15-10-2020

Modelujte nízkokofrekvenční (NF) náhodný signál jako AR proces 1. řádu s šířkou pásma B = 500 Hz pro vzorkovací kmitočet fs = 16000 Hz, nulovým bodem v nule a násobnou konstantou rovnou jedné. Model vybudte bílým šumem s Gaussovým rozložením, který je dostupný v souboru un-excitation,bin (Signál je uložen v binárním formátu bez hlavičky, pro načtení použijte funkci loadbin, tj. např. un=loadbin('un-excitation.bin');).

Pro modelovaný signál určetete vyhlazený odhad spektrální výkonové hustoty (PSD) Welchovou metodou v decibelech. Vyhlazený odhad počítejte s následujícími parametry:

- délka segmentu a počet bodů FFT wlen = 512,
 segmentace s 50% překryvem,
- implicitní váhování Hammingovým oknen
- počítejte dvoustranný odhad PSD pro daný vzorkovací kmitočet, tj. u příslušné funkce volte parametry fs, twosided', 'psd'

Vyberte jednu z nabízených možností:

- O 2.043 2.222 1.965 1.869 1.878 2.187 2.323 2.617
- O -9.184 -9.419 -9.086 -8.926 -8.912 -9.361 -9.551 -9.981
- -23.974 -24.474 -23.963 -23.977 -24.354 -25.674 -26.461 -27.789
- O 14.694 15.000 14.687 14.696 14.927 15.736 16.218 17.032 .
- O -4.301 -4.425 -4.244 -4.174 -4.167 -4.372 -4.465 -4.649

Zrušit mou volbu

Určete výkon chyby predikce AR modelu segmentu signálu sigar-009.bin (binámí soubor bez hlavičky, pro načtení použijte funkci ioadbin, tj. např. sig=loadbin('sigar-009.bin');). AR model počítejte autokorelační metodou (Yule-Walker), řád AR modelu volte p=12 a segment před výpočtem váhujte Hammingovým okner

Vyberte jednu z nabízených možností:

- O 2.4258e-09
- O 7.6291e-06
- 0.00001173
- O.8662e-07
- 3.3069e-06

Zrušit mou volbu

Určete výkonové spektrum v decibelech segmentu signálu frame-001.bin (Signál je uložen v binárním formátu bez hlavičky, pro načtení použijte funkci loadbin, tj. např. frame-loadbin('frame) 001.bin');). Segment před výpočtem váhujte Hammingovým oknem. Zobrazte prvních 8 spektrálních komponent vypočítaného výkonového spektra.

Vyberte jednu z nabízených možností:

- -58.014 -59.774 -59.094 -47.970 -41.114 -48.711 -59.803 -39.370
- O -30.727 32.322 -42.701 -32.289 -7.273 -5.123 -8.139 6.123 ..
- O 27.533 5.689 -15.658 -34.481 -3.992 7.679 -16.062 -29.180
- O -40.505 -37.061 -45.295 23.654 2.771 -13.055 -28.354 27.976 .
- O -6.890 40.823 26.804 0.946 2.762 25.662 -1.484 33.323

Zrušit mou volbu

Vypočtěte LPC spektrum (odhad spektrální výkonové hustoty na bázi LPC) v decibelech pro AR model s následujícími parametry:

- auroregresní koeficienty a = [1.00000 0.65061 0.27425 0.15223 0.32457 0.23301 0.22956],
- výkon chyby predikce E = 1.322e-06

LPC spektrum určete jako jednostranný odhad v 64 bodech.

Zobrazte prvních 8 spektrálních komponent vypočítaného LPC spektra.

