11) Publication number:

0 114 759

A2

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 84300417.7

22 Date of filing: 24.01.84

(5) Int. Cl.³: C 07 C 103/52 A 61 K 37/02, C 12 P 21/02 //A61K39/00, C12N15/00

30 Priority: 24.01.83 GB 8301928

(43) Date of publication of application: 01.08.84 Bulletin 84/31

 Designated Contracting States: BE CH DE FR GB IT LI LU NL SE (1) Applicant: Nicholson, Bruce Heywood Ashridgewood PLace Forest Road Wokingham Berkshire, RG11 5RA(GB)

(72) Inventor: Nicholson, Bruce Heywood Ashridgewood PLace Forest Road Wokingham Berkshire, RG11 5RA(GB)

(34) Representative: Tubby, David George et al, MARKS & CLERK 57-60 Lincoln's Inn Fields London WC2A 3LS(GB)

⁽SA) Amino acid sequences and polypeptides including these sequences and having the specificity of foot and mouth disease

⁽⁵⁾ An amino acid sequence or a synthetic polypeptide consisting of the same and preferably containing a helical structure is capable of being recognised by two or more antisera raised against different viral strains by virtue of the rotationally and translationally related different aspects presented by the helix to the antibodies. In particular, amino acid sequences of this invention may have rotationally related epitopic sites recognisable by different strains of foot and mouth disease virus.

M&C FOLIO: 47513

WANGDOC: 0072H

AMINO ACID SEQUENCES AND POLYPEPTIDES INCLUDING THESE
SEQUENCES AND HAVING THE SPECIFICITY OF FOOT AND MOUTH
DISEASE AND OTHER VIRAL ANTIGENS.

This invention relates to amino acid sequences, to polypeptides consisting of the same and to processes for producing these sequences and polypeptides, which have the specificity of two or more antigens of certain viruses and, in particular, of foot and mouth disease viral antigens.

- The natural immune system is based upon the well known antigen—antibody reaction, in which an antigen (which is foreign to the host body an example is a virus) stimulates the production by the host of antibodies specific to the antigen. These antigen—

 15 specific antibodies react with the antigen and, in a manner which is still being investigated, neutralize it. The antibodies so biosynthesized recognize specific "surface" features of the molecular structure of the antigen.
- Antibodies to proteins and polypeptides can be conveniently classified into "conformational" and "sequential" types, according to whether they recognise the relatively static conformation of an antigenic

determinant region, or an inherently more flexible sequence of amino acid residues. Most short, free polypeptides tend to lack any secondary structure sufficient to give a relatively static surface to form an antigenic determinant of the conformational type. However, in certain polypeptides where the amino acid residues have collectively sufficient helix-forming potential, the polypeptide can adopt a rigid helical structure in which the movement of the side chains of 10 the amino acid residues is relatively spatially restricted. In this situation a specific antibody able to recognise the polypeptide would only be expected to do so when the helix was in the correct position with respect to the combining site of the antibody, that is, 15 in a position such that those residues along the helix surface which collectively have the correct topology and charge distribution to form the antigenic determinant site are complementary to the combining site of the antibody. Expressed in geometrical terms, combination 20 only occurs at the correct rotation about and

Most viruses comprise a core of genetic material surrounded by a coat of protein or the like and it is this coat (or, more precisely, specific regions of the molecular structure of this coat) that antibodies recognize and neutralize. It is clear that an immune

translation along the helix axis with respect to the

antibody.

response to a given virus could be induced by injecting into the host a protein corresponding to the native coat protein or even a compound whose surface structure is or includes a section which is essentially the same as the antigenic determinant regions of that coat protein.

Where an amino acid sequence forming part of the coat protein has adopted a helical configuration, some of the side chains on the amino acids making up that sequence will be directed into the interior of the protein as part of the hydrophobic core. It is only those side chains which are directed outwards and which are accessible to solvent that can be recognized by an antibody and are thus of importance when designing a synthetic compound to induce the same antigenic response.

Synthetic compounds of this type have the potential to be of considerable value, especially where disease control is currently by means of killed or attenuated virus vaccines, which can be potentially dangerous. However, most viruses exist as a number of strains and a 20 vaccine effective against one strain may be ineffective or insufficiently effective against another. Accordingly, it would be necessary to manufacture separate compounds for each strain of the virus. EP 44710 discloses a possible solution to this problem by linking together in a single chain, which may be 25 helical, two or more small peptide units, each unit containing a single antigenic determinant region.

Foot and mouth disease ("FMD"), also known as hoof and mouth disease, is a problem of major economic importance in many countries. Control of the disease is primarily with killed virus vaccines. A major problem with the production and application of the vaccine is the extreme variation found in the antigenic determinants on the FMD virus ("FMDV") particle responsible for eliciting an immune response.

