# Emoji-Based Hate Speech Detection on Social Media

# Supervisors Gaël GUIBON Christophe CERISARA









# Introduction

- The rise of Internet technology has led to an increase in harmful and abusive languages, including hate speech, in online usergenerated content.
- Detecting and addressing online hate speech automatically and efficiently is essential for maintaining the well-being of the internet and individuals' psychological
- Emojis are increasingly used to convey hateful messages, posing a challenge for existing hate speech detection models focused on textual information.
- This research aims to enhance hate speech detection by developing a model specifically designed to detect emoji-based hate speech on social media.
- By utilizing the HATEMOJICHECK dataset and additional labeled data, the proposed model will be trained and evaluated to improve the detection of hateful content involveing emojis.

## Dataset Annotation

Annotated these sets by two annotators (Nalin Srun and Shu Zhang) before they were used to prepare a hate speech classifier dedicated to these particular emojis utilization. Moreover, the objective is not to consider all possible harmful emojis but as it were the ones from the sub-

Two annotators classified the dataset into positive and negative speech types, with some disagreements due to similar meanings and interpretation of emojis. The distribution of annotated message types varied, and the analysis of frequently used emojis showed differences between positive and negative speech. However, the small dataset size highlights the need for a larger dataset for more accurate results.



# Dataset Creation

# Data from Kirk

- Data Scraped from Social Media (TikTok; Youtube)
- Illustration of the Scraped Dataset

# Data Scraped from TikTok

- API called Tikhub (Version 3.15)
- Data Scrpaed from Youtube

Youtube-comment-downloader Library

# Text Pre-processing

- Lowercasing the letters is performed to normalize the text and create a consistent vocabulary.
- Punctuations and emojis are retained in the pre-processing step, as they may carry important information.
- Different approaches for handling emojis are tested, including keeping the original emojis or substituting them with textual
- Tokenization is performed using spaCy tokenizer, allowing successful separation of adjacent emojis.

## Feature Extraction

- Three feature extraction methods are experimented with: Hashing Vectorizer, TF-IDF Vectorizer, and word vectors obtained from a self-trained FastText unsupervised
- Categorical encoding is applied to transform the target variables into a suitable format for the algorithms.

## Proposed Machine Learning Models

- For binary classification, various models such as Logistic Regression, SGD Classifier, SVM, Decision Tree Classifier, Random Forest Classifier, LightGBM, BernoulliNB, MLP Classifier, and FastText (both self-trained and
- pre-trained) are employed.

   For multiclass classification, similar models are used for different sub-tasks, with an additional consideration for data imbalance and the use of data augmentation techniques like SMOTE.



# Machine Learning

# Dataset Preparation

- Text Pre-processing
- Feature Extraction
- Proposed Machine Learning Models

# **Dataset Preparation**

- The dataset from Kirk et al. (2022) consists of train, test, and validation subdatasets, while an additional dataset scraped from social media is also available. For the binary classification task, the train and validation sub-datasets are combined as the train dataset, and two test datasets are used for evaluation.
- For the multiclass classification task, two sub-tasks are considered using different datasets for training and testing.

To be clearer, for each of the task, the train dataset and test dataset has been arranged as follows

| Task                  |                                        | Train Dataset                                                    | Test Dataset                       |
|-----------------------|----------------------------------------|------------------------------------------------------------------|------------------------------------|
| Binary Classification | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | Kirk's train+Kirk's validation<br>Kirk's train+Kirk's validation | Kirk's test<br>scraped data        |
| Multi-Classification  | 1 2                                    | Kirk's train+Kirk's validation 80% of scraped data               | Kirk's test<br>20% of scraped data |

## Tokenized by NLTK

ex = 'i would love to some "'
print(preprocessing\_text(ex)) 'would', 'love', 'to', ' 🔪 🔪 ', 'some', 'person wearing turban medium-dark skin tone'

# Tokenized by spaCy

'i would love to 🔪 🔪 some 🗑 '

## Feature Extraction

 Choose FastText for numerical representation Utilize pre-trained FastText embeddings



