

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

$$\mathbf{x} = \mathbf{P}X$$

known

known

Can we compute **X** from a single correspondence **x**?

$$\mathbf{x} = \mathbf{P} X$$

known

known

Can we compute **X** from <u>two</u> correspondences **x** and **x**'?

$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from two correspondences **x** and **x**'?

yes if perfect measurements

$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from two correspondences **x** and **x**'?

yes if perfect measurements

There will not be a point that satisfies both constraints because the measurements are usually noisy

$$\mathbf{x}' = \mathbf{P}' X \quad \mathbf{x} = \mathbf{P} X$$

Need to find the **best fit**

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} X$$
(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = lpha \mathbf{P} X$$
(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} X$$
(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with SVD.

$\mathbf{x} = \alpha \mathbf{P} X$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$m{a} imes m{b} = \left[egin{array}{c} a_2b_3 - a_3b_2 \ a_3b_1 - a_1b_3 \ a_1b_2 - a_2b_1 \end{array}
ight]$$

cross product of two vectors in the same direction is zero

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} --- & \boldsymbol{p}_1^\top - -- \\ --- & \boldsymbol{p}_2^\top - -- \\ --- & \boldsymbol{p}_3^\top - -- \end{bmatrix} \begin{bmatrix} x \\ X \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} --- & \boldsymbol{p}_1^\top - -- \\ --- & \boldsymbol{p}_2^\top - -- \\ --- & \boldsymbol{p}_3^\top - -- \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

$$\begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} y\boldsymbol{p}_3^{\top} - \boldsymbol{p}_2^{\top} \\ \boldsymbol{p}_1^{\top} - x\boldsymbol{p}_3^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}_i \mathbf{X} = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

sanity check! dimensions?

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A} oldsymbol{X} = \mathbf{0}$$

How do we solve homogeneous linear system?

S V D

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

S V D!

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{ ext{TLS}} = \sum_i (m{a}_i m{x})^2$$
 $= \| \mathbf{A} m{x} \|^2$ (matrix form)
 $\| m{x} \|^2 = 1$ constraint

minimize
$$\|\mathbf{A}\boldsymbol{x}\|^2$$
 subject to $\|\boldsymbol{x}\|^2=1$ minimize $\frac{\|\mathbf{A}\boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2}$ (Rayleigh quotient)

Solution is the eigenvector corresponding to smallest eigenvalue of

$$\mathbf{A}^{\top}\mathbf{A}$$

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences