BEST AVAILABLE COPY

SUBSTITUTE SHEET (RULE 26)

2/68

Fig. 1A, continued

4/68

SUBSTITUTE SHEET (RULE 26)

Display of Functional Entities on a Peptide Backbone

Fig. 1C

SUBSTITUTE SHEET (RULE 26)

Fig. 2, continued

ď

9/68

.

WO 2004/110964 PCT/DK2004/000416

Fig. 4A Example of a first building block

SUBSTITUTE SHEET (RULE 26)

Fig. 4B **Example of a second building block**

Fig. 4C
Examples of tRNAs charged with FE-AA units

SUBSTITUTE SHEET (RULE 26)

Fig. 4C, continued

Fig. 4C, continued

PCT/DK2004/000416

SUBSTITUTE SHEET (RULE 26)

16)

Fig. 4C, continued

WO 2004/110964 PCT/DK2004/000416

Fig. 5A

18/68

Enzymatic charging of tRNAs catalysed by amino acid tRNA synthetases

Fig. 5B Chemical aminoacylation of tRNAs

Fig. 6

Bond formation between functional entities and activation of the templated molecule

WO 2004/110964

Fig. 8

Coiled-coil display of functional entities

WO 2004/110964 PCT/DK2004/000416

Fig. 9

. Display of functional entities by a collagen-like triple helix structure

WO 2004/110964 PCT/DK2004/000416

Fig. 10

23/68

Cleavable linkers and protection groups, cleaving agents and cleavage products.

A. Base (nucleophilic) cleavage.

Fig. 10, continued

C. Acid cleavage

D. Catalytic cleavage.

Fig. 10, continued

E. Enzymatic cleavage.

F. Cleavage by temperature increase.

$$R \xrightarrow{-1} R \xrightarrow{OH} A \qquad R \xrightarrow{N-R'} A$$

G. Miscellaneous

Fig. 11
Polymerization by reaction between neighboring reactive groups.

Fig. 11, continued

Ex. 1. Coumarin-based polymerization

Fig 12. Polymerization between neighboring non-identical reactive groups.

Fig. 13. Cluster for mation in the absence of directional polymerization.

Fig 14. Zipping-polymerization and simultaneous activation.

Fig. 14, continued

Example 1. Polymerization and activation (thioesters)

A.

Fig. 14, continued

Fig. 14, continued

Fig. 15
"Fill-in" polymerization (symmetric XX monomers).

Fig. 15, continued Example 1. Poly-imine formation by fill-in polymerization

Fig. 15, continued

Example 3. Polyurea formation

Fig. 15, continued 39/68

Example 4. Chiral and achiral polyamide backbone formation

SUBSTITUTE SHEET (RULE 26)

Fig. 15, continued Example 5. Polyphosphodiester formation

Fig. 15, continued

Example 6. Polyphosphodiester formation with one reactive group in each monomer building

Fig. 15, continued

Example 7. Pericyclic, "fill-in" polymerization

SUBSTITUTE SHEET (RULE 26)

Fig. 16. "Fill-in" polymerization (asymmetric XS monomers).

Example 1. Fill-in polymerization by ketone-hydrazide reaction and by modified Staudinger ligation Fig. 16, continued

Fig. 17
"Zipping" polymerization

Fig. 17, continued

Example 1. Radical polymerization

SUBSTITUTE SHEET (RULE 26)

Fig. 17, continued. Example 2. Cationic polymerization

Fig. 18. Zipping polymerization by ring opening.

Fig. 18, continued. Example 1.
"Zipping" polymerization of N-thiocarboxyanhydrides, to form β-peptides.

Fig. 18, continued. Example 2. "Zipping" polymerization of 2,2-diphenylthiazinanone units to form β-peptides.

Fig. 18, continued. Example 3. Polyether formation by ring-opening polymerization.

SUBSTITUTE SHEET (RULE 26)

Fig. 19

Zipping-polymerization and activation by rearrangement.

SUBSTITUTE SHEET (RULE 26)

WO 2004/110964 PCT/DK2004/000416

53/68

Fig. 20. Zipping-polymerization and activation by ring opening.

Initiator and X reacts, resulting in ring-opening and activation of Y. The functional entity is simultaneously released from complementing element

Polymerisation and linker cleavage migrates

along the spacer backbone

WO 2004/110964 PCT/DK2004/000416

Fig. 21.
Directional polymer formation using fixed functional units.

Fig. 22. Templated polymers.

