UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA DE CORRECCIÓN EVALUACIÓN 3. CÁLCULO III. 525211.

1. (15 ptos.) Usando el Teorema de Green, calcule en el sentido antihorario

$$\oint_C 2xydx + (x^2 + y^2 - 2x)dy$$

lo largo de una curva C cerrada cualquiera de \mathbb{R}^2 , que encierre a una superficie de área igual a 1.

Solución

Sea F(x,y)=2xy y $G(x,y)=x^2+y^2-2x$, del Teorema de Green se tiene que

$$\oint_C 2xydx + (x^2 + y^2 - 2x)dy = \oint_C Fdx + Gdy = \iint_S \frac{\partial G}{\partial x} - \frac{\partial F}{\partial y}dxdy$$

$$= \iint_S (2x - 2 + 2x)dxdy = -2\iint_S dxdy = -2$$

2. (30 ptos.) Sean 2 campos vectoriales de $\mathbb{R}^2 \to \mathbb{R}^2$ definidos por :

- a) Pruebe que ambos campos provienen de un potencial, y calcule dichos potenciales.
- b) Sea C una circunferencia centrada en (0,0) y de radio ε aribitrario. Pruebe que

$$\oint_C F(\mathbf{r}) \cdot d\mathbf{r} = 0, \qquad \oint_C G(\mathbf{r}) \cdot d\mathbf{r} = -2\pi \qquad \text{(sentido antihorario)}.$$

- c) Deduzca que a pesar de que ambos campos provienen de un potencial, sólo uno es conservativo.
- d) Calcule $\int_C F(\mathbf{r}) \cdot d\mathbf{r}$ para cualquier curva C que parta desde (-1,0) y llegue a (1,0).
- e) Pruebe que $\int_C G(\mathbf{r}) \cdot d\mathbf{r}$ para cualquier curva C partiendo de (-1,0) a (1,0) sin rodear al punto (0,0) es siempre igual a $-\pi$ si C pasa por debajo del punto (0,0), y es igual a π si C pasa por arriba del punto (0,0).

Solución

a) ; Existe $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla \varphi = F$?

$$\varphi(x,y) = \int \frac{x}{x^2 + y^2} dx + C(y) = \ln \left(\sqrt{x^2 + y^2}\right) + C(y) = \ln r + C(y)$$

1

Luego

$$\frac{\partial}{\partial y}\varphi(x,y) = \frac{\partial}{\partial y}\ln\left(\sqrt{x^2+y^2}\right) + C'(y)$$
$$= \frac{y}{x^2+y^2} + C'(y) = \frac{y}{x^2+y^2} \Longrightarrow C'(y) = 0 \Longrightarrow C(y) = 0.$$

Luego el potencial de F está dado por $\varphi(x,y) = \ln\left(\sqrt{x^2 + y^2}\right) = \ln r$ (3 pts.)

Existe $\psi: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla \varphi = G$?

$$\psi(x,y) = \int \frac{y}{x^2 + y^2} dx + C(y) = \arctan(x/y) + C(y)$$

Luego

$$\begin{split} \frac{\partial}{\partial y} \psi(x,y) &= \frac{\partial}{\partial y} \arctan(x/y) + C'(y) \\ &= \frac{-x}{x^2 + y^2} + C'(y) = \frac{-x}{x^2 + y^2} \Longrightarrow C'(y) = 0 \Longrightarrow C(y) = 0. \end{split}$$

Luego el potencial de G está dado por $\psi(x,y) = \arctan(x/y)$ (3 pts.)

b) En coordenadas polares $F(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) = (\cos \theta, \sin \theta)$. Luego,

$$\oint_C F(\mathbf{r}) \cdot d\mathbf{r} = \int_0^{2\pi} \left(\frac{\cos \theta}{\varepsilon}, \frac{-\sin \theta}{\varepsilon}\right) \cdot (-\varepsilon \sin \theta, \varepsilon \cos \theta) d\theta$$

$$= \int_0^{2\pi} 0 d\theta = 0$$

(3 pts.)

