1 Исследование неуправляемых выпрямителей и фильтров выпрямленного тока

Целью работы является исследование характеристик различных вариантов схем неуправляемых выпрямителей однофазного напряжения и влияние на их работу сглаживающих фильтров.

1.1 Виртуальная установка для исследования свойств неуправляемых выпрямителей

Рис. 1: схема виртуальной установки для исследования свойств неуправляемых выпрямителей

Виртуальная установка представленная на схеме 1 запускается с помощью программы tina с бесплатной лицензией.

На виртуальной установке с помощью тумблеров можно исследовать следующие схемы выпрямителей:

- однофазную однополупериодную;
- однофазную однополупериодную с шунтирующим диодом;
- однофазную мостовую.

Далее следовать методике описанной в методичке для реальной лабораторной установке.

1.2 порядок выполнения измерений на виртуальной установке

- Открыть схему в программе tina;
- С помощью тумблеров $S_3, S_{11}, S_{13}, S_{14}, S_{16}, S_{17}$ составить схему выпрямителя, указанную преподавателем;
- Выбрать в меню анализ \Rightarrow переходных процессов (transient analisys) \Rightarrow для нескольких периодов колебаний входной сети, например, с момента времени 40 мс до 100 мс.

Рис. 2: анализ переходных процессов

• получаем мгновенные значения для токов и напряжений вида

Рис. 3: результат анализа переходных процессов

• Можно отобразить отдельную кривую «show/hide curves». Также можно разобрать кривые по отдельным графикам. Для этого в меню графика выбрать «split curves»

Рис. 4: графики всех параметров

• В реальной установке для измерения действующих значений и средних значений используются приборы с различной измерительной системой. В виртуальной установке для получения действующих значений и средних значений выбрать график параметра, например, PV4 мышью, в меню графика выбрать Process \Rightarrow «Averages...».

Рис. 5: действующие и средние значения

• параметры дросселя изменять в соответствии с параметрами реальной установки:

2-е положение	$\mid L_d = 0.394 \; \Gamma$ н	R_d $= 11$ ом
3-е положение	$\mid L_d = 0.86 \; \Gamma$ н	R_d = 19,3 ом
4-е положение	$\mid L_d = 2,12$ Гн	R_d = 29,3 ом
5-е положение	L_d =4,07 Гн	$R_d=38~{ m om}$

Таблица 1: параметры дросселя

• прочие параметры также соответствуют параметрам реальной установки:

 $egin{array}{lcl} R_{
m Tp} & = & 8 \ {
m oM} \\ R_{
m Behtuing \ динамическоe} & = & 1,6 \ {
m oM} \\ x_a & = & 37 \ {
m oM} \\ U_{
m O.Behtuing} & = & 0,4 \ {
m B} \\ \end{array}$

Таблица 2: Прочие параметры

Рис. 6: фотография реальной установки