Obliczenia naukowe Lista 3

Mateusz Kościelniak 244951 Listopad 2019

1 Zadanie 1, 2 i 3

1.1 Opis problemu

Pierwsze trzy zadania polegały na zaimplementowaniu trzech metod, takich jak:

- metoda bisekcji
- metoda stycznych
- metoda siecznych

Zadaniem tych algorytmów jest znajdowanie miejsc zerowych funkcji z pewnym przybliżeniem.

1.2 Rozwiązanie

Moduł ze zródłami funkcji znajdują się w katalogu .../FindRoots/src implementując metody wzorowałem się na pseudokodzie znajdującym się na prezentacji z wykładu. Do modułu zostały dodane również testy jednostkowe, znajdują się one w katalogu .../FindRoots/test. Każda z funkcji została przetestowana pod kątem poprawności zwracanych wyników oraz błędów.

1.3 Wyniki

Funkcje zostały zaimplementowane z powodzeniem, zostało to potwierdzone pozytywnym rezutatem testów jednostkowych.

1.4 Wnioski

Warto zwrócić uwagę na pewne triki związane z implementacją algorytmów. Po pierwsze, punkt środkowy c obliczany jest za pomocą instrukcji $c \leftarrow a + (b-a)/2$, co jest lepsze z numerycznego punktu widzenia (dodanie do poprzedniej wartości drobnej poprawki), wykonanie instrukcji $c \leftarrow (a+b)/2$ mogłoby spowodować, że w ekstremalnych przypadkach punkt c znalazłby się poza przedziałem [a,b]. Po drugie, aby pozbyć się zbędnego mnożenia przy sprawdzeniu f(a)f(c) < 0, które mogłoby spowodować nadmiar lub niedomiar, zmianę znaku funkcji zbadano za pomocą nierówności $sign(w) \neq sign(u)$.

2 Zadanie 4

2.1 Opis problemu

Zadanie polega na znalezieniu pierwiastka równania $sin(x) - (\frac{x}{2})^2 = 0$. Przy użyciu metod:

- bisekcji (przedział początkowy [1.5, 2.0])
- stycznych (przybliżenie początkowe $x_0 = 1.5$)
- siecznych (przybliżenia początkowe $x_0 = 1.0, x_1 = 2.0$)

dla wszystkich metod: $delta = 10^{-4}$, $epsilon = 10^{-4}$

2.2 Rozwiązanie

Do rozwiązania zadania użyłem wcześniej zaimplementowanych funkcji z modułu FindRoots, z zadanymi w treści zadania parametrami wejściowymi. Musiałem również obliczyć pochodną funkcji f która wyniosła $f'(x) = cos(x) - \frac{x}{2}$

2.3 Wyniki

Metoda	x_0	x_0 $f(x_0)$		Flaga błędu	
Bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	0	
Stycznych	1.933753779789742	-2.2423316314856834e-8	4	0	
Siecznych	1.933753644474301	1.564525129449379e-7	4	0	

Tablica 1: Szukanie rozwiązań równania $cos(x) - \frac{x}{2} = 0$, trzema metodami.

2.4 Wnioski

Wszystkie wyniki są poprawne z dokładnością co do epsilona. Widzimy jednak dużą różnicę w liczbie wykonanych iteracji pomiędzy metodą bisekcji a metodami stycznych i siecznych, takie wyniki odzwierciedlają teoretyczną zbieżność tych metod, bisekcja posiada liniowy współczynnik zbieżności, natomiast metoda stycznych kwadratowy a metoda siecznych jest tak tzw. metodą superliniową z współczynnikiem zbieżności wynoszącym ≈ 1.618

3 Zadanie 5

3.1 Opis problemu

Znalezienie wartości zmiennej x, dla której przecinają sie wykresy funkcji y=3x i $y=e^x$, przy użyciu metody bisekcji.

3.2 Rozwiązanie

Problem sprowadza się do zalezienia wszystkich rozwiązań równania $e^x-3x=0$, W tym celu zaimplementowana została funkcja $f(x)=e^x-3x$. Przedziały początkowe wyznaczyłem na podstawie wykresu.

Wyniosły one kolejno [0.0, 1.1] oraz [1.0, 2.0]. Za dokładność obliczeń przyjąłem $\delta=10^{-4}$ oraz $\epsilon=10^{-4}$.

3.3 Wyniki

Przedział	x_0	$f(x_0)$	Liczba iteracji
[0.0, 1.0]	0.619140625	-9.066320343276146e-5	9
[1.0, 2.0]	1.5120849609375	-7.618578602741621e-5	13

Tablica 2: Szukanie miejsca przecięcia funkcji $y=e^x,\,y=3x$ metodą bisekcji.

3.4 Wnioski

Największym problemem w tym zadaniu był dobór rzedziałów początkowych, lecz znając przebieg funkcji y=3x i $y=e^x$ (e^x rośnie bardzo szybko względem 3x), po kilku próbach udało mi się narysować wykres z odpowiednią dokładnością aby wybrać przedziały. Wybranie przedziałów jest kluczowym etapem w rozwiązaniu tego typu zadania, aby otrzymać poprawny wynik musimy mieć pewność, że funkcja ma tylko jedno miejsce zerowe w przedziale, do tego potrzebna jest analiza funkcji.

