# Sfwr Eng/Comp Sci 4F03 (Winter 2017) Programming Assignment 3

# 1 Assignment

#### 1.1 Problem

You are to design a program which will utilize UDP sockets and XDR remote procedure call (RPC) to construct a string S in parallel using N threads. S will be broken down into M segments of length L where the characters of each segment satisfy a property F.

#### 1.2 Program Parameters

When "make" is called within the PA3 folder, your project should generate 3 programs:

- ./server\_verify, the application has no input parameter,
- ./server\_append < host\_name >, the application has no input parameter,
- ./client F N L M C0 C1 C2 host\_name1 host\_name2, the first 7 input parameters are similar to those in PA1 and PA2, and the two last ones are host names of append and verify servers, respectively

#### 1.3 Specification

The specification for the program will be the same as PA1 and PA2 with the following additions (see Figure 1):

- Your *client* program will consist of n threads.
- The client uses a remote procedure RPC\_InitAppendServer to send f, L, M, C0, C1, C2, host\_name2 parameters to the append server, and RPC\_InitVerifyServer to send N, L, M parameters to the verify server.
- On receiving the parameters, the servers setup themselves. Moreover, the verify server also initializes a UDP socket to receive S from the append server.
- The client launches N local threads.



Figure 1: Program flow diagram

- Each thread will try to append its assigned character to S by calling a remote procedure RPC\_Append.
- RPC\_Append will either return 0, if appending was successful, or -1 when S is complete.
- When S is fully constructed, the append server will send S to the verify server via UDP socket. Moreover, each client's thread that receives -1 from the append server will then call another remote procedure RPC\_GetSeg from the verify server to retrieve a segment to verify. If the segment satisfies the property f, then a local counter is incremented.
- Each thread will continue to call RPC\_GetSeg() until RPC\_GetSeg returns a string starting with a "-", indicating that no more segments are available.
- The threads will then perform a summation reduction of the local counter, and the master thread will output the string S and the count to terminal.

• Both remote procedures should run on moore. Client threads should be able to run on any machine in the CAS network.

#### 1.4 Example

Please see Figure 1 for reference:

- 1. Thread\_1 sleeps for a random amount and then tries to append "a" to S by calling PRC\_Append("a").
- 2. It continues to do so until it receives a -1.
- 3. Thread\_n has received value -1, and now calls PRC\_GetSeg(n).
- 4. Since this is the first time this call was performed, RPC\_GetSeg will setup a UDP socket to receive S from the append server. It then sends the first segment back to Thread\_n.
- 5. Thread\_n verifies the segment, and then calls PRC\_GetSeg(0) again to get the next available segment.
- If Thread\_n receives a '-', it knows to perform a summation reduction with all threads.
- 7. The program then prints out the string as well as the total count of valid segments.

### 1.5 Grading

- Up to 40% for generating S using N threads with RPC\_Append.
- Up to 50% Above + verify server gets string S from append server via UDP.
- Up to 60% Above + checking segments serially using RPC\_GetSeg.
- Up to 70% Above + checking segments using N threads.
- Up to 100% Above + for generating S using N threads and enforcing that all segments will satisfy property F (check is 100%).
  - This also entails a check when the program starts weather segments of length L and alphabet size N are capable of satisfying property F
  - If the check fails, inform user that other parameters need to be selected.

## 1.6 Submission

Your solutions must be submitted by  $\underline{\bf 11:59pm~on~Monday~March~20}$  in the provided SVN folder (see below)

All your source files and makefile should be located in PA3.

Please ensure that the program will work on the department machines.