

ТРЕТ МЕМОРИЈАЛЕН МАТЕМАТИЧКИ НАТПРЕВАР

Александар Блажевски - Цане

ДЕН 2: КАТЕГОРИЈА ЈУНИОРИ

РЕШЕНИЈА И РАСПРЕДЕЛБА НА ПОЕНИ

Задача 4. Најдете ги сите позитивни цели броеви n за кои множеството $S = \{1, 2, 3, \dots 2n\}$ може да се разбие на две подмножества S_1 и S_2 , т.е. $S_1 \cap S_2 = \emptyset$ и $S_1 \cup S_2 = S$, така што S_1, S_2 имаат по n елементи и збирот на елементите на S_1 е делив со збирот на елементите на S_2 .

Решение. Одговор: n е парен, или делив со 3, или дава остаток 1 при делење со 3. Нека s_1 е збирот на елементите на S_1 , а s_2 е збирот на елементите на S_2 . Вкупниот збир изнесува $s=s_1+s_2=n(2n+1)$.

изнесува $s=s_1+s_2=n(2n+1).$ Бидејќи $s_2\geq \frac{n(n+1)}{2}$, важи $\frac{s}{s_2}=\frac{s_1}{s_2}+1\leq \frac{4n+2}{n+1}<4$, што повлекува дека $\frac{s_1}{s_2}=1$ или 2. (4 поени)

Да ги разгледаме двете можности:

Случај 1: $\frac{s_1}{s_2}$ =1. Тогаш вкупниот збир s=n(2n+1) е парен број, и оттука n е парен, т.е. $n=2n_1$. Ги групираме броевите во $2n_1$ пара т.ш. збирот во секој пар изнесува $4n_1+1$, на следниот начин: $(1,4n_1),(2,4n_1-1),\ldots,(2n_1,2n_1+1)$. Ставаме n_1 од овие парови во S_1 и преостанатите n_1 парови во S_2 . (1 поен)

Случај 2: $\frac{s_1}{s_2}$ =2. Тогаш вкупниот збир $s=s_1+s_2=3s_2$ е делив со 3.

- (a) Ако n е делив со 3, т.е. n=3k, нека S_2 го сочинуваат броевите од следните тројки: $(1,2,6k-2),(3,4,6k-4),\ldots,(2k-1,2k,2k+2)$. Тоа се точно k тројки, секоја со збир 6k+1. Така S_2 се состои од n=3k елементи, со вкупен збир k(6k+1). (1 поен)
- (б) Ако 2n+1 е делив со 3, тогаш n=3k+1 и $s_2=\frac{1}{3}\times\frac{2n(2n+1)}{2}=(2k+1)(3k+1)$. Значи во S_2 треба да сместиме n=3k+1 од броевите т.ш. просекот изнесува 2k+1. Го ставаме бројот 2k+1 во S_2 , и ги додаваме броевите од k тројки од кои секоја има просек 2k+1, односно збир 6k+3. Со други зборови, S_2 се состои од бројот 2k+1 и броевите од следните тројки: $(1,k+1,5k+1),(2,k+2,5k-1),\ldots,(k,2k,3k+3)$. (1 поен)

Задача 5. Нека ABC е остроаголен триаголник со впишана кружница ω и A-припишана кружница ω_a . Нека I е центарот на ω . Кружниците ω и ω_a ја допираат страната BC во точките X и Y, соодветно. Нека Z е онаа пресечна точка на правата AY со ω што е поблиску до A. Точката H е подножје на висината спуштена од A. Докажете дека правите HZ, IY и AX имаат заедничка точка.

