1

ASSIGNMENT 1: GATE 2010 PI : PRODUCTION & INDUSTRIAL ENGINEERING

EE25BTECH11054 - S. Harsha Vardhan Reddy

of circular cross-section, the frictional head loss the		
a) increase in runner diameterb) decrease in internal surface roughness of run	c) decrease in length of runner ned) increase in average velocity	
a) directly proportional to its surface area b) inversely proportional to the specific heat of c) directly proportional to the thermal diffusivit d) inversely proportional to the pouring tempera	the cast material ty of the mould material vature	(GATE PI 2010)
a) In a rolling process, the roll separating force can be reducing the roll diameterb) increasing friction between the rolls and metal	c) reducing front tension to rol	(GATE PI 2010)
4) Ultrasonic machines, used in material removal p ers work on different working principles. One of is based on	<u>-</u>	
a) eddy current effectb) Seebeck effect	c) piezo-resistive effectd) piezo-electric effect	
5) Hot die steel, used for large solid dies in drop	forging, should necessarily have	(GATE PI 2010)
a) high strength and high copper contentb) high hardness and low hardenability	c) high toughness and low therd) high hardness and high ther	•
6) In powder metallurgy, sintering of a component	ut	(GATE PI 2010)
a) improves strength and reduces hardnessb) reduces brittleness and improves strength	c) improves hardness and redud) reduces porosity and increas	_
7) Which one among the following statements is a) Thermoplastic polymers have cross-linked chb) Thermosetting polymers have covalent bonder. Polyethylene is a thermosetting polymer.	hain structure.	(GATE PI 2010)

d) Thermoplastic polymers harden on heating and soften on cooling.

8) During turning of a low carbon steel bar with TiN coated carbide insert, one needs to improve surface finish without sacrificing material removal rate. To achieve improved surface finish, one should (GATE PI 2010)						
b) increase nose radius	ecrease nose radius of the	•				
9) Eutectic composition of	of iron-carbon alloy alway	s corresponds to its	(GATE PI 2010)			
a) lowest melting tempb) highest melting temp		c) least carbon percentad) highest fracture toug	_			
10) As the weight percentage	age of carbon increases in	plain carbon steel, its	(GATE PI 2010)			
a) weldability decreaseb) ductility improves	s	c) tensile strength decreed) formability improves				
11) Austempering is a hear	t treatment process that is	aimed at obtaining	(GATE PI 2010)			
a) martensitic steelb) bainitic steel		c) tempered martensitiond) austenitic steel	steel			
12) A machine component under fluctuating tensile stress, (in MPa)yy, is considered to be safe if the average stress, σ_{avg} (in MPa) and the stress amplitude (variable stress), σ_{amp} (in MPa) satisfy the following inequality: $\frac{\sigma_{avg}}{360} + \frac{\sigma_{amp}}{210} \le 1$						
	is subjected to a stress, σ ne maximum value of p (-). For safe operation of the (GATE PI 2010)			
a) 70	b) 140	c) 280	d) 320			
13) A heat pump is operating between -23°C and 27°C. The compressor power input to the heat pump is 2 kW. The heating COP (coefficient of performance) of the heat pump is 75% of the COP of a Carnot heat pump operating between the same temperatures. The heating power output (in kW) of the heat pump is (GATE PI 2010)						
a) 0.3	b) 7.5	c) 9.0	d) 12.0			
14) Among the given four computerized layout techniques, which one is an improvement routine technique requiring a user specified initial layout? (GATE PI 2010) a) ALDEP (Automated Layout Design Program) b) CORELAP (Computerized Relationship Layout Planning) c) PLANET (Plant Layout Analysis and Evaluation Technique) d) COFAD (Computerized Facilities Design) 15) Match phrases in Group I with those in Group II.						

P. Lead Time Forecast
Q. Master Production Schedule
R. Payback Period
S. Early Start Schedule

Group II

1. Material Requirement Planning
2. Financial Appraisal
3. Project Planning
4. Inventory Control

(GATE PI 2010)

