Unit 4

Sets

After random shuffling, no card will be on its original position.

Who has a higher chance to win?

- a) Alice
- b) Bob
- c) Equal probability

Sets 4-2

Outline of Unit 4

- 4.1 Basic Concepts
- 4.2 Set Operations
- 4.3 Algebraic Rules
- 4.4 Derangements

Unit 4.1

Basic Concepts

<u>Set</u>

- A set is a collection of objects.
- ☐ The cardinality of a set *A* is defined as the number of elements in the set.
- \square It is denoted by |A|.
 - \circ If |A| is finite, A is called a finite set.
 - Otherwise, *A* is called an infinite set.
- Example:
 - $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (roster notation)
 - $A = \{x \in \mathbb{N}: 1 \le x \le 10\}$ (set builder notation)
 - |A| = 10

Some Common Sets in Math

Set	Symbols
Natural Numbers*	$\mathbb{N} = \{1, 2, 3, \dots\}$
Whole Numbers	$\mathbb{N} \cup \{0\} \text{ or } \mathbb{Z}_{\geq 0}$
Integers	$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
Binary Numbers	$\mathbb{B} = \{0, 1\}$
Rational Numbers	\mathbb{Q}
Real Numbers	\mathbb{R}
Complex Numbers	\mathbb{C}

^{*}In some convention, 0 is included in the set of natural numbers.

The Empty Set

- A set is empty if it contains no elements at all.
- ☐ There is only one empty set.
 - If two sets are empty, each set is a subset of the other one, so they are the same set.
- \square We denote it by \emptyset .
- □ Remark:
 - \circ The empty set \emptyset is different from the set containing \emptyset .
 - i.e., $\emptyset \neq \{\emptyset\}$.

Subset

- □ *A* is a subset of *B*, written as $A \subseteq B$, if every member of *A* is also a member of *B*. *B* is then said to be a superset of *A*.
 - A is a subset of itself, and also a superset of itself.
- A subset *A* of *B* is called a proper subset of *B* if *B* contains some elements that are not in *A*.
 - \circ i.e., *A* is not the same as *B*.
 - Example: The set of all women is a proper subset of the set of all human beings.
- ☐ The empty set is a subset of every other set.

Number of Subsets

- How many subsets does a set have?
- □ Example: $A = \{1, 2\}$
 - \bigcirc There are four subsets of A: \emptyset , $\{1\}$, $\{2\}$, $\{1, 2\}$.
- \square Example: $A = \{1, 2, 3\}$
 - O How many subsets are there?
 - a) 3
 - b) 4
 - c) 6
 - d) 8
 - e) 9

Number of Subsets

Theorem: Let *A* be a finite set and n = |A|. The number of subsets of *A* is 2^n .

Proof:

Let
$$A = \{a_1, a_2, a_3, ..., a_n\}.$$

To each subset *B* of *A*, we can associate a binary sequence of length *n*.

- For example, if n = 4 and $B = \{a_1, a_4\}$, then the binary sequence is 1001.
- \circ For example, 0100 corresponds to $\{a_2\}$.

The number of subsets equals the number of possible binary sequence, which is 2^n .

Q.E.D.

Power Set

- \square Given a set A, the set of all its subsets, denoted by $\mathcal{P}(A)$, is called the power set of A.
- \square By the previous result, $|\mathcal{P}(A)| = 2^{|A|}$.
- Example:
 - Suppose $A = \{1, 2, 3\}$.
 - List all subsets of *A*:

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.

Hence,

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Unit 4.2

Set Operations

Relationship between Sets

- □ A universal set *U* is a set containing everything that we are considering.
- Venn diagram
 - *U* is represented by a rectangular box.
 - Subsets of *U* (e. g. *A* and *B*) are represented by circles (more precisely, regions inside closed curves).
- *A* and *B* are disjoint if they have no elements in common.

B is a subset of *A*.

A and B are disjoint.

Three Basic Operations

- □ The union of A and B, denoted by $A \cup B$, is the set of all elements that belong to A or B, (or in both).
- □ The intersection of A and B, denoted by $A \cap B$, is the set of all elements that are in both A and B.
- □ The complement of A, denoted by A^c or \overline{A} , is the set of all elements in U that do not belong to A.

Algebraic Properties

1. Commutative Laws: For all sets A and B,

(a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 and

(b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$
.

3. Distributive Laws: For all sets A, B, and C,

next slide
$$\longrightarrow$$
 (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

A Distributive Law

Sets 4-16

Four-Variable Venn Diagram

☐ A possible way to draw it:

Set Difference

 \square A - B is defined as the set of all elements that are in A but not in B.

$$A - B = A \cap B^c$$

$$A - B$$

A - B is also denoted as $A \setminus B$.

