AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently Amended) A countermeasure method for implementation performed in an electronic component and implementing a public-key cryptography algorithm comprising utilizing exponentiation computation of the type y=g^d, where g and y are elements of the <u>a</u> determined group G written in multiplicative notation, and d is a predetermined number, said countermeasure method being characterized in that it comprises comprising a masking first step for expressing the exponent d randomly in the form d=d₂·s+d₁, where d₁, d₂, and s are integers, and a second step for computing the value of y=g^d in G by any double exponentiation algorithm of the type (g^d₁) (h^d₂) with h=g^s in G.
- 2. (Currently Amended) A countermeasure method according to claim 1, characterized in that wherein the group G is written in additive notation.
- 3. (Currently Amended) A countermeasure method according to claim 1, characterized in that wherein the method comprises the following steps:
 - 1) Masking of d:
 - 1a) Express d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers

- 1b) Let $(d_1(t), d_1(t-1), \dots, d_1(0))$ and $(d_2(t), d_2(t-1), \dots, d_2(0))$ be the respective binary representations of d_1 and of d_2
- 2) Double exponentiation:
 - 2a) Define (compute) the element h=g^s in G
 - 2b) Initialize the register A with the neutral element of G
 - 2c) For i from t down to 0, do the following:
 - 2c1) Replace A with A²
 - 2c2) If $d_1(i)=1$, replace A with A.g
 - 2c3) If d₂(i)=1, replace A with A.h
 - 2c4) Return A.
- 4. (Currently Amended) A countermeasure method according to claim 1, characterized in that wherein the method comprises the following steps:
 - 1) Masking of d:
 - 1a) Express d randomly in the form d=d₂.s+d₁, where d₁, d₂, and s are integers
 - 1b) Let $(d_1(t),d_1(t-1),\ldots,d_1(0))$ and $(d_2(t),d_2(t-1),\ldots,d_2(0))$ be the respective binary representations of d_1 and of d_2
 - 2) Double exponentiation:
 - 2a) Define (compute) the element h=g^s in G
 - 2b) Precompute u=gh in G
 - 2c) Initialize the register A with the neutral element of G
 - 2d) For i from t down to 0, do the following:
 - 2d1) Replace A with A²

- 2d2) If $d_1(i)=1$ and $d_2(i)=0$, replace A with A.g.
- 2d3) If $d_1(i)=0$ and $d_2(i)=1$, replace A with A h
- 2d4) If $d_1(i)=1$ and $d_2(i)=1$, replace A with A u
- 2d5) Return A.
- 5. (Currently Amended) A countermeasure method according to claim 2, characterized in that wherein the method comprises the following steps:
 - 1) Masking of d:
 - 1a) Express d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers
 - 1b) Let $(d_1(t),d_1(t-1),\ldots,d_1(0))$ and $(d_2(t),d_2(t-1),\ldots,d_2(0))$ be the respective binary signed-digit representations for d_1 and for d_2
 - 2) Exponentiation:
 - 2a) Define (compute) the point R=s*P in G
 - 2b) Initialize a register A with the neutral element of G
 - 2c) For i from t down to 0, do the following:
 - 2c1) Replace A with 2*A
 - 2c2) If d₁(i) is non-zero, replace A with A+d₁(i)*P
 - 2c3) If d₂(i) is non-zero, replace A with A+d₂(i)*R
 - 2c4) Return A.
 - 6. (Currently Amended) A countermeasure method according to any preceding claim 1, characterized in that in the masking first wherein the step [,] of expressing the exponent d randomly in the form d=d₂·s+d₁, where d₁, d₂, and s are

Attorney's Docket No. <u>032326-314</u> Application No. Unassigned Page 7

integers, consists in comprises choosing a random integer s and in taking d_2 equal to the default value of the integer division of d by s, and d_1 equal to the remainder of said division.

- 7. (Currently Amended) A countermeasure method according to any one of claims 1 to 5 claim 1, characterized in that wherein the step of expressing the exponent d randomly in the form $d=d_2s+d_1$, where d_1 , d_2 , and s are integers, consists in comprises choosing a random integer d_1 , in setting s to the value 1, and in taking d_2 equal to the difference between d and d_1 .
- 8. (Currently Amended) An electronic component implementing the method according to any preceding claim claim 1.
- 9. (New) A countermeasure method according to claim 2, wherein the step of expressing the exponent d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers, comprises choosing a random integer s and taking d_2 equal to the default value of the integer division of d by s, and d_1 equal to the remainder of said division.
- 10. (New) A countermeasure method according to claim 3, wherein the step of expressing the exponent d randomly in the form $d=d_2\cdot s+d_1$, where d_1 , d_2 , and s are integers, comprises choosing a random integer s and taking d_2 equal to the default value of the integer division of d by s, and d_1 equal to the remainder of said division.

Attorney's Docket No. <u>032326-314</u> Application No. Unassigned Page 8

- 11. (New) A countermeasure method according to claim 4, wherein the step of expressing the exponent d randomly in the form $d=d_2\cdot s+d_1$, where d_1 , d_2 , and s are integers, comprises choosing a random integer s and taking d_2 equal to the default value of the integer division of d by s, and d_1 equal to the remainder of said division.
- 12. (New) A countermeasure method according to claim 5, wherein the step of expressing the exponent d randomly in the form $d=d_2\cdot s+d_1$, where d_1 , d_2 , and s are integers, comprises choosing a random integer s and taking d_2 equal to the default value of the integer division of d by s, and d_1 equal to the remainder of said division.
- 13. (New) A countermeasure method according to claim 2, wherein the step of expressing the exponent d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers, comprises choosing a random integer d_1 , setting s to the value 1, and taking d_2 equal to the difference between d and d_1 .
- 14. (New) A countermeasure method according to claim 3 wherein the step of expressing the exponent d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers, comprises choosing a random integer d_1 , setting s to the value 1, and taking d_2 equal to the difference between d and d_1 .
- 15. (New) A countermeasure method according to claim 4, wherein the step of expressing the exponent d randomly in the form d=d₂·s+d₁, where d₁, d₂, and

Attorney's Docket No. <u>032326-314</u> Application No. Unassigned Page 9

s are integers, comprises choosing a random integer d_1 , setting s to the value 1, and taking d_2 equal to the difference between d and d_1 .

- 16. (New) A countermeasure method according to claim 5, wherein the step of expressing the exponent d randomly in the form $d=d_2$ s+ d_1 , where d_1 , d_2 , and s are integers, comprises choosing a random integer d_1 , setting s to the value 1, and taking d_2 equal to the difference between d and d_1 .
- 17. (New) A countermeasure method according to claim 6, wherein the step of expressing the exponent d randomly in the form $d=d_2$'s+ d_1 , where d_1 , d_2 , and s are integers, comprises choosing a random integer d_1 , setting s to the value 1, and taking d_2 equal to the difference between d and d_1 .
- 18. (New) An electronic component implementing the method according to claim 2.
- 19. (New) An electronic component implementing the method according to claim 3.
- 20. (New) An electronic component implementing the method according to claim 4.