(GATE PI 2010)

b) P-4, Q-2, R-3, S-1		d) P-1, Q-2, R-4, S-3		
16) Which one of the following	owing intellectual propert	ies can be classified as c	opyrights	? (GATE PI 2010)
a) Patents and Trademb) Industrial Designs	narks	c) Trade Secretsd) Literary and Artistic	Expressi	ions
17) The value of q for wh	nich the following set of l	inear algebraic equations		
	2x	+3y=0		
	6x	+qy=0		
can have non-trivial s	olution is			(GATE PI 2010)
a) 2	b) 7	c) 9	d) 11	
18) If $\{1, 0, -1\}^T$ is an eig	genvector of the following	matrix,		
	$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 2 & -1 \\ -1 & 1 \end{pmatrix}$		
then the corresponding	g eigenvalue is			(GATE PI 2010)
a) 1	b) 2	c) 3	d) 5	
19) if $f(x) = \sin x $, then	the value of $\frac{df}{dx}$ at $x = -\frac{\pi}{4}$	is		(GATE PI 2010)
a) 0	b) $\frac{1}{\sqrt{2}}$	c) $-\frac{1}{\sqrt{2}}$	d) 1	
20) Which one of the follo (GATE PI 2010)	wing differential equations	s has a solution given by the	ne functio	$\ln y = 5\sin\left(3x + \frac{\pi}{3}\right)$
a) $\frac{dy}{dx} - \frac{5}{3}\cos(3x) = 0$ b) $\frac{dy}{dx} + \frac{5}{3}\cos(3x) = 0$		c) $\frac{d^2y}{dx^2} + 9y = 0$ d) $\frac{d^2y}{dx^2} - 9y = 0$		
21) If $f(x+iy) = x^3 - 3x$ is	$y^2 + i\varphi(x, y)$ where $i = \sqrt{-}$	$\overline{-1}$ and $f(x+iy)$ is an an	alytic fun	ction, then $\varphi(x, y)$ (GATE PI 2010)
a) $y^3 - 3x^2y$	b) $3x^2y - y^3$	c) $x^4 - 4x^3y$	d) xy -	y^2
22) If a complex number	ω satisfies the equation ω	3 = 1 then the value of 1	$+\omega + \frac{1}{\omega}$ i	s (GATE PI 2010)
a) 0	b) 1	c) 2	d) 4	
23) If a random variable X that $X \ge 2$ is	X satisfies the Poisson's dis	stribution with a mean val	ue of 2, the	hen the probability (GATE PI 2010)
a) $2e^{-2}$	b) $1 - 2e^{-2}$	c) $3e^{-2}$	d) 1 – 3	$3e^{-2}$

c) P-1, Q-4, R-2, S-3

a) P-4, Q-1, R-2, S-3

24) The integral $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$ is equal to

d) ∞

25) The following algorithm equidistant points:	orithm computes the in $x_0 = a$; $x_j = x_{j-1} + h$;	ategral $J = \int_a^b f(x) dx$ from the g $x_{2m} = x_0 + 2mh = b$.	given values $f_j = f(x_j)$ at					
	Compute $S_0 = f_0 + f_{2m}$							
		$S_1 = f_1 + f_3 + \dots + f_{2m-1}$						
		$S_2 = f_2 + f_4 + \dots + f_{2m-2}$						
		$J = \frac{h}{3} (S_0 + 4S_1 + 2S_2)$						
The rule of numer	ical integration, which	uses the above algorithm, is	(GATE PI 2010)					
a) Rectangular ruleb) Trapezoidal rule		c) Four-point ruled) Simpson's rule						
radius (R_{IN}) 200 n R_{FN} . Along the die	During open die forging process using two flat and parallel dies, a solid circular steel disc of initial radius (R_{IN}) 200 mm and initial height (H_{IN}) 50 mm attains a height (H_{FN}) of 30 mm and radius of R_{FN} . Along the die-disc interfaces,							
	of friction (μ) is: $\mu = 0$.							
 ii. in the region R_{SS} ≤ r ≤ R_{FN}, sliding friction prevails, and P = √3Ke^{2μ/H_{FN}(R_{FN}-r)} and τ = μp, where p and τ are the normal and the shear stresses, respectively; K is the shear yield strength of steel and r is the radial distance of any point. iii. in the region 0 ≤ r ≤ R_{SS}, sticking condition prevails. The value of R_{SS} (in mm), where sticking condition changes to sliding friction, is (GATE PI 2010) 								
a) 241.76	b) 254.55	c) 265.45	d) 278.20					
27) Two steel bars, each of diameter 10 mm, are coaxially friction welded, end to end, at an axial pressure of 200 MPa and at a rotational speed of 4000 rpm. The coefficient of friction between the mating faces of the rotating bars is 0.50. The torque is assumed to act at the 3/4 th radius of the rotating bar. The power (in kW) consumed at the interface for welding is (GATE PI 2010)								
a) 12.33	b) 16.44	c) 18.50	d) 24.66					
current, voltage an of diameter 1.2 mr temperature of the ambient temperatu of the total electrical currents.	d weld speed are 150 A n is being fed at a const wire electrode are 700 re to be 30°C and negle	with direct current electrode posts, 30 V and 6 m/min, respectively, ant rate of 12 m/min. The density 0 kg/m ³ , 500 J/kg°C and 1530°C at the latent heat of melting. Further for melting of the wire electrodesic contents and the statement of th	A metallic wire electrode , specific heat and melting , respectively. Assume the ner, consider that two-third					
a) 39.58	b) 45.25	c) 49.38	d) 54.98					

