3.3 Отношение эквивалентности

Определение 3.4. Бинарное отношение $R^{(2)} \subseteq A^2$ называется *отношением эквивалентности* (на множестве A), если оно рефлексивно, симметрично и транзитивно.

Теорема 3.1. Если R – отношение эквивалентности на множестве A, то его n-я степень R^n – отношение эквивалентности на множестве A^n , $n \ge 2$.

Определение 3.5. *Классом эквивалентности* по отношению эквивалентности R, порожденным элементом a, называется множество всех таких элементов множества A, которые находятся в отношении R с элементом a.

Обозначение:

 $[a]_R = \{b \in A \mid R(a,b)\}$ – класс эквивалентности по отношению эквивалентности R, порожденный элементом $a \in A$.

Теорема 3.2. 1. Классы эквивалентности или не пересекаются, или совпадают.

2. Класс эквивалентности порождается любым своим элементом.

Следствие 3.2.1. Отношение эквивалентности разбивает множество, на котором оно задано, на классы эквивалентности.

Определение 3.6. $\Phi a \kappa mop$ -множеством множества A по отношению эквивалентности R называется множество всех классов эквивалентности по этому отношению.

Обозначение:

 $A/R = \{[a]_R \mid a \in A\}$ — фактор-множество множества A по отношению эквивалентности R.

Как правило, отношение эквивалентности обозначают \sim и говорят "эквивалентно".

Пусть \sim – отношение эквивалентности на множестве A.

Записывают $x \sim y$ и говорят "элемент x эквивалентен элементу y".

3.4 Упражнения

Задача 3.8. Пусть A – множество студентов некоторого вуза. Является ли бинарное отношение R на множестве A отношением эквивалентности? Если "да", найти фактор-множество по этому отношению эквивалентности.

- 1) R множество пар студентов, получивших одинаковое количество вступительных баллов;
- 2) R множество пар студентов, празднующих день рождения в одном месяце;
- 3) R множество пар студентов из одной группы;
- 4) R множество пар студентов с разных курсов.

Задача 3.9. Пусть A — множество месяцев года. Является ли бинарное отношение R на множестве A отношением эквивалентности? Если "да", найти фактор-множество по этому отношению эквивалентности.

- 1) R множество пар месяцев одного времени года;
- 2) R множество пар месяцев разных времен года.

Задача 3.10. Пусть A — множество букв русского алфавита. Является ли бинарное отношение R на множестве A отношением эквивалентности? Если "да", найти фактор-множество по этому отношению эквивалентности.

- 1) R множество пар согласных букв одинаковой звонкости;
- 2) R множество пар букв, содержащих или две согласные, или две гласные буквы.

Задача 3.11. Определяется ли отношением эквивалентности

- 1) разбиение месяцев года по временам года;
- 2) распределение студентов факультета по группам;
- 3) распределение станций метрополитена по веткам;
- 4) распределение местности на зоны пригородного сообщения?

Задача 3.12. Пусть A — множество прямых на плоскости. Является ли бинарное отношение R на множестве A отношением эквивалентности? Если "да", найти фактор-множество по этому отношению эквивалентности.

- 1) R множество пар параллельных прямых;
- 2) R множество пар перпендикулярных прямых?

- **Задача 3.13.** Является ли бинарное отношение R на множестве A отношением эквивалентности? Если "да", найти фактор-множество по этому отношению эквивалентности.
- 1) A множество натуральных чисел, R множество пар натуральных чисел, первое из которых является делителем второго;
- 2) A множество целых чисел, R множество пар целых чисел, разность которых делится на m, где $m \ge 1$ заданное натуральное число.
- **Задача 3.14.** Пусть $A = \{1, 2, 3, 4, 5\}$ подмножество множества натуральных чисел. Является ли бинарное отношение R на множестве A^2 отношением эквивалентности? Если "да", найти классы эквивалентности и фактор-множество по этому отношению эквивалентности.
 - 1) $R = \{((x_1, y_1), (x_2, y_2)) \in (A^2)^2 \mid x_1 = x_2, y_1 = y_2\};$
 - 2) $R = \{((x_1, y_1), (x_2, y_2)) \in (A^2)^2 \mid x_1 + y_1 = x_2 + y_2\};$
 - 3) $R = \{((x_1, y_1), (x_2, y_2)) \in (A^2)^2 \mid x_1 + y_1 \neq x_2 + y_2\};$
 - 4) $R = \{((x_1, y_1), (x_2, y_2)) \in (A^2)^2 \mid |y_1 x_1| = |y_2 x_2|\}.$
- **Задача 3.15.** Пусть R отношение эквивалентности на конечном множестве A. Верно ли, что
- 1) все классы эквивалентности по отношению R содержат одинаковое число элементов множества A:
- 2) каждый элемент множества A принадлежит какому-нибудь классу эквивалентности по отношению R;
- 3) могут быть элементы в множестве A, принадлежащие нескольким разным классам эквивалентности по отношению R;
- 4) количество классов эквивалентности по отношению R не зависит от того, по каким элементам множества A они построены?