Век электроники.

1905 год - патент Джона Флеминга на первую электронную лампу, открывшую век электроники. В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку. Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. При нагревании катода внешним источником питания испускаются электроны, которые собираются на аноде. Сетка, расположенная между катодом и анодом, позволяет управлять потоком электронов поданным на нее потенциалом.

30-е годы явились триумфальным шествием электронной лампы, благодаря которой реальностью стали и «газета без бумаги и без расстояний» и массовое радиовещание, звуковое кино и телевидение, радиолокация и радиоастрономия, современные быстродействующие системы автоматики и телеуправления, радионавигация и электронные вычислительные машины.

* Для гитаристов, например, и сейчас лампы не просто передают звук гитары, а участвуют в его создании, добавляя в звук дополнительные гармоники. Ламповые усилители очень хорошо справляются с этой задачей, делая звук гитары более красивым. На транзисторах такого эффекта добиться не удается (нужны цифровые синтезаторы). К тому же, ламповые усилители почти всегда использовались в режиме "перегруженного" входа, что на транзисторах реализовать было невозможно. Транзисторы "не любят" перегрузок, в то время как лампы переносят их без каких-либо проблем.

В 1906 году Гринлиф Пикард запатентовал кремниевый кристаллический детектор, который представляет собой кристалл какого-либо

полупроводника, (сульфида свинца (PbS) или сульфида кадмия (CdS)), в который упирается тонкая проволочка из металла. Положение проволочки на кристалле можно менять, добиваясь наибольшей громкости звучания приёмника. По сути, такое устройство представляет собой простейший диод Шоттки.

В 1910 году <u>Уильям Икклз</u> обнаружил, что кристаллические детекторы в определённых условиях демонстрируют <u>отрицательное дифференциальное сопротивление</u> и потому могут быть использованы для <u>генерации колебаний</u> и <u>усиления сигналов</u>. В 1922 году <u>О. В. Лосев</u> доказал возможность усиления и генерации электромагнитных колебаний на кристаллическом детекторе при подаче на него постоянного <u>напряжения смещения</u> (кристадинный эффект). <u>Цинкитный</u> детектор (кристадин) Лосева сохранял работоспособность на частотах до 10 <u>МГц</u>. К концу 1920-х годов кристаллические детекторы были вытеснены вакуумными лампами, а развитие этого направления физики полупроводников приостановилось.

В 1922—1927 годах <u>Грёндаль</u> и Гейгер изобрели и внедрили в практику <u>медно-закисный выпрямитель</u>*), а в 1930-е годы ему на смену пришёл более совершенный <u>селеновый выпрямитель</u>.

Аналогия между выпрямителем на закиси меди и вакуумным диодом была очевидна для всех, изучавших полупроводники, — поэтому многие задумывались о том, как **внедрить в выпрямитель третий, управляющий** электрод («сетку»), сделав из выпрямителя усилитель.

Нереализованный «полевой транзистор» Лилиенфельда. Патент США 1 745 175 на «метод и устройство управления электрическими токами» с приоритетом от 8 октября 1926 года (выдан 28 января 1930 г) - твердотельный усилитель, состоящий из слоёв металла и полупроводника. Лилиенфельд не смог довести своё предложение даже до стадии макета: его проект не мог быть реализован в 1920-е годы из-за недостаточного развития фундаментальной науки. Все эти безуспешные эксперименты в той или иной мере воспроизводили устройство вакуумного триода.

*)Представляет собой медную пластину, на поверхность которой нанесён слой закиси меди (1020-1040 град), полученный при термической обработке меди в атмосфере кислорода. Закись меди приобретает свойство р-проводимости, а слой, прилегающий к медной пластине при избытке ионов меди, приобретает свойство п-проводимости. Допустимое обратное напряжение на вентиле не превышает 10 В. При

напряжении 20—30 В происходит пробой. Для работы при больших напряжениях используется последовательное соединение вентилей. **Максимальная рабочая температура** вентиля не должна превышать 60 °C. Максимальная допустимая плотность тока медно-закисных вентилей — 0,1 А/см².

