PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (1	1) International Publication Number: WO 95/06735
51) Intermental ratem electrical	3) International Publication Date: 9 March 1995 (09 03 95)
(21) International Application Number: PCT/US94/09943	(81) Designated States: AU, CA, JP, NZ, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 1 September 1994 (01 09.94)	
(30) Priority Data: 08/115.573 1 September 1993 (01.09.93) US	Published Without international search report and to be republished upon receipt of that report.
(71) Applicant (for all designated States except US): THE LUDWIG INSTITUTE FOR CANCER RESEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US).	
(72) Inventors: and (75) Inventors/Applicants (for US only): GONEZ Leonel, Jorge [AU/SE]; Ovre Slottsgatan 11A, S-753 40 Uppsala (SE). SARAS, Jan [SE/SE]; Lingsbergsgatan 15B, S-752 40 Uppsala (SE). CLAESSON-WELSH, Lena [SE/SE]; Granit-vagen 16A, S-752 43 Uppsala (SE). HELDIN, Carl-Henrik [SE/SE]; Hesselmaus vag 35, S-752 63 Uppsala (SE).	
(74) Agent: TWOMEY, Michael, J.; Wolf, Greenfield & Sacks P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).	,
	TOTAL STOLENING FOR NOVEL PROTE

(54) Title: PRIMARY STRUCTURE AND FUNCTIONAL EXPRESSION OF NUCLEOTIDE SEQUENCES FOR NOVEL PROTEIN TYROSINE PHOSPHATASES

(57) Abstract

The invention relates to the cloning of two novel protein tyrosine phosphatases. Nucleic acid sequences encoding these phosphatases (PTPL1 and GLM-2) as well as anti-sense sequences also are provided. The recombinantly produced PTPL1 and GLM-2 proteins also are provided, as well as anti-bodies to these proteins. Methods relating to isolating the phosphatases, using the nucleic acid sequences, and provided the phosphatases also are provided. using the phosphatases also are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		GB	United Kingdom	MIR	Mauritania
- AT	Austra	GE	Georgia	MW	Malawi
ΑŪ	Australia		Gunea	NE	Niger
BB	Barbados	GN	Greece	NL	Netherlands
BE	Belgium	GR		NO	Norway
BF	Buriana Faso	HU	Hungwy	NZ	New Zealand
BG	Bulgaria	Œ	Ireland	PL	Poland
B.J	Benin	π	Italy	PT	Portugal
BR	Brazil	JP	Japan	RO	Romania
BY	Beianus	KŒ	Kenya	RU	Russian Federation
CA	Canada	KG	Kyrgystan	SD	Sudan
CF	Central African Republic	KP	Democranc People's Republic	SE	Sweden
CG	Congo		of Korea	SI	Siovenia
CH	Switzerland	KR	Republic of Korea	SK	Slovaina
CI	Côte d'Ivotre	KZ	Kazakh stan	_	Scoogal
CM	Cameroon	LI	Liechtenstein	SN	Chad
CN	China	LK	Sn Lanka	10	
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larva	TJ	Tajuhistan
DE		MC	Monaco	TT	Trimdad and Tobago
	Germany	MD	Republic of Moldova	UA	Ukraine
DK	Demmark	MG	Madagascar	US	United States of America
ES	Spain	ML	Mali	UZ	Uzbekistan
FI	Finland	MEN	Mongolia	VN	Viet Nam
FR	France	.,_,	y		
GA	Gabon				

PRIMARY STRUCTURE AND FUNCTIONAL EXPRESSION OF NUCLEOTIDE SEQUENCES FOR NOVEL PROTEIN TYROSINE PHOSPHATASES

Field of the Invention

This invention relates to the isolation and cloning of nucleic acids encoding two novel protein tyrosine phosphatases (PTPs). Specifically, the present invention relates to the isolation and cloning of two PTPs from human glioblastoma cDNA which have been designated PTPL1 and GLM-2. The present invention provides isolated PTP nucleic acid sequences; isolated PTP anti-sense sequences; vectors containing such nucleic acid sequences; cells, cell lines and animal hosts transformed by a recombinant vector so as to exhibit increased, decreased, or differently regulated expression of the PTPs; isolated probes for identifying sequences substantially similar or homologous to such sequences; substantially pure PTP proteins and variants or fragments thereof; antibodies or other agents which bind to these PTPs and variants or fragments thereof; methods of assaying for activity of these PTPs; methods of assessing the regulation of PTPL1 or GLM-2; and methods of identifying and/or testing drugs which may affect the expression or activity of these PTPs.

Brief Description of the Background Art

Protein tyrosine phosphorylation plays an essential role in the regulation of cell growth, proliferation and differentiation (reviewed in Hunter, T. (1987) Cell 50:823-8291). This dynamic process is modulated by the counterbalancing activities of protein tyrosine kinases (PTKs) and protein tyrosine phophatases (PTPs). The recent elucidation of intracellular signaling pathways has revealed important roles for PTKS. Conserved domains like the Src homology 2 (SH2) (Suh, P.-G., et al., (1988) Proc. Natl. Acad. Sci. (USA) 85.5419-5423) and the Src homology 3 (SH3)

(Mayer, B.J., et al., (1988) Nature 352:272-275) domains have been found to determine the interaction between activated PTKs and signal transducing molecules (reviewed in Pawson, T., and Schiessinger, J. (1993) Current Biol. 3:434-442; Koch, C.A., et al., (1991) Science 252:668-674). The overall effect of such protein interactions is the formation of signaling cascades in which phosphorylation and dephosphorylation of proteins on tyrosine residues are major events. The involvement of PTPs in such signaling cascades is beginning to emerge from studies on the regulation and mechanisms of action of several representatives of this broad family of proteins.

Similarly to PTKS, PTPs can be classified according to their secondary structure into two broad groups, i.e. cytoplasmic and transmembrane molecules (reviewed in Charbonneau, H., and Tonks, N.K. (1992) Annu. Rev. Cell Biol. 8:463-493; Pot, D.A., and Dixon, J.E. (1992) Biochim.

Biophys. Acta 1136:35-43). Transmembrane PTPs have the structural organization of receptors and thus the potential to initiate cellular signaling in response to external stimuli. These molecules are characterized by the presence of a single transmembrane segment and two tandem PTP domains; only two examples of transmembrane PTPs that have single PTP domains are known, HPTP-P (Krueger, N.X., et al., (1990) EMBO J. 9:3241-3252) and DPTP10D (Tian, S.-S., et al., (1991) Cell 67:675-685).

Nonreceptor PTPs display a single catalytic domain and contain, in addition, non-catalytic amino acid sequences which appear to control intracellular localization of the molecules and which may be involved in the determination of substrate specificity (Mauro, L.J., and Dixon, J.E. (1994) TIBS 19:151-155) and have also been suggested to be regulators of PTP activity (Charbonneau, H., and Tonks, N.K. (1992) Annu. Rev. Cell Biol. 8:463-493). PTP1B (Tonks, N.K., et al., (1988) J. Biol. Chem. 263:6731-6737) is localized to the cytosolic face of the endoplasmic reticulum via its

C-terminal 35 amino acids (Frangioni, J.V., et al., (1992)
Cell 68:545-560). The proteolytic cleavage of PTP1B by the
calcium dependent neutral protease calpain occurs upstream
from this targeting sequence, and results in the relocation
of the enzyme from the endoplasmic reticulum to the cytosol;
such relocation is concomitant with a two-fold stimulation of
PTP1B enzymatic activity (Frangioni, J.V., et al., (1993)
EMBO J. 12:4843-4856). Similarly, the 11 kDa C-terminal
domain of T-cell PTP (Cool, D.E., et al., (1989) Proc. Natl.
Acad. Sci. (USA) 86:5257-5261) has also been shown to be
responsible for enzyme localization and functional regulation
(Cool, D.E., et al., (1990) Proc. Natl. Acad. Sci. (USA)
87:7280-7284; Cool, D.E., et al., (1992) Proc. Natl. Acad.
Sci. (USA) 89:5422-5426).

PTPs containing SH2 domains have been described including PTP1C (Shen, S.-H., et al., (1991) Nature 352:736-739), also named HCP (Yi, T., et al., (1992) Mol. Cell. Biol. 12:836-846), SHP (Matthews, R.J., et al., (1992) Mol. Cell. Biol 12:2396-2405) or SH-PTP1 (Plutzky, J., et al., (1992) Proc. Natl. Acad. Sci. (USA) 89:1123-1127), and the related phosphatase PTP2C (Ahmad, S., et al., (1993) Proc. Natl. Acad. Sci. (USA) 90:2197-2201), also termed SH-PTP2 (Freeman Jr., R.M., et al., (1992) Proc. Natl. Acad. Sci. (USA) 89:11239-11243), SH-PTP3 (Adachi, M., et al., (1992) FEBS Letters 314:335-339), PTP1D (Vogel, W., et al., (1993) <u>Science</u> 259:1611-1614) or Syp (Feng, G.-S., et al., (1993) Science 259:1607-1611). The Drosophila csk gene product (Perkins, L.A., et al., (1992) Cell 70:225-236) also belongs to this subfamily. PTPIC has been shown to associate via its SH2 domains with ligand-activated c-Kit and CSF-1 receptor PTKs (Yi, T., and Ihle, J.N. (1993) Mol. Cell. Biol. 13:3350-3358; Young, Y.-G., et al., (1992) J. Biol. Chem. 267:23447-23450) but only association with activated CSF-1 receptor is followed by tyrosine phosphorylation of PTP1C. Syp interacts with and is phosphorylated by the ligand activated receptors for epidermal growth factor and

platelet-derived growth factor (Feng, G.-S., et al., (1993) Science 259:1607-1611). Syp has also been reported to associate with tyrosine phosphorylated insulin receptor substrate 1 (Kuhne, M.R., et al., (1993) J. Biol. Chem. 268:11479-11481).

Two PTPs have been identified, PTPH1 (Yang, Q., and Tonks, N.K. (1991) Proc. Natl. Acad. Sci. (USA) 88:5949-5953) and PTPase MEG (Gu, M., et al., (1991) Proc. Natl. Acad. Sci. (USA) 88:5867-5871), which contain a region in their respective N-terminal segments with similarity to the cytoskeletal- associated proteins band 4.1 (Conboy, J., et al., (1986) Proc. Natl. Acad. Sci. (USA) 83:9512-9516), ezrin (Gould, K.L., et al., (1989) EMBO J. 8:4133-4142), talin (Rees, D.J.G., et al., (1990) Nature 347:685-689) and radixin (Funayama, N., et al., (1991) J. Cell Biol. 115:1039-1048). The function of proteins of the band 4.1 family appears to be the provision of anchors for cytoskeletal proteins at the inner surface of the plasma membrane (Conboy, J., et al., (1986) Proc. Natl. Acad. Sci. (USA) 83:9512-9516; Gould, K.L., et al., (1989) EMBO J. 8:4133-4142). It has been postulated that PTPH1 and PTPase MEG would, like members of this family, localize at the interface between the plasma membrane and the cytoskeleton and thereby be involved in the modulation of cytoskeletal function (Tonks, N.K., et al., (1991) Cold Spring Harbor Symposia on Quantitative Biology LVI:265-273).

The interest in studying PTKs and PTPs is particularly great in cancer research. For example, approximately one third of the known oncogenes include PTKs (Hunter, T. (1989) In Oncogenes and Molecular Origins of Cancer, R. Weinberg, Ed., Coldspring Harbor Laboratory Press, New York). In addition, the extent of tyrosine phosphorylation closely correlates with the manifestation of the transformed phenotype in cells infected by temperature-sensitive mutants of rous sarcoma virus. (Sefton, B., et al., (1980) Cell 20:807-816) Similarly, Brown-Shirner and colleagues

demonstrated that over-expression of PTP1B in 3T3 cells suppressed the transforming potential of oncogenic neu, as measured by focus formation, anchorage-independent growth and tumorigenicity (Brown-Shirner, S., et al., (1992) Cancer Res. 52:478-482). Because they are direct antagonists of PTK activity, the PTPs also may provide an avenue of treatment for cancers caused by excessive PTK activity. Therefore, the isolation, characterization and cloning of various PTPs is an important step in developing, for example, gene therapy to treat PTK oncogene cancers.

Summary of the Invention

The present invention is based upon the molecular cloning of previously uncloned and previously undisclosed nucleic acids encoding two novel PTPs. The disclosed sequences encode PTPs which we have designated PTPL1 and GLM-2. (PTPL1 was previously designated GLM-1 in U.S. Patent Application Serial No. 08/115,573 filed September 1, 1993.) In particular, the present invention is based upon the molecular cloning of PTPL1 and GLM-2 PTP sequences from human glioblastoma cells. The invention provides isolated cDNA and RNA sequences corresponding to PTPL1 and GLM-2 transcripts and encoding the novel PTPs. In addition, the present invention provides vectors containing PTPL1 or GLM-2 cDNA sequences, vectors capable of expressing PTPL1 or GLM-2 sequences with endogenous or exogenous promoters, and hosts transformed with one or more of the above-mentioned vectors. Using the sequences disclosed herein as probes or primers in conjunction with such techniques as PCR cloning, targeted gene walking, and colony/plaque hybridization with genomic or cDNA libraries, the invention further provides for the isolation of allelic variants of the disclosed sequences, endogenous PTPL1 or GLM-2 regulatory sequences, and substantially similar or homologous PTPL1 or GLM-2 DNA and RNA sequences from other species including mouse, rat, rabbit and non-human primates.

-6-

The present invention also provides fragments and variants of isolated PTPL1 and GLM-2 sequences, fragments and variants of isolated PTPL1 or GLM-2 RNA, vectors containing variants or fragments of PTPL1 or GLM-2 sequences, vectors capable of expressing variants or fragments of PTPL1 or GLM-2 sequences with endogenous or exogenous regulatory sequences, and hosts transformed with one or more of the above-mentioned vectors. The invention further provides variants or fragments of substantially similar or homologous PTPL1 and GLM-2 DNA and RNA sequences from species including mouse, rat, rabbit and non-human primates.

The present invention provides isolated PTPL1 and GLM-2 anti-sense DNA, isolated PTPL1 and GLM-2 anti-sense RNA, vectors containing PTPL1 or GLM-2 anti-sense DNA, vectors capable of expressing PTPL1 or GLM-2 anti-sense DNA with endogenous or exogenous promoters, and hosts transformed with one or more of the above-mentioned vectors. The invention further provides the related PTPL1 or GLM-2 anti-sense DNA and anti-sense RNA sequences from other species including mouse, rat, rabbit and non-human primates.

The present invention also provides fragments and variants of isolated PTPL1 and GLM-2 anti-sense DNA, fragments and variants of isolated PTPL1 and GLM-2 anti-sense RNA, vectors containing fragments or variants of PTPL1 and GLM-2 anti-sense DNA, vectors capable of expressing fragments or variants of PTPL1 and GLM-2 anti-sense DNA with endogenous or exogenous promoters, and hosts transformed with one or more of the above-mentioned vectors. The invention further provides fragments or variants of the related PTPL1 and GLM-2 anti-sense DNA and PTPL1 and GLM-2 anti-sense RNA sequences from other species including mouse, rat, rabbit and non-human primates.

Based upon the sequences disclosed herein and techniques well known in the art, the invention also provides isolated probes useful for detecting the presence or level of expression of a sequence identical, substantially similar or

-7-

homologous to the disclosed PTPL1 and GLM-2 sequences. The probes may consist of the PTPL1 and GLM-2 DNA, RNA or anti-sense sequences disclosed herein. The probe may be labeled with, for example, a radioactive isotope; immobilized as, for example, on a filter for Northern or Southern blotting; or may be tagged with any other sort of marker which enhances or facilitates the detection of binding. The probes may be oligonucleotides or synthetic oligonucleotide analogs.

The invention also provides substantially pure PTPL1 and GLM-2 proteins. The proteins may be obtained from natural sources using the methods disclosed herein or, in particular, the invention provides substantially pure PTPL1 and GLM-2 proteins produced by a host cell or transgenic animal transformed by one of the vectors disclosed herein.

The invention also provides substantially pure variants and fragments of PTPL1 and GLM-2 proteins.

Using the substantially pure PTPL1 or GLM-2 protein or variants or fragments of the PTPL1 or GLM-2 protein which are disclosed herein, the present invention provides methods of obtaining and identifying agents capable of binding to either PTPL1 or GLM-2. Specifically, such agents include antibodies, peptides, carbohydrates and pharmaceutical agents. The agents may include natural ligands, co-factors, accessory proteins or associated peptides, modulators, regulators, or inhibitors. The entire PTPL1 or GLM-2 protein may be used to test or develop such agents or variants or fragments thereof may be employed. In particular, only certain domains of the PTPL1 or GLM-2 protein may be employed. The invention further provides detectably labeled, immobilized and toxin-conjugated forms of these agents.

The present invention also provides methods for assaying for PTPL1 or GLM-2 PTP activity. For example, using the PTPL1 and GLM-2 anti-sense probes disclosed herein, the presence and level of either PTPL1 or GLM-2 expression may be determined by hybridizing the probes to total or selected

mRNA from the cell or tissue to be studied. Alternatively, using the antibodies or other binding agents disclosed herein, the presence and level of PTPL1 or GLM-2 protein may be assessed. Such methods may, for example, be employed to determine the tissue-specificity of PTPL1 or GLM-2 expression.

The present invention also provides methods for assessing the regulation of PTPL1 or GLM-2 function. Such methods include fusion of the regulatory regions of the PTPL1 or GLM-2 nucleic acid sequences to a marker locus, introduction of this fusion product into a host cell using a vector, and testing for inducers or inhibitors of PTPL1 or GLM-2 by measuring expression of the marker locus. In addition, by using labeled PTPL1 and GLM-2 anti-sense transcripts, the level of expression of PTPL1 or GLM-2 mRNA may be ascertained and the effect of various endogenous and exogenous compounds or treatments on PTPL1 or GLM-2 expression may be determined. Similarly, the effect of various endogenous and exogenous compounds and treatments on PTPL1 or GLM-2 expression may be assessed by measuring the level of either PTPL1 or GLM-2 protein with labeled antibodies as disclosed herein.

The present invention provides methods for efficiently testing the activity or potency of drugs intended to enhance or inhibit PTPL1 or GLM-2 expression or activity. In particular, the nucleic acid sequences and vectors disclosed herein enable the development of cell lines and transgenic organisms with increased, decreased, or differently regulated expression of PTPL1 or GLM-2. Such cell lines and animals are useful subjects for testing pharmaceutical compositions.

The present invention further provides methods of modulating the activity of PTPL1 and GLM-2 PTPs in cells. Specifically, agents and, in particular, antibodies which are capable of binding to either PTPL1 or GLM-2 PTP are provided to a cell expressing PTPL1 or GLM-2. The binding of such an agent to the PTP can be used either to activate or inhibit the activity of the protein. In addition, PTPL1 and GLM-2

anti-sense transcripts may be administered such that they enter the cell and inhibit translation of the PTPL1 or GLM-2 mRNA and/or the transcription of PTPL1 or GLM-2 nucleic acid sequences. Alternatively, PTPL1 or GLM-2 RNA may be administered such that it enters the cell, serves as a template for translation and thereby augments production of PTPL1 or GLM-2 protein. In another embodiment, a vector capable of expressing PTPL1 or GLM-2 mRNA transcripts or PTPL1 or GLM-2 anti-sense RNA transcripts is administered such that it enters the cell and the transcripts are expressed.

Brief Description of the Drawings

Figure 1. Comparison of PTPL1 with proteins of the band 4.1 superfamily. The alignment was done using the Clustal V alignment program (Fazioli, F., et al., (1993) Oncogene 8:1335-1345). Identical amino acid residues conserved in two or more sequences, are boxed. A conserved tyrosine residue, which in ezrin has been shown to be phosphorylated by the epidermal growth factor receptor, is indicated by an asterisk

Figure 2. Comparison of amino acid sequences of GLGF-repeats. The alignment was done manually. Numbers of the GLGF-repeats are given starting from the N-terminus of the protein. Residues conserved in at least eight (42%) repeats are showed in bold letters. Five repeats are found In PTPL1, three are found in the guanylate kinases, dlg-A gene product, PSD-95 and the 220-kDa protein. One GLGF-repeat is found in the guanylate kinase p55, in the PTPs PTPH1 and PTPase MEG, and in nitric oxide synthase (NOS). One repeat is also found in an altered rosl transcript from the glioma cell line U-118MG,

Figure 3. Schematic diagram illustrating the domain strucure of PTPL1 and other GLGF-repeat containing proteins. Domains and motifs indicated in the figure are L, leucine zipper motif; Band 4.1, band 4.1-like domain; G, GLGF-repeat;

PTPase, catalytic PTPase domain; 3, SH3 domain; GK, guanylate kinase domain, Bind. Reg., co-enzyme binding region.

Figure 4. PTP activity of PTPL1. Immunoprecipitates from COS-1 cells using an antiserum (α L1B) against PTPL1, unblocked (open circles) or blocked with peptide (open squares), were incubated for 2, 4, 6 or 12 minutes with myelin basic protein, 32 P-labeled on tyrosine residues. The amount of radioactivity released as inorganic phosphate is expressed as the percentage of the total input of radioactivity.

Detailed Description of the Invention Definitions.

