杭州电子科技大学学生考试卷(A)卷	元州	电子科技	支大学	学生	老试券	(Α) के	失
---------------------	-----------	------	-----	----	-----	---	---	------	---

考试课程	高等数学 (A层)		考试日期	2012 年	6月	日	成 绩	
课程号	A0702173	教师号		任课教儿	 			
考生姓名	4.	学号 (8 位)		年级			专业	

题号		# # 1	/ E b	四五六			
得 分	V		200-110				

填空题 (本题共6小题,每小题3分,共18分)

- 1. 设 $z = e^{\sin(xy^2)}$, 则 $dz = e^{\sin xy^2}\cos xy^2(y^2)dx + 2xydy$)
- 2. 曲线 $\begin{cases} x = y^2 \\ z = x^2 \end{cases}$ 上点 (1,1,1)处的法平面方程为 22+1/1+42 -7=0;
- 3. 幂级数 $\sum_{n=1}^{\infty} \frac{2^{n}}{(x+1)^{n}}$ 的收敛半径 $R = \frac{1}{2}$;
- 4. 设 $D = \{(x, y) | |x| \le \pi, |y| \le 1\}$, 则 $\iint (x \sin y) dx dy = 0$

6. 设 f(x) 有连续导数, L 是任意简单闭曲线, 且 $\oint e^{2y}(xdx+f(x)dy)=0$,则 f(x) 的表达 7. 设 Σ 为柱面 $x^2+y^2=1$ 介于平面 z=0 和 z=1 之间部分的外侧,则 $\iint y^2dydz=($ $\oint f(x)$ 式为 文一十C

- 选择题(本题共8小题,每小题3分,共24分)
 - 1. 设 L是从 A(1,0) 到 B(-1,2) 的直线段,则曲线积分 $\{(x+y)ds\}$ 的结果是

得分

- (A) $\sqrt{2}$;
- (B) 0; (C) $2\sqrt{2}$;
- (D) 2

- 2. 区域 D 为 $0 \le x \le 1$, $-1 \le y \le 0$,则积分 $\iint xe^{xy} dxdy$ 的值为(C).
 - (A) 1:
- (B) $-\frac{1}{2}$; (C) $\frac{1}{2}$;
- 3. 函数 z = z(x, y) 由方程 F(xy, z) = x 所确定, 其中 F(u, v) 具有连续的一阶偏导数, 则 $z_x + z_y$ 等于(C)

 - (A) 0; (B) $\frac{1 yF_x xF_y}{F_x}$; (C) $\frac{1 yF_1 xF_1}{F_2}$;
- 4. 设 L 是从 $A(1,\frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,则 $\left\{\frac{2x}{y}dx \frac{x^2}{y^2}dy = (D)\right\}$

- (A) -3; (B) $\frac{3}{2}$; (C) 3; (D) 0.
- 5. 若a为常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\sin na}{n^2} \frac{1}{(a^2-1)}\right)$ 的敛散性为(C)
 - (A) 绝对收敛; (B) 条件收敛; (C) 发散;
- (D) 收敛性取决于a值.
- 6. 函数 z = f(x, y) 在 (x_0, y_0) 处具有两个一阶偏导数是它在该点处连续的(D)
 - (A) 充分条件; (B) 必要条件; (C) 充分必要条件; (D) 既非充分又非必要条件.
 - (A) 0; (B) $\frac{2}{3}$; (C) $-\frac{4}{3}$; (D) $-\frac{2}{3}$.
- 8. 设曲面 Σ 是上半球面 $x^2 + y^2 + z^2 = R^2 (z \ge 0)$, 曲面 Σ , 是曲面 Σ 在第一卦限中部分, 则下列关系成立的是(C)
 - (A) $\iint x dS = 4 \iint x dS;$ (B) $\iint y dS = 4 \iint x dS;$
- - (C) $\iint zdS = 4 \iint xdS;$ (D) $\iint xyzdS = 4 \iint xyzdS.$

三、试解下列各题(本题共6小题,每小题6分,共36分)

2. 计算曲线积分 $I = \int y dx + z dy + x dz$, 其中 Γ 为曲线

 $x = a\cos t$, $y = a\sin t$, z = bt 上从t = 0到 $t = 2\pi$ 的一段.

$$I = \int_{0}^{\infty} y dx + \frac{1}{2} dy + x dz$$

$$= \int_{0}^{2\pi} \left[a \sin \left(-a \sin t \right) + b t a \cos t + a \cos t \right) dt \frac{3}{4}$$

$$= -a^{2} \int_{0}^{2\pi} \sin^{2} t dt + a b \int_{0}^{2\pi} t ds \sin t + a b \int_{0}^{2\pi} a s t dt$$

$$= -\frac{a^{2}}{2} \int_{0}^{2\pi} \left(+a \cos t + a \cos t \right) \int_{0}^{2\pi} t ds \sin t + a b \int_{0}^{2\pi} a s \cos t dt$$

$$= -\frac{a^{2}}{2} \int_{0}^{2\pi} \left(+a \cos t + a \cos t \right) \int_{0}^{2\pi} t ds \sin t dt + a \cos t dt$$

$$= -\frac{a^{2}}{2} \int_{0}^{2\pi} \left(+a \cos t + a \cos t \right) \int_{0}^{2\pi} t ds \sin t dt + a \cos t dt + a$$

得分

3. 判别级数 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{n}$ 是绝对收敛还是条件收敛? 并说明理由.

