Demanda de Automóveis no Brasil*

Alfredo Luiz Baumgarten Jr. **

1. Introdução. 2. As diferentes alternativas. 3. O modelo econométrico para o Brasil (curto prazo). 4. Análise dos resultados. 5. Conclusões.

1. introdução

A indústria automobilística, incluindo automóveis, ônibus, caminhões, tratores e similares, dado seu alto coeficiente backward linkage, usando-se a terminologia de Rasmussen, exerce uma influência substancial sobre o crescimento do setor industrial, como um todo, em qualquer economia. Sendo, porém, uma indústria produtora de bens duráveis acha-se fortemente sujeita às oscilações de demanda, característica destes bens.

Desta forma, ao se procurar conhecer o comportamento da indústria automobilística, em qualquer país, é mister que se identifiquem desde logo os determinantes da procura por seus produtos, bem como a influência daqueles sobre as quantidades demandadas.

- O autor deste trabalho é atualmente chefe do Centro de Estudos Industriais do Instituto Brasileiro de Economia da Fundação Getulio Vargas.
- •• O autor agradece os comentários de Isaac Kerstenetzky, Jessé Montello e Thomas Naylor, durante a elaboração do presente estudo.
- Rasmussen. Studies in intersectorial relations.

O objetivo básico inicial deste texto era o de analisar, em termos agregados, a evolução da demanda pelos produtos da indústria, nos últimos anos, em nosso país.

Neste sentido, de acordo com o tipo de uso a que se destinam, podemos de início distinguir três classes de demanda: demanda por automóveis, por caminhões e utilitários, e por tratores.

No entanto, a quase absoluta escassez de informações estatísticas a respeito dos dois últimos grupos de demanda levou-nos a reformular o objetivo inicial, restringindo-nos a demanda por automóveis.

Vamos, por conseguinte, no momento, ater-nos à análise de como as variáveis distribuições da renda real, nível de preços, composição etária da frota existente, financiamento, crescimento demográfico, durabilidade dos veículos, etc. afetam a procura de automóveis.

Esta análise pretende seguir a trilha de alguns bem sucedidos trabalhos, nas suas tentativas de quantificação do comportamento do consumidor.

Assim, no item 2, além de examinarmos a viabilidade de alguns pontos de vista alternativos e de ressaltarmos os principais aspectos teóricos da demanda de automóveis, abordaremos rapidamente as principais tentativas feitas em outros países. No item 3 serão apresentadas as equações fundamentais por nós utilizadas, bem como as várias regressões intentadas. Ainda aí serão discutidas as séries temporais correspondentes a cada uma das variáveis utilizadas. O quarto item destinar-se-á ao exame dos resultados e o quinto às conclusões relevantes.

As análises de regressão foram todas efetuadas com a utilização de um computador IBM 1 130, empregando-se para tanto os programas do "sistema de estatística" (statistical system).

Existem ainda dois aspectos do trabalho que precisam ser deixados bem claros. O primeiro diz respeito ao período de análise. É nossa intenção elaborar duas funções de demandas: uma de curto prazo e outra de longo. A primeira, que será examinada neste trabalho, será uma análise trimestral, para o período de 1960 a 1967.

A análise de longo prazo, a ser apreciada em outro estudo, será efetuada em termos anuais, abrangendo o período de 1947 a 1967.

Os anos de 68, 69 e 70 serão excluídos de ambas as funções, já que inexistem informações suficientes que nos permitam compor uma série temporal para a variável financiamento, com razoável grau de acuracidade. E, segundo alguns indícios que serão examinados mais adiante, existem

fortes razões para se crer que as vendas de veículos novos, nesses três anos, foram particularmente afetadas pelo efeito-renda decorrente das maiores facilidades creditícias.

O segundo ponto a ser destacado refere-se aos dados estatísticos utilizados. A falta de informações adequadas gerou a necessidade de que, numa etapa prévia ao trabalho, fossem elaboradas as séries temporais para todas as variáveis, à exceção da referente à venda de veículos novos. Tal fato obrigou-nos à utilização de certas hipóteses simplificadoras para a construção de tais séries, o que talvez tenha afastado algumas delas dos dados reais. Por outro lado, como em toda análise agregada o que se objetiva é a formulação de linhas gerais quanto ao sentido e ordem de grandeza do comportamento das variáveis em jogo, e não a obtenção de dados exatos, as evidências que esta análise demonstrar deverão ser levadas em conta ainda com maior cautela. Na verdade, se este estudo induzir a uma melhoria do tipo de informações estatísticas necessárias ou se estimular a elaboração de outras pesquisas que visem completar a atual, já estaremos plenamente recompensados.

2. As diferentes alternativas

2.1 O modelo de equilíbrio entre oferta e procura

O ponto de partida de nossa análise seria a tentativa de se efetuar um amplo estudo do mercado da indústria automobilística, com base num modelo de equilíbrio entre oferta e procura.

Pretendíamos montar um modelo econométrico de equilíbrio, para o qual seriam estimados os parâmetros a partir de sua equação reduzida matricial. Este tratamento do problema oferecia boas possibilidades quanto à identificação do modelo, de vez que o grande número de variáveis que poderiam ser envolvidas sempre permitiriam hipóteses razoáveis para o levantamento de uma possível não-identificação.

Neste caso, duas alternativas seriam possíveis. A primeira seria a de supor o mercado de carros como um sistema de mercados parciais interrelacionados. Assim, os carros seriam divididos em n grupos, de acordo com a qualidade e com a idade, e os carros de cada grupo seriam considerados como bens homogêneos. Obteríamos, então, para cada grupo, uma função de demanda, dentro da teoria tradicional do comportamento do consumidor:

$$X_i = f_i (Y, P, t) \dots i = 1, 2, 3, \dots n$$

e uma função de oferta:

$$X_i = \varphi_i \ (Y, P, \pi) \dots i = 1, 2, 3, \dots n$$

em que X_t representaria os vetores oferta e demanda de veículos, Y seria o vetor renda, P o vetor preços, t expressaria os hábitos e preferências dos consumidores, e π um vetor representando algumas variáveis relevantes para a oferta de veículos.

Este sistema de 2n equações constituiria a forma geral do modelo, sobre a qual trabalharíamos uma série de hipóteses com o objetivo de simplificar sua estimação.

A outra possibilidade, mais interessante do ponto de vista do mercado brasileiro de automóveis, por admitir a utilização de um maior número de variáveis, seria a de estimarmos uma função da demanda por meio de uma análise de regressão múltipla, e de confrontarmos esta equação de demanda com uma função de oferta, obtida a partir de uma função de produção ou de custo, a ser elaborada com base nos questionários respondidos pelas empresas.

Do lado da demanda não seriam intransponíveis os problemas a serem enfrentados, consistindo estes apenas na ecolha das variáveis a serem utilizadas. Assim, em princípio, teríamos a função:

$$Y = f(X_1, X_2, X_3 \dots X_n)$$

em que Y seria demanda, X_1 renda, X_2 preço, X_3 tributação, X_4 financiamento, X_5 gosto do consumidor, etc.

Contudo, grandes dificuldades foram encontradas do lado da oferta, o que nos obrigou a abandonar a idéia do modelo de equilíbrio.

Do lado da oferta, como já se disse, teríamos de derivá-la da função de custo ou da função de produção do setor. Com referência à derivação da função oferta da função de custo, verificamos a inviabilidade de tal procedimento de vez que as informações contidas nos questionários não permitem a determinação da função de custo das empresas. Os dados revelados são extremamente condensados, o que dada a verticalização do setor impede que se distinga a parcela dos gastos que foi efetivamente destinada à fabricação de automóveis. Além disto, não há uma distinção criteriosa entre custos fixos e custos variáveis relativos aos automóveis, o que anula qualquer tentativa de determinação de custos unitários e marginais. Quanto a estes últimos, os dados fornecidos nos obrigariam a considerá-los como constantes, o que é uma hipótese bastante irreal, em se tratando de uma indústria que opera notoriamente com custos decrescentes.

Restaria a alternativa de derivar a oferta da função de produção. Dois seriam os caminhos a seguir para solver este problema. O primeiro seria o da elaboração de uma função técnica de produção baseada em relações tecnológicas do processo produtivo. Esta metodologia implicaria num estudo minucioso dos processos de fabricação empregados em cada fase da montagem dos automóveis, para que, a partir dos dados de engenharia, chegássemos às variáveis econômicas desejadas.² No entanto, em vista da quantidade e da diversidade dos processos usados pelas montadoras de veículos, este caminho foi posto de lado por significar um excessivo investimento, em termos de tempo e de diminutas perspectivas de resultados satisfatórios. O outro caminho seria o ajustamento estatístico de uma função a algumas variáveis relevantes do ponto de vista da produção de automóveis. Surge, então, a primeira pergunta: qual o tipo da função a ser ajustada? A resposta teria que, inicialmente, eliminar uma função do tipo Cobb-Douglas. Isto porque a derivação da função de oferta de uma Cobb-Douglas é indeterminada, caso se suponham rendimentos de escala constantes. 3 Ora, como o período de existência da nossa indústria abrange apenas uns poucos anos, teríamos de realizar uma cross-section. Tal análise, restingindo-se a um dado ponto de tempo, seria estática, não levando em conta as mudanças tecnológicas. A prática tem-nos mostrado que nestas circunstâncias a função estimada é homogênea de grau um. Daí, a precariedade da Cobb-Douglas para nosso estudo.

A função a ser ajustada teria de ser de outro tipo, mas aqui também nos deparamos com uma dificuldade intransponível; o questionário, ainda neste caso, não se ajustou às nossas necessidades. Na verdade, qualquer função que fosse ajustada exigiria um conhecimento dos fatores de produção e dos insumos utilizados com algum detalhe. São boas as informações quanto ao fator trabalho, porém são escassas as informações quanto aos insumos, e inexistentes as referentes ao fator capital. Com relação aos insumos, as informações disponíveis não estão dissociadas por tipos de veículos, o que, para algumas empresas, significa misturar produção de automóveis, caminhões e utilitários, que para nós representam mercados distintos. Quanto ao capital, as únicas informações disponíveis são as dos balanços das empresas. Aqui, também, encontramos o problema de serem estes dados excessivamente agregados. Assim, com a tendência à ver-

² Veja-se Chenery, H. B. Studies in the structure of American economy, cap. 8 e, idem. Engineering production function. Quarterly Journal of Economics, Nov. 1949.

Veja-se apéndice A.

ticalização do setor, estes dados de capital envolvem empresas associadas ou subsidiárias, em verdade pertencentes ao setor de autopeças, além da não-distinção da despesa de capital em relação ao tipo de veículo. Não são também conhecidas as informações relativas à remuneração do capital, indispensáveis ao modelo em foco.

Desta forma, baldadas todas as tentativas concernentes a uma teorização com base num modelo mais amplo, fomos levados a uma análise meramente em termos de demanda. Deve-se notar, contudo, que este enfoque não significa uma grande simplificação em termos da realidade do mercado de automóveis. Analisando-se apenas os aspectos referentes à demanda de automóveis, estaremos supondo tratar-se de um mercado imperfeito (as unidades produtoras constituem um oligopólio), para o qual não tem sentido falar-se em curva de oferta. Tal hipótese nos afigura bastante realista.

2.2 Aspectos teóricos da demanda de automóveis

Os numerosos trabalhos elaborados com o objetivo de explicar a evolução da economia brasileira no pós-guerra têm deixado patente o papel decisivo do processo de substituição de importações na industrialização de nosso País. Ao mesmo tempo, têm-se sentido as dificuldades dos modelos tradicionais em explicar o nosso desenvolvimento econômico. Na verdade, o processo de desenvolvimento econômico brasileiro, gerado pela substituição de importações, tem-se baseado não na demanda de bens de investimento (infra-estrutura industrial), mas sim na demanda de bens de consumo. Este processo dá origem ao aparecimento de indústrias de "ponta", dentre as quais destaca-se, sem dúvida alguma, a indústria automobilística.

Nestas condições, é de fundamental importância para o economista, quer trabalhe no setor privado quer nas oficinas de planejamento do governo, um conhecimento do comportamento da oferta e da demanda de automóveis; e de como estas duas funções reagem às variáveis econômicas que as determinam.

Infelizmente, como verificamos no item 2.1, as condições da oferta ainda não podem ser levantadas. Isto se deve não só à concorrência imperfeita do lado da oferta, mas também ao total desconhecimento dos critérios da fixação de preços, das margens de mark-up de nossas empresas.

Do lado da procura, em que pese não serem menores as dificuldades devido à falta de informações estatisticas adequadas, acreditamos ter chegado a algumas conclusões compensadoras.

No âmbito de uma análise da procura poucas questões se podem considerar mais difíceis do que a previsão do mercado automobilístico de um país. Tratando-se de bens duráveis, os veículos são demandados descontinuamente pelos diferentes compradores. Dessa descontinuidade resulta uma estrutura de demanda extremamente complexa, altamente sensível a oscilações e bastante resistente às previsões econométricas. Trata-se de um mercado sujeito a intensas oscilações, explicadas pelo princípio de aceleração e não são poucas, nem de comportamento facilmente previsível, as variáveis que afetam a procura de automóveis.

Sendo um bem durável, podemos decompor sua demanda em: demanda destinada à expansão da frota em circulação e demanda de reposição dos carros retirados de circulação (sucateamento). A instabilidade do mercado é consequência da natureza da demanda de expansão, uma vez que as vendas de automóveis decorrem não da procura de serviços automobilísticos, mas dos acréscimos desta procura. Em outras palavras, não se procura o automóvel por ele em si, mas pelo serviço por ele prestado e o volume desse serviço é função não do automóvel, mas da frota existente em circulação (estoque). O aumento da demanda de serviços (do estoque) conduz a aumentos mais do que proporcionais no fluxo de unidades novas vendidas, por unidade de tempo. Além disto, oscilações de menor intensidade podem ter origem dentro da própria demanda de reposição, pois esta pode ser antecipada ou adiada dentro de certos limites, uma vez que a vida útil dos veículos não é um dado técnico exato.

As variáveis que afetam a demanda de automáveis podem ser classificadas em:

- a) variáveis da teoria tradicional do comportamento do consumidor: renda *per capita*, preços dos carros novos, preços dos carros usados, frota existente;
- b) variáveis estruturais: distribuição da renda, crescimento demográfico, composição etária da frota, composição do ativo dos indivíduos (outros bens duráveis, títulos, etc.);
- c) variáveis socioculturais: efeito-demonstração, procura por status, etc.
- d) variáveis de política econômica: financiamento, tarifas alfandegárias, facilidades de exportação, etc.

Examinemos cada uma delas rapidamente:

2.2.1 Variáveis tradicionais

Com referência à renda, é desnecessário ressaltar sua importância. Ela atua dentro do esquema da teoria tradicional em que o objetivo dos consumidores é o de maximizar a sua utilidade, atendidas as restrições impostas pelas suas disponibilidades orçamentárias. Dentre as satisfações a serem maximizadas está a ambição da posse de um carro, a qual é freiada pelo nível de renda. Todavia, o que é realmente importante salientar em relação à renda é que existem dois pontos críticos. O primeiro prende-se à existência de um limite mínimo de renda, para que o indivíduo possa efetivamente disputar no mercado a posse de um carro. A renda só tem sentido como determinante da procura de automóveis para valores superiores a este limite. O segundo, relevante para o conceito de frota desejada (potencial) que vamos introduzir mais adiante, é o da existência de um limite mínimo de renda para que o indivíduo possa manter em operação o veículo.

No tocante aos preços, é extremamente importante a análise da elasticidade da procura de automóveis, se bem que estes dados devam ser estudados com cautela, dada a quantidade de fatores que podem atuar sobre esta elasticidade. Em primeiro lugar, a elasticidade-preço da demanda de automóveis deve ser zero em condições de racionamento ou de oferta insuficiente. Em segundo lugar, para famílias que já possuem um carro, a variável preço é constituída pela relação entre o preço do carro novo e o do seu dado em troca; daí, para estes consumidores, o coeficiente de elasticidade-preço deve ser inferior a 1 (procura inelástica). Este é o caso dos países desenvolvidos onde a posse de veículos é largamente difundida e o principal componente da demanda é a reposição. Em terceiro lugar, em países subdesenvolvidos, onde a procura de expansão é o mais importante componente da demanda total, conquanto seja de se esperar um coeficiente maior do que 1 para a elasticidade, pode ser que ocorra o fenômeno de uma quebra no comportamento da elasticidade. Em outras palavras, a procura pode-se mostrar inelástica para pequenas variações de preços e fortemente elástica para variações mais amplas, digamos maiores do que 10%. Finalmente, em quarto lugar, as alterações dos níveis das tarifas alfandegárias podem provocar substanciais alterações no comportamento da elasticidade da demanda de automóveis.

Ainda com relação aos preços é importante notar que o consumidor, ao se decidir a adquirir um carro, tanto poderá comprar um veículo novo

210 R.B.E. 2/72

quanto um usado. Isto significa que a variável estratégica pela qual se define a procura não é o preço destes veículos, mas o diferencial de preço entre o carro novo e o usado. Resulta então que devemos construir uma variável que combine o preço de carros novos e usados (estes por marcas e idades), de forma a unificar o tratamento a ser dispensado aos preços.

Quanto à frota existente, ela representa o volume de serviços prestados pelos automóveis e demandados pela comunidade num dado momento. A alteração neste volume de serviços implica em expansão ou retração da frota. A primeira age diretamente sobre as vendas de automóveis novos. A segunda atua tanto sobre as vendas para aumento da frota, eliminandoas, quanto sobre a demanda de reposição, ajustando a frota a seu novo nível, pela não-substituição total ou parcial dos veículos sucateados.

2.2.2 Variáveis estruturais

A distribuição da renda nacional, mais do que o seu nível absoluto, tem influência sobre a aquisição de automóveis. Todavia, as dificuldades na sua mensuração têm levado a maioria dos estudiosos a não incluírem esta variável em suas estimativas da função de demanda. Infelizmente, o desconhecimento da distribuição da renda no Brasil também nos impedirá de utilizar esta variável. Deve-se ressaltar, porém, que foram feitas duas tentativas antes de adotarmos esta decisão. A primeira, pelo emprego dos dados de uma pesquisa sobre orçamentos familiares, efetuada pelo Instituto Brasileiro de Economia. Entretanto, eram escassas as informações quanto à aquisição de veículos, e de pequeno valor as indicações sobre a distribuição da renda, já que a pesquisa limitou-se apenas a algumas capitais, sem se falar na desatualização dos dados, pois o estudo foi feito em 61 e 62. A segunda, pela suposição de que a renda no Brasil se distribuísse de acordo com a Lei de Pareto. Teríamos então que determinar o coeficiente α desta distribuição. 4 A fonte para esta determinação seria a distribuição do número de contribuintes do imposto de renda, por faixa de rendimentos. A falta de uniformidade de critérios para as alterações das tabelas do imposto progressivo nos impediu, porém, a comparação dos diferentes coeficientes obtidos.

Uma última palavra deve ser dada ainda quanto à distribuição da renda. É importante observar-se que a concentração de rendas e o extremo oposto, a distribuição altamente equalitária, têm efeitos minimizantes

⁴ Veja-se: Confederação Nacional da Indústria. Análise e perspectivas da indústria automobilistica brasileira. 1960. p. 102 e Kingston, J. & Roeb, G. O imposto complementar sobre a renda e a inflação, Revista Brasileira de Economia, set. 1958.

sobre a procura de automóveis; as condições mais propícias para o desenvolvimento do mercado encontram-se nos níveis intermediários de concentração.

O crescimento demográfico constitui, juntamente com o crescimento da renda nacional, as duas molas mestras para o aumento da procura de serviços de transporte e consequentemente da frota de veículos, e tem ainda efeitos colaterais sobre a distribuição da renda.

A composição etária atuaria diretamente sobre a demanda pelo seu efeito diversificador dos tipos de veículos. Ou seja, dois veículos da mesma marca mas de anos diferentes de fabricação podem ser considerados como dois bens distintos. Indiretamente, a modificação da pirâmide de idades, alterando a oferta de carros usados por faixa de idades pode afetar o preço destes veículos, e assim a demanda de carros novos.

A composição dos ativos representa basicamente as possibilidades de substituição entre os diferentes bens duráveis, e entre estes e os títulos de crédito. É uma variável de difícil mensuração.

2.2.3 As variáveis socioculturais

Estas são na verdade variáveis qualitativas. Difíceis de serem medidas, fazem com que a tentativa de sua introdução nos modelos os transformem em modelos extremamente intrincados e sofisticados. Todavia, o conhecimento ainda que superficial destas variáveis, muito auxilia na escolha das variáveis independentes do modelo.

Em geral estas variáveis são representadas pela introdução de um fator de time-trend, que corresponde às mudanças nos hábitos e preferências dos indivíduos.

2.2.4 As variáveis de política econômica

Dentre estas avulta o financiamento. A atuação desta variável equivale a de um efeito-renda, ampliando o mercado nas quadras de crédito fácil e marginalizando consumidores nas faixas de restrições. O financiamento combina-se com a renda, abaixando ou elevando o limite mínimo capaz de permitir a aquisição de um veículo. É particularmente conhecido o fenômeno de adaptação da procura de bens duráveis que se segue ao aumento das facilidades creditícias (elevação dos tetos, baixa da taxa de juros, aumento dos prazos de amortização, etc.). Equivale ao fenômeno da

212 R.B.E. 2/72

demanda reprimida, e tem notável influência no caso de mercados de países subdesenvolvidos, de baixo nível de renda per capita.

Os direitos alfandegários são também variáveis estratégicas, quer do ponto de vista de suas influências sobre o preço dos veículos e sobre as elasticidades-renda como também quanto à competividade dos preços dos veículos no mercado internacional. Neste último, podemos situar a complementação da demanda interna pela demanda externa.

A partir do que foi visto, podemos então explicar o processo de formação da demanda de automóveis. A cada período o crescimento da renda e da população aumentam o volume desejado de serviços prestados pelos automóveis, o que corresponde a uma novo nível de frota (= "frota desejada"), maior do que o da frota "efetiva" em circulação. A diferença entre a frota desejada e a efetiva induz então os consumidores a adquirirem novos veículos. É a procura-fluxo de expansão, cujo nível é explicado pelas variáveis já discutidas. A esta componente soma-se a procura-fluxo de reposição, das unidades sucateadas, de modo a chegarmos à procura total por novos carros por unidade de tempo.

A instabilidade da procura total de automóveis seria explicada, basicamente, pela disparidade relativa existente entre a variação da frota desejada e o consequente ajuste da procura-fluxo.

2.3 A literatura estrangeira

Uma vez definida a estratégia do trabalho como sendo a da determinação de uma função de demanda para a economia brasileira, é interessante, inicialmente, passarmos em revista algumas tentativas já feitas neste sentido em outros países.

Contudo, este sumário não poderia deixar de levar em conta um trabalho tentado aqui mesmo no Brasil, em 1959, pela Confederação Nacional da Indústria. ⁵ Na verdade, este estudo não se preocupou em estimar uma função de demanda de automóveis, por reconhecer a precariedade das informações disponíveis, uma vez que a nossa indústria automobilística achava-se, na época, em plena fase de implantação. O objetivo foi o de quantificar certas limitações do mercado para os anos futuros, com base em algumas informações qualitativas. Seu grande valor reside no fato de ser o único trabalho, até o momento elaborado, que baseia suas previsões sobre uma análise de distribuição da renda.

ECNI. Análise e perspectivas da indústria automobilística. 1960.

Inicialmente, portanto, são estudados os padrões de distribuição da renda no Brasil. A distribuição escolhida segue a Lei de Pareto, com um parâmetro $\alpha = 1,7$. Em seguida aos anos normais, em que se supõe que a frota desejada tenha coincidido com a efetiva, foi ajustada a equação, denominada "modelo de crescimento equilibrado", da forma:

$$F = \frac{k R^{\alpha}}{p^{\alpha - 1}}$$

em que F são os dados de frota, R o índice de renda real, P população, α o parâmetro de Pareto e k uma constante. Chega-se, então, a um coeficiente $\alpha=1,53$. Este parâmetro identifica-se com o parâmetro normal de Pareto igual a 1,5 e ao 1,7 obtido para o Brasil, a partir dos dados de distribuição da renda.

