燃烧热的测定

禤科材

(中国科学技术大学化学与材料科学学院,安徽合肥 230026)

摘 要 有机物完全燃烧时,会放出大量热量。本次实验用氧弹测定萘的燃烧热。氧弹具有操作方便,结果准确等优点。在恒容容器中通入氧气使萘完全燃烧,用热容已知的介质将热量完全吸收,通过测量该介质的温度变化即可得出较为准确的燃烧热数值。同时,实验还通过雷诺图校正减小了环境热交换对结果的影响。

关键字 氧弹量热法、苯甲酸、萘

Determination of Combustion Heat of Naphthalene by Oxygen Bomb Calorimeter

Xuan Kecai

(School of Chemistry and Material Science, USTC, Hefei 230026, China)

Abstract When organic matter is completely burned, it will release a lot of heat. In this experiment, the combustion heat of naphthalene was measured by oxygen bomb. The oxygen bomb has the advantages of convenient operation and accurate results. Oxygen is introduced into the constant volume container to completely burn naphthalene, and the heat is completely absorbed by a medium with known heat capacity. A more accurate combustion heat value can be obtained by measuring the temperature change of the medium. At the same time, the influence of environmental heat exchange on the results is reduced by renogram correction.

Keywords Oxygen bomb calorimetry; benzoic acid; naphthalene

1 序言

热力学中,反应热一直是一个重要却难以测量的物理量。由已知反应的热效应,通过 Hess 定律可以计算出许多难以测定反应热的反应的热效应。燃烧热是反应热的一种,通过弹式量热计 我们可以较为方便的测量燃烧热。 $^{[1]}$ 由热力学第一定律,恒容热效应 Q_V 与恒压热效应 Q_P 有 如下关系 $^{[2]}$

$$Q_P = Q_V + \Delta nRT \tag{1.1}$$

实验日期: 2022 年 12 月 9 日

作者简介: 禤科材 (2002-), 男, 学号 PB20030874, 中国科学技术大学本科在读, 专业方向为化学物理

联系方式: 电话 18108064415, 邮箱 ustcxkc@mail.ustc.edu.cn

其中 Δn 为反应前后气态物质的物质的量之差,R 为气体摩尔常数,T 为反应环境的开尔文温度。

本实验中使用恒温氧弹量热计测量等容燃烧热,燃烧的引线为 Cu-Ni 合金丝,恒温氧弹量热计的热容为

$$C_{\text{\colored}} = \frac{Q}{\Delta T} = \frac{mQ_V - 3242m_{\colored}}{\Delta T} \tag{1.2}$$

通过用标准物质苯甲酸对装置热熔进行标定,我们可以算出目标燃烧物的燃烧热。

2 实验

2.1 试剂与仪器

苯甲酸(AR, 国药集团化学试剂有限公司),萘(AR, 国药集团化学试剂有限公司)等。 HR-15B型氧弹式量热计(南京南大万和科技有限公司)、NTY-10A型数字式千分温度计 (南京南大万和科技有限公司)、BH-IIS型燃烧热数据采集接口装置(南京南大万和科技有限公司)、SQP型电子分析天平(Sartorius)、769YP-15A粉末压片机(天津市科器高新技术公司)、MF500B型万用表(上海第四电表厂有限公司)、移液管、洗耳球等。

2.2 实验方法

2.2.1 测量实验体系的热容

- (1) 样品压片:用分析天平称量约 0.8g 苯甲酸。用直尺量取一根长度约为 20cm 的细 Cu-Ni 合金丝,并准确称量其质量。将金属丝与苯甲酸放入模具中,在 0.8~1MPa 下压片。将压片固定在氧弹内。
- (2) 搭建装置和测量:向氧弹中充入高压氧气,在水槽中加入 3000.00mL 水,放入氧弹式量热计,调节温度使内层温度比外层温度低 0.78~0.80°C,点火,测量水温变化。
 - (3) 称量检查: 取出氧弹并放气,观察苯甲酸是否燃烧尽,称量剩余合金丝的质量。

