Assignment # 5

Marco Gonzalez

1.

Theorem. The equivalence class $[h(x)] = \{ f \in P \mid f(x) = ax \text{ for some } a \in \mathbb{N} \}$

Proof. Part 1. Assume $g=ax^1$ for some $a\in\mathbb{N}$. We show $g\sim h$ by existence proof. Let c=a. Then $x\leq x\leq a^2x$. Therefore, $\frac{1}{c}ax\leq x\leq cax$ for some $c\in\mathbb{N}$.

Part 2. Proof by contrapositive. Assume $g=ax^n$ and n>1. We show $g\not\sim h$ by existence proof. Let x=2c. Therefore, $\frac{1}{c}(2c)^{n-1}>1$ and $2^{n-1}ac^{n-1}>1$ since $n\in N$. Therefore, $\frac{1}{c}ax^n>x$ or $x>cax^n$ for some $x\in N$ and $\frac{1}{c}ax^{n-1}>1$.

Theorem. The relation \approx is an equivalence relation on the set of all groups.

Proof. Part 1. We show \approx is symmetric.

We show if $(G, *) \approx (H, \diamond)$ then $(H, \diamond) \approx (G, *)$. Assume $(G, *) \approx (H, \diamond)$. So there exists a function $f: G \to H$ such that $f(a*b) = f(a) \diamond f(b) \ \forall \ a, b \in G$ and f is a bijection. Since f is a bijection, f has an inverse $f^{-1}: H \to G$ and f^{-1} is a bijection. Therefore, $f^{-1}(f(a*b)) = f^{-1}(f(a) \diamond f(b))$ and $a*b = f^{-1}(f(a) \diamond f(b))$. Let f(a) = c and f(b) = d. Therefore $f^{-1}(c) = a$ and $f^{-1}(b) = d$. Then, $f^{-1}(c \diamond d) = f^{-1}(c) * f^{-1}(d)$. Therefore, $f^{-1}(c \diamond d) = f^{-1}(c) * f^{-1}(d)$.

Part 2. Show \approx is reflexive. We prove $(G,*)\approx (G,*)$.

Let f(x) = x. Substituting we get, a * b = a * b. Therefore the relation is reflexive, and f(a * b) = a * b for all a, b.

Part 3. Assume $(G, *) \approx (H, \diamond)$ and $(H, \diamond) \approx (K, \oplus)$. We now show if $(G, *) \approx (H, \diamond)$ and $(H, \diamond) \approx (K, \oplus)$, then $(G, *) \approx (K, \oplus)$.

We show \approx is transitive. We prove $(G, *) \approx (H, \diamond) and (H, \diamond) \approx (K, \oplus)$.

There exists $f: G \to H$ such that $f(a*b) = f(d) \diamond f(b) \ \forall \ a,b \in G$ and f is a bijection. Additionally, there exists $j: H \to K$ such that $f(c \diamond d) = j(c) \oplus j(d)$ for all $c,d \in H$ and j is a bijection. Therefore $j \circ f: G \to H$ is bijective.

We now show $j \circ f(a * b) = j \circ f(a) \oplus j \circ f(b)$, for all a, b. Simplifying, $j(f(a * b)) = f(f(a) \diamond f(b)) = j(f(a) \diamond f(b)) = j(f(a)) \oplus j(f(b)) = j(c) \oplus j(d)$.