Lecture 6a: Rule Based System

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

Week	30000D	30282R	Topics	Chapters
1	1/7	1/8	Intelligent Agents	[Ch 1.1-1.4 and 2.1-2.4]
	1/9	1/10	Problem Solving and Search	[Ch 3.1-3.3]
2	1/14	1/15	Uninformed Search	[Ch 3.3-3.4]
	1/16	1/17	Heuristic Search (A*)	[Ch 3.5]
3	1/21	1/22	Heuristic Functions	[Ch 3.6]
	1/23	1/24	Local Search	[Ch 4.1-4.2]
	1/25		Project 1 Out	
4	1/28	1/29	Adversarial Search	[Ch 5.1-5.3]
	1/30	1/31	Knowledge Based Agents	[Ch 7.1-7.3]
5	2/4	2/5	Propositional Logic Inference	[Ch 7.4-7.5]
	2/6	2/7	First-Order Logic	[Ch 8.1-8.4]
	2/8		Project 1 Due	
	2/8		Homework 1 Out	
6	2/11	2/12	Rule-Based Systems	[Ch 9.3-9.4]
	2/13	2/14	Search-Based Planning	[Ch 10.1-10.3]
	2/15		Homework 1 Due	
7	2/18	2/19	SAT-Based Planning	[Ch 10.4]
	2/20	2/21	Knowledge Representation	[Ch 12.1-12.5]
8	2/25	2/26	Midterm Review	
	2/27	2/28	Midterm Exam	

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)
- Knowledge-based agent
 - Propositional Logic
 - First Order Logic (FOL)
 - Automated Reasoning in FOL

Recap: Logic for knowledge representation

- Logic as a language for knowledge representation
 - Propositional logic (Boolean)
 - First-order logic (FOL)

Domain independent algorithms

Domain specific content

- Advantage
 - Can combine and recombine information to suit many purposes

Recap: Propositional Logic: checking entailment

- Two methods
 - Method#1: Based on enumeration (model checking)
 - Method#2: Based on inference rules (theorem proving)

 Enumerate all models and check if "a is true in all models in which KB is true"

$$M(KB) \subseteq M(\alpha)$$
.

Recap: PL: Checking entailment (example)

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false false false	false false true	false false false false	false true : false	$\begin{array}{c} true \\ true \\ \vdots \\ true \end{array}$	$true$ $true$ \vdots $true$	true false : false	$true$ $true$ \vdots $true$	false false true	false false false false			
$false \ false$	true true true	false false false	false false false	false false false	false true true	$true \\ false \\ true$	true true true	true $true$ $true$	true true true	true true true	true true true	$\begin{array}{c} \underline{true} \\ \underline{true} \\ \underline{true} \end{array}$
false : true	true : true	false : true	false : true	$true$ \vdots $true$	false : true	false : true	true : false	false : true	false : true	true : false	$true$ \vdots $true$	false : false

Recap: PL: Checking entailment (inference)

Two methods

- Method#1: Based on enumeration (model checking)
- Method#2: Based on inference rules (theorem proving)

Logical equivalences

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Recap: PL: Resolution rule

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

Example: general case (= transitivity of implication)

$$\frac{P_{1,1} \vee P_{3,1}, \quad \neg P_{1,1} \vee \neg P_{2,2}}{P_{3,1} \vee \neg P_{2,2}}$$

$$(\neg C \rightarrow x) \land (x \rightarrow D)$$

$$= (\neg C \rightarrow D)$$

$$= (C \lor D)$$

Recap: Why first-order logic (FOL)?

- Propositional logic (PL) is limited because it only makes the ontological commitment that a world consists of facts
 - Facts: propositions that are either true or false
 - "Don't go forward if the Wumpus is in front of you" takes 64 rules

Language	Ontological Commitment (What exists in the world)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts with degree of truth $\in [0, 1]$

Recap: First-order logic (FOL)

Ontological commitments:

Objects: Wheel, door, body, engine, seat, car, passenger, driver

Functions: ColorOf(car)

Relations: Inside(car, passenger), Beside(driver, passenger)

Properties: IsOpen(door), IsOn(engine)

CarA

CarB

ColorOf(CarB) = BLUE

Function: ColorOf(CarA) = BLACK

Relation: ColorOfCar(CarA,BLACK) = True

ColorOfCar(CarA,BLUE) = False

ColorOfCar(CarB,BLACK) = False

ColorOfCar(CarB,BLUE) = True

Property: IsBlackCar(CarA) = True

IsBlueCar(CarA) = False

IsBlackCar(CarB) = False IsBlueCar(CarB) = True

Recap: Universal quantification (for all): \(\nabla \)

