Lógica

Universidad Internacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

Amílcar J. Pérez A.

De

Planeta Formación y Universidades

Teoría de conjuntos

Definición

El cardinal de un conjunto es el número de elementos que posee. Si A es un conjunto, su cardinal se denota por |A|.

En caso de que un conjunto A tenga una infinidad de elementos, denotamos $|A|=\infty$.

Ejemplos

- 1. Sea A el conjunto de los planetas del sistema solar. Entonces |A| = 9.
- 2. Sea B el conjunto dado por los números naturales impares. Entonces $|B| = \infty$.

Teoría de conjuntos

► Cada uno de los elementos de un conjunto sólo debe aparecer una única vez.

Ejemplo

El conjunto $\{a, b, c, c, d, a\}$ no está bien denotado, ya que hay elementos repetidos. Lo correcto sería denotarlo por $\{a, b, c, d\}$.

ightharpoonup El conjunto formado por cero elementos recibe el nombre de **conjunto vacío** y se denota por \emptyset .

Ejemplo

Sea A el conjunto de satélites de Venus. Entonces $A=\emptyset$, ya que Venus no tiene ningún satélite.

- Algunas afirmaciones lógicas encierran una estructura más compleja.
- La lógica proposicional es limitada en estos casos.
- ▶ La **lógica de primer orden** se encarga de analizar enunciados con **predicados**.

Ejemplos

- > x < 4.
- Para todo entero x, si x es múltiplo de 4 entonces x es par.
- Todos los planetas tienen una órbita elíptica.
- Existe un entero z tal que z = z + 1.
- ightharpoonup Si $x \in \mathbb{Z}$, entonces $x \in \mathbb{N}$.

Definición

Un **predicado** $p(x_1, x_2, ..., x_n)$ es una afirmación que hace referencia a una propiedad o una relación entre objetos $x_1, x_2, ..., x_n$, de forma que al sustituirlos por valores concretos, $c_1, c_2, ..., c_n$, el resultado de reemplazar dichos objetos por los valores correspondietes es una afirmación lógica, $p(c_1, c_2, ..., c_n)$, la cual dispone de un valor de verdad, que depende de los valores c_i .

Ejemplos

- 1. Sea p(x) la afirmación "x es un reptil". Entonces, por ejemplo, p(serpiente) es verdadera, mientras que p(gato) es falsa.
- 2. Tomemos p(x, y) la afirmación "x + y = 3". Entonces, por ejemplo, p(1, 2) es verdadera, mientras que p(1, 1) no lo es.

Definición

Si p(x) es un predicado, la afirmación "para todo x, p(x)" es una proposición que indica que cualquier valor de $x \in \mathcal{U}$ verifica p(x). El símbolo que denota esta relación es " \forall " y recibe el nombre de **cuantificador universal**. En este caso, la afirmación anterior puede expresarse como $\forall x$, p(x) o $\forall x \in \mathcal{U}$, p(x).

- En la cuantificación universal pueden utilizarse tantas variables como se necesite. Por ejemplo, para expresar "para todo x e y, p(x,y)", puede utilizarse indistintamente $\forall x, \forall y, p(x,y)$ o bien $\forall x, y, p(x,y)$.
- Una afirmación universalmente cuantificada es verdadera cuando p se cumple para todos los valores cuantificados.
- ▶ En caso contrario (existencia de algún valor o valores que no la cumplan) es falsa.

Ejemplos

Transcribamos formalmente las siguientes afirmaciones:

1. "El cuadrado de todo número real es mayor o igual que 0":

$$\forall x \in \mathbb{R}, x^2 > 0.$$

Esta afirmación puede expresarse en general de la forma $\forall x, p(x)$, donde $\mathcal{U} = \mathbb{R}$ y p(x): " $x^2 \geq 0$ ".

2. "Todo par de números enteros verifica que su suma es positiva":

$$\forall x, y \in \mathbb{Z}, x + y > 0.$$

En este caso, puede expresarse como $\forall x, y, p(x, y)$, con $\mathcal{U} = \mathbb{Z} \ y \ p(x, y)$: x + y > 0.

Definición

Si p(x) es un predicado, la afirmación "existe un x tal que p(x)" es una proposición que indica la existencia de algún valor de $x \in \mathcal{U}$ verificando p(x). El símbolo que denota esta relación es " \exists " y recibe el nombre de **cuantificador existencial**. En este caso, la afirmación anterior puede expresarse como $\exists x : p(x)$ o $\exists x \in \mathcal{U} : p(x)$.

