Специални IP адреси. NAT.

Преобразуване на IP адреси във физически. ARP vs. RARP. DHCP. ICMP.

Какво ще научим?

- Кои са специалните IP адреси. Частните адреси и NAT. Stateful и Stateless NAT.
- (R)ARP Съответствието IP MAC
- Динамично раздаване на IP адреси. DHCP.
- Протокол за тестване на мрежовата свързаност ICMР

Специални ІР адреси

В рамките на IPv4 адресното пространство има адресни сегменти, които са отделени за частно (локално) използване.

RFC 6890 (Special-Purpose IP Address Registries) прави "карта" на адресните сегменти (IPv4 и IPv6)за специално използване.

Специални ІР адреси

- 127.0.0.0/8 Internet host loopback address. Пакет се зацикля вътре в хоста. И не се появява никъде в мрежата.
- 169.254.0.0/16 това е "link local" блок. Хостовете получават такива адреси по "auto-configuration", например не може да се намери DHCP сървър.

Частни IP адреси

Те не се маршрутизират глобално, а само локално, за локални (частни) цели.

RFC3330 (първото указване е в RFC1918) указва кои от адресните пространства се използват за частни цели:

10.0.0.0/8 T.e 10.0.0.0 - 10.255.255.255

172.16.0.0/12 T.e 172.16.0.0 - 172.31.255.255

192.168.0.0/16 T.e 192.168.0.0 - 192.168. 255.255

NAT (Network Address Translation)

Statefull NAT

NAT в Linux ядрата 2.6 се описва в специални таблици в паметта - connection tracking tables.

Такъв тип NAT e statefull - специално алокирани за целта страници в паметта.

Безжична мрежа зад NAT

ТОПОЛОГИЯ НА БЕЗЖИЧНА МРЕЖА

Безжична мрежа зад NAT (dummy0)

Публичният IP адрес за NAT да не бъде директно достъпен в никой физически сегмент. Може да бъде променен.

Създава се dummy интерфейс.

/etc/sysconfig/network-scripts/ifcfg-dummy0:

```
DEVICE=dummy0
IPADDR=62.44.96.129
```

NETMASK=255.255.255.255

ONBOOT=yes

ifup dummy0

Безжична мрежа зад NAT (Конфигуриране)

Чрез инструмента iptables и едноимената услуга.

Указва се правилото за NAT (като root):

```
# iptables -t nat -A POSTROUTING -s 192.168.100.0/24 -d 0.0.0.0/0 -o eth0 -j SNAT --to 62.44.96.129
```

Всички изходящи от 192.168.100.0/24 (WiFi потребители) пакети през интерфейса eth0 се маскират към публичния адрес 62.44.96.129 (dummy0).

Безжична мрежа зад NAT (connection tracking tables)

```
# service iptables save
# chkconfig iptables on
```

ip_conntrack: table full, dropping packet Затова във файла /etc/sysctl.conf се описват следните променливи на ядрото:

```
net.ipv4.ip_conntrack_max = 2000000000
net.ipv4.netfilter.ip_conntrack_max = 200000000
```

sysctl -p

Установена TCP сесия (SSH)

source port (**sport**) е номера на комуникацията, свързана с приложението – инициатор на "разговора" (сесия).

destination port (dport) е номера на комуникацията, свързана с приложението – дестинация, работещо върху отдалечения хост.

conntrack

[root@shuttle]#less /proc/net/ip_conntrack

```
tcp 6 432000 ESTABLISHED src=78.83.89.174
dst=62.44.109.11 sport=46621 dport=1025 packets=243
bytes=20821 src=62.44.109.11 dst=78.83.89.174
sport=1025 dport=46621 packets=156 bytes=28980
[ASSURED] mark=0 secmark=0 use=2
```

[root@me]# less /proc/net/nf_conntrack

```
ipv4    2 tcp     6 431761 ESTABLISHED
src=192.168.0.100 dst=62.44.109.11 sport=46621
dport=1025 packets=262 bytes=22097 src=62.44.109.11
dst=192.168.0.100 sport=1025 dport=46621
packets=167 bytes=30432 [ASSURED] mark=0 secmark=0
use=2
```

Stateless NAT

Stateless NAT (dumb NAT) е най-простата форма на NAT.

