Collection of ROB 501 Lecture Notes J.W. Grizzle

Fall 2015

Rob 501 Fall 2014 Lecture 01

Typeset by: Jimmy Amin Proofread by: Ross Hartley

Introduction to Mathematical Arguments

Notation:

 $\mathbb{N} = \{1, 2, 3, \dots\}$ Natural numbers or counting numbers

 $\mathbb{Z} = \mathcal{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ Integers or whole numbers

 $\mathbb{Q} = \left\{ \frac{m}{q} | m, q \in \mathbb{Z}, q \neq 0, \text{no common factors (reduce all fractions)} \right\}$ Rational numbers

 $\mathbb{R} = \text{Real numbers}$

 $\mathbb{C} = \{ \alpha + j\beta \mid \alpha, \beta \in \mathbb{R}, j^2 = -1 \}$ Complex numbers

∀ means "for every", "for all", "for each".

∃ means "for some", "there exist(s)", "there is/are", "for at least one".

 \sim means "not". In books, and some of our handouts, you see \neg .

 $p \Rightarrow q$ means "if p is true, then q is true.".

 $p \iff q \text{ means } "p \text{ is true if and only if } q \text{ is true"}.$

 $p \iff q$ is logically equivalent to:

(a)
$$p \Rightarrow q$$
 and

(b)
$$q \Rightarrow p$$
.

The <u>contrapositive</u> of $p \Rightarrow q$ is $\sim q \Rightarrow \sim p$ (logically equivalent).

The <u>converse</u> of $p \Rightarrow q$ is $q \Rightarrow p$.

Relation: $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$

However, in general, $(p \Rightarrow q)$ <u>DOES NOT IMPLY</u> $(q \Rightarrow p)$, and vice-versa $\square = Q.E.D.$ (Latin:"quod erat demonstrandum" = "thus it was demonstrated")

Review of Some Proof Techniques

Direct Proofs: We derive a result by applying the rules of logic to the given assumptions, definitions, axioms, and (already) known theorems.

Example:

<u>Def.</u> An integer n is <u>even</u> if n = 2k for some integer k; it is <u>odd</u> if n = 2k + 1 for some integer k. Prove that the sum of two odd integers is even.

(Remark: In a definition, "if" means "if and only if".)

Proof: Let a and b be odd integers.

Hence, there exist integers k_1 and k_2 such that

$$a = 2k_1 + 1$$

$$b = 2k_2 + 1$$

It follows that

$$a + b = (2k_1 + 1) + (2k_2 + 1) = 2(k_1 + k_2 + 1)$$

Because $(k_1 + k_2 + 1)$ is an integer, a + b is even. \square

Proof by Contrapositive: To establish $p \Rightarrow q$, we prove it logical equivalent, $\sim q \Rightarrow \sim p$.

As an example, let n be an integer. Prove that if n^2 is even, then n is even.

$$p = n^2$$
 is even, $\sim p = n^2$ is odd $q = n$ is even, $\sim q = n$ is odd

Our proof of $p \Rightarrow q$ is to show $\sim q \Rightarrow \sim p$. (i.e., if n is odd, then n^2 is odd.) Assume n is odd. $\therefore n = 2k + 1$, for some integer k. Therefore

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Because $(2k^2 + 2k)$ is an integer, we are done. \square

Proof by Exhaustion: Reduce the proof to a finite number of cases, and then prove each case separately.

Proofs by Induction:

First Principle of Induction (Standard Induction): Let P(n) denote a statement about the natural numbers with the following properties:

- (a) Base case: P(1) is true
- (b) Induction part: If P(k) is true, then P(k+1) is true.

 $\therefore P(n)$ is true for all $n \ge 1$ $(n \ge \text{base case})$

Example:

Claim: For all $n \ge 1$, $1 + 3 + 5 + \dots + (2n - 1) = n^2$ Proof:

Step 1: Base case: $n = 1 : 1^2 = 1 = n$

Step 2: Assume $1 + 3 + 5 + \dots + (2k - 1) = k^2 = n^2$

Step 3: To show $1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2=n^2$

By the induction step,

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)=k^2+(2(k+1)-1)$$

But,

$$k^{2} + (2(k+1) - 1) = k^{2} + 2k + 2 - 1 = k^{2} + 2k + 1 = (k+1)^{2}$$

which is what we wanted to show. \square

Rob 501 Fall 2014 Lecture 02 Typeset by: Ross Hartley Proofread by: Jimmy Amin

Second Principle of Induction (Strong Induction): Let P(n) be a state-

Review of Some Proof Techniques (Continued)

- (a) Base Case: P(1) is true.
- (b) <u>Induction</u>: If P(j) is true for all $1 \le j \le k$, then P(k+1) is true.

Conclusion: P(n) is true for all $n \ge 1$ ($n \ge \text{Base Case}$).

ment about the natural numbers with the following properties:

Fact: Two principles of induction are equivalent. Sometimes, the second method is easier to apply.

Example:

<u>Def.</u>: A natural number n is <u>composite</u> if it can be factored as $n = a \cdot b$, where a and b are natural numbers satisfying 1 < a, b < n. Otherwise, n is prime.

<u>Theorem</u>: (Fundamental Theorem of Arithmetic) Every natural number $n \ge 2$ can be factored as a product of one or more primes.

<u>Proof</u>:

Base Case: The number 2 can be written as the product of a single prime.

Induction: Assume that every integer between 2 and k can be written as the product of one or more primes.

To Show: k + 1 can be written as the product of one or more primes.

There are two cases:

Case 1: k+1 is prime. We are done because k+1 is the product of one or more primes (itself).

Case 2: k+1 is composite. Then, there exist two natural numbers a and $b, 1 < a, b \le k$, such that $k+1 = a \cdot b$

Therefore, by the induction step:

$$a = p_1 \cdot p_2 \cdot \dots \cdot p_i$$
, for some primes p_i
 $b = q_1 \cdot q_2 \cdot \dots \cdot q_j$, for some primes q_j

Hence, $a \cdot b = (p_1 \cdot p_2 \cdot \cdots \cdot p_i) \cdot (q_1 \cdot q_2 \cdot \cdots \cdot q_j)$ is a product of primes. \square

Proof by Contradiction: We want to show that a statement p is true. We assume instead that the statement is false. We derive a "contradiction", meaning some statement that is obviously false, such as "1 + 1 = 3". More generally, we derive that R is true and R is also false (This is a contradiction.) We conclude that $\sim p$ is impossible (led to a contradiction). Hence, p must be true!

Example: Prove that $\sqrt{2}$ is an irrational number.

Proof by Contradiction: Assume $\sqrt{2}$ is rational.

Conclusion: There exist natural numbers m and n, $(n \neq 0)$, m and n have no common factors, such that

$$\sqrt{2} = \frac{m}{n}$$

 $\therefore 2 = \frac{m^2}{n^2} \Rightarrow 2n^2 = m^2 \Rightarrow m^2$ is even $\Rightarrow m$ has to be even. (Proven in previous lecture, product of even numbers is even.)

 $\therefore \exists$ a natural number k such that m = 2k

$$\therefore 2n^2 = (2k)^2 = 4k^2$$

$$\therefore n^2 = 2k^2 \Rightarrow n^2 \text{ is even } \Rightarrow n \text{ is even}$$

Conclusion, m and n have 2 as a common factor. This contradicts m and n having no common factors.

Hence, $\sqrt{2}$ is not a rational number.

 $\therefore \sqrt{2}$ must be irrational. \square

Explanation:

 $p:\sqrt{2}$ irrational.

We start with the assumption that $(\sim p:)\sqrt{2}$ is a rational number.

Based on that assumption, we can deduce that $(R:) \exists m, n, n \neq 0, m$ and n do not have common factors such that $\sqrt{2} = \frac{m}{n}$.

However, from $\sqrt{2} = \frac{m}{n}$, we can show that $(\sim R:)$ m and n have 2 as a common factor.

 $\therefore R \land (\sim R)$, which is a contradiction.

Conclusion: $\sim p$ is impossible.

 $\therefore p$ is true.

Proof Types: In conclusion, we have following proof techniques.

- Direct Proof: $p \Rightarrow q$
- Proof by Contrapositive: $\sim q \Rightarrow \sim p$ (Start with the conclusion being false, that is $\sim q$ and do logical steps to arrive at $\sim p$)
- Proof by Contradiction: $p \wedge (\sim q)$ (Assume p is true and q is false. Find that both R and $\sim R$ and true, which is a contradiction.)

Negating a Statement:

Examples:

$$p: x \ge 0 \qquad \qquad \sim p: x < 0$$

$$p: \forall x \in \mathbb{R}, f(x) > 0 \quad \sim p: \exists x \in \mathbb{R}, f(x) \leq 0$$

In general, $\sim \forall = \exists \text{ and } \sim \exists = \forall.$

Exercise: Let $y \in \mathbb{R}$,

 $p: \forall \delta > 0, \exists x \in \mathbb{Q} \text{ such that } |x - y| < \delta$

What is $\sim p$?

Answer:

 $\sim p: \exists \delta > 0, \forall x \in \mathbb{Q} \text{ such that } |x - y| \geq \delta$

Key Properties of Real Numbers: Let A be a non-empty subset of \mathbb{R} .

Def.

- (1) A is bounded from above if $\exists b \in \mathbb{R}$ such that $x \in A \Rightarrow x \leq b$.
- (2) A number $b \in \mathbb{R}$ is an upper bound for A if $\forall x \in A, x \leq b$.
- (3) A number b is a least upper bound for A if
 - (i) b is an upper bound for A, and
 - (ii) b is less than or equal to every upper bound.

Notation: Least upper bound of A is denoted by sup(A), the supremum of A.

Theorem: Every subset of \mathbb{R} that is upper bounded has a supremum.

This is FALSE for \mathbb{Q} .

Here is a classical example:

Assume $A = \{x \in \mathbb{Q} | x^2 < 2\}$

An obvious candidate for the supremum is $x = \sqrt{2}$, but $\sqrt{2}$ is irrational.

Rob 501 Fall 2014 Lecture 03

Typeset by: Pedro Di Donato Proofread by: Mia Stevens

Abstract Linear Algebra

Def: Field: (Chen, 2nd edition, page 8): A field consists of a set, denoted by \mathcal{F} , of elements called *scalars* and two operations called addition "+" and multiplication "·"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

- 1. To every pair of elements α and β in \mathcal{F} , there correspond an element $\alpha + \beta$ in \mathcal{F} called the *sum* of α and β , and an element $\alpha \cdot \beta$ in \mathcal{F} called *product* of α and β .
- 2. Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
 $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$, $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the *additive inverse*.

7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the *multiplicative inverse*.

Remark: \mathbb{R} is a typical example of a field.

Examples	Non-examples
\mathbb{R}	Irrational (Fails axiom 1)
\mathbb{C}	2×2 matrices, real coeff. (Fails axiom 2)
Q	2×2 diagonal matrices real coeff. (Fails axiom 7)

Def: Vector Space (Linear Space) (Chen 2nd Edition, page 9) A linear space over a field \mathcal{F} , denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called *vectors*, a field \mathcal{F} , and two operations called *vector addition* and *scalar multiplication*. The two operations are defined over \mathcal{X} and \mathcal{F} such that they satisfy all the following conditions:

- 1. To every pair of vectors x^1 and x^2 in \mathcal{X} , there corresponds a vector $x^1 + x^2$ in \mathcal{X} , called the sum of x^1 and x^2 .
- 2. Addition is commutative: For any x^1, x^2 in $\mathcal{X}, x^1 + x^2 = x^2 + x^1$.
- 3. Addition is associative: For any x^1, x^2 , and x^3 in \mathcal{X} , $(x^1 + x^2) + x^3 = x^1 + (x^2 + x^3)$.
- 4. \mathcal{X} contains a vector, denoted by $\mathbf{0}$, such that $\mathbf{0}+x=x$ for every x in \mathcal{X} . The vector $\mathbf{0}$ is called the zero vector or the origin.
- 5. To every x in \mathcal{X} , there is a vector \bar{x} in \mathcal{X} , such that $x + \bar{x} = 0$.
- 6. To every α in \mathcal{F} , and every x in \mathcal{X} , there corresponds a vector $\alpha \cdot x$ in \mathcal{X} called the *scalar product* of α and x.
- 7. Scalar multiplication is associative: For any α, β in \mathcal{F} and any x in \mathcal{X} , $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$.

We use x^1, x^2, x^3 to denote different vectors. It does not denote powers!

- 8. Scalar multiplication is distributive with respect to vector addition: For any α in \mathcal{F} and any x^1, x^2 in \mathcal{X} , $\alpha \cdot (x^1 + x^2) = \alpha \cdot x^1 + \alpha \cdot x^2$.
- 9. Scalar multiplication is distributive with respect to scalar addition: For any α , β in \mathcal{F} and any x in \mathcal{X} , $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.
- 10. For any x in \mathcal{X} , $1 \cdot x = x$, where 1 is the element 1 in \mathcal{F} .

Remark: $\mathcal{F} = \text{field}$, $\mathcal{X} = \text{set of vectors}$

Examples:

- 1. Every field forms a vector space over itself. $(\mathcal{F}, \mathcal{F})$. Examples: (\mathbb{R}, \mathbb{R}) , (\mathbb{C}, \mathbb{C}) , (\mathbb{Q}, \mathbb{Q}) .
- 2. $\mathcal{X} = \mathbb{C}, \ \mathcal{F} = \mathbb{R}: \ (\mathbb{C}, \mathbb{R}).$
- 3. $\mathcal{F} = \mathbb{R}$, $D \subset \mathbb{R}$ (examples: D = [a, b]; $D = (0, \infty)$; $D = \mathbb{R}$) and $\mathcal{X} = \{f : D \to \mathbb{R}\} = \{\text{functions from } D \text{ to } \mathbb{R}\}$ $f, g \in \mathcal{X}$, define $f + g \in \mathcal{X}$ by $\forall t \in D$, (f + g)(t) := f(t) + g(t) and let $\alpha \in \mathbb{R}$, $\alpha \cdot f \in \mathcal{X}$, define $f \cdot g \in \mathcal{X}$ by $\forall t \in D$, $(\alpha \cdot f)(t) = \alpha \cdot f(t)$.
- 4. Let \mathcal{F} be a field and define \mathcal{F}^n the set of n-tuples written as columns

$$\mathcal{F}^{n} = \left\{ \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \middle| \alpha_{i} \in \mathcal{F}, 1 \leq i \leq n \right\} = \mathcal{X}$$

Vector Addition:
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$

Scalar Multiplication:
$$\alpha \cdot x = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

5. $\mathcal{X} = \mathcal{F}^{n \times m} = \{n \times m \text{ matrices with coefficients in } \mathcal{F}\}$

Non-examples:

- 1. $\mathcal{X} = \mathbb{R}, \mathcal{F} = \mathbb{C}, (\mathbb{R}, \mathbb{C})$ Fails the definition of scalar multiplication (and others).
- 2. $\mathcal{X} = \{x \geq 0, x \in \mathbb{R}\}$, $\mathcal{F} = \mathbb{R}$ Fails the definition of scalar multiplication (and others).

Def: Subspace: Let $(\mathcal{X}, \mathcal{F})$ be a vector space, and let \mathcal{Y} be a subset of \mathcal{X} . Then $\overline{\mathcal{Y}}$ is a subspace if using the rules of vector addition and scalar multiplication defined in $(\mathcal{X}, \mathcal{F})$, we have that $(\mathcal{Y}, \mathcal{F})$ is a vector space.

Remark: To apply the definition, you have to check axioms 1 to 10.

Proposition: (Tools to check that something is a subspace) Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y} \subset \mathcal{X}$. Then, the following are equivalent (TFAE):

- 1. $(\mathcal{Y}, \mathcal{F})$ is a subspace.
- 2. $\forall y^1, y^2 \in \mathcal{Y}, y^1 + y^2 \in \mathcal{Y}$ (closed under vector addition), and $\forall y \in \mathcal{Y}$ and $\alpha \in \mathcal{F}, \alpha y \in \mathcal{Y}$ (closed under scalar multiplication).
- 3. $\forall y^1, y^2 \in \mathcal{Y}, \forall \alpha \in \mathcal{F}, \alpha \cdot y^1 + y^2 \in \mathcal{Y}.$

Example: $(\mathcal{X}, \mathcal{F}), \mathcal{F} = \mathbb{R}, \ \mathcal{X} = \{f : (-\infty, \infty) \to \mathbb{R}\},\ \mathcal{Y} = \{\text{polynomials with real coefficients}\}$ Is \mathcal{Y} a subspace? Yes, by part 2 of the proposition.

Non-example:
$$\mathcal{X} = \mathbb{R}^2, \mathcal{F} = \mathbb{R}$$

 $\mathcal{Y} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \middle| x_1 + x_2 = 3 \right\}.$
Let $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{Y}$ and $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathcal{Y}$. Then, $\begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} \notin \mathcal{Y}$ because $x_1 + y_1 + x_2 + y_2 = 6$

Therefore, $x + y \notin \mathcal{Y}$, which means that this space is not closed under vector addition! Thus, it is not a subspace!

Note: Every vector space needs to contain the ${\bf 0}$ vector.

ROB 501 Fall 2014 Lecture 04

Typeset by: Xiangyu Ni Proofread by: Sulbin Park

Abstract Linear Algebra (Continued)

Def. Let $(\mathcal{X}, \mathcal{F})$ be a vector space. A <u>linear combination</u> is a finite sum of the form $\alpha_1 x^1 + \alpha_2 x^2 + \cdots + \alpha_n x^n$ where $n \geq 1, \alpha_i \in \mathcal{F}, x^i \in \mathcal{X}$.

Remark: $x^i = \begin{bmatrix} x_1^i \\ x_2^i \\ \vdots \\ x_n^i \end{bmatrix}$, where x^i means individual vectors, not powers.

Something of the form $\sum_{k=1}^{\infty} \alpha_k v^k$ is not a linear combination because it is not finite.

Def. A finite set of vectors $\{v^1, \ldots, v^k\}$ is <u>linearly dependent</u> if $\exists \alpha_i \in \mathcal{F}$ not all zero such that $\alpha_1 v^1 + \alpha_2 v^2 + \cdots + \alpha_k \overline{v^k} = 0$. Otherwise, the set is linearly independent.

Remark: For a linearly independent set $\{v^1, \ldots, v^k\}$, $\alpha_1 v^1 + \alpha_2 v^2 + \cdots + \alpha_k v^k = 0 \iff \alpha_1 = 0, \alpha_2 = 0, \ldots, \alpha_k = 0.$

Def. An arbitrary set of vectors $S \subset \mathcal{X}$ is linearly independent if every finite subset is linearly independent.

Remark: Suppose $\{v^1, \ldots, v^k\}$ is a linearly dependent set. Then, $\exists \alpha_1, \ldots, \alpha_k$ are not all zero such that $\alpha_1 v^1 + \alpha_2 v^2 + \cdots + \alpha_k v^k = 0$.

Suppose $\alpha_1 \neq 0$

$$\alpha_1 v^1 = -\alpha_2 v^2 - \alpha_3 v^3 - \dots - \alpha_k v^k$$
$$v^1 = -\frac{\alpha_2}{\alpha_1} v^2 - \frac{\alpha_3}{\alpha_1} v^3 - \dots - \frac{\alpha_k}{\alpha_1} v^k$$

 v^1 is a linear combination of the $\{v^2, \dots, v^k\}$.

Example: $\mathcal{X} = \mathbb{P}(t) = \{\text{set of polynomials with real coefficients}\}$. $\mathcal{F} = \mathbb{R}$. Claim: The monomials are linearly independent. In particular, for each $n \geq 0$, the set $\{1, t, \ldots, t^n\}$ is linearly independent.

<u>Proof:</u> Let $\alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n = o$ =zero polynomial. We need to show that $\alpha_0 = \alpha_1 = \cdots = \alpha_n = 0$.

