Francesco Russo

Electronic Engineer BSc Control Engineering MSc Student

Education

2022-Present **Master's Degree in Control Engineering**, *Università degli Studi La Sapienza*, Rome, Italy

2018–2022 **Bachelor's Degree in Electronics Engineering**, *Università degli Studi di Catania*, Italy, Final Mark: 105/110

2012–2017 Electronics High School Diploma, ITIS Ettore Majorana, Ragusa, Italy

Academic Work-Projects (Details available on the website franc-r.github.io)

Dynamic Mode Decomposition, recognition of Spatial-Temporal patterns in large-scale Neural Recordings for imagination and movement tasks:

Neural recordings are essential for investigating the nervous system. Although they typically generate data that reside in a high-dimensional space, their underlying structure often lies in a low-dimensional one. Thus, the Dynamic Mode Decomposition technique is used to construct a reduced-order representation of these data, enabling the extraction of meaningful spatio-temporal patterns from large-scale neural recordings.

DC-Motor Velocity Control Problem:

The goal of the project was to design a controller capable of driving the rotor of a DC motor at steady state and at a given angular velocity, while rejecting noise and attenuating disturbances through a closed-loop approach. The design involved minimizing the H_{∞} norm of the sensitivity, complementary sensitivity, and control sensitivity functions.

DC-Motor Position Control Problem:

The goal of the project was to design an H_{∞} controller which is able to stop the rotor of DC-Motor at steady state at a given angular position and, at the same time, rejecting noise and attenuating disturbances, through a closed-loop approach.

MIMO Analisys:

The goal of the project was to analyse the directional properties of MIMO systems, and assess how ill-conditioned the system is, by means Singular Value Decomposition. It also aimed to design an H_{∞} controller capable of robustly stabilising the MIMO system, taking into account both structured and unstructured uncertainties.

Two Wheels Self-Balancing Robot:

The aim of the project was to build a wheeled robot, designed with Autodesk Inventor and manufactured using a 3D printer, capable of autonomously maintaining balance. This was achieved by designing a controller implemented on an Arduino Nano, able to asymptotically stabilize the system's equilibrium point.

Academic Work-Thesis (Details available on the website franc-r.github.io)

Bachelor's Degree

Motion Control of Robots: An Approach Based on Light Source Tracking

Bachelor's degree thesis focused on the design and development of a 4-DOF bipedal robot, including the design and implementation of a control system, deployed on Arduino, to track a light source through bipedal locomotion.

Master's Degree

Safety Management and Trust beetween Humans and Robots in BCI system:

Master's degree thesis focuses on the design and control of an underactuated quadrotor controlled through brain—computer interface signals, where a safety-critical controller was implemented to ensure that the system operates within a predefined safe set. A novel trust-based approach was proposed to dynamically evaluate the reliability of the BCI signal before execution. Additionally, the physical platform was customized using 3D-printed components designed in Fusion 360, and Visual-Inertial Odometry (VIO) was integrated to enable robust indoor localization.

Languages

Italian Native

English B2

Tech Skills

Operating Windows, Ubuntu (Linux)

Systems

Control Analysis and design of linear and nonlinear systems, Optimal control, State estima-**Theory &** tion, Digital control systems, Geometric control of UAVs, Control Barrier Functions

Systems for safety-critical control, Force control for Human-Robot interaction

 $\textbf{Programming} \ \ \mathsf{MATLAB/Simulink}, \ \ \mathsf{Python}, \ \ \mathsf{Arduino} \ \ \mathsf{IDE}, \ \ \mathsf{LTSpice}, \ \ \mathsf{LaTeX}, \ \ \mathsf{GitHub}, \ \ \mathsf{Microsoft}$

& Software PowerPoint, Word

Tools

Robotics & Stateflow, Robot Kinematics, PX4 Autopilot, ROS, jMAVSim, QGroundControl, **Control** Visual-Inertial Odometry (VIO)

Hardware & Circuit Board Soldering, Printed Circuit Board Design (EAGLE), Autodesk FusionDesign 360

Machine Supervised & Unsupervised Learning, Model Reduction (DMD), Reinforcement Learning, Neural Network

Soft Skill

Highly motivated and committed to continuous learning and self-improvement, Strong ability to work in teams, with experience in coordinating and motivating group members, Adaptable and open to acquiring new knowledge and skills quickly, Critical thinker with a proactive approach to problem solving, Strong sense of responsibility and dedication to delivering high-quality results.

Additional Information

Driving Full European AM, B **License**