2.2.2 测量萘的燃烧热

重复 2.2.1 节的实验步骤,将 0.8g 苯甲酸换为 0.6g 萘,将压片压力换为 0.5MPa。

3 结果与讨论

3.1 实验结果

图 3.1 和图 3.2 分别为苯甲酸和萘燃烧时体系的温度变化曲线。

图 3.1: 苯甲酸燃烧的温度-时间曲线

图 3.2: 萘燃烧的温度-时间曲线

经计算可得反应体系的热熔为 $C=-1.457\times 10^4$ J/K,萘的等容热效应为 $Q_V=-5185.58$ kJ/mol,等压热效应为 $Q_P=-5190.58$ kJ/mol。故萘的燃烧热为 5190.58 kJ/mol,与理论值 5153.9 kJ/mol相比,相对误差为 0.71%。

3.2 误差分析

3.2.1 系统误差

- (1) 萘易升华,实际燃烧质量会偏少。
- (2) 温度计等仪器有精度误差。
- (3) 实验仪器无法做到完全绝热,导致实验结果与理论值有偏差。
- (4) 实际气体仅近似满足理想气体状态方程,会与理论结果有偏差。
- (5) 压片由固态燃烧变为二氧化碳气体和液态水,有体积改变。

3.2.2 偶然误差

- (1) 固定压片时会有细小粉末从压片上脱落,造成实际燃烧质量偏少。
- (2) 合金丝融化为小球状并黏附在金属杆上,难以完整取出,质量测量不够准确。

3.3 实验拓展

任冬梅等人^[3] 针对实验中存在的点火成功率较低的问题,从引线材质,待测物质的理化性质等方面进行分析与改进,将实验成功率提高了 23%,实验的平均相对标准偏差为 3.2%,提高了实验效率与结果精度。

4 结语

本实验通过氧弹量热计测定萘的燃烧热,通过实验测得反应体系的热容为 $C=-1.457\times 10^4 \mathrm{J/K}$,萘的等容热效应为 $Q_V=-5185.58~\mathrm{kJ/mol}$,等压热效应为 $Q_P=-5190.58\mathrm{kJ/mol}$ 。因此,萘的燃烧热为 $5190.58\mathrm{kJ/mol}$,与理论值 $5153.9\mathrm{kJ/mol}$ 的相对误差为 0.71%。实验操作较为容易,但要注意固定金属丝以保证点火成功。此外,还搜索了可行的改进方案,使实验测定结果更为准确。

参考文献

- [1] 傅献彩, 沈文霞, 姚天扬等. 物理化学(第五版). 上册 [M]. 高等教育出版社, 2006.
- [2] 张祖德. 无机化学. 修订版 [M]. 中国科学技术大学出版社, 2010.
- [3] 任冬梅, 高鸽, 刘鑫, 赵岩, 夏云生, 包德才. "燃烧热测定"实验的改进 [J]. 科技创新与应用, 2017,35(25).

附件 实验数据处理 附件 I 实验记录原始数据

苯甲酸燃烧热的测定数据

苯甲酸质量: 0.8288g 金属丝质量: 0.0128g 压片质量: 0.8412g

残余金属丝质量: 0.0011g 反应前外套温度: 27.545°C 反应后外套温度: 27.623°C

萘燃烧热的测定数据

萘质量: 0.6083g

金属丝质量: 0.0143g 压片质量: 0.6198g

残余金属丝质量: 0.0042g 反应前外套温度: 27.627°C 反应后外套温度: 27.680°C

附件 II 实验数据处理

II.1 温度的校正

如图 3.1 和 3.2 所示是两种物质燃烧时外层温度随时间变化的曲线,取反应前后的温度分别做线性拟合,可以得到温度的校正值。

苯甲酸温度的校正

外界温度为

$$T = \frac{27.545 + 27.623}{2} = 27.584 \ (^{\circ}\text{C})$$

该温度对应的时间为 292s。分别取 0~225s 和 930~1300s 的数据进行线性拟合,得到

$$y = 0.000x + 26.727$$
$$y = 0.000x + 28.234$$

拟合的直线几乎水平。代入 x=292s,得到对应的温度值分别为 26.727° C 和 28.234° C。温差为 $\Delta T=1.507^{\circ}$ C。