Recall that $p(t) \equiv 0$, $\frac{d^k p(t)}{dt^k}|_{t=0} = 0$ for k = 0, 1, 2, ...

$$p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n$$

$$0 = p(0) \iff \alpha_0 = 0$$

$$0 = \frac{dp(t)}{dt}|_{t=0} = (\alpha_1 + 2\alpha_2 t + \dots + n\alpha_n t^{n-1})|_{t=0} \iff \alpha_1 = 0$$

:

Etc. \square

Example: Let $\mathcal{X} = \{2 \times 3 \text{ matrices with real coefficients}\}$. Let $v^1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$,

$$v^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, v^3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, v^4 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

 $\{v^1, v^2\}$ is a linearly independent set.

$$\alpha_1 v^1 + \alpha_2 v^2 = 0 \iff \begin{bmatrix} \alpha_1 & 0 & 0 \\ 2\alpha_1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \alpha_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\iff \alpha_1 = \alpha_2 = 0.$$

 $\{v^1, v^2, v^4\}$ is a linearly dependent set.

$$\alpha_{1}v^{1} + \alpha_{2}v^{2} + \alpha_{4}v^{4} = 0$$

$$\iff \begin{bmatrix} \alpha_{1} & 0 & 0 \\ 2\alpha_{1} & 0 & 0 \end{bmatrix} + \begin{bmatrix} \alpha_{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ \alpha_{4} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\iff \alpha_{1} = 1, \alpha_{2} = -1, \alpha_{4} = -2.$$

Remark: \mathcal{F} is important when determining whether a set is linearly independent or not. For example, let $\mathcal{X} = \mathbb{C}$ and $v^1 = 1$, $v^2 = j = \sqrt{-1}$. v^1 and v^2 are linearly independent when $\mathcal{F} = \mathbb{R}$. However, they are linearly dependent when $\mathcal{F} = \mathbb{C}$.

Def. Let S be a subset of a vector space $(\mathcal{X}, \mathcal{F})$. The <u>span</u> of S, denoted span $\{S\}$, is the set of all linear combinations of elements of S. span $\{S\} = \{x \in \mathcal{X} | \exists n \geq 1, \alpha_1, \ldots, \alpha_n \in \mathcal{F}, v^1, \ldots, v^n \in S, x = \alpha_1 v^1 + \cdots + \alpha_n v^n \}$.

Remark: $span{S}$ is a subset.

Example: Let $\mathcal{X} = \{f : \mathbb{R} \to \mathbb{R}\}$ and $\mathcal{F} = \mathbb{R}$. $\mathcal{S} = \{1, t, t^2, \dots\} = \{t^k | k \ge 0\}$. span $\{\mathcal{S}\} = \mathbb{P}(t) = \{\text{polynomials with real coefficients}\}$.

Is $e^t \in \text{span}\{\mathcal{S}\}$? No. Although e^t can be written as a sum of polynomials (Taylor Series), the number of components of that sum is infinite. While, the linear combination has to be finite.

Def. A set of vectors \mathcal{B} in $(\mathcal{X}, \mathcal{F})$ is a basis for \mathcal{X} if

- \mathcal{B} is linearly independent.
- $\operatorname{span}\{\mathcal{B}\} = \mathcal{X}$.

Example:
$$(\mathcal{F}^n, \mathcal{F})$$
 where \mathcal{F} is \mathbb{R} or \mathbb{C} . $e^1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e^2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ..., $e^n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$.

 $\{e^1, e^2, \dots, e^n\}$ is both linearly independent and its span is \mathcal{F}^n . It is a basis.

It is called the Natural Basis.

Moreover, $\{e^1, e^2, \dots, e^n, je^1, je^2, \dots, je^n\}$ is a basis for \mathbb{C}^n in $(\mathbb{C}^n, \mathbb{R})$. However, it is not a basis for \mathbb{C}^n in $(\mathbb{C}^n, \mathbb{C})$.

Let
$$v^1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, $v^2 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ..., $v^n = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$. $\{v^1, v^2, \dots, v^n\}$ is also a basis for $(\mathcal{F}^n, \mathcal{F})$ where \mathcal{F} is \mathbb{R} or \mathbb{C} .

Example: The infinite set $\{1, t, \dots, t^n, \dots\}$ is a basis for $(\mathbb{P}(t), \mathbb{R})$.

Def. Let n > 0 be an integer. The vector space $(\mathcal{X}, \mathcal{F})$ has finite dimension n if

- \bullet there exists a set with n linearly independent vectors, and
- any set with n+1 or more vectors is linearly dependent.

 $(\mathcal{X}, \mathcal{F})$ is infinite dimensional if for every n > 0, there is a linearly independent set with n or more elements in it.

Examples:

$$\dim(\mathcal{F}^n, \mathcal{F}) = n$$
$$\dim(\mathbb{C}^n, \mathbb{R}) = 2n$$
$$\dim(\mathbb{P}(t), \mathbb{R}) = \infty$$

Theorem: Let $(\mathcal{X}, \mathcal{F})$ be an *n*-dimensional vector space (*n* is finite). Then, any set of *n* linearly independent vectors is a basis.

<u>Proof:</u> Let $(\mathcal{X}, \mathcal{F})$ be *n*-dimensional and let $\{v^1, \dots, v^n\}$ be a linearly independent set.

To show: $\forall x \in \mathcal{X}, \exists \alpha_1, \cdots, \alpha_n \in \mathcal{F} \text{ such that } x = \alpha_1 v^1 + \cdots + \alpha_n v^n.$

How: Because $(\mathcal{X}, \mathcal{F})$ is *n*-dimensional, $\{x, v^1, \dots, v^n\}$ is a linearly dependent set. Otherwise, the dim $\mathcal{X} > n$ which it isn't. Hence, $\exists \beta_0, \beta_1, \dots, \beta_n \in \mathcal{F}$, NOT ALL ZERO, such that $\beta_0 x + \beta_1 v^1 + \dots + \beta_n v^n = 0$.

Claim: $\beta_0 \neq 0$

Proof: Suppose that $\beta_0 = 0$. Then,

1. At least one of β_1, \dots, β_n is non-zero.

$$2. \beta_1 v^1 + \dots + \beta_n v^n = 0.$$

1 and 2 above, imply that $\{v^1, \dots, v^n\}$ is a linearly dependent set, which is a contradiction. Hence, $\beta_0 = 0$ cannot hold. Completing the proof, we write

$$\beta_0 x = -\beta_1 x^1 - \dots - \beta_n v^n$$

$$x = \left(\frac{-\beta_1}{\beta_0}\right) v^1 + \dots + \left(\frac{-\beta_n}{\beta_0}\right) v^n$$

$$\therefore \alpha_1 = \frac{-\beta_1}{\beta_0}, \dots, \alpha_n = \frac{-\beta_n}{\beta_0}. \square$$

ROB 501 Fall 2014

Lecture 05

Typeset by: Meghan Richey Proofread by: Su-Yang Shieh

Abstract Linear Algebra (Continued)

Proposition: Let $(\mathcal{X}, \mathcal{F})$ be a vector space with basis $\{v^1, \dots, v^n\}$. Let $x \in \mathcal{X}$. Then, $\exists \underline{\text{unique}}$ coefficients $\alpha_1, \dots, \alpha_n$ such that $x = \alpha_1 v^1 + \alpha_2 v^2 + \dots + \alpha_n v^n$.

<u>Proof:</u> Suppose x can also be written as $x = \beta_1 v^1 + \beta_2 v^2 + \cdots + \beta_n v^n$. <u>We need to show:</u> $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \cdots, \alpha_n = \beta_n$.

$$0 = x - x = (\alpha_1 - \beta_1)v^1 + \dots + (\alpha_n - \beta_n)v^n$$

By linear independence of $\{v^1, \dots, v^n\}$, we can obtain that $\alpha_1 - \beta_1 = 0, \dots, \alpha_n - \beta_n = 0$.

Hence, $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$, that is, the coefficients are unique. \square

Def: $x \in \mathcal{X}, x = \alpha_1 v^1 + \dots + \alpha_n v^n$. x uniquely defines $\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{F}^n$.

$$[x]_v = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \text{ is the representation of } x \text{ with respect to the basis } v = \{v^1, \cdots, v^n\}$$

if and only if $x = \alpha_1 v^1 + \dots + \alpha_n v^n$.

Example: $\mathcal{F} = \mathbb{R}$, $\mathcal{X} = \{2 \times 2 \text{ matrices with real coefficients}\}$

Basis 1:
$$v^1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $v^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $v^3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $v^4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Basis 2: $w^1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $w^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $w^3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $w^4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$x = \begin{bmatrix} 5 & 3 \\ 1 & 4 \end{bmatrix} = 5w^1 + 2w^2 + 1w^3 + 4w^4$$
Therefore, $[x]_w = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 4 \end{bmatrix} \in \mathbb{R}^4$.

Easy Facts:

1. Addition of vectors in $(\mathcal{X}, \mathcal{F}) \equiv \text{Addition}$ of the representations in $(\mathcal{F}^n, \mathcal{F})$.

$$[x+y]_v = [x]_v + [y]_v$$

2. Scalar multiplication in $(\mathcal{X}, \mathcal{F}) \equiv \text{Scalar multiplication}$ with the representations in $(\mathcal{F}^n, \mathcal{F})$.

$$[\alpha x]_v = \alpha[x]_v$$

3. Once a basis is chosen, any n-dimensional vector space $(\mathcal{X}, \mathcal{F})$ "looks like" $(\mathcal{F}^n, \mathcal{F})$.

Change of Basis Matrix: Let $\{u^1, \dots, u^n\}$ and $\{\bar{u}^1, \dots, \bar{u}^n\}$ be two bases for $(\mathcal{X}, \mathcal{F})$. Is there a relation between $[x]_u$ and $[x]_{\bar{u}}$?

Theorem: \exists an invertible matrix P, with coefficients in \mathcal{F} , such that $\forall x \in (\mathcal{X}, \mathcal{F}), [x]_{\bar{u}} = P[x]_u$.

Moreover, $P = [P_1|P_2|\cdots|P_n]$ with $P_i = [u^i]_{\bar{u}} \in \mathcal{F}^n$ where P_i is the i^{th} column of the matrix P and $[u^i]_{\bar{u}}$ is the representation of u^i with respect to \bar{u} .

<u>Proof:</u> Let $x = \alpha_1 u^1 + \dots + \alpha_n u^n = \bar{\alpha}_1 \bar{u}^1 + \dots + \bar{\alpha}_n \bar{u}^n$.

$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = [x]_u$$

$$\bar{\alpha} = \begin{bmatrix} \bar{\alpha}_1 \\ \bar{\alpha}_2 \\ \vdots \\ \bar{\alpha}_n \end{bmatrix} = [x]_{\bar{u}}$$

$$\bar{\alpha} = [x]_{\bar{u}} = \left[\sum_{i=1}^{n} \alpha_i u^i\right]_{\bar{u}} = \sum_{i=1}^{n} \alpha_i [u^i]_{\bar{u}} = \sum_{i=1}^{n} \alpha_i P_i = P\alpha.$$
Therefore, $\bar{\alpha} = P\alpha = P[x]_u$.

Now we need to show that P is invertible:

Define $\bar{P} = [\bar{P}_1|\bar{P}_2|\cdots|\bar{P}_n]$ with $\bar{P}_i = [\bar{u}^i]_u$.

Do the same calculations and obtain $\alpha = \bar{P}\bar{\alpha}$.

Then, we can obtain that $\alpha = \bar{P}P\alpha$ and $\bar{\alpha} = P\bar{P}\bar{\alpha}$.

Therefore, $P\bar{P} = \bar{P}P = I$.

In conclusion, \bar{P} is the inverse of P ($\bar{P} = P^{-1}$). \square

Example: $\mathcal{X} = \{2 \times 2 \text{ matrices with real coefficients}\}, \mathcal{F} = \mathbb{R}.$

$$u = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$\bar{u} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

We have following relations:

$$\alpha = P\bar{\alpha}, P_i = [u^i]_{\bar{u}}, \bar{\alpha} = \bar{P}\alpha, \bar{P}_i = [\bar{u}^i]_u. (\bar{P}^{-1} = P, P^{-1} = \bar{P})$$

Typically, compute the easier of P or \bar{P} , and compute the other by inversion.

We choose to compute \bar{P}

$$\bar{P}_{1} = [\bar{u}^{1}]_{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\bar{P}_{2} = [\bar{u}^{2}]_{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\bar{P}_{3} = [\bar{u}^{3}]_{u} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\bar{P}_{4} = [\bar{u}^{4}]_{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Therefore,
$$\bar{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and $P = \bar{P}^{-1}$

Def. Let A be an $n \times n$ matrix with complex coefficients. A scalar $\lambda \in \mathbb{C}$ is an <u>eigenvalue</u> (e-value) of A, if \exists a non-zero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$. Any such vector v is called an <u>eigenvector</u> (e-vector) associated with λ . Eigenvectors are not unique.

To find eigenvalues, we need to know conditions under which $\exists v \neq 0$ such that $Av = \lambda v$.

$$Av = \lambda v \iff (\lambda I - A)v = 0 \iff \det(\lambda I - A) = 0$$

Example:
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, det(\lambda I - A) = \lambda^2 + 1 = 0.$$

Therefore, the eigenvalues are $\lambda_1 = j, \lambda_2 = -j$.

To find eigenvectors, we need to solve $(A - \lambda_i I)v^i = 0$.

The eigenvectors are
$$v^1 = \begin{bmatrix} 1 \\ j \end{bmatrix}, v^2 = \begin{bmatrix} 1 \\ -j \end{bmatrix}$$
.

Note that both eigenvalues and eigenvectors are complex conjugate pairs.

ROB 501 Fall 2014 Lecture 06

Typeset by: Katie Skinner Proofread by: Meghan Richey Edited by Grizzle: 24 Sept 2015

Abstract Linear Algebra (Continued)

Def. $\Delta(\lambda) = \det(\lambda I - A)$ is called the <u>characteristic polynomial</u>. $\Delta(\lambda) = 0$ is called the characteristic equation.

$$\Delta(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_p)^{m_p}$$

where $\lambda_1, \dots, \lambda_p$ are the distinct eigenvalues, and m_i is the <u>multiplicity</u> of λ_i such that

$$m_1 + m_2 + \dots + m_p = n$$

Theorem: Let A be an $n \times n$ matrix with coefficients in \mathbb{R} or \mathbb{C} . If the e-values $\{\lambda_1, \dots, \lambda_n\}$ are distinct, that is, $\lambda_i \neq \lambda_j$ for all $1 \leq i \neq j \leq n$, then the e-vectors $\{v^1, \dots, v^n\}$ are linearly independent in $(\mathbb{C}^n, \mathbb{C})$.

Remark: Restatement of the theorem: If $\{\lambda_1, \dots, \lambda_n\}$ are distinct then $\{v^1, \dots, v^n\}$ is a basis for $(\mathbb{C}^n, \mathbb{C})$.

<u>Proof:</u> We prove the contrapositive and show there is a repeated e-value $(\lambda_i = \lambda_j)$ for some $i \neq j$.

 $\{v^1, \dots, v^n\}$ linearly dependent $\Rightarrow \exists \alpha_1, \dots, \alpha_n \in \mathbb{C}$, not all zero, such that $\alpha_1 v^1 + \dots + \alpha_n v^n = 0(*)$.

Without loss of generality, we can suppose $\alpha_1 \neq 0$. (that is, we can always reorder of e-values so that the first coefficient is nonzero.)

Because v^i is an e-vector,

$$(A - \lambda_j I)v^i = Av^i - \lambda_j v^i = \lambda_i v^i - \lambda_j v^i = (\lambda_i - \lambda_j)v^i$$

Side Note: It is an easy exercise to show

$$(A - \lambda_2 I)(A - \lambda_3 I) \cdots (A - \lambda_n I)v^i = (\lambda_i - \lambda_2)(\lambda_i - \lambda_3) \cdots (\lambda_i - \lambda_n)v^i, 2 \le i \le n$$

Let i = 1

$$(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3) \cdots (\lambda_1 - \lambda_n)v^1$$

Let i=2

$$(\lambda_2 - \lambda_2)(\lambda_2 - \lambda_3) \cdots (\lambda_2 - \lambda_n)v^2 = 0$$

Etc.

Combining the above with (*), we obtain

$$0 = (A - \lambda_2 I)(A - \lambda_3 I) \cdots (A - \lambda_n I)(\alpha_1 v^1 + \dots + \alpha_n v^n)$$
$$= \alpha_1 (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3) \cdots (\lambda_1 - \lambda_n) v^1$$

We know $\alpha_1 \neq 0$, as stated above, and $v^1 \neq 0$, by definition of e-vectors.

$$\therefore 0 = (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3) \cdots (\lambda_1 - \lambda_n)$$

At least one the terms $(\lambda_1 - \lambda_k)$, $2 \le k \le n$, must be zero, and thus there is a repeated e-value $\lambda_1 = \lambda_k$ for some $2 \le k \le n$. \square

Def. Let $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{F})$ be vector spaces. $\mathcal{L} : \mathcal{X} \to \mathcal{Y}$ is a linear operator if for all $x, z \in \mathcal{X}$, $\alpha, \beta \in \mathcal{F}$,

$$\mathcal{L}(\alpha x + \beta z) = \alpha \mathcal{L}(x) + \beta \mathcal{L}(z)$$

Equivalently,

$$\mathcal{L}(x+z) = \mathcal{L}(x) + \mathcal{L}(z)$$
$$\mathcal{L}(\alpha x) = \alpha \mathcal{L}(x)$$

Example:

- 1. Let A be an $n \times m$ matrix with coefficients in \mathcal{F} . Define $\mathcal{L}: \mathcal{F}^m \to \mathcal{F}^n$ by $\mathcal{L}(x) = Ax$, then \mathcal{L} is a linear operator. Check that linearity and multiplication by scalar are satisfied to prove this.
- 2. Let $\mathcal{X} = \{\text{polynomials whose degrees} \leq 3\}, \mathcal{F} = \mathbb{R}, \mathcal{Y} = \mathcal{X}$. Then for $p \in \mathcal{X}, \mathcal{L}(p) = \frac{d}{dt}p(t)$.

Def. Let $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{F})$ be finite dimensional vector spaces, and \mathcal{L} : $\mathcal{X} \to \mathcal{Y}$ be a linear operator. A matrix representation of \mathcal{L} with respect to a basis $\{u^1, \dots, u^m\}$ for \mathcal{X} and $\{v^1, \dots, v^n\}$ for \mathcal{Y} is an $n \times m$ matrix A, with coefficients in \mathcal{F} , such that $\forall x \in \mathcal{X}, [\mathcal{L}(x)]_{\{v^1, \dots, v^n\}} = A[x]_{\{u^1, \dots, u^m\}}$.

Theorem: Let $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{F})$ be finite dimensional vector spaces, \mathcal{L} : $\mathcal{X} \to \mathcal{Y}$ a linear operator, $\{u^1, \dots, u^m\}$ a basis for \mathcal{X} and $\{v^1, \dots, v^n\}$ a basis for \mathcal{Y} , then \mathcal{L} has a matrix representation $A = [A_1|\dots|A_m]$, where the i^{th} column of A is given by

$$A_i = \left[\mathcal{L}(u^i) \right]_{\{v^1, \dots, v^n\}}, \quad 1 \le i \le m$$

<u>Proof:</u> $x \in \mathcal{X}, x = \alpha_1 u^1 + \cdots + \alpha_m u^m$ so that its representation is

$$[x]_{\{u^1, \cdots, u^m\}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} \in \mathcal{F}^m$$

As in the theorem, we define

$$A_i = \left[\mathcal{L}(u^i) \right]_{\{v^1, \dots, v^n\}}, \quad 1 \le i \le m$$

.

Using linearity

$$\mathcal{L}(x) = \mathcal{L}(\alpha_1 u^1 + \dots + \alpha_m u^m)$$

= $\alpha_1 \mathcal{L}(u^1) + \dots + \alpha_m \mathcal{L}(u^m)$

Hence, computing representations, we have

$$[\mathcal{L}(x)]_{\{v^1,\dots,v^n\}} = [\alpha_1 \mathcal{L}(u^1) + \dots + \alpha_m \mathcal{L}(u^m)]_{\{v^1,\dots,v^n\}}$$

$$= \alpha_1 [\mathcal{L}(u^1)]_{\{v^1,\dots,v^n\}} + \dots + \alpha_m [\mathcal{L}(u^m)]_{\{v^1,\dots,v^n\}}$$

$$= \alpha_1 A_1 + \dots + \alpha_m A_m$$

$$= [A_1|A_2|\dots|A_m] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix}$$

$$= A [x]_{\{u^1,\dots,u^m\}}$$

 $\therefore \left[\mathcal{L}(x) \right]_{\{v^1, \dots, v^n\}} = A \left[x \right]_{\{u^1, \dots, u^m\}} \square$

Example:

 $\mathcal{F} = \mathbb{R}, \mathcal{X} = \{\text{polynomials, degrees} \leq 3\}, \mathcal{Y} = \{\text{polynomials, degrees} \leq 3\}.$

Put the same basis on \mathcal{X} and \mathcal{Y} , $\{1, t, t^2, t^3\}$. Let $\mathcal{L} : \mathcal{X} \to \mathcal{Y}$ be differentiation. Find the matrix representation, A, which will be a real 4×4 matrix.

