Analyse der COVID-19 Fallzahlen Praxisprojekt

Regina Galambos, Lorenz Mihatsch

Projektpartner: André Klima 08. Mai 2020

Inhaltsangabe

- Einführung und Fragestellung
- 2 Daten
- Sumulativen Anzahl an Fällen und Todesfällen weltweit
- 4 Wachstumsfaktoren der kumulativen Fälle und Todesfälle
- Einfluss von Social Distancing auf Infektionsübertragung
- Oiskussion

COVID-19 Pandemie

- COVID-19 ist ein Erkrankung, die durch das SARS-CoV-2 Virus ausgelöst wird.
- ② Die Erkrankung ist erstmalig im Dezember 2019 in Wuhan (China) aufgetreten, der genaue Ursprung des Virus ist jedoch noch immer unbekannt.
- Erster Erkrankungsfall in Deutschland am 28. Januar in Stockdorf.
- Am 11. März wurde die ursprüngliche Epidemie (Def. örtlich begrenztes Auftreten einer ansteckenden Krankheit) von der WHO als Pandemie (Def. nicht mehr örtlich begrenztes Auftreten) eingestuft.
- Am 22. März einigten sich Bund und Länder auf eine umfassende Beschränkung sozialer Kontakte.

COVID-19 Pandemie

- COVID-19 ist ein Erkrankung, die durch das SARS-CoV-2 Virus ausgelöst wird.
- ② Die Erkrankung ist erstmalig im Dezember 2019 in Wuhan (China) aufgetreten, der genaue Ursprung des Virus ist jedoch noch immer unbekannt.
- Erster Erkrankungsfall in Deutschland am 28. Januar in Stockdorf.
- Am 11. März wurde die ursprüngliche Epidemie (Def. örtlich begrenztes Auftreten einer ansteckenden Krankheit) von der WHO als Pandemie (Def. nicht mehr örtlich begrenztes Auftreten) eingestuft.
- Am 22. März einigten sich Bund und Länder auf eine umfassende Beschränkung sozialer Kontakte.
- Welchen Einfluss haben Einschränkungen sozialer Kontakte auf die Verbreitung der COVID-19 Erkrankung?

Datengrundlage

- 4 Anzahl an Fällen, Todesfällen und Genesenen
 - Datensatz des Centers of Systems Science and Engineering der John Hopkins University
 - Zusammentragung von Daten aus verschiedenen Quellen zu Ländern. Bspw. Italy Ministry of Health.
 - Täglich von *RamiKrispin* auf GitHub aktualisiert und zu Verfügung gestellt. https://github.com/RamiKrispin/coronavirus

Datengrundlage

- 4 Anzahl an Fällen, Todesfällen und Genesenen
 - Datensatz des Centers of Systems Science and Engineering der John Hopkins University
 - Zusammentragung von Daten aus verschiedenen Quellen zu Ländern. Bspw. Italy Ministry of Health.
 - Täglich von *RamiKrispin* auf GitHub aktualisiert und zu Verfügung gestellt. https://github.com/RamiKrispin/coronavirus
- ② Demographie: Kontinentzugehörigkeit und Populationsdaten von 2018
 - Datenbank der Weltbank und der UN. Zugriff über das R-package wbstat und JohnSnowLabs über https://datahub.io/ JohnSnowLabs/country-and-continent-codes-list.

Datengrundlage

- 4 Anzahl an Fällen, Todesfällen und Genesenen
 - Datensatz des Centers of Systems Science and Engineering der John Hopkins University
 - Zusammentragung von Daten aus verschiedenen Quellen zu Ländern. Bspw. Italy Ministry of Health.
 - Täglich von *RamiKrispin* auf GitHub aktualisiert und zu Verfügung gestellt. https://github.com/RamiKrispin/coronavirus
- ② Demographie: Kontinentzugehörigkeit und Populationsdaten von 2018
 - Datenbank der Weltbank und der UN. Zugriff über das R-package wbstat und JohnSnowLabs über https://datahub.io/ JohnSnowLabs/country-and-continent-codes-list.
- Politische Maßnahmen zur Eindämmung der Infektionsübertragung
 - Government Response Tracker Datesatz der University of Oxford.
 - Zusammentragung von Daten zu pol. Maßnahmen der einzelnen Länder aus verschiedenen Quellen.
 - https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker

Anmerkungen zu den Daten

- Es handelt sich "nur" um die aufgezeichneten Fälle und Todefälle. (max. untere Schranke)
- Starke Unterschiede in der Aufzeichnungs- und Testpolitik einzelner Länder, was einen direkten Ländervergleich schwer möglich macht.
- Die Kreuzfahrtschiffe Diamond Princess, Grand Princess und MS Zaandam wurden ausgeschlossen, keine Land eindeutig zuortenbar.
- Die Zahlen der Fälle und Todesfälle beziehen sich meist auf 100.000 Personen.
- Analyse endet am 27. April 2020.

