WRDC-TR-89-4145 Volume II

# FATIGUE AND FRACTURE OF TITANIUM ALUMINIDES



M.L. Gambone

Allison Gas Turbine Division General Motors Corporation P.O. Box 420 Indianapolis, Indiana 46206-0420

February 1990

FINAL REPORT for period 1 July 1985-31 July 1989

Approved for public release; distribution is unlimited.



MATERIALS LABORATORY
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OHIO 45433-6533

#### NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSCEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION: OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE. USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASD/PA) AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS IT WILL BE AVAILABLE TO THE GENERAL PUBLIC INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

Monica 12 Mtruke

MONICA A. STUCKE, WRDC/MLLN

GLENN G. ORMBREK

Technical Area Manager, Actg Materials Behavior Branch Metals and Ceramics Division

FOR THE COMMANDER

ALLAN W. GUNDERSON Actg Branch Chief

Materials Behavior Branch Metals and Ceramics Division

IF YOUR ADDRESS HAS CHANGED. IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY WRDC/MLLN , WRIGHT-PATTERSON AFB, OH 45433-6533 TO HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.

#### SECURITY CLASSIFICATION OF THIS PAGE

| REPORT DOCUMENTATION PAGE         |                                                                                       |                                |                                                |                                     |                                       |                    |              |
|-----------------------------------|---------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------------|---------------------------------------|--------------------|--------------|
| 1. REPORT SECURITY CLASSIFICATION |                                                                                       |                                |                                                | 1b. RESTRICTIVE MARKINGS            |                                       |                    |              |
| UNCLASS                           |                                                                                       |                                |                                                |                                     |                                       |                    |              |
|                                   |                                                                                       |                                | 3 DISTRIBUTION/A                               | VAILABILITY OF                      | REPORT                                |                    |              |
|                                   |                                                                                       |                                |                                                | Approved for                        | public rele                           | ease; distr        | ibution is   |
| 26 DECLAS                         | SIFICATION/                                                                           | DOWNGRADING SCHED              | DULE                                           | unlimited.                          |                                       |                    |              |
| 4. PERFORM                        | ING ORGAN                                                                             | ZATION REPORT NUM              | BER(S)                                         | 5. MONITORING OR                    | GANIZATION RE                         | PORT NUMBER        | 5)           |
| Allison                           | EDR 142                                                                               | 49 - Vol. II                   |                                                | WRDC-TR-89-41                       | 145, Volume                           | II                 |              |
| SA NAME O                         | FPERFORMI                                                                             | NG ORGANIZATION                | 66. OFFICE SYMBOL                              | 7a. NAME OF MONIT                   |                                       |                    |              |
|                                   |                                                                                       | bine Division                  | (If applicable)                                | Wright Resear                       |                                       | •                  | er           |
|                                   |                                                                                       | Corporation                    | L                                              | Materials Lab                       | <u> </u>                              |                    |              |
| P.O. Bo                           | •                                                                                     | and ZIP Code)                  |                                                | 7ь. ADDRESS (Сііу,<br>Wright-Patter |                                       |                    | н 1          |
|                                   |                                                                                       | N 46206-0420                   |                                                | 45433-6533                          |                                       | ace base, o        |              |
|                                   | F FUNDING/S                                                                           | PONSORING                      | 8b. OFFICE SYMBOL (If applicable)              | 9. PROCUREMENT I                    | NSTRUMENT IDE                         | NTIFICATION N      | UMBER        |
|                                   |                                                                                       |                                | ]                                              | F33615-85-C-5                       | 5111                                  |                    |              |
| Sc. ADDRES                        | S (City, State                                                                        | and ZIP Code)                  |                                                | 10. SOURCE OF FUR                   | NDING NOS.                            |                    |              |
|                                   |                                                                                       |                                |                                                | PROGRAM                             | PROJECT                               | TASK               | WORK UNIT    |
|                                   |                                                                                       |                                |                                                | ELEMENT NO.                         | NO.                                   | NO.                | NO           |
|                                   |                                                                                       |                                |                                                | 62102F                              | 2420                                  | 01                 | 77           |
|                                   | 11. TITLE (Include Security Classification) Fatigue & Fracture of Titanium Aluminides |                                |                                                |                                     |                                       |                    |              |
| 12. PERSON<br>M.L. Gan            | AL AUTHOR                                                                             | (S)                            |                                                |                                     |                                       |                    |              |
| 134 TYPE C                        | F REPORT                                                                              | 13b. TIME C                    | - · ·                                          | 14. DATE OF REPO                    |                                       | 3                  |              |
| Final                             |                                                                                       |                                | <u>1-85</u> то <u>7-31-89</u>                  | February 199                        | 90                                    | 8                  | 0            |
| 16. BUPPLE                        | MENTARY NO                                                                            | DIATION                        |                                                |                                     |                                       |                    |              |
|                                   |                                                                                       |                                |                                                |                                     |                                       |                    |              |
| 17.                               | COSATI                                                                                | CODES                          | 18 SUBJECT TERMS (C                            | ontinue on reverse if no            | cessory and identic                   | to by black number |              |
| FIELD                             | GROUP                                                                                 | SUB GR.                        | Metal matrix co                                |                                     |                                       |                    |              |
| 11                                | 0                                                                                     | 4                              | fatigue, crack                                 | growth, thermo                      | omechanical                           | fatigue            |              |
|                                   |                                                                                       |                                | ]                                              |                                     |                                       |                    |              |
| 19. ABST N                        | CT (Continue                                                                          | on reverse if necessary on     | d identify by block number<br>sites hold great | nromies for a                       | nnlication                            | in the lat         | or stages    |
| of adv                            | anced co                                                                              | moressor system                | s. This conclus:                               | ion is based o                      | on the assur                          | notion that        | Ti Al com-   |
| posite                            | s can acl                                                                             | hieve the fatig                | ue strength Level                              | ls projected f                      | From data fo                          | or the SiC/        | Ti 6A1-4V    |
|                                   |                                                                                       |                                | table to 650°C or                              |                                     |                                       |                    |              |
|                                   |                                                                                       |                                | imens have exhib:                              |                                     |                                       |                    |              |
|                                   |                                                                                       |                                | and significantly                              |                                     |                                       |                    |              |
| Ti/3A1.                           |                                                                                       |                                | ngth and high st                               |                                     |                                       |                    |              |
| ed.                               | emperatu                                                                              | re compressor s                | pacers in the mi                               | nimum-weight i                      | rotor coniig                          | guration be        | ing develop- |
|                                   | The kov m                                                                             | atorial design                 | parameters for t                               | itanium alumit                      | nides and ti                          | itanium alu        | minide com-  |
|                                   |                                                                                       |                                | d understood. T                                |                                     |                                       |                    |              |
|                                   |                                                                                       |                                | on and propagation                             |                                     |                                       |                    |              |
| size,                             | and stre                                                                              | ss ratio), the                 | near threshold s                               | tress intensit                      | ty crack gro                          | owth rates,        | and the      |
| thermo                            | mechanic                                                                              | al fatigue b <mark>eh</mark> a | vior. The inter                                | action between                      | n crack init                          | tiation and        |              |
| 20 DISTRIE                        | AVA/POITUE                                                                            | LABILITY OF ABSTRA             | CT                                             | 21. ABSTRACT SEC                    | · · · · · · · · · · · · · · · · · · · | CATION             |              |
| UNCLASSIF                         | IED/UNLIMI                                                                            | TED A SAME AS APT.             | D DTIC USERS                                   | UNCLASSIFIE                         | D                                     |                    |              |
|                                   |                                                                                       | BLE INDIVIDUAL                 |                                                | 226 TELEPHONE N                     |                                       | 22c OFFICE SY      | MBOL         |
| Monica                            | A. Stucl                                                                              | Ke                             |                                                | (Include Area Co<br>513-255-1353    |                                       | WRDC/MLLN          |              |

**DD FORM 1473, 83 APR** 

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

#### SECURITY CLASSIFICATION OF THIS PAGE

19) with the low ductility of titanium aluminide at room temperature is of particular importance. Heat treatment and/or mechanical working may be used to improve the ductility characteristics and thereby modify the fatigue behavior. A study of the resulting fracture surfaces could provide valuable insight for development of optimum processing for these materials.

The specific objectives of this program were to characterize and understand the mechanical behavior of titanium aluminide metal matrix composites. This investigation was preceded by an SCS-6/Ti<sub>3</sub>Al composite development task to ensure high quality composite materials for evaluation and testing.

#### FOREWORD

This interim technical report is submitted in accordance with the requirement of Air Force Contract F33615-85-C-5111 CDRL Sequence Number 5 and represents Volume II of the final report covering the period 1 July 1985 through 31 July 1989. The program was conducted under the cognizance of Ms. Monica Stucke at the Materials Laboratory, Wright Research and Development Center, Wright-Patterson Air Force Base, Ohio.

This report was prepared by Allison Gas Turbine Division of General Motors Corporation, Indianapolis, Indiana, as prime contractor. Ms. Mary Lee Gambone (Allison) is program manager. Major subcontractors on this program and contributors to this report are TIMET-HTL Division, Titanium Metals Corporation of America, Henderson, Nevada; Textron-Specialty Materials Division (Textron-SMD), Textron Corporation, Lowell, Massachusetts; Textron-Materials and Manufacturing Technology Center (Textron-MMTC), Euclid, Ohio; and Materials Behavior Research Corporation (MBRC), Loveland, Ohio. Dr. Paul J. Bania (TIMET), Dr. Al Kumnick (Textron-SMD), Mr. Bill Darden (Textron-MMTC), and Dr. Kenneth R. Bain (MBRC) are the program managers at the respective subcontractors' facilities.

| Acces         | sion For |   |
|---------------|----------|---|
| NTIS          | GRA&I    |   |
| DTIC          | TAB      | Ò |
| Unanc         | ounced   |   |
| Justi         | fication | l |
| Avas          | lability |   |
|               | Avail en |   |
| Dist          | Spec1:   | • |
| 1             | 1 1      |   |
| $D \propto L$ | 1 1      |   |
| n             | 1 1      |   |

## TABLE OF CONTENTS

| Section | <u>Title</u>                                           | Page |
|---------|--------------------------------------------------------|------|
| I       | Objective                                              | L    |
| II      | Summary                                                | 2    |
| III     | Introduction                                           | 4    |
|         | 3.1 Background                                         |      |
|         | 3.2 Program Scope                                      |      |
|         | 3.2.1 Task I. Composite Process Optimization 4         |      |
|         | 3.2.2 Task II. Fatigue Crack Initiation                | 5    |
|         | 3.2.3 Task III. Fatigue Crack Growth                   | 5    |
|         | 3.2.4 Task IV. Thermal Mechanical Fatigue              |      |
|         | 3.2.5 Task V. Fractographic Analysis                   |      |
|         | 3.2.6 Task VI. Program Expansion                       |      |
| IV      | Discussion                                             | 6    |
|         | 4.1 Tensile Behavior                                   | 5    |
|         | 4.1.1 SCS-6/Ti-24A1-11Nb Tensile Properties            | 6    |
|         | 4.1.2 SCS-6/Ti-25A1-10Nb-3V-1Mo                        | 13   |
|         | 4.2 Creep-Rupture Behavior                             | 17   |
|         | 4.2.1 SCS-6/Ti-24A1-11Nb                               |      |
|         | 4.2.2 SCS-6/Ti-25A1-10Nb-3V-1Mo                        | 21   |
|         | 4.3 Fatigue Crack Initiation Behavior                  |      |
|         | 4.3.1 Effect of Temperature and Orientation on Fatigue |      |
|         | Initiation                                             | 26   |
|         | 4.3.2 Effect of Notches on Fatigue Initiation          | 37   |
|         | 4.3.3 Effect of R-Ratio on Fatigue Initiation          |      |
|         | 4.3.4 Effect of Frequency on Fatigue Initiation        |      |
|         | 4.4 Fatigue Crack Growth Behavior                      |      |
|         | 4.4.1 Effect of Temperature and Orientation on FCGR .  |      |
|         | 4.4.2 Effect of R-Ratio on FCGR                        |      |
|         | 4.4.3 Effect of Frequency on FCGR                      |      |
|         | 4.5 Thermal Mechanical Fatigue Behavior                |      |
|         | 4.5.1 Effects of Temperature Range on TMF              |      |
|         | 4.5.2 Effect of Lay-up on TMF                          |      |
|         | 4.5.3 Effect of Phasing on TMF                         |      |
|         | 4.5.4 Effect of R-Ratio on TMF                         |      |
| V       | Conclusions                                            | 68   |

# LIST OF ILLUSTRATIONS

| Figure | <u>Title</u>                                                                                                                                                                                                                                                                    | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1<br>2 | Test specimen for fiber reinforced composite                                                                                                                                                                                                                                    | 7    |
| 3      | Ti-24A1-11Nb composite                                                                                                                                                                                                                                                          | 11   |
| 3      | SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                                                                                                    | 11   |
| 4      | Tensile fractures of longitudinal SCS-6/Ti-24A1-11Nb composite. Note the large amount of fiber pullout in specimen 15L-5 (B) compared to the higher strength specimen 27L-2 (A). At 760°C the lower strength specimen 15L-10 (D) has a rougher fracture surface than 16L-14 (C) | 12   |
| 5      | Total strain at failure for tensile tests of unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                           |      |
| 6      | Ultimate tensile strength of cross ply, both $[0 \text{ deg}/90 \text{ deg}]_s$ and $[0 \text{ deg}/\pm45 \text{ deg}/90 \text{ deg}]_s$ , SCS-6/Ti-24A1-11Nb composite compared with that of the unidirectionally                                                              |      |
| 7      | reinforced composite                                                                                                                                                                                                                                                            |      |
| 8      | Ultimate tensile strength of SCS-6/Ti-25A1-10Nb-3V-1Mo composite compared with that of SCS-6/Ti-24A1-11Nb                                                                                                                                                                       |      |
| 9      | Total strain at failure of SCS-6/Ti-25A1-10Nb-3V-1Mo compared with that of SCS-6/Ti-24A-11Nb                                                                                                                                                                                    |      |
| 10     | Creep stress as a function of rupture life for longitudinal SCS-6/Ti-24A1-11Nb composite. (Dashed lines represent a linear regression to constant temperature data with averaged slopes.)                                                                                       |      |
| 11     | Creep stress as a function of rupture life for transverse specimens of SCS-6/Ti-24A1-11Nb composite. (Dashed lines represent a linear regression fit to constant temperature data with averages slopes.)                                                                        |      |
| 12     | Rupture life versus creep stress of actual transverse SCS-6/Ti-24A1-11Nb experimental data (points) with a model based on a modified Monkman-Grant equation (lines)                                                                                                             |      |
| 13     | Typical creep fracture of a longitudinal SCS-6/Ti-24A1-11Nb composite. View (A) shows opposing halves of the fracture and (B) a higher magnification of the fracture surface                                                                                                    |      |
| 14     | Typical creep fracture of a transverse SCS-6/Ti-24A1-11Nb composite (specimen 24T-9 tested at 760°C and 48.3 MPa). View (A) shows the general fracture structure and views (B) and (C) are higher magnification photos of the fracture                                          |      |
| 15     | Stress as a function of rupture life for SCS-6/Ti-24A1-11Nb composite showing the relationship between fiber lay-up configurations                                                                                                                                              |      |

# LIST OF ILLUSTRATIONS (cont)

| Figure | <u>Title</u>                                                                                                                                                                                                                                                                                                                  | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 16     | Stress versus creep life of SCS-6/Ti-25-10-3-1 composite compared with that of SCS-6/Ti-24-11                                                                                                                                                                                                                                 | 24   |
| 17     | Notched fatigue specimen for fiber-reinforced composite                                                                                                                                                                                                                                                                       |      |
| 18     | The effect of temperature on the LCF life of longitudinal                                                                                                                                                                                                                                                                     |      |
| 19     | SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                                                                                                                                                  |      |
| 20     | oriented composite                                                                                                                                                                                                                                                                                                            |      |
| 21     | Ti-24A1-11Nb composite                                                                                                                                                                                                                                                                                                        |      |
| 22     | of SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                                                                                                                                               |      |
| 23     | Ti-24Al-11Nb composite                                                                                                                                                                                                                                                                                                        |      |
| 24     | interface (B)                                                                                                                                                                                                                                                                                                                 | •    |
| 25     | Longitudinal LCF fracture at 649°C showing several initiations at edge and corner (A) and a close-up of the                                                                                                                                                                                                                   |      |
| 26     | edge initiation (B)                                                                                                                                                                                                                                                                                                           | 1    |
| 27     | Elevated temperature (649°C) fatigue fracture of an SCS-6/<br>Ti3Al specimen with load applied at 45 deg to the<br>fiber direction. The primary initiation occurred at<br>the corner and secondary initiation extended along<br>one face (A). Fatigue fracture is characteristically<br>flat (B) and overload more broken (C) |      |
| 28     | Transverse fracture of 649°C LCF specimen. Multiple fatigue initiations occurred along one face (A). A close-up of one fatigue crack shows initiation from the fiber/matrix interface (B). The fatigue fracture is flat and featureless (C), while overload areas                                                             |      |
| 29     | are more ductile in appearance (D) Strain range as a function of cycles to failure of the cross ply (points) and unidirectionally reinforced                                                                                                                                                                                  |      |
| 30     | (line) SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                                                                                                                                           |      |
|        | composite                                                                                                                                                                                                                                                                                                                     | . 38 |

# LIST OF ILLUSTRATIONS (cont)

| Figure | <u>Title</u>                                                                                                                                                 | Page     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 31     | Normalized maximum stress as a function of the fraction of fatigue life for the longest lived cross ply and unidirectionally reinforced fatigue specimens of |          |
| 32     | SCS-6/Ti-24A1-11Nb                                                                                                                                           | 38       |
|        | of SCS-6/Ti-24A1-11Nb                                                                                                                                        | 39       |
| 33     | The effect of notches on the transverse LCF behavior of SCS-6/Ti-24A1-11Nb                                                                                   | 40       |
| 34     | The effect of R-ratio on 26°C LCF life plotted versus strain range for SCS-6/Ti-24A1-11Nb                                                                    |          |
| 35     | The effect of R-ratio on 26°C LCF lives plotted versus                                                                                                       |          |
| 36     | maximum strain                                                                                                                                               | 41       |
|        | strain range for SCS-6/Ti-24A1-11Nb                                                                                                                          | 41       |
| 37     | The effect of R-ratio on 649°C LCF life plotted as a function of maximum strain for SCS-6/Ti-24Al-11Nb                                                       | 42       |
| 38     | The effect of R-ratio on notched longitudinal LCF specimens                                                                                                  | 1. 2     |
| 39     | plotted versus stress range                                                                                                                                  | 43       |
| 40     | plotted versus maximum stress                                                                                                                                |          |
| 41     | fatigue life at 26°C and 649°C                                                                                                                               |          |
| 42     | fatigue life at 649°C                                                                                                                                        |          |
| 43     | specimens                                                                                                                                                    |          |
| 44     | Maximum stress versus cyclic life for cross ply (points) and unidirectionally reinforced (line) SCS-6/                                                       |          |
| 45     | Ti-24A1-11Nb tested in high cycle fatigue Strain range versus cyclic life for cross ply (points) and unidirectionally reinforced (line) SCS-6/Ti-24A1-11Nb   |          |
| 46     | tested in high cycle fatigue                                                                                                                                 |          |
| 47     | test procedure                                                                                                                                               |          |
| 48     | for traverse SCS-6/Ti <sub>3</sub> Al                                                                                                                        |          |
| 49     | Fracture of a 649°C longitudinal fatigue crack growth specimen. The fracture surface is oxidized (B) and                                                     |          |
| 50     | shows extensive fiber pullout                                                                                                                                |          |
| 51     | room temperature showing the variations with R-ratio . Fatigue crack growth at longitudinal SCS-6/Ti <sub>3</sub> Al at 649°C showing R-ratio effect         | 54<br>54 |

# LIST OF ILLUSTRATIONS (cent)

| Figure | <u>Title</u>                                                                                                                                                                                                                                                                                        | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 52     | Fatigue crack growth versus maximum stress intensity for $R=0.1$ and $0.5$ longitudinal specimens at room                                                                                                                                                                                           |      |
| 53     | Effect of frequency and dwell on the FCGR of longitudinal                                                                                                                                                                                                                                           | • 55 |
| 54     | SCS-6/Ti <sub>3</sub> Al at 649°C                                                                                                                                                                                                                                                                   |      |
| 55     | frequency tests (B)                                                                                                                                                                                                                                                                                 |      |
| 56     | Mechanically applied strain as a function of life for in-<br>phase TMF tests of SCS-6/Ti-24A1-11Nb composite                                                                                                                                                                                        |      |
| 57     | Fracture surface of SCS-6/Ti <sub>3</sub> Al TMF specimen cycled out-of-phase from 93°C to 650°C. Heavily oxidized initiation areas occur at the specimen surface (A) and (B), primarily at corners and along the face. The overload fracture is relatively flat and shows little fiber pullout (C) |      |
| 58     | Fracture of an in-phase SCS-6/Ti <sub>3</sub> Al TMF specimen tested from 93°C to 650°C. Multiple initiations occur at the surface of the gage (A). The fatigue fracture is oxidized (B), but overload shows a more ductile                                                                         | . 61 |
| 59     | Typical thermal fatigue fracture of SCS-6/Ti-24A1-11Nb composite: (A) fracture surface (note fracture on several horizontal planes), (B) oxidized matrix fracture, and (C) matrix cracks noted throughout gage area                                                                                 |      |
| 60     | Mechanical strain range as a function of cyclic life for cross-ply (points) and unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite                                                                                                                                                            |      |
| 61     | Schematic representation of the strain produced in fiber and matrix by in-phase and out-of-phase TMF cycles .                                                                                                                                                                                       |      |
| 62     | Applied strain range as a function of life for both in-phase TMF and isothermal LCF specimens                                                                                                                                                                                                       |      |
| 63     | Total matrix strain as a function of cycles to failure for out-of-phase TMF plotted with isothermal LCF at 649°C                                                                                                                                                                                    |      |
| 64     | Total matrix strain as a function of cycles to failure for out-of-phase TMF plotted with isothermal KCF at 760°C                                                                                                                                                                                    |      |
| 65     | Typical hysteresis loops for the startup of an in-phase,  R = 0.5 TMF test. Note the load drops that occur in the first cycle                                                                                                                                                                       |      |

# LIST OF TABLES

| Table | <u>Title</u>                                                 | Page |
|-------|--------------------------------------------------------------|------|
| Į.    | Composite panels fabricated for add-on testing               | 6    |
| 2     | Tensile properties of eight-ply SCS-6/Ti-24A1-11Nb composite |      |
|       | manufactured for the Task IV program expansion               | 8    |
| 3     | Tensile properties of SCS-6/Ti-24A1-11Nb                     |      |
| 4     | Tensile properties of unidirectional eight-ply SCS-6/        |      |
|       | Ti-25A1-10Nb-2V-1Mo (atomic percent) composite               | 14   |
| 5     | Creep-rupture results for unidirectionally reinforced SCS-6/ |      |
|       | Ti-24A1-11Nb composite                                       | 18   |
| 6     | Creep-rupture results for unidirectionally reinforced SCS-6/ |      |
|       | Ti-25A1-10Nb-3V-1Mo composite                                | 21   |
| 7     | Fatigue initiation test matrix (number of tests/condition)   |      |
| 8     | Fatigue crack growth test matrix                             |      |
| Ö     | Stress intensity of fracture for FCGR tests                  |      |
| 10    | Thermal mechanical fatigue test matrix                       |      |

#### I. OBJECTIVE

The objective of Phase II of the Fatigue and Fracture of Titanium Aluminides contract was to gain an understanding of the fatigue and fracture behavior of the SiC/Ti3Al composite system for potential application in advanced turbine engine components such as those required to meet Integrated High Performance Turbine Engine Technologies (IHPTET) goals. To achieve this objective, the mechanisms of fatigue damage and modes of failure were examined, and analytical models of fatigue life prediction used to describe monolithic materials were evaluated for their applicability to this composite system. Before an analysis of the mechanical behavior of this composite could be performed, it was essential to develop the fabrication process to manufacture consistently high quality SiC/Ti3Al MMC. This requirement necessitated process optimization and characterization of alpha-2 titanium aluminide foil, silicon carbide fiber, and the composite system itself.

#### II. SUMMARY

Volume II of the final report of Phase II of the Fatigue and Fracture of Titanium Aluminides contract is a discussion of the testing and analysis of SCS-6 (SiC)/ $Ti_3Al$  (Ti-24Al-11Nb) composite conducted in Tasks II through VI. A summary and discussion of the composite optimization performed in Task I is contained in Volume I of the final report.

The Task VI program expansion testing was completed prior to that for Tasks II, III, or IV, and was performed at higher temperatures than were planned in the base program. The Task VI test matrix included tensile and creep tests to 871°C, low and high cycle fatigue at 760°C, and out-of-phase thermal mechanical fatigue from 316 to 760°C. Alternate fiber configurations, [0 deg/90 deg] and [0 deg/±45 deg/90 deg], were tested as well as an alternative Ti<sub>2</sub>Al matrix alloy, Ti-25A1-10Nb-3V-1Mo. Comparison of the properties of the cross plied lay-ups with the unidirectional composite indicated that composite tensile strength is directly proportional to the percentage of fibers oriented parallel to the load axis and that the matrix strain-life behavior controls the strain-life response of the composite. The Ti-25A1-10Nb-3V-1Mo matrix composite demonstrated higher longitudinal strength than the Ti-24A1-11Nb material, but extremely poor transverse strength and ductility. The composite showed no frequency dependence of fatigue behavior at 760°C and thermal mechanical fatigue life depended on the strain range experienced by the matrix during an out-of-phase cycle.

The SCS-6/Ti-24A1-11Nb composite fabricated for the Tasks II, III, and IV testing showed improved longitudinal and transverse strength to that tested in Task VI. This is attributed to improvements in the fabrication process. The composite achieved between 93 and 100% of the calculated rule-of-mixtures strength.

In Task II, 120 low cycle and high cycle fatigue tests were performed to determine the effect of temperature, orientation, notches, R-ratio, and frequency on the isothermal fatigue behavior of this composite system. Fatigue initiation and crack growth could only be identified at elevated temperature on the fracture surfaces. Initiations occurred at the surface of the gage in longitudinal specimens and at the fiber-matrix interface in transverse specimens. Longitudinal specimens showed equivalent fatigue life at 26 and 316°C, but reduced life at 649°C. Transverse and 45-deg oriented specimens had a higher fatigue limit at elevated temperature than at room temperature. fatigue life of longitudinal and 45 deg specimens was equivalent. al composite demonstrated a notch sensitivity equivalent to a cast monolithic material, but transverse tests showed no notch sensitivity. Room temperature low cycle fatigue (LCF) and high cycle fatigue (HCF) were correlated by maximum strain and independent of the applied strain range. At elevated temperatures the R-ratio dependence was more typical of that of a monolithic material and did not show a correlation with maximum strain. No frequency dependence was demonstrated at any orientation or temperature to 649°C.

The fatigue crack growth behavior and its dependence on temperature orientation, R-ratio, and frequency were evaluated in Task III. Twenty-four tests, duplicates at each condition, were performed in which crack length was measured by potential drop. The crack propagation rates of these tests were plotted as a function of stress intensity range and appeared to be modeled well by linear

elastic fracture mechanics. Longitudinal specimens demonstrated marked resistance to crack propagation at room temperature, but predictable behavior at elevated temperatures. Transverse specimens showed the lowest crack growth rate at 316 deg and equivalent crack growth rates at 26 and 649°C. Over the entire range of temperatures tested, the crack growth rate in transverse material was at least five orders of magnitude higher than that in longitudinal composite. The room temperature longitudinal crack growth data measured at R of 0.1 and 0.5 correlated on maximum stress intensity. At 649°C the higher R-ratio produced more rapid crack propagation, but no correlation similar to that at 26°C. An order-of-magnitude increase in the crack growth rate resulted from a frequency drop from 2 cpm to 0.2 cpm in longitudinal material.

The effects of phasing, temperature range, and R-ratio on thermal mechanical fatigue behavior were determined in Task IV. Both in-phase and out-of phase TMF specimens showed surface initiations similar to that for isothermal LCF. The oxidation and cracking was much less severe in those specimens cycled to 649°C than those cycled to 760°C in Task VI. Out-of-phase cycling of temperature and applied strain is a more severe cycle than in-phase cycling, and an increase in the temperature range has a negative effect on the out-of-phase fatigue limit and a positive one on that for in-phase tests. Out-of-phase TMF life can be correlated with isothermal fatigue life by total matrix strain. In-phase TMF shows a higher fatigue limit than isothermal LCF at the maximum temperature. High R-ratio, in-phase tests demonstrated fatigue only over a very narrow band of strain ranges. Failure at higher ranges occurred due to overload.

#### III. INTRODUCTION

#### 3.1 BACKGROUND

The Integrated High Performance Turbine Engine Technology (IHPTET) initiative has been formed by the United States Air Force (USAF) to identify the advanced fighter engine configurations and concepts of the future. The basic IHPTET goals are to identify single- and dual-rotor engine concepts that have a thrust-to-weight ratio at twice the current levels and to demonstrate the required material/structural and component aerodynamic technologies on a timely basis for validation in the advanced turbine engine gas generator (ATEGG) and joint technology demonstrator engine (JTDE) programs. This new initiative emphasizes the development of low density, high temperature, and high strength materials for IHPTET applications to achieve the aggressive thrust-to-weight goals.

Monolithic Ti<sub>3</sub>Al, and to a greater extent Ti<sub>3</sub>Al reinforced with SiC fibers, provides the improved strength, density, and high temperature capability needed to produce advanced rotating compressor structures. These materials are critical for the IHPTET goals to be realized. However, before titanium aluminides can be safely implemented into man-rated components, it is essential that the fatigue and fracture characteristics of these materials are characterized and understood. The low ductility exhibited in this alloy system at room temperature and the concurrent effect of fatigue represents an unknown that must be investigated before this technology can be brought to maturity. This program represents a major step in the development of a technology base required to make the IHPTET program goals a reality.

#### 3.2 PROGRAM SCOPE

The Phase II program effort was broken down into six tasks. These tasks are summarized as follows.

#### 3.2.1 Task I. Composite Process Optimization

The efforts in Task I are divided into the following four major subtasks:

- o titanium aluminide foil development and manufacture
- o SCS-6 fiber production and characterization
- o SCS-6/TigAl composite process development and optimization
- o SCS-6/Ti3Al composite test panel fabrication

TIMET has employed a pack rolling practice to produce 0.150-0.200 mm Ti<sub>3</sub>Al foil.

Textron-Specialty Materials Division has produced and characterized the SCS-6 fiber chosen for use in this program. A sufficient quantity of SCS-6 fiber to meet the needs of the program was produced at one time using standard processing procedures established for high quality fiber. A statistical definition of fiber strength has been established and only fiber from this lot was used in composite fabrication for Tasks II through IV of this program.

The SCS-6/Ti-24A1-11Nb (atomic percent) composite manufacturing process was developed by Textron-MMTC (formerly Ex-Cell-0), Textron-SMD (formerly AVCO), and Allison. In this subtask, Allison subcontracted with the two divisions of Textron to perform the bonding and optimization studies required to produce a high quality composite for testing and evaluation in Tasks II through V. Both subcontractors optimized composite processing, volume fraction fiber, and thermal treatments in complementing programs based on tensile properties. Following these efforts, Allison selected the best composite manufacturer to produce a sufficient quantity of SCS-6/Ti<sub>3</sub>Al for testing in the remaining tasks. This approach minimized risk while maximizing technical expertise in composite manufacturing.

#### 3.2.2 Task II. Fatigue Crack Initiation

In Task II, a program to investigate the effects of fiber orientation, temperature, frequency, R-ratio, and notches on the cycles to fatigue crack initiation and failure was conducted.

## 3.2.3 Task III. Fatigue Crack Growth

The Task III effort included a study of the effects of frequency, temperature, R-ratio, and fiber orientation on the fatigue crack growth behavior of the composite.

#### 3.2.4 Task IV. Thermal Mechanical Fatigue

In Task IV, the effects of thermal mechanical fatigue on composite life were investigated. The internal stresses and strains, which develop in the composite as a result of thermal expansion mismatch, influence the fatigue behavior of the composite. The effects of both in-phase and out-of-phase thermal cycling were determined.

#### 3.2.5 Task V. Fractographic Analysis

Task V involved fractographic analysis of failed specimens from Tasks I through IV to determine the failure mechanisms in the composite system. The knowledge gained in this task contributed to the understanding of the mechanisms of fatigue and fracture in this composite system.

#### 3.2.6 Task VI. Program Expansion

Task VI was an extension of the testing and analysis in previous tasks. In Task VI additional testing was performed to evaluate  $SCS-6/Ti_3Al$  behavior at higher temperatures (up to  $871^{\circ}C$ ), using both unidirectional and cross plied MMC and the Ti-25Al-10Nb-3V-1Mo (atomic percent) matrix.

#### IV. DISCUSSION

Mechanical tests performed in this program included tensile, creep, fatigue, fatigue crack growth, and thermal mechanical fatigue. The SCS-6/Ti<sub>3</sub>Al material tested was produced in two lots. The first lot of 13 panels, manufactured for the Task VI program expansion, was consolidated using SCS-6 fiber mat woven with Ti-6Al-4V ribbon as cross weave material. The configuration of those panels is given in Table 1. The second lot of 56, unidirectionally reinforced, eight-ply SCS-6/Ti-24Al-11Nb panels was made with a molybdenum ribbon cross weave. The improvement in properties, specifically tensile properties, of the second lot of composite may be attributed to this improvement in cross weave composition. Throughout the following discussion, the mechanical behavior of both lots of composite will be presented together for evaluation and comparison.

#### 4.1 TENSILE BEHAVIOR

Tensile tests were performed by Materials Behavior Research Corporation, Loveland, Ohio. Tensile specimens were manufactured according to Figure 1. The gages were diamond ground and longitudinally polished. Specimens were friction gripped and heated by induction. Strain was measured to failure in all tests using extensometers with a 1.27 cm gage length.

# 4.1.1 SCS-6/Ti-24A1-11Nb Tensile Properties

Thirty-two tensile tests were performed on SCS-6/Ti-24A1-11Nb composites manufactured for the Task VI program expansion: twelve on longitudinally oriented specimens, twelve on transverse specimens, four on  $[0 \text{ deg/90 deg}]_s$  cross-ply, and four on  $[0 \text{ deg/±45 deg/90 deg}]_s$  cross-ply specimens. For the unidirectionally reinforced specimens, triplicate tests were run at each of four temperatures: 25, 649, 760, and 871°C. Duplicate tests of each cross-ply configuration were performed at 26°C and 760°C. Table 2 lists these tensile results.

Table 1. Composite panels fabricated for add-on testing.

| Panel<br>No. | Size                    | Fiber mat | Matrix             | Configuration<br>deg |
|--------------|-------------------------|-----------|--------------------|----------------------|
| A15          | 15 cm x 30.5 cm x 8 ply | Woven     | Ti-24A1-11Nb       | 0                    |
| A16          | 15 cm x 30.5 cm x 8 ply | Woven     | Ti-24A1-11Nb       | 0                    |
| A24          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0                    |
| A25          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0                    |
| A26          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0                    |
| A27          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0                    |
| A28          | 15 cm x 15 cm x 8 ply   | Woven I   | i-25A1-10Nb-3V-1Mo | 0                    |
| A30          | 15 cm x 15 cm x 8 ply   | Woven I   | i-25A1-10Nb-3V-1Mo | 0                    |
| A31          | 15 cm x 15 cm x 8 ply   | Woven I   | i-25A1-10Nb-3V-1Mo | 0                    |
| A32          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0/90                 |
| A33          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0/90                 |
| A35          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0/+45/-45/90         |
| A45          | 15 cm x 15 cm x 8 ply   | Woven     | Ti-24A1-11Nb       | 0/+45/-45/90         |



Figure 1. Test specimen for fiber reinforced composite.

Table 2.

<u>Tensile properties of eight-ply SCS-6/Ti-24A1-11Nb composite</u>

<u>manufactured for the Task VI program expansion.</u>

|                |                   |            |            | 0.02%     | Ultimate |         |
|----------------|-------------------|------------|------------|-----------|----------|---------|
|                | Test              |            |            | yield     | tensile  |         |
| Specimen       | temperature       | RT moculus | TT modulus | strength  | strength | % total |
| No.            | <u>°C</u>         | GPa        | GPa        | MPa       | MPa      | strain  |
| Longitudi      | nal               |            |            |           |          |         |
| 15L-5          | 25                | 182.0      | 182.0      | 859.8     | 1150.8   | 0.75    |
| 16L-2          | 25                | 177.2      | 177.2      | 873.6     | 1237.6   | 0.82    |
| 27L-2          | 25                | 191.0      | 191.0      | 679.8     | 1353.5   | 0.98    |
| 15L-8          | 649               | 182.7      | 158.6      | 704.7     | 881.8    | 0.575   |
| 16L-19         | 649               | 179.3      | 151.7      | 788.1     | 1134.2   | 0.84    |
| 27L-4          | 649               | 184.1      | 158.6      | 574.4     | 1091.5   | 0.79    |
| 15L-10         | 760               | 185.5      | 133.8      |           | 790.2    | 0.55    |
| 16L-14         | 760               | 175.8      | 131.0      | 704.0     | 961.2    | 0.75    |
| 27L-6          | 760               | 190.3      | 162.7      | 271.4     | 997.7    | 0.78    |
| 15L-2          | 871               | 201.3      | 153.1      | 608.1     | 757.8    | 0.55    |
| 16L-8          | 871               | 164.8      | 117.9      |           | 888.1    | 0.74    |
| 27L-8          | 871               | 173.1      | 128.9      | 775.7     | 912.9    | 0.76    |
| Transvers      | ie                |            |            |           |          |         |
| 15 <b>T</b> -5 | 25                | 128.9      | 128.9      |           | 191.7    | 0.175   |
| 25T-1          | 25                | 137.2      | 137.2      | 217.2     | 228.9    | 0.200   |
| 24T-3          | 25                | 142.0      | 142.0      | 241.3     | 253.0    | 0.218   |
| 15 <b>T-1</b>  | 649               | 91.7       | 45.5       | 73.8      | 121.4    | 0.54    |
| 24T-6          | 649               | 104.8      | 83.4       | 66.9      | 139.3    | 0.610   |
| 25T-6          | 649               | 97.2       | 73.1       | 50.3      | 117.9    | 0.665   |
| 15T-2          | 760               | 95.2       | 27.6       | 35.2      | 85.5     | 2.16    |
| 24T-5          | 760               | 128.9      | 77.9       | 51.0      | 99.3     | 1.935   |
| 24T-10         | 760               | 144.1      | 88.3       | 48.9      | 100.7    | 1.430   |
| 15T-3          | 871               |            | Fa         | iled test |          |         |
| 24T-2          | 871               | 102.7      | 37.9       | 28.3      | 79.3     | 2.25+   |
| 24T-1          | 871               | 131.7      | 24.1       | 25.5      | 55.8     | 4.24    |
| [0 deg/90      | degl <sub>s</sub> |            |            |           |          |         |
| 32-6           | 25.5              | 144.8      | 144.8      | 253.7     | 768.8    | 1.05    |
| 33-8           | 25.5              | 122.0      | 122.0      | 358.5     | 686.1    | 1.12    |
| 32-2           | 760               | 136.5      | 92.4       | 239.2     | 585.4    | 0.79    |
| 33-6           | 760               | 137.9      | 93.0       | 275.1     | 577.1    | 0.75    |

Table 2 (cont)

| Specimen No.  | Test<br>temperature | RT moculus | TT modulus<br>GPa | 0.02%<br>yield<br>strength<br>MPa | Ultimate<br>tensile<br>strength<br>MPa | % total strain |
|---------------|---------------------|------------|-------------------|-----------------------------------|----------------------------------------|----------------|
| [0 deg/±4     | 5 deg/90 deg]       | ·s         |                   |                                   |                                        |                |
| 35-7          | 25.5                | 124.8      | 124.8             | 251.7                             | 596.4                                  | 1.01           |
| 45-9          | 25.5                | 128.9      | 128.9             | 192.3                             | 627.4                                  | 0.98           |
| 35 <b>-</b> 3 | 760                 | 131.7      | 74.5              | 76.5                              | 383.4                                  | 0.87           |
| 45 <b>-</b> 6 | 760                 | 124.1      | 71.7              | 113.1                             | 375.8                                  | 0.80           |

Selected panels from the 56 panels manufactured for testing in Tasks II, III, and IV were tensile tested over a range of temperatures from 26°C to 760°C. These data for both longitudinal and transverse specimens is given in Table 3.

Room temperature modulus measurements were made prior to heating on all elevated temperature tests to determine a statistically relevant scatter in modulus for this material. Figure 2 shows a plot of modulus as a function of temperature for both transverse and longitudinal specimens for both lots of composite. The longitudinal modulus averages 183.5 GPa at 25°C and falls to an average of 155 GPa at 649°C. The transverse modulus demonstrated more scatter than the longitudinal. There does not seem to be an effect of process variations on composite modulus.

There is little or no plastic strain associated with these tensile tests. In most results 0.2% yield strength could not be measured. Please note that the 0.02% yield strength is reported instead.

Figure 3 shows a comparison of the ultimate tensile strength of both longitudinal and transverse specimens in both lots of composite. The average tensile strengths of the Task VI composite measured are 83% of the calculated rule-of-mixtures strength for this composite system. (The rule-of-mixtures strength is calculated from the fiber bundle strength and the strength measured in tests of foil consolidated without fiber.) The Tasks II, III, and IV composite showed improved longitudinal strength of 96% of the rule-of-mixtures. The average room temperature strength of the early material was 1250 MPa compared with 1480 MPa for the second lots of composite. The transverse strength did not vary significantly from one lot to the other, averaging 242 MPa at room temperature and 123 MPa at 649°C.

One specimen from each of three of the Task VI panels was tested in the longitudinal orientation at each temperature. The lowest strength point at each temperature is a specimen from panel Al5. This panel did not show any indications in nondestructive evaluation (NDE) that it possessed lower strength. Failure analysis of the tested specimens, shown in Figure 4, shows that there is a greater degree of fiber pullout in the panel 15 specimens than in those from panels 16 or 27. Otherwise the fractures are similar—brittle matrix

Table 3.

Tensile properties of SCS-6/Ti-24A1-11Nb.

| Specimen No. | Test<br>temperature | RT modulus | TT modulus | 0.02%<br>yield<br>strength<br>MPa | Ultimate<br>tensile<br>strength<br>MPa | % total<br>strain |
|--------------|---------------------|------------|------------|-----------------------------------|----------------------------------------|-------------------|
| Traverse     |                     |            |            |                                   |                                        |                   |
| 82-1         | 26                  | 151        | 151        | 271                               | 271                                    | 0.2               |
| 82-2         | 26                  | 134        | 134        | 252                               | 266                                    | 0.25              |
| 82-4         | 316                 | 129        | 119        | 135                               | 193                                    | 0.289             |
| 82-5         | 316                 | 146        | 137        | 145                               | 197                                    | 0.434             |
| 82-6         | 649                 | 117        | 77         | 55                                | 117                                    | 0.89              |
| 82-8         | 649                 | 124        | 84         | 51                                | 119                                    | 0.94              |
| 82-9         | 760                 | 145        | 71         | 44                                | 96                                     | 1.88              |
| 82-11        | 760                 | 113        | 42         | 40                                | 91                                     | 1.545             |
| Longitudi    | inal                |            |            |                                   |                                        |                   |
| 93-1         | 26                  | 184        | 184        | 655                               | 1442                                   | 1.07              |
| 93-2         | 26                  | 195        | 195        | 706                               | 1494                                   | 1.09              |
| 93-3         | 26                  | 186        | 186        | 690                               | 1495                                   | 1.085             |
| 93-4         | 316                 | 172        | 169        | 729                               | 1299                                   | 0.98              |
| 93-5         | 316                 | 188        | 186        | 702                               | 1330                                   | 0.95              |
| 93-6         | 538                 | 174        | 154        | 848                               | 1152                                   | 0.86              |
| 93–7         | 538                 | 185        | 166        | 797                               | 1185                                   | 0.868             |
| 93-8         | 649                 | 186        | 151        | 683                               | 1136                                   | 0.84              |
| 93-9         | 649                 | 186        | 153        | 703                               | 1201                                   | 0.895             |
| 93-10        | 649                 | 186        | 155        | 641                               | 1165                                   | 0.85              |
| 101-5        | 760                 | 183        | 136        | 865                               | 1055                                   | 0.805             |
| 103-5        | 760                 | 192        | 139        | 924                               | 1079                                   | 0.79              |
|              |                     |            |            |                                   |                                        |                   |

fracture with little fiber pullout at room temperature and increasing ductility and fiber matrix separation with temperature.

Elongation and reduction in area are not meaningful measurements in tests of these composites. However, because total strain is generally small (less than one percent in longitudinal specimens) extensometry is left in place throughout the test, and total strain at failure is recorded. Figure 5 shows the variation in total strain at failure as a function of temperature for longitudinal and transverse specimens of both lots. The strain in longitudinal specimens is determined by the maximum strain achievable in the SCS-6 fiber, which is



Figure 2. Tensile modulus of unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite.



Figure 3. Ultimate tensile strength of unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite.



Figure 4. Tensile fractures of longitudinal SCS-6/Ti-24A1-11Nb composite. Note the large amount of fiber pullout in specimen 15L-5 (B) compared to the higher strength specimen 27L-2 (A). At 760°C the lower strength specimen 15L-10 (D) has a rougher fracture surface than 16L-14 (C).



Figure 5. Total strain at failure for tensile tests of unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite.

The composite of the second lot showed a slight improvement in longitudinal strain at room temperature but no difference in transverse behavior.

The transverse specimens are brittle at room temperature (averaging 0.2% total strain), but at elevated temperatures their ductility increases rapidly. At 871°C the total strain in two of the three tests was unmeasurable because it exceeded the maximum travel of the extensometer.

Duplicate tests were also performed at 25°C and 760°C on two types of cross ply configurations: the  $[0 \text{ deg}/90 \text{ deg}]_6$  and  $[0 \text{ deg}/\pm45 \text{ deg}/90 \text{ deg}]_6$  eight ply, symmetric lay-ups. The results from these tests are tabulated in Table 2. Figure 6 shows the tensile strength of the cross ply specimens compared with the longitudinal and transverse specimens of the unidirectionally reinforced material fabricated in the same lot. The strengths vary as predicted. The fiber strength controls the behavior of a longitudinally oriented composite in tension. Thus, the [O deg/90 deg]s configuration is of higher strength than [O deg/±45 deg/90 deg]s because it has a greater percentage of fibers in the longitudinal orientation.

# 4.1.2 SCS-6/Ti-25A1-10Nb-3V-1Mo

Of the thirteen panels fabricated for the Task VI program expansion, three panels were consolidated with unidirectionally rolled Ti-25A1-10Nb-3Y-1Mo foil and SCS-6 fiber. Eight specimens in each orientation were tensile tested of the SCS-6/Ti-25A1-10Nb-3V-1Mo (atomic percent) composite. The test results are shown in Table 4 and Figures 7, 8, and 9. The longitudinal data and comparison of the longitudinal curves indicate this composite system has higher strength and modulus than and identical total ductility to the SCS-6/Ti-24A1-11Nb system in this orientation.