Solution: Compute A column by column, where $A = [A_1|A_2|A_3|A_4]$.

$$A_{1} = \left[\mathcal{L}(1)\right]_{\{1,t,t^{2},t^{3}\}} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$$

$$A_{2} = \left[\mathcal{L}(t)\right]_{\{1,t,t^{2},t^{3}\}} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$$

$$A_{3} = \left[\mathcal{L}(t^{2})\right]_{\{1,t,t^{2},t^{3}\}} = \begin{bmatrix} 0\\2\\0\\0 \end{bmatrix}$$

$$A_{4} = \left[\mathcal{L}(t^{3})\right]_{\{1,t,t^{2},t^{3}\}} = \begin{bmatrix} 0\\0\\3\\0 \end{bmatrix}$$

and thus

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let's check that it makes sense

$$p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

and

$$[p(t)]_{\{1,t,t^2,t^3\}} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

$$A[p(t)]_{\{1,t,t^2,t^3\}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ 0 \end{bmatrix}$$

Does this correspond to differentiating the polynomial p(t)? We see that

$$\frac{d}{dt}p(t) = a_1 + 2a_2t + 3a_3t^2$$

$$\left[\frac{d}{dt}p(t)\right]_{\{1,t,t^2,t^3\}} = \begin{bmatrix} a_1\\2a_2\\3a_3\\0 \end{bmatrix}$$

and thus, yes indeed,

$$A[p(t)]_{\{1,t,t^2,t^3\}} = \left[\frac{d}{dt}p(t)\right]_{\{1,t,t^2,t^3\}}$$

.

Rob 501 Fall 2014 Lecture 07

Typeset by: Zhiyuan Zuo Proofread by: Vittorio Bichucher Revised by Ni on 31 October 2015

Abstract Linear Algebra (Continued)

Elementary Properties of Matrices (Assumed Known)

 $A = n \times m$ matrix with coefficients in \mathbb{R} or \mathbb{C} .

<u>Def. Rank</u> of A = # of linearly independent columns of A.

Theorem: $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = \operatorname{rank}(AA^{\top}) = \operatorname{rank}(A^{\top}A).$

Corollary: # of linearly independent rows = # of linearly independent columns.

Normed Spaces:

Let Field \mathcal{F} be \mathbb{R} or \mathbb{C} ,

Def. A function $\|\cdot\|$: $\mathcal{X} \to \mathbb{R}$ is a norm if it satisfies

- (a) $||x|| \ge 0$, $\forall x \in \mathcal{X}$ and $||x|| = 0 \Leftrightarrow x = 0$
- (b) Triangle inequality: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathcal{X}$

(c)
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
, $\forall x \in \mathcal{X}, \alpha \in \mathcal{F}$, $\begin{cases} \text{If } \alpha \in \mathbb{R}, |\alpha| \text{ means the absolute value} \\ \text{If } \alpha \in \mathbb{C}, |\alpha| \text{ means the magnitude} \end{cases}$

Examples:

$$\widehat{(1)} \mathcal{F} = \mathbb{R} \text{ or } \mathbb{C}, \, \mathcal{X} = \mathbb{F}^n.$$

i)
$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$
, Two norm, Euclidean norm

ii)
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, 1 \le p < \infty$$
, p-norm

- iii) $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$, max-norm, sup-norm, ∞ -norm
- (2) $\mathcal{F} = \mathbb{R}, \ \mathcal{D} \subset \mathbb{R}, \ \mathcal{D} = [a, b], \ a < b < \infty, \ \mathcal{X} = \{f : \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous}\}.$
 - i) $||f||_2 = (\int_a^b |f(t)|^2 dt)^{\frac{1}{2}}$
 - ii) $||f||_p = (\int_a^b |f(t)|^p dt)^{\frac{1}{p}}, \ 1 \le p < \infty$
 - iii) $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$, which is also written $||f||_{\infty} = \sup_{a \le t \le b} |f(t)|$

Def. $(\mathcal{X}, \mathcal{F}, \|\cdot\|)$ is called a normed space.

<u>Distance</u>: For $x, y \in \mathcal{X}$, d(x, y) := ||x - y|| is called the distance from x to y. Note: d(x, y) = d(y, x).

Distance to a set: Let $S \subset \mathcal{X}$ be a subset.

$$d(x,S) := \inf_{y \in S} ||x - y||$$

If $\exists x^* \in S$ such that $d(x, S) = ||x - x^*||$, then x^* is a best approximation of x by elements of S.

Sometimes, write \hat{x} for x^* because we are really thinking of the solution as an approximation.

Important questions:

- a) When does an x^* exist?
- b) How to characterize (compute) x^* such that $||x x^*|| = d(x, S), x^* \in S$?
- c) If a solution exists, is it unique?

Notation: When x^* (or \hat{x}) exists, we write $x^* = \underset{y \in S}{\operatorname{arg min}} ||x - y||$.

Inner Product Space:

Recall: $z = \alpha + j\beta \in \mathbb{C}$, $\alpha, \beta \in \mathbb{R}$, $\bar{z} = z$'s complex conjugate $= \alpha - j\beta$

Def. Let $(\mathcal{X}, \mathbb{C})$ be a vector space, a function $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is an inner product if

- (a) $\langle a, b \rangle = \overline{\langle b, a \rangle}$.
- (b) $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$, linear in the left argument. Sum can also appear on the right, just use the property (a).
- (c) $\langle x, x \rangle \geq 0$ for any $x \in \mathcal{X}$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$. $(\langle x, x \rangle \text{ is a real number. Therefore, it can be compared to 0.)$

Remarks:

- 1) $\langle x, x \rangle = \overline{\langle x, x \rangle}$, by (a). Hence, $\langle x, x \rangle$ is always a real number.
- 2) If the vector space is defined as $(\mathcal{X}, \mathbb{R})$, replace (a) with (a') $\langle a, b \rangle = \langle b, a \rangle$

Examples:

a)
$$(\mathbb{C}^n, \mathbb{C}), \langle x, y \rangle = x^{\top} \overline{y} = \sum_{i=1}^n x_i \overline{y_i}.$$

b)
$$(\mathbb{R}^n, \mathbb{R}), \langle x, y \rangle = x^{\mathsf{T}} y = \sum_{i=1}^n x_i y_i.$$

c)
$$\mathcal{F} = \mathbb{R}$$
, $\mathcal{X} = \{A \mid n \times m \text{ real matrices}\}$, $\langle A, B \rangle = \operatorname{tr}(AB^{\top}) = \operatorname{tr}(A^{\top}B)$.

d)
$$\mathcal{X} = \{f : [a, b] \to \mathbb{R}, f \text{ continuous}\}, \mathcal{F} = \mathbb{R}, \langle f, g \rangle = \int_a^b f(t)g(t) dt.$$

Theorem: (Cauchy-Schwarz Inequality) Let \mathcal{F} be \mathbb{R} or \mathbb{C} , $(\mathcal{X}, \mathcal{F}, \langle \cdot, \cdot \rangle)$ be an inner product space. Then, for all $x, y \in \mathcal{X}$

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$$
.

<u>Proof:</u> (Will assume $\mathcal{F} = \mathbb{R}$).

If y = 0, the result is clearly to true.

Assume $y \neq 0$ and let $\lambda \in \mathbb{R}$ to be chosen, we have

$$0 \leq \langle x - \lambda y, x - \lambda y \rangle$$

$$= \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle$$

$$= \langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle$$

$$= \langle x, x \rangle - 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle.$$

Now, select $\lambda = \langle x, y \rangle / \langle y, y \rangle$. Then,

$$0 \le \langle x - \lambda y, x - \lambda y \rangle$$

= $\langle x, x \rangle - 2 |\langle x, y \rangle|^2 / \langle y, y \rangle + |\langle x, y \rangle|^2 / \langle y, y \rangle$
= $\langle x, x \rangle - |\langle x, y \rangle|^2 / \langle y, y \rangle$.

Therefore, we can conclude that $|\langle x,y\rangle|^2 \leq \langle x,x\rangle\langle y,y\rangle \Rightarrow |\langle x,y\rangle| \leq \langle x,x\rangle^{1/2}\langle y,y\rangle^{1/2}$. \square

Rob 501 Fall 2014 Lecture 08

Typeset by: Sulbin Park Proofread by: Ming-Yuan Yu

Orthogonal Bases

Corollary: Let $(\mathcal{X}, \mathcal{F}, \langle \cdot, \cdot \rangle)$ be an inner product space. Then,

$$||x|| := \langle x, x \rangle^{1/2} = \sqrt{\langle x, x \rangle}$$

is a <u>norm</u>.

<u>Proof:</u> (For $\mathcal{F} = \mathbb{R}$) will only check the triangle inequality $||x+y|| \le ||x|| + ||y||$, which is equivalent to showing

$$||x + y||^{2} \le ||x||^{2} + ||y||^{2} + 2||x|| \cdot ||y||$$

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} + ||y||^{2} + 2\langle x, y \rangle$$

$$\le ||x||^{2} + ||y||^{2} + 2|\langle x, y \rangle|$$

$$\le ||x||^{2} + ||y||^{2} + 2||x|| \cdot ||y|| \square$$

Def.

- (a) Two vectors x and y are orthogonal if $\langle x, y \rangle = 0$. Notation: $x \perp y$
- (b) A set of vectors S is orthogonal if

$$\forall x,y \in S, x \neq y \Rightarrow \langle x,y \rangle = 0 \text{ (i.e. } x \perp y)$$

(c) If in addition, ||x|| = 1 for all $x \in S$, then S is an <u>orthonormal set</u>.

Remark: $x \neq 0, \frac{x}{\|x\|}$ has norm 1.

$$\left\| \frac{x}{\|x\|} \right\| = \left| \frac{1}{\|x\|} \right| \cdot \|x\| = \frac{1}{\|x\|} \cdot \|x\| = 1$$

Pythagorean Theorem: If $x \perp y$, then

$$||x + y||^2 = ||x||^2 + ||y||^2$$

.

<u>Proof:</u> From the proof of the triangle inequality,

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

= $||x||^2 + ||y||^2$ (because $\langle x, y \rangle = 0$) \square

Pre-projection Theorem: Let \mathcal{X} be a finite-dimensional (real) inner product space, M be a subspace of \mathcal{X} , and x be an arbitrary point in \mathcal{X} .

(a) If $\exists m_0 \in M$ such that

$$||x - m_0|| < ||x - m|| \quad \forall m \in M$$

then m_0 is unique.

(b) A necessary and sufficient condition that m_0 is a minimizing vector in M is that the vector $x - m_0$ is orthogonal to M.

Remarks:

- (a') If $\exists m_0 \in M$ such that $||x m_0|| = d(x, M) = \inf_{m \in M} ||x m||$, then m_0 is unique. (equivalent to (a))
- (b') $||x m_0|| = d(x, M) \Leftrightarrow x m_0 \perp M$. (equivalent to (b))

Proof:

Claim 1: If $m_0 \in M$ satisfies $||x - m_0|| = d(x, M)$, then $x - m_0 \perp M$.

<u>Proof:</u> (By contrapositive) Assume $x - m_0 \not\perp M$, we will find $m_1 \in M$ such that $||x - m_1|| < ||x - m_0||$.

Suppose $x - m_0 \not\perp M$. Hence, $\exists m \in M$ such that $\langle x - m_0, m \rangle \neq 0$. We know $m \neq 0$, and hence we define $\tilde{m} = \frac{m}{\|m\|} \in M$.

Define $\delta := \langle x - m_0, \tilde{m} \rangle \neq 0$.

$$m_{1} = m_{0} + \delta \tilde{m}$$

$$\therefore m_{1} \in M$$

$$\|x - m_{1}\|^{2} = \|x - m_{0} - \delta \tilde{m}\|^{2}$$

$$= \langle x - m_{0} - \delta \tilde{m}, x - m_{0} - \delta \tilde{m} \rangle$$

$$= \langle x - m_{0}, x - m_{0} \rangle - \delta \underbrace{\langle x - m_{0}, \tilde{m} \rangle}_{\delta} - \delta \underbrace{\langle \tilde{m}, x - m_{0} \rangle}_{\delta} + \delta^{2} \underbrace{\langle \tilde{m}, \tilde{m} \rangle}_{=1}$$

$$= \|x - m_{0}\|^{2} - \delta^{2}$$

$$||x - m_1||^2 < ||x - m_0||^2 \square$$

Claim 2: If $x - m_0 \perp M$, then $||x - m_0|| = d(x, M)$ and m_0 is unique. Proof: Recall the Pythagorean Theorem:

$$||x + y||^2 = ||x||^2 + ||y||^2$$
 when $x \perp y$

Let $m \in M$ be arbitrary and suppose $x - m_0 \perp M$. Then,

$$||x - m||^2 = ||x - m_0 + \underbrace{m_0 - m}_{\in M}||^2$$
$$= ||x - m_0||^2 + ||m_0 - m||^2 \quad (x - m_0 \perp M)$$

 $\therefore \inf_{m \in M} ||x - m|| = ||x - m_0||$ and the unique minimizer is m_0 . \square

How to Construct Orthogonal Sets

Gram-Schmidt Process: Let $\{y^1, \ldots, y^n\}$ be a linearly independent set of vectors. We will produce $\{v^1, \ldots, v^n\}$ orthogonal, such that

$$\forall 1 \le k \le n, \ \text{span}\{y^1, \dots, y^k\} = \text{span}\{v^1, \dots, v^k\}.$$

Step 1: $v^1 = y^1$

Remark: $v^1 \neq 0$ because $\{y^1, \ldots, y^n\}$ linearly independent.

Step 2: $v^2 = y^2 - a_{21}v^1$ and choose a_{21} such that $v^1 \perp v^2$.

$$0 = \langle v^2, v^1 \rangle = \langle y^2 - a_{21}v^1, v^1 \rangle = \langle y^2, v^1 \rangle - a_{21}\langle v^1, v^1 \rangle$$

$$\therefore a_{21} = \frac{\langle y^2, v^1 \rangle}{\|v^1\|^2} \quad (\|v^1\| \neq 0 \text{ because } v^1 \neq 0)$$

 $\underline{\operatorname{Claim:}} \ \operatorname{span}\{y^1,y^2\} = \operatorname{span}\{v^1,v^2\}.$

 $\overline{\underline{\text{Proof:}}} \text{ Know span}\{y^1\} = \text{span}\{v^1\}.$

To show: $y^2 \in \operatorname{span}\{v^1, v^2\}$ and $v^2 \in \operatorname{span}\{y^1, y^2\}$.

Rob 501 Fall 2014 Lecture 09

Typeset by: Pengcheng Zhao Proofread by: Xiangyu Ni Revised by Ni on 1 November 2015

Orthogonal Bases (Continued)

Gram-Schmidt Process: Let $\{y^1, \dots, y^n\}$ be a linearly independent set of vectors. We will produce $\{v^1, \dots, v^n\}$ orthogonal such that, $\forall 1 \leq k \leq n$, $\operatorname{span}\{v^1, \dots, v^k\} = \operatorname{span}\{y^1, \dots, y^k\}$.

$$v^1 = y^1$$

Step 2

$$v^{2} = y^{2} - a_{21}v^{1}$$

 $\langle v^{2}, v^{1} \rangle = 0 \Leftrightarrow a_{21} = \frac{\langle y^{2}, v^{1} \rangle}{\|v^{1}\|^{2}}$

Step 3

$$v^3 = y^3 - a_{31}v^1 - a_{32}v^2$$

Choose coefficients such that $\langle v^3, v^1 \rangle = 0$ and $\langle v^3, v^2 \rangle = 0$,

$$0 = \langle v^3, v^1 \rangle = \langle y^3, v^1 \rangle - a_{31} \langle v^1, v^1 \rangle - a_{32} \underbrace{\langle v^2, v^1 \rangle}_{=0}$$

$$0 = \langle v^3, v^2 \rangle = \langle y^3, v^2 \rangle - a_{31} \underbrace{\langle v^1, v^2 \rangle}_{=0} - a_{32} \langle v^2, v^2 \rangle$$

$$\therefore a_{31} = \frac{\langle y^3, v^1 \rangle}{\|v^1\|^2} \qquad a_{32} = \frac{\langle y^3, v^2 \rangle}{\|v^2\|^2}$$

Therefore, we can conclude that $v_k = y_k - \sum_{j=1}^{k-1} \frac{\langle y_k, v_j \rangle}{\|v_j\|^2} v_j$.

<u>Proof of G-S Process:</u> Need to show span $\{v^1, \dots, v^k\} = \text{span}\{y^1, \dots, y^k\}$

$$\Leftrightarrow \begin{cases} \{v^1, \cdots, v^k\} \subseteq \operatorname{span}\{y^1, \cdots, y^k\} \Leftrightarrow v^k \in \operatorname{span}\{y^1, \cdots, y^k\} \\ \{y^1, \cdots, y^k\} \subseteq \operatorname{span}\{v^1, \cdots, v^k\} \Leftrightarrow y^k \in \operatorname{span}\{v^1, \cdots, v^k\} \end{cases}$$

Intermediate Facts

Proposition: Let(\mathcal{X}, \mathcal{F}) be an n-dimensional vector space and let $\{v^1, \dots, v^k\}$ be a linearly independent set with 0 < k < n. Then, $\exists v^{k+1}$ such that $\{v^1, \dots, v^k, v^{k+1}\}$ is linearly independent.

<u>Proof:</u> (By contradiction)

Suppose no such v^{k+1} exists. Hence, $\forall x \in \mathcal{X}, x \in \text{span}\{v^1, \dots, v^k\}$.

 $\therefore \mathcal{X} \subset \operatorname{span}\{v^1, \cdots, v^k\}.$

 $\therefore \dim(\mathcal{X}) \le \dim(\operatorname{span}\{v^1, \cdots, v^k\}).$

 $\therefore n \leq k$, which contradicts k < n. \square

Corollary: In a finite dimensional vector space, any linearly independent set can be completed to a basis. More precisely, let $\{v^1, \dots, v^k\}$ be linearly independent, $n = \dim(\mathcal{X}), k < n$.

Then, $\exists v^{k+1}, \dots, v^n$ such that $\{v^1, \dots, v^k, v^{k+1}, \dots, v^n\}$ is a basis for \mathcal{X} .

Proof: Previous proposition+Induction

Def. Let $(\mathcal{X}, \mathcal{F}, \langle \cdot, \cdot \rangle)$ be an inner product space, and $S \subseteq \mathcal{X}$ a subset. (Doesn't have to be a subspace.)

$$S^{\perp} := \{ x \in \mathcal{X} | x \perp S \} = \{ x \in \mathcal{X} | \langle x, y \rangle = 0 \text{ for all } y \in S \}$$

is called the orthogonal complement of S.

Exercise: S^{\perp} is always a subspace.

Proposition: Let $(\mathcal{X}, \mathcal{F}, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space,

M a subspace of \mathcal{X} . Then,

$$\mathcal{X} = M \oplus M^{\perp}$$
.

<u>Proof:</u> If $x \in M \cap M^{\perp}$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0$. Hence, $M \cap M^{\perp} = \{0\}$.

