Tobias Diez, Kathlén Kohn

Fliegende Cops: Charakterisierung der Baumweite

Tobias Diez, Kathlén Kohn

Universität Leipzig, Universität Paderborn

Tobias Diez, Kathlén Kohn

Das Spiel

- endlicher, ungerichteter Graph G = (V, E)
- alle Teilnehmer sehen sich
- 1 Räuber:
 - befindet sich auf Knoten
 - bewegt sich entlang Kanten mit großer Geschwindigkeit
- k-1 Polizisten
 - befinden sich auf Knoten oder in Helikopter
 - können sich nur von Knoten zum Helikopter oder vom Helikopter zu je einem Knoten bewegen

Tobias Diez, Kathlén Kohn

- In Runde *i* wählen Polizisten $X_i \subseteq V, |X_i| < k$
 - $X_0 = \emptyset$
 - $X_{i-1} \subseteq X_i$ oder $X_i \subseteq X_{i-1}$
- In Runde i wählt Räuber einen X_i -flap $R_i \subseteq V$: Knotenmenge einer Komponente von $G \setminus X_i$
 - $R_i \subseteq R_{i-1}$ oder $R_{i-1} \subseteq R_i$
- Polizisten gewinnen, falls $R_{i-1} \subseteq X_i$

Tobias Diez, Kathlén Kohn

Übung 1

1 Wie viele Polizisten sind nötig, um den Räuber zu fangen?

2 Was gilt allgemein für Bäume?

Tobias Diez, Kathlén Kohn

Tobias Diez, Kathlén Kohn

Graphensuche

- < k Polizisten können Graph durchsuchen
 :⇔ < k Polizisten können Räuber fangen
- < k Polizisten können Graph monoton durchsuchen
 :⇔ < k Polizisten können Graph durchsuchen, so dass für alle i ≤ i' ≤ i "gilt: X_i ∩ X_i" ⊆ X_i

Kathlén Kohn

Seien
$$G = (V, E)$$
 Graph und $k \in \mathbb{N}$.

< k Polizisten können G nicht durchsuchen

 \Rightarrow < k Polizisten können G nicht monoton durchsuchen

Tobias Diez, Kathlén Kohn

Graphensuche

- $X, Y \subseteq V$ berühren sich, falls $X \cap Y \neq \emptyset$ oder $\exists x \in X, y \in Y : \{x, y\} \in E$
- < k Polizisten können Graph mit Sprüngen durchsuchen, falls sie Räuber fangen unter folgender Spieländerung:
 - Polizisten wählen $X_i \subseteq V, |X_i| < k$ beliebig
 - Räuber wählt X_i -flap $R_i \subseteq V$, der R_{i-1} berührt

Tobias Diez, Kathlén Kohn

Übung 2

Begründe: Wenn < k Polizisten einen Graph durchsuchen können, so können < k Polizisten den Graphen mit Sprüngen durchsuchen.

Tobias Diez, Kathlén Kohn

Seien
$$G = (V, E)$$
 Graph und $k \in \mathbb{N}$.

- < k Polizisten können G nicht mit Sprüngen durchsuchen
- \Rightarrow < k Polizisten können G nicht durchsuchen
- \Rightarrow < k Polizisten können G nicht monoton durchsuchen

Tobias Diez, Kathlén Kohn

Hafen der Ordnung k

$$\beta : \{X \subseteq V \mid |X| < k\} \rightarrow 2^V \text{ mit:}$$

- β(X) ist X-flap
- $\forall X, Y \subseteq V, |X| < k, |Y| < k : \beta(X)$ berührt $\beta(Y)$

Tobias Diez, Kathlén Kohn

1 Finde Hafen der Ordnung 2:

2 Zeige: Hat Graph G einen Hafen der Ordnung $\geq k$, so können < k Polizisten G nicht mit Sprüngen durchsuchen.

Tobias Diez, Kathlén Kohn

Seien G = (V, E) Graph und $k \in \mathbb{N}$.

G hat Hafen der Ordnung $\geq k$

- \Rightarrow < k Polizisten können G nicht mit Sprüngen durchsuchen
- \Rightarrow < k Polizisten können G nicht durchsuchen
- \Rightarrow < k Polizisten können G nicht monoton durchsuchen

Screen

Tobias Diez, Kathlén Kohn

- $S \subseteq 2^V$, so dass für alle $H \in S$ gilt:
 - H ≠ ∅
 - H ist in G verbunden
 - H berührt alle anderen $H' \in S$
- Screen S hat Dicke k, falls es kein $X \subseteq V$ gibt, so dass |X| < k und $\forall H \in S : X \cap H \neq \emptyset$

Tobias Diez, Kathlén Kohn

Übung 4

1 Finde einen Screen der Dicke 2:

2 Gibt es einen Screen der Dicke 3?

Tobias Diez, Kathlén Kohn

1 Finde einen Screen der Dicke 2:

2 Gibt es einen Screen der Dicke 3? Nein!

Tobias Diez, Kathlén Kohn

Zusammenhang: Screen - Hafen

Sei *S* Screen der Dicke $\geq k$ in *G* und $X \subseteq V$ mit |X| < k.

Tobias Diez, Kathlén Kohn

Zusammenhang: Screen - Hafen

Sei *S* Screen der Dicke $\geq k$ in *G* und $X \subseteq V$ mit |X| < k.

$$\Rightarrow \exists H \in \mathcal{S} : X \cap H = \emptyset$$

Tobias Diez, Kathlén Kohn

Zusammenhang: Screen - Hafen

Sei *S* Screen der Dicke $\geq k$ in *G* und $X \subseteq V$ mit |X| < k.

