Credit Facility Dataset

Question 1

This credit facility dataset to be analyzed comprises records of customers' demographics, amount owed, repayment history/status etc. The data dictionary of this dataset is depicted in Appendix 1.

List the categorical and numeric variables in this dataset.

APPENDIX 1 – DATA DICTIONARY

Variable	Description
ID	Customer unique identifier
LIMIT	Customer total limit
BALANCE	Customer current credit balance (snapshot in
	time)
INCOME	Customer current income
GENDER	Customer gender (0: Male, 1: Female)
EDUCATION	Customer highest education attained (0: Others,
	1: Postgraduate, 2: Tertiary, 3: High School)
MARITAL	Customer marital status (0: Others, 1: Single, 2:
	Married)
AGE	Customer age in years
S(n)	Customer repayment reflected status in nth
	month. (-1; Prompt payment, 0: Minimum sum
	payment, $x = Delayed payment for x month(s))$
B(n)	Customer billable amount in nth month
R(n)	Customer previous repayment amount, paid in
	nth month
RATING	Customer rating (0: Good, 1: Bad)

Note: n=1 signifies the most recent month, while n=5 signifies the previous 4th month. If n=1 is the month of May 2022, then n=5 is the month of January 2022.

```
In [18]:
```

```
import pandas as pd
df = pd.read_csv('ECA_data.csv')
df.head()
```

Out[18]:

	ID	LIMIT	BALANCE	INCOME	RATING	GENDER	EDUCATION	MARITAL	AGE	S 1		
0	1	210000	0.00	235822	1	1	1.0	2.0	30	0		
1	2	260000	10928.05	278481	0	0	2.0	2.0	31	0		
2	3	400000	65397.85	431993	0	0	3.0	1.0	51	0		3
3	4	20000	3695.30	22368	0	0	2.0	1.0	58	-1		
4	5	180000	68.25	166900	0	1	2.0	1.0	42	0		
5 r	5 rows × 24 columns											
4											•	

List the categorical and numeric variables in this dataset.

In [19]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18769 entries, 0 to 18768
Data columns (total 24 columns):
    Column
               Non-Null Count Dtype
               -----
               18769 non-null int64
 0
    ID
 1
    LIMIT
               18769 non-null int64
 2
    BALANCE
               18769 non-null float64
 3
    INCOME
               18769 non-null int64
 4
    RATING
               18769 non-null int64
 5
               18769 non-null int64
    GENDER
 6
    EDUCATION 18756 non-null float64
 7
    MARITAL
               18731 non-null float64
 8
    AGE
               18769 non-null int64
 9
               18769 non-null int64
    S1
 10
    S2
               18769 non-null int64
 11
    S3
               18769 non-null int64
    S4
 12
               18769 non-null int64
 13
    S5
               18769 non-null int64
 14 B1
               18769 non-null int64
               18769 non-null int64
 15
    B2
    В3
               18769 non-null int64
 16
 17
    В4
               18769 non-null int64
 18
    В5
               18769 non-null int64
 19
    R1
               18769 non-null int64
 20
    R2
               18769 non-null int64
 21
    R3
               18769 non-null object
 22
               18769 non-null int64
    R4
               18769 non-null int64
dtypes: float64(3), int64(20), object(1)
memory usage: 3.4+ MB
```

Question 2

Conduct four (4) data pre-processing tasks for the analysis of the data, explaining results obtained.

first data pre-processing task

In [20]:

#first data quality issue
#as we clean the data based on missing value, but the cleaning process is not done yet
#following command will show the null value containing in the column
df.isnull().sum()

Out[20]:

ID	0
LIMIT	0
BALANCE	0
INCOME	0
RATING	0
GENDER	0
EDUCATION	13
MARITAL	38
AGE	0
S1	0
S2	0
S3	0
S4	0
S5	0
B1	0
B2	0
B3	0
B4	0
B5	0
R1	0
R2	0
R3	0
R4	0
R5	0

dtype: int64

localhost:8889/notebooks/records_of_customer_v1.ipynb

In [21]:

```
#solution for first data pre-processing task
# based on above information now we have to remove the null value rows because the dataset
df = df[df.EDUCATION.notnull()]
# now runing the below command while ensure that no null value is present now in dataset,
# dataset is fully qualified based on no null values
df.isnull().sum()
```

Out[21]:

ID	0
LIMIT	0
BALANCE	0
INCOME	0
RATING	0
GENDER	0
EDUCATION	0
MARITAL	36
AGE	0
S1	0
S2	0
S3	0
S4	0
S5	0
B1	0
B2	0
B3	0
B4	0
B5	0
R1	0
R2	0
R3	0
R4	0
R5	0
dtypo: int64	

dtype: int64

Second pre-processing task

In [22]:

#second data quality issue
#as we clean the data based on missing value, but the cleaning process is not done yet
#following command will show the null value containing in the column
df.isnull().sum()

Out[22]:

ID	0
LIMIT	0
BALANCE	0
INCOME	0
RATING	0
GENDER	0
EDUCATION	0
MARITAL	36
AGE	0
S1	0
S2	0
S3	0
S4	0
S5	0
B1	0
B2	0
B3	0
B4	0
B5	0
R1	0
R2	0
R3	0
R4	0
R5	0

dtype: int64

In [23]:

```
#solution for second data pre-processing task
# based on above information now we have to remove the null value rows because the dataset
df = df[df.MARITAL.notnull()]
# now runing the below command while ensure that no null value is present now in dataset,
# dataset is fully qualified based on no null values
df.isnull().sum()
```

Out[23]:

ID	0
LIMIT	0
BALANCE	0
INCOME	0
RATING	0
GENDER	0
EDUCATION	0
MARITAL	0
AGE	0
S1	0
S2	0
S3	0
S4	0
S5	0
B1	0
B2	0
B3	0
B4	0
B5	0
R1	0
R2	0
R3	0
R4	0
R5	0
dtype: int64	

Third pre-processing task

In [24]:

df.describe()

Out[24]:

	ID	LIMIT	BALANCE	INCOME	RATING	GENDER
count	18720.000000	18720.000000	18720.000000	18720.000000	18720.000000	18720.000000
mean	9381.028419	168307.888889	9135.957564	177815.004006	0.219605	0.618056
std	5419.090246	129496.631582	13057.178823	143200.252119	0.413990	0.485876
min	1.000000	10000.000000	0.000000	10000.000000	0.000000	0.000000
25%	4685.750000	50000.000000	644.612500	56427.750000	0.000000	0.000000
50%	9381.500000	140000.000000	3974.512500	148178.000000	0.000000	1.000000
75%	14076.250000	240000.000000	11986.318750	257206.750000	0.000000	1.000000
max	18766.000000	800000.000000	130692.450000	908846.000000	1.000000	1.000000

8 rows × 23 columns

as we see in above command output AGE should not be smaller than 18 and not greater than 90

In [25]:

```
df = df[df.AGE >= 18]
df = df[df.AGE < 90]</pre>
```

In [26]:

df.describe()

Out[26]:

	ID	LIMIT	BALANCE	INCOME	RATING	GENDER
count	18710.000000	18710.000000	18710.000000	18710.000000	18710.000000	18710.000000
mean	9380.541315	168333.173704	9137.654454	177843.910476	0.219722	0.618172
std	5417.637087	129498.284950	13057.804966	143200.065776	0.414069	0.485848
min	1.000000	10000.000000	0.000000	10000.000000	0.000000	0.000000
25%	4687.250000	50000.000000	644.437500	56466.500000	0.000000	0.000000
50%	9381.500000	140000.000000	3975.912500	148189.000000	0.000000	1.000000
75%	14072.750000	240000.000000	11989.731250	257209.000000	0.000000	1.000000
max	18766.000000	800000.000000	130692.450000	908846.000000	1.000000	1.000000

8 rows × 23 columns

Fourth pre-processing task

```
In [27]:
```

given appendix data compare with the dataset values # as we know some of the column values are fixed

GENDER

Customer gender (0: Male, 1: Female)

In [28]:

```
#check Gender column has only 0 and 1 values
df.GENDER.value_counts()
```

Out[28]:

1 11566
 7144

Name: GENDER, dtype: int64

EDUCATION

Customer highest education attained (0: Others,

1: Postgraduate, 2: Tertiary, 3: High School)

In [29]:

```
#check EDUCATION column has only 0,1,2,3 values df.EDUCATION.value_counts()
```

Out[29]:

2.0 8865 1.0 6404 3.0 3107 0.0 334

Name: EDUCATION, dtype: int64

MARITAL

Customer marital status (0: Others, 1: Single, 2:

Married)

In [30]:

```
#check MARITAL column has only 0,1,2 values
df.MARITAL.value_counts()
```

Out[30]:

2.0 98221.0 86990.0 189

Name: MARITAL, dtype: int64

S(n)	Customer repayment reflected status in nth
	month. (-1; Prompt payment, 0: Minimum sum
	payment, $x = Delayed payment for x month(s))$

In [31]:

