Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

GEOMETRY • MEETKUNDE		
S	A mark for a correct statement (A statement mark is independent of a reason)	
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)	
n	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)	
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)	
S/R	Award a mark if statement AND reason are both correct	
5/K	Ken 'n punt toe as die bewering EN rede beide korrek is	

DBE/November 2018

1.1.1	140 items	✓ answer
		(1)
1.1.2	Modal class/modale klas: $20 < x \le 30$ minutes	✓ answer
	OR/OF	(1)
	$20 \le x < 30$ minutes	✓ answer
		(1)
1.1.3	Number of minutes taken = 20 minutes	✓ answer
		(1)
1.1.4	140 – 126 [Accept: 124 to 128]	√ 126
	14 orders (12 to 16)	✓ answer
	Answer only: Full marks	(2)
	This were only. I all marks	
1.1.5	75 th percentile is at 105 items	✓ 105
	=37 minutes [accept <u>36 – 38 minutes</u>]	✓ answer
	Answer only: Full marks	
	Table 11 of Carry 1 and Indiana	(2)
1.1.6	Lower quartile is at 35 items	
	=21,5 min [accept 21 – 23 min] Answer only:	✓ lower quartile (Q_1)
	IQR = 37 - 21,5 Full marks	
	$= 15,5 \min [accept 13 - 17 \min]$	✓ answer
		(2)

35	70	75	80	80
90	100	100	105	105
110	110	115	120	125

1.2.1(a)	$\overline{x} = \frac{1420}{15}$ Answer only: Full marks	✓ 1420
	= R94,666 = R94,67	✓ answer
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2)
1.2.1(b)	$\sigma = R22,691 = R22,69$	√√ answer
		(2)
1.2.2(a)	They both collected the same (equal) amount in tips, i.e. R1 420 over the 15-day period.	✓ answer
	Hulle albei het dieselfde bedrag met fooitjies ontvang, nl. R1 420 oor die 15 dae-tydperk	(1)
1.2.2(b)	Mary's standard deviation is smaller than Reggie's which suggests that there was greater variation in	
	the amount of tips that Reggie collected each day compared to the number of tips that Mary collected each day.	✓ explanation
	Marie se standaardafwyking is kleiner as Reggie s'n wat beteken dat daar groter variasie/verspreiding	
	in die fooitjies was wat Reggie elke dag ontvang	(1)
	het in vergelyking met die getal fooitjies wat Marie	
	elke dag ontvang het.	
		[15]

DBE/November 2018

2.1	251 km/h	✓ answer
		(1)
2.2.1	r = 0.52 OR C	✓ answer
	,	(1)
2.2.2	The points are fairly scattered and the least squares	()
	regression line is increasing.	✓ reason
	1 Section in a more wains.	(1)
	Die punte is redelik verspreid en die kleinstekwadrate-	
	regressielyn neem toe.	
2.3	There is a weak positive relation hence the height	
2.3	could have an influence	✓ answer
	could have an influence	(1)
	Dagris 'n swak positiowe werhand too kan die lengte	(1)
	Daar is 'n swak positiewe verband, tog kan die lengte 'n invloed hê.	
	n invioed ne.	
	OR/OF	
	There is no conclusive evidence that the height of a	
	player will influence his/her tennis serve speed.	
		✓ answer
	Daar is geen duidelike bewys dat die lengte van die	(1)
	speler sy/haar afslaanspoed kan beïnvloed nie.	
	OR/OF	
	There is no conclusive evidence that a taller person	
	will serve faster than a shorter person.	✓ answer
	Daar is geen duidelike bewys dat 'n langer speler	(1)
	vinniger sal afslaan as 'n korter een nie.	

NSC/NSS – Marking Guidelines/Nasienriglyne

2.4	For (0; 27,07), it means that the player has a height of		
	0 m but can serve at a speed of 27,07 km/h.		
	It is impossible for a person to have a height of 0 m.	✓ explanation	
			(1)
	(0; 27,07) beteken dat 'n speler 'n lengte van 0 m kan		
	hê en teen 'n spoed van 27,07 km/h kan afslaan. Dit is		
	onmoontlik om 'n lengte van 0 m te hê.		
	OR/OF		
	This means that the player does not exist and	✓ explanation	
	therefore cannot serve and have a serve speed.	Chipranation	(1)
	Dit beteken dat die speler nie bestaan nie en daarom		
	nie kan afslaan en 'n afslaanspoed hê nie.		
	· -		[5]

