

Introduction to Audio Content Analysis

Module 9.1: Introduction to Tempo & Rhythm Terminology

alexander lerch

introduction overview

corresponding textbook section

Section 9.1 Section 9.2

■ lecture content

- terminology for rhythm detection
- perceptually motivated rhythm accuracy

■ learning objectives

- describe the terms onset, tempo, meter, bar, and rhythm
- give two examples of typical onset times for musical instruments

corresponding textbook section

Section 9.1

overview

Section 9.2

lecture content

- terminology for rhythm detection
- perceptually motivated rhythm accuracy

■ learning objectives

- describe the terms onset, tempo, meter, bar, and rhythm
- give two examples of typical onset times for musical instruments

temporal events introduction

■ categorization of temporal parameters:

- *score* parameters: structure, time signature, rhythm, ...
- *performance* parameters: tempo, timing, . . .

perception of temporal parameters:

- audio signal/stream is segmented into distinct events ⇒ onsets (segment start)
- humans structure and group these events due to position, salience, ...

temporal events introduction

■ categorization of temporal parameters:

- score parameters: structure, time signature, rhythm, ...
- *performance* parameters: tempo, timing, . . .

perception of temporal parameters:

- audio signal/stream is segmented into distinct events ⇒ onsets (segment start)
- humans structure and group these events due to position, salience, ...

human perception of temporal events introduction to onsets

Georgia Center for Music Tech || Technology

- **onset** is start of a musical event.
- properties:
 - position
 - strength, salience
 - length?

human perception of temporal events

Georgia Center for Music Tech Technology

- percussive instruments:
 - 3-20 ms
- woodwind instruments:
 - up to 300 ms
- typical range for majority of instruments:
 - 15-50 ms

human perception of temporal events initial transients

Georgia Center for Music Tech Technology

- percussive instruments:
 - 3-20 ms
- woodwind instruments:
 - up to 300 ms
- typical range for majority of instruments:
 - 15-50 ms

- *detection & discrimination* of 2 subsequent onsets
 - detection $\Delta t > 2 \,\mathrm{ms}$. discrimination $\Delta t > 20 \,\mathrm{ms}^1$
- prediction of looped monophonic instrument onsets
 - IOI 600 ms: $\sigma = 12$ ms
 - $101 < 240 \,\mathrm{ms}$: $\sigma = 10 \,\mathrm{ms}$
- manual onset time annotation
 - piano: mean abs. error: 4.3 ms, max: 35 ms
 - various: mean abs. error: 10 ms. max: 30 ms.
- ensemble performance
 - string & woodwind: deviations up to 30-50 ms
 - piano: $\sigma = 14 38 \, \text{ms}$

¹I. J. Hirsh, "Auditory Perception of Temporal Order," JASA, vol. 31, no. 6, p. 759, 1959.

human perception of temporal events human detection accuracy

- detection & discrimination of 2 subsequent onsets
 - detection $\Delta t > 2 \,\mathrm{ms}$, discrimination $\Delta t > 20 \,\mathrm{ms}$
- prediction of looped monophonic instrument onsets
 - IOI 600 ms: $\sigma = 12 \, \text{ms}^1$
 - IOI < 240 ms: $\sigma = 10 \, \text{ms}^2$
- manual onset time annotation
 - piano: mean abs. error: 4.3 ms, max: 35 ms
 - various: mean abs. error: 10 ms, max: 30 ms
- ensemble performance
 - string & woodwind: deviations up to 30-50 ms
 - piano: $\sigma = 14 38 \, \text{ms}$

¹ J. W. Gordon, "Perception of Attack Transients in Musical Tones," Dissertation, Stanford University, Center for Computer Research in Music and Acoustics (CCRMA), Stanford, 1984.

² A. Friberg and J. Sundberg, "Perception of just noticeable time displacement of a tone presented in a Metrical Sequence at Different Tempos," STL-OPSR, vol. 33, no. 4, pp. 97–108, 1992.

human perception of temporal events human detection accuracy

Georgia | Center for Music Tech 🛚 Technology

- detection & discrimination of 2 subsequent onsets
 - detection $\Delta t > 2 \,\mathrm{ms}$. discrimination $\Delta t > 20 \,\mathrm{ms}$
- prediction of looped monophonic instrument onsets
 - IOI 600 ms: $\sigma = 12 \,\mathrm{ms}$
 - IOI < 240 ms: $\sigma = 10 \,\mathrm{ms}$
- manual onset time annotation
 - piano: mean abs. error: 4.3 ms. max: 35 ms¹
 - various: mean abs. error: 10 ms. max: 30 ms²
- ensemble performance
 - string & woodwind: deviations up to 30-50 ms
 - piano: $\sigma = 14 38 \, \text{ms}$

¹B. H. Repp. "Diversity and commonality in music performance: An analysis of timing microstructure in Schumann's 'Träumerei'," *JASA*, vol. 92, no. 5, pp. 2546-2568, 1992,