Thus, FMDV exists as seven serotypes comprising more 10 than 60 strains. Immunity to one serotype does not confer protection against the other six. Furthermore. control of the disease by vaccination is complicated by the extreme antigenic lability of the virus even within serotypes. The extent of this variation is such that 15 vaccination will not necessarily give prolonged protection against other strains of the virus even within the same serotype. The antigenic variation between the serotypes is due to variation in the amino acid sequence of the VP1 capsid protein (which is the 20 major coat protein of FMDV and which carries the major immunogenic portion of the coat), giving rise to structural variations in the sites (epitopes) which combine with antibodies. Similar problems exist with many other viruses, for example, the polio virus, or the 25 viruses of influenza, hepatitis, viral hog cholera,

rabies, smallpox, measles, rubella or mumps.

Two antigenic sites within VPl have been recognised. The first is around residues 138-154 and the second is from 200 to the C terminal. The second is probably a "sequential" type of determinant. but the first is "conformational", and hence more suited for secondary and tertiary structure analysis. In this specification, as is conventional in the art, an amino acid position in a given sequence is assigned a number equating to the number of amino acid residues in the 10 sequence, counting from the N terminal to that position. In considering synthetic sequences analogous to a natural polypeptide or to part of a natural polypeptide, it is generally convenient to base the numbering system on the natural polypeptide and to use 15 that system for numbering the synthetic sequence, even though the synthetic sequence may be different from the natural sequence. Such differences may be of three types:

- (a) an amino acid at position "x" of the natural 20 sequence may not be present in the synthetic sequence - this is referred to as a "deletion at position x";
- (b) an amino acid present in the synthetic sequence may not have a counterpart in the natural sequence 25 this is referred to as an "insertion between positions <u>x</u> and <u>x + 1</u>" of the natural sequence; and
 (c) an amino acid at position <u>x</u> of the natural

sequence may be replaced by a different amino acid - this is referred to as a "substitution at position \underline{x} ".

In the case of the VPl protein of FMDV, the numbering is based upon a sequence identical to that of the VPl protein of the O_1K virus type, except that the O_1K sequence has a deletion at position 199.

I have now discovered that it is possible to include 2 or more antigenic determinant regions on a single small polypeptide molecule, which may be helical, by arranging that the two or more regions are, in part or in whole, occupying the same parts of the molecule, e.g. the same turns of the helix. The amino acid sequence carrying those regions can be relatively small, e.g. from 7 to 30, more preferably from 10 to 20 and most preferably from 15 to 17, amino acid units long.

In the present invention, the sequence of amino acids which gives rise to one antigenic site is at least partially interpolated with other amino acids so that the conformation of the molecule provides at least two antigenic sites in which the amino acids of each site are conformationally contiguous, and said other amino acids forming at least part of one antigenic site.

Thus, the present invention consists in a molecule comprising an amino acid sequence having at least two antigenic regions, each said region being capable of being recognized by antibodies raised against a viral protein sequence, each said region being formed of a chain of amino acids of said sequence, the chains forming said regions having at least one amino acid (preferably more than one amino acid) of said sequence in common, so that the chains at least partly overlap and are not contiguous along the length of the molecule. The sequence is preferably such that it adopts a helical conformation, however, other conformations are possible, for example other sequences may form a structure similar to a 8-sheet

The degree of overlap between the two (or more)
antigenic regions and, hence, the chains forming them
may vary considerably. Substantial overlap between the
regions is clearly desirable, in order that the sequence
may be as short as possible - thereby facilitating

20 synthesis. For example, overlap such that at least 25%
of the amino acids in one of said chains also form part
of the other of said chains is preferred. An overlap of
at least 50% is more preferred and a greater degree of
overlap, e.g. at least 75%, may be aimed for, if

25 possible. In some cases, it may be possible to achieve
or, at least, approach 100% overlap

The molecule of the invention is preferably a polypeptide.

The sequence of the invention is preferably coupled to a larger compound to form a single molecule, in order to facilitate antibody response, as is well known.

Examples of such larger compounds include keyhole limpet haemocyamin, bovine serum albumin, btg, B-galactosidase or penicillinase. The sequence of the invention may be covalently attached to the molecule of the larger compound are constructed together by recombinant DNA technology, the sequence of the invention may be linked in some other manner to the larger compound, for example, where the larger compound is a polypeptide such as

15 B-galactosidase or penicillinase, it may be interposed in the amino acid chain of that compound.

The molecules disclosed herein are characterised by having the specificity of two or more viral antigens, especially foot and mouth disease viral ("FMDV")

20 antigens. As will be apparent from the disclosure to follow, the polypeptides, recombinant DNA molecules, and processes of this invention may be used in the production of antigenic polypeptides useful in diagnostic methods and in compositions for reriering

25 animals resistant to FMDV for some period of time.