O estudo utiliza-se do "modelo de crescimento da frota", sob a forma de acréscimos:

$$f = \frac{(1+r)^{\alpha}}{(1+p)^{\alpha-1}} - 1$$

para calcular a taxa máxima de crescimento da frota que se deve esperar para os próximos anos. Tomando r = 6,1% a.a. (taxa de crescimento da renda nacional de 56 a 60), p = 2,4% a.a. (taxa de crescimento demográfico para o mesmo período) e $\alpha = 1,7$ a taxa de crescimento da frota é estimada em 8,1% a.a.

2.3.1 O modelo de Roos e Szelisky

Este é, indubitavelmente, o mais importante trabalho de toda a "literatura dos automóveis". Data de 1939, e foi elaborado para a General Motors americana sob o título: Dynamics of automobile demand.

Define que há demanda de automóvel novo se:

- a) uma família que não tem carro deseja possuir um;
- b) uma família sucateia um carro e o substitui.

Um terceiro tipo: uma família que possui um carro vende-o e adquire outro; constitui simples transferência e não produz um carro novo.

As variáveis que afetam a demanda são divididas em:

- a) Primárias:
- renda do consumidor (disponível e extranumerária);
- novos proprietários potenciais e nível máximo de propriedade;
- procura de substituição;
- preços de carros novos.

b) Secundárias:

- preços dos carros usados;
- condições de pagamento;
- custos de operação;
- estoques de carros usados nas agências.

Ajustou-se então uma função: demanda total é igual à demanda de expansão mais demanda de reposição:

$$X_t = S_n + S_r \tag{1}$$

sendo: $s_n = c_t (\dot{X}_t^* - X_{t-1})$, em que c_t seria uma fração (coeficiente de proporcionalidade) variável; X_t^* seria o nível máximo de propriedade, função de renda per capita, do número de famílias no ponto t e do preço dos carros novos; e X_{t-1} seria a frota efetiva do período t-1.

$$c_t = f_t \quad (p^t, I) \tag{2}$$

onde: p^1 = índice de preços, obtido pela aplicação de um fator de proporção trade-in-ratio aos preços dos carros novos. Um automóvel é tido como trade-in quando é aceito como parte do pagamento de um carro novo.

$$S_r = c_t (1 - b_t) \dot{X}_t$$

onde c_t seria definido de acordo com a equação 2, e $(1-b_t)$ \dot{X}_t seria o sucateamento teórico, conseguido pela aplicação de uma tabela de mortalidade sobre a composição etária da frota.

Substituindo S_n e S_r por suas expressões na equação 1, os autores obtiveram a função:

$$S = j^{1,2} \cdot P^{0,6} \cdot [0.0254 \ C \ (M - C) + 0.65X]$$

em que:

 $S \rightarrow \text{vendas de carros novos}$;

 $j \rightarrow$ renda extranumerária;

 $P \rightarrow \text{indice de preços} \quad (trade-in-ratio);$

 $C \rightarrow$ frota efetiva num ano;

M → nível máximo de propriedade;

 $\dot{X} \rightarrow \text{sucateamento teórico.}$

Concluindo este breve sumário do modelo de Roos e Szelisky, as seguintes observações devem ser feitas:

a) os expoentes de j e P não representam as elasticidades renda e preço da procura de automóveis, pois M é também função destas variáveis;

- b) os dois tipos de transações a e b considerados não levam necessariamente à aquisição de carros novos, enquanto o item c, por encadeamento baseado na estratificação do mercado, pode significar demanda de expansão;
- c) o índice de preços, com base no trade-in-ratio, é influenciado mais pelas variações da composição etária da frota do que por variações dos preços propriamente ditas.

2.3.2 O modelo neozeolandês

Em artigo publicado em *The Economic Record* (junho 1966) S. J. Turnovsky procura explicar os determinantes da oferta e procura de carros para o caso neozeolandês, no período 48/63, bem como projetar os estoques e os preços de veículos usados neste período.

Deve-se salientar, de início, que o mercado automobilístico na Nova Zelândia possui características bem próprias. Não há produção local de veículos, mas apenas importação de veículos prontos ou a serem montados. Por outro lado, a partir de 1955, o governo adotou algumas medidas restritivas à importação, o que contribuiu para criar um "mercado vendedor".

Estimação da frota: seja p_i a probabilidade de que um carro com i anos sobreviva no ano seguinte; M_{ij} o número de carros registrados no ano j fabricados no ano i; e N_j número de carros novos no ano j.

Se há N_i carros novos no ano i, N_iP_o sobreviverão ano i+1, Estes agora estarão com um ano de uso de $N_ip_op_i$ sobreviverão até i+2, donde:

(1) $N_i p_0 p_1 \dots p_{j-i-1} = M_{ij} = \text{n.}^{\circ}$ de carros restantes em j, ou N_{i+1} carros novos em i+1 restarão no ano j:

$$(2) N_{i-1} p_0 p_1 \ldots p_{j-i-2} = M_{i+1, j}$$

Dividindo 1 por 2:

$$(3) p_{j-i-1} = \left(\frac{M_{ij}}{M_{i+1,j}}\right) \left(\frac{N_{i+1}}{N_i}\right)$$

A análise considera os p_i independentes do ano de fabricação do automóvel. Como são conhecidos os N_i , a partir de 1926, e a composição etária para o ano de 1962, a frota nacional de veículos, por idades, é facilmente estimada.

Sendo conhecida a frota nacional total ano a ano, os dados calculados pelas probabilidades sofreram pequenos ajustamentos para fechar com estes totais.

Taxa de depreciação: por meio de uma regressão linear logarítmica sobre o preço dos carros de segunda mão em 1962, calcularam-se as taxas de depreciação para algumas marcas de veículos, as quais têm-se mantido razoavelmente constantes. Ponderando-se estas taxas pelo número de novos registros destas marcas em 58, 59 e 60 chegou-se a uma taxa média de depreciação de 10,6. Esta foi considerada constante ao longo do tempo e aplicada sobre a frota, obtendo-se daí os dados de estoque depreciados.

Indice de preços: um índice de preços foi construído pela ponderação dos preços de carros usados publicados nos jornais e revistas especializadas.

Renda: os dados utilizados foram os da renda real disponível per capita.

Exportação: levando-se em conta a necessidade de importação de veículos, introduziu-se uma variável que pudesse medir a capacidade de importar. Para tanto, tomaram-se os dados de exportação per capita, que foram deflacionados pelo índice de preços de importação para se obter uma variável que expressasse o poder de compra per capita das importações.

Em nossa opinião esta é a parte mais interessante do modelo de Turnovsky, do ponto de vista da análise que pretendemos desenvolver. Isto porque, a partir daí, ele inicia a construção das curvas para um modelo de equilíbrio. Ainda assim, vamos rapidamente verificar como se processa a mecânica da análise.

Função demanda: sejam

S (t) = estoque real de carros por 1.000 pessoas no ano t;

 $S^*(t) = \text{estoque desejado de carros por } 1.000 \text{ pessoas no ano } t;$

D(t) = taxa de oferta de novos carros por 1.000 pessoas no ano t;

 $D^*(t) = \text{taxa}$ de demanda de novos carros por 1.000 pessoas no ano t;

Y(t) = renda disponível por 1.000 pessoas no ano t;

P(t) =indice de preços de segunda mão;

X (t) = poder de compra das exportações por 1.000 pessoas em t.

então:

$$S^*(t) = A + \alpha [y(t)] + \beta [P(t)] + gt$$
 (4)

A demanda de carros novos depende da diferença entre o estoque desejado e o estoque real:

$$D^{*}(t) = \gamma [S^{*}(t) - S(t)]$$
 (5)

Em qualquer ponto de tempo, o estoque real é afetado pela taxa de suprimento D(t) e pela depreciação S, logo:

$$\dot{S}(t) = D(t) - \delta \cdot S(t) \tag{6}$$

E, finalmente, as modificações nos preços podem ser expressas por:

$$\dot{P}(t) = r [D^*(t) - D(t)]$$
 (7)

Destas quatro equações pode ser então derivada a equação de regressão que não será aqui apresentada, pois, como já se disse, foge ao escopo do presente trabalho.

Função oferta: a oferta para o caso da Nova Zelândia é exogenamente determinada, dependendo as variações do estoque real do número de carros importados, logo:

$$S(t) = a S(t-1) + bX (t-1)$$
 (8)

Com o objetivo de estimar os parâmetros da oferta e da procura, dois métodos foram empregados, o dos mínimos quadrados simples e o dos mínimos quadrados trietápico, cujos resultados foram comparados. O primeiro mostrou-se superior para a oferta e o segundo, para a procura. Foram então calculadas as diversas elasticidades que, comparadas com valores internacionais, mostram-se bastante consistentes.

Quanto às projeções de frota e preços, o autor não as realizou, mas as perspectivas são otimistas, supondo-se que não hajam mudanças na estrutura do mercado, de vez que os coeficientes de correlação, tanto para oferta como para procura, são bastante elevados.

2.3.3 O modelo de D. Suits

Este trabalho foi parte de um estudo quantitativo sobre economia, realizado na Universidade de Michigan, sob os auspícios da Ford Motor Company.

Foi dividido em três partes. Na primeira, o autor faz apresentação de um modelo teórico de equilíbrio; na segunda, há a estimação estatística da função de demanda para o período 1929-1956; e na terceira, são feitas comparações com alguns modelos até então conhecidos. Apenas as duas primeiras serão aqui mostradas.

No entender de Suits o mercado de automóveis compõe-se de quatro forças. Duas referentes à demanda: de carros novos e carros usados; e duas contrapartidas para a oferta.

As suas variáveis são: o estoque de automóveis no início do ano; a renda disponível; o preço médio do revendedor dividido pelo número médio de meses de financiamento; e uma variável dos anos de escassez. Esta última prende-se a sérias distorções, verificadas nos EUA nos ano de 1946 e 1952, devidas a peculiaridades próprias da economia americana, de modo que ela será excluída da nossa exposição.

Chegamos então ao sistema:

$$R = a_1 \left(\frac{P - U}{M} \right) + a_2 Y + a_3 \Delta Y + a_0 + u_1$$
 (1)

$$R = b_1 P + b_2 W + b_3 T + b_0 + u_2$$
 (2)

$$R' = c_1 R + c_0 + u_3 \tag{3}$$

$$R = d_1 \frac{U}{M} + d_2 Y + d_4 S + d_0 + u_4$$
 (4)

em que:

R = vendas de carros novos pelas agências;

Y = renda disponível;

P = preço real do carro novo nas agências;

U = preço médio real do carro usado;

M = número médio de meses de financiamento;

S = estoque de automóveis em uso (frota);

W = preço de fábrica (atacado) do carro novo;

T = custos da agência;

R' = oferta de carros usados;

 $u_i = variáveis aleatórias.$

Tendo em vista algumas dificuldades para conseguir certas informações do me cado de segunda mão e, considerando a complexidade da estimação de um tal modelo, Suits fundiu as equações 3 e 4, resolvendo-as para $\frac{U}{M}$ e substituindo este valor em 1, obtendo uma equação única para

a demanda da forma:

$$R = \lambda_1 \frac{P}{M} + \lambda_2 Y + \lambda_3 \Delta Y + \lambda_4 S + \lambda_0 + u_5$$
 (5)

Para eliminar a autocorrelação dos resíduos efetuou-se a análise em termos de diferenças finitas de primeira ordem das variáveis, ou seja:

$$\Delta R = a_1 \, \Delta Y + a_2 \, \Delta \frac{P}{M} + a_3 \, \Delta S + a_0$$
 (6)

Daí, encontrou-se uma equação de regressão com coeficiente de correlação 0,93.

Algo deve ser dito agora quanto à forma como foram calculadas as séries utilizadas.

Inicialmente, o autor partiu de uma premissa básica: "os compradores de carros novos são, na sua quase totalidade, os possuidores de carros relativamente novos, sendo que as pessoas sem carro raramente entram no mercado de novos, mas sim procuram os de segunda mão".

Com base nesta afirmativa, Suits construiu o seu índice de preços. Por meio de uma pesquisa, ele levantou os dados de receita total das agências pela venda de carros novos e usados. Este montante foi então dividido pelo número de carros novos vendidos, chegando-se então a um valor médio de varejo, por carro. A seguir, foi calculado o valor de fábrica médio. Dividindo-se estes dois valores tem-se a série de fator-lucro do varejo. Este fator de lucro foi então multiplicado pelo índice de preços de fábrica de carros novos deflacionado pelo custo de vida.

O período médio de duração do financiamento foi obtido pela fórmula:

$$M = \frac{2C - R}{R} \tag{7}$$

onde C = montante de créditos concedidos, R = valor dos redescontos. Como esta fórmula só é válida para os períodos de crédito estável, introduzse um fator de correção:

$$e = a + bT \tag{8}$$

onde $T = C_t/C_{t-1}$ e e é o desvio entre valores de M observados em alguns anos e os valores ajustados pela fórmula 7.

Este modelo possui, no nosso ponto de vista, algumas deficiências graves:

- I. considera os automóveis bens homogêneos, principalmente no tocante a idade;
- 2. a afirmativa de que os compradores de carros novos já possuíam carros pode ser válida para os EUA, mas não o é, necessariamente, para o

Brasil. A idéia do trade-in-ratio é de pouca utilidade para o caso brasileiro, dentro do período de nossa análise;

3. os mercados de carros novos e carros usados não são estanques como o modelo os apresenta, mas fortemente inter-relacionados. A procura de carros novos é derivada da procura pelos serviços que eles proporcionam. Como sua vida útil é de 5 a 15 anos, esta demanda por serviços pode ser satisfeita, tanto empregando-se carros novos como usados. Assim, o consumo de serviços dos automóveis está dissociado da venda de veículos novos ou, em outras palavras, o volume de serviços prestados pelos automóveis num período quantifica-se não pelo número de carros vendidos, mas pela dimensão da frota em operação. Daí não podermos falar em dois mercados distintos.

2.3.4 O modelo de G. Chow

Este modelo foi publicado pela North-Holland Publishing Co. em 1957, ⁶ e nele o autor ajusta uma função linear à demanda de automóveis nos EUA de 1921/53. Considera o estoque desejado como função do preço e da renda.

O estoque desejado é definido como sendo o nível de propriedade para o qual tende o nível de propriedade efetivo, dado que determinadas variáveis permaneçam inalteradas. Além disto, o modelo expressa a frota de veículos em termos de equivalentes a um carro novo.

Esta equivalência é dada pela relação entre os preços dos carros usados e os preços dos carros novos num determinado ano (no caso 1937). Assim, se o preço de um carro usado vale metade do de um carro novo, este veículo usado é considerado como meio carro novo.

A função ajustada foi da forma:

$$\dot{X}_t = a + bP_t + cI_t + u_t \tag{1}$$

onde:

 \dot{X}_t = estoque desejado per capita no final do ano;

 P_t = indice de preços;

 I_t = renda real disponível per capita.

As vendas de carros novos per capita no ano t serão a diferença entre o estoque desejado per capita no fim do ano t e o estoque real per capita

Ver referência publicada no fim do trabalho.

depreciado do ano anterior. Sendo X'_t = vendas de carros novos per capita no ano $t \in X_{t-1}$ = estoque real per capita do ano t-1, então:

$$X_{t}' = \dot{X}_{t}(P_{t}, I_{t}) - kX_{t-1}$$
 (2)

k = taxa de depreciação + taxa de sucateamento + crescimento demográfico.

A equação 2 pode ser reescrita:

$$X'_{t} = [\dot{X}_{t}(P_{t}, I_{t}) - X_{t-1}] + (1 - k)X_{t-1}$$
(3)

onde o termo entre colchetes representa a demanda de expansão e o restante representa a demanda de reposição.

A equação 3 significa ainda um ajustamento imediato (instantâneo) das compras de automóveis às variações no estoque. Isto equivale a dizer que o consumidor compraria e venderia automóveis frequentemente, em resposta a mudanças na renda e nos preços. Esta premissa é falsa, se atentarmos para o fato de que o automóvel é comprado pelo serviço que ele presta e esse serviço é função da dimensão da frota.

Na verdade, apenas uma fração c da variação do estoque desejado dará origem a novas compras.

A equação 3 seria modificada para:

$$X'_{t} = c \left[\dot{X}_{t} \left(P_{t}, I_{t} \right) - X_{t-1} \right] + (1 - k) X_{t-1}$$
 (4)

ou

$$X'_{t} = c \dot{X}_{t} (P_{t}, I_{t}) + (1 - k - c) X_{t-1}$$

Na estimação das equações 1, 3 e 4 o autor usa como I_t a série de renda disponível per capita, e a série de renda real "esperada" per capita definida por M. Friedman 7 como média ponderada da renda real disponível per capita no passado. Esta última série, aliás, mostrou-se superior à primeira para explicar o estoque desejado.

O índice de preços foi construído usando-se a composição etária de 1937. Os preços dos carros, por idades, foram de anúncios de jornais, sendo o preço do carro novo tomado como a cotação do carro do ano já usado.

Estes resultados foram confrontados com os obtidos ajustando-se:

$$P_t = k \dot{X}_t^{\alpha} I_t^{\beta} \tag{5}$$

e, depois, tirando-se o valor de \dot{X}_t , com interessantes conclusões quanto às elasticidades dos dois ajustamentos.

^{*} Friedman, M. A theory of the consumption function.

Ao serem estimadas as equações 1 e 5, a renda "esperada" revelou ter maior influência sobre a compra de carros novos do que a renda disponível. Contudo, esta última melhorou a variância explicada para o caso da equação 4. Por outro lado, o teste de Durbin e Watson mostrou-se inconclusivo quanto à autocorrelação dos resíduos.

No que tange às projeções, o modelo forneceu resultados bastante interessantes. Em 1957, o autor comparou os dados observados para 1954/57 com os estimados pelo modelo, obtendo-se desvios inferiores aos desvios-padrão das variáveis. Além disto, o teste de significância aceitou a hipótese nula de que os dados observados de 54/57 provinham do mesmo universo que as séries anteriores.

2.3.5 O modelo de Odling-Smee*

Este é um dos mais recentes estudos de demanda por automóveis. Foi publicado em 1968, e nele seu autor procura estudar o comportamento da função de procura no Reino Unido, no período de 1955 a 1966, com base em dados trimestrais.

A demanda de expansão é encarada do ponto de vista usual em relação à demanda por bens de consumo duráveis. Assim, ela seria uma fração da diferença entre a frota desejada e a frota efetiva, no período:

$$V_t = r (S_t^* - S_t)$$

$$= [r S_t^* + (1 - r) S_t] - S_t \rightarrow \text{ em forma linear ou em}$$

forma logarítmica:

$$V_{t} = (S_{t}^{*})^{r} \cdot (S_{t})^{1-r} - S_{t}^{9}$$
 (1)

sendo: r a fração adquirida, S_t^* a frota desejada, S_t a frota efetiva e V_t a demanda de expansão.

- Ver referências bibliográficas.
- Esta equação 1, na verdade, não corresponde à transformação da anterior em logaritmos. A equação 1 deveria ser: $V_i = \frac{(S_i^*)^r \cdot (S_i)^{1-r}}{S_i}$, que por comodidade de cálculo, no desenvolvimento do modelo, foi expressa como:

$$V_t = (S_t^*)r \cdot (S_t)^{1-r} - S_t$$

ou:

$$V_t + S_t = S_{t+1} = (S_t^*)_T \cdot (S_t)^{1-r}$$

Não se pode esperar grande precisão matemática quando se considera log $(S^t + V^t)$ igual a log $S^t + \log V^t$. Esta simplificação, bem como a utilização de uma taxa de depreciação constante constituem dois graves defeitos do modelo.

A frota desejada é definida como função da renda (Y), da disponibilidade de crédito (H), dos preços (P) dos veículos e das preferências (t) dos consumidores, obedecendo à forma de uma exponencial:

$$S_t^* = A \cdot e^{\beta_1 t} \cdot Y^{\beta_2} \cdot H^{\beta_3} \cdot (P/\pi)^{\beta_4} \tag{2}$$

onde A é uma constante e π o índice do custo de vida.

Combinando-se esta equação com a 1, temos:

$$V_t = A^r \cdot e^{r\beta_1 \cdot t} \cdot y_t^{r\beta_2} \cdot H_t^{r\beta_3} \cdot (P/\pi)_t^{r\beta_4} \cdot S_t^{1-r} - S_t$$

Passando-se S_t para o primeiro membro e calculando-se os logaritmos:

$$\log (V_t + S_t) = \log S_{t+1} = r \log A + r \beta_1 t + r \beta_2 \log Y_t + r \beta_3$$
$$\log H_t + r \beta_4 \log (P/\pi)_t + (1 - r) \log S_{t-1}$$
(3)

Esta equação 3 foi estimada por diferenças finitas de primeira ordem, com objetivo de reduzir a multicolinearidade entre as variáveis, segundo o autor. Assim:

$$\log S_{t+1} - \log S_t = r\beta_1 t + r\beta_2 (\log Y_t - \log Y_{t-1}) + r\beta_3$$

$$(\log H_t - \log H_{t-1}) + r\beta_4 \left[(\log (P/\pi)_t - \log (P/\pi) \right]_{t-1}) + (1 - r) (\log S_t - \log S_{t-1})$$
(4)

As séries de frota foram construídas estimando-se uma taxa de depreciação constante de 7% ao trimestre, equivalendo a uma vida média de oito anos para 90% da frota. Aplicando-se estas taxas de depreciação à série de produção trimestral de veículos, determina-se a frota trimestral de veículos de 55 a 66.

A série de renda foi a do índice de renda pessoal disponível com base em 1958.

Para os preços, calculou-se um índice de preços médios por tipo e marcas de automóveis (amostragem), o qual como se pode ver nas equações do modelo, foi deflacionado pelo índice de custo de vida.

A variável crédito foi desdobrada em quatro, para efeito das regressões; a saber: H_1 depósito mínimo para abertura de crédito; H_2 período de amortização; H_3 variação percentual do depósito; e H_4 variação percentual no período de amortização.

Quanto aos resultados foram testadas 11 regressões. A melhor estimativa escolhida, em função não apenas do coeficiente de correlações, mas em função de uma série de outros critérios, explicou 77,3% da demanda de

automóveis, a partir das variáveis renda, frota efetiva do período anterior, variação nos prazos de amortização e preferências dos consumidores (time-trend).

A variável preço dos veículos mostrou-se pouco correlacionada com a demanda, bem como as três outras variáveis créditos. A principal variável determinante do nível de compras revelou-se como sendo o estoque do período anterior (S_t) , o que significa que as compras efetuadas num certo período são largamente influenciadas por decisões tomadas no passado. Isto explica o baixo coeficiente de ajuste da frota desejada (r), de apenas 30%. O autor não faz menção aos problemas de autocorrelação a que estão sujeitas as regressões que envolvem time-lags.

No que tange às elasticidades dois fatos merecem menção: os coeficientes de elasticidade-renda de longo e curto prazos. A longo prazo o coeficiente oscilaria entre 1,0 e 1,5, enquanto a curto prazo andaria em torno dos 5,6.

3. O modelo econométrico para o Brasil (curto prazo)

a) As equações fundamentais

Inúmeros são, sem dúvida alguma, os fatores que podem induzir os indivíduos a adquirirem um carro. Dentre estes, porém, deve-se destacar, como o mais importante, a necessidade de serviços de transporte. Este é o principal determinante da aquisição de um ou de mais de um veículo.

Como já vimos, este volume de serviços de transporte demandado, relaciona-se diretamente com o estoque do bem em mãos do indivíduo. Em outras palavras, o volume de serviços de transporte demandado é que dirá se o indivíduo deve ter nenhum, um, dois, três ou mais automóveis. Sua limitação será evidentemente sua equação orçamentária.

