LAPORAN PROPOSAL

TUGAS AKHIR

PERANCANGAN APLIKASI INVENTORY GALERI DI PLUT KUMKM BATAM DENGAN METODE EXTREME PROGRAMMING

Disusun untuk Memenuhi Salah Satu Tugas Mata Kuliah

Tugas Akhir

Disusun oleh:

Khenjy Johnelson 2022133005

Teknik Perangkat Lunak

PROGRAM STUDI TEKNIK PERANGKAT LUNAK

FAKULTAS KOMPUTER

UNIVERSITAS UNIVERSAL

2024

DAFTAR ISI

DAF	TAR ISI	2
BAB	I	3
PENI	DAHULUAN	3
1.1	Latar Belakang Penelitian	3
1.2	Identifikasi Masalah	5
1.3	Rumusan Masalah	5
1.4	Ruang Lingkup	5
1.5	Tujuan Penelitian	6
1.6	Manfaat Penelitian	6
BAB	II	7
TINJ	IAUAN PUSTAKA	7
2.1	Landasan Teori	7
2.1.1	Aluminium	7
2.2	Penelitian Terdahulu	9
BAB	III	26
MET	ODE PENELITIAAN	26
3.1	Gambaran Umum Objek Penelitian	26
3.2	Metode Penelitian	27
3.3	Jadwal Penelitian	41
DAF	TAR PIISTAKA	43

BAB I

PENDAHULUAN

1.1 **Lat**ar Belakang Penelitian

Industri kreatif dan Usaha Mikro, Kecil, dan Menengah (UMKM) memainkan peran krusial dalam perekonomian Indonesia, terutama setelah pandemi COVID-19. Dalam situasi yang penuh tantangan ini, penting bagi sektorsektor tersebut untuk beradaptasi dengan cepat terhadap perubahan yang tidak terduga. Dampak jangka panjang pandemi pada industri kreatif masih menjadi perhatian, di mana ketidakpastian yang dihadapi memerlukan strategi baru untuk keberlangsungan usaha (Khlystova et al., 2022). Teknologi digital telah terbukti memberikan peluang baru dalam memfasilitasi pengelolaan UMKM dan industri kreatif, khususnya dalam memahami perilaku konsumen yang kini semakin mengandalkan platform digital untuk berbelanja, termasuk dalam sektor perabotan rumah (Rangaswamy et al., 2022).

UMKM merupakan tulang punggung ekonomi yang membutuhkan dukungan sistem yang efektif untuk memperbaiki proses pengambilan keputusan serta manajemen bisnis yang lebih baik. Salah satu metode yang dapat meningkatkan kelayakan usaha adalah profile matching, yang telah menunjukkan efektivitasnya dalam pengembangan bisnis (Ramadhanu & Priandika, 2021). Dengan mengadopsi teknologi dan sistem informasi yang tepat, keunggulan

kompetitif UMKM dapat diperkuat, dan peran masyarakat serta pemerintah menjadi semakin signifikan dalam mencapai tujuan tersebut (Mahrinasari et al., 2024).

Pengelolaan inventori di PLUT KUMKM Batam saat ini masih dilakukan secara manual, yang menyebabkan keterlambatan dalam penginputan data dan menghambat efisiensi operasional. Tantangan dalam pengelolaan ini menunjukkan kebutuhan yang tinggi akan sistem yang lebih terintegrasi dan otomatis (Guo et al., 2023). Prinsip-prinsip manajemen spare part dapat diterapkan untuk meningkatkan efisiensi proses pengelolaan inventori UMKM, dengan mengadaptasi pendekatan algoritmik dalam manajemen yang telah terbukti bermanfaat dalam berbagai konteks (Zhang et al., 2021) (Perez et al., 2021).

Metodologi pengembangan perangkat lunak juga menjadi kunci dalam menciptakan sistem yang responsif terhadap kebutuhan pengguna. Pendekatan Extreme Programming (XP) memungkinkan pengembangan sistem secara bertahap dengan menerima umpan balik dari pengguna secara terus-menerus, sehingga mampu mengatasi tantangan yang dihadapi oleh UMKM (Febriantoro & Suaidah, 2021). Selain itu, penelitian mengenai pengukuran User Experience berdasarkan persyaratan pengguna menunjukkan pentingnya merancang sistem yang tidak hanya memenuhi kebutuhan fungsional, tetapi juga memberikan pengalaman pengguna yang memuaskan (Atoum et al., 2021). Dengan mempertimbangkan kebutuhan yang bervariasi di setiap daerah, metode ini dapat memberikan solusi yang lebih tepat guna dengan menggunakan sistem pendukung keputusan (Kurniawati & Ahmad, 2021).

1.2 Identifikasi Masalah

Berdasarkan latar belakang yang diberikan, masalah yang teridentifikasi adalah:

- 1. Sulitnya pengelolaan barang secara manual
- 2. Keterbatasan teknologi yang digunakan untuk mengelola barang inventori secara otomatis.

