UEE4611 Assignment #1 Solution

1. Find the mutiplicative inverse of each nonzero element in \mathbb{Z}_7 .

$$\mathbb{Z}_7 \setminus \{0\} = \{1, 2, 3, 4, 5, 6\}$$

 $1 \times 1 \mod 7 = 1 \Rightarrow 1^{-1} = 1.$
 $2 \times 4 \mod 7 = 1 \Rightarrow 2^{-1} = 4.$
 $3 \times 5 \mod 7 = 1 \Rightarrow 3^{-1} = 5.$
 $4 \times 2 \mod 7 = 1 \Rightarrow 4^{-1} = 2.$
 $5 \times 3 \mod 7 = 1 \Rightarrow 5^{-1} = 3.$
 $6 \times 6 \mod 7 = 1 \Rightarrow 6^{-1} = 6.$

- 2. The purpose of this problem is to set an upper bound on the number of iterations of the Euclidean algorithm.
- (a) To prove m/2 > r, we can show that m > 2r. While m = qn + r, we need to show that qn + r > 2r.

$$qn + r > 2r$$

$$\Leftrightarrow qn > r.$$

$$\because q \ge 1 \& n > r$$

$$\Rightarrow qn > r$$

$$\Rightarrow m/2 > r.$$

$$a = qa_1 + a_2$$

$$a_1 = q_1a_2 + a_3$$

$$\vdots$$

$$a_i = q_ia_{i+1} + a_{i+2}$$

By (a), we can prove that $\frac{a_i}{2} > a_{i+2}$

(c) let m > n

$$m = qn + r$$

$$\therefore \frac{1}{2}a_i > a_{i+2}, \forall i$$

$$\frac{1}{2}a_{i+2} > a_{i+4}$$

$$\Rightarrow (\frac{1}{2})^2 a_i > a_{i+4}$$

$$\Rightarrow (\frac{1}{2})^N a_i > a_{i+2N}$$

While $m, n \leq 2^N$, $(\frac{1}{2})^N \times m \leq 1$, so $a_{i+2N} < 1$, and the only value it can be is 0.

And we know that the Euclidean algorithm terminates when the remainder is 0. So it will surely terminates after 2N steps.

3. Using the extended Euclidean algorithm, find the multiplicative inverse of

(a) 135 mod 61

$$135 = 2 \times 61 + 13$$

$$61 = 4 \times 13 + 9$$

$$13 = 1 \times 9 + 4$$

$$9 = 2 \times 4 + 1$$

$$13 = 135 - 2 \times 61$$

$$9 = 61 - 4 \times 13$$

$$= 61 - 4 \times (135 + 2 \times 61)$$

$$= (-4) \times 135 + 9 \times 61$$

$$4 = 13 - 1 \times 9$$

$$= 135 - 2 \times 61 - (-4 \times 135 + 9 \times 61)$$

$$= 5 \times 135 - 11 \times 61$$

$$1 = 9 - 2 \times 4$$

$$= (-4) \times 135 + 9 \times 61 - 2 \times (5 \times 135 - 11 \times 61)$$

$$= (-14) \times 135 + 31 \times 61$$

$$(-14) \times 135 + 31 \times 61 \equiv 1 \pmod{61}$$

$$\Rightarrow (-14) \times 135 \equiv 1 \pmod{61}$$

$$\Rightarrow (-14) \times 135 = 1 \pmod{61}$$

The multiplicative inverse of 135 mod 61 is 47 mod 61.

(b) 7465 mod 2464

$$7465 = 3 \times 2464 + 73$$

$$2464 = 33 \times 73 + 55$$

$$73 = 1 \times 55 + 18$$

$$55 = 3 \times 18 + 1$$

$$73 = 7465 - 3 \times 2464$$

$$55 = 2464 - 33 \times 73$$

$$= 2464 - 33 \times 7465 + 99 \times 2464$$

$$18 = 73 - 1 \times 55$$

$$= 7465 - 3 \times 2464 + 33 \times 7465 - 100 \times 2464$$

$$= 34 \times 7465 - 103 \times 2464$$

$$1 = 55 - 3 \times 18$$

$$= 100 \times 2464 - 33 \times 7465 - 102 \times 7465 + 309 \times 2464$$

$$= 409 \times 2464 - 135 \times 7465$$

$$409 \times 2464 - 135 \times 7465 \equiv 1 \pmod{2464}$$

$$\Rightarrow (-135) \times 7465 \equiv 1 \pmod{2464}$$

$$\Rightarrow (-135) \times 7465 = 1 \pmod{2464}$$

$$\Rightarrow (-135) \times 7465 \equiv 1 \pmod{2464}$$

$$\Rightarrow (2329 \times 7465 \equiv 1 \pmod{2464})$$

$$\Rightarrow (2329 \times 7465 \equiv 1 \pmod{2464})$$

The multiplicative inverse of 7465 mod 2464 is 2329 mod 2464.

4. Use Euler's theorem to find a number a between 0 and 92 with a congruent to $7^{1013} \, modulo \, 93$.

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
, if $\gcd(a.n) = 1$.
 $\phi(93) = \phi(3) \times \phi(31)$
 $= 2 \times 30$
 $= 60$.
 $7^{60} \equiv 1 \pmod{93}$
 $7^{1013} \equiv 7^{60 \times 16} \times 7^{53} \pmod{93}$
 $= 7^{53} \pmod{93}$
 $7 \equiv 7 \pmod{93}$
 $7^2 \equiv 49 \pmod{93}$
 $7^4 \equiv 76 \pmod{93}$
 $7^8 \equiv 10 \pmod{93}$
 $7^{16} \equiv 7 \pmod{93}$
 $7^{15} \equiv 1 \pmod{93}$

5. Use Euler's theorem to find a number a between 0 and 9 with a congruent to $9^{101} \, modulo \, 10$.

$$a^{\phi(n)} \equiv 1 \pmod{n}, \quad \text{if } \gcd(a.n) = 1.$$

$$\phi(10) = \phi(2) \times \phi(5)$$

$$= 1 \times 4$$

$$= 4.$$

$$\therefore 9^4 \equiv 1 \pmod{10}.$$
Thus, $9^{101} \equiv (9^4)^{25} \times 9 \pmod{10}$

$$\equiv 9 \pmod{10}$$