萘温度的校正

外界温度为

$$T = \frac{27.627 + 27.680}{2} = 27.654 \; (^{\circ}\text{C})$$

该温度对应的时间为 254.5s。分别取 0~180s 和 850~1000s 的数据进行线性拟合,得到

$$y = 0.000x + 26.864$$
$$y = 0.000x + 28.525$$

拟合的直线几乎水平。代入 x=292s,得到对应的温度值分别为 26.864° C 和 28.525° C。温差为 $\Delta T=1.679^{\circ}$ C。

II.2 燃烧热的计算

用苯甲酸燃烧的等容热效应标定出装置的热容为

$$\begin{split} C_{\mbox{\ensuremath{\cancel{\&}}}} &= \frac{mQ_V - 3242 m_{\mbox{\ensuremath{\i}}\mbox{\ensuremath{\o}}\mbox{\ensuremath{\i}}\mbox{\ensuremath{\i}}\mbox{\ensuremath{\i}}\mbox{\ensuremath{\i}}\mbox{\ensuremath{\i}}\mbox{\ensuremath{\o$$

萘的摩尔质量为 128.18g/mol, 故萘的燃烧热的等容热效应为

$$\begin{split} Q_V &= \frac{C \\ \overline{\times} \\ \Xi \Delta T + 3242 \\ m_{ \begin{subarray}{c} \hline m \end{subarray}} \\ &= \frac{-1.457 \times 10^4 \times 1.679 + 3242 \times (0.0143 - 0.0042)}{0.6198 - 0.0143} \times 128.18 \times 10^{-3} \\ &= -5185.58 \text{ (kJ/mol)} \end{split}$$

由萘燃烧的化学反应方程式

$${\rm C_{10}H_8(s) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(l)}$$

得 $\Delta n = -2$,故萘燃烧的等压热效应为

$$\begin{split} Q_P &= Q_V + \Delta nRT \\ &= -5185.58 + (-2) \times 8.314 \times 10^{-3} \times (273.15 + 27.654) \\ &= -5190.58 \text{ (kJ/mol)} \end{split}$$

因此萘的燃烧热为 5190.58kJ/mol。萘的理论燃烧热为 5153.9kJ/mol,故相对误差为 0.71%。

附件 III 燃烧热仪器记录数据

表 1: 苯甲酸燃烧温度-时间原始数据

t(s)	T(°C)								
3	26.727	6	26.727	9	26.727	12	26.727	15	26.727
18	26.727	21	26.727	24	26.727	27	26.727	30	26.727
33	26.727	36	26.727	39	26.726	42	26.727	45	26.727
48	26.727	51	26.727	54	26.727	57	26.727	60	26.727
63	26.727	66	26.727	69	26.726	72	26.726	75	26.727
78	26.727	81	26.726	84	26.727	87	26.726	90	26.726
93	26.726	96	26.727	99	26.727	102	26.727	105	26.727
108	26.726	111	26.727	114	26.726	117	26.726	120	26.727
123	26.726	126	26.727	129	26.727	132	26.726	135	26.726
138	26.727	141	26.726	144	26.727	147	26.727	150	26.727
153	26.727	156	26.727	159	26.727	162	26.727	165	26.727
168	26.727	171	26.726	174	26.727	177	26.727	180	26.727
183	26.727	186	26.727	189	26.727	192	26.727	195	26.727
198	26.727	201	26.727	204	26.727	207	26.727	210	26.728
213	26.727	216	26.727	219	26.727	222	26.727	225	26.727
228	26.728	231	26.730	234	26.735	237	26.750	240	26.788
243	26.805	246	26.821	249	26.869	252	26.931	255	26.976
258	27.014	261	27.073	264	27.162	267	27.223	270	27.270
273	27.295	276	27.338	279	27.395	282	27.436	285	27.478
288	27.515	291	27.574	294	27.603	297	27.630	300	27.645
303	27.667	306	27.684	309	27.713	312	27.744	315	27.772
318	27.797	321	27.820	324	27.830	327	27.844	330	27.855
333	27.872	336	27.885	339	27.888	342	27.896	345	27.909
348	27.927	351	27.940	354	27.951	357	27.962	360	27.968
363	27.974	366	27.979	369	27.987	372	27.995	375	28.006
378	28.010	381	28.016	384	28.020	387	28.025	390	28.030
393	28.037	396	28.045	399	28.048	402	28.054	405	28.059
408	28.065	411	28.069	414	28.074	417	28.078	420	28.081
423	28.086	426	28.090	429	28.092	432	28.095	435	28.099
438	28.103	441	28.107	444	28.111	447	28.114	450	28.115