1.3 Rumusan Masalah

Berdasarkan identifikasi masalah, rumusan masalah dalam penelitian ini adalah:

- Bagaimana merancang solusi di PLUT KUMKM untuk menyelesaikan masalah pengelolaan berbasis website
- 2. Bagaimana cara merancang aplikasi inventori dengan mengedepankan software development life cycle?

1.4 Ruang Lingkup

Ruang lingkup penelitian ini mencakup:

- 1. Perancangan aplikasi inventori yang berhubungan dengan
- Aplikasi inventori ini digunakan untuk mengorganisir dan mengautomasikan barang per bulan
- Total dataset yang didapat adalah 1 bulan data inventori galeri UMKM PLUT

4. Pengambilan data akan dilakukan dengan pengajuan ke admin di PLUT KUMKM

1.5 **Tuj**uan Penelitian

Tujuan dari penelitian ini adalah:

- Merancang aplikasi inventori yang dapat mendata secara teroganisir dan menggantikan aplikasi Excel.
- 2. Merancang aplikasi inventori yang dapat membantu mengautomasikan pengerjaan inventori galeri di PLUT KUMKM Batam.

1.6 **Ma**nfaat Penelitian

Manfaat dari perancangan aplikasi inventori galeri adalah:

1. Manfaat Teoritis

2. Manfaat Praktis

a. Manfaat Bagi Perusahaan

Diharapkan penelitian ini dapat berguna untuk meningkatkan efisiensi dan pelayanan kepada pelanggan dengan solusi pengenalan objek yang cepat dan akurat di perusahaan.

b. Manfaat Bagi Almamater

Diharapkan penelitian ini dapat menjadi langkah awal yang dapat dikembangkan oleh mahasiswa Teknik Perangkat Lunak berikutnya.

c. Manfaat Bagi Penulis

Penelitian ini memungkinkan penulis untuk menambah informasi baru tentang cara mengembangkan aplikasi inventori perangkat lunak.

BAB II

TINJAUAN PUSTAKA

2.1 Landasan Teori

2.1.1 Aluminium

Aluminium merupakan unsur logam yang paling berlimpah di kerak Bumi, menyumbang lebih dari 8% dari massa totalnya. Bahan ini ditemukan dalam batuan sedimen bauksit, yang ditambang dalam skala ratusan juta ton setiap tahun. Bauksit dapat dengan mudah diproses melalui metode Bayer,

suatu proses yang umum digunakan dalam industri untuk menghasilkan alumina atau oksida aluminium (Al₂O₃) dari bauksit sebagai bahan mentah dalam produksi logam aluminium.(Hicks et al., 2021). Penggunaan paduan aluminium sebagai material struktural telah mengalami peningkatan dalam beberapa tahun terakhir karena berbagai sifat menguntungkan yang dimilikinya. Diantaranya adalah rasio kekuatan terhadap berat yang tinggi, kemudahan dalam proses fabrikasi, tingkat kerja yang tinggi, kelenturan yang signifikan, konduktivitas panas yang baik, ketahanan korosi yang tinggi, dan estetika yang menarik pada penyelesaian alaminya(Aboulkhair et al., 2019).

Sebagai hasilnya, sekitar 25% dari total produksi aluminium global saat ini digunakan dalam industri konstruksi. Hal ini disebabkan oleh fleksibilitas struktural yang tinggi dan ketahanan terhadap korosi yang dimiliki oleh paduan aluminium, serta kemampuannya untuk mempertahankan integritasnya dalam menghadapi perubahan suhu yang ekstrem.. Hal ini memungkinkan penggunaan aluminium untuk struktur kompleks yang sulit dibangun dengan menggunakan bahan konstruksi

konvensional seperti beton atau baja, terutama dalam lingkungan laut yang membutuhkan pemeliharaan yang minim(Georgantzia et al., 2021).

Gambar 2.1 Contoh aluminium Alloy sebagai Ingot

Sumber:(Brough & Jouhara, 2020)

2.2 Penelitian Terdahulu

Berikut ini merupakan daftar yang disajikan pada tabel 2.2 mencakup penelitian sebelumnya.

Tabel 2.2 Daftar Penelitian Terdahulu

No	Judul	Penulis	Tahun	Hasil
1.	The impact of the	Olena	2022	Di dalam penelitian
	COVID-19	Khlystovaa,		tersebut dibahas tentang
	pandemic on the	Yelena		dampak pandemi Covid-
	creative	Kalyuzhnovac,		19 pada industri kreatif.
	industries: A	Maksim Belitski		Penelitian dilakukan
	literature review			dengan membahas
	and future			literasi yang ada dan
	research agenda			menentukan research
				yang akan dilakukan ke
				depannya.
2.	PERANCANGAN	Deddy	2021	Di dalam penelitian
	SISTEM	febriantoro,		tersebut dibahas tentang
	INFORMASI	Suaidah		penggunaaan metode
	DESA PADA			Extreme Programming
	KECAMATAN			untuk merancang system
	SENDANG			informasi desa pada
	AGUNG			Kecamatan Sendang
	MENGGUNAKAN			Agung. Pengujian sistem
	EXTREME			dilakukan dengan
	PROGRAMMING			menggunakan
				perhitungan ISO 9126.