得分

4. 求 $I = \iint_D (x^2 + y^2 - x) dx dy$, 其中 D 由直线 y = 2, y = x 和 y = 2x 所围成的闭

区域.

$$P_{x}: \ o = y = 2 . \ \ \frac{y}{2} = x = y$$

$$I = \iint (x^{2} + y^{2} + x) dx dy$$

$$= \int_{0}^{2} dy \int_{y}^{y} (x^{2} + y^{2} - x) dx$$

$$= \int_{0}^{2} (\frac{19}{24} y^{3} - \frac{3}{8} y^{2}) dy$$

$$= \frac{13}{6}.$$

$$1 = \frac{13}{6}.$$

得分

5. 计算二重积分 $\iint (x^2+y^2)dxdy$, 其中 D 为闭区域 $x^2+y^2 \leq 2ax, (a>0)$.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \frac{1}{$$

6. 求级数 $\sum_{n=2}^{\infty} \frac{(x-2)^{2n}}{n}$ 的收敛域和它的和函数.

$$|l_{11}(x)| = \frac{(x-2)^{2h}}{n+h} \ge 0$$

$$|k(x)| = \frac{|k-k|^{2}}{h-h} \frac{|k-k|^{2}}{h(x)} = \frac{(x-2)^{2}}{4}$$

(1) 当好之 1 中 0014 日本的版

(3)
$$\frac{1}{2} \frac{(x^2)^{2h}}{(x^2)^{2h}} = \frac{x=0}{2h} \frac{x=0}{h} \frac{x=0}{h} \frac{(x^2)^{2h}}{(x^2)^{2h}} = \frac{x=0}{h} \frac{x=0$$

四、应用题[本题共两小题,每题5分,共10分]

1. 求曲线 $x = \cos t$, $y = \sin t$, $z = \tan \frac{t}{2}$ 在(0,1,1)处的切线和法平面方程. Tta = (水·水·2+)=(- sint, 6st, 上sec 至) (0.1.1) 对型 t= 专 Tto (10.1.1) = (-1,0,1) tot: 25-0 = 7-1 = 2-1

三年ョー(x-1) +(1/1) +(2-1)=0 79 2-x=6

2. Ω是由 z = 0, $z = \sqrt{3(x^2 + y^2)}$, $x^2 + y^2 - y = 0$ 所围的空间区域, 求Ω的体积

计算曲面积分 $\iint (x^2 \cos \alpha + y^2 \cos \beta + z^2 \cos \gamma) dS$, 其中 Σ 为为曲面

证明: 设函数 f(x) 在 [0,1] 上连续, 证明:

 $x^2 + y^2 = 2z$ 介于平面z = 0和z = 2之间的部分的上侧, $\cos \alpha, \cos \beta, \cos \gamma$ 为 Σ 在点

礼面云= Z=2 (学到34)取场. 记工和工国的支河村为口、1871三年11工 为化·外侧表面. 利用 Gauss (x2052+y205)+2265r)ds

 $= \iint_{Z_1+Z_2^-} x^2 dy dz + y^2 dz dx + z^2 dx dy = 2 \iint_{Z_2^-} (x+y+z) dV$

37 2 11 (x+y+2)dV = 21/1x dV+2/1/ydV+2/1/2dV $= 2 \int_{0}^{2} \sqrt{2} \int_{\sqrt{4}\sqrt{2}}^{2} dx dy = 2 \int_{0}^{2} \pi \cdot 2z dz = 3\pi$

 $\iint_{Z_1} x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy = \iint_{y \neq 0} 2^2 \, dx \, dy = |6\pi|$ $\int \int x^2 dy dz + y^2 dz dx + z^2 dx dy = \frac{3}{3} \pi - 16\pi = -\frac{14}{3} \pi$

[it] = || 2201/02+3202+22/2011=11.

 $\int_{0}^{1} f(x)dx \int_{x}^{1} f(y)dy = \frac{1}{2} \left[\int_{0}^{1} f(u)du \right]^{2}.$

iz D= ((x-y) | 0 = x = 1 , x = y = 1 } P2=[(x.y) | USTS | . OSYEX]

D.和马野道的了=x对于 grxiy)=fin. f(1)=f(xx) [[g(x,y) do = | [g(x,x) do =>

 $\iint f(x)f(y) dv = \iint f(x)f(y) dv$

of fresch frydy = I fresfresdo

= = 11 fro fry)do

 $= \frac{1}{2} \int_0^1 f(x) dx \int_0^1 f(y) dy$

= \(\) \(\) \(\) \(\)