## Лекция 9

### Ilya Yaroshevskiy

### 18 января 2021 г.

### Содержание

|   | Покально потенциальные векторные поля 1.1 Интеграл локально потенциального векторного поля по непрерывному пути | 1<br>1 |
|---|-----------------------------------------------------------------------------------------------------------------|--------|
| 2 | Сходимость рядов                                                                                                | 3      |
| 3 | Степенные ряды                                                                                                  | 4      |

# 1 Локально потенциальные векторные поля

# 1.1 Интеграл локально потенциального векторного поля по непрерывному пути

Лемма 1 (о гусенице).  $\gamma:[a,b] \to \mathop{O}_{\substack{om\kappa.\ Mn.\ }} \subset \mathbb{R}^m$  — непрерывное  $\underline{Tor\partial a}$   $\exists \partial poбление \quad a=t_0 < t_1 < t_2 < \cdots < t_n = b$  u  $\exists\ maps \ B_1,\ \dots,\ B_n \subset O \quad \gamma[t_{k_1},t_l] \subset B_k$ 



Доказательство.  $\forall c \in [a,b]$  возьмем  $B_c := B(\gamma(c), r_c) \subset O$  произвол!!

$$\tilde{\alpha}_c := \inf \{ \alpha \in [a, b] | \gamma[\alpha, c] \subset B_c \}$$

$$\tilde{\beta}_c := \sup \{ \alpha \in [a, b] | \gamma[c, \beta] \subset B_c \}$$

Возьмем  $(\alpha_c, \beta_c)$ :  $\tilde{\alpha}_c < \alpha_c < c < \beta_c < \tilde{\beta}_c$ 

Таким образом  $c\mapsto (\alpha_c,\beta_c)$  — открытое покрытие [a,b]

Для случая c=a или c=b вместо  $(\alpha_c,\beta_c)$  берем  $[a,\beta_a),\ (\alpha_b,b]$ 

[a,b] — компактен  $\Rightarrow$  [a,b]  $\subset$   $\bigcup_{\text{кон.}}(\alpha_c,\beta_c)$ , н.у.о ни один интервал не накрывается целиком остальными  $\forall (\alpha_c,\beta_c)$   $\exists d_c$  — принадлежащая "только этому" интервалу



Точка  $t_k$  выбирается на отрезке  $(d_k,d_{k+1})$  и  $t_k \in (\alpha_k,\beta_k) \cap (\alpha_{k+1},\beta_{k+1})$   $\gamma([t_{k-1},t_l])=\gamma(\alpha_k,\beta_k)\subset B_k$ 

Примечание.  $\forall \delta > 0$  мы можем требовать чтобы все  $r_k < \delta$ 

Примечание. В силу формулы "произвол!!" можно требовать, чтобы шары  $B_c$  удовлетворяли локальному условию

Пример. Пусть V — локально потенциальное векторное поле в O мы можем требовать, чтобы во всех шарах  $B_c$  существовал потенциал V.

Назовем в этом случае набор  $\{B_k\} - V$  - гусеница

**Определение.** V - локально потенциальное векторное поле в  $O \subset \mathbb{R}^m$   $\gamma, \tilde{\gamma}: [a,b] \to O$  называются **похожими** (V - похожими) если у них есть общая V - гусеница  $\exists t_0 = a < t_1 < t_2 < \dots < t_n = v \quad \exists$  шары  $B_k \subset O$   $\gamma[t_{k-1},t_k] \subset B_k, \ \tilde{\gamma}[t_{k-1},t_k] \subset B_k$ 

 $Cnedcmeue\ 1.0.1.\ V$  — локально потенциальное векторное поле Тогда любой путь V - похож на ломаную



**Лемма 2** (о равенстве интегралов локально потенциального векторного поля по похожим путям). V - локально потенциальное векторное поле в  $O \subset \mathbb{R}^m$ 

$$\gamma, \tilde{\gamma}: [a,b] \to O-V$$
 - похожие, кусочно гладкие,  $\gamma(a)=\tilde{\gamma}(a), \ \gamma(b)=\tilde{\gamma}(b)$  Тогда  $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$ 

Доказательство. Берем общую V - гусеницу

Пусть  $f_k$  - потенциал V в шаре  $B_k$ 

$$a = t_0 < t_1 < \dots < t_n = b$$

Поправим потенциал(прибавим константы)

$$f_k((t_k)) = f_{k+1}(\gamma(t_k))$$
 при  $k = 1, 2, \dots, n$ 

Тогда

$$\int_{\gamma} \sum V_i dx_i = \sum \int_{[t_{k-1}, t_k]} \dots \xrightarrow{\text{обобии. } \phi\text{--ла H.--Л.}} \sum f_k(\gamma(t_k)) - f_k(\gamma(t_{k-1})) =$$
 (1)

