MAT232 - Lecture 5

Advanced Curve Analysis: Polar Derivatives and Conic Sections

AlexanderTheMango

Prepared for January 20, 2025

MAT232	- L	ecture	Notes
--------	-----	--------	-------

α	- 1		1 -
\mathbf{Cc}	nt	en	IT.S
\sim	110		LUN

Preliminary Concepts: Conic Sections	. 1
Review from the Previous Lecture	
Exploring Common Curve Shapes	2
Davahala	6

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Preliminary Concepts: Conic Sections

Concept

Definition of Conic Sections: Conic sections are the curves formed by the intersection of a plane with a double-napped cone. The type of curve depends on the angle of the plane relative to the cone:

- Circle: The plane is perpendicular to the cone's axis.
- Ellipse: The plane intersects one nappe of the cone but is not perpendicular to the axis.
- Parabola: The plane is parallel to a generator of the cone.
- Hyperbola: The plane intersects both nappes of the cone.

Figure 1: Conic sections formed by the intersection of a plane with a double-napped cone.

Ellipses

Definition

Definition of an Ellipse: An ellipse is the set of all points in a plane such that the sum of their distances to two fixed points (called the *foci*) is constant.

Intuition

Key Intuition: Imagine stretching a string between two fixed points F_1 and F_2 on a plane. The shape traced by keeping the string taut while moving a pencil around defines an ellipse.

Definition

Standard Forms of an Ellipse:

• Horizontal Major Axis:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1,$$

where a > b, (h, k) is the center, and $c^2 = a^2 - b^2$, with c as the distance from the center to the foci.

• Vertical Major Axis:

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1.$$

Remark

Properties of Ellipses:

- Vertices: Located a units from the center along the major axis.
- Foci: Located c units from the center along the major axis, where $c^2 = a^2 b^2$.
- *Eccentricity:* Defined as $e = \frac{c}{a}$, with 0 < e < 1.

Example

Example: Verifying an Ellipse Show that the equation

$$4x^2 + 9y^2 = 36$$

represents an ellipse and determine its key features.

Solution:

• Rewrite the equation in standard form:

$$\frac{x^2}{9} + \frac{y^2}{4} = 1.$$

- The ellipse is centered at (0,0) with $a=3,\,b=2,$ and $c=\sqrt{a^2-b^2}=\sqrt{5}.$
- The foci are $(\pm\sqrt{5},0)$, and the vertices are $(\pm3,0)$.

Parabolas

Definition

Definition of a Parabola: A parabola is the set of all points in a plane equidistant from a fixed point (the *focus*) and a fixed line (the *directrix*).

Intuition

Key Intuition: A parabola can be thought of as the trajectory of an object under uniform acceleration, such as the path of a ball thrown in the air.

Definition

Standard Forms of a Parabola:

• Horizontal Opening:

$$(y-k)^2 = 4p(x-h),$$

where (h, k) is the vertex, and p is the distance from the vertex to the focus.

• Vertical Opening:

$$(x-h)^2 = 4p(y-k).$$

Remark

Properties of Parabolas:

- Focus: Located p units from the vertex along the axis of symmetry.
- Directrix: A line perpendicular to the axis of symmetry at a distance p from the vertex.
- Axis of Symmetry: A line that passes through the focus and is perpendicular to the directrix.

Example

Example: Verifying a Parabola Show that the equation

$$y^2 = 12x$$

represents a parabola and determine its key features.

Solution:

- The equation is in the standard form $y^2 = 4px$, with 4p = 12, so p = 3.
- The parabola opens to the right, with vertex (0,0), focus (3,0), and directrix x=-3.

Hyperbolas

Definition

Definition of a Hyperbola: A hyperbola is the set of all points in a plane such that the absolute difference of their distances to two fixed points (called the foci) is constant.

Intuition

Key Intuition: A hyperbola appears in real-world phenomena such as satellite orbits, radio wave propagation, and the paths of comets.

Definition

Standard Forms of a Hyperbola:

• Horizontal Transverse Axis:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1.$$

• Vertical Transverse Axis:

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.$$

Remark

Properties of Hyperbolas:

- Foci: Located c units from the center along the transverse axis, where $c^2 = a^2 + b^2$.
- Asymptotes: Lines that the hyperbola approaches but never touches, given by:

$$y = k \pm \frac{b}{a}(x - h)$$
 (horizontal).

