$C(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma)$ 2017Mo26

 $J^{\pi}=0^+$ for ³⁶Mg ground state.

2017Mo26: A secondary beam composed of ³⁶Mg and ³⁷Al was produced via the projectile fragmentation of a 345-MeV/nucleon ⁴⁸Ca primary beam impinging on a ⁹Be target and selected by the BigRIPS separator at RIKEN. E(³⁶Mg)=235 MeV/nucleon and E(³⁷Al)=246 MeV/nucleon in front of the 2.54 g/cm² carbon secondary target. The reactions leading to ³⁵Mg from ³⁶Mg and ³⁷Al are likely 1n-knockout and 1p1n-removal reactions, respectively. The reaction residues were selected and identified by the Zero Degree spectrometer using the Bρ-ΔE-ToF method. The γ rays in coincidence with ³⁵Mg residues were detected using the DALI2 array of 186 NaI(Tl) crystals at 20° –150°. Measured Eγ(>200 keV), Iγ, (³⁵Mg)γ-coin, the inclusive one-neutron knockout cross section and exclusive γ-ray emission cross sections, and parallel momentum distributions of ³⁵Mg in coincidence with γ rays. Deduced levels, L-transfers, J, and π. Compared with shell-model calculations using the SDPF-M interaction in the sd shell with ν1f_{7/2} and ν2p_{3/2} orbits, and the SDPF-M interaction in a model space up to ν2p_{1/2}, and antisymmetrized molecular dynamics (AMD) model calculations using the Gogny D1S force.

35Mg Levels

E(level) [†]	Jπ‡	L	Comments
0			J^{π} : 3/2 ⁻ from shell-model calculations with the SDPF-M and SDPF-M+2p _{1/2} interactions; 3/2 ⁺ from AMD with the Gogny D1S force (2017Mo26).
0+x			E(level): <200 keV; the detection threshold in 2017Mo26. 1/2 ⁻ at 141 keV from shell-model calculations with the SDPF–M+2p _{1/2} interaction.
0+y?	(5/2-,7/2-)		E(level): <200 keV; the detection threshold. 2017Mo26 suggested a low-lying L=3 level from the observed 42(1)% L=3 component in the inclusive parallel momentum distribution.
206+x 8			J^{π} : γ -ray intensity is too low to be assigned to the $1/2^-$ level at 141 keV from shell-model calculations with the SDPF-M+2p _{1/2} interaction (2017Mo26).
443+x 7	$(3/2^+,5/2^+)$	(2)	1 1/2
616+x 8 670+x 8	$(1/2^-,3/2^-)$	(1)	

[†] From E γ data. 2017Mo26 suggested that all the four observed γ rays were emitted independently and fed either the ground state or a low-lying excited state below 200 keV.

γ (35Mg)

2017Mo26 stated that no clear $\gamma\gamma$ coincidence was observed.

E_{γ}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	Comments
206 8	2 1	206+x		0+x	
443 7	8 1	443+x	$(3/2^+, 5/2^+)$	0+x	2017Mo26 assigned this γ to the 3/2 ⁺ at 788 keV -> 3/2 ⁻ g.s. transition based on shell–model calculations with the SDPF–M+2p _{1/2} interaction (2017Mo26).
616 8	7 1	616+x	(1/2-,3/2-)	0+x	2017Mo26 assigned this γ to the 3/2 ⁻ at 664 keV \rightarrow 1/2 ⁻ at 141 keV transition based on shell–model calculations with the SDPF–M+2p _{1/2} interaction (2017Mo26).
670 8	3 1	670+x		0+x	E _{γ} : From 2011Ga15, as this γ is not resolved from the 616 γ in 2017Mo26, but its presence is indicated in the fit of the spectrum. 2017Mo26 stated that the origin of the 670 γ remained vague.

[†] γ -ray emission σ (mb).

[‡] From measured parallel-momentum distributions and deduced L-transfers.

$C(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma)$ 2017Mo26

Level Scheme

Intensities: γ -ray emission σ (mb)

Legend

 $^{35}_{12}{\rm Mg}_{23}$