1 Convergence of Series

Consider $\sum_{n=1}^{\infty} a_n (x-a)^n$.

Suppose the series converges at $x = x_0$.

The terms $a_n(x_0-a)^n$ must go to 0.

So there exists $M \in \mathbb{R}$ such that $|a_n(x_0 - a)^n| < M$ for all $n \in \mathbb{N}$.

Consider a pont r such that $|r - a| < |x_0 - a|$:

$$\sum_{i=1}^{\infty} a_n (r-a)^n = \sum_{i=1}^{\infty} a_n (x_0 - a)^n \cdot (\frac{r-a}{x_0 - a})^n.$$
 (1)

Then $|a_n(r-a)^n| = |a_n(x_0-a)^n(\frac{r-a}{x_0-a})^n| \le M \left|\frac{r-a}{x_0-a}\right|^n$.

Thus, $\sum_{i=1}^{\infty} a_n (r-a)^n$ converges absolutely.

Now consider the series as a function:

$$f_n(x) = \sum_{n=0}^{n} a_n (x-a)^n.$$

As n goes to infinity, what is its derivative?

Note that $f'_n(x) = \sum_{n=0}^{\infty} n a_n (x-a)^{n-1}$.

Then the ratio test says that $\frac{f'_{n+1}(x)}{f'_n(x)} = \frac{n+1}{n} \frac{a_{n+1}}{a_n} (x-a)$.

Suppose $f_n(x) \to f(x)$ for all $x \in [a, b]$. Suppose that $f_n(x)$ is continuous for all $n \in \mathbb{N}$.