Let $\{y^1, \dots, y^k\}$ be a basis of M. Complete it to be a basis for \mathcal{X} :

$$\{y^1, y^2, \cdots, y^k, y^{k+1}, \cdots, y^n\}$$

Apply G.S. to produce orthogonal vectors $\{v^1, \dots, v^k, v^{k+1}, \dots, v^n\}$ such that $\operatorname{span}\{v^1, \dots, v^k\} = \operatorname{span}\{y^1, \dots, y^k\} = M$. An easy calculation gives

$$M^{\perp} = \operatorname{span}\{v^{k+1}, \cdots, v^n\}$$

Why?

$$x = \alpha_1 v^1 + \dots + \alpha_k v^k + \alpha_{k+1} v^{k+1} + \dots + \alpha_n v^n$$

$$x \perp M \Leftrightarrow \langle x, v^i \rangle = 0, \quad 1 \leq i \leq k$$

$$\langle x, v^i \rangle = \alpha_1 \underbrace{\langle v^1, v^i \rangle}_{=0} + \dots + \alpha_i \langle v^i, v^i \rangle + \dots + \alpha_n \underbrace{\langle v^n, v^i \rangle}_{=0}$$

$$= \alpha_i \langle v^i, v^i \rangle$$

$$= \alpha_i ||v^i||^2$$

$$\therefore x = \alpha_{k+1} v^{k+1} + \dots + \alpha_n v^n \Leftrightarrow x \in \text{span}\{v^{k+1}, \dots, v^n\}.$$

$$\therefore x \in M^{\perp} \Leftrightarrow x \in \text{span}\{v^{k+1}, \dots, v^n\}.$$

Projection Theorem

Theorem: (Classical Projection Theorem)

Let \mathcal{X} be a finite dimensional inner product space and M a subspace of \mathcal{X} . Then, $\forall x \in \mathcal{X}, \exists$ unique $m_0 \in M$ such that

$$||x - m_0|| = d(x, M) = \inf_{m \in M} ||x - m||.$$

Moreover, m_0 is characterized by $x - m_0 \perp M$.

<u>Proof:</u> To show: m_0 exists. Uniqueness and orthogonality were shown in the Pre-projection Theorem.

From G.S., we learnt that $\mathcal{X} = M \oplus M^{\perp}$.

Hence, we can write

$$x = m_0 + \tilde{m}$$

where

$$m_0 \in M$$
 and $\tilde{m} \in M^{\perp}$

Hence,

$$x - m_0 = \tilde{m} \in M \Rightarrow x - m_0 \perp M. \square$$

Rob 501 Handout: Grizzle Lecture 10 Orthogonal Projection and Normal Equations

Projection Theorem (Continued)

Orthogonal Projection Operator

Let \mathcal{X} be a finite dimensional (real) inner product space and M a subspace of \mathcal{X} . For $x \in \mathcal{X}$ and $m_0 \in M$. The Projection Theorem shows the TFAE:

- (a) $x m_0 \perp M$.
- (b) $\exists \tilde{m} = M^{\perp}$ such that $x = m_0 + \tilde{m}$.
- (c) $||x m_0|| = d(x, M) = \inf_{m \in M} ||x m||.$

Def. $P: \mathcal{X} \to M$ by $P(x) = m_0$, where m_0 satisfies any of (a),(b) or (c), is called the orthogonal projection of \mathcal{X} onto M.

Exercise1: $P: \mathcal{X} \to M$ is a linear operator.

Exercise2: P: Let $\{v^1, \dots, v^k\}$ be an orthonormal basis for M.Then

$$P(x) = \sum_{i=1}^{k} \langle x, v^i \rangle v^i.$$

Normal Equations

Let \mathcal{X} be a finite dimensional (real) inner product space and $M = \operatorname{span}\{y^1, \dots, y^k\}$, with $\{y^1, \dots, y^k\}$ linearly independent. Given $x \in \mathcal{X}$, seek $\hat{x} \in M$ such that

$$||x - \hat{x}|| = d(x, M) = \inf_{m \in M} ||x - m|| = \min_{m \in M} ||x - m||$$

where we can write "min" because the Projection Theorem assures the existence of a minimizing vector $\hat{x} \in M$.

Notation: $\hat{x} = \operatorname{argmin} d(x, M)$

Remark: One solution is Gram Schmidt and the orthogonal projection operator. We provide an alternative way to compute the answer.

By the Projection Theorem, \hat{x} exists and is characterized by $x - \hat{x} \perp M$. Write

$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k$$

and impose $x - \hat{x} \perp M \Leftrightarrow x - \hat{x} \perp y^i$, $1 \le i \le k$.

Then,
$$\langle x - \hat{x}, y^i \rangle = 0$$
, $\forall 1 \le i \le k$ yields
 $\langle \hat{x}, y^i \rangle = \langle x, y^i \rangle$ $i = 1, 2, \dots, k$
 $\Leftrightarrow \langle \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k, y^i \rangle = \langle x, y^i \rangle$ $i = 1, 2, \dots, k$.

We now write this out in matrix form.

$$\frac{i=1}{\alpha_1 \langle y^1, y^1 \rangle + \alpha_2 \langle y^2, y^1 \rangle + \dots + \alpha_k \langle y^k, y^1 \rangle} = \langle x, y^1 \rangle$$

$$\underline{i=2}$$

$$\alpha_1 \langle y^1, y^2 \rangle + \alpha_2 \langle y^2, y^2 \rangle + \dots + \alpha_k \langle y^k, y^2 \rangle = \langle x, y^2 \rangle$$

:

$$\frac{i=k}{\alpha_1 \langle y^1, y^k \rangle + \alpha_2 \langle y^2, y^k \rangle + \dots + \alpha_k \langle y^k, y^k \rangle} = \langle x, y^k \rangle$$

These are called the Normal Equations.

$$\mathbf{Def.}\ G = G(y^1, \cdots, y^k) = \begin{bmatrix} \langle y^1, y^1 \rangle & \langle y^1, y^2 \rangle & \cdots & \langle y^1, y^k \rangle \\ \langle y^2, y^1 \rangle & \langle y^2, y^2 \rangle & \cdots & \langle y^2, y^k \rangle \\ \vdots & \vdots & & \vdots \\ \langle y^k, y^1 \rangle & \langle y^k, y^2 \rangle & \cdots & \langle y^k, y^k \rangle \end{bmatrix}$$

 $G_{ij} = \langle y^i, y^j \rangle$ is called the Gram matrix.

Remark: Because we are assuming $\mathcal{F} = \mathbb{R}$, $\langle y^i, y^j \rangle = \langle y^j, y^i \rangle$, and we therefore have $G = G^T$.

Let
$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}$$
, we have

 $G^T \alpha = \beta$ (normal equation in the matrix form)

where

$$\beta_i = \langle x, y^i \rangle, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}.$$

Def. $g(y^1, y^2, \dots, y^k) = \det G(y^1, \dots, y^k)$ is the determinant of the Gram Matrix.

Prop. $g(y^1, y^2, \dots, y^k) \neq 0 \Leftrightarrow \{y^1, \dots, y^k\}$ is linearly independent.

The proof is given at the end of the handout.

Summary: Here is the solution of our best approximation problem by the normal equations. Assume the set $\{y^1, \dots, y^k\}$ is linearly independent and $M := \operatorname{span}\{y^1, \dots, y^k\}$. Then $\hat{x} = \operatorname{arg\ min}\ d(x, M)$ if, and only if,

$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k$$

$$G^T \alpha = \beta$$

$$G_{ij} = \langle y^i, y^j \rangle$$

$$\beta_i = \langle x, y^i \rangle.$$

Application: Over determined system of linear equations in \mathbb{R}^n

$$A\alpha = b$$
,

where $A = n \times m$ real matrix, $n \ge m$, rank(A) = m (columns of A are linearly independent). From the dimension of A, we have that $\alpha \in \mathbb{R}^m$, $b \in \mathbb{R}^n$.

Original Problem Formulation:

Seek $\hat{\alpha}$ such that

$$||A\hat{\alpha} - b|| = \min_{\alpha \in \mathbb{R}^m} ||A\alpha - b||,$$

where

$$||x||^2 = \sum_{i=1}^n (x_i)^2.$$

Solution:

$$\mathcal{X} = \mathbb{R}^n, \quad \mathcal{F} = \mathbb{R}, \quad \langle x, y \rangle = x^T y = y^T x = \sum_{i=1}^n x_i y_i$$

Therefore,

$$||x||^2 = \langle x, x \rangle = \sum_{i=1}^n |x_i|^2.$$

Write

$$A = [A_1 | A_2 | \cdots | A_m] \text{ and } \alpha = [\alpha_1, \alpha_2, \cdots, \alpha_m]^{\mathsf{T}}$$

and we note that

$$A\alpha = \alpha_1 A_1 + \alpha_2 A_2 + \cdots + \alpha_m A_m.$$

New Problem Formulation:

Seek

$$\hat{x} = A\hat{\alpha} \in \operatorname{span}\{A_1, A_2, \cdots, A_m\} =: M$$

such that

$$\|\hat{x} - b\| = d(b, M) \Leftrightarrow \hat{x} - b \perp M.$$

From the Projection Theorem and the Normal Equations,

$$\hat{x} = \hat{\alpha}_1 A_1 + \hat{\alpha}_2 A_2 + \cdots + \hat{\alpha}_m A_m$$

and $G^{\top}\hat{\alpha} = \beta$, with

$$G_{ij} = \langle A_i, A_j \rangle = A_i^{\top} A_j$$
$$\beta_i = \langle b, A_i \rangle = b^{\top} A_i = A_i^{\top} b.$$

<u>Aside</u>

$$A^{\top} = \begin{bmatrix} A_1^{\top} \\ A_2^{\top} \\ \vdots \\ A_m^{\top} \end{bmatrix} \qquad A = [A_1| \cdots | A_m]$$
$$(A^{\top}A)_{ij} = A_i^{\top}A_j$$
$$G = G^{\top} = A^{\top}A$$
$$(A^{\top}b)_i = A_i^{\top}b$$

Normal Equations are

$$A^{\top} A \hat{\alpha} = A^{\top} b.$$

From the Proposition, $G^{\top} = A^{\top}A$ is invertible \Leftrightarrow columns of A are linearly independent. Hence,

$$\hat{\alpha} = (A^{\top} A)^{-1} A^{\top} b.$$

Prop. $g(y^1, y^2, \dots, y^k) \neq 0 \Leftrightarrow \{y^1, \dots, y^k\}$ is linearly independent.

Proof: $g(y^1, y^2, \dots, y^k) = 0 \leftrightarrow \exists \alpha \neq 0$ such that $G^{\top} \alpha = 0$.

From our construction of the normal equations, $G^{\top}\alpha = 0$ if, and only if

$$\langle \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k, y^i \rangle = 0 \quad i = 1, 2, \dots, k.$$

This is equivalent to

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \perp y^i = 0 \ i = 1, 2, \dots, k$$

which is equivalent to

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \perp \operatorname{span}\{y^1, \dots, y^k\} =: M$$

and thus

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \in M^{\perp}.$$

Because $\alpha_1 y^1 + \alpha_2 y^2 + \cdots + \alpha_k y^k \in M$, we have that

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \in M \cap M^{\perp}$$

and therefore

$$\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k = 0.$$

By the linear independence of $\{y^1, \dots, y^k\}$, we deduce that

$$\alpha_1 = \alpha_2 = \cdots = 0. \square$$

Rob 501 Fall 2014 Lecture 11

Typeset by: Su-Yang Shieh Proofread by: Zhiyuan Zuo Updated by Grizzle on 8 October 2015

Symmetric Matrices

Def. An $n \times n$ real matrix A is symmetric if $A^{\top} = A$.

Claim 1: The eigenvalues of a symmetric matrix are real.

<u>Proof:</u> Let $\lambda \in \mathbb{C}$ be an eigenvalue. To show: $\lambda = \bar{\lambda}$ where $\bar{\lambda}$ is the complex conjugate of λ .

Because $\lambda \in \mathbb{C}$ is an eigenvalue, $\exists v \in \mathbb{C}^n, v \neq 0$, such that

$$Av = \lambda v$$
.

Take the complex conjugate of both sides, yielding

$$\bar{A}\bar{v} = \bar{\lambda}\bar{v}.$$

Because A is real, we have $\bar{A} = A$ and thus

$$A\bar{v} = \bar{\lambda}\bar{v}.$$

Now, take the transpose of both sides to obtain

$$\bar{v}^{\mathsf{T}} A^{\mathsf{T}} = \bar{\lambda} \bar{v}^{\mathsf{T}}.$$

Because A is symmetric, $A^{\top} = A$, and hence,

$$\bar{v}^{\top} A = \bar{\lambda} \bar{v}^{\top}$$

$$\Rightarrow \bar{v}^{\top} A v = \bar{\lambda} \bar{v}^{\top} v$$

$$\Rightarrow \bar{v}^{\top} \lambda v = \bar{\lambda} \bar{v}^{\top} v$$

$$\therefore \lambda \|v\|^2 = \bar{\lambda} \|v\|^2$$

where $\langle x, y \rangle = x^{\top} \bar{y}$ and $||x||^2 = \langle x, x \rangle = x^{\top} \bar{x} = \bar{x}^{\top} x$. Because $||v||^2 \neq 0$, we deduce that $\lambda = \bar{\lambda}$, proving the result. \square

Remark: We now know that when A is real and symmetric, an eigenvalue λ is real, and therefore we can assume the corresponding eigenvector is real. Indeed,

$$\underbrace{(A - \lambda I)}_{\text{real}} v = 0.$$

Hence we have $v \in \mathbb{R}^n$ and we can use the real inner product on \mathbb{R}^n , namely $\langle x, y \rangle = x^\top y$.

Claim 2: Eigenvectors corresponding to distinct eigenvalues are orthogonal. That is, let $\lambda_1, \lambda_2 \in \mathbb{R}, v^1, v^2 \in \mathbb{R}^n, Av^1 = \lambda_1 v^1, Av^2 = \lambda_2 v^2, v^1 \neq 0, v^2 \neq 0$. Then,

$$\lambda_1 \neq \lambda_2 \Rightarrow \langle v^1, v^2 \rangle = 0.$$

Proof: $Av^1 = \lambda_1 v^1$.

Take the transpose of both sides, and use $A = A^{\top}$. Then,

$$(v^{1})^{\top} A = \lambda_{1}(v^{1})^{\top}$$

$$(v^{1})^{\top} A v^{2} = \lambda_{1}(v^{1})^{\top} v^{2}$$

$$(v^{1})^{\top} \lambda_{2} v^{2} = \lambda_{1}(v^{1})^{\top} v^{2}$$

$$(\lambda_{1} - \lambda_{2})(v^{1})^{\top} v^{2} = 0$$

$$\lambda_{1} \neq \lambda_{2}, \Rightarrow (v^{1})^{\top} v^{2} = 0. \square$$

Def.: A matrix Q is orthogonal if $Q^{\top}Q = I$. That is, $Q^{-1} = Q^{\top}$.

Claim 3: Suppose the eigenvalues of A are all distinct. Then there exists an orthogonal matrix Q such that

$$Q^{\top}AQ = \Lambda = \operatorname{diag}(\lambda_1, \cdots, \lambda_n).$$

<u>Proof:</u> $\lambda_1, \dots, \lambda_n$ distinct implies that the eigenvectors v_1, \dots, v_n are orthog-

onal, and thus

$$\langle v^i, v^j \rangle = (v^i)^\top v^j = 0 \quad i \neq j.$$

WLOG (without loss of generality), we can assume: $||v^i|| = 1$

$$||v^i||^2 = 1 \Leftrightarrow (v^i)^\top v^i = ||v^i||^2 = 1.$$

We define

$$Q = \left[v^1 | v^2 | \cdots | v^n \right]$$

Then

$$[Q^{\top}Q]_{ij} = (v^i)^{\top}v^j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$\therefore Q^{\top}Q = I$$
, is orthogonal. \square

Fact: [See HW06] Even if the eigenvalues are repeated, $A = A^{\top} \Rightarrow \exists Q$ orthogonal such that $Q^{\top}AQ = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Symmetric matrices are rather special in that one can ALWAYS find a basis consisting of e-vectors.

Useful Observation: Let A be $m \times n$ real matrix. Then both $A^{\top}A$ and AA^{\top} are symmetric, and hence their eigenvalues are real.

Claim 4: Eigenvalues of $A^{\top}A$ and AA^{\top} are non-negative.

<u>Proof:</u> We do the proof for $A^{\top}A$.

Let $A^{\top}Av = \lambda v$ where $v \in \mathbb{R}^n$, $v \neq 0$, $\lambda \in \mathbb{R}$, $v \in \mathbb{R}^n$. To show: $\lambda \geq 0$. Multiply both sides by v^{\top}

$$v^{\top} A^{\top} A v = v^{\top} \lambda v$$
$$\langle A v, A v \rangle = \lambda \langle v, v \rangle$$
$$\therefore \|A v\|^2 = \lambda \|v\|^2$$

 $\lambda \geq 0$, because $||v||^2 > 0$, $||Av||^2 \geq 0$. \square

Quadratic Forms

Def. Let M be an $n \times n$ real matrix and $x \in \mathbb{R}^n$. Then $x^{\top}Mx$ is called a quadratic form.

Def. An $n \times n$ matrix W is skew symmetric if $W = -W^{\top}$.

Exercise: If W is skew symmetric, then $x^{\top}Wx = 0$ for all $x \in \mathbb{R}^n$.

Exercise:
$$M$$
 a real matrix, $M = \underbrace{\frac{M + M^{\top}}{2}}_{\text{symmetric}} + \underbrace{\frac{M - M^{\top}}{2}}_{\text{skew symmetric}}.$

Def. $\frac{M+M^{\top}}{2}$ is the symmetric part of M.

Exercise:
$$x^{\top}Mx = x^{\top}\left(\frac{M+M^{\top}}{2}\right)x$$
.

Consequence: When working with a quadratic form, always assume M is symmetric.

Def. A real symmetric matric P is positive definite, if, for all $x \in \mathbb{R}^n$, $x \neq 0 \Rightarrow x^{\top} P x > 0$.

Rob 501 Fall 2014 Lecture 12

Typeset by: Yong Xiao Proofread by: Pedro Donato

Positive Definite Matrices and Schur Complement

Notation: P > 0: P is positive definite. (Does not mean all entries of P are positive)

Theorem: A symmetric matrix P is positive definite if and only if all of its eigenvalues are greater than 0.

Proof:

Claim 1: P is positive definite. \Rightarrow All eigenvalues of P are greater than 0. <u>Proof:</u> Let $\lambda \in \mathbb{R}$, $Px = \lambda x$, $x \neq 0$. (λ is an eigenvalue of P). Then, we have:

$$x^{\top} P x = x^{\top} \lambda x = \lambda \|x\|^2 > 0$$

$$\therefore ||x|| > 0 \Rightarrow \lambda > 0. \square$$

Claim 2: All eigenvalues of P are greater than $0. \Rightarrow P$ is positive definite. <u>Proof:</u> To show $x \neq 0 \Rightarrow x^{\top} Px > 0$.

Without loss of generality, assume ||x|| = 1,

$$\therefore x^{\top} x = 1.$$

$$x^{\top} P x \ge \min_{x \in \mathbb{R}^n, ||x|| = 1} x^{\top} P x = \lambda_{min}(P)$$

where $\lambda_{min}(P)$ is the smallest eigenvalue of P.

Meanwhile, $\lambda_{min}(P) > 0$ because all eigenvalues of P are positive and there is only a finite number of them.

$$\therefore x^{\top} P x \geq \lambda_{min}(P) > 0. \square$$

Exercise: Show

$$P = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right] > 0$$

Definition: $P = P^{\top}$ is positive semidefinite if $x^{\top}Px \geq 0$ for all $x \neq 0$.

Theorem: P is positive semidefinite if and only if all eigenvalues of P are non-negative. (Notation: $P \ge 0$ or $P \succcurlyeq 0$.)

Definition: N is a square root of a symmetric matrix P if $N^{\top}N = P$. Note: $N^{\top}N = (N^{\top}N)^{\top} \Rightarrow N^{\top}N$ is always symmetric.

Theorem: $P \ge 0 \Leftrightarrow \exists N \text{ such that } N^{\top}N = P.$ Proof:

1. Suppose $N^{\top}N = P$, and let $x \in \mathbb{R}^n$.

$$x^{\top} P x = x^{\top} N^{\top} N x = (N x)^{\top} (N x) = ||N x||^2 \ge 0.$$

2. Now suppose $P \geq 0$. To show $\exists N$ such that $N^{\top}N = P$. Since P is symmetric, there exists an orthogonal matrix O such that

$$P = O^{\top} \Lambda O$$

where $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

Since $P \geq 0$, $\lambda_i \geq 0$ for all i = 1, 2, ..., n.

