# HPCC Systems

Processamento e análise de big data



### Apresentadores

#### Alysson Oliveira

- Engenheiro de software na LexisNexis Risk Solutions
- Graduado em Engenharia da Computação (USP)

00010101010101

Alysson.Oliveira@lexisnexisrisk.com

#### Hugo Watanuki

- Engenheiro de software na LexisNexis Risk Solutions
- Doutor em Engenharia da Produção (USP)
- Hugo.Watanuki@lexisnexisrisk.com







## Bem-vindo! – Agenda do curso

- √ HPCC Systems: Visão geral
  - ✓O que é?
  - ✓ Para que serve?
- ✓ Tutorial: Machine Learning com HPCC
  - ✓ Aprendizagem supervisionada
  - ✓ Previsão de preços de imóveis
- ✓ Próximos passos
  - ✓ Cursos online
  - ✓ Projetos de pesquisa



**HPCC Systems: Visão geral** 



## Quem somos nós?



RELX é um provedor global de análises baseadas em informações e ferramentas de decisão para clientes profissionais e empresariais. O Grupo atende clientes em mais de 180 países e possui escritórios em cerca de 40 países.

Saiba mais em www.relx.com

#### Científico



#### **Eventos**



#### Análise de risco





#### Legal





#### Ativos e clientes



- 12 petabytes de dados públicos e privados
- 270 milhões de transações por hora
- Clientes em mais de **100** países
- **76**% de todas as empresas Fortune 500
- 7 dos 10 maiores bancos do mundo
- **100**% dos 50 maiores bancos americanos
- 95 das 100 maiores seguradoras
- Mais de 7.500 orgãos governamentais locais, estaduais e federais



# Estrutura no Brasil



## Área de atuação

Análise de dados para organizações que buscam gerenciar riscos, encontrar oportunidades e melhorar seus resultados. Sediada em Atlanta, Geórgia, a LexisNexis Risk Solutions tem mais de 5.400 funcionários ao redor do mundo.

### Tecnologia de código aberto

Plataforma de computação de Big Data de código aberto chamada HPCC Systems com vastos ativos de dados para proporcionar inteligência de decisão para clientes.

https://github.com/hpcc-systems



## O que é o HPCC Systems?





## Breve histórico do HPCC Systems





### Visão geral do stack



#### **Cluster ROXIE**

Entrega online de consultas em big data



#### Bibliotecas de Machine Learning

Supervisionado, não-supervisionado, aprendizagem profunda



#### Ferramentas para manipulação de dados

Perfilamento, limpeza, consolidação de dados



#### **Cluster Thor**

Extração, transformação e carregamento de dados



#### Conectividade

Plugins de integração com outros sistemas



## Arquitetura do HPCC Systems



## O que é ROXIE?

ROXIE é um sistema de query massivamente paralelo.

#### Grupo de Nós que:

- Funcionam como uma única entidade que executam processos Servidores e os Agentes;
- Executam múltiplas threads em cada nó para que os dados sejam recuperados de forma eficiente;
- Utiliza índices com queries pré-compiladas;
- Tempo de resposta em ms;





## Benchmark

Table 1. HPCC vs Hadoop vs Spark

| Topic                | HPCC                                                                                                                                                                                                                                                                                   | Hadoop                                | Spark                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|
| Parallelism Paradigm | Dataflow  Three parallel execution                                                                                                                                                                                                                                                     | MapReduce  Data parallelism only, and | RDD (Resilient Distributed Dataset) |
|                      | modes:  Data: Data partitioned across nodes; Compute occurs on each node in parallel  Pipeline: Consecutive operations on the same dataset at the same time; Data processed by one operation immediately passed to the next  System: Independent operations try to execute in parallel | only in the Map phase.                | Data parallelism only               |

| Topic                              | HPCC                                                                                                                                                                                               | Hadoop        | Spark                                                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------|
| Compilation                        | Yes. The C++ generated by<br>the ECL Compiler is com-<br>piled for execution                                                                                                                       | No. JVM-based | No. JVM-based                                                                       |
| Built-in End User Query<br>Support | Yes. Roxie clusters deliver thousands of concurrent end-user transactions per second (actual numbers dependent on the number of nodes in the cluster and the complexity of the queries themselves) | quired.       | No. Third party tools required.                                                     |
| Production Monitoring              | Yes. Ganglia and Nagios in-<br>cluded as part of the plat-<br>form.                                                                                                                                |               | No. Third party tools required.                                                     |
| Language(s) Supported              | ECL built in with any other language embeddable in-<br>line. C++, Java, Javascript,<br>Python, SQL, and R cur-<br>rently supported. More em-<br>bed languages can be added<br>by the community     |               | API allows JVM-based lan-<br>guage programming (like<br>Java, Python, Scala, and R) |



