minimize over $\widehat{\mathscr{B}}$ and $\widehat{D} = \frac{1}{2\sigma^2} \|\operatorname{vec}(D) - \operatorname{vec}(\widehat{D})\|_{V^{-1}}^2$ subject to $\operatorname{image}(\widehat{D}) \subset \widehat{\mathscr{B}}$ and $\operatorname{dim}(\widehat{\mathscr{B}}) < m$,

which is an equivalent problem to Problem 2.31 with $\|\cdot\| = \|\cdot\|_{V^{-1}}$.

Note B.1 (Weight matrix in the norm specification). The weight matrix W in the norm specification is the inverse of the measurement noise covariance matrix V. In case of singular covariance matrix (exact or missing data) the method needs modification.

Proof of Theorem 3.9

The polynomial equations (GCD) are equivalent to the following systems of algebraic equations

$$\begin{bmatrix} \widehat{p}_0 \\ \widehat{p}_1 \\ \vdots \\ \widehat{p}_n \end{bmatrix} = \mathscr{T}_{d+1}^\top(u) \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_d \end{bmatrix}, \qquad \begin{bmatrix} \widehat{q}_0 \\ \widehat{q}_1 \\ \vdots \\ \widehat{q}_n \end{bmatrix} = \mathscr{T}_{d+1}^\top(v) \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_d \end{bmatrix},$$

where the Toeplitz matrix constructor \mathscr{T} is defined in (\mathscr{T}) on page 86. Rewriting and combining the above equations, we have that a polynomial c is a common factor of \widehat{p} and \widehat{q} with degree $(c) \leq d$ if and only if the system of equations

$$\begin{bmatrix} \widehat{p}_0 \ \widehat{q}_0 \\ \widehat{p}_1 \ \widehat{q}_1 \\ \vdots \ \vdots \\ \widehat{p}_n \ \widehat{q}_n \end{bmatrix} = \mathcal{T}_{n-d+1}^{\top}(c) \begin{bmatrix} u_0 & v_0 \\ u_1 & v_1 \\ \vdots & \vdots \\ u_{n-d} \ v_{n-d} \end{bmatrix}$$

has a solution.

The condition $\operatorname{degree}(c) = \operatorname{d}$ implies that the highest power coefficient c_{d} of c is different from 0. Since c is determined up to a scaling factor, we can impose the normalization $c_{\operatorname{d}} = 1$. Conversely, imposing the constraint $c_{\operatorname{d}} = 1$ in the optimization problem to be solved ensures that $\operatorname{degree}(c) = \operatorname{d}$. Therefore, problem (4.4) is equivalent to

minimize over
$$\widehat{p}, \widehat{q} \in \mathbb{R}^{n+1}$$
, $u, v \in \mathbb{R}^{n-d+1}$, and $c_0, \dots, c_{d-1} \in \mathbb{R}$ trace $\left(\left(\left[p \ q\right] - \left[\widehat{p} \ \widehat{q}\right]\right)^{\top} \left(\left[p \ q\right] - \left[\widehat{p} \ \widehat{q}\right]\right)\right)$ subject to $\left[\widehat{p} \ \widehat{q}\right] = \mathcal{T}_{n-d+1}^{\top}(c) \left[u \ v\right]$.

Substituting $[\hat{p} \ \hat{q}]$ in the cost function and minimizing with respect to $[u \ v]$ by solving a least squares problem gives the equivalent problem (AGCD').

Proof of Theorem 5.17

238

First, we show that the sequence $\widehat{D}^{(1)},\widehat{D}^{(1)},\dots,\widehat{D}^{(k)},\dots$ converges monotonically in the Σ -weighted norm $\|\cdot\|_{\Sigma}$. On each iteration, Algorithm 6 solves two optimization problems (steps 1 and 2), which cost functions and constraints coincide with the ones of problem (c–C5). Therefore, the cost function $\|D-\widehat{D}^{(k)}\|_{\Sigma}^2$ is monotonically nonincreasing. The cost function is bounded from below, so that the sequence

$$||D - \widehat{D}^{(1)}||_{\Sigma}^{2}, \quad ||D - \widehat{D}^{(2)}||_{\Sigma}^{2}, \quad \dots$$

is convergent. This proves $(f(k) \rightarrow f^*)$.

Although, $\widehat{D}^{(k)}$ converges in norm, it may not converge element-wise. A sufficient condition for element-wise convergence is that the underlying optimization problem has a solution and this solution is unique, see (Kiers, 2002, Theorem 5). The element-wise convergence of $\widehat{D}^{(k)}$ and the uniqueness (due to the normalization condition (A1)) of the factors $P^{(k)}$ and $L^{(k)}$, implies element-wise convergence of the factor sequences $P^{(k)}$ and $L^{(k)}$ as well. This proves $(D^{(k)} \to D^*)$.

In order to show that the algorithm convergence to a minimum point of (c-C5), we need to verify that the first order optimality conditions for (c-C5) are satisfied at a cluster point of the algorithm. The algorithm converges to a cluster point if and only if the union of the first order optimality conditions for the problems on steps 1 and 2 are satisfied. Then

$$P'^{(k-1)} = P'^{(k)} =: P'^*$$
 and $L'^{(k-1)} = L'^{(k)} =: L'^*$.

From the above conditions for a stationary point and the Lagrangians of the problems of steps 1 and 2 and (c-C5), it is easy to see that the union of the first order optimality conditions for the problems on steps 1 and 2 coincides with the first order optimality conditions of (c-C5).