∀ <variables> <**sentence**>

Example

"Everyone in the cs360 class is smart":

```
\forall x \quad \text{In } (\text{cs360}, x) \Rightarrow \text{Smart } (x)
```

∀ x means the conjunction of all instantiations of x

```
( In (cs360, Markus) ⇒ Smart (Markus) ) ∧
( In (cs360, Dora) ⇒ Smart (Dora) ) ∧
...
( In (cs360, Hao) ⇒ Smart (Hao) )
```

Recap: Existential quantification (there exists): 3

∃ <variables> <sentence>

Example

"Someone in the cs360 class is smart":

```
\exists x \text{ In } (cs360, x) \land Smart (x)
```

∃ x represents the disjunction of all instantiations of x

```
In (cs360, Markus) ∧ Smart (Markus) ∨ In (cs360, Dora) ∧ Smart (Dora) ∨ ...
In (cs360, Hao) ∧ Smart (Hao)
```

 $\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow$

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

Squares are breezy near a pit:

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause $\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

Squares are breezy near a pit:

 $\frac{\text{Diagnostic}}{\forall y} \text{ } \text{ } \text{ } \text{ } \text{rule} \text{---infer cause from effect}$ $\forall y \text{ } Breezy(y) \Rightarrow \exists x \text{ } Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause $\forall x, y \; Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause $\forall x, y \; Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

<u>Definition</u> for the Breezy predicate:

 $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

```
E.g., definition of (full) Sibling in terms of Parent: \forall x,y \; Sibling(x,y) \Leftrightarrow [ \exists m,f \\ Parent(m,x) \land Parent(f,x) \land Parent(m,y) \land Parent(f,y)]
```

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., definition of (full) Sibling in terms of Parent: $\forall x,y \; Sibling(x,y) \Leftrightarrow [\neg(x=y) \land \exists \, m,f \; \neg(m=f) \land Parent(m,x) \land Parent(f,x) \land Parent(m,y) \land Parent(f,y)]$

Higher-order logic?

- First-order logic allows us to quantify over objects.
- Higher-order logic allows us to quantify over objects, relations, and functions.

e.g., "two objects are equal if and only if all **properties** applied to them are equivalent":

$$\forall x,y (x=y) \Leftrightarrow (\forall p p(x) \Leftrightarrow p(y))$$

Higher-order logics are more expressive; however, it is not clear (yet)
 how to effectively reason about sentences in higher-order logic.

Outline for Today

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)

- Reasoning in FOL

- Substitution
- Unification
- Chaining (forward and backward)
- Resolution

Substitution

Assume that (KB) has the following axiom:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x).
```

How to infer any of the following sentences?

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John)).

\vdots
```

Substitution

Assume that (KB) has the following axiom:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x).
```

How to infer any of the following sentences?

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John)).

\vdots
```

- Replacing a variable by a ground term
 - i.e., a term without variables (constant, or a function applied to a constant, or a function applied to another ground term)

```
\{x/John\}, \{x/Richard\}, \text{ and } \{x/Father(John)\}
```

Universal Elimination

Substitute a variable with a ground term (one without variables)

$$\frac{\forall v \ \alpha}{\mathsf{SUBST}(\{v/g\}, \alpha)}$$

Example:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \; .
King(John) \land Greedy(John) \Rightarrow Evil(John)
King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John)) \; .
\vdots
```

Existential Elimination

Substitute a variable with a single, new, constant symbol

$$\frac{\exists v \ \alpha}{\mathsf{SUBST}(\{v/k\}, \alpha)}$$

Example:

$$\exists x \ Crown(x) \land OnHead(x, John)$$

$$Crown(C_1) \wedge OnHead(C_1, John)$$

as long as C_1 does not appear elsewhere in the knowledge base.

Reducing FOL to PL for inference

- Apply both "existential" and "universal" eliminations and then discard the quantified sentences
 - Universal elimination using all ground-term substitutions from the vocabulary of the knowledge base

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \\ King(John) \\ Greedy(John) \\ Brother(Richard, John) \; . \\ \hline \{x/John\} \; \text{and} \; \{x/Richard\} \\ \hline King(John) \land Greedy(John) \Rightarrow Evil(John) \\ King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
```

Reducing FOL to PL for inference

- Apply both "existential" and "universal" eliminations and then discard the quantified sentences
 - Universal elimination using all ground-term substitutions from the vocabulary of the knowledge base

KB (in FOL)

KB (in PL)

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

Greedy(John)