Решение. Прво ќе докажеме дека точките X, I и Z се колинеарни. Правите AB и AC се заеднички тангенти на ω и ω_a , па хомотетијата \mathcal{H} со центар A и коефициент $k=\frac{AI}{AI_a}$ ја пресликува ω_a во ω . Бидејќи $Y\in\omega_a\cap AY$, сликата $\mathcal{H}(Y)$ е истовремено на кружницата $\mathcal{H}(\omega_a)=\omega$ и $\mathcal{H}(AY)=AY$, па затоа $\mathcal{H}(Y)=Z$. Од друга страна, тангентата на ω_a во $Y\in BC$, па тангентата на ω во Z е паралелна со BC. Тоа значи дека $IZ\perp BC$, што заедно со $IX\perp BC$ ни кажува дека XZ е дијаметар во ω и дека точките X,I и Z се колинеарни. (3 поени)

Правата AH е нормална на BC, па $AH \parallel XZ$. Бидејќи I е средина на XZ и $AH \parallel XZ$, правата IY минува низ средината S од AH. (2 поени) Ако ја примениме Талесовата теорема на паралелните прави AH и XZ добиваме

$$\frac{YZ}{ZA} = \frac{YX}{XH}.$$
 (1 поен)

Оттука,

$$\frac{AS}{SH} \cdot \frac{HX}{XY} \cdot \frac{YZ}{ZA} = \frac{HX}{XY} \cdot \frac{YX}{XH} = 1.$$

Сега од теоремата на Чева, правите YS, HZ и AX се конкурентни, па заклучокот следи од тоа што точката I е на правата YS. (1 поен)

Забелешка. За првиот дел (точките X,I и Z се колинеарни) нема можност за парцијални поени. Слично, за вториот дел (AHXZ е трапез во кој правата IY ги преполовува основите AH и ZX) нема можност за парцијални поени. Последните 2 поени од решението може да се заработат и со повикување на теоремата на Штајнер (без доказ).

Задача 6. За позитивен цел број n велиме дека е *маркантен* доколку неговата бинарна репрезентација содржи повеќе единици одошто нули. (На пример, бројот 25 е маркантен бидејќи бинарната репрезентација $25 = (11001)_2$ содржи 3 единици и 2 нули). Дали постојат бесконечно многу маркантни броеви кои се полни квадрати? (Одговорот да се образложи.)

Решение. Одговор: Постојат бесконечно многу маркантни полни квадрати. Ќе дадеме два конструктивни докази и еден доказ со контрадикција.

Конструкција 1: Ќе докажеме дека за секој цел број k > 1 бројот

$$\frac{2^{k \cdot (2^k - 1)} - 1}{2^k - 1} = \sum_{i=0}^{2^k - 2} 2^{i \cdot k}$$

е таков што неговиот квадрат

$$a_k = \left(\frac{2^{k \cdot (2^k - 1) - 1}}{2^k - 1}\right)^2 = \left(\sum_{i=0}^{2^k - 2} 2^{i \cdot k}\right)^2 = \sum_{i=1}^{2^k - 1} i \cdot 2^{(i-1) \cdot k} + \sum_{i=1}^{2^k - 2} (2^k - i - 1) \cdot 2^{(2^k + i - 2) \cdot k}$$

е маркантен.

Бидејќи коефициентите пред секој степен на двојка во формулата погоре се помали од 2^k , сите се раздвоени во бинарната репрезентација. На пример, кога k=3, имаме

$$(\underbrace{1}_{1}\underbrace{010}_{2}\underbrace{011}_{3}\underbrace{100}_{4}\underbrace{101}_{5}\underbrace{110}_{6}\underbrace{111}_{2^{3}-1}\underbrace{110}_{6}\underbrace{101}_{5}\underbrace{100}_{4}\underbrace{011}_{3}\underbrace{010}_{2}\underbrace{001}_{1})_{2}.$$

Исто така, бидејќи

$$1 + (2^k - 2) = 2 + (2^k - 3) = \dots = (2^{k-1} - 1) + 2^{k-1} = 2^k - 1$$

е број со k единици, секој од паровите $(1,2^k-2),\dots,(2^{k-1}-1,2^{k-1}),$ како и бројот 2^k-1 имаат точно k единици.

Сега можеме да го пресметаме бројот на единици во бинарната репрезентација на $a_k - k \cdot (2^k - 1)$, па бидејќи бројот на неговите цифри во бинарната репрезентација е $2k \cdot (2^k - 2) + 1 < 2 \left(k \cdot (2^k - 1) \right)$, бројот a_k е маркантен за секој k > 1.

Конструкција 2: Ќе докажеме дека квадратот на бројот $n = (\underbrace{1010...101}_{6k+5})_2$ има повеќе единици

отколку нули во бинарната репрезентација за секој природен број $k \ge 0$.