²P. Leveau. L. Daudet, and G. Richard. "Methodology and Tools for the Evaluation of Automatic Onset Detection Algorithms in Music," in ISMIR. Barcelona, 2004.

human perception of temporal events human detection accuracy

Georgia | Center for Music Tech 🛚 Technology

- detection & discrimination of 2 subsequent onsets
 - detection $\Delta t > 2 \,\mathrm{ms}$. discrimination $\Delta t > 20 \,\mathrm{ms}$
- prediction of looped monophonic instrument onsets
 - IOI 600 ms: $\sigma = 12 \,\mathrm{ms}$
 - $IOI < 240 \, \text{ms}$: $\sigma = 10 \, \text{ms}$
- manual onset time annotation
 - piano: mean abs. error: 4.3 ms, max: 35 ms
 - various: mean abs. error: 10 ms, max: 30 ms
- ensemble performance
 - string & woodwind: deviations up to 30-50 ms¹
 - piano: $\sigma = 14 38 \,\mathrm{ms}^2$

¹R. A. Rasch, "Synchronization in Performed Ensemble Music," *Acustica*, vol. 43, pp. 121–131, 1979.

²L. H. Shaffer, "Timing in Solo and Duet Piano Performances," Quarterly Journal of Experimental Psychology, vol. 36A, pp. 577–595, 1984.

human perception of temporal events

Georgia Center for Music Tech Technology

what about offsets/end of notes

human perception of temporal events offsets

Georgia Center for Music Tech Tech College of Design

what about offsets/end of notes

- **perceptually not as important** as an onset
 - offset are often ignored in rhythm perception
- systematic difficulties: when does a note end?
 - performer stops excitation
 - instrument stops oscillation
 - listener cannot recognize it anymore
- practical difficulties: hard to detect
 - low volume
 - reverberation
 - masking

- tempo: perceived equal duration pulses at a "natural" rate tactus
 - constant tempo

$$\mathfrak{T} = rac{\mathcal{B} \cdot 60 \, \mathrm{s}}{\Delta t_{\mathrm{s}}} \, \, \, \mathrm{[BPM]}$$

dynamic tempo

$$\mathfrak{T}_{\mathrm{local}}(j) = \frac{60 \,\mathrm{s}}{t_{\mathrm{b}}(j+1) - t_{\mathrm{b}}(j)} \,\,\, \mathrm{[BPM]}$$

- perceived overall tempo?
 - average, main, mode, . . .
- meter
 - group of strong and weak musical elements/beats
 - typically 3 to 7 beats (app. 5s)
- **■** rhythm
 - group length 1–8 beats
 - defined by accents and time intervals

human perception of temporal events tempo, meter & rhythm

- Georgia | Center for Music Tech 🛚 Technology
- **tempo**: perceived equal duration pulses at a "natural" rate tactus
 - constant tempo

$$\mathfrak{T} = rac{\mathcal{B} \cdot 60 \, \mathrm{s}}{\Delta t_{\mathrm{s}}} \, \, \, \mathrm{[BPM]}$$

dvnamic tempo

$$\mathfrak{T}_{\mathrm{local}}(j) = \frac{60 \,\mathrm{s}}{t_{\mathrm{b}}(j+1) - t_{\mathrm{b}}(j)} \,\,\, \mathrm{[BPM]}$$

- perceived overall tempo?
 - ► average, main, mode, ...

meter

- group of strong and weak musical elements/beats
- typically 3 to 7 beats (app. 5s)
- rhvthm
 - group length 1–8 beats
 - defined by accents and time intervals

Tech 🛚 Technology

human perception of temporal events tempo, meter & rhythm

- **tempo**: perceived equal duration pulses at a "natural" rate tactus
 - constant tempo

$$\mathfrak{T} = rac{\mathcal{B} \cdot 60 \, \mathrm{s}}{\Delta t_{\mathrm{s}}} \, \, \, \mathrm{[BPM]}$$

dvnamic tempo

$$\mathfrak{T}_{\mathrm{local}}(j) = \frac{60 \,\mathrm{s}}{t_{\mathrm{b}}(j+1) - t_{\mathrm{b}}(j)} \,\,\, \mathrm{[BPM]}$$

- perceived overall tempo?
 - average, main, mode, . . .

meter

- group of strong and weak musical elements/beats
- typically 3 to 7 beats (app. 5s)

■ rhythm

- group length 1–8 beats
- defined by accents and time intervals

temporal events hierarchical structure

Georgia Center for Music Tech Technology

musical notation of temporal events tempo, time signature, bar & note value

Georgia Center for Music Tech Technology

■ tempo

- Largo, Adagio, Andante, Moderato, Allegro, Presto
- ritardando, accelerando, . . .
- modern scores: sometimes overall tempo in BPM

bar

- score equivalent of perceptual meter
- begin of bar is marked by a vertical line

■ time signature

- conveys length of bar
- note value

- perceptual terms
 - onset, tempo, meter, rhythm
- musical terms
 - tempo, bar, time signature, note value, rhythm
- **■** accuracy range of interest
 - 2-300 ms

