EE3731C: Signal Processing Methods

Tutorial II-1

Which of the following signals can be down-sampled by a factor of 2 using the system below without any loss of information?

$$x[n] \longrightarrow \downarrow M \longrightarrow y[n] \qquad y[n] = x[nM]$$

- a) $x[n] = \delta[n n_0]$, where n_0 is an unknown integer
- b) $x[n] = \cos(\pi n/4)$
- c) $x[n] = \cos(\pi n/4) + \cos(3\pi n/4)$

$$d) x[n] = \frac{\sin(\pi n/3)}{\pi n/3}$$

Which of the following signals can be down-sampled by a factor of 2 using the system below without any loss of information?

$$x[n] \longrightarrow \downarrow M \longrightarrow y[n]$$

a) $x[n] = \delta[n - n_0]$, where n_0 is an unknown integer

What is the requirement?

The signal should be bandlimited to $|\omega| < \pi/M$

Is the input signal bandlimited?

No!

Which of the following signals can be down-sampled by a factor of 2 using the system below without any loss of information?

$$x[n] \longrightarrow \downarrow M \longrightarrow y[n]$$

b)
$$x[n] = \cos(\pi n/4)$$

Is the input signal bandlimited to $|\omega| < \pi/2$?

Yes.
$$x[n] = \cos(\pi n/4) = \frac{1}{2} \left[\exp(j\pi n/4) + \exp(-j\pi n/4) \right]$$

Which of the following signals can be down-sampled by a factor of 2 using the system below without any loss of information?

$$x[n] \longrightarrow \downarrow M \longrightarrow y[n]$$

c)
$$x[n] = \cos(\pi n/4) + \cos(3\pi n/4)$$

Is the input signal bandlimited to $|\omega| < \pi/2$?

Which of the following signals can be down-sampled by a factor of 2 using the system below without any loss of information?

$$x[n] \longrightarrow \downarrow M \longrightarrow y[n]$$

$$d) x[n] = \frac{\sin(\pi n/3)}{\pi n/3}$$

Is the input signal bandlimited to $|\omega| < \pi/2$?

Yes. $\begin{array}{c|c} X(e^{j\omega}) \\ \hline -\pi & \frac{\pi}{3} & \frac{\pi}{3} \end{array}$

In the multirate system shown below, H(z) represents a lowpass filter with Gain = L and cutoff

$$\omega_c = \min(\pi/L, \pi/M)$$

Determine the corresponding output y[n] for the following input signal x[n] and the up-sampling and down-sampling rate of L and M.

$$x[n] = \frac{\sin(2\pi n/3)}{\pi n}, L = 4, M = 3$$

$$x[n] = \frac{\sin(2\pi n/3)}{\pi n}, \quad L = 4, \quad M = 3$$

Since L>M, the system will not introduce aliasing.

The sampling rate conversion factor is L/M = 4/3

$$y[n] = \frac{4}{3} \frac{\sin(\pi n/2)}{\pi n} = \frac{4\sin(\pi n/2)}{3\pi n}$$

H(z): a lowpass filter with Gain = L and cutoff $\omega_c = \min(\pi/L, \pi/M)$

The Fourier transform of the input signal is given by

For each of the following choices of L and M, specify the maximum possible value of ω_0 such that $Y(e^{j\omega}) = aX(e^{j\omega L/M})$ for some constant a.

a)
$$L = 2$$
, $M = 3$

b)
$$L = 3$$
, $M = 2$

$$Y(e^{j\omega}) = aX(e^{j\omega L/M})$$

$$-\pi - \omega_0 \qquad \omega_0 \qquad \pi$$

a)
$$L = 2$$
, $M = 3$ $\omega_c = \min(\pi/M, \pi/L) = \pi/3$

$$\frac{\omega_0}{2} \le \pi/3$$

$$\omega_0 \le 2\pi/3$$

$$Y(e^{j\omega}) = aX(e^{j\omega L/M})$$

$$-\pi - \omega_0 \qquad \omega_0 \qquad \pi$$

b)
$$L = 3$$
, $M = 2$ $\omega_c = \min(\pi/M, \pi/L) = \pi/3$

$$\frac{X_{u}(e^{j\omega})}{-\frac{4\pi}{3} - \frac{2\pi}{3} - \frac{\omega_{0}}{3} \frac{\omega_{0}}{3} \frac{2\pi}{3} + \frac{4\pi}{3}} \qquad \frac{\omega_{0}}{3} \leq \pi/3$$

In the system shown below,

we have
$$H(e^{j\omega}) = \begin{cases} 3, & |\omega| < \pi/3, \\ 0, & \pi/3 \le |\omega| \le \pi. \end{cases}$$

For each of the following input signals x[n], indicate whether the output $x_r[n] = x[n]$.

a)
$$x[n] = \cos(\pi n/4)$$

b)
$$x[n] = \cos(\pi n/2)$$

$$H(e^{j\omega}) = \begin{cases} 3, & |\omega| < \pi/3, \\ 0, & \pi/3 \le |\omega| \le \pi. \end{cases}$$

a)
$$x[n] = \cos(\pi n/4)$$

$$X[n] = \cos(\pi n/4)$$

$$X[e^{j\omega}]$$

$$-\pi - \pi/4 \pi/4 \pi/4$$

Yes. There is no aliasing because the signal is bandlimited to $|\omega| < \pi/3$

b)
$$x[n] = \cos(\pi n/2)$$

$$X(e^{j\omega})$$

$$-\pi - \pi/2$$

$$\pi/2$$

No. Aliasing occurs because the signal is not bandlimited to $|\omega| < \pi/3$

EE3731C: Signal Processing Methods

EE3731C: Signal Processing Methods

Consider the multirate system shown below. Find an expression for y[n] in terms of x[n] by simplifying the system.

Consider the multirate system shown below. Find an expression for y[n] in terms of x[n] by simplifying the system.

$$x[n] \longrightarrow \uparrow 2 \longrightarrow \uparrow 3 \longrightarrow \downarrow 12 \longrightarrow \uparrow 2 \longrightarrow y[n]$$

The system can be simplified to

$$x[n] \longrightarrow \downarrow 2 \longrightarrow \uparrow 2 \longrightarrow y[n]$$

Hence, y[n] = x[n], if *n* is even; y[n] = 0, if *n* is odd.

Alternatively, it can be written as:
$$y[n] = \frac{1 + (-1)^n}{2} x[n]$$