Package 'GR2MSemiDistr'

November 14, 2019

14, 2019
Type Package
Title A package for hydrological modelling with a semidistribute GR2M model version
Version 2.0.1
Author Harold Llauca <hllauca@senamhi.gob.pe></hllauca@senamhi.gob.pe>
Maintainer Harold Llauca https://www.neb.ne
Description This package run a semidistributed GR2M version applying a Weighted Flow Accumulation algorithm using TauDEM
License HLL-16
Encoding UTF-8
Depends R (>= 3.6),
Imports airGR, foreach, hydroGOF, ncdf4, raster, rgdal, rgeos, rtop, tictoc, ProgGUIinR
LazyData true
RoxygenNote 6.1.1
R topics documented: Create_Forcing_Inputs
Optim_GR2MSemiDistr
Index
Create_Forcing_Inputs
Description
Create a text file with data inputs for the model
Usage

Create_Forcing_Inputs(Shapefile, Database, Precip, PotEvap, Qobs = NULL,
 Resolution = 0.01, DateIni = "1981/01/01", DateEnd = "2016/12/01")

Arguments

Shapefile Subbasins shapefile.

Database Directory where precipitation and evapotranspiration data (as netCDF) are lo-

cated.

Precip Precipitation filename.

PotEvap Evapotranspiration filename.

Qobs Observed streamflow filename (data in m3/s). NULL as default.

Resolution Raster resolution to resample forcing data and extract areal mean values. 0.01

as default.

DateIni Initial date (in 'yyyy/mm/dd' format) to subset data. '1981/01/01' as default Final date (in 'yyyy/mm/dd' format) to subset data. '2016/12/01' as default

Value

Export a text file with forcing data inputs (Dates, Precip, Evap, Qobs).

Optim_GR2MSemiDistr

Optimization of GR2M model parameters with SCE-UA algorithm.

Description

Optimization of GR2M model parameters with SCE-UA algorithm.

Usage

```
Optim_GR2MSemiDistr(Parameters, Parameters.Min, Parameters.Max,
   Max.Functions = 10000, Optimization = "NSE", Location, Shapefile,
   Input = "Inputs_Basins.txt", WarmIni, RunIni, RunEnd, IdBasin,
   Remove = FALSE, No.Optim = NULL, IniState = NULL)
```

Arguments

Parameters GR2M (X1 and X2) model parameters and a multiplying factor to adjust monthly

P and PET values.

Parameters.Min Minimum GR2M (X1, X2, fprecip and fpet) model parameters values. Parameters.Max Maximum GR2M (X1, X2, fprecip and fpet) model parameters values.

Max.Functions Maximum number of functions used in the optimization loop. 10000 as default.

Optimization Mono-objective evaluation criteria for GR2M (NSE, lnNSE, KGE, RMSE, R,

PBIAS).

Location Work directory where 'Inputs' folder is located.

Shapefile Subbasins shapefile.

Input Model forcing data in airGR format (DatesR,P,T,Qmm). 'Inputs_Basins.txt' as

default.

WarmIni Initial date (in 'mm/yyyy' format) of the warm-up period.

RunIni Initial date (in 'mm/yyyy' format) of the model simulation period.

RunEnd Final date (in 'mm/yyyy' format) of the model simulation period.

IdBasin ID for the outlet subbasin (from shapefile attribute table).

Remove Logical value to remove streamflows of the outlet subbasin (IdBasin). FALSE

as default.

No.Optim Calibration regions not to be optimized.

IniState Initial GR2M states variables. NULL as default.

Value

Best GR2M model parameters.

Routing_GR2MSemiDistr Routing simulated monthly streamflows.

Description

Routing simulated monthly streamflows.

Usage

```
Routing_GR2MSemiDistr(Location, Model, Shapefile, Dem, AcumIni, AcumEnd,
    Save = TRUE)
```

Arguments

Location Work directory where 'Inputs' folder is located.

Model results from Run_GR2MSemiDistr

Shapefile Subbasins shapefile.

Dem Raster DEM.

AcumIni Initial date 'mm/yyyy' for flow accumulation.

AcumEnd Final date 'mm/yyyy' for flow accumulation.

Save Logical value to save results as rasters. TRUE as default.

Value

Routed streamflows for each subbasin.

Run_GR2MSemiDistr	Run GR2M model	for each subbasins.
Null_UNZI ISCIIIDISCI	Kun OKZM mouei	joi euch subbusins.

Description

Run GR2M model for each subbasins.

Usage

```
Run_GR2MSemiDistr(Parameters, Location, Shapefile,
  Input = "Inputs_Basins.txt", WarmIni = NULL, RunIni, RunEnd,
  IdBasin = NULL, Remove = FALSE, Plot = TRUE, IniState = NULL,
  Regional = FALSE)
```

Arguments

È	guments			
	Parameters	GR2M model parameters (X1 and X2) and a multiplying factors for P and PET.		
	Location	Work directory where 'Inputs' folder is located.		
	Shapefile	Subbasins shapefile.		
	Input	Model forcing data in airGR format (DatesR,P,T,Qmm). 'Inputs_Basins.txt' as default.		
	WarmIni	Initial date (in 'mm/yyyy' format) of the warm-up period.		
	RunIni	Initial date (in 'mm/yyyy' format) of the model simulation period.		
	RunEnd	Final date (in 'mm/yyyy' format) of the model simulation period.		
	IdBasin	ID for the outlet subbasin (from shapefile attribute table).		
	Remove	Logical value to remove streamflows of the outlet subbasin (IdBasin). FALSE as default.		
	Plot	Logical value to plot observed and simulated streamflow timeseries. TRUE as default.		
	IniState	Initial GR2M states variables. NULL as default.		
	Regional	Logical value to simulate in a regional mode (more than one outlet).		

Value

GR2M model outputs for each subbasin.

Index

```
Create_Forcing_Inputs, 1
Optim_GR2MSemiDistr, 2
Routing_GR2MSemiDistr, 3
Run_GR2MSemiDistr, 4
```