# **Contents**

| C | ontents                                                                                                                                                                                                                                                                                                                | 8.20Half Plane Intersection                                                                                                                                                                                                                                                                                                      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Basic       1         1.1 Shell Script       1         1.2 Default Code       1         1.3 Increase Stack Size       1         1.4 Debug Macro       1         1.5 Pragma / FastIO       1         1.6 Divide*       2         Data Structure       2                                                                 | 9 Else       22         9.1 Bit Hack       22         9.2 Dynamic Programming Condition       22         9.2.1 Totally Monotone (Concave/Convex)       22         9.2.2 Monge Condition (Concave/Convex)       22         9.2.3 Optimal Split Point       22         9.3 Slope Trick       22         9.4 Manhattan MST       23 |
| 3 | 2.1 Leftist Tree       2         2.2 Splay Tree       2         2.3 Link Cut Tree       2         2.4 Treap       3         2.5 2D Segment Tree*       3         2.6 Range Set*       4         2.7 vEB Tree*       4         Flow / Matching       4                                                                  | 9.5 Dynamic MST       23         9.6 ALL LCS       24         9.7 Hilbert Curve       24         9.8 Pbds       24         9.9 Random       24         9.10Smawk Algorithm       24         9.11Matroid Intersection       24         9.12Python Misc       25                                                                   |
|   | 3.1 Dinic                                                                                                                                                                                                                                                                                                              | <pre>1 Basic 1.1 Shell Script</pre>                                                                                                                                                                                                                                                                                              |
| 4 | 3.8 Flow Model                                                                                                                                                                                                                                                                                                         | <pre>#!/usr/bin/env bash g++ -std=c++17 -DABS -Wall -Wextra -Wshadow \$1.cpp -o     \$1 &amp;&amp; ./\$1 for i in {AJ}; do cp tem.cpp \$i.cpp; done;</pre>                                                                                                                                                                       |
| _ | 4.4 Vertex BCC / Round Square Tree       9         4.5 SCC / 2SAT       9         4.6 Virtual Tree       9         4.7 Directed MST       10         4.8 Dominator Tree       10         String       10                                                                                                               | <pre>#include <bits stdc++.h=""> using namespace std; typedef long long l1;</bits></pre>                                                                                                                                                                                                                                         |
| , | String     10       5.1 Aho-Corasick Automaton     10       5.2 KMP Algorithm     11       5.3 Z Algorithm     11       5.4 Manacher     11       5.5 Suffix Array     11       5.6 SAIS     11                                                                                                                        | <pre>#define pb push_back #define pii pair<int, int=""> #define all(a) a.begin(), a.end() #define sz(a) ((int)a.size())  1.3 Increase Stack Size</int,></pre>                                                                                                                                                                    |
| 6 | 5.7 Suffix Automaton       12         5.8 Minimum Rotation       12         5.9 Palindrome Tree       12         5.10Main Lorentz       12         Math                                                                                                                                                                | <pre>const int size = 256 &lt;&lt; 20; register long rsp asm("rsp"); char *p = (char*)malloc(size) + size, *bak = (char*)rsp ;</pre>                                                                                                                                                                                             |
|   | 6.1 Miller Rabin / Pollard Rho                                                                                                                                                                                                                                                                                         | asm("movq %0, %%rsp\n"::"r"(p)); // mainasm("movq %0, %%rsp\n"::"r"(bak));  1.4 Debug Macro                                                                                                                                                                                                                                      |
|   | 6.8 Simplex       14         6.9 Berlekamp Massey       15         6.10Linear Programming Construction       15         6.11Euclidean       15         6.12Theorem       15         6.13Estimation       16         6.14General Purpose Numbers       16                                                               | <pre>void db() {cout &lt;&lt; endl;} template <typename t,="" typenameu=""> void db(T i, U</typename></pre>                                                                                                                                                                                                                      |
| 7 | 6.15Tips for Generating Funtion                                                                                                                                                                                                                                                                                        | 1.5 Pragma / FastIO                                                                                                                                                                                                                                                                                                              |
|   | 7.1 Number Theoretic Transform       16         7.2 Fast Fourier Transform       16         7.3 Primes       16         7.4 Polynomial Operations       16         7.5 Fast Linear Recursion       18         7.6 Fast Walsh Transform       18                                                                        | <pre>#pragma GCC optimize("Ofast,inline,unroll-loops") #pragma GCC target("bmi,bmi2,lzcnt,popcnt,avx2") #include<unistd.h> char OB[65536]; int OP; inline char RC() {</unistd.h></pre>                                                                                                                                           |
| 8 | Geometry       18         8.1 Basic       18         8.2 Heart       18         8.3 External Bisector       19         8.4 Intersection of Segments       19         8.5 Intersection of Circle and Line       19         8.6 Intersection of Circles       19         8.7 Intersection of Polygon and Circle       19 | <pre>static char buf[65536], *p = buf, *q = buf; return p == q &amp;&amp; (q = (p = buf) + read(0, buf, 65536)         ) == buf ? -1 : *p++; } inline int R() {     static char c;     while((c = RC()) &lt; '0'); int a = c ^ '0';</pre>                                                                                        |
|   | 8.8 Tangent Lines of Circle and Point198.9 Tangent Lines of Circles198.10Point In Convex198.11Point Segment Distance198.12Convex Hull198.13Convex Hull Distance208.14Minimum Enclosing Circle20                                                                                                                        | <pre>while((c = RC()) &gt;= '0') a *= 10, a += c ^ '0'; return a; } inline void W(int n) {     static char buf[12], p;     if (n == 0) OB[OP++]='0'; p = 0;</pre>                                                                                                                                                                |
|   | 8.15Union of Circles       20         8.16Union of Polygons       20         8.17Polar Angle Sort       20         8.18Rotating Caliper       20         8.19Rotating SweepLine       21                                                                                                                               | <pre>while (n) buf[p++] = '0' + (n % 10), n /= 10; for (p; p &gt;= 0;p) OB[OP++] = buf[p]; if (OP &gt; 65520) write(1, OB, OP), OP = 0; }</pre>                                                                                                                                                                                  |

#### 1.6 Divide\*

```
11 divdown(11 a, 11 b) {
    return a / b - (a < 0 && a % b);
}
11 divup(11 a, 11 b) {
    return a / b + (a > 0 && a % b);
}
a / b < x -> divdown(a, b) + 1 <= x
a / b <= x -> divup(a, b) <= x
x < a / b -> x <= divup(a, b) - 1
x <= a / b -> x <= divdown(a, b)</pre>
```

## 2 Data Structure

#### 2.1 Leftist Tree

```
struct node {
  11 rk, data, sz, sum;
node *1, *r;
  node(11 k) : rk(0), data(k), sz(1), l(0), r(0), sum(k)
       ) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 rk(node *p) { return p ? p->rk : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
 if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b)
  if (rk(a->r) > rk(a->l)) swap(a->r, a->l);
  a->rk = rk(a->r) + 1, a->sz = sz(a->l) + sz(a->r) +
      1;
 a \rightarrow sum = sum(a \rightarrow 1) + sum(a \rightarrow r) + a \rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

## 2.2 Splay Tree

```
struct Splay {
  int pa[N], ch[N][2], sz[N], rt, _id;
  11 v[N];
  Splay() {}
  void init() {
    rt = 0, pa[0] = ch[0][0] = ch[0][1] = -1;
    sz[0] = 1, v[0] = inf;
  int newnode(int p, int x) {
    int id = _id++;
    v[id] = x, pa[id] = p;
ch[id][0] = ch[id][1] = -1, sz[id] = 1;
    return id;
  void rotate(int i) {
    int p = pa[i], x = ch[p][1] == i, gp = pa[p], c =
         ch[i][!x];
    sz[p] -= sz[i], sz[i] += sz[p];
    if (~c) sz[p] += sz[c], pa[c] = p;
    ch[p][x] = c, pa[p] = i;
    pa[i] = gp, ch[i][!x] = p;
    if (~gp) ch[gp][ch[gp][1] == p] = i;
  void splay(int i) {
    while (~pa[i]) {
      int p = pa[i];
      if (~pa[p]) rotate(ch[pa[p]][1] == p ^ ch[p][1]
           == i ? i : p);
      rotate(i);
    }
    rt = i;
  int lower_bound(int x) {
  int i = rt, last = -1;
    while (true) {
      if (v[i] == x) return splay(i), i;
      if (v[i] > x) {
```

```
last = i;
        if (ch[i][0] == -1) break;
        i = ch[i][0];
      }
      else {
        if (ch[i][1] == -1) break;
        i = ch[i][1];
      }
    }
    splay(i);
    return last; // -1 if not found
  void insert(int x) {
    int i = lower_bound(x);
    if (i == -1) {
      // assert(ch[rt][1] == -1);
      int id = newnode(rt, x);
      ch[rt][1] = id, ++sz[rt];
      splay(id);
    else if (v[i] != x) {
      splay(i);
      int id = newnode(rt, x), c = ch[rt][0];
      ch[rt][0] = id;
      ch[id][0] = c;
      if (\sim c) pa[c] = id, sz[id] += sz[c];
      ++sz[rt];
      splay(id);
  }
};
```

## 2.3 Link Cut Tree

```
// weighted subtree size, weighted path max
struct LCT {
  int ch[N][2], pa[N], v[N], sz[N], sz2[N], w[N], mx[N
      ], _id;
  // sz := sum \ of \ v \ in \ splay, \ sz2 := sum \ of \ v \ in
      virtual subtree
  // mx := max w in splay
  bool rev[N];
  LCT() : _id(1) {}
  int newnode(int _v, int _w) {
    int x = _id++;
    ch[x][0] = ch[x][1] = pa[x] = 0;
    v[x] = sz[x] = _v;
    sz2[x] = 0;
    w[x] = mx[x] = w;
    rev[x] = false;
    return x;
  void pull(int i) {
    sz[i] = v[i] + sz2[i];
    mx[i] = w[i];
    if (ch[i][0])
      sz[i] += sz[ch[i][0]], mx[i] = max(mx[i], mx[ch[i])
          ][0]];
    if (ch[i][1])
      sz[i] += sz[ch[i][1]], mx[i] = max(mx[i], mx[ch[i])
          ][1]]);
  void push(int i) {
    if (rev[i]) reverse(ch[i][0]), reverse(ch[i][1]),
        rev[i] = false;
  void reverse(int i) {
    if (!i) return;
    swap(ch[i][0], ch[i][1]);
    rev[i] ^= true;
  bool isrt(int i) {// rt of splay
    if (!pa[i]) return true;
    return ch[pa[i]][0] != i && ch[pa[i]][1] != i;
  void rotate(int i) {
    int p = pa[i], x = ch[p][1] == i, c = ch[i][!x], gp
         = pa[p];
    if (ch[gp][0] == p) ch[gp][0] = i;
    else if (ch[gp][1] == p) ch[gp][1] = i;
    pa[i] = gp, ch[i][!x] = p, pa[p] = i;
    ch[p][x] = c, pa[c] = p;
```

```
pull(p), pull(i);
  void splay(int i) {
    vector<int> anc:
    anc.push_back(i);
    while (!isrt(anc.back())) anc.push_back(pa[anc.back
        ()]);
    while (!anc.empty()) push(anc.back()), anc.pop_back
        ();
    while (!isrt(i)) {
      int p = pa[i];
      if (!isrt(p)) rotate(ch[p][1] == i ^ ch[pa[p]][1]
           == p ? i : p);
      rotate(i);
    }
  void access(int i) {
    int last = 0;
    while (i) {
      splay(i);
      if (ch[i][1])
        sz2[i] += sz[ch[i][1]];
      sz2[i] -= sz[last];
      ch[i][1] = last;
      pull(i), last = i, i = pa[i];
    }
  void makert(int i) {
    access(i), splay(i), reverse(i);
  void link(int i, int j) {
    // assert(findrt(i) != findrt(j));
    makert(i);
    makert(j);
    pa[i] = j;
    sz2[j] += sz[i];
    pull(j);
  void cut(int i, int j) {
    makert(i), access(j), splay(i);
    // assert(sz[i] == 2 && ch[i][1] == j);
    ch[i][1] = pa[j] = 0, pull(i);
  int findrt(int i) {
    access(i), splay(i);
    while (ch[i][0]) push(i), i = ch[i][0];
    splay(i);
    return i;
  }
};
```

#### 2.4 Treap

```
struct node {
  int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
    sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  void down() {}
// delete default code sz
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() % (sz(a) + sz(b)) < sz(a))
    return a \rightarrow down(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow up(), a
  return b->down(), b->l = merge(a, b->l), b->up(), b;
void split(node *o, node *&a, node *&b, int k) {
  if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o->r, a->r, b, k), <math>a->up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
 if (sz(o) <= k) return a = o, b = 0, void();</pre>
```

```
o->down();
  if (sz(o->1) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - sz(o->l) - 1);
  else b = o, split2(o->1, a, b->1, k);
  o->up();
node *kth(node *o, int k) {
  if (k <= sz(o->1)) return kth(o->1, k);
  if (k == sz(o->1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow l) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o\rightarrow 1) + 1 + Rank(o\rightarrow r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t;
    return 1;
  node *&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
  node *a, *b;
  o->down(), split(o, a, b, k),
  o = merge(a, merge(new node(k), b));
  o->up();
void interval(node *&o, int 1, int r) {
  node *a, *b, *c; // [l, r)
  o->down();
  split2(o, a, b, 1), split2(b, b, c, r - 1);
  // operate
  o = merge(a, merge(b, c)), o->up();
```

#### 2.5 2D Segment Tree\*

```
// 2D range add, range sum in log^2
struct seg {
  int 1, r;
  11 sum, 1z;
  seg *ch[2]{};
  seg(int _1, int _r) : 1(_1), r(_r), sum(0), lz(0) {}
  void push() {
     if (lz) ch[0] \rightarrow add(l, r, lz), ch[1] \rightarrow add(l, r, lz),
           1z = 0;
  void pull() \{sum = ch[0] -> sum + ch[1] -> sum;\}
  void add(int _1, int _r, ll d) {
  if (_1 <= 1 && r <= _r) {</pre>
       sum += d * (r - 1);
       lz += d;
       return:
     if (!ch[0]) ch[0] = new seg(1, 1 + r >> 1), ch[1] =
           new seg(l + r >> 1, r);
     push();
     if (_l < l + r >> 1) ch[0]->add(_l, _r, d);
     if (1 + r >> 1 < _r) ch[1]->add(_1, _r, d);
     pull();
  il qsum(int _l, int _r) {
  if (_l <= l && r <= _r) return sum;
  if (!ch[0]) return lz * (min(r, _r) - max(l, _l));</pre>
     push();
     11 \text{ res} = 0;
     if (_1 < 1 + r >> 1) res += ch[0]->qsum(_1, _r);
     if (l + r >> 1 < _r) res += ch[1]->qsum(_l, _r);
     return res;
  }
};
struct seg2 {
  int 1, r;
  seg v, lz;
seg2 *ch[2]{};
```

```
seg2(int _1, int _r) : 1(_1), r(_r), v(0, N), lz(0, N
     if (1 < r - 1) ch[0] = new seg2(1, 1 + r >> 1), ch
         [1] = new seg2(1 + r >> 1, r);
  void add(int _1, int _r, int _12, int _r2, 11 d) {
    v.add(_12, _r2, d * (min(r, _r) - max(1, _1)));
if (_1 <= 1 && r <= _r) {
       lz.add(_12, _r2, d);
       return;
    if (_1 < 1 + r >> 1) ch[0]->add(_1, _r, _12, _r2, d
    if (1 + r >> 1 < _r) ch[1]->add(_1, _r, _12, _r2, d
         );
  11 qsum(int _1, int _r, int _12, int _r2) {
  if (_1 <= 1 && r <= _r) return v.qsum(_12,</pre>
                                                       r2);
    11 \text{ res} = 1z.qsum(_12, _r2) * (min(r, _r) - max(1,
          _1));
    if (_1 < 1 + r >> 1) res += ch[0]->qsum(_1, _r, _12)
            _r2);
    if (1 + r >> 1 < _r) res += ch[1]->qsum(_1, _r, _12
         , _r2);
    return res:
  }
};
```

## 2.6 Range Set\*

