ADT IndexedList I

- init(I)
 - descr: creates a new, empty list
 - pre: true
 - **post:** $l \in \mathcal{L}$, l is an empty list

ADT IndexedList II

- getElement(I, i)
 - descr: returns the element from a given position
 - **pre:** $l \in \mathcal{L}, i \in \mathcal{N}$, i is a valid position
 - post: getElement ← e, e ∈ TElem, e = the element from position i from I
 - throws: exception if i is not valid

ADT IndexedList III

- position(I, e)
 - descr: returns the position of an element
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$\textit{position} \leftarrow \textit{i} \in \mathcal{N}$$

$$\mathsf{i} = egin{cases} \mathsf{the first position of element e from I} & \mathsf{if } e \in I \\ -1 & \mathit{otherwise} \end{cases}$$

ADT IndexedList IV

- setElement(I, i, e)
 - descr: replaces an element from a position with another
 - **pre:** $l \in \mathcal{L}, i \in \mathcal{N}, e \in TElem, i$ is a valid position
 - post: I' ∈ L, the element from position i from I' is e, setElement ← el, el ∈ TElem, el is the element from position i from I (returns the previous value from the position)
 - throws: exception if i is not valid

ADT IndexedList V

- addToBeginning(I, e)
 - descr: adds a new element to the beginning of a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - **post:** $l' \in \mathcal{L}$, l' is the result after the element e was added at the beginning of l

ADT IndexedList VI

- addToEnd(I, e)
 - descr:adds a new element to the end of a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - **post:** $I' \in \mathcal{L}$, I' is the result after the element e was added at the end of I

ADT IndexedList VII

- addToPosition(I, i, e)
 - descr: inserts a new element at a given position (it is the same as addBeforePosition)
 - **pre:** $l \in \mathcal{L}, i \in \mathcal{N}, e \in TElem, i$ is a valid position (size +1 is valid for adding an element)
 - **post:** $l' \in \mathcal{L}$, l' is the result after the element e was added in l at the position i
 - throws: exception if i is not valid

ADT IndexedList VIII

- remove(I, i)
 - descr: removes an element from a given position from a list
 - **pre:** $l \in \mathcal{L}, i \in \mathcal{N}$, i is a valid position
 - post: remove ← e, e ∈ TElem, e is the element from position
 i from I, I' ∈ L, I' = I e.
 - throws: exception if i is not valid

ADT IndexedList IX

- remove(I, e)
 - descr: removes the first occurrence of a given element from a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$remove \leftarrow \begin{cases} true & \text{if } e \in I \text{ and it was removed} \\ false & otherwise \end{cases}$$

ADT IndexedList X

- search(I, e)
 - descr: searches for an element in the list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$search \leftarrow \begin{cases} true & \text{if } e \in I \\ false & otherwise \end{cases}$$

ADT IndexedList XI

- isEmpty(I)
 - descr: checks if a list is empty
 - pre: $I \in \mathcal{L}$
 - post:

$$isEmpty \leftarrow \begin{cases} true & \text{if } I = \emptyset \\ false & otherwise \end{cases}$$

ADT IndexedList XII

- size(I)
 - descr: returns the number of elements from a list
 - pre: $I \in \mathcal{L}$
 - **post:** *size* ← the number of elements from I

ADT IndexedList XIII

- destroy(I)
 - descr: destroys a list
 - pre: $I \in \mathcal{L}$
 - post: I was destroyed

ADT IndexedList XIV

- iterator(I, it)
 - descr: returns an iterator for a list
 - pre: $l \in \mathcal{L}$
 - **post**: $it \in \mathcal{I}$, it is an iterator over l, the current element from it is the first element from l, or, if l is empty, it is invalid