Passando-se do plano individual ao coletivo, o volume de serviços de transportes demandado pela população de um país há de relacionar-se com a frota de veículos. Teremos, de um lado, a frota efetiva em circulação medindo o volume de serviços de transporte atualmente atendido (a composição etária mede a capacidade da frota atual atender à demanda futura), e a frota desejada traduzindo as variações na demanda de serviços de transporte e provocando ajustes na frota em circulação.

Se um ou mais consumidores, num dado momento, decidem satisfazer a sua necessidade de transporte adquirindo um carro, esta decisão será refletida pela atração da frota efetiva. É claro que o consumidor poderá atender à sua demanda, quer por meio da aquisição de um veículo novo, quer pela aquisição de um usado. No primeiro caso, a alteração da frota efetiva seria imediata. No segundo, pela reação em cadeia, devido à estratificação do mercado, algum outro consumidor seria levado a adquirir um carro novo sob pena de ficar impossibilitado de continuar a satisfazer sua demanda de transporte.

Deve-se notar, contudo, que a resposta da frota efetiva poderia darse apenas quanto à composição etária, desde que no momento em que a nova unidade fosse adquirida, alguma das já existentes fosse sucateada, e desde que a composição etária não seja uniforme. Neste caso, estaríamos diante não da necessidade de se expandir a frota para atender a um maior volume de demanda de transporte, mas sim diante da necessidade de (algum ou alguns indivíduos) substituir um automóvel já obsoleto ou imprestável, por um novo, ou pelo menos em melhores condições do que o sucateado.

Dentro desta ordem de idéias podemos formular o seguinte sistema de equações:

$$S_t = S_{t-1} + v_t \tag{1}$$

$$q_t = v_t + u_t \tag{2}$$

$$u_t = S_{t-1} - b S_{t-1} = (1-b) S_{t-1}$$
 (3)

$$v_t = c_t (S_t^* - S_{t-1}) (4)$$

onde:

 $q_t \rightarrow$ demanda de automóveis novos (vendas efetuadas) no período t;

 $v_t \rightarrow$ demanda de expansão no período t;

 $u_t \rightarrow \text{demanda de reposição no período } t;$

 $S_t \rightarrow$ frota efetiva em circulação no fim do período t;

 $S_t^* \rightarrow$ frota desejada (potencial) no fim do período t;

c_t → fração da diferença entre a frota desejada e a efetiva coberta pela aquisição de carros novos.

Deve-se observar que $b.S_{t-1}$ é a parcela da frota efetiva que sobrevive de um período para o outro. Portanto, b é o complemento da taxa de depreciação (D). Logo D=1-b.

Resolvendo-se as equações 2, 3 e 4 temos:

$$q_t = c_t (S_t^* - S_{t-1}) + (1 - b) S_{t-1}$$
 (5)

onde,

$$c_i = f$$
 (renda, preços, gostos)

b) As estratégias utilizadas

As estratégias, para estimação da equação 5, consistem nas diferentes hipóteses que se podem formular quanto ao comportamento da fração c_t e da frota desejada.

A frota desejada representa as variações no volume de serviços de transporte demandado por efeitos de modificações na renda, na população, nos preços dos veículos, bem como na vida útil esperada para estes bens. 10

$$S_t^* = \psi (P_t, d_t, Y_t, Ya_t, \rho_t)$$

ou:

$$S_t^* = \vartheta \left(P_t / d_t , Y_t / \rho_t , Y a_t / \rho_t \right) \tag{6}$$

sendo:

 P_t = índice de preços de carros novos;

 d_t = vida média esperada para os carros novos;

 Y_t = renda disponível do setor privado no período t;

 $Ya_t = \text{renda disponível do setor privado acumulada nos períodos } t-3, t-2, t-1 e t.$

 $P_t = \text{população no período } t.$

1.a estratégia: a) $S_t^* \to \text{função linear e } c_t = k \to \text{constante}$

$$S_t^* = \beta_1 + \beta_2 (P_t/d_t) + \beta_3 (Ya_t/\rho_t) + \beta_4 (Y_t/\rho_t)$$
 (7)

Substituindo-se c_t e S_t^* por seus valores em 5 obtemos:

(8)
$$q_t = k \beta_1 + k \beta_2 (P_t/d_t) + k \beta_3 (Ya_t/\rho_t) + k \beta_4 (Y_t/\rho_t) + (1 - b - k) S_{t-1}$$

b) $S_t^* \rightarrow \text{função exponencial e } c_t = k \rightarrow \text{constante}$

Então:

$$S_t^* = \beta_1 \left(P_t / d_t \right)^{\beta_2} \left(Y a_t / \rho_t \right)^{\beta_3} \left(\frac{Y_t}{\rho_t} \right)^{\beta_4}$$

 $V_t = S_t - S_{t-1} = k \ (S_t^* - S_{t-1}) \rightarrow \text{ajustamento de estoques}$ ou em logaritimos:

$$\frac{S_t}{S_{t-1}} = (S_t^* / S_{t-1})^k$$

Na verdade outras variáveis, como a distribuição da renda por exemplo, também poderiam ser utilizadas para explicar a frota desejada, mas terão de ser deixadas de lado por falta de informações estatísticas adequadas.

Substituindo S_i^* pela sua expressão e passando aos logaritimos:

$$\log S_{i} = k \log \beta_{1} + k \beta_{2} \log (P_{i}/dt) + k \beta_{3} \log (Ya_{i}/\rho_{i}) + k \beta_{4}$$
$$\log (Y_{i}/\rho_{i}) + (1 - k) \log S_{i-1}$$
(8-a)

Observa-se então a possibilidade de pela transformação da equação da demanda de expansão obter-se uma função de comportamento da frota.

2.ª estratégia:
$$S_t^* = \text{função exponencial e } c_t = \text{variável}$$

A inexistência de estatísticas de frota em circulação dignas de crédito impede-nos de conhecer o número de carros sucateados em cada período. Nestas condições, seremos obrigados a estimar este sucateamento a partir do estabelecimento das taxas de depreciação da frota em cada período, com base na evolução dos preços de mercado. Este tratamento será detalhado mais adiante, mas há indícios de que o sucateamento assim conseguido apresenta-se superestimado. Por outro lado, é de se supor a tendência a um uso intensivo da frota em circulação, dadas as desigualdades na distribuição da renda, o que faz com que substanciais parcelas da população só possam adquirir carros usados (alto grau de estratificação do mercado), dada a falta de facilidades de crédito no período de 60 a 66, dados os altos preços dos veículos e assim por diante.

Deste modo, duas hipóteses adicionais terão de ser estabelecidas. Inicialmente, suporemos não ter havido sucateamento de veículos no período de análise $(u_t = 0)$. Isto significa que todos os veículos adquiridos no início do período permanecem em circulação. Em seguida, admitiremos ter havido sucateamento $(u_t > 0)$, sendo este estimado pela taxa de depreciação de mercado.

A segunda estratégia fica assim subdividida em duas passagens, a saber:

Hipóteses:
$$\begin{cases} u_{t} = 0 : q_{t} = c_{t} (S_{t}^{*} - S_{t-1}) & (9) \\ S_{t}^{*} = A_{1} (P_{t} | d_{t})^{\alpha_{1}} \cdot (Y_{a_{t}} | \rho_{t})^{\alpha_{2}} \cdot (Y_{t} | \rho_{t})^{\alpha_{3}} & (10) \\ c_{t} = f_{1} (\rho_{t}, Y_{a_{t}}, P_{t}, p_{t} | \pi_{t}) & (11) \end{cases}$$

sendo:

 $p_t \rightarrow$ índice de preços de carros usados (deflacionado) no período t;

 $\pi_t \rightarrow$ índice do custo de vida no período, representativo dos custos necessários à sobrevivência do indivíduo.

A fração c_t será da forma:

$$c_t = k_t \cdot Y_t^{\gamma_1} \cdot Y a_t^{\gamma_2} \cdot P_t^{\gamma_3} \cdot (p_t/\pi_t)^{\gamma_4}$$
 (12)

Substituindo 12 em 9 temos:

$$q_{t} = k_{1} \cdot Y_{t}^{\gamma_{1}} \cdot Y a_{t}^{\gamma_{2}} \cdot P_{t}^{\gamma_{3}} \cdot (P_{t}/\pi_{t})^{\gamma_{4}} \cdot (S_{t}^{*} - S_{t-1})$$
 (13)

ou admitindo-se uma variável-tempo (time-trend) para representar os hábitos e preferências dos indivíduos.

$$q_{t} = k_{2} \cdot e^{\gamma_{0} \cdot t} \cdot Y_{t}^{\gamma_{1}} \cdot Y_{t}^{\gamma_{2}} \cdot P_{t}^{\gamma_{3}} \cdot (p_{t}/\pi_{t})^{\gamma_{4}} \cdot (S_{t}^{*} - S_{t-1})$$
Passagem (b):

Hipóteses:
$$\begin{cases} u_{t} > 0 : q_{t} = c_{t} (S_{t}^{*} - S_{t-1}) + (1 - b) S_{t-1} \\ S_{t}^{*} = A_{1} \cdot (P_{t}/d_{t})^{\alpha_{1}} \cdot (Ya_{t}/\rho_{t})^{\alpha_{2}} \cdot (Y_{t}/\rho_{t})^{\alpha_{3}} \\ c_{t} = f_{1} (Y_{t}, Ya_{t}, P_{t}, p_{t}/\pi_{t}) \end{cases}$$
(15)

A falta de informações quanto ao número de veículos sucateados periodicamente, obrigou-nos a estimar o conceito de "sucateamento teórico (X_*^*) ":

$$X_{t}^{*} = (1 - b_{t}^{*}) S_{t-1}$$
 (16)

onde: $S_{t-1} \rightarrow$ frota efetiva no período t-1;

e $(1-b^*) \rightarrow \text{taxa}$ de depreciação, estimada com base nos preços do mercado de segunda mão.

Este tratamento dispensado à demanda de reposição implica na existência de um coeficiente de elasticidade entre a demanda de carros novos (q_i) e a taxa de depreciação de mercado dos veículos, sendo esta última representada no modelo pela variável "sucateamento teórico".

Em consequência deste tratamento exógeno da demanda de reposição, a equação 15 passa a ser:

$$q_t = c_t (S_t^* - S_{t-1}) X_t^{*\gamma_5}$$
 (17)

Substituindo a fração c_t e a frota desejada por suas expressões, na equação 17, verificamos:

$$q_{t} = k_{3} \cdot Y_{t}^{\gamma_{1}} \cdot Y a_{t}^{\gamma_{2}} \cdot P_{t}^{\gamma_{3}} \cdot (p_{t}/\pi_{t})^{\gamma_{4}} \cdot (S_{t}^{*} - S_{t-1}) \cdot X_{t}^{*\gamma_{5}}$$
 (18)

e introduzindo-se os hábitos e gostos dos indivíduos:

$$\mathbf{q}_{t} = k_{4} \cdot e^{\gamma_{0} \cdot t} \cdot Y_{t}^{\gamma_{1}} \cdot Y a_{t}^{\gamma_{2}} \cdot P_{t}^{\gamma_{3}} \cdot (p_{t}/\pi_{t})^{\gamma_{4}} \cdot (S_{t}^{*} - S_{t-1}) \cdot X_{t}^{*\gamma_{5}}$$
(19)

c) As séries históricas

Como já se disse anteriormente, a nossa preocupação básica consiste na estimação de uma função de demanda de automóveis nacionais. Conquanto a indústria automobilística brasileira tenha lançado os seus primeiros carros no ano de 1958, o marco inicial de nossa análise será 1960, ano em que nosso parque automobilístico achava-se razoavelmente enraizado, com todas as fábricas já em operação. O ano de 1967 marcará o final do período, de forma a se poder testar a hipótese de que nos anos de 1968, 1969, 1970 e 1971 as facilidades creditícias e o lançamento de novos tipos de veículos, objetivando conquistar a faixa de carros médios, até então inexplorada, tenham alterado fundamentalmente o comportamento do mercado consumidor.

A exigüidade do período escolhido impõe-nos que a análise seja conduzida em bases trimestrais, pois é necessário aumentar o número de observações para fugir a uma escassa margem de graus de liberdade.

Assim sendo, a variável t nas diferentes equações significará trimestre.

Por outro lado, a inexistência de informações estatísticas quanto às variáveis empregadas, mormente em termos trimestrais, levou-nos a uma etapa prévia de elaboração destes dados. Vamos então analisar os principais processos utilizados.

3.1 A frota de automóveis em circulação

Existem no Brasil três séries básicas de evolução anual da frota automobilística brasileira: a do IBGE, a da Comissão Executiva de Defesa da Borracha e a do GEIPOT que, na verdade, é a do IBGE corrigida.

Contudo, estes levantamentos têm alguns defeitos graves e que podem alterar fundamentalmente as conclusões de uma análise de demanda que os utilize.

Estes defeitos podem ser resumidos em:

- a) as séries históricas de automóveis incluem os utilitários;
- b) o levantamento dos dados é feito junto às inspetorias municipais, as quais não têm interesse em abater as licenças caducas, uma vez que o rateio da arrecadação do imposto sobre combustíveis e lubrificantes é ponderado pela frota municipal;

- c) inexistem dados de composição etária;
- d) omissões e erros de classificação dos veículos;
- e) finalmente, o mais sério de todos: a variação, em termos absolutos da frota, entre dois anos consecutivos, é substancialmente maior do que a soma da produção com a importação (supondo-se nula a demanda de reposição). Deve-se notar que durante o ano de 1945, segundo os dados do GEIPOT, a frota teria crescido de 33.909 unidades, porém a importação neste ano montou a 58 unidades. Isto nos leva a acreditar que 33.851 unidades teriam sido contrabandeadas, num período em que a indústria americana achava-se voltada para a produção de armamentos e a indústria européia, parcialmente destruída!

Nestas condições, decidimos abandonar os dados preexistentes e procuramos, à luz de outras informações, estimar a frota efetiva real.

3.1.1 Modelo de construção da frota

Vejamos inicialmente os modelos usuais de cálculo de estoque. Seja S_t o estoque (frota) de veículos no final do período t (representa o fluxo de serviços prestados pelos automóveis).

Durante o período t, são adquiridas q_t unidades novas das quais u_t vão repor as unidades sucateadas no período, e v_t representam o acréscimo líquido do estoque. Então valem as relações:

$$q_t = u_t + v_t$$

$$S_t = S_{t-1} + v_t$$

$$u_t = \frac{1}{n} S_{t-1} + \frac{1}{m} q_t$$

A terceira equação diz-nos que a parcela sucateada é composta da aplicação de uma taxa de depreciação $\frac{1}{n}$ sobre os dados de frota, e de uma taxa $\frac{1}{m}$ sobre as unidades novas adquiridas no período (obviamente $\frac{1}{m} < \frac{1}{n}$).

Sendo S_{θ} o estoque de automóveis no período t = 0, as três equações permitem-nos escrever para o período t = 1:

$$S_{1} = S_{0} + v_{1}$$

$$= S_{0} + q_{1} - u_{1}$$

$$= S_{0} + q_{1} - \frac{1}{n} S_{0} - \frac{1}{m} q_{1}$$

$$= S_{0} \left(1 - \frac{1}{n}\right) + q_{1} \left(1 - \frac{1}{m}\right)$$
 (20)

generalizando:

$$S_{t} = S_{0} \left(1 - \frac{1}{n} \right)^{t} + \left(1 - \frac{1}{m} \right) \sum_{k=1}^{t} q_{k} \left(1 - \frac{1}{n} \right)^{t-k}$$
 (21)

Esta equação permite-nos observar que:

$$\lim_{t \to \infty} S_0 \left(1 - \frac{1}{n} \right)^t = 0$$

O resultado traduz a conclusão lógica de que quanto mais afastado no tempo estiver o período inicial do período t, tanto menor será a parcela da frota inicial que terá sobrevivido até t. Não obstante, esta conclusão apesar de óbvia é importante na medida em que nos permite escrever a equação 21 de uma forma mais simplificada, desde que se tome o período de 0 a t, como sendo maior do que a vida útil dos automóveis. Assim:

$$S_{t} = \left(1 - \frac{1}{m}\right) \sum_{k=1}^{t} q_{k} \left(1 - \frac{1}{n}\right)^{t-k}$$
 (22)

O que significa que podemos chegar à frota do período t, conhecendose apenas as vendas de veículos em cada período e as taxas de depreciação, não havendo necessidade de se conhecer o estoque inicial.

A aplicação deste modelo tradicional ao caso da frota brasileira farse-ia basicamente pela aplicação das equações 20 e 22.

Dentro da análise de longo prazo, interessam-nos as frotas anuais do período 1947 a 1967. Supondo-se a vida útil média dos veículos, no período de 1920 a 1967, como sendo de 20 anos, 11 e tomando-se 1927 como t=0 e 1947 como t=20, a equação 22 seria reescrita como:

$$S_{20} = \left(1 - \frac{1}{m}\right) \sum_{k=1}^{20} q_k \left(1 - \frac{1}{n}\right)^{20-k}$$

²¹ Veja-se: Confederação Nacional da Indústria. Análise e perspectivas da indústria automobilística.
1960. p. 87.

Em seguida, pela equação 20, poderíamos ter os dados de frota, ano a ano, de 1947 a 1967, ou:

$$S_t = S_{t-1} \left(1 - \frac{1}{n} \right) + q_t \left(1 - \frac{1}{m} \right)$$
 com t variando de 1947 a 1967.

3.1.2 As taxas de depreciação no modelo usual de construção da frota

Os valores q_t não constituem problema, existindo a série já coletada. Há então que se determinar $\frac{1}{n}$ e $\frac{1}{m}$.

Podemos defini-las como:

 $\frac{1}{m}$ \rightarrow taxa de depreciação das unidades novas, no mesmo período em que foram adquiridas.

 $\frac{1}{n}$ \rightarrow taxa de depreciação da frota a cada período.

De acordo com esta última definição, n corresponde à vida útil média esperada para os veículos. Além disto, n será maior do que a unidade, pois se n = 1 estaríamos considerando os automóveis como bens perecíveis; e $m \neq n$, uma vez que se m = n, isto equivaleria a supor que as compras de novos veículos se concentram todas no fim do período.

O que usualmente se admite, é que as aquisições de unidades novas (q_t) distribuam-se uniformemente durante o período t, o que implica em se ter m como função de n, isto é, $m = \emptyset$ (n), sendo m > n > 1.

A equação 22 pode ser reescrita:

$$S_{t} = \left[1 - \frac{1}{\phi(n)}\right] \sum_{k=1}^{t} q_{k} \left(1 - \frac{1}{n}\right)^{t-k}$$
 (22-a)

sendo:

$$m = \phi(n) = 1 - \frac{1}{n \log_{\delta} \left\lceil \frac{n}{n-1} \right\rceil}$$
 (23)

Esta equação 22-a tem, porém, uma séria limitação, qual seja a de admitir constante a taxa de depreciação 1/n, e consequentemente 1/m. Em primeiro lugar, não há nenhuma evidência empírica neste sentido.

Veja-se demonstração no apêndice B.

Pelo contrário, no Brasil até 1957, principalmente, sendo a demanda de automóveis novos atendida pelas importações, a vida útil (logo a taxa de depreciação) deve ter oscilado bastante, ao sabor das medidas cambiais, fiscais e aduaneiras adotadas pelo nosso Governo. Em segundo lugar, a adoção de uma depreciação constante provoca uma acentuada dissimetria quanto aos períodos de tempo necessários para depreciar diferentes parcelas da frota. Assim, por exemplo, tomando-se uma taxa de depreciação de 20% a.a. são necessários 10 anos para depreciar 90% da frota e 17,5 anos para 98%, o que significa que estes 8% restantes da frota necessitam para serem depreciados quase o mesmo tempo que 90% da frota. Outro exemplo, uma taxa de depreciação de 10% deprecia 90% da frota em 20 anos, sendo que 50% desta frota o foram em seis anos. Portanto, uma taxa de depreciação constante implica numa depreciação extremamente acelerada dos veículos em seus primeiros anos de uso.

Esta segunda observação é de particular importância. Ela implica em que o n não representa efetivamente a vida útil do veículo, sendo realmente um fator de ajustamento que nos permite determinar a taxa de depreciação (1/n) capaz de depreciar uma certa porcentagem da frota, durante determinado período de tempo. Chamando-se este período de tempo de n^* , na verdade podemos exprimir n como função de n^* . Assim, denominando-se n^* o período de tempo necessário para se depreciar 90% da frota inicial, temos:

$$n = \frac{n^* + 1.2}{2.3}$$
 (24)

Nestas condições, dentro das hipóteses do modelo usual com taxa de depreciação constante, a primeira tarefa seria a da obtenção desta taxa, o que nos dá como subproduto n. Obtido este valor n, por meio de adequada transformação, chegamos ao valor n^{\bullet} , que corresponde ao número de períodos precisos para sucatear dada parcela do estoque inicial.

No presente trabalho, procuraremos substituir na equação 22 a taxa de depreciação constante por taxas de depreciação variáveis por tipo de veículos e por períodos.

É claro que determinadas estas taxas podemos sempre, a partir delas, inferir o número de períodos (n^*) necessários para sucatear dada parcela da frota inicial. Isto significa, em última instância, a possibilidade da conversão do modelo de taxas diferenciadas no modelo usual, introduzindo-se, naturalmente, a assimetria já assinalada.

Veja-se demonstração no apêndice C.

Conforme mencionamos anteriormente, trataremos da demanda de automóveis, no período de 60 a 67, em termos trimestrais. Daí, a metodologia que se segue procurará, a partir dos preços do mercado de segunda mão, chegar às taxas de depreciação, por tipos de veículos nacionais, trimestre a trimestre, durante toda sua vida útil esperada. Estas taxas serão fundamentais para a verificação da composição etária trimestral da frota.

3.1.3 Taxas de depreciação de mercado e vida útil

Como dissemos, vamos procurar nesta seção determinar as taxas de depreciação para cada tipo de veículo, por período (trimestres).

Estas taxas de depreciação dependem da vida útil dos bens, a qual é o resultado de uma decisão econômica, embora condicionada por fatores físicos. A época de descarte de um bem durável depende, para o usuário, do grau de deterioração dos serviços prestados que ele esteja disposto a aceitar, ou dos custos de manutenção que deseje sustentar.

Os custos de utilização podem, na verdade, ser divididos em duas categorias: os custos de "retenção" do bem, basicamente o custo de aquisição e os custos de manutenção; e os custos operacionais que somam, aos custos de "retenção", os custos de operação do bem (combustíveis, lubrificantes, etc.).

Do ponto de vista da decisão econômica quanto à vida útil, os custos de "retenção" é que são relevantes. Combinando os dois componentes dos custos de "retenção", podemos chegar a uma visão gráfica da determinação da vida útil.

No eixo vertical marcam-se os custos de retenção e no horizontal o tempo de uso (figura 1). O segmento OP representa o preço de aquisição de uma unidade nova. A estes preços adicionam-se, cumulativamente, os custos de manutenção, obviamente crescentes com a idade do bem, gerando-se a linha PH que marca os custos totais de retenção a cada período.

O período ótimo de reposição seria dado pelo ponto em que algumas das retas que ligam os pontos sobre a curva PH, tangencie esta última, no

caso o ponto R. Neste caso, $\frac{RT}{OT}$ é o custo de retenção médio anual, mí-

nimo. A reposição regular ao fim de OT períodos significa a utilização mais econômica para o bem em questão.

A figura 1 fornece-nos ainda uma informação adicional, qual seja a do montante que deve ser exigido pelo proprietário do bem, a cada período, para se desfazer do mesmo sem piorar as suas condições financeiras, em relação ao que encontraria caso utilizasse o bem ao longo de toda sua vida economicamente útil. Assim, se um indivíduo resolvesse se desfazer do bem ao fim de S períodos, ele o deveria fazer ao preço IJ, montante necessário para mantê-lo sobre a linha OG, de mínimo custo médio de retenção. Então, o valor apropriado de venda a cada idade seria dado pela distância vertical entre OG e PH, e esse valor representa o preço potencial pelo qual o consumidor estaria disposto a oferecer o bem no mercado de segunda mão.