Во время Второй мировой войны исследовательские бюджеты многократно выросли. Все существенные достижения были связаны с военным заказом в детектировании отражённого сигнала в радиолокации, где были бессильны вакуумные лампы. Излучатели ранних радиолокаторов работали на частотах до 3 ГГц, а частотный диапазон детекторов на вакуумных диодах был ограничен 400 МГц. Контактные полупроводниковые детекторы, напротив, могли эффективно выпрямлять сверхвысокие частоты, поэтому в конце 1930-х годов правительства Великобритании, Германии и США начали масштабные проекты по совершенствованию полупроводников. Были исследованы фундаментальные свойства полупроводников и заложены основы технологии их производства, сделавшие возможным серийный выпуск полупроводниковых приборов.

Открытие p-n-перехода. К началу 30-х годов немецким физиком Вальтером Шоттки экспериментально было установлено два типа полупроводников — «избыточные» и «дефектные». К «избыточным» он относил полупроводники, которые имели отрицательное значение эффекта Холла. Ныне их определяют как полупроводники n-типа (от слова negative). «Дефектными» назывались образцы, имеющие положительное значение эффекта Холла, p-тип (от слова positive). Ученым компании «Bell Labs» в 1935 году удалось экспериментально получить слиток кремния, у которого с одной стороны была проводимость p-типа, а с другой n-типа и вырезать из слитка образец, содержащий в себе p-n переход. В Советском союзе в 1937г. акад. А. Ф. Иоффе и А. В. Иоффе обратили внимание на возможность

выпрямления в контактном слое, образованном двумя полупроводниками с проводимостью разного типа. Теория выпрямления в таком слое без учета контактной разности потенциалов была разработана Б.И. Давыдовым (инжекция). Но, явления, рассчитанные по этой теории, были на порядок меньше реальных.

В 1936 году Уильяму Шокли (1910-1989) было поручено изучить возможность создания твердотельных переключателей, способных в перспективе заменить электромеханические реле телефонных станций. Изучив опубликованные работы Пола, Иоффе и Давыдова и результаты экспериментов Браттейна, Шокли пришёл к выводу о невозможности внедрения управляющего электрода в массив полупроводника (рассматривались два полупроводника, германий и кремний). В октябре 1939 года среди заготовок для детекторов нашёлся странный образец, электрические параметры которого вели себя настолько беспорядочно, что дальнейшие измерения казались бессмысленными.. Образец реагировал на свет, а степень наблюдаемого фотоэффекта на порядок превосходила фотоэффект в традиционных фотоэлементах. Браттейн догадался, что фотоэффект возникает на некоем невидимом барьере между двумя слоями кремния и что этот же барьер должен выпрямлять переменный ток. Именно изменение проводимости на переменном токе давало необъяснимые, бессмысленные результаты. Вскоре буквально увидели этот барьер: травление азотной кислотой вскрыло видимую глазу границу между двумя слоями кремния и дали этим слоям новые названия: «кремний р-типа» (positive, положительный) и «кремний п-типа» (negative, отрицательный)

Изобретение транзистора. **Транзисторный эффект** был выявлен в 1947 г. при исследовании двух близко расположенных точечных контактов, образующих в местах контактов р-n-переходы («кошачий ус»). У. Браттейн случайно перепутал полярность питания на одном из контактов и вдруг обнаружился **усилительный эффект**. Дж. Бардин дал его научное объяснение, введя понятие инжекции подвижных

зарядов из открытого p-n-перехода в прилегающую к нему область полупроводника. 16 декабря 1947 года физик-экспериментатор Уолтер Браттейн, работавший с теоретиком Джоном Бардином, собрал первый работоспособный точечный транзистор. Спустя полгода, но *до* обнародования работ Бардина и Браттейна, немецкие физики Герберт Матаре и Генрих Велькер представили разработанный во Франции точечный «транзистрон».

Транзистор Браттейна и Бардина - чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек чистого германия, добыть который не составляло труда. А вот техника легирования полупроводников в конце сороковых годов еще находилась во младенчестве, в Белловских лабораториях владели ею не слишком хорошо, и поэтому изготовление транзистора "по Шокли" заняло долгое время.

