0.1 Elliptic Genus Computation

The Elliptic genus for 2d $\mathcal{N} = (0, 2)$ theories was computed via localisation in [?, ?]. Writing schematically it is given by

$$\operatorname{Ell}(q, a) = \operatorname{Tr}_{\mathbf{R}} \left[(-1)^F q^{H_{-}} \prod a^f \right]. \tag{1}$$

A $\mathcal{N}=(0,2)$ chiral multiplet Φ in representations R of $G\times F$ contributes to Ell

$$\operatorname{Ell}_{\Phi,R}(q,a) = \prod_{\rho \in R} i \frac{\eta(q)}{\theta_1(a^{\rho};q)}.$$
 (2)

Similarly, a $\mathcal{N} = (0, 2)$ Fermi multiplet Ψ contributes

$$\operatorname{Ell}_{\Psi,R}(q,a) = \prod_{\rho \in R} i \frac{\theta_1(a^{\rho};q)}{\eta(q)}.$$
 (3)

Finally we present the formula for the $\mathcal{N} = (0,2)$ Vector multiplet V

$$\operatorname{Ell}_{V,G}(q,a) = (i\eta(q))^{2\operatorname{rank} G} \prod_{\alpha \in G} i \frac{\theta_1(a^{\alpha};q)}{\eta(q)}, \qquad (4)$$

which is that of a Fermi multiplet in the adjoint representation of G. The vector multiplets should be paired with the corresponding integration over the maximal torus of G

$$\frac{1}{|W(G)|} \oint_{T[G]} \prod_{n=1}^{\operatorname{rank} G} \frac{da_n}{2\pi i a_n}, \tag{5}$$

which is essentially the Haar measure divided by the Vandermonde determinant. W(G) is the Weyl group of G and the contour is taken over |a| = 1.

0.1.1 M-Strings Index without Defect

The partition functions corresponding to each $\mathcal{N} = (0,2)$ multiplet read

$$\operatorname{Ell}_{Y} = \prod_{n=1}^{M} \prod_{I=1}^{K_{n}} \prod_{J=1}^{K_{n+1}} i \frac{\eta(Q_{\tau})}{\theta_{1} \left(\mathfrak{c} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} \frac{y_{n,I}}{y_{n+1,J}}; Q_{\tau} \right)}, \tag{6}$$

$$\operatorname{Ell}_{\widetilde{Y}} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{J=1}^{K_{n-1}} i \frac{\eta(Q_{\tau})}{\theta_1 \left(\frac{1}{\mathfrak{c}} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} \frac{y_{n,I}}{y_{n-1,J}}; Q_{\tau}\right)}, \tag{7}$$

$$\operatorname{Ell}_{\zeta} = \prod_{n=1}^{M} \prod_{I,J=1}^{K_n} i \frac{\theta_1 \left(\frac{\mathfrak{q}}{\mathfrak{t}} \frac{y_{n,I}}{y_{n,J}}; Q_{\tau} \right)}{\eta(Q_{\tau})} , \tag{8}$$

$$\operatorname{Ell}_{\Upsilon} = \prod_{n=1}^{M} (\mathrm{i}\eta(Q_{\tau}))^{2K_n} \prod_{I \neq J} \mathrm{i} \frac{\theta_1\left(\frac{y_{n,I}}{y_{n,J}}; Q_{\tau}\right)}{\eta(Q_{\tau})}, \tag{9}$$

$$\operatorname{Ell}_{X} = \prod_{n=1}^{M} \prod_{I,J=1}^{K_{n}} i \frac{\eta(Q_{\tau})}{\theta_{1}\left(\mathfrak{q}\frac{y_{n,I}}{y_{n,J}}; Q_{\tau}\right)}, \tag{10}$$

$$\operatorname{Ell}_{\widetilde{X}} = \prod_{n=1}^{M} \prod_{I,J=1}^{K_n} i \frac{\eta(Q_{\tau})}{\theta_1 \left(\mathfrak{t}^{-1} \frac{y_{n,I}}{y_{n,J}}; Q_{\tau} \right)}, \tag{11}$$

$$\operatorname{Ell}_{\lambda} = \prod_{n=1}^{M} \prod_{I=1}^{K_{n}} \prod_{I=1}^{K_{n+1}} i \frac{\theta_{1} \left(\mathfrak{c} \sqrt{\mathfrak{qt}} \frac{y_{n,I}}{y_{n+1,J}}; Q_{\tau} \right)}{\eta(Q_{\tau})},$$
 (12)

$$\operatorname{Ell}_{\widetilde{\lambda}} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{J=1}^{K_{n-1}} i \frac{\theta_1\left(\frac{\sqrt{\mathfrak{qt}}}{\mathfrak{c}} \frac{y_{n,I}}{y_{n-1,J}}; Q_{\tau}\right)}{\eta(Q_{\tau})}, \tag{13}$$

$$\operatorname{Ell}_{\phi} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{A=1}^{N} i \frac{\eta(Q_{\tau})}{\theta_1\left(\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} \frac{y_{n,I}}{x_{n,A}}; Q_{\tau}\right)}, \tag{14}$$

$$\operatorname{Ell}_{\widetilde{\phi}} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{A=1}^{N} i \frac{\eta(Q_{\tau})}{\theta_1\left(\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} \frac{x_{n,A}}{y_{n,I}}; Q_{\tau}\right)}, \tag{15}$$

$$\text{Ell}_{\psi} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{A=1}^{N} i \frac{\theta_1 \left(\mathfrak{c}^{-1} \frac{y_{n,I}}{x_{n-1,A}}; Q_{\tau} \right)}{\eta(Q_{\tau})},$$
 (16)

$$\operatorname{Ell}_{\widetilde{\psi}} = \prod_{n=1}^{M} \prod_{I=1}^{K_n} \prod_{A=1}^{N} i \frac{\theta_1 \left(\mathfrak{c}^{-1} \frac{x_{n+1,J}}{y_{n,I}}; Q_{\tau} \right)}{\eta(Q_{\tau})} . \tag{17}$$

0.1.2 M-Strings Index with Defects

We now list the result of performing the \mathbb{Z}_k orbifold.

$$\operatorname{Ell}_{Y}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{J=1}^{K_{(n+1)(i-1)}} i \frac{\eta(Q_{\tau})}{\theta_{1} \left(\mathfrak{c} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} \frac{y_{ni,I}}{y_{(n+1)(i-1),J}}; Q_{\tau} \right)},$$
(18)

$$\operatorname{Ell}_{\Upsilon}^{\mathbb{Z}_k} = \prod_{n=1}^{M} \prod_{i=1}^{k} (\mathrm{i}\eta(Q_{\tau}))^{2K_{ni}} \prod_{I \neq J} \mathrm{i} \frac{\theta_1\left(\frac{y_{ni,I}}{y_{ni,J}}; Q_{\tau}\right)}{\eta(Q_{\tau})}, \tag{19}$$

$$\operatorname{Ell}_{\widetilde{Y}}^{\mathbb{Z}_k} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{J=1}^{K_{(n-1)i}} i \frac{\eta(Q_{\tau})}{\theta_1 \left(\mathfrak{c}^{-1} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} \frac{y_{ni,I}}{y_{(n-1)i,J}}; Q_{\tau}\right)},$$
(20)

$$\operatorname{Ell}_{\zeta}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{K} \prod_{I=1}^{K_{ni}} \prod_{J=1}^{K_{n(i+1)}} i \frac{\theta_{1} \left(\frac{\mathfrak{q}}{\mathfrak{t}} \frac{y_{ni,I}}{y_{n(i+1),J}}; Q_{\tau} \right)}{\eta(Q_{\tau})},$$
 (21)

$$\operatorname{Ell}_{X}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{J=1}^{K_{n(i+1)}} i \frac{\eta(Q_{\tau})}{\theta_{1}\left(\mathfrak{q}\frac{y_{ni,I}}{y_{n(i+1),J}}; Q_{\tau}\right)},$$
(22)

$$\operatorname{Ell}_{\widetilde{X}}^{\mathbb{Z}_k} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I,J=1}^{K_{ni}} i \frac{\eta(Q_{\tau})}{\theta_1 \left(\mathfrak{t}^{-1} \frac{y_{ni,I}}{y_{ni,J}}; Q_{\tau} \right)},$$
 (23)

$$\operatorname{Ell}_{\lambda}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{I=1}^{K_{(n+1)i}} i \frac{\theta_{1} \left(\operatorname{cqt} \frac{y_{ni,I}}{y_{(n+1)i,J}}; Q_{\tau} \right)}{\eta(Q_{\tau})},$$
(24)

$$\operatorname{Ell}_{\widetilde{\lambda}}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{I=1}^{K_{(n-1)(i-1)}} i \frac{\theta_{1}\left(\frac{\operatorname{qt}}{\mathfrak{c}} \frac{y_{n,I}}{y_{(n-1)(i-1),J}}; Q_{\tau}\right)}{\eta(Q_{\tau})}, \tag{25}$$

$$\operatorname{Ell}_{\phi}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{K} \prod_{I=1}^{K_{ni}} \prod_{A=1}^{N_{ni}} i \frac{\eta(Q_{\tau})}{\theta_{1}\left(\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} \frac{y_{ni,I}}{x_{ni,A}}; Q_{\tau}\right)},$$
(26)

$$\operatorname{Ell}_{\tilde{\phi}}^{\mathbb{Z}_k} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{A=1}^{N_{n(i-1)}} i \frac{\eta(Q_{\tau})}{\theta_1\left(\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} \frac{x_{n(i-1),A}}{y_{ni,I}}; Q_{\tau}\right)},$$
(27)

$$\operatorname{Ell}_{\psi}^{\mathbb{Z}_{k}} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{A=1}^{N_{(n-1)i}} i \frac{\theta_{1} \left(\mathfrak{c}^{-1} \frac{y_{ni,I}}{x_{(n-1)i,A}}; Q_{\tau} \right)}{\eta(Q_{\tau})},$$
 (28)

$$\operatorname{Ell}_{\widetilde{\psi}}^{\mathbb{Z}_k} = \prod_{n=1}^{M} \prod_{i=1}^{k} \prod_{I=1}^{K_{ni}} \prod_{A=1}^{N_{(n+1)(i-1)}} i \frac{\theta_1 \left(\mathfrak{c}^{-1} \frac{x_{(n+1)(i-1),A}}{y_{ni,I}}; Q_{\tau} \right)}{\eta(Q_{\tau})} . \tag{29}$$

Clearly each $\text{Ell}_P^{\mathbb{Z}_k}$ is invariant under the action (??).