```
struct RangeSet { // [l, r)
  set <pii> S;
  void cut(int x) {
    auto it = S.lower_bound(\{x + 1, -1\});
    if (it == S.begin()) return;
    auto [1, r] = *prev(it);
    if (1 >= x || x >= r) return;
    S.erase(prev(it));
    S.insert(\{1, x\});
    S.insert({x, r});
  }
  vector <pii> split(int l, int r) {
    // remove and return ranges in [l, r)
    cut(1), cut(r);
    vector <pii> res;
    while (true) {
      auto it = S.lower_bound({1, -1});
       if (it == S.end() || r <= it->first) break;
      res.pb(*it), S.erase(it);
    }
    return res;
  }
  void insert(int 1, int r) {
    // add a range [l, r), [l, r) not in S
    auto it = S.lower_bound({1, r});
    if (it != S.begin() && prev(it)->second == 1)
      1 = prev(it)->first, S.erase(prev(it));
    if (it != S.end() && r == it->first)
      r = it->second, S.erase(it);
    S.insert({1, r});
  bool count(int x) {
    auto it = S.lower_bound(\{x + 1, -1\});
    return it != S.begin() && prev(it)->first <= x && x</pre>
          < prev(it)->second;
};
```

## 2.7 vEB Tree\*

```
using u64=uint64_t;
constexpr int lsb(u64 x){return x?__builtin_ctzll(x)
        :1<<30;}
constexpr int msb(u64 x){return x?63-__builtin_clzll(x)
        :-1;}
template<int N, class T=void>
struct veb{
    static const int M=N>>1;
    veb<M> ch[1<<N-M];
    veb<N-M> aux;
    int mn,mx;
    veb():mn(1<<30),mx(-1){}</pre>
```

```
constexpr int mask(int x){return x&((1<<M)-1);}</pre>
  bool empty(){return mx==-1;}
  int min(){return mn;}
  int max(){return mx;}
  bool have(int x){
    if(x==mn) return true;
    return ch[x>>M].have(mask(x));
  void insert_in(int x){
    if(empty()) return mn=mx=x,void();
    if(x<mn) swap(x,mn);</pre>
    if(x>mx) mx=x;
    if(ch[x>>M].empty()) aux.insert_in(x>>M);
    ch[x>>M].insert_in(mask(x));
  void erase_in(int x){
    if(mn==mx) return mn=1<<30, mx=-1, void();
    if(x==mn) mn=x=(aux.min()<<M)^ch[aux.min()].min();</pre>
    ch[x>>M].erase_in(mask(x));
    if(ch[x>>M].empty()) aux.erase_in(x>>M);
    if(x==mx){
      if(aux.empty()) mx=mn;
      else mx=(aux.max()<<M)^ch[aux.max()].max();</pre>
  void insert(int x){
    if(have(x)) return;
    insert_in(x);
  void erase(int x){
    if(!have(x)) return;
    erase_in(x);
  int next(int x){//} >= x
    if(x>mx) return 1<<30;
    if(x<=mn) return mn;</pre>
    if(mask(x)<=ch[x>>M].max()) return ((x>>M)<<M)^ch[x</pre>
        >>M].next(mask(x));
    int y=aux.next((x>>M)+1);
    return (y<<M)^ch[y].min();</pre>
  int prev(int x){// <x</pre>
    if(x<=mn) return -1;</pre>
    if(x>mx) return mx;
    if(x<=(aux.min()<<M)+ch[aux.min()].min()) return mn</pre>
    if(mask(x)>ch[x>>M].min()) return ((x>>M)<<M)^ch[x</pre>
         >>M].prev(mask(x));
    int y=aux.prev(x>>M);
    return (y<<M)^ch[y].max();</pre>
};
template<int N>
struct veb<N,typename enable_if<N<=6>::type>{
  u64 a;
  veb():a(0){}
  void insert in(int x){a|=1ull<<x;}</pre>
  void insert(int x){a|=1ull<<x;}</pre>
  void erase_in(int x){a&=~(1ull<<x);}</pre>
  void erase(int x){a&=~(1ull<<x);}</pre>
  bool have(int x){return a>>x&1;}
  bool empty(){return a==0;}
  int min(){return lsb(a);}
  int max(){return msb(a);}
  int next(int x){return lsb(a&~((1ull<<x)-1));}</pre>
  int prev(int x){return msb(a&((1ull<<x)-1));}</pre>
```

# 3 Flow / Matching

## 3.1 Dinic

```
const ll INF = 1ll << 60;
template <typename T>
struct Dinic { // 0-base
    struct edge {
        int to, rev;
        T cap, flow;
    };
    vector<edge> adj[N];
    int s, t, dis[N], cur[N], n;
```

```
T dfs(int u, T cap) {
  if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < (int)adj[u].size(); ++i)</pre>
      edge &e = adj[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        T df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          adj[e.to][e.rev].flow -= df;
          return df;
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int tmp = q.front();
      q.pop();
      for (auto &u : adj[tmp])
        if (!~dis[u.to] && u.flow != u.cap) {
          q.push(u.to);
          dis[u.to] = dis[tmp] + 1;
        }
    return dis[t] != -1;
  T solve(int _s, int _t) {
                 _t;
    s = _s, t = _s
    T flow = 0, df;
    while (bfs()) {
      fill_n(cur, n, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow;
  }
  void init(int _n) {
    for (int i = 0; i < n; ++i) adj[i].clear();</pre>
  void reset() {
    for (int i = 0; i < n; ++i)</pre>
      for (auto &j : adj[i]) j.flow = 0;
  void add_edge(int u, int v, T cap) {
    adj[u].pb(edge{v, (int)adj[v].size(), cap, 0});
    adj[v].pb(edge{u, (int)adj[u].size() - 1, 0, 0});
};
```

## 3.2 Min Cost Max Flow

```
template <typename T1, typename T2>
struct MCMF { // T1 -> flow, T2 -> cost, 0-based
 const T1 INF1 = 1 << 30;</pre>
  const T2 INF2 = 1 << 30;</pre>
 struct edge {
   int v; T1 f; T2 c;
 } E[M << 1];
  vector <int> adj[N];
 T2 dis[N], pot[N];
  int rt[N], vis[N], n, m, s, t;
 bool SPFA() {
    fill_n(rt, n, -1), fill_n(dis, n, INF2);
    fill_n(vis, n, false);
    queue <int> q;
    q.push(s), dis[s] = 0, vis[s] = true;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      vis[v] = false;
      for (int id : adj[v]) if (E[id].f > 0 && dis[E[id
          ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
          v1) {
        dis[E[id].v] = dis[v] + E[id].c + pot[v] - pot[
            E[id].v], rt[E[id].v] = id;
        if (!vis[E[id].v]) vis[E[id].v] = true, q.push(
            E[id].v);
```

```
}
     return dis[t] != INF2;
   }
   bool dijkstra() {
     fill_n(rt, n, -1), fill_n(dis, n, INF2);
     priority_queue <pair <T2, int>, vector <pair <T2,
    int>>, greater <pair <T2, int>>> pq;
     dis[s] = 0, pq.emplace(dis[s], s);
     while (!pq.empty()) {
       auto [d, v] = pq.top(); pq.pop();
       if (dis[v] < d) continue;</pre>
       for (int id : adj[v]) if (E[id].f > 0 && dis[E[id
            ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
            v1) {
         dis[E[id].v] = dis[v] + E[id].c + pot[v] - pot[
              E[id].v], rt[E[id].v] = id;
         pq.emplace(dis[E[id].v], E[id].v);
       }
     }
     return dis[t] != INF2;
   pair <T1, T2> solve(int _s, int _t) {
     s = _s, t = _t, fill_n(pot, n, 0);
     T1 flow = 0; T2 cost = 0;
     bool fr = true;
     while ((fr ? SPFA() : dijkstra())) {
       for (int i = 0; i < n; i++) {</pre>
         dis[i] += pot[i] - pot[s];
       T1 add = INF1;
       for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
         add = min(add, E[rt[i]].f);
       for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
         E[rt[i]].f -= add, E[rt[i] ^ 1].f += add;
       flow += add, cost += add * dis[t];
       fr = false;
       for (int i = 0; i < n; ++i) swap(dis[i], pot[i]);</pre>
     return make_pair(flow, cost);
   void init(int _n) {
     n = _n, m = 0;
for (int i = 0; i < n; ++i) adj[i].clear();</pre>
   void reset() {
     for (int i = 0; i < m; ++i) E[i].f = 0;</pre>
   void add_edge(int u, int v, T1 f, T2 c) {
     adj[u].pb(m), E[m++] = \{v, f, c\};
     adj[v].pb(m), E[m++] = \{u, 0, -c\};
};
```

#### 3.3 Kuhn Munkres

```
template <typename T>
struct KM { // 0-based
  T w[N][N], h1[N], hr[N], slk[N];
  T fl[N], fr[N], pre[N]; int n;
bool vl[N], vr[N];
  const T INF = 1e9;
  queue <int> q;
  KM (int _n) : n(_n) {
    for (int i = 0; i < n; ++i) for (int j = 0; j < n;
         ++j)
        w[i][j] = -INF;
  void add_edge(int a, int b, int wei) {
   w[a][b] = wei;
  bool check(int x) {
    if (vl[x] = 1, \sim fl[x]) return q.push(fl[x]), vr[fl[
         x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void bfs(int s) {
    fill(slk, slk + n, INF), fill(vl, vl + n, 0), fill(vl, vl + n, 0)
         vr, vr + n, 0);
```

```
q.push(s), vr[s] = 1;
    while (1) {
      T d:
      while (!q.empty()) {
        int y = q.front(); q.pop();
        for (int x = 0; x < n; ++x)
          if (!vl[x] \&\& slk[x] >= (d = hl[x] + hr[y] -
               w[x][y])
            if (pre[x] = y, d) slk[x] = d;
            else if (!check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
        if (!vl[x] && d > slk[x]) d = slk[x];
      for (int x = 0; x < n; ++x) {
        if (v1[x]) h1[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x) if (!v1[x] && !s1k[x]
           && !check(x)) return;
    }
  }
  T solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1), fill(hr
          hr + n, 0);
        (int i = 0; i < n; ++i) hl[i] = *max_element(w[
        i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    T res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
  }
};
```

## 3.4 SW Min Cut

```
template <typename T>
struct SW { // 0-based
  T g[N][N], sum[N]; int n;
  bool vis[N], dead[N];
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) fill(g[i], g[i] + n, 0)
    fill(dead, dead + n, false);
  }
  void add_edge(int u, int v, T w) {
    g[u][v] += w, g[v][u] += w;
  T solve() {
    T ans = 1 << 30;
    for (int round = 0; round + 1 < n; ++round) {</pre>
      fill(vis, vis + n, false), fill(sum, sum + n, 0);
      int num = 0, s = -1, t = -1;
      while (num < n - round) {</pre>
        int now = -1;
        for (int i = 0; i < n; ++i) if (!vis[i] && !</pre>
             dead[i]) {
             if (now == -1 || sum[now] < sum[i]) now = i</pre>
          }
        s = t, t = now;
        vis[now] = true, num++;
        for (int i = 0; i < n; ++i) if (!vis[i] && !</pre>
             dead[i]) {
             sum[i] += g[now][i];
          }
      }
      ans = min(ans, sum[t]);
      for (int i = 0; i < n; ++i) {</pre>
        g[i][s] += g[i][t];
        g[s][i] += g[t][i];
      dead[t] = true;
    return ans;
};
```

## 3.5 Gomory Hu Tree

```
vector <array <int, 3>> GomoryHu(Dinic <int> flow) {
  // Tree edge min = mincut (0-based)
  // Complexity: run flow n times
  int n = flow.n;
  vector <array <int, 3>> ans;
  vector <int> rt(n);
  for (int i = 1; i < n; ++i) {</pre>
    int t = rt[i];
    flow.reset();
    ans.pb({i, t, flow.solve(i, t)});
    flow.bfs();
    for (int j = i + 1; j < n; ++j) if (rt[j] == t &&</pre>
        flow.dis[j] != -1) {
      rt[j] = i;
    }
  }
  return ans:
3.6 Blossom
struct Matching { // 0-based
  int fa[N], pre[N], match[N], s[N], v[N], n, tk;
  vector <int> g[N];
  queue <int> q;
  Matching (int _n) : n(_n), tk(0) {
```

```
for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;</pre>
  for (int i = 0; i < n; ++i) g[i].clear();</pre>
void add_edge(int u, int v) {
  g[u].push_back(v), g[v].push_back(u);
int Find(int u) {
  return u == fa[u] ? u : fa[u] = Find(fa[u]);
int lca(int x, int y) {
  x = Find(x), y = Find(y);
  for (; ; swap(x, y)) {
    if (x != n) {
     if (v[x] == tk) return x;
      v[x] = tk;
      x = Find(pre[match[x]]);
    }
void blossom(int x, int y, int 1) {
  while (Find(x) != 1) {
    pre[x] = y, y = match[x];
if (s[y] == 1) q.push(y), s[y] = 0;
    if (fa[x] == x) fa[x] = 1;
    if (fa[y] == y) fa[y] = 1;
    x = pre[y];
  }
bool bfs(int r) {
  for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;
  while (!q.empty()) q.pop();
  q.push(r);
  s[r] = 0;
  while (!q.empty()) {
    int x = q.front(); q.pop();
    for (int u : g[x]) {
      if (s[u] == -1) {
        pre[u] = x, s[u] = 1;
        if (match[u] == n) {
          for (int a = u, b = x, last; b != n; a =
               last, b = pre[a])
            last = match[b], match[b] = a, match[a] =
          return true;
        q.push(match[u]);
        s[match[u]] = 0;
      } else if (!s[u] && Find(u) != Find(x)) {
        int 1 = lca(u, x);
        blossom(x, u, 1);
        blossom(u, x, 1);
      }
   }
  }
  return false;
```

```
}
int solve() {
   int res = 0;
   for (int x = 0; x < n; ++x) {
      if (match[x] == n) res += bfs(x);
   }
   return res;
}
</pre>
```

## 3.7 Weighted Blossom

```
struct WeightGraph { // 1-based
 static const int inf = INT_MAX;
  static const int maxn = 514;
  struct edge {
   int u, v, w;
    edge(){}
    edge(int u, int v, int w): u(u), v(v), w(w) {}
  int n, n_x;
 edge g[maxn * 2][maxn * 2];
 int lab[maxn * 2];
 int match[maxn * 2], slack[maxn * 2], st[maxn * 2],
      pa[maxn * 2];
 int flo_from[maxn * 2][maxn + 1], S[maxn * 2], vis[
      maxn * 2];
 vector<int> flo[maxn * 2];
  queue<int> q;
 int e_delta(const edge &e) { return lab[e.u] + lab[e.
      v] - g[e.u][e.v].w * 2; }
  void update_slack(int u, int x) { if (!slack[x] ||
      e_{delta}(g[u][x]) < e_{delta}(g[slack[x]][x])) slack
      [x] = u;
 void set_slack(int x) {
    slack[x] = 0;
    for (int u = 1; u <= n; ++u)</pre>
      if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
        update_slack(u, x);
  void q_push(int x) {
   if (x \le n) q.push(x);
    else for (size_t i = 0; i < flo[x].size(); i++)</pre>
        q_push(flo[x][i]);
  void set_st(int x, int b) {
    st[x] = b;
    if (x > n) for (size_t i = 0; i < flo[x].size(); ++</pre>
        i) set_st(flo[x][i], b);
  int get_pr(int b, int xr) {
    int pr = find(flo[b].begin(), flo[b].end(), xr) -
        flo[b].begin();
    if (pr % 2 == 1) {
      reverse(flo[b].begin() + 1, flo[b].end());
      return (int)flo[b].size() - pr;
    }
    return pr;
 }
 void set_match(int u, int v) {
    match[u] = g[u][v].v;
    if (u <= n) return;</pre>
    edge e = g[u][v];
    int xr = flo_from[u][e.u], pr = get_pr(u, xr);
    for (int i = 0; i < pr; ++i) set_match(flo[u][i],</pre>
        flo[u][i ^ 1]);
    set_match(xr, v);
    rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].
        end());
  void augment(int u, int v) {
    for (; ; ) {
      int xnv = st[match[u]];
      set_match(u, v);
      if (!xnv) return;
      set_match(xnv, st[pa[xnv]]);
      u = st[pa[xnv]], v = xnv;
   }
 }
  int get_lca(int u, int v) {
   static int t = 0;
    for (++t; u || v; swap(u, v)) {
```

