Results are obtained with h_0^P estimated

$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS,} \ h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \textbf{WITH} \ \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \ \textbf{FROM MLE UNDER P}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	20
ω	1.0488e - 07 $(4.3237e - 07)$	5.8246e - 07 $(9.9623e - 07)$	2.5115e - 07 $(5.7761e - 07)$	1.6648e - 07 $(4.5215e - 07)$	2.3430e - 07 $(4.5167e - 07)$	7.7768e - 08 $(2.6235e - 07)$	1.1626e - 07 $(2.7833e - 07)$	8.2065e - 08 $(3.2339e - 07)$	7.645 (3.318
α	8.4165e - 06 $(6.7016e - 06)$	4.4508e - 06 $(2.4687e - 06)$	2.8014e - 06 $(1.4378e - 06)$	2.5121e - 06 $(1.4269e - 06)$	2.5227e - 06 $(2.2280e - 06)$	2.9788e - 06 $(1.3795e - 06)$	2.2257e - 06 $(9.4056e - 07)$	1.3120e - 06 $(7.8262e - 07)$	1.457 (7.294
β	0.6871 (0.1397)	0.5490 (0.2245)	$0.7000 \\ (0.1376)$	0.7605 (0.1253)	0.6585 (0.1859)	0.5583 (0.1226)	0.5809 (0.1377)	0.6908 (0.1482)	0.6 (0.1
γ^*	197.5895 (79.0995)	347.0532 (210.7790)	349.9407 (182.3969)	311.1355 (155.5853)	419.7989 (230.8533)	397.9111 (128.9083)	439.0339 (115.1693)	454.7184 (207.7471)	502 (132
h_0^Q	$ \begin{array}{r} 1.2420e - 04 \\ (7.7985e - 05) \end{array} $	$ \begin{array}{r} 1.7303e - 04 \\ (1.3864e - 04) \end{array} $	7.7115e - 05 $(3.0317e - 05)$	4.6121e - 05 $(2.5813e - 05)$	4.3171e - 05 $(3.8513e - 05)$	$0.0001 \\ (4.8647e - 05)$	$6.1981e - 05 \\ (4.8685e - 05)$	$ 1.7690e - 05 \\ (1.1101e - 05) $	6.7040 (5.964)
MSE	0.3344	0.4992	0.3164	0.1865	0.2756	0.4952	0.5942	0.8425	1.4
IVRMSE	0.0821	0.0916	0.1231	0.1047	0.1211	0.1351	0.1270	0.1390	0.1