Dnombrements Ensembles Finis

MPSI 2

Propriété 0.0.1

Soit n et p deux entiers naturels non nuls. Soit f une application de [1, n] dans [1, p].

- Si f est bijective, alors n = p
- Si f est injective, alors $n \leq p$
- Si f est surjective, alors $n \ge p$

Définition 0.0.1

Soit E un ensemble non vide.

On dit que E est \underline{fini} si il existe un entier naturel non nul n et une bijection de $[\![1,n]\!]$ sur E

Si un tel entier existe, il est unique et est le cardinal de E.

Notations: card(E), #E, |E|Convention: $card(\emptyset) = 0$

Propriété 0.0.2

Soit E un ensemble fini de cardinal n.

Soit F un sous-ensemble de E.

Alors F est également un ensemble fini \underline{et} $\operatorname{card}(F) \leqslant n$ \underline{et} $(\operatorname{card}(F) = n) \iff (E = F)$

On procde par reurrence sur le cardinal de E.

Lemme: Si E est un ensemble fini de cardinal $n \ge 1$,

Et si a est un lment de E,

Alors $E \setminus \{a\}$ est un ensemble fini de cardinal n-1

Dmonstration de la proprit

Soit P(n): Pour tout ensemble E de cardinal n, pour tout sous-ensemble F de E,

$$F$$
 est fini $\underline{\text{et}} \operatorname{card}(F) \leqslant n \ \underline{\text{et}} \ (\operatorname{card}(F) = n) \iff (E = F)$

n = 0: $E = \emptyset$ et $F = \emptyset$ et card(E) = card(F) = 0

Soit $n \in \mathbb{N}^*$ tel que P(n-1) soit vrifi.

Montrons P(n)

Soit E un ensemble fini de cardinal n.

Soit F une partie de E.

 1^{er} cas: F = E alors $\operatorname{card}(F) = n$

 $2^{\text{me}} \text{ cas: } F \neq E$

Alors $\exists a \in E, \ a \notin F$

Soit a un tel lment.

 $a \notin F \text{ donc } F \subset E \setminus \{a\}$

Or, d'apr
s la lemme, $E \setminus \{a\}$ est de cardinal n-1, donc d'apr
s l'hypothse de reurrence, F est fini et $\operatorname{card}(F) \leq n-1$

Finalement: $F = E \Rightarrow \operatorname{card}(E) = \operatorname{card}(F)$

$$F \neq E \Rightarrow \operatorname{card}(F) < \operatorname{card}(E)$$

D'o $(\operatorname{card}(F) = n) \iff (E = F)$

Donc P(n) est vrifi.

D'aprs le principe de reurrence, $\forall n \in \mathbb{N}, P(n)$

Dmonstration du lemme

Soit E un ensemble fini de cardinal $n \ge 1$.

Il existe une bijection de [1, n] sur E.

$$\underline{1}^{\text{er}} \text{ cas: } n = 1$$

$$f \colon \{1\} \longrightarrow E$$

$$1 \longmapsto f(1)$$

 $E = \{f(1)\}, \text{ donc } E \setminus \{f(1)\} = \emptyset, \text{ de cardinal } 0.$

 2^{me} cas: $n \geqslant 2$

Soit a un lment de E.

f ralise une bijection de [1, n] sur E, donc $\exists i \in [1, n]$, unique, f(i) = a

• Si i = n alors f(n) = a

 $f|_{\llbracket 1,n-1\rrbracket}$ ralise une bijection de $\llbracket 1,n-1\rrbracket$ sur $f(\llbracket 1,n-1\rrbracket)$

$$\begin{array}{ll}
f(\llbracket 1, n-1 \rrbracket) & \text{remove the Signestian de } \llbracket 1, \\
f(\llbracket 1, n-1 \rrbracket) &= f(\llbracket 1, n \rrbracket \setminus \{n\}) \\
&= E \setminus \{a\}
\end{array}$$

Donc $f\big|_{\llbracket 1,n-1\rrbracket}$ ralise une bijection de $\llbracket 1,n-1\rrbracket$ sur $E\setminus\{a\}.$

Donc E est de cardinal n-1

• Si $i \neq n$

Notons i_0 l'unique lment de [1, n-1] tel que $f(i_0) = a$

On considre $\tau: \llbracket 1, n-1 \rrbracket \longrightarrow \llbracket 1, n-1 \rrbracket$

$$i \longmapsto \begin{cases} i \text{ si} & (i \neq i_0 \text{ et } i \neq n) \\ i_0 \text{ si} & i = n \\ n \text{ si} & i = i_0 \end{cases}$$