A measure of Disperssion!

- 1) Variance
- 2 Standard Leviation
- 3 Range

1 Variance

population of

Sample s2

$$-2 = \frac{1}{\sqrt{1 + \sum_{i=1}^{j-1} (X_i - X_j)}}$$

population
$$\sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - u)^2$$

Sample
$$S = \frac{1}{n-1} \sum_{i=1}^{\infty} (x_i - \overline{x})^2$$

(3) Range :-

min = 1

mar = 27

=> kustosis

K= denote

Normal Disti.

2 Platikurtosis - KZ3

3 Lepto kutosis

& Emperical Rule of Distribution.

/ Emperical formula =

68-95-99.5

Variables

which It is a container box hold value inside it.

X = 10

Type of variable

vanable

Quantifetive Qualifative variable

-> Descret qunt. variable (whole number)

nominal gula var. (PIF, FIM, TIF)

_> Continous qual varble (Decimale number)

-> Ordinal qual. var. (10th, 12th, U.G. PG, Ph.D.)

1	χ,	× ₂ _	×3	X4	10
	Age	weight	educatry	Home	Gender
	18	40	10th	1	W
	19.6	50	ph.D.	2	F
	20.4	55.3	116	3	F
	30.8	75	Ph	1	\ \mathref{m}
	<i>y</i> 0. 0	80-8			1