TRhizo-urban Microbiome

Ecosystem Function Bacteria

David Murray-Stoker

Contents

Load Packages	3
Load Data	4
Data Management	5
Filter Abundances	6
Nitrosomonas GAMs Check Model Assumptions	
Nitrospira GAMs Check Model Assumptions	
Desulfuromonas GAMs Check Model Assumptions	
Aciditerrimonas GAMs Check Model Assumptions	
· · · · · · · · · · · · · · · · · · ·	18 18 19
Sphingopyxis GAMs Check Model Assumptions	
Cytophaga GAMs Check Model Assumptions	
Paracoccus GAMs Check Model Assumptions	
	26 26

ANOVAs	27
Devosia GAMs Check Model Assumptions	
Streptomyces GAMs Check Model Assumptions	
Sphingobium GAMs Check Model Assumptions	
Desulfosporosinus GAMs Check Model Assumptions	
Desulfocapsa GAMs Check Model Assumptions	
Phyllobacterium GAMs Check Model Assumptions	
Export Data	40
R Session Information	41

Load Packages

Load Data

```
## Microbiome tidyamplicons
microbiome.tidyamplicon.reference <- read_rds(
    file = "data/microbiome_tidyamplicon_reference.rds"
)

## Load the urbanization data
urbanization.data <- read_rds(
    file = "data/urbanization_data.rds"
)

## Load the workspace
#load("data_analysis/10-bacteria_functional_groups/ecosystem_function_bacteria-workspace.RData")</pre>
```

Data Management

```
## Set reference ASV abundance matrix
ASV.abundance.matrix <- add_rel_abundance(microbiome.tidyamplicon.reference) %>%
  abundances()
## Set reference taxa matrix
ASV.taxa.matrix <- taxa(microbiome.tidyamplicon.reference)
## Set tibble of bacteria abundance
bacteria.abundance.data <- ASV.abundance.matrix %>%
  full_join(ASV.taxa.matrix, by = "taxon_id") %>%
 full_join(microbiome.tidyamplicon.reference$samples, by = "sample_id") %>%
  select(Population:Compartment, phylum:genus, abundance, rel_abundance) %>%
 rename(
   Phylum = phylum, Class = class, Order = order, Family = family, Genus = genus,
   Abundance = abundance, Relative_Abundance = rel_abundance
  )
## Set aggregated sample data
sample.data <- microbiome.tidyamplicon.reference$samples %>%
   select(Population:Compartment) %>%
   distinct()
```