References

Kiers H (2002) Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Comput Statist Data Anal 41:157–170

Kline M (1974) Why Johnny Can't Add: The Failure of the New Math. Random House Inc

Vanluyten B, Willems JC, De Moor B (2006) Matrix factorization and stochastic state representations. In: Proc. of the 45th IEEE Conference on Decision and Control, San Diego, California, pp 4188–4193

Appendix P Problems

P.1 (Least squares data fitting). Verify that the least squares fits, shown in Figure 1.1, page 4, minimize the sums of squares of horizontal and vertical distances. The data points are:

$$d_1 = \begin{bmatrix} -2\\1 \end{bmatrix}, \quad d_2 = \begin{bmatrix} -1\\4 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 0\\6 \end{bmatrix}, \quad d_4 = \begin{bmatrix} 1\\4 \end{bmatrix}, \quad d_5 = \begin{bmatrix} 2\\1 \end{bmatrix},$$

$$d_6 = \begin{bmatrix} 2\\-1 \end{bmatrix}, \quad d_7 = \begin{bmatrix} 1\\-4 \end{bmatrix}, \quad d_8 = \begin{bmatrix} 0\\-6 \end{bmatrix}, \quad d_9 = \begin{bmatrix} -1\\-4 \end{bmatrix}, \quad d_{10} = \begin{bmatrix} -2\\-1 \end{bmatrix}.$$

P.2 (Distance from a data point to a linear model). The 2-norm distance from a point $d \in \mathbb{R}^q$ to a linear static model $\mathscr{B} \subset \mathbb{R}^q$ is defined as

$$\operatorname{dist}(d,\mathcal{B}) := \min_{\widehat{d} \in \mathcal{B}} \|d - \widehat{d}\|_{2}, \tag{dist}$$

i.e., $\operatorname{dist}(d, \mathcal{B})$ is the shortest distance from d to a point \widehat{d} in \mathcal{B} . A vector \widehat{d}^* that achieves the minimum of (dist) is a point in \mathcal{B} that is closest to d.

Next we consider the special case when \mathcal{B} is a linear static model.

1. Let

$$\mathscr{B} = \operatorname{image}(a) = \{ \alpha a \mid \alpha \in \mathbb{R} \}.$$

Explain how to find dist (d, image(a)). Find

$$\operatorname{dist}(\operatorname{col}(1,0),\operatorname{image}(\operatorname{col}(1,1))).$$

Note that the best approximation \hat{d}^* of d in image(a) is the orthogonal projection of d onto image(a).

- 2. Let $\mathscr{B} = \operatorname{image}(P)$, where *P* is a given full column rank matrix. Explain how to find $\operatorname{dist}(d,\mathscr{B})$.
- 3. Let $\mathscr{B} = \ker(R)$, where R is a given full row rank matrix. Explain how to find $\operatorname{dist}(d,\mathscr{B})$.
- 4. Prove that in the linear static case, a solution \hat{d}^* of (dist) is always unique?

240 P Problems

5. Prove that in the linear static case, the approximation error $\Delta d^* := d - \hat{d}^*$ is orthogonal to \mathscr{B} . Is the converse true, *i.e.*, is it true that if for some \hat{d} , $d - \hat{d}$ is orthogonal to \mathscr{B} , then $\hat{d} = \hat{d}^*$?

P.3 (Distance from a data point to an affine model). Consider again the distance $dist(d,\mathcal{B})$ defined in (dist). In this problem, \mathcal{B} is an affine static model, *i.e.*,

$$\mathscr{B} = \mathscr{B}' + a$$
.

where \mathscr{B}' is a linear static model and a is a fixed vector.

- 1. Explain how to reduce the problem of computing the distance from a point to an affine static model to an equivalent problem of computing the distance from a point to a linear static model (Problem P.2).
- 2. Find

$$\operatorname{dist}\left(\begin{bmatrix}0\\0\end{bmatrix}, \ker(\begin{bmatrix}1\ 1\end{bmatrix}) + \begin{bmatrix}1\\2\end{bmatrix}\right).$$

P.4 (Geometric interpretation of the total least squares problem). Show that the total least squares problem

minimize over
$$x \in \mathbb{R}$$
, $\widehat{a} \in \mathbb{R}^N$, and $\widehat{b} \in \mathbb{R}^N$
$$\sum_{j=1}^N \left\| d_j - \begin{bmatrix} \widehat{a}_j \\ \widehat{b}_j \end{bmatrix} \right\|_2^2$$
 subject to $\widehat{a}_j x = \widehat{b}_j$, for $j = 1, \dots, N$

minimizes the sum of the squared orthogonal distances from the data points d_1, \dots, d_N to the fitting line

$$\mathscr{B} = \{\operatorname{col}(a,b) \mid xa = b\}$$

over all lines passing through the origin, except for the vertical line.

P.5 (Unconstrained problem, equivalent to the total least squares problem). A total least squares approximate solution x_{tls} of the linear system of equations $Ax \approx b$ solves the following optimization problem

minimize over
$$x$$
, \widehat{A} , and $\widehat{b} \parallel [A \ b] - [\widehat{A} \ \widehat{b}] \parallel_{F}^{2}$ subject to $\widehat{A}x = \widehat{b}$. (TLS)

Show that (TLS) is equivalent to the unconstrained optimization problem

minimize
$$f_{tls}(x)$$
, where $f_{tls}(x) := \frac{\|Ax - b\|_2^2}{\|x\|_2^2 + 1}$. (TLS')

Give an interpretation of the function f_{tls} .

P.6 (Lack of total least squares solution). Using the formulation (TLS'), derived in Problem P.5, show that the total least squares line fitting problem (tls) has no solution for the data in Problem P.1.

P.7 (**Geometric interpretation of rank-1 approximation**). Show that the rank-1 approximation problems

minimize over
$$R \in \mathbb{R}^{1 \times 2}$$
, $R \neq 0$, and $\widehat{D} \in \mathbb{R}^{2 \times N}$ $||D - \widehat{D}||_F^2$ subject to $R\widehat{D} = 0$. (lra_R)

and

minimize over
$$P \in \mathbb{R}^{2 \times 1}$$
 and $L \in \mathbb{R}^{1 \times N}$ $||D - \widehat{D}||_{\mathrm{F}}^2$ subject to $\widehat{D} = PL$.

minimize the sum of the squared orthogonal distances from the data points d_1, \ldots, d_N to the fitting line $\mathscr{B} = \ker(P) = \operatorname{image}(P)$ over all lines passing through the origin. Compare and contrast with the similar statement in Problem P.4.

