

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$	
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0	
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$	

$\sigma_{0^{ ext{-}1}}^{\#1}$ †	$ au_{0^{+}}^{#2}$ †	$\tau_{0^{+}}^{\#1}$ †	$\sigma_{0^{+}}^{\#1}$ †	
0	0	0	0	$\sigma_{0^+}^{\#1}$
0	0	0	0	$\tau_0^{\#1}$
0	0	0	0	$\tau_0^{\#2}$
$-\frac{1}{t_1}$	0	0	0	$\sigma_{0}^{\#1}$

Source constraints		
SO(3) irreps	#	
$\sigma_{0^{+}}^{\#1} == 0$	1	
$\tau_{0^{+}}^{\#1} == 0$	1	
$\tau_{0+}^{\#2} == 0$	1	
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3	
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3	
$\tau_{2+}^{\#1\alpha\beta} - 2 \bar{\imath} k \sigma_{2+}^{\#1\alpha\beta} == 0$	5	
Total #:	17	

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	-t ₁

$f_{1^{-}}^{#2} +^{\alpha}$	$f_{1}^{#1} + ^{\alpha}$	$\omega_{1^{-}}^{#2} +^{\alpha}$	$\omega_{1^{-}}^{*1} \dagger^{\alpha}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#2} \dagger^{lphaeta}$	$\omega_{1+}^{#1} \dagger^{\alpha \beta}$	
0	0	0	0	$\frac{i k t_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$+^{\alpha\beta} k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{*2} f$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$
$-rac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	0	0	0	$\omega_{1^- \alpha}^{\#1}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{t_1}{3}$	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^2t_1}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u>ikt</u> 1 3	0	0	0	$f_{1^-\alpha}^{#2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

	Massive particle				
? -/	Pole residue:	$-\frac{1}{r_1} > 0$			
/ \ ·	Polarisations:	5			
	Square mass:	$-\frac{t_1}{2r_1} > 0$			
?	Spin:	2			
	Parity:	Odd			

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0$