OPTIMIZING CRYPTOCURRENCY PORTFOLIO FOR RISK

Andreas Brünner & Jessica Lipscomb March 2023

OUTLINE

Background

Objective & Methodologies

Approach

Challenges & Assumptions

Results

Background

- More than 18,000 different cryptocurrencies and counting ¹
- Cryptocurrencies decoupled from mainstream financial markets²
- High volatility, low transaction fees³
- Not controlled by central institution ⁴
- Market capitalization of few cryptocurrencies accounts for majority of total market ⁵

Depiction of market capitalization of major cryptocurrencies as of January 29, 2023. ⁶

^{1.} Gupta & Chaudhary, 2022

^{2.} Caferra & Vidal-Tomás, 2021

^{3.} Kim, Chulhee, & Lee 2021

^{4.} Cafera & Vida-Tomás. 2021

^{5.} Gupta & Chaudhary, 2022

^{6.} Yahoo Finance, 2023

Objective & Methodologies

Objective:

Minimize Risk Maximize returns

Requirements:

- Cryptocurrencies not normally distributed
- Substantial liquidity
- Different currency categories

Considered:

- Binary Integer Programming
- Mixed-Integer Linear Programming ⁷
- Convex Optimization 8
- Mean-Variance 9
- Black-Litterman Allocation ¹⁰
- Genetic Heuristic Algorithm ¹¹
- Monte Carlo Simulation ^{12, 13, 14}
- Mean Conditional Value at Risk (M-CVaR) ¹⁵
- Liquidity Bounded Risk-Return Optimization (LIBRO)¹⁶

Black & Litterman, 1991

^{9.} Markowitz, 1994

^{11.} Grazia Speranza, 199612. Detemple, 2003

^{13.} Pedersen, 2014

^{14.} Cong & Oosterlee, 2016

Methodology

M-CVaR 17

$$CVaR\alpha(w) = \frac{1}{1-\alpha} \int_{y(w) \le VaR(w)} y f(y|w) dy$$

Depiction of market distribution, VaR, CVaR, loss and the role of $\alpha^{\,19}$

LIBRO 18

$$w_i \le \frac{TV_{i,m} \cdot f_i}{M}$$

Monte Carlo Simulation

Data Handling

- Binance Market API
 - Daily trading data
 - 293 currencies
- CoinMarketCap API
 - 17 Categories
 - 10+ currencies

Category	Min Controlling Factor	Max Controlling Factor	
Fiat	0.8	1.0	
Defi	0.7	0.9	
Sports	0.6	0.7	
Enterprise Solutions	0.5	0.7	
Yield Aggregator	0.5	0.7	
Gamification	0.6	0.7	
Data Handling	0.3	0.5	
Dex Token	0.3	0.5	
Analytics	0.2	0.4	
Media	0.1	0.3	
Other	0.1	0.3	
Web3	0.1	0.3	
Distributed Computing	0.1	0.3	
Cybersecurity	0.1	0.3	
IoT	0.1	0.3	
Privacy	0.1	0.3	
Metaverse	0.1	0.3	

Optimization

- Consider weekly & monthly reallocation
- Consider high, low & random risk tolerances
- Compare against including fiat currencies (+ tokenized gold)

Challenges & Assumptions

- Only Currencies, mainly crypto
- Timeframe: Jan 2021 Dec 2022
- Not all currencies traded for entire period, so had to impute data
- Reduced currencies considered based on most popular categories
- Divided market capitalization into large and small
- Multiprocessing required (60+ GHz used)
- Only 50 iterations due to run time
- \$100,000 initial investment

Cumulative Profit Comparison

Summary of Best & Worst Portfolios

Portfolio	λ	Allocation	CVaR	Assets	Total Profit	Normalized Profit
Weekly Crypto-Only Low Risk MIN	0.1	Weekly	Minimum	Crypto	1.093744E15	1.0
Weekly Low Risk MIN	0.1	Weekly	Minimum	Cross-Asset	1.152199E15	0.6052276
Monthly Crypto-Only Low Risk MAX	0.1	Monthly	Maximum	Crypto	3.048150E05	1.60113E-10
Monthly Low Risk MAX	0.1	Monthly	Maximum	Cross-Asset	1.915110E05	1.00597E-10