# Deep Learning

# Data Preparation

- Feature Extraction
- Model Architecture of Binary
- Classification
- Model Architecture of Multiclass Classification

**Dataset Preparation** 

| Domain  | Dataset    | Sentences |
|---------|------------|-----------|
| Kirk    | Train      | 4728      |
|         | Validation | 591       |
|         | Test       | 593       |
| TikTok  | Test       | 100       |
| YouTube | Test       | 100       |

### Below describing the dataset we organize to build deep learning model

| Phase 1                |         |           |  |  |  |
|------------------------|---------|-----------|--|--|--|
| Domain                 | Dataset | Sentences |  |  |  |
| Kirk(Train+Validation) | Train   | 5319      |  |  |  |
| TikTok+YouTube         | Test    | 200       |  |  |  |
|                        |         |           |  |  |  |
|                        |         |           |  |  |  |

| Phase 2                     |         |           |
|-----------------------------|---------|-----------|
| Domain                      | Dataset | Sentences |
| Kirk(Train+Validation+Test) | Train   | 5912      |
| TikTok+YouTube              | Test    | 200       |
|                             |         |           |

# Model Architecture for Binary Classification

- Bi-LSTM
- CNN

| Bi-LSTM                               | Value         |
|---------------------------------------|---------------|
| Bi-LSTM Embedding Layer(1st training) | 300           |
| FastText Embedding(2nd training)      | 000           |
| Bi-LSTM Layer                         | 256           |
| Activation Function                   | NA            |
| Dropout                               | 0.3           |
| Dense Layer                           | 256           |
| Loss Function                         | cross entropy |
| Optimizer                             | Adam          |

| CNN                                                                | Value         |
|--------------------------------------------------------------------|---------------|
| CNN Embedding Layer(1st training) FastText Embedding(2nd training) | 300           |
| Convolutional Layer 1(Kernel=2,Stride=1,ReLU)                      | 128           |
| Convolutional Layer 2(Kernel=2,Stride=1,ReLU)                      | 128           |
| Convolutional Layer 3(Kernel=2,Stride=1,ReLU)                      | 128           |
| Pooling Layer                                                      | max_pool1d    |
| Dropout                                                            | 0.3           |
| Dense Layer                                                        | 128           |
| Loss Function                                                      | cross entropy |
| Optimizer                                                          | Adam          |

## Model Architecture of Multiclass Classification

- Fine-tune pre-trained BERT model from Hugging Face
- Add more text and labels for training
- BertForSequenceClassification
- AdamW optimizer • Learning rate: 2e-5
- Loss Function: Cross Entropy



# Conclusion

### Machine Learning Best accuracy score for each model in binary classification task

| Logistic Regression      | SGD                      | SVM                      |
|--------------------------|--------------------------|--------------------------|
| Hash   TF-IDF   FT       | Hash   TF-IDF   FT       | Hash   TF-IDF   FT       |
| 0.5830   0.6197   0.5337 | 0.5843   0.6182   0.5283 | 0.5768   0.6200   0.5351 |
| Decision Tree            | Random Forest            | LightGBM                 |
| Hash   TF-IDF   FT       | Hash   TF-IDF   FT       | Hash   TF-IDF   FT       |
| 0.5644   0.5841   0.5304 | 0.5832   0.6112   0.5514 | 0.5901   0.6027   0.5454 |
| BernoulliNB              | MLP                      |                          |