Так из безуспешных попыток создать сначала **твердотельный аналог вакуумного триода**, а затем полевой транзистор, родился первый несовершенный точечный биполярный транзистор. Первые точечные транзисторы состояли из германиевого кристалла с n-проводимостью, служившего базой, на которую опирались два тонких бронзовых острия, расположенные очень близко друг к другу — на расстоянии нескольких микрон. Одно из них (обычно бериллиевая бронза) служило эмиттером, а другое (из фосфорной бронзы) — коллектором. При изготовлении транзистора через острия пропускался ток силой примерно в один ампер. Германий при этом расплавлялся, так же как и

кончики остриев. Медь и имеющиеся в ней примеси переходили в германий и образовывали в непосредственной близости от точечных контактов слои с дырочной проводимостью.

В 1948—1951 годах специалисты Bell Labs пытались наладить серийный выпуск точечных транзисторов, используя имеющуюся технологию контактных детекторов СВЧ-излучения и добились успеха благодаря случайному совпадению: фосфористая бронза коллекторных контактов загрязняла поверхность германия атомами фосфора, создавая островки проводимости п-типа.

Структура точечного транзистора. Профили проводимости эмиттерного и коллекторного переходов определяются материалами электродов и режимом электротермотренировки. Точечный транзистор, выпускавшийся серийно около десяти лет, оказался тупиковой ветвью развития электроники — ему на смену пришли германиевые плоскостные транзисторы. Тем не менее, точечные транзисторы выпускались почти десяток лет, поскольку последовавшие за ним транзисторы на выращенных кристаллах и сплавные транзисторы уступали им в частотных свойствах.

Эти транзисторы не отличались надежностью из-за несовершенства своей конструкции. Они были нестабильны и не могли работать при больших мощностях. Стоимость их была велика. Однако они были намного надежнее вакуумных ламп, не боялись сырости и потребляли мощности в сотни раз меньшие, чем аналогичные им электронные лампы. Их КПД достигал 70%, в то время как у лампы он редко превышал 10%. Поскольку транзисторы не требовали накала, они начинали работать немедленно после подачи на них напряжения. К тому же они имели очень низкий уровень собственных шумов, и поэтому аппаратура, собранная на транзисторах, оказывалась более чувствительной.

Транзистрон Матаре и Велкера. В 1944 году немецкий физик Герберт Матаре, работавший над снижением шумов СВЧ-детекторов, изобрёл «дуодиод» — полупроводниковый выпрямитель с двумя точечными контактами. В 1946 году французские и британские агенты разыскали Велкера и Матаре, допросили их о немецких разработках в радиолокации и предложили работу на французском отделении Westinghouse, где в то время разворачивалось производство германиевых выпрямителей. Оба согласились - заниматься наукой в разгромленной Германии было невозможно. В июне 1948 года, до обнародования изобретения Бардина и Браттейна, они продемонстрировали усовершенствованный «дуодиод», а фактически — точечный транзистор. Транзитрон не был чисто лабораторным изделием. К тому времени в парижском филиале Westinghouse был организован небольшой цех, где изготавливали эти приборы. Работали лучше и дольше американского аналога - за счет более тщательной сборки. В мае 1949 года Матаре и Велкер объявили о начале мелкосерийного выпуска транзистронов для дальней телефонной связи.

Современную теорию р-п-перехода и плоскостного транзистора создал в 1948—1950 годах Уильям Шокли. Первый плоскостной транзистор был изготовлен 12 апреля 1950 года методом выращивания из расплава. За ним последовали сплавной транзистор, «электрохимический» транзистор и диффузионный меза-транзистор. В 1954 году Техаѕ Instruments выпустила первый кремниевый транзистор. Открытие процесса мокрого окисления кремни сделало возможным выпуск в 1958 году первых кремниевых меза-транзисторов, а

в марте 1959 года Жан Эрни создал первый кремниевый планарный транзистор. Кремний вытеснил германий, а планарный процесс стал основной технологией производства транзисторов и сделал возможным создание монолитных интегральных схем.