Filter Abundances

```
## Set tibbles of abundances for different mutualistic bacteria
# Nitrosomonas
nitrosomonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Nitrosomonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group by (Population, Compartment) %>%
  summarise(
   Nitrosomonas_Abundance = sum(Abundance),
   Nitrosomonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Nitrospira
nitrospira.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Nitrospira") %>%
  select(Population, Compartment, Abundance, Relative Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Nitrospira_Abundance = sum(Abundance),
   Nitrospira_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Desulfuromonas
desulfuromonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Desulfuromonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Desulfuromonas_Abundance = sum(Abundance),
   Desulfuromonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Aciditerrimonas
aciditerrimonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Aciditerrimonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Aciditerrimonas_Abundance = sum(Abundance),
    Aciditerrimonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Nitrosospira
nitrosospira.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Nitrosospira") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
```

```
Nitrosospira_Abundance = sum(Abundance),
   Nitrosospira_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Sphingopyxis
sphingopyxis.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Sphingopyxis") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
    Sphingopyxis_Abundance = sum(Abundance),
   Sphingopyxis_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Cytophaga
cytophaga.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Cytophaga") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Cytophaga Abundance = sum(Abundance),
   Cytophaga_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Paracoccus
paracoccus.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Paracoccus") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Paracoccus_Abundance = sum(Abundance),
   Paracoccus_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Novosphingobium
novosphingobium.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Novosphingobium") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Novosphingobium_Abundance = sum(Abundance),
   Novosphingobium_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Devosia
devosia.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Devosia") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
```

```
group_by(Population, Compartment) %>%
  summarise(
   Devosia_Abundance = sum(Abundance),
   Devosia_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Streptomyces
streptomyces.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Streptomyces") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Streptomyces_Abundance = sum(Abundance),
   Streptomyces_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Sphingobium
sphingobium.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Sphingobium") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Sphingobium Abundance = sum(Abundance),
   Sphingobium_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Desulfosporosinus
desulfosporosinus.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Desulfosporosinus") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
    Desulfosporosinus_Abundance = sum(Abundance),
   Desulfosporosinus_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Desulfocapsa
desulfocapsa.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Desulfocapsa") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
    Desulfocapsa_Abundance = sum(Abundance),
   Desulfocapsa_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Phyllobacterium
phyllobacterium.abundances <- bacteria.abundance.data %>%
```

```
filter(Genus == "Phyllobacterium") %>%
 select(Population, Compartment, Abundance, Relative_Abundance) %>%
 group_by(Population, Compartment) %>%
 summarise(
   Phyllobacterium_Abundance = sum(Abundance),
   Phyllobacterium Relative Abundance = sum(Relative Abundance),
    .groups = "keep"
## Combine abundances into a tibble with urbanization metrics
ecosystem.function.bacteria.data <- sample.data %>%
   full join(nitrosomonas.abundances, by = c("Population", "Compartment")) %>%
   full join(nitrospira.abundances, by = c("Population", "Compartment")) %>%
   full_join(desulfuromonas.abundances, by = c("Population", "Compartment")) %>%
   full_join(aciditerrimonas.abundances, by = c("Population", "Compartment")) %>%
   full_join(nitrosospira.abundances, by = c("Population", "Compartment")) %>%
   full_join(sphingopyxis.abundances, by = c("Population", "Compartment")) %>%
   full_join(cytophaga.abundances, by = c("Population", "Compartment")) %>%
   full_join(paracoccus.abundances, by = c("Population", "Compartment")) %>%
   full_join(novosphingobium.abundances, by = c("Population", "Compartment")) %>%
   full_join(devosia.abundances, by = c("Population", "Compartment")) %>%
   full_join(streptomyces.abundances, by = c("Population", "Compartment")) %>%
   full_join(sphingobium.abundances, by = c("Population", "Compartment")) %>%
   full_join(desulfosporosinus.abundances, by = c("Population", "Compartment")) %>%
   full_join(desulfocapsa.abundances, by = c("Population", "Compartment")) %>%
   full_join(phyllobacterium.abundances, by = c("Population", "Compartment")) %>%
   replace(is.na(.), 0) %>%
   full join(urbanization.data, by = "Population") %>%
```

Nitrosomonas GAMs

```
## Nitrosomonas by distance
nitrosomonas.by.distance.GAM <- gam(
   Nitrosomonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
## Nitrosomonas by HII
nitrosomonas.by.HII.GAM <- gam(
   Nitrosomonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
## Nitrosomonas by ISC
nitrosomonas.by.ISC.GAM <- gam(</pre>
   Nitrosomonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
```

```
## Nitrosomonas abundance-by-distance model diagnostics
check_model(nitrosomonas.by.distance.GAM)
# Visual check = assumptions met

## Nitrosomonas abundance-by-HII model diagnostics
check_model(nitrosomonas.by.HII.GAM)
# Visual check = assumptions met

## Nitrosomonas abundance-by-ISC model diagnostics
check_model(nitrosomonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 1: ANOVA table for the Nitrosomonas relative abundance-by-distance GAM. Adjusted R-squared = 0.530, deviance = 55.5 Compartment: F = 109.3, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.531
s (Distance) : Compartment Soil	2.644	9	7.068	0.000

Table 2: ANOVA table for the Nitrosomonas relative abundance-by-HII GAM. Adjusted R-squared = 0.193, deviance = 21.5 Compartment: $F=15.29,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.000	0.821
$s(Human_Influence_Index) : Compartment Soil$	0.896	9	0.952	0.003

Table 3: ANOVA table for the Nitrosomonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.219, deviance = 24.1 Compartment: $F=8.895,\,P=0.004.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.00	9	0.000	0.860
$s(Mean_ISC) : Compartment Soil$	0.96	9	1.236	0.001

Nitrospira GAMs