As distâncias verticais entre as linhas PH e OG dão origem à figura 2. O que ela, na verdade, mostra são as taxas de depreciação de mercado para qualquer consumidor, para o qual os fatores relevantes para sua decisão econômica são o preço inicial e os custos de manutenção.

Se conhecêssemos os custos de retenção facilmente chegaríamos à determinação da vida útil do bem (OT pela figura 1), bem como poderíamos determinar as taxas de depreciação, período a período.

Contudo, não conhecemos estes custos, mas podemos obter informações no mercado de segunda mão sobre os preços dos bens transacionados, de acordo com a idade. Estes preços, por sua vez, podem também ser encarados como representativos da probabilidade de que um carro tenha sobrevivido de um ano para o outro. Destarte, o que deve constituir o nosso próximo objetivo é a estimação da função representada pela figura 2. Isto significa que determinaremos as taxas de depreciação pelo estudo da probabilidade de sucateamento do veículo.

O melhor tratamento a ser dado a esta função de distribuição de frequência parece-nos ser o de uma distribuição log-normal, por ser o fenômeno da depreciação muito mais multiplicativo do que aditivo.

De acordo com a distribuição log-normal, a figura 2 corresponderia ao quadrante positivo de:

sendo \varnothing $(x) = \text{Prob } \{X \leq x\} \rightarrow \text{função de distribuição } N \ [0,1] \ e$ $F \ (x) \rightarrow \text{função de distribuição } log\text{-normal } [\lambda,\mu]$

se

$$X = \frac{1g(\lambda X)}{\mu}$$
 for N[0,1], donde

$$F(x) = 1 - \phi \left[\frac{1g(\lambda x)}{\mu} \right] \text{ em que } \lambda > 0 \text{ e } \mu > 0$$

Para x = 0

$$F(0) = 1 - \phi \left[\frac{1g \ 0}{\mu} \right] = 1 - \phi (-\infty) = 1 - 0 = 1$$

Para $x = \infty$

$$F(\infty) = 1 - \phi(+\infty) = 1 - 1 = 0$$

Ajustaremos então a função: $F(x) = 1 - \emptyset$ (x) sendo x uma variável lognormal. Chamaremos de $F^*(x)$ os valores observados para F(x), isto é, os preços dos automóveis coletados mensalmente.

A primeira tarefa que se impõe é a do levantamento destes valores observados $F^{\bullet}(x)$. Para tanto, vamos seguir o esquema já assinalado de divisão do modelo em curto e longo prazos, preocupando-nos, no momento, apenas com o primeiro. Isto significa que analisaremos o período de 60 a 67, ou seja, a fase do mercado abastecido pela indústria nacional.

Nestas condições, os automóveis de fabricação nacional foram grupados em sete categorias, a saber:

1.º grupo: Volkswagen

2.º grupo: Vemaguet, Belcar e Fissore

3.º grupo: toda linha Simca

4.0 grupo: Dauphine

5.º grupo: Kharmann-Ghia e Interlagos 6.º grupo: Aero Willys, Itamaraty e JK

7.º grupo: Gordini e 1093.

Em seguida, levantamos, na revista Quatro Rodas, a evolução mensal dos preços no mercado de segunda mão dos modelos anuais de cada veículo. Sendo que para as categorias que envolvem mais de uma marca usou-se um preço médio (média aritmética) e considerou-se como preço de carro novo o preço do mercado de segunda mão do veículo com um trimestre de uso.

Estes preços de cada categoria foram deflacionados pelo índice geral de preços ¹⁴ e, em seguida, calculamos os preços médios, por trimestre, de cada categoria (média aritmética), eliminando-se a componente estacional.

Por apresentarem as séries mais longas (28 trimestres), os mouelos 1961 foram os escolhidos para os grupos 1, 2, 3, 4 e 6, e os modelos 1962 para os grupos 5 e 7, servindo então de base para o cálculo das taxas de depreciação pelo método indicado.

Portanto, os valores $F^*(x)$ para os grupos 1, 2, 3, 4 e 6 correspondiam aos preços médios trimestrais dos modelos 1961, e para os grupos 5 e 7 aos dos modelos 62. Como é fácil depreender-se, estaremos calculando taxas de depreciação diferenciadas não apenas por períodos, mas também por tipo de veículo.

¹⁴ Coluna 2 da revista Conjuntura Econômica, desde 1950.

As séries de valores $F^*(x)$, para cada categoria, podem ser transformadas em índices simples, com base no primeiro trimestre, pela simples divisão de cada elemento da série pelo primeiro termo.

Podemos, então, definir Φ^* (x) como sendo a probabilidade de que um veículo tenha sido sucateado:

$$\Phi^*(x) = 1 - F^*(x)$$

Teremos, então, para cada categoria uma tabela do tipo:

Época	$F^{\bullet}(x)$	$\Phi^*\left(x\right)=1-F^*\left(x\right)$	$\Phi^*(x)^{-1}$
1.º trim. 61 (1)	1,00	0,00	_ ∞
2.° trim. 61 (2)	0,98	0,02	– 2,0 5
3.º trim. 61 (3)	0,95	0,05	– 1,65
4.° trim. 61 (4)	0,90	0,10	- 1,29
1.º trim. 62 (5)		••••	•••••

		• • • •	

Obs.: a última coluna, $\Phi^*(x)$ - corresponde ao valor da abscissa sob a curva normal.

Vamos, então, ajustar a função:

$$\Phi^*(x)^{-1} = \frac{1g(\lambda x)}{\mu} = \frac{1g\lambda + 1gx}{\mu} = \frac{1g\lambda}{\mu} + \frac{1}{\mu} 1gx$$

fazendo-se:

$$\Phi^*(x)^{-1} = Y$$
 $a = \frac{1g\lambda}{\mu}$ $b = \frac{1}{\mu}$

obtemos:

$$Y = a + b \lg x \tag{25}$$

A equação 25 fornece-nos então os valores $\Phi(x)^{-1}$ (estimados) que convertidos pela tabela normal dão-nos a probabilidade de não-sucateamento estimada, ou $\Phi(x)$. Os resultados destes cálculos podem ser vistos nas tabelas de 1 a 7.

TABELA 1

1.º GRUPO: VOLKSWAGEN (MODELO 61)

t = trimestre

Período	Φ (x)-1	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	co	0,000 000	1,000 000
1	1,98	0,023 852	0,976 148
2	— 1,52	0,064 255	0,935 745
3	1,25	0,105 640	0,894 350
4	1,06	0,144 572	0,855 428
5	- 0,92	0,178 786	0,821 214
6	- 0,80	0,211 855	0,788 145
7	— 0,70	0,241 964	0,758 036
8	0,61	0,270 931	0,729 069
9	- 0,53	0,298 056	0,701 944
10	- 0,46	0,322 758	0,677 242
11	- 0,40	0,344 578	0,655 422
12	- 0,34	0,366 938	0,633 072
13	0,29	0,385 908	0,614 092
14	- 0,24	0,405 165	0,594 835
15	- 0,19	0,424 655	0,575 345
16	0,15	0,440 382	0,559 618
17	- 0,11	0,456 205	0,453 795
18	- 0,07	0,472 097	0,527 903
19	0,04	0,484 047	0,515 953
20	0,00	0,499 990	0,500 000
21	0,03	0,511 966	0,488 034
22	0,06	0,523 922	0,476 078
23	0,09	0,535 856	0,464 144
24	0,12	0,547 758	0,452 242

 $[\]Phi(x)$ área sob a curva normal.

TABELA 2

2.º GRUPO: VEMAGUET, BELCAR, FISSORE (MODELO 61)

t = trimestre

Período	$\Phi^{-}(x)^{-1}$	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	ω	0,000 000	1,000 000
1	- 1,82	0,034 370	0,965 620
2.	- 1,30	0,096 790	0,903 200
3	0,99	0,161 087	0,838 913
4	— 0,78	0,218 695	0,782 305
5	- 0,61	0,270 931	0,729 069
6	— 0 ,47	0,319 178	0,680 822
7	0,36	0,359 424	0,640 576
8	- 0,26	0,397 432	0,602 568
9	- 0,17	0,432 505	0,567 495
10	- 0,09	0,464 144	0,535 856
11	- 0,02	0,492 022	0,507 978
12	0,05	0,519 939	0,480 061
13	0,11	0,543 795	0,456 205
14	0,16	0,563 559	0,436 441
15	0,22	0,587 064	0,412 936
16	0,26	0,602 568	0,397 432
17	0,31	0,621 710	0,378 280
18	0,35	0,636 831	0,363 169
19	0,39	0,651 232	0,348 768
20	0,43	0,666 402	0,333 598
21	0,47	0,681 822	0,319 178
22	0,50	0,691 462	0,308 538
23	0,54	0,705 401	0,294 599
24	0,57	0,715 661	0,284 339

 $[\]Phi$ (x) area sob a curva normal.

TABELA 3

3.º GRUPO: LINHA SIMCA (MODELO 61)

t = trimestre

Período	Φ (x) ⁻¹	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	co	0,000 000	1,000 000
1	1,76	0,039 204	0,960 796
2	- 1,18	0,118 990	0,881 000
3	0,84	0,200 454	0,799 546
4	0,60	0,274 253	0,725 747
5	- 0,42	0,337 243	0,662 757
6	- 0,27	0,393 570	0,606 420
7	→ 0,14	0,444 320	0,555 670
8	0,03	0,488 034	0,511 966
9	0,07	0,527 903	0,472 097
10	0,16	0,563 559	0,436 441
11	0,24	0,594 835	0,405 165
12	0,31	0,621 710	0,378 280
13	0,38	0,648 C27	0,351 973
14	0,44	0,670 031	0,319 969
15	0,50	0,691 462	0,308 538
16	0,55	0,708 830	0,291 160
17	0,60	0,725 747	0,274 253
18	0,65	0,742 154	0,257 846
19	0,69	0,754 903	0,245 097
20	0,74	0,770 340	0,229 650
21	0,78	0,782 305	0,217 695
22	0,82	0,793 892	0,206 108
23	0,85	0,802 334	0,197 6 63
24	0,89	0,813 267	c,186 733

 $[\]Phi$ (x) área sob a curva normal.

TABELA 4
4.º GRUPO: DAUPHINE ((MODELO 61)

Período	$\Phi(x)^{-1}$	Φ (z)	$F(x) = 1 - \Phi(x)$
t = 0	&	0,000 000	1,000 000
1	— 1,52	0,064 255	0,935 745
2	— 1,09	0,137 857	0,862 143
3	— 0,83	0,203 269	0,796 731
4	— 0,65	0,257 846	0,742 154
5	— 0,51	0,305 026	0,694 974
6	0,40	0,344 578	0,655 422
7	0,30	0,382 089	0,617 911
8	- 0,22	0,412 936	0,587 064
9	- 0,15	0,440 382	0,559 618
10	0,08	0,468 119	0,531 881
11	- → 0,02	0,492 022	0,507 978
12	0,03	0,511 966	0,488 034
13	0,08	0,531 881	0,468 119
14	0,13	0,551 717	0,448 283
15	0,17	0,567 495	0,432 505
16	0,21	0,583 166	0,416 834
17	0,25	0,598 706	0,401 294
18	0,29	0,614 092	0,385 908
19	0,32	0,625 516	0,374 484
20	0,35	0,636 831	0,363 169
21	0,38	0,648 027	0,351 973
22	0,41	0,659 097	0,340 903
23	0, 44	0,670 031	0,329 969
24	0,47	0,680 822	0,319 178

 $[\]Phi$ (x) area sob a curva normal.

TABELA 5

5.º GRUPO: K-G E INTERLAGOS (MODELO 62)

Período	$\Phi(x)^{-1}$	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	∞	0,000 000	1,000 000
1	– 2,01	0,022 216	0,977 784
2	1, 4 3	0,076 359	0,923 641
3	- 1,09	0,137 857	0,862 143
4	- 0,85	0,197 663	0,802 337
5	- 0,66	0,254 627	0,745 373
6	- 0,51	0,305 026	0,694 974
7	- 0,38	0,351 973	0,648 027
8	- 0,27	0,393 570	0,606 420
9	- 0,17	0,432 505	0,568 495
10	- 0.08	0,468 119	0,531 881
11	0,00	0,499 990	0,500 000
12	0,07	0,537 913	0,472 097
13	0,14	0,555 660	0,444 330
14	0,20	0,579 250	0,420 740
15	0,26	0,602 567	0,397 432
16	0,31	0,621 710	0,378 280
17	0,37	0,644 309	0,355 691
18	0,41	0,659 097	0,340 903
19	0,46	0,577 241	0,322 758
20	0,50	0,691 462	0,308 538
21	0,54	0,705 401	0,294 599
22	0,58	0,719 043	0,280 957
23	0,62	0,732 371	0,267 629
24	0,66	0,745 373	0,254 627

 $[\]Phi(x)$ área sob a curva normal.

TABELA 6
6.º GRUPO: AERO WILLYS, ITAMARATY, JK (MODELO 61)

Período	$\Phi(x)^{-1}$	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	∞	0,000 000	1,000 000
1	— 1,88	0,030 054	0,969 946
2	— 1,32	0,093 418	0,906 582
3	- 0,99	0,161 087	0,838 913
4	— 0,76	0,223 627	0,776 373
5	— 0,58	0,280 957	0,719 043
6	— 0,43	0,333 598	0,666 402
7	- 0,31	0,378 270	0,621 720
8	- 0,20	0,420 730	0,579 260
9	0,10	0,460 172	0,539 828
10	0,02	0,492 062	0,507 938
11	0,06	0,523 922	0,476 078
12	0,13	0,551 717	0,448 283
13	0,19	9,575 345	0,424 655
14	0,25	0,598 706	0,401 294
15	0,31	0,621 710	0,378 280
16	0,36	0,640 576	0,359 424
17	0,41	0,659 097	0,340 903
18	0,46	0,677 242	0,322 758
19	0,50	0,691 462	0,308 538
20	0,54	0,705 401	0,294 599
21	0,58	0,719 043	0,280 957
22	0,62	0,732 371	0,267 629
23	0,66	0,745 373	0,254 627
24	0,69	0,754 903	0,245 097

Φ (x) área sob a curva normal.

TABELA 7

7.º GRUPO: GORDINI E 1093 (MODELO 62)

Período	Φ (x) ⁻¹	Φ (x)	$F(x) = 1 - \Phi(x)$
t = 0	œ	0,000 000	1,000 000
1	- 2,17	0,015 003	0,984 997
2	— 1,57	0,058 208	0,941 792
3	— 1,21	0,113 139	0,886 861
4	- 0,96	0,168 528	0,831 472
5	— 0,77	0,220 640	0,779 350
6	- 0,61	0,270 931	0,729 069
7	— 0,47	0,319 178	0,680 822
8	— 0,36	0,359 424	0,640 576
9	- 0,25	0,401 294	0,598 706
10	- 0,16	0,436 441	0,563 559
11	- 0,08	0,468 119	0,531 881
12	0,00	0,499 990	0,500 000
13	0,07	0,527 903	0,472 097
14	0,13	0,551 716	0,448 283
15	0,19	0,579 250	0,420 740
16	0,25	0,598 706	0,401 294
17	0,30	0,617 911	0,382 089
18	0,35	0,636 831	0,363 169
19	0,40	0,655 422	0,344 578
20	0,44	0,670 031	0,329 969
21	0,49	0,687 933	0,312 067
22	0,53	0,701 944	0,298 056
23	0,57	0,715 661	0,284 339
24	0,60	0,725 747	0,274 253

Φ (x) área sob a curva normal.

Essa série de probabilidades de não-sucateamento não se constitui, contudo, numa correta expressão para a taxa de depreciação. Esta deve ser obtida com base na soma destas probabilidades, as quais representam o total de serviço produtivo que o automóvel ainda oferece a cada período.

Se pressupormos uma intensidade de uso constante a cada período, a soma dos serviços que ainda podem ser prestados pelo carro será simplesmente o número de anos de vida que ainda lhe restam. Esse número de anos de vida restantes será dado por:

$$v = \Phi(x) + \Phi(x+1) + \ldots + \Phi(w)$$
 (26)

Pela equação 26 podemos determinar a fração de serviços em relação ao total que o veículo ainda poderá prestar, e que representa a sua função de sobrevivência em termos de serviços (tabela 8).

TABELA 8
FUNÇÃO DE SOBREVIVÊNCIA (H.)

Trimestres	1.º grupo	2.º grupo	3.º grupo	4.º grupo	5.º grupo	6.º grupo	7.º grupo
0	1,00000	1,00000	1,00000	1,00000	1,00000	1,00000	1,00000
1	0,96944	0,95165	0,93132	0,95760	0,94573	0,94609	0,94904
2	0,94014	0,90642	0,86834	0,91854	0,89448	0,89570	0,90032
3	0,91213	0,86441	0,81118	0,88244	0,84664	0,84907	0,85444
4	0,88534	0,82523	0,75930	0,84882	0,80212	0,80593	0,81143
5	0,85963	0,78872	0,71192	0,81733	0,76075	0,76596	0,77111
6	0,83495	0,75463	0,66857	0,78764	0,72219	0,72893	0,73339
7	0,81121	0,72255	0,62885	0,75964	0,68623	0,69437	0,69817
8 9	0,78838	0,69238	0,59225	0,73305	0,65258	0,66218	0,66503
9	0,76639	0,66396	0,55850	0,70769	0,72109	0,63217	0,63406
10	0,74519	0,63712	0,52730	0,68359	0,59157	0,60394	0,60490
11	0,72466	0,61168	0,49833	0,66058	0,56383	0,57749	0,57739
12	0,70483	0,58764	0,47129	0,63847	0,53763	0,55257	0,55152
13	0,68560	0,56480	0,44613	0,61726	0,51297	0,52897	0,52710
14	0,66698	0,54294	0,42254	0,59695	0,48963	0,50667	0,50391
15	0,64896	0,52226	0,40049	0,57736	0,46757	0,48564	0,48214
16	0,63143	0,50236	0,37967	0,55847	0,44658	0,46567	0,46138
17	0,61440	0,48342	0,36007	0,54029	0,42684	0,44672	0,44161
18	0,59787	0,46523	0,34163	0,52281	0,40793	0,42878	0,42283
19	0,58171	0,44776	0,32411	0,50584	0,39002	0,41163	0,40500
20	0,56606	0,43106	0,30770	0,48938	0,37290	0,39526	0,38793
21	0,55077	0,41507	0,29213	0,47344	0,35655	0,37964	0,37179
22	0,53586	0,39962	0,27740	0,45799	0,34096	0,36477	0,35637
23	0,52133	0,38487	0,26327	0,44304	0,32611	0,35062	0,34166
24	0,50717	0,37063	0,24992	0,42858	0,31198	0,33700	0,32747
25	0,49325	0,35690	0,23714	0,41444	0,29838	0,32389	0,31396
26	0,47971	0,34366	0,22491	0,40078	0,28529	0,31130	0,30095
27	0,46641	0,33091	0,21340	0,38744	0,27272	0,29936	0,28860
28	0,45348	0,31863	0,20240	0,37440	0,26080	0,28775	0,27672
29	0,44079	0,30667	0,19190	0,36167	0,24921	0,27661	0,26530
30	0,42834	0,29517	0,18172	0,34925	0,23808	0,26593	0,25434
31	0,41614	0,28397	0,17203	0,33727	0,22742	0,25570	0,24383

