

Un échantillon de galaxies proches sur la séquence principale dans l'hémisphère nord

Projet d'Initiation à la Recherche

Janvier - Mai 2025

Jehanne Delhomelle, Valentin Bouchet et Mandimbihaja Onenantsoa Raharijaona-Ndrianarilala Sous la supervision de Annie Hugues

1

¹Crédit image : Le radiotélescope NOEMA par Ben Art Photographie

Abstract

We study a sample of relatively nearby galaxies located in the northern hemisphere. We aim to provide a survey of actively star-forming galaxies to better understand star formation in the cold interstellar medium. Based on the work done in the southern hemisphere by PHANGS-ALMA, we apply selection criteria suited to select galaxies observable by the French interferometer NOEMA. A first sample is drawn from the HyperLEDA database, on which we set inclination, declination, and distance criteria. This selection is then refined to take total stellar mass and star formation rate into account. We require galaxies to be both actively star-forming and relatively massive. To this end, the Infrared Science Archive (IRSA) across different wavelengths will be used. We obtain a final sample of 52 galaxies that meet all imposed criteria. This sample can be useful for future observations of CO in the molecular clouds and thereby contribute to determining star formation mechanisms in different galactic environments.

Résumé

On s'intéresse à un groupe de galaxies assez proches situées dans l'hémisphère nord. On cherche à fournir un catalogue de galaxies à formation actives d'étoiles afin de mieux comprendre la formation stellaire dans les milieux interstellaires froids. En reprenant ce qui a été fait pour l'hémisphère Sud par PHANGS-ALMA, on impose des critères de sélection adaptés pour sélectionner des galaxies que l'interféromètre français NOEMA puisse observer. Un premier échantillon de galaxies est extrait via la base de données HyperLEDA en imposant des critères d'inclinaison, de déclinaison et de distance. Cette sélection est ensuite affinée pour rendre compte de leur taux de formation stellaire et de leur masse stellaire. On impose que les galaxies soient relativement massives et actively star forming. Pour cela, le catalogue de l'Infrared Science Archive (IRSA) dans différentes longueurs d'ondes sera utilisé. On obtient un catalogue final de 52 galaxies qui remplissent tous les critères imposés. Il pourra être utilisé pour des observations futures du CO dans les nuages moléculaires et ainsi aider à mieux comprendre comment les étoiles se forment dans différents environnements galactiques.

Mots-clés

Galaxies, nuages moléculaires, masse stellaire, taux de formation stellaire

Remerciements

Nous souhaitions remercier Annie Hugues, qui nous a proposé ce sujet et accompagné-e-s tout au long du semestre. Grâce à son aide précieuse, nous avons pu enrichir nos connaissances tout en menant à bien ce projet qui nous a offert une nouvelle perspective de l'astrophysique.

Contents

In	roduction	1						
1	Contexte scientifique							
	1.1 Le milieu interstellaire froid dans les galaxies proches	1						
	1.2 Objectifs	2						
	1.3 Critères de sélection	2						
2	Une première sélection de galaxies	3						
3	Une amélioration des critères observationnels							
	3.1 Exclusion de certaines galaxies	4						
	3.2 Extinction	4						
	3.3 Références de distance	5						
	3.4 Un nouvel échantillon de galaxies	6						
4	Critère de masse et Star formation rate							
	4.1 Bandes photométriques	7						
	4.2 Critère de masse stellaire (M_*)	7						
	4.3 Taux de formation stellaire (SFR)	8						
	4.4 Implémentation	8						
5	5 Résultats							
Co	nclusion	10						
Re	erences	11						
Annexes								

Abbréviations utilsées

- pc = parsecs, 1 parsec = 3.26 années-lumières
- yr = years, années
- $\bullet~M_{\odot} = {
 m Masse}~{
 m solaire},~(1.98847 \pm 0.00007)10^{30}~{
 m kg}$

Disponibilité du code

Les codes et tableaux de résultats issus de ce projet sont disponibles sur ce lien GitHub. On a utilisé les bibliothèques suivantes :

- NUMPY (Harris et al., 2020)
- ASTROPY (Astropy Collaboration et al., 2022)
- Matplotlib (Hunter, 2007)
- ASTROQUERY (Mazzarella, 2016)

Introduction

Depuis les 20 dernières années, l'étude des galaxies proches est devenu un sujet primordial pour tenter de comprendre les mécanismes qui gouvernent notre univers actuel. Cependant, notre connaissance du comportement du milieu interstellaire qui nous entoure est assez restreinte. Pour le caractériser, il est courant d'utiliser l'émission du CO comme traceur. Si des études passées de cette émission ont pu être menées en observant les galaxies dans leur intégralité ou en investiguant leurs structures larges, elles ne distinguaient pas les nuages moléculaires individuellement. Elles ont pu montrer, entre-autres, que la formation d'étoiles était étroitement liée à la présence de gaz. Cependant, l'efficacité de ce processus peut varier selon les galaxies, ou même à travers différentes régions de la même galaxie. Il est donc essentiel de s'intéresser aux processus de formation stellaire à l'échelle des nuages moléculaires et de connecter ces processus aux propriétés des galaxies où ils se produisent.

À travers ce projet, on cherche à dresser un catalogue d'objets centré sur l'étude des processus physiques du gaz contenu dans les galaxies proches de l'hémisphère nord, de manière analogue à ce qui a pu être fait par Leroy et al. (2021) pour l'hémisphère sud. L'objectif final serait de fournir une liste de galaxies pertinentes qui pourrait être utilisée par le radiotéléscope français NOEMA afin de tracer l'émission CO $J = 2 \rightarrow 1$ dans les galaxies proches.

Après avoir détaillé le contexte scientifique dans lequel s'inscrit notre projet, on présentera les critères de sélection de notre catalogue. Ensuite, on procédera à l'établissement d'un premier catalogue à partir de la base de données HyperLeda. Dans un second temps, on mettra en avant les méthodes employées pour réduire le nombre d'échantillons de ce catalogue, basé sur des critères observationnels. Dans une troisième partie, on introduira les concepts de masse stellaire et de taux de formation stellaire afin d'appliquer des critères de sélection astrophysiques à nos échantillons. Enfin, on présentera le catalogue final obtenu, nos résultats ainsi que leurs implications.

1 Contexte scientifique

1.1 Le milieu interstellaire froid dans les galaxies proches

Les nuages moléculaires sont des structures géantes de notre galaxie, d'une taille moyenne de 100 pc, principalement composées de molécules de H2, avec une concentration supérieure à 10^3 particules/cm³, pour une température avoisinant les 20 K (Harada et al., 2019). C'est la molécule la plus abondante et la plus importante car elle permet la création des étoiles et l'enrichissement du milieu interstellaire. Malheureusement, elle est très peu visible en émission, dû à plusieurs facteurs. Tout d'abord, H2 est composée de deux atomes d'hydrogène symétriques et n'a donc pas de moment dipolaire permanent. Ensuite, sa transition la plus probable est la transition dipolaire à $\lambda = 28\mu$ m, qui nécessite que la molécule soit à 512 K. Cependant, la température moyenne d'un nuage moléculaire est de 20 K. Enfin, il s'agit de la plus légère des molécules, son moment d'inertie est donc très faible en opposition à ses niveaux d'énergie très élevés, ce qui les rend quasiment inatteignables dans le milieu interstellaire.

De ce fait, il est nécessaire d'utiliser des traceurs pour nous permettre d'étudier et d'observer ces nuages moléculaires. Le traceur le plus connu est la molécule de CO, présente en faible densité, dont le ratio CO/H2 est de 3×10^{-4} (Sliwa, Wilson, Iono, Peck, & Matsushita, 2014). Il a été déterminé en étudiant la courbe d'absorption de la molécule de CO et de H2 se trouvant à l'avant d'une source chaude pour obtenir leur densité de colonne.

Pour faciliter les observations, la transition rotationnelle $J=2\to 1$ du CO à 230 GHz sera utilisée. Elle permet d'avoir une meilleure résolution angulaire via la formule $\theta({\rm rad})=\frac{c}{\nu B}$ pour le même télescope de baseline B. On souhaite que ces observations soient réalisées par l'interféromètre NOEMA qui possède un système de 12 antennes

en réseau de 15 m de diamètre dont les configurations sont décrites dans le paragraphe 2.1 de Krips (2019).

