

Programação matemática para alocação dos sistemas solares fotovoltaicos para microrredes autônomas em corrente contínua

Minéia Cappellari Fagundes

Universidade do Estado de Mato Grosso - UNEMAT Rua A, Sn, Barra do Bugres - MT mineiacf@gmail.com

Dionízio Paschoareli Júnior

Universidade Estadual Paulista "Julio de Mesquita Filho" - UNESP dionizio@dee.feis.unesp.br

RESUMO

Neste artigo é apresentada uma proposta para alocação de sistemas solares fotovoltaicos para microrredes autônomas em corrente contínua, através de um modelo matemático escrito como um problema quadrático inteiro misto. São realizadas simulações para um sistema que faz parte de um projeto de iluminação pública de um loteamento de residências populares do município de Ilha Solteira – SP, que servirá para a validação do modelo matemático proposto. O modelo foi implementado usando o AMPL e solucionado usando o solver comercial CPLEX, utilizando uma estratégia de busca com espaço reduzido a fim de acelerar a convergência do problema. Os resultados são apresentados avaliando o sistema teste o qual apresentou solução factível e de boa qualidade.

PALAVARAS CHAVE. Branch and Bound, geradores solares fotovoltaicos, microrredes.

Área principal: 1)PM - Programação Matemática, 2)EN - PO na Área de Energia

ABSTRACT

This paper presents a proposal for allocation of solar photovoltaic systems for autonomous microrredes DC, through a mathematical model written as a mixed integer quadratic problem. Simulations are performed for a system that is part of a project for public lighting of a subdivision of homes popular in the city of Single Island - SP, which will serve to validate the proposed mathematical model. The model was implemented using the AMPL and solved using the commercial solver CPLEX, using a search strategy with limited space to accelerate the convergence of the problem. The results are presented evaluating the system test which showed feasible solution and good quality.

KEYWORDS. Branch and Bound, solar photovoltaic generators, microgrids.

Main area: 1)PM - Programação Matemática, 2) EN - PO na Área de Energia

1. Introdução

Segundo o Ministério de Minas e Energia (2012), o uso de energias renováveis é promissor, pois a busca de um sistema de energia elétrica confiável e de qualidade é o que todos os consumidores almejam. O uso de energias renováveis atinge 16,7% da geração de eletricidade mundial, onde somente 0,9% representam as energias solar, biomassa, eólica e geotérmica. No Brasil, a participação na Matriz Elétrica Brasileira das fontes renováveis de energia atingem 88,8% (BEN, 2012). Essas fontes contribuem para a diversificação da matriz energética, aumentando a confiabilidade da geração, podendo garantir o suprimento de energia para regiões isoladas do sistema principal de alimentação ("ilhas energéticas") sem que sejam necessários investimentos imediatos na ampliação dos sistemas de transmissão instalados (SCHEER, 2002).

As microrredes que são redes de distribuição formadas por um conjunto de sistemas de geração distribuída (GD) (considerando a presença de fontes renováveis de energia), que é a expressão utilizada para a geração de energia elétrica próxima dos consumidores, independente da potência, tecnologia ou fonte de energia. As microrredes são uma possibilidade dos consumidores públicos, residenciais, comerciais, industriais produzirem energia elétrica para consumo, ao invés de compra-la do sistema elétrico principal. As microrredes operam de duas formas: ligadas a rede principal ou de forma autônoma (desconectada da rede principal).

Na literatura pesquisas como de Salomonsson e Soder (2006), Salomonsson e Sannino (2007), Salomonsson, Soder e Sannino (2008), Sannino, Postiglione e Bollen (2003), Becker e Sonnenberg (2011), Engelen et al (2006), Kakigano, Miura e Ise (2010) entre outros, apresentam maneiras de explorar o potencial de geração das fontes renováveis de energia, por exemplo, energia hidráulica, energia de biomassa, energia eólica, energia solar térmica, energia solar fotovoltaica, energia biogás, energia geotérmica, energia maremotriz, células a combustível, que geram energia em corrente contínua ou corrente alternada. Por exemplo, nos painéis fotovoltaicos, a energia gerada pode ser distribuída diretamente em corrente contínua ou convertida em corrente alternada, através de inversores eletrônicos. Se a energia é distribuída sem a conversão para corrente alternada, está configurada uma microrrede de energia elétrica em corrente contínua (cc), que é o foco desse artigo.