c) 1

b) $\frac{1}{\sqrt{2}}$

a) $\frac{1}{2}$

29) The tool geometry of a single point right handed turning tool is provided in the orthogonal rake system (ORS). The sum of the principal (major) cutting edge angle and the auxiliary (minor) cutting edge angle of the above tool is 90° . The inclination angles of the principal and the auxiliary cutting edges are both 0° . The principal and auxiliary orthogonal clearance angles are 10° and 8° , respectively. The rake angle (in degree) measured on the orthogonal plane is $(GATE\ PI\ 2010)$

(GATE PI 2010)

d) 10

30)	Keeping all other para would be less if the too	9	ool wear in electrical di	scharge machining (<i>EDM</i>) (GATE PI 2010)
	· · ·			civity and low specific heat civity and high specific heat
31)	via a lead screw-nut n with a relative (<i>increm</i> vertical axis of the tab	nechanism. The lead screental) circular encoder.	ew has a pitch of 5 mm. The basic length unit (<i>B</i> te table moves along the	driven by a DC servo motor in. This lead screw is fitted (LU) of the slide along the vertical axis by 9 mm, the (GATE PI 2010)
	a) 1400b) 1800		c) 4200 d) 9000	
32)	are 25.000 mm and 25	.021 mm, respectively. W .033 mm. When the bore	hen the bore is designate	naximum) limits of the bore ed as 25H8, then the upper then the upper (maximum) (GATE PI 2010)
	a) 25.001	b) 25.005	c) 25.009	d) 25.013
33)	_	<u> -</u>		esh with a pinion having 20 e pinion is (GATE PI 2010)
	a) 33.828b) 37.587		c) 42.567 d) 93.969	
34)	random variable with the equipment are place	the distribution function	given as: $F(t) = 1 - e^{-t}$ Out of the units, which s	perates before failure, is a $0.5t$. Assume 100 pieces of survive the first 4 years, the (GATE PI 2010)
	a) 37	b) 39	c) 41	d) 43
35)	Euler's method of integ	gration is applied to the i	nitial value problem: y(0	(0) = 0.
		$\frac{dy}{dz}$	$\frac{y}{x} = 2x$	
	If the step size $h = (GATE PI 2010)$	43	v	e) after 5 steps would be
	a) 0	b) 10	c) 20	d) 30
36)	the same length by me as shown in the follow hinge at point X. The r A point force of 100 I	eans of a frictionless hing ring figure. The link XY oller is connected to a ma N is applied at point Y a	ge at Y and at the other is connected to the wall assless linear spring with as shown in the figure.	nother massless link XY of end to a frictionless roller, by means of a frictionless a spring constant 10 kN/m. At equilibrium, each of the his situation, the stretch of

c) 8

b) 2

a) 0

the spring (in mm) is

a) $\frac{5}{3}\sqrt{3}$ b) $\frac{5}{2}\sqrt{3}$

- c) $5\sqrt{3}$ d) $10\sqrt{3}$
- 37) A cantilever beam XY is made of a stepped circular shaft of diameters 100 mm and 50 mm, as shown in the following figure. The cantilever is subjected to two concentrated bending moments, one of 100 Nm at point Y and another of 200 Nm at point Z. The maximum bending stress (in MPa) experienced by the cantilever is (GATE PI 2010)

a) 1.02

c) 8.15

b) 3.06

- d) 16.30
- 38) A 1 m long cylindrical shaft of diameter 100 mm is joined to the wall by means of fillet weld as shown in the following figure. The shaft is designed to carry a torque of 5 kNm at the free end. If the allowable shear stress of the weld material is 80 MPa, then the minimum value of the size, L (shown in the following figure), of the fillet (in mm) is

$G\Delta$	$\Gamma \mathbf{F}$	ÞΙ	20	۱1	U)