No	Judul	Penulis	Tahun	Hasil
3.	RANCANG	Prasetyo Bella	2021	Di dalam penelitian
	BANGUN	Ramadhanu,		tersebut dibahas tentang
	SISTEM	Adhie Thyo		perancangan web servie
	PENDUKUNG	Priandika		aplikasi sentralisasi
	KEPUTUSAN			produk UMKM
	PENENTUAN			padaUPTD PLUT
	KELAYAKAN			KUMKM Provinsi
	USAHA MIKRO			Lampung dengan
	KECIL			metodologi Extreme
	MENENGAH			Programming. Pengujian
	DENGAN			dilakukan dengan
	MENGGUNAKAN			perhitungan ISO 9126.
	METODE			
	PROFILE			
	MATCHING			
	PADA UPTD			
	PLUT KUMKM			
	PROVINSI			
	LAMPUNG			
4.	SISTEM	Risa Dwi	2021	Penelitian ini membahas
	PENDUKUNG	Kurniawati,		pembuatan sistem
	KEPUTUSAN	Imam Ahmad		pendukung keputusan

No	Judul	Penulis	Tahun	Hasil
	PENENTUAN			penentuan kelayakan
	KELAYAKAN			usaha mikro kecil
	USAHA MIKRO			menengah dengan
	KECIL			menggunakan metode
	MENENGAH			profile matching pada
	DENGAN			UPTD PLUT KUMKM
	MENGGUNAKAN			provinsi lampung dengan
	METODE			menggunakan
	PROFILE			metodologi Extreme
	MATCHING			Programming.
	PADA UPTD			
	PLUT KUMKM			
	PROVINSI			
	LAMPUNG			
5.	The impact of	Easwaramoorthy	2022	Pada penelitian ini
	digital technology	Rangaswamy,		dibahas mengenai
	on changing	Nishad Nawaz,		pengaruh teknologi
	consumer	Zhou		digital pada perubahan
	behaviours with	Changzhuang		perilaku konsumen
	special reference			dengan referensi khusus
	to the home			ada bidang perabotan
				rumah. Perabotan

No	Judul	Penulis	Tahun	Hasil
	furnishing sector			Perhitungan dilakukan
	in Singapore			dengan menggunakan
				cross tabulation dan chi
				squared test.
6.	Unlocking the	Ruixi Guo1,	2023	Penelitian ini membahas
	Creative	IokTeng Esther		tentang Pembukaan
	Potential: A Case	Kou, Qingrong		Potensi Kreatifitas pada
	Study of Luoyang	Jiang		kota Luoyang.Di sini
	City's Creative			peneliti melakukan
	Tourism			wawancara kepada 20
	Development			orang responden untuk
				mendapatkan hasil
				mengenai apa saja yang
				menjadi tempat favorit
				dan menjadi alasan
				perkembangan turis di
				kota Luoyang.
7.	Local wisdom and	M.S.	2024	Dalam penelitian ini
	Government's role	Mahrinasaria,		dibahas mengenai peran
	in strengthening	Satria		masyarakat lokal dan
	the sustainable	Bangsawana,		pemerintah dalam
	competitive			meningkatkan

No	Judul	Penulis	Tahun	Hasil
	advantage of	Mohamad Fazli		keunggulan dalam
	creative industries	Sabri		industri kreatif di
				Indonesia dengan
				mencari keterhubungan
				Entrepreneurial
				Orientation (EO) dan
				Entrepreneurial
				Marketing (EM) dalam
				mengembangkan Usaha
				Micro Kecil dan
				Menengan (UMKM) di
				Indonesia. Data diteliti
				dengan menghitung hasil
				kuantitatif dari kriteria-
				kriteria responden dari
				bidang industri kreatif.
8.	Spare Parts	Shuai Zhang,	2021	Penelitian ini membahas
	Inventory	Kai Huang,		mengenai pengamatan
	Management: A	Yufei Yuan		terhadap publikasi
	Literature Review			mengenai manajemen
				spareparts dari tahun
				2010 hingga 2020. Hasil

No	Judul	Penulis	Tahun	Hasil
				studi dibagi menjadi 2
				perspektif dan juga
				diperhatikan alur hidup
				sparepart dari inisiasi
				hingga produk berakhir.
9.	Algorithmic	Hector D. Perez,	2021	Penelitian ini membahas
	Approaches to	Christian D.		tentang algoritma yang
	Inventory	Hubbs, Can		digunakan dalam
	Management	Liand Ignacio E.		mengelola inventory
	Optimization	Grossmann		dengan meneliti Suppy
				Chain Network
				Schematic.
10.	Towards	Issa Atoum,	2021	Penelitian ini membahas
	Measuring User	Jameel Almalki,		mengenai menentukan
	Experience based	Saeed Masoud		User Experience
	on Software	Alshahrani,		berdasarkan user
	Requirements	Waleed Al		requirement yang telah
		Shehri		disediakan.

