

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Tópicos Avanzados en Teoría de la Computación - IIC3810 Programa de Curso $2^{\rm er}$ semestre - 2024

Horario cátedra : Martes módulos 5 y 6, sala Javier Pinto

Horario ayudantía : Jueves módulo 5, sala B22

Profesor : Marcelo Arenas (marenas@ing.puc.cl)

URL : https://github.com/marceloarenassaavedra/IIC3810-2-24

1. Descripción

Durante este curso, los alumnos conocerán algunas problemáticas actuales en teoría de la computación, estudiando algunas de las herramientas modernas en el área. Los alumnos conocerán las ventajas y limitaciones de estas herramientas, y estudiaran algunas de sus aplicaciones en distintas áreas de la computación.

2. Objetivos

Al finalizar el curso el alumno será capaz de:

- Comprender algunas de las problemáticas actuales en teoría de la computación.
- Identificar herramientas modernas de teoría de la computación, y comprender la forma en que son utilizadas para estudiar y resolver distintos tipos de problemas.
- Identificar ventajas y desventajas, según el problema a resolver, de distintas herramientas modernas de teoría de la computación.
- Utilizar herramientas modernas de teoría de la computación para estudiar y resolver problemas de distintas características.

3. Metodología

El curso tendrá dos módulos semanales de cátedra. Si es necesario, se utilizarán las sesiones de ayudantía para reforzar algunos de los conceptos vistos en el curso.

4. Contenidos

Este semestre se estudiará los siguientes temas:

- 1. La noción de Máquina de Turing con oráculo y la jerarquía polinomial.
- Algoritmos aleatorizados, la noción de Máquina de Turing probabilística, clases de complejidad para algoritmos aleatorizados y su relación con la jerarquía polinomial.
- 3. Clases de complejidad de funciones, nociones de reducción para estas clases de complejidad, la clase de complejidad #P, algunos problemas #P-completos y la relación de #P con la jerarquía polinomial.
- 4. Aproximación de funciones en #P y la noción de fully polynomial randomized approximation scheme (FPRAS), la existencia de un FPRAS para #DNF-SAT, técnicas para demostrar que una función no admite un FPRAS.
- 5. La noción de fully polynomial almost uniform generator (FPAUG), la noción de problema auto-reducible, el teorema de Jerrum, Valiant & Vazirani y la relación relación entre el muestreo casi uniforme con la existencia de un FPRAS.
- 6. Existencia de FPRAS para problemas de teoría de autómatas: #NFA y #CFG.

5. Evaluación

Los alumnos serán evaluados mediante tareas individuales. La nota final del curso será el promedio de las notas en estas tareas.

6. Bibliografía

- Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram and Cristian Riveros. #NFA admits an FPRAS: Efficient Enumeration, Counting, and Uniform Generation for Logspace Classes. Journal of the ACM 68(6):48:1–48:40, 2021.
- Kuldeep S. Meel, Alexis de Colnet. #CFG and #DNNF admit FPRAS. CoRR abs/2406.18224, https://arxiv.org/abs/2406.18224, 2024.
- Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
- Rajeev Motwani, Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
- Michael Mitzenmacher, Eli Upfal. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, 2017.
- Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.
- Mark Jerrum. Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser, 2013.