# Variables Aléatoires / Loi binomiale

## T<sup>le</sup> STMG

## Table des matières

| 1 | Espé | érance d'une variable aléatoire                                                                                             | 2  |
|---|------|-----------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1  | Définition : Espérance mathématique d'une variable aléatoire                                                                | 2  |
|   | 1.2  | Méthode : Calculer l'espérance d'une variable aléatoire                                                                     |    |
| 2 | Sche | éma de Bernoulli, loi binomiale                                                                                             | 3  |
|   | 2.1  | Définition : Épreuve de Bernoulli                                                                                           | 3  |
|   | 2.2  | Définition : Schéma de Bernoulli                                                                                            | 3  |
|   | 2.3  | Définition : Loi binomiale                                                                                                  | 5  |
|   | 2.4  | Méthode : Calculer une probabilité avec une loi binomiale à l'aide d'un arbre                                               | 6  |
|   | 2.5  | Méthode : Calculer une probabilité avec une loi binomiale à l'aide de la calculatrice ou d'un                               |    |
|   |      | $tableur \dots \dots$ | 7  |
|   | 2.6  | Méthode : Établir une loi binomiale avec une calculatrice ou un tableur                                                     | 8  |
|   | 2.7  | Représentation graphique de la loi binomiale                                                                                | 9  |
|   | 2.8  | Propriété : Espérance de la loi binomiale                                                                                   | 9  |
|   | 2.9  | Méthode : Calculer l'espérance d'une loi binomiale                                                                          | 9  |
| 3 | Coe  | fficients binomiaux                                                                                                         | 10 |
|   | 3.1  | Définition : Coefficient binomial                                                                                           | 10 |
|   | 3.2  | Propriétés : Coefficients binomiaux remarquables                                                                            | 10 |
|   | 3.3  | Méthode : Déterminer un coefficient binomial à l'aide de la calculatrice ou d'un tableur                                    | 11 |
|   | 3.4  | Triangle de Pascal                                                                                                          | 12 |
|   | 3.5  | Propriété : Application à la loi binomiale                                                                                  | 13 |
|   | 3.6  | Méthode : Calculer les probabilités d'une loi binomiale                                                                     | 13 |

## 1 Espérance d'une variable aléatoire

#### 1.1 Définition : Espérance mathématique d'une variable aléatoire

L'espérance mathématique de X est :

$$E(X) = x_1 \times P(X = x_1) + x_2 \times P(X = x_2) + \dots + x_n \times P(X = x_n)$$
$$= \sum_{i=1}^{n} x_i \times P(X = x_i)$$

#### 1.2 Méthode : Calculer l'espérance d'une variable aléatoire

Soit l'expérience aléatoire : "On tire une carte dans un jeu de 32 cartes."

On considère le jeu suivant :

- Si on tire un **coeur**, on gagne 2€.
- Si on tire un **roi**, on gagne  $5 \in$ .
- Si on tire une autre carte, on perd 1€.

On appelle X la variable aléatoire qui à une carte tirée associe un gain ou une perte.

- a) Déterminer la loi de probabilité de X.
- b) Calculer l'espérance de X et interpréter le résultat.
- (a) La variable aléatoire X peut prendre les valeurs 2, 5, -1 mais aussi 7.

En effet, si on tire le **roi de coeur**, on gagne  $5(\text{roi}) + 2(\text{coeur}) = 7 \in$ .

- Si la carte tirée est un coeur (autre que le roi de coeur), X = 2  $\Rightarrow P(X = 2) = \frac{7}{32}$ .
- Si la carte tirée est un roi (autre que le roi de coeur), X = 5  $\Rightarrow P(X = 5) = \frac{3}{32}$ .
- Si la carte tirée est le roi de coeur, X = 7  $\Rightarrow P(X = 7) = \frac{1}{32}$ .
- Si la carte tirée n'est ni un coeur, ni un roi, X = -1  $\Rightarrow P(X = -1) = \frac{21}{32}$ .

La loi de probabilité de X est :

(b)

$$E(X) = (-1) \times \frac{21}{32} + 2 \times \frac{7}{32} + 5 \times \frac{3}{32} + 7 \times \frac{1}{32}$$
$$= \frac{15}{32}$$

L'espérance est la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois.

L'espérance est égale à  $\frac{15}{32} \approx 0,50$  signifie qu'en jouant un grand nombre de fois, on peut espérer gagner en moyenne environ  $0,50 \in$ .

