

E3-5: Måleteknik

1 Introduktion og måling med multimetre

- Laboratorieintroduktion og sikkerhedsregler
- Måling med multimetre, målefejl
- o RMS-værdi
- Impedansmåling
- 2 Måling med oscilloskop
 - o Basale funktioner
 - Nøjagtighed, belastning
- 3 Måling med oscilloskop
 - Automatiske funktioner (kort)
 - o Delayed sweep (kort)
 - o Matematiske funktioner: +, -, *, Diff., Int., FFT
 - o XY-mode
 - o Måling af (kompleks) impedans
- 4 Transistorforstærker
 - o Målinger
 - Dokumentation
- 5 Måling med en NI-4461 baseret analysator
 - o Frekvensgang
 - o Forvrængning
 - o Impedans

100805/OKJ rev. 101026/OKJ

E3 ITC3 PDP5

E3

Mm. 4 & 5: Oversigt

Emner, mm4:

- Målejournaler
- Forskellige impedans-målemetoder
- (Kort snak om curve-tracer)
- Simulering af & måling på "universalforstærker"
 - o DC-arbejdspunkt
 - o Frekvensafhængig forstærkning
 - o Indgangsmodstand (1 kHz)
 - o Forvrængning (målinger i mm. 5)

Emner, mm5:

- Forvrængningsmåling
- Egenskaber for NI-PCI-4461-kortet
- Introduktion til
 - o "Swept Sine FRF VI"
 - o "Amplitude Swept THD VI"
- Simulering & måling af/på "universalforstærker"
 - o Frekvensafhængig forstærkning
 - o Indgangsimpedans
 - o Forvrængning
- Måling på den hemmelige impedans
- 4 hold á 2 grupper

Målejournaler:

- Formål
- Testobjekt
- (Teori for målingen)
- Måleopstilling
- Anvendt udstyr
- Måleprocedure
- Resultater
- Måleusikkerhed

Sammenligning af beregnede, simulerede og målte resultater

- Grafik
- Tabeller
- Forklaringer

E3-2010

Målejournalen skal dokumentere en måling

Når en fagmand M/K har læst målejournalen skal hyn være i stand til at gentage målingen

Navn & Dato

Målingens formål (kan være):

- At kontrollere den kvalitative funktion af testobjektet og finde evt. fejl
- At indstille justerbare komponenter
- At måle de specificerede parametre for måleobjektet
- At vurdere usikkerheden på de målte parametre

Formålet er ikke at "vise at målingerne giver samme resultat som beregnet" - målingen skal være objektiv!!

Eksempler

- At måle/indstille frekvensen af AMV'en
- At måle forstærkning som funktion af frekvensen for universalforstærkeren

Testobjekt:

- Her skal testobjektet defineres entydigt. Der kan evt. henvises til diagrammer i rapporten.
- Det er vigtigt, at alle målepunkter er veldefinerede.

Komponentlisten findes i tabel x.y.

Fig. 1. Universalforstærkeren

Målejournaler (repetition) – Teori for måligen

Teori for målingen:

Hvis de ønskede parametre fremkommer indirekte ud fra målingen, kan det være nødvendigt at beskrive teorien. Eksempel:

- "Gain" af en ukendt antenne, G_{II}, skal måles
- Sendereffekten, P_S, tilføres en antenne med kendt gain, G_k.
- Den modtagne effekt, P_M, måles
- Afstanden, R, måles

Bølgelængden,
$$\lambda$$
, beregnes ud fra frekvensen $P_{M}=P_{S}G_{K}G_{U}\left(\frac{\lambda}{4\pi R}\right)^{2}$ beregnes ud fra:

Måleopstilling:

Her skal vises en tegning over måleopstillingen, så man klart kan se, hvordan udstyret er tilsluttet. Eksempel:

Hvis der bruges flere forskellige tilslutninger under målingen, kan der vises flere forskellige opstillinger, eller der kan skrives en forklarende tekst.