Уильям Шокли в 1975 году

Ни в одной рукописи Бардина и Браттейна не упоминались неосновные носители и инжекция заряда — понятия, без которых невозможно было правильно описать поведение транзистора. Решение было записано в блокнотах Шокли — первые наброски теории р-п-перехода в германии Шокли создал ещё в апреле 1947 года. В январе 1948 года Шокли осознал, что использованная им модель не учитывала инжекции неосновных носителей заряда в базу. Учёт механизма инжекции сделал модель полностью работоспособной. Не позднее 23 января 1948 года Шокли составил патентную заявку на биполярный транзистор (будущий патент США 2 569 347) и оформил свои идеи в законченную теорию. В русском переводе 1953 года книга Шокли «Теория электронных полупроводников: Приложения к теории транзисторов», по словам Ж. И. Алфёрова, стала «настольной книгой по обе стороны Атлантического океана». В ней впервые появились такие привычные ныне, но не очевидные в 1948 году утверждения, как необходимость прямого

смещения эмиттерного p-n-перехода и обратного смещения коллекторного перехода. Следует отметить, что Шокли описал именно плоскостной транзистор (транзистор на p-n-переходах, <u>англ.</u> junction transistor), а теорию точечного транзистора и кристадина (Лосева) так никто и не создал.

Далее история развития становится целиком технологическая:

а) Метод выращивания р-п-переходов из расплава — исторически первая технология производства плоскостных транзисторов. В 1950 вырастили первую п-р-п-структуру. Массовое производство первых полноценных биполярных германиевых транзисторов «по Шокли» началось в 1951 году на Western Electric. Германий расплавляли и опускали в него затравку — маленький кристалл, с правильно ориентированной решеткой. Вращая затравку вокруг оси, ее медленно приподнимали. Вследствие этого атомы вокруг затравки выстраивались в правильную кристаллическую решетку и затвердевали. В результате получался монокристаллический стержень (база). Далее на обе стороны пластинки германия накладывали маленькие кусочки индия и быстро нагревали их до 600 градусов. При этой температуре индий сплавлялся с находящимся под ним германием. При остывании насыщенные индием области приобретали проводимость р-типа, формируя эмиттер и коллектор. Если при вытягивании кристалла из расплава германия р-типа затравкой служил кристаллик п-типа, то внутри стержня формировался плавный р-п-переход. Позже, из расплава вытягивалась низкоомная коллекторная область п-типа. Затем в расплав вбрасывали таблетку акцепторной примеси, растворявшуюся в тонком поверхностном слое — так формировался слой базы

толщиной от 25 до 100 микрон. Сразу после создания базы в расплав вбрасывали таблетку донорной примеси для легирования эмиттера. Полученную трёхслойную NPN-структуру вырезали из кристалла, распиливали на продольные столбики.

Первый выращенный кремниевый транзистор изготовил на <u>Texas Instruments</u> Тил в апреле 1954 года. Три последующие года, когда Texas Instruments была единственным поставщиком кремниевых транзисторов в мире, озолотили компанию и сделали её крупнейшим поставщиком полупроводников.

Regency TR-1 — первый в мире **серийный полностью транзисторный радиоприёмник** (на 4-х транзисторах), поступивший в широкую продажу в США 1 ноября 1954 года и сразу производившийся сотнями тысяч штук.

Сплавной транзистор. В основе типичного сплавного транзистора PNP-типа была тонкая пластина германия п-типа, служившая базой. Эти пластины сплавлялись с индиевыми или мышьяковыми бусинами, а затем отжигались при температуре около 600 °C. Практически все сплавные транзисторы изготавливались из германия — реализация сплавной технологии в кремнии оказалась слишком сложной и дорогой. Переходы между зонами р-типа и п-типа в сплавных транзисторах были резкими, в отличие от плавных переходов выращенных транзисторов, благодаря чему сплавные транзисторы имели больший коэффициент усиления по току и были более эффективными переключателями в цифровых схемах. Первые практические сплавные

транзисторы были выпущены General Electric в 1952 году.

Диффузионно-сплавной меза-транзистор по Дэйси, Ли и Шокли (1955). Три этапа технологии: диффузия п-базы (из газовой среды), сплавление р-эмиттера, пайка р-коллектора к основанию. Технология пошла в серию на Western Electric — все выпущенные транзисторы были распределены между самой Western Electric и узким кругом военных заказчиков. Транзисторы этого типа имели граничную частоту до 200 МГц.

