

Wine fluorescence excitation-emission matrix (EEM) Data analysis towards universal modelling

<u>Liu Youzhong</u>, Coelho Christian, Gonsior Michael, Nikolantonaki Maria, Lucio Marianna, Schmitt-Kopplin Philippe, Gougeon Régis

Burgundy, France

Wine and Vineyards

- Process Control
- Geography and Climate
- Microbiology
- Wine chemistry
- Health effect

•

Don't only drink me, observe me first!

Professional wine tasting

Acidity, Toasty, Oxidized, Buttery, Cheesy...

Winemaking practices?

Viticulture

Pressing

Alcoholic Fermentation

Malolactic Fermentation

Oak barrel ageing from 6 to 24 month

Bottle ageing

Spectroscopy & Spectrometry

- Infrared and UV-Vis spectroscopy
- Fluorescence spectroscopy
- Mass spectrometry
- Nuclear magnetic resonance (NMR)
- Electron paramagnetic resonance (EPR)
- •

Fluorescence excitation-emission matrix (EEMF) spectroscopy

Spectroscopy & Spectrometry

- Infrared and UV-Vis spectroscopy
- Fluorescence spectroscopy
- Mass spectrometry
- Nuclear magnetic resonance (NMR)
- Electron paramagnetic resonance (EPR)
- ...

Non-targeted (Photographing)

Wine fluorophores and their origins

Recall of basic physics: fluorescence and fluorophore

Recall of basic physics: fluorescence and fluorophore

λ _{ex} / nm	λ _{em} / nm	Wine compounds
260-280	320-420	Phenolic acids
260	310-360	Flavonols
280	320-360	Flavan-3-ols
280-320	400-480	Vitamins, Enzymes
280	305-360	Proteins

How about other excitation wavelengths?

EEM spectroscopy: a non-targeted approach

EEM = a 2D view of a fixed number of emission spectra acquired with varying excitation wavelength

Direct image interpretations and limits

- Overlapping of fluorophores or fluorophore families
- Peak shift of fluorophores from sample to sample
- Ignoring information of other pixels

Difficult to Compare

Bioinformatics-driven image interpretations

Parallel Factor Analysis (PARAFAC)

1st PARAFAC component

2nd PARAFAC component

Parallel Factor Analysis (PARAFAC)

Bioinformatics-driven image interpretations

Bioinformatics-driven image interpretations

Potential wine fluorophores families

600

400

300

300

350

Fluorescence Fingerprinting of Bottled White Wines Can Reveal Memories Related to Sulfur Dioxide Treatments of the Must

Christian Coelho,*,† Alissa Aron,† Chloé Roullier-Gall,†,‡,§ Michael Gonsior, Philippe Schmitt-Kopplin,‡,§ and Régis D. Gougeon

[†]UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France Fesearch Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany

§Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland 20688, United

Challenge 1: the optimal number of component F

Challenge 2: towards a universal wine model

Challenge 2: towards a universal wine model G1 **C1** grape varieties G2 Chardonnay C2 G3 **C3** G4 (505 Wines) (320 Wines) G5 **C4** Coelho *et al.* (2015)

Excitation Wavelength (nm)

Effect of sample size on PARAFAC components

Random subset of samples with increasing size

.

From 200 samples on, the peak location of G1 did not change any more when new samples were added

Effect of sample diversity on PARAFAC components

Chardonnay

Transition models

Increasing diversity

5 grape varieties

250 samples

250 samples

Take-home messages

- Wine: a complex biological matrix → complex data
- PARAFAC: higher-order PCA to interpret "photo-album" of EEMF data.
- Scores Fluorophore contents show separation between wines of diverse origins, elaboration methods...
- <u>Loadings</u> Translate statistical components to families of fluorophores
- PARAFAC: towards a universal wine model
- Useful for characterization of wines of any type
- Requires decent model validation workflow
- Sample size and diversity can influence the quality of universal model

Thank you for your attention!