Une des raisons majeures de l'étude des nuages moléculaires est l'étude de la formation stellaire, qui favorise des milieux froids et denses. Celle-ci ne peut se produire que par l'effondrement gravitationnel d'un nuage de gaz et de poussières, que l'on décrira plus en détail en Annexe 5.

1.2 Objectifs

Cette étude entre dans la continuité de celle proposée en 2021 par la collaboration PHANGS-ALMA (Leroy et al., 2021) pour cataloguer des galaxies massives, formant activement des cœurs pré-stellaire et observables dans l'hémisphère sud. L'objectif de cette collaboration est de permettre l'observation et l'étude de ces nuages moléculaires dans le but de comprendre leur lien avec la galaxie hôte, leur comportement dans celle-ci, ainsi que leur capacité à engendrer de la formation stellaire. Pour compléter le catalogue de 2021, on souhaite obtenir un catalogue final d'une trentaine de galaxies.

1.3 Critères de sélection

Pour répondre à ces préoccupations scientifiques, notre échantillon va devoir répondre à différents critères de sélection, analogues à ceux présentés par Leroy et al. (2021) mais modifiés pour correspondre aux galaxies de l'hémisphère nord. Tout au long de notre étude, on devra comprendre ces critères et les ajuster si nécessaire.

- 1. Les galaxies doivent être assez proche pour qu'1'' < 100 pc. En effet, on souhaite que les galaxies de notre catalogue permettent de résoudre les nuages moléculaires de gaz individuellement, ce qui explique la sélection de cette limite de résolution. Cela correspond à peu près à l'épaisseur du disque moléculaire de notre Voie Lactée ainsi que d'autres galaxies (Heyer & Dame, 2015). Grâce à la relation $\theta(\text{rad}) = \frac{Resolution}{Distance}$, on en déduit qu'une résolution de 100 pc conduit à une distance de 17 Mpc. Pour ne pas avoir de critère trop bas, on sélectionnera uniquement les galaxies qui se situent à moins de 23 Mpc.
- 2. Les galaxies doivent avoir une inclinaison $i < 75^{\circ}$ afin de pouvoir faire la distinction entre différents nuages de gaz, mais aussi de pouvoir comparer l'émission CO à l'émission à d'autres longueurs d'onde (H_{α} , continuum proche-infrarouge).
- 3. Les galaxies doivent être visible par NOEMA (-25° $<\delta<90$ °, d'après Krips (2019)), et être située dans l'hémisphère Nord, donc la déclinaison doit être -25° $<\delta<90$ °.
- 4. Les galaxies doivent être relativement massives, c'est à dire avoir $\log_{10} M_*[M_\odot] \geq 9.75$. La masse stellaire M_* correspond à la fraction de masse de la galaxie qui est due à la présence d'étoiles (excluant donc la masse de la matière noire par exemple). Dans les *star-forming* galaxies, elle est un marqueur de la formation active d'étoiles, de la fraction de gaz ainsi que de la métallicité Blanton and Moustakas (2009). En choisissant cette limite de masse, on veut s'assurer de capturer la diversité des propriétés des galaxies, tout en excluant les galaxies de faible masse ou de faible métallicité où l'observation du CO peut-être complexe.
- 5. Les galaxies doivent être actively star forming et donc avoir un rapport $\frac{SFR}{M_*} \ge 10^{-11} \text{ yr}^{-1}$. Ce critère permet de se débarasser des galaxies dites quescientes, c'est-à-dire qui ne participent pas activement à la formation stellaire (les galaxies elliptiques par exemple).

2 Une première sélection de galaxies

Dans un premier temps, on s'intéresse uniquement aux critères de sélection observationnels afin d'avoir une première sélection de galaxies. Pour cela, on va utiliser la base de donnée extragalactique HyperLEDA (Makarov et al., 2014). Elle rassemble les données observationnelles et les propriétés physiques des galaxies provenant de publications scientifiques, combinées pour obtenir une description unique. Les objets sont ensuite labellisés par leur identifiant, le *PGC number*. Grâce à cette base de données, on peut obtenir une sélection de galaxies correspondant à des critères imposés via une requête SQL, qui sera stockée ensuite dans un tableau. On impose donc nos critères d'inclinaison et de déclinaison. Pour le critère de distance, quelques précisions sont d'abord nécessaires.

La distance de luminosité est celle à laquelle un photon émis est perçu. Elle est obtenue en faisant la différence entre la magnitude absolue M et la magnitude apparente m. La magnitude apparente est une indication de la luminosité perçue d'un objet céleste depuis la Terre, liée à la brillance réelle de cet objet donc de la distance à laquelle il se trouve. La magnitude absolue, quant à elle, est une indication de la luminosité intrinsèque d'un objet céleste. Elle peut être définie comme étant la magnitude apparente de cet objet à une distance de 10 pc.

$$m=-2.5 {\rm log}\left(\frac{L}{4\pi d^2}\right)+C$$
 et $M=-2.5 {\rm log}\left(\frac{L}{4\pi (10pc)^2}\right)+C$

où C est une constante qui dépend de la référence prise, généralement Vega. On obtient donc le module de distance :

$$mod = m - M = 5\log(D) + 25$$

De là, on peut reconvertir : $D_L=10^{0.2(m-M)_0-5}\,$

Dans HyperLeda, trois modules de distance sont disponibles :

- mod0 est le module de distance obtenu par les méthodes directes. Il est dérivé des données mesurées issues des différents phénomènes astrophysiques.
- modz est le module de distance obtenu via le modèle cosmologique. En observant sur la vitesse radiale d'un objet céleste, on déduit une distance dépendante du redshift.
- modbest est la moyenne pondérée des deux modules, offrant uniquement une approximation ou un module "passepartout" si la distance n'est pas un facteur prépondérant.

Dans notre cas, on choisit d'utiliser mod0 pour plusieurs raisons. Tout d'abord, on travaille dans l'Univers "local" soit au redshift $z \ll 0.1$. À cette distance, la vitesse de récession et la vitesse de rotation propre de la galaxie peuvent influer sur les mesures de distance, faussant ainsi nos résultats. On ne peut donc pas utiliser

Figure 1: Échantillon initial

modz qui serait plus effectif à grand redshift. Ensuite, la distance est un des principaux critères de sélection de notre catalogue. Même si on avait pris une marge assez grande, certains critères nécessitent qu'elle soit précise, par exemple lors de l'intégration de la masse et de la formation stellaire. On ne préfère donc pas travailler avec modbest. A titre comparatif, les galaxies renvoyées pour modbest et mod0 sont présentées sur la Fig. 1. En utilisant la formule du module de distance, On obtient alors mod0 = 31.80863918 pour une distance de 23 Mpc. Après la sélection, on remarque que le nombre d'échantillon est bien trop important pour que chaque galaxie puisse être observée par NOEMA. On constate également une densité importante entre 135° et 250°, ce qui peut correspond à l'Amas de la Vierge. Afin de réduire ce catalogue, on va tout d'abord procéder à une amélioration des critères observationnels.

3 Une amélioration des critères observationnels

3.1 Exclusion de certaines galaxies

Dans un premier temps, on va retirer de notre tableau toutes les galaxies qui ne sont pas de type NGC, car on souhaite travailler avec un catalogue réduit et connu. On supprime aussi celles qui ne présentent pas de vitesse de rotation car on a besoin de cette vitesse pour appliquer un nouveau critère.

En effet, dans notre étude, on souhaite observer les galaxies les plus lumineuses et les plus massives, ayant au moins une masse supérieure à 2 fois la masse du Grand Nuage de Magellan. On peut déduire cette masse limite via la vitesse de rotation de la galaxie par la relation de Tully-Fisher (Said, 2023) :

$$L \propto V_{rot}^4$$

En supposant que le Mass-to-Light ratio est constant, on obtient : $M_{tot} \propto V_{rot}^4$ On en déduit alors notre critère de cutoff :

$$V_{galaxies} > 2^{\frac{1}{4}} \times V_{LMC}$$

Dans notre programme, on prend une vitesse de rotation du Grand Nuage de Magellan de 80 km/s qui est la moyenne de deux valeurs tirées de la bibliographie : 72 km/s (Alves & Nelson, 2000) et 91 km/s (Marel & Kallivayalil, 2014). On retire donc de notre catalogue toutes les galaxies qui ne respectent pas ce critère.

