pca

June 24, 2021

1 Principal Component Analysis (PCA)

Wir wollen zuerst die PCA anhand eines einfachen Beispiel mit Hilfe der Linearen Algebra "händisch" durchführen. Anschließend verwendenw wir die Klasse PCA aus dem Package sklearn.decomposition.

1.1 Eigenständige Durchführung der PCA

Wir erstellen zuerst einen simplen, 2-Dimensionalen Datensatz und erstellen daraus einen Scatterplot.

```
Х
          Y
0
    1
         12
    3
1
         34
2
    7
         67
3
    8
         99
4
   10
        133
5
   12
        159
6
   17
        167
7
   25
        198
```


Nun skalieren wir die Daten und zentrieren diese. Wir subtrahieren von den X- und Y-Werten jeweils deren Mittelwerte.

Nun berechnen wir die Kovarianz-Matrix sowie die Eigenwerte (eigw) und Eigenvektoren (eigv).

```
[3]: import numpy as np

kovmatr = pd.DataFrame.cov(df_centered)
print("Kovarianzmatrix:\n")
print(kovmatr)
print()

# Berechne Eigenwerte und Eigenvektoren
eigw, eigv = np.linalg.eig(kovmatr)

print(f"Eigenwerte: {eigw}, \nEigenvektoren:\n {eigv}")
```

Kovarianzmatrix:

```
X Y
X 1.142857 1.068206
Y 1.068206 1.142857

Eigenwerte: [2.2110636 0.07465068],
Eigenvektoren:
[[ 0.70710678 -0.70710678]
[ 0.70710678 0.70710678]]
```

Wir multiplizieren unsere zenrierten Daten mit dem Eigenvektor:

```
[4]: df_1dim1 = df_centered @ eigv[1]
     print(df_1dim1)
    0
        -2.008092
    1
        -1.564013
    2
        -0.800289
    3
        -0.340691
    4
         0.239135
    5
         0.728464
    6
          1.306985
    7
         2.438502
    dtype: float64
```

1.2 Vergleich mit Klasse PCA

Wir verwenden nun die Klasse PCA aus dem Package sklearn.decomposition. Als Daten übergeben wir die skalierten Daten. Eine Zentrierung erledigt die fit-Methode für uns.

```
[5]: from sklearn.decomposition import PCA

pca = PCA(n_components=1)
pca.fit(df_scaled)
print(f"Eigenvektor: {pca.components_}")
print(f"Eigenwert: {pca.explained_variance_}")
print("Tranformierte Daten: \n")
df_1dim2 = pca.transform(df_scaled)
print(df_1dim2)
```

Eigenvektor: [[0.70710678 0.70710678]]

Eigenwert: [2.2110636]
Tranformierte Daten:

[[-2.00809186] [-1.56401257] [-0.80028909] [-0.34069149] [0.2391352] [0.72846363] [1.30698456] [2.43850161]]

1.3 Beispiel: PCA mit IRIS

Wir erstellen ein Modell Random Forest (Klassifikation), um die IRIS-Spezies vorherzusagen. Zuerst mit allen 4 Features, danach mit Hilfe von PCA auf 2 Features reduziert. Wir berechnen jeweils die Accuracy.

[7]: from sklearn.ensemble import RandomForestClassifier

forest1 = RandomForestClassifier(n_estimators=50).fit(X_train, y_train)
print(forest1.score(X_test, y_test))

0.97777777777777

Wir reduzieren auf nur 2 Features:

```
[8]: pca = PCA(n_components=3)

X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.fit_transform(X_test)

forest2 = RandomForestClassifier(n_estimators=100).fit(X_train_pca, y_train)
print(forest2.score(X_test_pca, y_test))
```

0.9333333333333333

Wir reduzieren auf nur 2 Features:

```
[9]: pca = PCA(n_components=2)

X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.fit_transform(X_test)

forest3 = RandomForestClassifier(n_estimators=100).fit(X_train_pca, y_train)
print(forest3.score(X_test_pca, y_test))
```

###