Analyses morphologique et syntaxique

Cours M1 DAC UPMC

Plan du cours

- analyse morpho-syntaxique
- analyse syntaxique
- applications

Analyse morphosyntaxique

Morphologie en linguistique

- morphologie en linguistique :
 - domaine qui traite de la structure interne des mots
 - linguistique structurale :
 - notion de morphème = unité linguistique minimale (ie non décomposable) porteuse de sens
 - unités abstraites
 - notion de morphe = (une) forme graphique d'un morphème
 - allomorphes : variantes d'un même morphème
 - libres : assois/assieds
 - contextuelles : j'/je

Morphologie en linguistique

- Procédés morphologiques
 - flexion : déclinaison, conjugaison
 - grand/grands/grande, cours/courir
 - dérivation : formation de nouveaux mots notamment par adjonction d'affixes au radical
 - anti-constitu-tionn-elle-ment
 - composition : combinaison de plusieurs bases pour former un nouveau mot
 - tournevis

Analyse morphologique

- Racinisation (stemming)
 - but : supprimer la terminaison des mots
 - congugaison/conjuguer → conjug
 - très utilisé en recherche d'information
- Lemmatisation
 - but : ramener les variantes flexionnelles d'un même mot à sa forme canonique, le lemme
 - conjugue/conjuger/conjugué → conjuguer
- Décomposition
 - but : segmenter un mot contenant plusieurs autres mots afin de retrouver ses composants
 - surtout utilisé dans des langues comme l'allemand

Analyse morphologique

- Segmentation
 - but : découper un mot en segment morphémiques
- Analyse morpho-syntaxique
 - but : analyser chaque mot pour lui associer divers types d'informations telles que la catégorie grammaticale, des traits morphologiques ainsi que le lemme correspondant

Catégories morpho-syntaxiques

- catégories de mots
 - catégories/étiquettes morpho-syntaxiques, tags, parts-ofspeech...
 - cf. grammaire scolaire: noms, verbes, adjectifs, préposition...

Classes ouvertes/fermées lexicalement

2015/2016 Cours TAL M1 DAC 9/70

Etiquetage morpho-syntaxique

- les mots ont généralement plus d'une étiquette possible
 - Le bois vient de France. → le=det, bois=nom
 - Je le bois. → le = pronom, bois = verbe

 Objectif de l'étiquetage: déterminer l'étiquette pour une instance d'un mot

Part-of-Speech:

Exemples d'étiquetage et difficultés

- Entrée: Le débat est relancé.
 - ambiguités: le=det/pro débat=verbe/nom est=verbe/nom
- Sortie: Le/DET débat/NOM est/VER relancé/VER .

- Applications:
 - synthèse vocale: comment prononcer est?
 - recherche dans un corpus: est en tant que nom
 - entrée d'un analyseur syntaxique

- ...

Performance d'étiquetage

- Combien d'étiquettes sont correctes ? précision
 - étiqueteurs sur l'anglais autour de 97%
 - mais baseline simple = 90%
 - chaque mot du lexique → étiquette la plus fréquente
 - mots inconnus → noms
 - beaucoup de mots ne sont pas ambigus
 - déterminants, prépositions, ponctuation...

Déterminer l'étiquette peut être difficile pour des humains également

- Un principe <u>décliné</u> dans la loi relative à l'informatique
- Les statistiques ethniques, c'est complètement has been
- <u>La Commission nationale de l'informatique et des</u> <u>libertés (Cnil)</u> étudie au cas par cas les demandes

Sources d'information

- Sources d'information
 - contexte des mots
 - Le bois vient de France
 - DET NOM VER PREP NAM
 - PRO VER VER PREP NAM
 - connaissance des probabilités d'étiquettes des mots

Exemples de performance de modèles

- Quelques précisions (sur l'anglais)
 - étiquette la plus fréquente: ~90%
 - trigramme HMM:
 - maxent: 94%
 - MEMM: 97%
 - dépendances bidirectionnelles: 97%
 - borne supérieure: ~98% (accord interannotateur humain)