Symmetric Difference

 \square $A \triangle B$ is the set of all elements "in A but not in B" or "in B but not in A".

$$A \triangle B = (A - B) \cup (B - A)$$

Venn diagram shows that

$$A \triangle B = (A \cup B) - (A \cap B)$$

 $A \Delta B$

Cartesian Product

□ The Cartesian product $A \times B$ of the sets A and B is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B \triangleq \{(a,b) | a \in A \land b \in B\}.$$

■ Example:

Ordered pair:

• The order is important: $(a, b) \neq (b, a)$

What is $|A \times B|$?

Cartesian Product

- □ The Cartesian product can be generalized to more than two sets, e.g., $A \times B \times C$.
- ☐ If the same set is involved, we write

$$\underbrace{A \times A \times \cdots \times A}_{n} = A^{n}$$

 \square For example, the x-y plane is \mathbb{R}^2 .

Partition

- A collection of non-empty sets $\{A_1, A_2, ..., A_n\}$ is a partition of a set A iff
- i. $A = A_1 \cup A_2 \cup \cdots \cup A_n$, and
- ii. $A_1, A_2, ..., A_n$ are pairwise disjoint, i.e., $A_i \cap A_i = \emptyset$ for all i, j = 1, 2, ..., n and $i \neq j$.

Examples

- \Box Let $A = \{1, 2, 3, 4, 5, 6\}.$
- \square {{1, 2}, {3}, {4, 5, 6}} is a partition of *A*.

- Other partitions:
 - {{1}, {2}, {3}, {4}, {5}, {6}}
 - {{1, 2, 3}, {4}, {5, 6}} :
 - how many are there?

Partition of a set is itself a set.

Bell Numbers

- \square Consider the set $S_n = \{1, 2, ..., n\}$.
- □ The number of different ways to partition S_n is called the Bell number, denoted by B_n .
 - \circ S_1 : {{1}} is the only partition, so $B_1 = 1$.
 - \circ S_2 : {{1}, {2}} and {{1, 2}} are the partitions, so $B_2 = 2$.
 - S_3 : {{1}, {2}, {3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}}, {{1, 2}}, and {{1, 2, 3}} are the partitions, so $B_3 = 5$.
- \square How about S_0 ?
 - \circ S_0 is the empty set \emptyset . Its only partition is \emptyset , *not* $\{\emptyset\}$.
 - \circ Hence, $B_0 = 1$.

Recurrence Relation

☐ The Bell numbers satisfy the following recurrence relation:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k \qquad \text{(proof omitted)}$$

Example:

$$OB_3 = {2 \choose 0} B_0 + {2 \choose 1} B_1 + {2 \choose 2} B_2 = 1 + 2 \times 1 + 2 = 5.$$

Unit 4.3

Algebraic Rules

How to Prove Set Equalities?

Three methods to prove that A = B.

1) To show that each set is a subset of the other, i.e., $A \subseteq B$ and $B \subseteq A$. (omitted)

2) Use the algebraic rules (stated in the next few slides) to construct an algebraic proof.

3) Use membership table (similar to truth table, omitted)

Algebraic Rules

■ We have a list of set identities as follows:

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 and

(b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$
.

Algebraic Rules

3. Distributive Laws: For all sets, A, B, and C,

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 and

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

4. *Identity Laws:* For all sets A,

(a)
$$A \cup \emptyset = A$$
 and (b) $A \cap U = A$.

5. Complement Laws:

(a)
$$A \cup A^c = U$$
 and (b) $A \cap A^c = \emptyset$.

6. Double Complement Law: For all sets A,

$$(A^c)^c = A$$
.

7. Idempotent Laws: For all sets A,

(a)
$$A \cup A = A$$
 and (b) $A \cap A = A$.

Algebraic Rules

8. *Universal Bound Laws:* For all sets A,

(a)
$$A \cup U = U$$
 and (b) $A \cap \emptyset = \emptyset$.

9. De Morgan's Laws: For all sets A and B, \longrightarrow Next slide

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a)
$$A \cup (A \cap B) = A$$
 and (b) $A \cap (A \cup B) = A$.

11. Complements of U and \emptyset :

(a)
$$U^c = \emptyset$$
 and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

$$A - B = A \cap B^c$$
.

De Morgan's Law: $(A \cap B)^c = A^c \cup B^c$

Example

Construct an algebraic proof that for all sets A and B, $(A \cup B) - C = (A - C) \cup (B - C)$.

$$(A \cup B) - C = (A \cup B) \cap C^c$$
 by the set difference law $= C^c \cap (A \cup B)$ by the commutative law for \cap $= (C^c \cap A) \cup (C^c \cap B)$ by the distributive law $= (A \cap C^c) \cup (B \cap C^c)$ by the commutative law for \cap $= (A - C) \cup (B - C)$ by the set difference law.

