Definition: Conditional Entropy

Let X be a random variable and \mathcal{A} an event. Applying the definition of entropy to the conditional probability distribution $P_{X|\mathcal{A}}$ allows us to naturally define the entropy of X conditioned on the event \mathcal{A} :

$$H(X|\mathcal{A}) := \sum_{x \in \mathcal{X}} P_{X|\mathcal{A}}(x) \cdot \log rac{1}{P_{X|\mathcal{A}}(x)}.$$

This leads to the following notion:

Definition: Conditional entropy

Let X and Y be random variables, with respective images $\mathcal X$ and $\mathcal Y$. The conditional entropy H(X|Y) of X given Y is defined as

$$H(X|Y) := \sum_{y \in \mathcal{Y}} P_Y(y) \cdot H(X|Y \!=\! y) \,,$$

with the convention that the corresponding argument in the summation is 0 for $y \in \mathcal{Y}$ with $P_Y(y) = 0$.

Note that the conditional entropy H(X|Y) is not the entropy of a probability distribution but an expectation: the average uncertainty about X when given Y.

created: 2018-12-12