```
## Nitrospira by distance
nitrospira.by.distance.GAM <- gam(</pre>
    Nitrospira_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Nitrospira by HII
nitrospira.by.HII.GAM <- gam(
    Nitrospira_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Nitrospira by ISC
nitrospira.by.ISC.GAM <- gam(</pre>
    Nitrospira_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Nitrospira abundance-by-distance model diagnostics
check_model(nitrospira.by.distance.GAM)
# Visual check = assumptions met

## Nitrospira abundance-by-HII model diagnostics
check_model(nitrospira.by.HII.GAM)
# Visual check = assumptions met

## Nitrospira abundance-by-ISC model diagnostics
check_model(nitrospira.by.ISC.GAM)
# Visual check = assumptions met
```

Table 4: ANOVA table for the Nitrospira relative abundance-by-distance GAM. Adjusted R-squared = 0.861, deviance = 86.8 Compartment: F = 354.2, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.789
s (Distance) : Compartment Soil	2.403	9	9.207	0.000

Table 5: ANOVA table for the Nitrospira relative abundance-by-HII GAM. Adjusted R-squared = 0.808, deviance = 82.0 Compartment: $F=250.7,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.000	0.901
$s(Human_Influence_Index) : Compartment Soil$	3.051	9	4.616	0.000

Table 6: ANOVA table for the Nitrospira relative abundance-by-ISC GAM. Adjusted R-squared = 0.762, deviance = 76.9 Compartment: $F=201.7,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
$s(Mean_ISC):CompartmentRoot$	0.000	9	0.00	0.868
$s(Mean_ISC) : Compartment Soil$	1.018	9	2.24	0.000

Desulfuromonas GAMs

```
## Desulfuromonas by distance
desulfuromonas.by.distance.GAM <- gam(</pre>
    Desulfuromonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfuromonas by HII
desulfuromonas.by.HII.GAM <- gam(</pre>
    Desulfuromonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfuromonas by ISC
desulfuromonas.by.ISC.GAM <- gam(</pre>
    Desulfuromonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Desulfuromonas abundance-by-distance model diagnostics
check_model(desulfuromonas.by.distance.GAM)
# Visual check = assumptions met

## Desulfuromonas abundance-by-HII model diagnostics
check_model(desulfuromonas.by.HII.GAM)
# Visual check = assumptions met

## Desulfuromonas abundance-by-ISC model diagnostics
check_model(desulfuromonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 7: ANOVA table for the Desulfuromonas relative abundance-by-distance GAM. Adjusted R-squared = 0.461, deviance = 47.7 Compartment: F = 38.81, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.892
s(Distance):CompartmentSoil	1.041	9	2.346	0.000

Table 8: ANOVA table for the Desulfuromonas relative abundance-by-HII GAM. Adjusted R-squared = 0.395, deviance = 41.2 Compartment: $F=34.63,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.00	9	0.000	0.909
$s(Human_Influence_Index) : Compartment Soil$	0.92	9	1.277	0.001

Table 9: ANOVA table for the Desulfuromonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.424, deviance = 44.1 Compartment: $F=36.34,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.92
$s(Mean_ISC) : Compartment Soil$	1.003	9	1.715	0.00

Aciditerrimonas GAMs

```
## Aciditerrimonas by distance
aciditerrimonas.by.distance.GAM <- gam(</pre>
    Aciditerrimonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Aciditerrimonas by HII
aciditerrimonas.by.HII.GAM <- gam(</pre>
    Aciditerrimonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Aciditerrimonas by ISC
aciditerrimonas.by.ISC.GAM <- gam(</pre>
    Aciditerrimonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Aciditerrimonas abundance-by-distance model diagnostics
check_model(aciditerrimonas.by.distance.GAM)
# Visual check = assumptions met

## Aciditerrimonas abundance-by-HII model diagnostics
check_model(aciditerrimonas.by.HII.GAM)
# Visual check = assumptions met

## Aciditerrimonas abundance-by-ISC model diagnostics
check_model(aciditerrimonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 10: ANOVA table for the Aciditerrimonas relative abundance-by-distance GAM. Adjusted R-squared = 0.531, deviance = 54.6 Compartment: F = 42.19, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.989
s (Distance) : Compartment Soil	1.148	9	4.109	0.000

Table 11: ANOVA table for the Aciditerrimonas relative abundance-by-HII GAM. Adjusted R-squared = 0.393, deviance = 41.0 Compartment: F = 32.57, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.000	9	0.00	0.885
$s(Human_Influence_Index) : Compartment Soil$	0.929	9	1.45	0.000

Table 12: ANOVA table for the Aciditerrimonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.357, deviance = 37.5 Compartment: F = 30.77, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.00	0.860
$s(Mean_ISC) : Compartment Soil$	0.931	9	0.95	0.003

Nitrosospira GAMs