- En la cuantificación existencial pueden utilizarse tantas variables como se necesite. Por ejemplo, para expresar "existen x e y tal que p(x, y)", puede utilizarse indistintamente $\exists x, \exists y : p(x, y)$ o bien $\exists x, y : p(x, y)$.
- Una afirmación existencialmente cuantificada es verdadera cuando p se cumple para algún valor cuantificado.
- ► En caso contrario (inexistencia de valores que la cumplan) es falsa.

Ejemplos

Transcribamos formalmente las siguientes afirmaciones:

1. "Existe un valor real cuyo cuadrado es igual a -1":

$$\exists x \in \mathbb{R} : x^2 = -1$$

Esta afirmación puede expresarse en general de la forma $\exists x : p(x)$, donde $\mathcal{U} = \mathbb{R}$ y $p(x) : "x^2 = -1"$.

2. "Existen un par de números enteros tales que su suma es igual a 10":

$$\exists x, y \in \mathbb{Z} : x + y = 10.$$

En este caso, puede expresarse como $\exists x, y : p(x, y)$, con $\mathcal{U} = \mathbb{Z} \ y \ p(x, y) : x + y = 10$.

Nota

Los dos tipos de cuantificadores pueden combinarse de cualquier forma; no obstante, el orden en el que aparecen es crucial, puesto que NO conmutan.

Ejemplo

Consideremos las dos afirmaciones siguientes:

- 1. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} : y > x$. "Para todo número natural, existe otro natural tal que este último es mayor que el primero".
- 2. $\exists y \in \mathbb{N} : \forall x \in \mathbb{N}, y > x$. "Existe un número natural tal que es mayor que el resto de números naturales".

Definición

Sean A y B dos afirmaciones lógicas. Diremos que A **implica lógicamente** B, y lo denotaremos por $A \models B$, si se cumple que B es verdadera siempre que A lo sea.

Ejemplo

Sea A la afirmación "x > 4" y B la afirmación "x > 3".

- ightharpoonup A
 vert B, ya que si un valor es mayor que 4 también es mayor que 3.
- ▶ $B \nvDash A$, puesto que, por ejemplo, tomando x = 4, se tiene que B es verdadero (4 > 3), pero no A (4 > 4).

Definición

Sean A y B dos afirmaciones lógicas. Diremos que A equivale lógicamente a B, y lo denotaremos por $A \equiv B$ se tiene que $A \models B$ y viceversa, $B \models A$.

Ejemplos

- 1. Sea A la afirmación "x = y" y B la afirmación "x y = 0". Entonces $A \equiv B$.
- 2. Sea A la afirmación " $\forall x, p(x)$ " y B la afirmación " $\exists x : p(x)$ ". Entonces $A \not\equiv B$, ya que $B \not\models A$ (si bien $A \models B$).
- 3. Consideremos A " $\forall x, y, x + y > 0$ " y B " $\forall x, y, x \cdot y < 0$ ". Entonces $A \not\equiv B$ ($A \not\models B \ y \ B \not\models A$).

Propiedades

Se cumplen las siguientes relaciones:

- 1. $\forall x, [p(x) \lor q(x)] = [\forall x, p(x)] \lor [\forall x, q(x)].$
- 2. $\exists x : [p(x) \lor q(x)] \equiv [\exists x : p(x)] \lor [\exists x : q(x)].$
- 3. $\forall x, [p(x) \land q(x)] \equiv [\forall x, p(x)] \land [\forall x, q(x)].$
- 4. $\exists x : [p(x) \land q(x)] \vdash [\exists x : p(x)] \land [\exists x : q(x)].$

Ejemplos

1. Consideremos la afirmación "todo número natural es par o bien impar" (verdadera), la cual puede transcribirse como $\forall x \in \mathbb{N}, [p(x) \lor q(x)],$ siendo p(x): "x es par" y q(x): "x es impar".

No obstante, la afirmación $[\forall x \in \mathbb{N}, p(x)] \vee [\forall x \in \mathbb{N}, q(x)]$ se lee como

"todo número natural es par, o bien todo número natural es impar"

(falsa, por ser una disyunción de dos proposiciones falsas).

Ejemplos

2. Sea $A = \{1, 2, 3, 4, 5\}$ y la afirmación "existe algúnver número en A que es múltiplo de 2 y 3 simultáneamente" (falsa). Ésta puede leerse como $\exists x \in A : [p(x) \land q(x)],$ donde p(x): "x es múltiplo de 2" y q(x): "x es múltiplo de 3".

