$$\begin{array}{c} \textbf{ISyE 6644} - \textbf{Spring 2018} - \textbf{Practice Test } \#2 \\ \text{(revised } 6/26/21) \end{array}$$

Hi, Gentle Class!

As per the syllabus, our Test 2 will cover everything up to and including random variate generation using "special-case" techniques (even Test 1 stuff). [The material starting with the multivariate normal distribution will be on Test 3.]

Also, all of our test questions will be multiple choice, in spite of what you see below.

Dave

1. Consider a Poisson process with rate $\lambda = 2$. Find the probability that the time between the 3rd and 5th arrivals is at least 1.

Solution: The times between Poisson arrivals are i.i.d. Exp(2). Thus, the sum of the 2 interarrival times between the 3rd and 5th arrivals is $X \sim Erlang_2(2)$. We want

$$P(X \ge 1) = \sum_{i=0}^{k-1} \frac{e^{-\lambda t} (\lambda t)^i}{i!} = \sum_{i=0}^1 \frac{e^{-2(1)} (2(1))^i}{i!} = 3e^{-2} = 0.4060. \quad \Box$$

2. Consider the following joint p.m.f.

$$\begin{array}{c|cccc} f(x,y) & X = 1 & X = 2 \\ \hline Y = 0 & 0.2 & 0.5 \\ Y = 1 & 0.0 & 0.3 \\ \end{array}$$

Find E[XY].

Solution:

$$\begin{split} \mathsf{E}[XY] &= \sum_{x} \sum_{y} xy f(x,y) \\ &= (1)(0)(0.2) + (1)(1)(0.0) + (2)(0)(0.5) + (2)(1)(0.3) \\ &= 0.6. \quad \Box \end{split}$$

3.	TRUE or FALSE? (Almost) every simulation language utilizes a future events list to process events in order by time.
	Solution: TRUE.
4.	TRUE or FALSE? In Arena, variables are global.
	Solution: TRUE.
5.	TRUE or FALSE? In Arena, you can use the SEIZE - DELAY - RELEASE module series instead of a single PROCESS module.
	Solution: TRUE.
6.	TRUE or FALSE? In Arena, you can find a SEIZE (i) inside a PROCESS module, (ii) in the Advanced Process template, and (iii) in the Primitive Blocks template.
	Solution: TRUE.
7.	In Arena, what kind of module would you use to give a new value to an attribute? (a) RECORD (b) SET (c) ASSIGN (d) TALLY
	Solution: (c) ASSIGN. \Box
8.	TRUE or FALSE? In Arena, certain resources can be in more than one resource set.
	Solution: TRUE.

9.	TRUE or FALSE? An Arena DECIDE module can route customers probabilistically or conditionally to multiple locations.
	Solution: TRUE.
10.	In Arena, where would you find the Expression spreadsheet?
	(a) Basic Process panel
	(b) Advanced Process panel
	(c) Basic Transfer panel
	(d) Advanced Transfer panel
	Solution: (b) Advanced Process. \Box
11.	TRUE or FALSE? In a particular Arena PROCESS module, it is possible to initiate a SEIZE-DELAY pair $without$ a RELEASE.
	Solution: TRUE, though you'd have to do a RELEASE in a later module. $\hfill\Box$
12.	What is the name of the Arena module that can be used to split one customer into two or more clones?
	Solution: Separate or Clone. □
13.	TRUE or FALSE? In Arena, you can assign different customers completely different sequences of visitation stations.
	Solution: TRUE.
14.	What is the variance of the random variable generated by the Arena expression $2*DISC(0.5,-1,1,1) + (1==1)$?

Solution: Let X = DISC(0.5, -1, 1, 1). Then P(X = -1) = P(X = 1) = 0.5, so that E[X] = 0 and $E[X^2] = 1$. Thus, Var(X) = 1, and we have

$$Var(2 * DISC(0.5, -1, 1, 1) + (1 == 1)) = Var(2X + 1) = 4Var(X) = 4.$$

15. YES or NO? Is it ever OK to use the midsquare random number generator?

Solution: NO. \square

16. What does "LCG" mean?

Solution: Linear Congruential Generator.

17. What's the period of the generator $X_i = (3X_{i-1} + 2) \mod(5)$ if we use the seed $X_0 = 3$?

Solution: Note that $X_0 = 3$, $X_1 = 1$, $X_2 = 0$, $X_3 = 2$, $X_4 = 3$, so the period is 4.