Example

Construct an algebraic proof that for all sets A and B, $A - (A \cap B) = A - B$.

$$A - (A \cap B) = A \cap (A \cap B)^c$$
 by the set difference law
$$= A \cap (A^c \cup B^c)$$
 by De Morgan's laws
$$= (A \cap A^c) \cup (A \cap B^c)$$
 by the distributive law
$$= \emptyset \cup (A \cap B^c)$$
 by the complement law
$$= (A \cap B^c) \cup \emptyset$$
 by the commutative law for \cup by the identity law for \cup by the set difference law.

Example

Give a counter-example to disprove that for all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

How to find a counter-example?

Example (cont'd)

Counterexample 1: Let $A = \{1, 2, 4, 5\}$, $B = \{2, 3, 5, 6\}$, and $C = \{4, 5, 6, 7\}$. Then

$$A - B = \{1, 4\}, B - C = \{2, 3\}, \text{ and } A - C = \{1, 2\}.$$

Hence

$$(A-B) \cup (B-C) = \{1, 4\} \cup \{2, 3\} = \{1, 2, 3, 4\},$$
 whereas $A-C = \{1, 2\}.$

Since $\{1, 2, 3, 4\} \neq \{1, 2\}$, we have that $(A - B) \cup (B - C) \neq A - C$.

Example (cont'd)

- □ From the Venn diagram, it can be seen that the statement can be disproved if *B* contains an element that is not in *A* or in *C*.
- ☐ The following counterexample is simpler:

Counterexample 2: Let
$$A = \emptyset$$
, $B = \{3\}$, and $C = \emptyset$. Then $A - B = \emptyset$, $B - C = \{3\}$, and $A - C = \emptyset$.

Hence
$$(A-B) \cup (B-C) = \emptyset \cup \{3\} = \{3\}$$
, whereas $A-C = \emptyset$.

Since $\{3\} \neq \emptyset$, we have that $(A - B) \cup (B - C) \neq A - C$.

Duality Principle

- The dual of an expression is obtained by interchanging ∪ and ∩, and interchanging *U* and Ø.
 - \circ The dual of $A \cup (A \cap B)$ is $A \cap (A \cup B)$.
 - \bigcirc The dual of $U \cup \emptyset$ is $U \cap \emptyset$.
- ☐ The duality principle says that a set identity remains valid if the duals of both sides of the identity is taken.
 - \bigcirc De Morgan: $(A \cap B)^c = A^c \cup B^c$
 - \bigcirc Its Dual: $(A \cup B)^c = A^c \cap B^c$

Why is Duality Principle True?

- An algebraic proof for a set identity is simply a sequence of applying those basic rules.
- □ Duality holds for the basic algebraic rules, so we can apply duality to every step.

Unit 4.4

Derangements

Example of 3 Cards

- \square There are 3! = 6 permutations of these cards.
- 1) A 2 3
- 2) A 3 2
- 3) 2 A 3
- 4) 23A
- 5) 3 A 2
- 6) 3 2 A

Inclusion-Exclusion Principle

□ For finite sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$

$$|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

Inclusion-Exclusion Principle

 \square The general form for n sets is

$$egin{aligned} \left|igcup_{i=1}^n A_i
ight| &= \sum_{i=1}^n |A_i| - \sum_{1\leqslant i < j \leqslant n} |A_i \cap A_j| \ &+ \sum_{1\leqslant i < j < k \leqslant n} |A_i \cap A_j \cap A_k| \ &- \cdots + (-1)^{n-1} \left|A_1 \cap \cdots \cap A_n
ight|. \end{aligned}$$

Number of Derangements

- \square Let there be n cards.
- Let A_i be the set of all permutations such that the i-th position is preserved.
 - \bigcirc A_1 contains permutations of the form 1_{----}
 - \bigcirc A_2 contains permutations of the form 2_{---}
- $\square A_1 \cup A_2 \cup \cdots \cup A_n$ is the set of all permutations that have at least one position preserved.
- No. of derangements

$$! n = n! - |A_1 \cup A_2 \cup \cdots \cup A_n|.$$

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \sum_{1 \leq i < j < k \leq$$

$$! n = n! - |A_1 \cup A_2 \cup \dots \cup A_n|$$

 $! n = n! - \left(n! - \frac{n!}{2!} + \frac{n!}{3!} - \dots + (-1)^{n-1}\right)$

$$\frac{!\,n}{n!} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \to e^{-1} \approx 0.37$$

When n = 10, the derangement probability is very close to 0.37.

Alice has a higher chance (0.63) to win.

Recommended Reading

□ Chapter 6, S. S. Epp, *Discrete Mathematics with Applications*, 4th

ed., Brooks Cole, 2010.

■ Sections 2.1 and 2.2, K. H. Rosen, *Discrete Mathematics and its Applications*, 7th ed., McGraw-Hill Education, 2011.