IECD-325: Formas cuadráticas

Felipe Osorio

felipe.osorio@uv.cl

Resultado 1:

Sea $Z \sim N_p(0, I)$ y sea $U = Z^T Z$. Entonces $U \sim \chi^2(p)$, con función de densidad

$$f(u) = \frac{1}{2^{p/2}\Gamma(p/2)} u^{p/2-1} \exp(-u/2), \qquad u > 0.$$

Demostración:

Como ${\cal U}$ es una función de variables aleatorias normales, entonces su función característica asume la forma

$$\begin{split} \varphi_U(t) &= \mathsf{E}\{\exp(itU)\} = \int_{\mathbb{R}^p} \exp(itu)(2\pi)^{-p/2} \exp(-\tfrac{1}{2}\boldsymbol{z}^\top \boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \\ &= (2\pi)^{-p/2} \int_{\mathbb{R}^p} \exp(-\tfrac{1}{2}(1-2it)\boldsymbol{z}^\top \boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = (1-2it)^{-p/2}, \end{split}$$

que corresponde a la función característica de una variable aleatoria chi-cuadrado con p grados de libertad.

Definición 1 (Distribución chi-cuadrado no central):

Si $Y \sim \mathsf{N}_p(\mu, I)$, entonces $U = Y^\top Y$ tiene distribución chi-cuadrado no central con p grados de libertad y parámetro de no centralidad $\lambda = \mu^\top \mu/2$, en cuyo caso anotamos $U \sim \chi^2(p;\lambda)$.

Resultado 2:

Sea $Y \sim \mathsf{N}_p(\mu, I)$ donde $\mu = (\mu_1, \dots, \mu_p) \neq \mathbf{0}$ y sea $U = Y^\top Y$. Entonces la función característica de U es dada por

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right),$$

con $\lambda = \boldsymbol{\mu}^{\top} \boldsymbol{\mu} / 2$.

Demostración:

Como Y_1,\ldots,Y_p son variables aleatorias independientes, tenemos

$$\varphi_U(t) = \prod_{j=1}^p \varphi_{Y_j^2}(t).$$

Ahora, la función característica asociada a la variable aleatoria Y_i^2 es dada por

$$\begin{split} \varphi_{Y_j^2}(t) &= \int_{-\infty}^{\infty} \exp(ity_j^2) (2\pi)^{-1/2} \exp\{-\frac{1}{2} (y_j - \mu_j)^2\} \, \mathrm{d}y_j \\ &= \exp\Big\{\frac{\mu_j^2}{2} \Big(\frac{1}{1-2it}\Big) - \frac{\mu_j^2}{2}\Big\} \int_{-\infty}^{\infty} (2\pi)^{-1/2} \exp\Big\{-\frac{(1-2it)}{2} \Big(y_j - \frac{\mu_j}{1-2it}\Big)^2\Big\} \, \mathrm{d}y_j \end{split}$$

de este modo,

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left\{\frac{\mu_j^2}{2} \left(\frac{2it}{1 - 2it}\right)\right\},\,$$

y por tanto la función característica de la variable $U = \sum_{j=1}^p Y_j^2$, asume la forma

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right), \qquad \lambda = \mu^{\top} \mu/2.$$

Observación:

La función característica de la variable $U = \boldsymbol{Y}^{\top} \boldsymbol{Y}$, puede ser escrita como

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{\lambda}{1 - 2it} - \lambda\right)$$

$$= (1 - 2it)^{-p/2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\{\lambda/(1 - 2it)\}^k}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} (1 - 2it)^{-(p+2k)/2}.$$

Es decir, la función característica de U es un promedio ponderado con pesos Poisson de funciones características de variables aleatorias chi-cuadrado con p+2k grados de libertad.

Usando la relación entre funciones características y sus correspondientes funciones de densidad, sigue que la chi-cuadrado no central tiene la siguiente representación:

$$U|Z \sim \chi^2(p+2z), \qquad Z \sim \mathsf{Poisson}(\lambda),$$
 (1)

con densidad

$$f(u) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} \frac{1}{2^{p/2+k} \Gamma(\frac{p}{2}+k)} u^{p/2+k-1} \exp(-u/2), \quad u > 0.$$

La representación en (1) es muy útil para obtener los momentos de una variable aleatoria con distribución chi-cuadrado no central.