(Interestingly, $X_0 = 4$ would have caused an immediate degenerate cycle.)

18. TRUE or FALSE? The generator $X_i = (32X_{i-1} + 124) \mod(2048)$ has full period.

Solution: FALSE. (You get all evens.)

- 19. Which uniform generator was recommended in class, at least as a "desert island" generator?
 - (a) $X_i = 16807X_{i-1} \mod(2^{31})$
 - (b) $X_i = 16807X_{i-1} \mod(2^{31} 1)$
 - (c) $X_i = 16807(X_{i-1} 1) \bmod(2^{31})$
 - (d) $X_i = 16807(X_{i-1} 1) \operatorname{mod}(2^{31} 1)$

Solution: (b). \Box

20. Suppose that a Tausworthe generator gave you the series of bits 1010101. If you use all 7 bits, what Unif(0,1) random number would that translate to?

Solution: Using the usual base-2 notation, we have

$$\frac{1010101_2}{2^7} = \frac{64+16+4+1}{128} = \frac{85}{128} = 0.6641. \quad \Box$$

21. Suppose we observe 1000 numbers to obtain the following data.

Conduct a χ^2 goodness-of-fit test to see if these numbers are approximately Unif(0,1). Use level of significance $\alpha=0.05$. Here are some table entries that you may need: $\chi^2_{0.05,3}=7.81,\,\chi^2_{0.05,4}=9.49,\,$ and $\chi^2_{0.05,5}=11.1.$ ACCEPT or REJECT?

Solution: The expected number of observations per equal-probability cell is $E_i = n/k = 1000/4 = 250$. This gives us the following augmented table.

interval i	[0.00, 0.25)	[0.25, 0.50)	[0.50, 0.75)	[0.75, 1.0]
number observed O_i	240	255	243	262
expected number E_i	250	250	250	250

Thus, the χ^2 goodness-of-fit statistic is

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \frac{100 + 25 + 49 + 144}{250} = 1.272.$$

Meanwhile, the appropriate quantile $\chi^2_{\alpha,k-1} = \chi^2_{0.05,3} = 7.81$. Since $\chi^2_0 < \chi^2_{\alpha,k-1}$, we ACCEPT H_0 . In other words, we are willing to assume that the numbers are approximately Unif(0,1). \square

22. Consider the following n = 30 PRNs. (Read from left to right, and then down.)

Let's conduct a runs up and down test to test H_0 : the U_i 's are independent with level $\alpha = 0.05$. ACCEPT or REJECT?

Solution: Let's associate + and - for up and down, respectively. Then the 30 PRNs translate to

so that we have A = 12 runs up and down.

Recall that

$$A \sim \text{Nor}\left(\frac{2n-1}{3}, \frac{16n-29}{90}\right) \sim \text{Nor}(19.67, 5.01).$$

so that the test stat is

$$Z_0 = \frac{A - \mathsf{E}[A]}{\sqrt{\mathsf{Var}(A)}} = \frac{12 - 19.67}{\sqrt{5.01}} = -3.43.$$

Meanwhile, the appropriate quantile is $z_{\alpha/2} = 1.96$.

Since $Z_0 > z_{\alpha/2}$, we REJECT H_0 . In other words, these fellas probably ain't indep.

23. Suppose that we have two PRNs, $U_1 = 0.7$ and $U_2 = 0.4$. Use these to generate a realization from an Erlang_{k=2}($\lambda = 3$) distribution.

Solution:

$$-\frac{1}{\lambda} \ln \left(\prod_{i=1}^{k} U_{i} \right) = -\frac{1}{3} \ln (0.28) = 0.424. \quad \Box$$

Other answers are possible, e.g.,

$$-\frac{1}{\lambda} \ln \left(\prod_{i=1}^{k} (1 - U_i) \right) = -\frac{1}{3} \ln (0.18) = 0.572. \quad \Box$$

24. If X is a Nor(0,1) random variate, and $\Phi(x)$ is the Nor(0,1) c.d.f., what is the distribution of $\Phi(X)$?

Solution: By the Inverse Transform Theorem, $\Phi(X) \sim \text{Unif}(0,1)$.

25. If U is a Unif(0,1) random variate, and $\Phi(x)$ is the Nor(0,1) c.d.f., what is the distribution of $2\Phi^{-1}(U) + 3$?