Secondary structure analysis of the amino acid sequence of VP1 protein of FMDV type O_1^{K} by the method of, for example, Chou and Fasman [Adv. Enzym. 47, 45-148 (1978)] shows that a large part (144-160) of this 5 sequence is helical, and furthermore that the corresponding sequence in the VPl protein of FMDV type C3, which contains several amino acid substitutions compared to $O_{\hat{\mathbf{I}}}K$, is also helical. These sequences can also be analysed to see which groups are contiguous with 10 the hydrophobic core of the VPl protein. The basis of this method and the rules for one amino acid have been published [Nicholson, Biochem. Soc. Trans., 10, 387 (1982)]. The method is based on the detailed analysis of the side-chain contacts of 24 proteins whose tertiary 15 structure has been determined by X-ray crystallography. and the position of a particular residue with respect to the hydrophobic core of the protein correlated with the sequence of residues adjacent to it in the primary sequence, it being known that in nature the primary 20 sequence determines the secondary and tertiary structure.

In FMDV type O₁K, all the residues in the core are on one side of the helix, except for Val 150, which would require a proximal side chain from elsewhere in the molecule to satisfy the core definition. A

25 noticeable feature of the FMDV type O₁K helix is the series of four polar side chains forming a "band" down one side which must be just above the surface of the

contiguous protein, since the helix residues adjacent to the polar band residues are in the interior core of the rest of the protein.

The amino acid substitutions in the corresponding 5 seguences of the different strains are shown in Table 1:

TABLE 1

		Epicylin				
		P/01K/C3	oık	A10	A24	C3
	144 Arg		LEU	Arg	Arg	Arg
10	5	Arg	Arg	<u>Ser</u>	Arg	Arg
	6	Gly	Gly	Gly	Gly	Gly
	7	Asp	Asp	Asp	Asp	Asp
	. 8	Leu	Leu	Leu	MET	Leu
15	9	Gln	Gln	Gly	Gly	ALA
13	150	Thr	VAL	Ser	Thr	His
	1	Leu	Leu	Leu	Leu	Leu
	2	Ala	Ala	Ala	Ala	Ala
	3	Gln	Gln	ALA	ALA	ALA
20	4	Lys	Lys	Arq	Arq	Ala
20	5	His	VAL	VAL	VAL	His
	6	Ala	Ala	Ala	VAL	Ala
	7	Arg	Arg	Thr	Lys	Arg
•	8	His	Thr	Gln	Gln	His
	9	Leu	Leu	Leu	Leu	Leu

In the above table and throughout this specification, the amino acids are identified by the internationally recognized standard three-letter amino acid code. The amino acids are underlined where they differ from those of Epicylin P/O₁K/C3 (which is a sequence in accordance with the present invention) and are in capitals where they are predicted to be in the protein core.

Their effect is as follows. In FMDV type C3, the 10 Gln at 149 and 153 of $O_1^{\rm K}$ are replaced by Ala. both of which are now predicted to be in the core: Lys 154 is replaced by Ala (non-core); and some basicity is regenerated by the appearance of three His for two Val (150, 155) and Thr 158. Thus in FMDV type C3. and to 15 some extent in types AlO and A24, the bulky polar side chains of the left hand side have been replaced by small hydrophobic side chains which are in the core and at the same time the right hand side has the two core Val replaced by non-core His. Effectively therefore, in the 20 intact protein VPl the helix viewed from the N-terminal has rotated anticlockwise with respect to the core, presenting a different topology for the constant features relative to the antibody binding sites. in addition to the substitutions themselves. The rotation 25 may well be assisted by the deletion in the 140-145range, which might explain why these residues appear to be involved in the antigenic response. Thus the

٠.

antibody combining sites of the two epitopes are related by rotation about the helix axis.

The present invention utilises this discovery in developing synthetic polypeptides of appropriate amino acid sequence such that they form rotationally related epitopes which may interact with antibodies raised against different strains of virus and on coupling to suitable carrier proteins of natural or synthetic protein conventionally used for preparing antigens e.g. bovine serum albumin, induce antibody formation.

Also in Table 1, under the heading "Epicylin P/O1K/C3", is shown an amino acid sequence in accordance with this invention and this has been found to elicit antibodies which neutralize virus type C3. as well as virus type O1K, from which its structure is derived. The amino acid sequence produced comprised the amino acid residues labelled 144-159. It was synthesized by recombinant DNA technology by inserting a genetic sequence corresponding to the desired amino acid sequence between the EcoR1 and BamH1 sites of a B-galactosidase gene in a modified plasmid vector (derived from pBR322) according to conventional methodology, and as illustrated subsequently in the Example.

