Tutorial: Sparse Recovery Using Sparse Matrices

Piotr Indyk MIT

Problem Formulation

(approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, **compressed sensing...)**

- Setup:
 - Data/signal in n-dimensional space : x
 E.g., x is an 256x256 image ⇒ n=65536
 - Goal: compress x into a "sketch" Ax ,
 where A is a m x n "sketch matrix", m << n
- Requirements:
 - Plan A: want to recover x from Ax
 - · Impossible: underdetermined system of equations
 - Plan B: want to recover an "approximation" x* of x
 - Sparsity parameter k
 - Informally: want to recover largest k coordinates of x
 - Formally: want x* such that

$$||x^*-x||_p \le C(k) \min_{x'} ||x'-x||_q$$

over all x' that are k-sparse (at most k non-zero entries)

- Want:
 - Good compression (small m=m(k,n))
 - Efficient algorithms for encoding and recovery
- Why linear compression?
 - Broader functionality!
 - Useful for compressed signal acquisition, streaming algorithms, etc (see Appendix for more info)

Constructing matrix A

- "Most" matrices A work
 - Sparse matrices:
 - Data stream algorithms
 - Coding theory (LDPCs)
 - Dense matrices:
 - Compressed sensing
 - Complexity/learning theory (Fourier matrices)

- "Traditional" tradeoffs:
 - Sparse: computationally more efficient, explicit
 - Dense: shorter sketches
- Recent results: the "best of both worlds"

Prior and New Results

Paper	Rand.	Sketch	Encode	Column	Recovery time	Approx
	/ Det.	length	time	sparsity		

Scale: Excellent Very Good Good Fair

Results

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CCF'02],	R	k log n	n log n	log n	n log n	12 / 12
[CM'06]	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	12 / 12
[CM'04]	R	k log n	n log n	log n	n log n	I1 / I1
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	I1 / I1
[CRT'04]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n ^c	12 / 11
[RV'05]	D	k log ^c n	n log n	k log ^c n	n ^c	I2 / I1
[GSTV'06]	D	k log ^c n	n log ^c n	log ^c n	k log ^c n	I1 / I1
[GSTV'07]	D	k log ^c n	n log ^c n	k log ^c n	k² log ^c n	12 / 11
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	I1 / I1
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n ^c	12 / 11
[NV'07], [DM'08], [NT'08],	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * log	12 / 11
[BD'08], [GK'09],	D	k log ^c n	n log n	k log ^c n	n log n * log	I2 / I1
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	I1 / I1
[GLSP'09]	R	k log(n/k)	n log ^c n	log ^c n	k log ^c n	I2 / I1

Part I

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CM'04]	R	k log n	n log n	log n	n log n	I1 / I1

Theorem: There is a distribution over mxn matrices A, m=O(k log n), such that for any x, given Ax, we can recover x^* such that

$$||x-x^*||_1 \le C \operatorname{Err}_1$$
, where $\operatorname{Err}_1 = \min_{k-\text{sparse } x'} ||x-x'||_1$

with probability 1-1/n.

The recovery algorithm runs in $O(n \log n)$ time.

This talk:

- Assume x≥0 this simplifies the algorithm and analysis; see the original paper for the general case
- Prove the following I_∞/I₁ guarantee: ||x-x*||_∞≤ C Err₁ /k
 This is actually stronger than the I₁/I₁ guarantee (cf. [CM'06], see also the Appendix)

Note: [CM'04] originally proved a weaker statement where $||x-x^*||_{\infty} \le C||x||_1$ /k. The stronger guarantee follows from the analysis of [CCF'02] (cf. [GGIKMS'02]) who applied it to Err₂

First attempt

- Matrix view:
 - A 0-1 wxn matrix A, with one 1 per column
 - The i-th column has 1 at position h(i), where h(i) be chosen uniformly at random from {1...w}
- Hashing view:
 - -Z=Ax
 - h hashes coordinates into "buckets" Z₁...Z_w
- Estimator: x_i*=Z_{h(i)}

