COVID-19 patients, deaths, and death rate

04/16/2020

Source of the data

The data is compiled from https://github.com/CSSEGISandData/COVID-19.

The python script script.py is a modification of https://github.com/JacopoPan/JHU-2019nCoV-to-pandas-DF

Here I avoided any data modeling and am just showing the raw number of diagnosed patients, deaths, death rate, new cases by day, and new deaths by day.

Top countries by cases and deaths

```
deathmat = read.csv("deaths.tsv", header=T,
                    sep="\t", check.names=F, row.names=1)
countdeath = apply(deathmat[nrow(deathmat),1:(ncol(deathmat) - 1)], 2, sum)
casemat = read.csv("confirmed.tsv",
                   header=T, sep="\t", check.names=F, row.names=1)
countcases = apply(casemat[nrow(casemat),1:(ncol(casemat) - 1)], 2, sum)
totaldf = data.frame(Countries=c(names(countdeath), names(countcases)),
                       Values=as.numeric(c(countdeath, countcases)),
                       Variable=c(rep("Deaths", length(countdeath)),
                                  rep("Diagnosed", length(countcases))))
select_countries = names(sort(countcases, TRUE))[1:20]
totaldf = totaldf[totaldf$Countries %in% select_countries, ]
totaldf$Countries = factor(totaldf$Countries, levels=select_countries)
P = ggplot(totaldf, aes(x=Countries, y=Values, fill=Variable)) +
  geom_bar(stat="identity", position="dodge") +
  facet_wrap(~Variable, nrow=2, scales="free") +
  theme_bw(base_size=18) +
  scale_y_log10("Number of patients", labels=comma) +
  theme(legend.position="bottom",
        axis.text.x=element_text(angle=45, hjust=1)) +
  annotation logticks(sides="lr")
plot(P)
```


Total morbidity

Using date as id variables

```
name="Total deaths caused by SARS-CoV-2", labels=comma) +
xlab("Date as of outbreak") +
ggtitle(paste("Last update on", Sys.time())) +
annotation_logticks()

plot(P2)
```


Date as of outbreak

New deaths by day

10.0

```
list.data = lapply(colnames(deathmat)[1:(ncol(deathmat)-1)], function(country){
  new_cases = diff(deathmat[,country])
  addf = data.frame(date=deathmat$date[2:nrow(deathmat)],
                    variable=country,
                    value=new_cases)
})
moltendf = do.call("rbind", list.data)
moltendf$date = as.Date(moltendf$date)
P = ggplot(moltendf, aes(x=date, y=value, group=variable)) +
  geom_line() +
  theme_bw(base_size=14) +
  facet_wrap(~variable, scales="free") +
  scale_y_continuous(
    name="New deaths caused by SARS-CoV-2", labels=comma) +
  ggtitle(paste("Last update on", Sys.time())) +
  xlab("Date as of outbreak")
plot(P)
```


Total COVID-19 patients

Using date as id variables

```
moltendf$date = as.Date(moltendf$date)

P2 = ggplot(moltendf[moltendf$value > 0, ], aes(x=date, y=(value), group=variable)) +
    geom_line() +
    theme_bw(base_size=14) +
    facet_wrap(~variable) +
    scale_y_log10(
        name="Total COVID-19 patients", labels=comma) +
    xlab("Date as of outbreak") +
    ggtitle(paste("Last update on", Sys.time())) +
    annotation_logticks()
```


New COVID-19 patients by day

```
list.data = lapply(colnames(casemat)[1:(ncol(casemat)-1)], function(country){
  new_cases = diff(casemat[,country])
  addf = data.frame(date=casemat$date[2:nrow(casemat)],
                    variable=country,
                    value=new_cases)
})
moltendf = do.call("rbind", list.data)
moltendf$date = as.Date(moltendf$date)
P = ggplot(moltendf, aes(x=date, y=value, group=variable)) +
  geom_line() +
  theme_bw(base_size=14) +
  facet_wrap(~variable, scales="free") +
  scale_y_continuous(
    name="New COVID-19 patients", labels=comma) +
  ggtitle(paste("Last update on", Sys.time())) +
  xlab("Date as of outbreak")
plot(P)
```


PCA of countries by total patients

Principal component analysis identifies non-correlating variables (components) from the data and here can identify outlier countries according to a single variable.