Anvendt udstyr:

Alt væsentligt udstyr skal beskrives entydigt, f.eks.:

Instrument	AAU-nr.	Fabrikat, type m.v.
Oscilloscop	56812	Agilent 54642D
Prober, 2 stk.	-	Agilent 10073C
Spændingsforsyning	52787	B&O Power Supply SN16
Multimeter	08283	Fluke 37 Multimeter

Hvorfor "dobbelt angivelse" af udstyr?

- AAU-nummeret gælder for det enkelte eksemplar. Hvis det senere viser sig at være defekt, kan det måske forklare mærkelige resultater.
- Fabrikat & type sætter læseren i stand til at finde apparatets egenskaber

Måleprocedure:

Her beskrives klart og entydigt, hvordan målingen er foretaget inkl. alle ikke indlysende indstillinger af apparater. Eks.:

- 1. Spændingsforsyningen tilsluttes og indstilles til 15 V (måles med voltmeteret)
- Generatoren indstilles til at give en sinusspænding med en amplitude på 14 mV (måles med oscilloskopet)
- 3.

Resultater:

- Nogle resultater kan med fordel flyttes (eller kopieres) til rapporten husk henvisning
- Ofte angives tabeller i målejournalen og grafer i rapporten
- Brug tabeller resultater blandet med tekst bliver rodet
- Datafiler bør (desuden) vedlægges rapporten på en CD husk henvisning
- Præcis formulering er vigtig!!
 - Angiv enheder
 - DC, RMS, amplitude, eller spids-spids værdier?

Generator-	V _A (RMS)	V _B (spids-spids)	I _{R7} (DC) [mA]
frekvens	[V]	[mV]	[mA]
[kHz]			
1	1,25	124	2,333
2	1,27	143	2,334
5	1,23	144	2,335
10	1,30	176	2,335
20	1,45	166	2,336

Fejlkilder og usikkerheder:

- Her angives væsentlige fejlkilder og usikkerheder i.f.b. med målingen.
- Principielt skal man medtage alle usikkerheder og lave en samlet usikkerhedsberegning, men oftest nævnes kun de mest væsentlige.
- Det er vigtigt at forklare uoverensstemmelser mellem beregnede, simulerede og målte data, men det hører hjemme i hovedrapporten ikke i målejournalen.
- I rapporten kan man evt. henvise til usikkerheder beskrevet i målejournalen.

Typiske årsager til måleunøjagtighed:

- Måleinstrumenter påvirker (belaster) måleobjektet
 - V- & A-metre: Se mm. 1
 - Oscilloscop med probe f.eks. 10 M Ω || 15 pF
 - 1 m RG58 coax-kabel har en kapacitet mellem inder- og yderleder på 101 pF
- Aflæsningsunøjagtighed
 - Analoge (antikke) viserinstrumenter
 - Oscilloscop-cursor (pas på støj i "auto-peak-peak")
- Støj, 50 Hz (100 Hz) brum, switch-mode spændingsforsyninger m.v.
- Instrumentets unøjagtighed: Se manualen!
 - Multimetre: Frekvensafhængig måleusikkerhed
 - Oscilloscop: Både horisontal (lille) og vertikal usikkerhed

Sammenligning af beregninger, simuleringer og målinger

Placeres i det relevante kredsløbsafsnit

Præsentation af data:

- Tabel med beregnede, simulerede og målte værdier
- Grafer med beregnede, simulerede og målte værdier
 - Helst (3) kurver på samme graf det gør det lettest at sammenligne og sparer papir.
 - Hvis man laver (3) separate grafer, tror læseren det er fordi man vil skjule afvigelser

Sammenligning af beregninger, simuleringer og målinger

• Placeres i det relevante kredsløbsafsnit – ikke i målejournalen

Præsentation af data:

- Skriv hvordan data er behandlet. Vedlæg en evt. Matlab-fil på CD.
- Husk at angive, hvis der er lavet "lovlige" manipulationer med data, f.eks. tidsforskydning p.g.a. ukendt triggertidspunkt eller en forskydning af DCniveauet.

