Sporadic points on modular curves

David Zureick-Brown (Emory University)

Maarten Derickx (Joost)

Anastassia Etropolski (Foursquare)

Jackson Morrow (Centre de Recherches Mathematiques, Berkeley)

Mark van Hoeij (Florida State University)

Slides available at http://www.math.emory.edu/~dzb/slides/

Joint Berkeley-Caltech-Stanford Number Theory seminar

February 8, 2021

Mazur's Theorem

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 10$ or $N = 12$,

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \leq N \leq 4$.

Via geometry, let

- $Y_1(N)$ be the curve paramaterizing (E, P), where P is a point of exact order N on E, and let
- $Y_1(M,N)$ (with $M\mid N$) be the curve paramaterizing E/K such that $E(K)_{\text{tors}}$ contains $\mathbb{Z}/M\mathbb{Z}\oplus\mathbb{Z}/N\mathbb{Z}$.

Then $Y_1(N)(\mathbb{Q}) \neq \emptyset$ and $Y_1(2,2N)(\mathbb{Q}) \neq \emptyset$ iff N are as above.

Modular curves via Tate normal form

Example (N = 9)

 $E(K) \cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t \in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Example (N = 11)

 $E(K) \cong \mathbb{Z}/11\mathbb{Z}$ correspond to $a, b \in K$ such that

$$a^2 + (b^2 + 1)a + b$$
;

in which case E is isomorphic to

$$y^{2} + (s - rs + 1)xy + (rs - r^{2}s)y = x^{3} + (rs - r^{2}s)x^{2}$$

where r is ba + 1 and s is -b + 1.

Rational Points on $X_1(N)$ and $X_1(2,2N)$

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$. We can restate the results of Mazur's Theorem as follows.

- $X_1(N)$ and $X_1(2,2N)$ have genus 0 for **exactly** the N appearing in Mazur's Theorem. (So in particular, there are **infinitely many** E/\mathbb{Q} with such torsion structure.)
- If $g(X_1(N))$ (resp. $g(X_1(2,2N))$) is greater than 0, then $X_1(N)(\mathbb{Q})$ (resp. $X_1(2,2N)(\mathbb{Q})$) consists only of cusps.

So, in a sense, the simplest thing that could happen does happen for these modular curves.

Higher Degree Torsion Points

Theorem (Merel, 1996)

For every integer $d \geq 1$, there is a constant N(d) such that for all K/\mathbb{Q} of degree at most d and all E/K,

$$\#E(K)_{tors} \leq N(d)$$
.

Expository reference: Darmon, Rebellodo (Clay summer school, 2006)

Problem

Fix $d \ge 1$. Classify all groups which can occur as $E(K)_{tors}$ for K/\mathbb{Q} of degree d. Which of these occur infinitely often?

Quadratic Torsion

Theorem (Kamienny-Kenku-Momose, 1980's)

Let E be an elliptic curve over a quadratic number field K. Then $E(K)_{tors}$ is one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 16$ or $N = 18$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \leq N \leq 6$, $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N\mathbb{Z}$, for $1 \leq N \leq 2$, or $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

In particular, the corresponding curves $X_1(M, N)$ all have $g \le 2$, which guarantees that they have infinitely many quadratic points.

Sporadic Points

Let X/\mathbb{Q} be a curve and let $P \in X(\overline{\mathbb{Q}})$. The **degree** of P is $[\mathbb{Q}(P) : \mathbb{Q}]$.

The set of degree d points of X is infinite if

- X admits a degree d map $X \to \mathbb{P}^1$;
- X admits a degree d map $X \to E$, where rank $E(\mathbb{Q}) > 0$; or
- Jac_X contains a positive rank abelian subvariety A such that $A + D \subset W^d(X)$ for some D.
- Most $\overline{\mathbb{Q}}$ points arise in the fashion. We call outliers **isolated**.
- When X is a modular curve, cusps and CM points give rise to many isolated points; we call an isolated point **sporadic** if it is not cuspidal or CM.

See Bianca Viray's CNTA talk, linked here.

Cubic Torsion

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 20$, $N \neq 17, 19$, or

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 7$.

