* Event-Driven Architecture for Reliable Event Processing

© Goal

Designing a fault-tolerant, scalable, and automated event-driven system that:

- ✔ Processes real-time events from mobile & IoT devices
- Ensures data accuracy via multi-step validation
- ✓ Uses AWS-native services for efficiency and monitoring <a>IIII

Step 1: Event Generation & Ingestion

Nobile & IoT Devices → AWS EventBridge

- Events originate from mobile/web apps & IoT devices.
- EventBridge serves as the entry point for all events.

Why EventBridge?

- Managed Event Bus Handles high throughput with low latency.
- Structural Validation Ensures event format correctness before further processing.
- Flow:
- 1 Mobile & IoT devices send events to **EventBridge**.
- 2 EventBridge applies basic structural validation (schema check).
- $\boxed{3}$ If valid \rightarrow Forwarded to the **Lambda Verification Function**.
- 4 X If invalid → Sent to Dead Letter Queue (DLQ) for later review.

Step 2: Event Verification & Processing

\bigcirc AWS Lambda (Verification Lambda) \rightarrow AWS Lambda (Calculation Lambda)

Once an event passes structural validation, it undergoes further verification to check:

- ✔ Business logic compliance
- ✔ Required fields and data accuracy

Why Lambda for Verification?

- Serverless & Auto-scaling Processes events in parallel.
- **✓ Low-cost execution** Runs only when needed.
- Flow:
- 1 Verification Lambda checks event details.
- ② If valid → Sent to Calculation Lambda for processing.
- $\boxed{3}$ If invalid \rightarrow Sent to **DLQ for failure handling**.

III AWS Lambda (Calculation Lambda) → Amazon S3

Once verified, the event is processed and stored.

Why Lambda for Calculation?

- ✓ On-demand execution Auto-scales based on load.
- Lightweight & efficient No need for dedicated servers.

Why S3 for Storage?

- Cost-effective Stores large volumes of event data.
- **Durability** 99.99999999% (11 9's) availability.
- Flow:
- 1 Calculation Lambda performs key business logic.
- 2 Successful results are stored in S3 for long-term storage.
- $\boxed{3}$ If processing fails \rightarrow Event goes to **DLQ for later retries**.

Step 3: Monitoring & Error Detection

AWS CloudWatch (Error Monitoring & Flagging)

All EventBridge, Lambda, and S3 activities are monitored by CloudWatch.

Why CloudWatch?

- ✓ Observability Monitors logs, metrics, and anomalies.
- Automation Can trigger Lambda for corrections.
- Flow:
- 1 CloudWatch **monitors logs and metrics** from EventBridge, Lambda, and S3.
- ② If errors/discrepancies are detected → Triggers Correction Lambda.
- **3** Correction Lambda determines if recalculation is needed.

Step 4: Anomaly Detection & Reprocessing

Amazon SageMaker (Anomaly Detection)

- S3-stored event data is retrieved by SageMaker.
- SageMaker's ML models detect anomalies or incorrect calculations.
- If an anomaly is found → Sends a notification to CloudWatch.

Why SageMaker?

- **✓ Scalable Machine Learning** Learns from past incorrect events.
- ✓ Automated Anomaly Detection No need for manual tracking.
- Flow:
- SageMaker retrieves processed event data from S3.
- 2 ML Model detects anomalies in calculations.
- ③If anomaly is found → SageMaker sends an alert to CloudWatch.
- 4 CloudWatch triggers Correction Lambda for reprocessing.

Step 5: Automated Event Correction & Reprocessing

X AWS Lambda (Correction Lambda) \rightarrow AWS Lambda (Recalculation Lambda)

Once an event is flagged, the Correction Lambda decides if recalculation is needed.

- Flow:
- 1 Correction Lambda checks DynamoDB for previous corrections.
- 2 If never corrected → Sent to Recalculation Lambda.
- $\boxed{3}$ If already corrected once \rightarrow Sent to SQS DLQ for manual review.
- 4 Successful recalculations → Overwrite event data in S3.

Why DynamoDB?

- ▼ Tracks correction history → Prevents infinite loops of retrying.
- **V** Fast lookups → Ensures correction is not repeated unnecessarily.

◆ Step 6: Dead Letter Queue (Final Retries & Investigation) X SQS DLQ (Final Retry Mechanism & Investigation Storage)

All events that **fail validation**, **processing**, **or correction** multiple times are stored in **SQS Dead Letter Queue** (**DLQ**).

A **DLQ Processing Lambda** is triggered when events land in the DLQ to attempt a final retry.

