To Reviewer 1

We first restate Theorems 1 and 2 in our submitted paper.

Theorem 1 (FFD). Given data $\mathbf{A} \in \mathbb{R}^{n \times d}$ and the sketching size $\ell \leq k = \min(m, d)$, let the small sketch $\mathbf{B} \in \mathbb{R}^{\ell \times d}$ be constructed by FFD. Then, with probability at least $1 - p\beta - (2p + 1)\delta - \frac{2n}{e^k}$ we have

$$\|\mathbf{A}^T\mathbf{A} - \mathbf{B}^T\mathbf{B}\|_2 \le \widetilde{O}\left(\frac{1}{\ell} + \Gamma(\ell, p, k)\right)\|\mathbf{A}\|_F^2$$
 (1)

where $\Gamma(\ell,p,k)=\sqrt{\frac{k}{\ell p^2}}+\sqrt{\frac{1+\sqrt{k/\ell}}{p}}$ with $p=\frac{n}{m}$, and $\widetilde{O}(\cdot)$ hides logarithmic factors on (β,δ,k,d,m) .

The running time of the algorithm is $\widetilde{O}(nl^2\frac{d}{m}+nd)$ and its space cost is $O(d\ell)$ before taking $m=\Theta(d)$.

Theorem 2 (FROSH). Given data $\mathbf{A} \in \mathbb{R}^{n \times d}$ with its row mean vector $\boldsymbol{\mu} \in \mathbb{R}^{1 \times d}$, let the sketching matrix $\mathbf{B}^{\ell \times d}$ be generated by FROSH in Algorithm 4. Then, with probability defined in Theorem 1 we have

$$\|(\mathbf{A} - \boldsymbol{\mu})^{T}(\mathbf{A} - \boldsymbol{\mu}) - \mathbf{B}^{T}\mathbf{B}\|_{2}$$

$$\leq \widetilde{O}\left(\frac{1}{\ell} + \Gamma(\ell, p, k)\right) \|\mathbf{A} - \boldsymbol{\mu}\|_{F}^{2}, \quad (2)$$

where $(\mathbf{A} - \boldsymbol{\mu}) \in \mathbb{R}^{n \times d}$ means subtracting each row of \mathbf{A} by $\boldsymbol{\mu}$, $\Gamma(\ell, p, k) = \sqrt{\frac{k}{\ell p^2}} + \sqrt{\frac{1 + \sqrt{k/\ell}}{p}}$ with $p = \frac{n}{m}$, and the top r right singular vectors of $\mathbf{B}^{\ell \times d}$ are used for hashing projections $\mathbf{W}^T \in \mathbb{R}^{r \times d}$.

The algorithm requires $\widetilde{O}(n\ell^2+nd+d\ell^2)$ running time with $O(d\ell)$ space cost after taking m=O(d) in the FFD of FROSH.

Next, we explicitly show how the singular vectors $\mathbf{W}^T \in \mathbb{R}^{r \times d}$ can be approximated. We let $m = \Theta(d)$, and assume $n = \Omega(\ell^{3/2}d^{3/2})$ for simplicity, then the error bound of Eq. (2) in Theorem 2 becomes $\widetilde{O}(\frac{1}{\ell}\|(\mathbf{A} - \boldsymbol{\mu})\|_F^2)$. Based on it, we give Theorem 3.

Theorem 3. Given data $\mathbf{A} \in \mathbb{R}^{n \times d}$ with its row mean vector $\boldsymbol{\mu} \in \mathbb{R}^{1 \times d}$, let the sketching matrix $\mathbf{B}^{\ell \times d}$ be

generated by FROSH in Algorithm 4. Let $m = \Theta(d)$, and assume $n = \Omega(\ell^{3/2}d^{3/2})$ for simplicity. Given $(\mathbf{A} - \boldsymbol{\mu}) \in \mathbb{R}^{n \times d}$ that means subtracting each row of \mathbf{A} by $\boldsymbol{\mu}$, let $h = \|(\mathbf{A} - \boldsymbol{\mu})\|_F^2 / \|(\mathbf{A} - \boldsymbol{\mu})\|_2^2$ and σ_i be the i-th largest singular value of $(\mathbf{A} - \boldsymbol{\mu})$. If the sketching size $\ell = \Omega(\frac{h\sigma_1^2}{\epsilon\sigma_{r+1}^2})$, then with probability defined in Theorem 1 we have

$$\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}_{\mathbf{B}}\mathbf{W}_{\mathbf{B}}^{T}\|_{2}^{2}$$

$$\leq (1 + \epsilon)\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}\mathbf{W}^{T}\|_{2}^{2}, \quad (3)$$

where $0 < \epsilon < 1$, $\mathbf{W}_{\mathbf{B}}^T \in \mathbb{R}^{r \times d}$ contains the top r right singular vectors of $\mathbf{B}^{\ell \times d}$, and $\mathbf{W}^T \in \mathbb{R}^{r \times d}$ contains the top r right singular vectors of $(\mathbf{A} - \boldsymbol{\mu}) \in \mathbb{R}^{n \times d}$.