P.8 (Quadratically constrained problem, equivalent to rank-1 approximation). Show that (lra_P) is equivalent to the quadratically constrained optimization problem

minimize
$$f_{lra}(P)$$
 subject to $P^{\top}P = 1$, (lra_P)

where

$$f_{\text{lra}}(P) = \text{trace}\left(D^{\top}(I - PP^{\top})D\right).$$

Explain how to find all solutions of (lra_P) from a solution of (lra_P) . Assuming that a solution to (lra_P) exists, is it unique?

P.9 (Line fitting by rank-1 approximation). Plot the cost function $f_{lra}(P)$ for the data in Problem P.1 over all P such that $P^{\top}P = 1$. Find from the graph of f_{lra} the minimum points. Using the link between (lra_P) and (lra_P) , established in Problem P.7, interpret the minimum points of f_{lra} in terms of the line fitting problem for the data in Problem P.1. Compare and contrast with the total least squares approach, used in Problem P.6.

P.10 (Analytic solution of a rank-1 approximation problem). Show that for the data in Problem P.1,

$$f_{\text{lra}}(P) = P^{\top} \begin{bmatrix} 140 & 0 \\ 0 & 20 \end{bmatrix} P.$$

Using geometric or analytic arguments, conclude that the minimum of f_{lra} for a P on the unit circle is 20 and is achieved for

$$P^{*,1} = \text{col}(0,1)$$
 and $P^{*,2} = \text{col}(0,-1)$.

Compare the results with those obtained in Problem P.9.

P.11 (Another analytic solution of two-variate rank-1 approximation). Find a closed-form solution of the Frobenius norm rank-1 approximation of a $2 \times N$ matrix.

242 P Problems

P.12 (Analytic solution of scalar total least squares). Find in closed-form the total least squares solution of the system $ax \approx b$, where $a, b \in \mathbb{R}^{N,1}$.

P.13 (Alternating projections algorithm for low-rank approximation). In this problem, we consider a numerical method for rank-*r* approximation:

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{D} & \|D-\widehat{D}\|_{\mathrm{F}}^2 \\ \text{subject to} & \text{rank}(\widehat{D}) \leq \mathtt{m}. \end{array}$$

The alternating projections algorithm, outlined next, is based on an image representation $\widehat{D} = PL$, where $P \in \mathbb{R}^{q \times m}$ and $L \in \mathbb{R}^{m \times N}$, of the rank constraint.

Algorithm 8 Alternating projections algorithm for low rank approximation

Input: A matrix $D \in \mathbb{R}^{q \times N}$, with $q \leq N$, an initial approximation $\widehat{D}^{(0)} = P^{(0)}L^{(0)}$, $P^{(0)} \in \mathbb{R}^{q \times m}$, $L^{(0)} \in \mathbb{R}^{m \times N}$, with $m \leq q$, and a convergence tolerance $\varepsilon > 0$.

- 1: Set k := 0.
- 2: repeat
- 3: k := k + 1.
- 4: Solve: $P^{(k+1)} := \arg\min_{P} ||D PL^{(k)}||_{F}^{2}$
- 5: Solve: $L^{(k+1)} := \arg\min_{L} ||D P^{(k+1)}L||_F^2$
- 6: $\widehat{D}^{(k+1)} := P^{(k+1)} L^{(k+1)}$
- 7: **until** $\|\widehat{D}^{(k)} \widehat{D}^{(k+1)}\|_{F} < \varepsilon$

Output: Output the matrix $\widehat{D}^{(k+1)}$.

1. Implement the algorithm and test it on random data matrices D of different dimensions with different rank specifications and initial approximations. Plot the approximation errors

$$e_k := ||D - \widehat{D}^{(k)}||_F^2, \quad \text{for } k = 0, 1, \dots$$

as a function of the iteration step k and comment on the results.

- b)* Give a proof or a counter example for the conjecture that the sequence of approximation errors $e:=(e_0,e_1,\ldots)$ is well defined, independent of the data and the initial approximation.
- c)* Assuming that e is well defined. Give a proof or a counter example for the conjecture that e converges monotonically to a limit point e_{∞} ".
- d)* Assuming that e_{∞} exists, give proofs or counter examples for the conjectures that e_{∞} is a local minimum of (LRA) and e_{∞} is a global minimum of (LRA).

P.14 (Two-sided weighted low rank approximation). Prove Theorem 2.29 on page 67.

P.15 (Most poweful unfalsified model for autonomous models). Given a trajectory

$$y = (y(1), y(2), \dots, y(T))$$

P Problems 243

of an autonomous linear time-invariant system \mathscr{B} of order n, find a state space representation $\mathscr{B}_{i/s/o}(A,C)$ of \mathscr{B} . Modify your procedure, so that it does not require prior knowledge of the system order n but only an upper bound n_{max} for it.

P.16 (Algorithm for exact system identification). Develop an algorithm for exact system identification that computes a kernel representation of the model, *i.e.*, implement the mapping

$$w_d \mapsto R(z)$$
, where $\widehat{\mathscr{B}} := \ker (R(z))$ is the identified model.

You can assume that the system is single input single output and its order is known.

P.17 (**Iterating Kung's algorithm**). * Consider the iterative algorithm that alternaties between approximate realization via Kung's algorithm and simulation and simulation of impulse response, *i.e.*, starting with given $H_d = \widehat{H}^{(0)}$, the algorithm generates the sequence of approximatations

$$\widehat{H}^{(0)} \xrightarrow{\mathtt{h2ss}} \widehat{\mathscr{B}}^{(1)} \xrightarrow{\mathtt{impulse}} \widehat{H}^{(1)} \xrightarrow{\mathtt{h2ss}} \widehat{\mathscr{B}}^{(2)} \xrightarrow{\mathtt{impulse}} \widehat{H}^{(2)} \xrightarrow{\mathtt{h2ss}} \cdots$$

Implement this algorithm and experiment with it. Draw a conjecture of whether it converges, to what value, and how fast. Try to prove your conjectures.