Minimalist conjecture

Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if and only if

- ullet X admits a degree d map $X o \mathbb{P}^1$; or
- X admits a degree d map $X \to E$, where rank $E(\mathbb{Q}) > 0$; or
- Jac_X contains a positive rank abelian subvariety such that...

Minimalist conjecture

Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if and only if

- ullet X admits a degree d map $X o \mathbb{P}^1$; or
- X admits a degree d map $X \to E$, where rank $E(\mathbb{Q}) > 0$; or
- Jac_X contains a positive rank abelian subvariety such that...

Cubic Torsion

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 20$, $N \neq 17, 19$, or

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 7$.

Theorem (Najman, 2014)

The elliptic curve 162b1 has a 21-torsion point over $\mathbb{Q}(\zeta_9)^+$.

Remark

Parent showed that the largest prime that can divide $E(K)_{tors}$ in the cubic case is p=13.

Classification of Cubic Torsion

Theorem (Etropolski–Morrow–ZB–Derickx–van Hoeij)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 21$, $N \neq 17, 19$, and

$$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2N\mathbb{Z}$$
, for $1\leq N\leq 7$.

The only sporadic point is the elliptic curve 162b1 over $\mathbb{Q}(\zeta_9)^+$.

Modular curves

Definition

- $X(N)(K) := \{(E/K, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{\text{cusps}\}$
- $X(N)(K) \ni (E/K, P, Q) \Leftrightarrow \rho_{E,N}(G_K) = \{I\}$

Definition

 $\Gamma(N) \subset H \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$ (finite index)

- $X_H := X(N)/H$
- $X_H(K) \ni (E/K, \iota) \Leftrightarrow H(N) \subset H \mod N$

Stacky disclaimer

This is only true up to twist; there are some subtleties if

- **1** $j(E) \in \{0, 12^3\}$ (plus some minor group theoretic conditions), or
- \bigcirc if $-I \in H$.

Example - torsion on an elliptic curve

If E has a K-rational **torsion point** $P \in E(K)[n]$ (of exact order n) then:

$$H(n) \subset \left(\begin{array}{cc} 1 & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

$$\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$$

Example - Isogenies

If *E* has a *K*-rational, **cyclic isogeny** $\phi \colon E \to E'$ with $\ker \phi = \langle P \rangle$ then:

$$H(n) \subset \left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = a_{\sigma}P$$

$$\sigma(Q) = b_{\sigma}P + c_{\sigma}Q$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$N_{\mathsf{sp}} = \left\langle \left(egin{array}{cc} * & 0 \ 0 & * \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)
ight
angle$$

$H(n) \subset N_{\mathsf{sp}}$ and $H(n) \not\subset C_{\mathsf{sp}}$ iff

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- whose kernels intersect trivially,
- neither of which is defined over *K*,
- ullet but which are both defined over some quadratic extension of K,
- and which are Galois conjugate.

Example - other maximal subgroups

Normalizer of a non-split Cartan:

$$C_{\mathsf{ns}} = \mathsf{im}\left(\mathbb{F}_{p^2}^* o \mathsf{GL}_2(\mathbb{F}_p)\right) \subset \mathsf{N}_{\mathsf{ns}}$$

$H(n) \subset N_{\mathsf{ns}}$ and $H(n) \not\subset C_{\mathsf{ns}}$ iff

E admits a "necklace" (Rebolledo, Wuthrich)

A typical subgroup (from Rouse–ZB)

"Jenga"

$$\ker \phi_i \subset I + \ell^i M_2(\mathbb{F}_\ell) \cong \mathbb{F}_\ell^4$$

Non-abelian entanglements

(from Brau-Jones)

There exists a surjection θ : $GL_2(\mathbb{Z}/3\mathbb{Z}) \to GL_2(\mathbb{Z}/2\mathbb{Z})$.

$$\operatorname{im} \rho_{E,6} \subset H(6) \Leftrightarrow j(E) = 2^{10}3^3t^3(1 - 4t^3) \Rightarrow K(E[2]) \subset K(E[3])$$
$$X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1)$$

Rational Points on modular curves

Mazur's program B

Compute $X_H^{(d)}(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).
- Can compute $\#X_H(\mathbb{F}_q)$ via moduli and enumeration [Sutherland].