El valor esperado de $U \sim \chi^2(p; \lambda)$ es dado por

$$\begin{split} \mathsf{E}(U) &= \mathsf{E}\{\mathsf{E}(U|Z)\} = \mathsf{E}(p+2Z) \\ &= p+2\,\mathsf{E}(Z) = p+2\lambda, \end{split}$$

mientras que la varianza de ${\cal U}$ puede ser calculada como

$$\begin{split} \operatorname{var}(U) &= \operatorname{E}\{\operatorname{var}(U|Z)\} + \operatorname{var}\{\operatorname{E}(U|Z)\} \\ &= \operatorname{E}\{2(p+2Z)\} + \operatorname{var}(p+2Z) \\ &= 2p+4\lambda + 4\lambda = 2p+8\lambda. \end{split}$$

Resultado 3:

Si $oldsymbol{X} \sim \mathsf{N}_p(oldsymbol{\mu}, oldsymbol{\Sigma})$ donde $oldsymbol{\Sigma}$ es matriz no singular. Entonces

- (a) $(\boldsymbol{X} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} \boldsymbol{\mu}) \sim \chi^2(p)$.
- (b) ${\pmb X}^{ op} {\pmb \Sigma}^{-1} {\pmb X} \sim \chi^2(p;\lambda)$, donde $\lambda = \frac{1}{2} {\pmb \mu}^{ op} {\pmb \Sigma}^{-1} {\pmb \mu}$.

Demostración:

Considere $oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op$ con $oldsymbol{B}$ no singular. Para probar (a), tome

$$Z = B^{-1}(X - \mu),$$

luego $oldsymbol{Z} \sim \mathsf{N}_p(oldsymbol{0}, oldsymbol{I})$ y de este modo

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} \sim \chi^{2}(p; 0).$$

Para probar (b), sea $Y = B^{-1}X$, luego

$$Y \sim \mathsf{N}_p(\boldsymbol{B}^{-1}\boldsymbol{\mu}, \boldsymbol{I}),$$

У

$$\boldsymbol{X}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{X} = \boldsymbol{Y}^{\top}\boldsymbol{B}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{B}\boldsymbol{Y} = \boldsymbol{Y}^{\top}\boldsymbol{Y},$$

que por definición tiene una distribución chi-cuadrado no central, con parámetro de no centralidad

$$\lambda = \frac{1}{2} (\boldsymbol{B}^{-1} \boldsymbol{\mu})^{\top} (\boldsymbol{B}^{-1} \boldsymbol{\mu}) = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}.$$

F y Beta no central

Definición 2 (Distribución F no central):

Sea $X_1 \sim \chi^2(\nu_1;\lambda)$ y $X_2 \sim \chi^2(\nu_2)$ variables aleatorias independientes. Entonces,

$$F = \frac{X_1/\nu_1}{X_2/\nu_2} \sim \mathsf{F}(\nu_1, \nu_2, \lambda),$$

es decir F sigue una distribución F no central con ν_1 y ν_2 grados de libertad y parámetro de no centralidad λ .

Definición 3 (Distribución Beta no central):

Considere $U_1 \sim \chi^2(\nu_1; \lambda)$, $U_2 \sim \chi^2(\nu_2)$ tal que U_1 y U_2 son variables aleatorias independientes. Entonces,

$$G = rac{U_1}{U_1 + U_2} \sim \mathsf{Beta}(
u_1,
u_2, \lambda),$$

esto es, G sigue una distribución Beta no central con parámetros de forma y escala ν_1 y ν_2 , respectivamente y parámetro de no centralidad λ .

t de Student no central

Definición 4 (Distribución t de Student no central):

Si $Y \sim {\sf N}(\mu,\sigma^2)$ y $U/\sigma^2 \sim \chi^2(\nu)$ son independientes, entonces

$$T = \frac{Y}{\sqrt{U/\nu}} \sim t(\nu; \lambda), \quad \lambda = \mu/\sigma,$$

es llamada una variable aleatoria con distribución t de Student no central con ν grados de libertad y parámetro de no centralidad λ .

Observación:

Si $Z \sim N(0,1)$, $U \sim \chi^2(\nu)$, δ es una constante, y Z es independiente de U, entonces

$$T = \frac{Z + \delta}{\sqrt{U/\nu}} \sim t(\nu; \delta).$$

Además.

$$t^2(\nu; \lambda) \stackrel{\mathsf{d}}{=} \mathsf{F}(1, \nu, \lambda^2/2).$$

Resultado 4:

Si $X \sim \mathsf{N}_p(\mu, I)$ y $A \in \mathbb{R}^{p \times p}$ es matriz simétrica. Entonces $X^\top A X \sim \chi^2(k; \theta)$ sólo si A es idempotente, en cuyo caso los grados de libertad y el parámetro de no centralidad están dados por

$$k = \operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}), \quad \text{y} \quad \theta = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu},$$

respectivamente.