## Desempenho comparativo





https://cdn.hpccsystems.com/whitepapers/hpccsystems\_thor\_spark.pdf

#### Relacionamento com Academia

#### https://hpccsystems.com/community/academics

























#### Universidades Brasileiras

#### Universidade de São Paulo Brasil



- Disciplina Optativa (Link)
- Cursos de extensão (<u>Link</u>)
- Coorientação de IC´s (PIBIC <u>Link1 Link2 Link3</u>)



- Coorientação de TCC's/IC´s (<u>Link1 Link2</u>)
- Coautoria de artigos científicos (<u>Link</u>)
- Auxílio para aquisição de equipamentos



## Projetos de Pesquisa



https://wiki.hpccsystems.com/display/hpcc/Available+Projects



## Considerações Finais





**Tutorial: Machine Learning com HPCC** 



### Objetivo do tutorial

#### Serviço web de consulta de preço de imóveis



#### (1.662.959 registros de propriedades)

| ## | propertyid | house_number | house_number_suffix | predir | street      | streettype | postdir | apt    | city              | state | zip   | total_value | assessed_value |
|----|------------|--------------|---------------------|--------|-------------|------------|---------|--------|-------------------|-------|-------|-------------|----------------|
| 1  | 828195     | 144          |                     |        | MCKIERNAN   | DR         |         |        | WALNUT CREEK      | CA    | 94597 | 62614       | 62614          |
| 2  | 1144455    | 281          |                     |        | CENTER      | ST         |         |        | BALTIMORE         | MD    | 21136 | 105500      | 10550          |
| 3  | 1494347    | 483          |                     |        | NEWTON      | RD         |         |        | FLAGSTAFF         | AZ    | 86011 | 2220        | 2220           |
| 4  | 1910847    | 802          |                     |        | HATCHERY    | CT         |         |        | WOODLAND          | WA    | 98674 | 356000      | 356000         |
| 5  | 4267562    | 5007         |                     | E      | ROY ROGERS  | RD         |         |        | TROY              | MI    | 48085 | 327253      | 327253         |
| 6  | 4888602    | 7607         |                     |        | PEBBLESTONE | DR         |         | 000009 | KERNVILLE         | CA    | 93238 | 732179      | 732179         |
| 7  | 54135      | 4            |                     |        | WAINWRIGHT  | DR         |         |        | NORTH FORT MYERS  | FL    | 33917 | 159724      | 87848          |
| 8  | 762012     | 125          |                     |        | SHIPYARD    | DR         |         | 000150 | MELBOURNE VILLAGE | FL    | 32904 | 96300       | 96300          |
| 9  | 2331721    | 1190         |                     |        | LITTLEOAK   | DR         |         |        | HOUSTON           | TX    | 77011 | 238854      | 217810         |
| 10 | 3276109    | 2506         |                     |        | MEADOW      | DR         |         |        | LA QUINTA         | CA    | 92253 | 30977       | 30660          |

#### fn getprice roxiequery web.1 Response

Dataset: Result 1





## Integração com WEB







## Preparação do ambiente

Cluster de treinamento: http://54.215.2.79:8010/

GitPod

#### ERAD | ERAMIA 2021 Workshop

ECL course material for community workshops. The training cluster utilized during the workshop is: http://54.215.2.79:8010/.

#### During the workshop GitPod will be used as main environment:

1. By using your GitHub credentials, just click on the following link for instantiate a environment via GitPod: https://gitpod.io/#https://github.com/hpccsystems-solutions-lab/hpcc-systems-BR



## Fluxo de aprendizado supervisionado

1. Definição do problema





























#### 1. Definição do problema

## "Dado um conjunto de atributos de uma propriedade (localização, metragem, ano de construção), como predizer o seu valor real de venda?"