```
## Nitrosospira by distance
nitrosospira.by.distance.GAM <- gam(</pre>
    Nitrosospira_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Nitrosospira by HII
nitrosospira.by.HII.GAM <- gam(</pre>
    Nitrosospira_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Nitrosospira by ISC
nitrosospira.by.ISC.GAM <- gam(</pre>
    Nitrosospira_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Nitrosospira abundance-by-distance model diagnostics
check_model(nitrosospira.by.distance.GAM)
# Visual check = assumptions met

## Nitrosospira abundance-by-HII model diagnostics
check_model(nitrosospira.by.HII.GAM)
# Visual check = assumptions met

## Nitrosospira abundance-by-ISC model diagnostics
check_model(nitrosospira.by.ISC.GAM)
# Visual check = assumptions met
```

Table 13: ANOVA table for the Nitrosospira relative abundance-by-distance GAM. Adjusted R-squared = 0.794, deviance = 80.8 Compartment: F = 237.1, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.728
s(Distance):CompartmentSoil	3.494	9	3.362	0.000

Table 14: ANOVA table for the Nitrosospira relative abundance-by-HII GAM. Adjusted R-squared = 0.715, deviance = 72.3 Compartment: F = 171.3, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.000	9	0.000	0.910
$s(Human_Influence_Index) : Compartment Soil$	0.751	9	0.334	0.049

Table 15: ANOVA table for the Nitrosospira relative abundance-by-ISC GAM. Adjusted R-squared = 0.758, deviance = 76.5 Compartment: $F=201.7,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.00	0.791
$s(Mean_ISC) : Compartment Soil$	1.002	9	1.73	0.000

Sphingopyxis GAMs

```
## Sphingopyxis by distance
sphingopyxis.by.distance.GAM <- gam(</pre>
    Sphingopyxis_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Sphingopyxis by HII
sphingopyxis.by.HII.GAM <- gam(</pre>
    Sphingopyxis_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Sphingopyxis by ISC
sphingopyxis.by.ISC.GAM <- gam(</pre>
    Sphingopyxis_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Sphingopyxis abundance-by-distance model diagnostics
check_model(sphingopyxis.by.distance.GAM)
# Visual check = assumptions met

## Sphingopyxis abundance-by-HII model diagnostics
check_model(sphingopyxis.by.HII.GAM)
# Visual check = assumptions met

## Sphingopyxis abundance-by-ISC model diagnostics
check_model(sphingopyxis.by.ISC.GAM)
# Visual check = assumptions met
```

Table 16: ANOVA table for the Sphingopyxis relative abundance-by-distance GAM. Adjusted R-squared = 0.551, deviance = 56.1 Compartment: F = 84.73, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.444	9	0.087	0.187
s (Distance) : Compartment Soil	0.000	9	0.000	0.789

Table 17: ANOVA table for the Sphingopyxis relative abundance-by-HII GAM. Adjusted R-squared = 0.545, deviance = 55.2 Compartment: $F=83.76,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0	9	0	0.632
$s(Human_Influence_Index) : Compartment Soil$	0	9	0	0.708

Table 18: ANOVA table for the Sphingopyxis relative abundance-by-ISC GAM. Adjusted R-squared = 0.563, deviance = 57.4 Compartment: $F=87.22,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.75	9	0.311	0.056
$s(Mean_ISC) : Compartment Soil$	0.00	9	0.000	0.833

Cytophaga GAMs