Demostración:

Suponga que ${m A}$ es idempotente de rango k. Entonces existe una matriz ortogonal ${m P}$ tal que

$$m{P}^{ op} m{A} m{P} = egin{pmatrix} m{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Sea $oldsymbol{Y} = oldsymbol{P}^{ op} oldsymbol{X}$, entonces $oldsymbol{Y} \sim \mathsf{N}_p(oldsymbol{P}^{ op} oldsymbol{\mu}, oldsymbol{I})$, y

$$oldsymbol{X}^{ op} oldsymbol{A} oldsymbol{X} = oldsymbol{Y}^{ op} egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{0} \end{pmatrix} oldsymbol{Y} = \sum_{i=1}^k Y_i^2,$$

que sigue una distribución chi-cuadrado con k grados de libertad.

Para el parámetro de no centralidad θ , note que

$$\begin{split} \mathsf{E}\{\chi^2(k;\theta)\} &= k + 2\theta = \mathsf{E}(\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}) = \operatorname{tr}(\mathsf{E}(\boldsymbol{X}\boldsymbol{X}^{\top})\boldsymbol{A}) \\ &= \operatorname{tr}((\boldsymbol{I} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top})\boldsymbol{A}) = k + \boldsymbol{\mu}^{\top}\boldsymbol{A}\boldsymbol{\mu}, \end{split}$$

y de ahí que $\theta = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}$.

Ahora, suponga que ${\pmb X}^{\top} {\pmb A} {\pmb X} \sim \chi^2(k;\theta)$. Si ${\pmb A}$ tiene rango r, entonces para ${\pmb P}$ matriz ortogonal $p \times p$,

$$m{P}^{ op} m{A} m{P} = egin{pmatrix} m{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix},$$

con $\Lambda_1 = \operatorname{diag}(\lambda_1,\ldots,\lambda_r)$, donde $\lambda_1,\ldots,\lambda_r$ son los valores propios no nulos de \boldsymbol{A} . Sea $\boldsymbol{Y} = \boldsymbol{P}^{\top}\boldsymbol{X}$, entonces

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{P}^{\top} \boldsymbol{A} \boldsymbol{P} \boldsymbol{Y} = \sum_{j=1}^{r} \lambda_{j} Y_{j}^{2} = U.$$

Tenemos que $Y \sim \mathsf{N}_p(\delta, I)$ con $\delta = P^\top \mu$, de modo que $Y_j^2 \sim \chi^2(1, \delta_j^2/2)$ con función característica

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left(\frac{it\delta_j^2}{1 - 2it}\right),$$

por la independencia de Y_1,\ldots,Y_r sigue que

$$\varphi_U(t) = \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2} \exp\left(\frac{it\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right)$$
$$= \exp\left(it\sum_{j=1}^r \frac{\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right) \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2}.$$

Como $m{X}^{ op} m{A} m{X} \sim \chi^2(k; heta)$ tiene función característica

$$\varphi_{X^{\top}AX}(t) = (1 - 2it)^{-k/2} \exp\left(\frac{2it\theta}{1 - 2it}\right),\,$$

entonces desde las dos expresiones anteriores debemos tener r=k, $\lambda_j=1$, $\forall j$ y $\theta=\sum_j \delta_j^2/2$. Consecuentemente ${m P}^{\top}{m A}{m P}$ tiene la forma

$$oldsymbol{P}^{ op}oldsymbol{A}oldsymbol{P} = egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{0} \end{pmatrix},$$

que es idempotente. Luego

$$\boldsymbol{P}^{\top}\boldsymbol{A}\boldsymbol{P} = (\boldsymbol{P}^{\top}\boldsymbol{A}\boldsymbol{P})(\boldsymbol{P}^{\top}\boldsymbol{A}\boldsymbol{P}) = \boldsymbol{P}^{\top}\boldsymbol{A}^{2}\boldsymbol{P} \quad \Longrightarrow \quad \boldsymbol{A}^{2} = \boldsymbol{A}.$$

Resultado 5:

Si $X \sim \mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$ donde $\pmb{\Sigma}$ es no singular y X, $\pmb{\mu}$ y $\pmb{\Sigma}$ son particionados como

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}, \qquad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix},$$

donde \boldsymbol{X}_1 , $\boldsymbol{\mu}_1$ son $k \times 1$ y $\boldsymbol{\Sigma}_{11}$ es $k \times k$. Entonces

$$U = (X - \mu)^{\top} \Sigma^{-1} (X - \mu) - (X_1 - \mu_1)^{\top} \Sigma_{11}^{-1} (X_1 - \mu_1) \sim \chi^2 (p - k).$$

Demostración:

Considere $oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^{ op}$, donde $oldsymbol{B}$ es no singular y particione $oldsymbol{B}$ como

$$oldsymbol{B} = egin{pmatrix} oldsymbol{B}_1 \ oldsymbol{B}_2 \end{pmatrix}, \qquad oldsymbol{B}_1 \in \mathbb{R}^{k imes p}.$$

