

Compendium of Current Total Ionizing Dose and Displacement Damage Results From NASA GSFC and NEPP

Alyson D. Topper¹, Michael J. Campola², Dakai Chen³, Megan C. Casey², Ka-Yen Yau⁴, Kenneth A. LaBel¹, Donna J. Cochran², & Martha V. O'Bryan²
ASRC Federal Space and Defense Inc. (AS&D, Inc.), Seabrook, MD 20706 2. NASA Goddard Space Flight Center (GSFC), Code 561, Greenbelt, MD 20771 3. Formerly of NASA GSFC 4. Formerly of AS&D, Inc.

Dose rate (mrad(Si))

Alyson D. Topper Michael J. Campola

Abstract: Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA spacecraft and program use.

output MOSFET. The

Introduction

One of the many elements considered in the development of NASA flight hardware is the hazard posed by exposure to the space radiation environment, which includes both ionizing and non-ionizing radiation. Flight electronics can be directly affected by ionizing radiation in the form of total ionizing dose (TID) and single event effects (SEE), while displacement damage (DD) is a non-ionizing energy loss component of the incoming ionizing radiation. These effects could range from minor degradation to complete device failure and therefore threaten the overall mission. By characterizing and evaluating these devices through various types of testing, failure modes are better understood and it becomes possible to determine the best method of mitigation to reduce the overall risk posed to mission success. TID testing was performed using MIL-STD-883, Test Method 1019 [1] unless otherwise noted as research. TID testing was performed using a high-energy gamma ray source.

We provide recent TID and DDD testing results for candidate electronics for various NASA missions and programs performed by the NASA Goddard Space Flight Center's Radiation Effects and Analysis Group (REAG). A companion REAG paper, detailing recent SEE test results, has also been submitted to 2017 IEEE NSREC Radiation Effects Data Workshop entitled: "Compendium of Current Single Event Effects Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program," by M. O'Bryan, et al. [2]. This paper is a summary of results. Please note that these test results can depend on operational conditions.

Proton Test Facilities

Facility	Proton Energy (MeV)					
University of California at Davis (UCD) Crocker Nuclear Laboratory (CNL)	63					
Texas A&M University Cyclotron (TAMU)	45					

Pls Coordinating Testing

Abbreviation	Principal Investigator (PI)					
DC	Dakai Chen					
KY	Ka-Yen Yau					
MCC	Megan C. Casey					
MJC	Michael J. Campola					

Acronyms

Test Results and Discussion

AD9364, Analog Devices, Transceiver

The AD9364 is a commercial-off-the-shelf high performance, highly integrated radio frequency (RF) Agile Transceiver designed for use in 3G and 4G base station applications. It is built on a commercial 65nm CMOS process. TID testing was carried out on four samples at an average dose rate of 100 rad(Si)/sec. The device under test (DUT) was configured as a part of the AD-FMCOMMS4-EBZ evaluation platform. The parts exhibited limited degradation in general. Most of the electrical parameters showed negligible change up to 50 krad(Si). The transmission power gain showed some degradation with increasing total dose. The gain degradation manifested visually through the image transmission tests. Fig. 1a shows a pristine image and an image transmitted with a gain of 62 dB after 50 krad(Si). The second test, shown in Fig. 1b, produced relatively fewer errors. In both cases, the transmitted image post-irradiation becomes pixelated due to the loss in power. Fig. 1c, third image, shows the pre-irradiation and post-irradiation image with a gain of 50 dB. The pixelation is reduced significantly. The pixilation issue disappears at higher transmission power.

Figure 1. Pre-irradiation (top) and post-irradiation (bottom) images transmitted after 50 krad(Si) for DUT2. The first and second images represent the first (a) and second (b) transmission, respectively. The third image transmitted (c) with gain of 50 dB after 50 krad(Si).

Figure 2. Dark current versus TID for the parts irradiated while biased at ±6.1 kV

