

Заметки по работе с системными командами и консольными утилитами 🊹 Linux.

Навигация:

- bash
- filesystem
 - o In
 - o zip
 - o gpg
- api
 - o curl
 - influxdb
 - wget
 - o curlie
 - httpie
- json
 - o jq
 - netcheck
 - o jc
 - brew
 - o fx
 - o jid
 - o jqp
 - xmllint
 - dasel
 - o xq
 - htmlq
 - o yq
 - yamllint
 - jsonlint
 - o CSV
 - sttr
- grep
 - ripgrep
 - o sig
- sed
- awk
- printf
- cut
- o rev
- tr
- man
 - o cheat sh
 - tldr
- debug
- tools
- dust
- find
 - o exec

- locate
- o fd
- bashrc
 - o fzf
 - hstr
 - mcfly
- compgen
- cron
- systemctl
 - systemctl-tui
 - unit
- journalctl
- dmesg
- hardware
- sysctl
- limits
- quota
- fetch
- networkmanager
- wireless
- networking
- netplan
- ip
 - net-tools
 - networkd
- SS
- dns
 - o resolv
 - resolved
 - o dig
 - o mtr
 - o doggo
- vnstat
- netcat
 - o socket api
 - socket proxy
- proxy
- nmap
 - masscan
 - rustscan
 - tcp
- tcpdump
- tshark
- ping
 - fping
 - netping
- firewall
 - o ufw
 - \circ show
 - firewalld
 - iptables
 - nftables
- ssh
 - keygen
 - o x11
 - o scp
 - sshpass

- sudoers
- strace
- apt
- snap
- dpkg
- ntp
- - time
 - language
 - timesyncd
 - o ntpd
- top
 - htop
 - bpytop
 - atop
 - iftop
 - iotop
 - top other
- ps
 - o kill
 - o procs
- jobs
 - o nohub
- mem
 - fincore
 - Ispage
- Isof
 - descriptor
- vmstat
- sysstat
 - iostat
 - mpstat
 - pidstat
- stress
 - stress-ng
- smart
 - smartmontools
 - sensors
 - badblocks
 - hdparm
- disk
 - parted
 - o fdisk
 - o sfdisk
 - o swap
- lvm
- md
- tgt
- dd
 - backup
 - o iso
 - o rdiff
- users
 - passwd
 - o chage
 - o id
 - usermod
 - o profile

- bashrc
- useradd
- adduser
- chmod
 - chown
 - o groups
 - usermod
- domain
 - o realmd
 - o sssd
- syslog
 - o server
 - client
 - zabbix-agent
 - o ommail
- logrotate
- log
- smb
 - o cifs
 - o samba
 - o client cifs
 - client samba-client
 - recycle
- nfs
 - server
 - client
- ftp
 - o ftp client
 - o ftps
- rsync
- apache
 - o api server
 - status
 - webdav
- haproxy
- keepalive

bash

• Переменные

```
text="(ip a)" передает текст
echo $text
ipaddr=$(ip a) передает вывод команды
echo $ipaddr
echo '$ipaddr' В ОДИНАРНЫХ КАВЫЧКАХ НЕ ПРОИСХОДИТ ПОДСТАНОВКА ПЕРЕМЕННЫХ
var=$((5+5))
echo $var
read -p "Enter: " enter ручной ввод переменной
echo $enter
read -s -p "Enter password: " pass ВВОД ПАРОЛЯ
echo $pass
echo -e "text\ntext" ЭКРАНИРОВАНИЕ
echo -e "# comment\nparam comment" > ~/test.txt ЗАПИСАТЬ В ФАЙЛ
cat ~/test.txt | grep -v "^#" ПРОЧИТАТЬ БӨЗ КОММЕНТАРИЕВ В НАЧАЛЕ СТРОКИ
```

```
original_value="Это длинная строка, которую нужно сократить до 50 символов."
shortened_value="${original_value:0:50}" обрезаем до 50 символов
true ; echo $? код возврата 0 (успех)
false; echo $? код возврата 1 (ошибка)
 • Массивы
range={1..254} создать срез от 1 до 254
array=(1 2 3 4 5) создать массив
array=($(1s /)) передает вывод команды $(command) разделенных через пробел
echo ${array[@]} отобразить содержимое всего массива @/*
echo ${array[0]} отобразить первый индекс в массиве
echo ${array[-1]} отобразить последний индекс
echo ${array[@]:1:3} вывести 3 элемента (срез)
echo ${#array[@]} отобразить кол-во ( # ) элементов в массиве
echo ${#array[0]} отобразить длинну ( # ) первого элемента в массиве
array[1]="22" изменить значение по номеру индекса
declare -A dict=(
    ["key 1"]=1
     ["key 2"]="text"
echo ${dict[key 1]}
echo ${dict[key 2]}
 • Цикл for
 for ((i=1; i <= 10; i++)); do
     echo $i
done
array=($(ls /))
for arr in ${array[@]}; do
     echo $arr
break прерывает цикл
continue прерывает текущую интерацию в цикле и переходит к следующей
array=(1 2 3 4 5)
for var in ${array[@]}; do
    if [ var - gt 4 ]; then
        break
     elif [ $var -gt 3 ]; then
        echo "Last number: $var"
     fi
     echo "Number: $var"
done
 • Цикл while
while [ $p -le 101 ]; do
     # если условие истинно, выполнять цикл в блоке do, пока не станет ложным
    есһо "Значение переменной: $p"
     # ((р++)) # увеличить на +1
     # p=$(($p+10)) # прибавлять +10
     р+=0 # добавить текст в конец переменной
done
```

• Построчная передача вывода через ріре

```
num=0
ps | sed 1d | while read line; do
    ((num++)) # ((num+=1))
    echo "Line $num : $line"
 • Условия
if [] если
then УСЛОВИЕ ИСТИННО
elif [] дополнительное условие
then дополнительное условие истинно
else условие ложно
fi больше нет условий
- строка пуста
-п строка не пуста
=, (==) строки равны
!= строки неравны
-eq равно
-пе неравно
-lt, (<) меньше
-le, (<=) меньше или равно
-gt, (>) больше
-ge, (>=) больше или равно
! отрицание логического выражения
-а, (&&) логическое «и» (первая команда исполняется всегда, вторая — только в случае успешного завершения первой)
-о, (||) логическое «или» (первая команда исполняется всегда, вторая — только в случае неудачного завершения первой)
if [[ -z "$variable" ]]; then
    echo "Переменная пустая"
else
    есho "Переменная не пустая"
 • Функции
 function calc {
    if [ $2 = "+" ]
        then
        echo (( $1 + $3 ))
    elif [ $2 = "-" ]
        then
        echo $(( $1 - $3 ))
    fi
}
calc 3 + 2
calc 3 - 2
 • Параметры
```

nano script.sh

```
#!/bin/bash
 if [ -n "$1" -a "$2" ]; then
     есho Имя исполняемого файла: $0
      echo Первый переданный параметр: $1
     есho Второй переданный параметр $2
     есho Кол-во переданных параметров: $#
     есho Значение последнего переданного параметра: ${!#}
 else
     есho "Параметры не заданы"
 fi
chmod +x script.sh сделать скрипт исполняемым
bash script.sh 1 2 3 4 5 передать параметры в скрипт
-e file проверяет, существует ли файл
-d file проверяет, существует ли файл, и является ли он директорией
 -f file проверяет, существует ли файл, и является ли он файлом
-r file проверяет, существует ли файл, и доступен ли он для чтения
 -w file проверяет, существует ли файл, и доступен ли он для записи
 -x file проверяет, существует ли файл, и является ли он исполняемым
-s file проверяет, существует ли файл, и не является ли он пустым
 # Получить список директорий и исполняемых файлов в дочерних директориях
 path="/etc/*"
 for folder in $path; do
     echo "$folder:"
     for file in $folder/*; do
         if [ -x $file ]; then
             echo "- $file"
         fi
     done
 done

    case

 read -rsn1 key
 case $key in
     echo выполнить действия, если $key равно 1 ;;
   "2")
     echo выполнить действия, если $key равно 2 ;;
     echo выполнить действия по умолчанию, если значение $key не соответствует ни одному условию
   ;;
 esac
filesystem
file Console-Performance.sh узнать тип файла (текстовый, исполняемый файл, архив или другой)
stat Console-Performance.sh узнать размер файла, количество блоков, занятых файлом на диске, количество жестких ссылок, права доступа и
временные метки
рwd текущая директория
1s -1h * отобразить содержимое каждого подкаталога отдельно
1s -1haF отобразить скрытые директории (-a) с точкой и выделит директории (/)
which top узнать путь до исполняемого файла
stat $(which top) узнать дату последнего доступа к файлу
cat -n /etc/passwd просмотр содержимого файла с отображением номеров строк
```

mkdir создать директорию

```
mktemp -d создать временный файл/каталог (-d)
touch -t 202106222200.15 test.file создать файл и указать дату создания
cp test.file test.file2 копировать файла/каталог
mv test.file2 test.file3 переименовать/переместить файл/каталог
rm -r test.file удалить каталог с файлами (-r)
```

ln

echo "test" > testfile

In /test/testfile /test/testlink создать жестку (hard) ссылку, которая указывает на один и тот же inode, т.е. они делят одно и то же физическое местоположение на диске

rm testfile при удалении одного из файлов не приводит к удалению содержимого, пока существует хотя бы одна жесткая ссылка

ln -s /test/testfile /test/testlink создать символическую (-s - soft) ссылку, которая ссылается на файл testfile

echo "test" >> testfile при добавлении в оригинальный файл, все изменения будут отражены в testlink

rm testfile при удалении исходного файла у ссылки будет ошибка (No such file or directory)

zip

```
rar a test.rar filename filename2 создать архив test.rar и добавить туда два файла (файлы копируются в архив)
unrar x test.rar разархивировать
zip -r test.zip filename архивировать (файлы копируются в архив)
unzip test.zip разархивировать
bzip2 filename архивировать в filename.bz2 (файлы перепещаются в архив)
bunzip2 filename.bz2 разархивировать
gzip filename apхивировать в filename.gz (файлы перепещаются в архив)
tar --totals -cvf archive.tar file1 file2 file3 архивировать три файла
wget https://github.com/librespeed/speedtest-cli/releases/download/v1.0.10/librespeed-cli_1.0.10_linux_amd64.tar.gz извлечь из gz в tar
tar -tf librespeed-cli_1.0.10_linux_amd64.tar отобразить содержимое архива
tar -xvf librespeed-cli_1.0.10_linux_amd64.tar разархивировать
./librespeed-cli --help
./librespeed-cli --json
```

gpg

```
gpg -c filename зашифровать данные
gpg filename.gpg расшифровать данные
gpg --gen-key создавать пару ключей (публичный и приватный ключи)
gpg --export -a 'User Name' > publickey.asc экспорт публичного ключа
gpg --import publickey.asc импорт на второй стороне
gpg --encrypt --recipient 'Recipient Name' filename зашифровать данные с использованием публичного ключа получателя, только владелец
приватного ключа сможет расшифровать эти данные
gpg --decrypt encryptedfile.gpg расшифровать данные можно с помощью приватного ключа
gpg --sign filename подписывать данные с использованием приватного ключа
gpg --verify signedfile.gpg проверка подписи с использованием публичного ключа отправителя
```

api

curl

```
curl ifconfig.me y3HATЬ ВНеШНИЙ ip

curl -v telnet://192.168.3.100:22 првоерить доступность порта и отобразить кому он принадлежит

curl -s -o /dev/null http://google.com подавить весь вывод (статистику --silent и --output)

curl -s -o /dev/null --show-error --fail http://google.com ОСТАВИТЬ ВЫВОД ОШИБОК

curl http://192.168.3.101:8081/api/ --connect-timeout 5 задать timeout ожидания ответа в секундах

curl -IL https://github.com/Lifailon/hwstat/archive/refs/tags/hwstat-0.0.8.zip получить информацию о файле перед скачиванием (--head/--location)

curl -0 https://raw.githubusercontent.com/Lifailon/hwstat/rsa/hwstat.sh СКАЧАТЬ файл
```

```
curl -o /tmp/hwstat.sh https://raw.githubusercontent.com/Lifailon/hwstat/rsa/hwstat.sh УКАЗАТЬ ПУТЬ
curl -Ik https://192.168.3.104:9443/ ИГНОРИРОВАТЬ ОШИБКУ САМОПОДПИСАННОГО СЕРТИФИКАТА SSL (--insecure)
curl -u <user:password> https://test.com/endpoint авторизация
curl -x "http://Proxy:Proxy@192.168.3.100:9090" "https://kinozal.tv/rss.xml" ИСПОЛЬЗОВАТЬ Proxy-Сервер
curl --insecure --ssl-reqd "smtps://smtp.yandex.ru" --mail-from "src@yandex.ru" --mail-rcpt "dst@yandex.ru" --user "src@yandex.ru" --upload-file ou
отправка email через SMTPS (SMTP over SSL/TLS) сервер
```

influxdb

```
ip="192.168.3.104"
db="dbash"
table="icmp_metrics_table"
server="google.com'
host=$(hostname)
date=$(echo $EPOCHREALTIME | sed -E "s/\..+//")"0000000000"
ping=$(ping $server -c 1)
loss=\{(printf "%s\n" "\{ping[@]\}" | grep -Eo "[0-9]+%" | sed "s/%//")
if (( $(echo "$loss != 100" | bc) )); then
    status="true"
    rtt=$(printf "%s\n" "${ping[@]}" | grep rtt | awk -F"/" '{print $5}')
else
    status="false"
    rtt="0"
fi
curl -i -XPOST "http://$ip:8086/write?db=$db" --data-binary "$table,host=$host,server=$server status=$status,rtt=$rtt $date"
```

wget

```
wget --spider https://download.nextcloud.com/server/releases/nextcloud-21.0.1.tar.bz2 проверить (--spider) работоспособность URL и узнать размер файла (Length)
wget -0 nextcloud.tar.bz2 https://download.nextcloud.com/server/releases/nextcloud-21.0.1.tar.bz2 скачать с указанным именем (-O)
wget -P /tmp https://download.nextcloud.com/server/releases/nextcloud-21.0.1.tar.bz2 скачать в указанную директорию (-P)
wget -b -o ~/wget.log https://download.nextcloud.com/server/releases/nextcloud-21.0.1.tar.bz2 загрузить в фоновом режиме (-b) и записать вывод в лог-файл (-o)
```

curlie

```
curl -sS https://webinstall.dev/curlie | bash альтернатива curl и httpie (https://github.com/rs/curlie)
curlie get https://jsonplaceholder.typicode.com/posts возвращает заголовки ответа и отформатированный вывод JSON
curlie get https://jsonplaceholder.typicode.com/posts/1
curlie get https://jsonplaceholder.typicode.com/posts -H "Authorization: Bearer YOUR_TOKEN"
curlie post https://jsonplaceholder.typicode.com/posts -d '{"title": "foo", "body": "bar", "userId": 1}'
```

httpie

```
sudo snap install httpie HTTP-клиент командной строки (https://github.com/httpie/cli) https httpie.io/hello https POST pie.dev/post X-API-Token:123 name=John
```

json

jq

```
apt install jq установить jq (https://github.com/jqlang/jq)
nodes=$(curl -s -H "Accept: application/json" https://check-host.net/nodes/ips) ПОЛУЧИТЬ СПИСОК NODE
echo $nodes | jq обработка входных данных командой jq (вывод отображается в правильно структурированном формате, а все элементы
подсвечиваются соответствующим цветом)
echo $nodes | jq '.nodes | length' количество дочерних объектов в блоке node[]
echo $nodes | jq -r .nodes[1] получить значение второго объекта массива в формате raw string (not JSON)
```

```
echo $nodes | jq -r .nodes[-1] ПОЛУЧИТЬ ЗНАЧЕНИЕ ПОСЛЕДНЕГО ОБЪЕКТА МАССИВА
hosts=$(curl -s -H "Accept: application/json" https://check-host.net/nodes/hosts) ПОЛУЧИТЬ СПИСОК ВСӨХ ХОСТОВ
echo $hosts | jq -r '.nodes | to_entries[].key' получить список всех вложенных ключей (адреса хостов) из объека (не является массивом)
echo $hosts | jq -r '.nodes | to_entries[].value' получить только значения всех вложанных ключей
echo $hosts | jq '.nodes."bg1.node.check-host.net"' получить значение дочернего ключа nodes по имени
echo $hosts | jq '.nodes | [.[]] | last' преобразовать отдельные объекты внутри nodes в массив, и передать полученный вывод в функцию
last для получения значений последнего объекта
echo $hosts | jq '.nodes | to_entries[].value.location[0] == "ru" проверить каждый элемент объекта в условии на true/false (вернет массив)
echo $hosts | jq '.nodes | to_entries[] | {Host: .key, Country: .value.location[1], City: .value.location[2]}' ПОЛУЧИТЬ ДАННЫӨ kӨУ-Value из
объекта nodes и пересобрать массив с новыми значениями ключей
echo $hosts | jq -r '.nodes | to_entries[] | "\(.key) (\(.value.location[1]), \(.value.location[2]))"' собрать массив строки из содержимого
ключей
var="-" && echo $hosts | jq --arg v "$var" -r '.nodes | to_entries[] | "\(.key) \(.value.location[1]) \($v) \(.value.location[2])"'
передать внешнюю переменную, которая будет использоваться внутри запроса
echo $hosts | jq -r '.nodes | to_entries[] | select(.value.location[0] == "ru") | .key' произвести фильтрацию (select), что бы получить только
нужные объекты
echo $hosts | jq '.nodes | to_entries[] | select(.value.location[@] != "ru") | .key' вывести объекты, которые не равны значению
echo $hosts | jq '.nodes | length' вывести общее количество объектов
echo $hosts | jq '.nodes | to_entries | map(select(.value.location[0] != "ru")) | length' создать массив функцией map() (объеденяет
отдельные объекты {\{\} группируются в один массив [{\},{\}]) только из тех объектов, которые соответствуют условию select() и вывести количество
найденных объектов
echo $hosts | jq -r '.nodes | to_entries[] | select(.value.location[0] == "ru" or .value.location[0] == "tr") | .key' Проверить два условия
через or или and (для проверяемого типа данных int кавычки не используются)
echo $hosts | jq -r '.nodes | to_entries[] | select(.key | index("jp")) | .key' вывести список хостов региона Japan, которые в названии ключа
содержат ключевое слово јр (частичное совпадение в значении)
 host="yandex.ru"
 protocol="ping"
 host="yandex.ru:443"
 protocol="tcp" # udp/http/dns
 # Забрать id для получения результатов
 check_id=$(curl -s -H "Accept: application/json" "https://check-host.net/check-$protocol?host=$host&max_nodes=3" | jq -r .request_id)
 # Функция получения результатов проверки по id
 function check-result {
     curl -s -H "Accept: application/json" https://check-host.net/check-result/$1 | jq .
 # Получить суммарное количество хостов, с которых производится проверка
 hosts_length=$(check-result $check_id | jq length)
 while true; do
     check_result=$(check-result $check_id)
     # Забираем результат и проверем, что содержимое всех проверок не равны null
     check_values_not_null=$(echo $check_result | jq -e 'to_entries | map(select(.value != null)) | length')
     if [[ $check_values_not_null == $hosts_length ]]; then
         echo $check_result | jq
         break
     fi
     sleep 1
 done
echo '{"iso": [{"name": "Ubuntu", "size": 4253212899}, {"name": "Debian", "size": 3221225472}]}' | jq '.iso[] | {name: .name, size: (.size / 1024 /
получить ГБ из байт и округлить вывод до 2 символом после запятой
echo '{"iso": [{"name": "Ubuntu", "progress": 0.333}]}' | jq '.iso[] | {name: .name, progress: (.progress * 100 | floor / 100 * 100 | tostring + "
получить процент из дробной части (33%)
echo '[{"name": "Ubuntu", "added_on": 1625072400}, {"name": "Debian", "added_on": 1625158800}]' | jq '.[] | {name: .name, date: (.added_on + 3 * 36
получить дату
```

netcheck

```
sudo curl -s https://raw.githubusercontent.com/Lifailon/Check-Host/rsa/netcheck/netcheck.sh -o /usr/bin/netcheck
sudo chmod +x /usr/bin/netcheck

netcheck -t ping yandex.ru
netcheck -n
netcheck -t ping yandex.ru ru1.node.check-host.net
netcheck -t dns yandex.ru
netcheck -t http yandex.ru:443 5
netcheck -t tcp yandex.ru:443
```

jc

apt install jc установить jc (https://github.com/kellyjonbrazil/jc) для преобразования вывода популярных инструментов командной строки, типов файлов и общих строк в JSON, YAML или словари Python, что позволяет передавать вывод в инструменты, такие как jq

```
dig google.com | jc --dig
dig example.com | jc --dig | jq -r '.[].answer[].data'
jc --pretty /proc/meminfo
systemctl list-units --all --plain --no-legend --no-pager | jc --systemctl -p
```

brew

/bin/bash -c "\$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" установить менеджер пакетов brew (https://github.com/Homebrew/brew) для macOS/Linux

```
echo 'eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"' >> ~/.profile
eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"
brew --version
```

fx

```
brew install fx || snap install fx ycraновить fx (https://check-host.net/nodes/fx) TUI интерфейс для JSON на GoLang hosts=$(curl -s -H "Accept: application/json" https://check-host.net/nodes/hosts)
echo $hosts | fx доступна навигация с раскрытием блоков и отображает ключи доступа для jq
source <(fx --comp bash) добавить autocomplete в интерпритатор bash
echo $hosts > hosts.json
fx hosts.json .nodes .\[\"ru1.node.check-host.net\"\] .ip Происходит автоматический вывод ключей и подстановка
```

jid

brew install jid установить jid (https://github.com/simeji/jid) для интерактивной фильтрации JSON данных с использованием автозавершения на GoLang

```
echo '{"info":{"date":"2016-10-23","version":1.0},"users":[{"name":"simeji","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji","id":1},{"name":"simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"https://github.com/simeji2","uri":"htt
```

jqp

brew install noahgorstein/tap/jqp установить jqp (https://github.com/noahgorstein/jqp) TUI интерфейс для отображения jq запросов на GoLang curl -s https://api.github.com/repos/Lifailon/PS-Commands/contents | jqp слева отображается исходный файл, справа отфильтрованный вывод curl -s https://check-host.net/nodes/hosts | jqp #Пример для фильтрации: .nodes | to_entries[] | select(.value.location[0] == "ru") | .key

xmllint

```
apt-get install libxml2-utils || snap install libxml2 || brew install libxml2
curl -s https://kinozal.tv/rss.xml -x kinozal:proxy@192.168.3.100:9090 | xmllint --xpath '//rss/channel/item/link/text()' -
curl -s https://kinozal.tv/rss.xml -x kinozal:proxy@192.168.3.100:9090 | xmllint --xpath '//rss/channel/item[1]/link/text()' -
```

</user> </users> EOF

dasel brew install dasel установить dasel (https://github.com/TomWright/dasel) для обработки JSON, YAML, TOML, XML и CSV (поддерживает преобразование между форматами) на GoLang echo '{"name": "Tom"}' | dasel -r json 'name' echo '{"name": "Tom"}' | dasel -r json -w yaml конвертировать json в yaml echo '{"name": "Tom"}' | dasel -r json -w xml конвертировать json в xml echo '{"name": "Тоm"}' | dasel put -r json -t string -v 'contact@tomwright.me' 'email' добавить свойство echo '{"email": "contact@tomwright.me","name": "Тот"}' | dasel delete -r json '.email' УДАЛИТЬ СВОЙСТВО tee users.json <<EOF { "users": [{ "name": "Иван Иванов", "email": "ivan.ivanov@example.com" }, { "пате": "Мария Петрова", "email": "maria.petrova@example.com" }] } EOF dasel -f users.json -r json ".users.[0].email" tee users.yaml <<EOF users: - name: Иван Иванов email: ivan.ivanov@example.com - name: Мария Петрова email: maria.petrova@example.com EOF dasel -f users.yaml -r yaml ".users.[1].email" tee users.toml <<EOF [[users]] пате = "Иван Иванов" email = "ivan.ivanov@example.com" [[users]] name = "Мария Петрова" email = "maria.petrova@example.com" EOF dasel -f users.toml -r toml ".users.[1].email" tee users.xml <<EOF <users> <user> <name>Иван Иванов</name> <email>ivan.ivanov@example.com</email> </user> <user> <name>Мария Петрова</name> <email>maria.petrova@example.com</email>

```
dasel -f users.xml -r xml ".users.user.[0].email"
```

xq

```
apt-get install xq || brew install xq yCTAHOBUTЬ XQ (https://github.com/sibprogrammer/Xq) для XML и HTML на GoLang curl -s https://kinozal.tv/rss.xml -x kinozal:proxy@192.168.3.100:9090 | xq -nx /rss/channel/item вывод содержимого дочерних элементов с тегами curl -s https://kinozal.tv/rss.xml -x kinozal:proxy@192.168.3.100:9090 | xq -x /rss/channel/item/link вывести только содержимое (массив ссылок) curl -s https://kinozal.tv -x kinozal:proxy@192.168.3.100:9090 | xq -nq "head" вывести блок head целиком (с тегами) curl -s https://kinozal.tv -x kinozal:proxy@192.168.3.100:9090 | xq -q "head" вывести только текст из дочерних элементов выбранного тега (содержимое title) curl -s https://kinozal.tv/browse.php?s=the+rookie -x kinozal:proxy@192.168.3.100:9090 | xq -nq "body > div > div > div > div > table > tbody > tr curl -s -X POST -u "Login:Password" "http://localhost:9091/transmission/rpc" | xq -q a -a href Забрать X-Transmission-Session-Id для дальнейших запросов к API (обратиться к тэгу а и атрибуту href)
```

htmlq

brew install htmlq установить htmlq (https://github.com/mgdm/htmlq) like jq for HTML

curl -s https://kinozal.tv/browse.php?s=the+rookie -x kinozal:proxy@192.168.3.100:9090 | htmlq table tr td a -t ПОЛУЧИТЬ СОДЕРЖИМОЕ ТАБЛИЦЫ (вывести только текст содержимого)

curl -s https://kinozal.tv/browse.php?s=the+rookie -x kinozal:proxy@192.168.3.100:9090 | htmlq table tr td a -a href получить только ссылки curl -s -X POST -u "Login:Password" "http://localhost:9091/transmission/rpc" | htmlq a -a href забрать X-Transmission-Session-Id для дальнейших запросов к API (обратиться к тэгу а и атрибуту href)

yq

```
snap install yq || pip install yq установить yq (https://github.com/kislyuk/yq) для YAML/XML/TOML на Python cat /etc/netplan/*.yaml | yq .network.ethernets список адаптеров netplan cat /etc/netplan/*.yaml | yq .network.ethernets.eth0.nameservers.addresses[] ВЫВЕСТИ МАССИВ dns адресов, настроенные на адаптере curl -s https://kinozal.tv/rss.xml -x kinozal:proxy@192.168.3.100:9090 | yq -p xml .rss.channel.item[1].link ВЫВЕСТИ ССЫЛКУ ИЗ ПЕРВОГО ЭЛЕМЕНТА curl -s https://raw.githubusercontent.com/JingWangTW/dark-theme-editor/main/hugo.toml | yq -p toml .params.footer.socialLink ПРОЧИТАТЬ КОНФИГУРАЦИЮ НИДО
```

yamllint

apt install yamllint ycraновить yamllint (https://github.com/adrienverge/yamllint) для проверки синтаксических ошибки YAML-файла yamllint /etc/netplan/*.yaml

isonlint

```
apt-get install -y nodejs установить Node.js

npm install jsonlint -g установить jsonlint (https://github.com/zaach/jsonlint) для проверки синтаксических ошибок JSON

echo '{"name":"example","value":"test",}' | jsonlint

echo '{"name":"example","value":"test"}' | jsonlint
```