Table 4.

<u>Tensile properties of unidirectional eight-ply SCS-6/Ti-25Al-10Nb-3V-lMo</u>

(atomic percent) composite.

|                | Test<br>temperature |       | TT modulus  | 0.02%<br>yield<br>strength<br>MPa |        | % total<br>strain |
|----------------|---------------------|-------|-------------|-----------------------------------|--------|-------------------|
| Longitudi      | nal                 |       |             |                                   |        |                   |
| 30L-1          | 25.5                | 187.5 | 187.5       |                                   |        |                   |
| 30L-9          | 25.5                | 190.3 | 190.3       | 964.6                             | 1312.8 | 0.795             |
| 30L-3          | 649                 | 191.0 | 171.7       | 1056.3                            | 1284.5 | 0.82              |
| 30L-4          | 649                 | 204.1 | 187.5       | 954.3                             | 1218.3 | 0.705             |
| 30L-2          | 760                 | 193.7 | 171.0       | 664.7                             | 1076.3 | 0.72              |
| 30L-5          | 760                 | 195.8 | 170.3       | 649.5                             | 983.2  | 0.66              |
| 30L-6          | 871                 | 190.3 | 150.3       | 699.8                             | 911.5  | 0.67              |
| 30L-7          | 871                 | 184.7 | 140.0       |                                   | 775.0  | 0.58              |
| Transvers      | <u>;e</u>           |       |             |                                   |        |                   |
| 31 <b>T</b> -6 | 25.5                | 92.4  | 92.4        |                                   | 71.0   |                   |
| 28T-3          | 649.0               |       | 72.4        | 85.5                              | 85.5   | 0.14              |
| 28T-4          | 649.0               |       | Failed test |                                   |        |                   |
| 28T-5          | 760.0               |       | 84.1        | 48.3                              | 60.7   | 0.18              |
| 31T-3          | 760                 | 95.1  | Fail        | ed test                           |        |                   |
| 31T-8          | 760                 | 100.0 | 53.1        | 37.2                              | 58.6   | 0.23              |
| 28T-6          | 871.0               |       |             | 42.7                              |        | 0.18              |
| 31T-1          | 871.0               |       | Failed test |                                   |        |                   |

The transverse data illustrate a deficit in matrix ductility in this system. The transverse modulus is surprisingly low at room temperature (although Ti-25-10-3-1 has a higher monolithic modulus than Ti-24-11) as well as the strength. Both properties may be related to the extreme lack of ductility in the transverse orientation. The room temperature specimens were too brittle and weak to support an extensometer, and even at elevated temperature the total strain at failure was never greater than 0.23%. It must be noted that the consolidation conditions used in this work were optimized for the Ti-24-11 matrix. It is possible that an alternative consolidation cycle would produce a composite with the Ti-25-10-3-1 matrix improved transverse properties.



Figure 6. Ultimate tensile strength of cross ply, both [0 deg/90 deg]<sub>s</sub> and [0 deg/±45 deg/90 deg]<sub>s</sub>, SCS-6/Ti-24A1-11Nb composite compared with that of the unidirectionally reinforced composite.



Figure 7. Modulus of SCS-6/Ti-25A1-10Nb-3V-1Mo composite compared with that of SCS-6/Ti-24A1-11Nb composite.



Figure 8. Ultimate tensile strength of SCS-6/Ti-25A1-10Nb-3V-1Mo composite compared with that of SCS-6/Ti-24A1-11Nb.



Figure 9. Total strain at failure of SCS-6/Ti-25A1-10Nb-3V-1Mo compared with that of SCS-6/Ti-24A-11Nb.

#### 4.2 CREEP-RUPTURE BEHAVIOR

Creep testing was conducted at Metcut Research Associates, Cincinnati, Ohio. Specimens were friction gripped between metal plates bolted together. Specimens and grips were heated to temperature within a furnace. Creep strain as a function of time was monitored with extensometry. All the composite material tested in creep was manufactured for the Task VI program expansion.

#### 4.2.1 SCS-6/Ti-24A1-11Nb

Creep rupture tests were conducted on both unidirectionally reinforced and cross ply SCS-6/Ti-24A1-11Nb composite. Table 5 lists the results of these tests. Twelve tests at each orientation were performed with unidirectionally reinforced specimens. The test matrix for both longitudinal and transverse specimens allowed four tests at each of three temperatures, 649°C, 760°C, and 871°C, over a range of stress. All creep strain versus time curves are shown in Appendix A. The goal of this testing was to determine the effect of stress on creep life at a constant temperature. Figures 10 and 11 show the impact of creep stress on life for both longitudinal and transverse specimens, respectively.

The longitudinal data in Figure 10 shows a great deal of scatter. The isotemperature lines are very flat. This might indicate a stress "threshold" in longitudinal creep, below which lives are infinite and above which lives are short. If longitudinal creep is actually a process in which the matrix creeps and transfers load to the fiber reinforcement, this threshold behavior is understandable. Below the threshold the fibers in the composite are capable of bearing all the creep stress alone and are never loaded to their ultimate tensile stress. Above this threshold, at some point in the transfer of load from the matrix to the fiber, the fiber is loaded to its maximum tensile strength and failure occurs. The scatter in the creep data might be partially attributed to the scatter in tensile strength. More testing and analysis need to be undertaken in this area to understand the process of longitudinal creep fully.

The transverse creep results shown in Figure 11 did not correlate well to a Larson-Miller curve. However, it is possible to model the data using an empirical relationship described by Monkman and Grant\* that shows that for a given alloy there is a linear dependence between the log of rupture life and log of minimum creep rate.

$$t_{R} \epsilon_{S}^{d} = K \tag{1}$$

$$\log t_R + d \log \epsilon_S = \log K$$
 (2)

If it is assumed that an Arrhenius type of relationship between the steadystate creep rate and temperature exists, a general equation that relates creep rate, stress, and temperature can be written

$$\varepsilon_{S} = A \sigma^{b} \exp (-Q/RT)$$
 (3)

<sup>\*</sup>F. C. Monkman and N. J. Grant, American Society of Testing Procedures, Vol 56, pp. 593-620, 1956.

Table 5.

Creep-rupture results for unidirectionally reinforced

SCS-6/Ti-24Al-11Nb composite.

| Specimen      | Stress<br>MPa | Temperature       | Rupture life   | Total<br>strain% |
|---------------|---------------|-------------------|----------------|------------------|
| Longitudinal  |               |                   |                |                  |
| 15L-11        | 551.6         | 649               | 0.05           | 14.4             |
| 26L-3         | 551.6         | 649               | 476.2          | 1.8              |
| 26L-2         | 517.1         | 649               | 752.4          | 1.9              |
| 16L-9         | 482.7         | 649               | 915.2(1)       | 0.35             |
| 16L-16        | 482.7         | 760               | 187.2          | 2.1              |
| 16L-3         | 448.2         | 760               | 147.8          | 1.6              |
| 15L-9         | 413.7         | 760               | 99.5           | 1.7              |
| 26L-1         | 413.7         | 760               | 2.0(2)         |                  |
| 15L-3         | 413.7         | 871               | 3.0            | 1.9              |
| 16L-21        | 379.2         | 871               | 2.5            |                  |
| 26L-4         | 344.8         | 871               | 24.8           |                  |
| 15L-6         | 310.3         | 871               | 30.5           | 3.0              |
| Transverse    |               |                   |                |                  |
| 25T-4         | 89.6          | 649               | 1.7            |                  |
| 25T-2         | 69.0          | 649               | 34.4           | 9.3              |
| <b>25T-</b> 5 | 55.2          | 649               | 64.2           | 7.3              |
| 24T-4         | 34.5          | 649               | 408.7          | 12.2             |
| 24T-9         | 48.3          | 760               | 12.7           | 18.6             |
| 15T-2         | 34.5          | 760               | 79.3           | 12.1             |
| 15T-9         | 27.6          | 760.0             | Failed test    |                  |
| 24T-8         | 20.7          | 760               | $1000.6^{(1)}$ | 76.6             |
| 25T-7         | 27.6          | 871               | 16.1           | 124.7            |
| 15T-10        | 20.7          | 871               | $1008.0^{(1)}$ |                  |
| 24T-7         | 13.8          | 871               | 1079.7(1)      |                  |
| 15T-8         | 6.9           | 871.0             | Failed test    |                  |
| Cross ply ([0 | deg/90 de     | g] <sub>s</sub> ) |                |                  |
| 32-3          | 296.5         | 760               | 16.1           | 2.6              |
| 33-1          | 296.5         | 760               | 20.6           | 1.5              |
| 32-10         | 186.2         | 760               | 1005.4 (1)     |                  |
| 33-2          | 186.2         | 760               | 1001.9 (1)     |                  |

Table 5. (cont)

| Specimen      | Stress<br>MPa | Temperature                | Rupture life | Total<br>strain% |
|---------------|---------------|----------------------------|--------------|------------------|
| Cross ply ([C | deg/±45 d     | deg/90 deg] <sub>s</sub> ) |              |                  |
| 35–1          | 186.2         | 760                        | 7.3          | 2.7              |
| 45-3          | 186.2         | 760                        | 76.2         | 3.4              |
| 35-5          | 124.1         | 760                        | 1011.2 (1)   |                  |
| 45-5          | 124.1         | 760                        | 1011.3 (1)   |                  |

#### Notes:

- 1. Specimen unloaded prior to rupture.
- 2. Specimen failed at extensometer tip.



Figure 10. Creep stress as a function of rupture life for longitudinal SCS-6/Ti-24A1-11Nb composite. (Dashed lines represent a linear regression to constant temperature data with averaged slopes.)

Combining equation (3) with (1) produces an equation that describes the dependence of rupture life on stress and temperature

$$t_R = K / (A \sigma^b \exp(-Q/RT))^d$$
(4)

Figure 12 shows a plot of rupture life as a function of stress for 649°C, 760°C, and 871°C for the above model. The experimental data agree well, particularly at the lower temperature, with the model predictions. At 871°C the



Figure 11. Creep stress as a function of rupture life for transverse specimens of SCS-6/Ti-24A1-11Nb composite. (Dashed lines represent a linear regression fit to constant temperature data with averages slopes.)

TE88-5802



Figure 12. Rupture life versus creep stress of actual transverse SCS-6/Ti-24A1-11Nb experimental data (points) with a model based on a modified Monkman-Grant equation (lines).

matrix is extremely ductile and acts superplastic. This behavior may explain the lack of correlation between the model at that temperature and the experimental data.

Figures 13 and 14 show typical longitudinal and transverse creep fractures, respectively. In the longitudinal fracture the matrix is ductile and there is separation between the fibers and matrix. The transverse specimens demonstrate a tremendous amount of ductility.

Four specimens of each cross ply lay-up were selected for creep testing. Duplicate tests were conducted at two different stresses at  $760^{\circ}$ C. Figure 15 shows a comparison of the stress rupture lives of the cross ply specimens with longitudinal and transverse specimens tested at the same temperature. The slope of the stress-life line for the cross ply data is similar to that for longitudinal tests. Also, the relative creep strength of each configuration falls as expected, with the 0 deg/90 deg lay-up higher in strength than the 0 deg/ $\pm$ 45 deg/90 deg lay-up.

#### 4.2.2 SCS-6/Ti-25A1-10Nb-3V-1Mo

Table 6 lists the results of four creep rupture tests on longitudinal SCS-6/Ti-25Al-10Nb-3V-1Mo. Four creep tests on transverse specimens in the same system were also planned, but the transverse material proved impossible to test. One specimen was fractured in transportation to the test facility, and the remaining three broke during test setup. The behavior of the longitudinal specimens is similar to that of the composite with the Ti-24Al-11Nb matrix. Figure 16 illustrates the stress-life relationship for longitudinal composite specimens of each matrix. The Ti-25-10-3-1 matrix data falls on the Ti-24-11 curves. The creep strain versus time curves for these tests are in Appendix A.

#### 4.3 FATIGUE CRACK INITIATION BEHAVIOR

The panels from which fatigue specimens for Task II and VI were machined were inspected ultrasonically for internal flaws. No damaged areas were found on any panel. Specimen design and fabrication procedures were modified from those proposed originally. It was determined through research and experience that smaller specimens than those first designed can be used. The modified specimen design is shown in Figure 1. It has also become apparent that the tabs

Table 6.

Creep-rupture results for unidirectionally reinforced

SCS-6/Ti-25A1-10Nb-3V-1Mo composite.

| Specimen | Stress<br>MPa | Temperature<br>°C | Rupture life<br>hr | Total |
|----------|---------------|-------------------|--------------------|-------|
|          |               | Longitudina       | <u>1</u>           |       |
| 28L-1    | 620.6         | 649               | 58.4               | 1.3   |
| 30L-7    | 620.6         | 649               | 416.2              | 0.9   |
| 28L-8    | 503.3         | 760               | 11.4               | 3.4   |
| 30L-10   | 503.3         | 760               | 121.5              | 2.7   |



Figure 13. Typical creep fracture of a longitudinal SCS-6/Ti-24Al-11Nb composite. View (A) shows opposing halves of the fracture and (B) a higher magnification of the fracture surface.



(A)





TE88-5805

Figure 14. Typical creep fracture of a transverse SCS-6/Ti-24A1-11Nb composite (specimen 24T-9 tested at 760°C and 48.3 MPa). View (A) shows the general fracture structure and views (B) and (C) are higher magnification photos of the fracture.

attached to the grip area of the specimen are not necessarily required and can result in stress concentrations that cause failure in the grip region. For this reason, tabs were not used in testing. Instead, a reduced gage section was cut into each specimen. The radius of curvature in the shoulder area is that prescribed by the American Society of Testing and Materials (ASTM). The notched specimen (shown in Figure 17) is 2.5 cm wide rather than 3.8 cm and has a center hole that results in a  $K_t$  of approximately 2.5. All specimens were sectioned from the panels with a diamond saw. Gages were ground in with



Figure 15. Stress as a function of rupture life for SCS-6/Ti-24A1-11Nb composite showing the relationship between fiber lay-up configurations.



Figure 16. Stress versus creep life of SCS-6/Ti-25-10-3-1 composite compared with that of SCS-6/Ti-24-11.



Figure 17. Notched fatigue specimen for fiber-reinforced composite.

diamond grinding wheels to avoid the subsurface damage associated with wire electrodischarge machining (EDM). After grinding, all edges were longitudinally hand polished. Experience has shown that this preparation technique gives the most reproducible test behavior.

The test matrix for investigation of fatigue crack initiation in SCS-6/Ti<sub>3</sub>Al composite for Task II is given in Table 7. This matrix of 120 tests allowed the evaluation of the effect of several factors on the fatigue life of this material. The influence of fiber orientation on the fatigue life was studied by testing specimens with fibers at 0 deg (longitudinal), 90 deg (transverse), and 45 deg to the loading direction. The specimens manufactured with a center hole in the gage were tested to determine the notch sensitivity of the composite. Other factors that were examined include the effect of temperature, frequency, and R-ratio on fatigue life. High cycle fatigue tests were performed to determine the  $10^7$  cycle threshold stress.

The Task VI effort included 10 tests at 20 cpm, R = 0.10, and  $760^{\circ}C$  and under strain control of longitudinally oriented SCS-6/Ti-24A1-11Nb, and five LCF tests under the same conditions for each of two cross-ply configurations, [0 deg/90 deg]<sub>8</sub> and [0 deg/ $\pm$ 45 deg/90 deg]<sub>5</sub>. Thirteen high cycle fatigue tests were also performed at  $760^{\circ}C$  and 30 Hz in load control: five on longitudinal specimens, four on [0 deg/90 deg] cross-ply specimens, and four on [0 deg/ $\pm$ 45 deg/90 deg] specimens.

All the fatigue tests of unnotched specimens at a frequency of 20 cpm were run in strain control. The load versus time history was monitored to determine if any change in the compliance of the specimen could be detected when crack initiation occurred. Bolt hole specimens ( $K_t=2.5$ ) and those tested at 30 Hz were run in stress control. Dual diametral extensometry was employed to measure a compliance change in bolt hole specimens tested at 20 cpm. Periodic hysteresis loops were recorded for all tests performed under strain control. R-ratio referred to here is the ratio of the minimum to maximum controlling parameter (i.e., in strain control, the minimum to maximum strain). The tabulated data for all the fatigue initiation tests are given in Appendix B.

#### 4.3.1 Effect of Temperature and Orientation on Fatigue Initiation

Figure 18 shows the strain range versus life behavior of longitudinal specimens tested at 26°C, 316°C, 649°C, and 760°C. Both the 26°C and 316°C data fall on the same curve, but there is some significant reduction in strain range at 649°C and 760°C. This result differs markedly from that for 45 deg and transverse specimens shown in Figures 19 and 20, respectively. The strain range at a given fatigue life is higher at 649°C than at room temperature for both orientations. This could be due to the additive effect of a brittle matrix at room temperature and a weak fiber-matrix interface.

The room temperature behavior of specimens tested at different orientation is as expected. In Figure 21 the longitudinal specimens had the highest st.ain range as a function of fatigue life with 45 deg and transverse data falling lower. At 649°C, though, the longitudinal and 45 deg specimens show similar strain-life behavior, but the transverse data fall at a lower strain range (Figure 22). This indicates that the weak interface continues to play a roll in the specimen fatigue life even at 649°C.

Table 7. Fatigue initiation test matrix (number of tests/condition).

## Effect of temperature and orientation

|             | Fiber | r Orientation | <del></del> |
|-------------|-------|---------------|-------------|
| Temperature | 0 deg | 45 deg        | 90 deg      |
| 25°C        | 10    | 5             | 10          |
| 310°C       | 5     | _             | _           |
| 650°C       | 10    | 5             | 10          |

 $*R = 0.10, 20 \text{ cpm}, K_T = 1$ 

## Effect of notches

|             | Long        | itudinal               | Transverse  |                        |  |
|-------------|-------------|------------------------|-------------|------------------------|--|
| Temperature | $K_{T} = 1$ | $K_{\mathrm{T}} = 2.5$ | $K_{T} = 1$ | $K_{\mathrm{T}} = 2.5$ |  |
| 25°C        | 10          | 5                      | 10          | 5                      |  |
| 650°C       | 10          | 5                      | 10          | 5                      |  |

R = 0.10, 20 cpm

# Effect of R-ratio

| R-ratio | 25            | °C                     | 650°C                              |               |  |
|---------|---------------|------------------------|------------------------------------|---------------|--|
|         | $K_{T} = 1.0$ | $K_{\mathbf{T}} = 2.5$ | $K_{\underline{\mathbf{T}}} = 1.0$ | $K_{T} = 2.5$ |  |
| 0.10    | 10            | 5                      | 10                                 | 5             |  |
| 0.50    | 5             | 5                      | 5                                  | 5             |  |

\*20 cpm, longitudinal

## Effect of frequency

|                    | Orient           | ation             | Notch                  | es                    | T <u>empe</u>   | rature           | <u>R</u> =          | ratio            |
|--------------------|------------------|-------------------|------------------------|-----------------------|-----------------|------------------|---------------------|------------------|
| Frequency          | 650              | °F                | 650°                   | <u>F</u>              | $K_{T} =$       | 1.0              | 6                   | 50°C             |
| 20 cpm<br>1800 cpm | 0 deg<br>10<br>5 | 90 deg<br>10<br>5 | $K_{T} = 1.0$ $10$ $5$ | $K_{T} = 2.5$ $5$ $5$ | 25°C<br>10<br>5 | 650°C<br>10<br>5 | R = 0.10<br>10<br>5 | R = 0.50 $5$ $5$ |

(A total of 120 tests)

Room temperature low cycle fatigue (LCF) fractures showed little or no evidence of initiation and growth of fatigue cracks. A typical longitudinal fracture is shown in Figure 23 and a transverse fracture in Figure 24. Careful examination of the interfaces and surfaces showed no discernable initiation or growth regions. The 45 deg orientation was the same. However, at elevated



Figure 18. The effect of temperature on the LCF life of longitudinal SCS-6/Ti-24A1-11Nb composite.



Figure 19. The effect of temperature on the LCF life of 45 deg oriented composite.



Figure 20. The effect of temperature on LCF life of transverse SCS-6/ Ti-24A1-11Nb composite.



Figure 21. The effect of orientation on room temperatu = LCF behavior of SCS-6/Ti-24A1-11Nb composite.



Figure 22. The effect of orientation on the 649°C LCF life of SCS-6/ Ti-24A1-11Nb composite.

temperatures, fatigue initiation and growth is readily observable. 25 the fracture of a 649°C longitudinal specimen is shown. The specimen shows multiple initiations on both edges and corners. The initiations are as expected at surface connected fibers and the surrounding fracture is flat and featureless. The features shown in Figure 26 indicate the variety of initiation sites found in longitudinal specimens. The 45 deg specimen demonstrates similar fracture characteristics to the longitudinal one (Figure 27). The primary initiations occur at the surface of edges and corners and show the same flat fracture morphology. The similarity in initiation and growth of longitudinal and 45 deg specimens is probably a factor in the similarity of their S-N curves. Transverse specimens, though, do show an alternative fracture surface. In Figure 28 there is evidence of multiple fatigue initiations occurring at the fiber-matrix interface and growing into the matrix. The fatigue fracture is characteristically flat, but it emanates from dozens of initiation sites within the cross section of the specimen gage. The large number of initiation sites and relatively short distance required for crack growth may explain the poor fatigue behavior of the transverse composite at 649°C.

Figure 29 shows the strain range versus life plot of the  $[0 \text{ deg/90 deg}]_s$  and  $[0 \text{ deg/$\pm$45 deg/90 deg}]_s$  cross ply fatigue specimens compared with the curve fit to the unidirectional data at 760°C. The cross ply data fall very close to the unidirectional curve, although there are significant differences in the moduli and strengths of these lay-ups. This is an indication that matrix properties, not fiber orientation, determine the fatigue life of the composite system.



Figure 23. Room temperature LCF fracture of longitudinal SCS-6/Ti3Al composite. No definite initiation could be identified either at the surface (A) or at the fiber/matrix interface (B).





Figure 24. Room temperature fracture of transverse LCF specimen of SCS-6/Ti<sub>3</sub>Al composite. No definite initiation could be identified (A). Matrix fracture is brittle cleavage throughout fracture (B).





Figure 25. Longitudinal LCF fracture at 649°C showing several initiations at edge and corner (A) and a close-up of the edge initiation (B).



Figure 26. Typical LCF fractures of SCS-6/Ti-24Al-11Nb composite tested at 760°C. Edge initiations are marked with an arrow in (A) and at higher magnification in (B). Views (C) and (D) are low and high magnification photos of a face initiation.



Figure 27. Elevated temperature (649°C) fatigue fracture of an SCS-6/Ti<sub>3</sub>Al specimen with load applied at 45 deg to the fiber direction. The primary initiation occurred at the corner and secondary initiation extended along one face (A). Fatigue fracture is characteristically flat (B) and overload more broken (C).



shows initiation from the fiber/matrix interface (B). The fatigue fracture is flat and featureless (C), while overload areas are more ductile in appearance (D).



Figure 29. Strain range as a function of cycles to failure of the cross ply (points) and unidirectionally reinforced (line) SCS-6/Ti-24Al-11Nb composite.

Figures 30 and 31 show the normalized modulus and maximum stress as a function of fraction of fatigue life, respectively for typical 760°C tests. The change in modulus and maximum stress over the range of the fatigue life is plotted for the two longitudinal and two of each cross ply configuration with the longest lives. These figures indicate that with the exception of one [0 deg/90 deg]<sub>s</sub> specimen, most of the drop in modulus and maximum stress occurs in the first tenth of the fatigue life of a specimen. Also, there is very little difference in the behavior of a unidirectionally reinforced specimen compared with a cross ply specimen. It is possible that the change in compliance indicated by the initial drop in the modulus is due to cracking of the matrix. To verify this hypothesis, fatigue tests must be interrupted to inspect the specimen for cracks.

## 4.3.2 Effect of Notches on Fatigue Initiation

The effect of a notch on the LCF behavior of both longitudinal and transverse  $SCS-6/Ti_3Al$  was examined. Figure 32 illustrates the effect of a circular hole (nominal  $K_t=2.5$ ) on the stress range versus life behavior of longitudinal composite at  $26\,^{\circ}C$  and  $649\,^{\circ}C$ . An apparent reduction in fatigue life coincides with the presence of a bolt hole. This reduction in life is greater than that which would be expected in a cast monolithic material with a comparable notch. The effect of a notch on fatigue behavior may be expressed by a notch sensitivity factor, Q, which is calculated by the following equation:

$$Q = \frac{K_{\mathbf{F}} - 1}{K_{+} - 1}$$



Figure 30. Normalized tensile modulus versus fraction of low cycle fatigue life for the longest lived cross ply and unidirectionally reinforced SCS-6/Ti-24A1-11Nb composite.



Figure 31. Normalized maximum stress as a function of the fraction of fatigue life for the longest lived cross ply and unidirectionally reinforced fatigue specimens of SCS-6/Ti-24A1-11Nb.



Figure 32. The effect of notches  $(K_t = 2.5)$  on longitudinal LCF life of SCS-6/Ti-24A1-11Nb.

where  $K_F$  is the fatigue-notch factor or the ratio of the fatigue limit of unnotched specimens to that of notched specimens and  $K_t$  is the stress concentration factor. For longitudinal specimens tested at 26°C the value of Q is approximately 0.5 and at 649°C about 0.33. As a basis of comparison, a cast material that has a uniform distribution of inherent defects will have a Q of 0.1 or 0.2. Wrought metals, which, in general, have few defects, are more significantly affected by the presence of a notch and will have Q factors as high as 0.9 or 1.0.

The effect of the notch on transverse fatigue life is shown in Figure 33. It is evident that the bolt hole has no effect on the life of transverse specimens at room temperature. The effects of high residual stress in the matrix and a weak fiber-matrix interface, which runs across the gage and is a large fraction of the cross sectional area, far outweigh any detrimental effect of the bolt hole. At 649°C, however, there is a reduction in fatigue life due to the presence of the bolt hole. The Q associated with this effect is 0.45.

## 4.3.3 Effect of R-Ratio on Fatigue Initiation

The effect of R-ratio on longitudinal LCF behavior varies with temperature. The room temperature LCF curves for an R of 0.1 and an R of 0.5 are shown in Figures 34 and 35. The fatigue life is plotted versus the strain range of testing and the maximum strain, respectively. By comparing these plots it is evident that fatigue life at 26°C is controlled by the maximum strain of the cycle. Strain range has little or no effect. This could be due to the brittle nature of the matrix at this temperature.

At 649°C there is no correlation of fatigue life with either strain range (Figure 36) or maximum strain (Figure 37). There is some effect of strain range at the elevated temperature. This behavior is more typical of a mono-



Figure 33. The effect of notches on the transverse LCF behavior of SCS-6/Ti-24A1-11Nb.



Figure 34. The effect of R-ratio on 26°C LCF life plotted versus strain range for SCS-6/Ti-24A1-11Nb.



Figure 35. The effect of R-ratio on 26°C LCF lives plotted versus maximum strain.



Figure 36. The effect of R-ratio on 649°C LCF life plotted versus strain range for SCS-6/Ti-24A1-11Nb.



Figure 37. The effect of R-ratio on 649°C LCF life plotted as a function of maximum strain for SCS-6/Ti-24A1-11Nb.

lithic material than that at low temperature in that as R becomes more positive, or the mean strain increases, the measured fatigue limit is greater (Figure 37).

Figures 38 and 39 illustrate the same effect of R-ratio on notched longitudinal specimens. The  $26^{\circ}$ C data are plotted as two curves in Figure 39; however, there is not a great distinction between the R = 0.1 and R = 0.5 data when plotted against maximum stress.

### 4.3.4 Effect of Frequency on Fatigue Initiation

Fatigue crack initiation tests were performed at frequencies of 20 cpm and 1800 cpm (30 Hz) to determine the effect of frequency on life. Figure 40 shows a plot of longitudinal specimens tested at 26°C, 649°C, and 760°C at both frequencies. The stress range plotted for the LCF specimens was that measured during testing in strain control. The 30 Hz tests were performed in load control. At room temperature there is no clear evidence of any type of effect of frequency on fatigue life. The individual data points fall on similar curves. At elevated temperature, however, some effect of frequency is evident in the fact that the 30 Hz data at 649°C and 760°C fall on the same curve, but at the lower frequency, 0.33 Hz (20 cpm), the lives of the higher temperature test are below those at 649°C. Transverse specimens tested at 649°C also show no frequency effect (Figure 41). Frequency does not alter the lives of notched specimens either. Figure 42 shows bolt hole and smooth longitudinal specimens tested at 649°C, R of 0.1, and each frequency. The Q factor for these data is the same as that for the lower frequency tests. The higher R-ratio tests are similarly unaffected by frequency. In Figure 43 the R of 0.5 lives measured at 30 Hz fall on the same curve as those measured at 20 cpm. No indication of frequency effects were discovered.



Figure 38. The effect of R-ratio on notched longitudinal LCF specimens plotted versus stress range.



Figure 39. The effect of R-ratio on notched longitudinal LCF specimens plotted versus maximum stress.



Figure 40. The effect of frequency on longitudinal SCS-6/ Ti-24A1-11Nb fatigue life at 26°C and 649°C.



Figure 41. The effect of frequency on the transverse SCS-6/ Ti-24A1-11Nb fatigue life at 649°C.



Figure 42. The effect of frequency on notch longitudinal fatigue specimens.



Figure 43. The effect of frequency on longitudinal specimens tested at R = 0.1 and R = 0.5.

At 760°C high cycle fatigue tests were performed on unidirectional and crossply composite. The maximum stress as a function of cyclic life for the two cross ply configurations is shown in Figure 44. The curve fit to the unidirectional data is included for comparison. The cross ply specimens behaved as predicted. The [0 deg/90 deg] s lay-up possessed longer life than the [0 deg/  $\pm 45~\mathrm{deg/90~deg]_S}$  at the same maximum stress. The [0 deg/90 deg]<sub>S</sub> configuration has twice the number of plies oriented parallel to the load axis than the  $[0 \text{ deg}/\pm 45 \text{ deg}/90 \text{ deg}]_s$ , and, since strength is determined primarily by the fraction of 0 deg fibers, the [0 deg/90 deg]s composite should support higher stresses. If, however, fatigue behavior is controlled by the strainlife characteristics of the matrix, the data would fall on one curve when strain range is plotted as a function of life. Figure 45 shows that this is indeed the case. Strain range for the cross ply tests was calculated by dividing the stress range by the average modulus for each configuration. When both cross ply and unidirectionally reinforced tests are plotted together, the points fall on a single line. Thus, the fiber configuration controls the load carrying capability of the composite, but it is the response of the matrix to strain which controls the composite fatigue life.



Figure 44. Maximum stress versus cyclic life for cross ply (points) and unidirectionally reinforced (line) SCS-6/Ti-24A1-11Nb tested in high cycle fatigue.



Figure 45. Strain range versus cyclic life for cross ply (points) and unidirectionally reinforced (line) SCS-6/Ti-24A1-11Nb tested in high cycle fatigue.

## 4.4 FATIGUE CRACK GROWTH BEHAVIOR

The test matrix for the study of fatigue crack growth rate (FCGR) in SCS-6/Ti<sub>3</sub>Al composite is shown in Table 8. The matrix included 24 tests for the examination of the effects of temperature, orientation, R-ratio, and frequency on the fatigue crack growth behavior of this material system.

The tests were performed by Materials Behavior Research Corporation. Initially, two tests on bolt hole type specimens were performed to develop the required test techniques, and those results are plotted in Figure 46. But all 24 tests listed in the table were performed on single edge notch specimens machined from the second lot of composite. The longitudinal specimens were manufactured with a monolithic edge in which starter notches were machined. Crack length during testing was measured both optically and using potential drop techniques. Good agreement was found between the crack length reported by potential drop measurements and the optical measurements made on both longitudinal and transverse specimens.

Duplicate tests were run at each condition. As a test for the applicability of linear elastic fracture mechanics, a different stress level was used for each test of a set. Crack growth rate as a function of stress intensity was calculated using the solution for a SEN specimen with fixed ends as follows:

$$\Delta K = \Delta \sigma_{\infty} / \pi a \left[ \frac{5}{(20 - 13(a/w) - 7(a/w)^2)^{1/2}} \right]$$

# Table 8. Fatigue crack growth test matrix.

#### Number of tests/condition

## Effect of R-ratio

|                         |                | R-ratio |            |
|-------------------------|----------------|---------|------------|
| Temperature             | 0.10           | 0.50    | 0.80       |
| 25°C                    | 2              | 2       | 2          |
| 650°C                   | 2              | 2       | 2          |
| *200 cpm, longitudinal  |                |         |            |
| Effect of orientation a | nd temperature |         |            |
| Orientation             | 25°C           | 316°C   | 650°C      |
| Longitudinal            | 2              | 2       | 2          |
| Transverse              | 2              | 2       | 2          |
| *200 cpm, R = 0.10      |                |         |            |
| Effect of frequency at  | 650°C          |         |            |
|                         | 200 cpm        | 2 cpm   | 5 min dwel |

2

\*Longitudinal, R = 1.10

(A total of 24 tests)

and fit to a seven-point incremental exponential function. The crack growth rate data correlated well when plotted as a function of cyclic stress intensity (delta K). This is an indication that LEFM may indeed be applicable to this composite system. All of the crack growth data are tabulated in the Appendix C.

2

2

The stress intensity at fracture for all specimens is shown in Table 9. Some of the specimens were failed by increasing the load at the end of the test. The  $K_{\text{max}}$  measured for transverse specimens varies little (from 13.9 to 19.1 MPa/m) over the temperature range from 26°C to 649°C. It is highest at 316°C; an anomaly which is also evident in the crack growth data. The longitudinal data showed a greater degree of variation. At room temperature two specimens produced  $K_{\text{max}}$  greater than 150 MPa/m, but the remaining three averaged 109 MPa/m. Of 11 specimens tested at 649°C, one measured 121.3; another 110.3; four others averaged 102; and the remaining five were all lower than 75, averaging 70 MPa/m. There is no discernable pattern to this scatter in terms of specimen origin. Four of five of the lowest  $K_{\text{max}}$  valves were produced in the low frequency and dwell tests.

Table 9.
Stress intensity of fracture for FCGR tests.

| Spec No.   | Temp°C     | R-ratio     | Freqcpm                                | Orientationdeg | A mm  | Pmaxkg     | Kmax<br>MPa√m |
|------------|------------|-------------|----------------------------------------|----------------|-------|------------|---------------|
| OPCK IVI   | *CMP       | * + # C # A | ************************************** |                | 4.4   | I IIICIA K | 177 CAY III   |
| Transverse | 2          |             |                                        |                |       |            |               |
| A62-2      | 26         | 0.1         | 200                                    | 90             | 3.56  | 685        | 13.9          |
| A55-4      | 26         | 0.1         | 200                                    | 90             | 0.51  | 703        | *             |
| A61-2      | 316        | 0.1         | 200                                    | 90             | 17.53 | 223        | 17.1          |
| A58-2      | 316        | 0.1         | 200                                    | 90             | 14.99 | 291        | 19.1          |
| A55-2      | 649        | 0.1         | 200                                    | 90             | 18.57 | 188        | 16.1          |
| A62-4      | 649        | 0.1         | 200                                    | 90             | 20.83 | 147        | 15.4          |
|            |            | • • •       |                                        |                |       | ,          |               |
| Longitudir | <u>ıal</u> |             |                                        |                |       |            |               |
| ***A98-6   | 26         | 0.1         | 200                                    | 0              | 7.53  | 4295       | 157.7         |
| A100-6     | 26         | 0.1         | 200                                    | O              | 12.70 | 2163       | 107.6         |
| A101-6     | 26         | 0.5         | 200                                    | 0              | 10.26 | 2439       | 104.7         |
| A105-6     | 26         | 0.5         | 200                                    | 0              | 14.26 | 2924       | 150.7         |
| A103-1     | 26         | 0.8         | 200                                    | 0              | 8.38  | 3080       | 114.0         |
| ***A98-1   | 316        | 0.1         | 200                                    | 0              | 16.94 | 1994       | 150.1         |
| A104-6     | 316        | 0.1         | 200                                    | 0              | 13.97 | 2145       | 111.6         |
| A97-6      | 649        | 0.1         | 200                                    | 0              | 16.26 | 2088       | 121.3         |
| **A99-1    | 649        | 0.1         | 200                                    | 0              | 17.22 | 1298       | 100.2         |
| A104-1     | 649        | 0.5         | 200                                    | 0              | 13.72 | 2041       | 104.4         |
| A101-1     | 649        | 0.5         | 200                                    | 0              | 7.21  | 2943       | 100.0         |
| A97-1      | 649        | 0.8         | 200                                    | 0              | 8.56  | 2143       | 73.1          |
| A100-1     | 649        | 0.8         | 200                                    | 0              | 13.21 | 2133       | 110.3         |
| A99-6      | 649        | 0.1         | 2                                      | 0              | 7.39  | 2245       | 72.6          |
| A103-6     | 649        | 0.1         | 2                                      | 0              | 15.75 | 1767       | 103.5         |
| A105-1     | 649        | 0.1         | 2                                      | 0              | 12.70 | 1482       | 64.6          |
| A102-1     | 649        | 0.1         | 5 min.                                 | 0              | 7.62  | 2041       | 67.3          |
|            |            |             | dwell                                  |                | _     |            | _             |
| A102-6     | 649        | 0.1         | 5 min.                                 | 0              | 10.92 | 1483       | 71.1          |
|            |            |             | dwe11                                  |                |       |            |               |

\*Specimen A55-4 failed away from the notch

# 4.4.1 Effect of Temperature and Orientation on FCGR

As noted previously and shown in Figure 47, the transverse fatigue crack growth was lowest at 316°C. The room temperature and 649°C data are very similar. The brittle nature of Ti-24A1-11Nb at 26°C is probably the reason for the lack of toughness and rapid growth at that temperature. At 316°C the matrix has improved ductility, but the deleterious effects of elevated temperature on behavior are not yet active.

<sup>\*\*</sup>No monolithic edge

<sup>\*\*\*</sup>Undersize in thickness



Figure 46. Bolt hole FCGR tests performed on SCS-6/Ti3Al to develop test procedure.



Figure 47. Fatigue crack growth rate as a function of stress intensity for transverse SCS-6/Ti<sub>3</sub>A1.

Crack growth in the transverse orientation is significantly more rapid than in the longitudinal orientation over the entire range of temperature. Figure 48 shows longitudinal fatigue crack growth at 26, 316, and 649°C as well as curves representing the transverse data. It is evident that the transverse crack growth rate exceeds the longitudinal by five orders of magnitude.

The temperature dependence of the longitudinal FCG data is more typical than that of the transverse. The crack growth rate is lowest at 26°C and increases by an order of magnitude at 316°C and again at 649°C. In fact, it is extremely difficult to grow a crack across fibers at room temperature in this material system. The growth rate never was higher than 10<sup>-8</sup> m/cycle and a successful test was only achieved by precracking at elevated temperature. Under normal cycling at 26°C a crack will grow a short distance and stop and will not proceed until the stress range is increased. It is hypothesized that the crack proceeds in the matrix around the fibers and that these unbroken fibers bridge the crack tip and lower the stress there. This would explain the crack jumping forward with a higher applied stress. As each row of fibers is fractured, the crack moves ahead and is stopped at the next row.

At elevated temperatures, however, longitudinal crack growth behavior is similar to that of monolithic materials. Figure 49 shows a typical fracture at 649°C. The fiber "pull-out" is evidence of fiber fracture out of the plane of the matrix crack, and there is considerable oxidation on the fracture even at a frequency of 200 cpm.

#### 4.4.2 Effect of R-Ratio on FCGR

Figures 50 and 51 illustrate the effect of R-ratio on crack growth rate of longitudinal specimens at 26°C and 649°C, respectively. There is definitely



Figure 48. Fatigue crack growth rate of longitudinal SCS-6/Ti<sub>3</sub>Al compared with that of transverse composite.

an increase in crack growth rate with mean stress at both temperatures. It proved impossible to test specimens at R of 0.8 at 26°C. The specimens simply pulled in two. Figure 52 shows the correlation of fatigue crack growth rate with maximum stress intensity at 26°C. It is evident that the data from both R-ratios falls on the same curve when plotted versus maximum stress intensity. This result is expected since maximum strain was found to correlate fatigue initiation life at room temperature. Maximum stress intensity does not correlate crack growth rate at different R-ratios at 649°C.

## 4.4.3 Effect of Frequency on FCGR

The effect of frequency and, particularly, dwell at maximum stress is illustrated on Figure 53. A decrease in frequency from 200 cpm to 2 cpm shows only a slight effect at the highest stress intensity. However, the imposition of a 5-minute dwell at maximum stress on the cycle results in more than an order of magnitude increase in the crack growth rate. The fracture surface of the specimens subject to the dwell cycle are more heavily oxidized than the higher frequency tests (Figure 54), but there is no other notable difference in the fracture appearance.

#### 4.5 THERMAL MECHANICAL FATIGUE BEHAVIOR

The test matrix for thermal mechanical fatigue (TMF) testing of SCS-6/Ti<sub>3</sub>Al for the Task IV effort is given in Table 10. Also, 11 out-of-phase TMF tests cycled between 316°C and 760°C were conducted as part of the Task VI program expansion. Five tests were performed using longitudinal specimens and three of each cross-ply configuration,  $[0 \text{ deg}/90 \text{ deg}]_s$  and  $[0 \text{ deg}/\pm45 \text{ deg}/90 \text{ deg}]_s$ . In these 36 tests, the effects of a combination of a thermal and mechanical strain cycle applied to the composite were evaluated. Such factors as R-ratio,



TE89-4798



Figure 49. Fracture of a 649°C longitudinal fatigue crack growth specimen. The fracture surface is oxidized (B) and shows extensive fiber pullout.



Figure 50. Fatigue crack growth rate of longitudinal SCS-6/Ti $_3$ A1 at room temperature showing the variations with R-ratio.



Figure 51. Fatigue crack growth of longitudinal SCS-6/Ti3A1 at 649°C showing R-ratio effect.



Figure 52. Fatigue crack growth versus maximum stress intensity for R = 0.1 and 0.5 longitudinal specimens at room temperature.



Figure 53. Effect of frequency and dwell on the FCGR of longitudinal SCS-6/Ti $_3$ Al at 649°C.





Figure 54. Fracture of a 649°C longitudinal FCG specimen tested with a 5 minute hold at the peak stress in each cycle. Surface is more severely oxidized than that of higher frequency tests (B).

Table 10.

Thermal mechanical fatigue test matrix.

## Number of tests/condition

| Temperature range°C | <u>In-phase</u> | Out-of-phase | R-ratio |
|---------------------|-----------------|--------------|---------|
| 25-650              | 5               | 5            | 0.10    |
| 25-650              | 5               | -            | 0.50    |
| 316-650             | 5               | 5            | 0.10    |

\*Longitudinal, 0.67 cpm

(A total of 25 tests)

temperature range, and phasing were also considered. Tabulated results of each test are listed in Appendix D.

The tests were performed at Materials Behavior Research Corporation. In each test a specimen is subject to a thermal cycle until a stable cycle is achieved. The strain generated from expansion and contraction of the specimen with temperature change is measured and becomes the null point from which the mechanical strain is applied. All the tests were performed with a 90-sec cycle. The specimens were heated by induction and no active cooling was employed.

The fracture surfaces of the TMF tested to 760°C were highly oxidized. This oxidation made it impossible to determine the origin of the failures. There were, however, many small matrix cracks throughout the gage of the failed specimens. The presence of these cracks and the irregular plane of the fracture surface indicate that failure was probably caused by a linking of several of these matrix cracks.

## 4.5.1 Effects of Temperature Range on TMF

Three temperature ranges were tested: 316°C to 649°C, 93°C to 649°C, and 316°C to 760°C. (The last temperature cycle was only out of phase.) Figure 55 shows a plot of the lives of all the out-of-phase TMF specimens versus the applied mechanical strain range, and Figure 56 shows the in-phase TMF lines.

From these data it is evident that a greater temperature range has a deleterious effect on the lives of TMF specimens cycled out-of-phase. An increase in temperature span from 333°C to 556°C reduced the out-of-phase TMF life to one-third of its original value. This result is not surprising because in the out-of-phase cycle the maximum residual stress due to thermal mismatch is added to the maximum applied stress, making this cycle the most severe. Any increase in the temperature range will also increase the thermal mismatch stress. Maximum temperature in the cycle also plays a role in the out-of-phase TMF life. Comparison of the lives of those specimens cycled from 93°C to 650°C to those cycled from 315°C to 760°C indicates that the higher maximum temperature has a deleterious effect on life even though the temperature range of the latter specimens is smaller than that experienced by the former.



Figure 55. Mechanically applied strain as a function of life for thermal mechanical fatigue tests of SCS-6/Ti-24A1-11Nb composite.



Figure 56. Mechanically applied strain as a function of life for in-phase TMF tests of SCS-6/Ti-24A1-11Nb composite.

The in-phase TMF data show little effect of temperature range. The greater temperature range specimens have slightly better lives than those cycled from 316°C to 649°C. This could be due to the opposite of the effect described previously. The mismatch stresses are lowest at the maximum applied stress in an in-phase cycle, and a greater temperature range will be less severe than a smaller one.

Figures 57 and 58 illustrate the fracture surfaces of typical out-of-phase and in-phase test specimens cycled to a maximum temperature of 640°C, respectively. Both types of cycle produced specimens with clear initiation sites at the gage surfaces. All specimens showed multiple initiations primarily at corners. The initiation and growth areas showed heavy oxidation, but nothing as severe as that observed in the TMF specimens tested in Task VI to 760°C, shown in Figure 59. Very little evidence of general cracking throughout the gage length was observed at the lower maximum temperature of 649°C.

## 4.5.2 Effect of Lay-up on TMF

Three specimens in each cross ply lay-up were also tested in out-of-phase thermal mechanical fatigue from 316°C to 760°C. A plot of the data is shown in Figure 60. The cross ply lives fell slightly short of those measured for the unidirectional composite, but it is difficult to assess the significance of their relationship with such a small quantity of data.

## 4.5.3 Effect of Phasing on TMF

As previously discussed, the effect of phasing between temperature and mechanical strain is due to the thermal mismatch stresses created in the fiber and matrix of the composite. Isothermal fatigue tests performed in Task II and Task VI gave indications that the matrix strain-life behavior controls the strain-life behavior of the composite. Thus, the strain generated in the matrix due to the phasing of the TMF cycle should determine the TMF life of a specimen. Figure 61 illustrates the effects of both out-of-phase and in-phase TMF cycles on the constituents of the composite. During an out-of-phase cycle, the thermal mismatch strain cycle, of the matrix is in phase with the applied strain and thus these effects are additive. However, these strain cycles are 180 deg out of phase during an in-phase test; so the actual strain on the matrix is less severe while the fiber undergoes a more severe cycle.

