LINKÖPINGS UNIVERSITET Produktionsekonomi, IEI TPPE32 Finansiell riskhantering VT 2021

Inlämningsuppgift 2

RISKMÅTT MARKNADSRISK & BACK TESTING

$M\mathring{A}L$

Målet med denna uppgift är att skapa förståelse för estimering av marknadsrisk utifrån Value-at-Risk och expected shortfall givet olika fördelningsantaganden.

ORGANISATION

Inlämningsuppgiften genomförs i grupper om två studenter. Ni ska utgå från de finansiella tidsserierna i filen timeSeries.xlsx. Uppgiften ska genomföras i MATLAB med stöd av Excel.

Inlämningen ska bestå av en skriftlig rapport och MATLAB-filer med underliggande beräkningar, inklusive data, så att samtliga resultat kan genereras utifrån ett skript. Instruktioner för innehållet i den skriftliga rapporten presenteras i slutet av detta dokument.

Betyg: Godkänt/Underkänt

UPPGIFTER

Filen timeSeries.xlsx (se Lisam) innehåller data för problemen nedan. I deluppgift 1 och 2 ska ni utgå från en (statisk) likaviktad portfölj, d v s med konstanta portföljvikter $\omega = 1/n$, där n är antalet tillgångar. Låt $t = 0,1,\ldots,T$ representera tidpunkterna för observerad data (för respektive deluppgift) i instruktionerna nedan.

- 1. Value-at-Risk och Expected Shortfall
 - a) Bestäm Value-at-Risk för t=T+1 med 1 veckas horisont på konfidensnivåerna 95, 97,5 respektive 99 % utifrån varians-kovariansmetoden under antagandet att aktiernas avkastningar, $R_{T+1}=\frac{S_{T+1}-S_T}{S_T}$, är multivariat normalfördelade. Antag att portföljvärdet $V_{p,T}=10~\mathrm{MSEK}$.

Notera: Om $R_{T+1} \sim \mathcal{N}(\mu, \Sigma)$ följer det att $R_{p,T+1} = \omega^T R_{T+1} \sim \mathcal{N}(\omega^T \mu, \omega^T \Sigma \omega)$. Låt enligt instruktionerna ovan $\omega = 1/n$, där n är antalet tillgångar.

b) Bestäm relativt VaR_{0,95,1v} och VaR_{0,99,1v} för $t=502,\ldots,T$ utifrån antagandet att logaritmiska portföljavkastningar är normalfördelade med väntevärde noll. Estimera portföljvolatiliteten baserat på EWMA med $\lambda=0.94$. Tillämpa¹

$$\frac{\text{VaR}_{c,1v}(t)}{V_{p,t-1}} = 1 - e^{-\mathcal{N}^{-1}(c)\sigma_{p,t}}, \quad \sigma_{p,t}^2 = 0.94\sigma_{p,t-1}^2 + (1 - 0.94)r_{p,t-1}^2,$$

där $r_{p,t} = \ln(1 + R_{p,t})$. Initiera $\sigma_{p,2}^2 = r_{p,1}^2$ men beräkna första $\text{VaR}_{c,1v}(t)$ för t = 502.

Notera: ni ska inte beräkna portföljvärden, ty ni ska presentera relativt VaR under antagandet om en likaviktad portfölj.

- c) Bestäm $relativt \ VaR_{0,95,1v}$ och $VaR_{0,99,1v}$ för $t=502,\ldots,T$ baserat på historisk simulering med rullande fönster om 500 historiska portföljavkastningar, $R_{p,t-1},\ldots,R_{p,t-500}$. Bestäm också Expected Shortfall, $ES_{0,95,1v}$, för t=T+1 baserat på historisk simulering utifrån $R_{p,T},\ldots,R_{p,T-499}$.
- d) Bestäm relativt VaR_{0,95,1v} och VaR_{0,99,1v} för $t=502,\ldots,T$ baserat på historisk simulering enligt Hull and White $(1998)^2$ med rullande fönster om 500 historiska portföljavkastningar, $R_{p,t-1},\ldots,R_{p,t-500}$. Estimera portföljvolatiliteter, $\sigma_{p,t}$, baserat på EWMA enligt

$$\sigma_{n,t}^2 = 0.94\sigma_{n,t-1}^2 + (1 - 0.94)R_{n,t-1}^2$$

och initiera $\sigma_{p,2}^2 = \frac{1}{19} \sum_{t=1}^{20} \left(R_{p,t} - \bar{R}_{p,t} \right)^2$, där $\bar{R}_{p,t} = \frac{1}{20} \sum_{t=1}^{20} R_{p,t}$.

e) Genomför dubbelsidiga³ failure rate test på signifikansnivåerna 1 % respektive 5 % för tidsserierna av VaR-estimat konstruerade i problem 1 b-d).

