תזכורת מתרגולים אחרונים

• מבנה סכמתי של קומפיילר

- ניתוח תחבירי:
- LL(1):Top Down -
 - :Bottom up
 - LR(0)
 - SLR •
 - LR(1) •

בניית מנתח LR

<u>שלבי בניית המנתח:</u>

- 1) בניית אוטומט פרפיקסי לפי הדקדוק הנתון
- בניית טבלת הניתוח ע"פ האוטומט הפרפיקסי (2

<u>הרצת המנתח על קלט:</u>

בכל צעד המנתח יכול:

להכניס תו מהקלט למחסנית (Shift)

:וא

לצמצם תבנית פסוקית בראש המחסנית -למשתנה הגוזר אותה (Reduce)

כלומר: בכל פעם שמגיעים לתת-עץ בסריקת הקלט, בונים אותו.

מנתח (LR(O – בניית האוטומט

≺lookahead אין•

מצפים מהאלגוריתם לזהות כל כלל לאחר קריאת כל החלק הימני שלו, בלי קריאת ההמשך.

- $A \rightarrow \alpha\beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) כאשר
- כל אחד ממצבי אוטומט המנתח הוא קבוצת פריטי (LR(0.
 - פריט מסמל את מצבו של המנתח.
- משמעותו: זיהינו את מה שנמצא לפני הנקודה, וכעת אנו מצפים למצוא את מה שנמצא מימינה.

? $A \rightarrow \epsilon$ אילו פריטים אפשר לקבל עבור הכלל:

מנתח (LR(O – בניית האוטומט

- $A \rightarrow \alpha\beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא ($A \rightarrow \alpha \bullet \beta$) הוא
- כל אחד ממצבי אוטומט המנתח הוא קבוצת פריטי (LR(0.
- :על קבוצת פריטים I מוגדר באופן אינדוקטיבי (closure) על קבוצת פריטים \bullet
 - closure(I)=I: בסיס:
 - אז (A \rightarrow α \bullet B β) ∈closure(I) צעד: אם
 - $(B \rightarrow \bullet \gamma) \in closure(I)$ גם $B \rightarrow \gamma \in P$ לכל

קבוצת פריטי LR(0)

 $X \in T \cup V$ ימן: $X \in X \in X \cup X$ ימן:

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta) | (A \to \alpha \bullet X \beta) \in I \}$$

מנתח (LR(O – בניית האוטומט

לפני בניית האוטומט מוודאים שיש כלל התחלתי בודד ולא רקורסיבי ובמידה ואין אז נוסיף S' o S'.

ניתן תמיד להוסיף את הכלל ולא לחשוב על זה (אלא אם נאמר אחרת).

אלגוריתם בנית האוטומט

– יסמן את המצב ההתחלתי של האוטומט, ויוגדר כ I_0 המצב המצב ויוגדר כ $I_0 = Closure(\{S'
ightarrow S\})$

<u>כל עוד קיים מצב שלא פותח:</u>

- (I) בוחרים מצב שלא פותח (I).
- $i \in I$ עבורו קיים פריט $X \in V \cup T$ מהצורה $X \in V \cup T$.2
- (ומוסיפים אותו לקב' המצבים, אם עדיין לא חלק ממנה) $\delta(I,X)$ מחשבים את 1.
 - $\delta(I,X)$ יוצרים קשת עם הסימן X, שמובילה למצב 2.

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow aA$$

3)
$$A \rightarrow a$$

4)
$$B \rightarrow b$$

LR (0) - דוגמא

• בניית אוטומט פרפיקסי:

$$\begin{array}{c|c}
\mathbf{S} & \rightarrow \bullet \mathbf{S} \\
S & \rightarrow \bullet \mathbf{a} \mathbf{A} \\
S & \rightarrow \bullet \mathbf{a} \mathbf{B}
\end{array}$$

$$I_0 = closure(\{S' \rightarrow \bullet S\})$$

```
0) S' \rightarrow S
```

1) $S \rightarrow aA$

2) S \rightarrow aB

3) $A \rightarrow a$

4) B \rightarrow b

LR (0) - דוגמא

<u>בניית אוטומט פרפיקסי:</u>

- $A \to \alpha \cdot X\beta \in I$ עבורו קיים פריט $X \in V \cup T$ לכל סימן.
- (ומוסיפים אותו לקב' המצבים, אם עדיין לא חלק ממנה) $\delta(\emph{I},\emph{X})$ מחשבים את 1.
 - . $\delta(I,X)$ יוצרים קשת עם הסימן X, שמובילה למצב -2

$$\delta(I,X) = \bigcup \{closure(A \to \alpha X \bullet \beta) | (A \to \alpha \bullet X \beta) \in I \}$$