Vyberte jednu z nabízených možností:

- -59.592 -59.532 -59.351 -59.047 -58.614 -58.046 -57.334 -56.467 ...
- $\bigcirc \ \ \text{-53.206} \ \ \text{-53.152} \ \ \text{-52.991} \ \ \text{-52.719} \ \ \text{-52.333} \ \ \text{-51.826} \ \ \text{-51.190} \ \ \text{-50.415} \ \dots$
- O -14.935 -14.928 -14.909 -14.877 -14.834 -14.780 -14.718 -14.649 ...
- O -74.987 -75.055 -75.250 -75.549 -75.918 -76.324 -76.734 -77.122 ...
- O -47.944 -47.501 -46.110 -43.557 -39.360 -32.703 -27.667 -35.196 ...

Zrušit mou volbu

Určete výkon chyby predikce AR modelu segmentu signálu sigar-005.bin (binární soubor bez hlavičky, pro načtení použijte funkci *loadbin*, tj. např. sig=loadbin('sigar-005.bin');). AR model počítejte autokorelační metodou (Yule-Walker), řád AR modelu volte p=12 a segment před výpočtem váhujte Hammingovým oknem.

Vyberte jednu z nabízených možností:

- 1.6291e-06
- 5.4258e-07
- 0.00026173
- 0.8662e-07
- 3.3358e-07 ✓

Vypočtěte LPC spektrum (odhad spektrální výkonové hustoty na bázi LPC) v decibelech pro **AR model** s následujícími parametry:

- auroregresní koeficienty $a = [1.00000 0.65061 \ 0.27425 \ 0.15223 \ 0.32457 0.23301 \ 0.22956],$
 - výkon chyby predikce E = 1.322e-06

LPC spektrum určete jako jednostranný odhad v 64 bodech.

Zobrazte prvních 8 spektrálních komponent vypočítaného LPC spektra.

- -14.935 -14.928 -14.909 -14.877 -14.834 -14.780 -14.718 -14.649 ...
- -59.592 -59.532 -59.351 -59.047 -58.614 -58.046 -57.334 -56.467 ... ✓
- -74.987 -75.055 -75.250 -75.549 -75.918 -76.324 -76.734 -77.122 ...
- -53.206 -53.152 -52.991 -52.719 -52.333 -51.826 -51.190 -50.415 ...
- -47.944 -47.501 -46.110 -43.557 -39.360 -32.703 -27.667 -35.196 ...

Určete **výkonové spektrum v decibelech** segmentu signálu **frame- 006.bin** (Signál je uložen v binárním formátu bez hlavičky, pro načtení použijte funkci *loadbin*, tj. např. *frame=loadbin('frame-006.bin');*).
Segment před výpočtem **váhujte Hammingovým oknem**. Zobrazte **prvních 8 spektrálních komponent** vypočítaného výkonového spektra.

- -60.962 -66.551 -49.425 -38.268 -41.008 -50.985 -35.104 -34.300 ✔
- O -30.727 32.322 -42.701 -32.289 -7.273 -5.123 -8.139 6.123
- 54.066 57.485 -37.191 -1.797 18.695 -38.191 5.044 -1.996
- O -46.189 -57.458 8.034 -5.753 10.899 -20.163 22.056 7.380

Modelujte vysokofrekvenční (VF) náhodný signál jako AR proces 1. řádu s šířkou pásma $B = 500 \, Hz$ pro vzorkovací kmitočet $fs = 16000 \, Hz$, nulovým bodem v nule a násobnou konstantou rovnou jedné. Model vybuďte bílým šumem s Gaussovým rozložením, který je dostupný v souboru unexcitation.bin (Signál je uložen v binárním formátu bez hlavičky, pro načtení použijte funkci *loadbin*, tj. např. un=loadbin('un-excitation.bin');).

Pro modelovaný signál určetete vyhlazený odhad spektrální výkonové hustoty (PSD) Welchovou metodou v decibelech. Vyhlazený odhad počítejte s následujícími parametry:

- délka segmentu a počet bodů FFT wlen = 512,
- segmentace s 50% překryvem,
- implicitní váhování Hammingovým oknem,
- počítejte dvoustranný odhad PSD pro daný vzorkovací kmitočet, tj. u příslušné funkce volte parametry fs, 'twosided', 'psd'.