If this hypothesis is correct, then two results will follow: (1) the lives of in-phase TMF specimens will be longer at the same applied strain range than isothermal LCF specimens and (2) the lives of out-of-phase TMF specimens should coincide with those of isothermal LCF specimens when total matrix strain is plotted. Figure 62 shows the in-phase data plotted with the 649°C LCF data, and there is an improvement in fatigue limit for the TMF specimens over the LCF. The improvement in life is not as great as might be expected. Figures 63 and 64 are similar plots of the out-of-phase TMF lives with the isothermal LCF data. The strain range plotted for the TMF data is the total matrix strain range based on the component of the thermal mismatch strain borne by the matrix. The equation by which this mismatch strain is calculated is as follows:

$$\varepsilon_{m} = \frac{\Delta \alpha \Delta T E_{f} V_{f}}{(V_{f} E_{f} + E_{m} - V_{f} E_{m})}$$



Figure 57. Fracture surface of SCS-6/Ti<sub>3</sub>Al TMF specimen cycled out-of-phase from 93°C to 650°C. Heavily oxidized initiation areas occur at the specimen surface (A) and (B), primarily at corners and along the face. The overload fracture is relatively flat and shows little fiber pullout (C).



Figure 58. Fracture of an in-phase SCS-6/Ti3Al TMF specimen tested from 93°C to 650°C. Multiple initiations occur at the surface of the gage (A). The fatigue fracture is oxidized (B), but overload shows a more ductile fracture (C).



Figure 59. Typical thermal fatigue fracture of SCS-6/Ti-24Al-11Nb composite:

(A) fracture surface (note fracture on several horizontal planes),

(B) oxidized matrix fracture, and (C) matrix cracks noted throughout gage area.



Figure 60. Mechanical strain range as a function of cyclic life for cross-ply (points) and unidirectionally reinforced SCS-6/Ti-24Al-11Nb composite.

where  $\Delta\alpha$  is the difference in thermal expansion between fiber and matrix;  $\Delta T$  is the temperature range;  $E_f$  and  $E_m$  are the modulus of fiber and matrix, respectively; and  $V_f$  is the volume fraction of fiber in the composite. The strain due to thermal mismatch was 0.22% for the 93°C to 649°C cycle and 0.13% for the 316°C to 649°C cycle, and 0.16% for 316°C to 760°C cycle. In Figure 65 the TMF data fall on the LCF curve within the scatter of the LCF data. This indicates that total matrix strain does control the TMF life in an out-of-phase cycle. In Figure 64 the 760°C maximum temperature TMF data fall below the 760°C isothermal fatigue data. This is another indication that the higher maximum temperature plays a significant role in TMF life.

## 4.5.4 Effect of R-Ratio on TMF

Five specimens were tested at an R-ratio of 0.5 and with an in-phase cycle from 93°C to 649°C. The data are illustrated in Figure 55. The higher R-ratio did have a detrimental effect on the life of the composite specimens when compared with the R of 0.1 data for the same cycle, but the effect was less severe than expected. However, the most interesting result of the combination of a high R-ratio with an in-phase cycle was the lack of fatigue failure. Of these five specimens, only one failed after a substantial number of fatigue cycles. Three specimens did not fail in 10,000 cycles, and a fourth failed on the second cycle. The total strain to which these specimens were subjected was high, from 0.70% to 1.0% maximum strain. The only fatigue failure was measured on the specimen cycled from 0.475% to 0.95% strain.

It is probable that applied strain range was offset by the thermal mismatch strain with the result being that the matrix was subject to a strain cycle



Figure 61. Schematic representation of the strain produced in fiber and matrix by in-phase and out-of-phase TMF cycles.

below its fatigue limit. Failure may only occur when fiber damage is severe and not due to matrix fatigue at all. There was evidence of fiber damage at these high maximum strains. Figure 65 shows the initial cycles of specimen 60-1. This is typical of observations in the other four specimens. In the first cycle several incidences of sharp drops in load occurred. These are not due to extensometer slip or any other testing artifact, but appear to indicate local fiber breakage. One percent strain is near the limit of what the SCS-6 fiber can withstand, and it is possible that these load drops are failures of one or two weaker fibers. Nondestructive evaluation (NDE) of the unfailed specimens did not reveal these broken fibers, however. Fatigue failure may only occur in these conditions if a sufficient amount of local damage is done in the first cycles from which to propagate a fatigue crack.



Figure 62. Applied strain range as a function of life for both in-phase TMF and isothermal LCF specimens.



Figure 63. Total matrix strain as a function of cycles to failure for out-of-phase TMF plotted with isothermal LCF at 649°C.



Figure 64. Total matrix strain as a function of cycles to failure for out-of-phase TMF plotted with isothermal LCF at 760°C.



Figure 65. Typical hysteresis loops for the startup of an in-phase,  $R=0.5~\mathrm{TMF}$  test. Note the load drops that occur in the first cycle.

#### V. CONCLUSIONS

The following conclusions may be drawn from the preceding discussion:

- o Rule-of-mixtures tensile strength has been achieved in the SCS-6/Ti<sub>3</sub>Al composite system.
- o Transverse stress-rupture properties have been modeled empirically in the temperature range of interest.
- o Isothermal and thermal mechanical fatigue properties have been measured to 760°C.
- o Matrix strain-life behavior controls the fatigue and thermal mechanical fatigue life of this composite system.
- o Fatigue initiation life decreases at temperatures above 316°C for longitudinally oriented material, but improves for specimens oriented at 45 deg or transverse to the load axis.
- o The LCF behavior of longitudinal and 45 deg specimens is equivalent at 649°C.
- o Longitudinal composite shows a notch sensitivity at room and elevated temperatures on the same order of a cast monolithic material (Q = 0.2 at  $26^{\circ}C$  and 0.15 at  $649^{\circ}C$ ).
- o Transverse composite demonstrates no notch sensitivity.
- o At room temperature, longitudinal fatigue tests performed at different R-ratios correlate with maximum strain.
- o At 649°C, fatigue life does not correlate with maximum strain or strain range. As mean strain increases, so does the fatigue limit.
- o Frequency has no discernible effect on the fatigue initiation life of SCS-6/Ti<sub>3</sub>Al composite at room temperature.
- o Higher frequency improves the elevated temperature fatigue life of longitudinal SCS-6/Ti-24Al-11Nb composite.
- o Linear elastic fracture mechanics correlates the fatigue crack growth behavior of SCS-6/Ti<sub>3</sub>Al composite.
- o Longitudinal composite demonstrates fracture toughness from 150 to 110 MPa/m at room temperature and from 120 to 70 MPa/m at 649°C.
- o Transverse composite shows the lowest crack growth rate and highest fracture toughness at 316°C when compared to 26°C and 649°C.
- o Cracks do not readily grow across fibers at room temperature.
- o Cracks through transverse specimens propagate at a rate five orders of magnitude greater than those in longitudinal specimens.
- o Maximum stress intensity correlates fatigue crack growth of specimens of different R-ratio at 26°C.
- o The fatigue crack growth rate increases in longitudinal specimens at 649°C with a decrease in frequency from 2 cpm to a 5-minute dwell at maximum stress by more than an order of magnitude.
- o Out-of-phase TMF life is reduced with an increase in temperature range while in-phase life is increased.
- o A higher maximum temperature in an out-of-phase cycle, particularly 760°C compared to 649°C, decreases TFM life even with a less severe temperature range.
- o Out-of-phase TMF correlates with isothermal LCF at maximum temperature a 649°C when the total matrix strain range is considered.
- o The total matrix strain experienced in an out-of-phase TMF cycle to 760°C does not correlate with isothermal fatigue life at that temperature.
- o In-phase thermal mechanical fatigue limit is greater than that for isothermal LCF at maximum temperature.
- o In-phase, R = 0.50 TMF tests showed little or no fatigue damage.

# APPENDIX A

Task VI. Creep Rupture Data



### MATERIALS ENGINEERING DIVISION

3980 Rosslyn Drive, Cincinnati, Ohio 45209-1196 • Telephone 513-271-5100 Telex II: 810 461-2840 / EasyLink 6291-3788 FAX 513-271-9511

TO: Allison Gas Turbine

General Motors Corp.

Attn: Mary Lee Gambone W05 2001 South Tibbs Avenue Indianapolis, IN 46241

NUMBER: 1393-46793-1 DATE: December 28, 1988 AUTHORIZATION: H828595

Page 1 of 1

PROJECT: Creep Rupture Testing of (12) 8-Ply SiC/Ti Composite Sheet Specimens

Supplied and Identified by Allison Gas Turbine.

Nominal Gage Section: 1.8 x 7.6 x 29.7 mm Long

| MRAI<br>No. | Specimen<br>Ident. | Temp.<br>(℃) | Stress<br>(MPa) | Time $0.1$ | (hr)to | % Cre | ep of 1.0 | Rupture<br>Life<br>(hours) | Final<br>Creep<br>(%) | Elong. |
|-------------|--------------------|--------------|-----------------|------------|--------|-------|-----------|----------------------------|-----------------------|--------|
| C-52780     | 15L-11             | 649          | 558.9           | -          | _      | -     | -         | (a)                        | _                     | 4.4    |
| C-53822     | 26L-3              | 649          | 558.9           | 1.9        | 18     | 227   | -         | 467.2                      | -                     | 1.8    |
| C-53578     | 26L-2              | 649          | 524.0           | 0.5        | 1.2    | 207   | 720       | 752.4                      | 1.17                  | 1.9    |
| C-53044     | 16L-9              | 649          | 489.0           | 4.9        | 182    | -     | -         | 915.2 (b)                  | .288                  | -      |
| C-52990     | 16L-16             | 760          | 489.0           | .29        | 11     | 132   | -         | 187.2                      | -                     | 2.1    |
| C-53376     | 16L-3              | 760          | 454.1           | 2.1        | 17     | 147   | -         | 147.8                      | .553                  | 1.6    |
| C-53356     | 26L-1              | 760          | 454.1           | .01        | .12    | 1.7   | -         | 2.0                        | .551                  | (c)    |
| C-53776     | 15L-9              | 760          | 419.2           | (d)        | O.L.   | 10    | 99        | 99.5                       | 1.06                  | 1.7    |
| C-53035     | 15L-3              | 871          | 419.2           | .08        | 1.2    | -     | -         | 3.0                        | .345                  | 1.9    |
| C-53747     | 16L-21             | 871          | 384.2           | 0.3        | 1.1    | -     | -         | 2.5                        | •                     | .78    |
| C-53764     | 26L-4              | 871          | 349.3           | 0.8        | 3.0    | 13    | 24        | 24.8 (e)                   | 1.17                  | -      |
| C-53794     | 15L-6              | 871          | 314.4           | 0.2        | 0.9    | 5.1   | 16        | 30.5                       | 1.87                  | 3.0    |

## Notes:

- (a) Specimen failed approximately 3 minutes after full load was applied.
- (b) Specimen unloaded without failure at time shown.

- (c) Final elongation not available.
  (d) Specimen indicated 0.207% plastic deformation on loading.
  (e) Failed near extensometer clamp final elongation not measured.

Louis J. Fritz,

Creep, Stress Rupture & Tensile Testing

fw



## MATERIALS ENGINEERING DIVISION

3980 Rossiyn Drive, Cincinnati, Ohio 45209-1196 • Telephone 513-271-5100 Telex II: 810 461-2840 / EasyLink 6291-3788 FAX 513-271-9511

TO: Allison Gas Turbine

General Motors Corp. Attn: Mary Lee Gambone W05

2001 South Tibbs Avenue Indianapolis, IN 46241 NUMBER: 1393-46793-2 DATE: December 28, 1988 AUTHORIZATION: H828595

Page 1 of 1

PROJECT: Creep Rupture Testing of (12) 8-Ply SiC/Ti Composite Sheet Specimens

Supplied and Identified by Allison Gas Turbine.

Nominal Gage Section: 1.8 x 7.6 x 30.5 mm Long

| MRAI    | Specimen      | Temp. | Stress | Time | (hr)to | % Cree | ep of | Rupture<br>Life | Final<br>Creep | Elong. |
|---------|---------------|-------|--------|------|--------|--------|-------|-----------------|----------------|--------|
| No.     | Ident.        | (°C)  | (MPa)  | 0.1  | 0.2    | 0.5    | 1.0   | (hours)         | (2)            | (%)    |
| C-53040 | 25T-4         | 649   | 90.8   | (a)  | .01    | .27    | 1.3   | 1.7             | 1.07           | 0.8    |
| C-53377 | 25 <b>T-2</b> | 649   | 69.9   | .02  | .11    | .94    | 3.9   | 34.4            | 5.2            | 9.3    |
| C-53752 | 25T-5         | 649   | 55.9   | .19  | .59    | 2.9    | 8.4   | 64.2            | 6.0            | 7.3    |
| C-53829 | 24T-4         | 649   | 34.9   | 2.5  | 6.1    | 17     | 34    | 408.7           | -              | 12.2   |
| C-53793 | 24T-9         | 760   | 48.9   | .28  | . 42   | 0.8    | 1.4   | 12.7            | 17.8           | 18.6   |
| C-52773 | 15T-2         | 760   | 34.9   | .14  | .38    | 1.3    | 3.1   | 79.3            | _              | 12.1   |
| C-53579 | 24T-8         | 760   | 21.0   | .62  | 1.2    | 3.1    | 6.1   | 1000.6 (b)      | 61.3           | 76.6   |
| C-53823 | 25T-7         | 871   | 27.9   | .02  | .05    | .12    | .24   | 16.1            | -              | 124.7  |
| C-53836 | 15T-9         | 871   | 21.0   | -    | -      | -      | -     | (c)             | -              | -      |
| C-53837 | 15T-10        | 871   | 21.0   | .10  | .25    | .63    | 1.3   | 1008.0 (d)      | -              | -      |
| C-53012 | 24T-7         | 871   | 14.0   | .13  | .26    | .66    | 1.3   | 1079.7 (d)      | -              | -      |
| C-53372 | 15T-8         | 871   | 7.0    | -    | -      | -      | _     | (e)             | -              | -      |

### Notes:

- (a) Specimen indicated 0.134% plastic deformation on loading.
- Specimen unloaded without failure at time shown.
- (c) Void test; specimen broke while being loaded.
- (d) Specimen unloaded without failure; specimen broke while removing from test frame.
- (e) Void test; specimen broke while attaching extensometer.

Louis J. Fritz, Mawager

Creep, Stress Rupture & Tensile Testing

489.0 MPa 1 16L-9 649°C .2x-182 HRS SPECIMEN ND 1X-4.9 HRS . C53044 1393-46793



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

558.9 MPa . C43822 SPECIMEN ND 26L3 649°C .1x-1.9 HRS .2x-17.9 HRS .5x-227 HRS 1393-46793



METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive, Cincinnati, Ohio 45209 / (513) 271-5100

S . 2x-10.8 HRS . 5x-132 HRS PLASTIC CREEP ON LOADING 760°C C52990 SPECIMEN NO . 1x-. 29 HRS . 2x-10.8 .0481X 1393-46793

489.0 MPa



45209 / (513) 271-5100 Cincinnati. Ohio METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

524.0 MPa 1.0X-720 HRS 649°C 10 26L-2 .5%-207 HRS 46793 C53578 SPECIMEN NO .1X-.5 HRS .2X-1.2 HRS .53 1383-46793



Ohio 45209 / (513) 271-5100 Cinoinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

454.1 MPa . 5X-147 HRS 7**60°**C SPECIMEN NO 16L-3 HRS . 2X-16.6 HRS . CS3376 1393-46793



45209 / (513) 271-5100 0h1a Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

454.1 MPa . 5X-1. 7 HRS PLASTIC CREEP ON LOADING 760°C 26L-1 .1x-0.007 HRS .2x-0.12 HRS SPECIMEN NO 0. 072X **CS3356** 1393-46783



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Rosslyn Drive.

419.2 MPa 3776 SPECIMEN ND 15L-9 760°C 3L .2X-DL .5X-10.3 HRS 1.0X-99 HRS 0.207X PLASTIC CREEP DN LDADING 1383-46783 C53776 . 1x-DL



Ohio 45208 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

419.2 MPa 871°C S SPECIMEN NO 15L-3 871°C .1x-.08 HRS .2x-1.2 :4RS .4x PLASTIC CREEP ON LOADING . 0534x **CS3035** 1393-46793



45209 / (513) 271-5100 Oh 10 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Rosslyn Drive.



METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati, Ohio 45209 / (513) 271-5100

1-46793 C53764 SPECIMEN NO 26L-4 871°C 349.3 MPa 1X-0.78 HRS .2X-3.0 HRS .5X-12.7 HRS 1.0X-24 HRS 1393-46793 C53764



Cincinnati, Ohio 45209 / (513) 271-5100 METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

314.4 MPa .5x-5.1 HRS 1.0x-15.7 HRS SPECIMEN NO . 2X-0. 90 HRS C53794 HRS 1383-46783 . 1X-0.21



Cincinnati, Ohio 45208 / (513) 271-5100 METCUT RESEARCH ASSOCIATES INC. 3980 Rosslyn Drive.



### MATERIALS ENGINEERING DIVISION

3980 Rossiyn Crive, Cindulnati, Ohio 45209-1196 • Telephono 313-271-5100 Telex II: 810 461-2840 EasyLink 6291-3788 FAX 513-271-9511

TO: Allison Gas Turbine General Motors Corp.

Attn: Mary Lee Gambone W05 2001 South Tibbs Avenue

Indianapolis, IN 46241

NUMBER: 1393-46793-2 DATE: December 28, 1988 AUTHORIZATION: H828595

Page 1 of 1

PROJECT: Creep Rupture Testing of (12) 8-Ply SiC/Ti Composite Sheet Specimens

Supplied and Identified by Allison Gas Turbine.

Nominal Gage Section: 1.8 x 7.6 x 30.5 mm Long

| MRAI    | Specimen | Temp.       | Stress | Time | (hr)to | % Cree | ep of | Rupture<br>Life | Final<br>Creep | Elong. |
|---------|----------|-------------|--------|------|--------|--------|-------|-----------------|----------------|--------|
| No.     | Ident.   | <u>(°C)</u> | (MPa)  | 0.1  | 0.2    | 0.5    | 1.0   | (hours)         | (%)            | (7)    |
| C-53040 | 25T-4    | 649         | 90.8   | (a)  | .01    | .27    | 1.3   | 1.7             | 1.07           | 0.8    |
| C-53377 | 25T-2    | 649         | 69.9   | .02  | .11    | .94    | 3.9   | 34.4            | 5.2            | 9.3    |
| C-53752 | 25T-5    | 649         | 55.9   | .19  | .59    | 2.9    | 8.4   | 64.2            | 6.0            | 7.3    |
| C-53829 | 24T-4    | 649         | 34.9   | 2.5  | 6.1    | 17     | 34    | 408.7           | -              | 12.2   |
| C-53793 | 24T-9    | 760         | 48.9   | .28  | . 42   | 0.8    | 1.4   | 12.7            | 17.8           | 18.6   |
| C-52773 | 15T-2    | 760         | 34.9   | .14  | .38    | 1.3    | 3.1   | 79.3            |                | 12.1   |
| C-53579 | 24T-8    | 760         | 21.0   | .62  | 1.2    | 3.1    | 6.1   | 1000.6 (ъ)      | 61.3           | 76.6   |
| C-53823 | 25T-7    | 871         | 27.9   | .02  | .05    | .12    | .24   | 16.1            | -              | 124.7  |
| C-53836 | 15T-9    | 871         | 21.0   | -    | -      | -      | -     | (c)             | -              | ~      |
| C-53837 | 15T-10   | 871         | 21.0   | .10  | .25    | .63    | 1.3   | 1008.0 (d)      | -              | ~      |
| C-53012 | 24T-7    | 871         | 14.0   | .13  | .26    | .66    | 1.3   | 1079.7 (d)      | -              | -      |
| C-53372 | 15T-8    | 871         | 7.0    | -    | -      | -      | -     | (e)             | -              | ~      |

### Notes:

- (a) Specimen indicated 0.134% plastic deformation on loading.
- (b) Specimen unloaded without failure at time shown.
- (c) Void test; specimen broke while being loaded.
- (d) Specimen unloaded without failure; specimen broke while removing from test frame.
- (e) Void test; specimen broke while attaching extensometer.

Louis J. Fritz, Magager

Creep, Stress Rupture & Tensile Testing

fw

Edward Slattery

55.9 MPa 2. 0x-20 HRS 1. 0X-8. 4 HRS . 2x-0.59 HRS . 5x-2.9 HRS 1. 1383-46793 . 1X-0. 19 HRS



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

2X-11.5 HRS 69.9 MPa C53377 SPECIMEN ND 251-2 649°C . X-. 11 HRS .5X-.94 HRS 1X-3.9 HRS 0.052X PLASTIC CREEP ON LOADING 1383-46783 .1X-.02 HRS



45209 / (513) 271-5100 OP 10 Cincinnati. ETCUT RESEARCH ASSOCIATES INC. 980 Roselyn Drive.

.53040 SPECIMEN ND 25T4  $649^{\circ}$ C 90.8 MPa .2x-.01 HRS .5x-.27 HRS 1.0x-1.3 HRS .1338x PLASTIC CREEP ON LOADING C53040 . 1X-OL 1393-46793



Ohio 45209 / (513) 271-5100 METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati.

34.9 MPa 2. 0x-71 HRS 3 C53828 SPECIMEN ND 24T-4 649°C .2X-6.1 HRS .5X-17.2 HRS 1.0X-34 HRS 1393-46793



Cincinnati, Ohio 45209 / (513) 271-5100 METCUT RESEARCH ASSOCIATES INC. 3880 Roselyn Drive. Cincinnati

48.9 MPa 2. 0x-2. 7 HRS 33783 SPECIMEN ND 24T-9 760°C -. 42 HRS .5x-.80 HRS 1.0x-1.4 HRS 0.031x PLASTIC CREEP ON LOADING 760°C 3 C53793 SPECIMEN ND . 2x-. 42 HRS . 5x-. 80 HI 1383-46783 . 1X-. 28 HRS



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3880 Roselyn Drive. Cincinnati

34.9 MPa 2. 0x-6. 9 HRS SPECIMEN ND 15T-2 760°C . 2x-. 38 HRS C52773 1393-46793 . 1X-. 14 HRS



45209 / (513) 271-5100 Oh í o Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3880 Roselyn Drive, Cincinnoti

1000 IRS 21.0 MPa 2. 0x-11. 1 800 1.0x-6.1 HRS **24TB** 600 TIME (HOURS) . 5x-3. 1 HRS SPECIMEN NO 400 33 C53578 S 200 1383-46783 .1X-.62 HRS 60.0 50.0 40.0 30.0 20.02 10.0 0.0 **(X)** CREEP

0h1o 45208 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3880 Rosslyn Drive.





Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

21.0 MPa 2. 0X-2. 5 HRS 3 C53837 SPECIMEN NO 15T-10 871°C . 2x-0.25 HRS .5x-0.63 HRS 1.0x-1.3 HRS 1383-46783 .1x-0.10 HRS .;



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

14.0 MPa 2. 0x-2. 4 1. 0X-1. 3 HRS 33 C53012 SPECIMEN NO 24T-7 . 2X-0.26 HRS . 5X-0.66 HRS 1. 1393-46793 . 1X-0. 13 HRS . 2)



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati



#### MATERIALS ENGINEERING DIVISION

3980 Rosslyn Drive, Cincinnati, Ohio 45209-1196 ◆ Telephone 513-271-5100 Telex II: 810 461-2840 - EasyLink 6291-3788 - FAX J13-271-9511

TO: Allison Gas Turbine

General Motors Corp.

Attn: Mary Lee Gambone W05 2001 South Tibbs Avenue

Indianapolis, IN 46241

NUMBER: 1393-46793-3

DATE: December 28, 1988

AUTHORIZATION: H828595

Page 1 of 1

PROJECT: Creep Rupture Testing of (12) 8-Ply SiC/Ti Composite Sheet Specimens

Supplied and Identified by Allison Gas Turbine.

Nominal Gage Section: "t" x 7.6 x 30.5 mm Long

| MRAI    | Specimen<br>Ident. | Temp. | Stress<br>(MPa) | Time | (hr)to | % Cree | ep of | Rupture<br>Life<br>(hours) | Final<br>Creep<br>(%) | Elong. (%) |
|---------|--------------------|-------|-----------------|------|--------|--------|-------|----------------------------|-----------------------|------------|
| No.     |                    |       |                 | 0.1  | 0.2    | 0.5    | 1.0   |                            |                       |            |
| C-53960 | 28L-1              | 649   | 628.8           | 0.84 | 9.6    | -      | -     | 58.4                       | .355                  | 1.3        |
| C-54001 | 30L-7              | 649   | 628.8           | 1.3  | 28     | -      | -     | 416.2 (a)                  | .515                  | 0.9        |
| C-53994 | 28L-8              | 760   | 510.0           | 1.3  | 6.3    | -      | -     | 11.4                       | .326                  | 3.4        |
| C-54016 | 30L-10             | 760   | 510.0           | 0.52 | 4.8    | 49     | 121   | 121.5                      | 1.03                  | 2.7        |
| C-54069 | 32-3               | 760   | 300.4           | 0.17 | 1.7    | 16     | -     | 16.1                       | .502                  | 2.6        |
| C-54085 | 33-1               | 760   | 300.4           | 0.25 | 2.3    | -      | -     | 20.6                       | .429                  | 1.5        |
| C-54130 | 32-10              | 760   | 188.6           | 3.0  | 66     | -      | -     | 1005.4 (b)                 | .323                  | -          |
| C-54255 | 33-2               | 760   | 188.6           | 0.53 | 5.4    | -      | -     | 1001.9 (b)                 | .499                  | -          |
| C-54093 | 35-1               | 760   | 188.6           | 0.07 | 0.3    | 6.1    | 7.1   | 7.3                        | 1.20                  | 2.7        |
| C-54104 | 45-3               | 760   | 188.6           | 0.07 | 0.7    | 32     | 76    | 76.2                       | 1.34                  | 3.4        |
| C-54284 | 35-5               | 760   | 125.8           | 0.67 | 1.5    | 334    | -     | 1011.2 (b)                 | .579                  | -          |
| C-54283 | 45-5               | 760   | 125.8           | 0.37 | 2.8    | _      | -     | 1011.3 (b)                 | .463                  | -          |

Notes:

- (a) Specimen went 21°C over test temperature approximately 190 hours after start of test (returned to temperature in 3 hours).
- (b) Specimen unloaded without failure at time shown.

Louis J. Fritz, Manager

Creep, Stress Rupture & Tensile Testing

fw



45209 / (513) 271-5100 Ohto Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive.

628.8 MPa 30L-7 649°C .2X-28 HRS SPECIMEN NO . 1X-1.3 HRS C54001 1383-46793



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Reeslyn Drive. Cincinnati



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

760°C 510.0 MPa 1. 0X-121 HRS 30L-10 .5X-49 HRS SPECIMEN NO. 2X-4.8 HRS .46793 C54016 1393-46793



45209 / (513) 271-5100 0h10 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3880 Roselyn Drive.

1383-46783 C54068 SPECIMEN ND 32-3 760°C 300.4 MPa . 1x-0.17 HRS . 2x-1.7 HRS . 5x-16.0 HRS



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

300.4 MPa 0 33-1 760°C . 2X-2.3 HRS C54085 SPECIMEN NO . 1x-0.25 HRS . . 1393-46793



Ohio 45208 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

188.6 MPa 33-2 760°C .2x-5.4 HRS S SPECIMEN NO . 1X-0.53 HRS . C54255 1383-46793



Cincinnati, Ohio 45209 / (513) 271-5100 METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

35-1 760°C 188.6 MPa .5x-6.1 HRS 1.0x-7.1 HRS C54093 SPECIMEN ND HRS .2X-0.32 HRS . 1393-46793 . 1X-0.07



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

SPECIMEN NO 45-3 760°C 188.6 MPa .2x-0.73 HRS .5x-32 HRS 1.0x-76 HRS 1x PLASTIC CREEP ON LOADING 1-46793 C54104 .1x-0.07 HRS .2 1383-46793



Ohio 45209 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati

125.8 MPa C54284 SPECIMEN NO 35-5 760°C .1x-0.67 HRS .2x-1.5 HRS .5x-334 HRS 0.034x PLASTIC CREEP ON LOADING 1383-46783



Ohio 45208 / (513) 271-5100 Cincinnati. METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati



Ohio 45209 / (513) 271-5100 Cincinnati, METCUT RESEARCH ASSOCIATES INC. 3980 Roselyn Drive. Cincinnati



#### METCUT RESEARCH ASSOCIATES INC.

#### MATERIALS ENGINEERING DIVISION

3980 Rosslyn Drive, Cincinnati, Ohio 45209-1196 ● Telephone 513-271-5100 Telex II: 810 461-2840 / EasyLink 6291-3788 FAX 513-271-9511

TO: Allison Gas Turbine

General Motors Corp.

Attn: Mary Lee Gambone W05 2001 South Tibbs Avenue

Indianapolis, IN 46241

NUMBER: 1393-46793-4 DATE: December 28, 1988

AUTHORIZATION: H828595

Page 1 of 1

PROJECT: Creep Rupture Testing of (3) 8-Ply SiC/Ti Composite Sheet Specimens

Supplied and Identified by Allison Gas Turbine.

Nominal Gage Section: 1.5 x 7.6 x 29.7 mm Long

| MRAI<br>No. | Specimen<br>Ident. | Temp.<br><u>(℃)</u> | Stress<br>(MPa) | Time | (hr)to<br>0.2 | % Cree | ep of 1.0 | Rupture<br>Life<br>(hours) | Elong. |
|-------------|--------------------|---------------------|-----------------|------|---------------|--------|-----------|----------------------------|--------|
| -           | 28T-1              | -                   | -               | -    | _             | _      | -         | (a)                        | -      |
| C-53959     | 28T-2              | 760                 | 27.9            | -    | -             | -      | -         | (b)                        | -      |
| _           | 28T-3              | -                   | -               | _    | -             | -      | _         | (c)                        | -      |

Notes:

- (a) Void test; broke while preparing for testing.
- (b) Void test; broke while installing for test.
- (c) Void; was found broken in envelope.

Louis J. Fritz, Manager

Creep, Stress Rupture & Tensile Testing

fw

Edward Slatt

Supervisor

#### APPENDIX B

Task II. Fatigue Crack Initiation Data

### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89

### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6 .

AGT Engineer: GAMBONE

MBRC Job No.: 010-090A

P.O. No.: H838840

Vendor phone: (513)243-1722

ALPHA, X 10^-6/DEG.C: 0 STRAIN R-RATIO: .1 TEMPERATURE, DEG.C: 26

TEMPERATURE, DEG.C: 26
WAVEFORM: TRIANGULAR
FREQUENCY Hz: .33

SPECIMEN DESIGN: LONGITUDINAL Ni/2

1st CYCLE \* (Nf/2 if no Ni)

| •               | M           | EAT                 |       | IST CYCLE  |      | (Nt/2       | (Nt/2 lt no N1) |      |       |       |              |        |
|-----------------|-------------|---------------------|-------|------------|------|-------------|-----------------|------|-------|-------|--------------|--------|
|                 | Λ<br>C<br>H | TEST<br>TEMP<br>GPa | RNG%  | RNG<br>MPa |      | MAX<br>STRN |                 |      | STRN  |       | N5<br>CYCLES |        |
| A052-05         |             |                     |       | 969        |      | 0.590       | 1282            | 1179 | 0.680 | 724   | -0           | 724    |
| <b>A</b> 051-09 | 4           | 190                 | 0.700 | 1166       | 1097 | 0.745       | 1151            | 1032 | 0.600 | 7019  | -0           | 7019   |
| A052-07         | 4           | 190                 | 0.680 | 1243       | 1110 | 0.730       | 1172            | 1052 | 0.620 | 2950  | -0           | 2950   |
| <b>A</b> 074-02 | 4           | 179                 | 0.650 | 839        | 866  | 0.575       | 1011            | 895  | 0.560 | 8313  | -0           | 8313   |
| <b>A</b> 052-02 | 4           | 176                 | 0.645 | 1032       | 1003 | 0.681       | 764             | 607  | 0.430 | -0    | -0           | 104558 |
| <b>A</b> 071-02 | 4           | 181                 | 0.645 | 854        | 854  | 0.535       | 749             | 588  | 0.410 | -0    | -0           | 107476 |
| A074-03         | 4           | 190                 | 0.620 | 918        | 904  | 0.580       | 1088            | 919  | 0.570 | 3611  | -0           | 3611   |
| A099-05         | 10          | 197                 | 0.620 | 766        | 872  | 0.528       | 763             | 507  | 0.390 | -0    | 64540        | 100002 |
| A051-06         | 4           | 177                 | 0.600 | 764        | 781  | 0.475       | 931             | 808  | 0.530 | 69320 | 44700        | 69320  |
| A071-07         | 4           | 189                 | 0.560 | 755        | 778  | 0.450       | 747             | 542  | 0.400 | -0    | 86875        | 130607 |
| A051-04         | 4           | 184                 | 0.500 | 755        | 776  | 0.463       | 805             | 697  | 0.440 | -0    | 91410        | 103692 |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

<sup>\*\*\*</sup>ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

AUDI-05 CRACK DESC.: OG;S;-0.56;MULTIPLE INITIATIONS;---;--;P

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 25 CYCLES.

A051-09 CRACK DESC.: OG;S;+0.60;MULTIPLE INITIATIONS;---;P

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 7 CYCLES.

A052-07 CRACK DESC.: OG;S;+0.35;MULTIPLE INITIATIONS;---;--;P

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 7 CYCLES.

| A074-02 |                   | OG;S;-0.52;MULTIPLE INITIATIONS;;P+S                 |
|---------|-------------------|------------------------------------------------------|
|         | COMMENTS:         | LONGITUDINAL. STRAIN RANGE ATTAINED IN 25 CYCLES.    |
| A052-02 | CRACK DESC.:      | UNLOADED IN ONE PIECE.                               |
|         | COMMENTS:         | LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM     |
|         |                   | 0.62% TO 0.725% AT CYCLE 6. STRAIN RANGE ESTABLISHED |
|         |                   | AT CYCLE 7. STOPPED TEST - RUNOUT AT 104,558 CYCLES. |
| A071-02 | CRACK DESC.:      | UNLOADED IN ONE PIECE                                |
|         |                   | LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM     |
|         |                   | 0.53% TO 0.715% AT CYCLE 2. STRAIN RANGE ESTABLISHED |
|         |                   | AT CYCLE 3. STOPPED TEST - RUNOUT AT 107,476 CYCLES. |
| A074-03 | CRACK DESC.:      | OG; S; AT R.U.S.I.; MULTIPLE INITIATIONS;; P         |
|         |                   | LONGITUDINAL. STRAIN RANGE ATTAINED IN 9 CYCLES.     |
| A099-05 |                   | UNLOADED IN ONE PIECE                                |
|         | COMMENTS:         |                                                      |
|         | 001               | CYCLE. STRAIN RANGE ESTABLISHED AT 40 CYCLES.        |
|         |                   | STOPPED TEST - RUNOUT AT 100,002 CYCLES.             |
| A051-06 | CRACK DESC .      | OG;S;+0.60;MULTIPLE INITIATIONS;;-                   |
| NOOL OO |                   | LONGITUDINAL. STRAIN RANGE ATTAINED IN 60 CYCLES.    |
| A071-07 |                   | UNLOADED IN ONE PIECE                                |
| AU/I U/ | COMMENTS:         |                                                      |
|         | COMMENTS:         | 0.45% TO 0.52% AT CYCLE 2. STRAIN RANGE ATTAINED IN  |
|         |                   |                                                      |
|         | an 1 av 1 n n a a | 30 CYCLES. STOPPED TEST - RUNOUT AT 100,607 CYCLES.  |
| AU51-U4 |                   | UNLOADED IN ONE PIECE                                |
|         | COMMENTS:         | LONGITUDINAL. STRAIN RANGE ATTAINED IN 6 CYCLES.     |
|         |                   | POSSIBLE INDICATION OF NI AT CYCLE 79,230. STOPPED   |
|         |                   | TEST - RUNOUT AT 103,692 CYCLES.                     |
|         |                   |                                                      |

| TEM                                       | PERATURE                                                            | : 26 DEG.                                                                              | c.                                                                  |                                                                                        |                                                                    |                                                                                        | R                                                                  | -RATIG: .1                                                                             |
|-------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| PT.                                       | E @STAR'<br>STRESS<br>MPa                                           | T=189 GPa<br>STRAIN<br>%                                                               | E @STAR<br>STRESS<br>MPa                                            | T=190 GPa<br>STRAIN<br>%                                                               | E @STAI<br>STRESS<br>MPa                                           | RT=190 GPa<br>STRAIN<br>%                                                              | E @ST.<br>STRES:<br>MPa                                            | MEN A074-02<br>ART=17% GPa<br>S STRAIN                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 114<br>226<br>349<br>461<br>574<br>677<br>763<br>846<br>919<br>967  | 0.060<br>0.120<br>0.180<br>0.240<br>0.300<br>0.360<br>0.420<br>0.480<br>0.540<br>0.590 | 138<br>271<br>398<br>523<br>636<br>726<br>810<br>887<br>964<br>1097 | 0.070<br>0.140<br>0.210<br>0.280<br>0.350<br>0.420<br>0.490<br>0.560<br>0.630<br>0.745 | 128<br>260<br>390<br>520<br>644<br>742<br>831<br>914<br>1007       | 0.070<br>0.140<br>0.210<br>0.280<br>0.350<br>0.420<br>0.490<br>0.560<br>0.640<br>0.730 | 96<br>186<br>293<br>385<br>493<br>581<br>666<br>731<br>798<br>866  | 0.060<br>0.110<br>0.170<br>0.220<br>0.280<br>0.330<br>0.390<br>0.440<br>0.500<br>0.575 |
| PT.                                       | E @STAR<br>STRESS<br>MPa                                            | T=176 GPa<br>STRAIN                                                                    | E @STAR<br>STRESS<br>MPa                                            | T=181 GPa<br>STRAIN<br>%                                                               | E @STAN                                                            | RT=190 GPa<br>STRAIN<br>%                                                              | E @STA<br>STRESA<br>MPa                                            | *                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 115<br>232<br>358<br>487<br>604<br>707<br>793<br>874<br>953<br>1003 | 0.070<br>0.140<br>0.210<br>0.280<br>0.350<br>0.420<br>0.490<br>0.560<br>0.630<br>0.681 | 78<br>169<br>259<br>355<br>450<br>541<br>624<br>696<br>758<br>854   | 0.050<br>0.100<br>0.150<br>0.200<br>0.250<br>0.300<br>0.350<br>0.400<br>0.450<br>0.535 | 108<br>202<br>299<br>396<br>487<br>575<br>653<br>718<br>773<br>904 | 0.050<br>0.100<br>0.150<br>0.200<br>0.250<br>0.300<br>0.350<br>0.400<br>0.450<br>0.580 | 102<br>198<br>295<br>392<br>492<br>581<br>661<br>729<br>816<br>872 | 0.050<br>0.100<br>0.150<br>0.200<br>0.250<br>0.300<br>0.350<br>0.400<br>0.470<br>0.528 |
| PT.                                       | E @STAR<br>STRESS<br>MPa                                            | T=177 GPa                                                                              | E @STAR<br>STRESS<br>MPa                                            | T=189 GPa<br>STRAIN                                                                    | E @STA                                                             | *                                                                                      |                                                                    |                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 88<br>174<br>269<br>362<br>454<br>543<br>625<br>696<br>751<br>781   | 0.050<br>0.100<br>0.150<br>0.200<br>0.250<br>0.300<br>0.350<br>0.400<br>0.440<br>0.475 | 78 149 246 341 419 494 582 660 717                                  | 0.040<br>0.080<br>0.130<br>0.180<br>0.220<br>0.260<br>0.310<br>0.360<br>0.400<br>0.450 | 77<br>154<br>227<br>307<br>379<br>449<br>519<br>589<br>648<br>776  | 0.040<br>0.080<br>0.120<br>0.160<br>0.200<br>0.240<br>0.230<br>0.320<br>0.360<br>0.463 |                                                                    |                                                                                        |

### LCF SPECIMEN FINAL DATA SUMMARY: 05-22-89

## AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6 ALLOY

ALPHA, X 10^-6/DEG.C: 0 STRAIN R-RATIO: .1 TEMPERATURE, DEG.C: 26 WAVEFORM: TRIANGULAR FREQUENCY Hz: .33 AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090A

P.O. No.: H838840

SPECIMEN DESIGN: 45° Ni/2

|                  | м      | r at         | E AT   |       | 1st CYCLE (Nf/2 if no Ni) |        |       | no Ni) |       |      |              |              |
|------------------|--------|--------------|--------|-------|---------------------------|--------|-------|--------|-------|------|--------------|--------------|
| SPECIMEN<br>ID   | A<br>C | TEST<br>TEMP | . STRN | RNG   |                           | STRN   | RNG   | STSS   |       |      | N5<br>CYCLES | Nf<br>CYCLES |
| A106-10          | 2      | 112          | 0.240  | -0    | -0                        | 000    | -0    | -0     | 000   | -0   | -0           | -0           |
| <b>A</b> 106-11  | 7      | 128          | 0.220  | 38    | 64                        | 0.050  | - 284 | 303    | 0.220 | 21   | -0           | 24           |
| A106-08          | 4      | 128          | 0.200  | 248   | 273                       | 0.211  | 238   | 244    | 0.190 | 3180 | 3200         | 4220         |
| <b>A</b> 106-07b | 1      | 138          | 0.180  | 229   | 256                       | 0.188  | 240   | 273    | 0.170 | 2860 | -0           | 2962         |
| <b>A</b> 106-09  | 2      | 128          | 0.160  | 205   | 224                       | 0.172  | 205   | 212    | 0.160 | -0   | -0           | 100022       |
| A106-07a         | 4      | 127          | 0.120  | 152   | 166                       | 0.127  | 147   | 113    | 0.120 | -0   | -0           | 100124       |
| * MAXIMUM        | S      | TRAIN        | WAS NO | T ACH | IEVED                     | IN THE | FIRST | CYCL   | E.    |      |              |              |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

A106-10 CRACK DESC.: AT R.U.S.I. - SEE COMMENTS

COMMENTS: 45 DEGREE ORIENTATION. SPECIMEN FAILED AT 0.253%,

293 MPa BEFORE REACHING DESIRED MAX STRAIN OF 0.267%.

A106-11 CRACK DESC.: IG; I & S; MULTI.INITS. ON MULTI.PLANES; ---; P+S

COMMENTS: 45 DEGREE ORIENTATION. STRAIN RANGE ATTAINED IN 10

CYCLES.

A106-08 CRACK DESC.: OG; S; MULTIPLE INITIATIONS ON MULTIPLE PLANES; ---; P+5

COMMENTS: 45 DEGREE ORIENTATION. STRAIN RANGE ATTAINED IN 6

CYCLES.

A106-07b CRACK DESC.: OG;S;+0.32;MULTI.INITS.;---;P+S

COMMENTS: 45 DEGREE ORIENTATION. PART 2 OF 2: RELOADED AFTER SPECIMEN WAS A RUNOUT AT 0.12% PER INSTRUCTIONS OF

TEST ENGINEER. STRAIN RANGE ATTAINED IN 1 CYCLE.

A106-09 CRACK DESC.: UNLOADED IN ONE PIECE

45 DEGREE ORIENTATION. STRAIN RANGE ATTAINED IN 2 COMMENTS: CYCLES. STOPPED TEST - RUNOUT AT 100,022 CYCLES.
A106-07a CRACK DESC.: UNLOADED IN ONE PIECE

45 DEGREE ORIENTATION. PART 1 OF 1: STOPPED TEST -COMMENTS:

RUNOUT AT 100,124 CYCLES. RELOADED FOR PART 2 PER INSTRUCTIONS OF TEST ENGINEER. STRAIN RANGE ATTAINED

IN 1 CYCLE.