2

## 2 Schéma de Bernoulli, loi binomiale

## 2.1 Définition : Épreuve de Bernoulli

Une **épreuve de Bernoulli** est une expérience aléatoire à deux issues que l'on peut nommer "succès" ou "échec".



#### **Exemples**

a) Le jeu du pile ou face : On considère comme succès "obtenir pile" et comme échec "obtenir face". La probabilité d'un succès est égale à  $p = \frac{1}{2}$ .



b) On lance un dé et on considère comme succès "obtenir un six" et comme échec "ne pas obtenir un six". La probabilité d'un succès est égale à  $p=\frac{1}{6}$ .

#### 2.2 Définition : Schéma de Bernoulli

Un schéma de Bernoulli est la répétition de n épreuves de Bernoulli identiques et indépendantes pour lesquelles la probabilité du succès est p.



## Exemple

La répétition de 4 lancers d'une pièce de monnaie est un schéma de Bernoulli de paramètres n=4 et  $p=\frac{1}{2}$ .



### Remarque

Si dans un schéma de Bernoulli, on répète la même expérience n fois, alors il est possible d'obtenir 0 succès, 1 succès, 2 succès,  $\dots$  ou n succès.

#### 2.3 Définition : Loi binomiale

On réalise un schéma de Bernoulli composé de n épreuves de Bernoulli identiques et indépendantes. Une **loi** binomiale est une loi de probabilité qui donne le nombre de succès de l'expérience.

#### Remarque

n et p sont les paramètres de la loi binomiale et on note  $X \leadsto \mathcal{B}(n;p)$ .

#### Exemple



On a représenté dans un arbre de probabilité les issues d'une expérience suivant un schéma de Bernoulli composé de 3 épreuves de Bernoulli de paramètre p.

X est la variable aléatoire qui donne le nombre de succès.

On a:

$$-P(X=3)=p^3.$$

En effet, en suivant les branches sur le haut de l'arbre, on arrive à 3 succès avec une probabilité de  $p \times p \times p = p^3$ .

- X=2 correspond aux suites d'issues suivantes :
  - (Succès ; Succès ; échec)
  - (Succès ; échec ; Succès)
  - (échec ; Succès ; Succès)

Donc 
$$P(X = 2) = 3 \times p^2 \times (1 - p)$$

En effet, les branches qui correspondent à 2 succès et 1 échec, donne une probabilité de  $p \times p \times (1-p) = p^2 \times (1-p)$ .

5

Il y a 3 branches de ce type, soit :  $3 \times p^2 \times (1-p)$ 

#### 2.4 Méthode : Calculer une probabilité avec une loi binomiale à l'aide d'un arbre

On tire trois fois de suite avec remise une carte parmi les 4 As. On considère comme succès l'événement "Obtenir l' **As de coeur**."

X est la variable aléatoire qui compte le nombre de succès.

- a) Calculer P(X=2). Interpréter le résultat.
- (a) La variable aléatoire X suit la loi binomiale de paramètres n=3 et  $p=\frac{1}{4}$ .

On représente dans un arbre de probabilité les issues de l'expérience composée de 3 tirages et à l'issue de chaque chemin, on comptabilise le nombre de succès.



On cherche à calculer P(X=2), on repère donc les chemins présentant deux succès  $\Rightarrow 3$  chemins.

Chacun de ces chemins correspond au calcul de probabilité :  $\frac{3}{4} \times \left(\frac{1}{4}\right)^2$ 

Et donc:

$$P(X = 2) = 3 \times \frac{3}{4} \times \left(\frac{1}{4}\right)^{2}$$
$$= 3 \times \frac{3}{4} \times \frac{1}{16}$$
$$= \frac{9}{64}$$

6

La probabilité d'obtenir deux fois la carte  $As\ de\ coeur$  sur 3 tirages est égale à  $\frac{9}{64}$ 

# 2.5 Méthode : Calculer une probabilité avec une loi binomiale à l'aide de la calculatrice ou d'un tableur

On lance 7 fois de suite un dé à 6 faces.

Soit X la variable aléatoire égale au nombre de fois que le dé affiche un nombre supérieur ou égal à 3.

- a) Quelle est la loi suivie par X?
- b) Calculer la probabilité P(X = 5).
- c) Calculer la probabilité  $P(X \le 5)$ .
- d) Calculer la probabilité  $P(X \ge 3)$ .
- (a) On répète 7 fois une expérience à deux issues :  $\{3; 4; 5; 6\}$  et  $\{1; 2\}$ .

