Modul 3

Unsupervised Learning

Data Science Program

Supervised vs. unsupervised learning

Flesh Fly

Crane Fly

Recap

- Regression vs. classification?
- What algorithms have been learned?
- How do they compare?
- What are key issues with classification and regression?

Clustering intuitively

Clustering can be personal to me

Export ~

Pattern Recognition

Volume 40, Issue 12, December 2007, Pages 3452-3466

Possibilistic fuzzy co-clustering of large document collections

William-Chandra Tjhi ⊠, Lihui Chen A ⊠

⊞ Show more

https://doi.org/10.1016/j.patcog.2007.04.017

Get rights and content

Clustering applications

Customer segmentation (e.g. for cost-benefit analysis of new products)

Topic identification (e.g. to speed up manual vetting)

Image or geo-spatial segmentation (e.g. Gojek's supply-demand optimization)

Maybe most importantly, getting a sense of data prior to in-depth modeling!

K-means: the most intuitive clustering

Visualizing K-Means Clustering The k-means algorithm is an iterative method for clustering a set of Npoints (vectors) into k groups or clusters of points Algorithm Repeat until convergence: Find closest centroid Find the closest centroid to each point, and group points that share the same closest centroid. Update centroid Update each centroid to be the mean of the points in its group. Data Clustered points — Random Number of clusters : 3 Number of centroids: 3 New centroids Mean square point-centroid distance; not yet calculated

Exercise 1

Code your own kmeans and test it on Iris dataset

No sklearn.cluster.Kmeans yet!

Distance measures

Euclidean

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

Manhattan

$$d_1(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^n |p_i - q_i|,$$

Jaccard index

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Cosine similarity
$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

Others: correlation, KL divergence, edit distance

Numerical features

Categorical features

High-dimensional features

Soft, not hard, partition - Gaussian Mixture Model

New Data Cluster Assignments

Fitted GMM Contour

Cluster 1 O Cluster 2

Real scenario

We can apply the EM algorithm. We assign random values to parameters Θ as the initial values. We then iteratively conduct the E-step and the M-step as follows until the parameters converge or the change is sufficiently small.

In the **E-step**, for each object, $o_i \in O(1 \le i \le n)$, we calculate the probability that o_i belongs to each distribution, that is,

$$P(\Theta_j | o_i, \Theta) = \frac{P(o_i | \Theta_j)}{\sum_{i,j}^k P(o_i | \Theta_i)}.$$
(11.13)

In the **M-step**, we adjust the parameters Θ so that the expected likelihood $P(O \mid \Theta)$ in Eq. (11.11) is maximized. This can be achieved by setting

$$\mu_{j} = \frac{1}{k} \sum_{i=1}^{n} o_{i} \frac{P(\Theta_{j} | o_{i}, \Theta)}{\sum_{i=1}^{n} P(\Theta_{j} | o_{i}, \Theta)} = \frac{1}{k} \frac{\sum_{i=1}^{n} o_{i} P(\Theta_{j} | o_{i}, \Theta)}{\sum_{i=1}^{n} P(\Theta_{j} | o_{i}, \Theta)}$$
(11.14)

and

$$\sigma_j = \sqrt{\frac{\sum_{i=1}^{n} P(\Theta_j | o_i, \Theta)(o_i - u_j)^2}{\sum_{i=1}^{n} P(\Theta_j | o_i, \Theta)}}.$$
(11.15)

Demo GMM and K-means on Iris

Exercise 2: perform GMM vs. K-means on Digits & 20Newsgroup; check posterior to observe overlapping clusters

My experience in using unsupervised generative modelling

Item Name (Appl)

back end system management software with appointment scheduling system

Item Name (Appl)

corporate website design and development

Latent Dirichlet Allocation

	N
$p(\theta, \mathbf{z}, \mathbf{w} \alpha, \beta) = p(\theta \alpha)$	$\prod p(z_n \theta) p(w_n z_n, \beta),$
	n=1

$$p(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1},$$

system	0.438
booking	0.168
appointment	0.127
portal	0.11
scheduling	0.09
website	0.24
e-commerce	0.09