Define $\Lambda^{1/2} := diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}),$

$$\boldsymbol{\Lambda} = (\boldsymbol{\Lambda}^{1/2})^{\top} \boldsymbol{\Lambda}^{1/2} = \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Lambda}^{1/2}.$$

Let $N = \Lambda^{1/2}O$, then

$$N^{\top}N = O^{\top} \left(\Lambda^{1/2}\right)^{\top} \Lambda^{1/2}O = O^{\top}\Lambda O = P.$$
$$: N^{\top}N = P. \square$$

Exercise: For a symmetric matrix P, $x, y \in \mathbb{R}^n$, prove $(x + y)^{\top} P(x + y) = x^{\top} P x + y^{\top} P y + 2x^{\top} P y$. (Because $y^{\top} P x$ is scalar)

Theorem: (Schur Complement) Suppose that $A = n \times n$ is symmetric and invertible, $B = n \times m$, $C = m \times m$ is symmetric and invertible, and

$$M = \left[\begin{array}{cc} A & B \\ B^{\top} & C \end{array} \right]$$

symmetric.

Then the following are equivalent:

- 1. M > 0.
- 2. A > 0, and $C B^{T} A^{-1} B > 0$.
- 3. C > 0, and $A BC^{-1}B^{\top} > 0$.

Definition: $C - B^{T}A^{-1}B$ is the Schur Complement of A in M.

Definition: $A - BC^{-1}B^{\top}$ is the Schur Complement of C in M.

<u>Proof:</u> We will show 1. \Leftrightarrow 2.. The proof of 1. \Leftrightarrow 3. is identical.

Firstly, let's show $1. \Rightarrow 2...$

Suppose M > 0, then for all $x \in \mathbb{R}^n$, $x \neq 0$,

$$\begin{bmatrix} x \\ 0 \end{bmatrix}^{\top} M \begin{bmatrix} x \\ 0 \end{bmatrix} > 0$$

$$0 < \begin{bmatrix} x \\ 0 \end{bmatrix}^{\top} \begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} x^{\top} & 0 \end{bmatrix} \begin{bmatrix} Ax \\ B^{\top}x \end{bmatrix} = x^{\top} Ax.$$

 \therefore A is positive definite.

We will make a nice choice of $\begin{bmatrix} x \\ y \end{bmatrix}$ to show $C - B^{\top} A^{-1} B > 0$.

We want Ax + By = 0, thus let $x = -A^{-1}By$, $y \neq 0$.

$$0 < \begin{bmatrix} x \\ y \end{bmatrix}^{\top} \begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -A^{-1}By \\ y \end{bmatrix}^{\top} \begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix} \begin{bmatrix} -A^{-1}By \\ y \end{bmatrix}$$
$$= \begin{bmatrix} -y^{\top}B^{\top}A^{-1} & y^{\top} \end{bmatrix} \begin{bmatrix} 0 \\ -B^{\top}A^{-1}By + Cy \end{bmatrix}$$
$$= y^{\top}Cy - y^{\top}B^{\top}A^{-1}By$$
$$= y^{\top}(C - B^{\top}A^{-1}B)y.$$

$$\therefore C - B^{\top} A^{-1} B > 0.$$

Secondly, let's show $2. \Rightarrow 1...$

Suppose A > 0, $C - B^{T}A^{-1}B > 0$. To show M > 0.

(Equivalently, to show: for an arbitrary
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
, $\begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} x \\ y \end{bmatrix}^{\top} M \begin{bmatrix} x \\ y \end{bmatrix} > 0$)

For an arbitrary $\begin{bmatrix} x \\ y \end{bmatrix}$, define $\bar{x} = x + A^{-1}By$.

Note that
$$\begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \bar{x} \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.

$$\begin{bmatrix} x \\ y \end{bmatrix}^{\top} M \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \bar{x} - A^{-1}By \\ y \end{bmatrix}^{\top} M \begin{bmatrix} \bar{x} - A^{-1}By \\ y \end{bmatrix}$$

$$= \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix}^{\top} M \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix} + \begin{bmatrix} -A^{-1}By \\ y \end{bmatrix}^{\top} M \begin{bmatrix} -A^{-1}By \\ y \end{bmatrix} + 2 \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix}^{\top} M \begin{bmatrix} -A^{-1}By \\ y \end{bmatrix}$$

$$= \bar{x}^{\top} A \bar{x} + y^{\top} (C - B^{\top} A^{-1} B) y + 0 > 0. \square$$

Rob 501 Fall 2014 Lecture 13

Typeset by: Ming-Yuan Yu Proofread by: Ilsun Song

Weighted Least Squares

Let Q be an $n \times n$ positive definite matrix (Q > 0)and let the inner product on \mathbb{R}^n be

$$\langle x, y \rangle = x^{\top} Q y.$$

We re-do $A\alpha = b$, where $A = n \times m, n \ge m, rank(A) = m, \alpha \in \mathbb{R}^m$, and $b \in \mathbb{R}^n$. We want to seek $\hat{\alpha}$ such that

$$||A\hat{\alpha} - b|| = \min_{\alpha \in \mathbb{R}^m} ||A\alpha - b||$$

where $||x|| = \langle x, x \rangle^{\frac{1}{2}} = (x^{\top}Qx)^{\frac{1}{2}}$ and Q > 0.

Solution:
$$\mathcal{X} = \mathbb{R}^n, \mathcal{F} = \mathbb{R}, \langle x, y \rangle = x^\top Q y$$

Write $A = [A_1 \mid A_2 \mid \cdots \mid A_m]$

Normal Equations:

$$\hat{x} = \hat{\alpha}_1 A_1 + \hat{\alpha}_2 A_2 + \dots + \hat{\alpha}_m A_m$$

$$G^{\top} \hat{\alpha} = \beta, \text{ with } G = G^{\top}$$

$$[G^{\top}]_{ij} = [G]_{ij} = \langle A_i, A_j \rangle = A_i^{\top} Q A_j = [A^{\top} Q A]_{ij}$$

$$\beta_i = \langle b, A_i \rangle = b^{\top} Q A_i = A_i^{\top} Q b = [A^{\top} Q b]_i.$$

$$\therefore A^{\top}QA\hat{\alpha} = A^{\top}Qb.$$

Since $A^{\top}QA$ is invertible by rank(A) = m, we can conclude that

$$\hat{\alpha} = (A^{\top}QA)^{-1}A^{\top}Qb.$$

Recursive Least Squares

Model:

$$y_i = C_i x + e_i, i = 1, 2, 3, \cdots$$

 $C_i \in \mathbb{R}^{m \times n}$

i = time index

 $x = \text{an unknown } \underline{\text{constant}} \text{ vector } \in \mathbb{R}^n$

 $y_i = \text{measurements} \in \mathbb{R}^m$

 $e_i = \text{model "mismatch"} \in \mathbb{R}^m$

Objective 1: Compute a least squared error estimate of x at time k, using all available data at time k, $(y_1, \dots, y_k)!$

Objective 2: Discover a computationally attractive form for the answer.

Solution:

$$\hat{x}_k := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left(\sum_{i=1}^k (y_i - C_i x)^\top S_i (y_i - C_i x) \right)$$
$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left(\sum_{i=1}^k e_i^\top S_i e_i \right)$$

where $S_i = m \times m$ positive definite matrix. $(S_i > 0 \text{ for all time index } i)$

Batch Solution:

$$Y_k = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix}, A_k = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_k \end{bmatrix}, E_k = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_k \end{bmatrix}$$

$$R_k = \begin{bmatrix} S_1 & \mathbf{0} \\ S_2 & \mathbf{0} \\ \mathbf{0} & \ddots & \\ S_k \end{bmatrix} = diag(S_1, S_2, \cdots, S_k) > 0$$

$$Y_k = A_k x + E_k$$
, [model for $1 \le i \le k$]
 $||Y_k - A_k x||^2 = ||E_k||^2 := E_k^\top R_k E_k$

Since \hat{x}_k is the value minimizing the error $||E_k||$, which is the unexplained part of the model,

$$\hat{x}_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} ||E_k|| = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} ||Y_k - A_k x||,$$

which satisfies the Normal Equations $(A_k^{\top} R_k A_k) \hat{x}_k = A_k^{\top} R_k Y_k$.

$$\therefore \hat{x}_k = (A_k^{\top} R_k A_k)^{-1} A_k^{\top} R_k Y_k$$
, which is called a Batch Solution.

Drawback: $A_k = km \times n$ matrix, and grows at each step!

Solution: Find a recursive means to compute \hat{x}_{k+1} in terms of \hat{x}_k and the new measurement y_{k+1} !

Normal equations at time k, $(A_k^{\top} R_k A_k) \hat{x}_k = A_k^{\top} R_k Y_k$, is equivalent to

$$\left(\sum_{i=1}^k C_i^{\top} S_i C_i\right) \hat{x}_k = \sum_{i=1}^k C_i^{\top} S_i y_i.$$

We define

$$Q_k = \sum_{i=1}^k C_i^{\top} S_i C_i$$

so that

$$Q_{k+1} = Q_k + C_{k+1}^{\top} S_{k+1} C_{k+1}.$$

At time k+1,

$$(\underbrace{\sum_{i=1}^{k+1} C_i^{\top} S_i C_i}_{Q_{k+1}}) \, \hat{x}_{k+1} = \sum_{i=1}^{k+1} C_i^{\top} S_i y_i$$

or

$$Q_{k+1}\hat{x}_{k+1} = \underbrace{\sum_{i=1}^{k} C_i^{\top} S_i y_i}_{Q_k \hat{x}_k} + C_{k+1}^{\top} S_{k+1} y_{k+1}.$$

$$\therefore Q_{k+1}\hat{x}_{k+1} = Q_k\hat{x}_k + C_{k+1}^{\top} S_{k+1} y_{k+1}$$

Good start on recursion! Estimate at time k + 1 expressed as a linear combination of the estimate at time k and the latest measurement at time k+1.

Continuing,

$$\hat{x}_{k+1} = Q_{k+1}^{-1} \left[Q_k \hat{x}_k + C_{k+1}^{\top} S_{k+1} y_{k+1} \right].$$

Because

$$Q_k = Q_{k+1} - C_{k+1}^{\mathsf{T}} S_{k+1} C_{k+1},$$

we have

$$\hat{x}_{k+1} = \hat{x}_k + \underbrace{Q_{k+1}^{-1} C_{k+1}^{\top} S_{k+1}}_{\text{Kalman gain}} \underbrace{(y_{k+1} - C_{k+1} \hat{x}_k)}_{\text{Innovations}}.$$

Innovations $y_{k+1} - C_{k+1}\hat{x}_k = \text{measurement at time } k+1 \text{ minus the "predicted" value of the measurement = "new information".}$

In a real-time implementation, computing the inverse of Q_{k+1} can be time consuming. An attractive alternative can be obtained by applying the Matrix Inversion Lemma:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B \left(DA^{-1}B + C^{-1}\right)^{-1}DA^{-1}$$

Now, following the substitution rule as shown below,

$$A \leftrightarrow Q_k \quad B \leftrightarrow C_{k+1}^{\top} \quad C \leftrightarrow S_{k+1} \quad D \leftrightarrow C_{k+1},$$

we can obtain that

$$Q_{k+1}^{-1} = (Q_k + C_k^{\top} S_{k+1} C_{k+1})^{-1}$$

= $Q_k^{-1} - Q_k^{-1} C_{k+1}^{\top} [C_{k+1} Q_k^{-1} C_{k+1}^{\top} + S_{k+1}^{-1}]^{-1} C_{k+1} Q_k^{-1},$

which is a recursion for Q_k^{-1} !

Upon defining

$$P_k = Q_k^{-1},$$

we have

$$P_{k+1} = P_k - P_k C_{k+1}^{\top} \left[C_{k+1} P_k C_{k+1}^{\top} + S_{k+1}^{-1} \right]^{-1} C_{k+1} P_k$$

We note that we are now inverting a matrix that is $m \times m$, instead of one that is $n \times n$. Typically, n > m, sometimes by a lot!

Rob 501 Fall 2014 Lecture 14 Typeset by: Bo Lin

Proofread by: Hiroshi Yamasaki

Revised: 28 October 2015

Weighted Least Square

We suppose the inner product on \mathbb{R}^n is defined by $\langle x, y \rangle = x^\top S y$, where S is an $n \times n$ positive definite matrix. We denote the corresponding norm by $||x||_S := (x^\top S x)^{1/2}$.

Overdetermined Equation:

Let Ax = b, where $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A = m \times n$, n < m, and $\operatorname{rank}(A) = n$. Then, we conclude that $\hat{x} = (A^{\top}SA)^{-1}A^{\top}Sb$, where $\hat{x} = \underset{Ax=b}{\operatorname{argmin}} ||x||_S$.

Underdetermined Equation:

Let Ax = b, where $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A = m \times n$, n > m, and rank(A) = m. In other words, we are assuming the <u>rows</u> of A are linearly independent instead of the columns of A are linearly independent.

Def. If $\forall b_0 \in \mathbb{R}^m, \exists x_0 \in \mathbb{R}^n$, such that $b_0 = Ax_0$, b = Ax is consistent.

Fact: If rank(A) = the number of rows, then the equation <math>b = Ax is consistent.

Fact: Suppose x_0 is such that $b_0 = Ax_0$, and $V = \{x \in \mathbb{R}^n | y = Ax\}$ is the set of solutions. Then, $V = x_0 + \mathcal{N}(A)$, where $\mathcal{N}(A) = \{x \in \mathbb{R}^n | Ax = 0\}$ is the null space of A. Therefore, V is the translate of a subspace. We can also say that V is an "affine" space.

Theorem: If the rows of A are linearly independent, then

$$\hat{x} := \underset{x \in V}{\operatorname{argmin}} \|x\|_{S} = \underset{Ax = b}{\operatorname{argmin}} \|x\|_{S} = \underset{Ax = b}{\operatorname{argmin}} (x^{\top} S x)^{\frac{1}{2}}$$

exists, is unique, and is given by

$$\hat{x} = S^{-1}A^{\top} (AS^{-1}A^{\top})^{-1} b.$$

Best Linear Unbiased Estimator (BLUE)

Let $y = Cx + \epsilon$, $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $E\{\epsilon\} = 0$, $\operatorname{cov}\{\epsilon, \epsilon\} = E\{\epsilon \epsilon^\top\} = Q > 0$. We assume no stochastic (random) model for the unknown x. We also assume that columns of C are linearly independent.

Seek: $\hat{x} = Ky$ that minimizes $E\{\|\hat{x} - x\|^2\} = E\{\sum_{i=1}^n |\hat{x}_i - x_i|^2\}$ where $\|\cdot\|$ is the standard Euclidean norm on \mathbb{R}^n .

Aside:

$$(v+w)^{\top}(v+w) = v^{\top}v + w^{\top}w + v^{\top}w + w^{\top}v$$

= $||v||^2 + ||w||^2 + 2v^{\top}w$ (Because $v^{\top}w$ is a scalar.)

$$E\{\|\hat{x} - x\|^2\} = E\{\|Ky - x\|^2\}$$

$$= E\{\|KCx + K\epsilon - x\|^2\}$$

$$= E\{(KCx - x + K\epsilon)^{\top}(KCx - x + K\epsilon)\}$$

$$= E\{(KCx - x)^{\top}(KCx - x) + 2(K\epsilon)^{\top}(KCx - x) + \epsilon^{\top}K^{\top}K\epsilon\}$$

From $E\{\epsilon\} = 0$ and x is deterministic, we have

$$2E\{(K\epsilon)^{\top}(KCx - x)\} = 0.$$

Moreover, by using the properties of the trace, we have

$$\epsilon^{\top} K^{\top} K \epsilon = \operatorname{tr} \left(\epsilon^{\top} K^{\top} K \epsilon \right) = \operatorname{tr} \left(K \epsilon \epsilon^{\top} K^{\top} \right).$$

$$\therefore E\{\|x - \hat{x}\|^2\} = \|KCx - x\|^2 + \operatorname{tr} E\{K\epsilon\epsilon^\top K^\top\}$$

= $\|KCx - x\|^2 + \operatorname{tr}(KQK^\top).$

Difficulty: Optimal K depends on the unknown x through $||KCx - x||^2$!

Observation: If KC = I, then the problematic term disappears, i.e.,

$$||KCx - x||^2 = 0.$$

Interpretation: Estimator is <u>unbiased</u>.

$$E{\hat{x}} = E{Ky}$$

$$= E{KCx + K\epsilon}$$

$$= KCx$$

$$= x. (if KC = I)$$

New Problem:

$$\hat{K} = \operatorname{argmin}\{\operatorname{tr}(KQK^{\top})\}\ \text{subject to}\ KC = I.$$

New Observation:

Write
$$K = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$$
 (partition K by rows).

Then, $K^{\top} = \begin{bmatrix} k_1^{\top} | k_2^{\top} | \cdots | k_n^{\top} \end{bmatrix}$

$$\operatorname{tr}\left(\begin{bmatrix} \frac{k_1}{\vdots} \\ \frac{1}{k_n} \end{bmatrix} Q \begin{bmatrix} k_1^\top | \cdots | k_n^\top \end{bmatrix} \right) = \sum_{i=1}^n k_i Q k_i^\top$$
$$= \sum_{i=1}^n \|k_i^\top\|_Q^2$$

$$KC = I \Leftrightarrow C^{\top} K^{\top} = I_{n \times n}$$

$$\Leftrightarrow C^{\top} \left[k_1^{\top} | \cdots | k_n^{\top} \right] = \left[e_1 | \cdots | e_n \right]$$

$$\Leftrightarrow C^{\top} k_i^{\top} = e_i \quad 1 \le i \le n.$$

 \therefore We have n-separate optimization problems involving the column vectors k_i^{\top} .

$$\hat{k_i}^{\top} = \operatorname{argmin} \|k_i^{\top}\|_Q^2 \text{ subject to } C^{\top} k_i^{\top} = e_i.$$

From our formula for under determined equations, we have

$$\hat{k}_i^{\top} = Q^{-1}C(C^{\top}Q^{-1}C)^{-1}e_i, \text{ which yields}$$

$$\hat{K}^{\top} = [\hat{k}_1^{\top}|\cdots|\hat{k}_n^{\top}] = Q^{-1}C(C^{\top}Q^{-1}C)^{-1}.$$
Therefore,

$$\hat{K} = (C^{\top} Q^{-1} C)^{-1} C^{\top} Q^{-1}$$

Theorem: Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $y = Cx + \epsilon$, $E\{\epsilon\} = 0$, $E\{\epsilon\epsilon^{\top}\} =: Q > 0$, and rank(C) = n. The Best Linear Unbiased Estimator (BLUE) is $\hat{x} = \hat{K}y$ where

$$\hat{K} = \left(C^{\top} Q^{-1} C\right)^{-1} C^{\top} Q^{-1}.$$

Moreover, the covariance of the error is

$$E\{(\hat{x}-x)(\hat{x}-x)^{\top}\} = (C^{\top}Q^{-1}C)^{-1}.$$

Remark: Error covariance computation is an exercise. Solution (from previous calculations)

$$E\{(\hat{x} - x) (\hat{x} - x)^{\top}\} = KQK^{\top}$$

$$= (C^{\top}Q^{-1}C)^{-1} C^{\top}Q^{-1}QQ^{-1}C (C^{\top}Q^{-1}C)^{-1}$$

$$= (C^{\top}Q^{-1}C)^{-1} [C^{\top}Q^{-1}C] (C^{\top}Q^{-1}C)^{-1}$$

$$= (C^{\top}Q^{-1}C)^{-1}$$

Indeed

$$\hat{x} - x = Ky - x$$

$$= KCx + K\epsilon - x$$

$$= K\epsilon \text{ (because } KC = I)$$

$$\therefore E\{(\hat{x} - x)(\hat{x} - x)^{\top}\} = E\{(K\epsilon)(K\epsilon)^{\top}\}$$

$$= E\{K\epsilon\epsilon^{\top}K^{\top}\}$$

$$= KQK^{\top}$$

Remarks:

- Comparing Weighted Least Squares to BLUE, we see that they are <u>identical</u> when the weighting matrix is taken as the <u>inverse</u> of the covariance matrix of the noise term: $S = Q^{-1}$.
- Another way to say this, if you solve a least squares problem with weight matrix S, you are implicitly assuming that your uncertainty in the measurements has zero mean and a covariance matrix of $Q = S^{-1}$.
- If you know the uncertainty has zero mean and a covariance matrix of Q, using $S = Q^{-1}$ makes a lot of sense! For simplicity, assume that Q is diagonal. A large entry of Q means high variance, which means the measurement is highly uncertain. Hence, the corresponding component of y should not be weighted very much in the optimization problem....and indeed, taking $S = Q^{-1}$ does just that because, the weight term S is small for large terms in Q.
- The inverse of the covariance matrix is sometimes called the *information* matrix. Hence, there is low information when the variance (or covariance) is large!
- Wow! We do all this abstract math, and the answer makes sense!

