Esame di Logica

12 Dicembre 2024

Questo è un esame **a libro aperto**: gli studenti possono portare e usare liberamente libri, appunti, fogli stampati e così via, ma non possono usare dispositivi elettronici come tablet o cellulari (o comunicare).

1 Logica Sillogistica

- Scrivete una teoria in logica sillogistica che rappresenti le seguenti affermazioni:
 - Qualche gatto è un animale domestico;
 - Nessuna tigre è un animale domestico;
 - Tutti i barboncini sono animali domestici;
 - Nessun animale domestico è aggressivo;
 - Qualche gatto è aggressivo.
- Per ognuna di queste affermazioni, verificate se è una conseguenza della vostra teoria. Se lo è, scrivetene una dimostrazione nel sistema di deduzione visto a lezione (usando dimostrazioni dirette o indirette); se non lo è, descrivete un modello che soddisfa tutte le formule della vostra teoria ma non l'affermazione data.
 - 1. Nessun barboncino è aggressivo;
 - 2. Qualche tigre non è un barboncino;
 - 3. Tutte le tigri sono aggressive;
 - 4. Qualche gatto non è un barboncino.

SOLUZIONE:

- Siano $\mathbf{g} = \text{gatto}$, $\mathbf{d} = \text{animale domestico}$, $\mathbf{t} = \text{tigre}$, $\mathbf{b} = \text{barboncino}$, $\mathbf{a} = \text{aggressivo}$. Allora la teoria è
 - $-\mathbf{I}(g,d);$
 - $-\mathbf{E}(t,d);$

- $-\mathbf{A}(b,d);$
- $-\mathbf{E}(d,a);$
- $-\mathbf{I}(g,a).$
- Consideriamo le quattro affermazioni:
 - $-\mathbf{E}(b,a)$ segue dalla teoria per dimostrazione diretta:
 - (1) A(b,d) Ipotesi
 - $(2) \mid E(d,a) \quad \text{Ipotesi}$
 - (3) | E(b,a) PS2, da (2) e (1).
 - $\mathbf{O}(t,b)$ segue dalla teoria per la seguente dimostrazione indiretta:
 - (1) | A(b,d) Ipotesi
 - (2) E(t,d) Ipotesi
 - (3) A(t,b) Contraddizione di O(p,c)
 - (4) A(t,d) PS1, da (1) e (3)
 - (5) I(t,d) C2, da (4)

e I(t,d) e E(t,d) sono in contraddizione.

- $\mathbf{A}(t,a)$ non segue dalla teoria. Infatti, consideriamo il modello con dominio $\Delta=\{1,2,3,4\}$, dove $\iota(b)=\{1\}$, $\iota(d)=\{1,2\}$, $\iota(g)=\{2,3\}$, $\iota(a)=\{3\}$ e $\iota(t)=\{4\}$.
 - Allora
 - * $\mathbf{I}(g,d)$ è soddisfatta, perchè $\iota(g) \cap \iota(d) = \{2\} \neq \emptyset$;
 - * $\mathbf{E}(t,d)$ è soddisfatta, perchè $\iota(t) \cap \iota(d) = \emptyset$;
 - * $\mathbf{A}(b,d)$ è soddisfatta, perchè $\iota(b) \subseteq \iota(d)$;
 - * $\mathbf{E}(d, a)$ è soddisfatta, perchè $\iota(d) \cap \iota(a) = \emptyset$;
 - * $\mathbf{I}(g,a)$ è soddisfatta, perchè $\iota(g) \cap \iota(a) = \{3\} \neq \emptyset$;

ma $\mathbf{A}(t, a)$ non è soddisfatta, perchè $\iota(t) = \{4\} \not\subseteq \iota(a) = \{3\}.$

- $\mathbf{O}(g,b)$ segue dalla teoria per la seguente dimostrazione diretta:
 - $(1) \mid A(b,d)$ Ipotesi
 - $(2) \mid E(d,a) \quad \text{Ipotesi}$
 - (3) | I(g,a) Ipotesi
 - (4) $\mid E(b,a) \mid PS2, da(2) e(1) \mid$
 - (5) $\mid E(a,b) C1, da(4)$
 - (6) O(g,b) PS4. da (5) e (3).