On ajoute également un critère de cutoff de 12.5 sur le diamètre apparent dans le ciel pour permettre la visibilité sur le site de l'InfraRed Science Archive (IRSA). Après application, on remarque que seule la galaxie d'Andromède prend énormément de place sur le ciel, ce qui fait qu'elle n'est pas intéressante dans le cadre de notre étude. Elle représente une quantité trop importante de données. On choisit donc de l'exclure.

Pour gagner en précision, on va également appliquer une correction importante sur nos mesures de distance, ce qui nécessite quelques explications au préalable.

3.2 Extinction

Le milieu interstellaire est constitué de diverses composantes dont les tailles et les densités varient. Ces éléments peuvent perturber la propagation de la lumière et altérer la précision des mesures de distance. Toutefois, dans le domaine du visible, ce sont principalement les nuages de poussières qui absorbent la lumière issue des objets situés en arrière-plan. Cela aura pour effet de réduire leur luminosité, les faisant ainsi apparaître plus lointains qu'ils ne le sont réellement. Cet effet d'extinction est connu sous le nom de rougissement, noté E(B-V). Lors du passage de la lumière à travers le nuage de poussières, le nuage va absorber et diffuser les longueurs d'onde du bleu et de l'ultraviolet. Cela aura pour effet d'augmenter le contraste, d'où la mise en avant de la couleur rougeâtre.

On peu décrire cet effet par le facteur de rougissement R qui est lié intrinsèquement aux propriétés physiques et à la taille du grain. En moyenne, ce facteur de rougissement a une valeur approximative de $R\approx 3.1$ (Cardelli, Clayton, & Mathis, 1989). L'IRSA donne ainsi l'extinction sur la ligne de visée pour ce facteur de rougissement (R=3.1). Après obtention de ce coefficient, on peut reprendre notre formule du module de distance pour déterminer la distance :

$$mod = m - M = 5\log(D) + 25 + A \Rightarrow D_L = 10^{0.2(m-M)_0 - 5 - \frac{A}{5}}$$

Le catalogue HyperLeda précise que la correction d'extinction n'est pas effectuée systématiquement. On stocke alors à la fois la valeur issue du catalogue et la valeur corrigée. Pour déterminer quelle distance utiliser, on a besoin d'un autre catalogue de distance qui servira de référence.

3.3 Références de distance

Dans un premier temps, on a choisi d'utiliser le catalogue NASA/IPAC Extragalactic Database (NED) qui offre un large catalogue d'objets célestes avec plusieurs valeurs de distance mesurées via plusieurs méthodes. Du fait que NED ne propose que la recherche objet par objet sur son interface principale, on décide d'utiliser la librairie ASTROQUERY pour tirer les informations principales de chaque galaxie. Malheureusement, la seule référence obtenue est le redshift dont la valeur de distance ne correspond pas pour certaines galaxies. Dans un second temps, on choisit comme référence l'EDD (Extragalactic Distance Database) via le catalogue Cosmicflows 4 (Tully et al., 2023), ci-après CF4, qui regroupe 55874 objets. C'est un catalogue intéressant car il utilise la majorité des méthodes de mesure considérées aujourd'hui comme les "chandelles standard" de la détermination de distance, en plus d'avoir des mesures récentes datant des cinq dernières années.

Notre objectif principal dans cette partie est d'avoir un catalogue réduit de galaxies dont on connaît la distance pour avoir les critères les plus précis. C'est pour cela que si le catalogue CF4 ne possède pas l'une d'entre-elles, on décide de ne pas le prendre en compte car elle n'a pas été assez étudiée. De même, si la distance mesurée d'une galaxie diffère d'un facteur $\pm 10\%$ de la référence, on décide de la filtrer. On déterminera dans cette partie laquelle des distances de notre catalogue on utilisera pour les futurs calculs, entre la celle issue d'HyperLeda ou celle corrigée via l'extinction. Pour avoir les meilleures références, on se retreint à des distances issues de méthodes de mesure bien connues dans le cosmic distance ladder qui décrit les ces méthodes de mesure pour chaque distance.

Les Céphéides

Les céphéides sont des étoiles de type pulsantes, dont la pulsation est causée par la variation de l'opacité atmosphérique de l'étoile dû à sa température dans une zone d'hélium doublement ionisée (voir Annexe 5). La loi des céphéides, décrite par Henrietta Swan Leavitt en 1908, relie cette période de pulsation P à sa magnitude absolue : M = a(log(P) - 1.0) + b où a et b sont deux constantes dépendant de la longueur d'onde à laquelle sont faites les mesures. Utilisée depuis l'année de sa découverte, cette méthode est l'une des plus étudiées et affinées. C'est la raison pour laquelle dans nos critères de référence, elle sera toujours retenue si existante.

Supernovae de type Ia (SNIa)

Une SNIa est un type de supernova qui survient lorsqu'une étoile de type naine blanche dans un système binaire atteint la masse de Chandrasekhar après avoir accrété une partie de la matière de son compagnon. Lors de cette explosion, on obtient une courbe de lumière dont la magnitude absolue au maximum d'éclat sera presque toujours la même pour toutes les SNIa, avec une valeur moyenne de -19.46 (Richardson et al., 2002). Les SNIa étant un événement très lumineux, on peut les étudier sur de très grandes distances ce qui en fait un des moyens les plus fiables de mesurer les distances.

The Tip of the Red Giant Branch (TRGB)

Le TRGB est la discontinuité qui se situe à la pointe de la branche des géantes sur le diagramme de Hertzsprung-Russell. Arrivé à l'extrémité de la branche, toutes les étoiles ont la même masse de cœur d'hélium soit $M_{core}\approx 0.5 M_{\odot}$ avec une température avoisinant les $10^8 K$ (Bressan & Shepherd, 2024). Le processus avant le flash de l'hélium et son évolution est très bien étudiée ce qui permet de connaître sa magnitude absolue dans la bande l ($M_I\approx -4$ en infrarouge, voir Annexe 8), qui n'est pas affecté par la poussière ni la métallicité de ces étoiles.

Relation de Tully-Fisher

La relation de Tully-Fisher (Tully & Fisher, 1977) est une relation empirique reliant la vitesse de rotation d'une galaxie spirale autogravitante à sa magnitude absolue tel que $mod = 3.5 + 6.25 \log \Delta V(0) + m_{pg}(0)$ où $\Delta V(0)$ est la vitesse de rotation corrigée et $m_{pq}(0)$ est la magnitude apparente photographique corrigée (Voir Annexe 5).

Pour implémenter cette sélection dans notre code, on commence par extraire le catalogue de CF4, puis on l'importe dans le code. On le parcourt ensuite dans son intégralité pour y localiser les galaxies correspondant à nos échantillons. Si elles sont trouvées, leur distance ainsi que la méthode de détermination de celle-ci est ajoutée au tableau. On définit ensuite un ordre de priorité des méthodes énoncées ci-dessus, qui classifie leur fiabilité selon cet ordre : Cepheid, SNIa , TRGB, Tully Fisher. En effet, on veut la luminosité intrinsèque des sources. Plus celles-ci sont étudiées, plus cette luminosité intrinsèque aura été affinée et calibrée avec le temps et donc plus la détermination de nos distances sera précise. On conserve alors la distance la plus adaptée entre celle corrigée et celle directement issue du catalogue original.

3.4 Un nouvel échantillon de galaxies

Distance (Mpc) vs. R.A.

90°

135°

180°

225°

315°

Figure 2: Catalogue de galaxies après l'améloration des critères de sélection observationnels

Après avoir imposé ces nouveaux critères en retirant toutes les galaxies qui ne les respectaient pas du tableau d'échantillons, on est capables de dresser un nouveau catalogue restreint à 80 galaxies (voir Fig 2). Dans un premier temps, on constate que l'on a toujours une densité importante au niveau de ce qu'on suppose être l'amas de la Vierge, mais aussi qu'on a déjà pu réaliser un tri assez important. Il est intéressant de tracer une première distribution statistique des paramètres observationnels considérés afin de tenter de comprendre les propriétés des galaxies sélectionnées, comme présenté sur la Fig. 3.

