Table of Contents

Sam Nazari	1
Simulation parameters	1
Oynamic system	
Construct Fault Vectors	
ЛО 1	8
ЛО 2	
Sim & Plot	

Sam Nazari

```
Teixeira MS Thesis Intrusion Detection Model 06-Nov-2016 04-Jan-2017 12-Jan-2017 clear, clc
```

Simulation parameters

```
TSIM = 20;
% u1Val = 34.632;
% u2Val = 1641.6;
% u3Val = 29980;
%
% X0 = [0.3412;525.7;525.7;496.2];
%
% z110 = 518.6174;
% z410 = -51365.5370;
% z320 = 472.2;
% z420 = -18391.8;
%
% fal = 0;
% fa2 = 0;
% fa3 = 1;
%
% f = [fal;fa2;fa3]
```

Dynamic system

```
0 0 -1 -1 -1 3
   ]
A = -L
B = eye(7)
Bf=B;
Bf(2,2)=0
C = [
   0 0 0 0 0 0 0;
   0 1 0 0 0 0 0;
   0 0 1 0 0 0 0;
   0 0 0 1 0 0 0;
   0 0 0 0 0 0 0;
   0 0 0 0 0 0 0;
   0 0 0 0 0 0
   ]
E = [1.0;20.758;0.0;0.0]
x0 = [0 \ 1 \ 1 \ 0 \ 0 \ 0]
L =
    3
         -1
              -1
                   -1
                         0
                               0
                                    0
   -1
          4
              -1
                    -1
                          -1
                                0
                                    0
   -1
         -1
              3
                    0
                         0
                               -1
                                     0
   -1
         -1
              0
                    3
                         0
                               0
                                     -1
    0
         -1
              0
                    0
                          2
                                0
                                     -1
                    0
          0
    0
               -1
                          0
                                2
                                     -1
    0
         0
              0
                    -1
                          -1
                               -1
                                     3
A =
   -3
         1
              1
                   1
                        0
                               0
    1
         -4
               1
                     1
                           1
                                0
          1
    1
               -3
                    0
                          0
                                1
                                    0
               0
                                0
    1
          1
                    -3
                          0
                                     1
    0
          1
                    0
                          -2
                                0
               0
                                     1
                    0
    0
          0
               1
                          0
                               -2
                                     1
    0
          0
               0
                     1
                          1
                                1
                                     -3
B =
    1
          0
               0
                     0
                           0
                                0
                                      0
    0
          1
               0
                     0
                           0
                                0
                                      0
    0
          0
               1
                     0
                           0
                                0
                                      0
          0
    0
               0
                     1
                           0
                                0
                                      0
    0
          0
               0
                     0
                           1
                                0
                                      0
          0
               0
                     0
                           0
```

```
Bf =
     1
            0
                  0
                                0
                         0
                                      0
     0
            0
                   0
                         0
                                0
                                      0
     0
            0
                  1
                         0
                                0
                                      0
     0
            0
                   0
                                0
                                      0
                         1
     0
            0
                   0
                         0
                                1
                                      0
     0
            0
                   0
                         0
                                       1
                                             0
                                0
            0
                         0
                                0
C =
     0
                   0
                                0
                                      0
     0
            1
                   0
                         0
                                0
                                       0
     0
            0
                  1
                         0
                                      0
     0
            0
                   0
                                0
                                      0
                                             0
                         1
     0
            0
                   0
                         0
                                0
                                       0
                                             0
     0
            0
                   0
                         0
                                0
                                       0
                                             0
     0
                                0
                                      0
E =
    1.0000
   20.7580
          0
          0
x0 =
           1 1 0 0 0 0
     0
```

Construct Fault Vectors

```
f1 = [1 0 0 0 0 0 0]' % Vertex one is the intruder
f2 = [0 1 0 0 0 0 0]' % Vertex two is the intruder
f3 = [0 0 1 0 0 0 0]' % Vertex three is the intruder
f4 = [0 0 0 1 0 0 0]' % Vertex four is the intruder
f5 = [0 0 0 0 1 0 0]' % Vertex five is the intruder
f6 = [0 0 0 0 0 1 0]' % Vertex six is the intruder
f7 = [0 0 0 0 0 0 1]' % Vertex seven is the intruder
%E = [f1 f2 f3 f4 f5 f6 f7]
%E = [f2 f3 f4 f5 f6 f7]
E = [f1 f3 f5]
% Choose the agent to be attacked
```

```
flt1 = 0
flt2 = 0
flt3 = 0
flt4 = 1
flt5 = 0
flt6 = 0
flt7 = 0
% Choose a magnitude for the attack
f1Val = 10
f2Val = 10
f3Val = 10
f4Val = 10
f5Val = 10
f6Val = 10
f7Val = 10
% Chose the attack time
tf1 = 2
tf2
    = 2
tf3
    = 2
    = 2
tf4
tf5
    = 2
tf6
    = 5
    = 7
tf7
f1 =
     1
     0
     0
     0
     0
     0
     0
f2 =
     0
     1
     0
     0
     0
     0
f3 =
     0
     0
     1
```