• Vertices: Located a units from the center along the transverse axis.

Example

Example: Verifying a Hyperbola Show that the equation

$$9x^2 - 16y^2 = 144$$

represents a hyperbola and determine its key features.

Solution:

• Rewrite the equation in standard form:

$$\frac{x^2}{16} - \frac{y^2}{9} = 1.$$

- The hyperbola is centered at (0,0) with $a=4,\,b=3,$ and $c=\sqrt{a^2+b^2}=5.$
- The vertices are $(\pm 4,0)$, the foci are $(\pm 5,0)$, and the asymptotes are $y=\pm \frac{3}{4}x$.

Review from the Previous Lecture

Remark

In the previous lecture, we covered important foundational concepts related to polar coordinates and their derivatives. Here's a brief summary:

• Derivative of $r = f(\theta)$ in Cartesian Coordinates:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

This formula helps us compute the slope of the tangent line for polar curves when converted to Cartesian coordinates.

• Equation of a Circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

Here:

- r: Radius of the circle
- (h, k): Centre of the circle

Note

Reminder: Term Test 1 is scheduled for Thursday, January 30th, 2025 (Week 4). Make sure to review polar derivatives, transformations, and conic sections!

Exploring Common Curve Shapes

Parabola

Definition

A **parabola** is a symmetric curve defined by the quadratic equation:

$$y = ax^2 + bx + c, \quad a \neq 0$$

To rewrite this equation in vertex form, we complete the square:

$$y = A(x - B)^2 + C$$

Here:

• A: Determines the direction and "width" of the parabola.

 $A > 0 \implies$ The parabola opens upwards.

 $A < 0 \implies$ The parabola opens downwards.

 \bullet (B, C): Represents the vertex of the parabola.

• B: Horizontal position of the vertex.

• C: Vertical position of the vertex.

Algorithm

Vertex Formula: To find the vertex when given the standard form $y = ax^2 + bx + c$, use the formulas:

$$B = -\frac{b}{2a}, \quad C = f(B)$$

where f(B) is the value of the quadratic function evaluated at x = B.

...cont'd...

Definition

 $\dots cont$ 'd \dots

Illustration

Below are examples of parabolas showcasing key features:

Figure 2: A parabola opening down, labeled with its vertex and axis of symmetry.

Figure 3: Generic parabolas showing upwards and downwards directions of opening.

Example: Sketching the Region of a Set

Example

Sketch the region of the set defined by

$$R = \{(x, y) \mid y \geqslant x^2 + 1\}$$

Solution

Consider the graph for the function $y = x^2 = 1$:

Figure 4: Graph of $y = x^2 + 1$.

Notice that

$$y = x^{2} + 1$$

$$\implies 0 \ge (-2)^{2} + 1$$

$$\implies 0 \ge 5, \text{ which is not true.}$$

Then, notice that

$$2 \ge 0^2 + 1$$

 $\implies 2 \ge 1$, which is true!

Here is the region being considered:

University of Toronto Mississauga

January 28, 2<mark>025</mark>

Figure 5: Sample image illustrating the concept.

Ellipse

Definition

The equation of an ellipse is defined by

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

Note

Recall the equation of the circle, which is based on the equation of the ellipse when a = b = 1:

Circle:
$$(x - h)^2 + (y - k)^2 = r^2$$
,

where (h, k) is the centre, a represents the x-axis radius, and b represents the y-axis radius.

Example of Skecthing an Ellipse

Example

Sketch the region of the set defined by

$$A = \{(x, y) \mid x^2 + 4y^2 > 4\}.$$

Solution

Notice that

$$x^2 + 4y^2 = 4.$$

This means the centre is at (0,0). Also,

$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$

provides that the x-axis radius is a = 2 and the y-axis radius is b = 1.

Here is the corresponding illustration:

self-note: add the illustratoin from the lecture note from your camera roll

Figure 6: Illustration of ellipse.

$Not\epsilon$

Note that dashed lines are used to denote that the edge of the ellipse is **not included** in the region A.

