Analysis II Summary

Nicola Studer nicstuder@student.ethz.ch

1 Ordinary differential equations

$$F(x, y^{(n)}, \dots, y'(x), y(x)) = 0$$

Given a function F of x, y, where y is a function itself. F is an implicit ODE of **order** n.

Linear ODE's

 $y^{(k)} + a_{k-1}(x)y^{(k-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$ with a_{k-1}, \ldots, a_0, b as cont. functions of x in $I \subset \mathbb{R}$. If b = 0 then the ODE is called **homogeneous**.

Properties of linear ODEs

- 1. all coefficients are continuous functions
- 2. no products of y and its derivatives
- 3. no powers of y and its derivatives
- 4. no functions which depend on y or its derivatives
- 5. no leading coefficient in front of the highest derivative

Thm (Main result about linear ODEs).

- 1. Let S_0 be the set of solutions when b = 0. Then S_0 is a vector space of dimension k. If f_1, \ldots, f_k are the solutions, then so is $a_1 f_1 + \ldots a_k f_k$.
- 2. For any **initial condition** (i.e. for any $x_0 \in I$, $y \in \mathbb{C}^k$, $y = y_0, \dots, y_{k-1}$) there is a unique solution $f \in \mathcal{S}_0$ such that:

$$f(x_0) = y_0, f'(x_0) = y_1, \dots, f^{(k-1)}(x_0) = y_{k-1}$$

- 3. For any arbitrary b(x), the set of solutions of the ODE is $S_b = \{f + f_p \mid f \in S_0\}$ where f_p is a particular solution of the ODE.
- 4. For any initial condition there is a unique solution $f \in \mathcal{S}_b$.

Solve initial value problem

- 1. Solve ODE
- 2. With initial values create LSE

1.1 Linear ODE of order 1

Solution and derivation

1. Solve the homogeneous ODE:

$$y' + ay = 0$$

$$\Rightarrow y' = -ay$$

$$\Rightarrow \frac{y'}{y} = -a \qquad \text{(assume } y \neq 0 \text{ no } I\text{)}$$

$$\Rightarrow \ln(|y|) = -A + C \qquad (A(x) = \int a(x) \, dx)$$

$$\Rightarrow y = e^{-A+C} = z \cdot e^{-A} \qquad \text{(simplify)}$$

- 2. Find $f_p: I \to \mathbb{C}$ such that $f'_p + a(x)f_p = b(x)$ with variation of parameters or undetermined coefficients.
- 3. General solution: $f(x) = f_h(x) + f_p(x)$

1.1.1 Method of undetermined coefficients

b(x)	Guess
$ae^{\alpha x}$	$ce^{\alpha x}$
$P_n(x)$	$Q_n(x)$
$a\sin(\beta x)$	$D\sin(\beta x) + E\cos(\beta x)$
$a\cos(\beta x)$	_ = ===(/===) = ===(/===)
$ae^{\alpha x}\sin(\beta x)$	$De^{\alpha x}\sin(\beta x) + Ee^{\alpha x}\cos(\beta x)$
$ae^{\alpha x}\cos(\beta x)$	$De^{-\sin(\rho w)} + De^{-\cos(\rho w)}$
$P_n(x)e^{\alpha x}$	$Q_n(x)e^{\alpha x}$
$P_n(x)e^{\alpha x}\sin(\beta x)$	$e^{\alpha x}(Q_n(x)\sin(\beta x) + R_n(x)\cos(\beta x))$
$P_n(x)e^{\alpha x}\cos(\beta x)$	$= (Q_n(x)\sin(\beta x) + R_n(x)\cos(\beta x))$

- 1. If b(x) is a linear combination of the basis functions, use corresponding linear combination of the functions.
- 2. If $f_p = f_0$, try to multiply it with x^m where m denotes the multiplicity of the eigenvalue.

Variation of parameters

- 1. Assume $f_p = z(x) \cdot e^{-A(x)}$ for a function $z: I \to \mathbb{C}$
- 2. Insert the equation and construct z:

$$y' + ay = b$$

$$\Rightarrow z'e^{-A} = b$$

$$\Rightarrow z' = be^{A}$$

$$\Rightarrow z = \int b(x)e^{A(x)} dx$$

$$\Rightarrow f_n = \int b(t)e^{A(t)} dt \cdot e^{-A(x)}$$

Integration Factor

$$\frac{dy}{dx} + a(x)y = b(x) \tag{\dagger}$$

- 1. Multiply both sides of (†) with $e^{A(x)} = e^{\int a(x) dx}$ $\frac{dy}{dx} e^{\int a(x) dx} + ya(x)e^{\int a(x) dx} = b(x)e^{\int a(x) dx}$
- 2. Observe the product rule on the left hand side: $\frac{d}{dx}ye^{\int a(x)\,dx}=b(x)e^{\int a(x)\,dx}$
- 3. Call $ye^{\int a(x) dx} := z(x) \implies y = z(x)e^{-A(x)}$ (‡) $\frac{d}{dx}z(x) = b(x)e^{\int a(x) dx}$
- 4. Solve for z(x): $z(x) = \int b(x)e^{A(x)} dx$
- 5. Insert (‡): $y = (\int b(x)e^{A(x)} dx) e^{-A(x)}$

1.2 Linear ODE with constant coefficients

$$Dy = b(x)$$
 $D = \frac{d^k}{dx^k} + a_{k-1}\frac{d^{k-1}}{dx^{k-1}} + \dots + a_0$

1. Solve homogeneous equation

Assume $y = e^{\lambda x}$ for some $\lambda \in \mathbb{C}$. We put that guess in the initial formula and get the following (simplified) form:

$$e^{\lambda x}(\lambda^k + a_{k-1}\lambda^{k-1} + a_{k-2}\lambda^{k-2} + \dots + a_0) = e^{\lambda x} \cdot P(\lambda) = 0$$

Since $e^{\lambda x}$ can never be $0 \implies P(\lambda) = 0$. $P(\lambda)$ is the **characteristic polynomial** with its roots called **eigenvalues**.

Thm. $De^{\lambda x} = 0 \iff \lambda \text{ is a root of } P_D(\lambda)$

Solutions

The functions $f_{i,l}: x \mapsto x^l e^{\lambda_i x}$ span the solution space S_0 with $0 \le l < m$, m as the multiplicity of λ_i .

- If $\lambda = a + ib$ is EV of $P(\lambda)$, then $P(\overline{\lambda})$ is an EV.
- Complex root: $e^{(a+bi)\cdot x} = e^{ax}[\cos(bx) + i\sin(bx)]$
- If $b = e^{\alpha x}$, but α is a root of $P(\lambda)$ with m = k, then try $zx^k \cdot e^{\alpha x}$ for y_p

Superposition Principle

$$D(y_1 + y_2) = D(y_1) + D(y_2) = b_1 + b_2$$

Separation of variables

ODE separable if $\frac{dy}{dx} = b(x)g(y) \implies \frac{dy}{g(y)} = b(x) dx$. If g(y) = 0, then $y = y_h$ otherwise integrate both sides.

