

QUALITÉ DE DÉVELOPPEMENT DIAGRAMME UML DE SÉQUENCE

2A - Bachelor Universitaire de Technologie

il IUT d'Orsay - Université Paris-Saclay - 2024/2025

PLAN

- > Eléments de base
- > Fragments combinés
- > Utilisation du diagramme

Retour au plan - Retour à l'accueil

CYCLE DE DÉVELOPPEMENT

Ce cours se positionne dans les étapes Spécification et Conception.

PLAN

- > Eléments de base
- >> Fragments combinés
- > Utilisation du diagramme

Retour au plan - Retour à l'accueil

DÉFINITIONS

- Les diagrammes de séquence ont été introduits pour permettre de décrire les scénarios de communications entre objets.
 - décrire les messages échangés pour la réalisation d'une fonctionnalité.
 - identifier les liens et les méthodes nécessaires pour les objets.
- Un diagramme de séquence représente :
 - les entités (objets/acteurs) verticalement par des lignes de vie
 - les messages horizontalement par des flèches

LES ENTITÉS

- Un diagramme de séquence décrit des interactions entre deux entités principales :
 - 1. un acteur → une entité extérieur au système
 - 2. un **objet** → une entité du système
- Chaque **entité** a une ligne de vie représentée par une ligne verticale
 - en pointillée lorsque l'entité est inactive
 - en bloc lorsque l'entité est active

LES MESSAGES

- Un diagramme de séquence permet de spécifier différents types de communications :
 - création d'un objet
 - appels de méthodes
 - envoi d'un signal
 - destruction d'un objet ...

LES MESSAGES

- Un diagramme de séquence utilise trois types de messages pour spécifier une communication :
 - 1. message synchrone : l'entité attend la réponse avant de continuer
 - 2. message de retour : la réponse d'une entité à un message
 - 3. message asynchrone : l'entité n'attend pas la réponse pour continuer

EXEMPLE

PLAN

- > Eléments de base
- > Fragments combinés
- > Utilisation du diagramme

Retour au plan - Retour à l'accueil

LES FRAGMENTS COMBINÉS

- Dans un diagramme de séquence, il est possible :
 - de représenter des contraintes ou des propriétés particulières (exécution atomique, répétition, ...).
 - de décomposer une interaction complexe en fragments simples.
- Le fragment combiné est l'élément graphique permettant de représenter ce type d'information.

LES FRAGMENTS COMBINÉS

- Un fragment combiné est constitué de :
 - un opérateur d'interaction (type de la combinaison)
 - un ou plusieurs fragments d'interaction (une partie du diagramme)
- L'opérateur d'interaction est indiqué dans le coin supérieur gauche dans un rectangle.

LES FRAGMENTS COMBINÉS ALTERNATIVE

Alternative - alt:

sélectionner un comportement en fonction d'une condition.

LES FRAGMENTS COMBINÉS OPTION

Option - opt:

exécuter un comportement si la condition de garde est vérifiée.

LES FRAGMENTS COMBINÉS BOUCLE

Boucle - loop:

exécuter une interaction tant qu'une condition est satisfaite.

LES FRAGMENTS COMBINÉS RUPTURE

Rupture - break:

exécuter le fragment associé puis mettre fin à l'interaction englobante.

LES FRAGMENTS COMBINÉS PARALLÈLE

Parallèle - par :

les fragments d'interaction associés sont exécutés en parallèle.

LES FRAGMENTS COMBINÉS QUELQUES OPÉRATEURS SUPPLÉMENTAIRES

- ref: appeler une interaction décrite par ailleurs.
- **strict**: l'ordre d'exécution doit être strictement respecté.
- weak: l'ordre d'exécution des opérations n'a pas d'importance.
- ignore : certains messages peuvent être absents sans incidence.
- consider : certains messages doivent être obligatoirement présents.
- **critical**: une séquence d'interactions ne peut être interrompue (séquence critique est atomique).

PLAN

- > Eléments de base
- >> Fragments combinés
- > Utilisation du diagramme

Retour au plan - Retour à l'accueil

EN COMPLÉMENT DU DIAGRAMME DE CAS D'UTILISATION SPÉCIFICATION

- à la place de la description textuelle ou du diagramme d'activité décrivant les scénarios du diagramme de cas d'utilisation.
- pour décrire les flux d'informations échangés pour la réalisation d'un cas d'utilisation.

EN COMPLÉMENT DU DIAGRAMME DE CAS D'UTILISATION EXEMPLE

EN COMPLÉMENT DU DIAGRAMME DE CAS D'UTILISATION

EXEMPLE

EN COMPLÉMENT DU DIAGRAMME DE CLASSE CONCEPTION

- identifier les liens entre les objets (les classes).
- identifier les méthodes nécessaires pour les objets (les classes).

EN COMPLÉMENT DU DIAGRAMME DE CLASSE EXEMPLE

p:Panier s:Controleur a:Article Utilisateur select(a,p) validate(p) create c:Commande add(p) getArticle(getPrice() price Utilisateur a:Article c:Commande

EN COMPLÉMENT DU DIAGRAMME DE CLASSE

EXEMPLE

MERCI

Version PDF des slides

Retour à l'accueil - Retour au plan