Etiquetage avec/sans information contextuelle

Modèle	Caract.	Mots	Inconnus	Phrases
Baseline	56 805	93,69%	82,61%	26,74%
3mots	239 767	96,57%	86,78%	48,27%

mots uniquement ~ modèle HMM

Analyse syntaxique

Objectif de l'analyse syntaxique

- Analyse syntaxique traditionnelle
 - Généralement fondée sur le paradigme génératif de Chomsky
 - Objet = générer tous et seulement les énoncés possibles dans une langue (énoncés grammaticaux)
 - En analyse = associer à un énoncé (phrase)
 grammatical(e) de la langue sa structure syntaxique
 - arbre des séquences de réécritures permettant d'obtenir la phrase à partir de l'axiome S de la grammaire

Exemple de sortie attendue

Exemple d'analyse en dépendances

Grammaires

- G=(Vn, Vt, R, S)
 - Vn: vocabulaire non terminal
 - Vt : vocabulaire terminal
 - R : ensemble de règles de réécriture, X → Y
 - S: axiome de la grammaire
- Suivant les règles de R :
 - Grammaire non contrainte → trop « lâche »
 - Grammaire en contexte :
 - « X se réécrit Y dans le contexte u v »
 - uXv → uYv
 - Grammaire hors contexte : X → Y
 - Grammaire régulière (trop figée)
 - A → a ou A → aB

Grammaire hors-contexte

- Exemple:
- S → GNGV
- GN → Det N
- GV → (Aux) V GN
- Aux → va

2015/2016

- V → lire | bat |mange|....
- Det → le|la|les|un...
- N → garçon|livre|pomme...

Le garçon va lire un livre

Mais aussi : *le pomme va mange la livre*

Grammaire hors contexte...

• Différences entre structure de surface et structures profondes

2015/2016 Cours TAL M1 DAC 23/70

Analyse syntaxique traditionnelle

- Théorie des langages formels de Chomsky
 - Formalisation mathématique pas une théorie linguistique
 - La langue n'est pas un langage indépendant du contexte
 - Les accords
 - Grammaires contextuelles insuffisantes
 - Constituants discontinus : Combien cette salle a-t-elle de fenêtres ?

Exemples d'analyseurs

- Analyseurs fondés sur les formalismes des théories grammaticales
 - GPSG (Generalized Phrase Phrase-Structure Grammar, Gazdar et al 1985)
 - LFG (Lexical Functional Grammar, Kaplan & Bresnan 1982)
 - UCG (Unification Categorial Grammar, Clader et al 1988)
 - HPSG (Head-driven Phrase Structure Grammar, Pollard & Sag 1994)
- Autres
 - PATR : formalisme à structures de traits et unification
 - DCG (Definite Clause Grammar): extension de Prolog

Analyse syntaxique traditionnelle

- Caractéristiques (HPSG, LFG, TAG, ...):
 - Règles de grammaire de type hors-contexte
 - Structures de traits
 - Unification
- Problème : manque de robustesse

Analyse robuste

Analyse robuste, analyse partielle, analyse de surface (shallow parsing)

- Approche empirique : héritage de la reconnaissance de la parole
- Travail sur texte réel, but opérationnel d'abord
- Analyse vue comme un processus informatique
- Principalement des méthodes statistiques

Notion de robustesse en TAL

- Robustesse : plusieurs définitions dans la littérature du TAL
- Idée commune :
 - Capacité d'un système de TAL à traiter des données linguistiques réelles (produites par des locuteurs indépendamment du système)
- Définition (pour un analyseur)
 - Capacité d'un système à produire des analyses utiles pour des textes réels
 - Analyses utiles : analyses (au moins partiellement) correctes et utilisables dans une tâche automatique (application)

2015/2016 Cours TAL M1 DAC (Salah Aït-Mokhtar, 2002)

Textes traités

- Texte réels : tels que produits par leurs auteurs
 - documentation technique
 - articles ou dépêches de presse
 - pages web, courrier électronique
 - sortie d'OCR
- Caractéristiques
 - aspects typographiques
 - mots inconnus, énoncés agrammaticaux
 - structures grammaticales particulières (ellipses, structures complexes, etc.)
 - expressions idiomatiques

