Lycée Chateaubriand MPSI 3 • 2024 − 2025

William GREGORY

Colle **29** • INDICATIONS Polynômes

Exercice 29.1

Le polynôme $P := X^3 + X^2 - 3X + 2$ admet-il des racines rationnelles?

- indication -

Prendre une racine rationnelle $\alpha = \frac{p}{q}$, écrire $P(\alpha) = 0$, montrer que $p \mid 2$ et $q \mid 1$ pour déterminer les α possibles, puis conclure.

— résultat -

Non.

Exercice 29.2

Soit $n \geqslant 3$. On pose

$$A := X^n + 3X + 2$$
 et $B := X^3 - 2X^2 + X$.

Déterminer le reste dans la division euclidienne de A par B.

- indication -

Commencer par écrire $B = X(X - 1)^2$ pour déterminer ses racines, puis évaluer la relation A = BQ + R en X = 0, X = 1 et sa dérivée en X = 1 (car 1 est racine double de B), pour déterminer les coefficients de R (de degré 2 car B est de degré 3).

– résultat -

$$R = (n-1)X^2 + (5-n)X + 2.$$

1

Exercice 29.3

Soit $n \ge 2$.

- **1.** Factoriser le polynôme $1 + X + \cdots + X^{n-1}$.
- **2.** En déduire la valeur de $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.
- **3.** Soit $\theta \in \mathbb{R}$. Calculer $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right)$.

indication -

- **1.** Remarquer que $(X 1)(X^{n-1} + \cdots + X + 1) = X^n 1$.
- **2.** Évaluer la factorisation en X=1 et factoriser par l'angle moitié.
- **3.** Évaluer la factorisation en $X = e^{-2i\theta}$ et factoriser par l'angle moitié.

résultat

1.
$$1 + X + \cdots + X^{n-1} = \prod_{k=1}^{n-1} (X - e^{\frac{2ik\pi}{n}}).$$

2.
$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$$
.

3.
$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right) = \frac{\sin(n\theta)}{2^{n-1}}.$$

Exercice 29.4

 $\overline{\text{Soit } n \in \mathbb{N}. \text{ Soient } a_0, \dots, a_n \in \mathbb{Z}. \text{ On pose}}$

$$P := a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{Z}[X].$$

Montrer que, si P admet une racine $\dfrac{p}{q}\in\mathbb{Q}$, avec $p\in\mathbb{Z}$, $q\in\mathbb{N}^*$ et $p\wedge q=1$, alors

$$p \mid a_0$$
 et $q \mid a_n$.

- indication -

Utiliser la relation $P(\alpha) = 0$ multipliée par q^n , factoriser par p et par q pour démontrer les deux résultats.

Exercice 29.5

Soit $n \in \mathbb{N}^*$. Soit $\theta \in \mathbb{R}$.

Factoriser, dans $\mathbb{R}[X]$, le polynôme

$$X^{2n}-2\cos(\theta)X^n+1.$$

- indication -

Factoriser $Y^2 - 2\cos(\theta)Y + 1$ puis substituer par $Y = X^n$, et déterminer les racines de $X^n - e^{i\theta}$ et $X^n - e^{-i\theta}$.

résultat

$$X^{2n} - 2\cos(\theta)X^n + 1 = \prod_{k=0}^{n-1} \left(X^2 - 2\cos\left(\frac{\theta + 2k\pi}{n}\right) + 1\right)$$

2

Exercice 29.6

Soit $n \geqslant 2$. Soient $a, b \in \mathbb{R}$. Montrer que le polynôme

$$P := X^n + aX + b$$

a au plus trois racines réelles distinctes.

indication

Utiliser le théorème de Rolle et les dérivées de P.

Exercice 29.7

Soit $n \in \mathbb{N}$.

1. Montrer qu'il existe un unique polynôme T_n vérifiant

$$\forall \theta \in \mathbb{R}, \quad \mathsf{T}_n(\mathsf{cos}(\theta)) = \mathsf{cos}(n\theta).$$
 (*)

- **2.** Déterminer une relation entre T_n , T_{n+1} et T_{n+2} .
- **3.** Déterminer une équation différentielle vérifiée par T_n .
- **4.** Pour $k \in \mathbb{N}$, calculer $\mathsf{T}_n^{(k)}(1)$ et $\mathsf{T}_n^{(k)}(-1)$.

indication -

- **1.** Pour l'existence, montrer que $cos(n\theta)$ est un polynôme en $cos(\theta)$.
- **2.** Exprimer $\cos(n\theta)$ et $\cos((n+2)\theta)$ en fonction de $\cos((n+1)\theta)$, $\cos(\theta)$, $\sin((n+1)\theta)$ et $\sin(\theta)$.
- **3.** Dériver deux fois en θ la relation définissant T_n .
- **4.** Dériver k fois en θ la relation définissant T_n .

---- résultat

3

- **2.** $T_{n+2} + T_n = 2X T_{n+1}$.
- 3. $(1 X^2)T_n'' XT_n' + n^2T_n = 0$.

4.
$$T_n^{(k)}(1) = \begin{cases} \frac{2^k k! (n-1)! (n+k-1)!}{(2k)! (n-k)!} & \text{si} \quad k \leq n \\ 0 & \text{si} \quad k > n \end{cases}$$

et $T_n^{(k)}(-1) = (-1)^{n-k} T_n^{(k)}(1)$.

Exercice 29.8

On considère l'endomorphisme de $\mathbb{C}[X]$

$$\Delta: \left| \begin{array}{ccc} \mathbb{C}[\mathsf{X}] & \longrightarrow & \mathbb{C}[\mathsf{X}] \\ P & \longmapsto & P(\mathsf{X}+1) - P(\mathsf{X}). \end{array} \right|$$

- **1.** Déterminer $Ker(\Delta)$ et $Im(\Delta)$.
- **2.** Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{C}[X]$. Montrer que

$$\Delta^{n}(P) = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} P(X+k).$$

3. Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) < n$. En déduire que

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k P(k) = 0.$$

indication

- 1. Pour le noyau, regarder le coefficient de Δ . Pour l'image, il s'agit de montrer que Δ est surjectif. On peut construire une base de l'image, ou raisonner sur les restrictions aux $\mathbb{C}_n[X]$.
- 2. Écrire Δ comme somme de deux endomorphismes qui commutent, en appliquer le binôme de Newton.
- **3.** Évaluer en X = 0.