33	Trimestres	1.º grupo	2.º grupo	3.º grupo	4.º grupo	5.° grupo	6.º grupo	7.º grupo
33	32	0.40429	0.27322	0.16279	0.32544	0.21721	0,24576	0,23374
34								
35				I -'				
36 0,35903 0,23319 0,12916 0,28101 0,17978 0,20966 0,18827 37 0,34824 0,22397 0,12148 0,27061 0,17124 0,20137 0,18827 38 0,33768 0,21502 0,11418 0,26034 0,15494 0,18555 0,1724 40 0,31713 0,1976 0,10034 0,24048 0,14717 0,17801 0,1647 41 0,30713 0,18944 0,09378 0,23088 0,13976 0,1031 0,1647 42 0,29725 0,18138 0,08745 0,2142 0,13266 0,15686 0,15680 43 0,28759 0,17355 0,08135 0,21221 0,12366 0,15690 0,15318 44 0,27814 0,16597 0,07547 0,20312 0,11379 0,1433 45 0,26881 0,15850 0,06981 0,1429 0,11231 0,13761 0,1236 46 0,25938 0,15126 0,06435 0,1859 0,15373		1 /			. ,	,		
37						,		
38				1 -1				
39								
40								
41 0,30713 0,18944 0,09378 0,23088 0,13976 0,17071 0,15735 42 0,29725 0,18138 0,08745 0,22142 0,12565 0,16364 0,15025 43 0,28759 0,17355 0,08135 0,21221 0,12565 0,15680 0,13324 44 0,27814 0,16597 0,07547 0,20312 0,11832 0,15019 0,13664 45 0,28881 0,15850 0,06841 0,19429 0,11221 0,14373 0,13019 0,13664 46 0,25958 0,15126 0,06435 0,18559 0,10533 0,13761 0,13376 47 0,25057 0,14424 0,05993 0,17701 0,09966 0,13153 0,11383 48 0,24167 0,13734 0,05393 0,16045 0,06793 0,12396 50 0,22439 0,12407 0,04405 0,15235 0,08227 0,11442 0,10991 0,0653 51 0,21509 0,1571 0,03				_' .		,		, -
42 0,29725 0,18138 0,08745 0,22142 0,13259 0,16364 0,15022 43 0,28759 0,17355 0,08135 0,21221 0,12662 0,15680 0,14332 44 0,27814 0,16597 0,07547 0,20312 0,11882 0,15019 0,16364 45 0,26881 0,15126 0,06435 0,1859 0,11221 0,14379 0,13019 46 0,25958 0,15126 0,06435 0,1859 0,10583 0,13761 0,13784 0,05909 0,17701 0,09966 0,13133 0,11788 48 0,24167 0,13734 0,05393 0,16045 0,08939 0,12566 0,11203 49 0,22439 0,12407 0,04405 0,15235 0,08227 0,11442 0,10937 51 0,21590 0,11771 0,03383 0,14448 0,07680 0,10931 52 0,20762 0,11144 0,03466 0,13673 0,07152 0,13385 0,09353 <td< td=""><td></td><td>1 '</td><td></td><td>_'</td><td>/</td><td></td><td></td><td></td></td<>		1 '		_'	/			
43								
44 0,27814 0,16597 0,07547 0,20312 0,11882 0,15019 0,13666 45 0,26881 0,15500 0,06981 0,19429 0,11221 0,143761 0,13061 46 0,25958 0,15126 0,06435 0,18559 0,10583 0,13761 0,12362 47 0,25057 0,14424 0,05909 0,17701 0,09966 0,13153 0,11788 48 0,24167 0,13734 0,05909 0,16867 0,09369 0,11200 50 0,22439 0,12407 0,04405 0,15235 0,08227 0,11442 0,10906 51 0,21500 0,11771 0,03373 0,14448 0,07680 0,10944 0,09555 52 0,20762 0,11144 0,03486 0,13673 0,07152 0,10385 0,09034 53 0,19945 0,10538 0,03037 0,12158 0,06134 0,09875 0,08535 54 0,19137 0,09937 0,02221 0,111417								
45								
46								
47				1 - 1				
48		I - '		1 - 1	1 . '			
49 0,23298 0,13065 0,04897 0,16045 0,08793 0,11999 0,10603 50 0,22439 0,12407 0,04405 0,15235 0,08227 0,11442 0,10090 51 0,21590 0,11771 0,03397 0,14448 0,07680 0,10094 0,09552 52 0,20762 0,11144 0,03486 0,13673 0,07152 0,10385 0,09053 53 0,19945 0,10538 0,03053 0,12910 0,06634 0,09875 0,08535 54 0,19137 0,69943 0,02629 0,12158 0,06134 0,09836 0,08552 56 0,17553 0,68790 0,01821 0,10687 0,05169 0,08434 0-07101 57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06631 58 0,16027 0,07885 0,01061 0,09282 0,04256 0,07528 0,06206 59 0,15279 0,07156 0,00706 0,								
50 0,22439 0,12407 0,04405 0,15235 0,08227 0,11442 0,10904 0,9955 51 0,21590 0,11771 0,033937 0,14448 0,07680 0,10904 0,0955 52 0,20762 0,11144 0,03486 0,13673 0,07152 0,10385 0,09035 53 0,19945 0,10538 0,03053 0,12910 0,06634 0,09875 0,0853 54 0,19137 0,09943 0,02629 0,12158 0,06134 0,09383 0,08042 55 0,18340 0,09357 0,02221 0,11417 0,05643 0,09890 0,0756 56 0,16755 0,08790 0,01821 0,10687 0,05169 0,08434 0-0710 57 0,16785 0,08790 0,01821 0,10687 0,04704 0,07777 0,06625 59 0,15279 0,07156 0,00700 0,08895 0,03816 0,07528 0,06296 61 0,13812 0,06125 0,0725								
51 0,21590 0,11771 0,03937 0,14448 0,07680 0,10904 0,09552 52 0,20762 0,11144 0,03486 0,13673 0,07152 0,10385 0,09053 53 0,19945 0,10538 0,03053 0,12910 0,06634 0,09875 0,0853 54 0,19137 0,09943 0,02629 0,12158 0,06134 0,099383 0,08042 55 0,18340 0,09357 0,02221 0,11417 0,05643 0,08900 0,07565 56 0,17553 0,08790 0,01821 0,10687 0,05169 0,08434 0-07101 57 0,16785 0,08233 0,01437 0,09799 0,04704 0,07977 0,06625 58 0,16027 0,07685 0,01061 0,09292 0,04256 0,07528 0,06256 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07096 0,05366 61 0,13812 0,06125 0,07244 0,					,			
52 0,20762 0,11144 0,03486 0,13673 0,07152 0,10385 0,09035 53 0,1945 0,10538 0,03053 0,12910 0,06634 0,09875 0,08533 54 0,19137 0,09437 0,02221 0,11417 0,05643 0,09830 0,08790 55 0,18340 0,09357 0,02221 0,11417 0,05643 0,08900 0,0756 56 0,17553 0,08790 0,01821 0,10687 0,05169 0,08434 0-07101 57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06651 58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06296 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07528 0,06256 60 0,14541 0,06632 0,07254 0,02977 0,06255 0,04964 61 0,13812 0,05138 0,05846 0,02170 0,05			,			•	, ,	
53 0,1945 0,10538 0,03053 0,12910 0,06634 0,09875 0,08535 54 0,19137 0,0943 0,02629 0,12138 0,06134 0,09875 0,08042 55 0,18340 0,09357 0,02221 0,11417 0,056169 0,08434 0,07565 0,017553 0,08942 0,01667 0,05169 0,08434 0-07101 0,07565 0,01667 0,06134 0,09777 0,06651 0,07565 0,01667 0,05169 0,08434 0-07101 0,07565 0,01667 0,06671 0,06651 0,04704 0,07977 0,06651 0,0625 0,01437 0,09979 0,04704 0,07977 0,06651 0,0625 0,03816 0,07920 0,03392 0,06671 0,05366 0,07920 0,03392 0,06671 0,05366 0,07920 0,03392 0,06671 0,05366 0,04964 0,07920 0,03392 0,06671 0,05366 0,04964 0,02977 0,06255 0,04964 0,02277 0,06255 0,04568 0,02569 0,								
54 0,19137 0,0943 0,02221 0,12158 0,06134 0,09383 0,08042 55 0,18340 0,09357 0,02221 0,11417 0,05643 0,08900 0,0756 56 0,17553 0,08230 0,01437 0,09979 0,04704 0,07977 0,06651 57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06651 58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06206 59 0,15279 0,07156 0,00700 0,08595 0,03392 0,06671 0,05366 60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 . . 0,07254 0,02977 0,06255 0,04964 62 0,13093 0,05623 . 0,05594 0,02176 0,05854 0,0456 63 0,12883 0,04662 . 0,05								
55 0,18340 0,09357 0,02221 0,11417 0,05643 0,08900 0,07565 56 0,17553 0,08790 0,01821 0,10687 0,05169 0,08434 0-07101 57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06651 58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06205 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07296 0,05784 0,05784 0,05784 0,02977 0,06671 0,05366 61 0,13812 0,06125 0,07254 0,02977 0,06255 0,04964 62 0,13093 0,05623 0,05594 0,02176 0,05854 0,04566 63 0,12383 0,05138 0,05954 0,02176 0,05640 0,04188 64 0,11683 0,04662 0,05320 0,01791 0,05074 0,03813 65 0,10992 0,04194 0,								
56 0,17553 0,08790 0,01821 0,10687 0,05169 0,08434 0-07101 57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06651 58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06206 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07096 0,05784 60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 . 0,07254 0,02977 0,06255 0,04964 62 0,13093 0,05623 . 0,06599 0,02569 0,05854 0,04569 63 0,1683 0,04662 . 0,05320 0,01791 0,05074 0,03813 64 0,1683 0,04662 . 0,04695 0,01413 0,04733 0,03446 65 0,10310 0,03735 0,04081 0,01441 0,0								
57 0,16785 0,08233 0,01437 0,09979 0,04704 0,07977 0,06651 58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06206 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07096 0,05784 60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 0,06599 0,02569 0,05854 0,04566 62 0,13093 0,05623 0,05954 0,02176 0,05460 0,04188 63 0,12383 0,04662 0,05320 0,01791 0,05074 0,03816 64 0,11683 0,04662 0,05320 0,01791 0,05074 0,03816 65 0,10992 0,04194 0,04695 0,01413 0,04703 0,03476 66 0,10310 0,03735 0,0481 0,01049 0,04339 0,02275 68 0,08974		1 -1	,		r /		1 '	
58 0,16027 0,07685 0,01061 0,09282 0,04256 0,07528 0,06205 59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07096 0,05784 60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 0,06599 0,02569 0,05854 0,04566 62 0,1393 0,05138 0,05954 0,02176 0,05854 0,04566 63 0,12383 0,05138 0,05320 0,01791 0,05074 0,03815 64 0,11683 0,04662 0,05320 0,01791 0,05074 0,03815 65 0,10992 0,04194 0,04695 0,01413 0,04703 0,03445 66 0,10310 0,03735 0,04681 0,01049 0,04339 0,03982 67 0,09638 0,03283 0,03476 0,00689 0,03982 0,0275 68 0,0874 0,01663				-			1 . '	
59 0,15279 0,07156 0,00700 0,08595 0,03816 0,07096 0,05784 60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 . 0,07254 0,02977 0,06255 0,04964 62 0,13093 0,05623 . 0,05994 0,02176 0,05554 0,04566 63 0,12383 0,05138 . 0,0594 0,02176 0,05640 0,04188 64 0,11683 0,04662 . 0,05320 0,01791 0,05074 0,03816 65 0,10992 0,04194 . 0,04695 0,01413 0,04703 0,038449 66 0,10310 0,03735 . 0,04481 0,01049 0,04339 0,03982 0,02751 67 0,09632 0,02405 . 0,02286 0,03322 0,02405 . 0,0343 0,03632 0,02435 70 0,07674 0								
60 0,14541 0,06636 0,00346 0,07920 0,03392 0,06671 0,05366 61 0,13812 0,06125 0,07254 0,02977 0,06255 0,04964 62 0,13093 0,05623 0,06599 0,02569 0,05854 0,04566 63 0,12383 0,04662 0,05954 0,02176 0,05460 0,04188 64 0,11683 0,04662 0,05954 0,02176 0,05460 0,04188 65 0,10992 0,04194 0,04695 0,01413 0,04703 0,03449 66 0,10310 0,03735 0,04081 0,01049 0,04339 0,03982 67 0,09638 0,03283 0,03476 0,00689 0,03982 0,02751 68 0,08320 0,02405 0,02286 0,03288 0,03288 0,02412 69 0,08320 0,02405 0,01700 0,02958 0,01766 71 0,07038 0,01573 0,01124 0,02388 0,01453								
61								
62				0,00346				
63								
64 0,11683 0,04662 . 0,05320 0,01791 0,05074 0,03815 65 0,10992 0,04194 . 0,04695 0,01413 0,04703 0,03448 66 0,10310 0,03735 . 0,04081 0,01049 0,04339 0,03096 67 0,09638 0,03283 . 0,03476 0,00689 0,03982 0,02751 68 0,08974 0,02840 . 0,02881 0,00343 0,03632 0,02412 69 0,08320 0,02405 . 0,02286 0,03288 0,02988 70 0,07674 0,01985 . 0,01700 . 0,02958 0,01766 71 0,07038 0,01573 . 0,01124 . 0,02635 0,01456 72 0,06410 0,01169 . 0,0057 . 0,02318 0,01146 73 0,05791 0,00382 0,01702 0,00561								
65 0,10992 0,04194 0,04695 0,01413 0,04703 0,03444 66 0,10310 0,03735 0,04081 0,01049 0,04339 0,03096 67 0,09638 0,03283 0,03476 0,00689 0,03982 0,02751 68 0,08974 0,02405 0,02286 0,03382 0,0248 70 0,07674 0,01985 0,01700 0,02958 0,01766 71 0,07038 0,01573 0,01124 0,02635 0,01453 72 0,06410 0,01169 0,00571 0,02318 0,01145 73 0,05791 0,00772 0,01702 0,005318 0,01702 0,00561 75 0,04579 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
66								
67			,		· /	,	,	
68 0,08974 0,02840 . 0,02881 0,0343 0,03632 0,02412 69 0,08320 0,02405 . 0,02286 . 0,03288 0,02086 70 0,07674 0,01985 . 0,01700 . 0,02958 0,01766 71 0,07038 0,01573 . 0,01124 . 0,02635 0,01456 72 0,06410 0,01169 . 0,00557 . 0,02318 0,01146 73 0,05791 0,00772 . . 0,02007 0,00851 74 0,05181 0,00382 . . 0,01702 0,00501 75 0,04579 0,01144 0,00278 76 0,03986 .			. "	1 .			1 - ' - '	
69 0,08320 0,02405 0,02286 0,03288 0,02086 70 0,07674 0,01985 0,01700 0,02958 0,01766 71 0,07038 0,01573 0,01124 0,02635 0,01455 72 0,06410 0,01169 0,00557 0,02318 0,01146 73 0,05791 0,00772 0,02007 0,00851 0,01702 0,00501 74 0,05181 0,00382 0,01702 0,01702 0,00501 0,004702 0,001404 0,00278 75 0,03986 0,01404 0,01111 0,00825 0,01111 0,00825 0,00544 0,00544 0,00544 0,00228 79 0,02231 0,01663 0,0								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0,00343		
71 0,07038 0,01573 0,01124 0,02635 0,01453 72 0,06410 0,01169 0,00557 0,02318 0,01146 73 0,05791 0,00772 0,00825 0,01702 0,00561 75 0,04579 0,03986 0,01404 0,01702 0,01404 0,00278 76 0,03986 0,03986 0,01111 0,00825 0,01111 0,00825 0,00544 0,00544 0,00544 0,00544 0,002231 0,01063 0,0103 0,0103 0,0103 0,0103 0,0103 0,01063 0,0103 0,0103 0,00561 0,00561 0,00561 0,00561 0,00561 0,00561 0,00562 0,00561 0,00562 0,0		,		} .	,	ì ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•		
73 0,05791 0,00772 0,02007 0,00851 74 0,05181 0,00382 0,01702 0,00561 75 0,04579 0,01404 0,00278 76 0,03393 0,00825 78 0,02808 0,00544 79 0,02231 80 0,01663 81 0,01103 82 0,00552								
74 0,05181 0,00382 0,01702 0,00561 75 0,04579 0,01702 0,00561 76 0,03986 0,01111 0,00825 78 0,02808 0,00544 79 0,02231 0,00269 80 0,01663 81 0,01103 82 0,00552					0,00557	•		
75				· ·		,		
76			0,00382			1 •		
77								0,00278
78			} -	\ ·	· ·	i ·) -
79 0,02231 . . 0,00269 . 80 0,01663 			1 •			٠ .		
80 0,01663 						-	• '	
81 0,01103 		1 '					0,00269	
82 0,00552 		1 '						
								į .
83		0,00552			ļ ·	} -	· ·	
	83		,	· ·			\ ·	\ ·

248 R.B.E. 2/72

$$H_{x} = \frac{\Phi(x) + \Phi(x+1) + \ldots + \Phi(w)}{\Phi(1) + \Phi(2) + \ldots + \Phi(w)}$$
(27)

sendo a sua vida média 15 (x) igual a:

$$x = \Phi(1) + \Phi(2) + \dots + \Phi(w)$$
 (28)

e a função de sobrevivência será igual a 1 no início e zero no final.

Como é fácil observar, nas equações anteriores, w é o período em que o estoque inicial desaparece, para o qual não dispomos ainda de qualquer informação. A determinação do valor de w terá de ser feita por aproximações sucessivas pela equação 28. Esta equação forma o valor de x pela acumulação de parcelas cada vez menores, o que vale dizer que, a partir de um determinado período w, os valores de $\Phi(x)$ serão tão pequenos que pouco afetarão o valor de x.

Desta forma, arbitramos, inicialmente, o valor de w e $w_1 \equiv 100$ e extrapolamos os valores de $\Phi(x)$ até $\Phi(100)$ pela equação 25. Em seguida, acumulamos estes $\Phi(x)$ pela equação 28 e podemos observar que:

- a) para o primeiro grupo, x tendia a se estabilizar em 32 ao fim do 81.º período; logo w=81; 16
- b) para o segundo grupo x = 20 com 74 períodos;
- c) para o terceiro grupo x = 14 com 59 períodos;
- d) para o quarto grupo x = 22 com 71 períodos;
- e) para o quinto grupo x = 18 com 67 períodos;
- f) para o sexto grupo x = 18 com 78 periodos;
- g) para o sétimo grupo x = 19,3 com 74 períodos.

Transformando-se os períodos trimestrais em anuais, podemos calcular a vida útil média nestes termos. Assim, para o 1.º grupo 8 anos é o período de tempo indispensável para depreciar 59,5% do estoque inicial; para o 2.º grupo 5 anos são necessários para depreciar 56,9% do estoque inicial; no 3.º grupo 3,5 anos para 57,7% do estoque inicial; no 4.º grupo 5,5 anos para 54,2% do estoque inicial; no 6.º grupos 4,5 anos para 59,2% e 57,1%, respectivamente, do estoque inicial; e, finalmente, no 7.º grupo 4 anos e 10 meses para 59,5% do estoque inicial.

x período de tempo necessário para depreciar de 50 a 60% do estoque inicial.

¹⁶ w representa a vida útil esperada máxima, para o estoque inicial.

Como H_x representa a curva de sobrevivência em termos de serviço, a depreciação entre o período x e o x+1 é simplesmente igual ao declínio da fração H_x ao longo do período x, ou seja:

(29) $D_x = H_x - H_{x+1}$, onde $D_x \rightarrow$ taxa de depreciação sendo válida a relação:

$$h_0+h_1+h_2+\ldots h_w=1$$

Substituindo os valores de H_x da equação 27 na equação 29, esta última toma a forma:

$$D_x = \frac{\Phi(x)}{\Phi(0) + \Phi(1) + \dots + \Phi(w)} = \frac{\Phi(x)}{\overline{x}}$$
 (29-a)

Chegamos, desta forma, às taxas de depreciação (D_x) constituintes da tabela 9 (gráficos 1 a 7).

TABELA 9
TAXAS DE DEPRECIAÇÃO

Trimestres	1.º grupo	2.º grupo	3.º grupo	4.º grupo	5.º grupo	6.º grupo	7.º grupo
0	0,03056	0,04835	0,06868	0,04240	0,05427	0,05391	0,05096
1	0,02930	0,04523	0,06298	0,03906	0,05125	0,05039	0,04872
2 3	0,02801	0,04201	0,05716	0,03610	0,04784	0.04663	0,04588
3	0.02679	0,03918	0,05188	0,03362	0,04452	0.04314	0,04301
4	0.02571	0,03651	0,04738	0,03149	0,04137	0.03997	0,04032
5	0.02468	0,03409	0,04335	0,02969	0,03856	0.03703	0,03772
6	0.02374	0,03208	0,03972	0,02800	0,03596	0.03456	0,03522
7	0.02283	0,03017	0,03660	0.02659	0,03365	0.03219	0,03314
8	0,02199	0,02842	0,03375	0,02536	0,03149	0,03001	0,03097
9	0,02120	0,02684	0,03120	0,02410	0,02952	0.02823	0,02916
10	0,02053	0,02544	0,02897	0,02301	0,02774	0,02645	0,02751
11	0,01983	0,02404	0,02704	0,02211	0,02620	0,02492	0,02587
12	0,01923	0,02284	0,02516	0,02121	0,02466	0.02360	0.02442
13	0,01862	0,02186	0,02359	0,02031	0,02334	0.02230	0,02319
1 4	0,01802	0,02068	0,02205	0,01959	0,02206	0,02103	0,02177
15	0,01753	0,01990	0,02082	0,01889	0,02099	0,01997	0,02076
16	0,01703	0,01894	0,01960	0,01818	0,01974	0,01895	0,01977
17	0,01653	0,01819	0,01844	0,01748	0,01891	0,01794	0,01878
18	0,01616	0,01747	0,01752	0,01697	0,01791	0,01715	0,01783
19	0,01565	0,01670	0,01641	0,01646	0,01712	0,01637	0,01707
20	0,01529	0,01599	0,01557	0,01594	0,01635	0,01562	0,01614
21	0,01491	0,01545	0,01473	0,01545	0,01559	0,01487	0,01542
22	0,01453	0,01475	0,01413	0,01495	0,01485	0,01415	0,01471
23	0,01416	0,01424	0,01335	0,01446	0,01413	0,01362	0,01419
24	0,01392	0,01373	0,01278	0,01414	0,01360	0,01311	0,01351
25	0,01354	0,01324	0,01223	0,01366	0,01309	0,01259	0,01301
26	0,01330	0,01275	0,01151	0,01334	0,01257	0,01194	0,01235
27	0,01293	0,01228	0,01100	0,01304	0,01192	0,01161	0,01188
28	0,01269	0,01196	0,01050	0,01273	0,01159	0,01114	0,01142
29	0,01245	0,01150	0,01018	0,01242	0,01113	0,01068	0,01096
30	0,01220	0,01120	0,00969	0,01198	0,01066	0,01023	0,01051
31	0,01185	0,01075	0,00924	0,01183	0,01021	0,00994	0,01009

Trimestres	1.º grupo	2.º grupo	3.º grupo	4.º grupo	5.º grupo	6.º grupo	7.º grupo
32	0,01161	0,01047	0,00894	0,01154	0,00993	0,00951	0,00980
33	0,01137	0.01018	0,00852	0,01124	0,00949	0,00922	0.00938
34	0,01126	0.00989	0,00822	0,01097	0,00921	0,00882	0.00912
35	0,01102	0.00949	0,00795	0,01068	0.00880	0,00855	0.00871
36	0,01079	0.00922	0,00768	0,01040	0,00854	0,00829	0.00846
37	0,01056	0,00895	0.00730	0,01027	0.00828	0,00804	0.00809
38	0,01033	0.00870	0,00704	0,01000	0.00802	0,00778	0.00784
39	0,01022	0,00856	0,00680	0,00986	0,00777	0,00754	0,00759
40	0,01000	0,00832	0,00656	0,00960	0,00741	0,00730	0,00736
41	0,00988	0.00806	0,00633	0,00946	0,00717	0,00707	0,00714
42	0,00966	0.00783	0,00610	0,00921	0,00694	0,00684	0,00690
43	0,00945	0.00758	0,00588	0,00909	0,00683	0,00661	0,00669
44	0,00933	0,00747	0,00566	0,00883	0,00661	0,00640	0,00647
45	0.00923	0.00724	0,00546	0,00870	0,00638	0,00618	0,00626
46	0,00901	0.00702	0,00526	0,00858	0,00617	0,00608	0,00605
47	0,00890	0,00690	0,00516	0,00834	0,00597	0,00587	0,00586
48	0,00869	0,00669	0,00496	0,00822	0,00576	0,00567	0,00565
49	0,00859	0,00658	0,00492	0,00810	0,00566	0,00557	0,00547
50	0,00849	0.00636	0,00468	0,00787	0,00547	0,00538	0,00537
51	0,00828	0,00627	0,00451	0,00775	0,00528	0,00519	0,00519
52	0,00817	0,00606	0,00433	0,00763	0,00518	0,00510	0,00501
53	0,00808	0,00595	0,00424	0,00752	0,00500	0,00492	0,00491
54	0,00797	0,00586	0,00408	0,00741	0,00491	0,00483	0,00475
55	0,00787	0,00567	0,00400	0,00730	0,00474	0,00466	0,00466
56	0,00768	0,00557	0,00384	0,00708	0,00465	0,00457	0,00450
57	0,00758	0,00548	0,00376	0,00697	0,00448	0,00449	0,00442
58	0,00748	0,00529	0,00361	0,00687	0,00440	0,00432	0,00425
59	0,00738	0,00520	0,00354	0,00675	0,00424	0,00425	0,00418
60	0,00729	0,00511		0,00666	0,00415	0,00416	0,00402
61	0,00719	0,00502		0,00655	0,00408	0,00401	0,00395
62	0,00710	0,00485		0,00645	0,00393	0,00394	0,00381
63	0,00700	0,00476		0,00634	0,00335	0,00386	0,00373
64	0,00691	0,00468		0,00625	0,00378	0,00371	0,00366
65	0,00682	0,00459		0,00614	0,00364	0,00364	0,00353
66	0,00672	0,00452		0,00605	0,00360	0,00357	0,00345
67	0,00664	0,00443		0,00595	0,00346	0,00350	0,00339
68	0,00654	0,00435	ļ ·	0,00595	•	0,00344	0,00326
69	0,00646	0,00420		0,00586	•	0,00330	0,00320
70	0,00636	0,00412		0,00576	•	0,00323	0,00313
71	0,00628	0,00404	1 -	0,00567	•	0,00317	0,00307
72	0,00619	0,00397		l ·	•	0,00311	0,00295
73	0,00610	0,00390		-		0,00305	0,00290
74 75	0,00602			· ·	•	0,00298	0,00283
75 76	0,00593	{ ·		l ·	•	0,00293	
76	0,00593			· ·	•	0,00286	٠ .
77 78	0,00585	•			•	0,00281	٠ .
78 70	0,00577			Ι .	•	0,00275	١.
79 80	0,00568	· 1	· ·	Ι .	•		'
80 81	0,00560	l '		Ι ΄	•	•	٠ .
82	0,00551	•	•	l .	•	•	٠,
83		l •		l '	•	•	l -
	<u> </u>	<u> </u>	l <u>-</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

GRÁFICO 1
Taxa de depreciação
Volkswagen 61

GRÁFICO 2

Taxa de depreciação
DKW-Vemag 61

GRÁFICO 3

Taxa de depreciação
Simoa 61

GRÁFICO 4

Taxa de depreciação Aero Willys 61

GRÁFICO 5
Taxa de depreciação
Dauphine 61

GRÁFICO 6

GRÁFICO 7

Taxa de depreciação Gordini 62

R.B.E. 2/72

Estas taxas, como já fizemos referência, dizem respeito aos modelos de um determinado ano, para cada veículo. Temos agora necessidade de testar a validade da generalização delas, por categoria, independentemente do ano ou trimestre de fabricação do veículo.

Isto foi feito por meio de análises de regressão simples entre as séries de preços, que mostram a evolução no mercado de segunda mão da cotação de cada modelo anual, ao nível de cada classe. Os coeficientes de correlação destas regressões oscilaram entre 0,70 e 0,80, o que pode ser considerado bastante razoável, de vez que sendo baixo o valor absoluto das taxas de depreciação, seriam de pequena monta as eventuais correções que se fariam sobre as mesmas, para se levar em conta as diferenças de depreciação em relação ao momento de fabricação.