```
if (u == 0) continue;
    if (vis[u] == t) return u;
    vis[u] = t;
    u = st[match[u]];
   if (u) u = st[pa[u]];
 return 0;
}
void add_blossom(int u, int lca, int v) {
 int b = n + 1;
  while (b <= n_x && st[b]) ++b;</pre>
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0;
  match[b] = match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for (int x = u, y; x != lca; x = st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y = st[
        match[x]]), q_push(y);
  reverse(flo[b].begin() + 1, flo[b].end());
  for (int x = v, y; x != lca; x = st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y = st[
        match[x]]), q_push(y);
  set_st(b, b);
  for (int x = 1; x <= n_x; ++x) g[b][x].w = g[x][b].
      w = 0;
  for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;
  for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
    int xs = flo[b][i];
    for (int x = 1; x <= n_x; ++x)
  if (g[b][x].w == 0 || e_delta(g[xs][x]) <</pre>
          e_delta(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    for (int x = 1; x <= n; ++x)</pre>
      if (flo_from[xs][x]) flo_from[b][x] = xs;
  }
  set_slack(b);
void expand_blossom(int b) {
  for (size_t i = 0; i < flo[b].size(); ++i)</pre>
    set_st(flo[b][i], flo[b][i]);
  int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b,
  for (int i = 0; i < pr; i += 2) {</pre>
    int xs = flo[b][i], xns = flo[b][i + 1];
    pa[xs] = g[xns][xs].u;
    S[xs] = 1, S[xns] = 0;
    slack[xs] = 0, set_slack(xns);
    q_push(xns);
  S[xr] = 1, pa[xr] = pa[b];
  for (size_t i = pr + 1; i < flo[b].size(); ++i) {</pre>
   int xs = flo[b][i];
    S[xs] = -1, set_slack(xs);
  st[b] = 0;
bool on_found_edge(const edge &e) {
  int u = st[e.u], v = st[e.v];
  if (S[v] == -1) {
    pa[v] = e.u, S[v] = 1;
    int nu = st[match[v]];
    slack[v] = slack[nu] = 0;
    S[nu] = 0, q_push(nu);
  } else if (S[v] == 0) {
    int lca = get_lca(u, v);
    if (!lca) return augment(u,v), augment(v,u), true
    else add_blossom(u, lca, v);
 return false;
bool matching() {
 memset(S + 1, -1, sizeof(int) * n_x);
  memset(slack + 1, 0, sizeof(int) * n_x);
  q = queue<int>();
  for (int x = 1; x <= n_x; ++x)
    if (st[x] == x && !match[x]) pa[x] = 0, S[x] = 0,
         q_push(x);
  if (q.empty()) return false;
  for (;;) {
    while (q.size()) {
```

```
int u = q.front(); q.pop();
        if (S[st[u]] == 1) continue;
        for (int v = 1; v <= n; ++v)</pre>
          if (g[u][v].w > 0 && st[u] != st[v]) {
             if (e_delta(g[u][v]) == 0) {
              if (on_found_edge(g[u][v])) return true;
             } else update_slack(u, st[v]);
      int d = inf;
      for (int b = n + 1; b \le n_x; ++b)
        if (st[b] == b && S[b] == 1) d = min(d, lab[b]
      for (int x = 1; x <= n_x; ++x)
        if (st[x] == x && slack[x]) {
          if (S[x] == -1) d = min(d, e_delta(g[slack[x
               ]][x]));
           else if (S[x] == 0) d = min(d, e_delta(g[
               slack[x]][x]) / 2);
      for (int u = 1; u <= n; ++u) {</pre>
        if (S[st[u]] == 0) {
          if (lab[u] <= d) return 0;</pre>
          lab[u] -= d;
        } else if (S[st[u]] == 1) lab[u] += d;
      for (int b = n + 1; b <= n_x; ++b)</pre>
        if (st[b] == b) {
          if (S[st[b]] == 0) lab[b] += d * 2;
          else if (S[st[b]] == 1) lab[b] -= d * 2;
      q = queue<int>();
      for (int x = 1; x <= n_x; ++x)</pre>
        if (st[x] == x && slack[x] && st[slack[x]] != x
              && e_delta(g[slack[x]][x]) == 0)
           if (on_found_edge(g[slack[x]][x])) return
               true;
      for (int b = n + 1; b \le n_x; ++b)
        if (st[b] == b && S[b] == 1 && lab[b] == 0)
             expand_blossom(b);
    return false:
  pair<long long, int> solve() {
    memset(match + 1, 0, sizeof(int) * n);
    n_x = n;
    int n_matches = 0;
    long long tot_weight = 0;
    for (int u = 0; u \leftarrow n; ++u) st[u] = u, flo[u].
        clear();
    int w_max = 0;
    for (int u = 1; u <= n; ++u)</pre>
      for (int v = 1; v <= n; ++v) {
        flo_from[u][v] = (u == v ? u : 0);
        w_{max} = max(w_{max}, g[u][v].w);
    for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
    while (matching()) ++n_matches;
    for (int u = 1; u <= n; ++u)
      if (match[u] && match[u] < u)</pre>
        tot_weight += g[u][match[u]].w;
    return make_pair(tot_weight, n_matches);
  void add_edge(int ui, int vi, int wi) { g[ui][vi].w =
       g[vi][ui].w = wi; }
  void init(int _n) {
    n = _n;
    for (int u = 1; u \leftarrow n; ++u)
      for (int v = 1; v <= n; ++v)</pre>
        g[u][v] = edge(u, v, 0);
  }
};
```

## 3.8 Flow Model

- Maximum/Minimum flow with lower bound / Circulation problem
  - 1. Construct super source S and sink T.
  - 2. For each edge (x,y,l,u), connect  $x \to y$  with capacity u-l. 3. For each vertex  $\boldsymbol{v}$ , denote by  $in(\boldsymbol{v})$  the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
  - 4. If in(v)>0, connect  $S \to v$  with capacity in(v), otherwise, connect v o T with capacity -in(v).

- To maximize, connect  $t \to s$  with capacity  $\infty$  (skip this in circulation problem), and let f be the maximum flow from S to T. If  $f \neq \sum_{v \in V, in(v) > 0} in(v)$ , there's no solution. Otherwise, the maximum flow from s to t is
- To minimize, let f be the maximum flow from S to T. Connect  $t \to s$  with capacity  $\infty$  and let the flow from S to T be f'. If  $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$ , there's no solution. Otherwise,  $f^{\prime}$  is the answer.
- 5. The solution of each edge e is  $l_e + f_e$ , where  $f_e$  corresponds to the flow of edge e on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph (X, Y)
  - 1. Redirect every edge:  $y \to x$  if  $(x,y) \in M$ ,  $x \to y$  otherwise.

  - 2. DFS from unmatched vertices in X. 3.  $x \in X$  is chosen iff x is unvisited. 4.  $y \in Y$  is chosen iff y is visited.
- Maximum density induced subgraph
  - 1. Binary search on answer, suppose we're checking answer  ${\cal T}$
  - 2. Construct a max flow model, let K be the sum of all weights 3. Connect source  $s \to v$ ,  $v \in G$  with capacity K 4. For each edge (u,v,w) in G, connect  $u \to v$  and  $v \to u$  with

  - capacity  $\boldsymbol{w}$
  - 5. For  $v\in G$ , connect it with sink  $v\to t$  with capacity  $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
  - 6. T is a valid answer if the maximum flow f < K |V|
- Minimum weight edge cover
  - 1. For each  $v \in V$  create a copy v', and connect  $u' \to v'$  with weight w(u,v). 2. Connect v o v' with weight  $2\mu(v)$ , where  $\mu(v)$  is the cost of

  - the cheapest edge incident to v. 3. Find the minimum weight perfect matching on  $G^\prime$ .
- Project selection problem
  - 1. If  $p_v>0$ , create edge (s,v) with capacity  $p_v$ ; otherwise,
  - create edge (v,t) with capacity  $-p_v$ . 2. Create edge (u,v) with capacity w with w being the cost of
  - choosing  $\boldsymbol{u}$  without choosing  $\boldsymbol{v}.$  3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity  $c_x$  and create edge (s,y) with capacity  $\overset{\circ}{c}_y$  .
- 2. Create edge (x,y) with capacity  $c_{xy}$
- 3. Create edge (x,y) and edge (x',y') with capacity  $c_{xyx'y'}$ .

# 4 Graph

# 4.1 Heavy-Light Decomposition

```
vector <int> g[N];
int dep[N], pa[N], sz[N], ch[N], hd[N], id[N], _id;
void dfs(int i, int p) {
  dep[i] = \sim p ? dep[p] + 1 : 0;
  pa[i] = p, sz[i] = 1, ch[i] = -1;
  for (int j : g[i]) if (j != p) {
    dfs(j, i);
    if (ch[i] == -1 || sz[ch[i]] < sz[j]) ch[i] = j;</pre>
    sz[i] += sz[j];
void hld(int i, int p, int h) {
  hd[i] = h;
  id[i] = _id++;
  if (~ch[i]) hld(ch[i], i, h);
  for (int j : g[i]) if (j != p && j != ch[i])
    hld(j, i, j);
void query(int i, int j) {
  // query2 -> [l, r)
  while (hd[i] != hd[j]) {
    if (dep[hd[i]] < dep[hd[j]]) swap(i, j);</pre>
    query2(id[hd[i]], id[i] + 1), i = pa[hd[i]];
  if (dep[i] < dep[j]) swap(i, j);</pre>
  query2(id[j], id[i] + 1);
```

#### 4.2 Centroid Decomposition

```
vector <int> g[N];
int dis[N][logN], pa[N], sz[N], dep[N];
bool vis[N];
void dfs_sz(int i, int p) {
  sz[i] = 1;
  for (int j : g[i]) if (j != p && !vis[j])
    dfs_sz(j, i), sz[i] += sz[j];
int cen(int i, int p, int _n) {
  for (int j : g[i]) if (j != p && !vis[j] && sz[j] >
    return cen(j, i, _n);
void dfs_dis(int i, int p, int d) {
 // from i to ancestor with depth d
  dis[i][d] = \sim p ? dis[p][d] + 1 : 0;
  for (int j : g[i]) if (j != p && !vis[j])
    dfs_dis(j, i, d);
void cd(int i, int p, int d) {
 dfs_sz(i, -1), i = cen(i, -1, sz[i]);
vis[i] = true, pa[i] = p, dep[i] = d;
  dfs_dis(i, -1, d);
 for (int j : g[i]) if (!vis[j])
    cd(j, i, d + 1);
```

## 4.3 Edge BCC

```
vector <int> g[N], _g[N];
// Notice Multiple Edges
int pa[N], low[N], dep[N], bcc_id[N], _id;
vector <int> stk, bcc[N];
bool vis[N], is_bridge[N];
void dfs(int i, int p = -1) {
  low[i] = dep[i] = \sim p ? dep[p] + 1 : 0;
  stk.pb(i), pa[i] = p, vis[i] = true;
  for (int j : g[i]) if (j != p) {
    if (!vis[j])
      dfs(j, i), low[i] = min(low[i], low[j]);
    else
      low[i] = min(low[i], dep[j]);
  if (low[i] == dep[i]) {
    if (~p) is_bridge[i] = true; // (i, pa[i])
    int id = _id++, x;
    do {
      x = stk.back(), stk.pop_back();
bcc_id[x] = id, bcc[id].pb(x);
    } while (x != i);
  }
void build(int n) {
  for (int i = 0; i < n; ++i) if (!vis[i])</pre>
  for (int i = 0; i < n; ++i) if (is bridge[i]) {</pre>
    int u = bcc_id[i], v = bcc_id[pa[i]];
    _g[u].pb(v), _g[v].pb(u);
}
```

## 4.4 Vertex BCC / Round Square Tree

```
vector <int> g[N], _g[N << 1];
// _g: index >= N: bcc, index < N: original vertex</pre>
int pa[N], dep[N], low[N], _id;
bool vis[N];
vector <int> stk;
void dfs(int i, int p = -1) {
  dep[i] = low[i] = \sim p ? dep[p] + 1 : 0;
  stk.pb(i), pa[i] = p, vis[i] = true;
  for (int j : g[i]) if (j != p) {
    if (!vis[j]) {
      dfs(j, i), low[i] = min(low[i], low[j]);
      if (low[j] >= dep[i]) {
        int id = _id++, x;
        do {
          x = stk.back(), stk.pop_back();
           g[id + N].pb(x), g[x].pb(id + N);
        } while (x != j);
        _g[id + N].pb(i), _g[i].pb(id + N);
```

```
} else low[i] = min(low[i], dep[j]);
}
bool is_cut(int x) {return _g[x].size() != 1;}
vector <int> bcc(int x) {return _g[x + N];}
int pa2[N << 1], dep2[N << 1];
void dfs2(int i, int p = -1) {
  dep2[i] = ~p ? dep2[p] + 1 : 0, pa2[i] = p;
  for (int j : _g[i]) if (j != p) {
    dfs2(j, i);
  }
}
int bcc_id(int u, int v) {
  if (dep2[u] < dep2[v]) swap(u, v);
  return pa2[u] - N;
}
void build(int n) {
  for (int i = 0; i < n; ++i) if (!vis[i])
    dfs(i), dfs2(i);
}</pre>
```

#### 4.5 SCC / 2SAT

```
struct SAT {
   vector <int> g[N << 1], stk;</pre>
   int dep[N << 1], low[N << 1], scc_id[N << 1];</pre>
   int n, _id, _t;
   bool is[N];
   SAT() {}
   void init(int _n) {
  n = _n, _id = _t = 0;
     for (int i = 0; i < 2 * n; ++i)
       g[i].clear(), dep[i] = scc_id[i] = -1;
     stk.clear():
  void add_edge(int x, int y) {g[x].push_back(y);}
int rev(int i) {return i < n ? i + n : i - n;}</pre>
   void add_ifthen(int x, int y) {add_clause(rev(x), y)
   void add_clause(int x, int y) {
     add_edge(rev(x), y);
     add_edge(rev(y), x);
   void dfs(int i) {
     dep[i] = low[i] = _t++, stk.pb(i);
for (int j : g[i]) if (scc_id[j] == -1) {
       if (dep[j] == -1) dfs(j);
       low[i] = min(low[i], low[j]);
     if (low[i] == dep[i]) {
       int id = _id++, x;
       do {
         x = stk.back(), stk.pop_back();
          scc_id[x] = id;
       } while (x != i);
     }
   bool solve() {
     // is[i] = true -> i, is[i] = false -> -i
     for (int i = 0; i < 2 * n; ++i) if (dep[i] == -1)</pre>
       dfs(i);
     for (int i = 0; i < n; ++i) {</pre>
       if (scc_id[i] == scc_id[i + n]) return false;
       if (scc_id[i] < scc_id[i + n]) is[i] = true;</pre>
        else is[i] = false;
     return true;
   }
};
```

## 4.6 Virtual Tree

```
v.resize(unique(all(v)) - v.begin());
stk.clear(), stk.push_back(v[0]);
for (int i = 1; i < v.size(); ++i) {
   int x = v[i];
   while (ed[stk.back()] < ed[x]) stk.pop_back();
   _g[stk.back()].pb(x), stk.pb(x);
}
// do something
for (int i : v) _g[i].clear();
}</pre>
```

#### 4.7 Directed MST