Neste artigo é apresentada uma proposta para alocação de sistemas solares fotovoltaicos para sistemas autônomos em corrente contínua, onde a energia distribuída não tem a necessidade de conversão para corrente alternada (TODD, 2009). O caso proposto é um sistema de iluminação pública de um loteamento de residências populares do município de Ilha Solteira – SP, que servirá para a validação do modelo matemático proposto. Por se tratar de um projeto autônomo de iluminação pública considera-se o armazenamento da energia, para uso noturno. A alocação dos sistemas solares fotovoltaicos é escrito como um Problema Quadrático Inteiro Misto (PQIM), para o qual foi feita a implementação do modelo através da linguagem de modelagem algébrico AMPL (A Modeling Language for Mathematical Programming) e solucionado usando o solver CPLEX, que faz uso do algoritmo de otimização clássica Branch and Bound (B&B) combinado com alguns planos de corte.

2. Modelo Matemático

O modelo matemático para a alocação de sistemas solares fotovoltaicos para sistemas autônomos foi formulado como um problema de Programação Quadrático Inteiro Misto (PQIM) é escrito através das equações de (1) a (8).

$$custo = Cg \cdot P_{PF} \sum_{i \in \Omega b} n_i + Cp \sum_{i \in \Omega b, ij \in \Omega l} \frac{\left(V_i - V_j\right)^2}{R_{ij}} \tag{1}$$

$$Ig_{i} - \sum_{i \in \Omega L, i \in \Omega b} G_{ij} \cdot V_{i} = 0 \qquad \forall i \in \Omega b$$
 (2)

$$\frac{\left|V_{i}-V_{j}\right|}{R_{ij}} \leq I_{m\acute{a}x} \qquad \forall i \in \Omega b, \forall ij \in \Omega l \tag{3}$$

$$V_{\min}(1-n_i) + VN \cdot n_i \le V_i \qquad \forall i \in \Omega b$$
 (4)

$$V_i \le VN \qquad \forall i \in \Omega b \tag{5}$$

$$Ig_i \le n_i \cdot IPT$$
 $\forall i \in \Omega b$ (6)

$$n_i \le n_{\min} \qquad \forall i \in \Omega b$$
 (7)

$$n \in \{0,1\} \tag{8}$$

Nesse modelo Ωb e Ωl são os conjuntos de nós e o conjunto de linhas, respectivamente. $Cg(W_P)$ é o custo de geração fotovoltaica do painel solar, $P_{PF}(W)$ é a potência fornecida pelo painel solar através da sua máxima corrente, n_i é a variável binária de alocação do painel solar ao nó i, CP(W) é o custo das perdas elétricas, V_i é a tensão no nó i, V_j é a tensão no nó i, $Ig_i(A)$ é a corrente a ser gerada pelo painel solar, G_{ij} é a matriz das condutâncias, R_{ij} é a resistência entre os nós ij, $I_{máx}(A)$ é a corrente máxima permitida pelos condutores, VN é a tensão nominal, IPT máxima corrente fornecida pelo painel solar , n_{min} número permitido de painéis solares a serem instalados no sistema.

A primeira parcela da função objetivo (1) representa os investimentos fixos e a segunda parcela os custos variáveis do sistema de distribuição de energia. Os investimentos fixos englobam a compra e instalação dos sistemas solares fotovoltaicos, cujos componentes são painéis solares, armazenadores de energia (baterias), condutores, conexões e suportes. Os custos variáveis incluem as perdas de potência no sistema elétrico. A restrição (2) é a equação de balanço que representa as leis de Kirchhoff. A restrição (3) representa o limite de corrente entre as linhas *ij* do sistema. As restrições (4) e (5) definem o perfil de tensão para cada nó do sistema, ou seja, a tensão é mantida dentro dos limites toleráveis. A restrição (6) garante que a corrente a ser gerada seja menor ou igual à corrente máxima gerada pelos painéis solares. A restrição (7) permite limitar o número total de geradores solares alocados em cada nó do sistema. A característica binária de alocação de painéis solares para os nós do sistema é definida em (8).

