

Relational Algebra - 1

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

- 1. Imperative Languages and Declarative Languages
- 2. Overview of Relational Query Languages
- 3. Introduction to Relational Algebra
- 4. Minimal Set of Relational Algebra Operators

- 1. Imperative Languages and Declarative Languages
- 2. Overview of Relational Query Languages
- 3. Introduction to Relational Algebra
- 4. Minimal Set of Relational Algebra Operators

Imperative Languages and Declarative Laguages

- Declarative Language: say WHAT you want
 - Give me a red pen
- Imperative Languages: say HOW you do it
 - Check every pen in the drawer
 - If the pen is red then give it to me and stop looking up

Why declarative language?

- Make it easier to explore equivalent computations to find the best one
 - Replace [thing] with better, but equivalent [thing]
 - How can we tell if one [thing] is equivalent?
 - How can we tell if one [thing] is better than the other?
- Example
 - Give me all red pens
 - Check every pen in the drawer, if the pen is red, then give it to me
 - Order the pens by color, then give me all pens in the red colo bucket
 - O(n) vs. O(n logn)

- 1. Imperative Languages and Declarative Languages
- 2. Overview of Relational Query Languages
- 3. Introduction to Relational Algebra
- 4. Minimal Set of Relational Algebra Operators

Relational Algebra and Relational Calculus

- Relational Algebra
 - A set of algebraic operators
 - Each operator take one or two relations as arguments
 - Returns a relation as the result
 - Operators can be nested to form expressions
 - Procedural query language
 - Expressions describe how the query can be evaluated
- Relational Calculus
 - A logic language: expressions invlude Boolean operators and quantifiers
 - Declarative query language
 - expressions do not describe how to evaluate the query { t | emp(t) ∧ t.salary > 5000}
 - We will not talk about it.

SQL

- RA and RC from the basis for relational query languages
 - SQL
 - A mix of relational algebra and relational calculus (logic)
 - The stand query language of the exising DBMS
- Preliminaries
 - Queries are applied to Relations
 - A query works on fixed relation schemas
 - But runs on any relation instance
 - The result of a query is also a relation!

Subtle Issues

- Nulls
 - RA does NOT allow nulls
 - SQL does
- Duplicates
 - By default, RA operates on sets and does not allow duplicates
 - SQL allow duplicates and operates on bags
 - Duplicates irrelevant for most queries
- Order
 - Neither RA nor SQL can specify order within sets of tuples
 - In SQL top-level query results can be ordered (but not in sub-queries)

- 1. Imperative Languages and Declarative Languages
- 2. Overview of Relational Query Languages
- 3. Introduction to Relational Algebra
- 4. Minimal Set of Relational Algebra Operators

What is an "algebra"

- A mathematical system consisting of
 - Operands: variables or values from which new values can be constructed
 - Operators: symbol denoting procedures that construct new values from given values
- Relational Algebra
 - An algebra that can be used as a query languages for relations
 - The operands are relations or variable that represent relations
 - The operators are designed to do the most common things that we need to do with the relations in a database

- 1. Imperative Languages and Declarative Languages
- 2. Overview of Relational Query Languages
- 3. Introduction to Relational Algebra
- 4. Minimal Set of Relational Algebra Operators

Relational Algebra Operators

Operation	Symbol	Meaning
Selection	σ	Selection a subset of the input tuples in a given relation
Projection	π	Pick wanted attributes (Delete unwanted attributes)
Cross-Product	X	Combine two relations
Renaming	ρ	Rename attribute names
Set-difference	-	Tuples in R1 but not in R2
Union	U	Tuples either in R1 or in R2

- Also: Intersection ∩, Join ⋈, Division /
 - Not essential, but very useful
- Each operation returns a relation
- Operations are composable (RA operators are closed)

Relational Algebra

[Graph: Dr. Oliver Kennedy CSE 562]

Sets vs. Bags

- Rule of thumb
 - Papers: assume set semantics, i.e. Set RA
 - Implementation: assume bag semantics, i.e. Bag RA

Recommended Reading

Database Systems: The Complete Book

Chapter 2.4, 5.2