Week 7 (Lecture 13)

Contents:

- Recall to different types of system of linear equations
- Recall to homogeneous system of linear equations
- Nullspace of a matrix
- *Theorem* 1: The Nullspace is a subspace
- Basis and dimension of Nullspace
- Rank of a matrix
- *Theorem* 2: Row rank = column rank
- Theorem 3: Rank + Nullity = Number of columns
- *Theorem* 4: Homogeneous linear system with n > m has at least one free variable
- Worked out examples
- Exercises

Different types of System of Linear Equations

We recall that

It is possible for a system of linear equations to have exactly one solution, or an infinite

number of solutions, or no solution.

A system of linear equations is called consistent if it has at least one solution and

inconsistent if it has no solution.

Depending upon the number of variables and the number of equations in a system of linear

equations, there are two more criteria.

A system of linear equations is said to be **underdetermined** if there are more variables than

equations.

Example:

$$x_1 + 2x_2 - 3x_3 = 4$$

$$2x_1 - x_2 + 4x_3 = 3$$

On the other hand, a system of linear equations is said to be is **overdetermined** if there are

more equations than variables.

Example:

$$x_1 + x_2 = 2$$

$$-2x_1 - 3x_2 = -3$$

$$x_1 + 2x_2 = 1$$

Homogeneous System of Linear Equations

We recall that

A system of m equations in n variables is called a **homogeneous system of linear equations**, if it has the following form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0$$

$$\vdots$$

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0$

The above system can be written as a matrix equation

$$A\mathbf{x} = \mathbf{0} \tag{2}$$

where,
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$, and $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^m$

Note. Every homogeneous system is *consistent* since $A\mathbf{0} = \mathbf{0}$ where $\mathbf{0} \in \mathbb{R}^n$.

For example, consider the following system of linear equations

$$x_1 + 2x_2 - 2x_3 + x_4 = 0$$

$$3x_1 + 6x_2 - 5x_3 + 4x_4 = 0$$

$$x_1 + 2x_2 + 3x_4 = 0$$
(1)

This system can be expressed in terms of matrices as

$$\begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Homogeneous System of Linear Equations

or,

$$A\mathbf{x} = \mathbf{0} \tag{2}$$

where,
$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, and $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

The system (1) or (2) is known as **homogeneous system of linear equations**.

It is easy to see that a homogeneous system must have at least one solution. If we set $x_1 = 0$,

$$x_2=0$$
, $x_3=0$, $x_4=0$, i.e., $\mathbf{x}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}=\mathbf{0}$ in the above system, we find that each of the

equations is satisfied. Therefore, $\mathbf{x} = \mathbf{0}$ is a solution to this system. This solution is called **trivial** solution.

A nonzero solution, if any, is called a **nontrivial** solution.

For example,
$$\mathbf{x} = \begin{bmatrix} -5\\1\\-1\\1 \end{bmatrix}$$
 is a nontrivial solution of (1) because

$$\begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Nullspace of a matrix

If A is an $m \times n$ matrix, then the set

$$N(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^m \}$$

is called the **nullspace** of *A*. In other words, the nullspace of a matrix *A* is the set of all solutions of the homogeneous system of linear equations $A\mathbf{x} = \mathbf{0}$.

For example, let

$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$

The nullspace of *A* is the set

$$N(A) = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^3 \}.$$

Consider

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{x}_2 = \begin{bmatrix} -5 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}.$$

We see that

$$A\mathbf{x}_1 = \mathbf{0} = A\mathbf{x}_2$$
, but $A\mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \neq \mathbf{0}$.

Therefore, the vectors $\mathbf{x}_1, \mathbf{x}_2 \in N(A)$ but $\mathbf{x}_3 \notin N(A)$.

Now we want to prove that the nullspace of A is a subspace of \mathbb{R}^n .

Theorem 1. If *A* be an $m \times n$ matrix, then N(A) is a subspace of \mathbb{R}^n .

Proof. Take $\mathbf{x}_1, \mathbf{x}_2 \in N(A)$. Then $A\mathbf{x}_1 = \mathbf{0} = A\mathbf{x}_2$. Thus

$$A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

This proves that $\mathbf{x}_1 + \mathbf{x}_2 \in N(A)$.

And for all scalars c,

$$A(c\mathbf{x}_1) = cA\mathbf{x}_1 = c\mathbf{0} = \mathbf{0}.$$

This proves that $c\mathbf{x}_1$ ∈ N(A). This completes the proof. \blacksquare

Note. The nullspace of matrix *A* is also known as the *solution space* of $A\mathbf{x} = \mathbf{0}$.

