

02224 Real-time systems

Timed Games, Controller Synthesis and UPPAAL-TIGA

Michael R. Hansen

DTU Compute

Department of Applied Mathematics and Computer Science

MRH 03/28/2023

Model Checking vs Controllor Synthesis

Model Checking ($M \models \phi$)

- Given system model M and
- a property φ,

check (automatically) whether the behaviours of M satisfy ϕ .

Controller Synthesis

- Given environment model S,
- a model C describing the moves the controller can do,
- a property φ,

find a strategy S_c for the controller so that $S_c || S \models \phi$ or show there is not such strategy.

The right code is generated automatically

Model Checking vs Controllor Synthesis

Model Checking ($M \models \phi$)

- Given system model M and
- a property φ,

check (automatically) whether the behaviours of M satisfy ϕ .

Controller Synthesis

- Given environment model S,
- a model C describing the moves the controller can do,
- a property φ,

find a strategy S_c for the controller so that $S_c || S \models \phi$ or show there is not such strategy.

The right code is generated automatically

Model Checking vs Controllor Synthesis

Model Checking ($M \models \phi$)

- Given system model M and
- a property φ,

check (automatically) whether the behaviours of M satisfy ϕ .

Controller Synthesis

- Given environment model S.
- a model C describing the moves the controller can do,
- a property φ.

find a strategy S_c for the controller so that $S_c || S \models \phi$ or show there is not such strategy.

The right code is generated automatically

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:

- Reachability games: *control*: A <> Win, where Win is a state
- Safety games: control : A[] not Lose where Lose is a state
- Memoryless strategy: State → Action

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform two actions
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:

- Reachability games: *control*: A <> Win, where Win is a state
- Safety games: *control* : A[] *not Lose* where *Lose* is a state
- Memoryless strategy: State → Action

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform two actions
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:

Controller moves against uncontrollable environment moves

- Reachability games: control: A <> Win, where Win is a state formula describing the winning states.
- Safety games: control: A[] not Lose where Lose is a state formula describing the losing states of the controller.
- Memoryless strategy: State → Action

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform two actions
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:
 Controller moves against uncontrollable environment moves
- Reachability games: control: A <> Win, where Win is a state formula describing the winning states.
- Safety games: control: A[] not Lose where Lose is a state formula describing the losing states of the controller.
- Memoryless strategy: State → Action

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform two actions
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:
 Controller moves against uncontrollable environment moves
- Reachability games: control: A <> Win, where Win is a state formula describing the winning states.
- Safety games: control: A[] not Lose where Lose is a state formula describing the losing states of the controller.
- Memoryless strategy: State → Action

- Introduced by Maler, Phueli and Sifakis in 1995.
- Controller continuously observes the system and can perform two actions
 - wait (that is, delay)
 - take a controllable move (thereby preventing delay)
- A 2-player game:
 Controller moves against uncontrollable environment moves
- Reachability games: control: A <> Win, where Win is a state formula describing the winning states.
- Safety games: control: A[] not Lose where Lose is a state formula describing the losing states of the controller.
- Memoryless strategy: State → Action

· Solid transitions are controlled

- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective control: A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98

Figure: From Uppaal-TIGA tutorial

- Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective control : A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98

Figure: From Uppaal-TIGA tutorial

12

- · Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective control : A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98]

Figure: From Uppaal-TIGA tutorial

- · Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective: control: A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98]

Figure: From Uppaal-TIGA tutorial

- · Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective: control: A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition

Figure: From Uppaal-TIGA tutorial

15

- · Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective: control: A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98]

Figure: From Uppaal-TIGA tutorial

- · Solid transitions are controlled
- dashed are uncontrolled (environment) transitions
- Priority to environment transitions
- Reachability objective: control: A <> goal
- Control can, in a state, chose to wait (delay) or chose to take a controllable transition
- Reachability and Safety Games are decidable. Memoryless and region-based strategies are sufficient. [AMS98]

Figure: From Uppaal-TIGA tutorial

L0 : {}

L1 : $\{x \mid 1 \le x\}$

L2 : {}

L3 : $\{x \mid 0 \le x \le 1\}$

L0 : {}

L1 : $\{x \mid 1 \le x\}$

L2 : $\{x \mid 0 \le x \le 1\}$

L3 : $\{x \mid 0 \le x \le 1\}$

L0 : {}

L1 : $\{x \mid 0 \le x < 1\} \cup \{x \mid 1 \le x\}$

L2 : $\{x \mid 0 \le x \le 1\}$

L3 : $\{x \mid 0 \le x \le 1\}$

L0 :
$$\{x \mid 0 \le x \le 1\}$$

L1 :
$$\{x \mid 0 \le x < 1\} \cup \{x \mid 1 \le x\}$$

L2 :
$$\{x \mid 0 \le x \le 1\}$$

L3 :
$$\{x \mid 0 \le x \le 1\}$$

Computation of Winning Strategies: An example

Reachability Games control A <> goal: Take actions that lead to winning states. (Partition states to guarantee progress)

L1, x < 2 : wait L1, $x \ge 2$: goto goal

L2, x < 1: goto L3

L3, x < 1 : Wait L3, x = 1 : goto L1

23

UPPAAL TIGA's Query Language

Reachability properties:

```
control: A[p U q]control: A<> p
```

Safety properties:

```
control: A[p W q]control: A[] p
```

UPPAAL TIGA's Query Language

Reachability properties:

```
control: A[p U q]control: A<> p
```

Safety properties:

```
control: A[p W q]control: A[] p
```