In the description that follows, a number of terms used in biochemistry, molecular biology, recombinant DNA (rDNA) technology and immunology are extensively utilized. In addition, certain new terms are introduced for greater ease of exposition and to more clearly and distinctly point out the subject matter of the invention. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

Gene. A gene is a nucleic acid sequence including a promoter region operably joined to a coding sequence which may serve as a template from which an RNA molecule may be transcribed by a nucleic acid polymerase. A gene contains a promoter sequence to which the polymerase binds, an initiation sequence which signals the point at which transcription should begin, and a termination sequence which signals the point at which transcription should end. The gene also may contain an operator site at which a repressor may bind to block the polymerase and to prevent transcription and/or may contain ribosome binding sites, capping signals, transcription enhancers and polyadenylation signals. The promoter, initiation, termination and, when present, operator sequences, ribosome binding sites, capping signals, transcription enhancers and polyadenylation signals are

-11-

collectively referred to as regulatory sequences. Regulatory sequences 5' of the transcription initiation codon are collectively referred to as the promoter region. The sequences which are transcribed into RNA are the coding sequences. The RNA may or may not code for a protein. RNA that codes for a protein is processed into messenger RNA (mRNA). Other RNA molecules may serve functions or uses without ever being translated into protein. These include ribosomal RNA (rRNA), transfer RNA (tRNA), and the anti-sense RNAs of the present invention. In eukaryotes, coding sequences between the translation start codon (ATG) and the translation stop codon (TAA, TGA, or TAG) may be of two types: exons and introns. The exons are included in processed mRNA transcripts and are generally translated into a peptide or protein. Introns are excised from the RNA as it is processed into mature mRNA and are not translated into peptide or protein. As used herein, the word gene embraces both the gene including its introns, as may be obtained from genomic DNA, and the gene with the introns excised from the DNA, as may be obtained from cDNA.

Anti-sense DNA is defined as DNA that encodes anti-sense RNA and anti-sense RNA is RNA that is complementary to or capable of selectively hybridizing to some specified RNA transcript. Thus, anti-sense RNA for a particular gene would be capable of hybridizing with that gene's RNA transcript in a selective manner. Finally, an anti-sense gene is defined as a segment of anti-sense DNA operably joined to regulatory sequences such that the sequences encoding the anti-sense RNA may be expressed.

cDNA. Complementary DNA or cDNA is DNA which has been produced by reverse transcription from mature mRNA. In eukaryotes, sequences in RNA corresponding to introns in a gene are excised during mRNA processing. cDNA sequences, therefore, lack the intron sequences present in the genomic DNA to which they correspond. In addition, cDNA sequences will lack the regulatory sequences which are not transcribed

PCT/US94/09943

into RNA. To create a functional cDNA gene, therefore, the cDNA sequence must be operably joined to a promoter region such that transcription may occur.

Operably Joined. A coding sequence and a promoter region are said to be operably joined when they are covalently linked in such a way as to place the expression or transcription of the coding sequence under the influence or control of the promoter region. If it is desired that the coding sequences be translated into a functional protein, two DNA sequences are said to be operably joined if induction of promoter function results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably joined to a coding sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide.

If it is not desired that the coding sequence be eventually expressed as a protein or polypeptide, as in the case of anti-sense RNA expression, there is no need to ensure that the coding sequences and promoter region are joined without a frame-shift. Thus, a coding sequence which need not be eventually expressed as a protein or polypeptide is said to be operably joined to a promoter region if induction of promoter function results in the transcription of the RNA sequence of the coding sequences.

The precise nature of the regulatory sequences needed for gene expression may vary between species or cell types, but shall in general include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with initiation of transcription and translation

respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' non-transcribing regulatory sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined gene. Such transcriptional control sequences may also include enhancer sequences or upstream activator sequences, as desired.

Vector. A vector may be any of a number of nucleic acid sequences into which a desired sequence may be inserted by restriction and ligation. Vectors are typically composed of DNA although RNA vectors are also available. Vectors include plasmids, phage, phasmids and cosmids. A cloning vector is one which is able to replicate in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence may be ligated such that the new recombinant vector retains its ability to replicate in the host cell. In the case of plasmids, replication of the desired sequence may occur many times as the plasmid increases in copy number within the host bacterium or just a single time per host before the host reproduces by mitosis. In the case of phage, replication may occur actively during a lytic phase or passively during a lysogenic phase. An expression vector is one into which a desired DNA sequence may be inserted by restriction and ligation such that it is operably joined to a promoter region and may be expressed as an RNA transcript. Vectors may further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., B-galactosidase or alkaline phosphatase), and genes which

visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques.

Fragment. As used herein, the term "fragment" means both unique fragments and substantially characteristic fragments. As used herein, the term "fragment" is not to be construed according to standard dictionary definitions.

Substantially Characteristic Fragment. A "substantially characteristic fragment" of a molecule, such as a protein or nucleic acid sequence, is meant to refer to any portion of the molecule sufficiently rare or sufficiently characteristic of that molecule so as to identify it as derived from that molecule or to distinguish it from a class of unrelated molecules. A single amino acid or nucleotide, or a sequence of only two or three, cannot be a substantially characteristic fragment because all such short sequences occur frequently in nature.

A substantially characteristic fragment of a nucleic acid sequence is one which would have utility as a probe in identifying the entire nucleic acid sequence from which it is derived from within a sample of total genomic or cDNA. Under stringent hybridization conditions, a substantially characteristic fragment will hybridize only to the sequence from which it was derived or to a small class of substantially similar related sequences such as allelic variants, heterospecific homologous loci, and variants with small insertions, deletions or substitutions of nucleotides or nucleotide analogues. A substantially characteristic fragment may, under lower stringency hybridization conditions, hybridize with non-allelic and non-homologous loci and be used as a probe to find such loci but will not do so at higher stringency.

A substantially characteristic fragment of a protein would have utility in generating antibodies which would distinguish the entire protein from which it is derived, an allelomorphic protein or a heterospecific homologous protein from a mixture of many unrelated proteins.

It is within the knowledge and ability of one ordinarily skilled in the art to recognize, produce and use substantially characteristic fragments of nucleic acid sequences and proteins as, for example, probes for screening DNA libraries or epitopes for generating antibodies.

Unique Fragment. As used herein, a unique fragment of a protein or nucleic acid sequence is a substantially characteristic fragment not currently known to occur elsewhere in nature (except in allelic or heterospecific homologous variants, i.e. it is present only in the PTPL1 or GLM-2 PTP or a PTPL1 or GLM-2 PTP "homologue"). A unique fragment will generally exceed 15 nucleotides or 5 amino acid residues. One of ordinary skill in the art can identify unique fragments by searching available computer databases of nucleic acid and protein sequences such as Genbank (Los Alamos National Laboratories, USA), SwissProt or the National Biomedical Research Foundation database. A unique fragment is particularly useful, for example, in generating monoclonal antibodies or in screening DNA or cDNA libraries.

Stringent Hybridization Conditions. "Stringent hybridization conditions" is a term of art understood by those of ordinary skill in the art. For any given nucleic acid sequence, stringent hybridization conditions are those conditions of temperature and buffer solution which will permit hybridization of that nucleic acid sequence to its complementary sequence and not to substantially different sequences. The exact conditions which constitute "stringent" conditions, depend upon the length of the nucleic acid sequence and the frequency of occurrence of subsets of that sequence within other non-identical sequences. By varying hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, one of ordinary skill in the art can, without undue experimentation, determine conditions which will allow a given sequence to hybridize only with identical sequences. Suitable ranges of such stringency conditions are described

WO 95/06735

PCT/US94/09943

in Krause, M.H.. and S.A. Aaronson, Methods in Enzymology, 200:546-556 (1991). Stringent hybridization conditions, depending upon the length and commonality of a sequence, may include hybridization conditions of 30°C-65°C and from 5X to 0.1X SSPC. Less than stringent hybridization conditions are employed to isolate nucleic acid sequences which are substantially similar, allelic or homologous to any given sequence.

When using primers that are derived from nucleic acid encoding a PTPL1 or GLM-2 PTP, one skilled in the art will recognize that by employing high stringency conditions (e.g. annealing at $50-60^{\circ}$ C), sequences which are greater than about 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g. annealing at $35-37^{\circ}$ C), sequences which are greater than about 40-50% homologous to the primer will be amplified.

When using DNA probes derived from a PTPL1 or GLM-2 PTP for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g. hybridization at 50-65°C, 5X SSPC, 50% formamide, wash at 50-65°C, 0.5X SSPC), sequences having regions which are greater than about 90% homologous to the probe can be obtained, and by employing lower stringency conditions (e.g. hybridization at 35-37°C, 5X SSPC, 40-45% formamide, wash at 42°C SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Substantially similar. Two nucleic acid sequences are substantially similar if one of them or its anti-sense complement can bind to the other under strict hybridization conditions so as to distinguish that strand from all or substantially all other sequences in a cDNA or genomic library. Alternatively, one sequence is substantially similar to another if it or its anti-sense complement is useful as a probe in screening for the presence of its similar DNA or RNA sequence under strict hybridization conditions. Two proteins are substantially similar if they

-17-

are encoded by substantially similar DNA or RNA sequences. In addition, even if they are not encoded by substantially similar nucleic acids, two proteins are substantially similar if they share sufficient primary, secondary and tertiary structure to perform the same biological role (structural or functional) with substantially the same efficacy or utility.

Variant. A "variant" of a protein or nucleic acid or fragment thereof is meant to include a molecule substantially similar in structure to the protein or nucleic acid, or to a fragment thereof. Variants of nucleic acid sequences include sequences with conservative nucleotide substitutions, small insertions or deletions, or additions. Variants of proteins include proteins with conservative amino acid substitutions, small insertions or deletions, or additions. Thus, nucleotide substitutions which do not effect the amino acid sequence of the subsequent translation product are particularly contemplated. Similarly, substitutions of structurally similar amino acids in proteins, such as leucine for isoleucine, or insertions, deletions, and terminal additions which do not destroy the functional utility of the protein are contemplated. Allelic variants of nucleic acid sequences and allelomorphic variants or protein or polypeptide sequences are particularly contemplated. As is well known in the art, an allelic variant is simply a naturally occurring variant of a polymorphic gene and that term is used herein as it is commonly used in the field of population genetics. The production of such variants is well known in the art and, therefore, such variants are intended to fall within the spirit and scope of the claims.

Homologous and homologues. As used herein, the term "homologues" is intended to embrace either and/or both homologous nucleic acid sequences and homologous protein sequences as the context may indicate. Homologues are a class of variants, as defined above, which share a sufficient degree of structural and functional similarity so as to indicate to one of ordinary skill in the art that they share

a common evolutionary origin and that the structural and functional similarity is the result of evolutionary conservation. To be considered homologues of the PTPL1 or GLM-2 PTP, nucleic acid sequences and the proteins they encode must meet two criteria: (1) The polypeptides encoded by homologous nucleic acids are at least approximately 50-60% identical and preferably at least 70% identical for at least one stretch of at least 20 amino acids. As is well known in the art, both the identity and the approximate positions of the amino acid residues relative to each other must be conserved and not just the overall amino acid composition. Thus, one must be able to "line up" the conserved regions of the homologues and conclude that there is 50-60% identity; and (2) The polypeptides must retain a functional similarity to the PTPL1 or GLM-2 PTP in that it is a protein tyrosine phosphatase.

Substantially Pure. The term "substantially pure" when applied to the proteins, variants or fragments thereof of the present invention means that the proteins are essentially free of other substances to an extent practical and appropriate for their intended use. In particular, the proteins are sufficiently pure and are sufficiently free from other biological constituents of their hosts cells so as to be useful in, for example, protein sequencing, or producing pharmaceutical preparations. By techniques well known in the art, substantially pure proteins, variants or fragments thereof may be produced in light of the nucleic acids of the present invention.

<u>Isolated</u>. Isolated refers to a nucleic acid sequence which has been: (i) amplified <u>in vitro</u> by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid sequence is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleic acid sequence contained in a

vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid sequence that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art.

Immunogenetically Effective Amount. An "immunogenetically effective amount" is that amount of an antigen (e.g. a protein, variant or a fragment thereof) necessary to induce the production of antibodies which will bind to the epitopes of the antigen. The actual quantity comprising an "immunogenetically effective amount" will vary depending upon factors such as the nature of the antigen, the organism to be immunized, and the mode of immunization. The determination of such a quantity is well within the ability of one ordinarily skilled in the art without undue experimentation.

Antigen and Antibody. The term "antigen" as used in this invention is meant to denote a substance that can induce a detectable immune response to it when introduced to an animal. Such substances include proteins and fragments thereof.

The term "epitope" is meant to refer to that portion of an antigen which can be recognized and bound by an antibody. An antigen may have one, or more than one epitope. An "antigen" is capable of inducing an animal to produce antibody capable of binding to an epitope of that antigen. An "immunogen" is an antigen introduced into an animal specifically for the purpose of generating an immune response to the antigen. An antibody is said to be "capable of

selectively binding" a molecule if it is capable of specifically reacting with the molecule to thereby bind the molecule to the antibody. The selective binding of an antigen and antibody is meant to indicate that the antigen will react, in a highly specific manner, with its corresponding antibody and not with the multitude of other antibodies which may be evoked by other antigens.

The term "antibody" (Ab) or "monoclonal antibody" (Mab) as used herein is meant to include intact molecules as well as fragments thereof (such as, for example, Fab and $F(ab')_2$ fragments) which are capable of binding an antigen. Fab and $F(ab')_2$ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. Single chain antibodies, humanized antibodies, and fragments thereof, also are included.

Description of the Preferred Embodiments

The present invention relates to the identification, isolation and cloning of two novel protein tyrosine phosphatases designated PTPL1 and GLM-2. Specifically, the present invention discloses the isolation and cloning of cDNA and the amino acid sequences of PTPL1 and GLM-2 from human glioblastoma and brain cell cDNA libraries. These phosphatases are, initially, discussed separately below. As they are related in function and utility as well as structurally with respect to their catalytic domains, they are subsequently discussed in the alternative.

In order to identify novel PTPs, a PCR-based approach was used. PCR was performed using cDNA from the human glioma cell line U-343 MGa 31L as a template and degenerate primers that were based on conserved regions of PTPs. One primer was derived from the catalytic site (HCSAG) of the PTP domain and two primers were derived from conserved regions in the N-terminal part of the domain. Several PCR-products were obtained, including some corresponding to the cytoplasmic

PTPs PTPH1 (Yang, Q., and Tonks, N.K. (1991) Proc. Natl. Acad. Sci. (USA) 88 5949-5953), PTPase MEG (Gu, M., et al., (1991) Proc. Natl. Acad. Sci. (USA) 88:5867-5871), P19PTP (den Hertog, J., et al., (1992) Biochem. Biophys. Res. Commun. 184:1241-1249), and TC-PTP (Cool, D.E., et al., (1989) Proc. Natl. Acad. Sci. (USA) 86:5257-5261), as well as to the receptor-like PTPs HPTP-α, HPTP-γ, and HPTP-δ (Krueger, N.X., et al., (1990) EMBO J. 9:3241-3252). In addition to these known sequences, three PCR-products encoding novel PTP-like sequences were found.

One of these PCR-products is almost identical to a PCR-product derived from a human leukemic cell line (Honda, H., et al., (1993) Leukemia 7:742-746) and was chosen for further characterization and was used to screen an oligo-(dT)-primed U-343 MGa 31L cDNA library which resulted in the isolation of the clone $\lambda 6.15$. Upon Northern blot analysis of mRNA from human foreskin fibroblasts AG1518, probed with the $\lambda 6.15$ insert, a transcript of 9.5 kb could be seen. Therefore AG1518 cDNA libraries were constructed and screened with $\lambda 6.15$ in order to obtain a full-length clone. Screening of these libraries with $\lambda 6.15$, and thereafter with subsequently isolated clones, resulted in several overlapping clones which together covered 8040 bp including the whole coding sequence of a novel phosphatase, denoted PTPL1. The total length of the open reading frame was 7398 bp coding for 2466 amino acids with a predicted molecular mass of 275 kDa. The nucleotide and deduced amino acid sequence of PTPL1 are disclosed as SEQ ID NO.:1 and SEQ ID NO.: 2, respectively. Although the sequence surrounding the putative initiator codon at positions 78-80 does not conform well to the Kozak consensus sequence (Kozak, M. (1987) Nucl. Acids Res. 15:8125-8148) there is a purine at position -3 which is an important requirement for an initiation site. The 77 bp 5' untranslated region is GC-rich and contains an inframe stop codon at positions 45-47. A 3°

untranslated region of 565 bp begins after a TGA stop codon at positions 7476-7478, and does not contain a poly-A tail.

In the deduced amino acid sequence of PTPL1 no transmembrane domain or signal sequence for secretion are found, indicating that PTPL1 is a cytoplasmic PTP. Starting from the N-terminus, the sequence of the first 470 amino acid residues shows no homology to known proteins. The region 470-505 contains a leucine zipper motif, with a methionine in the position where the fourth leucine usually is found $(LX_6LX_6LX_6MX_6L)$; similar replacements of leucine residues with methionine residues are also found in the leucine zippers of the transcription factors CYS-3 (Fu, Y.-H., et al., (1989) Mol. Cell. Biol. 9:1120-1127) and dFRA (Perkins, K.K., et al., (1990) Genes Dev. 4:822-834). Furthermore, consistent with the notion that this is a functional leucine zipper, no helix breaking residues (glycine and proline) are present in this region. leucine zipper motif is followed by a 300 amino acid region (570-885) with homology to the band 4.1 superfamily (see Figure 1). The members of this superfamily are cytoskeleton-associated proteins with a homologous domain in the N-terminus (Tsukita, S., et al., (1992) Curr. Opin. Cell Biol. 4:834-839). Interestingly, two cytoplasmic PTPs, PTPH1 and PTPase MEG, contain a band 4.1-like domain. The band 4.1-like domain of PTPL1 is 20% to 24% similar to most known proteins of this superfamily, including ezrin (Gould, K.L., et al., (1989) EMBO J. 8:4133-4142), moesin (Lankes, W.T., and Furthmayr, H. (1991) Proc. Natl. Acad. Sci. (USA) 88:8297-8301), radixin (Funayama, N., et al., (1991) J. Cell Biol. 115:1039-1048), merlin (Trofatter, J.A., et al., (1993) Cell 72:791-800), band 4.1 protein (Conboy, J., et al., (1986) Proc. Natl. Acad. Sci. (USA) 83:9512-9516), PTPH1 (Yang, Q., and Tonks, N.K. (1991) Proc. Natl. Acad. Sci. (USA) 88:5949-5953) and PTPase MEG (Gu, M., et al., (1991) Proc. Natl. Acad. Sci. (USA) 88:5867-5871).

Between amino acid residues 1080 and 1940 there are five 80 amino acid repeats denoted GLGF-repeats. This repeat was first found in PSD-95 (Cho, K.-O., et al., (1992) Neuron 9:929-942), also called SAP (Kistner, U., et al., (1993) \underline{J} . Biol. Chem. 268:4580-4583), a protein in post-synaptic densities, i.e. structures of the submembranous cytoskeleton in synaptic junctions. Rat PSD-95 is homologous to the discs-large tumor suppressor gene in Drosophila (Woods, D.F., and Bryant, P.J. (1991) Cell 66:451-464), dlg-A, which encodes a protein located in septate junctions. These two proteins each contain three GLGF-repeats, one SH-3 domain and a quanylate kinase domain. Through computer searches in protein data bases complemented by manual searches, 19 GLGF-repeats in 9 different proteins, all of them enzymes, were found (see Figure 2 and Figure 3). Besides dlg-A and PSD-95, there are two other members of the guanylate kinase family, a 220-kDa protein (Itoh, M., et al., (1993) J. Cell $\underline{\text{Biol.}}$ 121:491-502) which is a constitutive protein of the plasma membrane undercoat with three GLGF-repeats, and p55 (Ruff, P., et al., (1991) Proc. Natl. Acad. Sci. (USA) 88:6595-6599) which is a palmitoylated protein from erythrocyte membranes with one GLGF-repeat. A close look into the sequence of PTPH1 and PTPase MEG revealed that each of them has one GLGF-repeat between the band 4.1 homology domain and the PTP domain. One GLGF-repeat is also found in nitric oxide synthase from rat brain (Bredt, D.S., et al., (1991) Nature 351:714-718), and a glioma cell line, U-118MG, expresses an altered rosl transcript (Sharma, S., et al., (1989) Oncogene Res. 5:91-100), containing a GLGF-repeat probably as a result of a gene fusion.

The PTP domain of PTPL1 is localized in the C-terminus (amino acid residues 2195-2449). It contains most of the conserved motifs of PTP domains and shows about 30% similarity to known PTPs.

Use of a 9.5 kb probe including SEQ ID NO.:1 for Northern blot analysis for tissue-specific expression showed high expression of PTPL1 in human kidney, placenta, ovaries, and testes; medium expression in human lung, pancreas, prostrate and brain; low expression in human heart, skeletal muscle, spleen, liver, small intestine and colon; and virtually no detectable expression in human leukocytes. Furthermore, using a rat PCR product for PTPL1 as a probe, PTPL1 was found to be expressed in adult rats but not in rat embryos. This latter finding suggests that PTPL1 may have a role, like many PTPs, in the signal transduction process that leads to cellular growth or differentiation.

The rabbit antiserum $\alpha L1A$ (see Example 5), made against a synthetic peptide derived from amino acid residues 1802-1823 in the PTPL1 sequence, specifically precipitated a component of 250 kDa from [35S]methionine and $[^{35}S]$ cysteine labeled COS-1 cells transfected with the PTPL1 cDNA. This component could not be detected in untransfected cells, or in transfected cells using either pre-immune serum or antiserum pre-blocked with the immunogenic peptide. Identical results were obtained using the antiserum $\alpha L1B$ (see Example 5) made against residues 450-470 of PTPL1. A component of about 250 kDa could also be detected in immunoprecipitations using AG1518 cells, PC-3 cells, CCL-64 cells, A549 cells and PAE cells. component was not seen upon precipitation with the preimmune serum, or when precipitation was made with $\alpha L1A$ antiserum preblocked with peptide. The slight variations in sizes observed between the different cell lines could be due to species differences. A smaller component of 78 kDa was also specifically precipitated by the $\alpha L1A$ antiserum. The relationship between this molecule and PTPL1 remains to be determined.

In order to demonstrate that PTPL1 has PTP activity, immunoprecipitates from COS-1 cells transfected with PTPL1 cDNA were incubated with myelin basic protein, ³²P-labeled

on tyrosine residues, as a substrate. The amount of radioactivity released as inorganic phosphate was measured. Immunoprecipitates with $\alpha L1B$ (open circles) gave a time-dependent increase in dephosphorylation with over 30% dephosphorylation after 12 minutes compared to 2% dephosphorylation when the antiserum was pre-blocked with peptide (open squares) (see Figure 4).