Now we will find the nullspace of a matrix.

Consider,

$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$

Recall that $N(A) = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^3 \}$. Consider $\mathbf{x} \in \mathbb{R}^4$ as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Then we apply eliminations to *A*, which gives the following

$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$

Now the last matrix gives the following homogeneous system

$$x_1 + 2x_2 + 3x_4 = 0$$
$$x_3 + x_4 = 0$$

Since x_2 and x_4 are free variables, we set $x_2 = s$ and $x_4 = t$ where $s, t \in \mathbb{R}$. Then

$$x_1 = -2s - 3t$$
, $x_2 = s$, $x_3 = -t$, $x_4 = t$.

Therefore, the solution vector \mathbf{x} can be written as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2s - 3t \\ s \\ -t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

which gives the nullspace $N(A) = \begin{cases} s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ -1 \\ 1 \end{bmatrix} \end{cases}$.

Note. All the solutions of the above homogeneous system $A\mathbf{x} = \mathbf{0}$ are linear combination of

two vectors $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} -3\\0\\-1\\1 \end{bmatrix}$, i.e. these two vectors span the solution space. When a

homogeneous system is solved from the row-echelon form or, from the reduced row-echelon form, the spanning set is always independent.

• A basis of N(A) is the set of linearly independent vectors in N(A).

$$B = \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\-1\\1 \end{bmatrix} \right\}$$

• The dimension of the nullspace of *A* is called **nullity**. The nullity(A) = 2.

Rank of a matrix

The number of linearly independent vectors in the row space of a matrix A is known as row rank.

In other words, the dimension of the row space of a matrix *A* is called the row rank of *A*.

Similarly, the number of linearly independent vectors in column space of a matrix *A* is known as **column rank**, i.e. the dimension of the column space of matrix *A*.

Theorem 2 If *A* is an $m \times n$ matrix, then the row space and column space of *A* have the same dimension. \blacksquare

The above theorem provides that,

$$row rank(A) = column rank(A) = rank(A)$$

Since we generally perform the row reduction to achieve the row echelon form, so the number of nonzero rows in row echelon form of the matrix *A* gives the **rank** of *A*.

Alternatively, we can say, rank(A) is obtained by the number of pivots in row echelon form of A.

Observe that, the reduced row echelon form of $A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$ is

which has two nonzero rows, so the **rank** of A is 2. Alternatively, we can say that there are 2 pivots in the reduced row echelon form of A, so rank(A) is 2. Here, x_1 , x_3 are **pivot variables**. On the other hand, x_2 , x_4 are **free variables**, so the dimension of the nullspace i.e. nullity is also 2. So, we have the following observation:

$$rank(A) + nullity(A) = number of columns in A.$$

This statement is officially known as the **rank-nullity theorem**.

Theorem 3 If *A* be an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$
.

For example, to find the rank and nullity of

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12 \end{bmatrix}$$

We reduce the matix *A* as follows:

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & -3 & 0 & -4 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has three nonzero rows, so

$$rank(A), r = 3.$$

Also, the number of columns in A is n = 5, then by **rank-nullity theorem**

$$nullity(A) = n - r$$
$$= 5 - 3$$
$$= 2$$

Theorem 4 Homogeneous linear system with n > m has at least one free variable. ■

Example 1 Find the nullspace, rank and nullity of the following matrices:

i)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
, ii) $B = \begin{bmatrix} A \\ 2A \end{bmatrix}$, iii) $C = \begin{bmatrix} A & 2A \end{bmatrix}$

Solution

i)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$

Here, $N(A) = \{ \mathbf{x} \in \mathbb{R}^2 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^2 \}$. Consider $\mathbf{x} \in \mathbb{R}^2$ as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Then we apply eliminations to *A*,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} \xrightarrow{-3R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \xrightarrow{\left(\frac{1}{2}\right)R_2 \to R_2} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The last matrix gives the following system

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

or,
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, i.e. $x_1 = 0, x_2 = 0$.

Hence,
$$N(A) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
.

Rank(A), r = 2.