Another amino acid sequence. Epicylin AP/AlO/Al2.

Was produced by chemical synthesis by inserting arginine between positions 145 and 146 of a sequence corresponding to that of the VPl protein of virus type Alo. The method employed was that of Bittle et al.

[Nature 298, p 30-33 (1982)]. The structure of this Epicylin AP/Alo/Al2 is shown in Table 2, together, for comparison, with the corresponding sequences of VPl protein of FMDV types Alo, Al2A and Al2B.

TABLE 2

		Epicylin			
	.	AP/AlO/Al2	Alo	A12A	Al2B
	144	Arg	Arg	<u>Val</u>	Val .
·5	145	Ser	Ser	Arq	Arg
	insert	Arg	•		TTQ.
	146	Gly	Gly	Gly	
	147	Asp	Asp	Asp	Gly
	148	Leu	Leu	Ser	Arg
10	149	Gly	Gly	Gly	Leu .
	150	Ser	Ser		Gly
	151	Ile	Ile	Ser	Ser
15	152	Ala	Ala	Leu	Leu
	153	Ala	Ala	Ala -	Ala
	154	Arg		Leu	Pro
	155	Val	Arg	Arg	Arg
	156		Val	Val	Val
		Ala	Ala	Ala	Ala
20	157	Thr	Thr	<u>Arq</u>	Arq
	158	Gln.	Gln	Gln	Gln
	159	Leu	Leu	Leu	Leu

The amino acid sequences shown in Table 2 were each coupled to keyhole limpet haemocyanin and their antigenicities determined by preparing antisera in guinea pigs, which were then assayed for their ability to neutralize FMDV by mixing virus with an equal volume of normal or anti-serum and injecting 0.03 ml of the

mixture into groups of 7 day old mice, as described in FEBS Letters. Vol. 157 No. 2, p 261-264 (1983).

The results are shown in Table 3. which shows the effectiveness of antibodies elicited by each of the amino acid sequences shown in Table 2 against viruses of types Alo. Al2A and Al2B.

TABLE 3

	Amino Acid	Virus type				
	Sequence	A10	A12A	Al2B		
0	Alo	+++	-			
	Alza	-	+++	+		
	Al2B	-	+	+++		
	Epicylin .					
.	AP/A10/A12	+++	++	++		

15 +++ = excellent neutralization

S. O. L. 13.

++ = good neutralization

+ = moderate neutralization

- = no neutralization

In Epicylins P/O₁K/C3 and AP/AlO/Al2, it is, of 20 course, possible to replace one or more of the amino

acid residues thereof by other acid residues, especially where the residues are in the protein coré and thus can be expected to have no effect on antigenicity. Thus, antigenic equivalents of these sequences also form part of the present invention.

Examples of other sequences in accordance with the invention and derived from FMDV VPl protein are given below. In these sequences:

X represents a deletion:

parentheses indicate that the amino acid(s) immediately preceding them may optionally be replaced by the amino acid(s) within them:

"+" indicates that the two or more consecutive acids joined by "+" signs may together be replaced by the acid(s) in parentheses immediately following them:

/..../ indicates the position in a native protein of the amino acid to its immediate left.

EPICYLIN P/A12/C3

5

Arg-Gly-Asp-Phe-Gly-Ser-Leu-Pro-Arg/C3-143; Al2-154/20 Val(Ala)-Ala-Arg/C3-145; Al2-157/-Ala(X)-Gly/C3-146/-Asp-Leu-Ala-His-Leu-Ala-Ala-Ala-His-Ala-Arg-His-Leu/C3-159/-Pro

EPICYLIN AP/C3/A12

Arg-Arg/C3-145/-Gly-Asp-Leu-Ala-His-Leu-Ala-Ala-Ala-His-Ala-Arg-His-Leu/C3-159/-Ala(Asp or Glu)-Asp(Glu or Ala)-Phe/Al2-148/-Gly-Ser-Leu-Ala-Pro-Arg-Val-Ala-Arg-Gln(X)-Leu(X)/Al2-159/

EPICYLIN AP/A10/C3 - 1

Leu(Ala)/Alo-159/-Gln-Thr-Ala-Arg(Val)-Arg/Alo-154;
C3-145/-Ala(Gly)/Alo-146/-Asp-Leu(Ile or Ala)Ser/Alo-150/-His/C3-150/-Leu-Glu+Ala (or Ala+Glu)10 Ala-His-Ala-Arg-His-Leu(Ala)/C3-159/-Arg(Ala)-Ala(X)
Alternatively for first six positions:

Leu-Gln-Thr-Arg-Val(Ala)-Arg/Al0-154/-

EPICYLIN AP/A10(A12)/C3 - 2

This synthetic sequence is terminated at both ends by

15 the carboxyl ends of the AlO and C3 sequences. It is

possible to perform two separate syntheses and link the

C3 Arg-143 to AlO Gly-146. Alternatively part of AlO

146 may be synthesised with opposite polarity from

Gly-146 to Leu-159. This polypeptide should also have

20 Al2 activity.

:/_:

Leu(Ala)/Al0-159/-Gln-Thr-Ala-Val-Arg-Ala-Ala-Ile-Ser-Gly-Leu-Asp-Gly-Arg/Al2-145; C3-143/-Ser(X)-Arg/C3-145/-Gly-Asp/C3-147/-Leu-Ala-His-Leu-Ala-Ala-Ala-His-Ala-Arg-His-Leu/C3-159/

EPICYLIN P/A10(A12)/C3

Arg/Alo-143/+Ser(X+Arg/C3-143/)-Arg/Al2-145/-Gly/Alo-146/-Asp/C3-147/-Glu(Asp)+Ala-[Leu+Glu(Asp)]-His-Leu/C3-151/-Ala-Ser/Al0-150/-Ala(Ile)-His-Ala-Arg/C3-157; Al0-154/-His-Leu(Ala)-Thr-Gln-Ala

EPICYLIN P/SAT 1/SAT 2 - 1

Arg/SAT2-145/-Pro-Arg/SAT1-145; SAT2-insert/- Glu/SAT2insert/-Asp/SAT1-147/-Val(Leu or Ala)/SAT1-148/-Ala-Thr/SAT1-150/(Gln/SAT2-150/)-Leu-Ala-Ala-Arg-Ile(Tyr)-Ala(Ser)-Glu(Ser or Ala)-Thr(Lys)-His-Ala(Leu or Ile or 15 Ser)

EPICYLIN P/SAT1/SAT2 - 2

Pro/SAT1-144/-Arg-Gly-Asp-Leu-Ala-Thr-Leu-Ala-Ala-Arg/SAT1-154; SAT2-insert/-Arg/SAT2-145/-(Ile/SAT1-146/-Ala-Ser-Glu/SAT1-insert: SAT2-insert/-Thr(Val)-His(Leu)-Ile/SAT1-159/(Ala)-Gln/SAT2-150/-Lys-Tyr/SAT2-152/-Ser-20 Ser-Ala-Lys-His-Ser-Leu(Ala)/SAT2-159/

EPICYLIN P/SAT1/O1K

Pro/SAT1-144/(Leu/O₁-144/)-Arg-Gly/O₁-146/-Asp-Leu(Ala)-Gln-Thr(Val)-Leu-Ala-Gln-Arg(Lys)-Ile-Ala-Arg-Thr+Glu(Glu+Thr)-His/SAT1-158/-Leu

5 EPICYLIN AP/SAT1/O1K

Ala-Arg/0₁-145/-Glu(Thr/SAT1-157/)-Asp(Glu)-Ser-Gln-Val/0₁K-150(Ile/SAT1-155/)-Arg-Ala-Gln-Lys /0₁K-154/(Leu or Ala)/-Thr-Ala-Arg/0₁K-157/(Lys)-Asp/SAT1-147/(Glu or Thr)-Gly-Arg-Pro

10 EPICYLIN AP/O1 K/A10(A12)

Leu-Arg-Gly/0₁K-146/-Asp-Leu-Gln-Val-Leu-Ala-Gln-Lys-Val-Ala-Arg/0₁K-157; Al0-154/-Thr-Ala/Al0-153/-Ala(X)-Ile(Ala)-Ser-Gly-Leu-Asp-Gly-Ser+Arg(Arg + Ser + Arg)

EPICYLIN P/A10(A12)/0K

Arg/Alo-143: O₁K-145/+Ser+Arg(Arg + Ser + X)-Gly-Asp/Alo-147: O₁K-147/-Leu(Ala or Ile)-Gln-Thr-Val(Ser)-Leu(Ile)-Ala-Gln-Arg(Lys)-Val(Ala)-Ala-Arg-Gln-Ala(Leu)

Other sites from the 130-144 region may be built in e.g.:

EPICYLIN P/A12/01C (BFS)

Arg-Gly-Asp-Phe-Gly-Ser-Leu-Ala-Pro-Arg/0₁C-135/-Val-Ala-Arg/Al2-157/-Gly(X)-Asn(Gln)/0₁C-139/-Ala-Ser-Gly

EPICYLIN P/SAT2/A10

5 Ile-Arg-Gly-Asp/SAT2-147/-Arg-Glu-Val-Leu/SAT2-148/-Ala-Asn/Al0-134/(Gln/SAT2-150/)-Lys/SAT2-151/-Tyr-Ser-Ala(Ser)-Ser(Ala)-Asp(Lys)-Ser(His)-Arg-Ser-Pro

