PROJECT-4

In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\BreastCancerPrediction.csv")
 df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	М	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	M	21.56	22.39	142.00	1479.0	0.
565	926682	M	20.13	28.25	131.20	1261.0	0.0
566	926954	M	16.60	28.08	108.30	858.1	0.0
567	927241	M	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 33 columns

DATA CLEANING AND PREPROCESSING

In [3]: | df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 33 columns

In [4]: df.tail()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
564	926424	М	21.56	22.39	142.00	1479.0	0.11 ⁻
565	926682	М	20.13	28.25	131.20	1261.0	0.097
566	926954	М	16.60	28.08	108.30	858.1	0.084
567	927241	М	20.60	29.33	140.10	1265.0	0.117
568	92751	В	7.76	24.54	47.92	181.0	0.052

5 rows × 33 columns

In [5]: df.shape

Out[5]: (569, 33)

```
In [6]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	 int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
dtype	es: float64(31), int64(1)	, object(1)	

memory usage: 146.8+ KB

In [7]: df.describe()

Out[7]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.00000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.09636
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.01406
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.05263
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.08637
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.09587
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.10530
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.16340

8 rows × 32 columns

```
In [8]: df.isnull().sum()
Out[8]: id
                                       0
        diagnosis
                                       0
                                       0
        radius_mean
        texture_mean
                                       0
        perimeter_mean
                                       0
                                       0
        area_mean
                                       0
         smoothness_mean
        compactness mean
                                       0
        concavity_mean
                                       0
        concave points_mean
                                       0
        symmetry_mean
                                       0
        fractal_dimension_mean
        radius se
                                       0
                                       0
        texture_se
                                       0
        perimeter_se
        area_se
                                       0
        smoothness_se
                                       0
        compactness\_se
                                       0
         concavity_se
         concave points_se
                                       0
         symmetry_se
                                       0
        fractal_dimension_se
                                       0
        radius_worst
                                       0
        texture_worst
        perimeter_worst
                                       0
        area worst
        smoothness_worst
                                       0
        compactness_worst
                                       0
        concavity_worst
                                       0
         concave points_worst
                                       0
         symmetry worst
        fractal dimension worst
                                       0
        Unnamed: 32
                                     569
        dtype: int64
In [9]: df.duplicated()
Out[9]: 0
                False
        1
                False
         2
                False
        3
                False
        4
                False
                . . .
        564
                False
        565
                False
        566
                False
        567
                False
        568
                False
        Length: 569, dtype: bool
```

```
In [13]: plt.scatter(df["radius_mean"],df["texture_mean"])
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
Out[13]: Text(0, 0.5, 'texture_mean')
```


KMeans Clustering

C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

```
Out[16]: array([3, 1, 1, 7, 1, 7, 3, 0, 0, 7, 6, 6, 1, 6, 0, 6, 6, 6, 1, 0, 0, 2,
                6, 1, 3, 3, 6, 3, 6, 3, 3, 7, 3, 1, 6, 3, 6, 0, 6, 0, 0, 7, 3, 0,
                0, 3, 2, 0, 7, 0, 7, 0, 7, 3, 6, 7, 1, 6, 0, 2, 2, 2, 6, 2, 0, 6,
                2, 7, 2, 0, 1, 2, 3, 0, 7, 6, 0, 3, 1, 0, 7, 0, 4, 1, 7, 3, 6, 3,
                7, 6, 6, 6, 0, 0, 6, 1, 7, 2, 7, 6, 0, 2, 7, 2, 2, 0, 7, 7, 4, 7,
                2, 7, 0, 2, 2, 7, 2, 6, 6, 3, 7, 3, 4, 6, 0, 0, 0, 1, 6, 1, 7, 6,
                6, 6, 3, 0, 7, 7, 6, 7, 2, 6, 7, 0, 7, 7, 7, 6, 6, 0, 0, 2, 2, 7,
                0, 7, 3, 3, 7, 7, 7, 1, 1, 7, 4, 6, 7, 3, 3, 6, 7, 0, 6, 7, 2, 2,
                2, 6, 0, 0, 5, 1, 6, 7, 6, 2, 3, 7, 7, 7, 0, 0, 2, 7, 6, 0, 0, 3,
                1, 6, 7, 3, 4, 0, 7, 6, 2, 3, 0, 6, 1, 7, 5, 3, 0, 0, 7, 2, 1, 1,
                0, 0, 2, 6, 0, 6, 2, 6, 0, 0, 3, 7, 7, 1, 2, 0, 4, 1, 0, 3, 0, 7,
                7, 0, 1, 2, 0, 0, 2, 7, 1, 7, 1, 3, 1, 0, 1, 6, 6, 6, 1, 3, 3, 6,
                3, 1, 2, 0, 0, 2, 6, 7, 4, 2, 3, 7, 7, 3, 0, 0, 1, 7, 1, 6, 0, 0,
                7, 0, 7, 7, 6, 6, 0, 7, 0, 0, 7, 7, 6, 2, 1, 7, 1, 2, 7, 7, 0, 2,
                0, 0, 7, 6, 0, 7, 2, 7, 7, 3, 2, 7, 2, 1, 0, 1, 7, 0, 0, 7, 6, 6,
                6, 0, 7, 7, 7, 3, 0, 3, 2, 4, 6, 2, 7, 1, 7, 2, 7, 6, 7, 7, 7, 6,
                4, 6, 7, 0, 0, 0, 2, 2, 0, 0, 0, 6, 0, 1, 1, 7, 4, 4, 6, 6, 1, 1,
                0, 6, 2, 0, 0, 7, 7, 7, 7, 7, 0, 6, 7, 0, 7, 1, 2, 2, 6, 1, 7, 0,
                0, 0, 7, 7, 3, 7, 0, 0, 7, 7, 6, 0, 3, 7, 7, 7, 2, 6, 6, 7, 2, 6,
                0, 7, 7, 6, 7, 0, 2, 2, 2, 7, 7, 0, 6, 7, 1, 3, 6, 0, 0, 0, 0, 0,
                7, 3, 0, 2, 3, 7, 3, 6, 6, 1, 7, 1, 7, 6, 0, 0, 7, 0, 0, 2, 3, 5,
                6, 7, 0, 0, 0, 2, 3, 7, 2, 7, 6, 7, 7, 0, 0, 0, 7, 6, 7, 0, 0, 0,
                6, 7, 6, 1, 7, 3, 7, 3, 3, 7, 0, 6, 0, 7, 3, 1, 6, 0, 7, 4, 2, 2,
                7, 7, 6, 6, 7, 6, 0, 6, 6, 7, 3, 1, 0, 0, 2, 4, 7, 0, 2, 2, 0, 7,
                0, 7, 7, 7, 0, 1, 7, 1, 0, 7, 2, 2, 7, 6, 6, 0, 0, 0, 2, 2, 2, 7,
                7, 7, 0, 2, 0, 2, 2, 2, 6, 7, 0, 7, 6, 1, 4, 1, 3, 1, 2])
```

