Universal Coupling Design Portfolio – Index

PAGE	TITLE	
1	INDEX	
2	PROJECT OVERVIEW	
3	ABOUT THE DESIGNER	
4	FORK SHEET	
5	CENTER VBLOCK SHEET	
6	SHAFT SHEET	
7	PIN SHEET	
8	KEY SHEET	
9	COLLAR SHEET	
10	TAPER PIN SHEET	
11	ASSEMBLY SHEET	

AUTHOR = MAYANK

DATE: 16-06-2025

Universal Coupling Design Portfolio

Project Overview

This project showcases the complete mechanical design and assembly of a Universal Coupling. The process involved designing all individual components in 3D using AutoCAD, drafting 2D technical sheets, applying correct tolerances, and preparing a fully detailed assembly drawing. All work was performed using ISO A3 sheet standards, first angle projection, and follows practical production tolerancing practices.

Design Workflow

- 1. Studied references from textbooks and standards to understand geometry, motion, and fit principles.
- 2. Modeled each of the 7 parts individually in 3D (Fork, Shaft, Center Block, Pin, Collar, Key, Taper Pin).
- 3. Created 2D sheets for each part with:
 - Properly aligned orthographic and sectional views
 - Key dimensions and functional tolerances
 - Material specifications and surface finish callouts
- 4. Assembled all parts into a complete 3D assembly model.
- 5. Drafted an assembly drawing with:
 - Front, Side, Sectional, and Isometric views
 - Part balloons and Bill of Materials
 - General and fit-based notes for production clarity.

Engineering Practices Followed

- All dimensions in millimeters (MM)
- First angle projection used throughout
- Fit systems like H7/h6 applied to shafts, pins, and holes
- Surface finish: 1.6 µm Ra on machined faces
- Materials specified: Mild Steel (EN8), Hardened Steel for taper pins, etc.
- Burr removal and tolerance conventions followed per ISO drafting standards.

Final Outputs

- 7 fully detailed part drawings (FORK, SHAFT, CENTER BLOCK, PIN, COLLAR, KEY, TAPER PIN)
- One assembly sheet with exploded and sectional views
- Bill of Materials with correct part counts and materials
- Ready-to-manufacture drawing set compiled in ISO A3 sheets

Universal Coupling Design Portfolio

About the Designer

This project was designed and drafted by Mayank, a student in mechanical design engineering, with a focus on practical CAD modeling and production-ready documentation. The complete portfolio is hosted on GitHub for reference and showcasing design skill development.

BILL OF MATERIALS								
PART NO.	PART NAME	QUANTITY	MATERIAL					
1	FORK	2	MS					
2	CENTRE BLOCK	1	CS					
3	SHAFT	2	MS					
4	PIN	2	MS					
5	KEY	2	CS					
6	COLLAR	2	MS					
7	TAPER PIN	2	HARDENED STEEL					

SECTIONAL TOP VIEW

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS (MM).
- 2. ASSEMBLY TOLERANCES:
 - SHAFT Ø30: H7 FIT INTO FORK
 - PIN Ø25: H7 SLIDING FIT INTO CENTER BLOCK
- KEY 8×7: INTERFERENCE FIT IN SHAFT, CLEARANCE IN FORK
- 3. MATERIALS:
 - MS: MILD STEEL (EN8 OR EQUIV.)
- CS: CARBON STEEL (C45 OR EQUIV.)
- HARDENED STEEL: FOR TAPER PIN (EN31 OR EQUIV.)
- 4. SURFACE FINISH: 1.6 µm Ra ON MATING SURFACES.
- 5. PROJECTION METHOD: FIRST ANGLE PROJECTION.

Drawn By MAYANK	Checked By	Approved	By - Date	File Name	Date 16-06-202		Scale 1:2
Student Work - Mayank		UNIVERSAL COUPLING - ASSEMBLY					
					Revision		
							8 OF 8
	б		•	7		8	