ROW EQUIVALENT AUGMENTED MATRICES

A general system of m linear equations in n unknowns $x_1, x_2, ..., x_n$ can be written as

$$a_{11}x_{1} + a_{12}x_{2} + \ldots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \ldots + a_{2n}x_{n} = b_{2}$$

$$\ldots \qquad (1)$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \ldots + a_{mn}x_{n} = b_{m}$$

where $a_{i\ j}$ and b_{j} for $i=1,2,\cdots,m;\ j=1,2,\cdots n$ are constants. These numbers $a_{i\ j}$ are called the *coefficients of the system*. The system (1) is known as "*Non-homogeneous System of Linear Equations*".

If each b_i in (1) is zero, the system becomes:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$$

$$\ldots \qquad (2)$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$$

The system of equations (2) is called the "Homogeneous System of Linear Equations". A sequence of n numbers s_1 , s_2 , s_3 , ... s_n , for which (1) is satisfied when we substitute $x_1 = s_1$, $x_2 = s_2$, ..., $x_n = s_n$, is called a solution of (1). The set of all such solutions is called solution set or the general solution of (1).

Matrix Notation of System of Linear Equations

Using the matrix notation, the linear system (1) may be written as:

$$A \mathbf{x} = \mathbf{b} \tag{3}$$

where A, x and b are matrices given by:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

The matrix A is called the system matrix, the right side constants b_i form a column vector \mathbf{b} and the unknowns x_i form the column vector \mathbf{x} .

The matrix
$$A_b = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{mn} \end{bmatrix}$$

is called the *augmented matrix* of the system (1). We see that A_b is obtained by augmenting the matrix A by column vector b. The matrix A_b determines the system (1) completely, because it contains all the given numbers appearing in (1). The unknowns x_i are immaterial because instead of x_i if we use some other variable, the solution of the system will not change.

Let A_b be the augmented matrix for the system of equations (1) and C_d be its row equivalent matrix, obtained by the following three operations:

- (i) Any two equations of (1) are interchanged. This is shown by writing R_{ij} .
- (ii) Any equation of (1) is multiplied by a non-zero constant. This is shown by writing c R_i .
- (iii) A constant multiple of an equation (1) is added to another equation. This is shown by writing $R_i + c R_j$.

The three operations listed above are called *elementary* operations for the system (1). The resulting system of equations will be equivalent to the previous one, and therefore have the same solution. Thus by transforming the augmented matrix A_b into row equivalent augmented matrix C_d , we can easily solve the given system of equations. The two methods namely:

(i) GAUS'S Elimination Method and

(ii) GAUS'S-JORDAN Methods

are used to solve the system (1). These methods are known as "Direct Methods" or "Analytic Methods."

Gauss Elimination Method

One of the several methods employed to solve a system of m linear equations in n variables, is known as Gaussian elimination method named after its inventor, the famous German mathematician Carl Friedrich Gauss (1777-1855). Let us consider the linear system (1)

In matrix form it can be expressed as Ax = b, where A is the matrix of coefficients of order $m \times n$, x and b are column matrices/vectors of order $n \times 1$ and $m \times 1$ respectively. The following four steps can be applied to solve a system using Gauss's elimination method.

- **Step1.** Change the system of linear equations to the form Ax = b.
- **Step2.** Form the augmented coefficient matrix A_b by including the elements of \boldsymbol{b} as anextra column in the matrix A.
- **Step3.** Convert the augmented matrix into echelon form by using elementary row operations.
- **Step4.** Find x by detaching the fourth column back to its original position on the right hand side of the matrix equation Ax = b. This procedure is known as "Backward Substitution".

NOTE:

- (i) A system Ax = b is called *over-determined* if it has more equations than unknowns i.e. m > n, *determined* if the number of equations is equal to the number of unknowns, i.e. m = n and *underdetermined* if Ax = b has fewer equations than unknowns i.e. m < n.
- (ii) When an augmented matrix is written in the row echelon form, the variables corresponding to the first non-zero elements (or leading elements) in each row are called *leading or pivotal variables*. All

other variables are called free or non-leading variables.

- (iii) If m = n and $|A| \neq 0$, then system (1) can be solved by
 - (a) Cramer's rule discussed in Chapter 3.
 - **(b)** Using the inverse matrix method $x = A^{-1}b$.

EXAMPLE 01: Use Gauss's elimination method to solve the system of linear equations (m = n)

$$x_1 + 5 x_2 + 2 x_3 = 9$$

 $x_1 + x_2 + 7 x_3 = 6$
 $x_2 + 4 x_3 = -2$

Solution:

Step 1. We change the system of linear equations in matrix form Ax = b.

$$A = \begin{bmatrix} 1 & 5 & 2 \\ 1 & 1 & 7 \\ 0 & -3 & 4 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } b = \begin{bmatrix} 9 \\ 6 \\ -2 \end{bmatrix}.$$

Step2. We form the augmented coefficient matrix A_b by including the constants, an extra column in the matrix.

$$A_b = \begin{bmatrix} 1 & 5 & 2 & 9 \\ 1 & 1 & 7 & 6 \\ 0 & -3 & 4 & -2 \end{bmatrix}$$

Step3. We convert this augmented coefficient matrix into an *echelon form* using elementary row operations.

$$A_{b} = \begin{bmatrix} 1 & 5 & 2 & 9 \\ 1 & 1 & 7 & 6 \\ 0 & -3 & 4 & -2 \end{bmatrix} R_{2} + (-1)R_{1} \approx \begin{bmatrix} 1 & 5 & 2 & 9 \\ 0 & -4 & 5 & -3 \\ 0 & -3 & 4 & -2 \end{bmatrix} R_{3} + (-1)R_{2}$$

$$\approx \begin{bmatrix} 1 & 5 & 2 & 9 \\ 0 & -4 & 5 & -3 \\ 0 & 1 & -1 & 1 \end{bmatrix} R_{2} + 4R_{3} \approx \begin{bmatrix} 1 & 5 & 2 & 9 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix} R_{23}$$

$$\approx \begin{bmatrix} 1 & 5 & 2 & 9 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Step4. Find x by detaching the fourth column back to its original position on the right hand side of the matrix equation Ax = b.

$$\begin{bmatrix} 1 & 5 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ 1 \end{bmatrix}.$$

$$x_1 + 5 x_2 + 2 x_3 = 9$$
 (i)
 $x_2 - x_3 = 1$ (ii)
 $x_3 = -1$ (iii)

From (iii), we get $x_3 = 1$. Substituting $x_3 = 1$ into (ii), we get $x_2 - 1 = 1 \Rightarrow x_2 = 2$ · Now put $x_3 = 1$ and $x_2 = 2$ in (i), we get $x_1 = 3$ ·

Thus, the required solution of the given system of equations is: $x_1 = 3$, $x_2 = 2$, $x_3 = 1$.