Topic Terms	Weight
website	1.38
development	1.45
design	0.59
e-commerce	0.35
system	0.134
package	0.07
front-end	0.05

Sensing the number of clusters - hierarchical clustering

$$\mathbf{Minimum\ distance:}\quad dist_{min}\left(C_{i},C_{j}\right)=\min_{p\in C_{i},\ p'\in C_{j}}\{\mid p-p'\mid\}$$

$$\mathbf{Maximum\ distance:} \quad dist_{max}(C_i,C_j) = \max_{p \in C_i,\ p' \in C_j} \{\mid p - p' \mid \}$$

Mean distance:
$$dist_{mean}(C_i, C_j) = | m_i - m_j |$$

$$\mathbf{Average\ distance}: \quad dist_{avg}\left(C_{i},C_{j}\right) = \frac{1}{n_{i}n_{j}}\sum_{p\in C_{i},p'\in C_{j}}\mid p-p'\mid$$

Demo HAC on Iris

Exercise 3: perform HAC on Digits; compare accuracies across linkages

Finding the number of clusters more systematically

- Key principle: minimum intracluster distance, maximum intracluster distance
- Silhouette index

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 • b(i): distance from i to the closest

- object from another cluster
- a(i): average intra-cluster distance

Demo Silhouette plotting on Digits (K-means)

Exercise 4: plot Silhouette indices for k=2,...,30 for Digits, 20Newsgroup for HAC and GMM

Other clustering variants: density and co-clustering

Density-based clustering (dealing with outliers)

DBScan, OPTICS

Co-clustering or biclustering (dealing with high-dimensional features)

Real world clustering is often messy

Case study 1: customer segmentation

The problems with high-dimensionality

Hard to visualise, some dimensions are noisy, some dimensions are correlated, sparsity requiring impractical volume of training data and strange distance measure behavior (http://mlwiki.org/index.php/Euclidean Distance)

Principal component analysis

Optimization problem: project x but try to maximize the variance

Setting the gradient to 0 gives eigenvalue equation:

 Σ a1 = λ 1a1

i.e. projecting x in the direction of the eigenvector with the highest eigenvalue gives the highest variance

Repeat the process for the second axis to project results in eigenvector corresponding to the second highest eigenvalue, and so on ...

These eigenvectors art the and coding schooprincipal components art up and coding schoo

Demo PCA on Digits

PCA hands-on

Exercise 5: perform PCA on Digits, 20Newsgroup and analyse if it improves clustering accuracy

Exercise 6 (optional): implement your own naive PCA

- Generate the covariance matrix of a dataset
- Perform eigen decomposition of the covariance matrix
- Sort eigenvalues
- Project dataset into the sorted eigenvectors

Case study 2: repeat customer segmentation, this time using PCA for dimensionality reduction

What is association rules mining?

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.3! 8

Association rules mined

confidence lift antecedants consequents support (SET/6 RED SPOTTY PAPER CUPS) (SET/6 RED SPOTTY PAPER 0.137755 0.888889 6.968889 PLATES) 9 (SET/6 RED SPOTTY PAPER PLATES) (SET/6 RED SPOTTY PAPER CUPS) 0.127551 0.960000 6.968889 10 (ALARM CLOCK BAKELIKE GREEN) (ALARM CLOCK BAKELIKE RED) 0.096939 0.815789 8.642959 (ALARM CLOCK BAKELIKE 11 (ALARM CLOCK BAKELIKE RED) 0.094388 0.837838 8.642959 GREEN) 16 (SET/6 RED SPOTTY PAPER CUPS, SET/6 (SET/20 RED RETROSPOT PAPER 0.122449 0.812500 6.125000 **RED SPOTTY...** NAPKINS) 17 (SET/6 RED SPOTTY PAPER CUPS, SET/20 (SET/6 RED SPOTTY PAPER 0.102041 0.975000 7.644000 RED RETRO... PLATES) 18 (SET/6 RED SPOTTY PAPER PLATES, SET/20 (SET/6 RED SPOTTY PAPER CUPS) 0.102041 0.975000 7.077778 RED RET... 22 (SET/6 RED SPOTTY PAPER PLATES) (SET/20 RED RETROSPOT PAPER 0.127551 0.800000 6.030769 NAPKINS)

