Отчет по заданию №3: Композиции алгоритмов для решения задачи регрессии

Васильев Руслан ВМК МГУ, 317 группа

24 декабря 2020 г.

Содержание

1	1 Введение			2
2 Постановка задачи			2	
3	Эксперименты			2
	3.1	Предо	бработка данных	2
	3.2	Случа	йный лес	3
		3.2.1	Количество деревьев	3
		3.2.2	Размерность подвыборки признаков для дерева	3
		3.2.3	Глубина дерева	3
	3.3	Гради	ентный бустинг	3
		3.3.1	Количество деревьев и темп обучения	3
		3.3.2	Глубина дерева	3
		3.3.3	Размерность подвыборки признаков для дерева	3
4	Зак	лючен	ие	3

1 Введение

В заключительном практическом задании предлагается реализовать композиции алгоритмов машинного обучения и провести эксперименты, а также спроектировать веб-сервис для взаимодействия с моделью. Весь проект доступен в репозитории¹. Данный отчет иллюстрирует результаты экспериментов с моделями на датасете данных о продажи недвижимости.

2 Постановка задачи

Итак, рассматривается задача регрессии с метрикой качества RMSE:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)}{N}},$$

где N — размер выборки, y_i — истинное значение целевой переменной на i-м объекте, \hat{y}_i — предсказанное.

Для решения реализованы две модели, представляющие собой ансамбли решающих деревьев: случайный лес и градиентный бустинг. Исследование алгоритмов включает в себя измерение функции ошибки и времени работы при варьировании гиперпараметров (порядок экспериментов соответствует стандартной настройке данных моделей).

3 Эксперименты

3.1 Предобработка данных

Исходные данные о недвижимости были разделены на обучение (80%) и контроль (20%, она же валидационная выборка). И здесь сразу учитывается особенность задачи. Хотя в задании отсутствует описание признаков и целевой переменной, можно с уверенностью предположить, что столбец date связан со временем поступления данных (даты имеют небольшой диапазон 2014—2015, монотонно возрастают, дублируются, следуют сразу за ID, а столбцы build_year и renovation_year с ними не связаны). По этой причине было бы некорректно перемешать выборку перед разделением на обучение и контроль — из-за утечки такая стратегия может дать ложную оценку качества моделей и привести к неправильным выводам. В качестве валидационной выборки берутся последние 20% данных, соответствующие хронологическому порядку по столбцу date.

¹https://github.com/artnitolog/mmf_prac_2020_task_3

- 3.2 Случайный лес
- 3.2.1 Количество деревьев
- 3.2.2 Размерность подвыборки признаков для дерева
- 3.2.3 Глубина дерева
- 3.3 Градиентный бустинг
- 3.3.1 Количество деревьев и темп обучения
- 3.3.2 Глубина дерева
- 3.3.3 Размерность подвыборки признаков для дерева

4 Заключение