 $| \ 0.5634 \ | \ 0.6106 \ | \ 0.5336$ 

### Results of the 1st sub task of binary classification (First sub task: test on Kirk's test dataset)

Hash | TF-IDF | FT | Hash | TF-IDF | FT

|                     | Hashing                                       |        | TF-IDF  | TF-IDF |         | FastText |  |
|---------------------|-----------------------------------------------|--------|---------|--------|---------|----------|--|
|                     | $\overline{\mathrm{Acc}\left(\uparrow ight)}$ | F1 (†) | Acc (†) | F1 (†) | Acc (†) | F1 (†)   |  |
| Logistic Regression | 0.5734                                        | 0.5729 | 0.5919  | 0.5916 | 0.5413  | 0.5276   |  |
| SGD                 | 0.5565                                        | 0.5536 | 0.5902  | 0.5901 | 0.5194  | 0.3418   |  |
| SVM                 | 0.5430                                        | 0.5430 | 0.5885  | 0.5885 | 0.5379  | 0.5103   |  |
| Decision Tree       | 0.5582                                        | 0.5403 | 0.5750  | 0.5629 | 0.5126  | 0.4896   |  |
| Random Forest       | 0.5194                                        | 0.5193 | 0.5919  | 0.5915 | 0.5548  | 0.5476   |  |
| LightGBM            | 0.5514                                        | 0.5514 | 0.5919  | 0.5919 | 0.5379  | 0.5376   |  |
| BernoulliNB         |                                               |        | 0.5868  | 0.5846 |         |          |  |
| MLP                 | 0.5194                                        | 0.5174 | 0.5885  | 0.5884 | 0.5261  | 0.4947   |  |
| FastText Model      |                                               |        |         |        |         | 0.5533   |  |

### Results of the 2nd sub task of binary classification (Second sub task: test on the dataset scraped from social media)

|                      | Hash                                |        | TF-IDF  |        | FastText |        |
|----------------------|-------------------------------------|--------|---------|--------|----------|--------|
|                      | $\overline{\mathrm{Acc}(\uparrow)}$ | F1 (†) | Acc (†) | F1 (†) | Acc (†)  | F1 (†) |
| Logistic Regression  | 0.5750                              | 0.5671 | 0.5900  | 0.5867 | 0.5000   | 0.3333 |
| $\operatorname{SGD}$ | 0.5850                              | 0.5748 | 0.5750  | 0.5711 | 0.5050   | 0.3443 |
| SVM                  | 0.5900                              | 0.5850 | 0.5600  | 0.5524 | 0.5000   | 0.3333 |
| Decision Tree        | 0.4950                              | 0.3703 | 0.4800  | 0.3686 | 0.5000   | 0.3333 |
| Random Forest        | 0.5800                              | 0.5758 | 0.5550  | 0.5409 | 0.5850   | 0.5585 |
| ${ m LightGBM}$      | 0.5900                              | 0.5867 | 0.5250  | 0.4920 | 0.5100   | 0.5098 |
| BernoulliNB          |                                     |        | 0.5350  | 0.5146 |          |        |
| MLP                  | 0.6000                              | 0.5967 | 0.5850  | 0.5686 | 0.5000   | 0.3333 |
| FastText Model       |                                     |        |         |        |          | 0.5950 |
|                      |                                     |        |         |        |          |        |

### Results of the 1st sub task of multiclass classification (First sub task: trained on Kirks train and validation sub-datasets, tested on Kirks test sub-datasets)

|                     | Hash    |        | TF-IDF           |        | ${\bf FastText}$ |        |
|---------------------|---------|--------|------------------|--------|------------------|--------|
|                     | Acc (†) | F1 (†) | $Acc (\uparrow)$ | F1 (†) | Acc (†)          | F1 (†) |
| Logistic Regression | 0.2715  | 0.2812 | 0.4165           | 0.4032 | 0.1012           | 0.0244 |
| SVM                 | 0.4030  | 0.4082 | 0.4890           | 0.4542 | 0.2766           | 0.2967 |
| Decision Tree       | 0.3406  | 0.3445 | 0.3575           | 0.3611 | 0.3693           | 0.3692 |
| Random Forest       | 0.3609  | 0.3357 | 0.3879           | 0.3736 | 0.4435           | 0.3800 |
| ${ m LightGBM}$     | 0.4047  | 0.3887 | 0.3997           | 0.3930 | 0.4165           | 0.3800 |
| MultinomialNB       |         |        | 0.5059           | 0.4430 |                  |        |
| MLP                 | 0.4722  | 0.4430 | 0.4992           | 0.4840 | 0.4840           | 0.3690 |
| FastText Model      |         |        |                  |        |                  | 0.4636 |