3.1.1	$m_{\rm KN} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$m_{\rm KN} = \frac{2 - (-1)}{-1 - 1}$ Answer only: Full marks	✓ correct substitution
	$=-\frac{3}{2}$	✓ answer (2)
3.1.2	$\tan \theta = m_{\text{KN}} = -\frac{3}{2}$	$\checkmark \tan \theta = m_{KN} = -\frac{3}{2}$
	$\theta = 180^{\circ} - 56{,}31^{\circ}$ Answer only: Full marks $\theta = 123{,}69^{\circ}$	✓ answer
	123,09	(2)
3.2	Inclination KL = $123,69^{\circ} - 78,69^{\circ} = 45^{\circ}$ [ext $\angle \Delta$]	✓ S
	$\tan 45^\circ = m_{KL} = 1$	$\checkmark \tan 45^\circ = m_{KL} = 1$
	AL	(2)
3.3	y = x + c	
	2 = -1 + c	\checkmark substitute (-1; 2) and m
	c=3	/4:
	y = x + 3	✓ equation (2)
	OR/OF	(2)
	$y - y_1 = 1(x - x_1)$	
	y-2=1(x-(-1))	\checkmark substitute (-1; 2) and m
	y = x + 3	✓ equation
		(2)

3.4	$KN = \sqrt{(1+1)^2 + (-1-2)^2}$	✓ substitute K and N into
		distance formula ✓ answer
	$KN = \sqrt{13}$ or 3,61 Answer only: Full marks	(2)
3.5.1	$(x+3)^2 + (y+5)^2 = 13$ (1)	✓ equation (1)
	L is a point on KL	
	y = x + 3(2) (2) in (1):	
	$(x+3)^2 + (x+3+5)^2 = 13$	
	$x^2 + 6x + 9 + x^2 + 16x + 64 = 13$	✓ substituting eq (2)
	$\begin{vmatrix} x + 6x + 7 + x + 16x + 64 = 13 \\ 2x^2 + 22x + 60 = 0 \end{vmatrix}$	
	$x^2 + 11x + 30 = 0$	✓ standard form
	(x+5)(x+6) = 0	
	x = -5 or x = -6	(and least
	y = -2 or y = -3	✓ x-values ✓ y-values
	L(-5; -2) or (-6; -3)	(5)
	OR/OF	
	$(x+3)^2 + (y+5)^2 = 13$ (1)	✓ equation (1)
	L is a point on KL	
	$y = x + 3$ $\therefore x = y - 3$ (2)	
	(2) in (1): $(y-3+3)^2 + (y+5)^2 = 13$	(auhatituting og (2)
		✓ substituting eq (2)
	$y^2 + y^2 + 10y + 25 = 13$	
	$2y^2 + 10y + 12 = 0$	
	$y^2 + 5y + 6 = 0$	✓ standard form
	(y+2)(y+3) = 0 y = -2 or $y = -3$	✓ y-values (both)
	x = -5 or $x = -6$	\checkmark x-values (both)
	L(-5; -2) or (-6; -3) Midpoint of KM: (-2; -1,5)	(5)
3.5.2		✓ midpoint of KM
	$\therefore \frac{x_L + 1}{2} = -2$ and $\frac{y_L - 1}{2} = -\frac{3}{2}$	
	$\therefore L(-5;-2)$	$\checkmark x$ value $\checkmark y$ value
	OR/OF	(3)
	$m_{\mathrm{KN}} = m_{\mathrm{LM}}$	$\sqrt{m_{\rm LM}} = m_{\rm KN}$
	$\frac{y-(-5)}{x-(-3)} = -\frac{3}{2}$	LIVIKIN
	2(x+3+5) = -3(x+3)	
	$\begin{vmatrix} 2x+16=-3x-9\\ 5x=-25 \end{vmatrix}$ Answer only: Full marks	
	$\begin{array}{c} 3x = -25 \\ x = -5 \end{array}$	$\checkmark x$ value
	$\therefore L(-5;-2)$	$\checkmark y$ value
		(3)

