## 1 Основные определения

Стохастической КС-грамматикой [3] называется система  $G = \langle V_T, V_N, R, s \rangle$ , где  $V_T$  и  $V_N$  — конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно,  $s \in V_N$  — аксиома, R — множество правил. Множество R можно представить в виде  $R = \bigcup_{i=1}^n R_i$ , где n — мощность алфавита  $V_N$  и  $R_i = \{r_{i1}, \dots, r_{in_i}\}$ . Каждое правило  $r_{ij}$  из  $R_i$  имеет вид

$$r_{ij}: A_i \xrightarrow{p_{ij}} \beta_{ij}, \qquad j = 1, \dots, n_i,$$
 (1)

где  $A_i \in V_N, \ \beta_{ij} \in (V_N \cup V_T)^*$  и  $p_{ij}$  — вероятность применения правила  $r_{ij}$ , причём

$$0 < p_{ij} \le 1, \qquad \sum_{i=1}^{n_i} p_{ij} = 1. \tag{2}$$

Для  $\alpha, \gamma \in (V_N \cup V_T)^*$  будем говорить, что  $\gamma$  выводится из  $\alpha$  (и обозначать  $\alpha \Rightarrow \gamma$ ), если существуют  $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$ , для которых  $\alpha = \alpha_1 A_i \alpha_2, \gamma = \alpha_1 \beta_{ij} \alpha_2$  и в грамматике имеется правило  $A_i \xrightarrow{p_{ij}} \beta_{ij}$ . Через  $\Rightarrow_*$  обозначим рефлексивное транзитивное замыкание отношения  $\Rightarrow$ . Грамматика G задаёт контекстно-свободный язык  $L_G = \{\alpha \in V_T^* : s \Rightarrow_* \alpha\}$ . Будем говорить, что слово  $\alpha$  выводимо грамматикой G, если  $\alpha \in L_G$ .

Виводом слова  $\alpha$  назовём последовательность правил  $\omega(\alpha) = (r_{i_1j_1}, r_{i_2j_2}, \dots, r_{i_qj_q})$ , с помощью последовательного применения которых слово  $\alpha$  выводится из аксиомы s. Если при этом каждое правило применяется к самому левому нетерминалу в слове, такой вывод называется левым. Для вывода  $\omega(\alpha) = (r_{i_1j_1}, \dots, r_{i_qj_q})$  определим величину  $p(\omega(\alpha)) = p_{i_1j_1} \cdot \dots \cdot p_{i_qj_q}$ .

Каждое слово, выводимое грамматикой G, имеет depeeo вывода [4]. Дерево вывода для слова  $\alpha$  строится следующим образом. Корень дерева помечается аксиомой s. Далее последовательно рассматриваются правила левого вывода слова  $\alpha$ . Пусть на очередном шаге рассматривается правило  $A_i \stackrel{p_{ij}}{\longrightarrow} b_{i_1}b_{i_2}\dots b_{i_m}$ , где  $b_{i_l} \in (V_N \cup V_T)$   $(l=1,\dots,m)$ . Тогда из самой левой вершины-листа дерева, помеченной символом  $A_i$ , проводится m дуг в вершины следующего яруса, которые помечаются слева направо символами  $b_{i1},\dots,b_{i,m}$  соответственно. После построения дуг и вершин для всех правил в выводе листья дерева помечены терминальными символами (либо пустым словом  $\lambda$ , если применяется правило вида  $A_i \stackrel{p_{ij}}{\longrightarrow} \lambda$ ) и само слово получается при обходе листьев дерева слева

направо. *Высотой* дерева вывода будем называть максимальную длину пути от корня к листу.

#### Пример

Рассмотрим пример КС-грамматики G, задающей язык арифметических выражений +, \* без скобок с параметрами a и b.

$$G = \langle V_N, V_T, S, R \rangle V_N = \{S, T, M\} V_T = \{+, *, a, b\}$$
(3)

Множество R правил вывода содержит правила:

Рассмотрим слово  $\alpha = a + b * a + b$ , выводимое грамматикой G. Левый вывод этого слова имеет вид:

$$\omega_l(\alpha) = (r_{12}, r_{21}, r_{32}, \dots) \tag{5}$$

Последовательно применяя правила левого вывода к аксиоме S грамматики, получим слово  $\alpha$ :

$$S \to T + S \to M + S \to a + S \to a + T + S \to a + M * T + S \to$$

$$\to a + b * T + S \to a + b * M + S \to a + b * a + S \to$$

$$\to a + b * a + T \to a + b * a + M \to a + b * a + b$$
 (6)