P.18 (When is $\mathscr{B}_{mpum}(w_d)$ equal to the data generating system?). * Choose a (random) linear time-invariant system \mathscr{B}_0 (the "true data generating system") and a trajectory $w_d = (u_d, y_d)$ of \mathscr{B}_0 . The aim is to recover the data generating system \mathscr{B}_0 back from the data w_d . Conjecture that this can be done by computing the most powerful unfalsified model $\mathscr{B}_{mpum}(w_d)$. Verifying whether/when in simulation results $\mathscr{B}_{mpum}(w_d)$ coincides with \mathscr{B}_0 . Find counter examples when the conjecture is not true and based on this experience revise the conjecture. Find sufficient conditions for $\mathscr{B}_{mpum}(w_d) = \mathscr{B}_0$.

P.19 (Algorithms for approximate system identification).

- 1. Download the file flutter.dat from a Database for System Identification (De Moor, 1999).
- 2. Apply the function developed in Problem P.16 on the flutter data.
- 3. Compute the misfit between the flutter data and the model obtained in step 1.
- 4. *Misfit minimization* Partition the flutter data set into identification, *e.g.*, first 60%, and validation, *e.g.*, remaining 40%, parts. Compute a locally optimal model with lag 1 = 3 for the identification part of the data. Validate the identified model by computing the misfit on the validation part of the data.
- **P.20** (Computing approximate common divisor with slra). Given polynomials $p,q \in \mathbb{P}_n$ and an integer d, use slra to solve the Sylvester structured low rank approximation problem

minimize over
$$\widehat{p} \in \mathbb{R}^{n+1}$$
 and $\widehat{q}^{n+1} = \|[p \ q] - [\widehat{p} \ \widehat{q}]\|_{F}$ subject to rank $(\mathcal{R}_{d}(\widehat{p}, \widehat{q})) < 2n - 2d + 1$

P Problems

in order to compute an approximate common divisor c of p and q with degree at least d. Verify the answer with the alternative approach developed in Section 3.2.

- **P.21** (Matrix centering). Prove Proposition 5.5.
- P.22 (Mean computation as an optimal modeling). Prove Proposition 5.6.
- **P.23** (Nonnegative low rank approximation). Implement and test the algorithm for nonnegative low rank approximation (Algorithm 7 on page 176).
- **P.24** ((**Luenberger**, **1979**, **Page 53**)). A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature? (According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.)
- **P.25.** Solve first Problem P.24. Write down the system of equations

$$\begin{bmatrix} \mathbf{1}_{T-n} \otimes G \ \mathcal{H}_{T-n}(\Delta y) \end{bmatrix} \begin{bmatrix} \bar{u} \\ \ell \end{bmatrix} = \operatorname{col}\left(y((n+1)t_s), \cdots, y(Tt_s)\right), \quad (SYSDD)$$

(the data driven-driven algorithm for input estimation on page 212) in the case of a first order single-input single-output system and three data points. Show that the solution of the system (SYS DD) coincides with the obtained solution of Problem P.24.

P.26. Write down the system of equations (SYS DD) (the data driven-driven algorithm for input estimation) in the case of a first order single-input single-output system and *N* data points. Derive an explicit formula for the least squares approximate solution of (SYS DD).

P.27. Solve first Problem P.26. Implement the solution obtained in Problem P.26 and validate it against the function stepid_dd.

References

De Moor B (1999) DaISy: database for the identification of systems. www.esat. kuleuven.be/sista/daisy/

Luenberger DG (1979) Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley

Notation

Symbolism can serve three purposes. It can communicate ideas effectively; it can conceal ideas; and it can conceal the absence of ideas.

M. Kline, Why Johnny Can't Add: The Failure of the New Math

Sets of numbers

- \mathbb{R} the set of real numbers
- \mathbb{Z} , \mathbb{Z}_+ the sets of integers and positive integers (natural numbers)

Norms and extreme eigen/singular values

```
||x|| = ||x||_2, x \in \mathbb{R}^n vector 2-norm
||w||, w \in (\mathbb{R}^q)^T
                           signal 2-norm
||A||, A \in \mathbb{R}^{m \times n}
                           matrix induced 2-norm
||A||_{\mathrm{F}}, A \in \mathbb{R}^{m \times n}
                           matrix Frobenius norm
||A||_W, W \ge 0
                           matrix weighted norm
||A||_*
                           nuclear norm
\lambda(A), A \in \mathbb{R}^{m \times m}
                           spectrum (set of eigenvalues)
\lambda_{\min}(A), \lambda_{\max}(A)
                           minimum, maximum eigenvalue of a symmetric matrix
                           minimum, maximum singular value of a matrix
\sigma_{\min}(A), \sigma_{\max}(A)
```

Matrix operations

$A^+, A^{ op}$	pseudoinverse, transpose
vec(A)	column-wise vectorization
vec^{-1}	operator reconstructing the matrix A back from $vec(A)$
col(a,b)	the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$
coldim(A)	the number of block columns of A
row dim(A)	the number of block rows of A
image(A)	the span of the columns of A (the image or range of A)
ker(A)	the null space of <i>A</i> (kernel of the function defined by <i>A</i>)
$\operatorname{diag}(v), v \in \mathbb{R}^n$	the diagonal matrix $diag(v_1, \dots, v_n)$
\otimes	Kronecker product $A \otimes B := [a_{ij}B]$
\odot	element-wise (Hadamard) product $A \odot B := [a_{ij}b_{ij}]$

246 Notation

Expectation, covariance, and normal distribution

E, cov expectation, covariance operator $x \sim N(m, V)$ *x* is normally distributed with mean *m* and covariance *V*

Fixed symbols

 \mathcal{B} , \mathcal{M} model, model class structure specification $\mathcal{H}_i(w)$ Hankel matrix with i block rows, see (\mathcal{H}_i) on page 10 upper trinagular Toeplitz matrix with i block rows, see (\mathcal{T}) on page 86 $\mathcal{R}(p,q)$ Sylvester matrix for the pair of polynomials p and q, see (\mathcal{R}) on page 11 $\mathcal{O}_i(A,C)$ extended observability matrix with i block-rows, see (\mathcal{O}) on page 52 $\mathcal{C}_i(A,B)$ extended controllability matrix with i block-columns, see (\mathcal{C}) on page 52