(GATE PI 2010)

d) 11.45

a) 1.5	b) 2.5	c) 15	d) 25			
	ws over a flat surface, wribution within the boundary	hich is maintained at a tary layer is expressed as:	emperature (T_w) of 30	00 K. The		
	$rac{T}{T_{\infty}}$	$\frac{-T_w}{-T_w} = 1 - e^{-3500y}$				
is 400 K, and T	is the Nitrogen gas tempe	the surface, the free stream rature within the boundary The resulting average con	y layer at a given y. The evective heat transfer of	ne thermal		
a) 52	b) 105	c) 1050	d) 3500			
2. The pipe has of 0.35 m and a section 2 to be r	41) Consider steady and incompressible flow of water through a tapered pipe from section 1 to section 2. The pipe has a diameter of 0.25 m and a centre-line elevation of 25 m at section 1 and a diameter of 0.35 m and a centre-line elevation of 20 m at section 2. Consider head loss between section 1 and section 2 to be negligibly small. Pressure at section 1 is 120 kPa. The acceleration due to gravity is 10 m/s² and density of water is 1000 kg/m³. For a flow rate of 0.2 m³/s, the pressure at section 2 (inkPa) is					
a) 56	b) 112	c) 176	d) 232			
	nd, ordering cost and carrieconomic order quantity	rying cost become four ti (EOQ)	-	e original PI 2010)		
a) remains the sa	ame b) gets halved	c) gets doubled	d) becomes four	r times		
43) The solution of the differential equation $\frac{dy}{dx} - y^2 = 1$ satisfying the condition $y(0) = 1$ is (GATE PI 2010)						
a) $y = e^{x^2}$	b) $y = \sqrt{x}$	c) $y = \cot\left(x + \frac{\pi}{4}\right)$	$d) y = \tan\left(x + \frac{\pi}{4}\right)$	$\left(\frac{r}{4}\right)$		
44) Two white and two black balls, kept in two bins, are arranged in four ways as shown below. In each arrangement, a bin has to be chosen randomly and only one ball needs to be picked randomly from the chosen bin. Which one of the following arrangements has the highest probability for getting a white ball picked? (GATE PI 2010)						

c) 7.95

39) In a steam power plant, the turbine power output is 1 MW while the boiler heat input is at the rate of 2.5 MW. The pump power input is negligibly small. In the condenser, exhaust steam from the turbine rejects heat to a steady flow of cooling water, which enters the condenser at 25°C and leaves at 40°C. Ignore kinetic and potential energy effects for the cooling water. The specific heat of cooling

water is 4 kJ/kgK. The required mass flow rate (in kg/s) of cooling water is

a) 3.97

b) 5.63

- 45) An industrial process consists of the following six activities
 - 1. Casting
 - 2. Wait
 - 3. To Buffing
 - 4. Buffing
 - 5. Inspection
 - 6. Store

The correct flow process chart for this process is

(GATE PI 2010)

- 46) A batch of 10,000 raw work units is processed through 20 operations, each of which has a fraction defect rate of 0.05. The defect-free units and the number of defects in the final batch are, respectively, (GATE PI 2010)
 - a) 3285 and 6715
- b) 3385 and 6615
- c) 3485 and 6515
- d) 3585 and 6415

47) Match the following groups most appropriately.

(GATE PI 2010)

Group I

- E. Strategic decision
- F. Bullwhip effect
- G. Flexible manufacturing system
- H. Tactical decision
- I. Operational decision

Group II

- 1. Production scheduling
- 2. Reduce manufacturing lead time
- 3. Plant layout
- 4. Price fluctuations
- 5. Inventory policies

a) E-3, F-4, G-2, H-5, I-1

c) E-4, F-1, G-5, H-3, I-2

b) E-4, F-5, G-1, H-2, I-3

d) E-3, F-1, G-2, H-5, I-4

Common Data for Questions 48 and 49:

A machine shop processes custom orders from a variety of clients. A machining centre in a job shop for a local manufacturing company has five unprocessed jobs remaining at a particular point in time. The jobs are labelled J_1 , J_2 , J_3 , J_4 , and J_5 in the order they entered the shop. The respective processing times and due dates are given in the table below:

Job	Processing time (in days)	Due date (in days)
J_1	13	65
J_2	32	48
J_3	34	34
J_4	4	36
J_5	5	35

48) When the jobs are assumed to enter the shop in the sequence of SPT	(Shortest Processing Time),
the mean flow time and average tardiness, respectively, are	(GATE PI 2010)

a) 35.4 and 12

c) 39.4 and 14

b) 37.4 and 13

d) 41.4 and 15

49)	When the	jobs a	are	assumed	to	enter	in	the	sequence	of	EDD	(Earliest	Due	Date),	the	numb	er of
	tardy jobs	is												(0	GAT:	E PI 2	2010)

a) 0

b) 1

c) 3

d) 4

Common Data for Questions 50 and 51:

A company is engaged in producing and selling a single product. The fixed cost of the product is F per period. The selling price for the product is S per unit. The variable cost is S per unit, which is half of the selling price, i.e., S/2 per unit. The company has computed its Break Even Sales in monetary units. Not being satisfied with this Break Even Sales, the company has decided to increase its selling price from S to 1.5S. The company has again computed the new Break Even Sales in monetary units keeping the fixed cost S0 and variable cost S1 per unit) of the product same.