Remark. The bound on $\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu}) \mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}}^T \|_2^2$ shows the similarity between $\mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}}^T$ and $\mathbf{W} \mathbf{W}^T$. If $\epsilon = 0$, we will have $\mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}}^T = \mathbf{W} \mathbf{W}^T$. However, it cannot characterize the similarity between $\mathbf{W}_{\mathbf{B}} \in \mathbb{R}^{d \times r}$ and $\mathbf{W} \in \mathbb{R}^{d \times r}$, because Eq. (3) of Theorem 3 may also indicate that $\mathbf{W}_{\mathbf{B}}$ approximates $\mathbf{W} \mathbf{\Upsilon}$, where $\mathbf{\Upsilon} \in \mathbb{R}^{r \times r}$ is an arbitrary unitary matrix with $\mathbf{\Upsilon} \mathbf{\Upsilon}^T = \mathbf{I}_r$ and \mathbf{I}_r being an identity matrix so that $\mathbf{W} \mathbf{\Upsilon} \mathbf{\Upsilon}^T \mathbf{W}^T = \mathbf{W} \mathbf{W}^T$. Fortunately, due to that $\mathbf{\Upsilon} \mathbf{\Upsilon}^T = \mathbf{I}_r$ (i.e., $\mathbf{\Upsilon} \in \mathbb{R}^{r \times r}$ is an orthogonal rotation), $\mathbf{W} \mathbf{\Upsilon}$ will still retain all information of \mathbf{W} and even will empirically get better hashing accuracy, which has been mentioned in Remark 1 of our submitted paper. Therefore, Theorem 3 shows how $\mathbf{W}_{\mathbf{B}}$ approximates \mathbf{W} or $\mathbf{W} \mathbf{\Upsilon}$, which can be used to show the effectiveness of the related hashing algorithm.

We restate Remark 1 in our submitted paper: To address the problem that most of the information can be contained by only a small number of significant singular vectors in $\mathbf{W} \in \mathbb{R}^{d \times r}$, OSH [3] also empirically applies a random rotation $\mathbf{\Upsilon} \in \mathbb{R}^{r \times r}$ (the orthonormal bases of an $r \times r$ random Gaussian matrix) to all singular vectors $\mathbf{W} \in \mathbb{R}^{d \times r}$ returned by Algorithm 1 via $\mathbf{W}\mathbf{\Upsilon}$. This step resembles Iterative Quantization [2] but runs much more efficiently with streaming settings maintained and negligible computational cost incurred.

Proof of Theorem 3. Due to that $\mathbf{W}_{\mathbf{B}}^T \in \mathbb{R}^{r \times d}$ contains the top r right singular vectors of $\mathbf{B}^{\ell \times d}$, we have $\mathbf{W}_{\mathbf{B}}\mathbf{W}_{\mathbf{B}}^T \in \mathbb{R}^{d \times d}$ as the projection matrix of $\mathbf{B}^{\ell \times d}$. With Lemma 4 in [1], we have

$$\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}_{\mathbf{B}}\mathbf{W}_{\mathbf{B}}^{T}\|_{2}^{2}$$

$$\leq \sigma_{r+1}^{2} + 2\|(\mathbf{A} - \boldsymbol{\mu})^{T}(\mathbf{A} - \boldsymbol{\mu}) - \mathbf{B}^{T}\mathbf{B}\|_{2}, \quad (4)$$

where σ_i is the *i*-th largest singular value of $(\mathbf{A} - \boldsymbol{\mu})$.

For simplicity, when $m=\Theta(d)$ and $n=\Omega(\ell^{3/2}d^{3/2})$, the error bound of Eq. (2) in Theorem 2 will become $\widetilde{O}(\frac{1}{\ell}\|(\mathbf{A}-\pmb{\mu})\|_F^2)$, which is then incorporated into Eq. (4) to get that

$$\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu}) \mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}}^{T} \|_{2}^{2}$$

$$\leq \sigma_{r+1}^{2} + \widetilde{O}(\frac{1}{\ell} \|(\mathbf{A} - \boldsymbol{\mu})\|_{F}^{2}). \tag{5}$$

Let $h = \|(\mathbf{A} - \boldsymbol{\mu})\|_F^2 / \|(\mathbf{A} - \boldsymbol{\mu})\|_2^2$ be the numeric rank of $(\mathbf{A} - \boldsymbol{\mu}) \in \mathbb{R}^{n \times d}$, which could be much smaller than d for a low-rank matrix $(\mathbf{A} - \boldsymbol{\mu}) \in \mathbb{R}^{n \times d}$ with d < n. If $\ell = \Omega(\frac{h\sigma_1^2}{\epsilon\sigma_{s+1}^2})$, then from Eq. (5) we have

$$\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}_{\mathbf{B}}\mathbf{W}_{\mathbf{B}}^{T}\|_{2}^{2} \le (1 + \epsilon)\sigma_{r+1}^{2}$$
$$= (1 + \epsilon)\|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}\mathbf{W}^{T}\|_{2}^{2}, \tag{6}$$

where $\sigma_1^2 = \|(\mathbf{A} - \boldsymbol{\mu})\|_2^2$ and $\sigma_{r+1}^2 = \|(\mathbf{A} - \boldsymbol{\mu}) - (\mathbf{A} - \boldsymbol{\mu})\mathbf{W}\mathbf{W}^T\|_2^2$ according to the definition.

References

- [1] P. Drineas and R. Kannan. Pass efficient algorithms for approximating large matrices. In *SODA*, volume 3, pages 223–232, 2003.
- [2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for largescale image retrieval. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(12):2916–2929, 2013.
- [3] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online sketching hashing. In *Proceedings of the IEEE conference on computer vision* and pattern recognition, pages 2503–2511, 2015.