

OVERVIEW

- Introduction Traditional Data Processing
- Definitions
 - Edge Computing
 - Fog Computing
- Challenges
- Applications
- Future

TRADITIONAL DATA PROCESSING STEPS

- Data Collection: Data collecting devices (sensors, cameras, IoT devices)
- Data Transmission: Data → Central Server or Cloud Data Center
- Data Processing
- **Response Transmission:** Processing Result → Original Device
- Action Execution

- Nearby Processing at the "Edge" of the Network
 - Local Systems
 - IoT devices themselves (sensors, cameras, gateways etc.)

- reduces time and effort. (low latency)
- saves bandwith, saves cost.
- can work with limited or no internet connectivity.
- eliminates delay and congestion.

EXAMPLE — SELF-DRIVING CAR

DATA PROCESSING

	Feature	Without Edge Computing	With Edge Computing
	Data Processing	Distant Cloud	Local
	Latency	High	Low
	Bandwidth Use	High	Low
\	Internet Dependence	High	Low

10

- Fog Nodes Processing in the Middle
 - Local Systems
 - Local Devices (routers, local servers)

FOG COMPUTING...

- reduces load on edge devices.
- provides a nearby helper to edge devices.
- makes large-scale systems more efficient.
- manages data better in congested environs.
- reduces latency and bandwidth use.
- de-centers load.

DATA PROCESSING

	Feature	Without Fog Computing	With Fog Computing
	Data Processing	Distant Cloud	Distributed locally
	Latency	High	Low
	Bandwidth Use	High	Low
\	Scalability	Limited	Improved

FOG AND EDGE COMPUTING COMPARISON

Feature	Edge Computing	Fog Computing
Data Processing	At the device, or close	Local nodes near the edge
Use case example	Real-time actions	Larger-scale systems
Latency	Extremely Low	Low
Power	Device Dependent	Helper nearby systems

CHALLENGES

of Edge and Fog Computing

- Limited Processing Power and Storage
 - Problems with Data Analysis, AI algorithms, etc.
 - Example: Limited drone device analyzing realtime video footage
- High Costs
 - Expensive to include sufficient computing power and robustness
 - Entry barrier for small industries

- Scalability Issues
 - Overwhelming to manage large-scale projects (high device quantity)
- Data Security and Privacy
 - Can be vulnerable to hacking/data tampering and intercepting
- Device Management and Maintenance
- Interoperability

- Device Management and Maintenance
 - Updating and maintenance is challenging
- Interoperability
 - Compatibility issues in case of different\
 device manufacturers

- **Complex Architecture**
 - Designing multi-layer systems requires expertise
- **High Costs**
 - Possibly high distribution, hardware, software, maintenance costs

- Latency and Connectivity Issues
 - Relies on network connectivity between fog nodes and devices
- Data Security and Privacy
 - Data is at risk during transmission or in local storage

- Energy Consumption
 - High energy costs, environmental concerns,
- Standardization Issues
 - No universal standards
- Latency Variability
 - Fog nodes in different proximities can produce different latencies

COMMON CHALLENGES

- Limited Expertise
 - Relatively new technologies
- Data Synchronization
 - Decentralized processing increases difficulty

COMMON CHALLENGES

- Hardware Reliability
 - Failure of devices can disrupt workflow/
- Legal and Regulatory Compliance
 - Sensitive data processing locally may differ from region to region, requiring adaptations

CURRENT APPLICATION EXAMPLES

of Edge and Fog Computing

Daroglu - Tian | WA&U - PLUS |

- Self-Driving Cars
- Smart Home Devices
- Healthcare

10 YEARS AGO THE BASE STATION IS SMALL.

- 1. Single function
- 2. No intelligence
- 3. Infrared detection
- 4. No data analysis

NEW GENERATION

- 1. Base stations are like computer cases
- 2.Add AI function
- 3.Data analysis

UPGRADE

- 1. Route planning
- 2.Dual laser sensing
- 3.AI night vision
- 4.Visual Recognition

AI 超能主机

AI 脏污识别算法

主动识别, 高效洁净

7000Pa 超强风机

瞬吸之间, 扫灰除尘

PRACTICAL EXPERIENCE

- Advantages:
- 1. The collected data is handed over to the host computer for analysis
- 2.Real-time analysis and update
- Disadvantages:
- 1.Leakage of private information
- 2.Advertisement harassment

- Smart Cities
- Telecommunications(5G)
- Smart Agriculture

FUTURE APPLICATION EXAMPLES

of Edge and Fog Computing

COLLABORATIVE FUTURE APPLICATIONS

- Autonomous Supply Chains
- Next-Gen Entertainment Experiences
- Green Energy Management for Smart Cities

THANK YOU

REFERENCES

- "What the Fog? Edge Computing Revisited: Promises, Applications and Future Challenges." IEEE Xplore, 2024.
- "Edge, Fog, and Cloud Computing: An Overview on Challenges and Applications." arXiv, 2023.
- "Fog Computing Complete Review: Concepts, Trends, Architectures." SpringerLink, 2024.

- [Fig. 1]: Website Files. (n.d.). Edge computing architecture
- [Fig. 2]: TechAhead Corp. (2023).
 Fog computing architecture
 illustrating data flow and
 processing layers
- [Fig. 3]: Medium. (n.d.). Fog Computing vs Edge Computing comparison
- [Fig. 4]:ResearchGate. (2020). Latency comparison under different values of edge server capability