0.2 Review of the 5d Index Localisation

We describe in more detail, following [?], the localisation of the superconformal index

$$Z(s, p, v, \mathbf{q}_A) = \text{Tr}_{\mathcal{H}_{\mathbb{S}^4}} \left[(-1)^F e^{-\beta \delta} s^{-2J_R - 2J_R^R} p^{-2J_L} v^{2J_L^R} \prod_{A=1}^N \mathbf{q}_A^{K_A} \right].$$
 (30)

It receives contributions only from those states which satisfy the BPS condition (??). After Wick rotation to Euclidean time $X^5 = i\tau_E$ the index Z admits a path integral representation on $\mathbb{S}^1 \times \mathbb{S}^4$

$$Z(s, p, v, \mathbf{q}_A) = \int_{\mathbf{C}(\mathbb{S}^1 \times \mathbb{S}^4)} [\mathcal{D}\Phi] e^{-S_E[\Phi]}.$$
 (31)

The insertion of chemical potentials results in twisted boundary conditions upon going around the \mathbb{S}^1

$$\Phi(\tau_E + \beta) = (-1)^F e^{-\beta(-2J_R - 3J_R^R)} s^{-2J_R - 2J_R^R} p^{-2J_L} v^{2J_L^R} \Phi(\tau_E). \tag{32}$$

The twisted boundary conditions (30) may be taken into account by shifting time derivatives

$$\hat{\partial}_{\tau_E} \to \hat{\partial}_{\tau_E} = \partial_{\tau_E} + (2 - i\epsilon_+)J_R + (3 - i\epsilon_+)J_R^R - i\epsilon_-J_L + 2mJ_L^R \tag{33}$$

and giving periodic boundary conditions to all fermions to account for the insertion of $(-1)^F$. To perform the localisation we deform the Lagrangian by the $\widetilde{\mathbb{Q}}$ exact term

$$\mathcal{L} \to \mathcal{L} + t\left\{\widetilde{\mathbf{Q}}, V\right\} \,, \tag{34}$$

t may then be taken to infinity in which case the path integral localises around the set of saddle points of $\{\widetilde{\mathbf{Q}},V\}=0$. The supersymmetry transformation $\widetilde{\mathbf{Q}}+\widetilde{\mathbf{S}}$ is parametrised by the Killing spinor

$$\varepsilon = \varepsilon_q + \varepsilon_s = e^{\frac{1}{2}\theta_1\gamma^{51}} e^{\frac{1}{2}\theta_2\gamma^{12}} e^{\frac{1}{2}\theta_3\gamma^{23}} e^{\frac{1}{2}\theta_4\gamma^{34}} \left(\varepsilon_0^q + \gamma^5 \varepsilon_0^s\right). \tag{35}$$

where ε_0^q , ε_0^s are constant spinors corresponding to $\widetilde{\mathbb{Q}}$, $\widetilde{\mathbb{S}}$. ε satisfies the Killing spinor equation

$$\hat{\nabla}_{\mu}\varepsilon = \frac{1}{2}\gamma_{\mu}\gamma^{5}\tilde{\varepsilon} \tag{36}$$

where $\hat{\nabla}$ denotes the covariant derivative on $\mathbb{S}^4 \times \mathbb{S}^1$ with the twisted time derivative (31) and $\tilde{\varepsilon} = -\varepsilon_q + \varepsilon_s$. The square of the supercharge $\tilde{\mathbb{Q}} + \tilde{\mathbb{S}}$ is then given by

$$\delta_{\varepsilon}^{2} = -i\mathcal{L}_{\frac{\partial}{\partial \tau_{E}}} + iG - \epsilon_{+}J_{R} - \epsilon_{+}J_{R}^{R} - \epsilon_{-}J_{L} + 2mJ_{L}^{R}$$
(37)

where \mathcal{L}_v denotes the Lie derivative and G denotes a gauge transformation. We then choose V such that

$$\{\widetilde{\mathbf{Q}}, V\} = \delta_{\varepsilon} \left((\delta_{\varepsilon} \lambda)^{\dagger} \lambda \right) \tag{38}$$

upon taking the $t \to \infty$ limit the path integral for the vector multiplets localises onto the critical points of the potential

$$(\delta_{\varepsilon}\lambda)^{\dagger} \lambda = F_{\tau_{E}\mu}F^{\tau_{E}\mu} + \cos^{2}\frac{\theta_{1}}{2} \left(F_{ij}^{-} - \omega_{ij}^{-}\phi\right)^{2} + \sin^{2}\frac{\theta_{1}}{2} \left(F_{ij}^{+} - \omega_{ij}^{+}\right)^{2} + \left(\hat{\nabla}_{\mu}\phi\right)^{2} - D^{2}$$

$$(39)$$

which is positive semi-definite (recall that in Euclidean signature D is pure imaginary) $F_{ij}^{\pm} = \frac{1}{2} (F_{ij} \mp \star_4 F_{ij})$ and

$$\omega_{ij}^{+} = \frac{\mathrm{i}}{2\sin^2\frac{\theta_1}{2}}\bar{\tilde{\varepsilon}}^+\gamma^5\gamma^{ij}\varepsilon^+, \quad \omega_{ij}^{-} = \frac{\mathrm{i}}{2\cos^2\frac{\theta_1}{2}}\bar{\tilde{\varepsilon}}^-\gamma^5\gamma^{ij}\varepsilon^-, \tag{40}$$

$$\omega_{ij}^+ \omega^{+ij} = \omega_{ij}^- \omega^{-ij} = 1. \tag{41}$$

Here $\varepsilon^{\pm} = \frac{1}{2} \left(1 \pm \gamma^5 \right) \varepsilon$, $\tilde{\varepsilon}^{\pm} = \frac{1}{2} \left(1 \pm \gamma^5 \right) \tilde{\varepsilon}$. The classical saddle points of the potential (37) are given by $F_{\tau_E\mu} = D^A = 0$ while ϕ is covariantly constant everywhere on \mathbb{S}^4 . On the other hand, by the Bianchi identity, the second and third terms of (37) imply that away from the north and south poles we have $F_{ij} = \phi = 0$. Note also that (anti-)self-dual instantons $(F^- = 0)$ $F^+ = 0$ can be localised at (north)south-pole. The index hence factorises as in (??)

$$Z = \int \prod_{A=1}^{N} \left[da_A \right] Z_{\text{south}} \left(a_{A,n}, \epsilon_1, \epsilon_2, m, \mathbf{q}_A \right) Z_{\text{north}} \left(a_{A,n}, \epsilon_1, \epsilon_2, m, \mathbf{q}_A^{-1} \right)$$
(42)

After the gauge fixing we have a BRST operator $\widetilde{\mathbb{Q}} + \widetilde{\mathbb{S}} \to \mathfrak{Q}$ and may make a cohomological formulation of the supercharge \mathfrak{Q} . The bosonic and fermionic fields may be regarded as differential forms on a supermanifold \mathcal{X} such that they form a \mathfrak{Q} -complex

$$\mathfrak{Q}\Phi_{b,f} = \Phi'_{f,b}, \quad \mathfrak{Q}\Phi'_{f,b} = \mathfrak{Q}^2\Phi_{b,f} \tag{43}$$

and

$$\mathfrak{Q}^{2} = \mathcal{L}_{\frac{\partial}{\partial \tau_{E}}} - \frac{a}{\beta} - i\epsilon_{+}(J_{R} + J_{R}^{R}) - i\epsilon_{-}J_{L} + 2imJ_{L}^{R}
= \mathcal{L}_{\frac{\partial}{\partial \tau_{E}}} - \frac{a}{\beta} + i\epsilon_{1}(J_{12} - J_{R}^{R}) + i\epsilon_{2}(J_{34} - J_{R}^{R}) + 2imJ_{L}^{R}.$$
(44)

We now study the \mathfrak{Q}^2 -equivariant cohomology of \mathcal{X} . After expanding the gauge fixed \mathfrak{Q} invariant terms to quadratic order the Gaussian integrals may be evaluated. Due to cancelations due to pairing by the \mathfrak{Q} -complex (41) the 1-loop contributions take the form [?]

