Преоисловие	0
Глава 1. Введение	
1.1. История развития ускорительной техники	
1.2. Классификация ускорителей	25
Глава 2. Принципы ускорения заряженных частиц	
2.1. Высоковольтное ускорение	
2.2. Индукционное ускорение	
2.3. Резонансное ускорение	34
Глава 3. Физика пучков заряженных частиц	40
3.1. Задачи оптики заряженных частиц	
3.2. Свободное движение ускоренного пучка заряженных частиц	43
3.3. Основные параметры пучка заряженных частиц	
3.4. Принцип автофазировки	
3.5. Поперечная устойчивость и фокусировка	61
3.6. Исследование ионно-оптических характеристик диэлектрических капилляров	76
глава 4. Источники пучков заряженных частиц	
4.1. Источники электронов	
4.2. Классификация ионных источников	
4.3. Извлечение ионов	
4.4. Конструкции источников ионов	
Глава 5. Высоковольтные линейные ускорители	
5.1. Особенности и основные элементы ускорителей прямого действия	
5.2. Высоковольтная ускоряющая система	103
5.3. Ускорительные трубки ускорителей прямого действия на	
энергию свыше 1 МэВ	105
5.4. Электрическая прочность газовой изоляции ускорителей	
5.5. Ускорители трансформаторного типа	
5.6. Каскадные высоковольтные ускорители	
5.7. Высоковольтные ускорители электронов	
5.8. Электростатические ускорители	120
Глава 6. Линейные ускорители	
6.1. Развитие линейных ускорителей	
6.2. Линейные резонансные ускорители электронов	
6.3. Линейные ускорители ионов	141

Глава 7. Индукционные ускорители	49
7.1. Линейные индукционные ускорители	49
7.2. Конструкции линейных индукционных ускорителей15	51
7.3. Бетатрон	56
7.4. Конструкции бетатронов	57
••	
Глава 8. Циклические ускорители с постоянным во времени	
магнитным полем	
8.1. Ускорение частиц и поворот пучка в циклическом ускорителе 10	66
8.2. Устойчивость движения заряженной частицы в магнитном поле	
при постоянной энергии1	
8.3. Циклические резонансные ускорители1	
8.4. Магниты и их питание	75
8.5. Циклические ускорители с постоянным магнитным полем	
8.6. Циклотрон	
8.7. Микротрон	
8.8. Изохронный циклотрон	
8.9. Фазотрон	85
F 0 II	
Глава 9. Циклические ускорители с переменным во времени	00
магнитным полем	
9.1. Принципы действия и основные особенности	
9.2. Синхротрон	
9.3. Синхрофазотрон	91
Глава 10. Установки со встречными пучками	07
10.1. Метод встречных пучков	
10.2. Электрон-позитроный коллайдер ВЭПП-2000	13
10.3. Электрон-позитронный коллайдер ВЕРС II	15
10.4. Релятивистский коллайдер тяжелых ионов RHIC	16
10.5. Большой адронный коллайдер (LHC)	20
10.6. Детекторы LHC	22
-	
Глава 11. Лазеры на свободных электронах2	235
11.1. Основные конструктивные элементы ЛСЭ	35
11.2. Рентгеновский ЛСЭ XFEL	238
Глава 12. Применение ускорителей заряженных частиц	42
12.1. Физика высоких энергий и ускорители	
12.2. Использование ускорителей в прикладных целях	
12.2.1. Перспективные приложения радиационных технологий 2	
12.2.2. Электронно-лучевая сварка2	248
12.2.3. Имплантация ионов	
12.2.4. Дефектоскопия2	

12.2.5. Радиационная химия	254
12.2.6. Неразрушающий анализ	255
12.2.7. Радиационная терапия	
12.2.8. Производство радионуклидов	
12.2.9. Стерилизация	
Глава 13. Ядерные технологии в продовольственной	
и сельскохозяйственной областях	261
13.1. Качество и безопасность пищевых продуктов	261
13.2. Борьба с недостаточным питанием с помощью ядерных методов	263
13.3. Повышение качества сельскохозяйственных культур	264
13.4. Повышение продуктивности и борьба с болезнями	
в животноводстве	266
13.5. Улучшение управления водными ресурсами в сельском	
хозяйстве с использованием изотопных методов	267
13.6. Секвестрация почвенного органического углерода	
и смягчение последствий изменения климата	269
13.7. Электронно-пучковая стерилизация асептических	
упаковочных материалов и контейнеров	269
Литература	272