 $8 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

	OR/OF N→M: $(x; y) \to (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \to (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N \rightarrow M: $(x; y) \rightarrow (x-4; y-4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N→M: $(x; y) \rightarrow (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ ∴ L(-3-2; -5+3) ∴ L(-5; -2)	
	OR/OF N \rightarrow M: $(x; y) \rightarrow (x-4; y-4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N \rightarrow M: $(x; y) \rightarrow (x-4; y-4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	✓ transformation ✓ x value ✓ y value (3)
3.6	T(-6; -3) (from Question KT = $\sqrt{(-1 - (-6))^2 + (2 - (-6))^2}$ = $\sqrt{50}$ KN = $\sqrt{13}$ (CA from 3.4) Area of Δ KTN = $\frac{1}{2}$ KT.KN s	$(-3))^2$ $\sinh L\hat{K}N$	✓ coordinates of T ✓ length of KT
	$= \frac{1}{2}\sqrt{50}.\sqrt{13}$ = 12,50 squa		✓ substitution into area rule ✓ answer (4)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

OR/OF

In ΔKLM:

$$\frac{TL}{\sin 22,62^{\circ}} = \frac{\sqrt{13}}{\sin 78,69^{\circ}}$$
$$TL = 1,414..$$

KL =
$$\sqrt{(-1-(-5))^2 + (2-(-2))^2}$$

= $\sqrt{32}$

$$\therefore$$
 KT = 7,0708...

Area of
$$\Delta$$
KTN = $\frac{1}{2}$ KT.KN sinL \hat{K} N
= $\frac{1}{2}$ (7,0708). $\sqrt{13}$ sin78,69°
= 12,50 square units

✓ length of TL

✓ length of KT

✓ substitution into area rule

✓ answer

(4) [22]

4.1	F(3;1)	$\checkmark x$ value $\checkmark y$ value
		(2)
4.2	$FS = \sqrt{(6-3)^2 + (5-1)^2}$	✓ substitution of F
	FS = 5	& S
	13 – 3	✓ answer
		(2)
4.3	FH(FS) : HG = 1 : 2	
	$\therefore HG = 2 FH$	
	= 10	\checkmark HG = 10
		(1)
4.4	Tangents from common/same point /	✓ answer
	Raaklyne vanaf gemeenskaplike of dieselfde punt	(1)
4.5.1	$\hat{\text{FHJ}} = 90^{\circ}$ [tan \perp radius / $rkl \perp radius$]	$\checkmark S \checkmark R$
	$FJ^2 = 20^2 + 5^2$ [Pyth theorem/stelling]	√ S
	$FJ = \sqrt{425} \text{ or } 5\sqrt{17} \text{ or } 20,62$	✓ answer
	10 4723 01 3417 01 20,02	(4)
4.5.2	$(x_1, x_2)^2 + (x_1, x_2)^2 + (x_2, x_3)^2$	✓ answer
4.5.2	$(x-m)^2 + (y-n)^2 = 100$	(1)
		(1)

11 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

4.5.3	$K(22; n)$ [radius \perp tangent]	✓ K(22; <i>n</i>)		
7.5.5	$K(22; n)$ [radius \perp tangent] GK = HG = 10 [radii]	(10,10)		
	$\begin{aligned} FH &= FS = 5 & \text{[radii]} \\ FH &= FS = 5 & \text{[radii]} \end{aligned}$			
	m = 22 - 10			
	m = 12	\checkmark value of m		
	F, H and G are collinear [HJ is a common tangent]	, with 61		
	F, H en G is saamlynig [HJ is 'n gemeemskaplike raaklyn]			
	$FG^{2} = (12-3)^{2} + (n-1)^{2}$	✓ subst. of F and G in		
		distance formula		
	$15^2 = 81 + (n-1)^2$	✓ FG = 15		
	$(n-1)^2 = 144$ $n^2 - 2n - 143 = 0$	✓ simplification/		
	$n-1=\pm 12$ OR/OF $(n+11)(n-13)=0$	standard form		
	$n \neq 13$ or $n = -11$ $n = -11$ or $n \neq 13$	\checkmark value of n		
	\therefore G(12; -11)	✓ coordinates of G		
		(7)		
	OR/OF			
	$K(22; n)$ [radius \perp tangent]	\checkmark K(22; n)		
	GK = HG = 10 [radii]			
	FH = FS = 5 [radii]			
	m = 22 - 10			
	m=12	✓ value of m		
	Let J(22; y):			
	$FJ^2 = (22-3)^2 + (y-1)^2$	✓ subst. of F and J in		
		distance formula		
	$425 = 361 + y^2 - 2y + 1$	$\checkmark \text{ FJ} = \sqrt{425}$		
	$0 = y^2 - 2y - 63$	✓ standard form		
	0 = (y-9)(y+7)	Stanuaru 101111		
	$\therefore y = 9 \text{ or/of } y \neq -7$			
	n = 9 - 20 = -11	✓ value of n		
	\therefore G(12; -11)	✓ coordinates of G		
		(7)		
	[18]			

