# Оглавление

| 1 | Анали | итический раздел                      | 6  |
|---|-------|---------------------------------------|----|
|   | 1.1   | Введение                              | 6  |
|   | 1.2   | Существующие аналоги                  | 6  |
|   | 1.3   | Определение общей структуры комплекса | 7  |
|   | 1.4   | Возможные прецеденты                  | 9  |
|   | 1.5   | Осуществляемая деятельность           | 1  |
|   | 1.6   | Вывод                                 | 3  |
| 2 | Конст | рукторский раздел                     | 4  |
|   | 2.1   | Введение                              | 4  |
|   | 2.2   | Общая структура системы               | 4  |
|   | 2.3   | Система мониторинга                   | 7  |
|   | 2.4   | Фронтэнд пользователей                | 8  |
|   | 2.5   | Фронтэнд вычислительных узлов         | 20 |
|   | 2.6   | Система управления сессией            | 24 |
|   | 2.7   | Система управления                    | 25 |
|   | 2.8   | Система хранения данных               | 26 |
|   | 2.9   | Система хранения файлов               | 29 |
|   | 2.10  | Система балансировки нагрузки         | 0  |
|   | 2.11  |                                       | 1  |
|   | 2.12  | Вывод                                 | 32 |
| 3 | Техно | логический раздел                     | 3  |
|   | 3.1   | Введение                              | 3  |
|   | 3.2   | Выбор языка программирования          | 3  |
|   | 3.3   | Выбор программных средств             | 3  |
|   | 3.4   | Система мониторинга                   | 4  |
|   | 3.5   | Фронтэнд пользователей                | 5  |
|   | 3.6   | Фронтэнд вычислительных узлов         | 5  |
|   | 3.7   | Система управления сессией            | 5  |
|   | 3.8   | Система управления                    | 5  |
|   | 3.9   | · -                                   | 5  |
|   | 3.10  | Система балансировки нагрузки         | 5  |

|   | 3.11   | Система вычи | исления |      | <br> |  |  |  |  |  | 35 |
|---|--------|--------------|---------|------|------|--|--|--|--|--|----|
|   | 3.12   | Вывод        |         |      | <br> |  |  |  |  |  | 35 |
| 4 | Заклю  | чение        |         | <br> | <br> |  |  |  |  |  | 36 |
| 5 | Списот | к литературы |         | <br> | <br> |  |  |  |  |  | 36 |

# Глоссарий

- пользователь человек, формирующий задание комплексу на проведение некоего расчёта;
- задача программа научно-прикладного характера, предоставленная в виде исполняемого файла;
- расчёт процесс выполнения задачи, результатом которого являются некие файлы (зависящие от задачи), содержащие результаты его работы. Подразумевается, что расчёт занимает значительное (от нескольких часов и до нескольких дней) время;
- комплекс вся система распределённых вычислений
- пользовательский интерфейс, ПИ интерфейс, используемый для постановки задач комплексу и управления ходом их расчётов;
- база данных, БД выделенный сервер или программный компонент, отвечающий за хранение и доступ к данным;
- персональный компьютер, ПК электронно-вычислительная машина архитектуры IBM PC;
- вычисляющий компьютер,  $BK \Pi K$  с установленным  $\Pi O$ , обеспечивающим взаимодействие данного  $\Pi K$  с комплексом и проведение расчётов на данном  $\Pi K$ ;
- COA "сервис-ориентированная архитектура(SOA)", подход к разработке программного обеспечения на основе слабосвязанных компонентов, взаимодействующих посредством стандартизованных интерфейсов;
- сервер объект клиент серверного взаимодействия, осуществляющий обслуживание клиентов
- клиент объект клиент серверного взаимодействия, инициирующий запрос серверу
- бекенд сервер, элемент декомпозии СОА, отвечающий за выполнение определенной подзадачи(работы с определенным типом данных, балансировку и т.д.);

- фронтенд сервер, элемент декомпозии COA, отвечающий за перенаправление запросов бекендам и предоставление ПИ и/или интерфейса приложения.
- СХД система хранения данных
- СХФ система хранения файлов
- СУ система управления
- ФП фронтенд пользователей
- СУС система управления сессией
- СБН система балансировки нагрузки
- ФВУ фронтенд вычислительных узлов
- ВУ вычислительный узел

# Введение

В ходе исследовательских работ в разных областях у членов научно-исследовательских и технических коллективов часто возникают задачи расчёта небольших программ, призванных проверить какую-либо гипотезу. Время работы подобных программ, несмотря на их простоту, может достигать нескольких часов, и в рамках коллектива часта ситуация, когда в любой момент времени кто-либо проводит какие-либо расчёты. В то же время, для каждого конкретного исследователя время расчёта подобных программ не занимает всё доступное. Част режим работы, в котором конкретный сотрудник несколько дней планирует вычислительный эксперимент, после чего ему необходимо поставить его на выполнение на несколько часов. В эти несколько часов его компьютер находится под высокой нагрузкой; однако во время нескольких дней планирования он по большей части простаивает.

