Group Number		Name		Type
List Number		Surname		
Student ID		Signature		Λ
E-mail				

ATTENTION: There is normally only one correct answer for each question and each correct answer is equal to 1 point. Only the answers on your answer sheet form will be evaluated. Please be sure that you have marked all of your answers on the answer sheet form by using a pencil (not pen).

Questions 1-5

1. A mass m is revolving in a circular path of radius R with an angular acceleration $\alpha = At$, where A is a positive constant. Calculate the angular speed $\omega(t)$ in terms of ω_0 (initial angular speed at t=0), A and time t.

(a) $\omega_0 + 2At^2$ (b) $\omega_0 + 2At$ (c) $\omega_0 + At$ (d) $\omega_0 + \frac{1}{2}At^2$ (e) $\omega_0 + At^2$

2. Calculate the angular position $\theta(t)$ in terms θ_0 (initial angular position at t=0), ω_0 , A and t.

(a) $\theta_0 + \omega_0 t + A t^2$ (b) $\theta_0 + \omega_0 t + \frac{1}{2} A t^2$ (c) $\theta_0 + \omega_0 t + \frac{1}{6} A t^3$ (d) $\theta_0 + \omega_0 t + \frac{1}{3} A t^3$ (e) $\theta_0 + \omega_0 t + \frac{2}{3} A t^3$

3. Calculate the speed v(t) of the particle in terms of ω_0 , A, R and time t. (a) $\omega_0 R + A R t^2$ (b) $\omega_0 R + 2 A R t^2$ (c) $\omega_0 R + \frac{1}{2} A R t^2$ (d) $\omega_0 R + 2 A R t$ (e) $\omega_0 R + A R t$

4. Calculate the magnitude of radial acceleration $a_r(t)$ in terms of ω_0 , A, R and time t.

(a) $(\omega_0 + At^2)^2 R$ (b) $(\omega_0 + \frac{1}{2}At^2)^2 R$ (c) $(\omega_0 + 2At)^2 R$ (d) $(\omega_0 + 2At^2)^2 R$ (e) $(\omega_0 + At)^2 R$

5. Calculate the magnitude of the linear acceleration a(t) in terms of ω_0 , A, R and time t.

(a) $R\sqrt{A^2 t^2 + (\omega_0 + \frac{1}{2} A t^2)^4}$ (b) $R\sqrt{A^2 t^2 + (\omega_0 + A t)^4}$ (c) $R\sqrt{A^2 t^2 + (\omega_0 + A t)^4}$ (e) $R\sqrt{A^2 t^2 + (\omega_0 + A t^2)^4}$ (c) $R\sqrt{A^2t^2+(\omega_0+2At^2)^4}$

Questions 6-7

Position vectors of $m_1 = 1 \, kg$, $m_2 = 2 \, kg$ and $m_3 = 3 \, kg$ are given as $\vec{r}_1 = 2t^2 \hat{i}$, $\vec{r}_2 = (2 - 3t) \hat{i} + 2t \hat{j}$ and $\vec{r}_3 = (1 - t) \hat{j} - \frac{1}{6}(t^3 - 1) \hat{k}$ in units of meters.

6. Find the centre of mass velocity \vec{v}_{cm} when t=2 s. (a) $\frac{1}{6}(-3\hat{\jmath}+2\hat{k})$ (b) $\frac{1}{2}(3\hat{i}-2\hat{\jmath}+1\hat{k})$ (c) $\frac{1}{6}(2\hat{i}+\hat{\jmath}-6\hat{k})$ (d) $\frac{1}{6}(-3\hat{i}-2\hat{\jmath}+4\hat{k})$ (e) $\frac{1}{5}(-4\hat{i}-2\hat{k})$

7. Find the centre of mass acceleration \vec{a}_{cm} when t=2 s. (a) $\frac{1}{3}(2\hat{i}-3\hat{k})$ (b) $\frac{1}{2}(2\hat{j}-5\hat{k})$ (c) $\frac{1}{6}(4\hat{i}-3\hat{j}-5\hat{k})$ (d) $\frac{1}{6}(4\hat{i}-3\hat{j})$ (e) $\frac{1}{6}(2\hat{i}+3\hat{k})$

Questions 8-10

Two objects with masses $m_1 = 2 kg$ and $m_2 = 3 kg$ collide elastically with initial velocities given as $\vec{v}_{1i} = 4 \hat{i} \frac{m}{s}$ and $\vec{v}_{2i} = -6 \hat{i} \frac{m}{s}$.

8. Calculate the centre of mass velocity $\vec{v}_{\rm cm}$ of the system **before** the collision.

(a) $+1\hat{i}\frac{m}{s}$ (b) $-4\hat{i}\frac{m}{s}$ (c) $-1\hat{i}\frac{m}{s}$ (d) $-2\hat{i}\frac{m}{s}$ (e) $-3\hat{i}\frac{m}{s}$

9. Calculate the velocities of m_1 and m_2 with respect to centre of mass frame (velocities relative to an observer moving with $\vec{v}_{\rm cm}$)

(a) $\vec{v'}_1 = -2\hat{i}\frac{m}{s}, \vec{v'}_2 = +4\hat{i}\frac{m}{s}$ (b) $\vec{v'}_1 = 6\hat{i}\frac{m}{s}, \vec{v'}_2 = -4\hat{i}\frac{m}{s}$ (c) $\vec{v'}_1 = 3\hat{i}\frac{m}{s}, \vec{v'}_2 = -2\hat{i}\frac{m}{s}$ (d) $\vec{v'}_1 = 2\hat{i}\frac{m}{s}, \vec{v'}_2 = -8\hat{i}\frac{m}{s}$ (e) $\vec{v'}_1 = 5\hat{i}\frac{m}{s}, \vec{v'}_2 = -5\hat{i}\frac{m}{s}$

10. Calculate the velocities of m_1 and m_2 with respect to centre of mass frame (velocities relative to an observer moving with $\vec{v}_{\rm cm}$) after the collision.