```
using D = int;
struct edge {
  int u, v;
 D w;
// 0-based, return index of edges
vector<int> dmst(vector<edge> &e, int n, int root) {
  using T = pair <D, int>;
  using PQ = pair <priority_queue <T, vector <T>,
      greater <T>>, D>;
  auto push = [](PQ &pq, T v) {
   pq.first.emplace(v.first - pq.second, v.second);
  auto top = [](const PQ &pq) -> T {
   auto r = pq.first.top();
    return {r.first + pq.second, r.second};
  auto join = [&push, &top](PQ &a, PQ &b) {
    if (a.first.size() < b.first.size()) swap(a, b);</pre>
    while (!b.first.empty())
      push(a, top(b)), b.first.pop();
 vector<PQ> h(n * 2);
for (int i = 0; i < e.size(); ++i)</pre>
   push(h[e[i].v], {e[i].w, i});
  vector<int> a(n * 2), v(n * 2, -1), pa(n * 2, -1), r(
      n * 2);
  iota(all(a), 0);
  auto o = [&](int x) { int y;
   for (y = x; a[y] != y; y = a[y]);
for (int ox = x; x != y; ox = x)
      x = a[x], a[ox] = y;
    return y;
  v[root] = n + 1;
  int pc = n;
  for (int i = 0; i < n; ++i) if (v[i] == -1) {</pre>
    for (int p = i; v[p] == -1 || v[p] == i; p = o(e[r[
        p]].u)) {
      if (v[p] == i) {
        int q = p; p = pc++;
        do {
          h[q].second = -h[q].first.top().first;
          join(h[pa[q] = a[q] = p], h[q]);
        } while ((q = o(e[r[q]].u)) != p);
      v[p] = i;
      while (!h[p].first.empty() && o(e[top(h[p]).
          second[.u] == p)
        h[p].first.pop();
      r[p] = top(h[p]).second;
   }
 }
  vector<int> ans;
  for (int i = pc - 1; i >= 0; i--) if (i != root && v[
      i] != n) {
    for (int f = e[r[i]].v; f != -1 && v[f] != n; f =
        pa[f]) v[f] = n;
    ans.pb(r[i]);
  }
  return ans;
```

#### 4.8 Dominator Tree

```
struct Dominator_tree {
  int n, id, sdom[N], dom[N];
  vector <int> adj[N], radj[N], bucket[N];
  int vis[N], rev[N], pa[N], rt[N], mn[N], res[N];
```

```
// dom[s] = s, dom[v] = -1 if s \rightarrow v not exists
  Dominator_tree () {}
  void init(int _n) {
    n = _n, id = 0;
    fill_n(dom, n, -1), fill_n(vis, n, -1);
  void add_edge(int u, int v) {adj[u].pb(v);}
  int query(int v, int x) {
    if (rt[v] == v) return x ? -1 : v;
    int p = query(rt[v], 1);
    if (p == -1) return x ? rt[v] : mn[v];
    if (sdom[mn[v]] > sdom[mn[rt[v]]])
      mn[v] = mn[rt[v]];
    rt[v] = p;
    return x ? p : mn[v];
  void dfs(int v) {
  vis[v] = id, rev[id] = v;
    rt[id] = mn[id] = sdom[id] = id, id++;
    for (int u : adj[v]) {
      if (vis[u] == -1) dfs(u), pa[vis[u]] = vis[v];
      radj[vis[u]].pb(vis[v]);
  void build(int s) {
    dfs(s);
    for (int i = id - 1; ~i; --i) {
      for (int u : radj[i]) {
        sdom[i] = min(sdom[i], sdom[query(u, 0)]);
      if (i) bucket[sdom[i]].pb(i);
      for (int u : bucket[i]) {
        int p = query(u, 0);
        dom[u] = sdom[p] == i ? i : p;
      if (i) rt[i] = pa[i];
    fill_n(res, n, -1);
    for (int i = 1; i < id; ++i) {</pre>
      if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
    for (int i = 1; i < id; ++i)</pre>
        res[rev[i]] = rev[dom[i]];
    res[s] = s;
    for (int i = 0; i < n; ++i) dom[i] = res[i];</pre>
};
```

# 5 String

### 5.1 Aho-Corasick Automaton

```
struct AC {
  int ch[N][26], to[N][26], fail[N], sz;
  vector <int> g[N];
  int cnt[N];
  AC () {sz = 0, extend();}
  void extend() {fill(ch[sz], ch[sz] + 26, 0), sz++;}
  int nxt(int u, int v) {
    if (!ch[u][v]) ch[u][v] = sz, extend();
    return ch[u][v];
  int insert(string s) {
    int now = 0;
    for (char c : s) now = nxt(now, c - 'a');
    cnt[now]++;
    return now;
  void build_fail() {
    queue <int> q;
    for (int i = 0; i < 26; ++i) if (ch[0][i]) {
      q.push(ch[0][i]);
      g[0].push_back(ch[0][i]);
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (int j = 0; j < 26; ++j) {
  to[v][j] = ch[v][j] ? v : to[fail[v]][j];</pre>
      for (int i = 0; i < 26; ++i) if (ch[v][i]) {
        int u = ch[v][i], k = fail[v];
```

```
while (k && !ch[k][i]) k = fail[k];
    if (ch[k][i]) k = ch[k][i];
    fail[u] = k;
    cnt[u] += cnt[k], g[k].push_back(u);
    q.push(u);
    }
}
int match(string &s) {
    int now = 0, ans = 0;
    for (char c : s) {
        now = to[now][c - 'a'];
        if (ch[now][c - 'a']) now = ch[now][c - 'a'];
        ans += cnt[now];
    }
    return ans;
}
```

## 5.2 KMP Algorithm

```
vector <int> build_fail(string s) {
  vector <int> f(s.length() + 1, 0);
  int k = 0;
  for (int i = 1; i < s.length(); ++i) {</pre>
    while (k \&\& s[k] != s[i]) k = f[k];
    if (s[k] == s[i]) k++;
    f[i + 1] = k;
  return f;
int match(string s, string t) {
  vector <int> f = build fail(t);
  int k = 0, ans = 0;
  for (int i = 0; i < s.length(); ++i) {</pre>
    while (k \&\& s[i] != t[k]) k = f[k];
    if (s[i] == t[k]) k++;
    if (k == t.length()) ans++, k = f[k];
  return ans;
}
```

#### 5.3 Z Algorithm

```
vector <int> buildZ(string s) {
  int n = s.length();
  vector <int> Z(n);
  int l = 0, r = 0;
  for (int i = 0; i < n; ++i) {
    Z[i] = max(min(Z[i - 1], r - i), 0);
    while (i + Z[i] < n && s[Z[i]] == s[i + Z[i]]) {
        l = i, r = i + Z[i], Z[i]++;
    }
  }
  return Z;
}</pre>
```

# 5.4 Manacher

```
// return value only consider string tmp, not s
vector <int> manacher(string tmp) {
   string s = "&";
   for (char c : tmp) s.pb(c), s.pb('%');
   int l = 0, r = 0, n = s.size();
   vector <int> Z(n);
   for (int i = 0; i < n; ++i) {
        Z[i] = r > i ? min(Z[2 * l - i], r - i) : 1;
        while (s[i + Z[i]] == s[i - Z[i]]) Z[i]++;
        if (Z[i] + i > r) l = i, r = Z[i] + i;
   }
   for (int i = 0; i < n; ++i) {
        Z[i] = (Z[i] - (i & 1)) / 2 * 2 + (i & 1);
   }
   return Z;
}</pre>
```

#### 5.5 Suffix Array

```
int sa[N], tmp[2][N], c[N], rk[N], lcp[N];
void buildSA(string s) {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.length()
  ;
```

```
for (int i = 0; i < m; ++i) c[i] = 0;</pre>
  for (int i = 0; i < n; ++i) c[x[i] = s[i]]++;</pre>
  for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
  for (int i = n - 1; ~i; --i) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < m; ++i) c[i] = 0;</pre>
    for (int i = 0; i < n; ++i) c[x[i]]++;</pre>
    for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
    int p = 0;
    for (int i = n - k; i < n; ++i) y[p++] = i;</pre>
    for (int i = 0; i < n; ++i) if (sa[i] >= k) y[p++]
         = sa[i] - k;
    for (int i = n - 1; \sim i; --i) sa[--c[x[y[i]]]] = y[i
    y[sa[0]] = p = 0;
     for (int i = 1; i < n; ++i) {</pre>
      int a = sa[i], b = sa[i - 1];
      if (!(x[a] == x[b] && a + k < n && b + k < n && x
           [a + k] == x[b + k])) p++;
      y[sa[i]] = p;
    if (n == p + 1) break;
    swap(x, y), m = p + 1;
void buildLCP(string s) {
  // lcp[i] = LCP(sa[i - 1], sa[i])
  // lcp(i, j) = query_lcp_min[rk[i] + 1, rk[j] + 1)
  int n = s.length(), val = 0;
  for (int i = 0; i < n; ++i) rk[sa[i]] = i;
for (int i = 0; i < n; ++i) {</pre>
    if (!rk[i]) lcp[rk[i]] = 0;
    else {
      if (val) val--;
       int p = sa[rk[i] - 1];
       while (val + i < n && val + p < n && s[val + i]
           == s[val + p]) val++;
      lcp[rk[i]] = val;
  }
}
```

#### **5.6 SAIS**

```
int sa[N * 2], rk[N], lcp[N];
// string ASCII value need > 0
namespace sfx {
bool _t[N * 2];
int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2];
void pre(int *sa, int *c, int n, int z) {
  fill_n(sa, n, 0), copy_n(c, z, x);
void induce(int *sa, int *c, int *s, bool *t, int n,
    int z) {
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; ++i) if (sa[i] && !t[sa[i] -</pre>
      1]) sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy_n(c, z, x);
  for (int i = n - 1; i >= 0; --i) if (sa[i] && t[sa[i]
        - 1]) sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
void sais(int *s, int *sa, int *p, int *q, bool *t, int
    *c, int n, int z) {
  bool uniq = t[n - 1] = true;
  int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
      last = -1;
  fill_n(c, z, 0);
  for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
  partial_sum(c, c + z, c);
  if (uniq) {
    for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;</pre>
  for (int i = n - 2; i >= 0; --i)
    t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i + 1]
         1]);
  pre(sa, c, n, z);
  for (int i = 1; i <= n - 1; ++i)
    if (t[i] && !t[i - 1])
       sa[--x[s[i]]] = p[q[i] = nn++] = i;
  induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
```

```
if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
      bool neq = last < 0 || !equal(s + sa[i], s + p[q[
           sa[i]] + 1], s + last);
      ns[q[last = sa[i]]] = nmxz += neq;
 sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz +
       1);
  pre(sa, c, n, z);
  for (int i = nn - 1; i >= 0; --i)
    sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
  induce(sa, c, s, t, n, z);
void buildSA(string s) {
  int n = s.length();
  for (int i = 0; i < n; ++i) _s[i] = s[i];</pre>
  _s[n] = 0;
 sais(_s, sa, _p, _q, _t, _c, n + 1, 256);
for (int i = 1; i <= n; ++i) sa[i - 1] = sa[i];</pre>
} // buildLCP()...
```

#### 5.7 Suffix Automaton

```
struct SAM {
  int ch[N][26], len[N], link[N], pos[N], cnt[N], sz;
  // node -> strings with the same endpos set
  // Length in range [len(link) + 1, len]
  // node's endpos set -> pos in the subtree of node
  // link -> longest suffix with different endpos set
  // len -> longest suffix
  // pos -> end position
  // cnt -> size of endpos set
  SAM () \{len[0] = 0, link[0] = -1, pos[0] = 0, cnt[0]
      = 0, sz = 1;
  void build(string s) {
    int last = 0;
    for (int i = 0; i < s.length(); ++i) {</pre>
      char c = s[i];
      int cur = sz++;
      len[cur] = len[last] + 1, pos[cur] = i + 1;
      int p = last:
      while (\sim p \&\& !ch[p][c - 'a']) ch[p][c - 'a'] =
      cur, p = link[p];
if (p == -1) {
        link[cur] = 0;
      } else {
        int q = ch[p][c - 'a'];
        if (len[p] + 1 == len[q]) {
          link[cur] = q;
        } else {
           int nxt = sz++;
          len[nxt] = len[p] + 1, link[nxt] = link[q],
               pos[nxt] = 0;
           for (int j = 0; j < 26; ++j) ch[nxt][j] = ch[</pre>
               q][j];
          while (~p && ch[p][c - 'a'] == q) ch[p][c - '
a'] = nxt, p = link[p];
          link[q] = link[cur] = nxt;
      }
      cnt[cur]++;
      last = cur;
    vector <int> p(sz);
    iota(all(p), 0);
    sort(all(p), [&](int i, int j) {return len[i] > len
         [j];});
    for (int i = 0; i < sz; ++i) cnt[link[p[i]]] += cnt</pre>
         [p[i]];
  }
} sam;
```

#### 5.8 Minimum Rotation

```
string rotate(const string &s) {
  int n = s.length();
  string t = s + s;
  int i = 0, j = 1;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && t[i + k] == t[j + k]) ++k;
    if (t[i + k] <= t[j + k]) j += k + 1;</pre>
```

```
else i += k + 1;
  if (i == j) ++j;
}
int pos = (i < n ? i : j);
return t.substr(pos, n);</pre>
```

#### 5.9 Palindrome Tree

```
struct PAM {
  int ch[N][26], cnt[N], fail[N], len[N], sz;
  string s;
  // 0 -> even root, 1 -> odd root
  PAM () {}
  void init(string s) {
    sz = 0, extend(), extend();
    len[0] = 0, fail[0] = 1, len[1] = -1;
    int lst = 1;
    for (int i = 0; i < s.length(); ++i) {</pre>
      while (s[i - len[lst] - 1] != s[i]) lst = fail[
          lst];
      if (!ch[lst][s[i] - 'a']) {
        int idx = extend();
        len[idx] = len[lst] + 2;
        int now = fail[lst];
        while (s[i - len[now] - 1] != s[i]) now = fail[
            now];
        fail[idx] = ch[now][s[i] - 'a'];
        ch[lst][s[i] - 'a'] = idx;
      lst = ch[lst][s[i] - 'a'], cnt[lst]++;
  void build_count() {
    for (int i = sz - 1; i > 1; --i)
      cnt[fail[i]] += cnt[i];
  int extend() {
    fill(ch[sz], ch[sz] + 26, 0), sz++;
    return sz - 1;
};
```

#### 5.10 Main Lorentz

```
int to_left[N], to_right[N];
vector <array <int, 3>> rep; // l, r, len.
// substr( [l, r], len * 2) are tandem
void findRep(string &s, int 1, int r) {
  if (r - l == 1) return;
  int m = 1 + r >> 1;
  findRep(s, 1, m), findRep(s, m, r);
  string sl = s.substr(1, m - 1), sr = s.substr(m, r - 1)
       m);
  vector <int> Z = buildZ(sr + "#" + sl);
  for (int i = 1; i < m; ++i) to_right[i] = Z[r - m + 1</pre>
        + i - 11;
  reverse(all(sl));
  Z = buildZ(sl);
  for (int i = 1; i < m; ++i) to_left[i] = Z[m - i -</pre>
       1];
  reverse(all(sl));
for (int i = 1; i + 1 < m; ++i) {</pre>
    int k1 = to_left[i], k2 = to_right[i + 1], len = m
         - i - 1;
    if (k1 < 1 | | k2 < 1 | | len < 2) continue;</pre>
    int tl = max(1, len - k2), tr = min(len - 1, k1);
    if (tl <= tr) rep.pb({i + 1 - tr, i + 1 - tl, len})</pre>
  Z = buildZ(sr);
  for (int i = m; i < r; ++i) to_right[i] = Z[i - m];</pre>
  reverse(all(s1)), reverse(all(sr));
Z = buildZ(s1 + "#" + sr);
  for (int i = m; i < r; ++i) to_left[i] = Z[m - l + 1</pre>
       + r - i - 1];
  reverse(all(s1)), reverse(all(sr));
  for (int i = m; i + 1 < r; ++i) {
  int k1 = to_left[i], k2 = to_right[i + 1], len = i</pre>
    if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
    int tl = max(len - k2, 1), tr = min(len - 1, k1);
```

## 6 Math

### 6.1 Miller Rabin / Pollard Rho