Le succès est d'obtenir  $\{3; 4; 5; 6\}$ .

La **probabilité du succès** sur un tirage est égale à  $\frac{4}{6} = \frac{2}{3}$ .

X suit donc une loi binomiale de paramètres : n = 7 et  $p = \frac{2}{3}$ .  $X \rightsquigarrow \mathcal{B}\left(7; \frac{2}{3}\right)$ 

- (b) P(X = 5)
- [Avec Texas Instruments:]
  - 1. Touches 2nd et VAR puis choisir binomFdP (ou binompdf).
  - 2. Saisir les paramètres de l'énoncé : binomFdP(7,2/3,5)

- 3. ≝
- [Avec Casio :]
  - 1. Touche OPTN puis choisir STAT, DIST, BINM et Bpd.
  - Saisir les paramètres de l'énoncé : BinominalePD(5,7,2/3)
     BinomialPD(5,7,2÷3)
     0.3072702332
  - 3. **D**
- [Avec le tableur :]
  - 1. Saisir dans une cellule: =LOI.BINOMIALE(5;7;2/3;0)



On trouve  $P(X=5)\approx 0,31.$  La probabilité d'obtenir 5 fois un nombre supérieur ou égal à 3 est environ égale à 0,31.

- (c)  $P(X \le 5)$
- [Avec Texas Instruments:]
  - 1. Touches 2nd et VAR puis choisir binomFRép (ou binomcdf).
  - 2. Saisir les paramètres de l'énoncé : binomFRép(7,2/3,5)
  - binomcdf(7,2/3,5) 0.7366255144
- [Avec Casio :]
  - 1. Touche OPTN puis choisir STAT, DIST, BINM et Bcd

- 2. Saisir les paramètres de l'énoncé : BinominaleCD(5,7,2/3) BinomialCD(5,7,2÷3) 0.7366255144
- 3. □
- [Avec le tableur :]
  - 1. Saisir dans une cellule: =LOI.BINOMIALE(5;7;2/3;1)



On trouve  $P(X \le 5) \approx 0.74$ .

La probabilité d'obtenir au plus 5 fois un nombre supérieur ou égal à 3 est environ égale à 0,74.

(d) 
$$P(X \ge 3)$$

 $P(X \ge 3) = 1 - P(X \le 2) \approx 1 - 0,045$  (à l'aide de la calculatrice ou du tableur)  $P(X \ge 3) \approx 0,955$ .

#### 2.6 Méthode : Établir une loi binomiale avec une calculatrice ou un tableur

Soit X une variable aléatoire qui suit une loi binomiale de paramètre n=5 et p=0,4.

Représenter graphiquement la loi suivie par X par un diagramme en bâtons.

On commence par afficher le tableau de valeurs exprimant P(X = k) pour k entier,  $0 \le k \le 5$ .

- [Avec Texas Instruments:]
  - 1. Touche Y= et saisir comme dans le paragraphe précédent



- [Avec Casio :]
  - 1. Dans MENU, choisir TABLE et saisir comme dans le paragraphe précédent
- [Avec le tableur :]

3.

- 1. Saisir dans la cellule B1: =LOI.BINOMIALE(A1;5;0,4;0)
- 2. Copier cette formule vers le bas

|   | Α | В         | С            | [      |
|---|---|-----------|--------------|--------|
| 1 | 0 | =LOI.BING | OMIALE(A1;7; | 2/3;0) |
| 2 | 1 | 0,00640   |              |        |
| 3 | 2 | 0,03841   |              |        |
| 4 | 3 | 0,12803   |              |        |
| 5 | 4 | 0,25606   |              |        |
| 6 | 5 | 0,30727   |              |        |
| 7 | 6 | 0,20485   |              |        |
| 8 | 7 | 0,05853   |              |        |

#### 2.7 Représentation graphique de la loi binomiale

On peut, représenter une loi binomiale à l'aide d'un diagramme en bâtons. On représentera

- En abscisse, le nombre de succès k
- En ordonnée, P(X = K)

Voici la représentation de la loi binomiale  $\mathcal{B}\left(7,\frac{2}{3}\right)$ 



#### 2.8 Propriété : Espérance de la loi binomiale

Soit la variable aléatoire X qui suit la loi binomiale de paramètres n et p. On a :

$$E(X) = n \times p$$

#### Exemple

On lance 5 fois un dé à six faces.

On considère comme succès le fait d'obtenir 5 ou 6.