Differential calculus in \mathbb{R}^n

Terminology

$$\begin{array}{ll} \textbf{Vector Field} & f: \mathbb{R}^n \to \mathbb{R}^m \quad (m>1) \\ \textbf{Scalar Field} & f: \mathbb{R}^n \to \mathbb{R} \\ \textbf{Monomial} & f: \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ (x_1, x_2, \ldots, x_n) \mapsto \alpha x_1^{d_1} x_2^{d_2} \ldots x_n^{d_n} \end{cases} \\ \textbf{Linear Map} & f: \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ x \mapsto Ax \quad (A \in \mathbb{C}^{m \times n}) \end{cases} \\ \textbf{Affine Map} & f: \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ x \mapsto Ax + y_p \quad (y_p \in \mathbb{R}^m) \end{cases} \\ \textbf{Cart. Prod.} & f: \begin{cases} \mathbb{R}^n \to \mathbb{R}^{s+t} \\ x \mapsto (f_1(x), f_2(x)) \end{cases} \end{aligned}$$

Converges of sequences

$$(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n,\ y\in\mathbb{R}^n.\ \lim_{k\to\infty}x_k=y$$

$$\Leftrightarrow \forall \epsilon > 0 \,\exists N \ge 1 \,\forall k \ge N : ||x_k - y|| < \epsilon$$

- \Leftrightarrow For each $i, 1 \le i \le n$ the sequence $(x_{k,i}) \subset \mathbb{R}$ of real numbers converges to $y_i \in \mathbb{R}$
- \Leftrightarrow The sequence of real numbers $||x_k y|| \to 0$

Def. $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$, $x_0 \in X$. f has a limit $y \in \mathbb{R}^m$ as $x \to x_0$ (with $x \neq x_0$) if

- 1. $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in X, x \neq x_0 : ||f(x) y|| < \epsilon$
- 2. \forall sequences (x_k) in X with $\lim x_k = x_0$ and $x_k \neq x_0$ converges the sequence $f(x_k)$ to y.

Continuity

$$f: X \to \mathbb{R}^m$$
 cont. at x_0 if

1. $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in X$:

$$||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \epsilon$$

2. $\forall \text{seq. } (x_k) \text{ with } \lim x_k = x_0 : \lim f(x_k) = f(x_0)$ f cont. on X if it is cont. $\forall x_0 \in X$.

Cor. 1. $f_1: \mathbb{R}^n \to \mathbb{R}^m, f_2: \mathbb{R}^n \to \mathbb{R}^s$ cont., then f: $(f_1, f_2): \mathbb{R}^n \to \mathbb{R}^{m+s}, x \mapsto (f_1(x), f_2(x)) \text{ is cont.}$

- 2. $f: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto (f_1(x), f_2(x), \ldots)$ cont. $\iff \forall 1 \leq i \leq m \ f_i : \mathbb{R}^n \to \mathbb{R} \ are \ cont.$
- 3. $f: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$ and polynomials are cont.

- 4. Sums/products of cont. functions are cont.
- 5. Functions with separated variables are cont. if each variable is cont.
- 6. Composition of cont. functions are cont.
- 7. If $f: \mathbb{R}^2 \to \mathbb{R}$ is cont. Fix $y_0 \in \mathbb{R}$. Define $g_{u_0}(x) := f(x, y_0)$. Then $g_{u_0} : \mathbb{R} \to \mathbb{R}$ is cont. $\Rightarrow f: \mathbb{R}^2 \to \mathbb{R}$ is cont.

Sandwich lemma

$$f, g, h : \mathbb{R}^n \to \mathbb{R}, \, \forall x \in \mathbb{R}^n : f(x) \le g(x) \le h(x)$$

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x) \implies \lim_{x \to a} g(x) = L$$

Polar Coordinates

For $f: \mathbb{R}^2 \to \mathbb{R}$ polar coordinates are sometimes helpful. $p = r \cos \theta$ $q = r \sin \theta$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(r\cos\theta,r\sin\theta)\to(0,0)} f(p,q) = \dots = \lim_{r\to 0} \zeta$$

2.2 Sets Bounds $M \subseteq \mathbb{R}^n$

M is bounded $\stackrel{\text{def}}{\Longleftrightarrow} \{||x|| \in \mathbb{R} \mid x \in M\}$ is bounded

$$M$$
 is open $\stackrel{\text{def}}{\Longleftrightarrow} \forall p \in M : \exists r \in \mathbb{R}^{>0} : B_p(r) \subseteq M$
 $\stackrel{\text{def}}{\Longleftrightarrow} \mathbb{R}^n \setminus M$ is closed

M is closed $\stackrel{\text{def}}{\Longleftrightarrow} \forall (x_k)_{k \in \mathbb{N}} \subseteq M$ that converge to $x \in \mathbb{R}^n : x \in M$

M is compact $\stackrel{\text{def}}{\Longleftrightarrow} M$ closed and bounded

Special Sets

- \mathbb{R}^n and \emptyset are the **only** open and closed sets of \mathbb{R}^n .
- The open disc $B_r(x_0) = \{x \in \mathbb{R}^n \mid |x x_0| < r\}$ is bounded and open.
- The closed disc $\overline{B_r(x_0)} = \{x \in \mathbb{R}^n \mid |x x_0| \le r\}$ is closed.
- $I_1 \times \dots I_n$ is closed (compact) if each interval I_i is closed (compact)

Thm. $f: \mathbb{R}^n \to \mathbb{R}^m$ cont. $\forall Y \subseteq \mathbb{R}^m$ closed, the set $f^{-1}(Y) = \{x \in \mathbb{R}^n \mid f(x) \in Y\}$ is closed.

Thm. $f: \mathbb{R}^n \to \mathbb{R}^m$ cont. $\forall Y \subseteq \mathbb{R}^m$ open, the set $f^{-1}(Y) = \{x \in \mathbb{R}^n \mid f(x) \in Y\}$ is open.

Min-Max theorem

 $X \subseteq \mathbb{R}^n$ compact. $f: X \to \mathbb{R}$ cont. \Longrightarrow

$$\exists x_+, x_- \in X : f(x_+) = \sup_{x \in X} (f(x)), \quad f(x_-) = \inf_{x \in X} f(x)$$

2.3 Partial derivatives

Def. $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$, X open. The partial derivative of f with respect to x_i at the point $a \in \mathbb{R}^n$ is

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h} \quad ((e_i)_j = \delta_{ji}, j = 1, \dots, n)$$

If $f: X \to \mathbb{R}^m$ for $x_0 \in \mathbb{R}^n$, then

$$\frac{\partial f}{\partial x_i}(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_i}(a) \\ \vdots \\ \frac{\partial f_m}{\partial x_i}(a) \end{bmatrix}$$

Cor. $X \subseteq \mathbb{R}^n$ open, $f, g: X \to \mathbb{R}^m$:

- $\partial_{x_i}(f+g) = \partial_{x_i}(f) + \partial_{x_i}(g)$
- $\partial_{x_i}(f \cdot g) = \partial_{x_i}(f) \cdot g + f \cdot \partial_{x_i}(g)$ if m = 1
- $\partial_{x_i}(f/g) = (\partial_{x_i}(f) \cdot g f \cdot \partial_{x_i}(g))/g^2$ if $m = 1, g \not\equiv 0$

Def. The **Jacobi Matrix** of $f: X \subset \mathbb{R}^n \to \mathbb{R}^M$ at $x \in X$:

$$\mathcal{J}_f(x) = \left[\frac{\partial f_i}{\partial x_j}(x)\right]_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Def. $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$, X open. The **gradient** of f:

$$\nabla f(x) = \mathcal{J}_f(x)^{\top}$$

The gradient points in the direction of greatest increase and is perpendicular to the level set.