Само пренаписва адреси, преминаващи през маршрутизатора:

- входящи пакети - destination address:

```
[root@xxx-gw]# ip route add nat 205.254.211.17 via 192.168.100.17
```

- изходящи пакети - source address:

```
[root@xxx-gw]# ip rule add nat
205.254.211.17 from 192.168.100.17
```

Stateless NAT

ARP (Address Resolution Protocol)

- За глобална адресация в Internet се използват 32битови IP-адреси.
- В същото време хостовете, свързани към локална мрежа Ethernet, притежават уникални 48-битови МАС (физически) адреси.
- При опаковането в Ethernet кадър на IP пакет, който се отправя към крайна дестинация, например, IP адресът на хоста-получател е известен,
- но в полето "адрес на получателя" на Ethernet кадъра трябва да се запише Ethernet адреса на съответния хост. Иначе пакетът няма да пристигне.

ARP

За установяване на съответствието между IP адреса и Ethernet адреса на хостовете в локалната мрежа се използва протокол за право преобразуване на адресите ARP (address resolution protocol).

ARP cache

[root@shuttle ~]# arp -e

Address Hwtype Hwaddress Flags Mask Iface
loz-gw.uni-sofia.bg ether 00:0D:56:B9:75:6D C eth0

[stefan@laptop ~]\$ arp -e

Address HWtype Hwaddress Flags Mask Iface

192.168.0.1 ether 00:22:6b:06:d5:ad C wlan0

Complete entry - C flag.
Permanent entries - M flag.
Published entries - P flag.

Когато даден хост трябва да изпрати пакет (дейтаграма) към машина от локалната мрежа, чийто IP адрес е известен, но не е известен Ethernet адреса, мрежовият слой разпространява в локалната мрежа ARP пакет-заявка.

Този пакет-заявка е от тип broadcast, т.е. предава се до всички машини. В полетата "Ethernet адрес на подателя" и "IP адрес на подателя" (т.е Source IP, MAC) са записани съответните адреси на хоста, който изпраща ARP заявката.

ARP пакет

+	Bits 0 - 7	8 - 15	16 - 31		
0	Hardware type (HTYPE)		Protocol type (PTYPE)		
32	Hardware length (HLEN)	Protocol length (PLEN)	Operation (OPER)		
64	Sender hardware address (SHA) (first 32 bits)				
96	Sender hardware addr	ess (SHA) (last 16 bits)	Sender protocol address (SPA) (first 16 bits)		
128	Sender protocol addre	ss (SPA) (last 16 bits)	Target hardware address (THA) (first 16 bits)		
160	Target hardware address (THA) (last 32 bits)				
192	Target protocol address (TPA)				

- В полето "Данни" е записано ARP съобщение от вида "who is X.X.X.X tell Y.Y.Y.", където X.X.X.X и Y.Y.Y.Y са IP адреси съответно на получателя и на подателя.
- Всички машини от локалната мрежа игнорират заявката с изключение на хоста, чийто адрес съвпада с X.X.X.X.
- Хост X.X.X изпраща ARP пакет-отговор само на подателя, тъй като вече знае неговия Ethernet адрес от получената заявка.

- В полето "Данни" на пакета-отговор е записано ARP съобщение от вида "X.X.X.X is hh:hh:hh:hh:hh:hh", където hh:hh:hh:hh:hh:hh е Ethernet адреса (в 16-ен код) на хоста, изпращащ пакета-отговор.
- Обикновено хоста, който изпраща ARP заявката, запомня (кешира) получените 48-битови Ethernet адреси, за да могат да се използват при следващо предаване.

- При определяне на Ethernet адреса на получателя на даден пакет първо се проверява дали този адрес не е вече кеширан
- Ако не е, се изпраща ARP заявка. Хостът може да използва и адреси, записани в конфигурационен файл.
- Освен това всеки хост при първоначалното си стартиране уведомява чрез broadcast съобщение от вида "I am X.X.X.X and my Ethernet address is hh:hh:hh:hh:hh:hh:hh:hh са съответно IP адреса и Ethernet адреса.

