$$

Inverting,

$$\begin{bmatrix} 0 & 1 & 0 \\ -0.5 & 0 & 0.5 \\ 0.5 & -1 & 0.5 \end{bmatrix} \begin{bmatrix} N_i(x_1) \\ N_i(x_2) \\ N_i(x_3) \end{bmatrix} = \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix}$$

For node one, $\begin{bmatrix} N_i(x_1) & N_i(x_2) & N_i(x_3) \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, and for node two $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, for node three $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$. This leads to

$$N_1 = \frac{x^2}{2} - \frac{x}{2}$$
, $N_2 = \frac{x^2}{2} + \frac{x}{2}$, $N_3 = -x^2 + 1$