In the following plots, I show the first three principal components for total diagnosed patients by day, total deaths by day, and also death rate by day.

```
casemat = read.csv("confirmed.tsv", header=T, sep="\t", check.names=F, row.names=1)

pcamat = casemat[,1:(ncol(casemat) - 1)]

PCA = prcomp(t(pcamat))

pcadf = as.data.frame(PCA$x)

pcadf$Country = colnames(casemat)[1:nrow(pcadf)]

pcadf$Show = ifelse(pcadf$Country %in% countries, TRUE, FALSE)

P = ggplot(pcadf, aes(x=PC1, y=PC2)) +

geom_point(aes(colour=Show, shape=Show), alpha=0.5) +

geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +

theme_bw(base_size=14) +

xlab("First principal component") +

ylab("Second principal component") +

ggtitle(paste("Last update on", Sys.time())) +

theme(legend.position="bottom")

plot(P)
```


Show • FALSE A TRUE

```
P = ggplot(pcadf, aes(x=PC2, y=PC3)) +
  geom_point(aes(colour=Show, shape=Show), alpha=0.5) +
  geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +
  theme_bw(base_size=14) +
  ylab("Third principal component") +
  xlab("Second principal component") +
  ggtitle(paste("Last update on", Sys.time())) +
  theme(legend.position="bottom")
plot(P)
```


Show • FALSE A TRUE

PCA of countries by morbidity

```
deathmat = read.csv("deaths.tsv", header=T,
                    sep="\t", check.names=F, row.names=1)
pcamat = deathmat[,1:(ncol(deathmat) - 1)]
PCA = prcomp(t(pcamat))
pcadf = as.data.frame(PCA$x)
pcadf$Country = colnames(deathmat)[1:nrow(pcadf)]
pcadf$Show = ifelse(pcadf$Country %in% countries, TRUE, FALSE)
P = ggplot(pcadf, aes(x=PC1, y=PC2)) +
  geom_point(aes(colour=Show, shape=Show), alpha=0.5) +
  geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +
  theme_bw(base_size=14) +
  xlab("First principal component") +
  ylab("Second principal component") +
  ggtitle(paste("Last update on", Sys.time())) +
  theme(legend.position="bottom")
plot(P)
```


Show • FALSE A TRUE

```
P = ggplot(pcadf, aes(x=PC2, y=PC3)) +
  geom_point(aes(colour=Show, shape=Show), alpha=0.5) +
  geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +
  theme_bw(base_size=14) +
  ylab("Third principal component") +
  xlab("Second principal component") +
  ggtitle(paste("Last update on", Sys.time())) +
  theme(legend.position="bottom")
plot(P)
```


Death rate

The two countries which succeeded in stopping the spread, China and South Korea, provide the most accurate measurement of true death rate. In the death rate plot below, the range of the death rate of these two countries is shown by pink.

```
textmat = casemat[which.max(casemat[,"China"]), ]
textdf = melt(as.data.frame(textmat[,c(countries, "date")]))
```

Using date as id variables

```
textdf$date = min(as.Date(deathratedf$date)) + 10
textdf$Label = paste("N =", comma(textdf$value))
textdf$value = 0.08
P = ggplot(moltendf, aes(x=date, y=value, group=variable)) +
  geom_rect(xmin=min(deathratedf$date),
            xmax=max(deathratedf$date+1),
            ymin=max(deathratedf$China),
            ymax=max(deathratedf[,"Korea, South"]),
            alpha=0.05,
            fill="pink") +
  geom line() +
  geom_text(data=textdf, aes(x=date, y=value, label=Label), colour='blue') +
  theme_bw(base_size=14) +
  facet_wrap(~variable, scales="free") +
  scale y continuous(
   name=expression("COVID-19 daily "*frac("deaths", "cases")),
   labels=comma) +
  xlab("Date as of outbreak") +
  ggtitle(paste("Last update on", Sys.time())) +
  coord_cartesian(ylim=c(0, 0.15))
plot(P)
```