Нека P е функција која што на секој позитивен цел број запишан во основа 2 му го доделува бројот на единици во неговата бинарна репрезентација. Нека Q е функција која што на секој позитивен цел број запишан во основа 2 му го доделува бројот на нули во истата репрезентација.

Во следните пресметки, ги изоставуваме заградите што означуваат бинарен запис кога работиме со броевите во бинарна репрезентација заради поедноставно претставување.

За секој ваков n имаме

$$n = (\underbrace{1010...101}_{6k+5})_2 = 2^0 + 2^2 + ... + 2^{6k+4} = \frac{2^{6k+6} - 1}{2^2 - 1} = \frac{2^{6k+6} - 1}{3}.$$

Следствено, добиваме

$$n^{2} = (2^{6k+6} - 1) \cdot \frac{2^{6k+6} - 1}{9} = 7(2^{6k+6} - 1) \cdot \frac{2^{6k+6} - 1}{2^{6} - 1} =$$
$$= (2^{3} - 1)(2^{6k+6} - 1)(1 + 2^{6} + \dots + 2^{6k}) =$$

Гледаме дека n^2 се состои од k блокови од облик 111000_2 (да ги наречеме овие блокови a), k блокови од облик 011100_2 (да ги наречеме овие блокови b), еден блок од облик 11011100_2 (да го наречеме блок c) и од 1_2 како најдесна цифра во записот. Но, a блоковите и b блоковите имаат својство дека P(a) = Q(a), P(b) = Q(b), додека за блокот c важи P(c) = Q(c) + 2. Значи $P(a) = k \cdot P(a) + k \cdot P(b) + P(c) + 1 = k \cdot Q(a) + k \cdot Q(b) + Q(c) + 2 + 1 = Q(n^2) + 3 > Q(n^2)$, па бројот $n^2 = (1010...101)^2$ е маркантен полн квадрат за секој $k \ge 0$.

Распределба на поени. Секое конструктивно решение се вреднува согласно следново:

(а) Конструкција на бесконечно многу маркантни полни квадрати без доказ. (3 поени)

Парцијални поени: Конструкција *со доказ* на бесконечно многу полни квадрати кои имаат подеднакво многу единици и нули во бинарната репрезентација. (1 **поен**)

(б) Доказ дека конструкцијата од делот (а) е валидна. (4 поени)

Забелешка: Маркинг шемата дозволува **0**, **1**, **3** или **7 поени** за контструктивно решение на оваа задача. Доколку натпреварувачот даде точна конструкција на бесконечно многу маркантни полни квадрати, но не докаже валидност на конструкцијата, тогаш заработува **3 поени**.

Единствен начин да се заработи **1 поен** е со конструирање на бесконечно многу полни квадрати кои се скоро маркантни (во смисла дека имаат не помалку единици одошто нули во бинарната репрезентација. Ова е многу едноставна конструкција.

Тврдењето дека постојат бесконечно многу маркантни полни квадрати само по себе (без конструкција и без доказ) се вреднува со **0 поени**.

Доказ со контрадикција: Да претпоставиме дека постојат само конечно многу маркантни полни квадрати. Нека $m^2 = a_1 a_2 \dots a_{k-1}$ е најголемиот таков број, и нека тој има точно k-1 цифри во бинарната репрезентација. (1 поен)

Го разгледуваме
$$s=m\cdot(2^k+1)$$
. Така
$$s^2=m^2(2^{2k}+2^{k+1}+1)=a_1a_2\dots a_{k-1}a_1a_2\dots a_{k-1}00a_1a_2\dots a_{k-1}.$$

Да забележиме дека s^2 е маркантен, што е посакуваната противречност.	Имено, постојат
барем $rac{k}{2}$ единици меѓу цифрите a_i , што повлекува дека постојат барем $rac{3k}{2}$ един	ници меѓу вкупно
$(3k-1)$ бинарни цифри на s^2 . (5 поени) Бројот 1 потврдува дека множес	твото маркантни
полни квадрати е непразно. (1 поен)	

Забелешка: Последниот поен се доделува само за комплетно решение со контрадикција.