

IDENTIFICATION CIRCUIT

Patent number: JP11041182
 Publication date: 1999-02-12
 Inventor: SANO KOICHI; MURATA KOICHI; OTSUJI TAIICHI
 Applicant: NIPPON TELEGR & TELEPH CORP <NTT>
 Classification:
 - International: H04B10/28; H04B10/26; H04B10/14; H04B10/04;
 H04B10/06; H01L31/10
 - European:
 Application number: JP19970208308 19970718
 Priority number(s):

[Report a data error here](#)

Abstract of JP11041182

PROBLEM TO BE SOLVED: To simultaneously execute optic/electric conversion and an identifying operation and to enable a high speed operation for an optical input signal.

SOLUTION: A resonance tunnel diode 2 as a driver and a resonance tunnel diode 3 as a load are serially connected between a clock supplying terminal 4 and a grounding 6, a photo diode 1 to input an optical data signal is connected in parallel with the resonance tunnel diode 3. Then, an output signal is taken out of a common connection point of the both resonance tunnel diodes 2, 3.

Data supplied from the [esp@cenet](#) database - Patent Abstracts of Japan

(51) Int. Cl. *
 H04B 10/28
 10/26
 10/14
 10/04
 10/06

識別記号

F I
 H04B 9/00
 H01L 31/10

Y
G

審査請求 未請求 請求項の数 4 F D (全6頁) 最終頁に続く

(21) 出願番号 特願平9-208308

(22) 出願日 平成9年(1997)7月18日

(71) 出願人 000004226
 日本電信電話株式会社
 東京都新宿区西新宿三丁目19番2号
 (72) 発明者 佐野 公一
 東京都新宿区西新宿三丁目19番2号 日本
 電信電話株式会社内
 (72) 発明者 村田 浩一
 東京都新宿区西新宿3丁目19番2号 日本
 電信電話株式会社内
 (72) 発明者 尾辻 泰一
 東京都新宿区西新宿3丁目19番2号 日本
 電信電話株式会社内
 (74) 代理人 弁理士 長尾 常明

(54) 【発明の名称】識別回路

(57) 【要約】

【課題】 光入力信号に対して、光／電気変換と識別動作を同時にうと共に、高速動作を可能ならしめる。

【解決手段】 クロック供給端子と接地との間に、ドライバとしての共鳴トンネルダイオード2と負荷としての共鳴トンネルダイオード3を直列接続し、後者の共鳴トンネルダイオード3に並列に、光データ信号を入力するフォトダイオード1を並列接続し、両共鳴トンネルダイオード2、3の共通接続点から出力信号を取り出す。

【特許請求の範囲】

【請求項1】一端が接地されたトンネルダイオードの他端に負荷の一端とフォトダイオードのアノードを共通接続し、前記負荷の他端と前記フォトダイオードのカソードを電気クロック供給端子に共通接続し、前記フォトダイオードに光データ信号を入力し、電気出力信号を前記トンネルダイオードの他端と前記負荷との共通接続点から取り出すようにしたことを特徴とする識別回路。

【請求項2】前記負荷が、別のトンネルダイオードであることを特徴とする請求項1に記載の識別回路。

【請求項3】前記負荷が、抵抗であることを特徴とする請求項1に記載の識別回路。

【請求項4】前記負荷が、ゲートとソース又はベースとエミッタが短絡されたトランジスタであることを特徴とする請求項1に記載の識別回路。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、半導体集積回路において入力する光データを識別して電気信号に変換する識別回路に関するものである。

【0002】

【従来の技術】従来、光データ信号を識別し電気信号に変換するシステムとして、図10に示したものが知られている。このシステムは、光通信で用いられている。このシステムでは、光信号をフォトダイオード21により受信し、電気信号に変換する。変換された電気信号は、プリアンプ22、ポストアンプ23で増幅された後、識別回路24に入力される。

【0003】

【発明が解決しようとする課題】ところが、上記従来の光データ入力信号を識別し電気信号に変換するシステムでは、光/電気変換のためのインターフェース回路が必要であった。また、プリアンプ22、ポストアンプ23、及び識別回路24はトランジスタにより構成されるので、これらの回路の速度性能は、トランジスタの速度性能に律速されていた。このため、光データ信号を識別し電気信号に変換するシステムの速度性能も、トランジスタの速度性能に律速されていた。

【0004】本発明は以上のような点に鑑みてなされたものであり、その目的は、光データ信号を入力して高い周波数帯での識別動作を可能にした識別回路を提供することである。