Motivations derrière la robustesse

Théorique

 Confronter les modèles théoriques à des données réelles est une nécessité pour toute science empirique

Pratique

- Importants besoins d'applications capables de traiter des documents réels
- Besoins favorisés par la disponibilité d'immenses quantités de documents électroniques (grâce notamment à Internet)

Propriétés nécessaires

- Une analyse au moins pour chaque entrée
 - Situations d'absence d'analyses fréquentes dans les analyseurs traditionnels
 - Enoncés agrammaticaux dans les textes réels
 - Mais, plus fréquemment : constructions grammaticales non prédites par le modèle ou les descriptions linguistiques de l'analyseur
- Nombre d'analyses concurrentes limité
 - Les analyseurs traditionnels produisent souvent de trop nombreuses analyses (parfois des milliers pour une longue phrase), dont des analyses redondantes (ambiguïtés artificielles)

Méthodes d'analyse robuste (1)

- Emergence de méthodes d'analyse robuste
 - Surtout à partir de la fin des années 80
- Trois tendances générales
 - Ajout de mécanismes ad hoc spécifiques pour rendre les analyseurs traditionnels robustes
 - Analyse à base de modèles statistiques
 - Analyse de surface à base de règles (rule-based shallow parsing)

Analyse de surface (shallow parsing)

Idée de base

- Limiter la « profondeur » et la richesse de l'analyse syntaxique
- Prévoir la possibilité d'analyses partielles

But

- Obtenir des structures syntaxiques minimales, sousspécifiées mais linguistiquement motivées (syntagme noyau = chunk)
- Des structures utiles en tant que telles dans des applications
- Première phase d'une analyse syntaxique plus complète

Exemple d'analyse

[Bill NP] [vit V] [l'homme NP] [sur la colline PP] [avec un télescope PP]

- Chunks : NP, V, PP
- Ambiguïté de rattachement implicite

Analyse de surface: étapes de traitements

- Prétraitement
 - Etiquetage morpho-syntaxique (segmentation, analyse morphologique, désambiguïsation)
- Analyse syntaxique de surface
 - Reconnaissance des syntagmes noyaux (chunks) : SN, SP, SV
 - Groupes complexes et propositions
 - Attribution de fonctions syntaxiques (Sujet, Objet, etc.)
- Analyse incrémentale

Analyse par apprentissage supervisé

- Nécessité de grands corpus annotés
 - Penn TreeBank pour l'anglais
 - French TreeBank pour le français

Corpus French TreeBank

- Projet initié en 1997
- corpus journalistique (Le Monde)
- 1 million de mots
- Annotations
 - Morphosyntaxiques
 - Pos
 - Sous-catégorisation
 - Inflection
 - Lemme
 - Parties pour mots composés
 - Constituants
 - Fonction

Représentation dans le FTB

Principe de l'analyse probabiliste en constituants

- Probabilistic context-free grammar (PCFG)
 - dès (Booth, 69)
 - une CFG + probabilités:
 - chaque règle est associée à une probabilité
 - probabilités telles que ∀ non terminal A :

$$\forall \sum_{\alpha: A \to \alpha \in G} P(A \to \alpha) = 1$$

- probabilité d'un arbre
 - = probabilité conjointe de toutes les applications de règles sousjacente à l'arbre
 - «grammaires hors-contexte»

$$P(arbre) = \prod P(A \rightarrow \alpha)$$

 $A \rightarrow \alpha \in arbre$

• => hypothèse d'indépendance entre chaque règle

45/70 **(Candito, 2012)**

Extraire une PCFG d'un treebank

- CFG = règles rencontrés dans les arbres du corpus
- probabilités associées aux règles = estimées par fréquence relative (max de vraisemblance)

$$P(A \to \alpha) = \frac{C(A \to \alpha)}{\sum_{\beta: A \to \beta \in G} C(A \to \beta)}$$

Inconvénients des PCFG

- Hypothèses d'indépendance trop fortes
 - ne tiennent pas compte du lexique
 - par exemple, choix entre ces deux analyses

