Complex Functions

Assignment 10 Ari Feiglin

Exercise 10.1:

Find the residues of each of the following functions at all of their singularities

- $(1) \frac{1}{z^4 + z^2}$
- (2) $\cot(z)$
- (3) $\csc(z)$
- $(4) \quad \frac{\exp(1/z^2)}{z-1}$
- $(5) \quad \frac{1}{z^2 + 3z + 2}$
- (6) $\sin(\frac{1}{\epsilon})$
- (7) $ze^{3/z}$
- $(8) \quad \frac{1}{az^2 + bz + c}$
- (1) This is equal to

$$\frac{1}{z^2} - \frac{1}{z^2 + 1} = \frac{1}{z^2} + \frac{i}{2} \frac{1}{z - i} - \frac{i}{2} \frac{1}{z + i}$$

Since the singularities of all these functions (0, i, -i) are unique to each function, each function is analytic at the singularity of the other (ie. $\frac{1}{z^2}$ is analytic at $\pm i$, etc) and therefore does not contribute to the residue. Thus the only factor which contributes to the residue at 0 is $\frac{1}{z^2}$, whose residue is 0 (since all of these rational functions are already Laurent series). And the only factor which contributes to the residue at i is $\frac{1}{z-i}$, whose residue is $\frac{i}{2}$. And similarly the residue at -i is $-\frac{i}{2}$. So

Res
$$(f, 0) = 0$$
, Res $(f, i) = \frac{i}{2}$, Res $(f, -i) = -\frac{i}{2}$

(2) Since $\cot(z) = \frac{\cos(z)}{\sin(z)}$, its singularities are when $\sin(z) = 0$ ie. $z = \pi k$ for $k \in \mathbb{Z}$. Since these are not zeros of $\cos(z)$, these are simple poles and so if we let $z_k = \pi k$, we the residue of f at z_k is

$$\lim_{z \to z_k} (z - z_k) \cot(z) = \lim_{z \to z_k} \cos(z) \cdot \frac{z - z_k}{\sin(z)} = \cos(z_k) = \cos(\pi k) = (-1)^k$$

so we have

$$\operatorname{Res}(\cot(z), \pi k) = (-1)^k$$

(3) Similar to before $\csc(z) = \frac{1}{\sin(z)}$ has simple poles at $z_k = \pi k$ and

$$\operatorname{Res}(\csc(z), z_k) = \lim_{z \to z_k} (z - z_k) \csc(z_k) = 1$$

(4) Last week we showed that the Laurent series of this is

$$\sum_{n=-\infty}^{0} z^n \sum_{k=0}^{-n} a_k, \qquad a_{2k+1} = \frac{1}{k!}, \quad a_{2k} = 0$$

and so the coefficient of z^{-1} in this series is

$$a_0 + a_1 = 1$$

1

meaning

$$\operatorname{Res}(f,0) = 1$$

And since $\exp(1/z^2)$ is analytic at the other singularity, 1, it is a simple pole. So

Res
$$(f,1) = \lim_{z \to 1} (z-1) \cdot \frac{\exp(1/z^2)}{z-1} = e$$

(5) The roots of the denominator are z = -1, -2 and using the solution to (8), we see that

$$\operatorname{Res}(f, -1) = \frac{1}{(-1+2)} = 1, \qquad \operatorname{Res}(f, -2) = \frac{1}{(-2+1)} = -1$$

(6) Using the Taylor expansion of sin(z) we see that

$$\sin(z) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{z^{2k+1}}{(2k+1)!} \implies \sin\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{z^{-2k-1}}{(2k+1)!}$$

and so the coefficient of z^{-1} is $(-1)^0 \cdot \frac{1}{1!} = 1$, so

$$\operatorname{Res}(f,0) = 1$$

(7) Using the Taylor expansion of $\exp(z)$ we see that

$$z \exp\left(\frac{3}{z}\right) = \sum_{k=0}^{\infty} z^{1-k} \frac{3^k}{k!}$$

and so

$$Res(f,0) = \frac{9}{2!} = \frac{9}{2}$$

(8) If $az^2 + bz + c$ has two distinct roots $\alpha \neq \beta$ then $az^2 + bz + c = a(z - \alpha)(z - \beta)$ and so

$$f(z) = \frac{1}{a(z-\alpha)(z-\beta)}$$

and so the singularities, α and β , are simple poles and so

$$\operatorname{Res}(f,\alpha) = \lim_{z \to \alpha} (z - \alpha) \cdot f(z) = \lim_{z \to \alpha} \frac{1}{a(z - \beta)} = \frac{1}{a(\alpha - \beta)}$$

and similarly

$$\operatorname{Res}(f,\beta) = \frac{1}{a(\beta - \alpha)}$$

And if the polynomial only has a single root α , then $f(z) = \frac{1}{a(z-\alpha)^2}$ whose residue at α is 0.