Figure 3. Dark current as a function of proton fluence for the

SW15-802, Southwest Research Institute, Optocoupler

The SW15-802 is a ±6 kV optocoupler with 5 LED junctions. TID testing was carried out on eight parts to a total dose of 150 krad(Si). The four unbiased parts, with all pins grounded, were irradiated first at a dose rate of 50 rad/s. Only small degradation was observed up to 75 krad. After this dose step, the dark current parameter for one part increased ten times from the pre-irradiation value. These results are shown in Fig. 2. Only small increases in the CTR measurement were observed for LED current conditions of 10 mA and 20 mA. A large CTR increase was seen with an LED current of 0 mA, almost ten times the pre-radiation value. The remaining four parts were biased at ±6.1 kV on the anode and cathode and no LED bias current. All four parts were irradiated together up to 7.6 krad. At this point, the parts were drawing too much current for the 10kV Stanford Research Systems power supply. One part was then irradiated at a time and the dose rate was reduced from 50 rad/s to about 5 rad/s. SN056 showed almost a thirty times increase in the dark current parameter at 7.6 krad. The parts did experience some recovery from annealing, but most of the damage remained. The other three irradiated parts each had about 10x increase in dark current. Similar results were seen in the biased parts for CTR as in the unbiased parts. At an LED current of 0 mA the CTR increased by thirty-eight times, while the LED current conditions of 10 mA and 20 mA only saw about a 5% increase.

Displacement damage testing was also conducted on eight parts at TAMU. Four parts were irradiated with diode and LED grounded and the remaining four parts were irradiated with the diode grounded but the LED biased at 20 mA. There were two control devices. The parts were irradiated in 6x10¹⁰ p/cm² steps up to a total fluence of 3x10¹¹ p/cm². In both the biased and unbiased parts, dark current increased as the proton fluence increased. Fig. 3 shows test results. Similar results were also seen in the CTR parameter. CTR decreased as fluence increased when the LED current conditions were 10 mA and 20 mA but increased when the LED current was 0 mA.

HSSR-7111, Micropac, Optocoupler

current using pulsed measurements.

degradation shown in Fig. 4a details the biased parts as being more susceptible to proton exposure. At the final tested fluence step, the devices were permanently "on" independent of input current. This effect is attributed to the leakage path through the MOSFET stage of the device. This degradation remained present even as no bias was on the LED stage.

given pulse widths synchronized on the drain of the MOSFET and high side of the LED. The delay was more pronounced for the unbiased devices, and therefore is suspected to be degradation of the LED and/or material that the light propagates through.

Fig. 4b however shows the

delay in turn on time for

Manufacturer

Figure 4b. Turn-on voltage for a given pulse width.

Summary

We have presented data from recent TID tests on a variety of devices. It is the authors' recommendation that this data be used with caution due to many application/lot-specific issues. We also highly recommend that lot testing be performed on any suspect or commercial device. As in our past workshop compendia of GSFC test results, each DUT has a detailed test report available online describing in further detail, test method, TID conditions/parameters, test results, and graphs of data [3] and [4].

References

- Department of Defense "Test Method Standard Microcircuits," MIL-STD-883 Test Method 1019.8 Ionizing radiation (total dose) test procedure, September 30, 2010, http://www.dscc.dla.mil/Downloads/MilSpec/Docs/MIL-STD-883/std883_1000.pdf.
- Martha V. O'Bryan, et al., "Compendium of Current Single Event Effects Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program" submitted for publication in IEEE Radiation Effects Data Workshop, Jul. 2017.
 NASA/GSFC Radiation Effects and Analysis home page, http://radhome.gsfc.nasa.gov.
- 4. NASA Electronic Parts and Packaging (NEPP) Program home page, http://nepp.nasa.gov.

Acknowledgments

The authors acknowledge the sponsors of this effort: NASA Electronic Parts and Packaging Program (NEPP), and NASA Flight Projects. The authors thank members of the Radiation Effects and Analysis Group (REAG) who contributed to the test results presented here: Melanie D. Berg, Stephen K. Brown, Martin A. Carts, Stephen R. Cox, James D. Forney, Brenna Freeman, Yevgeniy Gerashchenko, Hak S. Kim, Anthony M. Phan, Christina M. Seidleck, Craig Stauffer, Ted Wilcox, Edward Wyrwas, and Mike Xapsos.