- Всички останали хостове в локалната мрежа ще запишат тази информация в своите кешове.
- Чрез ARP могат да се определят физическите адреси само на хостове, които са включени в локалната мрежа и имат IP адреси от IP мрежата (подмрежата) на изпращача.
- Пакетите, чийто получател е хост от друга IP мрежа (подмрежа), се изпращат към маршрутизатора, включен в локалната мрежа.

Неговият Ethernet адрес се получава чрез ARP заявка, ако не е кеширан.

Този маршрутизатор избира маршрут и препраща пакета към неговия получател.

Proxy ARP

- Proxy ARP е метод, чрез който хост отговаря на ARP заявки за IP адреси, които не са конфигурирани на интерфейса му.
- "Проксирането" на ARP заявки за сметка на друг хост препраща целия LAN, предназначен за този хост, към прокси.
- Прихванатият трафик се "превключва" към другия интерфейс на проксито (обикновено маршрутизатор) или се препраща през серийна връзка (напр., dialup или VPN тунел), за да достигне хоста получател.

Proxy ARP

RARP

- RARP (Reverse Address Resolution Protocol) е протокол за намиране на IP адреси по Ethernet адреси.
- Обикновено IP адресът на хоста е записан в конфигурационен файл, който се намира на твърдия диск на машината.
- При първоначално зареждане на операционната система файлът се прочита от твърдия диск и хостът научава своя IP адрес.

RARP

- В случай, че в локалната мрежа е включена машина, която не притежава собствен твърд диск (diskless), за определяне на нейният IP адрес се използва RARP протоколът.
- За целта в мрежата трябва да е включен хост, който функционира като RARP сървър.
- Този сървър съхранява съответствието между Ethernet и IP адреси на станциите в мрежата.

RARP

- Действието на RARP се основава на наличието на уникален физически Ethernet адрес на всяка система в локалната мрежа.
- При инициализиране на diskless машината RARP протоколът прочита този адрес от интерфейсната карта и предава до всички станции в мрежата пакет-заявка.
- RARP сървърът отговаря на тази заявка, като в пакета-отговор се съдържа IP адреса, съответстващ на изпратения Ethernet адрес.

 Diskless workstation
 Diskless workstation
 RARP Server

 192.168.10.34
 192.168.10.91
 192.168.10.97
 192.168.10.98

 FE:ED:F9:23:44:EF
 FE:ED:F9:44:45:66
 DD:EC:BC:AB:04:AC
 DD:EC:BC:00:94:D4
 FE:ED:F9:65:33:3A

Frame header	2		0800 ₁₆	
Source MAC	48	32	4	
FE:ED:F9:65:33:3A	FE:ED:F9:23			
Destination MAC	44:EF		192.168	
FE:ED:F9:23:44:EF	10.36		FE:ED	
Field Type	F9:65:33:3A			
0X8035 (Ethernet)	(8035 (Ethernet) 192.168.10.98			

DHCP

- Dynamic Host Configuration Protocol (DHCP) се използва за автоматично (динамично) конфигуриране на свързаността на даден хост към IP мрежата.
- За разлика от твърдото (ръчно или статично) конфигуриране.
- DHCP "раздава" не само IP адреси, но и всички други параметри на връзката Default Gateway (изхода навън по подразбиране, DNS сървър/и, име на домейн и т.н.)
- DHCР улеснява процеса на добавяне на машина в мрежата, местене и т.н.

DHCP

- Днешната версия на DHCP за IPv4 е стандартизирана в RFC 2131 (1997 г.).
- DHCP за IPv6 (DHCPv6) е дефинирана в RFC 3315.
- DHCP е протокол от типа клиент-сървър.
- DHCP-конфигуриран клиент веднага след включването се свързва към мрежата и изпраща broadcast заявка, искайки необходимата информация от DHCP сървър.

DHCP

- DHCP сървърът разполага с пул от IP адреси и необходимата информация за конфигуриране на клиента: GW, SM, домейн, DNS сървър/и, NTP, WINS и др.
- При получаване на валидна заявка сървърът присвоява IP адрес, време за отдаване на адреса (lease time през което алокацията е валидна) и др. (гореспоменати) IP конфиг. параметри.

