

## République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

## EPREUVE D'EVALUATION

| Année Universitaire: | 2022-2023            | Date de l'Examen: | 11 Janvier 2024                                  |
|----------------------|----------------------|-------------------|--------------------------------------------------|
| Nature:              | Examen               | Durée:            | 1h30min                                          |
| Diplôme:             | Ingénieur            | Nombre de pages:  |                                                  |
| Section:             | GCR1/GCP1            | Enseignant:       | Nadia Sraieb                                     |
| Niveau d'études:     | 1 année              | Doc autorisés.    | Non                                              |
| Matière:             | Maths de l'Ingénieur | Remarque:         | (1 point est réservé à la<br>clarté de la copie) |

Exercice. 1. Soit  $f(x) = \frac{\sin(ax)}{e^x - 1}$  et a > 0.

A) Donner le domaine de définition de f qu'on notera par  $D_f$  et montrer que  $D_f$  est un borélien de la tribu de borel  $B(\mathbb{R})$ .

B)

Dans cette partie, on prendra pour le reste de cet exercice x > 0

- 1. Montrer que f est borélienne sur  $]0, +\infty[$ .
- 2. Montrer que f est prolongeable par continuité en 0.
- 3. Montrer, en détaillant les étapes, que

$$\forall x > 0, \ f(x) = \frac{\sin(ax)}{e^x - 1} = \sum_{n \ge 1} \sin(ax)e^{-nx}.$$

4. On tenant compte que  $\Gamma(k+1) = \int_0^{+\infty} t^k e^{-t} dt = k!, \ k \in \mathbb{N}$ , montrer que

$$\int_0^{+\infty} f(x) dx = \sum_{n \ge 1} \frac{a}{a^2 + n^2}.$$

**Exercice. 2.** I) Soit f une fonction paire intégrable sur  $\mathbb{R}$  et  $\mathcal{F}(f)$  sa transformation de Fourier.

Montrer que  $\mathcal{F}(f)$  est paire et donner son expression explicite.

II) Soit  $\Delta: \mathbb{R} \to \mathbb{R}$  la fonction définie par

$$\Delta(t) = \left\{ egin{array}{ll} 1+t & si & t \in [-1,0], \\ 1-t & si & t \in [0,1], \\ 0 & sinon \end{array} \right.$$

. Faire la représentation graphique de la fonction  $\Delta$ .

- 2. Montrer que  $\Delta(t) = (1 |t|)H_{[-1,1]}(t)$ , où  $H_{[-1,1]}$  représente la fonction Heaviside sur l'intervalle [-1,1].
- 3. Calculer la transformation de Fourier  $\widehat{\Delta}(x)$  de  $\Delta$ .

4. En déduire la valeur de l'intégrale

$$\int_0^{+\infty} \frac{\sin^4 x}{x^4} dx.$$

Exercice. 3. I) On considère l'équation différentielle

(1) 
$$y'' + 2y' + y = \psi(t), t \ge 0$$

- 1. On suppose  $\psi(t) = \sin t$ . Trouver la solution de (1) vérifiant y(0) = 1 et y'(0) = 0.
- 2. On suppose  $\psi(t) = e^{-t}$ . Trouver la solution de (1) vérifiant y(0) = 0 et y'(0) = 2.
- II) On considère la fonction F définie par

$$F(p) = \frac{1}{(p+1)(p^2+1)}$$

On veut déterminer l'original de F par la transformation de Laplace de deux façons :

- 1. en décomposant F en éléments simples
- 2. en utilisant le produit de convolution.

Bonne chance!

## Table des transformées de Laplace

| f(t)                                                        | $F(p) = \int_0^{+\infty} f(t)e^{-pt}dt$                                                               |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| U(t)                                                        | $\frac{1}{p}$                                                                                         |  |
| $t^n U(t), n \in \mathbb{N}$                                | $\frac{n!}{p^{n+1}}$                                                                                  |  |
| $t^{\alpha}U(t), \alpha > -1$                               | $\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$                                                               |  |
| $e^{\alpha t}U(t)$                                          | $\frac{p^{\alpha+1}}{\frac{1}{n-\alpha}}$                                                             |  |
| sin(at) U(t)                                                | $\frac{p - c}{a}$ $\frac{a}{p^2 + a^2}$                                                               |  |
| $\cos(at) \ U(t)$                                           | $\frac{p^2 + a^2}{p}$ $\frac{p}{p^2 + a^2}$                                                           |  |
| sh(at) U(t)                                                 | $\frac{a}{p^2-a^2}$                                                                                   |  |
| ch(at) U(t)                                                 | $\frac{p^2 - a^2}{p}$ $\frac{p}{p^2 - a^2}$                                                           |  |
| <u>Propriétés</u>                                           |                                                                                                       |  |
| f(t-a)                                                      | $e^{-ap}F(p)$                                                                                         |  |
| $e^{-at}f(t)$                                               | F(p+a)                                                                                                |  |
| f(at)                                                       | $\frac{1}{a}F(\frac{p}{a})$                                                                           |  |
| $\int_0^t f(s)ds$                                           | $\frac{\frac{1}{a}F(\frac{p}{a})}{\frac{F(p)}{p}}$ $pF(p) - f(0^{+})$                                 |  |
| f'(t)                                                       | $pF(p)-f(0^+)$                                                                                        |  |
| $f^{(n)}(t)$                                                | $p^{n}F(p) - \sum_{k=1}^{n} p^{k-1}f^{(n-k)}(0^{+})$ $(-1)^{n}F^{(n)}(p)$                             |  |
| $t^n f(t)$                                                  | $(-1)^n F^{(n)}(p)$                                                                                   |  |
| $\frac{f(t)}{t}$                                            | $\int_{p}^{+\infty} F(u) du$                                                                          |  |
| f de période T                                              | $\frac{1}{1-e^{-pT}}\int_0^T e^{-pt}f(t)dt$                                                           |  |
| $(f*g)(t) = \int_0^t f(s)g(t-s)ds$                          | F(p)G(p)                                                                                              |  |
| $Si \lim_{t \to 0 \ ou + \infty} f(t) \ existe \Rightarrow$ | $\lim_{t \to +\infty} f(t) = \lim_{p \to 0} pF(p)$ $\lim_{t \to 0} f(t) = \lim_{p \to +\infty} pF(p)$ |  |