

BMS COLLEGE OF ENGINEERING, BANGALORE-19 (Autonomous College under VTU Belagavi)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Semester	5		
Course Title:	Cryptography		
Course Code:	22CS5PCCRP		
L-T-P:	3-1-0 Total Cred	its:	4

Unit		
No.	Topic	s Hrs.
Introd	uction: Security Goals, Cryptographic Attacks	
	Mathematics of Cryptography: Integer Arithmetic, Modular Arithmetic, Linear	
Congr	18	
Ciphei	Traditional symmetric-Key Ciphers: Introduction, Substitution Ciphers, Transposition s,	
Mathe	matics of Symmetric-key cryptography: Algebraic Structures, GF (2n) Fields Introduction to Modern Symmetric Key Ciphers: Modern Block Ciphers, Modern Stream	
Ciphei		
D.E.C. 1	Data Encryption Standard (DES): Introduction, DES Structure, DES Analysis, Security of	
DES, N	Multiple DES Advanced Encryption Standard (AES): Introduction, Transformations, Key Expansion, AES	
Ciphei	rs, analysis of AES	
	Encipherment using Modern Symmetric-Key Ciphers: Use of Modern Block Ciphers, Use	
of Stre	am Ciphers.	
Remai	Mathematics of Asymmetric-Key Cryptography: Primes, Primality Testing, Chinese nder Theorem, Quadratic Congruence, Legendre Symbol.	
	Asymmetric -Key Cryptography: Introduction, RSA cryptosystem, ElGamal Cryptosystem,	
	4 Elliptic Curve cryptosystems. 8	
Crypto	graphic hash functions, Secure hash algorithm,	
	ge Integrity and Message Authentication:	
Messa	ge authentication, Digital Signature, RSA digital signature. 5 8	
-	anagement: ROS , Diffie-Hellman Key Agreement, X.509	

Course Outcomes (Co):

CO1	Apply cryptographic techniques to ensure data confidentiality, integrity, and authentication.
CO2	Analyze various symmetric and asymmetric cryptosystems and types of attacks on these cryptosystems.
CO3	Demonstrate cryptographic encryption and decryption techniques.

BMS COLLEGE OF ENGINEERING, BANGALORE-19 (Autonomous College under VTU Belagavi)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3														3
CO2	3				2					1 1					
CO3	2				3			Dama		11			Mar	ks	

		4()
Tool	Best 2 out of 3	
Internals		
Quiz		
Lab Component		10
Self-Study Component	ONE	50
AAT		
Total		

Prescribed Text Book:

Sl. No.	Book Title	Authors	Edition	Publisher	Year
1	"Cryptography and Network Security"	Behrouz A. Forouzan and Debdeep Mukhopadhyay	2nd edition	Tata McGraw Hill	2013

Reference Text Book:

SI. No.	Book Title	Authors	Edition	Publisher	Year
1	"Cryptography: Theory and Practice"	Stinson. D.	3rd edition	Chapman & Hall/CRC	2012
2	"Cryptography and Network Security"	Atul Kahate		Tata McGraw-Hill	2003
3	"Cryptography and Network Security Principles and practice"	W. Stallings	5th edition	Pearson Education Asia	2013

BMS COLLEGE OF ENGINEERING, BANGALORE-19

(Autonomous College under VTU Belagavi) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

E-Book:

SI. No.	Book Title	Authors	Edition	Publisher	Year	URL
1	Cryptography and Network Security. Principles and Practice	William Stallings	3rd edition	Pearson Education	2007	http://williamstallings.co m /Crypto3e.html
2	Handbook of Applied Cryptography	Menez, van Oorschot, Vanstone	ISBN: 0-8493- 8523-7	CRC Press	2001	http://www.cacr.math.uw a terloo.ca/hac/

Mooc Course:

SI. Course Course name Year URL No. Offered By			
Cryptography and http://nptel.a	c.in/courses/106	105031/	
1 NPTEL 2017 Network Security			
Treework Security			https://www.coursera.org/course/crypto
2 Cryptography 1 Coursera 2019			

Alternate Assessment Tool Plan:

PLAN:

Students are supposed to develop a Cryptographic algorithm/Digital Signature (using C/C++ preferably) without using libraries or built-in functions. Code demonstration along with a report has to be submitted.

Example: Implement of RSA Digital Signature, Elgamal Digital Signature, Diffie Hellman Signature, and Modified RSA algorithm for practical purpose, Hybrid encryption schemes.

s	l. No Weel	Activity	
1	1st and 2r	d Formation o	f groups. Note: Student groups of size 2 members only
2	3rd AAT to	pic selection	by each group
3	4th Prese	ntation: Stude	nt team and topic introduction by each group
4	5th, 6th D	esign the worl	flow along with Front-end Design
5	7th Prese	ntation on Fro	nt-end Design of the application
C	esign and	Development	of the actual algorithm and testing it for various test
6	8th, 9th, 1	0th	
7		plete code der	nonstration
8	12th AAT	Report Prepar	ation

BMS COLLEGE OF ENGINEERING, BANGALORE-19 (Autonomous College under VTU Belagavi) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Rubrics Used For Evaluation (AAT):

