Machine Learning 4771

Instructor: Itsik Pe'er

Reminder: Regression

- 1D Linear:
 - Loss
 - **Empirical risk**
 - Least-squares

Underfitting/Overfitting

- •Try varying P. Higher P fits a more complex function class
- •Observe $R(\theta^*)$ drops with bigger P

Class 4

Overfitting

Additive models: Fourier

Radial basis functions

Underfitting/Overfitting

- •Try varying P. Higher P fits a more complex function class
- •Observe $R(\theta^*)$ drops with bigger P

Evaluating The Regression

- Unfair to use empirical to find best order P
- •High P (vs. N) can overfit, even linear case!
- •min $R(\theta^*)$ not on training but on future data
- •Want model to *Generalize* to future data

Evaluating The Regression

- Unfair to use empirical to find best order P
- •High P (vs. N) can overfit, even linear case!
- •min $R(\theta^*)$ not on training but on future data
- •Want model to Generalize to future data

True loss:
$$R_{true}(\theta) = \int p(x,y) \frac{1}{2} (y - \theta^T x)^2 dx dy$$

One approach: split data into training / testing portion

$$\{(x_1, y_1), \dots, (x_N, y_N)\} \qquad \{(x_{N+1}, y_{N+1}), \dots, (x_{N+M}, y_{N+M})\}$$

- •Estimate θ^* with training loss: $R_{train}(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (y_i \theta^T x_i)^2$
- •Evaluate P with testing loss: $R_{test}(\theta^*) = \frac{1}{2M} \sum_{i=1}^{N+M} (y_i \theta^{*T} x_i)^2$

Itsik Pe'er, Columbia University

Crossvalidation

- Try fitting with different polynomial order P
- •Select P which gives lowest $R_{test}(\theta^*)$

- •Think of P as a measure of the complexity of the model
- •Higher order polynomials are more flexible and complex

Itsik Pe'er, Columbia University

Example: Temporal data

Example: Temporal data

- Need to fit periodic behavior
- Cycle: 90min, daily, weekly, annual

Sinusoidal Basis Functions

•General functions, not just polynomials:

$$f(x;\theta) = \sum_{p=1}^{\infty} \theta_p \phi_p(x) + \theta_0$$

- •These are generally called Additive Models
- •Regression adds linear combinations of the basis fn's

$$\phi_{zpri}(x) = \sin px$$

$$\phi_{zpri}(x) = (0) px$$

Sinusoidal Basis Functions

•General functions, not just polynomials:

$$f(x;\theta) = \sum_{p=1}^{\infty} \theta_p \phi_p(x) + \theta_0$$

- •These are generally called Additive Models
- •Regression adds linear combinations of the basis fn's
- For example: Fourier (sinusoidal) basis

$$\phi_{2k}(x_i) = \sin(kx_i) \qquad \phi_{2k+1}(x_i) = \cos(kx_i)$$

Note, don't have to be a basis per se, usually subset

Patterson Gimlin

Example: Bigfoot Sightings

Radial Basis Functions (RBF)

Can act as prototypes of the data itself

$$f(\mathbf{x}; \theta) = \sum_{k=1}^{N} \theta_k \exp(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2)^{\frac{1}{2}}$$

Radial Basis Functions (RBF)

Can act as prototypes of the data itself

$$f(\mathbf{x}; \theta) = \sum_{k=0}^{N} \theta_k \exp(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2)$$

•Parameter σ = standard deviation controls how wide bumps are

Radial Basis Functions (RBF)

Can act as prototypes of the data itself

$$f(\mathbf{x}; \theta) = \sum_{k=0}^{N} \theta_k \exp(-\frac{1}{\sigma^2} ||\mathbf{x} - \mathbf{x}_k||^2)$$

