Vertex of the Quadratic

Given a quadratic $w(x) = ax^2 + bx + c$ compute its value at $x_1 = -\frac{b}{2a}$ namely $w(x_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at
$$x_{1}$$
+h, namely

 $W(X_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = w(x_1 + h) - w(x_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

However if a < 0 then riangle < 0 or vertex is the global maximum!

Vertex

Example 2. $w(x) = -x^2 - 8x + 43$