On remarque tout d'abord que la majorité de nos galaxies sont situées entre 15 et 20 Mpc, avec seulement quelques galaxies qui dépassent les 20 Mpc. Cela montre que la sélection s'est bien faite : les galaxies sont assez proches pour que l'on puisse distinguer les

nuages de gaz et les régions de formation stellaire qui la composent. Au niveau de l'inclinaison, le critère $i < 75^\circ$ est bien respecté, mais la majorité de nos galaxies sont quand même "vues de côté". La majorité des échantillons a une vitesse de rotation comprise entre 100 et 200 km/s, ce qui pourrait représenter des galaxies spirales dont la vitesse de rotation est liée à la masse. Les objets ayant des vitesses plus élevées sont probablement des galaxies massives. Enfin, les galaxies présentent un très petit diamètre angulaire comme voulu pour que nos objets restent dans un champ de vue restreint. Le diamètre de 1° d'un seul objet peut sembler surprenant, mais il s'agit en réalité de la galaxie du Triangle, qui est la troisième galaxie la plus massive de notre Groupe Local, en orbite autour d'Andromède. Il est donc normal qu'elle ait une taille apparente assez importante sur le ciel.

Figure 3: Distribution statistique des critères observationnels

4 Critère de masse et Star formation rate

Maintenant que notre échantillon est réduit à 80 galaxies grâce aux critères observationnels, on va pouvoir appliquer des critères de sélection astrophysiques : Le critère de masse stellaire et le critère de taux formation stellaire (ciaprès SFR). Pour cela, on utilisera les méthodes de calcul présentées par Leroy et al. (2019), qui présente un atlas de galaxies locales basé sur les observations des télescopes spatiaux *WISE* et *GALEX*.

4.1 Bandes photométriques

Comme la formation stellaire serait plus abondante dans des régions de gaz froid et dense au sein du milieu interstellaire, on utilise les données tabulées de *WISE* dans la base de données numérique IRSA pour recenser les régions observées de cette formation. L'avantage de cette base est qu'elle permet d'accéder aux archives numériques de différents télescopes et offre des outils d'analyse et de visualisation des données. D'autre part, les étoiles jeunes et massives ont une durée de vie très courte mais émettent un fort rayonnement UV qui domine la luminosité totale, notamment dans les galaxies spirales. Les résidus de ces étoiles sont des régions fertiles à la naissance d'une nouvelle génération d'étoiles. Les observations spectroscopiques de *GALEX* sont donc primordiales pour caractériser ces résidus et ainsi la formation stellaire. Les longueurs d'onde associées à chaque bande sont présentées en Tab.1.

Bande	Nom	Fréquence (µm)		
FUV	GALEX FUV	0.1528		
NUV	GALEX NUV	0.2271		
W1	WISE 1	3.4		
W2	WISE 2	4.6		
W3	WISE 3	12		
W4	WISE 4	22		

Table 1: Bandes photométriques

La masse stellaire d'une galaxie est généralement estimée à partir de la lumière proche-infrarouge, car cette gamme est dominée par l'émission des vieilles étoiles de type K et M, qui constituent la majorité de la masse stellaire d'une galaxie. Le canal W1 est utile à cet effet car il trace fidèlement cette population sans être affecté par l'extinction provoquée par la poussière interstellaire. W4, FUV et NUV captent l'émission thermique de la poussière chauffée par des étoiles jeunes et massives. Cette poussière réémet dans l'infrarouge une partie de la lumière UV absorbée. Ainsi, W4 est

un traceur efficace de la formation stellaire récente, en particulier dans les régions opaques à l'UV. Ces trois canaux données sont donc essentiels pour quantifier le SFR. Enfin, W3 est utilisé pour générer le masque spatial permettant d'éliminer les signaux extérieurs en maximisant le contraste entre les structures galactiques et les objets d'avant-plan. Le choix de cette bande repose sur sa capacité à capter efficacement l'émission des hydrocarbures aromatiques polycycliques (PAH), présents dans les régions actives des galaxies. W3 permet donc de masquer à la fois les objets lumineux et les zones en dehors de l'émission de l'échantillon.

4.2 Critère de masse stellaire (M_*)

Pour tracer la masse stellaire totale d'une population galactique, on utilisera WISE 1. La relation entre l'intensité renvoyée du spectre et la masse stellaire totale est donnée par :

$$\frac{\sum_*}{1M_{\odot}\mathrm{pc}^2} \simeq 3.3 \times 10^2 \left(\frac{\Upsilon_*^{3.6}}{0.5}\right) \left(\frac{I_{3.4}\mu\mathrm{m}}{1\mathrm{MJy~sr}^{-1}}\right)$$

où $\Upsilon^{3.6}_*=0.5M_{\odot}/L_{\odot}$. est le rapport masse/luminosité. Il est important de noter qu'il s'agit d'une approximation, et que cette valeur est aujourd'hui discutée (Simonian & Martini, 2017). On pense par exemple qu'il peut évoluer systématiquement au sein d'une population galactique, diminuant lorsque $\frac{SFR}{M_*}$ augmente. Les star-forming galaxies auraient donc un $\Upsilon^{3.6}_*$ plus faible tandis que les galaxies quescientes en auraient un plus élevé.

Pour obtenir M_* pour chacune de nos galaxies, on implémente dans notre code une fonction qui la calcule pour chaque pixel, puis on somme sur l'intégralité des pixels pour obtenir la masse stellaire totale. Une fois cette opération réalisée, on peut imposer un critère de masse sur notre échantillon de galaxies. En effet, on souhaite

uniquement conserver les galaxies ayant $\log_{10} M_*[M_\odot] \ge 9.75$ afin de couvrir une assez grande diversité sans pour autant inclure celles où la détection du CO serait ardue.

4.3 Taux de formation stellaire (SFR)

Le SFR est défini comme la masse d'étoile contenue dans une galaxie et qui s'y forme par unité de temps, en M_{\odot} yr $^{-1}$. Le mesurer revient à estimer l'abondance stellaire de chaque galaxie observée. Couplé à la fonction de masse initiale, ils fournissent des informations sur les évolutions des galaxies. Le SFR joue donc un rôle important dans l'habitabilité des galaxies. Pour calculer le SFR de chaque galaxie, on utilise la relation :

$$\frac{\Sigma_{\rm SFR}}{1\,M_{\odot}\,{\rm yr}^{-1}\,{\rm kpc}^{-2}}\approx A\left(\frac{C}{10^{-42.7}}\right)\left(\frac{I_{22\,\mu m}}{1\,{\rm MJy~sr}^{-1}}\right)$$

Les facteurs C et les coefficients directeurs A dépendent de la bande d'observation, avec les calibrations suivantes :

Bande	A (slope)	$\log_{10}(C)$ (standard)	$\log_{10}(C)$ (best estimation)
W3	3.77×10^{-3}	-42.9	-42.67
W4	3.24×10^{-3}	-42.7	-42.55
FUV	1.05×10^{-1}	-43.35	-43.42
NUV	1.04×10^{-1}	-43.17	-43.24

Table 2: Calibration des facteurs C et A (Leroy et al., 2019)

Cette fonction est ensuite implémentée dans le code. Après détermination du SFR, on peut appliquer le critère Actively Star Forming (SFR/ $M_* > 10^{-11} \, \rm yr^{-1}$) pour éliminer les galaxies *quescientes*.

4.4 Implémentation

Pour déterminer M_* et le SFR, on extrait les données de l'échantillon obtenu en 3.4 sous forme d'une liste csv que l'on importe dans l'IRSA. Pour chaque galaxie donnée, elle renvoie un ensemble de fichiers qui contient son spectre sous toutes les bandes photométriques. Chaque bande contient plusieurs types de résolution : 7,5" et 15". La résolution 7,5" permet de mieux distinguer les structures fines des galaxies, tandis que la résolution 15" est mieux adaptée aux objets étendus ou aux mesures globales. Toutefois, pour W4, seule la version 15" est disponible, la résolution instrumentale de WISE à cette longueur d'onde étant d'environ 12". En complément, l'IRSA fournit aussi un masque des étoiles qui se trouvent sur la ligne de visée. On peut ainsi télécharger tous les spectres afin de les exploiter un par un dans notre code par la suite (cf Annexe 5 pour visualiser les spectres).

