

Synthesis of Dimethyl Ether via Methanol Dehydration

Mr. Ivica MARJANOVIC UPMC – Université Pierre et Marie Curie, Paris – CAPGEMINI, Paris

Background & Description:

This project investigates the simulation and optimization of the Dimethyl Ether (DME) production process using the open-source chemical process simulator DWSIM. DME is a versatile chemical compound widely used as a clean fuel, a propellant, and a precursor in chemical synthesis. Its environmentally friendly combustion properties, including low soot and NOx emissions, make it a promising alternative energy source.

The production of DME is based on the dehydration of methanol, governed by the reaction:

 $2 \text{ CH3OH} \rightarrow \text{CH3OCH3} + \text{H2O}$

This process involves three main steps:

- 1. **Reaction**: Methanol is converted into DME and water in an adiabatic conversion reactor operating at **15 bars** and **250**°C, achieving a conversion rate of **80%**.
- 2. **Separation**: The reaction products are separated using two distillation columns:
 - o The first column separates DME as a pure top product with a **purity of 99.99%**, while the methanol-water mixture is collected in the bottom stream.
 - o The second column recovers unreacted methanol for recycling and isolates water for disposal.
- 3. **Recycling**: The unreacted methanol is recycled back into the process to maximize efficiency and minimize raw material consumption.

The flowsheet was developed with thermodynamic properties calculated using the **UNIQUAC model**, chosen for its ability to handle complex alcohol-water systems. Simulations achieved a DME production rate of **271.74 kmol/h**.

Despite initial challenges in achieving convergence for the distillation columns in DWSIM, adjustments such as optimizing feed plate locations and reflux ratios resolved these issues.

A comparison with Aspen HYSYS simulations shows that DWSIM, while capable of simulating complex processes, may require additional fine-tuning for convergence. These results demonstrate the potential of DWSIM as a robust tool for designing efficient and sustainable chemical processes, particularly in resource-constrained environments.

In parallel, the same process was simulated using **Aspen HYSYS**, yielding **similar results** to those obtained with DWSIM. This demonstrates that **DWSIM** is a powerful open-source tool capable of delivering results comparable to proprietary software like Aspen HYSYS. Its performance highlights DWSIM as a viable and cost-effective alternative for designing and optimizing chemical processes, particularly in resource-constrained environments.

<u>Thermodynamic package</u>: UNIQUAC was chosen as the thermodynamic model because it is better suited and more detailed for systems involving liquid phases. Its equations are particularly applicable to a wide range of mixtures, including those containing water and alcohols.

Flowsheet

Results:

Master Property Tableau								
Object	S-01- Feed	S-02- Mixture	S-05	S-05a- Empty	S-07b- DME(Product)	S-08- W+M	S-09-M (R)	S-10c-W
T (°C)	36.88	46.73	366.19	366.19	-24.51	160.23	64.60	24.99
P (kPa)	101.325	101.325	1500	1500	101.325	1000	101.325	101.325
Molar Flow	543.48	679.35	679.35	0	271.74	407.61	135.87	271.74
Molar Flow (H2O)	0	<0	271.74	0	<0	271.74	<0	271.74
Molar Flow (Methano l)	543.48	679.34	135.87	0	<0	135.87	135.87	<0
Molar Flow (DME)	0	<0	271.74	0	271.74	<0	<0	<0

Nb: Insignificant quantities (<0) of components in the product streams can be considered negligible, effectively approximating them to zero without impacting the overall process results or conclusions (see flowsheet).

References: Müller, M., & Hübsch, U. (2012). Dimethyl Ether. In Ullmann's Encyclopedia of Industrial Chemistry (Vol. 11, pp. 305–308). Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a08_541.