| propertyid | house_numb | house_nupredi | r street     | streett p | postdir | apt    | city          | state | zip   | total_value | assessed_value | year_acquired | land_square_foot | living_square_fe | bedrooms | full_bath |
|------------|------------|---------------|--------------|-----------|---------|--------|---------------|-------|-------|-------------|----------------|---------------|------------------|------------------|----------|-----------|
| 828195     | 144        |               | MCKIERNAN    | DR        |         |        | WALNUT CREEK  | CA    | 94597 | 62614       | 52614          | 2006          | 20418            | 2485             | 3        | 2         |
| 1144455    | 281        |               | CENTER       | ST        |         |        | BALTIMORE     | MD    | 21136 | 105500      | 10550          | 2007          | 4807             | 1368             | 0        | 0         |
| 1494347    | 483        |               | NEWTON       | RD        |         |        | FLAGSTAFF     | AZ    | 86011 | 2220        | 2220           | 0             | 5654             | 1011             | 3        | 1         |
| 1910847    | 802        |               | HATCHERY     | СТ        |         |        | WOODLAND      | WA    | 98674 | 356000      | 856000         | 0             | 6094             | 0                | 2        | 1         |
| 4267562    | 5007       | E             | ROY ROGERS   | RD        |         |        | TROY          | MI    | 48085 | 327253      | 327253         | 2007          | 3484             | 0                | 3        | 0         |
| 4888602    | 7607       |               | PEBBLESTONE  | DR        |         | 000009 | KERNVILLE     | CA    | 93238 | 732179      | 732179         | 2010          | 19597            | 6132             | 6        | 6         |
| 48725      | 4          |               | LONG         | AVE       |         |        | SUNRISE       | FL    | 33323 | 271000      | 271000         | 2008          | 6880             | 2392             | 4        | 2         |
| 83528      | 6          |               | TRILLUM      | LN        |         |        | WAYLAND       | MA    | 02193 | 79889       | 79889          | 2007          | 7657             | 1657             | 4        | 1         |
| 94604      | 7          |               | PARMENTER    | AVE       |         |        | PLYMOUTH      | MN    | 55441 | 23800       | 23800          | 2005          | 19994            | 1754             | 3        | 2         |
| 220326     | 17         |               | TIMBER       | RD        |         |        | LOS ANGELES   | CA    | 90063 | 89000       | 39000          | 2008          | 7840             | 954              | 3        | 1         |
| 994609     | 212        |               | FREYER       | DR N      | VE      |        | PHILOMONT     | VA    | 20131 | 59800       | 59800          | 2009          | 11199            | 1241             | 3        | 0         |
| 1836173    | 724        |               | EASTER       | ST        |         |        | ALLENTOWN     | PA    | 18102 | 191600      | 191600         | 0             | 9100             | 2534             | 4        | 2         |
| 2910797    | 1903       |               | SADDLE BROOK | DR        |         |        | CLIO          | CA    | 96106 | 61610       | 51610          | 2007          | 0                | 0                | 0        | 0         |
| 3083959    | 2158       |               | RIVERSIDE    | DR        |         |        | UPPER MORELA  | PA    | 19006 | 90300       | Ð              | 0             | 0                | 1235             | 3        | 2         |
| 3952189    | 4040       |               | GRAND VIEW   | BLVD      |         | 000054 | RIO LINDA     | CA    | 95673 | 0           | ð              | 0             | 2700720          | 0                | 0        | 0         |
| 4186238    | 4726       |               | LAS PALMAS   | СТ        |         |        | WAELDER       | TX    | 78959 | 18816       | 18816          | 2009          | 2159             | 1320             | 0        | 0         |
| 4597143    | 6213       |               | WILSON       | RD        |         |        | ZOLFO SPRINGS | FL    | 33890 | 72600       | Ð              | 0             | 8496             | 0                | 3        | 1         |
| 4624905    | 6321       |               | STONEWALL    | LN        |         |        | PATERSON      | NO    | 07514 | 139880      | 139880         | 2008          | 10454            | 1391             | 4        | 2         |
| 92326      | 7          |               | KNOLLCREST   | DR        |         |        | NARANJA       | FL    | 33032 | 76214       | 76214          | 2008          | 4800             | 930              | 2        | 0         |
| 1792852    | 704        |               | ERIN         | DR        |         |        | TRABUCO       | CA    | 92678 | 28010       | 28010          | 2007          | 5200             | 0                | 3        | 1         |
| 1843977    | 728        | S             | ARLINGTON HE | RD        |         |        | BLOOMING GRO  | TX    | 76626 | 130400      | 130400         | 2007          | 36154            | 1629             | 3        | 1         |
| 4214872    | 4821       |               | MYRTLE OAK   | DR        |         | 000025 | SAN RERNARDT  | CA    | 92376 | 22250       | <u></u>        | 2007          | 93654            | а                | a        | a         |