CSV

```
brew install csvlens установить csvlens (https://github.com/YS-L/csvlens) для взаимодестия в csv через TUR на Rust pwsh -Command "Get-Process | ConvertTo-Csv | Out-File process.csv" csvlens process.csv
```

sttr

```
snap install sttr установить sttr (https://github.com/abhimanyu003/sttr) для конвертации и работы данными на GoLang curl -s curl -s -H "Accept: application/json" https://check-host.net/nodes/hosts | sttr json-yaml конвертировать JSON в YAML cat /etc/netplan/*.yaml | sttr yaml-json | jq конвертировать YAML в JSON curl -s https://raw.githubusercontent.com/Lifailon/hwstat/rsa/README.md | sttr markdown-html конвертировать Markdown в HTML
```

```
echo "test" | sttr hex-encode кодировать в НЕХ формат
echo "74657374" | sttr hex-decode декодировать НЕХ
echo "Test" | sttr upper ПОДНЯТЬ РЕГИСТР (TEST)
echo "Test" | sttr lower ОПУСТИТЬ РЕГИСТР (test)
echo -e "test1\ntest1\ntest2" | sttr unique-lines ПОЛУЧИТЬ УНИКАЛЬНЫЕ СТРОКИ
echo -e "a\nz\nb" | sttr sort-lines сортировать строки по алфавиту
echo -e "test1\ntest2" | sttr remove-newlines УДАЛИТЬ НОВЫЕ СТРОКИ
echo -e "test1\ntest2" | sttr count-chars ПОСЧИТАТЬ КОЛИЧЕСТВО СИМВОЛОВ
echo -e "test1\ntest2" | sttr count-lines ПОСЧИТАТЬ КОЛИЧЕСТВО СТРОК
```

grep

```
cat /var/log/auth.log | grep sshd ЛОГИ ВСЕХ SSH-ПОДКЛЮЧЕНИЙ
cat /etc/passwd | grep -w sys поиск целого слова, окруженное пробелами (-w)
cat /etc/ssh/sshd_config | grep -win port не учитывать регистр(-i)и отобразить номера строк(-n)
ss -n | grep -P ":22|:80|:443|:8080" искать по нескольким шаблонам, использовать Regex ( -E )
ss -n | grep -Pc ":22|:80" вывести кол-во ( --count ) совпадений
ss -n | grep "192.168.3...:" ПОИСК ЛЮБЫХ ДВУХ СИМВОЛОВ ( . )
ss -n | grep "192.168.3.*:" поиск любого кол-ва ( * )
cat /etc/ssh/sshd_config | grep -v "#" ВЫВЕСТИ ЗНАЧЕНИЯ, НЕ ПОДХОДЯЩИЕ ПОД КРИТЕРИИ ПОИСКА ( -v )
cat /etc/zabbix/zabbix_agentd.conf | grep -v "^#" отсеить только в начале строки ( ^ )
cat /etc/zabbix/zabbix_agentd.conf | grep "=$" найти строки, которые кончаются $ на символ = (получить все параметры)
cat /etc/zabbix/zabbix_agentd.conf | grep -Pv "^$|^#" удалить пустые строки ^$ и комментарии( ^# )
cat /etc/zabbix/zabbix_agentd.conf | grep -E "#+{5}" регулярное выражение ( -E ), где последний символ # повторяется 5 или более раз
echo -e "Test\ntest\n123-45" | grep -E "[a-zA-Z\-]" ИСКАТЬ ТОЛЬКО ТЕКСТ (ГДЕ ЕСТЬ БУКВЫ И ТИРЕ)
echo 'test<version>1.2.3</version>test' | grep -P -o "(?<=<version>).*(?=</version>)" Найти неизвестное значение (.*) между известными и
вывести только найденное ( -о )
echo "test<version>3.6.4</version>test" | grep -Eo '[0-9.]+' найти любую цифру и точку на конце, которые повторяются любое кол-во раз
подряд
echo $(lshw -class bus) | grep -P -o "(?<=Motherboard product: ).*(?=serial)" С ПРИМЕНЕНИЕ ГРУППИРОВКИ (-Р)
zabbix_path=$(systemctl status zabbix-agent | grep -Po "(?<=-c ).*(?=.conf)" | sed "s/$/.conf/") забрать путь до конфигурационного файла
cat $zabbix_path | grep -E "^Server=|^ServerActive=" Найти имя сервера
cat $zabbix_path | grep -Po "(?<=^Server=).+" вывести только имя сервера
resolvectl | grep "DNS Servers" -m 1 напечатать только первое совпадение ( -m int )
networkctl status | grep -A 3 "DNS:" найти строку и напечатать три строки после нее ( -A )
networkctl status | grep -B 3 "DNS:" найти строку и напечатать три строки до нее (-B)
networkctl status | grep -C 1 "DNS:" найти строку и напечатать одну строки до нее и одну после ( -C )
resolvect1 | grep -Ex ".+DNS Servers:.+" ВЫВЕСТИ СТРОКИ С ТОЧНЫМ СОВПАДЕНИЕ (-x/like), СОПОСТАВЛЯТЬ ТОЛЬКО ЦЕЛЫЕ СТРОКИ
if echo "GET" | grep -Eq "^GET"; then echo da; else echo net; fi ПОДАВЛЯТЬ ВЫВОД ( -q ) ДЛЯ ПРОВЕРКИ УСЛОВИЯ
curl https://api.github.com/repos/PowerShell/PowerShell/releases/latest | grep -Eom 1 "https://.+.deb" Забрать только первый подходящий под
ПОИСК
```

ripgrep

```
apt-get install ripgrep установить ripgrep (https://github.com/BurntSushi/ripgrep), аналог grep на Rust
cat /var/log/auth.log | rg sshd вывести журнал логов аудентификации фильтрацией по названию
cat /var/log/auth.log | rg "Accepted password for \w+ from \d+\.\d+\.\d+\.\d+" вывести строки, где указано Ассерted password for , далее любое
слово (имя пользователя) и IP-адрес в формате x.x.x.x

cat /var/log/auth.log | rg "user \w+\(uid=\d+\)" вывести строки с текстом user, затем имя пользователя (любое слово), и далее uid с числовым
значением в скобках

cat /var/log/auth.log | rg "192\.168\.\d+\.\d+" вывести строки, где первые два октета соответствуют 192.168

cat /var/log/auth.log | rg "sshd\[\d+\]: .* port \d+" вывести строки, содержащие sshd с идентификатором процесса (например,
sshd[4188420]), а затем текст рогт и номер порта

cat /var/log/auth.log | rg "\b12:\d{2}:\d{2}\b" фильтрация по времени за последние 12 часов (время начинается с 12: , затем две цифры для
минут и две для секунд)
```

sig

```
brew install ynqa/tap/sigrs установить sig (https://github.com/ynqa/sig) интерактивный grep на Rust curl -s https://raw.githubusercontent.com/Lifailon/hwstat/rsa/README.md > README.md cat README.md | & sig -a
```

sed

```
cat /etc/passwd | sed -n "1,5p" отобразить с первой по пятую строку ( р )
cat /etc/passwd | sed "$ d" удалить ( d ) последнюю строку
cat /etc/passwd | sed "1,3d" удалить с первой по третью строку (2,3d)
echo "One 1" | sed "s/One/Two/; s/1/2/" заменить One на Two и 1 на 2
cat /etc/zabbix/zabbix_agentd.conf | sed "s/127.0.0.1/192.168.3.102/" # > /etc/zabbix/zabbix_agentd.conf ЗАМӨНИТЬ ( s ) ip-АДРӨС
cat /etc/zabbix/zabbix_agentd.conf | sed "/^#\|^$/d" удалить пустые строки ^$ и комментарии ^#
timedatectl | grep zone | sed -E "s/.+zone: //" удалить любое кол-во лимволов до слова "zone: " включительно, используя Regex ( -E/-r )
echo -e "test\ntest" | sed "2s/test/test2/" заменить во второй строке (2s)
echo -e "test\ntest\ntest\ntest" | sed "2,3s/test/test2/" Заменить во второй и третей строке (2,3s)
echo -e "test\ntest\ntest\ntest" | sed "2ctest2" ЗАМЕНИТЬ ВТОРУЮ СТРОКУ (2c)
echo "The test and test" | sed "s/test/test2/g" заменить для каждого совпадения (/global)
echo "The test and test" | sed "s/test/test2/2" Заменить для второго совпадения ( /2 )
echo "line2" | sed "i\line1" добавить строку в начало ( i )
echo "line1" | sed "a\line2" добавить строку в конец ( a ) или в после указанной строки ( 2a )
echo "11 22 33 34" | sed "y/123/234/" заменить 1 на 2, 2 на 3, 3 на 4 ( у )
ls -R | grep ':' | sed "s/:$//; s/[^\/]*\// - /g" УДАЛИТЬ : В КОНЦЕ И ЗАМЕНИТЬ ВНАЧАЛЕ СТРОКИ "/любое кол-во символов между/" НА " - " ДЛЯ
BCEX (/g global)
echo "test<version>3.6.4</version>test" | sed -r 's/[^<]*<(.*)>.*/1/;s/<.*//;s/.*>//' ИСПОЛЬЗОВАТЬ ГӨДӨХ (-r)
ps aux | grep -E "^zabbix .+ -c" | sed -E "s/^zabbix.+-c //" Найти процесс zabbix с ключем -с и оставить путь conf
echo "MPEG-H HEVC, 88.5 Мбит/с, 3840x2160, 23.976 кадр/с, 10 бит" | sed -nr 's/.* ([0-9]+x[0-9]+).*/\1/p' ВЫВОДИТЬ ТОЛЬКО НАЙДЕННЫЕ СТРОКИ
(-п) с заменой (s/), ищем только цифры [0-9] где одно или более вхождений (+) и между ними х, вывести только первую группу поиска (то,
что в скобках) на печать ( /р )
```

awk

```
cat /etc/passwd | awk -F: '{print "name: " $1 " \t Dir: " $NF}' вывести содержимое первого и последнего $NF элемента в строке, используя
разделитель ":" и табуляцию (\t)
echo 'one two three four' | awk '{print $(NF-1)}' вывести содержимое преподследнего элемента
echo 'one two three four five' | awk '{print $((NF/2)+1)}' ВЫВЕСТИ СОДЕРЖИМОЕ ИЗ СЕРЕДИНЬ
echo "One Two Three" | awk '{$3="Four"; print $0}' заменить третье значение/переменную в строке
cat /etc/passwd | awk 'BEGIN{FS=":"; 0FS=" - "} {print $1,$7}' указать разделитель послей (элементов) на вход ( FS ) и заменить его на выходе
( OFS )
uptime | awk 'BEGIN{RS=" "; ORS="\n"} {print $0}' указать разделитель записей (строк) на входе ( RS ) и заменить его на выходе ( ORS )
echo -e "12345\n54321" | awk 'BEGIN{FIELDWIDTHS="2 3"}{print $1,$2}' УКАЗАТЬ ФИКСИРОВАННОЕ КОЛ-ВО СИМВОЛОВ ДЛЯ РАЗДЕЛЕНИЯ
lsof | awk '{if($7=="REG")print $0}' условие для выборки по столбцу
cat /etc/ssh/sshd_config | awk '/Port / {print $2}' УСЛОВИЕ ПОИСКА ДЛЯ ВЫВОДА
cat /etc/ssh/sshd_config | awk 'length $0 > 1' вывести строки, которые длиннее, чем 1 символ (удалить пустые строки)
cat /var/log/syslog | grep "$date" | awk '{print length($6)}' вывести длинну значения
awk 'BEGIN\{x = "low"; print toupper(x)\}' использовать функцию для перевода в вверхний регистр
awk 'BEGIN\{x = "LOW"; print tolower(x)\}' использовать функцию для перевода в нижний регистр
echo "1 2 3 4:5:6" | awk '{item=$4; split(item,array,":"); print array[2]}' разбить 4 значение на массив (используя функцию split) и забрать
значение по 2-му индексу
free | awk '{if (NR == 2) print $0}' вывести только вторую строку
free | awk '{if (NR >= 2) print $0}' ВЫВЕСТИ ВТРОУЮ И ПОСЛЕДУЮЩИЕ СТРОКИ
free | awk '{if (NF >= 5) print $0}' вывести строки, где 5 или больше значений
cat /etc/passwd | awk '{ if (NR >= 10 && NR <= 20) print $0}' ВЫВЕСТИ С 10 по 20 СТРОКИ
last | sed -n 1p | awk '$2=" ",$4=" "{print $0}' вывести все, кроме 2 и 4 значения (заменить)
ps -A | awk '{sum=""; for(i=1;i<=NF;i++) { if (i != 2) {sum=sum" "$i} } print sum}' вывести все, кроме 2-го значения
```

printf

```
top=$(top -bn1)
printf "%s\n" "${top[@]}" вывести вывод массива построчно
printf "%.2f \n" 1.1111 округлить до 2 символов после запятой
printf "%.0f \n" 1.6 удалить дробную часть (округлить до 2)
printf "Arg1: %s\nArg2: %s\n" "10" "20" принимает и выводит аргументы (%s) в виде строки
```

cut

```
echo "1 2 3" | cut -c 1,5 вывести первый и пятый симов ( --bytes / --characters )
echo "1 2 3" | cut -c 1-3 вывести с первой по третий символ
echo "1 2 3" | cut -c3- удалить первые 2 символа
echo -e "test1,test2,test3\ntest1,test2,test3" | cut -d , -f 2-100 указать разделитель полей/столбцов ( --delimiter ) и какие столбцы вывести
( --fields ) C 2 по 100
echo -e "test1,test2,test3\ntest1,test2,test3" | cut -d , -f 1,3 | sed "s/,/ /" вывести 1 и 3
echo -e "test1,test2,test3\ntest1 test2 test3" | cut -d , -f 1,3 -s печатать строки, где есть разделитель ( -s )
```

rev

```
echo "D:\plex-content\Rick.and.Morty.S07.2023.WEBDLRip.MegaPeer" | rev | cut -d \\ -f 1 | rev забрать последний элемент в пути (вначале разворачивает всю строку, забирает первый элемент и разворачивает строку обратно)

echo "D:\plex-content\Rick.and.Morty.S07.2023.WEBDLRip.MegaPeer" | sed -r 's/.+\\//' удалить все до последнего слеша

echo "D:\plex-content\Rick.and.Morty.S07.2023.WEBDLRip.MegaPeer" | sed 's/.*\\\(.*\)/\1/' удаляет все до последнего слеша и забирает одну группу захвата, что остается после удаления, и заменяет вывод на первую группу (1)

echo "D:\plex-content\Rick.and.Morty.S07.2023.WEBDLRip.MegaPeer" | awk -F '\\' '{print $NF}' забрать последний элемент массива (NF)
```

tr

```
echo "10 20 100 200" | tr 1 2 translate заменяет 1 на 2 для всех подходящих сомволов (20 20 200 200) echo "1 2 3" | tr " "," заменить пробелы на запятые (1,2,3) echo "1 2 3" | tr -d " " удалить пробелы (123)
```

man

cheat sh

```
curl cheat.sh/curl
curl cheat.sh/grep
curl cheat.sh/sed
curl cheat.sh/awk
curl cheat.sh/jq
curl cheat.sh/iptables
curl cheat.sh/find
```

tldr

pip3 install tldr упрощенный вариант man с примерами использования tldr curl веб-версия: https://manned.org/man/curl

debug

trap 'echo "\$ваsн_соммано" от рево построчная отладка скриптов bash, команда trap перехватывает сигнал DEBUG, посылаемый перед выполнением команды и выводит команду на экран

trap 'echo "\$BASH_COMMAND"; read' DEBUG read ожидает ввода с клавиатуры (Enter или Ctrl+C) перед выполнением каждой командой bash -x script.sh отладка (печать команд и их аргументов по мере их выполнения)

```
bash -x -c "ls -l" | grep *.sh | awk '{print $5,$NF}' запуск команды через интерпритатор bash и вывод отладки bash --debug script.sh проверка на ошибки apt-get install shellcheck ycтановить shellcheck shellcheck -S error hwstat.sh error/warning/info/style pip3 install thefuck ycтановить thefuck bas hwstat.sh запустить команду с ошибкой fuck автоматически исправляет последнюю ошибочную команду из выпадающего списка (up/down)
```

tools

```
pip install toolong
tl /var/log/auth.log интерактивный просмотр логов в консоли с фильтрацией
tl access.log* --merge просмотр нескольких файлов
apt install bat аналог cat (https://github.com/sharkdp/bat) с подсветкой синтаксиса
bat /etc/netplan/*.yaml
tree /var/log/ древовидный просмотр директорий и дочерних файлов
cargo install --locked broot установить broot (https://github.com/Canop/broot), аналог tree
broot kinozal-bot/
echo 'deb http://cz.archive.ubuntu.com/ubuntu jammy main universe' >> /etc/apt/sources.list && apt update
apt install exa установить аналог ls (https://github.com/ogham/exa)
exa $(pwd) -1 --icons отобразить иконки с подсветкой прав доступа
cargo install eza аналог ls (https://github.com/eza-community/eza) на базе exa
eza -l --icons
eza --tree kinozal-bot/
cargo install 1sd аналог ls (https://github.com/lsd-rs/lsd)
lsd -l kinozal-bot/
column /etc/passwd -t -s ":"
netcheck -t ping yandex.ru us1.node.check-host.net | sed -r 's/"//g; s/,$//; s/\{|\}|\[|\]// | column -t -s ":" распарсить JSON и добавить
отступ (табуляцию) для колонок
ls /home | wc -1 word count выводит количество строк ( --line )
ls /home | wc -w КОЛИЧЕСТВО СЛОВ ( --words )
ls /home | wc -m КОЛИЧЕСТВО СИМВОЛОМ ( --chars )
ls /home | wc -c количество символов/байт ( --bytes )
echo "(5.5-2.2)" | bc математические вычисления
echo "(5.5-2.2)" | bc | sed -E "s/\..+//" удалить дробную часть
есho "1 < 2" | bc возвращает булевое значение (1 - да или 0 - нет)
echo "1 \Rightarrow 2" | bc false (0)
icmp_ignore=$(cat /proc/sys/net/ipv4/icmp_echo_ignore_all) забрать значение
if (( $(echo "$icmp_ignore == 1" | bc) )); then echo "true"; else echo "false"; fi проверить в условии арефметическое значение на равенство
(возвращает 0 - false или 1 - true)
a=1
b=0.55
echo $(bc <<< "scale=2; $a+$b")
echo "print $a+$b" | perl
echo "print($a+$b)" | python3
echo "print($a+$b)" | lua
echo "puts $a+$b" | ruby
pwsh -Command $a+$b
echo -e "key1\nkey2\nkey3" > 1.txt
echo -e "value1\nvalue2\nvalue3" > 2.txt
```

```
paste 1.txt 2.txt -d : объединяет два файла в один многоколоночный вывод
cat /etc/passwd | paste -s -d + объеденить (join) многострочный файл, используя указанный delimiter
echo -e "test1\ntest2" > 1.txt \ echo -e "test\ntest2\ntest3" > 2.txt
diff 1.txt 2.txt -c ! есть изменения, + есть новая строка
diff 1.txt 2.txt -уі сравнивает в две колонки (| есть изменения, + есть новая строка) и игнорировать регистр (-i)
diff 1.txt 2.txt -u объеденяет два файла в один вывод с отображением изменений (+/)
diff 1.txt 2.txt -ibBt не учитывать пробелы (-b) и пустые строки (-B), игнорировать изменения в табуляциях (-E) и заменить табуляции на
пробелы в выводе (-t)
diff -c <(echo "$predu") <(echo "$du") сравнить содержимое переменных
snap install diff-so-fancy
diff -u file-1.txt file-2.txt | diff-so-fancy
apt install jdupes
idupes . ПОИСК ДУБЛИКАТОВ
cat /etc/passwd | sort -r отсортировать вывод по алфовиту в обратном порядке (-r)
du -h ~ | sort -n сортировать по арифметическому значению (-n) размер файлов и директорий
ls -1 | sed 1d | sort -nk5 сортировка по пятой колонке (-k)
cat $tmp | sort -t "." -nk4 сортировать по четвертой колонке, используя разделитель (-t) точку
echo -e "1 2\n1 2\n2 1\n1 2" | uniq удаляет соседние одинаковые строки
echo -e "1 2\n1 2\n2 1\n1 2" | sort | uniq удалить все дубликаты
echo -e "1 2\n1 2\n2 1\n1 2" | sort | uniq -c добавляет в начало каждой строки кол-во повторений
echo -e "1 2\n1 2\n2 1\n1 2" | sort | uniq -u отобразить только уникальные строки, без строк с повторениями
ls -1 | fold -w 50 задать ширину вывода каждой строки, выпадающее за указанный предел переносится на новую строку
1s -1 | fold -w 50 -s разбивать строки только на символах пробела (--space)
cat /var/log/syslog | head -n 5 выводит первые 5 строк файла
cat /var/log/syslog | tail -n 5 просмотр последних 5 строк файла
tail -f /var/log/syslog просмотр содержимого файла в реальном времени
ant install multitail
multitail -f /var/log/auth.log -f /var/log/kern.log
multitail -l "journalctl -fu ssh" -l "journalctl -fu cron"
less /var/log/dmesg вывести лог ядра с возможностью пролистывания
watch df -h выводит на экран и обновляет состояния подключенных устройств каждые 2 секунды
echo "line1" | tee test.txt перезаписать файл (>)
ls > /dev/null перенаправить вывод в null
echo "line2" | tee -a test.txt добавить (>>) текст новой стройокй в конец файла
echo -e "line3\nline4" >> test.txt добавить две новые строки
du -a /var/log | awk '{print $2}' | xargs fincore передать вывод первой команды построчно в аргументы следующей
split -1 100 input file.txt output prefix разделить файл на части по 100 строк в каждой
split -b 10M input_file.txt output_prefix разделить файл на части по указанному размеру (например, 10MB)
уез предназначена для автоматического вывода строки или символа, повторяющегося бесконечно (для нагрузки системы), либо для
автоматического подтверждения запросов в других командах
```

dust

```
snap install dust аналог du на Rust (https://github.com/bootandy/dust)
dust /home/lifailon выводит график используемого пространства по директориям и файлам для анализа занятого пространства
dust -s показывает размер файла, а не объем используемого им дискового пространства
dust -n 30 выводит 30 каталогов (по умолчанию — высота терминала)
```

```
dust -d 3 показывает 3 уровня подкаталогов

dust -D отобразить только директории

dust -F отобразить только файлы

dust -F отобразить только файлы

dust -I не показывать скрытые файлы

dust -I не
```

find

```
find / -name "*.sql" найти файлы, начать поиск с корня (/)
find / -iname "mysql" найти файлы не учитывая регистр (-i)
find ~ -name "test.*" -not -name "*.conf" найти все файлы с наименование test, которые имеют любое расширение, за исключением (-not)
расширения.conf
find ~ -amin -10 поиск файлов по дате последнего чтения (-amin) которые просматривались (cat/nano) за последние 10 минут
find ~ -type f -mmin -10 найти файлы (-type f), которые были модифицированны за последние 10 минут (-nmin)
find ~ -type f -mtime +1 -mtime -7 найти все файлы, модифицированные между 1 и 7 днями назад
find ~ -type d -mtime +1 -mtime -7 поиск директорий
find ~ -size +50M -size -100M поиск файлов в Linux по их размеру, от 50 до 100 мегабайт
find / -perm 444 поиск файлов по режиму доступа (только чтение для всех)
find /home/lifailon/ -user root поиск файлов по владельцу
find /home/lifailon/ -group root поиск по группе
find /root/ -empty поиск пустых файлов или директорий
```

exec

```
touch -t 202306222200.15 /tmp/test.txt создать файл с указанной датой создания find /tmp -type f -mtime +30 -exec rm -f {} \; удалить все файлы, котоыре не изменялись больше 30 дней find /tmp -type f -name "*.txt" -exec rm -f {} \; удалить все текстовые файлы в директории tmp dd if=/dev/zero of=/var/log/test.log count=11 bs=1M Создать файл заполненный нулями указанного размера find /var/log -type f -name "*.log" -size +10M -exec rm -f {} \; удалить все лог-файлы, объёмом больше 10 Мбайт
```

locate

```
apt install plocate
updatedb обновить индексы базы данных
locate .torrent найти по частичному совпадению в имени или расширению
locate .torrent -c отображает количество найденных результатов
locate -n 10 .torrent вывести 10 результатов
locate -i Kinozal-Bot игнорировать регистр
locate -r "\.log$" использовать регулярные выражения

sudo curl -s https://github.com/pr4k/locate/releases/download/v0.1.1/locate-linux -o /usr/bin/locate -o /usr/bin/locate
sudo chmod +x /usr/bin/locate

locate-linux -p /home/lifailon/ -q /qbittorrent
locate-linux -p /home/lifailon/.bash_history -q /qbittorrent
```

fd

```
apt install fd-find установка (https://github.com/sharkdp/fd)
fdfind без аргументов заменяет ls -R для рекурсивного поиска в текущем каталоге
fdfind pass /etc ищет в указанной директории по частичному совпадению
```

```
fdfind -H pre-commit ПОИСК СКРЫТЫХ ФАЙЛОВ
fdfind .yaml / | fzf ищет все файлы с корня с выводов в fzf
sudo fdfind .yaml / | fzf отобразит все результаты ПОИСКА
fdfind --type f -e pdf . $HOME | rofi -keep-right -dmenu -i -p FILES -multi-select | xargs -I {} xdg-open {} ИНТЕГРАЦИЯ С ГОБ (ГРАФИЧЕСКОЕ
МЕНЮ)
fd -e zip -x unzip рекурсивно найти все zip-архивы и распаковать их
```

bashrc

```
nano ~/.bashrc
   # Псевдонимы команд с ключами для сокращения ввода
   alias ll='ls -lFh'
   alias la='ls -alFh'
   # Забиндить очистку ввода на Ctrl+C
   bind '"\C-1": "^\C-u\C-mclear\C-m"'
   # Добавляет фильтрация по введеному тексту при испоьзовании стрелочек вверх и вниз
   if [[ $- == *i* ]]; then
             bind '"\e[A": history-search-backward'
             bind '"\e[B": history-search-forward'
    fi
 source ~/.bashrc Применить Политики
fzf
 apt install fzf установить fzf (https://github.com/junegunn/fzf)
history | fzf интерактивный поиск с фильтрацией
 eval $(history | fzf | awk '{print $2}') выполнить (eval) выбранную команду из списка (добавить в макрос)
 ls *.json | fzf | xargs cat | jq . вывести содержимое выбранного json файла через fzf
 find / -name "*.yaml" | fzf | xargs саt найти в системе все файлы yaml и запустить по ним поиск
   # Поиск по истории с помощью команды h и комбинации Ctrl+F
   if command -v fzf > /dev/null; then
             #alias h='eval $(cat ~/.bash_history | fzf)'
             alias h='eval (history | fzf | sed -r "s/^s+[0-9]+(s+[0-9]+(s+[0-9]+2)-[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+[0-9]+(s+[0-9]+2)+(s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)+[s+[0-9]+2)
             bind -x '"\C-f": h'
   fi
hstr
 sudo apt install hstr установить hstr (https://github.com/dvorka/hstr)
hstr -f избранное (Ctrl+F добавить в избранное)
hstr -n bash log вывести на экран отфильтрованную историю
   if command -v hstr > /dev/null; then
             bind -x '"\C-r": hstr'
   fi
```

mcfly

Заменяет поиск истории через Ctrl-R на интеллектуальную поисковую систему, которая учитывает рабочий каталог и контекст недавно выполненных команд (https://github.com/cantino/mcfly)

```
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
echo 'eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"' >> ~/.bashrc
eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"
source ~/.bashrc
brew install mcfly
echo 'eval "$(mcfly init bash)"' >> ~/.bashrc
source ~/.bashrc
```

compgen

0,14,29,44 * * * * каждые 15 минут */15 * * * * каждые 15 минут

```
compgen - c выводит все команды, доступные в текущей оболочке
compgen - a выводит все алиасы, определенные в текущей оболочке
compgen -b выводит все встроенные команды Bash
compgen -k выводит все зарезервированные слова Bash
compgen -v выводит все переменные, определенные в текущей оболочке
compgen -A export выводит все экспортированные переменные
compgen -A function выводит все функции, определенные в текущей оболочке
compgen -A arrayvar выводит все массивы, определенные в текущей оболочке (echo ${BASH_ALIASES[@]})
compgen -A hostname выводит все известные хосты
compgen -A job выводит все активные задания (ping ya.ru > /dev/null &)
compgen -A service выводит все службы (для систем, поддерживающих службы, например, через systemd)
compgen -d выводит все директории в текущем каталоге
compgen -f выводит все файлы и директории в текущем каталоге
compgen -u выводит всех пользователей системы
compgen -g выводит все группы системы
compgen -W "start stop status restart" st Выводит список слов из wordlist, которые начинаются с prefix "st"
cron
ls /etc/cron.d/ директория хранения задач различных пакетов (atop, sysstat)
ls -1 /etc/cron.hourly && ls -1 /etc/cron.daily && ls -1 /etc/cron.weekly && ls -1 /etc/cron.monthly ДИРЕКТОРИИ ДЛЯ СКРИПТОВ, КОТОРЫЕ НАДО
выполнять раз в час, день, неделю и месяц
crontab -1 просмотр задач
crontab -1 | grep -Pv "^$|^#" отобразить только активные задания
crontab -u lifailon -1 отобразить задачи пользователя root
crontab -e создать задачу от текущего пользователя
sudo crontab -u root -e создать задачу от пользователя root
crontab -r ОЧИСТИТЬ ВСЕ ЗАДАЧИ
cat /etc/crontab
 #### # .---- минута (0 - 59)
 #### # | .----- час (0 - 23)
 #### # | | .---- мень месяца (1 - 31)
 #### # | | .----- месяц (1 - 12) или jan,feb,mar,apr...
 #### # | | | .--- день недели (0 - 6) (Воскресень 0 или 7) или sun,mon,tue,wed,thu,fri,sat
 #### # | | | |
 #### # * * * * user-name command to be executed
 #### 17 * * * * root
                            cd / && run-parts --report /etc/cron.hourly
 #### 25 6 st st root test -x /usr/sbin/anacron || ( cd / st& run-parts --report /etc/cron.daily )
 #### 47 6 * * 7 root test -x /usr/sbin/anacron || ( cd / && run-parts --report /etc/cron.weekly )
 #### 52 6 1 * * root test -x /usr/sbin/anacron \mid\mid ( cd / && run-parts --report /etc/cron.monthly )
```