2.4 The differential

Def. $f: \mathbb{R}^n \to \mathbb{R}^m$ is diff. at x_0 , with **differential** u, if there exists a linear map $u: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - (f(x_0) + u(x - x_0))}{||x - x_0||} = 0$$

The linear map $u: \mathbb{R}^n \to \mathbb{R}^m$ is called (total) differential of f at x_0 , denoted by $df(x_0), d_{x_0}f$

Thm. $f, g: \mathbb{R}^n \to \mathbb{R}^m$ diff. at $x_0 \Longrightarrow$

- 1. f is cont. at x_0
- 2. f admits partial derivatives on x_0 w.r.t each variable
- 3. $\mathcal{J}_f(x_0)$ is the differential w.r.t the standard basis.
- 4. $d_{x_0}(f \pm g) = d_{x_0}f \pm d_{x_0}g$
- 5. $d_{x_0}(f \cdot g) = (d_{x_0}f)g(x_0) + f(x_0) \cdot (d_{x_0}g)$ if m = 1
- 6. If m=1 and $q\not\equiv 0$, the f/g is diff.

Multivaraible Chain Rule

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ be open $f: X \to Y, q: T \to \mathbb{R}^p$ diff functions, then

$$d_{x_0}(g \circ f) = d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$

The Jacobian satisfies: $\mathcal{J}_{q \circ f}(x_0) = \mathcal{J}_q(f(x_0)) \cdot \mathcal{J}_f(x_0)$

Partial Convergence

If $f: X \to \mathbb{R}^m$ has all partial derivatives $\frac{\partial f_i}{\partial x_i}: X \to \mathbb{R}^m$ and if these functions are cont. in $X \implies f$ is diff. on X.

Def. The tangent space at x_0 is the graph of the affine linear map

$$g(x) = f(x_0) + (d_{x_0}f)(x - x_0)$$
 i.e $\{(x, g(x)) \in \mathbb{R}^n \times \mathbb{R}^m\}$

Def. $X \subseteq \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$, $v \in \mathbb{R}^n \neq 0$, $x_0 \in X$. The **directional derivative** in direction v is

$$\lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = \frac{d}{dt} f(x_0 + tv) \bigg|_{t=0} = d_v f(x_0) = \mathcal{J}_f(x_0) \cdot v$$

Summed up

- f differentiable $\implies f$ continuous
- f has all partial derivatives $\implies f$ continuous

2.5 Higher order partial derivatives

Def. $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$. We say f is diff. of class C^1 if f is diff. on X and all its partial derivatives are continuous.

The set of all C^1 functions are denoted by $C^1(X; \mathbb{R}^m)$.

Let $k \geq 2$, then $f \in C^k(X; \mathbb{R}^m)$ if its diff. and each $\partial_{x_i} f \in$ $C^{k-1}(X;\mathbb{R}^m)$.

f is smooth or C^{∞} if $f \in C^k(X; \mathbb{R}^m) \ \forall k$.

Known C^{∞} functions

All polynomials, trigonometric and exponential functions

Mixed derivatives commute

If $f \in C^k$, $k \geq 2$ then the partial derivatives of oder $\leq k$ are independent of the order of differentiation.

$$\frac{\partial}{\partial x_{i_k}} \dots \left(\frac{\partial}{\partial x_{i_2}} \left(\frac{\partial f}{\partial x_{i_1}} \right) \right) = \frac{\partial^k f}{\partial x_{i_k} \cdot \dots \cdot \partial x_{i_2} \cdot \partial x_{x_{i_1}}}$$

Def (Hessian). $f: X \to \mathbb{R}, X \subset \mathbb{R}^n$. If $f \in C^2(X; \mathbb{R})$. $x_0 \in X$ the Hessian matrix of f at x is the symmetric square matrix

$$\operatorname{Hess}_{f}(x_{0}) = \nabla^{2} f(x_{0}) = \left[\frac{\partial^{2} f(x_{0})}{\partial x_{i} \partial x_{j}}\right]_{\substack{1 \leq i \leq n \\ 1 < j < n}}$$

Taylor Polynomial for $f: \mathbb{R}^n \to \mathbb{R}$

 $\approx f(y)$ for y close to x_0 . To calculate use $y = x - x_0$.

$$T_1 f(x_0; y) = f(x_0) + \nabla f(x_0) \cdot y$$

= $f(x_0) + \frac{\partial f}{\partial x_1}(x_0)y_1 + \dots + \frac{\partial f}{\partial x_n}(x_0)y_n$

$$T_2 f(x_0; y) = f(x_0) + \nabla f(x_0) \cdot y + \frac{1}{2!} y \cdot \operatorname{Hess}_f(x_0) \cdot y^{\top}$$

$$T_k f(x_0; y) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0) y_i + \dots + \sum_{m_1 + \dots = k} \frac{1}{m_1! \cdot m_2! \cdot m_n!} \frac{\partial^k f}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}(x_0) \cdot y_1^{m_1 \dots y_n^{m_n}}$$

Taylor Polynomials w/ Einstein Sum Convention $T_k f(x_0; y) = f(x_0) + (\partial_i f)(x_0) y_i + \frac{1}{2!} (\partial_{ij} f)(x_0) y_i y_j$

 $+\frac{1}{3!}(\partial_{ijk}f)y_iy_jy_k+\cdots$

Taylor Approximation

Let $f \in C^k(X; \mathbb{R}), x_0 \in X$

 $f(x) = T_k f(x_0, x - x_0) + E_k(f, x, x_0)$

which implies

$$\lim_{x \to x_0} \frac{E_k(f, x, x_0)}{||x - x_0||^2} = 0$$

2.6 Critical points

Def. $x_0 \in X$ of $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is a **local** maximum if there is a neighborhood $B_{x_0}(r) := \{x \in \mathbb{R}^n \mid ||x - x_0|| < 0\}$ $r\}\subseteq X$ such that $\forall x\in B_{x_0}(r):f(x)\leq f(x_0)$. Vice versa for minimum.

Def. $x \in X$ is called a **critical point** of f if $\nabla f(x_0) = 0$. These are candidates for local extrema. A critical point which is not an extrema is called **saddle point**.

Thm. $f: X \subset \mathbb{R}^n \to \mathbb{R}$ diff. on the interior of X and X closed and bounded, then a **global** extrema of f exists and is either at a point $x_0 \in \text{interior of } X \text{ for which } \nabla f(x_0) = 0$ or $x_0 \in \text{boundary of } x$.

