Math 131B: Homework 3

Owen Jones

4/28/2023

Problem 1. Exercise 1.5.4

Let $f: \mathbb{R} \to \mathbb{R}$ f(x) = 0. \mathbb{R} is open, but $\{0\}$ is not open because 0 is a boundary point.

Problem 2. Exercise 1.5.5

Let $f:[1,\infty)\to (0,1]$ $f(x)=\frac{1}{x}.$ $[1,\infty)$ is closed because it contains all of its boundary points, 1, but (0,1] is not closed because $0\notin (0,1]$.

Problem 3. **Exercise 1.5.10 (b)**

First we show that if (X,d) is a compact metric space, then (X,d) is complete. Let $(x^{(n)})_{n=m}^{\infty}$ be an arbitrary Cauchy sequence in (X,d). Since (X,d) is compact, there exists a subsequence $(x^{(n_j)})_{j=1}^{\infty}$ that converges to some value $x_0 \in X$. It follows by Lemma 1.4.9 that $(x^{(n)})_{n=m}^{\infty}$ also converges to x_0 . Because any arbitrary Cauchy sequence in (X,d) is convergent in (X,d), (X,d) is a complete metric

Next we show that (X,d) must also be totally bounded. Assume for the sake of contradiction that (X,d) is compact but not totally bounded. Therefore, $\exists \epsilon > 0$ s.t no finite number of balls of radius- ϵ

will cover X. Because X requires infinitely many ϵ -balls to be covered entirely, $X \setminus (\bigcup_{i=1}^{n} B(x^{(i)}, \epsilon)) \neq \emptyset$ for all n. Thus, we can construct a sequence $(x^{(n)})_{n=1}^{\infty}$ in (X, d) where $x^{(n)} \notin \bigcup_{i=1}^{n-1} B(x^{(i)}, \epsilon)$. Since

each term of the sequence is at least distance- ϵ from every other term of the sequence, $(x^{(n)})_{n=1}^{\infty}$ has no convergent subsequences. We obtain a contradiction because $(x^{(n)})_{n=1}^{\infty}$ is a sequence in (X, d) and (X, d) is compact, so $(x^{(n)})_{n=1}^{\infty}$ must have a convergent subsequence. Hence, (X, d) must be totally bounded.

OED

- Problem 4. Exercise 2.1.1 We will show a, b, and c are logically equivalent by showing $a \Rightarrow b, b \Rightarrow a, a \Rightarrow c$, and
 - $(a \Rightarrow b)$ Suppose f is continuous at x_0 , and let $(x^{(n)})_{n=1}^{\infty}$ be a sequence in X that converges to x_0 . Because f is continuous at x_0 , there exists $\delta > 0$ for every $\epsilon > 0$ s.t $d_Y(f(x^{(n)}), f(x_0)) < \epsilon$ whenever $d_X(x^{(n)}, x_0) < \delta$. Given $\epsilon > 0$ choose N to be sufficiently large s.t $n \ge N \Rightarrow d_X(x^{(n)}, x_0) < \delta$. Thus, $d_Y(f(x^{(n)}), f(x_0)) < \epsilon$ by the continuity of f. Hence, $(f(x^{(n)}))_{n=1}^{\infty}$ converges to $f(x_0)$.
 - $(b\Rightarrow a)$ Suppose the sequence $(f(x^{(n)}))_{n=1}^{\infty}$ converges to $f(x_0)$ with respect to the metric d_Y whenever a sequence $(x^{(n)})_{n=1}^{\infty}$ in X converges to x_0 with respect to the metric d_X , and assume for the sake of contradiction that f is not continuous at x_0 . Because f is not continuous at x_0 , $\exists \epsilon > 0$ s.t $\forall \delta > 0 \ d(x, x_0) < \delta \ \text{yet} \ d(f(x), f(x_0)) \ge \epsilon.$ Let $(x^{(n)})_{n=1}^{\infty}$ be a sequence in X s.t $d_X(x^{(n)}, x_0) < \frac{1}{n}$ while $d_Y(f(x^{(n)}), f(x_0)) \ge \epsilon$. We obtain a contradiction because we have a convergent sequence $(x^{(n)})_{n=1}^{\infty}$ where $(f(x^{(n)}))_{n=1}^{\infty}$ doesn't converge. Hence, f must be continuous at x_0 .

- $(a\Rightarrow c)$ Suppose f is continuous at x_0 , and let $V\subset Y$ be an open set that contains $f(x_0)$. Because f is continuous at x_0 , there exists $\delta>0$ for every $\epsilon>0$ s.t $d_Y(f(x),f(x_0))<\epsilon$ whenever $d_X(x,x_0)<\delta$. By Proposition 1.2.15 (a), $\exists r_y>0$ s.t $B_{(Y,d_Y)}(f(x_0),r_y)\subseteq V$. It follows $\exists r_x>0$ s.t $f(x)\in B_{(Y,d_Y)}(f(x_0),r_y)$ whenever $x\in U=B_{(X,d_X)}(x_0,r_x)$. Hence, we have $U\subseteq X$ s.t $f(U)\subseteq V$.
- $(c\Rightarrow a)$ Suppose for every open set $V\subset Y$ that contains $f(x_0)$, there exists an open set $U\subset X$ containing x_0 s.t $f(U)\subseteq V$, and assume for the sake of contradiction that f is not continuous at x_0 . Because f is not continuous at x_0 , $\exists \epsilon>0$ s.t $\forall \delta>0$ $d(x,x_0)<\delta$ yet $d(f(x),f(x_0))\geq\epsilon$. Let $V=B_{(Y,d_Y)}(y_0,\epsilon)$. It follows there exists an open set $U\subset X$ s.t $f(U)\subseteq V$. By Proposition 1.2.15 (a), $\exists r>0$ s.t $B_{(X,d_X)}(x_0,r)\subseteq U$. Because f is not continuous at x_0 , there exists $x\in B_{(X,d_X)}(x_0,r)$ s.t $f(x)\notin B_{(Y,d_Y)}(y_0,\epsilon)$ which implies $f(U)\not\subset V$. Hence, we obtain a contradiction, so f must be continuous at x_0 .

Thus, by transitivity, a,b, and c are logically equivalent.

Problem 5. Exercise 2.1.4

a)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ x+1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $g: \mathbb{R} \to \mathbb{R}$ $g(x) = 0$, $g \circ f(x) = 0$

b)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = 0$, $g: \mathbb{R} \to \mathbb{R}$ $g(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ x+1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $g \circ f(x) = 0$

c)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ x+1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $g: \mathbb{R} \to \mathbb{R}$ $g(x) = \begin{cases} x+1 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $g \circ f(x) = x+1$

Corrolary 2.1.7 is not an iff statement. Neither a) nor b) discuss when either f(x) or g(x) are discontinuous. Each of parts a),b), and c) of Exercise 2.1.7 include at least 1 discontinuous function for f(x) or g(x).