Relatório Aula 8

Aluno: Pedro Cliquet do Amaral

1. Introdução

O objetivo dessa aula foi comparar a eficiência e a qualidade das soluções geradas por dois algoritmos principais: Mochila Cheia e Hill Climbing.

Primeiramente, implementamos o algoritmo da Mochila Cheia, que preenche a mochila até o limite da capacidade. Em seguida, introduzimos o Hill Climbing, um método que começa com uma solução inicial aleatória e, através de pequenas modificações (vizinhança), tenta melhorar a solução, respeitando sempre a restrição de peso.

Analisamos os resultados com base em três arquivos de entrada, comparando os valores totais e os pesos das soluções encontradas por cada algoritmo. Com isso os resultados obtidos seguem abaixo:

Entrada 1.txt

Iterações	Mochila Cheia Valor Total	Mochila Cheia Peso Total	Hill Climbing Valor Total	Hill Climbing Peso Total		
1	373	379	297	376		
2	373	379	189	371		
3	373	379	264	379		
4	373	379	374	376		
5	373	379	298	368		

Entrada 2.txt

Iterações	Mochila Cheia Valor Total	Mochila Cheia Peso Total	Hill Climbing Valor Total	Hill Climbing Peso Total
1	154	238	207	235
2	154	238	180	239
3	154	238	154	238
4	154	238	311	238
5	154	238	258	239

Entrada_3.txt

Iterações	Mochila Cheia Valor Total	Mochila Cheia Peso Total	Hill Climbing Valor Total	Hill Climbing Peso Total
1	496	600	481	598
2	496	600	393	596
3	496	600	463	597
4	496	600	487	599
5	496	600	542	598

2. Conclusão

Levando em consideração que o método da Mochila Cheia é determinístico, ao compará-lo com o algoritmo Hill Climbing, em apenas 5 iterações, se torna complexo decidir qual utilizar.

O método da Mochila Cheia oferece vantagens significativas devido à sua natureza determinística. Ele sempre produz a mesma solução para um dado conjunto de dados e capacidade, o que facilita a análise e a previsão de resultados. Além disso, sua implementação é direta e fácil de entender, sem a necessidade de técnicas de otimização complexas. No entanto, suas desvantagens incluem a possibilidade de não encontrar a solução ótima em casos mais complexos, especialmente quando a capacidade da mochila é grande ou quando há muitos itens. O método também pode desperdiçar recursos, incluindo itens ideais apenas para preencher a capacidade da mochila, o que pode levar a soluções não ideais.

Por outro lado, o algoritmo Hill Climbing possui vantagens importantes relacionadas à sua adaptabilidade. Ele tem o potencial de encontrar soluções melhores ao explorar diferentes combinações de itens e ao utilizar a capacidade de explorar vizinhos a partir de uma solução inicial aleatória. Isso pode levar a melhores resultados, especialmente em problemas complexos. No entanto, o algoritmo é dependente da solução inicial e dos vizinhos gerados, o que pode levar a resultados variados em diferentes execuções. Além disso, existe o risco de ficar preso em ótimos locais, onde o algoritmo não consegue sair de uma solução subótima para encontrar a solução global ótima.

Em resumo, o método da Mochila Cheia é eficaz para situações onde um resultado consistente é simples é necessário, mas pode não ser a melhor escolha para todos os problemas de otimização. O Hill Climbing, por sua vez, oferece a possibilidade de encontrar soluções mais próximas do ótimo, mas pode ser influenciado por variáveis aleatórias e limitações na busca local. A escolha entre os dois métodos deve levar em conta a

complexidade consistência.	do	problema	e a	a necessi	dade	de	soluções	ótimas	versus	a sim	nplicidade	е