TEMPERATURE: 26 DEG.C.

| R-R | AΤ | 10: | .1 |
|-----|----|-----|----|
|-----|----|-----|----|

| PT. | E @START | MA106-10<br>C= 0 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A106-11<br>T= 0 GPa<br>STRAIN | SPECIME<br>E @STAB<br>STRESS<br>MPa | EN A106-08<br>RT= 0 GPa<br>STRAIN | SPECIM<br>E @STA<br>STRESS<br>MPa |       |
|-----|----------|--------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-------|
|     | 22       | 0 020                          | 6                                   | 0.005                           | 27                                  | 0.020                             | 29                                | 0.020 |
| T   | 23       | 0.020                          | -                                   |                                 |                                     |                                   |                                   |       |
| 2   | 46       | 0.040                          | 13                                  | 0.010                           | 52                                  | 0.040                             | 58                                | 0.040 |
| 3   | 70       | 0.060                          | 19                                  | 0.015                           | 78                                  | 0.060                             | 85                                | 0.060 |
| 4   | 95       | 0.080                          | 26                                  | 0.020                           | 104                                 | 0.080                             | 112                               | 0.080 |
| 5   | 120      | 0.100                          | 32                                  | 0.025                           | 130                                 | 0.100                             | 139                               | 0.100 |
| 6   | 145      | 0.120                          | 39                                  | 0.030                           | 156                                 | 0.120                             | 167                               | 0.120 |
| 7   | 157      | 0.130                          | 45                                  | 0.035                           | 181                                 | 0.140                             | 193                               | 0.140 |
| 8   | 169      | 0.140                          | 51                                  | 0.040                           | 207                                 | 0.160                             | 221                               | 0.160 |
| 9   | 182      | 0.150                          | 58                                  | 0.045                           | 240                                 | 0.185                             | 233                               | 0.170 |
| 10  | 195      | 0.161                          | 64                                  | 0.050                           | 273                                 | 0.211                             | 256                               | 0.188 |

|     |          | N A106-09 |                    | N A106-07          |
|-----|----------|-----------|--------------------|--------------------|
|     | E @START |           | E @STAR'<br>STRESS | T= 0 GPa<br>STRAIN |
| PT. | MPa      | 3 IRAIN   | MPa                | *                  |
|     |          |           |                    |                    |
| 1   | 14       | 0.010     | 39                 | 0.030              |
| 2   | 29       | 0.020     | 51                 | 0.040              |
| 3   | 54       | 0.040     | 64                 | 0.050              |
| 4   | 79       | 0.060     | 77                 | 0.060              |
| 5   | 104      | 0.080     | 90                 | 0.070              |
| 6   | 130      | 0.100     | 103                | 0.080              |
| 7   | 156      | 0.120     | 116                | 0.090              |
| 8   | 181      | 0.140     | 129                | 0.100              |
| 9   | 209      | 0.160     | 142                | 0.110              |
| 10  | 224      | 0.172     | 166                | 0.127              |

### Material's Benavior Research Corporation TABLE I

#### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89

#### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6

ALPHA, X 10^-6/DEG.C: 0 STRAIN R-RATIO: .1 TEMPERATURE, DEG.C: 26 WAVEFORM: TRIANGULAR AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090A P.O. No.: H838840

FREQUENCY Hz: .33

SPECIMEN DESIGN: TRANSVERSE Ni/2

| м                 | E AT | : АТ         |                    | 1st CYCLE          |                  | (Nf/2 if no Ni)    |                    |                    |              |              |              |  |  |
|-------------------|------|--------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------|--------------|--------------|--|--|
| A<br>SPECIMEN C   | TEST | STRN<br>RNG% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | ELAST<br>STRN<br>% | Ni<br>CYCLES | N5<br>CYCLES | Nf<br>CYCLES |  |  |
| A056-03 5         | 143  | 0.150        | -0                 | -0                 | 000              | -0                 | -0                 | 000                | -0           | -0           | -0           |  |  |
| A057-06 13        | 138  | 0.140        | 253                | 212                | 0.156            | 187                | 207                | 0.140              | 157          | -0           | 157          |  |  |
| <b>A</b> 056-11 5 | 157  | 0.130        | 189                | 200                | 0.132            | 198                | 206                | 0.130              | 566          | -0           | 591          |  |  |
| A058-05 13        | 132  | 0.120        | 159                | 170                | 0.133            | 157                | 136                | 0.120              | 28060        | -0           | 31693        |  |  |
| A062-06 3         | 133  | 0.120        | 110                | 133                | 0.099            | 161                | 159                | 0.120              | -0           | -0           | 100154       |  |  |
| A057-05 2         | 126  | 0.110        | 136                | 149                | 0.118            | 133                | 149                | 0.110              | -0           | -0           | 100222       |  |  |
| A056-05 4         | 131  | 0.100        | 8 4                | 93                 | 0.074            | 126                | 165                | 0.100              | 41840        | -0           | 42112        |  |  |
| A057-03 1         | 135  | 0.100        | 135                | 144                | 0.110            | 133                | 131                | 0.100              | -0           | -0           | 100470       |  |  |
| A057-01 7         | 143  | 0.090        | 125                | 146                | 0.100            | 119                | 95                 | 0.080              | -0           | 93665        | 100990       |  |  |
| <b>A</b> 056-07 5 | 143  | 0.070        |                    |                    | 0.078            |                    |                    | 0.070              | -0           | 50715        | 101042       |  |  |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

<sup>\*\*\*</sup>ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'. \*\*\*

| A056-03 |              | OG; S; -0.55; MULTIPLE INITIATIONS;; P<br>TRANSVERSE. STRAIN RANGE ATTAINED IN 2 CYCLES AND<br>SPECIMEN FAILED IMMEDIATELY AFTERWARDS AT A MAX<br>STRESS OF 232 MPa, MAX STRAIN OF 0.167%. |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A057-06 | CRACK DESC.: | OG;S;+0.50;MULTIPLE INITIATIONS;;P                                                                                                                                                         |
|         | COMMENTS:    | TRANSVERSE. STRAIN RANGE ATTAINED IN / CYCLES.                                                                                                                                             |
| A056-11 | CRACK DESC.: | OG; I&S -0.75; MULTIPLE INITIATIONS;; P+3                                                                                                                                                  |
|         | COMMENTS:    | TRANSVERSE. STRAIN RANGE ESTABLISHED AT 55 CYCLES.                                                                                                                                         |

CRACK DESC.: OG; S; -0.40; MULTIPLE INITIATIONS; ---; P+S A058-05 TRANSVERSE. STRAIN RANGE ATTAINED ON 1st CYCLE. COMMENTS: CRACK DESC.: UNLOADED IN ONE PIECE A062-06 TRANSVERSE. STRAIN RANGE ESTABLISHED AT 60 CYCLES. COMMENTS: STOPPED TEST - RUNOUT AT 100,154 CYCLES. A057-05 CRACK DESC.: UNLOADED IN ONE PIECE. TRANSVERSE. STRAIN RANGE ATTAINED IN 2 CYCLES. COMMENTS: STOPPED TEST - RUNOUT AT 100,222 CYCLES. A056-05 CRACK DESC.: OG;5;+0.30;---;0.00;0.12;P+S TRANSVERSE. STRAIN RANGE ATTAINED IN 18 CYCLES. ONE COMMENTS: HALF OF SPECIMEN WAS BROKEN (NOW IN THREE PIECES) WHILE UNLOADING FROM MACHINE AFTER FAILURE. A057-03 CRACK DESC.: UNLOADED IN ONE PIECE TRANSVERSE. EXTENSOMETER SLIPPED ON START-UP COMMENTS: APPLYING 109 MPa IN COMPRESSIVE STRESS, BUT DID NOT EXCEED ELASTIC LIMIT. STRAIN RANGE ATTAINED IN 2 CYCLES. STOPPED TEST - RUNOUT AT 100,470 CYCLES. A057-01 CRACK DESC.: UNLOADED IN ONE PIECE. TRANSVERSE. STRAIN RANGE ATTAINED ON 1st CYCLE. COMMENTS: STOPPED TEST - RUNOUT AT 100,990 CYCLES. A056-07 CRACK DESC.: UNLOADED IN ONE PIECE TRANSVERSE. STRAIN RANGE ATTAINED ON 1st CYCLE. COMMENTS: STOPPED TEST - RUNOUT AT 101,042 CYCLES.

TEMPERATURE: 26 DEG.C. R-RATIO: .1

|          | E @START                              | :=143 GPa                        | E @STAR                             | T=138 GPa                        | E @STA                                  | RT=157 GPa                                                           | SPECIMEN A058-05<br>E @START=132 GPa<br>STRESS STRAIN |                |  |
|----------|---------------------------------------|----------------------------------|-------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------|--|
| PT.      | MPa                                   | <b>%</b>                         | MPa                                 | %                                | MPa                                     | *                                                                    | MPa                                                   | *              |  |
| 1        | 18                                    | 0.010                            | 14                                  | 0.010                            | 15                                      | 0.010<br>0.020<br>0.030<br>0.040<br>0.060                            | 13                                                    | 0.010          |  |
| 2        | 33<br>48                              | 0.020                            | 42                                  | 0.030                            | 31                                      | 0.020                                                                | 26                                                    | 0.020          |  |
| 3        | 48                                    | 0.030                            | 56                                  | 0.040                            | 47                                      | 0.030                                                                | 39                                                    | 0.030          |  |
| 4        | 62                                    | 0.040                            | 83                                  | 0.060                            | 64                                      | 0.040                                                                | 51                                                    | 0.040          |  |
| 5        | 77<br>91<br>104                       | 0.050                            | 97                                  | 0.070                            | 94                                      | 0.060<br>0.075<br>0.090<br>0.105<br>0.120<br>0.132                   | 63                                                    | 0.050          |  |
| 6        | 91                                    | 0.060                            | 125                                 | 0.090                            | 118                                     | 0.075                                                                | 17                                                    | 0.060          |  |
| /        | 104                                   | 0.070                            | 139                                 | 0.100                            | 140                                     | 0.090                                                                | 103                                                   | 0.080          |  |
| 0        | 134                                   | 0.030                            | 100                                 | 0.120                            | 102                                     | 0.105                                                                | 150                                                   | 0.100          |  |
| 10       | 190                                   | 0.100                            | 212                                 | 0.130                            | 200                                     | 0.120                                                                | 170                                                   | 0.120          |  |
| 10       | 101                                   | 0.125                            | 2.1.2                               | 0.136                            | 200                                     | 0.132                                                                | 170                                                   | 0.133          |  |
|          |                                       |                                  |                                     |                                  |                                         |                                                                      |                                                       |                |  |
|          | SPECIMEN                              | N A062-06                        | SPECIME                             | N A057-05                        | SPECIM                                  | EN A056-05                                                           | SPECI                                                 | MEN A057-03    |  |
|          | E @START=133 GPa                      |                                  |                                     |                                  |                                         |                                                                      |                                                       |                |  |
|          | STRESS                                | STRAIN                           | STRESS                              | STRAIN                           | STRESS                                  | STRAIN                                                               | STRES                                                 | S STRAIN       |  |
| PT.      | MPa                                   | *                                | MPa                                 | *                                | MPa                                     | <b>&amp;</b>                                                         | MPa                                                   | %              |  |
|          |                                       |                                  |                                     |                                  |                                         |                                                                      |                                                       |                |  |
| 1        |                                       | 0.010                            |                                     | 0.010                            | 14                                      | 0.010<br>0.020                                                       | 11                                                    | 0.010          |  |
| 2        | 33                                    | 0.020                            | 27                                  | 0.020                            | 25                                      | 0.020                                                                | 26                                                    | 0.020          |  |
| 3        | 45<br>58<br>71<br>85                  | 0.030                            | 39                                  | 0.030                            | 38                                      | 0.020<br>0.030<br>0.040<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070 | 38                                                    | 0.030          |  |
| 4        | 28                                    | 0.040                            | 51                                  | 0.040                            | 51                                      | 0.040                                                                | 51                                                    | 0.040          |  |
| <b>5</b> | /1                                    | 0.050                            | 7.0                                 | 0.050                            | 65                                      | 0.050                                                                | 64                                                    | 0.050          |  |
| 7        | 00                                    | 0.060                            | 76                                  | 0.060                            | 72                                      | 0.055                                                                | 79                                                    | 0.060          |  |
| . 8      | 112                                   | 0.070                            | 102                                 | 0.070                            | 9.2                                     | 0.060                                                                | 105                                                   | 0.070<br>0.080 |  |
| 9        | 125                                   | 0.000                            | 102                                 | 0.000                            | 90                                      | 0.003                                                                | 124                                                   | 0.100          |  |
|          | 133                                   | 0.059                            | 149                                 | 0.100                            | 93                                      | 0.074                                                                | 1 4 4                                                 | 0.100          |  |
| 10       | 100                                   |                                  |                                     |                                  |                                         |                                                                      |                                                       | 0.110          |  |
|          |                                       |                                  |                                     | 0.110                            | ,,,                                     | 0.074                                                                | 777                                                   |                |  |
|          |                                       |                                  |                                     | 0.110                            | 33                                      | 0.074                                                                | 111                                                   |                |  |
|          |                                       | N A057-01                        |                                     |                                  | ,,                                      | 0.074                                                                | 111                                                   |                |  |
|          | SPECIMEN                              |                                  | SPECIME                             | N A056-07                        | ,,                                      | 0.074                                                                | 177                                                   |                |  |
|          | SPECIMEN<br>E @START<br>STRESS        | N A057-01<br>C=143 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS        | N A056-07<br>T=143 GPa<br>STRAIN | ,,,                                     | 0.074                                                                | 177                                                   |                |  |
| PT.      | SPECIMEN<br>E @START<br>STRESS<br>MPa | N A057-01<br>T=143 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A056-07<br>T=143 GPa<br>STRAIN | ,,,                                     | 0.074                                                                | 277                                                   |                |  |
| PT.      | SPECIMEN<br>E @START<br>STRESS<br>MPa | N A057-01<br>C=143 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A056-07<br>T=143 GPa<br>STRAIN | 33                                      | 0.074                                                                | 111                                                   |                |  |
| PT.      | SPECIMEN<br>E @START<br>STRESS<br>MPa | N A057-01<br>C=143 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A056-07<br>T=143 GPa<br>STRAIN | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.074                                                                | 111                                                   |                |  |
| PT.      | SPECIMEN<br>E @START<br>STRESS<br>MPa | N A057-01<br>T=143 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A056-07<br>T=143 GPa<br>STRAIN |                                         | 0.074                                                                |                                                       |                |  |

0.035

0.040

0.045

0.065

0.078

0.070

8

9

10

61

76

89

103

118

133

146

0.040 53

59

66

80

93

101

ەنت

0.050

0.080

0.090

0.100

0.060

### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89

### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6

ALPHA, X 10^-6/DEG.C: 6

STRAIN R-RATIO: .1

TEMPERATURE, DEG.C: 316

WAVEFORM: TRIANGULAR

AGT Engineer: GAMBONE

Vendor phone:(513)248-1722

MBRC Job No.: 010-090A

P.O. No.: H838840

FREQUENCY Hz: .33
SPECIMEN DESIGN: LONGITUDINAL \* Ni/2

|                 |        |       | <b>ድ አጥ</b> |       | 1st CYCLE          |             | (Nf/2 if no Ni) |        |               |       |              |              |
|-----------------|--------|-------|-------------|-------|--------------------|-------------|-----------------|--------|---------------|-------|--------------|--------------|
| SPECIMEN<br>ID  | A<br>C |       |             | RNG   | MAX<br>STSS<br>MPa | MAX<br>STRN | RNG             | STSS   | ELAST<br>STRN | -     | N5<br>CYCLES | Nf<br>CYCLES |
| A071-05         | 4      | 193   | 0.750       | 1044  | 1042               | 0.670       | -0              | -0     | 000           | -0    | -0           | 45           |
| A071-10         | 5      | 176   | 0.750       | 840   | 885                | 0.565       | -0              | -0     | 000           | 0     | -0           | -0           |
| A052-06         | 5      | 188   | 0.700       | 922   | 960                | 0.620       | 1141            | 960    | 0.610         | 16810 | 20710        | 21817        |
| <b>A</b> 071-03 | 4      | 185   | 0.650       | 919   | 948                | 0.610       | 1051            | 893    | 0.570         | 36411 | -0           | 37988        |
| A052-04         | 3      | 185   | 0.620       | 915   | 912                | 0.567       | 1017            | 944    | 0.550         | 33560 | 46116        | 46120        |
| A097-05         | 2      | 187   | 0.580       | 712   | 781                | 0.440       | 949             | 855    | 0.510         | 60653 | 58440        | 60653        |
| * MAXIMUM       | 1 S    | TRAIN | WAS NO      | T ACH | IEVED              | IN THE      | FIRS'           | r CYCI | E.            | •     |              | 1 4 4        |

<sup>\*\*\*</sup>ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'. \*\*\*

| A071-05 | CRACK DESC.: | OG; I & S; -0.42; MULTIPLE INITIATIONS;; P+S         |
|---------|--------------|------------------------------------------------------|
|         | COMMENTS:    | LONGITUDINAL. RT E=198 GPa. STRAIN RANGE ATTAINED IN |
|         |              | 43 CYCLES. FAILED 2 CYCLES AFTER REACHING STRAIN     |
|         |              | RANGE AT 1231 MPa.                                   |

A071-10 CRACK DESC.: SEE COMMENTS

COMMENTS: LONGITUDINAL. RT E = 181 GPa. SPECIMEN SLIPPED FROM GRIPS BEFORE ATTAINING STRAIN RANGE; OVERLOADED

DURING RESTART. VOID TEST.

A052-06 CRACK DESC.: IG;S;+0.12;---;0.00;0.12;P+S COMMENTS: LONGITUDINAL. RT E = 196 GPa. STRAIN RANGE ATTAINED

IN 45 CYCLES.

A071-03 CRACK DESC.: IG; I&S; -0.23; MULTIPLE INITIATIONS; ---; ---; P+S COMMENTS: LONGITUDINAL. RT E = 191 GPa. STRAIN RANGE ATTAINED IN 8 CYCLES.

A052-04 CRACK DESC.: IG;S;+0.08; MULTIPLE INITIATIONS;---;---;P+S

COMMENTS: LONGITUDINAL. RT E = 190 GPa. STRAIN RANGE ATTAINED

IN 35 CYCLES.

A097-05 CRACK DESC.: IG; S; MULTIPLE INITIATIONS ON MULTIPLE PLANES; ---; ---; P+S

COMMENTS: LONGITUDINAL. RT E = 195 GPa. STRAIN RANGE

ESTABLISHED AT 160 CYCLES.

TEMPERATURE: 316 DEG.C. R-RATIO: .1

| PT. |      | N A071-05<br>C=193 GPa<br>STRAIN |     | N A071-10<br>T=176 GPa<br>STRAIN |     | N A052-06<br>T=188 GPa<br>STRAIN |     | EN A071-03<br>RT=185 GPa<br>STRAIN |
|-----|------|----------------------------------|-----|----------------------------------|-----|----------------------------------|-----|------------------------------------|
| 1   | 158  | 0.080                            | 171 | 0.100                            | 116 | 0.063                            | 116 | 0.060                              |
| 2   | 314  | 0.160                            | 262 | 0.150                            | 229 | 0.120                            | 229 | 0.120                              |
| 3   | 430  | 0.220                            | 352 | 0.200                            | 341 | 0.180                            | 343 | 0.180                              |
| 4   | 550  | 0.280                            | 444 | 0.250                            | 456 | 0.240                            | 456 | 0.240                              |
| 5   | 648  | 0.340                            | 533 | 0.300                            | 565 | 0.300                            | 565 | 0.300                              |
| 6   | 721  | 0.400                            | 619 | 0.350                            | 654 | 0.360                            | 656 | 0.360                              |
| 7   | 796  | 0.460                            | 689 | 0.400                            | 728 | 0.420                            | 729 | 0.420                              |
| 8   | 882  | 0.530                            | 748 | 0.450                            | 804 | 0.480                            | 798 | 0.480                              |
| 9   | 971  | 0.600                            | 820 | 0.510                            | 877 | 0.540                            | 869 | 0.540                              |
| 10  | 1042 | 0.670                            | 885 | 0.565                            | 960 | 0.620                            | 948 | 0.610                              |

|     |     | 1 A052-04<br>1=185 GPa<br>STRAIN |     | N A097-05<br>F=187 GPa<br>STRAIN |
|-----|-----|----------------------------------|-----|----------------------------------|
| PT. | MPa | *                                | MPa | %                                |
|     |     |                                  |     |                                  |
| 1   | 96  | 0.060                            | 125 | 0.060                            |
| 2   | 219 | 0.130                            | 234 | 0.120                            |
| 3   | 318 | 0.180                            | 310 | 0.160                            |
| 4   | 433 | 0.240                            | 385 | 0.200                            |
| 5   | 529 | 0.290                            | 460 | 0.240                            |
| 6   | 635 | 0.350                            | 537 | 0.280                            |
| 7   | 698 | 0.400                            | 609 | 0.320                            |
| 8   | 777 | 0.460                            | 685 | 0.360                            |
| 9   | 843 | 0.510                            | 740 | 0.400                            |
| 10  | 912 | 0.567                            | 781 | 0.440                            |

#### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89 ------

### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6 \_\_\_\_\_

ALPHA, X 10^-6/DEG.C: 12.3

STRAIN R-RATIO: .1

TEMPERATURE, DEG.C: 649

WAVEFORM: TRIANGULAR FREQUENCY Hz: .33

AGT Engineer: GAMBONE

Vendor phone: (513)248-1722

MBRC Job No.: 010-090A

P.O. No.: H838840

| SPECIMEN DE     |                                | ITUDINAL<br>1st CY | CLE *            | (Nf/:              | Ni/2<br>2 if 1     | no Ni)             |              |              |              |
|-----------------|--------------------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------|--------------|--------------|
| A<br>SPECIMEN C | TEST<br>TEMP. STRN<br>GPa RNG% |                    | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | ELAST<br>STRN<br>% | Ni<br>CYCLES | N5<br>CYCLES | Nf<br>CYCLES |
| A052-08 4       | 152 0.650                      | 949 992            | 0.720            | 935                | 900                | 0.620              | 953          | -0           | 953          |
| A052-10 11      | -0 0.600                       | -0 -0              | 000              | -0                 | -0                 | 000                | -0           | -0           | -0           |
| A071-09 10      | 151 0.600                      | 690 746            | 0.498            | 873                | 759                | 0.580              | 1700         | -0           | 1986         |
| A102-05 1       | 183 0.550                      | 869 927            | 0.553            | 946                | 933                | 0.520              | 480          | -0           | 522          |
| A071-04 5       | 148 0.500                      | 607 688            | 0.468            | 719                | 688                | 0.490              | -0           | -0           | 9794         |
| A060-09 11      | 170 0.480                      | 730 783            | 0.492            | 791                | 764                | 0.470              | 8255         | 8920         | 13343        |
| A054-04 4       | 166 0.450                      | 628 687            | 0.422            | 740                | 729                | 0.450              | 4700         | 5050         | 5077         |
| A054-05 5       | 172 0.450                      | 595 675            | 0.392            | 765                | 724                | 0.440              | 5570         | -0           | 5595         |
| A060-10 5       | 189 0.430                      | 476 600            | 0.330            | 750                | 717                | 0.400              | 8180         | 8271         | 8271         |
| A105-05 9       | 161 0.420                      | 591 651            | 0.411            | 659                | 619                | 0.410              | 17800        | 17240        | 19052        |
| A071-01 4       | 157 0.400                      | 505 546            | 0.370            | 534                | 472                | 0.340              | 69020        | 69040        | 100464       |
| A054-03 13      | -0000                          | -0 -0              | 000              | -0                 | -0                 | 000                | -0           | -0           | -0           |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

| A052-08 |                           | IG;S;+0.35;MULTIPLE INITIATIONS;;P+S LONGITUDINAL. RT E = 177 GPa. STRAIN RANGE ATTAINED IN 4 CYCLES.                                                                     |
|---------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A052-10 |                           | SYSTEM INSTABILITY PULLED SPECIMEN IN TWO DURING START WE LONGITUDINAL. VOID TEST.                                                                                        |
| A071-09 |                           | OG;S;+0.30;MULTIPLE INITIATIONS;;P+S LONGITUDINAL. RT E = 174 GPa. STRAIN RANGE ATTAINED IN 10 CYCLES. STRAIN POPPED OUT TO 0.78% SHORTLY AFTER TEST BEGAN.               |
| A102-05 | CRACK DESC.:<br>COMMENTS: | OG;S;+0.32;MULTIPLE INITIATIONS;;P+S LONGITUDINAL. RT E = 210 GPa. STRAIN RANGE ATTAINED AT 8 CYCLES.                                                                     |
| A071-04 |                           | OG;S;MULTIPLE INITIATIONS ON MULTIPLE PLANES;;P+S<br>LONGITUDINAL. RT E = 168 GPa. STRAIN RANGE ATTAINED<br>IN 22 CYCLES. Ni & N5 ARE NOT AVAILABLE DUE TO DISK<br>ERROR. |
| A060-09 | CRACK DESC.:<br>COMMENTS: | IG;S;MULTIPLE INITIATIONS;;P+S LONGITUDINAL. RT E = 194 GPa. STRAIN RANGE ATTAINED IN 4 CYCLES.                                                                           |
| A054-04 |                           | OG;S;-0.35;MULTIPLE INITIATIONS;;P+S LONGITUDINAL. RT E = 189 GPa. STRAIN RANGE ATTAINED IN & CYCLES.                                                                     |
| A054-05 | CRACK DESC.:<br>COMMENTS: | OG;S;+0.55;MULTIPLE INITIATIONS;;P<br>LONGITUDINAL. RT E = 200 GPa. STRAIN RANGE ATTAINED<br>IN 55 CYCLES.                                                                |
| A060-10 |                           | OG; S; MULTIPLE INITIATIONS ON MULTIPLE PLANES;; P+S LONGITUDINAL. RT E = 209 GPa. STRAIN RANGE ATTAINED IN 25 CYCLES.                                                    |
| A105-05 |                           | OG; S; QR.U.S.I.; MULTI.INITS. ON MULTI.PLANES;; P+S<br>LONGITUDINAL. RT E = 190 GPa. STRAIN RANGE ATTAINED<br>IN 11 CYCLES.                                              |
| A071-01 | COMMENTS:                 | UNLOADED IN ONE PIECE<br>LONGITUDINAL. RT E = 180 GPa. STRAIN RANGE ATTAINED<br>IN 9 CYCLES. STOPPED TEST - RUNOUT AT 100,464 CYCLES.                                     |
| A054-03 | CRACK DESC.:<br>COMMENTS: | SYSTEM INSTABILITY PULLED SPECIMEN IN TWO PIECES AT START LONGITUDINAL. VOID TEST.                                                                                        |

TEMPERATURE: 649 DEG.C. R-RATIO: .1

| PT.     | E @STAR<br>STRESS<br>MPa            | T=152 GPa<br>STRAIN<br>%         | E @STAR<br>STRESS<br>MPa     | T= N/A<br>STRAIN<br>%            | E @STA<br>STRESS<br>MPa     | RT=151 GPa<br>STRAIN<br>%                                                              | E @ST<br>STRES:<br>MPa | MEN A102-05<br>ART=183 GPa<br>S STRAIN |
|---------|-------------------------------------|----------------------------------|------------------------------|----------------------------------|-----------------------------|----------------------------------------------------------------------------------------|------------------------|----------------------------------------|
| 1       | 97                                  | 0.070                            | <del>-</del> 0               | -0.000                           | 77<br>155                   | 0.050<br>0.100<br>0.150<br>0.200<br>0.250<br>0.300<br>0.350<br>0.400<br>0.450<br>0.498 | 113                    | 0.050                                  |
| 3       | 301                                 | 0.140                            | -0<br>-0                     | -0.000                           | 232                         | 0.100                                                                                  | 200                    | 0.100                                  |
| 4       | 407                                 | 0.210                            | ~0                           | -0.000                           | 309                         | 0.200                                                                                  | 384                    | 0.130                                  |
| 5       | 513                                 | 0.350                            | -0                           | -0.000                           | 387                         | 0.250                                                                                  | 476                    | 0.250                                  |
| 6       | 614                                 | 0.420                            | -0                           | -0.000                           | 464                         | 0.300                                                                                  | 559                    | 0.300                                  |
| 7       | 712                                 | 0.490                            | -0                           | -0.000                           | 534                         | 0.350                                                                                  | 641                    | 0.350                                  |
| 8       | 804                                 | 0.560                            | -0                           | -0.000                           | 612                         | 0.400                                                                                  | 720                    | 0.400                                  |
| 9       | 891                                 | 0.630                            | -0                           | -0.000                           | 689                         | 0.450                                                                                  | 841                    | 0.480                                  |
| ±υ      | 992                                 | 0.700                            | -0                           | -0.000                           | 746                         | 0.498                                                                                  | 927                    | 0.553                                  |
|         | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A071-04<br>T=148 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS | N A060-09<br>T=170 GPa<br>STRAIN | SPECIM<br>E @STAI<br>STRESS | EN A054-04                                                                             | SPECIAL STRESS         | MEN A054-05<br>ART=172 GPa<br>S STRAIN |
|         |                                     |                                  |                              |                                  |                             | 0.060                                                                                  |                        |                                        |
| 2       | 140                                 | 0.100                            | 167                          | 0.100                            | 146                         | 0.100                                                                                  | 136                    | 0.040                                  |
| 3       | 209                                 | 0.150                            | 254                          | 0.150                            | 213                         | 0.100<br>0.140<br>0.180<br>0.220                                                       | 207                    | 0.120                                  |
| 4       | 209<br>272<br>349<br>409            | 0.190                            | 337                          | 0.200                            | 281                         | 0.180                                                                                  | 278                    | 0.160                                  |
| 5       | 349                                 | 0.240                            | 414                          | 0.250                            | 347                         | 0.220                                                                                  | 348                    | 0.200                                  |
| 6       | 409                                 | 0.280                            | 496                          | 0.300                            | 414                         | 0.260<br>0.300<br>0.340<br>0.380<br>0.422                                              | 418                    | 0.240                                  |
| 7       | 473                                 | 0.320                            | 545                          | 0.350                            | 486                         | 0.300                                                                                  | 488                    | 0.280                                  |
| 8       | 547                                 | 0.370                            | 65U                          | 0.400                            | 554                         | 0.340                                                                                  | 558                    | 0.320                                  |
| 10      | 607<br>688                          | 0.410                            | 723<br>783                   | 0.450                            | 620<br>687                  | 0.300                                                                                  | 625<br>675             | 0.360                                  |
| 10      | 000                                 | 0.400                            | 103                          | 0.432                            | 007                         | 0.422                                                                                  | 013                    | 0.332                                  |
| PT.     | E @STAR<br>STRESS<br>MPa            | T=189 GPa                        | E @STAR<br>STRESS<br>MPa     | T=161 GPa<br>STRAIN              | E @STA                      | RT=157 GPa<br>STRAIN<br>%                                                              | E @ST.                 |                                        |
| 1       |                                     | 0.030                            |                              |                                  |                             | 0.040                                                                                  |                        |                                        |
|         |                                     |                                  |                              |                                  |                             | 0.080                                                                                  |                        |                                        |
| 3       | 156                                 | 0.080                            | 201                          | 0.120                            | 165                         | 0.120                                                                                  | -0                     | -0.000                                 |
| 4       | 237                                 | 0.120                            | 265                          | 0.160                            | 230                         | 0.160                                                                                  | -0                     | -0.000                                 |
| 5<br>6  | 308                                 | 0.160                            | 330                          | 0.200                            | 289                         | 0.200                                                                                  | -0                     | -0.000                                 |
|         | 380                                 | 0.200                            | 393                          | 0.240                            | 355                         | 0.240                                                                                  | -0                     | -0.000                                 |
| 7       | 450                                 | 0.240                            | 456                          | 0.280                            | 416                         | 0.280                                                                                  | -0                     | -0.000                                 |
| 8       | 521                                 | 0.280                            | 519                          | 0.320                            | 479                         | 0.320                                                                                  | -0                     | -0.000                                 |
| 9<br>10 | 575<br>600                          | 0.310<br>0.330                   | 580<br>651                   | 0.360<br>0.411                   | 525<br>546                  | 0.350<br>0.370                                                                         | -0<br>-0               | -0.000<br>-0.000                       |
| 7.0     | 900                                 | 0.330                            | 0 D T                        | 0.411                            | 240                         | 0.370                                                                                  | -0                     | -0.000                                 |

#### LCF SPECIMEN FINAL DATA SUMMARY: 05-22-89

#### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS-6 ALLOY

ALPHA, X 10^-6/DEG.C: 12.3

STRAIN R-RATIO: .1

TEMPERATURE, DEG.C: 649

WAVEFORM: TRIANGULAR

FREQUENCY Hz: .33

AGT Engineer: GAMBONE

Vendor phone: (513)248-\_722

MBRC Job No.: 010-090A

P.O. No.: H838840

| SPECIMEN | DESIGN: | 450 |  | Ni/2 |
|----------|---------|-----|--|------|
|          |         |     |  |      |

|                 | M      | E AT |              | 18  | st CYC | CLE -            | (Nt/               | 2 1 t 1 | 10 N1) |              |              |              |  |
|-----------------|--------|------|--------------|-----|--------|------------------|--------------------|---------|--------|--------------|--------------|--------------|--|
| SPECIMEN<br>ID  | A<br>C | TEST | STRN<br>RNG% | •   |        | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | STSS    |        | Ni<br>CYCLES | N5<br>CYCLES | Nf<br>CYCLES |  |
| A106-04         | 2      | 77   | 0.600        | 250 | 197    | 0.650            | 192                | 122     | 0.250  | 1340         | 1310         | 1868         |  |
| <b>A</b> 106-05 | 7      | 86   | 0.550        | 222 | 194    | 0.560            | 199                | 131     | 0.230  | 860          | 860          | 1066         |  |
| A106-06         | 1      | 90   | 0.500        | 234 | 200    | 0.520            | 188                | 126     | 0.210  | 2050         | -0           | 2131         |  |
| <b>A</b> 106-03 | 2      | 75   | 0.400        | 163 | 157    | 0.356            | 96                 | 49      | 0.130  | -0           | 52460        | 100000       |  |
| <b>A</b> 106-02 | 2      | 81   | 0.300        | 126 | 123    | 0.241            | 101                | 54      | 0.120  | -0           | 55100        | 100438       |  |
|                 |        |      |              |     |        |                  |                    |         |        |              |              |              |  |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

A106-04 CRACK DESC.: IG;S;MULTI.INITS. ON MULTI.PLANES;---;P+S

COMMENTS: 45 DEGREE ORIENTATION. RT E = 118 GPa. STRAIN RANGE

ATTAINED IN 8 CYCLES.

A106-05 CRACK DESC.: IG;S;+0.10;MULTI.INITS.;---;P+S

COMMENTS: 45 DEGREE ORIENTATION. RT E = 123 GPa. STRAIN RANGE

ATTAINED IN 14 CYCLES.

A106-06 CRACK DESC.: OG;S;-0.36; MULTIPLE INITIATIONS;---;---;P+S

COMMENTS: 45 DEGREE ORIENTATION. RT E = 127 GPa. STRAIN RANGE

ATTAINED IN 5 CYCLES.

A106-03 CRACK DESC.: IN ONE PIECE AT END OF TEST BUT BROKEN WHILE UNLOADING

COMMENTS: 45 DEGREE ORIENTATION. RT E = 108 GPa. STRAIN RANGE

ATTAINED IN 8 CYCLES. STOPPED TEST - RUNOUT AT

100,000 CYCLES.

A106-02 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: 45 DEGREE ORIENTATION. RT E = 124 GPa. STRAIN RANGE

ATTAINED IN 17 CYCLES. STOPPED TEST - RUNOUT AT

100,438 CYCLES.

<sup>\*\*\*</sup>ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

R-RATIO: .1

TEMPERATURE: 649 DEG.C.

| PT. | SPECIMEN<br>E @START<br>STRESS<br>MPa | N A106-04<br>P= 0 CPd<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A106-05<br>T= 0 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa | N A106-06<br>T= 0 GPa<br>STRAIN |     | MEN A106-03<br>RT= 0 GPa<br>STRAIN |
|-----|---------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-----|------------------------------------|
| 1   | 36                                    | 0.050                           | 35                                  | 0.040                           | 54                                  | 0.060                           | 33  | 0.040                              |
| 2   | 65                                    | 0.100                           | 68                                  | 0.090                           | 83                                  | 0.110                           | 60  | 0.080                              |
| 3   | 85                                    | 0.150                           | 88                                  | 0.140                           | 101                                 | 0.160                           | 73  | 0.110                              |
| 4   | 102                                   | 0.200                           | 109                                 | 0.200                           | 118                                 | 0.210                           | 88  | 0.150                              |
| 5   | 136                                   | 0.300                           | 127                                 | 0.250                           | 135                                 | 0.260                           | 98  | 0.180                              |
| 6   | 157                                   | 0.350                           | 150                                 | 0.320                           | 152                                 | 0.310                           | 111 | 0.220                              |
| 7   | 170                                   | 0.400                           | 170                                 | 0.380                           | 168                                 | 0.360                           | 122 | 0.250                              |
| 8   | 184                                   | 0.450                           | 187                                 | 0.450                           | 183                                 | 0.410                           | 133 | 0.280                              |
| 9   | 191                                   | 0.500                           | 193                                 | 0.510                           | 194                                 | 0.460                           | 147 | U.320                              |
| 10  | 197                                   | 0.650                           | 194                                 | 0.560                           | 200                                 | 0.520                           | 157 | 0.356                              |

SPECIMEN A106-02 E @START= 0 GPa STRESS STRAIN PT. MPa % 0.030 1 24 2 49 0.060 0.080 3 63 0.100 4 74 5 0.120 83 6 92 0.140 7 0.160 98 8 105 0.180 9 114 0.210

123

0.241

10

### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89

### AXIAL STRAIN MEASUREMENT AND CONTROL

#### Ti3AL/SCS 6

ALPHA, X 10^-6/DEG.C: 12.3

STRAIN R-RATIO: .1

TEMPERATURE, DEG.C: 649

WAVEFORM: TRIANGULAR

FREQUENCY Hz: .33

AGT Engineer: GAMBONE
Vendor phone: (513)248-17

Vendor phone: (513)248-1722 MBRC Job No.: 010-090A

P.O. No.: H838840

SPECIMEN DESIGN: TRAUSVERSE NI/2

|                 | М      | E AT                |                | 1:  | st CY              | CLE*        | (Nf/               | 2 if               | no Ni)             |              |               |              |
|-----------------|--------|---------------------|----------------|-----|--------------------|-------------|--------------------|--------------------|--------------------|--------------|---------------|--------------|
| SPECIMEN<br>ID  | A<br>C | TEST<br>TEMP<br>GFa | . STRN<br>RNG% |     | MAX<br>STSS<br>MPa | MAX<br>STRN | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | ELAST<br>STRN<br>% | Ni<br>CYCLES | N5<br>CYCLES  | Nf<br>CYCLES |
| A057-04         | 4      | 92                  | 0.300          | 79  | 101                | 0.210       | 124                | 91                 | 0.130              | 915          | -0            | 999          |
| <b>A082-</b> 03 | 1      | 92                  | 0.260          | 117 | 120                | 0.296       | 69                 | 37                 | 0.080              | -0           | 53110         | 100000       |
| <b>AU</b> 57-08 | 4      | 109                 | 0.250          | 102 | 112                | 0.235       | 116                | 81                 | 0.110              | 1390         | -0            | 1435         |
| <b>A05</b> 6-06 | 7      | 101                 | 0.240          | 70  | åъ                 | 0.146       | 121                | 77                 | 0.120              | 2330         | 2540          | 2707         |
| A057-02         | 7      | 105                 | 0.230          | 87  | 91                 | 0.184       | 118                | 64                 | 0.110              | 4245         | -0            | 4326         |
| 80-620A         | 7      | 133                 | 0.220          | 71  | 84                 | 0.141       | 129                | 17                 | 0.100              | 865          | 865           | 1000         |
| A082-10         | 4      | 1/24                | 0.220          | 94  | 99                 | 0.206       | 67                 | 33                 | 0.050              | - 0          | 54900         | 100000       |
| <b>A0</b> 56-04 | 7      | <b>-</b> ()         | 0.210          | ~0  | - ()               | 000         | -0                 | <b>-</b> 0         | -,000              | -0           | - ()          | -0           |
| A 0 56- 10      | 7      | 102                 | 0,200          | 83  | 92                 | 0.180       | 88                 | 36                 | 0.090              | - 0          | 7005 <b>0</b> | 100009       |
| A058-06         | 7      | 9 2                 | 0.200          | 76  | 36                 | 0.17/       | 82                 | 37                 | 0.090              | - 0          | 60255         | -0           |
| A061-06         | 7      | 132                 | 0.150          | 57  | 70                 | 0.111       | 90                 |                    | 0.070              | - 0          | 65040         | 100000       |
| <b>A0</b> 56-02 | 7      | 99                  | 0.100          | 43  | 59                 | 0.082       | 60                 |                    | 0.060              | -0           |               | 100230       |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

| SPECIMEN        | DESIGN:                   | lst CYCLE                                               | Ni/2<br>(NE/2 if no Ni)                                 |                                                                                         |  |  |
|-----------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| SPECIMEN<br>ID  | A TEST                    | STSS MAX MAX<br>RNG STSS STRN<br>MPa MPa %              | STSS MAX ELAST                                          | NI N5 Nf<br>CYCLES CYCLES CYCLES                                                        |  |  |
| ***ABOVE        | . 'NEGATIVE Z             | ERO' DENOTES 'NO                                        | r AVAILABLE' OR                                         | 'NOT APPLICABLE'.***                                                                    |  |  |
| A057-04         | CRACK DESC.:<br>COMMENTS: | 14 CYCLES. ONE                                          | £ ≈ 120 GPa. STR<br>HALF OF SPECIMEN                    | ;;;P<br>AIN RANGE ATTAINED IN<br>WAS BROKEN (NOW IN<br>ROM MACHINE AFTER                |  |  |
| <b>A</b> 082-03 | CRACK DESC.:<br>COMMENTS: | UNLOADED IN ONE<br>TRANSVERSE. RT 1                     | E - 122 GPa. STR                                        | AIN RANGE ATTAINED ON<br>T AT 100,000 CYCLES.                                           |  |  |
| A057-08         | CRACK DESC.:<br>COMMENTS: | OG; S; -0.45; MULT                                      | IPLE INITIATIONS                                        |                                                                                         |  |  |
| A056-06         | CRACK DESC.:<br>COMMENTS: | OG; 3; -0.40; MULT                                      | IPLE INITIATIONS<br>E - 126 GPa. STR                    | ;;P<br>AIN ATTAINED IN 10                                                               |  |  |
| A057-02         | CRAUK DESC.:<br>COMMENTS: | OG; S; +0.30; MULT                                      | IPLE INITIATIONS<br>E = 134 GPa. STR                    | ;;;P+S<br>AIN KANGE ATTAINED IN                                                         |  |  |
| A056-08         | CRACK DESC.:<br>COMMENTS: | OG; [&S +0.30; MU]<br>TRANSVERSE. RT<br>14 CYCLES.      | LTIPLE INITIATIO<br>E ≈ 155 GPa. ST                     | NU; - ;- ;P+S<br>RAIN RANGE ATTAINED IN                                                 |  |  |
| A082-10         | CRACK DESC.:<br>COMMENTS: | UNLOADED IN ONE<br>TRANSVERSE, RT 1<br>7 CYCLES STOPPI  | E = 150 GPa. STR<br>ED TEST - RUNOUT                    | AIN RANGE ATTAINED IN<br>AT 100,000 CYCLES.<br>T AFTER TESTING.                         |  |  |
| A056-04         | CRACK DESC.:<br>COMMENTS: | SPECIMEN BROKEN<br>TRANSVERSE. VOI                      | DURING LOADING                                          | r Artek issting.                                                                        |  |  |
| A056-10         |                           | UNLOADED IN ONE TRANSVERSE. RT                          | PIECE<br>E = 123 GPa. STR                               | AIN RANGE ATTAINED IN<br>T AT 100,009 CYCLES.                                           |  |  |
| A058-06         |                           | TRANSVERSE. RT (<br>5 CYCLES. AT C'<br>CAUSING WEIGHT ( | E = 115 GPa. STR<br>FCLE 76913 POWER<br>OF PLATEN TO BE | AIN RANGE ATTAINED IN OUTAGE SHUT TEST DOWN AFFLIED TO SPECIMEN, VALID UP TO THIS POINT |  |  |

A061-06 CRACK DESC.: UNLOADED IN ONE PIECE

TRANSVERSE. RT E = 152 GPa. STRAIN RANGE ATTAINED IN COMMENTS:

9 CYCLES. STOPPED TEST - RUNOUT AT 100,000 CYCLES.

A056-02 CRACK DESC.: UNLOADED IN ONE PIECE.

TRANSVERSE. RT E = 130 GPa. STRAIN RANGE ATTAINED IN 8 CYCLES. STOPPED TEST - RUNOUT AT 100,230 CYCLES. COMMENTS:

R-RATIO: .1

TEMPERATURE: 649 DEG.C.

| PT. |     | N A057-04<br>T= 92 GPa<br>STRAIN |     | T= 92 GPa<br>STRAIN |     | CN A057-08<br>ET=109 GPa<br>STRAIN |    | MEN A056-06<br>ART=101 GPa<br>S STRAIN |
|-----|-----|----------------------------------|-----|---------------------|-----|------------------------------------|----|----------------------------------------|
| 1   | 26  | 0.030                            | 50  | 0.060               | 32  | 0.030                              | 14 | 3.010                                  |
| 2   | 44  | 0.050                            | 61  | 0.090               | 48  | 0.050                              | 27 | 0.025                                  |
| 3   | 56  | 0.070                            | 67  | 0.110               | 60  | 0.080                              | 40 | 0.040                                  |
| 4   | 63  | 0.090                            | 77  | 0.140               | 71  | 0.110                              | 52 | 0.055                                  |
| 5   | 70  | 0.110                            | 82  | 0.160               | 78  | 0.130                              | 60 | 0.070                                  |
| 6   | 75  | 0.130                            | 90  | 0.190               | 85  | 0.150                              | 66 | 0.085                                  |
| 7   | 82  | 0.150                            | 96  | 0.210               | 91  | 0.170                              | 71 | 0.100                                  |
| 8   | 89  | 0.170                            | 105 | 0.240               | 98  | 0.190                              | 76 | 0.115                                  |
| 9   | 97  | 0.190                            | 112 | 0.260               | 104 | 0.210                              | 80 | 0.130                                  |
| 10  | 101 | 0.210                            | 120 | 0.296               | 112 | 0.235                              | 86 | 0.146                                  |

| SPECIMEN A057-02<br>E @START=105 GPa |        | SPECIMEN A056-08<br>E @START=133 GPa |        | SPECIMEN A082-10<br>E @START=124 GPa |        | SPECIMEN A056-04 |       |           |
|--------------------------------------|--------|--------------------------------------|--------|--------------------------------------|--------|------------------|-------|-----------|
|                                      |        |                                      |        |                                      |        | E @START= N/A    |       |           |
|                                      | STRESS | STRAIN                               | STRESS | STRAIN                               | STRESS | STRAIN           | STRES | SS STRAIN |
| PT.                                  | MPa    | 8                                    | MPa    | 8                                    | MPa    | *                | MPa   | *         |
|                                      |        |                                      |        |                                      |        |                  |       |           |
| 1                                    | 11     | 0.010                                | 18     | 0.010                                | 26     | 0.020            | -0    | -0.000    |
| 2                                    | 27     | 0.030                                | 27     | 0.020                                | 41     | 0.040            | -0    | -0.000    |
| 3                                    | 41     | 0.050                                | 36     | 0.030                                | 51     | 0.060            | -0    | -0.000    |
| 4                                    | 50     | 0.070                                | 49     | 0.050                                | 58     | 0.080            | -0    | -0.000    |
| 5                                    | 57     | 0.090                                | 55     | 0.060                                | 65     | 0.100            | -0    | -0.000    |
| 6                                    | 65     | 0.110                                | 62     | 0.080                                | 71     | 0.120            | -0    | -0.000    |
| 7                                    | 72     | 0.130                                | 66     | 0.090                                | 78     | 0.140            | -0    | -0.000    |
| 8                                    | 79     | 0.150                                | 73     | 0.110                                | 84     | 0.160            | -0    | -0.000    |
| 9                                    | 86     | 0.170                                | 77     | 0.120                                | 91     | 0.180            | -0    | -0.000    |
| 10                                   | 91     | 0.184                                | 84     | 0.141                                | 99     | 0.206            | -0    | -0.000    |

| PT. | <del>-</del> | N A056-10<br>I=102 GPa<br>STRAIN |    | N A058-06<br>T= 92 GPa<br>STRAIN |    | EN A061-06<br>RT=132 GPa<br>STRAIN |    | EN A056-U2<br>RT= 99 GPa<br>STRAIN |
|-----|--------------|----------------------------------|----|----------------------------------|----|------------------------------------|----|------------------------------------|
| 1   | 9            | 0.010                            | 33 | 0.040                            | 15 | 0.010                              | 12 | 0.010                              |
| 2   | 24           | 0.025                            | 40 | 0.050                            | 24 | 0.020                              | 20 | 0.020                              |
| 3   | 36           | 0.040                            | 47 | 0.070                            | 31 | 0.030                              | 28 | 0.030                              |
| 4   | 53           | 0.070                            | 51 | 0.080                            | 37 | 0.040                              | 36 | 0.040                              |
| 5   | 61           | 0.090                            | 58 | 0.100                            | 44 | 0.050                              | 43 | 0.050                              |
| 6   | 68           | 0.110                            | 63 | 0.110                            | 48 | 0.060                              | 47 | 0.060                              |
| 7   | 74           | 0.130                            | 69 | 0.130                            | 53 | 0.070                              | 50 | 0.065                              |
| 8   | 83           | 0.150                            | 73 | 0.140                            | 57 | 0.080                              | 54 | 0.070                              |
| 9   | 86           | 0.160                            | 80 | 0.160                            | 66 | 0.100                              | 56 | 0.075                              |
| 10  | 92           | 0.180                            | 86 | 0.177                            | 70 | 0.111                              | 59 | 0.082                              |

#### TABLE II \_\_\_\_\_

#### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89 ------

#### LCF LOAD CONTROLLED TESTS

STRESS R-RATIO: .1

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 26 WAVEFORM: TRIANGULAR

----- AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090C

P.O. No.: H838840

FREQUENCY, Hz: .33 Kt: 2.5, LONGITUDINAL

| SPECIMEN I.D.   |   | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION |
|-----------------|---|------------------------|--------------|-------------------|
| A097-02         | 3 | 992                    | -0           | AT BOLTHOLE       |
| A099-04         | 4 | 810                    | 24           | AT BOLTHOLE       |
| A105-03         | 3 | 738                    | 41           | AT BOLTHOLE       |
| <b>A</b> 101-03 | 3 | 720                    | 4038         | AT BOLTHOLE       |
| <b>A</b> 101-02 | 3 | 675                    | 42524        | AT BOLTHOLE       |
|                 |   |                        |              |                   |

A103-04 3 630 100048 UNLOADED IN ONE PIECE

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'\*\*\*

A097-02 COMMENTS: LONGITUDINAL. SPECIMEN FAILED ON INITIAL RAMP-UP AT 992

MPa BEFORE REACHING AIM OF 1200 MPa.