Berdasarkan perancangan yang dilakukan oleh (Febriantoro, 2021)yang berjudul "Perancangan sistem informasi desa pada Kecamatan Sendang Agung menggunakan Extreme Programming" membahas tentang pembuatan aplikasi berbasis web untuk mengelola potensi desa. Pengujian sistem dilakukan dengan perhitungan ISO 9126. Berdasarkan perhitungan tersebut, sistem informasi potensi desa pada kecamatan Sendang Agung mendapatkan key performance indicator dalam aspek Functionality dengan angka 93.8%, sedangkan untuk aspek usability mendapatkan angka 93.6%.

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
1	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
8	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
9	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

No	Judul	Penulis	Tahun	Hasil
10	Convolutional	Pier Luigi	2019	Di dalam penelitian
	neural networks	Mazzeo, Arturo		tersebut dibahas tentang
	for recognition	Argentieri,		pengunaan metode R-CNN
	and	Federico De		untuk pengenalan dan
	segmentation of	Luca, Paolo		segmentasi aluminium
	aluminium	Spagnolo,		profiles dengan
	profiles	Cosimo		menggunakan ResNet50
		Distante, Marco		dan ResNet101 untuk
		Leo, dan		membandingkan. Tingkat
		Pierluigi		akurasi tertinggi yang
		Carcagni		diperoleh adalah ResNet50
				dengan hasil hingga 94%

Dalam penelitian ini yang bertujuan untuk peracangan pengenalan nama aluminium berbasis deep learning di PT Sri Indah Mandiri, peneliti menggunakan model terbaru, yaitu YOLOv8, yang termasuk dalam keluarga baru dari YOLO. Diharapkan, hasil dari menklasifikasikan aluminium ini memiliki tingkat akurasi yang tinggi.

BAB III

METODE PENELITIAAN

3.1 Gambaran Umum Objek Penelitian

PT Sri Indah Mandiri, sebuah perusahaan yang bergerak di sektor distribusi produk aluminium, mengalami kendala besar dalam identifikasi permasalahan meliputi tantangan dalam mengkategorikan barang oleh *front desk* ketika pelanggan kurang memiliki pengetahuan khusus tentang nama barang, serta terbatasnya ketersediaan dan kesibukan staf gudang sehingga

Staff Accounting KEPALA GUDANG Staff Admin/Front Desk Staff Karyawan Gudang Staff Kasir

Struktur Organisasi PT Sri Indah Mandiri

menyebabkan kesulitan dalam mengidentifikasi dan mencari nama barang, yang pada akhirnya mengakibatkan keterbatasan waktu.

Gambar 3.1 Struktur Organisasi di PT Sri indah Mandiri

Saat pelanggan datang dengan pertanyaan atau membawa sampel barang ke front desk, seringkali mereka tidak mengetahui nama atau jenis barang secara spesifik. Ini memicu permintaan bantuan dari staf gudang untuk mengidentifikasi barang tersebut. Kendala yang muncul adalah keterbatasan ketersediaan dan kesibukan beberapa staf gudang, yang bisa membuat proses identifikasi dan Pencarian tipe aluminium menjadi lambat dan memakan waktu.

3.2 Metode Penelitian

Pendekatan yang diterapkan dalam merancang dan membangun menggunakan metode CRISP-DM(Cross-Industry Standard Process for Data

State of CRISP-DM

Mining), proses yang ditunjukkan pada Gambar 3.1 memberikan rinciannya.

Gambar 3.2 Metode Penelitian CRISP-DM

Sumber:(Wiemer et al., 2019)

1. Business Understanding

Pada langkah ini, dilakukan penghimpunan sumber referensi yang mencakup berbagai jurnal dan literatur yang membahas topik klasifikasi menggunakan model deep learning YOLO. Sumber-sumber ini digunakan sebagai referensi untuk mengidentifikasi permasalahan yang telah diformulasikan dalam penelitian ini.

Untuk mengatasi masalah ini, penelitian ini mengusulkan perancangan sistem klasifikasi objek berbasis teknologi computer vision, dengan menggunakan model deep learning YOLO. Sistem ini akan memungkinkan front desk untuk mengambil foto barang atau sampel yang diserahkan oleh pelanggan. Melalui model YOLO, sistem akan secara otomatis mengidentifikasi jenis barang tersebut, mengurangi ketergantungan pada staf gudang yang mungkin sedang sibuk atau sulit dihubungi.

Implementasi teknologi computer vision ini diharapkan akan meningkatkan efisiensi komunikasi di dalam perusahaan, mengurangi waktu tunggu pelanggan, dan secara keseluruhan, meningkatkan layanan pelanggan yang diberikan oleh PT Sri Indah Mandiri. Penelitian ini juga menjadi contoh nyata tentang bagaimana inovasi teknologi dapat diaplikasikan dalam dunia bisnis untuk mengatasi tantangan operasional.