## 1. Definição do problema (cont.)





## 2. Extração dos dados

#### "Importação e análise de dados brutos provenientes de diferentes fontes"

| ## | personid         | propertyid | house_number | house_number_suffix | predir | street       | streettype | postdir | apt    | city           | state | zip   | total_value |
|----|------------------|------------|--------------|---------------------|--------|--------------|------------|---------|--------|----------------|-------|-------|-------------|
| 1  | 187522928604396  | 828195     | 144          |                     |        | MCKIERNAN    | DR         |         |        | WALNUT CREEK   | CA    | 94597 | 62614       |
| 2  | 187522928604396  | 1144455    | 281          |                     |        | CENTER       | ST         |         |        | BALTIMORE      | MD    | 21136 | 105500      |
| 3  | 187522928604396  | 1494347    | 483          |                     |        | NEWTON       | RD         |         |        | FLAGSTAFF      | AZ    | 86011 | 2220        |
| 4  | 187522928604396  | 1910847    | 802          |                     |        | HATCHERY     | CT         |         |        | WOODLAND       | WA    | 98674 | 356000      |
| 5  | 187522928604396  | 4267562    | 5007         |                     | E      | ROY ROGERS   | RD         |         |        | TROY           | MI    | 48085 | 327253      |
| 6  | 187522928604396  | 4888602    | 7607         |                     |        | PEBBLESTONE  | DR         |         | 000009 | KERNVILLE      | CA    | 93238 | 732179      |
| 7  | 1258313199446079 | 48725      | 4            |                     |        | LONG         | AVE        |         |        | SUNRISE        | FL    | 33323 | 271000      |
| 8  | 1258313199446079 | 83528      | 6            |                     |        | TRILLUM      | LN         |         |        | WAYLAND        | MA    | 02193 | 79889       |
| 9  | 1258313199446079 | 94604      | 7            |                     |        | PARMENTER    | AVE        |         |        | PLYMOUTH       | MN    | 55441 | 23800       |
| 10 | 1258313199446079 | 220326     | 17           |                     |        | TIMBER       | RD         |         |        | LOS ANGELES    | CA    | 90063 | 89000       |
| 11 | 1258313199446079 | 994609     | 212          |                     |        | FREYER       | DR         | NE      |        | PHILOMONT      | VA    | 20131 | 59800       |
| 12 | 1258313199446079 | 1836173    | 724          |                     |        | EASTER       | ST         |         |        | ALLENTOWN      | PA    | 18102 | 191600      |
| 13 | 1258313199446079 | 2910797    | 1903         |                     |        | SADDLE BROOK | DR         |         |        | CLIO           | CA    | 96106 | 61610       |
| 14 | 1258313199446079 | 3083959    | 2158         |                     |        | RIVERSIDE    | DR         |         |        | UPPER MORELAND | PA    | 19006 | 90300       |
| 15 | 1258313199446079 | 3952189    | 4040         |                     |        | GRAND VIEW   | BLVD       |         | 000054 | RIO LINDA      | CA    | 95673 | 0           |





## 2. Extração dos dados

#### **SPRAY SPRAY SPRAY** Landing Arquivos de Parte 3 Parte 1 Parte 2 dados a serem Parte 2 Parte 1 Parte 3 ingeridos Nó 1 Nó2 Nó3



**Cluster HPCC** 



## 2. Extração dos dados (cont.)



http://54.215.2.79:8010/ (ECL Watch)

### 2. Extração dos dados (cont.)

HPCC SYSTEMS®





#### 2. Extração dos dados (cont.)



| personid | propertyid | house_number | house_nu | predir | street      | streettype |
|----------|------------|--------------|----------|--------|-------------|------------|
| 18752292 | 828195     | 144          |          |        | MCKIERNAN   | DR         |
| 18752292 | 1144455    | 281          |          |        | CENTER      | ST         |
| 18752292 | 1494347    | 483          |          |        | NEWTON      | RD         |
| 18752292 | 1910847    | 802          |          |        | HATCHERY    | СТ         |
| 18752292 | 4267562    | 5007         |          | E      | ROY ROGERS  | RD         |
| 18752292 | 4888602    | 7607         |          |        | PEBBLESTONE | DR         |
| 12583131 | 48725      | 4            |          |        | LONG        | AVE        |
| 12583131 | 83528      | 6            |          |        | TRILLUM     | LN         |
| 12583131 | 94604      | 7            |          |        | PARMENTER   | AVE        |
| 12583131 | 220326     | 17           |          |        | TIMBER      | RD         |

```
EXPORT modFile := MODULE
              EXPORT Layout := RECORD
                      UNSIGNED8 personid;
                      UNSIGNED4 propertyid;
                      UNSIGNED2 house number;
                      STRING8
                                house number suffix;
                      STRING2
                                predir;
                      STRING29
                                street;
                      STRING5
                                streettype;
                      STRING2
                                postdir;
                      STRING6
                                apt;
                      STRING27
                                city;
                      STRING2
                                state;
                      STRING5
                                zip;
                      UNSIGNED4 total value;
                      UNSIGNED4 assessed value;
                      UNSIGNED3 year acquired;
                      UNSIGNED4 land square footage;
                      UNSIGNED3 living square feet;
                      UNSIGNED2 bedrooms;
                      UNSIGNED2 full baths;
                      UNSIGNED2 half baths;
                      UNSIGNED3 year built;
              END;
              EXPORT File := DATASET('~propriedadesXXX',Layout,CSV);
```