В связи с этим возникла необходимость реализации программного комплекса, позволяющего исследователям в рамках коллектива загружать вычислительными задачами компьютеры друг друга. Комплекс должен быть прост в обращении и не требовать особой доработки программного обеспечения вычислительных экспериментов для их расчёта.

# 1. Аналитический раздел

#### 1.1. Введение

В данном разделе обосновывается актуальность задачи и выполняется анализ предметной области. Результаты анализа представляются в виде диаграм прецедентов и деятельности.

### 1.2. Существующие аналоги

Подобные системы разрабатываются с 1994 года, и в общем случае их называют системами "добровольных вычислений". Среди программного обеспечения, используемого для организации таких вычислений, наиболее распространены системы XtremWeb, Xgrid, Grid MP и BOINC. Все подобные программы работают по одному и тому же принципу – пользователь в заданном формате передаёт системе свою программу; система отправляет эту задачу на выполнение какому-либо из вычислительных узлов, получает ответ и отдаёт его пользователю.

Xgrid — технология, разработанная компанией Apple, позволяющая объединять группу компьютеров в виртуальный суперкомпьютер для проведения распределённых вычислений. Из преимуществ данной системы можно выделить наличие предустановленных клиентов на компьютерах под управлением MAC OS X; однако её недостатки весьма существенны — во-первых, существует только реализация для MAC OS X; во-вторых, для доступа к каким-либо функциям комплекса, кроме просто однопоточного запуска программы, исполняемая программа должна быть специально спроектирована с учётом особенностей системы и только на языке Objective-C.

Grid MP — технология, разработанная компанией Univa. Символы MP в названии не имеют официальной расшифровки. Предоставляет web API для манипулирования объектами системы, что позволяет вести разработку для комплекса на практически любом языке программирования, но в то же время требует разработки программ специально под комплекс.

BOINC — открытая программная платформа университета Беркли для GRID вычислений. Обеспечивает валидацию вычислений за счёт избыточности, отслеживание конкретного вклада пользователей в расчёты, управление участием в различных экспериментах; однако рассчитан на огромные по масштабам проекты (тысячи и сотни тысяч вычислителей; наиболее крупные проекты насчитывают до 15 миллионов участников). В связи с этим, процесс настройки проекта занимает значительное время.

TORQUE – (Terascale Open-Source Resource and QUEue Manager) – менеджер распределенных ресурсов для вычислительных кластеров из машин

под управлением Linux и других Unix-подобных операционных систем. Существует порт под Windows.

Таким образом, из известных систем подобного рода ни одна не занимает целевую нишу ввиду следующих особенностей:

- Xgrid поддерживает только MAC OS системы, исполняемая программа должна быть написана специально для работы с данной системой;
- Grid MP коммерческий продукт, данных о ценах нет в наличии; исполняемая программа должна быть написана специально для работы с данной системой;
- BOINC избыточная дла поставленной задачи функциональность, исполняемые прикладные программы должны сильно дорабатываться для совместимости с проектом;
- TORQUE система не предусматривает механизм деградации функциональности.

### 1.3. Определение общей структуры комплекса

Комплекс должен удовлетворять следующим требованиям:

- структура системы должна следовать принципам СОА;
- количество качественно различных сервисов, из которых должна состоять система, должно быть не меньше 4-х;
- не менее 3-х сервисов(бекендов) должны быть горизонтально масштабируемыми;
- взаимодействие сервисов должно осуществляться по HTTP протоколу с учётом рекомендаций REST, если не доказана необходимость отказа от такого решения;
- отслеживание авторизационных ключей должно осуществляться отдельно выделенным сервисом;
- база данных комплекса должна поддерживать репликацию;

В результате анализа требований, была определена структура сети. То-пология проектируемой системы представлена на рис. 1.



Рис. 1: Топология проектируемой системы.

# 1.4. Возможные прецеденты

Комплекс при его работе предоставляет пользователю следующие варианты использования:

- регистрация пользователя;
- авторизация пользователя;
- постановка задачи на исполнение;
- просмотр статуса задачи;
- отмена задачи.

Диаграмма этих и дополнительных служебных прецедентов приведена на рис. 2.

С учётом требований к разделению внутреннего функционала комплекса, диаграмма прецедентов на рис. 2 расщепляется на набор диаграмм, соответствующих каждой из выделенных подсистем. Соответствующие диаграммы приведены на рисунках 3,4,5.