3. Algoritmo de Branch and Bound com Espaco de Busca Combinatório Reduzido (EBCR)

Para a solução do problema de Programação Quadrático Inteiro Misto (PQIM), foi feita a implementação do modelo através da linguagem de modelagem algébrico AMPL (A Modeling Language for Mathematical Programming) e solucionado usando o solver CPLEX que faz uso do algoritmo de otimização clássica Branch and Bound (B&B), onde, segundo Rendón, Zuluaga e Romero (2007), é um algoritmo utilizado para Programação Linear Inteira Mista.

Para o modelo matemático descrito pelas equações (1) a (8), é proposto um Espaço de Busca Combinatório Reduzido (EBCR) baseado na proposta de Silva (2013), procurando diminuir o esforço computacional e facilitar a convergência do CPLEX. Para isso, o software comercial CPLEX fornece um conjunto ou "pool" de soluções para o modelo matemático dado,

enquanto está compilando, logo sendo $A = \{a | a = 1, 2, ..., m\}$ o conjunto das m soluções do problema PQIM, a estratégia para o EBCR, segue os passos:

- 1. Encontrar o conjunto A com m soluções inteiras para um determinado "gap".
- 2. Criar um conjunto B com a união das m soluções inteiras do conjunto A.
- 3. Eliminar do conjunto B todos os nós repetidos, resultando em um conjunto C que representa o EBCR.

Na Figura 1, temos o fluxograma que representa da estratégia para determinação do EBCR.

Figura 1: Fluxograma da Estratégia do EBCR

A partir do conjunto C que representa o EBCR, o problema é novamente solucionado com o "gap" que for desejado.

4. Testes e Resultados

Os testes do modelo matemático ocorrem em parte do sistema de um projeto de iluminação pública, que pertence a um loteamento de residências populares do município de Ilha Solteira – SP, cidade cujas coordenadas geodésicas são: 20°25'58'' de Latitude sul e 51°20'33'' de Longitude oeste, e 335 m de altitude. O sistema originalmente proposto de iluminação pública convencional pelo município está composto por 297 postes com reatores de lâmpada de vapor de sódio de 70 watts de alta pressão incorporado em poliéster, os fios condutores seção transversal de 10 mm². A tensão nominal do sistema de iluminação pública é 220 volts, onde a faixa de tensão varia em 5% da tensão nominal de 60 Hz, os efeitos transitórios de nível de isolamento 7,5 kV.

Na Figura 2, é apresentado um recorte da rede teste utilizada, indicando a posição dos 99 postes que representam os nós do problema formulado no item 2, que serão avaliados para a alocação dos sistemas solares fotovoltaicos, os quais devem ser alocados de tal forma que atenda o consumo de potência do sistema e demais restrições. Para os testes, as características dos componentes elétricos considerados são os seguintes: 1)lâmpadas do tipo LED (*Light Emitting Diode*) de 30 W; 2) condutores com seção transversal de 10mm². A tensão nominal do sistema é de 12volts cc, com queda de tensão de 5%. No Quadro 1 são apresentados os dados referentes ao comprimento das linhas existentes.

Quadro 1: Dados das linhas do sistema de iluminação

T . 1		- D	_		as ilnnas do sistema de iluminação						G • • • •
Linha	De	Para	Comprimento (m)	Linha	De	Para	Comprimento (m)	Linha	De	Para	Comprimento (m)
1	1	2	36	34	34	35	36	67	67	68	35
2	2	3	35	35	35	36	36	68	68	69	35
3	3	4	35	36	36	37	36	69	69	70	36
4	4	5	29	37	37	38	36	70	69	71	36
5	5	6	38	38	38	39	36	71	69	72	40
6	6	7	37	39	39	40	36	72	72	73	35
7	7	8	37	40	40	41	23	73	73	74	35
8	8	9	45,5	41	41	42	22	74	74	75	35
9	9	10	28	42	42	43	42	75	75	76	35
10	10	11	32	43	43	44	35	76	76	77	35
11	4	12	32	44	44	45	35	77	77	78	35
12	12	13	31	45	45	46	35	78	78	79	42
13	13	14	26	46	46	47	35	79	78	80	42
14	14	15	33	47	47	48	35	80	62	81	32
15	15	16	33	48	48	49	35	81	81	82	22
16	16	17	33	49	49	50	36	82	82	83	35
17	17	18	36	50	49	51	36	83	83	84	35
18	18	19	29	51	49	52	40	84	84	85	35
19	19	20	40	52	52	53	35	85	85	86	35
20	19	21	39	53	53	54	35	86	86	87	35
21	21	22	39	54	54	55	35	87	87	88	35
22	22	23	39	55	55	56	35	88	88	89	35
23	23	24	39	56	56	57	35	89	89	90	36
24	24	25	39	57	57	58	35	90	89	91	40
25	25	26	23	58	58	59	42	91	91	92	35
26	25	27	40	59	58	60	42	92	92	93	35
27	27	28	40	60	42	61	32	93	93	94	35
28	28	29	40	61	61	62	22	94	94	95	35
29	29	30	40	62	62	63	42	95	95	96	35
30	30	31	40	63	63	64	35	96	96	97	35
31	31	32	40	64	64	65	35	97	97	98	44,5
32	32	33	23	65	65	66	35	98	97	99	44,5
33	32	34	36	66	66	67	35				,-