Раздаване на IP адреси (allocation)

DHCP сървърите раздават (алокират) IP адреси по 3 начина:

Динамична алокация: Обхват от IP адреси се дават за DHCP и всеки клиент си заявява IP адрес от DHCP сървъра при включване. Времето на отдаване (lease) е дефинирано, така че сървърът може да преотдаде адреса на друга машина.

Автоматична алокация: Подобн е на динамичната, но даден IP адрес е резервиран за даден клиент.

Раздаване на IP адреси (allocation)

Статична алокация: DHCP раздава IP адреси на базата на таблица MAC адрес/IP адрес, ръчно попълнена от администратора. Само клиенти, чиито MAC адреси присъстват в тази таблица, ще получат IP адреси.

Нарича се още Static DHCP Assignment (от DD-WRT, Linux-базиран фърмуер, Linksys), fixed-address (от dhcpd), DHCP reservation или Static DHCP (от Cisco/Linksys) или IP reservation, MAC/IP binding (други производитевли).

Фази на DHCP процеса

DHCP discovery

DHCР сървър:

62.44.109.140

DHCP пул: 62.44.109.141 – 254/25

Последен свободен адрес: 62.44.109.151

Транзакция 654:

UDP Src=0.0.0.0 sPort=68 Dest=255.255.255.255 dPort=67

DHCP offer

UDP Src=62.44.109.140 sPort=67 Dest=255.255.255.255 dPort=68

Offer IP: 62.44.109.151

ID: 654

Lease Time: 3600 s

SM: 255.255.255.0

DHCP server: 62.44.109.140

Router (GW): 62.44.109.193

DNS: 62.44.109.1, 62.44.96.1

Domain: ucc.uni-sofia.bg

DHCP request

UDP Src=0.0.0.0 sPort=68 Dest=255.255.255.255 dPort=67

Requested IP: 62.44.109.151

ID: 655

DHCP server: 62.44.109.140

Lease Time: 3600 s

DHCP acknowledgement

UDP Src= 62.44.109.140 67 Dest=255.255.255.255 68

Requested IP: 62.44.109.151

D: 655

Lease Time: 3600 s

SM: 255.255.255.0

DHCP server: 62.44.109.140

Router (GW): 62.44.109.193

DNS: 62.44.109.1, 62.44.96.1

Domain: ucc.uni-sofia.bg

DHCP Relay

Желателно е DHCP сървър и клиенти да са на един и същ сегмент (Ethernet и IP).

Когато това не е възможно, прилага се DHCP Relay.

DHCP Relay

vim /etc/dhcpd.conf

```
subnet 172.18.0.0 netmask 255.255.254.0 {
```

--- default gateway

```
option routers 172.18.0.1;
option subnet-mask 255.255.254.0;

option nis-domain "uni-sofia.bg";
option domain-name "conf.uni-sofia.bg";
option domain-name-servers
62.44.96.7,62.44.96.1;
```

vim /etc/dhcpd.conf (cont'd)

```
option time-offset 7200; # East European Standard Time
option ntp-servers 62.44.96.44;

# option ntp-servers 62.44.96.7, 62.44.96.1;

# option netbios-name-servers 192.168.1.1;

# --- Selects point-to-point node (default is hybrid). Don't change this unless you understand Netbios very well option netbios-node-type 2;
```

vim /etc/dhcpd.conf (cont'd)

```
host vlado {
 option host-name "vladi";
 hardware ethernet 00:0a:e4:b1:6e:52;
 fixed-address 172.18.0.101;
range 172.18.0.2 172.18.1.254;
```

ICMP

- Internet Control Message Protocol (ICMP) е част от протокола IP.
- Използва се от мрежовите ОС главно за откриване на грешки по мрежата и изпращане на съобщения за това.
- ICMP за IPv4 е известени като ICMPv4. IPv6 има подобен, ICMPv6.
- Дефиниран е в RFC 792.
- IP опакова ICMP съобщението с нов IP хедър, за да го върне на изпращача и го предава като обикновен пакет.

