IMS 2010/2011(řádný) - H3

Mějme rovnice:

$$2 \cdot y'' - z = x$$

$$z'' - z - 2 \cdot y' = 0$$

Kde x = 4 je konstantní vstup; počáteční podmínky: z(0) = 1, ostatní = 0

- Převeďte metodou snižování řádu derivace na soustavu rovnic prvního řádu a nakreslete blokové schéma.
- Napište vzorec pro Eulerovu metodu numerické integrace (chybí = 0 bodů).
- Vypočtěte (podle algoritmu řízení spojité simulace s Eulerovou metodou) první dva kroky délky h=2. Výsledky (po řádné kontrole) zapište do následující tabulky (jinak 0b):

čas	Z "	z'	Z	y"	y'	У
0						
2						
4						

Snižování řádu derivace

$$2 \cdot y'' - z = x$$

$$z''-z-2\cdot y'=0$$

$$y'' = \frac{1}{2} \cdot (x+z)$$

$$y' = \int y''$$

$$y = \int y'$$

$$z'' = z + 2 \cdot y'$$

$$z' = \int z''$$

$$z = \int y'$$

Blokové schéma (1)

$$y'' = \frac{1}{2} \cdot (x+z)$$

Blokové schéma (2)

$$z''=z+2\cdot y'$$

Blokové schéma (poč. podm: z(0) = 1, ostatní(0) = 0)

Eulerova metoda (t = 0)

• vzorec:
$$y(t+h)=y(t)+h\cdot f(t,y(t))$$

 $pozn: f(t,y(t))=y'(t)$

• Počáteční podmínky: x = 4, y = 0, z = 1, y' = 0, z' = 0

$$y'' = \frac{1}{2} \cdot (x+z) = \frac{1}{2} \cdot (4+1) = 2.5$$
$$z'' = z+2 \cdot y' = 1+2 \cdot 0 = 1$$

čas	Z "	z'	Z	y"	y'	У
0	1	0	1	2.5	0	0
2						
4						

Eulerova metoda (t = 2)

$$y(2) = y(0) + h \cdot y'(0) = 0 + 2 \cdot 0 = 0$$

$$y'(2) = y'(0) + h \cdot y''(0) = 0 + 2 \cdot 2.5 = 5$$

$$z(2) = z(0) + h \cdot z'(0) = 1 + 2 \cdot 0 = 1$$

$$z'(2) = z'(0) + h \cdot z''(0) = 0 + 2 \cdot 1 = 2$$

$$y''(2) = \frac{1}{2} \cdot (x(2) + z(2)) = \frac{1}{2} \cdot (4 + 1) = 2.5$$

$$z''(2) = z(2) + 2 \cdot y'(2) = 1 + 2 \cdot 5 = 11$$

čas	Z "	z'	Z	y"	y'	У
0	1	0	1	2.5	0	0
2	11	2	1	2.5	5	0
4						

Eulerova metoda (t = 4)

$$y(4) = y(2) + h \cdot y'(2) = 0 + 2 \cdot 5 = 10$$

$$y'(4) = y'(2) + h \cdot y''(2) = 5 + 2 \cdot 2 \cdot 5 = 10$$

$$z(4) = z(2) + h \cdot z'(2) = 1 + 2 \cdot 2 = 5$$

$$z'(4) = z'(2) + h \cdot z''(2) = 2 + 2 \cdot 11 = 24$$

$$y''(4) = \frac{1}{2} \cdot (x(4) + z(4)) = \frac{1}{2} \cdot (4 + 5) = 4.5$$

$$z''(4) = z(4) + 2 \cdot y'(4) = 5 + 2 \cdot 10 = 25$$

čas	Z "	z'	Z	y"	y'	У
0	1	0	1	2.5	0	0
2	11	2	1	2.5	5	0
4	25	24	5	4.5	10	10