Transmission Impairments

Transmission Impairments

- Signal received may be different from signal transmitted causing:
 -) Analog: degradation of signal quality
 -) Digital: bit errors
- Most significant impairments:
 - 1. Attenuation and attenuation distortion
 - Delay distortion
 - 3.Noise

Attenuation

- Signal strength reduces as a function of distance
- Designing a transmission system:
 - 1. Received signal has sufficient strength to be interpreted by receiver electronics
 - 2. Received signal is significantly higher than received noise to avoid errors
 - Attenuation is different at different frequencies
 - Apply equalization to overcome

Delay Distortion

- Component signals with different frequencies have different propagation delay through cable
- Some signal components representing a bit interfere with neighbour bits: intersymbol interference
- Apply equalization to overcome

Noise

Thermal Noise

- Due to thermal agitation of electrons
- > Present in all transmission devices and media
- Function of temperature:

$$N = kTB$$

where k = Boltzmann's constant = 1.38×10^{-23} J/K, B is bandwidth and T is temperature in kelvins

Intermodulation Noise

 Caused when signals of different frequencies share the same medium

Noise

Crosstalk

Unwanted coupling of different signals

Impulse Noise

 Short peak of noise, e.g. lightning, electrical disturbances, flaws in communications system

Effect of Noise on a Digital Signal

Tx Signal: 1000 Hz sine wave; Attenuation; Random noise with 0.5ms spike

Tx Signal: 1000 Hz square wave; Attenuation; Random noise with 0.5ms spike

What about a signal with 2 levels vs a signal with 4 levels: which one will have more bit errors for some given noise?