A099-04 COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT ON START-UP.

A105-03 COMMENTS: LONGITUDINAL. A101-03 COMMENTS: LONGITUDINAL.

A101-02 COMMENTS: LONGITUDINAL.

A103-04 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 100,048 CYCLES.

#### TABLE II

#### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

#### LCF LOAD CONTROLLED TESTS

STRESS R-RATIO: .1

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 26 WAVEFORM: TRIANGULAR FREQUENCY, Hz: .33

----- AGT Engineer: GAMBONE Vendor phone: (513)248-1722

MBRC Job No.: 010-090C

Kt: 2.5, TRANSVERSE

P.O. No.: H838840

|                 |              | STRESS       |              |                        |  |
|-----------------|--------------|--------------|--------------|------------------------|--|
| SPECIMEN I.D.   | MACH.<br>NO. | RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION      |  |
| A062-03         | 8            | 155          | 8910         | AT BOLTHOLE            |  |
| <b>A</b> 055-01 | 8            | 137          | 27995        | AT BOLTHOLE            |  |
| <b>A</b> 062-01 | 8            | 124          | 60894        | AT BOLTHOLE            |  |
| <b>A</b> 058-03 | 13           | 118          | 95300        | AT BOLTHOLE            |  |
| A061-03         | 8            | 111          | 100079       | UNLOADED IN ONE PIECE. |  |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' \*\*\*

A062-03 COMMENTS: TRANSVERSE. A055-01 COMMENTS: TRANSVERSE.

A062-01 COMMENTS: TRANSVERSE.

A058-03 COMMENTS: TRANSVERSE. UNABLE TO FIT EXTENSOMETERS ON SPECIMEN AFTER TWO FAILURES IN GRIPPING REGION, THEREFORE NI'S

ARE NOT AVAILABLE.

A061-03 COMMENTS: TRANSVERSE. STOPPED TEST - RUNOUT AT 100,079 CYCLES.

#### TABLE II

### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

### LCF LOAD CONTROLLED TESTS

STRESS R-RATIO: .1

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 649

----- AGT Engineer: GAMBONE

WAVEFORM: TRIANGULAR
FREQUENCY Hz: 33

Vendor phone: (513)248-1722

FREQUENCY, Hz: .33

MBRC Job No.: 010-090C

Kt: 2.5, LONGITUDINAL

P.O. No.: H838840

| SPECIMEN I.D.   | MACH. | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION     |
|-----------------|-------|------------------------|--------------|-----------------------|
| A097-04         | 3     | 628                    | 4831         | AT BOLTHOLE           |
| A099-02         | 3     | 540                    | 5947         | AT BOLTHOLE           |
| <b>A</b> 100-04 | 3     | 445                    | 25794        | AT ROLTHOLE           |
| A102-03         | 3     | 401                    | 69192        | AT BOLTHOLE           |
| A104-04         | 3     | 360                    | 102839       | UNLOADED IN ONE PIECE |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'\*\*\*

A097-04 COMMENTS: LCNGITUDINAL. A099-02 COMMENTS: LONGITUDINAL. A100-04 COMMENTS: LONGITUDINAL. A102-03 COMMENTS: LONGITUDINAL.

A104-04 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 102,839 CYCLES.

#### TABLE II \_\_\_\_\_

#### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

#### LCF LOAD CONTROLLED TESTS

\_\_\_\_\_\_\_\_

STRESS R-RATIO: .1

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 649

----- AGT Engineer: GAMBONE Vendor phone: (513)248-1722

WAVEFORM: TRIANGULAR FREQUENCY, Hz: .33 Kt: 2.5, TRANSVERSE

MBRC Job No.: 010-090C

P.O. No.: H838840

STRESS

| SPECIMEN I.D. | MACH. | RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION             |
|---------------|-------|--------------|--------------|-------------------------------|
| A058-04       | 8     | 124          | 69           | AT BOLTHOLE                   |
| A058-01       | 8     | 93           | 313          | AT BOLTHOLE                   |
| A055-05       | 14    | 74           | 18428        | AT BOLTHOLE                   |
| A061-05       | 14    | 62           | 44905        | AT BOLTHOLE                   |
| A055-03       | 8     | 31           | 100971       | BROKEN UNLOADING AFTER RUNOUT |

A058-04 COMMENTS: TRANSVERSE. A058-01 COMMENTS: TRANSVERSE. A055-05 COMMENTS: TRANSVERSE. A061-05 COMMENTS: TRANSVERSE.

A055-03 COMMENTS: TRANSVERSE. STOPPED TEST - RUNOUT AT 100,971 CYCLES.

### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89 -----

### AXIAL STRAIN MEASUREMENT AND CONTROL

### Ti3AL/SCS-6

Ni/2

ALPHA, X 10^-6/DEG.C: 0 STRAIN R-RATIO: .5 TEMPERATURE, DEG.C: 26 WAVEFORM: TRIANGULAR

AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090A

P.O. No.: H838840

FREQUENCY Hz: .33

SPECIMEN DESIGN: LONGITUDINAL

1st CYCLE\* (Nf/2 if no Ni) M E AT STSS MAX MAX STSS MAX ELAST A TEST SPECIMEN C TEMP. STRN RNG STSS STRN RNG STSS STRN Ni N 5 ID H GPa RNG% MPa MPa % MPa MPa % CYCLES CYCLES ---- ---- ---- ----- -----A100-05 6 190 0.380 550 684 0.960 594 477 0.310 -0 -0 100212 A051-01 1 191 0.350 608 1060 0.670 655 1025 0.340 38783 -0 38783 A074-10 4 180 0.330 545 935 0.620 537 475 0.300 -0 -0 100003 A051-02 11 194 0.320 548 974 0.580 633 955 0.330 7960 -0 8008 A074-08 14 187 0.310 502 854 0.555 511 740 0.280 -0 61155 103220 A074-04 10 189 0.300 478 850 0.527 521 761 0.280 -0 -0 100000 \* MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

A100-05 CRACK DESC.: UNLOADED IN ONE PIECE

LONGITUDINAL. STRAIN POPPED OUT TO 0.96% ON FIRST COMMENTS:

CYCLE. STRAIN RANGE ESTABLISHED AT CYCLE 50. STOPPED

TEST - RUNOUT AT 100,212 CYCLES.

A051-01 CRACK DESC.: OG; S; -0.55; MULTIPLE INITIATIONS; ---; P

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 4 CYCLES.

A074-10 CRACK DESC.: UNLOADED IN ONE PIECE

> COMMENTS: LONGITUDINAL. STRAIN POPPED OUT FROM 0.54% TO 0.73%

> > AT CYCLE 2 & FROM 0.525% TO 0.765% AT CYCLE 3.

STRAIN RANGE ESTABLISHED AT ~60 CYCLES. STOPPED TEST

- RUNOUT AT 100,003 CYCLES.

A051-02 CRACK DESC.: OG;S;+0.55;MULTIPLE INITIATIONS;---;--;P+S

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 25 CYCLES.

A074-08 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS; LONGITUDINAL. STRAIN RANGE ATTAINED IN 25 CYCLES.

STOPPED TEST - RUNOUT AT 103,220 CYCLES.

A074-04 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: LONGITUDINAL. STRAIN RANGE ATTAINED IN 8 CYCLES.

STOPPED TEST - RUNOUT AT 100,000 CYCLES.

## Material's Behavior Research Corporation TABLE II: STRESS-STRAIN DATA FOR FIRST LOAD-UP

TEMPERATURE: 26 DEG.C. R-RATIO: .5

| PT. |     | N A100-05<br>T=190 GPa<br>STRAIN |      | N A051-01<br>T=191 GPa<br>STRAIN |     | N A074-10<br>T=180 GPa<br>STRAIN |     | MEN A051-02<br>MRT=194 GPa<br>S STRAIN |
|-----|-----|----------------------------------|------|----------------------------------|-----|----------------------------------|-----|----------------------------------------|
| 1   | 103 | 0.060                            | 156  | 0.080                            | 120 | 0.070                            | 95  | 0.050                                  |
| 2   | 177 | 0.100                            | 290  | 0.150                            | 242 | 0,140                            | 189 | 0.100                                  |
| 3   | 251 | 0.140                            | 407  | 0.210                            | 354 | 0.200                            | 307 | 0.160                                  |
| 4   | 326 | 0.180                            | 543  | 0.280                            | 466 | 0.260                            | 429 | 0.220                                  |
| 5   | 402 | 0.220                            | 657  | 0.340                            | 574 | 0.320                            | 553 | 0.280                                  |
| 6   | 478 | 0.260                            | 756  | 0.410                            | 668 | 0.380                            | 667 | 0.340                                  |
| 7   | 555 | 0.300                            | 833  | 0.470                            | 737 | 0.440                            | 759 | 0.400                                  |
| 8   | 640 | 0.350                            | 912  | 0.540                            | 806 | 0.500                            | 837 | 0.460                                  |
| 9   | 683 | 0.400                            | 983  | 0.600                            | 872 | 0.560                            | 911 | 0.520                                  |
| 10  | 684 | 0.520                            | 1060 | 0.670                            | 935 | 0.620                            | 974 | 0.580                                  |

|     |     | A074-08<br>=187 GPa<br>STRAIN |     | N A074-0<br>T=189 GP<br>STRAIN |
|-----|-----|-------------------------------|-----|--------------------------------|
| PT. | MPa | \$ SIKAIN                     | MPa | SIKAIN<br>\$                   |
|     |     |                               |     |                                |
| 1   | 101 | 0.050                         | 96  | 0.050                          |
| 2   | 194 | 0.100                         | 193 | 0.100                          |
| 3   | 284 | 0.150                         | 286 | 0.150                          |
| 4   | 378 | 0.200                         | 384 | 0.200                          |
| 5   | 470 | 0.250                         | 475 | 0.250                          |
| 6   | 554 | 0.300                         | 564 | 0.300                          |
| 7   | 631 | 0.350                         | 644 | 0.350                          |
| 8   | 693 | 0.400                         | 710 | 0.400                          |
| 9   | 752 | 0.450                         | 767 | 0.450                          |
| 10  | 854 | 0.555                         | 850 | 0.527                          |

### TABLE II

### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

## LCF LOAD CONTROLLED TESTS

STRESS R-RATIO: .5

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 26

----- AGT Engineer: GAMBONE

WAVEFORM: TRIANGULAR

Vendor phone: (513)248-1722

FREQUENCY, Hz: .33 Kt: 2.5, LONGITUDINAL MBRC Job No.: 010-090C P.O. No.: H838840

KC: 2.5, @0011001010

| SPECIMEN I.D.   |     | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION     |
|-----------------|-----|------------------------|--------------|-----------------------|
| A102-02         | 3   | 438                    | 3581         | AT BOLTHOLE           |
| <b>A</b> 104-03 | 3   | 438                    | 697          | AT BOLTHOLE           |
| A100-02         | 3   | 425                    | 40087        | AT BOLTHOLE           |
| <b>A</b> 097-03 | 3   | 399                    | 100045       | UNLOADED IN ONE PIECE |
| A099-03         | . 3 | 415                    | -0           | AT BOLTHOLE           |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' \*\*\*

A102-02 COMMENTS: LONGITUDINAL. A104-03 COMMENTS: LONGITUDINAL. A100-02 COMMENTS: LONGITUDINAL.

A097-03 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 100,045 CYCLES.

A099-03 COMMENTS: LONGITUDINAL. SPECIMEN "POPPED" TWICE DURING START-UP, THEN FAILED AT 865 MPa WHILE ATTEMPTING TO OBTAIN 900

MPa.

### LCF SPECIMEN FINAL DATA SUMMARY: 04-17-89

### AXIAL STRAIN MEASUREMENT AND CONTROL

### Ti3AL/SCS-6

AGT Engineer: GAMBONE

P.O. No.: H838840

MBRC Job No.: 010-090A

Vendor phone: (513)248-1722

ALPHA, X 10^-6/DEG.C: 12.3

STRAIN R-RATIO: .5

TEMPERATURE, DEG.C: 649

WAVEFORM: TRIANGULAR

FREQUENCY Hz: .33

SPECIMEN DESIGN: LONGITUDINAL Ni/21st CYCLE\* (Nf/2 if no Ni)

|                |    |                      |       |                    |                    |                  | , , .              |                    |                    |              |              |              |
|----------------|----|----------------------|-------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------|--------------|--------------|
|                | М  | E AT                 |       |                    |                    |                  |                    |                    |                    |              |              |              |
| SPECIMEN<br>ID | c  | TEST<br>TEMP.<br>GPa |       | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | ELAST<br>STRN<br>% | Ni<br>CYCLES | N5<br>CYCLES | Nf<br>CYCLES |
| A104-05        | 4  | 163                  | 0.380 | 622                | 1063               | 0.730            | 639                | 994                | 0.390              | 1828         | -0           | 1828         |
| A052-03        | 2  | 170                  | 0.350 | 692                | 831                | 0.490            | 607                | 960                | 0.360              | 3250         | 3250         | 3298         |
| A071-06        | 11 | 155                  | 0.300 | 434                | 789                | 0.534            | 495                | 737                | 0.320              | 18080        | 19270        | 24680        |
| A052-01        | 5  | 181                  | 0.280 | 412                | 804                | 0.465            | 509                | 777                | 0.280              | 11976        | -0           | 11976        |
| A052-09        | 5  | 169                  | 0.250 | 166                | 326                | 0.190            | 409                | 620                | 0.240              | -0           | 0            | 100300       |
| A071-08        | 11 | -0                   | 000   | -0                 | -0                 | 000              | -0                 | -0                 | 000                | -0           | -0           | -0           |

<sup>\*</sup> MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE.

A104-05 CRACK DESC.: IG;S;+0.08;---;0.00;0.11;P+S

LONGITUDINAL. RT E = 188 GPa. STRAIN RANGE ATTAINED COMMENTS:

AT 5 CYCLES.

A052-03 CRACK DESC.: OG;S;+0.35;MULTIPLE INITIATIONS;---;P+S

LONGITUDINAL. TEST SHUT DOWN ON FIRST CYCLE - SEE COMMENTS:

START-UP ON X-Y. RT E = 196 GPa. STRAIN RANGE

ATTAINED IN 17 CYCLES.

A071-06 CRACK DESC.: IG; I&S; MULTIPLE INITIATIONS ON MULTIPLE PLANES; ---; ---

LONGITUDINAL. RT E = 179 GPa. STRAIN RANGE ATTAINED COMMENTS:

IN 12 CYCLES.

A052-01 CRACK DESC.: IG; I&S; +0.24; MULTIPLE INITIATIONS; ---; P+S

COMMENTS: LONGITUDINAL. RT E = 204 GPa. STRAIN RANGE ATTAINED

IN 32 CYCLES.

<sup>\*\*\*</sup>ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'. \*\*\*

A052-09 CRACK DESC.: UNLOADED IN ONE PIECE.

COMMENTS: LONGITUDINAL. RT E = 192 GPa. STRAIN RANGE ATTAINED

IN 28 CYCLES. STOPPED TEST - RUNOUT AT 100,300

CYCLES.

A071-08 CRACK DESC.: SEE COMMENTS

LONGITUDINAL. TEST INADVERTENTLY RUN AT INCORRECT R-RATIO. VOID TEST. COMMENTS:

## Material's Behavior Research Corporation TABLE II: STRESS-STRAIN DATA FOR FIRST LOAD-UP

TEMPERATURE: 649 DEG.C. R-RATIO: .5

| PT. |      | N A104-05<br>F=163 GPa<br>STRAIN |     | N A052-03<br>T=170 GPa<br>STRAIN |     | N A071-06<br>T=155 GPa<br>STRAIN |     | EN A052-01<br>RT=181 GPa<br>STRAIN<br>% |
|-----|------|----------------------------------|-----|----------------------------------|-----|----------------------------------|-----|-----------------------------------------|
| 1   | 113  | 0.070                            | 75  | 0.050                            | 70  | 0.050                            | 78  | 0.040                                   |
| 2   | 226  | 0.140                            | 158 | 0.100                            | 145 | 0.100                            | 166 | 0.090                                   |
| 3   | 341  | 0.210                            | 242 | 0.150                            | 220 | 0.150                            | 240 | 0.130                                   |
| 4   | 458  | 0.280                            | 324 | 0.200                            | 296 | 0.200                            | 327 | 0.180                                   |
| 5   | 567  | 0.350                            | 413 | 0.250                            | 373 | 0.250                            | 398 | 0.220                                   |
| 6   | 679  | 0.420                            | 501 | 0.300                            | 453 | 0.300                            | 491 | 0.270                                   |
| 7   | 783  | 0.490                            | 586 | 0.350                            | 525 | 0.350                            | 557 | 0.310                                   |
| 8   | 874  | 0.560                            | 673 | 0.400                            | 604 | 0.400                            | 645 | 0.360                                   |
| 9   | 960  | 0.630                            | 762 | 0.450                            | 674 | 0.450                            | 708 | 0.400                                   |
| 10  | 1063 | 0.730                            | 831 | 0.490                            | 789 | 0.534                            | 804 | 0.465                                   |

| PT. |     | N A052-09<br>C=169 GPa<br>STRAIN | SPECIME<br>E @STAR<br>STRESS<br>MPa |        |
|-----|-----|----------------------------------|-------------------------------------|--------|
|     |     |                                  |                                     |        |
| 1   | 35  | 0.020                            | -0                                  | -0.000 |
| 2   | 71  | 0.040                            | -0                                  | -0.000 |
| 3   | 101 | 0.060                            | - 0                                 | -0.000 |
| 4   | 135 | 0.080                            | -0                                  | -0.000 |
| 5   | 170 | 0.100                            | -0                                  | -0.000 |
| 6   | 206 | 0.120                            | -0                                  | -0.000 |
| 7   | 241 | 0.140                            | -0                                  | -0.000 |
| 8   | 269 | 0.160                            | -0                                  | -0.000 |
| 9   | 305 | 0.180                            | -0                                  | -0.000 |
| 10  | 326 | 0.190                            | -0                                  | -0.000 |

### TABLE II

### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

## LCF LOAD CONTROLLED TESTS

STRESS R-RATIO: .5

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 649

----- AGT Engineer: GAMBONE

WAVEFORM: TRIANGULAR

Vendor phone: (513)248-1722

FREQUENCY, Hz: .33

MBRC Job No.: 010-090C

Kt: 2.5 LONGITUDINAL

P.O. No.: H838840

| SPECIMEN I.D.   |   | RANGE<br>MYa | Nf<br>CYCLES | CRACK DESCRIPTION |
|-----------------|---|--------------|--------------|-------------------|
| A098-02         | 3 | 349          | 3319         | AT BOLTHOLE       |
| <b>A</b> 100-03 | 3 | 324          | 9966         | AT BOLTHOLE       |
| A101-04         | 3 | 299          | 20556        | AT BOLTHOLE       |
| <b>A103-03</b>  | 3 | 274          | 30449        | AT BOLTHOLE       |
| A105-02         | 3 | 248          | 103508       | AT BOLTHOLE       |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' \*\*\*

A098-02 COMMENTS: LONGITUDINAL. A100-03 COMMENTS: LONGITUDINAL. A101-04 COMMENTS: LONGITUDINAL. A103-03 COMMENTS: LONGITUDINAL. A105-02 COMMENTS: LONGITUDINAL.

## TABLE III

### HCF SPECIMEN FINAL DATA SUMMARY: 03-20-89

### LOAD CONTROLLED TESTS

### -----

STRESS R-RATIO: .1

TEMPERATURE, DEG.C.: 649

WAVEFORM: SINE FREQUENCY, Hz: 30 Kt: 1 LONGITUDINAL

### Ti3AL/SCS-6 ALLOY

AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090B

P.O. No.: H838840

| SPECIMEN I.D.  | MACH. | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION                           |
|----------------|-------|------------------------|--------------|---------------------------------------------|
| A53-02         | 12    | 631                    | 93590        | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A5</b> 3-08 | 12    | 540                    | 504780       | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A54-06</b>  | 12    | 449                    | 2400100      | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| A60-04         | 12    | 427                    | 10000000     | UNLOADED IN ONE PIECE                       |
| A59-06         | 12    | 405                    | 10156000     | UNLOADED IN ONE PIECE.                      |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'\*\*\*

A53-02 COMMENTS: LONGITUDINAL. A53-08 COMMENTS: LONGITUDINAL.

A54-06 COMMENTS: LONGITUDINAL. HEATING COIL ARCED AGAINST SPECIMEN IN

SHANK REGION WHEN SPECIMEN SLIPPED FROM GRIPS AT CYCLE

1,606,350. RELOADED AND CONTINUED TEST.

A60-04 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,000,000

CYCLES.

A59-06 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,156,000

CYCLES.

### TABLE III

### HCF SPECIMEN FINAL DATA SUMMARY: 03-20-89 ------

### LOAD CONTROLLED TESTS

\_\_\_\_\_\_

STRESS R-RATIO: .1

TEMPERATURE, DEG.C.: 649

WAVEFORM: SINE FREQUENCY, Hz: 30 Kt: 1, TRANSVERSE Ti3AL/SCS-6 ALLOY

AGT Engineer: GAMBONE Vendor phone: (513)248-1722 MBRC Job No.: 010-090B

P.O. No.: H838840

| SPECIME                                        | N MACH.                       | TRESS<br>RANGE<br>MPa      | Nf<br>CYCLES | CRACK DESCRIPTION                                                                          |
|------------------------------------------------|-------------------------------|----------------------------|--------------|--------------------------------------------------------------------------------------------|
| A56-01                                         | 12                            | 87                         | 12022        | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS                                                |
| <b>A57</b> -07                                 | 8                             | 75                         | 381942       | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS                                                |
| <b>A56</b> -09                                 | 12                            | 62                         | 5178933      | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS                                                |
| A55-06                                         | 11                            | 56                         | 10000913     | UNLOADED IN ONE PIECE                                                                      |
| A57-10                                         | 12                            | 50                         | 10010446     | UNLOADED IN ONE PIECE                                                                      |
| A56-01<br>A57-07<br>A56-09<br>A55-06<br>A57-10 | COMMENT<br>COMMENT<br>COMMENT | S: TRA<br>S: TRA<br>S: TRA |              | STOPPED TEST - RUNOUT AT 10,000,913 CYCLES.<br>STOPPED TEST - RUNOUT AT 10,010,446 CYCLES. |

### TABLE III

### BOLTHOLE SPECIMEN FINAL DATA SUMMARY: 05-22-89

### LOAD CONTROLLED TESTS

STRESS R-RATIO: .1

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 649

----- AGT Engineer: GAMBONE

WAVEFORM: SINE

Vendor phone: (513)248-1722 MBRC Job No.: 010-090B

FREQUENCY, Hz: 30

P.O. No.: H838840

Kt: 2.5, LONGITUDINAL

| SPECIMEN I.D. |    | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DES | CRI | PTIO  | N     |    |          |
|---------------|----|------------------------|--------------|-----------|-----|-------|-------|----|----------|
| A103-02       | 12 | 405                    | 368266       | CRACKING  | ON  | вотн  | SIDES | OF | BOLTHOLE |
| A098-04       | 12 | 360                    | 424801       | CRACKING  | ON  | вотн  | SIDES | OF | BOLTHOLE |
| A104-02       | 13 | 315                    | 1252318      | CRACKING  | ON  | вотн  | SIDES | OF | BOLTHOLE |
| A105-04       | 8  | 293                    | 738799       | CRACKING  | ON  | вотн  | SIDES | OF | BOLTHOLE |
| A102-04       | 12 | 270                    | 10366560     | UNLOADED  | IN  | ONE I | PIECE |    |          |

A103-02 COMMENTS: LONGITUDINAL. A098-04 COMMENTS: LONGITUDINAL. A104-02 COMMENTS: LONGITUDINAL. A105-04 COMMENTS: LONGITUDINAL.

A102-04 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,366,560

CYCLES.

### TABLE III

### HCF SPECIMEN FINAL DATA SUMMARY: 03-20-89

### -----

### LOAD CONTROLLED TESTS

STRESS R-RATIO: .5

Ti3AL/SCS-6 ALLOY

TEMPERATURE, DEG.C.: 649

----- AGT Engineer: GAMBONE

WAVEFORM: SINE

Vendor phone: (513)248-1722

FREQUENCY, Hz: 30 Kt: 1, LONGITUDINAL

MBRC Job No.: 010-090B

P.O. No.: H838840

| SPECIMEN I.D.  | MACH. | STRESS<br>RANGE<br>MPa | Nf<br>CYCLES | CRACK DESCRIPTION                           |
|----------------|-------|------------------------|--------------|---------------------------------------------|
| A60-05         | 8     | 399                    | 304087       | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A</b> 60-06 | 12    | 375                    | 1014156      | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A54</b> -07 | 12    | 369                    | 474928       | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A</b> 59-05 | 8     | 350                    | 10000695     | UNLOADED IN ONE PIECE                       |
| A53-01         | 12    | 301                    | 10515500     | UNLOADED IN ONE PIECE                       |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' \*\*\*

A60-05 COMMENTS: LONGITUDINAL.

A60-06 COMMENTS: LONGITUDINAL. HEATING COIL ARCED AGAINST ONE HALF OF

SPECIMEN AFTER FAILURE.

A54-07 COMMENTS: LONGITUDINAL.

A59-05 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,000,695

CYCLES.

A53-01 COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,515,500.

### TABLE III

### HCF SPECIMEN FINAL DATA SUMMARY: 03-20-89 ------

### LOAD CONTROLLED TESTS

### -----

STRESS R-RATIO: .1 TEMPERATURE, DEG.C.: 26

WAVEFORM: SINE FREQUENCY, Hz: 30 Kt: 1 LONGITUDINAL Ti3AL/SCS-6 ALLOY

AGT Engineer: GAMBONE

Vendor phone: (513)248-1722

MBRC Job No.: 010-090B

P.O. No.: H838840

| SPECIMEN       |     | STRESS | N£      |                                             |
|----------------|-----|--------|---------|---------------------------------------------|
| I.D.           | NO. | MPa    | CYCLES  | CRACK DESCRIPTION                           |
| A59-02         | 7   | 704    | 488670  | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| A54-10         | 12  | 661    | 2161400 | IG;S & SS; MULTIPLE INITIATIONS             |
| A53-04         | 10  | 639    | 473880  | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |
| <b>A</b> 60-03 | 10  | 611    | 4688410 | NEAR R.U.S.I.; S; MULTIPLE INITIATIONS      |
| A59-03         | 10  | 586    | 4227240 | IN UNIFORM SECTION; S; MULTIPLE INITIATIONS |

\*\*\*NOTE: ABOVE, A '-0' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'\*\*\*

A59-02 COMMENTS: LONGITUDINAL. A54-10 COMMENTS: LONGITUDINAL. A53-04 COMMENTS: LONGITUDINAL. A60-03 COMMENTS: LONGITUDINAL. A59-03 COMMENTS: LONGITUDINAL.

TASK VI LCF & HCF DATA

|                                                       |                           |                             |                |              |                                        |                                                                 |       |                                         |                         |      | ż                             |                       |             | 1111     | . X.                       | 3               | Material's Hehavior Research Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1100    | •        |                                                                         |           |         |            |                  |                    |                                       |                                         | PACE 1         |         |
|-------------------------------------------------------|---------------------------|-----------------------------|----------------|--------------|----------------------------------------|-----------------------------------------------------------------|-------|-----------------------------------------|-------------------------|------|-------------------------------|-----------------------|-------------|----------|----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------------------------------------------------------------------|-----------|---------|------------|------------------|--------------------|---------------------------------------|-----------------------------------------|----------------|---------|
|                                                       |                           |                             |                |              |                                        |                                                                 |       |                                         |                         |      |                               |                       |             | •-       | TABLE !                    | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                                                         |           |         |            |                  |                    |                                       |                                         |                |         |
|                                                       |                           |                             |                |              |                                        |                                                                 |       |                                         |                         |      | C.F. Sh                       | ротн                  | 878611      | 707      | INAL                       | DATA            | LCF SMOOTH SPECIMEN FINAL DATA SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 04-10-86 | :                                                                       |           |         |            |                  |                    |                                       |                                         |                |         |
| ALPHA 2 10'-6 /DEG F.                                 | 0/ 10                     | . E. F.                     | •              |              |                                        |                                                                 |       |                                         |                         | 1    |                               | AIIAL                 | STRA        | 73 H N.  | LSURE.                     | HE H            | AIIAL STRAIN MEASUREMENT AND CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ONTHO   |          | :                                                                       |           |         |            |                  | 3                  | ACT Engineer                          |                                         | CAMBONE        |         |
| TEMPERATURE DEC F 1                                   | RE DEC                    | r 1400                      |                |              |                                        |                                                                 |       |                                         |                         |      |                               |                       | ,           | , ) I G  | TI 3AL                     | BIC/TIBAL ALLOY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                                                         |           |         |            |                  | > 1                | Vendor phone                          |                                         | (513)-246-1723 | 1733    |
| TREQUENCY ME                                          | *                         | 33                          |                |              |                                        |                                                                 |       |                                         |                         |      |                               |                       | •           |          | •<br>•<br>•<br>•<br>•<br>• |                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |                                                                         |           |         |            |                  | E &                | S S S S S S S S S S S S S S S S S S S |                                         | 111-110        |         |
| SPECIMEN DESIGN                                       | 0E S 1 CK                 |                             |                |              |                                        |                                                                 |       | 9                                       |                         |      |                               |                       |             | AT NI /2 |                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                                                         | AT NE / 1 |         |            |                  |                    |                                       |                                         |                |         |
|                                                       | E                         |                             |                |              |                                        |                                                                 | :     | *************************************** |                         | ::   |                               |                       |             |          | -                          | Z Z             | THE STREET OF THE STREET, STRE | , E     |          |                                                                         |           |         | T X        | STAN COMPONENTS  | NENTS              |                                       | CYCLIC LIFE                             | 111            |         |
| SFECIMEN C                                            | A D M                     |                             | 2 m E          | 10.4<br>10.4 | EGTEST TEMP<br>110'4 PSI<br>START MI/2 | HOT RETEST TEMP<br>AMEA 210'4 PS: STRN<br>SO IN START MIVE BMCM |       | ra ·                                    | 875.8<br>875.8<br>8.5 1 | A T  |                               | BTBS<br>RMC           | MAX<br>BTSS | X T S    |                            | -               | PLASTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110     | BTSS     | MAX<br>8788                                                             |           | _       | ELAST      |                  | PLASTIC<br>PLASTIC | N                                     | 22                                      | ;              | 1 2     |
|                                                       |                           |                             |                |              |                                        |                                                                 |       |                                         |                         | • !  | :                             |                       |             |          |                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                                                         | ٠         |         | -          |                  |                    |                                       |                                         |                | :       |
|                                                       |                           |                             |                |              |                                        | •                                                               | OK*** | NOTE                                    | 113.                    | 8    | NECA.                         | TIVE                  | ZERO.       | DENOI    | . 531                      | NOT 1           | LVAILA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 11    | ž.       | LELOV, 'NECATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' **** | 1.164     |         | :          |                  |                    |                                       |                                         |                |         |
| 271-05                                                | 5 6006 - 6324 31.8 -6 8   | 00                          | 14 1           | -            | -                                      | • 760                                                           |       | 155.1 155.1 0 740                       | 2 2 2                   | •    |                               | •                     | . 0         |          | -0.8080                    |                 | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 9        | -                                                                       |           | •       | -0.0000    |                  | . 860 - 480        |                                       | 7                                       | 7              | 7       |
| 171-01                                                | 5 - 8000 . 6222 24.7 24 7 | 0.0                         | 7 7            | -            | 24 7                                   | 007.0                                                           |       | -                                       | 13.                     | •    | 131 1 139.4 0.430 134.9 132.1 | 96.9                  | 132.1       | 7        | •                          | 550             | -4.8 6.550 8 050 0.825 135.7 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 2 5 | 135      | 1 130                                                                   | ~         | 7       | -7.5 6 550 |                  | 0.056 6.025        |                                       | 746 1346                                |                | 1377    |
| 141-13                                                | 4 - 8800 .0231 31.6 31.6  | 00 . 02                     |                | •            | •                                      | 1.500                                                           |       | 18 5                                    | 13.2                    |      | 0.440 102.8 103.8             | 1 7                   | 103.4       | -        | •                          | :               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9. 13   | 102      | 1.8 0.480 0.020 0.939 102.8 163.                                        | •         | •       | 011 0 1 0  |                  | 0.620 6.630        | 0 1725                                |                                         | -              | 1111    |
| 181-07                                                |                           | 6860 . 6233 . 26. 7 . 29. 7 | 33 26          |              | 20 7                                   | 0.450                                                           |       |                                         |                         | •    | 077                           | 5 · 1                 | 17.5        | -        | -                          | 420             | 1.2 0.420 0.030 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.015   | 1.7      | 7 67.7                                                                  |           | •       | 1.0 0.420  | 0 0 0            | 0 0 015            | \$ 4220                               | • • • • • • • • • • • • • • • • • • • • |                | 44.72   |
| 13T-04                                                | 90 - 1                    | - 0000 0138 21 7 21 7       | 31 21          | 1 7 1        | 11 1                                   | 0 43 0                                                          |       | 1.4                                     | 1.7                     | 7 0. | 0.410                         | 5                     | 15.7        | -        | -                          | 330             | 1.2 6.370 6.830 6.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.015   | -        |                                                                         |           |         | 330        | 3                | 0 370 0.030 0.015  | 3 3318                                | 9726 61                                 |                | • > • • |
| 161-191                                               | 1                         | - 6660 .0237 21 5 21.5      | 31 21          |              | 2 5                                    | 0.400                                                           |       | 1 1                                     | 3.1.                    | •    | 9.370 7                       | 11.1                  | 1.1         | ~        | •                          | 370 6           | 2.1 0.370 0.930 0.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010   |          | 1. 67.9                                                                 |           | 4.0     | -0.9 0.320 | 0                | 0 0 020            | 3120                                  | 12120                                   |                | 11874   |
| 171-01                                                | 9 - 9 9 9 9               |                             | 0119 20 5 20 5 | · ·          | 20 2                                   | 007                                                             |       | , 11                                    |                         |      | 0 175 1                       | . 01                  | 73.5        | -6.7     |                            | 370             | 0.370 0.010 0.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. 134  | 74.4     | :                                                                       |           |         | -7.1 0.370 | 0 0 0            | 0 0 625            | 3 11400                               | 0.00                                    |                | 14360   |
| 181-01                                                | 100                       | 8680 . 6233 26 6 20         | 33 25          | •            | 9 02                                   | 9 1 1 0                                                         |       | 67 3                                    | 7,                      |      | 0.340                         | 10.2                  | 59.1        | -10      |                            | 0.340 0.048     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | :        | 9 5                                                                     | -<br>-    | -       | -8 1 6 330 | 0 0 2 0          | 0 0 015            | 3 32540                               | 32540                                   |                | 41369   |
| 161-87                                                | 0000 - 7                  |                             | 0233 14 9 14 9 | •            | •                                      | 0 310                                                           |       |                                         |                         | 9    | 0.310                         | <b>6</b> . 1 <b>4</b> | 11.7        | -        | 2.0 0.                     | 0.420 -         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000     |          | 5.11                                                                    |           | -       | 410        | - 030            | 0 0 0 0            | 0 3430                                |                                         | •              | ::      |
| 10-19:                                                | 0000 - +                  |                             | 62 40 33 7 23  | 1 7          | 13 7                                   | 0 350                                                           |       | •                                       | ;                       | •    | 320                           | 1 1                   | •           | -14 3    |                            | 0 270 0         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 2 5 | 7        | :                                                                       |           | -15 9 6 | 0 340      | 0 0 0            | 0 0 025            | 5 1420                                | 0 1710                                  |                | 39.0    |
| 33-04                                                 | 2 - 0000                  |                             | 0226 14        | 7 0 7        | •                                      | 0 495                                                           |       | 1 75                                    | 57.3                    | 9    | 130                           | 17.1                  |             |          |                            | 0 480 0         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 025   |          | * 0 *                                                                   |           | -10.5 ( | •          | 090 0            | 0 0 615            | 5 1430                                | 3                                       |                | 11.11   |
| 32-01                                                 |                           | - 0800 , 8217 14 9 14.9     | 17 14          | •            | • •                                    | 0                                                               |       | 37 4                                    | =                       |      | 980                           | \$7.9                 | 11.7        | -1.1     | 0                          | 0 340 0         | 0.046 4.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B. 820  | 57.7     | =                                                                       | • • •     | ~ ~     | 9 140      | 0 0 0 0          | 0 0 026            | 9077                                  | 9140                                    |                | 9110    |
| 33-03                                                 | 3 - 6000                  | 00 03                       | ) [ 92         | •            | 9 51 9 51 9220                         | 0                                                               |       | :                                       | \$ 3                    | •    | 9.370                         | 22 3                  | 4.0         | 1.1      |                            | 380             | 0.380 0.020 0 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 620   | 52.4     |                                                                         |           | •       | . 340      | 010.0 036.0 1.1- | 0 6 620            | 9995 0                                | 1314                                    |                | 1111    |
| 11-09                                                 | 2 - 0000 0217 15 9 15 9   | 10 01                       | 17 13          | •            | 13 4                                   | 9 3 5 9                                                         |       |                                         | :                       | •    | 0.330                         | 4.1                   | 31 5        | =        | -                          | 310             | -11 4 0.310 0.040 0 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 015   |          | =                                                                       | 1 -       | •       | 2.5        | 70 0             | 0 270 0 060 0 015  | \$ 21140                              | 0 34480                                 |                |         |
| • MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE. | STRAIN                    | WAS NC                      | TAC            | #EVE         | Ö                                      | F                                                               | RSTC  | YCLE                                    | ,.,                     |      |                               |                       | •           |          |                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                                                         |           |         |            |                  |                    |                                       | ,                                       |                |         |

B-39

| SPECIMEN DESIGN                                    | ESICN    |                               |                                                                  |              |             |                       | •                                                       |                         |                     |         |                                                     |                                                                      |        | AT N1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £1.3       |          |                |                    |                                         |                                                               |     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N1 / 2     | ~    |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        | 177         |           |
|----------------------------------------------------|----------|-------------------------------|------------------------------------------------------------------|--------------|-------------|-----------------------|---------------------------------------------------------|-------------------------|---------------------|---------|-----------------------------------------------------|----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------|--------------------|-----------------------------------------|---------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|-------------|-----------|
| =                                                  |          | !                             |                                                                  |              |             |                       | • : :                                                   | 2:                      |                     | :       |                                                     |                                                                      |        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          | T N      | E O            | BTRN COMPONENTS    | 13                                      |                                                               | :   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | :    | Z         | COMPO | STAN COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | CYCLIC | 3111 3      |           |
| BPECIMEN C<br>1D H                                 | N N      | NOT<br>BO IN                  | MOT SETEST TENT<br>AREA 110'6 PSI BTRN<br>BO IN START N1/2 RNC W |              | E A C       | N U                   |                                                         | :                       | 8758<br>8758<br>861 | :       | 2                                                   | E E E                                                                | 2 to 1 | 8 STS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ELAST    | ; .            | PLASTIC<br>CALC ME | E A B                                   | 2 3 - 1<br>2 3 - 1<br>2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |     | 67.58<br>87.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 T 8 E    |      | ELAST     | ; • • | PLASTIC<br>ALC MEAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ni<br>CYCLES                              | ;      | NS<br>CYTES | NICYCLES  |
|                                                    |          |                               |                                                                  |              |             | :                     | NOTE                                                    |                         | )138                | Š.      | NEC.                                                | LTIVE                                                                | 250    | BELOW, 'NEGATIVE SEND' DENOTES 'NOT AVAILABLE'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TE8        | 9        | L AVI          | . ITAB             |                                         | TON. NO                                                       |     | APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CABL       |      | :         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 11-01                                              | 3 - 0000 |                               | 6115 11 9 11                                                     |              | -           | 9 330                 | 0 33                                                    | -                       | 32                  | •       | 370                                                 | 37.                                                                  | 11.1   | ş-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •          | 0 110    | •              | 0 2 0              | ======================================= | 2                                                             | -   | 19 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŗ          | -    | 150       | 0 0 0 | 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 014810                                    |        |             | 81372     |
| 15-04 7                                            | 7 - 1000 | 76 60 0                       |                                                                  | =            | -           |                       | -                                                       | -                       | 7                   | -       | 435                                                 | =                                                                    | =      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          | 4.439    |                | 0 0 0 0            | 53                                      | +                                                             | •   | 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7          | -1.4 | 4:0       | •     | 0 0 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 9810   | 4013        | ;         |
| 45-10 7                                            | 0000 - 4 | 1620 0                        | 111.7                                                            | =            | ~           | 8.475                 | 20                                                      | •                       | :                   | -       | 5 2 3                                               | •                                                                    | 7      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          | 900      | •              |                    | •                                       | •                                                             | •   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7          | •    | 000       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ٩      | •           | 7         |
| 33-09 13                                           | 3 - 6090 | 0 .0244                       | -                                                                | •            | _           | •                     | 90                                                      | _                       | :                   | •       | =                                                   | 2                                                                    | =      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.1 0.340 | 34       |                | 0 070 0            | 93                                      | =                                                             |     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7          | -    | 2         | 040   | 0 0 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | 1310   | 1140        | 1116      |
| 45-07 7                                            | 7 - 6000 | 0 0134                        | 13.5                                                             | =            | •           | 930                   | 3.                                                      | -                       | 2                   | -       | 939                                                 | 34.9                                                                 | 2      | 11- +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11.3      | 9 2 6 8  | •              | 0 040              | 0.30                                    | ÷                                                             | _   | ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =          |      | 130       | 0 100 | 0 0 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 14780                                  | :      | •           | 1111      |
| 35-02 14                                           |          | 0 0145                        | •                                                                | ~            |             | 0 330                 |                                                         | 18.7                    | =                   | 9 6 220 | 330                                                 | 11.1                                                                 | 2      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.7 0.270 | 1.29     |                |                    | 9 7 9                                   | =                                                             | -   | • 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?          | •    | 0 110     | 0 030 | 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0257 01                                   | e<br>2 | •           |           |
| 371-65                                             | CBA      | CRACK DESCRIPTION<br>COMMENTS | COMMENTS                                                         | 2 %          | 2 0         | FAILED<br>LONGIT      | ON B<br>UDINA                                           | ON RAMP-UP<br>DINAL, RT | 5 E                 | o TO    |                                                     | AT 0.74%, 155.134ks1                                                 | 1346   | FAILED ON RAME-UP AT 0.74%, 155.1346al.<br>Longitudinal. Rt width = 0.3970"; Bt Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SSAN       |          | . 6. 8746".    |                    | 5 P E C                                 | INCK                                                          | 448 | SPECIMEN WAS WARPED UPON RECEIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9          | 5    | 3334      | =     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 17109                                              | 2        | CRACK DESCRIPTION CONTENTS    | COMPENTS                                                         | N 9          | ა <u>ნ</u>  | 00 . B 0<br>LONC 1 TU |                                                         | _                       | 35                  | N TO    | H.                                                  | .40,MULTIPLE INITIATIONS<br>DINAL BT VIDTH = 0.2990",                |        | AT THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MEBE       |          | - 6 6736"      |                    | A DD 1                                  | 100                                                           | 71  | RACKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NG<br>A    | 3M01 | ž         | FORM  | ADDITIONAL CRACKING ALONG UNIFORM SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                         |        |             |           |
| 117-11                                             | 2        | CRACK DESCRIPTION             | CRIPTION                                                         | × 5          | 2 5         | 10.8,-0               | 1                                                       |                         | 25                  | N. C    | 24 MULTIPLE INITIATIONS                             | 16.5, -6 24 MULTIPLE INITIATIONS                                     |        | DT TWICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z K        |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 131-07                                             | CBA      | CRACK DISCRIPTION             | CRIPTION                                                         | : <u>z</u> : | 9           |                       | OC. 5. +8 53, MULTIPLE INITIATIONS                      | MULT                    |                     | 2       | TI                                                  | OC.S.+8 33, MULTIPLE INITIATIONS                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 181-14                                             | CRA      | CRACK DESCRIPTION             | CRIPTION                                                         |              | 8 9         | - I                   | CONCILCIANT AT ALBERT NETTATIONS CONCITUDINAL AT ALBERT | , MC LT                 |                     |         | H                                                   | OC.S0.30.NULTIPLE INITIATIONS CONCITUDIAN                            |        | TWICENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 117-11                                             | CHA      | CRACK DESCRIPTION             | RIPTIC                                                           | . <u>*</u>   | 8           | •                     | OC. B. + C. 27, NULTIPLE INITIATIONS                    | MET                     | =                   | =       | E                                                   | TIONS                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 171-01                                             | CRACK    | CK DESC                       | COMMENTS<br>DESCRIPTION                                          | 2 X          | <u>.</u>    | 10.8.48               | LONGITUDINAL.                                           |                         | > =                 | E Z     | DINAL RT WIDTH = 0.3010<br>30, Multiple initiations | AT VIDTH - 0.3010";<br>TIPLE INITIATIONS                             | -      | RT TRICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KAES       |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 181-81                                             | CRA      | COMMENTS<br>CRACK DESCRIPTION | COMMENTS                                                         | 2 %          | <u> </u>    | F X 1                 | LONCITUDINAL<br>16.8.MULTIPLE                           |                         | > E = 1             | TATE    | - 98                                                | AT VIDTH = 0.1950",<br>INITIATIONS ON MULT                           |        | LONCITUDINAL AT VIDTH = 0.2550", AT THICKNESS<br>IG.S.MULTIPLE INITIATIONS ON MULTIPLE PLANES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 8 ZI    |          |                |                    | <b>1</b>                                | Z<br>Z                                                        | 2   | SPECIMEN WAS WARRED UPON RECEIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>2     | Š    | BECE      | 14    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 141-07                                             | CHA      | CRACK DESCRIPTION             | CRIPTION                                                         | 2 %          | 9           | 2 0                   | CC.S0.68.MULTIPLE INITIATIONS                           | HULT                    |                     | X I     | Ē                                                   | SNOT                                                                 |        | TIPLE INITIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |                |                    |                                         |                                                               | :   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •          | 2    | 10000     | :     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 10-101                                             | CRA      | CRACK DESCRIPTION             | CRIPTION                                                         | 4 8 1        | 9 6         |                       | DC.B.OB.U S.                                            |                         | MULTIPLI            |         | . <u> </u>                                          | AL VIDIN & W. 1767', N<br>WELTIPLE INITIATIONS<br>PT CIOTE & CALL OF | 900    | FONELLOUINSE, HE WIGHTS & G.STOT, HE ENERGY BE CONTROLLED IN MINISTERNAL CONTROLLED IN |            |          |                |                    | 1                                       |                                                               |     | 0.1.2.2.2.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.4.2.0.2.0 |            | 5    |           | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 32 - 84                                            | CRACK    | CK DESC                       | DESCRIPTION                                                      | 2 2 2        | 2 -         | 16,8.0                | 10H.04                                                  | ` F                     | 1                   | 2       | DO MULTIPLE INITIATIONS OF DEC. CHORAPEY BY UT      | CHORNEY BY COLUMN                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Ê        | (X)            |                    | . 6. 6715"                              | 6715                                                          | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 31-01                                              | CRA      | CRACK DESCRIPTION             | CRIPTION                                                         | . z :        | 2           | 1C.5.HU               | VLT19                                                   | LTIPLE INITIATIONS      | 7                   | I Y T   | 5NO                                                 | LTIFLE INITIATIONS                                                   |        | agrantite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 33-63                                              | CRA      | CRACK DESCRIPTION             | RIPTIC                                                           | : 5 :        | ö           |                       |                                                         | FULT                    | TINE 31417          | 2       | Œ,                                                  | SA HULTIPLE INITIATIONS                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 32.69                                              | CRA      | CRACK DESCRIPTION             | CHIPTION                                                         | 2 5 2        | - ~ -       | PLANE                 | PERMISSOFFACIONES                                       |                         | LURE OG.            |         |                                                     | 06.8.48.31 6                                                         |        | +0.43, KULTIFLE INITIATIONS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TT.        | - F      | FINIT          | ATIO               |                                         |                                                               | i i | 8.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          | 2    | 7         | 2     | P.S. N. POMENT NO CHARGE AND COMMENT OF THE PROPERTY OF THE PR | 3 2 7 4 8                                 |        |             |           |
| 33-09                                              | CRA      | CRACK DESCRIPTION             | CRIPTION                                                         | . ह :        | . <u></u> . | E .                   | IG.S.MULTIPLE                                           |                         | 1                   | Ĭ       | . ONG                                               |                                                                      |        | IG.S. MULTIPLE INTEREST ON ON MULTIPLE PLANES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | į į        | : :      |                |                    |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ;    |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 13-01                                              | CHA      | CRACK DESCRIPTION             | RIPTIC                                                           | : <u>*</u> : | 8           | 90                    |                                                         | MOLT                    |                     | =       | E                                                   | 47. NULTIPLE INITIATIONS                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ;        | : ,<br>: |                |                    | •                                       |                                                               |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      | Ì         | į     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
|                                                    |          | •                             | CONTRATE                                                         | •            | 3 6         | 3 E C E M             | E                                                       |                         | 3 6                 | 5       | 3 2 3                                               | FECTION WAS WARED UPON RECEIPT                                       |        | DEG /F/M 45 DEG./VG DEG GAMBBELT. HI WIDIN - 6 3023", NI IMIGRAFBB<br>Specimen vas warped upon receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5          | •        | 2              |                    | ¥<br>:                                  | Z Z Z                                                         |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |           | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADDITIONAL CRACKING ALONG CRIECHN BICLIOR |        | - E E E     | ¥ 5       |
| 45-10                                              | <b>2</b> | CRACK DESCRIPTION<br>COMMENTS | CRIPTION                                                         | Z 1          | 2 0         | EC 18                 | SPECIMEN BUCKLED BUE<br>O DEC /P/M 43 DEC/98            | CKLE<br>43 b            | 5 5 E               | # a     | 10 [1]                                              | TENBO!                                                               | TETER  | SPECIMEN BUCKLED DUE TO RRIENBONGIER OBCILLATION AFTER 2 CYCLES<br>o dec /p/m as dec/es dec crosspik. At vedtw = 8 3925 = RT THIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LAT        | × •      | AFTER<br>3025" | )                  | 2 CYCLES<br>. RT THICKNESS              | SCKNE                                                         |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 0 2 2 0  | 0    | VOID TEST |       | P EC 1 M E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPECIMEN WAS WARPED UPON MECEFFF          | ARPED  | NO AN       | EC E 1 PT |
| 33-01                                              | CAA      | CRACK DESCRIPTION<br>COMMENTS | COMMENTS                                                         | ¥ 5          | 2           | A S                   | 1C.S.MULTIPLE INITIATIONS<br>0 DEC /P/M 4: DEC /90 DEC  | - 6                     | T ZZ                | TY.     |                                                     | CROSS                                                                | 714    | SOUTH THE COURSE OF THE PARTY OF THE CAMPAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ę          | -        | 2966           |                    | 1                                       | CKN                                                           | 8   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 0 1 80 0 |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |
| 12-07                                              | CRA      | CRACK DESCRIPTION             | CHIPTION                                                         | ¥ ;          | ö           | 8.00                  | 35.                                                     | 35. MULTIPLE INITIA     |                     | Z 6     |                                                     | 35.MULTIPLE INITIATIONS                                              |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | į          | -        | : 3 6 8        | :                  | 2                                       |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 0 7 6    | -    | í         | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                         |        |             |           |
| 15-01                                              | CHA      | CRACK DESCRIPTION             | COMMENTS                                                         | . z :        | 2           | 6.8                   | 16,5,-e 24.NULTIPLE INITIE                              | 125                     | 11.0                | = :     |                                                     | CROS                                                                 |        | TIONS TO DESCRIPT TO THE PROPERTY OF THE PROPE | ALC        | •        |                |                    |                                         | N N N N N N N N N N N N N N N N N N N                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : :        | •    | EC.1M     | 5     | * CARP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |        | . :         |           |
| MAXIMUM STRAIN WAS NOT ACHIEVED IN THE FIRST CYCLE | TRAIN W  | AS NOT                        | ACHIEV                                                           | 60           | F           | H.H.                  | STCY                                                    | ČLE,                    | }                   | •       |                                                     |                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                | •                  |                                         |                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |             |           |