Rob 501 Fall 2014 Lecture 15

Typeset by: Connie Qiu
Proofread by: Bo Lin
Revised by Grizzle on 29 October 2015

Minimum Variance Estimator

$$y = Cx + \epsilon, y \in \mathbb{R}^m, x \in \mathbb{R}^n, \text{ and } \epsilon \in \mathbb{R}^m.$$

Stochastic assumptions:

$$E\{x\} = 0, E\{\epsilon\} = 0 \text{ (means)}.$$

$$E\{\epsilon \epsilon^{\top}\} = Q, E\{xx^{\top}\} = P, E\{\epsilon x^{\top}\} = 0 \text{ (covariances)}.$$

Remark: $E\{\epsilon x^{\top}\}=0$ implies that the states and noise are uncorrelated. Recall that uncorrelated does NOT imply independence, except for Gaussian random variables.

Assumptions: $Q \ge 0, P \ge 0, CPC^{\top} + Q > 0$. (will see why later)

Objective: minimize the variance

$$E\{\|\hat{x} - x\|^2\} = E\{\sum_{i=1}^{n} (\hat{x}_i - x_i)^2\} = \sum_{i=1}^{n} E\{(\hat{x}_i - x_i)^2\}.$$

We see that there are n separate optimization problems.

Remark: suppose $\hat{x} = Ky$. It is automatically unbiased, because

$$E\{\hat{x}\} = E\{Ky\} = E\{KCx + K\epsilon\} = KCE\{x\} + KE\{\epsilon\} = 0 = E\{x\}$$

Problem Formulation: We will pose this as a minimum norm problem in a vector space of random variables.

$$\mathcal{F}=\mathbb{R},$$

$$\mathcal{X} = span\{x_1, x_2, \dots, x_n, \epsilon_1, \epsilon_2, \dots, \epsilon_m\},\$$

where

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_m \end{bmatrix}$.

For $z_1, z_2 \in \mathcal{X}$, we define their inner product by:

$$\langle z_1, z_2 \rangle = E\{z_1 z_2\}$$

$$M = span\{y_1, y_2, \dots, y_m\} \subset \mathcal{X}$$
 (measurements),

$$y_i = C_i x + \epsilon_i = \sum_{j=1}^n C_{ij} x_j + \epsilon_i, 1 \le i \le m, (i\text{-th row of } y)$$

$$\hat{x}_i = \underset{m \in M}{\operatorname{arg\,min}} ||x_i - m|| = d(x, M).$$

Fact: $\{y_1, y_2, \ldots, y_m\}$ is linearly independent if, and only if, $CPC^{\top} + Q$ is positive definite. This is proven below when we compute the Gram matrix. (Recall, $\{y_1, y_2, \ldots, y_m\}$ linearly independent if, and only if G is full rank, where $G_{ij} := \langle y_i, y_j \rangle$.)

Solution via the Normal Equations

By the normal equations,

$$\hat{x}_i = \hat{\alpha}_1 y_1 + \hat{\alpha}_2 y_2 + \dots + \hat{\alpha}_m y_m$$

where $G^{\top}\hat{\alpha} = \beta$.

$$G_{ij} = \langle y_i, y_j \rangle = E\{y_i y_j\} = E\{[C_i x + \epsilon_i][C_j x + \epsilon_j]\}$$

$$= E\{[C_i x + \epsilon_i][C_j x + \epsilon_j]^\top\}$$

$$= E\{[C_i x + \epsilon_i][x^\top C_j^\top + \epsilon_j]\}$$

$$= E\{C_i x x^\top C_j^\top\} + E\{C_i x \epsilon_j\} + E\{\epsilon_i x^\top C_j^\top\} + E\{\epsilon_i \epsilon_j\}$$

$$= C_i E\{x x^\top\} C_j^\top + E\{\epsilon_i \epsilon_j\}$$

$$= C_i P C_j^\top + Q_{ij}$$

$$= [C P C^\top + Q]_{ij}$$

where we have used the fact that x and ϵ are uncorrelated. We conclude that

$$G = CPC^{\top} + Q.$$

We now turn to computing β . Let's note that x_i , the *i*-th component of x is equal to $x^{\top}e_i$, where e_i is the standard basis vector in \mathbb{R}^n .

$$\beta_{j} = \langle x_{i}, y_{j} \rangle = E\{x_{i}y_{j}\}$$

$$= E\{x_{i}[C_{j}x + \epsilon_{j}]\}$$

$$= E\{x_{i}C_{j}x\} + E\{x_{i}\epsilon_{j}\}$$

$$= C_{j}E\{xx_{i}\}$$

$$= C_{j}E\{xx^{\top}e_{i}\}$$

$$= C_{j}E\{xx^{\top}\}e_{i}$$

$$= C_{j}Pe_{i}$$

$$= C_{j}P_{i}$$

where $P = [P_1 | P_2 | \dots | P_n].$

Putting all this together, we have

$$G^{\top} \hat{\alpha} = \beta$$

$$\updownarrow$$

$$[CPC^{\top} + Q] \hat{\alpha} = CP_i$$

$$\updownarrow$$

$$\hat{\alpha} = [CPC^{\top} + Q]^{-1}CP_i$$

 $\hat{x}_i = \hat{\alpha}_1 y_1 + \hat{\alpha}_2 y_2 + \dots + \hat{\alpha}_m y_m = \hat{\alpha}^\top y = (\text{row vector} \times \text{column vector.})$

$$\hat{\alpha} = \begin{bmatrix} \hat{\alpha}_1 \\ \vdots \\ \hat{\alpha}_m \end{bmatrix}.$$

We now seek to identify the gain matrix K so that

$$\hat{x} = Ky \Leftrightarrow \hat{x}_i = K_i y, \text{ where } K = \begin{bmatrix} \frac{K_1}{K_2} \\ \vdots \\ \overline{K_n} \end{bmatrix};$$

that is, K_i is the *i*-th row of K.

$$K_i^{\top} = \hat{\alpha} = [CPC^{\top} + Q]^{-1}CP_i$$
$$[K_1^{\top}|\dots|K_n^{\top}] = [CPC^{\top} + Q]^{-1}CP$$
$$K = PC^{\top}[CPC^{\top} + Q]^{-1}$$

$$\hat{x} = Ky = PC^{\top}[CPC^{\top} + Q]^{-1}y$$

Remarks:

- 1. Exercise: $E\{(\hat{x}-x)(\hat{x}-x)^{\top}\}=P-PC^{\top}[CPC^{\top}+Q]^{-1}CP$
- 2. The term $PC^{\top}[CPC^{\top} + Q]^{-1}CP$ represents the "value" of the measurements. It is the reduction in the variance of x given the measurement y.
- 3. If Q > 0 and P > 0, then from the Matrix Inversion Lemma

$$\hat{x} = Ky = [C^{\top}Q^{-1}C + P^{-1}]^{-1}C^{\top}Q^{-1}y.$$

This form of the equation is useful for comparing BLUE vs MVE

- 4. BLUE vs MVE
 - BLUE: $\hat{x} = [C^{\top}Q^{-1}C]^{-1}C^{\top}Q^{-1}y$
 - MVE: $\hat{x} = [C^{\top}Q^{-1}C + P^{-1}]^{-1}C^{\top}Q^{-1}y$
 - Hence, BLUE = MVE when $P^{-1} = 0$.
 - $P^{-1} = 0$ roughly means $P = \infty I$, that is infinite covariance in x, which in turn means no idea about how x is distributed!
 - For BLUE to exist, we need $\dim(y) \ge \dim(x)$
 - For MVE to exist, we can have $\dim(y) < \dim(x)$ as long as

$$(CPC^{\top} + Q) > 0$$

Solution to Exercise

We seek $E\{(\hat{x}-x)(\hat{x}-x)^{\top}\}$ To get started, let's note that

$$\hat{x} - x = Ky - x = KCx + K\epsilon - x = (KC - I)x + K\epsilon$$

and thus

$$(\hat{x} - x)(\hat{x} - x)^{\top} = (KC - I)xx^{\top}(KC - I)^{\top} + K\epsilon\epsilon^{\top}K^{\top} - 2(KC - I)x\epsilon^{\top}K^{\top}$$

Taking expectations, and recalling that x and ϵ are uncorrelated, we have

$$E\{(\hat{x} - x)(\hat{x} - x)^{\top}\} = (KC - I)P(KC - I)^{\top} + KQK^{\top}$$
$$= KCPC^{\top}K^{\top} + P - 2PC^{\top}K^{\top} + KQK^{\top}$$
$$= P + K[CPC^{\top} + Q]K^{\top} - 2PC^{\top}K^{\top}$$

substituting with $K = PC^{\top}[CPC^{\top} + Q]^{-1}$ and simplifying yields the result.

Solution to MIL

We will show that if Q > 0 and P > 0, then

$$PC^{\top}[CPC^{\top} + Q]^{-1} = [C^{\top}Q^{-1}C + P^{-1}]^{-1}C^{\top}Q^{-1}$$

MIL: Suppose that A, B, C and D are compatible matrices. If A, C, and $(C^{-1} + DA^{-1}B)$ are each square and invertible, then A + BCD is invertible and

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

We apply the MIL to $[C^{\top}Q^{-1}C + P^{-1}]^{-1}$, where we identify $A = P^{-1}, B = C^{\top}, C = Q^{-1}, D = C$. This yields

$$[C^{\top}Q^{-1}C + P^{-1}]^{-1} = P - PC^{\top}[Q + CPC^{\top}]^{-1}CP$$

Hence

$$\begin{split} [C^\top Q^{-1}C + P^{-1}]^{-1}C^\top Q^{-1} &= PC^\top Q^{-1} - PC^\top [Q + CPC^\top]^{-1}CPC^\top Q^{-1} \\ &= PC^\top \left[I - [Q + CPC^\top]^{-1}CPC^\top\right]Q^{-1} \\ &= PC^\top [[Q + CPC^\top]^{-1}[Q + CPC^\top] - [Q + CPC^\top]^{-1}CPC^\top]Q^{-1} \\ &= PC^\top [Q + CPC^\top]^{-1} \left[[Q + CPC^\top] - CPC^\top\right]Q^{-1} \\ &= PC^\top [Q + CPC^\top]^{-1} \left[Q + CPC^\top - CPC^\top\right]Q^{-1} \\ &= PC^\top [Q + CPC^\top]^{-1} \left[Q\right]Q^{-1} \\ &= PC^\top [Q + CPC^\top]^{-1} \end{split}$$

 $^{^{1}}$ The sizes are such the matrix products and sum in A+BCD make sense.

Typeset by: Kurt Lundeen Proofread by: Connie Qiu Revised by Ni on 6 November 2015

Matrix Factorizations

QR Decomposition or Factorization: Let A be a real $m \times n$ matrix with linearly independent columns (rank of A = n = # columns). Then there exist an $m \times n$ matrix Q with orthonormal columns and an upper triangular $n \times n$ matrix R such that

$$A = QR$$
.

Notes:

1)
$$Q^{\top}Q = I_{n \times n}$$

2)
$$[R]_{ij} = 0$$
, for $i < j$, $R = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & r_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & r_{nn} \end{bmatrix}$

3) Columns of A linearly independent $\Leftrightarrow R$ is invertible

Utility of QR Decomposition:

1) Suppose Ax = b is overdetermined with columns of A linearly independent.

Write A = QR and consider

$$A^{\top}A\hat{x} = A^{\top}b$$

$$A^{\top}A = R^{\top}Q^{\top}QR = R^{\top}R$$

$$A^{\top}b = R^{\top}Q^{\top}b$$

$$\therefore R^{\top}R\hat{x} = R^{\top}Q^{\top}b$$

$$R\hat{x} = Q^{\top}b \quad \text{(because } R \text{ is invertible)}$$

 \therefore Solve for \hat{x} by back substitution using triangular nature of R. For example, when n=3

$$\begin{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} \end{bmatrix} \hat{x} = Q^{\top} b$$

Then, \hat{x}_3 to \hat{x}_1 can be obtained easily without using the matrix inversion.

2) Suppose Ax = b is under determined with rows of A linearly independent. Recall: $\hat{x} = A^{\top} (AA^{\top})^{-1} b$ is x of smallest norm satisfying Ax = b. A^{\top} has linearly independent columns.

 $\therefore A^{\top} = QR, \ Q^{\top}Q = I, \ R$ is upper triangular and invertible.

$$AA^{\top} = R^{\top}Q^{\top}QR = R^{\top}R$$
$$\hat{x} = QR(R^{\top}R)^{-1}b$$
$$= QRR^{-1}(R^{\top})^{-1}b$$
$$\hat{x} = Q(R^{\top})^{-1}b$$

Computation of QR Factorization:

Gram Schmidt with Normalization:

$$A = [A_1 | A_2 | \cdots | A_n], \quad A_i \in \mathbb{R}^m, \quad \langle x, y \rangle = x^\top y.$$

For $1 \le k \le n, \{A_1, A_2, \cdots, A_n\} \to \{v_1, v_2, \cdots, v_n\}$

by

$$v^{1} = \frac{A_{1}}{\|A_{1}\|};$$

$$v^{2} = A_{2} - \langle A_{2}, v^{1} \rangle v^{1};$$

$$v^{2} = \frac{v^{2}}{\|v^{2}\|};$$

$$\vdots$$

$$v^{k} = A_{k} - \langle A_{k}, v^{1} \rangle v^{1} - \langle A_{k}, v^{2} \rangle v^{2} - \dots - \langle A_{k}, v^{k-1} \rangle v^{k-1};$$

$$v^{k} = \frac{v^{k}}{\|v^{k}\|};$$

For
$$k = 1: n$$

$$v^k = A_k$$
 For $j = 1: k-1$
$$v^k = v^k - \langle A_k, v^j \rangle v^j$$
 End
$$v^k = \frac{v^k}{\|v^k\|}$$

End

 $Q = [v^1|v^2|\cdots|v^n]$ has orthonormal columns, and hence $Q^{\top}Q = I_{n\times n}$ because $[Q^{\top}Q]_{ij} = \langle v^i, v^j \rangle = \delta_{ij}$.

What about R?

$$A_{i} \in \operatorname{span}\{v^{1}, \cdots, v^{i}\}$$

$$A_{i} = \langle A_{1}, v^{1} \rangle v^{1} + \langle A_{2}, v^{2} \rangle v^{2} + \cdots + \langle A_{i}, v^{i} \rangle v^{i}$$
We define $R_{i} = \begin{bmatrix} \langle A_{1}, v^{1} \rangle \\ \vdots \\ \langle A_{i}, v^{i} \rangle \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, where the value becomes 0 in R_{i} from the $(i+1)$ -th

element to the n-th element.

$$\therefore QR_i = A_i \Leftrightarrow QR = A$$

Modified Gram Schmidt Algorithm:

We have been using the classical Gram-Schmidt Algorithm. It behaves poorly under round-off error.

Here is a standard example:

$$y^{1} = \begin{bmatrix} 1 \\ \varepsilon \\ 0 \\ 0 \end{bmatrix}, y^{2} = \begin{bmatrix} 1 \\ 0 \\ \varepsilon \\ 0 \end{bmatrix}, y^{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \varepsilon \end{bmatrix}, \varepsilon > 0$$

Let $\{e^1, e^2, e^3, e^4\}$ be the standard basis vectors $\left(Yes, (e^i_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}\right)$

We note that

$$y^{2} = y^{1} + \varepsilon(e^{3} - e^{2})$$

 $y^{3} = y^{2} + \varepsilon(e^{4} - e^{3})$

and thus

$$\operatorname{span}\{y^1, y^2\} = \operatorname{span}\{y^1, (e^3 - e^2)\}$$
$$\operatorname{span}\{y^1, y^2, y^3\} = \operatorname{span}\{y^1, (e^3 - e^2), (e^4 - e^3)\}$$

Then, GS applied to $\{y^1, y^2, y^3\}$ and $\{y^1, (e^3 - e^2), (e^4 - e^3)\}$ should produce the same orthonormal vectors.

We go to MATLAB, and for $\varepsilon = 0.1$, we do indeed get the same results. See MATLAB.

But with $\varepsilon = 10^{-8}$,

$$||Q_1 - Q_2|| = 0.5$$

Initial data $\{y^1, \dots, y^n\}$ linearly independent.

For
$$k = 1:n$$

$$v^k = y^k$$

end

For
$$i = 1:n$$

$$v^{i} = \frac{v^{i}}{\|v^{i}\|}$$
For $j = i+1:n$

$$v^{j} = v^{j} - \langle v^{i}, v^{j} \rangle v^{i}$$

 $\begin{array}{c} \text{end} \\ \text{end} \end{array}$

Typeset by: Joshua Mangelson Proofread by: Katie Skinner Revised by Ni on Nov. 20, 2015

Singular Value Decomposition

We will use the SVD (Singular Value Decomposition) to understand "numerical" rank of a matrix, "numerical linear independence", etc.

Def. Rectangular diagonal matrix: Σ is an $m \times n$ matrix.

a)
$$m > n$$
 $\Sigma = \begin{bmatrix} S \\ 0 \end{bmatrix}$, S is an $n \times n$ diagonal matrix

b)
$$m < n$$
 $\Sigma = \begin{bmatrix} S & 0 \end{bmatrix}$, S is an $m \times m$ diagonal matrix

Diagonal of Σ is equal to diagonal of S. Another way to say Rectangular Diagonal Matrix is $[\Sigma]_{ij} = 0$ for $i \neq j$.

SVD Theorem: Any $m \times n$ \mathbb{R} matrix A can be factorized as $A = Q_1 \Sigma Q_2^{\top}$, where Q_1 is an $m \times m$ orthogonal matrix, Q_2 is an $n \times n$ orthogonal matrix, Σ is an $m \times n$ rectangular diagonal matrix, and diagonal of Σ diag $(\Sigma) = [\sigma_1, \sigma_2, \cdots, \sigma_k]$, which satisfies $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \geq 0$, where $k = \min(n, m)$. Moreover, the columns of Q_1 are eigenvectors of AA^{\top} , the columns of Q_2 are eigenvectors of $A^{\top}A$, and $(\sigma_1^2, \sigma_2^2, \cdots, \sigma_k)^2$ are eigenvalues of $A^{\top}A$ and AA^{\top} .

Remark: The entries of diag(Σ) are called singular values.

Generalizes decomposition of symmetric matrix.

$$P = O\Lambda O^{\top}$$

Projection process embedded in SVD: Interpret SVD in the case of over-determined system of equations.

$$Y = Ax, Y \in \mathbb{R}^m, X \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$$

where rank $(A) = n \ (m > n), A = Q_1 \Sigma Q_2^{\top}, \Sigma = \begin{bmatrix} S \\ 0 \end{bmatrix}, S \text{ is an } n \times n \text{ diagonal matrix.}$

$$\begin{split} A^\top A &= Q_2 \Sigma^\top Q_1^\top Q_1 \Sigma Q_2^\top \\ &= Q_2 \left[\begin{array}{cc} S & 0 \end{array} \right] Q_1^\top Q_1 \left[\begin{array}{c} S \\ 0 \end{array} \right] Q_2^\top \\ &= Q_2 \left[\begin{array}{cc} S & 0 \end{array} \right] I \left[\begin{array}{c} S \\ 0 \end{array} \right] Q_2^\top \\ &= Q_2 S^2 Q_2^\top \\ A^\top Y &= Q_2 \left[\begin{array}{cc} S & 0 \end{array} \right] Q_1^\top Y \\ \tilde{Y} &= Q_1^\top Y = \left[\begin{array}{c} \tilde{Y}_1 \\ \tilde{Y}_2 \end{array} \right], \quad \tilde{Y}_1 \in \mathbb{R}^n, \quad \tilde{Y}_2 \in \mathbb{R}^{m \times n} \\ A^\top Y &= Q_2 \left[\begin{array}{cc} S & 0 \end{array} \right] \tilde{Y} \\ &= Q_2 \left[\begin{array}{cc} S & 0 \end{array} \right] \left[\begin{array}{c} \tilde{Y}_1 \\ \tilde{Y}_2 \end{array} \right] \\ &= Q_2 S \tilde{Y}_1 \end{split}$$

Projection! Notice how \tilde{Y}_2 gets multiplied by 0, in the last line above. Here we are throwing away the orthogonal parts.

