Collective oscillations in the rat barrel-thalamus network

Benedetta Mariani, R. Guevara Erra, G. Nicoletti, M. Tambaro, S. Vassanelli, S. Suweis

Brain Criticality 2022

Experimental paradigm

Probe Atlas #E32+R-65-S1-L6NT pitch 65 μm

32		Depth (µm)	
31	+ 200		
30	+ 135		
29	+ 70	*10/20/10000	
28	+ 5	Layer	
27	- 60	Į,	
26	- 125		
25	- 190	II	
24	- 255		
23	- 320		
22	- 385	Ш	
21	- 450		
20	- 515	IV	
19	- 580		
18	- 645		
17	- 710		
16	- 775	Va	
15	- 840		
14	- 905		
13	- 970		
12	- 1035		
11	- 1100		
10	- 1165		
09	- 1230		
08	- 1295	Vb	
07	- 1360		
06	- 1425		
05	- 1490		
04	- 1555	VI	
03	- 1620		
02	- 1685		
01	- 1750		
	- 1815		

- LFPs and MUAs recordings from urethane anesthetized rats.
- Both from a 32 channels probe inserted in a barrel column, and from a 32 channels probe inserted in a barrel column and thalamus.
- Recordings after single whisker stimulation (through a piezoelectric actuator) and during spontaneous activity.

AIMS:

Study the oscillatory behavior of the rat barrel-thalamus network after whisker stimulation and during spontaneous activity.

Evoked oscillations in the barrel after whisker stimulation

Spontaneous slow waves....

... & high frequency bands

Phase-amplitude coupling (1-4 Hz phase vs 6-13 Hz amplitude)

The model

Stochastic terms

$$\frac{d}{dt}x_{i} = \frac{1}{\gamma_{i}} \left(F[s_{x_{i}}] - x_{i} \right) + \frac{1}{\gamma_{i}\sqrt{V1}} \sqrt{F[s_{x_{i}}] + x_{i}} \lambda_{i}^{(1)}$$

$$\frac{d}{dt}y_{i} = \frac{1}{\gamma_{i}} \left(F[s_{y_{i}}] - y_{i} \right) + \frac{1}{\gamma_{i}\sqrt{V1}} \sqrt{F[s_{y_{i}}] + y_{i}} \lambda_{i}^{(2)}$$

$$s_{x_{i}} = -r(y_{i} - p) - Dy_{i-1}$$

$$s_{y_{i}} = r(x_{i} - (1 - p)) - Dy_{i-1}$$

$$F(s) \propto \frac{1}{1 + e^{-s}}$$

$$p = 0.2, r_1 = r_2 = r$$

Conclusions

- Evoked collective oscillations, modulated by slow oscillations, are present in the barrel after whisker stimulation, whose response propagates from thalamus to cortex.
- \Box Our modeling framework highlights the importance of a **thalamo-cortical effective coupling** for the birth of the higher frequency in the barrel, that coexists with the δ one.