Luego,

$$oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op = egin{pmatrix} oldsymbol{B}_1 oldsymbol{B}_1^ op & oldsymbol{B}_1 oldsymbol{B}_2^ op \ oldsymbol{B}_2 oldsymbol{B}_1^ op & oldsymbol{B}_2 oldsymbol{B}_2^ op \end{pmatrix},$$

de donde sigue que $\Sigma_{11}=B_1B_1^{ op}$. Ahora, sea $Z=B^{-1}(X-\mu)\sim \mathsf{N}_p(\mathbf{0},I)$. De este modo,

$$egin{pmatrix} egin{pmatrix} m{B}_1 \\ m{B}_2 \end{pmatrix} m{Z} = egin{pmatrix} m{X}_1 - m{\mu}_1 \\ m{X}_2 - m{\mu}_2 \end{pmatrix}.$$

Entonces

$$\begin{split} U &= \boldsymbol{Z}^{\top} \boldsymbol{Z} - \boldsymbol{Z}^{\top} \boldsymbol{B}_{1}^{\top} (\boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\top})^{-1} \boldsymbol{B}_{1} \boldsymbol{Z} \\ &= \boldsymbol{Z}^{\top} (\boldsymbol{I} - \boldsymbol{B}_{1}^{\top} (\boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\top})^{-1} \boldsymbol{B}_{1}) \boldsymbol{Z} \\ &= \boldsymbol{Z}^{\top} (\boldsymbol{I} - \boldsymbol{H}_{1}) \boldsymbol{Z}, \end{split}$$

con
$${\pmb H}_1 = {\pmb B}_1^{ op} ({\pmb B}_1 {\pmb B}_1^{ op})^{-1} {\pmb B}_1.$$

Note que ${\pmb H}_1$ es simétrica e idempotente y por tanto también lo es ${\pmb C}={\pmb I}-{\pmb H}_1.$ De donde sigue que $U\sim \chi^2(\nu)$, con $\nu=\operatorname{rg}({\pmb C})=p-k.$

Suponga que $X \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$. Una condición para que $X^\top A X$ tenga una distribución chi-cuadrado es:¹

$$\Sigma A \Sigma A = \Sigma A$$

en cuyo caso los grados de libertad son $k=\operatorname{rg}(A\Sigma)$. Si Σ es no singular, la condición resulta $A\Sigma A=A$.

Resultado 6:

Si $X \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$ donde Σ tiene rango $k \ (\leq p)$ y si A es una inversa generalizada de $\Sigma \ (\Sigma A \Sigma = \Sigma)$, entonces $X^\top A X \sim \chi^2(k)$.

¹Esto representa una generalización del Resultado 4.

Demostración:

Considere Y = BX donde B es una matriz no singular $p \times p$ tal que

$$oldsymbol{B}oldsymbol{\Sigma}oldsymbol{B}^{ op} = egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix}.$$

Particionando $\boldsymbol{Y} = (\boldsymbol{Y}_1^\top, \boldsymbol{Y}_2^\top)^\top$ donde \boldsymbol{Y}_1 es un vector $k \times 1$ sigue que $\boldsymbol{Y}_1 \sim \mathsf{N}_k(\boldsymbol{0}, \boldsymbol{I})$ y $\boldsymbol{Y}_2 = \boldsymbol{0}$ con probabilidad 1.

Ahora, note que

$$egin{pmatrix} egin{pmatrix} I_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = B \mathbf{\Sigma} B^{ op} = B \mathbf{\Sigma} A \mathbf{\Sigma} B^{ op} \\ &= B \mathbf{\Sigma} B^{ op} B^{- op} A B^{-1} B \mathbf{\Sigma} B^{ op} \\ &= egin{pmatrix} I_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} B^{- op} A B^{-1} egin{pmatrix} I_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}. \end{split}$$

Luego, con probabilidad uno,

$$\begin{split} \boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} &= \boldsymbol{Y}^{\top} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \boldsymbol{Y} = (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} \\ &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} \\ &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{Y}_{1}^{\top} \boldsymbol{Y}_{1} \sim \chi^{2}(k). \end{split}$$

Resultado 7:

Si $\boldsymbol{X} \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, donde $\boldsymbol{\Sigma}$ es no singular, y \boldsymbol{A} es una matriz simétrica $p \times p$. Entonces $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi^2(k; \lambda)$, donde $k = \mathrm{rg}(\boldsymbol{A})$, $\lambda = \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}/2$ si y sólo si $\boldsymbol{A} \boldsymbol{\Sigma}$ es matriz idempotente.