表 1: 苯甲酸燃烧温度-时间原始数据

t(s)	T(°C)								
453	28.117	456	28.120	459	28.123	462	28.125	465	28.128
468	28.130	471	28.132	474	28.134	477	28.136	480	28.139
483	28.141	486	28.143	489	28.145	492	28.147	495	28.150
498	28.152	501	28.153	504	28.154	507	28.157	510	28.157
513	28.159	516	28.160	519	28.162	522	28.164	525	28.165
528	28.166	531	28.168	534	28.169	537	28.170	540	28.172
543	28.174	546	28.174	549	28.176	552	28.177	555	28.178
558	28.179	561	28.179	564	28.181	567	28.182	570	28.183
573	28.184	576	28.184	579	28.186	582	28.187	585	28.188
588	28.189	591	28.190	594	28.190	597	28.190	600	28.192
603	28.194	606	28.194	609	28.195	612	28.195	615	28.196
618	28.197	621	28.197	624	28.198	627	28.198	630	28.200
633	28.200	636	28.201	639	28.201	642	28.202	645	28.203
648	28.203	651	28.204	654	28.204	657	28.205	660	28.206
663	28.205	666	28.207	669	28.207	672	28.207	675	28.207
678	28.208	681	28.208	684	28.209	687	28.209	690	28.210
693	28.210	696	28.210	699	28.211	702	28.211	705	28.212
708	28.212	711	28.212	714	28.213	717	28.213	720	28.213
723	28.214	726	28.214	729	28.214	732	28.215	735	28.215
738	28.216	741	28.216	744	28.215	747	28.216	750	28.216
753	28.217	756	28.217	759	28.217	762	28.217	765	28.218
768	28.218	771	28.219	774	28.219	777	28.219	780	28.219
783	28.220	786	28.219	789	28.220	792	28.220	795	28.220
798	28.220	801	28.220	804	28.220	807	28.220	810	28.221
813	28.221	816	28.221	819	28.221	822	28.221	825	28.221
828	28.222	831	28.222	834	28.222	837	28.222	840	28.223
843	28.223	846	28.223	849	28.223	852	28.223	855	28.223
858	28.224	861	28.224	864	28.223	867	28.224	870	28.224
873	28.224	876	28.224	879	28.224	882	28.224	885	28.224
888	28.224	891	28.224	894	28.225	897	28.225	900	28.224
903	28.224	906	28.225	909	28.225	912	28.225	915	28.224
918	28.225	921	28.225	924	28.225	927	28.225	930	28.225