Рис. 2: Диаграмма прецедентов всего комплекса в целом



Рис. 3: Диаграмма прецедентов СУС Рис. 4: Диаграмма прецедентов СУ



Рис. 5: Диаграмма прецедентов СБН

#### 1.5. Осуществляемая деятельность

Прецеденты, описанные в предыдущем пункте, отвечают определённой деятельности. Диаграмма деятельности на рис. 6 описывает полный процесс взаимодействия пользователя с комплексом.

С учётом требований к разделению внутреннего функционала комплекса, диаграмма деятельности на рис. 6 расщепляется на набор диаграмм, соответствующих определённым подсистемам из выделенных.

Диаграммы действий прецедентов подсистемы управления сессией "регистрация" и "вход в систему" приведены на рисунках 7 и 8 соответственно.

Диаграммы действий прецедентов системы балансировки нагрузки "регистрация", "запрос новой задачи" и "завершение выполнения задачи" приведены на рисунках 9, 10 и 11 соответственно.

Диаграммы действий прецедентов системы управления "постановка задачи" и "просмотр статсуа задачи" приведены на рисунках 12 и 13 соответственно.



Рис. 6: Диаграмма действий прецедента "общая деятельность" для системы в целом



Рис. 7: Диаграмма действий прецедента "регистрация" СУС

Рис. 8: Диаграмма действий прецедента "вход в систему" СУС



Рис. 9: Диаграмма действий прецедента "регистрация" СБН

Рис. 10: Диаграмма действий прецедента "запрос новой задачи" СБН



Рис. 11: Диаграмма действий преце- Рис. 12: Диаграмма действий прецедента "завершение выполнения зада- дента "постановка задачи" СУ чи" СБН



Рис. 13: Диаграмма действий прецедента "просмотр статсуа задачи" СУ

# 1.6. Вывод

В данном разделе были приведены диаграммы, описывающие функционал основных узлов системы. Данный анализ в дальнейшем используется для более строгой формализации функционала подсистем.

# 2. Конструкторский раздел

#### 2.1. Введение

В данном разделе приводятся результаты проектирования системы. С применением UML-диаграмм описывается общая структура комплекса и требуемый функционал отдельных узлов системы.

### 2.2. Общая структура системы

Для того, чтобы удовлетворить требованиям по предоставлению механизма деградации функциональности, а также для упрощения процесса разработки, комплекс должен быть разделен на отдельные слабосвязанные элементы.

Различные подсистемы комплекса имеют некую модель поведения. Поведение подсистемы описывается её активной и пассивной частью. Активная часть соответствует действиям, которые подсистема выполняет разово либо с некоторой периодичностью, в автоматическом режиме. Пассивная часть соответствует АРІ подсистемы. Взаимосвязи между различными компонентами системы приведены на диаграмме компонентов на рис. 14. Физическое размещение компонент по отдельным узлам проиллюстрировано на диаграмме развёртывания на рис. 15.



Рис. 14: Диаграмма компонент комплекса



Рис. 15: Диаграмма развёртывания комплекса

### 2.3. Система мониторинга

Задача данной подсистемы – отслеживание топологии сети. Все узлы комплекса должны оповещать СМ о своём статусе работы, и любой узел может получить от комплекса список активных в данный момент узлов. Данная система является полностью пассивной.

Невозможность любой другой подсистемы связаться с системой мониторинга рассматривается как ошибка сети, нарушающая нормальное функционирование комплекса.

#### Пассивная часть

Исходя из требований к СМ и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /services

Метод: GET

Результат: список активных сервисов

• Pecypc: /services/type

Метод: СЕТ

Результат: список активных сервисов такого типа

• Pecypc: /services/type

Метод: POST

**Параметры:** port, state?

Результат: сообщение об успешной регистрации сервиса и распознан-

ный адрес сервиса

Ошибки: отсутствует параметр "port": HTTP 422

• Pecypc: /services/type/address

Метод: GET

Результат: статусное сообщение выбранного сервиса, аннотированное

временем создания

Ошибки: сервис не найден: НТТР 404

• Pecypc: /services/type/address

Метод: PUT

**Параметры:** state?

```
"type1": {
        "ipaddr1:port1": {
          "state": "message1",
                                    // arbitrary string
          "lastbeat": "datetime1" // ex. "2015-05-25 01:46:35.857670"
        "ipaddr2:port2": {
          "state": "message2",
          "lastbeat": "datetime2"
10
      "type2": {
12
        "ipaddr3:port3": {
13
          "state": "message3",
14
          "lastbeat": "datetime3"
15
16
18
```

Листинг 1: Пример JSON-представления коллекции верхнего уровня сервиса мониторинга

Результат: сообщение об успешном обновлении статусного сообщения

Коллекция верхнего уровня /services имеет словарь JSON-формата, приведённого на примере в листинге 1. Запросы к коллекциям более глубокого уровня /services/type и /services/type/address отображаются в подсловари root[type] и root[type][address] словаря верхнего уровня, соответственно.