Para as simulações, o tipo de painel solar fotovoltaico a ser utilizado no sistema, leva em conta suas características físicas como dimensão e peso, pois os mesmos serão alocados nos postes de iluminação pública, sendo que o limite de alocação é de um (1) painel por poste. O tipo de painel utilizado na simulação é de $135\,W_p$ de potência máxima, 7,63A de máxima corrente, as quais são obtidas para condições de irradiação de $1kW/m^2$ e temperatura da célula de 25° .

O CPLEX resolveu o modelo matemático PQIM dado por (1) a (8), considerando o sistema de 99 nós da Figura 2 em duas etapas. A primeira etapa para encontrar a lista de soluções e determinar o EBCR e a segunda etapa para encontrar a solução do problema partir do EBCR. A seguir tem-se o desempenho do algoritmo em cada etapa.

Etapa 1: O algoritmo B&B resolveu o modelo matemático com 297 restrições, 297 variáveis contínuas e 99 variáveis binárias. Foram 607.733 PLs resolvidos na árvore de B&B, totalizando 7.484.634 iterações do algoritmo simplex, com *gap* de 15%, em um tempo de 1365,25s, encontrando 8 soluções para compor o EBCR.

Etapa 2: Através da lista de EBCR, o algoritmo B&B resolveu o modelo matemático com 239 restrições, 239 variáveis contínuas e 70 variáveis binárias. Foram 35.829.415 PLs resolvidos na árvore de B&B, totalizando 160.368.767 iterações do algoritmo simplex, com *gap* de 0.01%, em um tempo de 5462,43s.

Observa-se que na Etapa 2, utilizando-se o EBCR, a solução encontrada foi de boa qualidade. No entanto o melhor limite inferior obtido na Etapa 1foi de US\$43513,43, comparado com a solução obtida na Etapa 2 de US\$48106,28, o *gap* da solução final é de 9,54%.

Na Figura 3, tem-se o gráfico das tensões dos nós com a alocação de 36 sistemas solares fotovoltaicos, resultante da aplicação do algoritmo proposto, onde nesses nós a tensão assume valor da tensão nominal de 12 V. Os nós 65, 66, 74, 75, 93 e 94 atingiram a menor tensão de 11,56V, ficando a queda de tensão máxima em 3,6% no sistema, atendendo a restrição de queda de tensão para o sistema.

Figura 3: Variação da tensão dos nós.

Na Tabela 1, tem-se os nós onde devem ser alocados os sistemas solares fotovoltaicos e as potências mínimas a serem geradas em cada nó para que as tensões observadas na Figura 3 sejam atendidas.

Tabela 1: Nós com alocação de sistemas solares fotovoltaicos e potência mínima a ser gerada.

Nó	Potência mínima a ser gerada (W)	Nó	Potência mínima a ser gerada (W)
2	74,524452	49	89,235857
4	89,509671	52	88,178146
6	57,810209	57	88,178146
8	56,259243	58	89,110389
10	78,116691	64	88,357136
14	91,34866	67	90,124802
17	82,843425	71	60,503725
19	88,368664	72	72,359876
23	81,488073	74	74,534934
25	89,543951	77	59,62841
28	74,469341	78	89,110389
31	87,503296	81	78,558711
34	90,648172	83	85,602178
37	89,235857	87	88,985534
40	74,225737	89	88,43143
42	75,265841	92	89,972699
43	88,178146	96	74,079010
48	88,178146	97	89,058267

Observa-se na Tabela 1, que o programa respondeu de acordo com o tipo de painel selecionado para o sistema, pois a potência máxima é de $135\,W_p$, atendendo as potências mínimas a serem geradas nos nós com alocação dos sistemas solares fotovoltaicos.