Exercise 10.2:

Compute the following integrals

- $(1) \quad \int_{|z|=1} \cot(z) \, dz$
- (2) $\int_{|z|=2} \frac{dz}{(z-4)(z^3-1)}$
- (3) $\int_{|z|=1} \sin\left(\frac{1}{z}\right) dz$
- (4) $\int_{|z|=2} z e^{3/z} dz$

We know that the singularities of $\cot(z)$ are when $z=\pi k$. Of which there is only z=0 within |z|<1, and so by the residue theorem

$$\int_{|z|=1} \cot(z) = 2\pi i \operatorname{Res}(\cot(z), 0) = 2\pi i$$

The only singularities of this function when |z| < 4 are ω_3^k for k = 0, 1, 2 ($\omega_3 = \exp(i \cdot \frac{2\pi}{3})$). And since the denominator is equal to

$$(z-4)(z-\omega_3^0)(z-\omega_3^1)(z-\omega_3^2)$$

we get that

Res
$$(f, 1) = -9$$
, Res $(f, \omega_3^1) = 9 + 6\sqrt{3}i$, Res $(f, \omega_3^2) = 9 - 6\sqrt{3}i$

and so we get that by the residue theorem

$$\int_{|z|=2} f(z) dz = 2\pi i (-9 + 9 + 6\sqrt{3}i + 9 - 6\sqrt{3}i) = 18\pi i$$

We saw before that Res(f, 0) = 1 and so the integral is equal to, by the residue theorem,

$$\int_{|z|=1} \sin\!\left(\frac{1}{z}\right) dz = 2\pi i$$

And here Res(f, 0) = 4.5 and so

$$\int_{|z|=2} z e^{3/z} \, dz = 9\pi i$$

Exercise 10.3:

Suppose f is an entire function and f(z) is real if and only if z is real. Show that f has at most one zero.

Let C be any circle centered about the origin, and let γ be the differentiable function which parameterizes it $(\theta \mapsto re^{i\theta})$. Then we know that

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)}$$

is equal to the number of times which f(z) winds around the origin while z traverses C. Now since $f \circ \gamma$ is smooth, if it winds once around C it must cross over the real axis twice. But $f(\gamma(\theta))$ is real only when $\gamma(\theta)$ is real, which is only when $\theta = 0, \pi, 2\pi$. Thus f only crosses the real axis three times, and therefore must winds at most once around C. Thus

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} \le 1$$

And since this integral is also equal to the number of zeros of f, we have that the number of zeros of f is at most 1.

Exercise 10.4:

Find the number of zeros of f in the domain

- (1) $3e^z z$ in $|z| \le 1$
- (2) $\frac{1}{3}e^z z$ in $|z| \le 1$ (3) $z^4 5z + 1$ in $1 \le |z| \le 2$
- $(4) \quad z^6 5z^4 + 3z^2 1 \text{ in } |z| \le 1$
- Notice that

$$|3e^z| = 3e^x \ge 3e^{-1} > 1 = |-z|$$

and so by Rouché's theorem, $3e^z - z$ has the same number of zeros as $3e^z$ does in the domain, which is no zeros.

(2) Since

$$\left| \frac{1}{3}e^z \right| = \frac{1}{3}e^x \le \frac{1}{3}e < 1 = |-z|$$

by Rouché's theorem, $\frac{1}{3}e^z - z$ has the same number of zeros as -z does in the domain, which is one.

(3) For |z| = 2,

$$|-5z+1| \le 5|z|+1=11, \qquad |z^4|=16$$

and so $|-5z+1| < |z^4|$, so by Rouché's theorem, in $|z| \le 2$, $z^4 - 4z + 1$ has the same number of zeros as z^4 , which is one.

And for |z| = r,

$$|-5z+1| \ge |-5z|-1 = 5r-1,$$
 $|z^4| = r^4$

Since for r=1, $5r-1=4>1=r^4$, since these functions are continuous there exists an 0< r<1 such that $5r-1< r^4$. So $\left|z^4\right|<\left|-5z+1\right|$ and therefore by Rouché's theorem, in $|z|\leq r<1$, z^4-4z+1 has the same number of zeros as -5z+1 which is one (we can assume $r>\frac{1}{5}$). Thus all the zeros of f in $|z|\leq 2$ are in $|z|\leq r$, meaning they are in |z|<1. So there are no zeros in $1\leq |z|\leq 2$.

(4) Since

$$|z^6 - 5z^4| = |z^4| \cdot |z^2 - 5| = |z^2 - 5| \ge 5 - |z|^2 = 4$$

and

$$|3z^2 - 1| \le 3|z|^2 + 1 = 4$$

We have that $|3z^2-1| \le |z^6-5z^4|$ on |z|=1. Notice that $|3z^2-1|=4$ only if z^2 has the same direction as -1, meaning $z=\pm i$. In this case, $z^2-5=-6$ and so $|3z^2-1|<|z^2-5z^4|$. Thus we have that $|3z^2-1|<|z^6-5z^4|$ on |z|=1, and so by applying Rouché's theorem we get $z^6-5z^4+3z^2-1$ has the same number of zeros in $|z|\le 1$ as z^6-5z^4 does. Since $z^6-5z^4=z^4(z^2-5)$, and $\pm\sqrt{5}$ is not in $|z|\le 1$, the function has four zeros (since 0 has multiplicity 4).

