Functions

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted f: $A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

 Functions are sometimes called mappings or transformations.

Functions

- A function f: A → B can also be defined as a subset of A×B (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

and

$$\forall x, y_1, y_2[[(x, y_1) \in f \land (x, y_2)] \to y_1 = y_2]$$

Functions

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- *A* is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- If f(a) = b,
 - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of b.
- The range of *f* is the set of all images of points in **A** under *f*. We denote it by *f*(*A*).
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Equal Functions

- Two functions are equal when they
 - have the same domain,
 - have the same codomain,
 - map each element of their common domain to the same element in their common codomain.
- If we change either the domain or the codomain of a function, then we obtain a different function.
- If we change the mapping of elements, then we also obtain a different function.

Representing Functions

- Functions may be specified in different ways:
 - An explicit statement of the assignment. Students and grades example.
 - A formula.

$$f(x) = x + 1$$

- A computer program.
 - A Java program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also inChapter 5).

Activity Time

What are the domain, codomain, and range of the following function

Assignment of Grades in a Discrete Mathematics Class.

Solution

- Let *G* be the function that assigns a grade to a student in our discrete mathematics class.
- Note that G(Adams) = A, for instance.
- The domain of *G* is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens},
- The codomain is the set $\{A,B,C,D,F\}$.
- The range of G is the set $\{A, B, C, F\}$,

$$f(a) = ? Z$$

The image of d is?

The domain of f is? A

The codomain of f is ? B

$$f(A) = ?$$

The preimage(s) of z is (are)?

$${a,c,d}$$

Question on Functions and Sets

• If $f: A \to B$ and S is a subset of A, then

$$f(S) = \{f(s) | s \in S\} A B$$

$$f\{a,b,c,\} \text{ is ? } \{y,z\}$$

$$f\{c,d\} \text{ is ? } \{z\}$$

Injections

Injective (One-to-One) Functions:

A function in which one element of Domain Set is connected to one element of Co-Domain Set.

Surjections

Surjective (Onto) Functions: A function in which every element of Co-Domain Set has one pre-image.

Example:

Consider, $A = \{1, 2, 3, 4\}$, $B = \{a, b, c\}$ and $f = \{(1, b), (2, a), (3, c), (4, c)\}$.

Bijections

Bijective (One-to-One Onto) Functions: A function which is both injective (one to - one) and surjective (onto) is called bijective (One-to-One Onto) Function.

FIGURE 5 Examples of Different Types of Correspondences.

real-valued

- A function is called **real-valued** if its codomain is the set of real numbers.
- Let f_1 and f_2 be functions from A to \mathbf{R} .
- Then $f_1 + f_2$ and f_1f_2 are also functions from A to \mathbf{R} defined for all $x \in A$ by
 - $(f_1 + f_2)(x) = f_1(x) + f_2(x)$,
 - $\bullet (f_1f_2)(x) = f_1(x)f_2(x).$

real-valued Functions

Examples:

- Assume
 - f1(x) = x 1
 - $f2(x) = x^3 + 1$

then

- $(f1 + f2)(x) = x^3 + x$
- $(f1 * f2)(x) = x^4 x^3 + x 1$.

Showing that f is one-to-one or onto

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that f is one-to-one or onto

Example 1: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution:

Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Example 2:

Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one. Solution:

The function $f(x) = x^2$ is not one-to-one because, for instance, f(1) = f(-1) = 1, but $1 \neq -1$.

The identity function

• Let A be a set. The *identity function* on A is the function $i A : A \rightarrow A$, where

$$iA(x) = x$$

• for all $x \in A$.

• The function *i A* is one-to-one and onto, so it is a bijection.

The identity function

Example:

• Let $A = \{1, 2, 3\}$

Solution:

$$iA(1)=1$$

$$iA(2) = 2$$

$$iA(3) = 3$$

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Inverse Functions

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^1 reverses the correspondence given by f, so $f^1(1) = c$, $f^1(2) = a$, and $f^1(3) = b$.

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^1 reverses the correspondence so $f^1(y) = y - 1$.

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$ Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not one-to-one .

Composition

• **Definition**: Let $f: B \to C$, $g: A \to B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

Composition

Composition

Example 1: If $f(x) = x^2$ and g(x) = 2x + 1 , then

$$f(g(x)) = (2x+1)^2$$

and

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition *f*∘g is defined by

$$f \circ g$$
 (a)= $f(g(a)) = f(b) = 2$.
 $f \circ g$ (b)= $f(g(b)) = f(c) = 1$.
 $f \circ g$ (c)= $f(g(c)) = f(a) = 3$.

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

fog
$$(x)=f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

gof $(x)=g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs of Functions

• Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of
$$f(n) = 2n + 1$$
 from Z to Z

Graph of
$$f(x) = x^2$$
 from Z to Z

Some Important Functions

• The *floor* function, denoted f(x) = |x|

is the largest integer less than or equal to *x*.

The ceiling function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Example:
$$[3.5] = 4$$
 $[3.5] = 3$ $[-1.5] = -1$ $|-1.5| = -2$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor Functions

 Determine whether the function from R to Z is Injective OR Surjective.

$$f(\mathbf{a}) = \lfloor a/2 \rfloor$$

Solution:

• It is Surjective (onto function). This can be shown by an example; f(0) = 0, and f(1) = 0.

Ceiling Functions

 Determine whether the function from R to Z is Injective OR Surjective.

$$f(a) = [a/2]$$

Solution:

• It is Surjective (onto function). This can be shown by an example; f(1) = 1, and f(2) = 1.

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Proving Properties of Functions

Example: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and |2x| = 2n, since $0 \le 2\varepsilon < 1$.
- [x + 1/2] = n, since $x + \frac{1}{2} = n + (1/2 + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, [2x] = 2n and [x] + [x + 1/2] = n + n = 2n.

Case 2: $\epsilon \geq \frac{1}{2}$

- $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon 1)$ and [2x] = 2n + 1, since $0 \le 2\epsilon 1 < 1$.
- $[x + 1/2] = [n + (1/2 + \varepsilon)] = [n + 1 + (\varepsilon 1/2)] = n + 1$ since $0 \le \varepsilon 1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n, \qquad f(0) = 0! = 1$$

Examples:

$$f(1) = 1! = 1$$

 $f(2) = 2! = 1 \cdot 2 = 2$
 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$

$$f(20) = 2,432,902,008,176,640,000.$$

Stirling's Formula:

$$n! \sim \sqrt{2\pi n} (n/e)^n$$
$$f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$$

Remaining Topic from Sets:

Inclusion-Exclusion Principle

Let A, B be any two finite sets.

Then $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Here "include" n (A) and n (B) and we "exclude" n (A ∩ B)

Example 1:

Suppose A, B, C are finite sets.

Then $A \cup B \cup C$ is finite and $n (A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$

In a town of 10000 families it was found that 40% of families buy newspaper A, 20% family buy newspaper B, 10% family buy newspaper C, 5% family buy newspaper A and B, 3% family buy newspaper B and C and 4% family buy newspaper A and C. If 2% family buy all the newspaper. Find the number of families which buy

Number of families which buy all three newspapers:

$$n (A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

 $n (A \cup B \cup C) = 40 + 20 + 10 - 5 - 3 - 4 + 2 = 60\%$

2. Number of families which buy newspaper A only

3. Number of families which buy newspaper B only

4. Number of families which buy newspaper C only

$$= 10 - 5 = 5\%$$

5. Number of families which buy None of A, B, and C