Inconvénients des PCFG

- il existe des dépendances structurelles entres les règles
 - exemple typique (Johnson, 98) sur Penn TreeBank
 - Les NP sujets ont plus de chance d'être pronominaux que nominaux, contrairement aux NP objets
 - P(NP -> PRO | (en sujet)) >> P(NP -> PRO| non sujet)
 - exemple en français
 - Syntagme adjectival : jamais prénominal si contient complément postadjectival
 - un [très charmant] garçon
 - *un [très charmant envers tous] garçon

Solution 1 : algorithme lexicalisé

- Collins, 99 : lexicalisation des règles
 - tête lexicale associée à chaque règle d'un arbre

- Probas sur règles augmentées :
- S(voit,V) → NP(Paul,N) VN(voit,V) NP(chat,N) PP(de,P)

Solution 2 : division de symbole

- raffinage manuel des symboles non terminaux
 - Johnson, 98 : annotation par le nœud parent

- Klein et Manning, 03 : essais systématiques de raffinements intuitivement/linguistiquement intéressants
 - exemple : split du tag IN (pour prep) en 6 sous-catégories selon la prep
 - améliore les résultats
 - laborieux, splits dépendants du corpus

Solution 2bis: division automatique

- PCFG avec annotations latentes
 - trouver automatiquement les raffinages pertinents
 - (Matsuzaki et. Al. 2005), puis (Petrov, 06; 07)
- apprentissage
 - G0= la grammaire extraite directement du treebank
 - Créer itérativement G1...Gn comme suit :
 - DIVISION: Diviser tout symbole X de Gi-1 en 2 nouveaux symboles X1 et X2
 - règles de la forme Ax → By Cz
 - probabilités des règles avec annotations latentes sont estimées via une variante de l'algorithme EM
 - FUSION :Re-fusionner des paires de symboles dont la distinction s'avère inutile
 - ne garder que les divisions dont la fusion occasionnerait une forte perte de vraisemblance
 - LISSAGE : Lisser les probabilités de règles partageant le même symbole gauche
- très bons résultats
 - sur divers types de treebank

Analyse probabiliste en dépendances

- Deux familles principales d'analyseurs
 - analyseurs à transitions
 - Yamada et Matsumoto, 2003; Nivre, 2003
 - implémentation de référence = MaltParser
 - basés sur les graphes
 - «Maximum spanning tree» parser McDonald, 2005
 - implémentation MSTParser, Bohnet...

Exemples d'applications

Application 1: retrouver les familles de langues par analyse de corpus

- Travaux de Ryo Nagata, 2012
- Idée : exploiter les interférences linguistiques de la langue maternelle en anglais
- par exemple
 - The alien wouldn't use my spaceship but the hers.
 - structure qui existe en français par exemple

Hypothèse de recherche

Méthode

Création des modèles

Expériences et résultats

- Corpus : ICLE corpus (Granger, 09)
 - corpus d'apprenants de l'anglais
 - 11 anglais
 - 20 millions de mots/ langue

Résultats

Analyse de résultats

English : cheese tart => noun of noun fréquent dans les langues romanes

Italic: tart of cheese (tarte au fromage)

2015/2016 Cours TAL M1 DAC 60/70

Application 2: IBM Watson

2011 : Watson joue à Jeopardy! contre les champions Brad Rutter and Ken Jennings... et gagne

IBM Watson

- Programme d'intelligence artificielle capable de répondre à des questions en langage naturel
- Développé pour répondre à des questions du jeu Jeopardy!
 - In 1903, with presidential permission, Morris Michtom began marketing these toys
 - What are teddy bears?
 - This langage was invented in Warsaw in 1887 by Dr. L.L. Zamenhof
 - What is esperanto?
 - Cecilia Bartoli has unearthed & sung several forgotten arias by this
 « Four seasons » composer
 - Who is Antonio Vivaldi?

Analyse syntaxique dans Watson

- Analyse des questions et des documents grâce à une analyse syntaxique (et sémantique) profonde
 - English Slot Grammar (ESG) parser
 - produit un arbre syntaxique profond/ structure logique, ainsi qu'une structure de surface
 - Predicate Argument Structure (PAS) builder
 - simplifie l'analyse de l'ESG
 - supprime auxiliaires, voix passive = voix active...

