10.1 3-Dimensional Coordinate Systems

Introduction

In 2d, we are able to move along two axises.

$$\mathbb{R}^2 = \{ (x, y) \mid x, y \in \mathbb{R} \}$$

While in 3D, we can move along three axises.

$$\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}$$

The 3 planes divide space into 8 parts called octants. In \mathbb{R}^2 , the graph of an equation in x & y is a curve. While in \mathbb{R}^3 , the equation of an equation in x, y & z is a surface.

Distance Formula in 3 Dimensions

$$|P_1, P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Distance between Points P_1 $(x_1, y_1, z_1) \& P_2(x_2, y_2, z_2)$

Ex 2

Calculate the distance between the points P(2,-1,3) and Q(1,-3,5)

$$(x_1, y_1, z_1) = (2, -1, 3)$$

$$(x_2, y_2, z_2) = (1, -3, 5)$$

$$|P Q| = \sqrt{(1 - 2)^2 + (-3 - (-1))^2 + (5 - 3)^2} \to 3$$

Equation of a Sphere

An equation of a sphere with center C (h,k,e) and radius r is $(x-h)^2 + (y-k)^2 + (z-e)^2 = r^2$

$\mathbf{Ex} \ 3$

Show that $x^2 + y^2 + z^2 + 4x - 6y + 2z + 6 = 0$ is the equation of a sphere and find its center and radius

$$(x^2 + 4x) + (y^2 - 6y) + (z^2 + 2z) = -6$$

Completing the square

$$(\frac{4}{2})^2 = 4, (\frac{-6}{2})^2 = 9, (\frac{2}{2})^2 = 1$$

$$(x^2 + 4x + 4) + (y^2 - 6y + 9) + (z^2 + 2z + 1) = -6 + 4 + 9 + 1$$

$$(x+2)^2 + (y-3)^2 + (z+1)^2 = 8$$

What region is \mathcal{R} represented by the following inequalities?

$$1 < a^2 + y^2 + z^2 < 4, \ z < 0$$

 $1 \le a^2 + y^2 + z^2 \le 4$, $z \le 0$ Region that lies between (or on) the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ and beneath (or on) the