The present invention also provides an isolated nucleic acid sequence encoding a novel PTP designated GLM-2, variants and fragments thereof, and uses relating thereto. One sequence encoding a GLM-2 PTP and surrounding nucleotides is disclosed as SEQ ID NO.:3. This sequence includes the coding sequences for GLM-2 PTP as well as both 5' and 3' untranslated regions including regulatory sequences. The full disclosed sequence, designated SEQ ID NO.:3 is 3090 bp in length.

The nucleic acid sequence of SEQ ID NO.:3 includes 1310 base pairs of 5' untranslated region and 673 bp of 3' untranslated region which do not appear to encode a sequence for a poly-A (polyadenylation) tail. Transcription of SEQ ID NO.:3 begins at approximately position 1146. A translation start codon (ATG) is present at positions 1311 to 1313 of SEQ ID NO.:3. The nucleotides surrounding the start codon (AGCATGG) show substantial similarity to the Kozak consensus sequence (RCCATGG) (Kozak, M. (1987) Nucl. Acids Res. 15:8125-8148). A translation stop codon (TGA) is present at positions 2418 to 2420 of SEQ ID NO.:3. The open reading frame of 1107 bp encodes a protein of 369 amino acid residues with a predicted molecular mass of 41 kD. The deduced amino acid sequence of this protein is disclosed as SEQ ID NO.:4.

The sequence disclosed in SEQ ID NO.:3 encodes a single domain PTP similar to the rat PTP STEP (53% identity; Lombroso, et al., 1991) and the human PTP LC-PTP (51% identity; Adachi, M., et al., (1992) FEBS Letters 314:335-339). None of the sequenced regions encodes a

polypeptide sequence with any substantial similarity to known signal or transmembrane domains. Further indicating that GLM-2 is a cytoplasmic PTP.

Use of a 3.6 kb probe including SEQ ID NO.:3 for Northern blot analysis for tissue-specific expression showed a strong association with human brain tissue and little or no expression in human heart, placenta, lung, liver, skeletal muscle, kidney or pancreas. This is similar to to the pattern of tissue-specific expression shown by STEP.

Cloning and expression of PTPL1 and GLM-2.

In one series of embodiments of the present invention, an isolated DNA, cDNA or RNA sequence encoding a PTPL1 or GLM-2 PTP, or a variant or fragment thereof, is provided. The procedures described above, which were employed to isolate the first PTPL1 and GLM-2 sequences no longer need be employed. Rather, using the sequences disclosed herein, a genomic DNA or cDNA library may be readily screened to isolate a clone containing at least a fragment of a PTPL1 or GLM-2 sequence and, if desired, a full sequence. Alternatively, one may synthesize PTPL1 and GLM-2 encoding nucleic acids using the sequences disclosed herein.

The present invention further provides vectors containing nucleic acid sequences encoding PTPL1 and GLM-2. Such vectors include, but are not limited to, plasmids, phage, plasmids and cosmid vectors. In light of the present disclosure, one of ordinary skill in the art can readily place the nucleic acid sequences of the present invention into any of a great number of known suitable vectors using routine procedures.

The source nucleic acids for a DNA library may be genomic DNA or cDNA. Which of these is employed depends upon the nature of the sequences sought to be cloned and the intended use of those sequences.

Genomic DNA may be obtained by methods well known to those or ordinary skill in the art (for example, see Guide to Molecular Cloning Techniques, S.L. Berger et al., eds.,

Academic Press (1987)). Genomic DNA is preferred when it is desired to clone the entire gene including its endogenous regulatory sequences. Similarly, genomic DNA is used when it is only the regulatory sequences which are of interest.

Complementary or cDNA may be produced by reverse transcription methods which are well known to those of ordinary skill in the art (for example, see Guide to Molecular Cloning Techniques, S.L. Berger et al., eds., Academic Press (1987)). Preferably, the mRNA preparation for reverse transcription should be enriched in the mRNA of the desired sequence. This may be accomplished by selecting cells in which the mRNA is produced at high levels or by inducing high levels of production. Alternatively, in vitro techniques may be used such as sucrose gradient centrifugation to isolate mRNA transcripts of a particular size. cDNA is preferred when the regulatory sequences of a gene are not needed or when the genome is very large in comparison with the expressed transcripts. In particular, cDNA is preferred when a eukaryotic gene containing introns is to be expressed in a prokaryotic host.

To create a DNA or cDNA library, suitable DNA or cDNA preparations are randomly sheared or enzymatically cleaved by restriction endonucleases to create fragments appropriate in size for the chosen library vector. The DNA or cDNA fragments may be inserted into the vector in accordance with conventional techniques, including blunt-ending or staggered-ending termini for ligation. Typically, this is accomplished by restriction enzyme digestion to provide appropriate termini, the filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulations are well known in the art and may be found, for example, in Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY (1989). The library will consist of a great many clones, each containing a fragment of the total DNA or cDNA. A great variety of cloning vectors, restriction endonucleases and ligases are commercially available and their use in creating DNA libraries is well known to those of ordinary skill in the art. See, for example, Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY (1989).

DNA or cDNA libraries containing sequences coding for PTPL1 or GLM-2 nucleic acid sequences may be screened and a sequence coding for either PTPL1 or GLM-2 identified by any means which specifically selects for that sequence. Such means include (a) hybridization with an appropriate nucleic acid probe(s) containing a unique or substantially characteristic fragment of the desired DNA or cDNA (b) hybridization-selected translational analysis in which native mRNA which hybridizes to the clone in question is translated in vitro and the translation products are further characterized (c) if the cloned genetic sequences are themselves capable of expressing mRNA, immunoprecipitation of a translated PTPL1 or GLM-2 recombinant product produced by the host containing the clone, or preferarably (d) by using a unique or substantially characteristic fragment of the desired sequence as a PCR primer to amplify those clones with which it hybridizes.

Preferably, the probe or primer is a substantially characteristic fragment of one of the disclosed sequences. More preferably, the probe is a unique fragment of one of the disclosed sequences. In choosing a fragment, unique and substantially characteristic fragments can be identified by comparing the sequence of a proposed probe to the known sequences found in sequence databases. Alternatively, the entire PTPL1 or GLM-2 sequence may be used as a probe. In a preferred embodiment, the probe is a ³²P random-labeled unique fragment of the PTPL1 or GLM-2 nucleic acid sequences disclosed herein. In a most preferred embodiment, the probe

serves as a PCR primer containing a unique or substantially characteristic fragment of the PTPL1 or GLM-2 sequences disclosed herein.

The library to be screened may be DNA or cDNA. Preferably, a cDNA library is screened. In a preferred embodiment, a U-343 MGa 31L human glioblastoma (Nister, M., et al., (1988) Cancer Res. 48:3910-3918) or AG1518 human fibroblast (Human Genetic Mutant Cell Repository, Institute for Medical Research, Camden, NJ) cDNA library is screened with a probe to a unique or substantially characteristic fragment of the PTPL1 sequence. Because PTPL1 is expressed in a wide variety of tissues, cDNA libraries from many tissues may be employedN n another preferred embodiment, a Agt10 human brain cDNA library (Clontech, Calif.) is screened with a probe to a unique or substantially characteristic fragment of the GLM-2 sequence. Because expression of GLM-2 appears to be high in brain tissues but low or absent in other tissues tested, a brain cDNA library is recommended for the cloning of GLM-2.

The selected fragments may be cloned into any of a great number of vectors known to those of ordinary skill in the art. In one preferred embodiment, the cloning vector is a plasmid such as pUC18 or Bluescript (Stratagene). The cloned sequences should be examined to determine whether or not they contain the entire PTPL1 or GLM-2 sequences or desired portions thereof. A series of overlapping clones of partial sequences may be selected and combined to produce a complete sequence by methods well known in the art.

In an alternative embodiment of cloning a PTPL1 or GLM-2 nucleotide sequence, a library is prepared using an expression vector. The library is then screened for clones which express the PTPL1 or GLM-2 protein, for example, by screening the library with antibodies to the protein or with labeled probes for the desired RNA sequences or by assaying for PTPL1 or GLM-2 PTP activity on a phosphorylated substrate such as para-nitrylphenyl phosphate. The above discussed

methods are, therefore, capable of identifying cloned genetic sequences which are capable of expressing PTPL1 or GLM-2 PTPs, or variants or fragments thereof.

To express a PTPL1 or GLM-2 PTP, variants or fragments thereof, or PTPL1 or GLM-2 anti-sense RNA, and variants or fragments thereof, transcriptional and translational signals recognizable by an appropriate host are necessary. The cloned PTPL1 or GLM-2 encoding sequences, obtained through the methods described above, and preferably in a double-stranded form, may be operably joined to regulatory sequences in an expression vector, and introduced into a host cell, either prokaryote or eukaryote, to produce recombinant PTPL1 or GLM-2 PTP, a variant or fragment thereof, PTPL1 or GLM-2 anti-sense RNA, or a variant or fragment thereof.

Depending upon the purpose for which expression is desired, the host may be eukaryotic or prokaryotic. For example, if the intention is to study the regulation of PTPL1 or GLM-2 PTP in a search for inducers or inhibitors of its activity, the host is preferably eukaryotic. In one preferred embodiment, the eukaryotic host cells are COS cells derived from monkey kidney. In a particularly preferred embodiment, the host cells are human fibroblasts. Many other eukaryotic host cells may be employed as is well known in the art. For example, it is known in the art that <u>Xenopus</u> oocytes comprise a cell system useful for the functional expression of eukaryotic messenger RNA or DNA. This system has, for example, been used to clone the sodium:glucose cotransporter in rabbits (Hediger, M.A., et. al., Proc. Natl. Acad. Sci. (USA) 84:2634-2637 (1987)). Alternatively, if the intention is to produce large quantities of the PTPL1 or GLM-2 PTPs, a prokaryotic expression system is preferred. The choice of an appropriate expression system is within the ability and discretion of one of ordinary skill in the art.

Depending upon which strand of the PTPL1 or GLM-2 PTP encoding sequence is operably joined to the regulatory sequences, the expression vectors will produce either PTPL1

or GLM-2 PTPs, variants or fragments thereof, or will express PTPL1 and GLM-2 anti-sense RNA, variants or fragments thereof. Such PTPL1 and GLM-2 anti-sense RNA may be used to inhibit expression of the PTPL1 or GLM-2 PTP and/or the replication of those sequences.

Expression of a protein in different hosts may result in different post-translational modifications which may alter the properties of the protein. This is particularly true when eukaryotic genes are expressed in prokaryotic hosts. In the present invention, however, this is of less concern as PTPL1 and GLM-2 are cytoplasmic PTPs and are unlikely to be post-translationally glycosylated.

Transcriptional initiation regulatory sequences can be selected which allow for repression or activation, so that expression of the operably joined sequences can be modulated. Such regulatory sequences include regulatory sequences which are temperature-sensitive so that by varying the temperature, expression can be repressed or initiated, or which are subject to chemical regulation by inhibitors or inducers. Also of interest are constructs wherein both PTPL1 or GLM-2 mRNA and PTPL1 or GLM-2 anti-sense RNA are provided in a transcribable form but with different promoters or other transcriptional regulatory elements such that induction of PTPL1 or GLM-2 mRNA expression is accompanied by repression of the expression of the corresponding anti-sense RNA, or alternatively, repression of PTPL1 or GLM-2 mRNA expression is accompanied by induction of expression of the corresponding anti-sense RNA. Translational sequences are not necessary when it is desired to express PTPL1 and GLM-2 anti-sense RNA sequences.

A non-transcribed and/or non-translated sequence 5' or 3' to the sequence coding for PTPL1 or GLM-2 PTP can be obtained by the above-described cloning methods using one of the probes disclosed herein to select a clone from a genomic DNA library. A 5' region may be used for the endogenous regulatory sequences of the PTPL1 or GLM-2 PTP. A

3'-non-transcribed region may be utilized for a transcriptional termination regulatory sequence or for a translational termination regulatory sequence. Where the native regulatory sequences do not function satisfactorily in the host cell, then exogenous sequences functional in the host cell may be utilized.

The vectors of the invention further comprise other operably joined regulatory elements such as DNA elements which confer tissue or cell-type specific expression of an operably joined coding sequence.

Oligonucleotide probes derived from the nucleotide sequence of PTPL1 or GLM-2 can be used to identify genomic or cDNA library clones possessing a related nucleic acid sequence such as an allelic variant or homologous sequence. A suitable oligonucleotide or set of oligonucleotides, which is capable of encoding a fragment of the PTPL1 or GLM-2 coding sequences, or a PTPL1 or GLM-2 anti-sense complement of such an oligonucleotide or set of oligonucleotides, may be synthesized by means well known in the art (see, for example, Synthesis and Application of DNA and RNA, S.A. Narang, ed., 1987, Academic Press, San Diego, CA) and employed as a probe to identify and isolate a cloned PTPL1 or GLM-2 sequence, variant or fragment thereof by techniques known in the art. As noted above, a unique or substantially characteristic fragment of a PTPL1 or GLM-2 sequence disclosed herein is preferred. Techniques of nucleic acid hybridization and clone identification are disclosed by Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY (1989), and by Hames, B.D., et al., in Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985). To facilitate the detection of a desired PTPL1 or GLM-2 nucleic acid sequence, whether for cloning purposes or for the mere detection of the presence of PTPL1 or GLM-2 sequences, the above-described probes may be labeled with a detectable group. Such a detectable group may be any material having a detectable

physical or chemical property. Such materials have been well-developed in the field of nucleic acid hybridization and in general most any label useful in such methods can be applied to the present invention. Particularly useful are radioactive labels. Any radioactive label may be employed which provides for an adequate signal and has a sufficient half-life. If single stranded, the oligonucleotide may be radioactively labeled using kinase reactions. Alternatively, oligonucleotides are also useful as nucleic acid hybridization probes when labeled with a non-radioactive marker such as biotin, an enzyme or a fluorescent group. See, for example, Leary, J.J., et al., Proc. Natl. Acad. Sci.(USA) 80:4045 (1983); Renz, M. et al., Nucl. Acids Res. 12:3435 (1984); and Renz, M., EMBO J. 6:817 (1983).

By using the sequences disclosed herein as probes or as primers, and techniques such as PCR cloning and colony/plaque hybridization, it is within the abilities of one skilled in the art to obtain human allelic variants and sequences substantially similar or homologous to PTPL1 or GLM-2 nucleic acid sequences from species including mouse, rat, rabbit and non-human primates. Thus, the present invention is further directed to mouse, rat, rabbit and primate PTPL1 and GLM-2.

In particular the protein sequences disclosed herein for PTPL1 and GLM-2 may be used to generate sets of degenerate probes or PCR primers useful in isolating similar and potentially evolutionarily similar sequences encoding proteins related to the PTPL1 or GLM-2 PTPs. Such degenerate probes may not be substantially similar to any fragments of the PTPL1 or GLM-2 nucleic acid sequences but, as derived from the protein sequences disclosed herein, are intended to fall within the spirit and scope of the claims.

Antibodies to PTPL1 and GLM-2.

In the following description, reference will be made to various methodologies well-known to those skilled in the art of immunology. Standard reference works setting forth the

general principles of immunology include Catty, D.

Antibodies, A Practical Approach, Vols. I and II, IRL Press,
Washington, DC (1988); Klein, J. Immunology: The Science of
Cell-Noncell Discrimination, John Wiley & Sons, New York
(1982); Kennett, R., et al. in Monoclonal Antibodies,
Hybridoma: A New Dimension in Biological Analyses, Plenum
Press, New York (1980); Campbell, A., "Monoclonal Antibody
Technology," in Laboratory Techniques in Biochemistry and
Molecular Biology, Volume 13 (Burdon, R., et al., eds.),
Elsevier, Amsterdam (1984); and Eisen, H.N., in Microbiology,
3rd Ed. (Davis, B.D., et al., eds.) Harper & Row,
Philadelphia (1980).

The antibodies of the present invention are prepared by any of a variety of methods. In one embodiment, purified PTPL1 or GLM-2 PTP, a variant or a fragment thereof, is administered to an animal in order to induce the production of sera containing polyclonal antibodies that are capable of binding the PTP, variant or fragment thereof.

The preparation of antisera in animals is a well known technique (see, for example, Chard, Laboratory Techniques in Biology, "An Introduction to Radioimmunoassay and Related Techniques," North Holland Publishing Company (1978), pp. 385-396; and Antibodies, A Practical Handbook, Vols. I and II, D. Catty, ed., IRL Press, Washington, D.C. (1988)). The choice of animal is usually determined by a balance between the facilities available and the likely requirements in terms of volume of the resultant antiserum. A large species such as goat, donkey and horse may be preferred, because of the larger volumes of serum readily obtained. However, it is also possible to use smaller species such as rabbit or guinea pig which often yield higher titer antisera. Usually, a subcutaneous injection of the antigenic material (the protein or fragment thereof or a hapten-carrier protein conjugate) is used. The detection of appropriate antibodies may be carried out by testing the antisera with appropriately labeled

WO 95/06735 PCT/US94/09943

tracer-containing molecules. Fractions that bind tracer-containing molecules are then isolated and further purified if necessary.

Cells expressing PTPL1 or GLM-2 PTP, a variant or a fragment thereof, or, a mixture of such proteins, variants or fragments, can be administered to an animal in order to induce the production of sera containing polyclonal antibodies, some of which will be capable of binding the PTPL1 or GLM-2 PTP. If desired, such PTPL1 or GLM-2 antibody may be purified from other polyclonal antibodies by standard protein purification techniques and especially by affinity chromatography with purified PTPL1 or GLM-2 protein or variants or fragments thereof.

A PTPL1 or GLM-2 protein fragment may also be chemically synthesized and purified by HPLC to render it substantially pure. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of high specific activity. In a preferred embodiment, the protein may be coupled to a carrier protein such as bovine serum albumin or keyhole limpet hemocyanin (KLH), and and used to immunogenize a rabbit utilizing techniques well-known and commonly used in the art. Additionally, the PTPL1 or GLM-2 protein can be admixed with an immunologically inert or active carrier. Carriers which promote or induce immune responses, such as Freund's complete adjuvant, can be utilized.

Monoclonal antibodies can be prepared using hybridoma technology (Kohler et al., Nature 256:495 (1975); Kohler, et al., Eur. J. Immunol. 6:511 (1976); Kohler, et al., Eur. J. Immunol. 6:292 (1976); Hammerling, et al., in Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, such procedures involve immunizing an animal with PTPL1 or GLM-2 PTP, or a variant or a fragment thereof. The splenocytes of such animals are extracted and fused with a suitable myeloma cell line. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by

PCT/US94/09943

Wands, J.R., et al., Gastro-enterology 80:225-232 (1981), which reference is herein incorporated by reference. The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the PTP and/or the PTP antigen. The proliferation of transfected cell lines is potentially more promising than classical myeloma technology, using methods available in the art.

Through application of the above-described methods, additional cell lines capable of producing antibodies which recognize epitopes of the PTPL1 and GLM-2 PTPs can be obtained.

These antibodies can be used clinically as markers (both quantitative and qualitative) of the PTPL1 and GLM-2 PTPs in brain, blastoma or other tissue. Additionally, the antibodies are useful in a method to assess PTP function in cancer or other patients.

The method whereby two antibodies to PTPL1 were produced is outlined in Example 5.

Substantially pure PTPL1 and GLM-2 proteins.

A variety of methodologies known in the art can be utilized to obtain a purified PTPL1 or GLM-2 PTP. In one method, the protein is purified from tissues or cells which naturally produce the protein. Alternatively, an expression vector may be introduced into cells to cause production of the protein. For example, human fibroblast or monkey kidney COS cells may be employed. In another embodiment, mRNA transcripts may be microinjected into cells, such as Xenopus occytes or rabbit reticulocytes. In another embodiment, mRNA is used with an in vitro translation system. In preferred embodiment, bacterial cells are used to make large quantities of the protein. In a particularly preferred embodiment, a fusion protein, such as a bacterial GST fusion (Pharmacia) may be employed, the fusion product purified by affinity

chromatography, and the PTPL1 or GLM-2 protein may be released from the hybrid by cleaving the amino acid sequence joining them.

In light of the present disclosure, one skilled in the art can readily follow known methods for isolating proteins in order to obtain substantially pure PTPL1 or GLM-2 PTP, free of natural contaminants. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

Determinations of purity may be performed by physical characterizations (such as molecular mass in size fractionation), immunological techniques or enzymatic assays.

pTPL1 or GLM-2 PTP, variants or fragments thereof, purified in the above manner, or in a manner wherein equivalents of the above sequence of steps are utilized, are useful in the preparation of polyclonal and monoclonal antibodies, for pharmaceutical preparations to inhibit or enhance PTP activity and for in vitro dephosphorylations.

Variants of PTPL1 and GLM-2 nucleic acids and proteins.

Variants of PTPL1 or GLM-2 having an altered nucleic acid sequence can be prepared by mutagenesis of the DNA. This can be accomplished using one of the mutagenesis procedures known in the art.

Preparation of variants of PTPL1 or GLM-2 are preferably achieved by site-directed mutagenesis. Site-directed mutagenesis allows the production of variants of these PTPs through the use of a specific oligonucleotide which contains the desired mutated DNA sequence.

Site-directed mutagenesis typically employs a phage vector that exists in both a single-stranded and double-stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage, as disclosed by Messing, et al., Third Cleveland

PCT/US94/09943

Symposium on Macromolecules and <u>Recombinant DNA</u>, A. Walton, ed., Elsevier, Amsterdam (1981), the disclosure of which is incorporated herein by reference. These phage are commercially available and their use is generally well known to those skilled in the art. Alternatively, plasmid vectors containing a single-stranded phage origin of replication (Veira, et al., Meth. Enzymol. 153:3 (1987)) may be employed to obtain single-stranded DNA.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector that includes within its sequence the DNA sequence which is to be altered. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically, for example by the method of Crea, et al., Proc. Natl. Acad. Sci. (USA) 75:5765 (1978). The primer is then annealed with the single-stranded vector containing the sequence which is to be altered, and the created vector is incubated with a DNA-polymerizing enzyme such as E. coli polymerase I Klenow fragment in an appropriate reaction buffer. The polymerase will complete the synthesis of a mutation-bearing strand. Thus, the second strand will contain the desired mutation. This heteroduplex vector is then used to transform appropriate cells and clones are selected that contain recombinant vectors bearing the mutated sequence.

