Simulation Input Modeling: Specifying Distributions & Model Parameters

Christos Alexopoulos
David Goldsman
School of Industrial & Systems Engineering
Georgia Tech

2 July 2012

Overview

- Deterministic vs. random inputs
- Data collection
- Distribution fitting
 - Model "guessing"
 - Fitting parametric distributions
 - Assessment of independence
 - Parameter estimation
 - Goodness-of-fit tests
- No data?
- Non-stationary arrival processes
- Multivariate / correlated input data, time series
- Case study

Deterministic vs. Random Inputs

- Deterministic: Nonrandom, fixed values
 - Number of units of a resource
 - Entity transfer time (?)
 - Interarrival, processing times (?)
- Random: Model as a distribution, "draw" or "generate" values from to drive simulation
 - Interarrival, processing times
 - What distribution? What distributional parameters?
 - Causes simulation output to be random, too
- Don't just assume randomness away!

Collecting Data

- Generally hard, expensive, frustrating, boring
 - System might not exist
 - Data available on the wrong things might have to change model according to what's available
 - Incomplete (e.g., censored), "dirty" data
 - Too much data (!)
- Sensitivity of outputs to uncertainty in inputs
- Match model detail to quality of data
- Cost should be budgeted in project
- Capture variability in data model validity
- Garbage In, Garbage Out (GIGO)

Using Data: Alternatives and Issues

- Use data "directly" in simulation
 - Read actual observed values to drive the model inputs (interarrivals, service times, part types, ...)
 - All values will be "legal" and realistic
 - But can never go outside your observed data
 - May not have enough data for long or many runs
 - Computationally slow (reading disk files)
- Or, fit probability distribution to data
 - "Draw" or "generate" synthetic observations from this distribution to drive the model inputs
 - Can go beyond observed data (good and bad)
 - May not get a good "fit" to data validity?

Fitting Distributions: Some Important Issues

- Not an exact science no "right" answer
- Consider theoretical vs. empirical
- Consider range of distribution
 - Infinite both ways (e.g., normal)
 - Positive (e.g., exponential, gamma)
 - Bounded (e.g., beta, uniform)
- Consider ease of parameter manipulation to affect means, variances
- Simulation model sensitivity analysis
- Outliers, multimodal data
 - Maybe split data set

Main Steps (continued)

Guess model using:

- Summary statistics, such as
 - ullet Sample mean \bar{X}_n
 - □ Sample variance S_n^2
 - Sample median
 - f Sample coefficient of variation S_n/\bar{X}_n
 - Sample skewness

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{3}}{S_{n}^{3}} \longleftarrow \frac{\text{Estimates}}{E(X-\mu)^{3}/\sigma^{3}}$$

- Skewness close to zero indicates a symmetric distribution
- A skewed distribution with unit coefficient of variation is likely the exponential
- Histograms, which resemble the unknown density. A formula for the number of cells is $k \approx \lfloor 1 + \log_2 n \rfloor$ (feel free to play around this value)
- Box plots

Main Steps (continued)

- □ If a parametric models seems plausible:
 - Estimate parameters
 - Test goodness-of-fit

Fitting Parametric Distributions

Assume that the sample data are independent identically distributed data from some distribution with density (probability) function

$$X_1, X_2, \dots, X_n \sim f(x; \theta)$$

 $\theta = (\theta_1, \dots, \theta_m)$

- All data are complete (no censoring)
- How can we test independence?
 - Using the scatter-plot of (X_i, X_{i+1}) , i = 1, ..., n-1
 - By means of von Neumann's test

Von Neumann's Test

The test statistic is

$$U_n = \sqrt{\frac{n^2 - 1}{n - 2}} \times \left[\hat{\rho}_1 + \frac{(X_1 - \bar{X}_n)^2 + (X_n - \bar{X}_n)^2}{2\sum_{i=1}^n (X_i - \bar{X}_n)^2} \right]$$

where

$$\hat{\rho}_1 = \frac{\sum_{i=1}^{n-1} (X_i - \bar{X}_n)(X_{i+1} - \bar{X}_n)}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}$$

estimates the (lag-1) correlation between adjacent observations

If the data are independent and $n \ge 20$, $U_n \approx \text{Nor}(0,1)$

Then we reject the (null) hypothesis of independence when $\left|U_n\right| > Z_{\beta/2}$, where β is the type-I error

