最適輸送

竹田航太

2022年6月16日

目次

1	Notations	1
2	Formulations	1
2.1	Monge's Formulation	1
2.2	Kantorovich's Formulation	2
3	Existence of Optimal Transport	3

1 Notations

・決め事

- 位相空間 X 上の確率測度全体を P(X) と書く.
- 可分な完備距離空間をポーランド空間 (Polish space) と呼ぶ.
- 関数 $f:X\to\mathbb{R}$ が $x_0\in X$ で下半連続であるとは $\liminf_{x\to x_0}f(x)\geq f(x_0)$ が成り立つこと.

2 Formulations

最適輸送問題 (Optimal Transport Problem) を定式化は Monge の定式化と Kantorovich の 定式化の 2 つある. 2 つの位相空間 X,Y とその上の確率測度 $\mu \in P(X)$ と $\nu \in P(Y)$ を考える.

2.1 Monge's Formulation

測度 μ から ν へ質量を輸送するときの Lagrange 的な枠組みである. コスト関数 $c: X \times Y \to [0,\infty)$ を最小化する輸送を探す.

Definition 2.1. $map\ T: X \to Y$ が $\mu \in P(X)$ から $\nu \in P(Y)$ への $transport\ map\$ であるとは以下が成り立つこと.

$$\nu(B) = \mu(T^{-1}(B)), \quad \forall B : \nu - \overline{\eta}.$$
(2.1)

(2.1) が成り立つことを単に $\nu = T_{\#}\mu$ と書く.

任意の mu, ν に対して、Transport map がいつでも存在するとは限らない. 以下の場合は transport map が存在する.

- (1) $n \in \mathbb{N}, \ \mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}, \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}.$
- (2) $d\mu(x) = f(x)dx, d\nu(y) = g(y)dx.$

Definition 2.2 (Monge's Optimal Transport Problem). $\mu \in P(X)$, $\nu \in P(Y)$ に対して

minimize
$$\mathbb{M}(T) = \int_X c(x, T(x)) d\mu(x)$$

over μ -measurable $T: X \to Y$ with $\nu = T_{\#}\mu$.

2.2 Kantorovich's Formulation

Monge の定式化は "mass split"がある輸送を許さない。例えば、transport map が存在しない次のような例の場合には問題を定式化できない。 $\mu=\delta_x, \nu=\frac{1}{2}\delta_{y_1}+\frac{1}{2}\delta_{y_2}$ s.t. $y_1\neq y_2$. Kantorovich の定式化は "mass split"を許した輸送を考えることができる。

 $d\pi(x,y)$ が x から y へ輸送される質量を表すような同時分布 $\pi \in P(X \times Y)$ を考える. 次の制約がつく.

$$\pi(A \times Y) = \mu(A), \quad \pi(X \times B) = \nu(B), \quad \forall A \subset X, \forall B \subset Y :$$
 可測.

これを満たす $P(X \times Y)$ の部分集合を $\Pi(\mu \times \nu)$ と書き transport plans と呼ぶ. 自明な plan を考えれば $\mu \otimes \nu \in \Pi(\mu \times \nu)$ となるので $\Pi(\mu \times \nu) \neq \emptyset$.

Definition 2.3 (Kantorovich's Optimal Transport Problem). For given $\mu \in P(X)$, $\nu \in P(Y)$,

minimize
$$\mathbb{K}(\pi) = \int_{X \times Y} c(x, y) d\pi(x, y)$$

over $\pi \in \Pi(\mu, \nu)$.

3 Existence of Optimal Transport

Proposition 3.1 (Proposition 1.5 in [1]). X,Y をポーランド空間とする. $\mu \in P(X), \nu \in P(Y), c: X \times Y \to [0,\infty)$ は下半連続とする. このとき \mathbb{K} の最小点 $\pi^{\dagger} \in \Pi(\mu,\nu)$ が存在する.

A sketch of proof. まず、 $\Pi(\mu,\nu)$ が弱点列コンパクトであることを示す. μ,ν の内部正則性から $\Pi(\mu,\nu)$ が緊密 (tight) であることがわかり、緊密性と Prokhorov の定理から $\Pi(\mu,\nu)$ の閉包が弱点列コンパクトであることが示される. $\Pi(\mu,\nu)$ が(弱位相で)閉であることを示せば $\Pi(\mu,\nu)$ が弱点列コンパクトとなる.

弱コンパクト性から $\mathbb K$ の最小化点列が,ある π^\dagger に弱収束する.コスト関数 c の下半連続性と Portmanteau の定理から π^\dagger は $\mathbb K$ の最小化点となる.

Theorem 3.2 (Theorem 4.2 in [1]). $X,Y \subset \mathbb{R}^n$ に対し、 $\mu \in P(X), \nu \in P(Y)$ とする. さらに、 μ と ν の 2次モーメントが有限とし、 μ は小さい集合上で値を持たないとする. コスト関数を $c(x,y) = \frac{1}{2}|x-y|^2$ とする. このとき、Kantorovich's Optimal Transport Problem の一意な解 $\pi \in \Pi(\mu,\nu)$ が存在し次のように表される.

$$d\pi^{\dagger}(x,y) = d\mu(x)\delta_{y=\nabla\varphi(x)}.$$

ただし、 φ は μ -a.e. で定義された凸関数. これは $\nu = \nabla \varphi_{\#} \mu$ を意味する.

Corollary 3.3. Theorem 3.2 の条件のもとで $\nabla \varphi$ は Monge's Optimal Transport Problem の一意な解.

参考文献

- [1] Matthew Thorpe. Introduction to optimal transport. 2017.
- [2] Timothy John Sullivan. *Introduction to uncertainty quantification*, volume 63. Springer, 2015.