```
11 mul(11 x, 11 y, 11 p) {return (x * y - (11)((long
double)x / p * y) * p + p) % p;}
vector<11> chk = {2, 325, 9375, 28178, 450775, 9780504,
     1795265022};
ll Pow(ll a, ll b, ll n) {ll res = 1; for (; b; b >>=
    1, a = mul(a, a, n)) if (b \& 1) res = mul(res, a, n)
    ); return res;}
bool check(ll a, ll d, int s, ll n) {
  a = Pow(a, d, n);
  if (a <= 1) return 1;</pre>
  for (int i = 0; i < s; ++i, a = mul(a, a, n)) {</pre>
    if (a == 1) return 0;
    if (a == n - 1) return 1;
  return 0;
bool IsPrime(ll n) {
  if (n < 2) return 0;
  if (n % 2 == 0) return n == 2;
  \hat{d} = n - 1, s = 0;
  while (d % 2 == 0) d >>= 1, ++s;
  for (ll i : chk) if (!check(i, d, s, n)) return 0;
const vector<ll> small = {2, 3, 5, 7, 11, 13, 17, 19};
11 FindFactor(ll n) {
  if (IsPrime(n)) return 1;
  for (ll p : small) if (n % p == 0) return p;
  11 x, y = 2, d, t = 1;
  auto f = [&](11 a) {return (mul(a, a, n) + t) % n;};
  for (int 1 = 2; ; 1 <<= 1) {
    x = y;
    int m = min(1, 32);
    for (int i = 0; i < 1; i += m) {
      d = 1;
      for (int j = 0; j < m; ++j) {</pre>
        y = f(y), d = mul(d, abs(x - y), n);
      ll g = \_gcd(d, n);
      if (g == n) {
        1 = 1, y = 2, ++t;
        break;
      if (g != 1) return g;
  }
map <11, int> res;
void PollardRho(ll n) {
  if (n == 1) return;
  if (IsPrime(n)) return ++res[n], void(0);
  11 d = FindFactor(n);
  PollardRho(n / d), PollardRho(d);
```

## 6.2 Ext GCD

```
//a * p.first + b * p.second = gcd(a, b)
pair<ll, ll> extgcd(ll a, ll b) {
  pair<ll, ll> res;
  if (a < 0) {
    res = extgcd(-a, b);
    res.first *= -1;
    return res;
  }
  if (b < 0) {</pre>
```

```
res = extgcd(a, -b);
  res.second *= -1;
  return res;
}
if (b == 0) return {1, 0};
res = extgcd(b, a % b);
return {res.second, res.first - res.second * (a / b)
      };
}
```

#### 6.3 PiCount

```
const int V = 10000000, N = 100, M = 100000;
vector<int> primes;
bool isp[V];
int small_pi[V], dp[N][M];
void sieve(int x){
  for(int i = 2; i < x; ++i) isp[i] = true;</pre>
  isp[0] = isp[1] = false;
  for(int i = 2; i * i < x; ++i) if(isp[i]) for(int j =</pre>
  i * i; j < x; j += i) isp[j] = false;
for(int i = 2; i < x; ++i) if(isp[i]) primes.</pre>
void init(){
  sieve(V);
  small_pi[0] = 0;
  for(int i = 1; i < V; ++i) small_pi[i] = small_pi[i -</pre>
        1] + isp[i];
  for(int i = 0; i < M; ++i) dp[0][i] = i;
for(int i = 1; i < N; ++i) for(int j = 0; j < M; ++j)</pre>
        dp[i][j] = dp[i - 1][j] - dp[i - 1][j / primes[i]
        - 1]];
11 phi(ll n, int a){
  if(!a) return n;
  if(n < M && a < N) return dp[a][n];</pre>
  if(primes[a - 1] > n) return 1;
  if(((ll)primes[a - 1]) * primes[a - 1] >= n && n < V)</pre>
        return small_pi[n] - a + 1;
  11 de = phi(n, a - 1) - phi(n / primes[a - 1], a - 1)
  return de:
11 PiCount(ll n){
  if(n < V) return small_pi[n];</pre>
  int s = sqrt(n + 0.5), y = cbrt(n + 0.5), a =
       small_pi[y];
  ll res = phi(n, a) + a - 1;
  for(; primes[a] <= s; ++a) res -= max(PiCount(n /</pre>
       primes[a]) - PiCount(primes[a]) + 1, 0ll);
  return res;
```

## 6.4 Linear Function Mod Min

```
11 topos(11 x, 11 m) {x %= m; if (x < 0) x += m; return
     x;}
//min value of ax + b \pmod{m} for x \in [0, n - 1]. O(
    Log m)
ll min_rem(ll n, ll m, ll a, ll b) {
  a = topos(a, m), b = topos(b, m);
  for (ll g = __gcd(a, m); g > 1;) return g * min_rem(n
    , m / g, a / g, b / g) + (b % g);
  for (11 nn, nm, na, nb; a; n = nn, m = nm, a = na, b
      = nb) {
    if (a <= m - a) {
      nn = (a * (n - 1) + b) / m;
      if (!nn) break;
      nn += (b < a);
      nm = a, na = topos(-m, a);
      nb = b < a ? b : topos(b - m, a);
    } else {
      11 lst = b - (n - 1) * (m - a);
      if (lst >= 0) {b = lst; break;}
      nn = -(1st / m) + (1st % m < -a) + 1;
      nm = m - a, na = m % (m - a), nb = b % (m - a);
    }
  }
  return b:
//min value of ax + b \pmod{m} for x \in [0, n - 1],
    also return min x to get the value. O(\log m)
```

```
//{value, x}
pair<ll, ll> min_rem_pos(ll n, ll m, ll a, ll b) {
 a = topos(a, m), b = topos(b, m);
  11 mn = min_rem(n, m, a, b), g = \_gcd(a, m);
  //ax = (mn - b) \pmod{m}
  11 x = (extgcd(a, m).first + m) * ((mn - b + m) / g)
      % (m / g);
  return {mn, x};
```

#### 6.5 Determinant

```
11 Det(vector <vector <11>>> a) {
  int n = a.size();
  11 det = 1;
  for (int i = 0; i < n; ++i) {</pre>
    if (!a[i][i]) {
      det = -det;
       if (det < 0) det += mod;</pre>
       for (int j = i + 1; j < n; ++j) if (a[j][i]) {</pre>
         swap(a[j], a[i]);
         break;
      if (!a[i][i]) return 0;
    det = det * a[i][i] % mod;
    11 \text{ mul} = \text{mpow}(a[i][i], \text{ mod } - 2);
    for (int j = 0; j < n; ++j) a[i][j] = a[i][j] * mul</pre>
          % mod;
    for (int j = 0; j < n; ++j) if (i ^ j) {</pre>
      ll mul = a[j][i];
       for (int k = 0; k < n; ++k) {
         a[j][k] -= a[i][k] * mul % mod;
         if (a[j][k] < 0) a[j][k] += mod;</pre>
    }
  return det;
```

#### 6.6 Floor Sum

```
// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a)
    + b)
11 floor_sum(ll n, ll m, ll a, ll b) {
  11 \text{ ans} = 0;
  if (a >= m) ans += (n - 1) * n * (a / m) / 2, a %= m;
  if (b >= m) ans += n * (b / m), b %= m;
  11 y_max = (a * n + b) / m, x_max = (y_max * m - b);
 if (y_max == 0) return ans;
  ans += (n - (x_max + a - 1) / a) * y_max;
 ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
  return ans;
```

## 6.7 Quadratic Residue

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r \& 1) \& \& ((m + 2) \& 4)) s = -s;
    a >>= r;
    if (a & m & 2) s = -s;
    swap(a, m);
  }
  return s;
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
    b = rand() % p;
    d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
```

```
for (int e = (1LL + p) >> 1; e; e >>= 1) {
  if (e & 1) {
    tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 %
         p)) % p;
    g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
    g0 = tmp;
  tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)
  )) % p;
f1 = (2LL * f0 * f1) % p;
  f0 = tmp:
}
return g0;
```

## 6.8 Simplex

```
struct Simplex { // O-based
  using T = long double;
  static const int N = 410, M = 30010;
  const T eps = 1e-7;
  int n, m;
  int Left[M], Down[N];
  // Ax <= b, max c^T x
  // result : v, xi = sol[i]
  T a[M][N], b[M], c[N], v, sol[N];
  bool eq(T a, T b) {return fabs(a - b) < eps;}
bool ls(T a, T b) {return a < b && !eq(a, b);}</pre>
  void init(int _n, int _m) {
    n = _n, m = _m, v = 0;
for (int i = 0; i < m; ++i) for (int j = 0; j < n;</pre>
         ++j) a[i][j] = 0;
    for (int i = 0; i < m; ++i) b[i] = 0;
for (int i = 0; i < n; ++i) c[i] = sol[i] = 0;</pre>
  void pivot(int x, int y) {
    swap(Left[x], Down[y]);
    T k = a[x][y]; a[x][y] = 1;
    vector <int> nz;
    for (int i = 0; i < n; ++i) {</pre>
      a[x][i] /= k;
      if (!eq(a[x][i], 0)) nz.push_back(i);
    b[x] /= k;
    for (int i = 0; i < m; ++i) {</pre>
      if (i == x || eq(a[i][y], 0)) continue;
      k = a[i][y], a[i][y] = 0;
      b[i] -= k * b[x];
      for (int j : nz) a[i][j] -= k * a[x][j];
    if (eq(c[y], 0)) return;
    k = c[y], c[y] = 0, v += k * b[x];
    for (int i : nz) c[i] -= k * a[x][i];
  // 0: found solution, 1: no feasible solution, 2:
  int solve() {
    for (int i = 0; i < n; ++i) Down[i] = i;</pre>
    for (int i = 0; i < m; ++i) Left[i] = n + i;</pre>
    while (1) {
      int x = -1, y = -1;
       for (int i = 0; i < m; ++i) if (ls(b[i], 0) && (x
            == -1 \mid \mid b[i] < b[x])) x = i;
      if (x == -1) break;
      for (int i = 0; i < n; ++i) if (ls(a[x][i], 0) &&</pre>
            (y == -1 \mid | a[x][i] < a[x][y])) y = i;
      if (y == -1) return 1;
      pivot(x, y);
    while (1) {
      int x = -1, y = -1;
       for (int i = 0; i < n; ++i) if (ls(0, c[i]) && (y
            == -1 || c[i] > c[y])) y = i;
      if (y == -1) break;
       for (int i = 0; i < m; ++i) if (ls(0, a[i][y]) &&</pre>
             (x == -1 \mid | b[i] / a[i][y] < b[x] / a[x][y])
           ) x = i;
      if (x == -1) return 2;
      pivot(x, y);
    for (int i = 0; i < m; ++i) if (Left[i] < n) sol[</pre>
         Left[i]] = b[i];
```

```
return 0;
}
};
```

## 6.9 Berlekamp Massey

```
vector <ll> BerlekampMassey(vector <ll> a) {
  // find min |c| such that a_n = sum c_j * a_{n - j - 1}
      1}, 0-based
  // O(N^2), if |c| = k, |a| >= 2k sure correct auto f = [&](vector<11> v, 11 c) {
    for (11 &x : v) x = mul(x, c);
  };
  vector <11> c, best;
  int pos = 0, n = a.size();
  for (int i = 0; i < n; ++i) {
    ll error = a[i];
    for (int j = 0; j < c.size(); ++j) error = sub(</pre>
         error, mul(c[j], a[i - 1 - j]));
    if (error == 0) continue;
    11 inv = mpow(error, mod - 2);
    if (c.empty()) {
      c.resize(i + 1);
      pos = i:
      best.pb(inv);
    } else {
      vector <1l> fix = f(best, error);
      fix.insert(fix.begin(), i - pos - 1, 0);
      if (fix.size() >= c.size()) {
  best = f(c, sub(0, inv));
        best.insert(best.begin(), inv);
        pos = i;
        c.resize(fix.size());
      for (int j = 0; j < fix.size(); ++j) c[j] = add(c</pre>
           [j], fix[j]);
    }
  return c;
```

### 6.10 Linear Programming Construction

Standard form: maximize  $\mathbf{c}^T\mathbf{x}$  subject to  $A\mathbf{x} \leq \mathbf{b}$  and  $\mathbf{x} \geq 0$ . Dual LP: minimize  $\mathbf{b}^T\mathbf{y}$  subject to  $A^T\mathbf{y} \geq \mathbf{c}$  and  $\mathbf{y} \geq 0$ .  $\bar{\mathbf{x}}$  and  $\bar{\mathbf{y}}$  are optimal if and only if for all  $i \in [1,n]$ , either  $\bar{x}_i = 0$  or  $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$  holds and for all  $i \in [1,m]$  either  $\bar{y}_i = 0$  or  $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$  holds.

- 1. In case of minimization, let  $c_i^\prime = -c_i$
- 2.  $\sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq -b_j$
- 3.  $\sum_{1 \le i < n} A_{ji} x_i = b_j$ 
  - $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$   $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If  $x_i$  has no lower bound, replace  $x_i$  with  $x_i x_i'$

## 6.11 Euclidean

- $m = \lfloor \frac{an+b}{c} \rfloor$
- Time complexity:  $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ +f(a \bmod c, b \bmod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c-b-1, a, m-1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \mod c, b \mod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \end{cases} \\ = \begin{cases} \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ -2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

#### 6.12 Theorem

• Kirchhoff's Theorem

Denote L be a  $n\times n$  matrix as the Laplacian matrix of graph G, where  $L_{ii}=d(i)$ ,  $L_{ij}=-c$  where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is  $|\det(\tilde{L}_{11})|$ .
- The number of directed spanning tree rooted at r in G is  $|\det(\tilde{L}_{rr})|$  .
- Tutte's Matrix

Let D be a  $n \times n$  matrix, where  $d_{ij} = x_{ij}$  ( $x_{ij}$  is chosen uniformly at random) if i < j and  $(i,j) \in E$ , otherwise  $d_{ij} = -d_{ji}$ .  $\frac{rank(D)}{2}$  is the maximum matching on G.

- Cayley's Formula
  - Given a degree sequence  $d_1,d_2,\ldots,d_n$  for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees.

- Let  $T_{n,k}$  be the number of *labeled* forests on n vertices with k components, such that vertex  $1,2,\ldots,k$  belong to different components. Then  $T_{n,k}=kn^{n-k-1}$ .
- Erdős-Gallai Theorem

A sequence of non-negative integers  $d_1 \geq d_2 \geq \ldots \geq d_n$  can be represented as the degree sequence of a finite simple graph on n vertices if and only if  $d_1+d_2+\ldots+d_n$  is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all  $1 \leq k \leq n$  .

• Burnside's Lemma

Let X be a set and G be a group that acts on X. For  $g \in G$ , denote by  $X^g$  the elements fixed by g:

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

• Gale-Ryser theorem

A pair of sequences of nonnegative integers  $a_1\geq \cdots \geq a_n$  and  $b_1,\ldots,b_n$  is bigraphic if and only if  $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$  and  $\sum_{i=1}^k a_i \leq \sum_{i=1}^n \min(b_i,k)$  holds for every  $1\leq k\leq n$ .

• Fulkerson-Chen-Anstee theorem

A sequence  $(a_1,b_1),\ldots,(a_n,b_n)$  of nonnegative integer pairs with  $a_1\geq\cdots\geq a_n$  is digraphic if and only if  $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$  and  $\sum_{i=1}^k a_i\leq\sum_{i=1}^k \min(b_i,k-1)+\sum_{i=k+1}^n \min(b_i,k)$  holds for every  $1\leq k\leq n$ .

- Möbius inversion formula
  - $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ -  $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- Spherical cap
  - A portion of a sphere cut off by a plane. r: sphere radius, a: radius of the base of the cap, h: height of the cap,  $\theta$ :  $\arcsin(a/r)$ .

- Volume =  $\pi h^2 (3r h)/3 = \pi h (3a^2 + h^2)/6 = \pi r^3 (2 + \cos \theta)(1 7)$  Polynomial  $\cos \theta)^2/3$ . - Area  $= 2\pi r h = \pi (a^2 + h^2) = 2\pi r^2 (1 - \cos \theta)$ .
- Chinese Remainder Theorem
  - $x \equiv a_i \pmod{m_i}$
  - $M = \prod m_i, M_i = M/m_i$
  - $t_i M_i \equiv 1 \pmod{m_i}$
  - $x = \sum a_i t_i M_i \pmod{M}$

#### 6.13 Estimation

- The number of divisors of n is at most around  $100\ {\rm for}\ n<5e4$  , 500 for n < 1e7, 2000 for n < 1e10, 200000 for n < 1e19.
- ullet The number of ways of writing n as a sum of positive integers, disregarding the order of the summands.  $1,1,2,3,5,7,11,15,22,30\,$ for n=0  $\sim$  9, 627 for n=20,  $\sim$  2e5 for n=50,  $\sim$  2e8 for n = 100.
- ullet Total number of partitions of n distinct elements: B(n) =1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,27644437, 190899322, . . . .