$$Z^{1-\text{loop}} = \sqrt{\frac{\det_{\text{coker } D} \mathfrak{Q}^2|_f}{\det_{\text{ker } D} \mathfrak{Q}^2|_b}}$$
(45)

where D is the quadratic operator in (36). $Z^{1\text{-loop}}$ may computed using the equivariant Atiyah-Singer index theorem. The fixed point of the torus action of \mathfrak{Q}^2 (42) are the north and south poles. In a neighbourhood of the north pole D is isomorphic to the anti-self-dual complex (d, d^-)

$$\Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d^-} \Omega^{2-}, \tag{46}$$

while at the south pole D is isomorphic to the self-dual complex (d, d^+)

$$\Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d^+} \Omega^{2+} , \tag{47}$$

where (Ω^{2-}) Ω^{2+} denotes the space of (anti-)self-dual 2-forms. For concreteness let us focus on the south pole. At the south pole we may choose local coordinates z_1, z_2 parametrising \mathbb{C}^2 . The torus action acts on those coordinates by $(z_1, z_2) \mapsto (e^{i\epsilon_1}z_1, e^{i\epsilon_2}z_2)$. Furthermore we expand the elements of the self-dual

complex in eigenmodes of the circle momenta $\Phi = \sum_{p \in \mathbb{Z}} \Phi_p e^{\frac{2\pi i p}{\beta}}$. The equiviarint index for the vectors multiplets is then given by

$$\operatorname{ind}_{\operatorname{vec}} D = -\frac{1 + e^{\mathrm{i}\beta\epsilon_{+}}}{2(1 - \epsilon^{\mathrm{i}\epsilon_{1}})(1 - \epsilon^{\mathrm{i}\epsilon_{2}})} \sum_{A=1}^{N} \sum_{n \neq m} e^{\frac{\mathrm{i}}{\beta}(a_{A,n} - a_{A,m})} \sum_{p \in \mathbb{Z}} e^{\frac{2\pi \mathrm{i}p}{\beta}}. \tag{48}$$

One may compute the 1-loop determinants for the hypermultiplets by localisation. In that case the differential operator D for the hypermultiplet is isomorphic to a Dirac complex

$$\Omega^{\left(\frac{1}{2},0\right)} \xrightarrow{D_{\text{Dirac}}} \Omega^{\left(0,\frac{1}{2}\right)}.$$
 (49)

The equivariant index at the south pole reads

$$\operatorname{ind}_{\text{hyp}} = \frac{e^{\mathrm{i}\epsilon_{+}/2}}{(1 - e^{\mathrm{i}\epsilon_{1}})(1 - e^{\mathrm{i}\epsilon_{2}})} \sum_{A=1}^{N} \sum_{m=1}^{M_{A}} \sum_{n=1}^{M_{A+1}} e^{\frac{\mathrm{i}}{\beta}(a_{A,n} - a_{A+1,m}) + \mathrm{i}m} \sum_{p \in \mathbb{Z}} e^{\frac{2\pi \mathrm{i}}{\beta}p} . \tag{50}$$

0.3 Refined Topological String Computation

The partition function for M M5-branes on A_{N-1} is equivalent to the refined topological string partition function of certain Calabi-Yau 3-folds $X_{M,N}$

$$Z_{\text{refined}}^{\text{top}}(X_{M,N}) = Z^{\text{M-theory}} \left((A_{N-1} \times \mathbb{R}^4) \ltimes \underline{T}^2 \times \mathbb{R} \right)$$

$$M \text{ M5-branes}$$

$$(51)$$

$$= \left(\prod_{A=1}^{N} Z_{U(1)}^{(A)}\right) Z_{M}^{A_{N-1}}, \tag{52}$$

where $Z_{U(1)}^{(A)}$ is the partition function for a single M5-brane. The Calabi-Yau 3-folds arise as the M-theory lift of the dual (p,q)-brane web construction. The (p,q) web is obtained by compactifying the setup of Table ?? along X^6 . This gives rise to the 5d quiver gauge theories $\mathcal{N}_{M,N}$ supported on the D4-branes with $\mathcal{N}=1$ supersymmetry. The defects become D4'-branes. T-dualising along the Taub-Nut circle X^8 results the setup of Table 1 After turning on mass deformation we end up with a (p,q)-brane web. We may now lift the IIB setup on \mathbb{S}^1 to M-theory on T^2 . (p,q)-branes corresponds to the degeneration of the (p,q) cycle of the T^2 as we vary along the X^5, X^7 base. Hence the (p,q)-brane web lifts to M-theory on a non-compact, elliptically fibered CY_3 whose toric diagram is given by the (p,q)-web itself. We compute the refined A-model open string amplitude for the strip geometry using the refined topological vertex formalism [?,?]. The refined topological vertex is labelled by three Young diagrams and is given by

$$C_{\lambda\mu\nu}(\mathbf{t},\mathbf{q}) = \mathbf{t}^{-\frac{||\mu^{\mathrm{T}}||^{2}}{2}} \mathfrak{q}^{\frac{||\mu||^{2} + ||\nu||^{2}}{2}} \widetilde{Z}_{\nu}(\mathbf{t},\mathfrak{q}) \sum_{\eta} \left(\frac{\mathfrak{q}}{\mathfrak{t}}\right)^{\frac{|\lambda| + |\eta| - |\mu|}{2}} s_{\lambda^{\mathrm{T}}/\eta}(\mathfrak{t}^{-\rho}\mathfrak{q}^{-\nu}) s_{\mu/\eta}(\mathfrak{t}^{-\nu^{\mathrm{T}}}\mathfrak{q}^{-\rho})$$

$$(53)$$

Figure 1: Strip geometry which builds the partition function of for the A_{N-1} geometry. Blue lines denote the direction of the refined topological vertex. The dotted lines indicate the fact that we are dealing with the partial compactification of the strip geometry.

	\mathbb{C}_{ϵ_1}		\mathbb{C}_{ϵ_2}		\mathbb{S}^1	\mathbb{R}	\mathbb{S}^1	\mathbb{R}^3		
	X^1	X^2	X^3	X^4	X^5	X^7	X^8	X^9	X^{10}	X^{11}
NNS5	_	_	_	_	_	_			•	
MD5	_	_	_	_	_		_		•	
K F1		•	•	•	_	_			•	
k D3'			_	_	_			_	•	

Table 1: $Type-IIB(p,q)-brane\ web.$

where $\rho = \{-1/2, -3/2, -5/2, \dots\}, s_{\lambda/\eta}(x)$ is the skew Schur function and

$$\widetilde{Z}_{\nu}(\mathfrak{t},\mathfrak{q}) = \prod_{(l,p)\in\nu} \frac{1}{1 - \mathfrak{q}^{\nu_l - p} \mathfrak{t}^{\nu_p^{\mathrm{T}} - l + 1}}.$$
(54)

 $\mathfrak{q},\mathfrak{t}$ are related torus action $(z_1,z_2)\mapsto (e^{2\pi\mathrm{i}\epsilon_1}z_1,e^{2\pi\mathrm{i}\epsilon_2}z_2)$ on \mathbb{C}^2 by

$$\mathfrak{q} = e^{2\pi i \epsilon_1}, \quad \mathfrak{t} = e^{-2\pi i \epsilon_2}. \tag{55}$$

The framing factors are

$$f_{\nu}(\mathfrak{t},\mathfrak{q}) = (-1)^{|\nu|} \mathfrak{t}^{\frac{||\nu^{\mathrm{T}}||^{2}}{2}} \mathfrak{q}^{\frac{-||\nu||^{2}}{2}}, \quad \widetilde{f}_{\nu}(\mathfrak{t},\mathfrak{q}) = \left(\frac{\mathfrak{t}}{\mathfrak{q}}\right)^{\frac{|\nu|}{2}} f_{\nu}(\mathfrak{t},\mathfrak{q}). \tag{56}$$

0.3.1 Without Defect - M-Strings Review

Applying the standard rules of the refined topological vertex formalism [?] the partition function for the strip geometry Figure 1 is

$$Z_{\nu_{1}...\nu_{N}}^{\mu_{1},...\mu_{N}}(Q_{A}, Q_{\tau_{A}}, Q_{\tau_{A}}'; \mathfrak{t}, \mathfrak{q}) = \sum_{\{\lambda\}} \prod_{A=1}^{N} \left\{ (-Q_{A})^{|\lambda_{2A+1}|} \left(-Q_{A}^{-1} Q_{\tau_{A}} \right)^{|\lambda_{2A}|} \right. \\ \left. \times C_{\lambda_{2A}^{\mathrm{T}} \lambda_{2A+1}^{\mathrm{T}} \mu_{A}^{\mathrm{T}}} \left(\mathfrak{t}^{-1}, \mathfrak{q}^{-1} \right) C_{\lambda_{2A+2} \lambda_{2A+1} \nu_{A}} \left(\mathfrak{q}^{-1}, \mathfrak{t}^{-1} \right) \right\},$$

$$(57)$$

note that, since we partially compactify the strip geometry (dotted lines in the figure) we identify the indices $A \sim A + N$. $Q_{\tau} = \prod_{A=1}^{N} Q_{\tau_A} = \prod_{A=1}^{N} Q'_{\tau_A}$. Inserting the explicit expression for the vertex we have

$$Z_{\nu_{1}...\nu_{N}}^{\mu_{1},...\mu_{N}}(Q_{A},Q_{\tau_{A}},Q_{\tau_{A}}';\mathfrak{t},\mathfrak{q}) = \prod_{A=1}^{N} \left\{ \mathfrak{q}^{-\frac{||\mu_{A}^{T}||^{2}}{2}} \mathfrak{t}^{-\frac{||\nu_{A}||^{2}}{2}} \widetilde{Z}_{\mu_{A}^{T}} \left(\mathfrak{t}^{-1},\mathfrak{q}^{-1}\right) \right.$$

$$\widetilde{Z}_{\nu_{A}} \left(\mathfrak{q}^{-1},\mathfrak{t}^{-1}\right) \sum_{\{\lambda\},\{\sigma\}} \left[\left. \left(-Q_{A}\right)^{|\lambda_{2A+1}|} \left(-\frac{Q_{\tau_{A}}}{Q_{A}}\right)^{|\lambda_{2A}|} s_{\lambda_{2A}/\sigma_{2A}} \left(\mathfrak{t}^{\rho}\mathfrak{q}^{\mu_{A}^{T}}\right) \right.$$

$$s_{\lambda_{2A+1}^{T}/\sigma_{2A}} \left(\mathfrak{q}^{\rho+\frac{1}{2}} \mathfrak{t}^{\mu_{A}-\frac{1}{2}}\right) s_{\lambda_{2A+2}^{T}/\sigma_{2A+1}} \left(\mathfrak{q}^{\rho}\mathfrak{t}^{\nu_{A}}\right)$$

$$s_{\lambda_{2A+1}/\sigma_{2A+1}} \left(\mathfrak{q}^{\nu_{A}^{T}-\frac{1}{2}} \mathfrak{t}^{\rho+\frac{1}{2}}\right) \right] \right\}.$$

$$(58)$$

The method for simplifying this product was given in [?, ?]. Consider

$$G^{(N)}(X_A, Y_A, Z_A, W_A; Q_A, Q_{\tau_A}) := \prod_{A=1}^{N} \left((-Q_A)^{|\lambda_{2A+1}|} \left(\frac{-Q_{\tau_A}}{Q_A} \right)^{|\lambda_{2A}|} \right.$$

$$\times s_{\lambda_{2A}/\sigma_{2A}}(X_A) \, s_{\lambda_{2A+2}^{\mathrm{T}}/\sigma_{2A+1}}(Y_A) \, s_{\lambda_{2A+1}^{\mathrm{T}}/\sigma_{2A}}(Z_A) \, s_{\lambda_{2A+1}/\sigma_{2A+1}}(W_A) \right)$$

$$(59)$$

with the products over A are defined modulo N. We now apply repeatedly the identities (??), (??) and (??). We have