00 23 * * * systemctl restart zabbix-agent && echo \$(date): Reboot Zabbix Agent use cron >> /var/log/reboot.log выполнять перезапуск службы каждый день в 23:00 и писать в лог

```
00 03 * * 6 echo $(date): Reboot Operating System use cron >> /var/log/reboot.log && /sbin/reboot ВЫПОЛНЯТЬ Перезагрузку системы один раз в
субботу в 3 часа ночи
@reboot date >> ~/date-reboot.log выполнять один раз после перезагрузки
iournalctl -eu cron
cat /var/log/syslog | grep -i cron
 #!/hin/hash
 addr="google.com"
 path="/var/log/icmp-test.log"
 date=$(date | awk '{print $3,$2,$4}')
 loss=$(ping -c 2 $addr | grep -Ewo "[0-9]+%")
 if [ $loss = "100%" ]; then
     echo "$date: $addr - unavailable" >> $path
 else
     echo "$date: $addr - available" >> $path
 fi
echo "*/1 * * * * bash /root/google-icmp-test.sh" >> /var/spool/cron/crontabs/root добавить задачу в планироващик на выполнение скрипта
каждую минуту
cp /etc/hosts /etc/hosts.bak backup файла
echo "11.11.11 google.com" >> /etc/hosts ИЗМЕНИТЬ АДРЕС ДЛЯ НЕДОСТУПНОСТИ ХОСТА
cp /etc/hosts.bak /etc/hosts ВОССТАНОВИТЬ ФАЙЛ
cat /var/log/icmp-test.log | grep unavailable отфильтровать лог по unavailable
```

systemctl

```
systemctl reload ssh обновить конфигурацию сервиса из файла юнита (если у юнита есть эта функция)
systemct1 status ssh отображает состояние системы, юнитов (в том числе Failed) и запущенные процессы пользователей
systemctl status sshd | grep -P "Active.+;" | sed -r "s/.+; | ago//g" время работы службы
systemctl start ssh запустить юнит (до перезагрузки)
systemctl stop ssh остановить юнит (до перезагрузки)
systemctl restart ssh перезапустить сервис
systemctl enable ssh добавить в автозагрузку
systemctl disable ssh удалить из автозагрузки
systemct1 mask ssh выключить юнит, который нельзя будет запустить вручную или как зависимость (создает симлинк на /dev/null)
systemctl unmask ssh ВКЛЮЧИТЬ ЮНИТ (УДАЛИТЬ СИМЛИНК)
systemctl daemon-reload перезапустить юнит systemd
systemctl cat ssh отобразить путь и содержимое unit-файла
systemctl edit --full ssh открыть для редактирования файл юнита
systemctl list-dependencies ssh Дерево зависимостей
systemctl list-dependencies ssh --reverse Зависящие сервисы от указанного юнита
systemctl list-units --type service --all отображение статуса всех сервисов
systemctl list-unit-files | sed "1d;$ d" | sed "$ d" | wc отобразить кол-во всех файлов конфигурации сервисов на диске
systemctl list-unit-files | grep zabbix отфильтровать по имени
systemctl list-unit-files --type=service СПИСОК ВСЕХ СЕРВИСОВ
systemctl list-unit-files --type=service --state=enabled СПИСОК СЕРВИСОВ, ДОБАВЛЕННЫХ В АВТОЗАГРУЗКУ
systemctl list-units --all --type=service --plain --no-legend --no-pager --output=json
--all выводить все типы юнитов, включая активные, неактивные и остановленные
--type=service выводить только системные службы управляемые systemd (не ключает в вывод другие типы юнитов, такие как socket или device)
--plain вывод в текстовом формате без форматирования
--no-legend отключает вывод заголовков для столбцов
--no-pager отключает использование постраничного вывода (less)
ls /usr/lib/systemd/system Юниты поставляемые вместе с системой и устанавливаемыми приложениями
ls /run/systemd/system юниты созданные динамически в runtime
ls /etc/systemd/system ЮНИТЫ СИСТЕМНОГО администратора
```

systemctl-tui

cargo install systemctl-tui --locked быстрый и простой TUI-интерфейс для взаимодействия с службами и журналами systemd на Rust (https://github.com/rgwood/systemctl-tui), от создателя NuShell systemctl-tui

unit

```
#!/bin/bash
 while true; do
    addr="google.com"
     path="/var/log/icmp-test.log"
     date=$(date | awk '{print $3,$2,$4}')
     loss=$(ping -c 2 $addr | grep -Ewo "[0-9]+%")
     if [ $loss = "100%" ]; then
         echo "$date: $addr - unavailable" >> $path
     else
         echo "$date: $addr - available" >> $path
         tail -n 1 $path
     fi
     sleep 5
 done
nano /etc/systemd/system/icmp-test-log.service
 [Unit]
 Description=icmp test output to log
 After=network.target
 [Service]
 ExecStart=/bin/bash "/root/google-icmp-test.sh"
 ExecReload=/bin/kill -HUP $MAINPID
 KillMode=process
 Restart=on-failure
 Type=simple
 [Install]
 WantedBy=multi-user.target
systemctl daemon-reload
systemctl enable icmp-test-log.service
systemctl start icmp-test-log
systemctl status icmp-test-log
tail -f /var/log/icmp-test.log
```

journalctl

```
journalctl --system отобразить системный журнал текущего пользователя journalctl --user отобразить пользовательский журнал текущего пользователя journalctl --m отобразить записи из всех доступных журналов (--merge) journalctl --ek отобразить только сообщения ядра (kernel, --dmesg) из текущей загрузки journalctl -t systemd показать записи с указанным идентификатором системного журнала journalctl _PID=3972315 отобразить сообщения по PID процесса journalctl --eu ssh отобразить сообщения с конца (--pager-end) для выбранного сервиса (--unit) g перейти в начало листинга G перейти в конец journalctl --fu ssh выводить новые сообщения в реальном времени (-f/--follow) journalctl --fu ssh выводить новые сообщения в реальном времени (-f/--follow)
```

```
journalctl -ru ssh вывести сообщения с конца (сверху новые записи, --reverse)
journalctl -n 100 -u ssh --no-pager вывести 100 строк (--lines) из журнала и не передавать вывод на автоматический скроллинг
journalctl -р 3 вывести записи с указанным приоритетом, например, только ошибки и выше по важности: неработоспособность(0), alerts(1),
critical(2), errors(3), warning(4), notice(5), info(6), debug(7)
journalct1 -5 "2023-09-01 12:00:00" -U "2023-09-01 15:00:00" отобразить сообщения от (--since) 1 сентября с 12:00:00 по (--until) 15:00:00
journalctl --since today отобразить сообщения за сегодня
journalctl -b отобразить сообщения с момента последней загрузки системы (boot)
journalctl --list-boots показать список сохраненных загрузок системы
journalctl -b ba6b2292a@e84d83a81cedfaa221926f показать сообщения с момента конкретной загрузки системы (--boot)
journalctl --quiet не показывать информационные сообщения и предупреждения о привилегиях
journalctl --no-hostname ПОДАВИТЬ ВЫВОД ПОЛЯ ИМЕНИ ХОСТА
journalctl -n 1 --no-pager --output=json-pretty вывод в формате JSON (json-sse, json-seq)
journalctl -n 1 --no-pager --output=json-pretty --output-fields=PRIORITY,MESSAGE ОТФИЛЬТРОВАТЬ ВЫВОД
journalctl --fields вывести список всех используемых полей (UNIT, USER UNIT, SYSTEMD UNIT, SYSTEMD USER UNIT и т.д.)
journalctl --field=UNIT > system_units.log ВЫВЕСТИ СПИСОК ВСЕХ ЮНИТОВ В СИСТЕМЕ
journalctl --field=USER_UNIT > user_units.log вывести список всех пользовательских юнитов в системе
comm -12 <(sort system_units.log) <(sort user_units.log) построчное сравнение двух отсортированных файлов со списком журналов без вывода
общих строк в 1 и 2 файлах (-12)
journalctl --disk-usage вывести общее использование диска всеми файлами журнала (Archived and active journals take up 2.3G in the file system)
journalct1 --flush очистить все данные журнала из директорий /run в /var
journalctl --vacuum-time=1month удалить файлы журнала, старше указанного времени (1-го месяца)
journalctl --vacuum-size=100м очистить логи, чтобы размер хранилища соответствовал указанному размеру
journalctl --vacuum-files=100 оставить только указанное количество файлов журнала
journalctl --rotate запустить немедленную ротацию файлов журнала
journalctl --sync синхронизировать незаписанные сообщения журнала на диск
journalctl --relinquish-var прекратить запись на диск, войти во временную файловую систему
journalctl --verify проверить целостность файла журнала
journalctl --header вывести список журналов
File path - путь к файлу журнала на диске
Incompatible flags - несовместимые флаги с этим журналом
Rotate suggested - применяется ли ротация к журналу
Tail sequential number - последовательный номер для конца журнала (указывает на последнее событие в журнале)
Head realtime timestamp - время первого события в журнале
Tail realtime timestamp - время последнего события в журнале
Objects - количество объектов, находящихся в журнале (таких как записи, и не только)
Entry objects - количество объектов, представляющих записи в журнале
Data objects - количество объектов данных, хранящихся в журнале
Field objects - Количество объектов полей (список полей можно получить через --fields)
```

Disk usage - используемое пространство на диске для этого журнала

nano /etc/systemd/journald.conf

Storage=auto # журналы сохраняются в /var/log/journal на диске (если доступно достаточно места), или в памяти (/run/log/journal) при недостатке м Storage=persistent # журналы всегда сохраняются на диске

Storage=volatile # журналы хранятся только в памяти (не сохраняются на диск)

Storage=none # журналы не сохраняются

Seal=yes # включает подписание журналов для обеспечения их целостности. Это добавляет цифровую подпись в журналы, чтобы защитить их от изменений SyncIntervalSec=5m # интервал между синхронизациями журнала с диском (5 минут)

RateLimitIntervalSec=30s # временной интервал, в течение которого будет ограничено количество записей журнала, если они приходят слишком часто RateLimitBurst=10000 # максимальное количество записей, которое можно сделать в журнал за интервал RateLimitIntervalSec

SystemMaxUse=500M # ограничивает максимальное количество дискового пространства, которое могут занимать системные журналы, если пространство прев SystemKeepFree=1G # минимальное количество свободного места на диске, которое должно оставаться для других системных задач, если места на диске с SystemMaxFileSize= # ограничивает размер одного файла журнала на диске. Если файл превышает этот размер, он будет разделен

SystemMaxFiles=100 # максимальное количество файлов журнала, которые могут быть созданы, старые файлы будут удаляться, чтобы освободить место для MaxRetentionSec=1month # максимальный срок хранения журналов (например, журналы будут храниться не более месяца)

ForwardToSyslog=yes # должны ли записи журнала перенаправляться в системный журнал (syslog), это позволяет перенаправлять журнал в другие системы orwardToKMsg=no # должны ли записи журнала перенаправляться в буфер ядра (KMsg)

ForwardToConsole=no # должны ли записи журнала отображаться на консоли работающего в системе через TTY (не в терминал других пользователей)

ForwardToWall=yes # должны ли записи журнала отображаться всем пользователям, работающим в системе (уведомления будут выводиться всем пользовател MaxLevelStore=debug # максимальный уровень журналируемых записей, которые будут сохраняться (emerg, alert, crit, error, warning, notice, info, de MaxLevelSyslog=debug # максимальный уровень журналируемых записей, которые будут отправляться в syslog

MaxLevelWall=emerg # максимальный уровень журналируемых записей, которые будут выводиться всем пользователям через команду wall

LineMax=48К # максимальный размер строки, которая может быть записана в журнал (по умолчанию 48 КБ)

Audit=no # журналировать события аудита (связанных с безопасностью, например, вход в систему, попытки доступа к файлам и изменения файловых прав,

sudo systemctl restart systemd-journald

dmesg

dmesg -тх прочитать логи буфера сообщений ядра (/var/log/dmesg), используется для записи во время загрузки системы пока сервис Syslog ещё не запущен

dmesg -Tx -1 crit,err отфильтровать вывод

dmesg -E включить логирвоание ядра в консоль (--console-on)

dmesg -D отключить (--console-off)

dmesg -n 1 изменить уровень логирования для печати в консоль

dmesg -u отображать вывод из программ окружения пользователя

dmesg -w выводить журнал в реальном времени (ждать новых сообщений)

hardware

systemd-analyze отображает статистику времени загрузки ОС (Kernel - время загрузки ядра) и userspace systemd-analyze blame отобразить все процессы и отсортировать по времени загрузки systemd-analyze blame | grep zabbix systemd-analyze plot > graph.svg создать векторный отчет в формате Scalable Vector Graphics описанный XML history история команд history -c очистить историю who -b время последнего включения last история авторизации last -n 5 reboot история перезагрузки last shutdown история выключений

arch архитектура системы

lsb_release -a версия дистрибутива

uname -srv версия ядра

cat /proc/version версия ядра и дистрибутива

cat /etc/os-release описание дистрибутива и версия ОС

hostnamect1 подробная информация (Operating System, Kernel, Architecture, Hardware Vendor/Model)

uptime время работы системы, кол-во залогиненных пользователей, Load average - средняя загрузка системы за последние 1, 5 и 15 минут (2.00 - это 100% на два ядра)

```
dmidecode -t bios информация о системе (system/baseboard/processor/memory)
dmidecode -s bios-vendor информация о системе (bios-version/bios-release-date/baseboard-manufacturer/system-manufacturer/processor-version)
dmidecode -t baseboard версия материнской платы, Video и Sound и их статус
пргос КОЛ-ВО ЯДЕР
1scpu информация о процессоре
cat /proc/cpuinfo информация о процессоре
cat /proc/cpuinfo | grep "core id" | wc -1 количество уникальных ядер (без учета потоков)
cat /proc/partitions перечисляет все устройства хранения и разделы на этих устройствах хранения
cat /proc/asound/cards Audio PCI
cat /proc/cmdline содержит имя файла образа ядра и его параметры запуска, которые были указаны в приглашении загрузчика GRUB
(позволяет идентифицировать параметры загрузки, которые были введены вручную)
cat /etc/default/grub содержит конфигурацию, которую использует команда update-grub для создания файла /boot/grub/grub.cfg
cat /boot/grub/grub.cfg команда update-grub генерирует этот файл автоматически в соответствии с настройками, заданными в файле
cat /proc/loadavg среднее количество процессов или потоков, которые выполняются, находятся в очереди на выполнение или ждут завершения
операций ввода/вывода за последние 1, 5 и 15 минут. 4-е значение, это количество процессов выполняемых в данный момент/общее количество
процессов в системе. Последнее значение, это PID последнего созданного процесса.
1spci информация о устройствах, подключенные к материнской плате компьютера по шине PCIe
lspci | grep -i vga узнать какая используется видеокарта (VGA controller)
1spci | grep -i audio Audio controller
1spci | grep -i ethernet Ethernet controller
1spci | grep -i scsi SCSI storage controller
1spci | grep -i sata SATA storage controller
lspci | grep "USB controller"
lspci | grep 02:00.0 фильтровать информацию по слоту устройства
lspci -vv | grep -iE "driver" отобразить список загруженных драйверов ядра для устройств
1susb -vt информация о USB устойствах (принтеры, Bluetooth адаптер, мышка, клавиатура)
1shw -short информацию по каждому устройству
1shw -class bus Motherboard/USB
1shw -class display VGA controller
lshw -class network
1shw -class disk информация о жестком диске (product, vendor, size, capabilities: 7200rpm)
1shw | grep product
ls /sys/class/net СПИСОК СЕТЕВЫХ ИНТЕРФЕЙСОВ
cat /proc/net/dev список сетевых интерфейсов и их статистика (bytes, packets, errs, drop) для Receive (Прием) и Transmit (Передача)
ethtool -S ens33 статистика сетевого интерфейса (для сброса статистики нужно ір down и выгрузить модуль ядра с драйверов modprobe -г
module и вернуть обратно)
ethtool ens33 | grep -Ei "wake-on|speed" поддержка Wake-on-Lan и скорость сетевого интерфейса
ethtool -i ens33 драйвер сетевой карты
ethtool ens33 -р 100 включить светодиод на сетевой карте на 100 секунд
cat /sys/block/sda/stat статистика диска sda
1smod список всех загруженных модулей ядра вместе с зависимостями
/proc/modules содержится список всех загруженных модулей ядра
modinfo ip_tables информация о конкретном модуле
ls /etc/*modprobe* содержит конфигурационные файлы со списками модулей ядра
cat /etc/modprobe.d/mdadm.conf \ /etc/modules-load.d/` директория, которая содержит файлы со списками модулей, которые должны быть
загружены при запуске системы
ls -1 /var/lib/apt/periodic/update-success-stamp дата последнего выполнения apt update
ls -1 /var/cache/apt/pkgcache.bin местоположение кэша пакетов apt
HISTTIMEFORMAT="%d/%m/%y %T " history | grep "apt update" история команды обновления с точкой времени
cat /etc/hostname ИМЯ XOCTA
cat /etc/services | grep -iE "ntp|zabbix" СПИСОК ВСЕХ СЕРВИСОВ И СОПОСТАВЛЕННЫХ ИМ ПОРТОВ В СИСТЕМЕ
cat /etc/mime.types | grep -Ew "json|csv" СПИСОК СОПОСТАЛВЕНИЯ ФАЙЛОВ И ИХ ПРОГРАММ ДЛЯ ОТКРЫТИЯ В СИСТЕМЕ
```

```
cat /etc/hosts.allow && cat /etc/hosts.deny Ограничить доступ к внешним сервисам
cat /etc/hosts.{allow,deny} | grep -Pv "^$|^#"
echo "in.telnetd: 192.168.3., .domain.ru" >> /etc/hosts.allow разрешить соединение только для указанной подсети и домена
ls -1 /dev | grep sd вывести список всех дисков и разделов в файловой системе
ls -1 /dev | grep -wo sd. Вывести только список дисков
cat /proc/diskstats статистика дисков
cat /proc/stat cpu user/nice/system/idle/iowait/irq/softirq/steal_time, ctxt - общее количество переключений контекста на всех процессорах, btime -
время загрузки системы в секундах с начала эпохи unix, processes - указывается количество созданных процессов и потоков, включая (но не
ограничиваясь ими) те, которые созданы вызовами системных вызовов fork() и clone(), procs_blocked - количество процессов, заблокированных в
данный момент и ожидающих завершения ввода-вывода
stat -f /dev/sda
cat /proc/buddyinfo информация о фрагментации памяти в ядре Linux, спользуется для диагностики проблем с фрагментацией памяти
cat /proc/cgroups система контейнеризации и управления ресурсами доступными для процессов cgroups, позволяет ограничить доступ к любым
ресурсам для процесса, а также контролировать его поведение в системе
sysctl
sysct1 -а отобразить все параметры/настройки ядра Linux (Kernel), где представленны все параметры в виде переменных, имена переменных
соответствуют пути файла в директории /proc/sys (вместо слеша в переменной используется точка)
sysctl net.ipv6.conf.all
sysctl net.ipv6.conf.all.disable_ipv6=1 отключить протокол IPv6 (> /proc/sys/net/ipv6/conf/ens33/disable ipv6)
sysctl net.ipv6.conf.ens33.disable_ipv6=1 ДЛЯ интерфейса ens33
sysct1 --system обновление информации из файлов/вернуть значения переменных до состояния сохраненного в файлах (удалить временные
изменения из sysctl)
sysctl -w net.ipv6.conf.ens33.disable_ipv6=1 сохранить настройку после перезагрузки (-w записать в файл)
sysct1 fs.file-nr кол-во открытых файловых дескрипторов в текущий момент, открытые файлы которые сейчас не используются, максимальное
количество для открытия
sysctl -a | grep fs.file-max максимальное количество открытых файлов (дескрипторов), которые могут быть открыты в файловой системе
всеми процессами на уровне ядра ОС
nano /proc/sys/fs/file-max изменить значение кол-ва дескрипторов
echo "fs.file-max=500000" >> /etc/sysctl.conf добавить в конфигурацию sysctl.conf
sysctl -р применить настройки
sysctl fs.nr open лимит открытия файлов для каждого процесса отдельно
ls /proc/1/fd/ | wc -1 узнать кол-во открытых дескрипторов у процессора с PID 1
sysct1 fs.aio-nr количество асинхронных операций ввода и вывода файловой системе в масштабе всей системы (Asynchronous IO number
requests)
sysct1 fs.aio-max-nr максимальное количество асинхронных операций ввода-вывода, рекомендуемое минимальное значение для fs.aio-max-nr
— 1048576, но в загруженной среде ASE со многими ядрами может потребоваться настроить большее число
sysct1 fs.inotify.max_queued_events подсистема ядра inotify позволяет следить за изменениями в файловой системе, устанавливает
максимальное количество событий, которые могут находиться в очереди, перед тем как их обработает программа
sysct1 fs.inotify.max_user_watches максимальное количество файлов и директорий, за которыми может наблюдать один объект inotify
sysctl fs.inotify.max_user_instances максимальное количество объектов inotify, которые может создать один пользователь
sysct1 fs.mqueue.queues max максимальное количества очередей сообщений POSIX, разрешенных в системе, которые позволяют процессам (и их
потокам) обмениваться данными в виде сообщений (создаются и открываются с помощью функции mq open)
sysct1 fs.mqueue.msg_max максимального количества сообщений в значении очереди
sysctl fs.mqueue.msgsize max Максимальный размера сообщения
sysctl vm.min_free_kbytes минимальный размер свободной оперативной памяти который необходимо поддерживать
sysct1 vm.swappiness процент свободной памяти, по достижении которого данные начинают переноситься на SWAP раздел
sysct1 -w vm.swappiness=80 при 80% свободной памяти (свыше 20% занятой оперативной памяти) начнет использоваться SWAP, в котоый
помещяются неиспользуемые процессами страницы памяти на текущий момент, если приложению потребуются эти страницы, процесс их
перенесения из раздела подкачки обратно в оперативную память (данные нужно обратно считать с диска в память)
sysct1 -w vm.swappiness=10 файл подкачки (выгрузка в виртуальную память) активируется только в том случае, если свободно 10% оперативной
памяти
sysctl vm.vfs_cache_pressure скорость удаления dentry и inode из кэша (100 по умолчанию)
```

sysct1 vm.dirty background ratio процент от общей оперативной памяти который может быть заполнен страничным кэшем, по достижении

cat /etc/hosts локальная таблица преобразовани ір в имя

которой демон pdflush (dirty page flush) начинает сбрасывать данные из кэша оперативной памяти на диск. Когда объем свободной памяти становится меньше этого порога, ядро вызывает функцию wakeup_bdflush() для перевода в состояние выполнения потока pdflush, который выполняет функцию обратной записи измененных страниц памяти background_writeout() на диск, эта функция получает один параметр количества страниц, которые функция должна попытаться записать на диск.

sysct1 -w vm.dirty_background_ratio=5

sysct1 vm.dirty_ratio вернхний предел объема оперативной памяти в процентах от free Available который может быть выделен под PageCache до их записи на диск, на этом уровне все новые операции ввода-вывода приостанавливаются до тех пор, пока на диск не будут записаны грязные (Dirty) страницы, значение должно быть выше чем dirty_background_ratio

sysct1 vm.dirty_expire_centisecs время хранения грязных (Dirty) страниц в коше в сотых долях секунд (3000 = 30 секунд) для их записи на диск с

sysct1 vm.dirty_expire_centisecs время хранения грязных (Dirty) страниц в кэше в сотых долях секунд (3000 = 30 секунд) для их записи на диск с целью. Функция wb_kupdate() демона pdflush выполняет обратную запись данных на диск, которые были изменены более чем dirty_expire_centisecs для синхронизации страничного кэша с данными на диске, т.к. при сбое, т.к. содержимое памяти после перегрузки не сохраняется.

sysctl vm.dirty_writeback_centisecs интервал процесса проверки данных, которые подлежат записи на диск (500 - 5 секунд)

sysctl abi.vsyscall32 разрешает выполнение 32 битных программ в 64 битной системе (по умолчанию 1 - разрешает)

sysctl kernel.hostname изменить имя компьютера без перезагрузки

sysctl kernel.printk уровень логирования

sysctl -w kernel.printk="2 4 1 7"

sysctl net.ipv4.ip_default_ttl значение по-умолчанию для величины Time To Live исходящих пакетов (продолжительность жизни пакета в Internet - каждый раз, когда пакет попадает на очередной роутер, брандмауэр и т.п. величина TTL пакета уменьшается на 1)

sysctl net.ipv4.ip_no_pmtu_disc запрещает поиск Path Maximum Transfer Unit (максимальный размер пакета для выбранного пути, это не MTU), когда система будет пытаться определить максимальный размер пакета, при котором не потребуется выполнять их фрагментацию, для передачи на заданный хост

sysct1 net.ipv4.tcp_mem векторная переменная (минимум, режим нагрузки, максимум), которая содержит общие настройки потребления памяти для протокола TCP, измеряется в страницах (обычно 4Кб), а не байтах. Пока общий размер памяти для целей протокола TCP ниже минимального количества страниц, операционная система ничего не делает с памятью используемой различными TCP сокетами, в режиме нагрузки TCP начинает быстро освобождать память, и последний максимальный - объем памяти, который может использоваться для нужд TCP и при его достижении, начинаются потери пакетов.

sysct1 net.ipv4.tcp_rmem векторная величина размера буфера сокетов TCP для приема. Каждый сокет TCP имеет право использовать минимальную память по факту своего создания (по умолчанию – 4096 байт, 4 Кб) и его не стоит увеличивать, т.к. при высокой нагрузки займут много памяти. Значение по умолчанию применяется взамен параметра rmem_default (который используется другими протоколами), второй параметр - по умолчанию имеет удвоенное значение, 87380 * 2 bytes, или 174760 байт (170 Кб). Максимально возможный размер приемного буфера, это значение не отменяет максимума, заданного в rmem_max

sysctl net.ipv4.tcp wmem векторная величина размера буфера сокетов ТСР для передачи

sysctl net.core.rmem_default значение по умолчанию (имеет ниже приоритет, чем tcp_rmem)

sysctl net.core.wmem_default значение по умолчанию

sysctl net.core.rmem_max максимальный размер буфера на сокете получения данных в байтах (глобальный параметр, имеет выше приоритет, чем tcp_rmem)

sysctl net.core.wmem_max максимальный размер буфера на сокете передачи данных в байтах

sysctl net.core.optmem max максимальный объём опциональных буферов памяти

sysctl -w net.core.rmem_max=26214400 && sysctl -w net.core.rmem_default=26214400 увеличить до 25 МБайт

sysctl -w net.core.wmem_max=26214400 && sysctl -w net.core.wmem_default=26214400 увеличить до 25 МБайт

sysctl net.ipv4.tcp_no_metrics_save по умолчанию (0) TCP сохраняет различные метрики соединения в кэше маршрута при закрытии соединения, при включении (1) TCP не будет кэшировать метрики при закрытии соединений

sysct1 net.ipv4.icmp_echo_ignore_all если включено, ядро будет игнорировать все icmp запросы (рекомендуется для защиты от DOS атак)

sysct1 net.ipv4.icmp_echo_ignore_broadcasts игнорировать запросы ICMP ECHO, переданные широковещательными пакетами

sysctl net.ipv4.icmp_ignore_bogus_error_responses игнорировать ошибочные ICMP запросы

sysct1 net.ipv4.conf.all.accept_source_route разрешать маршрутизацию от источников, при включении, позволяет отправителю определить путь, по которому пакет должен пройти по сети Internet, чтобы достигнуть пункта назначения. Это удобно для изучения и отладки работы сети, но нарушитель получает возможность подмены адресов компьютеров локальной сети и может попытаться подсунуть поддельные маршруты для того, чтобы перенаправить весть трафик через узел, который он контролирует (атака Man In The Middle).