END;



#### Bônus: Visualize os dados brutos

[V] Result 3







## 3. Preparação dos dados

#### "Limpeza, padronização e consolidação de registros"

| ## | propertyid | zip   | assessed_value | year_acquired | land_square_footage | living_square_feet | bedrooms | full_baths | half_baths | year_built | total_value |
|----|------------|-------|----------------|---------------|---------------------|--------------------|----------|------------|------------|------------|-------------|
| 1  | 79784      | 33424 | 76440          | 2015          | 4299                | 1255               | 3        | 2          | 0          | 2010       | 76440       |
| 2  | 3924129    | 20601 | 95900          | 2013          | 11224               | 1468               | 3        | 2          | 1          | 2007       | 95900       |
| 3  | 413843     | 8803  | 76000          | 2015          | 57000               | 1858               | 3        | 2          | 0          | 1970       | 76000       |
| 4  | 608224     | 98370 | 39340          | 2012          | 7405                | 1066               | 3        | 1          | 1          | 1967       | 39340       |
| 5  | 942963     | 72032 | 278400         | 2008          | 9600                | 2459               | 3        | 2          | 0          | 1963       | 278400      |
| 6  | 2237271    | 79935 | 143600         | 2011          | 8430                | 1008               | 2        | 1          | 1          | 1961       | 143600      |
| 7  | 4443742    | 84065 | 166934         | 2013          | 9317                | 1700               | 4        | 2          | 0          | 1991       | 166934      |
| 8  | 3834707    | 66227 | 348350         | 2012          | 15300               | 2663               | 4        | 2          | 1          | 2002       | 348350      |
| 9  | 3592739    | 19606 | 54000          | 2015          | 15060               | 2292               | 4        | 2          | 1          | 1980       | 90000       |
| 10 | 2916349    | 34639 | 119050         | 2015          | 6947                | 1709               | 3        | 2          | 0          | 2009       | 140950      |



#### 3. Preparação dos dados



```
IMPORT $;
Property := $.modFile.File;
EXPORT modPrep := MODULE
        // Limpando os dados
        CleanFilter := Property.zip <> '' AND Property.assessed value <> 0 AND Property.year acquired <> 0 AND
                                                                    Property.land square footage <> 0 AND Property.living square feet <> 0 AND
                                                                    Property.bedrooms <> 0 AND Property.full baths <> 0 AND Property.year Built <> 0;
        EXPORT CleanProperty := Property(CleanFilter);
        EXPORT STD Layout := RECORD
                UNSIGNED8 PropertyID;
                UNSIGNED3 zip;
                                                                                            //variável categórica
                UNSIGNED4 assessed value;
                UNSIGNED2 year acquired;
                UNSIGNED4 land square footage;
                UNSIGNED4 living square feet;
                UNSIGNED2 bedrooms;
                UNSIGNED2 full baths:
                UNSIGNED2 half baths:
                UNSIGNED2 year built;
                UNSIGNED4 total value;
                                                                   // variável dependente - a ser determinada
                UNSIGNED4 rnd;
                                                                                            // número aleatório
        END;
        EXPORT myDataP := PROJECT(CleanProperty, TRANSFORM(STD_Layout,
                                                          SELF.rnd := RANDOM(),
                                                          SELF.Zip := (UNSIGNED3)LEFT.Zip,
                                                          SELF := LEFT))
        // Aleatorize os dados ordenando o campo com número aleatório
        EXPORT myDataPS := SORT(myDataP, rnd);
        EXPORT myDataPrep := PROJECT(myDataPS,STD_Layout and NOT rnd);
END;
```



### 4. Segregação dos dados

## "Selecionar aleatoriamente amostras de treinamento e validação com distinção de variáveis dependentes e independentes"

| ## | wi | id      | number | value    |
|----|----|---------|--------|----------|
| 1  | 1  | 79784   | 1      | 76440.0  |
| 2  | 1  | 3924129 | 1      | 95900.0  |
| 3  | 1  | 413843  | 1      | 76000.0  |
| 4  | 1  | 608224  | 1      | 39340.0  |
| 5  | 1  | 942963  | 1      | 278400.0 |
| 6  | 1  | 2237271 | 1      | 143600.0 |
| 7  | 1  | 4443742 | 1      | 166934.0 |
| 8  | 1  | 3834707 | 1      | 348350.0 |
| 9  | 1  | 3592739 | 1      | 90000.0  |
| 10 | 1  | 2916349 | 1      | 140950.0 |

| ## | wi | ıd      | number | value   |
|----|----|---------|--------|---------|
| 1  | 1  | 79784   | 1      | 33424.0 |
| 2  | 1  | 79784   | 2      | 76440.0 |
| 3  | 1  | 79784   | 3      | 2015.0  |
| 4  | 1  | 79784   | 4      | 4299.0  |
| 5  | 1  | 79784   | 5      | 1255.0  |
| 6  | 1  | 79784   | 6      | 3.0     |
| 7  | 1  | 79784   | 7      | 2.0     |
| 8  | 1  | 79784   | 8      | 0.0     |
| 9  | 1  | 79784   | 9      | 2010.0  |
| 10 | 1  | 3924129 | 1      | 20601.0 |