Check the point (0,0):

$$0^2 + 4 \cdot 0^2 > 4$$

$$\implies 0 > 4$$
,

which is not true.

<mark>Uni</mark>versity of Toronto Mississauga

January 28, 2<mark>025</mark>

Therefore, the inside of the ellipse is **not** to be shaded in.

Check the point (3,0):

$$3^2 + 4 \cdot 0^2 > 4$$

Introducing the Hyperbola

Definition

The equation of a hyperbola is defined by

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Illustration

self-note: add the image of the corresponding illustration here (see the lecture note)

Figure 7: Sample image illustrating the concept.

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

Illustration

self-note: add the image of the corresponding illustration here (see the lecture note)

University of Toronto Mississauga
Figure 8: Sample image illustrating the concept.

January 28, 2025

Welcome to Linear Algebra...

well... not really!

Section 2.1/2.2: Welcome to 3D Space!

Remark

Recall that the cartesian coordinate system considers the 2-dimensional realm: a system in \mathbb{R}^2 .

Illustration

self-note: add the cartesian plane — the typical one in 2D

Figure 9: Sample image illustrating the concept.

Now, check out the cartesian coordinate system being introduced in MAT232, considering the 3-dimensional realm; \mathbb{R}^3 :

Illustration

self-note: add the illustration for the 3D cartesian plane, the z-axis in addition to the x- and y-axis.

University of Toronto Mississauga

Figure 10: Sample image illustrating the concept.

January 28, 2025

Note

<u>In 2D:</u>

Notice that $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, where the first \mathbb{R} represents the x-values and the second \mathbb{R} represents the y-values.

Now, in 3D:

Notice that $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$.

- The first \mathbb{R} represents the x-values;
- The second $\mathbb R$ represents the y-values;
- The third \mathbb{R} represents the z-values.

Example of Plotting in a 3D Cartesian Plane

Example

Plot the points (-1, 2, -3) and (2, -4, 2).

Illustration

self-note: add the illustration here!!

Figure 11: Sample image illustrating the concept.

Follow the line segments denoted in **purple** for an interpretation guide of how the three components contribute to the final point destination, for (-1, 2, -3).

Follow the line segments denoted in **green** for an interpretation guide of how the three components contribute to the final point destination, for (2, -4, 2).

Interpreting Planes

Concept

Notice that in a 2D world, there is no notion of height when considering the x, y-plane. In a 3D world, z = 0.

Now, have a look at the basic planes for a 3D cartesian graph:

The xy plane:

$$x = 0 \qquad (x, y, 0)$$

Figure 12: Sample image illustrating the concept.

The yz plane:

$$x = 0 \qquad (0, y, z)$$

Figure 13: Sample image illustrating the concept.

x = 0

University of Toronto Mississauga
The xz plane:

(x,0,z)

Let's Try Going from 2D to 3D

Example

Consider the graph defined by y=2 on a 2D cartesian graph:

Figure 15: Sample image illustrating the concept.

Here's how that would look like in a 3D cartesian space:

Figure 16: Sample image illustrating the concept.

Example

Consider the graph of a circle defined by

$$x^2 + y^2 = 4.$$

Figure 17: Sample image illustrating the concept.

If this circle is brought to the 3D world, stretched along the z-axis, for any values of z, then a cylinder is created (the cirle is the cross-section shape).

Figure 18: Sample image illustrating the concept.

Next Lecture: We Discuss Vectors!

Lecture Title

Note

This template is designed for MAT232 lecture notes. Replace this content with your specific lecture details.

Key Concepts

Definition

A parametric equation is a set of equations that express the coordinates of the points of a curve as functions of a variable, called a parameter.

Examples

Example

Example 1: Consider the parametric equations:

$$x = t, \quad y = t^2, \quad t \in \mathbb{R}.$$

- At t = 0, (x, y) = (0, 0).
- At t = 1, (x, y) = (1, 1).

This describes a parabola.

Figure 19: Sample image illustrating the concept.

Theorems and Proofs

Theorem

Theorem: If x(t) and y(t) are differentiable functions, the slope of the curve is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ provided } \frac{dx}{dt} \neq 0.$$

Figure 20: Graphical representation of the theorem.

Additional Notes

Note

Always check the domain of the parameter t when solving problems involving parametric equations.