sysctl net.ipv4.conf.all.accept_redirects запретить(0)/разрешить(1) принимать и отправлять ICMP пакеты перенаправления

sysctl net.ipv4.conf.all.send_redirects

sysctl net.ipv4.conf.all.secure_redirects

sysctl net.ipv4.ip_forward разрешает (1) или запрещает (0) маршрутизацию пакетов через текущий хост

sysctl net.ipv4.conf.default.forwarding включить форвардинг пакетов - разрешить ядру операционной системы осущетсвлять проброс трафика с одного интерфейса на другой

sysctl net.ipv4.ip_local_port_range диапазон локальных портов, доступных для установки исходящих подключений (создания локальных

клиентских сокетов)

sysctl net.ipv4.tcp_max_tw_buckets максимальное число сокетов, находящихся в состоянии TIME-WAIT одновременно, для предотвращения простейших разновидностей DoS-атак

sysct1 net.ipv4.tcp_tw_recycle разрешает/запрещает быструю утилизацию сокетов, находящихся в состоянии TIME-WAIT

sysctl net.ipv4.tcp_tw_reuse позволять повторное использование TIME-WAIT сокетов в случаях, если протокол считает это безопасным sysctl net.ipv4.tcp_rfc1337 защита от TIME-WAIT атак

sysct1 net.ipv4.tcp_max_orphans максимальное число "осиротевших" TCP сокетов, не связанных каким-либо идентификатором пользовательского файла (user file handle), при достижение этого значения, соединения сбрасываются. Этот порог помогает предотвращать простые атаки DoS и увеличение параметра влияет на O3У, каждое orphan-соединение поглощает около 64 Кбайт не сбрасываемой на диск (unswappable) памяти и не может быть сброшена в SWAP. При возникновении проблем, связанных с этим ограничением — в системный журнал будет подобное сообщение: TCP: too many of orphaned sockets, и это может служить поводом пересмотреть значения tcp fin timeout или tcp orphan retries.

sysctl -w net.ipv4.tcp_max_orphans=65536

sysct1 net.ipv4.tcp_orphan_retries число попыток закрыть соединение перед тем как оно будет разорвано принудительно и уничтожается TCP соединение, закрытое на локальной стороне сервера. По умолчанию используется значение 7, соответствующее приблизительно периоду от 50 секунд до 16 минут в зависимости от RTO (Retransmission Timeout).

sysct1 net.ipv4.tcp_fin_timeout задает максимальное время пребывания сокета в состоянии FIN-WAIT-2 и используется если другая сторона не закрыла соединение со своей стороны. Каждый сокет занимает в памяти 1.5 Кб, что может привести к значительным утечкам памяти в некоторых случаях.

sysct1 net.ipv4.tcp_syncookies помогает защититься от атак SYN flood, срабатывает только при достижении значения net.ipv4.tcp_max_syn_backlog, если количество SYN пакетов забивает всю очередь, включается механизм Syn cookies. SYN cookies вообще не использует очередь SYN, вместо этого ядро отвечает на каждый SYN пакет, как обычно SYN/ACK, но туда будет включено специально сгенерированное число на основе IP адресов и портов источника и получателя, а также времени посылки пакета. Атакующий никогда не получит эти пакеты, а поэтому и не ответит на них. При нормальном соединении, будет послан третий пакет, содержащий число, а сервер проверит был ли это ответ на SYN соокіе и, если да, то разрешит соединение даже в том случае, если в очереди SYN нет соответствующей записи.

sysct1 net.ipv4.tcp_fastopen помогает уменьшить задержки в сети, позволяя начать передачу данных сразу при отправке клиентом первого TCP SYN (3 - включает для входящих и исходящих)

sysct1 net.ipv4.tcp_max_syn_backlog размер очереди (максимальное число) запоминаемых запросов на попытку установки TCP соединений (SYN-пакета в состоянии Waiting Acknowledgment) при отправки клиентом TCP SYN пакета, для которых не было получено сервером подтверждения от клиента (полуоткрытых соединений)

sysctl -w net.ipv4.tcp_max_syn_backlog=4096 увеличить, если на сервере возникают перегрузки

sysct1 net.core.somaxconn размер очереди (максимальное число) полуоткрытых соединений (открытых сокетов) ожидающих установки соединения. Если в ответ на SYN-пакета (synchronize) клиентом был получен от сервера пакет SYN-ACK (acknowledges), сервер ожидает от клиента отправки ACK пакета, после чего соединение считается установленным.

sysctl net.ipv4.tcp_syn_retries количество попыток передачи SYN-пакета при установлении нового соединения, на каждую попытку отводится примерно 30-40 секунд. Значение по-умолчанию 5 = 180 секундам.

sysctl net.ipv4.tcp_synack_retries количество попыток передачи SYN-ACK-пакета в ответ на SYN-запрос для установки пассивного TCP-соединение, инициированное другим хостом, если уменьшить до одного, будет примерно 9 секунд

sysctl net.core.netdev_max_backlog регулирует размер очереди пакетов между сетевой картой и ядром, если ядро не успевает обрабатывать пакеты (если сетевой интерфейс получает пакеты быстрее, чем ядро может их обработать) и очередь переполняется, то новые пакеты отбрасываются, если увеличить значение, можно справиться с пиковыми нагрузками

sysctl -a | grep net.ipv4.tcp_keepalive после неактивности сокета посылает пакет keepalive на второую сторону, содержащий нулевые данные, после отправки первого пакета через время, указанное в tcp_keepalive_time отправляет повторно пакеты через каждые tcp_keepalive_intvl секунд tcp_keepalive_probes pas, если другая сторона не отвечает, сокет автоматически закрывается

tcp_keepalive= $$(sysct1 -a \mid grep net.ipv4.tcp_keepalive \mid grep -Po "(?<=\=\s)[0-9]+") Забрать массив значений echo <math>tcp_keepalive \mid awk '\{print $3+($1*$2)\}' 7200+(75*7)$

sysct1 net.ipv4.conf.all.rp_filter 1 - строгий режим проверки и 2 - свободный режим проверки, включает фильтр обратного пути (reverse path filter) или защита от подмены адресов (спуфинга), все что поступает на сервер, проходит проверку на соответствие исходящего адреса с таблицей маршрутизации и такая проверка считается успешной, если принятый пакет предполагает передачу ответа через тот же самый интерфейс. Например, когда входящий трафик идет через один маршрутизатор, а исходящий через другой, могут теряться пакеты, поскольку обратный маршрут в таблице маршрутизации, задан через другой интерфейс.

sysctl -w net.ipv4.conf.ens33.rp_filter=1 включает строгую проверку на интерфейсе ens33

sysctl net.ipv4.conf.all.log_martians включает/отключает логирование пакетов

sysct1 net.ipv4.tcp_window_scaling разрешает/запрещает масштабирование TCP-окна, как определено в RFC 1323. При передаче TCP-пакетов по толстым каналам возникают потери пропускной способности из-за того, что они не загружены полностью во время ожидания подтверждения о приеме предыдущего TCP-окна. Основная проблема состоит в том, что окно не может иметь размер больше, чем 216 байт (65 Кб). Разрешая масштабирование TCP-окна можно увеличить его размер и таким образом уменьшить потери пропускной способности.

sysctl net.ipv4.tcp_retries2

sysctl net.ipv4.tcp_abort_on_overflow заставляет ядро отвергать новые соединения, если их поступаемое количество выше, с чем система в состоянии справиться

sysctl net.ipv4.ip_nonlocal_bind позволяет отдельным локальным процессам выступать от имени внешнего (чужого) IP адреса, может потребоваться, когда необходимо прослушивать внешние IP адреса, например, сниффинг чужого траффика

net.ipv4.ipfrag_low_thresh максимальный объем памяти, выделяемый под очередь фрагментированных пакетов в диапазоне от 0 до 2147483647, когда длина очереди достигает этого порога, то обработчик фрагментов будет отвергать все фрагментированные пакеты и после уменьшения очереди они должны быть повторно переданы узлом-отправителем.

sysctl net.ipv4.netfilter.ip_conntrack_max максимальное количество соединений для работы механизма connection tracking (используется в iotables)

limits

cat /etc/security/limits.conf | grep -Ev "^\$|^#"

```
<user/@group> <soft/hard> <core/rss/as/nproc/cpu> <value>
                 soft
                                   nofile
                                                   65535 # установить soft ограничение на кол-во открытых файлов (nofile) для группы zabbix (мож
@zabbix
@zabbix
                 hard
                                   nofile
                                                   65535 # ограничение hard можно менять только в меньшую сторону от имени обычного пользователя
                 soft
                                   nofile
                                                   2048 # ограничение для всех пользователей (-n)
                                   nofile
                 hard
                                                   8192
zabbix
                 soft
                                                   100 # максимальное кол-во оперативной памяти в КБ (-m)
                                   as
zabbix
                 hard
                                   as
                  soft
                                   msgqueue
                                                   unlimited # снятие ограничения очереди сообщений памяти (-q)
                  hard
                                   msgqueue
                  soft
                                   nproc
                                                   unlimited # ограничение на количество процессов для всех пользователей (-u)
                  hard
                                   nproc
                                                   unlimited
user
                  hard
                                   maxlogins
                                                   1 # ограничить количество SSH-соединений/сессий для конкретного пользователя (максимальное ко
                                   maxsyslogins
                                                   1 # ограничить общее количество сеансов/активных соединений SSH (за исключением root)
                  hard
```

ulimit -a отобразить список ограничений

```
core file size
                           (blocks, -c) 0
data seg size
                           (kbytes, -d) unlimited
                                   (-e) 0
scheduling priority
                           (blocks, -f) unlimited
file size
                                  (-i) 15052
pending signals
max locked memory
                         (kbytes, -1) 496180
max memory size
                          (kbytes, -m) unlimited
                                   (-n) 1024
open files
pipe size
                        (512 bytes, -p) 8
POSIX message queues
                           (bytes, -q) 819200
                                   (-r) 0
real-time priority
                          (kbytes, -s) 8192
stack size
                          (seconds, -t) unlimited
cpu time
max user processes
                                  (-u) 15052
virtual memory
                           (kbytes, -v) unlimited
file locks
                                   (-x) unlimited
```

```
ulimit -Sn отобразить значение текущего ограничения Soft (-S) для nofile (-n)
```

ulimit -Hn ограничение Hard (-H)

ulimit -n 3000 изменить ограничение количества открытых файлов для одного процесса (до перезагрузки)

ulimit -sm 1500000 ограничение soft (-S) оперативной памяти (-m) в 1500 Мб для пользователя

ulimit -u 5000 ограничение максимального количества запущенных пользовательских процессов (-u)

ulimit -s ограничение места для размера аргументов (stack size) команды/скрипта (bash: /usr/bin/diff: Argument list too long)

ulimit -m максимальный объем оперативной памяти

ulimit -v максимальный объем виртуальной памяти

ulimit -f максимальный размер создаваемых файлов

ulimit -t максимальное количество процессорного времени

systemctl edit rsyslog ограничения на уровне Unit для конкретного сервиса

```
[Service]
LimitNOFILE=1617596
LimitNOFILESoft=1617596

systemctl restart rsyslog
pid=$(ps -A | grep rsyslogd | awk '{print $1}') получить pid процесса
cat /proc/$pid/limits проверить применение ограничений после перезапуска сервиса
```

quota

```
nano /etc/fstab примонтировать раздел на который необходимо установить квоту с указанными опциями
 /dev/sda / ext4 defaults,usrquota,grpquota 0 0
mount -o remount, rw / перемонтировать файловую систему в режиме read and write
mount | grep quota
quotacheck -favugm выполнить проверку наличия служебных файлов aquota.user и aquota.group — если их нет, команда их создаст автоматически
quotaon -avug ВКЛЮЧИТЬ КВОТУ
edquota -u lifailon создать квоту для пользователя или для группы (-g) на размер данных и кол-во файлов
 Disk quotas for user lifailon (uid 1000):
   Filesystem
                                        blocks
                                                    soft
                                                               hard
                                                                        inodes
                                                                                   soft
                                                                                           hard
   /dev/mapper/ubuntu--vg-ubuntu--lv
                                      397112
                                                    400M
                                                               500M
                                                                         3004
                                                                                   0
                                                                                            а
edquota -p lifailon user СКОПИРОВАТЬ КВОТУ НА ДРУГОГО ПОЛЬЗОВАТЕЛЯ
edquota -t изменить период отсрочки soft квоты до момента, когда она станет hard (по умолчанию 7 дней)
quota lifailon -s отобразить квоты для пользователя
repquota -us / отчет для пользователей и групп (-u/-g), текущий used и soft/hard для Space limits и File limits, +-/-+/++ означает, что один из
пределов достигнут максимума
 lifailon --
                 388M
                          400M
                                   500M
                                            3004
su lifailon
dd if=/dev/zero of=/tmp/test.file bs=1024000 count=400 СОЗДАТЬ файл размером 400MB
 dd: error writing '/tmp/test.file': Disk quota exceeded
 117645312 bytes (118 MB, 112 MiB) copied, 0.158031 s, 744 MB/s
ls -lh /tmp/test.file
 -rw-rw-r-- 1 lifailon lifailon 113M Sep 26 14:37 /tmp/test.file
```

fetch

Набор скриптов, для быстрого получения информации о системе без установки:

```
curl -s https://raw.githubusercontent.com/dylanaraps/neofetch/refs/heads/master/neofetch | bash
curl -s https://raw.githubusercontent.com/dylanaraps/pfetch/refs/heads/master/pfetch | bash
curl -s https://raw.githubusercontent.com/KittyKatt/screenFetch/refs/heads/master/screenfetch-dev | bash
curl -s https://raw.githubusercontent.com/ThatOneCalculator/NerdFetch/refs/heads/main/nerdfetch | bash
curl -s https://raw.githubusercontent.com/Lifailon/hwstat/refs/heads/rsa/hwstat.sh | bash
```

networkmanager

```
apt install network-manager
systemctl status NetworkManager
nmcli device status состояние интерфейсов
nmcli general status
nmcli connection show СПИСОК ДОСТУПНЫХ ПОДКЛЮЧЕНИЙ (ethernet, vpn и WiFi-сетей)
nmcli device wifi list СПИСОК ДОСТУПНЫХ Wi-Fi-сетей
nmcli connection show "Проводное соединение 2" ИНформация о сети
nmcli connection up "Проводное соединение 2" ПОДКЛЮЧИТЬСЯ
nmcli conn down "Проводное соединение 2" ОТКЛЮЧИТЬСЯ
nmcli radio wifi СОСТОЯНИЕ Wi-Fi
nmcli connection add con-name "dhcp" type ethernet ifname ens33 создать подключение, передать тип устройства ethernet (Проводное соединение)
и ifname, название сетевого интерфейса
nmcli conn modify "dhcp" ipv4.dns 8.8.8.8 настройки подключения (modify)
nmcli radio wifi on ВКЛЮЧИТЬ ИЛИ ВЫКЛЮЧИТЬ (off) Wi-Fi
nmcli device wifi connect "TP-Link" password 12345678 name "TP-Link Wifi" ПОДКЛЮЧИТЬСЯ К Wi-Fi СЕТИ
nmcli networking off отключить сеть через (если управление через Network Manager, указывается в блоке конфигурации renderer для netplan)
nmcli networking on ВКЛЮЧИТЬ ССТЬ
systemctl restart NetworkManager
```

wireless

```
apt install wireless-tools
iwconfig
apt install iw
iw list
apt install wavemon
wavemon отобразить качество соединения и мощность передатчика
```

networking

```
nano /etc/network/interfaces

auto ens33 активировать интерфейс при загрузке
iface ens33 inet static СТАТИЧЕСКИЙ
address 192.168.1.50/24
#netmask 255.255.255.0
gateway 192.168.1.254
dns-nameservers 8.8.8.8 1.1.1.1

auto ens33
iface ens33 inet dhcp ДИНАМИЧЕСКИЙ
service networking restart Перезагрузка СЕТИ
systemctl restart networking.service
```

netplan

```
netplan --debug generate проверка конфигурации на ошибки netplan apply применить изменения (перезапускает сеть) netplan get прочитать конфигурацию nano /etc/netplan/*.yaml
```

• Динамический адрес (использовать два сетевых интерфейса):

```
network:
   version: 2
   ethernets:
     ens33:
       dhcp4: yes
     ens36:
       dhcp4: yes
 • Статический адрес:
 network:
   version: 2
   renderer: networkd
   ethernets:
     ens33:
       dhcp4: no
       addresses: [192.168.3.105/24]
       routes:

    to: default

          via: 192.168.3.1
       nameservers:
         addresses: [192.168.3.101, 8.8.8.8, 1.1.1.1]
         search: [domain.local]
renderer указывает, кому передать управление сетью NetworkManager (nmcli) в средах с графическим интерфейсом или networkd (networkctl)
netplan status в релизе netplan 0.106 от февраля 2023 (Ubuntu 23.04) может получить статус используемого renderer
 • MAC и MTU:
 network:
   ethernets:
     ens33:
       dhcp4: no
       match:
         macaddress: 54:43:32:21:10:09
         mtu: 1500
 • Подключение к WiFi:
 network:
```

```
version: 2
wifis:
  wlp33:
    dhcp4: yes
    dhcp6: no
    nameservers:
       addresses: [8.8.8.8]
    access-points:
    "wifi-ssid":
       password: "12345678"
```

• Bonding для объединения физических сетевых интерфейсов в один логический:

```
network:
  version: 2
  ethernets:
    ens33: {}
    ens36: {}
  bonds:
    bond0:
      dhcp4: no
       interfaces:
         - ens33
          - ens36
          parameters:
            mode: active-backup # используется только один интерфейс, второй активируется в случае неработоспособности первого
            mode: broadcast # задействуются оба интерфейса одновременно, пакеты передают все интерфейсы
            mode: balance-rr # задействуются оба интерфейса по очереди с распределением пакетов
            mode: balance-tlb # задействуются оба интерфейса по очереди, пакеты распределяются в соответствии с текущей нагрузкой
            mode: balance-xor # задействуются оба интерфейса по очереди, распределение пакетов на основе политики хеширования
          addresses:
            - 192.168.1.150/24
          gateway4: 192.168.1.1
          mtu: 1500
         nameservers:
            addresses:
              - 8.8.8.8
```

ip

```
ip a ip addr show
ip -s link вывести ститстику всех сетевых интерфейсов
ip -br a show вывести только название интерфейса, статус работы и ір-адрес
ip link set dev ens33 up ВКЛЮЧИТЬ СЕТЕВОЙ ИНТЕРФЕЙС
ip link set dev ens33 down ВЫКЛЮЧИТЬ СЕТЕВОЙ ИНТЕРФЕЙС
ip link set mtu 1550 dev ens33 изменить mtu
ip link set dev ens33 address AA:BB:CC:DD:EE:FF изменить mac-адрес (предварительно нужно отключить интерфейс, работает до перезагрузки)
ip addr add 192.168.3.106/24 broadcast 192.168.3.255 dev ens33 добавить адрес
ip addr del 192.168.3.106/24 dev ens33 удалить адрес
ip route show отобразить таблицу маршрутизации
ip route add 192.168.4.0 via 192.168.3.100 добавить маршрут
ip route del 192.168.4.0 via 192.168.3.100 УДАЛИТЬ МАРШРУТ
ip route add 192.168.4.0 dev ens33 указать сетевой интерфейс, через который отправлять пакеты в определенную подсеть
ір neigh show отобразить ARP-таблицу
ip neigh add 192.168.3.110 lladdr b0:be:76:43:21:41 dev ens33
ip neigh del dev end33 192.168.3.110
ip neigh flush очистить ARP-таблицу
```

net-tools

```
ifconfig ens33 up/down
ifdown -a выключить все сетевые интерфейсы (пропадут из списка ifconfig) и включить (ifup -a)
ifconfig ens33 192.168.3.106 netmask 255.255.255.0 broadcast 192.168.3.255
ifconfig -s || netstat -i список сетевых интерфейсов
netstat -atu ALL (-a) tcp (-t) и udp (-u)
netstat -1ntup LISTEN (-I) dont resolve names (-n) и сканирует директорию /ргос для вывода PID/Program name (-p)
arp -a таблица сопоставления ip и mac адресов
route -e отобразить таблицу маршрутизации
route add -net 192.168.4.0 netmask 255.255.255.0 gw 192.168.3.100 добавить маршрут в подсеть 192.168.4.0 через шлюз 192.168.3.100
route del -net 192.168.4.0 netmask 255.255.255.0 удалить маршрут
```

networkd

```
systemctl status systemd-networkd
networkctl list список всех адаптеров, тип и состояния
networkctl status статус службы, Address и Gateway адаптера, DNS-адреса и лог systemd-networkd
networkctl status ens33 характеристики адаптера (Network File, Driver, Vendor, Model, MTU, Speed)
```

SS

ss -a All отобразить все сокеты
ss -1 показать только прослушиваемые сокеты (LISTEN)
ss -t отобразить только установленные TCP соединения (ESTAB/ESTABLISHED)
ss -ua отобразить все открытые UDP сокеты
ss -da DHCP сокеты
ss -x отобразить только локальные UNIX соединения
ss -r Resolve, определять сетевые имена адресов с помощью DNS
ss -p Processes, показать процессы, использующие сокет
ss -n Numeric не определять имена служб (отображать только номер порта в числовом формате)
ss -1tp | grep 8080
ss -tna | grep 22

dns

resolv

```
cat /etc/resolv.conf | grep nameserver
nano /etc/resolv.conf работает до перезагрузки
domain domain.local
search domain.local
nameserver 8.8.8.8
nameserver 1.1.1.1
```

resolved

networkctl status отображает список всех настроенные DNS-серверов в системе через netplan (или другое) для всех адаптеров resolvectl status в systemd 239 (ubuntu 22.04) systemd-resolve переименован в resolvectl, выводит настроенные сервера для global и список все адресов для конкретного сетевого интерфейса Link (ens33)

```
resolvect1 status | grep "Current DNS" отображает текущие используемые DNS-сервер systemd-resolve --status служба локального DNS сервера resolvect1 flush-caches && systemd-resolve --flush-caches очистить локальный кэш DNS journalct1 -u systemd-resolved | grep -E "IN A|IN PTR|IN AAAA|IN PTR|IN МХ" ЛОГИ КЭША DNS systemct1 status systemd-resolved статус службы и его лог
```

cat /run/systemd/resolve/stub-resolv.conf файл-заглушка для демона systemd-resolved, по умолчанию nameserver 127.0.0.53, который перенаправляет обращения к локальному DNS серверу, а он, в свою очередь уже получает информацию от других серверов в интернете

nano /etc/systemd/resolved.conf конфигурационный файл, отвечающий за настройку DNS-серверов

Включить кэширование:

```
[Resolve]
DNS=8.8.8.8, 192.168.3.101
Cache=yes
```

ln -svi /run/systemd/resolve/resolv.conf /etc/resolv.conf создать симлинк для совместимости с приложениями, которые не используют библиотечные вызовы, а обращаются к DNS серверам напрямую, получая их из /etc/resolv.conf

ls -la /etc/resolv.conf

nano /etc/resolv.conf не управляется напрямую службой systemd-resolved, а иногда с помощью использования initscripts или NetworkManager, и любые пользовательские изменения могут быть изменены через время или после перезагрузки

```
nameserver 8.8.8.8

apt install resolvconf сервис для обновления списа адресов в /etc/resolv.conf (что бы он не перезаписывался) systemctl status resolvconf

nano /etc/resolvconf/resolv.conf.d/head

nameserver 8.8.8.8

nameserver 1.1.1.1
```

dig

```
dig google.com
dig @1.1.1.1 google.com a использовать DNS сервер Cloudflare для преобразования имени
dig @9.9.9.9 google.com mx использовать DNS сервер Quad9 для получения MX записи (A, NS, TXT)
dig -x 8.8.8.8 @9.9.9.9 разрешить ір в имя
```

mtr

```
mtr google.com объединяет traceroute и ping каждого узла в трассеровке
mtr -I ens33 google.com указать интерфейс для проверки
mtr -b google.com отображать имя и ip
mtr --tcp google.com использовать TCP SYN-пакеты или UDP-дейтаграммы (--udp)
mtr -s 1000 google.com указать размер пакета
mtr -r -c 1 google.com --json указать кол-во ping пакетов (-c 1 и -i 2 изменить интервал) и вывести в виде отчета (--report) в формате
json/xml/csv/raw
```

doggo

```
curl -sS https://raw.githubusercontent.com/mr-karan/doggo/main/install.sh | sh DNS cli client (https://github.com/mr-karan/doggo) doggo yandex.ru запросить домен, используя настройки по умолчанию doggo yandex.ru MX запросить MX записи домена doggo yandex.ru MX @8.8.8.8 использует указанный сервер для преобразования имен DNS doggo -q yandex.ru -t MX --nameserver 1.1.1.1 doggo yandex.ru --aa --ad запрос с установленными флагами авторитетного ответа и аутентифицированных данных doggo yandex.ru --cd --do запрос с отключенной проверкой и установленными флагами DNSSEC ОК doggo yandex.ru --gp-from Germany Запрос с использованием API Globalping из указанной локации
```

vnstat

```
apt install vnstat журнал часового, ежедневного и ежемесячного сетевого трафика systemctl status vnstat проверить службу vnstat -1 мониторинг в реальном режиме vnstat -h ежедневная почасовая история
```

netcat

```
nc -zv 192.168.3.100 5985 проверить порт без попытки соединения (-z) в подробном режиме (-v) nc -zvn 192.168.3.100 1-1000 сканирование tcp-портов, не используя преобразование DNS (-n) nc -zvn 192.168.3.100 1-1000 2>81 | grep succeeded перенаправить вывод ошибок в stdout и отфильтровать вывод nc -zvnu 192.168.3.100 5550-5560 сканирование udp-портов (-u) nc -lp 8081 открыть сокет (чат сервер) в режиме прослушивания (-listen) с указанием номера порта (-p) nc 192.168.3.101 8081 подключиться к сокету (чат-клиент)
```

```
nc -lp 8081 > out.txt все поступившие данные на сокет записываются в файл (вместо вывода в консоль)
cat /etc/passwd | nc -N 192.168.3.101 8081 передать содержимое файла на удаленный сокет принимающей стороны (содержимое /etc/passwd запишется в out.txt) и закрыть удаленный сокет (-N)
```

nc -1 -w 1 -р 8081 задать timeout (-w) ожидания, в течении которого сервер слушает запрос, если будет 0, может не успеть считать запрос, на стороне клиента timeout должен быть не ниже

nc -w 5 -Uvl server.sock > out.txt создать UNIX-сокет и передать вывод в файл, сокет закроется через 5 секунд (-w 5) или если будет задан параметр -N на стороне клиента

lsblk | nc -Uv server.sock подключиться к локальному сокету с второго терминала и отправить вывод команды в файл сокета приема while true; do echo -e "HTTP/1.1 200 OK\n\n\$(systemd-analyze plot)" | nc -l -w 1 -p 8085; done HTTP-сервер с выводом анализа загрузки системы

socket api

```
port=8085
 while true
      request=$(nc -1 -w 1 -p $port)
      request=$(echo "$request" | head -n 1)
      method=$(echo "$request" | cut -d " " -f 1)
      endpoint=$(echo "$request" | cut -d " " -f 2)
      if [[ $endpoint == "/api/date" ]]
          response="HTTP/1.1 200 OK\nContent-Type: application/text\n\n$(date)"
      elif [[ $endpoint == "/api/disk" ]]
          then
          response = "HTTP/1.1\ 200\ OK\nContent-Type: application/json\n\n\$(lsblk\ -e7\ --json)"
      else
          response="HTTP/1.1 404 Not Found\n\n404 Not Found\n"
      fi
      echo -e "$response" | nc -l -w 1 -p $port
 done
curl -s http://192.168.3.101:8085/api/date
curl -s http://192.168.3.101:8085/api/disk | jq .blockdevices[]
```