```
In [17]: df["Cluster"]=y_predicted
    df.head()
```

Out[17]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.11{
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.10(

5 rows × 34 columns

```
In [19]: df1=df[df.Cluster==0]
    df2=df[df.Cluster==2]
    df3=df[df.Cluster==3]
    plt.scatter(df1["radius_mean"],df1["area_mean"],color="maroon")
    plt.scatter(df2["radius_mean"],df2["area_mean"],color="pink")
    plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
    plt.xlabel("radius_mean")
    plt.ylabel("area_mean")
```

Out[19]: Text(0, 0.5, 'area_mean')


```
In [20]: from sklearn.preprocessing import MinMaxScaler
```

In [21]: | scaler=MinMaxScaler()

```
In [22]: scaler.fit(df[["area_mean"]])
    df["area_mean"]=scaler.transform(df[["area_mean"]])
    df.head()
```

Out[22]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	0.363733	0.11{
1	842517	М	20.57	17.77	132.90	0.501591	0.084
2	84300903	М	19.69	21.25	130.00	0.449417	0.109
3	84348301	М	11.42	20.38	77.58	0.102906	0.142
4	84358402	М	20.29	14.34	135.10	0.489290	0.100

5 rows × 34 columns

```
In [23]: km=KMeans()
```

```
In [24]: y_predicted=km.fit_predict(df[["radius_mean","area_mean"]])
y_predicted
```

C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

