Water Consumption Analysis and Prediction Using Machine Learning

Introduction

This report summarizes the analysis of water consumption data, focusing on predicting current charges, identifying patterns through clustering, and conducting time series analysis. The objective is to explore the interrelationships among features while employing various statistical and machine learning techniques.

Abstract

Focus:

Integrating IoT, machine learning, and cloud infrastructure for optimized water governance.

Goals:

Optimize water distribution.

Reduce waste and improve accountability.

Enable real-time monitoring and predictive analytics

Dataset Overview

The dataset comprises **50,315** entries with **25 columns**, including features related to water consumption, charges, and account details. Key attributes include:

- Consumption (HCF): The volume of water consumed.
- Current Charges: The billing amount associated with consumption.
- **Estimated**: Indicates whether a charge is estimated.
- Cluster: Derived from K-Means clustering to segment data.

High Level Architecture

Gantt Chart

12/16/24	12/23/24	12/30/24	1/6/25	1/13/25	1/20/25	1/27/25	2/3/25	• Today
					Set Up Stream	mlit Environ		
						Integrate M	L Models into	
							Test	t, Debug, &
				Export Mode	s & Prepare			
			Evaluate & O	ptimize Mod				
		Train Machine	Learning M					
	Understand t	he Data Thr						
Finalize ML N	Models & Pre							

Methodology

1. Data Cleaning:

- Addressed missing values and formatted date fields.
- o Introduced new features such as Consumption per day to enhance analysis.

2. Exploratory Data Analysis (EDA):

- Visualized data distributions and relationships.
- o Generated a correlation matrix to understand feature interdependencies.

Parameters/Features

#	Column	Non-Null Count	Dtype
0	Development Name	50255 non-null	object
1	Borough	50315 non-null	object
2	Account Name	50315 non-null	object
3	Location	49487 non-null	object
4	Meter AMR	49805 non-null	object
5	Meter Scope	12782 non-null	object
6	TDS #	50255 non-null	float64
7	EDP	50315 non-null	int64
8	RC Code	50315 non-null	object
9	Funding Source	50239 non-null	object
10	AMP #	50193 non-null	object
11	Vendor Name	50315 non-null	object
12	UMIS BILL ID	50315 non-null	int64
13	Revenue Month	50315 non-null	object
14	Service Start Date	50308 non-null	object
15	Service End Date	50308 non-null	object
16	# days	50308 non-null	float64
17	Meter Number	50315 non-null	object
18	Estimated	50315 non-null	object
19	Current Charges	50315 non-null	float64
20	Rate Class	50279 non-null	object
21	Bill Analyzed	50315 non-null	object
22	Consumption (HCF)	50315 non-null	int64
23	Water&Sewer Charges	50315 non-null	float64
24	Other Charges	50315 non-null	float64

Handle Missing Values

```
missing_counts = data.isnull().sum()
print("Missing values per column:\n", missing_counts[missing_counts > 0])
```

Missing values per column: Development Name 60 Location 828 Meter AMR 510 37533 Meter Scope TDS # 60 Funding Source 76 AMP # 122 Service Start Date 7 7 Service End Date 7 # days Rate Class 36 dtype: int64

After replacing missing and NaN values

```
# Verify that there are no more missing values
print("Missing values after imputation:\n", data.isnull().sum().sum())
```

Missing values after imputation:

Visualizations

Histogram of Water Consumption

Monthly Consumption Trends

Correlation Matrix of Numerical features

3. Modeling Approaches:

- Linear Regression
- Random Forest
- Gradient Boosting
- Support Vector Machine

Linear Regression

Model Overview:

Predicting Current Charges using Consumption (HCF).

Fitted LinearRegression() model.

Evaluation Metrics:

R-squared: 0.735

Mean Squared Error (MSE): 10322.455

Mean Absolute Error (MAE): 64.767

Insights:

Linear Regression struggles to capture data complexities, showing the lowest R² and highest errors. It may be useful as a baseline model but lacks the predictive power of other approaches.

Random Forest

Model Overview:

Predicting Current Charges using Consumption (HCF). Fitted RandomForestRegressor() model.

Evaluation Metrics:

- R-squared: 0.982
- Mean Squared Error (MSE): 708.090
- Mean Absolute Error (MAE): 5.069

Insights:

The Random Forest model provides strong predictive accuracy with a high R² score, indicating a good fit. Minimal error suggests robust generalization.

Gradient Boosting

Model Overview: Prodicting Current Ch

Predicting Current Charges using Consumption (HCF).

Fitted GradientBoostingRegressor() model.

Evaluation Metrics:

- R-squared: 0.983
- Mean Squared Error (MSE): 653.342
- Mean Absolute Error (MAE): 6.523

Insights:

Gradient Boosting achieves the best performance among tested models, slightly outperforming Random Forest. It captures complex patterns well but may require tuning to reduce slight MAE increase.

Support Vector Machine

Support Vector Machine

Model Overview: Predicting Current Charges using Consumption (HCF). Fitted SVR() model.

Evaluation Metrics:

• R-squared: 0.905

• Mean Squared Error (MSE): 3687.852

• Mean Absolute Error (MAE): 24.480

Insights:

SVM exhibits lower predictive power compared to ensemble models, with a notable increase in error. It may benefit from kernel tuning and hyperparameter optimization.

R-squared, MSE, and MAE for Models

Random Forest Results:

R-squared: 0.982

Mean Squared Error: 708.090
Mean Absolute Error: 5.069

Gradient Boosting Results:

R-squared: 0.983

Mean Squared Error: 653.342 Mean Absolute Error: 6.523

Support Vector Machine Results:

R-squared: 0.905

Mean Squared Error: 3687.852 Mean Absolute Error: 24.480

Linear Regression Results:

R-squared: 0.735

Mean Squared Error: 10322.455
Mean Absolute Error: 64.767

Best Model

The best performing model is: Gradient Boosting With MSE: 653.34 and R-squared: 0.98

Recommendations

- 1. **Model Enhancement**: Consider using more advanced regression techniques (e.g., Ridge, Lasso, and ensemble methods) to improve predictions, especially for high-charge scenarios.
- 2. **Feature Engineering**: Introduce additional features, such as demographic information or weather data, to enrich the dataset and improve model performance.
- 3. **Imbalance Handling**: Address class imbalance in the target variable through techniques like SMOTE to enhance decision tree performance.
- 4. **Further Analysis**: Conduct additional clustering analyses or segmentation strategies to gain insights into different consumer behaviors and preferences.

Conclusion

Summary:

- Successfully built predictive models including Linear Regression, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
- Applied **ensemble learning** for improved accuracy and **evaluated model performance** using multiple metrics.

Impact:

- Provides insights into consumption patterns, charge prediction, and potential cost optimizations.
- Helps in identifying anomalies and forecasting future usage trends.
- Can support smart city initiatives for efficient water resource management and governance.