5.1.1	$k^{2} = (\sqrt{5})^{2} - 1^{2}$ $= 4$ $k = -2$ Answer only: full marks	✓ substitution into theorem of Pythagoras ✓ answer
	k = -2	(2)
5.1.2(a)	$\tan\theta = -\frac{1}{2}$	✓ answer (1)
5.1.2(b)	$\cos(180^\circ + \theta) = -\cos\theta$	✓ reduction
	$= \frac{2}{\sqrt{5}}$ Answer only: full marks	✓ answer (2)
5.1.2(c)	$= \frac{2}{\sqrt{5}}$ Answer only: full marks $\sin(\theta + 60^{\circ}) = \frac{a+b}{\sqrt{20}}$	
	LHS = $\sin\theta\cos60^{\circ} + \cos\theta\sin60^{\circ}$	✓ expansion
	$= \left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{2}\right) + \left(-\frac{2}{\sqrt{5}}\right)\left(\frac{\sqrt{3}}{2}\right)$	✓ subst of sin θ ✓ subst of cos θ
	$=\frac{1-2\sqrt{3}}{2\sqrt{5}}$	✓ both special ∠s
	$=\frac{1-2\sqrt{5}}{\sqrt{20}}$	$\checkmark \frac{1 - 2\sqrt{3}}{2\sqrt{5}}$
	$\sqrt{20}$	(5)
5.1.3	$\tan\theta = -\frac{1}{2}$	
	$\therefore \theta = 180^{\circ} - 26,57^{\circ}$	$\checkmark \theta$
	$\therefore \theta = 153,43^{\circ}$ $to \pi(20, 10^{\circ}) = to \pi[(2 \times 152, 12^{\circ}), 10^{\circ}]$	
	$tan(2\theta - 40^{\circ}) = tan[(2 \times 153,43^{\circ}) - 40^{\circ}]$ = tan 266,87°	✓ substitution
	=18,3	✓ answer (3)

NSC/NSS – Marking Guidelines/Nasienriglyne

5.2 LHS =
$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$$
 RHS = $2 \tan 2x$

= $\frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)^2}$ $\times \text{ single fraction}$

= $\frac{\cos^2 x + 2 \sin x \cos x + \sin^2 x - \cos^2 x + 2 \sin x \cos x - \sin^2 x}{\cos^2 x - \sin^2 x}$ $\times \text{ single fraction}$

= $\frac{2(2 \sin x \cos x)}{\cos^2 x - \sin^2 x}$

= $\frac{2 \sin 2x}{\cos 2x}$
= $2 \tan 2x$
= RHS

OR/OF

LHS = $\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$ RHS = $2 \tan 2x$

= $\frac{(\cos x + \sin x)}{(\cos x - \sin x)} - \frac{\cos x - \sin x}{\cos^2 x - \sin x^2}$ $\times \text{ single fraction}$ (5)

Line = $\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x - \sin x}$ (5)

= $\frac{(\cos x + \sin x)}{(\cos x - \sin x)} - \frac{(\cos x - \sin x)^2}{(\cos x - \sin x)}$ $\times \text{ single fraction}$ $\times \text{ single fraction}$ $\times \text{ single fraction}$ (5)

= $\frac{(\cos x + \sin x)}{(\cos x - \sin x)(\cos x + \sin x - \cos x + \sin x)}$ $\times \text{ single fraction}$ $\times \text{ sin$

14 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ expansion ✓ co ratio ✓ $\cos^2 45^\circ$ ✓ 7 × identity
$= 7\frac{1}{2}$ \mathbf{OR}/\mathbf{OF} $\sum_{i=1}^{52^{\circ}} \cos^{2} \mathbf{A}$	✓ answer (5)
$= \cos^{2} 38^{\circ} + \cos^{2} 39^{\circ} + \cos^{2} 40^{\circ} + + \cos^{2} 51^{\circ} + \cos^{2} 52^{\circ}$ $= (\cos^{2} 38^{\circ} + \sin^{2} 52^{\circ}) + (\cos^{2} 39^{\circ} + \sin^{2} 51^{\circ}) + \cos^{2} 45^{\circ}$ $= 7(1) + \cos^{2} 45^{\circ}$	 ✓ expansion ✓ pairing ✓ cos² 45° ✓ 7 × identity
$= 7 + \left(\frac{\sqrt{2}}{2}\right)^2 \text{or} = 7 + \left(\frac{1}{\sqrt{2}}\right)^2$ $= 7\frac{1}{2}$	✓ answer (5)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