- -9.184 -9.419 -9.086 -8.926 -8.912 -9.361 -9.551 -9.981
- 4.916 4.758 4.930 4.939 4.835 4.437 4.204 3.805
- 22.908 -23.096 -22.830 -22.702 -22.691 -23.049 -23.201 -23.545
- -50.098 -50.508 -49.927 -49.647 -49.623 -50.407 -50.738 -51.490 ✓
- O -4.301 -4.425 -4.244 -4.174 -4.167 -4.372 -4.465 -4.649

Úloha 1

Správně

Bodů 2,00 / 2,00

♥ Úloha s vlaječkou

Pro signály sig1 a sig2 vzorkované kmitočtem fs = 8 kHz a uložené v mat-souboru sigs_2chan_06.mat (pro načtení do MATLABu použijte "load sigs_2chan_06.mat") vypočtěte koherenční funkci, konkrétně MSC (Magnitude Square Coherence), přičemž pro výpočet volte následující parametry:

- · délka krátkodobého segmentu 16 ms,
- · váhování Hammingovo okno odpovídající délky,
- segmentace s 75% překryvem,
- řád FFT stejný, jako je délka krátkodobého segmentu.

Určete **průměrnou koherenci** (tj. průměrnou hodnotu vypočítané MSC). Výsledek uveďte s minimální přesností na 3 platné cifry.

Odpověď: 0,0493

Správná odpověď je: 0,049261.

Úloha 2 Správně Bodů 2,00 / 2,00 ♥ Úloha s vlaječkou

Spočítejte vyhlazený odhad vzájemné spektrální výkonové hustoty (CPSD) Welchovou metodou pro signály x a y uložené v mat-souboru sig_xy_02.mat (pro načtení do MATLABu použijte "load sig_xy_02.mat"). Signály jsou vzorkované kmitočtem fs = 16 kHz a pro výpočet volte následující parametry:

- délku krátkodobého segmentu volte 1024 vzorků,
- · krátkodobé segmenty váhujte Hammingovým oknem,
- segmentujte s 50% překryvem,
- · počet bodů FFT volte stejný, jako je délka segmentu,
- počítejte s implicitním jednostranným odhadem CPSD reálných signálů.

Určete, který z následujících obrázků je požadovaným odhadem modulu CPSD v decibelech!

Úloha **3** Správně

Bodů 2,00 / 2,00

♥ Úloha s vlaječkou

Pro signály sig1 a sig2 vzorkované kmitočtem fs = 8 kHz a uložené v mat-souboru sigs_2chan_08.mat (pro načtení do MATLABu použijte "load sigs_2chan_08.mat") vypočtěte koherenční funkci, konkrétně MSC (Magnitude Square Coherence), přičemž pro výpočet volte následující parametry:

- · délka krátkodobého segmentu 642 ms,
- · váhování Hammingovo okno odpovídající délky,
- segmentace s 50% překryvem,
- řád FFT stejný, jako je délka krátkodobého segmentu.

Určete prvních 10 hodnot MSC.

Vyberte jednu z nabízených možností:

- 0,0024187 0,11171 0,75395 0,20624 0,38244 0,42067 0,87852 0,32362 0,84389 0,86242
- 0,0194 0,50837 0,90562 0,7568 0,58641 1,2984 1,8333 1,4043 1,0351 0,15669
- 0,011997 0,64641 0,8818 0,61055 0,61224 0,71113 0,79619 0,43512 0,60966 0,97314
- 0,61761 0,16999 0,12546 0,24942 0,13126 0,0048112 0,1631 0,037787 0,39771 0,014348
- 0,020039 0,54615 0,11738 0,22632 0,51629 1,0674 0,44451 1,0942 0,61345 0,78361

Vaše odpověď je správná.

Správná odpověď je: 0,61761 0,16999 0,12546 0,24942 0,13126 0,0048112 0,1631 0,037787 0,39771 0,014348.

