EFSA-Project

Statistical Learning Theory

UNIPV

A.Y. 2020/2021

Professor: Giuseppe De Nicolao

Team members:

- Andrea Vergine
- Domenico Ragusa

Goals

- 1. Plot dose-response data for each pair endpoint-gender (6 plots) with error bars reflecting error size on response measurements.
- 2. Use subset selection to estimate separate models for the 3 endpoints using gender as categorical variable.
- 3. Use subset selection to estimate a unique model using gender and endpoint as categorical variables.
- 4. In points 2. and 3., heteroscedasticity of the data should be taken into account.

Data table

						sex (0=M,	
response	number of animals	SD	SE	variance	dose	1=F)	endpoint
570.4	9	75.6	25.200	635.040	0	0	1
548.5	10	44.3	14.009	196.249	30	0	1
533	10	72.3	22.863	522.729	100	0	1
488.1	9	42.5	14.167	200.694	150	0	1
329.8	10	46.8	14.799	219.024	0	1	1
319.7	10	24.3	7.684	59.049	30	1	1
293.3	10	20.1	6.356	40.401	100	1	1
312.4	10	43.1	13.629	185.761	150	1	1
45.2	9	1.5	0.500	0.250	0	0	2
44.6	10	1.7	0.538	0.289	30	0	2
43	10	3.8	1.202	1.444	100	0	2
42.8	9	1.7	0.567	0.321	150	0	2
44.7	10	1.3	0.411	0.169	0	1	2
44.1	10	1.6	0.506	0.256	30	1	2
41.5	10	1.6	0.506	0.256	100	1	2
42.1	10	1.2	0.379	0.144	150	1	2
18.3	9	0.5	0.167	0.028	0	0	3
17.9	10	0.5	0.158	0.025	30	0	3
16.5	10	0.6	0.190	0.036	100	0	3
16.3	9	0.8	0.267	0.071	150	0	1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
19.1	10	0.5	0.158	0.025	0	1	3
19	10	0.4	0.126	0.016	30	1	3
17.9	10	0.5	0.158	0.025	100	1	3
17.3	10	0.6	0.190	0.036	150	1	3

Data plot

Dose-Response endpoint 1-gender male female Response Dose Dose-Response for male endpoint 2 € (= (**) ⊕ ○ (*) male female Response 43

Dose

Dose - response data plot

Std.error - endpoint 3 Std.error - endpoint 1 Std.error - endpoint 2 26 r male female 24 1.2 0.26 22 1.1 0.24 20 0.22 18 0.9 std.err std.err 8'0 std.err 0.2 0.7 14 0.18 12 0.6 0.16 10 0.5 0.14 0.4 8 0.3 0.12 100 150 50 100 150 50 100 150 0 50 0 dose dose dose

Looking at the data in advance

How to work

Alternatives:

- Linear models ->
- Fourier series -> No period, few data
- Polynomial models -> few data (not beyond 2° degree)

Approaches:

- Forward stepwise selection
- Backward stepwise selection
- Forward-Backward stepwise selection (stepwiselm)

Take into account heteroscedasticity:

$$w_{ii} = \frac{1}{std.\,error^2}, \qquad std.\,error^2 = \frac{\sigma_i^2}{n}$$

Forward stepwise selection

1. M_0 : null model (no predictors).

2. For
$$k = 0, ..., p - 1$$
:

- 2.1 Consider all p k models with one additional predictor.
- 2.2 Choose the best, call it Mk+1.
 Best: smallest RSS or highest R2.
- 3. Select the best model using objective tests.

Backward Stepwise Selection

- 1. *Mp*: full model (all p predictors).
- 2. For k = p, p-1,..., 1:
 - 2.1 Consider all k.
 - 2.2 Choose the best among these k models and call it *Mk1*. (smallest RSS or highest R^2).
- 3. Select the best model using objective tests.

Function: stepwiselm

stepwiselm

Perform stepwise regression

Syntax

```
mdl = stepwiselm(tbl)
mdl = stepwiselm(X,y)
mdl = stepwiselm(___,modelspec)
mdl = stepwiselm(___,Name,Value)
```

Description

mdl = stepwiselm(tbl) creates a linear model for the variables in the table or dataset array tbl using stepwise regression to add or remove predictors, starting from a constant model.

stepwiselm uses the last variable of tbl as the response variable. stepwiselm uses forward and backward stepwise regression to determine a final model. At each step, the function searches for terms to add the model to or remove from the model, based on the value of the 'Criterion' argument.

```
mdl = stepwiselm(X,y) creates a linear model of the responses y to the predictor variables in the data matrix X.
```

```
mdl = stepwiselm( ,modelspec) specifies the starting model modelspec using any of the input argument combinations in previous syntaxes.
```

mdl = stepwiselm(___,Name,Value) specifies additional options using one or more name-value pair arguments. For example, you can specify the categorical variables, the smallest or largest set of terms to use in the model, the maximum number of steps to take, or the criterion that stepwiselm uses to add or remove terms.

