Całkowianie numeryczne Wykład z przedmiotu Metody numeryczne

Jakub Bielawski Uniwersytet Ekonomiczny w Krakowie

12 listopada 2016

Całkowanie numeryczne

Problematyka:

Całkowanie numeryczne funkcji polega na obliczaniu wartości całki oznaczonej:

$$\int_a^b f(x)\,\mathrm{d}x$$

na podstawie zbioru wartości funkcji podcałkowej w przedziale [a, b].

Całkowanie numeryczne w oparciu o wzory Newtona-Cotesa polega na zastąpieniu funkcji całkowanej wielomianem interpolacyjnym zadanego stopnia, którego całkę łatwo już wyliczyć korzystając z odpowiednich formuł.

Plan:

- Metoda trapezów
- Metoda Simpsona (parabol)
- Metoda ³/₈ Newtona

Dla uzyskania lepszego przybliżenia wartości całki przedział całkowania dzieli się na odpowiednią liczbę podprzedziałów oznaczaną zwykle przez n i zastosowaniu danej metody całkowania na każdym z podprzedziałów z osobna.

Metoda trapezów

W metodzie trapezów w każdym z n podprzedziałów przybliżamy funkcję całkowaną wielomianem stopnia pierwszego, tj. funkcją liniową. W związku z tym potrzebujemy obliczyć wartość funkcji podcałkowej w n+1 punktach przedziału [a,b], które obliczamy wykorzystując krok h.

$$(7.1) h = \frac{b-a}{n}$$

$$x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots x_k = a + kh, \dots x_n = b$$

 $y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), \dots y_k = f(x_k), \dots y_n = f(x_n)$

Metoda trapezów

(7.2)
$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} (y_0 + 2y_1 + 2y_2 + \ldots + 2y_{n-1} + y_n)$$

Metoda trapezów

Obliczenia wygodnie jest zestawić w następującej tabeli:

Xi	<i>X</i> ₀	<i>X</i> ₁	<i>X</i> ₂	 x_{n-1}	Xn
Уi	y 0	<i>y</i> ₁	y 2	 y_{n-1}	Уn
α_i	1	2	2	 2	1

Wówczas wyrażenie w nawiasie formuły (7.2) jest iloczynem dwóch ostatnich wierszy powyższej tabeli z pominięciem kolumny nagłówka.

Uwaga 7.1

Jeżeli liczba podprzedziałów nie jest podana, należy przyjąć n=1 i w powyższych wzorach nie wystąpią współczynniki $\alpha_i = 2$ (pierwszy i ostatni współczynnik zawsze są równe 1).

Blad metody trapezów

Błąd metody trapezów

Metoda trapezów jest metodą dokładną dla wielomianów stopnia co najwyżej pierwszego, a błąd bezwzględny wartości całki R jest oszacowany przy pomocy drugiej pochodnej funkcji podcałkowej:

(7.3)
$$R \leqslant \frac{1}{12}(b-a)h^2f''(\xi),$$

gdzie $\xi \in (a, b)$.

W zastosowaniach szacujemy błąd wykorzystując wartość największą modułu drugiej pochodnej na przedziale (a,b), tj. $M_2 = \max_{x \in (a,b)} |f''(x)|$.

Przykład 7.1.

Wykorzystać metodę trapezów do oszacowania wartości całki

$$\int_{-1}^{1} \frac{x+1}{x^2+1} \, \mathrm{d}x$$

przyjmując n=3. Następnie obliczyć całkę analitycznie i wyznaczyć błąd uzyskanego przybliżenia.

Rozwiązanie:

Obliczamy najpierw krok $h = \frac{1 - (-1)}{3} = \frac{2}{3}$.

Konstruujemy tabelę wartości całkowanej funkcji oraz współczynników α_i .

