Neural Networks for Demixing

David Halpern NYU

Demixing Odors/ Orientations

Lots of evidence for multiplexing neurons in the brain (cite evidence...)

Demixing is a very general problem for the brain

Strawberries Cake Coffee 0 20

Given r, what are s_1 and s_2?

Maximum Likelihood Estimation: $\vec{s} = \arg \max_{s} p(r|s)$

Can a generic neural network accomplish ML demixing?

(Eventually, we would like to have:

- Unknown and variable numbers of stimuli
- Unknown and variable contrasts/gains)

$$\hat{\mathbf{s}} = \mathbf{W} \mathbf{r}_{\mathrm{hid}}$$

$$\mathbf{r}_{\mathrm{hid}} = \phi(\mathbf{W}\mathbf{r}_{\mathrm{hid}} + \mathbf{b})$$

 $\phi(h) = \max(0, h)$ 20 hidden units

$$\mathbf{r}_{\mathrm{in}} \sim \mathrm{Poisson}(\mathbf{f}(c_1s_1 + c_2s_2))$$
 61 input units

MSE loss function (enforced $s_1 < s_2$)
Used backpropagation with SGD (with RMSProp) for training 20,000 training trials

100 epochs

MLE Ground Truth Neural Network

-40, 40, square

Conclusions

- So far we have only been able to train the neural networks to be slightly biased estimators
- Future directions
 - Variable gains
 - Multiple stimuli
 - Unknown number of stimuli
 - Network properties