No obstante, la afirmación $[\exists x \in A : p(x)] \land [\exists x \in A : q(x)]$ se lee como

"existe un múltiplo de 2 en A y existe un múltiplo de 3 en A"

(verdadera, por ser una conjunción de dos proposiciones verdaderas).

Teorema

Se cumplen las siguientes leyes de De Morgan generalizadas:

- 1. $\neg [\forall x, p(x)] \equiv \exists x : \neg p(x)$.
- 2. $\neg [\exists x : p(x)] \equiv \forall x, \neg p(x)$.
- 3. $\forall x, p(x) \equiv \neg [\exists x : \neg p(x)].$
- 4. $\exists x : p(x) \equiv \neg [\forall x, \neg p(x)].$

Ejemplos

1. $\forall x, \neg [\exists y : [p(x, y) \rightarrow q(x)]].$

$$\forall x, \neg [\exists y : [\neg p(x,y) \lor q(x)]]$$

$$\forall x, \forall y, \neg [\neg p(x, y) \lor q(x)]$$

$$\forall x, \forall y, [\neg [\neg p(x, y)] \land \neg q(x)]$$

$$\forall x, \forall y, [p(x, y) \land \neg q(x)]$$

$$\forall x, y, [p(x, y) \land \neg q(x)]$$

Ejemplos

2. Consideremos el enunciado "no es cierto que todo entero sea simultáneamente par y positivo":

$$\neg [\forall x \in \mathbb{Z}, [p(x) \land q(x)]],$$

donde p(x): "x es par", q(x): "x es positivo".

$$\exists x \in \mathbb{Z} : \neg [p(x) \land q(x)]$$

$$\exists x \in \mathbb{Z} : \neg p(x) \vee \neg q(x),$$

siendo por tanto el enunciado equivalente "existe algún número entero tal que o bien es impar o bien no es positivo".

Definición

Un conjunto A está incluido en otro conjunto B $(A \subseteq B)$, o bien que B incluye A, si todo elemento de A pertenece también a B, es decir:

$$A \subseteq B$$
 si $\forall x \in A, x \in B$.

En caso contrario, diremos que $A \not\subseteq B$.

Ejemplos

- 1. Sea $A = \{a, b, c\}$ y $B = \{a, b, c, d\}$. Entonces $A \subseteq B$, ya que todo elemento de A está en B.

 Por otra parte, $B \not\subseteq A$, ya que por ejemplo $d \in B$ pero $d \not\in A$.
- 2. Sea $A = \{1, 3, 4\}$ y $B = \{1, 2, 4\}$. Entonces no se cumple ninguna relación de inclusión.
 - 2.1 $A \nsubseteq B$, ya que $3 \in A$, pero $3 \notin B$.
 - **2.2** $B \not\subseteq A$, puesto que $2 \in B$, pero $2 \notin A$.
- 3. $\emptyset \subseteq A \ \forall A \ conjunto$.

En caso contrario, escribimos $A \neq B$.

Definición

Dos conjuntos A y B son iguales (A = B) si todo elemento de A está en B y viceversa. Dicho de otro modo, diremos que A = B si $A \subseteq B$ y $B \subseteq A$.

Ejemplos

- $ightharpoonup \forall A \ conjunto, \ A = A.$
- ► Sean $A = \{a, b, c\}$ y $B = \{b, c, a\}$. Entonces A = B, ya que se cumple que $A \subseteq B$ y a la vez $B \subseteq A$.
- ► Sean $A = \{a, b, c\}$ y $B = \{a, b, c, d\}$. Entonces $A \neq B$, ya que $B \nsubseteq A$.

Definición

La **intersección** entre dos conjuntos A y B, denotada por $A \cap B$, es un nuevo conjunto formado por los elementos en común de A y B.

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

Si A y B no tienen ningún elemento en común, entonces $A \cap B = \emptyset$ y se dice que en ese caso A y B son **disjuntos**.

