HW-2 SOLUTIONS

Prob. 1

(a) Let us denote Colonel Blotto as "B" and Folk Militra as "M".

B has 3 regiments => B's Atrategres: (3,0),(2,1),(1,2),(0,3)M has 2 regiments => M's Strategres: (2,0),(1,1),(0,2)

Say, &b, m3 supresents a strategy profile where

Let V_i denote the whility obtained by B due to deployments in post-i.

=)

$$U_1(\{b,m\}) = \begin{cases} m+1; & \text{if } b > m \\ 0; & \text{if } b = m \\ -b-1; & \text{otherwise}. \end{cases}$$

and
$$V_{2}(\{b,m\}) = \begin{cases}
(a-m)+1 & \text{if } \frac{3-b > a-m}{b-m < 1} \\
0 & \text{if } b-m < 1
\end{cases}$$

$$-(3-b)-1 & \text{otherwise.}$$

$$= -4+b & \text{otherwise.}$$

,	Μ				#2
	1		b-	m < 1	b-m=1
•	0 0 0	0 0	0 0 0	0 - 0	[b-m>1] → b
	/\				

III, let Vi represent the ntility obtained by M due

to deployments in post-i.

$$= \begin{cases}
-m-1 & \text{if } b > m \\
0 & \text{if } b = m
\end{cases}, V_2(\{b, m\}) = \begin{cases}
-3+m & \text{if } b-m < 1 \\
0 & \text{if } b < m
\end{cases}$$

$$= \begin{cases}
-3+m & \text{if } b-m < 1 \\
0 & \text{if } b < m
\end{cases}$$

$$= V_1 V_1 + V_2 = -U_1$$

NOTE: This is a Zero-Sum game.

In Summary, the normal-form (bi-matrix) gan	re 15
BM (0,2) (1,1) (2,0)	
(0,3) 3,-3 1,-1 0,0	
(1,2) $1,-1$ $2,-2$ $-1,1$	
(2,1) -1,1 2,-2 1,-1	

(b) The best responses of B are represented by circles, and those by M by 89 narres.

BM	(0,2)	(1,1)	(2,0)
(0,3)	3-3	1,-1	0,0
(1,2)	1,-1	2 -2	-1,[
(2,1)	-1,[]	3,-2	1,-1
(3,0)	0,0	1,-1	3-3

=) No PSNE.

6, 1 are programming absograments.

#5

Let (0,2) be x, (1,1) be y and (2,0) be Z. Then, we have the

foll. In matrix game.

•		>				-			(
٠	(x, x)	(x_L,x_R) (x_L,y_R) (x_L,z_R)	(X_L, Z_R)	(y_{L}, x_{R})	(YL, YR)	(y_{L}, x_{R}) (y_{L}, y_{R}) (y_{L}, z_{R}) (z_{L}, x_{R}) (z_{L}, y_{R}) (z_{L}, z_{R})	(z_L, x_R)	(21, 42)	(Z1, Zg)
	3,-3	3,-3		1-1	1-1	0'0 0'0 1-11	0'0	0,0	0'0
(5'5)	1-1	1	1-1	2'-5	2-12	2'-2 2'-2	11- 11- 11-	-1,1	-1-
(2,0)	1-1-	2'-2	1-1	1 1-	2'-2	-1, 1 2,-2 1,-1 -1, 1 2,-2 +1,-1	1 1-	2'-5	+1,-1
			,	0	1-1	1,-1 3,-3 0,0 1,-1 3,-3.	0 0	1-1	3,-3.
(3/0)	0′0	1-1	2,-5						

Prob. 2

(a)

STEP 1: Since D dominates U, eliminate U.

STEP 2: Since C dominates R, eliminate R.

STEP 3: Since D dominates M, eliminate M.

STEP 4: Since C dominates L,

Solution: D 3,6

Prol	2 *	3

1			\sim
/-	11		1)
(-	11		′/
(TI	ز	/

-	٢	þ	S
R	0,0	-1,1	1 -1
P	1 -1	0,0	-1,1
S	-1/1	1 -1	0, 0

- 6 Let x denote the row player's mixed strategy, and y denote that of column player.
 - => Utility of the row player $u(x,y) = x^T Uy$

Where
$$U = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & D \end{bmatrix}$$

$$= x_1 - x_2 - y_1 + y_2 - 3 / x_1 y_2 + 3 x_2 y_1$$

$$\nabla u = \begin{bmatrix} v_{x}u \\ v_{y}u \end{bmatrix} = \begin{bmatrix} 1-3y_{2} \\ -1+3y_{1} \\ -1+3x_{2} \end{bmatrix} = 0 \Rightarrow x_{1} = x_{2} = \frac{1}{3}$$

$$y_{1} = y_{2} = \frac{1}{3}$$

In other words,
$$x = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$
 and $y = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

is a candidate Solution.

But, why is this a saddle point?

NOTE: The second derivative test for n variables (for n > 3)

(*) Let H denote the Hessian matrix of f, i.e. $H = \nabla_x^2 f$ where $X = (x_1, ..., x_n)$.

Let |H| = 0.

* Let Dk = determinant of Hessran in variables

2 20 1 x1, ..., xk.

i.e.
$$D_{R} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{R}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} \end{bmatrix}$$

@ If Dk>0 + k=1,..., n', then minimum

(b) If (-1) k Dk >0 + k=1, n, then maximum.

@ Therwise, Saddle point.

An other words,
$$H = \begin{bmatrix} 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P_1 = 0, \quad D_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0, \quad D_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{bmatrix} = 0$$

and $D_4 = |H| = 81 \Rightarrow SADDLE POINT$

$$Prob. 4$$

Player 1's rather $W_1 = \begin{cases} W_1 - b_2 & \text{if } b_1 > b_2 \\ \frac{1}{2}(W_1 - b_2) & \text{if } b_1 = b_2 \end{cases}$

Player 1's rather $W_1 = \begin{cases} W_1 - b_2 > 0 \\ 0 > 0 > 0 \end{cases}$

Choose $b_1 > b_2$ if $w_1 - b_2 > 0 \Rightarrow CASE - 1$

Else, choose $b_1 < b_2 \Rightarrow CASE - 2$

Player 2's BR 2

Player 3's BR 2

Player 3's which $w_2 = \begin{cases} W_2 - b_1 \\ \frac{1}{2}(w_2 - b_1) \end{cases}$ if $w_2 = \begin{cases} W_2 - b_1 \\ \frac{1}{2}(w_2 - b_1) \end{cases}$ if $w_3 = \begin{cases} W_2 - b_1 > 0 \Rightarrow CASE - 3 \end{cases}$

Hse, choose $b_2 < b_1 = 0$

Case - 2

Case - 2

Case - 2

Case - 2

Case - 3

Case - 3

Case - 3

Case - 3

Case - 4

Case - 3

equilibrium.

(b) NE => Interaction of both players' BR regions.

