End-to-end ML Project

Lecture 3

Working with real data

The California Housing Dataset

- Based on US Census Bureau
- Organized by district (600-3000 people)

- UC Irvine Machine Learning Repository
- Amazon AWS Datasets
- Wikipedia's list of Machine Learning datasets
- Kaggle

8 Main Steps of a ML Project

- 1. Look at the **big picture**.
- 2. Get the data.
- 3. Discover and visualize the data to gain insights.
- 4. **Prepare** the data for Machine Learning algorithms.
- 5. Select a model and train it.
- 6. **Fine-tune** your model.
- 7. **Present** your solution.
- 8. Launch, monitor, and maintain your system.

1. Looking at the big picture

The big picture

Ask the purpose of building a model --> **frame** your problems and objectives:

- What to expect, use, and benefit from this model?
- What learning algorithm to use?
- What performance measure to evaluate?
- How much effort to be spent?

ML Pipeline for real-estate investments

Select a performance measure MAE

- One option is **Mean Absolute Error** (MAE)
- Measure the distance between prediction and target values
- Correspond to L1 norm, or Manhattan norm (easily understood).

Select a performance measure RMSE

- A preferred for regression problem is Root Mean Square Error (RMSE)
- Correspond to L2 norm, or Euclidean norm
- More sensitive to outliers than MAE, but generally perform better (Why?)

2. Getting the Data

Load the data from a .csv file with read_csv()

```
import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)
```

```
housing = load_housing_data()
housing.head()
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.23	37.88	41.0	880.0	129.0	322.0
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
2	-122.24	37.85	52.0	1467.0	190.0	496.0
3	-122.25	37.85	52.0	1274.0	235.0	558.0
4	-122.25	37.85	52.0	1627.0	280.0	565.0

Take a quick look with info()

```
housing.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 20640 entries, 0 to 20639
 Data columns (total 10 columns):
 longitude
                      20640 non-null float64
                      20640 non-null float64
 latitude
 housing median age
                      20640 non-null float64
 total rooms
                   20640 non-null float64
 total bedrooms 20433 non-null float64
 population
                      20640 non-null float64
 households
                      20640 non-null float64
 median income
                 20640 non-null float64
 median house value 20640 non-null float64
 ocean proximity
                      20640 non-null object
 dtypes: float64(9), object(1)
 memory usage: 1.6+ MB
```

Learn some basic statistics with describe()

housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedro
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.0000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553
std	2.003532	2.135952	12.585558	2181.615252	421.385070
min	-124.350000	32.540000	1.000000	2.000000	1.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.00000

Create train and test sets with train_test_split()

```
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
```

test_set.head()

<u>.</u>	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_
20046	-119.01	36.06	25.0	1505.0	NaN	1392.0	359.0	1.6812	
3024	-119.46	35.14	30.0	2943.0	NaN	1565.0	584.0	2.5313	
15663	-122.44	37.80	52.0	3830.0	NaN	1310.0	963.0	3.4801	
20484	-118.72	34.28	17.0	3051.0	NaN	1705.0	495.0	5.7376	
9814	-121 <mark>.</mark> 93	36.62	34.0	2351.0	NaN	1063.0	428.0	3.7250	

3. Exploring and Visualizing the Data

Plot a histogram with hist()

```
%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
save_fig("attribute_histogram_plots")
plt.show()
```


Discover and Visualize the Data with plot()

```
housing.plot(kind="scatter", x="longitude", y="latitude")
save_fig("bad_visualization_plot")
```

Saving figure bad visualization plot

Discover and Visualize the Data with plot()

```
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)
save_fig("better_visualization_plot")
```

Saving figure better_visualization_plot

Add more visualization dimension

Add a Geographical Map Image... Nice!

Did you notice some "hot spots"?

Look at correlations with corr()

```
corr matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
 median house value
                   1.000000
 median income
                 0.687160
 total rooms
                0.135097
 housing median age 0.114110
 households
                  0.064506
 total bedrooms
                0.047689
 population
              -0.026920
 longitude
           -0.047432
 latitude -0.142724
 Name: median house value, dtype: float64
```

Check all correlations with scatter_matrix()

Isolate the most "interesting" one

Why is this plot "interesting"?

Experiment with Feature Extraction