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{A=1}^{N} \left(-Q_{A}^{-1} Q_{\tau_{A}} \right)^{|\sigma_{2A}|} (-Q_{A})^{|\sigma_{2A+1}|}$$

$$\times s_{\sigma_{2A}^{T}/\lambda_{2A}} (Y_{A-1}) s_{\sigma_{2A-1}^{T}/\lambda_{2A}^{T}} \left(-Q_{A}^{-1} Q_{\tau_{A}} X_{A} \right) s_{\sigma_{2A}^{T}/\lambda_{2A+1}^{T}} (-Q_{A} W_{A})$$

$$\times s_{\sigma_{2A+1}^{T}/\lambda_{2A+1}} (Z_{A}) \prod_{l,p=1}^{\infty} \left(1 - Q_{A}^{-1} Q_{\tau_{A}} X_{A;l} Y_{A-1;p} \right) (1 - Q_{A} Z_{A;l} W_{A;p})$$

$$(60)$$

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{A=1}^{N} (-Q_{\tau_{A}})^{|\lambda_{2A+1}|} \times \prod_{l,p=1}^{\infty} \frac{\left(1 - Q_{A}^{-1} Q_{\tau_{A}} X_{A;l} Y_{A-1;p}\right) \left(1 - Q_{A} Z_{A;l} W_{A;p}\right)}{\left(1 - Q_{\tau_{A}} W_{A;l} Y_{A-1;p}\right) \left(1 - Q_{A} Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1;l} Z_{A;p}\right)} \times s_{\lambda_{2A+1}^{\mathrm{T}}/\sigma_{2A}^{\mathrm{T}}} (Y_{A-1}) s_{\lambda_{2A}/\sigma_{2A}^{\mathrm{T}}} \left(-Q_{\tau_{A}} W_{A}\right) s_{\lambda_{2A}^{\mathrm{T}}/\sigma_{2A-1}^{\mathrm{T}}} \left(-Q_{A-1} Z_{A-1}\right) \times s_{\lambda_{2A+1}/\sigma_{2A+1}^{\mathrm{T}}} \left(-Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1}\right)$$

$$(61)$$

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{A=1}^{N} (-Q_{\tau_{A}})^{|\sigma_{2A}|} \times \prod_{l,p=1}^{\infty} \left\{ \frac{(1 - Q_{A}^{-1} Q_{\tau_{A}} X_{A;l} Y_{A-1;p}) (1 - Q_{A} Z_{A;l} W_{A;p})}{(1 - Q_{\tau_{A}} W_{A;l} Y_{A-1;p}) (1 - Q_{A} Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1;l} Z_{A;p})} \times (1 - Q_{A-1} Z_{A-1} Q_{\tau_{A}} W_{A}) (1 - Q_{A+1}^{-1} Q_{\tau_{A}} Q_{\tau_{A+1}} X_{A+1} Y_{A-1}) \right\} \times s_{\sigma_{2A}/\lambda_{2A+1}^{T}} (-Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1}) s_{\sigma_{2A}/\lambda_{2A}} (-Q_{\tau_{A-1}} Z_{A-1}) \times s_{\sigma_{2A-1}/\lambda_{2A}^{T}} (Q_{\tau_{A}} W_{A}) s_{\sigma_{2A+1}/\lambda_{2A+1}} (Q_{\tau_{A}} Y_{A-1})$$
(62)

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{A=1}^{N} \left(-Q_{A}^{-1} Q_{\tau_{A}} \right)^{|\lambda_{2A}|} (-Q_{A})^{|\lambda_{2A+1}|}$$

$$s_{\lambda_{2A+1}/\sigma_{2A}} \left(Q_{A-1} Q_{A}^{-1} Q_{\tau_{A}} Z_{A-1} \right) s_{\lambda_{2A}/\sigma_{2A}} \left(Q_{A+1}^{-1} Q_{\tau_{A+1}} Q_{A} X_{A+1} \right)$$

$$s_{\lambda_{2A+1}/\sigma_{2A+1}} \left(Q_{\tau_{A+1}} W_{A+1} \right) s_{\lambda_{2A+2}^{T}/\sigma_{2A+1}} (Q_{\tau_{A}} Y_{A-1})$$

$$\prod_{l,p=1}^{\infty} \left\{ \frac{\left(1 - Q_{A}^{-1} Q_{\tau_{A}} X_{A;l} Y_{A-1;p} \right) \left(1 - Q_{A} Z_{A;l} W_{A;p} \right)}{\left(1 - Q_{\tau_{A}} W_{A;l} Y_{A-1;p} \right) \left(1 - Q_{A+1}^{-1} Q_{\tau_{A+1}} Q_{A} X_{A+1;l} Z_{A;p} \right)} \right.$$

$$\left. \frac{\left(1 - Q_{A+1}^{-1} Q_{\tau_{A}} Q_{\tau_{A+1}} Y_{A-1;l} X_{A+1;p} \right)}{\left(1 - Q_{\tau_{A}} Q_{A-1} Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1;l} Z_{A-1}; p \right)} \right\} .$$

$$\left. \frac{\left(1 - Q_{\tau_{A}} Q_{A-1} W_{A;l} Z_{A-1;p} \right)}{\left(1 - Q_{\tau_{A+1}} Q_{\tau_{A}} Y_{A-1;l} W_{A+1;p} \right)} \right\} .$$

$$\left. \frac{\left(63 \right)}{\left(63 \right)}$$

Finally, this can be written as

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{A=1}^{N} \prod_{l,p=1}^{\infty} \left\{ \frac{\left(1 - Q_{A}^{-1} Q_{\tau_{A}} X_{A;l} Y_{A-1;p}\right) \left(1 - Q_{A} Z_{A;l} W_{A;p}\right)}{\left(1 - Q_{\tau_{A}} W_{A;l} Y_{A-1;p}\right) \left(1 - Q_{A+1}^{-1} Q_{\tau_{A+1}} Q_{A} X_{A+1;l} Z_{A;p}\right)} \times \frac{\left(1 - Q_{A+1}^{-1} Q_{\tau_{A}} Q_{\tau_{A+1}} Y_{A-1;l} X_{A+1;p}\right) \left(1 - Q_{\tau_{A}} Q_{A-1} W_{A;l} Z_{A-1;p}\right)}{\left(1 - Q_{\tau_{A}} Q_{A-1} Q_{A+1}^{-1} Q_{\tau_{A+1}} X_{A+1;l} Z_{A-1;p}\right) \left(1 - Q_{\tau_{A+1}} Q_{\tau_{A}} Y_{A-1;l} W_{A+1;p}\right)} \right\} G^{(N)}\left(\frac{Q_{\tau_{A+1}} Q_{A} X_{A+1}}{Q_{A+1}}, Q_{\tau_{A}} Y_{A-1}, \frac{Q_{A-1} Q_{\tau_{A}} Z_{A-1}}{Q_{A}}, Q_{\tau_{A+1}} W_{A+1}; Q_{A}, Q_{\tau_{A}}\right)$$

The steps (58)-(61) may then be iterated N-1 more times until one finds

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = G^{(N)}(Q_{\tau}X_{A}, Q_{\tau}Y_{A}, Q_{\tau}Z_{A}, Q_{\tau}W_{A}; Q_{A}, Q_{\tau_{A}})$$

$$\times \prod_{A,B=1}^{N} \prod_{l,p=1}^{\infty} \left\{ \frac{\left(1 - Q_{\tau}Q_{AB}^{-1}X_{A;l}Y_{B;p}\right)\left(1 - Q_{\tau}^{2}Q_{AB}^{-1}X_{A;l}Y_{B;p}\right)}{\left(1 - \widetilde{Q}'_{AB}Z_{A;l}X_{B;p}\right)\left(1 - Q_{\tau}\widetilde{Q}'_{AB}Z_{A;l}X_{B;p}\right)} \right\}$$

$$\frac{\left(1 - Q_{AB}Z_{A;l}W_{B;p}\right)\left(1 - Q_{\tau}Q_{AB}Z_{A;l}W_{B;p}\right)}{\left(1 - \widetilde{Q}_{AB}Y_{A;l}W_{B;p}\right)\left(1 - Q_{\tau}\widetilde{Q}_{AB}Y_{A;l}W_{B;p}\right)} \right\}$$
(65)

here $Q_{\tau} = \prod_{A=1}^{N} Q_{\tau_A}$. Now we perform (58)-(63) an infinite number of times and use the fact that

$$\lim_{r \to \infty} G^{(N)}\left(Q_{\tau}^{r} X_{A}, Q_{\tau}^{r} Y_{A}, Q_{\tau}^{r} Z_{A}, Q_{\tau}^{r} W_{A}; Q_{A}, Q_{\tau_{A}}\right) = \prod_{r=1}^{\infty} \frac{1}{1 - Q_{\tau}^{r}}, \tag{66}$$

provided $|Q_{\tau}| < 1$. Hence

$$G^{(N)}(X_{A}, Y_{A}, Z_{A}, W_{A}; Q_{A}, Q_{\tau_{A}}) = \prod_{r,l,p=1}^{\infty} (1 - Q_{\tau}^{r})^{-N^{2}}$$

$$\prod_{A,B=1}^{N} \prod_{r,l,p=1}^{\infty} \frac{\left(1 - Q_{\tau}^{r} Q_{AB}^{-1} X_{A;l} Y_{B;p}\right) \left(1 - Q_{\tau}^{r-1} Q_{AB} Z_{A;l} W_{B;p}\right)}{\left(1 - Q_{\tau}^{r-1} \widetilde{Q}_{AB}^{\prime} Z_{A;l} X_{B;p}\right) \left(1 - Q_{\tau}^{r-1} \widetilde{Q}_{AB}^{\prime} Y_{A;l} W_{B;p}\right)}.$$
(67)