Demostración:

Considere Y=BX, donde B es una matriz no singular $p\times p$ tal que $B\Sigma B^{\top}=I_{p}.$ Entonces

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \boldsymbol{Y},$$

donde $Y \sim \mathsf{N}_p(B\mu,I)$. Desde el Resultado 1 sigue que $X^\top AX$ tiene distribución chi-cuadrado sólo si $B^{-\top}AB^{-1}$ es idempotente. Esto es equivalente a mostrar que $A\Sigma$ es idempotente.

Si $A\Sigma$ es idempotente, tenemos

$$A = A\Sigma A = AB^{-1}B^{-\top}A, \qquad (\Sigma = B^{-1}B^{-\top})$$

así, pre- y post-multiplicando por ${m B}^{-\top}$ y ${m B}^{-1}$, obtenemos

$$B^{-\top}AB^{-1} = (B^{-\top}AB^{-1})(B^{-\top}AB^{-1}),$$

y por tanto es idempotente.

Por otro lado, si ${m B}^{-\top}{m A}{m B}^{-1}$ es idempotente, entonces

$$B^{-\top}AB^{-1} = (B^{-\top}AB^{-1})(B^{-\top}AB^{-1}) = B^{-\top}A\Sigma AB^{-1},$$

es decir $oldsymbol{A} = oldsymbol{A} oldsymbol{\Sigma} oldsymbol{A}$ y de ahí que $oldsymbol{A} oldsymbol{\Sigma}$ es idempotente.

Ejemplo:

Sea X_1, \ldots, X_n variables aleatorias IID $\mathsf{N}(\theta, \sigma^2)$, en este caso podemos definir $\boldsymbol{X} = (X_1, \ldots, X_n)^\top$ tal que $\boldsymbol{X} \sim \mathsf{N}_n(\theta \mathbf{1}_n, \sigma^2 \boldsymbol{I})$. Considere la forma cuadrática

$$Q = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{\sigma^2} \boldsymbol{X}^\top \boldsymbol{C} \boldsymbol{X} = \boldsymbol{X}^\top \boldsymbol{A} \boldsymbol{X},$$

con $oldsymbol{C} = oldsymbol{I}_n - rac{1}{n} \mathbf{1} \mathbf{1}^ op$ y $oldsymbol{A} = oldsymbol{C}/\sigma^2$. De esta manera

$$oldsymbol{A}oldsymbol{\Sigma} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1} oldsymbol{1}^{ op},$$

que es idempotente. En efecto,

$$C^{2} = \left(I_{n} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right)\left(I_{n} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right) = I_{n} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top} + \frac{1}{n^{2}}\mathbf{1}\mathbf{1}^{\top}\mathbf{1}\mathbf{1}^{\top} = C.$$

Además

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{C}) = \operatorname{tr}\left(\boldsymbol{I}_n - \frac{1}{n}\mathbf{1}\mathbf{1}^\top\right) = n - 1,$$

У

$$\lambda = \frac{\theta^2}{2} \mathbf{1}^\top A \mathbf{1} = \frac{\theta^2}{2\sigma^2} \mathbf{1}^\top \left(I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top \right) \mathbf{1} = 0.$$

Finalmente,

$$Q = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n-1).$$

Resultado 8:

Sea $X \sim \mathsf{N}_p(\mu, \Sigma)$, $Q_1 = X^\top A X$ y $Q_2 = X^\top B X$. Entonces Q_1 y Q_2 son independientes si y sólo si $A \Sigma B = 0$.

Demostración:

Tenemos $\pmb{\Sigma} = \pmb{T}\pmb{T}^{ op}$, y defina $\pmb{G}_1 = \pmb{T}^{ op}\pmb{A}\pmb{T}$, $\pmb{G}_2 = \pmb{T}^{ op}\pmb{B}\pmb{T}$. Note que si $\pmb{A}\pmb{\Sigma}\pmb{B} = \pmb{0}$, entonces

$$G_1G_2 = (T^{\top}AT)(T^{\top}BT) = T^{\top}A\Sigma BT = 0.$$

Debido a la simetría de G_1 y G_2 , sigue que

$$\mathbf{0} = (\mathbf{G}_1 \mathbf{G}_2)^{\top} = \mathbf{G}_2^{\top} \mathbf{G}_1^{\top} = \mathbf{G}_2 \mathbf{G}_1.$$

Como $G_1G_2=G_2G_1$ existe una matriz ortogonal P que simultáneamente diagonaliza G_1 y G_2 , esto es:

$$egin{aligned} oldsymbol{P}^{ op} oldsymbol{G}_1 oldsymbol{P} &= oldsymbol{P}^{ op} oldsymbol{T} oldsymbol{A} oldsymbol{T} oldsymbol{P} oldsymbol{T} oldsymbol$$