```
warnings.warn(
```

```
Out[24]: array([6, 1, 6, 5, 1, 0, 6, 0, 0, 0, 3, 7, 6, 3, 0, 7, 7, 3, 1, 0, 0, 2,
                7, 1, 3, 3, 7, 6, 7, 3, 6, 5, 3, 6, 3, 3, 7, 0, 7, 0, 0, 5, 6, 0,
                0, 6, 2, 0, 5, 0, 5, 0, 5, 6, 7, 5, 6, 7, 0, 2, 2, 2, 7, 2, 0, 7,
                2, 5, 2, 0, 6, 2, 3, 0, 5, 3, 0, 6, 1, 0, 5, 0, 4, 6, 5,
                0, 7, 7, 7, 0, 0, 7, 1, 5, 2, 5, 7, 0, 2, 5, 2, 5, 0, 5, 0, 1, 5,
                2, 0, 7, 5, 2, 5, 2, 7, 7, 6, 5, 6, 4, 7, 0, 0, 0, 6,
                3, 7, 6, 0, 5, 5, 7, 5, 2, 3, 5, 0, 5, 5, 5, 7, 7, 0, 0, 2, 2, 5,
                      3, 3, 5, 5, 5, 6, 6, 5, 4, 7, 5, 3, 3, 7,
                                                                 5, 0,
                                                                       7,
                2, 3, 0, 0, 4, 1, 7, 5, 7, 2, 6, 5, 5, 5, 7, 0, 2, 5, 7, 0, 6, 6,
                6, 7, 5, 3, 4, 0, 0, 7, 2, 3, 0, 7, 1, 5, 4, 3, 7, 0, 5, 2, 1, 6,
                0, 0, 2, 7, 0, 7, 2, 7, 0, 0, 3, 5, 5, 1, 2, 7, 4, 1, 7,
                                                                          3, 0, 0,
                5, 0, 6, 5, 0, 0, 5, 5, 1, 5, 1, 3, 6, 0, 6, 7, 7, 7, 1, 3, 3, 7,
                3, 1, 5, 0, 0, 5, 7, 5, 1, 2, 6, 5, 5, 6, 0, 0, 6, 5, 6, 3, 0, 0,
                5, 0, 5, 5, 7, 7, 0, 5, 0, 0, 5, 5, 7, 5, 6, 0, 1, 5, 5, 5, 0, 2,
                0, 0, 5, 7, 0, 5, 2, 0, 5, 6, 2, 0, 2, 1, 0, 1, 5, 0,
                                                                       7, 5,
                3, 0, 5, 5, 5, 3, 0, 6, 2, 4, 7, 2, 5, 6, 5, 2, 5, 7, 5, 5, 5, 7,
                4, 7, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 1, 1, 5, 1, 1, 3, 7, 1, 1,
                0, 3, 5, 0, 0, 5, 5, 5, 5, 0, 0, 7, 5, 0, 5, 6, 2, 2, 7,
                0, 0, 5, 5, 6, 5, 0, 0, 5, 5, 3, 0, 6, 5, 5, 5, 2, 7, 7, 5, 2, 7,
                0, 5, 5, 7, 5, 0, 2, 2, 5, 5, 5, 0, 7, 0, 1, 6, 7, 0, 0,
                5, 3, 0, 5, 6, 5, 3, 7, 7, 1, 5, 6, 5, 7, 0, 0, 5, 0, 0, 2, 3, 4,
                7, 5, 0, 0, 0, 2, 3, 5, 2, 5, 7, 5, 5, 0, 7, 0, 5, 3, 5, 0, 0, 0,
                7, 0, 7, 6, 5, 3, 5, 6, 6, 0, 0, 7, 0, 0, 6, 1, 7, 0, 0, 4, 2, 2,
                5, 5, 3, 7, 5, 7, 0, 7, 7, 5, 6, 1, 0, 0, 2, 4, 5, 0, 2, 2, 0, 5,
                0, 5, 5, 5, 0, 1, 5, 1, 7, 5, 2, 2, 5, 7, 7, 0, 0, 0, 2, 2, 2, 5,
                5, 5, 0, 2, 0, 2, 2, 2, 7, 5, 7, 5, 7, 1, 1, 1, 3, 1, 2])
```

```
In [25]: df["New cluster"]=y_predicted
df.head()
```

Out[25]:

id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	СО
842302	М	17.99	10.38	122.80	0.363733	0.11840	
842517	М	20.57	17.77	132.90	0.501591	0.08474	
300903	М	19.69	21.25	130.00	0.449417	0.10960	
348301	М	11.42	20.38	77.58	0.102906	0.14250	
358402	М	20.29	14.34	135.10	0.489290	0.10030	

3 × 35 columns

```
In [26]: df1=df[df["New cluster"]==0]
    df2=df[df["New cluster"]==1]
    df3=df[df["New cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["area_mean"],color="red")
    plt.scatter(df2["radius_mean"],df2["area_mean"],color="green")
    plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
    plt.xlabel("radius_mean")
    plt.ylabel("area_mean")
```

Out[26]: Text(0, 0.5, 'area_mean')


```
In [27]:
         km.cluster_centers_
Out[27]: array([[13.16808824,
                                0.16588298],
                [20.65289474,
                                0.50078696],
                [ 9.39162295,
                                0.05365436],
                [16.77704545,
                                0.31124747],
                [24.9125
                                0.75956168],
                [11.5335
                                0.11260112],
                [18.795
                                0.40533492],
                                0.22816402]])
                [14.84311111]
In [28]:
         df1=df[df["New cluster"]==0]
         df2=df[df["New cluster"]==1]
         df3=df[df["New cluster"]==2]
         plt.scatter(df1["radius_mean"],df1["area_mean"],color="red")
         plt.scatter(df2["radius_mean"],df2["area_mean"],color="green")
         plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
         plt.scatter(km.cluster centers [:,0],km.cluster centers [:,1],color="orange",max
         plt.xlabel("radius_mean")
         plt.ylabel("area_mean")
```

Out[28]: Text(0, 0.5, 'area_mean')


```
In [29]:
         k_rng=range(1,10)
         sse=[]
```

```
In [30]: for k in k rng:
          km=KMeans(n clusters=k)
          km.fit(df[["radius_mean","area_mean"]])
          sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square errorprint(sse)
         plt.plot(k_rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
Out[30]: Text(0, 0.5, 'Sum of Squared Error')
```


Conclusion:

In this dataset we are doing clustering on Radius_mean and Area_mean. This is the best model for this dataset. when k value is high error rate is low, or k value is low error rate is high

In []: