17 septembre L1 FDV

TD2 : Relations d'ordre et d'équivalence (avec corrigé)

Exercice 1:

(a) Prouvez que la relation sur \mathbb{Z}

 $a\mathcal{R}b \Leftrightarrow a-b$ est un multiple de 5

est une relation d'équivalence.

Solution: On vérifie les 3 conditions :

- Réflexivité : Soit $x \in \mathbb{Z}$. On veut prouver $x\mathcal{R}x$, c'est à dire x- est un multiple de 5.On a $x-x=0=5\times 0$. Par conséquent, x-x est un multiple de 5, donc $x\mathcal{R}x$.
- Symétrie : Soit $x, y \in \mathbb{Z}$. On suppose $x\mathcal{R}y$ (ie. x-y est un multiple de 5). On veut prouver $y\mathcal{R}x$ (ie. y-x est un multiple de 5). Or y-x=-(x-y). Or, comme x-y est un multiple de 5, il existe $k \in \mathbb{Z}$ tel que x-y=5k. Donc y-x=-5k. Donc y-x est un multiple de 5. Donc $y\mathcal{R}x$.
- Transitivité : Soit $x, y, z \in \mathbb{Z}$. On suppose $x\mathcal{R}y$ et $y\mathcal{R}z$. On veut prouver $x\mathcal{R}z$. On a par hypothèse

$$x - y = 5m$$
$$y - z = 5n$$

Pour certains m et $n \in \mathbb{Z}$. En sommant terme à terme, on trouve

$$(x - y) + (y - z) = 5m + 5n$$

$$\Leftrightarrow x + (-y + y) - z = 5(m + n)$$

$$\Leftrightarrow x - z = 5(m + n)$$

$$\Leftrightarrow x\mathcal{R}z$$

Les 3 conditions sont bien vérifiées, c'est une relation d'équivalence.

(b) Soit $x \in \mathbb{Z}$. Déterminer $\operatorname{cl}(x)$.

Solution: On procède par double implication :

— Soit $y \in \mathbb{Z}$. On suppose $x\mathcal{R}y$. Il existe donc k tel que

$$x - y = 5k \Leftrightarrow y - x = -5k$$
$$\Leftrightarrow y = x - 5k$$

Donc tout y en relation avec x est de la forme y = x - 5k avec $k \in \mathbb{Z}$.

— Réciproquement, soit y de la forme x-5k Prouvons que xRy

$$x - y = x - (x - 5k)$$
$$= x - x + 5k$$
$$= 5k$$

Donc x-y est un multiple de 5 donc $x\mathcal{R}y$. Par conséquent, tout nombre de la forme x-5k est en relation avec x.

Par double implication, la classe d'équivalence de x est l'ensemble des nombres de la forme x-5k avec $k\in\mathbb{Z}$.

Exercice 2:

(a) Prouver que la relation sur \mathbb{Z}

$$a\mathcal{R}b \Leftrightarrow a+b \text{ est pair}$$

est une relation d'équivalence.

Solution:

- Réflexivité : Soit $x \in \mathbb{Z}$. Prouvons que $x\mathcal{R}x$. On a x+x=2x donc x+x est pair. Donc $x\mathcal{R}x$.
- Symétrie : Soit $x, y \in \mathbb{Z}$. On suppose $x\mathcal{R}y$. On veut prouver que $y\mathcal{R}x$. On a y+x=x+y par conséquent x+y est pair puisque $x\mathcal{R}y$. Donc y+x est pair. Donc $y\mathcal{R}x$.
- Transitivité : Soit $x, y, z \in \mathbb{Z}$. On suppose $x\mathcal{R}y$ et $y\mathcal{R}z$. On veut prouver que $x\mathcal{R}z$. On a par hypothèse

$$x + y = 2m$$
$$y + z = 2n$$

En sommant terme à terme, on a

$$(x + y) + (y + z) = 2m + 2n$$

 $x + z + 2y = 2m + 2n$
 $x + z = 2(m + n - y)$

Donc x + z est pair. Donc xRz. Donc R est une relation d'équivalence.

(b) Soit $x \in \mathbb{Z}$. Déterminer $\operatorname{cl}(x)$.

Solution: On distingue $2 \cos x$ est pair ou x est impair.

- x est pair : Soit $y \in \mathbb{Z}$. On suppose $x\mathcal{R}y$. x+y est pair. Donc y est pair. Réciproquement, si y est pair alors x+y est pair aussi. Dans ce cas, $\operatorname{cl}(x)$ est l'ensemble des nombres pairs.
- x est impair : Soit $y \in \mathbb{Z}$. On suppose $x\mathcal{R}y$. x+y est pair. Donc y est impair. Réciproquement, si y est impair alors x+y est pair. Dans ce cas, $\operatorname{cl}(x)$ est l'ensemble des nombres impairs.

Exercice 3:

(a) Prouver que la relation sur $\mathbb{R}^* \times \mathbb{R}^*$

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow ad = cb$$

est une relation d'équivalence.

Solution:

- Réflexivité : Soit $(x, y) \in \mathbb{R}^* \times \mathbb{R}^*$. Prouvons que $(x, y)\mathcal{R}(x, y)$. On a xy = yx donc $x\mathcal{R}x$.
- Symétrie : Soit $(a,b), (c,d) \in \mathbb{R}^* \times \mathbb{R}^*$. On suppose $(a,b)\mathcal{R}(c,d)$. On veut prouver que $(c,d)\mathcal{R}(a,b)$. On a ad=bc donc cb=da. Donc $(c,d)\mathcal{R}(a,b)$.
- Transitivité : Soit $(a, b), (c, d), (e, f) \in \mathbb{R}^* \times \mathbb{R}^*$. On suppose $(a, b)\mathcal{R}(c, d)$ et $(c, d)\mathcal{R}(e, f)$. On veut prouver que $(a, b)\mathcal{R}(e, f)$. On a par hypothèse

$$ad = bc \Leftrightarrow \frac{a}{b} = \frac{c}{d}$$
$$cf = de \Leftrightarrow \frac{c}{d} = \frac{e}{f}$$

Par transitivité de =. On obtient $\frac{a}{b} = \frac{e}{f}$. Donc af = be donc $(a, b)\mathcal{R}(e, f)$. Donc \mathcal{R} est une relation d'équivalence.