Úloha 3 Správně Bodů 2,00 / 2,00 ♥ Úloha s vlaječkou

Pro signály sig1 a sig2 vzorkované kmitočtem fs = 8 kHz a uložené v matsouboru sigs_2chan_06.mat (pro načtení do MATLABu použijte "load sigs_2chan_06.mat") vypočtěte koherenční funkci, konkrétně MSC (Magnitude Square Coherence), přičemž pro výpočet volte následující parametry:

- délka krátkodobého segmentu 16 ms,
- váhování Hammingovo okno odpovídající délky,
- segmentace s 75% překryvem,
- řád FFT stejný, jako je délka krátkodobého segmentu.

Určete **průměrnou koherenc**i (tj. průměrnou hodnotu vypočítané MSC). Výsledek uveďte s minimální přesností na 3 platné cifry.

Odpověď: 0,0493

Správná odpověď je: 0,049261.

Pro signály sig1 a sig2 vzorkované kmitočtem fs = 8 kHz a uložené v matsouboru sigs_2chan_05.mat (pro načtení do MATLABu použijte "load sigs_2chan_05.mat") vypočtěte koherenční funkci, konkrétně MSC (Magnitude Square Coherence), přičemž pro výpočet volte následující parametry:

- délka krátkodobého segmentu 8 ms,
- váhování Hammingovo okno odpovídající délky,
- segmentace s 50% překryvem,
- řád FFT stejný, jako je délka krátkodobého segmentu.

Určete prvních 10 hodnot MSC.

Vyberte jednu z nabízených možností:

- O,0194 O,50837 O,90562 O,7568 O,58641 1,2984 1,8333 1,4043 1,0351 O,15669
- O,011997 O,64641 O,8818 O,61055 O,61224 O,71113 O,79619 O,43512 O,60966 O,97314
- 0,0024187 0,11171 0,75395 0,20624 0,38244 0,420670,87852 0,32362 0,84389 0,86242
- 0,020039 0,54615 0,11738 0,22632 0,51629 1,0674 0,44451 1,0942 0,61345 0,78361
- 0,01807 0,0070143 0,011937 0,012228 0,060632 0,015482
 0,01804 0,021289 0,01307 0,0034253

Vaše odpověď je správná.

Spočítejte vyhlazený odhad vzájemné spektrální výkonové hustoty (CPSD) Welchovou metodou pro signály x a y uložené v mat-souboru sig_xy_04.mat (pro načtení do MATLABu použijte "load sig_xy_04.mat"). Signály jsou vzorkované kmitočtem fs = 16 kHz a pro výpočet volte následující parametry:

- délku krátkodobého segmentu volte 1024 vzorků,
- krátkodobé segmenty váhujte Hammingovým oknem,
- segmentujte s 50% překryvem,
- počet bodů FFT volte stejný, jako je délka segmentu,
- počítejte s implicitním *jednostranným odhadem CPSD* reálných signálů.

Určete, který z následujících obrázků je požadovaným odhadem fáze CPSD v radiánech!

Vyberte jednu z nabízených možností:

Pro signály **sig1** a **sig2** vzorkované kmitočtem *fs* = 8 *kHz* a uložené v mat-souboru **sigs_2chan_06.mat** (pro načtení do MATLABu použijte **load sigs_2chan_06.mat**) vypočtěte **koherenční funkci,** konkrétně **MSC (Magnitude Square Coherence)**, přičemž pro výpočet volte následující parametry:

- délka krátkodobého segmentu 16 ms,
- váhování Hammingovo okno odpovídající délky,
- segmentace s 75% překryvem,
- řád FFT stejný, jako je délka krátkodobého segmentu.

Určete prvních 10 hodnot MSC.