Def (Non-degenerate critical point of $f \in C^2(X, \mathbb{R})$).

$$\det(\operatorname{Hess}_f(x_0)) \neq 0$$

Special case for degenerate critical points

If $\nabla f(x_0) = 0$, but also det $\operatorname{Hess}_f(x_0) = 0$, then we have to calculate each case individually.

Thm. $f: X \subset \mathbb{R}^n \to \mathbb{R}, f \in C^2(X, \mathbb{R})$. Let $x_0 \in X$ be a critical point of $f, \nabla f(x_0) = 0$. Then

- 1. $\operatorname{Hess}_f(x_0)$ pos. def. \Longrightarrow loc. min.
- 2. $\operatorname{Hess}_{f}(x_{0})$ neg. def. \Longrightarrow loc. max.
- 3. $\operatorname{Hess}_{f}(x_{0})$ indefinite \Longrightarrow saddle point.

Definiteness of matrices

A matrix A is **positive definite**

- $\iff xAx^{\top} > 0 \quad \forall x \in \mathbb{R}^n$
- \iff all eigenvalues of A are positive
- \iff all principal minors of A are positive:

$$\begin{bmatrix} a & b & c \\ b & d & e \\ \hline c & e & f \end{bmatrix}$$
 1. $a > 0$
2. $ad - b^2 > 0$
3. $det(A) > 0$

A is negative definite \iff -A positive definite

A is **indefinite** \iff A neither pos. semi- nor neg. semidef.

Cor (Closed form expression for 3×3 matrix).

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \cdot \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \cdot \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \cdot \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

2.7 Change of variables

Def (Change of variables). $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^n$ diff. f is a change of variables around x_0 if there is a radius r > 0, such that the restriction of f to the ball $B_r(x_0) := \{x \in \mathbb{R}^n \mid ||x - x_0|| < r\}$ has the property that the image $Y = f(B_r(x_0))$ is open in \mathbb{R}^n and there exists a differentiable map $g: Y \to B$ s.t. $f \circ g = id = g \circ f$.

Inveres function theorem

 $X \subseteq \mathbb{R}^n$ open, $f: X \to \mathbb{R}^n$ diff. If $x_0 \in X$ is such that $\det(\mathcal{J}_f(x_0)) \neq 0$, then f is a change of variables around x_0 . Moreover the Jacobian of g is determined by

$$\mathcal{J}_g(f(x_0)) = \mathcal{J}_f(x_0)^{-1}$$

Analogous of the fact that if f' > 0 (or f' < 0) for a function $f: I \subseteq \mathbb{R} \to \mathbb{R}$, then f is bijective.

2.7.1 Important change of variables (coordinates)

1. Polar
$$f: \begin{cases} [0,\infty) \times [0,2\pi) \to \mathbb{R}^2 \\ (r,\theta) \mapsto (r\cos\theta, r\sin\theta)^\top \end{cases}$$

The Jacobian of the change of variable is given by:

$$\mathcal{J}_f(r,\theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} \quad \det \mathcal{J}_f(r,\theta) = r$$

2. Cylindrical $f: \begin{cases} [0,\infty) \times [0,2\pi) \times \mathbb{R} \to \mathbb{R}^3 \\ (r,\theta,z) \mapsto (r\cos\theta,r\sin\theta,z)^\top \end{cases}$

The Jacobian of the change of variable is given by:

$$\mathcal{J}_f(r,\theta,z) = \begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \quad \det\mathcal{J}_f(r,\theta) = r$$

3. Spherical $f: \begin{cases} [0,\infty) \times [0,2\pi) \times [0,\pi] \to \mathbb{R}^3 \\ (r,\theta,\varphi) \mapsto (r\cos\theta\sin\varphi,r\sin\theta\sin\varphi,r\cos\varphi) \end{cases}$

The Jacobian of the change of variable is given by:

$$\mathcal{J}_f(r,\theta,\varphi) = \begin{bmatrix} \cos\theta\sin\varphi & -r\sin\theta\sin\varphi & r\cos\theta\cos\varphi \\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \\ \cos\varphi & 0 & -r\sin\varphi \end{bmatrix}$$
$$\det\mathcal{J}_f(r,\theta) = r^2\sin\varphi$$

Polar Coordinates

Cylindrical coordinates

Spherical Coordinates

Partial derivatives after a change of variable

Consider $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ and a change of variables $g: U \to X$ that expresses the variables (x_1, \ldots, x_n) in terms of (y_1, \ldots, y_n) , such that $x_i = g_i(y_1, \ldots, y_n)$. Thus the composite $h = f \circ g: U \to \mathbb{R}$ is the function f expressed in terms of the "new" variables y. By chain rule:

$$d_y h = df(g(y)) \circ dg(y) = \nabla f(x)^{\top} \circ dg(y) = (\partial_{y_1} h \cdots \partial_{y_n} h)$$

where we used that $df(g(y)) = df(x) = \nabla f(x)^{\top}$.

$$\partial_{y_i} h = \frac{\partial f}{\partial x_1} \frac{\partial g_1}{\partial y_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial g_n}{\partial y_i}$$

Abuse of notation

1. One thinks of f and h as being the same function, simply expressed in different coordinate systems. Thus

$$\partial y_i f = \partial_{x_1} f \, \partial_{y_i} g_1 + \ldots + \partial_{x_n} f \, \partial y_i g_n$$

2. One thinks of g_i as being the variable x_i , expressed in terms of the new variables y. Thus

$$\partial y_i f = \partial_{x_1} f \, \partial_{y_i} x_1 + \ldots + \partial_{x_n} f \, \partial y_i x_n$$

Change of variables for integration

Let $\overline{X} \subseteq \mathbb{R}^n$, $\overline{Y} \subseteq \mathbb{R}^n$ be compact subsets. Let $\varphi : \overline{X} \to \overline{Y}$ be a continuous map with $\overline{X} = X \cup B$, $\overline{Y} = Y \cup C$ where X and Y are open, B and C negligible. The restriction $\varphi : X \to Y$ is a bijective map of class C^1 such that for all $x \in X$ it holds det $\mathcal{J}_{\varphi}(x) \neq 0$. Assume $f : \overline{Y} \to \mathbb{R}$ then:

$$\int_{\overline{X}} f(\varphi(x)) |\det \mathcal{J}_{\varphi}(x)| \ dx = \int_{\overline{Y}} f(y) \, dy$$

Shortcuts (substitutions from 2.7.1)

- Polar Coordinates: $dx dy = r dr d\theta$
- Cylindrical coordinates: $dx dy dz = r dr d\theta dz$
- Spherical coordinates: $dx dy dz = r^2 \sin(\varphi) dr d\theta d\varphi$

Example: Let X be a quarter circle and $z = \frac{1}{1+x^2+y^2}$:

$$\iint\limits_{X} \frac{dx \, dy}{1 + x^2 + y^2} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{1}{1 + r^2} \cdot r \, dr \, d\theta$$

3 Integration in \mathbb{R}^n

Def.
$$\int_{a}^{b} f(x) dx = \begin{bmatrix} \int_{a}^{b} f_{1}(x) dx \\ \vdots \\ \int_{a}^{b} f_{n}(x) dx \end{bmatrix} \text{ for } f : \mathbb{R} \to \mathbb{R}^{n}$$

3.1 Line Integrals

Def. A parameterized curve $\gamma : [a,b] \to \mathbb{R}^n$ is a continuous map and piecewise in C^1 i.e. $\exists k > 1$ and a partition $a = t_0 < t_1 < \ldots < t_k = b \text{ s.t. } \gamma \big|_{]t_{j-1},t_j[}$ is C^1 for $1 \le j \le k$. $\gamma(t)$ is a parameterization of the curve $\text{Im}\gamma = \gamma([a,b])$.

