Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 7 curso 2025

CONTADORES: Funcionamiento y utilidad

- Cuenta el número de impulsos que recibe en una de sus entradas, habitualmente la entrada de Reloj
- Aplicaciones
 - Divisores de frecuencia
 - Permiten obtener una frecuencia de salida $f_s = f_{in}/M$ donde f_{in} es la frecuencia de entrada y M es el número máximo hasta el que llega la cuenta
 - Control de tiempos
 - Permiten la medición o generación de intervalos de tiempo a partir de una entrada periódica llamada base de tiempo
 - Generación de Direcciones
 - Permiten generar números consecutivos que pueden utilizarse para acceder secuencialmente a direcciones de una memoria

Contador Asincrónico I (Ripple Counter)

Contador Asincrónico II

Contador Asincrónico III

Contador Asincrónico IV

- Los Contadores tipo "Ripple" son sencillos y necesitan pocos componentes para producir una operación dada
 - Los retardos de propagación acumulados pueden crear problemas a altas frecuencias.
- Si el período entre pulsos de entrada es más largo que el tiempo de propagación total del contador, se evita este problema
 - Para que funcione correctamente: $T_{clock} \ge N \ t_{pd}$
 - Frecuencia Máxima: $f_{max} \le 1/(N t_{pd})$

Contadores Sincrónicos I

 Én contadores síncronos o paralelos, todos los FF son disparados simultaneamente por el reloj.

Los contadores síncronos pueden operar a frecuencias mucho más altas que los asincrónicos.

Contadores Sincrónicos II

- Cada FF tiene entradas J & K que se establecen en ALTO sólo cuando todas las salidas de orden inferior están en ALTO.
- Para que este circuito cuente correctamente, sólo aquellos FF que se supone que deben cambiar en una transición dada de reloj, deben tener un valor ALTO aplicado a sus entradas J y K
- El contador sincrónico básico que se obtiene siguiendo las reglas vistas cuenta solamente MOD 2^N . N es el número de FFs.

Count	D	С	В	Α
0	0	0	0	0
1	0	0	0	
1 2 3	0	0	1	0
	0	0 0 0	1	1
4 5		1	0	0
5	0 0	1	0	1
6 7	0	1	1	0
7	0	1	1	1 0 1 0 1 0 1
8	1		0	0 1 0 1
9	1	0	0	1
10	1	0 0 0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	0 1 0 1
0	0	0	0	0
2040				
848	40	::	22	
		etc.		

Contadores Sincrónicos III

- El contador sincrónico básico que se ha visto, puede modificarse para contar MOD M donde M es menor que 2^N.
 - Esto se logra forzando a que el contador saltee estados, que serían normalmente parte de la secuencia de conteo.
 - En este ejemplo puede obtenerse un contador MOD-6 haciendo un clear de los FF de un contador MOD-8, cuando la cuenta llega a seis (110).

Contadores Sincrónicos IV

- Como cambiar el Módulo M del contador.
 - Encontrar el valor mínimo de N tal que 2ⁿ sea mayor que el valor deseado M.
 - Conectar la salida de una compuerta NAND a la entrada Clear asincrónica de todos los FF.
 - Determinar cuáles FFs están en ALTO cuando se alcance la cuenta deseada y conectar las salidas (Q) de esos FF a las entradas de la compuerta NAND.

Registros

- Un registro es un circuito sincrónico que permite almacenar N bits utilizando N Flip Flops,
- Los Flip Flops que componen el registro comparten todas sus señales de control:
 - Preset, Clear, Clk, etc.
- Hay distintos tipos:
 - Segun el modo de entrada / salida: serie y paralelo
 - Registros de Desplazamiento: uni y bidireccionales.

Tipos de Registros

Tipos de Registros

Entrada Paralelo, Salida Paralelo (PIPO)

Entrada Serie, Salida Serie (SISO)

Tipos de Registros

Entrada Paralelo / Serie, Salida Serie (PISO)

Contadores basados en registros

Løs contadores basados en registros de desplazamiento (Shift-Registers) usan realimentación o feedback, esto es, la salida del último FF en el registro está conectada de alguna manera, a la entrada del primer FF.

Contador de Anillo:

 Es un registro de desplazamiento circular, conectado de manera tal que la salida del último FF se conecta directamente a la entrada del primero.

Necesita un circuito de arranque, que inyecte un 1 en un FF al

inicio

Contadores basados en registros

Contador Johnson o contador de doble anillo:

 Es un registro de desplazamiento circular, conectado de manera tal que la salida invertida (Q) del último FF se conecta directamente a la entrada del primero.