Ejemplos

1. Sean $A = \{-1, 3, 5, 2, 6, 9\}$ y $B = \{-1, 0, 4, 3, 7, 9, 10\}$. Entonces

 $A \cap B = \{-1, 3, 9\}.$

2. Consideremos ahora
$$A = \{a, b, c\}$$
 y $B = \{c, d, e\}$. En este caso, se tiene $A \cap B = \{c\}$.

- 3. Tomemos $A = \{a, b, c\}$ $y B = \{d, e, f\}$. Entonces A y B no tienen elementos
- comunes, luego $A \cap B = \emptyset$.
- 4. Sean A = [-1, 1] y B =]0, 2]. Entonces $A \cap B =]0, 1]$. 5. Si A = [0, 1] y B = [1, 2] entonces $A \cap B = \{1\}$.

Definición

La **unión** entre dos conjuntos A y B, denotada por $A \cup B$, es un nuevo conjunto formado por todos los elementos de A y B.

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Ejemplos

1. Sean $A = \{a, b, c, e\}$ $\forall B = \{c, e, f\}$. Entonces

$$A \cup B = \{a, b, c, e, f\}.$$

2. Tomemos ahora $A = \{1, 3, 5\}$ y $B = \{2, 4, 6\}$. Entonces

$$A \cup B = \{1, 3, 5, 2, 4, 6\}.$$

- 3. Sean $A = [-1, \sqrt{2}]$ y B =]0, 2]. Entonces $A \cup B = [-1, 2]$.
- **4**. Si $A = [0, 2[y B = \{2\} \text{ entonces } A \cup B = [0, 2].$

Definición

El **complementario** de un conjunto A sobre otro conjunto B es el conjunto formado por todos los elementos de B que no pertenecen a A y se denota por $B \setminus A$, es decir:

$$B \setminus A = \{x \mid x \in B \land x \notin A\}.$$

Ejemplos

1. Sean $A = \{a, b, c, f\}$ $\forall B = \{b, c, e, f, g, j\}$. Entonces

$$B \setminus A = \{e, g, i\}.$$

2. Tomamos $A = \{a, b, c\}$ y $B = \{d, e, f\}$. Entonces

$$B \setminus A = \{d, e, f\} = B.$$

3. Sean $A = \{a, b, c, d\}$ $y B = \{b, c\}$. Entonces se tiene:

$$B \setminus A = \emptyset$$
.

4. Si
$$A = [-1, 1]$$
 $y B = [0, 2]$ entonces $B \setminus A = [1, 2]$ $y A \setminus B = [-1, 0]$.

Definición

Sean A y B conjuntos. Diremos que B es un **subconjunto** de A si se cumple $B \subseteq A$.

Ejemplo

 $B = \{a, d, e\}$ es un subconjunto de $A = \{a, b, c, d, e, f\}$, mientras que $C = \{a, g\}$ no es un subconjunto de A.

Definición

Sea A un conjunto. El conjunto de las **partes** de A es el conjunto formado por todos los subconjuntos de A y se denota por $\mathcal{P}(A)$. En otras palabras:

$$\mathcal{P}(A) = \{B \mid B \subseteq A\}.$$

Ejemplos

1. Sea $A = \{a, b\}$, entonces

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$$

2. Sea $A = \{1, 2, 3\}$, entonces

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Teorema

Sea A un conjunto finito, con
$$|A| = n$$
. Entonces $|\mathcal{P}(A)| = 2^n$.

Definición

Sean A, B dos conjuntos. El **producto cartesiano** de A y B, denotado por $A \times B$, consta del conjunto de todos los **pares ordenados**, donde los elementos de A ocupan la primera posición y los de B la última:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{\alpha, \beta\}$. Entonces

$$A \times B = \{(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)\}.$$

Definición

Sean A, B dos conjuntos. Diremos que una regla de la forma $f: A \to B$ es una aplicación o función si relaciona cada uno de los elementos de A a un único elemento de B; dicho de otra forma:

$$\forall a \in A, \exists! b \in B : f(a) = b.$$

- ightharpoonup El conjunto A recibe el nombre de **dominio** de f, y se denota por Dom(f).
- ► El conjunto B se denomina codominio de f.
- ► El conjunto f(A), dado por $f(A) = \{f(a) \mid a \in A\}$ recibe el nombre de **recorrido** o **imagen** de f.
- ▶ Dado $C \subseteq B$, el conjunto $f^{-1}(C) = \{x \in A \mid f(x) \in C\}$ se denota por imagen inversa o preimagen de B sobre f.

Ejemplos

1. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 8\}$. Tomamos $f : A \to B$ tal que f(1) = 3, f(2) = 5 y f(3) = 3. Entonces f es una aplicación, con $Dom(f) = \{1, 2, 3\}$ e $Im(f) = \{3, 5\} \subset B$.