We decomposed Y into part in column span of A, \tilde{Y}_1 , and a part not in the

span $\tilde{Y_2}$.

$$Ax = Y$$

$$\Rightarrow A^{\top}A\hat{x} = A^{\top}Y$$

$$\Rightarrow Q_{2}S^{2}Q_{2}^{\top}\hat{x} = Q_{2}S\tilde{Y}_{1}$$

$$\Rightarrow S^{2}Q_{2}^{\top}\hat{x} = S\tilde{Y}_{1} \text{ (rank}(A) = \# \text{ columns} \Rightarrow S \text{ invertible.)}$$

$$\Rightarrow SQ_{2}^{\top}\hat{x} = \tilde{Y}_{1}$$

$$\therefore \hat{x} = Q_2 S^{-1} \tilde{Y}_1$$

Remarks:

- Q_2 only rotates, no scaling.
- Only S^{-1} scales.
- If S has small elements, elements of S^{-1} are big. Therefore, \hat{x} is too sensitive to the noise perturbation in measurements.

Hermitian of X: Consider $x \in \mathbb{C}^n$. Then we define the vector "x Hermitian" by $x^H := \bar{x}^\top$. That is, x^H is the complex conjugate transpose of x. Similarly, for a matrix $A \in \mathbb{C}^{m \times n}$, we define $A^H \in \mathbb{C}^{n \times m}$ by \bar{A}^\top . We say that a square matrix $A \in \mathbb{C}^{n \times n}$ is a <u>Hermitian matrix</u> if $A = A^H$.

Another common way to write the SVD:

$$A = \begin{cases} U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^H, & m > n \\ U \begin{bmatrix} \Sigma & 0 \end{bmatrix} V^H, & m < n \end{cases}$$

Unitary Matrix: A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $U^H U = U U^H = I_n$.

Numerical Rank: numerical rank(A) = # of nonzero singular values larger than a threshold.

Fact: The <u>numerical rank</u> of A is the number of singular values that are larger than a given threshold. Often the threshold is chosen as a percentage of the largest singular value.

Lecture: Random Vector Typeset by: Xianan Huang Proofread by: Josh Mangelson Revised by Grizzle 10 Nov 2015

Probability Review

1 Random Variables

I will assume known the definition of a probability space, a set of events, and random variable. My scanned lecture notes are attached at the end of this handout.

Given: (Ω, \mathcal{F}, P) a probability space

 $X:\Omega\to R$ random variable

2 Random Vectors

Def. A random vector is a function $X:\Omega\to\mathbb{R}^p$ where each component of

$$X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{pmatrix} \text{ is a random variable, that is, } X_i : \Omega \to \mathbb{R} \text{ for } 1 \le i \le p.$$

Assumption: $\forall x \in \mathbb{R}^p$, the set $\{\omega \in \Omega \mid X(\omega) \leq x\} \in \mathscr{F}$ where the inequality is understood pointwise, that is,

$$\{\omega \in \Omega \mid X(\omega) \le x\} = \bigcap_{i=1}^{p} \{\omega \in \Omega \mid X_i(\omega) \le x_i\}$$

Distributions and Densities For a random vector $X : \Omega \to \mathbb{R}^p$, the cumulative probability distribution function is

$$F_X(x) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\})$$

The probability density function of a continuous random vector X is

$$f_X(x) = \frac{\partial^p F_X(x)}{\partial x_1 \partial x_2 ... \partial x_p}$$

which is equivalent to

$$F_X(x_1, x_2, ... x_p) = \int_{-\infty}^{x_p} ... \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_X(\bar{x}_1, \bar{x}_2 ... \bar{x}_p) d\bar{x}_1 d\bar{x}_2 ... d\bar{x}_p$$

Suppose the vector X is partitioned into two components X_1 and X_2 , so that, by abuse notation, we have

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \begin{array}{c} X_1 : \Omega \to \mathbb{R}^n \\ X_2 : \Omega \to \mathbb{R}^m \end{array}$$

$$X: \Omega \to \mathbb{R}^p$$
 with $p = n + m$

Def. X_1 and X_2 are independent if the distribution function factors

$$F_X(x) = F_{X_1,X_2}(x_1,x_2) = F_{X_1}(x_1)F_{X_2}(x_2).$$

The same is true for densities.

3 Conditioning

Recall For two events $A, B \in \mathcal{F}, P(B) > 0$

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

Note

$$B \subset A, \ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

 $A \subset B, \ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} \ge P(A)$

Def. The conditional distribution of X_1 given $X_2 = x_2$ is

$$F_{X_1|X_2}(x_1 \mid x_2) = \lim_{\varepsilon \to 0} P(X_1 \le x_1 \mid x_2 - \varepsilon \le X_2 \le x_2 + \varepsilon) = \lim_{\varepsilon \to 0} \frac{P(A \cap B_{\varepsilon})}{P(B_{\varepsilon})}$$
where $A = \{ \omega \in \Omega \mid X_1(\omega) \le x_1 \}$ and $B_{\epsilon} = \{ \omega \in \Omega \mid x_2 - \varepsilon \le X_2(\omega) \le x_2 + \varepsilon \}$

In general, this is unpleasant to compute, but for Gaussian random vectors, the handout "Useful Facts About Gaussian Random Variables and Vectors" shows that it is quite easy.

Def. The conditional density is $f_{X_1|X_2}(x_1 \mid x_2) = \frac{f_{X_1X_2}(x_1,x_2)}{f_{X_2}(x_2)}$. Sometimes we simply write $f(x_1 \mid x_2)$

Very important: X_1 given $X_2 = x_2$ is a random vector. We have produced its distribution and density!

4 Moments

Suppose $g: \mathbb{R}^p \to R$

$$E\{g(X)\} = \int_{\mathbb{R}^p} g(x) f_X(x) dx = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1 \dots x_p) f_X(x_1 \dots x_p) dx_1 \dots dx_p$$

Mean or Expected Value

$$\mu = E\{X\} = E\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \right\} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix}$$

Covariance Matrices

$$cov(X) = cov(X, X) = E\{(X - \mu)(X - \mu)^T\}$$

where

$$(X-\mu)$$
 is $p\times 1$, $(X-\mu)^T$ is $1\times p$, $(X-\mu)(X-\mu)^T$ is $p\times p$

Exercise cov(X) is positive semidefinite

If we have X decomposed in blocks $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \begin{array}{l} X_1: \Omega \to \mathbb{R}^n \\ X_2: \Omega \to \mathbb{R}^m \end{array}$ we may compute

$$cov(X_1, X_2) = E\{(X_1 - \mu_1)(X_2 - \mu_2)^T\}$$

where

$$(X_1 - \mu_1)$$
 is $m \times 1$, $(X_2 - \mu_2)^T$ is $1 \times n$, $(X_1 - \mu_1)(X_2 - \mu_2)^T$ is $m \times n$

Def. X_1 and X_2 are uncorrelated if $cov(X_1, X_2) = 0$

Fact: In general, independence \Rightarrow uncorrelated, but the converse is false.

5 Derivation of the conditional density formula from the definition of the conditional distribution:

$$P(A \bigcap B_{\varepsilon}) = \int_{-\infty}^{x_1} \int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_1 X_2}(\bar{x}_1, \bar{x}_2) d\bar{x}_2 d\bar{x}_1$$

$$P(B_{\varepsilon}) = \int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_2}(\bar{x}_2) d\bar{x}_2$$

$$F_{X_1 \mid X_2}(x_1 \mid x_2) = \frac{P(A \bigcap B_{\varepsilon})}{P(B_{\varepsilon})} = \frac{\int_{-\infty}^{x_1} \int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_1 X_2}(\bar{x}_1, \bar{x}_2) d\bar{x}_2 d\bar{x}_1}{\int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_2}(\bar{x}_2) d\bar{x}_2}, \, \varepsilon \text{ small}$$

Density: differentiate w.r.t. x_1

$$f_{X_1|X_2}(x_1 \mid x_2) = \frac{\int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_1 X_2}(x_1, \bar{x}_2) d\bar{x}_2}{\int_{x_2 - \varepsilon}^{x_2 + \varepsilon} f_{X_2}(\bar{x}_2) d\bar{x}_2} = \frac{f_{X_1 X_2}(x_1, x_2) \cdot 2\varepsilon}{f_{X_2}(x_2) \cdot 2\varepsilon} = \frac{f_{X_1 X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

ROB 501 Fall 2014
Lecture 19
Typeset by:
Proofread by:
There was no lecture on this day.

Typeset by: Yevgeniy Yesilevskiy Revised by Ni on 21 Nov. 2015

Multivariate Random Variables or Vectors

Let (Ω, \mathscr{F}, P) be a probability space.

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

where $X_1 \in \mathbb{R}^n$ and $X_2 \in \mathbb{R}^m$, and let p = n + m. Then, the distribution function

$$F_{X_1X_2}(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$$

= $P(\{\omega \in \Omega | X_1(\omega) \le x_1, X_2(\omega) \le x_2\})$

Conditioning:

$$F_{X_1|X_2}(x_1|x_2) = P(X_1 \le x_1|X_2 = x_2)$$

$$= \lim_{\epsilon \to 0} \frac{P(A \cap B_{\epsilon})}{P(B_{\epsilon})}$$

where $A = \{\omega | X_1(\omega) \le x_1\}, B_{\epsilon} = \{\omega | x_2 - \epsilon \le X_2(\omega) \le x_2 + \epsilon\}$

Conditional Density:

$$f_{X_1|X_2} = \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

Sometimes, it is convenient to write $f(x_1|x_2)$.

Conditional Mean (Expectation):

$$\mu(x_2) = E\{X_1 | X_2 = x_2\} = \int_{\mathbb{R}^n} x_1 f(x_1 | x_2) dx_1$$
$$= \int_{\mathbb{R}^n} x_1 f_{X_1 | X_2}(x_1 | x_2) dx_1$$

Theorem: Let $\hat{x} = \operatorname{argmin}_{z=g(x_2)} E\{||X_1 - z||^2 | X_2 = x_2\}$, where g varies over all functions $g: \mathbb{R}^m \to \mathbb{R}^n$. Then, $\hat{x} = \mu(x_2) = E\{X_1 | X_2 = x_2\}$.

Remark: $g: \mathbb{R}^m \to \mathbb{R}^n$ includes linear, quadratic, cubic ... terms.

Typeset by: Jeff Koller Proofread by: Yevgeniy Yesilevskiy Revised by Grizzle on 10 Nov. 2015

Luenberger Observers

Luenberger Observers: It is deterministic estimator. We consider the easiest case

$$x_{k+1} = Ax_k$$
$$y_k = Cx_k$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, $A \in \mathbb{R}^{n \times n}$, and $C \in \mathbb{R}^{p \times n}$.

Question 1: When can we reconstruct the initial condition (x_o) from the measurements $y_0, y_1, y_2, ...$

$$y_o = Cx_o$$

$$y_1 = Cx_1 = CAx_o$$

$$y_2 = Cx_2 = CAx_1 = CA^2x_o$$

$$\vdots$$

$$y_k = CA^kx_o$$

Represent the above matrix form:

$$\begin{bmatrix} y_o \\ y_1 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^k \end{bmatrix} x_o$$

We note that if rank
$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^k \end{bmatrix} = n$$
, then we can determine x_0 uniquely on the

Caley Hamilton Theorem:

basis of the measurements.

$$\operatorname{rank} \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array} \right] = \operatorname{rank} \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^k \end{array} \right] \text{ for all } k \geq n-1$$

Theorem: rank
$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$$
 means that we can determine x_o uniquely from the measurements. (This called the Kalman observability rank condition.)

Question 2: Can we process the measurements dynamically (i.e. recursively) and "estimate" x_k ?

Full-State Luenberger Observer:

$$\hat{x}_{k+1} = A\hat{x}_k + L(y_k - C\hat{x}_k)$$

We define the error to be $e_k = x_k - \hat{x}_k$. We want conditions such that $e_k \to 0$ as $k \to \infty$. Want $e_k \to 0$ because then $\hat{x}_k \to x_k!!!$

$$e_{k+1} = x_{k+1} - \hat{x}_{k+1}$$

$$= Ax_k - [A\hat{x}_k + L(y_k - C\hat{x}_k)]$$

$$= A(x_k - \hat{x}_k) - LC(x_k - \hat{x}_k)$$

$$= Ae_k - LCe_k$$

$$e_{k+1} = (A - LC)e_k$$

Theorem: Let $e_0 \in \mathbb{R}^n$ and define $e_{k+1} = (A - LC)e_k$. The the sequence $e_k \to 0$ as $k \to \infty$ for all $e_0 \in \mathbb{R}^n$ if, and only if, $|\lambda_i(A - LC)| < 1$ for $i = 1, \ldots, n$.

Theorem: A sufficient condition for the existence of $L: \mathbb{R}^m \to \mathbb{R}^n$ that places eigenvalues of (A - LC) in the unit circle is:

$$\operatorname{rank} \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array} \right] = n = \dim(x)$$

.

Remarks: L = constant similar to K_{ss} = steady-state Kalman Gain

- 1. Reason to choose one gain over the other: Optimality of the estimate when you know the noise statistics.
- 2. Kalman Filter works for time varying models A_k, C_k, G_k , etc.

Rob 501 Fall 2014 Lecture 22 Typeset by Ni on 18 Nov. 2015

Real Analysis

Let $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ be a real normed space. Recall $\|\cdot\|: \mathcal{X} \to [0, +\infty)$ such that

- 1. $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- 2. $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$ for all $\alpha \in \mathbb{R}$, $x \in \mathcal{X}$
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{X}$.

Recall:

Def.

- 1. For $x, y \in \mathcal{X}, d(x, y) := ||x y||$.
- 2. For $x \in X$, $S \subset \mathcal{X}$ a subset

$$d(x, S) := \inf_{y \in S} ||x - y||.$$

Def. Let $x_0 \in X$ and $a \in \mathbb{R}$, a > 0. The open ball of radius a center at x_0 is

$$B_a(x_0) = \{ x \in \mathcal{X} | ||x - x_0|| < a \}.$$

Examples:

1. $(\mathbb{R}^2, \|\cdot\|_2)$: Euclidean norm

2. $(\mathbb{R}^2, \|\cdot\|_1)$: One norm

$$||(x_1, x_2)||_1 = |x_1| + |x_2|$$

3. $(\mathbb{R}^2, \|\cdot\|_{\infty})$: Max norm

$$\|\cdot\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Lemma: Let $(\mathcal{X}, \|\cdot\|)$ be a normed space, $x \in \mathcal{X}$, and $S \subset \mathcal{X}$. Then,

$$d(x, S) = 0 \Leftrightarrow \forall \epsilon > 0, \exists y \in S, ||x - y|| < \epsilon$$

 $\Leftrightarrow \forall \epsilon > 0, B_{\epsilon}(x) \cap S \neq \emptyset.$

Corollary:

$$d(x, S) > 0 \Leftrightarrow \exists \epsilon > 0, \ \forall y \in S, \ ||x - y|| \ge \epsilon$$

 $\Leftrightarrow \exists \epsilon > 0 \text{ such that } B_{\epsilon}(x) \cap S = \emptyset$

In the following, we assume $(\mathcal{X}, \|\cdot\|)$ is given.

Def.

- 1. Let $P \subset \mathcal{X}$, a subset of \mathcal{X} . A point $p \in P$ is an interior point of P if $\exists \epsilon > 0$ such that $B_{\epsilon}(p) \subset P$.
- 2.

$$\mathring{P} = \{ p \in P \mid p \text{ is an interior point} \}$$

$$= \{ p \in P \mid \exists \epsilon > 0 \text{ such that } B_{\epsilon}(p) \subset P \}$$

Remark for later use: $p \in \mathring{P} \Leftrightarrow \exists \epsilon > 0$, $B_{\epsilon}(p) \subset P \Leftrightarrow \exists \epsilon > 0$ such that $B_{\epsilon}(p) \cap (\sim P) = \varnothing \Leftrightarrow d(p, \sim P) > 0$

$$\sim P = P^C = \text{complement} = \{x \in \mathcal{X} | x \notin P\}$$

3. P is open if $P = \mathring{P}$. (Every point in P is an interior point.)

Proposition: $x \in \mathring{P} \Leftrightarrow d(x, \sim P) > 0$

Example:

• $P=(0,\ 1)\subset (\mathbb{R},\ \|\cdot\|)$ is open $x\in P,\ 0< x\leq \frac{1}{2},\ \epsilon=\frac{x}{2},\ B_{\epsilon}(x)\subset P, \text{ and}$ $x\in P,\ \frac{1}{2}\leq x<1,\ \epsilon=1-\frac{x}{2},\ B_{\epsilon}(x)\subset P.$

• $P = [0, 1) \subset (\mathbb{R}, |\cdot|)$ is not open because $0 \in P, \forall \epsilon > 0, B_{\epsilon}(0) \cap (\sim P) \neq \varnothing$ or $0 \in P, d(0, \sim P) = 0$.

Def.

1. A point $x \in \mathcal{X}$ is a closure point of P if $\forall \epsilon > 0$, $\exists p \in P$ such that $\operatorname{dis} \|x - p\| < \epsilon$, [d(x, P) = 0].

2.

Closure of P =
$$P$$
 := $\{x \in \mathcal{X} \mid \mathcal{X} \text{ is a closure point}\}$
= $\{x \in \mathcal{X} \mid d(x, P) = 0\}$

3. P is closed if $P = \overline{P}$.

Example:

1.
$$P = \{x \in [0, 1] \mid x \text{ rational}\} \Rightarrow \overline{P} = [0, 1]$$

2.
$$P = (0, 1) \Rightarrow \overline{P} = [0, 1]$$

Proposition:

$$x \in \mathcal{X}, \ x \in \overline{P} \Leftrightarrow d(x, P) = 0.$$

 $x \in \mathcal{X}, \ x \in \mathring{P} \Leftrightarrow d(x, \sim P) > 0.$

$$Page = 99$$

Proposition:

$$P$$
 is closed $\Leftrightarrow P = \overline{P}$.
 P is open $\Leftrightarrow P = \mathring{P}$.

Proposition:

$$P$$
 is closed $\Leftrightarrow \sim P$ is open. P is open $\Leftrightarrow \sim P$ is closed.

$\underline{\text{Proof:}}$

$$\underbrace{\sim P = \sim (\mathring{P})}_{P \text{ is open}} = \{x \in \mathcal{X} \mid d(x, \sim P) = 0\} = \underbrace{\sim P}_{\sim P \text{ is closed}} \square$$

Typeset by: Ilsun Song Proof-read by: Yunxiang Xu Revised by Ni on 21 Nov. 2015

Sequence

Def. A set of vectors indexed by the non-negative integers is called a <u>sequence</u> (x_n) or $\{x_n\}$. Let (x_n) be a sequence and $n_1 < n_2 < n_3 < \cdots$ be an infinite set of strictly increasing integers. Then, (x_{n_i}) is called a <u>subsequence</u> of (x_n) . Example:

$$n_i = 2i + 1 \text{ or } n_i = 2^i$$

Def. A sequence of vectors (x_n) converges to $x \in X$ if, $\forall \varepsilon > 0$, $\exists N(\varepsilon) < \infty$ such that, $n \ge N$, then $||x_n - x|| < \varepsilon$, i.e., $n \ge N \Rightarrow x_n \in B_{\varepsilon}(x)$. One writes

$$\lim_{n \to \infty} x_n = x \text{ or } x_n \to x \text{ or } x_n \xrightarrow[n \to \infty]{} x.$$

Proposition: Suppose $x_n \to x$. Then,

- 1. $||x_n|| \to ||x||$
- 2. $\sup_{n} ||x_n|| < \infty$ (The sequence is bounded.)
- 3. If $x_n \to y$ then y = x. (Limits are unique.)