Em outras palavras, podemos dizer que aceitamos a hipótese de que as amostras consideradas (evolução dos preços de cada modelo anual) provêm do mesmo universo.

3.1.4 Composição etária da frota e frota total

A tabela 9, por conseguinte, representa as taxas de depreciação de cada grupo, independentemente do ano do modelo ou do trimestre de fabricação. Assim, as taxas do 1.º grupo, representam a porcentagem de uma dada quantidade de veículos vendidos num determinado ponto de tempo, que foi sucateada ao fim do primeiro trimestre de uso, a que o foi ao fim do segundo, do terceiro e assim sucessivamente até o fim da vida útil esperada (no caso 81 trimestres).

Inversamente a fração $(1 - D_x)$ traduz a porcentagem de veículos que sobrevive de um período para outro.

Então, se multiplicarmos o número de unidades vendidas (tabela 10) a cada trimestre desde o primeiro trimestre de 58 até o último de 67, em cada grupo, pela respectiva série de valores $(1-D_x)$, podemos determinar o número de unidades sobreviventes a cada trimestre, ou em outras palavras, o número de unidades em cada grupo por faixas de idade.

Somando-se para cada trimestre a frota por categorias, chegamos à frota total de automóveis nacionais em termos trimestrais (tabela 11).

Na mesta tabela 11 encontramos a evolução da frota na suposição de ausência de sucateamento (gráfico 8).

TABELA 10
VENDAS TRIMESTRAIS DE VEÍCULOS NOVOS

	1.º trimestre	2.º trimestre	3.º trimestre	4.° trimestre
AERO (Aero Willys+Itamaraty+FNM-JK)				
1957	_			
8	-			<u> </u>
9	_	_	_	
1960	7	1 085	2 402	2 746
	2 374	1 956	1 845	2 170
$\frac{1}{2}$	2 739	3 496	2 786	683
3	4 632	3 441	3 352	3 576
ა 4	3 763	3 310	3 977	3 973
5	3 696	2 693	4 813	4 115
6	4 516	4 715	3 464	4 033
7	3 330	3 721	2 796	4 565
•	3 300	9 (21	2 190	4 505
VEMAG (Belcar+Vemaguet+Fissore)			<u> </u>	
1957	<u> </u>	_		_
8	37	1 005	1 879	910
9	1 112	1 229	1 149	807
1960	1 235	1 618	2 317	2 346
1	2 284	2 318	1 640	3 147
$\frac{\cdot}{2}$	3 163	3 533	3 815	4 251
3	3 851	3 164	2 838	3 726
4	2 879	2 240	4 156	3 372
5	2 395	3 279	4 433	4 859
6	4 348	4 056	3 009	3 253
7	3 350	3 112	3 086	2 052
DAUPHINE				
1957	<u>-</u>	_	_	
8				
9		-	18	510
1960	808	1 333	2 612	2 674
1	1 912	1 632	558	1 284
2	2 047	2 022	1 544	1 596
3	1 763	641	352	224
4	150	117	105	40
ā	26	5	16	l _"

	conclusão					
	1,º trimestre	2.º trimestre	3.º trimestre	4.º trimestre		
GORDINI (Gordini+Renault 1093)						
1962	_	381	1 626	2 554		
3	2 543	1 466	1 816	2 336		
4	1 939	2 233	3 367	2 554		
5	2 154	1 467	3 457	5 362		
6	4 462	2 386	1 550	1 379		
7	1 201	902	802	901		
KARMAN-GHIA (Karman-Ghia+ +Interlagos)						
1962	_		36	226		
3	582	525	428	467		
4	537	641	615	765		
5	589	345	597	605		
6	629	673	674	542		
7	600	729	832	840		
SIMCA (todes os modelos)						
1957		_		_		
8	_	_	_			
9	118	3 44	368	387		
1960	653	729	1 013	953		
1	1 273	1 693	1 513	1 627		
$\frac{1}{2}$	1 325	1 722	1 910	1 732		
3	1 676	2 126	2 179	2 214		
4	2 019	2 587	2 896	2 684		
5	1 599	1 414	2 290	1 861		
6	1 508	1 480	844	1 109		
7	978	866	878	1 167		
VOLKSWAGEN (sedan)						
1957	! —			_		
8		<u> </u>	_	1 —		
9	1 153	2 092	2 335	2 865		
1960	3 227	3 750	2 905	7 151		
1	6 816	7 668	8 077	8 453		
$_2$	7 569	9 738	10 729	10 361		
3	10 051	10 928	10 037	11 344		
4	11 897	13 045	8 655	14 839		
5	14 414	11 624	16 799	17 390		
6	17 758	19 026	21 620	19 228		
7	18 507	23 371	25 504	24 302		
	<u>L</u>					

Fonte: ANFAVEA. Associação Nacional dos Fabricantes de Veículos Automotores.

TABELA 11
FROTA BRASILEIRA DE AUTOMÓVEIS

t = trimestre		Frota Brasileira com depreciação	Frota Brasileira sem depreciação		
Ano	t	(em unidades)	(em unidades)		
	1	21 835	25 025		
	2	29 156	33 540		
60	3	38 772	44 789		
	4	52 451	60 659		
	5	64 439	75 318		
	6	76 561	90 585		
61	7	86 687	104 218		
	8	99 374	120 899		
	9	111 747	137 742		
	10	127 548	158 634		
62	11	144 254	181 080		
•-	12	159 353	202 483		
	13	177 408	227 581		
	14	192 099	249 872		
63	15	204 016	270 874		
_	16	220 199	294 761		
	17	234 248	317 945		
	18	248 726	342 118		
64	19	262 129	365 889		
-	20	279 414	394 026		
	21	293 001	418 898		
	22	300 050	439 725		
65	23	321 378	473 130		
	24	344 244	507 322		
	25	362 32 0	540 543		
66	26	381 446	572 879		
	27	394 693	604 040		
	28	411 909	633 584		
	29	4:4 236	661 550		
67	30	440 832	694 251		
	31	458 162	728 129		
	32	474 927	761 976		

GRÁFICO 8

Frota de automóveis nacionais (dados trimestrais: 1.º trimestre 1960 — 4.º trimestre 1967)

Levantados os preços dos veículos no mercado de segunda mão e determinadas as taxas de depreciação, facilmente se pode construir um índice geral de preços de automóveis.

A metodologia empregada consistiu inicialmente em se considerar como bens heterogêneos os veículos da mesma marca, mas de tempo de uso diferente. Desta forma, procuramos calcular em cada período o preço médio, para cada categoria. Este preço médio constitui-se numa média ponderada dos preços existentes em cada período, ao nível de cada grupo em que os pesos são as quantidades de veículos em circulação, por faixas de idade.

Em seguida, a partir destes preços médios, conseguimos o índice geral de preços de automóveis usados (preços do mercado de segunda mão), por encadeamento, a partir da fórmula de Laspeyres:

$$I_p = \sum \frac{F_0 M_1}{F_0 M_0} \cdot \sum \frac{F_1 M_2}{F_1 M_1}$$

em que:

 $I_p \rightarrow$ índice de preços de carros usados (tabela 12);

 $F \rightarrow$ quantidade de veículos por faixa de idade em cada grupo;

 $M \rightarrow$ preço médio de cada grupo.

A mesma fórmula de Laspeyres permitiu-nos encadear um índice de preços de carros novos:

$$I'_{p} = \sum \frac{F'_{0} P_{1}}{F'_{0} P_{0}} \cdot \sum \frac{F'_{1} P_{2}}{F'_{1} P_{1}}$$

em que:

 $I'_p \rightarrow$ índice de preços de carros novos (tabela 12);

 $F \rightarrow$ quantidade de automóveis vendidos a cada período, por categoria;

 $P \rightarrow$ preços de carros novos por categorias.

Observando-se estas duas séries, é interessante notar uma tendência ao declínio em ambos os índices.

O declínio do índice de preços de carros novos deve ser explicado pelo aumento da produção, o que tem permitido às empresas gozarem de uma maior dose de economias de escala.

TABELA 12 INDICES DE PREÇOS

t = trimestre		Índice de preços de carros usados	Índice de preços de carros noves		
Ano	t	(preços de 53)	(preços de 53)		
	1	100,00	100,00		
	2	97,29	10€,54		
60	3	95,27	96,29		
	4	93,62	89,93		
	5	89,48	93,23		
	6	87,62	94,40		
61	7	85,39	88,11		
	\mathbf{s}	82,03	78,74		
	9	77,84	76,32		
	10	72,67	79,06		
62	11	69,03	77,82		
-	12	67,90	84,20		
	13	68,63	92,51		
	14	68,90	91,67		
63	15	67,20	97,19		
•	16	65,63	95,94		
	17	64,80	92,50		
	18	63,65	94,78		
64	19	62,63	90,41		
	20	61,63	88,32		
	21	58,89	88,88		
	22	55,62	82,28		
65	23	53,51	78,33		
	24	52,12	80,59		
	25	51,57	81,52		
	26	51,45	75,75		
66	27	51, 19	73,06		
	28	48,73	70,28		
	29	45,15	71,96		
67	30	42,97	72,46		
	31	41,22	71,43		
	32	40,37	70,89		

O declínio mais acentuado do índice de preços de carros usados deve ser atribuído a dois fatores. Em primeiro lugar, à própria tendência à baixa dos preços de carros novos, cujo mercado exerce influência direta sobre o de segunda mão. Em segundo lugar, à estratificação do mercado de carros usados e ao fato de que o período de operação da indústria nacional é inferior ao necessário para que o primeiro lote de carros vendidos tenha desaparecido completamente. A conjugação destes dois elementos faz com que a cada período se tenha no mercado de segunda mão um produto diferente: o carro usado envelhecido mais um ano, de preço mais baixo que os demais.

3.3 A renda

Para a construção das séries de renda baseando-nos em dados de renda disponível do setor privado, que podem ser encontrados no número de outubro de 69 da revista Conjuntura Econômica.

A idéia era a de se usar a série de renda pessoal disponível. Contudo, esta série não tem sido mais elaborada, a partir de 1960, devido às dificuldades para se estimular os lucros retidos das empresas. A renda pessoal disponível foi, naquele ano, substituída pela renda disponível do setor privado, calculada retroativamente até 1947. Na verdade, acreditamos que o modelo beneficiou-se com esta mudança pois a RDSP inclui a renda das empresas, que no caso brasileiro constituem parcela apreciável da demanda de expansão e de reposição.

Estes dados, porém, constituem uma série anual, que precisa ser desmembrada em valores trimestrais para ser inserida no modelo. Deste modo, a nossa primeira preocupação foi a da construção de um índice a partir do qual a RDSP pudesse ser distribuída por trimestres.

Neste sentido procuramos inicialmente estudar o comportamento das séries mensais de valores da produção industrial e de valores da produção agrícola. O comportamento destas duas séries representaria adicionalmente o da renda do setor secundário e o da renda do setor primário, respectivamente. O comportamento da série de renda do setor terciário estaria naturalmente sendo inferido por resíduo, de vez que este setor continua sendo um ilustre desconhecido dentro da economia brasileira.

Os Inquéritos Econômicos do IBGE ¹⁷ fornecem os dados do valor da produção industrial, mensalmente, de 1955 a 1960, sofrendo uma interrupção de 60 a 64 e recomeçando a partir de 1965.

266 R.B.E. 2/72

¹⁷ Amostragem cobrindo 80 a 85% da produção.

Tomamos então estes dois períodos (55/60 e 65/67) e eliminamos a variação estacional destas séries, construindo-se em seguida os respectivos índices de sazonalidade.

Faltava-nos contudo preencher a lacuna de 60 a 64. Para tanto levantamos pela revista Desenvolvimento e Conjuntura 18 os consumos industriais mensais de energia elétrica da área Rio—São Paulo, correspondentes a três períodos: 56/60, 60/64 e 65/67. Utilizando-nos do mesmo procedimento, isto é, eliminando-se as variações estacionais e construindo-se índices sazonais, pudemos verificar:

- a) uma acentuada correlação no comportamento dos índices de produção da indústria e do consumo industrial de energia elétrica nos períodos de 55/59 e 65/67;
- b) uma acentuada correlação no comportamento dos índices de consumo industrial de energia elétrica nos períodos 56/60 e 60/64. 19

TABELA 13

ÍNDICES DE SAZONALIDADE DO CONSUMO INDUSTRIAL DE ENERGIA
ELÉTRICA E DA PRODUÇÃO DA INDÚSTRIA DE TRANSFORMAÇÃO

Meses	1	nsumo indust e energia elétr	Indústria de transformação		
	1956-1960	1960-1964	1964-1967	1955-1959	1965-1967
Janeiro	96,0	97,1	104,7	96,3	99,1
Fevereiro	98,0	96,0	106,4	90,7	89,6
Março	96,4	95,9	95,3	100,1	106,4
Abril	99,5	99,7	102,6	101,4	95,1
Maio	100,1	98,2	99,4	103,7	103,6
$Junh_0$	102,3	100,5	97,4	100,6	98,1
Julho	103,8	102,3	97,6	105,4	86,3
Agosto	104,2	104,9	98,8	104,1	90,4
Setembro	101,0	104,0	99,6	100,4	89,4
Outubro	100,6	100,2	99,6	102,6	95,7
Novembro	97,7	100,8	100,4	97,6	94,5
Dezembro	100,2	100,4	98,4	96,8	96,6

¹⁸ Desenvolvimento e Conjuntura, de 1955 a 1967.

¹⁹ Ver tabela 13 e gráficos 9 a 12.

GRÁFICO 9

Índice de sazonalidade Consumo industrial de energia elétrica e valor da produção da indústria de transformação

R.B.E. 2/72

GRÁFICO 10

Índice de sazonalidade Consumo industrial de energia elétrica e valor da produção da indústria de transformação

GRÁFICO 11 Índice de sazonalidade Consumo industrial de energia elétrica 1956-1960: 1960-1964: 1964-1967

270 R.B.E. 2/72

GRÁFICO 12 Índice de sazonalidade Consumo industrial de energia elétrica 1960-1964

Estas observações permitiram-nos introduzir a hipótese de que o índice sazonal do valor de produção da indústria tenha tido no período 60 a 64 o mesmo comportamento do período 55/60.

Aplicamos então estes índices sobre as médias mensais da renda do setor secundário, ²⁰ obtendo-se deste modo a distribuição mensal desta última

No setor agrícola a renda é gerada na lavoura e na pecuária. Infelizmente, inexistem dados mensais quanto à renda ou quanto à produção da pecuária e nada adiantaria tentar-se chegar a estes dados pelo lado do abate nos matadouros, uma vez que estes incluem a parcela referente aos intermediários (invernista, matadouro, etc.) que distorcem a série.

Assim sendo, o índice de sazonalidade da agricultura será calculado a partir da produção das lavouras. Selecionamos, então, as principais culturas, a saber: café, algodão, arroz, feijão, juta, milho, mandioca, sisal, abacaxi, cebola, batata, amendoim, soja, trigo, açúcar e cacau. Em seguida procuramos construir um calendário agrícola, como referência às respectivas colheitas. A produção anual de cada produto foi então alocada equitativamente, pelos meses de colheita. Somando-se mês a mês o valor das diversas culturas chegamos ao total mensal das lavouras nos anos de 60 a 67.

Com base nisto, eliminamos a variação estacional e construímos o índice sazonal para agricultura, ²¹ que foi aplicado sobre as médias mensais da renda do setor primário, ²² gerando então a distribuição mensal desta.

TABELA 14
INDICE DE SAZONALIDADE DA PRODUÇÃO AGRICOLA

3.5	Produção agrícola		
Meses	1960-1967		
Janeiro	85,5		
Fevereiro	94,1		
Março	140.7		
Abril	171,2		
Maio	211,0		
Junho	111.6		
Julho	89,0		
Agosto	65,4		
Setembro	61,6		
Outubro	58,3		
Novembro	55,4		
Dezembro	55,9		

Renda anual do setor (= valor adicionado do setor) dividida por 12.

²¹ Tabela 14.

[≃] Ver nota 20.

Somamos então mês a mês as rendas do setor primário e a do setor secundário, chegando-se à série mensal, no período 60 a 67, da renda gerada nos setores agrícola e industrial. Esta série foi, em seguida, deflacionada pelo índice geral de preços. ²³

A etapa seguinte foi a de calcular a média mensal desta série, ano a ano, e de construir um índice de desvio dos valores mensais em relação a estas médias.

Este índice foi aplicado à média mensal deflacionada da renda disponível do setor privado, ²⁴ o que nos permitiu então obter a estimativa de distribuição mensal da RDSP.

Agregando-se estes valores mensais temos:

- a) série de RDSP trimestral, no período 60/67 (tabela 15);
- b) série de RDSP anual com base móvel trimestral, 25 no período 60/67 (tabela 15).

3.4 População

A distribuição trimestral da população brasileira no período 60/67, foi conseguida a partir das estimativas do IBGE para a década de 60. Os dados anuais do IBGE foram distribuídos, trimestralmente, pela decomposição da taxa de crescimento anual de 2,98%, numa taxa geométrica trimestral (tabela 15).

3.5 A vida útil média esperada

No item 3.1.3., em que damos a metodologia de cálculo da taxa de depreciação de mercado, determinamos como subproduto a vida útil média esperada, para cada grupo de veículos. Esta vida útil média esperada sendo definida como o período de tempo durante o qual de 50 a 60% de dado estoque inicial seriam sucateados.

Para utilização, nas equações estimativas da frota potencial, estes valores de vidas úteis médias esperadas precisariam constituir uma série temporal e ser, além disso, uma série geral, não discriminada por categorias.

- Coluna 2 da revista Conjuntura Econômica, desde 1950.
- ** RDSP anual deflacionada pelo índice de custo de vida da Guanabara e dividida por 12.
- = RDSP anual com base móvel no trimestre foi obtida agregando-se a RDSP dos trimestres t-3, t-2, t-1 e t.

TABELA 15
DEMANDA DE AUTOMÓVEIS NO BRASIL

t = tı	rimestre	Demanda total venda veículos novos	Demanda de expansão	Demanda de reposição (=aucatea- mento teórico)	RDSP acumulada em t 1. t-2, t-3, t-4	RDSP — trimestral	Custo de vida — GB	Vida média esperada para velcu-	População estimada
Ano		(em unidades)	(em unidades)	(em unidades)	(em 1 000 de 1953)	(em 1 000 de 1953)	(preços de 53)	los novos	(1 000 ha- bitantes)
60	1	5 930	5 041	889	489 120,3	138 952,0	406,6	26,14	69 383
	2	8 515	7 321	1 194	499 557,2	174 239,2	423,4	24,83	69 907
	3	11 249	9 616	1 633	507 858,3	110 817,1	438,7	22,60	70 435
	4	15 870	13 679	2 101	512 358,3	88 350,0	481,0	25,04	70 967
61	5	14 659	11 988	2 671	540 072,1	166 665,8	511,6	25,00	71 499
	6	15 267	12 122	3 145	566 117,6	200 284,7	549,4	25,32	72 035
	7	13 633	10 126	3 507	581 947,5	126 647,0	590,5	26,25	72 575
	8	15 681	12 687	2 994	589 297,3	95 699,8	679,9	25,39	73 088
62	9	16 843	12 373	4 470	603 396,8	180 765,3	762,1	24,84	73 636
	10	20 892	15 801	5 091	629 248,1	226 136,0	824,9	24,94	74 188
	11	22 446	16 706	5 740	636 955,0	134 353,9	921,1	25,06	74 744
	12	21 403	15 099	6 304	647 121,9	105 866,7	1 026,2	25,30	75 271
63	13	25 098	18 055	7 043	665 982,2	199 625,6	1 190,4	24,06	75 836
	14	22 291	14 691	7 600	669 683,1	229 836,9	1 378,3	24,97	76 405
	15	21 002	11 917	9 085	676 740,7	141 411,5	1 593,7	24,75	76 978
	16	23 887	16 183	7 704	679 598,9	108 724,9	1 874,6	24,75	77 521
64	17	23 184	14 049	9 135	688 115,3	208 142,0	2 305,3	25,22	78 102
	18	24 173	14 478	9 695	693 413,6	235 135,2	2 702,0	25,45	78 688
	19	23 771	13 503	10 268	692 623,5	140 621,4	3 075,1	23,17	79 278
	20	28 173	17 185	10 952	692 648,9	108 750,3	3 475,3	25,37	79 837
65	21	24 872	13 587	11 285	677 244,9	192 738,0	4 124,5	26,17	80 436
	22	20 827	7 049	13 778	665 415,8	223 306,1	4 696,5	25,95	81 039
	23	33 405	21 328	12 077	655 830,0	131 035,6	5 019,2	25,21	81 647
	24	34 192	22 866	11 326	665 900,3	118 820,6	5 306,3	25,39	82 222
66	25 26 27 28	33 220 32 336 31 161 29 544	18 076 19 126 13 247 17 216	15 145 13 210 17 914 12 328	667 900,6 664 572,0 666 075,2 669 377,5	194 738,3 219 977,5 132 538,8 122 122,9	5 890,0 6 552,4 7 109,0 7 503,8	25,74 26,43 27,86 27,24	82 839 83 460 84 086 84 679
67	29	27 966	12 327	15 639	676 239,7	201 600,5	8 085,5	27,42	85 314
	30	32 701	16 596	16 105	698 684,5	242 422,3	8 699,5	28,13	85 954
	31	33 898	17 330	16 568	709 267,1	143 121,4	9 109,8	28,64	86 599
	32	33 827	16 765	17 062	718 174,7	131 030,5	9 402,6	28,10	87 209

Com tal objetivo construímos uma série de vida útil média geral esperada, ponderando a vida útil média esperada de cada categoria, pelo número de unidades novas vendidas a cada período, em cada categoria (tabela 15).

3.6 A frota desejada (ou potencial)

A conceituação de volume desejado de serviços de transportes, provido pelo estoque de automóveis, apresentado no item 3.1, permite-nos, para

efeito do modelo, interpretar a frota desejada (ou potencial) como aquela que seria explicada integralmente pela RDSP trimestral, RDSP anual com base móvel trimestral, pelo preço dos carros, pela vida útil média esperada destes e pela população. A frota efetiva, então, ajustar-se-ia em função da frota potencial, correndo as diferenças entre ambas por conta da atuação de certas variáveis aleatórias.

Analiticamente teríamos:

$$S_t^* = f_1 (Ya_t/\rho_t, Y_t/\rho_t, P_t/d_t)$$
 (30)

$$S_t = f_1 (Ya_t/\rho_t, Y_t/\rho_t, P_t/d_t) + \eta_t$$
 (31)

em que os valores entre parênteses são os já definidos na equação 6; $S_t \rightarrow$ são os valores da frota efetiva (valores observados); $S_t^* \rightarrow$ frota potencial (valores estimados); $e \eta_t \rightarrow$ variáveis aleatórias.

Procedendo-se ao ajustamento da equação 31 por meio de uma exponencial do tipo da equação 10, sem e com depreciação, podemos calcular os valores estimados S_{\bullet}^{*} .

Esta série, para ser considerada como representativa da frota potencial, sofreu pequenas correções. Isto porque, como série de valores ajustados, estes podem ser maiores ou menores que os observados, e não seria justificável uma frota potencial menor que a observada, pois isto implicaria no desejo de alguns indivíduos de sucatearem seus veículos, sem reposição. Ora, como as condições exigidas para se comprar um carro novo diferem das necessárias para mantê-lo, pode não haver incentivo à expansão da frota, mas isto não implica que quem já tem um carro deixe de ter condições para operá-lo.

Além disto, como a frota efetiva cresce trimestre a trimestre, é de se esperar que o mesmo ocorra com a desejada. Daí, termos corrigido a frota desejada em função dos picos prévios, já atingidos em períodos anteriores.

Chegamos desta maneira aos dados de frota desejada sem e com depreciação, da tabela 16.

3.7 Demanda total, de expansão e de reposição

A conceituação destas séries depende da existência ou não de sucateamento, período a período.