Дерево вывода, построенное по  $\omega_l(\alpha)$ , имеет вид:



Обозначим  $p(\alpha) = \sum p(\omega_l(\alpha))$ , где сумма берётся по всем левым выводам слова  $\alpha$ . Грамматика G называется согласованной, если

$$\lim_{n \to \infty} \sum_{\substack{\alpha \in L_G \\ |\alpha| \le n}} p(\alpha) = 1. \tag{7}$$

Согласованная грамматика G задаёт распределение вероятностей P на множестве  $L_G$ , при этом  $p(\alpha)$  — вероятность слова  $\alpha$ . Пара  $\mathcal{L}=(L_G,P)$  называется cmoxacmuчeckum KC-языком. В дальнейшем будем всюду предполагать, что рассматривается согласованная грамматика.

Будем говорить, что нетерминал  $A_j$  непосредственно выводится из нетерминала  $A_i$ , и обозначать  $A_i \to A_j$ , если в грамматике имеется правило  $A_i \xrightarrow{p_{ij}} \alpha_1 A_j \alpha_2$ , где  $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$ . Рефлексивное транзитивное замыкание отношения  $\to$  обозначим  $\to_*$ . Будем говориь, что нетерминал  $A_j$  выводится из  $A_i$ , если  $A_i \to_* A_j$ . Если одновременно  $A_i \to_* A_j$  и  $A_j \to_* A_i$ , будем обозначать  $A_i \leftrightarrow_* A_j$ . Отношение эквивалентности  $\leftrightarrow_*$  разбивает множество нетерминалов грамматики на классы

$$K_1, K_2, \dots, K_m. \tag{8}$$

Множества номеров нетерминалов, входящих в класс  $K_j$  обозначим через  $I_j$ . Грамматика называется разложимой при  $m \geq 2$ , и неразложимой в противном случае.

Будем говорить, что класс  $K_j$  непосредственно следует за классом  $K_i$ , и обозначать  $K_i \prec K_j$ , если  $i \neq j$  и существуют такие  $A_1 \in K_i$  и  $A_2 \in K_j$ , что  $A_1 \to A_2$ . Рефлексивное транзитивное замыкание отношения  $\prec$  обозначим  $\prec_*$ , и будем говорить, что класс  $K_j$  следует за классом  $K_i$ , если  $K_i \prec_* K_j$ . Отношение  $\prec_*$  задаёт частичный порядок на множестве классов  $K_1, \ldots, K_m$ .

Назовём класс K особым, если он содержит ровно один нетерминал  $A_i$ , и в грамматике отсутствует правило вида  $A_i \xrightarrow{p_{ij}} \alpha_1 A_i \alpha_2$ , где  $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$ . В дальнейшем всюду будем предполагать, что грамматика не содержит особых классов.

# 2 Производящие функции

Пусть  $\alpha \in (V_N \cup V_T)^*$  — слово в объединённом алфавите терминальных и нетерминальных символов. Через  $l_i(\alpha)$  будем обозначать число

нетерминалов  $A_i$  в слове  $\alpha$ , а через  $l(\alpha)$  — характеристический вектор  $(l_1(\alpha), l_2(\alpha), \dots, l_k(\alpha))$ .

Введём вероятностные производящие функции  $F_i(\mathbf{s})$ :

$$F_i(\mathbf{s}) = F_i(s_1, s_2, \dots, s_k) = \sum_{i=1}^{n_i} p_{ij} s_1^{l_1} s_2^{l_2} \cdot \dots \cdot s_k^{l_k}, \tag{9}$$

где суммирование происходит по всем правилам вывода  $r_{ij}$  из  $R_i$ , и  $l_s = l_s(\beta_{ij})$  — число нетерминалов  $A_s$  в правой части  $\beta_{ij}$  правила  $r_{ij}$ .

Производящие функции  $F_i(\mathbf{s})$  содержат информацию о том, с какой вероятностью мы можем получить слово с тем или иным характеристическим вектором в результате однократного применения случайного правила  $r_{ij}$  к нетерминалу  $A_i$ . При этом правило выбирается в соответствии с распределением вероятностей  $p_{ij}$ . Если в  $F_i(\mathbf{s})$  присутствует слагаемое вида  $ps_1^{l_1}\dots s_k^{l_k}$ , значит слово с характеристическим вектором  $l=(l_1,\dots,l_k)$  будет получено с вероятностью p.