Material's Behavier Research Cerporation Table III. Stress-Strain Data for First Load-UP Kt=1 8, Strain Control

|                                      | -                                                              | • NI N                                                 |                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | PPECIMEN 151-61                                                | FOMI/1: 20 6±10 <sup>4</sup><br>Stress Strain<br>KS! % | • • • •                                        |                                                | 7 - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | <b>37</b> EC 19                                                | EONI/1<br>STRESS<br>RE!                                | 1 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6        | 34 010<br>50 410<br>60 640<br>76 450           | MANUAL MA                                                                                                                                                                                                                                                                                                   |
|                                      | 135-61                                                         | 20.5210<br>STRAIN                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | a a                                                            |                                                        | 7,992<br>16 353<br>35,114                      | 42.808<br>51.484<br>68.502<br>69.064<br>75.571 | ### C I MEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | 91-19                                                          | BTRAIN                                                 | 9000                                           | 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a n                                  | PECIMEN 161-16                                                 | NIVELS SHEET                                           |                                                | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4          | 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOAD-                                | 2.5                                                            |                                                        |                                                | 7 7 7 7 7                                      | STATE OF STA                                                                                                                                                                                                                                                                                                   |
| ON PIRST                             | IN CONTROL<br>BPECINEN 1SK-04<br>ERN:/2 21 2-106               | STRAIN                                                 | 6 6 6 6                                        |                                                | FFECHEN 33-85<br>FFECHEN 33-85<br>FFELT 11-685<br>KSI 840 8-80<br>17-810 0 100<br>17-810 0 100   |
| STRESS-STRAIN DATA FOR FIRST LOAD-UP | MAIN CONTI<br>BPECINES<br>EON1/2                               | STRESS<br>KS:                                          | 26 . 25 . 25 . 25 . 25 . 25 . 25 . 25 .        | 51 470<br>54 730<br>64 730<br>71 850<br>81 720 | MPP C C M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1688-STRA                            | K 151-07<br>20.7±10                                            | BTRA IN                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8          | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | SPECIMEN 1SI-D7<br>KON1/3. 20.7818                             |                                                        | 10.350<br>20.700<br>31.330<br>41.630<br>51.500 | 40 300<br>70 300<br>77 400<br>64 740<br>120    | EPECINEN 31-81<br>6781/2: 16.91186<br>6788 67824 N<br>681 78 678 6<br>19.124 0.000<br>19.124 0.000<br>19.074 0.120<br>19.074 0.000<br>19.074 0.0 |
|                                      | 1 16E-13<br>31.6819 <sup>4</sup>                               | STRAIN<br>S                                            |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | <b>a</b> .                                                     | Z .                                                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          | 64 948<br>74 688<br>84 428<br>90 248<br>95 330 | BFECIMEN 12-04  BMM-/2: 14.08.06  BTMESS STRAIN  WELL 1.100  14.000  14.000  14.000  15.000  16.000  16.000  17.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.0000  18.0000  18.0000  18.0000  18.0000  18.0                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                | • .                                                    |                                                |                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | G . E                                                          | N C Y S                                                |                                                |                                                | HANDER DE STATE DE ST                                                                                                                                                                                                                                                                                                   |
|                                      | 1400 DEC. F.<br>SPECIMEN 272-09<br>EBN1/2 24 7818 <sup>6</sup> | KB!                                                    | 30 359<br>31 672<br>38 58 58                   | 111 40                                         | MPRECIMEN 161-01 MPN1/2: 23 781-0 MPN1/2                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                | 9 9                                                    |                                                | 0 400<br>0 400<br>0 700                        | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      | R-RATIO: 1<br>S-RATIO: 1<br>SPECIMEN 271-05<br>EDM:/1 -0 0210  |                                                        | 40 415<br>45 404<br>47 179                     | 129 464                                        | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | 1EMPERATI<br>N-RATIO:<br>SPECINEN<br>EGN:/1                    | £                                                      |                                                | 123                                            | ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                |                                                        |                                                |                                                | · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   | SPECIME     | - 12 - 12 X | SPECIME | ( 13-1)  | 1 45-47       | 707.                                    | :       |
|---|-------------|-------------|---------|----------|---------------|-----------------------------------------|---------|
|   | E 0 M 1 / 1 | 11 7810     | EOM1/2  | • 1 . 1  |               | H-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 20-00   |
|   | STRESS      | STRAIN      |         |          |               | EON1/2                                  | 7. 2416 |
| Ľ | 181         |             |         | MI THICK | STRESS STRAIN | STRESS STRAIN                           | STRAIN  |
|   | ;           | •           | 191     | ø        | •             | KSI                                     | •       |
|   |             |             |         | •        |               |                                         |         |
| - | 1 700       | =           | 7       | 970      | •             |                                         |         |
| ~ | 17 126      | 40.0        |         |          |               | 97                                      | Ξ       |
|   |             |             | 017     |          | 0 0 0         | 5 528                                   | ***     |
| - | 77 0        | 9 700       | 10 924  | 0 120    |               |                                         |         |
| - | 27 140      | 0 250       |         |          |               | 7 36                                    |         |
| • |             |             |         |          | 0 .50         | 7.200                                   | 9010    |
| - | 97 629      | 0           | 10 700  | 0.200    | •             |                                         |         |
| • | 36 150      | 0.334       | 21 410  |          |               | =                                       | 0.130   |
| ^ | 40.14       |             |         |          | # : #<br>P    | 13 11                                   | 9.1.0   |
| • |             |             | 54/ 17  | 9 7 8 9  | 0.248         | 14.190                                  | 971     |
| • | :           | -           | 20.279  | 6.336    | 4 1 3 4       |                                         |         |
| • | 46 248      | 9 7 9       | 31 444  |          |               |                                         | =       |
| = | 44 746      |             |         |          | •             | 17.760                                  | 9.211   |
| : |             |             | :       | - 4 E E  | 136           | •••                                     |         |

- 4

LCF SMCOTH SPECIMEN FINAL DATA SUMMARY 04-10-88

HOURS CUSTOMER ALLISON FINAL CYCLE MBRC JOE 010-080 CAMBONE P O N803427 LOAD MAI MIN STRESS NANCE STRESS STAESS RANCE LES KSI KSI KSI CONTACT UN DIN COVE MAX Load Lbs LOAD CONTOLLED TESTS IN/ IN/ DEC F EMP COEFF SIC/TIBAL ALLOY THERMA: FREG 24 SO IN DEC F TEMP TEST TEMP AREA ROOM TEMPERATURE DIMENSIONS X1 05 DIAM VIDTH THICK AREA ž ĭ Z <u>..</u> SPEC R- MACH I D RATIO NO

.... HOTE BELOW, A "MEGATIVE BERO" DENOTES 'NOT AVAILABLE" OR 'NOT APPLICABLE' \*\*\*\*

• 1 70 2 **†** 11 11 : 100212001 71930 181510 417450 1127810 72 00 13 00 24 00 40.50 81.90 00 9 9 • 20 7.80 00 04 00 00 00 07 45.00 70.00 1911.6 1467.9 1290.6 2 4491 151.9 212 ::: 143.1 13.4 104 7 4L-05 I 12 1.0 0.2770 0.0780 0.0232 0.0234 1480 30.6088 6.80 2124 0.161-65 CRACK DESCRIPTION IN UNIFORM SECTION,S,MULTIPLE INITIATIONS,P+S WAVEFORM TRIANCULAR 1.6L-05 COMMENTS LONGITUDINAL 1434.0 1 12 1 0 0 3010 0 0785 0 0235 0 0237 1460 30 8080 4 80 1434.0 146.1 CRACK DESCRIPTION IN UNIFORM SECTION, 1 4 S.MULTIPLE INITIATIONS WAVEFORM TRIANCULAR 146.1 COMMENTS LONGITUDINAL D 4.80 1886.9 VAVEFORM TRIANCULAR 1631 1066 5 14L-10 1 16 1 0 0 0 3020 0 0776 0 0233 0 0237 1400 30.0000 4 00 16L-10 Crack Description unloaded in one Piece Waveform Triangular 16L-10 comments longitudinal Stopped Test - runout at 10021200 Cycles 9 4L-64 1 12 1 0 9 3010 0 0770 0 0131 0 0134 1480 30 8080 16L-04 CRACK DESCRIPTION IN UNIFORM SECTION, S, MULTIPLE INITIATIONS, P+5 14L-11 12 1 0 0 3010 0 0760 0 0219 0 0233 1480 30 0000 14L-11 CRACK DESCRIPTION IN UNITORM SECTION, 6, P+S VAVEFORM TRIANGULAR 141-11 COMMENTS LONGITUDINAL. 141-84 COMMENTS LONGITUDINAL 01-191

1417450 36 60 0 • 0 **:** 8 0 Z B 1. 912 0 33-03 1 10 1 6 0 3620 0 6740 C 8223 C 0228 1495 30 8000 4 80 9 •33-03 CRACK DESCRIPTION IN UNIFORM SECTION,S.MULTIPLE INITIATIONS WAVEFORM TRIANGULAR •15-03 COMMENTS 6 DEC /90 DEC CROSSPLY

. .

0

4140

20

5

20

9

ç

1316 3

1463

19-16 1 9 10 C 3G30 0 073C 0 0223 140G 3G 0000 4 80 1442 3 33-10 CRACK DESCRIPTION IN UNIFORM SECTION.S.MULTIPLE INITIATIONS.P+S WAVEFORM TRIANCULAR 33-16 COMMENTS 0 DEG /98 GEC CROSSFLY

|                             | RUN<br>TIME<br>MOURS                                                                                                                                   | :                                                                         | 33 08                                                                                                                                                            | 0 9 2 4                                                                                                    | 9 9                                                                                                                                                                           |                                                                                                                                                                   | :                                                                                                                                                                           | :                                                                                                                      |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| PAGE 2                      | <b>E</b> 1 B                                                                                                                                           |                                                                           |                                                                                                                                                                  |                                                                                                            | •                                                                                                                                                                             | •                                                                                                                                                                 | •                                                                                                                                                                           | -                                                                                                                      |
| PAG                         | FINAL                                                                                                                                                  |                                                                           | 3573130                                                                                                                                                          | 100001                                                                                                     | 32736                                                                                                                                                                         | •                                                                                                                                                                 | 3 T O                                                                                                                                                                       | 18846180                                                                                                               |
|                             | STRESS<br>RANGE<br>RS I                                                                                                                                |                                                                           | 51 50                                                                                                                                                            | 17 00                                                                                                      | 34 80                                                                                                                                                                         | 27.60                                                                                                                                                             | 37 60                                                                                                                                                                       | 22 50                                                                                                                  |
|                             | MIN<br>STRESS<br>MS I                                                                                                                                  |                                                                           | 9 30                                                                                                                                                             | 8                                                                                                          | ° .                                                                                                                                                                           | 0                                                                                                                                                                 | 6                                                                                                                                                                           | 9                                                                                                                      |
|                             | MAX<br>STRESS<br>KS1                                                                                                                                   |                                                                           | 35 60                                                                                                                                                            | 30                                                                                                         | 00                                                                                                                                                                            | 30                                                                                                                                                                | 000                                                                                                                                                                         | 25 00                                                                                                                  |
|                             | LOAD<br>RANGE<br>LBS                                                                                                                                   | . ICABLE .                                                                |                                                                                                                                                                  | * 51                                                                                                       | 7 7 68                                                                                                                                                                        | 7                                                                                                                                                                 | 5 +69                                                                                                                                                                       | 524 3 25 88                                                                                                            |
|                             | E COAD                                                                                                                                                 | PAN TOM.                                                                  | 1 11                                                                                                                                                             | •                                                                                                          | •                                                                                                                                                                             | 73 8<br>10 CYCLES                                                                                                                                                 | 20.5                                                                                                                                                                        | S 3                                                                                                                    |
|                             | MAII<br>LOAD                                                                                                                                           | LABLE. OR                                                                 | 777 B<br>NGULAR                                                                                                                                                  | 0                                                                                                          | 9 7 6 A                                                                                                                                                                       | 738 0<br>ULAR<br>3 & (13550)                                                                                                                                      | 705 6                                                                                                                                                                       | 582.5                                                                                                                  |
| THERMAL                     | SPEC R- MACH DIAM VIDTH THICK AREA TEMP FRED IG-6 LOAD LOAD MAX MIN STRESS RUNE 1 IN IN SO IN SO IN DECF MZ IN/IN/DECF LBS LBS KSI KSI KSI CYCLE NOUNS | BELOV. A 'MEGATIVE ZERG' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE' **** | O 6 80 777<br>Vaveform triangular                                                                                                                                | 6 BB<br>CYCLES                                                                                             | 8880 6.80<br>MAVEFORM TRIANGULAR                                                                                                                                              | I 6 6241 0 0244 1489 30.8868 6 80 738 D 73 8<br>N.S.MULTIPLE INITIATIONS.P WAVEFORM TRIANGULAR<br>CROSSELY "EST CYCLED AT ZERO LOAD, N? >638888 & (1355830 CYCLES | 8880 4 80<br>Waveform: Triangular                                                                                                                                           | 1 6 6227 G 6233 1408 39 6560 6 80 583<br>TECE WAVEFORM TRIANCULAR<br>CROSSPLY STOPPED TEST - RUNGUT AT 18844188 CYCLES |
|                             | PREO                                                                                                                                                   | ERG. DEN                                                                  | 0 3035 0 0726 0 0219 0 0222 1400 30 0000 6 90<br>Uniform section.s.multiple initiations.p.s Vaveform<br>:c crossply                                              | O 0 0224 O 0228 1400 30 0006 6 BI<br>PIECE VAVEFORM TRIANGULAR<br>STOPPED TEST - MUNDUT AT 10006440 CYCLES | 2                                                                                                                                                                             | 6 8241 0 0344 1480 30.8066 6 80<br>S.Multiple initiations,p. Waveform 1<br>Rossply 'est cycled at 25ro Load, nr 3                                                 | 30 8080 4 80<br>VAVEFORM: TRI                                                                                                                                               | 10 6080<br>LAR<br>RUMOUT                                                                                               |
|                             | TEST<br>TEMP<br>DEC F                                                                                                                                  | CATIVE 2                                                                  | 1400<br>FIATIONS                                                                                                                                                 | 1400<br>TRIANG                                                                                             | 1460<br>TATIONS                                                                                                                                                               | 1400<br>TATIONS,<br>YCLED AT                                                                                                                                      | 1480<br>IATIONS                                                                                                                                                             | G 6227 O 6233 1448 3D 6060<br>CE VAVEFORM TRIANGULAR<br>OSSPET STOPPED TEST - RUNDUT                                   |
| TEST                        | TEME<br>AREA<br>SO IN                                                                                                                                  | 3H. V .                                                                   | 0 0222<br>FLE INT                                                                                                                                                | 0 0228<br>Aveform<br>St - Ruy                                                                              | G 8244 G 8249 1469<br>S.Multiple initiation<br>Kossply                                                                                                                        | 0 0244<br>PLE INIT                                                                                                                                                | 0 8231 6.8235 1460<br>S.MULTIPLE INITIATION                                                                                                                                 | 0 6233<br>VEFORM<br>STOPPE                                                                                             |
| ENS 10NS                    | AREA<br>SO IN                                                                                                                                          | E BELO1                                                                   | 32-05 1 10 1 6 0 3035 0 0726 0 0217 0 0222 1400 30 0 32-05 CRACK DESCRIPTION IN UNIFORM SECTION,S,MULTIPLE INITIATIONS,P+8 32-05 COMMENTS 0 DEC /P0 DEC CROSSPLY | 0 0 0224 D 0228 1400 30 (<br>PIECE WAVEFORM TRIANGULAR<br>STOPPED TEST - RUNDUT AT 18066                   | 33-04 1 11 1 0 6 2760 0 8220 0 8244 0 8245 1480<br>135-05 CRACK DESCRIPTION IN UNIFORM SECTION.S. MULTIPLE INITIATIONS<br>135-84 COMMENTS 8 DEC /F/N 45 DEC /P0 DEC CKOSSPLY. | 0 8241<br>.S.MULTI<br>CROSSPLY                                                                                                                                    | 43-61 1 11 1 0 0 3041 0 6750 0 8231 0 6235 1460<br>45-01 CRACK DESCRIPTION IN UNIFORM SECTION.S. MULTIPLE INITIATIONS<br>45-61 COMMENTS: 0 DEC /P/M 45 DEC /10 DEC CROSSPLY | 1 6 6227 6 6233 1409 3D (<br>FECE MAVEFORM TRIANGULAR<br>CROSSPLY STOPPED TEST - RUI                                   |
| TURE DIM                    | THICK                                                                                                                                                  | HUNGE                                                                     | 0 0720<br>1 SECTION<br>35PLY                                                                                                                                     |                                                                                                            | 0 6820<br>1 SECTION<br>90 DEC                                                                                                                                                 | _ 4                                                                                                                                                               | SECTION<br>90 DEC                                                                                                                                                           |                                                                                                                        |
| ROOM TEMPERATURE DIMENSIONS | CIOTH THICK                                                                                                                                            |                                                                           | 32-03 1 10 1 B 0 3033 0 B<br>32-03 CRACK DESCRIPTION IN UNITORN SECT<br>32-03 COMMENTS B DEC /FO DEC GROSSPLY                                                    | 33-04 1 P 1 0 0 333 B 674 33-04 CRACK DESCRIPTION UNICADED IN ONE 33-64 COMMENTS D DEG. FRO DEG. CROSSPLY  | 33-04 CAACK DESCRIPTION IN UNIFORM SECTION 33-04 COMMENTS 8 DEC 1F/M 43 DEC 170 DEC                                                                                           | 33-04 1 9 1.0 0 2946 0 0016<br>33-04 CAACK DESCRIPTION. IN UNIFORM SECTIO<br>33-04 COMMENTS 0 DEG /P/M 45 DEG /P0 DEG                                             | 15-C1                                                                                                                                                                       | 45-08 CAACK DESCRIPTION UNLOADED IN ONE P<br>45-88 COMMENTS: 8 DEC /P/N 43 DEC/98 DEC.                                 |
|                             | DIAN                                                                                                                                                   |                                                                           | 1CN 13                                                                                                                                                           | NN NO:                                                                                                     | 10N 1N                                                                                                                                                                        | N. 1N                                                                                                                                                             | ON 1N                                                                                                                                                                       | NO NO                                                                                                                  |
|                             | *                                                                                                                                                      |                                                                           | 10 1 0<br>DESCRIPT<br>FS 0 DI                                                                                                                                    | - E                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                         | - E                                                                                                                                                               | A P P T I                                                                                                                                                                   | D T T T T T T T T T T T T T T T T T T T                                                                                |
|                             | A- MACH                                                                                                                                                |                                                                           | OES<br>ENTS                                                                                                                                                      | DES(                                                                                                       | DESC<br>NTS                                                                                                                                                                   | DESC                                                                                                                                                              | 11<br>DESC<br>NTS                                                                                                                                                           | 1 10 1 0<br>RACK DESCRIPTIONNENTS & DE                                                                                 |
|                             | -44                                                                                                                                                    |                                                                           | CRACI                                                                                                                                                            | CRACI                                                                                                      | CANCY                                                                                                                                                                         | CRACK<br>COMPE                                                                                                                                                    | CRACK                                                                                                                                                                       | CRACK<br>COMME                                                                                                         |
| -                           | SPEC R- MACH                                                                                                                                           |                                                                           | 32-05<br>32-05<br>32-05                                                                                                                                          | 33-04 1 9 1 0<br>33-04 CRACK DESCRIPT:<br>33-64 COMMENTS 0 DE                                              | 35-04 1 11 1 0<br>35-04 CAACK DESCRIPTI<br>35-04 COMMENTS 0 DE                                                                                                                | 35-04 1 9 1 0<br>35-04 CRACK DESCRIPTIO<br>35-04 COMMENTS 0 DEC                                                                                                   | 45-61 1 11 1 0<br>-65-01 CMACK DESCRIPTI<br>-45-61 COMMENTS: 0 DE                                                                                                           | 45-88<br>-45-88<br>-45-88                                                                                              |

### APPENDIX C

Task III. Fatigue Crack Growth Data

TRANSVERSE FCGR

PAGE 1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE FURCHASE CRDER: H838867 RELEASE: MATERIAL I.D.: SCS-6/TI3AL TRANS. R-RATIO: .1 TEMPERATURE (C): 25.5556 A-RATIO: .8181818 FREQUENCY (Hz): 3.33 WIDTH (W), mm: 25.4839 MAX. LOAD, kg: 685.4545 MIN. LGAD, kg: 68.54546 LOAD RANGE, kg: 616.9091 CYCLE OFFSET: 0

SPECIMEN I.D.: A62-2 DRAWING NUMBER: DATE: 07-02-89 MACHINE: 12 WAVEFORM: TRIANGULAR THICKNESS (B), mm: 2.1209 NOTCH LENGTH, mm: .508 PROBE SPACING, mm: 0 SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE         | F.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|---------------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
| Ö             | 0.000                    | 0.51           | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 67 <b>8</b> 2 | 0.000                    | 0.72           | 0.62           | 0.024 | 5.5                   | 0.318E-07          |
| 7124          | 0.000                    | 0.83           | 0.77           | 0.030 | 6.2                   | 0.297E-06          |
|               |                          |                |                |       |                       |                    |
| 7881          | 0.000                    | 1.37           | 1.10           | 0.043 | 7.5                   | 0.721E-06          |
| 8791          | 0.000                    | 2.83           | 2.10           | 0.082 | 10.5                  | 0.162E-05          |
| 8834          | 0.000                    | 3.56           | 3.19           | 0.125 | 13.1                  | 0.137E-04          |

# MBRC PD DROP,A VS CYCLE



ALLISON,H838867,A62-2,200CPM,26C,R=.1

PAGE 1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE FURCHASE ORDER: H838867 RELEASE: MATERIAL I.D.: SCS-6/TI3AL TRANS. R-RATIO: .1 TEMPERATURE (C): 25.5556

FREQUENCY (Hz): 3.33

MAX. LOAD, kg: 703

MIN. LOAD, kg: 70.31818

LOAD BANGE (A: 432.4816)

KERATIO: .1

A-RATIO: .8181818

WIDTH (W), mm: 25.

THICKNESS (B), mm:

NOTCH LENGTH, mm: LOAD RANGE, kg: 632.6818 CYCLE OFFSET: 0

SFECIMEN I.D.: A55-4 DRAWING NUMBER: DATE: 07-02-89 MACHINE: 9 WAVEFORM: TRIANGULAR WIDTH (W), mm: 25.527 THICKNESS (B), mm: 2.0574 NOTCH LENGTH, mm: .508
FROBE SPACING, mm: 0
SPECIMEN TYPE: SINGLE EDGE NOTCH

F.D. VOLT A p.d. A/W DELTA K dA/dN CYCLE A reg. (M/CYCLE) (MICROVOLT) (mm) (mm) (MPa\*M^.5) \_\_\_\_\_ \_\_\_\_ 0.00 0.000 0.51 0.0 0.000E+00 0.000 O. 0.020 5.3 0.000E+00 0.000 0.51 0.51 4680

(Note: failed in grips for 4th time - too short to reload.)

PAGE 1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

SPECIMEN I.D.: A61-2

DRAWING NUMBER: DATE: 06-29-89

MACHINE: 7

WAVEFORM: TRIANGULAR

 RELEASE:
 WAVEFORM: TRIANGULAR

 MATERIAL I.D.: SCS-6/TI3AL TRANS.
 R-RATIO: .1

 TEMPERATURE (C): 315.5555
 A-RATIO: .8181818

 FREQUENCY (Hz): 3.33
 WIDTH (W), mm: 25.5016

 MAY. LOAD, kg: 222.7273
 THICKNESS (B), mm: 2.1082

 MIN. LOAD, kg: 22.27273
 NOTCH LENGTH, mm: 2.54

 LOAD RANGE, kg: 200.4545
 PROBE SPACING, mm: 0

 CYCLE OFFSET: 0
 SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d. (mm) | A reg. (mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|-------|-----------------------|------------|-------------|-------|-----------------------|--------------------|
| 0     | 0.000                 | 7.49       | 0.00        | 0.000 | 0.0                   | 0.000E+00          |
| 4500  | 0.000                 | 7.61       | 7.55        | 0.296 | 7.1                   | 0.254E-07          |
| 6400  | 0.000                 | 7.67       | 7.64        | 0.300 | 7.2                   | 0.334E-07          |
| 9840  | 0.000                 | 7.84       | 7.81        | 0.306 | 7.3                   | 0.411E-07          |
| 12500 | 0.000                 | 7.89       | 7.94        | 0.311 | 7.4                   | 0.438E-07          |
| 18920 | 0.000                 | 8.27       | 8.24        | 0.323 | 7.6                   | 0.400E-07          |
| 22970 | 0.000                 | 8.39       | 8.40        | 0.329 | 7.7                   | 0.365E-07          |
| 27650 | 0.000                 | 8.60       | 8.55        | 0.335 | 7.8                   | 0.373E-07          |
| 34170 | 0.000                 | 8.74       | 8.70        | 0.341 | 7.9                   | 0.426E-07          |
| 42810 | 0.000                 | 9.03       | 9.05        | 0.355 | 8.1                   | 0.500E-07          |
| 49340 | 0.000                 | 9.37       | 9.48        | 0.372 | 8.4                   | 0.592E-07          |
| 54170 | 0.000                 | 9.94       | 9.93        | 0.389 | 8.7                   | 0.763E-07          |
| 55760 | 0.000                 | 10.25      | 10.11       | 0.397 | 8.8                   | 0.934E-07          |
| 58680 | 0.000                 | 10.41      | 10.45       | 0.410 | 9.0                   | 0.108E-06          |
| 61770 | 0.000                 | 10.77      | 10.72       | 0.420 | 9.2                   | 0.121E-06          |
| 63500 | 0.000                 | 10.83      | 10.93       | 0.428 | 9.3                   | 0.135E-06          |
| 65570 | 0.000                 | 11.23      | 11.23       | 0.440 | 9.5                   | 0.186E-06          |
| 68020 | 0.ა00                 | 11.80      | 11.67       | 0.457 | 9.9                   | 0.244E-06          |
| 70310 | 0.000                 | 12.18      | 12.25       | 0.480 | 10.3                  | 0.292E-06          |
| 73450 | 0.000                 | 13.22      | 13.37       | 0.524 | 11.2                  | 0.365E-06          |

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d.<br>(mm) | A reg. (mm) | A/W   | DELTA K (MPa*M^.5) | da/dn<br>(m/cycle) |
|-------|-----------------------|---------------|-------------|-------|--------------------|--------------------|
|       |                       |               |             |       |                    |                    |
| 75120 | 0.000                 | 14.11         | 14.29       | 0.560 | 11.9               | 0.458E-06          |
| 75890 | 0.000                 | 14,71         | 14.91       | 0.585 | 12.5               | 0.626E-06          |
| 76720 | 0.000                 | 15.81         | 15.85       | 0.622 | 13.4               | 0.971E-06          |
| 77050 | 0.000                 | 16.21         | 16.01       | 0.628 | 13.6               | 0.119E-05          |
| 77400 | 0.000                 | 16.81         | 16.51       | 0.647 | 14.1               | 0.174E-05          |
| 77500 | 0.000                 | 17.53         | 17.17       | 0.673 | 14.9               | 0.711E-05          |

# MBRC PD DROP,A VS CYCLE



ALLISON, H838867, A61-2, 200 CPM, 316C, R=, 1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE PURCHASE ORDER: H838867 RELEASE: MAVEFORM: TRIANGULAR
MATERIAL I.D.: SCS-6/TI3AL TRANS. R-RATIO: .1
TEMPERATURE (C): 315.555 A-RATIO: .8181818
FREQUENCY (Hz): 3.33 WIDTH (W), mm: 25.4
MAX. LOAD, kg: 290.9091 THICKNESS (B), mm: 2.032
MIN. LOAD, kg: 29.09091 NOTCH LENGTH, mm: 2.54
LOAD RANGE, kg: 261.8182 PROBE SPACING, mm: 0
CYCLE OFFSET: 0 SPECIMEN TYPE: SINGLE EDGE

SPECIMEN I.D.: A58-2 DRAWING NUMBER: DATE: 06-30-89 MACHINE: 7 WAVEFORM: TRIANGULAR SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE         | P.D. VOLT<br>(MICROVOLT) | A p.d. (mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|---------------|--------------------------|-------------|----------------|-------|-----------------------|--------------------|
| 0             | 0.000                    | 4.86        | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 1750          | 0.000                    | 4.89        | 4.88           | 0.192 | 7.4                   | 0.145E-07          |
| 7600          | 0.000                    | 4.95        | 4.92           | 0.172 | 7.4                   |                    |
| 11150         | 0.000                    | 5.07        | 4.98           | 0.174 |                       | 0.109E-07          |
| 31130         | 0.000                    | 5.54        |                |       | 7.5                   | 0.302E-07          |
| -             |                          | _           | 5.58           | 0.220 | 8.0                   | 0.33 <b>6E</b> -07 |
| 36570         | 0.000                    | 5.79        | 5.84           | 0.230 | 8.3                   | 0.385E-07          |
| 41690         | 0.000                    | 6.25        | 6.12           | 0.241 | 8.5                   | 0.445E-07          |
| 45320         | 0.000                    | 6.38        | 6.35           | 0.250 | 8.7                   | 0.749E-07          |
| 48560         | 0.000                    | 6.49        | 6.56           | 0.258 | 8.7                   | 0.945E-07          |
| 53280         | 0.000                    | 6.95        | 7.01           | 0.276 | 9.3                   | 0.111E-06          |
| 58060         | 0,000                    | 7.70        | 7.67           | 0.302 | 7.8                   | 0.143E-06          |
| 60770         | 0.000                    | 8.29        | 8.14           | 0.321 | 10.2                  | 0.180E-06          |
| <i>5</i> 3430 | 0.000                    | 8.51        | 8.70           | 0.343 | 10.7                  | 0.214E-06          |
| <b>66590</b>  | 0.000                    | 9.41        | 7,44           | 0.372 | 11.4                  | 0.284E-06          |
| 68930         | 0.000                    | 10.31       | 10.31          | 0.406 | 12.1                  | 0.365E-06          |
| <b>699</b> 00 | 0.000                    | 10.62       | 10.81          | 0.426 | 12.6                  | 0.549E-06          |
| 71660         | 0.000                    | 11.87       | 12.25          | 0.482 | 14.0                  | 0.758E-06          |
| 72380         | 0.000                    | 12.84       | 12.36          | 0.487 | 14.1                  | 0.134E-05          |
| 73220         | 0.000                    | 14.59       | 13.72          | 0.540 | 15.6                  | 0.209E-05          |
| 73330         | 0.000                    | 14.99       | 14.79          | 0.582 | 16.9                  | 0.358E-05          |

# MBRC PD DROP,A VS CYCLE



ALLISON, H838867, A58-2, 200CPM, 316C, R=.1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-072

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL TRANS.

TEMPERATURE (C): 648.8889

FREQUENCY (Hz): 3.33

MIDTH (W), mm
MAX. LOAD, kg: 187.5

MIN. LOAD, kg: 18.77273

LOAD RANGE, kg: 168.7273

CYCLE OFFSET: 10200

SPECIMEN I.D.

DRAWING NUMBE

MACHINE: 12

WAVEFORM: TRI

WAVEFORM: TRI

WAVEFORM: TRI

MACHINE: 12

WAVEF

SPECIMEN I.D.: A55-2
DRAWING NUMBER:
DATE: 06-30-89
MACHINE: 12
WAVEFORM: TRIANGULAR
ANS. R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 25.5143
THICKNESS (B), mm: 2.0701
NOTCH LENGTH, mm: 2.54
PROBE SPACING, mm: 1.379728E-02
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE          | P.D. VOLT<br>(MICROVOLT) | A p.d. | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|----------------|--------------------------|--------|----------------|-------|-----------------------|--------------------|
| 0              | 0.241                    | 2.54   | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 10739          | 0.282                    | 2.92   | 2.73           | 0.107 | 3.4                   | .355E~07           |
| 29384          | 0.317                    | 3.30   | 3.11           | 0.122 | 3.6                   | 0.204E-07          |
| 33 <b>8</b> 39 | 0.349                    | 3.63   | 3.56           | 0.140 | 3.9                   | 0.353E-07          |
| 46379          | 0.386                    | 3.99   | 4.09           | 0.160 | 4.2                   | 0.393E-07          |
| 49184          | 0.416                    | 4.29   | 4.22           | 0.165 | 4,5                   | 0.5418-07          |
| 56444          | 0.447                    | 4.60   | 4.72           | 0.195 | 4.6                   | 0.511E-07          |
| 58589          | 0.475                    | 4.88   | 4.87           | 0.191 | 4.7                   | 0.912E-07          |
| 61559          | 0.507                    | 5.21   | 5.22           | 0.205 | 4.9                   | 0.103E-04          |
| 63704          | 0.544                    | 5.56   | 5.55           | 0.218 | 5.0                   | 0.142E-06          |
| 65024          | 0.570                    | 5.82   | 5.72           | 0.224 | 5.1                   | 0.165E-06          |
| 67994          | 0.599                    | 5.12   | 6.24           | 0.245 | 5.4                   | 0.201E-06          |
| 69479          | 0.640                    | 5.50   | 4,54           | 0.257 | 5.6                   | 0.239E-06          |
| 70881          | ়. 699                   | 7.06   | 7.00           | 0.274 | 5.8                   | 0.280E-06          |
| 71954          | 0.742                    | 7.47   | 7,44           | 0.292 | 0.1                   | 0.370E-06          |
| 72779          | 0.773                    | 7.77   | 7.78           | 0.305 | 5.2                   | 0.406E-0€          |
| 73785          | 0.817                    | 9.18   | 5.19           | 0.321 | 6.5                   | 0.429E-06          |
| 74594          | 0. <b>85</b> 7           | 8.53   | 8.55           | 0.335 | 6.7                   | 0.470E-06          |
| 75287          | 0 <b>.9</b> 00           | 8.92   | 8.93           | 0.350 | <b>5.</b> 9           | 0.541E-06          |
| 75749          | 0.932                    | 9.19   | 9.23           | 0.352 | 7.0                   | 0.567E-06          |

| CYCLE         | P.D. VOLT<br>(MICROVGLT) | A p.d. (mm) | A reg. | A/W   | DELTA K<br>(MPa*M^.5) | (M/CYCLE)              |
|---------------|--------------------------|-------------|--------|-------|-----------------------|------------------------|
| 76079         | 0.951                    | 9.45        | 7.51   | 0.373 | 7.2                   | 0.828E-05              |
| 76385         | 1.004                    | 9.83        | 9.51   | 0.384 | 7.4                   | 0.9652-05              |
| 76665         | 1.046                    | 10.19       | 10.11  | 0.396 | 7.5                   |                        |
| 77075         | 1.088                    | 10.54       | 10.60  | 0.415 | 7.8                   | 0.111E-05<br>0.123E-05 |
| 77325         | 1.123                    | 10.82       | 10.72  | 0.428 | 8. <sub>0</sub>       | 0.1386-05              |
| 77425         | 1.163                    | 11.15       | 11.07  | 0.434 | 8.1                   | 0.153E-05              |
| 77545         | 1.202                    | 11.48       | 11.49  | 0.450 | 8.3                   | 0.183E-05              |
| 77835         | 1.254                    | 11.89       | 11.86  | 0.465 | 8.6                   | 0.155E-05              |
| 78005         | 1.291                    | 12.17       | 12.20  | 0.478 | 8.8                   | 0.203E-05              |
| 78135         | 1.329                    | 12.45       | 12.52  | 0.491 | 9.0                   | 0.257E-05              |
| 78235         | 1.374                    | 12.80       | 12.82  | 0.503 | 9.2                   | 0.304E-05              |
| 78295         | 1.418                    | 13.11       | 13.07  | 0.512 | 9.3                   | 0.399E-05              |
| 78385         | 1.468                    | 13.46       | 13.52  | 0.530 | 9.7                   | 0.489E-05              |
| 78415         | 1.504                    | 13.72       | 13.67  | 0.536 | <b>7.</b> 8           | 0.560E-05              |
| 78475         | 1.549                    | 14.02       | 14.01  | 0.549 | 10.0                  | 0.439E-05              |
| 78535         | 1.606                    | 14.40       | 14.43  | 0.566 | 10.3                  |                        |
| 78575         | 1.658                    | 14.76       | 14.78  | 0.579 | 10.5                  | 0.783E-05              |
| 78615         | 1.731                    | 15.21       | 15.27  | 0.599 | 11,0                  | 0.894E-05<br>0.116E-04 |
| 78635         | 1.787                    | 15.54       | 15.57  | 0.610 | 11.3                  | 0.1155E-04             |
| 78655         | 1.858                    | 15.98       | 15.95  | 0.625 | 11.6                  |                        |
| 78675         | 1.935                    | 16.41       | 16.40  | o.543 | 12.0                  | 0.184E-04<br>0.220E-04 |
| 78695         | 2.026                    | 16.89       | 16.88  | 0.662 | 12.5                  | 0.245E-04              |
| 78705         | 2.063                    | 17.09       | 17.13  | 0.672 | 12.7                  |                        |
| 78715         | 2.129                    | 17.42       | 17.26  | 0.676 | 12.9                  | 0.301E-04<br>0.330E-04 |
| 78725         | 2.211                    | 17.83       | 17.63  | 0.691 | 13.3                  | 0.330E-04<br>0.406E-04 |
| 7873 <b>5</b> | 2.373                    | 18.57       | 18.20  | 0.713 | 14.0                  | 0.408E-04              |

# MBRC PD DROP,A VS CYCLE



ALLISON,H838867,A66-2,200CPM,849C,R=.1

PAGE 1

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TIJAL TRANS. R-RATIO: .1

TEMPERATURE (C): 648.8889 FREQUENCY (Hz): 3.33 MAX. LOAD, kg: 147.2727 MIN. LOAD, kg: 14.72727 LOAD RANGE, kg: 132.5455

CYCLE OFFSET: 82400

SPECIMEN I.D.: A62-4

DRAWING NUMBER: DATE: 06-30-89 MACHINE: 12

WAVEFORM: TRIANGULAR

A-RATIO: .8181818 WIDTH (W), mm: 25.5016

THICKNESS (B), mm: 2.159 NOTCH LENGTH, mm: 2.54 PROBE SPACING, mm: 1.36525

SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE  | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|--------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
| 0      | 0.294                    | 3.71           | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 23712  | 0.313                    | 3.99           | 3.95           | 0.151 | 3.1                   | 0.118E-07          |
| 56751  | 0.336                    | 4.29           | 4.14           | 0.162 | 5.2                   | 0.9335-08          |
| 80703  | 0.356                    | 4.57           | 4.62           | 0.131 | 5.4                   | 0.135E-07          |
| 97579  | ○ <b>.</b> 379           | 4.88           | 4.91           | 0.192 | 3.5                   | 0.151E-07          |
| 109745 | 0.399                    | 5.16           | 5.18           | 0.203 | 3.8                   | 0.219E-07          |
| 118158 | 0.420                    | 5.41           | 5.42           | 0.212 | 5.7                   | 0.2925-07          |
| 126705 | 0.442                    | 5.71           | 5.72           | 0.224 | 3.9                   | 0.370E-17          |
| 134460 | 0.466                    | 6.02           | <b>5.</b> 07   | 0.233 | 4.0                   | 0,443E-07          |
| 138849 | 0.491                    | 6.35           | 5.29           | 0.247 | 4.1                   | 0.495E-07          |
| 144729 | 0.513                    | 6.63           | 6.62           | 0.260 | 4,2                   | 0.558E-07          |
| 150303 | 0.537                    | 6.93           | 6.96           | 0.273 | 4.4                   | 0.514E-07          |
| 154722 | 0.559                    | 7.21           | 7.22           | 0.257 | 4.5                   | 0.851E-07          |
| 158413 | 0.582                    | 7.49           | 7.49           | 0.294 | 4.5                   | 0.742E-07          |
| 152444 | 0.607                    | 7.80           | 7.82           | 0.307 | 4.7                   | 0.337E-07          |
| 165348 | 0.631                    | 8.10           | 8.09           | 0.317 | 4.3                   | 0.913E-67          |
| 168714 | o.458                    | 8.41           | 8.41           | 0.330 | 5.0                   | 0.954E+07          |
| 171618 | 0.582                    | 8.71           | 8.72           | 0.542 | 5.1                   | 0.103E-06          |
| 174914 | 0.711                    | 9.04           | 9.05           | 0.755 | 5.2                   | ).105E-16          |
| 177129 | ্.73?                    | 9.35           | 9.28           | 0.364 | <b>5.</b> 3           | 0.115E-06          |

| CACFE  | P.D. VOLT<br>(MICRGVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dAZEN<br>(MZCYCLE) |
|--------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
| 180625 | 0.767                    | 9.63           | 9.70           | 0.380 | 5.5                   | 0.1315-06          |
| 183399 | 0.794                    | 7.98           | 10.04          | 0.394 | 5.6                   | 0.152E-06          |
| 185615 | <b>.</b> ৪3৪             | 10.45          | 10.45          | 0.410 | 5.8                   | 0.174E-06          |
| 187458 | O.881                    | 10.92          | 10.87          | 0.426 | 6.0                   | 0.223E-06          |
| 188910 | 0.909                    | 11.23          | 11.31          | 0.444 | 6.2                   | 0.2155-06          |
| 190362 | 0.948                    | 11.63          | 11.65          | 0.457 | 6.4                   | 0.1985-06          |
| 192309 | 1.004                    | 12.19          | 12.05          | 0.473 | 6.5                   | 0.193E-06          |
| 196335 | 1.047                    | 12.62          | 12.74          | 0.500 | 6.9                   | 0.194E-06          |
| 198460 | 1.086                    | 13.00          | 13.14          | 0.515 | 7.1                   | 0.215E-06          |
| 198909 | 1.113                    | 13.26          | 13.21          | 0.518 | 7.1                   | 0.240E-06          |
| 100512 | 1.167                    | 13.74          | 13.74          | 0.539 | 7.4                   | 0.347E-06          |
| 202209 | 1.241                    | 14.40          | 14.46          | 0.567 | 7.8                   | 0.415E-06          |
| 202720 | 1.282                    | 14.76          | 14.69          | 0.576 | 7.9                   | 0.425E-06          |
| 203644 | 1.326                    | 15.11          | 15.15          | 0.594 | 8,2                   | 0.481E-06          |
| 204073 | 1.365                    | 15.42          | 15.37          | 0.603 | 8.4                   | 0.528E-06          |
| 204997 | 1.409                    | 15.77          | 15.85          | 0.621 | 8.7                   | 0.5695-06          |
| 205360 | 1.458                    | 16.13          | 16.06          | 0.630 | 8.3                   | 0.459E-05          |
| 206053 | 1.506                    | 16.48          | 16.53          | 0.648 | 9.1                   | 0.497E-06          |
| 206647 | 1.585                    | 17.04          | 17.02          | 0.667 | 9.5                   | 0.826E-06          |
| 207142 | 1.653                    | 17.48          | 17.50          | 0.686 | 9,9                   | 0.120E-05          |
| 207459 | 1.692                    | 17.73          | 18.00          | 0.706 | 10.4                  | 0.188E-05          |
| 207670 | 1.750                    | 19.08          | 17.91          | 0.702 | 10.3                  | 0.134E-05          |
| 207934 | 2.126                    | 20.04          | 19.06          | 0.748 | 11.4                  | 0.741E-05          |
| 208066 | 2.310                    | 20.83          | 20.43          | 0.801 | 13.2                  | 0.597E-05          |

# MBRC PD DROP, A VS CYCLE



ALLISON,H838867,A62-4,200CPM,649C,R≈.1

LONGITUDINAL FCGR

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092
CUSTOMER NAME: ALLISON
CONTACT: GAMBONE
PURCHASE ORDER: H838867
RELEASE:
MATERIAL I.D.: SCS-6/TI3AL LONG.
TEMPERATURE (C): 25.55556
FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 1965.909
MIN. LOAD, kg: 196.5909
LOAD RANGE, kg: 1769.318
CYCLE OFFSET: 0

SPECIMEN I.D.: A100-6
DRAWING NUMBER:
DATE: 07-02-89
MACHINE: 11
WAVEFORM: TRIANGULAR
R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 27.94
THICKNESS (B), mm: 1.9812
NOTCH LENGTH, mm: 1.143
PROBE SPACING, mm: 1.27
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE          | F.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|----------------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
|                |                          |                |                |       |                       |                    |
| 575921         | 0.000                    | 10.72          | 0.00           | 0.000 | 0.0                   | 0.0005+00          |
| 762940         | 0.000                    | 11.42          | 11.07          | 0.396 | 78.7                  | 0.T7TE-08          |
| <b>809</b> 090 | 0.000                    | 12.01          | 11.72          | 0.419 | 82.3                  | 0.129E-07          |
| 900800         | 0.000                    | 12.70          | 12.36          | 0.442 | 85.9                  | 0.T48E-08          |

Increased load to 2162.7 Kg at cycle 900800. Specimen failed at cycle 901301.