Pour convertir les intensités mesurées sur les images en grandeurs physiques, deux étapes sont nécessaires. Les images sont d'abord exprimées en MJy/sr, une unité d'intensité surfacique. De là, on utilise des relations calibrées, notamment celles proposées par Leroy et al. (2019), pour passer en densité de M_* (en M_{\odot}/pc^2) ou en densité de taux de formation stellaire (en $M_{\odot}/\mathrm{yr}/\mathrm{kpc}^2$). Ensuite, pour obtenir des valeurs intégrées par pixel, on multiplie ces densités par la surface physique correspondant à un pixel. Cette surface est calculée à partir de l'échelle angulaire d'un pixel (par le biais de $CD1_1$ ou $CDELT_1$ dans le header, exprimée en degrés) et de la distance à la galaxie. Une conversion en radians, puis en unités de distance, permet de connaître la taille réelle d'un pixel sur le ciel, et ainsi de ramener chaque valeur à une quantité physique totale par pixel.

Un masque est ensuite appliqué pour supprimer les signaux extérieurs à l'échantillon, en utilisant la bande W3 qui est la plus sensible aux objets observables. Si une région des spectres dépasse un certain seuil d'intensité, sa valeur est remplacée par un Nan. Il est choisi spécifiquement pour chaque bande et permet d'exclure les signaux hors de la galaxie sans tronquer celle-ci et est complété par une ouverture circulaire, déduite de $CD1_1$. On procède ensuite à une itération pour chaque pixel afin de convertir puis de sommer les intensités valides. Enfin, on estime le SFR et M_* , que l'on stocke dans le tableau de données avant d'appliquer les critères de sélection.

5 Résultats

Distance (Mpc) vs. R.A.

90°

135°

180°

270°

Figure 4: Graphe polaire du catalogue final

Après avoir appliqué les critères finaux sur les 80 échantillons, on ne garde que ceux qui les respectent. Au final, on réduit notre catalogue à 52 galaxies que l'on présente en Fig.4 et dans le tableau en Annexe 5, ce qui rend le catalogue assez petit pour être exploitable. On peut désormais se pencher sur les propriétés des galaxies obtenues grâce à la Fig. 5.

Au niveau des critères observationnels, on observe une distribution similaire à celle d'observation en terme de distance, montrant que le critère a été appliqué correctement. On observe aussi des inclinaisons majoritairement comprises entre 50° et 75°, confirmant notre hypothèse de galaxies observées "de côté". On constate que les vitesses de rotation sont comprises entre 100 et 200 km/s. Ces vitesses de rotation sont typiques

des galaxies spirales et massives. Aussi, ces dernières ont un diamètre angulaire très petit (< 0,2°) correspondant à des galaxies prenant peu de place sur le ciel, ou alors relativement éloignées. Cela renforce l'idée d'une distribution cohérente en distance.

Figure 5: Distribution statistique finale des critères observationnels

Ainsi, les critères observationnels pourraient suggérer que la grande majorité des 52 galaxies étudiées dans l'hémisphère nord appartiennent à un même amas galactique. En effet, elles partagent des distances similaires, des vitesses de rotation modérées et des tailles apparentes cohérentes avec une distance commune. Des variabilités traduisent une diversité naturelle au sein de l'amas, mais l'ensemble reste homogène.

Ces similitudes sont aussi présentes au niveau de la masse stellaire et du SFR, appuyant l'hypothèse de l'appartenance à un amas de galaxie. La grande majorité des galaxies ont une M_* qui se concentre à $0,210^{11}M_{\odot}$:un SFR proche de 1 sur WISE 4, 0,005 sur FUV et 0,01 sur NUV. Les distributions présentées en Fig. 6 montrent que les galaxies d'étude présentent des masses stellaires modérées, centrées autour de quelques $10^{10}M_{\odot}$, avec seulement quelques objets très massifs. Le taux de formation d'étoiles infrarouge reste en majorité faible (<3 ${\rm M}_{\odot}.{\rm yr}^{-1}$), tandis que les estimations UV sont encore plus basses ($0,001-0,01~{\rm M}_{\odot}.{\rm yr}^{-1}$), traduisant un faible niveau d'activité récente ou une extinction importante par la poussière. Quelques galaxies forment néanmoins plus activement d'étoiles (queue de distribution vers 5–7 ${\rm M}_{\odot}.{\rm yr}^{-1}$ en W4, jusqu'à $0,05~{\rm M}_{\odot}.{\rm yr}^{-1}$ en NUV), probablement des galaxies spirales récemment accrétées ou des sursauts de formation d'étoiles.

Figure 6: Distribution statistique du SFR et de la masse stellaire

Dans l'ensemble, ces faibles SFR concordent avec un environnement d'amas où les processus de *quenching* limitent la formation stellaire. Il s'agit du phénomène astrophysique par lequel une galaxie cesse de former de nouvelles étoiles, devenant ainsi une galaxie dite *quescientes*. Il est central dans l'évolution des galaxies, manifesté sous plusieurs mécanismes qui empêchent la formation d'étoiles, principalement en éliminant ou en chauffant le gaz froid nécessaire à cette formation. Le quenching est particulièrement important dans des zones denses comme un amas de galaxies.

On observe bien ce phénomène sur la Fig. 7, où on a représenté en gris les galaxies exclues par les critères de masse et de SFR et en vert les galaxies du catalogue final. On remarque que les galaxies les plus massives forment plus d'étoiles que les moins massives, ayant un SFR plus élevé. Cela correspond à la séquence principale de formation stellaire observée dans de nombreuses études comme Whitaker et al. (2012) ou Speagle et al. (2014). La dispersion modérée autour de cette relation suggère des variations dans l'histoire de formation stellaire, mais globalement, les galaxies sélectionnées suivent encore une activité de formation d'étoiles "normale" pour leur masse, typique de galaxies dites actives ou de type spirales. Ce sont donc des galaxies à formation active d'étoiles, comme prévu par notre critère.

Figure 7: SFR des galaxies en fonction de leur masse stellaire

Conclusion

À travers ce projet, on a pu extraire un catalogue de galaxies proches pour l'hémisphère nord par application des critères de Leroy et al. (2021). Une sélection initiale, basée sur les critères de distance, inclinaison et déclinaison a permis d'extraire 80 galaxies. Par la suite, une deuxième sélection prenant en compte les critères liés à la masse stellaire et au SFR nous a permis d'extraire 51 échantillons. L'analyse des paramètres physiques et dynamiques de ces objets a mis en évidence une cohérence remarquable entre les grandeurs observationnelles. La distribution des masses stellaires et des SFR indique une activité de formation d'étoiles globalement modérée, avec quelques cas d'activité accrue. Cette cohérence nous conforte dans l'idée que nos critères ont permis de choisir des galaxies qui se situent sur la séquence principale de la formation stellaire. L'étude met ainsi en évidence une population minoritaire proche mais bien caractérisée de galaxies encore actives au sein d'un environnement globalement quiescent. Leur recensement constitue une base de données exploitable pour des observations futures à haute résolution en vue de mieux comprendre leurs rôles dans la dynamique et l'évolution des galaxies.