Fact

$$g(X_H), \gamma(X_H) \to \infty \text{ as } \left[\mathsf{SL}_2(\widehat{\mathbb{Z}}) : H \cap \mathsf{SL}_2(\widehat{\mathbb{Z}}) \right] \to \infty.$$

Najman's example

Theorem (Najman, 2014)

The elliptic curve 162b1 has a 21-torsion point over $\mathbb{Q}(\zeta_9)^+$.

- Let $H := \rho_{E,21}(G_{\mathbb{O}})$.
- Then H contains an index 3 subgroup H' such that $H' \subset \langle \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \rangle$
- Thus we have a degree 3 map

$$X_{H'} \rightarrow X_H$$

and an induced map

$$X_H \rightarrow \operatorname{Sym}^3 X_{H'} \rightarrow \operatorname{Sym}^3 X_1(21)$$

Mazur - Rational Isogenies of Prime Degree (1978)

Let N be a positive integer. Examples of elliptic curves over \mathbf{Q} possessing rational cyclic N-isogenies are known for the following values of N:

N	g	ν	N	g	v	N	g	v
<u>≤</u> 10	0		11	1	3	27	1	1
12	0	00	14	1	2	37	2	2
13	0	00	15	1	4	43	3	1
16	0	00	17	1	2	67	5	1
18	ő	00	19	1	1	163	13	1
25	0	∞	21	1	4			

Sporadic points on $X_H(\ell)$, $H \subset GL_2(\mathbb{F}_\ell)$

Zywina, "On the Possible Images of the Mod ℓ Representations Associated to..."

7	$3^3 \cdot 5 \cdot 7^5/2^7$	$H \subsetneq N_{ns}(7)$	Sutherland 2012
11	-11^{2}	$\left\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2^2 & 0 \\ 0 & 2^9 \end{smallmatrix} \right) \right angle$	$g(X_0(11)) = 1$
	$-11\cdot 131^3$	$\left\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2^4 & 0 \\ 0 & 2^7 \end{smallmatrix} \right) \right angle$	
13	$\frac{2^4 \cdot 5 \cdot 13^4 \cdot 17^3}{3^{13}}$	$\widetilde{H} \subset S_4 \subset \mathrm{PGL}_2(\mathbb{F}_{13})$	BDMTV
	$-\frac{2^{12} \cdot 5^3 \cdot 11 \cdot 13^4}{3^{13}}$		Annals 2019
	$\frac{2^{18} \cdot 3^3 \cdot 13^4 \cdot 127^3 \cdot 139^3 \cdot 157^3 \cdot 283^3 \cdot 929}{5^{13} \cdot 61^{13}}$		g=r=3
17	$-17 \cdot 373^3 / 2^{17}, \ -17^2 \cdot 101^3 / 2$	$H_i \subsetneq B(17)$	$g(X_0(17)) = 1$
37	$-7 \cdot 11^3, \ -7 \cdot 137^3 \cdot 2083^3$	$H_i \subsetneq B(37)$	$\exists \iota \neq w_{37}$

2-adic sporadic points; $H \subset GL_2(\mathbb{Z}/32\mathbb{Z})$, index 96 or 64

j-invariant	level of H	Generators of image	
2 ¹¹	16	$\begin{bmatrix} 7 & 14 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 6 & 11 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}$	hyperelliptic
$2^4 \cdot 17^3$	16	$\begin{bmatrix} 7 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 5 \\ 14 & 7 \end{bmatrix}, \begin{bmatrix} 7 & 7 \\ 2 & 1 \end{bmatrix}$	genus 3
$\frac{4097^3}{2^4}$	16	$\begin{bmatrix} 3 & 5 \\ 6 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 5 \\ 14 & 7 \end{bmatrix}, \begin{bmatrix} 7 & 7 \\ 2 & 1 \end{bmatrix}$	rank 1
$\frac{257^3}{2^8}$	16	$\begin{bmatrix} 7 & 14 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 6 & 3 \end{bmatrix}$	
$-\frac{857985^3}{62^8}$	32	$\begin{bmatrix} 25 & 18 \\ 2 & 7 \end{bmatrix}, \begin{bmatrix} 25 & 25 \\ 2 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 8 & 1 \end{bmatrix}, \begin{bmatrix} 25 & 11 \\ 2 & 7 \end{bmatrix}$	not hyperelliptic
$\frac{919425^3}{496^4}$	32	$\begin{bmatrix} 29 & 0 \\ 4 & 1 \end{bmatrix}, \begin{bmatrix} 31 & 27 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 31 & 31 \\ 2 & 1 \end{bmatrix}$	genus 3, rank 3
$-\frac{3 \cdot 18249920^3}{17^{16}}$	16	$\begin{bmatrix} 4 & 7 \\ 15 & 12 \end{bmatrix}, \begin{bmatrix} 7 & 14 \\ 7 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 11 & 9 \end{bmatrix}$	$g(X_{ns}(16)) = 2$
$-\tfrac{7\cdot1723187806080^3}{79^{16}}$			rank 2