Dentro da primeira hipótese, a demanda total é igual a de expansão, sendo nula a de reposição. A série de demanda total (e de expansão) corresponde à série de vendas trimestrais de veículos novos.

TABELA 16

	Frota desejada sem reposição corrigida	Fração adquirida sem reposição corrigida (observada) Equações	Frota desejada com reposição corrigida	Fração adquirida com reposição corrigida (observada) Equações	Frota desejada sem reposição não corrigida	Fração adquirida sem reposição não corrigida (observada)	Frota desejada com reposição não corrigida	eom reposição
	Equação 35	36 e 37	Equação 38	39 e 40	Equação 43	Equação 44	Equação 45	Equação 46
1	39 735,42	0,287300	34 544,33	0,334078	28 282,54	0.645439	26 370,42	0.619228
2	39 735,42	0,578841	34 544,33	0,669980	32 532,64	1,134175	29 732.59	1,078175
3	63 576,51	0,374511	52 575,15	0.480333	38 561,10	2,240343	34 544,33	2,087660
4	63 576,51	0,844711	64 215,49	0,623735	45 706,67	17,293907	40 134,78	11,645366
5	77 652,45	0,862627	86 681.78	0,428240	61 697,50	14,115549	52 575,15	118,076278
6	106 937,51	0,482834	148 746,65	0,181086	83 283,01	1,916760	68 871,62	3,444242
7	196 810,90	0,128339	148 748,65	0,188860	111 301,60	0.658071	89 321,68	1,068361
8	284 930,18	0,086773	206 901,84	0,130441	144 350,43	0,390731	111 301,60	0,637061
9	331 041,56	0,080150	235 625,50	0,123617	176 310,15	0,303964	134 591,50	0,478256
10	384 615,25	0,084626	273 757,68	0.128954	221 903,84	0,248236	166 042,43	0,384784
11	442 413,43	0,079096	311 763,37	0,121846	247 706,09	0,251998	183 505,31	0.401127
12	442 413,43	0,091899	311 763,37	0,127771	242 801,53	0,346767	181 679,37	0,571885
13 14	441 413,43	0,104605 0.103760	311 763,37 311 763,37	0,164674 0,165910	255 250,03 268 337,31	0,475638	190 994,50	0,793200
15	442 413,43 442 413,43	0,103760	311 763,37	0,165910	263 023,75	0,546934 1,596904	200 786,84 198 788,93	0,953467 3,139351
16	442 413,43	0,109077	311 763,57	0,221694	276 509,06	4,239045	206 901.34	8,277387
17	442 413,42	0,139230	321 257.56	0.229411	318 060.93	0,995026	235 625 50	1.502871
18	479 260.68	0.149849	321 257.56	0.277820	321 257,56	7,297513	237 993.62	6.453719
19	479 260,68	0,173330	321 257,56	0,327733	344 551.93	9,766725	250 195,62	16,175209
20	479 260,68	0,248501	321 257,56	0.477277	369 534,62	7.728024	263 023,75	35,451644
21	479 260,68	0.291806	334 368.62	0.452592	474 491.87	0.309100	327 747,56	0.514592
22	503 832,50	0,245212	334 368,62	0.503462	474 491.87	0.374627	324 456,31	0,661484
23	503 832,50	0,521078	408 398.31	0.308311	465 096,06	1,316660	314 896.68	2,250004
24	621 566.62	0,230347	408 398.31	0.392920	493 855,75	1,649740	334 368.62	2,632067
25	621 566.62	0.290779	408 398,31	0.517814	508 896,25	21,102909	344 551,93	107,900711
26	621 566,62	0,399094	493 855,75	0,245834	545 795,25	6,156748	365 857,62	9,140762
27	621 566,62	0,640020	493 855,75	0,277209	573 778,37	34 652183	384 615,25	9,832490
23	774 520,62	0,173298	493 855,75	0,297934	634 123,37	0,982073	412 502,87	1,658859
29	774 520,62	0,198429	498 819,18	0,321780	653 435,75	1,408752	425 065,75	2,125614
30	774 520,62	0,289465	498 819,18	0,438450	666 636,25	6,429452	425 065,75	39,413620
31	798 107,25	0,326394	503 832,50	0,533059	700 814,87	5,164472	442 413,43	21,435764
32	798 107,25	0,483394	503 832,50	0,740675	729 416,37	26,278476	460 468,18	14,668317

Na segunda hipótese, em que se admite o sucateamento, a série de demanda total é a série de vendas trimestrais de veículos novos, a demanda de reposição é igual ao número de veículos sucateados a cada período e a demanda de expansão é a diferença entre estas duas.

Todos estes dados fazem parte da tabela 15 (gráfico 13).

4. Análise dos resultados

Uma vez construídas as séries básicas, referentes às variáveis dependentes e independentes, passamos à estimação dos parâmetros das diferentes funções de demanda e de comportamento da frota.

Com o objetivo de apresentar os resultados obtidos e de analisá-los, esta parte do trabalho será subdividida em três itens. Na primeira delas examinaremos os ajustamentos das equações 8 a 19, já propostas. Na segunda forneceremos um conjunto de regressões que segue o mesmo racio-

GRÁFICO 13
Comportamento da frota de automó

cínio anterior, porém dispondo de forma diversa das variáveis independentes. E, finalmente, na terceira, abandonando a idéia dos ajustamentos de estoques, analisaremos funções diretas de demanda contra preço e renda.

4.1 As equações 8 a 19

4.1.1 1.ª estratégia

4.1.1.1 Função de demanda linear. Equação 8

$$q_t = -7166,92 - 863,50 (P_t/d_t) + 3097,1 Ya_t/\rho_t) - 1048,8 (Y_t/\rho_t) + 0,0465 S_{t-1}$$

$$(1709,4) \qquad (1175,0) \qquad (934,77) \qquad (0,0064)$$

$$R^{2} = 0,8739 \qquad D.W. = 1,256 \qquad (32)$$

Ao nível de significância de 1%, os parâmetros P_t/d_t e Ya_tP_t mostraram-se não significativos, o que se depreende facilmente do alto valor dos erros-padrão, em relação ao do próprio coeficiente. A regressão step-wise evidenciou forte correlação entre a demanda total e a frota efetiva do ano anterior, o que corresponde às expectativas. E, Ya_t/P_t e S_{t-1} , apenas, explicam 86% das aquisições totais de carros novos.

O valor de D.W. não nos dá suficientes evidências para rejeitarmos a hipótese de resíduos independentes a 5%.

O exame da matriz de variância-covariância fornece indícios de multicolinearidade entre S_{t-1} e as demais variáveis independentes. Este fato leva-nos ao ajustamento exposto no item 4.1.2.2 deste capítulo.

O parâmetro k, da equação 8, não poderá ser estimado por desconhecimento do estimador de máxima verossimilhança de b dentro da amostra.

4.1.1.2 Comportamento da frota. Equação 8
$$\frac{-a}{u}$$

$$1n S_{t} = 1,4912 + 0,04009 \ \ln (P_{t}/d_{t}) - 0,294 \ \ln Y a_{t}/\rho_{t}) - 0,01811 \ \ln + (Y_{t}/\rho_{t}) + (0,04118) \qquad (0,09545) \qquad (0,01323) + 0,93279 \ \ln S_{t-1} \qquad (33)$$

$$(0,0087)$$

$$R^2 = 0.99940$$
 $D.W. = 1.41907$

Este ajustamento, se olhado através do seu coeficiente de correlação (R^2) levar-nos-ia a crer num resultado excelente. Contudo, alguns reparos devem ser feitos a esta estimação.

De enício, os sinais dos coeficientes obtidos, à exceção do termo em S_{t-1} , não condizem com as formulações da teoria econômica. Este problema de sinais, todavia, deixaremos para mais adiante, quando faremos uma análise global de todas as regressões.

Como seria lícito esperar, num processo auto-regressivo em que as variações da variável dependente são aditivas, o termo defasado, isoladamente, explica mais de 0,99% da variância. Tal fato contribuiu para eliminar os sintomas de multicolinearidade da regressão anterior, entre S_{t-1} e as demais variáveis independentes, pois que os efeitos de Ya_t/p_t . Y_t/p_t o P_t/d_t sobre S_t via S_{t-1} , tornaram-se de pequena monta dada a alta correlação entre S_t e S_{t-1} .

Menos mal para o coeficiente do teste D-W, de vez que se por um lado a um nível de 5% não podemos não rejeitar a hipótese de resíduos independentes não há também indivíduos suficientes para sua rejeição a 5%.

O coeficiente de S_{t-1} permite-nos estimar em 0,673 (ou 6,73%) o parâmetro de aceleração da demanda de expansão (equação 4). Este valor é sem dúvida alguma extremamente baixo para um mercado, em formação, de bem durável, como era o nosso mercado de automóveis no período analisado.

Os parâmetros de Y_t/P_t e P_t/d_t não se mostraram significativos a 5% de significância, pelo teste t de Student.

Na forma exponencial esta equação seria:

$$q_t = 4,4424 (P_t/d_t)^{0,04009} \cdot (Y_t/\rho_t)^{-0,294} \cdot (Y_t/\rho_t)^{-0,01811} \cdot (S_{t-1})^{0,93279}$$

4.1.2 2.ª estratégia

Para estimação das equações 9 a 19, o primeiro passo foi o de se estimar a equação 10 em duas passagens (a e b), inicialmente utilizando-se como variável dependente a frota observada sem depreciação e, em seguida, como dependente a frota observada com depreciação (sucateamento teórico).

A seguir calculamos duas séries c_t ($c_t^1 \in c_t^2$) pela fórmula:

$$c_t = \frac{q_t}{(S_t^* - S_{t-1})} \tag{34}$$

em que S_t^* seriam os valores de frota estimados sem e com depreciação, para c_t^1 e c_t^2 respectivamente (tabela 16). Estes valores S_t^* , constantes da tabela 16, sendo estimados podem cair acima e abaixo dos observados. Como, contudo, S_t^* dentro de nosso modelo é interpretado como frota desejada, estes valores foram corrigidos pelo método dos picos prévios. A correção deve-se à assimetria da influência de S_t^* sobre S_t . Na verdade quando o estoque de veículos desejado expande-se, devemos esperar um crescimento do estoque efetivo. Contudo, uma retração da frota desejada, não necessariamente induzirá à contração da frota, dado que as condições para manutenção de um veículo diferem das e são inferiores às condições de aquisição.

4.1.2.1 Passagem (a): ajustamento sem depreciação

a) Equação 10:

$$\ln S_t = -0.2208 - 4.0093 \ln (P_t/d_t) + 8.3064 \ln (Y_{d_t/\rho_t}) - 0.0404 \ln (Y_{t/\rho_t})$$

$$(0.5776) \qquad (1.3817) \qquad (0.3096) \qquad (35)$$

$$R^2 = 0.7592 \qquad D.W. = 0.2738$$

$$F_{(3.28)} = 29.43$$

Bastante razoável o resultado deste ajustamento, em que a matriz de variância-covariância não fornece maiores indícios de multicolinearidade, mas em que o teste D.W. rejeita a independência dos resíduos a 5%. Apenas o coefiente de Y_t/ρ_t não é significativo a 5%.

b) Equação 12:

$$\ln c_t^3 = 108,6135 - 0,04824 \ln Y_t - 9,005 \ln Ya_t + 2,6461 \ln P_t - (0,2979)$$
 (1,3722) (1,0514)
$$- 0,8288 \ln (P_t/\pi_t)$$
 (36)
$$(0,1357)$$

Apenas o coeficiente de Y_t não é significativo a 5%. Os demais são significativos a 1%, para o teste de Student. Não há sintomas de multi-

 $R^2 = 0.6327$

D.W. = 1.255

colinearidade, a despeito da metodologia utilizada para construção das séries temporais.

O valor de D.W. permite-nos não rejeitar a hipótese de independência dos resíduos.

c) Equação 13:

$$1n c_t = 112,1202 + 0,212 t - 1,153 1n Y_t - 10,054 1n Ya_t + 3,7786 P_t + (0,14963) (0,29364) (1,5376) (1,3057) . + 0,50545 1n (p_t/\pi_t) (37) (0,95127)$$

$$R^2 = 0.65901 \qquad D.W. = 1,34846$$

D.W. = 1,34846

A introdução dos gostos e hábitos dos consumidores representado pelo fator de time-trend, ainda que significando um pequeno aumendo da correlação (R2 aumentou de 2,7%), na verdade piorou a estrutura da equação. Em primeiro lugar, seu coeficiente bem como o de Yt, não são significativos a 5%. Em segundo lugar, aumentando o valor da constante, e sendo a ela adicionado, alterou o sinal de P_t/π_t . Finalmente, tornou indeciso o teste de D.W. a 5%. Desta forma concluímos ser de melhor qualidade a regressão 36.

4.1.2.2 Passagem (b): ajustamento com depreciação

a) Equação 10

$$1n S_{t} = 0.0444 - 3.4927 \ 1n (P_{t}/d_{t}) + 7.744 \ 1n (Ya_{t}/\rho_{t}) - 0.042 \ 1n (Y_{t}/\rho_{t})$$
(38)

$$(0.5005) \qquad (1.1972) \qquad (0.2682)$$

$$R^{2} = 0.7720 \qquad D.W. = 0.2833$$

$$F_{(3.28)} = 31.613$$

Ajustamento de qualidade ligeiramente superior ao da equação 35. Mais uma vez o coeficiente de Y_t/p_t não foi significativo a 5%. Não há também indícios de multicolinearidade. A hipótese de resíduos independentes é rejeitada, a 5%.

b) Equação 18

$$1n c_t = 60,0816 - 0,1803 \ 1n \ Y_t - 5,1798 \ 1n \ Ya_t + 2,8807 \ 1n \ P_t - (0,2131)$$
 (1,8452) (0,7652)

$$-0.7781 \ 1n \ (p_t/\pi_t) -0.2083 \ 1n \ X_t^*$$

$$(0.1437) \qquad (0.3929)$$
(39)

$$R^2 = 0.68785$$
 $D.W. = 1.151$

A possibilidade de sucateamento de algumas unidades, por período, com base nas taxas de depreciação calculadas, contribui efetivamente para a melhoria da regressão, em relação a equação 36. Os coeficientes de Y_t e X^* não são significativos a 5%, e os demais o são a 1%. Quanto a autocorrelação dos resíduos o teste D.W. mostra-se indeterminado a 5%.

c) Equação 19

$$\ln c_t = 154,7379 + 0,2199 t - 0,07211 \ln Y_t - 14,033 \ln Ya_t + 4,2344 \ln P_t + (0,1426) \quad (0,2815) \quad (2,5467) \quad (1,2666)$$

+
$$(0.8233 \ 1n \ (p_t/\pi_t) + 0.9879 \ 1n \ X_t^*$$
 (40)
(0.9214) (0.5173)

$$R^2 = 0.70242$$
 $D.W. = 1.5124$

Esta equação 40 confirma a escassa correlação entre o fator de timetrend e c_t . Os coeficientes de Ya_t e P_t são significativos a 1% e o de X_t^* a 5%; os demais não são significativos a estes níveis. O teste de D.W. é indeterminado a 5%.

4.2 As regressões alternativas

Observando-se as equações de 8 a 19 verifica-se a possibilidade de intercambiar as variáveis independentes entre as equações explicativas da frota desejada e as explicativas das frações adquiridas.

Neste sentido, podemos estimar o modelo:

$$S_t = f_1 (P_t, Ya_t, Y_t)$$

$$\tag{41}$$

$$c_t = f_2 (P_t/d_t, p_t/\pi_t, Ya_t/\rho_t, Y_t/\rho_t, DUM)$$
 (42)

Para cálculo da frota desejada pela equação 41, empregamos o mesmo procedimento indicado no item 4.1.2., distinguindo a existência e a não-existência de depreciação do estoque total de veículos em circulação.

Estes valores estimados de frota desejada sem e com depreciação, não corrigidos pelo pico prévio, como no caso anterior, foram utilizados na fórmula 34 para obtenção das frações c_t^3 e c_t^4 (sem e com depreciação) não corrigidas. Todos estes dados de frota desejada e frações adquiridas, não corrigidos, encontram-se na tabela 16.

O exame das séries de frações adquiridas revela a ocorrência de alguns valores estranhos ao comportamento geral das séries. Este fato levounos à inclusão de uma variável dummy (DUM) na equação 42. Esta nova variável independente desdobra-se em DUM1 e DUM2, para os casos sem e com depreciação, respectivamente. Estas séries seriam compostas por elementos iguais a zero, para a generalidade dos trimestres, e assumindo valor 1 nos seguintes casos:

TRIM. 4 E 5 – (DUM1 e DUM2): fase inicial da indústria automobilística brasileira, aliada à instabilidade política gerada pela mudança do Governo federal.

TRIM. 19 E 20 — (DUM2): final do ano, política e economicamente instável, de 1964. Nestes trimestres a política econômica do Governo incluiu substanciais reduções nas alíquotas do imposto de consumo, sobre bens duráveis, de forma a estimular a aquisição de unidades novas. O estímulo atingindo também a demanda de reposição, como seria de se esperar, afeta muito mais c_i^4 do que c_i^3 (ver tabela 16).

Feitas estas considerações passemos aos resultados.

4.2.1 Alternativa sem depreciação

4.2.1.1 Equação 41

$$1n S_{t} = -22,0965 - 2,2904 \ 1n P_{t} + 6,9001 \ 1n \ Ya_{t} + 0,0201 \ 1n \ Y_{t}$$
(43)

$$(0,4630) \qquad (0,4887) \qquad (0,1610)$$

$$R^{2} = 0,9354 \qquad D.W. = 0,1995$$

$$F_{(3,28)} = 135,36$$

Esta equação mostra-se bem superior à equação 35. O teste D.W. rejeita a hipótese de resíduos independentes a 5%, o que realmente seria de se esperar de acordo com a equação 33. Apesar da influência da autocor relação de resíduos sobre os erros-padrão dos coeficientes, o teste de Student, com os dados anteriores, confirma resultados anteriores: coeficientes de Y_t não significativo a 5% e os demais significativos a 1%. Não há também aqui evidências de multicolinearidade.

4.2.1.2 Equação 42

$$1n c_{t} = 5,44415 + 4,8915 \ 1n (P_{t}/d_{t}) - 0,82216 \ 1n (p_{t}/\pi_{t}) - 4,6177 \ 1n (Ya_{t}/\rho_{t}) - (1,6531) (0,2015) (3,078)$$

$$- 0,55938 \ 1n (Y_{t}/\rho_{t}) + 2,6477 \ DUM \ 1 (44)$$

$$(0,58441) (0,4858)$$

$$R^{2} = 0,69215 D.W. = 1,24807$$

Os coeficientes de P_t/d_t , p_t/π_t e DUM1 são significativos a 1%, enquanto que o de Ya_t o é a 10%. O teste D.W. é indeterminado a 5%, ou seja, não rejeita a hipótese de resíduos independentes, e não há sintomas de multicolinearidade.

Comparando-se com a equação 36, esta equação 44 mostra-se superior.

4.2.2 Alternativa com depreciação

4.2.2.1 Equação 41

$$1n S_t = -19,9658 - 1,9087 \ 1n P_t + 6,2811 \ 1n \ Ya_t$$
 (45)
(0,3757) (0,3829)

$$R^2 = 0,9435$$
 $D.W. = 0,2334$ $F_{(2,29)} = 242,51$

Estes resultados são superiores aos da equação 38.

Mais uma vez confirma-se o fato de que a hipótese da depreciação melhora o ajustamento.

Os coeficientes das variávais independentes são significativos a 1%. A variável Y_t foi excluída por não atender os limites de inclusão e exclusão (1% e 0,05%) impostos. O teste de D.W. rejeita a independência dos resíduos a 5%.

4.2.2.2 Equação 42

$$1n c_{t} = 5,49818 + 4,4410 \ 1n \ (P_{t}/d_{t}) + 0,3558 \ 1n \ (p_{t}/\pi_{t}) - 13,934 \ 1n \ (Ya_{t}/\rho_{t}) - (1,5917) \qquad (0,5266) \qquad (5,2801)$$

$$- 3,3620 \ 1n \ (Y_{t}/\rho_{t}) + 2,0957 \ 1n \ X_{t}^{*} + 2,742 \ DUM \ 2 \quad (46)$$

$$(0.5538) \qquad (1,0349) \qquad (0,3759)$$

$$R^{2} = 0,78271 \qquad D.W. = 1,511$$

Os coeficientes de P_t/d_t , p_t/π_t e Ya_t são significativos a 1%, e o de X_t^* a 5%. A hipótese de independência dos resíduos não pode ser rejeitada a 5%.

A regressão mostra-se superior a da equação 39.

4.3 A demanda total sobre renda e preço

Neste último item deste capítulo, abandonaremos, como já mencionamos, o esquema dos ajustamentos de estoques e analisaremos funções de demanda diretas sobre preço e renda.

4.3.1
$$q_t = f_1 (P_t/d_t, p_t/\pi_t, Ya_t/\rho_t, Y_t/\rho_t)$$

$$1n \ q_t = 5,69294 - 0,34505 \ 1n (P_t/d_t) - 0,20175 \ 1n (p_t/\pi_t) + (0,30142) (0,03662)$$

$$+ 2,3927 \ 1n (Ya_t/\rho_t) - 0,12482 \ 1n (Y_t/\rho_t) (47)$$

$$(0,53587) (0,10557)$$

$$R^2 = 0,862 D.W. = 0,94550$$

Os coeficientes de p_t/π_t e Ya_t são significativos a 1% e os dois outros não o são a 5%. O teste D.W. rejeita a hipótese de resíduos independentes a 5%.

4.3.2
$$q_{t} = f_{2} (P_{t} | d_{t}, p_{t} | \pi_{t}, Ya_{t} | \rho_{t}, Y_{t} | \rho_{t}, X_{t}^{*})$$

$$1n \ q_{t} = 5,24074 - 0,13419 \ 1n \ (P_{t} | d_{t}) + 0,096898 \ 1n \ (p_{t} | \pi_{t}) - (0,2494) \qquad (0,0817)$$

$$- 0,351 \ 1n \ (Ya_{t} | \rho_{t}) - 0,15445 \ 1n \ (Y_{t} | \rho_{t}) + 0,63673 \ 1n \ X_{t}^{*} \qquad (48)$$

$$(0,8229) \qquad (0,0856) \qquad (0,1624)$$

$$R^{2} = 0,91327 \qquad D.W. = 1,996$$

O coeficiente de X_t^* é significativo a 1%, o de Y_t/ρ_t a 5%, e os demais não o são a este último nível. O teste de D.W. não rejeita a hipótese de independência entre os resíduos a 5%.

4.3.3
$$q_{t} = f_{3} (P_{t}, p_{t}, Ya_{t}, Y_{t})$$

$$1n \ q_{t} = 0,26605 - 0,48820 \ 1n \ P_{t} - 0,49847 \ 1n \ p_{t} + 2,242 \ 1n \ Ya_{t} - (0,4232) (0,2994) (0,5365)$$

$$- 0,10594 \ 1n \ Y_{t} (49) (0,10182)$$

$$R^{2} = 0,87401 D.W. = 0,97302$$

Qualitativamente, um resultado similar ao da equação 47. A introdução da vida média, do custo de vida na GB e dos níveis populacionais pouco afetam a qualidade da regressão 47 em relação a 49.

D.W. = 0.97302

4.3.4
$$q_{t} = f_{4} (P_{t}, p_{t}, Ya_{t}, Y_{t}, X_{t}^{*})$$

$$1n \ q_{t} = 5,47368 - 0,44274 \ 1n \ P_{t} + 0,2286 \ 1n \ p_{t} + 0,28882 \ 1n \ Ya_{t} - (0,3584) (0,3296) (0,7294)$$

$$- 0,13567 \ 1n \ Y_{t} + 0,49075 \ 1n \ X_{t}^{*} (50) (0,08661) (0,14345)$$

 $R^2 = 0.91311$ D.W. = 1,73897 Como a vida média, o custo de vida na GB e o nível populacional não afetam q_t , como vimos pela equação 49, a equação é quase idêntica à 48.