### Results of the 2nd sub task of multiclass classification Second sub task: trained and tested on our own dataset scraped

|                     | Hash                                     |        | TF-IDF           | $\Gamma$ F-IDF |         | FastText |  |
|---------------------|------------------------------------------|--------|------------------|----------------|---------|----------|--|
|                     | $\overline{\mathrm{Acc}}$ ( $\uparrow$ ) | F1 (†) | $Acc (\uparrow)$ | F1 (†)         | Acc (†) | F1 (†)   |  |
| Logistic Regression | 0.2500                                   | 0.1996 | 0.2250           | 0.2427         | 0.1250  | 0.1417   |  |
| SVM                 | 0.2000                                   | 0.1304 | 0.1500           | 0.1330         | 0.2000  | 0.2171   |  |
| Decision Tree       | 0.2000                                   | 0.2121 | 0.0750           | 0.0522         | 0.0500  | 0.0600   |  |
| Random Forest       | 0.1500                                   | 0.1378 | 0.1500           | 0.1336         | 0.1250  | 0.1018   |  |
| ${ m LightGBM}$     | 0.1250                                   | 0.0902 | 0.0250           | 0.0012         | 0.0750  | 0.0486   |  |
| MultinomialNB       |                                          |        | 0.2500           | 0.2136         |         |          |  |
| MLP                 | 0.1500                                   | 0.0650 | 0.1250           | 0.0924         | 0.100   | 0.0440   |  |

### Deep Learning Deep Learning Binary Classification Result

| Model                        | Embedding Type                | Testing Set<br>F1-Score |
|------------------------------|-------------------------------|-------------------------|
| Bi-LSTM (Phase 1 Table 2.3)  | Bi-LSTM Embedding Layer       | 0.5344                  |
| BI-LSTM (Phase I Table 2.3)  | Pretrained FastText Embedding | 0.5545                  |
| D: I CTM (Dhaga 9 Table 9 4) | Bi-LSTM Embedding Layer       | 0.5700                  |
| Bi-LSTM (Phase 2 Table 2.4)  | Pretrained FastText Embedding | 0.5779                  |
| CNN (Phase 1 Table 2.3)      | Dustrained FastTout Embadding | 0.5800                  |
| CNN (Phase 2 Table 2.4)      | Pretrained FastText Embedding | 0.5931                  |

## Multiclass Classification Result I



## Different Hyperparameter Testing Values FI-Score Result

| Mod     | (Layer,Embed,Hidden) | 3 Times Training F1-Score               | Average<br>F1-Score |
|---------|----------------------|-----------------------------------------|---------------------|
| CNN     |                      |                                         |                     |
| Ö       | (1,32,32)            | 1st=0.5901 <b>2nd=0.6222</b> 3rd=0.5993 | 0.6038              |
|         | (1,32,64)            | 1st=0.5985 2nd=0.6122 <b>3rd=0.6249</b> | 0.6118              |
|         | (1,50,32)            | 1st=0.6228 2nd=0.6068 3rd=0.6090        | 0.6128              |
|         | (1,50,64)            | 1st=0.6290 2nd=0.5989 3rd=0.5945        | 0.6074              |
|         | (2,50,32)            | 1st=0.5893 2nd=0.5980 <b>3rd=0.6142</b> | 0.6005              |
| Bi-LSTM |                      |                                         |                     |
| LS      |                      |                                         |                     |
| Bj-     | (1,50,32)            | 1st=0.6005 <b>2nd=0.6189</b> 3rd=0.6161 | 0.6118              |
|         | (1,50,64)            | 1st=0.6238 2nd=0.6198 3rd=0.6121        | 0.6185              |
|         | (2,32,32)            | 1st=0.6145 <b>2nd=0.6238</b> 3rd=0.6142 | 0.6175              |
|         | (2,32,64)            | 1st=0.6317 2nd=0.6222 <b>3rd=0.6329</b> | 0.6289              |