Support Vector Machines

Questions

- 1. Explain why minimizing the norm of the vector of weights maximizes the margin.
- 2. What do the constraints in the optimization problem represent?
- 3. What is the role of slack variables? What do they achieve?
- 4. What is the difference between a soft-margin and a hard-margin svm?
- 5. Given the dataset below, determine if a hard-margin SVM can separate the classes, and, if that is the case, identify the support vectors:

6. Same as the question before:

- 7. What options do you have with support vector machines if the dataset is not linearly separable?
- 8. What is the kernel trick and what does it achieve?
- 9. Why are kernels useful?
- 10. Consider the dataset: $\{\langle 0,0,-1\rangle,\langle 0,1,1\rangle,\langle 1,0,1\rangle\}$ where the last element of each vector is the class $t\in\{-1,1\}$. We want to use a linear (non-kernel) support vector machine

classifier to specify the decision boundary in the form of $y(x) = w^T x = w_0$. Let a_1 , a_2 , a_3 denote the Lagrange multipliers for the constraints on x_1 , x_2 , and x_3 respectively.

- 1. Plot the data points and derive the decision boundary by inspecting the data. What can be said about the Lagrange multipliers?
- 2. Write the Lagrangian, apply the optimality conditions, and express the vector \mathbf{w} in terms of the data points.