CustomerID Country

United Kingdom

United

United Kingdom

United

Kingdom

17850.0

17850.0

17850.0

17850.0

Association rules mining steps:

Transaction table -> Frequent itemsets (support) -> Association rules (confidence)

Support, confidence, lift

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Support (A -> B): **P(A U B)**

Is it rare?

Confidence (A -> B): **P(B | A)** How strong is the rule?

Lift (A -> B): **P(A U B) / {P(A) P(B)}**Complementary or cannibalism?

Scale is the key issue

- Apriori principle: the subsets of a frequent itemset must be frequent
- When items are consistently ordered across sets, **to avoid redundancy**, generate k-itemset only from two (k-1)-itemsets that share the same (k-2) items.

Finding frequent itemsets by Apriori

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

FP-Growth – a faster algorithm

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
15	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{12, 15: 2}, {11, 15: 2}, {12, 11, 15: 2}
I4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	{12, 14: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{12, 13: 4}, {11, 13: 4}, {12, 11, 13: 2}
I1	{{I2: 4}}	(I2: 4)	{I2, I1: 4}

Demo association rules mining on AllElectronics dataset

Exercise 7 (optional): perform frequent itemsets on 20Newsgroup to find associated words/phrases

My association rules story

	A:	B	C	D.	E	F.	G	H	1	
frequency	4	3	2	2	1	1	1	1	1	
subsequence	= 0 g = 1			g =	2 1	gap symbols				
AB	freq 3	1	0		1			C(2), E. H. I		
AC.	2		1		1		- 1	H		
AD:	2	т	1		-0			B, C		
BA	2		1			- 0	- 1	D		
BD	2	1 I 0 A								
CA	2	0	0			- 1	1	3(2),	D:	
CB	2		2		,	0.	7			
CD	2		-0			1	7	A. BE	2)	
DA	2		1	- 0		1	1	F. G		

- (,*)LustreError: (,*)Skipped (,*)previous similar message (,*) ---> (,*)LustreError: (,*)Skipped (,*)previous similar message (,*)
- (,*)LustreError: (,*)Skipped (,*)previous similar messages (,*) ---> (,*)LustreError: (,*)processing error (,*)fens (,*)pre(,*)
- (,*)LustreError: (,*)Skipped (,*)previous similar messages (,*) ---> (,*)LustreError:

(*)LustreError: (*)page (.*)map (.*)index (.*)priv (*) ---> (.*)LustreError: (.*)page (.*)map (.*)index (.*)priv (.*)
 (.*)LustreError: (.*)processing error (.*) lens (.*)ref (.*) --> (.*)LustreError: (.*) Skipped (.*)previous similar messages (.*)
 (.*)LustreError: (.*)processing error (.*) lens (.*)ref (.*) --> (.*)LustreError: (.*)

lons (.*)ref (.*) ---> (.*)LustreError: (.*)

(.*)status (.*)fens (.*)ref (.*)

processing

Case study 3: perform association rules mining on e-commerce dataset, taking into account customer segments

References

- Data Mining Concepts and Techniques 3rd edition, Han Jiawei, Michelline Kamber and Jian Pei, 2011
- Hands-on Machine Learning with Scikit-Learn and TensorFlow, Aurelie Geron, 2017
- Python Data Science Handbook, Jake VanderPlas, 2016
- Data Mining, Ian Witten and Eibe Frank, 2005
- The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman
- The Data Science Handbook, Field Cady, 2017