```
housing["rooms per household"] = housing["total rooms"]/housing["households"]
housing["bedrooms per room"] = housing["total bedrooms"]/housing["total rooms"]
housing["population per household"]=housing["population"]/housing["households"]
corr matrix = housing.corr()
corr matrix["median house value"].sort values(ascending=False)
median house value
                            1.000000
median income
                            0.687160
rooms per household
                            0.146285
                            0.135097
total rooms
housing median age
                            0.114110
households
                            0.064506
total bedrooms
                           0.047689
population per household
                           -0.021985
population
                           -0.026920
longitude
                           -0.047432
latitude
                           -0.142724
bedrooms per room
                           -0.259984
Name: median house value, dtype: float64
```

4. Preparing the data

(aka. Data Cleaning!)

Detect "missing values"

```
sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_p
4629	-118.30	34.07	18.0	3759.0	NaN	3296.0	1462.0	2.2708	<1H
6068	-117.86	34.01	16.0	4632.0	NaN	3038.0	727.0	5.1762	<1H
17923	-121.97	37.35	30.0	1955.0	NaN	999.0	386.0	4.6328	<1H
13656	-117.30	34.05	6.0	2155.0	NaN	1039.0	391.0	1.6675	
19252	-122.79	38.48	7.0	6837.0	NaN	3468.0	1405.0	3.1662	<1H

Fill in "missing values" with Imputer

```
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy="median")

housing_num = housing.drop('ocean_proximity', axis=1)
# alternatively: housing_num = housing.select_dtypes(include=[np.number])

imputer.fit(housing_num)

Imputer(axis=0, copy=True, missing_values='NaN', strategy='median', verbose=0)
```

Transform the training set

housing_tr.loc[sample_incomplete_rows.index.values]

latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
34.07	18.0	3759.0	433.0	3296.0	1462.0	2.2708
34.01	16.0	4632.0	433.0	3038.0	727.0	5.1762
37.35	30.0	1955.0	433.0	999.0	386.0	4.6328
34.05	6.0	2155.0	433.0	1039.0	391.0	1.6675
38.48	7.0	6837.0	433.0	3468.0	1405.0	3.1662

Process "categorical inputs"

```
housing["ocean_proximity"].value_counts()
<1H OCEAN
               9136
INLAND
               6551
NEAR OCEAN
              2658
NEAR BAY
               2290
ISLAND
Name: ocean proximity, dtype: int64
housing cat = housing[['ocean proximity']]
housing cat.head(10)
       ocean_proximity
 17606
          <1H OCEAN
 18632
          <1H OCEAN
 14650
         NEAR OCEAN
  3230
             INLAND
```

Encode the categories with OneHotEncoder

```
cat encoder = OneHotEncoder(sparse=False)
housing cat lhot = cat encoder.fit transform(housing cat)
housing cat 1hot
array([[1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0.11)
cat encoder.categories
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]
```

Use a Pipeline for a sequence of transformations

```
housing_num_tr

array([[-1.15604281, 0.77194962, 0.74333089, ..., -0.31205452, -0.08649871, 0.15531753],
[-1.17602483, 0.6596948, -1.1653172, ..., 0.21768338, -0.03353391, -0.83628902],
[ 1.18684903, -1.34218285, 0.18664186, ..., -0.46531516, -0.09240499, 0.4222004],
...,
```

Combine columns with ColumnTransformer

5. Selecting a Model to train

Select a model

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Evaluate on some test data

Compare against the actual values:

```
print("Labels:", list(some_labels))
Labels: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
```

Calculate the Errors

```
from sklearn.metrics import mean_squared_error
housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
```

68628.198198489219

```
from sklearn.metrics import mean_absolute_error
lin_mae = mean_absolute_error(housing_labels, housing_predictions)
lin_mae
```

49439.895990018973

Try another model: DecisionTreeRegressor

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(random_state=42)
tree_reg.fit(housing_prepared, housing_labels)
```

```
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
```

••• ← Zero error!? What's happened?

Better Evaluation using cross_val_score()

Display the scores

Mean: 71379.07447706361

Standard deviation: 2458.3188204349362

