QUASE NO FIM AGUENTEM SÓ MAIS UM POUCO

Encontro 27 de Desafios de Programação


```
node *find(node *r, int key);
(devolve endereço do nó com tal chave, ou NULL se não encontrar)
```

void add(node **r, int key);
(adiciona nó com tal chave, ou não faz nada se já existir)

void remove(node **r, int key);
(remove nó com tal chave, ou não faz nada se não encontrar)

Todas as operações têm complexidade proporcional à altura da árvore...

encontrar	O(altura)
remover (já encontrou)	O(altura)
adicionar	O(altura)

Todas as operações têm complexidade proporcional à altura da árvore...

encontrar	O(altura)	
remover (já encontrou)	O(altura) ←	Pode precisar de um maximum, lembra?
adicionar	O(altura)	

Todas as operações têm complexidade proporcional à altura da árvore, então se ela não estiver balanceada...

encontrar	O(n)
remover (já encontrou)	O(n)
adicionar	O(n)

Todas as operações têm complexidade proporcional à altura da árvore, então se ela não estiver balanceada...

	6
(3)	
(2)	

encontrar	O(n)
remover (já encontrou)	O(n)
adicionar	O(n)

meh

as duas clássicas:

Árvores AVL Árvores Rubro-Negras

as duas clássicas:

Árvores AVL

Guarda nos nós as alturas de cada subárvore.

Árvores Rubro-Negras

Guarda em cada nó uma cor. (vermelho/preto)

as duas clássicas:

Árvores AVL

Guarda nos nós as alturas de cada subárvore.

Após adicionar ou remover um nó, faz certos consertos para garantir que, para cada nó, a diferença de altura entre suas subárvores não é maior do que 1.

Árvores Rubro-Negras

Guarda em cada nó uma cor. (vermelho/preto)

Após adicionar ou remover um nó, faz certos consertos para garantir que a árvore continua seguindo certas regras baseadas nas cores. Essas regras garantem altura *O(lg n)*.

as duas clássicas:

Árvores AVL

- busca a menor altura possível
- consertos mais caros

Árvores Rubro-Negras

- altura O(lg n), mas não a menor possível
- consertos mais baratos

as duas clássicas:

Árvores AVL

para muitas buscas e poucas modificações

Árvores Rubro-Negras

para poucas buscas e muitas modificações

mas em ambas as árvores a operação básica dos consertos é a mesma!


```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```



```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

(estamos supondo que x e y existem)


```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura \beta em x
```



```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
```



```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
    *r = y;
}
else if(p->left == x) {
    p->left = y;
}
else {
    p->right = y;
}
y->parent = p;
```

(pausa para reorganizar o desenho)

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
    *r = y;
}
else if(p->left == x) {
    p->left = y;
}
else {
    p->right = y;
}
y->parent = p;
```

```
// pendura x em y
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
// pendura x em y
y->left = x;
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
// pendura x em y
y->left = x;
x->parent = y;
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```



```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
// pendura x em y
y->left = x;
x->parent = y;
}
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
y->left->parent = x;
```

(sobrou um errinho, consegue encontrar?)

```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
// pendura x em y
y->left = x;
x->parent = y;
}
```

```
void rotate_left(node **r, node *x) {
  node *p = x->parent;
  node *y = x->right;
```

```
// pendura β em x
x->right = y->left;
if(y->left != NULL) {
  y->left->parent = x;
}
```

(a subárvore beta pode não existir!)

```
// pendura y em p
if(p == NULL) {
   *r = y;
}
else if(p->left == x) {
   p->left = y;
}
else {
   p->right = y;
}
y->parent = p;
```

```
// pendura x em y
y->left = x;
x->parent = y;
}
```

Todas as operações têm complexidade proporcional à altura da árvore, então se ela estiver balanceada...

encontrar	O(lg n)
remover (já encontrou)	O(lg n)
adicionar	O(lg n)

DICIONÁRIOS

podemos considerar árvores de busca binária balanceadas como uma "versão eficiente" do conceito de listas ligadas (nós que apontam para outros nós)

DICIONÁRIOS

existe uma "versão eficiente" do conceito de vetores? (acesso direto indexado)

TABELAS DE ESPALHAMENTO

TABELAS DE ESPALHAMENTO

Proposta Preliminar:

```
inicializar:
  treco **hash;
  hash = new treco*[n];
  for(int i = 0; i < n; i++)
     hash[i] = NULL;

adicionar:
  hash[t->key] = t;

remover:
  hash[t->key] = NULL
```

TABELAS DE ESPALHAMENTO

Problema:

como reduzir consumo de memória se o universo de chaves for muito grande?