= "телесопическая 
$$-f_n(\gamma(b)) - f_1(\gamma(a))$$
 (2)

Для  $\tilde{\gamma}$  воспользуемся свойством:  $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$  и тогда аналогично  $\int_{\tilde{\gamma}}\sum V_i dx_i=f_n(\tilde{\gamma}(b))-f_n(\tilde{\gamma}(a))$ 

Примечание. Вместо " $\gamma(a)=\tilde{\gamma}(a),\ \gamma(b)=\tilde{\gamma}(b)$ "можно взять условие " $\gamma,\tilde{\gamma}$  - петли, т.е.  $\gamma(a)=\gamma(b),\ \tilde{\gamma}(a)=\tilde{\gamma}(b),$  и вообще говоря  $\gamma(a)\neq\tilde{\gamma}(a)$ "Тогда утверждение Леммы 2 тоже верно

**Лемма 3.**  $\gamma:[a,b] \to O$  - непрерывный, V - локально потенциальное векторное поле в O  $\underline{Tor\partial a}$   $\exists \delta>0$  Ecnu  $\tilde{\gamma},\tilde{\tilde{\gamma}}:[a,b] \to O$  таковы, что  $\forall t\in[a,b]$   $|\gamma(t)-\tilde{\gamma}(t)|<\delta,$   $|\gamma(t)-\tilde{\tilde{\gamma}}(t)|<\delta$   $\underline{mo}$   $\tilde{\gamma}$  u  $\tilde{\tilde{\gamma}}$  (u  $\gamma)$  - V - noxoнси

Доказательство. Берем V - гусеницу для  $\gamma$ 



 $\delta_k$  - окрестнось множества  $\gamma[t_{k-1},t_{\lceil k \rceil}]$ 

 $\forall k \; \exists \delta_k > 0 : \; (\delta_k \text{ - окрестность } \gamma[t_{k-1}, t_k]) \subset B_k$ 

 $\delta$  - окрестность множества A:  $\{x\mid \exists a\in A\ \rho(a,x)<\delta\}=\bigcup_{a\in A}B(a,\delta)$  Следует их компактности: пусть  $B_k=B(w,r)$ 

 $t \in [\gamma_{k-1}, \gamma_k] \mapsto \rho(\gamma(t), w)$  - непрерывная функция  $\Rightarrow$  достигает max

$$\rho(\gamma(t), w) \le r_0 < r \quad \delta_k := \frac{r - r_0}{2}$$

 $\delta := \min(\delta_1, \dots, \delta_k)$ 

# Определение. Интеграл локально потенциального векторного поля V по непрерывному пути $\gamma$

Возьмем  $\delta > 0$  из Леммы 3

Пусть  $\tilde{\gamma}-\delta$  - близкий кусочно гладкий путь, т.е.  $\forall t \quad |\gamma(t)-\tilde{\gamma}(t)|<\delta$ 

Полагаем:  $I(V, \gamma) = I(V, \tilde{\gamma})$ 

Следует из Леммы 3 и Леммы 2

### 2 Сходимость рядов

 $f_n \rightrightarrows f$  на E

 $\forall \varepsilon > 0 \ \exists V(\infty) \ \forall n \in V(\infty) \ \forall x \in E \ |f_n(x) - f(x)| < \varepsilon$   $f(x,y) \xrightarrow[x \to x_0]{} g(y)$  на множестве  $E(\text{т.e. для } y \in E)$ 

 $\forall \varepsilon > 0 \ \exists V(x_0) \ \forall x \in \dot{V}(x_0) \ \forall t \in E|f(x,y) - g(y)| < \varepsilon$ 

#### Теорема 4.

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$
 (3)

Если один из предельных переходов равномерный

**Теорема 2.1** (признак Дирихле).  $\sum a_n(x)b_n(x)$  — вещественный ряд,  $x \in X$  Пусть:

- 1. Частичные суммы ряда  $\sum a_n$  равномерно ограничены  $\exists C_a \ \forall N \ \forall x \in X \quad |\sum_{k=1}^n a_k(x)| \leq C_a$
- 2.  $\forall x$  последовательность  $b_n(x)$  монотонна по n и  $b_n(x)$   $\Longrightarrow_{n \to +\infty} 0$  на X

Тогда ряд  $\sum a_n(x)b_n(x)$  рвномерно сходится на X Для числовых рядов:  $\sum a_nb_n$ 