socket proxy

```
ncat -1 8080 -k --sh-exec "ncat 192.168.3.101 80" socat TCP-LISTEN:8080,fork,reuseaddr TCP:192.168.3.101:80
```

proxy

```
sudo apt-get install -y dotnet-runtime-8.0 arch="x64" # или "arm64" sudo curl -s -L "https://github.com/Lifailon/froxy/releases/download/0.4.0/froxy-0.4.0-linux-$arch" -o /usr/local/bin/froxy sudo chmod +x /usr/local/bin/froxy

froxy --socks 1080 запустить SOCKS прокси на порту 1080 froxy --forward 8080 запустить HTTP/HTTPS прокси на порту 1080 froxy --forward 8080 »> froxy.log & запустить фоновый процесс и передать вывод логов в файл froxy --local 5514 --remote 192.168.3.100:514 запустить обратный прокси сервер на порту 5514, который перенаправляет на хост 192.168.3.100 и порт 514 (syslog)

froxy --local 192.168.3.100:2121 --remote 192.168.3.101:21 TCP туннелирование для RDP

froxy --local 192.168.3.100:2121 --remote https://example.com принимать HTTPS трафик на порту 8443 и переадресовать на указанный URL (поддерживаются GET и POST запросы с передачей заголовков и тела запроса от клиента, для использования API запросы и прохождения авторизации на сайтах)

froxy --local *:8443 --remote https://example.com --user admin --pass admin слушать на всех интерфейсах и использовать авторизацию
```

nmap

```
nmap 1ocalhost узнать какие локальные порты прослушиваются
nmap -sV 1ocalhost определить какое какая ОС и ПО работает на портах и их версия
nmap -sL 192.168.3.0/24 список хостов с разрешением имен без пинга
nmap -sP 192.168.3.0/24 ping метод host discovery (TCP ACK SYN пакет, используя системныей вызов connect) с отображением производителя сетевой платы
nmap -F 192.168.3.0/24 fast mode port
nmap -A 192.168.3.100 подробное сканирование ОС и ПО (ssh на другом порту, version, ad sites, rdp-ntlm-info)
nmap -sA 192.168.3.100 обнаружить фильтрацию пакетов fw (filtered/unfiltered) с помощью TCP ACK
nmap -PN 192.168.3.100 оканировании защищенного хоста без ping
nmap -s0 192.168.3.100 определить какие именно IP-протоколы доступны и их статус, если отсутствует, значит фильтруется
nmap -PU 192.168.3.100 обойти межсетевой экран с помощью UDP-пинга
nmap -s5 192.168.3.100 выполнить полуоткрытое сканирование (TCP SYN) без установки подключения
nmap -sU 192.168.3.100 проверка только UDP-портов
```

masscan

```
арт install masscan асинхронный (отправляет пакеты SYN) сканер TCP портов (https://github.com/robertdavidgraham/masscan) masscan 192.168.3.100 -p80 masscan 192.168.3.100 -p0-65535 --rate 100 masscan 192.168.3.100 -p0-65535 --rate 100 --ping-timeout 1000 masscan 192.168.3.1-100 -p80 masscan 192.168.3.0/24 -p80,443 masscan 192.168.3.100 -p80 --output-format json --output-file result.json
```

rustscan

wget https://github.com/RustScan/releases/download/2.0.1/rustscan_2.0.1_amd64.deb \ snap install nmap требуется установить пакет зависимости \ apt-get install -f разрешить зависимости \ dpkg --install rustscan_2.0.1_amd64.deb \ rustscan -a 127.0.0.1 \ rustscan -a 192.168.3.100` 32400/tcp open plex

tcp

```
function tcp-scan () {
  if [ "$1" == "" ]; then
      exit 1
  START_PORT=$2; [ -z "$START_PORT" ] && START_PORT=1
  END_PORT=$3; [ -z "$END_PORT" ] && END_PORT=65535
  PORT_PROTOCOL="tcp"
  scan_port(){
      PORT NUMBER=$1
      PORT_SCAN_RESULT=`2>&1 echo "" > /dev/$PORT_PROTOCOL/$TARGET_NAME_OR_IP/$PORT_NUMBER | grep connect`
      [ "$PORT_SCAN_RESULT" == "" ] && echo -e $PORT_NUMBER\\$PORT_PROTOCOL' \t 'open' \t\t '`grep $PORT_NUMBER\\$PROTOCOL /etc/services | head -n
  }
  TARGET_NAME_OR_IP=$1
  echo -e 'PORT \t\t STATE \t\t SERVICE'
  for PORT_NUMBER in `seq $START_PORT $END_PORT`; do
      scan port $PORT NUMBER
  done
}
```

tcpdump

tcp-scan 192.168.3.100 1024 5000

```
tcpdump -D список доступных сетевых интерфейсов tcpdump -n -i ens33 icmp слушать icmp-пакеты от всех на указанном интерфейсе (-i) без отображения доменных имен (-n)
```

```
tcpdump -n -i ens33 udp -e слушать udp-пакеты и отображать MAC-адреса (-e)
tcpdump -n -i ens33 port 8080 слушать трафик 8080 порта
tcpdump -n -i ens33 port 80 or 443
tcpdump -n -i ens33 portrange 21-80
tcpdump -n -i ens33 ip src 192.168.3.99 and dst 192.168.3.103 отобразить ip пакеты, которые отправлены с указанного (src) ip-адреса на указанный (dst) ip-адрес
tcpdump -n -i ens33 -X host 192.168.3.100 and port 32400 отобразить содержимое пакетов (-X) для хоста и порта
```

tshark

```
apt install tshark
apt install termshark terminal UI for tshark (https://github.com/gcla/termshark)
tshark -D СПИСОК ИНТЕРФЕЙСОВ
tshark -i 1
disown
tshark -i 1 -Y "syslog" захват пакетов syslog (udp.port == 514)
tshark -i 1 host 192.168.3.104 захват пакетов для конкретного IP-адреса
tshark -i 1 net 192.168.3.0/24 ЗАХВАТ ПАКЕТОВ УКАЗАННОЙ ПОДСЕТИ
tshark -i 1 src host 192.168.3.104 захват исходящих пакетов
tshark -i 1 dst host 192.168.3.104 ЗАХВАТ ВХОДЯЩИХ ПАКЕТОВ
tshark -i 1 dst host 192.168.3.104 and port 8086 отфильтровать по входящему хосту и порту
tshark -i 1 dst host 192.168.3.104 and port 8086 and src host 192.168.3.99 отфильтровать по исходящему хосту
tshark -i 1 -x dst host 192.168.3.104 and port 8086 and src host 192.168.3.101 ПРОЧИТАТЬ ПАКЕТЫ В ШЕСТНАДЦАТЕРИЧНОМ ФОРМАТЕ (-X)
tshark -i 1 -0 TCP dst host 192.168.3.104 and port 8086 and src host 192.168.3.101 ПРОЧИТАТЬ TCP-ЗАГОЛОВКИ
tshark -i 1 -a duration:10 -w ~/192.168.3.0.pcap СОХРАНИТЬ ЗАХВАТ
tshark -Y 'ip.addr == 192.168.3.106' -r ~/192.168.3.0.рсар прочитать файл захвата с использованием фильтра
tshark -Y "(ip.addr == 192.168.3.106) or (ip.addr == 192.168.3.107)" -r ~/192.168.3.0.pcap отфильтровать по двум адресам (или)
tshark -Y "(ip.addr == 192.168.3.104) and (tcp.port == 8086)" -r ~/192.168.3.0.pcap ОТФИЛЬТРОВАТЬ ПО ДВУМ ПАРАМЕТРАМ (И)
tshark -Y "!(ip.addr == 192.168.3.104)" -r ~/192.168.3.0.pcap ИСКЛЮЧИТЬ
tshark -Y "not arp and not (udp.port == 53)" -r ~/192.168.3.0.pcap отобразить весь udp-трафик, исключив ping и dns пакеты
```

ping

fping

```
fping yandex.ru google.com параллельная проверка доступности двух хостов fping -p 5 yandex.ru google.com 5 параллельных запросов к каждому хосту fping -ag 192.168.3.0/24 істр проверка все подсети fping < hosts.txt произвести ping всех хостов указанных в файле с новой строки
```

netping

```
sudo curl -s https://raw.githubusercontent.com/Lifailon/net-tools/rsa/netping.sh -o /usr/bin/netping
sudo chmod +x /usr/bin/netping
netping 192.168.3.0
```

firewall

ufw

```
systemctl status ufw
ufw status
ufw enable включить ufw (Uncomplicated Firewall)
ufw disable Отключить
ufw reload перезапустить/применить настройки
ufw reset сбросить настройки (отключить ufw и удалить все правила)
```

ufw default deny incoming все входящие пакеты отклонять (политика по умолчанию, какие действия будут применяться к пакетам, если они не подпадают под созданные правила) ufw default allow outgoing ВСӨ ИСХОДЯЩИӨ разрешать ufw allow in 22 разрешить входящий трафик на порт 22 ufw allow out 22 разрешить исходящий трафик на порт 22 ufw deny in 80/tcp запретить входящий TCP-трафик на 80 порт ufw delete deny in 80/tcp удалить правило ufw allow 161,10050,10051/tcp ОТКРЫТЬ НЕСКОЛЬКО ПОРТОВ ufw allow proto tcp from 0.0.0.0/24 to 192.168.3.100 port 3389 разрешить доступ со всех IP-адресов по TCP-протоколу к IP-адресу и порту 3389 ufw allow from 192.168.3.0/24 to 192.168.3.110 разрешить подключение всем с подсети 192.168.1.0 к интерфейсу 192.168.1.2 (для Proxmox MGW) ufw allow 25/tcp открыть для всех направлений 25 порт ufw limit ssh лимт подключений к определенному порту с одного IP-адреса (для защиты от перебора), по умолчанию подключения блокируются, если пользователь пытается создать шесть и больше подключений за 30 секунд (настроить время и количество запросов можно только через iptables) ufw logging on ВКЛЮЧИТЬ ЛОГИРОВАНИЕ ufw logging medium выбрать уровень логирования (low/medium/high) cat /var/log/ufw директория хранения логов. Синтаксис: [UFW ALLOW/BLOCK/AUDIT] IN=интерфейс OUT=итерфейс SRC=ip источника DST=ip назначения LEN=размер пакета TOS=0x10 PREC=0x00 TTL=64 ID=728 DF PROTO=протокол SPT=порт источника DPT=порт назначения LEN=размер пакета show ufw show listening отображает все прослушиваемые порты и правила для них (с указанием очередного номера в списке: [20] allow 161,10050,10051/tcp) ufw show raw все активные правила в формате iptables ufw show added недавно добавленные правила ufw show builtins правила, добавленные по умолчанию ufw show user-rules правила, добавленные пользователем ufw show before-rules правила, которые выполняются перед принятием пакета ufw show after-rules правила, которые выполняются после принятия пакета ufw show logging-rules правила логгирования пакетов firewalld apt install firewalld systemctl status firewalld systemctl start firewalld pkill -f firewalld убить процесс, если при запуске failed firewall-cmd --state статус работы firewall-cmd --reload применить настройки (перечитать) firewall-cmd --list-all список созданных правил (для services и ports) firewall-cmd --list-port ТОЛЬКО ОТКРЫТЫЕ ПОРТЫ firewall-cmd --list-service ТОЛЬКО ОТКРЫТЫЕ СЛУЖБЫ firewall-cmd --list-all-zones ОТОБРАЗИТЬ СПИСОК ЗОН firewall-cmd --get-active-zones СПИСОК ИСПОЛЬЗУЕМЫХ ЗОН firewall-cmd --list-all --zone=public информация о конкретной зоне firewall-cmd --permanent --add-port=22/tcp ОТКРЫТЬ 22 ПОРТ firewall-cmd --permanent --add-port=8000-8080/udp ОТКРЫТЬ ДИАПАЗОН ПОРТОВ firewall-cmd --get-services | grep ssh отобразить список доступных служб firewall-cmd --permanent --add-service=ssh разрешить порты для сервиса ssh firewall-cmd --permanent --new-service=speedtest ДОБАВИТЬ СЛУЖБУ firewall-cmd --permanent --service-speedtest --add-port=80/tcp Добавить порт к службе

firewall-cmd --permanent --add-rich-rule 'rule family="ipv4" source address="192.168.3.0/24" port port="22" protocol="tcp" accept' firewall-cmd --permanent --add-rich-rule="rule family='ipv4' source address='192.168.21.0/24' reject" ЗАКРЫТЬ ДОСТУП ДЛЯ ПОДСЕТИ

firewall-cmd --permanent --add-rich-rule 'rule family="ipv4" source address="192.168.3.0/24" service name="speedtest" ассерт' ОТКРЫТЬ ДОСТУП ДЛЯ

firewall-cmd --info-service=speedtest информация о службе

полсети

```
firewall-cmd --list-rich-rules СПИСОК ПРАВИЛ С УСЛОВИЯМИ
firewall-cmd --permanent --remove-port=22/tcp удалить правило
```

iptables

```
iptables -L -v выводит все существующие правила для каждой цепочки
iptables -L | grep -E "tcp|udp"
if (( $(iptables -L | wc -l | bc) == 8)); then echo active; else echo inactive; fi
iptables -A INPUT -p tcp --dport 22 -j ACCEPT ОТКРЫТЬ ВХОДЯЩИЙ ПОРТ ssh
iptables -A INPUT -p tcp -s !192.168.3.99 --dport 22 -j DROP ЗАКРЫТЬ ВХОДЯЩИЙ ПОРТ SSh, ИСКЛЮЧИТЬ 192.168.3.99
iptables-save сохранить настройки, что бы они были активны после перезагрузки
iptables - F удалить все правила текущей таблицы
```

nftables

```
nft -a list ruleset список существующих правил
nft list tables список существующих таблиц
nft flush ruleset ОЧИСТИТЬ ПРАВИЛА
nft add table inet filter создать таблицу filter
nft add chain inet filter input { type filter hook input priority 0\; } ДОбавить Цепочку input
nft add rule inet filter input ct state related, established counter accept
nft add rule inet filter input iifname "lo" counter accept
nft add rule inet filter input ip protocol icmp counter ассерt разрешить icmp
nft add rule inet filter input tcp dport {80, 443} counter ассерt ОТКРЫТЬ ПОРТЫ
nft add rule inet filter input ip saddr { 192.168.100.0/24, 1.1.1.1/32 } tcp dport 22 counter ассерt ОТКРЫТЬ 22 ПОРТ ДЛЯ ПОДСЕТЕЙ
nft chain inet filter input { policy drop \; } остальное блокировать
echo "flush ruleset" > /etc/nftables.conf ОЧИСТИТЬ ВСЕ ПРАВИЛА
nft -s list ruleset >> /etc/nftables.conf добавить правила в конфигурацию
systemctl enable nftables.service
nft delete rule inet filter input handle 5 УДАЛИТЬ ПРАВИЛО ПО НОМЕРУ
nft add rule inet filter input position 5 tcp dport 22 counter ассерt добавить правило в конкретное место с номером в списке
```

```
ssh
w отобразить активные сессии и их активность (время/дата входа, IDLE время простоя и последняя выполняемая команда)
who отобразить активные сессии, время/дата входа и ір с которого подключен пользователь
last -a история всех последних входов пользователей в систему
lastlog дата последнего входа каждого пользователя в систему
last reboot история перезагрузки
id -G получить список id крупп в которых состоит текущий пользователь
apt install xclip xsel буфер обмена
cat /etc/ssh/sshd config | xclip
xsel > sshd_config.bak
nano /etc/ssh/sshd config
Port 2121 ИЗМЕНИТЬ ПОРТ
PermitRootLogin yes ВКЛЮЧИТЬ ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ ПОЛЬЗОВАТЕЛЕМ root
PasswordAuthentication no отключить аудентификацию по паролю
X11Forwarding yes ВКЛЮЧИТЬ X11
TCPKeepAlive yes отвечает за проверку активности соединения (отправка пустых keep-alive пакетов для сохранения соединения)
ClientAliveInterval 60 задать интервал ожидания в секундах, через который sshd запросит ответ от клиента
ClientAliveCountMax 3 количество запросов без ответа до завешрения сеанса (ClientAliveInterval * ClientAliveCountMax = 180 секунд)
systemctl restart sshd
systemctl status sshd
```

keygen

```
ssh-keygen -t rsa -b 4096 сгенерировать пару ключей
```

id_rsa приватный/закрытый ключ хранится на клиенте, от кого происходит подключение (для подключения без пароля имя файла должно быть по умолчанию)

cat ~/.ssh/id_rsa.pub | xclip публичный/открытый ключ, для передачи на сервер, куда будем подключаться3 xsel > ~/.ssh/authorized_keys передать содержимое публичного ключа (id_rsa.pub) на сервер, куда подключаться

x11

```
apt-get install virt-manager ssh-askpass
virt-manager
export DISPLAY=username-VirtualBox:10.0 && firefox
```

scp

ssh-copy-id root@192.168.3.105 -p 2121 скопировать публичный ключ на удаленный сервер (добавить новой строкой), утилита будет искать в директории текущего локального пользователя файл публичного ключа и скопирует содержимое файла ключа ~/.ssh/id_rsa.pub указанному при подключение пользователю на удаленный компьютер в файл authorized_keys

scp -P 2121 /home/lifailon/files/* lifailon@192.168.3.105:/home/lifailon/downaload/ скопировать содержимое каталога files на удаленный компьютер в директорию downaload

scp -P 2121 -r kup@192.168.3.105:/home/lifailon/downaload /home/lifailon/files/ скачать (-r) данные с удаленного сервера на локальный

sshpass

sudoers

```
cat /etc/sudoers конфигурационный файл настройки прав доступа утилиты sudo
```

visudo открыть sudoers в режиме проверки синтаксиса

Defaults env_reset, timestamp_timeout=10 задать ограничение времени для sudo на 10 минут

echo "lifailon ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/lifailon создать конфигурацию пользователя для использования sudo без пароля chmod 644 /etc/sudoers.d/lifailon

lifailon ALL=NOPASSWD: /usr/bin/service memcahched restart, /usr/bin/apt-get update, /usr/bin/apt-get upgrade разрешить перезапуск определенного сервиса, обновление списка пакетов и установку обновлений системы

%powerusers ALL=NOPASSWD: /usr/bin/service memcahched restart ДОСТУП На ГРУППУ

visudo --check проверка синтаксиса и всех прав доступа (0440)

sudo -1 проверка прав доступа (выводит список команд, которые текущий пользователь может выполнять с использованием sudo)

strace

strace -c top -n 1 > /dev/null показывает статистику системных вызовов программы (time - процент от времени общего выполнения, call - колво обращений и ошибки)

pid=\$(pidof dd) узнать pid процесса по имени

strace -p \$pid показывает системные вызовы процесса (читает данные из одного места с помощью вызова read и записывает в другое через write)

strace -f -p \$(pgrep -o sshd) -o ~/passwd.txt -v -e trace=write -s 64 следим за всеми процессами sshd (-f), ищем все PID sshd процессов (-p), триггер только на запись данных (-e) и ограничиваем вывод 64 байтами

```
cat ~/passwd.txt | grep "[1-32][1-32]) = [1-32][1-32]"
```

apt

```
apt-mark showauto СПИСОК УСТАНОВЛЕННЫХ АВТОМАТИЧЕСКИ ПАКЕТОВ
apt-mark showmanual СПИСОК УСТАНОВЛЕННЫХ ПАКЕТОВ ВРУЧНУЮ
echo $(($(apt-mark showauto | wc -1) + $(apt-mark showmanual | wc -1))) КОЛИЧЕСТВО ВСЕХ УСТАНОВЛЕННЫХ ПАКЕТОВ
apt list --installed список установленных пакетов apt (Advanced Package Tool)
apt update обновить список всех установленных пакетов системы из источников, указанных в файле конфигурации /etc/apt/sources.list
cat /etc/apt/sources.list | grep -Ev "^#" СПИСОК ИСТОЧНИКОВ
apt list --upgradable отобразить список, для каких пакетов доступны обновления
apt list --upgradable -a upgradable from, installed и все доступные версии
apt install --only-upgrade powershell обновить один выбранный пакет
apt --fix-broken install исправить проблемы и ошибки с зависимостями
apt full-upgrade обновляет все пакеты, которые уже установлены в системе, доставляет новые пакеты зависимости и удаляет пакеты, которые
устанавливались в систему и уже не используются
apt install net-tools установить пакет
apt download net-tools скачать пакет без установки
apt install net-tools --reinstall Переустановить Пакет
apt remove net-tools удалить пакет (конфигурационные файлы, которые были изменены в системе удалены не будут)
apt purge net-tools полностью удалить пакет, вместе со всеми его конфигурационными файлами
apt policy net-tools какая версия установленна и какие доступны
apt install net-tools=number ver. УСТАНОВИТЬ КОНКРЕТНУЮ ВЕРСИЮ
арт autoremove ОЧИСТИТЬ НЕНУЖНЫЕ ПАКЕТЫ, КОТОРЫЕ СИСТЕМА НЕ ИСПОЛЬЗУЕТ
apt autoclean ОЧИСТИТЬ КЭШ ПАКЕТОВ
```

snap

Содержат саму программу (deb-пакет), а также все её зависимости и библитотеки необходимых версий для данной программы.

```
ls /var/lib/snapd/snaps расположение загруженных пакетов .snap snap install snap-store установка магазина приложений snap find nmap поиск приложения в магазине snap snap info nmap информация о пакете (его наличии, версия, дата релиза и размер) snap list список установленных в системе пакетов snap list | sed 1d | wc -1 количество установленных пакетов snap list --all nmap все доступные версии определенного пакета snap refresh nmap обновить пакет до последней версии snap revert nmap откатить версию до предыдущей snap install nmap --stable установить конкретную версию пакета snap connections nmap посмотреть доступность приложения к интерфейсам системы snap remove nmap удалить пакет
```

dpkg

```
dpkg -i spark.deb установить пакет

dpkg -1 список установленных deb-пакетов

dpkg -1 | wc -1 количество установленных пакетов

dpkg -1 spark проверить, установлен ли пакет в системе и его версию

dpkg -s spark проверить статус пакета

dpkg -r spark удалить (--remove) .deb пакет

dpkg -P spark удалить пакет вместе с фаилами конфигурации

dpkg -L spark куда установлен пакет (opt/Spark)
```

ntp

time

```
timedatectl ТЕКУЩЕЕ ВРЕМЯ
timedatect1 set-timezone 'Europe/Moscow' изменить временную зону на MSK, +0300 (изменится Local time)
timedatectl list-timezones СПИСОК ЧАСОВЫХ ПОЯСОВ
timedatectl set-ntp no отключить NTP service
timedatect1 set-time "13:00:00" после отключения NTP указать время в ручную
timedatectl set-ntp yes включить NTP service (NTP service: active)
```

language

```
locale установленные в системе локализации
update-locale LANG=en_US.UTF-8 изменить локализацию
apt-get install language-pack-en language-pack-en-base установить пакет локализаций
nano /etc/default/locale
LANG=en_US.UTF-8
dpkg-reconfigure locales
```

apt install ntp установить NTP-сервер/клиент, при установке будет удален пакет systemd-timesyncd

timesyncd

```
systemctl status systemd-timesyncd
systemctl status systemd-timesyncd | grep "Status": | sed -E "s/^.+server //; "s/.\"//" узнать адрес сервера синхронизации времени
apt install systemd-timesyncd установить службу, если unit не запускается
apt-get remove ntp ntpstat --purge && apt autoremove удалить ntpd (если был установлен)
nano /etc/systemd/timesyncd.conf
NTP=192.168.3.233 DC (Domain Controller)
NTP=0.debian.pool.ntp.org 1.debian.pool.ntp.org 2.debian.pool.ntp.org 3.debian.pool.ntp.org
FallbackNTP=ntp.ubuntu.com pe3epB
systemctl restart systemd-timesyncd
timedatectl set-ntp true включить использование systemd-timesyncd для синхронизации времени (вместо ntpd)
timedatectl status
```

ntpd

```
systemctl status ntp
sntp --version
ufw allow 123/udp && ufw reload
timedatectl set-ntp false отключить синхронизацию через systemd-timesyncd на клиенте
nano /etc/ntp.conf
pool 0.ubuntu.pool.ntp.org указать пул серверов
server 0.ru.pool.ntp.org указать на конкретный сервер (если это pool, возьмет один)
restrict default kod notrap nomodify nopeer noquery limited настройки/ограничения для локального NTP сервера
systemctl restart ntp
systemctl status ntp
timedatectl status
ntpq -p проверка синхронизации времени (+ сервер можно использовать для сверки часов, * синхронизирует сейчас, - не рекомандован, st -
уровень stratum, when — когда последний раз сверялось время, delay - время задержки, offset - разница между локальным временем и временем
на сервере - отстают от сервера или спешат)
```

top

```
top -с выводит полный путь к исполняемым файлам с ключами, вместо названия
top -н выводит потоки процессов
```

top -i не выводит процессы, которые не используют ресурсы процессора

```
top -o %CPU отсортировать по CPU top -o %MEM отсортировать по Memory
```

htop

space выделить несколько процессов (отменить Shift+U)

- и выбрать конкретного пользователя
- 1 посмотреть файлы, которые использует процесс
- s отобразить статистику системных вызовов (strace PID attached) F8 AutoScroll, F4 Filter, F9 Stop/Start Tracing
- ғ4 фильтр по ключевому слову (например, cron)
- F5 древовидная структура
- F6 сортировка (PERCENT CPU/PERCENT MEM/USER/PRIORITY/TIME)
- F7 повысить приортите (до -20), чем меньше приоритет, тем больше процессорного времени отводится процессу
- **F8** понизить приоритет (до 19)
- F9/к действие с процессом (сигналы), для завершения процесса: 15, 2, 3, 9 или 19
- s (state) состояние процесса
- R [running or runnable] запущенные или находятся в очереди на запуск
- s [interruptible sleep] прерываемый сон (не исполняется процессором и ждет события или условия для запуска)
- р [uninterruptible sleep] непрерываемый сон (кратковременное состояние, которое невозможно остановить сигналом, т.к. процесс не может на него ответить)
- z [zombie] завершенный процесс, ожидающий пока родительский процесс примет результат
- т остановленный сигналом SIGSTOP (-19/CTRL+Z)
- х мертвый (не должен показываться)

bpytop

```
sudo apt install bytop
pip3 list | grep psutil проверить пакет
pip3 install psutil --break-system-packages установить пакет в обход ограничений
python3 -m venv myenv СОЗДАТЬ ВИРТУАЛЬНОЕ ОКРУЖЕНИЕ
source myenv/bin/activate активировать виртуальное окружение
pip install psutil установить библиотеку для получения информации о системе
bpytop
deactivate
```

atop

```
арт install atop

nano /etc/default/atop

LOGINTERVAL=10

systemctl restart atop

atop -g показать общую информацию о процессе (по умолчанию)

atop -m показать информацию о процессах, связанных с памятью

atop -d показать информацию о процессах, связанных с дисками

atop -n показать информацию о процессах, связанных с сетью

atop -v показать информацию о процессах, связанных с сетью

atop -v показать командную информацию о процессах (PPID родителя, пользователь/группа, дата/время)

atop -c показать командную строку для каждого процесса

atop -A сортировать процессы в порядке наибольшей активности ресурсов (автоматический режим)

atop -C сортировать процессы в порядке потребления процессора (по умолчанию)

atop -M сортировать процессы в порядке потребления памяти

atop -D сортировать процессы в порядке дисковой активности

atop -N сортировать процессы в порядке сетевой активности
```

iftop

apt install iftop установить пакет iftop -ti ens33 использовать текстовый интерфейс без ncurses

atop -E сортировать процессы в порядке активности GPU

```
iftop -ts 1 -i ens33 печать одного единственного текстового вывода (-s) через 1 секунд, затем выход из системы iftop -tL 0 -s 1 -i ens33 количество строк (-L) для печати iftop -ni ens33 не преобразовывать имена хостов iftop -Ni ens33 не преобразовывать номера портов в сервисы iftop -pi ens33 работать в режиме promiscuous (показывать трафик между другими хостами в одном сегменте сети) iftop -bi ens33 не отображать гистограмму трафика iftop -Bi ens33 отображать пропускную способность в байтах iftop -o 10si ens33 сортировка по второму столбцу (среднее значение трафика за 10 секунд, значение по умолчанию)
```

iotop

```
apt install iotop
iotop -o показывать только процессы или потоки, фактически выполняющие ввод-вывод
iotop -ou mysql показывать активные процессы от пользователя
iotop -p показывать только процессы, без потоков
iotop -p PID
```

top other

```
pip install --user glances кроссплатформенный инструмент мониторинга системы на Python (https://github.com/nicolargo/glances) glances
snap install bashtop монитор ресурсов на Bash (https://github.com/aristocratos/bashtop)
bashtop
npm install gtop -g панель мониторинга системы для терминала на JavaScript (https://github.com/aksakalli/gtop)
gtop
snap install bottom кроссплатформенный графический монитор системы и процессов на Rust (https://github.com/ClementTsang/bottom)
bottom
curl -sL https://raw.githubusercontent.com/wimpysworld/deb-get/main/deb-get | sudo -E bash -s install deb-get && deb-get install zenith KaK top,
```