Subgroups of $GL_2(\mathbb{Z}_2)$

Sporadic points on X_H , $H \subset GL_2(\mathbb{Z}_\ell)$, $\ell > 2$

Rouse-Sutherland-Zureick-Brown, in progress

 ${\sf Label} = {\sf level.index.genus.tiebreaker}$

Theorem (Balakrishnan–Dogra–Müller–Tuitman–Vonk)

There are sporadic points if H has label 25.50.2.1 and 25.75.2.1

See their recent (2021) paper "Quadratic Chabauty For Modular Curves: Algorithms And Examples"

Theorem (Rouse–Sutherland–Zureick-Brown)

- No other sporadic rational points for $\ell = 3, 5, 7, 11$, unless
- $H = N_{ns}(3^3), N_{ns}(5^2), N_{ns}(7^2), \text{ or } N_{ns}(11^5) \text{ or }$
- H has label 49.147.9.1 or 49.196.9.1.

See Jeremy Rouse's CNTA talk, linked here.

Application: isolated points with rational *j*-invariant

Bourdon-Gill-Rouse-Watson, 2020

(Application) Classification of all odd degree isolated points on $X_1(N)$ with rational j-invariant:

$$j = -3^3 \cdot 5^6/2^3$$
, or $3^3 \cdot 13/2^2$.

The first is the Najman cubic example, and the second corresponds to a degree 8 point on $X_1(28)$, found by Najman and González-Jiménez.

(Morrow) $H_1 \times H_2 \subset \operatorname{GL}_2(\mathbb{Z}/2^m\mathbb{Z}) \times \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$

if Δ_E is a square

Camacho-Navarro-Li-Morrow-Petok-Zureick-Brown

 $H_1 \times H_2 \subset \mathsf{GL}_2(\mathbb{Z}/p^m\mathbb{Z}) \times \mathsf{GL}_2(\mathbb{Z}/q^n\mathbb{Z})$

(Genus 1)

$3B^0 - 3a$	$4A^{0} - 4a$	109503/64, -35937/4	
$3B^0 - 3a$	$4D^0 - 4a$	-35937/4, 109503/64	
$3B^0 - 3a$	$5A^{0} - 5a$	-316368, 432	
$3B^0 - 3a$	$5B^0 - 5a$	-25/2, -349938025/8,	
		-121945/32, 46969655/32768	
$3B^0 - 3a$	$7B^0 - 7a$	3375/2, -189613868625/128	
		-140625/8, -1159088625/2097152	
$3C^0 - 3a$	$4A^{0} - 4a$	3375/64	
$3C^0 - 3a$	$5B^0 - 5a$	1331/8, -1680914269/32768	
$4A^{0} - 4a$	$5B^0 - 5a$	-1723025/4, 1026895/1024	

Camacho-Navarro-Li-Morrow-Petok-Zureick-Brown $H_1 \times H_2 \subset \mathsf{GL}_2(\mathbb{Z}/p^m\mathbb{Z}) \times \mathsf{GL}_2(\mathbb{Z}/q^n\mathbb{Z}) \qquad (\mathsf{Genus} \geq 2)$

label 1	label 2	sporadic j -invariants
4A0-4a	7B0-7a	-38575685889/16384, 351/4
4D0-4a	5A0-5a	-36, -64278657/1024
5B0-5a	9A0-9a	-23788477376, 64.
5E0-5a	2A0-8a	-5000
4A0-4a	5E0-5a	(genus 3)

More Sporadic Points on $X_1(N)$, via Derickx–van Hoeij

Classification of Cubic Torsion

Theorem (Etropolski–Morrow–ZB–Derickx–van Hoeij)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 21$, $N \neq 17, 19$, and

$$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2N\mathbb{Z}$$
, for $1\leq N\leq 7$.

