NAME: SID:

Problem 1: Find a general solution of the recurrence $A_n = 4A_{n-1} - 4A_{n-2} + 3n$. Show your work.

Problem 2: (a) Give the definition of Euler's totient function $\phi(n)$.
(b) Give the formula for Euler's totient function.
(c) Compute $\phi(6000)$.

Problem 3: For each recurrence below, circle the correct solution (or "none of the above").

Recurrence	Solution
(a) $f(n) = 16f(n/4) + 2n^2$	$\Theta(n)$
	$\Theta(\log n)$
	$\Theta(n^{3/4})$
	$\Theta(n^{\log_4 3})$
	$\Theta(n^2)$
	$\Theta(n^{\log_3 4})$
	$\Theta(n \log n)$
	none of the above
(b) $f(n) = 4f(n/3) + 2n^2$	$\Theta(n)$
	$\Theta(\log n)$
	$\Theta(n^{3/4})$
	$\Theta(n^{\log_4 3})$
	$\Theta(n^2)$
	$\Theta(n^{\log_3 4})$
	$\Theta(n \log n)$
	none of the above
(c) $f(n) = 4f(n/3) + 3n$	$\Theta(n)$
	$\Theta(\log n)$
	$\Theta(n^{3/4})$
	$\Theta(n^{\log_4 3})$
	$\Theta(n^2)$
	$\Theta(n^{\log_3 4})$
	$\Theta(n \log n)$
	none of the above