Modelling hypothesis: $\{\varepsilon\} = \{\varepsilon^M\} + \{\varepsilon^m\}$

- an average macro strain ε^M (periodic), given (and here constant)
- corrector ε^m (**periodic**), which is unknown

Approximation of the displacement field: u^m (associated with ε^m):

$$\{u^m\} = [N]\{q\},$$

with [N] encapsulating shape functions, q the main unknown. Small strain hypothesis, the strain ε^m can be determined with

$$\{\varepsilon^m\} = [B] \{q\},\,$$

with [B] be the displacement differentiation matrix.

Let us define the imposed deformation $\{h\}$ and the stiffness matrix [k] as

$$[k] = \int_{V} [B]^{T} [E] [B] dv,$$

$$\{h\} = -\int_{V} [B]^{T} [E] \{\varepsilon^{M}\} dv,$$

with [E] the **elasticity** matrix. We will solve the following linear system:

$$[k] \{q\} = \{h\}.$$