The only sporadic point is the elliptic curve 162b1 over $\mathbb{Q}(\zeta_9)^+$.

Formal immersions

Previous work

- (Parent) handles p > 13.
- (Momose) N = 27,64.
- (Wang) N = 77, 91, 143, 169
- (Bruin-Najman) N = 40, 49, 55

Main technique

- If N is large, then there are no elliptic curves mod small $\ell \nmid 2N$ with an N torsion point (e.g., by the Hasse bound).
- Thus a non cuspidal point of $X_1(N)$ reduces mod ℓ to a cusp.
- Fiddle with conditions on ℓ , N so that the formal immersion criterion works. (E.g., need to worry about cusps splitting.)

Sporadic cubic torsion: summary of arguments

LEVEL	GENUS	METHOD OF PROOF	GENUS OF QUOTIENT
32	17	Maps to another curve on this table	$g(X_1(2,16)) = 5$
36	17	Maps to another curve on this table	$g(X_1(2,18)) = 7$
22	6	Local methods at $p = 3$ (§6.1)	N/A
25	12	Local methods at $p=3$	N/A
21	5	Direct analysis over \mathbb{Q} (§6.2)	N/A
26	10	Direct analysis over \mathbb{F}_3	N/A
30	9	Direct analysis over \mathbb{Q} on $X_0(30)$ (§6.4)	$g(X_0(30)) = 3$
33	21	Direct analysis over \mathbb{Q} on $X_0(33)$	$g(X_0(33)) = 3$
35	25	Direct analysis over \mathbb{Q} on $X_0(35)$	$g(X_0(35)) = 3$
39	33	Direct analysis over \mathbb{Q} on $X_0(39)$	$g(X_0(39)) = 3$
(2,16)	5	Hecke bound + direct analysis over \mathbb{F}_3 (§6.5)	N/A
(2,18)	7	Hecke bound + direct analysis over \mathbb{F}_5	N/A
28	10	Hecke bound + direct analysis over \mathbb{F}_3 (§6.6)	N/A
24	5	Hecke bound + additional argument (§4.15) + direct analysis over \mathbb{F}_5	N/A
45	41	Hecke bound + direct analysis over $\mathbb Q$ on $X_H(45)$ (§6.7)	$g(X_H(45)) = 5$
65	121	Formal immersion criteria (§7.3)	$g(X_0(65)) = 5$
121	526	Formal immersion criteria (§7.1)	$g(X_0(121)) = 6$

Good fortune - many small level ranks are zero

Let

```
S_0 = \{1, \dots, 36, 38, \dots, 42, 44, \dots, 52, 54, 55, 56, 59, 60, 62, 63, 64, 66, 68, \\ 69, 70, 71, 72, 75, 76, 78, 80, 81, 84, 87, 90, 94, 95, 96, 98, 100, 104, 105, \\ 108, 110, 119, 120, 126, 132, 140, 144, 150, 168, 180\},
S_1 = \{1, \dots, 21, 24, 25, 26, 27, 30, 33, 35, 36, 42, 45\}.
```

Theorem (Etropolski-Morrow-ZB-Derickx-van Hoeij)

- rank $J_0(N)(\mathbb{Q}) = 0$ if and only if $N \in S_0$.
- ② rank $J_1(N)(\mathbb{Q}) = 0$ if and only if $N \in S_0 \{63, 80, 95, 104, 105, 126, 144\}$.
- **3** rank $J_1(2,2N)(\mathbb{Q})$ if and only if $N \in S_1$.

Computing cubic points when $\#J_1(N)(\mathbf{Q})<\infty$

Consider $X_1(21)$ which has genus 5 and gonality 4.

Known points: 6 rational cusps, 2 quadratic cusps, 2 cubic points D_0 and D_0' (these are the sporadic torsion points)

Compute that $J_1(21)(\mathbb{Q}) = \langle D \rangle \cong \mathbb{Z}/364\mathbb{Z}$ with $D = [D_0 - 3 \cdot \infty]$.