6.1	Period = 120°	✓ answer
0.1	120	(1)
6.2	$2 = -2\tan\frac{3}{2}x$	✓ equating
	$\tan\left(\frac{3}{2}t\right) = -1$ $\frac{3}{2}t = 135^{\circ} + k.180^{\circ}$ $t = 90^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$ OR/OF 0000 $t = -30^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$ $t = -30^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$	✓ general solution of $\frac{3}{2}t$ ✓ general solution of t (3)
	$2 = -2 \tan \frac{3}{2} x$ $\tan \left(\frac{3}{2}t\right) = -1$	✓ equating
	$\frac{3}{2}t = 135^{\circ} + k.360^{\circ} \text{ or/of } \frac{3}{2}t = 315^{\circ} + k.360^{\circ}$ $t = 90^{\circ} + k.240^{\circ} \text{ or.of } t = 210^{\circ} + k.240^{\circ} ; k \in \mathbb{Z}$	✓ general solution of $\frac{3}{2}t$ ✓ general solution of t (3)
6.3	2 -120° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180° -2 f	✓ asymptotes: $x = \pm 60^{\circ}$; $x = 180^{\circ}$ ✓ x -intercepts 0° ; $\pm 120^{\circ}$ ✓ negative shape ✓ $(90^{\circ}; 2)$ or $(-30^{\circ}; 2)$ or $(30^{\circ}; -2)$ or $(-90^{\circ}; -2)$
6.4	$x \in (-60^{\circ}; -30^{\circ}] \text{ or } (60^{\circ}; 90^{\circ}]$ OR/OF $-60^{\circ} < x \le -30^{\circ} \text{ or } 60^{\circ} < x \le 90^{\circ}$	✓ interval ✓ interval ✓ notation (3) ✓ interval ✓ interval ✓ notation (3)
6.5	$g(x) = -2\tan\left[\frac{3}{2}(x+40^{\circ})\right] = f(x+40^{\circ})$ Translation of 40° to the left / skuif met 40° links	✓ Translation of 40° ✓ to the left (2)
		[13]

7.1	$\hat{ABD} = 30^{\circ}$	$\checkmark \hat{ABD} = 30^{\circ}$	
	$\sin 30^{\circ} = \frac{h}{AB}$ $AB = \frac{h}{\sin 30^{\circ}} \mathbf{OR} AB = \frac{h}{\frac{1}{2}} \mathbf{OR} AB = 2h$	✓ answer	(2)
	$ \begin{aligned} \mathbf{OR}/\mathbf{OF} \\ \mathbf{BAD} &= 60^{\circ} \\ \cos 60^{\circ} &= \frac{h}{\mathbf{AB}} \end{aligned} $	✓ BÂD = 60°	
	$AB = \frac{h}{\cos 60^{\circ}} \mathbf{OR} AB = \frac{h}{\frac{1}{2}} \mathbf{OR} AB = 2h$	✓ answer	(2)
7.2	$BC^{2} = AB^{2} + AC^{2} - 2AB \cdot AC\cos BAC$ $= (2h)^{2} + (3h)^{2} - 2(2h)(3h)\cos 2x$ $= 13h^{2} - 12h^{2}(2\cos^{2} x - 1)$ $= 13h^{2} - 24h^{2}\cos^{2} x + 12h^{2}$ $= 25h^{2} - 24h^{2}\cos^{2} x$	✓ use of cosine rule in $\triangle ABC$ ✓ substitution ✓ double angle identity ✓ $25h^2 - 24h^2 \cos^2 x$	
	$BC = h\sqrt{25 - 24\cos^2 x}$		(4)
			[6]