#### 4. Segregação dos dados

```
    ➤ Code / ERAD_ERAMIA_2021

    ■ BWR_Hello.ecl
    ■ BWR_Train.ecl
    ■ BWR_ViewData.ecl
    ■ FN_GetPrice.ecl
    ■ modFile.ecl
    ■ modPrep.ecl
    ■ modSeg.ecl
    ■ XTab_PriceState.ecl
```

```
IMPORT $,ML_Core;
// Considere os primeiros 5000 registros como amostra de treinamento
myTrainData := $.modPrep.myDataPrep[1..5000];
// Considere os 2000 registros seguintes como amostra de teste
myTestData := $.modPrep.myDataPrep[5001..7000];
// Conversão matricial dos campos numéricos
ML Core.ToField(myTrainData, myTrainDataNF);
ML_Core.ToField(myTestData, myTestDataNF);
// OUTPUT(myTrainDataNF);
// OUTPUT(myTestDataNF);
EXPORT modSeg := MODULE;
  EXPORT myIndTrainDataNF := myTrainDataNF(number < 10);</pre>
    EXPORT myDepTrainDataNF := PROJECT(myTrainDataNF(number = 10),
                   TRANSFORM(RECORDOF(LEFT),
                                                  SELF.number := 1,
                                               SELF := LEFT));
    EXPORT myIndTestDataNF := myTestDataNF(number < 10);</pre>
  EXPORT myDepTestDataNF := PROJECT(myTestDataNF(number = 10),
                                     TRANSFORM(RECORDOF(LEFT),
                                               SELF.number := 1,
                                               SELF := LEFT));
END;
```



### 5. Treinamento e avaliação do modelo

## "Obtenção de modelo a partir da amostra de treinamento e validação na amostra de teste"

|   | wi | value  | indexes | fileposition |
|---|----|--------|---------|--------------|
|   |    |        | Item    |              |
| 1 | 0  | 4356.0 | 3       | 0            |
|   |    |        | 10      |              |
|   |    |        | 1       |              |
| 2 | 0  | 2812.0 | 3       | 27           |
|   |    |        | 10      |              |
|   |    |        | 2       |              |
| 3 | 0  | 2476.0 | 3       | 54           |
|   |    |        | 10      |              |
|   |    |        | 3       |              |
| 4 | 0  | 1244.0 | 3       | 81           |
|   |    |        | 10      |              |
|   |    |        | 4       |              |
| 5 | 0  | 1082.0 | 3       | 108          |
|   |    |        | 10      |              |
|   |    |        | 5       |              |
| 6 | 0  | 4085.0 | 3       | 135          |
|   |    |        | 10      |              |
|   |    |        | 6       |              |

| ## | wi | id     | number | value             |
|----|----|--------|--------|-------------------|
| 1  | 1  | 3634   | 1      | 59055.31318837311 |
| 2  | 1  | 5840   | 1      | 126151.3283316611 |
| 3  | 1  | 12721  | 1      | 150876.4676173128 |
| 4  | 1  | 47045  | 1      | 233897.4086392291 |
| 5  | 1  | 91757  | 1      | 111950.2604939628 |
| 6  | 1  | 117238 | 1      | 81157.13156934927 |
| 7  | 1  | 149746 | 1      | 75868.58107175257 |
| 8  | 1  | 239046 | 1      | 39961.17077444747 |
| 9  | 1  | 246517 | 1      | 128203.9088547347 |
| 10 | 1  | 252615 | 1      | 69009.47259550788 |

|   | ## | wi | regressor | r2                 | mse               | rmse             |
|---|----|----|-----------|--------------------|-------------------|------------------|
| ſ | 1  | 1  | 1         | 0.7304899830671003 | 7982069594.129144 | 89342.4288573416 |



