Robotics 1 Exercise Solver

November 9, 2023

Contents

1	Rot	ation Matrices 2	
	1.1	Check if R is a rotation matrix	
	1.2	Rotation direct problem	
	1.3	Rotation inverse problem	
		1.3.1 singularity (hence $\sin(\theta) = 0$)	
		1.3.2 not singularity	
2	Rol	l Pitch Yawn	
	2.1	RPY direct problem	
	2.2	Inverse Problem	
		2.2.1 singularity (hence $R_{32}^2 + R_{33}^2 = 0$)	
		2.2.2 not singularity	
3	DH	frames 4	
	3.1	Assign axis	
	3.2	DH table	
	3.3	Transformation matrix from DH parameters	
	3.4	DH parameters from transformation matrix	
	0.4	Diff parameters from transformation matrix	
4	Workspace 5		
	4.1	2-DOF robot	
	4.2	3-DOF robot	

1 Rotation Matrices

1.1 Check if R is a rotation matrix

To check if R is a rotation matrix we have to check:

- det(R) = 1
- Orthogonality: $R^T R = I$
- Normality: for each column R_i of R, $||R_i|| = 1$

1.2 Rotation direct problem

To find R from θ and \mathbf{r} we use the Rodrigues' rotation formula:

$$R(\theta, r) = rr^{T} + (I - rr^{T})\cos(\theta) + (S(r))\sin(\theta)$$
(1)

where S(r) is the skew-symmetric matrix of **r**:

$$S(r) = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$
 (2)

1.3 Rotation inverse problem

To find θ and ${\bf r}$ from R we first check if there is a singularity:

$$\sin(\theta) = \frac{1}{2} \left(\sqrt{(R_{32} - R_{23})^2 + (R_{13} - R_{31})^2 + (R_{21} - R_{12})^2} \right)$$
(3)

1.3.1 singularity (hence $sin(\theta) = 0$)

If it is a singularity we can find \mathbf{r} and θ : if θ is 0: there is no solution for r. if θ is $\pm \pi$:

we set $sin(\theta) = 0$, $cos(\theta) = -1$ and we find **r**:

$$\mathbf{r} = \frac{1}{2} \begin{bmatrix} \pm \sqrt{R_{11} + 1} \\ \pm \sqrt{R_{22} + 1} \\ \pm \sqrt{R_{33} + 1} \end{bmatrix}$$
 (4)

To decide the signs of the elements of ${\bf r}$ we can use the following criteria:

- $r_x r_y = R_{12}/2$
- $r_x r_z = R_{13}/2$
- $r_u r_z = R_{23}/2$

1.3.2 not singularity

If the singularity is not present we can find theta and r:

Note: we obtain two solutions for θ and cosequently r

$$\cos(\theta) = (R_{11} + R_{22} + R_{33} - 1) \tag{5}$$

$$\sin(\theta) = \pm \sqrt{(R_{32} - R_{23})^2 + (R_{13} - R_{31})^2 + (R_{21} - R_{12})^2}$$
 (6)

$$\theta = \operatorname{atan2}\left(\sin\theta, \cos\theta\right) \in (-\pi, \pi] \tag{7}$$

$$\mathbf{r} = \frac{1}{2\sin(\theta)} \begin{bmatrix} R_{32} - R_{23} \\ R_{13} - R_{31} \\ R_{21} - R_{12} \end{bmatrix}$$
(8)

2 Roll Pitch Yawn

2.1 RPY direct problem

To find R from ψ , θ and ϕ we use the following formula:

$$R(\psi, \theta, \phi) = R_z(\phi)R_y(\theta)R_x(\psi) \tag{9}$$

Note: the order of the angle is reversed!

2.2 Inverse Problem

Given a rotation matrix R we can find ψ , θ and ϕ : First check if there is a singularity (if $R_{32}^2 + R_{33}^2 = 0$).

2.2.1 singularity (hence $R_{32}^2 + R_{33}^2 = 0$)

If it is a singularity we can find $\phi + \psi$ and $\phi - \psi$:

$$\phi + \psi = \operatorname{atan2}(-R_{23}, R_{13}) \, or \tag{10}$$

$$\phi + \psi = \operatorname{atan2}(-R_{12}, R_{22}) \tag{11}$$

$$\phi - \psi = \operatorname{atan2}\left(R_{31}, \pm \sqrt{R_{32}^2 + R_{33}^2}\right) \tag{12}$$

2.2.2 not singularity

If it is not a singularity we can find ψ , θ and ϕ :

$$\theta = \operatorname{atan2}\left(-R_{31}, \pm \sqrt{R_{32}^2 + R_{33}^2}\right) \tag{13}$$

$$\phi = \operatorname{atan2}(R_{21}/\cos(\theta), R_{11}/\cos(\theta)) \tag{14}$$

$$\psi = \operatorname{atan2}(R_{32}/\cos(\theta), R_{33}/\cos(\theta)) \tag{15}$$

3 DH frames

3.1 Assign axis

- z_i along the direction of joint i+1.
- x_i along the common normal between z_i and z_{i-1} .
- y_i completes the right-handed coordinate system.

3.2 DH table

- θ_i angle between x_{i-1} and x_i measured about z_{i-1} .
- d_i distance between x_{i-1} and x_i measured along z_{i-1} .
- a_i distance between z_{i-1} and z_i measured along x_i .
- α_i angle between z_{i-1} and z_i measured about x_i .

3.3 Transformation matrix from DH parameters

$$^{i-1}A_{i} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i})\cos(\alpha_{i}) & \sin(\theta_{i})\sin(\alpha_{i}) & a_{i}\cos(\theta_{i}) \\ \sin(\theta_{i}) & \cos(\theta_{i})\cos(\alpha_{i}) & -\cos(\theta_{i})\sin(\alpha_{i}) & a_{i}\sin(\theta_{i}) \\ 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(16)

3.4 DH parameters from transformation matrix

First we have to check that the first three by three submatrix is a rotation matrix (see section 1.1).

Then we can find the parameters:

$$\theta_i = \text{atan2}(R_{12}, R_{11}) \tag{17}$$

$$\alpha_i = \text{atan2}(R_{32}, R_{33})$$
 (18)

$$d_i = R_{34} \tag{19}$$

$$a_i = R_{14}\cos(\theta_i) + R_{24}\sin(\theta_i) \tag{20}$$

(21)

4 Workspace

4.1 2-DOF robot

The primary workspace is defined by two concentric circles of radius r_1 and r_2 where:

$$r_1 = |l_1 - l_2| \tag{22}$$

$$r_2 = l_1 + l_2 (23)$$

4.2 3-DOF robot

The primary workspace is defined by two concentric spheres of radius r_{in} and r_{out} where:

$$r_{in} = l_{min} + l_{med} + l_{max} \tag{24}$$

$$r_{out} = \max(0, l_{max} - l_{med} - l_{min}) \tag{25}$$

where:

- l_{min} is the length of the shortest link
- l_{med} is the length of the medium link
- l_{max} is the length of the longest link