Ejemplos

2. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 8\}$. Sea $f : A \rightarrow B$ tal que f(1) = 1, f(1) = 3, f(2) = 5 y f(3) = 8. Entonces f NO es una aplicación, pues $1 \in A$ tiene asignados dos valores de B: 1 y 3.

Ejemplos

3. Sean $A = \{1, 2, 3\}$ $y B = \{1, 3, 5, 8\}$. Tomamos $f : A \rightarrow B$ tal que f(1) = 5, y f(3) = 8. Entonces f NO es una aplicación, ya que $2 \in A$ no tiene asignado ningún valor.

Definición

Sea $f: A \to B$ una aplicación. Diremos que f es **inyectiva** si $\forall a, b \in A$, $f(a) = f(b) \to a = b$. Dicho de otra forma, f es inyectiva si f siempre lleva elementos distintos de A a elementos distintos de B.

Definición

Sea $f:A\to B$ una aplicación. Se dice que f es **sobreyectiva** o **suprayectiva** si f(A)=B o, lo que es lo mismo, $\forall b\in B\ \exists a\in A: f(a)=b$. Es decir, f es sobreyectiva cuando cada elemento de B tiene asociado al menos un elemento de A mediante f.

Definición

Sea $f: A \to B$ una aplicación. Se dice que f es **biyectiva** si f es inyectiva y sobreyectiva simultáneamente. Esta condición se traduce matemáticamente como $\forall b \in B \ \exists ! a \in A : f(a) = b$.

Ejemplos

- 1. $f: [-1,1] \to \mathbb{R}$ dada por $f(x) = x^3$. Es inyectiva.
- 2. $f: [-1,1] \rightarrow [0,1]$ dada por $f(x) = x^2$. Es sobreyectiva.
- 3. $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$. Es biyectiva.

Teorema

Sean A, B conjuntos finitos y sea $f: A \to B$ una aplicación. Entonces se cumplen las siguientes propiedades:

- 1. Si f es inyectiva, entonces $|A| \leq |B|$.
- 2. Si f es sobreyectiva, entonces $|A| \ge |B|$.
- 3. Si f es biyectiva, entonces |A| = |B|.

Definición

Sean A, B, C conjuntos cualesquiera, $f: A \to B$ y $g: B \to C$ aplicaciones. Entonces puede considerarse la **composición** de g con f, $g \circ f: A \to C$ definida de la siguiente forma: dado $a \in A$ $(g \circ f)(a) = g(f(a)) \in C$.

Ejemplo

Sean

- $ightharpoonup f: [0,+\infty[\rightarrow \mathbb{R}, f(x)=\sqrt{x}]$
- $g: \mathbb{R} \to [0, +\infty[, g(x) = e^x].$
- 1. $(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = e^{\sqrt{x}}$.
- 2. $(f \circ g) = f(g(x)) = f(e^x) = \sqrt{e^x} = e^{x/2}$.

Teorema

Sean A, B, C tres conjuntos cualesquiera y $f:A \rightarrow B$, $g:B \rightarrow C$ aplicaciones.

- 1. Si f, g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f, g son sobreyectivas, entonces $g \circ f$ también lo es.
- 3. Si f, g son biyectivas, entonces $g \circ f$ también lo es.

Definición

Sea A un conjunto cualquiera. La aplicación **identidad** $Id_A: A \to A$ es aquella que viene dada por $Id_A(a) = a \ \forall a \in A$.

Teorema

Sean A, B dos conjuntos cualesquiera. Entonces $f:A\to B$ es biyectiva si y sólo si $\exists !g:B\to A$ tal que $g\circ f=\operatorname{Id}_A y\ f\circ g=\operatorname{Id}_B$. La aplicación (única) g suele denotarse por $g=f^{-1}$ y recibe el nombre de **aplicación inversa**.

Ejemplo

Sean $A = \{\alpha, \beta, \gamma\}$, $B = \{\rho, \sigma, \tau\}$ y $f : A \to B$ dada por $f(\alpha) = \tau$, $f(\beta) = \sigma$ y $f(\gamma) = \rho$. Entonces $f^{-1} : B \to A$ cumple $f^{-1}(\rho) = \gamma$, $f^{-1}(\sigma) = \beta$ y $f^{-1}(\tau) = \alpha$.

¡Muchas gracias!

Contacto:

amilcar.perez@professor.universidadviu.com