Ensemble Methods

averaging, bagging, boosting, random forests

"Wisdom of Crowds" (Francis Galton)

http://en.wikipedia.org/wiki/Wisdom_of_the_crowd

• Many idiots ("weak learners") are often better than one expert

http://www.npr.org/2015/08/20/432978431/wighty-issue-cow-guessing-game-helps-to-explain-the-stock-market

Combination of several "decision stumps"

Ensemble Methods

- Instead of learning one model, learn several and combine. Different ways to get a set of models:
 - Averaging
 - Randomize each model (e.g. random initialization for gradient descent)
 - Bagging (Bootstrap Aggregation)
 - Randomize the dataset fed to a model
 - Random Forests
 - Do both
 - Boosting
 - Specialize each model for a subset of examples
- All can be applied on top of any "weak learner", but particularly popular with decision trees/stumps

Bagging

- Generate "bootstrap" replicates of training set by sampling with replacement
- Learn one model on each replicate
- Combine by uniform voting

Q: How much data of the original dataset are in each replica?

A: About 63%

Bagging on Trees

1) Bagging (randomizing the training set)

 \mathcal{S}_0

The full training set

 $\mathcal{S}_0^t \subset \mathcal{S}_0$

The randomly sampled subset of training data made available for the tree t

Forest training

Random Forests

- With bagging, often the trees look very correlated. Why?
- All trees pick the same (very good) splits
 - The trees become correlated, so averaging doesn't buy as much
- What can we do? Add more randomness:
 - at each node, only allow a random subset of ρ splits
 - Typically $\rho = \sqrt{|\mathcal{T}|}$

Decision forest model: the randomness model

2) Randomized node optimization (RNO)

 \mathcal{T}

The full set of all possible node test parameters

 $\mathcal{T}_j \subset \mathcal{T}$

For each node the set of randomly sampled features

 $\rho = |\mathcal{T}_j|$

Randomness control parameter.

For $\rho = |\mathcal{T}|$ no randomness and maximum tree correlation.

For $\rho = 1$ max randomness and minimum tree correlation.

The effect of ρ

Small value of ρ ; little tree correlation.

Large value of ρ ; large tree correlation.

Classification forest: the weak learner model

Examples of weak learners

Weak learner: axis aligned

$$h(\mathbf{v}, \boldsymbol{\theta}) = [\tau_1 > \boldsymbol{\phi}(\mathbf{v}) \cdot \boldsymbol{\psi} > \tau_2]$$
 Feature response for 2D example. $\boldsymbol{\phi}(\mathbf{v}) = (x_1 \ x_2 \ 1)^{\top}$ With $\boldsymbol{\psi} = (1 \ 0 \ \psi_3)$ or $\boldsymbol{\psi} = (0 \ 1 \ \psi_3)$

Weak learner: oriented line

$$h(\mathbf{v}, oldsymbol{ heta}) = [au_1 > oldsymbol{\phi}(\mathbf{v}) \cdot oldsymbol{\psi} > au_2]$$
 Feature response for 2D example. $\phi(\mathbf{v}) = (x_1 \ x_2 \ 1)^{ op}$ With $oldsymbol{\psi} \in \mathbb{R}^3$ a generic line in homog, coordinates.

Weak learner: conic section

$$h(\mathbf{v}, \boldsymbol{\theta}) = \begin{bmatrix} \tau_1 > \boldsymbol{\phi}^\top(\mathbf{v}) \; \boldsymbol{\psi} \; \boldsymbol{\phi}(\mathbf{v}) > \tau_2 \end{bmatrix}$$
 Feature response for 2D example.
$$\boldsymbol{\phi}(\mathbf{v}) = \begin{pmatrix} x_1 \; x_2 \; 1 \end{pmatrix}^\top$$
 With $\boldsymbol{\psi} \in \mathbb{R}^{3 \times 3}$ a matrix representing a conic.

In general $m{\phi}$ may select only a very small subset of features $\m{\phi}(\mathbf{v}): \mathbb{R}^d o \mathbb{R}^{d'+1}, \ \ d' << d$

Classification forest: the prediction model

Classification forest: the ensemble model

The ensemble model

Forest output probability
$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

Classification forest: effect of the weak learner model

Training different trees in the forest

Three concepts to keep in mind:

- "Accuracy of prediction"
- "Quality of confidence"
- "Generalization"

Classification forest: effect of the weak learner model

Training different trees in the forest

Testing different trees in the forest

Classification forest: effect of the weak learner model

Training different trees in the forest

Testing different trees in the forest

Classification forest: with >2 classes

Training different trees in the forest

Testing different trees in the forest

Classification forest: analysing generalization

Classification forest: analysing generalization

Classification forest: effect of weak learner model and randomness

Randomness: $\rho = 500$

Classification forest: effect of weak learner model and randomness

Randomness: $\rho = 50$

Classification forest: effect of weak learner model and randomness

Randomness: $\rho = 5$

Classification forest: effect of randomness

Boosting

• Defines a classifier using an additive model:

Boosting

• It is a sequential procedure:

Each data point has a class label:

$$y_t = \begin{pmatrix} +1 & \\ -1 & \\ \end{pmatrix}$$

and a weight: $w_t = 1$

Weak learners from the family of lines

Each data point has a class label:

$$y_t = \begin{cases} +1 & \\ -1 & \\ \end{pmatrix}$$

and a weight: $w_t = 1$

 $h \Rightarrow p(error) = 0.5$ it is at chance

This one seems to be the best

This is a 'weak classifier': It performs slightly better than chance.

Each data point has a class label:

$$y_t = \begin{pmatrix} +1 & \\ -1 & \\ \end{pmatrix}$$

We update the weights:

 $w_t - w_t \exp\{-y_t H_t\}$

Each data point has a class label:

$$y_t = \begin{cases} +1 & () \\ -1 & () \end{cases}$$

We update the weights:

$$\mathbf{w}_t \leftarrow \mathbf{w}_t \exp\{-\mathbf{y}_t \mathbf{H}_t\}$$

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

AdaBoost Algorithm

Given: m examples $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$

For t = 1 to T

The goodness of h_t is calculated over D, and the bad guesses.

- 1. Train learner h_t with min error $\mathcal{E}_t = \Pr_{i \sim D}[h_t(x_i) \neq y_i]$
- 2. Compute the hypothesis weight $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$ The weight Adapts. The bigger ε_t becomes the
- 3. For each example i = 1 to m

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

Output

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

smaller α_t becomes.

Boost example if incorrectly predicted.

Z_t is a normalization factor.

Linear combination of models.

Details: http://www.yorku.ca/gisweb/eats4400/boost.pdf

Boosting for face detection

First two features selected by boosting:

This feature combination can yield 100% detection rate and 50% false positive rate

Random Forest vs. Boosting

What are the pros and cons?

- Boosting:
 - +
 - -
- Random Forest:
 - +
 - -

Who wins?