While the site for introducing a sequence variation is predetermined, the mutation per se need not be predetermined. For example, to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at a target region and the newly generated sequences can be screened for the optimal combination of desired activity. One skilled in the art can evaluate the functionality of the variant by routine screening assays.

The present invention further comprises fusion products of the PTPL1 or GLM-2 PTPs. As is widely known, translation of eukaryotic mRNA is initiated at the codon which encodes

the first methionine. The presence of such codons between a eukaryotic promoter and a PTPL1 or GLM-2 sequence results either in the formation of a fusion protein (if the ATG codon is in the same reading frame as the PTP encoding DNA sequence) or a frame-shift mutation (if the ATG codon is not in the same reading frame as the PTP encoding sequence). Fusion proteins may be constructed with enhanced immunospecificity for the detection of these PTPs. The sequence coding for the PTPL1 or GLM-2 PTP may also be joined to a signal sequence which will allow secretion of the protein from, or the compartmentalization of the protein in, a particular host. Such signal sequences may be designed with or without specific protease sites such that the signal peptide sequence is amenable to subsequent removal.

The invention further provides detectably labeled, immobilized and toxin conjugated forms of PTPL1 and GLM-2 PTPs, and variants or fragments thereof. The production of such labeled, immobilized or toxin conjugated forms of a protein are well known to those of ordinary skill in the art. While radiolabeling represents one embodiment, the PTPs or variants or fragments thereof may also be labeled using fluorescent labels, enzyme labels, free radical labels, avidin-biotin labels, or bacteriophage labels, using techniques known to the art (Chard, Laboratory Techniques in Biology, "An Introduction to Radioimmunoassay and Related Techniques," North Holland Publishing Company (1978)).

Typical fluorescent labels include fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, and fluorescamine.

Typical chemiluminescent compounds include luminol, isoluminol, aromatic acridinium esters, imidazoles, and the oxalate esters.

Typical bioluminescent compounds include luciferin, and luciferase. Typical enzymes include alkaline phosphatase, ß-galactosidase, glucose-6-phosphate dehydrogenase, maleate dehydrogenase, glucose oxidase, and peroxidase.

Transformed cells, cell lines and hosts.

To transform a mammalian cell with the nucleic acid sequences of the invention many vector systems are available depending upon whether it is desired to insert the recombinant DNA construct into the host cell's chromosomal DNA, or to allow it to exist in an extrachromosomal form. If the PTPL1 or GLM-2 PTP coding sequence, along with an operably joined regulatory sequence is introduced into a recipient eukaryotic cell as a non-replicating DNA (or RNA) molecule, the expression of PTPL1 or GLM-2 PTP may occur through the transient expression of the introduced sequence. Such a non-replicating DNA (or RNA) molecule may be a linear molecule or, more preferably, a closed covalent circular molecule which is incapable of autonomous replication.

In a preferred embodiment, genetically stable transformants may be constructed with vector systems, or transformation systems, whereby recombinant PTPL1 or GLM-2 PTP DNA is integrated into the host chromosome. Such integration may occur de novo within the cell or, in a most preferred embodiment, be assisted by transformation with a vector which functionally inserts itself into the host chromosome with, for example, retro vectors, transposons or other DNA elements which promote integration of DNA sequences in chromosomes. A vector is employed which is capable of integrating the desired sequences into a mammalian host cell chromosome. In a preferred embodiment, the transformed cells are human fibroblasts. In another preferred embodiment, the transformed cells are monkey kidney COS cells.

Cells which have stably integrated the introduced DNA into their chromosomes may be selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector in the chromosome, for example the marker may provide biocide resistance, e.g., resistance to antibiotics, or heavy metals, such as copper, or the like. The selectable marker can either be directly

linked to the DNA sequences to be expressed, or introduced into the same cell by co-transfection.

In another embodiment, the introduced sequence is incorporated into a vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors may be employed for this purpose, as outlined below.

Factors of importance in selecting a particular plasmid or vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.

Preferred eukaryotic plasmids include those derived from the bovine papilloma virus, SV40, and, in yeast, plasmids containing the 2-micron circle, etc., or their derivatives. Such plasmids are well known in the art (Botstein, D., et al., Miami Wntr. Symp. 19:265-274 (1982); Broach, J.R., in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 445-470 (1981); Broach, J.R., Cell 28:203-204 (1982); Bolion, D.P., et al., J. Clin. Hematol. Oncol. 10:39-48 (1980); Maniatis, T., in Cell Biology: A Comprehensive Treatise, Vol. 3, Gene Expression, Academic Press, NY, pp. 563-608 (1980)), and are commercially available. For example, mammalian expression vector systems which utilize the MSV-LTR promoter to drive expression of the cloned gene and with which it is possible to co-transfect with a helper virus to amplify plasmid copy number and to integrate the plasmid into the chromosomes of host cells have been described (Perkins, A.S., et al., Mol. Cell Biol. 3:1123 (1983); Clontech, Palo Alto, California).

Once the vector or DNA sequence is prepared for expression, it is introduced into an appropriate host cell by any of a variety of suitable means, including transfection.

After the introduction of the vector, recipient cells may be

WO 95/06735 PCT/US94/09943

grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned nucleic acid sequence(s) results in the production of PTPL1 or GLM-2 PTP, or the production of a variant or fragment of the PTP, or the expression of a PTPL1 or GLM-2 anti-sense RNA, or a variant or fragment thereof. This expression can take place in a transient manner, in a continuous manner, or in a controlled manner as, for example, expression which follows induction of differentiation of the transformed cells (for example, by administration of bromodeoxyuracil to neuroblastoma cells or the like).

In another embodiment of the invention the host is a human host. Thus, a vector may be employed which will introduce into a human with deficient PTPL1 or GLM-2 PTP activity, operable PTPL1 or GLM-2 sequences which can supplement the patient's endogenous production. In another embodiment, the patient suffers from a cancer caused by an oncogene which is a protein tyrosine kinase (PTK). A vector capable of expressing the PTPL1 or GLM-2 protein is introduced within the patient to counteract the PTK activity.

The recombinant PTPL1 or GLM-2 PTP cDNA coding sequences, obtained through the methods above, may be used to obtain PTPL1 or GLM-2 anti-sense RNA sequences. An expression vector may be constructed which contains a DNA sequence operably joined to regulatory sequences such that the DNA sequence expresses the PTPL1 or GLM-2 anti-sense RNA sequence. Transformation with this vector results in a host capable of expression of a PTPL1 or GLM-2 anti-sense RNA in the transformed cell. Preferably such expression occurs in a regulated manner wherein it may be induced and/or repressed as desired. Most preferably, when expressed, anti-sense PTPL1 or GLM-2 RNA interacts with an endogenous PTPL1 or GLM-2 DNA or RNA in a manner which inhibits or represses transcription and/or translation of the PTPL1 or GLM-2 PTP DNA sequences and/or mRNA transcripts in a highly specific

manner. Use of anti-sense RNA probes to block gene expression is discussed in Lichtenstein, C., Nature 333:801-802 (1988).

Assays for agonists and antagonists.

The cloning of PTPL1 and GLM-2 now makes possible the production and use of high through-put assays for the identification and evaluation of new agonists (inducers/enhancers) and antagonists (repressors/inhibitors) of PTPL1 or GLM-2 PTPs for therapeutic strategies using single or combinations of drugs. The assay may, for example, test for PTPL1 or GLM-2 PTP activity in transfected cells (e.g. fibroblasts) to identify drugs that interfere with, enhance, or otherwise alter the expression or regulation of these PTPs. In addition, probes developed for the disclosed PTPL1 and GLM-2 nucleic acid sequences or proteins (e.g. DNA or RNA probes or or primers or antibodies to the proteins) may be used as qualitative and/or quantitative indicators for the PTPs in cell lysates, whole cells or whole tissue.

In a preferred embodiment, human fibroblast cells are transformed with the PTPL1 or GLM-2 PTP sequences and vectors disclosed herein. The cells may then be treated with a variety of compounds to identify those which enhance or inhibit PTPL1 or GLM-2 transcription, translation, or PTP activity. In addition, assays for PDGF (platelet derived growth factor) signalling, cell growth, chemotaxis, and actin reorganization are preferred to assess a compound's affect on PTPL1 or GLM-2 PTP transcription, translation or activity.

In another embodiment, the ability of a compound to enhance or inhibit PTPL1 or GLM-2 PTP activity is assayed in vitro. Using the substantially pure PTPL1 or GLM-2 PTPs disclosed herein, and a detectable phosphorylated substrate, the ability of various compounds to enhance or inhibit the phosphatase activity of PTPL1 or GLM-2 may be assayed. In a

particularly preferred embodiment the phosphorylated substrate is para-nitrylphenyl phosphate (which turns yellow upon dephosphorylation).

In another embodiment, the ability of a compound to enhance or inhibit PTPL1 or GLM-2 transcription is assayed. Using the PTPL1 or GLM-2 cDNA sequences disclosed herein, one of ordinary skill in the art can clone the 5' regulatory sequences of the PTPL1 or GLM-2 genes. These regulatory sequences may then be operably joined to a sequence encoding a marker. The marker may be an enzyme with an easily assayable activity or may cause the host cells to change phenotypically or in their sensitivity or resistance to certain molecules. A wide variety of markers are known to those of ordinary skill in the art and appropriate markers may be chosen depending upon the host used. Compounds which may alter the transcription of PTPL1 or GLM-2 PTP may be tested by exposing cells transformed with the PTPL1 or GLM-2 regulatory sequences operably joined to the marker and assaying for increased or decreased expression of the marker.

The following examples further describe the particular materials and methods used in developing and carrying out some of the embodiments of the present invention. These examples are merely illustrative of techniques employed to date and are not intended to limit the scope of the invention in any manner.

EXAMPLE 1 Original Cloning of PTPL1

All cells, unless stated otherwise, were cultured in Dulbeco Modified Eagles Medium (DMEM Gibco) supplemented with 10% Fetal Calf Serum (FCS, Flow Laboratories), 100 units of penicillin, 50 µg/ml streptomycin and glutamine. The human glioma cell line used was U-343 MGa 31L (Nister, M., et al., (1988) Cancer Res. 48:3910-3918). The AG1518 human foreskin

fibroblasts were from the Human Genetic Mutant Cell Repository, Institute for Medical Research, Camden, NJ.

RNA was prepared from U-343 MGa 31L cells or AG1518 human fibroblasts by guanidine thiocyanate (Merck, Darmstadt) extraction (Chirgwin et al., 1979). Briefly, cells were harvested, washed in phosphate buffered saline (PBS), and lysed in 4 M guanidine thiocyanate containing 25 mM sodium citrate (pH 7.0) and 0.1 M 2-mercaptoethanol. RNA was sedimented through 5.7 M cesium chloride, the RNA pellet was then dissolved in 10 mM Tris hydrochloride (pH 7.5), 5 mM EDTA (TE buffer), extracted with phenol and chloroform, precipitated with ethanol, and the final pellet stored at -70°C or resuspended in TE buffer for subsequent manipulations. Polyadenylated [poly(A)+] RNA was prepared by chromatography on oligo (dT)-cellulose as described in Maniatis et al., 1982.

Poly(A)+ RNA (5 μ g) from U-343 MGa 31 L cells was used to make a cDNA library by oligo (dT)-primed cDNA synthesis using an Amersham Agt10 cDNA cloning system. Similarly, a random and oligo (dT) primed cDNA library was prepared from AG1518 fibroblasts using 5 μg of poly(A)+ RNA, a RiboClone cDNA synthesis system (Promega Corporation, Madison, WI., USA), a Lambda ZAPII synthesis kit (Stratagene), and Gigapack Gold II packaging extract (Stratagene). Degenerate primers were designed based on conserved amino acid-regions of known PTP sequences and were synthesized using a Gene Assembler Plus (Pharmacia-LKB). Sense oligonucleotides corresponded to the sequences FWRM I/V WEQ (5'- TTCTGG A/C GNATGATNTGGGAACA-3', 23mer with 32-fold degeneracy) and KC A/D Q/E YWP (5'-AA A/G TG C/T GANCAGTA C/T TGGCC-3', 20mer with 32-fold degeneracy), and the anti-sense oligonucleotide was based on the sequence HCSAG V/I G (5'-CCNACNCC A/C GC A/G CTGCAGTG-3', 20mer with 64-fold degeneracy). Unpackaged template cDNA from the U-343 MGa 31L library (100 ng) was amplified using Tag polymerase (Perkin Elmer-Cetus) and 100 ng of either sense primer in combination with 100 ng of the

anti-sense primer as described (Saiki et al., 1985). PCR was carried out for 25 cycles each consisting of denaturation at 94°C for 30 sec, annealing at 40°C for 2 min followed by 55°C for 1 min, and extension at 72°C for 2 min. The PCR products were separated on a 2.0% low gelling temperature agarose gel (FMC BioProducts, Rockland, USA) and DNA fragments of approximately 368 base pairs (with FWRM sense primer) and approximately 300 bp (with KC A/D Q sense primer) were excised, eluted from the gel, subcloned into a T-tailed vector (TA Cloning Kit, Invitrogen Corporation, San Diego, CA, USA), and sequenced.

Nucleotide sequences from several of the PCR cDNA clones analysed were representative of both cytoplasmic and receptor types of PTPs. Thirteen clones encoded cytoplasmic enzymes including MEG (Gu et al., 1991; 8 clones), PTPH1 (Yang and Tonks, 1991; 2 clones), P19PTP (den Hertog et al., 1992), and TC-PTP (Cool et al., 1989, one clone); 11 clones encoded receptor-type enzymes such as HPTP-α (Kruger et al., 1990, 7 clones), HPTP-γ (Kruger et al., 1990, 3 clones) and HPTP-δ (Kruger et al., 1990, 1 clone), and three clones defined novel PTP sequences. Two of these were named PTPL1 and GLM-2.

The U-343 MGa 31L cDNA library was screened with $^{32}\mathrm{P-random}$ prime-labeled (Megaprime Kit, Amersham) approximately 368 bp inserts corresponding to PTPL1 as described elsewhere (Huynh et al., 1986); clone $\lambda6.15$ was isolated, excised from purified phage DNA by $\underline{\mathrm{Eco}}$ RI (Biolabs) digestion and subcloned into pUC18 for sequencing. All other cDNA clones were isolated from the AG1518 human fibroblast cDNA library which was screened with $^{32}\mathrm{P-labeled}$ $\lambda6.15$ insert and with subsequently isolated partial cDNA clones.

Double-stranded plasmid DNA was prepared by a single-tube mini preparation method (Del Sal et al., 1988) or using Magic mini or maxiprep kits (Promega) according to the manufacturer's specifications. Double-stranded DNA was denatured and used as template for sequencing by the

dideoxynucleotide chain-termination procedure with T7 DNA polymerase (Pharmacia-LKB), and M13-universal and reverse primers or synthetic oligonucleotides derived from the cDNA sequences being determined. The complete 7395 bp open reading frame of PTPL1, was derived from six overlapping cDNA clones totalling 8040 bp and predicts a protein of 2465 amino acids with an approximate molecular mass of 275 kDa. The 8040 bp sequence is disclosed as SEQ ID NO.: 1.

EXAMPLE 2 Original Cloning of GLM-2

The human glioma cell line U-343 MGa 31L (Nister, M., et al., (1988) Cancer Res. 48:3910-3918) was cultured in Dulbecco's Modified Eagles Medium (DMEM Gibco) supplemented with 10% Fetal Calf Serum (FCS, Flow Laboratories), 100 units of penicillin, 50 μ g/ml streptomycin and 2mM glutamine.

Total RNA was prepared from U-343 MGa 31L cells by guanidine thiocyanate (Merck, Darmstadt) extraction (Chirgwin, et al., 1979). Briefly, cells were harvested, washed in phosphate buffered saline (PBS), and lysed in 4 M guanidine thiocyanate containing 25mM sodium citrate (pH 7.0) and 0.1 M 2-mercaptoethanol. RNA was sedimented through 5.7 M cesium chloride, the RNA pellet was then dissolved in 10 mM Tris hydrochloride (pH 7.5), 5 mM EDTA (TE buffer), extracted with phenol and chloroform, precipitated with ethanol, and the final pellet stored at -70°C or resuspended in TE buffer for subsequent manipulations. Polyadenylated [poly(A)+] RNA was prepared by chromatography on oligo (dT)-cellulose as described in Maniatis et al. (1982).

Poly(A)+ RNA (5 μ g) isolated from U-343 MGa 31L cells was used to make a cDNA library by oligo (dT)-primed cDNA synthesis using an Amersham λ gt10 cDNA cloning system. Degenerate primers were designed based on conserved amino acid regions of known PTP sequences, and synthesized using a Gene Assembler Plus (Pharmacia-LKB). Sense oligonucleotides

corresponded to the sequences FWRM I/V WEQ (5'-TTCTGG A/C GNATGATNTGGGAACA-3', 23mer with 32-fold degeneracy=primer P1) and KC A/D Q/E YWP (5'-AA A/G TG C/T GANCAGTA C/T TGGCC-3', 20mer with 32-fold degeneracy=primer P2), and the anti-sense oligonucleotide was based on the sequence HCSAG V/I G (5'-CCNACNCC A/C GC A/G CTGCAGTG-3', 20mer with 64-fold degeneracy=primer P3). Unpackaged template cDNA from the U-343 MGa 31L library (100 ng) was amplified using $\underline{\text{Taq}}$ polymerase (Perkin Elmer-Cetus) and 100 ng of either sense primer in combination with 100 ng of the anti-sense primer as described (Saiki, et al., 1985). PCR was carried out for 25 cycles each consisting of denaturation at 94°C for 30 sec, annealing at 40°C for 2 min followed by 55°C for 1 min, and extension at 72°C for 2 min. The PCR products were separated on a 2.0% low gelling temperature agarose gel (FMC BioProducts, Rockland, USA) and DNA fragments of approximately 368 base pairs (with FWRM sense primer) and approximately 300 bp (with KC A/D Q sense primer) were excised, eluted from the gel, subcloned into a T-tailed vector (TA Cloning Kit, Invitrogen Corporation, San Diego, CA, USA), and sequenced. Double-stranded plasmid DNA was prepared by a single-tube mini preparation method (Del Sal, et al., 1988) or by using Magic mini or maxiprep kits (Promega) according to the manufacturer's specifications. Double-stranded DNA was denatured and used as template for sequencing by the dideoxynucleotide chain-termination procedure (Sanger, et al., 1977) with T7 DNA polymerase (Pharmacia-LKB), and M13-universal and reverse primers or, in the case of cDNA clones isolated from the brain cDNA library, using also synthetic oligonuclectides derived from the cDNA sequences being determined.

A human brain cDNA library constructed in λ gt10 (Clontech, Calif.) was screened as described elsewhere (Huynh, et al., 1986) with 32 P-random prime-labeled (Megaprime Kit, Amersham) approximately 360 bp inserts

corresponding to GLM-2. Clone HBM1 was isolated, excised from purified phage DNA by <u>Eco</u> RI (Biolabs) digestion and subcloned into the plasmid vectors pUC18 or Bluescript (Stratagene) for sequencing. The resulting sequence is disclosed as SEQ ID NO.: 3.

EXAMPLE 3 Tissue-Specific Expression of PTPL1

Total RNA (20 μ g) or poly(A)+ RNA (2 μ g) denatured in formaldehyde and formamide was separated by electrophoresis on a formaldehyde/1% agarose gel and transferred to nitrocellulose. The filters were hybridized for 16 hrs at 42°C with 32P-labeled probes in a solution containing 5x standard saline citrate (SSC; 1x SSC is 50 mM sodium citrate, pH 7.0, 150 mM sodium chloride), 50% formamide, 0.1% sodium dodecyl sulfate (SDS), 50 mM sodium phosphate and 0.1 mg/ml salmon sperm DNA. All probes were labeled by random priming (Feinberg and Vogelstein, 1983) and unincorporated 32p was removed by Sephadex G-25 (Pharmacia-LKB) chromatography. Human tissue blots (Clontech, Calif.) were hybridized with PTPL1 specific probes according to manufacturer's specifications. Filters were washed twice for 30 min at 60°C in 2x SSC/0.1% SDS, once for 30 min at 60°C in 0.5x SSC/0.1% SDS, and exposed to X-ray film (Fuji, XR) with intensifying screen (Cronex Lighting Plus, Dupont) at -70°C.

Northern blot analysis of RNAs from various human tissues showed that the 9.5 kb PTPL1 transcript is expressed at different levels with kidney, placenta, ovaries and testes showing high expression, compared to medium expression in lung, pancreas, prostate and brain tissues, low in heart, skeletal muscle, spleen, liver, small intestine and colon and virtually no detectable expression in leukocytes.

EXAMPLE 4 Tissue-Specific Expression of GLM-2

To investigate the expression of GLM-2 mRNA in human tissues, Northern blot analysis was performed on a commercially available filter (Clontech, California) containing mRNAs from human heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas tissue. The filter was hybridized according to manufacturer's specifications with \$32P-labeled GLM-2 PCR product as probe, washed twice for 30 min at 60°C in 2x standard saline citrate (SSC; 1x SSC is 50 mM sodium citrate, pH 7.0, 150 mM sodium chloride), containing 0.1% sodium dodecyl sulfate (SDS), once for 30 min at 60°C in 0.5x SSC/0.1% SDS, and exposed to X-ray film (Fuji, RX) with intensifying screen (Cronex Lighting Plus, Dupont) at -70°C.