En coordenadas polares $G(x,y) = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\right) = (\operatorname{sen} \theta, -\cos \theta)$. Luego,

$$\oint_C G(\mathbf{r}) \cdot d\mathbf{r} = \int_0^{2\pi} \left(\frac{\sin \theta}{\varepsilon}, \frac{-\cos \theta}{\varepsilon}\right) \cdot \left(-\varepsilon \sin \theta, \varepsilon \cos \theta\right) d\theta$$

$$= \int_0^{2\pi} -1 d\theta = -2\pi$$

(3 pts.)

c) Ambas funciones son de clase C^1 salvo en (0,0), luego como ambas provienen de un potencial, la integral sobre cualquier curva cerrada que no contenga al (0,0) de F y de G es nula.

(2 pts.)

Por otro lado por (b), la integral integral sobre cualquier curva cerrada contenida entre dos vecindad de (0,0) es nula para F y es distinto de 0, para G. Luego la integral de F sobre cualquiera curva cerrada de \mathbb{R}^2 es cero, en cambio la integral para G, no necesariamente si esta curva rodea al (0,0). (2 pts.)

Luego F es un campo conservativo y G no.

(2 pts.)

d)
$$\int_C F(\mathbf{r}) \cdot d\mathbf{r} = \varphi(1,0) - \varphi(-1,0) = \ln\left(\sqrt{1^2 + 0^2}\right) - \ln\left(\sqrt{(-1)^2 + 0^2}\right) = 0 - 0 = 0$$
 (6 pts.)

- e) De (c) sabemos que para cualquier curva cerrada D que no encierre al punto (0,0), se tiene $\oint_D G(\mathbf{r}) \cdot d\mathbf{r} = 0$ (2 pts.)
 - i. Si la curva C pasa por debajo del punto (0,0) la completamos con la semicircunferencia de radio 1 que está debajo del eje y=0, en el sentido horario :

$$C_{circ.\,inf.} = \{(\cos \theta, -\sin \theta) \mid \theta \in [0, \pi]\}$$

De modo que $D = C + C_{circ.inf.}$ (1 pt.)

Integrando G lo largo de esta curva cerrada que no contiene al (0,0) obtenemos :

$$\oint_D G(\mathbf{r}) \cdot d\mathbf{r} = \oint_C G(\mathbf{r}) \cdot d\mathbf{r} + \oint_{C_{circ.inf.}} G(\mathbf{r}) \cdot d\mathbf{r} = \oint_C G(\mathbf{r}) \cdot d\mathbf{r} + \pi = 0$$

Luego
$$\oint_C G(\mathbf{r}) \cdot d\mathbf{r} = -\pi$$
. (1 pt.)

ii. Si la curva C pasa por arriba del punto (0,0) la completamos con la semicircunferencia de radio 1 que está arriba del eje y=0, en el sentido antihorario :

$$C_{circ.\,sup.} = \{(\cos \theta, \, \sin \theta) \mid \theta \in [\pi, 2\pi]\}$$

De modo que $D = C + C_{circ. sup.}$

(1 pt.)

Integrando G lo largo de esta curva cerrada que no contiene al (0,0) obtenemos:

$$\oint_D G(\mathbf{r}) \cdot d\mathbf{r} = \oint_C G(\mathbf{r}) \cdot d\mathbf{r} + \oint_{C_{circ, sum}} G(\mathbf{r}) \cdot d\mathbf{r} = \oint_C G(\mathbf{r}) \cdot d\mathbf{r} - \pi = 0$$

Luego
$$\oint_C G(\mathbf{r}) \cdot d\mathbf{r} = \pi$$
. (1 pt.)

