Math 412 Midterm 1 review questions

Paul Hacking

February 19, 2013

Reading: Saracino, Chapters 16,17,18.

- (1) Give the precise definition of a ring. Which of the following are rings? Justify your answer carefully. If it is not a ring, determine which of the ring axioms hold and which fail.
 - (a) $R = \mathbb{R}^2$ with the usual addition

$$\mathbf{a} \oplus \mathbf{b} := \mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

and multiplication given by

$$\mathbf{a} \otimes \mathbf{b} := \begin{pmatrix} a_1 b_1 \\ a_2 b_1 + a_1 b_2 \end{pmatrix}.$$

(b) $R = \mathbb{R}[x]$ the set of polynomials in the variable x with real coefficients, with the usual pointwise addition

$$(f \oplus g)(x) := f(x) + g(x)$$

and multiplication given by composition of functions

$$(f \otimes g)(x) := f(g(x)).$$

(c) $R = \mathbb{R}^3$ with the usual addition

$$\mathbf{a} \oplus \mathbf{b} := \mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

and multiplication given by the cross product

$$\mathbf{a} \otimes \mathbf{b} := \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

(d) Let V be a real vector space and R the set of linear maps $T: V \to V$, with addition defined pointwise

$$(T_1 \oplus T_2)(\mathbf{x}) := (T_1 + T_2)(\mathbf{x}) := T_1(\mathbf{x}) + T_2(\mathbf{x})$$

and multiplication defined by composition

$$(T_1 \otimes T_2)(\mathbf{x}) := (T_1 \circ T_2)(\mathbf{x}) := T_1(T_2(\mathbf{x})).$$

(2) Let R be a ring and $S \subset R$ a subset of R. What does it mean to say that S is a subring of R? In each of the following cases, determine whether S is a subring.

(a)
$$R = \mathbb{R}^{2 \times 2}$$
, $S = \left\{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \middle| c \in \mathbb{R} \right\}$.

(b)
$$R = \mathbb{R}^{2 \times 2}$$
, $S = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a, d \in \mathbb{R} \right\}$.

(c)
$$R = \mathbb{R}^{2 \times 2}$$
, $S = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$.

(d)
$$R = \mathbb{C}, S = \{a + b\alpha \mid a, b \in \mathbb{Z}\}\$$
where $\alpha = e^{\pi i/3} = (1 + \sqrt{3}i)/2$.

(e)
$$R = \mathbb{C}$$
, $S = \{a + b\beta \mid a, b \in \mathbb{Z}\}$ where $\beta = (1 + \sqrt{7})/2$

(f)
$$R = \mathbb{Q}$$
, $S = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \text{ is not divisible by } 4\}.$

(g)
$$R = \mathbb{Q}$$
, $S = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \text{ is not divisible by 5}\}.$

(h)
$$R = \mathbb{R}[x], S = \{ f \in \mathbb{R}[x] \mid f(1) = 1 \}.$$

(i)
$$R = \mathbb{R}[x], S = \{ f \in \mathbb{R}[x] \mid f(1) = f(-1) \}.$$

(j)
$$R = \mathbb{R}[x], S = \{ f \in \mathbb{R}[x] \mid f'(0) = 0 \}.$$

(3) Let R be a ring. What does it mean to say that $a \in R$ is a zero divisor? Identify the zero-divisors in the following rings.