### 2.4. Фронтэнд пользователей

Задача данной подсистемы – проверки безопасности и перенаправление запросов от пользователей к системе управления, а также отрисовка веб-интерфейса.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- ФП должен зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.

• В ходе работы  $\Phi\Pi$  должен получать со стороны CM информацию о текущем адресе CУ, СУС и СХ $\Phi$ .

#### Пассивная часть

Исходя из требований к  $\Phi\Pi$ , он должен предоставлять следующий функционал:

- регистрация пользователя
- авторизация пользователя
- просмотр списка существующих в системе черт
- постановка задачи с передачей в систему описания задачи, содержащего:
  - файл со списком черт задачи
  - файл-архив, содержащий файл со списком выходных файлов задачи и скрипт для запуска
- просмотр статусов поставленных задач
- для выполненных задач просмотр результатов выполнения
- удаление задач

На файлы, составляющие описание задачи, накладываются следующие ограничения:

- Файл traits.txt должен содержать набор строк в кодировке UTF-8. В каждой строке должна быть записана одна черта задачи. Черта задачи состоит из имени черты и версии черты, разделёнными одним или несколькими пробелами. И черта, и версия описываются произвольными строками. Файл может заканчиваться пустой строкой. Строки, не подпадающие под такое описание, игнорируются. Пример корректного файла дан в листинге 2.
- Файлы output.txt и run.bat / run.sh должны находиться в .gz архиве, в корневой дирктории.
- Файл output.txt должен содержать набор строк в кодировке UTF-8. В каждой строке должен быть записан путь к одному из выходных файлов. Началом пути считается корень архива. Файл может заканчиваться пустой строкой. Пример корректного файла дан в листинге 3.

```
    cuda_version 5.5
    opengl_version
    this_string_will_be_ignored
    platform linux
    GlasgowHaskellCompiler 7.10.1
```

Листинг 2: Пример корректного файла со списком черт задачи

```
root_folder_file . txt
directory / subdirectory_file . extension
```

Листинг 3: Пример корректного файла со списком выходных файлов

• Файл run.bat / run.sh должен содержать инструкции по запуску задачи и корректно исполняться на вычислительном узле, удовлетворяющем требованиям, описанных чертами задачи. Именно этот файл будет запущен вычислительным узлом для начала расчётов. По завершении выполнения задачи она должна закрыть все созданные окна и уничтожить все порождённые процессы.

### 2.5. Фронтэнд вычислительных узлов

Задача данной подсистемы – перенаправление запросов от вычислительных узлов на балансировщик нагрузки.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- ФВУ должен зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы ФВУ должен получать со стороны СМ информацию о текущем адресе СБН и СХФ.

#### Пассивная часть

Исходя из требований к ФВУ и с учётом REST-методик, он должен предоставлять следующее API:

• Pecypc: /nodes

Метод: POST

**Параметры:** список черт и ключ вычислительного узла в виде JSON-объекта { "traits":[{ "name":"name1", "version":"version1" }, ...], "key ":"..." }

Результат: сообщение об успешной регистрации узла и назначенный идентификатор { "status": "success", "agent id": "identifier" }

• Pecypc: /nodes/nodeid

Метод: PUT

**Параметры:** состояние расчёта, form/query-параметры "state", "key\_old". Для обновления ключа также добавлен параметр "key".

**Результат:** сообщение об успешном обновлении статуса { "status":" success" }

• Pecypc: /tasks/newtask

Метод: СЕТ

**Параметры:** идентификатор вычислительного узла (form/query - параметр "nodeid", совпадает с полученным при регистрации "agent\_id"), ключ вычислительного узла (form/query - параметр "key")

**Результат:** пакет данных, описывающих задачу (gz - архив, переданный комплексу при создании задачи)

**Ошибки:** подходящих задач нет: HTTP 404; идентификатор не распознан либо отсутствует: HTTP 422

• Pecypc: /tasks/taskid

Метод: POST

**Параметры:** идентификатор вычислительного узла (form/query - параметр "nodeid"), ключ ВУ (form/query - параметр "key") результат выполнения задачи (file- параметр "file")

Результат: сообщение об успешном приёме результата

**Ошибки:** ошибка идентификатора узла, формата задачи либо идентификатора задачи: HTTP 422



Рис. 16: Диаграмма последовательности действий прецедента "регистрация"  $\Phi B Y$ 

Методы API POST /nodes, PUT /nodes/nodeid, GET /tasks/newtask и POST /tasks/taskid соответствуют прецедентам "регистрация", "запрос новой задачи", "отчёт о выполнении задачи" и "завершение выполнения задачи" соответственно.