ICMP

- Например, всеки възел в мрежата (рутер, GW), която направлява IP пакета, трябва да декрементира TTL полето на IP хедъра с 1.
- Aко TTL достигне 0, ICMP съобщение Time to live exceeded in transit message се изпраща към източника.
- ICMP съобщенията се съдържат в стандартни IP пакети, но се обработват като специални случаи.
- Много мрежови средства за диагностика се базират на ICMP.

ICMP

Командата traceroute изпраща UDP дейтаграми с определени IP TTL полета и очаква ICMP Time to live exceeded in transit, също изпраща "Destination unreachable" в отговор.

Средството ping се реализира с ICMР "Echo request" и "Echo reply" съобщения.

Структура на ІСМР пакет

	Bit 0 - 7	Bit 8 - 15	Bit 16 - 23 Bit 24 - 31		
IP Header (160 bits OR 20 Bytes)	Version/IHL Type of service		Length		
	Identific	flags and offset			
	Time To Live(TTL) Protoco		Checksum		
	Source IP address				
	Destination IP address				
ICMP Payload (64+ bits OR 8+ Bytes)	Type of message Code		Checksum		
	Quench				
	Data (optional)				

Структура на ІСМР пакет

Тип — вж. по-долу.

Код - вж. по-долу.

Checksum – контролна сума за ICMP header+data.

Данни

Linux ping 56 байта (октета) плюс 8 за хедър.

Windows "ping.exe" - 32 + 8 хедър.

ІСМР съобщения

Туре	Code	Description
0 - Echo Reply	0	Echo reply (used to ping)
1 and 2		Reserved
3 - Destination Unreachable	0	Destination network unreachable
	1	Destination host unreachable
	2	Destination protocol unreachable
	3	Destination port unreachable
	4	Fragmentation required, and DF flag set
	5	Source route failed
	6	Destination network unknown
	7	Destination host unknown
	8	Source host isolated
	9	Network administratively prohibited
	10	Host administratively prohibited
	11	Network unreachable for TOS
	12	Host unreachable for TOS
	13	Communication administratively prohibited
4 - Source Quench	0	Source quench (congestion control)

ІСМР съобщения

5 - Redirect Message	0	Redirect Datagram for the Network	
	1	Redirect Datagram for the Host	
	2	Redirect Datagram for the TOS & network	
	3	Redirect Datagram for the TOS & host	
6		Alternate Host Address	
7		Reserved	
8 - Echo Request	0	Echo request	
9 - Router Advertisement	0	Router Advertisement	
10 - Router Solicitation	0	Router discovery/selection/solicitation	
11 - Time Exceeded	0	TTL expired in transit	
	1	Fragment reassembly time exceeded	
12 - Parameter Problem: Bad IP header	0	Pointer indicates the error	
	1	Missing a required option	
	2	Bad length	
13 - Timestamp	0	Timestamp	
14 - Timestamp Reply	0	Timestamp reply	
15 - Information Request	0	Information Request	
16 - Information Reply	0	Information Reply	
17 - Address Mask Request	0	Address Mask Request	
18 - Address Mask Reply	0	Address Mask Reply	
19		Reserved for security	
20 through 29		Reserved for robustness experiment	
30 - Traceroute	0	Information Request	

ping

- Ping е инструмент за тестване на достижимостта на даден хост по IP мрежата.
- Изпраща ICMP "echo request" пакети към целта и очаква ICMP "echo response" отговори.
- Ping измерва round-trip time и регистрира загуби на пакети.
- Накрая разпечатва статистика: минималното, средното, максималното и (в някои версии) стандартното отклонение от round trip time.
- Mike Muuss е написал програмата през декември, 1983. Нарекъл я на звуковите импулси, издавани от локатор в подводница.

