

Centro Federal de Educação Tecnológica de Minas Gerais Campus Leopoldina

ENGENHARIA DE CONTROLE E AUTOMAÇÃO

RELATÓRIO DE ATIVIDADE PRÁTICA 02 Identificação de Sistemas e Discretização de Controladores PID

Lucas Daniel de Melo Borges Lucas Guimarães da Rocha

Prof. Murillo Ferreira dos Santos, D. Eng.

Leopoldina, MG 24 de fevereiro de 2021

Resumo

A partir de uma função de transferência, foi utilizado o método de identificação de *Smith* para fins de comparação e validação do método, Ademais, foram sintonizados controladores PID para esta função aproximada utilizando os métodos de sintonia de Ziegler-Nichols e Cohen-Coon. Por fim, os controladores sintonizados foram discretizados utilizando o método de discretização Trapezoidal para os períodos 0,1s e 0,001s para fins de comparação entre estes e os controladores contínuos.

1 Introdução

1.1 Método de identificação de Smith

O método de identificação de SMITH tem como objetivo extrair a G(s) que representa o comportamento do sistema de malha aberta através da análise de alguns parâmetros obtidos da curva de reação da planta conforme (1). Para que o método de identificação de Smith seja aplicado, a resposta do sistema em malha aberta para entrada degrau deve ser uma resposta monotônica.

$$G(s) = \frac{K}{\tau s + 1} e^{-Ls} \tag{1}$$

Onde τ , L e K são determinados por (2), (3) e (4) respectivamente.

$$\tau = 1.5(t_{63.2} - t_{28.3}) \tag{2}$$

$$L = 1.5(t_{28.3} - \frac{t_{63}}{3}) \tag{3}$$

$$K = \frac{\Delta_y}{\Delta_u} \tag{4}$$

Os valores de $t_{63.2}$ e $t_{28.3}$ são determinados conforme o exemplo da figura 1 que representa a saída do sistema de malha aberta para uma entrada degrau.

Figura 1: Método de SMITH

Conforme apresentado na figura 1 os valores de $t_{63.2}$ e $t_{28.3}$ são respectivos aos valores de saída do sistema em malha aberta para uma entrada degrau nos pontos que correspondem a 63.2% e 28.3% do valor de estabilização da resposta do sistema.

1.2 Sintonia de um controlador PID

Projetar a sintonia de um controlador PID consiste em definir os ganhos das partes proporcional (K_n) , integral (K_i) e derivativa (K_d) . Dois métodos para sintonia serão apresentados: Ziegler-Nichols e Cohen-Coon.

Onde K_i e K_d são definidos, respectivamente, pelas equações (5) e (6).

$$K_i = \frac{K_p}{T_i}$$

$$K_d = K_p T_d$$

$$(5)$$

$$K_d = K_p T_d (6)$$

Ambos os métodos, para sintonia PID, são apresentados na Tabela 1.

Tabela 1: Sintonias de Ziegler-Nichols e Cohen-Coon para controladores PID

	K_p	T_{i}	T_d
Ziegler-Nichols	$1.2*\frac{\tau}{L}$	2*L	0.5 * L
Cohen Coon	$\frac{\tau}{L*(\frac{4}{3}+\frac{R}{4})}$	$L * (\frac{32 + 6 * R}{13 + 8 * R})$	$\frac{4}{13 + 8 * R}$

Após realizada a sintonia do controlador, este é adicionado ao sistema através da equação (7).

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s \tag{7}$$

1.3 Método de Discretização de Tustin

Como um método de discretização o método de Tustin tem como objetivo transformar uma função de tempo contínuo para um sistema de tempo discreto utilizando uma aproximação baseada na série de Taylor. Logo, obtemos uma G(z) a partir de uma G(s)aplicando a 8 à variável s.

$$s = \frac{2}{T} \frac{(1 - z^{-1})}{(1 + z^{-1})} \tag{8}$$

1.4 Cálculo dos erros

Foi aplicado o cálculo dos seguintes erros para a resposta controlada pelos controladores PID contínuos sintonizados por ZN e CC: Absoluto, Absoluto Temporal, Quadrático e Quadrático Temporal, onde respectivamente são obtidos pelas equações (9), (10), (11) e (12).

$$\sum_{n=0}^{TF} |ref - Y(hT)| \tag{9}$$

$$\sum_{n=0}^{TF} |ref - Y(hT)| * hT$$

$$\tag{10}$$

$$\sum_{n=0}^{TF} |ref - Y(hT)|^2 \tag{11}$$

$$\sum_{n=0}^{TF} (|ref - Y(hT)| * hT)^2$$
 (12)

Os métodos de cálculo dos erros apresentados foram aplicados na resposta controlada com o objetivo de comparar quantativamente qual método de sintonia resultou em um controlador mais eficiente para a planta do estudo de caso.