All in all, the partition function for the strip geometry reads

$$Z_{\nu_{1}...\nu_{N}}^{\mu_{1}...\mu_{N}}(Q_{A}, Q_{\tau_{A}}, Q_{\tau_{A}}'; \mathfrak{t}, \mathfrak{q}) = \prod_{A=1}^{N} \mathfrak{q}^{-\frac{||\mu_{A}^{T}||^{2}}{2}} \mathfrak{t}^{\frac{-||\nu_{A}||^{2}}{2}} \widetilde{Z}_{\mu_{A}^{T}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) \widetilde{Z}_{\nu_{A}}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1}) \times \prod_{A,B=1}^{N} \prod_{l,p,r=1}^{\infty} \frac{\left(1 - Q_{\tau}^{r-1} Q_{AB} \mathfrak{t}^{\mu_{A;l}-p+1/2} \mathfrak{q}^{\nu_{B;p}^{T}-l+1/2}\right)}{\left(1 - Q_{\tau}^{r}\right) \left(1 - Q_{\tau}^{r-1} \widetilde{Q}_{BA} \mathfrak{t}^{\nu_{B;l}-p+1} \mathfrak{q}^{\nu_{A;p}^{T}-l}\right)} \times \prod_{A,B=1}^{N} \prod_{l,p,r=1}^{\infty} \frac{\left(1 - Q_{\tau}^{r} Q_{AB}^{-1} \mathfrak{t}^{\nu_{B;l}-p+1/2} \mathfrak{q}^{\mu_{A;p}^{T}-l+1/2}\right)}{\left(1 - Q_{\tau}^{r-1} \widetilde{Q}'_{AB} \mathfrak{t}^{\mu_{A;l}-p} \mathfrak{q}^{\mu_{B;p}^{T}-l+1}\right)}$$

$$(68)$$

where we define $Q_{\tau} := \prod_{A=1}^{N} Q_{\tau_A}$. We may then define the domain wall partition function

$$D_{\nu_1...\nu_N}^{\mu_1...\mu_N}(Q_A, Q_{\tau_A}, Q'_{\tau_A}; \mathfrak{t}, \mathfrak{q}) := \frac{Z_{\nu_1...\nu_N}^{\mu_1...\mu_N}(Q_A, Q_{\tau_A}; \mathfrak{t}, \mathfrak{q})}{Z_{\varnothing...\varnothing}^{\varnothing...\varnothing}(Q_A, Q_{\tau_A}; \mathfrak{t}, \mathfrak{q})}$$
(69)

which may be expressed in terms of $\mathcal{N}_{\nu,\mu}(Q;\mathfrak{q},\mathfrak{t})$ (??)

$$D_{\nu_{1}...\nu_{N}}^{\mu_{1}...\mu_{N}}(Q_{A}, Q_{\tau_{A}}, Q_{\tau_{A}}'; \mathfrak{t}, \mathfrak{q}) = \prod_{A=1}^{N} \mathfrak{q}^{-\frac{||\mu_{A}^{T}||^{2}}{2}} \mathfrak{t}^{\frac{-||\nu_{A}||^{2}}{2}} \widetilde{Z}_{\mu_{A}^{T}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) \widetilde{Z}_{\nu_{A}}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1}) \times \prod_{A,B=1}^{N} \prod_{r=1}^{\infty} \frac{\mathcal{N}_{\mu_{A}\nu_{B}}\left(Q_{\tau}^{r-1}Q_{AB}\sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}}; \mathfrak{t}, \mathfrak{q}\right) \mathcal{N}_{\nu_{B}\mu_{A}}\left(Q_{\tau}^{r}Q_{AB}^{-1}\sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}}; \mathfrak{t}, \mathfrak{q}\right)}{\mathcal{N}_{\mu_{A}\mu_{B}}\left(Q_{\tau}^{r-1}\widetilde{Q}_{AB}', \mathfrak{t}, \mathfrak{q}\right) \mathcal{N}_{\nu_{A}\nu_{B}}\left(Q_{\tau}^{r-1}\widetilde{Q}_{AB}^{T}, \mathfrak{t}, \mathfrak{q}\right)}$$

$$(70)$$

where

$$Q_{AB} = Q_A \prod_{i=1}^{A-1} Q_{\tau_i} \prod_{j=B}^{N} Q_{\tau_j} \bmod Q_{\tau},$$
 (71)

$$\widetilde{Q}_{AB} = \begin{cases}
\prod_{i=B}^{A-1} Q_{\tau_i} & A > B, \\
Q_{\tau} & A = B, \\
Q_{\tau} / \prod_{i=A}^{B-1} Q_{\tau_i} & A < B,
\end{cases}$$
(72)

$$\widetilde{Q}'_{AB} = \frac{Q_A}{Q_B} \widetilde{Q}_{AB} \,. \tag{73}$$

The M5-brane partition function on A_{N-1} singularity is then given by

$$Z_{\text{M5}}\left(Q_{n,A}, Q_{\tau_{n,A}}, Q_{f,n,A}; \mathfrak{t}, \mathfrak{q}\right) = Z_{\text{rel.}} Z_M^{A_{N-1}}\left(Q_{n,A}, Q_{\tau_{n,A}}, Q_{f,n,A}; \mathfrak{t}, \mathfrak{q}\right)$$
(74)

where

$$Z_{M}^{A_{N-1}}\left(Q_{n,A}, Q_{\tau_{n,A}}, Q_{f,n,A}; \mathfrak{t}, \mathfrak{q}\right) = \sum_{\{\vec{\mu}_{n}\}} \left(\prod_{n=1}^{M-1} \prod_{A=1}^{N} \left(-Q_{f,n,A}\right)^{|\mu_{n,A}|}\right) Z_{M,\{\vec{\mu}_{n}\}}^{A_{N-1}}\left(Q_{n,A}, Q_{\tau_{n,A}}; \mathfrak{t}, \mathfrak{q}\right) , \tag{75}$$

$$Z_{U(1)}^{(n)} := Z_{\varnothing ...\varnothing}^{\varnothing ...\varnothing} \left(Q_{n,A}, Q_{\tau_{n,A}}, Q'_{\tau_{n,A}}; \mathfrak{t}, \mathfrak{q} \right), \tag{76}$$

$$Z_{\text{rel.}} = \prod_{n=1}^{M} Z_{U(1)}^{(n)}, \qquad (77)$$

and

$$Z_{M,\vec{\mu}_{n}}^{A_{N-1}}\left(Q_{n,A}, Q_{\tau_{n,A}}; \mathfrak{t}, \mathfrak{q}\right) = D_{\mu_{1,1} \dots \mu_{1,N}}^{\varnothing \dots \varnothing} \left(Q_{1,A}, Q_{\tau_{1,A}}, Q'_{\tau_{1,A}}; \mathfrak{t}, \mathfrak{q}\right) \times D_{\mu_{2,1} \dots \mu_{2,N}}^{\mu_{1,1} \dots \mu_{1,N}} \left(Q_{2,A}, Q_{\tau_{2,A}}, Q'_{\tau_{2,A}}; \mathfrak{t}, \mathfrak{q}\right) \times \dots \times D_{\varnothing \dots \varnothing}^{\mu_{M-1,1} \dots \mu_{M-1,N}} \left(Q_{M,A}, Q_{\tau_{M,A}}, Q'_{\tau_{M,A}}; \mathfrak{t}, \mathfrak{q}\right).$$

$$(78)$$

Note that the gluing requires

$$Q'_{\tau_{n+1,A}} = Q_{\tau_{n,A}} \implies \widetilde{Q}'_{n+1,AB} = \widetilde{Q}_{n,AB}. \tag{79}$$