Xi	-1	$-\frac{1}{3}$	$\frac{1}{3}$	1
Уi	0	3 5	6 5	1
α_i	1	2	2	1

Wyznaczamy przybliżoną wartość całki korzystając ze wzoru (7.2):

$$\int_{-1}^{1} \frac{x+1}{x^2+1} \, \mathrm{d}x \approx \frac{\frac{2}{3}}{2} \left(0 \cdot 1 + \frac{3}{5} \cdot 2 + \frac{6}{5} \cdot 2 + 1 \cdot 1 \right) = \frac{23}{15} \approx 1,5(3)$$

Metoda trapezów

Obliczamy całkę analitycznie:

$$\int_{-1}^{1} \frac{x+1}{x^2+1} dx = \int_{-1}^{1} \frac{x}{x^2+1} + \frac{1}{x^2+1} dx = \left[\frac{1}{2}\ln(x^2+1) + \arctan(x)\right]_{-1}^{1}$$

$$= \frac{1}{2}\ln(2) + \arctan(1) - \frac{1}{2}\ln(2) - \arctan(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right)$$

$$= \frac{\pi}{2} \approx 1,5708$$

Wobec tego bład oszacowania jest równy:

$$R \approx |1,5708 - 1,5333| = 0,0375$$

Metoda Simpsona

W metodzie Simpsona w każdym z n podprzedziałów przybliżamy funkcję całkowaną wielomianem stopnia drugiego, tj. funkcją kwadratową (stąd inna nazwa – metoda parabol). W związku z tym potrzebujemy obliczyć wartość funkcji podcałkowej w 2n+1 punktach przedziału [a,b], które obliczamy wykorzystując krok h.

$$(7.4) h = \frac{b-a}{2n}$$

$$x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots x_k = a + kh, \dots x_{2n} = b$$

 $y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), \dots y_k = f(x_k), \dots y_{2n} = f(x_{2n})$

Metoda Simpsona

(7.5)
$$\int_{3}^{b} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 4y_{2n-1} + y_{2n})$$

Obliczenia wygodnie jest zestawić w następującej tabeli:

	Xi	<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	X4	 x_{2n-1}	X ₂ n
	Уi	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	 y_{2n-1}	y _{2n}
ĺ	α_i	1	4	2	4	2	 4	1

Wówczas wyrażenie w nawiasie formuły (7.5) jest iloczynem dwóch ostatnich wierszy powyższej tabeli z pominięciem kolumny nagłówka.

Uwaga 7.2

Jeżeli liczba podprzedziałów nie jest podana, należy przyjąć n=1 i w powyższych wzorach wystąpią jedynie współczynniki: $\alpha_0=1$, $\alpha_1=4$, $\alpha_2=1$.

Bląd metody Simpsona

Błąd metody Simpsona

Metoda Simpsona jest metodą dokładną dla wielomianów stopnia co najwyżej trzeciego, a błąd bezwzględny wartości całki R jest oszacowany przy pomocy czwartej pochodnej funkcji podcałkowej:

(7.6)
$$R \leqslant \frac{1}{180}(b-a)h^4f^{(4)}(\xi),$$

gdzie $\xi \in (a, b)$.

Jako oszacowanie pochodnej znów możemy wykorzystać wartość największą modułu czwartej pochodnej na przedziale (a,b), tj. $M_4 = \max_{x \in (a,b)} |f^{(4)}(x)|$.

Przykład 7.2.

Wykorzystać metodę Simpsona do aproksymacji wartości arc sin $\frac{4}{5}$ przyjmując n=2. Następnie oszacować błąd tego przybliżenia wykorzystując wzór (7.6) i porównać go z błędem rzeczywistym wiedząc, że arc sin $\frac{4}{5}\approx 0,9273$.

Rozwiązanie:

Wyrażenie arc sin $\frac{4}{5}$ zapisujemy za pomocą całki

$$\arcsin\frac{4}{5} = \arcsin\frac{4}{5} - \arcsin 0 = \int_0^{\frac{4}{5}} \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

Obliczamy krok $h=\frac{\frac{4}{5}-0}{2\cdot 2}=\frac{1}{5}$ oraz wartości funkcji podcałkowej w kolejnych węzłach:

Xi	0	$\frac{1}{5}$	2 5	<u>3</u> 5	$\frac{4}{5}$
уi	1	$\frac{5\sqrt{6}}{12}$	$\frac{5\sqrt{2}}{21}$	<u>5</u>	<u>5</u>
α_i	1	4	2	4	1