```
def display scores(scores):
    print("Scores:", scores)
    print("Mean:", scores.mean())
    print("Standard deviation:", scores.std())
display scores(tree rmse scores)
 Scores: [70232.0136482 66828.46839892 72444.08721003 70761.50186201
  71125.52697653 75581.29319857 70169.59286164 70055.37863456
  75370.49116773 71222.39081244]
                                        ← Off by $71,379
```

Let's do the same with the Linear Regression

Try one more model: RandomForestRegressor

```
from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor(random_state=42)
forest_reg.fit(housing_prepared, housing_labels)
```

Scores: [51650.94405471 48920.80645498 52979.16096752 54412.74042021

50861.29381163 56488.55699727 51866.90120786 49752.24599537

55399.50713191 53309.74548294]

Mean: 52564.19025244012

Standard deviation: 2301.873803919754

Our best model so far is off by \$52,564! Can we do better?

6. Fine-tuning your model

Fine tune your model

- Grid Search
- Randomize Search
- Ensemble Methods

Do a Grid Search

How many times does this search have to call training on RandomForestRegressor?

What are the cases?

```
cvres = grid search.cv results
for mean score, params in zip(cvres["mean test score"], cvres["params"]):
   print(np.sqrt(-mean score), params)
63647.854446 {'max features': 2, 'n estimators': 3}
55611.5015988 {'max features': 2, 'n estimators': 10}
53370.0640736 {'max features': 2, 'n estimators': 30}
60959.1388585 {'max features': 4, 'n estimators': 3}
52740.5841667 {'max features': 4, 'n estimators': 10}
50374.1421461 {'max features': 4, 'n estimators': 30}
58661.2866462 {'max features': 6, 'n estimators': 3}
52009.9739798 {'max features': 6, 'n estimators': 10}
50154.1177737 {'max features': 6, 'n estimators': 30}
57865.3616801 {'max features': 8, 'n estimators': 3}
51730.0755087 {'max features': 8, 'n estimators': 10}
49694.8514333 {'max features': 8, 'n estimators': 30}
62874.4073931 {'bootstrap': False, 'max features': 2, 'n estimators': 3}
54643.4998083 {'bootstrap': False, 'max features': 2, 'n estimators': 10}
59437.8922859 {'bootstrap': False, 'max features': 3, 'n estimators': 3}
52735.3582936 {'bootstrap': False, 'max features': 3, 'n estimators': 10}
57490.0168279 {'bootstrap': False, 'max features': 4, 'n estimators': 3}
51008.2615672 {'bootstrap': False, 'max features': 4, 'n estimators': 10}
```

Identify the "best" hyperparameters

verbose=0, warm start=False)

7. Presenting your solution

Evaluate on the Test Set

```
final_model = grid_search.best_estimator_

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)

final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse)
final_rmse
```

47766.003966433083

Our error is getting smaller after each step: \$71K → \$69K → \$52K → \$49K → \$47K

- Create a nice presentation with clear visual aids and easy to remember statements
- Present your solution to your stakeholders highlighting what you've learned:
 - What worked and what did not
 - What assumptions were made
 - What the system's limitations are

8. Launching and Maintaining

Launch model on the cloud

Google Cloud Al Platform: just save your model using joblib and upload it to Google Cloud Storage (GCS), then head over to Google Cloud Al Platform and create a new model version, pointing it to the GCS file. This gives you a simple web service that takes care of load balancing and scaling for you.

It take JSON requests containing the input data (e.g., of a district) and returns JSON responses containing the predictions. You can then use this web service in your website.

Monitor and Maintain

You've got the approval to launch! Now what?

- Update the model over time with new training data
- Evaluate based on the field experts (or a crowd-sourcing platforms)
- Ensure the quality of incoming training data
- Refresh the model at a regular interval
- Backup the previous model

Learning Outcomes

- □ Have a good idea of the 8 steps of a ML project
- Learn a whole host of tools for data exploration and visualization in Colab using Python
- ☐ Try out a few ML learning algorithms
- Fine-tune some hyperparameters of a learning method

By now, you know a lot about ML. Keep practicing!

Up next: It's your turn to get hands-on experience with the Codeathon 1