Nullity(
$$A$$
) = $n - r = 2 - 2 = 0$. ■

Note. For the above matrix *A*, the nullspace contains only one solution, which is trivial solution.

ii)
$$B = \begin{bmatrix} A \\ 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 4 \\ 6 & 16 \end{bmatrix}$$

Here, $N(B) = \{ \mathbf{x} \in \mathbb{R}^2 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^4 \}$. Consider $\mathbf{x} \in \mathbb{R}^2$ as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Then we apply eliminations to B,

$$B = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 4 \\ 6 & 16 \end{bmatrix} \xrightarrow{\stackrel{-3R_1 + R_2 \to R_2}{-2R_1 + R_3 \to R_3}} \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \xrightarrow{\stackrel{(\frac{1}{2})}{R_2 \to R_2}} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \xrightarrow{\stackrel{-4R_2 + R_4 \to R_4}{-4R_2 + R_4 \to R_4}} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{\stackrel{-2R_2 + R_1 \to R_1}{-2R_2 + R_1 \to R_1}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The last matrix gives the following system

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

or,
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, i.e. $x_1 = 0, x_2 = 0$.

Hence,
$$N(B) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
.

Rank(B), r = 2.

Nullity(
$$B$$
) = $n - r = 2 - 2 = 0$. ■

iii)
$$C = \begin{bmatrix} A & 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$$

Here, $N(C) = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^2 \}$. Consider $\mathbf{x} \in \mathbb{R}^4$ as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Then we apply eliminations to C,

$$C = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$$

$$\xrightarrow{-3R_1+R_2\to R_2} \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix} \xrightarrow{\left(\frac{1}{2}\right)R_2\to R_2} \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{-2R_2+R_1\to R_1} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

The last matrix gives the following system

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

i.e.

$$x_1 + 2x_3 = 0$$

$$x_2 + 2x_4 = 0.$$

Since x_3 and x_4 are free variables, we set $x_3 = s$ and $x_4 = t$ where $s, t \in \mathbb{R}$. Then

$$x_1 = -2s$$
, $x_2 = -2t$, $x_3 = s$, $x_4 = t$.

Hence,
$$N(C) = \begin{cases} \begin{bmatrix} -2s \\ -2t \\ s \\ t \end{bmatrix} \end{cases} = \begin{cases} s \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \end{cases}.$$

Rank(C), r = 2.

Nullity(
$$C$$
) = $n - r = 4 - 2 = 2$. ■

Example 2 For the following matrix A, find (a) a basis for, and (b) the dimension of, the solution space of $A\mathbf{x} = \mathbf{0}$.

$$A = \begin{bmatrix} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{bmatrix}$$

Solution

$$A = \begin{bmatrix} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{bmatrix}$$

We know that the solution space of $A\mathbf{x} = \mathbf{0}$ is the nullspace N(A).

Here,
$$N(A) = \{\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^3\}$$

Now we apply elimination to A up to the reduced row-echelon form, and obtain the following

$$A = \begin{bmatrix} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & -2 & 7 \\ -2 & 4 & -14 \\ 3 & -6 & 21 \end{bmatrix} \xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & -2 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The last matrix gives

$$\begin{bmatrix} 1 & -2 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Which implies $x_1 - 2x_2 + 7x_3 = 0$.

Here, x_1 is pivot variable, and x_2 , x_3 are free variables.

Set, $x_2 = s$, $x_3 = t$, where $s, t \in \mathbb{R}$. Then

$$x_1 = 2s - 7t$$
, $x_2 = s$, $x_3 = t$.

Therefore, the solution vector \mathbf{x} can be written as

$$\mathbf{x} = \begin{bmatrix} 2s - 7t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -7 \\ 0 \\ 1 \end{bmatrix}$$

(a) A basis for the solution space of $A\mathbf{x} = \mathbf{0}$ is given by the following set

$$\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -7\\0\\1 \end{bmatrix} \right\}$$

(b) The dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is 2.

Example 3 Find (a) a basis for, and (b) the dimension of, the solution space of the following homogeneous system of linear equations.

$$4x - y + 2z = 0$$
i)
$$2x + 3y - 2z = 0$$

$$3x + y + z = 0$$

$$4x - y + 2z = 0$$
i)
$$2x + 3y - 2z = 0$$

$$3x + y + z = 0$$

$$2x_1 + 2x_2 + 4x_3 - 2x_4 = 0$$
ii)
$$x_1 + 2x_2 + x_3 + 2x_4 = 0$$

$$-x_1 + x_2 + 4x_3 - 2x_4 = 0$$

Solution

i)
$$4x - y + 2z = 0$$
$$2x + 3y - 2z = 0$$
$$3x + y + z = 0$$

Consider the above system as $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 4 & -1 & 2 \\ 2 & 3 & -2 \\ 3 & 1 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We know that the solution space of $A\mathbf{x} = \mathbf{0}$ is the nullspace N(A).