Exercise 10.5:

Suppose f is analytic on and within a regular smooth closed contour γ , without zeros in f. Show that if m is a non-negative integer then

$$\frac{1}{2\pi i} \int_{\gamma} z^m \frac{f'(z)}{f(z)} dz = \sum_k z_k^m$$

where the sum is done over the zeros of f.

We will show that for q(z) entire,

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \cdot \frac{f'(z)}{f(z)} dz = \sum_{k} g(z_{k})$$

and so if $g(z) = z^m$ (which is entire), we get the desired result.

Let us denote $F(z) = g(z) \cdot \frac{f'(z)}{f(z)}$. By the residue theorem, we have that

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \cdot \frac{f'(z)}{f(z)} = \sum_{k} \operatorname{Res}(F(z), z_k)$$

Since the singularities of $F(z) = g(z) \cdot \frac{f'(z)}{f(z)}$ are the zeros of f(z) since it is analytic. Suppose α is a zero of degree k, then there exists a function which is analytic in γ and non-zero at α , h, such that

$$f(z) = (z - \alpha)^k h(z)$$

then

$$f'(z) = k(z - \alpha)^{k-1}h(z) + (z - \alpha)^k h'(z)$$

and so

$$\frac{f'(z)}{f(z)} = \frac{k}{z - \alpha} + \frac{h'(z)}{h(z)}$$

And so

$$F(z) = g(z) \cdot \frac{k}{z - \alpha} + g(z) \cdot \frac{h'(z)}{h(z)}$$

Since $h(\alpha) \neq 0$, $g(z) \cdot \frac{h'(z)}{h(z)}$ is analytic about α and therefore does not contribute to the residue of F(z) at α . So

$$\operatorname{Res}(F, \alpha) = \operatorname{Res}\left(g(z) \cdot \frac{k}{z - \alpha}, \alpha\right)$$

Now we make the general claim that if g is analytic at α then

$$\operatorname{Res}\left(\frac{g(z)z - \alpha}{,}\alpha\right) = g(\alpha)$$

this is since g has a Taylor series about α ,

$$g(z) = \sum_{k=0}^{\infty} c_k (z - \alpha)^k$$

and so

$$\frac{g(z)}{z-\alpha} = \sum_{k=0}^{\infty} c_k (z-\alpha)^{k-1}$$

and so $\operatorname{Res}\left(\frac{g(z)}{z-\alpha}\right)=c_0$, and recall that $c_0=g(\alpha)$ as required.

Thus we have that

$$\operatorname{Res}(F, \alpha) = k \cdot g(\alpha)$$

Where k is the multiplicity of α .

Thus

$$\frac{1}{2\pi i} \int_{\gamma} F(z) dz = \sum_{\alpha} \operatorname{Res}(F, \alpha) = \sum_{\alpha} k \cdot g(\alpha)$$

as required (since the sum of $g(z_k)$ will sum z_k as per its multiplicity).

Exercise 10.6:

Show that for every R > 0, there exists an n large enough such that

$$P_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$$

has no zeros in $|z| \leq R$.

Since P_n is the partial sum of the powerseries of $\exp(z)$, we have $P_n(z) \xrightarrow[n \to \infty]{} \exp(z)$. Thus there exists an n where $|\exp(z) - P_n(z)| < e^{-R}$ for all $|z| \le R$. Since $|\exp(z)| = e^x \ge e^{-R}$ we have that

$$|P_n(z) - \exp(z)| < e^{-R} \le |\exp(z)|$$

and so $P_n(z) - \exp(z) + \exp(z) = P_n(z)$ has the same number of zeros on $|z| \le R$ as $\exp(z)$, which is none. Meaning $P_n(z)$ has no zeros on $|z| \le R$.

Exercise 10.7:

Prove the fundamental theorem of algebra.

Let

$$p(z) = \sum_{n=0}^{N} a_n z^n$$

For some $N \geq 1$, our goal is to prove p(z) has a zero. Then let

$$g(z) = \sum_{n=0}^{N-1} a_n z^n$$

Then notice that

$$\left| \frac{g(z)}{z^N} \right| = \left| \sum_{n=0}^{N-1} a_n z^{n-N} \right| \le \sum_{n=0}^{N-1} |a_n| |z|^{n-N}$$

and since for every $0 \le n < N$, $|z|^{n-N} \xrightarrow[z \to \infty]{} 0$, we have that $\left| \frac{g(z)}{z^N} \right| \xrightarrow[z \to \infty]{} 0$. So we can take an R > 0 arbitrarily large such that when |z| = R,

$$\left| \frac{g(z)}{z^N} \right| < 1$$

and so

$$|g(z)| < |z^N|$$

on |z| = R. So by Rouché's theorem, we have that $P_n(z) = g(z) + z^N$ has the same number of zeros in $|z| \le R$ as z^N does. Since z^N has N zeros (0 with multiplicity N), that means $P_n(z)$ has $N \ge 1$ zeros in $|z| \le R$, as required.