8.1.1	$\hat{P} = \hat{M}_1 = 66^{\circ}$	[tan chord theorem/raaklyn koordst]	✓S ✓R	
				(2)
8.1.2	$\hat{M}_2 = 90^{\circ}$	$[\angle \text{ in semi circle}/\angle \text{ in halfsirkel}]$	✓S ✓R	
				(2)
8.1.3	$\hat{N}_1 = 180^\circ - (90^\circ + 66^\circ)$	[sum of \angle s of $/som\ van\ \angle e\ \Delta MNP$]	✓S	
	= 24°			(1)
8.1.4	$\hat{O}_2 = \hat{P} = 66^{\circ}$	[corres. ∠s;/ooreenk ∠e, PM OR]	✓S ✓R	
				(2)
8.1.5	1 2	[sum of \angle s of/som van \angle e \triangle RNO]		
	=114°		✓S	
	$\hat{\mathbf{R}} = \hat{\mathbf{N}}_1 + \hat{\mathbf{N}}_2 = 57^{\circ}$	$[\angle s \text{ opposite} = radii/\angle e \text{ teenoor} = radii]$	✓S/R	
	$\therefore \hat{N}_2 = 33^{\circ}$		✓S	
				(3)
	OR/OF			
	$P\hat{O}R = 114^{\circ}$	∠s on straight line/∠e op reguitlyn]	✓S	
	$\hat{PNR} = 57^{\circ}$	\angle at centre = twice \angle at circumference/	✓S/R	
		$midpts \angle = 2 \times omtreks \angle$		
	$\therefore \hat{N}_2 = 33^{\circ}$, J	✓S	
	$\begin{bmatrix} \dots & \dots $			(3)

18 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2018

8.2

8.2.1	FC AB GH	[opp sides of rectangle /teenoorst sye v reghoek]	✓ R
			(1)
8.2.2	$\frac{AC}{CH} = \frac{AF}{FG}$	[line \parallel one side of Δ] OR [prop theorem; FC \parallel GH]	✓S ✓R
		[lyn een sy van Δ] OF [eweredighst; FC GH]	
	$\frac{AC}{21} = \frac{20}{15}$		
	$AC = \frac{20 \times 21}{15}$		
	= 28		✓ AC
	DB = AC = 28	[diags of rectangle =/hoeklyne v reghoek =]	✓ S
	DM = -DB = 1	4 [diags of rectangle bisect/hoekl v reghoek halveer]	✓ S
			(5)
	1		[16]

DBE/November 2018

QUESTION/VRAAG 9

9.1

9.1	Constr/Konstr.: Draw F	KO and MO/ <i>Trek KO en MO</i>	✓ construction	
	$\hat{O}_1 = 2\hat{J}$	[\angle at centre = twice \angle at circumference] [$midpts \angle = 2 \times omtreks \angle$]	✓ S/R	
	$\hat{O}_2 = 2\hat{L}$	$[\angle$ at centre = twice \angle at circumference]	✓ S	
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$	$[\angle s \text{ around a point } / \angle e \text{ om 'n punt}]$	✓ S/R	
	$\therefore 2\hat{J} + 2\hat{L} = 360^{\circ}$		✓ S	
	$\therefore 2(\hat{J} + \hat{L}) = 360^{\circ}$			
	$\therefore \hat{J} + \hat{L} = 180^{\circ}$			(5)
	OR/OF			
	Constr/Konstr.: Draw F Proof:	KO and MO/ <i>Trek KO en MO</i>	✓ construction	
	Let $\hat{J} = x$		✓ S ✓ R	
	$\hat{O}_1 = 2x$	[\angle at centre = twice \angle at circumference] [$midpts \angle = 2 \times omtreks \angle$]	✓ S/R	
	$\hat{O}_2 = 360^{\circ} - 2x$	[∠s around a point /∠e om 'n punt]	√ S/K √ S	
	$\therefore \hat{\mathbf{L}} = 180^{\circ} - x$	$[\angle$ at centre = twice \angle at circumference]	V 5	
	$\therefore \hat{J} + \hat{L} = 180^{\circ}$			
				(5)

9.2

9.2.1(a)	$\hat{\mathbf{B}}_1 = x$ [\(\angle \mathbf{s} \text{ in same seg}/\(\angle e \text{ in dieselfde segm}\)]	✓ S ✓ R
		(2)
9.2.1(b)	$\hat{B}_2 = y$ [ext \angle of cyclic quad/buite \angle koordevh]	✓ S ✓ R
		(2)
9.2.2	$\hat{C} = 180^{\circ} - (x + y)$ [sum of \angle s of/som $v \angle e$, $\triangle ACR$]	✓ S
	$\hat{SBD} + \hat{C} = x + y + 180^{\circ} - (x + y)$	
	$\hat{SBD} + \hat{C} = 180^{\circ}$	✓ S
	SCDB is a cyclic quad [converse opp angles of cyclic quad]	✓ R
	[omgekeerde teenoorst ∠e koordevh]	(3)
	OR/OF	
	$\hat{S}_1 = \hat{T}_2$ [\(\setminus \text{ in same segment} \) \(\setminus \text{ in dies. segment} \)	✓ S
	$\hat{T}_2 = \hat{D}_1 + \hat{D}_2 = B\hat{D}R$ [ext \angle of cyc quad/buite \angle koordevh]	
	$\therefore \hat{S}_1 = B\hat{D}R$	✓ S
	\therefore SCDB is cyc quad [ext \angle of quad = opp \angle /buite \angle = tos \angle]	✓ R
		(3)