2. Data Understanding

Dalam langkah ini, peneliti melakukan proses pengidentifikasian permasalahan yang ada di lapangan, serta melakukan analisis terhadap literatur-literatur terkait yang dijadikan sebagai sumber referensi.

a. Observasi

Penulis mengumpulkan kebutuhan dengan mengamati dan menganalisa fenomena permasalahan yang ada pada PT Sri Indah Mandiri yaitu proses mengidentifikasi aluminium yang menggunakan metode manual dan peneliti juga mengumpulkan kebutuhan dengan mengamati penelitian terdahulu terkait dengan klasifikasi berbasis deep learning yang bersumber dari jurnal-jurnal yang ada.

b. Wawancara

Pada tahap ini, penulis melakukan wawancara langsung dengan kepala gudang aluminium, yang bernama Pak Heri Wijaya, S.M, dan Pak Antony, S.Ars, sebagai salah satu staf *frontdesk* di PT Sri Indah Mandiri. Rincian hasil wawancara dengan pak Heri Wijaya, S.M dapat

ditemukan dalam Tabel 3.1, sedangkan hasil wawancara dengan Pak Antony, S.Ars dapat ditemukan dalam Tabel 3.2.

Gambar 3.3 Wawancara Dengan Pak Heri Wijaya, S.M

Gambar 3.4 Wawancara Dengan Pak Antony, S.Ars

Tabel 3.1 Wawancara Narasumber Kepala Gudang Aluminium

NO	PERTANYAAN	JAWABAN
1.	Bagaimana tanggapan	PT Sri Indah Mandiri termasuk salah satu
	Bapak mengenai PT Sri	perusahaan distributor yang cukup sukses
	Indah Mandiri dan peran	menjual bahan material bangunan seperti
	gudang aluminium di	aluminium, kaca, papan dan besi di kota
	perusahaan ini?	Batam. Kalau peranan gudang aluiminium
		sebagai tempat penyimpanan aluminium
		yang sudah di susun sesuai
		tempatnya/raknya.

NO	PERTANYAAN	JAWABAN
2.	Sudah berapa lama Bapak	Saya bekerja di PT Sri Indah Mandiri sudah
	bekerja di PT Sri Indah	6.5 tahun lebih. Saya ingat pertama kali kerja
	Mandiri?	di PT Sri Indah Mandiri itu pada tahun 2017.
3.	Bagaimana proses alur	Karena PT Sri Indah Mandiri merupakan
	barang aluminium dari	salah satu distributor di kota Batam, untuk
	kedatangannya hingga	aluminium itu sendiri diimpor dari China
	keluar dari gudang. Apa	yang didatangkan dengan container panjang
	tahapan utama dalam	40 feet. Untuk Proses nya itu mulai dari
	proses ini?	bongkar container kita turunkan barangnya
		kemudian dilakukan pengecekan kuantitas
		barangnya dan kondisi barangnya apabila
		semua cocok maka selanjutnya baru disusun
		satu per satu pack sesuai dengan tempat yang
		sudah disiapkan raknya. Karena PT Sri Indah
		Mandiri ini adalah distributor biasanya
		barang barang yang disimpan di gudang
		aluminium ini rata-rata itu barangnya
		banyak yang di antar/dijemput sesuai
		permintaan customer.
4.	Berapa banyak jenis	Untuk dibagi beberapa segmen fungsinya itu
	aluminium yang tersedia di	tidak banyak palingan hanya puluhan saja
	gudang PT Sri Indah	tetapi dibagi sesuai jenisnya itu bisa dibilang

NO	PERTANYAAN	JAWABAN
	Mandiri? Dan jenis apa	dua ratusan jenis belum terhitung warnanya
	yang sering keluar/dicari?	jadi cukup banyak. Kesimpulannya kalau
		perhitungan kotor itu sekitar 1000an lebih
		jenis aluminium yang ada di PT Sri Indah
		Mandiri. Untuk jenis yang sering
		keluar/dicari itu adalah bahan casement yang
		terdiri 4 bahan utama yaitu big outer, inner,
		mullion dan beading. Biasanya kuantitas
		casement itu ada ribuan itu tetapi dalam
		waktu beberapa hari saja bisa habis total.
5.	Apa kegunaan dari	Fungsi dari casement itu biasa untuk bahan
	aluminium yang sering	pembuatan jendela. Biasa casement terdiri
	disebutkan/digunakan, dan	dari 4 bahan utama yaitu big outer sebagai
	bisakah dijelaskan saat	kusen atau biasanya sebagai bagian luar dari
	dijadikan produk?	jendela yang lengket di tembok, inner
		sebagai daun jendela, mullion sebagai tiang
		tengah, dan beading itu biasanya dipakai
		ketika mau buat kaca mati yang biasa nya
		tidak bisa di buka atau jendela mati gitu. Jadi
		hasil akhirnya ada 2 tipe yaitu jendela yang
		bisa dibuka dan jendala mati.

