Nome:	N°:
Tionic.	11.

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

2023-2024

TEORIA DA COMPUTAÇÃO

19/janeiro/2024

Duração: 90m

2ª Frequência

Leia atentamente:

- 1°- A prova é **sem** consulta.
- 2º- Responda na folha do enunciado.
- 3º- Não responda à sorte: respostas (de escolha) erradas têm pontuação negativa; respostas em branco têm pontuação nula.
- 4º- Para responder só pode utilizar os espaços do enunciado. Seja conciso e diga só o essencial. Quando a resposta for de escolha, assinale com X a que julgar certa.
- 5°- Coloque o nome e o nº de estudante em **todas** as folhas da prova.
- 1- Diga se as seguintes afirmações são verdadeiras ou falsas JUSTIFICANDO todas as respostas. Nota: Sem justificação a pergunta será considerada errada.

(a) Uma gramática livre de contexto diz-se ambígua se contiver duas derivações mais à direita ou mais à esquerda para a mesma cadeia.	V: F:
Justifique (a)	
(b) O número de variáveis a adicionar na F.N. Greibach é sempre superior ao número de variáveis utilizadas na F.N. Chomsky	V: F:
Justifique (b)	
(c) Uma máquina de turing é mais poderosa computacionalmente que um autómato de pilha com dupla pilha	V: F:
Justifique (c)	

Nome:	Nº:	

2.	Classifique as	gramáticas com	as seguintes	produções	no alfabeto Σ =	$\{a, b\}$
	Classifique as	Sidiliations com	as seguintes	produces.	iio aiiao eto =	(v, v)

(i)	$S \rightarrow B$	
	$A \rightarrow bA$	b
	$B \rightarrow BA$	a

Livre de Contexto	Sim: Não:
Linear	Sim: Não:
Regular	Sim: Não:
F.N. Chomsky	Sim: Não:
F.N. Greibach	Sim: Não:
Simples (s-grammar)	Sim: Não:

(ii) $S \rightarrow aS \mid aA$
$A \rightarrow b \mid aB$
$B \rightarrow bA \mid aC$
$C \rightarrow bA \mid a$

Livre de Contexto	Sim: Não:
Linear	Sim: Não:
Regular	Sim: Não:
F.N. Chomsky	Sim: Não:
F.N. Greibach	Sim: Não:
Simples (s-grammar)	Sim: Não:

3- Encontre a Gramática Livre de Contexto para a seguinte linguagem:

$$L(G) = \{0^i \, 1^j \, 0^k \colon i \neq j \, \vee \, j \neq k, \, i, \, j, \, k >= 0\}$$

Nome:	N°:
 4. Considere as seguintes produções de uma gras S → AaBb A → aB C λ B → aCA ab λ C → aA D → b 	amática livre de contexto no alfabeto Σ={a,b}
Transforme a gramática na Forma Normal de C (eliminando as produções lambda, unidade e in	

Nome:	N°:
5) Construa um Autómato de Pilha Determinís U {a ^m b ^m a, m >= 0}	stico para a seguinte linguagem: L = {a b ⁿ a b ²ⁿ a, n ≥ 0}

 6. Considere a seguinte Máquina de Turing (MT) que na sua fita utiliza o Σ={0,1} e cujo o apontador aponta para o primeiro bit. a) Identifique o comportamento que a MT está a efetuar sobre o conteúdo escrito na fita 		
b) Construa uma MT que contendo um númer complemento para 2. NOTA: Admita que o apo o primeiro bit.	•	
Exemplo:		
Número Binário	Complemento para 2	
110010	001110	
10111110	01000011	

Nome:______ N°:_____