Specialeforsvar

Johannes Jensen

Aarhus Universitet

23. juni 2022

Vi har altså set at selvom vi har $\mathcal{O}(n^2)$ bisectors, så har vi kun $\mathcal{O}(n)$ kanter.

Vi har altså set at selvom vi har $\mathcal{O}(n^2)$ bisectors, så har vi kun $\mathcal{O}(n)$ kanter. Vi vil nu karakterisere hvornår en del af en bisector faktisk udgør en knude eller kant i $\operatorname{Vor}_{\mathsf{G}}(P)$.

For $q \in \mathbb{R}^2$

For $q \in \mathbb{R}^2$ definerer vi $C_P(q)$ til at være den største tommel cirkel for q mht. P

For $q \in \mathbb{R}^2$ definerer vi $C_P(q)$ til at være den største tommel cirkel for q mht. P, givet ved

$$C_P(q) = B_r(q)$$

For $q \in \mathbb{R}^2$ definerer vi $C_P(q)$ til at være den største tommel cirkel for q mht. P, givet ved

$$C_P(q) = B_r(q), \text{ hvor } r = \sup\{\lambda \in \mathbb{R}^+ \mid B_\lambda(q) \cap P = \emptyset\}.$$

For $q \in \mathbb{R}^2$ definerer vi $C_P(q)$ til at være den største tommel cirkel for q mht. P, givet ved

$$C_P(q) = B_r(q), \text{ hvor } r = \sup\{\lambda \in \mathbb{R}^+ \mid B_\lambda(q) \cap P = \emptyset\}.$$

Vi har følgende:

Vi har følgende:

 $oldsymbol{0} q \in \mathbb{R}^2$ er en knude i $\operatorname{Vor}_{\mathsf{G}}(P)$

Vi har følgende:

 $oldsymbol{0} q \in \mathbb{R}^2$ er en knude i $\mathsf{Vor}_\mathsf{G}(P)$ hvis og kun hvis

$$|\partial C_P(q) \cap P| \ge 3.$$

Vi har følgende:

 $\mathbf{0}$ $q \in \mathbb{R}^2$ er en knude i $Vor_{\mathsf{G}}(P)$ hvis og kun hvis

$$|\partial C_P(q) \cap P| \ge 3.$$

bi (p_i, p_j) definerer en kant i $Vor_G(P)$

Vi har følgende:

1 $q \in \mathbb{R}^2$ er en knude i $Vor_G(P)$ hvis og kun hvis

$$|\partial C_P(q) \cap P| \geq 3.$$

 \circ bi (p_i, p_j) definerer en kant i $Vor_G(P)$ hvis og kun hvis

$$\exists q \in \mathsf{bi}(p_i, p_j) \colon \partial C_P(q) \cap P = \{p_i, p_j\}.$$

Vi har følgende:

 $\mathbf{0}$ $q \in \mathbb{R}^2$ er en knude i $Vor_G(P)$ hvis og kun hvis

$$|\partial C_P(q) \cap P| \geq 3.$$

 \circ bi (p_i, p_j) definerer en kant i $Vor_G(P)$ hvis og kun hvis

$$\exists q \in \mathsf{bi}(p_i, p_j) \colon \partial C_P(q) \cap P = \{p_i, p_j\}.$$

Beviset består af nogle simple observationer og modstrider, så vi præsenterer det ikke her.

Vi har følgende:

1 $q \in \mathbb{R}^2$ er en knude i $Vor_G(P)$ hvis og kun hvis

$$|\partial C_P(q) \cap P| \geq 3.$$

 \circ bi (p_i, p_j) definerer en kant i $Vor_G(P)$ hvis og kun hvis

$$\exists q \in \mathsf{bi}(p_i, p_j) \colon \partial C_P(q) \cap P = \{p_i, p_j\}.$$

Beviset består af nogle simple observationer og modstrider, så vi præsenterer det ikke her. Denne figur bør give den intuition som er nødvendig:

Hej