- alpha-, beta-, gamma-, and omega-peptides mono-, di- and tri-substituted peptides
- L- and D-form peptides
- cyclohexane- and cyclopentane-backbone modified beta-peptides
- vinylogous polypeptides
- glycopolypeptides
- polyamides
- vinylogous sulfonamide peptide
- Polysulfonamide
- conjugated peptide (i.e., having prosthetic groups)
- Polyesters
- Polysaccharides
- Polycarbamates
- Polycarbonates
- Polyureas
- poly-peptidylphosphonates
- Azatides
 - peptoids (oligo N-substituted glycines)
- Polyethers
- ethoxyformacetal oligomers poly-thioethers
- polyethylene glycols (PEG)
- Polyethylenes
- Polydisulfides
 - polyarylene sulfides
- Polynucleotides
- PNAs
- LNAs
- Morpholinos
- oligo pyrrolinone
 - polyoximes
- Polyimines
- Polyethyleneimine
- Polyacetates
- Polystyrenes
- Polyacetylene Polyvinyl
 - Lipids
- Phospholipids
- Glycolipids
 - polycycles (aliphatic)
- polycycles (aromatic)
- polyheterocycles
- Proteoglycan
- Polysiloxanes
- Polvisocyanides
- Polyisocyanates
- Polymethacrylates

Fig. 23. Precursors - examples.

- N-carboxyanhydrides (NCA)
- N-thiocarboxyanhydrides (NTA)
- Amines
- Carboxylic acids
- Ketones
- Aldehydes
- Hydroxyls
- Thiols
- Esters
- Thioesters
- conjugated system of double bonds
- Alkyl halides
- Hydrazines
- N-hydroxysuccinimide esters
- Epoxides
- Haloacetyls
- UDP-activated saccharides
- Sulfides
- Cyanates
- Carbonylimidazole
- Thiazinanones
- Phosphines
- Hydroxylamines
- Sulfonates
- Activated nucleotides
- Vinylchloride
- Alkenes, quinones

Fig. 24. Functional groups - examples.

- Hydroxyls
- Primary, secondary, tertiary amines
- Carboxylic acids
- Phosphates, phosphonates
- · Sulfonates, sulfonamides
- Amides
 - Carbamates
 - Carbonates
 - Ureas
- Alkanes, Alkenes, Alkynes
- Anhydrides
- Ketones
- Aldehydes
- Nitatrates, nitrites
- Imines
- Phenyl and other aromatic groups
- Pyridines, pyrimidines, purines, indole, imidazole, and heterocyclic bases
- Heterocycles
- polycycles
- Flavins
- Halides
- Metals
- Chelates
- Mechanism based inhibitors
- Small molecule catalysts
- Dextrins, saccharides
- Fluorescein, Rhodamine and other fluorophores
- Polyketides, peptides, various polymers
- Enzymes and ribozymes and other biological catalysts
- Functional groups for post-polymerization/post activation coupling of functional
- groups
- Drugs, e.g., taxol moiety, acyclovir moiety, "natural products"
- Supramolecular structures, e.g. nanoclusters
- Lipids
- Oligonucleotides, oligonucleotide analogs (e.g., PNA, LNA, morpholinos)

WO 2004/110964 PCT/DK2004/000416

Fig. 25. Polymers and the functional entities required to make them. A,

	Functional Entity			General	Specific
Polymer	(reactive groups)	Linking molecule	Catalyst/reagent	Figure	Figure
polycyclic	di-coumarin	1	light	Fig. 11	Fig. 11, ex. 1
compound	di-coumarin		light	rig. ti	rig. 11, ex. 1
				Fig. 12,	
polyester	alcohol, carboxylic acid		carbodlimide	Fig. 21	
polyester	hydroxyl, thioester			Fig. 14	
					F1- 4F - 0
polyurea	di-amine	carbonyldiimidazole		Fig. 15	Fig 15, ex. 3
	+			Fig. 12,	
polyacetate	halogen, carboxylic acid		base	Fig. 21	1
			EDC or other	Fig. 12,	1
polyacetate	alcohol, carboxylic acid		carbodiímide	Fig. 21	
				- 10	
	1		ł	Fig. 12,	1
polycarbamate	alcohol, isocyanate			Fig. 21	-
polycarbonate	diol	carbonyldiimidazole		Fig. 15	<u> </u>
	secondary amine, α-		 	Fig. 12,	
peptoid	haloacetvi		ì	Fig. 21	
	primary amine, α-			Fig. 12,	1
	haloacetyl		alkylating agent	Fig. 21	<u> </u>
				Flg. 12,	
glycogen	LIDD alwares	}	glycogen synthetase	Fig. 21	
	UDP-glucose UDP-activated		polysaccharide	Fig. 12,	
polysaccharide	saccharides		synthetases	Fig. 21	1
pulysacchande	alucosyl)	1	T
	sulphide/sulfoxide	1			[
	activation system (Kahne	1	ļ	Fig. 12,	[
polysaccharide	glucosylation)		Kahne conditions	Fig. 21	
	<u> </u>			Fig. 12,	
polyamide	amine, N-	ł	1	Fig. 12, Fig. 21	}
	hydroxysuccinimide ester		 	Fig. 12,	
polyamide	amine, carboxyllc acid		carbodiimide	Fig. 21	

WO 2004/110964 PCT/DK2004/000416

59/68

Fig. 25, continued Polymers and the functional entities required to make them.