## 6.14 General Purpose Numbers

• Bernoulli numbers

$$B_0 - 1, B_1^{\pm} = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0$$

$$\sum_{j=0}^m \binom{m+1}{j} B_j = 0, \text{ EGF is } B(x) = \frac{x}{e^x-1} = \sum_{n=0}^\infty B_n \frac{x^n}{n!}.$$

$$S_m(n) = \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k^+ n^{m+1-k}$$

- Stirling numbers of the second kind Partitions of  $\boldsymbol{n}$  distinct elements into exactly  $\boldsymbol{k}$  groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1$$
  
$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^{n}$$

$$x^n = \sum_{i=0}^n S(n,i)(x)_i$$

• Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left( x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

• Catalan numbers

$$C_n^{(k)} = \frac{1}{(k-1)n+1} \binom{kn}{n}$$

$$C^{(k)}(x) = 1 + x[C^{(k)}(x)]^k$$

• Eulerian numbers

Number of permutations  $\pi \in S_n$  in which exactly k elements are greater than the previous element. k j:s s.t.  $\pi(j) > \pi(j+1)$ , k+1 j:s s.t.  $\pi(j) \geq j$ , k j:s s.t.  $\pi(j) > j$ .

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n, n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} {n+1 \choose j} (k+1-j)^{n}$$

### 6.15 Tips for Generating Funtion

- Ordinary Generating Function  $A(x) = \sum_{i \geq 0} a_i x^i$ 
  - $A(rx) \Rightarrow r^n a_n$   $A(x) + B(x) \Rightarrow a_n + b_n$   $A(x)B(x) \Rightarrow \sum_{i=0}^n a_i b_{n-i}$

  - $A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} a_{i_1} a_{i_2} \dots a_{i_k}$ -  $xA(x)' \Rightarrow na_n$
  - $-\frac{A(x)}{1-x} \Rightarrow \sum_{i=0}^{n} a_i$
- Exponential Generating Function  $A(x) = \sum_{i>0} \frac{a_i}{i!} x_i$ 

  - $A(x) + B(x) \Rightarrow a_n + b_n$   $A^{(k)}(x) \Rightarrow a_{n+k}$   $A(x)B(x) \Rightarrow \sum_{i=0}^{n} \binom{n}{i} a_i b_{n-i}$
  - $A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n}^{i_1-i_2+\dots+i_k=n} {n \choose i_1, i_2, \dots, i_k} a_{i_1} a_{i_2} \dots a_{i_k}$
  - $xA(x) \Rightarrow na_n$
- Special Generating Function
  - $(1+x)^n = \sum_{i\geq 0} \binom{n}{i} x^i$   $\frac{1}{(1-x)^n} = \sum_{i\geq 0} \binom{n}{i-1} x^i$

#### 7.1 Number Theoretic Transform

```
// mul, add, sub, mpow
// ll -> int if too slow
struct NTT {
  11 w[N];
  NTT() {
     11 dw = mpow(G, (mod - 1) / N);
     w[0] = 1;
     for (int i = 1; i < N; ++i) w[i] = mul(w[i - 1], dw</pre>
  void operator()(vector<ll>& a, bool inv = false) { //
       0 \leftarrow a[i] \leftarrow P
     int x = 0, n = a.size();
     for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (x ^= k) < k; k >>= 1);
       if (j < x) swap(a[x], a[j]);</pre>
     for (int L = 2; L <= n; L <<= 1) {
       int dx = N / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
         for (int j = i, x = 0; j < i + dl; ++j, x += dx
            ll tmp = mul(a[j + dl], w[x]);
            a[j + dl] = sub(a[j], tmp);
            a[j] = add(a[j], tmp);
       }
     if (inv) {
       reverse(a.begin() + 1, a.end());
       11 invn = mpow(n, mod - 2);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], invn</pre>
    }
  }
} ntt;
```

## 7.2 Fast Fourier Transform

```
using T = complex <double>;
const double PI = acos(-1);
struct NTT {
  T w[N];
  FFT() {
    T dw = \{\cos(2 * PI / N), \sin(2 * PI / N)\};
    w[0] = 1;
    for (int i = 1; i < N; ++i) w[i] = w[i - 1] * dw;
  void operator()(vector<T>& a, bool inv = false) {
    // see NTT, replace ll with T
    if (inv) {
      reverse(a.begin() + 1, a.end());
      T invn = 1.0 / n;
      for (int i = 0; i < n; ++i) a[i] = a[i] * invn;</pre>
  }
} ntt;
// after mul, round i.real()
```

## 7.3 Primes

```
Prime
                 Root
                        Prime
                                                Root
                        167772161
7681
                 17
                        104857601
12289
                 11
40961
                        985661441
                        998244353
786433
                 10
                        1107296257
                                                10
5767169
                        2013265921
                                                31
7340033
                 3
                        2810183681
                                                11
23068673
                        2885681153
                 3
                                                3
469762049
                        605028353
2061584302081
                        1945555039024054273
2748779069441
                        9223372036737335297
```

#### 7.4 Polynomial Operations

```
vector <ll> Mul(vector <ll> a, vector <ll> b, int bound
     = N) {
  int m = a.size() + b.size() - 1, n = 1;
  while (n < m) n <<= 1;</pre>
```

```
a.resize(n), b.resize(n);
                                                                return res:
  ntt(a), ntt(b);
  vector <11> out(n);
                                                              vector <ll> Integral(vector <ll> a) {
  for (int i = 0; i < n; ++i) out[i] = mul(a[i], b[i]);</pre>
                                                                int n = a.size();
  ntt(out, true), out.resize(min(m, bound));
                                                                vector \langle 11 \rangle res(n + 1);
                                                                for (int i = 0; i < n; ++i) {</pre>
 return out;
                                                                  res[i + 1] = mul(a[i], mpow(i + 1, mod - 2));
vector <ll> Inverse(vector <ll> a) {
 // O(NlogN), a[0] != 0
                                                                return res:
  int n = a.size();
  vector <ll> res(1, mpow(a[0], mod - 2));
                                                              vector <ll> Ln(vector <ll> a) {
  for (int m = 1; m < n; m <<= 1) {</pre>
                                                                // O(NlogN), a[0] = 1
    if (n < m * 2) a.resize(m * 2);</pre>
                                                                int n = a.size();
    vector < ll > v1(a.begin(), a.begin() + m * 2), v2 =
                                                                if (n == 1) return {0};
                                                                vector <1l> d = Derivative(a);
        res:
    v1.resize(m * 4), v2.resize(m * 4);
                                                                a.pop_back();
                                                                return Integral(Mul(d, Inverse(a), n - 1));
    ntt(v1), ntt(v2);
    for (int i = 0; i < m * 4; ++i) v1[i] = mul(mul(v1[</pre>
        i], v2[i]), v2[i]);
                                                              vector <ll> Exp(vector <ll> a) {
                                                                // O(NlogN), a[0] = 0
    ntt(v1, true);
    res.resize(m * 2);
                                                                int n = a.size();
                                                                vector \langle 11 \rangle q(1, 1);
    for (int i = 0; i < m; ++i) res[i] = add(res[i],</pre>
                                                                a[0] = add(a[0], 1);
        res[i]);
                                                                for (int m = 1; m < n; m <<= 1) {</pre>
    for (int i = 0; i < m * 2; ++i) res[i] = sub(res[i</pre>
                                                                  if (n < m * 2) a.resize(m * 2);</pre>
        ], v1[i]);
                                                                  vector <ll> g(a.begin(), a.begin() + m * 2), h(all(
  res.resize(n);
                                                                       q));
                                                                  h.resize(m * 2), h = Ln(h);
  return res;
                                                                  for (int i = 0; i < m * 2; ++i) {</pre>
                                                                    g[i] = sub(g[i], h[i]);
pair <vector <ll>, vector <ll>> Divide(vector <ll> a,
    vector <ll> b) {
  // a = bQ + R, O(NlogN), b.back() != 0
                                                                  q = Mul(g, q, m * 2);
  int n = a.size(), m = b.size(), k = n - m + 1;
                                                                }
 if (n < m) return {{0}, a};</pre>
                                                                q.resize(n);
 vector <11> ra = a, rb = b;
                                                                return q;
 reverse(all(ra)), ra.resize(k);
 reverse(all(rb)), rb.resize(k);
                                                              vector <1l> Pow(vector <1l> a, 1l k) {
 vector <11> Q = Mul(ra, Inverse(rb), k);
                                                                int n = a.size(), m = 0;
 reverse(all(Q));
                                                                vector <11> ans(n, 0);
  vector \langle 11 \rangle res = Mul(b, Q), R(m - 1);
                                                                while (m < n && a[m] == 0) m++;</pre>
                                                                if (k \&\& m \&\& (k >= n | | k * m >= n)) return ans;
 for (int i = 0; i < m - 1; ++i) R[i] = sub(a[i], res[</pre>
      i]);
                                                                if (m == n) return ans[0] = 1, ans;
                                                                ll lead = m * k;
  return {Q, R};
                                                                vector <1l> b(a.begin() + m, a.end());
vector <11> SqrtImpl(vector <11> a) {
                                                                11 base = mpow(b[0], k), inv = mpow(b[0], mod - 2);
                                                                for (int i = 0; i < n - m; ++i) b[i] = mul(b[i], inv)</pre>
  if (a.empty()) return {0};
  int z = QuadraticResidue(a[0], mod), n = a.size();
  if (z == -1) return {-1};
                                                                b = Ln(b);
  vector <11> q(1, z);
                                                                for (int i = 0; i < n - m; ++i) b[i] = mul(b[i], k %
  const int inv2 = (mod + 1) / 2;
                                                                    mod);
  for (int m = 1; m < n; m <<= 1) {</pre>
                                                                b = Exp(b);
   if (n < m * 2) a.resize(m * 2);</pre>
                                                                for (int i = lead; i < n; ++i) ans[i] = mul(b[i -</pre>
    q.resize(m * 2);
                                                                    lead], base);
    vector i > f2 = Mul(q, q, m * 2);
for (int i = 0; i < m * 2; ++i) f2[i] = sub(f2[i],</pre>
                                                                return ans:
                                                              vector <ll> Evaluate(vector <ll> a, vector <ll> x) {
        a[i]);
    f2 = Mul(f2, Inverse(q), m * 2);
                                                                if (x.empty()) return {};
    for (int i = 0; i < m * 2; ++i) q[i] = sub(q[i],
                                                                int n = x.size();
        mul(f2[i], inv2));
                                                                vector <vector <11>> up(n * 2);
                                                                for (int i = 0; i < n; ++i) up[i + n] = {sub(0, x[i])}
 }
  q.resize(n);
                                                                     , 1};
  return q;
                                                                for (int i = n - 1; i > 0; --i) up[i] = Mul(up[i *
                                                                    2], up[i * 2 + 1]);
vector <11> Sqrt(vector <11> a) {
                                                                vector <vector <11>> down(n * 2);
 // O(NlogN), return {-1} if not exists
                                                                down[1] = Divide(a, up[1]).second;
                                                                for (int i = 2; i < n * 2; ++i) down[i] = Divide(down</pre>
  int n = a.size(), m = 0;
  while (m < n && a[m] == 0) m++;</pre>
                                                                    [i >> 1], up[i]).second;
                                                                vector <11> y(n);
  if (m == n) return vector <11>(n);
 if (m & 1) return {-1};
                                                                for (int i = 0; i < n; ++i) y[i] = down[i + n][0];</pre>
  vector <ll> s = SqrtImpl(vector <ll>(a.begin() + m, a
                                                                return y;
      .end()));
                                                              }
 if (s[0] == -1) return {-1};
                                                              vector <ll> Interpolate(vector <ll> x, vector <ll> y) {
  vector <11> res(n);
                                                                int n = x.size();
  for (int i = 0; i < s.size(); ++i) res[i + m / 2] = s</pre>
                                                                vector <vector <11>> up(n * 2);
      [i];
                                                                for (int i = 0; i < n; ++i) up[i + n] = {sub(0, x[i])
                                                                     , 1};
  return res;
                                                                for (int i = n - 1; i > 0; --i) up[i] = Mul(up[i *
vector <ll> Derivative(vector <ll> a) {
                                                                    2], up[i * 2 + 1]);
                                                                vector <ll> a = Evaluate(Derivative(up[1]), x);
 int n = a.size();
                                                                for (int i = 0; i < n; ++i) {</pre>
  vector <ll> res(n - 1);
  for (int i = 0; i < n - 1; ++i) res[i] = mul(a[i +</pre>
                                                                  a[i] = mul(y[i], mpow(a[i], mod - 2));
      1], i + 1);
```

```
vector <vector <ll>> down(n * 2);
for (int i = 0; i < n; ++i) down[i + n] = {a[i]};
for (int i = n - 1; i > 0; --i) {
  vector <ll>> lhs = Mul(down[i * 2], up[i * 2 + 1]);
  vector <ll>> rhs = Mul(down[i * 2 + 1], up[i * 2]);
  down[i].resize(lhs.size());
  for (int j = 0; j < lhs.size(); ++j) {
    down[i][j] = add(lhs[j], rhs[j]);
  }
}
return down[1];
}</pre>
```

### 7.5 Fast Linear Recursion

```
11 FastLinearRecursion(vector <11> a, vector <11> c, 11
     k) {
  // a_n = sigma c_j * a_{n - j - 1}, 0-based
  // O(NlogNlogK), |a| = |c|
  int n = a.size();
  if (k < n) return a[k];</pre>
  vector <1i> base(n + 1, 1);
for (int i = 0; i < n; ++i) base[i] = sub(0, c[n - i</pre>
       - 1]);
  vector <ll> poly(n);
  (n == 1 ? poly[0] = c[n - 1] : poly[1] = 1);
  auto calc = [&](vector <ll> p1, vector <ll> p2) {
    // O(n^2) bruteforce or O(nlogn) NTT
    return Divide(Mul(p1, p2), base).second;
  };
  vector \langle 11 \rangle res(n, 0); res[0] = 1;
  for (; k; k >>= 1, poly = calc(poly, poly)) {
   if (k & 1) res = calc(res, poly);
  11 \text{ ans} = 0;
  for (int i = 0; i < n; ++i) {</pre>
    (ans += res[i] * a[i]) %= mod;
  return ans;
```

#### 7.6 Fast Walsh Transform

```
void fwt(vector <int> &a) {
 // and : x += y * (1, -1)
  // or : y += x * (1, -1)
// xor : x = (x + y) * (1, 1/2)
           y = (x - y) * (1, 1/2)
  int n = __lg(a.size());
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < 1 << n; ++j) if (j >> i & 1) {
  int x = a[j ^ (1 << i)], y = a[j];</pre>
       // do something
  }
vector<int> subs_conv(vector<int> a, vector<int> b) {
  // c_i = sum_{j \& k = 0, j | k = i} a_j * b_k
  int n = __lg(a.size());
  vector<vector<int>> ha(n + 1, vector<int>(1 << n));</pre>
  vector<vector<int>> hb(n + 1, vector<int>(1 << n));</pre>
  vector<vector<int>> c(n + 1, vector<int>(1 << n));</pre>
  for (int i = 0; i < 1 << n; ++i) {</pre>
    ha[__builtin_popcount(i)][i] = a[i];
    hb[__builtin_popcount(i)][i] = b[i];
  for (int i = 0; i <= n; ++i) or_fwt(ha[i]), or_fwt(hb</pre>
       [i]);
  for (int i = 0; i <= n; ++i)</pre>
    for (int j = 0; i + j <= n; ++j)</pre>
       for (int k = 0; k < 1 << n; ++k)
           mind overflow
         c[i + j][k] += ha[i][k] * hb[j][k];
  for (int i = 0; i <= n; ++i) or_fwt(c[i], true);</pre>
  vector <int> ans(1 << n);</pre>
  for (int i = 0; i < 1 << n; ++i)</pre>
    ans[i] = c[__builtin_popcount(i)][i];
  return ans;
}
```