EXAMPLE 5 Production of PTPL1 specific antisera

Rabbit antisera denoted $\alpha L1A$ and $\alpha L1B$ were prepared against peptides corresponding to amino acid residues 1802 to 1823 (PAKSDGRLKPGDRLIKVNDTDV) and 450 to 470 (DETLSQGQSQRPSRQYETPFE), respectively, of PTPL1. The peptides were synthesized in an Applied Biosystems 430A Peptide Synthesizer using t-butoxycarbonyl chemistry and purified by reverse phase high performance liquid chromatography. The peptides were coupled to keyhole limpet hemocyanin (Calbiochem-Behring) using glutaraldehyde, as described (Gullick, W.J., et al., (1985) EMBO J. 4:2869-2877), and then mixed with Freund's adjuvant and used to Immunize a rabbit. The $\alpha L1A$ antiserum was purified by affinity chomatography on protein A-Sepharose CL4B (Pharmacia-LKB) as described by the manufacturer.

EXAMPLE 6 Transfection of the PTPL1 cDNA Into COS-1 Cells.

The full length PTPL1 cDNA was constructed using overlapping clones and cloned into the SV40-based expression vector pSV7d (Truett, M.A., et al., (1985) DNA 4:333-349), and transfected into COS-1 cells by the calcium phosphate precipitation method (Wigler, M., et al., (1979) Cell 16:777-785). Briefly, cells were seeded into 6-well cell culture plates at a density of 5×10^5 cells/well, and transfected the following day with 10 µg of plasmid. After overnight incubation, cells were washed three times with a buffer containing 25 mM Tris-HCl, pH 7.4, 138 mM NaCl, 5 mM KCl, 0.7 mM $CaCl_2$, 0.5 mM $MgCl_2$ and 0.6 mM Na_2 HPO₄, and then incubated with Dulbecco's modified Eagle's medium containing 10% fetal calf serum and antibiotics. Two days after transfection, the cells were used for metabolic labeling followed by immunoprecipitation and SDS-gel electrophoresis, or immunoprecipitation followed by dephosphorylation experiments.

EXAMPLE 7 Metabolic Labeling, Immunoprecipitation and Electrophoresis of PTPL1

Metabolic labeling of COS-1 cells, AG1518 cells, PC-3 cells, CCL-64 cells, A549 cells and PAE cells was performed for 4 h in methionine- and cysteine-free MCDB 104 medium (Gibco) with 150 μ Ci/ml of [35 S]methionine and [35 S]cysteine (in vivo labeling mix; Amersham). After labeling, the cells were solubilized in a buffer containing 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate, 1.5% Trasylol (Bayer) and 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma). After 15 min on ice, cell debris was removed by centrifugation. Samples (1 m1) were then incubated for 1.5 h at 4°C with either α L1A antibodies or α L1A antibodies preblocked with 10 μ g of

WO 95/06735

peptide. Immune complexes were then mixed with 50 µl of a protein A-Sepharose (Pharmacia-LKB) slurry (50% packed beads in 150 mM NaCl, 20 mM Tris-HCl, pH 7.4, 0.2% Triton X-100) and incubated for 45 min at 4°C. The beads were pelleted and washed four times with washing buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 1% Triton X-100, 1% deoxycholate and 0.2% SDS), followed by one wash in distilled water. The immune complexes were eluted by boiling for 5 min in the SDS-sample buffer (100 mM Tris-HCl, pH 8.8, 0.01% bromophenol blue, 36% glycerol, 4% SDS) in the presence of 10 mM dithiothreitol (DTT), and analyzed by SDS-gel electrophoresis using 4-7% polyacrylamide gels (Blobel, G., and Dobberstein, B. (1975) J. Cell Biol. 67:835-851). The gel was fixed, incubated with Amplify (Amersham) for 20 min, dried and subjected to fluorography.

EXAMPLE 8 Dephosphorylation Assay for PTPL1

COS-1 cells were lysed in 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate, 1.5% Trasylol, 1 mM PMSF and 1 mM DTT, for 15 min. Lysates were cleared by centrifugation, 3 µl of the antiserum αLlB, with or without preblocking with 10 µg peptide, were added and samples were incubated for 2 h at 4°C. Protein A-Sepharose slurry (25 μ l) was then added and incubation was prolonged another 30 min at 4°C. The beads were pelleted and washed four times with lysis buffer, and one time with dephosphorylation assay buffer (25 mM imidazole-HCl, pH 7.2, 1 mg/ml bovine serum albumin and 1 mM DTT), and finally resuspended in dephosphorylation assay buffer containing 2 μM myelin basic protein $^{32}P-labeled$ on tyrosine residues by Baculo-virus expressed intracellular part of the insulin receptor, kindly provided by A.J. Flint (Cold Spring Harbor Laboratory) and M.M. Cobb (University of Texas). After incubation for indicated times at 30°C, the reactions were

WO 95/06735 PCT/US94/09943

stopped with a charcoal mixture (Streull, M., et al., (1988) J. Exp. Med. 168:1523-1530) and the radioactivity in the supernatants was determined by Cerenkov counting. For each sample, lysate corresponding to 5 cm² of confluent cells was used.

It should be understood that the preceding is merely a detailed description of certain preferred embodiments and examples of particular laboratory embodiments. It therefore should be apparent to those skilled in the art that various modifications and equivalents can be made without departing from the spirit or scope of the invention as defined in the appended claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: LUDWIG INSTITUTE FOR CANCER RESEARCH
 - (B) STREET: 1345 AVENUE OF THE AMERICAS
 - (C) CITY: NEW YORK
 - (D) STATE: NEW YORK
 - (E) COUNTRY: USA
 - (F) POSTAL CODE: 10105
 - (C) TELEPHONE: 212-765-3000

(i) APPLICANT/INVENTOR:

- (A) NAME: GONEZ, LEONEL JORGE
- (B) STREET: OVRE SLOTTSGATAN 11
- (C) CITY: UPPSALA
- (E) COUNTRY: SWEDEN
- (F) POSTAL CODE: S-753 40
- (G) TELEPHONE: 46-18-17-41-46

(i) APPLICANT/INVENTOR:

- (A) NAME: SARAS, JAN
- (B) STREET: LINGSBERGSGATAN 15B
- (C) CITY: UPPSALA
- (E) COUNTRY: SWEDEN
- (F) POSTAL CODE: S-752 40
- (G) TELEPHONE: 46-18-17-41-46

(i) APPLICANT/INVENTOR:

- (A) NAME: CLAESSON-WELSH, LENA
- (B) STREET: GRANITVAGEN 16A
- (C) CITY: UPFSALA
- (E) COUNTRY: SWEDEN
- (F) POSTAL CODE: S-752 43
- (G) TELEPHONE: 46-18-17 41-46

(i) APPLICANT/INVENTOR:

- (A) NAME: HELDIN, CARL-HENRIK
- (B) STREET: HESSELMAUS VAG 35
- (C) CITY: UPPSALA
- (E) COUNTRY: SWEDEN
- (F) POSTA! CODE: 5-752 63
- (G) TELEPHONE: 46-18-17-41-46
- (ii) TITLE OF INVENTION: PRIMARY STRUCTURE AND FUNCTIONAL FXPRESSION OF NUCLEOTIDE SEQUENCES FOR NOVEL PROTEIN TYPOSINE PHOSPHATASES
- (11) N'MBER OF SEQUENCES: 4

- (iv) CORRESPONDENCE ADDRESS:
 - (A) NAME: WOLF, GREENFIELD & SACKS, P.C.
 - (B) STREET: 600 ATLANTIC AVENUE
 - (C) CITY: BOSTON
 - (D) STATE: MASSACHUSETTS
 - (E) COUNTRY: USA
 - (F) POSTAL CODE: 02210
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 01-SEP-1994
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/115,573
 - (B) FILING DATE: 01-SEP-1993
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: TWOMEY, MICHAEL J.
 - (B) REGISTRATION NUMBER: P-38,349
 - (C) REFERENCE/DOCKET NUMBER: LO461/7000WO
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 617/720-3500
 - (B) TELEFAX: 617/720-2441
 - (C) TELEX: 92-1742 EZEKIEL
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8043 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 78..7478

-56-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(112)	•											
CCCGCCCCGA CGCCGCGTCC CTGCAGCCCT GCCCGGCGCT CCAGTAGCAG GACCCGGTCT 60												
CGGGACCAGC	CGGTAAT A	ATG CAC G Met His V	TG TCA C al Ser L	TA GCT G eu Ala G	AG GCC CT	G GAG GT u Glu Va 10	T 110					
CGG GGT GGA	CCA CTT Pro Leu 15	CAG GAG Gln Glu	GAA GAA Glu Glu 20	ATA TGG Ile Trp	GCT GTA T Ala Val L	TA AAT C eu Asn G 25	AA 158 ln					
AGT GCT GAA Ser Ala Glu 30	Ser Leu	CAA GAA Gln Glu	TTA TTC Leu Phe 35	AGA AAA Arg Lys	GTA AGC C Val Ser I 40	TA GCT (Leu Ala A	AT 206					
CCT GCT GCC Pro Ala Ala 45	CTT GGC	TTC ATC Phe Ile 50	ATT TCT Ile Ser	CCA TGG Pro Trp	TCT CTG (Ser Leu I 55	TG TTG (Leu Leu I	TTG 254 .eu					
CCA TCT GG Pro Ser Gly 60	AGT GTG Ser Val	TCA TTT Ser Phe 65	ACA GAT Thr Asp	GAA AAT Glu Asn 70	ATT TCC A	AAT CAG (Asn Gln)	302 Asp 75					
CTT CGA GC	A TTC ACT a Phe Thr 80	Ala Pro	GAG GTT Glu Val	CTT CAA Leu Gln 85	AAT CAG ; Asn Gln ;	ICA CTA Ser Leu 90	ACT 350 Thr					
TCT CTC TC. Ser Leu Se	A GAT GTT r Asp Val 95	GAA AAG Glu Lys	ATC CAC Ile His 100	ATT TAT Ile Tyr	Ser Leu	GGA ATG Gly Met 105	ACA 398 Thr					
CTG TAT TG Leu Tyr Tr 11	p Gly Ala	GAT TAT Asp Tyr	GAA GTG Glu Val 115	CCT CAG Pro Gln	AGC CAA Ser Gln 120	CCT ATT Pro Ile	AAG 446 Lys					
CTT GGA GA Leu Gly As 125	T CAT CTC p His Lev	AAC AGC Asn Ser 130	Ile Leu	CTT GGA Leu Gly	ATG TGT Met Cys 135	GAG GAT Glu Asp	GTT 494 Val					
ATT TAC GC Ile Tyr Al 140	T CGA GTT a Arg Val	T TCT GTT L Ser Val 145	CGG ACT	GTG CTG Val Leu 150	Asp Ala	TGC AGT Cys Ser	GCC 542 Ala 155					
CAC ATT AG His Ile Ar	G AAT AG0 g Asn Se: 160	r Asn Cys	GCA CCC Ala Pro	TCA TTT Ser Phe 165	TCC TAC Ser Tyr	GTG AAA Val Lys 170	CAC 590 His					
TTG GTA AA Leu Val Ly	A CTG GT s Leu Va 175	r cTG GGA l Leu Gly	AAT CTT Asn Lev 180	Ser Gly	ACA GAT Thr Asp	CAG CTT Gln Leu 185	TCC 638 Ser					

TGT Cys	AAC Asn	AGT Ser 190	GAA Glu	C A A Gln	AAG Lys	Pro	GAT Asp 195	CGA Arg	AGC Ser	CAG (Gln)	Ala	ATT Ile 200	CGA (GAT Asp	CGA	636
TTG Leu	CGA Arg 205	GGA Gly	AAA Lys	GGA Gly	TTA Leu	CCA Pro 210	ACA Thr	GGA Gly	AGA Arg	AGC ' Ser	TCT Ser 215	ACT Thr	TCT Ser	GAT Asp	GTA Val	734
CTA Leu 220	GAC A sp	ATA Ile	CAA Gln	AAG Lys	CCT Pro 225	CCA Pro	CTC Leu	TCT Ser	CAT His	CAG Gln 230	ACC Thr	TTT Phe	CTT Leu	AAC Asn	AAA Lys 235	782
GGG Gly	CTT Leu	AGT Ser	AAA Lys	TCT Ser 240	ATG Met	GGA Gly	TTT Phe	CTG Leu	TCC Ser 245	ATC Ile	AAA Lys	GAT Asp	ACA Thr	CAA Gln 250	GAT Asp	830
GAG Glu	AAT Asn	TAT Tyr	TTC Phe 255	AAG Lys	GAC Asp	ATT Ile	TTA Leu	TCA Ser 260	GAT Asp	AAT Asn	TCT Ser	GGA Gly	CGT Arg 265	GAA Glu	GAT Asp	878
TCT Ser	GAA Glu	AAT Asn 270	Thr	TTC Phe	TCC Ser	CCT Pro	TAC Tyr 275	CAG Gln	TTC Phe	AAA Lys	ACT Thr	AGT Ser 280	GGC Gly	CCA Pro	GAA Glu	926
AAA Lys	AAA Lys 285	Pro	ATC Ile	CCT Pro	GGC Gly	ATT Ile 290	GAT Asp	GTG Val	CTT Leu	TCT Ser	AAG Lys 295	Lys	AAG Lys	ATC Ile	TGG Trp	974
GCT Ala 300	Ser	TCC Ser	ATG Met	GAC Asp	TTG Leu 305	Leu	TGT Cys	ACA Thr	GCT Ala	GAC Asp 310	AGA Arg	GAC Asp	TTC Phe	TCT Ser	TCA Ser 315	1022
GGA Gly	GAG Glu	ACT Thr	GCC Ala	ACA Thr 320	Tyr	CGT Arg	CGT Arç	TGT Cys	CAC His 325	Pro	GAG Glu	GCA Ala	GTA Val	ACA Thr 330	GTG Val	1070
CG(ACI Thi	TC? Ser	A ACT	r Thi	CCI	AGA Arg	AAA Lys	A AAC 5 Lys 340	Glu	GCA Ala	AGA Arq	A TAC	TCA Ser 345	ASE	GGA Gly	1118
AG: Sei	I ATA	A GC0 ≥ A10 350	a Le	G GAT u As;	r ATO	TTT Phe	GGG G1: 35	y Pro	CAC Gl:	AAA Lys	ATO	G GAR t Asi 360	Pre	ATA	A TAT	1155
CA(C ACT	r Ar	a Ga g Gl	A TT u Le	G CCC	2 ACC 5 Th	r Se	C TC	A GCA	A ATA	TC. Se Se	r se	r Ala	r TT a Le	G GAC u Asp	1214
CG Ar 38	g Il	C CG e Ar	A GA g Gl	G AG u Ar	A CA g Gl 38	n Ly	G AA s Ly	A CT s Le	T CA	G GTT n Val	l Le	G AG u Ar	G GA	A GC u Al	C ATG a Met 395	1262

AAT Asn	GTA Val	GAA Glu	GAA Glu	CCA Pro 400	GTT Val	CGA Arg	AGA Arg	TAC Tyr	AAA Lys 405	ACT Thr	TAT Tyr	CAT His	GGT Gly	GAT Asp 410	GTC Val	1310
												TCT Ser				1358
												TTT Phe 440				1405
												GGC Gly				1454
AGA Arg 460	CCG Pro	AGC Ser	AGA Arg	CAA Gln	TAT Tyr 465	GAA Glu	ACA Thr	CCC Pro	TTT Phe	GAA Glu 470	GGC Gly	AAC Asn	TTA Leu	ATT Ile	AAT Asn 475	1502
												ATG Met				1550
GCC Ala	AAA Lys	ATG Met	GCC Ala 495	CTT Leu	AGA Arg	CAG Gln	TCT Ser	CGG Arg 500	TTG Leu	AGC Ser	CTA Leu	TAT Tyr	CCA Pro 505	GGA Gly	GAC Asp	1598
ACA Thr	ATC Ile	AAA Lys 510	GCG Ala	TCC Ser	ATG Met	CTT Leu	GAC Asp 515	ATC Ile	ACC Thr	AGG Arg	GAT Asp	CCG Pro 520	TTA Leu	AGA Arg	GAA Glu	1646
ATT Ile	GCC Ala 525	CTA Leu	GAA Glu	ACA Thr	GCC Ala	ATG Met 530	ACT Thr	CAA Gln	AGA Arg	AAA Lys	CTG Leu 535	AGG Arg	AAT Asn	TTC Phe	TTT Phe	1694
GGC Gly 540	CCT Pro	GAG Glu	TTT Phe	GTG Val	AAA Lys 545	ATG Met	ACA Thr	ATT Ile	GAA Glu	CCA Pro 550	TTT Phe	ATA Ile	TCT Ser	TTG Leu	GAT Asp 555	1742
TTG Leu	CCA Pro	CGG Arg	TCT Ser	ATT Ile 560	CTT Leu	ACT Thr	AAG Lys	AAA Lys	GGG Gly 565	AAG Lys	AAT Asn	GAG Glu	GAT Asp	AAC Asn 570	CGA Arg	1790
AGG Arg	AAA Lys	GTA Val	AAC Asn 575	ATA Ile	ATG Met	CTT Leu	CTG Leu	AAC Asn 580	GGG Gly	CAA Gln	AGA Arg	CTG Leu	GAA Glu 585	CTG Leu	ACC Thr	1838
TGT Cys	GAT Asp	ACC Thr 590	AAA Lys	ACT Thr	ATA Ile	TGT Cys	AAA Lys 595	GAT Asp	GTG Val	TTT Phe	GAT Asp	ATG Met 600	GTT Val	GTG Val	GCA Ala	1886

-59-

														CTC Leu		1934
														AAA Lys		1982
														GCC Ala 650		2030
														GAT Asp		2078
							Thr							CAG Gln		2126
														ACT Thr		2174
														TAT Tyr		2222
CCA Pro	GAG Glu	GTT Val	CAT His	GGT Gly 720	GTG Val	TCT Ser	TAC Tyr	TTT Phe	AGA Arg 725	ATG Met	GAG Glu	CAC His	TAT Tyr	TTG Leu 730	CCC Pro	2270
GCC Ala	AGA Arg	GTG Val	ATG Met 735	GAG Glu	AAA Lys	CTT Leu	GAT Asp	TTA Leu 740	TCC Ser	TAT Tyr	ATC Ile	AAA Lys	GAA Glu 745	GAG Glu	TTA Leu	2318
														ACA Thr	GAG Glu	2366
TTA Leu	GAA Glu 765	TTT Phe	TTA Leu	AAG Lys	GTC Val	TGC Cys 770	CAA Gln	AGA Arg	CTG Leu	ACA Thr	GAA Glu 775	Tyr	GGA Gly	GTT Val	CAT His	2414
TTT Phe 780	CAC His	CGA Arg	GTG Val	CAC	CCT Pro 785	GAG Glu	AAG Lys	AAG Lys	TCA Ser	CAA Gln 790	ACA Thr	GGA Gly	ATA Ile	TTG Leu	CTT Leu 795	2462
GGA Gly	GTC Val	TGT Cys	TCT Ser	AAA Lys 800	GGT Gly	GTC Val	CTT Leu	GTG Val	TTT Phe 805	Glu	GTT Val	CAC His	AAT Asn	GGA Gly 810		2510

CGC ACA TTG G Arg Thr Leu V	GTC CTT CGC Val Leu Arg B15	Phe Pro	TGG AGG Trp Arg 820	GAA ACC Glu Thr	AAG AAA ATA ' Lys Lys Ile : 825	ICT 2558 Ser
TTT TCT AAA A Phe Ser Lys I 830	AAG AAA ATG Lys Lys Ile	ACA TTG Thr Leu 835	CAA AAT Gln Asn	ACA TCA Thr Ser	GAT GGA ATA Asp Gly Ile 840	AAA 2606 Lys
CAT GGC TTC (His Gly Phe (845	CAG ACA GAG	AAC AGT Asn Ser 850	AAG ATA Lys Ile	TGC CAG Cys Gln 855	TAC CTG CTG Tyr Leu Leu	CAC 2654 His
CTC TGC TCT ' Leu Cys Ser ' 860	TAC CAG CA Tyr Gln Hi 86	s Lys Phe	CAG CTA Gln Leu	CAG ATG Gln Met 870	AGA GCA AGA Arg Ala Arg	CAG 2702 Gln 875
AGC AAC CAA Ser Asn Gln	GAT GCC CA Asp Ala Gl 880	A GAT ATT n Asp Ile	GAG AGA Glu Arg 885	Ala Ser	TTT AGG AGC Phe Arg Ser 890	CTG 2750 Leu
AAT CTC CAA Asn Leu Gln	GCA GAG TO Ala Glu Se 895	T GTT AGA r Val Arg	GGA TTT Gly Phe 900	AAT ATG Asn Met	GGA CGA GCA Gly Arg Ala 905	ATC 2798 Ile
AGC ACT GGC Ser Thr Gly 910	AGT CTG GG Ser Leu Al	C AGC AGC a Ser Ser 915	Inr Let	AAC AAA Asn Lys	CTT GCT GTT Leu Ala Val 920	CGA 2846 Arg
CCT TTA TCA Pro Leu Ser 925	GTT CAA GO Val Gln A	T GAG ATT la Glu Ile 930	CTG AAC	G AGG CTA S Arg Lev 935	TCC TGC TCA Ser Cys Ser	GAG 2894 Glu
CTG TCG CTT Leu Ser Leu 940	Tyr Gln P	CA TTG CAA ro Leu Gli 45	A AAC AG n Asn Se	T TCA AAA r Ser Lys 950	A GAG AAG AAT s Glu Lys Asr	GAC 2942 Asp 955
AAA GCT TCA Lys Ala Ser	TGG GAG G Trp Glu G 960	AA AAG CC lu Lys Pro	r AGA GA o Arg Gl 96	u mec se.	T AAA TCA TAC r Lys Ser Ty: 970	
GAT CTC AGT Asp Leu Ser	CAG GCC TGIN Ala S	CT CTC TA er Leu Ty	T CCA CA r Pro Hi 980	T CGG AA. s Arg Ly	A AAT GTC AT s Asn Val Ile 985	r GTT 3038 e Val
AAC ATG GAA Asn Met Glu 990	ı Pro Pro E	CA CAA AC Pro Gln Th	r val Al	A GAG TT a Glu Le	G GTG GGA AA u Val Gly Ly 1000	A CCT 3086 s Pro
TCT CAC CAC Ser His Gl: 1005	G ATG TCA A	AGA TCT GA Arg Ser As 1010	T GCA GA	Iu se. be	ng GCA GGA GT Bu Ala Gly Va D15	G ACA 3134 1 Thr