f4 =

f5 =

0

f6 =

f7 =

E =

1 0 0 0 0 0

 0
 1
 0

 0
 0
 0

 0
 0
 1

 0
 0
 0

 0
 0
 0

 0
 0
 0

flt1 =

0

flt2 =

0

f1t3 =

0

flt4 =

1

f1t5 =

0

flt6 =

0

f1t7 =

0

f1Val =

10

f2Val =

10

f3Val =

10

f4Val =

10

f5Val =

10

f6Val =

10

f7Val =

10

tf1 =

2

tf2 =

2

tf3 =

2

tf4 =

2

tf5 =

2

tf6 =

5

tf7 =

7

UIO 1

This UIO is insensitive to faults in agent 2, but can detect faults in agents 3 and 4:

```
bf1 = [0 1 0 0 0 0 0]'
% Rank conditions
rank(C*bf1)
rank(bf1)
% Observer matrices
CE = C*bf1
CEin = inv(CE'*CE)
H1=bf1*CEin*CE'
T1 = eye(7)-H1*C
A11 = T1*A
rank(obsv(A11,C))
k11 = place(A11,C,[-1,-2,-3,-4,-5,-6,-7])
F = A1-k1*C
F1 = A+H1*C*L-k11*C
k1 = k11 + F1*H1
bf1 =
     0
     1
     0
     0
     0
     0
     0
ans =
     1
ans =
     1
CE =
     0
     1
     0
     0
```

-0.7112

0.3204

-0.0196

2.5395 0.1004

0.0027

0.8962

-0.0957

0.1221

-0.1124

0.9599

7.0316 -0.0797 0.4125

2.4289

-0.6336

0.4469

0.8230

0.9040

0.5890

1.1596

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
F1 =						
-3.0000	1.0000	1.0000	1.0000	0	0	0
0	-7.0316	0.0797	-0.4125	0	0	0
1.0000	0.4110	-5.4289	0.7112	0	1.0000	0
1.0000	-0.1596	0.6336	-5.5395	0	0	1.0000
0	1.0000	0	0	-2.0000	0	1.0000
0	0	1.0000	0	0	-2.0000	1.0000
0	0	0	1.0000	1.0000	1.0000	-3.0000
k1 =						
0	1.0000	0	0	0	0	0
0.4469	0.0000	-0.0797	0.4125	0.3204	•	0.1221
	-					
0.8230	1.0000	2.4289	-0.7112	-0.0196		-0.1124
0.9040	1.0000	-0.6336	2.5395	0.1004	-0.0957	0.9599
0	1.0000	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

UIO 2

This UIO is insensitive to faults in agent 3, but can detect faults in agents 2 and 4:

```
bf2 = [0 \ 0 \ 1 \ 0 \ 0 \ 0]'
% Rank conditions
rank(C*bf2)
rank(bf2)
% Observer matrices
CE = C*bf2
CEin = inv(CE'*CE)
H2=bf2*CEin*CE'
T2 = eye(7)-H2*C
A12 = T2*A
rank(obsv(A12,C))
k12 = place(A12,C,[-1,-2,-3,-4,-5,-6,-7])
F = A1-k1*C
F2 = A+H2*C*L-k12*C
k2 = k12 + F2*H2
bf2 =
     0
     0
```

