Série de Révision et Exercices de Travaux Dirigés (TD)

QCM

- 1. Quel type d'apprentissage utilise des données étiquetées pour entraîner un modèle ?
 - A) Apprentissage supervisé
 - B) Apprentissage non supervisé
 - C) Apprentissage par renforcement
 - D) Aucun des trois
- 2. Quel algorithme appartient à l'apprentissage non supervisé?
 - A) Arbres de décision
 - B) K-means
 - C) Régression linéaire
 - D) Q-learning
- 3. Dans l'apprentissage par renforcement, l'objectif est de :
 - A) Classer des données en catégories
 - B) Trouver des structures cachées dans les données
 - C) Maximiser une récompense cumulative
 - D) Minimiser une erreur quadratique
- 4. Lequel des concepts suivants est un exemple de modèle d'apprentissage supervisé ?
 - A) Algorithme de clustering
 - B) SVM (Machines à vecteurs de support)
 - C) PCA (Analyse en composantes principales)
 - D) Réseau auto-encodeur
- 5. Dans l'apprentissage non supervisé, l'objectif est de :
 - A) Minimiser la perte sur des données étiquetées
 - B) Maximiser la récompense en explorant
 - C) Identifier des schémas cachés ou des regroupements
 - D) Générer de nouvelles données
- 6. Dans l'algorithme Q-learning, Q représente :
 - A) Une mesure de similarité
 - B) La fonction de récompense
 - C) La valeur de qualité d'une action
 - D) La probabilité conditionnelle

- 7. L'algorithme Naive Bayes est basé sur :
 - A) La règle de probabilité bayésienne
 - B) Les distances euclidiennes
 - C) La descente de gradient
 - D) La propagation en arrière
- 8. Quel type d'algorithme utilise une fonction de perte pour ajuster ses paramètres?
 - A) K-means
 - B) Régression linéaire
 - C) Apprentissage par renforcement
 - D) Aucune des réponses ci-dessus
- 9. Dans un problème de clustering, nous cherchons principalement :
 - A) À prédire une variable cible
 - B) À regrouper des données similaires
 - C) À classer des données étiquetées
 - D) À minimiser une récompense
- 10. Un exemple d'application de l'apprentissage par renforcement est :
 - A) La reconnaissance faciale
 - B) Le clustering d'images
 - C) La conduite autonome
 - D) La régression polynomiale

Exercice 1: Naive Bayes

Une entreprise souhaite prédire si un email est spam ou non-spam. Vous avez les données suivantes :

Email	Contient "Offre"	Contient "Gratuit"	Spam/Non-Spam
1	Oui	Non	Spam
2	Oui	Oui	Spam
3	Non	Oui	Non-Spam
4	Non	Non	Non-Spam
5	Oui	Oui	Spam
6	Non	Oui	Non-Spam

- 1. Dans ce problème quel est le type d'apprentissage.
- 2. Expliquer le type de classification.
- 3. En utilisant l'algorithme Naive Bayes pour calculer la probabilité qu'un email contenant les mots "Offre" et "Gratuit" soit spam.

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

$$P(x1,...,xk|C) = P(x1|C) \cdot ... \cdot P(xk|C)$$

Exercice 2: k-Nearest Neighbors (kNN)

Une base de données contient les informations suivantes sur les plantes :

Hauteur (cm)	Largeur des feuilles (cm)	Type de plante
60	5	Plante A
70	6	Plante A
40	3	Plante B
50	4	Plante B
65	5.5	Inconnu (à prédire)

- 1. Expliquer le type de problème.
- 2. En utilisant la distance euclidienne ci-dessous, nous voulons prévoir le type de plante pour une nouvelle donnée (Hauteur = 65, Largeur des feuilles = 5.5) en utilisant k = 3.

$$d_{(x,y)} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Exercice 3 : Régression linéaire

Un scientifique collecte les données suivantes pour prédire la température en fonction du nombre de tasses de café consommées :

Tasses de café	Température (°C)
1	20
2	22
3	23
4	26
5	28
6	30

1. Ajustez un modèle de régression linéaire à ces données et prédisez la température pour 7

tasses de café.

es de café.
$$b_1=\frac{\sum_{i=1}^n(x_i-\bar x)(y_i-\bar y)}{\sum_{i=1}^n(x_i-\bar x)^2}$$
 $Y=b_0+b_1x+e$
$$b_0=\bar y-b_1\bar x$$

Exercice 3: (K-moyenne)

Dans une société de sondage qui fait une enquête sur les clients des produits informatiques, un agent responsable a utilisé l'ensemble de données illustré dans le tableau ci-dessous représentant le montant total dépensé (en dinar) et la fréquence des achats mensuels pour chaque client.

A l'aide de l'algorithme K-moyenne, cet agent veut classifier ces clients.

Client	Montant Total Dépensé	Fréquence d'Achats (par mois)
Ali	500	2
Badr	100	1
Chiheb	800	4
Dhaker	200	1
Emir	1200	5
Fedi	350	2
Ghalia	600	3
Helmi	900	4

- 1) K-moyenne est un algorithme permettant un apprentissage supervisé, non supervisé ou renforcé ?
- 2) Expliquer brièvement le principe de l'algorithme K-moyenne.
- 3) En fixant K = 3 et en choisissant les trois centres initiaux de nos clusters les trois premiers clients : (Ali (500,2), Badr (100,1) et Chiheb (800,4)) et en utilisant la formule de distance euclidienne calculée comme suit :

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Faire les calculs nécessaires pour obtenir les centres finaux des clusters. (Détailler les étapes de calcul).

- 4) Représenter graphiquement les données tout en plaçant le montant total dépensé (sur l'axe des abscisses) en fonction des fréquences d'achat (sur l'axe des ordonnées) et en spécifiant les clusters.
- 5) Ajouter ces différents titres à vos clusters résultants :
- Clients avec des dépenses élevées et une fréquence d'achat élevée
- Clients avec des dépenses moyennes et une fréquence d'achat modérée.
- Clients avec des dépenses faibles et une fréquence d'achat faible.
- 6) Supposons que vous ajoutez un nouveau client avec un total de dépense est 1200 dinars et une fréquence d'achat est de 6. D'après votre représentation graphique, à quel cluster va-t-il appartenir?