Università degli Studi dell'Aquila

Seconda prova parziale di Teoria del corso di Algoritmi e Strutture Dati con Laboratorio

Mercoledì 2 Febbraio 2011 – Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla

Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 25. Se tale somma è negativa, verrà assegnato 0.

- 1. Un albero binario di ricerca di altezza k contiene: a) meno di $2^{k+1} - 1$ elementi *b) tra k+1 e $2^{k+1} - 1$ elementi c) almeno 2^k elementi d) tra 2^k e $2^{k+1} - 1$ elementi
- 3. Dato un albero AVL T contenente n elementi, si consideri l'inserimento di una sequenza di k elementi in T. La nuova altezza di T diventa: a) $\Theta(n+k)$ b) $\Theta(k+\log n)$ *c) $\Theta(\log(n+k))$ d) $\Theta(\log n)$
- 4. In una tavola ad accesso diretto di dimensione m con un fattore di carico $\alpha = 1\%$, l'inserimento di un elemento di un dizionario di n elementi costa: a) $\Theta(m)$ b) $\Omega(n)$ c) $\Theta(\log n)$ *d) $\Theta(1)$
- 5. Siano $h_1(\cdot), h_2(\cdot)$ due funzioni hash. Quale delle seguenti funzioni descrive il metodo di scansione con hashing doppio in una tabella hash di dimensione m per l'inserimento di un elemento con chiave k dopo l'i-esima collisione:

 a) $c(k,i) = (h_1(k) + m \cdot h_2(k)) \mod i$ b) $c(k,i) = (h_1(k) + h_2(k)) \mod m$ *c) $c(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$ d) $c(k,i) = (h_1(k) + h_2(k)) \mod i$
- 6. Siano X e Y due stringhe di lunghezza m ed n. Qual è la complessità dell'algoritmo per la determinazione della distanza tra X e Y basato sulla tecnica della programmazione dinamica?
- *a) O(mn) b) O(n) c) O(m+n) d) O(m)7. La visita in profondità del grafo
 a) 1 b) 2 *c) 4 d) 5

 *eseguita partendo dal nodo d produce un albero DFS di altezza massima:
 a) 1 b) 2 *c) 4 d) 5
- 8. Un grafo G=(V,E) si dice bipartito se l'insieme V può essere partizionato in due sottoinsiemi V_1,V_2 tali che tutti gli archi in E hanno un nodo in V_1 e l'altro in V_2 . Sia dunque $G=(V_1\cup V_2,E)$ un grafo bipartito tale che $|V_1|=4,|V_2|=3$. Quanti archi sono necessari affinché G sia connesso? a) 3 b) 4 c) 5 *d) 6
- 9. In un grafo non completo con 6 vertici, il massimo numero di archi contenuti in un suo sottografo indotto da 5 vertici qualsiasi è:

 a) 15 b) 5 *c) 10 d) 4
- 10. Qual è la distanza tra x ed y nel grafo non orientato: xa) 12 *b) 11 c) 3 d) 4
- 11. Si orientino gli archi verticali del grafo della domanda 10 dall'alto verso il basso, e i rimanenti archi da sinistra verso destra. Quali tra i seguenti è un ordinamento topologico dei veritici del grafo: *a) < x, a, c, b, d, y > b) < x, c, a, b, d, y > c) < x, a, c, d, b, y > d) < y, d, b, c, a, x >
- 12. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m=\Theta(n)$, ha complessità: *a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) $\Theta(n^3)$ d) $O(m\log n)$
- 13. Dato un grafo pesato e completo con n vertici rappresentato tramite liste di adiacenza, l'algoritmo di Dijkstra realizzato con un heap binario costa: *a) $\Theta(n^2 \log n)$ b) $\Theta(m+n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 14. Dato un grafo connesso con n vertici ed m archi rappresentato tramite liste di adiacenza, l'algoritmo di Dijkstra realizzato con una lista lineare non ordinata costa: *a) O(mn) b) $\Theta(n+m)$ c) $\Theta(m\log n)$ d) $O(m\log n)$
- 15. Sia d_{xy}^k il costo di un cammino minimo k-vincolato da x a y, secondo la definizione di Floyd e Warshall. Risulta:
 - a) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_kx}^{k-1}\}$ *b) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ c) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k} + d_{v_ky}^{k}\}$ d) $d_{xy}^k = \min\{d_{xy}^{k}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$
- 16. L'operazione Union(A,B) di 2 insiemi disgiunti A,B con alberi QuickFind senza l'euristica dell'unione pesata costa nel caso peggiore: a) $\Theta(\min(|A|,|B|))$ b) $\Theta(\max(|A|,|B|))$ c) $\Theta(|A|)$ *d) $\Theta(|B|)$
- 17. L'operazione Find(x) con alberi QuickUnion con l'euristica dell'unione pesata $by\ rank$ costa: a) $\Theta(n)$ b) $\Theta(1)$ c) $\Theta(\log n)$ *d) $O(\log n)$
- 18. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni UNION(u,v) pari a: a) $\Theta(m)$ *b) $\Theta(n)$ c) $\Theta(m \log n)$ d) $\Theta(\log n)$
- 19. Dato un grafo connesso con n vertici ed m archi, l'algoritmo di Prim esegue un numero di operazioni di decremento delle chiavi pari a:

 *a) O(m) b) $\Theta(m)$ c) O(n) d) $\Theta(n)$
- 20. Dato un grafo pesato con n vertici ed m archi, il costo di una fase dell'algoritmo di Borůvka è pari a: *a) O(m) b) O(n) c) $\Theta(m+n\log n)$ d) $\Theta(m\log n)$

Griglia Risposte

		Domanda																		
Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a																				
b																				
С																				
d																				

ESERCIZIO 2 (5 punti) (Da svolgere sul retro della pagina!)

La somma di 2 grafi $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ è un grafo G = (V, E) in cui $V = V_1 \cup V_2$, ed $E = E_1 \cup E_2 \cup \{(x, y) | x \in V_1, y \in V_2\}$. Sia G il grafo ottenuto sommando un ciclo di 4 nodi ed un grafo connesso di 2 nodi. Numerare in modo arbitrario i vertici di G da 1 a 6, e pesare ogni arco come somma dei numeri associati ai vertici incidenti. Restituire quindi il minimo albero ricoprente di G, mostrando l'esecuzione passo per passo dell'algoritmo di Kruskal.