Def. Let $\gamma:[a,b]\to\mathbb{R}^n$ be a parameterized curve in \mathbb{R}^n . $X\subset\mathbb{R}^n$ a subset of \mathbb{R}^n which contains the image of γ . $f:X\to\mathbb{R}^n$ a continuous function. The integral

$$\int_a^b \langle f(\gamma(t)), \gamma'(t) \rangle \, dt \quad \text{denoted} \quad \int_{\gamma} f(s) \cdot \, ds$$

is called the line or path integral of f along γ .

Def. Let $\gamma:[a,b]\to\mathbb{R}^n$ be a parameterized curve. An **oriented reparameterization** of γ is a parameterized curve $\sigma:[c,d]\to\mathbb{R}^n$ such that $\sigma=\gamma\circ\varphi$, where $\varphi:[c,d]\to[a,b]$ is a cont. map, diff. on]a,b[that is strictly increasing and satisfies $\varphi(a)=c$ and $\varphi(b)=d$. Also $\gamma=\sigma\circ\varphi^{-1}$

Properties of the line intergral

1. Only dependent on the image of the curve γ . If σ is an oriented reparameterization of γ , then

$$\int_{\gamma} f(s) \cdot ds = \int_{\sigma} f(s) \cdot ds$$

2. Let $\gamma_1 + \gamma_2$ be the concatenation of these two curves. $(\gamma_1 + \gamma_2)(t) := \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t - b + c) & t \in [b, d + b - c] \end{cases}$

$$\int_{\gamma_1 + \gamma_2} f(s) \cdot ds = \int_{\gamma_1} f(s) \cdot ds + \int_{\gamma_2} f(s) \cdot ds$$

3. Let $-\gamma: t \mapsto \gamma(a+b-t)$ be the line in opposite direction

$$\int_{-\gamma} f(s) \cdot ds = -\int_{\gamma} f(s) \cdot ds$$

Def. A differentiable function $g: X \subset \mathbb{R}^n \to \mathbb{R}$, such that $\nabla g = f, f: X \to \mathbb{R}^n$ is called a **potential** for f.

Usefulness of potentials

Let g be a potential of f, then

$$\int_{\gamma} f(s) \cdot ds = \int_{\gamma} \nabla g(s) \cdot ds = g(\gamma(b)) - g(\gamma(a)).$$

Thus the path integral of f only depends on the values of g at the end points of the curve.

Def. Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}^n$ a continuous vector field. If for any $x_1, x_2 \in X$ the line integral $\int_{\gamma} f(s) \cdot ds$ is independent of the choice of the curve γ , then f is called **conservative**.

Important equivalences

 $f: X \to \mathbb{R}^n$ is conservative

 $\stackrel{\text{def}}{\Longleftrightarrow}$ The line integral of f is independent of the path

 $\iff f = \nabla g \text{ for a } g: X \to \mathbb{R} \text{ (i.e. } f \text{ has a potential)}$

 $\iff \int_{\gamma} f(s) \cdot ds = 0 \text{ for any closed } \gamma$

Thm. $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^n, C^1$ vector field and X open.

$$f$$
 conservative $\implies \frac{\partial f_j}{\partial x_i} = \frac{\partial f_i}{\partial x_j}$ for $1 \le i, j \le n$

Def. $f: X \subseteq \mathbb{R}^3 \to \mathbb{R}^3, C^1$, then the curl of f is defined as

$$\operatorname{curl}(f) := \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

Thm. $f: \mathbb{R}^3 \to \mathbb{R}^3$ f conservative $\implies \operatorname{curl}(f) = 0$

Def. A subset $X \subseteq \mathbb{R}^n$ is **star shaped** if $\exists x_0 \in X$ such that $\forall x \in X$ the line segment of x to x_0 is contained in X.

Def. A subset $X \subseteq \mathbb{R}^n$ is convex, when for any $x, y \in X$ the line segment from x to y is contained in X.

 $convex \implies star-shaped$

Thm. If X star-shaped open and $f \in C^1$ vector field. Then

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} \ \forall 1 \le i, j \le n \implies f \text{ is conservative}$$

$$\operatorname{curl}(f) = 0 \implies f \text{ is conservative}$$

3.2 Riemann Integrals

Def. A **rectangle** in \mathbb{R}^n is a product

$$Q := [a_1, b_1] \times \ldots \times [a_n, b_n] = \prod_{j=1}^{n} I_i$$

of n intervals $I_i = [a_i, b_i]$ (not necessarily closed), and

$$vol(Q) := \int_{Q} 1 dx = \prod_{i=1}^{n} (b_i - a_i).$$

Def. Let P be a partition (collection) of $Q = Q_1, \ldots, Q_k$ s.t. $Q = \bigcup_{i=1}^k Q_i$ and all Q_i are pairwise disjoint and consider $f: \mathbb{R}^n \to \mathbb{R}$. The upper/lower Riemann sum are defined as:

$$L(P,f) = \sum_{j=1}^{k} (\inf_{Q_j} f) \cdot \operatorname{vol}(Q_j), \ U(P,f) = \sum_{j=1}^{k} (\sup_{Q_j} f) \cdot \operatorname{vol}(Q_j)$$

and we define the lower and upper Riemann integral as

$$\underline{\mathbf{I}}(f) := \sup_{P} \{ L(P, f) \}, \ \overline{\mathbf{I}}(f) = \inf_{P} \{ U(P, f) \}$$

Def. $f: Q \to \mathbb{R}$ is called **integrable** if $\underline{\mathbf{I}}(f) = \overline{\mathbf{I}}(f)$.

$$\int_{Q} f dx = \int_{Q} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Thm. f is cont. and bounded on Q, then f is integrable. **Properties**

 $f,g:Q\subseteq\mathbb{R}^n\to\mathbb{R}$ integrable and $\alpha,\beta\in\mathbb{R}$

- 1. Linearity: $\int_Q (\alpha f + \beta g) dx = \alpha \int_Q f dx + \beta \int_Q g dx$
- 2. **Positivity**: If $f \leq g$, then $\int_{\mathcal{O}} f \, dx \leq \int_{\mathcal{O}} g \, dx$
- 3. Upper bound: $\left| \int_{Q} f \, dx \right| \leq \int_{Q} \left| f \right| dx$
- 4. **Zero**: If $f \geq 0$, then $\int_Q f dx \geq 0$
- 5. Triangle Ine.: $\left| \int_{Q} (f+g) \, dx \right| \leq \int_{Q} |f| \, dx + \int_{Q} |g| \, dx$
- 6. **Domain additivity**: If X_1 and X_2 are compact subsets of \mathbb{R}^n and f is continuous on $X_1 \cup X_2$, then

$$\int_{X_1 \cup X_2} f \, dx = \int_{X_1} f \, dx + \int_{X_2} f \, dx - \int_{X_1 \cap X_2} f \, dx$$

Fubini's theorem

If $Q = [a_1, b_1] \times \ldots \times [a_n, b_n], f : Q \to \mathbb{R}$ cont, then

$$\int_{Q} f(x) dx = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \dots \left(\int_{a_n}^{b_n} f(x) dx_n \right) \dots dx_2 \right) dx_1$$

The order of integration is irrelevant.