0 0 1

A12 =									
-3	1	1	1	0	0	0			
1	-4	1	1	1	0	0			
0	0	0	0	0	0	0			
1	1	0	-3	0	0	1			
0	1	0	0	-2	0	1 1			
0 0	0 0	1 0	0 1	0 1	-2 1	-3			
U	U	U	1	1	1	-3			
ans =									
7									
7									
k12 =									
	_								
	0	0	0	0		0	0	0	0
1.446		3.0316		9203	1.412		1.3204	0.0027	0.1221
-0.177 0.904		-0.4110 1.1596	5.4289 -0.6336		-0.711 2.539		-0.0196 0.1004	-0.1038 -0.0957	-0.1124 0.9599
	0	1.1596	-0.0	0		0	0.1004	0.0937	0.9399
	0	0		0		0	0	0	0
	0	0		0		0	0	0	0
	O	O		Ü		Ü	· ·	· ·	O
F2 =									
-3.000	0	1.0000	7	0000	1.000	0	0	0	0
1.000		-7.0316		0797	-0.412		1.0000	0	0
		0.4110		4289	0.711		0	0	0
1.000		-0.1596		5336	-5.539		0	0	1.0000
	0	1.0000	•	0		0	-2.0000	0	1.0000
	0	0	1.	0000		0	0	-2.0000	1.0000
	0	0		0	1.000		1.0000	1.0000	-3.0000
k2 =									
	0	0		0000		0	0	0	0
1.446		3.0316	1.	0000	1.412		1.3204	0.0027	0.1221
-0.177		-0.4110		0	-0.711		-0.0196	-0.1038	-0.1124
0.904		1.1596		0	2.539		0.1004	-0.0957	0.9599
	0	0		0		0	0	0	0
	0	0	1.0	0000		0	0	0	0
	0	0		0		0	0	0	0

Sim & Plot

sim('TeixeiraModel')

```
figure,
subplot(311),
plot(fn2,'LineWidth',2),ylabel('r12'),xlabel('Time
 (sec)'),title('Residual Signal for Agent 2'), grid on, ylim([-5,5])
subplot(312),
plot(fn3,'r','LineWidth',2),ylabel('r13'),xlabel('Time
 (sec)'),title('Residual Signal for Agent 3'), grid on, ylim([-5,5])
subplot(313),
plot(fn4,'g','LineWidth',2),ylabel('r14'),xlabel('Time
 (sec)'),title('Residual Signal for Agent 4'), grid on, ylim([-5,5])
% figure,
% subplot(311),
% plot(tout,y1R,'k'),ylabel('y1_R'),xlabel('Time
 (sec)'),title('Outputs: y1_R, y2_R, y3_R')
% subplot(312),
% plot(tout,y2R,'b'),ylabel('y2_R'),xlabel('Time (sec)')
% subplot(313),
% plot(tout,y3R,'r'),ylabel('y3_R'),xlabel('Time (sec)')
% figure,
% plot(tout,r11,'k'),ylabel('r_1^1'),xlabel('Time (sec)')
% title('Residual from UIO 1')
%
% figure,
% plot(tout,r12,'k'),ylabel('r_1^2'),xlabel('Time (sec)')
% title('Residual from UIO 2')
% figure
% ax1=subplot(411),plot(tout,ylR*T1(1,1),'k'),ylabel('ylR x T_1(1,1)')
% grid on
% ax2=subplot(412),plot(tout,y2R,'r'),ylabel('y2R')
% grid on
% ax3=subplot(413),plot(tout,z11,'b'),ylabel('z 1^1'),
% grid on
% ax4=subplot(414),plot(tout,r11,'q'),ylabel('r 1^1'),
% grid on
% linkaxes([ax1,ax2,ax3,ax4],'x')
% figure,
% ax1=subplot(211),plot(tout,r11,'k'),ylabel('r_1^1'),
% title('Residual from UIO 1 and UIO 2'),xlabel('Time (hr)')
% grid on
% ax2=subplot(212),plot(tout,r12,'b'),ylabel('r_1^2')
% xlabel('Time (hr)'),grid on
% linkaxes([ax1,ax2],'x')
% figure
% ax1=subplot(411),plot(tout,y1R*T1(1,1),'k'),ylabel('y1R x T_1(1,1)')
% grid on
% ax2=subplot(412),plot(tout,y2R,'r'),ylabel('y2R')
% grid on
% ax3=subplot(413),plot(tout,z11,'b'),ylabel('z_1^1'),
% grid on
```

```
% ax4=subplot(414),plot(tout,r11,'g'),ylabel('r_1^1'),
% grid on
% linkaxes([ax1,ax2,ax3,ax4],'x')
%
% figure,
% plot(tout,r2)
Warning: Model 'TeixeiraModel' is using a default value of 0.2 for maximum step
size. You can disable this diagnostic by setting Automatic solver parameter
```


Published with MATLAB® R2016b