Vyberte jednu z nabízených možností:

- $\bigcirc \ 0,011997 \quad 0,64641 \quad 0,8818 \quad 0,61055 \quad 0,61224 \quad 0,71113 \quad 0,79619 \quad 0,43512 \quad 0,60966 \quad 0,97314$
- 0,020039 0,54615 0,11738 0,22632 0,51629 1,0674 0,44451 1,0942 0,61345 0,78361
- 0,0194 0,50837 0,90562 0,7568 0,58641 1,2984 1,8333 1,4043 1,0351 0,15669
- $\bigcirc \ 0,0024187 \quad 0,11171 \quad 0,75395 \quad 0,20624 \quad 0,38244 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,32362 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,87852 \quad 0,84389 \quad 0,86242 \quad 0,42067 \quad 0,87852 \quad 0,42067 \quad 0,42067$

Vaše odpověď je správná.

Správná odpověď je: 0,0036205 0,034509 0,01584 0,0026357 0,030037 0,056595 0,031722 0,0047744 0,011237 0,053796.

Pro signály sig1 a sig2 vzorkované kmitočtem fs = 16 kHz a uložené v mat-souboru sigs_2chan_01.mat (pro načtení do MATLABu použijte "load sigs_2chan_01.mat") vypočtěte koherenční funkci, konkrétně MSC (Magnitude Square Coherence), přičemž pro výpočet volte následující parametry:

délka krátkodobého segmentu - 8 ms,
váhování - Hammingovo okno odpovídající délky,
segmentace - s 50% překryvem,
řád FFT - stejný, jako je délka krátkodobého segmentu.

Určete průměrnou koherenci (tj. průměrnou hodnotu vypočítané MSC). Výsledek uveďte s minimální přesností na 3 platné cifry.

Odpověď: 0,0503

sig_xy_03.mat (pro načtení do MATLABu použijte "load sig_xy_03.mat"). Signály jsou vzorkované kmitočtem fs = 16 kHz a pro výpočet volte následující parametry:

- délku krátkodobého segmentu volte 512 vzorků,
- krátkodobé segmenty váhujte Hammingovým oknem,
- segmentujte s 50% překryvem,
- počet bodů FFT volte stejný, jako je délka segmentu,
- počítejte s implicitním *jednostranným odhadem CPSD* reálných signálů.

Určete, který z následujících obrázků je požadovaným odhadem **fáze CPSD v radiánech!**

odhae Komp resp.	d amplit olexní sp <i>mixFFT</i> (udového sp ektra v jedn	ektra čistéh otlivých krát rátkodobá s	o signálu kodobýci pektra dé	(<i>sig</i>) na zák n segmente ilky 512 jsor	ladě ampli ch jsou ulo u v řádcích	tudového s žená v mat daných ma	pektrálního -souboru SC tic). Jako výs	odečítání s o _FFT_sigs.	mix = sig + noise. Určete dvoucestným usměrněním. _01.mat v maticích <i>noiFFT</i> e hodnoty prvních 10
	t one:									
0 1	,12324	0,884947	9,39841	1,80959	16,9709	10,9042	2,08916	0,0162036	0,497925	6,71645
0 7	,36062	0,0101542	0 0	0	9,64077	0 0	31,5646	25,0647		
O 2	,4051	3,877 3,5	593 4,686	02 3,46	51 2,394	1 1,0092	0,0057704	3,3319	4,0527	
0 0	,014583	0,048628	0,046576	0,18772	1,4553	0,54022	0,15727 0,	056011 1	,3484 0,75	783
O -{	8,07855	-8,04596	12,2988	-3,4212	-1,5268	16,1438	8,0591	-0,0101742	14,9577	29,1949

Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi reálného KEPSTRA mezi dvěma signály frame-001.bin a frame-009.bin (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*). Počítejte reálné kepstrum, signály váhujte Hammingovým oknem příslušné délky. Vzdálenost počítejte z prvních 13 koeficientů včetně nultého koeficientu c[0], tj. z koeficientů c[0]-c[12].

Pro výpočet vzdálenosti použijte funkci cde.m (POZN. Funkci je třeba stáhnout do aktuálního adresářell).

