Development of Virtual lab :Round 1 (R1) Pedagogy - Template (Worksheet)

Name of Faculty: Dr. Siddhartha Arjaria

Institute: Rajkiya Engineering College Banda

Email ID (as submitted in the registration form): arjarias@gmail.com Discipline to which the Lab belongs: Electronics Engineering

Name of the Lab: Basic Electronics VLab

Name of experiment: Logic Gates

(only one Experiment per worksheet. for submitting more than one experiments, please fill up another worksheet):

Kindly Refer these documents before filling the worksheet

- 1. Coursework (MOOC) on Pedagogy, Storyboard, Lab Manual: http://bit.ly/Vlabs-MOOC
- 2. Additional Documentation booklet for reference. http://vlabs.iitb.ac.in/vlabs-dev/document.php
- 3. Sample Git Repository. https://github.com/Web-planner/Electronic-Simulator.git

1.1 FOCUS AREA: Electronics Engineering Virtual Lab

1.2 Logic gates simulator

1.2 About the Experiment:

A **logic simulator** is a computer program that allows designers and experimenters to conduct virtual tests of complex digital circuitry before working with any hardware. ... Some programs also offer animation, signal tracing, and alternative **logic-gate** interconnection options.

1.3 Learning Objectives: (write in the table below)

Write Learning Objectives that can be achieved using virtual labs and the respective cognitive level, & action verbs.

The objective for this lab is to understand the fundamentals of logic gates and its use in implementing basic Boolean functions.

4. Simulator Interactions

A **logic simulator** is a computer program that allows designers and experimenters to conduct virtual tests of complex digital circuitry before working with any hardware. The user **can** interact with the program to find a component arrangement that will perform a desired task.

5. Formula And Equations.

. Logic Gates

1.. OR Gate

 Logic gates are electronic circuits that implement the basic functions of Boolean Algebra. There is a symbol for each gate

$$Z = A + B$$

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

- o Logic levels (0 or 1) are represented by means of a voltage level.
 - High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - Low voltage (0V) is 0

2. AND Gate

$$Z = A \cdot B$$

A	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

- Logic levels (0 or 1) are represented by means of a voltage level.
 - o High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - Low voltage (0V) is 0

3. NOT Gate

• Logic gates are electronic circuits that implement the basic functions of Boolean Algebra. There is a symbol for each gate

Z = A

A	Z
0	1
1	0

- Logic levels (0 or 1) are represented by means of a voltage level.
 - High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - o Low voltage (0V) is 0

4.NAND Gate

• Logic gates are electronic circuits that implement the basic functions of Boolean Algebra. There is a symbol for each gate

 $Z = A \cdot B = A + B$

A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

- Logic levels (0 or 1) are represented by means of a voltage level.
 - High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - Low voltage (0V) is 0

5.NOR Gate

$$Z = A + B = A \cdot B$$

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

- Logic levels (0 or 1) are represented by means of a voltage level.
 - o High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - Low voltage (0V) is 0

6. XOR Gate

$$Z = A \oplus B = A \cdot B + A \cdot B$$

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

- Logic levels (0 or 1) are represented by means of a voltage level.
 - o High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - o Low voltage (0V) is 0

7 . XNOR Gate

$$Z = A \oplus B = A \cdot B + A \cdot B$$

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

- Logic levels (0 or 1) are represented by means of a voltage level.
 - High voltage (5V, 3.3V, 2.5 V, etc.) is 1
 - Low voltage (0V) is 0