# 8 Geometry

#### 8.1 Basic

```
const double eps = 1e-8, PI = acos(-1);
int sign(double x) \{return abs(x) \leftarrow eps ? 0 : (x > 0 ?
     1: -1);}
double norm(double x) {
  while (x < -eps) x += PI * 2;
  while (x > PI * 2 + eps) x = PI * 2;
  return x;
struct Pt {
  double x, y;
  Pt (double _x, double _y) : x(_x), y(_y) {}
  Pt operator + (Pt o) {return Pt(x + o.x, y + o.y);}
  Pt operator - (Pt o) {return Pt(x - o.x, y - o.y);}
  Pt operator * (double k) {return Pt(x * k, y * k);}
  Pt operator / (double k) {return Pt (x / k, y / k);}
  double operator * (Pt o) {return x * o.x + y * o.y;}
double operator ^ (Pt o) {return x * o.y - y * o.x;}
}:
struct Line {
 Pt a, b;
};
struct Cir {
  Pt o; double r;
double abs2(Pt o) {return o.x * o.x + o.y * o.y;}
double abs(Pt o) {return sqrt(abs2(o));}
int ori(Pt o, Pt a, Pt b) {return sign((o - a) ^ (o - b)
bool btw(Pt a, Pt b, Pt c) { // c on segment ab?
  return ori(a, b, c) == 0 && sign((c - a) * (c - b))
      <= 0:
int pos(Pt a) {return sign(a.y) == 0 ? sign(a.x) < 0 :</pre>
    a.y < 0;
double area(Pt a, Pt b, Pt c) {return abs((a - b) ^ (a
    - c)) / 2;}
double angle(Pt a, Pt b) {return norm(atan2(b.y - a.y,
    b.x - a.x));}
Pt unit(Pt o) {return o / abs(o);}
Pt rot(Pt a, double o) { // CCW
  double c = cos(o), s = sin(o);
  return Pt(c * a.x - s * a.y, s * a.x + c * a.y);
Pt perp(Pt a) {return Pt(-a.y, a.x);}
Pt proj_vector(Pt a, Pt b, Pt c) { // vector ac proj to
  return (b - a) * ((c - a) * (b - a)) / (abs2(b - a));
Pt proj_pt(Pt a, Pt b, Pt c) { // point c proj to ab
  return proj_vector(a, b, c) + a;
```

#### 8.2 Heart

```
Pt circenter(Pt p0, Pt p1, Pt p2) { // radius = abs(
    center)
  p1 = p1 - p0, p2 = p2 - p0;
  double x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y;
  double m = 2. * (x1 * y2 - y1 * x2);
  Pt center(0, 0);
  center.x = (x1 * x1 * y2 - x2 * x2 * y1 + y1 * y2 * (
      y1 - y2)) / m;
  center.y = (x1 * x2 * (x2 - x1) - y1 * y1 * x2 + x1 *
       y2 * y2) / m;
  return center + p0;
Pt incenter(Pt p1, Pt p2, Pt p3) { // radius = area / s
  double a = abs(p2 - p3), b = abs(p1 - p3), c = abs(p1
       - p2);
  double s = a + b + c;
  return (p1 * a + p2 * b + p3 * c) / s;
Pt masscenter(Pt p1, Pt p2, Pt p3)
{ return (p1 + p2 + p3) / 3; }
Pt orthocenter(Pt p1, Pt p2, Pt p3)
{ return masscenter(p1, p2, p3) * 3 - circenter(p1, p2,
     p3) * 2; }
```

#### 8.3 External Bisector

```
Pt external_bisector(Pt p1, Pt p2, Pt p3) { //213
Pt L1 = p2 - p1, L2 = p3 - p1;
L2 = L2 * abs(L1) / abs(L2);
return L1 + L2;
}
```

## 8.4 Intersection of Segments

```
Pt LinesInter(Line a, Line b) {
   double abc = (a.b - a.a) ^ (b.a - a.a);
   double abd = (a.b - a.a) ^ (b.b - a.a);
   if (sign(abc - abd) == 0) return b.b;// no inter
   return (b.b * abc - b.a * abd) / (abc - abd);
}
vector<Pt> SegsInter(Line a, Line b) {
   if (btw(a.a, a.b, b.a)) return {b.a};
   if (btw(a.a, a.b, b.b)) return {b.b};
   if (btw(b.a, b.b, a.a)) return {a.a};
   if (btw(b.a, b.b, a.b)) return {a.b};
   if (ori(a.a, a.b, b.a) * ori(a.a, a.b, b.b) == -1 &&
        ori(b.a, b.b, a.a) * ori(b.a, b.b, a.b) == -1)
        return {LinesInter(a, b)};
   return {};
}
```

## 8.5 Intersection of Circle and Line

#### 8.6 Intersection of Circles

# 8.7 Intersection of Polygon and Circle

```
double _area(Pt pa, Pt pb, double r){
  if (abs(pa) < abs(pb)) swap(pa, pb);</pre>
  if (abs(pb) < eps) return 0;</pre>
  double S, h, theta;
  double a = abs(pb), b = abs(pa), c = abs(pb - pa);
double cosB = pb * (pb - pa) / a / c, B = acos(cosB);
  double cosC = (pa * pb) / a / b, C = acos(cosC);
 if (a > r) {
   S = (C / 2) * r * r;
    h = a * b * sin(C) / c;
    if (h < r \&\& B < pi / 2) S -= (acos(h / r) * r * r
         - h * sqrt(r * r - h * h));
  } else if (b > r) {
    theta = pi - B - asin(sin(B) / r * a);
    S = .5 * a * r * sin(theta) + (C - theta) / 2 * r *
  } else S = .5 * sin(C) * a * b;
double area_poly_circle(vector<Pt> poly, Pt 0, double r
    ) {
  double S = 0; int n = poly.size();
  for (int i = 0; i < n; ++i)</pre>
    S += _area(poly[i] - 0, poly[(i + 1) % n] - 0, r) *
          ori(0, poly[i], poly[(i + 1) % n]);
```

```
return fabs(S);
```

# 8.8 Tangent Lines of Circle and Point

## 8.9 Tangent Lines of Circles

```
vector <Line> tangent(Cir c1, Cir c2, int sign1) {
  // sign1 = 1 for outer tang, -1 for inter tang
  vector <Line> ret;
  double d_sq = abs2(c1.o - c2.o);
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  Pt v = (c2.0 - c1.0) / d;
  double c = (c1.r - sign1 * c2.r) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
    Pt n = Pt(v.x * c - sign2 * h * v.y, v.y * c +
        sign2 * h * v.x);
    Pt p1 = c1.o + n * c1.r;
    Pt p2 = c2.o + n * (c2.r * sign1);
    if (sign(p1.x - p2.x) == 0 \& sign(p1.y - p2.y) ==
      p2 = p1 + perp(c2.o - c1.o);
    ret.pb({p1, p2});
  return ret;
}
```

#### 8.10 Point In Convex

## 8.11 Point Segment Distance

```
double PointSegDist(Pt q0, Pt q1, Pt p) {
  if (sign(abs(q0 - q1)) == 0) return abs(q0 - p);
  if (sign((q1 - q0) * (p - q0)) >= 0 && sign((q0 - q1)
      * (p - q1)) >= 0)
    return fabs(((q1 - q0) ^ (p - q0)) / abs(q0 - q1));
  return min(abs(p - q0), abs(p - q1));
}
```

#### 8.12 Convex Hull

```
vector <Pt> ConvexHull(vector <Pt> pt) {
   int n = pt.size();
   sort(all(pt), [&](Pt a, Pt b) {return a.x == b.x ? a.
        y < b.y : a.x < b.x;});
   vector <Pt> ans = {pt[0]};
   for (int t : {0, 1}) {
```

## 8.13 Convex Hull Distance

```
double ConvexHullDist(vector<Pt> A, vector<Pt> B) {
  for (auto &p : B) p = Pt(0, 0) - p;
  auto C = Minkowski(A, B); // assert SZ(C) > 0
  if (PointInConvex(C, Pt(0, 0))) return 0;
  double ans = PointSegDist(C.back(), C[0], Pt(0, 0));
  for (int i = 0; i + 1 < C.size(); ++i) {
    ans = min(ans, PointSegDist(C[i], C[i + 1], Pt(0, 0));
  }
  return ans;
}</pre>
```

## 8.14 Minimum Enclosing Circle

```
Cir min_enclosing(vector<Pt> &p) {
  random_shuffle(p.begin(), p.end());
  double r = 0.0;
  Pt cent = p[0];
  for (int i = 1; i < p.size(); ++i) {</pre>
    if (abs2(cent - p[i]) <= r) continue;</pre>
    cent = p[i];
    r = 0.0;
    for (int j = 0; j < i; ++j) {</pre>
      if (abs2(cent - p[j]) <= r) continue;</pre>
      cent = (p[i] + p[j]) / 2;
      r = abs2(p[j] - cent);
      for (int k = 0; k < j; ++k) {
        if (abs2(cent - p[k]) <= r) continue;</pre>
        cent = circenter(p[i], p[j], p[k]);
        r = abs2(p[k] - cent);
      }
   }
  return {cent, sqrt(r)};
```

# 8.15 Union of Circles

```
vector<pair<double, double>> CoverSegment(Cir a, Cir b)
  double d = abs(a.o - b.o);
  vector<pair<double, double>> res;
  if (sign(a.r + b.r - d) == 0);
  else if (d <= abs(a.r - b.r) + eps) {
    if (a.r < b.r) res.emplace_back(0, 2 * pi);</pre>
  } else if (d < abs(a.r + b.r) - eps) {</pre>
    double o = acos((a.r * a.r + d * d - b.r * b.r) /
        (2 * a.r * d)), z = atan2((b.o - a.o).y, (b.o - a.o))
         a.o).x);
    if (z < 0) z += 2 * pi;
    double l = z - o, r = z + o;
    if (1 < 0) 1 += 2 * pi;</pre>
    if (r > 2 * pi) r -= 2 * pi;
    if (1 > r) res.emplace_back(1, 2 * pi), res.
        emplace_back(0, r);
    else res.emplace_back(1, r);
  return res;
double CircleUnionArea(vector<Cir> c) { // circle
    should be identical
  int n = c.size();
  double a = 0, w;
  for (int i = 0; w = 0, i < n; ++i) {</pre>
    vector<pair<double, double>> s = {{2 * pi, 9}}, z;
    for (int j = 0; j < n; ++j) if (i != j) {</pre>
      z = CoverSegment(c[i], c[j]);
```

## 8.16 Union of Polygons

```
double polyUnion(vector <vector <Pt>> poly) {
  int n = poly.size();
  double ans = 0;
  auto solve = [&](Pt a, Pt b, int cid) {
    vector <pair <Pt, int>> event;
     for (int i = 0; i < n; ++i) {</pre>
       int st = 0, sz = poly[i].size();
       while (st < sz && ori(poly[i][st], a, b) != 1) st</pre>
       if (st == sz) continue;
       for (int j = 0; j < sz; ++j) {</pre>
         Pt c = poly[i][(j + st) % sz], d = poly[i][(j + st) % sz]
              st + 1) % sz];
         if (sign((a - b) ^ (c - d)) != 0) {
           int ok1 = ori(c, a, b) == 1, ok2 = ori(d, a, b)
               b) == 1;
           if (ok1 ^ ok2) event.emplace_back(LinesInter
         ({a, b}, {c, d}), ok1 ? 1 : -1);
} else if (ori(c, a, b) == 0 && sign((a - b) *
              (c - d)) > 0 && i <= cid) {
           event.emplace_back(c, -1);
           event.emplace_back(d, 1);
        }
      }
    sort(all(event), [&](pair <Pt, int> i, pair <Pt,</pre>
         int> j) {
       return ((a - i.first) * (a - b)) < ((a - j.first)</pre>
            * (a - b));
    int now = 0;
    Pt 1st = a;
     for (auto [x, y] : event) {
      if (btw(a, b, 1st) && btw(a, b, x) && !now) ans
+= lst ^ x;
       now += y, lst = x;
    }
  for (int i = 0; i < n; ++i) for (int j = 0; j < poly[</pre>
       i].size(); ++j) {
     solve(poly[i][j], poly[i][(j + 1) % int(poly[i].
         size())], i);
  return ans / 2;
}
```

#### 8.17 Polar Angle Sort

```
void PolarAngleSort(vector <Pt> &pts) {
   sort(all(pts), [&](Pt a, Pt b) {return pos(a) == pos(
        b) ? sign(a ^ b) > 0 : pos(a) < pos(b);});
}</pre>
```

## 8.18 Rotating Caliper

```
}
// do something
}
```

## 8.19 Rotating SweepLine

```
void RotatingSweepLine(vector <Pt> &pt) {
  int n = pt.size();
  vector <int> ord(n), cur(n);
  vector <pii> line;
  for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++
      j) if (i ^ j)
    line.emplace_back(i, j);
  sort(all(line), [&](pii i, pii j) {
    Pt a = pt[i.second] - pt[i.first], b = pt[j.second]
         - pt[j.first];
    return (pos(a) == pos(b) ? sign(a ^b) > 0 : pos(a)
         < pos(b));
  });
  iota(all(ord), 0);
  sort(all(ord), [&](int i, int j) {
    return (sign(pt[i].y - pt[j].y) == 0 ? pt[i].x < pt</pre>
        [j].x : pt[i].y < pt[j].y);
  for (int i = 0; i < n; ++i) cur[ord[i]] = i;</pre>
  for (auto [i, j] : line) {
    // point sort by the distance to line(i, j)
    tie(cur[i], cur[j], ord[cur[i]], ord[cur[j]]) =
        make_tuple(cur[j], cur[i], j, i);
  }
}
```

#### 8.20 Half Plane Intersection

```
vector<Pt> HalfPlaneInter(vector<Line> vec) {
  // line.a -----> line.b
 int n = vec.size();
  sort(all(vec), [&](Line a, Line b) {
   Pt A = a.b - a.a, B = b.b - b.a;
    if (pos(A) == pos(B)) {
      if (sign(A ^ B) == 0) return sign((b.a - a.a) ^ (
          b.b - a.a)) > 0;
     return sign(A ^ B) > 0;
    return pos(A) < pos(B);</pre>
 });
  auto same = [&](Line a, Line b) {
    return sign((a.b - a.a) ^ (b.b - b.a)) == 0 && sign
        ((a.b - a.a) * (b.b - b.a)) > 0;
  };
  deque <Pt> inter;
  deque <Line> seg;
  for (int i = 0; i < n; ++i) if (!i || !same(vec[i -</pre>
      1], vec[i])) {
    while (seg.size() >= 2 && sign((vec[i].b - inter.
        back()) ^ (vec[i].a - inter.back())) == 1) seg.
        pop_back(), inter.pop_back();
    while (seg.size() >= 2 && sign((vec[i].b - inter.
        front()) ^ (vec[i].a - inter.front())) == 1)
        seg.pop_front(), inter.pop_front();
    seg.pb(vec[i]);
    if (seg.size() >= 2) inter.pb(LinesInter(seg[seg.
        size() - 2], seg.back()));
 while (seg.size() >= 2 && sign((seg.front().b - inter
      .back()) ^ (seg.front().a - inter.back())) == 1)
      seg.pop_back(), inter.pop_back();
  inter.pb(LinesInter(seg.front(), seg.back()));
  return vector<Pt>(all(inter));
```

## 8.21 Minkowski Sum

```
reorder(P), reorder(Q);
int n = P.size(), m = Q.size();
P.pb(P[0]), P.pb(P[1]), Q.pb(Q[0]), Q.pb(Q[1]);
vector <Pt> ans;
for (int i = 0, j = 0; i < n || j < m; ) {
    ans.pb(P[i] + Q[j]);
    auto val = (P[i + 1] - P[i]) ^ (Q[j + 1] - Q[j]);
    if (val >= 0) i++;
    if (val <= 0) j++;
}
return ans;
}</pre>
```

## 8.22 Delaunay Triangulation

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const ll inf = MAXC * MAXC * 100; // Lower_bound
    unknown
struct Tri;
struct Edge {
  Tri* tri; int side;
  Edge(): tri(0), side(0){}
  Edge(Tri* _tri, int _side): tri(_tri), side(_side){}
};
struct Tri {
  pll p[3];
  Edge edge[3];
  Tri* chd[3];
  Tri() {}
  Tri(const pll& p0, const pll& p1, const pll& p2) {
    p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(pll const& q) const {
    for (int i = 0; i < 3; ++i)</pre>
      if (ori(p[i], p[(i + 1) % 3], q) < 0)
        return 0;
    return 1;
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
 if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the_root = // Tri should at least contain all
      new(tris++) Tri(pll(-inf, -inf), pll(inf + inf, -
          inf), pll(-inf, inf + inf));
  Tri* find(pll p) { return find(the_root, p); }
  void add_point(const pll &p) { add_point(find(
      the_root, p), p); }
  Tri* the_root;
  static Tri* find(Tri* root, const pll &p) {
    while (1) {
      if (!root->has_chd())
        return root;
      for (int i = 0; i < 3 && root->chd[i]; ++i)
        if (root->chd[i]->contains(p)) {
          root = root->chd[i];
          break;
```

assert(0); // "point not found"