Anmerkungen zu den Daten

- Es handelt sich "nur" um die aufgezeichneten Fälle und Todefälle. (max. untere Schranke)
- Starke Unterschiede in der Aufzeichnungs- und Testpolitik einzelner Länder, was einen direkten Ländervergleich schwer möglich macht.
- Die Kreuzfahrtschiffe Diamond Princess, Grand Princess und MS Zaandam wurden ausgeschlossen, keine Land eindeutig zuortenbar.
- Die Zahlen der Fälle und Todesfälle beziehen sich meist auf 100.000 Personen.
- Analyse endet am 27. April 2020.
- Programmierung einer Web-Application: url!!!
- Abbildungen sind auf Englisch da sie sich an ein ggf. internationales Publikum richten.

COVID-19 weltweit

World

COVID-19 weltweit

2 1 0

-1

COVID-19 weltweit

color 0.5 -0.5-1-1.5

R.Galambos, L.Mihatsch

Praxisprojekt: COVID-19

08. Mai 2020

COVID-19 weltweit bestätigte Fälle

COVID-19 weltweit bestätigte Todesfälle

Confirmed Deaths

Zwischenergebnis

- Aktuell (27. April 2020) sind weltweit etwa 40 Fälle und 3 Todesfälle pro 100k Einwohner gemeldet.
- Durch logarithmische Darstellung sind zwei Infektionswellen erkennbar. Die erste Infektionswelle ist durch China dominiert.
- Geographisch besonderd Europa und die USA bestroffen.
- Für die meisten afrikanischen Staaten sind kaum Fälle gemeldet.

Wiederholung: Wachstumsfaktor und geometrisches Mittel

Definition 1 Wachstumsfaktor

Sei $C_0, C_1, C_2, ...$ eine Zeitreihe von kumulativen Fallzahlen zu den Zeitpunkten 0, 1, ..., n. Dann ist für i = 1, ..., n der i-te Wachstumsfactor x_1 gegeben durch

$$x_i = \frac{C_i}{C_{i-1}}.$$

Dadruch ergeben sich die kum. Fallzahlen zum Zeitpunkt n durch $C_n = C_0 \cdot x_1 \cdot x_2 \cdot ... \cdot x_n$.

Beispiel: Deutschland
$$C_{01.03.} = 130$$
; $C_{02.03.} = 159 \Rightarrow x_{02.03.} = \frac{159}{130} = 1.22$

Wiederholung: Wachstumsfaktor und geometrisches Mittel

Definition 2 Geometrisches Mittel

Das geometrische Mittel zu den Wachstumsfaktoren $x_1, x_2, ..., x_n$ ist gegeben durch

$$\bar{x}_{geom} = (x_1 \cdot x_2 \cdot \ldots \cdot x_n)^{1/n}.$$

Daraus ergibt sich $C_n = C_0 \cdot x_1 \cdot x_2 \cdot ... \cdot x_n = C_0 \cdot (\bar{x}_{geom})^n$.

Wiederholung: Wachstumsfaktor und geometrisches Mittel

Definition 2 Geometrisches Mittel

Das geometrische Mittel zu den Wachstumsfaktoren $x_1, x_2, ..., x_n$ ist gegeben durch

$$\bar{x}_{geom} = (x_1 \cdot x_2 \cdot \ldots \cdot x_n)^{1/n}.$$

Daraus ergibt sich $C_n = C_0 \cdot x_1 \cdot x_2 \cdot ... \cdot x_n = C_0 \cdot (\bar{x}_{geom})^n$.