References

- Alves, D. R., & Nelson, C. A. (2000, October). The Rotation Curve of the Large Magellanic Cloud and the Implications for Microlensing. *The Astrophysical Journal*, *542*(2), 789–803. Retrieved from http://arxiv.org/abs/astro-ph/0006018 doi: 10.1086/317023
- Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., ... Astropy Project Contributors (2022, August). The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. , 935(2), 167. doi: 10.3847/1538-4357/ac7c74
- Blanton, M. R., & Moustakas, J. (2009, September). Physical properties and environments of nearby galaxies. Annual Review of Astronomy and Astrophysics, 47(1), 159–210. Retrieved from http://arxiv.org/abs/0908.3017 doi: 10.1146/annurev-astro-082708-101734
- Bressan, A., & Shepherd, K. G. (2024, December). *Evolution and final fates of low- and intermediate-mass stars.* arXiv. Retrieved from http://arxiv.org/abs/2412.13039 doi: 10.48550/arXiv.2412.13039
- Cardelli, J. A., Clayton, G. C., & Mathis, J. S. (1989, October). The Relationship between Infrared, Optical, and Ultraviolet Extinction. *The Astrophysical Journal*, *345*, 245. Retrieved from https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C (Publisher: IOP) doi: 10.1086/167900
- EDD: Select Table & Columns. (n.d.). Retrieved 2025-05-08, from https://edd.ifa.hawaii.edu/dfirst.php Galactic DUST Reddening & Extinction. (n.d.). Retrieved 2025-05-08, from https://irsa.ipac.caltech.edu/applications/DUST/
- Harada, N., Nishimura, Y., Watanabe, Y., Yamamoto, S., Aikawa, Y., Sakai, N., & Shimonishi, T. (2019, February). Molecular-cloud-scale Chemical Composition. III. Constraints of Average Physical Properties through Chemical Models. *The Astrophysical Journal*, 871, 238. Retrieved from https://ui.adsabs.harvard.edu/abs/2019ApJ...871..238H (Publisher: IOP) doi: 10.3847/1538-4357/aaf72a
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020, September). Array programming with NumPy., 585 (7825), 357-362. doi: 10.1038/s41586 -020-2649-2
- Heyer, M., & Dame, T. M. (2015, August). Molecular Clouds in the Milky Way. *Annual Review of Astronomy and Astrophysics*, 53(Volume 53, 2015), 583–629. Retrieved from https://www.annualreviews.org/content/journals/10.1146/annurev-astro-082214-122324 (Publisher: Annual Reviews) doi: 10.1146/annurev-astro-082214-122324
- Hunter, J. D. (2007, May). Matplotlib: A 2D Graphics Environment. *Computing in Science and Engineering*, 9(3), 90-95. doi: 10.1109/MCSE.2007.55
- Kippenhahn, R., Weigert, A., & Weiss, A. (2013). Stellar Structure and Evolution. Retrieved from https://ui.adsabs.harvard.edu/abs/2013sse..book.....K (Publication Title: Stellar Structure and Evolution. ISBN: 978-3-642-30304-3. Berlin) doi: 10.1007/978-3-642-30304-3
- Krips, M. (2019). An Introduction to the IRAM NOEMA interferometer. Retrieved from https://www.iram.fr/IRAMFR/GILDAS/doc/html/noema-intro-html/noema-intro.html
- Leroy, A. K., Sandstrom, K. M., Lang, D., Lewis, A., Salim, S., Behrens, E. A., . . . Utomo, D. (2019, September). A z = 0 Multiwavelength Galaxy Synthesis. I. A WISE and GALEX Atlas of Local Galaxies. *The Astrophysical Journal Supplement Series*, 244(2), 24. Retrieved from https://dx.doi.org/10.3847/1538-4365/ab3925 (Publisher: The American Astronomical Society) doi: 10.3847/1538-4365/ab3925
- Leroy, A. K., Schinnerer, E., Hughes, A., Rosolowsky, E., Pety, J., Schruba, A., ... Whitmore, B. (2021, November). PHANGS-ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. *The Astrophysical Journal Supplement Series*, 257(2), 43. Retrieved from https://dx.doi.org/10.3847/1538-4365/ac17f3 (Publisher: The American Astronomical Society) doi: 10.3847/1538-4365/ac17f3

- Madore, B. F., & Freedman, W. L. (1991, September). The Cepheid Distance Scale. *Publications of the Astronomical Society of the Pacific*, 103, 933. Retrieved from https://ui.adsabs.harvard.edu/abs/1991PASP..103..933M (Publisher: IOP) doi: 10.1086/132911
- Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., Vauglin, I., & A. (2014, October). HyperLEDA. III. The catalogue of extragalactic distances. *Astronomy & Astrophysics*, 570, A13. Retrieved from https://www.aanda.org/articles/aa/abs/2014/10/aa23496-14/aa23496-14.html (Publisher: EDP Sciences) doi: 10.1051/0004-6361/201423496
- Marel, R. P. v. d., & Kallivayalil, N. (2014, January). Third-Epoch Magellanic Cloud Proper Motions II: The Large Magellanic Cloud Rotation Field in Three Dimensions. *The Astrophysical Journal*, 781(2), 121. Retrieved from http://arxiv.org/abs/1305.4641 doi: 10.1088/0004-637X/781/2/121
- Mazzarella, J. M. (2016). Evolution of the nasa/ipac extragalactic database (ned) into a data mining discovery engine. *Proceedings of the International Astronomical Union*, *12*(S325), 379–384. doi: 10.1017/S1743921316013132
- Richardson, D., Branch, D., Casebeer, D., Millard, J., Thomas, R. C., & Baron, E. (2002, February). A Comparative Study of the Absolute-Magnitude Distributions of Supernovae. *The Astronomical Journal*, 123(2), 745–752. Retrieved from http://arxiv.org/abs/astro-ph/0112051 doi: 10.1086/338318
- Said, K. (2023, October). *Tully-Fisher relation*. arXiv. Retrieved from http://arxiv.org/abs/2310.16053 doi: 10.48550/arXiv.2310.16053
- Simonian, G. V., & Martini, P. (2017, February). Circumstellar dust, PAHs and stellar populations in early-type galaxies: insights from GALEX and WISE. *Monthly Notices of the Royal Astronomical Society*, 464(4), 3920–3936. Retrieved from https://doi.org/10.1093/mnras/stw2623 doi: 10.1093/mnras/stw2623
- Sliwa, K., Wilson, C. D., Iono, D., Peck, A., & Matsushita, S. (2014, November). Around the Ring We Go: The Cold, Dense Ring of Molecular Gas in NGC 1614. *The Astrophysical Journal*, 796, L15. Retrieved from https://ui.adsabs.harvard.edu/abs/2014ApJ...796L..158 (Publisher: IOP) doi: 10.1088/2041-8205/796/1/L15
- Speagle, J. S., Steinhardt, C. L., Capak, P. L., Silverman, J. D., al, & al. (2014, October). A Highly Consistent Framework for the Evolution of the Star-Forming "Main Sequence" from z ~ 0-6. *The Astrophysical Journal Supplement Series*, 214, 15. Retrieved from https://ui.adsabs.harvard.edu/abs/2014ApJS..214....158 (Publisher: IOP) doi: 10.1088/0067-0049/214/2/15
- SQL request. (n.d.). Retrieved 2025-05-08, from http://atlas.obs-hp.fr/hyperleda/fullsql.html
- Tully, R. B., & Courtois, H. M. (2012, April). Cosmicflows-2: I-band Luminosity-H I Linewidth Calibration. *The Astrophysical Journal*, 749, 78. Retrieved from https://ui.adsabs.harvard.edu/abs/2012ApJ...749...78T (Publisher: IOP) doi: 10.1088/0004-637X/749/1/78
- Tully, R. B., & Fisher, J. R. (1977, February). A new method of determining distances to galaxies. *Astronomy and Astrophysics*, 54, 661–673. Retrieved from https://ui.adsabs.harvard.edu/abs/1977A&A....54...661T
- Tully, R. B., Kourkchi, E., Courtois, H. M., Anand, G. S., Blakeslee, J. P., Brout, D., ... Stahl, B. E. (2023, February). Cosmicflows-4. *The Astrophysical Journal*, 944(1), 94. Retrieved from http://arxiv.org/abs/2209.11238 doi: 10.3847/1538-4357/ac94d8
- Whitaker, K. E., van Dokkum, P. G., Brammer, G., Franx, M., , & (2012, August). The Star Formation Mass Sequence Out to z = 2.5. *The Astrophysical Journal*, 754, L29. Retrieved from https://ui.adsabs.harvard.edu/abs/2012ApJ...754L..29W (Publisher: IOP) doi: 10.1088/2041-8205/754/2/L29
- zOMGS WISE Data. (n.d.). Retrieved 2025-05-08, from https://irsa.ipac.caltech.edu/data/WISE/ zOMGS/

Annexes

Masse de Jeans

Une des raisons majeurs de l'étude des nuages moléculaires est l'étude de la formation stellaire. Celle-ci ne peut se produire que par l'effondrement gravitationnel d'un nuage de gaz et de poussières issu d'un milieu interstellaire. Cet effondrement se fait lorsque l'équilibre hydrostatique (Kippenhahn, Weigert, and Weiss (2013)) est rompu par une perturbation extérieure, comme une onde de choc (supernova), ou un passage dans une zone de haute densité. Cet effondrement mène après divers processus physiques à la formation stellaire. Pour connaître l'origine de la formation stellaire, il est nécessaire de se pencher et de quantifier l'instabilité d'un nuage interstellaire. Tel est le rôle du critère de Jeans qui décrit une transition d'un état stable du nuage vers un état instable, par le biais de la Masse de Jeans (ci-après M_J).

$$M_J \propto \left(\frac{RT}{G\mu}\right)^{3/2} \rho^{-1/2}$$

En effet, si la masse du nuage dépasse M_J , alors le nuage devient instable et s'effondre sur lui-même. Survient ensuite l'effondrement isotherme qui réduit M_J tout en augmentant la densité du nuage, ce qui provoque des fragmentations au sein de ce dernier. Plus M_J diminue, plus il y aura de formations stellaires. De plus, on remarque que M_J est proportionnelle à la température et inversement proportionnelle à la densité et donc à la fréquence du nuage durant l'effondrement isotherme. La formation stellaire est donc plus accessible dans des milieux froids et denses. Le critère de Jeans est ainsi un critère fondamental pour comprendre l'origine des formations stellaires de notre Univers.