Пример на ping

```
C:\Users>ping −l 1473 www.google.com
Pinging www.l.google.com [74.125.47.99] with 1473 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 74.125.47.99:
   Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:∖Users>ping -l 1472 www.google.com
Pinging www.l.google.com [74.125.47.103] with 1472 bytes of data:
Reply from 74.125.47.103: bytes=56 (sent 1472) time=50ms TTL=240
Reply from 74.125.47.103: bytes=56 (sent 1472) time=48ms TTL=240
Reply from 74.125.47.103: bytes=56 (sent 1472) time=58ms TTL=240
Reply from 74.125.47.103: bytes=56 (sent 1472) time=58ms TTL=240
Ping statistics for 74.125.47.103:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 48ms, Maximum = 58ms, Average = 53ms
```

- traceroute е инструмент за определяне на маршрута на пакетите по мрежата. За IPv6 вариантът е traceroute6.
- traceroute го има за всички Unix-подобни ОС. Подобна функционалност имат tracepath на модерните Linux дистрибуции и tracert в Microsoft Windows.
- Тraceroute инкрементира с 1 "time-to-live" (TTL) на всяка следваща "тройка" от изпратени пакети. Първата тройка е с TTL=1. Следващата е с TTL = 2 и т.н. Минавайки през хост, TTL на пакета се декрементира с 1 и се отправя към следващия хост. Хостът изхвърля пристигнал пакет с TTL = 1 и изпраща на подателя ICMP t ime exceeded (type 11).
- traceroute използва тези връщани пакети, за да създаде списък от хостове, през които пакетът е минал по маршрута до дестинацията.

- Трите timestamp за всеки хост по пътя са закъснението delay (latency) в ms за всеки пакет от тройката.
- Ако пакетът не се върне в рамките на очаквания timeout, разпечатва се звездичка (asterisk).
- Traceroute може и да не изброи реалните хостове. Само показва, че първият хост е на един хоп, вторият на два, и т.н.
- Просто IP не гарантира, че всички пакети ще минат по един и същ път.
- Ако хост на хоп N не отговори, този хоп ще бъде пропуснат в разпечатката.

В съвременните Unix и Linux-базирани ОС traceroute използва по подразбиране UDP дейтаграми с номера на дестинационни портове 33434 - 33534. Но има опция да се използва ICMP echo request (type 8) както в Windows tracert.

```
[root@shuttle ~]# traceroute ripe.net
traceroute to ripe.net (193.0.19.25), 30 hops max, 40 byte packets
 1 ucc-gw.ucc.uni-sofia.bg (62.44.109.5) 0.227 ms 0.237 ms 0.252 ms
 2 border-main.uni-sofia.bg (62.44.127.21) 0.590 ms 0.584 ms 0.567 ms
 3 core-su.lines.acad.bg (194.141.252.21) 1.179 ms 1.311 ms 1.448 ms
 4 istf.rt1.sof.bg.geant2.net (62.40.125.141) 1.266 ms 1.265 ms 1.232 ms
 5 so-2-3-0.rt1.bud.hu.geant2.net (62.40.112.202) 15.477 ms 15.490 ms 15.468
 ms
 6 bpt-b2-link.telia.net (80.239.134.1) 15.437 ms 14.885 ms 14.944 ms
 7 hbq-bb1-link.telia.net (80.91.250.130) 36.623 ms 36.597 ms 36.586 ms
 8 adm-bb1-link.telia.net (80.91.252.40) 46.064 ms adm-bb1-link.telia.net (80.
91.253.45) 44.637 ms 44.634 ms
 9 adm-b1-link.telia.net (80.91.254.221) 44.634 ms adm-b2-link.telia.net (80.9
1.254.133) 44.818 ms 44.821 ms
10 * gw.amsix.nikrtr.ripe.net (195.69.144.68) 468.713 ms *
11 qw.transit.nsrp.ripe.net (193.0.3.1) 40.922 ms 42.555 ms 40.804 ms
12 aquila.ripe.net (193.0.19.25) 43.185 ms 41.560 ms 43.088 ms
```

arping

- arping е подобна на ping, но използва ARP вместо ICMP.
- Затова, arping е използваема само в локалната мрежа
- В някои случаи отговорът може да идва от междинна система proxy ARP (напр. рутер).

arping

```
[root@shuttle ~]# arping 62.44.109.1
ARPING 62.44.109.1 from 62.44.109.11 eth0
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.638ms
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.608 \mathrm{ms}
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.604ms
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.610ms
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.594 \text{ms}
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.591 \mathrm{ms}
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.585 \text{ms}
Unicast reply from 62.44.109.1 [00:40:95:30:13:ED]
                                                        0.591 \mathrm{ms}
Sent 8 probes (1 broadcast(s))
Received 8 response(s)
```