Si arranca en ciertos estados (010 o 101) se queda

alternando entre estos dos valores.

CLOCK

pulse

Contadores basados en registros

Generador de secuencias

- Es un registro de desplazamiento circular, conectado de manera tal que la salida y al menos un FF intermedio, se combinen mediante una funcion lógica y el resultado se aplique a la entrada.
- Si cumplen ciertas condiciones, la secuencia generada se llama secuencia seudo aleatoria. Se debe proveer un

Circuitos Secuenciales Sincrónicos

- Temas a tratar
 - Introducción
 - Máquinas de Estado Finito
 - Modelo de Moore
 - Modelo de Mealy
 - -Análisis de circuitos secuenciales sincrónicos
 - -Sintesis de circuitos secuenciales sincrónicos
 - Ejemplos

Introducción

Circuito secuencial sincrónico

Esquema general de un circuito secuencial sincrónico

El bloque "ESTADO" está formado pór biestables (Flip-Flops), todos ellos sincronizados por la misma señal de reloj.

Máquinas de Estados Finitos (FSM)

- El comportaniento de un circuito sincrónico puede representarse mediante una Máquina de Estados Finitos (FSM o Finite State Machine)
- Una Máquina de Estados Finitos tiene los siguientes elementos
 - X: Entradas
 - Y: Salidas
 - Z : Estados (Valores de los FF, cambian con cada flanco de reloj)
 - δ : Funciones de Estado (Funciones combinatorias de entrada de los FF)
 - λ: Funciones de Salida (Combinacionales)
- Una FSM se define como una serie de eventos en tiempos discretos. El estado Z cambia en cada evento y el cambio está definido por δ

Modelo de Moore

- Én el modelo de Moore las salidas dependen únicamente de los estados (NO de las entradas)
- Formalmente podemos describir una máquina de Moore como:

$$-Z = \delta(X,Z)$$

$$- Y = \lambda (Z)$$

Modelo de Moore

- Él reloj y el reset no aparecen en las máquinas de estados, la asociación entre estas señales en un circuito y la máquina de estados es:
 - En cada flanco del reloj, se produce una transición o cambio de estado
 - El reset se utiliza únicamente para establecer el estado inicial
- En las máquinas de estados de Moore las salidas cambian únicamente si hay un cambio de estado
 - Las salidas están sincronizadas con el reloj

Modelo de Moore

- Una FSM se puede también representar mediante un diagrama de estados (STG o "State Transition Graph")
 - Cada estado se representa con un círculo
 - Cada transición de estado se representa con una flecha
 - Los diferentes valores de las entradas se representan en las flechas
 - En el caso del modelo de Moore, las salidas se representan dentro de cada estado
- Diagrama de estados (Moore)

Modelo de Mealy

- Én el modelo de Mealy las salidas dependen tanto de las entradas como de los estados (Caso general)
- Formalmente podemos describir una máquina de Mealy como:
 - $-Z = \delta(X,Z)$
 - $Y = \lambda (X,Z)$

Modelo de Mealy

- Como vimos antes, una FSM se puede representar mediante un diagrama de estados (STG o "State Transition Graph")
 - Cada estado se representa con un círculo y cada transición de estado se representa con una flecha como antes.
 - En el caso del modelo de Mealy, las entradas se representan en las flechas junto con las salidas, ya que cuando cambien las entradas, tambien cambiará la salid

Modelo de Mealy

- Igual que en Moore, el reloj y el reset no aparecen en las máquinas de estados,
- En las máquinas de estados de Mealy las salidas pueden cambiar en cualquier momento, (alcanza con que cambie una de las entradas)
 - Las salidas NO están sincronizadas con el reloj
 - De todas maneras el circuito sigue siendo sincrónico, ya que los biestables estan todos sincronizados con el mismo reloj.
 - Los estados SI están sincronizados con el reloj

Análisis y Síntesis de Circuitos Secuenciales Sincrónicos

- Análisis: A partir de un circuito, obtener su funcionalidad
 - Circuitos Combinacionales:
 - Obtener tablas de verdad o funciones booleanas
 - Circuitos Secuenciales:
 - Obtener diagrama de estados, o funciones de estado y de salida (δ y λ)
- Síntesis: Dada una funcionalidad, obtener la implementación de un circuito
 - Circuitos Combinacionales:
 - Obtener expresiones booleanas, implementar con puertas lógicas, multiplexores, decodificadores, etc.
 - Circuitos Secuenciales:
 - Obtener diagrama de estados e implementar las funciones de estado y de salida (δ y λ) con puertas lógicas, multiplexores, decodificadores y Biestables.