 $\frac{21}{NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}}$

9.2.3 $\hat{T}_4 = y - 30^\circ$ [ext \angle of/buite $\angle \Delta TDR$]	✓ S
$\hat{T}_1 = y - 30^{\circ}$ [vert opp $\angle s = /regoorst \angle e =$]	✓ S
$y - 30^{\circ} + x + 100^{\circ} = 180^{\circ}$ [sum of \angle s of/som $v \angle e$, \triangle AST]	
$\therefore x + y = 110^{\circ}$	
$\hat{SBD} = 110^{\circ}$	/ C
\therefore SD not diameter [line does not subtend 90° \angle]	✓ S
SD nie 'n middellyn [lyn onderspan nie 90°∠]	✓ R
OR/OF	(4)
$\hat{AST} = \hat{C} + \hat{D}_2 \qquad [ext \angle \text{ of/buite} \angle \Delta \text{ SCD}]$	✓ S
$\hat{C} = 100^{\circ} - 30^{\circ} = 70^{\circ}$	✓ S
$\hat{SBD} = 180^{\circ} - 70^{\circ}$ [opp $\angle s$ cyclic quad/ teenoorst $\angle e$ kdvh]	
= 110°	✓ S
\therefore SD not diameter [line does not subtend $90^{\circ} \angle$]	/ D
SD nie 'n middellyn [lyn onderspan nie 90°∠]	✓ R
	(4)
	[16]

10.1.1

$$\begin{array}{c} = kde\ onderspan = \angle e \\ \hat{D}_2 = x & [\text{exterior angle of cyclic quad/buite} \angle koordevh.] \\ \therefore \hat{C}_2 = 90^\circ - x & [\text{sum of } \angle \text{s of/som } v \angle e, \Delta \text{DCM}] \\ \therefore \hat{C}_2 = \hat{A}_1 = 90^\circ - x \\ \therefore \text{MC is a tangent to the circle at C [converse: tan chord th]} \\ MC\ is' n\ raaklyn\ by\ C\ [omgekeerde\ raakl\ koordst] \\ \hline \textbf{OR/OF} \\ \hat{A}_2 = \hat{A}_1 = 90^\circ - x & [= \text{chords subtend} = \angle \text{s/} \\ & = kde\ onderspan = \angle e] \\ \hat{C}_1 + \hat{C}_2 = x & [\text{sum of } \angle \text{s of/som } v \angle e, \Delta \text{ACM}] \\ \therefore \hat{C}_1 + \hat{C}_2 = \hat{B} = x \\ \therefore \text{MC is a tangent to the circle at C [converse: tan chord th]} \\ MC\ is' n\ raaklyn\ by\ C\ [omgekeerde\ raakl\ koordst] \\ \hline \textbf{OR/OF} \\ \text{In } \Delta \text{AMC and } \Delta \text{ACB:} \\ \hat{A}_2 = \hat{A}_1 = 90^\circ - x & [= \text{chords subtend} = \angle \text{s/} \\ & = kde\ onderspan = \angle e] \\ \hline \end{array} \qquad \begin{array}{c} \checkmark \text{S} \checkmark \text{R} \\ \checkmark \text{S} \checkmark \text{R} \\ \hline \end{cases}$$

 $\hat{A}_2 = \hat{A}_1 = 90^\circ - x$ [= chords subtend = \angle s

 $\therefore \hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2 = \hat{\mathbf{B}} = x$

 $\hat{AMC} = \hat{ACB} = 90^{\circ}$ [given]