- (a) $R = \mathbb{Z}/12\mathbb{Z}$.
- (b) $R = \mathbb{Z}/n\mathbb{Z}, n \in \mathbb{N}$
- (c) $R = \mathbb{R}^{2 \times 2}$.
- (d) $R = \mathbb{R}^{n \times n}, n \in \mathbb{N}.$
- (e) $R = \mathbb{Z} \oplus \mathbb{Z}$.
- (f) $R = \mathbb{R}[x]/(x^3)$.
- (g) $R = \mathbb{R}[x]/(x^2 3x + 2)$.
- (4) Let R be a ring. What does it mean to say that $a \in R$ is nilpotent? Identify the nilpotent elements in the following rings.
 - (a) $R = \mathbb{Z}/20\mathbb{Z}$.
 - (b) $R = \mathbb{Z}/n\mathbb{Z}, n \in \mathbb{N}$.
 - (c) $S = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\}$, a subring of $R = \mathbb{R}^{2 \times 2}$.
 - (d) $\mathbb{R}[x]/(x^3)$.
 - (e) $\mathbb{R}[x]/(x^3-x^2)$.
- (5) Let R be a ring with 1. What does it mean to say that $a \in R$ is a unit? Identify the units in the following rings.
 - (a) $R = \mathbb{Z}/15\mathbb{Z}$.
 - (b) $R = \mathbb{Z}/n\mathbb{Z}, n \in \mathbb{N}$.
 - (c) $R = \mathbb{Z}$.
 - (d) $R = \mathbb{R} \oplus \mathbb{R}$.
 - (e) $R = \mathbb{R}[x]$.
 - (f) $R = \mathbb{R}^{2 \times 2}$.
 - (g) $S = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \mid a, c, d \in \mathbb{R} \right\}$, a subring of $R = \mathbb{R}^{2 \times 2}$.
 - (h) $R = \mathbb{Z}[i]$
 - (i) $S \subset \mathbb{C}$ the subring of Q2(d).

- (6) Give the definition of an ideal of a ring R. Which of the following subsets $I \subset R$ are ideals?
 - (a) $R = \mathbb{Z}$, $I = \{a \in \mathbb{Z} \mid a \text{ is divisible by either 2 or 3}\}.$
 - (b) $R = \mathbb{Z}, I = \{6x + 15y \mid x, y \in \mathbb{Z}\}.$
 - (c) $R = \mathbb{R}[x], I = \{ f \in \mathbb{R}[x] \mid f(3) = 0 \}.$
 - (d) $R = \mathbb{R}[x], I = \{ f \in \mathbb{R}[x] \mid f'(3) = 0 \}.$
 - (e) $R = \mathbb{R}[x], I = \{ f \in \mathbb{R}[x] \mid f(3) = f'(3) = 0 \}.$
 - (f) $R = \mathbb{Z}[x], I = \{ f \in \mathbb{Z}[x] \mid f(4) \equiv 0 \mod 6 \}.$
- (7) List all the ideals in the following rings.
 - (a) \mathbb{Z} .
 - (b) $\mathbb{Z}/15\mathbb{Z}$.
 - (c) $\mathbb{Z}/n\mathbb{Z}$, $n \in \mathbb{N}$.
 - (d) $\mathbb{R}[x]$.
 - (e) $\mathbb{R}[x]/(x^2+5x+6)$
 - (f) $\mathbb{R}[x]/(x^3+4x)$
- (8) Let R be a commutative ring with 1. Give the definition of a prime ideal of R. List all the prime ideals in the following rings.
 - (a) \mathbb{Z} .
 - (b) $\mathbb{C}[x]$.
 - (c) $\mathbb{Z}/12\mathbb{Z}$.
 - (d) $\mathbb{Z}/n\mathbb{Z}$, $n \in \mathbb{N}$.
 - (e) $\mathbb{C}[x]/(x^2+2x+2)$.
 - (f) $\mathbb{R}[x]$.
 - (g) $\mathbb{R}[x]/(x^n)$, $n \in \mathbb{N}$.
- (9) Give the definition of a ring homomorphism $\varphi \colon R \to S$. Which of the following are ring homomorphisms?

(a)
$$\varphi \colon \mathbb{R} \oplus \mathbb{R} \to \mathbb{R}^{2 \times 2}, \ \varphi(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}.$$