Wyznaczamy przybliżoną wartość wyrażenia korzystając ze wzoru (7.5):

$$\arcsin \frac{4}{5} = \int_0^{\frac{4}{5}} \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x \approx \frac{\frac{1}{5}}{3} \left(1 \cdot 1 + \frac{5\sqrt{6}}{12} \cdot 4 + \frac{5\sqrt{2}}{21} \cdot 2 + \frac{5}{4} \cdot 4 + \frac{5}{3} \cdot 1 \right)$$

$$\approx 0.9288$$

Metoda Simpsona

Aby oszacować dokładność przybliżenia z wykorzystaniem wzoru (7.5) obliczamy pochodne funkcji podcałkowej $f(x) = \frac{1}{\sqrt{1-x^2}}$:

$$f'(x) = \frac{x}{(\sqrt{1-x^2})^3} \qquad f''(x) = \frac{2x^2 + 1}{(\sqrt{1-x^2})^5}$$
$$f'''(x) = \frac{6x^3 + 9x}{(\sqrt{1-x^2})^7} \qquad f^{(4)}(x) = \frac{24x^4 + 72x^2 + 9}{(\sqrt{1-x^2})^9}$$

Czwarta pochodna jest na przedziałe $\left[0,\frac{4}{5}\right]$ funkcją rosnącą (licznik rośnie z rosnącym argumentem, a mianownik – maleje), wobec czego wartość największą osiąga na prawym krańcu przedziału, tj. w punkcie $\frac{4}{5}$. Ponieważ $M_4=f^{(4)}\left(\frac{4}{5}\right)\approx 6441$, to błąd przybliżenia obliczamy za pomocą wzoru (7.6):

$$R \leqslant \frac{1}{180} \left(\frac{4}{5} - 0 \right) \left(\frac{1}{5} \right)^4 6441 \approx 0,0458.$$

Rzeczywisty błąd aproksymacji wynosi: $R \approx 0,0015$. Widać, że oszacowanie uzyskane ze wzoru (7.5) znacznie przekracza rzeczywisty błąd aproksymacji.

Metoda $\frac{3}{8}$ Newtona

W metodzie $\frac{3}{8}$ Newtona w każdym z n podprzedziałów przybliżamy funkcję całkowaną wielomianem stopnia trzeciego. W związku z tym potrzebujemy obliczyć wartość funkcji podcałkowej w 3n+1 punktach przedziału [a,b], które obliczamy wykorzystując krok h.

$$(7.7) h = \frac{b-a}{3n}$$

$$x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots x_k = a + kh, \dots x_{3n} = b$$

 $y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), \dots y_k = f(x_k), \dots y_{3n} = f(x_{3n})$

Metoda $\frac{3}{8}$ Newtona

(7.8)
$$\int_a^b f(x) dx \approx \frac{3}{8} h(y_0 + 3y_1 + 3y_2 + 2y_3 + 3y_4 + \ldots + 3y_{3n-1} + y_{3n})$$

Obliczenia wygodnie jest zestawić w następującej tabeli:

Xi	<i>X</i> ₀	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	<i>X</i> 7	 X3n-1	X3n
Уi	<i>y</i> 0	<i>y</i> ₁	y 2	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> 6	<i>y</i> ₇	 <i>y</i> 3 <i>n</i> −1	<i>y</i> 3n
α_i	1	3	3	2	3	3	2	3	 3	1

Wówczas wyrażenie w nawiasie formuły (7.8) jest iloczynem dwóch ostatnich wierszy powyższej tabeli z pominięciem kolumny nagłówka.

Uwaga 7.3

Jeżeli liczba podprzedziałów nie jest podana, należy przyjąć n=1 i w powyższych wzorach wystąpią jedynie współczynniki: $\alpha_0 = 1$, $\alpha_1 = 3$, $\alpha_2 = 3$, $\alpha_3 = 1$.

Blad metody $\frac{3}{8}$ Newtona

Błąd metody ³/₈ Newtona

Metoda ³/₈ Newtona jest metodą dokładną dla wielomianów stopnia co najwyżej trzeciego, a błąd bezwzględny wartości całki R jest oszacowany przy pomocy czwartej pochodnej funkcji podcałkowej:

(7.9)
$$R \leqslant \frac{1}{80}(b-a)h^4f^{(4)}(\xi),$$

gdzie $\xi \in (a, b)$.