Диаграммы последовательности действий при выполнении прецедентов "регистрация", "запрос новой задачи" и "завершение выполнения задачи" приведены на рис. 16, 17 и 18.



Рис. 17: Диаграмма последовательности действий прецедента "запрос новой задачи"  $\Phi B Y$ 



Рис. 18: Диаграмма последовательности действий прецедента "завершение выполнения задачи"  $\Phi B Y$ 

### 2.6. Система управления сессией

Задача данной подсистемы – регистрация, авторизация и аутентификация пользователей в сети.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СУС должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы СУС должна получать со стороны СМ информацию о текущем адресе СХД.

#### Пассивная часть

Исходя из требований к СУС и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /users

Метод: POST

Параметры: желаемая пара логин / пароль (хешированный). Form/query/JSON "username", "pw\_hash"

**Результат:** сообщение об успешной регистрации пользователя { "status ":"success", "user id":" identifier " }

**Ошибки:** пользователь с таким именем уже зарегистрирован: HTTP 422

• Pecypc: /login

**Метод:** GET

Параметры: пара логин / пароль (хешированный). Form/query/JSON "username", "pw hash"

**Результат:** сгенерированный ключ доступа { "status": "success", "session\_id ": "identifier " }

**Ошибки:** некорректная пара логин / пароль: HTTP 403, некорректный синтаксис запроса: HTTP 422

• Pecypc: /auth Метод: GET Параметры: ключ доступа: Form/query/JSON "session\_id"

**Результат:** сообщение об успешной проверке ключа, соответствующий ключу идентификатор пользователя { "status": "success", "user\_id": "identifier" }

**Ошибки:** некорректный ключ: HTTP 403, некорректный синтаксис запроса: HTTP 422

• Pecypc: /logout

Метод: GET

Параметры: ключ доступа: Form/query/JSON "session id"

**Результат:** сообщение об успешной разрегистрации ключа { "status": "success", "user\_id": "identifier" }

**Ошибки:** некорректный ключ: HTTP 403, некорректный синтаксис запроса: HTTP 422

### 2.7. Система управления

Задача данной системы – предоставление АРІ, позволяющего интерфейсной части (фронтенду вычислительных узлов) осуществлять взаимодействие пользователя с комплексом.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СУ должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы СУ должна получать со стороны СМ информацию о текущем адресе СХД.

#### Пассивная часть

Исходя из требований к СУ и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /traits

Метод: СЕТ

**Результат:** Список всех известных системе черт в формате JSON. { "result":[{ "name":"...", "version":"..." },...] }

• Pecypc: /tasks

Метод: POST

Параметры: идентификатор пользователя, список черт, допустимое время простоя, число экземпляров задачи, имя архива с содержимым задачи и отображаемое имя задачи в формате JSON. { "uid":" ... ", "traits" :[...], "task\_name":"...", "archive\_name":"...", "max\_time ":"...", "subtask count":"..." }

**Результат:** сообщение об успешном создании задачи { "status": "success ", "task id": "..." }

Ошибки: Неверный синтаксис запроса: HTTP 422

• Pecypc: /tasks

**Метод:** GET

Параметры: идентификатор пользователя. JSON { "uid":" ... " }

**Результат:** Список задач пользователя, их черт, дат постановки комплексу и статусов их подзадач: { "status":"success", "tasks":[{ "taskname ":"...", "traits":[...], "statuses":[{"status":"..."}, {"result":"..."}, ...], "id":"...", "dateplaced":"..." }, ...] }

Ошибки: Неверный синтаксис запроса: НТТР 422

• Pecypc: /tasks/task id

Метод: DELETE

Параметры: идентификатор пользователя. JSON { "uid":" ... " }

**Результат:** Сообщение об успешной отмене задачи { "status": "success" }

**Ошибки:** Неверный синтаксис запроса, нет такой пары пользователь / задача: HTTP 422

• Pecypc: /system/state

Метод: GET

Результат: такой же, как и у СМ при запросе по ресурсу /services

#### 2.8. Система хранения данных

Задача данной системы – хранение данных о задачах, вычислительных узлах и их чертах, а также предоставление АРІ по доступу к этим данным.

Связи между разными типами хранимых данных предоставлены в виде ЕR-диаграммы на рис. 19.



Рис. 19: ER-диаграмма сущностей, хранимых в СХД

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СХД должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.