NO	PERTANYAAN	JAWABAN
6.	Bagaimana proses	Biasanya identifikasi dari staf gudang
	identifikasi jenis	aluminium langsung, Biasanya kalau ada
	aluminium dilakukan di	customer yang membawa sample aluminium
	gudang PT Sri Indah	tetapi tidak mengetahui namanya biasanya
	Mandiri saat ini? Apakah	staf frontdesk akan membawa sample
	ada kesulitan dalam	tersebut ke gudang dan meminta staf gudang
	mengidentifikasi barang	untuk mengidentifikasinya.
	jika pelanggan tidak	
	mengetahui nama	
	spesifiknya?	
7.	Menurut pendapat Bapak,	Menurut saya, ini agak sulit untuk
	apakah sebagian besar	menjawabnya karena untuk secara rinci itu
	orang memiliki	lebih ke saya sendiri selaku kepala gudang
	pengetahuan tentang	aluminium yang punya tanggung jawab
	berbagai jenis aluminium di	untuk mengetahui jenis-jenis aluminium dan
	PT Sri Indah Mandiri?	fungsinya apa. Tapi kalau secara umum ya
	Siapa yang biasanya	minimal staf gudang tau apa jenis-jenis
	mampu mengenali nama-	aluminiumnya dan kalau ada barang barang
	nama jenis aluminium ini?	yang khusus biasanya staf gudang ini akan
		menanyakannya kembali kepada saya untuk
		memastikan barangnya itu keluar sesuai
		dengan permintaan. Kalau untuk masyarakat

NO	PERTANYAAN	JAWABAN
		umum itu biasanya hanya tukang saja yang
		tau tetapi ada juga tukang yang tidak tau
		namanya tetapi mengetahui bentuknya jadi
		seperti itu.
8.	Menurut bapak bagaimana	Menurut saya, diperlukannya kerjasama
	upaya untuk mengurangi	antara marketing dan staf frontdesk untuk
	ketergantungan staf gudang	mengetahui jenis-jenis aluminium sehingga
	dalam proses identifikasi	tidak perlu bolak-balik dari kantor ke gudang
	barang di PT Sri Indah	untuk proses mengidentifikasi
	Mandiri?	aluminiumnya dan bisa lebih cepat
		prosesnya karena kadang kita sebagai staf
		gudang itu sibuk jadi tidak ada waktu untuk
		proses mengidentifikasinya. Jadi cuman itu
		pendapat saya solusinya.
9.	Jika ada aplikasi	Menurut saya sangat bagus, karena bisa
	pengenalan nama	mempercepat proses mengidentifikasi
	aluminium otomatis	terutama kalau ada karyawan baru di bagian
	berbasis deep learning yang	frontdesk jadi tidak perlu lagi bolak-balik ke
	bertujuan membantu	gudang untuk menanyakan aluminium
	karyawan di gudang dan	tersebut, jadi karyawan baru tidak perlu
	pelanggan mengidentifikasi	pusing untuk mengetahui jenis-jenis
	nama-nama jenis	aluminium karena menurut saya sendiri pun

NO	PERTANYAAN	JAWABAN
	aluminium, bagaimana	kalau dalam waktu 1 bulan pun belum tentu
	pandangan Bapak tentang	bisa mengetahui semua jenisnya.
	inisiatif tersebut? Apa	
	manfaat yang Bapak lihat,	
	dan apakah ada tantangan	
	yang perlu diatasi dalam	
	penerapan teknologi ini?	

Tabel 3.2 Wawancara Narasumber Staff Frontdesk

NO	PERTANYAAN	JAWABAN
1.	Bagaimana tanggapan	PT Sri Indah Mandiri mendistribusikan
	Bapak mengenai PT Sri	beberapa barang yaitu aluminium, papan,
	Indah Mandiri?	kaca dan beberapa barang interior lainnya.
2.	Sudah berapa lama Bapak	Saya bekerja di PT Sri Indah Mandiri
	bekerja di PT Sri Indah	kisaran 2 sampai 3 tahun lebih.
	Mandiri?	
3.	Berapa banyak jenis	Untuk jenisnya saya sendiri gk bisa
	aluminium yang tersedia di	pastikan berapa bahan tetapi menurut saya
	gudang PT Sri Indah	kisaran di 100 sampai 200 jenis barang. Dan
	Mandiri? Dan jenis apa yang	jenis yang paling cari oleh customer itu
	sering keluar/dicari?	

NO	PERTANYAAN	JAWABAN
		adalah bahan casement yaitu berupa big
		outer, inner, mullion dan beading.
4.	Bagaimana proses	Untuk alurnya itu biasa customer membawa
	mengidentifikasi jenis	sample aluminium kemudian ditanyakan
	aluminium dilakukan oleh	kepada saya selaku frontdesk di kantor
	bagian front desk di PT Sri	setelah itu saya pergi ke gudang dan
	Indah Mandiri saat	menanyakannya kepada staff gudang untuk
	pelanggan tidak mengetahui	proses mengidentifikasinya.
	nama spesifiknya dan hanya	
	membawa sample/bahan	
	aluminium tersebut?	
	biasanya bagaimana	
	alurnya?	
5.	Biasanya, berapa menit yang	Menurut saya itu tergantung situasi dan
	diperlukan untuk	kondisinya. Misalnya pada pagi hari itu saat
	mengidentifikasi barang	waktu ramai customer biasanya diperlukan
	aluminium, dan bagaimana	sampai 30 menit. Kalau sore hari biasanya
	alurnya? Dan berapa ukuran	lebih cepat bisa sampai 10 menit. Untuk
	sample aluminium yang	sample aluminium biasanya dibawa oleh
	dibawa oleh pelanggan?	customer kisaran 5cm sampai 10-an cm
6.	Menurut pendapat Bapak,	Menurut saya, karena saya merupakan
	apakah sebagian besar orang	lulusan arsitek jadi saya punya beberapa

