3.1 - Déterminant d'une famille de vecteurs : définition.

Première partie : la "grosse formule"

Object
$$f$$
: (ii) det g est n -lineaire alternée.

(ii) $A_n(E) = Vert (det g)$.

(iii) $Si f \in H_1(E)$, $f = f(g)$. det g

E: IKev de din
$$\bigcirc$$
, \bigcirc = $(e_1 - e_n)$.

 $X_1 - X_1$ des rectours de \bigcirc .

 $X_2 = \begin{pmatrix} v_{10} \\ v_{20} \end{pmatrix} = \sum_{i=1}^{n} v_{in} e_i$
 $\forall j \in \mathbb{N}, n \supset \sum_{i=1}^{n} \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{in} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$
 $e_{in} = \begin{pmatrix} v_{10} \\ v_{2n} \end{pmatrix} = \sum_{i=1}^{n} v_{2n} e_i$

Défi On apelle dilviniment de ($X_1 - X_1$)

de ($X_1 - X_1$)

de ($X_1 - X_1$) $X_2 - X_1$ $X_3 - X_4$ $X_4 - X_5$ $X_5 - X_6$ $X_6 - X_1$ $X_6 - X_1$ det : E - S (L) (X_1-X_1) (X_1-X_1) . 10 junt: 1 2 i 6(i)

Ringer !

Corsond d:

o: 11-11

21-15

3 (-, >5

4 1-57

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}$

Ex.
$$N=2$$
:

S: $X_{1}, X_{2} \in \mathcal{E}$, $di_{1} \in \mathbb{Z}_{2}$:

Mut $(X_{1}, X_{1}) = \begin{pmatrix} x_{1} & x_{1} \\ x_{2} & x_{2} \end{pmatrix}$

Sz = $\begin{cases} id, x_{1} \\ x_{2} \end{cases}$, $\xi(id) = 1$, $\xi(x_{1}) = -1$.

Ac. $det(x_{1}, x_{1}) = \frac{1}{2} + \frac$