Fubini's theorem for general regions

 $X \subseteq \mathbb{R}_n$, $f: X \to \mathbb{R}$, $n_1, n_2 \ge 1$ and $n = n_1 + n_2$, then for $x \in \mathbb{R}^n = (x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2})$, define

$$X_{x_1} := \{ x_2 \in \mathbb{R}^{n_2} \mid (x_1, x_2) \in X \} \subseteq \mathbb{R}^{n_2}$$
$$X_1 := \{ x_1 \in \mathbb{R}^{n_1} \mid X_{x_1} \neq \emptyset \} \subseteq \mathbb{R}^{n_1}$$

If $g(x_1) := \int_{X_{x_1}} f(x_1, x_2) dx_2$ is continuous on X_1 , then

$$\int_X f(x) \, dx = \int_{X_1} g(x_1) \, dx_1 = \int_{X_1} \int_{X_{x_1}} f(x_1, x_2) \, dx_2 \, dx_1$$

Integrals with separated variables

Suppose $X = [a_1, b_1] \times ... \times [a_n, b_n] \subseteq \mathbb{R}^n$, and f is a function with separated variables given by $f(x_1, ..., x_n) = f_1(x_1) \cdots f_n(x_n)$ where each function f_i is continuous (so f is continuous). Then:

$$\int_X f(x_1, \dots, x_n) dx_1 \dots dx_n = \left(\int_{a_1}^{b_1} f_1(x) dx \right) \dots \left(\int_{a_n}^{b_n} f_n(x) dx \right)$$

Def. For $1 \leq m \leq n$ a m-parameterized set or parameterized m-set is a continuous function $\varphi : [a_1, b_1] \times \ldots \times [a_m, b_m] \to \mathbb{R}^n$ which is C^1 on $(a_1, b_1) \times \ldots \times (a_m, b_m)$. If m = 1 then φ is a parameterized curve in \mathbb{R}^n .

Def. A set $Y \subseteq \mathbb{R}^n$ is called negligible if \exists finitely many φ_i , parameterized m_i -sets with $m_i \leq n$ such that $1 \leq i \leq k$

$$Y \subseteq \bigcup_{i=1}^k \varphi_i(x_i)$$

where $\varphi_i: x_i \to \mathbb{R}^n$

Thm. If $Y \subseteq \mathbb{R}^n$ is negligible closed bounded then

$$\int_{Y} f(x_1, \dots, x_n) dx_1 \dots dx_n = 0$$

 $\forall f: Y \to \mathbb{R} \text{ continuous}$

3.3 Improper Integrals

Def. We say f is integrable on $I \times J$ if

$$\lim_{b \to \infty} \int_a^b \int_I f(x, y) \, dx \, dy = \lim_{b \to \infty} \int_I \int_a^b f \, dy \, dx$$

exists and denote the limit with

$$\int_{a}^{\infty} \int_{I} f \, dx \, dy = \int_{I \times J} f \, dx \, dy$$

Def. Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a non compact set and f a function such that $\int_K f \, dx$ exists for every compact set $K \subset X$ and suppose $f \geq 0$. Consider the sequence $X_k \ k = 1, 2, \ldots$ s.t.

- 1. $X_k \subset X$ bounded and closed
- $2. X_k \subseteq X_{k+1}$
- $3. \ \bigcup_{k=1}^{\infty} X_k = X$

Then if the following limit exists, the integral converges:

$$\int_X f \, dx := \lim_{n \to \infty} \int_{X_n} f \, dx$$

3.4 The Green formula

Def. A simple closed parameterized curve $\gamma:[a,b]\to\mathbb{R}^2$ is a closed parameterized curve such that $\gamma(t)\neq\gamma(s)$ unless t=s or $\{s,t\}=\{a,b\}$ and such that $\gamma'(t)\neq0$ for a< t< b. If γ is only piecewise C^1 inside]a,b[, this condition only applies where $\gamma'(t)$ exists.

Green's Theorem

Let $f: X \to \mathbb{R}^2$ C^1 vector field, X closed and bounded where $\partial X = \bigcup_{i=1}^n \gamma_i$ union of simple closed curves so that X is always to the left of the curve $\gamma = \bigcup_{i=1}^n \gamma_i$ then

$$\iint\limits_X \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx \, dy = \sum_{i=1}^n \int_{\gamma_i} f \cdot ds = \int_{\gamma} f \cdot ds$$

Both directions

- 1. Use the double integral to calculate the line integral
- 2. Use the line integral to calculate a double integral

General tips and tricks

How to find the potential of a function

Let $h := g(x_1, ..., x_n)$ and $\nabla g = f$. To find g, construct the following system of equation:

- (1) $\partial_{x_1} g = f_1(x_1, \dots, x_n) \iff h = \int f_1(x_1, \dots, x_n) dx_1$
- $(2) \ \partial_{x_2} g = f_2(x_1, \dots, x_n) \implies \partial_{x_2} h = f_2(x_1, \dots, x_n)$

:

$$(n) \ \partial_{x_n} g = f_n(x_1, \dots x_n) \implies \partial_{x_n} h = f_n(x_1, \dots, x_n)$$

When integrating $f_1(x_1,...,x_n)$ do not forget to carry a function $\tilde{z}(x_2,...,x_n)$ depending only on $x_2,...,x_n$. With the other conditions it is possible to find a unique \tilde{z} .

How to find global maxima/minima

- 1. Find the candidates in the interior
- 2. Bounded \Rightarrow Use parameterization (γ) of the bound. To calculate the candidates use $g := f(\gamma(t))$ and g'.
- 3. Evaluate candidates + all corners of the bound

Cor (Inverse 2×2 matrix).

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Taylor polynomials with \mathcal{O} -Notation

Example 1: Compute Taylor polynomial of order 2 of $f(x, y, z) = \cos\left(\frac{x}{1+y^2} - \frac{y}{1+z^2}\right)$ at (x, y, z) = (0, 0). We can use $\cos(t) = 1 - \frac{t^2}{2} + \mathcal{O}(t^4)$. Thus f(x, y, z)

$$= 1 - \frac{1}{2} \left(\frac{x^2}{(1+y^2)^2} + \frac{y^2}{(1+z^2)^2} - \frac{2xy}{(1+y^2)(1+z^2)} \right)$$

+ $\mathcal{O}((x^2+y^2+z^2)^2)$
= $1 - \frac{1}{2}x^2 - \frac{1}{2}y^2 + xy + \mathcal{O}((x^2+y^2+z^2)^2)$

And thus $T_2 f((0,0,0),(x,y,z)) = 1 - \frac{1}{2}x^2 - \frac{1}{2}y^2 + xy$.