(b) Soit $(a, b) \in \mathbb{R}^* \times \mathbb{R}^*$. Déterminer cl ((a, b)).

Solution:

- Soit $(x,y) \in \mathbb{R}^* \times \mathbb{R}^*$. On suppose $(a,b)\mathcal{R}(x,y)$. On a donc ay = xb. Donc $y = x\frac{b}{a}$. Donc (x,y) est de la forme $\left(x,x\frac{b}{a}\right)$.
- Réciproquement soit $x \in \mathbb{R}^*$. On veut prouver que $\left(x, x_{\overline{a}}^b\right) \mathcal{R}(a, b)$. En effet, on a $xb = x_{\overline{a}}^b a$. Donc tout élément de la forme $\left(x, x_{\overline{a}}^b\right)$ est en relation avec (a, b).

La classe d'équivalence de (a,b) est donc $\left\{\left(x,x\frac{b}{a}\right) \mid x \in \mathbb{R}^*\right\}$

Exercice 4:

(a) Prouver que la relation sur \mathbb{R}

$$a\mathcal{R}b \Leftrightarrow |a| = |b|$$

est une relation d'équivalence.

Solution:

- Réflexivité : Soit $x \in \mathbb{R}$. Prouvons que $x\mathcal{R}x$. On a |x| = |x| donc $x\mathcal{R}x$.
- Symétrie : Soit $x, y \in \mathbb{R}$. On suppose $x\mathcal{R}y$. On veut prouver que $y\mathcal{R}x$. On a |x| = |y| donc |y| = |x|. Donc $y\mathcal{R}x$.
- Transitivité : Soit $x, y, z \in \mathbb{R}$. On suppose $x\mathcal{R}y$ et $y\mathcal{R}z$. On veut prouver que $x\mathcal{R}z$. On a par hypothèse |x| = |y| et |y| = |z|. Donc |x| = |z|. Donc $x\mathcal{R}z$.

Donc \mathcal{R} est une relation d'équivalence.

(b) Soit $x \in \mathbb{R}$. Déterminer $\operatorname{cl}(x)$.

Solution:

- Soit $y \in \mathbb{R}$. On suppose $x\mathcal{R}y$. On a donc |x| = |y|. Donc y = x ou y = -x.
- Réciproquement, on a évidemment, $x\mathcal{R}x$ et $x\mathcal{R}-x$.

La classe d'équivalence de x est donc $\{-x, x\}$. Attention. Quand x = 0, la classe d'équivalence est alors $\{0\}$ et dans ce cas uniquement, il n'y a qu'un seul élément.

Exercice 5:

Prouver que la relation sur $\mathbb{N} \times \mathbb{N}$

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow a \leqslant c \text{ et } b \leqslant d$$

est une relation d'ordre.

Solution:

— Réflexivité : Soit $(x,y) \in \mathbb{N}$. Prouvons que $(x,y)\mathcal{R}(x,y)$. On a $x \leq x$ et $y \leq y$. Donc $(x,y)\mathcal{R}(x,y)$.

- Antisymétrie : Soit $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. On suppose $(a, b)\mathcal{R}(c, d)$ et $(c, d)\mathcal{R}(a, b)$. On veut prouver que (a, b) = (c, d). On a $a \leq c, c \leq a, b \leq d$ et $d \leq b$. Donc a = c et b = d. Donc (a, b) = (c, d).
- Transitivité : Soit $(a,b), (c,d), (e,f) \in \mathbb{N} \times \mathbb{N}$. On suppose $(a,b)\mathcal{R}(c,d)$ et $(c,d)\mathcal{R}(e,f)$. On veut prouver que $(a,b)\mathcal{R}(e,f)$. On a $a \leq c$ et $c \leq e$. Donc $a \leq e$. Parallèlement, on a $b \leq d$ et $d \leq f$. Donc $b \leq f$.

Donc \mathcal{R} est une relation d'ordre.

Exercice 6:

Soit E un ensemble fini. Prouver que la relation sur $\mathcal{P}(E)$

$$x\mathcal{R}y \Leftrightarrow x \subseteq y$$

est une relation d'ordre.

Solution:

- Réflexivité : Soit x une partie de E. Prouvons que $x\mathcal{R}x$. Tout ensemble est bien inclus dans lui même donc $x\mathcal{R}x$.
- Antisymétrie : Soit $x, y \in \mathcal{P}(E)$. On suppose $x\mathcal{R}y$ et $y\mathcal{R}x$. On veut prouver que x = y. On a $x \subseteq y$ et $y \subseteq x$. Deux ensembles sont inclus l'un dans l'autre si et seulement s'ils sont égaux. Donc x = y.
- Transitivité : Soit $x, y, z \in \mathcal{P}(E)$. On suppose $x\mathcal{R}y$ et $y\mathcal{R}z$. On veut prouver que $x\mathcal{R}z$. On sait que x est un sous ensemble de y et y est un sous ensemble de z. Donc x est un sous ensemble de z.

Donc \mathcal{R} est une relation d'ordre.