Closely related: [Estan-Varghese'03], "counting" Bloom filters

Analysis

- We show
 - $x_i^* \le x_i \pm \alpha \text{ Err/k}$ with probability >1/2
- Assume

$$|x_{i1}| \ge ... \ge |x_{im}|$$

and let S={i1...ik} ("elephants")

- When is $x_i^* > x_i \pm \alpha Err/k$?
 - **Event 1**: S and i collide, i.e., h(i) in $h(S-\{i\})$ Probability: at most $k/(4/\alpha)k = \alpha/4 < 1/4$ (if $\alpha < 1$)
 - Event 2: many "mice" collide with i., i.e.,
 Σ_{t not in S u {i}, h(i)=h(t)} x_t > α Err/k
 Probability: at most ¼ (Markov inequality)
- Total probability of "bad" events <1/2

Second try

Algorithm:

- Maintain d functions h₁...h_d and vectors Z¹...Z^d
- Estimator:

$$X_i^* = \min_t Z_{ht(i)}^t$$

Analysis:

- $-\Pr[|x_i^*-x_i| \ge \alpha \operatorname{Err/k}] \le 1/2^d$
- Setting d=O(log n) (and thus m=O(k log n))
 ensures that w.h.p

$$|x^*_i - x_i| < \alpha \text{ Err/k}$$

Part II

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	l1 / l1
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	l1 / l1

dense

VS.

Restricted Isometry Property (RIP) [Candes-Tao'04]

$$\Delta$$
 is k-sparse $\Rightarrow ||\Delta||_2 \leq ||A\Delta||_2 \leq C ||\Delta||_2$

- Holds w.h.p. for:
 - Random Gaussian/Bernoulli: m=O(k log (n/k))
 - Random Fourier: m=O(k log^{O(1)} n)
- Consider m x n 0-1 matrices with d ones per column
- Do they satisfy RIP?
 - No, unless $m=\Omega(k^2)$ [Chandar'07]
- However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-Karloff-Strauss'08]:

$$\Delta$$
 is k-sparse \Rightarrow d $(1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$

 Sufficient (and necessary) condition: the underlying graph is a (k, d(1-ε/2))-expander

Expanders

- A bipartite graph is a (k,d(1-ε)) expander if for any left set S, |S|≤k, we
 have |N(S)|≥(1-ε)d |S|
- Objects well-studied in theoretical computer science and coding theory
- Constructions:
 - Probabilistic: m=O(k log (n/k))
 - Explicit: m=k quasipolylog n
- High expansion implies RIP-1:

 Δ is k-sparse \Rightarrow d $(1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$ [Berinde-Gilbert-Indyk-Karloff-Strauss'08]

Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1

Want to show that for any k-sparse
 [∆] we have

$$d(1-\epsilon) \|\Delta\|_1 \le \|A\Delta\|_1 \le d\|\Delta\|_1$$

- RHS inequality holds for any ∆
- LHS inequality:
 - W.l.o.g. assume

$$|\Delta_1| \ge \dots \ge |\Delta_k| \ge |\Delta_{k+1}| = \dots = |\Delta_n| = 0$$

- Consider the edges e=(i,j) in a lexicographic order
- For each edge e=(i,j) define r(e) s.t.
 - r(e)=-1 if there exists an edge (i',j)<(i,j)
 - r(e)=1 if there is no such edge
- Claim 1: $||A\Delta||_1 \ge \sum_{e=(i,j)} |\Delta_i| r_e$
- Claim 2: $\sum_{e=(i,j)} |\Delta_i| r_e \ge (1-\epsilon) d||\Delta||_1$

Recovery: algorithms

Matching Pursuit(s)

- Iterative algorithm: given current approximation x*:
 - Find (possibly several) i s. t. A_i "correlates" with Ax-Ax*. This yields i and z s. t.

$$||x^*+ze_i-x||_p << ||x^*-x||_p$$

- Update x*
- Sparsify x* (keep only k largest entries)
- Repeat
- Norms:
 - p=2 : CoSaMP, SP, IHT etc (RIP)
 - p=1 : SMP, SSMP (RIP-1)
 - p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse Matching Pursuit