Sequences are also constructed to include another antigenic region (200-213) of the viral capsid protein e.g.:

EPICYLIN P/C3/0

C3 residues 144-153 and then Ala-His-Ala-Arg/C3-157;

Ol-201/-His/C3-158; Ol-202/-Lys-Gln-Lys-Ile-Val-Ala-Pro/Ol-209/

15 EPICYLIN P/A10/01K

Arg+Ser+Arg(Arg+Ser+X)-Gly-Asp-Leu-Gly-Ser-Ile-Ala-Ala-Arg/Alo-154; O₁K-201/-His(Tyr or Val)-Lys-Thr-Gln/Alo-158; O₁K-204/-Lys-Ile-Val-Ala-Pro

EPICYLIN P/SATZ/O1K

Arg/SAT2-145/-Gly-Asp-Arg-Glu-Val-Leu-Ala-Gln-Lys-Tyr-Ser-Ser-Ala-Lys/SAT2-156/-His-Ser/SAT2-158/(Gln)-Lys-Ile-Val-Ala-Pro/01-209/

- 5 Although this invention is described principally with reference to FMDV it may be of use for other viruses, e.g. polio virus, whose antigenic sites may be represented as overlapping sites on the surface of a helix. The advantage of the method is that a single 10 polypeptide only need be synthesised instead of the two or more normally required to produce the antibody response to two or more antigenically distinct strains. The invention has been shown to be of value with the antigenic regions of the capsid proteins of 15 picornaviruses (of which FMDV and polio virus are examples). It may also be applied to such other viruses as those of influenza, hepatitis, viral hog cholera, rabies, measles, rubella, mumps or (should it ever again become a problem) smallpox.
- Polypeptides or other compounds comprising the amino acid sequences of the invention may be formulated in a conventional manner with carriers or adjuvants and are preferably formulated for injection, although other routes of administration are possible.

A further advantage of the invention in common with all synthetic polypeptide vaccines is that contamination with potentially infective material is avoided.

Another advantage is that, it is relatively easy to clone a synthetic DNA sequence corresponding to the amino acid sequence of the invention into a vector such as pBR322, since this plasmid readily accepts short lengths of DNA, and growth in E.coli HB101 or similar would allow expression of the polypeptide, which could be further enhanced by inclusion of promoters in the DNA sequence and other published procedures.

Since the polypeptide is small, and helical structures may readily be disrupted and reformed in vitro, spontaneous formation of the helical secondary structure is assured.

The polypeptide can be prepared according to any conventional method of synthesising peptides. Either solid phase processes or liquid phase processes may be employed, with the latter being advantageous in many cases. Such processes for synthesising peptides are described in, for example, "The Peptides", vol. 1 (1966) written by Schroder and Luhke (Academic Press, New York, U.S.A.) or "Peptide Synthesis" written by Izumiya et al., Maruzen Co. Ltd. (1975), and there are illustrated, for example, an azide process, a chloride process, an

acid anhydride process, a mixed acid anhydride process, a DCC process, an active ester process, a process using Woodward reagent K, a carbodiimidazole process, an oxidation-reduction process, a DCC/additive (e.g. HONB, HOBt, HOSu, etc.) process, and the like.

5

In particular, the polypeptide or its amino acid sequence can easily be synthesised by conventional processes for synthesising polypeptides, especially the so-called stepwise process in which amino acids are 10 condensed one by one onto a terminal amino acid, or by a process of coupling several fragments. More specifically, the above-described peptide can be prepared by condensing a reactive carboxyl groupcontaining starting material corresponding to one of the 15 two fragments formed by separating the peptide at an arbitrary bond position with another reactive amino group-containing starting material corresponding to the other fragment in a manner conventionally employed for the synthesis of peptides and, where the resulting condensate contains a protective group or groups, 20 removing the protective group(s) in a conventional manner.

The synthetic peptides of this invention may be used for treatment, prevention or diagnosis of viral 25 infections of mammals including man. Vaccines of the peptides may be formulated and used in a conventional

manner (see for example European Patent Publication No. 0 090 581 and U.K. Patent Specification No. 1 083 815).

Advantageously, the peptides are administered sub-cutaneously or intramuscularly at doses of between 1 5 to 100 microgram per kilogram body weight of the mammal. preferably from 10 to 50 microgram/kilogram. Maximum protection is likely to be afforded by a plurality of administered doses spaced from 2 to 8 weeks apart.

The invention is illustrated by the following 10 Example. which should not be construed as a limitation thereof, and which illustrates the preparation of Epicylin P/O1K/C3.

EXAMPLE

Construction of Plasmid pXY413

15 The methods used for plasmid construction and analysis are described by Maniatis et al. [Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982)]. Techniques useful for the analysis of B-galactosidase are described by J. Miller [Experiments in molecular genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York (1972)].