(a) $\vec{v'}_{1f} = -3\hat{i}\frac{m}{s}, \vec{v'}_{2f} = +2\hat{i}\frac{m}{s}$ (b) $\vec{v'}_{1f} = -6\hat{i}\frac{m}{s}, \vec{v'}_{2f} = +4\hat{i}\frac{m}{s}$ (c) $\vec{v'}_{1f} = -4\hat{i}\frac{m}{s}, \vec{v'}_{2f} = +6\hat{i}\frac{m}{s}$ (d) $\vec{v'}_{1f} = +2\hat{i}\frac{m}{s}, \vec{v'}_{2f} = -4\hat{i}\frac{m}{s}$ (e) $\vec{v'}_{1f} = -8\hat{i}\frac{m}{s}, \vec{v'}_{2f} = +2\hat{i}\frac{m}{s}$

Questions 11-13

An Atwood machine is represented in figure where the pulley is in disc form and its moment of inertia is $I=\frac{1}{2}mR_0^2$. Here, m=2 kg is the mass of the pulley and $R_0=20$ cm is the radius of the pulley. Initially the masses $M_1=1$ kg and $M_2=3$ kg are kept at rest and released at time, t=0. The direction of z-axis is out of the page. Ignore friction on the axis of rotation. Take g=10 m/s².

11. What is the magnitude of the acceleration a of the masses in unit of m/s^2 ?

(a) 20/3 (b) 2 (c) 4 (d) 5 (e) 10/3

12. What is the ratio of the tensions, T_1/T_2 , shown in the figure?

(a) 5/3 (b) 5/7 (c) 3/5 (d) 3/2 (e) 7/9

13. What is the angular speed, ω , of the pulley at t=2 s, in unit of rad/s?

(a) 40 (b) 30 (c) 10 (d) 20 (e) 5

Questions 14-15

A horizontal table in the form of a circular disk rotates around a vertical axis passing through its centre of mass without friction, with an angular speed $\omega_0 = 0.5 \text{ rad/s}$. The mass of the table is 100 kg and the radius is 2 m. A child with a mass of 32 kg walks slowly from the edge of the rotating table towards the centre. The moment of inertia of the table is $I = \frac{1}{2}MR^2$.

14. What is the angular speed of the child, in rad/s, when he reaches a point 0.5 m away from the centre of the disk?

(a) 30/14 (b) 50/32 (c) 52/41 (d) 32/50 (e) 41/52

15. What is the rotational kinetic energy of the system, in N.m, when he reaches a point 0.5 m away from the centre of the disk?

(a) 2704/26 (b) 1681/26 (c) 1024/13 (d) 250/32 (e) 900/32

16. If the escape speed from the surface of a star of mass M and radius R is v, then what it would be for a star of mass 18M and radius R/2?

(a) 3v (b) 9v (c) 1296v (d) 36v (e) 6v

17. What is the weight w of a particle of mass m at a distance r < R from the centre of a homogenous (constant density) spherical body of mass M and radius R.

(a) $w = G \frac{mM}{r^2}$ (b) w = 0 (c) $w = G \frac{mM}{R^2} r$ (d) $w = G \frac{mM}{R^3} r$ (e) $w = G \frac{mM}{r^2} R$

18. Which of the following is correct for a planet revolving in an elliptical orbit around the sun? ϕ is the angle between the velocity \vec{v} of the planet and the line with a length r from the sun to the planet. (Hint: Recall Kepler's Second Law. r_{\min} and r_{\max} are the minimum and maximum distances of the planet from the sun. v_{\min} and v_{\max} are the minimum and maximum speeds of the planet in its orbit.)

(a) $rv \sin \phi = r_{\min}v_{\min}$ (b) $rv = r_{\min}v_{\max}$ (c) $rv \cos \phi = r_{\min}v_{\max}$

 $v_{\text{min}}v_{\text{max}}$ (d) $v_{\text{r}} = \text{constant}$ (e) $v_{\text{r}}v_{\text{min}}v_{\text{max}}$

Questions 19-20

A homogeneous rod of mass M=5 kg and length L=3 m is suspended from one end to rotate around the point O in the vertical plane. From the other end, as shown in figure, the rod is attached to two identical springs with spring constants $k=\frac{100}{6}$ N/m (take $\pi=3$, $g=10\,m/s^2$ and $I_{\rm cm}=\frac{1}{12}ML^2$). For small vibrations;

19. What is the magnitude of the angular acceleration of the rod as function of θ ?

(a) 25θ (b) 125θ (c) 120θ (d) 5θ (e) 2θ

20. What is the period of the vibration in units of seconds?

(a) 3/5 (b) 5/3 (c) 5/6 (d) 6/5 (e) 7/4

Exam Type A Page 2 of 2