✓ S ✓ R

	_	to the circle at C [converse : tan chord th] by C [omgekeerde raakl koordst]	✓ R	(5)
	In ΔACB and/en Δ			
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior \angle of cyclic quad.] [bewys OF buite \angle v koordevh]	✓ S	
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{C}}_2 = 90^\circ - x$	[proved OR sum of \angle s in Δ] [Bewys OF som $v \angle e$ in Δ]	✓ S	
	Δ ACB Δ CMD		✓ R	(3)
	OR/ OF In \triangle ACB and/ en \triangle	CMD		` /
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior \angle of cyclic quad.] [bewys OF buite \angle v koordevh]	✓ S	
	$\hat{ACB} = \hat{AMC} = 90^{\circ}$		✓ S	
	$\triangle ACB \parallel \triangle CMD$		√ R	
	OR/OF			(3)
	In \triangle ACB and/en \triangle	ACMD		
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior \angle of cyclic quad] [bewys OF buite \angle v koordevh]		
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{C}}_2 = 90^\circ - x$	[proved OR sum of \angle s in Δ] [Bewys OF som $v \angle e$ in Δ]	✓ S	
	$\hat{ACB} = \hat{AMC} = 90^{\circ}$	[given OR sum of \angle s in Δ]	✓ S	
	ΔACB ΔCMD	[gegee \mathbf{OF} som $v \angle e$ in Δ]	✓ S	(3)
10.2.1	$\frac{BC}{MD} = \frac{AB}{DC}$	[ΔACB ΔCMD]	$\checkmark \frac{BC}{MD} = \frac{AB}{DC}$	
	$\frac{DC}{AB} = \frac{AB}{BB}$	[BC = DC]		
			\checkmark DC ² = AB×MI)
	In ΔAMC and/en Δ M is common/gen		✓ S	
	$\hat{A}_1 = \hat{C}_2 \qquad [tan]$	chord th /raaklyn koordst]	✓ S	
	$\begin{vmatrix} \mathbf{OR}/\mathbf{OF} \\ \hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2 = \hat{\mathbf{B}} = \hat{\mathbf{D}} = \end{vmatrix}$	x [tan chord th /raaklyn koordst OR/OF		
	ΔAMC ΔCMD	exterior \angle of cyclic quad/ buite $\angle v k dv h$] $[\angle, \angle, \angle]$		
	$\frac{AM}{AB} = \frac{CM}{AB}$			
	$CM MD$ $\therefore CM^2 = AM \times M$	TD	$\checkmark \text{CM}^2 = \text{AM} \times \text{M}$	ID
	$CM^2 - AM \times M$	ID		
	$\therefore \frac{\partial A}{\partial C^2} = \frac{\partial A}{\partial B \times M}$		$\checkmark \frac{\text{AM} \times \text{MD}}{}$	
	AM		AB×MD	(6)
	$={AB}$			(6)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

OR/OF	10 10
$\frac{AC}{MC} = \frac{AB}{DC} \qquad [\Delta ACB \parallel \Delta CM]$	$\frac{AC}{MC} = \frac{AB}{DC}$
$\therefore CM \times AB = AC \times DC$	
In $\triangle AMC$ and/en $\triangle ACB$	✓ S
$\hat{C} = \hat{M} = 90^{\circ}$ [given] $\hat{A}_1 = \hat{A}_2$ [proven]	✓ S
OR/OF	
$A\hat{C}M = \hat{B} = x \text{ [proven]}$	
$\frac{\Delta AMC \parallel \Delta ACB}{\frac{AC}{AM}} = \frac{BC}{MC}$	
$\frac{1}{AM} = \frac{1}{MC}$ $\therefore AC \times MC = AM \times BC$	\checkmark AC.MC = AM.BC
$\therefore AC = \frac{BC.AM}{MC}$	
$CM \times AB = \frac{BC.AM}{MC} \times DC$	✓ equating
	✓ S
$CM^2 = \frac{DC.AM}{AB} \times DC [BC = D]$	C]
$\frac{\text{CM}^2}{\text{DC}^2} = \frac{\text{AM}}{\text{AB}}$	(6)
$\begin{array}{c c} & DC^2 & AB \\ \hline 10.2.2 & In \Delta DMC: \end{array}$	
$\frac{CM}{DC} = \sin x$	✓ trig ratio
$\frac{\text{CM}^2}{\text{DC}^2} = \sin^2 x \frac{\text{AC}}{\text{AB}} = \frac{\text{CM}}{\text{DC}}$	✓ square both sides
$\therefore \frac{AM}{AM} = \sin^2 x$	
AB	(2)
OR/OF	
In ΔABC: . AC	
$\sin x = \frac{AC}{AB}$	
In ΔAMC: . AM	✓ 2 equations for
$\sin x = \frac{AM}{AC}$	$\sin x$
$\sin x \cdot \sin x = \frac{AC}{AB} \times \frac{AM}{AB} = \frac{AM}{AB}$	✓ product (2)
AB AC AB	[16]

TOTAL/TOTAAL: 150