-61-

	Leu		AAT Asn			Ser					Asn					3182
AGG Arg			CAT His		Ser					Ile					Gln	3230
GCA Ala			CTA Leu 1055	Asp					Arg					Ser		3278
CCA Pro			Glu					Asn					Ala			3326
GJA GGC	TTG Leu 1085	Gly	TTT Phe	CAA Gln	ATT Ile	ATT Ile 1090	Gly	GGG Gly	GAG Glu	AAG Lys	ATG Met 109	Gly	AGA Arg	CTG Leu	GAC Asp	3374
CTA Leu 1100	Gly	ATA Ile	TTT Phe	ATC Ile	AGC Ser 1105	Ser	GTT Val	GCC Ala	CCT Pro	GGA Gly 1110	Gly	CCA Pro	GCT Ala	GAC Asp	TTC Phe 1115	3422
			TTG Leu		Pro					Ile					Val	3470
AGT Ser	CTG Leu	GAG Glu	GGA Gly 113	Val	AGC Ser	CAC His	CAT His	GCT Ala 114	Ala	ATT Ile	GAA Glu	ATT	TTG Leu 114	Gln	AAT Asn	3518
GCA Ala	CCT Pro	GAA Glu 115	Asp	GTG Val	ACA Thr	CTT Leu	GTT Val 115	Ile	TCT Ser	CAG Gln	CCA Pro	AAA Lys 116	Glu	AAG Lys	ATA Ile	3566
TCC Ser	AAA Lys 116	Val	CCT Pro	TCT Ser	ACT Thr	CCT Pro 117	Val	CAT His	CTC Leu	ACC Thr	AAT Asn 117	Glu	ATG Met	AAA Lys	AAC Asn	3614
TAC Tyr 1180	Met	AAG Lys	AAA Lys	TCT Ser	TCC Ser 118	Tyr	ATG Met	CAA Gln	GAC Asp	AGT Ser 119	Ala	· ATA Ile	GAT Asp	TCT Ser	TCT Ser 1195	3662
TCC Ser	AAG Lys	GAT Asp	CAC His	CAC His 120	Trp	TCA Ser	CGT Arg	GGT Gly	ACC Thr 120	Leu	AGG Arg	CAC His	ATC Ile	TCG Ser 121	Glu	3710
AAC Asn	TCC Ser	TTT Phe	GGG Gly 121	Pro	TCT Ser	GGG Gly	GGC Gly	CTG Leu 122	Arg	GAA Glu	GGA Gly	AGC Ser	CTG Leu 122	Ser	TCT Ser	3758

CAA GAT TCC AGG ACT Gln Asp Ser Arg Thr 1230				
GGT TTC TTT GCC AGC Gly Phe Phe Ala Ser 1245			Gln Glu Ser	
CAT GGC AGC CCT TCC His Gly Ser Pro Ser 1260				
ACT TTC ACT GAT AGT Thr Phe Thr Asp Ser 128	Asn Gln Ser I			Ser
GAT GTA ACT GAT TAC Asp Val Thr Asp Tyr 1295	Ser Asp Arg G			
ACT TAC TCC AGC AGT Thr Tyr Ser Ser Ser 1310				
TCT TCA GTG AAT ACA Ser Ser Val Asn Thr 1325			Thr Phe Ser	
TCA CCT CCT AAG CCT Ser Pro Pro Lys Pro 1340	GGA GAT ATC 1 Gly Asp Ile E 1345	TTT GAG GTT GAA Phe Glu Val Glu 1350	CTG GCT AAA Leu Ala Lys	AAT 4142 Asn 1355
GAT AAC AGC TTG GGG Asp Asn Ser Leu Gly 136	Ile Ser Val 7			Val
AGA CAT GGT GGC ATT Arg His Gly Gly Ile 1375	Tyr Val Lys A			
GAG TCT GAT GGT AGA Glu Ser Asp Gly Arg 1390	ATT CAC AAA (Ile His Lys (1395	Gly Asp Arg Val	CTA GCT GTC Leu Ala Val 1400	AAT 4286 Asn
GGA GTT AGT CTA GAA Gly Val Ser Leu Glu 1405	GGA GCC ACC (Gly Ala Thr H	CAT AAG CAA GCT His Lys Gln Ala 141	a Val Glu Thr	CTG 4334 Leu
AGA AAT ACA GGA CAG Arg Asn Thr Gly Gln 1420				

CCA ACA TCT A	AAA GAA CAT G Lys Glu His V 1440	TC CCG GTA ACC C al Pro Val Thr F 1445	CCA CAG TGT ACC Pro Gln Cys Thr	CTT TCA 4430 Leu Ser 1450
Asp Gln Asn	GCC CAA GGT C Ala Gln Gly G 1455	AA GGC CCA GAA A ln Gly Pro Glu I 1460	AAA GTG AAG AAA Lys Val Lys Lys 1465	Thr Thr
CAG GTC AAA G Gln Val Lys 1470	Asp Tyr Ser P	TT GTC ACT GAA (he Val Thr Glu (1475	GAA AAT ACA TTT Glu Asn Thr Phe 1480	GAG GTA 4526 Glu Val
AAA TTA TTT Lys Leu Phe 1485	Lys Asn Ser S	CA GGT CTA GGA er Gly Leu Gly 490	TTC AGT TTT TCT Phe Ser Phe Ser 1495	CGA GAA 4574 Arg Glu
GAT AAT CTT Asp Asn Leu 1500	ATA CCG GAG C Ile Pro Glu G 1505	AA ATT AAT GCC ln Ile Asn Ala	AGC ATA GTA AGG Ser Ile Val Arg 1510	GTT AAA 4622 Val Lys 1515
AAG CTC TTT Lys Leu Phe	GCT GGA CAG C Ala Gly Gln P 1520	CA GCA GCA GAA Pro Ala Ala Glu 1525	AGT GGA AAA ATT Ser Gly Lys Ile	GAT GTA 4670 Asp Val 1530
GGA GAT GTT Gly Asp Val	ATC TTG AAA G Ile Leu Lys V 1535	org AAT GGA GCC Val Asn Gly Ala 1540	TCT TTG AAA GGA Ser Leu Lys Gly 154	Leu Ser
CAG CAG GAA Gln Gln Glu 1550	Val Ile Ser A	GCT CTC AGG GGA Ala Leu Arg Gly 1555	ACT GCT CCA GAA Thr Ala Pro Glu 1560	GTA TTC 4766 Val Phe
TTG CTT CTC Leu Leu Leu 1565	Cys Arg Pro E	CCA CCT GGT GTG Pro Pro Gly Val 1570	CTA CCG GAA ATT Leu Pro Glu Ile 1575	GAT ACT 4814 Asp Thr
GCG CTT TTG Ala Leu Leu 1580	ACC CCA CTT (Thr Pro Leu (1585	CAG TCT CCA GCA Gln Ser Pro Ala	CAA GTA CTT CCA Gln Val Leu Pro 1590	AAC AGC 4862 Asn Ser 1595
AGT AAA GAC Ser Lys Asp	TCT TCT CAG (Ser Ser Gln) 1500	CCA TCA TGT GTG Pro Ser Cys Val 1609	Glu Gln Ser Thr	AGC TCA 4910 Ser Ser 1610
GAT GAA AAT Asp Glu Asn	GAA ATG TCA Glu Met Ser . 1615	GAC AAA AGC AAA Asp Lys Ser Lys 1620	AAA CAG TGC AAC Lys Gln Cys Lys 162	Ser Pro
TCC AGA AGA Ser Arg Arg 1630	Asp Ser Tyr	AGT GAC AGC AGT Ser Asp Ser Ser 1635	GGG AGT GGA GAA Gly Ser Gly Glu 1540	GAT GAC 5006 Asp Asp

TTA GTC ACA GC Leu Val Thr Al 1645		n Ile Ser As			
TTG CAT CAG AC Leu His Gln Th 1660					
GAA GCA CCC AA Glu Ala Pro Ly		ı Asp Thr Il			Tyr
CCT CAG AAA AT Pro Gln Lys I1 16					
CCT CTA CCA CC Pro Leu Pro Pr 1710	CG GAT ATG GC TO ASP Met Al	I CCT GGG CA B Pro Gly Gl 1715	ln Ser Tyr G	AA CCC CAA Gln Pro Gln .720	TCA 5246 Ser
GAA TCT GCT TC Glu Ser Ala Se 1725		r Met Asp Ly			
TCT GAA CCA AC Ser Glu Pro Th					
GAA AAT CAC CT Glu Asn His Le		e Glu Leu Gl			Thr
CTA ATT AAA TO Leu Ile Lys Se 17	CA GAA AAA GC er Glu Lys Al 775	A AGC CTG GC a Ser Leu Gl 1780	GT TTT ACA O	GTA ACC AAA Val Thr Lys 1785	GGC 5438 Gly
AAT CAG AGA AT Asn Gln Arg II 1790			sp Val Ile (
AAA AGT GAT GO Lys Ser Asp GI 1805	GA AGG CTA AA ly Arg Leu Ly 18	s Pro Gly As	AC CGG CTC A sp Arg Leu 1 1815	ATA AAG GTT Ile Lys Val	AAT 5534 Asn
GAT ACA GAT GI Asp Thr Asp Va 1820	IT ACT AAT AT al Thr Asn Me 1825	G ACT CAT AC	CA GAT GCA (hr Asp Ala \ 1830	GTT AAT CTG Val Asn Leu	CTC 5582 Leu 1835
CGG GCT GCA TO Arg Ala Ala Se	CC AAA ACA GT er Lys Thr Va 1840	l Arg Leu Va	TT ATT GGA (al Ile Gly / 845	CGA GTT CTA Arg Val Leu 185	Glu

-65-

			Leu Leu Pr	G GAC ATA ACA TO Asp Ile Thr 1865	
	Lys Glu Glu			GT GGA GGT CAT rs Gly Gly His 1880	
			Asp Ile As	AT CCA AGG TCC on Pro Arg Ser 895	
		Leu Gln Leu		TC ATC CAT TAT	
				AA GTT AAC AGA lu Val Asn Arg 1930	Ala
			Leu Lys Al	CA ACA AGA AAT la Thr Arg Asn 1945	
	Val Pro Ser			TT TCA GCT CCA al Ser Ala Pro 1960	
			Val Gly Se	CT TGC AGC CAG er Cys Ser Gln 975	
GCC CTC ACT Ala Leu Thr 1980	CCT AAT GAT Pro Asn Asp 198	Ser Phe Ser	ACG GTT GG Thr Val A: 1990	CT GGG GAA GAA la Gly Glu Glu	ATA 6062 Ile 1995
				CT TAT CAG ATA hr Tyr Gln Ile 2010	Lys
GGA TCA CCA Gly Ser Pro	AAC TTG ACT Asn Leu Thr 2015	CTG CCC AAA Leu Pro Lys 202	Glu Ser T	AT ATA CAA GAA yr Ile Gln Glu 2025	GAT 6158 Asp
GAC ATT TATA Asp Ile Tyr 201	Asp Asp Ser	CAA GAA GCT Gln Glu Ala 2035	GAA GTT A' Glu Val I	TC CAG TCT CTG le Gln Ser Leu 2040	CTG 6206 Leu
			Leu Leu A	AC GAA AAT AAT sn Glu Asn Asn 055	

GCA GGA TAC Ala Gly Tyr 2060	TCC TGT GGT (Ser Cys Gly) 2065	CCA GGT ACA Pro Gly Thr	TTA AAG ATG Leu Lys Met 2070	AAT GGG AAG Asn Gly Lys	TTA 6302 Leu 2075
TCA GAA GAG Ser Glu Glu	AGA ACA GAA (Arg Thr Glu . 2080	GAT ACA GAC Asp Thr Asp	TGC GAT GGT Cys Asp Gly 2085	TCA CCT TTA Ser Pro Leu 2090	Pro
GAG TAT TTT Glu Tyr Phe	ACT GAG GCC Thr Glu Ala 2095	ACC AAA ATG Thr Lys Met 210	Asn Gly Cys	GAA GAA TAT Glu Glu Tyr 2105	TGT 6398 Cys
GAA GAA AAA Glu Glu Lys 211	Val Lys Ser	GAA AGC TTA Glu Ser Leu 2115	ATT CAG AAG	CCA CAA GAA Pro Gln Glu 2120	AAG 6446 Lys
AAG ACT GAT Lys Thr Asp 2125	GAT GAT GAA Asp Asp Glu	ATA ACA TGG Ile Thr Trp 2130	GGA AAT GAT Gly Asn Asp 213	r GAG TTG CCA o Glu Leu Pro 35	ATA 6494 Ile
GAG AGA ACA Glu Arg Thr 2140	AAC CAT GAA Asn His Glu 2145	Asp Ser Asp	AAA GAT CAT Lys Asp His 2150	T TCC TTT CTG S Ser Phe Leu	ACA 6542 Thr 2155
AAC GAT GAG Asn Asp Glu	CTC GCT GTA Leu Ala Val 2160	CTC CCT GTC Leu Pro Val	GTC AAA GTC Val Lys Val 2165	G CTT CCC TCT 1 Leu Pro Ser 217	Gly
AAA TAC ACG Lys Tyr Thr	GGT GCC AAC Gly Ala Asn 2175	TTA AAA TCA Leu Lys Ser 218	. Val Ile Ar	A GTC CTG CGG g Val Leu Arg 2185	GGT 6638 Gly
TTG CTA GAT Leu Leu Asp 219	Gln Gly Ile	CCT TCT AAC Pro Ser Lys 2195	G GAG CTG GA s Glu Leu Gl	G AAT CTT CAA u Asn Leu Gln 2200	GAA 6686 Glu
TTA AAA CCT Leu Lys Pro 2205	TTG GAT CAG Leu Asp Gln	TGT CTA ATT	e Gly Gln Th	T AAG GAA AAC r Lys Glu Asn 15	AGA 6734 Arg
AGG AAG AAG Arg Lys As: 2220	AGA TAT AAA n Arg Tyr Lys 222	Asn Ile Le	T CCC TAT GA u Pro Tyr As 2230	T GCT ACA AGA p Ala Thr Arg	GTG 5782 y Val 2235
CCT CTT GG/ Pro Leu Gl	A GAT GAA GGT y Asp Glu Gly 2240	GGC TAT AT Gly Tyr Il	C AAT GCC AG e Asn Ala Se 2245	C TTC ATT AAC r Phe Ile Lys 225	; Ile
CCA GTT GG Pro Val Gl	G AAA GAA GAG y Lys Glu Glu 2255	Phe Val Ty	C ATT GCC TG r Ile Ala Cy 60	SC CAA GGA CC/ s Gln Gly Pro 2265	A CTG 6878 b Leu

WO 95/06735 PCT/US94/09943

-67-

CCT Pro	ACA Thr	ACT Thr 2270	Val	GGA Gly	GAC Asp	TTC Phe	TGG Trp 2275	Gln	ATG Met	ATT 11e	TGG Trp	GAG Glu 2280	Gln	AAA Lys	TCC Ser	6926
ACA Thr	GTG Val 2285	Ile	GCC Ala	ATG Met	ATG Met	ACT Thr 2290	Gln	GAA Glu	GTA Val	GAA Glu	GGA Gly 229	Glu	AAA Lys	ATC Ile	AAA Lys	6974
TGC Cys 2300	Gln	CGC Arg	TAT Tyr	TGG Trp	CCC Pro 2305	Asn	ATC Ile	CTA Leu	GGC Gly	AAA Lys 2310	Thr	ACA Thr	ATG Met	GTC Val	AGC Ser 2315	7022
AAC Asn	AGA Arg	CTT Leu	CGA Arg	CTG Leu 232	GCT Ala	CTT Leu	GTG Val	AGA Arg	ATG Met 2325	Gln	CAG Gln	CTG Leu	AAG Lys	GGC Gly 2330	Phe	7070
GTG Val	GTG Val	AGG Arg	GCA Ala 233	Met	ACC Thr	CTT Leu	GAA Glu	GAT Asp 234	Ile	CAG Gln	ACC Thr	AGA Arg	GAG Glu 234	Val	CGC Arg	7118
CAT His	ATT Ile	TCT Ser 2350	His	CTG Leu	AAT Asn	TTC Phe	ACT Thr 235	Ala	TGG Trp	CCA Pro	GAC Asp	CAT His 236	Asp	ACA Thr	CCT Pro	7166
TCT Ser	CAA Gln 236	Pro	GAT Asp	GAT Asp	CTG Leu	CTT Leu 237	Thr	TTT Phe	ATC Ile	TCC Ser	TAC Tyr 237	Met	AGA Arg	CAC His	ATC Ile	7214
CAC His 238	Arg	TCA Ser	GGC	CCA Pro	ATC Ile 238	Ile	ACG Thr	CAC	TGC Cys	AGT Ser 239	Ala	GGC Gly	ATT Ile	GGA Gly	CGT Arg 2395	7262
TCA Ser	GGG Gly	ACC Thr	CTG Leu	ATT Ile 240	Cys	ATA Ile	GAT Asp	GTG Val	GTT Val 240	Leu	GGA Gly	TTA Leu	ATC Ile	AGT Ser 241	CAG Gln O	7310
GAT Asp	CTT Leu	GAT Asp	TTT Phe 241	Asp	ATC Ile	TCT Ser	GAT Asp	TTG Leu 242	Val	CGC	TGC Cys	ATG Met	AGA Arg 242	Leu	CAA Gln	7358
A GA Arg	CAC His	GGA Gly 243	Met	GTI Val	CAG Gln	ACA Thr	GAG Glu 243	Asp	CAA Gln	TAT Tyr	ATT	TTC Phe 244	Cys	TAT	CAA Gln	7406
GTC Val	ATC Ile 244	Leu	TAT	GTC	CTG Leu	ACA Thr 245	Arg	CTI Let	CAA Glr	GCA Ala	GAA Glu 245	ı Glu	GAG Glu	CAA Glr	AAA Lys	7454
	Glr				CTG Lev 246	Lys		CATO	SAAA	AGAG	GCCT	etg (GATGO	ATT	cc	7505

-68-

CATTICTCIC	CTTAACCTCC	AGCAGACTCC	TGCTCTCTAT	CCAAATAAAG	ATCACAGAGC	7565
AGCAAGTTCA	TACAACATGC	ATGTTCTCCT	CTATCTTAGA	GGGGTATTCT	TCTTGAAAAT	7625
TTATAAAAA	GAAATGCTGT	ATTTTTACAG	CTACTTTAAC	CTATGATAAT	TATTTACAAA	7685
ATTTTAACAC	TAACCAAACA	ATGCAGATCT	TAGGGATGAT	TAAAGGCAGC	ATTGATGATA	7745
GCAAGACATT	GTTACAAGGA	CATGGTGAGT	CTATTTTAA	TGCACCAATC	TTGTTTATAG	7805
CAAAAATGTT	TTCCAATATT	TTAATAAAGT	AGTTATTTTA	TAGGGCATAC	TTGAAACCAG	7865
TATTTAAGCT	TTAAATGACA	GTAATATTGG	CATAGAAAAA	AGTAGCAAAT	GTTTACTGTA	7925
TCAATTTCTA	ATGTTTACTA	TATAGAATTT	CCTGTAATAT	ATTTATATAC	TTTTTCATGA	7985
AAATGGAGTT	ATCAGTTATC	TGTTTGTTAC	TGCATCATCT	GTTTGTAATC	ATTATCTC	8043

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2466 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met His Val Ser Leu Ala Glu Ala Leu Glu Val Arg Gly Gly Pro Leu
- Gln Glu Glu Glu Ile Trp Ala Val Leu Asn Gln Ser Ala Glu Ser Leu 20 25 30
- Gln Glu Leu Phe Arg Lys Val Ser Leu Ala Asp Pro Ala Ala Leu Gly
 35 40 45
- Phe Ile Ile Ser Pro Trp Ser Leu Leu Leu Leu Pro Ser Gly Ser Val 50 55
- Ser Phe Thr Asp Glu Asn Ile Ser Asn Gln Asp Leu Arg Ala Phe Thr 65 70 75 80
- Ala Pro Glu Val Leu Gln Asn Gln Ser Leu Thr Ser Leu Ser Asp Val
- Glu Lys Ile His Ile Tyr Ser Leu Gly Met Thr Leu Tyr Trp Gly Ala 100 105 110
- Asp Tyr Glu Val Pro Gln Ser Gln Pro Ile Lys Leu Gly Asp His Leu 115 120 125

