Lecture 11 Business Cycles and RBC model

Mikhail Golosov

Back to lecture 1

Sources: Historical Statistics of the U.S.; Economic Report of the President; and U.S. Census Bureau.

Trends and cycles

8 / 27

- ullet Output is very correlated with TFP (Solow residual) (corr pprox 0.8)
- Output is more volatile than Solow residual
- Investments are much more volatile (x3) than output
- Consumption is much less volatile (x0.5) than output
- Total hours are roughly as volatile as out

Real Business Cycle model

- Neoclassical growth model did a remarkably good job at explaining growth facts
- Can it also explain business cycle facts?
 - Kydland-Prescott (1982)
- Simplest first cut
 - growth model: we took only trend from Solow residual
 - RBC: let's feed fluctuations of Solow residual as well

Key elements

• Representative consumer

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$$

Representative firm,

$$Y_t = F_t(K_t, L_t) = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Complete markets
- Feasibility

$$C_t + K_{t+1} = Y_t + (1 - \delta) K_t$$

ullet A_t is (the only) exogenous stochastic process

Some observations

- Let $X_t = (C_t, K_{t+1}, L_t)$ be endogenous variables
- Note that they are *random variables*: they depend on the realizations of $\{A_s\}_{s=0}^t$ shocks
- We need some formalism
 - let s_t be exogenous state ($s_t = A_t$ in our RBC example with one shock, but more generally it is a vector of all exogenous shocks)
 - let $s^t = (s_0, ..., s_t)$ be a history of shocks up to period t
 - $Pr(s^t)$ is the history of realizations
 - $\Pr\left(s^{t+1}|s^{t}\right) = \Pr\left(s^{t+1}\right) / \Pr\left(s^{t}\right)$ is the conditional probability
- Endogenous variables in period t are functions of s^t : $X_t = X_t(s^t)$.

Social planner problem

In this notation, social planner's problem is

$$\max_{C_{t},N_{t},K_{t+1}}\sum_{t=0}^{\infty}\sum_{s^{t}}\Pr\left(s^{t}\right)\beta^{t}U\left(C_{t}\left(s^{t}\right),L_{t}\left(s^{t}\right)\right)$$

s.t. K_0 given and

$$C_{t}\left(s^{t}\right) + K_{t+1}\left(s^{t-1}\right) = A_{t}K_{t}\left(s^{t-1}\right)^{\alpha}L_{t}\left(s^{t}\right)^{1-\alpha} + (1-\delta)K_{t}\left(s^{t-1}\right)$$

- ullet Let $eta^t \Pr\left(s^t\right) \lambda_t\left(s^t\right)$ be the Lagrange multiplier on this constraint
- FOCs

$$\begin{aligned} & U_{C}\left(\boldsymbol{s}^{t}\right) = \lambda_{t}\left(\boldsymbol{s}^{t}\right) \\ & U_{L}\left(\boldsymbol{s}^{t}\right) = -\lambda_{t}\left(\boldsymbol{s}^{t}\right)F_{L}\left(\boldsymbol{s}^{t}\right) \\ & \lambda_{t}\left(\boldsymbol{s}^{t}\right) = \beta\sum_{\boldsymbol{s}^{t+1}}\Pr\left(\boldsymbol{s}^{t+1}|\boldsymbol{s}^{t}\right)\left(1 + F_{K}\left(\boldsymbol{s}^{t+1}\right) - \delta\right)\lambda_{t+1}\left(\boldsymbol{s}^{t+1}\right) \end{aligned}$$

Properties

Combine FOCs

$$\begin{aligned} & U_{C}\left(s^{t}\right) = -U_{L}\left(s^{t}\right)F_{L}\left(s^{t}\right) \\ & U_{C}\left(s^{t}\right) = \beta \sum_{s^{t+1}} \Pr\left(s^{t+1}|s^{t}\right)U_{C}\left(s^{t+1}\right)\left(1 + F_{K}\left(s^{t+1}\right) - \delta\right) \end{aligned}$$

• Together with feasibility (and TVC)

$$C_{t}\left(s^{t}\right)+K_{t+1}\left(s^{t-1}\right)=A_{t}K_{t}\left(s^{t-1}\right)^{\alpha}L_{t}\left(s^{t}\right)^{1-\alpha}+\left(1-\delta\right)K_{t}\left(s^{t-1}\right)$$

these three equations pin down (stochastic) solution $\left(C_{t}\left(s^{t}\right),K_{t+1}\left(s^{t}\right),L_{t}\left(s^{t}\right)\right)_{t,s^{t}}$