2 Logica Proposizionale

- Scrivete una teoria di logica proposizionale che descriva il seguente scenario:
 - Non è vero che piove e nevica;
 - Se è freddo, piove o nevica;
 - Se non è bagnato, non piove.
- Usando una tabella di verità, trovate tutti gli assegnamenti di valori di verità che soddisfano la teoria;
- Per ognuna delle seguenti affermazioni, verificate se è una conseguenza della vostra teoria oppure no, usando le tavole di verità:
 - Se è freddo e non è bagnato, nevica.
 - Se è bagnato, piove.
- Verificate se la teoria ha "Se è freddo, è bagnato oppure nevica" come conseguenza logica oppure no usando il metodo dei tableau (potete chiudere un ramo non appena trovate due letterali in contraddizione, senza espandere gli altri).

SOLUZIONE:

 \bullet **P** = piove, **N** = nevica, **F** = è freddo, **B** = è bagnato. La teoria è

$$\neg (P \land N);$$

$$F \to (P \lor N);$$

$$\neg B \to \neg P.$$

• La tabella di verità è

P	N	F	B	$P \wedge N$	$\neg (P \wedge N)$	$P \vee N$	$F \to (P \vee N)$	$\neg B$	$\neg P$	$\neg B \rightarrow \neg P$
0	0	0	0	0	1	0	1	1	1	1
0	0	0	1	0	1	0	1	0	1	1
0	0	1	0	0	1	0	0	1	1	1
0	0	1	1	0	1	0	0	0	1	1
0	1	0	0	0	1	1	1	1	1	1
0	1	0	1	0	1	1	1	0	1	1
0	1	1	0	0	1	1	1	1	1	1
0	1	1	1	0	1	1	1	0	1	1
1	0	0	0	0	1	1	1	1	0	0
1	0	0	1	0	1	1	1	0	0	1
1	0	1	0	0	1	1	1	1	0	0
1	0	1	1	0	1	1	1	0	0	1
1	1	0	0	1	0	1	1	1	0	0
1	1	0	1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1	1	0	0
1	1	1	1	1	0	1	1	0	0	1

Quindi gli assegnamenti che soddisfano la teoria sono quelli che assegnano a P, N, F e B i valori (0,0,0,0), (0,0,0,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,1), e (1,0,1,1).

• Le affermazioni da verificare sono $(F \land \neg B) \to N$ e $B \to P$.

P	N	F	B	$F \wedge \neg B$	$(F \land \neg B) \to N$	$B \to P$
0	0	0	0	0	1	1
0	0	0	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	1	1	1
0	1	1	1	0	1	0
1	0	0	1	0	1	1
1	0	1	1	0	1	1

Quindi la prima è una conseguenza della teoria, ma la seconda non lo è.

• La formula $F \to (B \vee N)$ segue dalla teoria secondo il seguente tableau chiuso:

3 Logica dei Predicati

- Scrivete una teoria in logica dei predicati che rappresenti le seguenti affermazioni, usando i predicati unari F(x) ("x è una formica"), E(x) ("x è femmina"), R(x) ("x è una regina") e O(x) ("x è un'operaia"):
 - Tutte le formiche che sono femmine sono regine oppure operaie;
 - Tutte le formiche che sono regine o operaie sono femmine;
 - Nessuna formica è sia una operaia che una regina;
 - Esiste (almeno) una formica che è una regina;
 - Esiste (almeno) una formica che non è femmina.
- Esiste una struttura che soddisfa la teoria descritta sopra e in cui esiste solo una formica? Se no, spiegate perchè non può esistere; se sì, presentatela.
- Esiste una struttura che soddisfa la teoria descritta e in cui esistono esattamente tre formiche? Se no, spiegate perchè non può esistere; se sì, presentatela.

SOLUZIONE:

• La teoria è

```
- \forall x((F(x) \land E(x)) \rightarrow (R(x) \lor O(x)));
- \forall x((F(x) \land (R(x) \lor O(x))) \rightarrow E(x));
- \neg \exists x(F(x) \land O(x) \land R(x));
- \exists x(F(x) \land R(x));
- \exists x(F(x) \land \neg E(x)).
```

- Una tale struttura non può esistere. Infatti, la teoria dice che deve esistere una formica che è regina (e quindi femmina) e una formica che non è femmina, quindi devono esistere almeno due formiche.
- Esistono strutture che soddisfano la teoria e contengono esattamente tre formiche. Per esempio, consideriamo la struttura con dominio $\{1, 2, 3\}$ dove $I(F) = \{1, 2, 3\}$, $I(E) = \{1, 2\}$, $I(R) = \{1\}$, e $I(O) = \{2\}$.