#### Пассивная часть

Исходя из требований к СХД и с учётом REST-методик, она должна предоставлять следующее API:

Условные обозначения:

- table имя таблицы в БД
- РКС поле, являющееся (целочисленным) первичным ключом
- GFSbAI get free subtask by agent id
- object {field: value, ...}, JSON-представление табличного объекта
- $\bullet$  object JSON-предтавление объекта определенной таблицы
- value <name> значение, передаваемое любым возможным способом
- arrfilter object {field: list value, ...}

- filter object object, содержащий не более чем полный набор полей табличного объекта
- list object список объектов
- int целое число

| Адрес              | Метод  | Ввод              | Код | Вывод                   |  |  |  |  |  |
|--------------------|--------|-------------------|-----|-------------------------|--|--|--|--|--|
|                    |        |                   | 200 | empty                   |  |  |  |  |  |
|                    | POST   | object            | 400 | error: Incorrect /      |  |  |  |  |  |
| /table             |        | v                 |     | insufficient input      |  |  |  |  |  |
| ,                  |        |                   | 500 | error: Postgres error   |  |  |  |  |  |
|                    |        |                   |     | or "entry already       |  |  |  |  |  |
|                    |        |                   |     | exists"                 |  |  |  |  |  |
|                    | GET    | _                 | 200 | {"result": list object} |  |  |  |  |  |
|                    | G21    |                   | 404 | error: Not found        |  |  |  |  |  |
|                    | GET    | filter object     | 200 | {"result": list object} |  |  |  |  |  |
|                    | GET    | inter object      | 400 | error: Incorrect        |  |  |  |  |  |
| /table/filter      |        |                   |     | fields/values           |  |  |  |  |  |
| / table/ linter    |        |                   |     | specified               |  |  |  |  |  |
|                    | PUT    | filter put object | 200 | {"count": int}          |  |  |  |  |  |
|                    | 101    | linter put object | 400 | error: Incorrect        |  |  |  |  |  |
|                    |        |                   |     | fields/values           |  |  |  |  |  |
|                    |        |                   |     | specified               |  |  |  |  |  |
|                    | DELETE | filter object     | 200 | {"count": int}          |  |  |  |  |  |
|                    | DEEETE | muci object       | 400 | error: Incorrect        |  |  |  |  |  |
|                    |        |                   |     | fields/values           |  |  |  |  |  |
|                    |        |                   |     | specified               |  |  |  |  |  |
| /table/arrayfilter | GET    | arrfilter object  | 200 | {"result": list object} |  |  |  |  |  |
|                    | GET    | arriner object    | 400 | error: Incorrect        |  |  |  |  |  |
|                    |        |                   |     | fields/values           |  |  |  |  |  |
|                    |        |                   |     | specified               |  |  |  |  |  |
|                    |        | object            | 200 | object                  |  |  |  |  |  |
|                    | GET    |                   | 400 | error: Incorrect        |  |  |  |  |  |
|                    |        |                   |     | fields/values           |  |  |  |  |  |
|                    |        |                   |     | specified               |  |  |  |  |  |
| /table/PKC/value   |        |                   | 404 | error: Not found        |  |  |  |  |  |
|                    |        | object            | 200 | object                  |  |  |  |  |  |
|                    | PUT    |                   | 400 | error: Incorrect        |  |  |  |  |  |
|                    |        |                   |     | fields/values           |  |  |  |  |  |
|                    |        |                   |     | specified               |  |  |  |  |  |

|                   |        |                | 404 | error: Not found |  |  |  |
|-------------------|--------|----------------|-----|------------------|--|--|--|
|                   |        | object         | 200 | object           |  |  |  |
|                   | DELETE | object         | 400 | error: Incorrect |  |  |  |
|                   |        |                |     | fields/values    |  |  |  |
|                   |        |                |     | specified        |  |  |  |
|                   |        |                | 404 | error: Not found |  |  |  |
| /custom/GFSbAI    | GET    | value agent id | 200 | object subtask   |  |  |  |
| / Custom/ Gr SbAi | GEI    | value agent_id | 400 | error: Incorrect |  |  |  |
|                   |        |                |     | value specified  |  |  |  |

Кроме указанных кодов ошибок, также все запросы могут вернуть в ответ ошибки со следующими кодами:

- 408 Таймаут попытки доступа к некоторому шарду;
- 456 Получены различные ошибки от шардов при выполнении запроса. Эта ошибка является следствием нарушения согласованности данных.

### 2.9. Система хранения файлов

Задача данной системы – хранение архивов задач и их результатов, и выдача их по запросу.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- $\bullet$  СХФ должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.