Shorthand

It is common to use shorthand notation for SP problem

$$\max_{C_{t},L_{t},K_{t+1}}\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}U\left(C_{t},L_{t}\right)$$

s.t. K_0 given and

$$C_t + K_{t+1} = A_t K_t^{\alpha} L_t^{1-\alpha} + (1-\delta) K_t$$

Short-hand FOCs

$$\begin{aligned} &U_{C,t} = -U_{L,t} F_{L,t}, \\ &U_{C,t} = \beta \mathbb{E}_t U_{C,t+1} \left(1 + F_{K,t+1} - \delta \right). \end{aligned}$$

 While short hand is more elegant and concise, it is easier to make mistakes than if one works with full, explicit form of the problem

Recursive formulation

- While FOCs are insightful about optimality conditions, they are often hard to work with to fully "solve" the model, since everything is a random variable
- Writing problem recursively is very helpful in such situations
- Suppose A_t is an AR(1) process. Then the SP problem can be written as

$$V\left(\textit{K},\textit{A}\right) = \max_{\textit{C},\textit{L},\textit{K}_{+}} U\left(\textit{C},\textit{L}\right) + \sum_{\textit{A}_{+}} \Pr\left(\textit{A}_{+}|\textit{A}\right) V\left(\textit{K}_{+},\textit{A}_{+}\right)$$

s.t.

$$C + K_{+} = AK^{\alpha}L^{1-\alpha} + (1-\delta)K$$

Recursive formulation

- \bullet Value function V can be found numerically via value function iteration
- Solution is policy functions $\widetilde{X}(K,A) = \widetilde{C}(K,A)$, $\widetilde{N}(K,A)$, $\widetilde{K}_{+}(K,A)$ and for any history of shocks $s^t = A^t$ we can find $X_t(s^t)$ by substituting these policy functions recursively, e.g.

$$X_{0}\left(s_{0}\right)=\widetilde{X}\left(K_{0},A_{0}\right),$$
 $X_{1}\left(s_{0},s_{1}\right)=\widetilde{X}\left(\widetilde{K}_{+}\left(K_{0},A_{0}\right),A_{1}\right),$

• Exercise 1: Use the Bellman equation to derive the optimality conditions

$$\begin{split} &U_{C,t} = -U_{L,t} F_{L,t}, \\ &U_{C,t} = \beta \mathbb{E}_t U_{C,t+1} \left(1 + F_{K,t+1} - \delta \right). \end{split}$$

Mikhail Golosov Lecture 11 18/27

Fit for "standard" calibration

Elasticity of labor supply =0.5 all lower case variables are logs of upper cases

Volatility	(rel. to output)		Autocorrela	ation	
Stat	Data	RBC	Stat	Data	RBC
$\sigma(y_t)$	(1.62%)	(1.06%)	$\rho(y_t, y_{t-1})$	0.85	0.73
$\sigma\left(c_{t}\right)$	0.53	0.42	$\rho\left(c_t, c_{t-1}\right)$	0.85	0.78
$\sigma\left(i_{t}\right)$	2.87	2.78	$\rho(i_t, i_{t-1})$	0.88	0.72
$\sigma(n_t)$	1.12	0.31	$\rho(n_t, n_{t-1})$	0.91	0.72
Corr. witl	h Output		Corr. with	ΓFP	
Stat	Data	RBC	Stat	Data	RBC
$\rho(c_t, y_t)$	0.79	0.94	$\rho\left(c_t, z_t\right)$	0.59	0.93
$\rho(i_t, y_t)$	0.77	0.99	$\rho(i_t, z_t)$	0.44	0.99
$\rho(n_t, y_t)$	0.87	0.98	$\rho(n_t, z_t)$	0.49	0.98
			$\rho\left(y_t, Z_t\right)$	0.80	1.00

The fit looks great, except possibly for $\sigma(n_t) \Longrightarrow$ can be improved with higher labor supply elasticity

Discussion

- With a single exogenous shock Solow residual or TFP the RBC model captures remarkably well fluctuations in a wide range of macro aggregates
- If this model is right, it also says that business cycle fluctuations are *efficient*: no scope for policy interventions

Two issues with RBC models

- While it fits quantities very well, the fit for prices is terrible
- No scope common business cycle concerns and tools
 - monetary policy has no effect on real economy in RBC model while it has some effects in the data
 - no scope for any "inefficient" fluctuations (focus of the next lecture)

Competitive equilibrium version

- We do the simplest version of competitive equilibrium
 - consumers own all capital
 - rent capital and labor to firms
 - trade risk-free bonds (a security that is bough in period t at price Q_t and pays 1 unit of consumption good in period t+1)
 - Risk-free bond is in zero net supply among themselves