Для удобства будем обозначать  $\mathbf{F}(\mathbf{s}) = (F_1(\mathbf{s}), \dots, F_k(\mathbf{s}))$ . Введём производящие функции  $F_i(t, \mathbf{s})$  с параметром t:

$$F_i(t, \mathbf{s}) = F_i(t, s_1, s_2, \dots, s_k) = \begin{cases} F_i(t-1, F(\mathbf{s})), & \text{при } t > 1 \\ F_i(\mathbf{s}), & \text{при } t = 1 \end{cases}$$
 (10)

Производящие функции  $F_i(t, \mathbf{s})$  содержат информацию о том, с какой вероятностью мы можем получить слово с определённым характеристическим вектором  $l = (l_1, l_2, \ldots, l_k)$  в результате построения t ярусов дерева вывода с корнем в нетерминале  $A_i$ .

# 3 Моменты. Матрица первых моментов грамматики

Величины

$$a_j^i = \frac{\partial F_i(\mathbf{s})}{\partial s_j} \bigg|_{\mathbf{s}=\mathbf{1}}$$
 (11)

называеются *первыми моментами*, и определяют математическое ожидание числа нетерминалов  $A_j$  в слове, полученном в результате однократного применения случайного правила вывода к нетерминалу  $A_i$ .

Аналогично введём величины  $a_i^i(t)$ :

$$a_j^i(t) = \frac{\partial F_i(t, \mathbf{s})}{\partial s_j} \bigg|_{\mathbf{s} = \mathbf{1}}$$
 (12)

Величины  $a_j^i(t)$  определяют математическое ожидание числа нетерминалов  $A_j$  в слове, полученном в результате построения t ярусов дерева вывода из нетерминала  $A_i$ .

Мы будем также рассматривать вторые  $b^i_{jl}$  и третьи  $c^i_{jln}$  моменты

$$b_{jl}^{i} = \frac{\partial^{2} F_{i}(\mathbf{s})}{\partial s_{l} \partial s_{j}}, \qquad c_{jln}^{i} = \frac{\partial^{3} F_{i}(\mathbf{s})}{\partial s_{n} \partial s_{l} \partial s_{j}}, \tag{13}$$

а также величины  $b_{jl}^{i}(t), c_{jln}^{i}(t)$ :

$$b_{jl}^{i}(t) = \frac{\partial^{2} F_{i}(t, \mathbf{s})}{\partial s_{l} \partial s_{j}}, \qquad c_{jln}^{i}(t) = \frac{\partial^{3} F_{i}(t, \mathbf{s})}{\partial s_{n} \partial s_{l} \partial s_{j}}, \tag{14}$$

Матрица A, составленная из элементов  $a^i_j$ , называется матрицей первых моментов грамматики.

## 4 Вероятности продолжения

# Список литературы

- [1] Шеннон К. Математическая теория связи. М.: ИЛ, 1963
- [2] Марков А. А. Введение в теорию кодирования. М.: Наука, 1982
- [3] Фу К. Структурные методы в распознавании образов. М.: Мир, 1977
- [4] **Ахо А., Ульман Дж.** Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978
- [5] **Севастьянов Б. А.** Ветвящиеся процессы. М.: Наука, 1971-436 с.

- [6] **Гантмахер Ф. Р.** Теория матриц. 5-е изд., М.: ФИЗМАТЛИТ, 2010
- [7] Жильцова Л. П. О матрице первых моментов разложимой стохастической КС-грамматики. УЧЁНЫЕ ЗАПИСКИ КАЗАНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА, Том 151, кн. 2, 2009
- [8] Жильцова Л. П. Закономерности применения правил грамматики в выводах слов стохастического контекстно-свободного языка // Математические вопросы кибернетики. Выр. 9. М.: Наука, 2000. С. 100-126.
- [9] Жильцова Л. П. О нижней оценке стоимости кодирования и асимптотически оптимальном кодировании стохастического контекстно-свободного языка // Дискретный анализ и исследование операций. Серия 1, т. 8, №3. Новосибирск: Издательство Института математики СО РАН, 2001. С. 26-45.
- [10] **Борисов А. Е.** Закономерности в словах стохастических контекстно-свободных языков, порождённых грамматиками с двумя классами нетерминальных символов. Вопросы экономного кодирования. // Диссертация на соискание учёной степени кандидата физико-математических наук. Нижний Новгород, 2006.