An operator A on E is called [strictly] dispersive if A is [strictly] N^+ -dissipative; that is, for every $f \in D(A)$ one has $Af, \phi \ge 0$ for some [resp., all] $\phi \in dN^+(f)$ (see A-II,Sec.2). Generators of positive contraction semigroups are characterized by the following theorem which is due to Phillips (1962).

Theorem 1.2. Let A be a densely defined operator on a real Banach lattice E. The following assertions are equivalent.

- (i) A is the generator of a positive contraction semigroup.
- (ii) A is dispersive and (λ -A) is surjective for some λ > 0 .

Frequently an operator is known explicitly only on a core. In that case one can use the following result.

Corollary 1.3. Let A be a densely defined dispersive operator on a real Banach lattice E . If $(\lambda - A)D(A)$ is dense in E for some $\lambda > 0$, then A is closable and the closure \overline{A} of A is the generator of a positive contraction semigroup.

Theorem 1.2 and Corollary 1.3 immediately follow from A-II, Thm.2.11 and A-II, Cor.2.12 if one observes the following.

<u>Lemma</u> 1.4. A bounded linear operator T on a Banach lattice E is a positive contraction if and only if $\|(Tf)^+\| \le \|f^+\|$ for all $f \in E$ (i.e., if T is N⁺-contractive).

Proof of the lemma. If T is a positive contraction, then $0 \le (Tf)^+ \le Tf^+$ and so $N^+(Tf) \le \|Tf^+\| \le \|f^+\| = N^+(f)$ for all $f \in E$. Conversely, assume that T is an N^+ -contraction. Let $f \ge 0$. Then $\|(Tf)^-\| = N^+(T(-f)) \le N^+(-f) = \|f^-\| = 0$. Hence $(Tf)^- = 0$; i.e., $Tf \ge 0$. We have proved that T is positive. In particular, $|Tf| \le T|f|$ for all $f \in E$. Hence $\|Tf\| = \||Tf|\| \le \|T|f\| = N^+(T|f|) \le N^+(|f|) = \|f\|$ for all $f \in E$. So T is a contraction.

Examples 1.5. a) Consider the second derivative with Dirichlet boundary condition on $E = C_0(0,1)$; i.e., we let Af = f'' with domain $D(A) = \{f \in C^2[0,1] : f(0) = f(1) = f''(0) = f''(1) = 0\}$. A is dispersive. In fact, let $f \in D(A)$. Then there exists $x \in (0,1)$ such that $f(x) = \sup_{y \in [0,1]} f(y) = \|f^{\dagger}\|_{\infty}$. Thus $\delta_x \in dN^{\dagger}(f)$. But $\langle Af, \delta_x \rangle = f''(x) \leq 0$ since f has a maximum in x. Let $g \in E$. Define $f_0(x) = 1/2$ [$e^x \int_x^1 e^{-y} g(y) \, dy - e^{-x} \int_x^1 e^y g(y) \, dy$].