# Data Structures Binary Tree Formulas

Mostafa S. Ibrahim
Teaching, Training and Coaching since more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)



### Perfect Tree: Find the # of nodes from the height!

- Each level (0-based) has 2<sup>level</sup> nodes (2 \* previous level nodes).
- For N levels:  $2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{level} = 2^{levels} 1 = 2^{h+1} 1$  nodes



### Perfect Tree: Find the # of nodes from the height!

- We can derive this <u>mathematically</u>
- First recall the power <u>rule</u> for logarithms

$$\log_b\left(M^n\right) = n\log_b M$$

• Also recall  $\log_2^2 = 1$ 

$$n = 2^{h+1} - 1$$

$$n + 1 = 2^{h+1}$$

$$\lg(n+1) = h + 1$$

$$h = \lg(n+1) - 1$$

#### <u>Facts</u>

- We can derive *upper and lower* bounds of a normal tree from the perfect tree
  - This is because we know every level is complete; i.e. you CAN'T have fewer levels!
- In any binary tree:
- Each level has a max of 2<sup>h</sup> nodes
- For L levels. No more than 2<sup>L</sup> 1 nodes
- For N nodes, the min # of levels is: ceil( log(N+1) )
  - 1 Node  $\Rightarrow$  1, 3 Nodes  $\Rightarrow$  2, 7 Nodes  $\Rightarrow$  3, 15 Nodes  $\Rightarrow$  4 (these are in perfect cases)
- For M leaves, the min # of levels is: ceil(log M) + 1
  - 1 leaves  $\Rightarrow$  1, 2 leaves  $\Rightarrow$  2, 4 leaves  $\Rightarrow$  3, 8 leaves  $\Rightarrow$  4, 16 leaves  $\Rightarrow$  5

## The logarithm

- Observe how the log has a very small value
- This means, we can have a tree of 1 million nodes, but its height can be:
  - ~ 1 million with degenerate tree
  - ~20 only if it is perfect or complete
- In balanced trees (e.g. AVL / red-black), we put constraints that help us have such controlled height, rather than allowing the uncontrolled chaos of a very deep and unbalanced tree

|      |    |         | Log | Number  |
|------|----|---------|-----|---------|
| 2 0  | =  | 1       | 0   | 1       |
| 2 1  | 20 | 2       | 1   | 2       |
| 2 2  | •  | 4       | 2   | 4       |
| 2 3  | =  | 8       | 3   | 8       |
| 2 4  | =  | 16      | 4   | 16      |
| 2 5  | =  | 32      | 5   | 32      |
| 2 6  | =  | 64      | 6   | 64      |
| 2 7  | =  | 128     | 7   | 128     |
| 2 8  | =  | 256     | 8   | 256     |
| 29   | =  | 512     | 9   | 512     |
| 2 10 | =  | 1024    | 10  | 1024    |
| 211  | =  | 2048    | 11  | 2048    |
| 2 12 | =  | 4096    | 12  | 4096    |
| 213  | =  | 8192    | 13  | 8 192   |
| 214  | •  | 16384   | 14  | 16384   |
| 2 15 | =  | 32768   | 15  | 32768   |
| 2 16 | =  | 65536   | 16  | 65536   |
| 2 17 | =  | 131072  | 17  | 131072  |
| 218  | =  | 262144  | 18  | 262144  |
| 2 19 | =  | 524288  | 19  | 524288  |
| 2 20 | =  | 1048576 | 20  | 1048576 |

### How many unlabeled binary trees of 3 nodes?

- All 5 trees below can be drawn using just 3 nodes
- So, in general, for any number of nodes n, how many unlabeled binary trees are there?



# How many unlabeled binary trees of n nodes?

- The answer is a very interesting mathematical number!
- The Catalan Number (wiki has a lot of facts)
  - You don't need to know why

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)! \, n!}$$

# How many labeled binary trees of n nodes?

- Given a single tree of n nodes, we can label it in n! ways!
- So the answer is Catlan(n) \* n!

$$\frac{1}{n+1} \binom{2n}{n} \times n! = \frac{(2n)!}{(n+1)!}$$



"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."