3. (15 ptos.) La siguiente ecuación conocida como ecuación de Stokes en regimen estacionario modela aproximadamente el movimiento de un fluido laminar viscoso:

$$-\Delta \mathbf{u} + \nabla p = 0$$
 en Ω (aquí $\Delta \mathbf{u} = \begin{pmatrix} \Delta u_1 \\ \Delta u_2 \\ \Delta u_3 \end{pmatrix}$),

donde $\mathbf{u}: \mathbb{R}^3 \to \mathbb{R}^3$ es un campo de velocidades que suponemos de clase \mathcal{C}^2 , $p: \mathbb{R}^3 \to \mathbb{R}$ es la función presión que suponemos de clase \mathcal{C}^1 , y Ω es un abierto acotado de \mathbb{R}^3 , encerrado por una superficie S, medible. Usando la primera identidad de Green, deducida del Teorema de la Divergencia, pruebe que

$$\iiint\limits_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \ dx = - \iint\limits_{S} (pI - \nabla \mathbf{u}) \mathbf{v} \cdot \mathbf{n} \ ds$$

para todo $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ de clase \mathcal{C}^2 tal que $\operatorname{div}(\mathbf{v}) = 0$ en Ω , y donde I es la matriz identidad de 3×3 , y $\nabla \mathbf{u} = \left(\frac{\partial u_j}{\partial x_i}\right)_{ij} = J(\mathbf{u})^t$ (traspuesta de la matriz jacobiana).

Solución

Sean $\mathbf{u} = (u_1, u_2, u_3)$ y $\mathbf{v} = (v_1, v_2, v_3)$. Entonces, aplicando la primera identidad de Green a cada componente de $\mathbf{v} \cdot (\Delta \mathbf{u})$ se tiene que

$$\iiint\limits_{\Omega} v_i \Delta u_i + \nabla v_i \cdot \nabla u_i \ dx = \iint\limits_{S} v_i \nabla u_i \cdot \mathbf{n} \ ds$$

Es decir

$$\iiint_{\Omega} (-\Delta u_i) v_i \ dx = \iiint_{\Omega} \nabla v_i \cdot \nabla u_i \ dx - \oiint_{S} v_i \nabla u_i \cdot \mathbf{n} \ ds$$

Lo cual vectorialmente queda

$$\iiint_{\Omega} (-\Delta \mathbf{u}) \cdot \mathbf{v} \ dx = \iiint_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \ dx - \oiint_{S} (\nabla \mathbf{u}) \mathbf{v} \cdot \mathbf{n} \ ds$$
 (1)

(5 pts.)

Por otro lado aplicando el teorema de la divergencia a pv se tiene que

$$\iiint_{\Omega} \operatorname{div}(p\mathbf{v}) \ dx = \iiint_{\Omega} \nabla p \cdot \mathbf{v} \ dx + \iiint_{\Omega} p \operatorname{div}(\mathbf{v}) \ dx$$

$$= \iiint_{\Omega} \nabla p \cdot \mathbf{v} \ dx \quad \text{(pues div}(\mathbf{v}) = 0)$$

$$= \iint_{S} p\mathbf{v} \cdot \mathbf{n} \ ds \quad \text{(teorema de la divergencia)}$$

Es decir

$$\iiint\limits_{\Omega} \nabla p \cdot \mathbf{v} \ dx = \oiint\limits_{S} p\mathbf{v} \cdot \mathbf{n} \ ds \tag{2}$$

(5 pts.)

Haciendo producto punto entre la ecuación de Stokes y el campo vectorial ${\bf v}$ e integrando en Ω se tiene que

$$\iiint\limits_{\Omega} \left(-\Delta \mathbf{u} + \nabla p \right) \cdot \mathbf{v} dx = 0.$$

Usando las igualdades (1) y (2) se obtiene

$$\iiint\limits_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \ dx = - \oiint\limits_{S} (pI - \nabla \mathbf{u}) \mathbf{v} \cdot \mathbf{n} \ ds$$

(5 pts.)

MSC/msc (8-Julio-2004)