Plasmid pXY413, an open reading frame vector, was constructed as shown in Figure 1 of the accompanying drawings. The three starting plasmids were pEA300 obtained from Dr. Egon Aman (Harvard University.

Cambridge MA, U.S.A.), pMC1403 [M. Casadaban et al., J. Bact. 143, 971 (1980)], and pOP203-13 obtained from Dr. F. Fuller (Harvard University, Cambridge MA, U.S.A.)

The lac genetic elements of plasmid pOP203-13 were recloned from the original pBR322 replicon onto a pAT153 replicon and renamed pXY1. This plasmid contains the lac promoter and operator elements and the first eight amino acids of 8-galactosidase. The -35 region of the trp promoter was provided by pEA300 and the hybrid tac promoter (pXY620) was constructed as shown in Figure 1A. To enhance its usefulness in subsequent plasmid constructions, the tac promoter and associated eight amino acids of 8-galactosidase were recloned onto pXY621 and subsequently pXY623 as shown in Figure 1B.

The plasmid pXY623 was then cut with PstI and EcoRI

20 and separated by agarose gel electrophoresis. A 1000
base pair piece of DNA was isolated which contained the
tac promoter ribosome binding site and start codon.
This was ligated into plasmid pMCl403 which had also
been cut with PstI and EcoRI. The resulting plasmid

25 pXY413 contained the tac promoter and ribosome binding
site, eight amino acids of ß-galactosidase, a polylinker

0114759 region, the enzymatically active carboxy terminal 1015 amino acids of B-galactosidase, and a B-lactamase gene and origin of replication for plasmid selection and maintenance (Fig. 1C).

- . 5 Plasmid pXY413 does not direct the production of large quantities of B-galactosidase under tac promoter control as the ribosomes which initiate translation at the ATG codon immediately downstream of the ribosome binding site are not in the same reading frame as the 10 structural gene for ß-galactosidase. When plasmid pXY413 is transformed into a lac Z host (such as JM103 or JM105) the colonies are white on X-gal indicator plates indicating little or no B-galactosidase activity
- 15 As a test system for expression, the BamHI site of pXY413 was filled in with DNA poll (Klenow fragment) to adjust the reading frame and allow B-galactosidase production from the tac promoter. An example of such a construction, pXY415, when transformed into JM105 20 produces large amounts of B-galactosidase and gives blue colonies on X-gal plates. This is an important feature of pXY413 in that desired recombinants may be easily selected for by identifying blue colonies on X-gal indicator plates.

2. Construction of Plasmid pWRL240

A synthetic gene coding for a hybrid FMDV VP1 antigenic determinant (serotypes O₁ and C3) - this is the material which I have named Epicylin P/O₁K/C3 - was assembled from six oligonucleotides. N1-N6 (Figure 2). cloned into pUC9 (Figure 4). After confirming that the resulting plasmid pWRL220 contained the desired sequence (Figure 3). the synthetic gene was removed by cutting the plasmid with EcoRI and BamHI and ligating the resulting 68 base pair fragment into the open reading frame vector pXY413 to construct plasmid pWRL240 as shown in Figure 5.

3. Expression and antiqenic activity of hybrid protein

When transformed into JM105. pWRL240 directed the synthesis of high levels of a hybrid ß-galactosidase gene and gave blue colonies on X-gal indicator plates. The hybrid protein has 19 amino acids of VPl fused to the amino-terminus of ß-galactosidase (Figure 6).

The hybrid protein produced by pWRL240 had the same specific activity as normal B-galactosidase and can be purified by standard techniques (Miller, op. cit.) or affinity chromatography with antibodies to B-galactosidase. Small amounts of the hybrid protein were purified by affinity chromatography and injected

into Guinea Pigs together with adjuvant for testing of immunogenic activity.

CLAIMS:

- 1. A molecule comprising an amino acid sequence having at least two antigenic regions, each said region being capable of being recognized by antibodies raised against a viral protein sequence, each said region being formed of a chain of amino acids of said sequence, the chains forming said regions having at least one amino acid of said sequence in common, so that the chains at least partly overlap and are not contiguous along the length of the molecule.
- 2. A molecule according to Claim 1. in which the sequence is such that it adopts a helical conformation.
- 3. A molecule according to Claim 1 or Claim 2, which is a polypeptide.
- 4. A molecule according to any one of the preceding Claims, in which said sequence is coupled to a larger compound to form a single molecule.
- 5. A molecule according to Claim 4. in which said larger compound is keyhole limpet haemocyamin. bovine serum albumin. btg. B-galactosidase or penicillinase.