но с масштабируемыми графиками, а также использованием CPU, GPU, сети и дисков на Rust (https://github.com/bvaisvil/zenith)

ps

zenith

+ системное)

```
apt-get install -y procps установить пакет procps
pstree -a отобразить все (-a) работающие процессы (демоны) и их дочерние в виде дерева
ps -FA отобразить подробный вывод (-F, PPID - родительский процесс) всех (-A) работающих процессов
ps -LFC mysqld отобразить потоки (-L) в колонках LWP и NLWP конкретного процесса по имени (-C)
ps -F1 отобразить приостановленные процессы (фоновые задания &)
ps f -F отображает активные процессы текущего пользователя
ps f -u root активные процессы указанного пользователя
ps -o pid -u lifailon вывести только pid процессов запущенных конкретным пользователем
ps -p 3618275 найти процесс по его PID (-p/-s)
ps -aux --sort -rss выбрать все процессы, кроме фоновых (-a), сопоставлять с именем пользователя (-u), все процессы вне терминала (-x) и
отсортировать по RSS. добавляется %CPU и %MEM
ps -lax не сопоставляются идентификаторы процессов с именами пользователей, к выводу добавляется WCHAN - ресурс, которого ожидает
процесс
ps -FA --sort time сортировать по времени работы процесса
ps -Ao comm,user,rss,vsz,command отфильтровать вывод по потреблению памяти, названию команды/процесса и полному вызову команды с
ключами
ркі приоритет процесса
NI уступчивость процесса (nice value от 19 до -20)
((\$PRI+\$NI))=((39+-20))=19
тту терминал, из под которого запущен процесс
тіме общее время процессора, затраченное на работу процесса (bsdtime/cputime/time) или накопленное процессорное время (пользовательское
```

sтімє время запуска команды (bsdstart), если процесс был запущен менее 24 часов назад, то формат вывода будет HH:MM, если больше, то Mmm:SS (Sep 18)

с целочисленное значение процента времени процессора (%СРU) за время жизни процесса

%СРU процент времени центрального процесса выделенного процессу или использование процессорного времени деленное на время работы процесса (pcpu)

«мем процент реальной памяти, используемой процессом или отношение размера резидентного набора процесса к объему физической памяти на машине (pmem)

SZ размер в физических страницах образа ядра процесса. Сюда входят текст, данные и пространство стека

RSS постоянное потребление физической памяти (Resident Set Size non-swapped), реальный размер процесса в оперативной памяти, которую процесс занял (то есть что-то сохранил в память)

vsz виртуальная память (Virtual Memory Size) в килобайтах (1024-байтных единицах), которую выделили процессу, но это не означает, что он успел в эту память что-то записать

LWP идентификатор дочернего потока (Light-Weight Process), будет выведен текущий ID если один или первый поток

NLWP количество (Number) дочерних потоков (ps -LFC mysqld | sed 1d | wc -I)

PSR ядро процессора, на котором выполняется процесс

stat R - выполняется, D - ожидает записи на диск, S - неактивен (<20 c), T - приостановлен, Z - зомби, с дополнительными флагами (W - процесс выгружен на диск, < - процесс имеет повышенный приоритет, N - процесс имеет пониженный приоритет, L - некоторые процессы блокированы в ядре, s - процесс является лидером сеанса)

maj_flt количество крупных страничных ошибок, произошедших с данным процессом

min flt количество мелких ошибок страниц

ps -Ao comm,user,cputime,pcpu,pmem,sz,rss,vsz,nlwp,psr,pri,ni --sort cputime

kill

кі11 -INT (-2) РІВ прерывания с терминала, bash пошлёт сигнал SIGINT процессу (аналогично CTRL+C)

kill -KILL (-9) PID принудительно завершить процесс

kill -stop (-19) PID остановить процесс, bash пошлёт сигнал SIGSTOP процессу (аналогично CTRL+Z)

kill -CONT (-18) PID продолжить остановленный процесс

procs

snap install procs современная замена ps, написанная на Rust (https://github.com/dalance/procs) procs

jobs

```
(ping google.com) & запустить задачу в фоне (отображается [job] - номер задачи и PID процесса) jobs отобразить список фоновых задач (+ задача активна) jobs -1 | wc -1 получить список всех запущенных заданий fg 1 открыть задачу по номеру disown завершить все фоновые задачи (удалить/очистить всю очередь заданий) disown %1 завершить последнию (если она первая) запущенную задачу kill %1 завершить последнию запущенную задачу
```

nohub

nohup ping ya.ru > ping.log & используется для запуска процесса, который продолжает работать, даже если пользователь выйдет из сеанса (например, при закрытии терминала)

```
ps -ef | grep "ping ya.ru" найти процесс kill $(pgrep ping) Завершить процесс
```

mem

```
free -m объем оперативной памяти и SWAP в МБайт swapon точка монтирования SWAP, type, size, used, priority (берет информацию из /proc/swaps) ipcs -lm объем страниц разделяемой памяти (shared memory) cat /proc/meminfo | grep Dirty отобразить объем грязных (Dirty) страниц в кэше (еще не записанных на диск)
```

```
sync записать все кэшированные, но еще не записанные данные на диск (вместо кэша данные будут читаться из диска)
cat /proc/meminfo | grep -iE "^cache|^buff" объем кэша и буфера
echo 1 > /proc/sys/vm/drop_caches отправить сигнал на вход drop_caches для очистки страничного кэша (free buff/cache) - PageCache (сигнал 1)
echo 2 > /proc/sys/vm/drop_caches очистка кэша структуры файловой системы - inode, dentrie (сигнал 2)
```

fincore

fincore /var/log/* отобразить все файлы, которые находятся в кэше страниц оперативной памяти (page cache)

fincore /var/log/syslog 4.3M (данные файла, хранящиеся в памяти) 1100 (кол-во страниц хранящиеся в памяти PageCache) 199.7M (размер файла)

fincore /var/log/syslog -J вывод в JSON (--raw вывод без табулияции, --noheadings без заголовков, --byte размер файла в байтах) apt install vmtouch

vmtouch /var/log/syslog узнать какой процент указанного файла находится в страничном кеше (Resident Pages: 1100/51119 4M/199M 2.15%)

Ispage

```
fc=$(du -a $1 2> /dev/null | awk '{print $2}' | xargs fincore 2> /dev/null) echo -e "PAGE\tSIZE\tPATH" printf "%s\n" "${fc[@]}" | grep -wvE "0B|SIZE" | awk 'BEGIN {0FS="\t"}; {print $1,$3,$4}'
```

Isof

РІД ИДЕНТИФИКАЦИОННЫЙ НОМЕР ПРОЦЕССА, КОТОРЫЙ ОТКРЫЛ ФАЙЛ

тір идентификационный номер задачи/потока, пустой столбец означает, что это не задача а процесс

ғы файловый дескриптор файла (r - доступ для чтения, w - доступ для записи, u - доступ для чтения и записи, -r - режим неизвестен и есть символ блокировки на чтение часть файла, R - на весь файл)

ТҮРЕ тип узла, связанного с файлом (REG - обычный файл файловой системы, DIR - директория, CHR - символьный файл, BLK - блочный файл, INET - Интернет-сокет, unix - доменный сокет UNIX, IPv4 - IPv4 сокет, sock - неизвестный сокет, DEL - указатель Linux для удалённого файла, LINK - файл символьной ссылки, PIPE: — способ обмена данными между процессами)

SIZE/OFF размер файла или смещение файла в байтах

lsof | sed 1d | wc -1 кол-во открытых файлов/дескрипторов

cat /proc/sys/fs/file-nr кол-во открытых файловых дескрипторов в текущий момент, открытые файлы которые сейчас не используются, максимальное количество для открытия

lsof +D /var/log/ отобразить каким процессом и пользователем используются файлы в каталоге (+D dir) FD: r/w/u

dd if=/dev/zero of=~/dd-zero-file занять файл процессом dd и Ctrl+Z остановить процесс (отправить в jobs)

1s -1h ~/dd*

lsof ~/dd-zero-file отобразить каким процессом занят файл (List Open Files)

1sof -c dd отобразить все файлы запущенные по имени процесса/команды (в формате wildcard)

lsof -p 1832509 отобразить все открытые файлы по номеру PID-процесса (-p)

lsof -c mysql отобразить все файлы которые держит открытыми процесс по названию процесса (-c)

lsof -c bash | grep "\.sh" найти все запущенные скрипты

kill -9 \$(lsof -t ~/dd-zero-file) отфильтровать для вывода уникальных номеров PID-процесса (-t) использующие файл, для их завершения (kill)

kill -9 \$(lsof -t +D /smb/backup) убить все процессы использующие файлы в директории для дальнейшего umount /smb/backup

1sof -u root отобразить все файлы открытые пользователем

lsof -u^root | wc -1 исключить пользователя (^) из поиска и отобразить кол-во открытых файлов

lsof -i:8080 проверить открыт ли порт (-i:)

descriptor

```
lsof -a -p $$ -d 0,1,2 отобразить дескрипторы текущего интерпритатора ps $$

@u STDIN — стандартный поток вывода (с клавиатуры)

lu STDOUT — стандартный поток вывода (на экран/в файл)

2u STDERR — стандартный поток ошибок

cat test.txt 1> out.txt 2> error.txt перенаправить успешный вывод (если файл существует) в out.txt, если ошибка в еггог.txt

cat test2.txt 2> /dev/null не выводить ошибки

cat=$(cat test 2>&1) используется для перенаправления стандартного вывода ошибок (stderr - standard error) в стандартный вывод (stdout - standard output) с указанием файлового дескриптора (&) вместо файла
```

vmstat

```
cat /proc/vmstat отображает nr free pages, inactive/active anon, file
cat /proc/zoneinfo с разбиением на зоны памяти в зависимости от ее назначения
vmstat -v procps-ng 3.3.17 (разработчик top)
vmstat -s статистика memory/swap/io/system/cpu
vmstat -d | grep sda СТАТИСТИКА ДИСКА
vmstat -D суммарная статистика дисков
vmstat -t 1 2 отобразить 2 отчета (суммарный и текущий) с частатой обновления 1 секунда и timestamp (-t)
г количество запущенных процессов (работающих или ожидающих выполнения)
ь количество спящих процессов
swpd объем используемой виртуальной памяти
free объем свободной памяти
buff количество памяти, используемой в качестве буферов
сасће объем памяти, используемой в качестве кеша
inact количество неактивной памяти (-а)
active КОЛИЧЕСТВО АКТИВНОЙ ПАМЯТИ (-a)
si объем памяти, выгруженный с диска (/s)
so объем памяти, перенесенный на диск (/s)
ьі IOPS (Input/Output Operations Per Second) блоки, полученные от блочного устройства (block input/sec)
ьо IOPS блоки, отправленные на блочное устройство (block output/sec)
in количество прерываний в секунду, включая часы
сѕ количество переключений контекста в секунду
us время, потраченное на запуск кода, не относящегося к ядру (время пользователя)
ѕу время, потраченное на выполнение кода ядра (системное время)
id время бездействия
wa время, проведенное в ожидании ввода/вывода
st время, украденное из виртуальной машины
```

sysstat

apt install sysstat

iostat

```
iostat -h выводить данные в kb/mb/gb (avg-cpu: %user %system %idle, tps - количество запросов на чтение и запись к устройству в секунду) iostat -hp вывести статистику по устройству и всех его разделам (-p) iostat -ky /dev/sd* 1 1 | grep -w sd. выводить статистику в КБайт (-k), при отображении нескольких записей с заданным интервалом первый отчет со статистикой с момента загрузки системы опускается (-y) iostat -h /dev/sda3 -o JSON вывод в формате JSON
```

mpstat

%system процент использования процессора ядром

```
mpstat отобразить подробную статистику по использованию процессора по каждому ядру, и куда используются ресурсы
mpstat -P ALL отобразить отдельно для каждого ядра.
mpstat 2 10 отобразить 10 раз с обновлением каждые 2 секунды
%user процент использования процессора программами, запущенными на уровне пользователя
%nice процент использования процессора программами запущенными в пространстве пользователя, с изменённым приоритетом
```

%iowait процент времени затраченного на ожидание завершения операций ввода/вывода, если значение параметра слишком большое, значит много времени тратится на ожидание завершения ввода/вывода

%steal процент простоя виртуального процессора, пока гипервизор отдаёт мощность другому виртуальному процессору
%idle процент времени пока процессор не занят ничем

pidstat

pidstat используется для мониторинга родительских и дочерних процессов и текущих потоков pidstat -p ALL вывести все активные и неактивные задачи

stress

```
stress --cpu 2 --timeout 10 загрузить выбранное количество ядер в течении 10 секунд stress -v N нагрузить виртуальную память stress --io 100 & количество процессов нагрузки на ввод-вывод iostat -d /dev/sda 1 stress --hdd 100 & нагрузка на диск vmstat 1 100
```

stress-ng

```
apt-get install stress-ng stress-ng stress-ng --sequential 0 --class io --timeout 60s --metrics-brie Тест ввода вывода stress-ng --hdd 5 --hdd-ops 100000 будет запущено 5 стрессоров для жёстких дисков, которые будут остановлены по завершении 100 тыс. bogo-операций stress-ng --cpu 1 --cpu-method matrixprod --metrics --timeout 60 stress-ng --sequential 0 --class memory --timeout 60s --metrics-brief stress-ng --cpu 2 --io 4 --vm 1 --vm-bytes 1G --timeout 60s --metrics-brief
```

smart

smartmontools

```
apt install smartmontools smartctl -a /dev/sda Тест диска и информация о модели и температуре smartctl -H /dev/sda SMART Health Status
```

sensors

```
apt install lm-sensors sensors-detect Сканировать датчики температуры sensors отобразить датчики
```

badblocks

badblocks -s /dev/sda тест на наличие нечитаемых/битых блоков/секторов на диске

hdparm

```
hdparm -I /dev/sda | grep -1 mode1 модель жесткого диска (Model Number, Serial Number, Firmware Revision)
hdparm -v /dev/sda Кол-во секторов и настройки
hdparm -tT /dev/sda тест скорости работы без кэша (-t) и с кэшем (-T)
hdparm -D /dev/sda включение/отключение управления дефектами дисков
hdparm -r /dev/sda включает режим read only для диска
hdparm -A /dev/sda включает режим read-look-ahead, когда диск просматривается перед чтением, включена по умолчанию
hdparm -a /dev/sda включает режим read-ahead, когда чтение выполняется в первую очередь, позволяет улучшить производительность чтения
больших объемов данных
hdparm -b /dev/sda остановить жесткий диск до следующего к нему обращения
hdparm -5 1 /dev/sda остановить вращение мотора диска до следующего к нему обращения
hdparm -B 120 /dev/sda настройка управления питанием Advanced Power Management (APM), чем ниже значение, тем лучше энергосбережение
(255 - для отключения)
hdparm -Z /dev/sda отключает режим энергосбережения
```

hdparm -M 128 /dev/sda управление уровнем шума (принимает значения от 128 - более тихую работу, до 254 - высокую)

disk

fdisk -1 | grep -E "lv|vg"

fdisk /dev/sdc

```
du -sh /home отобразить общий размер указанной директории (-s)
du -Sh /home отобразить общий размер всех дочерних (-S) директорий по пути
du -h /home отображает общий размер указанной директории и подкаталогов внутри директории
du -ah /home отобразить общий размер директории и всех дочерних файлов (-a) и директорий
1sb1k отображает список всех подключенных блочных устройств (/dev), их SIZE, TYPE (disk/part/lvm) и точку монтирования (MOUNTPOINTS)
1sb1k -e7 вывод без loop
1sblk -f отображает используемую FSTYPE, UUID, FSAVAIL - сколько свободно на диске и FSUSE - сколько занято на диске в процентах
lsblk -o NAME, MODEL, SERIAL, SIZE, STATE --nodeps | grep running отображает модель, размер и статус без структуры разделов/lvm (--nodeps)
lsblk -E NAME ИСКЛЮЧИТЬ ДУБЛИРОВАНИЕ ВЫВОДА ПО КОЛОНКЕ
1sb1k - S вывод информации о SCSI-устройствах (--scsi)
1sb1k -b выводить SIZE в байтах (--bytes)
1sb1k - J вывод в формате JSON (--json)
1sb1k -Р использовать формат вывода key="value"
1sblk -m выводить информацию о правах доступа
df -h выводит информацию примонтированных файловых системах. Отображает общий объём (Size), занятого (Used) и свободно (Avail)
пространства
df -h -т отобразить Туре файловой системы (ext4/cifs)
apt install duf установить duf
duf аналог df
mount | grep /dev/ отобразить все примонтированные файловые системы
mount | grep -P "mapper|lv|vg" Примонтированные lvm
findmnt отобразить список смонтированных файловых систем в древовидном формате
findmnt -1 в формате списка
findmnt -t ext4
e2label /dev/sda3 УЗНАТЬ МЕТКУ ДИСКА
blkid отобразить список подключённых дисков, их UUID и TYPE
1sscsi отобразить параметры SCSI устройств подключенных к системе
parted
parted -1 отобразить список всех разделов на дисках
parted -1 | grep -i model
dd if=/dev/zero of=/tmp/disk.img count=1000 bs=1M создать образ диска заполненный нулями размером 1Гб
parted /tmp/disk.img передать parted созданный файл-образ для управления ФС
parted /dev/sdc передать parted диск
mktable gpt создать таблицу разделов GPT
print отобразить тип таблицы (Partition Table: GPT) и список разделов на устройстве, если они были созданы
print free отобразить свободное место и все разделы
mkpart primary ext4 0 500M создать первый, первичный (primary) раздел с ФС ext4 размером 500Mб.
mkpart primary ext4 500 1000M создать второй раздел (начало и конец)
resizepart 2 600м уменьшить 2-й раздел до 100МБ (указывается end-конец)
resizepart 2 100% увеличить до всего свободного размера
rm 2 удалить раздел
fdisk
fdisk -1 отображает список всех подключенных устройств построчно с размером секторов для каждого раздела
fdisk -х подробный вывод (узнать UUID разделов)
fdisk -1 | grep /dev/sd
fdisk -1 | grep -E "/dev/sd.[1-9]"
```

- м список команд
- р отобразить размер диска и список разделов (/dev/sdc1)
- n создать новый раздел (p), указать номер раздела partition number (4-128, default 4), начало и конце сектора enter (оставить по умолчанию)
- і информация о выбранном разделе разделе (начало, конец, общий размер сектора и размер диска)
- t задать тип раздела 30/8E (Linux LVM) или 20/83 (Linux filesystem)
- 1 отобразить список всех типов
- w сохранить
- q выход

partprobe /dev/sdc информирует ядро ОС об изменениях таблицы разделов, запрашивая у системы, чтобы она перечитала таблицу разделов

sfdisk

```
sfdisk -d /dev/sdc > sdc.partition.table.txt backup (аналогично dump cfdisk)
sfdisk -f /dev/sdc < sdc.partition.table.txt ВОССТАНОВИТЬ
sfdisk -d /dev/sda | sfdisk -f /dev/sdd ДЛЯ ВОССТАНОВЛЕНИЯ MD RAID1 (sda в sdd)
mdadm --manage /dev/md1 --add /dev/sdd1 восстановление копирования
watch cat /proc/mdstat отображать прогресс синхронизации
 • Новый диск для расширения LVM:
ls /dev/sd* отобразить все диски в файловой системе
fdisk -1 отобразить все диски через fdisk
cfdisk /dev/sda разметка диска на разделы (новый вариант)
cfdisk /dev/sdb инициализировать новый диск, выбрать таблицу разделов (gpt)
new - sda4 создать новый раздел sda4 или sdb1
Free space - Partition size: 100G
write - yes
pvcreate /dev/sda4 создать физический виртуальный том из раздела
vgextend ubuntu-vg /dev/sda4 добавить новый раздел в группу
lvextend -1 +100%FREE /dev/ubuntu-vg/ubuntu-lv добавить свободное место в группе для логического раздела ubuntu-lv
1sb1k
df -h система будет видеть старый объем диска, необходимо выполнить команду по изменению размера файловой системы
df -т -h отобразить тип ФС
resize2fs -f /dev/ubuntu-vg/ubuntu-lv ДЛЯ eXt*
btrfs filesystem resize +100g / ДЛЯ btrfs
 • Новый диск для нового раздела:
cfdisk /dev/sdc создать раздел (cfdisk/fdisk/parted)
mkfs.ext4 /dev/sdc1 форматировать раздел
mkdir /mnt/sdc1 && mount /dev/sdc1 /mnt/sdc1 примонтировать раздел, -о -r - монтировать только на чтение (--options --read-only)
df -h && 1sb1k раздел нового диска должен быть в статусе Mounted on или MOUNTPOINTS
chmod 0777 /mnt/sdc1 разрешить всем пользователям доступ к диску
df -h -T отображает тип файловой системы примонтированных разделов
nano /etc/fstab сохранить монтирование после перезагрузкиы
/dev/sdc1 /mnt/sdc1 ext4 rw,relatime 0 0 добавить по наименованию или UUID устройства
umount /dev/sdc1 ОТМАНТИРОВАТЬ РАЗДЕЛ
```

swap

```
fallocate -1 4G /swapfile.img CO3ДАТЬ ФАЙЛ ДЛЯ SWAP

dd if=/dev/zero of=/swapfile.img count=1024 bs=1M CO3ДАТЬ ФАЙЛ ДЛЯ SWAP

chmod 600 /swapfile.img ДАТЬ ПРАВА

mkswap /swapfile.img CO3ДАТЬ SWAP-ПРОСТРАНСТВО ИЗ ФАЙЛА ИЛИ ИСПОЛЬЗУЯ ВЕСЬ ОБЪЁМ РАЗДЕЛА (mkswap /dev/sda4)

swapon /swapfile.img аКТИВИРОВАТЬ SWAP-ПРОСТРАНСТВО

echo '/swapfile.img none swap sw 0 0' | sudo tee -a /etc/fstab ПРИМОНТИРОВАТЬ

free -m ОТОБРАЗИТЬ ОБЪЁМ

swapoff -a ОТКЛЮЧИТЬ

rm /swapfile.img уДАЛИТЬ ФАЙЛ
```

lvm

Logical Volume Management - управление логическими томами, это дополнительный слой абстракции от железа, позволяющий собрать несколько разных дисков в один, и затем разбить его на группы и разделы. Позволяет использовать программный RAID 0 и 1 (зеркалирование) с управляемым пространством, снапшотами и импортированием томов в другую систему.

• PV (Physical Volume) — физические тома

pvs отображает список Physical Volume pvdisplay подробная информация

pvcreate /dev/sdb инициализация диска в LVM как физический том

VG (Volume Group) — группы томов, для объединения физических томов и создания общего логического диска, который будет разбиватсья
на разделы

vgs отображает список Volume Group vgdisplay подробная информация

vgcreate vg21 /dev/sdb создать группу томов с добавлением физического тома на диске sdb

• LV (Logical Volume) — логические разделы

1vs отображает список Logic Volume и их объём

lvdisplay подробная информация

lvcreate -n boot -L 1G vg21 создать первый логический раздел с наименованием boot

lvcreate -n home -L 9G vg21 создать второй логический раздел с наименованием home

lvcreate -n lv21 -1+100%FREE vg21 создать один логический раздел lv21 для группы томов vg21 и назначить ему весь объем диска

mkfs -t ext4 /dev/vg21/lv21 назначить файловую систем ext4

mkdir /mnt/lv21 создать папку для монтирования

mount /dev/vg21/lv21 /mnt/lv21 примонтировать раздел к созданной папке

echo "/dev/vg21/lv21 /mnt/lv21 ext4 defaults 0 0" >> /etc/fstab Добавить Монтирование в автозагруку

• Увеличить

Расширение физического раздела можно сделать за счет добавление нового диска путём добавления в группу или увеличением имеющегося виртуального диска.

pvcreate /dev/sdc если добавлен новый диск, инициализируем (минус: если один из дисков выходит из строя, данные будут не доступны, аналогично работе RAID 0)

pvresize /dev/sdb если увеличин объем дискового пространства виртуального диска (resize - изменить размер физического тома)

vgextend vg21 /dev/sdc расширить группу vg21 за счет добавленного диска sdc (или vgdisplay)

vgs отобразит у какой из групп всего памяти VSize и сколько доступно памяти VFree для распредиления логическим разделам памяти, которую расширили

lvextend -1 +100%FREE /dev/vg21/lv21 добавить все свободное простраство логическому разделу

vgs VFree будет=0 а в lsblk объём раздела увеличится

lvextend -L+1G /dev/vg21/lv21 добавить 1Гб от группы томов vg21 разделу lv21

lvextend -L500G /dev/vg21/lv21 добавить до конкретного размера диска 500Гб

lvs проверить

df -т отобразить используемую ФС

resize2fs /dev/vg01/lv01 изменить размер для файловой системы ext4

• Уменьшить

e2fsck -fy /dev/vg21/lv21 проверка диска

resize2fs /dev/vg21/lv21 500M уменьшить размер ФС на 500Мбайт

lvreduce -L-500 /dev/vg21/lv21 уменьшить размер логического тома на 500Мбайт

vgs добавится VFree 500m для распределения другой логической группе

resize2fs /dev/ubuntu-vg/ubuntu-lv 1G уменьшить размер ФС на 500Мбайт

1vreduce -L-1000 /dev/ubuntu-vg/ubuntu-1v уменьшить размер логического тома на 1000Мбайт (Logical volume ubuntu-vg/ubuntu-lv successfully resized)

vgs VFree 1000.00m

• Удалить

```
umount /dev/vg21/1v21 предварительно отмантировать lvremove /dev/vg21/1v21 удалить логический том lvs нет групп vgs VSize и VFree объём совпадает vgremove vg21 удалить группу томов pvremove /dev/sdb удалить диск sdb из LVM
```

RAID 1

Новый диск sdc разбить на 2 раздела (основной sdc1, немного больше чем у целевого зеркалируемого раздела lv21 и sdc2 оставшийся объем для ведения файла журнала)

pvcreate /dev/sdc1 /dev/sdc2 добавить оба раздела в LVM

vgextend vg21 /dev/sdc1 /dev/sdc2 добавить в имеющиюся группу vg21 (расширить группу vg21)

vgs у группы vg21 VFree увеличится объём добавленных томов-разделов

lvconvert -m1 /dev/vg21/lv21 /dev/sdb /dev/sdc1 /dev/sdc2 конвертируем логический том lv21, входящий в состав группы vg21 в зеркалируемый том (-m1), зеркалируется /dev/sdb (где находится lv21) на sdc1, а /dev/sdc2 используется для ведения файла журнала.

lvs -a -o +devices раздел lv21 пишет на 2 устройства

```
[lv21_rimage_0] /dev/sdb(0) # основной том [lv21_rimage_1] /dev/sdc1(1) # зеркало
```

lsblk

sdb	8:16	0	4G	0 disk
+-vg21-lv21_rmeta_0	253:0	0	4M	0 lvm
L-vg21-lv21	253:4	0	2G	0 lvm
L-vg21-lv21_rimage_0	253:1	0	2G	0 lvm
L-vg21-lv21	253:4	0	2G	0 lvm
sdc	8:32	0	4G	0 disk
+-sdc1	8:33	0	3G	0 part
+-vg21-lv21_rmeta_1	253:2	0	4M	0 lvm
	253:4	0	2G	0 lvm
L-vg21-lv21_rimage_1	253:3	0	2G	0 lvm
L-vg21-lv21	253:4	0	2G	0 lvm

Извлекаем (удаляем) sdb (оригинальный диск)

1sb1k отображает только два раздела (part) sdc1 и sdc2 зеркального диска без LVM, т.к. группа не активна Командой 1vs видим группу vg21 и ошибки:

```
WARNING: Couldn't find device with uuid stBI99-6Qs3-B8lr-Ekaw-ahnD-oxPc-LsayLR. WARNING: VG vg21 is missing PV stBI99-6Qs3-B8lr-Ekaw-ahnD-oxPc-LsayLR (last written to /dev/sdb).
```

```
vgchange -ay vg21 активировать группу mount /dev/vg21/lv21 /mnt/lv21 примонтировать группу lv21
```

Snapshot

lvs

lvcreate -L 1G -s -n snap-1 /dev/ubuntu-vg/ubuntu-lv предварительно нужно добавить VFree в Volume Group (Logical volume "snap-1" created) lvcreate -L 1G -s -n snap-1 /dev/vg21/lv21 параметр -s помечает, что 1Гб дискового пространства из группы vg21 будет использоваться для snapshot lv21

lvs Origin - к какому логическому тому (lv) относиться snapshot, Data% — процент исползованного объема от выделенного.