Criteria	Exemplary Proficient		Partially Proficient	Points
User Interface / Front End Design OR Tool Usage	(1) The designed (0.75) application has an exceptional design has an attractive des attractive and and usable interface. It is easy to locate all is easy to locate all important elements.	The designed application gn It	(0.5) The designed application has a usable design interface, but may appear busy or boring. It is easy to locate most of the important elements.	/1
Implementation of the Algorithm OR Implementation done in the Tool	(4)5) Implementation of the algorithm has been done appropriately without the usage of any fluctions. (1)	ie algorithm has been done t iry	(1.5) Implementation of the algorithm has been done with usage of few library functions.	/4
Testing for various cases	(0.75) The implemented algorithm works for for any given valid almost all valid input (1)	5.	(0.5) The implemented algorithm works for any some valid inputs.	/1
Application/Relevance	The designed algorithm has the designed algorithm has the designed algorithm applications and is relevant in the cryptography. cryptography. (0,75)	nm has few applications and is relevant in the area of	(0.5) The designed algorithm has few applications and is not very relevant in the area of cryptography.	/1
Report	Clear and Effective effective for the mos writing and adherence to appropriate style guidelines (1) (0.75)	part and minor errors in	(0.5) Unclear and ineffective writing and multiple errors in adherence to appropriate style guidelines	/1
Oral communication (presentation)	Clear and effective Communication is cle communication (1) Provided many	ar	(0.5) Unclear communication	/1
Participation in Discussions	frogreed many 10 open control of the		(0.5) Listened mainly; Rarely spoke up, and ideas were off the mark.	/1
Total	1			/ 10

BMS COLLEGE OF ENGINEERING, BANGALORE-19 (Autonomous College under VTU Belagavi)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Tutorial Plan:

Tutorial #	Topic				
1	Open SSL Library Features and Application in Cryptography				
_	https://www.openssl.org/docs/				
2	Introduction to CrypTool and Installation				
	Demonstration of basic features available in CrypTool				
	Demonstration of Caesar cipher				
	In the message to decode, any punctuation is left unchanged in the encoded message, as				
	too are any numbers. To change this Options > Text Options and from here you can select				
3	what attributes of a message the cipher will alter and which it will leave unchanged.				
	Experiment encrypting the same message with the Caesar cipher with different settings selected from the text options. Decipher each message after doing so and see if the				
	deciphered message still has the same punctuation, spacing etc.				
	Demonstration of Vigenere cipher				
	Animal is a tool within the CrypTool that displays the concepts behind a cipher in a user				
4	friendly fashion, by the means of an animation. Demonstrate the use of animal tool for the				
	above cipher.				
	Demonstration of DES				
	Open a new file and type a plaintext message. Next click from the menu Crypt/Decrypt >				
	Symmetric (modern) > DES (ECB) This presents a key selection window, this key must be				
	64 bits long, which equates to 16 hexadecimal figures. For simplicity use the default key of:				
	00 00 00 00 00 00 00 00				
	Select Encrypt and there should be presented a window showing the data encrypted in hexadecimal form and its corresponding ASCII representation. To decrypt the message				
5	again select Crypt/Decrypt > Symmetric (modern) > DES (ECB) Use the same key and				
	select Decrypt , and the original message will be displayed in hexadecimal representation.				
	Selecting View > Show as text displays it in ASCII; you may also notice some of the				
	formatting is lost in the process or some padding is added.				
	Encrypt the same message using the same process as above only selecting Crypt/Decrypt >				
	Symmetric (modern) > DES (CBC) instead. Compare the two encrypted messages.				
	Compare ECB versus CBC mode of operation for the following applications: a) An				
	online bank statement				
6	b) An encrypted VoIP session c) Viewing of a website using TCP/IP				
	Demonstrate DES encryption and decryption using Animal.				
7	Demonstration of RSA				
	Now, encrypt a message of your choice using the values: p				
	= 59, q = 71, e = 13 Observe the results. Encrypt the same message with the values: p =				
8	673, $q = 619$, $e = 13$				
	Demonstrate RSA encryption and decryption using Animal.				
9	Demonstrate RSA implementation using PKI.				
10					

BMS COLLEGE OF ENGINEERING, BANGALORE-19

(Autonomous College under VTU Belagavi)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

11	1963497163 is the product of two prime numbers, use tools within the CrypTool to find these two prime numbers. Mention what tools you used to do this.
12	Demonstrate hybrid encryption
	Combine aspects of AES and RSA algorithm and demonstrate encryption of different
13	plaintext.
13	Demonstration of OWASP vulnerabilities

SEE Exam Question Paper Format:

Unit-1	Internal Choice	Two Questions to be asked for 20 Marks each
Unit-2	Mandatory	One Question to be asked for 20 Marks
Unit-3	Mandatory	One Question to be asked for 20 Marks
Unit-4	Internal Choice	Two Questions to be asked for 20 Marks each
Unit-5	Mandatory	One Question to be asked for 20 Marks

Bloom's Level	Percentage of Questions to be Covered
Remember / Understand	35%
Apply / Analyze	40%
Create / Evaluate	25%