	Ser 130						135						-	. 4 0						
Ser 145	Val	Arq	ŢŢ	hr	Val	Leu 150	Asp	Al	a C	ys	Ser	A1	a F 55	lis	Ile	Ar	g A	sn.	Ser 160	.)
Asn	Cys	Ala	a P	ro	Ser 165	Phe	Ser	Ty	r V	al	Lys 170	Ні	.s I	Leu	Val	Ly	s L	.eu .75	Va:	1
Leu	Gly	As		Leu 180	Ser	Gly	Thr	· As	sp G	1n .85	Leu	Se	er (Cys	Asn	Se 19	er (Glu	G1:	n
Lys	Pro	As 19		Arg	Ser	Gln	Ala	a I:	le À	rg	Asp	A	rg	Leu	Arg 205	G I	ly I	ŗλε	Gl	У
Leu	Pro 210		r (Gly	Arg	Ser	Se 21	r Tl 5	hr S	Ser	Asp	v v	al	Leu 220	Asp	ı	le :	Gln	Ly	s
Pro 225	Pro	Le	u :	Ser	His	Glr 230	Th	r P	he l	Leu	Asr	n L 2	ys 35	Gly	Lev	ı S	er	Lys	Se 24	r 0
Met	Gly	, Ph	ıe	Leu	Ser 245	Ile	e Ly	s A	sp '	Thr	Gl: 250	n A	sp.	Glu	Asi	n T	yr	Phe 255	Ly	'5
Asp	Ile	e Le	u	Ser 260	Asp) As	n Se	r G	lly	Arg 265	Gl	u A	sp	Ser	G1	u A 2	.sn 70	Thr	P	ne
Ser	Pr		yr 75	Gln	Phe	e Ly	s Tr	ır S	Ser 280	Gly	Pr	0 (5lu	Lys	Ly 28	s P 5	, ro	Ile	P	ro
Gly	y Il 29		sp	Val	Le	ı Se	r L;	/s I 95	Lys	Lys	Il	e .	Ггр	Ala 300	s Se	r S	Ser	Met	: A:	sp
Le ⁻	u Le 5	u C	ys	Thi	- Al	a As 31	A q 0.	rg i	Asp	Ph∈	: Se	r	Ser 315	Gly	, Gl	.u :	Ihr	Ala	a T 3	hr 20
Ty	r Ar	g A	rg	Cys	s Hi 32	s Pr 5	.o G	lu	Ala	Va:	1 Th	ar 30	Val	Ar	g Ti	ır (Ser	Th:	r T 5	hr
Pr	o Ar	g L			s G1 O		ia A	rg	Tyr	Se 34	r As 5	sp	Gly	· Se	r I	le	Ala 350	Le	u A	sp
I 1	e Pi	ne C	31 y 35 5	Pr	o G1	n L	ys M	et	Asp 360	Pr	o I	le	Туг	Hi	s T	hr 65	Arg	G1	u I	.eu
P:	70 TI	nr 9	Ser	Se	r Al	la I	le S	er 175	Ser	Al	a L	eu	Asj) Ar 38	g I 0	le	Arç	g Gl	u A	Arg
	ln L 85	ys !	Lys	. Le	u G	ln V 3	al [90	.eu	Arç	g Gl	u A	la	Ме 39	t As 5	n V	al	Gli	ı Gl	u l	Pro 400
v.	al A	rg	Arç	g Ty	77 L 4	ys I 05	hr '	Iyr	His	5 G 3	y A 4	sp 10	Vα	1 P	ne S	er	Th	r Se 41	er 15	Se

Glu	Ser	Pro	Ser 420		: Ile	Ser	Ser	Glu 425		Asp	Phe	Arg	Gln 430	Val	Arq
Arg	Ser	Glu 435		Ser	Lys	Arg	Phe 440		Ser	Ser	Ser	Gly 445		Pro	Gly
Val	Asp		Thr	Leu	Ser	Gln 455		Gln	Ser	Gln	Arg 460		Ser	Arg	Glr
Tyr 465	Glu	Thr	Pro	Phe	Glu 470		Asn	Leu	Ile	Asn 475		Glu	Ile	Met	Le 1 480
Lys	Arg	Gln	Glu	Glu 485	Glu	Leu	Met	Gln	Leu 490	Gln	Ala	Lys	Met	Ala 495	Leu
Arg	Gln	Ser	Arg 500	Leu	Ser	Leu	Tyr	Pro 505	Gly	Asp	Thr	Ile	Lys 510	Ala	Ser
Met	Leu	Asp 515		Thr	Àrg	Asp	Pro 520	Leu	Arg	Glu	Ile	Ala 525	Leu	Glu	Thr
Ala	Met 530	Thr	Gln	Arg	Lys	Leu 535	Arg	Asn	Phe	Phe	Gly 540	Pro	Glu	Phe	Val
Lys 545	Met	Thr	Ile	Glu	Pro 550	Phe	Ile	Ser	Leu	Asp 555	Leu	Pro	Arg	Ser	Ile 560
Leu	Thr	Lys	Lys	Gly 565	Lys	Asn	Glu	Asp	Asn 570	Arg	Arg	Lys	Val	Asn 575	Ile
Met	Leu	Leu	Asn 580	Gly	Gln	Arg	Leu	Glu 585	Leu	Thr	Cys	Asp	Thr 590	Lys	Thr
Ile	Cys	Lys 5 95	Asp	Val	Phe	Asp	Met 600	Val	Val	Ala	His	Ile 605	Gly	Leu	Val
Glu	His 610	His	Leu	Phe	Ala	Leu 615	Ala	Thr	Leu	Lys	Asp 620	Asn	Glu	Tyr	Phe
Phe 625	Val	Asp	Pro	Asp	Leu 630	Lys	Leu		Lys			Pro	Glu	Gly	Trp 640
Lys	Glu	Glu	Pro	Lys 645	Lys	Lys	Thr	Lys	Ala 650	Thr	Val	Asn	Phe	Thr 655	Leu
Phe	Phe	Arg	Ile 660	Lys	Phe	Phe	Met	Asp 665	Asp	Val	Ser	Leu	Ile 670	Gln	His
Thr	Leu	Thr 675	Cys	His	Gln	Tyr	Tyr 680	Leu	Gln	Leu	Arg	Lys 685	Asp	Ile	Leu
Glu	Glu 690	Arg	Met	His	Cys	Asp 695	Asp	Glu	Thr	Ser	Leu 700	Leu	Leu	Ala	Ser

Le u 705	Ala	Leu	Gln	Ala	Glu 710	Tyr	Gly	Asp	Tyr	Gln 715	Pro	Glu	Val	His	Gly 720
Val	Ser	Tyr	Phe	Arg 725	Met	Glu	His		Leu 730	Pro	Ala	Arg	Val	Met 735	Glu
Lys	Leu	Asp	Leu 740	Ser	Tyr	Ile		Glu 745	Glu	Leu	Pro	Lys	Leu 750	His	Asn
Thr	Tyr	Val 755	Gly	Ala	Ser	Glu	Lys 760	Glu	Thr	Glu	Leu	Glu 765	Phe	Leu	Lys
Val	Cys 770	Gln	Arg	Leu	Thr	Glu 775	Tyr	Gly	Val	His	Phe 780	His	Arg	Val	His
Pro 785	Glu	Lys	Lys	Ser	Gln 790	Thr	Gly	Ile	Leu	Leu 795	Gly	Val	Cys	Ser	Lys 800
Gly	Val	Leu	Val	Phe 805	Glu	Val	His	Asn	Gly 810	Val	Arg	Thr	Leu	Val 815	Leu
Arg	Phe	Pro	Trp 820	Arg	Glu	Thr	Lys	Lys 825	Ile	Ser	Phe	Ser	Lys 830	Lys	Lys
Ile	Thr	Leu 835	Gln	Asn	Thr	Ser	Asp 840	Gly	Ile	Lys	His	Gly 845	Phe	Gln	Thr
Asp	Asn 850	Ser	Lys	Ile	Cys	Gln 855	Tyr	Leu	Leu	His	Leu 860	Cys	Ser	Tyr	Gln
His 865		Phe	Gln	Leu	Gln 870	Met	Arg	Ala	Arg	Gln 875	Ser	Asn	Gln	qsA	Ala 880
Gln	Asp	Ile	Glu	Arg 885	Ala	Ser	Phe	Arg	Ser 890	Leu	Asn	Leu	. Gln	895	Glu
Ser	Val	Arg	Gly 900	Phe	Asn	Met	Gly	Arg 905	Ala	Ile	Ser	Thr	Gly 910	Ser	Leu
Ala	Ser	Ser 915		Leu	Asn	Lys	Leu 920		Val	Arg	Pro	Leu 925	Ser	Val	Gln
Ala	Glu 930		Leu	Lys	Arg	Leu 935		Cys	Ser	Glu	940	Ser	Leu	ı Tyr	Gln
Pro 945		. Gln	. Asn	Ser	Ser 950		Glu	Lys	Asn	955	Lys	. Ala	a Ser	Tr	960
Glu	Lys	Pro) Arg	Glu 965		Ser	Lys	Ser	Tyr 970	His	a Asg	Let	ı Ser	r Glr 975	n Ala
Ser	Leu	Tyr	Pro		arg	Lys	Asn	Val	. Ile	ya]	l Ası	n Mei	Gl (99)	i Pro	Pro

- Pro Gln Thr Val Ala Glu Leu Val Gly Lys Pro Ser His Gln Met Ser 995 1000 1005
- Arg Ser Asp Ala Glu Ser Leu Ala Gly Val Thr Lys Leu Asn Asn Ser 1010 1015 1020
- Lys Ser Val Ala Ser Leu Asn Arg Ser Pro Glu Arg Arg Lys His Glu 1025 1030 1035 1040
- Ser Asp Ser Ser Ser Ile Glu Asp Pro Gly Gln Ala Tyr Val Leu Asp 1045 1050 1055
- Val Leu His Lys Arg Trp Ser Ile Val Ser Ser Pro Glu Arg Glu Ile 1060 1065 1070
- Thr Leu Val Asn Leu Lys Lys Asp Ala Lys Tyr Gly Leu Gly Phe Gln 1075 1080 1085
- Ile Ile Gly Gly Glu Lys Met Gly Arg Leu Asp Leu Gly Ile Phe Ile 1090 1095 1100
- Ser Ser Val Ala Pro Gly Gly Pro Ala Asp Phe His Gly Cys Leu Lys 1105 1110 1115 1120
- Pro Gly Asp Arg Leu Ile Ser Val Asn Ser Val Ser Leu Glu Gly Val 1125 1130 1135
- -Ser His His Ala Ala Ile Glu Ile Leu Gln Asn Ala Pro Glu Asp Val
- Thr Leu Val Ile Ser Gln Pro Lys Glu Lys Ile Ser Lys Val Pro Ser 1155 1160 1165
- Thr Pro Val His Leu Thr Asn Glu Met Lys Asn Tyr Met Lys Lys Ser 1170 1175 1180
- Ser Tyr Met Gln Asp Ser Ala Ile Asp Ser Ser Ser Lys Asp His His 1185 1190 1195 1200
- Trp Ser Arg Gly Thr Leu Arg His Ile Ser Glu Asn Ser Phe Gly Pro 1205 1210 1215
- Ser Gly Gly Leu Arg Glu Gly Ser Leu Ser Ser Gln Asp Ser Arg Thr 1220 1225 1230
- -Glu Ser Ala Ser Leu Ser Gln Ser Gln Val Asn Gly Phe Phe Ala Ser 1235 1240 1245
- His Leu Gly Asp Gln Thr Trp Gln Glu Ser Gln His Gly Ser Pro Ser 1250 1255 1260
- Pro Ser Val Ile Ser Lys Ala Thr Glu Lys Glu Thr Phe Thr Asp Ser 1265 1270 1275 1280

-73-

Asn	Gln	Ser	Lys	Thr 1285		Lys	Pro	Gly	Ile 1290		Asp	Val	Thr	Asp 1295	
Ser	Asp	Arg	Gly 1300		Ser	Asp	Met	Asp 1305		Ala	Thr	Tyr	Ser 1310		Ser
Gln	Asp	His 1315		Thr	Pro	Lys	Gln 1320		Ser	Ser	Ser	Ser 1325		Asn	Thr
Ser	Asn 1330	_	Met	Asn	Phe	Lys 1335		Phe	Ser	Ser	Ser 1340	Pro	Pro	Lys	Pro
Gly 1345	_	Ile	Phe		Val 1350		Leu	Ala	Lys	Asn 1355		Asn	Ser	Leu	Gly 1360
Ile	Ser	Val	Thr	Gly 1365	_	Val	Asn	Thr	Ser 1370		Arg	His	Gly	Gly 1375	
Tyr	Val	Lys	Ala 1380		Ile	Pro	Gln	Gly 1385		Ala	Glu	Ser	Asp 1390		Arg
Ile	His	Lys 1395	-	Asp	Arg	Val	Leu 1400		Val	Asn	Gly	Val 1405		Leu	Glu
Gly	Ala 1410		His	Lys	Gln	Ala 1415		Glu	Thr	Leu	Arg 1420	Asn)	Thr	Gly	Gln
Val 1425		His	Leu	Leu	Leu 1430		Lys	Gly	Gln	Ser 1435		Thr	Ser	Lys	Glu 1440
His	Val	Pro	Val	Thr 1445		Gln	Cys	Thr	Leu 1450		Asp	Gln	Asn	Ala 1455	
Gly	Gln	Gly	Pro 1460		Lys	Val	Lys	Lys 146		Thr	Gln	Val	Lys 1470		Tyr
Ser	Phe	Val 1475		Glu	Glu	Asn	Thr 148		Glu	Val	Lys	Leu 148		Lys	Asn
Ser	Ser 1490		Leu	Gly	Phe	Ser 149		Ser	Arg	Glu	Asp 150	Asn	Leu	Ile	Pro
Glu 150		Ile	Àsn	Ala	Ser 151		Val	Arg	Val	Lys 151		Leu	Phe	Ala	Gly 1520
Gln	Pro	Ala	Ala	Glu 152		Gly	Lys	Ile	Asp 153		Gly	Asp	Val	Ile 153	
Lys	Val	Asn	Gly 154		Ser	Leu	Lys	Gly 154		Ser	Gln	Gln	Glu 155		Ile
Ser	Ala	Leu	Arg	Gly	Thr	Ala	Pro	Glu	Val	Phe	Leu	Leu	Leu	Cys	Arg

1555 1560 1565

- Pro Pro Pro Gly Val Leu Pro Glu Ile Asp Thr Ala Leu Leu Thr Pro 1575
- Leu Gln Ser Pro Ala Gln Val Leu Pro Asn Ser Ser Lys Asp Ser Ser 1590 1595
- Gln Pro Ser Cys Val Glu Gln Ser Thr Ser Ser Asp Glu Asn Glu Met 1610 1605
- Ser Asp Lys Ser Lys Lys Gln Cys Lys Ser Pro Ser Arg Arg Asp Ser 1620 1625 1630
- Tyr Ser Asp Ser Ser Gly Ser Gly Glu Asp Asp Leu Val Thr Ala Pro 1640
- Ala Asn Ile Ser Asn Ser Thr Trp Ser Ser Ala Leu His Gln Thr Leu 1655
- Ser Asn Met Val Ser Gln Ala Gln Ser His His Glu Ala Pro Lys Ser 1670 1675
- Gln Glu Asp Thr Ile Cys Thr Met Phe Tyr Tyr Pro Gln Lys Ile Pro 1690 1685
- Asn Lys Pro Glu Phe Glu Asp Ser Asn Pro Ser Pro Leu Pro Pro Asp 1705
- Met Ala Pro Gly Gln Ser Tyr Gln Pro Gln Ser Glu Ser Ala Ser Ser 1720 1715
- Ser Ser Met Asp Lys Tyr His Ile His His Ile Ser Glu Pro Thr Arg 1735 1740
- Gln Glu Asn Trp Thr Pro Leu Lys Asn Asp Leu Glu Asn His Leu Glu 1750
- Asp Phe Glu Leu Glu Val Glu Leu Leu Ile Thr Leu Ile Lys Ser Glu 1**7**70
- Lys Ala Ser Leu Gly Phe Thr Val Thr Lys Gly Asn Gln Arg Ile Gly 1785 1780
- Cys Tyr Val His Asp Val Ile Gln Asp Pro Ala Lys Ser Asp Gly Arg 1800
- Leu Lys Pro Gly Asp Arg Leu Ile Lys Val Asn Asp Thr Asp Val Thr 1810
- Asn Met Thr His Thr Asp Ala Val Asn Leu Leu Arg Ala Ala Ser Lys 1835 1830
- Thr Val Arg Leu Val Ile Gly Arg Val Leu Glu Leu Pro Arg Ile Pro 1845 1850

- Met Leu Pro His Leu Leu Pro Asp Ile Thr Leu Thr Cys Asn Lys Glu 1860 1865 1870
- Glu Leu Gly Phe Ser Leu Cys Gly Gly His Asp Ser Leu Tyr Gln Val 1875 1880 1885
- Val Tyr Ile Ser Asp Ile Asn Pro Arg Ser Val Ala Ala Ile Glu Gly 1890 1895 1900
- Asn Leu Gln Leu Leu Asp Val Ile His Tyr Val Asn Gly Val Ser Thr 1905 1910 1915 1920
- Gln Gly Met Thr Leu Glu Glu Val Asn Arg Ala Leu Asp Met Ser Leu 1925 1930 1935
- Pro Ser Leu Val Leu Lys Ala Thr Arg Asn Asp Leu Pro Val Val Pro 1940 1945 1950
- Ser Ser Lys Arg Ser Ala Val Ser Ala Pro Lys Ser Thr Lys Gly Asn 1955 1960 1965
- Gly Ser Tyr Ser Val Gly Ser Cys Ser Gln Pro Ala Leu Thr Pro Asn 1970 1975 1980
- Asp Ser Phe Ser Thr Val Ala Gly Glu Glu Ile Asn Glu Ile Ser Tyr 1985 1990 1995 2000
- Pro Lys Gly Lys Cys Ser Thr Tyr Gln Ile Lys Gly Ser Pro Asn Leu 2005 2010 2015
- Thr Leu Pro Lys Glu Ser Tyr Ile Gln Glu Asp Asp Ile Tyr Asp Asp 2020 2025 2030
- Ser Gln Glu Ala Glu Val Ile Gln Ser Leu Leu Asp Val Val Asp Glu 2035 2040 2045
- Glu Ala Gln Asn Leu Leu Asn Glu Asn Asn Ala Ala Gly Tyr Ser Cys 2050 2055 2060
- Gly Pro Gly Thr Leu Lys Met Asn Gly Lys Leu Ser Glu Glu Arg Thr 2065 2070 2075 2080
- Glu Asp Thr Asp Cys Asp Gly Ser Pro Leu Pro Glu Tyr Phe Thr Glu 2085 2090 2095
- Ala Thr Lys Met Asn Gly Cys Glu Glu Tyr Cys Glu Glu Lys Val Lys 2100 2105 2110
- Ser Glu Ser Leu Ile Gln Lys Pro Gln Glu Lys Lys Thr Asp Asp Asp 2115 2120 2125
- Glu Ile Thr Trp Gly Asn Asp Glu Leu Pro Ile Glu Arg Thr Asn His 2130 2135 2140

Glu 2145	Asp	Ser	Asp		Asp 1 2150	His	Ser	Phe	Leu	Thr 2155	Asn	Asp	Glu	Leu .	Ala 2160
Val	Leu	Pro		Val 2165		Val	Leu	Pro	Ser 2170	Gly	Lys	Tyr	Thr	Gly 2 175	Ala
Asn	Leu	Lys	Ser 2180		Ile	Arg	Val	Leu 2185	Arg	Gly	Leu	Leu	Asp 2190	Gln	Gly
Ile	Pro	Ser 2195		Glu	Leu	Glu	Asn 2200	Leu	Gln	Glu	Leu	Lys 2205	Pro	Leu	Asp
	Cys 2210		Ile	Gly	Gln	Thr 2215	Lys	Glu	Asn	Arg	Arg 2220	Lys)	Asn	Arg	Tyr
Lys 2225		Ile	Leu	Pro	Tyr 2230		Ala	Thr	Arg	Val 2235	Pro	Leu	Gly	qsA	Glu 2240
Gly	Gly	Tyr	Ile	Asn 2245		Ser	Phe	Ile	Lys 2250	Ile)	Pro	Val	Gly	Lys 2255	Glu
Glu	Phe	Val	Tyr 2260		Ala	Cys	Gln	Gly 2265	Pro	Leu	Pro	Thr	Thr 2270	Val	Gly
Asp	Phe	Trp 227		Met	Ile	Trp	Glu 228	Gln O	Lys	Ser	Thr	Val 228	Ile 5	Ala	Met
Met	Thr 229		Glu	Val	Glu	Gly 229	Glu 5	Lys	Ile	Lys	Cys 230	Gln O	Arg	Tyr	Trp
Pro 2305		Ile	Leu	Gly	Lys 2310		Thr	Met	Val	Ser 231	Asn 5	Arg	Leu	Arg	Leu 2320
Ala	Leu	Val	Arg	Met 232		Gln	Leu	Lys	Gly 233	Phe 0	Val	Val	Arg	Ala 233	Met 5
Thr	Leu	Glu	Asp 234		Gln	Thr	Àrg	Glu 234	Val 5	Arg	His	Ile	Ser 235	His O	Leu
Asn	Phe	Thr 235		Trp	Pro	Asp	His 236	Asp 0	Thr	Pro	Ser	Gln 236	Pro 5	Asp	Asp
Leu	Leu 237		Phe	Ile	Ser	Tyr 237	Met 5	Arg	His	Ile	His 238	Arg O	Ser	Gly	Pro
Ile 238		Thr	His	Cys	Ser 239	Ala O	Gly	Ile	Gly	239	Ser 5	Gly	Thr	Leu	Ile 240
Cys	Ile	Asp	Val	. Val 240		Gly	, Leu	ı Ile	Ser 241	Gln .0	Asp	Leu	ı Asp	Phe 241	Asp 5
Ile	Ser	Asp	Leu		. Arg	Cys	Met	Arg	Lev	Gln	Arç	His	Gly 243	Met	Val

~77-

Gln Thr Glu Asp Gln Tyr Ile Phe Cys Tyr Gln Val Ile Leu Tyr Val 2435 2440 2445

Leu Thr Arg Leu Gln Ala Glu Glu Glu Gln Lys Gln Gln Pro Gln Leu 2450 2455 2460

Leu Lys 2465

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3090 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1311..2420

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCCGGA	TTTACCTCAG	TCTGTATCCC	TTGAATAGCT	CACAATAATC	GACACATGCA	60
GCTGGGGACT	GTGGGTGGGA	TACTTAGGTG	TGGGACACCA	TATCTTCCAG	CAGTAATAAA	120
GAAGTCAGGT	GGGAATATGT	AACATCTTGA	GTGCTCATCC	AGGTAGGTAC	TAAGGTATGA	180
TCAACTCTAT	GGAAGATCGA	TTAGGAAACT	CCCTGAAAGA	GAGTTCAGCC	TGAAGAGAGA	240
ACCAAAGGCC	AACATCTTGG	AGCTGGCTAC	AGGACAGTAG	GATGTAAGCT	CGAGGGGAGG	300
AGAGGGTTAG	GCGCAGTGGC	TCACGCCTGT	AGTCCCAACC	ATTTGGGAGG	CTGAGGCAGG	360
CAGATCGCTT	GAGCCCGGGG	GTTCAAGACC	AGCCTGGGCA	ACATGGCGAA	ACCCCATCTC	420
TACAAAAAA	ТАСААААААА	ATGTAGCTGC	GTGTGGTGGC	ATGCACCTGT	AGTCACAGCC	480
ACCACAGAGG	TTGAGGTGGG	AGGACTGCTT	GAGCCTGGGA	GGTGGAGGCT	GCAGCGAACC	540

