CS 1510 Algorithm Design

Dynamic Programming
Problems 4 and 5

Due Friday September 12, 2014

Buck Young and Rob Brown

Problem 4

Input: Two strings, $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$

Output: The minimum cost steps to convert A to B according (where the cost of deletion is 3, the cost of insertion is 4, and the cost of replacement is 5.

Algorithm:

//set boundries (ie, base cases from recursion) DIFF[m+1][n+1] for $0 \le a \le m$ do DIFF[a][0] = 3*a //if we get here, the "recersion" is done and we have no option but deletion end for for $0 \le b \le n$ do DIFF[0][b] = 4*a //if we get here, the "recursion" is done and we have no option but insertion end for

Meed to explain algorithm

//iterate in place of recursive call for $1 \le a \le m$ do

for $1 \le b \le n$ do if A[a] == B[b] then

DIFF[a|b] = DIFF[a-1][b-1] + 0 //characters match, do nothing

else

DIFF[a][b] = min(DIFF[a-1][b] + 3, DIFF[a][b-1] + 4, DIFF[a-1][b-1] + 5)

end if

end for

Differed for

			a	b	c	a.	b	C
		0	1	2	3	4	5	6
	0	0	3	6	9	12	15	18
a	1	4	0 .	3	6	9	12	15
b	2	8	4	0	3	6	9	12
a	3	12	8	4 '1	5	3	6	9
C	4	16	12	8	4 .	7	10	6
a	5	20	16	12	8	4	7	10
b	6	24	20	16	12	8	4+	- 7
		***************************************	***************************************					

Start at (m, n).

Take min valve from (m-1, n), (m, n-1), and (m-1, n-1).

If m-1; delete & from A

If n-1; insert on into A at m+1

If (m-1, n-1): replace am with an if nut equal

Continue by moving to the index chosen above.

Example: move left:

A= a back => A= aback

A= a back => A= aback

Problem 5

Here are the generated tables for the given problem. Scratch-work for the non-trivial calculations are attached. A hand-drawn picture of the sample trace (explained below) for the optimal solution is also included with the scratch-work.

Table 1: Optimal Access Times

9								
		1	2	3	4	5		
ે વ - -	1	0.5	0.6	0.85	1.4	2.15		
	2	-	0.05	0.2	0.55	1.05		
	3	-	-	0.1	0.4	0.9		
	4	-	-	-	0.2	0.65		
	5	-	-	-		0.25		
4	3	-		0.2	0.55	1.05 0.9 0.65		

Table 2: Optimal Roots

	v								
		1	2	3	4	5			
	1	K_1	K_1	K_1	K_1	$\overline{K_1}$			
	2	-	K_2	K_3	K_4	K_4			
2	3	-		K_3	K_4	K_4			
	4	-	-		K_4	K_5			
	5	-	-		1	K_5			

Example reconstruction of optimal tree:

- 1) You want to find the optimal root for all nodes $K_1 ext{ ... } K_5$, so check the Roots Table at a=1 and b=5. The optimal root is K_1 from the table. Add K_1 . At this point, the left-hand side of node K_1 is null (because this is nothing less-than K_1 in the given problem) and the right-hand side is the optimal subtree for nodes $K_2 ext{ ... } K_5$.
- 2) Continue in this manner. You want the optimal root for K_2 to K_5 , so check the Roots Table at a=2 and b=5. The optimal root is K_4 . Add K_4 . The left-hand side of the node K_4 is the optimal subtree of nodes K_2 ... K_3 and the right-hand side is from K_5 ... K_5 .
- 3) Check the table for (2, 3), get the node K_3 . Add K_3 to the left-hand side of K_4 . The left-hand side of our new K_3 node is the optimal subtree of K_2 ... K_2 . Check the table for (5,5) obviously it is node K_5 . Add K_5 to the right-hand side of K_4 . There are no subtrees for node K_5 .
- 4) Add K_2 . Verify that your answer is optimal by adding up the access times * depth and checking Table 1 at a=1 and b=5.

From these instructions, we have the optimal subtree.

Please check the attached sheet for a drawn picture representing the above process.

non-trival Computations for the Copyrithmal Acress Time's Table

$$a=2$$
 $b=4$
 $(.05+.2)$
 $cot=4*(.2+8)]+\sum_{k=0}^{8}w_{k}$
 $=.2+.05+.1+.2=(.55)$

$$a=1$$
 $b=3$
 $(.5+.1),$
 $(.6+8)]+&w_{k}$
 w_{k}
 w_{k}
 w_{k}
 w_{k}
 w_{k}
 w_{k}

$$a=2$$
 $b=5$
 $(.05+.65)$
 $(.2+.25)$
 $(.55+8)$
 $(.55+8)$
 $(.55+1+.2+.25)$
 $(.05+.05+.1+.2+.25)$

4×.05

2.15 /