

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO **FACULTAD DE ESTUDIOS SUPERIORES IZTACALA**

LICENCIATURA EN ECOLOGÍA Sistema Escolarizado: Modalidad Presencial Programa de estudios de la asignatura

Métodos de Análisis Genómicos								
Clave	Semestre Crédit		Duración	16 semanas				
Ciave	7	8	Campo de conocimiento	Biología	Biología			
			Etapa	Terminal				
Modalidad Curso () Taller () Lab () Sem (x)			Tipo	т()	P()	T/P (x)		
Carácter	Carácter Obligatorio () Optativo (x)			Horas				
·				Semana			Semestre	
				Teórica	ıs	2	Teóricas	32
					as	4	Prácticas	64
						6	Total	96
Seriación								
Ninguna ()								
Obligatoria ()								
Asignatura antecedente								
Asignatura subsecuente								
Indicativa ()								
Asignatura antecedente								
Asignatu	ra subsecu	ente						

Objetivo general:

Resolver problemas relacionados a las ciencias genómicas, proteómicas y metabolómicas utilizando los principales algoritmos del área.

Objetivos específicos:

- 1. Revisar los principales algoritmos utilizados en estas disciplinas.
- 2. Identificar el algoritmo más adecuado para responder a una pregunta biológica.
- 3. Utilizar las herramientas de predicción basadas en este tipo de algoritmo para describir

complejos problemas biológicos.

Proteómica

Metabolómica

4.3 Complejos de proteínas.4.4 Proteoma funcional.

5.1 Análisis metabolómico.5.2 Técnicas separativas.

5.3 Sistemas de detección.5.4 Sensores bioquímicos.

4

5

4. Describir problemas biológicos complejos basados en el tipo de algoritmo a través del uso de herramientas de predicción.

Índice temático							
		Horas					
	Tema	Semestre					
		Teóricas	Prácticas				
1	*Omicas	4	0				
2	Breve introducción a Perl	4	16				
3	Genómica	8	16				
4	Proteómica	8	16				
5	Metabolómica	8	16				
	Subtotal	32	64				
		•					

96 Total Contenido Temático **Subtemas** Tema *Omicas 1 1.1 Antecedentes. 1.2. Manejo masivo de datos. Breve introducción a Perl 2.2 Funciones básicas. 2.2 Vectores, matrices y arreglos. 2.3 Estructuras de control. 2 2.4 Funciones. 2.5 Gráficos. 2.6 Lectura y escritura de archivos. 2.7 Consultas en bases de datos. Genómica 3.1 Análisis masivo de secuencias. 3 3.2 Ensamble y anotación de transcriptomas y genomas. 3.3 Microarreglos.

4.1 Generalidades sobre los métodos más comunes.

4.2 Espectrometría de masas LS-MS, MALDI-TOF.

5.5 Reconstrucción de redes metabólicas.

Estrategi	as didácticas		Evaluación del aprendizaje				
Exposición		(x)	Exámenes parciales	(x)			
Trabajo en equipo (x)			Examen final (>				
Lecturas		(x)	Trabajos y tareas	(x)			
Trabajo de investigación ()			Presentación de tema	(x)			
Prácticas (taller o laboratorio) (x)			Participación en clase	()			
Prácticas de campo ()			Asistencia	()			
Aprendizaje por proyectos ()			Rúbricas	()			
Aprendizaje basado en problemas (x)			Portafolios	()			
Casos de enseñanza ()			Listas de cotejo	()			
Otras (especificar)			Otras (especificar)	(x)			
			Reporte de lecturas				
			Reporte de prácticas				
Perfil profesiográfico							
Título o grado	Profesionales con formación en Ciencias Genómicas.						
Experiencia docente	Docentes con estudios de posgrado y con experiencia en investigación y						
	docencia de al menos dos años a nivel licenciatura o posgrado.						
Otra característica							

Bibliografía básica

Holler, D.A. (2001). Principios de análisis instrumental. España: McGraw-Hill/Interamericana.

Jaumot J. Bedia C. & Tauler R. (2018). Data Analysys for Omic Sciences: Methods and

Applications. Wilson and Wilson's Comprehensive analytical Chemistry. D. Barceló ed.

Kirchman D. (2018). Precesses in Microbial Ecology. Oxford University Press. USA.

Lesk, A.M. (2007). Introduction to Genomics. USA: Oxford University Press.

Lindon, J.C. (2010). The Handbook of Metabonomics and Metabolomics. Ireland: Elsevier.

Pennington, S. R. & Dunn, M. J. (2001). Proteomics: From Protein Sequence to Function. USA: Bios Scientific Publishers.

Silas, G. (2009). Metabolome analysis: an introduction. USA: Research and Markets.

Bibliografía complementaria

Iwasa J. & Marshal W. (2019). Karp. Biología cellular y molecular. Conceptos y Experimentos. (8ª ed.) McGraw-Hill.

Papin, J.A., Price, D.N., Wiback, S.J., Fell, D.A. y Palsson, B.O. (2003). Metabolic pathways in the post-genome era. Trends in Biochemical Sciences 28:250-258.

Rodríguez, A. & Infante D. (2009). Network models in the study of metabolism. *Electron. J. Biotechnol.* 12(4):11-12.

Xiong J. (2006). Essential Bioinformatics. Cambridge University Press. USA.