UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Equações Diferenciais Ordinárias

Primeira Lista de Exercícios

LIVROS DE EQUAÇÕES DIFERENCIAIS DISPONÍVEIS NA BIBLIOTECA

- 1. Determinar a ordem da equação diferencial e dizer se esta é linear ou não linear:
 - (a) $t^2y'' + ty' + 2y = \sin(t)$
 - (b) $(1+y^2)y'' + ty' + y = e^t$
 - (c) y'''' + y''' + y'' + y' + y = 1
 - (d) $y' + ty^2 = 0$
 - (e) y'' + sin(t+y) = sin(t)
 - (f) $y''' + ty' + (\cos^2 t)y = t^3$
 - (g) $(1-t)y'' 4ty' + 5y = \cos(t)$
 - (h) $yy' + 2y = 1 + t^2$
 - (i) $t^3y'''' t^2y'' + 4ty' 3y = 0$
 - (j) (sent)y''' (cost)y' = 2
- 2. Verificar se as funções dadas constituem solução da EDO:
 - (a) y'' y = 0; $y_1(t) = e^t$, $y_2(t) = \cosh(t)$
 - (b) y'' + 2y' 3y = 0; $y_1(t) = e^{-3t}$, $y_2(t) = e^t$
 - (c) $ty' y = t^2$; $y_1(t) = 3t + t^2$
 - (d) y'''' + 4y''' + 3y = t; $y_1(t) = t/3$, $y_2(t) = e^{-t} + t/3$
 - (e) $2t^2y'' + 3ty' y = 0, t > 0; y_1(t) = t^{1/2}, y_2(t) = t^{-1}$
 - (f) $t^2y'' + 5ty' + 4y = 0, t > 0; y_1(t) = t^{-2}, y_2(t) = t^{-2}ln(t)$
 - (g) 2y' + y = 0; $y_1(t) = e^{-x/2}$
 - (h) $y' 2y = e^{3t}$; $y_1(t) = e^{3t} + 10e^{2t}$
 - (i) $y' = 25 + y^2$; $y_1(t) = 5tg(5t)$
 - (j) y' + 20y = 24; $y_1(t) = \frac{6}{5} \frac{6e^{-20t}}{5}$
 - (k) y'' 6y' + 13y + 0; $y_1(t) = e^{3t}cos(2t)$
 - (1) y'' = y; $y_1(t) = cosh(t) + senh(t)$
 - (m) $t^2y'' 3ty' + 4y = 0$; $y_1(t) = t^2 + t^2ln(t)$, x.0
 - (n) y''' 3y'' + 3y' y = 0; $y_1(t) = t^2 e^t$
 - (o) y'' 4y' + 4y = 0; $y_1(t) = e^{2t} + te^{2t}$
- 3. Determinar os valores de r para os quais a equação diferencial dada tem soluçãos da forma $y = e^{rt}$:
 - (a) y' + 2y = 0
 - (b) y'' y = 0
 - (c) y'' + y' 6y = 0
 - (d) y''' 3y'' + 2y' = 0
 - (e) y'' 5y' + 6y = 0
 - (f) y'' + 10y' + 25y = 0
- 4. Determinar os valores de r para os quais a equação diferencial dada tem solução da forma $y = t^r$ para t > 0:
 - (a) $t^2y'' + 4ty' + 2y = 0$
 - (b) $t^2y'' 4ty' + 4y = 0$
 - (c) $t^2y'' y = 0$
 - (d) $t^2y'' + 6ty' + 4y = 0$
- 5. Determine, por integração direta, a solução da equação diferencial dada:
 - (a) y' = 2x
 - (b) y'' = 1
 - (c) y'' = y'
 - (d) y'' = -y'

- (e) y' = 5y
- (f) $y' = y^3 8$
- (g) 2yy' = 1
- (h) y'' = y
- 6. Mostre que $y_1(t)=t^2$ e $y_2(t)=t^3$, são ambas soluções para

$$t^2y'' - 4ty' + 6y = 0$$

- . As funções c_1y_1 e c_2y_2 , com c_1 e c_2 constantes arbitrárias, são também soluções? A soma y_1+y_2 é uma solução?
- 7. Mostre que $y_1(t)=2t+2$ e $y_2(t)=-t^2/2$, são ambas soluções para

$$y = ty' + \frac{(y')^2}{2}$$

- As funções c_1y_1 e c_2y_2 , com c_1 e c_2 constantes arbitrárias, são também soluções? A soma $y_1 + y_2$ é uma solução?
- 8. Considere a lista de equações diferenciais, algumas das quais produziram os campos de direção ilustrados nas figuras abaixo. Em cada um dos problemas, identifique a equação diferencial que corresponde ao campo de direção dado.
 - (a) y' = 2y 1
 - (b) y' = y 2
 - (c) y' = y(y-3)
 - (d) y' = -2 y
 - (e) y' = 1 2y
 - (f) y' = 2 + y
 - (g) y' = y(y+3)
 - (h) y' = 1 + 2y
 - (i) y' = y(3-y)
 - (j) y' = 2 y
 - campo 1

$\bullet \;$ campo 2

\bullet campo 3

$\bullet \;$ campo 4

• campo 5

• campo 6

Resp: campo 1: (j), campo 2: (c), campo 3: (g), campo 4: (b), campo 5: (h), campo 6: (e).

- 9. Classifique as equações abaixo quanto ao tipo, a ordem e a linearidade.
 - (a) $yy^{'}+t=0$ Resp: EDO 1^{a} ordem não linear
 - (b) $x^2y'' + bxy' + cy = 0$ Resp: EDO 2^a ordem linear
- 10. Determine qual ou quais das funcões $y_1(x) = x^2$, $y_2(x) = x^3$ e $y_3(x) = e^{-x}$ são solucões da equação

$$(x+3)y^{''} + (x+2)y^{'} - y = 0$$

Resp: Apenas y_3 é solução da E.D.

- 11. Sejam a, b, $c \in \Re$. Mostre que
 - (a) $y(t) = e^{rt}$, com r
 raiz de ar + b = 0, é solucão da equação ay' + by = 0.
 - (b) $y(t) = e^{rt}$, com r
 raiz de $ar^2 + br + c = 0$, é solução da equação $ay^{''} + by^{'} + cy = 0$.
 - (c) $y(x) = x^r$, com r raiz de $r^2 + (b-1)r + c = 0$, é solução da equação $x^2y'' + bxy' + cy = 0$.
- 12. Determine os valores de r para os quais a função y(t) é solução da equação.

(a)
$$y(t) = \frac{r}{t^2 - 3} e^{-y'} + ty^2 = 0$$
 Resp: $r = 0$ ou $r = 2$

(b)
$$y(t) = \frac{r}{t^2 + 1}$$
 e $y^{'} - 2ty^2 = 0$ Resp: $r = 0$ ou $r = -1$

(c)
$$y(t) = \frac{r}{t^2 + 1}$$
 e $y^{'} - 6ty^2 = 0$ Resp: $r = 0$ ou $r = -1/3$

(d)
$$y(t) = \frac{r}{t^2 + 2} e y' - ty^2 = 0$$
 Resp: $r = 0$ ou $r = -2$