Céphéides

Lorsque la couche ionisée est opaque, elle piège les photons, élevant ainsi la pression de radiation interne à la couche. Ce processus a pour effet de repousser les couches externes, ce qui cause l'expansion radiale de l'étoile. Cette expansion allant à l'encontre de la force de gravité, les photons perdent de l'énergie et refroidissent, causant ainsi la recombinaison de l'hélium qui redevient transparent, laissant les photons s'échapper. La pression de radiation ne faisant plus autant effet, l'étoile se recontracte avant de reprendre sa forme originale. Dans notre cas, on est dans le visible, et on obtient d'après Madore and Freedman (1991):

$$M_V = -2.88(\pm 0.20)(\log P - 1.00) - 412(\pm 0.09)[\pm 0.29]$$

Tip of the Red Giant Branch

Figure 8: Diagramme de Hertzsprung-Russell (Gaia Data Released 3), (Bressan & Shepherd, 2024)

Relation de Tully-Fisher

La relation de Tully-Fisher utilisée par le catalogue HyperLeda, est (Tully & Courtois, 2012) :

$$M_I = -21.39 - 8.81(\log W - 2.5)$$

Cartographie des Spectres de Galaxies

Dans cette section, on affiche différentes cartographies de chaque spectres (associées à chaque bande spectrale), qui visent à compléter en 4.4. On commence d'abord par afficher les spectres après récupération des fichiers FITS, puis on affiche l'application du masque W3 sur W1, W4, FUV et NUV, et on finit par cartographier la masse stellaire et le taux de formation stellaire SFR (sous W4, FUV et NUV). Les échelles sont normées logarithmiquement.

Tout d'abord, voici les spectres de NGC4548 après avoir récupéré les fichiers FITS:

Figure 9: Spectre de NGC4548 sous différentes bandes

Par application du masque W3 sur les autres bandes, on supprime tous les éléments "extérieurs" à la galaxie :

Figure 10: Spectre de NGC4548 sous différentes bandes et après application du masque

En appliquant l'algorithme de conversion en unités physiques, et en appliquant les relations pour la masse stellaire et le SFR, on obtient finalement les cartographies suivantes.

Pour la masse stellaire :

Figure 11: Cartographie Masse Stellaire de NGC4548

Pour le SFR:

Figure 12: Cartographies SFR de NGC4548

Pour terminer, on détermine le SFR et las masse stellaire en sommant les intensités de tous les pixels (cf 4.4).

Catalogue final de galaxies

Table 3: Données Principales des galaxies

objname	RA	DEC	incl	vrot	diameter	distance	Distance+Extinction
NGC3726	11.5558806	47.0290833	50.47	156.07	0.0941561624687171	13.440022630821629	13.111126270244489
NGC3893	11.8106075	48.7107662	59.88	148.07	0.044858913398781924	18.197008586099845	15.867189189515758
NGC3949	11.8949228	47.8587682	56.03	144.62	0.0376572628370163	18.569491014904624	18.037651840625628
NGC4102	12.1065433	52.7109722	58.66	158.02	0.04952776719563378	18.25576346188067	17.42368456099004
NGC0063	0.2959778	11.4503333	74.09	122.09	0.028631806452626474	18.509726429316476	17.66769933818158
NGC4548	12.5906909	14.4960731	36.86	177.6	0.09243761882631846	15.624279522764855	15.135612484362087
NGC4579	12.6287586	11.8181349	41.86	249.53	0.08353120560454537	19.91590289057611	19.036188648350663
NGC4808	12.9302658	4.3041769	69.21	126.22	0.039341303886342945	17.426091898259298	16.907523510523536
NGC4062	12.0677323	31.8958247	70.02	142.48	0.0689999458032884	14.547889712157106	14.22525302681075
NGC5806	15.0001103	1.8912683	60.4	190.91	0.05044855713502177	20.691882329488966	20.00046072200618
NGC4771	12.8892296	1.2691163	74.51	132.13	0.05162365498694302	17.947336268325266	17.448576424736938
NGC4654	12.7323923	13.1265165	59.78	149.58	0.07867717354393174	13.848412777219831	13.393682509803668
NGC5364	13.9366593	5.0146562	67.51	135.63	0.06336489938676021	15.631476426409531	14.527135922294532
NGC0803	2.0624167	16.0309444	73.11	122.15	0.044550106811055194	21.428906011200596	19.469733187259184
NGC6643	18.3295444	74.5683889	62.72	169.16	0.055315742925435056	20.248833065305597	19.71787004621673
NGC3389	10.8077573	12.5331631	66.16	129.71	0.04465280541365052	19.31968317016924	18.957453526370895
NGC3733	11.5837825	54.8504969	74.92	107.62	0.056604212098401385	22.181964198002195	21.59633223613988
NGC3756	11.6133416	54.2935902	62.19	145.92	0.03175767863272079	20.53997922510627	19.661651770467905
NGC5195	13.4998206	47.2660603	40.55	120.26	0.09159014564293742	7.5753028498840775	7.469989648595356
NGC5523	14.2478719	25.317451	66.23	131.04	0.034028965744492164	21.53773355662177	20.952700249793388
NGC7497	23.1509352	18.177253	71.94	129.94	0.04590381172230277	16.603513514585092	16.059055536059336
NGC4274	12.3307163	29.6143394	68.03	236.51	0.06051300912835023	19.408858775927794	19.014285037397535
NGC7743	23.7392028	9.9340278	37.1	113.05	0.04353602257332011	18.689599716514916	18.090059695782074
NGC2748	9.2286194	76.4753333	68.13	139.02	0.04333599271942121	17.55496629621235	16.862423794527842
NGC3556	11.1919267	55.6742681	67.53	153.18	0.06635119509224956	9.831052152817696	9.596657603342269
NGC3675	11.4356183	43.5864893	59.52	221.2	0.09836684669530736	17.881337486902176	17.430104866194988
NGC4088	12.0927538	50.5388391	71.34	167.3	0.09137949415347564	14.70279831982834	14.305399808200656
NGC5879	15.1629868	57.0001722	72.67	127.98	0.06321916416228031	16.16590416954469	15.318632591791866
NGC2742	9.12599	60.479436	60.67	153.55	0.04773629949844302	20.873727039105493	20.090002925958803
NGC3338	10.7020945	13.7469894	56.44	186.73	0.020504479513539696	23.29163630213965	14.762503038144029
NGC6951	20.6205788	66.1056815	50.84	182.94	0.0531922975850127	20.912213301552878	20.42020040676894
NGC3810	11.6829894	11.471119	48.22	152.78	0.05582757319297126	15.079953418017894	14.724481136705643
NGC3368	10.7793605	11.8199234	51.07	202.18	0.13767299159619648	9.794899854086982	9.44104352897013
NGC4414	12.4408628	31.2235137	56.58	217.46	0.032497409995967425	16.649454157952743	16.479347052046695
NGC4237	12.2865065	15.3239034	51.75	137.92	0.03646269373249255	19.59746962558716	19.315235160837975
NGC4725	12.840725	25.50075	45.39	257.27	0.16175166120758164	12.055910077295337	11.833139924744607
NGC3351	10.7326945	11.7036846	54.64	150.68	0.12046163393369504	9.931160484209336	8.258477692064487
NGC6207	16.7177046	36.832321	64.65	114.85	0.057656562971020314	15.38863149819955	14.475714197813357
NGC1530	4.3908611	75.2955556	58.34	169.11	0.030328347643499724	19.107329810428716	18.322300431166372
NGC0972	2.5703833	29.3112222	65.82	147.58	0.05518852024709852	14.682499678319857	13.375191229856075
NGC2903	9.5361368	21.5015656	67.09	189.0	0.19899801741071219	9.315367652385742	9.114230337446743
NGC3627	11.3375023	12.9916041	67.51	174.7	0.17133604968774557	11.455129414455367	10.887295234711505
NGC4736	12.8480832	41.1203028	31.77	181.59	0.12907696630041982	4.385306977749858	3.92120908338834
NGC5055	13.2636931	42.0292782	54.87	218.13	0.19717359262086076	9.036494737223018	8.23720738146557
NGC4826	12.9454673	21.6821044	63.99	152.12	0.17532697897053706	4.407577932415364	4.3209575526721
NGC4298	12.3591155	14.6060549	58.4	190.18	0.042252143841631784	16.641788566165854	16.065712837113523
NGC4636	12.7137976	2.6887035	64.54	240.61	0.10588848864195727	14.04753102696877	13.455504939324324
NGC0864	2.2576586	6.0022245	47.58	134.02	0.06206528437576142	14.791083881682088	14.401906928808556
NGC5194	13.4979698	47.195151	32.6	133.62	0.22848029436080894	8.578275698828092	8.09841447325789
NGC6015	15.8570152	62.3100354	65.71	146.98	0.09679406958688536	16.958990621092465	16.596633359988502
NGC3813	11.6885152	36.5467683	57.6	157.36	0.035306018920808376	21.527817347243715	21.08919487802414
NGC5665	14.5404878	8.0785656	53.13	130.31	0.03139415149149667	17.418068733916126	16.85543635283498
		2.2,20000	55.10	-30.01			