1sb1k отображает изменения в томах разделов

mount /dev/vg21/snap-1 /mnt/snap содержимое снапшота можно смонтировать как обычный раздел, если отредактивароть снапшот и откатиться к нему, мы получим те данные, которые отредактировали

lvconvert --merge /dev/vg21/snap-1 откатиться к снапшоту snap-1, понадобится перезагрузка ОС (даже если это не основной диск)

Export/Import

```
umount /dev/vg21/1v21 отмантировать vgchange -an vg21 деактивировать группу томов (0 logical volume в volume group "vg21") vgexport vg21 экспортировать группу (successfully exported) pvdisplay список групп (VG Name vg21 (exported))
Переносим диск на новый компьютер: pvscan сканировать группы на новой системе (PV /dev/sdb is in exported VG vg21) vgimport vg21 импортировать в систему (successfully imported) vgs и lvs проверить группы vgchange -ay vg21 активировать группу (1+ lg в vg "vg21") lsblk проверить подключение LVM
```

md

SOFT RAID

mdadm --zero-superblock --force /dev/sd{b,c} занулить все суперблоки на дисках, которые будут добавлены в RAID-массив, т.к. диски могут содержать служебную информацию о других RAID (вывод: unrecognised md component device - ни один из дисков ранее не был добавлен в массив)

mdadm --create --verbose /dev/md0 -1 1 -n 2 /dev/sd{b,c} создать зеркальный RAID1 (-l/--leve 1) и указать кол-во дисков (-n/--raid-devices) mkfs.ext4 /dev/md0 форматировать в fs ext4

mkdir /md0-sdb-sdc-raid1 создать директорию для монтирования

mount /dev/md0 /md0-sdb-sdc-raid1 примонтировать вручную

lsblk -o NAME, UUID | grep md* отобразить UUID устройства

echo "UUID=20482c47-fa11-462d-b7b8-93a342a7edf8 /md0-sdb-sdc-raid1 ext4 defaults 1 2" >> /etc/fstab добавить в автозагрузку по UUID, т.к. после перезагрузки ОС номер может измениться на md127

mount -а примонтировать все файловые системы из fstab

cat /proc/mdstat проверить состояние всех доступных RAID-массивов: md127 : active raid1 sdc[1] sdb[0]

mdadm -D /dev/md127 подробное (--detail) состояние массива. State: cleane (проблем нет)/degraded (диск неисправен/поврежден).

Active/Working/Failed/Spare Devices - количество активных (в работе)/рабочих/нерабочих/запасных дисков в массиве. Consistency Policy - тип синхронизации после сбоя в массиве (resync - полная синхронизация после восстановления массива).

mdadm /dev/md127 --add /dev/sdd добавить запасной диск (в Spare Device) для горчей замены (Hot-Spare), в статусе списка дисков будет указан какой диск (State - spare /dev/sdd)

mdadm -G /dev/md127 -raid-devices=3 расширить массив до трех дисков (добавится из запасных дисков в активный в массив)

mdadm /dev/md127 --fail /dev/sdb пометить рабочий диск как нерабочий (перевести диск в Failed Device) для замены на запасной из Spare Device, который начнет автоматическую синхронизацию для ввода в массив (Rebuild Status : 50% complete)

mdadm /dev/md127 --remove /dev/sdb удалить нерабочий диск из массива

mdadm --stop /dev/md127 остановить/разобрать массив (предварительно umount /md0-sdb-sdc-raid1). В случае, если один из двух дисков был извлечен и не было запасных дисков, массив будет остановлен автоматически (State: inactive)

mdadm --assemble --scan --verbose команда просканирует все диски на наличие разобранного/развалившегося RAID-массива и самостоятельно (автоматически) попытается восстановить из них массив с изначальным именем (mdadm -D /dev/md0)

mdadm --stop /dev/md127 && mdadm --assemble --scan && mount -a && mdadm -D /dev/md0 если в системе остался один диск (второй извлечен), RAID-массив будет востановлен (пересобран) автоматически из одного диска с статусом: clean, degraded, можно сразу добавить новый диск для автоматической синхронизации данных

mdadm --assemble /dev/md127 /dev/sdb /dev/sdc указать вручную из каких дисков пересобрать массив

echo 'check' > /sys/block/md127/md/sync_action проверять целостность данных в массиве (mdadm -D /dev/md0 - Check Status : 80% complete) cat /sys/block/md127/md/mismatch_cnt вывод файла (0 - все впорядке)

echo 'idle' > /sys/block/md127/md/sync_action ОСТАНОВИТЬ ПРОВЕРКУ

tgt

iSCSI

apt install tgt серверная часть называется порталом, который содержит цели (Target), каждая из которых предоставляет клиенту - инициатору (Initiator) доступ к блочным устройствам.

dd if=/dev/zero of=/storage/disk1.img bs=1 count=0 seek=200G создание динамического диска (разреженный файл) с максимальным размером 200 ГБ, где вместо последовательности нулей на диске хранят информацию об этих последовательностях в специальной таблице

dd if=/dev/zero of=/storage/disk1.img bs=1M count=2048 СОЗДАНИЕ ФИКСИРОВАННОГО РАЗМЕРА ДИСК

```
cp --sparse=always filename newfilename Преобразование обычного файла в разреженный nano /etc/tgt/targets.conf
nano /etc/tgt/conf.d/disk-1.conf

<target iqn.2023-10.local.domain:ubuntu-target>
    backing-store /storage/disk1.img
    initiator-address 192.168.3.101
    incominguser user password1212

</target>

systemctl restart tgt
tgtadm --mode target --op show отобразит все подключенные цели и предоставляемые ими блочные устройства.
```

dd

dd if=/dev/sr0 of=/tmp/cd.iso bs=2048 сохранить образ диска (if=источник) в файл (of=назначение) с указанием кол-ва байт для чтения и записи за один раз (2МБайт), по умолчанию используется размер блока - 512 байт (2b блока = 1024 байт, 1k = 1 КБайт/1024 байт, 1kB = 1000 байт, 1M = 1024 КБайт/1 МБайт)

dd if=/dev/mem bs=2048 count=100 Вывести содержимое оперативной памяти на экран (не использовать файл)

dd if=/dev/zero of=/tmp/md-01 bs=4M count=256 создать файл заполненный нулями (из /dev/zero) размером 1ГБ с указанием кол-во копируемых блоков (bs*count) или очистить диск

dd if=/dev/random of=/tmp/md-02 bs=4M count=256 создать файл размером 1ГБ заполненный рандомными цифрами

dd if=/dev/sda of=/tmp/mbr.img bs=1b count=1 скопировать в файл первые 512 байт диска содержащие таблицу разделов MBR

dd if=/dev/sda of=/tmp/sda.img создать образ жесткого диска, используетася для полного backup системы (копирование раздела на двоичном уровне,включая таблицу MBR и всю пустую область диска и разделов)

backup

- Смонтировать внешний носитель для создания образа: mount /dev/sdb1 /mnt/disk_b
- dd if=/dev/sda of=/mnt/disk_b/disk.img bs=5M создать образа диска (.img) # создаем образ системы
- Подключить новый диск для записи образа на диск (sdc)
- dd if=/mnt/disk_b/disk.img of=/dev/sdc bs=5М записать образ на диск (c sdb1 на sdc):
- Извлечь физический ЖД или удалить виртуальный диск sda (системный) и sdb (с записью образа). Диск sdc с копией системы автоматически инициализируется как диск sda после перезагрузки системы.
- gzip disk.img сжать образ (все нули сожмутся полностью удобно для хранения backup, поддерживает только .img)
 dd if=/dev/sda conv=sync,noerror bs=5M | gzip -c > /mnt/disk_b/disk.img.gz создать сжатый образ системы
 gunzip -c /mnt/disk_b/disk.img.gz | dd of=/dev/sdc развернуть образ на диск

nc -lp 5000 | sudo dd of=/backup/sda.img.gz сохранение сжатого файла образа жесткого диска sdb на удаленном сервере (принимающая сторона)

dd if=/dev/sda | gzip -c | nc 192.168.21.121 5000 на узле, у которого установлен жесткий диск (передающая сторона)

nc -1p 5000 | gunzip -c | sudo dd of=/dev/sdb восстановление содержимого жесткого диска из сжатого образа (записывать не на системный диск), сохраненного на удаленном сервере на локальном узле (принимающая сторона)

cat /backup/sda.img.gz | nc my_local_host.com 5000 на удаленном сервере, на котором сохранен файл образа жесткого диска (передающая сторона)

iso

```
dd if=/dev/sda3 status=progress of=/mnt/disk_b/disk.iso bs=5M создать iso-образ (сохранить образ раздел)
dd if=nyть/к/образу.iso of=/dev/sdb1 записать ISO-образ ОС на внешнее устройство

sync завершить запись этой командой (что бы при извлечении не потерять часть данных)

mount -o loop /mnt/disk_b/disk.iso /mnt/iso примонтировать файл образа только для чтения (iso - это директория, которую предварительно нужно создать), подключается как /dev/loop6

umount /mnt/iso отмантировать
```

rdiff

apt install rdiff-backup на базе rsync с поддержкой инкрементных архивов используя технологию hard link, чтобы вернуться назад на заданный день

rdiff-backup /usr/lifailon/ /backup/test/

rdiff-backup user@hostname::/remote-dir local-dir -v5 --print-statistics по ssh с сервера на локальный бэкап-сервер, в ней же будет находиться директория rdiff-backup-data, которая будет содержать информацию и логи о проводимых бэкапах, а также инкременты, необходимые для отката на любой прошлый выполненный бэкап

rdiff-backup list files --changed-since 5D local-dir отобразить, какие файлы изменились за последние 5 дней rdiff-backup list files --at 5D local-dir отобразить список файлов, которые присутствовали в архиве 5 дней назад rdiff-backup restore local-dir/rdiff-backup-data/increments.2023-10-29T21:03:37+03:00.dir /tmp/restore ВОССТАНОВИТЬ ФАЙЛЫ ИЗ ИНКРИМЕНТА

users

sudo -u www-data выполнить команду от имени другого пользователя

su root войти под пользователем root

sudo su изменить пользователя на root, при этом пользователь остается в той же директории потому, что выполняется ваш .bashrc. А также .profile пользователя root поэтому вы окажетесь в окружении root

sudo -i указывает утилите что нужно переключиться в консоль от имени root, при этом перемещаясь в домашний каталог root, и будет выполнен ero .bashrc и .profile

sudo /bin/bash запускает еще одну оболочку bash от имени суперпользователя. Файлы конфигурации не читаются, но выполняется только bashrc вашего пользователя. Вы не окажетесь в окружении root, а просто останетесь в своем окружении с правами суперпользователя

cat /etc/passwd список/база данных пользователей зарегистрированных в системе cat /etc/group список групп

саt /etc/shadow | grep -Ev "^.+:*:" пароли пользователей хранящиеся в зашифрованном виде (заданные с помощью /usr/bin/passwd), если * или ! пользователь не сможет войти в систему с использованием аутентификации по паролю, другие методы входа, как аутентификация на основе ключей или переключение на пользователя разрешены. Синтаксис: логин:пароль:последнее изменения пароля (количество дней исчисляется с 1 января 1970 года):минимальный срок действия пароля:максимальный срок действия:период предупреждения:период бездействия:срок хранения

cat /etc/login.defs | grep -Pv "^\$|^#" настройка поведения утилиты управления пользователями и параметрами входа в систему (настройки минимального и максимального id для выдачи новому пользователю/группе, количество попыток входа, таймау, что делать с директорий пользователя при создании или удалении и т.п.)

cat /etc/login.defs | grep "^PASS" максимальное кол-во дней действия пароля (PASS_MAX_DAYS), минимальное количество дней допустимое между сменами пароля (PASS_MIN_DAYS), количество дней предупреждающих об истечении срока действия пароля (PASS_WARN_AGE), ограничения длины паролей (PASS_MIN_LEN/PASS_MAX_LEN), максимальное кол-во попыток входа при вводе неправильного пароля (LOGIN_RETRIES), время на вход (LOGIN_TIMEOUT), включить логирование успешных входов (LOG_OK_LOGINS), логирование неизветных имен для системы пользователей при неудачных попытках входа (LOG_UNKFAIL_ENAB)

passwd

```
passwd включить учетную запись root и задать ей пароль passwd username смена пароля пользователя passwd -1 username заблокировать уч. запись passwd -u username разблокировать уч. запись
```

chage

chage -1 root информация последней смене пароля и срок действия (последняя смена пароля, Срок действия пароля, Пароль неактивен, Срок действия учетной записи, Минимальное количество дней между сменой пароля, Максимальное количество дней между сменой пароля, Количество дней предупреждения до истечения срока действия пароля)

chage -E lifailon установить дату истечения срока действия пользовательской учетной записи (-E) chage lifailon -M 30 установки минимального (-m) и максимального (-M) срока действия пароля

id

id lifailon узнать ID uid=1000(lifailon) gid=1000(lifailon) groups=1000(lifailon),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lxd)

```
usermod -u 1022 kup изменить UID groupmod -g 1022 kup изменить GID
```

usermod

```
usermod -L lifailon заблокировать вход по паролю (перед паролем пользователя в файле /etc/shadow добавляется восклицательный знак)
usermod --expiredate 1 -L lifailon заблокировать пользователя (не будет возможности авторизоваться через su: Authentication failure)
usermod --expiredate 2023-10-25 lifailon задать дату блокировки
usermod --expiredate "" -U lifailon разблокировать пользователя
usermod -g root lifailon изменить основную группу пользователя
usermod -a -G plugdev lifailon добавить пользователя в дополнительную группу (-G), обязательно нужно использовать вместе с -a, чтобы не
удалять старые
usermod -d /root lifailon изменить домашнюю директорию пользователя (-d)
usermod -m -d /root lifailon переместить домашнюю папку сохранив все содержимое (-m)
usermod -s /usr/bin/dash lifailon изменить оболочку по умолчанию (-s)
usermod -u 2002 lifailon изменить имя пользователя (-u)
usermod -l lifailon failon изменить имя пользователя (-l)
usermod --password "NewPassword" lifailon изменить пароль
```

profile

nano /etc/bash.bashrc задать timeout для завершения бездейстующих (idle time) SSH и локальных сессий nano /etc/profile задать на уровне профиля (приоритет ниже)

TMOUT=1440 readonly TMOUT export TMOUT

bashrc

.bashrc файл переменных конкретного пользователя

.bash_profile переменные вступают в силу каждый раз когда пользователь подключается удаленно по SSH. Если этот файл отсутствует система будет искать .bash_login или .profile

/etc/environment файл для создания, редактирования и удаления каких-либо переменных окружения на системном уровне. Переменные окружения, созданные в этом файле доступны для всей системы, для каждого пользователя и даже при удаленном подключении.

/etc/bash.bashrc файл выполняется для каждого пользователя, каждый раз когда он создает новую терминальную сессию. Это работает только для локальных пользователей, при подключении через интернет, такие переменные не будут доступны.

/etc/profile системный файл profile, все переменные из этого файла, доступны любому пользователю в системе, только если он вошел удаленно. Но они не будут доступны, при создании локальной терминальной сессии, то есть если вы просто откроете терминал.

useradd

```
useradd -D отобразить параметры, которые будут применены для пользователя по умолчанию useradd -o -u 0 -g 0 -s /bin/bash newroot создать нового пользователя с правами root useradd -G adm, wheel -p password -s /bin/bash test2 разрешить пользователю читать логи и пользоваться sudo
```

useradd username

- -s указать командную оболочку для пользователя (по умолчанию /bin/sh без оболочки, можно указать /bin/bash)
- -ь указать базовый каталог для размещения домашнего каталога пользователя (по умолчанию /home)
- d домашний каталог, в котором будут размещаться файлы пользователя
- -т создавать домашний каталог пользователя, если он не существует
- -с комментарий к учетной записи
- д основная группа пользователя
- список дополнительных групп
- -и не создавать группу с именем пользователя
- -р задать пароль пользователя
- -1 не сохранять информацию о входах пользователя в lastlog и faillog

- -о разрешить создание пользователя linux с неуникальным идентификатором UID
- -и идентификатор для пользователя

adduser

adduser username интерактивное создание пользователя, по умолчанию будет создан домашний каталог (/home/username), можно указать данные о пользователе или пропустить и задать пароль

deluser username удалить пользователя (каталог не удаляется)

chmod

- --- нет прав
- --х разрешено только выполнение файла, как программы но не изменение и не чтение
- -w- разрешена только запись и изменение файла
- -wx разрешено изменение и выполнение, в случае с каталогом нельзя посмотреть его содержимое
- r-- права только на чтение
- r-x только чтение и выполнение, без права на запись
- rw- права на чтение и запись, но без выполнения
- rwx все права
- --s установлен SUID или SGID бит, первый отображается в поле для владельца, второй для группы
- --t установлен sticky-bit, значит пользователи не могут удалить этот файл
- r чтение
- w запись
- х выполнение
- s выполнение от имени суперпользователя (дополнительный)
- и пользователь-владелец файла
- g группа-владельц файла
- о все остальные пользователи
- + включить
- отключить
- в поменять права на все подкаталоги и файлы указанной директории
- v выводить информацию обо всех изменениях

```
chmod u+x filename разрешить выполнение (x) для владельца (u)
chmod ugo+x filename разрешить выполнение (x) для всех (ugo)
chmod ug+r filename разрешить чтение (r) для владельца (u) и группы (g)
chmod o-w filename запретить запись (w) для остальных пользователей (o)
chmod -R g+rwx dir дать полный доступ (rwx) группе (g) на директорию и всем файлам в ней (-R)
```

Права доступа в восьмеричной системе, которые полностью переписывают текущие права новыми для всех категорий пользователей:

- о никаких прав
- 1 только выполнение
- 2 только запись
- з выполнение и запись
- 4 только чтение
- 5 чтение и выполнение
- 6 чтение и запись
- 7 чтение, запись и выполнение

chmod 744 filename разрешить полные права для владельца, а остальным только чтение chmod 664 filename чтение и запись для владельца и группы, только чтение для остальных

chown

```
chown lifailon tmp изменить владельца на пользователя lifailon для директории tmp
chown lifailon:lifailon tmp ИЗМЕНИТЬ ВЛАДЕЛЬЦА И ГРУППУ
chown -R lifailon:lifailon tmp применить изменения ко всем подкаталогам (-R)
chown --from=root:root lifailon:lifailon -R ./ изменить владельца и группу только для тех каталогов и файлов, у которых владелец и группа
root в текущем каталоге
```

groups

```
groups lifailon отобразить в каких группах находится указанный пользователь
touch testdir при создании файла ему назначается основная группа пользователя который его создал (ls -l testdir)
cat /etc/group список групп
chgrp testdir tmp изменить группу на testdir для директории tmp
groupadd testdir создать группу
delgroup testdir удалить группу, если ошибка 'testdir' still has testdir' as their primary group! предварительно исключить из группы всех
пользователей
```

Опции:

- д изменить основную группу для пользователя
- -6 дополнительные группы, в которые нужно добавить пользователя (затирает предыдущие)
- -а добавить пользователя в дополнительные группы с параметром -G, а не заменять им текущее значение
- Р удалить пользователя из группы

usermod

```
usermod -aG sudo lifailon добавить пользователя в дополнительную группу (-aG, без затирания предыдущих групп) sudo (добавить в группу root)
usermod -aG disk lifailon пользователь будет иметь прямой доступ к ЖД без команды sudo (например монтировать)
usermod -g root lifailon изменить основную группу (-g) для пользователя на root
usermod -R ssh lifailon удалить пользователя из группы
```

domain

realmd

```
hostnamect1
hostnamectl set-hostname srv-01.domain.local изменить имя сервера (/etc/hostname)
nano /etc/resolv.conf
nameserver 192.168.3.233 адрес DC
search domain.local
apt -y install realmd libnss-sss libpam-sss sssd sssd-tools adcli samba-common-bin oddjob oddjob-mkhomedir packagekit
nano /etc/realmd.conf задать атрибуты хоста, которые будут сохранены в учетной записи компьютера в AD (атрибуты operatingSystem и
operatingSystemVersion)
 [active-directory]
 os-name = Ubuntu Server
 os-version = 20.04
realm discover domain.local --verbose возвращает полную конфигурацию домена и список пакетов, которые должны быть установлены для
регистрации системы в домене
realm join --help | grep pass
realm join -U username domain.local --one-time-password ввести в домен \ realm
list проверить после подключения (server-software: active-directory) \ id username@domain.local` получить сведения о пользователе домена
```

sssd

Права доступа на логирование в Linux из под УЗ домена (sssd используется для аутентификации Kerberos)

```
realm permit -g 'ssh-connect-domain' добавит доменную группу (echo "simple_allow_groups = ssh-connect-domain" >> /etc/sssd/sssd.conf)
realm permit username@domain.local добавит пользователя (echo "simple allow users = username" >> /etc/sssd/sssd.conf)
realm deny --all запретить доступ всем пользователям (очищает список simple_allow_* в sssd.conf)
systemctl restart sssd
Создавать домашний каталог для нового доменного пользователя:
 bash -c "cat > /usr/share/pam-configs/mkhomedir" <<EOF</pre>
 Name: activate mkhomedir
 Default: yes
 Priority: 900
 Session-Type: Additional
 Session:
 required pam_mkhomedir.so umask=0022 skel=/etc/skel
 EOF
pam-auth-update обновить конфигурацию, выбрать созданную: activate mkhomedir
Права на sudo:
nano /etc/sudoers.d/domain_admins nano /etc/sudoers.d/linux-admins
 username@domain.local
                                     ALL=(ALL)
                                                     ALL
 %ssh-connect-domain@domain.local ALL=(ALL)
                                                     ALL
ssh username@domain.local@hostname
```

syslog

server

```
systemctl status rsyslog
nano /etc/rsyslog.conf
 # provides UDP syslog reception (input module udp)
 module(load="imudp")
 input(type="imudp" port="514")
 # provides TCP syslog reception
 #module(load="imtcp")
 #input(type="imtcp" port="514")
 # Filter duplicated messages
 # Включить фильтрацию одинаковых сообщений
 $RepeatedMsgReduction off
 # Шаблон создания директории на основе ІР адреса клиента и сбор всех логов в один файл:
 $template RemoteLogs,"/var/log/remote/%fromhost-ip%/syslog.log"
 # Сохранять сообщения от любого источника (*) с любым приоритетом (*) в файл, заданный шаблоном (RemoteLogs):
 *.* ?RemoteLogs
 # Шаблон создания директории на основе имени клиента и лог-файлов по имени программы:
 # $template RemoteLogs,"/var/log/remote/%HOSTNAME%/%PROGRAMNAME%.log"
 # *.* ?RemoteLogs
 # Include all config files in /etc/rsyslog.d/
 $IncludeConfig /etc/rsyslog.d/*.conf
systemctl restart rsyslog
```

client

nano /etc/rsyslog.d/all.conf

```
# UDP:
 *.* @192.168.3.105:514
 # TCP:
 # *.* @@192.168.3.105:514
 # auth.* @@192.168.3.105:514
 # *.err @@192.168.3.105:514
systemctl restart rsyslog
ls /var/log/remote на сервере должна появиться директория с ip-адресом/именем клиента
ls -lh /var/log/remote/*
cat /var/log/remote/192.168.3.104/syslog.log | grep influxd
systemctl restart zabbix-agent
cat /var/log/remote/192.168.3.104/syslog.log | grep zabbix_agentd
zabbix-agent
```

```
# LogType=file
LogType=system
DebugLevel=1
systemctl restart zabbix-agent
```

nano /etc/zabbix/zabbix_agentd.conf

ommail

```
nano /etc/rsyslog.conf
 # Включить модуль:
 module(load="ommail")
 $ActionMailSMTPServer m.domain.ru
 $ActionMailSMTPPort 25
 $ActionMailFrom zabbix@domain.ru
 $ActionMailTo lifailon@domain.ru
 # Шаблон, который будет подставляться как тема (Subject) и тело письма (Body) - имя переменной шаблона, содержимое шаблона"
 $template mailSubject,"rsyslog: disk problem on %hostname%"
 $template mailBody,"RSYSLOG Alert\r\nmsg='%msg%'"
 $ActionMailSubject mailSubject
 $ActionMailBody mailBody
 # Ограничение на отправку - одно письмо в 5 минут
 $ActionExecOnlyOnceEveryInterval 300
```

logrotate

```
systemctl status logrotate.timer
nano /etc/logrotate.conf
```

```
# Ротация файлов журнала еженедельно
 weeklv
 # По умолчанию используется группа adm, которая является владельцем группы ls -ld /var/log/syslog
 # Количество файлов (недель, если ротация еженедельно) хранения журналов
 rotate 4
 # Создавать новые (пустые) файлы журналов после ротации старых
 # Использовать дату в качестве суффикса ротируемого файла
 dateext
 # Сжимать лог-файлы
 # Пакеты сбрасывают информацию о ротации журнала в этот каталог
 include /etc/logrotate.d
nano /etc/logrotate.d/logrotate_remote.conf
 /var/log/remote/*/*.log {
 su root root
 daily
 copytruncate
 size 10M
 rotate 2
 compress
 dateext
 }
Условия:
hourly каждый час
daily каждый день
weekly каждую неделю
monthly каждый месяц
yearly каждый год
size минимальный размер лога, меньше этого значения ротация выполняться не будет
Действия:
rotate 2 указать, сколько последних ротированных лог-файлов нужно хранить, остальные удалять
maxage 30 указать, за сколько последних дней хранить ротированные файлы, остальные удалять
copytruncate сначала создается копия файла лога, после уже обрезается действующий (нужно, когда программа должна писать лог непрерывно,
возможность потери записей, если она придется на процесс усечения)
extension сохранять оригинальный лог файл после ротации
compress сжимать ротированный лог (gzip)
delaycompress не сжимать последний и предпоследний журнал (позволяет избежать ошибок, связанных с отсутствием доступа к используемому
файлу)
create # 0644 root root создать пустой лог файл на месте старого
olddir /path перемещать логи в отдельную папку при срабатывании условия
dateext добавляет дату ротации перед заголовком старого лога
missingok не выдавать ошибки, если лог файла не существует
notifempty если файл пустой, не выполнять никаких действий
prerotate script.sh endscript СКРИПТ, КОТОРЫЙ НЕОБХОДИМО ВЫПОЛНИТЬ ПЕРЕД ЧИСТКОЙ ЛОГА
postrotate script.sh endscript скрипт, который необходимо выполнить после чистки лога
sharedscripts если был указан путь в формате wildcard (*), выполнить скрипт один раз после завершения ротации всех файлов
logrotate -d /etc/logrotate.d/logrotate_remote.conf проверить ротацию (--debug)
logrotate -fv /etc/logrotate.d/logrotate remote.conf запустить ротацию сейчас (--force) с подробным выводом (--verbose)
cat /etc/cron.daily/logrotate задание на автоматический запуск создается по умолчанию, который читает конфигурационный файл ротации
/etc/logrotate.conf, в нем указана директрия: include /etc/logrotate.d в которой лежат файлы ротации
which logrotate узнать путь до исполняемого файла
crontab -e
```

00 3 * * * /usr/sbin/logrotate -f /etc/logrotate.d/logrotate_remote.conf настроить собственное ручное расписание с ежедневным запусков в 3:00

log

• Терминальный пользовательский интерфейс для journalctl, журналов файловой системы, а также контейнеров Docker и Podman для быстрого просмотра и фильтрации с поддержкой нечеткого поиска и регулярных выражений:

• Терминальный пользовательский интерфейс для логов файловой системы с таймстампами, возможностью поиска и подсветкой:

```
apt install lnav
journalctl -f -a -xe -o json | lnav
ssh playground@demo.lnav.org
```