Example 2: Compute Taylor polynomial of order 2 of $f(x,y,z) = 2\exp(x+y^2+z^3)$ at (x,y,z) = (0,0,0). We can use $e^t = 1 + t + \frac{t^2}{2} + \mathcal{O}(t^3)$. Thus f(x,y,z)

$$= 2(1 + x + y^2 + z^3 + \frac{1}{2}(x + y^2 + z^3)^2 + \mathcal{O}(|(x, y, z)^3|))$$

= 2 + 2x + x² + 2y² + \mathcal{O}(|(x, y, z)|^3)

And thus $T_2 f((0,0,0),(x,y,z)) = 2 + 2x + x^2 + 2y^2$.

Analysis I Stuff

Derivative rules

Linearity: $(\alpha \cdot f(x) + g(x))' = \alpha \cdot f'(x) + g'(x)$ Product rule: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ Quotient rule: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$ Chain rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ Inverse: $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}, \ y_0 = f(x_0)$

Trigonometric functions

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

Useful bound for $\sin: \forall x \in \mathbb{R}_0^+ : \sin(x) \leq x$

Proof. Let $g(x) = x - \sin(x)$ with $g'(x) = 1 - \cos(x) \ge 0$

Natural Logarithm Rules

$$\begin{array}{ll} \ln(1) = 0 & \ln(e) = 1 \\ \ln(xy) = \ln(x) + \ln(y) & \ln(x/y) = \ln(x) - \ln(y) \\ \ln(x^y) = y \cdot \ln(x) & x^\alpha \cdot x^\beta = x^{\alpha+\beta} \\ (x^\alpha)^\beta = x^{\alpha \cdot \beta} & \frac{x-1}{x} \leq \ln(x) \leq x - 1 \\ \ln(1+x^\alpha) \leq \alpha x & \log_\alpha(x) = \frac{\ln(x)}{\ln(\alpha)} \end{array}$$

Function Properties

Consider an arbitrary function $f: X \to Y$.

Def (Well defined). f is well defined if f(x) exists $\forall x \in X$.

Def (Injective). $\forall x, y \in X : f(x) = f(y) \implies x = y$

- Assume f(x) = f(y) and then show that x = y
- Assume $x \neq y$ and show that $f(x) \neq f(y)$

Def (Surjective). $\forall y \in Y \ \exists x \in X : f(x) = y$

• Take arbitrary $y \in Y$ and show that there is an element $x \in X$. Consider f(x) = y and solve for x and check whether or not $x \in X$.

Def (Bijective). f injective and surjective $\implies f$ bijective

Integration Methods

Partial Inegration

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx$$
$$\int_{a}^{b} f(x)g'(x) dx = (f \cdot g)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx$$
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

- Choose $g': \exp \to \operatorname{trig} \to \operatorname{poly} \to \operatorname{inverse} \operatorname{trig} \to \operatorname{logs}$
- Choose $f: \log s \to \text{inverse trig.} \to \text{poly} \to \text{trig} \to \exp$
- Sometimes it is necessary to multiply by 1. E.g.: $\int \ln x \ dx = \int \ln x \cdot 1 \ dx \implies f(x) = \ln x, \ g'(x) = 1.$
- Sometimes it is necessary to do it multiple times

Substitution

Let $a < b, \phi : [a, b] \to \mathbb{R}$, cont. diff, $I \subseteq \mathbb{R}$ with $\phi([a, b]) \subseteq I$ and $f : I \to \mathbb{R}$ a cont. function. Then it follows:

$$\int_{\phi(a)}^{\phi(b)} f(x) \, dx = \int_{a}^{b} f(\phi(t))\phi'(t) dt = (F \circ \phi)(b) - (F \circ \phi)(a)$$

since
$$F' = f$$
 then $f(\phi(t))\phi'(t) = (F \circ \phi)'(t)$.

Partial Fraction Decomposition

Let P(x), Q(x) be two polynomials. $\int \frac{P(x)}{Q(x)}$ can be calculated as follows:

- 1. If $deg(P) \ge Q(P) \Rightarrow poly$. div. $\frac{P(x)}{Q(x)} = a(x) + \frac{r(x)}{Q(x)}$
- 2. Calculate all roots of Q(x)
- 3. Create a partial fraction per root
- Simple real root: $x_1 \to \frac{A}{x-x_1}$
- *n*-fold real root: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
- Simple *i*-root: $x^2 + px + q \rightarrow \frac{Ax+B}{x^2+px+q}$
- *n*-fold *i*-root: $x^2 + px + q \to \frac{A_1x + B_1}{x^2 + px + q} + \ldots + \frac{A_rx + B_r}{(x^2 + px + q)^r}$
- 4. Calculate parameters A_1, \ldots, A_n . (Insert the root as s, transform and solve)

Trigonometry

Periodicity

$\sin(x) = \sin(x + 2\pi)$	$\cos(x) = \cos(x + 2\pi)$
$\tan(x) = \tan(x + \pi)$	$\cot(x) = \cot(x + \pi)$

Parity

$$\sin(-x) = -\sin(x) \qquad \cos(-x) = \cos(x)$$

$$\tan(-x) = -\tan(x) \qquad \cot(-x) = -\cot(x)$$

Complement

$$\sin(\pi - x) = \sin(x) \qquad \cos(\pi - x) = -\cos(x)$$

$$\tan(\pi - x) = -\tan(x) \qquad \cot(\pi - x) = -\cot(x)$$

Multiple-angles formulae

$\sin(2x) = 2\sin x \cos x$	$\cos(2x) = \cos^2 x - \sin^2 x$
$\tan(2x) = \frac{2\tan x}{1-\tan^2 x}$	$\cot(2x) = \frac{\cot x - \tan x}{2}$
$\sin(3x) = 3\sin x - 4\sin^3 x$	$\cos(3x) = 4\cos^3 x - 3\cos x$

Addition Theorems

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$

Multiplication

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y))$$

Powers

$$\sin^{2} x = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2} x = \frac{1 + \cos(2x)}{2}$$

$$\tan^{2} x = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\sin^{3} x = \frac{3 \sin x - \sin(3x)}{4}$$

$$\cos^{3} x = \frac{3 \cos x + \cos(3x)}{4}$$

Sum of functions

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}
\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}
\cos x - \cos y = 2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

Miscellaneous

$$\sin^2 x + \cos^2 x = 1$$
 $\cosh^2 x - \sinh^2 x = 1$
 $\sin x^{(n)} = \sin \left(x + \frac{n\pi}{2} \right)$ $\cos x^{(n)} = \cos \left(x + \frac{n\pi}{2} \right)$