Wir betrachten im Folgenden den *rolling geometric mean* der vergangenen 7 Tage. Dazu berechnen wir für jeden Zeitpunkt *i*

$$\bar{x}_{i,geom} = (x_i \cdot x_{i-1} \cdot x_{i-2} \cdot ... \cdot x_{i-6})^{1/7}.$$

Wachstumsfaktoren: Bestätigte Fälle

Growth factors: Recorded Cases

Wachstumsfaktoren: Todesfälle

Growth factors: Recorded Deaths

7-day rolling geometric mean of growth factors of all countries with more than 20 deaths recorded 1.6 World growth factor 1.2 1.0 Feb Mar Apr May Date

Verdopplungszeit

Ausgehend von einem exponentielle Wachstum der Form $C_n = C_0 \cdot (\bar{x}_{n,geom})^n$ ergibt sie die "momentane" Verdopplunszeit dt_i der Fallzahlen durch

$$dt_i = \frac{ln(2)}{ln(\bar{x}_{i,geom})}.$$

Verdopplungszeit

Ausgehend von einem exponentielle Wachstum der Form $C_n = C_0 \cdot (\bar{x}_{n,geom})^n$ ergibt sie die "momentane" Verdopplunszeit dt_i der Fallzahlen durch

$$dt_i = \frac{ln(2)}{ln(\bar{x}_{i,geom})}.$$

Beispiel: Erinnerung: Wachstumsfaktor von Deutschland am 02. März 2020

$$x_{02.03.} = 1.22 \Rightarrow dt_{02.03.} = \frac{ln(2)}{ln(1.22)} = 3.49$$

Verdopplungszeit

Ausgehend von einem exponentielle Wachstum der Form $C_n = C_0 \cdot (\bar{x}_{n,geom})^n$ ergibt sie die "momentane" Verdopplunszeit dt_i der Fallzahlen durch

$$dt_i = \frac{ln(2)}{ln(\bar{x}_{i,geom})}.$$

Beispiel: Erinnerung: Wachstumsfaktor von Deutschland am 02. März 2020

$$x_{02.03.} = 1.22 \Rightarrow dt_{02.03.} = \frac{ln(2)}{ln(1.22)} = 3.49$$

Bei einem Wachstum mit Faktor 1.22 würde sich die Anzahl an Fällen also alle 3.49 Tage verdoppeln.

Verdopplungszeit: Bestätigte Fälle

Doubling Times: Recorded Cases

Verdopplungszeit: Todesfälle

Doubling Times: Recorded Deaths

Zwischenergebnis

- Unter der Annahme eines exponentiellen Wachstums lassen sich kumulativen Fällen und Todesfällen über die Berechnung von Wachstumsfaktoren und Verdopplungszeiten direkt miteinander vergleichen.
- Aktuell (27. April 2020) besteht ein Wachtungsfaktor der kumulativen Fälle von etwa 1.03, was einer Verdopplungszeit von etwa 24 Tagen entspricht.
- Der lokale Minimum der Wachstumsfaktoren (bzw. lokales Maximum der Verdopplungszeit) der weltweiten Fälle liegt etwa eine Woche vor dem lokalen Minimun der Wachtumsfaktoren der weltweiten Todesfälle.
- Mitte-Ende März tritt sowohl bei den Wachstumsfaktoren von Fällen und Todesfällen ein lokales Maximum der Wachtumgsfaktoren (bzw. lokales Minimum der Verdopplungszeit) auf.

Infektionsmaßnahmen

S6 Restrictions on internal movement in selected countries

Diskussion

- Die Berechnung des geometrischen Mittels der Wachstumsfaktoren und der Verdopplungzeiten beruhen auf der Annahme eines exponentielle Wachstums. Zulässigkeit?
- Starke Unterschiede in der Strenge der Ausgangsbeschränkungen einzelner Länder.
- Verschiedene Maßnahmen machen Gruppierung nur schwer möglich.
- Keine Ursache-Wirkungsbeziehung-Schluss möglich.

Ende

Vielen Herzlichen Dank für Ihre Aufmerksamkeit!

Referenzen

- R-Packages
- RamiKrispin
- Oxford
- JHU
- UN Weltbank

Herleitung der Verdopplungszeit

Ausgehend von einem exponentielle Wachstum der Form $C_n = C_0 \cdot (\bar{x}_{n,geom})^n$ ergibt sie die "momentane" Verdopplunszeit dt_i der Fallzahlen durch

$$dt_i = \frac{ln(2)}{ln(\bar{x}_{i,geom})}.$$

Herleitung:

$$C_{i} \cdot (\bar{x}_{i,geom})^{dt_{i}} = 2 \cdot C_{i} \iff (\bar{x}_{i,geom})^{dt_{i}} = 2$$
$$\iff dt_{i} = \frac{\ln(2)}{\ln(\bar{x}_{i,geom})}.$$