Jako oszacowanie pochodnej stosujemy zwykle wartość największą modułu czwartej pochodnej na przedziale (a, b), tj. $M_4 = \max_{x \in (a, b)} |f^{(4)}(x)|$.

Przykład 7.3.

Wyznaczyć minimalną liczbę podprzedziałów, która pozwoli oszacować wartość ln 4 z dokładnością do 3 miejsc po przecinku przy zastosowaniu metody $\frac{3}{8}$ Newtona.

Rozwiązanie:

Wyrażenie In 4 zapisujemy za pomocą całki

$$\ln 4 = \ln 4 - \ln 1 = \int_{1}^{4} \frac{1}{x} dx$$

Obliczamy krok, który zależy od niewiadomej liczby podprzedziałów

$$h = \frac{4-1}{3n} = \frac{1}{n}$$

Obliczamy kolejne pochodne funkcji podcałkowej $f(x) = \frac{1}{x}$:

$$f'(x) = -\frac{1}{x^2}$$
 $f''(x) = \frac{2}{x^3}$ $f'''(x) = -\frac{6}{x^4}$ $f^{(4)}(x) = \frac{24}{x^5}$

Czwarta pochodna funkcji podcałkowej jest funkcją malejącą na przedziale [1,4], wobec tego wartość największą osiąga na lewym krańcu przedziału, tj. w punkcie 1, stad $M_4 = f^{(4)}(1) = 24$.

Korzystając ze wzoru (7.9) możemy przystąpić do wyznaczenia minimalnej liczby podprzedziałów:

$$\frac{1}{80}(4-1)\left(\frac{1}{n}\right)^4 24 \leqslant \frac{1}{1000}$$

Skąd po przekształceniach otrzymujemy:

$$n \ge 5,4772$$

Wobec tego przyjmujemy n = 6.

Metoda $\frac{3}{9}$ Newtona

Sprawdzimy dodatkowo, czy rzeczywiście zastosowanie metody ³/_o Newtona z podziałem na 6 podprzedziałów pozwoli obliczyć In 4 z dokładnością do 3 miejsc po przecinku.

Obliczamy krok $h = \frac{1}{6}$ i tworzymy tabelę wartości funkcji podcałkowej:

Xi	1	$\frac{7}{6}$	$\frac{4}{3}$	$\frac{3}{2}$	<u>5</u> 3	$\frac{11}{6}$	2	13 6	$\frac{7}{3}$	<u>5</u>	8 3	$\frac{17}{6}$	3	$\frac{19}{6}$	$\frac{10}{3}$	$\frac{7}{2}$	$\frac{11}{3}$	2 <u>3</u>	4
Уi	1	6 7	$\frac{3}{4}$	$\frac{2}{3}$	3 5	$\frac{6}{11}$	$\frac{1}{2}$	$\frac{6}{13}$	$\frac{3}{7}$	2 5	3 8	$\frac{6}{17}$	$\frac{1}{3}$	$\frac{6}{19}$	$\frac{3}{10}$	2 7	$\frac{3}{11}$	$\frac{6}{23}$	$\frac{1}{4}$
α_i	1	3	3	2	3	3	2	3	3	2	3	3	2	3	3	2	3	3	1

Wstawiamy wartości do wzoru (7.8) i otrzymujemy oszacowanie In 4:

$$\ln 4 = \int_{1}^{4} \frac{1}{x} dx \approx \frac{3}{8} \cdot \frac{1}{6} \left(1 \cdot 1 + \frac{6}{7} \cdot 3 + \frac{3}{4} \cdot 3 + \frac{2}{3} \cdot 2 + \frac{3}{5} \cdot 3 + \dots + \frac{6}{23} \cdot 3 + \frac{1}{4} \cdot 1 \right)$$

 $\approx 1,386346$

Porównując otrzymaną wielkość z wartością tablicową In $4 \approx 1,386294$ widzimy, że bład przybliżenia wynosi $R \approx 5, 2 \cdot 10^{-5}$.