Expressões Regulares

.)

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

¹Este material utiliza conteúdo das aulas fornecidas pelo Prof. Vilar da Câmara Neto (disponível em http://prof.vilarneto.com). ²Permissão de uso fornecida pelos autores.

 $^{^3}$ As figuras utilizadas neste material são de domínio público, disponíveis na Internet sem informações de direitos autorais.

- AFDs, AFNs, AFNEs e AFNλs são formalismos úteis para a construção de diversas linguagens de uso prático
- As Gramáticas, por sua vez, permitem descrever facilmente linguagens artificiais usadas em computadores, como as linguagens de programação
- Ambos os formalismos são difíceis de serem expressados de maneira compacta

- As Expressões Regulares (ERs) são uma ferramenta para a expressão de linguagens de maneira compacta
- As ERs são tão úteis na prática que são implementadas em diversas ferramentas computacionais:
 - Editores de texto
 - Comandos de sistemas operacionais
 - Linguagens de programação
 - 0 ...

- As ERs são representações de linguagens por meio de operações sobre conjuntos, porém permitem apenas uma pequena gama de operações
- Na forma mais simples, as ERs permitem apenas as seguintes operações
 - Agrupamento
 - Fecho de Kleene
 - Concatenação
 - O União
- Nas ERs conjuntos não são denotados por meio de { e }

 A representação de símbolos é feita simplesmente pelo próprio símbolo

Exemplo: $L = \{0\}$, temos r = 0

• A representação de $\{\lambda\}$ é feita simplesmente por λ

Exemplo: $L = \{\lambda\}$, temos $r = \lambda$

- A concatenação, assim como na representação por conjuntos, é feita pela sequência daquilo que se quer concatenar
 - Exemplo: $L = \{0\}\{1\}\{0\}\{1\}$, temos r = 0101

Operadores

6

- A união é representada pelo símbolo de adição("+")
 - Exemplo 1: $L = \{a, b\}$, temos r = a+b
 - \circ Exemplo 2: L = {1, 01, 23}, temos r = 1+01+23
 - Exemplo 3: $L = \{12\} \cup \{21\}$, temos r = 12+21
- O agrupamento é representado por um par de parênteses
 - Exemplo 1: $L = \{aa\}(\{bb\} \cup \{cc\}), \text{ temos } r = aa(bb+cc)$
 - \circ Exemplo 2: L = {1}{2, 3}, temos r = 1(2+3)
 - \circ Exemplo 3: $L = \{0,1\}\{111\}\{0,00,1,11\}$, temos r = (0+1)111(0+00+1+11)

Operadores

7

- O fecho de Kleene é representado por um asterisco ("*")
 - Exemplo 1: $L = \{x\}^*$, temos $r = x^*$
 - Exemplo 2: $L = \{0\}^*\{1\}^*$, temos $r = 0^*1^*$
 - Exemplo 3: $L = \{00\}^*$, temos $r = (00)^*$

Atenção

- O fecho de Kleene tem precedência sobre a concatenação!
- E a concatenaçãotem precedência sobre a união!
- Portanto, a ER 01* é o mesmo que 0(1*), e não (01)*

ER nula

- A ER que não aceita nenhuma palavra é denotada por \varnothing
 - o $r = \emptyset$ é diferente de $r = \lambda$
- Propriedades da ER nula
 - O A concatenação de qualquer ER com a ER nula equivale àER nula

$$r = r_1 \varnothing r_2 \Rightarrow r = \varnothing$$

O A união da ER nula com qualquer outra ER não altera o resultado

$$r = r1 + \emptyset \Rightarrow r = r_1$$

$$r = r_1 + r_2 + \emptyset + r_3 \Rightarrow r = r_1 + r_2 + r_3$$

O fecho de Kleene sobre a ER nula gera a ER λ

$$\emptyset$$
* = λ

Usando conjuntos

Usando ER

A forma básica das ERs não permite repetições do tipo "uma ou mais vezes"

$$L = \{0,1\}^* \{\lambda,0,1\}$$

$$L = (\{01\}\{0,1\})^*$$

$$L = \{01\}^{+}$$

$$L = \{ab\}\{a,b\}\{aa,bb\}*\{aaa\}$$

$$L = (\{ab\}\{c\}^*)^+$$

$$L = (\{ab\}\{c\}^+)^+$$

$$\Rightarrow r = (0+1)*(\lambda+0+1)$$

$$\rightarrow$$
 $r = (01(0+1))*$

$$\rightarrow$$
 $r = 01(01)*$

$$\Rightarrow$$
 $r = ab(a+b)(aa+bb)*aaa$

$$\Rightarrow$$
 $r = abc*(abc*)*$

$$\Rightarrow$$
 $r = abcc*(abcc*)*$

Linguagens Associadas com Expressões Regulares

- 10
- Exemplos: exemplos de ERs em $\Sigma = \{a,b\}$ e suas linguagens:
 - \circ r = aa \rightarrow Somente a palavra aa
 - or = $ba^* \rightarrow Palavras que iniciam com b, seguido por zero ou mais a's$
 - \circ r = (a+b)* → Todas as palavras sobre {a,b}
 - \circ r = (a+b)*aa(a+b)* \rightarrow Todas as palavras contendo aa como subpalavra
 - o r = a*ba*ba* → Todas as palavras contendo exatamente dois b´s
 - o r = (a+b)*(aa+bb) → Todas as palavras que terminam com aa ou bb