В.

	Functional Entity			General	Specific
Polymer	(reactive groups)	Linking molecule	Catalyst/reagent		Figure
polyamide	di-amine	di-carboxylic acid	carbodilmide	Fig. 15	Fig. 15, ex. 2
	di-carboxylic acid .	di-amine	carbodilmide	Fig. 15	
	amine, carboxylic acld	amine, carboxylic acid	carbodiimide	Fig. 16	
α-polypeptide	carboxyanhydride (5- membered ring)			Fig. 18	
β-polypeptide	carboxyanhydride (6 membered ring)			Fig. 18	Fig. 18, ex.1
γ-polypeptide	carboxyanhydride (7- membered ring) 2,2-diphenylthiazinanone			Fig. 18	-
α-polypeptide	(5-membered ring)			Fig. 18	-
β-polypeptide	2,2-diphenylthiazinanone (6-membered ring) 2,2-diphenylthiazinanone		-	Fig. 18	Fig. 18, ex.2
γ-polypeptide	(7-membered ring)			Fig. 18	-
α-polypeptide	amine, thioester			Fig. 14	
β-polypeptide -	amine, thioester			Fig. 14	Fig. 14, ex.1
y-polypeptide	amine, thioester			Fig. 14	1
ω-polypeptide	amine, thioester			Fig. 14	
polysulfonamide	amine, sulfonic acid		carbodiimide	Fig. 12, Fig. 21	
polyphosphonate	di-alcohol	activated phosphonate		Fig. 15	
polyphosphonale	di-alcohol	activated alkytphosphine	oxidating reagent e.g. tert- butylhydroperoxid e	Fig. 15	
polyphosphate	di-alcohol ·	diaminoalkoxy- phosphine	oxidating reagent e.g. tertbutyl- hydroperoxide	Fig. 15	
		<u> </u>	11. 1/0:10011	VC:= 45	Fig. 15, ex. 5
polyphosphodieste	diol	diaminophosphine dioi	oxidant (ButOOH oxidant (ButOOH		Fig. 15, ex. 6
poryphosphodieste	diamlnophosphine	laini	UNUALL (DULOUT	/ · ig. iJ	1. ig. 10, cx. 0

WO 2004/110964 PCT/DK2004/000416

60/68

Fig. 25, continued

Polymers and the functional entities required to make them.

C

	Functional Entity (reactive groups)	Linking molecule	Catalyst/reagent	General Figure	Specific Figure
Polymer		diisocyanate	1	Fig. 15	
olyurethane	diamine	ulisocyanate			
				Fig. 18	Fig. 18, ex. 3
olyether	epoxide		+		
	n. 1. 1.1.			Fig. 18	
oolythioether	thioepoxide				
	n 1-1 n-1-1		oxidant	Fig. 11	
oolydisulfide	thiol, thiol		- CALLOUNI		
				Fig. 12,	
			100	Fig. 21	
polyoxime	aldehyde, hydroxylamine				
				Fig. 12,	
		\		Fig. 21	
polyimine	aldehyde, amine			Fig. 15	Fig. 15, ex. 1
polyimine	aldehyde, amine			1.191.15	-
				Fig. 12,	
	nucleoside-5'-phosphoro-2	1		Fig. 21	I
polynucleotides	methylimidazolides			i igi u	
polyamine	amine, alkyl sulfonate			Fig. 14	Fig. 14, ex.2
alkane	alkene			Fig. 17	Fig. 17, ex. 1
				Fig. 17	Fig. 17, ex.2
alkane	alkene			11.ig. 11	1.181.3.3
polycycloalkane	di-dlene	di-alkene (benzoquinone)		Fig. 15	Fig. 15, ex. 7
porjogoradinario					
polyvinyl	vinylchloride unit			Fig. 17	
polystyrene	styrene-unit		radical initiator, AIBN	Fig. 17	
polyatyrolic					
polyethylene	ethylené unit			Fig. 17	Fig. 17, ex.

Fig. 26 **61/68**Protocol for chemical charging of specific tRNAs

Fig. 27A

An example of a general structure for a set of building blocks.

Variable sequence (i.e. anticodon)

Fig. 27B

Examples of anticodon sequences and their corresponding functional entities

Fig. 28

Bond formation and linker cleavage

Photocleavage of linkers (and protective groups)

65/68

Fig. 29, continued

Addition to carbon-carbon multiplebonds

Fig. 29, continued

Cycloaddition to multiple bounds

Fig. 29, continued
Addition to carbon-hetero multiple bonds

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.