System-level Scalable Checkpoint-Restart for Petascale Computing

Jiajun Cao ¹ Kapil Arya ¹ Rohan Garg ¹ Shawn Matott ³ Dhabaleswar K. Panda ² Hari Subramoni ² Jérôme Vienne ⁴ Gene Cooperman ¹

¹Northeastern University

²The Ohio State University

³State University of New York at Buffalo

⁴Texas Advanced Computing Center

December 15, 2016

Overview

- Background
- 2 Contributions
- 3 Implementation
- 4 Experimental Results
- **5** Conclusion and Future Work

Background: Checkpointing in HPC

- Application-level checkpointing
 - Programmer decides when to checkpoint and what data to save
 - Application needs to be rewritten
- Virtual machine snapshotting
 - Virtualization of HPC hardware can be challenging
- System-level checkpointing
 - CRIU (Checkpoint/Restore In Userspace)
 - Lack of support for distributed applications
 - BLCR (Berkeley Lab Checkpoint/Restart)
 - Communication needs to be shut down and restarted at MPI level
 - System V shared memory is not supported
 - DMTCP (Distributed MultiThreaded Checkpointing)
 - No modification to the OS or user program
 - Supports distributed applications
 - Plugin architecture, easy to extend

Background: Hardware/Software

Figure: InfiniBand Concepts

InfiniBand:

- Queue pair-based communication model
- Supports two modes: RC (reliable connection) and UD (unreliable datagram)
- UD is used to bootstrap endpoint connections

Contributions

Performance concern:

- Runtime overhead
- Time for checkpoint

Scalable checkpoint demenstrated: 128 processes vs. 32752 processes

Contributions:

- First checkpoint support for a hybrid InfiniBand communication mode that uses both reliable connection (RC) and unreliable datagram (UD).
- Lower the runtime overhead for checkpointing large-scale applications to under 1%.

Implementation: Checkpoint support for UD

Figure: Virtualization of address handler and LID (local id) of remote HCA (hardware channel adapter).

- LID: part of the AH (Address Handler) used by UD, assigned by hardware
- Wrappers around functions of the InfiniBand library: whenever user code accesses AH, return the virtualized AH
- Build the virtual-to-real global mappings on restart
- When user code accesses AH, translate it into real AH before calling the InfiniBand library

6 / 10

Implementation: Reducing Runtime overhead

Past:

- No way to peek into the current state in the hardware
- Needs to trace send/receive requests
- Runtime overhead: 1.7% at 2K cores, 9% at 4K cores

Current solution:

- Poll the completion queue for a small time window during checkpointing
- If no messages arrive during the window, then no more messages in flight.
- Otherwise, poll during another window

7 / 10

Experimental Results

Num. of	Checkpoint	Restart	Total ckpt	Write (ckpt)
processes	time (s)	time (s)	size (TB)	bandwidth (GB/s)
8192	136.1	215.3	9.4	69
16368	367.4	706.6	19	52
24000 (¹)	634.8	1183.8	29	46
32752 (²)	652.8	2539.1	38	60

NOTE: Executed with special permission¹; and during Stampede maintenance² (mostly exclusive access to the cluster).

Table: Checkpoint and restart trends for HPCG (linear algebra); checkpoint image size for each process is 1.2 GB, with 16 images generated on each compute node.

Time to checkpoint NAMD (molecular dynamics) with 16368 processes is 158 s, with a total checkpoint size of 9.8 TB

ICPADS 2016 December 15, 2016 8 / 10

Conclusion and Future Work

- Driver provides interfaces to peek into the status of the hardware
- Reduce the checkpoint overhead
- New fabrics, e.g., Intel OmniPath, libfabric

ICPADS 2016 December 15, 2016 9 / 10

Thanks

Questions?

http://dmtcp.sourceforge.net jiajun@ccs.neu.edu

10 / 10