MultipleRegClasswork

November 9, 2022

WTF23 DATA SCIENCE AND ARTIFICAIL INTELLIGENCE

GROUP C SUBGROUP 1

CLASSWORK ON MULTIPLE REGRESSION

QUESTION

In exercise folder (same level as this notebook on github) there is hiring.csv. This file contains hiring statics for a firm such as experience of candidate, his written test score and personal interview score. Based on these 3 factors, HR will decide the salary. Given this data, you need to build a machine learning model for HR department that can help them decide salaries for future candidates. Using this predict salaries for following candidates,

- * 2 yr experience, 9 test score, 6 interview score
- * 12 yr experience, 10 test score, 10 interview score

Import libraries

```
[1]: import pandas as pd
  import numpy as np
  from sklearn import linear_model
  from word2number import w2n
  import math
  import seaborn as sns
  import matplotlib.pyplot as plt
  from mpl_toolkits.mplot3d import Axes3D
  %matplotlib inline
```

Read data and perform EDA and Data cleaning

```
[2]: hire = pd.read_csv('hiring.csv')
hire
```

```
[2]:
       experience
                     test_score(out of 10)
                                               interview_score(out of 10)
                                                                               salary($)
     0
               NaN
                                         8.0
                                                                           9
                                                                                   50000
     1
               NaN
                                         8.0
                                                                           6
                                                                                   45000
     2
                                                                           7
                                                                                   60000
              five
                                         6.0
     3
                                        10.0
                                                                          10
                                                                                   65000
               two
     4
                                         9.0
                                                                           6
                                                                                   70000
             seven
                                         7.0
     5
                                                                          10
                                                                                   62000
             three
                                         NaN
                                                                           7
                                                                                   72000
               ten
```

```
7
                                       7.0
                                                                              80000
           eleven
                                                                       8
[3]: hire.info()
     hire.describe()
     hire.isna().sum()
     hire.columns
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 8 entries, 0 to 7
    Data columns (total 4 columns):
     #
         Column
                                       Non-Null Count
                                                        Dtype
     0
         experience
                                       6 non-null
                                                        object
         test_score(out of 10)
                                       7 non-null
                                                        float64
         interview_score(out of 10)
                                       8 non-null
                                                        int64
         salary($)
                                       8 non-null
                                                        int64
    dtypes: float64(1), int64(2), object(1)
    memory usage: 384.0+ bytes
[3]: Index(['experience', 'test_score(out of 10)', 'interview_score(out of 10)',
             'salary($)'],
           dtype='object')
    Fill up the NANs
[4]: hire.experience = hire.experience.fillna('zero')
     hire
[4]:
                   test_score(out of 10)
                                            interview_score(out of 10)
       experience
                                                                          salary($)
             zero
                                       8.0
                                                                              50000
     1
                                       8.0
                                                                       6
                                                                              45000
             zero
                                                                       7
     2
             five
                                       6.0
                                                                              60000
     3
                                      10.0
                                                                      10
              two
                                                                              65000
     4
            seven
                                       9.0
                                                                       6
                                                                              70000
     5
            three
                                       7.0
                                                                      10
                                                                              62000
     6
                                                                       7
                                                                              72000
              ten
                                       NaN
                                       7.0
                                                                              80000
     7
           eleven
    Use the word-to number modules to convert the worded digit to numbers
[5]: hire.experience = hire.experience.apply(w2n.word_to_num)
     hire
[5]:
                    test_score(out of 10)
                                             interview_score(out of 10)
        experience
                                                                           salary($)
     0
                 0
                                        8.0
                                                                        9
                                                                               50000
                 0
     1
                                        8.0
                                                                        6
                                                                               45000
     2
                 5
                                        6.0
                                                                        7
                                                                               60000
     3
                 2
                                       10.0
                                                                       10
                                                                               65000
     4
                  7
                                        9.0
                                                                        6
                                                                               70000
```

5	3	7.0	10 62000
6	10	NaN	7 72000
7	11	7.0	8 80000

Compute the average test score

```
[6]: test_scoreavg = math.floor(hire['test_score(out of 10)'].mean())
test_scoreavg
```

[6]: 7

fill up the null values with the average

```
[7]: hire['test_score(out of 10)'] = hire['test_score(out of 10)'].

ofillna(test_scoreavg)

hire
```

[7]:	experience	<pre>test_score(out of 10)</pre>	<pre>interview_score(out of 10)</pre>	<pre>salary(\$)</pre>
0	0	8.0	9	50000
1	0	8.0	6	45000
2	5	6.0	7	60000
3	2	10.0	10	65000
4	7	9.0	6	70000
5	3	7.0	10	62000
6	10	7.0	7	72000
7	11	7.0	8	80000

Visualize the data

```
[8]: sns.pairplot(data = hire, height = 2)
```

[8]: <seaborn.axisgrid.PairGrid at 0x24cc17b6e50>

COMPUTE THE REGRESSION

[9]: LinearRegression()

finding the regression coefficient and intercept

```
[16]: print ("Regression coefficient are:")
    print(reg.coef_ )
    print ("Regression intercept is:")
    print(reg.intercept_ )
```

Regression coefficient are:

[2922.26901502 2221.30909959 2147.48256637]

Regression intercept is:

14992.65144669314

Salary prediction for candidates with 2 yr experience, 9 test score, 6 interview score using our prediction model

```
[12]: predicted1 = reg.predict([[2, 9, 6]])
predicted1
```

C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names warnings.warn(

[12]: array([53713.86677124])

To validate our predictions using our regression coefficient

Results shows our predictions to be correct

```
[13]: 2922.26901502*2 + 2221.30909959*9 + 2147.48256637*6 + 14992.651446693118
```

[13]: 53713.86677126312

Salary prediction for candidates with 12 yr experience, 10 test score, 10 interview score using our prediction model

```
[14]: predicted2= reg.predict([[12, 10, 10]])
predicted2
```

C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does
not have valid feature names, but LinearRegression was fitted with feature names
warnings.warn(

[14]: array([93747.79628651])

To validate our predictions using our regression coefficient

```
[15]: 2922.26901502*12 + 2221.30909959*10 + 2147.48256637*10 + 14992.651446693118
```

[15]: 93747.79628653312

CONCLUSION

Our models both the predictive multiple regression model and the normal multiple regression model shows same result.

Candidates with 2 yr experience, 9 test score, 6 interview score will be paid 53713.8668

Candidates with 12 yr experience, 10 test score, 10 interview score 93747.7963

CONTRIBUTORS

Margaret Oluwadare
Loveth Osuagwu
Oluchi Okoro (Oluchi Oluchi)
Monsurat Onabajo
Mariam Anishere
Olubusayo Solola
Olayemi Ibiloye
Maryann Amaefula
Olayemi Oloyede
Oluwadunsin Olajide