```
#check S(1-5) column has only -1,0,x(any number greater than 0) values
print(df.S1.value_counts())
print(df.S2.value_counts())
print(df.S3.value_counts())
print(df.S4.value_counts())
print(df.S5.value_counts())
0
      12336
-1
       3588
 2
       2462
 3
        208
 4
         71
 1
         19
 5
          13
 7
           8
           5
 6
Name: S1, dtype: int64
0
      12580
-1
       3521
 2
       2359
 3
        177
 4
         42
 6
          11
 7
           9
 5
           8
 8
           2
 1
Name: S2, dtype: int64
0
      12929
-1
       3450
 2
       2126
 3
        104
 7
         41
          39
 4
 5
          18
 6
           2
 1
           1
Name: S3, dtype: int64
 0
      13581
-1
       3317
 2
       1599
 3
        103
 4
          56
 7
         40
 5
         11
 6
           3
Name: S4, dtype: int64
 0
      13620
-1
       3292
 2
       1594
 3
        114
 4
         36
 7
          34
 5
         11
Name: S5, dtype: int64
```

Fifth pre-processsing task

billable amount should be greater than 0 and should be smaller than the LIMIT

```
In [32]:
```

```
df = df[df.B1 >= 0]
df = df[df.B2 >= 0]
df = df[df.B3 >= 0]
df = df[df.B4 >= 0]
df = df[df.B5 >= 0]
df = df[df.B1 <= df.LIMIT]
df = df[df.B2 <= df.LIMIT]
df = df[df.B3 <= df.LIMIT]
df = df[df.B3 <= df.LIMIT]
df = df[df.B4 <= df.LIMIT]
df = df[df.B5 <= df.LIMIT]
df = df[df.B5 <= df.LIMIT]
df = df[df.B5 <= df.INCOME]
df = df[df.B3 <= df.INCOME]
df = df[df.B3 <= df.INCOME]
df = df[df.B4 <= df.INCOME]
df = df[df.B5 <= df.INCOME]</pre>
```

Question 3

Articulate five (5) relevant insights of the data, with supporting visualization for each insight.

First insights of the data

Amount of credit limit - Density Plot

In [33]:

```
from matplotlib import pyplot as plt
import seaborn as sns
plt.figure(figsize = (14,6))
plt.title('Amount of credit limit - Density Plot')
sns.set_color_codes("pastel")
sns.distplot(df['LIMIT'],kde=True,bins=100, color="blue")
plt.show()
```

C:\Users\rao\AppData\Roaming\Python\Python310\site-packages\seaborn\distribu tions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axeslevel function for histograms).

warnings.warn(msg, FutureWarning)

Second insights of the data

Probability Of Defaulting Payment Next Month

In [34]:

```
import seaborn as sns
from matplotlib import pyplot as plt

def_cnt = (df.RATING.value_counts(normalize=True)*100)

def_cnt.plot.bar(figsize=(6,6))
plt.xticks(fontsize=12, rotation=0)
plt.yticks(fontsize=12)
plt.title("Probability Of Defaulting Payment Next Month", fontsize=15)
for x,y in zip([0,1],def_cnt):
    plt.text(x,y,y,fontsize=12)
plt.show()
```

Probability Of Defaulting Payment Next Month

Third insights of the data

Rating based on Gender

```
In [35]:
```

```
df.groupby(['GENDER', 'RATING']).size()
#gender 0 is for male and 1 is for female
```

Out[35]:

GENDER	RATING	
0	0	4009
	1	1188
1	0	7415
	1	1668

dtype: int64

Fourth insights of the data

Customer repayment status

In [36]:

```
def draw_histograms(df, variables, n_rows, n_cols, n_bins):
    fig=plt.figure()
    for i, var_name in enumerate(variables):
        ax=fig.add_subplot(n_rows,n_cols,i+1)
        df[var_name].hist(bins=n_bins,ax=ax)
        ax.set_title(var_name)
    fig.tight_layout() # Improves appearance a bit.
    plt.show()

score = df[['S1','S2', 'S3', 'S4', 'S5']]
draw_histograms(score, score.columns, 2, 3, 10)
```


Fifth insights of the data

Correlation between Customer billable amount in n month

In [37]:

```
var = ['B1','B2','B3','B4','B5']

plt.figure(figsize = (8,8))
plt.title('Amount of bill statement (Jan-May) \ncorrelation plot')
corr = df[var].corr()
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidths=.1,vmin=-1, v
plt.show()
```


Question 4

Perform linear regression modelling to predict the variable, B1, explaining the approach taken, including any further data pre-processing.

In [38]:

```
var1 = ['B1','B2','B3','B4','B5']
df[var1].describe()
```

Out[38]:

	B1	B2	В3	B4	B5
count	14280.000000	14280.000000	14280.000000	14280.000000	14280.000000
mean	45871.044958	44243.905182	42187.393697	39207.322479	38317.792787
std	67409.605391	65618.882768	62749.192621	59357.195308	58513.838308
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	2409.500000	2232.750000	2039.750000	1507.250000	1242.000000
50%	17707.000000	17282.500000	16629.000000	15102.500000	14243.500000
75%	60549.000000	58042.750000	55247.500000	50537.000000	49619.750000
max	577681.000000	577015.000000	565669.000000	530672.000000	499100.000000

In [39]:

```
var1 = ['B1','B2','B3','B4','B5']
correlations = df[var1].corr()
# annot=True displays the correlation values
sns.heatmap(correlations, annot=True).set(title='Heatmap of Consumption Data - Pearson Corr
```


In [40]:

```
df.plot(x='B2',y='B1',style = '*')
plt.title('square Feet vs Sale Price')
plt.xlabel( 'B2')
plt.ylabel('B1')
plt.show()
```


In [42]:

```
X = df.B2.values.reshape(-1,1)
y = df.B1.values.reshape(-1,1)
```

In [43]:

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import metrics
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=40)
```

```
In [44]:
```

```
df.head(1)
```

Out[44]:

	ID	LIMIT	BALANCE	INCOME	RATING	GENDER	EDUCATION	MARITAL	AGE	S1	 E
0	1	210000	0.0	235822	1	1	1.0	2.0	30	0	 _

1 rows × 24 columns

→

In [45]:

```
regressor.fit(X_train, y_train)
```

Out[45]:

v LinearRegression LinearRegression()

In [46]:

```
y_pred = regressor.predict(X_test)
```

In [47]:

```
plt.scatter(X_train,y_train)
plt.plot(X_test,y_pred,color = 'red')
plt.show()
```


In [48]:

```
df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
print(df_preds)
```

```
Actual
                  Predicted
      125098
               94392.552183
0
1
      164745 165215.821081
2
       68544
               61597.769001
3
           0
                7316.549034
4
           0
                2999.009650
2851 125782 117079.644884
2852
        2400
                5313.527077
2853 135846 134860.925020
       12294
2854
             15572.625574
       36567
2855
               26220.370123
```

[2856 rows x 2 columns]

Question 5

State the linear regression equation and explain key insights from the results obtained in Question 4.

The equation that describes any straight line is: y = a*x+b

In this equation, y represents the score percentage, x represent the hours studied. b is where the line starts at the Y-axis, also called the Y-axis intercept and a defines if the line is going to be more towards the upper or lower part of the graph (the angle of the line), so it is called the slope of the line.

In [51]:

```
X = df.B2.values.reshape(-1,1)
y = df.B1.values.reshape(-1,1)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import metrics
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=40)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

Out[51]:

```
LinearRegression
LinearRegression()
```

```
In [52]:
print("intercept(b):",regressor.intercept_)
intercept(b): [2999.00964951]
In [54]:
print("slope(a):",regressor.coef_)
slope(a): [[0.96438226]]
```

Making predictions

```
In [63]:
```

```
#equation is y = a * x + b
def calc(slope, intercept, hours):
    return slope*hours+intercept

score = calc(regressor.coef_, regressor.intercept_, 10000)
print(score)
```

[[12642.83226386]]

```
In [62]:
```

```
#our linear regression model
# Passing 10000 in double brackets to have a 2 dimensional array
score = regressor.predict([[10000]])
print(score)
```

[[12642.83226386]]

In [65]:

```
y_pred = regressor.predict(X_test)
print(df_preds)
```

```
Predicted
      Actual
0
      125098
               94392.552183
1
      164745
              165215.821081
2
       68544
               61597.769001
3
           0
                7316.549034
4
           0
                 2999.009650
      125782
              117079.644884
2851
2852
        2400
                5313.527077
2853
     135846
             134860.925020
       12294
2854
               15572.625574
               26220.370123
       36567
2855
```

[2856 rows x 2 columns]

In [66]:

```
import seaborn as sns # Convention alias for Seaborn

variables = ['B2','B3','B4','B5']

for var in variables:
    plt.figure() # Creating a rectangle (figure) for each plot
    # Regression Plot also by default includes
    # best-fitting regression line
    # which can be turned off via `fit_reg=False`
    sns.regplot(x=var, y='B1', data=df).set(title=f'Regression plot of {var} and Petrol Con
```


