Search for pair production of scalar top quarks decaying to a τ lepton and a b quark in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Dissertation Defense Presentation

Vadim Khotilovich

Department of Physics

Texas A&M University

Outline

- Theoretical motivations and models
- Process and existing limits
- Tools
 - Tevatron and CDF detector
 - Lepton+Track triggers
 - Hadronic tau decay reconstruction
- Analysis
 - Event selection
 - Background estimation
 - Fitting procedure
- Cross-section and mass limits
- Summary and prospects

Standard Model (SM) and its Limitations

- $SU(3)_{C}xSU(2)_{L}xU(1)_{Y}$ gauge theory
- Combines strong, weak and electromagnetic interactions
- Successfully describes vast majority of phenomena

- Limitations and problems:
 - Some theoretical limitations:
 - Higgs "naturalness" problem
 - Interactions are not unified at high energies
 - Need extensions to describe neutrino masses

- Experimental disagreement:
 - Evidence of massive neutrinos
 - Cosmological problems:
 SM explains only visible matter,
 which is 4% of the Universe
 - $a_{\mu}=(g_{\mu}-2)/2$ measurement

Supersymmetric (SUSY) Theories

- Symmetry between bosons and fermions:
 - Fermions get spin 0 superpartners
 - Bosons get spin ½ superpartners
- Can solve all problems of the SM outlined in previous page!
- SUSY has to be broken at low energies
 - Many different theories for SUSY breaking mechanisms exist
 - This analysis doesn't explicitly depend on a specific mechanism

R-parity quantum number:

•
$$R_P = (-1)^{3B+L+2S} = \begin{cases} 1 \text{ for SM particles} \\ -1 \text{ for SUSY particles} \end{cases}$$

- If R-parity is conserved:
 - Superparticles: produced in pairs, decay products always have sparticles
 - Lightest SUSY particle (LSP) is stable: good Dark Matter candidate

R-parity Violating (RPV) SUSY Theories

- No direct evidence exists that R-parity must be conserved
- Consequences of RPV:
 - SUSY particles can decay into SM only particles
 - Instability of LSP makes it poor candidate for dark matter
 - RPV can provide a new mechanism for baryon asymmetry
- General RPV superpotential:

$$W_{RPV} = (\mu_{i}L_{i}H_{u} + \lambda_{ijk}L_{i}L_{j}E_{k} + \lambda'_{ijk}L_{i}Q_{j}D_{k}) + \lambda''_{ijk}U_{i}D_{j}D_{k}$$
lepton number violating terms barion number violating
$$\lambda - \text{trilinear}, \mu - \text{bilinear RPV couplings}$$

- Lepton and Barion number violating terms can't be non-zero at the same time (strong limits from proton lifetime)
- Typical experimental limits: λ , λ ', λ ''< $(10^{-2}-10^{-1})$ m / (100 Gev/c^2)
- RPV SUSY provides a natural mechanism for neutrino mass

RPV Stop Decay

- Supersymmetric top quark \tilde{t}_1 might be even lighter than top quark
 - While experimental data suggest that superpartners of 1st and 2nd generation have masses higher than any SM particle
- We are interested in $\tilde{t}_1 \rightarrow \tau b$ decay
 - λ'_{333} is RPV coupling which is responsible in LO for this decay
 - Neutrino oscillation experiments suggest limits
 λ'_{i33} < 10⁻⁵ 10⁻³
 - Stop RPC decays are naturally suppressed and may compete with RPV ones even for small values of λ'₃₃₃
 - It was shown that $Br(\tilde{t}_1 \to \tau b)$ may be dominant for wide range of parameters

Stop Pair Production

Stop quark can be pair-produced at the Tevatron

Set of leading order Feynman diagrams:

- Stop pair production cross section as function of $m(\tilde{t}_1)$:
 - NLO calculation with PROSPINO v2 (CTEQ6M PDF)
 - ~35% higher than for Run I

03/05/2008

Dis

3rd Generation Scalar Leptoquark Interpretation

- SM: remarkable symmetry between quarks and leptons
 - Could there be interaction between them?
- Interaction mediated by Leptoquark particle
 - Color-triplet boson, spin 0 or 1, has lepton and barion numbers
 - Appears in SU(5) GUT, Superstrings, SU(4) Pati-Salam, Composite, Technicolor models
 - ◆ Third generation scalar leptoquark decay: $Br(LQ_3 \rightarrow \tau b)=1$ if $m(LQ_3)< m(t)$
- Scalar LQ₃ pair production is identical to the case of stop pair production in the limit of high gluino mass
- RPV stop models can be interpreted as LQ models if $Br(\tilde{t}_1 \to \tau b)=1$
- The results which we'll get for RPV stop will apply for LQ₃ too

Existing Limits on RPV Stop

- LQ3: m > 99 GeV/c2
 (LEP / CDF Run I)
- RPV stop: *m* >122
 GeV/*c*2 (CDF Run I)

CDF Run I:

Experimental Tools

Tevatron and CDF II

Lepton + Track triggers at CDF

Hadronic tau identification

Tevatron Accelerator

- 1.96 GeV comparing to 1.8 GeV in Run I
 - Increases stop cross-section by ~30%!
- 36p x 36pbar 396ns separated bunches.
- ~60mb inelastic cross-section: 6 trillion collisions per 100/pb.

FERMILAB'S ACCELERATOR CHAIN

- Total Integrated Luminosity ~3 /fb delivered up to date
- This analysis uses 322 /pb
 - Almost 3 times more than in Run I
- Plan: ~6/fb in Run II total

Collider Detector at Fermilab in Run II

CDF Triggering System and Lepton+Track Triggers

3 Levels CDF Trigger System:

Detector
7.6 MHz Event rate

L1 trigger <50 kHz Accept rate trigger paths

L2 trigger
300 Hz Accept rate
trigger paths

L3 trigger
73 Hz Accept rate
datasets

Mass Storage

- Lepton+Track Triggers
 - 3 pathes:
 - TAU_ELECTRON8_TRACK5_ISO
 - TAU_CMUP8_TRACK5_ISO
 - TAU_CMX8_TRACK5_ISO
 - Require:
 - L1&L2 (hardware levels):
 - Central trigger electron or muon with P_T>8 GeV/c
 - XFT track with P_T>5 GeV/c
 - L3 (software level):
 - More refined reconstruction
 - Additional req. of isolation of 2nd track in 10° -30° annulus

LT Triggers Cross Section

LT triggers help a lot to filter signal events with taus!

 Comparing to Run I: considerably increased tau preselection efficiency

Trigger Efficiency: ~92%

Stop Pair-Production (M=100 GeV/c2

Tau Decay and Identification

- τ_h pattern:
 - Tracks, π⁰s & narrow calorimeter jet in 10° cone,
 - ♦ isolation in 10° -30° annulus
- Taus are hard to detect at Tevatron
 - Jets and Leptons can be misidentified as tau
 - ID efficiency:

$$\mathcal{E}(\tau_h \text{ ID}) = 55.6 \pm 1.6(\text{stat}) \pm 2.2(\text{syst})\%$$

- Tau signal sone for tracks is dependent on tau energy
- Tau visible momentum:
 - $p^{vis}(\tau) = \sum p(tracks) + \sum p(\pi^0)$
 - Correction Procedure exists to compensate for effects of poor π^0 reconstruction

decay type	decay prod.	Br
electronic	e+nu+nu	17.4%
muonic	mu+nu+nu	17.8%
hadronic	mesons+nu	64.8%

Analysis

- We use unbiased analysis strategy:
 - Define a signal region
 - Contains most of signal and not much of backgrounds
 - Do not look at data in it until all selection criteria are finalized
 - Define control and sideband regions
 - Used for validation and background estimation

Flow:

- Define and optimize event selection cuts, determine acceptances for signal and backgrounds
- Validate looking at data in control regions
- Determine systematic uncertainties
- Look at data in signal region
- ◆ If no excess → set 95% CL limits on stop crosssection & mass

Signal Signature and MC

Detector signature to look for:

- e or μ: from leptonically decaying tau
- τ_h : hadronic tau
- 2 jets: from b-quarks

To model:

- PYTHIA using CTEQ5L PDF
- GEANT-based CDF full detector simulation
- samples for different stop masses:

 $m(\text{stop}) = 100 - 170 \text{ GeV}/c^2$

Backgrounds

Physics BG:

- $Z(\to \mathcal{T}_l \mathcal{T}_h) + \ge 2$ jets (dominant; use MC corrected with Data)
- t t, WW/WZ/ZZ (small; use MC)

- Z (→ee/μμ) + ≥ 2jets
 (Z→ee is rather sizeable;
 use MC corrected with Data)
- QCD (≥ 4jets) (use Data)
- W $(\rightarrow I/\rightarrow \tau \rightarrow I)$ + \geq 3jets (small, but hard to estimate; use Data)

MC estimated BG:

- ◆ Use Pythia or Alpgen+Herwig for acceptance
- Normalize with NLO cross-sections

Event Selection

- **Central e or** μ : $p_T(I) > 10 \text{ GeV}/c$
- Hadronic tau : $p_T(\tau)$ >15 GeV/c
- Series of standard ID cuts
- Background removal:
 - DY, cosmics rays, conversions
 - $S_T = p_T(I) + p_T(I) + MET > 110 GeV$
 - strong suppression of QCD and $Z \rightarrow \tau \tau$
 - cut value is optimized

- Two more discriminating variables:
 - m_T(I, MET)
 - Transverse mass of lepton and MET
 - ◆ N_{jet}
 - Number of extra jets:
 - other than lepton or tau and with E_T >20 GeV
 - Threshold value is optimized

Definition of Control ans Sideband regions

- After $S_T > 110$ GeV requirement:
 - ◆ Sort remaining events by N_{jet} & m_T(I,MET)
- Signal dominates in Region A("the blind box")
 - m_T(I, MET) < 35 GeV/c²
 separates signal and
 W, top and di-boson
 backgrounds
 - $N_{jet} \ge 2$ ($E_T > 20$ GeV) separates signal and most of BG (including $Z \rightarrow \tau \tau$)

"extra" jets

Validation: $N_{jet}=0$ Regions C and D

• Use S_T >80 GeV (better statistics for validation)

- C is dominated by $Z \rightarrow \tau \tau$
- clear tau signal

N_{jet} Distribution for $m_T < 35$ GeV/ c^2

- Signal region (N_{jet} ≥ 2):
 - was looked after the validation in control regions was completed
 - $\bullet \quad N_{\text{obs}} = 2 (1e+1\mu)$
 - \bullet N_{BG} = $3.0^{+0.5}_{-0.4}$

Signal Region

Signal Event Selection: Summary

Total signal event selection acceptance (in region A_2 as a function of m(stop) for:

- Electron channel
- Muon channel:
 CMUP (|η|<0.6)
 CMX (0.6<|η|<1.0)
 separately and combined

Muons (combined) and Electrons give similar acceptance

Systematic Uncertainties

Contributions:

◆ PDF: 3.8 – 5.0 %

◆ ISR/FSR: 1.5 - 2.0 %

◆ Jet energy scale: 1.2 - 8.7 %

◆ MET: 0.3 – 2.1 %

◆ Acceptance: 1.5 – 1.7 %

◆ lepton/tau ID: 1.0 – 3.0 %

◆ Trigger efficiency: ~1%

■ Total systematics [%] vs Stop mass [GeV/c²]:

m(sto	p),	100	110	120	130	140	150	160	170
Channal	e +τ	10.8	11.1	10.3	8.5	7.8	7.3	7.2	6.9
Channel	μ+τ	10.9	10.7	10.0	9.2	8.3	7.5	7.5	7.3

Fit Strategy

- Use fitting to the Data to find:
 - Probability Density Function as a function of signal crosssection
 - estimate W+jets background
- "4-region" method:
 - Assume for W+jets

$$r \equiv [N(A)/N(B)] / [N(C)/N(D)] \sim 1$$

- unreliable rates but reliable ratios
- verified with MC
- ◆ Estimate all non-W+jets BG
- ◆ Estimate N_B/N_A, N_C/N_A, N_D/N_A for signal events
- Include systematic uncertainties (are in range of 7.0%~11.2%)
- Fit to Data in all 4 regions