Relative Allocation Comparison

Relative Profit Comparison

Trend in Allocation

Profit Comparison

Efficient Frontier Comparison

Bibliography

- Alexander, Carol, and Michael Dakos. "Assessing the Accuracy of Exponentially Weighted Moving Average Models for Value-at-Risk and Expected Shortfall of Crypto Portfolios." Quantitative Finance ahead-of-print, no. ahead-of-print (2023): 1–35. https://doi.org/10.1080/14697688.2022.2159505.
- Black, Fischer, and Robert B Litterman. "Asset Allocation: Combining Investor Views with Market Equilibrium." The Journal of Fixed Income 1, no. 2 (1991): 7–18. https://doi.org/10.3905/jfi.1991.408013.
- Caferra, Rocco, and David Vidal-Tomás. "Who Raised from the Abyss? A Comparison Between Cryptocurrency and Stock Market Dynamics During the COVID-19 Pandemic." Finance Research Letters 43 (2021): 101954–101954. https://doi.org/10.1016/j.frl.2021.101954.
- Cong, F., & Oosterlee, C. (2016). Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation. Journal of Economic Dynamics and Control, 64, 23-38. doi:10.1016/j.jedc.2016.01.001.
- Culjak, Maria, Bojan Tomic, and Sasa Zikovic. "Benefits of Sectoral Cryptocurrency Portfolio Optimization." Research in International Business and Finance 60 (2022): 101615—. https://doi.org/10.1016/j.ribaf.2022.101615.
- Detemple, Jérôme B., René Garcia, and Marcel Rindisbacher. "A Monte Carlo Method for Optimal Portfolios." The Journal of Finance (New York) 58, no. 1 (2003): 401–46. https://doi.org/10.1111/1540-6261.00529.
- Grazia Speranza, M. "A Heuristic Algorithm for a Portfolio Optimization Model Applied to the Milan Stock Market." Computers & Operations Research 23, no. 5 (1996): 433–41. https://doi.org/10.1016/0305-0548(95)00030-5.
- Gupta, Hemendra, and Rashmi Chaudhary. "An Empirical Study of Volatility in Cryptocurrency Market." Journal of Risk and Financial Management 15, no. 11 (2022): 513-. https://doi.org/10.3390/jrfm15110513.
- Jeris, Saeed Sazzad, A.S.M. Nayeem Ur Rahman Chowdhury, Mst. Taskia Akter, Shahriar Frances, and Monish Harendra Roy. "Cryptocurrency and Stock Market: Bibliometric and Content Analysis." Heliyon 8, no. 9 (2022): e10514–e10514. https://doi.org/10.1016/j.heliyon.2022.e10514.
- Kim, Jong-Min, Chulhee Jun, and Junyoup Lee. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility." Mathematics (Basel) 9, no. 14 (2021): 1614—. https://doi.org/10.3390/math9141614.

Bibliography cont.

- Luan, F., Zhang, W., & Liu, Y. (2022). Robust international portfolio optimization with worst-case mean-CVaR. European Journal of Operational Research, 303(2), 877-890. doi:10.1016/j.ejor.2022.03.011.
- Mansini, R., & Ogryczak, W. S. (2015). Linear and Mixed Integer Programming for Portfolio Optimization. Springer International Publishing. doi:10.1007/978-3-319-18482-1
- Markowitz, Harry M. (1952). Portfolio Selection. *The Journal of Finance*, 77-91. Retrieved from https://www.jstor.org/stable/2975974.
- Markowitz, Harry M. "The General Mean-Variance Portfolio Selection Problem [and Discussion]." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical, and Engineering Sciences 347, no. 1684 (1994): 543–49. https://doi.org/10.1098/rsta.1994.0063.
- Pedersen, M. (2014). Portfolio Optimization and Monte Carlo Simulation. SSRN, 1-96. doi:10.2139/ssrn.2438121.
- Petukhina, Alla, Simon Trimborn, Wolfgang Karl Härdle, and Hermann Elendner. "Investing with Cryptocurrencies Evaluating Their Potential for Portfolio Allocation Strategies." Quantitative Finance 21, no. 11 (2021): 1825–53. https://doi.org/10.1080/14697688.2021.1880023.
- Rockafellar, R. Tyrrell, and Stansilav Uryasev. "Optimization of conditional value-at-risk." *Journal of Risk 2* (2000): 21-42.
- Trimborn, Simon, Mingyang Li, and Wolfgang Karl Härdle. "Investing with Cryptocurrencies—a Liquidity Constrained Investment Approach." Journal of Financial Econometrics 18, no. 2 (2020): 280–306. https://doi.org/10.1093/jjfinec/nbz016.
- Uryasev. "VaR vs CVaR in Risk Management and and Optimization." INFORMS 2008 (2008). https://doi.org/10.1287/educ.1080.0052.
- Zhang, R., Langrené, N., Yu, T. Y., & Zhu, Z. (2019). Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method. The journal of computational finance, 23, 97-127. doi:10.21314/JCF.2019.368