Exemple d'analyse d'une question

Application 3 : simplification automatique de textes

- Travaux de (Brouwers et al., 2011 ; 2014)
- Contexte : capacité de lire rapidement et efficacement = atout important mais pas toujours maîtrisé
 - problème : trop grande complexité des textes
- Problématique :
 - simplification automatique = rendre des textes plus abordables tout en garantissant l'intégrité de leur contenu et en veillant à en respecter la structure
 - Chuck Bartowski est un nerd, un passionné d'ordinateurs qui travaille au Buy More de Burbank.
 - Chuck Bartowski est un passionné d'ordinateurs. Il travaille au Buy More de Burbank

Constitution d'un corpus

- À partir de Wikipédia et Vikidia
 - alignement de phrases
 - Wikipédia: Un archipel est un ensemble d'îles relativement proches les unes des autres. Le terme «archipel» vient du grec ancien "Archipelagos", littéralement «mer principale» (de "archi": «principal» et "pélagos": «la haute mer»). En effet, ce mot désignait originellement la mer Égée, caractérisée par son grand nombre d'îles (les Cyclades, les Sporades, Salamine, Eubée, Samothrace, Lemnos, Samos, Lesbos, Chios, Rhodes, etc.).
 - Vikidia: Un archipel est un ensemble de plusieurs îles, proches les unes des autres. Le mot «archipel» vient du grec "archipelagos", qui signifie littéralement «mer principale» et désignait à l'origine la mer Égée, caractérisée par son grand nombre d'îles.

Typologie de simplifications

Lexicales

- synonymes ou hyperonymes : située dans le land → en
- références anaphoriques plus explicites : il → l'homme
- utilisation d'une définition ou paraphrase au lieu d'un mot complexe
- traductions : Estado novo → État nouveau

Discours

- inversions de propositions : le général avant le précis
 - Antoine Marie Jean-Baptiste Roger de Saint- Exupéry, né le 29 juin 1900 à Lyon et disparu en vol le 31 juillet 1944, Mort pour la France, est un écrivain, poète et aviateur français.
 - → Antoine de Saint-Exupéry, né le 29 juin 1900 à Lyon, mort le 31 juillet 1944 disparu en vol, était un écrivain et aviateur français.
- ajout d'informations, d'explications, d'exemples

Typologie de simplifications

Syntaxiques

- temps familiers plutôt que littéraires : rencontra → rencontre
- suppressions : compléments circonstanciels, adverbes...
 - Il est peuplé de 710 231 habitants, soit l'équivalent du département français du Gard.
 - → II y a environ 686 293 habitants.
- modifications (mise entre parenthèses, déplacement de proposition ou complément circonstanciel, structure clivée → non clivée, proposition secondaire → principale, etc.)
 - C'est à Aix qu'arriva en 802 l'éléphant blanc.
 - → En 802 arriva à Aix un éléphant blanc.
- divisions

Méthode

- 19 règles de simplification syntaxique
- Application des règles
 - repérage des structures par expressions régulières sur les arbres
 - transformations
 - application récursive
 - sélection par Integer Linear Programming selon plusieurs critères de lisibilité :
 - longueur de la phrase
 - longueur des mots
 - familiarité du vocabulaire
 - présence de termes clés
- Résultats : environ 80 % de phrases grammaticalement correctes

Quelques liens

- Étiqueteurs morpho-syntaxiques
 - TreeTagger (en et fr)
 - http://nlp.stanford.edu/software/corenlp.shtml
 - Melt (fr)
 - https://gforge.inria.fr/projects/lingwb
- Analyseurs syntaxiques
 - BONSAI (fr)
 - http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html
 - Stanford parser (en et fr)
 - http://nlp.stanford.edu/software/lex-parser.shtml
- Toolkit
 - OpenNLP (modèles en)
 - https://opennlp.apache.org/
 - Stanford CoreNLP (modèles en)
 - http://nlp.stanford.edu/software/corenlp.shtml
 Cours TAL M1 DAC