Brother(Richard, John).
```

```
\begin{array}{c} \forall x \; King(x) \land Greedy(x) \rightarrow Evil(x) \\ King(John) \\ Greedy(John) \\ Brother(Richard, John) \; . \\ King(John) \land Greedy(John) \Rightarrow Evil(John) \\ King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) \end{array}
```

Sound and Complete?

- Every FOL knowledge base (KB) and query (α) can be reduced to propositional (PL) logic to preserve entailment
 - Since PL inference is both "sound" and "complete", it seems that we will have a similar procedure for FOL...

Not so fast!

- When KB includes a function symbol, the set of possible ground-term substitution is infinite!
 - Father(John), Father(Father(John)), Father(Father(John))),...

Herbrand's Theorem (1930)

- If a sentence is entailed by the KB in FOL, there is a proof involving just a finite subset of the propositionalized KB.
- Corollary: we can always find that proof, by iteratively deepening the function's nesting depth

```
Iteration 1: John, ...
Iteration 2: Father(John), ...
Iteration 3: Father(Father(John)), ...
Iteration 4: Father(Father(John))), ...
```

- Complete: Any entailed sentence can be proved
- Unsound: Can't prove that a sentence is not entailed

Outline

- What is AI?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Reasoning in FOL
 - Substitution

- Unification
- Chaining (forward and backward)
- Resolution

FOL inference rule

 Reducing FOL to PL is rather inefficient; sometimes, direct inference seems more intuitive

$$\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$$
 $King(John) \longleftarrow$
 $Greedy(John) \longleftarrow$

Step 1: Find some (x) such that (x) is a king and (x) is greedy

substitution
$$\theta = \{x/John\}$$

Step 2: Infer that this particular (x) is evil.

FOL inference rule

 Reducing FOL to PL is rather inefficient; sometimes, direct inference seems more intuitive

$$\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$$

$$King(John) \qquad \forall y \ Greedy(y)$$

Step 1: Find some (x) such that (x) is a king and (x) is greedy

```
substitution \theta = \{x/John\} substitution \{x/John, y/John\}
```

Step 2: Infer that this particular (x) is evil.

Generalized Modus Ponens

There is a substitution such that

SUBST
$$(\theta, p_i')$$
 = SUBST (θ, p_i) , for all i ,

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}$$

Example

$$King(John)$$
 $\forall y \ Greedy(y)$ $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$

$$p_1'$$
 is $King(John)$ p_1 is $King(x)$ p_2' is $Greedy(y)$ p_2 is $Greedy(x)$

Generalized Modus Ponens

There is a substitution such that

SUBST
$$(\theta, p_i')$$
 = SUBST (θ, p_i) , for all i ,

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}$$

Example

$$King(John)$$
 $\forall y \ Greedy(y)$ $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$

$$p_1'$$
 is $King(John)$ p_1 is $King(x)$ p_2' is $Greedy(y)$ p_2 is $Greedy(x)$ q is $Evil(x)$

Generalized Modus Ponens

There is a substitution such that

SUBST
$$(\theta, p_i')$$
 = SUBST (θ, p_i) , for all i ,

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}$$

Example

$$King(John)$$
 $\forall y \ Greedy(y)$ $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$

$$p_1'$$
 is $King(John)$ p_1 is $King(x)$ p_2' is $Greedy(y)$ p_2 is $Greedy(x)$ θ is $\{x/John, y/John\}$ q is $Evil(x)$ SUBST (θ, q) is $Evil(John)$.

Bob is a buffalo	1. Buffalo(Bob)
Pat is a pig	2. Pig(Pat)
Buffaloes outrun pigs	3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	

Bob is a buffalo	1. Buffalo(Bob)
Pat is a pig	2. Pig(Pat)
Buffaloes outrun pigs	3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	
Al 1 & 2	4. $Buffalo(Bob) \wedge Pig(Pat)$

Bob is a buffalo	$oxed{1.} Buffalo(Bob)$
Pat is a pig	2. Pig(Pat)
Buffaloes outrun pigs	3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	
A1 4 0 0	
Al 1 & 2	$ 4. Buffalo(Bob) \wedge Pig(Pat) $
UE 3, $\{x/Bob, y/Pat\}$	5. $Buffalo(Bob) \wedge Pig(Pat) \Rightarrow Faster(Bob, Pat)$

Bob is a buffalo Pat is a pig Buffaloes outrun pigs	1. $Buffalo(Bob)$ 2. $Pig(Pat)$ 3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	$3. \ \forall x, y \ Daffaio(x) \land T \ ig(y) \rightarrow T \ aster(x, y)$
Al 1 & 2	4. $Buffalo(Bob) \wedge Pig(Pat)$
UE 3, $\{x/Bob, y/Pat\}$	5. $Buffalo(Bob) \wedge Pig(Pat) \Rightarrow Faster(Bob, Pat)$
MP 6 & 7	6. $Faster(Bob, Pat)$

Unification

Finding substitutions that make different logical formulas look identical

UNIFY
$$(p, q) = \theta$$
 where SUBST $(\theta, p) = SUBST(\theta, q)$

Example