- Análisis: Obtener tabla de transiciones, calcular
 (δ y λ) y obtener diagrama de estados
- Ejemplo:

Tabla de transiciones:

Q1	Q0	ln	D1	D0	Q1+	Q0+	Out
0	0	0	0	1	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Diagrama estados (Mealy):

Diagrama estados (Moore):

- A partir de la descripción de la funcionalidad de un circuito secuencial. los pasos a seguir para obtener una implementación son:
 - 1)Obtener diagrama de Estados
 - 2) Codificación de los Estados
 - 3)Obtener tablas de salidas y de transiciones de estados
 - 4)Obtener tabla de excitación de los Biestables, también se la llama tabla inversa
 - 5)Obtener funciones de salida
 - 6)Obtener funciones de estado
 - 7)Implementar con FF y Lógica/ MuX /Decodif.
- La diferencia entre Moore y Mealy está en las funciones de salida

Tablas de excitación o tablas inversas de los Biestables

- Tablas de excitación o Tablas inversas
 - Describen todas las posibles combinaciones de entradas que permiten pasar del estado actual Q al estado siguiente Q⁺

- Problema: Diseñar un circuito secuencial sincrónico que permita detectar una secuencia de tres o más "unos" consecutivos a través de una entrada serie
 - La entrada se lee en cada flanco ascendente del reloj
 - La salida se activa cuando se detecta la secuencia

- Ejemplo de secuencia de entradas y de salidas
- X: 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1
- Z: 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1

Éjemplo 1: Mealy con FF tipo D

Diagrama de estados:

Codificación de estados:

- Éjemplo 1: Mealy con FF tipo D
 - Tabla de transiciones y tabla de salidas (combinadas juntas):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Х	Х	Х
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Х	Х	Х
1	1	1	1	1	1

- Éjemplo 1: Mealy con FF tipo D
 - Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	Out	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	Х	Х	Х	Х	Х
0	1	1	0	0	0	0	0
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	Х	Х	Х	Х	Х
1	1	1	1	1	1	1	1

Función de salida:

Funciones de estado

$$D_1 = Q_0 In$$

$$D_0 = In$$

- Éiemplo 2: Mealy con FF tipo JK
- Tabla inversa de biestables (biestables J-K):

In	Q1	Q0	Q1+	Q0+	Out	J1	K1	JO	K0
0	0	0	0	0	0	0	Х	0	Х
0	0	1	0	0	0	0	Х	Х	1
0	1	0	Х	Х	Х	Х	Х	Х	Х
0	1	1	0	0	0	Х	1	Х	1
1	0	0	0	1	0	0	Х	1	Х
1	0	1	1	1	0	1	Х	Х	0
1	1	0	Х	Х	Х	Х	Х	Х	Х
1	1	1	1	1	1	Х	0	Х	0

- Función de salida: 5
- $Out = Q_1 In$
- Funciones de estado

Éjemplo 2: Mealy con FF tipo JK

7. Implementación

$$Out = Q_1In$$

 $J_0 = In$
 $K_0 = \overline{In}$
 $J_1 = Q_0In$
 $K_1 = \overline{In}$

Éjemplo 3: Mealy con una codificación diferente

- Diagrama de estados:
- 1/0 0/0 S0 0/0 S2 1/1

Codificación de estados:

- Éjemplo 3: Mealy con una codificación diferente
 - Tablas de transiciones y salidas (combinadas en una sola):

ln	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	Х	Х	Х
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	Х	Х	Х

- Éjemplo 3: Mealy con una codificación diferente y FF tipo D
 - Tabla inversa de biestables (biestables D):

Función de salida:

Funciones de estado

 Éjemplo 3: Mealy con una codificación diferente y FF tipo D

Implementación

Con esta otra codificación sale más complejo y se requieren más puertas lógicas para la implementación

$$Out = Q_1 In$$

$$D_1 = In(Q_0 + Q_1)$$

$$D_0 = \overline{Q_1 Q_0} In$$

Ejemplo 4: Moore con biestables tipo D

Q1	Q0	ESTADO
0	0	S0
0	1	S1
1	0	S3
1	1	S2

2. Codificación de Estados

Ejemplo 4: Moore con biestables tipo D

In	Q1	Q0	Q1+	Q0+
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Q1	Q0	OUT
0	0	0
0	1	0
1	0	1
1	1	0

3. Tabla de Salidas

3. Tabla de Transiciones

Ejemplo 4: Moore con biestables tipo D

 Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	1	0	1	0
1	1	1	1	0	1	0

Función de salida:

Funciones de estado

$$D_0 = \overline{Q_1} In$$

Ejemplo 4: Moore con biestables tipo D

7. Implementación