- Algorithm:
 - $x^* = 0$
 - Repeat T times
 - Repeat S=O(k) times
 - Find i and z that minimize* ||A(x*+ze_i)-Ax||₁
 x* = x*+ze_i
 - Sparsify x*
 (set all but k largest entries of x* to 0)
- Similar to SMP, but updates done sequentially

^{*} Set $z=median[(Ax^*-Ax)_{N(I)}]$. Instead, one could first optimize (gradient) i and then z [Fuchs'09]

SSMP: Approximation guarantee

- Want to find k-sparse x* that minimizes ||x-x*||₁
- By RIP1, this is approximately the same as minimizing ||Ax-Ax*||₁
- Need to show we can do it greedily

Supports of a₁ and a₂ have small overlap (typically)

Conclusions

- Sparse approximation using sparse matrices
- State of the art: deterministically can do 2 out of 3:

 - Near-linear encoding/decodingO(k log (n/k)) measurements
 - Approximation guarantee with respect to L2/L1 norm
- Open problems:
 - 3 out of 3?
 - Explicit constructions ?
- For more, see

A. Gilbert, P. Indyk, "Sparse recovery using sparse matrices", Proceedings of IEEE, June 2010.

Appendix

I_{∞}/I_1 implies I_1/I_1

• Algorithm:

- Assume we have x* s.t. ||x-x*||_∞≤ C Err₁ /k.
- Let vector x' consist of k largest (in magnitude) elements of x*

Analysis

- Let S (or S*) be the set of k largest in magnitude coordinates of x (or x*)
- Note that $||x^*_{S}|| \le ||x^*_{S^*}||_1$
- We have

```
\begin{aligned} ||\mathbf{x}-\mathbf{x}'||_1 &\leq ||\mathbf{x}||_1 - ||\mathbf{x}_{S^*}||_1 + ||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \\ &\leq ||\mathbf{x}||_1 - ||\mathbf{x}^*_{S^*}||_1 + 2||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \\ &\leq ||\mathbf{x}||_1 - ||\mathbf{x}^*_{S}||_1 + 2||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \\ &\leq ||\mathbf{x}||_1 - ||\mathbf{x}_{S}||_1 + ||\mathbf{x}^*_{S}-\mathbf{x}_{S}||_1 + 2||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \\ &\leq ||\mathbf{x}||_1 - ||\mathbf{x}_{S}||_1 + ||\mathbf{x}^*_{S}-\mathbf{x}_{S}||_1 + 2||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \\ &\leq ||\mathbf{x}||_1 - ||\mathbf{x}_{S}||_1 + ||\mathbf{x}^*_{S}-\mathbf{x}_{S}||_1 + 2||\mathbf{x}_{S^*}-\mathbf{x}^*_{S^*}||_1 \end{aligned}
```

Application I: Monitoring Network Traffic Data Streams

- Router routs packets
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic matrix x[.,.]
 - Easy to update: given a (src,dst) packet, increment
 X_{src,dst}
 - Requires way too much space!
 (2³² x 2³² entries)
 - Need to compress x, increment easily
- Using linear compression we can:
 - Maintain sketch Ax under increments to x, since $A(x+\Delta) = Ax + A\Delta$
 - Recover x* from Ax

Applications, ctd.

Single pixel camera

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, Kelly, Baraniuk'06]

Pooling Experiments
 [Kainkaryam, Woolf'08], [Hassibi et al'07], [Dai-Sheikh, Milenkovic, Baraniuk], [Shental-Amir-Zuk'09], [Erlich-Shental-Amir-Zuk'09]

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

SSMP: Running time

- Algorithm:
 - $x^* = 0$
 - Repeat T times
 - For each i=1...n compute* z_i that achieves

$$D_i = \min_z ||A(x^* + ze_i) - b||_1$$

and store Di in a heap

- Repeat S=O(k) times
 - Pick i,z that yield the best gain
 - Update $x^* = x^* + ze_i$
 - Recompute and store D_i for all i' such that N(i) and N(i') intersect
- Sparsify x*
 (set all but k largest entries of x* to 0)
- Running time:

$$T [n(d+log n) + k nd/m*d (d+log n)]$$

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

