4.3.2. Дифракция света на ультразвуковой волне в жидкости. (А. Вертикальная щель)

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

1.2 В работе используются

Оптическая скамья, осветитель, два длиннофокусных объектива, кювет с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

2 Работа

2.1 Определение скорости ульразвука по дифракционной картине

Соберём схему на Рис. 1.

Рис. 1: Схема наблюдения дифракции на акустической решётке

Фокусные расстояние объективов O_1 и O_2 одинаковы $(f=30\ cm)$, поэтому хд лучей в системе получился симметричным.

Ярко осветим щель с помощью кондесора. Предварительную настройку будем проводить с зелёным фильтром. Убедимся что световое пятно на щели равномерно освещено. Затем с помощью листа бумаги найдём резкое изображение щели S в фокальной плоскости объектива O_2 (на самом деле примерно $35\ cm$). Настроим микроскоп на отсчётное устройство. Получим в поле зрения микроскопа систему дифракционных полос.

Рис. 2: Зелёные дифракционные полосы

Заменим широкополосный зелёный фильтр красным. Изменяя ширину щели S, её наклон и положение конденсора добьёмся оптимальных условий наблюдения дифракционных полос.

При увеличении частоты ультразвука полосы то появляются, то исчезают. При это из количество и расстояния между ними увеличивается. Ширина самих полос остаётся неизменной.

Перемещая излучатель с помощью микрометрического винта, оценим длину УЗ-волны как удвоенное расстояние между наиболее чёткими дифракционными картинами:

$$\lambda = 2 \pm 0.01 \ mm$$

Определим скорость звука в воде ($f = 1.2 \pm 0.05 \ MHz$):

$$c = \lambda \cdot f = (2400 \pm 700) \ m/s$$

Несмотря на то, что погрешность большая это совпадает с табличным значением $c=1500\ m/s$ в пределах погрешности.

Для той же частоты ($f=1.2\pm0.05~MHz$) определим положения x_m семи дифракционных максимумов с помощью микрометрического винта отсчётного устройства (по перекрестию). Фильтр: $\lambda(6400\pm200)\cdot10^{-10}~m$

$$f = 1.2 \pm 0.05~MHz$$

m	0	1	2	3	4	5	6
$x_m, (1 \pm 4) \mu m$	160	320	464	620	780	940	1080

Рис. 3: $f = 1.2 \ MHz$

Построим график x_m от m:

Рис. 4: График x_m от m для $f=1.2\ MHz$

Получили зависимость вида y = kx + b:

$$k = (154 \pm 5) \ \mu m$$

$$b = (161 \pm 6) \; \mu m$$

Из углово-го коэффициента получим, что расстояние между соседними полосами равно:

$$\Delta x = (154 \pm 5) \; \mu m$$

Т.к.

$$l_m = mf \frac{\lambda}{\Lambda}$$

то:

$$\Lambda = \frac{f\lambda}{\Delta x} = 1247 \pm 16$$

Повторим для других частот:

$$f=1.14\pm0.005~MHz$$

m	0	1	2	3	4	5	6
$x_m, (1\pm 4)\mu m$	186	320	464	616	772	900	1140

Рис. 5:
$$f = 1.14 \; MHz$$

Построим график x_m от m:

Рис. 6: График x_m от
m для $f=1.14\ MHz$

Получили зависимость вида y = kx + b:

$$k = (155 \pm 9) \ \mu m$$

$$b = (161 \pm 14) \ \mu m$$

Из углово-го коэффициента получим, что расстояние между соседними полосами равно:

$$\Delta x = (155 \pm 9) \; \mu m$$

$$\Lambda = \frac{f\lambda}{\Delta x} = 1238 \pm 15$$

$$f = 1.56 \pm 0.005 \; MHz$$

m	0	1	2	3	4	5	6
$x_m, (1\pm 4)\mu m$	30	220	420	620	832	1012	1220

Рис. 7:
$$f = 1.56 \ MHz$$

Построим график x_m от m:

Рис. 8: График x_m от m для $f=1.56\ MHz$

Получили зависимость вида y = kx + b:

$$k = (199 \pm 5) \ \mu m$$

$$b = (26 \pm 6) \ \mu m$$

Из углово-го коэффициента получим, что расстояние между соседними полосами равно:

$$\Delta x = (199 \pm 5) \; \mu m$$

$$\Lambda = \frac{f\lambda}{\Delta x} = 946 \pm 16$$

 $f=1.84\pm0.005~MHz$

m	0	1	2	3	4
$x_m, (1\pm 4)\mu m$	172	400	640	876	1116

Рис. 9:
$$f = 1.84 \ MHz$$

Построим график x_m от m:

Рис. 10: График x_m от m для $f=1.84\ MHz$

Получили зависимость вида y = kx + b:

$$k = (236 \pm 5) \ \mu m$$

$$b = (168 \pm 6) \ \mu m$$

Из углово-го коэффициента получим, что расстояние между соседними полосами равно:

$$\Delta x = (236 \pm 5) \ \mu m$$

$$\Lambda = \frac{f\lambda}{\Delta x} = 813 \pm 16$$

2.2 Определение скорости ультразвука методом тёмного поля

Для перехода к методу тёмного поля (Рис. 11), не смещая микроскоп, введём микрометрическим винтом в поле зрения микроскопа вертикальную нить.

Рис. 11: Наблюдение акустической решётки методом тёмного поля

Резкое изображение нити должно совпадать с резким изображением щели. Запишем соответствующее показание микрометрического винта: 10. Отодвинем микроскоп и поставьте дополнительную линзу сразу за отсчётным устройством. Опустим в воду пластинку с миллиметровыми делениями и прижмём её к задней стенке кюветы. Откроем пошире входную щель. С помощью листа бумаги найдём плоскость, в которой располагается резкое изображение линейки, созданное двумя линзами. Передвигая микроскоп в эту точку сфокусируем его на изображении линейки.

Определите цену деления окулярной шкалы в условиях опыта. Для этого совместим самые дальние из хорошо видимых в поле зрения милиметровых делений пластинки с делениями окулярной шкалы и запишем кол-во тех и других делений. Получим 10 делений микроскопа и 6 делений линейки. Итого цена деления микроскопа: $0.6\ mm$

Уберите пластинку из кюветы и уменьшим ширину входной щели. Включим генератор и попытаемся увидеть звуковую решётку. Сразу ничего не видно.

Закроем центральный дифракционный максимум вертикальной нитью. Теперь видно картину:

Рис. 12: Звуковая картина

Определим длину УЗ-волны в воде. Для этого с помощью окулярной шкалы измерим расстояние между самыми дальними из хорошо видимых в поле зрения светлых полос и просчитаем число промежутков между ними. Проведём измерения для 3 разных частот.

f, MHz	1.16	1.53	1.85
$\lambda, \mu m$	666	545	400

Рис. 13: $f = 1.84 \ MHz$

Перемещая проволоку, закроем последовательно минимумы первого, второго и т.д. порядков. При этом минимумы чередуются с максимумами, ширина полос увеличивается.

3 Выводы

В ходе выполнения работы:

1. Была изучена дифракция света на синусоидальной акустической решётке.

2. Была экспериментально оценена скорость звука в воде. Полученное значение близко к табличному:

$$c_{mes} = (2400 \pm 700) \ m/s \ \mathbf{vs} \ c_{th} = 1500 \ m/s$$

- 3. Были рассчитаны значения длины УЗ-волны. для разных частот ультразвука.
- 4. Была получена картина звуковой решётке методом тёмного поля.