0) $S' \rightarrow S$

1) $S \rightarrow aA$

2) S → aB

3) $A \rightarrow a$

4) $B \rightarrow b$

LR (0) - דוגמא

<u>בניית אוטומט פרפיקסי:</u>

מנתח (LR(0 – בניית טבלת הניתוח

מנתח (LR(O – בניית טבלת הניתוח

הגדרת טבלת goto למנתח (LR(0):

$$goto[i, X] = \begin{cases} j & \delta(I_i, X) = I_j \\ error & otherwise \end{cases}$$

אלגוריתם הניתוח

Parser:

```
Q.push( (0,1) //where 0 is the initial state pf the prefix automaton while true do

k = Q.top().state
t = next token
do action[k, t]
end while
```


- 0) $S' \rightarrow S$
- 1) $S \rightarrow aA$
- 2) $S \rightarrow aB$
- 3) $A \rightarrow a$
- 4) $B \rightarrow b$

	а	b	\$	
0	s2			
1			acc	
2	s5	s6		on
3	r2	r2	r2	Action
4	r1	r1	r1	⋖
5	r3	r3	r3	
6	r4	r4	r4	

	S	A	В
0	1		
1			
2			3
3			
4			
5			
6			

goto

דוגמא (0) ברצה - LR - הרצה ab\$

ab\$ רצף האסימונים בקלט:

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$

- :(k אל מצב shift בצע) **shift(k)**
 - (k,t) דחוף למחסנית את (1.
- .2. קדם את הראש הקורא את הקלט צעד אחד ימינה.

0) $S' \rightarrow S$ 1) $S \rightarrow aA$ 2) $S \rightarrow aB$ 3) $A \rightarrow a$ 4) $B \rightarrow b$

דוגמא (0) - הרצה ab\$

ab\$ רצף האסימונים בקלט:

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$
Action[6,\$] = Reduce (4)	(0,), (2,a), (6,b)	\$
	(0,), (2,a), (3B)	\$

:(j לפי הגזירה שמספרו הוא reduce בצע) - $\mathbf{reduce}(\mathbf{j})$

הגזירה בסדר הפוך תיתן את הגזירה הימנית ביותר.

- הוצא $|\alpha|$ זוגות מהמחסנית. סמן ב k' את המצב שהתגלה בראש 1. המחסנית.
 - . (goto[k',A],A) דחוף למחסנית את 2
- ניתן להוציא כפלט את j (מספר כלל הגזירה בו השתמשנו). הדפסת כללי

	S	Α	В
0	1		
1			
2			3
3			
4			
5			
6			

goto

- 0) $S' \rightarrow S$
- 1) $S \rightarrow aA$
- 2) $S \rightarrow aB$
- 3) $A \rightarrow a$
- 4) $B \rightarrow b$

- הרצה	LR	(0)	רוגמא	7
		•	- I- Ċ	

ab\$ רצף האסימונים בקלט:

а	b	\$	
s2			
		acc	
s5	s6		on
r2	r2	r2	Action
r1	r1	r1	⋖
r3	r3	r3	
r4	r4	r4	
	s2 s5 r2 r1 r3	s2 s5 s6 r2 r2 r1 r1 r3 r3	s2 acc s5 s6 r2 r2 r2 r1 r1 r1 r3 r3 r3

	S	Α	В
0	1		
1			
2			3
3			
4			
5			
6			

פעולה	מחסנית	קלט
Action[0,a] = Shift 2	(0,)	ab\$
Action[2,b] = Shift 6	(0,), (2,a)	b\$
Action[6,\$] = Reduce (4)	(0,), (2,a), (6,b)	\$
Action[3,\$] = Reduce (2)	(0,), (2,a), (3,B)	\$
Action[1,\$] = accept	(0,), (1,S)	\$

>> על מנת שהמשתנה ההתחלתי יופיע בחוקי הגזירה רק באגף שמאל. כך בצמצום למשתנה ההתחלתי אכן יובטח שאין עוד סימנים במחסנית ונדע שהסתיימה הגזירה.

^{**}מדוע מוסיפים את כלל 0

לונפליקטים אפשריים במנתחי LR

• קונפליקט נוצר בטבלת הניתוח כאשר יש 2 פעולות שונות או יותר באותה משבצת בטבלה.

• קיימים 2 סוגי קונפליקטים:

: shift/reduce קונפליקט (1

? האם להמשיך לקרוא את הקלט או לצמצם

 $A \rightarrow \alpha \bullet$ $B \rightarrow \delta \bullet$

: reduce/reduce קונפליקט (2

לפי איזה כלל גזירה לצמצם ?

