2.1.22

Let T be an n-vertex tree with one vertex of each degree $2 \le i \le k$; the remaining n-k+1 vertices are leaves. Determine n in terms of k.

We will find the number of vertices in T by finding the number of edges in T and adding 1. For $2 \le i \le k$ corresponding to each of the non-leaf vertices, summation yields $\frac{k(k+1)}{2} - 1$ edges. However, this scheme double-counts each edge, so we have to subtract the k-2 edges connecting the k-1 non-leaf vertices, yielding $\frac{k(k+1)}{2} - k + 1$ edges. Finally, because T is a tree, we get that T has $\frac{k(k+1)}{2} - k + 2$ vertices.

2.1.27

Let d_1, \ldots, d_n be positive integers with $n \geq 2$. Prove that there exists a tree with vertex degrees d_1, \ldots, d_n if and only if $\sum d_i = 2n - 2$.

- (\Rightarrow) Suppose that for some tree T, d_1, \ldots, d_n are the degrees of the vertices of the tree. Since T is a tree, this means e(G) = n 1, and $\sum d_i = 2e(G)$, meaning $\sum d_i = 2(n 1) = 2n 2$.
- (\Leftarrow) Suppose that $\sum d_i = 2n 2$ for d_1, \ldots, d_n corresponding to the degrees of the vertices in G. By a previous result, we know that $\sum d_i = 2e(G)$, meaning that $\sum d_i = 2(n-1)$, implying that e(G) = n 1. We can find a tree G with n 1 edges by letting G be connected with n 1 edges.

2.1.33

Let G be a connected n-vertex graph. Prove that G has exactly one cycle if and only if G has exactly n edges.

- (⇒) Let G be a connected n-vertex graph with exactly one cycle. If we delete an edge from this cycle, then G e is acyclic, as well as connected (since e is not a cut-edge), so G e has n 1 edges. Adding back e, we get that G has n edges.
- (\Leftarrow) Let G be a connected n-vertex graph with n edges. Then, G contains a spanning tree that contains all n vertices. Therefore, $T \subseteq G$ contains n-1 edges. By adding another edge, we get that e(G) = e(T) + 1 = n 1 + 1. Thus, G has exactly one cycle.

2.1.34

Let T be a tree with k edges, and let G be a n-vertex simple graph with more than $n(k-1) - {k \choose 2}$ edges. Use Proposition 2.1.8 to prove that $T \subseteq G$ if n > k.

We will use induction to prove that $T \subseteq G$ as follows:

Base Case Suppose n = k + 1. Then, we can find the following:

$$e(G) > (k+1)(k-1) - \binom{k}{2}$$

$$e(G) > (k^2 - 1) - \frac{k(k-1)}{2}$$

$$e(G) > \frac{k^2 - 1}{2} + \frac{k^2 - 1 - (k^2 - k)}{2}$$

$$e(G) > \frac{k^2 + k}{2} - 1$$

$$e(G) > \frac{k(k+1)}{2} - 1$$

This means $e(G) = \frac{k(k+1)}{2}$ in the base case, meaning G is the complete graph on k+1 vertices, where $\delta(G) = k$. By Theorem 2.1.8, we know that $T \subseteq G$.

Inductive Hypothesis If n > k+1, $e(G) > n(k-1) - \binom{k}{2}$, then either $\delta(G) \ge k$ or, if $\delta(G) < k$, then $e(G-x) > (n-1)(k-1) - \binom{k}{2}$ for $\delta(G) = d(x)$.

PROOF If $\delta(G) \geq k$, then we know by Theorem 2.1.8 that $T \subseteq G$. Otherwise, suppose $\delta(G) < k$, and let $d(x) = \delta(G)$. Let G' = G - x.

$$e(G') = e(G) - \delta(G)$$

$$e(G') \ge e(G) - (k-1)$$

$$e(G') > n(k-1) - \binom{k}{2} - (k-1)$$

$$e(G') > (n-1)(k-1) - \binom{k}{2}$$

Therefore, the inductive hypothesis is proven.