Московский государственный университет имени М. В. Ломоносова факультет вычислительной математики и кибернетики кафедра алгоритмических языков

Дипломная работа

НЕКОТОРЫЕ АЛГОРИТМЫ НА ОСНОВЕ ГРАФОВЫХ ПРЕДСТАВЛЕНИЙ БЕСКОНТЕКСТНЫХ ЯЗЫКОВ

Выполнил: студент 524 группы Сарафанов Андрей Михайлович

Научный руководитель: ст. преп., к.ф.-м.н. Вылиток Алексей Александрович

Москва 2015

Содержание

1	Постановка задачи	3
2	Обзор имеющихся решений	4
3	Понятие L-графов (как лучше назвать?)	5
	3.1 Определение L-графа	5
	3.2 Понятие ядра L-графа	5
	3.3 Всё, что понадобится	5
4	Построение детерминированного конечного автомата-кандидата	6
	4.1 Алгоритм построения ДКА-кандидата	6
	4.2 Свойства построенного ДКА (возможно, свойств никаких и нет, тогда	
	доказательство того, что построено что нужно)	6
5	Проверка эквивалентности исходного L-графа и построенного ДКА	7
	5.1 Алгоритм проверки эквивалентности ДКА и L-графа	7
6	Заключение	8
7	Литература	9

Постановка задачи

Обзор имеющихся решений

Понятие L-графов (как лучше назвать?)

- 3.1 Определение L-графа
- 3.2 Понятие ядра L-графа
- 3.3 Всё, что понадобится

Построение детерминированного конечного автомата-кандидата

- 4.1 Алгоритм построения ДКА-кандидата
- 4.2 Свойства построенного ДКА (возможно, свойств никаких и нет, тогда доказательство того, что построено что нужно)

Проверка эквивалентности исходного L-графа и построенного ДКА

5.1 Алгоритм проверки эквивалентности ДКА и L-графа

Заключение

В рамках данной дипломной работы исследовалась проблема регулярности бесконтекстных языков, представленных в виде L-графов.

Предложено условие регулярности детерминированных L-графов: предложены алгоритм построения по детерминированному L-графу (?детерминированного?) конечного автомата, который будет эквивалентен исходному L-графу, только если тот регулярен, и алгоритм проверки эквивалентности детерминированного L-графа и (?детерминированного?) конечного автомата.

Также выделен подкласс детерминированных L-графов, на котором указанное условие регулярности является критерием.

Литература

- 1. Ахо А. Ульман Дж. Теория синтаксического анализа, перевода и компиляции. Синтаксический анализ. М.: Мир, 1986. Т. 1.
- 2. E Stearns Richard. A regularity test for pushdown machines // Information and control. 1967. T. 11, № 3. C. 323–340.
- 3. Shankar Priti Adiga B. S. A Graph-Based Regularity Test for Deterministic Context-free Languages // Theor. Comput. Sci. 1991. T. 88, № 1. C. 117–125.
- 4. Л.И. Станевичене. К теории бесконтекстных языков. М.: МГУ им. М.В. Ломоносова, 2000.
- 5. Vylitok A. Gomozov A. Stanevichene L. The power of printing ink // V-я международная конференция. Информатика. Образование. Экология и здоровье человека. Издательство Астраханского государственного педагогическиого университета Астрахань, 2000. С. 270–270.
- 6. G Valiant Leslie. Regularity and related problems for deterministic pushdown automata // Journal of the ACM. 1975. T. 22.