Dummit and Foote Exercises.

Marco Biroli

October 16, 2019

Chapter 1

Preliminaries.

1.1

• We know that:

$$20 = 2^2 \cdot 5$$
 and 13 is prime.

So (20, 13) = 1 and lcm(20, 13) = 260 and $2 \cdot 20 - 3 \cdot 13 = 1 = (20, 13)$.

• Similarly we have:

$$69 = 3 \cdot 23$$
 and $372 = 2^2 \cdot 3 \cdot 31$ so $(69, 372) = 3$ and $lcm(69, 372) = 2^2 \cdot 3 \cdot 23 \cdot 31 = 8556$

We also have:

$$372 = 69 \cdot 5 + 27$$
, $69 = 27 \cdot 2 + 15$, $27 = 15 \cdot 1 + 12$, $15 = 12 \cdot 1 + 3$, $12 = 4 \cdot 3$

So back-feeding this we have:

$$3 = 15 - 12 = 2 \cdot 15 - 27 = 2 \cdot 69 - 5 \cdot 27 = 27 \cdot 69 - 5 \cdot 372$$

• . . .

1.2

Suppose that k|a and k|b then $a=c\cdot k$ and $b=e\cdot k$. So as+bt=cks+ekt=k(cs+et) therefore k|(as+bt).

1.3

Suppose n is composite, so n is not prime and can be written $n = \sum_{i=1}^k p_i^{\alpha_i}$. Then take $a = \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor} p_i^{\alpha_i}$ and $b = \sum_{i=1}^k p_i^{\alpha_i}$. Then it is clear that n|ab but $n \not|a$ and $n \not|b$.

1.4

Let a, b, N be fixed integers with a, b non-zero, set d = (a, b) and suppose x_0, y_0 are particular solutions to ax + by = N. Then notice that taking $x = x_0 + \frac{b}{d}t$ and $y = y_0 - \frac{a}{d}t$ gives:

$$ax + by = ax_0 + by_0 + \frac{abt - abt}{d} = N$$

1.5

$\varphi(1)$	$\varphi(2)$	$\varphi(3)$	$\varphi(4)$	$\varphi(5)$	$\varphi(6)$	$\varphi(7)$	$\varphi(8)$	$\varphi(9)$	$\varphi(10)$
1	1	2	2	4	2	6	4	6	4

1.6

We prove the well-ordering of \mathbb{Z}^+ by induction on the cardinality of the set A. The base case is trivial, now take a subset A of \mathbb{Z}^+ of cardinality n. Then take any element $x \in A$. If $\forall m \in A, \ x < m$ we are done. Otherwise it means that $\exists y \in A, \ y < x$. Then take $B = A \setminus \{x\}$ by induction there is a minimal element $z \in B$ and from definition z < y < x so $\forall m \in A, \ z < m$. This concludes the proof.

1.7

Take p a prime. Suppose there exist a, b integers such that $a^2 = pb^2$, then $p|a^2$, since p is prime this means that p|a. So $k^2p^2 = pb^2$ therefore $k^2p = b^2$. By the same reasoning we get that p|b so we need $k^2p = m^2p^2$ which gives that p|k, repeating this argument recursively we arrive at a contradiction.

1.8

Let p a prime. Take $n \in \mathbb{Z}^+$ then n can be written as: $\sum_{i=1}^k p_i^{\alpha_i}$. Now suppose that $p^{\beta}|n!$, by the properties of p this means that p^{β} must divide n or (n-1)!. Repeating this recursively gives that p^{β} must divide at least one (n-i) with $i \in [0, n-1]$.

Chapter 2

Introduction to Groups.

2.1 Intro

2.1.1

- $a \star b = a b$ is not associative since $a \star (b \star c) = a (b c) = a b + c \neq a b c = (a b) c = (a \star b) \star c$.
- $a \star b = a + b + ab$ is associative since:

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + ab + ac + abc$$
$$(a \star b) \star c = (a + b + ab) \star c = a + b + ab + c + ac + bc + abc$$

2.2 Dihedral Groups.

2.2.1

Take $x \in D_{2n}$ that is not a power of r then x can be written as $r^k s$. So $rx = r^{k+1}s = r^k(rs) = r^k(sr^{-1}) = xr^{-1}$.

2.2.2

Take $x \in D_{2n}$ that is not a power of r then $x^2 = r^k s r^k s = r^k s s r^{-k} = r^k r^{-k} = 1$.

2.2.3

Let x, y be any elements of order 2 in any group G not that this is equivalent to $x = x^{-1}$ and $y = y^{-1}$. Suppose that t = xy, then tx = xyx and $xt^{-1} = xy^{-1}x^{-1} = xyx$. So $tx = xt^{-1}$.