2 Objetivo

Os objetivos gerais deste experimento podem ser divididos nos tópicos a seguir:

- Obtenção da função de transferência de um sistema de modelagem desconhecida utilizando o método de Smith supracitado a partir da resposta do sistema em malha aberta.
- Projeto da sintonia de um controlador PID para o sistema utilizando os métodos de Ziegler-Nichols e Cohen-Coon para comparação.
- Discretização de ambos os controladores sintonizados para dois valores de tempo de amostragem diferentes para comparação.

3 Desenvolvimento

3.1 Identificação do sistema

A priori, foi utilizado o método de Smith aplicado na curva de reação da planta que é obtida através do diagrama representado na figura 2. Obtendo a G(s) de primeiro grau aproximada que representa o comportamento do sistema de malha aberta respectivo a G(s) definida em (13).

Figura 2: Diagrama de blocos para obtenção da curva de reação da planta utilizando a G(s) real

$$G(s) = \frac{80}{s^2 + 30s + 100} \tag{13}$$

Utilizando as equações (2), (3) e (4), foram obtidos os valores $\tau = 0.8850$, L = -0.1270e K=0.6664 respectivamente. Dessa forma, a G(s) obtida através do método de Smith para o sistema definido em (13) é apresentada em (14).

$$G(s) = \frac{0.6664}{0.8835s + 1}e^{-0.1265} \tag{14}$$

3.2 Sintonia dos controladores PID

Utilizando as equações apresentadas na Tabela 1 respectivas aos métodos de sintonia e a equação (7), foram calculadas as constantes K_p , K_i e K_d para que fossem definidas as funções de transferência que representam os controladores PID contínuos calculados a partir dos métodos de Ziegler-Nichols (15) e de Cohen-Coon (16).

$$G_c(s) = 8.4478 + \frac{33.6566}{s} + 0.5301s$$
 (15)
 $G_c(s) = 5.1429 + \frac{17.6335}{s} + 1.4552s$ (16)

$$G_c(s) = 5.1429 + \frac{17.6335}{s} + 1.4552s$$
 (16)

3.3 Discretização dos controladores PID

Após definidas as funções de transferência dos controladores PID contínuos de (15) e (16), foi aplicado, em ambas, o método de discretização de Tustin (Trapezoidal) para duas frequências de amostragem diferentes, onde foram obtidas (17) e (18) utilizando o método de Ziegler-Nichols para T=0.1s e T=0.001s respectivamente, e (19) e (20) utilizando o método de Cohen-Coon para T=0.1s e T=0.001s respectivamente.

$$G_c(z) = \frac{10.4z^2 - 7.295z + 0.2651}{z^2 - z}$$

$$G_c(z) = \frac{8.989z^2 - 17.78z + 8.789}{z^2 - 1.98z + 0.9802}$$

$$G_c(z) = \frac{6.752z^2 - 5.716z + 0.7276}{z^2 - z}$$

$$G_c(z) = \frac{6.593z^2 - 13.07z + 6.473}{z^2 - 1.98z + 0.9802}$$

$$(19)$$

$$G_c(z) = \frac{8.989z^2 - 17.78z + 8.789}{z^2 - 1.98z + 0.9802}$$
(18)

$$G_c(z) = \frac{6.752z^2 - 5.716z + 0.7276}{z^2 - z} \tag{19}$$

$$G_c(z) = \frac{6.593z^2 - 13.07z + 6.473}{z^2 - 1.98z + 0.9802}$$
 (20)

Resultados e discussões 4

Os resultados apresentados nesta seção foram obtidos utilizando o software Matlab em conjunto com o Simulink.

