Método baseado em Hufman

Modelo: Moore ou Mealy

Procedimento:

- 1)Descrição do problema ->
 Grafo (tabela) de transição de estados Moore (Mealy)
- 2) Minimização de estados
- 3) Assinalamento de estados
- 4) Escolher FF's
- 5) Minimização lógica
- 6) Mapeamento tecnológico

Exemplo: Detector de sequência três 1's consecutivos

Grafo de Transição de Estados Modelo

Tabela de Transição de Estados Modelo Moore

05/06/2020

Prof. Duarte L. Oliveira - Divisão de Engenharia Eletrônica do ITA

Etapas: Assinalamento de estados -- escolher FF e Minimização lógica

Tabela de excitação

$Q(t) \rightarrow Q(t+1)$	<u>J_K</u>
0 → 0	0 X
0 → 1	1 X
1 → 0	X 1
1 →1	X 0

Prof. Duarte L. Oliveira - Divisão de Engenharia Eletrônica do ITA

Circuito lógico

Grafo de Transição de Estados Modelo Mealy -> Tabela de Transição de Estados

6

Etapas: Assinalamento de estados – Escolher FF e Minimização lógica

X 0

$Q(t) \rightarrow Q(t+1)$	J K
$0 \rightarrow 0$	0 X
0 → 1	1 X
1 → 0	X 1

 $1 \rightarrow 1$

Tabela de excitação

05/06/2020

\X		
Q1 Q0\	0	1
00	0	0
01	0	1
11	I	
10	Х	Х

 $J1 = X Q_0$

Prof. Duarte L. Oliveira - Divisão de Engenharia Eletrônica do ITA

Circuito lógico