Select one:

O .4599

1.3137

1.9460

2.3823

4.0801

Určete zkreslení delšího signálu SA015S01.CSX na bázi kepstrální vzdálenosti a reálného KEPSTRA, jestliže referenční nezkreslený signál je SA015S01.CS0. Oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*. Počítejte reálné kepstrum po segmentech délky *wlen=512* s 50% překryvem a uvažujte implicitní váhování každého segmentu Hammingovým oknem. Počet kepstrálních koeficentů (bez c[0]) volte cp=20 a vzdálenost počítejte na bázi Euklidovské vzdálenosti bez nultého koeficientů c[0], tj. z koeficientů c[1]-c[20].

Pro výpočet vzdálenosti použijte funkci cde.m (POZN. Funkci je třeba stáhnout do aktuálního adresářel!).

Select one:

Clear my choice

- O 7.313
- 2.080
- O 3.382
- O 3.946
- 0 1.376

Clear my choice

Určete kosinovou transformaci DCT-2 signálu frame-023.bin (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci loadbin. Jako výsledek uveďte prvních 8 koeficientů DCT spektra.
POZN. DCT-2 signálu délky N je definovaná jako
$X^{c2}[k] = 2\sum_{n=0}^{N-1} x[n]\cosrac{\pi k(2n+1)}{2N}$
Vyberte jednu z nabízených možností:
O 0.00588 0.04170 0.04039 0.04504 0.03497 0.03736 0.03612 -0.13869
O -0.01925 -0.00102 0.00602 -0.00784 -0.00145 0.01349 0.00765 0.00900
O -0.03748 -0.01485 -0.01516 -0.00513 -0.08508 -0.34627 0.22806 0.49868
O 0.02790 0.00708 -0.00154 0.01718 0.01039 0.01154 0.01207 0.00172
O -0.01836
Komprimuje signál frame-004.bin na bázi kosinové transformace (použijte funkce <i>dct</i> a <i>idct</i> definované v MATLABu). Pro danou kompresi (aproximaci) použijte prvních 70 komponent DCT spektra . Signál je uložen jako binární soubor bez hlavičky, pro načtení do MATLABu použijte funkci <i>loadbin</i> . Původní a dekomprinovaný signál si pro kontrolu ilustrativně zobrazte.
Spočítejte výkony původního i komprimovaného signálu a určete jaké procento výkonu původního signálu je zahrnuto v signálu komprimovaném.
Vyberte jednu z nabízených možností:
O 89.88 %
O 59.76 %
O 67.65 %
○ 80.67 % ○ 18.11 %
C 16.11 70
Pro posloupnost vzorků [10 8 6 4 2 0 -2 -4 -2] určete posloupnost doplněnou se sudou 2N-2 symetrií pro účely výpočtu DCT pomocí DFT. Správnou odpověď vyberte z následujících možností: O[10 8 6 4 2 0 -2 -4 -2 -4 -2 0 2 4 6 8]
○ [10 8 6 4 2 0 -2 -4 -2 8 6 4 2 0 -2 -4] ○ [10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2] ○ [10 8 6 4 2 0 -2 -4 -2 4 2 0 -2 -4 -6 -8]
O [10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2]
○ [10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2] ○ [10 8 6 4 2 0 -2 -4 -2 4 2 0 -2 -4 -6 -8]
 [10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2 1 0 8 6 4 2 0 -2 -4 -6 -8] [10 8 6 4 2 0 -2 -4 -2 4 2 0 -2 -4 -2 0 2 4 6 8 10] Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi LPC KEPSTRA mezi dvěma signály frame-001.bin a frame-009.bin (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATLABU použijte funkci (oadbin). Počítejte LPC kepstrum, řád LPC modelu volte p=16 a signály váhujte Hammingovým oknem příslušné délky. Vzdálenost počítejte z prvních 12 koeficientů bez nultého koeficientu c[0], tj. z koeficientů c[1]-c[12]. Pro výpočet vzdálenosti použijte funkci cde.m (POZN. Funkci je třeba stáhnout do aktuálního adresářel). Vyberte jednu z nabízených možností: 0.7992 1.9460 1.3137 4.0801