```
\begin{split} & \text{UNIFY}(Knows(John,x),\ Knows(John,Jane)) = \{x/Jane\} \\ & \text{UNIFY}(Knows(John,x),\ Knows(y,Bill)) = \{x/Bill,y/John\} \\ & \text{UNIFY}(Knows(John,x),\ Knows(y,Mother(y))) = \{y/John,x/Mother(John)\} \\ & \text{UNIFY}(Knows(John,x),\ Knows(x,Elizabeth)) = fail\ . \end{split}
```

Unification example

```
VARIABLE term
1 - \text{unify}( P(a,X), P(a,b) ) \qquad \sigma = \{ X / b \}
2 - \text{unify}( P(a,X), P(Y,b) ) \qquad \sigma = \{ Y/a, X/b \}
3 - \text{unify}( P(a,X), P(Y,f(a) ) \qquad \sigma = \{ Y/a, X/f(a) \}
4 - \text{unify}( P(a,X), P(X,b) ) \qquad \sigma = \text{failure}
```

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Automated Reasoning in FOL
 - Substitution
 - Unification (GMP)
 - Chaining (forward and backward)
 - Resolution

FOL definite clause

- Universally quantified clause in which exactly one literal is a positive literal
- Example:

```
King(x) \wedge Greedy(x) \Rightarrow Evil(x).

King(John).

Greedy(y).
```

• We omit the "universal quantifier" in FOL definite clauses, but you should assume that, implicitly, all variables are universally quantified

FOL definite clause (what about **3** ?)

 Apply "Existential Instantiation" to make sure the KB has only universally quantified clauses

 $\exists x \ Owns(Nono, x) \land Missile(x)$

 $Owns(Nono, M_1)$ $Missile(M_1)$

FOL forward chaining

- When a new fact (p) is added to the (KB)
 - For each rule such that (p) unifies with a premise
 - If the other premises are known, then
 - add the conclusion to the (KB) and continue chaining
- Forward chaining is "data-driven"
 - E.g., inferring facts from percepts

FOL forward chaining (example)

```
Add facts 1, 2, 3, 4, 5, 7 in turn. Number in [] = unification literal; \sqrt{} indicates rule firing
```

FOL forward chaining (example)

```
Add facts 1, 2, 3, 4, 5, 7 in turn. Number in [] = unification literal; \sqrt{} indicates rule firing
```

- $\underline{1.} Buffalo(x) \wedge Pig(y) \Rightarrow Faster(x, y)$
- $2. Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- $3. Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$
- $\underline{4.} \; Buffalo(Bob) \; [1a, \times]$
- $\underline{5.}\ Pig(Pat)\ \underline{[1b,\sqrt]} \to \underline{6.}\ Faster(Bob,Pat)\ \underline{[3a,\times]},\ \underline{[3b,\times]}$
- $\underline{7.} Slug(Stev\overline{e}) [2b, \sqrt{}]$

$$\rightarrow \underline{8}. \ Faster(\overline{Pat}, \overline{Steve}) \ \underline{[3a,\times]}, \ \underline{[3b,\sqrt]}$$

 $\rightarrow \underline{9}. \ Faster(Bob, \overline{Steve}) \ \underline{[3a,\times]}, \ \underline{[3b,\times]}$

Fixed-point reached!

Properties of FOL forward chaining

Sound: Yes, because every inference is an application of Generalized Modus Pones

 Complete: Yes, it answers every query whose answer is entailed by the KB of FOL definite clauses

Question: What if the query is not entailed by the KB?

The algorithm may fail to terminate...

```
NatNum(0)
\forall n \ NatNum(n) \Rightarrow NatNum(S(n))
```

FOL backward chaining

- When a query (q) is asked
 - If a matching fact (q') is known in the (KB), return the unifier
 - For each rule whose consequence (q') matches (q)
 - Attempt to prove each of its premises, by backward chaining

FOL backward chaining (example)

- $\underline{1.} Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- $2. Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$

- $\underline{3.} \ Pig(Pat) \qquad \underline{4.} \ Slimy(Steve) \qquad \underline{5.} \ Creeps(Steve)$

FOL backward chaining (example)

- $\underline{1.} Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$ $2. Slimy(z) \wedge Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)

- Question: Has Reality Man done anything criminal?
 - Criminal(Reality Man)

- Possible answers:
 - Steal(x, y) \Rightarrow Criminal(x)
 - $Kill(x, y) \Rightarrow Criminal(x)$
 - Grow(x, y) ∧ Illegal(y) \Rightarrow Criminal(x)
 - HaveSillyName(x) ⇒ Criminal(x)
 - Programmer(x) \land Emulator(y) \land People(z) \land Provide(x,z,y) \Rightarrow Criminal(x)

Question: Has Reality Man done anything criminal?

Criminal(x)

FAIL

Question: Has Reality Man done anything criminal?

Steal(x,y)

Question: Has Reality Man done anything criminal?

FAIL

Question: Has Reality Man done anything criminal?

• Backward Chaining is a **depth-first search**: in any knowledge base of realistic size, many search paths will result in failure.

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Automated Reasoning in FOL
 - Substitution
 - Unification (GMP)
 - Chaining (forward and backward)
 - Resolution

Resolution (a simple example)

KB:

```
(1) father (art, jon)
(2) father (bob, kim)
(3) father (X, Y) => parent (X, Y)
```

Goal: parent (art, jon)?

(KB) ∧ (¬ Goal) is "Unsatisfiable"

Resolution (a simple example)

```
KB:
       (1) father (art, jon)
       (2) father (bob, kim)
       (3) father (X, Y) \Rightarrow parent(X, Y)
Goal:
       parent (art, jon)?
           \neg parent(art, jon) father(X, Y) => parent(X, Y)
                  ¬ father (art, jon) father (art, jon)
```

FOL resolution rule

UNIFY $(\ell_i, \neg m_j) = \theta$.

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\operatorname{SUBST}(\theta, \ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n)}$$

Example:

$$[Animal(F(x)) \lor Loves(G(x), x)]$$
 and $[\neg Loves(u, v) \lor \neg Kills(u, v)]$

 $[Animal(F(x)) \lor \neg Kills(G(x), x)]$

FOL resolution (example)

```
\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Me)}\frac{Unhappy(Me)}{}
```

```
with \theta = \{x/Me\}
```

FOL Conjunctive normal form (CNF)

Steps:

- 1. Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- 2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
- 3. Standardize variables apart, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x P \lor \exists y Q$
- 4. Move quantifiers left in order, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x \exists y P \lor Q$
- 5. Eliminate ∃ by Skolemization (next slide)
- 6. Drop universal quantifiers
- 7. Distribute \land over \lor , e.g., $(P \land Q) \lor R$ becomes $(P \lor Q) \land (P \lor R)$

Skolemization

Why can't (y) be replaced by a constant symbol?

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

Everyone loves the same animal (F), and the same (G) loves everyone

$$\forall x \ [Animal(F) \land \neg Loves(x, F)] \lor Loves(G , x)$$

• Each person loves a different animal F(x), and a different G(x) loves each person

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

Distribution

$$\forall x \ [Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Converting to CNF

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

Eliminate implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

Move negation inwards

```
\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \ Loves(y,x)] .
\forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] .
\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] .
```

Standardize variables

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

Skolemization

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

FOL resolution (another example)

A.
$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

B.
$$\forall x \ [\exists z \ Animal(z) \land Kills(x,z)] \Rightarrow [\forall y \ \neg Loves(y,x)]$$

- C. $\forall x \ Animal(x) \Rightarrow Loves(Jack, x)$
- D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
- E. Cat(Tuna)
- F. $\forall x \ Cat(x) \Rightarrow Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

Transform to CNF

FOL resolution (another example)

- A. $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$
- B. $\forall x \ [\exists z \ Animal(z) \land Kills(x,z)] \Rightarrow [\forall y \ \neg Loves(y,x)]$
- C. $\forall x \ Animal(x) \Rightarrow Loves(Jack, x)$
- D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
- E. Cat(Tuna)
- F. $\forall x \ Cat(x) \Rightarrow Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

- A1. $Animal(F(x)) \vee Loves(G(x), x)$
- A2. $\neg Loves(x, F(x)) \lor Loves(G(x), x)$
 - B. $\neg Loves(y, x) \lor \neg Animal(z) \lor \neg Kills(x, z)$
 - C. $\neg Animal(x) \lor Loves(Jack, x)$
 - D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
 - E. Cat(Tuna)
 - F. $\neg Cat(x) \lor Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Reasoning in FOL
 - Substitution
 - Unification
 - Chaining (forward and backward)
 - Resolution