4.1 Sistema real versus sistema aproximado pelo método de Smith

As respostas em malha fechada das funções de transferência original definida em (13) e aproximada (14) são apresentadas na figura 3. Para obtenção da resposta ao degrau unitário aplicado a G(s) Real e aplicado a G(s) aproximada pelo método de Smith foram utilizados os diagramas de blocos representados nas figuras 2 e 4 respectivamente.

Figura 3: Respostas em malha fechada das funções de transferência original e aproximada

Figura 4: Diagrama de blocos para obtenção da curva de reação da planta utilizando a G(s) aproximada para fins de comparação com a curva de reação obtida com a G(s) real

Observando ambas as respostas, conluí-se que a aproximação da função de transferência pelo método de *Smith* é satisfatória por se apresentar de maneira similar à original.

4.2 Comparação entre os métodos de sintonia para um controlador PID contínuo

As respostas em malha fechada obtidas após a inserção de um controlador PID contínuo foram obtidas através do diagrama de blocos representado na figura 5 e são apresentadas na figura 6, comparando os dois métodos de sintonia utilizados.

Figura 5: Diagrama de bloco do sistema em malha fechada com controlador PID contínuo

Figura 6: Resposta do sistema em malha fechada com controlador PID contínuo comparando ambos os métodos de sintonia

Ambos os métodos de sintonia foram capazes de controlar o sistema e fazê-lo seguir a referência (igual a 1). É importante salientar que, para esta aplicação, o método de Cohen-Coon apresentou uma resposta mais satisfatória do que o método de Ziegler-Nichols, tendo em vista que seu valor sobressinal e seu tempo de assentamento foram menores.

4.3 Comparação quantitativa entre os métodos de sintonia para um controlador PID contínuo através do cálculo dos erros

Utilizando as equações apresentadas em (9), (10), (11) e (12), foram calculados os respectivos erros para a resposta controlada pelo PID contínuo sintonizado pelos métodos Ziegler-Nichols e Cohen-Coon. A figura 7 apresenta os resultados do erro absoluto, erro absoluto ponderado pelo tempo, erro quadrático e erro quadrático ponderado pelo tempo.

Figura 7: Erros medidos na resposta controlada pelos controladores PID contínuos sintonizados por ZN e CC

Como é possível observar, os erros apresentados pelo método de Cohen-Coon foram menores do que os apresentados pelo método de Ziegler-Nichols, reafirmando a resposta mais satisfatória obtida através do primeiro.

4.4 Comparação entre os métodos de sintonia para um controlador PID discreto

As respostas em malha fechada obtidas após a discretização dos controladores PID apresentados na seção 4.2 foram implementadas através do diagrama de blocos representado na figura 8 para T=0.1s e T=0.001s e as respostas controladas pelos controladores discretizados com os respectivos períodos citados são apresentadas nas figuras 9 e 10 respectivamente.

Figura 8: Diagrama de bloco do sistema em malha fechada com controlador PID discreto para T=0.1s e T=0.001s. (OBS: É necessário verificar se o passo de simulação é menor que o período utilizado na discretização.)

Figura 9: Resposta do sistema em malha fechada com controlador PID discreto para T=0.1s comparando ambos os métodos de sintonia

Como podemos observar na figura 9 o controlador PID discreto com T=0,1s não foi capaz de controlar o sistema com nenhum dos métodos de sintonia. A resposta obtida

pelo sistema com este controlador é, no mínimo, inusitada, tendo em vista que por ambos os métodos de sintonia a resposta foi igual a zero durante todo tempo amostrado para o método de Cohen-Coon e para o método de Ziegler-Nichols até um pouco mais de 6 seg e posteriormente oscilando q quase -2 e subindo expoencialmente (para uma referência igual a 1).

Figura 10: Resposta do sistema em malha fechada com controlador PID discreto para T=0.001s comparando ambos os métodos de sintonia

Assim como ocorreu para o controlador PID contínuo, o método de Cohen-Coon apresentou resultado mais satisfatório do que o método de Ziegler-Nichols, tendo em vista que o segundo não foi capaz nem mesmo de controlar o sistema, enquanto o primeiro foi capaz de estabilizar em menos de 1 segundo.