De este modo,

$$\mathbf{0} = \boldsymbol{G}_1 \boldsymbol{G}_2 = \boldsymbol{P} \boldsymbol{D}_1 \boldsymbol{P}^\top \boldsymbol{P} \boldsymbol{D}_2 \boldsymbol{P}^\top = \boldsymbol{P} \boldsymbol{D}_1 \boldsymbol{D}_2 \boldsymbol{P}^\top$$

lo que es verdad si $D_1D_2=0$. Como D_1 y D_2 son diagonales, sus elementos diagonales deben ocurrir en posiciones diferentes. Es decir,

$$oldsymbol{D}_1 = egin{pmatrix} oldsymbol{M}_1 & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{0} \end{pmatrix}, \qquad oldsymbol{D}_2 = egin{pmatrix} oldsymbol{0} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{M}_2 \end{pmatrix}.$$

Sea
$$m{Y} = m{P}^{ op} m{T}^{-1} m{X}$$
, entonces
$$Q_1 = m{X}^{ op} m{A} m{X} = m{X}^{ op} m{T}^{- op} m{P} m{P}^{ op} m{T}^{ op} m{A} m{T} m{P} m{P}^{ op} m{T}^{-1} m{X} = m{Y}^{ op} m{D}_1 m{Y}, \\ Q_2 = m{X}^{ op} m{A} m{X} = m{X}^{ op} m{T}^{- op} m{P} m{P}^{ op} m{T}^{ op} m{B} m{T} m{P} m{P}^{ op} m{T}^{-1} m{X} = m{Y}^{ op} m{D}_2 m{Y}.$$

Además,

$$\mathsf{Cov}(\boldsymbol{Y}) = \mathsf{Cov}(\boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\boldsymbol{X}) = \boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\,\mathsf{Cov}(\boldsymbol{X})\boldsymbol{T}^{-\top}\boldsymbol{P} = \boldsymbol{I}.$$

En efecto, $\boldsymbol{Y} \sim \mathsf{N}_p(\boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\boldsymbol{\mu}, \boldsymbol{I}).$

Ahora, particionando adecuadamente $oldsymbol{Y}$, sigue que

$$\begin{split} \boldsymbol{Y}^{\top}\boldsymbol{D}_{1}\boldsymbol{Y} &= (\boldsymbol{Y}_{1}^{\top},\boldsymbol{Y}_{2}^{\top}) \begin{pmatrix} \boldsymbol{M}_{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \end{pmatrix} = \boldsymbol{Y}_{1}^{\top}\boldsymbol{M}_{1}\boldsymbol{Y}_{1}, \\ \boldsymbol{Y}^{\top}\boldsymbol{D}_{2}\boldsymbol{Y} &= (\boldsymbol{Y}_{1}^{\top},\boldsymbol{Y}_{2}^{\top}) \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_{2} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \end{pmatrix} = \boldsymbol{Y}_{2}^{\top}\boldsymbol{M}_{2}\boldsymbol{Y}_{2}, \end{split}$$

y la independencia entre Q_1 y Q_2 sigue desde la independencia entre ${m Y}_1$ y ${m Y}_2.$

Resultado 9:

Sea $X \sim N_p(\mu, \Sigma)$, $Q = X^\top A X$ y U = B X. Entonces Q y U son independientes si y sólo si $B \Sigma A = 0$.

Ejemplo:

Considere X_1,\ldots,X_n muestra aleatoria desde $\mathsf{N}(\theta,\sigma^2)$, así

$$\boldsymbol{X} = (X_1, \dots, X_n)^{\top} \sim \mathsf{N}_n(\theta \mathbf{1}, \sigma^2 \boldsymbol{I}_n).$$

Tenemos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \mathbf{1}^{\top} X, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} X^{\top} C X.$$

Como ${m C}{m 1}={m 0}$ sigue la independencia entre \overline{X} y $S^2.$

Recordatorio 1:

Suponga ${m A}$ matriz $m \times m$, simétrica e idempotente. Entonces,

- (a) $a_{ii} \geq 0, i = 1, \dots, n.$
- (b) $a_{ii} \leq 1, i = 1, \ldots, n.$
- (c) $a_{ij}=a_{ji}=0$, para todo $j\neq i$, si $a_{ii}=0$ o $a_{ii}=1$.

Demostración:

Como A es simétrica e idempotente, tenemos

$$\boldsymbol{A} = \boldsymbol{A}^2 = \boldsymbol{A}^{\top} \boldsymbol{A},$$

de ahí que

$$a_{ii} = \sum_{j=1}^{m} a_{ji}^2,$$

que claramente es no negativo.