- (b) $\varphi \colon \mathbb{C} \to \mathbb{R}[x], \ \varphi(a+bi) = a+bx.$
- (c) $\varphi \colon S \to \mathbb{R}$, $\varphi\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\right) = a$, where $S \subset \mathbb{R}^{2 \times 2}$ is the subring of Q4(c).
- (d) $\varphi \colon \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, \varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} a & c \\ b & d \end{pmatrix},$
- (e) $\varphi \colon (\mathbb{Z}/3\mathbb{Z})[x] \to (\mathbb{Z}/3\mathbb{Z})[x], \ \varphi(f) = f^3.$
- (10) Let $\varphi \colon R \to S$ be a homomorphism of rings. Define the kernel $\ker(\varphi)$ of φ . For each of the following ring homomorphisms describe the kernel as explicitly as possible.
 - (a) $\varphi \colon \mathbb{R}[x] \to \mathbb{R}, \ \varphi(f(x)) = f(2).$
 - (b) $\varphi \colon \mathbb{R}[x] \to \mathbb{C}, \ \varphi(f(x)) = f(2+3i).$
 - (c) $\varphi \colon R \to R/I, \, \varphi(a) = a + I.$
 - (d) $\varphi \colon \mathbb{Z} \to \mathbb{Z}[i]/(1+3i)$, φ the homomorphism determined by $\varphi(1) = 1$.
 - (e) $\varphi: \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, φ the homomorphism determined by $\varphi(1) = 1$.
 - (f) $\varphi \colon \mathbb{Z}[x] \to \mathbb{Z}/7\mathbb{Z}$, $\varphi(f(x)) = f(3) \mod 7$.
- (11) State the first isomorphism theorem for ring homomorphisms. Use this theorem to identify the following quotient rings with a standard ring.
 - (a) $\mathbb{R}[x]/(x-5)$.
 - (b) $\mathbb{R}[x]/(x^2+2x+5)$.
 - (c) $\mathbb{R}[x]/(x^2-3x+2)$.
 - (d) S/I where $S \subset \mathbb{R}^{2\times 2}$ is the subring of Q5(g) and $I \subset S$ is the ideal given by

$$I = \left\{ \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} \middle| c \in \mathbb{R} \right\}.$$

(12) Let R be a ring. Show that if $a \in R$ is not a zero divisor then $ab = ac \Rightarrow b = c$.

- (13) Let R be a ring with 1 and $a \in R$ a unit. Show that a is not a zero divisor.
- (14) Let R be a ring with 1. Show that if $I \subset R$ is an ideal and I contains a unit then I = R.
- (15) Let R be a ring with 1. Show that if $a \in R$ is nilpotent then 1 + a is a unit

[Hint: Recall that $(1+x)^{-1}$ may be expanded as a power series in x which converges for |x| < 1, $x \in \mathbb{R}$. Use this to guess a formula for $(1+a)^{-1}$, and prove your guess is correct.]

- (16) Let R_1 and R_2 be rings.
 - (a) Define the direct sum $R_1 \oplus R_2$.
 - (b) Assume $R_1 \neq \{0\}$ and $R_2 \neq \{0\}$. Show that $R_1 \oplus R_2$ is not an integral domain.
- (17) Show that the following definition of a field is equivalent to the one given in class and the text: A field K is a set with two operations $(a,b) \mapsto a+b$ (addition) and $(a,b) \mapsto a\cdot b$ (multiplication) such that (1) (K,+) is an abelian group, (2) $(K\setminus\{0\},\cdot)$ is an abelian group (where 0 denotes the additive identity), and (3) $a\cdot(b+c)=a\cdot b+a\cdot c$ for all $a,b,c\in K$.
- (18) Let R and S be rings (commutative, with 1) and $\varphi: R \to S$ a ring homomorphism such that $\varphi(1) = 1$. Let $I \subset S$ be an ideal. Define

$$\varphi^{-1}(I) = \{ a \in R \mid \varphi(a) \in I \}.$$

- (a) Show that $\varphi^{-1}(I) \subset R$ is an ideal.
- (b) Show that if I is a prime ideal of S then $\varphi^{-1}(I)$ is a prime ideal of R.
- (19) Let R be a commutative ring with 1.
 - (a) Give the definition of a maximal ideal of R.
 - (b) Show that a maximal ideal is a prime ideal.
 - (c) Give an example of a prime ideal that is not a maximal ideal.

- (20) Let K be a field, R a ring, and $\varphi \colon K \to R$ a ring homomorphism. Show that either φ is injective or $\varphi(a) = 0$ for all $a \in R$.
- (21) Let R be a commutative ring with 1.
 - (a) Give the definition of the principal ideal (a) generated by an element $a \in R$.
 - (b) Give an example of an ideal I of a ring R (commutative, with 1) such that I is not a principal ideal.
- (22) Give an example of a ring R and an element $a \in R$ such that there exists $b \in R$ with ba = 1 but there does not exist $c \in R$ with ac = 1. [Hint: Consider the ring of Q1(d) for the vector space V of infinite real sequences (a_1, a_2, \ldots) .]