Linear time-invariant model class

$$\begin{split} & \text{m}(\mathcal{B}), \, \text{p}(\mathcal{B}) \quad \text{number of inputs, outputs of } \mathcal{B} \\ & \text{l}(\mathcal{B}), \, \text{n}(\mathcal{B}) \quad \text{lag, order of } \mathcal{B} \\ & w|_{[1,T]}, \, \mathcal{B}|_{[1,T]} \quad \text{restriction of } w, \, \mathcal{B} \text{ to the interval } [1,T], \, \text{see (2.2) on page 53} \\ & \mathcal{L}_{\text{m},1}^{\text{q,n}} := \left\{ \mathcal{B} \subset (\mathbb{R}^{\text{q}})^{\mathbb{Z}} \mid \mathcal{B} \text{ is linear time-invariant with} \right. \\ & & \text{m}(\mathcal{B}) \leq \text{m}, \, \text{l}(\mathcal{B}) \leq \text{l}, \, \text{and n}(\mathcal{B}) \leq \text{n} \right\} \end{split}$$

If m, 1, or n are not specified, the corresponding invariants are not bounded.

Miscellaneous

:= / =: left (right) hand side is defined by the right (left) hand side : \iff left-hand side is defined by the right-hand side \iff : right-hand side is defined by the left-hand side of the shift operator $(\sigma^{\tau}f)(t) = f(t+\tau)$ is imaginary unit δ Kronecker delta, $\delta_0 = 1$ and $\delta_t = 0$ for all $t \neq 0$ and $\delta_t = 0$ wector with $\delta_t = 0$ we with $\delta_t = 0$ for all $\delta_t = 0$ where $\delta_t = 0$ is positive definite

With some obuse of notation, the discrete-time signal, vector, and polynomial

$$(w(1),...,w(T)) \leftrightarrow \operatorname{col}(w(1),...,w(T)) \leftrightarrow z^{1}w(1)+\cdots+z^{T}w(T)$$

are all denoted by w. The intended meening is understood from the context.

List of code chunks

(Algorithm for sensor speedup based on reduction to autonomous system identification 211a (Algorithm for sensor speedup based on reduction to step response system identification 208a (Algorithm for sensor speedup in the case of known dynamics 205a (Bias corrected low rank approxima*tion* 189 (Complex least squares, solution by Al*gorithm* 5 161 *(Complex least squares, solution by* generalized eigenvalue decomposi*tion* 160b (Complex least squares, solution by generalized singular value decomposition 160d *(Complex least squares, solution by* $(SOL1 \ \widehat{x}, SOL1 \ \widehat{\phi}) \ 160a \rangle$ ⟨Computation time for cls1-4 162a⟩ $\langle Construct \psi_{c,ij} 191a \rangle$ $\langle Construct\ the\ corrected\ matrix\ \Psi_c\ 191b \rangle$ *(Curve fitting examples 195a)* (Data-driven algorithm for sensor speedup 212 ⟨*Errors-in-variables identification* 115c⟩ (Finite impulse response identifica*tion* 119> ⟨Finite time H₂ model reduction 110b⟩

 $\langle \Gamma, \Delta \rangle \mapsto (A, B, C)$ 77a \rangle ⟨*Hankel matrix constructor* 25b⟩ *(Harmonic retrieval* 114a) $\langle H \mapsto \mathscr{B}_{i/s/o}(A, B, C, D)$ 78a \rangle ⟨Low rank approximation 66⟩ (Low rank approximation with missing data 137a (Missing data experiment 3: bigger sparsity, noisy data 145c *(Missing data experiment 1: small spar*sity, exact data 145a (Missing data experiment 2: small sparsity, noisy data 145b (Monomials constructor 184) (Most powerful unfalsified model in $\mathcal{L}_{m}^{q,n}$ 81 \rangle *(Output error identification 117b)* (Output only identification 111a) $\langle P \mapsto R \; 88g \rangle$ $\langle P \mapsto (TF) \ 88c \rangle$ ⟨*Plot the model* 194c⟩ $\langle P \mapsto R \ 42b \rangle$ (Pole placement by low order controller 123 (Polynomially structured low rank approximation 192a ⟨*Print a figure* 25a⟩ $\langle R \mapsto (TF) \ 88f \rangle$ $\langle R \mapsto minimal \ R \ 43a \rangle$ $\langle (R,\Pi) \mapsto X \text{ 43b} \rangle$