Problema:

como reduzir consumo de memória se o universo de chaves for muito grande?

Solução:

função hash que mapeia conjunto maior para conjunto menor

Problema:

como reduzir consumo de memória se o universo de chaves for muito grande?

Solução:

função hash que mapeia conjunto maior para conjunto menor

Exemplo:

resto da divisão

Problema:

o que fazer quando dois elementos são mapeados para o mesmo hash?

Problema:

o que fazer quando dois elementos são mapeados para o mesmo hash?

Solução:

tratamento de colisão usando listas ligadas

Eita, mas então essa estrutura não é grande coisa!

encontrar	O(n)
remover (já encontrou)	0(1)
adicionar	O(1)

Eita, mas então essa estrutura não é grande coisa!

No **pior caso** de fato não é...

encontrar	O(n)
remover (já encontrou)	0(1)
adicionar	O(1)

Eita, mas então essa estrutura não é grande coisa!

No pior caso de fato não é...

E no **caso médio**?

encontrar	O(?)
remover (já encontrou)	0(1)
adicionar	O(1)

Eita, mas então essa estrutura não é grande coisa!

No pior caso de fato não é...

E no caso médio? Depende de uma **boa função hash**!

encontrar	O(?)
remover (já encontrou)	0(1)
adicionar	0(1)

Eita, mas então essa estrutura não é grande coisa!

No pior caso de fato não é...

E no caso médio? Depende de uma boa função hash!

Uma boa função hash é aquela que **espalha bem** os elementos...

Eita, mas então essa estrutura não é grande coisa!

No pior caso de fato não é...

E no caso médio? Depende de uma boa função hash!

Uma boa função hash é aquela que espalha bem os elementos, ou seja, a probabilidade da função devolver cada um dos *m* elementos possíveis é *1/m*.

Eita, mas então essa estrutura não é grande coisa!

No pior caso de fato não é...

E no caso médio? Depende de uma boa função hash!

Uma boa função hash é aquela que espalha bem os elementos, ou seja, a probabilidade da função devolver cada um dos m elementos possíveis é 1/m.

Note que definir uma função assim não é trivial! Por exemplo, não adianta definir uma função que divide o universo de chaves em partes iguais se algumas chaves são mais frequentes que outras!

Mas se conseguimos definir a função...

encontrar	O(n/m)	
remover (já encontrou)	0(1)	
adicionar	0(1)	

Mas se conseguimos definir a função e partimos da premissa (perfeitamente aceitável na prática) de que m = n/k com k constante...

encontrar	O(n/(n/k))
remover (já encontrou)	0(1)
adicionar	O(1)

Mas se conseguimos definir a função e partimos da premissa (perfeitamente aceitável na prática) de que m = n/k com k constante, então a complexidade no caso médio é constante!

encontrar	O(k)
remover (já encontrou)	0(1)
adicionar	0(1)

Mas se conseguimos definir a função e partimos da premissa (perfeitamente aceitável na prática) de que m = n/k com k constante, então a complexidade no caso médio é constante!

Se *k* não for absurdo (e na prática não é), essa complexidade é excelente!

encontrar	O(1)
remover (já encontrou)	0(1)
adicionar	0(1)

Mas se conseguimos definir a função e partimos da premissa (perfeitamente aceitável na prática) de que m = n/k com k constante, então a complexidade no caso médio é constante!

Se k não for absurdo (e na prática não é), essa complexidade é excelente!

encontrar	0(1)	
remover (já encontrou)	<i>O</i> (1) ←	É um almoço muito, muito barato.
adicionar	O(1)	

Mas se conseguimos definir a função e partimos da premissa (perfeitamente aceitável na prática) de que m = n/k com k constante, então a complexidade no caso médio é constante!

Se k não for absurdo (e na prática não é), essa complexidade é excelente!

encontrar	0(1)	
remover (já encontrou)	O(1) +	É um almoço muito, muito barato, mas ainda não é grátis
adicionar	O(1)	

A PERGUNTA FINAL

qual é a vantagem de árvores de busca binária em relação a tabelas de espalhamento?