On considère la variable aléatoire X donnant le nombre de succès.

On a donc :  $p = \frac{2}{6} = \frac{1}{3}$  et n = 5.

Ainsi :  $E(X) = 5 \times \frac{1}{3} = \frac{5}{3} \approx 1,7$ 

On peut espérer obtenir environ 1,7 fois un 5 ou un 6, en 5 lancers.

#### 2.9 Méthode : Calculer l'espérance d'une loi binomiale

Un QCM comporte 8 questions. A chaque question, trois solutions sont proposées ; une seule est exacte. On répond au hasard à chaque question.

9

- a) Combien de bonnes réponses peut-on espérer obtenir ?
- (a) Soit X la variable aléatoire qui compte le nombre de bonnes réponses.

X suit une loi binomiale de paramètre n = 8 et  $p = \frac{1}{3}$ .

$$E(X) = 8 \times \frac{1}{3} = \frac{8}{3}$$

On peut espérer obtenir  $\frac{8}{3}$  bonnes réponses en répondant au hasard.

#### 3 Coefficients binomiaux

#### Exemple:



On a représenté dans un arbre de probabilité les issues d'une expérience suivant un schéma de Bernoulli composé de 3 épreuves de Bernoulli de paramètre p.

X est la variable aléatoire qui donne le nombre de succès.

Combien existe-t-il de chemins conduisant à 2 succès parmi 3 épreuves ?

On dit aussi : "Combien existe-t-il de combinaisons de 2 parmi 3 ?"

— (Succès ; Échec)

— (Succès ; Échec ; Succès)

— (Échec ; Succès ; Succès)

Il existe donc trois combinaisons de 2 parmi 3 et on note :  $\binom{3}{2} = 3$ .

#### 3.1 Définition : Coefficient binomial

On réalise une expérience suivant un schéma de Bernoulli de paramètre n et p.

On appelle **coefficient binomial** ou **combinaison de** k **parmi** n, noté  $\binom{n}{k}$ , le nombre de chemins conduisant à k succès parmi n épreuves sur l'arbre représentant l'expérience.

## 3.2 Propriétés : Coefficients binomiaux remarquables

(a) 
$$\binom{n}{0} = 1$$

 $\longrightarrow$  Il n'y a qu'un seul chemin correspondant à 0 succès parmi n épreuves : (Échec, Échec, ..., Échec)

10

(b) 
$$\binom{n}{n} = 1$$

 $\longrightarrow$  Il n'y a qu'un seul chemin correspondant à n succès parmi n épreuves : (Succès, Succès, ..., Succès)

(c) 
$$\binom{n}{1} = n$$

 $\longrightarrow$  Il n'y a n chemins correspondant à 1 succès parmi n épreuves :

- (Succès, Échec, Échec, ..., Échec)
- (Échec, Succès, Échec, ..., Échec)
- (Échec, Échec, Succès, ..., Échec)
- ...
- (Échec, Échec, Échec, ..., Succès)

#### 3.3 Méthode : Déterminer un coefficient binomial à l'aide de la calculatrice ou d'un tableur

Il est possible de vérifier les résultats à l'aide d'une calculatrice ou d'un tableur.

Pour calculer  $\binom{25}{20}$ , on saisie : 25 combinaison 20 ou 25 nCr 20 suivant le modèle de calculatrice.

- [Avec Texas Instruments :] Pour accéder à  ${\tt nCr}$ , il faut appuyer sur  ${\tt MATH} > {\tt Avec}$  un tableur, la fonction se nomme  ${\tt COMBIN}$ .
- [Avec Excel :] Pour calculer  $\binom{25}{20}$ , on saisie : =COMBIN(25;20)



#### 3.4 Triangle de Pascal

Le tableau ci-dessous permet de déterminer un coefficient binomial. Pour construire ce tableau, il faut remarquer que le nombre présent dans une case est égale à la somme de la case d'au-dessus et de la case d'au-dessus à gauche.

| $\overline{n\backslash k}$ | 0 | 1 | 2  | 3  | 4  | 5 | 6 |
|----------------------------|---|---|----|----|----|---|---|
| 0                          | 1 |   |    |    |    |   |   |
| 1                          | 1 | 1 |    |    |    |   |   |
| 2                          | 1 | 2 | 1  |    |    |   |   |
| 3                          | 1 | 3 | 3  | 1  |    |   |   |
| 4                          | 1 | 4 | 6  | 4  | 1  |   |   |
| 5                          | 1 | 5 | 10 | 10 | 5  | 1 |   |
| 6                          | 1 | 6 | 15 | 20 | 15 | 6 | 1 |
| 7                          | 1 |   |    |    |    |   |   |