⇒
$$\exists H \in S : X \cap H = \emptyset$$

⇒ $\beta(X)$ sei X-flap, der H enthält

Tobias Diez, Kathlén Kohn

Zusammenhang: Screen - Hafen

Sei *S* Screen der Dicke $\geq k$ in *G* und $X \subseteq V$ mit |X| < k.

 $\Rightarrow \exists H \in S : X \cap H = \emptyset$

 $\Rightarrow \beta(X)$ sei X-flap, der H enthält

 $\Rightarrow \beta$ ist Hafen der Ordnung $\geq k$ in G.

Tobias Diez, Kathlén Kohn

Zusammenhang: Screen - Hafen

Sei *S* Screen der Dicke $\geq k$ in *G* und $X \subseteq V$ mit |X| < k.


```
\Rightarrow \exists H \in S : X \cap H = \emptyset
\Rightarrow \beta(X) \text{ sei } X\text{-flap, der } H \text{ enthält}
```

 $\Rightarrow \beta$ ist Hafen der Ordnung $\geq k$ in G.

(Ubung: Konstruktion von Screen der Dicke $\geq k$ aus Hafen der Ordnung $\geq k$.)

Satz

Tobias Diez, Kathlén Kohn

Seien G = (V, E) Graph und $k \in \mathbb{N}$.

G hat Screen der Dicke > k

- \Rightarrow G hat Hafen der Ordnung $\geq k$
- \Rightarrow < k Polizisten können G nicht mit Sprüngen durchsuchen
- \Rightarrow < k Polizisten können G nicht durchsuchen
- \Rightarrow < k Polizisten können G nicht monoton durchsuchen

Kathlén Kohn

Baum-Dekomposition

(T, W) mit T Baum und $W = \{W_t \subseteq V(G) \mid t \in V(T)\}$ sowie

- $\bullet \bigcup_{t \in V(T)} W_t = V(G)$
- $\forall \{x,y\} \in E(G) \exists t \in V(t) : x,y \in W_t$
- Wenn $t, t', t'' \in V(T)$ und t' liegt auf Pfad von t zu t'', dann $W_t \cap W_{t''} \subseteq W_{t'}$

Tobias Diez, Kathlén Kohn

Baum-Dekomposition

Tobias Diez, Kathlén Kohn

Weite einer Baum-Dekomposition

$$\max\{|W_t|-1\mid t\in V(T)\}$$

Tobias Diez, Kathlén Kohn

Baumweite eines Graphen G

Minimale Weite einer Baum-Dekomposition von G

Tobias Diez, Kathlén Kohn Übung 5

Zeige: Wenn die Baumweite von G kleiner als k-1 ist, so können < k Polizisten G monoton durchsuchen.

Tobias Diez, Kathlén Kohn

Tobias Diez, Kathlén Kohn

Satz

Seien G = (V, E) Graph und $k \in \mathbb{N}$.

G hat Screen der Dicke > k

 \Rightarrow G hat Hafen der Ordnung $\geq k$

 \Rightarrow < k Polizisten können G nicht mit Sprüngen durchsuchen

 \Rightarrow < k Polizisten können G nicht durchsuchen

 \Rightarrow < k Polizisten können G nicht monoton durchsuchen

 \Rightarrow Baumweite von G ist $\geq k-1$

Tobias Diez, Kathlén Kohn

Satz (vollständig)

Seien G = (V, E) Graph und $k \in \mathbb{N}$.

G hat Screen der Dicke > k

 \Leftrightarrow G hat Hafen der Ordnung $\geq k$

 \Leftrightarrow < k Polizisten können G nicht mit Sprüngen durchsuchen

 \Leftrightarrow < k Polizisten können G nicht durchsuchen

 \Leftrightarrow < k Polizisten können G nicht monoton durchsuchen

 \Leftrightarrow Baumweite von G ist $\geq k-1$

Tobias Diez, Kathlén Kohn

Satz (vollständig)

Seien G = (V, E) Graph und $k \in \mathbb{N}$.

G hat Screen der Dicke $\geq k$

 \Leftrightarrow G hat Hafen der Ordnung $\geq k$

 \Leftrightarrow < k Polizisten können G nicht mit Sprüngen durchsuchen

 \Leftrightarrow < k Polizisten können G nicht durchsuchen

 \Leftrightarrow < k Polizisten können G nicht monoton durchsuchen

 \Leftrightarrow Baumweite von G ist $\geq k-1$

Noch zu zeigen:

Baumweite von G ist $\geq k-1$ impliziert, dass G Screen der Dicke $\geq k$ hat.

Also: G hat keinen Screen der Dicke $\geq k$ impliziert, dass Baumweite von G kleiner als k-1 ist.

Tobias Diez, Kathlén Kohn

Beweisidee

Zeige: Seien S Screen in G und $k \in \mathbb{N}$. Wenn kein Screen S' in G mit $S \subseteq S'$ und Dicke $\geq k$ existiert, dann hat G eine Baum-Dekomposition (T,W), so dass für jedes $t \in V(T)$ mit $|W_t| \geq k$ gilt: $\deg(t) = 1$ und $\exists H \in S : W_t \cap H = \emptyset$.

Gewünschte Aussage folgt für $S = \emptyset$.