- **♀** Why DLQ?
- Prevents Event Loss Captures all failed events for analysis.
- ✓ Automatic Retries A Lambda function checks the DLQ and retries processing.
- Separation of Concerns Ensures failed events do not clog the main processing pipeline.
- Flow:
- 1DLQ stores failed events for later review.
- ②A Lambda function is triggered when events are added to DLQ.
- 3 Lambda **checks DynamoDB** if the event was already corrected:
 - **V** If not corrected before → Sent to Recalculation Lambda.
 - X If already corrected once → Pushed to S3 Failure Storage for manual investigation.
 - 4 If recalculation is **successful**, the event is **overwritten in S3**.
 - [5] If failure persists even after retries, event is stored permanently in S3 for manual intervention.

AWS Services Used & Why?

AWS Service	Purpose	Why Chosen?
AWS EventBridge	Event ingestion & initial validation	Handles high-throughput events & enables event routing .
AWS Lambda	Validation, Processing, Recalculation, Correction	Serverless, auto-scalable , and cost-effective.
AWS S3	Event data storage	Durable, cost-effective , and allows easy querying via Athena .

AWS Monitoring & automated error Provides logs, metrics, and CloudWatch detection automated alerts. Amazon Anomaly detection Uses machine learning to flag SageMaker incorrect events. **AWS** Correction history tracking Ensures no duplicate corrections **DynamoDB** and fast lookups. AWS SQS DLQ Failure handling & retries Stores **failed events**, allows **retry** logic to be applied.

🔄 Trade-offs & Limitations

Trade-off	Explanation	Possible Solution
Processing Delay	Additional processing for anomaly detection and correction may increase latency .	Optimize SageMaker models & use batch inference for efficiency.
Cost of SageMaker	Running real-time anomaly detection in SageMaker can be costly for large-scale events.	Use Athena-based rule checks before sending events to SageMaker.
Storage Growth in S3	Storing both correct & incorrect events in S3 can lead to high storage costs .	Implement lifecycle policies in S3 to archive old data.
DLQ Growth	If too many events land in DLQ, it can cause a backlog in retries .	Use Lambda throttling to control retry rates.

🗶 Enhanced Approach with Additional Tools 🔧

If I had access to more tools like a **database** (e.g., Amazon RDS or DynamoDB) and **logs**, the approach would evolve to include **historical event storage** for faster recalculations and anomaly detection. By using a database, I could **retrieve past events** more efficiently instead of relying solely on S3, enabling quicker anomaly detection and comparison with historical data. Integrating **OpenSearch** (**Elasticsearch**) for **log analytics** would provide real-time insights, making error resolution faster and more proactive. Additionally, utilizing **Kinesis** for **real-time streaming** could enhance processing efficiency, enabling **immediate anomaly detection** without needing batch processing, further boosting scalability and responsiveness.

How This Scales to Millions of Events per Hour

- ✓ Scalability Considerations: ✓ AWS Lambda auto-scales Each Lambda execution is independent, so no bottleneck.
- ✓ EventBridge can process millions of events per second Ensures smooth ingestion.
- ✓ S3's infinite storage Can handle petabytes of event data with no impact on performance.
- ✓ DynamoDB's low-latency lookups Ensures fast correction history checks.
- ✓ SageMaker batch processing Enables anomaly detection at scale without high costs.

Key Takeaways

- Highly scalable event-driven system using AWS-native tools.
- No single point of failure Everything is decoupled.
- Fault-tolerant & self-healing DLQ, retries, and anomaly correction ensure events aren't
- Real-time observability CloudWatch provides monitoring, triggering corrections when needed.
- Intelligent anomaly detection SageMaker improves system accuracy over time.

Summary of Workflow

- **≜** Event Ingestion: Mobile/IoT → EventBridge (Basic validation)
- Event Processing: EventBridge → Lambda Validation → Lambda Calculation → S3
- Monitoring: CloudWatch flags errors & triggers correction Lambda
- Anomaly Detection: SageMaker detects incorrect events → Sends alert to CloudWatch
- X Correction & Recalculation: CloudWatch triggers correction Lambda → Event reprocessed if needed
- \not Final Failure Handling: If retry fails \rightarrow Sent to SQS DLQ \rightarrow Final retry or push to S3 failure storage

Final Thoughts

- This architecture provides reliability, scalability, and real-time monitoring for event-driven workloads.
- ✓ Using AWS-native services ensures a cost-effective, serverless, and scalable solution.
- Automated anomaly detection and corrections improve event integrity over time.