Solution: By the Inverse Transform Theorem,

$$2\Phi^{-1}(U) + 3 \sim 2\operatorname{Nor}(0,1) + 3 \sim \operatorname{Nor}(3,4).$$

26. If U and V are i.i.d. Unif(0,1), what's the distribution of $-3\ell n(U^2V^2)$?

Solution: Note that

$$-3\ln(U^2V^2) = -6\ln(U) - 6\ln(V)$$

$$\sim \operatorname{Exp}(1/6) + \operatorname{Exp}(1/6)$$

$$\sim \operatorname{Erlang}_2(1/6). \quad \Box$$

27. Suppose the random variable X has the following c.d.f.

$$F(x) = \begin{cases} \frac{1}{2}e^{3x} & \text{if } x \le 0\\ 1 - \frac{1}{2}e^{-5x} & \text{if } x > 0 \end{cases}.$$

Give an inverse transform method for generating realizations of X.

Solution: Two cases:

For
$$X \le 0$$
 (i.e., $0 \le U \le 1/2$), set $F(X) = \frac{1}{2}e^{3X} = U$, so that $X = \frac{1}{3}\ln(2U)$.

Similarly, for
$$X>0$$
 (i.e., $1/2< U\leq 1$), set $F(X)=1-\frac{1}{2}e^{-5X}=U$, so that $X=-\frac{1}{5}\ln(2(1-U))$.

Putting all of this together, we have

$$X = \begin{cases} \frac{1}{3} \ln(2U) & \text{if } U \le 1/2 \\ -\frac{1}{5} \ln(2(1-U)) & \text{if } U > 1/2 \end{cases} . \quad \Box$$

28. Consider your inverse transform solution to Problem 27. Use the Unif(0,1) random number 0.6 to generate a realization of X.

Solution: Have to use the second case above, i.e.,

$$X = -\frac{1}{5}\ln(2(1-U)) = -0.2\ln(0.8) = 0.0446.$$

29. If U_1 and U_2 are i.i.d. Unif(0,1) with $U_1 = 0.75$ and $U_2 = 0.75$, use Box-Muller to generate two i.i.d. Nor(0,1) realizations. [Ha! I made U_1 and U_2 the same value so that the problem will be easier for me to grade! But note that you should still get two different Z_1 and Z_2 values.]

Solution: We have

$$Z_1 = \sqrt{-2\ell \ln(U_1)}\cos(2\pi U_2) = \sqrt{-2\ell \ln(0.75)}\cos(1.5\pi) = 0$$

 $Z_2 = \sqrt{-2\ell \ln(U_1)}\sin(2\pi U_2) = \sqrt{-2\ell \ln(0.75)}\sin(1.5\pi) = -0.759.$

30. If Z_1 , Z_2 , and Z_3 are i.i.d. Nor(0,1) random variables, find the value of c such that $P(Z_1^2 + Z_2^2 + Z_3^2 < c) = 0.99$.

Solution:

$$0.99 \ = \ \mathsf{P}(Z_1^2 + Z_2^2 + Z_3^2 < c) \ = \ \mathsf{P}(\chi^2(1) + \chi^2(1) + \chi^2(1) < c) \ = \ \mathsf{P}(\chi^2(3) < c),$$
 which implies that $c = \chi^2_{0.01.3} = 11.34$. \square

31. If U_1 and U_2 are PRNs, what is the distribution of $-4(U_1 + U_2) - 2$?

Solution: By class notes,

$$-4(U_1+U_2)-2 \sim -4\text{Tria}(0,1,2)-2 \sim \text{Tria}(-8,-4,0)-2 \sim \text{Tria}(-10,-6,-2).$$

32. If a random variable X has the beta distribution, then its p.d.f. is of the form $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, \ 0 < x < 1$, for parameters α and $\beta > 0$, and where $\Gamma(\cdot)$ is the gamma function. How might you generate such a random variate? Pick the best answer.

(a)	Ask a UGA student.
(b)	Convolution (add up appropriate random variates).
(c)	Inversion.
(d)	Acceptance-Rejection.
(e)	Composition.
(c) is work	tion: (a) is a sick joke; (b) isn't right because there aren't any sums involved; s wrong because you can't invert the resulting c.d.f. in closed-form; (e) won't in any natural way (except in a couple of special cases). In fact, from a similar uple given in the class notes, we know that the correct answer is (d) acceptance-rejection.
The	Zombies or Justin Bieber?

 ${\bf Solution:} \ {\rm Gimme} \ a \ break. \ {\bf www.youtube.com/watch?v=FmuswTEGF-U}$

33.