Aside: Useful inequality (Triangular inequality) For \overline{x} , $\overline{y} \in X$,

$$\|\overline{x}\| = \|\overline{x} - \overline{y} + \overline{y}\| \le \|\overline{x} - \overline{y}\| + \|\overline{y}\|$$

$$\Rightarrow \|\overline{x}\| - \|\overline{y}\| \le \|\overline{x} - \overline{y}\|$$

$$\therefore \|\|\overline{x}\| - \|\overline{y}\|\| \le \|\overline{x} - \overline{y}\|$$

Proof:

1.
$$|||x|| - ||x_n||| \le ||x - x_n|| \xrightarrow[n \to \infty]{} 0.$$

2. Set
$$\varepsilon = 1$$
, $\exists N(1) < \infty$ such that $n \ge N$, $||x_n - x|| \le 1$.
 $\therefore \forall n \ge N$, $||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| \le 1 + ||x||$.

$$\sup_{k} ||x_k|| \le \max\{\underbrace{||x_1||, ||x_2||, \cdots, ||x_{n-1}||, 1 + ||x||}_{\text{finite}}\} < \infty.$$

3.
$$||x - y|| = ||x - x_n + x_n - y|| \le ||x - x_n|| + ||x_n - y|| \xrightarrow[n \to \infty]{} 0.$$

Def. $x \in X$, $P \subset X$ a subset. x is a <u>limit point</u> of P if \exists a sequence of elements of P that converges to x. That is, $\exists (x_n), x_n \in P$, and $\lim_{n \to \infty} x_n = x$.

Proposition: x is a limit point of $P \Leftrightarrow x \in \overline{P}$. Proof:

- 1. Suppose x is a limit point. Then, $\exists (x_n)$ such that $x_n \in P$ and $x_n \to x$. Because $x_n \to x$, $\forall \varepsilon > 0$, $\exists x_n \in P$ such that $||x_n x|| < \varepsilon \Rightarrow d(x, P) = 0$ $\Rightarrow x \in \overline{P}$.
- 2. Suppose $x \in \overline{P}$. Then, $\forall \varepsilon > 0$, $\exists y \in P$ such that $||x y|| < \varepsilon$. Let $\varepsilon = \frac{1}{n}$. Then, $\exists x_n \in P$ such that $||x x_n|| < \frac{1}{n}$ $\Rightarrow x_n \to x$.

 $\therefore x$ is a limit point.

Corollary: P is closed \Leftrightarrow it contains its limit points.

Complete Spaces (Banach Spaces)

Def. A sequence (x_n) in $(\mathcal{X}, \|\cdot\|)$ is a Cauchy sequence if $\forall \varepsilon > 0, \exists N(\varepsilon) < \infty$, such that $n, m \geq N \Rightarrow \|x_n - x_m\| < \varepsilon$.

Notation: $||x_n - x_m|| \xrightarrow[n, m \to \infty]{} 0$

Proposition: If $x_n \to x$, then (x_n) is Cauchy.

<u>Proof:</u> Let $\varepsilon > 0$ and choose $N < \infty$ such that $n \ge N \Rightarrow ||x_n - x|| < \frac{\varepsilon}{2}$. Then,

$$||x_n - x_m|| = ||x_n - x + x - x_m||$$

$$\leq ||x_n - x|| + ||x - x_m||$$

$$< 0.5\varepsilon + 0.5\varepsilon$$

$$< \varepsilon \quad \text{for all } n, \ m > N \square$$

Unfortunately, not all Cauchy sequences are convergent. For a reason we will understand shortly, all counter examples are infinite dimensional.

Example:

$$X = \{f : [0,1] \to \mathbb{R} \mid \text{f continuous}\}\$$

where $||f||_1 = \int_0^1 |f(\tau)| d\tau$.

Define a sequence as follow

$$f_n(t) = \begin{cases} 0 & 0 \le t \le \frac{1}{2} - \frac{1}{n} \\ 1 + n(t - \frac{1}{2}) & \frac{1}{2} - \frac{1}{n} \le t \le \frac{1}{2} \\ 1 & t \ge \frac{1}{2} \end{cases}$$

 $||f_n - f_m||_1 = \frac{1}{2} |\frac{1}{n} - \frac{1}{m}| \xrightarrow[n, m \to \infty]{} 0$, but there is no continuous f(t), such that $f(t) \to f$.

Def. A normed space $(X, \mathbb{R}, \|\cdot\|)$ is <u>complete</u> if every Cauchy Sequence in X has a limit in X. Such spaces are called <u>Banach spaces</u>.

There are many useful and known Banach spaces.

In EECS562, you will use $(C[0, T], \|\cdot\|_{\infty})$.

Def. A subset P of a normed space is <u>complete</u> if every Cauchy Sequence in P has a limit in P.

Remark: P is complete $\Rightarrow P$ is closed.

Theorem:

- 1. In a normed linear space, any finite dimensional subspace is complete.
- 2. Any closed subset of a complete set is also complete.
- 3. $C[a, b], \|\cdot\|_{\infty}$ is complete where $C[a, b] = \{f : [a, b] \to \mathbb{R} \mid f \text{ continuous}\}$ Note: a < b, both finite.

Typeset by: Kevin Chen Proofread by: Yong Xiao Revised by Ni on Nov. 21, 2015

Newton-Raphson & Contraction Mapping

Let $h: \mathbb{R}^n \to \mathbb{R}^n$ satisfy, $\forall x \in \mathbb{R}^n$, the Jacobian $\frac{\partial h}{\partial x}(x)$ exists, is continuous and is invertible. Moreover, $\frac{\partial h}{\partial x}(x)$ is a continuous function.

Remark: One says h is C^1 when its derivative exits and is continuous.

Problem: For $y \in \mathbb{R}^n$, find a solution to y = h(x), i.e., seek $x^* \in \mathbb{R}^n$ s.t. $h(x^*) = y$.

Approach: Generate a sequence of approximate solutions. Then, refer to the literature to ensure convergence.

Idea: Have x_k , seek x_{k+1} such that $h(x_{k+1}) - y \approx 0$. We write $x_{k+1} = x_k + \Delta x_k$ so that $h(x_k + \Delta x_k) - y \approx 0$. Applying Taylor's Theorem and keeping only the zeroth and first order terms,

$$h(x_k) + \frac{\partial h}{\partial x}(x_k) \Delta x_k - y \approx 0$$

$$\frac{\partial h}{\partial x}(x_k) \Delta x_k \approx -(h(x_k) - y)$$

$$\Delta x_k \approx -\left[\frac{\partial h}{\partial x}(x_k)\right]^{-1}(h(x_k) - y)$$

$$\therefore x_{k+1} = \underbrace{x_k - \left[\frac{\partial h}{\partial x}(x_k)\right]^{-1}(h(x_k) - y)}_{T(x_k)}$$

As indicated, we define $T(x) = x - \left[\frac{\partial h}{\partial x}(x)\right]^{-1} (h(x) - y)$. Then,

$$x^* = T(x^*) \quad \text{(Fixed Point)}$$

$$\Leftrightarrow x^* = -\left[\frac{\partial h}{\partial x}(x^*)\right]^{-1} (h(x^*) - y)$$

$$\Leftrightarrow 0 = \left[\frac{\partial h}{\partial x}(x^*)\right]^{-1} (h(x^*) - y)$$

$$\Leftrightarrow y = h(x^*)$$

Let $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ be a normed space, $S \subset \mathcal{X}$, and $T: S \to S$.

Questions:

- 1. When does $\exists x^*$ s.t. $T(x^*) = x^*$? (Fixed point)
- 2. If a fixed point exists, is it unique?
- 3. When can a fixed point be determined by the Method of Successive Approximations: $x_{n+1} = T(x_n)$?

Def. $T: S \to S$ is a <u>contraction mapping</u> if, $\exists \ 0 \le \alpha < 1 \text{ s.t. } \forall x, y \in S, \|T(x) - T(y)\| \le \alpha \|x - y\|$

.

Contraction Mapping Theorem: If T is a contraction mapping on a complete subset S of a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, then there exists a unique vector $x^* \in S$ such that $T(x^*) = x^*$. Moreover, for every initial point $x_0 \in S$, the sequence $x_{n+1} = T(x_n)$, $n \ge 0$, is Cauchy, and $x_n \to x^*$.

Proof: For all $n \ge 1$

$$||x_{n+1} - x_n|| = ||T(x_n) - T(x_{n-1})||$$

 $\leq \alpha ||x_n - x_{n-1}||$

By induction, $||x_{n+1} - x_n|| \le \alpha^n ||x_1 - x_0||$. Consider $||x_m - x_n||$, and WLOG, suppose m = n + p, p > 0. Then,

$$||x_{m} - x_{n}|| = ||x_{n+p} - x_{n}||$$

$$= ||x_{n+p} - x_{n+p-1}| + x_{n+p-1} - \dots + x_{n+1} - x_{n}||$$

$$\leq ||x_{n+p} - x_{n+p-1}|| + \dots + ||x_{n+1} - x_{n}||$$

$$\leq (\alpha^{n+p-1} + \alpha^{n+p-2} + \dots + \alpha^{n}) ||x_{1} - x_{0}||$$

$$= \alpha^{n} \sum_{i=0}^{p-1} \alpha^{i} ||x_{1} - x_{0}||$$

$$\leq \alpha^{n} \sum_{i=0}^{\infty} \alpha^{i} ||x_{1} - x_{0}||$$

$$= \frac{\alpha^{n}}{1 - \alpha} ||x_{1} - x_{0}|| \xrightarrow[n \to \infty]{n \to \infty} 0$$

 \therefore (x_n) is Cauchy sequence in S, and by completeness, $\exists x^* \in S$ such that $x_n \to x^*$. \square

Claim: $x^* = T(x^*)$

Proof: For every $n \ge 1$,

$$||x^* - T(x^*)|| = ||x^* - x_n + x_n - T(x^*)||$$

$$= ||x^* - x_n + T(x_{n-1}) - T(x^*)||$$

$$\leq ||x^* - x_n|| + ||T(x_{n-1}) - T(x^*)||$$

$$\leq ||x^* - x_n|| + \alpha ||x_{n-1} - x^*|| \xrightarrow[n \to \infty]{} 0. \square$$

Claim: x^* is unique.

Proof: Suppose $y^* = T(y^*)$.

Then,

$$||x^* - y^*|| = ||T(x^*) - T(y^*)||$$

 $\leq \alpha ||x^* - y^*|| \text{ and } 0 \leq \alpha < 1$

The only non-negative real number γ that satisfies $\gamma \leq \gamma \alpha$ for some $0 \leq \alpha < 1$ is $\gamma = 0$. Hence, due to the property of norms, $0 = ||x^* - y^*|| \Leftrightarrow x^* = y^*$. \square

Continuous Functions and Compact Sets

Def. Let $(\mathcal{X}, \|\cdot\|)$, and $(\mathcal{Y}, \|\cdot\|)$, be two normed spaces.

- (a) $f: \mathcal{X} \to \mathcal{Y}$ is continuous at $x_0 \in \mathcal{X}$ if $\forall \varepsilon > 0$, $\exists \delta (\varepsilon, x_0) > 0$ such that $||x x_0|| < \delta \Rightarrow |||f(x)|||| < \varepsilon$
- , i.e. $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $x \in B_{\delta}(x_0) \Rightarrow f(x) \in B_{\varepsilon}(f(x_0))$.
- (b) f is <u>continuous</u> if it is continuous at x_0 for all $x_0 \in \mathcal{X}$.

Theorem: Let Let $(\mathcal{X}, \|\cdot\|)$, and $(\mathcal{Y}, \||\cdot\||)$ be two normed spaces. $f: \mathcal{X} \to \mathcal{Y}$ a function.

- (a) If f is continuous at x_0 and the sequence (x_n) converges to x_0 (i.e. $x_n \to x_0$). Then, $f(x_n) \to f(x_0)$.
- (b) If f is not continuous at x_0 (discontinuous), then there exists a sequence (x_n) such that $x_n \to x_0$, and $f(x_n) \not\to f(x_0)$, that is, $f(x_n)$ does not converge to $f(x_0)$.

The proof is done in HW 10.

Typeset by: Yunxiang Xu Proofread by: Jakob Hoellerbauer Revised by Ni on Nov. 29, 2015

Continuous Functions and Compact Sets (Continued)

Def. A set C is bounded if $\exists r < \infty$ such that $C \subset B_r(0)$.

Bolzano-Weierstrass Theorem (Sequential Compactness Theorem): In a finite dimensional normed space $(\mathcal{X}, \mathbb{R}, ||\cdot||)$, the following two properties are equivalent for a set $C \subset \mathcal{X}$.

- (a) C is closed and bounded;
- (b) For every sequence (x_n) in C (i.e. $x_n \in C$), there exists $x_0 \in C$ and a subsequence (x_{n_i}) of (x_n) such that $x_{n_i} \to x_0$ (Every sequence in C contains a convergent subsequence).

Subsequence: $1 \leq n_1 < n_2 < n_3 < \cdots$

Def. C satisfies (a) or (b) is said to be compact.

Example: C = [0, 1] is a compact subset of \mathbb{R} . For all (x_n) in C, it will have two following possibilities.

- (a) (x_n) has finite number of distinct values and at least one of them has to be used for infinite times.
- (b) (x_n) has infinite number of distinct values.

Weierstrass Theorem: If C is compact and $f: C \to \mathbb{R}$ is continous, then f

achieves its extreme values. That is,

$$\exists x^* \in C$$
, s.t. $f(x^*) = \sup_{x \in C} f(x)$

and

$$\exists x_* \in C$$
, s.t. $f(x_*) = \inf_{x \in C} f(x)$.

<u>Proof:</u> Let $f^* := \sup_{x \in C} f(x)$. To show $\exists x^* \in C$, s.t. $f(x^*) = f^*$.

Assume f^* is finite (Can be shown, but we skip it).

$$f^* = \text{supremum} = \text{least upper bound}$$

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in C, \text{ s.t. } |f^* - f(x_{\varepsilon})| < \varepsilon.$$

Set $\varepsilon = \frac{1}{n}$, and deduce that $\exists (x_n)$ in C such that $|f^* - f(x_n)| < \frac{1}{n}$ C is compact $\Rightarrow \exists (x_{n_i})$ and $x^* \in C$, s.t. $x_{n_i} \to x^*$.

By f continuous, $f(x_{n_i}) \to f(x^*)$

$$|f^* - f(x^*)| = |f^* - f(x_{n_i}) + f(x_{n_i}) - f(x^*)|$$

$$\leq |f^* - f(x_{n_i})| + |f(x_{n_i}) - f(x^*)|$$

$$\leq \frac{1}{n_i} + |f(x_{n_i}) - f(x^*)|$$

$$\xrightarrow[i \to \infty]{} 0$$

$$\therefore f^* = f(x^*). \ \Box$$

Convex Sets and Convex Functions

Def. Let (V, \mathbb{R}) is a vector space. $C \subset V$ is <u>convex</u> if $\forall x, y \in C, 0 \leq \lambda \leq 1$. Then, $\lambda x + (1 - \lambda)y \in C$.

Remark:

- (a) $x, y \in C$, then line connecting x and y also lies in C.
- (b) Balls are always convex.

Def. Suppose C is convex. Then $f: C \to \mathbb{R}$ is <u>convex</u> if $\forall x, y \in C, 0 \le \lambda \le 1$, $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$.

Def. Suppose $(V, \mathbb{R}, ||\cdot||)$ a normed space. $D \subset V$ a subset, and $f: D \to \mathbb{R}$ a function.

(a) $x^* \in D$ is a <u>local minimum</u> of f if $\exists \delta > 0$ s.t. $\forall x \in B_{\delta}(x^*), f(x^*) \leqslant f(x)$.

(b)
$$x^* \in D$$
 is a global minimum if $\forall y \in D, f(x^*) \leq f(y)$.

Theorem: If D and f are both convex, then any local minimum is also a global minimum.

<u>Proof:</u> We prove by contrapositive statement.

We show that if x is not a global minimum, then it cannot be a local minimum.

 $x \in D$, x is not a global minimum, hence $\exists y \in D$ s.t. f(y) < f(x).

To show: $\forall \delta > 0$. $\exists z \in B_{\delta}(x)$, s.t. f(z) < f(x).

Claim: $\forall \delta > 0, \exists 0 < \lambda < 1, \text{ s.t. } z = (1 - \lambda)x + \lambda y \in B_{\delta}(x).$

$$||z - x|| = ||(1 - \lambda)x + \lambda y - x||$$

$$= ||\lambda(y - x)||$$

$$= \lambda||y - x||$$

$$< \delta$$

 $\lambda < \frac{\delta}{||y-x||}$. It works!

$$f(z) = f((1 - \lambda)x + \lambda y)$$

$$\leqslant (1 - \lambda)f(x) + \lambda f(y)$$

$$< (1 - \lambda)f(x) + \lambda f(x)$$

$$= f(x)$$

 $\therefore f(z) < f(x)$. x is not a local minimum. \square

Typeset by: Vittorio Bichucher Proofread by: Mia Stevens Revised by Ni on Nov. 29, 2015

Convex Sets and Convex Functions (Continued)

Additional Facts:

- All norms $\|\cdot\|: X \to [0, \infty)$ are convex. (proof using triangle inequality)
- For all $1 \le \beta < \infty$, $\|\cdot\|^{\beta}$ is convex. (Convex function \times strictly increasing function) Hence, on \mathbb{R}^n :

$$\sum_{i=1}^{n} |x_i|^3$$

is convex.

• Let r > 0, $\|\cdot\|$ a norm, $B_r(x_0)$ is a convex set.

Special case: $B_1(0)$ convex set. (unit ball about the origin) Let C be an open, bounded and convex set, $0 \in \mathbb{C}$. Then, $\exists \|\cdot\| : X \to [0, \infty)$ such that $C = \{x \in X \mid ||x|| < 1\} = B_1(0)$.

- K_1 convex, K_2 convex $\to K_1 \cap K_2$ is convex. (Proved by line inside the set)
- Consider $(\mathbb{R}^n, \mathbb{R})$, A is a real m by n matrix, $b \in \mathbb{R}^m$. Then:
 - $-K = \{x \in \mathbb{R}^n | Ax \leq b\}$ is also convex. (linear inequality)
 - $-K = \{x \in \mathbb{R}^n | Ax = b\}$ is convex. (linear equality)
 - $-K = \{x \in \mathbb{R}^n | A_{eq}x = b_{eq}, A_{in}x \leq b_{in}\}$ is convex as well. (intersection property)

Remark: $\tilde{A}x \geq \tilde{b} \Leftrightarrow -\tilde{A}x \leq -\tilde{b}$.

Quadratic Programming

$$x \in \mathbb{R}^n$$
, $Q \ge 0$.
Minimize: $x^TQx + fx$ subject to $A_{in}x \le b_{in}$ and $A_{eq}x = b_{eq}$

Note: f(x), Q, A_{in} and A_{eq} are all convex. Also, check if constraints form the empty set.

There are special purposes solvers available! See S. Boyd's website!

Example using robot equation:

$$D(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = Bu$$

where $q \in \mathbb{R}^n$, $u \in \mathbb{R}^m$.

Further, the ground reaction forces can be modeled as:

$$F = \Lambda_0(q, \dot{q}) + \Lambda_1(q)u = \begin{bmatrix} F^h \\ F^v \end{bmatrix}.$$

Suppose the desired feedback signal is $u = \gamma(q, \dot{q})$, but we need to respect bounds on the ground reaction forces

$$F^v \geq 0.2 m_{total} g$$
.

Therefore, the normal force should be at least 20% of the total weight

$$|F^h| \le 0.6F^v.$$

Therefore, the friction force has a cone shape, and its magnitude is less than

60% of the total vertical force. Putting it all together:

$$\begin{bmatrix} F^v \ge 0.2m_{total}g \\ F^h \le 0.6F^v \\ -F^h \le 0.6F^v \end{bmatrix} \Leftrightarrow A_{in}(q)u \le b_{in}(q,\dot{q}).$$

QP:

$$u^* = \operatorname{argmin} \ u^T u + d^T dp$$
$$A_{in}(q)u \le b_{in}(q, \dot{q})$$
$$u = \gamma(q, \dot{q}) + d^T d$$

where d^Td is often called the relaxation parameter. Further, p is an weighting factor and it should be $>>>> 1 \cdot 10^4$. Dr. Grizzle finished by showing his handout in linear programming and quadractic programming. And remember Stephen Boyd!