NO	PERTANYAAN	JAWABAN											
	memiliki pengetahuan	pengetahuan mengenai aluminium dan											
	tentang berbagai jenis	biasanya staf gudang aluminium juga pasti											
	aluminium di PT Sri Indah	tau jenis-jenisnya.											
	Mandiri? Siapa yang												
	biasanya mampu mengenali												
	nama-nama jenis aluminium												
	ini?												
7.	Menurut bapak bagaimana	Menurut saya, ada 2 cara yaitu yang											
	upaya untuk mengurangi	pertama saya melihat bentuknya dari											
	ketergantungan staf gudang	katalog dan mencoba melihat apakah ada											
	dalam proses identifikasi	yang mirip. Yang kedua mungkin											
	barang di PT Sri Indah	diperlukannya suatu aplikasi/sistem yang											
	Mandiri?	seperti sistem scan yang dapat mengetahui											
		jenis aluminium yang dibawa oleh											
		customer.											
8.	Jika ada aplikasi pengenalan	Menurut saya sendiri itu bagus, karena											
	nama aluminium otomatis	ketika waktu sibuk kita kekurangan staf											
	berbasis deep learning yang	frontdesk jadi sangat membantu karena											
	bertujuan membantu	dapat langsung mengetahui aluminium apa											
	karyawan di gudang dan	yang dibawa oleh customer.											
	pelanggan mengidentifikasi												
	nama-nama jenis												

NO	PERTANYAAN	JAWABAN
	aluminium, bagaimana	
	pandangan Bapak tentang	
	inisiatif tersebut? Apa	
	manfaat yang Bapak lihat,	
	dan apakah ada tantangan	
	yang perlu diatasi dalam	
	penerapan teknologi ini?	
1		

3. Data Preparation

Dalam langkah ini, peneliti merencanakan sistem dengan mempertimbangkan sejumlah langkah yang perlu diambil, seperti pengumpulan dataset dan pelaksanaan tahap pre-processing data untuk mempersiapkan kelanjutan proses berikutnya.

a. Pengumpulan Dataset

Pada tahap ini, peneliti mengumpulkan dataset yang terdiri dari empat kelas dalam klasifikasi tipe aluminium menggunakan YOLOv8, yaitu cw big outer, cw beading, cw inner, dan cw mullion. Pembagian setiap kelas terdiri dari tiga kategori yaitu data latih, data validasi, dan data uji. Data pelatihan digunakan untuk memberikan pemahaman yang mendalam pada model selama proses pembelajaran terkait klasifikasi tipe aluminium. Sementara itu, data validasi digunakan untuk memastikan generalisasi model dengan memonitor performa pada

dataset yang tidak digunakan dalam pembelajaran. Pada Data pengujian, diterapkan setelah proses pembelajaran untuk menguji kemampuan model dalam mengklasifikasikan tipe aluminium. Keseluruhan, pendekatan ini bertujuan mencapai tingkat akurasi yang tinggi dalam proses klasifikasi pada implementasi YOLOv8.

b. Pre-processing Dataset

Setelah data dataset terkumpul, langkah berikutnya adalah tahap pre-processing data. Pada tahap ini, peneliti melakukan pengurangan resolusi gambar dari 640x640 *pixel* menjadi 224x224 *pixel* untuk mengurangi kebutuhan ruang penyimpanan dan keberhasilan klasifikasi.

4. Modelling

Selanjutnya adalah proses pelatihan *dataset* menggunakan model YOLOv8

a. Pelatihan Model

Dalam penelitian ini, pelatihan model dilakukan dengan mengadaptasi model sesuai dengan parameter yang diperlukan, seperti yang telah dibahas sebelumnya, menggunakan aplikasi deep learning dari model YOLO. Proses pelatihan dimulai dengan tahap pre-training model, definisi kelas-kelas dalam dataset, dan melatih model untuk menklasifikasikan. Peneliti memanfaatkan versi terbaru dari model YOLO, yaitu YOLOv8, yang diharapkan mampu memberikan tingkat akurasi yang tinggi dan kinerja yang lebih cepat.

5. Evaluation

Dalam langkah ini, dilakukan pengujian terhadap model YOLOv8 yang telah mengalami proses pelatihan. Pengujian ini mencakup baik menklasifikasikan aluminium, dengan tujuan untuk mengevaluasi tingkat akurasi model yang telah dibuat.

6. Development

Pada langkah ini, dilakukan pembuatan aplikasi setelah seluruh tahapan pemodelan selesai dilakukan. Proses pembuatan aplikasi menjadi tahap berikutnya setelah penelitian dan proses modeling selesai.