Competitive equilibrium

- Competitive equilibrium are stochastic sequences $\{C_t, K_{t+1}, L_t, B_t\}_t$ and prices $\{W_t, R_t, R_t^{rf}\}_t$ such that
- Consumers solve

$$\max_{C_{t},L_{t},K_{t+1}}\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}U\left(C_{t},L_{t}\right)$$

s.t. K_0 given, $B_0 = 0$ and

$$C_t + K_{t+1} + Q_t B_{t+1} = W_t L_t + (1 + R_t - \delta) K_t + B_t$$

Firms solve

$$\max_{K_t, L_t} A_t K_t^{\alpha} L_t^{1-\alpha} - W_t L_t - R_t K_t$$

Markets clear

$$B_t = 0$$

• Exercise 2: show that competitive equilibrium allocations $\{C_t, K_{t+1}, L_t\}_t$ satisfy the same three optimality conditions as the solution to the planning problem

Risk-free interest rate

• Let risk-free interest rate R_t^{rf} be defined by

$$R_t^{rf} := 1/Q_t - 1$$

- Note that saving in period t one unit of consumption in
 - bonds pays interest rate $1 + R_t^{rf}$ in period t + 1
 - capital pays interest rate $1 + R_{t+1} \delta$ in period t+1
- Excercise 3: show that the two optimality conditions imply

$$U_{c,t} = \left(1 + R_t^{rf}\right) \beta \mathbb{E}_t U_{c,t+1},$$

$$U_{c,t} = \beta \mathbb{E}_t U_{c,t} \left(1 + R_{t+1} - \delta\right).$$

What is the intuition for why one interest rate is outside of the expectation operator but not the other?

RBC model and prices

Our RBC model did great matching quantities, but kind of terrible for matching prices

Data sources (1979 - 2006)

- 1. TFP: Solow residual $\implies \rho = 0.98, \sigma_{\varepsilon} = 0.0065$
- 2. r_t: return on 90-day T-bill, adjusted for realized inflation
- 3. r_t^x : market index from Ken French, adjusted for realized inflation
- 4. w_t : CPS from Haefke, Sonntag, and van Rens (2009)

Summary statistics (logged and HP-filtered)

	$\sigma(r_t)$	$\sigma(r_t^x)$	$\sigma(w_t)/\sigma(y_t)$	$\rho(r_t, z_t)$	$\rho(r_t^x, z_t)$	$\rho(W_t, Z_t)$
Data	2.01%	32.45%	0.54	-0.16	-0.12	0.38
RBC	0.15%	0.03%	0.69	0.97	0.07	0.99

Fit for "standard" calibration revisited

Volatility			Autocorrela	Autocorrelation		
Stat	Data	$GE\ Model$	Stat	Data	Model	
$\sigma\left(y_{t}\right)$	1.62%	0.86%	$\rho\left(y_{t}, y_{t-1}\right)$	0.85	0.74	
$\sigma\left(c_{t}\right)/\sigma\left(y_{t}\right)$	0.53	0.45	$\rho\left(c_{t}, c_{t-1}\right)$	0.85	0.78	
$\sigma\left(i_{t}\right)/\sigma\left(y_{t}\right)$	2.87	2.66	$\rho\left(i_{t}, i_{t-1}\right)$	0.88	0.73	
$\sigma(r_t^{\mathrm{rf}})$	2.09%	0.11%	$\rho\left(r_t^{rf}, r_{t-1}^{rf}\right)$	0.40	0.73	
$\sigma\left(rx_{t}\right)$	32.38%	0.01%	$\rho(rx_t, rx_{t-1})$	0.02	0.73	
Cyclicality			$\overline{ m Misc}$			
Stat	Data	$GE\ Model$	Stat	Data	$GE\ Model$	
$\rho\left(c_{t},y_{t}\right)$	0.79	0.97	$\rho\left(z_{t},y_{t}\right)$	0.80	1.00	
$\rho\left(i_t, y_t\right)$	0.77	0.99	$\rho\left(z_t, r_t^{rf}\right)$	-0.15	0.99	
$\mathbb{E}[rx_t]$	2.67	-0.00	$\rho\left(z_{t},rx_{t}\right)$	-0.08	1.00	
$\rho\left(r_t^{\mathrm{rf}}, y_t\right)$	-0.18	0.97	$\rho\left(rx_t,y_t\right)$	-0.23	0.98	

Discussion

- Poor relationship between prices of financial assets and quantities is a puzzle that goes beyond RBC models or macro, and applies to finance field more generally
- Stylized facts:
 - prices of financial assets (e.g., individual stocks, S&P500, exchange rates, interest rates) are very volatile, not very correlated with either current or future quantity variables (e.g., dividends, GDP, consumption, inflation)
- Active work in finance trying to understand these puzzling phenomena better