Exercise 1. (Exercise 3.12.11) Show that

$$\mathcal{F}\ell(d_1,\ldots,d_k) \cong \mathcal{O}(n)/(\mathcal{O}(n_1)\times\cdots\times\mathcal{O}(n_k)),$$

where $n_1 = d_1$ and $n_i = d_i - d_{i-1}$ for i = 2, ..., k. (In other words, the n_i are the jumps in dimension as we go up the flag.)

Answer

Observe that rO(n) acts on the flag variety. If $A \in O(n)$, then

$$F = V_0 \subseteq \cdots \subseteq V_k \Rightarrow A \cdot F = AV_0 \subseteq \cdots \subseteq AV_k$$

and $A \cdot F$ is still a flag of signature (d_1, \ldots, d_k) . This action is transitive as we can choose change-of-basis matrices in O(n) for our purposes to switch between two flags. This means that the unique orbit of the action is the flag variety itself. Now, observe that a block matrix in $O(n_1) \times \cdots \times O(n_k)$ fixes a flag of signature (d_1, \ldots, d_k) as block-by-block, it fixes each V_k . Therefore, by the orbit-stabilizer theorem we have the desired result.

Exercise 2. Let M be a manifold with an affine connection ∇ . Suppose $\alpha: I \to M$ is a constant curve; that is, $\alpha(t) = p$ for all $t \in I$. Let V be a vector field along α , meaning that $V(t) \in T_{\alpha(t)}M = T_pM$ just gives a curve in the tangent space T_pM . Show that $\frac{DV}{dt} = V'(t)$; that is, the covariant derivative agrees with the usual derivative in this case, regardless of what ∇ is.

Answer

Observe that along a curve α we have

$$\frac{DV}{\mathrm{d}t} = \nabla_{\frac{\mathrm{d}\alpha}{\mathrm{d}t}}V = \sum_{i,j,k} \left(\frac{\mathrm{d}v_k}{\mathrm{d}t} + \frac{\mathrm{d}\alpha_i}{\mathrm{d}t}v_j\Gamma_{ij}^k\right) X_k.$$

As our curve is constant, the terms on the right all cancel out so that we're left with

$$\frac{DV}{\mathrm{d}t} = \sum_{k} \frac{\mathrm{d}v_k}{\mathrm{d}t} X_k = V'(t).$$

Exercise 3. (Exercise 4.3.4) Show that an affine connection ∇ is compatible with a Riemannian metric g on M if and only if, for any vector fields V and W along a smooth

curve $\alpha: I \to M$, we have

$$\frac{d}{dt}\bigg|_{t=t_0} g_{\alpha(t)}(V(t), W(t)) = g_{\alpha(t_0)}\left(\frac{DV}{dt}, W\right) + g_{\alpha(t_0)}\left(V, \frac{DW}{dt}\right).$$

In other words, for compatible connections we can use the usual product rule to differentiate the inner product.

Answer

Let us suppose first that ∇ is compatible with g. If α is a curve, we may take an orthonormal basis of $T_{\alpha(t_0)}M$:

$$\{u_1(t_0),\ldots,u_n(t_0)\}.$$

As ∇ is compatible with g, we may parallel-transport this basis throughout all the curve α . This means that for any $t \in I$,

$$\langle u_1(t), \dots, u_n(t) \rangle = T_{\alpha(t)} M.$$

Now, our vector fields V, W may be expressed as linear combinations of these basic elements in the following way:

$$\begin{cases} V(t) = \sum_{k=1}^{n} \alpha_k u_k(t) \\ W(t) = \sum_{k=1}^{n} \beta_k u_k(t) \end{cases} \Rightarrow \begin{cases} \frac{DV}{dt} = \sum_{k=1}^{n} \alpha'_k u_k(t) \\ \frac{DW}{dt} = \sum_{k=1}^{n} \beta'_k u_k(t) \end{cases}$$

where α_k , β_k are smooth functions. Now if we compute the quantity of the left, we have that

$$\frac{d}{dt}\Big|_{t=t_0} g_{\alpha(t)}(V(t), W(t))$$

$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} \frac{d}{dt}\Big|_{t=t_0} \alpha_k \beta_{\ell} g_{\alpha(t)}(u_k(t), u_{\ell}(t))$$

$$= \sum_{k=1}^{n} \frac{d}{dt}\Big|_{t=t_0} \alpha_k \beta_k$$

$$= \sum_{k=1}^{n} \frac{d\alpha_k}{dt}\Big|_{t=t_0} \beta_k + \sum_{k=1}^{n} \alpha_k \frac{d\beta_k}{dt}\Big|_{t=t_0}$$

and then readding indices by multiplying $\delta_{k\ell}$ and a sum through ℓ we recover the final expression:

$$\sum_{\ell=1}^{n} \sum_{k=1}^{n} \frac{d\alpha_{k}}{dt} \bigg|_{t=t_{0}} \beta_{k} g_{\alpha(t_{0})}(u_{k}(t), u_{\ell}(t)) + \sum_{\ell=1}^{n} \sum_{k=1}^{n} \alpha_{k} \frac{d\beta_{k}}{dt} \bigg|_{t=t_{0}} g_{\alpha(t_{0})}(u_{k}(t), u_{\ell}(t)).$$

Condensing everything by linearity we recover

$$g_{\alpha(t_0)}\left(\frac{DV}{dt},W\right)+g_{\alpha(t_0)}\left(V,\frac{DW}{dt}\right).$$

Now on the other hand suppose we have the identity in question. In order to show that our connection is compatible with g, we must show that for V, W parallel along α , we have that $g_{\alpha}(t)(V(t), W(t))$ is constant. To that effect, we will show that it has zero derivate.

Let V, W be parallel vector fields along $\alpha(t)$. Then

$$\frac{DV}{\mathrm{d}t} = \frac{DW}{\mathrm{d}t} = 0,$$

and so our identity becomes

$$0 = g_{\alpha(t_0)}(0, W) + g_{\alpha(t_0)}(V, 0) = \frac{d}{dt} \bigg|_{t=t_0} g_{\alpha(t)}(V(t), W(t)).$$

Thus $g_{\alpha(t)}(V(t), W(t))$ is a constant function because it has zero derivate.