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. FOTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE PURCHASE ORDER: H838867 RELEASE: TEMPERATURE (C): 25.5556 FREQUENCY (Hz): 3.33

MATERIAL I.D.: SCS-6/TIJAL LONG. MAX. LOAD, kg: 4295.455

MIN. LOAD, kg: LOAD RANGE, kg: 4295.455

CYCLE OFFSET: 0

SPECIMEN I.D.: A98-6

DRAWING NUMBER:

DATE: 07-02-89 03-29-89

MACHINE: 12

WAVEFORM: TRIANGULAR

R-RATIO: .1

.8181818 A-RATIO: WIDTH (W), mm: 25.0571 THICKNESS (B), mm: 2.0828 NOTCH LENGTH, mm: 2.8194

PROBE SPACING, mm: 0

SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE     | F.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/SYCLE) |
|-----------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
|           |                          |                |                |       |                       |                    |
| <b>m</b>  | 0.000                    | 7.53           | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| Tensile 1 | 0.000                    | 7.53           | 7.53           | 0.301 | 157.7                 | 0.000E+00          |

Test stopped after repeated increases in load did not produce horizontal growth and tensile pulled per M.L. Gambone. Failed in gripping region.

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: TEMPERATURE (C): 25.55556

FREQUENCY (Hz): 3.33 MAX. LOAD, kg: 2105

MIN. LOAD, kg: 1052.5 LOAD RANGE, kg: 1052.5

CYCLE OFFSET: 0

SPECIMEN I.D.: A101-6

DRAWING NUMBER: DATE: 07-05-89

MACHINE: 2

WAVEFORM: TRIANGULAR

A-RATIO: .3333333 WIDTH (W), mm: 27.94

THICKNESS (B), mm: 1.9431 NOTCH LENGTH, mm: 1.27

PROBE SPACING, mm: 0

SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE  | P.D. VOLT (MICROVOLT) |       |       | A/W   | DELTA K (MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------|-----------------------|-------|-------|-------|--------------------|--------------------|
| 0      | 0.000                 | 8.38  | 0.00  | 0.000 | 0.0                | 0.000E+00          |
| 76800  | 0.000                 | 8.64  | 8.51  | 0.305 | 39.6               | 0.331E-08          |
| 133980 | 0.000                 | 8.70  | 8.67  | 0.310 | 40.1               | 0.111E-08          |
| 248730 | 0.000                 | 8.85  | 8.92  | 0.319 | 40.9               | 0.210E-08          |
| 277260 | 0.000                 | 8.95  | 8.96  | 0.321 | 41.0               | 0.250E-08          |
| 304400 | 0.000                 | 9.03  | 9.06  | 0.324 | 41.3               | 0.295E-08          |
| 336500 | 0.000                 | 9.21  | 9.20  | 0.329 | 41.7               | 0.279E-08          |
| 433980 | 0.000                 | 9.51  | 9.53  | 0.341 | 42.8               | 0.251E-08          |
| 604600 | 0.000                 | 10.02 | 9.77  | 0.350 | 43.5               | 0.298E-08          |
| 718740 | 0.000                 | 10.11 | 10.06 | 0.360 | 44.5               | 0.779E-09          |
| 792590 | 0.000                 | 10.26 | 10.19 | 0.365 | 44.9               | 0.206E-08          |

Specimen growing vertically, stopped and tensile pulled for U.T.S. = 63.7 ksi.



ALLISON,H838867,A101-6,200CPM,26C,R-.5

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .5

TEMPERATURE (C): 25.55556

FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 2924.091
MIN. LOAD, kg: 1462.273

LOAD RANGE, kg: 1461.818

CYCLE OFFSET: 0

SPECIMEN I.D.: A105-6

DRAWING NUMBER:

DATE: 07-05-89 MACHINE: 11

WAVEFORM: TRIANGULAR

A-RATIO: .3333333 WIDTH (W), mm: 27.94

THICKNESS (B), mm: 2.1209

NOTCH LENGTH, mm: 1.143 PROBE SPACING, mm: 4.953

| CYCLE  | P.D. VOLT (MICROVOLT) | Ap.d. (mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------|-----------------------|------------|----------------|-------|-----------------------|--------------------|
| 0      | 0.577                 | 7.70       | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 55220  | 0.668                 | 9.19       | 8.45           | 0.302 | 50.1                  | 0.271E-07          |
| 92040  | 0.703                 | 9.73       | 9.46           | 0.339 | 54.2                  | 0.145E-07          |
| 105800 | 0.716                 | 9.93       | 9.96           | 0.357 | 56.2                  | 0.177E-07          |
| 128170 | 0.733                 | 10.19      | 10.21          | 0.365 | 57.2                  | 0.146E-07          |
| 160250 | 0.760                 | 10.59      | 10.69          | 0.383 | 59.2                  | 0.160E-07          |
| 171220 | 0.782                 | 10.92      | 10.88          | 0.390 | 60.0                  | 0.168E-07          |
| 183900 | 0.798                 | 11.15      | 11.12          | 0.398 | 61.0                  | 0.171E-07          |
| 229403 | 0.853                 | 11.91      | 11.88          | 0.425 | 64.3                  | 0.179E-07          |
| 271784 | 0.910                 | 12.65      | 12.62          | 0.452 | 67.5                  | 0.178E-07          |
| 309707 | 0.954                 | 13.21      | 13.32          | 0.477 | 70.7                  | 0.177E-07          |
| 339042 | 1.014                 | 13.97      | 13.59          | 0.486 | 72.0                  | 0.260E-07          |
| 358550 | 1.039                 | 14.25      | 14.11          | 0.505 | 74.5                  | 0.143E-07          |
| 386400 | 1.076                 | 14.68      | 14.47          | 0.518 | 76.3                  | 0.155E-07          |



ALLISON, H838867, A105-6, 200CPM, 26C, R=.5

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .8

TEMPERATURE (C): 25.5556
FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 3080
MIN. LOAD, kg: 2464.091
LOAD RANGE, kg: 615.9091

CYCLE OFFSET: 0

SPECIMEN I.D.: A103-1

DRAWING NUMBER:

DATE: 07-06-89

MACHINE: 11

WAVEFORM: TRIANGULAR

A-RATIO: .1111111 WIDTH (W), mm: 27.94 THICKNESS (B), mm: 1.9558

NOTCH LENGTH, mm: 1.143 PROBE SPACING, mm: 0

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d.<br>(mm.) | Areg.<br>(mm) | -     |      | da/dn<br>(m/cycle) |
|-------|-----------------------|----------------|---------------|-------|------|--------------------|
| ~     |                       |                |               |       |      |                    |
| 0     | 0.000                 | 8.38           | 0.00          | 0.000 | 0.0  | 0.000E+00          |
| 1     | 0.000                 | 8.38           | 8.38          | 0.300 | 22.8 | 0.000E+00          |

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1 TEMPERATURE (C): 315.555 A-RATIO: .8181818

TEMPERATURE (C): 315.5555 FREQUENCY (Hz): 3.33

MAX. LOAD, kg: 1994.091 MIN. LOAD, kg: 199.4091

LOAD RANGE, kg: 1794.682

CYCLE OFFSET: 565471

SPECIMEN I.D.: A98-1

DRAWING NUMBER:

DATE: 06-30-89

MACHINE: 1

WAVEFORM: TRIANGULAR

WIDTH (W), mm: 25.0952
THICKNESS (B), mm: 2.1082
NOTCH LENGTH, mm: 3.302
PROBE SPACING, mm: 2.159

| CYCLE          | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg. A/W |       | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|----------------|--------------------------|----------------|------------|-------|-----------------------|--------------------|
| 0              | 0.495                    | 5.61           | 0.00       | 0.000 | 0.0                   | 0.000E+00          |
| 4720           | 0.521                    | 5.74           | 5.68       | 0.226 | 54.3                  | 0.269E-07          |
| 7690           | 0.532                    | 5.89           | 5.82       | 0.232 | 55.1                  | 0.513E-07          |
| 14455          | 0.546                    | 6.05           | 6.00       | 0.239 | 56.2                  | 0.252E-07          |
| 32110          | 0,572                    | 6.35           | 5.44       | 0.257 | 58.7                  | 0.248E-07          |
| 38215          | 0.597                    | <b>6.6</b> 3   | 6.58       | 0.262 | 59.5                  | 0.258E-07          |
| 49270          | 0.602                    | 6.91           | 6.88       | 0.274 | 61.2                  | 0.269E-07          |
| 69070          | 0.661                    | 7.37           | 7.45       | 0.297 | 64.5                  | 0.278E-07          |
| 74845          | 0.689                    | 7.67           | 7.60       | 0.303 | 65.4                  | 0.273E-07          |
| 87 <b>88</b> 0 | 0.717                    | 7 <b>.9</b> 8  | 7.96       | 0.317 | 67.4                  | 0.286E-07          |
| 101905         | 0.749                    | 8.33           | 8.36       | 0.333 | <b>59.8</b>           | 0.31 <b>8E</b> +07 |
| 111145         | 0.775                    | 8.61           | 8.67       | 0.345 | 71.6                  | 0.33 <b>5E</b> +07 |
| 117250         | 0.805                    | 8.92           | 8.92       | 0.355 | 75.0                  | 0.396E-07          |
| 122595         | 0.834                    | 9.22           | 9.18       | 0.366 | 74.5                  | 0.489E-07          |
| 128470         | 0.862                    | 9.50           | 9.51       | 0.379 | 76 <b>.</b> 6         | 0.571E-07          |
| 133585         | 0.887                    | 9.75           | 9.81       | 0.391 | 78.4                  | 0.624E-07          |
| 135489         | 0.918                    | 10.06          | 9.99       | 0.398 | 79.5                  | 0.71 <b>6E</b> -07 |
| 142000         | 0.951                    | 10.39          | 10.44      | 0.416 | 82.3                  | 0.865E-07          |
| 144475         | 0 <b>.9</b> 78           | 10.67          | 10.70      | 0.426 | 83.9                  | 0,102E-0a          |
| 147445         | 1.020                    | 11.05          | 11.03      | 0.439 | 85.0                  | 0.10 <b>8</b> E-05 |

| CYCLE  | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | <del>-</del> |       | DELTA K<br>(MFa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------|--------------------------|----------------|--------------|-------|-----------------------|--------------------|
| 149920 | 1.058                    | 11.40          | 11.36        | 0.453 | 58.1                  | 0.125E-0a          |
| 153220 | 1.096                    | 11.76          | 11.76        | 0.469 | 90.3                  | 0.133E-05          |
| :55695 | 1.129                    | 12.04          | 12.08        | 0.481 | 93.0                  | 0.1425-06          |
| 158005 | 1.172                    | 12.42          | 12.44        | 0.496 | 95.4                  | 0.156E-06          |
| 160150 | 1.219                    | 12.83          | 12.85        | 0.512 | 98.4                  | 0.175E-05          |
| 161024 | 1.247                    | 13.08          | 13.04        | 0.520 | 99.8                  | 0.184E-06          |
| 162575 | 1.286                    | 13.39          | 13.33        | 0.531 | 102.0                 | 0.184E-0c          |
| 164770 | 1.321                    | 13.67          | 13.71        | 0.546 | 104.9                 | 0.1835-06          |
| 166321 | 1.359                    | 13.97          | 13.98        | 0.557 | 107.0                 | 0.18TE-0a          |
| 167905 | 1.400                    | 14.27          | 14.27        | 0.569 | 109.4                 | 0.189E-l:          |
| 169553 | 1.448                    | 14.63          | 14.61        | ା.582 | 112.0                 | 0.207E-06          |
| 171518 | 1.500                    | 15.01          | 15.02        | 0.579 | 115.9                 | 0.211E-0a          |
| 172690 | 1.535                    | 15.27          | 15.29        | 0.609 | 118.2                 | 0.212E-0a          |
| 174785 | 1.606                    | 15.75          | 15.72        | 0.625 | 122.3                 | 0.219E-0a          |
| 176815 | 1.672                    | 16.18          | 16.18        | 0.645 | 126.9                 | 0.227E-05          |
| 178399 | 1.719                    | 16.48          | 16.33        | 0.651 | 113.5                 | 0.1925-0-          |
| 179356 | 1.773                    | 16.81          | 16.55        | 0.663 | 132.0                 | 0.345E-0:          |
| 179884 | 1.797                    | 16.94          | 16.88        | 0.673 | 134.5                 | 0.241E-06          |



ALLISON, HB38867, A98-1, 200 CPM, 316C, R=.1

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1

TEMPERATURE (C): 315.5555

CYCLE OFFSET: 0

SPECIMEN I.D.: A104-6

DRAWING NUMBER:

DATE: 06-29-89

MACHINE: 4

WAVEFORM: TRIANGULAR

TEMPERATURE (C): 315.5555

FREQUENCY (Hz): 3.33

MAX. LOAD, kg: 2145.455

MIN. LOAD, kg: 214.5455

LOAD RANGE, kg: 1930.909

CYCLE OFFSET: 0

A-RATIO: .8181818

WIDTH (W), mm: 27.94

THICKNESS (B), mm: 2.0574

NOTCH LENGTH, mm: 1.27

PROBE SPACING, mm: 0

CYCLE OFFSET: 0

| CYCLE                                                                                               | P.D. VOLT<br>(MICROVOLT)                                                      | A p.d.<br>(mm)                                                                           | A reg. (mm)                                                                              | A/W                                                                                             | DELTA K<br>(MPa*M^.5)                                                               | dA/dN<br>(M/CYCLE)                                                                                                                          |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>44600<br>83520<br>182420<br>209010<br>225880<br>243640<br>255190<br>261580<br>277240<br>289940 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 4.93<br>4.99<br>5.18<br>5.85<br>8.05<br>8.51<br>9.58<br>10.46<br>10.57<br>11.84<br>13.97 | 0.00<br>4.96<br>5.09<br>6.75<br>7.63<br>8.44<br>9.71<br>10.22<br>10.52<br>11.20<br>12.90 | 0.000<br>0.177<br>0.182<br>0.242<br>0.273<br>0.302<br>0.348<br>0.366<br>0.376<br>0.401<br>0.462 | 0.0<br>49.1<br>49.9<br>59.1<br>63.8<br>68.2<br>75.1<br>77.9<br>79.6<br>83.5<br>93.7 | 0.000E+00<br>0.142E-08<br>0.489E-08<br>0.170E-07<br>0.246E-07<br>0.320E-07<br>0.598E-07<br>0.694E-07<br>0.159E-07<br>0.811E-07<br>0.168E-06 |



ALLISON, HB38867, A104-6, 200 CPM, 316C, R=.1

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TIJAL LONG. R-RATIO: .1

TEMPERATURE (C): 648.8889 FREQUENCY (Hz): 3.33 MAX. LOAD, kg: 2088.182 MIN. LOAD, kg: 208.6364

LOAD RANGE, kg: 1879.545

CYCLE OFFSET: 769965

SPECIMEN I.D.: A97-6

DRAWING NUMBER: DATE: 07-02-89

MACHINE: 3

WAVEFORM: TRIANGULAR

A-RATIO: .8181818 WIDTH (W), mm: 27.94

THICKNESS (B), mm: 2.1463 NOTCH LENGTH, mm: 2.5654 PROBE SPACING, mm: .254

| CYCLE  | F.D. VOLT<br>(MICROVOLT) | A p.d. | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dAZdN<br>(MZCYCLE)     |
|--------|--------------------------|--------|----------------|-------|-----------------------|------------------------|
| 0      | 1.294                    | 2.57   | 0.00           | 0.000 | 0.0                   | 0.000E+00              |
| 73433  | 1.463                    | 2.84   | 2.71           | 0.097 | 32.7                  | 0.380E-08              |
| 149828 | 1.628                    | 3.10   | 2.97           | 0.106 | 34.5                  | 0.332E-08              |
| 236288 | 1.798                    | 3.35   | 3.43           | 0.123 | 37.3                  | 0.419E-08              |
| 293543 | 1.967                    | 3.61   | 3.79           | 0.136 | 39.4                  | 0.501E-08              |
| 322731 | 2.156                    | 3.71   | 4.14           | 0.148 | 41.4                  | 0.709E-08              |
| 327698 | 2,338                    | 4.19   | 4.21           | 0.151 | 41.7                  | 0.13JE-07              |
| 337103 | 2.510                    | 4.44   | 4.46           | 0.160 | 43.2                  | 0.277E-07              |
| 344033 | 2.684                    | 4.70   | 4.78           | 0.171 | 44.7                  | 0.477E-07              |
| 347333 | 2.882                    | 5.00   | 4.96           | 0.178 | 45.5                  | 0.532E-07              |
| 351623 | 3.062                    | 5.26   | 5.25           | 0.188 | 47.4                  | 0.302E-07              |
| 354741 | 3.248                    | 5.54   | 5.5°           | 0.197 | 48.7                  | 0.711E-07              |
| 359213 | 3,450                    | 5,82   | 5.99           | 0.214 | 51.2                  | 0.73/E-0/<br>0.110E-06 |
| 361193 | 3.746                    | 6.25   | 6.29           | 0.225 | 52.8                  | 0.149E-06              |
| 362909 | 4,045                    | 5.68   | 6.68           | 0.239 | 54.3                  |                        |
| 363899 | 4.283                    | 7.01   | 7.01           | 0.251 | 56.4                  | 0.199E-06              |
| 364905 | 4.541                    | 7.37   | 7.35           | 0.263 | 58.2                  | 0,300E-06              |
| 365928 | 4.816                    | 7.75   | 7.73           | 0.277 |                       | 0.345E-06              |
| 367001 | 5.100                    | 9.13   | 9.16           | 0.272 | 50.1                  | 0.389E-06              |
| 368024 | 5.467                    | 8.61   | 8.62           |       | 62.2                  | 0.417E-05              |
| 22372  | 21.407                   | 0.01   | 0.0-           | ા.૩૦૬ | 64.5                  | 0.47 <b>25</b> -08     |

| 4674N<br>(M7070LE)       | 0.5328-06     | 0.5818-06 | 0.608E-06 | 0.611E-06 | 0.6115-06 | 0.603E-06 | 0.624E-06 | 0.695E-06     | 0.799E-06 | 0.970E-06    | 0.116E-08 | 0.133E-05  | 0.2545-05 | 0.147E-05 | 0.1556 | 0.524E-05 |
|--------------------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|--------------|-----------|------------|-----------|-----------|--------|-----------|
| DELTA K<br>(MPa*M°.5)    | €.59          | 68.1      | 70.9      | 73.9      | 76.4      | 0.87      | 79.5      | 80.4          | 82.4      | ሳ<br>(1<br>መ |           | .98<br>.00 | 100       | n.<br>00  | 91.0   | 100.1     |
| 3                        | 0.480         | 0.034     | 0. GGG    | 0.374     | 0.391     | 0.401     | 0.411     | 0.421         | 0.430     | 0.440        | 0.448     | 0.458      | 0.463     | 0.473     | 0.400  | 0.535     |
| A reg.                   | B. 95         | 9.33      | 9.87      | 10.45     | 10.91     | 11.22     | 11.49     | 11.75         | 12.02     | 12.30        | 50°51     | ୍ଷ<br>ଅ.ସ. | 12.94     | 14. NN    | 13.50  | 14.95     |
| A p.d.                   | 8.97          | 9.30      | 9.88      | 10.46     | 10.90     | 11.23     | 11.48     | 11.73         | 11.99     | 12,27        | 12.55     | 12.80      | 13.08     | 13,36     | 13,64  | 16.26     |
| F.D. VOLT<br>(MICROVOLT) | <b>0.7</b> 40 | 5.996     | 5.466     | 6.961     | 7.000     | 7.618     | 7.849     | 0 <b>60°B</b> | 8.329     | 8.582        | a. 643    | 9.118      | 9.091     | 6.686     | 9.984  | 11.000    |
| CYCLE                    | 368557        | 569294    | 570169    | 371093    | 371852    | 372371    | 372841    | 373261        | 373611    | 373901       | 374091    | 374291     | 374491    | 374681    | 374861 | 3753ao    |



ALLISON,H838867,A97-6,200CPM,649C,R=.1

MBRC JOB: 010-072 SPECIMEN I.D. CUSTOMER NAME: ALLISON DRAWING NUMBE CONTACT: GAMBONE DATE: 07-02-6 MACHINE: 12 RELEASE: WAVEFORM: TRIMATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1 TEMPERATURE (C): 648.8889 A-RATIO: .8: FREQUENCY (Hz): 3.33 WIDTH (W), modular max. LOAD, kg: 1298.182 THICKNESS (B) MIN. LOAD, kg: 129.8182 NOTCH LENGTH; LOAD RANGE, kg: 1168.364 PROBE SPACING

CYCLE OFFSET: 472524

SPECIMEN I.D.: A99-1
DRAWING NUMBER:
DATE: 07-02-89
MACHINE: 12
WAVEFORM: TRIANGULAR
R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 25.4
THICKNESS (B), mm: 2.0574
NOTCH LENGTH, mm: 1.524
PROBE SPACING, mm: 1.222502
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE  | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
|        |                          |                | 0.00           | 0.000 |                       | 0.000E+00          |
| Q      | ்.564                    | 5.03           | 0.00           | 0.000 | 0.0                   |                    |
| 30347  | 0.600                    | 5.36           | 5.19           | 0.204 | 33.9                  | 0.109E-07          |
| 58892  | ୍∙ 636                   | 5.66           | 5.51           | 0.217 | 35.1                  | 0.107E-07          |
| 76052  | 0.671                    | 5.99           | 6.02           | 0.237 | 37.1                  | 0.160E-07          |
| 39912  | 0.701                    | 6.25           | 6.37           | 0.251 | 38.4                  | 0.218E-07          |
| 96347  | 0.732                    | 6 <b>.5</b> 3  | 6.57           | 0.259 | 39.1                  | 0.332E-07          |
| 101412 | 0.746                    | 6.81           | 6.79           | 0.267 | 40.0                  | 0.466E-07          |
| 107567 | ∘.806                    | 7.16           | 7.20           | 0.283 | 41.5                  | 0.604E-07          |
| 111857 | ે.849                    | 7.52           | 7.48           | 0.295 | 42.6                  | 0.642E-07          |
| 117302 | 0.889                    | 7.87           | 7.84           | 0.308 | 43.9                  | 0.680E-07          |
| 122582 | 0.923                    | 8.15           | 8.18           | 0.322 | 45.2                  | 0.752E-07          |
| 127862 | 0.970                    | 8.53           | 8. <i>6</i> 2  | 0.339 | 46.9                  | 0.824E-07          |
| 151228 | 1.015                    | 8.87           | 7.01           | 0.355 | 48.4                  | 0.105E-06          |
| 102977 | 1.063                    | 9.27           | 9.31           | 0.367 | 49.5                  | 0.148E-06          |
| 134033 | 1.096                    | 9.52           | 9.53           | 0.375 | 50.4                  | 0.217E-06          |
| 135267 | 1.151                    | 9.96           | 9.91           | 0.390 | 51.9                  | 0.289E-06          |
| 136442 | 1.188                    | 10.24          | 10.29          | 0.405 | 53.4                  | o.324E-06          |
| 137085 | 1.230                    | 10.54          | 10.52          | 0.414 | 54.3                  | 0.344E-06          |
| 137927 | 1.248                    | 10.82          | 10.81          | 0.425 | 55.5                  | ા.૩5૩ <b>દ</b> −િ∘ |
| 139478 | 1.339                    | 11.35          | 11.34          | 0.446 | 57.8                  | 0.384E-06          |

| CYCLE  | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MFa*M^.5) | (M/CYCLE) |
|--------|--------------------------|----------------|----------------|-------|-----------------------|-----------|
|        |                          |                |                |       |                       |           |
| 141095 | 1.426                    | 11.96          | 11.94          | 0.470 | <b>50.4</b>           | 0.40JE-06 |
| 142184 | 1.481                    | 12.34          | 12.38          | 0.488 | 52.4                  | 0.461E-06 |
| 143570 | 1.593                    | 13.08          | 13.09          | 0.516 | 6 <b>5.</b> 7         | 0.600E-06 |
| 144312 | 1.662                    | 13.51          | 13.58          | 0.535 | 68.1                  | 0.752E-06 |
| 145269 | 1.807                    | 14.38          | 14.40          | ು.567 | 72.3                  | O.885E-06 |
| 146424 | 2.048                    | 15.72          | 15.05          | 0.592 | 75.9                  | 0.117E-05 |
| 147249 | 2.206                    | 16.54          | 16.13          | 0.635 | 82.5                  | 0.9855-06 |
| 147478 | 2 KE2                    | 17.22          | 14.88          | 0.464 | 87.7                  | 0.1A0E-05 |



ALLISON, H838867, A99-1, 200CPM, 649C, R=.1

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .5

. = ----

MATERIAL I.D.: SCS-6/T13AL LONG.
TEMPERATURE (C): 648.8889
FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 2040.909
MIN. LOAD, kg: 1020.455
LOAD RANGE, kg: 1020.455
CYCLE OFFSET: 0

R-RATIO: .33333333
WIDTH (W), mm: 27.94
THICKNESS (B), mm: 2.0574
NOTCH LENGTH, mm: 1.27
PROBE SPACING, mm: 0
SPECIMEN TYPE: SINGLE EDGE NOTCH

CYCLE OFFSET: 0

SPECIMEN I.D.: A104-1 DRAWING NUMBER:

DATE: 07-05-89

MACHINE: 2

WAVEFORM: TRIANGULAR

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d. (mm) | A reg. (mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|-------|-----------------------|------------|-------------|-------|-----------------------|--------------------|
|       |                       |            |             |       |                       | 0.00001.00         |
| 0     | 0.000                 | 8.19       | 0.00        | 0.000 | 0.0                   | 0.000E+00          |
| 2095  | 0.000                 | 10.46      | 9.33        | 0.334 | 38.6                  | 0.109E-05          |
| 4783  | 0.000                 | 11.05      | 10.76       | 0.385 | 42.8                  | 0.217E-06          |
|       | 0.000                 | 11.61      | 11.33       | 0.405 | 44.5                  | 0.280E-06          |
| 6780  | • • • • •             | 12.40      | 12.00       | 0.430 | 46.6                  | 0.251E-06          |
| 9920  | 0.000                 |            |             | 0.467 | 50.0                  | 0.473E-05          |
| 10199 | 0.000                 | 13.72      | 13.06       | 0.40/ | 30.0                  | 0.4/52 05          |



ALLISON,H838867,A104-1,200CPM,649C,R=.5

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .5

TEMPERATURE (C): 648.8889
FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 2943.182
MIN. LOAD, kg: 0
LOAD RANGE, kg: 2943.182

CYCLE OFFSET: 0

SPECIMEN I.D.: A101-1

DRAWING NUMBER:

DATE: 07-05-89

MACHINE: 2

WAVEFORM: TRIANGULAR

A-RATIO: .3333333 WIDTH (W), mm: 27.94

THICKNESS (B), mm: 1.9304 NOTCH LENGTH, mm: 1.016

PROBE SPACING, mm: 0

SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE        |   | P.D. VOLT (MICROVOLT) | Ap.d. (mm) | Areg.<br>(mm) | A/W   | DELTA K (MPa*M^.5) | da/dn<br>(M/CYCLE) |
|--------------|---|-----------------------|------------|---------------|-------|--------------------|--------------------|
|              |   |                       |            |               |       |                    |                    |
|              | 0 | 0.000                 | 7.21       | 0.00          | 0.000 | 0.0                | 0.000E+00          |
| Tensile Pull | 1 | 0.000                 | 7.21       | 7.21          | 0.258 | 100.0              | 0.000E+00          |

Specimen growing vertically, tensile pulled for U.T.S. = 76.8 ksi.

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 SPECIMEN I.D.: A97-1

CUSTOMER NAME: ALLISON DRAWING NUMBER:

DATE: 07-06-89 CONTACT: GAMBONE PURCHASE ORDER: H838867 MACHINE: A97-1

WAVEFORM: TRIANGULAR RELEASE:

R-RATIO: .8 MATERIAL I.D.: SCS-6/TI3AL

A-RATIO: .1111111 TEMPERATURE (C): 648.8889

WIDTH (W), mm: 27.94 FREQUENCY (Hz): 3.33 MAX. LOAD, kg: 2143.182 THICKNESS (B), mm: 2.1463 NOTCH LENGTH, mm: 1.143

MIN. LOAD, kg: 1714.545 LOAD RANGE, kg: 428.6364 PROBE SPACING, mm: 0

CYCLE OFFSET: 0 SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d.<br>(mm) | Areg. (mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|-------|-----------------------|---------------|------------|-------|-----------------------|--------------------|
|       |                       |               |            |       |                       |                    |
| 0     | 0.000                 | 7.91          | 0.00       | 0.000 | 0.0                   | 0.000E+00          |
| 1060  | 0.000                 | 8.56          | 8.24       | 0.295 | 14.3                  | 0.611E-06          |

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 SPECIMEN I.D.: A100-1

CUSTOMER NAME: ALLISON DRAWING NUMBER: CONTACT: GAMBONE DATE: 07-07-89 PURCHASE ORDER: H838867 MACHINE: 12

RELEASE: WAVEFORM: TRIANGULAR

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .8
TEMPERATURE (C): 648.8889 A-RATIO: .1111111
FREQUENCY (Hz): 3.33 WIDTH (W), mm: 27.94

MAX. LOAD, kg: 1744.545 THICKNESS (B), mm: 1.9685 MIN. LOAD, kg: 1395.909 NOTCH LENGTH, mm: 1.143 LOAD RANGE, kg: 348.6364 PROBE SPACING, mm: 0

CYCLE OFFSET: 0 SPECIMEN TYPE: SINGLE EDGE NOTCH

| CACTE  | P.D. VOLT (MICROVOLT) | Ap.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(M/CYCLE) |
|--------|-----------------------|---------------|----------------|-------|-----------------------|--------------------|
|        |                       |               |                |       |                       |                    |
| 0      | 0.000                 | 7.90          | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 6629   | 0.000                 | 7.99          | 7.94           | 0.284 | 12.4                  | 0.134E-07          |
| 58330  | 0.000                 | 8.14          | 8.06           | 0.289 | 12.5                  | 0.295E-08          |
| 110510 | 0.000                 | 8.18          | 8.16           | 0.292 | 12.6                  | 0.730E-09          |
| 212675 | 0.000                 | 8.23          | 8.20           | 0.294 | 12.6                  | 0.497E-09          |

## M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. POTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .8

TEMPERATURE (C): 648.8889 A-RATIO: .1111111

FREQUENCY (Hz): 3.33
MAX. LOAD, kg: 2132.727
MIN. LOAD, kg: 1705.909

LOAD RANGE, kg: 426.8182

CYCLE OFFSET: 0

SPECIMEN I.D.: A100-1

DRAWING NUMBER:

DATE: 07-07-89

MACHINE: 12

WAVEFORM: TRIANGULAR

WIDTH (W), mm: 27.94 THICKNESS (B), mm: 1.968
NOTCH LENGTH, mm: 1.143
PROBE SPACING, mm: 0 THICKNESS (B), mm: 1.9685

| CYCLE  | P.D. VOLT (MICROVOLT) | A p.d. (mm) | A reg. (mm) | A/W   | DELTA K (MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------|-----------------------|-------------|-------------|-------|--------------------|--------------------|
| 212675 | 0.000                 | 8.23        | 0.00        | 0.000 | 0.0                | 0.000E+00          |
| 225015 | 0.000                 | 8.57        | 8.40        | 0.301 | 15.7               | 0.278E-07          |
| 228465 | 0.000                 | 9.36        | 8.97        | 0.321 | 16.4               | 0.228E-06          |
| 230747 | 0.000                 | 9.63        | 9.48        | 0.339 | 17.1               | 0.944E-07          |
| 233078 | 0.000                 | 9.78        | 9.87        | 0.353 | 17.6               | 0.133E-06          |
| 235896 | 0.000                 | 10.21       | 10.11       | 0.362 | 17.9               | 0.138E-06          |
| 240273 | 0.000                 | 10.67       | 10.65       | 0.381 | 18.6               | 0.189E-06          |
| 242875 | 0.000                 | 11.14       | 10.90       | 0.390 | 18.9               | 0.181E-06          |
| 245372 | 0.000                 | 11.84       | 11.49       | 0.411 | 19.7               | 0.280E-06          |
| 247114 | 0.000                 | 13.21       | 12.52       | 0.448 | 21.1               | 0.787E-06          |



ALLISON,H838867,A100-1,200CPM,649C,R≈.8

### M.B.R.C. TEST REPORTING CRACK GROWTH TESTING USING D.C. FOTENTIAL DIFFERENCE TECHNIQUE

MBRC JOB: 010-092 SPECIMEN I.D.
CUSTOMER NAME: ALLISON DRAWING NUMBE
CONTACT: GAMBONE DATE: 06-26-8
PURCHASE ORDER: H838867 MACHINE: 6
RELEASE: WAVEFORM: TR:
MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1
TEMPERATURE (C): 648.8889 A-RATIO: .8:
FREQUENCY (Hz): .033 WIDTH (W), mm
MAX. LOAD, kg: 2245 THICKNESS (B)
MIN. LOAD, kg: 224.5 NOTCH LENGTH,
LOAD RANGE, kg: 2020.5 SPECIMEN TYPE

SPECIMEN I.D.: A99-6
DRAWING NUMBER:
DATE: 06-26-89
MACHINE: 6
WAVEFORM: TRIANGULAR
R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 27.94
THICKNESS (B), mm: 2.0574
NOTCH LENGTH, mm: 1.27
PROBE SPACING, mm: 0
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE | F.D. VOLT (MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|-------|-----------------------|----------------|----------------|-------|-----------------------|--------------------|
|       |                       |                |                |       |                       |                    |
| Ō     | 0.000                 | 0.00           | 0.00           | 0.000 | 0.0                   | 0.000 <b>E+</b> 00 |

Crack growing vertically only; failed at 1060 cycles.

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1

TEMPERATURE (C): 648.8889

FREQUENCY (Hz): .033

MAX. LOAD, kg: 1570.909

CYCLE OFFSET: 0

SPECIMEN I.D.: A103-6

DRAWING NUMBER: DATE: 07-07-89 MACHINE: 13

WAVEFORM: TRIANGULAR

A-RATIO: .8181818 WIDTH (W), mm: 27.94 MAX. LOAD, kg: 1570.909 THICKNESS (B), mm: 1.993
MIN. LOAD, kg: 157.2727 NOTCH LENGTH, mm: 1.143
LOAD RANGE, kg: 1413.636 PROBE SPACING, mm: 0 THICKNESS (B), mm: 1.9939

| CYCLE | P.D. VOLT<br>(MICROVOLT) | A p.d. (mm) | Areg.<br>(mm) | A/W   | DELTA K (MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|-------|--------------------------|-------------|---------------|-------|--------------------|--------------------|
| 0     | 0.000                    | 7.09        | 0.00          | 0.000 | 0.0                | 0.000E+00          |
| 100   | 0.000                    | 7.20        | 7.14          | 0.256 | 46.2               | 0.114E-05          |
| 400   | 0.000                    | 7.24        | 7.22          | 0.258 | 46.5               | 0.127E-06          |
| 740   | 0.000                    | 7.33        | 7.31          | 0.262 | 46.9               | 0.511E-07          |
| 1050  | 0.000                    | 7.37        | 7.32          | 0.262 | 47.0               | 0.449E-07          |
| 7842  | 0.000                    | 7.52        | 7.59          | 0.272 | 48.1               | 0.448E-07          |
| 8050  | 0.000                    | 7.61        | 7.60          | 0.272 | 48.1               | 0.431E-07          |
| 8410  | 0.000                    | 7.70        | 7.62          | 0.273 | <b>4</b> 8.2       | 0.427E-07          |
| 9840  | 0.000                    | 7.72        | 7.71          | 0.276 | 48.5               | 0.178E-07          |
| 10780 | 0.000                    | 7.76        | 7.74          | 0.277 | <b>4</b> 8.7       | 0.405E-07          |
| 11020 | 0.000                    | 7.79        | 7.77          | 0.278 | 48.8               | 0.106E-06          |

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON CONTACT: GAMBONE

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1

CYCLE OFFSET: 0

SPECIMEN I.D.: A103-6

DRAWING NUMBER: DATE: 07-07-89 MACHINE: 13

WAVEFORM: TRIANGULAR

TEMPERATURE (C): 648.8889

FREQUENCY (Hz): .033

MAX. LOAD, kg: 1767.273

MIN. LOAD, kg: 176.8182

LOAD RANGE, kg: 1590.454

CYCLE OFFSET: 0

R-RATIO: .8181818

WIDTH (W), mm: 27.94

THICKNESS (B), mm: 1.9939

NOTCH LENGTH, mm: 1.143

PROBE SPACING, mm: 0

SPECIMEN TYPE: SINGLE EDGE

| CYCLE                                                                                                    | P.D. VOLT (MICROVOLT)                                                         | A p.d. (mm)                                                                                              | A reg. (mm)                                                                                              | A/W                                                                                             | DELTA K (MPa*M^.5)                                                                   | dA/dN<br>(M/CYCLE)                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13791<br>14351<br>14701<br>15251<br>15905<br>16228<br>16391<br>16591                                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 7.79<br>7.85<br>8.43<br>8.48<br>9.12<br>9.56<br>9.65<br>9.65                                             | 0.00<br>7.82<br>8.14<br>8.58<br>9.17<br>9.47<br>9.70<br>9.94                                             | 0.000<br>0.280<br>0.291<br>0.307<br>0.328<br>0.339<br>0.347<br>0.356<br>0.367                   | 0.0<br>55.1<br>56.6<br>58.6<br>61.3<br>62.7<br>63.8<br>64.9<br>66.5                  | 0.000E+00<br>0.113E-06<br>0.167E-05<br>0.733E-06<br>0.873E-06<br>0.895E-06<br>0.100E-05<br>0.921E-06<br>0.757E-06                                        |
| 16971<br>17265<br>17391<br>17536<br>17718<br>17981<br>18140<br>18301<br>18389<br>18458<br>18522<br>18562 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 10.29<br>10.41<br>10.46<br>10.53<br>10.78<br>11.35<br>11.58<br>12.42<br>13.23<br>14.29<br>15.01<br>15.56 | 10.27<br>10.44<br>10.48<br>10.58<br>10.75<br>11.25<br>11.77<br>12.68<br>13.31<br>14.12<br>14.65<br>15.28 | 0.374<br>0.375<br>0.379<br>0.385<br>0.403<br>0.421<br>0.454<br>0.477<br>0.505<br>0.524<br>0.547 | 67.3<br>67.5<br>68.0<br>68.8<br>71.2<br>73.8<br>78.5<br>81.8<br>86.3<br>89.4<br>93.3 | 0.740E-06<br>0.740E-06<br>0.878E-06<br>0.113E-05<br>0.182E-05<br>0.250E-05<br>0.353E-05<br>0.493E-05<br>0.733E-05<br>0.976E-05<br>0.113E-04<br>0.137E-04 |

| CYCLE | P.D. VOLT (MICROVOLT) | Ap.d.<br>(mm) | Areg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | da/dn<br>(m/cycle) |
|-------|-----------------------|---------------|---------------|-------|-----------------------|--------------------|
|       |                       |               |               |       |                       |                    |
| 18571 | 0.000                 | 15.75         | 15.65         | 0.560 | 95.6                  | 0.212E-04          |



ALLISON, H838867, A103-6, 2CPM, 649C, R=, 1

MBRC JOB: 010-092

CUSTOMER NAME: ALLISON

CONTACT: GAMBONE

PURCHASE ORDER: H838867

RE'LEASE:

MA (ERIAL I.D.: SCS-6/TI3AL LONG.

TEMPERATURE (C): 648.8889

FREQUENCY (Hz): .033

MIDTH (W), mr
MAX. LOAD, kg: 1481.818

MIN. LOAD, kg: 148.1818

LOAD RANGE, kg: 1333.636

CYCLE OFFSET: 0

SPECIMEN I.D.