【0005】

【課題を解決するための手段】上記目的を達成するための第1の発明は、一端が接地されたトンネルダイオードの他端に負荷の一端とフォトダイオードのアノードを共通接続し、前記負荷の他端と前記フォトダイオードのカソードを電気クロック供給端子に共通接続し、前記フォトダイオードに光データ信号を入力し、電気出力信号を

前記トンネルダイオードの他端と前記負荷との共通接続点から取り出すようにした。第2の発明は、第1の発明において前記負荷が、別のトンネルダイオードであるよう構成した。第3の発明は、第1の発明において前記負荷が、抵抗であるよう構成した。第4の発明は、第1の発明において前記負荷が、ゲートとソース又はベースとエミッタが短絡されたトランジスタであるよう構成した。

【0006】

【発明の実施の形態】

【第1の実施の形態】図1は本発明の第1の実施の形態を示す図である。図中、1は光データ入力受信部ODからの光を受光するフォトダイオード、2はドライバとしての共鳴トンネルダイオード(RTD)、3は負荷としての共鳴トンネルダイオード、4は電気クロック信号供給端子、5は電気出力端子、6は接地である。図示のように、共鳴トンネルダイオード2、3はクロック供給端子4と接地6との間に直列接続され、フォトダイオード1は負荷としての共鳴トンネルダイオード3に並列接続されている。出力電圧信号Voutは、電気出力端子5と接地6との間に得られる。

【0007】図2の(a)、(b)はこの識別回路の動作説明図である。図中、Aは共鳴トンネルダイオード2の負性抵抗部分を有する電圧-電流特性曲線、Bは共鳴トンネルダイオード3の負性抵抗部分を有する電圧-電流特性曲線とフォトダイオード1の特性をあわせた負荷曲線であり、この共鳴トンネルダイオード3が負荷であるので、曲線Bは曲線Aと対称形となっている。この負荷曲線Bと電圧軸との交点は、クロック供給端子4に供給されるクロック電圧Vckに等しい。

【0008】このクロック供給端子4のクロック電圧VckがLowレベルからHighレベルに遷移するに伴い、負荷曲線Bは図2(a)、(b)の左から右に、つまり高電圧側に移動する。逆に、クロック電圧VckがHighレベルからLowレベルに遷移する場合は右から左に移動する。

【0009】負荷曲線Bの移動の際に、フォトダイオード1に光が照射されている(Data=High)場合には、図2(b)に示すように、負荷曲線Bの電流値が大きくなったり、それに伴い動作点C(2つの曲線A、Bが交差する点であり、この電圧は、出力端子5の接地に対する電圧Voutである。)は高電圧側に遷移する。逆に、光が照射されていない(Data=Low)場合には、負荷曲線Bの電流値は変わらずに移動し、動作点Cは低電圧側に留まる。

【0010】図3はこの識別回路の動作を示す信号波形図である。クロック電圧Vckの立ち上がり時の光の状態を識別し、クロック電圧VckがHighレベルの間はその識別状態を保持する。クロック電圧VckがLowレベルになると、出力電圧は必ず低電圧側に遷移す

る。以上の結果、出力電圧 V_{out} の波形は RZ (Return To Zero) 信号となる。共鳴トンネルダイオードを用いた双安定回路（動作点が2個ある）では、その双安定回路への供給電圧がクロック電圧に等しいので、このクロック電圧が Low レベルになることは、双安定回路への供給電圧が Low レベルになることを意味する。双安定回路への供給電圧 Low レベルであることは、図2 (a)、(b) ではクロック電圧 V_{clock} が小さい状態の図に対応しており、動作点Cとしては Low レベルしか取り得ない。よって、クロック電圧 V_{clock} が Low レベルの間は、入力する光データに依存せず、出力電圧 V_{out} は Low レベルとなる。

【0011】図4は光入力データが 1000Gbit/s 、出力が 50Gbit/s のDEMUX動作のシミュレーションの波形を 1000ps ごとに折り返し、重ね書きしたものである。この図4では、いわゆる「アイパタン」(Low レベルと $High$ レベルが各々直線で存在し、その間に遷移レベルがX型に挿入される波形)にはなっていないが、これは出力が RZ 信号であるためである。この RZ 信号では、 $High$ は Low のデータの後、次のデータ信号に移る前に必ず Low レベルに戻るので、通常のように $High$ レベルの連続がみられない。出力信号は確かにランダム入力データ（PN7段）に対する出力を 1000ps ごとに重ね書きしたものである。DEMUX動作が成されていることが確認できる。