• Вывод с подсветкой, которая будет работать одинаково стабильно для разных лог-файлов:

```
apt install tailspin
cat /var/log/syslog | tailspin
```

smb

cifs

```
apt install cifs-utils установить SMB Client

nano /root/.smbclient

username=lifailon
password=password
#domain=domain.local

mkdir /smb && mkdir /smb/backup CO3Дать Директорию для монтирования
nano /etc/fstab

//192.168.3.100/Backup /smb/backup cifs user,rw,credentials=/root/.smbclient 0 0 гW права на чтение и запись
mount -a примонтировать (открыть порты на сервере: 137/UDP; 138/UDP; 139/TCP; 445/TCP)

df -h

//192.168.3.100/torrent-files /home/lifailon/torrent-files cifs user,rw,credentials=/root/.smbclient,perms=0666 0 0

chmod 666 /home/lifailon/torrent-files
chown -R lifailon:lifailon /home/lifailon/torrent-files
smbclient $path_smb_qb --user=smb --password=kinozal
```

samba

```
iptables -I INPUT -p tcp --dport 445 -j ACCEPT используется для Samba
iptables -I INPUT -p tcp --dport 137 -j ACCEPT используется для работы NetBIOS (использование имени компьютера для доступа)
iptables -I INPUT -p tcp --dport 137:138 -j ACCEPT
iptables -I INPUT -p udp --dport 137:138 -j ACCEPT
iptables -L Отобразить список правил
iptables -F Очистить список правил
apt install iptables-persistent
netfilter-persistent save Применить настройки

apt install samba
systemctl status smbd
mkdir -p /public/share Создать общую папку
chmod 777 /public/share Выдать права
```

client cifs

```
apt install cifs-utils
mkdir /mnt/share1
mount -t cifs "//192.168.3.103/share1" /mnt/share1 -o user=smb1 Примонтировать удаленный каталог на клиенте Linux с авторизацией
df -handle
//192.168.3.103/share1 246 236 1.26 96% /mnt/share1
```

client samba-client

```
apt install samba-client smbclient -L 192.168.3.103 -U share1
```

recycle

го разрешить только чтение

insecure использовать любые порты

```
[share1]
     path = /public/share
     public = yes
     browseable = ves
     writable = yes
     read only = no
     guest ok = yes
     vfs objects = recycle
     recycle:repository = .recycle/%U
     recycle:keeptree = Yes
     recycle:touch = Yes
     recycle:versions = Yes
     recycle:maxsize = 0
     recycle:exclude = *.tmp
     recycle:exclude_dir = /tmp
recycle:repository где хранить удаленные объекты. Удаленные файлы попадут в скрытый каталог .recycle в котором создастся каталог с именем
пользователя, удалившего файл или папку
recycle:keeptree удалять объекты с сохранением дерева каталогов
recycle:touch изменить дату изменения файла при его перемещении в корзину
recycle:versions при удалении файлов с совпадающими именами, добавлять номер версии
recycle:maxsize не помещать в корзину файлы, размер которых больше заданного параметра (в байтах). 0 - помещать файлы любого размера
recycle:exclude ИСКЛЮЧИТЬ файлы
recycle:exclude_dir ИСКЛЮЧИТЬ КАТАЛОГ
nfs
server
apt install nfs-kernel-server установить сервер, с помощью которого будет выполнено открытие шары. Сервис NFS слушает соединения для
TCP и UDP на порту 2049.
apt install rpcbind
rpcinfo -p | grep nfs проверить, слушается ли порт nfs
cat /proc/filesystems | grep nfs проверить, поддерживается ли NFS на уровне ядра (вывод: nodev nfsd)
modprobe nfs вручную загрузить модуль ядра nfs
systemctl status nfs-server служба сервера
ufw allow 111,2049 && ufw reload
mkdir nfs-folder создать папку для шары
adduser nfs-user создать пользователя для подключения
chown nfs-user:nfs-user nfs-folder изменить владельца шары
chmod 775 nfs-folder дать полный доступ владульцу и группе
nano /etc/exports файл настройки шары
/nfs-folder 192.168.3.0/24(гw,sync,no_subtree_check) /путь/к/директории (шарим), удаленный IP-адрес клиента или подсеть (что бы разрешить
все адреса используется 0.0.0.0/24 или символ *) и опции в скобках
exportfs -a применить настройки (обновить таблицу экспорта NFS)
Options:
rw разрешить чтение и запись в этой папке
```

no_root_squash не подменять запросы от root на анонимные (все подключения от имени пользователя root считаются по умолчанию анонимными

sync отвечать на следующие запросы только тогда, когда данные будут сохранены на диск (по умолчанию)

nohide Не скрывать дочернии директории, при открытии доступа к нескольким директориям

root_squash подменять запросы от root на анонимные (используется по умолчанию)

async не блокировать подключения пока данные записываются на диск

secure использовать для соединения только порты ниже 1024

nfsnobody, отключение этой опции не безопасно, потому что любой root пользователь сможет получить доступ на запись ко всем файлам) all_squash превращать все запросы в анонимные

subtree_check проверять не пытается ли пользователь выйти за пределы экспортированной папки

no_subtree_check отключить проверку обращения к экспортированной папке, улучшает производительность, но снижает безопасность, можно использовать когда экспортируется раздел диска

anonuid и anongid указывает uid и gid для анонимного пользователя

ss -tn | grep -w "21" проверить установленные соединения на 21 порту (ESTAB)

cat /var/log/vsftpd.log лог работы (CONNECT/LOGIN/UPLOAD/DOWNLOAD/RENAME/DELETE)

Работает стандартная система доступа UNIX, поэтому, если нужно чтобы пользователь подключивший директорию мог получить доступ к папке, то на клиентской стороне должен существовать пользователь с таким же UID (именем и ID), а на сервере для расшаренной директории должна принадлежать такому же пользователю или группе в которой он состоит (GID). Или дать полный доступ для всех пользователей (chmod 777 nfs-folder), тогда все созданные файлы будут от имени: nobody nogroup

/nfs-folder 192.168.3.0/24(rw,sync,all_squash,anonuid=1020,anongid=1020) любой пользователь в сети сможет получить полный доступ ко всем файлам расшаренной директории, предварительно нужно создать пользователя с UID 1020 и указать, что бы все подключения считать запросами от анонимного пользователя, а анонимному пользователю присвоить UID 1020. Если у пользователя с id 1020 есть доступ к расшаренной директории на сервере, то при подключении директории на клиентской стороне он будет у пользователя с любым UID. При создании файлов и директорий под другим пользователем, будет указан владелец с номером UID и GID 1020.

```
usermod -u 1020 nfs-user изменить UID groupmod -g 1020 nfs-user изменить GID id nfs-user проверяем ID
```

client

```
apt install nfs-common установить на клиентском компьютере, что бы работать с файловой системой mkdir /mnt/nfs-folder && mount 192.168.3.104:/nfs-folder/ /mnt/nfs-folder подключить шару и првоерить df -h (192.168.3.104:/nfs-folder 48G 20G 27G 43% /mnt/nfs-folder)
umount /mnt/nfs-folder ОТКЛЮЧИТЬ
showmount -e 192.168.3.104 отобразить список всех доступных ресурсов
```

ftp

```
apt install vsftpd установка vsFTPd Server (Very Secure File Transfer Protocol Daemon)
systemctl status vsftpd
ufw allow 20:21/tcp открыть порты в Firewall
ufw allow 30000:31000/tcp
cp /etc/vsftpd.conf /etc/vsftpd.conf.bak резервная копия настроек
nano /etc/vsftpd.conf
 listen=YFS
 listen inv6=NO
 anonymous_enable=NO` отключить ананимный вход
 local enable=YES` разрешить использовать имена локальных пользователей сервера для входа
 write_enable=YES` разрешить для авторизованных пользователей управлять файловой системой (по умолчанию возможно только скачивание). При подключен
 chroot_local_user=NO` когда установлено в YES, ограничивает пользователей их домашними каталогами для предотвращения доступа к остальной части фа
 chroot_list_enable=YES` задать список пользователей, которые будут или не будут ограничены своими домашними каталогами в зависимости от chroot_lo
 chroot\_list\_file=/etc/vsftpd.chroot\_list` путь к файлу, который содержит список пользователей для chroot-orpahuчения
 user_sub_token=$USER
 local_root=/home/$USER/ftp` указать для всех пользователей по умолчанию домашний каталог при подключении (используется вместе с плейсхолдером)
 userlist_enable=YES` включает использование списка пользователей, которые могут (или не могут) входить на сервер
 userlist_file=/etc/vsftpd.user_list` указывает путь к файлу со списком пользователей, которые разрешены или запрещены
 userlist_deny=NO` ппределяет поведение списка пользователей, когда установлено в NO, только пользователи из списка userlist_file могут входить на
 connect_from_port_20` YES - использовать 20 порт для передачи данных вместо случайного (нужно для нормальной работы firewall)
 xferlog_enable = YES` записывать в лог файл все транзакции
systemctl restart vsftpd
ss -ln | grep -w "21" проверить, что 21 порт слушает (LISTEN)
```

ftp client

```
ftp 192.168.3.104 доступен только без использования SSL 230 Login successful вход в систему успешен ls отобразить все файлы в текущей директории на удаленном компьютере get test.json скачать файл на локальный компьютер put out.txt загрузить файл на удаленный сервер bye закрыть соединение
```

ftps

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/ssl/private/vsftpd.key -out /etc/ssl/certs/vsftpd.crt СГӨНӨРИРОВАТЬ самозаверяющий SSL-сертификат и закрытый ключ

```
nano /etc/vsftpd.conf
ssl enable=YES
rsa_cert_file=/etc/ssl/certs/vsftpd.crt
rsa_private_key_file=/etc/ssl/private/vsftpd.key
allow_anon_ssl=NO
force local data ssl=YES
force_local_logins_ssl=YES
ssl_tlsv1=YES
ssl sslv2=NO
ssl sslv3=NO
require_ssl_reuse=NO
ssl_ciphers=HIGH
useradd -m -s /bin/bash ftpuser пользователь с домашним именным каталогом и оболочкой bash
passwd ftpuser задать пароль пользователю
echo "ftpuser" | tee -a /etc/vsftpd.chroot_list добавить пользователя в список ограниченных домашним каталогом
echo "ftpuser" | tee -a /etc/vsftpd.user list добавить пользователя в список разрешенных для подключения
mkdir /home/ftpuser/ftp создать домашнию директорию
chown ftpuser:ftpuser ftp назначить владельца и группу для директории
chmod 555 ftp ограничить доступ только на чтение и выполнение
mkdir /home/ftpuser/ftp/upload создать директорию для загруки (с возможностью записи)
chown ftpuser:ftpuser upload
chmod 775 upload полный доступ для владельца и группы
```

rsync

rsync -options SRC DST

- -а режим архивирования, когда сохраняются все исходные атрибуты оригинальных файлов (дата изменения и создания)
- -ь создание резервной копии
- -с проверка контрольных сумм для файлов
- -е использовать другой транспорт (например ssh)
- -h выводит цифры в формате, нормальном для чтения
- -1 копировать символьные ссылки
- L копировать содержимое ссылок
- -р сохранять права для файлов
- -q минимум информации
- -и не перезаписывать более новые файлы
- и выводить подробную информацию о процессе копирования
- -w выполнить полное копирование без синхронизации
- -z сжимать файлы перед передачей
- --delete удалять остальные файлы у получателя, которых нет в источнике отправителя
- --progress выводить прогресс передачи файла (в %)
- --stat показать статистику передачи

rsync -zvh /home/lifailon /backup копирование и синхронизация только файлов (skipping directory) указанной директории (в пределах одной локальной машины, например на внешний носитель). При редактировании файлов в исходной папке и повторном копирование заменит все содержимое (без синхронизации).

```
pid file = /var/run/rsyncd.pid
 lock file = /var/run/rsync.lock
 log file = /var/log/rsync.log
 [share]
 path = /backup/
 hosts allow = 192.168.3.103
 hosts deny = *
 list = true
 uid = lifailon
 gid = lifailon
 read only = false
chown kup:kup backup СМЕНИТЬ ВЛАДЕЛЬЦА И ГРУППУ ДИРЕКТОРИИ
chmod ug+rwx backup выдать им полные права (для удаленного пользователя)
systemctl start rsync ЗаПУСТИТЬ Сервер
Синхронизация на удаленной машине (192.168.3.103) авторизованным под пользователем, указанным в конфигурации:
rsync -avzh /backup/ kup@192.168.3.103:/tmp/backup/ скопировать содержимое локальной папки backup (включая директории) на удаленный
сервер. По умолчанию Rsync использует транспорт SSH (шифрованный) с запросом пароля (если не используется ключ).
rsync -avzhe "ssh -p 2121" /tmp/backup/ kup@192.168.21.121:/tmp/backup/ если используется нестандартный порт
rsync -avzh /tmp/backup/ rsync://192.168.21.121:/share ЯВНО ЗАДАТЬ ИСПОЛЬЗОВАНИЕ ТРАНСПОРТА Rsync
При редактировании исходных файлов, заменит содержимое только тех файлов, которые были изменены (sending incremental file list ./ test3)
```

ssh-copy-id -i /home/sk/.ssh/id_rsa.pub kup@192.168.21.10 передать ключ на сервер с которым будет происходить синхронизация 00 03 * * * rsync -avzhe "ssh -p 2121" /tmp/backup/ kup@192.168.21.121:/tmp/backup/ добавить в планировщик, синхронизация каталогов будет выполняться каждый день в 3 часа ночи

ssh-keygen -t rsa в случае доступа к серверу по SSH необходимо будет создать ключ и загрузить его на сервер, чтобы аутентификация

rsync -avzh kup@192.168.3.103:/tmp/backup /tmp/backup/ СКОПИРОВАТЬ ДАННЫЕ С УДАЛЕННОГО СЕРВЕРА НА ЛОКАЛЬНЫЙ КОМПЬЮТЕР

apache

проходила без запроса пароля

nano /etc/rsyncd.conf

```
apt install apache2
cat /etc/apache2/apache2.conf
cat /etc/apache2/ports.conf
port=8443
cat /etc/apache2/ports.conf | sed -r "s/^Listen.+/Listen $port/" > /etc/apache2/ports.conf
systemctl restart apache2
systemctl status apache2
ss -lpn | grep apache
echo "<H1>$(hostname)</H1>" > /var/www/html/index.html
```

api server

```
mkdir /var/www/api && touch /var/www/api/api.sh && chmod +x /var/www/api/api.sh

curl -s "https://raw.githubusercontent.com/Lifailon/bash-api-server/rsa/www/api/api.sh" > /var/www/api/api.sh установить пример с шаблоном

сервера api
```

nano /var/www/api/api.sh

```
#!/bin/bash
 if [ "$REQUEST_METHOD" == "GET" ]
     echo "Content-type: application/json"
     echo
     echo '{"result": "ok"}'
 else
     echo "Content-type: text/plain"
     echo
     echo "Request method not supported"
 fi
a2enmod auth_basic активировать модуль базовой HTTP аутентификации
htpasswd -b -c /etc/apache2/.htpasswd rest api настроить htpasswd для хранения пользовательских данных (создать пользователя rest с паролем
api)
nano /etc/apache2/sites-available/api.conf создать VirtualHost для обработки запросов
 <VirtualHost *:8443>
     DocumentRoot /var/www/html
     # Связать endpoint (включая все дочернии в пути) с исполняемым файлом
     ScriptAlias /api /var/www/api/api.sh
     # Все опции, вложенные внутрь секции Directory, применяются к указанной директории
     <Directory "/var/www/api">
         # Разрешить выполнение CGI-скриптов
         Options +ExecCGI
         # Обрабатывать все файлы с расширение sh как CGI-скрипт
         AddHandler cgi-script .sh
         AllowOverride None
         Require all granted
     </Directory>
     # Добавить авторизацию для endpoint
     <Location "/api">
         AuthType Basic
         AuthName "Restricted Area"
         AuthUserFile /etc/apache2/.htpasswd
         Require valid-user
         SetHandler cgi-script
         Options +ExecCGI
     </Location>
     ErrorLog ${APACHE_LOG_DIR}/error.log
     CustomLog ${APACHE_LOG_DIR}/access.log combined
 </VirtualHost>
a2enmod cgi активировать модуль (en mod) Common Gateway Interface (CGI)
a2ensite api.conf активировать VirtualHost (en site)
systemctl restart apache2
tail -f /var/log/apache2/error.log
tail -f /var/log/apache2/access.log
curl -s -X GET http://127.0.0.1:8443/api -u rest:api | jq .result
curl -s -X GET http://127.0.0.1:8443/api/info -u rest:api -H "Content-Type: application/json" | jq .content[]
REQUEST_METHOD METOД HTTP-запроса (GET, POST, HEAD и т.д.)
REQUEST_URI оригинальный URI запроса
QUERY_STRING строка запроса URL
content_type тип содержимого запроса в заголовке клиента (например, application/text)
сонтент_LENGTH длина тела запроса в байтах (чаще, для POST-запросов)
read -n $CONTENT_LENGTH POST_DATA ПРОЧИТАТЬ СОДЕРЖИМОЕ BODY ИЗ СТАНДАРТНОГО ВВОДА (stdin).
нттр sтатus читаем содержимое переданного заголовка (например, "Status: text"), которое определяется заранее и регламентируется в
дальнейшем
HTTP_USER_AGENT название агента клиента из заголовка (например, curl/8.4.0)
```

```
REMOTE_ADDR адрес клиента
REMOTE_PORT порт клиента
SERVER_NAME адрес сервера
SERVER_PORT порт сервера
SCRIPT_NAME ПУТЬ И ИМЯ CGI-СКРИПТА
SERVER_SOFTWARE имя и версия сервера
SERVER_PROTOCOL версия протокола HTTP (например, HTTP/1.1)
HTTPS если установлено, то запрос был сделан с использованием HTTPS
а тип аутентификации, если он был предоставлен
REMOTE_USER имя пользователя, если была использована аутентификация
росимент_коот корневой каталог веб-сервера
status
apachect1 -м | grep status_module проверить подключенный модуль статистики: status_module (shared)
nano /etc/apache2/mods-available/status.conf
Require ip 192.168.3.0/24 указать для кого доступна статистика
http://127.0.0.1:8443/server-status
apachectl -t проверить синтаксис (Syntax OK)
a2enmod status активировать модуль (Module status already enabled)
systemctl restart apache2
netstat -tulpan | grep apache2 ПРОВЕРИТЬ ПОРТ
curl http://127.0.0.1:8443/server-status?auto
webday
nano /etc/apache2/ports.conf
 Listen 8443
 Listen 2024
mkdir /var/www/webdav && chown www-data:www-data /var/www/webdav создать каталог к которому будет доступ через WebDAV и предоставить доступ
к нему для www-data
nano /etc/apache2/sites-available/webdav.conf
 <VirtualHost *:2024>
     ServerAdmin webmaster@localhost
     DocumentRoot /var/www/webdav
     Alias /webdav /var/www/webdav
     <Directory /var/www/webdav>
         Options Indexes FollowSymLinks
         AllowOverride None
         Require all granted
         Dav On
         AuthType Basic
         AuthName "WebDAV"
         AuthUserFile /etc/apache2/.htpasswd
         Require valid-user
     </Directory>
     ErrorLog ${APACHE_LOG_DIR}/webdav_error.log
     CustomLog ${APACHE_LOG_DIR}/webdav_access.log combined
 </VirtualHost>
a2enmod dav
a2enmod dav_fs
a2enmod auth_digest
a2enmod authn_core
```

a2enmod authn_file
a2enmod authz core

a2enmod authz_user htpasswd /etc/apache2/.htpasswd admin создать пользователя admin (ключ -с используется для пересоздания файла) a2ensite webdav активировать конфигурацию сайта systemctl restart apache2

haproxy

apt install haproxy
systemctl status haproxy
/etc/default/haproxy

ENABLED=1

/etc/haproxy/haproxy.cfg

```
global
 log 127.0.0.1 local0 notice
 maxconn 10000
 nbproc 1
 user haproxy
 group haproxy
 daemon
 defaults
 log global
 maxconn global
 timeout client 5s
 timeout server 5s
 timeout connect 5s
 frontend http_front
 mode http
 bind *:8081
 #bind *:443 ssl crt /etc/ssl/domain.ru/cert.pem
 option httplog
 ###mode tcp
 ###bind *:3389
 ###option tcplog
 use_backend http_back
 backend http_back
 mode http
 balance roundrobin
 ###balance leastconn
 option httpchk GET / HTTP/1.1\r\nHost:\ localhost
 ###option tcp-check
 ###tcp-check connect port 3389
 #server term1.domain.ru 192.168.55.30:443 ssl verify none weight 100 check inter 5s fall 5 rise 3
 #server term2.domain.ru 192.168.55.35:443 ssl verify none weight 100 check inter 5s fall 5 rise 3
 server pi-hole-01 192.168.3.101:8081 weight 100 check inter 5s fall 5 rise 3
 server netbox-01 192.168.3.104:8081 weight 100 check inter 5s fall 5 rise 3
 listen stats
 bind *:8082
 #bind *:8080 ssl crt /etc/ssl/domain.ru/cert.pem
 mode http
 stats enable
 stats uri /
 stats auth admin:password
 stats show-legends
 stats show-node
 stats refresh 5s
haproxy -f /etc/haproxy/haproxy.cfg -c проверить синтаксис (Configuration file is valid)
systemctl restart haproxy применить настройки (перечитать конфигурацию)
ss -lpn | grep 8081
curl http://192.168.3.102:8081 проверка http-трафика
http://192.168.3.102:8082 статистика
cat /var/log/haproxy.log
journalctl -eu haproxy
systemctl stop apache2 ОТКЛЮЧИТЬ На 101
 · options:
maxconn максимальное количество одновременных соединений
nbproc количество процессов HAProxy
```

option httplog включает журналирование HTTP-трафика, полезно для отладки и мониторинга прохождения трафика через HAProxy и дает

возможность просматривать НТТР-трафик в журнале, чтобы отслеживать запросы и ответы

option httpchk отправлять HTTP-запросы к серверам в бэкенде, чтобы определить, работают ли они, это позволяет выявлять неработающие сервера и перераспределять запросы на работающие

option httpchk GET / HTTP/1.1\r\nHost:\ localhost отправляет GET-запрос на корневой путь (/) используя версию протокола HTTP 1.1, Host:\ localhost - это часть заголовка Host, который также включается в HTTP-запрос и указывает на целевой хост, который проверяется option tcp-check активирует общую функцию TCP-проверок для всего бэкэнда, без необходимости указывать порт явно tcp-check connect port 443 HAProxy будет устанавливать соединение с серверами в бэкенде на порту 443 для проверки, что серверы доступны и способны принимать соединения на этом порту

· balance:

Round Robin (roundrobin) алгоритм используемый по умолчанию, отправляет запросы на сервера по очереди static-rr похож на roundrobin, но он сохраняет порядок серверов в конфигурации

Least Connections (leastconn) выбирает сервер с наименьшим количеством активных соединений, это полезно, если у серверов разная производительность или загруженность, так как запросы будут отправляться на менее загруженные серверы

source использует IP-адрес источника (клиента) для привязки к одному и тому же серверу, это означает, что клиент всегда будет направляться к одному и тому же серверу, это полезно для сохранения состояния сеанса

uri запросы с одним и тем же URL (до знака вопроса) будут переправляться на один и тот же сервер, это полезно для балансировки запросов к разным частям приложения

rdp-cookie используется для балансировки запросов RDP (Remote Desktop Protocol), он анализирует cookie-заголовок RDP для принятия решений о направлении запросов

server

ss1 использование SSL

verify none ОТСУТСТВИЕ ПРОВЕРКИ СЕРТИФИКАТА

weight распределение запросов по весу, если необходимо на определенный сервер отправлять больше запросов

inter изменяет интервал между проверками, по умолчанию две секунды

fall устанавливает допустимое количество неудачных проверок, по умолчанию три

rise задает, сколько проходных проверок должно быть, прежде чем вернуть ранее отказавший сервер в ротацию, по умолчанию два check port 443 указать явную проверку порта для конкретного сервера

check backup параметр означает, что сервер будет использоваться только в случае, если все основные серверы становятся недоступными и не будет участвовать в балансировке, пока основные серверы функционируют

keepalive

VRRP (Virtual Router Redundancy Protocol) - сетевой протокол, предназначенный для увеличения доступности маршрутизаторов, выполняющих роль шлюза

VRRP-пакеты - это специальные сообщения, которые узлы (маршрутизаторы/сервера) в VRRP-группе рассылают для сообщения своего состояния

VIP (Virtual IP) - виртуальный IP адрес, который может автоматически переключаться между серверами в случае сбоя (frondend для haproxy/dns-rr), у кого в данный момент в сетевом интерфейсе прописан VIP, тот сервер и работает

Master - сервер, на котором в данный момент активен VIP (отправляет VRRP-пакеты на backup nodes)

Васкир - сервера на которые переключится VIP, в случае сбоя мастера (следим за мастером)

VRID (virtual_router_id) - сервера, объединенные общим виртуальным IP (VIP) образуют виртуальный роутер, уникальный идентификатор которого, принимает значения от 1 до 255. Сервер может одновременно состоять в нескольких VRID, при этом для каждой VRID должны использоваться уникальные виртуальные IP адреса.

Master сервер с заданным интервалом отправляет VRRP пакеты на зарезервированный адрес multicast (многоадресной) рассылки или unicast на указанные ip-адреса, а все backup/slave сервера слушают этот адрес. Если Slave сервер не получает пакеты, он начинает процедуру выбора Master в соответствии с приоритетом, и если он переходит в состояние Master, то у него активирует VIP (поднимается виртуальный интерфейс) и отравляет gratuitous ARP.

Gratuitous ARP - это вид ARP ответа, который обновляет MAC таблицу на подключенных коммутаторах, чтобы проинформировать о смене владельца виртуального IP-адреса и MAC-адреса для перенаправления трафика. При настройке VRRP, в качестве адреса для виртуального IP не используется реальный адрес сервера, так как, в случае сбоя, его адрес переместится на соседний, и при восстановлении, он окажется изолированным от сети, и чтобы вернуть свой адрес, нужно отправить в сеть VRRP пакет, но не будет IP адреса, с которого это возможно сделать.

```
global_defs {
    enable_script_security
vrrp_script nginx_check {
    script "/usr/bin/curl http://127.0.0.1"
    interval 5
    user nginx
}
vrrp_instance web {
    state MASTER # на втором сервере ВАСКUР
    interface ens33
    virtual_router_id 110
    priority 255 # на втором сервере 100
    advert_int 2
    notify /etc/keepalived/notify-web.sh root
    virtual_ipaddress {
        192.168.3.110
    track_interface {
        ens333
    }
    track_script {
        nginx_check
    }
}
```

state <MASTER|BACKUP> начальное состояние при запуске, в режиме nopreempt единственное допустимое значение - BACKUP interface интерфейс, на котором будет работать VRRP и подниматься VIP

virtual_router_id <0-255> уникальный идентификатор VRRP экземпляра, должен совпадать на всех серверах одной группы priority <0-255> задает приоритет при выборе MASTER, сервер с большим числом приоритета становится MASTER

advert_int <число секунд> определяет, с какой периодичностью мастер должен сообщать остальным о себе, и если по истечению данного периода сервера не получат от мастера широковещательный пакет, то они инициируют выборы нового мастера

nopreempt если мастер пропал из сети, и был выбран новый мастер с меньшим приоритетом, то по возвращении старшего мастера, он останется в состоянии BACKUP, пока новый мастер не отвалится

preempt delay что бы мастером был конкретный сервер, то заменить настройку nopreempt на preempt delay

notify скрипт, который будет выполняться при каждом изменении состояния сервера, и имя пользователя, от имени которого данный скрипт будет выполняться (логирование или отправка на почту)

virtual_ipaddress виртуальный IP-адрес (VIP), которые будет активирован на сервере в состоянии MASTER, должны совпадать на всех серверах внутри VRRP экземпляра

track_interface мониторинг состояния интерфейсов, переводит VRRP экземпляр в состояние FAULT, если один из перечисленных интерфейсов находится в состоянии DOWN

track_script мониторинг с использованием скрипта, который должен возвращать 0 если проверка завершилась успешно или 1, если проверка завершилась с ошибкой

fall <число> количество раз, которое скрипт вернул не нулевое значение, при котором перейти в состояние FAULT rise <число> количество раз, которое скрипт вернул нулевое значение, при котором выйти из состояния FAULT timeout <число> время ожидания, пока скрипт вернет результат, после которого вернуть ненулевое значение

```
journalctl -u keepalived
cat /var/log/messages | grep -i keepalived
tail /var/run/keepalived.INSTANCE.web.state
```