表 1: 苯甲酸燃烧温度-时间原始数据

t(s)	T(°C)								
933	28.225	936	28.225	939	28.225	942	28.225	945	28.226
948	28.226	951	28.225	954	28.226	957	28.226	960	28.226
963	28.225	966	28.226	969	28.226	972	28.225	975	28.226
978	28.225	981	28.225	984	28.225	987	28.226	990	28.226
993	28.226	996	28.225	999	28.226	1002	28.226	1005	28.226
1008	28.225	1011	28.226	1014	28.225	1017	28.225	1020	28.226
1023	28.226	1026	28.225	1029	28.226	1032	28.226	1035	28.226
1038	28.226	1041	28.226	1044	28.226	1047	28.226	1050	28.226
1053	28.226	1056	28.226	1059	28.225	1062	28.226	1065	28.226
1068	28.225	1071	28.226	1074	28.225	1077	28.226	1080	28.225
1083	28.226	1086	28.226	1089	28.225	1092	28.226	1095	28.226
1098	28.226	1101	28.226	1104	28.225	1107	28.225	1110	28.226
1113	28.225	1116	28.225	1119	28.226	1122	28.226	1125	28.225
1128	28.226	1131	28.225	1134	28.225	1137	28.225	1140	28.226
1143	28.225	1146	28.225	1149	28.226	1152	28.225	1155	28.225
1158	28.224	1161	28.226	1164	28.225	1167	28.225	1170	28.225
1173	28.225	1176	28.225	1179	28.225	1182	28.225	1185	28.225
1188	28.225	1191	28.225	1194	28.225	1197	28.225	1200	28.224
1203	28.225	1206	28.225	1209	28.225	1212	28.224	1215	28.225
1218	28.224	1221	28.225	1224	28.225	1227	28.224	1230	28.224
1233	28.224	1236	28.224	1239	28.224	1242	28.225	1245	28.224
1248	28.224	1251	28.224	1254	28.224	1257	28.224	1260	28.223
1263	28.224	1266	28.224	1269	28.224	1272	28.224	1275	28.223
1278	28.223	1281	28.224	1284	28.224	1287	28.224	1290	28.224
1293	28.223	1296	28.224	1299	28.223	1302	28.223	1305	28.223
1308	28.223	1311	28.223	1314	28.223	1317	28.223	1320	28.223
1323	28.223	1326	28.223	1329	28.223	1332	28.224	1335	28.222
1338	28.223	1341	28.223						

表 2: 萘燃烧温度-时间原始数据

t(s)	T(°C)								
3	26.864	6	26.864	9	26.864	12	26.864	15	26.864
18	26.864	21	26.864	24	26.864	27	26.865	30	26.865
33	26.865	36	26.865	39	26.865	42	26.864	45	26.865
48	26.865	51	26.865	54	26.866	57	26.864	60	26.865
63	26.865	66	26.866	69	26.866	72	26.866	75	26.865
78	26.867	81	26.865	84	26.865	87	26.866	90	26.865
93	26.865	96	26.866	99	26.866	102	26.866	105	26.866
108	26.866	111	26.865	114	26.866	117	26.866	120	26.866
123	26.866	126	26.867	129	26.866	132	26.867	135	26.866
138	26.867	141	26.866	144	26.866	147	26.866	150	26.867
153	26.867	156	26.866	159	26.867	162	26.867	165	26.867
168	26.867	171	26.866	174	26.867	177	26.867	180	26.866
183	26.867	186	26.866	189	26.867	192	26.867	195	26.867
198	26.869	201	26.872	204	26.876	207	26.887	210	26.918
213	26.952	216	26.970	219	27.014	222	27.053	225	27.117
228	27.177	231	27.242	234	27.283	237	27.318	240	27.359
243	27.432	246	27.479	249	27.546	252	27.613	255	27.656
258	27.685	261	27.728	264	27.785	267	27.830	270	27.865
273	27.893	276	27.909	279	27.937	282	27.964	285	27.987
288	28.012	291	28.037	294	28.054	297	28.071	300	28.093
303	28.112	306	28.136	309	28.146	312	28.156	315	28.170
318	28.186	321	28.201	324	28.212	327	28.225	330	28.233
333	28.247	336	28.253	339	28.261	342	28.270	345	28.279
348	28.291	351	28.298	354	28.306	357	28.313	360	28.316
363	28.320	366	28.328	369	28.333	372	28.340	375	28.344
378	28.349	381	28.356	384	28.362	387	28.365	390	28.369
393	28.372	396	28.376	399	28.379	402	28.384	405	28.387
408	28.392	411	28.398	414	28.401	417	28.405	420	28.407
423	28.409	426	28.412	429	28.415	432	28.418	435	28.420
438	28.424	441	28.427	444	28.429	447	28.431	450	28.434
453	28.436	456	28.437	459	28.440	462	28.441	465	28.445