PRAWING NUMBE

AARHIO: .03

WIDTH: .040

NOTCH LENGTH,
CYCLE OFFSET: 0

SPECIMEN TYPE

SPECIMEN I.D.: A105-1
DRAWING NUMBER:
DATE: 06-26-89
MACHINE: 3
WAVEFORM: TRIANGULAR

R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 27.94
THICKNESS (B), mm: 2.2606
NOTCH LENGTH, mm: 1.016
PROBE SPACING, mm: 0
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE        | F.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | dA/dN<br>(M/CYCLE) |
|--------------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
| 0            | 0.000                    | 8.84           | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 330          | 0.000                    | 9.31           | 9.07           | 0.325 | 45.0                  | 0.142E-05          |
| 490          | 0.000                    | 9.97           | 9.64           | 0.345 | 47.0                  | 0.413E-05          |
| 630          | 0.000                    | 10.22          | 10.10          | 0.361 | 48.6                  | 0.181E-05          |
| 820          | 0.000                    | 12.05          | 11.14          | 0.399 | 52.3                  | 0.963E-05          |
| 8 <b>9</b> 0 | 0.000                    | 12.70          | 12.38          | 0.443 | 56.9                  | 0.925E-05          |



ALLI30N,H838867,A105-1,2CPM,649C,R=,1

MBRC JOB: 010-092 CUSTOMER NAME: ALLISON CONTACT: GAMBONE

PURCHASE ORDER: H838867

RELEASE:

MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1

TEMPERATURE (C): 648.8889 FREQUENCY (Hz): .0033 MAX. LOAD, kg: 2040.909 MIN. LOAD, kg: 204.0909 LOAD RANGE, kg: 1836.818

CYCLE OFFSET: 0

SPECIMEN I.D.: A102-1

DRAWING NUMBER: DATE: 06-26-89 MACHINE: 3

WAVEFORM: DWELL

A-RATIO: .8181818 WIDTH (W), mm: 27.94

THICKNESS (B), mm: 2.0574 NOTCH LENGTH, mm: 1.1684

PROBE SPACING, mm: 0

| CYCLE | P.D. VOLT<br>(MICROVOLT) | A p.d.<br>(mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MPa*M^.5) | aA/dN<br>(M/CYCLE) |
|-------|--------------------------|----------------|----------------|-------|-----------------------|--------------------|
|       |                          |                |                |       |                       |                    |
| Ō     | 0.000                    | 4.67           | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 3     | 0.000                    | 5.21           | 4,94           | 0.177 | 46.6                  | 0.178E-03          |
| 12    | 0.000                    | 5.31           | 5,26           | 0.188 | 48.4                  | 0.113E-04          |
| 35    | 0.000                    | 5.38           | 5.48           | 0.196 | 49.5                  | 0.978E-05          |
| 43    | 0.000                    | 5.5°           | 5,52           | 0.197 | 49.7                  | 0.732E-05          |
| 55    | 0.000                    | 5.71           | 5.59           | 0.200 | 50.1                  | 0.799E-05          |
| 83    | 0.000                    | 5.75           | 5.81           | 0.208 | 51.3                  | 0.905E-05          |
| 108   | 0.000                    | 5.99           | 6.04           | 0.216 | 52.5                  | 0.906E-05          |
| 120   | 0.000                    | 6.22           | 6.15           | 0.220 | 53.1                  | 0.122E-04          |
| 131   | 0.000                    | 6.34           | 6.34           | 0.227 | 54.1                  | 0.209E-04          |
| 139   | 0.000                    | 6.40           | 6.37           | 0.228 | 54.2                  | 0.7945-05          |
| 155   | 0.000                    | 7.01           | 6.71           | 0.240 | 56.0                  | 0.381E-04          |
| 163   | 0.000                    | 7.62           | 7.32           | 0.262 | 59.1                  | 0.762E-04          |

MBRC JOB: 010-092 SPECIMEN I.D.
CUSTOMER NAME: ALLISON DRAWING NUMBE
CONTACT: GAMBONE DATE: 06-26-8
PURCHASE ORDER: H838867 MACHINE: 3
RELEASE: WAVEFORM: DWE
MATERIAL I.D.: SCS-6/TI3AL LONG. R-RATIO: .1
TEMPERATURE (C): 648.8889 A-RATIO: .9
FREGUENCY (Hz): .0033 WIDTH (W), mm
MAX. LOAD, kg: 1483.636 THICKNESS (B)
MIN. LOAD, kg: 148.3636 NOTCH LENGTH,
LOAD RANGE, kg: 1335.273 PROBE SPACING
CYCLE OFFSET: 0 SPECIMEN TYPE

SPECIMEN I.D.: A102-6
DRAWING NUMBER:
DATE: 06-26-89
MACHINE: 3
WAVEFORM: DWELL
R-RATIO: .1
A-RATIO: .8181818
WIDTH (W), mm: 25.4
THICKNESS (B), mm: 2.0574
NOTCH LENGTH, mm: 1.143
PROBE SPACING, mm: 0
SPECIMEN TYPE: SINGLE EDGE NOTCH

| CYCLE | F.D. VOLT<br>(MICROVOLT) | A p.d. (mm) | A reg.<br>(mm) | A/W   | DELTA K<br>(MFa*M^.5) | dA/dN<br>(M/CYCLE) |
|-------|--------------------------|-------------|----------------|-------|-----------------------|--------------------|
|       |                          |             |                |       |                       |                    |
| Q     | 0.000                    | 6.71        | 0.00           | 0.000 | 0.0                   | 0.000E+00          |
| 70    | 0.000                    | 6.79        | 6.75           | 0.266 | 45.5                  | 0.127E-05          |
| 130   | 0.000                    | 6.90        | 6.85           | 0.270 | 45.9                  | 0.169E-05          |
| 160   | 0.000                    | 6.99        | 7.18           | 0.283 | 47.3                  | 0.614E-05          |
| 210   | 0.000                    | 7.92        | 7.80           | 0.307 | 50.0                  | 0.956E-05          |
| 220   | 0.000                    | 8.03        | 7.98           | 0.314 | <b>5</b> 0.8          | 0.137E-04          |
| 250   | 0.000                    | 8.15        | 8.18           | 0.322 | 51.6                  | 0.155E-04          |
| 240   | 0.000                    | 8.33        | 8.28           | 0.326 | 52.1                  | 0.132E-04          |
| 250   | 0.000                    | 8.36        | 8.40           | 0.331 | 52.6                  | 0.176E-04          |
| 260   | 0.000                    | 8.60        | 8.54           | 0.336 | 53.2                  | 0.229E-04          |
| 270   | 0.000                    | 8.71        | 8.72           | 0.343 | 54.0                  | 0.264E-04          |
| 300   | 0.000                    | 9.47        | 9.51           | 0.375 | 57.5                  | 0.299E-04          |
| 310   | 0.000                    | 10.31       | 9.87           | 0.389 | 59.2                  | 0.419E-04          |
| 330   | 0.000                    | 10.68       | 10.50          | 0.413 | 62.0                  | 0.368E-04          |
| 331   | 0.000                    | 10.92       | 10.80          | 0.425 | 63.4                  | 0.241E-03          |



ALLISON, H838867, A102-6, 5 MIN DWELL, 649C

## APPENDIX D

Task IV. Thermal Mechanical Fatigue Data

### Material's Behavior Research Corporation TABLE I

## THERMAL-MECHANICAL LCF FINAL DATA SUMMARY: 05-26-89

### STRAIN CONTROLLED TESTS -----

## Ti3AL/SCS-6 ALLOY

STRAIN R-RATIO: .1

MIN TEMPERATURE, DEG.C: 93 MAX TEMPERATURE, DEG.C: 649

WAVEFORM: IN PHASE

FREQUENCY Hz: .0109

AGT Engineer: GAMBONE

Vendor phone: (513)248-1722

MBRC Job No.: 010-091

P.O. No.: H838854

|                 | M      | MODULI,GPa |       | 1st CYCLE |              |     |                    | if no            | o Ni)              |                    |             |             |               |
|-----------------|--------|------------|-------|-----------|--------------|-----|--------------------|------------------|--------------------|--------------------|-------------|-------------|---------------|
| SPECIMEN<br>ID  | A<br>C |            | PERAT |           | STRN<br>RNG% |     | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | Ni<br>CYCLE | N5<br>CYCLE | Nf<br>CYCLE   |
| A074-01         | 6      | 178        | 177   | 155       | 0.650        | 706 | 836                | 0.874            | 560                | 332                | 705         | -0          | 804           |
| A074-05         | 6      | 200        | 197   | 174       | 0.600        | 537 | 711                | 0.680            | 773                | 544                | 705         | 705         | 775           |
| A074-06         | 5      | 184        | 183   | 159       | 0.570        | 580 | 760                | 0.639            | 698                | 488                | 2920        | -0          | 6218          |
| A051-05         | 6      | 194        | 192   | 168       | 0.550        | 779 | 794                | 0.470            | 788                | 591                | -0          | 9950        | 10040         |
| <b>A</b> 051-03 | 6      | 189        | 188   | 167       | 0.500        | 772 | 769                | 0.460            | 616                | 425                | 3800        | 2900        | 38 <b>3</b> 0 |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'. \*\*\*

NI = DEVIATION OF STRESS FROM TREND AT STEADY STATE WHICH RESULTS IN GROSS FAILURE

N5 = CYCLES TO 5% DECREASE IN STEADY STATE MAX STRESS

Nf = TOTAL TEST CYCLES OR CYCLES TO 50% DECREASE IN STEADY STATE MAX STRESS

A074-01 CRACK DESC.: OG;S;-0.50;MULTIPLE INITIATIONS;---;---;P+S

LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM COMMENTS:

0.571% TO 0.874% ON CYCLE 1, & FROM 0.69% TO 0.742%

Ni/2 (Nf/2

ON CYCLE 5.

A074-05 CRACK DESC.: OG; S; +0.45; MULTIPLE INITIATIONS; ---; P+S

LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM COMMENTS:

0.425% TO 0.68% ON CYCLE 1.

A074-06 CRACK DESC.: OG;S;-0.45;MULTIPLE INITIATIONS;---;P

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.43% TO 0.639% ON CYCLE 1 & FROM 0.62% TO 0.78% ON

CYCLE 2.

A051-05 CRACK DESC.: UNLOADED IN ONE PIECE

LONGITUDINAL. STOPPED TEST - RUNOUT AT 10040 CYCLES. COMMENTS:

SPECIMEN POPPED OUT IN STRAIN FROM 0.52% TO 0.735% ON CYCLE 3, FROM 0.50% TO 0.599% ON CYCLE 4, AND

FROM 0.608% TO 0.955% ON CYCLE 5.

A051-03 CRACK DESC.: OG;S;+0.55;MULTIPLE INITIATIONS;---;P
COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM
0.515% TO 0.77% ON CYCLE 2.

## Material's Behavior Research Corporation TABLE I

## THERMAL-MECHANICAL LCF FINAL DATA SUMMARY: 05-26-89

## STRAIN CONTROLLED TESTS

## \_\_\_\_\_

Ti3AL/SCS-6 ALLOY

STRAIN R-RATIO: .5

MIN TEMPERATURE, DEG.C: 93
MAX TEMPERATURE, DEG.C: 649

WAVEFORM: IN PHASE FREQUENCY Hz: .0109

AGT Engineer: GAMBONE Vendor phone: (513)248-1722

MBRC Job No.: 010-091 P.O. No.: H838854

|                | M      |     | DULI, | ,GPa | 1st CYCLE    |     |                    |                  | Ni/2<br>if no      | (Nf/2<br>Ni)       |             |             |             |
|----------------|--------|-----|-------|------|--------------|-----|--------------------|------------------|--------------------|--------------------|-------------|-------------|-------------|
| SPECIMEN<br>ID | A<br>C | TEM | PERA  | TURE | STRN<br>RNG% |     | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | Ni<br>CYCLE | N5<br>CYCLE | Nf<br>CYCLE |
| A059-01        | 6      | 170 | 162   | 144  | 0.500        | 404 | 1028               | 0.750            | -0                 | -0                 | -0          | -0          | -0          |
| A060-01        | 6      | 199 | 198   | 178  | 0.475        | 533 | 788                | 0.619            | 676                | 504                | 2950        | -0          | 2955        |
| A059-09        | 6      | 183 | 178   | 158  | 0.450        | 416 | 988                | 0.682            | 542                | 415                | -0          | 8440        | 8850        |
| A054-08        | 6      | 184 | 177   | 159  | 0.400        | 515 | 859                | 0.659            | 603                | 606                | -0          | -0          | 10022       |
| A053-03        | 6      | 183 | 181   | 161  | 0.350        | 778 | 850                | 0.885            | 558                | 471                | -0          | 5725        | 10026       |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

Ni = DEVIATION OF STRESS FROM TREND AT STEADY STATE WHICH RESULTS IN GROSS FAILURE

N5 = CYCLES TO 5% DECREASE IN STEADY STATE MAX STRESS

Nf = TOTAL TEST CYCLES OR CYCLES TO 50% DECREASE IN STEADY STATE MAX STRESS

A059-01 CRACK DESC.:

COMMENTS: LONGITUDINAL. SPECIMEN FAILED AT 0.89%, 1211.6 MPa

BEFORE REACHING DESIRED MAX STRAIN OF 1.00%.

A060-01 CRACK DESC.: OG;I & S;MULTI.INITS. ON MULTI.PLANES;---;---;P+S

COMMENTS: LONGITUDINAL.

A059-09 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM 0.541% TO 0.60% & AGAIN FROM 0.65% TO 1.022% ON

CYCLE 2. STOPPED TEST - RUNOUT AT 8,850 CYCLES.

A054-08 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.531% TO 0.659% ON CYCLE 1 AND FROM 0.70% TO 0.942% ON CYCLE 2. STOPPED TEST - RUNOUT AT 10,002 CYCLES.

A053-03 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.525% TO 0.885% ON CYCLE 1. STOPPED TEST - RUNOUT

AT 10,026 CYCLES.

## 

## THERMAL-MECHANICAL LCF FINAL DATA SUMMARY: 05-26-89

## 

## STRAIN CONTROLLED TESTS

## Ti3AL/SCS-6 ALLOY

-----

STRAIN R-RATIO: .1

MIN TEMPERATURE, DEG.C: 93

MAX TEMPERATURE, DEG.C: 649

WAVEFORM: 180 DEG. OUT OF PHASE

FREQUENCY Hz: .0109

AGT Engineer: GAMBONE

Vendor phone: (513)248-1722

MBRC Job No.: 010-091

P.O. No.: H838854

| MODULI, GPa    |        |     |       |      | 15           | st CY | CLE                | Ni/2<br>if no    | (Nf/2<br>o Ni)     |                    |             |             |             |
|----------------|--------|-----|-------|------|--------------|-------|--------------------|------------------|--------------------|--------------------|-------------|-------------|-------------|
| SPECIMEN<br>ID | A<br>C | TEM | PERA' | TURE | STRN<br>RNG% |       | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa | MAX<br>STSS<br>MPa | Ni<br>CYCLE | N5<br>CYCLE | Nf<br>CYCLE |
| A074-09        | 6      | 191 | 190   | 170  | 0.400        | 312   | 367                | 0.186            | 657                | 565                | 1280        | -0          | 1441        |
| A074-07        | 5      | 171 | 170   | 149  | 0.350        | 341   | 434                | 0.225            | 578                | 493                | 1091        | 1091        | 1395        |
| A051-07        | 5      | 188 | 185   | 162  | 0.300        | 559   | 624                | 0.290            | 607                | 557                | 1660        | 1710        | 2204        |
| A051-10        | 5      | 181 | 180   | 158  | 0.250        | 332   | 396                | 0.186            | 462                | 429                | -0          | -0          | 2241        |
| A051-08        | 5      | 183 | 182   | 159  | 0.200        | 367   | 395                | 0.198            | 395                | 358                | 5178        | 7821        | 7821        |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

- Ni = DEVIATION OF STRESS FROM TREND AT STEADY STATE WHICH RESULTS IN GROSS FAILURE
- N5 = CYCLES TO 5% DECREASE IN STEADY STATE MAX STRESS
- Nf = TOTAL TEST CYCLES OR CYCLES TO 50% DECREASE IN STEADY STATE MAX STRESS
- A074-09 CRACK DESC.: OG;S;MULTI.INITS. ON MULTI.PLANES;---;P+S COMMENTS: LONGITUDINAL.
- A074-07 CRACK DESC.: OG; S; MULTIPLE INITIATIONS; ---; P+S

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.338% TO 0.58% ON CYCLE 4.

A051-07 CRACK DESC.: OG; I & S; MULTI.INITS. ON MULTI.PLANES; ---; P+S

COMMENTS: LONGITUDINAL.

A051-10 CRACK DESC.: OG;S;+0.55;MULTIPLE INITIATIONS;---;P+S

COMMENTS: LONGITUDINAL. DIGITAL DATA IS UNAVAILABLE DUE TO

DISK ERROR; BASED ON LOOPS NI OCCURRED SOMETIME

AFTER CYCLE 2170.

A051-08 CRACK DESC.: OG;S;MULTI.INITS. ON MULTI.PLANES;---;P+S

## Material's Behavior Research Corporation TABLE I

### THERMAL-MECHANICAL LCF FINAL DATA SUMMARY: 05-26-89

### STRAIN CONTROLLED TESTS \_\_\_\_\_.

## Ti3AL/SCS-6 ALLOY

STRAIN R-RATIO: .1

MIN TEMPERATURE, DEG.C: 316 MAX TEMPERATURE, DEG.C: 649

WAVEFORM: IN PHASE

AGT Engineer: GAMBONE Vendor phone: (513)248-1722

MBRC Job No.: 010-091 P.O. No.: H838854

FREQUENCY Hz: .0109

| MODULI, GPa     |        |     |     |     |              | 1:   | st CYC             | CLE              | Ni/2 (Nf/2 if no Ni) |                    |             |             |             |
|-----------------|--------|-----|-----|-----|--------------|------|--------------------|------------------|----------------------|--------------------|-------------|-------------|-------------|
| SPECIMEN<br>ID  | A<br>C | TEM |     |     | STRN<br>RNG% |      | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa   | MAX<br>STSS<br>MPa | Ni<br>CYCLE | N5<br>CYCLE | Nf<br>CYCLE |
| A053-05         | 5      | 191 | 183 | 164 | 0.600        | 904  | 879                | 0.500            | 1066                 | 933                | 381         | 368         | 478         |
| <b>A</b> 060-08 | 5      | 192 | 184 | 165 | 0.580        | 1019 | 975                | 0.572            | 1114                 | 970                | 167         | -0          | 167         |
| A054-01         | 5      | 194 | 187 | 167 | 0.550        | 883  | 868                | 0.480            | 889                  | 730                | 3038        | -0          | 3038        |
| A059-10         | 5      | 191 | 185 | 165 | 0.530        | 1000 | 952                | 0.559            | 834                  | 692                | 955         | 767         | 1106        |
| A053-09         | 5      | 189 | 181 | 163 | 0.500        | 896  | 879                | 0.494            | 736                  | 596                | -0          | 6355        | 10000       |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

NI = DEVIATION OF STRESS FROM TREND AT STEADY STATE WHICH RESULTS IN GROSS FAILURE

N5 = CYCLES TO 5% DECREASE IN STEADY STATE MAX STRESS

Nf = TOTAL TEST CYCLES OR CYCLES TO 50% DECREASE IN STEADY STATE MAX STRESS

A053-05 CRACK DESC.: IG; S; MULTI. INITS. ON MULTI.PLANES; ---; P+S COMMENTS: LONGITUDINAL.

CRACK DESC.: OG; S; MULTI.INITS. ON MULTI.PLANES; ---; P+S A060-08

COMMENTS: LONGITUDINAL.

A054-01 CRACK DESC.: OG; S; +0.43; MULTIPLE INITIATIONS; ---; P+S

COMMENTS: LONGITUDINAL.

A059-10 CRACK DESC.: IG;S;+0.43;---;0.00;0.08;P+S

COMMENTS: LONGITUDINAL. ONE HALF OF SPECIMEN MELTED AFTER

FAILURE.

A053-09 CRACK DESC.: UNLOADED IN ONE PIECE

COMMENTS: LONGITUDINAL. STOPPED TEST - RUNOUT AT 10,000 CYCLES.

## Material's Behavior Research Corporation TABLE I

## THERMAL-MECHANICAL LCF FINAL DATA SUMMARY: 05-26-89

## STRAIN CONTROLLED TESTS

## Ti3AL/SCS-6 ALLOY

STRAIN R-RATIO: .1

MIN TEMPERATURE, DEG.C: 316

MAX TEMPERATURE, DEG.C: 649

WAVEFORM: 180 DEG. OUT OF PHASE

AGT Engineer: GAMBONE

Vendor phone: (513)248-1722

Ì

MBRC Job No.: 010-091

P.O. No.: H838854

FREQUENCY Hz: .0109

| MODULI, GPa     |        |            |       |     |              | 1:  | st CYC             | CLE              | Ni/2 (Nf/2 if no Ni) |                    |             |             |             |
|-----------------|--------|------------|-------|-----|--------------|-----|--------------------|------------------|----------------------|--------------------|-------------|-------------|-------------|
| SPECIMEN<br>ID  | A<br>C | TEMI<br>RT | PERAT |     | STRN<br>RNG% |     | MAX<br>STSS<br>MPa | MAX<br>STRN<br>% | STSS<br>RNG<br>MPa   | MAX<br>STSS<br>MPa | Ni<br>CYCLE | N5<br>CYCLE | Nf<br>CYCLE |
| A054-02         | 5      | 191        | 184   | 163 | 0.550        | 831 | 850                | 0.437            | 893                  | 798                | 610         | -0          | 664         |
| A053-06         | 5      | 192        | 185   | 166 | 0.500        | 958 | 829                | 0.508            | 844                  | 698                | 1621        | -0          | 1621        |
| A059-04         | 6      | 183        | 175   | 156 | 0.450        | 657 | 670                | 0.372            | 689                  | 568                | 1880        | 2060        | 3080        |
| <b>A</b> 060-02 | 6      | 189        | 179   | 161 | 0.400        | 591 | 633                | 0.332            | 577                  | 498                | 3480        | 3440        | 4400        |
| A060-07         | 5      | 194        | 186   | 166 | 0.350        | 519 | 574                | 0.270            | 677                  | 679                | 997         | 900         | 997         |

\*\*\*ABOVE, 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.\*\*\*

NI = DEVIATION OF STRESS FROM TREND AT STEADY STATE WHICH RESULTS IN GROSS FAILURE

N5 = CYCLES TO 5% DECREASE IN STEADY STATE MAX STRESS

Nf = TOTAL TEST CYCLES OR CYCLES TO 50% DECREASE IN STEADY STATE MAX STRESS

A054-02 CRACK DESC.: IG;S;MULTI.INITS. ON MULTI.PLANES;---;P+S COMMENTS: LONGITUDINAL. SPECIMEN BELIEVED TO HAVE POPPED OUT IN STRAIN AT CYCLES 91 AND 142. SHARP DROP IN LOAD AT THESE CYCLES CAUSED MACHINE TO SHUT DOWN,

THEREFORE DIGITAL DATA IS NOT AVAILABLE TO DETERMINE

ACTUAL STRAIN PRECEEDING DROP IN LOAD.

A053-06 CRACK DESC.: OG;S;MULTI.INITS. ON MULTI.PLANES;---;P+S

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.43% TO 0.508% ON CYCLE 1 AND FROM 0.541% TO 0.60% ON CYCLE 2. AS A RESULT, TEST WAS RUN AT 0.50%

STRAIN RANGE INSTEAD OF 0.40%.

A059-04 CRACK DESC.: IG;S;-0.02; MULTIPLE INITIATIONS;---;P

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN FROM

0.454% TO 0.738% ON CYCLE 2.

A060-02 CRACK DESC.: IG;S;+0.12;---;0.00;0.19;P+S

COMMENTS: LONGITUDINAL. SPECIMEN POPPED OUT IN STRAIN TO 0.64%

AT CYCLE 68 AND TO 0.71% AT CYCLE 392.

A060-07 CRACK DESC.: OG;S;+0.45; MULTIPLE INITIATIONS;---;P

COMMENTS: LONGITUDINAL

## TASK VI TMF DATA

Material's Behavior Research Corporation

TMLCF DATA OBTAINED FOR SIC/TIBAL ALLOY

USING AXIAL BTRAIN MEASUREMENT AND CONTROL

010-082 ALLIBON CAMBONE

MBRC JOB CUSTOMER CONTACT

H80342

P.O. P.

BELOW, A 'NEGATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'."

TLON \* \* \*

| TIME<br>HOURS                                                                            |                        | PLAS<br>STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN<br>FINAL TIME<br>CYCLE HOUR                                                          |                        | I S Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RUN<br>FINAL TIME<br>CYCLE HOURS                                                         | CRACK                  | ELAS. PLAS<br>BTRAIN STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29<br>90 - 0<br>DEG.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NI                                                                                       | AT INITIAL CRACK       | STRESS MAX MIN<br>RANGE STRESS STRESS S<br>KSI KSI KSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 290<br>15 -8.1<br>108 @1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 m                                                                                      | ΤA                     | MAX<br>STRESS<br>XSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00<br>100 SA<br>PHASE<br>MODUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LOAD CONTROL FRE                                                                         |                        | TRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0 -0<br>08 755<br>UT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOAD CONTROL FRE CYCLES                                                                  |                        | RAIN B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000 000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NTROL<br>FREG<br>CPS                                                                     |                        | ELAS. PLAS.<br>STRAIN BTRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 CM 100 CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BTRAIN CONTROL FREG CYCLES CP8                                                           | AT HALF LIFE           | MAX MIN ELAS. PLAS.<br>BTRESS STRAIN STRAIN<br>KS: KS: KS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 290<br>153<br>HERM /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>8</b> 2 (                                                                             | HALF                   | MIN<br>BTRE<br>KBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NOMINAL<br>TENBILE<br>RACTURE<br>BTREBB<br>KBI                                           |                        | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EXF. NOMINAL<br>EXF. TENBILE<br>COEFF. TENBILE<br>TEMP. IN/IN/ STRESS<br>DEC F DEC F KSI | START AT INITIAL START | BTRESS HAX<br>RANGE STRESS<br>KSI KSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.80 500 565 290 0.01 -0 -0 00 290 290 4.77 119 643 115.490 -4.153000000 108.755 100.545 -8.190000000 WAVEFORM: TRIANG.;THERM./MECH 180DEG. OUT OF PHASE WAVEFORM: TRIANG.;THERM./MECH 180DEG. OUT OF PHASE WICKNESS0785". AREA @1400 DEG.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TEST<br>TEMP.                                                                            |                        | IN ELAS PLAS. RESS STRAIN STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.70.20.70. 400<br>-2.484 - 000 - 000<br>27.MULTI INITS F<br>VIDTH - 2025": RT THI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HODULUS HODULUS HODULUS ROOM TEST TEMP TEMP                                              |                        | ELAS. PLAS.<br>STRAIN STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 Z N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HODULUS<br>X10(4) PSI<br>X10(4) PSI<br>X00M TES                                          | 4 00                   | HAN MIN ELAS. PELAS. BYRAIN BYRAIN STRAIN ST | 37 23 70<br>-2 686<br>0 27 MULT<br>T VIDTH -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ROOM ROOM TEST X<br>TEMP TEMP TEMP -<br>MACH DIAM, AREA AREA<br>NO IN, IN SO IN SO.      | NEAR                   | STRESS MAX M<br>RANGE STRESS ST<br>MSI NSI K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NAT PROPERTY OF THE PROPERTY O |
| ROOM<br>TEMP<br>AREA<br>IN SO                                                            |                        | PEEUDO STRESS MAX<br>STRESS MANGE STRESS<br>KSI KSI KSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 022<br>163<br>10N<br>GITUDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ROOM<br>TEMP                                                                             |                        | S RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHIET<br>CHIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MACH<br>NO                                                                               |                        | PSEUL<br>STRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CK DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SPECIMEN MACH<br>NO. NO                                                                  |                        | STRAIN PREUDO STRESS<br>RANGE A STRESS RANGE<br>% RATIO MSI MSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166-11 7 - 1000 0.0237 0.0239 0.0239 0.00 4.00 4.80 100 545 290 0.01 -0 -0 00 290 290 4.77 166-12 0.0237 0.0239 0.029 4.77 166-12 0.0237 0.0239 0.0290 1.900 0.0290 0.000 1.000 0.0290 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 |

381 0 65 16L-20 7 - 0000 0.0226 0.0228 25 50 23.80 600 6 80 -0.000 381 0.01 -0 -0 0.0 00 122 381 0.00 0.00 0.0216 0.0216 0.0228 25 50 23.80 600 105.021 10 0.00 0.0216 0.000 107.412 -2.609 - 000 - 000 107.145 99.342 -2.826 - 000 107.412 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

141-22 7 - 1000 0.0227 0.0228 24.70 22.70 400 4.80 -0.000 1048 0.01 -0 -0.00 483 1048 23.19
1300 83 -0.00 84.848 84.848 0.000 -.000 75.128 48.202 -6.724 -.000 -.000 70.210 62.844 -7.344 -.000 -.000
141-22 CRACK DESCRIPTION OG.S.MULTI INITS., P+5 WAVEFORM. TRIANG ,THERM./MECH 180DEG OUT OF PHASE
141-22 COMMENTS LONGITUDINAL RT WIDTH = 30.22", RT THICKNESS = .0750", AREA @1400 DEG F = 0.0231", HODULUS @1400 DEG F. = 21.1E4 -2.15 THERMAL CYCLES PRIOR TO TEST N. BASED ON APPEARANCE OF HYSTERESIS LOOPS

0 2011 47.34 1.573 - 000 - 000 14E-04 7 - 0000 0.0228 0.0229 24.00 21.10 400 4.80 32.738 2011 0 01 -0 -0.00 1940 2011 1 2.00 83 -0.00 53.041 52.738 -0.323 - 000 - 000 47.275 45.271 -2.004 - 000 -000 43.488 45.041 1.573 - 000 14E-04 CRACK DESCRIPTION: 05.8;+0.55;MULTI INITS..P+8 VAVEFORM: TRIANG.;THERM./MECH 180DEG. 0UT OF PHASE 14E-04 COMMENTS: LONGITUDINAL RT VIDIM = 2958", RT THICKNESS = 0770" AREA #1400 DEG.F. = 0.0232", MODULUS #1400 DEG.F. = 19231.

D-8

|                                                                  | 9 0                                                                                                                                                                                              | n 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ 0                                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                             | 0 7                                                                                                                                                                                                               | 80 . 97<br>0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 0<br>• 0<br>• 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | 000                                                                                                                                                                                              | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 12 - 000                                                                                                     | * 0<br>* 1                                                                                                                                                                                                                                                                                                                                                          | 19 72 - 000                                                                                                                                                                                                       | 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | o :`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64                                                               | 1000                                                                                                                                                                                             | 623<br>000<br>IS 0140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1076 25 12<br>000000<br>18 @1400                                                                                | 2128<br>000<br>000                                                                                                                                                                                                                                                                                                                                                  | 845<br>000<br>1244";                                                                                                                                                                                              | 1349<br>- 000<br>0249"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4646 106.66<br>- 000 - 006<br>1224".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PAGE                                                             | m ,                                                                                                                                                                                              | ່ ສ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 8n                                                                                                            | 7 · 5                                                                                                                                                                                                                                                                                                                                                               | 1 10                                                                                                                                                                                                              | - 1 0 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| α.                                                               | 378                                                                                                                                                                                              | -5.090<br>MODULU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 726<br>50L                                                                                                      | 8 6 9<br>0 0 0                                                                                                                                                                                                                                                                                                                                                      | 75<br>-4.930<br>F. = 0.0                                                                                                                                                                                          | 1349<br>-4.707000<br>F. = 0.0249"<br>CKING ALONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7 964<br>-7 964<br>F PHASE<br>F - 0 . C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                  | ្លី ខ្                                                                                                                                                                                           | S HOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>HOI                                                                                                        | J Ž X                                                                                                                                                                                                                                                                                                                                                               | - Ç                                                                                                                                                                                                               | - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | 3650                                                                                                                                                                                             | 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                              | 0 1 84 1                                                                                                                                                                                                                                                                                                                                                            | N. I.                                                                                                                                                                                                             | 6 1 M 2 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 0 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  | ~ •                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                        | 9 7                                                                                                                                                                                                                                                                                                                                                                 | <b>→</b> 10                                                                                                                                                                                                       | * # # O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • <u>⊢</u> ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                  | . 10<br>ABE                                                                                                                                                                                      | A 8 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 986                                                                                                             | 900                                                                                                                                                                                                                                                                                                                                                                 | * H 0                                                                                                                                                                                                             | 4 X O 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                                                                | 9 1 2                                                                                                                                                                                            | 9 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - H.                                                                                                          | o # _ 1                                                                                                                                                                                                                                                                                                                                                             | 6 ¥ 6                                                                                                                                                                                                             | 22 264 -4.707 - 000<br>OF PHASE<br>#1400 DEG F = 0.0249"<br>LOOPS CRACKING ALONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                                                                | -0 00<br>82<br>01 P                                                                                                                                                                              | 63 30 E E E E E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0 -0.00 970 1076 24.095 14.369 -7.726 - 000 OUT OF PHASE DEG.F. = 0.0219", MODULUS @140                        | . M                                                                                                                                                                                                                                                                                                                                                                 | -0 -0.00 75 845 87.424 32.494 -4.930000 0UT OF PHASE AREA @1400 DEG.E. @ 0.6244";                                                                                                                                 | 20 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0 -0 00<br>21 252 13 288<br>MECH 160DEG OUT<br>AREA @1400 DEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| щ                                                                | # <u>+</u> :                                                                                                                                                                                     | , 4 F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , e F ;                                                                                                         | 1 6 0                                                                                                                                                                                                                                                                                                                                                               | 1 4 0 4                                                                                                                                                                                                           | . 9. 7<br>0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2 4 A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A B                                                              | 23 4<br>0UT                                                                                                                                                                                      | -0 7<br>007<br>007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                         | 0 # 0                                                                                                                                                                                                                                                                                                                                                               | -0<br>37.4<br>OUT<br>ARE                                                                                                                                                                                          | E C C C E E E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O H W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A 'NECATIVE ZERO' DENOTES 'NOT AVAILABLE' OR 'NOT APPLICABLE'.** | 4.80 8.317 3701 0.01 -0 -0 00 3650 355 574 19.545 -14.009000 - 000 23.482 8.10415. VAVEFORM: TRIANG, THERM /MECH 180DEG, OUT OF PHABE KNESS = .0740" AREA @ 1400 DEG. F. = 0233", MODULUS @ 1400 | 4. 50 16.577 623 0.01 -0.00 210 423 1 44. 550 42.559 -3.991 -0.00 -0.00 40.763 35.473 -5.090 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0. | 9 0                                                                                                             | 16 22.00 19.70 600 6.80 15.940 2128 0.01 -0 -0.00 490 2128 49 -2.940000000 30.420 27.704 -2.716000000 28.139 23.630 -4.509000 LTI.INITS. ON MULTI. PLANES;P+6 WAVEFORM: TRIANC.;THERM./MECH 180DEC. OUT OF PHASE ROSSELY. RT VIDTH = 0.3027"; RT THICKNESS = 0.0708", AREA @1400 DEC.F. = 0.0218"; MODULUS @1400 LES PRIOR TO TEST. CRACKING ALONG UNIFORM SECTION. |                                                                                                                                                                                                                   | .40 600 6.80 11.541 1349 0.01 -0 -0.00 35.264 -4.70700000000 30.541 25.244 -5.297000000 26.971 22.264 -4.70700 ED INITIATIONS UAVEFORM: TRIANG.:THERM:/MECH 180DEC. OUT OF PHASE CROSSPLY. RT WIDTH = 0.2986", RT THICKNESS = 0.0818", AREA #1400 DEG.F. = 0.0249 CYCLES PRIOR TO TEST. NI BASED ON APPEARANCE OF WYSTERESIS LOOPS. CRACKING ALONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                                                | 00.                                                                                                                                                                                              | 0 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 =                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0 0                                                                                                                                                                                                           | 0 # # X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 X 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ۷ ـ                                                              | ິ ຕຸ                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 00 0                                                                                                          | . K 4                                                                                                                                                                                                                                                                                                                                                               | 9 8 9 1                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                                                                | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                          | 0000<br>MECH<br>ARECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1074 0.01<br>-7 950000000<br>G.THERM./HECH 180DI                                                                | 1 OF H                                                                                                                                                                                                                                                                                                                                                              | 20 H 1 H                                                                                                                                                                                                          | 0 01<br>000<br>124 / ME<br>1558 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4444 0.01<br>-7.308000000<br>RM: TRIANC.;THERM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                | 0 X 0                                                                                                                                                                                            | 0 0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 1<br>0 0 0<br>/ MECK                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 MECH BB = 888 = 888                                                                                                                                                                                         | 0 0 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ō                                                                | 1 E                                                                                                                                                                                              | x z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Σ:                                                                                                              | X = Z                                                                                                                                                                                                                                                                                                                                                               | 17.38                                                                                                                                                                                                             | - AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ц                                                                | 3901<br>009<br>THER                                                                                                                                                                              | .3.991<br>IG. THERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1076<br>-7 950<br>THERI                                                                                         | 128<br>781<br>.07                                                                                                                                                                                                                                                                                                                                                   | 845<br>332<br>ERM.<br>ITCKN                                                                                                                                                                                       | 1349<br>THER<br>THICKN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4644<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ¥.                                                               | W + M                                                                                                                                                                                            | e Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Fo                                                                                                            | ~                                                                                                                                                                                                                                                                                                                                                                   | * £ £ F                                                                                                                                                                                                           | - 2 E Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * : <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 F                                                              | 7 y                                                                                                                                                                                              | ט "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 1                                                                                                             | , K. K.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   | . 4 E O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , or se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| >                                                                | 5 S T I                                                                                                                                                                                          | 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 A                                                                                                            | 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                             | ¥ 0 ¥ X                                                                                                                                                                                                           | = 4 F : 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                                                                | 5 T 3                                                                                                                                                                                            | SSEXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                                                                                                               | \$ \$ \$ S                                                                                                                                                                                                                                                                                                                                                          | AR AR                                                                                                                                                                                                             | N N 2 m M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ž                                                                | 30 16 70 24.80 600 6.80 8.317<br>1 073 - 000 - 000 35 574 19.545<br>0.37.HULTI INITS ,P+5 WAVEFORM: TRIJ<br>T WIDTH = 3007"; RT THICKNESS = 0740"<br>PRIOR TO START OF TEST.                     | 20 21.20 19 30 600 6.60 16.57 623 0 6.31 -0.00 -0.00 46.55 42.55 -3.791 -0.8.1.;MULTI.INITS.;P WAVEFORM: TRIANG.;THERM.ROSSELY. RT WIDTH = 30.25", RT THICKNESS = .0723".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.80 12.544<br>31.747 23.797<br>VAVEFORM TRIA                                                                   | 4.80 15.940<br>30.420 27.704<br>ANES.P+S WAVE<br>327": RT THICKNE                                                                                                                                                                                                                                                                                                   | 41 23 20 21.10 600 6.80 12.834 845 0.01 -4.730000000 36.652 34.320 -4.332000000 -64.MULTI. INITS.;P+5 WAVEFORM: TRIANG.;THERM./MECH 180DEG. G./90 DEG. CROSSPLY, RT WIDTH = 29.62"; RT THICKNESS = .0808".        | 6.80 11.541<br>30.541 25.244<br>WAVEFORM: TR<br>11DTH = 0.2986'',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>- ~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 뼥                                                                | <b>↓</b> 0. •                                                                                                                                                                                    | o F X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ <u>0</u> F                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                 | - > - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 + 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ģ                                                                | 8 X X X X X X X X X X X X X X X X X X X                                                                                                                                                          | 8 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 V R V R T R T R T R T R T R T R T R T R                                                                       | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                               | S S H N                                                                                                                                                                                                           | S X H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DE                                                               | <b>→</b> 22 Z X                                                                                                                                                                                  | * * 3 · 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>4</b>                                                                                                        | 4 8 H Z                                                                                                                                                                                                                                                                                                                                                             | * # \$ 0 0                                                                                                                                                                                                        | 4 8 11 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * 7 H O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | 2 1                                                                                                                                                                                              | 0 2 5<br>C K 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                              | A 9 E                                                                                                                                                                                                                                                                                                                                                               | 3 W<br>4 W                                                                                                                                                                                                        | α fr α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .30 600 6.80 000 - 000 22.794 0N MULTI PLANES.P+. CROSSPLY RT WIDTH = CYCLES PRIOR TO TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| æ                                                                | 30 16 70 24 80 600<br>1 073 - 000 - 000<br>0 37 HULTI INITS P+5<br>T VIDTH = 3007" RT TH<br>PRIOR TO START OF TEST                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 22.00 19.70 600<br>-4.379000000<br>U.S.I., WILTI INITS.P<br>908SPLY. RT WIDTH30<br>LES PRIOR TO TEST.        | 9 9 9                                                                                                                                                                                                                                                                                                                                                               | 0 0 1                                                                                                                                                                                                             | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , KO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ω<br>ω                                                           | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                          | 11 TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 908                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                           | A K S O C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ?                                                                | 18 0                                                                                                                                                                                             | HER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN TER                                                                                                          | THE                                                                                                                                                                                                                                                                                                                                                                 | 9 8 9                                                                                                                                                                                                             | 1 L 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - E 8 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA1                                                              | 30 16 70 24 80 600<br>1 073 - 000 - 000<br>0 37 HULTI INITS , P+5<br>T VIDTH = 3007"; RT T.<br>PRIOR TO START OF TES                                                                             | 20 21 20 19 30 600<br>0 431 - 000 - 000<br>U B I : MULTI INITE : P<br>ROSEBLY RT WIDTH = 3<br>LES PRIOR TO TEST CRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 22:00 19:70 600<br>-4:379 - 000 - 000<br>U.S.I., MULTI INITS.;<br>ROSSPLY: NT WIDTH -<br>LES PRIOR TO TEST   | 16 22 00 19 70 600 - 2 940 - 900 - 000 - 000 - 000 ROSSPLY. RT VIDTH = 0 LES PRIOR TO TEST. CI                                                                                                                                                                                                                                                                      | 41 23 20 21 10 600<br>-4 730 - 000 - 000<br>64;MULTI INITE :P+5<br>C /90 DEC CROSSPLY I                                                                                                                           | 46 18 90 17 40 600 -2 2 980 - 000 - 000 - 000 - 000 - 000 - 000 - 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 | 6 0 0 K ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ×                                                                | 4 1 8 E                                                                                                                                                                                          | 20 21 20 19 30<br>0 431 = 000<br>U B I : MULTI :<br>ROSEPLY RT WIE<br>LES PRIOR TO TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 1 5                                                                                                           | 0 6                                                                                                                                                                                                                                                                                                                                                                 | 41 23.20 21.10<br>-4.73000<br>44.MULTI. INI<br>C./90 DEC. CROO                                                                                                                                                    | 2 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | 1 073 1 073 0 37 MULTI T CIDTH =                                                                                                                                                                 | 2 4 7 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ X 8                                                                                                          | 2 6 7 6 0                                                                                                                                                                                                                                                                                                                                                           | 130 H                                                                                                                                                                                                             | 46 18 90 1<br>-2 980<br>50,MULTIP<br>G./90 DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A P I T A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P I A P |
| ~:                                                               | L O H K                                                                                                                                                                                          | 2 4 7 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06 75                                                                                                           | S IN A                                                                                                                                                                                                                                                                                                                                                              | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                           | 2 5 0 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BELOW.                                                           | 2 6 9 8                                                                                                                                                                                          | 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88918                                                                                                           | # 1 × 80 m                                                                                                                                                                                                                                                                                                                                                          | N TOOK                                                                                                                                                                                                            | 7 1 2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - A Y ja € B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 38                                                               | 8 0 K 8                                                                                                                                                                                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3                                                                         | 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                             | 4 0 0 W                                                                                                                                                                                                           | 4 00<br>4 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 2 3 2 3 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | 9 8 H                                                                                                                                                                                            | 0 6 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 0 0                                                                                                         | 9 7 7 7                                                                                                                                                                                                                                                                                                                                                             | 0 T + D 1                                                                                                                                                                                                         | 9 1 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 - E Q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ****                                                             | 0 0229 0 02<br>884 46 957<br>ON: OG:81+<br>ITUDINAL R                                                                                                                                            | 119 0 02<br>50 773<br>0G S. OR<br>0 DEC C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 6 0 0 4<br>0 8 0 0 1                                                                                          | * # O O 4                                                                                                                                                                                                                                                                                                                                                           | 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                           | 4 4 5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 4 0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ž                                                                | 101                                                                                                                                                                                              | 1 0 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 0 K                                                                                                           | 1 0 X                                                                                                                                                                                                                                                                                                                                                               | M O K M                                                                                                                                                                                                           | * 0 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 0 X 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i                                                                | O O O O E                                                                                                                                                                                        | 0 - X - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 7 Z F                                                                                                         | 2 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                             | 0 4 2                                                                                                                                                                                                             | 0 + Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  | 2 H Z H                                                                                                                                                                                          | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 0                                                                                                           | 0 0                                                                                                                                                                                                                                                                                                                                                                 | 0 2 4                                                                                                                                                                                                             | - 10 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - C D   C D C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | 2 K 10 C                                                                                                                                                                                         | 50.142 50.773 1PTION 05.8.9R 0 DEC./90 DEC CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                        | 0 4 0 1                                                                                                                                                                                                                                                                                                                                                             | 00 4 H                                                                                                                                                                                                            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                  | S - 0000 0 0229 0 02<br>DE 00 45 884 4 957<br>DESCRIPTION 06:8:+<br>NTS LONGITUDINAL R                                                                                                           | 0 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                             | 00 %                                                                                                                                                                                                                                                                                                                                                                | 000                                                                                                                                                                                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                  | S - 0000 0 0119 0 02<br>82 -0 00 45 864 46 957<br>CRACK DESCRIPTION: OG:8:+<br>COMMENTS LONGITUDINAL R<br>-22 8E6, 200 THERMAL CYCLES                                                            | 7000 0 0219 0.023<br>81 -0.00 50.142 50.773<br>CRACK DESCRIPTION 05.8.0R<br>COMMENTS. 0 DEC./90 DEC. CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83 -0.00 0.0215 0.021<br>83 -0.00 43 485 39 104<br>CRACK DESCRIPTION. OG.58.08<br>COMMENTS: 0.DEG. /90 DEG. GP. | 7 - 0000 0.0114 0.021<br>-0.00 34.259 31.319<br>DESCRIPTION 05.8.HUL<br>TB 0 DEC /90 DEC CR                                                                                                                                                                                                                                                                         | 7 - 0000 0.0239 0.02<br>-0.00 40.672 35.942<br>DESCRIPTION: 05.8:49<br>NTS: 0 DEC. P/M 45 DE                                                                                                                      | 7<br>-0<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 0 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - |
|                                                                  | A ST                                                                                                                                                         | X S v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X E S                                                                                                           | X 2 3                                                                                                                                                                                                                                                                                                                                                               | X Y O                                                                                                                                                                                                             | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X 0<br>X 4<br>X 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                  | C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                          | - A M -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63<br>CRACK<br>COMME                                                                                            | CRACK<br>COMMEN                                                                                                                                                                                                                                                                                                                                                     | CRACK<br>COMMEN                                                                                                                                                                                                   | B A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 M 0 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | 80 50 5 E                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                 | 0 0 8                                                                                                                                                                                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  | 16L-15 \$ - 0000 0 0129 0 023 10 150 150 82 - 0 0 45 884 46 957 16L-15 CRACK DESCRIPTION 0C.8 + 16L-15 COMMENTS LONGITUDINAL R'DEG F = 2 2 8E6 200 THERMAL CYCLES                                | 33-07 7 - 0000 0 00 0 250 81 -0 00 50 142 0 33-07 CRACK DESCRIPTION 0 DEC / PUBC F = 15 8E4 "200 THEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32-08<br>0.200<br>32-08<br>32-08                                                                                | 32-07 7 - 0000 0.0214 0.0216 22.00 19.70 600 6.80 15.940 2128 6.15.0 82 - 0.00 34.259 31.319 - 2.940 - 000 - 000 30.420 27.704 - 2.716 - 0.32 0.00 0.00 34.259 31.319 - 2.940 - 000 - 000 30.420 27.704 - 2.716 - 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                           | 35-08 7 - 0000 0.0239 0.0241 23.20 21<br>0.200 83 -0.00 40.672 35.942 -4.730 -<br>35-08 CRACK DESCRIPTION: OG.8:+0.64;MULT:<br>35-08 COMMENTS: 0.DEG./P/M 45.DEG./90.DEG.<br>************************************ | 35-10 7 - 0000 0.0244 0.0246 18.90 17.40 600 6.80 11.541 1349 0.01 -0 -0 -0 0.020 83 -0.00 34.974 31.994 -2.980 - 000 - 000 30.541 25.297 - 000 - 000 24.971 35.10 CRACK DESCRIPTION 0C,92-0.50,MULTIPLE INITIATIONS WAVEFORM: TRIANG.; THERM /MECH 180DEG. OUT 15-10 COMMENTS 0 DEG./P/M 45 DEG./PO DEG. CROSSPLY. RT WIDTH = 0.2984", RT THICKNESS = 0.0818" AREA MODULUS 91400 DEG.F. = 12.4E6 = 0 THERMAL CYCLES PRIOR TO TEST. NJ BABED ON APPEARANCE OF MYSTERESIS UNIFORM SECTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45-02 7 - 0000 0.0220 0.0222 18.90 14.30 400 4.80 0.150 82 -0.00 28.559 25.413 -2.944 - 000 - 000 22.794 4.5-02 CRACK DESCRIPTION. OC; B, MULTI. INITE. ON MULTI. PLANES, P+5.45-02 COMMENTS. O DEC./P/M 45 DEC./90 DEC. CROSSPLY RT WIDTH = "MODULUS @1400 DEC.F = 12 4E4. "170 THERMAL CYCLES PRIOR TO TEST."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

PACE 3

7