Conclusões

5.1 Considerações gerais

Analisando-se globalmente as regressões a que chegamos, em termos de coeficientes de correlação os resultados foram bastante satisfatórios. Principalmente os relativos a ajustamento de estoques, em que a despeito de seu caráter altamente explosivo, os R^2 mantiveram-se em torno dos 70%.

No que se refere ao ajustamento de estoques, o item 4.2 do capítulo anterior é o que nos fornece as melhores performances. As variáveis renda total anual com base no trimestre e índice de preços de carros novos explicam melhor o estoque observado, em termos de estoque desejado, do que a renda per capita anual com base trimestral e o preço ponderado pela vida média. As rendas per capita e os índices de preços ponderados pela vida média e pelo custo de vida na GB são mais influentes na determinação das unidades novas adquiridas. Além disso, o método de correção dos níveis de frota desejada, pela aplicação de dummys às equações de fração adquirida, mostra-se superior ao dos picos prévios, além de, estatisticamente, ser mais perfeito.

Para efeitos de comparação, o fato de que a frota de automóveis deprecia-se com o uso não foi considerado em algumas estimações. As equações 45 e 46 mostram-nos que os consumidores ao decidirem adquirir unidades novas levam em conta o fato de que parte delas terá a finalidade de substituir unidades gastas, de forma a manter o volume de serviços prestados pela frota preexistente.

Comparando-se as equações que explicam a demanda total diretamente contra renda e preços (equações 32, 47, 48, 49 e 50), observamos que todas mostram altos coeficientes de correlação. As duas primeiras são bastante parecidas quanto às variáveis independentes utilizadas. Contudo, notamos que a forma linear (equação 32) ajusta-se melhor aos dados do que a forma exponencial (equação 47), além de ser derivada do esquema de ajustamento de estoques, que é o que nos parece mais apropriado para explicar a demanda de um bem durável.

Vista em confronto com a equação 48, a equação 32 ainda nos parece melhor. A variável X_{l}^{*} quando é introduzida na primeira, apesar da boa correlação com q_{l} (é um dos seus componentes), perturba bastante o re-

sultado dos testes estatísticos, além de interferir com o sinal dos demais coeficientes. O termo em S_{t-1} , usado na equação 32, parece-nos mais adequado à explicação de q_t , mormente no plano teórico.

Para as equações 49 e 50, por diferirem pouco das 47 e 48, vale a mesma comparação, com referência a 32.

Os resultados de 32 a 50 confirmam que a frota trimestral de veículos e o número de unidades novas adquiridas trimestralmente, no período 1960-67, são explicados basicamente pelo índice de preço dos carros novos. pelo índice de preço dos carros usados (representativo das condições do mercado de segunda mão) e pela renda anual com base no trimestre (total e per capita). A renda trimestral, total ou per capita, mostrou-se de pouco valor para determinar as vendas de automóveis, no mesmo trimestre em que é auferida. Esta dicotomia do comportamento dos consumidores quanto às duas formas de renda consideradas, seria mesmo de se esperar, dada a quase-inexistência de sistema de financiamento para aquisição de veículos, no período. Isto impunha a necessidade do consumidor capitalizar sua renda durante alguns trimestres (no nosso caso consideramos quatro trimestres, isto é, um ano). As variáveis vida média esperada e custo de vida na GB não modificam muito o comportamento da demanda em relação aos preços. No tocante a estes últimos, os preços de carros usados, apesar de em alguns casos possuírem coeficientes não significativos a 5%, indicam maior correlação com q_t do que os preços de carros novos, conforme os resultados das regressões step-wise. Esta observação evidencia que as condições do mercado de segunda mão, ainda que este continue bastante insipiente e desorganizado, são levadas em conta pelos indivíduos na sua decisão de comprar, ou não, uma unidade nova.

5.2 Os dados utilizados

Do ponto de vista da teoria econômica, encontramos uma certa dificuldade, nas regressões intentadas, quanto ao sinal dos coeficientes de preço e renda, e em outros quanto ao nível de significância destes parâmetros.

Um exame mais apurado dos resultados mostra-nos que estas dificuldades surgem principalmente nas equações estimativas das frações adquiridas, não ocorrendo nas regressões de frota, nem nas de demanda total (exceção das equações 48 e 50).

Esta verificação parece apontar a qualidade dos dados empregados como responsável por estes problemas. Na medida em que se constituem em estatísticas derivadas (construídas) e não primárias, estes dados contêm

algumas imperfeições capazes de se manifestar na estimação de valores instáveis como os c_t , mas insuficientes para se fazerem sentir sobre séries de comportamento mais estável como as de S_t e q_t .

Dentre as possíveis falhas dos dados podemos arrolar:

a) A renda disponível do setor privado anual, calculada com base trimestral móvel, por método descrito, sendo portanto derivada, contém omissões já apontadas, afora a possibilidade de introdução de erros cumulativos, nas várias fontes de dados utilizadas. O ideal seria se nossas estatísticas de contas nacionais já fossem (ou pudessem ser) calculadas trimestralmente.

Estes dados de renda têm quedas que embora plausíveis na realidade podem não ter sido tão acentuadas. Além disto, o período de um ano escolhido como representativo de período da capitalização, na falta de esquemas de financiamento, pode não ser o mais correto. Hoje os planos de financiamento de automóveis envolvem períodos de carência de 24, ou mais meses.

- b) A renda disponível do setor privado trimestral, além dos inconvenientes de cálculo já comentados, dispensa maiores comentários já que se mostra escassamente correlacionada com as variáveis dependentes usadas.
- c) Os preços, de carros novos e de segunda mão, ainda que constituindose em dados estatísticos primários, foram coletados dentro de um mercado extremamente desorganizado. A única fonte encontrada com uma sistematização das informações, para o período 1960-67, foi a revista Quatro Rodas, em relação a qual não podemos testar a representatividade de seus dados face ao mercado de automóveis. Por outro lado, o deflacionamento de uma série de dados temporais (no nosso caso os preços), se bem que transforme seus elementos de valores nominais para valores reais, não é tratamento suficiente para eliminar as distorções produzidas pela inflação. Em outras palavras, o processo inflacionário gera a necessidade de adaptações e de acomodações dos mercados a este fenômeno conjuntural, mecanismos estes que não são corrigidos pelo mero deflacionamento dos preços. Além disto, estes mecanismos, muitas vezes, tiram do consumidor a percepção das mudanças em termos reais, tornando então, no caso da demanda, perfeitamente admissíveis anomalias como comportamento diretamente proporcional entre demanda e preços.
- d) Os dados de frota, de demanda de reposição e, consequentemente, de demanda de expansão foram construídos com base em estimativas das taxas de depreciação, conseguidas pelos preços de mercado.

O correto seria a obtenção das taxas de depreciação dos dados de frota (depreciação física, pelo uso), e não o inverso como no nosso caso, em que temos uma depreciação de mercado.

Apesar destes obstáculos, os dados de depreciação a que chegamos parecem bastante razoáveis. A vida média esperada para os veículos (coluna 8 tabela 15, ponderada pela coluna 2 da mesma tabela) situa-se em 25,88 trimestres, isto é, seis para sete anos (para depreciar 50 a 60%). A taxa média de depreciação (média de u_t/s_{t-1}) seria de 4,31% por trimestre. A vida média esperada de 25,88 trimestres garantiria, pelo método da linha reta, uma depreciação da totalidade do estoque inicial, a uma taxa de 3,86%, perfeitamente compatível com u_t/S_{t-1} .

5.3 As elasticidades

Conquanto seja bastante discutível a utilidade dos coeficientes de elasticidade-preço e de elasticidade-renda, as regressões fornecem-nos algumas informações a seu respeito.

De um lado temos equações como a 32, 36, 37, 39, 40, 44 e 46 que nos dão elasticidades pontuais, e de outro temos elasticidades-arco nas equações 33, 35, 38, 43, 45, 47, 48, 49 e 50.

Vamos apenas dar uma palavra sobre estas últimas, lembrando tãosomente que o cálculo dos coeficientes de elasticidade da demanda, calculados com base nas equações de frações adquiridas tem de levar em conta que a frota desejada também é função de preço e renda.

Os coeficientes de elasticidade-preço (-1,9087) e de elasticidade-renda (6,2811) da frota de automóveis, pela equação 45, confirmam a característica elástica dos bens de consumo duráveis. O alto coeficiente de elasticidade-renda prova ser a frota de automóveis muito mais sensível a esta variável do que ao preço. Isto é confirmado pelos inúmeros impactos do tipo "demanda reprimida" que sofre um mercado, em formação de bem durável, e pela perda de percepção do papel dos preços, dado o ritmo do processo inflacionário, de que falamos antes.

Esta observação de uma predominância de elasticidade-renda é confirmada pelos resultados das equações 47 e 49. Nestas duas últimas equações, contudo, o coeficiente de elasticidade-preço situa-se bem abaixo do padrão apresentado por outros estudos, em torno de 1,5.

No caso brasileiro, um coeficiente de elasticidade-preço de 0,488 (equação 47) é perfeitamente viável se considerarmos:

- a) o papel da inflação já focalizado;
- b) o fato de que numa indústria em formação, à medida que cresce sua produção, há tendência à redução dos custos fixos, o que garante um comportamento contínuo e estável de decréscimo dos preços, em termos reais, o que amortece as oscilações da demanda final;
- c) que a inexistência de um sistema de financiamento faz com que um indivíduo tenha ou não tenha (sem meios termos) condições, no sentido de renda, para comprar uma unidade nova independentemente de seu preço;
- d) os efeitos-demonstração externos e a conotação de *status* emprestada ao automóvel.

5.4 Observações finais

Estas seriam as principais conclusões que poderíamos tirar dos resultados expostos.

Sumarizando, diríamos que os resultados superaram as expectativas, se considerarmos que nossa análise prende-se a um bem de consumo durável, a que se somam, às suas características de demanda instável, todas as oscilações inerentes a um mercado em formação, e no qual a sua demanda total é em mais de 50% representada por demanda de expansão (86 a 87% no início do período e cerca de 45% no final — na média 65%), isto é, com reduzida participação do elemento mais estabilizador que é a demanda de reposição.

Se este trabalho possui algum mérito, cremos que deva ser considerado como a contribuição para a melhora das estatísticas necessárias, a estudos de demanda do tipo ora analisado.

Apéndice A

Consideremos a função:

$$Y = a L^b K^c$$

onde a taxa marginal de substituição dá-nos o caminho de expansão:

$$L = c^{-1} b k K \text{ onde } k = \frac{p_K}{p_L}$$

Substituindo na função de produção e tirando-se o valor de K:

$$K = \left[Y \cdot a^{-1} \cdot \left(\frac{c}{b \, k} \right)^b \right]^{\frac{1}{b+c}}$$

e finalmente substituindo este valor na função do custo total, temos a oferta:

$$Q_{Y} = \left[a \cdot (b P_{L}^{-1})^{b} \cdot (c P_{K}^{-1})^{c} \cdot P_{Y}^{b+c} \right]^{\frac{1}{1-b-c}}$$
 (1)

Sendo a Cobb-Douglas homogênea de grau 1, temos b+c=1, e, por conseguinte, o expoente do termo entre colchetes é igual a ∞ , o que significa indeterminação da oferta. Em termos de elasticidade-preço, seu coeficiente seria:

$$E_{P_Y} = \frac{b+c}{1-b-c} = \infty$$

Apêndice B

Suponhamos que o período t seja composto de h intervalos. Então, se q unidades são adquiridas no período, q/h unidades serão adquiridas por intervalo (compras uniformemente distribuídas no período).

Neste caso, cada parcela q/h será depreciada ao longo dos intervalos restantes do período, sendo portanto o montante depreciado ao fim do período igual a soma destas parcelas, ou seja:

$$\sum_{\Theta=0}^{h-1} q/h \cdot \left(\frac{n-1}{n}\right)^{\frac{(h-\Theta)}{h}} = \frac{q}{h} \cdot \sum_{\Theta=1}^{h} \left(\frac{n-1}{n}\right)^{\frac{\Theta}{h}}$$
 (1)

ora, o termo em somatório no segundo membro desta equação pode ser desdobrado em:

$$\sum_{\Theta=1}^{k} \left(\frac{n-1}{n} \right)^{\frac{\Theta}{k}} = \left(\frac{n-1}{n} \right)^{\frac{1}{k}} + \left(\frac{n-1}{n} \right)^{\frac{2}{k}} + \left(\frac{n-1}{n} \right)^{\frac{3}{k}} + \dots$$

o que corresponde a uma progressão geométrica de primeiro termo $\left(\frac{n-1}{n}\right)^{\frac{1}{h}}$ e razão $\left(\frac{n-1}{n}\right)^{\frac{1}{h}}$ donde, calculando-se a soma dos termos (S_n) desta progressão chegamos a:

$$S_n = \frac{1}{n \left[\left(\frac{n}{n-1} \right)^{\frac{1}{h}} - 1 \right]}$$

Substituindo-se na equação 1:

$$\sum_{\Theta=0}^{h-1} q/h \cdot \left(\frac{n-1}{n}\right)^{\frac{(h-\Theta)}{h}} = \frac{q}{h \cdot n \left\{ \left[\frac{n}{(n-1)}\right]^{\frac{1}{h}}\right\} - 1}$$

Fazendo-se h crescer indefinidamente teremos:

$$\frac{q}{m} = \lim_{h \to \infty} \left[1 - \frac{1}{h \, n \, \left\{ \left[\frac{n}{(n-1)} \right]^{\frac{1}{h}} - 1 \right\}} \right] \cdot q \tag{2}$$

Ou seja, o sucateamento ao fim de cada período é igual às compras no período menos a soma das parcelas depreciadas a cada intervalo.

A equação 2 pode ser reescrita na forma:

$$\frac{1}{m} = 1 - \frac{1}{n \log_e \left[\frac{n}{(n-1)} \right]}$$

donde: $m = \emptyset(n)$.

Apêndice C

O que se pretende determinar é a vida média dos veículos, de tal forma que ao fim de n^* períodos restem apenas 10% do estoque inicial. Assim, seja 100 a frota inicial, isto significa que ao fim de n^* períodos só restarão 10 destes 100 veículos, supondo-se uma taxa de depreciação de 1/n. Então, no tempo 0, temos 100 veículos; em t_1 , 1/n desses 100 veículos são

sucateados, sobrevivendo
$$\left(1-\frac{1}{n}\right)$$
 100; em t_2 , $\frac{1}{n}$ destes $\left(1-\frac{1}{n}\right)$ 100

veículos são sucateados, restando $\left(1 - \frac{1}{n}\right)^2$ 100; e assim sucessivamente.

Então:

$$\frac{t_0}{100} \frac{t_1}{\left(1 - \frac{1}{n}\right) 100} \frac{t_2}{\left(1 - \frac{1}{n}\right)^2 100} \frac{t_3}{\left(1 - \frac{1}{n}\right)^3 100} \dots \frac{t_k}{\left(1 - \frac{1}{n}\right)^k 100 = 10}$$

Temos então uma sucessão de termos que equivale a uma progressão geométrica decrescente ilimitada, em que o primeiro termo é 100, o último é 10 e a razão $\left(1-\frac{1}{n}\right)$. O que nos interessa saber é o número de períodos em que o estoque inicial será reduzido a 10%. Ora, o número de períodos é igual ao número de termos da progressão (k) menos 1, ou seja, $n^* = k - 1$. Logo:

$$a_n = a_1 \cdot a^{k-1}$$

ou:

$$a_n = a_1 \cdot q^{n^*}$$

ou ainda:

$$10 = 100 \left(1 - \frac{1}{n} \right)^{n^*}$$

donde:

$$n^* \cdot 1n \left(\frac{n-1}{n}\right) = 1n \cdot 10 - 1n \cdot 100$$
 $n^* \cdot 1n \left(\frac{n-1}{n}\right) = 2.3 - 4.6$

logo,

$$n^* = -\frac{2,3}{\ln\left(\frac{n-1}{n}\right)} \tag{1}$$

O desenvolvimento pela série de Taylor, do $\ln x$ em uma série de potências de x-1, dá-nos:

$$1n x = -1 + x - \frac{1}{2} (x - 1)^2 + \frac{1}{3} (x - 1)^3 - \dots$$

fazendo-se $x = \frac{n-1}{n}$, podemos desenvolver $\ln\left(\frac{n-1}{n}\right)$ numa série de

potências de $\left(\frac{n-1}{n}-1\right)$, numa vizinhança de 1, pois $\frac{n-1}{n}$ tende para 1.

$$\ln\left(\frac{n-1}{n}\right) = -1 + \frac{n-1}{n} - \frac{1}{2}\left(\frac{n-1}{n} - 1\right)^2 + \frac{1}{3}\left(\frac{n-1}{n} - 1\right)^3 - \dots
= -\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} - \frac{1}{4n^4} - \dots
= -\left(\frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \frac{1}{4n^4} + \dots\right)$$

donde:

$$\ln\left(\frac{n-1}{n}\right) = \sum_{\theta=1}^{\infty} \frac{1}{\theta n^{\theta}} \tag{2}$$

substituindo em 1:

$$n^* = \frac{2,3}{\sum_{\theta=1}^{\infty} \frac{1}{\Theta n^{\theta}}}$$

Desenvolvendo-se a equação 2 até segunda ordem e desprezando-se os demais termos por serem muito pequenos (e tanto menores quanto maior n):

$$n^* = \frac{2,3}{\frac{1}{n} + \frac{2}{2n^2}}$$
$$= \frac{2,3}{1 + \frac{1}{2n}}$$

ou aproximadamente:

$$n^* = 2.3n \left(1 - \frac{1}{2n}\right)$$

= 2.3n - 1.2

donde:

$$n = \frac{n^* + 1.2}{2.3}$$

Referências bibliográficas

Aitchison, J. & Brown, J. A. C. The lognormal distribution, Cambridge University Press, 1966.

Bandeen, R. Automobile consumption. Econometrica, v. 25, n. 2, Apr. 1957.

Bennett, W. Consumption of automobiles in USA, American Economic Review, Sep. 1967.

Boletins da ANFAVEA. 1961 a 1966.

Boulding, K. An application of population analysis to the automobile. Kyklos, v. 8, n. 2, 1955,

Brems, H. Long-run automobile demand. Journal of Marketing, Apr. 1965.

Chow, G. C. Demand for automobiles in the United States. Amsterdam, North-Holland Publishing Company, 1957.

Chow, G. C. Statistical demand functions and their use for forecasting. The demand for durable goods. ed. for A. Harbenger. The University of Chicago Press, 1960.

Confederação Nacional da Indústria. Análise e perspectiva da indústria automobilística. 1960.

Cooley, W. W. & Lohnes, P. R. Multivariate procedures for the behavioral sciences. John Wiley & Sons, Inc., 1966.

Cramer, J. S. The depreciation and mortality of motor-cars. Journal of the Royal Statistical Society (series A), v. 121, n. 1, p. 18, 1958.

Cramer, J. S. Private motoring and the demand for petrol. Journal of the Royal Statistical Society (series A), 1961.

Farrel, M. J. The demand for motor-cars in the United States. Journal of the Royal Statistical Society (series A), n. 117, p. 171.

FGV/IBRE/CCN. Desempenho da economia brasileira em 1967.

Fox, A. H. A theory of second-hand markets. Economica, v. 24, n. 94, p. 99, May, 1957.

Frisch, R. Theory of production. Dordrecht, Holland, D. Reidel Publishing Company, 1966.

Hoel, P. G. Introduction to mathematical statistics. John Wiley and Sons, Inc., 1965.

Houthakker, H. S. & Taylor, L. D. Consumer demand in the United States, 1929-1970. Harvard University Press, 1966.

IBGE. Anuários Estatísticos, 1945 a 1968.

Johnston, J. Econometric methods. McGraw-Hill Book Company, Inc., 1963.

Jornal do Brasil. Coleção de 1950 a 1960.

Kingston, J. & Loeb, G. O imposto complementar sobre a renda e a inflação. Revista Brasileira de Economia, set. 1958.

Lange, O. Introdução à econometria. Ed. Fundo de Cultura, 1962.

Malinvand, E. Statistical methods of econometrics. North-Holland Publishing Company. 1966.

Miller Jr., H. L. A note on Fox's theory of second-hand markets, in Economica, v. 27, p. 249, Aug. 1960.

Ministério da Fazenda/SEEF. Anuários do Comércio Exterior.

Nerlove, Marc. The market demand for durable goods: a comment. Econometrica, v. 28, n. 1, Jan. 1960.

Nervole, Marc. A note on long-run automobile demand. Journal of Marketing, July, 1957.

Odling-Smee, J. C. The private short-term demand for vehicles in the United Kingdom 1955/66: a preliminary investigation. Bulletin of Oxford University Institute of Economics and Statistics, v. 30, n. 3, p. 189, Aug. 1968.

OECE. Aspects de L'industrie automobile aux USA, 1953.

O'Herlihy, C. S. J. Long-term forecasts of demand for cars. National Institute Economic Review, Statistical Society (Series C), v. 14, n. 2/3, 1965.

O'Herlihy, C. S. J. Long-term forecasts of demand for cars. National Institute Economic Review, n. 40, May, 1967.

Ostle, B. Statistics in research. The Iowa State College Press, 1954.

Owen, D. B. Handbook of statistical tables. Addisn Wesley Publishing Company Inc., 1962.

Ralston, A. & Wilf, H. S. Mathematical methods for digital computers. John Wiley and Sons, Inc., 1960.

Revista Brasileira de Economia. IBRE, mar. 1962 e mar. 1966.

Revista Conjuntura Econômica. Desde 1950.

Revista Desenvolvimento e Conjuntura. N. de 1955 a 1967.

Revista Quatro Rodas. Coleção de 1960 a 1968.

Roos, C. & Szelisky, V.v. The dynamics of automobile demand. General Motors, 1939.

Savino, L. Un modello per previsioni di circolazione auto-motociclista in Italia. L'industria, n. 4, p. 546, 1954.

Smith, V. E. Non linearity in the relation between input and output: canadian automobile industry. Econometrics, p. 260, July, 1945.

Stone, R. & Rowe, A. The market demand for durable goods. Econometria, v. 26, n.º 3, July, 1957.

Suits, D. The demand for new automobiles in the United States 1929/56. The Review of Economics and Statistics, v. 40, n. 3, Aug. 1958.

Turnovskx, S. J. The New-Zeland automobile market, 1948-63: an econometric lase-study of disequilibrium. The Economic Record, v. 42, n. 98, p. 256, June, 1966.

Vanghevelinghe, G. Un modèle économétrique de l'évolution de la consommation en France-Economie Appliquée, t. 19, n. 2, 1966.

Walker, F. V. Determinants of auto scrappage. Review of Economies and statistics, n. 4, Nov. 1968.

Wold, H. Demand analysis, a study in econometrics. New York. J. Wiley & Sons, 1953.

VALOR DOCUMENTAL

As revistas da FGV não se esgotam na 1.ª leitura.

Apenas se transformam de novidades em documentos.

Adquira as coleções anuais de nossos periódicos.

ARQUIVOS BRASILEIROS DE PSICOLOGIA APLI-CADA — 1949, 50, 51, 52, 53, 54, 56, 58, 66, 67

CURRICULUM — 1962 a 1968

REVISTA BRASILEIRA DE ECONOMIA — 1964, 1965, 1966

CONJUNTURA ECONÓMICA PORTUGUESA — 1965, 1966, 1967

CONJUNTURA ECONÓMICA INGLESA — 1965, 1966 REVISTA DE ADMINISTRAÇÃO DE EMPRESAS — 1965, 1966, 1967

REVISTA DE CIÊNCIA POLÍTICA — 1958, 1959, 1961, 1965, 1968

REVISTA DE ADMINISTRAÇÃO PÚBLICA — 1968, 1969

Dispomos ainda de números avulsos relativos aos anos não especificados acima.

Pedidos para a Fundação Getulio Vargas — Serviço de Publicações — Praia de Botafogo, 188 ou pelo Reembôlso Postal — C. P. 21.210 — ZC-05.