Además, podemos escribir

$$a_{ii} = a_{ii}^2 + \sum_{j \neq i} a_{ji}^2.$$

Por tanto, $a_{ii} \geq a_{ii}^2$ y de este modo (b) es satisfecha.

Si $a_{ii} = 0$ o $a_{ii} = 1$, entonces $a_{ii} = a_{ii}^2$ y debemos tener

$$\sum_{i \neq i} a_{ji}^2 = 0,$$

lo que junto con la simetría de A, establece (c).

Lema 1:

Sean $oldsymbol{A}_1,\ldots,oldsymbol{A}_k$ matrices m imes m simétricas e idempotentes y suponga que

$$A_1 + \cdots + A_k = I_k$$
.

Entonces $A_i A_j = 0$ para todo $i \neq j$.

Demostración:

Considere cualquiera de esas matrices, digamos ${m A}_h$ y denote su rango por r. Como ${m A}_h$ es simétrica e idempotente, existe una matriz ortogonal ${m P}$ tal que

$$oldsymbol{P}^{ op} oldsymbol{A}_h oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Para $j \neq h$, defina ${m B}_j = {m P}^{ op} {m A}_j {m P}$, y note que

$$oldsymbol{I}_m = oldsymbol{P}^ op oldsymbol{P} = oldsymbol{P}^ op oldsymbol{A}_j oldsymbol{P} = \sum_{j=1}^k oldsymbol{P}^ op oldsymbol{A}_j oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} + \sum_{j
eq h} oldsymbol{B}_j.$$

O equivalentemente,

$$\sum_{j\neq h} \boldsymbol{B}_j = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I}_{m-r} \end{pmatrix}$$

Claramente, dado que ${m A}_j$ es simétrica e idempotente, sigue que ${m B}_j$ también lo es. Por Recordatorio 1, sus elementos diagonales son no negativos. Además, $({m B}_j)_{ll}=0$ para $l=1,\ldots,r$. Así, por la parte (c) del Recordatorio 1 sigue que ${m B}_j$ debe ser de la forma

$$m{B}_j = egin{pmatrix} m{0} & m{0} \\ m{0} & m{C}_j \end{pmatrix},$$

donde C_j es matriz $(m-r) \times (m-r)$, simétrica e idempotente. Ahora, para cualquier $j \neq h$.

$$\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{A}_{j}\boldsymbol{P} = (\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{P})(\boldsymbol{P}^{\top}\boldsymbol{A}_{j}\boldsymbol{P}) = \begin{pmatrix} \boldsymbol{I}_{r} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{j} \end{pmatrix} = \boldsymbol{0},$$

lo que es verdad, sólo si $A_hA_j=0$, pues P es no singular. Notando que h es arbitrareo, la prueba es completa.

Lema 2:

Sean $oldsymbol{A}_1,\ldots,oldsymbol{A}_k$ matrices simétricas de orden m imes m y defina

$$\boldsymbol{A} = \boldsymbol{A}_1 + \boldsymbol{A}_2 + \cdots + \boldsymbol{A}_k.$$

Considere las siguientes afirmaciones,

- (a) A_i es idempotente, para $i = 1, \ldots, k$.
- (b) A es idempotente.
- (c) $A_i A_j = 0$, para todo $i \neq j$.

Entonces si dos condiciones son satisfechas, la tercera condición debe ser verdadera.

Demostración:

Primero mostraremos que (a) y (b) implica (c). Como \boldsymbol{A} es simétrica e idempotente, existe una matriz ortogonal \boldsymbol{P} tal que

$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = \mathbf{P}^{\top} (\mathbf{A}_1 + \dots + \mathbf{A}_k) \mathbf{P} = \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \tag{1}$$

donde $r = rg(\mathbf{A})$.

Sea $B_i = P^T A_i P$, para $i = 1, \dots, k$. y note que B_i es simétrica e idempotente. Por el Recordatorio 1, tenemos que B_i debe ser de la forma

$$m{B}_i = egin{pmatrix} m{C}_i & m{0} \ m{0} & m{0} \end{pmatrix},$$

donde la matriz $r \times r$, C_i debe ser simétrica e idempotente. Por (1), tenemos

$$C_1 + \cdots + C_k = I_r$$

Por el Lema 1, sigue que $C_iC_j=0$ para $i\neq j$, de donde obtenemos $B_iB_j=0$ y de ahí que $A_iA_j=0$, para $i\neq j$.