http://it.mathworks.com/help/stats/stepwiselm.html

response = 567.3801 - 243.6787 * sex - 0.5059 * dose + 0.2808 * sex * dose

theta	std.error
567.3801	16.4684625
-243.679	19.0457353
-0.50592	0.16458333
0.280831	0.19849252

StepwiseLM (forward-backward) – endpoint 1

```
mdl_1 =
Linear regression model:
    response_1 ~ 1 + dose_1 + gender_female_1
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	551.84	13.447	41.039	1.6201e-07
dose_1	-0.31284	0.1008	-3.1037	0.026742
<pre>gender_female_1_1</pre>	-221.7	12.073	-18.363	8.8074e-06

Number of observations: 8, Error degrees of freedom: 5

Root Mean Squared Error: 1.25

R-squared: 0.986, Adjusted R-Squared: 0.98

F-statistic vs. constant model: 171, p-value = 2.5e-05

Confidence intervals

517.2787	586.4103
-0.5720	-0.0537
-252.7355	-190.6660

$$response = 45.2371 - 0.0180 * sex - 0.7831 * dose$$

Objective tests evolution FPE AIC MDL 5.5 1.6 1.6 1.55 1.5 1.5 4.5 1.4 1.45 1.4 1.3 BIC 0.75 0.7 0.7 0.65 0.65 0.7 0.6 0.6 0.55 0.55 0.5 2 0.65 0.5

theta	std.error
45.23707	0.39747548
-0.01795	0.00330656
-0.78308	0.43948087

StepwiseLM (forward-backward) – endpoint 2

```
mdl_2 =
Linear regression model:
    response_2 ~ 1 + dose_2
```

Estimated	Coefficients:
	Ec++

	Estimate	SE	tStat	pValue
(Intercept) dose 2	44.785 -0.018754	0.35731 0.0038235	125.34 -4.9048	1.7391e-11 0.0026978

Number of observations: 8, Error degrees of freedom: 6

Root Mean Squared Error: 1.37

R-squared: 0.8, Adjusted R-Squared: 0.767

F-statistic vs. constant model: 24.1, p-value = 0.0027

Confidence intervals

43.991	45.6596
-0.0281	-0.0094

$$response = 18.2186 - 0.0139 * sex + 1.0881 * dose$$

theta	std.error
18.21858	0.1254263
-0.01389	0.00128698
1.088115	0.13866997

StepwiseLM (forward-backward) – endpoint 3

```
mdl_3 =
Linear regression model:
    response_3 ~ 1 + dose_3 + gender_female_3
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	18.219	0.12543	145.25	2.934e-10
dose_3	-0.013887	0.001287	-10.79	0.00011858
<pre>gender_female_3_1</pre>	1.0881	0.13867	7.8468	0.00053962

Number of observations: 8, Error degrees of freedom: 5

Root Mean Squared Error: 1.15 R-squared: 0.971, Adjusted R-Squared: 0.959

F-statistic vs. constant model: 83.6, p-value = 0.000144

Confidence intervals

17.8962	18.5410
-0.0172	-0.0106
0.7317	1.4446

Forward selection – unique model

response

- = 18.36327 + 0.909607 * sex 0.01459 * dose + 549.0169 * endpoint1 + 25.54763
- * endpoint 2 0.49133 * dose * endpoint <math>1 244.588 * sex * endpoint <math>1 + 0.280831
- * sex * endpoint1 * dose

Forward (Backward) selection – unique model

StepwiseLM (forward-backward) – unique model

Confidence intervals

17.9752	18.5190
-0.0171	-0.0118
0.7858	1.3985
506.1281	561.0667
25.9946	27.5863
-0.5043	-0.0925
-247.4567	-198.1291
-2.9325	-0.9453

```
mdl =
Linear regression model:
    response ~ 1 + dose*endpoint_1 + female*endpoint_1 + female*endpoint_2

Estimated Coefficients:
Estimated Coefficients:
```

	Estimate	SE	tStat	pvalue
(Intercept)	18.247	0.12825	142.28	2.9732e-26
dose	-0.014438	0.0012474	-11.575	3.4626e-09
female_1	1.0922	0.14453	7.5566	1.1526e-06
endpoint_1_1	533.6	12.958	41.18	1.149e-17
endpoint_2_1	26.79	0.37542	71.361	1.8213e-21
dose:endpoint_1_1	-0.29841	0.097136	-3.072	0.0072948
female_1:endpoint_1_1	-222.79	11.634	-19.149	1.8681e-12
female_1:endpoint_2_1	-1.9389	0.4687	-4.1368	0.00077449

Number of observations: 24, Error degrees of freedom: 16

Root Mean Squared Error: 1.2

R-squared: 0.999, Adjusted R-Squared: 0.999

F-statistic vs. constant model: 2.62e+03, p-value = 2.96e-23

Jump to the conclusions

Grazie per l'attenzione

Repository: https://github.com/domenico-rgs/EFSA-Project