It may be shown that [?] (76) may be written as

$$Z_M^{A_{N-1}} =$$

$$\sum_{\{\mu_{n,A}\}} \prod_{n=1}^{M-1} \prod_{A=1}^{N} \left(\overline{Q}_{f,n,A}^{|\mu_{n,A}|} \right) \prod_{(l,p)\in\mu_{n,A}} \prod_{A=1}^{N} \frac{\theta_{1} \left(z_{n,AB}(l,p) | \tau \right) \theta_{1} \left(w_{n,AB}(l,p) | \tau \right)}{\theta_{1} \left(u_{n,AB}(l,p) | \tau \right) \theta_{1} \left(v_{n,AB}(l,p) | \tau \right)}$$
(80)

where

$$e^{2\pi i z_{n,AB}(l,p)} = Q_{n+1,AB}^{-1} \mathfrak{t}^{-\mu_{n,A;l}+p-1/2} \mathfrak{q}^{\mu_{n+1,B;p}^{\mathrm{T}}+l-1/2}$$
(81)

$$e^{2\pi \mathrm{i} w_{n,AB}(l,p)} = Q_{n,BA}^{-1} \mathfrak{t}^{\mu_{n,A;l}-p+1/2} \mathfrak{q}^{\mu_{n-1,B;p}^{\mathrm{T}}-l+1/2}$$

$$\tag{82}$$

$$e^{2\pi i u_{n,AB}(l,p)} = \widehat{Q}_{n,BA}^{-1} \mathfrak{t}^{\mu_{n,A;l}-p} \mathfrak{q}^{\mu_{n,B;p}^{\mathsf{T}}-l+1}$$
(83)

$$e^{2\pi i v_{n,AB}(l,p)} = \hat{Q}_{n,AB}^{-1} \mathfrak{t}^{\mu_{n,A;l}+p-1} \mathfrak{q}^{-\mu_{n,B;p}^{\mathsf{T}}+l}$$
(84)

and

$$\overline{Q}_{f,n,A} = \left(\frac{\mathfrak{q}}{\mathfrak{t}}\right)^{\frac{N-1}{2}} Q_{f,n,A} \left(\prod_{A=1}^{N} Q_{n,A}\right), \quad \widehat{Q}_{n,AB} = \begin{cases} 1 & A = B, \\ \widetilde{Q}_{n,AB} & A \neq B. \end{cases}$$
(85)

The authors of [?] were, remarkably, able to show

$$Z_M^{A_{N-1}} = Z_{\text{string}} \tag{86}$$

where Z_{string} is the same as in (??).

Figure 2: Left: Assignment of Kähler parameters for the Lagrangian brane Right: Strip geometry for the A_0 singularity with a single Lagrangian brane corresponding to the defect. The blue lines denote the preferred direction of the refined topological vertex. The red lines denote the direction periodic identification.

0.3.2 With Minimal Defect

Let us consider the minimal type defects in the A_0 theory. By minimal we mean the defects of type

$$\rho = [(M-k), 1, \dots, 1]. \tag{87}$$

The relation between the string Elliptic genus and refined topological partition function in the presence of a defect of type 2 = 1 + 1 has been studied in [?]. We can compute the domain wall partition function (68) in the presence of a D3'-brane ending on D5-brane. The effect of the Lagrangian brane is to insert the factor

$$\operatorname{tr}_{\sigma_{1}^{\mathrm{T}}}(X)\operatorname{tr}_{\sigma_{2}^{\mathrm{T}}}(X^{-1}) = s_{\sigma_{1}^{\mathrm{T}}}(x)s_{\sigma_{2}^{\mathrm{T}}}(x^{-1}).$$
 (88)

Where we assume that the brane has framing factor exponents p = 1. The refined open topological string amplitude for the strip geometry with N = 1 with a single Lagrangian brane

$$\widehat{Z}_{\nu}^{\mu}(Q_{1}, Q_{\tau}, \widetilde{Q}, x; \mathfrak{t}, \mathfrak{q}) = \sum_{\sigma_{1}, \sigma_{2}, \lambda_{1}, \lambda_{2}} \left\{ (-Q_{1})^{|\lambda_{2}|} \left(-Q_{1}^{-1} Q_{\tau} \right)^{|\lambda_{1}|} \left(-\widetilde{Q}^{-1} Q_{1}^{-1} Q_{\tau} \right)^{|\sigma_{1}|} \left(-\widetilde{Q} \right)^{|\sigma_{2}|} \times s_{\sigma_{1}^{T}}(x) \, s_{\sigma_{2}^{T}}(x^{-1}) \, C_{(\lambda_{1}^{T} \otimes \sigma_{1}) \lambda_{2}^{T} \mu^{T}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) C_{(\lambda_{1} \otimes \sigma_{2}) \lambda_{2} \nu}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1}) \right\} .$$
(89)

From (87) after expanding out the topological vertex we have

$$\widehat{Z}_{\nu}^{\mu}(Q_{1}, Q_{\tau_{1}}, \widetilde{Q}; \mathfrak{t}, \mathfrak{q}) = \mathfrak{t}^{-\frac{||\nu||^{2}}{2}} \mathfrak{q}^{-\frac{||\mu^{T}||^{2}}{2}} \widetilde{Z}_{\mu^{T}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) \widetilde{Z}_{\nu}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1})
\sum_{\sigma_{1}, \sigma_{2}, \lambda_{1}, \lambda_{2}, \eta_{1}, \eta_{2}} \left\{ \left(\frac{\mathfrak{q}}{\mathfrak{t}} \right)^{\frac{|\eta_{1}| - |\eta_{2}|}{2}} (-Q_{1})^{|\lambda_{2}|} \left(-Q_{1}^{-1} Q_{\tau_{1}} \right)^{|\lambda_{1}|} \right.
\times s_{\sigma_{1}^{T}} \left(\widetilde{Q}^{-1} Q_{1}^{-1} Q_{\tau_{1}} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} x \right) s_{\sigma_{2}^{T}} \left(\widetilde{Q} \sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} x^{-1} \right) s_{(\lambda_{1} \otimes \sigma_{1}^{T})/\eta_{2}} \left(\mathfrak{t}^{\rho} \mathfrak{q}^{\mu^{T}} \right)
\times s_{\lambda_{2}^{T}/\eta_{2}} \left(\mathfrak{t}^{\mu} \mathfrak{q}^{\rho} \right) s_{(\lambda_{1}^{T} \otimes \sigma_{2}^{T})/\eta_{1}} \left(\mathfrak{q}^{\rho} \mathfrak{t}^{\nu} \right) s_{\lambda_{2}/\eta_{1}} \left(\mathfrak{q}^{\nu^{T}} \mathfrak{t}^{\rho} \right) \right\} .$$
(90)

Using the identity (??) we have

$$\widehat{Z}_{\nu}^{\mu}(Q_{1}, Q_{\tau_{1}}, \widetilde{Q}; \mathfrak{t}, \mathfrak{q}) = \mathfrak{t}^{-\frac{||\nu||^{2}}{2}} \mathfrak{q}^{-\frac{||\mu^{\mathrm{T}}||^{2}}{2}} \widetilde{Z}_{\mu^{\mathrm{T}}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) \widetilde{Z}_{\nu}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1})
\sum_{\sigma_{1}, \sigma_{2}, \lambda_{1}, \lambda_{2}, \eta_{1}, \eta_{2}, \gamma_{1}, \gamma_{2}} \left\{ \left(\frac{\mathfrak{q}}{\mathfrak{t}} \right)^{\frac{|\eta_{1}| - |\eta_{2}|}{2}} (-Q_{1})^{|\lambda_{2}|} \left(-Q_{1}^{-1}Q_{\tau_{1}} \right)^{|\lambda_{1}|} c_{\lambda_{1}\sigma_{1}}^{\gamma_{1}} c_{\lambda_{1}\sigma_{2}}^{\gamma_{2}^{\mathrm{T}}} \right.
\times s_{\sigma_{1}^{\mathrm{T}}} \left(\widetilde{Q}^{-1}Q_{1}^{-1}Q_{\tau_{1}} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} x \right) s_{\sigma_{2}^{\mathrm{T}}} \left(\widetilde{Q}\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} x^{-1} \right) s_{\gamma_{1}/\eta_{2}} \left(\mathfrak{t}^{\rho} \mathfrak{q}^{\mu^{\mathrm{T}}} \right)
\times s_{\lambda_{2}^{\mathrm{T}}/\eta_{2}} \left(\mathfrak{t}^{\mu} \mathfrak{q}^{\rho} \right) s_{\gamma_{2}^{\mathrm{T}}/\eta_{1}} \left(\mathfrak{q}^{\rho} \mathfrak{t}^{\nu} \right) s_{\lambda_{2}/\eta_{1}} \left(\mathfrak{q}^{\nu^{\mathrm{T}}} \mathfrak{t}^{\rho} \right) \right\} .$$
(91)

Now apply the identity (??) to obtain

$$\widehat{Z}_{\nu}^{\mu}(Q_{1}, Q_{\tau_{1}}, \widetilde{Q}; \mathfrak{t}, \mathfrak{q}) = \mathfrak{t}^{-\frac{||\nu||^{2}}{2}} \mathfrak{q}^{-\frac{||\mu^{T}||^{2}}{2}} \widetilde{Z}_{\mu^{T}}(\mathfrak{t}^{-1}, \mathfrak{q}^{-1}) \widetilde{Z}_{\nu}(\mathfrak{q}^{-1}, \mathfrak{t}^{-1})
\sum_{\lambda_{1}, \lambda_{2}, \eta_{1}, \eta_{2}, \gamma_{1}, \gamma_{2}} \left\{ (-Q_{1})^{|\lambda_{2}|} \left(\frac{-Q_{\tau_{1}}}{Q_{1}} \right)^{|\lambda_{1}|} s_{\gamma_{1}/\lambda_{1}} \left(\frac{Q_{\tau_{1}}}{\widetilde{Q}Q_{1}} \sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} x \right) s_{\gamma_{1}/\eta_{2}} \left(\mathfrak{t}^{\rho} \mathfrak{q}^{\mu^{T}} \right)
s_{\gamma_{2}^{T}/\lambda_{1}^{T}} \left(\widetilde{Q} \sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} x^{-1} \right) s_{\lambda_{2}^{T}/\eta_{2}} \left(\sqrt{\frac{\mathfrak{q}}{\mathfrak{t}}} \mathfrak{t}^{\mu} \mathfrak{q}^{\rho} \right) s_{\gamma_{2}^{T}/\eta_{1}} \left(\mathfrak{q}^{\rho} \mathfrak{t}^{\nu} \right) s_{\lambda_{2}/\eta_{1}} \left(\sqrt{\frac{\mathfrak{t}}{\mathfrak{q}}} \mathfrak{q}^{\nu^{T}} \mathfrak{t}^{\rho} \right) \right\}.$$
(92)

