Event Calculus with duration

Etienne Tignon University of Potsdam, Germany

September 15, 2021

Abstract

TODO

1 MAPF in event Calculus

Given a graph $G = \langle V, E \rangle$, a list of agent R, a starting point and a goal for each agent $O = \langle A, V, V \rangle$.

1.1 Fluents and Events

Event calculus is a sorted predicate calculus (with equality). There are the sorts:

- Timepoints : T = [0, 1, ...h].
- Fluents: $\forall r \in R, \forall v \in V, on(r, v) \in \mathcal{F}$.
- Event : $\forall r \in R, \forall < v_o, v_d > \in E, move(r, v_o, v_d) \in \mathcal{E}.$

1.2 The four predicates

- $happens \subseteq \mathcal{E} * \mathcal{T}$
- $holds_at \subseteq \mathcal{F} * \mathcal{T}$
- $initiates \subseteq \mathcal{E} * \mathcal{F} * \mathcal{T}$
- $terminates \subseteq \mathcal{E} * \mathcal{F} * \mathcal{T}$

1.3 Domain independent axioms

1.3.1 Efect of events on fluents

If an event e happens, and this event has the effect of starting f, then f holds the moment after the event.

$$[happens(e, t-1) \land initiates(e, f, t-1)] \Rightarrow holds_at(f, t)$$
 (E.1)

If an event e happens, and this event has the effect of ending f, then f don't holds the moment after the event.

$$[happens(e, t-1) \land terminates(e, f, t-1)] \Rightarrow \neg holds_at(f, t)$$
 (E.2)

1.3.2 Inertia

If a fluent f holds and is not terminated, it continue to hold the next moment.

$$[holds_at(f, t-1) \land \neg \exists e(happens(e, t-1) \land terminates(e, f, t-1))] \Rightarrow holds_at(f, t) \quad (E.3)$$

If a fluent f don't holds and is not started, it continue to not hold the next moment.

$$[\neg holds_at(f, t-1) \land \neg \exists e(happens(e, t-1) \land initiates(e, f, t-1))]$$

$$\Rightarrow \neg holds_at(f, t) \quad (E.4)$$

1.4 Domain dependant rules

List of the unique names. ¹

$$U[move, on]$$
 (Ω)

The agents have their starting vertices.

$$\forall < r, v_s, v_g > in O, holds_at(on(r, v_s), 0)$$
 (\Gamma_i)

The agents have their goals.

$$\forall < r, v_s, v_q > in O, holds_at(on(r, v_q), h)$$
 (\Gamma_f)

For an agent to move, he must be on the vertice.

$$happens(move(r, v_o, v_d), t) \Rightarrow holds_at(on(r, v_o), t)$$
 (Ψ.1)

If an agent move, it goes to another vertice.

$$\forall move(r, v_o, v_d) \in \mathcal{E}, initiates(move(r, v_o, v_d), on(r, v_d), t)$$
 (\(\Sigma. 1\))

If an agent move, he left his vertice.

$$\forall move(r, v_o, v_d) \in \mathcal{E}, terminates(move(r, v_o, v_d), on(r, v_o), t)$$
 (\(\Sigma. 2.2\))

An agent is on one vertice max at each time.

$$[holds_at(on(r, v), t) \land v \neq v'] \Rightarrow \neg holds_at(on(r, v'), t)$$
 (Ψ.3)

1.5 Domain description

 $CIRC[\Sigma; initiates, terminates] \land CIRC[\Delta; happens] \land \Omega \land \Psi \land \Gamma \land E$ (Φ)

- $\Sigma = \Sigma.1 \wedge \Sigma.2$
- Δ being the cojunction of all event occurence formulas (aka the "happens facts")
- Ω
- $\Psi = \Psi.1 \wedge \Psi.2 \wedge \Psi.3 \wedge \Psi.4$
- Γ being the cojunction of all observations (aka the "holds_at facts") counting Γ_i and Γ_f
- $E = E.1 \wedge E.2 \wedge E.3 \wedge E.4$

¹This is just to say that every on(something) is different to each move(something)

1.6 Planning

A planning problemm consist of taking Σ , Ω , Ψ , Γ (without Γ_f), Γ_f , and E as input, and producing as output zero or more Δ (our plan) such as Φ is consistant and $\Phi \models \Gamma_f$.

2 Approach

- 2.1 Without touching Event Calculus
- 2.2 With changes in Event Calculus

3 Discussion

```
Paper used:
mostly: [1].
potassco.org
```

References

[1] Erik T Mueller. Commonsense Reasoning. Elsevier, 2010.

This article was processed using the comments style on September 15, 2021. There remain 0 comments to be processed.