50) The ratio of new to old Break Even Sales is

(GATE PI 2010)

a) 0.25

b) 0.50

c) 0.75

d) 1.50

51) The firm desires to make a profit equal to the fixed cost of the product. In this scenario, the ratio of new to old Required Sales Volume is (GATE PI 2010)

a) 0.25

b) 0.50

c) 0.75

d) 1.50

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

Consider the following Linear Programming problem:

Subject to: $x_3 < 20$ $x_1 \ge 0$; $x_2 \ge 0$; $x_3 \ge 0$ 52) Apart from the non-negativity criteria, the dual problem for the given Linear Programming problem consists of (GATE PI 2010) a) 2 constraints and both of them are of \leq type b) 2 constraints and both of them are of \geq type c) 3 constraints and all of them are of \leq type d) 3 constraints and all of them are of \geq type 53) The value of the objective function after solving the dual problem is (GATE PI 2010) b) 170 c) 190 d) 210 a) 160 Statement for Linked Answer Questions 54 and 55: In orthogonal turning of an engineering alloy, it has been observed that the friction force acting at the chip-tool interface is 402.5 N and the friction force is also perpendicular to the cutting velocity vector. The feed velocity is negligibly small with respect to the cutting velocity. The ratio of friction force to normal force associated with the chip-tool interface is 1. The uncut chip thickness is 0.2 mm and the chip thickness is 0.4 mm. The cutting velocity is 2 m/s. 54) The shear force (in N) acting along the primary shear plane is (GATE PI 2010) a) 180.0 b) 240.0 c) 360.5 d) 402.5 55) Assume that the energy expended during machining is completely converted to heat. The rate of heat generation (in W) at the primary shear plane is (GATE PI 2010) a) 180.5 b) 200.5 c) 302.5 d) 402.5 56) Choose the most appropriate word from the options given below to complete the following sentence: His rather casual remarks on politics _____ his lack of seriousness about the subject. (GATE GA 2010) a) masked c) betrayed d) suppressed b) belied 57) Which of the following options is the closest in meaning to the word below: Circuitous (GATE GA 2010) a) cyclic c) confusing b) indirect d) crooked

58) Choose the most appropriate word from the options given below to complete the following sentence: If we manage to our natural resources, we would leave a better planet for our children.

(GATE GA 2010)

 $Z = 3x_1 + 5x_2 + 8x_3$

 $x_1 + 5x_2 \le 10$

Maximize

	uphold restrain		c) cherishd) conserve				
	lay both hockey and	- ·		football and 10 of them neither hockey nor football (GATE GA 2010)			
a)	2	b) 17	c) 13	d) 3			
	<u> </u>	nsists of a pair of related the relation in the origin		pairs of words. Select the Vorker (GATE GA 2010)			
	fallow: land unaware: sleeper		c) wit : jester d) renovated : house				
61) If	f 137 + 276 = 435 how	v much is 731 + 672?		(GATE GA 2010)			
a)	534	b) 1403	c) 1623	d) 1513			
le i. ii. iii.	 62) Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on 1st January. The age difference between any two successive siblings (thatisbornoneafteranother) is less than 3 years. Given the following facts: i. Hari's age + Gita's age ¿ Irfan's age + Saira's age. ii. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest. iii. There are no twins. In what order were they born (oldest first)? (GATE GA 2010) 						
a)	HSIG	b) SGHI	c) IGSH	d) IHSG			
 63) Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully there exist people in military establishments who think that chemical agents are useful tools for their cause. Which of the following statements best sums up the meaning of the above passage: (GATE GA 2010) a) Modern warfare has resulted in civil strife. b) Chemical agents are useful in modern warfare. c) Use of chemical agents in warfare would be undesirable. d) People in military establishments like to use chemical agents in war. 64) 5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall? (GATE GA 2010) 							
	20 days	b) 18 days	c) 16 days	d) 15 days			
	Given digits 2, 2, 3, 3, 3, 3, GATE GA 2010)	4, 4, 4, 4 how many distin	nct 4 digit numbers greate	er than 3000 can be formed?			
۵)	50	b) 51	c) 52	d) 54			