 $\langle (X,\Pi) \mapsto P \text{ 41b} \rangle$ (Recursive least squares 225a) (Regularized nuclear norm minimiza- $\langle (X,\Pi) \mapsto R 41a \rangle$ *(alternating projections method* 141a) tion 97a $\langle R \mapsto P \; 88e \rangle$ (approximate realization structure 109a) $\langle R \mapsto P | 42a \rangle$ *(autonomous system identification:* $\langle R \mapsto \Pi \ 44c \rangle$ $\Delta v \mapsto \Delta \mathscr{B} 211c \rangle$ $\langle (S_0, S, \widehat{p}) \mapsto \widehat{D} = \mathscr{S}(\widehat{p})$ 83a \rangle $\langle \bar{u} := G^{-1}G'\mathbf{1}_{m}, \text{ where } G' :=$ $dcgain(\mathcal{B}')$ 208c \rangle (Sensor speedup examples 216b) *(Single input single output system iden-*(bisection on y 98c) tification 87b ⟨call cls1-4 163a⟩ $\langle (S_0, \mathbf{S}, \widehat{p}) \mapsto \widehat{D} = \mathscr{S}(\widehat{p}) \ 82 \rangle$ (check exit condition 141d) *(Structured low rank approximation 85d)* $\langle computation \ of \ \bar{u} \ by \ solv-$ *(Structured low rank approximation* ing (SYSAUT) 211d \rangle misfit 84c $\langle computation \ of \ \bar{u} \ by \ solv-$ *(Structured low rank approximation us*ing (SYS DD) 213ing the nuclear norm 97d $\langle compute L, given P 141b \rangle$ ⟨Test harmonic_retrieval 114b⟩ $\langle compute P, given L 141c \rangle$ $\langle Test \, h2ss \, opt \, 109d \rangle$ (cooling process 216c) $\langle Test ident aut 111b \rangle$ (data compression 137c) *data driven computation of the impulse* ⟨Test ident eiv 116b⟩ (Test ident_fir 120) response 80b (Test ident_oe 118) ⟨default initial approximation 85c⟩ (Test model transitions 46a) ⟨*default input/output partition* 39b⟩ (Test r2io 45c) ⟨default parameters opt 140b⟩ (Test sensor speedup methods on mea-⟨default s0 83e⟩ $\langle default\ tolerance\ tol\ 40b \rangle$ sured data 223a (Test slra_nn on Hankel structured (default weight matrix 83f) $\langle define C, D, and n 160c \rangle$ problem 101b ⟨*define* 11 115b⟩ (*Test* slra nn *on small problem with* $\langle define \mathbf{H}_{p}, \mathbf{H}_{f,u}, and \mathbf{H}_{f,v} 80a \rangle$ missing data 103e *Test* slra_nn *on unstructured prob-(define the Hermite polynomials 190)* lem 101a (define the gravitational constant 220a) *(Test structured low rank approximation* $\langle \operatorname{dist}(\mathcal{D}, \mathcal{B}) \rangle$ (weighted low rank approx*methods on model reduction* 125e imation) 142c *(Test structured low rank approximation* $\langle \operatorname{dist}(w_{\operatorname{d}}, \mathscr{B}) 87a \rangle$ *methods on system identification* 127d *\\\ext{errors-in-variables identification struc-\}* $\langle \Theta \mapsto R_{\Theta} \ 194d \rangle$ ture 115a $\langle estimate \, \sigma^2 \, and \, \theta \, 191d \rangle$ *Time-varying Kalman filter for au*tonomous output error model 224a $\langle exact \ identification: \widehat{w} \mapsto \widehat{\mathscr{B}} \ 116a \rangle$ ⟨Toeplitz matrix constructor 86⟩ $\langle form \ G(R) \ and \ h(R) \ 84a \rangle$ ⟨Total least squares 231a⟩ (generate data 193d) (Weighted low rank approximation 140a) ⟨harmonic retrieval structure 113⟩ Weighted low rank approximation cor-(initialization 225c) rection matrix 142d (inverse permutation 40a)

⟨Weighted total least squares 232⟩

List of code chunks

248

List of code chunks 249

$\langle low\ rank\ approximation \mapsto total\ least$	$\langle solve\ Problem\ SLRA\ 108 \rangle$
squares solution 231b	<i>(solve the convex relaxation (RLRA') for</i>
$\langle \mathbf{S} \mapsto S \; 83d \rangle$	given γ parameter 98a
$\langle \mathtt{S} \mapsto (m, n, n_p) \ 83b \rangle$	(solve the least-norm problem 84b)
$\langle \mathtt{S} \mapsto \mathbf{S} \ 83 \mathrm{c} \rangle$	$\langle state\ estimation:\ (y,\mathscr{B}_{aut})\mapsto x_{aut}=$
⟨matrix approximation 137b⟩	(x,\bar{u}) 206 \rangle
(matrix valued trajectory w 26c)	\(\suboptimal\) approximate system identi-
(misfit minimization 88b)	fication 88a \rangle
$\langle model \ augmentation: \mathscr{B} \mapsto \mathscr{B}_{aut} \ 205b \rangle$	$\langle system \ identification: \ (1_m s, y) \mapsto$
$\langle nonlinear\ optimization\ over\ R\ 85b \rangle$	\mathscr{B}' 208b \rangle
(2-norm optimal approximate realiza-	(temperature-pressure process 218a)
$tion 109b\rangle$	(test_curve_fitting 193a)
(optional number of (block)	<pre>\test_curve_fitting default pa-</pre>
columns 26a>	rameters 193b
$\langle order\ selection\ 77c angle$	<pre>\test_curve_fitting fit</pre>
output error identification struc-	$data$ 194a \rangle
ture 117a〉	<pre>\test_curve_fitting generate</pre>
(parameters of the bisection algo-	$data$ 193c \rangle
rithm 99a $ angle$	<pre>\test_curve_fitting plot re-</pre>
$\langle \pi \mapsto \Pi $ 39a \rangle	$sults$ 194b \rangle
$\langle plot { t cls} results { t 163b} angle$	$\langle exttt{test_ident_siso } 89a angle$
(preprocessing by finite difference filter	$\langle \texttt{test_missing_data2 143a} \rangle$
$\Delta y := (1 - \sigma^{-1})y \ 211b \rangle$	$\langle exttt{test_missing_data } 102 \mathrm{a} angle$
$\langle print\ progress\ information\ 142a \rangle$	$\langle \texttt{test}_\texttt{mod}_\texttt{red} \ 124a \rangle$
\(\rank\) revealing factorization of	$\langle exttt{test_sensor 214} angle$
$\mathscr{H}_{\lceil T/2 ceil}$ 77d $ angle$	$\langle exttt{test_slra_nn 99b} angle$
$\langle reshape\ H\ and\ define\ m,\ p,\ T\ 78b \rangle$	$\langle exttt{test_sysid 126a} angle$
$\langle reshape \ w \ and \ define \ q, \ T \ 26e angle$	$\langle trade ext{-}off curve 100c \rangle$
$\langle (TF) \mapsto P \; 88d \rangle$	$\langle variable\ projections\ method\ 142b angle$
$\langle (TF) \mapsto R \ 88h \rangle$	$\langle vector\ valued\ trajectory\ w\ 26f angle$
⟨set optimization solver and options 85a⟩	$\langle weighting\ process\ 220b \rangle$
<i>(singular value decomposition of</i>	$\langle w \mapsto H 80c \rangle$
$\mathscr{H}_{\lceil T/2 ceil}$ 77b $ angle$	

