11.1

Part A

Part B

$$\sigma(k) = 2k, (s_{n_k}) = 5, \forall k \in \mathbb{N}$$

11.2

	a_n	b_n	c_n	d_n
Monotone	$\sigma(k) = 2k$	$\sigma(k) = 2k$	$\sigma(k) = 2k - 1$	$\sigma(k) = 3k$
Sub. Limits	$\{1, -1\}$	{0}	{+∞}	$\left\{\frac{6}{7}\right\}$
Liminf	-1	0	+∞	$\frac{6}{7}$
Limsup	1	0	+∞	$\frac{6}{7}$
Bounded	\checkmark	✓		\checkmark
Limit	DNE	0	+∞	$\frac{6}{7}$

11.5

The set of subsequential limits is $[0,1] \subset \mathbb{R}$.

$$\limsup_{n\to\infty}q_n=1$$

$$\liminf_{n\to\infty}q_n=0$$

11.8

$$\begin{split} \lim\inf s_n &= \lim_{N \to \infty} \inf\left\{s_n : n > N\right\} \\ &= -\lim_{N \to \infty} \sup\left\{-s_n : n > N\right\} \\ &= -\lim\sup(-s_n) \end{split}$$

11.9

Part A

Proof. Let (s_n) be a sequence of reals in [a,b] with $\lim s_n = s$. Since $a \le s_n \le b$ for all n, it follows that $a \le s \le b$, hence [a,b] is closed.

Part B

No since (0, 1) is not closed.

12.1

Proof. Let $a_N = \inf \{s_n : n > N\}$ and $b_N = \inf \{t_n : n > N\}$. For $n > N > N_0$, $a_N \le s_n \le t_n$ hence $a_N \le b_N$ for all $N > N_0$. Therefore by excercise 9.9, $\lim a_N \le \lim b_N$ or equivalently $\lim \inf s_n \le \lim \inf t_n$. The same argument works for sup.

12.3

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4
- f) 0
- g) 2

12.4

Proof. Since s_n and t_n are bounded, their sups exist and note that $s_n + t_n \le \sup\{s_n : n > N\} + \sup\{t_n : n > N\}$ for all $n > N \in \mathbb{N}$. Therefore $\sup\{s_n : n > N\} + \sup\{t_n : n > N\}$ is an upper bound for $s_n + t_n$ meaning

$$\sup\left\{s_n+t_n:n>N\right\}\leq \sup\left\{s_n:n>N\right\}+\sup\left\{t_n:n>N\right\},\forall n>N$$

Since N is arbitrary, it holds for all $N \in \mathbb{N}$ meaning along with the results from 9.9, $\limsup(s_n+t_n) \leq \limsup(s_n) + \limsup(t_n)$

12.10

Proof. Let (s_n) be a sequence.

- \Rightarrow) Assume that s_n is bounded. That is $\exists M \in \mathbb{R}$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$. Then $\sup \{|s_n| : n > N\} \leq M \text{ for all } N \in \mathbb{N}, \text{ hence } \limsup |s_n| \leq M < +\infty.$
- \Leftarrow) Proof by contrapositive. Assume that s_n is not bounded. That is, for all $M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that $|s_n| > M$ for all n > N. Therefore $\sup |s_n| : n > N > M$. That means that the supremum is larger than any real number, hence $\limsup s_n = +\infty$.