CSC 320 Spring 2024 Assignment 1

This assignment has 6 written questions and is out of a total of 30 marks. Submit one PDF file containing your solutions on Brightspace.

Questions

[5 marks] Let Σ = {a, b}. Consider the following language L_A and L_B over Σ:
L_A = {w ∈ Σ* | w contains an even number of occurrences of symbol a}
L_B = {w ∈ Σ* | each pair of consecutive b's in w is separated by a substring of a's of length 2i, i ≥ 0}

Clarification: L_B is saying that between b's there must be 2i a's for some $i \ge 0$ (e.g. $baab \in L_B$ and $baaab \notin L_B$). Also, i must be an integer value ≥ 0 .

For each of the following strings, decide whether it is a member of L_A or L_B :

- (a) b
- (b) aabbbbaa
- (c) abaaabaaa
- (d) bbaaaabbaab
- (e) a

Answers

1A: **b** is a member of LA because there's even number of occurrences of \mathbf{a} 's in the string (0 is an even number) and also a part of LB because there's 2i number of \mathbf{a} 's where i is equal to 0, satisfying the condition $\mathbf{i} > = \mathbf{0}$. Therefore, the string is a member of both LA and LB.

1B: **aabbbbaa** is a member of both LA and LB, since it has 4 a's in the string (LA) and the string can be rewritten as **aa-bb-0-bb-aa** where we have pairs of b's separated by <u>2i number</u> of **a**'s (LB) where number of **a** in between is 0.

1C: **abaaabaaa** is not a member of LA because there's an uneven number of **a**'s in the string, and also not a member of LB since it doesn't have **2i** number of **a**'s in between the **b** pairs, where number of **a** in between is 3.

1D: **bbaaaabbaab** or **bb-aa-aa-bb-aa-b** is a member of both LA and LB since there's even occurrences of a in the string and there's **2i** number of **a**'s in between b's.

1E: **a** is not a member of LA since there's uneven number of a's but it's a member of LB since there's no consecutive number of **b**'s to be separated by **2i** number of **a**'s.

2. [5 marks] Consider the following DFA M:

Describe M as a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$. In particular, give

- (a) Q
- (b) Σ
- (c) δ (in the form of a transition table)
- (d) q₀
- (e) F

ANSWER 2:

The given DFA can be described as a 5-tuple (Q, Σ , δ , q0, F):

Q = finite set of states $\{q_0, q_1, q_2, q_3, q_4, q_5\}$.

 Σ = finite set of symbols called *alphabets* {0, 1}.

 δ = Transition function δ : $\mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$ has equal number of outgoing transitions for each *alphabets*.

 $q0 = Has an initial state of <math>q_0$.

 $F = Has \ multiple \ finite \ \textit{accept states}, \ \{q_0, \ q_2, \ q_4\}.$

8	0	1
q,	V 4	Nz
9,2	94	2.
9,3	9,3	93
94	95	e.
95	9 ₅	25
a,	a,	az

Transition table [5 marks] Consider the following DFA state diagram: No. (7) (4) T2 gy. (q_n) For each of the following strings, give the exact sequence of states that the automaton undergoes when reading the string. Furthermore, indicate whether or not the string is accepted. (a) $w_1 = \varepsilon$ (b) $w_2 = 0111$ ANSWER 3: (c) w₃ = 1000000100 (d) w₄ = 1010110 a) Since q₀ is not a final (accept) state, the string is not accepted. (e) $w_5 = 111111111$ ٤ b) Since q2 is not a final (accept) state, the string is not accepted. c) Since q₁ is a final (accept) state, the string is accepted. d) Since q₀ is not a final (accept) state, the string is not accepted. 7 10210 e) Since q₁ is a final (accept) state, the string is accepted. 2 1 2 1 2 1 4 1 — X — 0 — X — — X — [5 marks] Consider the state diagram of the following DFA F. Describe the language L(F) that the automaton recognizes using set notation.

ANSWER 4: The state diagram of the above DFA F recognizes the language L(F) such that:

- X ---- 0 ---- X ---- 0 ---- 0 ---- X ---- 0 ----- 0 ---- X ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ----- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ---- 0 ----- 0 --

L(F) = {
$$w \in \Sigma * | |w| \ge 1$$
, if w begins with 1 } or
{ $w \in \Sigma * | |w| \ge 2$, if w starts with 0 and ends with 1}

5. [5 marks] Let Σ = {a, b}. For the following language L_A over Σ, construct a deterministic finite automaton A with L(A) = L_A. For the automaton, give the state diagram and the formal 5-tuple definition of the DFA A = (Q, Σ, δ, q₀, F) with a transition table describing δ.

 $L_A = \{w \in \Sigma^* \mid w \text{ starts with an } a \text{ and contains the substring } abb\}$

Figure: Constructed DFA A

The given DFA **A** can be described as a 5-tuple (Q, Σ , δ , q0, F):

 $Q = Finite set of states {q_0, q_1, q_2, q_3}.$

 Σ = Finite set of symbols called *alphabets* {a, b}.

 δ = Transition function δ : $\mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$ has equal number of outgoing transitions for each alphabets.

 q_0 = Has an initial state of q_0 .

F = Has one finite accept states, {q₃}.

So $(\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\})$ defined by:

[5 marks] Consider the state diagrams of the following automata M₁ and M₂:

Give a state diagram and transition table for a DFA M that recognizes the language $L(M) = L(M_1) \cap L(M_2)$. For this, you must use the construction from the proof that builds a DFA that recognizes the intersection of two regular languages.