	600
CTGTCTCATT CATTCATTCA TAAATAAGAA GAGGGGGAAA ACGGGTGCCC AGATTGCTCT	660
CAGGCTCCTC CTCCCTTTCA GCTGGTACTT AACCACTCTT AACTTCAGCC TGCTCATGAA	720
TGAAATGGGA ATGACAATTC CTAACTCAGG CAGTTTTTGC AAAGACCAGA GAAAATCATG	780
TATTAATACT AGTACCCAGC ACCATTCCAA ACATACAATA CAAATGCCCC ATAAATGACA	840
GCCAAGGTAA CTGTTCTTTG CTTCCTCTCT TAGGAGACGT GTGAGGTTCT CTGTTGCTCC	900
TTTTGACTCC CAACTCCTGC TACAATGACT GATTTGACAC TGATTACCTC ACAGTACACA	960
CTGGGTGCTG GCCAACTGCA GCATGCTACG TATCCCACAC CCCCTCCCTG AGTGGTGGGA	1020
CATTANTGGT GGGATGGTAG AATGTGCAGT CCGGTCTTGT ACATTGAGTG TTAAACCTAC	1080
AATGTTTTGG ATGATAGAAG GGACATTCCA TCTTCTTACA AGCAGGGAAG TAACGGCAGA	1140
GCTGACTACT GGAAGGTGGT GCTGGTGGTG CAACAGGTTC TGGAGTTAAA ACCAATGGAA	1200
AAGAAAGATT TCAGCTTTCC TTAAGACAAG ACAAAGAGAA AAACCAGGAG ATCCACCTAT	1260
CGCCCATCAC ATTACAGCCA GCACTGTCCG AGGCAAAGAC AGTCCACAGC ATG GTC Met Val 1	1316
CAA CCT GAG CAG GCC CCA AAG GTA CTG AAT GTT GTC GTG GAC CCT CAA Gln Pro Glu Gln Ala Pro Lys Val Leu Asn Val Val Asp Pro Gln 5	1364
Gln Pro Glu Gln Ala Pro Lys Val Leu Asn Val Val Val Asp Pro Gln	1364
Gln Pro Glu Gln Ala Pro Lys Val Leu Asn Val Val Val Asp Pro Gln 5 10 15 GGC CGA GGT GCT CCT GAG ATC AAA GCT ACC ACC GCT ACC TCT GTT TGC Gly Arg Gly Ala Pro Glu Ile Lys Ala Thr Thr Ala Thr Ser Val Cys	
Gln Pro Glu Gln Ala Pro Lys Val Leu Asn Val Val Val Asp Pro Gln 5 10 15 GGC CGA GGT GCT CCT GAG ATC AAA GCT ACC ACC GCT ACC TCT GTT TGC Gly Arg Gly Ala Pro Glu Ile Lys Ala Thr Thr Ala Thr Ser Val Cys 20 25 30 CCT TCT CCT TTC AAA ATG AAG CCC ATA GGA CTT CAA GAG AGA AGA GGG Pro Ser Pro Phe Lys Met Lys Pro Ile Gly Leu Gln Glu Arg Arg Gly	1412
Gln Pro Glu Gln Ala Pro Lys Val Leu Asn Val Val Val Asp Pro Gln 5	1412

-79-

		_					CCA Pro	1	1652
							ACT Thr	3	1700
							TGT Cys 145]	1748
							GCT Ala	1	1796
							ACG Thr]	1844
							TGG Trp	1	1892
							AAA Lys	1	1940
							GGA Gly 225	3	1988
							ACC Thr	2	2036
							AGC Ser	2	2084
-							GCC Ala	2	2132
							GCT Ala	í	2180
							GGT Gly 305	7	2228

- 80 -

ACA Thr	GGG Glv	TGT Cys	TTT Phe	ATT Ile	GCT Ala	ACA Thr	TCC Ser	ATT Ile	GGC Gly	TGT	CAA Gln	CAG Gln	CTG Leu	AAA Lys	GAA Glu	2276
		•	310					315					320			
GAA	GGA	GTT	GTG	GAT	GCA	CTA	AGC	ATT	GTC	TGC	CAG	CTT	CGT	ATG	GAT	2324
Glu	Gly	Val 325	Val	Asp	Ala	Leu	Ser 330	Ile	Val	Cys	Gln	Leu 335	Arg	Met	Asp	
AGA	GGT	GGA	ATG	GTG	CAA	ACC	AGT	GAG	CAG	TAT	GAA	TTT	GTG	CAC	CAT	2372
Arg	Gly 340	Gly	Met	Val	Gln	Thr 345	Ser	Glu	Gln	Tyr	Glu 350	Phe	Val	His	His	
2427	,														TGAGTC	ATTG
Ala 355	Leu	Cys	Leu	Tyr	Glu 360	Ser	Arg	Leu	Ser	Ala 365	Glu	Thr	Val	Gln	370	
AAG	ACTTO	STC .	AGACO	CATC	AA T	CTCT	rggg	G TG	ATTA	ACAA	ATT	ACCC.	ACC (CAAG	GCTTCA	2487
TGA	AGGA	GCT '	TCCT	GCAA:	IG G	AAGG.	AAGG/	A GAZ	AGÇT	ETGA	AGC	CCAT	GTA '	rggc/	ATGGAT	2547
															CATTTG	2607
															TTATCA	2667
															ATGTAT	
GTA:	TGTA	ATA	TTCA	GTAA'	TA A	ATGT	CATC	A GG	IGAT(GACT	GGA'	TGAG	CTG	CTGA	AGACAT	2787
TCG	TATT	ATG	TGTT	AGAT	GC T	TAA	TGTT	r GC.	AAAA'	TCTG	TCT.	TGTG	TAA	GGAC	TGTCAG	2847
CTG'	TTAA	ACT	GTTC	CTGT	TT T	GAAG	TGCT	A TT.	ACCT	TTCT	CAG'	TTAC	CAG	AATC'	TTGCTG	2907
CTA	AAGT	rgc	AAGT	GATT	GA T	AATG	GATT'	T TT.	AACA	GAGA	AGT	CTTT	GTT	TTTG.	AAAAAC	2 967
AAA.	AATC	AAA	AACA	GTAA	CT A	TTTT	TATA	G GA	AATG'	TGTC	TTG	ATAA	TAT	TACC	TATTAA	3027
atg'	TGTA'	TTT	ATAG'	TCCC.	TC C	TATC	AAAC.	A AT	TACA	GAGC	ACA	ATGA	TTG	TCAT	CCGGAA	3087
TTC																3090

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

-81-

iet 1	Val	Gln	Pro	Glu 5	Gln	Ala	Pro	Lys	Val 10	Leu	Asn	Val	Val	Val 15	Asp
Pro	Gln	Gly	Arg 20	Gly	Ala	Pro	Glu	Ile 25	Lys	Ala	Thr	Thr	Ala 30	Thr	Ser
/al	Cys	Pro 35	Ser	Pro	Phe	Lys	Met 40	Lys	Pro	Ile	Gly	Leu 45	Gln	Glu	Arg
Arg	Gly 50	Ser	Asn	Val	Ser	Leu 55	Thr	Leu	Asp	Met	Ser 60	Ser	Leu	Gly	Asn
Ile 65	Glu	Pro	Phe	Val	Ser 70	Ile	Pro	Thr	Pro	Arg 75	Glu	Lys	Val	Ala	Met 80
Glu	Tyr	Leu	Gln	Ser 85	Ala	Ser	Arg	Ile	Leu 90	Asp	Lys	Val	Gln	Leu 95	Arg
Asp	Val	Val	Ala 100	Ser	Ser	His	Leu	Leu 105	Gln	Ser	Glu	Phe	Met 110	Glu	Ile
Pro	Met	Asn 115	Phe	Val	Asp	Pro	Lys 120	Glu	Ile	Asp	Ile	Pro 125	Arg	His	Gly
Thr	Lys 130	Asn	Arg	Tyr	Lys	Thr 135		Leu	Pro	Asn	Pro 140	Leu	Ser	Arg	Val
Cys 145	Leu	Arg	Pro	Lys	Asn 150	Val	Thr	Asp	Ser	Leu 155	Ser	Thr	Tyr	Ile	Asn 160
Ala	Asn	Tyr	Ile	Arg 165		Tyr	Ser	Gly	Lys 170	Glu	Lys	Ala	Phe	Ile 175	Ala
Thr	Gln	Gly	Pro		Ile	Asn	Thr	Val 185	Asp	Asp	Phe	Trp	Gln 190	Met	Val
Trp	Gln	. Glu 195		Ser	Pro	Val	Ile 200	Val	Met	Ile	Thr	Lys 205	Leu	Lys	Glu
Lys	Asn 210		ı Lys	Cys	. Val	Leu 215	ı Tyr	Trp	Pro	Glu	Lys 220	arç	, Gly	Ile	Туг
Gly 225		; Val	Glu	ı Val	. Leu 230	ı Val	l Ile	Ser	· Val	L Asr 235	ı Glu	ı Cys	; Asp) Asr	240
Thr	Ile	e Arq	g Asi	n Let 245		l Lei	ı Lys	Glr	250	y Sei	r His	s Thi	r Glr	1 His	Va.
Ser	: Asi	ту:	7 Tr		r Thi	s Set	r Trp	265	ası S	p His	s Ly:	s Th	270	As;	Se
λla	a Gli	n Pro		u Lei	u Gli	n Le	u Met 280	Le:	ı Ası	p Va	1 Gl	u Gl: 28	u Asj 5) Ar	g Le

-82-

Ala	Ser 290	Gln	Gly	Pro	Arg	Ala 295	Val	Val	Val	His	Cys 300	Ser	Ala	Gly	Ile
Gly 305	Arg	Thr	Gly	Cys	Phe 310	Ile	λla	Thr	Ser	Ile 315		Cys	Gln	Gln	Leu 320
Lys	Glu	Glu	Gly		Val		Ala	Leu	Ser 330		Val	Cys	Gln	Leu 335	Arg
Met	Asp	Arg	_	Gly		Val	Gln	Thr 345	Ser	Glu	Gln	Tyr	Glu 350	Phe	Val
His	His	Ala 355		Cys	Leu	Tyr	Glu 360	Ser	Arg	Leu	Ser	Ala 365	Glu	Thr	Val

Gln

-83-

CLAIMS

- 1. An isolated nucleic acid comprising a nucleotide sequence encoding at least a fragment of a PTPL1 protein tyrosine phosphatase.
- 2. An isolated nucleic acid as in claim 1 wherein said PTPL1 comprises at least a fragment of SEQ ID NO.:2.
- 3. An isolated nucleic acid as in claim 1 wherein said nucleotide sequence comprises at least a fragment of SEQ ID NO.:1.
- 4. An isolated nucleic acid as in any one of claims 1-3 wherein said nucleotide sequence is operably joined to regulatory sequences such that mRNA encoding at least a fragment of a PTPL1 protein tyrosine phosphatase may be expressed.
- 5. An isolated nucleic acid as in any one of claims 1-3 wherein said nucleotide is operably joined to regulatory sequences such that RNA which is anti-sense to mRNA encoding at least a fragment of a PTPL1 protein tyrosine phosphatase is expressed.
- 6. A transgenic host into which has been introduced the isolated nucleic acid of any of of claims 1-5.
- 7. A transgenic host as in claim 6 wherein said host is chosen from the group consisting of $\underline{E.\ coli}$, yeast, COS cells. fibroblasts, cocytes, and embryonic stem cells.
- 8. A substantially pure protein comprising at least a fragment of a PTPL1 protein tyrosine phosphatase.

- 9. A substantially pure protein as in claim 8 wherein said PTPL1 is at least a fragment of SEQ ID NO.:2.
- 10. A substantially pure antibody capable of selectively binding at least a fragment of a PTPL1 protein tyrosine phosphatase.
- 11. An antibody as in claim 10 wherein said PTPL1 is at least a fragment of SEQ ID NO.:2.
- 12. A method of detecting compounds capable of altering expression or activity of a PTPL1 comprising the steps of
- (a) introducing within a cell a nucleic acid encoding a PTPL1 protein tyrosine phosphatase;
- (b) growing said cell or a descendant of said cell for a period of time and under conditions which allow for expression of said receptor;
- (c) contacting said cell or said descendant of said cell with a test compound;
- (d) performing an assay on said cell or said descendant of said cell for an indication of activity of said PTPL1.
- 13. A method as in claim 12 further comprising the step of performing an assay on said cell or said descendant of said cell for an indication of activity of said PTPL1 prior to contacting said cell or said descendant of said cell with said test compound.
- 14. An isolated nucleic acid comprising a nucleotide sequence encoding at least a fragment of a GLM-2 protein tyrosine phosphatase.
- 15 An isolated nucleic acid as in claim 14 wherein said GLM-2 comprises at least a fragment of SEQ ID NO.:2.

- 16. An isolated nucleic acid as in claim 14 wherein said nucleotide sequence comprises at least a fragment of SEQ ID NO.:1.
- 17. An isolated nucleic acid as in any one of claims 14-16 wherein said nucleotide sequence is operably joined to regulatory sequences such that mRNA encoding at least a fragment of a GLM-2 protein tyrosine phosphatase may be expressed.
- 18. An isolated nucleic acid as in any one of claims 14-16 wherein said nucleotide is operably joined to regulatory sequences such that RNA which is anti-sense to mRNA encoding at least a fragment of a GLM-2 protein tyrosine phosphatase is expressed.
- 19. A transgenic host into which has been introduced the isolated nucleic acid of any of of claims 14-18.
- 20. A transgenic host as in claim 19 wherein said host is chosen from the group consisting of $\underline{E.\ coli}$, yeast, COS cells, fibroblasts, oocytes, and embryonic stem cells.
- 21. A substantially pure protein comprising at least a fragment of a GLM-2 protein tyrosine phosphatase.
- 22. A substantially pure protein as in claim 21 wherein said GLM-2 is at least a fragment of SEQ ID NO.:2.
- 23. A substantially pure antibody capable of selectively binding at least a fragment of a GLM-2 protein tyrosine phosphatase.
- 24 An antibody as in claim 23 wherein said GLM-2 is at least a fragment of SEQ ID NO.:2.

- 25. A method of detecting compounds capable of altering expression or activity of a GLM-2 comprising the steps of
- (a) introducing within a cell a nucleic acid encoding a GLM-2 protein tyrosine phosphatase;
- (b) growing said cell or a descendant of said cell for a period of time and under conditions which allow for expression of said receptor;
- (c) contacting said cell or said descendant of said cell with a test compound;
- (d) performing an assay on said cell or said descendant of said cell for an indication of activity of said GLM-2.
- 26. A method as in claim 25 further comprising the step of performing an assay on said cell or said descendant of said cell for an indication of activity of said GLM-2 prior to contacting said cell or said descendant of said cell with said test compound.

RKVNIJMLLNGORLELTCDTKMICKDVFDMVVAHIGLVEHHLFALATLKDNEYFINVRYTIGLOREHHLFALATLKDNEYFINVRYTAGKOLFDOVVKTIGLREVWYFGLHYVDNK MHCKVSLLDDTVYECVVEKHAKGODLLKRVCEHLNLLEEDYFGLAIWDNA VVCNILLLDNTVQAFKVNKHDQGQVLLDVVFKHLDLTEQDYFGLQLADDS	PTPL1 Ezrin Band 4.1 PTPase MEG PTPH1
F V D P D L K L T K V A P E G W K E E P K K K T K A T V N F T L F F R I K F F M D D V S L - I Q H	PTPL1 Ezrin Band 4.1 PTPase MEG
TLTCHQYYLQLRKDILEERMHCDDETSLLLASLALQAEYGDYQPEVHGVSYFR DITQKLFFLQVKEGILSDEIYCPPETAVLLGSYAVQAKFGDYNKEVHKSGYLS DITRYYLCLQLRQDIVAGRLPCSFATLALLGSYTIQSELGDYDPELHGVDYVS EYRRYQYFLQIKQDILTGRLPCPSNTAALLASFAVQSELGDYDQSENLSGYLS	PTPL1 Ezrin Band 4.1 PTPase MEG

FIG.

SUBSTITUTE SHEET (RULE 26)

PTPase MEG

PTPH1

Ezrin Band 4.1

PTPL1	PTPL1
Ezrin	Ezrin
Band 4.1	BAND 4.1
PTPase MEG	PTPase MEG
MEHYLPARVME KLDLSYIKEELPKLHNTYVGASEKETELEFLKVCORLTEYSERLIPQRVMDQHKLTRDQWEDRIQVWHAEHRGMLKDNAMLEYLKIAQDLEMYDFKLAPNOR SERLIPQOTKELEEKVMELHKSYRSMTPAQADLEFLENAKKLSMYDYSFIPNQPQDFEKEIAKLHQQHIGLSPAEAEFNYLNTARTLELYDSHFIPDQNEDFLTKVESLHEQHSGLKQSEAESCYINIARTLDFY	GVHFHRVHPEKKSQTGILLGVCSKGVLVFEVHNGVRTLVLRFPWRETKKISFSGINYFEIKNKKGTDLWLGVDALGLNIYEKDDKLTPKI-GFPWSEIRNISFNGVLLKINKFPWPKVLKISFNGVDLHKAKFPWPKVLKISFNGVDLHKAKFPWPKVLKISFNGVEFHYAR

KKKITLQNTSDGIKH----GFQTDNSKICQYLLHLCSYQHKFQLQMR---AR DKKFVIKP----IDKKAPDFVFYAPRLRINKRILQLCMGNHELYMRRKEDTI RSSFFIKIRPGEQEQYESTIGFKLDSYRAAKKLWKVCVEHHTFF-RLTSTDTI CKQFFIQLRKELHESRETLLGFNMVNYRACKNLWKACVEHHTFF-RLDRPLPP RKKFFIHQRQKQAESREHIVAFNMLNYRSCKNLWKSCVEHHTFF-QAKKLLPQ Fig. 1 cont.

PTPL1	1	DAKYGLGFQIIGGEK	MGRLDLGIFISSVAPGGPADFH GCLKPGDRLISV	NSV	SLEGVSEHAAIEILQNAPEDVTLVI
	7	KNDNSLOISVTGGVN	TSVRHGGIYVKAVIPQGAAESD GRIHKGDRVLAV	NGV	SLEGATEKQAVETLRNTGQVVHLLL
	\sim	KNSSGLGFSFSREDNLI	KNSSGLGFSFSREDNLIPEQINASIVRVKKLFAGQPAAES GKIDVGDVILKV	NGA	SLKGLSQQEVISALRGTAPEVFLLL
	4	SEKASLGFTVTKGNQ	RIGCYVHDVI QDPAKSD GRLKPGDRLIKV	NDT	DVTNMTHTDAVNLLRAASKTVRLVI
	2	CNKBELGFSLCGGHD	SLYQVVIISDINPRSVAAIE GNLQLLDVIHYV	NGV	STQGMTLEEVNRALDMSLPSLVLKA
PTPH1		DEDGKPGFNLKGGVD	QKNPLVVSRINPSSPADTCIPKLNEGDQIVLI	NGR	DISEHTHDQVVMFIKASRESHSREL
PTPase MEG	ິວ	DENGRFGFNVKGGYD	QKMPVIVSRVAPQTPADLCVPRLNEGDQVVLI	NGR	DIAEHTHDQVVLFIKASCERHSGEL
dlg-A		RGNSGLGFSIAGGTDNPHI	HI GTDTSIYITKLISGGAAAAD GRLSINDIIVSV	NDV	SVVDVPHASAVDALKKAGNVVKLHV
1	2	KGGKGLGFSIAGGIGNQHI	HI PGDNGIYVTKLTDGGRAQVD GRLSIGDKLIAVRTNGSEKNLENVTHELAVATLKSITDKVTLII	TNGSE	KNLENVTHELAVATLKSITDKVTLI1
	~	KGPQGLGFNIVGGED	GQGIYVSFILAGGPADLG SELKRGDQLLSV	NNV	NLTHATHEEAAQALKTSGGVVTLLA
PSD-95	-	RGNSGLGFSIAGGTDNPHI	HI GDDPSIFITKIIPGGAAAQD GRLRVNDSILFV	NEV	DVREVTHSAAVEALKEAGSIVRLYV
	2	KGPKGLGFSIAGGVGNQHI	HI PGDNSIYVTKIIEGGAAHKD GRLQIGDKILAV	NSN	GLEDVMHEDAVAALKNTYDVVYLKV
	\sim	RGSTGLGFNIVGGED	GEGIFISFILAGGPADLS GELRKGDQILSV	NGV	DLRNASHEQAA I ALKNAGQTVT I I A
220-KD	—	HRAPGFGIAISGGKDNP	HRAPGFGIAISGGKDNPHFQSGETSIVISDVLKGGPAB GQLQENNRVAMV	NGV	SMDNVEHAFAVQQLRKSGKNAKITI
	2	RKNEEYGLRPASH	IFVKEISQDSLAARD GDIQEGDVVLKI	NGT	VTENMSLTDAKTLIERSKGKLKMVV
	~	RKGDSVGLRLAGGND	VGIFVAGVLEDSPAAKE G LEEGDQILRV	NNV	DFTN1IREEAVLFLLDLPKGEEVT1
p55		VTEEPMGITLKLNEK	QSCTVARILHGGMIHRQ GSLHVGDEILEI	NGT	NVTNHSVDQLQKAMKETKGMISLKV
NOS		RKVGGLGFLVKERVS	PKKVIISDLIRGGAAEQS GLIQAGDIILAV	NDR	PI,VDLSYDSALEVLRGIASETHVVL
0118 (ROS)		EDHEOLGISITGGLE	HGVPILISGIHPGQPADRC GGLHVGDAILAV	NGV	NERDTLHLGAVTILSQQRGEIEFEV

SUBSTITUTE SHEET (RULE 26)

FIG. 2

SUBSTITUTE SHEET (RULE 26)