- 1. Cree gráficas de las siguientes funciones, desde x = 0 hasta 10.
 - (a) $y = e^x$
 - (b) $y = \sin(x)$
 - (c) $y = ax^2 + bx + c$; con a=5, b=2 y c=4
 - (d) $y = \sqrt{x}$

Cada una de sus gráficas debe incluir título, etiqueta del eje x, etiqueta del eje y

- 2. Grafique las siguientes funciones en la misma gráfica para valores de x desde $-\pi$ a π . (Debe ser posible ver gráficas suaves).
 - (a) $y = \sin(x)$
 - (b) $y = \sin(2x)$
 - (c) $y = \sin(3x)$
- 3. La distancia que recorre un proyectil cuando se dispara a un ángulo θ es función del tiempo y se puede dividir en distancias horizontal (h) y vertical (y) de acuerdo con las fórmulas

$$h(t) = h_0 + t V_0 \cos(\theta),$$

У

$$y(t) = y_0 + t V_0 \sin(\theta) - \frac{1}{2}gt^2.$$

- (a) Suponga que el proyectil descrito se dispara con una velocidad inicial de 100 m/s y un ángulo de lanzamiento de 60° . Encuentre la distancia recorrida tanto horizontal como verticalmente (en las direcciones h y y) para tiempos desde 0 hasta 20 s.
 - i. Grafique distancia horizontal contra tiempo.
 - ii. En una nueva ventana de figura, grafique distancia vertical contra tiempo.
- (b) En una nueva ventana de figura, grafique distancia horizontal sobre el eje x y distancia vertical sobre el eje y.
- (c) Calcule tres nuevos vectores para cada una de las distancias vertical (y_1, y_2, y_3) y horizontal (h_1, h_2, h_3) recorridas, y suponga ángulos de lanzamiento de 80°, 45° y 30°.
 - i. En una nueva ventana de figura, grafique distancia horizontal en el eje ${\bf x}$ y distancia vertical en el eje ${\bf y}$, para los tres casos. (Tendrá tres líneas)
 - ii. Haga una línea sólida, una rayada y una punteada (aumente el ancho de línea en caso de ser necesario). Agregue una leyenda para identificar cuál línea es cuál.

iii. En una nueva figura grafique h_i vs y_i (i=1,2,3). ¿cuál de los tres lanzamientos alcanza una mayor distancia horizontal si se ejecuta sobre un plano?¿si se lanza desde el borde de un abismo de profundidad desconocida?

4. Conjuntos de Mandelbrot y Julia

Benoit Mandelbrot es en gran medida responsable del actual interés en la geometría fractal. Su trabajo se construye en torno a los conceptos desarrollados por el matemático francés Gaston Julia en su artículo *Mémoire sur l'iteration des fonctions rationelles*, de 1919. Los avances en la obra de Julia tuvieron que esperar el desarrollo de las computadoras, y particularmente de las gráficas por computadora. En la década de 1970, Mandelbrot, entonces en IBM, revisó y profundizó en la obra de Julia y, de hecho, desarrolló algunos de los primeros programas de gráficos por computadora para desplegar los complicados y bellos patrones fractales que hoy llevan su nombre.

La imagen Mandelbrot se crea al considerar cada punto en el plano complejo, x+yi. Se hace z(0) = x+yi y luego se itera de acuerdo con la siguiente estrategia:

$$z(0) = x + yi$$

$$z(1) = z(0)^{2} + z(0)$$

$$z(2) = z(1)^{2} + z(0)$$

$$\vdots$$

$$z(n) = z(n-1)^{2} + z(0)$$
(1)

Las imágenes que normalmente se ven de éste conjunto fueron creadas usando aquellos puntos en el plano complejo que superan cierto umbral para z (con frecuencia ese valor es $\sqrt{5}$).

Se sabe que el conjunto Mandelbrot se encuentra en alguna parte del plano complejo y que

$$\begin{array}{l} -1.5 \le x \le 1.0 \\ -1.5 \le y \le 1.5 \end{array},$$

También se sabe que se puede describir cada punto en el plano complejo como

$$z = x + yi$$

- Genere matrices usando **meshgrid** para x y y en los rangos mencionados. Que el tamaño de cada matriz sea 500×500 .
- Cree la matriz compleja C = X + iY (esta corresponde a z(0))
- Inicialice la matriz compleja Z de tamaño 500×500 .
- Establezca un número de iteraciones mayor a 50 para ejecutar el conjunto de iteraciones en la Ec. 1.

- En cada iteración almacene en una matriz (p.e., M) aquellos puntos en el plano complejo con $abs(z)>\sqrt{5}$ (esta será la imagen a desplegar)
- \bullet para desplegar la imagen use la instrucción **image(M)** y puede probar con diferentes mapas de color (colormap).
- también puede desplegar múltiplos de la matriz compleja. Por ejemplo, image(abs(z)*150)

Ver ejemplo en la Figura 1.

Figure 1: Ejemplos