KryptoMagick

Services

- Ancient Egyptian Language Services
- Cryptologic Services
- Research and Development
- Language Services

Inventions

- Egyptian Star Code Generator
- Book of Mormon Cryptanalysis Tool
- Slip Public Key Algorithm
- Q'loQ Public Key Algorithm
- Cube Card Cipher

Inventions

- Purple Hand Cipher
- DarkCastle File Encryption Algorithm
- Kryptographic Music

Qualifications

- Technological skills
- Modular Arithmetic

Mission

- To research and discover hidden messages in the fabric of existence using ancient methods
- To decipher Ancient codes

Pitch

- KryptoMagick offers the chance to discover the connections between our past, present and nature
- Natural Magick is the key

Discoveries

- Supposed text of A the Moon Goddess
- Supposed text of Q the Dream Goddess
- Supposed additions to the Egyptian Book of the Dead

Egyptian Star Code Generator

An algorithm to map the stars in the sky

Book of Mormon Cryptanalysis Tool

- A program to unmask the Egyptian history contained within the cipher text of the Mormon text
- 2 Nephi Chapter 25:1

Slip Public Key Algorithm

 Introduction of the concept of the Secret Modulus

Q'loQ Public Key Algorithm

Introduction of the Modulus and the Mask

Cube Card Cipher

 Card Cipher resembling ciphering machines of the past

DarkCastle

DarkCastle

File Encryption Program

Application Purpose

- To help me learn how to construct cryptographic primitives
- Provide secure file storage against real world adversaries
- To allow secure communication between two parties

Design Goals

- To resist real world adversaries
- To allow fast file encryption arbitrary file sizes
- To detect tampering of messages
- To offer only Quantum safe key sizes for symmetric key algorithms
- To utilize no external libraries (sigh!)

Application Features

- Secure storage of files or transfer of messages
- Fast file encryption
- File tampering detection
- Sender/Receiver tampering detection

Language/Libraries

- Written in C
- OpenSSL BigNum Library and PRNG used for public key cryptography

Project History

- First commit in 2017
- Reached version 1.0 milestone in 2020

Project Phases

- Symmetric encryption of files + passphrase
- Symmetric encryption of files + message authentication + passphrase
- Symmetric encryption of files + message authentication + sender authentication + passphrase protected public keys

Symmetric Primitives Used

- Dark (Stream) 256-bit
- Uvajda (Stream) 256-bit
- Spock (Block) 256-bit
- Amagus (Stream) 256/512/1024-bit
- Q'apla (Stream) 256-bit
- ZanderFish2 (Block) 256-bit
- ZanderFish3 (Block) 256/512/1024-bit

Hash/HMAC/KDF Primitives Used

- Ganja 256-bit Hash/HMAC
- Manja KDF
- Spock (Block 128-bit block size) 256-bit
- Amagus (Stream) 256/512/1024-bit
- Q'apla (Stream) 256-bit
- ZanderFish2 (Block 128-bit block size) 256-bit
- ZanderFish3 (Block 256-bit block size) 256/512/1024-bit

Public Key Algorithm Used

Q'loQ RSA 3072-bit

How Does It Work?

- Alice and Bob run `castle-keygen` to set a passphrase to with which to lock their private key and generate their public keys
- Alice and Bob exchange .pk files
- Alice and Bob agree to use the Uvajda cipher
- Alice types a letter to Bob and encrypts and signs it using DarkCastle `castle uvajda -e letter letter.encrypted Alice.pk Alice.sk`
- Bob receives the encrypted message and decrypts it using DarkCastle `castle uvajda -d letter.encrypted message.from.alice Bob.sk Bob.pk`

What about Evil Eve?

- If Eve intercepts the message between Alice and Bob and attempts to alter the message body. The alteration will be detected by Manja before decryption is attempted.
- If Eve attempts to forge a digital signature from Bob, DarkCastle will defend you and inform you that the message is not from who you think it is.

Statistical Testing

 All DarkCastle algorithms pass industry standard statistical tests including tests from NIST

Cryptanalysis

No publicly known attacks

Research Resources

- Coursera
- IACR
- Christof Parr Course Videos on Youtube
- RSA Conference Videos
- Lectures by Dan Boneh
- MIT OpenCourseWare, lectures by Rivest, Goldwasser and Vaikunatunathan

Research Resources (Books)

- Applied Cryptography
- Handbook of Applied Cryptography
- The Design of Rijndael

Additional Services

 Cipher design (1-3 months) {depending on the desired security level}