- 1. частичные суммы  $a_n$  ограничены
- $2. \ b_n \to 0, \ b_n$  монотонна

Тогда  $\sum a_n b_n$  - сходится

Доказательство.

$$\sum_{k=M}^{N} a_k b_k = A_N b_N - A_{M-1} b_{M-1} + \sum_{k=M}^{N-1} A_k (b_k - b_{k+1}), \text{ где } A_k = \sum_{i=1}^{k} a_i$$
 (4)

преобразование Абеля(суммирование по частям)

$$\left| \sum_{k=M}^{N} a_k(x) b_k(x) \right| \leq C_a \cdot |b_M| + C_a \cdot |b_{M-1}| + \sum_{k=M}^{N-1} C_a \cdot |b_k - b_{k+1}| \leq C_a (|b_N(x)| + |b_{M-1}(x)| + \sum_{k=1}^{N-1} |b_k - b_{k+1}|) \leq C_a \cdot |b_M| + C_a \cdot |b_M| +$$

$$\leq C_a(2|b_N(x)| + |b_{M-1}(x)| + |b_M(x)|) \tag{6}$$

Переход (5)  $\to$  (6): в сумме все разности одного знака  $\Rightarrow$  "телескопическая"и равна  $\pm (b_M-b_N)$   $\forall \varepsilon>0 \ \exists K: \ \forall l>K \ \forall x\in X \ |b_l(x)|<\frac{\varepsilon}{4C_a}$ 

Значит при M,N>K  $\forall x\in X$   $\left|\sum_{k=M}^{N}a_k(x)b_k(x)\right|<\varepsilon$  — это критерий Больциано-Коши равномерной сходимости ряда

 $\Pi$ ример.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} \quad x \in \mathbb{R} \tag{7}$$

1. f(x) — непрерывная функция на  $\mathbb{R}$  ?

Теорема Стокса-Зайдля

$$\left|\frac{\sin nx}{n^2}\right| \le \frac{1}{n^2} \quad \sum \frac{1}{n^2}$$

По признаку Вейерштрасса ряд равномерно сходится на  $\mathbb{R}\Rightarrow f$  — непрерывна на  $\mathbb{R}$ 

2. f — дифференцируема?

### 3 Степенные ряды

$$B(r_0,r)\subset\mathbb C$$
 - открытый круг  $\sum_{n=1}^{+\infty}a_n(z-z_0)^n$ , где  $z_0\in\mathbb C,\ a_n\in\mathbb C,\ z$  — переменная  $\in\mathbb C$ 

**Теорема 3.1** (о круге сходимости степенного ряды).  $\sum a_n(z-z_0)^n$  - степенной ряд Тогда выполняется ровно один из трех случаев:

- 1. Ряд сходится при всех  $z \in \mathbb{C}$
- 2. Ряд сходится только при  $z=z_0$
- 3.  $\exists R \in (0, +\infty)$ : при:
  - $|z-z_0| < R$  ряд сходится
  - $|z z_0| > R$  ряд расходится

Доказательство. Признак Коши:  $\sum a_n - \lim \sqrt[n]{|a_n|} = r$ 

- r < 1 ряд сходится
- r > 1 ряд расходится

$$\sum a_n(z-z_0)^n$$

$$\lim \sqrt[n]{|a_n| \cdot |z - z_0|^n} = \lim \sqrt[n]{|a_n|} \cdot |z - z_0| = |z - z_0| \cdot \lim \sqrt[n]{|a_n|}$$
 (8)

- $\lim \sqrt[n]{|a_n|} = 0$  тогда r = 0 и есть (абсолютная) сходимость при всех z
- $\lim \sqrt[n]{|a_n|} = +\infty$  тогда  $r = +\infty$  при  $z \neq z_0$  А при  $z = z_0$  ряд очевидно сходится
- $\lim \sqrt[n]{|a_n|} \neq 0, +\infty$   $|z z_0| \cdot \lim \sqrt[n]{|a_n|} < 1 \Leftrightarrow |z z_0| < \frac{1}{\lim \sqrt[n]{|a_n|}} \xrightarrow{\text{def}} R$ 
  - 1.  $|z z_0| < R$  ряд сходится абсолютно
  - 2.  $|z-z_0|>R$  ряд расходится, т.к. слагаемые  $\not\to 0$

**Определение** (степенной ряд).  $z_0, a, z \in \mathbb{C}$   $\sum_{\text{степенной ряд}} a_n (z-z_0)^n$  число  $R = \frac{1}{\lim \sqrt[n]{|a_n|}}$  — называется формула Адамара

радиусом сходимости степенного ряда