Typiske årsager til afvigelser:

- Beregningsmodellen er simplere end virkeligheden
- Simuleringsmodellen er bedre, men stadig simplere end virkeligheden
- Måleunøjagtigheder
- Komponenttolerancer bliver ofte (mis-)brugt som forklaring
 - Lav f.eks. en supplerende simulering, der check'er om komponenttolerancer virkelig har en væsentlig betydning

Forstærkningsmåling

Husk:

- Simulering: En .AC simulering benytter en lineariseret model, så signalklipning forekommer ikke.
- Måling: Huske at kontrollere, om der forekommer signalklipning (v.h.a. et oscilloskop).
 Dette gælder også impedansmålinger.
- Med en generator og oscilloskop eller voltmetre, kan man lave målinger ved enkelte frekvenser (i dag: 1 kHz, f_L & f_H)
- Med NI-PCI-4461 kan målinger ved en række frekvenser foretages i et sweep. (som .AC simulering).
- Forhold Jer kritisk til resultaterne og de måleusikkerheder der er ifbm. Jeres set-up og Jeres instrumenter.
- Kapacitiv belastning fra måleinstrumenterne kan være betydelig ved høje frekvenser.
- Husk også at indsætte $R_S = 1 \text{ k}\Omega$, som er brugt ved beregning af forvrængning og A_{VS} . (Er på PCB?)

$$A_{vs} = \frac{v_o}{v_s}$$

$$A_{v} = \frac{v_{o}}{v_{i}}$$

Fra mm. 3:

$$Z = R_{\text{Re}f} \frac{1}{\frac{V_A}{V_B} - 1}$$

$$Z = R_{\text{Re}f} \frac{V_B}{V_A - V_B}$$

$$Z = R_{\text{Re}f} \frac{V_B/V_A}{1 - \frac{V_B}{V_A}}$$

 V_A og V_B komplekse!!

$$\frac{V_A}{V_B} = \left| \frac{V_A}{V_B} \right| e^{j(\theta_A - \theta_B)}$$

Agilent 54621A

Oscilloskop

Fra mm. 1:

Korrekt måleopstilling (Z er ukendt):

Voltmetre og amperemetre giver ingen information om fasen (her tydeliggjort med numerisk-tegn, men de udelades oftest)

$$|Z| = \frac{|V_B|}{|I|} = \frac{|V_B|}{|V_{AB}|} R_{\text{Re }f}$$

Forkert måleopstilling (Z er ukendt):

OK hvis Z er reel

$$|Z| \neq \frac{|V_B|}{|V_A| - |V_B|} R_{\text{Re }f}$$
 hvis Z er kompleks

Hvis Z_{IN} er reel:

Substitutionsmetoden:

R justeres indtil der fås samme visning på V ved omskiftning. Dermed vil $\rm R_{aflæst}$ være lig $\rm R_{i}.$

Hvis Z_{IN} er reel:

Halveringsmetoden:

For $R_s = 0$ aflæses $V = V_s$. R_s øges indtil $V = V_s/2$ hvorved $R_s = R_i$ kan aflæses. **ULEMPE:** Ved store R_s værdier opsamles en del støj.

Hvis Z_{OUT} er reel:

Belastningsmetoden:

For R_L -> uendelig aflæses $V_1 = V_{OT}$. R_L reduceres indtil $V = V_{OT}/2$ hvorved $R_L = R_o$ kan aflæses.

ULEMPE: Ved lave R_L værdier kan udgangen gå i strøm-mætning, så metoden er uanvendelig. Dette er typisk tilfældet for forstærkere med tilbagekobling, hvor udgangsimpedansen er lav.

Aktiv |Z_{OUT}|-måling:

For (effekt-)forstærkere med lav udgangsimpedans kan man indsætte en forstærker, der kan levere stor strøm.