В начале 1955 года в диффузионной печи в Bell Labs произошла случайная вспышка водорода. Часть водорода в печи сгорела. Опытная кремниевая пластина покрылась тонким слоем диоксида кремния. Сотрудники обстоятельно изучили процесс мокрого термического окисления и довели его до внедрения в промышленное производство. В отличие от непредсказуемого в то время сухого окисления в атмосфере кислорода мокрое окисление водяным паром оказалось легко воспроизводимым процессом, а полученные оксидные слои — равномерными и достаточно прочными.

В августе 1958 года Fairchild Semiconductor представила разработанный **Гордоном Муром** 2N696 — первый **кремниевый меза-транзистор** и первый меза-транзистор, продававшийся на открытом рынке США. Технология его производства принципиально отличалась от «таблеточных» процессов Bell Labs и Philips тем, что обработка проводилась целыми, неразрезанными пластинами с применением фотолитографии и мокрого окисления. Непосредственно перед резкой пластины на индивидуальные транзисторы проводилась операция глубокого травления (англ. *mesaing*) пластины, разделявшая островкимезы (будущие транзисторы) глубокими канавками. 2N696 выгодно отличался от ближайших конкурентов (сплавных транзисторов <u>Texas Instruments</u>) сочетанием большей допустимой мощности и хорошего быстродействия в цифровых схемах и потому стал на время «универсальным транзистором» американского

ВПК. Меза-технология дала разработчикам беспрецедентную гибкость в задании характеристик p-n переходов и позволила довести допустимое напряжение на коллекторе до нескольких киловольт, а рабочую частоту до 1 ГГц. Но она была непригодна для производства интегральных схем.

Планарный транзистор

Ещё 1 декабря 1957 года предложен планарный процесс — перспективную замену меза-технологии. Планарная структура должна была формироваться двумя последовательными диффузиями, создающими вначале слой базы, а затем вложенный в него слой эмиттера. Выходы коллекторного и эмиттерного переходов на верхнюю поверхность кристалла изолировались от внешней среды

слоем «грязного» оксида, служившим маской при второй (эмиттерной) диффузии. Это предложение, так же, как и легирование золотом, противоречило общепринятому тогда мнению. В октябре 1960 года Fairchild анонсировала полный отказ от меза-транзисторов. С тех пор планарный процесс остаётся основным способом производства транзисторов и фактически единственным способом производства интегральных схем.

Схема изготовления планарного биполярного n-p-n-транзистора: a – исходная пластина из монокристаллич. n-Si (1); b – после первого окисления (2 – слой SiO₂); b – после первой фотолитографич. обработки; e – после создания области базы p-Si (3) и повторного окисления; b – после второй фотолитографич. обработки; e – после создания областей эмиттера (4) и контакта к коллектору n -Si (5); b e – после третьей фотолитографич. обработки; e – после металлизации Al (6); e – готовая транзисторная структура после четвертой фотолитографич. обработки.

Мощный транзистор с гребёнчатой топологией базы и эмиттера (коллектором служит тело кристалла, припаянное к корпусу). В 1961 году кремниевые транзисторы Fairchild 2N709, спроектированные по заказу Сеймура Крея, впервые превзошли германиевые транзисторы по скорости переключени. К концу 1960-х годов опытные транзисторы достигли рабочих частот в 10 ГГц, сравнявшись по быстродействию с лучшими СВЧ-радиолампами. В 1963 году появился первый эпитаксиальный силовой транзистор с сопротивлением базы порядка 1 Ом, что позволило управлять токами в 10 А и более. В 1965 году RCA выпустила первый многоэмиттерный транзистор с мозаичной топологией, в том же году появились силовые меза-транзисторы с допустимым напряжением в 1 кВ. В 1970 году рабочий диапазон частот опытных мощных транзисторов достиг 2 ГГц при рассеиваемой мощности 100 Вт.

CDC 6600 — первый в мире суперкомпьютер, разработанный и созданный в 1963 году под руководством **Сеймура Крэя**, названного впоследствии «отцом суперкомпьютеров».