```
## Cytophaga by distance
cytophaga.by.distance.GAM <- gam(</pre>
    Cytophaga_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Cytophaga by HII
cytophaga.by.HII.GAM <- gam(</pre>
    Cytophaga_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Cytophaga by ISC
cytophaga.by.ISC.GAM <- gam(</pre>
    Cytophaga_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Cytophaga abundance-by-distance model diagnostics
check_model(cytophaga.by.distance.GAM)
# Visual check = assumptions met

## Cytophaga abundance-by-HII model diagnostics
check_model(cytophaga.by.HII.GAM)
# Visual check = assumptions met

## Cytophaga abundance-by-ISC model diagnostics
check_model(cytophaga.by.ISC.GAM)
# Visual check = assumptions met
```

Table 19: ANOVA table for the Cytophaga relative abundance-by-distance GAM. Adjusted R-squared = 0.554, deviance = 59.9 Compartment: F = 34.08, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.912
s (Distance) : Compartment Soil	6.008	9	5.849	0.000

Table 20: ANOVA table for the Cytophaga relative abundance-by-HII GAM. Adjusted R-squared = 0.404, deviance = 42.1 Compartment: $F=25.52,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.000	0.767
$s(Human_Influence_Index) : Compartment Soil$	0.958	9	2.483	0.000

Table 21: ANOVA table for the Cytophaga relative abundance-by-ISC GAM. Adjusted R-squared = 0.489, deviance = 51.5 Compartment: F = 29.75, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.901
$s(Mean_ISC) : Compartment Soil$	2.495	9	4.148	0.000

Paracoccus GAMs

```
## Paracoccus by distance
paracoccus.by.distance.GAM <- gam(</pre>
    Paracoccus_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Paracoccus by HII
paracoccus.by.HII.GAM <- gam(
    Paracoccus_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Paracoccus by ISC
paracoccus.by.ISC.GAM <- gam(</pre>
    Paracoccus_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Paracoccus abundance-by-distance model diagnostics
check_model(paracoccus.by.distance.GAM)
# Visual check = assumptions met

## Paracoccus abundance-by-HII model diagnostics
check_model(paracoccus.by.HII.GAM)
# Visual check = assumptions met

## Paracoccus abundance-by-ISC model diagnostics
check_model(paracoccus.by.ISC.GAM)
# Visual check = assumptions met
```

Table 22: ANOVA table for the Paracoccus relative abundance-by-distance GAM. Adjusted R-squared = 0.181, deviance = 20.4 Compartment: F = 6.634, P = 0.012.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.958	9	1.064	0.002
s (Distance) : Compartment Soil	0.001	9	0.000	0.392

Table 23: ANOVA table for the Paracoccus relative abundance-by-HII GAM. Adjusted R-squared = 0.129, deviance = 15.2 Compartment: $F=6.24,\,P=0.015.$

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.832	9	0.552	0.017
$s(Human_Influence_Index) : Compartment Soil$	0.001	9	0.000	0.464

Table 24: ANOVA table for the Paracoccus relative abundance-by-ISC GAM. Adjusted R-squared = 0.245, deviance = 26.9 Compartment: F = 7.202, P = 0.009.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	1.021	9	1.783	0.000
$s(Mean_ISC) : Compartment Soil$	0.152	9	0.020	0.282

Novosphingobium GAMs

```
## Novosphingobium by distance
novosphingobium.by.distance.GAM <- gam(
   Novosphingobium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
## Novosphingobium by HII
novosphingobium.by.HII.GAM <- gam(
   Novosphingobium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
## Novosphingobium by ISC
novosphingobium.by.ISC.GAM <- gam(</pre>
   Novosphingobium_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
   data = ecosystem.function.bacteria.data,
   method = "REML"
)
```

```
## Novosphingobium abundance-by-distance model diagnostics
check_model(novosphingobium.by.distance.GAM)
# Visual check = assumptions met

## Novosphingobium abundance-by-HII model diagnostics
check_model(novosphingobium.by.HII.GAM)
# Visual check = assumptions met