Na Tabela 2 tem-se os dados da corrente nas linhas, cuja máxima corrente ocorre nas linhas 43, 47 e 52, onde atinge 4,8744 A, atendendo a restrição de corrente do fio condutor utilizado.

Tabela 2: Corrente nas linhas do sistema.

Linha	De	Para	Corrente (A)	Linha	De	Para	Corrente (A)	Linha	De	Para	Corrente (A)
1	1	2	-2,4682	34	34	35	2,4682	67	67	68	2,5414
2	2	3	1,2422	35	35	36	0,0000	68	68	69	0,0732
3	3	4	-1,2422	36	36	37	-2,4682	69	69	70	2,4358
4	4	5	1,4096	37	37	38	2,4682	70	69	71	-2,5420
5	5	6	-1,0757	38	38	39	0,0000	71	69	72	-2,2878
6	6	7	1,2418	39	39	40	-2,4682	72	72	73	1,2422
7	7	8	-1,2418	40	40	41	1,2173	73	73	74	-1,2422
8	8	9	0,9465	41	41	42	-1,2727	74	74	75	2,4690
9	9	10	-1,5381	42	42	43	0,0000	75	75	76	0,0000
10	10	11	2,4717	43	43	44	4,8482	76	76	77	-2,4690
11	4	12	2,3073	44	44	45	2,4090	77	77	78	0,0000
12	12	13	-0,1662	45	45	46	0,0000	78	78	79	2,4629
13	13	14	-2,6416	46	46	47	-2,4090	79	78	80	2,4629
14	14	15	2,4708	47	47	48	-4,8482	80	62	81	-2,5189
15	15	16	0,0000	48	48	49	0,0000	81	81	82	1,5277
16	16	17	-2,4708	49	49	50	2,4682	82	82	83	-0,9603
17	17	18	1,9328	50	49	51	2,4682	83	83	84	3,6733
18	18	19	-2,3994	51	49	52	0,0000	84	84	85	1,2193
19	19	20	2,4647	52	52	53	4,8482	85	85	86	-1,2193
20	18	21	1,8572	53	53	54	2,4090	86	86	87	-3,6733
21	21	22	-0,5920	54	54	55	0,0000	87	87	88	1,2422
22	22	23	-3,0493	55	55	56	-2,4090	88	88	89	-1,2422
23	23	24	1,2413	56	56	57	-4,8482	89	89	90	2,4682
24	24	25	-1,2413	57	57	58	0,0000	90	89	91	1,1589
25	25	26	2,4796	58	58	59	2,4629	91	91	92	-1,3245
26	25	27	1,2411	59	58	60	2,4629	92	92	93	3,6733
27	27	28	-1,2411	60	42	61	2,4995	93	93	94	1,2193
28	28	29	2,4647	61	61	62	0,0282	94	94	95	-1,2193
29	29	30	0,0000	62	62	63	0,0759	95	95	96	-3,6733
30	30	31	-2,4647	63	63	64	-2,3941	96	96	97	0,0000
31	31	32	2,3273	64	64	65	2,4690	97	97	98	2,4608
32	32	33	2,4465	65	65	66	0,0000	98	97	99	2,4608
33	32	34	-2,5859	66	66	67	-2,4690				

Na Tabela 3, são apresentados os resultados referentes a custos do sistema, considerando o custo por W_p (watt pico) a ser gerado pelos sistemas solares fotovoltaicos. De acordo o Ministério de Minas e Energia (2012), atualmente os painéis solares respondem por cerca de 60% do custo total dos sistemas fotovoltaicos, o inversor por cerca de 10% e o restante é atribuído ao "Balance of the System - BoS", que engloba as estruturas mecânicas de sustentação, equipamentos elétricos auxiliares, cabos e conexões e a engenharia necessária para a adequação dos componentes do sistema, assim como custos gerais de instalação e montagem. Sendo assim, para as simulações foi utilizado o custo de $W_p = US\$9,25$.