Code index

Here is a list of the defined functions, and where they appear. Underlined entries indicate the place of definition. This index is generated automatically by noweb.

bclra: 189, 189, 194a blkhank: 25b, 25b, 25b, 77b, 80a, 88a, 109a, 113, 115a, 117a, 119, 124b, 126b, 213 blktoep: 86,87a cls1: 160a, 160a, 160a, 160a, 163a cls2: 160b, 160b, 160b, 163a cls3: 160d, 160d, 160d, 163a cls4: 161, 161, 161, 161, 161, 163a harmonic_retrieval: 114a, 114b, 114a h2ss: 78a, 78a, 78a, 78a, 81, 78a, 100a, 100c, 78a, 109c, 78a, 110a, 114a, 78a, 125a, 78a h2ss_opt: 109b, 109c, 109c, 110a, 110b, 111a ident_aut: 111a, 111b, 111a, 111a, 211c ident_eiv: 115c, 89c, 115c, 116b ident_fir: 119,120 ident_loc: 123 ident_oe: 117b, 118, 117b, 208b, 117b ident_siso: 87b, 87b, 87b, 87b, 89b, 87b, 127a lra: 66, 66, 85c, 66, 88a, 66, 100b, 100c, 66, 66, 66, 192b, 66, 194a, 231a

lra_md: 137a, 137a, 140b, 144a, 137a, 137a, 137a, 137a, 137a minr: 43a, 44a, 45b, 43a misfit siso: 87a, 87a, 88b, 126c misfit_slra: 84c, 85b, 85d mod red: 110b, 110b, 110b, 125b monomials: 184, 184, 191b, 194a mwlra: 142b, 142c mwlra2: 142b, 142d nucnrm: 97a, 97a, 98a, 103a, 103b plot_model: 193c, 194b, 194c, 194c p2r: 42b, 42b, 42b, 46b print_fig: 25a, 100c, 111b, 114b, 125e, 127d, 163b, 194b, 215c, 216a, 223c pslra: 192a, 192a, 194a r2io: 44c, 44c, 45c, 44c rio2x: 43b, 43b, 43b, 45b, 43b, 46b, 46c rls: 225a, 213, 225a, 225a, 225a, 225a, 225a r2p: 42a, 42a, 42a, 46a, 46b slra: 85d, 85d, 85d, 85d, 85d, 85d, 85d, 100a, 85d, 108, 119 slra_nn: 97d, 97d, 97d, 99e, 100c, 97d, 124b, 126b stepid_as: 211a, 211a, 211a, 211a

252 Code index

stepid_kf: 205a, 215b, 205a, 216a, 205a, 2

stepid_si: <u>208a</u>, 208a, 208a, 208a, 208a, 208a

test_curve_fitting: 193a, <u>193a</u>, 195a, 195b, 195c, 196a, 196b, <u>196c</u>, 197a th2poly: 194b, 194d, <u>194d</u> tls: <u>231a</u>

test lego: 223a

tvkf_oe: 224a, 206, 224a, <u>224a</u>

w2h: 80c, 80c, 81 w2h2ss: 81, 116a

wlra: 140a, <u>140a</u>, 140a, 140a, 144a, 140a, 140a, 232

test_sensor: 214, 217a, 217b,

218b, 219, 220c, 221a, 221b, 222

wtls: 232

xio2p: 41b, 41b, 41b, 46b xio2r: 41a, 41a, 41a, 46b

Index

$(\mathbb{R}^q)^{\mathbb{Z}}$ 47 $2^{\mathscr{U}}$ 55	alternating projections 23, 137, 153, 167, 175, 242
\mathscr{B}^{\perp} 38	convergence 167
$\mathscr{B}_{\mathrm{i/o}}(X,\Pi)$ 37	analysis problem 2, 39
$\mathscr{B}_{\mathrm{mpum}}(\mathscr{D})$ 56	analytic solution 63, 69, 152, 241
$\mathscr{H}_{i,j}(w)$ 25	annihilator 38
$\mathscr{T}_T(P)$ 86	antipalindromic 112
$\mathscr{C}_{j}(A,B)$ 52	approximate
$\mathscr{L}_{\mathtt{m},0}^{\mathtt{q}}$ 38	common divisor 11
$\mathscr{O}_i(A,C)$ 52	deconvolution 119
$\mathscr{R}(p,q)$ 11	model 55
$\operatorname{dist}(\mathscr{D},\mathscr{B})$ 57	rank revealing factorization 78
image(P) 37	realization 8,78
$n(\mathscr{B})$ 48	array signal processing 11
$\ker(R)$ 37	autocorrelation 9
$\lambda(A)$ 29	autonomous model 49
$\mathscr{B}_{i/s/o}(A,B,C,D,\Pi)$ 49	
$\ \cdot\ _*$ 95	balanced
$\ \cdot\ _W$ 62	approximation 78
⊗ 66	model reduction 75
$c(\mathscr{B})$ 55	bias correction 189
	bilinear constraint 82
adaptive	biotechnology 202
beamforming 11,28	bisection 98
filter 226	disection 98
adjusted least squares 189	
affine model 147, 240	calibration 203
affine variety 181	causal dependence 6
algebraic curve 182	centering 147
algebraic fitting 180	chemometrics 13, 164, 175
algorithm	Cholesky factorization 82
bisection 98	circulant matrix 23, 69
Kung 78	cissoid 195
Levenberg-Marquardt see Levenberg-	classification vi, 164
Marquardt	compensated least squares 189
variable projections see variable	complex valued data 157
projections	complexity-accuracy trade-off 60