Angles

\deg	0	30	45	60	90	120	135	150	180	270	360
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{120}{\frac{2\pi}{3}}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	-	0

Important Functions

Series

- Geometric: $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ if |q| < 1
- Harmonic: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
- Telescope: $\sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 1$
- $\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} = \lim_{n \to \infty} (1 + \frac{z}{n})^n = e^z$
- $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges s > 1 $(\frac{1}{1 \frac{1}{2s 1}})$
- $p(z) = \sum_{k=0}^{\infty} c_k z^k$ conv. abs. $|z| < \rho = \frac{1}{\limsup |c_k|^{1/k}}$

$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Taylor Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{5})$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \mathcal{O}(x^{7})$$

$$\sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \mathcal{O}(x^{6})$$

$$\cosh(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{6})$$

$$\tan(x) = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{7})$$

$$\tanh(x) = x - \frac{x^{3}}{3} + \frac{2x^{5}}{15} - \mathcal{O}(x^{7})$$

$$\log(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \mathcal{O}(x^{5})$$

$$\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} - \mathcal{O}(x^{4})$$

Parity of Functions

Even: $f(-x) = f(x) \quad \forall x \in D$ $|x|, \cos x, x^2$ **Odd:** $f(-x) = -f(x) \quad \forall x \in D$ x, \sin, \tan, x^3

Chaining of odd functions

Chaining odd functions results in an odd function.

Derivatives a	and Integrals (src:	dcamenisch)
---------------	-----------------	------	-------------

Derivatives and	integrals (src: dcamenisc
$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
c	0
x^a	$a \cdot x^{a-1}$
$\frac{1}{a+1}x^{a+1}$	x^a
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$
$\frac{x^{a+1}}{a+1}$	$x^a, a \neq -1$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
$\frac{2}{3}x^{\frac{3}{2}}$	\sqrt{x}
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$
e^x	e^x
$\ln(x)$	$\frac{1}{x}$
$\log_a(x)$	$\frac{1}{x\ln(a)} = \log_a(e^{\frac{1}{x}})$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
$\cot(x) = \frac{\cos(x)}{\sin(x)}$	$\frac{1}{-\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\sinh(x) = \frac{e^x + e^{-x}}{2}$	$\cosh(x)$
$\cosh(x) = \frac{e^x - e^{-x}}{2}$	$\sinh(x)$
$ tanh(x) = \frac{\sinh(x)}{\cosh(x)} $	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$
$\frac{1}{f(x)}$	$\frac{-f'(x)}{(f(x))^2}$
a^{cx}	$a^{cx} \cdot c \ln(a)$
x^x	$x^x \cdot (1 + \ln(x)), \ x > 0$
$(x^x)^x$	$(x^x)^x(x+2x\ln(x)), x>0$
x^{x^x}	$x^{x^{x}}(x^{x-1} + \ln(x) \cdot x^{x}(1 + \ln(x)))$

$\mathbf{F}(\mathbf{x})$
$\frac{1}{a}\ln(ax+b)$
$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln(cx + d)$
$\frac{1}{2a} \ln \left(\left \frac{x-a}{x+a} \right \right)$
$\frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\ln(x+\sqrt{a^2+x^2})$
$\frac{x}{2}\sqrt{a^2-x^2}-\frac{a^2}{2}\arcsin\left(\frac{x}{ a }\right)$
$\frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln(x+\sqrt{x^2-a^2})$
$\ln(x + \sqrt{x^2 \pm a^2})$
$\arcsin\left(\frac{x}{ a }\right)$
$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$
$-\frac{1}{a}\cos(ax+b)$
$\cos(ax+b)$
$\frac{1}{a}\sin(ax+b)$
$\sin(ax+b)$
$-\ln(\cos(x))$
$\ln(\sin(x))$
$\ln\left(\left \tan\left(\frac{x}{2}\right)\right \right)$
$\ln\left(\left \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right \right)$
$\frac{1}{2}(x - \sin(x)\cos(x))$
$\frac{1}{2}(x+\sin(x)\cos(x))$
$\frac{1}{4}(\frac{1}{3}\cos(3x) - 3\cos(x))$
$\frac{1}{4}(\frac{1}{3}\sin(3x) + 3\sin(x))$
$\tan(x) - x$
$-\cot(x)-x$
$x\arcsin(x) + \sqrt{1 - x^2}$
$x \arccos(x) - \sqrt{1 - x^2}$
$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\ln(\cosh(x))$
$\ln(f(x))$

$\mathbf{f}(\mathbf{x})$
$\frac{1}{ax+b}$
$\frac{ax+b}{cx+d}$
$\frac{1}{x^2 - a^2}$
$\sqrt{a^2 + x^2}$
$\sqrt{a^2 - x^2}$
$\sqrt{x^2 - a^2}$
$\frac{1}{\sqrt{x^2 \pm a^2}}$
$\frac{1}{\sqrt{a^2-x^2}}$
$\frac{1}{x^2+a^2}$
$\sin(ax+b)$
$-a\sin(ax+b)$
$\cos(ax+b)$
$a\cos(ax+b)$
tan(x)
$\cot(x)$
$\frac{1}{\sin(x)}$
$\frac{1}{\cos(x)}$
$\sin^2(x)$
$\cos^2(x)$
$\sin^3(x)$
$\cos^3(x)$
$\tan^2(x)$
$\cot^2(x)$
$\arcsin(x)$
$\arccos(x)$
$\arctan(x)$
tanh(x)

 $\frac{f'(x)}{f(x)}$

$\mathbf{F}(\mathbf{x})$	
$x(\ln(x) - 1)$	
$\frac{1}{n+1}(\ln x)^{n+1} \qquad n \neq -1$	-
$\frac{1}{2n}(\ln x^n)^2 \qquad n \neq 0$	
$\ln(\ln(x)) \qquad x > 0, x \neq 1$	
$rac{1}{b\ln(a)}a^{bx}$	
$\frac{cx-1}{c^2} \cdot e^{cx}$	
$\frac{1}{c}e^{cx}$	
$\frac{x^{n+1}}{n+1} \left(\ln(x) - \frac{1}{n+1} \right) n \neq -1$:
$\frac{e^{cx}(c\sin(ax+b) - a\cos(ax+b))}{a^2 + c^2}$	e^{cz}
$\frac{e^{cx}(c\cos(ax+b)+a\sin(ax+b))}{a^2+c^2}$	e^{ca}
$\sin(x)\cos(x)$	
$\frac{1}{2}(f(x))^2$	\int
$\sqrt{\pi}$	∫_°
$\frac{1}{a(n+1)}(ax+b)^{n+1}$	(
$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$ $\frac{(ax^p+b)^{n+1}}{ap(n+1)}$	
$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$	(ax^{p})
$\frac{1}{ap}\ln ax^p+b $	ax^p
$\frac{ax}{c} - \frac{ad-bc}{c^2} \ln cx+d $	
$-x\cos(x) + \sin(x)$,
$x\sin(x) + \cos(x)$;
$\operatorname{arccot}(x)$	
$\coth(x)$	$1 - \cot t$
$\operatorname{arcoth}(x)$	