#### Exemple:

On peut lire dans le tableau  $\binom{4}{2} = 6$ 

| $\overline{n\backslash k}$ | 0 | 1 | 2  | 3  | 4  | 5 | 6 |
|----------------------------|---|---|----|----|----|---|---|
| 0                          | 1 |   |    |    |    |   |   |
| 1                          | 1 | 1 |    |    |    |   |   |
| 2                          | 1 | 2 | 1  |    |    |   |   |
| 3                          | 1 | 3 | 3  | 1  |    |   |   |
| 4                          | 1 | 4 | 6  | 4  | 1  |   |   |
| 5                          | 1 | 5 | 10 | 10 | 5  | 1 |   |
| 6                          | 1 | 6 | 15 | 20 | 15 | 6 | 1 |
| 7                          | 1 |   |    |    |    |   |   |

En effet, 
$$\binom{4}{2} = \binom{3}{2} + \binom{3}{1} = 3 + 3 = 6$$

#### 3.4.1 Propriété : Coefficients du triangle de Pascal

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Démonstration pour n=5, k=3 :

$$\binom{5}{3} = \binom{4}{2} + \binom{4}{3}$$

Il y a deux **types de chemins** comportant 3 succès parmi 5 épreuves :

- Ceux qui commencent par un **succès** : il y en a 2 parmi 4, soit  $\binom{4}{2}$ .
  - En effet, dans l'arbre, il reste à dénombrer 2 succès parmi 4 expériences.

— Ceux qui commencent par un **échec** : il y en a 3 parmi 4, soit  $\binom{4}{3}$ .

— En effet, dans l'arbre, il reste à dénombrer 3 succès parmi 4 expériences.

Ces deux types de chemins sont disjoints, donc :  $\binom{5}{3} = \binom{4}{2} + \binom{4}{3}$ .

## 3.5 Propriété : Application à la loi binomiale

Soit une variable aléatoire X qui suit la loi binomiale  $\mathcal{B}(n;p)$ .

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

## 3.6 Méthode : Calculer les probabilités d'une loi binomiale

Une urne contient 5 boules gagnantes et 7 boules perdantes. Une expérience consiste à tirer au hasard 4 fois de suite une boule et de la remettre.

On appelle X la variable aléatoire qui associe le nombre de tirages gagnants.

- a) Prouver que X suit une loi binomiale.
- b) Calculer la probabilité d'obtenir 3 boules gagnantes.
- (a) On répète 4 fois une expérience à deux issues : boules gagnantes (5 issues) ; boules perdantes (7 issues).

Le succès est "obtenir une boule gagnante".

La **probabilité du succès** sur un tirage est égale à  $\frac{5}{12}$ .

Les paramètres de la loi binomiale sont donc : n = 4 et  $p = \frac{5}{12}$ .

(b) 
$$P(X=3)$$

$$P(X = 3) = {4 \choose 3} \times \left(\frac{5}{12}\right)^3 \times \left(1 - \frac{5}{12}\right)^{4-3}$$

$$= {4 \choose 3} \times \left(\frac{5}{12}\right)^3 \times \left(\frac{7}{12}\right)^{4-3}$$

$$= {4 \choose 3} \times \left(\frac{5}{12}\right)^3 \times \frac{7}{12}$$

$$= {4 \choose 3} \times \frac{125}{1728} \times \frac{7}{12}$$

$$= {4 \choose 3} \times \frac{875}{20736}$$

On détermine la valeur de la combinaison  $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$  à l'aide du triangle de Pascal.

| $\overline{n\backslash k}$ | 0 | 1 | 2  | 3  | 4 | 5 | 6 |
|----------------------------|---|---|----|----|---|---|---|
| 0                          | 1 |   |    |    |   |   |   |
| 1                          | 1 | 1 |    |    |   |   |   |
| 2                          | 1 | 2 | 1  |    |   |   |   |
| 3                          | 1 | 3 | 3  | 1  |   |   |   |
| 4                          | 1 | 4 | 6  | 4  | 1 |   |   |
| 5                          | 1 | 5 | 10 | 10 | 5 | 1 |   |

On a donc  $\binom{4}{3} = 4$ , et donc :

$$P(X=3) = 4 \times \frac{875}{20736} = \frac{875}{5184} \approx 0,17.$$