表 2: 萘燃烧温度-时间原始数据

t(s)	T(°C)	t(s)	$T(^{\circ}C)$	t(s)	T(°C)	t(s)	T(°C)	t(s)	T(°C)
468	28.447	471	28.450	474	28.452	477	28.455	480	28.455
483	28.456	486	28.459	489	28.460	492	28.462	495	28.463
498	28.465	501	28.466	504	28.467	507	28.470	510	28.471
513	28.472	516	28.473	519	28.476	522	28.476	525	28.477
528	28.478	531	28.480	534	28.481	537	28.482	540	28.482
543	28.484	546	28.485	549	28.486	552	28.488	555	28.489
558	28.490	561	28.491	564	28.492	567	28.493	570	28.493
573	28.495	576	28.496	579	28.497	582	28.497	585	28.496
588	28.497	591	28.498	594	28.500	597	28.500	600	28.501
603	28.500	606	28.502	609	28.503	612	28.503	615	28.504
618	28.503	621	28.505	624	28.505	627	28.506	630	28.506
633	28.506	636	28.507	639	28.508	642	28.508	645	28.509
648	28.509	651	28.509	654	28.510	657	28.510	660	28.511
663	28.511	666	28.511	669	28.512	672	28.511	675	28.512
678	28.512	681	28.513	684	28.513	687	28.513	690	28.513
693	28.514	696	28.514	699	28.515	702	28.515	705	28.516
708	28.516	711	28.516	714	28.516	717	28.517	720	28.517
723	28.517	726	28.516	729	28.518	732	28.518	735	28.518
738	28.518	741	28.518	744	28.518	747	28.518	750	28.519
753	28.519	756	28.520	759	28.520	762	28.520	765	28.520
768	28.520	771	28.519	774	28.520	777	28.520	780	28.520
783	28.520	786	28.520	789	28.520	792	28.521	795	28.521
798	28.521	801	28.521	804	28.521	807	28.521	810	28.521
813	28.521	816	28.521	819	28.521	822	28.522	825	28.521
828	28.522	831	28.522	834	28.522	837	28.522	840	28.522
843	28.523	846	28.522	849	28.521	852	28.523	855	28.522
858	28.523	861	28.522	864	28.523	867	28.523	870	28.522
873	28.522	876	28.522	879	28.523	882	28.523	885	28.522
888	28.522	891	28.522	894	28.523	897	28.522	900	28.523
903	28.522	906	28.523	909	28.523	912	28.522	915	28.523
918	28.522	921	28.522	924	28.523	927	28.522	930	28.523
933	28.522	936	28.523	939	28.522	942	28.522	945	28.523

表 2: 萘燃烧温度-时间原始数据

t(s) T	T(°C)	t(s)	$T(^{\circ}C)$	t(s)	$T(^{\circ}C)$	t(s)	$T(^{\circ}C)$	t(s)	$T(^{\circ}C)$
948 28	8.522	951	28.522	954	28.523	957	28.522	960	28.522
963 28	8.522	966	28.522	969	28.522	972	28.522	975	28.523
978 28	8.523	981	28.521	984	28.522	987	28.522	990	28.522
993 28	8.522	996	28.521	999	28.522	1002	28.521	1005	28.522
1008 28	8.522	1011	28.522	1014	28.522	1017	28.522	1020	28.522
1023 28	8.522	1026	28.522	1029	28.521	1032	28.522	1035	28.522
1038 28	8.521	1041	28.521	1044	28.521	1047	28.521	1050	28.521
1053 - 28	8.521	1056	28.520	1059	28.520	1062	28.521	1065	28.520
1068 28	8.521								