TID Test Results

Part Number	Manufacturer	LDC	Device Function	Technology	PI	Results	App. Spec (Y/N)	Dose rate (rad(Si))	Degradation Level (krad(Si))		
Operational Amplifiers											
AD654	Analog Devices	n/a; (16-036)	Operational Amplifier	Bipolar	MJC	All parameters within specification up to 40 krad(Si).	Υ	10	>40		
PA02	APEX	1417; (16-033)	Operational Amplifier	Bipolar	DC	All parameters within specification up to 30 krad(Si).	Y	10	>30		
LTC6268-10	Linear Technology	1433; (16-040)	Operational Amplifier	BiCMOS	DC	Minimal degradation up to 20 krad(Si).	Υ	10	>20		
Transistors											
2N2907AUB	Microsemi	n/a; (16-022)	PNP Transistor	Bipolar	KY	Gain degradation and failures at 45krad (Si).	Υ	10	45		
JANTXV2N2222AUB	Microsemi	1523: (16-021)	NPN Transistor	Bipolar	KY	Gain out of specification at 55 krad(Si).	Υ	10	45 < X < 55		
JANTXV2N5115	Solitron	1449A; (16-039)	JFET	Bipolar	MJC	Minimal degradation up to 30 krad(Si).	Υ	10	>30		
Memory											
MT29F128G08AJAAA WP-ITZ	Micron	201504; (16-017)	Flash	CMOS	MJC	Large number of block errors at 30 krad(Si), Three devices showed unrecoverable chip select errors at 40 krad(Si).	Z	0.7 – 10 rad(Si)/s	30		
MT29F128G08AJAAA WP-ITZ	Micron	201504BYGGFZR. 21; (16-018)	Flash	CMOS	МЈС	Two devices showed unrecoverable chip select errors.	N	0.7 - 10 rad(Si)/s	40		
MB85AS4MT	Fujitsu	1638; (16-041)	Memory – Nonvolatile	CMOS & ReRAM	DC	No memory corruption observed. Peripheral circuitry failure observed > 20 krad (Si).	N	50 rad(Si)/s	20 < X < 50		
Miscellaneous	Miscellaneous										
AD2S80	Analog Devices	1452; (15-088)	Resolver to Digital Converter	BiCMOS	DC	Biased parts show functional failure between 12 and 18 krad(Si) at low dose rate and between 18 and 30 krad(Si) at high dose rate.	Υ	50 rad(Si)/s and 10	12 <ff<18< td=""></ff<18<>		
UC1823A	Texas Instruments	1345; (15-062)	Pulse Width Modulator	BiCMOS	DC	All parameters within specification up to 30 krad(Si).	Υ	10	> 30		
SW15-802	Southwest Research Institute	1203, 1233; (16- 007)	Optocoupler	Hybrid	мсс	One unbiased part showed an increase in dark current at 75 krad(Si). Parameters increased with dose for biased parts.	Υ	5 – 50 rad(Si)/s	8 <x 75<="" <="" td=""></x>		
AD9364	Texas Instruments	n/a; (15-071)	Transceiver	CMOS	DC	Parameters within specification. Transmission power gain showed minimal degradation as dose increased.	Υ	100 rad(Si)/s	> 50		
AD9364	Texas Instruments	n/a; (15-071)	Transceiver	CMOS	DC		Y	100 rad(Si)/s	> 50		