Last update on 2020-04-16 08:01:04


```
pcamat = deathrate
PCA = prcomp(t(pcamat))
pcadf = as.data.frame(PCA$x)
pcadf$Country = colnames(deathmat)[1:nrow(pcadf)]
pcadf$Show = ifelse(pcadf$Country %in% countries, TRUE, FALSE)

P = ggplot(pcadf, aes(x=PC1, y=PC2)) +
    geom_point(aes(colour=Show, shape=Show), alpha=0.5) +
    geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +
    theme_bw(base_size=14) +
    xlab("First principal component") +
    ylab("Second principal component") +
    theme(legend.position="bottom")
plot(P)
```


Show • FALSE A TRUE

```
P = ggplot(pcadf, aes(x=PC2, y=PC3)) +
  geom_point(aes(colour=Show, shape=Show), alpha=0.5) +
  geom_text_repel(data=pcadf[pcadf$Show,], aes(label=Country), colour="blue", size=4) +
  theme_bw(base_size=14) +
  ylab("Third principal component") +
  xlab("Second principal component") +
  theme(legend.position="bottom")
```


Canada

```
setwd("COVID-19/csse_covid_19_data/csse_covid_19_time_series")
casedf = read.csv("time_series_covid19_confirmed_global.csv", header=T, check.names=F)
casedf = casedf[casedf[,2]=="Canada", c(1, 5:ncol(casedf))]
provinces = casedf[apply(casedf[,2:ncol(casedf)], 1, sum) > 0, 1]
casedf = casedf[casedf[,1] %in% provinces,]

moltendf = melt(casedf)

## Using Province/State as id variables

moltendf$date = as.Date(as.character(moltendf$variable), tryFormats="%m/%d/%y")
textdf = melt(casedf[,c(1, ncol(casedf))])
```

Using Province/State as id variables

```
textdf$date = as.Date(as.character(textdf$variable), tryFormats="%m/%d/%y")
textdf$date = min(as.Date(textdf$date)) - 50
textdf$Label = paste("N =", comma(round(textdf$value)))
textdf$value = 2000

P = ggplot(moltendf[moltendf$value > 0,], aes(x=date, y=value, group=`Province/State`)) +
    geom_line() +
    geom_text(data=textdf, aes(label=Label), colour="blue") +
    theme_bw(base_size=18) +
    facet_wrap(~`Province/State`) +
    scale_y_log10("Number of patients diagnosed with COVID-19", labels=comma) +
    xlab("Date as of global incidence")
plot(P)
```


Canada's deaths

```
setwd("COVID-19/csse_covid_19_data/csse_covid_19_time_series")
casedf = read.csv("time_series_covid19_deaths_global.csv", header=T, check.names=F)
casedf = casedf[casedf[,2]=="Canada", c(1, 5:ncol(casedf))]
provinces = casedf[apply(casedf[,2:ncol(casedf)], 1, sum) > 0, 1]
casedf = casedf[casedf[,1] %in% provinces,]
moltendf = melt(casedf)
## Using Province/State as id variables
moltendf$date = as.Date(as.character(moltendf$variable), tryFormats="%m/%d/%y")
textdf = melt(casedf[,c(1, ncol(casedf))])
## Using Province/State as id variables
textdf$date = as.Date(as.character(textdf$variable), tryFormats="%m/%d/%y")
textdf$date = min(as.Date(textdf$date)) - 5
textdf$Label = paste("N =", comma(round(textdf$value)))
textdf$value = max(moltendf$value)
P = ggplot(moltendf[moltendf$value > 0,], aes(x=date, y=value, group=`Province/State`)) +
 geom_line() +
  geom_text(data=textdf, aes(label=Label), colour="blue") +
 theme_bw(base_size=18) +
 facet_wrap(~`Province/State`) +
  scale_y_log10("Number of deaths due to COVID-19", labels=comma) +
  xlab("Date as of first Canadian death")
plot(P)
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?
```