## Novosphingobium abundance-by-ISC model diagnostics
check_model(novosphingobium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 25: ANOVA table for the Novosphing obium relative abundance-by-distance GAM. Adjusted R-squared =0.812, deviance =81.7 Compartment: $\rm F=296.5,~P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.737	9	0.279	0.068
s (Distance) : Compartment Soil	0.000	9	0.000	0.818

Table 26: ANOVA table for the Novosphing obium relative abundance-by-HII GAM. Adjusted R-squared = 0.805, deviance = 80.8 Compartment: F = 285.9, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0	9	0	0.966
$s(Human_Influence_Index) : Compartment Soil$	0	9	0	0.784

Table 27: ANOVA table for the Novosphing obium relative abundance-by-ISC GAM. Adjusted R-squared =0.806, deviance =80.9 Compartment: $\rm F=287.3,\ P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.246	9	0.036	0.254
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.000	0.829

Devosia GAMs

```
## Devosia by distance
devosia.by.distance.GAM <- gam(</pre>
    Devosia_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Devosia by HII
devosia.by.HII.GAM <- gam(</pre>
    Devosia_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Devosia by ISC
devosia.by.ISC.GAM <- gam(</pre>
    Devosia_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Devosia abundance-by-distance model diagnostics
check_model(devosia.by.distance.GAM)
# Visual check = assumptions met

## Devosia abundance-by-HII model diagnostics
check_model(devosia.by.HII.GAM)
# Visual check = assumptions met

## Devosia abundance-by-ISC model diagnostics
check_model(devosia.by.ISC.GAM)
# Visual check = assumptions met
```

Table 28: ANOVA table for the Devosia relative abundance-by-distance GAM. Adjusted R-squared = 0.849, deviance = 85.1 Compartment: $F=388.3,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0	9	0	0.903
s (Distance) : Compartment Soil	0	9	0	0.662

Table 29: ANOVA table for the Devosia relative abundance-by-HII GAM. Adjusted R-squared = 0.850, deviance = 85.3 Compartment: F = 391.5, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.361	9	0.063	0.215
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.656

Table 30: ANOVA table for the Devosia relative abundance-by-ISC GAM. Adjusted R-squared = 0.849, deviance = 85.1 Compartment: F = 388.3, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0	9	0	0.483
$s(Mean_ISC) : Compartment Soil$	0	9	0	0.818

Streptomyces GAMs

```
## Streptomyces by distance
streptomyces.by.distance.GAM <- gam(</pre>
    Streptomyces_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Streptomyces by HII
streptomyces.by.HII.GAM <- gam(</pre>
    Streptomyces_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Streptomyces by ISC
streptomyces.by.ISC.GAM <- gam(</pre>
    Streptomyces_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Streptomyces abundance-by-distance model diagnostics
check_model(streptomyces.by.distance.GAM)
# Visual check = assumptions met

## Streptomyces abundance-by-HII model diagnostics
check_model(streptomyces.by.HII.GAM)
# Visual check = assumptions met

## Streptomyces abundance-by-ISC model diagnostics
check_model(streptomyces.by.ISC.GAM)
# Visual check = assumptions met
```

Table 31: ANOVA table for the Streptomyces relative abundance-by-distance GAM. Adjusted R-squared = 0.533, deviance = 54.5 Compartment: F = 78.17, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.646	9	0.192	0.105
s (Distance) : Compartment Soil	0.000	9	0.000	0.860

Table 32: ANOVA table for the Streptomyces relative abundance-by-HII GAM. Adjusted R-squared = 0.522, deviance = 52.9 Compartment: $F=76.23,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0	9	0	0.694
$s(Human_Influence_Index) : Compartment Soil$	0	9	0	0.938

Table 33: ANOVA table for the Streptomyces relative abundance-by-ISC GAM. Adjusted R-squared = 0.522, deviance = 52.9 Compartment: $F=76.23,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0	9	0	0.822
$s(Mean_ISC) : Compartment Soil$	0	9	0	0.997