### 5. Treinamento e avaliação do modelo

```
✓ Code / ERAD_ERAMIA_2021

                                                                                                                                                    IMPORT $;

≡ BWR_Hello.ecl

                                                                                                                                                    IMPORT ML Core;
           BWR_Train.ecl
                                                                                                                                                    IMPORT LearningTrees AS LT;

    ■ BWR ViewData.ecl
    ■ BWR ViewDat
    FN GetPrice.ecl

    ≡ modFile.ecl

                                                                                                                                                    // Selecione o algoritmo

    ≡ modPrep.ecl

                                                                                                                                                   myLearnerR := LT.RegressionForest(10,,10,[1]);

    modSeg.ecl
    modSeg.ecl

    // Obtenha o modelo treinado
                                                                                                                                                    myModelR := myLearnerR.GetModel($.modSeg.myIndTrainDataNF,$.modSeg.myDepTrainDataNF);
                                                                                                                                                    OUTPUT (myModelR,, '~mymodelXXX', NAMED('ModeloTreinado'), overwrite);
                                                                                                                                                     // Teste o modelo
                                                                                                                                                    predictedDeps := myLearnerR.Predict(myModelR, $.modSeq.myIndTestDataNF);
                                                                                                                                                    OUTPUT (predictedDeps, NAMED ('ValoresPrevistos'));
                                                                                                                                                     // Avalie o modelo
                                                                                                                                                                                                                                                         := ML Core.Analysis.Regression.Accuracy(predictedDeps, $.modSeg.myDepTestDataNF)
                                                                                                                                                    OUTPUT(assessmentR, NAMED('AvaliacaodoModelo'));
```



### 6. Implantação do modelo

### "Carregamento de dados e disponibilização de consulta web"

| roxie                                           |           |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|--|
| fn_getprice_aro 🤲 🖁 🖳 Dynamic Form 🗸            |           |  |  |  |  |  |  |  |  |  |  |
| fn_getprice_aroRequest <a>V</a>                 |           |  |  |  |  |  |  |  |  |  |  |
| assess_val:                                     |           |  |  |  |  |  |  |  |  |  |  |
| bedrooms:                                       |           |  |  |  |  |  |  |  |  |  |  |
| full_baths:                                     |           |  |  |  |  |  |  |  |  |  |  |
| half_baths:                                     |           |  |  |  |  |  |  |  |  |  |  |
| land_sq_ft:                                     |           |  |  |  |  |  |  |  |  |  |  |
| living_sq_ft:                                   |           |  |  |  |  |  |  |  |  |  |  |
| year_acq:                                       |           |  |  |  |  |  |  |  |  |  |  |
| year_built:                                     |           |  |  |  |  |  |  |  |  |  |  |
| zip:                                            |           |  |  |  |  |  |  |  |  |  |  |
| ☐ Capture Log Info. Trace Level: ☐ No Timeout   |           |  |  |  |  |  |  |  |  |  |  |
| Call Query ✓ Output Tables ✓ FORM POST ✓ Submit | Clear All |  |  |  |  |  |  |  |  |  |  |



### 6. Implantação do modelo



```
IMPORT $;
IMPORT ML Core;
IMPORT LearningTrees as LT;
EXPORT FN GetPrice (Zip, Assess val, Year acq,
                                Land sq ft, Living sq ft, Bedrooms,
                                Full baths, Half baths, Year built) := FUNCTION
      myInSet := [zip, assess_val, year_acq, land_sq_ft, living_sq_ft,
                                             bedrooms, full baths, half baths, year built];
      myInDs := DATASET(myInSet, {REAL8 myInValue});
      ML Core.Types.NumericField PrepData(RECORDOF(myInDS) Le, INTEGER C) := TRANSFORM
                   SELF.id
                                             := 1,
                   SELF.number := C,
                   SELF.value := Le.myInValue;
      END:
      myIndepData := PROJECT(myInDs, PrepData(LEFT, COUNTER));
      mymodel := DATASET('~mymodelXXX',ML Core.Types.Layout Model2,FLAT,PRELOAD);
      myLearner := LT.RegressionForest(10,,10,[1]);
      myPredictDeps := MyLearner.Predict(myModel, myIndepData);
      RETURN OUTPUT (myPredictDeps, {preco:=ROUND (value) });
END;
END;
```



### 6. Implantação do modelo





### Serviço disponível para uso!



#### fn getprice xxx.1 Response

#### Dataset: Result 1







### **Próximos passos**



### Cursos online: +170 aulas (learn.lexisnexis.com/hpcc)

#### Introdução ao ECL (parte 1)

Conceitos e consultas

#### Introdução ao ECL (parte 2)

ETL com ECL

#### ECL Avançado (parte 1)

Dados relacionais

#### ECL Avançado (parte 2)

Superarquivos, XML/JSON e PLN

#### ECL Aplicado

Geração e automação de código ECL

#### **ROXIE ECL** (parte 1)

• Índices e consultas

#### **ROXIE ECL** (parte 2)

Otimização de consultas

#### Machine Learning com HPCC Systems

Fundamentos para uso dos plugins

#### Administração de Sistemas

Conceitos e operação básica

#### HPCC para gestores

Visão geral e aplicações da plataforma



# Opções de uso: <u>play.hpccsystems.com</u>





### Links úteis

- Site principal: <u>hpccsystems.com</u>
- Primeiros passos: <u>hpccsystems.com/Why-HPCC-Systems</u>
- Canal do youtube: <u>youtube.com/user/HPCCSystems</u>
- Fórum da Comunidade: <u>hpccsystems.com/forums</u>
- Poster Competition: <u>Link</u>



