8 LOGARITMO

8.1 Generalidades

Conceito

Se $a \in R$, a > 0, $a \ne 1$ e $x \in R$, x > 0, então o número real y tal que $a^y = x$ é denomindado logaritmo de x na base a e denota-se $y = \log_a(x)$.

Exemplos:

1.
$$2^3 = 8 \Leftrightarrow \log_2(8) = 3$$

2.
$$4^2 = 16 \Leftrightarrow \log_4(16) = 2$$

3.
$$5^0 = 1 \Leftrightarrow \log_5(1) = 0$$

$$4. \quad 2^{-3} = \frac{1}{8} \Leftrightarrow \log_2\left(\frac{1}{8}\right) = -3$$

5.
$$10^3 = 1.000 \Leftrightarrow \log_{10} (1.000) = 3$$

Casos especiais:

- 1. Se a = 10, dizemos que $y \in 0$ logaritmo decimal de x e denotamos: $y = \log(x)$.
- 2. Se a = e (aproximadamente 2,718281), dizemos que y é o logaritmo natural de x e denotamos y = ln(x).

Tendo em vista o desenvolvimento das calculadoras eletrônicas, passaremos a utilizar sempre a base e.

8.2 Propriedades dos logaritmos

1.
$$\ln(1) = 0$$

4.
$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

2.
$$\ln(e) = 1$$

5.
$$\ln(x^{\alpha}) = \alpha \ln(x), \alpha \in R$$

3.
$$\ln(x \cdot y) = \ln(x) + \ln(y)$$

6.
$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Exemplos:

1. Calcule o valor de $K = 1 + 3.3 \log (85)$

Solução:

Observe que log (85) está escrito na base 10. Devemos efetuar a mudança da base 10 para a base e, utilizando para isso a 6^a propriedade: log (85) = $\frac{\ln (85)}{\ln (10)} = \frac{4,4427}{2,3026} = 1,9294$.

Portanto,
$$K = 1 + 3.3 (1.9294) = 7.3671$$

2. Resolva a equação: $2^x = 30$

Solução:

Observe que a dificuldade desta equação reside na presença da variável x como expoente da base 2. A 5^{a} propriedade de logaritmo elimina essa dificuldade. Exatamente por isso, vamos introduzir logaritmo na equação.

Se
$$2^x = 30$$
, então $\ln (2^x) = \ln (30)$.

Aplicando a 5ª propriedade, obtemos:

$$x \ln (2) = \ln (30)$$
 ou $x = \frac{\ln (30)}{\ln (2)} = 4,9069$

3. Resolva a equação: $4 = (x)^{0.2}$

Solução:

Observe que a dificuldade desta equação reside na presença de 0,2 como expoente da base x. A 5^{a} propriedade de logaritmo elimina essa dificuldade. Exatamente por isso, vamos introduzir logaritmo na equação.

Se $4 = (x)^{0,2}$, então $\ln (4) = \ln (x)^{0,2}$

Aplicando a 5^a propriedade, obtemos:

$$\ln (4) = 0.2 \ln (x)$$
 ou $\ln (x) = \frac{\ln (4)}{0.2} = 6.93115$

Portanto, $x = e^{6,9315} = 1.024$

4. Resolva a equação: $\log_2(x)$. $\ln(2) = 1$

Solução:

Observe que esta equação apresenta logaritmos na base 2 e na base e. A solução fica facilitada quando todos os logaritmos estão escritos na mesma base.

Utilizando-se a 6ª propriedade dos logaritmos, escrevemos: $\log_2(x) = \frac{\ln(x)}{\ln(2)}$.

Substituindo este valor na equação original, obtemos:

$$\frac{\ln (x)}{\ln (2)} \ln (2) = 1$$
 ou $\ln (x) = 1$.

Portanto, $x = e^1$ ou x = e

Exercícios 8.3

Resolver as equações com o auxílio de logaritmos.

1.
$$25^x = 10$$

2.
$$3^{2x} = 125$$

• 3.
$$4^{3x-1} = 72,5$$

4.
$$10^{5x} = 432$$

• 5.
$$\log_x(2) \cdot \ln(x) + \ln(x-2) = 0$$

6.
$$35 = (1 + x)^4$$

7.
$$42,74 = (1 + x)^{0,23}$$

7.
$$42,74 = (1 + x)^{0,23}$$

• 8. $\frac{2^{3x+1}}{3^{2x-1}} = 5^x$

9.
$$7 \cdot 3^{2x+1} = 4^{3x-2}$$

10.
$$x^{x^2-7x} = 1$$

Respostas:

1.
$$x = 0.7153$$

2.
$$x = 2,1975$$

3.
$$x = 1.3633$$

4.
$$x = 0.5271$$

5.
$$x = 2,5000$$

6.
$$x = 1,4323$$