- 6. A molecule according to any one of the preceding Claims. in which said overlap is such that at least 25% of the amino acids in one of said chains form part of the other said chain.
- 7. A molecule according to Claim 6, in which at least 50% of the amino acids in said one chain form part of said other chain.
- 8. A molecule according to Claim 7. in which at least 75% of the amino acids in said one chain form part of said other chain.
- 9. A molecule according to any one of the preceding Claims, in which said sequence is such that it adopts a helical conformation.
- 10. A molecule according to Claim 1. in which said sequence comprises the amino acids: Arg-Arg-Gly-Asp-Leu-Gln-Thr-Leu-Ala-Gln-Lys-His-Ala-Arg-His-Leu or an antigenic equivalent thereof.

• •

ll. A molecule according to Claim 1. in which said sequence comprises the amino acids: Arg-Ser-Arg-Gly-Asp-Leu-Gly-Ser-Ile-Ala-Ala-Arg-Val-Ala-Thr-Gln-Leu or an antigenic equivalent thereof.

- 12. A molecule according to any one of the preceding Claims, having the antigenicity of two or more different strains or subtypes of foot and mouth disease virus.
- 13. A molecule according to Claim 12, in which said strains are O_1^{K} and C3.
- 14. A molecule according to Claim 12, in which said strains are AlO and Al2.
- 15. A vaccine comprising a molecule according to any one of the preceding Claims together with a carrier or adjuvant.
- 16. A synthetic peptide comprising a sequence of amino acids providing at least two antigenic sites, the amino acid sequence giving rise to a first antigenic site being interpolated with other amino acids forming at least part of a second antigenic site so that the amino acids of each site are conformationally contiguous and the peptide is capable of being recognised by two antisera separately raised against different viral strains.
- 17. A synthetic peptide as claimed in Claim 16. wherein the interpolation of amino acid comprises the sharing of one amino acid by the two antigenic sites.

- 18. A vaccine comprising a peptide as defined in Claim 16 or 17 together with an adjuvant or carrier therefor.
- 19. A vaccine as claimed in Claim 18. wherein the carrier is covalently linked to the peptide.
- 20. A vaccine according to any one of Claims 15 to 19. formulated for injection.

FIG. 1A. CONSTRUCTION OF OPEN READING FRAME VECTOR

FIG. 2.

Oligonucleotides N1 - N6

	51	length
FMDV - N1 - N2 - N3 - N4 - N5 - N6	AATTCATCCCGAGACGTGGTGA CCTGCAGACTCTGGCTCAGAAAC ATGCTCGTCACCTCCCGAGCGGG GATCCCCGCTCGGGAGGTG ACGAGCATGTTTCTGAGCCAGAG TCTGCAGGTCACCACGTCTCGGGATG	22 23 23 19 23 26

FIG.3. Synthetic DNA for Peptide (P/O₁K/C₃)

EcoR	1 N 1	22	N2	23		.N3	Вап 23	∤ HI
	-			•				
/C11	N6	26		N 5	23	N	4 19	
_	Phe		Pro	Arg	Arg	6 Ly		
5' Δ	ATTC	ATC	000	AGA	CGT	GGT	•	
	316	TAG	995	TCT	6CA	ADD		
Eci	RI		AvaI					
Leu CTG <u>GAC</u> Ps	6ln CA6 GTC	Thr ACT TGA	Leu CT6 6AC	Ala 6CT CGA	GI n CAG GTC	Lys AAA TTT	His CAT 6TA	
Ala	Arg	His	Leu	Pro	Ser	6 Ly	(Asp)	(Pro)
CT	CGT	CAC	CTC	C C 6	AGC	666		•
6 A	6CA	6T6	6 A 6	999	TCG	222	CTA	6 !
				Aval			BamH	

FIG.4. Construction of a gene for an antigenic determinant (Epicylin $P/O_1K/C_3$)

PWRL 220

2.7 Kb

Eco RI

BamHI

synthetic gene

7/8

FIG.5. Construction of pWRL240

FIG.6. pWRL240 produces a 1048 amino acid hybrid protein

lac RBS [lac Z' Met-Thr-Met-Ile-Thr-Asp CACACAGGAAACAGCTATG ACC ATG ATT ACG GAT] [Spacer.....] [antigenic Ser-Leu-Glu-Phe-Ile-Pro-Arg-Arg TCA CTG GAA TTC ATC CCG AGA CGT determinant..... Gly-Asp-Leu-Gln-Thr-Leu-Ala-Gln-Lys-His GGT GAC CTG CAG ACT CTG GCT CAG AAA CAT] [Spacer....] Ala-Arg-His-Leu-Pro-Ser-Gly-Asp-Pro GCT CGT CAC CTC CCG AGC 666 6AT CCC [.....ß-gelactosidase...] 9 10 1023 Val Val ... Lys STOP GTC GTT ... AAA TAA