• Parameter σ = standard deviation controls how wide bumps are

Also works in multi-dimensions

Π

10

- •Training point \rightarrow bump function $f(x;\theta) = \sum_{k=1}^{N} \theta_k \exp(-\frac{1}{\sigma^2} ||x x_k||^2)$
- •Reuse solution from linear regression: $\theta^* = (X^T X)^{-1} X^T y$
- •Can view the data instead as X, a big matrix of size $N \times N$

- •Training point \rightarrow bump function $f(x;\theta) = \sum_{k=1}^{N} \theta_k \exp(-\frac{1}{\sigma^2} ||x-x_k||^2)$ •Reuse solution from linear recovery.
- •Reuse solution from linear regression: $\theta^* = (X^T X)^{-1} X^T y$
- •Can view the data instead as X, a big matrix of size $N \times N$

$$\mathbf{X} = \begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \cdots & \phi_k(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \cdots & \phi_k(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_k) & \phi_2(x_k) & \cdots & \phi_k(x_k) \end{bmatrix}$$

- •Training point \rightarrow bump function $f(x;\theta) = \sum_{k=1}^{N} \theta_k \exp(-\frac{1}{\sigma^2} ||x x_k||^2)$
- •Reuse solution from linear regression: $\theta^* = (X^T X)^{-1} X^T y$
- •Can view the data instead as X, a big matrix of size $N \times N$

$$X = \begin{bmatrix} \exp(-\frac{1}{\sigma^2} || x_1 - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_1 - x_k ||^2) \\ \exp(-\frac{1}{\sigma^2} || x_2 - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_2 - x_k ||^2) \\ \vdots & \ddots & \vdots \\ \exp(-\frac{1}{\sigma^2} || x_k - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_k - x_k ||^2) \end{bmatrix}$$

•training point
$$\rightarrow$$
 bump function
$$f(x; \theta) = \sum_{k=1}^{N} \theta_k \exp(-\frac{1}{\sigma^2} ||x - x_k||^2)$$

- •Reuse solution from linear regression: $\theta^* = (X^T X)^{-1} X^T y$
- •Can view the data instead as X, a big matrix of size $N \times N$

$$X = \begin{bmatrix} \exp(-\frac{1}{\sigma^2} || x_1 - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_1 - x_k ||^2) \\ \exp(-\frac{1}{\sigma^2} || x_2 - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_2 - x_k ||^2) \\ \vdots & \ddots & \vdots \\ \exp(-\frac{1}{\sigma^2} || x_k - x_1 ||^2) & \cdots & \exp(-\frac{1}{\sigma^2} || x_k - x_k ||^2) \end{bmatrix}$$

•For RBFs, X is square and symmetric, so solution is just

$$\theta^* = X^{-1}y$$

Bump Width for RBF

Can act as prototypes of the data itself

$$f(\mathbf{x}; \theta) = \sum_{k=0}^{N} \theta_k \exp(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2)$$

•Parameter σ = standard deviation controls how wide bumps are

What happens if too big/small?

How would we know that?

Evaluating Our Learned Function

- •We minimized empirical risk to get θ^*
- •How well does $f(x;\theta^*)$ perform on future data?
- •It should *Generalize* and have low True Risk:

$$R_{true}(\theta) = \int P(x, y) \frac{1}{2} (y - \theta^T x)^2 dx dy$$

- •Can't compute true risk, instead use Testing Empirical Risk
- •We randomly split data into training and testing portions

$$\{(x_1, y_1), ..., (x_N, y_N)\} \qquad \{(x_{N+1}, y_{N+1}), ..., (x_{N+M}, y_{N+M})\}$$

•Find
$$\theta^*$$
 with training data:
$$R_{train}(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \theta^T x_i)^2$$
•Evaluate it with testing data:
$$R_{train}(\theta) = \frac{1}{2M} \sum_{i=1}^{N+M} (y_i - \theta^T x_i)^2$$

Crossvalidation

- Try fitting with different sigma radial basis function widths
- •Select sigma which gives lowest $R_{test}(\theta^*)$

- •Think of sigma as a measure of the simplicity of the model
- Thinner RBFs are more flexible and complex