```
void add_point(Tri* root, pll const& p) {
    Tri* t[3];
    /* split it into three triangles */
    for (int i = 0; i < 3; ++i)</pre>
      t[i] = new(tris++) Tri(root->p[i], root->p[(i +
          1) % 3], p);
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
    for (int i = 0; i < 3; ++i)
      root->chd[i] = t[i];
    for (int i = 0; i < 3; ++i)</pre>
      flip(t[i], 2);
  void flip(Tri* tri, int pi) {
    Tri* trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
    if (!trj) return;
    if (!in_cc(tri->p[0], tri->p[1], tri->p[2], trj->p[
        pj])) return;
    /* flip edge between tri,trj */
    Tri* trk = new(tris++) Tri(tri->p[(pi + 1) % 3],
        trj->p[pj], tri->p[pi]);
    Tri* trl = new(tris++) Tri(trj->p[(pj + 1) % 3],
        tri->p[pi], trj->p[pj]);
    edge(Edge(trk, 0), Edge(trl, 0));
    edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
    edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
    edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
    tri->chd[0] = trk; tri->chd[1] = trl; tri->chd[2] =
    trj->chd[0] = trk; trj->chd[1] = trl; trj->chd[2] =
         0;
    flip(trk, 1); flip(trk, 2);
    flip(trl, 1); flip(trl, 2);
 }
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
  if (vst.find(now) != vst.end())
    return;
  vst.insert(now);
  if (!now->has_chd())
    return triang.pb(now);
  for (int i = 0; i < now->num chd(); ++i)
    go(now->chd[i]);
void build(int n, pll* ps) { // build triangulation
 tris = pool; triang.clear(); vst.clear();
  random_shuffle(ps, ps + n);
  Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i)</pre>
    tri.add_point(ps[i]);
  go(tri.the_root);
```

#### 8.23 Triangulation Vonoroi

```
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line 1) {
  pdd d = 1.Y - 1.X; d = perp(d);
  pdd m = (1.X + 1.Y) / 2;
  l = Line(m, m + d);
  if (ori(1.X, 1.Y, p) < 0)
    l = Line(m + d, m);
  return 1;
double calc_area(int id) {
 // use to calculate the area of point "strictly in
the convex hull"
  vector<Line> hpi = halfPlaneInter(ls[id]);
  vector<pdd> ps;
  for (int i = 0; i < SZ(hpi); ++i)</pre>
    ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1) \%
         SZ(hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
  double rt = 0;
  for (int i = 0; i < SZ(ps); ++i)</pre>
```

```
rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
  return fabs(rt) / 2;
void solve(int n, pii *oarr) {
  map<pll, int> mp;
  for (int i = 0; i < n; ++i)
    arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]] = i;
  build(n, arr); // Triangulation
  for (auto *t : triang) {
    vector<int> p;
    for (int i = 0; i < 3; ++i)
      if (mp.find(t->p[i]) != mp.end())
        p.pb(mp[t->p[i]]);
    for (int i = 0; i < SZ(p); ++i)</pre>
      for (int j = i + 1; j < SZ(p); ++j) {
        Line l(oarr[p[i]], oarr[p[j]]);
        ls[p[i]].pb(make_line(oarr[p[i]], 1));
        ls[p[j]].pb(make_line(oarr[p[j]], 1));
  }
```

## 9 Else

#### 9.1 Bit Hack

## 9.2 Dynamic Programming Condition

#### 9.2.1 Totally Monotone (Concave/Convex)

```
\begin{array}{l} \forall i < i', j < j' \text{, } B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j' \text{, } B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

#### 9.2.2 Monge Condition (Concave/Convex)

```
\begin{array}{l} \forall i < i', j < j' \text{, } B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j' \text{, } B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

## 9.2.3 Optimal Split Point

```
If B[i][j] + B[i+1][j+1] \geq B[i][j+1] + B[i+1][j] then H_{i,j-1} \leq H_{i,j} \leq H_{i+1,j}
```

## 9.3 Slope Trick

```
template<typename T>
struct slope_trick_convex {
  T minn = 0, ground_1 = 0, ground_r = 0;
  priority_queue<T, vector<T>, less<T>> left;
  priority_queue<T, vector<T>, greater<T>> right;
  slope_trick_convex() {left.push(numeric_limits<T>::
    min() / 2), right.push(numeric_limits<T>::max() /
       2);}
  void push_left(T x) {left.push(x - ground_1);}
  void push_right(T x) {right.push(x - ground_r);}
  //add a line with slope 1 to the right starting from
  void add_right(T x) {
    T l = left.top() + ground_l;
    if (1 <= x) push_right(x);</pre>
    else push_left(x), push_right(l), left.pop(), minn
         += 1 - x;
  //add a line with slope -1 to the left starting from
  void add_left(T x) {
    T r = right.top() + ground_r;
    if (r >= x) push_left(x);
    else push_right(x), push_left(r), right.pop(), minn
          += x - r;
```

```
//val[i]=min(val[j]) for all i-l<=j<=i+r
  void expand(T 1, T r) {ground_1 -= 1, ground_r += r;}
  void shift_up(T x) {minn += x;}
  T get_val(T x) {
    T l = left.top() + ground_l, r = right.top() +
        ground r;
    if (x >= 1 && x <= r) return minn;
    if (x < 1) {
      vector<T> trash:
      T cur_val = minn, slope = 1, res;
      while (1) {
        trash.push_back(left.top());
        left.pop();
        if (left.top() + ground_l <= x) {</pre>
          res = cur_val + slope * (1 - x);
        }
        cur_val += slope * (1 - (left.top() + ground_1)
        1 = left.top() + ground_l;
        slope += 1;
      for (auto i : trash) left.push(i);
      return res;
    if (x > r) {
      vector<T> trash;
      T cur_val = minn, slope = 1, res;
      while (1) {
        trash.push_back(right.top());
        right.pop();
        if (right.top() + ground_r >= x) {
          res = cur_val + slope * (x - r);
          break;
        cur_val += slope * ((right.top() + ground_r) -
        r = right.top() + ground_r;
        slope += 1;
      for (auto i : trash) right.push(i);
      return res;
    assert(0);
};
```

## 9.4 Manhattan MST

```
void solve(int n) {
  init();
  vector<int> v(n), ds;
  for (int i = 0; i < n; ++i) {</pre>
    v[i] = i;
    ds.push_back(x[i] - y[i]);
  sort(ds.begin(), ds.end());
  ds.resize(unique(ds.begin(), ds.end()) - ds.begin());
  sort(v.begin(), v.end(), [&](int i, int j) { return x
      [i] == x[j] ? y[i] > y[j] : x[i] > x[j]; });
  int j = 0;
  for (int i = 0; i < n; ++i) {</pre>
    int p = lower_bound(ds.begin(), ds.end(), x[v[i]] -
         y[v[i]]) - ds.begin() + 1;
    pair<int, int> q = query(p);
    // query return prefix minimum
    if (~q.second) add_edge(v[i], q.second);
    add(p, make_pair(x[v[i]] + y[v[i]], v[i]));
 }
void make_graph() {
  solve(n);
  for (int i = 0; i < n; ++i) swap(x[i], y[i]);</pre>
  solve(n);
  for (int i = 0; i < n; ++i) x[i] = -x[i];
  solve(n);
  for (int i = 0; i < n; ++i) swap(x[i], y[i]);</pre>
  solve(n);
```

## 9.5 Dynamic MST

```
int cnt[maxn], cost[maxn], st[maxn], ed[maxn];
pair<int, int> qr[maxn];
// qr[i].first = id of edge to be changed, qr[i].second
      = weight after operation
// cnt[i] = number of operation on edge i
// call solve(0, q - 1, v, 0), where v contains edges i
     such that cnt[i] == 0
void contract(int 1, int r, vector<int> v, vector<int>
    &x, vector<int> &y) {
  sort(v.begin(), v.end(), [&](int i, int j) {
      if (cost[i] == cost[j]) return i < j;</pre>
      return cost[i] < cost[j];</pre>
      });
  djs.save();
  for (int i = 1; i <= r; ++i) djs.merge(st[qr[i].first</pre>
       ], ed[qr[i].first]);
  for (int i = 0; i < (int)v.size(); ++i) {</pre>
    if (djs.find(st[v[i]]) != djs.find(ed[v[i]])) {
      x.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
  djs.undo();
  djs.save();
  for (int i = 0; i < (int)x.size(); ++i) djs.merge(st[</pre>
      x[i]], ed[x[i]]);
  for (int i = 0; i < (int)v.size(); ++i) {</pre>
     \textbf{if } (\texttt{djs.find}(\texttt{st[v[i]]}) \texttt{ != djs.find}(\texttt{ed[v[i]]})) \texttt{ } \{ \\
      y.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
    }
  djs.undo();
void solve(int 1, int r, vector<int> v, long long c) {
  if (1 == r) {
    cost[qr[1].first] = qr[1].second;
    if (st[qr[1].first] == ed[qr[1].first]) {
      printf("%lld\n", c);
      return;
    int minv = qr[1].second;
    for (int i = 0; i < (int)v.size(); ++i) minv = min(</pre>
         minv, cost[v[i]]);
    printf("%lld\n", c + minv);
    return:
  int m = (1 + r) >> 1;
  vector<int> lv = v, rv = v;
  vector<int> x, y;
  for (int i = m + 1; i <= r; ++i) {</pre>
    cnt[qr[i].first]--:
    if (cnt[qr[i].first] == 0) lv.push_back(qr[i].first
  contract(l, m, lv, x, y);
  long long lc = c, rc = c;
  djs.save();
  for (int i = 0; i < (int)x.size(); ++i) {</pre>
    lc += cost[x[i]];
    djs.merge(st[x[i]], ed[x[i]]);
  solve(l, m, y, lc);
  djs.undo();
  x.clear(), y.clear();
  for (int i = m + 1; i <= r; ++i) cnt[qr[i].first]++;</pre>
  for (int i = 1; i <= m; ++i) {</pre>
    cnt[qr[i].first]--;
    if (cnt[qr[i].first] == 0) rv.push_back(qr[i].first
  }
  contract(m + 1, r, rv, x, y);
  djs.save();
  for (int i = 0; i < (int)x.size(); ++i) {</pre>
    rc += cost[x[i]];
    djs.merge(st[x[i]], ed[x[i]]);
  solve(m + 1, r, y, rc);
  dis.undo();
  for (int i = 1; i <= m; ++i) cnt[qr[i].first]++;</pre>
```

#### 9.6 ALL LCS

```
void all_lcs(string s, string t) { // 0-base
  vector<int> h(t.size());
  iota(all(h), 0);
  for (int a = 0; a < s.size(); ++a) {
    int v = -1;
    for (int c = 0; c < t.size(); ++c)
        if (s[a] == t[c] || h[c] < v)
            swap(h[c], v);
        // LCS(s[0, a], t[b, c]) =
        // c - b + 1 - sum([h[i] >= b] | i <= c)
        // h[i] might become -1 !!
    }
}</pre>
```

#### 9.7 Hilbert Curve

```
long long hilbertOrder(int x, int y, int pow, int
    rotate) {
  if (pow == 0) return 0;
  int hpow = 1 << (pow-1);</pre>
  int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) : ((y < hpow) ?
       hpow) ? 1 : 2);
  seg = (seg + rotate) & 3;
  const int rotateDelta[4] = {3, 0, 0, 1};
  int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
  int nrot = (rotate + rotateDelta[seg]) & 3;
  long long subSquareSize = 111 << (pow * 2 - 2);</pre>
  long long ans = seg * subSquareSize;
  long long add = hilbertOrder(nx, ny, pow - 1, nrot);
  ans += (seg == 1 || seg == 2) ? add : (subSquareSize
       - add - 1);
  return ans;
}
```

## 9.8 Pbds

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#include <ext/rope>
using namespace _
                   _gnu_cxx;
 _gnu_pbds::priority_queue <int> pq1, pq2;
pq1.join(pq2); // pq1 += pq2, pq2 = {}
cc_hash_table<int, int> m1;
tree<int, null_type, less<int>, rb_tree_tag,
    tree_order_statistics_node_update> oset;
oset.insert(2), oset.insert(4);
*oset.find_by_order(1), oset.order_of_key(1);// 4 0
bitset <100> BS;
BS.flip(3), BS.flip(5);
BS._Find_first(), BS._Find_next(3); // 3 5
rope <int> rp1, rp2;
rp1.push_back(1), rp1.push_back(3);
rp1.insert(0, 2); // pos, num
rp1.erase(0, 2); // pos, Len
rp1.substr(0, 2); // pos, Len
rp2.push_back(4);
rp1 += rp2, rp2 = rp1;
rp2[0], rp2[1]; // 3 4
```

#### 9.9 Random

```
struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
    size_t operator()(uint64_t a) const {
        static const uint64_t FIXED_RANDOM = chrono::
            steady_clock::now().time_since_epoch().count();
        return splitmix64(i + FIXED_RANDOM);
    }
};
unordered_map <int, int, custom_hash> m1;
random_device rd; mt19937 rng(rd());
```

## 9.10 Smawk Algorithm

```
11 query(int 1, int r) {
struct SMAWK {
  // Condition:
  // If M[1][0] < M[1][1] then M[0][0] < M[0][1]
  // If M[1][0] == M[1][1] then M[0][0] <= M[0][1]
  // For all i, find r_i s.t. M[i][r_i] is maximum ||
      minimum.
  int ans[N], tmp[N];
  void interpolate(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    vector <int> nl;
    for (int i = 1; i < n; i += 2) {</pre>
      nl.push_back(l[i]);
    run(nl, r);
    for (int i = 1, j = 0; i < n; i += 2) {
      while (j < m && r[j] < ans[l[i]])</pre>
        j++;
      assert(j < m && ans[l[i]] == r[j]);
      tmp[l[i]] = j;
    for (int i = 0; i < n; i += 2) {</pre>
      int curl = 0, curr = m - 1;
      if (i)
        curl = tmp[l[i - 1]];
      if (i + 1 < n)
        curr = tmp[l[i + 1]];
      11 res = query(l[i], r[curl]);
      ans[l[i]] = r[curl];
      for (int j = curl + 1; j <= curr; ++j) {</pre>
        11 nxt = query(l[i], r[j]);
        if (res < nxt)</pre>
          res = nxt, ans[l[i]] = r[j];
      }
    }
  void reduce(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    vector <int> nr;
    for (int j : r) {
      while (!nr.empty()) {
        int i = nr.size() - 1;
        if (query(l[i], nr.back()) <= query(l[i], j))</pre>
          nr.pop_back();
        else
          break;
      if (nr.size() < n)</pre>
        nr.push_back(j);
    }
    run(1, nr);
  void run(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    if (max(n, m) <= 2) {
      for (int i : 1) {
        ans[i] = r[0];
        if (m > 1) {
          if (query(i, r[0]) < query(i, r[1]))</pre>
            ans[i] = r[1];
      }
    } else if (n >= m) {
      interpolate(1, r);
    } else {
      reduce(1, r);
  }
};
```

## 9.11 Matroid Intersection

```
Start from S=\emptyset. In each iteration, let  \bullet \ Y_1=\{x\not\in S\mid S\cup\{x\}\in I_1\}   \bullet \ Y_2=\{x\not\in S\mid S\cup\{x\}\in I_2\}  If there exists x\in Y_1\cap Y_2 insert x into
```

If there exists  $x\in Y_1\cap Y_2$  , insert x into S. Otherwise for each  $x\in S, y\not\in S$  , create edges

```
• x \to y if S - \{x\} \cup \{y\} \in I_1.
• y \to x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in  $Y_1$  and ending at a vertex in  $Y_2$  which doesn't pass through any other vertices in  $Y_2$ , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if  $x \in S$  and -w(x) if  $x \notin S$ . Find the path with the minimum number of edges among all minimum length paths and alternate it.

## 9.12 Python Misc