LECTURE - 1 MEAN VALUE THEOREMS

	Syllabus	marks
1.	Partial derivatives, Limits, Mean Value Theorems _ 10)
2.	Taylor series, Macharin's series (in two variables); Max & min. of a function of two variables, Solid geometry)
	Max & min. 2 a function of two voriables,	/ Ø
	Solid geometry)
3.	Multiple Integrals —	12
	U	
4.	Loplace Transform -	10
5	- Infinite Series —	8
		8 SD Mark
	Reference books - B. S. Grewal 2) Differential Calculus by Shanti Naray	
	2) Differential Calculus by Shanti	
	Naray	$a\sim$
	Some fundamental Theorems	
	Rolle's theorem	<u> </u>
	If the function $f(x)$ is Continuous in differentiable in (a, b) and $f(a) = f(b)$	[a, b]
	differentiable in (a, b) and if f(a) = f(b)	, then
	true exists alterst one point c in (a, b)	
	there exists alterst one point C in (a, b) Such that f'(c) = 0	
	Geometrical meaning	
		_) ~
	largents is parallel to x-anis a b	

$$k = -\left(\frac{f(b) - f(a)}{g(b) - g(a)}\right) - 0$$
Sumu $\phi(a)$ Satisfin Rolles theorem, there exists attent one point $c \in (a, b)$ Sit $\phi(c) = 0$

if $(c) + kg'(c) = 0$

$$k = -\frac{f(c)}{g(c)} - (2)$$

$$f(b) - f(a) = \frac{f(c)}{g(c)}$$
Problems
$$Very CNVT \text{ and find } c \text{ in } (a, b), a \text{ and } b$$

$$Very CNVT \text{ and find } c \text{ in } (a, b), a \text{ and } b$$

$$Very CNVT, f(b) - f(a) = f(c)$$

$$g(a) = e^{b} - e^{a} = e^{c}$$

$$f(a) = e^{b} - e^{a} = e^{c}$$

$$g(a) = e^{b} - e^{a} = e^{c}$$

$$e^{b} - e^{a} = -e^{c}$$

$$e^{a} - e^{b} = -e^{c}$$

$$e^{b} - e^{a} = -e^{c}$$

$$e^{b} - e^{a} = -e^{c}$$

$$e^{a} - e^{b} - e^{c} = -e^{c}$$

$$e^{a} - e^{b} - e^{c} = -e^{c}$$

$$e^{b} - e^{a} - e^{c} = -e^{c}$$

$$e^{a} - e^{b} - e^{a} = -e^{c}$$

$$e^{a} - e^{a} - e^{c} = -e^{c}$$

$$e^{a} - e^{a} - e^{a} = -e^{c}$$

$$e^{a}$$

$$e^{a+b} = 2c$$

$$c = \frac{1}{2}(a+b)$$
Thus C Dis in (a, b) which very cmv7

$$2. f(a) = \log_{2}x \qquad g(a) = \frac{1}{2} \qquad \text{in [1,e]}$$
Solution

By (mv7, $f(b) - f(a) = f(c)$ [$a = 1$
 $g(b) - g(a)$ $g'(c)$ [$b = e$

$$\frac{\log_{2}b - \log_{2}a}{b - 1} = \frac{1}{2}x$$

$$\frac{\log_{2}b - \log_{2}a}{a - 1} = \frac{1}{2}x$$

$$\frac{\log_{2}(b)}{a - 1} = -\frac{1}{2}x^{2a} = -c$$

$$a - b$$

$$\log_{2}(b) \cdot ab = -c$$

$$1 - e$$

$$\log_{2}(e) = -c$$

$$1 - e$$

$$e = -c$$

$$(e - 1)$$

$$c = e$$

$$e = -c$$

$$1 - e$$

$$e = -c$$

$$1 - e$$

$$e = -c$$

$$1 - e$$

3. $f(x) = \int x$, $g(x) = \int x \left[\frac{1}{4}\right]$ 4. $f(x) = x^3$ $g(x) = x^2$ in [1/2]5. $f(n) = x^3, g(x) = 2 - x \text{ in} \cdot [0.19]$ Taylor's theorem for a function of one Variable

(Generalised Mean Value (Feorem) Suppose a function for salisfies the following Conditions. conditions.

1) f(x) and its first (n-1) derivatives are continuous in [a, a+h]

2) f(m) is differentiable in (a, a+h) then there exists atteat one point 0 in (011) Such that $f(a+h) = f(a) + h f(a) + \frac{h^2}{2!} f''(a) + ---- +$ $\frac{2!}{2!} f''(a) + h f(a) +$ Take a+h=x then h = x - aSubstituting in CP Islatuting in (A) $f(x) = f(a) + (x-a) f(a) + (x-a)^{2} f'(a) + -$ enpamber

```
Problems
   1. Expand log n in powers of (n-1) and hence evaluate log!. Correct to 4 decimal places.
Solution -) f(x) = log x
              f'(x) = \frac{1}{x}
            f(x) = \frac{1}{x^2}
f(1) = \frac{1}{x^2}
f(1) = \frac{1}{x^2}
f(1) = \frac{1}{x^2}
f(1) = \frac{1}{x^2}
            f'(x) = -6 \qquad f'(1) = -6
         Taylor's series emparation is
          f(x) = f(1) + (x-1)f(1) + (x-1)^{2}f(1) +
                  \frac{(\chi - 1)^{3} + (\chi - 1)(1) + (\chi - 1)^{2}}{2!} (-1) + (\chi - 1)^{3} (2)
                                                      +\frac{(a-1)^{4}}{4}(-6)+\cdots
          \log x = x-1 - (x-1)^2 + (x-1)^3 - (x-1)^4 + \frac{1}{3}
         put n=1.1 / x-1=1.1-1=0.1
           \log 0.1 = 0.1 - (0.1)^{2} + (0.1)^{3} - (0.1)^{4} + ...
                       -001-0.005 +0.0003-0.00002 +--
```