Tabela 3: Custos totais para o sistema

	Custo Total US\$
Painéis Fotovoltaicos	45002,62
Perdas do Sistema	3103,66
TOTAL	48106,28

5. Considerações Finais

Este trabalho apresentou um modelo matemático escrito através de um problema quadrático inteiro misto para a alocação de sistemas solares fotovoltaicos para sistemas autônomos em corrente contínua, sendo resolvido através da otimização clássica com o algoritmo de B&B através do solver CPLEX, utilizando uma estratégia para redução do espaço de busca, onde a solução encontrada de um "gap" de 9,54% em um tempo de 114 minutos. Portanto, o uso do EBCR contribuiu significativamente para diminuir o esforço computacional, pois ocasionou a diminuição do número de restrições e variáveis. A solução obtida contribui para a viabilidade da implantação de microrredes em cc utilizando a geração de energia através de geradores solares fotovoltaicos, pois a alocação de sistemas solares fotovoltaicos em pontos específicos proporciona a facilidade e agilidade para a sua manutenção do sistema autônomo, assim como diminuição de custos. Cabe salientar, que o caso proposto neste artigo vem ao encontro da recente legislação da ANEEL que estabelece a responsabilidade da iluminação pública aos agentes municipais, que deverão fazer a manutenção do sistema.

6. Agradecimentos

À UNEMAT pelo apoio para qualificação de doutorado, à CAPES pelo apoio através de bolsa de estudos, à UNESP pelo espaço concedido a pesquisa.

Referências

Becker, D.J.; Sonnenberg, B.J. Dc microgrids in buildings and data centers. In *Telecommunications Energy Conference (INTELEC), 2011 IEEE 33rd International*, pages 1 –7. doi: 10.1109/INTLEC, 2011.

Ben (Balanço Energético Brasileiro). Empresa de Pesquisa Energética, Rio de Janeiro, 57 p., disponível em www.ben.epe.gov.br, 2012.

Engelen, K.; Leung Shun, E.; Vermeyen, P.; Pardon, I.; D'hulst, R.; Driesen, J.; Belmans, R. The feasibility of small-scale residential dc distribution systems. In *IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on*, pages 2618 –2623, nov. 2006. doi: 10.1109/IECON,2006.

Kakigano, H.; Miura, Y.; Ise, T. Low-voltage bipolar-type dc microgrid for super high quality distribution. *Power Electronics, IEEE Transactions on*, pag. 3066 –3075. ISSN 0885-8993. doi: 10.1109/TPEL, 2010.

Ministério de Minas e Energia, "Nota Técnica: Análise da Inserção da Geração Solar na Matriz Elétrica Brasileira," p.64, 2012.

Rendón, R. G., Zuluaga, A. E. e Romero, R. L. "Programação Linear Inteira," p. 251, 2007. **Scheer, H,** 2009; "Economia Solar Global. Estratégia para Modernidade Ecológica", CRESESB-CEPEL, Rio de Janeiro, 2002

Salomonsson, D.; Soder, L. Comparison of different solutions for emergency and standby power systems for commercial consumers. In *Telecommunications Energy Conference*, 2006.

Salomonsson, D.; Sannino, A. Load modelling for steady-state and transient analysis of lowvoltage dc systems. *Electric Power Applications, IET*, 1(5):690 –696, set. 2007b. ISSN 1751-8660. doi: 10.1049/iet-epa:20060418, 2007.

Salomonsson, D.; Soder, L.; Sannino, A. An adaptive control system for a dc microgrid for data centers. *Industry Applications, IEEE Transactions on*, 44(6):1910 –1917, nov.-dez. 2008. ISSN 0093-9994. doi: 10.1109/TIA.2008.2006398, 2008.

Sannino, A.; Postiglione, G.; Bollen, M.H.J. Feasibility of a dc network for commercial facilities. *Industry Applications, IEEE Transactions on*, 39(5):1499 – 1507, set.-out. 2003. ISSN 0093-9994. doi: 10.1109/TIA.2003.816517, 2003.

Silva, E. F. Planejamento Estocástico da Expansão da Rede de Transmissão de Energia Elétrica Multiestágio considerando Restrições de Segurança. Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Ilha Solteira, 2013.

Todd, B., 2009; "DC microgrids: a new source of local power generation?", Renewable Energy Focus. Acessado em 18.11. 2012: http://www.renewableenergyfocus.com.