[10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2 1 0 8 6 4 2 0 -2 -4 -6 -8] [10 8 6 4 2 0 -2 -4 -2 4 2 0 2 4 6 8 10] Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi LPC KEPSTRA mezi dvěma signály frame-001.bin a frame-009.bin (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATIABu použijte funkci /oadbin). Počítejte IPC kepstrum, řád IPC modelu volte p=16 a signály váhujte Hammingovým oknem příslušné dělky. Vzdálenost počítejte z prvních 12 koeficientů bez nutého koeficientu c(0], tj. z koeficientů c(1]-c(12). Pro výpočet vzdálenosti použijte funkci cde.m (POZN. Funkci je třeba stáhnout do aktuálního adresářell). Vyberte jednu z nabízených možností: ○ 0.7992 ○ 1.9460 ○ 1.3137 ○ 4.0801 ○ 2.3823
C 10
[10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2 4 2 0 -2 -4 -6 -8] [10 8 6 4 2 0 -2 -4 -2 4 2 0 2 4 -2 0 2 4 6 8 10] Lickie EUKIDOVSKOU KEPSTRÁJNÍ VZDÁLENOST na bází JPC KEPSTRA mezi dvěma signály frame-OOLbin a frame-OOS.bin (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načlení do MATABlu použitie funkci loadziní). Počítejte IPC kepstrum, řád IPC modelu volte p=16 a signály váhujte Hammingovým oknem příslušné délity. Vzdálenost počítejte z prvních 12 koeficientů obez nultého koeficientů cilj. (i. z koeficientů cil). Pro výpočet vzdálenosti použite funkci odem (POZN. Funkci je třeba stáhnout do aktuálního adresářeli). Vyberte jednu z nabízených možností: 0 1992 1 19460 1 3137 4 0801 2 3823 Stánka Datál stránka Datál stránka Datál stránka Datál stránka spektra čistého signálu (síg) na základě amplitudového spektrálního odečítání s dvoucestným usměrněním. Komplexní spektra v jednottivých krátkodobých segmentech jsou uložená v mat-souboru SO_FFT_sigs_01.mat v maticích noIFFT resp. mixFFT (jednottivá krátkodobá spektra délky 512 jsou v řádcích daných matic). Jako výsledek uveďte hodnoty prvních 10 frekvenčních komponent určeného amplitudového spektra 1. segmentu signálu sig.
[10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2 10 8 6 4 2 0 -2 -4 -2 1 0 8 6 4 2 0 -2 -4 -2 2 -4 -6 -8] [10 8 6 4 2 0 -2 -4 -2 4 2 0 2 -4 -2 0 2 4 6 8 10] Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi LPC KEPSTRA mezi dvěma signály frame-OOLbin a frame-OOLbin (oba signály jsou uloženy jako binární soubory bez hlavicky, pro načtení do MATLABu použijte funkci <i>losadbini</i>) Počítejte LPC kepstrum, řád LPC modelu volte p=16 a signály váhujte Hammingovým oknem příslušné dětky. Vzdálenost počítejte z prvních 12 koefticientů bez nutého koefticientu rjol, tj. z. koefticientů cři)-či 12. Pro výpoče vzdálenosti použijte funkci cde.m (POZN. Funkci je třeba stáhnout do aktuálního adresářet). Vyberte jednu z nabízených možností: ○ 0.7992 ○ 1.9460 ○ 1.3137 ○ 4.0801 ○ 2.3823 Stránka Dalář stránka Dalář stránka Dalář stránka Dalář stránka Dalář stránka Dalář stránka Dalář stránka Dalář stránka Vjednotlivých krátkodobých segmentech jsou uložená v mat-souboru SO_FFT_sigs_O1.mat v maticích <i>noIFFT</i> resp. <i>mixFFT</i> (jednotlivá krátkodobá spektra dělky 51 2 jsou v řádcích daných matic). Jako výsledek uvedte hodnoty prvních 10 frekvenčních komponent určeného amplitudového spektra 1. segmentu signálu síg.
[10 8 6 4 2 0 - 2 - 4 - 2 10 8 6 4 2 0 - 2 - 4 - 2 10 8 6 4 2 0 - 2 - 4 - 2] [10 8 6 4 2 0 - 2 - 4 - 2 4 2 0 - 2 - 4 - 2 4 2 0 0 - 2 - 4 - 6 - 8] [10 8 6 4 2 0 - 2 - 4 - 2 4 2 0 - 2 - 4 - 2 4 2 0 2 4 6 8 10] Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi JPC KEPSTRÁ mezi ovéma signály frame-001.bin a frame-008.bin (oba signály jsou uložený jako binámí soubory bez hlavičky, pro načtení do MATLABu použijné funkci <i>Oadzbini</i> . Počítejte JPC kepstrum, fád JPC modelu volte pa-16 a signály váhujte Hammingovým oknem příslušné délity. Vzdálenost počítejte z prvních 12 koeficientů bez nultého koeficientu čljl. t z koeficientů člj-čl 12.] Pro výpočet vzdálenosti použijte funkci odem (POZN. Funkci je třeba stáhnout do aktuálního adresářet). Vyberte jednu z nabízených možností:
Table