Tips: Se föreläsning 6.

f) Genomför testet för seriellt beroende i VaR-överskridelser för estimaten i uppgift 1 b-d) på signifikansnivåerna 1 % respektive 5 % utifrån Christoffersen (1998).⁴

Notera att uttrycket för VaR är exakt givet antagandet att logaritmiska portföljavkastningar är normalfördelade. Vi har att VaR_{c,1v}(t) $\approx \mathcal{N}^{-1}(c)\sigma_{p,t}V_{p,t-1}$.

²Beskrivningen i föreläsning 5 täcker de nödvändiga delarna för att implementera metoden, men läs gärna (delar av) artikeln vid intresse.

³D.v.s. givet nollhypotes p = 1 - c, och mothypotes $p \neq 1 - c$

⁴Beskrivningen i föreläsning 6 täcker de nödvändiga delarna för genomförande av testet, men läs gärna (delar av) artikeln vid intresse.

2. Extrem-värdes-teori (EVT)

a) Använd extrem-värdes-teori (EVT) för att bestämma relativt Va $\mathbf{R}_{0,99,1v}$ för den likaviktade aktieportföljen för t=T+1. Estimera parametrar med Maximum Likelihood Estimering (MLE) baserat på hela datamängden.

Tips: se föreläsning 5.

Tips: Var noggrann med enheter!

b) Estimera parametrarna (EVT) för en volatil period (använd c:a 5 års data).

3. Riskfaktormappning

- a) Bestäm VaR_{0,99,1d} för portföljen av optioner på S&P 500 i bladet *Problem 3* för t=T+1 genom att tillämpa metoden presenterad på föreläsning 7. Utgå från en linjär approximation med avseende på de tre riskfaktorerna S&P 500, σ_{VIX} och r^f under antagandet att riskfaktorerna⁵ är multivariat normalfördelade. Använd Black-Scholes för prissättning och vid estimering av grekerna Δ , ν och ρ . Antag att den kontinuerliga utdelningstakten, q=5 % (årsbasis).
- b) Bestäm det marginella bidraget till $VaR_{0,99,1d}$ från respektive option och riskfaktor.

BIBLIOGRAFI:

Christoffersen, P. F. (1998). Evaluating interval forecasts. *International Economic Review 39*, 841–862.

Hull, J. C. and A. White (1998). Incorporating volatility updating into the historical simulation method for value at risk. *Journal of Risk* 1, 5–19.

 $^{^5}$ Vi antar att logaritmiska avkastningar för S&P500 och förändringar ($\Delta x_t = x_t - x_{t-1}$) i volatilitet respektive räntan är multivariat normalfördelade.

Instruktioner för skriftlig rapport:

Den skriftliga rapporten ska innehålla följande:

- 1. Value-at-Risk och Expected Shortfall
 - a) Visa hur ni beräknat VaR och presentera estimaten.
 - b-d) Presentera grafer med VaR-estimaten över hela perioden samt ES för sista datumet i 1 c).
 - e-f) Presentera resultat från de statistiska testen och vilka slutsatser ni kunnat dra.

Utgå från era resultat för att besvara vilken/vilka av metoderna som verkar fungera bäst för att estimera marknadsrisken i studerad portfölj. Motivera!

2. Extrem-värdes-teori

- a) Presentera efterfrågat VaR inklusive alla ingående storheter i dess uttryck.
- b) Presentera estimerade parametervärden.

Plotta och tolka täthetsfunktionerna som följer från EVT. Jämför också storleken på VaR baserat på EVT med normalfördelningsantagande respektive historisk simulering!

3. Riskfaktormappning

- a) Redogör för hur ni beräknat portföljvolatiliteten och presentera ingående komponenter samt efterfrågat VaR.
- b) Redogör för hur ni beräknat det marginella bidraget till VaR från optionerna respektive riskfaktorerna och presentera de numeriska svaren.

Kan ni rimlighetsbedöma era resultat?