Sphingobium GAMs

```
## Sphingobium by distance
sphingobium.by.distance.GAM <- gam(</pre>
    Sphingobium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Sphingobium by HII
sphingobium.by.HII.GAM <- gam(</pre>
    Sphingobium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Sphingobium by ISC
sphingobium.by.ISC.GAM <- gam(</pre>
    Sphingobium_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Sphingobium abundance-by-distance model diagnostics
check_model(sphingobium.by.distance.GAM)
# Visual check = assumptions met

## Sphingobium abundance-by-HII model diagnostics
check_model(sphingobium.by.HII.GAM)
# Visual check = assumptions met

## Sphingobium abundance-by-ISC model diagnostics
check_model(sphingobium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 34: ANOVA table for the Sphingobium relative abundance-by-distance GAM. Adjusted R-squared = 0.520, deviance = 53.0 Compartment: F = 74.61, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.528	9	0.122	0.152
s (Distance) : Compartment Soil	0.000	9	0.000	0.995

Table 35: ANOVA table for the Sphing obium relative abundance-by-HII GAM. Adjusted R-squared =0.523, deviance =53.4 Compartment: $\rm F=75.13,~P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.613	9	0.176	0.113
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.933

Table 36: ANOVA table for the Sphingobium relative abundance-by-ISC GAM. Adjusted R-squared = 0.512, deviance = 51.9 Compartment: $F=73.42,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0	9	0	0.932
$s(Mean_ISC) : Compartment Soil$	0	9	0	0.993

Desulfosporosinus GAMs

```
## Desulfosporosinus by distance
desulfosporosinus.by.distance.GAM <- gam(</pre>
    Desulfosporosinus_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfosporosinus by HII
desulfosporosinus.by.HII.GAM <- gam(
    Desulfosporosinus_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfosporosinus by ISC
desulfosporosinus.by.ISC.GAM <- gam(</pre>
    Desulfosporosinus_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Desulfosporosinus abundance-by-distance model diagnostics
check_model(desulfosporosinus.by.distance.GAM)
# Visual check = assumptions met

## Desulfosporosinus abundance-by-HII model diagnostics
check_model(desulfosporosinus.by.HII.GAM)
# Visual check = assumptions met

## Desulfosporosinus abundance-by-ISC model diagnostics
check_model(desulfosporosinus.by.ISC.GAM)
# Visual check = assumptions met
```

Table 37: ANOVA table for the Desulfosporosinus relative abundance-by-distance GAM. Adjusted R-squared = 0.442, deviance = 46.4 Compartment: F = 50.04, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.001	9	0.000	0.704
s(Distance):CompartmentSoil	1.641	9	0.632	0.034

Table 38: ANOVA table for the Desulfosporosinus relative abundance-by-HII GAM. Adjusted R-squared = 0.477, deviance = 50.7 Compartment: F = 53.37, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index): CompartmentRoot$	0.000	9	0.000	0.633
$s(Human_Influence_Index) : Compartment Soil$	2.957	9	1.176	0.013

Table 39: ANOVA table for the Desulfosporosinus relative abundance-by-ISC GAM. Adjusted R-squared = 0.572, deviance = 61.2 Compartment: F = 65.19, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.00	9	0.000	0.581
$s(Mean_ISC) : Compartment Soil$	5.46	9	3.111	0.000

Desulfocapsa GAMs

```
## Desulfocapsa by distance
desulfocapsa.by.distance.GAM <- gam(</pre>
    Desulfocapsa_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfocapsa by HII
desulfocapsa.by.HII.GAM <- gam(</pre>
    Desulfocapsa_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Desulfocapsa by ISC
desulfocapsa.by.ISC.GAM <- gam(</pre>
    Desulfocapsa_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Desulfocapsa abundance-by-distance model diagnostics
check_model(desulfocapsa.by.distance.GAM)
# Visual check = assumptions met