Linguagens Associadas com Expressões Regulares

• Exemplos: Dado o alfabeto $\Sigma = \{0, 1\}$, diga quais são as linguagens denotadas pelas seguintes ERs:

- a) 0*10*
- b) Σ *1 Σ *
- c) Σ^* 001 Σ^*
- d) $(\Sigma\Sigma)^*$
- e) $(\Sigma\Sigma\Sigma)^*$

Representatividade

- Uma característica importante das ERs é que elas possuem o mesmo poder de representação de linguagens dos AFDs
 - Qualquer AF estudado até agora pode ser transformado em um ER e viceversa
 - O procedimento toma por base que há apenas um estado final, identificado por f a partir de agora
 - A generalização para um AF com vários estados finais será vista posteriormente
 - O processo de transformação de um AF em ER é dividido em três passos

Passo #01: Transformar o AF em um diagrama de ER

 Um diagrama de ER é um diagrama de estados (similar a um AF) em que as transições são feitas sobre expressões regulares, ao invés de serem feitas sobre símbolos ou palavras do alfabeto

Exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

 O objetivo é considerar todas as combinações de transições de entrada e de saída para o estado que será eliminado (aqui representado por e)

^{*}Se não houver transição de saída do estado que será eliminado ("estado lixeira"), o estado pode ser simplesmente eliminado.

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado B (caminho A-B-C)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado B (caminho A-B-A)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado B (caminho D-B-A)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado B (caminho D-B-C)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado C (caminho A-C-D)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Eliminando o estado C (caminho D-C-D)

Passo #02: Eliminar estados que não são iniciais nem finais

De volta ao exemplo

Diagrama ER eliminando os estados B e C

Passo #03: Unindo estado inicial e final f do diagrama de ER

Possibilidade #01

Estado final igual ao inicial

A ER resultante é $r = s^*$

Possibilidade #02

Estado final diferente do inicial

A ER resultante é r = s*t(u + vs*t)*

Passo #03: Unindo estado inicial e final f do diagrama de ER

De volta ao exemplo

ER resultante eliminando os estados inicial e final

r = (0+1+22*0)*22*1(0+1+2)((0+(1+2)2*1)(0+1+2) + (1+2)2*0(0+1+22*0)*22*1(0+1+2))*

Equivalências para simplificação

32

1.
$$r + s = s + r$$

2.
$$r + \emptyset = r$$

3.
$$r + r = r$$

4.
$$r\lambda = \lambda r = r$$

5.
$$r\emptyset = \emptyset r = \emptyset$$

6.
$$(r + s)t = rt + st$$

7.
$$r(s + t) = rs + rt$$

8.
$$(r + s)^* = (r^*s)^*r^*$$

9.
$$(r + s)^* = r^*(sr^*)^*$$

10.
$$(rs)^* = \lambda + r(sr)^*s$$

11.
$$r^{**} = r^*$$

12.
$$r^* = (rr)^*(\lambda + r)$$

13.
$$\emptyset$$
* = λ

14.
$$\lambda^* = \lambda$$

15.
$$r*r* = r*$$

16.
$$rr^* = r^*r$$

17.
$$(r^* + s)^* = (r + s)^*$$

18.
$$(r*s*)* = (r + s)*$$

19.
$$r^*(r+s)^* = (r+s)^*$$

20.
$$(r + s)*r* = (r + s)*$$

- Quando há vários estados finais, $F = \{f_1, f_2, ..., f_n\}$
 - 1. Para cada um dos estados finais $f_{\mathbf{k'}}$ considera-se um AF de entrada em que $f_{\mathbf{k}}$ é o único estado final
 - 2. Obtém-se a ER equivalente a esse AF, que será chamada de $r_{\rm k}$
 - 3. Após calcular todas as ERs r_k , obtém-se a expressão regular geral fazendo

$$r = r_1 + r_2 + ... + r_n$$

34

 O processo de transformação de ERs em AFs é bem mais simples do que o caminho contrário

 Para compreender o processo de transformação, serão apresentados os casos para o reconhecimento de ERs básicas

• AF para reconhecer $r = \emptyset$

• AF para reconhecer $r = \lambda$

• AF para reconhecer r = a, sendo $a \in \Sigma$

Consequentemente,

• AF para reconhecer $r = a_1 a_2 \dots a_n$, sendo $a_k \in \Sigma$

• AF para reconhecer $r = a^*$, sendo $a \in \Sigma$

37

- A partir dos casos básicos, já sabemos como compor AFs para realizar as operações permitidas por ERs
 - Concatenação, união e fecho de Kleene (utilizar transições λ)
 - Agrupamento (apenas observar as alterações de precedência das operações)

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

- AF para 01
- AF para (01)*
- AF para 00
- AF para (01)*00
- AF para 1
- AF para 0*
- AF para 1*
- AF para 10*1*
- AF para (01)*00+10*1*