Therefore let us consider

$$G(X, Y, Z, W, A, B; a, b) = \sum_{\lambda_{1}, \lambda_{2}, \eta_{1}, \eta_{2}, \gamma_{1}, \gamma_{2}} \left\{ (a)^{|\lambda_{1}|} (b)^{|\lambda_{2}|} s_{\gamma_{1}/\lambda_{1}} (A) \right.$$

$$\left. s_{\gamma_{2}^{\mathrm{T}}/\lambda_{1}^{\mathrm{T}}} (B) s_{\gamma_{1}/\eta_{2}} (X) s_{\lambda_{2}^{\mathrm{T}}/\eta_{2}} (Y) s_{\gamma_{2}^{\mathrm{T}}/\eta_{1}} (Z) s_{\lambda_{2}/\eta_{1}} (W) \right\}$$

$$(93)$$

$$G(X, Y, Z, W, U, A, B; a, b) = \sum_{\lambda_{1}, \lambda_{2}, \eta_{1}, \eta_{2}, \gamma_{1}, \gamma_{2}} \left\{ (a)^{|\gamma_{1}|} (b)^{|\gamma_{1}|} s_{\lambda_{1}/\gamma_{1}} (aX) s_{\lambda_{1}^{T}/\gamma_{2}} (Z) s_{\eta_{2}^{T}/\lambda_{2}^{T}} (W) \right.$$

$$\left. s_{\eta_{1}^{T}/\lambda_{2}} (bY) s_{\eta_{1}/\gamma_{2}} (B) s_{\eta_{2}/\gamma_{1}} (bA) \right\} \prod_{l, p=1}^{\infty} \frac{(1 + bY_{l}W_{p})}{(1 - A_{l}X_{p}) (1 - B_{l}Z_{p})}$$

$$(94)$$

$$G(X,Y,Z,W,U,A,B;a,b) = \sum_{\lambda_{1},\lambda_{2},\eta_{1},\eta_{2},\gamma_{1},\gamma_{2}} \left\{ (a)^{|\eta_{2}|} (b)^{|\lambda_{1}|} s_{\gamma_{1}^{T}/\lambda_{1}} (bZ) \right.$$

$$\times s_{\gamma_{2}^{T}/\lambda_{1}^{T}} (aX) s_{\lambda_{2}/\eta_{2}^{T}} (bA) s_{\gamma_{1}^{T}/\eta_{2}} (aW) s_{\lambda_{2}^{T}/\eta_{1}^{T}} (B) s_{\gamma_{2}^{T}/\eta_{1}} (bY) \right\}$$

$$\times \prod_{l,p=1}^{\infty} \frac{(1 + bY_{l}W_{p}) (1 + aX_{l}Z_{p}) (1 + bA_{l}W_{p}) (1 + bY_{l}B_{p})}{(1 - A_{l}X_{p}) (1 - B_{l}Z_{p})}$$

$$G(X,Y,Z,W,U,A,B;a,b) = \sum_{\lambda_{1},\lambda_{2},\eta_{1},\eta_{2},\gamma_{1},\gamma_{2}} \left\{ (a)^{|\lambda_{2}|} (b)^{|\lambda_{1}|} s_{\lambda_{1}/\gamma_{1}^{T}} (aW) \right.$$

$$\times s_{\lambda_{1}^{T}/\gamma_{2}^{T}} (bY) s_{\eta_{2}/\lambda_{2}} (aB) s_{\eta_{2}/\gamma_{1}^{T}} (bZ) s_{\eta_{1}/\lambda_{2}^{T}} (bA) s_{\eta_{1}/\gamma_{2}^{T}} (aX) \right\}$$

$$\times \prod_{l=1}^{\infty} \frac{(1 + bY_{l}W_{p}) (1 + aX_{l}Z_{p}) (1 + bA_{l}W_{p}) (1 + bY_{l}B_{p}) (1 + bB_{l}A_{p})}{(1 - A_{l}X_{p}) (1 - B_{l}Z_{p}) (1 - abW_{l}Z_{p}) (1 - abY_{l}X_{p})}$$

$$(96)$$

Which is, again, rather similar to our original expressions:

$$G(X, Y, Z, W, A, B; a, b) = G(bZ, aW, aX, bY, aB, bA; a, b)$$

$$\times \prod_{l,p=1}^{\infty} \frac{(1 + bY_lW_p)(1 + aX_lZ_p)(1 + bA_lW_p)(1 + bY_lB_p)(1 + bB_lA_p)}{(1 - A_lX_p)(1 - B_lZ_p)(1 - abW_lZ_p)(1 - abY_lX_p)}$$
(97)

So, repeating steps (92) to (94) again we have that

$$G(X, Y, Z, W, A, B; a, b) = G(Q_{\tau}X, Q_{\tau}Y, Q_{\tau}Z, Q_{\tau}W, Q_{\tau}A, Q_{\tau}B; a, b)$$

$$\times \prod_{l,p=1}^{\infty} \frac{(1 + bY_{l}W_{p})(1 + aX_{l}Z_{p})(1 + bA_{l}W_{p})(1 + bY_{l}B_{p})(1 + bB_{l}A_{p})}{(1 - A_{l}X_{p})(1 - B_{l}Z_{p})(1 - abW_{l}Z_{p})(1 - abY_{l}X_{p})}$$

$$\times \prod_{l,p=1}^{\infty} \frac{(1 + Q_{\tau}bY_{l}W_{p})(1 + Q_{\tau}aX_{l}Z_{p})(1 + Q_{\tau}bA_{l}W_{p})}{(1 - Q_{\tau}A_{l}X_{p})(1 - Q_{\tau}B_{l}Z_{p})(1 - Q_{\tau}^{2}W_{l}Z_{p})}$$

$$\times \prod_{l,p=1}^{\infty} \frac{(1 + bQ_{\tau}Y_{l}B_{p})(1 + Q_{\tau}bB_{l}A_{p})}{(1 - Q_{\tau}^{2}Y_{l}X_{p})}$$

$$(98)$$

where $Q_{\tau} := ab$ so again iterating the steps (92) to (96) an infinite number of times and using

$$\lim_{r \to \infty} G(Q_{\tau}^{r} X, Q_{\tau}^{r} Y, Q_{\tau}^{r} Z, Q_{\tau}^{r} W, Q_{\tau}^{r} A, Q_{\tau}^{r} B; a, b) = \prod_{r=1}^{\infty} \frac{1}{1 - Q_{\tau}^{r}}$$
(99)

we arrive at

$$G(X, Y, Z, W, A, B; a, b) = \prod_{r,l,p=1}^{\infty} \left\{ \frac{\left(1 + Q_{\tau}^{r-1}bY_{l}W_{p}\right)\left(1 + Q_{\tau}^{r-1}aX_{l}Z_{p}\right)}{\left(1 - Q_{\tau}^{r}\right)\left(1 - Q_{\tau}^{r-1}A_{l}X_{p}\right)} \times \frac{\left(1 + Q_{\tau}^{r-1}bA_{l}W_{p}\right)\left(1 + bQ_{\tau}^{r-1}Y_{l}B_{p}\right)\left(1 + Q_{\tau}^{r-1}bB_{l}A_{p}\right)}{\left(1 - Q_{\tau}^{r-1}B_{l}Z_{p}\right)\left(1 - Q_{\tau}^{r}W_{l}Z_{p}\right)\left(1 - Q_{\tau}^{r}Y_{l}X_{p}\right)} \right\}$$

$$(100)$$

$$\begin{split} \widehat{Z}_{\nu}^{\mu}(Q_{1},Q_{\tau},\widetilde{Q},x;\mathfrak{t},\mathfrak{q}) &= \mathfrak{t}^{-\frac{||\mu|^{T}||^{2}}{2}}\mathfrak{q}^{-\frac{||\mu^{T}||^{2}}{2}}\widetilde{Z}_{\mu^{T}}(\mathfrak{t}^{-1},\mathfrak{q}^{-1})\widetilde{Z}_{\nu}(\mathfrak{q}^{-1},\mathfrak{t}^{-1}) \\ &\times \prod_{r,l,p=1}^{\infty} \left\{ \frac{\left(1 - Q_{1}^{-1}Q_{\tau}^{r}\mathfrak{q}^{\mu_{l}^{T}-p+1/2}\mathfrak{t}^{\nu_{p}-l+1/2}\right)}{\left(1 - Q_{\tau}^{r}\mathfrak{t}^{\mu_{l}-p}\mathfrak{q}^{\mu_{p}^{T}-l+1}\right)\left(1 - Q_{\tau}^{r}\mathfrak{q}^{\nu_{l}^{T}-p}\mathfrak{t}^{\nu_{p}-l+1}\right)} \\ &\frac{\left(1 - Q_{\tau}^{r}\widetilde{Q}^{-1}\mathfrak{q}^{\nu_{l}^{T}}\mathfrak{t}^{-l+1/2}x_{p}\right)\left(1 - Q_{\tau}^{r-1}\widetilde{Q}Q_{1}\mathfrak{t}^{\mu_{l}}\mathfrak{q}^{-l+1/2}x_{p}^{-1}\right)}{\left(1 - Q_{1}^{-1}\widetilde{Q}^{-1}Q_{\tau}^{r}\mathfrak{q}^{\mu_{l}^{T}+1/2}\mathfrak{t}^{-l}x_{p}\right)\left(1 - \widetilde{Q}Q_{\tau}^{r-1}\mathfrak{q}^{-l}\mathfrak{t}^{\nu_{l}+1/2}x_{p}^{-1}\right)} \\ &\frac{\left(1 - Q_{\tau}^{r}x_{l}x_{p}^{-1}\right)\left(1 - Q_{1}Q_{\tau_{1}}^{r-1}\mathfrak{t}^{\mu_{l}-p+1/2}\mathfrak{q}^{\nu_{p}^{T}-l+1/2}\right)}{\left(1 - Q_{\tau}^{r}x_{l}x_{p}^{-1}\right)} \right\}. \end{split}$$