Here,
$$N(A) = \{\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^3\}$$

Now we apply elimination to *A*, and obtain the following

$$A = \begin{bmatrix} 4 & -1 & 2 \\ 2 & 3 & -2 \\ 3 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The last matrix gives

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Which implies x = 0, y = 0, z = 0

Therefore, the solution vector \mathbf{x} is

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

which is the trivial solution.

- (a) Since, all the unknowns x, y, z are pivot variables, and there is no free variable, so there is no linearly independent vector in the solution space of the given system $A\mathbf{x} = \mathbf{0}$. Hence, A basis for the solution space of $A\mathbf{x} = \mathbf{0}$ is given by the empty set $\{\emptyset\}$.
- (b) The dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is 0.

ii)
$$2x_1 + 2x_2 + 4x_3 - 2x_4 = 0$$
$$x_1 + 2x_2 + x_3 + 2x_4 = 0$$
$$-x_1 + x_2 + 4x_3 - 2x_4 = 0$$

Consider the above system as $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 2 & 2 & 4 & -2 \\ 1 & 2 & 1 & 2 \\ -1 & 1 & 4 & -2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We know that the solution space of A**x** = **0** is the nullspace N(A).

Here,
$$N(A) = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \in \mathbb{R}^3 \}$$

Applying elimination to the matrix *A* yields,

$$A = \begin{bmatrix} 2 & 2 & 4 & -2 \\ 1 & 2 & 1 & 2 \\ -1 & 1 & 4 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -5/8 \\ 0 & 1 & 0 & 15/8 \\ 0 & 0 & 1 & -9/8 \end{bmatrix}$$

The last matrix gives

$$\begin{bmatrix} 1 & 0 & 0 & -5/8 \\ 0 & 1 & 0 & 15/8 \\ 0 & 0 & 1 & -9/8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Which implies

$$x_1 - \frac{5}{8}x_4 = 0$$
$$x_2 + \frac{15}{8}x_4 = 0$$
$$x_3 - \frac{9}{8}x_4 = 0$$

Here, x_1 , x_2 , x_3 are pivot variables, and x_4 is free variable.

Set, $x_4 = t$, where $t \in \mathbb{R}$. Then

$$x_1 = \frac{5}{8}t$$
, $x_2 = -\frac{15}{8}t$, $x_3 = \frac{9}{8}t$, $x_4 = t$

Therefore, the solution vector \mathbf{x} can be written as

$$\mathbf{x} = \begin{bmatrix} -\frac{5}{8}t \\ -\frac{15}{8}t \\ -\frac{9}{8}t \\ t \end{bmatrix} = t \begin{bmatrix} -\frac{5}{8} \\ -\frac{15}{8} \\ -\frac{9}{8} \\ \frac{9}{8} \end{bmatrix}$$

(a) A basis for the solution space of $A\mathbf{x} = \mathbf{0}$ is given by the following set

$$\left\{ \begin{bmatrix} -\frac{5}{8} \\ \frac{15}{8} \\ \frac{9}{8} \end{bmatrix} \right\}$$

(b) The dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is 1.

Exercises

1. Find (a) the nullspace, (b) rank, and (c) nullity (or, dimension of the nullspace) of the following matrices:

i)
$$A = \begin{bmatrix} 2 & 6 & 3 & 1 \\ 2 & 1 & 0 & -2 \\ 3 & -2 & 1 & 1 \\ 0 & 6 & 2 & 0 \end{bmatrix}$$
 ii) $A = \begin{bmatrix} -3 & 6 & -9 \\ 1 & -2 & 3 \end{bmatrix}$

2. For the following matrices, find (a) a basis for, and (b) the dimension of, the solution space of $A\mathbf{x} = \mathbf{0}$.

i)
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

ii)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$$

i)
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 ii) $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$ iii) $A = \begin{bmatrix} 1 & 3 & -2 & 4 \\ 0 & 1 & -1 & 2 \\ -2 & -6 & 4 & -8 \end{bmatrix}$

3. Find (a) a basis for, and (b) the dimension of, the solution space of the following homogeneous system of linear equations.

i)
$$-x + y + z = 0$$

 $3x - y = 0$
 $2x - 4y - 5z = 0$

ii)
$$3x_1 + 3x_2 + 15x_3 + 11x_4 = 0$$
$$x_1 - 3x_2 + x_3 + x_4 = 0$$
$$2x_1 + 3x_2 + 11x_3 + 8x_4 = 0$$