Metody Numeryczne – sprawozdanie

Aproksymacja funkcji okresowych

Laboratorium nr 9

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel zajęć

Na kolejnym laboratorium zajęliśmy się aproksymowaniem funkcji okresowych. Otrzymaliśmy od prowadzącego funkcje, na których mieliśmy przeprowadzić nowo poznaną metodę, za pomocą której mieliśmy otrzymać wykresy.

2. Opis problemu

Dane są trzy funkcje:

$$f_1(x) = 2 \sin x + \sin 2x + 2 \sin 3x + \alpha,$$

 $f_2(x) = 2 \sin x + \sin 2x + 2 \cos x + \cos 2x,$
 $f_3(x) = 2 \sin 1.1x + \sin 2.1x + 2 \sin 3.1x,$

gdzie α to liczba pseudolosowa z przedziału <-0.5, 0.5>.

Naszym zadaniem było przeprowadzić aproksymację danych funkcji dla różnych wartości parametrów M_s i M_c (x należy do przedziału <0, 2π), liczba węzłów to 100).

3. Teoria

3.1. Sposób przeprowadzania aproksymacji

- 1) Wyznaczamy wartości dla x według tego ile węzłów potrzebujemy oraz w jakim przedziale ma mieścić sie x.
- 2) Dla danych wartości x wyznaczamy wartości y używamy potrzebnego wzoru funkcji.
- 3) Następnie wyznaczamy wartości współczynników a oraz b według wzorów:

$$a_k = \frac{1}{n} \sum_{j=0}^{2n-1} f(x_j) \cdot \cos k \cdot x_j, \tag{1}$$

$$b_k = \frac{1}{n} \sum_{j=0}^{2n-1} f(x_j) \cdot \sin k \cdot x_j,$$
 (2)

gdzie x_j to kolejne wartości dla x, a liczba wszystkich węzłów to 2n. Wartość współczynnika a_0 obliczamy według wzoru:

$$a_0 = \frac{1}{2n} \sum_{j=0}^{2n-1} f(x_j).$$
 (3)

4) Aproksymujemy funkcje korzystając ze wzoru:

$$F(x) = \sum_{k=0}^{M_S} a_k \sin kx + \sum_{j=0}^{M_C} b_j \cos jx.$$
 (4)

4. Wyniki obliczeń

- 4.1. Aproksymacja funkcji f_1 , dla $\alpha = 0$ i $(M_s, M_c) = \{(5, 5)\}$.
 - 4.1.1. Wartości współczynników a i b

$$a_0 = 0.006257, a_1 = 0, a_2 = 0, a_3 = 0, a_4 = 0, a_5 = 0.$$

 $b_1 = 2, b_2 = 1, b_3 = 2, b_4 = 0, b_5 = 0.$

4.1.2. Wykresy funkcji

- 4.2. Aproksymacja funkcji f_2 , dla $(M_s, M_c) = \{(5, 5)\}$.
 - 4.2.1. Wartości współczynników a i b

$$a_0 = -0.027373, a_1 = 0, a_2 = 0.02, a_3 = 0.04, a_4 = 0, a_5 = 0.$$

 $b_1 = 2, b_2 = 1, b_3 = 0, b_4 = 0, b_5 = 0.$

4.2.2. Wykresy funkcji

- 4.3. Aproksymacja funkcji f_3 , dla $(M_s, M_c) = \{(5, 0)\}$.
 - 4.3.1. Wartości współczynników a i b

$$a_0 = 0.050776 \\ b_1 = 1.88052, b_2 = 0.79845, b_3 = 1.57484, b_4 = -0.39878, b_5 = -0,24410.$$

4.3.2. Wykresy funkcji

- 4.4. Aproksymacja funkcji f_3 , dla $(M_s, M_c) = \{(5, 5)\}$.
 - 4.4.1. Wartości współczynników a i b

$$a_0 = 0.0508, a_1 = 0, a_2 = 0.015, a_3 = 0.0314, a_4 = -0.00798, a_5 = 0.00488.$$

 $b_1 = 1.88052, b_2 = 0.77885, b_3 = 1.57564, b_4 = -0.39878, b_5 = -0.24411.$

4.4.2. Wykresy funkcji

4.5. Aproksymacja funkcji f_3 , dla $(M_s, M_c) = \{(10, 10)\}.$

4.5.1. Wartości współczynników a i b

$$\begin{aligned} a_0 &= 0.0508, a_1 = 0, a_2 = 0, a_3 = 0, a_4 = 0, a_5 = 0, \\ a_6 &= 0, a_7 = 0, a_8 = 0, a_9 = 0, a_{10} = 0. \\ b_1 &= 1.88052, b_2 = 0.77885, b_3 = 1.57564, b_4 = -0.39878, b_5 = -0.24411, \\ b_6 &= -0.1832, b_7 = -0.1485, b_8 = -0.1254, b_9 = -0.1086, b_{10} = -0.096. \end{aligned}$$

4.5.2. Wykresy funkcji

4.6. Aproksymacja dla funkcji f_1 , dla α losowego z przedziału <-0.5, 0.5> i (M_s , M_c) = {(5, 5)}. W rozpatrywanym przypadku $\alpha = 0.445879$.

4.6.1. Wykresy współczynników w funkcji indeksów

4.6.2. Wykresy funkcji

- 4.7. Aproksymacja dla funkcji f_1 , dla α losowego z przedziału <-0.5, 0.5> i (M_s , M_c) = {(30, 30)}. W rozpatrywanym przypadku $\alpha = 0.205068$.
 - 4.7.1. Wykresy współczynników w funkcji indeksów

4.7.2. Wykresy funkcji

5. Podsumowanie

Aproksymacja funkcji, czyli wyznaczanie współczynników kombinacji liniowej, to kolejne już przez nas poznane narzędzie do "uzupełniania" wykresów funkcji. Jest to metoda dosyć łatwa i dająca akceptowalne wyniki przy odpowiednim ustaleniu współczynników potrzebnych do przeprowadzenia tej metody. Jednakże należy pamiętać, że działa ona dla funkcji okresowych.