Určete kosinovou transformaci DCT-1 signálu frame-022.bin (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci loadbin. Jako výsledek uvedte prvních 8 koeficientů DCT spektra.

POZN. DCT-1 signálu délky N je definovaná jako

POZN. DCT-1 signalu delity N je definovana jako
$$X^{c1}[k] = 2\sum_{n=0}^{N-1} \alpha[n]x[n]\cos\frac{\pi kn}{N-1}, \; \text{kde } \alpha[n] = \begin{cases} 0.5 & \text{pro } n=0,\; N-1,\\ 1 & \text{pro } 1 \leq n \leq N-2 \end{cases}$$

- 0.00588 0.04170 0.04039 0.04504 0.03497 0.03736 0.03612 -0.13869
- -0.01977 -0.00313 0.00941 0.00390 -0.09808 -0.00781 0.30113 0.00636
- -0.00530 0.02988 0.01618 0.02754 0.01862 -0.04409 -0.05706 0.33871
- ⊚ -0.03748 -0.01485 -0.01516 -0.00513 -0.08508 -0.34627 0.22806 0.49868 ... **×**

Vaše odpověď je chybná.

Určete kosinovou transformaci DCT-1 signálu frame-000.bin (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci loadbin. Jako výsledek uveďte prvních 8 koeficientů DCT spektra.

POZN. DCT-1 signálu délky N je definovaná jako

$$X^{c1}[k] = 2\sum_{n=0}^{N-1} lpha[n]x[n]\cosrac{\pi kn}{N-1}, \; ext{kde } lpha[n] = \left\{egin{array}{ll} 0.5 & ext{pro } n=0, \; N-1, \ 1 & ext{pro } 1 \leq n \leq N-2. \end{array}
ight.$$

- O -0.00530 0.02988 0.01618 0.02754 0.01862 -0.04409 -0.05706 0.33871 ...
- 0.00588 0.04170 0.04039 0.04504 0.03497 0.03736 0.03612 -0.13869 ...
- -0.10662 -0.00532 -0.12560 -0.01053 -0.12254 -0.05747 -0.33862 0.43275 ...
- -0.01977 -0.00313 0.00941 0.00390 -0.09808 -0.00781 0.30113 0.00636 ...
- O -0.03748 -0.01485 -0.01516 -0.00513 -0.08508 -0.34627 0.22806 0.49868 ...