#### Пассивная часть

Исходя из требований к СХФ и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /static

Метод: POST

**Параметры:** файл, переданный с помощью параметра типа multipart/form-

data "file"

Результат: Назначенный идентификатор файла { "name":"..." }

Ошибки: Неверный синтаксис запроса: HTTP 400

• Pecypc: /static/path

**Метод:** GET

**Результат:** файл по пути path

Ошибки: Файл отсутствует: HTTP 404

• Pecypc: /static/path

Метод: DELETE

Результат: Сообщение об успешном удалении файла: HTTP 200

Ошибки: Файл отсутствует: HTTP 404, ошибка при удалении файла:

HTTP 500

### 2.10. Система балансировки нагрузки

Данная система отвечает за координацию задач и отслеживание состояний активных вычислительных узлов.

#### Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СБН должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы СБН должна получать со стороны СМ информацию о текущем адресе СХД.

#### Пассивная часть

Исходя из требований к СБН и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /nodes

Метод: POST

**Параметры:** Список черт узла, ключ узла { "key": " ... ", " traits " :[...] }

Результат: Идентификатор узла { "agent id":"..." }

**Ошибки:** Ошибка при создании узла с заданными параметрами: HTTP 422

• Pecypc: /nodes/nodeid

Метод: PUT

Параметры: Состояние узла (form-параметр "state")

**Результат:** Сообщение об успешном изменении состояния узла { "status ":"success" }

Ошибки: Узел не распознан: НТТР 404

• Pecypc: /tasks/newtask

**Метод:** GET

Параметры: Идентификатор узла (form-параметр "nodeid")

**Результат:** Имя архива назначенной задачи, JSON { "archive\_name":" ..." }

**Ошибки:** Не найдено подходящей задачи: HTTP 404, неверный синтаксис запроса: HTTP 422

• Pecypc: /tasks

Метод: POST

**Параметры:** Идентификатор узла (form-параметр "nodeid"), имя арива с результатом задачи

**Результат:** Сообщение об успешном принятии результатов задачи { " status": "success" }

Ошибки: неверный синтаксис запроса: HTTP 422

#### 2.11. Система вычисления

Данная система представлена набором вычислительных узлов с установленным на них специальным ПО, осуществляющем взаимодействие с остальными сервисами системы и управление ходом выполнения задачи.

#### Активная часть

В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес фронтенда вычислительных узлов.

ПО, обеспечивающее функционирование системы, должно удовлетворять следующим требованиям:

• До подключения к серверу балансировки приложение должно предоставлять возможность формирования списка черт, характеризующих АО и ПО вычислительного узла



Рис. 20: Диаграмма состояний ВУ

- После подключения к балансировщику (через фронтенд вычислительных узлов), с определённой периодичностью вычислительный узел должен опрашивать комплекс на предмет наличия доступных задач
- По получении задачи, вычислительный узел должен с определённой периодичностью оповещать балансировщик о ходе выполнения задачи
- По завершении выполнения задачи, вычислительный узел должен передать балансировщику сведения о результате выполнения задачи

Диаграмма состояний ПО вычислительного узла, иллюстрирующая приведённые выше соображения, приведена на рис. 20.

#### 2.12. Вывод

# 3. Технологический раздел

#### 3.1. Введение

В данном разделе производится выбор языка программирования и сопутствующих программных средств. Описываются основные моменты программной реализации и описывается методика тестирования.

### 3.2. Выбор языка программирования

В качестве языка программирования был выбран python. Выбор был обусловлен наличием фреймворков для быстрого прототипирования веб-сервисов (flask) и большого количества онлайн-документации (как по языку, так и по фреймворку), а также простотой развёртки сервисов.

### 3.3. Выбор программных средств

При разработке использовались следующие библиотеки:

- Python 3.4.3 [1] основной дистрибутив языка
- Flask Microframework 0.10.1 [2] фреймворк для разработки веб-сервисов
- jsonpickle 0.8.0 [3] библиотека для работы с JSON-форматом
- hashlib [4] библиотека для работы с криптографическими функциями
- Requests 2.7.0 [5] библиотека для работы с HTTP-запросами
- psutil [6] библиотека для работы с информацией о системе
- subprocess [7] библиотека для работы с процессами
- SQLAlchemy 1.0.4 [8] набор инструментов для работы с БД

Также использовалось следующее ПО:

- Yed 3.14.1 [9] редактор диаграмм
- Inkscape 0.91 [10] редакор векторной графики
- PostgreSQL 9.4.2 [11] система управления базой данных
- tar [12, 13] утилита для работы с .tar архивами
- gzip [14, 15] утилита для работы с .gz архивами

### 3.4. Система мониторинга

#### Реализация

Система была реализована с помощью python-фреймворка flask. Для сериализации данных в json-формат и обратно была использована библиотека jsonpickle.