3.3 Jadwal Penelitian

	Kegiatan	an Agustus				September				Oktober				November				Desember				Januari					Feb	ruar	i	Maret					Ap	ril		Mei				Ju	ni
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2
1	Tahap Persiapan																																										
	Penelitian																																									ı	
	Penyusunan dan																																										
	pengajuan judul																																									ı	
	Pengajuan																																										
	proposal																																									ı	
2	Business																																										
	Understanding																																									ı	
3	Data																																										
	Understanding																																									ı	
	Observasi																																										
	Wawancara																																										
4	Data preparation																																										
	Pengumpulan																																										
	dataset																																										

	Pre-processing																
	dataset																
5	Modeling																
	Pelatihan model																
6	Evaluation																
	Evaluation																
	Object																
	Classification																
7	Development																

DAFTAR PUSTAKA

- Aboulkhair, N. T., Simonelli, M., Parry, L., Ashcroft, I., Tuck, C., & Hague, R. (2019). 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. In *Progress in Materials Science* (Vol. 106). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2019.100578
- Atoum, I., Almalki, J., Alshahrani, S. M., & Shehri, W. Al. (2021). Towards Measuring User Experience based on Software Requirements. *International Journal of Advanced Computer Science and Applications*, *12*(11), 2021. https://doi.org/10.14569/IJACSA.2021.0121137
- Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. *International Journal of Thermofluids*, *1*–2. https://doi.org/10.1016/j.ijft.2019.100007
- Febriantoro, D. (2021). PERANCANGAN SISTEM INFORMASI DESA PADA KECAMATAN SENDANG AGUNG MENGGUNAKAN EXTREME PROGRAMMING. *Jurnal Informatika Dan Rekayasa Perangkat Lunak (JATIKA)*, 2(2), 230–238. http://jim.teknokrat.ac.id/index.php/informatika
- Georgantzia, E., Gkantou, M., & Kamaris, G. S. (2021). Aluminium alloys as structural material: A review of research. In *Engineering Structures* (Vol. 227). Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2020.111372
- Guo, R., Kou, I. E., & Jiang, Q. (2023). Unlocking the Creative Potential: A Case Study of Luoyang City's Creative Tourism Development. *Sustainability*, *15*(20), 14710. https://doi.org/10.3390/su152014710
- Hicks, J., Vasko, P., Goicoechea, J. M., & Aldridge, S. (2021). The Aluminyl Anion: A New Generation of Aluminium Nucleophile. In *Angewandte Chemie - International Edition* (Vol. 60, Issue 4, pp. 1702–1713). Wiley-VCH Verlag. https://doi.org/10.1002/anie.202007530
- Khlystova, O., Kalyuzhnova, Y., & Belitski, M. (2022). The impact of the COVID-19 pandemic on the creative industries: A literature review and future research agenda. *Journal of Business Research*, *139*, 1192–1210. https://doi.org/10.1016/j.jbusres.2021.09.062
- Kurniawati, R. D., & Ahmad, I. (2021). SISTEM PENDUKUNG KEPUTUSAN PENENTUAN KELAYAKAN USAHA MIKRO KECIL MENENGAH DENGAN MENGGUNAKAN METODE PROFILE MATCHING PADA UPTD PLUT KUMKM PROVINSI LAMPUNG. *Jurnal Teknologi Dan Sistem Informasi (JTSI)*, 2(1), 74–79. http://jim.teknokrat.ac.id/index.php/JTSI
- Mahrinasari, M. S., Bangsawan, S., & Sabri, M. F. (2024). Local wisdom and Government's role in strengthening the sustainable competitive advantage of creative industries. *Heliyon*, 10(10), e31133. https://doi.org/10.1016/j.heliyon.2024.e31133

- Mazzeo, P. L., Argentieri, A., De Luca, F., Spagnolo, P., Distante, C., Leo, M., & Carcagni, P. (2019). *Convolutional neural networks for recognition and segmentation of aluminum profiles*. 22. https://doi.org/10.1117/12.2525687
- Perez, H. D., Hubbs, C. D., Li, C., & Grossmann, I. E. (2021). Algorithmic Approaches to Inventory Management Optimization. *Processes*, 9(1), 102. https://doi.org/10.3390/pr9010102
- Ramadhanu, P. B., & Priandika, A. T. (2021). RANCANG BANGUN WEB SERVICE API APLIKASI SENTRALISASI PRODUK UMKM PADA UPTD PLUT KUMKM PROVINSI LAMPUNG. *Jurnal Teknologi Dan Sistem Informasi (JTSI)*, 2(1), 59–64. http://jim.teknokrat.ac.id/index.php/JTSI
- Rangaswamy, E., Nawaz, N., & Changzhuang, Z. (2022). The impact of digital technology on changing consumer behaviours with special reference to the home furnishing sector in Singapore. *Humanities and Social Sciences Communications*, 9(1), 83. https://doi.org/10.1057/s41599-022-01102-x
- Wiemer, H., Drowatzky, L., & Ihlenfeldt, S. (2019). Data mining methodology for engineering applications (DMME)-A holistic extension to the CRISP-DM model. *Applied Sciences (Switzerland)*, 9(12). https://doi.org/10.3390/app9122407
- Zhang, S., Huang, K., & Yuan, Y. (2021). Spare Parts Inventory Management: A Literature Review. *Sustainability*, *13*(5), 2460. https://doi.org/10.3390/su13052460