Principle Component Analysis

Linkon Chowdhury Dept. of Computer Science & Engineering, CUET

Outline

- Introduction
- Objective
- Coordinate System
- PCA Visualization
- Steps of Principle Component Analysis
- Variance & Covariance
- Eigenvector & Eigenvalue
- Conclusion

Introduction

PCA (Principle Component Analysis) is defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that the greatest variance comes to lie on the first coordinate, the second greatest variance on the second coordinate and so on.

Objective

 Principal component analysis (PCA) is a way to reduce data dimensionality

PCA projects high dimensional data to a lower dimension

• PCA projects the data in the least square sense—it captures big (principal) variability in the data and ignores small variability

Philosophy of PCA

Introduced by Pearson (1901) and Hotelling
 (1933) to describe the variation in a set of
 multivariate data in terms of a set of uncorrelated variables

- We typically have a data matrix of n observations on p correlated variables $x_1, x_2, ... x_p$
- PCA looks for a transformation of the x_i into p new variables y_i that are uncorrelated

Data set

case	ht (x ₁)	$wt(x_2)$	age(x ₃)	sbp(x ₄)	heart rate (x ₅)
1	175	1225	25	117	56
2	156	1050	31	122	63
n	202	1350	58	154	67

Principal Component Analysis

• Each Coordinate in Principle Component Analysis is called Principle Component.

$$C_i = b_{i1}(x_1) + b_{i2}(x_2) + ... + b_{in}(x_n)$$

where, C_i is the ith principle component, b_{ij} is the regression coefficient for observed variable j for the principle component i and x_i are the variables/dimensions.

Principal Component Analysis[cont..]

From k original variables: $x_1, x_2, ..., x_k$: Produce k new variables: $y_1, y_2, ..., y_k$:

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1k}x_{k}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2k}x_{k}$$

$$\dots$$

$$y_{k} = a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kk}x_{k}$$

Principal Component Analysis[cont..]

From k original variables: $x_1, x_2, ..., x_k$: Produce k new variables: $y_1, y_2, ..., y_k$:

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1k}x_{k}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2k}x_{k}$$

$$\dots$$

$$y_{k} = a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kk}x_{k}$$

Principal Component Analysis[cont..]

From k original variables: $x_1, x_2, ..., x_k$:

Produce k new variables: $y_1, y_2, ..., y_k$:

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k$$

• • •

$$y_{k} = a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kk}x_{k}$$

such that:

 y_k 's are uncorrelated (orthogonal)

 y_1 explains as much as possible of original variance in data set y_2 explains as much as possible of remaining variance etc.

PCA: Visually

Data points are represented in a rotated **orthogonal** coordinate system: the origin is the **mean** of the data points and the axes are provided by the **eigenvectors**

Steps to Find Principle Component

- 1. Adjust the dataset to zero mean dataset.
- 2. Find the Covariance Matrix M
- Calculate the normalized Eigenvectors and Eigenvalues of M
- 4. Sort the Eigenvectors according to Eigenvalues from highest to lowest

Eigenvector and Principle Component

- It turns out that the Eigenvectors of covariance matrix of the data set are the principle components of the data set.
- Eigenvector with the highest eigenvalue is first principle component and with the 2nd highest eigenvalue is the second principle component and so on

Example

AdjustedData Set=Original Data-Mean

X	Y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9
Urigina	L Data set

Uriginal Data set

X	Y
0.69	0.49
-1.31	-1.21
0.39	0.99
0.09	0.29
1.29	1.09
0.49	0.79
0.19	-0.31
-0.81	-0.81
-0.31	-0.31
-0.71	-1.01

Aujusieu Daia Set

Variance & Covariance

- The variance is a measure of how far a set of numbers is spread out.
- The equation of variance is

$$Var(x) = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(X_{i} - \overline{X}\right)}{n-1}$$

Variance & Covariance (cont..)

• Covariance measure how much to random variable change together.

Equation of Covariance:

$$Cov(x,y) = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right)}{n-1}$$

Covariance Matrix

A covariance matrix n*n matrix where each element can be defined as

$$M_{ij} = \operatorname{cov}(i, j)$$

A Covariance Matrix on 2-Dimensional Data Set:

$$M = \begin{bmatrix} Cov(x,x) & Cov(x,y) \\ Cov(y,x) & Cov(y,y) \end{bmatrix}$$

Covariance Matrix(Cont...)

$$M = \begin{bmatrix} 0.616555556 & 0.615444444 \\ 0.615444444 & 0.716555556 \end{bmatrix}$$

Eigenvector & Eigenvalue

• The **eigenvectors** of a square matrix A are the non-zero vectors x such that, after being multiplied by the matrix, remain parallel to the original vector.

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

Eigenvector & Eigenvalue(cont..)

• For each Eigenvector, the corresponding **Eigenvalue** is the factor by which the eigenvector is scaled when multiplied by the matrix.

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = 1. \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

Eigenvector & Eigenvalue(cont..)

• The vector x is an eigenvector of the matrix A with eigenvalue λ (lambda) if the following equation holds:

$$Ax = \lambda x$$

$$or, Ax - \lambda x = 0$$

$$or, (A - \lambda I)x = 0$$

Eigenvector & Eigenvalue(cont..)

Calculating **Eigenvalues**

$$|A - \lambda I| = 0$$

Calculating **Eigenvector**

$$(A - \lambda I)x = 0$$

Example...

Suppose A is a matrix

$$A = \begin{bmatrix} 1 & \mathbf{0} & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

Finding Eigenvalue using $|A - \lambda I| = 0$

$$\begin{bmatrix} 1-\lambda & \mathbf{0} & -1 \\ 1 & 2-\lambda & 1 \\ 2 & 2 & 3-\lambda \end{bmatrix} = \mathbf{O}$$

or,
$$(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$$

 $\Rightarrow \lambda = 1, 2, 3$

Example...

Finding Eigenvector using $(A - \lambda I)x = 0$ For $\lambda=1$

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

So,
$$-z=0$$
 Let, $x=k$ and $y=-k$ $x+y+z=0$

Eigenvector x_1 is

$$\begin{bmatrix} k \\ -k \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Example...

For
$$\lambda=2$$
,

Eigenvector
$$\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$

For
$$\lambda=3$$
,

Eigenvector $x_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$

So, Normalized Eigenvector
$$\mathbf{x} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & -1 \\ 0 & 2 & -2 \end{bmatrix}$$

PCA Presentation

PCA Scores

PCA Eigenvalues

Application

• Uses:

- Data Visualization
- Data Reduction
- Data Classification
- Trend Analysis
- Factor Analysis
- Noise Reduction

• Examples:

- How many unique "sub-sets" are in the sample?
- How are they similar / different?
- What are the underlying factors that influence the samples?
- Which time / temporal trends are (anti)correlated?
- Which measurements are needed to differentiate?
- How to best present what is "interesting"?
- Which "sub-set" does this new sample rightfully belong?

Thanks to All