#### Тестирование

В ходе тестирования проверялись следующие сценарии:

- доступ к отсутствующему элементу через ресурсы /services, /services/ type и /services/type/address;
- попытка создания записи по ресурсу /services/test без указания порта;
- попытка создания записи по ресурсу /services/test;
- выборка всех активных сервисов по ресурсу /services;
- выборка активных сервисов роли test по ресурсу /services/test;
- изменение статусного сообщения сервиса по ресурсу /services/test/address;
- проверка удаления сервиса из списка активных после определённого времени неактивности.

# 3.5. Фронтэнд пользователей

Реализация

Тестирование

### 3.6. Фронтэнд вычислительных узлов

Реализация

Тестирование

### 3.7. Система управления сессией

Реализация

Тестирование

## 3.8. Система управления

Реализация

Тестирование

### 3.9. Система хранения данных

Реализация

Тестирование

# 3.10. Система балансировки нагрузки

Реализация

Тестирование

#### 3.11. Система вычисления

Реализация

Тестирование

#### 3.12. Вывод

### 4. Заключение

Была разработана система кроссплатформенная система распределения вычислительных мощностей. Были выделены и реализованы отдельные сервисы и предусмотрены механищмы горизонтального масштабирования некоторых из них.

Система может быть использована в небольших коллективах без доработок. Для работы в больших масштабах рекомендуется объеинить функционал некоторых серверов с целью уменьшения накладных расходов на сетевое взаимодействие, а также провести профилирование сервисов с целью выявления проблемных с точки зрения производительности мест.

# 5. Список литературы

- [1] Python Software Foundation. *Python Release Python 3.4.3.* 25 февр. 2015. URL: https://www.python.org/downloads/release/python-343/(дата обр. 03.06.2015).
- [2] Armin Ronacher и др. Flask (A Python Microframework) 0.10.1. 14 июня 2014. URL: http://pypi.python.org/packages/source/F/Flask/Flask-0.10.1.tar.gz (дата обр. 03.06.2015).
- [3] John Paulett, David Aguilar и др. *jsonpickle 0.8.0.* 6 сент. 2014. URL: https://jsonpickle.github.io/changelog.html#version-0-8-0-september-6-2014 (дата обр. 03.06.2015).
- [4] Python Software Foundation. hashlib Secure hashes and message digests. 25 февр. 2015. URL: https://docs.python.org/3/library/hashlib.html (дата обр. 03.06.2015).
- [5] Kenneth Reitz и др. Requests: HTTP for Humans. 3 мая 2015. URL: http://docs.python-requests.org/en/latest/community/updates/#software-updates (дата обр. 03.06.2015).
- [6] Giampaolo Rodola. psutil 2.2.1 cross-platform library for retrieving information on running processes and system utilization in Python. 25 февр. 2015. URL: https://github.com/giampaolo/psutil/releases/tag/release-2.2.1 (дата обр. 02.02.2015).
- [7] Python Software Foundation. subprocess Subprocess management. 25 февр. 2015. URL: https://docs.python.org/3.4/library/subprocess. html (дата обр. 03.06.2015).

- [8] the SQLAlchemy authors и contributors. SQLAlchemy: the Database Toolkit for Python. 7 мая 2015. URL: http://docs.sqlalchemy.org/en/latest/changelog/changelog\_10.html#change-1.0.4 (дата обр. 03.06.2015).
- [9] yWorks.  $yEd Graph \ Editor$ . URL: http://www.yworks.com/en/downloads.html#yEd (дата обр. 03.06.2015).
- [10] Inkscape collective. *Inkscape an SVG editing program.* 30 янв. 2015. URL: https://inkscape.org/ru/news/2015/01/30/inkscape-version-091-is-released/ (дата обр. 03.06.2015).
- [11] The PostgreSQL Global Development Group. PostgreSQL: The world's most advanced open source database. 22 мая 2015. URL: http://www.postgresql.org/docs/9.4/static/release-9-4-2.html (дата обр. 03.06.2015).
- [12] GNU. Tar. 28 июля 2014. URL: http://www.gnu.org/software/tar/ (дата обр. 03.06.2015).
- [13] GNU. Tar for Windows. 3 OKT. 2014. URL: http://gnuwin32.sourceforge.net/packages/gtar.htm (дата обр. 03.06.2015).
- [14] Sebastien Luttringer. gzip 1.6-1. 20 июня 2013. URL: https://www.archlinux.org/packages/core/i686/gzip/ (дата обр. 03.06.2015).
- [15] GNU. gzip 1.3.12 for Windows. 15 окт. 2013. URL: http://gnuwin32.sourceforge.net/packages/gzip.htm (дата обр. 03.06.2015).