FAQs zur 1. LV

1. A*, Dijkstra

Djikstra ist ein Algoritmus, um die kürzeste Route von einem Punkt zu allen anderen Punkten zu finden.

A* ist ein Algorithmus, der ähnlich funktioniert wie Djikstra, aber eine Heuristik verwendet, die den Abstand zwischen zwei Knoten schätzt. Dadurch sucht sich A* nur neue Knoten, die voraussichtlich auf dem richtigen Weg liegen / dem Ziel näher kommen.

2. zusammenhängenden Graph

Menge von Knoten und Kanten, sodass alle Knoten von allen anderen Knoten unabhängig von der Richtung erreichbar sind.

3. (ESRI) World File

Ein World File ist ein Fileformat welches von Unternehmen ESRI eingeführt wurde und dafür verwendet wird den Pixelkoordinaten einer separaten Bilddateidatei geographische Koordinaten zuzuweisen.

4. Georeferenzieren

Der Vorgang zu beliebigen Daten einen Raumbezug herzustellen.

5. Laplace Matrix, Satz von Fiedler

Laplace Matrix: Beziehung zwischen Knoten (ähnlich zu Adjazentmatrix). Satz von Fiedler: Herleitung der Anzahl von Komponenten eines Graphen aus einer Laplace Matrix.

6. kd Tree

Binärer Suchbaum, bei dem jedes Blatt ein Punkt in einem k-Dimensionalem Raum interpretiert wird.

7. Kachelung einer Karte

Überführung von Vektordaten nach Rasterdaten und Aufteilung einer Karte in kleinere Teile (häufig in Quadrate).

8. Ameisenalgorithmus

(evolutionaerer) Algorithmus zum Finden der kürzesten Route von A nach B, angelehnt an Wegfindung bei Ameisen (erster findet einen weg -> Nachfolger folgen mit Abweichungen und finden evtl. neue, bessere Route.

9. Adjazenzmatrix / Adjazenzliste

Adjazenzmatrix: N knoten -> NxN Matrix mit wert 1, falls die Entsprechenden Knoten benachbart sind.

Adjazenzliste: Liste aller Knoten, bei der jeder Knoten einer Liste von benachbarten Knoten besitzt.

10. Shapefile

File Spezifikation mit Vektordaten, die Infos über Straßensegmente enthält.

11. Map Matching

Der Prozess GPS-Koordinaten in ein lokales Modell der Welt zu projizieren.

1. Wie lassen sich die einzelnen Schritte aus Aufgabe P1-A1 (von projizierten NAD83 Koordinaten zu geographischen Koordinaten) stichpunktartig erläutern?

- Auslesen der Transformationsparameter für NAD83 anhand des boston.tif Bildes mit geotiffinfo()
- Umwandeln dieser Daten in benötigte Datenstruktur mit geotiff2mstruct()
- Dann (Rück-)Transformation anwenden mit projinv()

2. Wie lassen sich folgende Funktionen und Methoden erläutern?

1. unitsratio

Gibt das Verhältnis zweier Einheiten zurück. (z.B. unitsratio('sf', 'm') = 3.2808)

2. geoshow

Plotted eine Karte anhand von Lat/Lon Weltkoordinaten.

3. Mapshow

Plotted eine Karte anhand von beliebigen (projizierten) Koordinaten.

4. projinv (mit Angabe der Übergabeparameter)

projinv() bekommt ein struct mit Projektionsparametern, sowie zwei Vektoren, die x und y Koordinaten von beliebig vielen (projizierten) Punkten enthalten und gibt die rücktransformierten (realen) Koordinaten in zwei Vektoren zurück.

5. geotiffinfo (mit Angabe der Übergabeparameter)

geotiffinfo bekommt als Parameter einen Filenamen oder eine URL zu einem tif-File und gibt die Eigenschaften (wie z.B. Projektionsinformationen) des Files zurück.

6. S = shaperead('concord_roads.shp','Selector',... $\{@(v1,v2) (v1 \ge 4) \&\& (v2 \ge 200), CLASS', LENGTH'\}$)

S enthält dann eine List aller Einträge des 'concord_roads.shp Files, die die Class 1,2,3 oder 4 enthalten und gleichzeitig einen Length Wert von mindestens 200 haben. Jeder Eintrag dieser Liste entspricht dabei einem Straßensegment.

3. Was steht in dem Shapefile boston roads.shp in den Feldern X und Y?

X und Y sind die Koordinaten von Punkten in dem jeweiligen Referenzsystem (hier NAD83) und entsprechen den Koordinaten von Straßen.