Table 4: Données Principales des galaxies (suite)

distance reference	Reference type	Mass	SFR W4	SFR FUV	SFR NUV
13.20079517364502	Tully Fisher	14299447069.046679	0.5893041641341326	0.2434923831609258	0.34592216952048527
16.390792846679688	Tully Fisher	27430730340.184345	1.8479647199083629	0.48120776230595647	0.8537377741384289
17.97215461730957	Tully Fisher	16872693992.888224	1.132431993075786	0.4794003293732842	0.721594299789377
18.475662231445312	Tully Fisher	35938748993.40946	7.16386800717018	0.06571739666850945	0.13630238410645154
18.247356414794922	Tully Fisher	11882212213.911537	0.6257740853258625	0.03265830553995578	0.07244563447021891
15.98820972442627	Cepheid	32189009050.81737	0.42432266146181047	0.04967150438524818	0.08305743578178573
19.186697006225586	Tully Fisher	100615205875.34447	1.761928649510438	0.21146920000394293	0.39473312563712326
17.322084426879883	Tully Fisher	11660654781.692669	0.863142158324925	0.17061117939928727	0.27223771544760456
14.74348258972168	Tully Fisher	12759898670.53005	0.4462085110054022	0.07432942818557174	0.13422719275458744
21.4091796875	Tully Fisher	19888432802.580746	0.5670339659188942	0.09786077670282327	0.16787494232689748
19.615524291992188	Tully Fisher	20949522286.645355	0.3354973927133832	0.03171187709983824	0.06635693830881752
14.144906044006348	Tully Fisher	19421325094.19564	1.3759404792827483	0.22923167598975885	0.36187787765504054
14.079913139343262	Tully Fisher	16126206770.587574	0.5502470301591404	0.1743870583595579	0.23416323460708616
22.315160751342773	Tully Fisher	13673805849.317852	0.33076834509124703	0.057054338360871024	0.08002247428777255
20.165088653564453	Tully Fisher	43802393782.820465	1.8552915491591653	nan	0.5203098132740419
20.539974212646484	Tully Fisher	7802898934.6395645	0.7152903367186132	0.252337241491253	0.3942178065969006
21.60727882385254	Tully Fisher	11612637314.973118	1.0323519373943941	0.006067604208355799	0.8970481119943
20.825721740722656	Tully Fisher	14020912436.256922	0.5739867520727595	0.11241505202133187	0.19494843801840328
7.287858963012695	Tully Fisher	21646095274.889732	2.310743406050547	0.11526878695334614	0.8309411642141546
20.258169174194336	Tully Fisher	14075399458.40075	0.24346414346837178	0.06797775290745382	0.11714520498366425
16.017698287963867	Tully Fisher	7065945654.660097	0.4273368478762738	nan	nan
19.706064224243164	Tully Fisher	58137926008.22322	0.7817550798157012	0.04623380283146335	0.10848021041042716
20.258169174194336	Tully Fisher	24378221857.8768	0.4564259451557594	0.0022159261957080283	0.015010869435571105
18.138437271118164	Tully Fisher	13368287085.217012	0.8593095332354894	0.09524799245491028	0.23237676317000205
9.132715225219727	Tully Fisher	18735729889.608707	1.3103380041575696	0.13336747796922335	0.21853292035903626
17.084409713745117	Tully Fisher	66631645076.60744	1.5875718729518427	0.09121103677245183	0.1978035746367954
13.633270263671875	Tully Fisher	29030936138.085926	2.3176990322410638	0.2028816020640388	0.36460101776795906
16.850000381469727	Tully Fisher	10633494481.124084	0.34914434705762243	0.09024032935596368	0.14312249075568714
20.730037689208984	Tully Fisher	16933778365.13857	0.9240339088861114	0.20040836704452694	0.4414372720906663
22.94034194946289	Tully Fisher	32794260328.019833	0.7638078022756614	0.282158030330032	0.60615068791282
21.39932632446289	snI	83497515526.76865	2.7988383414975666	0.3080306993658651	0.6287965260781512
15.296783447265625	Tully Fisher	19750679312.28083	1.4238428750027705	0.31439871079793347	0.5425401340089478
10.37051010131836	Cepheid	31673416229.37899	0.35986538865718853	0.04753057077228655	0.09159578424752504
17.45018196105957	Cepheid	55644835100.43477	2.7172246471243984	0.19562714288093094	0.40915035683106965
18.62944984436035	Tully Fisher	15474895968.586454	0.5386139853649076	0.061558405159268755	0.1426674119129013
12.184288024902344	Cepheid	42434212017.23145	0.4618820492781044	0.1326576611795278	0.16290493606722034
9.858253479003906	Cepheid	20845800580.548668	1.031516847668459	0.09234058070987405	0.17893704179194658
15.725337028503418	Tully Fisher	8157358714.263436	0.4733579856138766	nan 0.16553549828569808	0.24915167484057318
19.706064224243164	Tully Fisher	26386467572.097176	1.3883297985901968		0.22958249316699464 1.037284284460064
14.608311653137207	Tully Fisher	28756871514.622208 41676010081.235085	2.4877327218557994	nan	
8.953648567199707	TRGB		2.2524323162030075	0.3009318363361799 0.37879209030123334	0.5102931701312616
9.90375804901123	Cepheid TRGB	82559257931.24634 19529579251.423336	3.614678157551361		0.7290615320224233
4.3052659034729	TRGB	49885054308.35973	0.37432930525655217	0.11394658169833774	0.16864320757412204
8.83079719543457	TRGB	14796818003.143066	1.7299658214170088	0.2104722599371558	0.5571489158895803
4.3052659034729 14.521114349365234	TRGB	34683191843.22646	0.18143636260087634 1.0916255051305088	0.023793548641839544 0.10378176218288872	0.049931002719338 0.21243941268387032
14.628506660461426	Tully Fisher	52381383215.917336	0.681888836140993	0.009905936792016623	0.022075688864246844
15.296783447265625	Tully Fisher Tully Fisher	13763734039.572424	0.40809059250139323	0.16738521934724024	0.3243237236461282
8.356032371520996	TRGB	52440574550.78733	3.790678406076409	0.7993652279272515	1.5503878826214816
17.807382583618164	Tully Fisher	16569527157.06731	0.509197204300865	0.2107710811365852	0.36665945620325147
21.807212829589844	Tully Fisher	20655772168.84184	1.4227775486217775	0.220750791682356	0.36953834450064116
17.084409713745117	Tully Fisher	6347663858.182389	0.7673588985985326	0.09573968580704428	0.1614082998857284
11.0011001101110111	Turry Prisiter	0011000000.102000	0.1010000000000000000000000000000000000	0.0001000000104420	0.101100200001201

18

SQL request (n.d.) EDD: Select Table & Columns (n.d.) Galactic DUST Reddening & Extinction (n.d.) zOMGS WISE Data (n.d.)