Lecture 6 Relational Algebra =================

Operators

1.1 Selection (= where clause in sql)

Selection Operator $\sigma_{[c]}(R)$ selects all rows from the relation R that satisfies the selection condition c^* .

Although it is called 'selection', it actually maps to 'where' clause in sql.

▼ Examples

• Find the name (rname) and area of the different restaurants in London.

$$\sigma[{\rm area}={\rm 'London'}]({\rm restaurant})$$

```
select * from restaurant r
where r.area = 'London'
```

1.2 Projection (= select clause in sql)

Projection Operator

 $\pi_{[l]}(R)$ keeps only the columns specified in the ordered list l and in the same order*.

▼ Example

• Find the different name (cname) of customers that like at least one pizza.

$$\pi[\text{cname}](\text{likes})$$

```
SELECT 1.cname
FROM likes 1;
```

1.3 Renaming

Renaming Operator

 $\rho_{[r]}(R)$ renames all the attributes mentioned in r^* .

1.4 Set Operations

Operation	Visualization	SQL
RUS	RS	SELECT * FROM R UNION SELECT * FROM S
R∩S	RS	SELECT * FROM R INTERSECT SELECT * FROM S
R - S	RS	SELECT * FROM R EXCEPT SELECT * FROM S

The two relations must be union-compatible (basically, they must have the same column types).

▼ Examples

Find the different pizza sold by both Bella Italia and Desert Diner.

$$\begin{array}{l} Q1 := \pi[\text{pizza}](\sigma[\text{rname = 'Bella Italia'}](\text{sells})) \\ Q2 := \pi[\text{pizza}](\sigma[\text{rname = 'Desert Diner'}](\text{sells})) \\ Q1 \cap Q2 \end{array}$$

1.5 Cross Product (=Cartesian Products)

Proc Oper	luct rator				ROM						
Cros	ss Product		(Ca	urtesii	an Pi	rodu	ct)				
	× R ₂ con lumns of	nbine							the <i>n</i> colu	mns of R ₁	and the m
	R ₁		R ₂	R ₂				$R_1 \times R_2$			
a	b		c	d	e		a	b	с	d	e
1	2	7	А	В	C		1	2	A	В	С
3	4	2	D	E	F	(/	1	2	D	E	F
			G	Н	1	71	1	2	G	Н	l l
						_ (3	4	A	В	С
						\	3	4	D	E	F
							2		G	н	1.

1.6 Join (on condition c)

Examples

▼ Examples

. Find all the different pairs of customer name and restaurant name such that they are in the same area.

3. Writing Conventions

Extension

Written Extended Algebra For written algebra, we add the following capabilities to our relational algebra. • Relation Renaming $\rho_{[R_2]}(R_1)$ renames relation R_1 into R_2 R.attr refers to the attribute attr of relation R which may come from a renamed relation. · Dot Notation π[].a1, s.a2](σc](SELECT r.a1, s.a2 OM rel1 r, rel2 s ρ[r](rel1) x ρ[s](rel2))) WHERE S; > p[r](rel 1)

Lecture 8 Functional Dependencies==============

Closure Algorithm

```
Algorithm #1: Attribute Closure
    input
                   S, \Sigma
    output S<sup>†</sup>
    begin
        \Omega := \Sigma;
                       // \Omega stands for "unused"
                      // Γ stands for "closure"
        while (X \to Y \in \Omega) and (X \subseteq \Gamma) do
            \Omega := \Omega - \{ X \rightarrow Y \};
            \Gamma := \Gamma \cup Y:
        return [
```

Trivialities

2.1 Trivial

```
Definition
 An fd \sigma: X \to Y is trivial if and only if Y \subseteq X.
 Let R = \{A, B, C\}
     \{\mathsf{A}\} \to \{\mathsf{A}\} \text{ is trivial}
     \{A,B\} \rightarrow \{A\} is trivial
     \{A,B\} \rightarrow \{\} is trivial (also denoted as \{A,B\} \rightarrow \emptyset)
```

2.2 Non-Trivial

Triviality

```
Non-Trivia
Definition
 An fd \sigma: X \to Y is non-trivial if and only if Y \nsubseteq X.
 Let R = \{A, B, C\}
     \{A\} \rightarrow \{B\} is non-trivial
     {A,C} - {B,C} is non-trivial
{} - (A,B) is non-trivial (also denoted as Ø - {A,B})
           Must be a constant
```

2.3 Completely non-trivial

Keys & other definitions

3.1 Super Key

Using more than enough columns to uniquely identify tuples in a table (CPT103)

3.2 Candidate Key

All these possible primary keys are called candidate keys. The PK is just a CK chosen by the table designer. (CPT103)

In Other Words

A **candidate key** is a <u>minimal</u> superkey. The **primary key** is the candidate key that the designed prefers.

3.3 Compare and contrast

Super key: Collection of PK (NON-minimal)

Candidate key: Collection of PK that must be minimal (you can't remove any of them)

3.4 Prime Attributes (Lecture 1)

Each column composing the candidate key is said to be a prime attribute.

E.g. For candidate keys AC, CD, CE, the prime attributes are ACDE. $\label{eq:cde} % \begin{center} \begin{ce$

4. Closures

5. Armstrong Rules

6. Minimal Cover and Canonical Cover Algorithm

Step #3: Simplifying the Set

Let $X \to Y$ be a functional dependency in Σ ! It can be removed from Σ ' if

 $X \to Y$ is **logically entailed** by $(\Sigma' - \{X \to Y\})$

Then we can replace Σ by $(\Sigma^i - \{X \to Y\})$.

Lecture 9 Boyce-Codd Normal Form ================

. Definition & Checking

2. Lossless Join & Checking

Lossless-Join Decomposition

A binary decomposition is **lossless-join** if and only if the full outer natural join of its two **fragments** (i.e., the two tables resulting from the decomposition) equals the initial table. Otherwise, the decomposition is **lossy**.

3. Projection of Functional Dependencies

4. Dependency Preserving

Definition

A decomposition of R with sigma into delta = {R_1, ..., R_n} with the respective sets of functional dependencies sigma_1, ..., sigma_n is dependency preserving if and only if

$$\Sigma^+ = (\Sigma_1 \cup ... \cup \Sigma_n)^+$$

!!! Caution: in BCNF, a lossless join decomposition doesn't guarantee that it's dependency preserving!!!

In 3NF this can be guaranteed.

Lecture 10 Third Normal Form ==============

2. 3NF Decomposition (Bernstein's Algorithm) Normal Form Minimal Cover (2)

*We still call the synthesis method a decomposition because we decompose a relation into multiple