# Yelp Review Tourist Classifier: an NLP System

Methods in Computational Linguistics

Tyler Wilbers

## Outline

- o The Goal
  - Create NLP system that can classify whether or not a Yelp review written in English was written by a local or visitor to the region.
- Creating the Corpus
- Training the classifier
  - Feature Extraction
  - Increasing Accuracy
- Results

## The Goal





Although I sense danger, for there's now a bar downstairs; I'm pretty stoked about about family owned bar with good taps, Whiskey drinks, food and atmosphere--finally. We've been here for years and this is the first decent chill spot close to the Gates and Kosciusko stop. B52 bus is a block away. The twins (no you weren't that drunk) and a Chicagoan bartender were super abputwayttentive and the pretzel dude was off the chain.



Local

Was this review ...?













We entered the restaurant at 1:30 on a Sunday and it was pretty packed. We were still seated quickly though and service was perfect. I can't wait for my next trip to south Georgia so I can stop at Bay South for lunch.



Remote

Was this review ...?











## The Goal



## The Corpus

- > I used the data provided by the Yelp Dataset Challenge to construct a corpus:
  - Their data set included 2.2M reviews by 552K users for 77K businesses.
- > Two problems:
  - The Yelp Dataset does not include the locations of users (only businesses).
  - This data set is entirely too large for my project.
- > I approached these problems in tandem to create a corpus of yelp reviews with proper labels to train a supervised model.

## Constructing Training Labels

The Yelp Dataset does not include the locations of users (only businesses).

So I used the following algorithm to find the home cluster for ever user:

Filter selection of reviews for users that have more than 20 reviews for restaurants.

Step 2

Step 1

· Define home cluster for every user

Step 3

- · Mark reviews inside user's home cluster as *local*.
- Mark reviews ~150 miles outside centroid of home cluster as *remote*

# Home Cluster Algorithm

- > Every review has a geo-point (latitude, longitude).
- > For every user *u*, for every review *r* written by *u*, add a proximity counter for *r*.
  - This counts the number of reviews written by  ${\it u}$  that are in either 1 degree longitude or 1 degree latitude from  $\it r.$
  - This is a distance of ~60 miles max.
- > Ever user *u*, now has a review with a geo-point *g* with the highest proximity counter.
  - If the proximity counter is greater than half of their total number of reviews, set their home as  ${\it g}$ .
  - The home cluster is every point within 1 degree of latitude or longitude from g.
- > If a review by  $\boldsymbol{u}$  is written within 1 degree of latitude or longitude from  $\boldsymbol{g}$ , the review is marked as local and added to the corpus.
- > If a review is ~150 miles from *g*, mark those review as remote and add it to the corpus.

## The Final Corpus

- > The end result was corpus of 2840 reviews with 935 distinct users,1266 business, and 73 cities.
  - Test Set

A random sample of 2130 of these reviews equally split between local and remote would be dedicated to a training set.

- Train Set:

A random sample of 719 reviews would be used for a test set.

## Yelp Review Metadata Features

### > City of review:

- Categorical variable that ranges over every city in the corpus.
- Reason: reviews written in certain cities are more likely to be local/remote. (e.g., Paris Texas will not have as many remote review as New York).

#### > Week:

- Categorical variable that rages over ever week in the year.
- Reason: reviews written during certain times are more likely to be remote.

# Linguistic Features: City Mentioned

#### > Location mentions:

- Binary feature based on whether the location of the business is mentioned in the review.

#### Prediction:

 Local reviews are less likely to mention the city the review is in because they see it is more implied knowledge.

#### Results:

- Local reviews: 12% mention the city
- Remote reviews: 16% mention the city

# Linguistic Features: Length

- > Review length:
  - Character count of the review.

#### Results:

- The average character count of remote reviews is %7 larger than the average character count of local reviews.

# Linguistic Features: Tense, Aspect, and POS



# Linguistic Features: Tense, Aspect, and POS

- > Proper Noun Count (NNP, NNPS)
- > Noun Count (NN, NNS)
- > Preposition Count (IN)
- > Tensed Verbs Count
  - Count Past Participle (VBN)
  - Count Simple Past (VBD)
  - Count Simple Present (VBP, VPZ)
- > Adverb count (RB, RBR, RBS):
  - The number adverb occurrences in a review.

## Introduce Concepts

> Decision (Adda et al., 1998):

$$decision = \frac{N(\text{retrieved documents})}{N(\text{all documents})}$$

> Accuracy (Manning and Schütze, 1999):

$$accuracy = \frac{N(\text{correct classifications})}{N(\text{all classifications})}$$

## Linguistic Features: N-grams

 Preliminary testing showed that bigrams and unigram models yielded similar results across multiple ML algorithms:





## Increasing Accuracy

> To discriminate common n-grams I used Pak's (2010) strategy of introducing a salience threshold:

$$salience(g) = \frac{1}{N} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} 1 - \frac{\min(P(g|s_i), P(g|s_j))}{\max(P(g|s_i), P(g|s_j))}$$

- > Suppose that a n-gram occurs twice as often in remote reviews.
  - The salience measure for that n-gram would be the one minus the sum of probability distribution for local reviews over the sum of the probability distribution for remote reviews (i.e. 0.5).

## Increasing Accuracy

> The following are some examples of unigrams with high salience:

| unigram | Salience |
|---------|----------|
| wedding | .909     |
| hotel   | .967     |
| coupons | .909     |
| golf    | .941     |
| tuesday | .875     |
| staying | .939     |

| bigram               | Salience |
|----------------------|----------|
| charlotte<br>airport | .857     |
| sunday<br>buffet     | .857     |
| time visit           | .833     |
| new york             | .8       |
| ranch<br>dressing    | .9       |
| never bad            | .818     |

## Unigram Results

- > By using a salience threshold, & I was able to eliminate common n-grams.
- > Before filtering the average salience was .738 with a standard deviations of .362.
- > Setting the *\theta to.75* helped me to significantly improve accuracy.





# Bigram Results





## Citations

- G. Adda, J. Mariani, J. Lecomte, P. Paroubek, and M. Rajman.
  1998. The GRACE French part-of-speech tagging evaluation task. In A. Rubio, N. Gallardo, R. Castro, and A. Tejada, editors, LREC, volume I, pages 433–441, Granada, May.
- > Christopher D. Manning and Hinrich Schutze. 1999. Foundations of statistical natural language processing. MIT Press, Cambridge, MA, USA.
- > Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In *Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10)*, Valletta, Malta, May 2010. European Language Resources Association (ELRA).