(a) y (c) implican (c) sigue de notar

$$\begin{aligned} \boldsymbol{A}^2 &= \left(\sum_{i=1}^k \boldsymbol{A}_i\right)^2 = \sum_{i=1}^k \sum_{j=1}^k \boldsymbol{A}_i \boldsymbol{A}_j = \sum_{i=1}^k \boldsymbol{A}_i^2 + \sum_{i \neq j} \boldsymbol{A}_i \boldsymbol{A}_j \\ &= \sum_{i=1}^k \boldsymbol{A}_i = \boldsymbol{A} \end{aligned}$$

Finalmente, para probar que (b) y (c) implican (a). Suponga que (c) es verdad, entonces $A_1A_j=A_jA_i$ para todo $i\neq j$ y las matrices A_1,\ldots,A_k pueden ser diagonalizadas simultáneamente. Esto es, existe una matriz ortogonal Q tal que

$$\boldsymbol{Q}^{\top} \boldsymbol{A}_i \boldsymbol{Q} = \boldsymbol{D}_i, \qquad i = 1, \dots, k,$$

donde cada una de las matrices $oldsymbol{D}_1,\ldots,oldsymbol{D}_k$ es diagonal.

Además,

$$D_i D_j = Q^{\top} A_i Q Q^{\top} A_j Q = Q^{\top} A_i A_j Q = 0, \qquad i \neq j.$$
 (2)

Como ${m A}$ es simétrica e idempotente, también lo es la matriz diagonal

$$\boldsymbol{Q}^{\top} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{D}_1 + \dots + \boldsymbol{D}_k,$$

y cada elemento diagonal de $Q^{\top}AQ$ debe ser 0 o 1. y por (2), lo mismo es válido para para los elementos diagonales de D_1, \ldots, D_k .

De este modo, $oldsymbol{D}_i$ es simétrica e idempotente y de ahí que tambiél lo es

$$A_i = QD_iQ^{\top}, \qquad i = 1, \dots, k,$$

lo que termina la prueba.

Observación:

Suponga que las condiciones del Lema 2 son satisfechas. Entonces (a), implica que $rg(A_i) = tr(A_i)$, y desde (b), sigue que

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}\left(\sum_{i=1}^k \boldsymbol{A}_i\right) = \sum_{i=1}^k \operatorname{tr}(\boldsymbol{A}_i) = \sum_{i=1}^k \operatorname{rg}(\boldsymbol{A}_i).$$

Resultado 3 (Teorema de Cochran):

Sea $X \sim \mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$, con $\pmb{\Sigma} > \pmb{0}$. Suponga que A_i es una matriz simétrica de orden $p \times p$ con rango r_i , para $i=1,\ldots,k$, y

$$\mathbf{A} = \mathbf{A}_1 + \cdots + \mathbf{A}_k$$

es de rango r. Considere las condiciones

- (a) $A_i\Sigma$ es idempotente para $i=1,\ldots,k$.
- (b) $A\Sigma$ es idempotente.
- (c) $A_i \Sigma A_j = \mathbf{0}$ para $i \neq j$.
- (d) $r = \sum_{i=1}^k r_i$.

si dos de (a), (b) y (c) se satisfacen, o si (b) (d) son satisfechas, entonces

- (i) $\boldsymbol{X}^{\top} \boldsymbol{A}_i \boldsymbol{X} \sim \chi^2(r_i, \lambda_i)$, con $\lambda_i = \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu} / 2$, $i = 1, \dots, k$.
- (ii) $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi^2(r, \lambda)$, con $\lambda = \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu} / 2$.
- (iii) $m{X}^{ op}m{A}_1m{X}, m{X}^{ op}m{A}_2m{X}, \dots, m{X}^{ op}m{A}_km{X}$ son mutuamente independientes.

Demostración:

Tenemos que $\Sigma = TT^{\top}$ y las condiciones (a)-(d), pueden ser expresadas como:

- (a) $T^{\top} A_i T$ es idempotente para $i = 1, \dots, k$.
- (b) $T^{\top}AT$ es idempotente.
- (c) $(\mathbf{T}^{\top} \mathbf{A}_i \mathbf{T}) (\mathbf{T}^{\top} \mathbf{A}_j \mathbf{T}) = \mathbf{0}$ para $i \neq j$.
- (d) $\operatorname{rg}(\boldsymbol{T}^{\top} \boldsymbol{A} \boldsymbol{T}) = \sum_{i=1}^{k} \operatorname{rg}(\boldsymbol{T}^{\top} \boldsymbol{A}_{i} \boldsymbol{T}).$

Como $T^{\top}A_1T, T^{\top}A_2T, \dots, T^{\top}A_kT$ y $T^{\top}AT$ satisfacen las condiciones del Lema 2.1 Entonces, las condiciones (a)-(d) se satisfacen.

Sabemos que (a) implica (i) y (b) implica (ii). Mientras que, Resultado 1 con (c), garantiza (iii), lo que completa la prueba.

¹y Observación en slide 10.