Faça parte da Comunidade

Registre-se em <u>hpccsystems.com</u>





### Enterprise Control Language (ECL)

### Linguagem de programação centrada em dados (Data flow)

- Declarativa e não-procedural
- Códigos menores e reutilizáveis
- Biblioteca para manipulação de dados

### Compilador

- Gera código otimizado (C++)
- Lógica para processamento paralelo e distribuído





## Conceitos básicos de ECL

- •Estrutura básica: Nome := Expressão ;
- •ECL <u>não é</u> sensível a caixa alta/baixa
- Espaço em branco é ignorado para melhor leitura
- Comentários em linha (//) e em bloco ( /\* e \*/ )
- ECL utiliza sintaxe objeto.propriedade

```
Dataset.Campo// referencia um campo em um datasetNomedoDiretorio.Definicao// referencia uma definição em outro diretório
```



### Tipos de dados primitivos

#### **BOOLEAN**

```
BOOLEAN IsFloridian := TRUE;
STRING[n]
   STRING1 Gender := 'M';
INTEGER[n], UNSIGNED[n],
   INTEGER1 ictr := -100; // -128 to 127
                       // 0 - 255
   UNSIGNED1 ctr := 0;
REAL[n], DECIMALn[_y]
   REAL4 PI := 3.14159;
   DECIMAL7 2 Salary := 75000.00;
```



### Tipos de definição ECL

### Booleana (boolean)

```
IsSeniorCitizen := People.birthdate>19600101;
```

### <u>Valor único</u> (value)

MaleValue := 'M';

### Conjunto de valores (set)

GenderValues := ['M','F'];

#### People

| ## | firstname | lastname        | middlename | namesuffix | filedate | bureaucode | maritalstatus | gender | dependentcount | birthdate | streetaddress            |
|----|-----------|-----------------|------------|------------|----------|------------|---------------|--------|----------------|-----------|--------------------------|
| 1  | Cherianne | Khatchatourian  | N          |            | 19990922 | 24         |               | M      | 0              |           | 69 BOULDER RIDGE RD # 25 |
| 2  | Muyesser  | Raplee          | X          |            | 20001111 | 353        |               | F      | 0              |           | 55 SWAMP RD              |
| 3  | Roselin   | Viceconte       |            |            | 19990325 | 344        |               | F      | 0              | 19800113  | 107 HILL TER             |
| 4  | Inda      | Provines        |            |            | 20000909 | 13         |               | U      | 0              |           | 290 W MOUNT PLEASANT AVE |
| 5  | Inderdeep | Laurence        | D          |            | 20001228 | 344        |               | M      | 0              |           | 44 PROSPECT PL           |
| 6  | Chrystine | Mangiapane      |            |            | 19990827 | 315        |               | F      | 0              | 19780306  | 1806 1ST AVE APT 8F      |
| 7  | Adelene   | Stock           | R          |            | 20000827 | 252        |               | М      | 0              |           | 1117 FARM RD             |
| 8  | Mendy     | Rufenblanchette |            |            | 20000903 | 24         |               | М      | 0              |           | 3 W 83RD ST APT 4C       |
| 9  | Lannie    | Amerantes       | I          |            | 20001219 | 313        |               | U      | 0              |           | 200 W 20TH ST APT 909    |
| 10 | Tare      | Gonyeau         | T          |            | 19930807 | 48         |               | F      | 0              | 19750801  | 6 CANDLE CT              |

### Conjunto de registros (recordset)

```
SeniorPeople := People(IsSeniorCitizen);
MalePeople := People(Gender=MaleValue);
FemaleMalePeople := People(Gender IN GenderValues);
```



### Ações vs. Definições

- ✓ O código ECL é constituído de:
  - ✓ <u>Definições:</u> estabelecem o que as coisas são
    MyString := 'Hello World'; // não inicia uma WU

✓ <u>Ações:</u> resultam em compilação e execução (arquivos BWR)OUTPUT(MyString); // inicia uma WU



### Preparação do ambiente

### Cluster de treinamento: <u>http://52.52.151.87:8010/</u>

#### **ECL IDE:**









### Preparação do ambiente (cont.)

👺 Open











### Teste do ambiente









# Pra que serve o HPCC Systems?