Building the Fit Likelihod

■ Define Likelihood as a function of σ using Poisson Statistics $P(n_i, N_i)$:

$$LL(\sigma) = \int da \times \exp\left[-\frac{a - \alpha_0}{2\sigma_{\alpha}^2}\right] \times L \times Br \times a \times \frac{1}{V^W} \iiint dv_A^W dv_C^W dv_D^W \times \int_{0.5}^1 dr \times \prod_{i=A,B,C,D} \int_{v_i^b=0}^{\infty} dv_i^b \exp\left[-\frac{v_i^b - v_{i0}^b}{2(\sigma_i^b)^2}\right] \times P(v_i, N_i) \times J(r)$$

- \bullet N_i is number of observed events in region i
- $v_i = \sigma Br(\tau \tau \to \tau_l \tau_h) L \alpha_i + v_i^b + v_i^W$ is number of expected events in region *i*
- v_i^W and v_i^b are numbers of W+jets and other background events
- α_0 is signal acceptance
- ◆ L is luminosity
- J(r) is Jacobian of transformation $(\nu_A, \nu_B, \nu_C, \nu_D) \rightarrow (\nu_A^W, \nu_B^W, \nu_C^W, \nu_A^S)$
- Likelihood for combined channels: $LL(\sigma)=LL^{e+\tau}(\sigma)LL^{\mu+\tau}(\sigma)$
- Perform multidimensional numerical MC integration
- During integration:
 - Take into account correlations between channels and systematics
 - Migration effects between regions

4-regoins Fit

- Fully Bayessian
- Handles W+jets backgrounds
- Effectively allows to use signal from region B
 - ◆ B contains ~40% of signal
- The result:
 - Probability Density Function as a function of signal crosssection
 - Can set 95% C.L. limit or discover stop
 - Example

Number of events in Different Regions

	e	$+ \tau_{\rm h} { m Cha}$	annel	$\mu + \tau_{ m h}$ Channel		
Reg	$N_{ m obs}$	SM Bac	kgrounds	$N_{ m obs}$	SM Bac	kgrounds
		Other	$W+{ m jet}$		Other	$W+\mathrm{jet}$
$\overline{A_2}$	1	$2.0^{+0.5}_{-0.4}$	$0^{+0.4}_{-0}$	1	$1.0^{+0.4}_{-0.2}$	$0^{+0.5}_{-0}$
B_2	4	$2.8^{+0.5}_{-0.3}$	$1.0_{-1.0}^{+2.0}$	4	$2.3^{+0.4}_{-0.3}$	$1.7^{+2.0}_{-1.5}$
A_1	4	$3.3^{+0.5}_{-0.5}$	$0.2^{+1.2}_{-0.2}$	3	$2.6^{+0.6}_{-0.4}$	$0.1^{+0.8}_{-0.1}$
B_1	9	$2.3^{+0.4}_{-0.3}$	$6.7^{+3.2}_{-2.7}$	6	$2.3^{+0.5}_{-0.3}$	$3.8^{+2.7}_{-2.1}$
A_0	11	$9.1^{+1.2}_{-1.1}$	$1.6^{+2.7}_{-1.6}$	8	$5.2^{+0.7}_{-0.5}$	$2.5^{+2.4}_{-2.1}$
B_0	25	$4.5^{+0.7}_{-0.6}$	$21.1^{+5.6}_{-4.3}$	28	$5.4^{+0.8}_{-0.6}$	$23.6_{-5.7}^{+4.9}$

Note:

- ◆ W+jets and other BG's are not combined
- W+jets are estimated in the fit and not independent from number of data evt., other BG's and expected signal fractions

Stop Cross-Section Upper Limits

- No excess observed → set limits
- Theoretical uncertainties on cross-section:
 - CTEQ6.1M special PDF sets for uncertainty estimation
 - ♦ ± ½ of QCD renorm./factor. scale
- 95% C.L. upper limit on $\sigma(\tilde{t_1}\bar{\tilde{t_1}}) \times \beta^2$ where $\beta = Br(\tilde{t_1} \to \tau b)$ as function of stop mass, calculated for the cases when theoretical uncertainties on CS were or were not considered:

$m(\tilde{t}_1) \; (\mathrm{GeV}/c^2)$	100	110	120	130	140	150	160	170
$\sigma_{with\ uncert}^{95\%} \times \beta^2 \text{ (pb)}$	4.73	3.37	2.50	1.99	1.61	1.38	1.26	1.14
$\sigma_{no\ uncert}^{95\%} \times \beta^2 \text{ (pb)}$	4.48	3.11	2.27	1.81	1.47	1.26	1.16	1.04

Stop Mass Limits

- Stop mass 95% C.L. limits for the case $Br(\tilde{t}_1 \rightarrow \tau b) = 1$:
 - $m > 153 \text{ GeV}/c^2$ (theoretical uncertainties considered)
 - $m > 156 \text{ GeV}/c^2$ (not considering theor. uncertainties)

Summary and Prospects

- No RPV stop discovery with L=322 pb⁻¹
 - ◆ Expected 3.0^{+0.5}_{-0.4} BG events in primary signal region
 - Observed 2 events
 - Set 95% C.L. upper limit on $\sigma(\tilde{t_1}\overline{\tilde{t_1}}) \times Br(\tilde{t_1} \to \tau b)^2$ as function of stop mass
 - Stop mass 95% C.L. limit for $Br(\tilde{t}_1 \to \tau b) = 1$ case:
 - $m > 153 \text{ GeV}/c^2$ (theoretical CS uncertainties considered)
 - Results are fully applicable to Scalar LQ₃

Possible Prospects:

- Bigger dataset will need completely new analysis with btagging
- Combined search of modes $\tilde{t_1} \to eb \& \tilde{t_1} \to \mu b \& \tilde{t_1} \to \tau b$ has more potential
- Procedures developed in this analysis could be applied to pp → (H→ττ)bb search
 - Feasibility needs more study
 - Needs improvement of tau and jet energy resolutions

Backup

Acceptance Definition

	Electron +Tau	CMUP/CMX Muon +Tau		
	CEM Cluster:	Stub:		
	E _T > 10 GeV	CMUP / CMX		
Lepton:	Excl. wedges I=16 and 35			
	Matching Track:	Matching Track:		
	$P_T > 8 \text{ GeV/c}$	P _T > 10 GeV/c		
	$ z_0 < 60 \text{ cm}$	$ z_0 < 60 \text{ cm}$		
	z(R=COT) < 150 cm	z(R=COT) < 150 cm		
	9< z(R=CES) < 230 cm	Fiducial in CMUP / CMX		
	x(R=CES) < 21.5 cm			
	$P_{T}(trk+\pi 0) > 15 \text{ GeV/c}; \eta^{det} < 1.0$			
Tau Candidate:	Seed track $P_T > 6 \text{ GeV/c}$; $ z(R=COT) < 150 \text{ cm}$			
Januara.	Seed Track 9< z(R=CES) < 230 cm			
<i>l-τ</i> Separation:	ΔR >0.7			

Lepton & Tau ID and Isolation

Electron:	Muon:	Tau:		
Track Quality	Track Quality	Seed Track Quality		
Ehad/Eem <0.05+0.00045×E	E ^{em} <2, E ^{had} <6	$ z_0(seed) - z_0(ele) < 5 cm$		
E/P < 2.0 or ET>50	Ehad+Eem>0.1	d ₀ <0.2 cm		
$-1.5 < Q \times \Delta X_{CES} < 3.0 \text{ cm}$	$ d_0 < 0.2 \text{ cm}$	ξ >0.1 (electron removal)		
$ \Delta Z_{CES} < 3.0 \text{ cm}$	$\Delta X^{CMU} < 4 \Delta X^{CMP} < 7$	M(trks) <1.8 GeV/c ²		
CES χ^2_{strip} < 10.0	Or ΔX ^{CMX} <6	$M(trks+\pi^{0}) < 2.5 \text{ GeV/c}^{2}$		
L _{shr} < 0.2		N _{trk} =1, 3		
$ d_0 < 0.2 \text{ cm}$				
Isolation:				
Jet Se	Jet Separation: $0.3 > \Delta R(e/\mu/\tau, jet) > 0.8$			
$I_{trk} (\Delta R = 0.4) < 2.0 \text{ GeV/c}$	$I_{trk}(\Delta R = 0.4) < 2.0 GeV/c$	$N_{trk}(0.17 < \Delta\theta < 0.52) = 0$		
		$N_{trk}(0.17 < \Delta R < 0.52) = 0$		
		$I(\pi^0, \alpha < \Delta\theta < 0.52) < 0.6 \text{ GeV/c}$		