【0012】ここでは、DEMUX動作の例を挙げたが、クロック周波数を光入力データビットレートと同一の値にする（図3参照）ことにより、識別動作が可能である。また、DEMUX動作は、伝送されてくるデータ列をn個ごとに区切ったとき、そのうちの1つを識別し残りの $n-1$ 個は無視する動作を繰り返し行う。すなわち、一定の間隔でデータをピックアップし識別している。よって、DEMUX動作の中に識別動作が含まれているので、DEMUX動作の確認で識別回路が動作するということができる。

【0013】以上のように、この実施の形態の識別回路では、光信号を受信するフォトダイオード1に対して、識別動作を行う共鳴トンネルダイオード2、3の双安定回路を直結するので、光/電気変換のインターフェース回路が不要となる。また、トランジスタと比較して速度性能に優れた共鳴トンネルダイオード2を用いるので、トランジスタを用いた従来の識別回路よりも高速な動作が可能となる。

【0014】【第2の実施の形態】図5は第2の実施の形態の識別回路を示す図である。図1と同じものには同じ符号を付した。図1の構成と異なるところは、負荷としての共鳴トンネルダイオード3が、抵抗7に置き換わっている点である。

【0015】図6はこの識別回路の動作説明図である。負荷が抵抗7に変わったことにより、そのその負荷抵抗

7とフォトダイオード1の特性をあわせた負荷曲線が直線Dになっている。光が照射された場合、光電流が流れることで、負荷曲線Dの電流値が増大する。よって、クロックの立ち上がり時に光が照射されると動作点Cは図6の(b)に示すように高電圧側に移動する。逆に光が照射されないときは、負荷曲線Dは電流値を変えずに移動するので、動作点Cは図6の(a)に示すように低電圧側となる。

【0016】図7はこの第2の実施の形態の識別回路において、光入力データが 1000Gbit/s 、出力が 50Gbit/s のDEMUX動作のシミュレーションの波形を 1000ps ごとに折り返し、重ね書きしたものである。ここでもDEMUX動作が成されていることが確認できる。ここでは、DEMUX動作の例を挙げたが、クロック周波数を光入力データビットレートと同一の値にすることにより、識別動作が可能である。

【0017】【第3の実施の形態】図8は第3の実施の形態の識別回路を示す図である。図1と同じものには同じ符号を付した。図1の構成と異なるところは、負荷としての共鳴トンネルダイオード3が、トランジスタ8に置き換わっている点である。このトランジスタ8は、ゲートとソース又はベースとエミッタを短絡させたトランジスタである。

【0018】図9はこの識別回路の動作説明図である。負荷がトランジスタ8に変わったことにより、その負荷曲線がEになっている。光が照射された場合、光電流が流れることで、負荷曲線Eの電流値が増大する。よって、クロックの立ち上がり時に光が照射されると動作点Cは図9の(b)に示すように高電圧側に移動する。逆に光が照射されないときは、負荷曲線Eは電流値を変えずに移動するので、動作点Bは図9の(a)に示すように低電圧側となる。

【0019】【その他の実施の形態】なお、以上では共鳴トンネルダイオード2、3を使用したが、これは通常のトネルダイオードに代えることができるることは勿論である。

【0020】

【発明の効果】以上から本発明によれば、トンネルダイオードを用いた双安定回路に電流変調用のフォトダイオードを付加するので、高周波成分を有する光入力信号に対して、光/電気信号変換と識別動作を同時にを行うことができる。

【図面の簡単な説明】

【図1】 本発明の第1の実施の形態の識別回路の回路図である。

【図2】 同識別回路の動作説明図である。

【図3】 同識別回路の動作波形図である。

【図4】 同識別回路の出力波形図である。

【図5】 第2の実施の形態の識別回路の回路図であ

【図 6】 同識別回路の動作説明図である。
 【図 7】 同識別回路の動作波形図である。
 【図 8】 第 3 の実施の形態の識別回路の回路図である。
 【図 9】 同識別回路の動作説明図である。
 【図 10】 光データ信号を識別し電気信号に変換する従来のシステムのブロック図である。

【図 1】

【図 2】

【図 3】

【図 4】

【図 5】

【図 6】

【図 7】

【図 8】

【図 10】

【図 9】

フロントページの続き

(51) Int. Cl. ⁶
H 01 L 31/10

識別記号

F I