As before, we define the domain wall partition function; it turns out that it factorises in the following fashion

$$\widehat{D}^{\mu}_{\nu}(Q_{1}, Q_{\tau}, \widetilde{Q}, x; \mathfrak{t}, \mathfrak{q}) := \frac{\widehat{Z}^{\mu}_{\nu}(Q_{1}, Q_{\tau}, \widetilde{Q}; \mathfrak{t}, \mathfrak{q})}{\widehat{Z}^{\varnothing}_{\varnothing}(Q_{1}, Q_{\tau}, \widetilde{Q}; \mathfrak{t}, \mathfrak{q})}
= D^{\mu}_{\nu}(Q_{1}, Q_{\tau}; \mathfrak{t}, \mathfrak{q})\widehat{d}^{\mu}_{\nu}(Q_{1}, Q_{\tau}, \widetilde{Q}, x; \mathfrak{t}, \mathfrak{q}).$$
(102)

Where D is given by (68) and

$$\begin{split} &\widehat{d}_{\nu}^{\mu}(Q_{1},Q_{\tau},\widetilde{Q},x;\mathfrak{t},\mathfrak{q}) \\ &= \prod_{r,p=1}^{\infty} \left\{ \prod_{l=1}^{\ell(\nu^{\mathrm{T}})} \frac{\left(1 - Q_{\tau}^{r}\widetilde{Q}^{-1}\mathfrak{q}^{\nu_{l}^{\mathrm{T}}}\mathfrak{t}^{-l+1/2}x_{p}\right)}{\left(1 - Q_{\tau}^{r}\widetilde{Q}^{-1}\mathfrak{t}^{-l+1/2}x_{p}\right)} \prod_{l=1}^{\ell(\nu)} \frac{\left(1 - \widetilde{Q}Q_{\tau}^{r-1}\mathfrak{q}^{-l}\mathfrak{t}^{1/2}x_{p}^{-1}\right)}{\left(1 - \widetilde{Q}Q_{\tau}^{r-1}\mathfrak{q}^{-l}\mathfrak{t}^{\nu_{l}+1/2}x_{p}^{-1}\right)} \\ &\prod_{l=1}^{\ell(\mu)} \frac{\left(1 - Q_{\tau}^{r-1}\widetilde{Q}Q_{1}\mathfrak{t}^{\mu_{l}}\mathfrak{q}^{-l+1/2}x_{p}^{-1}\right)}{\left(1 - Q_{\tau}^{r-1}\widetilde{Q}^{-1}Q_{1}\mathfrak{q}^{-l+1/2}x_{p}^{-1}\right)} \prod_{l=1}^{\ell(\mu^{\mathrm{T}})} \frac{\left(1 - Q_{1}^{-1}\widetilde{Q}^{-1}Q_{\tau}^{r}\mathfrak{q}^{1/2}\mathfrak{t}^{-l}x_{p}\right)}{\left(1 - Q_{1}^{-1}\widetilde{Q}^{-1}Q_{\tau}^{r}\mathfrak{q}^{\mu_{l}^{\mathrm{T}}+1/2}\mathfrak{t}^{-l}x_{p}\right)} \right\} \\ &= \prod_{r,p=1}^{\infty} \left\{ \prod_{(l,q)\in\nu} \frac{\left(1 - Q_{\tau}^{r}\widetilde{Q}^{-1}\mathfrak{q}^{l}\mathfrak{t}^{-q+1/2}x_{p}\right)\left(1 - \widetilde{Q}Q_{\tau}^{r-1}\mathfrak{q}^{-l}\mathfrak{t}^{q-1/2}x_{p}^{-1}\right)}{\left(1 - Q_{\tau}^{r}\widetilde{Q}^{-1}\mathfrak{q}^{l-1}\mathfrak{t}^{-q+1/2}x_{p}\right)\left(1 - \widetilde{Q}Q_{\tau}^{r-1}\mathfrak{q}^{-l}\mathfrak{t}^{q-1/2}x_{p}^{-1}\right)} \\ &\prod_{(l,q)\in\mu} \frac{\left(1 - Q_{\tau}^{r-1}\widetilde{Q}Q_{1}\mathfrak{t}^{q}\mathfrak{q}^{-l+1/2}x_{p}^{-1}\right)\left(1 - Q_{1}^{-1}\widetilde{Q}^{-1}Q_{\tau}^{r}\mathfrak{q}^{l-1/2}\mathfrak{t}^{-q}x_{p}\right)}{\left(1 - Q_{\tau}^{r-1}\widetilde{Q}Q_{1}\mathfrak{t}^{q}\mathfrak{q}^{-l+1/2}x_{p}^{-1}\right)\left(1 - Q_{1}^{-1}\widetilde{Q}^{-1}Q_{\tau}^{r}\mathfrak{q}^{l+1/2}\mathfrak{t}^{-q}x_{p}\right)} \right\}. \end{aligned} \tag{104}$$

is the contribution of the defect to the partition function. It does not quite assemble into a nice form in terms of θ_1 functions. However, in the unrefined $\mathfrak{q} = \mathfrak{t}$ limit:

$$\widehat{d}_{\nu}^{\mu}(Q_{1}, Q_{\tau}, \widetilde{Q}, x; \mathfrak{q}, \mathfrak{q}) = \prod_{p=1}^{\infty} \left\{ \mathfrak{q}^{\frac{|\mu| - |\nu|}{2}} \prod_{(l,q) \in \nu} \frac{\theta_{1}\left(\widetilde{Q}^{-1}\mathfrak{q}^{l-q+1/2}x_{p}; Q_{\tau}\right)}{\theta_{1}\left(\widetilde{Q}^{-1}\mathfrak{q}^{l-q-1/2}x_{p}; Q_{\tau}\right)} \right. \\
\times \prod_{(l,q) \in \mu} \frac{\theta_{1}\left(Q_{1}^{-1}\widetilde{Q}^{-1}\mathfrak{q}^{l-1/2-q}x_{p}; Q_{\tau}\right)}{\theta_{1}\left(Q_{1}^{-1}\widetilde{Q}^{-1}\mathfrak{q}^{l+1/2-q}x_{p}; Q_{\tau}\right)} \right\}$$
(105)

We may then compute the M5-brane partition function in the presence of the defect labelled by the partition (85) by gluing together k domain wall partitions of type (100) with M-k of type (68). This builds the theory labelled by partition $\rho = [M-k, 1, \ldots, 1]$. Hence we write

$$Z_{\text{M5},\rho} = \left(\prod_{n=1}^{M-k} Z_{U(1)}^{(n)}\right) \left(\prod_{n=M-k+1}^{M} Z_{U(1),\rho}^{(n)}\right) Z_{\rho}^{A_0}$$
(106)

where,

$$Z_{U(1),\rho}^{(n)}(Q_{n,1}, Q_{\tau}, \widetilde{Q}_{n}, x_{n}; \mathfrak{t}, \mathfrak{q}) = \widehat{Z}_{\varnothing}^{\varnothing}(Q_{n,1}, Q_{\tau}, \widetilde{Q}_{n}, x_{n}; \mathfrak{t}, \mathfrak{q})$$

$$Z_{\rho}^{A_{0}}\left(Q_{f,n,1}, Q_{\tau}, \widetilde{Q}_{n}, x_{n}; \mathfrak{t}, \mathfrak{q}\right) := \sum_{\{\mu_{n}\}} \left(\prod_{n=1}^{M-1} (-Q_{f,n,1})^{|\mu_{n}|}\right)$$

$$\times D_{\mu_{1}}^{\varnothing}(Q_{1,1}, Q_{\tau}; \mathfrak{t}, \mathfrak{q}) \times D_{\mu_{2}}^{\mu_{1}}(Q_{2,1}, Q_{\tau}; \mathfrak{t}, \mathfrak{q})$$

$$\times \cdots \times D_{\mu_{M-k}}^{\mu_{M-k-1}}(Q_{M-k,1}, Q_{\tau}; \mathfrak{t}, \mathfrak{q})$$

$$\times \widehat{D}_{\mu_{M-k+1}}^{\mu_{M-k}}(Q_{M-k+1,1}, Q_{\tau}, \widetilde{Q}_{M-k+1}, x_{M-k+1}; \mathfrak{t}, \mathfrak{q})$$

$$\times \cdots \times \widehat{D}_{\varnothing}^{\mu_{M-1}}(Q_{M,1}, Q_{\tau}, \widetilde{Q}_{M}, x_{M}; \mathfrak{t}, \mathfrak{q}) .$$

$$(108)$$

By the factorisation (101) it is clear that

$$Z_{\rho}^{A_{0}}\left(Q_{f,n,1},Q_{n,1},Q_{\tau},\widetilde{Q}_{n},x_{n};\mathfrak{t},\mathfrak{q}\right) := \sum_{\{\mu_{n}\}} \left(\prod_{n=1}^{M-1} \left(-Q_{f,n,1}\right)^{|\mu_{n}|}\right) \times Z_{M,\{\vec{\mu}_{n}\}}^{A_{0}}\left(Q_{n,1},Q_{\tau};\mathfrak{t},\mathfrak{q}\right) \times \hat{d}_{\mu_{M-k+1}}^{\mu_{M-k}}\left(Q_{M-k+1,1},Q_{\tau},\widetilde{Q}_{M-k+1},x_{M-k+1};\mathfrak{t},\mathfrak{q}\right) \times \cdots \times \hat{d}_{\varnothing}^{\mu_{M-1}}\left(Q_{M,1},Q_{\tau},\widetilde{Q}_{M},x_{M};\mathfrak{t},\mathfrak{q}\right).$$

$$(109)$$