## Desulfocapsa abundance-by-HII model diagnostics
check_model(desulfocapsa.by.HII.GAM)
# Visual check = assumptions met

## Desulfocapsa abundance-by-ISC model diagnostics
check_model(desulfocapsa.by.ISC.GAM)
# Visual check = assumptions met
```

Table 40: ANOVA table for the Desulfocapsa relative abundance-by-distance GAM. Adjusted R-squared = 0.230, deviance = 25.1 Compartment: $F=14.22,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.00	9	0.000	0.999
s (Distance) : Compartment Soil	0.92	9	0.816	0.005

Table 41: ANOVA table for the Desulfocapsa relative abundance-by-HII GAM. Adjusted R-squared = 0.230, deviance = 25.1 Compartment: $F=14.23,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.000	0.971
$s(Human_Influence_Index) : Compartment Soil$	0.881	9	0.823	0.005

Table 42: ANOVA table for the Desulfocapsa relative abundance-by-ISC GAM. Adjusted R-squared = 0.224, deviance = 25.7 Compartment: $F=14.12,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.999
$s(Mean_ISC) : Compartment Soil$	1.858	9	0.761	0.024

Phyllobacterium GAMs

```
## Phyllobacterium by distance
phyllobacterium.by.distance.GAM <- gam(</pre>
    Phyllobacterium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Phyllobacterium by HII
phyllobacterium.by.HII.GAM <- gam(</pre>
    Phyllobacterium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
## Phyllobacterium by ISC
phyllobacterium.by.ISC.GAM <- gam(</pre>
    Phyllobacterium_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = ecosystem.function.bacteria.data,
    method = "REML"
)
```

```
## Phyllobacterium abundance-by-distance model diagnostics
check_model(phyllobacterium.by.distance.GAM)
# Visual check = assumptions met

## Phyllobacterium abundance-by-HII model diagnostics
check_model(phyllobacterium.by.HII.GAM)
# Visual check = assumptions met

## Phyllobacterium abundance-by-ISC model diagnostics
check_model(phyllobacterium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 43: ANOVA table for the Phyllobacterium relative abundance-by-distance GAM. Adjusted R-squared = 0.358, deviance = 37.0 Compartment: F = 38.94, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.339	9	0.056	0.225
s (Distance) : Compartment Soil	0.000	9	0.000	0.905

Table 44: ANOVA table for the Phyllobacterium relative abundance-by-HII GAM. Adjusted R-squared = 0.399, deviance = 41.5 Compartment: F = 41.59, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index):CompartmentRoot$	0.838	9	0.574	0.016
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.695

Table 45: ANOVA table for the Phyllobacterium relative abundance-by-ISC GAM. Adjusted R-squared = 0.392, deviance = 40.8 Compartment: F = 41.15, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Mean_ISC):CompartmentRoot$	0.834	9	0.487	0.024
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.000	0.566

Export Data

```
## Ecosystem function bacteria
write_rds(
    ecosystem.function.bacteria.data,
    file = "data/ecosystem_function_bacteria_data.rds"
)
```

R Session Information

Table 46: Packages required for data management and analysis.

Package	Loaded Version	Date
bayestestR	0.13.2	2024-02-12
broom	1.0.5	2023-06-09
correlation	0.8.4	2023-04-06
datawizard	0.10.0	2024-03-26
dplyr	1.1.4	2023-11-17
easystats	0.7.1	2024-03-28
effectsize	0.8.7	2024-04-01
forcats	1.0.0	2023 - 01 - 29
ggplot2	3.5.1	2024-04-23
insight	0.19.10	2024-03-22
kableExtra	1.4.0	2024-01-24
knitr	1.46	2024-04-06
lubridate	1.9.3	2023-09-27
mgcv	1.9-1	2023 - 12 - 21
modelbased	0.8.7	2024-02-15
nlme	3.1-164	2023-11-27
parameters	0.21.6	2024-03-18
performance	0.11.0	2024 - 03 - 22
purrr	1.0.2	2023-08-10
readr	2.1.5	2024-01-10
report	0.5.8	2023-12-07
see	0.8.4	2024-04-29
$\operatorname{stringr}$	1.5.1	2023 - 11 - 14
tibble	3.2.1	2023-03-20
tidyamplicons	0.2.2	2022-09-10
tidyr	1.3.1	2024-01-24
tidyverse	2.0.0	2023-02-22