Seymour Cray (Се́ймур Роджер Крэй) американский инженер в

области вычислительной техники, создатель ряда американских суперкомпьютеров. Крэй построил первый полноценный 48-битный компьютер <u>CDC 1604</u>, используя германиевые транзисторы. Основал <u>CDC</u>, <u>Cray Research</u>, Cray Computer Corporation, <u>SRC Computer</u>.

В СDС 6600 Крэй вместо германиевых применил планарные кремниевые транзисторы компании Fairchild Semiconductor. Благодаря более высокой скорости переключения логических вентилей, построенных на этих транзисторах, удалось значительно повысить быстродействие компьютера и сильно упростить его схему. Несмотря на то, что кремниевые транзисторы выдерживают гораздо более высокие рабочие температуры, чем германиевые, из-за высокой плотности упаковки (400 000 логических элементов) компьютера с целью сокращения длины электрических цепей в СDС 6600 Крэю пришлось задуматься над отводом тепла — воздушной вентиляции оказалось недостаточно. Инженер Дин Роуш разработал систему охлаждения, которая с помощью алюминиевых радиаторов отводила тепло от печатных плат с транзисторами к трубкам, по которым циркулировал фреон, как в настоящем холодильнике.

Высокой скорости удалось добиться благодаря нескольким новаторским решениям в архитектуре: главный процессор компьютера выполнял только логические и арифметические операции. Работа с периферийными устройствами была возложена на 10 «периферийных процессоров», главное назначение которых было «скармливать» данные с устройств ввода центральному процессору и забирать результаты для отправки на устройства вывода. Это позволило разгрузить центральный процессор, сократить набор его машинных команд до минимума и сделать их выполнение очень быстрым, то есть практически реализовать идею, которая позднее, в 1970-х годах, была воплощена в RISC-процессорах. В центральном процессоре имелся конвейер команд — новинка в компьютерной индустрии того времени.

Изобретатель микросхемы Нойс главное изобретение жизни сделал, по его собственным словам, из лени. Ему надоело наблюдать, как при изготовлении микромодулей пластины кремния сначала разрезали на отдельные транзисторы, а затем опять соединяли друг с другом в единую схему. Процесс был трудоемким (все соединения паялись вручную под микроскопом) и дорогостоящим. Когда в 1958 году Нойс сообразил, как изолировать друг от друга отдельные транзисторы в кристалле, родились всем знакомые микросхемы — пластинки с графическим лабиринтом «дорожек» из алюминиевых напылений, отделенных друг от друга изолирующим материалом.

структур. В том же году Аттала МОП-транзистор. RCA и МОП-технологией уже в 1960 опытную МОП-микросхему с Чин-Тан Са и Фрэнк Уонлес схемотехнику.

Первые серийные МОП-1964 году, в том же году

Роберт Нойс не дожил до положенной ему по праву Нобелевской премии 2000 года ровно десять лет — в 63-летнем возрасте он скончался в своем рабочем кабинете от сердечного приступа. Но до этого он основал вместе с Муром еще одну знаменитую компанию. Бросив в 1968 году налаженный бизнес в Fairchild Semiconductor, друзья решили назвать свое новое детище: Integrated Electronics - Intel.

Полевой транзистор. В течение десяти лет (1948—1958) тема оставалась безрезультатной из-за отсутствия подходящих диэлектриков и технологических проблем. Важнейшие события происходили в стенах Bell Labs. В 1959 году Мартин Аттала предложил выращивать затворы полевых транзисторов из диоксида кремния; приборы такого типа получили название МОП-и Дион Канг создали первый работоспособный Fairchild начали активно экспериментировать с году, а в 1962 году RCA изготовило первую шестнадцатью транзисторами. В 1963 году предложили комплементарную МОП-

транзисторы RCA и Fairchild вышли на рынок в General Microelectronics выпустила первую

МОП-микросхему, в 1970-е годы МОП-микросхемы завоевали рынки микросхем памяти и микропроцессоров, а в начале XXI века доля МОП-микросхем достигла 99 % от общего числа выпускаемых интегральных схем (ИС).