4 Zadanie 6

4.1 Opis problemu

Znalezienie miejsc zerowych funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = e^{1-x} - 1$ za pomocą wszystkich trzech metod zaimplementowanych z zadaniach 1-3. Dokładność obliczeń to $\delta = 10^{-5}$ oraz $\epsilon = 10^{-5}$. Należało również sprawdzić zachowanie metody newtona dla funkcji f_1 i f_2 z przybliżeniem początkowym $x_0 \in (1,\infty]$ oraz odpowiedzieć na pytanie czy można wybrać przybliżenie początkowe $x_0 = 1$ dla f_2 .

4.2 Rozwiązanie

Wybierając punkty początkowe znów posłużyłem sie wykresem tak jak w zadaniu poprzednim.

Patrząc na wykres możemu oszacować miejsce zerowe f_1 na 1.0 a f_2 na 0.0 Na tej podstawie dobrałem parametry do funkcji, możemy je zobaczyć poniżej, w tabeli w sekcji z wynikami. Musiałem również obliczyć pochodne obydwóch funkcji, a do rozwiązania zadania użyłem wcześniej zaimplementowane algorytmy.

4.3 Wyniki

Funkcja	Przedział	x_0	$f(x_0)$	Iteracje
f_1	[0.0, 1.5]	1.0000076293945312	-7.6293654275305656e-6	16
f_2	[-0.5, 1.0]	-7.62939453125e-6	-7.629452739132958e-6	16
f_2	[-0.5, 1000.0]	499.75	4.571781560397468e-215	1

Tablica 3: Pierwiastki funkcji metodą bisekcji.

Funkcja	Przybliżenie	x_0	$f(x_0)$	Iteracje	
f_1	0.5	0.9999999998878352	1.1216494399945987e-10	4	
f_2	-0.5	-3.0642493416461764e-7	-3.0642502806087233e-7	4	

Tablica 4: Pierwiastki funkcji metodą stycznych.

Funkcja	Przybliżenia	x_0	$f(x_0)$	Iteracje
f_1	[-1.0, 1.5]	0.9999908642801245	9.135761606327009e-6	5
f_2	[-1.0, 0.5]	-1.1737426154042664e-6	-1.1737439930768023e-6	7

Tablica 5: Pierwiastki funkcji metodą siecznych.

Funkcja	Przybliżenia	x_0	$f(x_0)$	Iteracje	Błąd
f_1	2.0	0.9999999810061002	1.8993900008368314e-8	5	0
	5.0	0.9999996427095682	3.572904956339329e-7	54	0
	6.0	0.9999999573590406	4.264096031825204e-8	147	0
	8.0	-	-	-	1
f_2	1.0	-	-	-	2
	2.0	14.398662765680003	8.036415344217211e-6	10	0
	5.0	-	-	-	2
	6.0	14.398662765680003	4.699833827208111e-6	8	0

Tablica 6: Pierwiastki funkcji metodą stycznych - 2 część zadania.

4.4 Wnioski

Metody bisekcji, stycznych oraz siecznych dla funkcji f_2 przy nieostrożnie dobranym przybliżeniu początkowym, mogą zwrócić pierwiastki już w pierwszejiteracji, które nie są miejscai zerowymi, dzieje się tak ponieważ funkcja zbiega do zera dla coraz większych argumentów co powoduje, że funkcja przyjmuje wartości poniżej zakładanej dokładności w miejscach które niekoniecznie są jej pierwiastkami. W metodzie stycznych jeśli przybliżenie początkowe będzie bardzo bliskie zeru to obliczenia nie będą kontynuowane. W algorytmie stycznych dodatkowo występuje taka sytuacja, że jeśli szybkośc zmiany funkcji jest bardzo mała to obliczenia nie będą kontynuowane, możemy to zobaczyć w Tabeli 5.

Dla metody stycznych wybranie wartości $x_0=1$ dla funckji f_2 spowoduje wyzerowanie się pochodnej oraz wyrzucenie błędu o treści pochodna bliska zeru, natomiast dla wartości $x_0>1$, funkcja metoda nie zbiega do faktycznego zera funkcji tylko znajduje wartość bliską zeru odległą od rzeczywistego zera funkcji z tego powodu, że $\lim_{x\to\infty} f_2(x)=0$. Dla funkcji f_1 i $x_0\in[1,\infty]$ mamy analogiczną sytuacje, funkcja ta bardzo wolno maleje , co za tym idzie pochodna staje się bardzo bliska zeru, drugim niebezpieczeństwem jest to, że liczba iteracji znacznie rośnie ($x_0=8$ i 10 mln iteracji nie dostajemy wyniku) aż w końcu metoda staje się rozbieżna.

Wnioskiem płynącym z tego zadania jest to, że przy obliczaniu pierwiastków równania istotny jest nie tylko wybór najlepszego algortmu, ale również analiza funkcji i dopasowanie algorytmu pod kątem tejże funkcji oraz wybór odpowiednich przybliżeń początkowych.