ELDRS Test Results

Operational Amplifie	ers						•		
				Bipolar /		Small levels of dose rate sensitivity in the I _B degradation.		1	>20
RH1013MH	Linear Technology	0329A; (A214)	Operational Amplifier	(TO-5 Metal Can)	DC	Parameters within spec.	Y	0.5	40 < I _B ≤ 60
				Bipolar /		Small levels of dose rate sensitivity in the I _B degradation.		1	>20
RH1013MJ8	Linear Technology	0305A; (A214)	Operational Amplifier	(Ceramic DIP)	DC	Parameters within spec.	Y	0.5	40 < I _B ≤ 60
				,		Parameters remain within post-irradiation spec. Completed		1	>40
RH1078MH	Linear Technology	0741A; (A224)	Operational Amplifier	Bipolar / (TO-5)	DC	11/22/2016.	Y	0.5	>30
						Parameters remain within post-irradiation spec. Completed		1	>40
RH1078W	Linear Technology	0325A; (A224)	Operational Amplifier	Bipolar / (Flatpack)	DC	11/22/2016.	Y	0.5	>30
				D'antar /				10	>100
RHF43B	STMicroelectronics	30820A; (A589)	Operational Amplifier	Bipolar /	DC	Minimal dose rate sensitivity. Parameters within spec. Completed 12/16/16.	N	1	>50
				(Ceramic Flat-8)		12/10/10.		0.5	>50
Transistors									
				Bipolar /				10	>100
2N2222	Semicoa	1001; (1324)	NPN Transistor	(Engineering-Samples)	DC	Minimal degradation. All parameters within spec.	N	1	>40
				(Linginicering-Samples)		N. I.		0.5	>20
		()				No bias dependence.		1	30 < h _{FE} < 50
2N3811JS	Semicoa	1230; (13-063)	PNP Transistor	Bipolar	DC	Two devices exceeded spec. after 30 krad(Si). Completed 12/3/2016.	N	0.5	60 < h _{FE} ≤ 70
	Semicoa	1364; (13-017)	NPN Transistor					10	35 < h _{FE} < 45
2N2222AJSR				Bipolar	DC	LDR EF = 3.9 After 100 krad(Si). Completed in 2016.	N L	5	65 < h _{FE} < 90
_,,,,	C 0	, (10 011)				` ,		1	>40
								0.5	>30
2N2907	Semicoa	0932; (13-023)	PNP Transistor	Bipolar	DC	LDR EF = 1.78 after 100 krad(Si). Completed 12/3/2016.	N	10	40 < h _{FE} < 50
2N2369	Semicoa	J1934; (13-020)	NPN Transistor	Bipolar	DC	All parameters within spec. up to 100 krad(Si). Minimal LDR sensitivity. Completed 11/22/2016.	N	1	>100
						Strong bias dependence. Biased devices show enhanced		1	30 < h _{FE} < 40
2N3700JV	Semicoa	1109; (13-022)	NPN Transistor	Bipolar	DC	degradation more so than grounded devices. Completed 6/23/2016.	N	0.5	>20
						Dage rate effect act outdoort at this store. Completed C/03/004C		1	10 < h _{FE} < 20
2N3700UBJV	Semicoa	J1935; (13-021)	NPN Transistor	Bipolar	DC	Dose rate effect not evident at this stage. Completed 6/23/2016.	N	0.5	15 < h _{FE} < 30
2N5153	Semicoa	1013; (13-018)	PNP Transistor	Bipolar	DC	Minimal LDR EF. Completed 11/22/2016.	N	1	>50
2N5154	Semicoa	1023; (13-019)	NPN Transistor	Bipolar	DC	Minimal LDR EF. Completed 11/22/2016.	N	1	>50
Voltage Reference/V	oltage Regulators						<u> </u>		
LM136AH2.5QMLV	National Semiconductor	200746K019; (A164)	Voltage Reference	Bipolar / (3-LEAD TO-46)	DC	Exhibits no LDR enhancement.	N	0.5	>70
LM317LTTR	Texas Instruments	0608; (A113)	Positive Voltage Regulator	Bipolar	DC	Parameters within spec. Observed LDR sensitivity for parts irradiated at 0.5 and 1 mrad(Si)/s after 20 krad(Si).	N	0.5	>70
LT1009IDR	Texas Instruments	0606; (A327)	Internal Reference	Bipolar	DC	Parameters within spec. Parts exhibit minimal LDR enhancement.	N	0.5	>70
DUEL 4042ECV222	C4Mioro alo atropios	200204 (4250)	Valtaga Dagulatag	Bipolar /	DC	All parameters within spec. Minimal dose rate sensitivity.	N.	0.5	. 00
RHFL4913ESY332	StMicroelectronics	30828A; (A259)	Voltage Regulator	(TO-257)	DC	Completed 7/22/2016.	N	0.5	>60
RHFL4913KP332	StMicroelectronics	30814B; (A112)	Voltage Regulator	Bipolar / (Flat-16)	DC	All parameters within spec. Minimal dose rate sensitivity. Completed 7/22/2016.	N	0.5	>60
			LDO Positive Voltage	Bipolar /		One part irradiated at 1 mrad(Si) exceeded spec. at 40 krad(Si).			
TL750M05CKTRR	Texas Instruments	0707; (A112)	Regulator	(TO-263-3)	DC	V _{out} spec. for full temperature range. (Characterization performed in DC mode.) Minimal dose rate sensitivity.	N	0.5	>70
Miscellaneous									
LM139AWRQMLV	National Semiconductor	JM046X13; (A211)	Comparator	Bipolar	DC	Parameters within spec. Completed 11/22/2016.	Υ	0.5	l _b >75

Displacement Damage Test Results

Part Number	Manufacturer	LDC	Device Function	Technology	PI	Results	App. Spec (Y/N)	Proton Fluence (/cm²)
SW15-802	Southwest Research Institute	1203, 1233; (16- 007)	Optocoupler	Hybrid	мсс	Increase of dark current and decrease of CTR with increasing fluence.	Υ	6x10 ¹⁰ <i<sub>off<3X10¹¹</i<sub>
HSSR-7111	Micropac	1614; (16-035)	Optocoupler	Hybrid	MJC	Some degradation in turn on time, leakage prevents turn off.	Υ	$3x10^{11} < I_{off} < 4X10^{11}$
OPB848	Optek	n/a; (17-009)	Optocoupler	Hybrid	MJC	On-state collector current out of specification at 1.12x10 ¹¹ cm ⁻² .	Υ	1.12x10 ¹¹ cm ⁻²