Define an Abel-Jacobi map

$$\iota\colon X_1(21)^{(3)}(\mathbb{Q})\to J_1(21)(\mathbb{Q}), E\mapsto E-3\cdot\infty.$$

For each $nD \in J_1(21)(\mathbb{Q})$, $nD \in \operatorname{im} \iota \to |nD + 3 \cdot \infty| \neq \varnothing$.

• Magma's intrinsic RiemannRochSpace can check this and determine the effective divisor E s.t $|nD + 3 \cdot \infty| = \{E\}$.

Compute the list of such n and check that they correspond to the above known points.

The Mordell-Weil Sieve

For a finite set S of primes of good reduction, we have the following commutative diagram.

$$X^{(d)}(\mathbb{Q}) \xrightarrow{\iota} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \alpha$$

$$\prod_{p \in S} X^{(d)}(\mathbb{F}_q) \xrightarrow{\beta} \prod_{p \in S} J(\mathbb{F}_p)$$

Compare the images of α and β .

Computing torsion on modular Jacobians

The reduction map $A(\mathbb{Q})_{\mathsf{tors}} \to A(\mathbb{F}_p)$ is injective for p > 2 (Katz).

The GCD of $\#A(\mathbb{F}_p)$ gives a naive upper bound on $A(\mathbb{Q})_{tors}$.

Better: compute the "GCD" of the groups $A(\mathbb{F}_p)$

Example $(A = J_1(21))$

- $\bullet \ A(\mathbb{F}_5) \cong \mathbb{Z}/2184\mathbb{Z}$
- $\bullet \ A(\mathbb{F}_{11}) \cong \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/6916\mathbb{Z}$
- $2184 = 728 \cdot 3$
- $6916 = 364 \cdot 19$
- \bullet GCD(2184, 6916) = 728
- $GCD(A(\mathbb{F}_5), A(\mathbb{F}_{11})) = \mathbb{Z}/364\mathbb{Z}$.

Computing torsion on modular Jacobians

For $J_1(N)$, let $q \nmid 2N$ be prime, let T_q be the qth Hecke operator.

By Eichler-Shimura

$$\ker(\overline{T_q} - \overline{q} \langle \overline{q} \rangle - 1 \colon J_1(N)(\overline{\mathbb{Q}})_{\mathsf{tors}} o J_1(N)(\overline{\mathbb{Q}})_{\mathsf{tors}})$$

contains prime-to-q torsion on $J_1(N)(\mathbb{Q})$.

Also, $\tau - 1$ vanishes on $J_1(N)(\mathbb{Q})_{\text{tors}}$, where τ is complex conjugation.

"Hecke Bound"

For a finite set of primes q_1, \ldots, q_n , define $M_N :=$

$$J_1(\mathsf{N})(\overline{\mathbb{Q}})_{\mathsf{tors}}[\mathsf{T}_{q_1}-q_1\langle q_1 \rangle-1,\ldots,\mathsf{T}_{q_n}-q_n\langle q_n \rangle-1, au-1].$$

Then $J_1(N)(\mathbb{Q})_{\text{tors}} \subset M_N$, which we call the **Hecke bound**.

This M_N is easy to compute via **modular symbols** in Sage.

Computing torsion - modular symbols and cusps

Modular symbols

Under the uniformization

$$J_H(N)(\mathbb{C}) \cong H_1(X_H(N)(\mathbb{C}), \mathbb{C})/H_1(X_H(N)(\mathbb{C}), \mathbb{Z})$$

we can identify the geometric torsion as

$$J_H(N)(\overline{\mathbb{Q}})_{\mathsf{tors}} \cong H_1(X_H(N)(\mathbb{C}), \underline{\mathbb{Q}})/H_1(X_H(N)(\mathbb{C}), \mathbb{Z}).$$

Conjecture (Conrad–Edixhoven–Stein; DEvHMZB)

$$Cl^{cusp,0} X_1(N) = J_1(N)(\mathbb{Q})_{tors}.$$

Theorem (DEvHMZB)

This is true for $N \le 55$, $N \ne 54$.

Thanks!

Thank you!