- o Hameg HM6042
- o Spændinger op til 50 V. Hold fingrene fra komponenten under brug
- o Måling på én transistor eller sammenligning af 2
- Et anvendeligt instrument med en del begrænsninger

Curve-tracer - princip

- o Spændingsgenerator: Savtak (eller lignende) som funktion af tiden
- o Strømgenerator: Trappekurve som funktion af tiden (spænding til FET'er)
- o Spænding vises på x-aksen
- o Strøm vises på y-aksen
- Beskyttelseskredsløb indbygget

o BJT-NPN:

BJT-NPN

BJT-PNP

FET-Nch

FET-Pch

Max:

o 200 mA

20 mA

o 2 mA

Max:

o 40 V

10 V

o 2 V

Max:

o 4 W

0.4 W

0.04 W

Curve-tracer - indstilling

- Valg af funktion af drejeknap
- o Min/max indstilling af basisstrøm

Curve-tracer - cursor

- o Spænding: 10 mV
- o Strøm: 1 μ A (Ic) / 0,1 μ A (Ib)
- o Er et problem i nogle tilfælde

Curve-tracer - 1 punkts cursor

1 punkts cursor (Hameg-notation):

- o Vb
- o Ib
- o Vc
- o Ic
- o Bet = Ic/Ib
- Cursorpunkt kan flyttes langs med kurver
- Cursorpunkt kan flyttes mellem kurver

Curve-tracer - 2 punkts cursor

2 punkts cursor (Hameg-notation):

- o H11 = $\Delta Vb/\Delta Ib$
- $\bullet H21 = \Delta Ic/\Delta Ib$
- o H22 = Δ Ic/ Δ Vc

o H21 er usikker ved små strømme (Ic \sim 1 mA, Ib \sim 3 μ A) p.g.a. 0,1 μ A opløsning på Ib

H22 er usikker ved små strømme
 p.g.a. 1 μA opløsning på Ic

Curve-tracer - FET

- Y21 er usikkerp.g.a. 100 mV spring for Vg
- o (Y22 er noget usikker ved små strømme p.g.a. 1 μ A opløsning på Id)

Universalforstærkeren: CE, CE-Re, CC & CB koblinger

Først: Simuleringer af CE, CE-Re, CC & CB koblinger

- DC-arbejdspunkt, transistorparametre
- Forstærkninger (A_v, A_{vs}) og 3-dB frekvenser
- Indgangs-|impedanser|
- Forvrængning

Målinger i lab på CE, CE-Re, CC & CB koblinger

• DC-arbejdspunkt, transistorparametre

agenda.doc

Tabel 1: Transistorens arbejdspunkt samt småsignalparametre.

	I _C [mA]	V _{CE} [V]	V _{BE} [V]	β_{DC}	β_{ac}	g _m [mS]	$r_{_{\pi}}$ [k Ω]	r_{o} [k Ω]
Beregnet* AEL 5 & 6	1,03	4,9	0,61	260	330	39	8.5	140
Simuleret								
Målt				option	option	option	option	option

^{*} Beregnet eller aflæst fra datablad. Husk at angive hvordan tallene er fundet.

Måleteknik-mm4 E3-2010 OKJ/JHM 30

Målinger i lab på CE, CE-Re, CC & CB koblinger

- Forstærkninger (A_v, A_{vs}): 1 kHz og 3-dB frekvenser
- Indgangs-|impedanser|
- Forvrængning (Evt. oscilloskop, mm. 5: NI-4461)

Tabel 2: C.E. med input på 10mV_{eff}.

	R _{ib} [kΩ]	R_i [k Ω]	A _v	A _{vs}	f _L [Hz]	f _H [kHz]	HD ₂ [%]	THD [%]
Beregnet AEL 6, 11 & 13	8.5	7.7	150	135		314	10.7	
Simuleret								
Målt							mm.5	mm.5

Komplet dokumentation af én måling:

- Målejournal
- Sammenligning af beregninger, simuleringer og målinger
- Afleveres til, og diskuteres med, Jeres vejleder

Med input på 10mV_{eff} er målingerne plaget af støj

- Kan reduceres ved brug af coax-kabler.
- Overvej betydningen af kapacitiv belastning (ikke ved 1 kHz)

Konfiguration	J ₁	J ₂	J_3	J_4
CE	b	b	a	С
CE med R _e	b	b	a	b
CC	b	b	b	a
СВ	a	a	a	d
Måling af indgangsimpedans	b/c	a/b	a/b	a/b/c/d
Måling af indgangsimp. uden DUT	b/c	а	a/b	a/b/c