? shift/shift **שאלה**: מדוע אין קונפליקט

מנתח SLR

- בשביל להיפטר מקונפליקטים, נרצה להכניס הסתכלות על התו הראשון של הקלט
 - ? האם ההחלטה (shift, reduce) הגיונית בהקשר
 - ההקשר: מה יכול לקרות אחרי המשתנה הנוכחי
 - כלי אפשרי מתרגול קודם: follow

הגדרת טבלת action למנתח

$$\begin{array}{ll} \text{action[i\ ,\ t] =} & \begin{cases} SHIFT_j & \delta(I_i\ ,\ t) = I_j \\ REDUCE_k & \text{rule\ k\ is\ } A \to \alpha,\ (A \to \alpha ^\bullet) \in \ I_i \ \text{and\ } t \in \ \text{follow(A)} \\ ACCEPT & (S' \to S ^\bullet) \in \ I_i \ \text{and\ } t = \$ \\ ERROR & \text{otherwise} \end{cases}$$

0) $S' \rightarrow S$

1) $S \rightarrow aA$

2) $S \rightarrow aB$

3) A → a

4) $B \rightarrow b$

SLR - דוגמא

<u>•אוטומט פרפיקסי – נשאר אותו דבר:</u>

0) $S' \rightarrow S$ 1) $S \rightarrow aA$ 2) $S \rightarrow aB$ 3) $A \rightarrow a$ 4) $B \rightarrow b$

SLR - דוגמא

• בניית טבלת הניתוח:

 $follow(S) = follow(A) = follow(B) = \{\$\}$

LR(0) actions				
	а	b	\$	
0	s2			
1			acc	
2	s5	s6		
3	r2	r2	r2	
4	r1	r1	r1	
5	r3	r3	r3	
6	r4	r4	r4	

goto			
S	Α	В	
1			
	4	3	

0) $S' \rightarrow S$ 1) $S \rightarrow aA$ 2) $S \rightarrow aB$ 3) $A \rightarrow a$ 4) $B \rightarrow b$

SLR - דוגמא

• בניית טבלת הניתוח:

 $follow(S) = follow(A) = follow(B) = \{\$\}$

SLR actions			
	а	b	\$
0	s2		
1			acc
2	s5	s6	
3	r2	r2	r2
4	r1	r1	r1
5	r3	r3	r3
6	r4	r4	r4

goto			
S	Α	В	
1			
	4	3	

R\R קונפליקט – קונפליקט

- 0. S` → S\$
- 1. $S \rightarrow Aa$
- 2. $S \rightarrow Bb$
- 3. $A \rightarrow b$
- 4. B \rightarrow b

LR(0)

	а	b	\$
0		s1	
1	r3,r4	r3,r4	r3,r4

R\R דוגמא - קונפליקט

- 0. S` → S\$
- 1. $S \rightarrow Aa$
- 2. S \rightarrow Bb
- 3. $A \rightarrow b$
- 4. B \rightarrow b

Follow(A)={a}	CLE
Follow(B)={b}	SLF

	а	b	\$
0		s 1	
1	-r3,r4	r3.r4	r3.r4
_	r3	r4	
•••			

נשים לב כי מעבר ל SLR פותר את הקונפליקט במקרה זה.

R\R דוגמא - קונפליקט

1.
$$S \rightarrow Aa$$

2.
$$S \rightarrow Ba$$

3.
$$A \rightarrow b$$

4. B
$$\rightarrow$$
 b

SLR

Follow(A)={a}
Follow(B)={a}

B → •b

	а	b	\$
0		s1	
1	r3, r4		

:אבל עבור הדקדוק הבא, עדיין יש בעיה

בדוגמא זו מעבר ל SLR אינו פותר את הקונפליקט.

נפתור בהרצאה\תרגול הבאים

מספר דגשים

- להוכחה שדקדוק מסויים הוא LR צריך לצייר את
 כל האוטומט ולבנות את הטבלה כדי להראות כי
 אין קונפליקטים באף מצב
 - להפרכה, מספיק מסלול אחד באוטומט

שאלה ממבחן

- נתונה שפת סקריפטינג המורכבת ממשתנים גלובליים ורשימת פונקציות ספריה שלא מקבלות פרמטרים.
- תכנית מורכבת משורה אחת של אפס או יותר קריאות פונקציה על משתנה. מותר לקרוא לכל פונקציה על כל משתנה גלובאלי ועל כל תוצאה של הפעלת פונקציה. תכנית בשפה תיראה כך:

grades.sort().top5().awardExcellence()

כבר מומש עבורכם ניתוח לקסיקוגרפי המחזיר את האסימונים id (נקודה) ו- bot (פתח וסגור סוגריים).

א. בנו דקדוק לשפה כך שניתן יהיה לבנות לו מנתח מאחת המחלקות שנלמדו בקורס **והוכיחו** כי ניתן.

 $Program \rightarrow id Funcs$ $Funcs \rightarrow dot id pars Funcs$ $Funcs \rightarrow \epsilon$

באיזו מחלקה הדקדוק? (פתרון על הלוח)