Shusen Wang

Standard Queues

Current State

Enqueue(6)

After Enqueue(6)

Dequeue()

Return:

After Dequeue()

Return: 28

Priority queues support two operations:

- insert (i): insert a new element i into the queue.
- deleteMin(): Find, return, and delete the minimum.

Priority queues support two operations:

- insert (i): insert a new element i into the queue.
- deleteMin(): Find, return, and delete the minimum.

Question: How to implement priority queue?

Naïve Solution 1: Standard Queue

• insert(i): O(1) time.

Naïve Solution 1: Standard Queue

- insert(i): O(1) time.
- **deleteMin** (): O(n) time (due to the search of the minimum.)

- insert(i): O(n) time.
 - $O(\log n)$ time for searching the position.
 - O(n) time for moving the bigger elements backward.

- insert(i): O(n) time.
 - $O(\log n)$ time for searching the position.
 - O(n) time for moving the bigger elements backward.

- insert(i): O(n) time.
 - $O(\log n)$ time for searching the position.
 - O(n) time for moving the bigger elements backward.

- insert(i): O(n) time.
 - $O(\log n)$ time for searching the position.
 - O(n) time for moving the bigger elements backward.

The min is in the front.

- insert(i): O(n) time.
- deleteMin(): O(1) time.

- insert(i): O(n) time.
- deleteMin(): O(1) time.

Implementations of Priority Queue

Insertion DeleteMin

Standard Queue O(1) O(n)

Implementations of Priority Queue

	Insertion	DeleteMin
Standard Queue	0(1)	O(n)
Ordered Array	O(n)	0(1)

Implementations of Priority Queue

	Insertion	DeleteMin
Standard Queue	0(1)	O(n)
Ordered Array	O(n)	0(1)
Binary Heap	$O(\log n)$	$O(\log n)$

Thank You!