Gravitational Field Strength and Gravitational Acceleration

pg 118 #1-3 pg 123 #6,8,14

Table 4.3 Masses and Radii for Celestial Bodies in the Solar System^e

Celestial Body	Mass (kg)	Equatorial Radius (m)
Sun	1.99 × 10 ³⁰	6.96 × 10 ⁸
Mercury	3.30×10^{73}	2.44 × 10 ⁵
Venus	4.37 × 10 ⁷⁴	6.05 × 10 ⁶
Earth	5.97 × 10 ⁷⁴	6.38 × 10 ⁶
Earth's Moon	7.35 × 10 ⁷⁰	1.74 × 10°
Mars	6.42 × 10 ⁷³	3.40 × 10°
Jopiter	1.90 × 10 ²⁷	7.15 × 10'
Salurn	5.69 × 10 ²⁶	6.03 × 10°
Uranus	8.68 × 10 ²⁵	2.56 × 10'
Neptune	1.02 × 10 ⁷⁶	2.48 × 10'

Practice Problems

- A satellite orbits Earth at a distance of 3r_{Earth} above Earth's surface. Use the data from Table 4.3 on page 117.
 - (a) How many Earth radii is the satellite from Earth's centre?
 - (b) What is the magnitude of the gravitational acceleration of the satellite?
- An 80.0-kg astronaut is in orbit 3.20 × 10⁴ km from Earth's centre.
 - (a) Calculate the magnitude of the gravitational field strength at the location of the astronaut.
 - (b) What would be the magnitude of the gravitational field strength if the astronaut is orbiting the Moon with the same separation distance?

3. The highest satellites orbit Earth at a distance of about 6.6r_{Earth} from Earth's centre. What would be the gravitational force on a 70-kg astronaut at this location?

Answers

- 1: (a) 4r_{cmb} (b) 6.11 × 10 1 m/s²
- 2. (a) 3.89 × 10⁻¹ N/kg (b) 4.79 × 10⁻³ N/kg
- 3. 16 N [toward Earth's centre]

Questions from Page 123

- 6. Calculate the gravitational field strength at the location of a 70-kg astronaut 2.0r_{Eath} from Earth's centre. Use the data from Table 4.3 on page 117.
 - 8. (a) Calculate the magnitude of the gravitational field strength at the surfaces of the celestial bodies listed in Table 4.3.
 - (b) Rank them from least to greatest.
- 14. If an 85-kg astronaut has a weight of 314 N, which planet is she standing on?

Textbook questions:

2.
$$r=3.20\times10^{4}$$
 km $=3.20\times10^{4}$ m

$$(6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{KyL}}) (5.98 \times 10^{-14} \text{Ky})$$

$$= (6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{KyL}}) (5.98 \times 10^{-14} \text{Ky})$$

$$= (3.20 \times 10^{7} \text{m})^2$$

$$= 0.390 \text{ N/Ky}$$

$$M_{M} = 7.35 \times 10^{23}$$
 $g = \frac{GMm}{r^2}$

$$9 = \frac{4.35 \times 10^{3}}{9 = \frac{27}{(3.20 \times 10^{7} \text{ N/s})} (7.35 \times 10^{23} \text{ Kg})} = \frac{(6.67 \times 10^{3} \times 10^{23} \text{ Kg})}{(3.20 \times 10^{7} \text{ m})^{2}}$$

$$= 4.79 \times 10^{-2} \text{ N/kg}$$

$$= \frac{9.81}{(6.6)^2}$$

$$= \frac{9.81}{(6.6)^2}$$

$$= 0.2252 \text{ M/Kg}$$

~16~

Py 123 dustrons

Marany - greet 3.697 ~ 3.70 M/kg

Venus - 9 v = 8.87 N/kg Earth - ge 9,81 N/149 Muon - gnon = 1.62 N/19 Mars - gras = 3.704 Mleg Jupiter - 9jup = 24.8 M/10g

Satur- 9 sat = 10.44 Miss

Uranus - guran = 3.75 NIke Nepture - grept = 11.06 Mlg Garding grown - 1.62 N/12 grade - 3.694 N/129 grade - 3.704/129 gurarus - 3.75 N/kg grews - 8.87 N/15 yearth- 9.81 Nlkg gsat - 10.44 Nlieg gnaphur - 11.06 Micg

merry

M=8519 14) 19-314N 92?

Very Jose Volue for 9= Fg = 314N = 3.69 N/149 marsor