Event Selection: Summary

	e +τ[%]	CMUP+ $ au$	CMX+T
Acceptance	17.6 ± 0.3	10.4 ± 0.2	3.6 ± 0.1
Lepton ID	83.8 ± 1.0	84.9 ± 3.7	91.0 ± 0.7
Lepton ISO	78.4 ± 2.4	81.4 ± 2.5	71.8 ± 2.5
Tau ID	75.2 ± 2.3	74.0 ± 2.3	71.8 ± 2.5
Tau ISO	70.0 ± 2.2	70.9 ± 2.2	70.4 ± 2.5
Trigger Eff.: Lepton	97.6 ± 1.0	95.8 ± 1.0	94.6 ± 1.1
Tau XFT Track		96.4 ± 1.0	
Event Level Cuts	40.7 ± 0.8	47.7 ± 1.0	41.1 ± 1.7
Total	2.33 ± 0.06	1.65 ± 0.05	0.59 ± 0.03

- Efficiencies quoted for Region A and m(stop)=150
- Consistent efficiencies across channels

Minor Backgrounds

- Top and diboson (ZZ, WZ, WW)
 - ♦ WW : negligible
 - Use Pythia(Alpgen+Herwig) for acceptance
 - Normalize to NLO cross-section
- γ (\rightarrow ee) + \geq 3jets : negligible in region A
- Z (→ee/μμ) + ≥ 2jets
 - Pythia acceptance
 - Normalize to NLO cross-section

QCD Background Estimation

• Prescription from $Z \rightarrow \tau \tau$ analysis :

- Apply all desired cuts except lepton isolation
- Measure the spectrum (or a number of events) in the "flat" region and rescale by (2-0)/(8-2)=1/4
- This is the background in the signal region
- You can think of it as a variety of "sideband" subtraction

S_T and jet E_T Cut Optimization

- Previously (Run I):
 - ◆ Used E_T(jet2)=15 Gev optimized at S_T >85
 - ◆ using S_T only and Z→tt as
- Target:
 - region A₂
 - → m(stop)=160 GeV

Missing Transverse Energy Correction

- Needs to be correctred due to energy corrections for:
 - Lepton
 - ◆ Tau
 - Jets
- Allows improved MET resolution
- Even more important for backgrounds

Signal in $\mu+\tau$ channel example: MET(MC) - MET(Reconstructed)at different levels of corrections:

Changes & Improvements Since Blessing

- Z→ee MC sample updated
 - Large statistsics zewk6d (5.3.3_ewk MC) instead of obsolete now zewkae (5.3.2)
 - Some changes in estimated Z→ee contribution
- Correction procedure for known Z→ ττ and Z→ee MC imperfectnesses
 - Corrects for several effects, e.g.
 - Processes are treated as 2→1 LO in PYTHIA
 - Not adequate for **higher** $p_T(Z)$ region
 - MET in $Z \rightarrow ee$ (5.3.3) is known to disagree in data & MC:
 - not well modeled minbias and calorimeter response to jets
 - Our analysis rely on N_{jet} , Y_T , m_T that are sensitive to $p_T(Z)$ and MET

Scale Factors For Drell-Yan BGs

			Jet Bin	
		0	1	≥ 2
	$Z \rightarrow ee$:			
I	$M_T < 35$	1.07 ± 0.13	0.99 ± 0.12	1.28 ± 0.27
	$M_T > 35$	0.87 ± 0.13	0.91 ± 0.12	1.19 ± 0.28
	$Z \to \tau \tau$:			
	$M_T < 35$	$1.00 \pm 0.10(st) \pm 0.02(sys)$	$0.90 \pm 0.09(st) \pm 0.14(sys)$	$1.02 \pm 0.19(st) \pm 0.18(sys)$
	$M_T > 35$	$0.99 \pm 0.18(st) \pm 0.02(sys)$	$0.94 \pm 0.23(st) \pm 0.11(sys)$	$1.03 \pm 0.23(st) \pm 0.19(sys)$