254 Index

computational complexity 82, 92, 160, 206, 214	geometric 19, 180 fitting criterion 3
	e
computer algebra vi, 28	folium of Descartes 196
condition number 29	forgetting factor 202, 222
conditioning of numerical problem 2	forward-backward linear prediction 211
conic section 182	Fourier transform 23, 69, 92
conic section fitting 18	Frobenius norm 5
controllability gramian 78	fundamental matrix 20
controllability matrix 52	Gauss-Markov 60
controllable system 49	generalized eigenvalue decomposition 159
convex optimization 16, 97	generalized low rank approximation 64
convex relaxation 23, 75, 144	generator 38
convolution 50	geometric fitting 19, 180
coordinate metrology 179	Grassman manifold 175
curve fitting 59	greatest common divisor 10
CVX 97	8
0,11 3,	Hadamard product 61
Data clustering 28	Halmos, P. 14
data fusion 218	Hankel matrix 10
data modeling	
C	Hankel structured low rank approximation
1	see low rank approximation
classical paradigm 1 data-driven 202	harmonic retrieval 112
	Hermite polynomials 189
dead-beat observer 205	horizontal distance 3
deterministic identification 9	
dimensionality reduction vi	identifiability 56
Diophantine equation 122	identification 27, 126
direction of arrival 11, 28	autonomous system 111
distance	errors-in-variables 115
horizontal 3	finite impulse response 118
orthogonal 4	frequency domain 120
vertical 3	output error 116
distance problem 28	output only 111
distance to uncontrollability 123	ill-posed problem 2
dynamic measurement 225	image mining 176
dynamic weighing 202, 219	image representation 2
	implicialization problem 198
Eckart–Young–Mirsky theorem 23	implicit representation 180
element-wise weighted low rank approxima-	infinite Hankel matrix 8
tion 64	information retrieval vi
Emacs vii	input/output partition 1
epipolar constraint 20	intercept 149
errors-in-variables 29, 59, 115	inverse system 226
ESPRIT 75	·
exact identification 9	Kalman filter 205
exact model 55	kernel methods 18
expectation maximization 24	kernel principal component analysis 198
explicit representation 180	kernel representation 2
	Kronecker product 66
factor analysis 13	Kullback–Leibler divergence 176
feature map 18	Kung's algorithm 78, 128
fit	
algebraic 180	Lagrangian 150

256

latency 59, 197	linear static 37
latent semantic analysis 14	complexity 47
least squares	linear time-invariant
recursive 225	complexity 53
regularized 1	most powerful unfalsified 56
robust 1	representation 21
least squares methods 230	shift-invariant 47
Lego NXT mindstorms 222	static
level set method 197	affine 147
Levenberg–Marquardt 104	stochastic 9
	structure 18
lexicographic ordering 55, 181 limacon of Pascal 196	
line fitting 3, 241	sum-of-damped exponentials 111, 198, 210
E .	
linear prediction 111	
literate programming 24	model free 202
loadings 13	model-free 202
localization 17	most powerful unfalsified model 56
low rank approximation	MovieLens data set 146
circulant structured 23	multidimensional scaling 17
generalized 23	multivariate calibration 13
Hankel structured 8	MUSIC 75
nonnegative 176	
restricted 23	norm
Sylvester structured 11	Frobenius 5
two-sided weighted 67	nuclear 16
weighted 62	unitarily invariant 65
	weighted 61, 62
machine learning vi, 14, 28	noweb vii, 25
manifold learning 198	nuclear norm 16, 95
Markov chains 176	numerical rank 98, 101, 164
Markov parameter 52	
Matlab vii	observability
matrix	gramian 78
Hurwitz 29	matrix 52
observability 211	Occam's razor 47
Schur 29	occlusions 136
Vandermonde 121	Optimization Toolbox 142, 192
maximum likelihood 68,71	order selection 125, 208
measurement errors 29	orthogonal regression 29
metrology 225	
microarray data analysis 18, 28	palindromic 112
MINPACK 104	Pareto optimal solutions 62
misfit 59, 197	persistency of excitation 10, 212
missing data 15, 102, 136	pole placement 121
mixed least squares total least squares 214	polynomial eigenvalue problem 191
model	positive rank 176
approximate 55	power set 55, 180
autonomous 49	pre-processing 148
class 55	principal component analysis vi, 28, 72
exact 55	kernel 28
finite dimensional 48	principal curves 198
finite impulse response 118	Procrustes problem 232
invariants 38	projection 57
linear dynamic 47	Prony's method 211
· J	

proper orthogonal decomposition 12	28 restricted 23
pseudo spectra 29	singular value thresholding 144, 175
psychometrics 13	SLICOT library 104
	smoothing 59
rank	stability radius 29
estimation 163	stereo vision 20
minimization 16, 61, 62, 76	stochastic system 9
numerical 77	stopping criteria 174
revealing factorization 8	structure
rank one 12, 241	bilinear 21
realizability 52	polynomial 180
realization	quadratic 19
approximate 8, 108	shift 76
Ho-Kalman's algorithm 128	structured linear algebra 29
Kung's algorithm 128	structured total least norm 233
theory 50–53	subspace identification 7
recommender system 15, 146	subspace methods 23,75
recursive least squares 225, 229	sum-of-damped exponentials 111, 198, 203,
reflection 57	210
regression 59, 180	sum-of-exponentials modeling 112
regression model 60	
regularization 1, 6, 229	,
representation	system
convolution 50	lag 48
explicit 180	order 48
image 2	system identification see identification
minimal 38	approximate 10
implicit 19, 180	system realization see realization
kernel 2	stochastic 9
minimal 38	
problem 9	time-varying system 221
reproducible research 24	total least squares 4, 240
residual 58	element-wise weighted 232
Riccati equation 29, 59	generalized 231
rigid transformation 17, 57, 189	regularized 232
robust least squares 1	restricted 231
rotation 57	structured 232
Totation 37	weighted 232
Schur algorithm 92	with exact columns 214
semidefinite optimization 95	trade-off curve 100
separable least squares 169	trajectory 47
shape from motion 28	translation 57
shift operator 47	
shift structure 76	Vandermonde matrix 121, 198
singular problem 136	variable projections 23, 81, 138, 155
singular problem 130 singular value decompositions	
generalized 23	Yule-Walker's method 211
generalizeu 23	Tuic- waiker 8 memou 211