Types of Parameters

- Location parameters they shift the density function
- Shape parameters they change the shape of the density function
- Scale parameters
- **Example:** For the Normal(μ , σ^2) distribution
 - ullet μ is the location parameter because

$$X \sim \text{Nor}(\mu, \sigma^2) \Leftrightarrow X - \mu \sim \text{Nor}(0, \sigma^2)$$

- ullet σ is the scale parameter because
 - $X \sim \text{Nor}(\mu, \sigma^2) \Leftrightarrow X / \sigma \sim \text{Nor}(\mu, 1)$
- **Example:** For the Weibull(a, λ) distribution
 - a is the shape parameter
 - λ is the scale parameter because $X/\lambda \sim \text{Weibull}(a, 1)$

Parameter Estimation Methods

- Method of moments
- Maximum likelihood estimation

Method of Moments

Equate the first m sample (non-central) moments to the theoretical moments and solve the resulting system for the unknown parameters:

$$E(X^k) = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, ..., m$$

Method of Moments (continued)

Example: The normal distribution

$$E(X) = \mu = \bar{X}_n$$

$$E(X^2) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

give

$$\hat{\mu} = \overline{X}_n$$
 and $\hat{\sigma} = S_n$

Maximum Likelihood Estimation

The likelihood function is the joint density (probability function) of the data:

$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta)$$

□ The Maximum Likelihood Estimator of θ maximizes $L(\theta)$ or, equivalently, the log-likelihood $In[L(\theta)]$:

$$ln L(\hat{\theta}) \ge ln L(\theta)$$
 for all θ

Example: The exponential distribution

$$\ell(\lambda) = \ln L(\lambda) = \ln \left(\prod_{i=1}^{n} \lambda e^{-\lambda X_i} \right) = n \ln \lambda - \lambda \sum_{i=1}^{n} X_i$$

$$\frac{d\ell}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} X_{i} = 0 \Rightarrow \hat{\lambda} = 1/\bar{X}_{n}$$

Check that $d^2\ell$ / $d\lambda^2 = -n$ / λ^2 < 0; this guarantees that $\hat{\lambda}$ is the maximizer

Example: The normal distribution

$$\hat{\mu} = \bar{X}_{n}$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} = \frac{n-1}{n} S_{n}^{2}$$

Example: The Uniform(0, b) distribution
 We wish to find the MLE of b
 The likelihood function is

$$L(b) = \begin{cases} 1/b^n & \text{for } 0 \le X_i \le b \Leftrightarrow b \ge \max X_i \\ 0 & \text{otherwise} \end{cases}$$

Notice that L(b) is discontinuous; so don't take derivatives...

Check that L(b) is maximized at

$$\hat{b} = \max X_i$$

Example: The Weibull distribution

The density function is

$$f(x) = (\alpha \lambda)(\lambda x)^{\alpha - 1} e^{-(\lambda x)^{\alpha}}, x > 0,$$

where $\alpha > 0$ is the shape parameter and $\lambda > 0$ is the scale parameter

The MLEs satisfy the following equations:

$$\frac{\sum_{i=1}^{n} X_{i}^{\hat{\alpha}} \ln X_{i}}{\sum_{i=1}^{n} X_{i}^{\hat{\alpha}}} - \frac{1}{\hat{\alpha}} = \frac{1}{n} \sum_{i=1}^{n} \ln X_{i} \text{ and } \hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\hat{\alpha}}\right)^{-1/\hat{\alpha}}$$

The first nonlinear equation can be solved by Newton's method

- MLEs are "nice" because they are
 - Asymptotically $(n \rightarrow \infty)$ unbiased
 - Asymptotically normal
 - Invariant, i.e., if g is continuous,

$$\lambda = g(\theta) \Rightarrow \hat{\lambda} = g(\hat{\theta})$$

Example: The MLE of the variance $(\sigma^2 = 1/\lambda^2)$ for the exponential distribution is \bar{X}_n^2

Testing Goodness-of-Fit

We want to test the null hypothesis

$$H_0: X_1, \dots, X_n$$
 are from $\hat{f}(x) \equiv f(x; \hat{\theta})$

 $\alpha = \text{Type I Error} = \text{Pr(reject } H_0 \mid H_0 \text{ is true)}$ $\beta = \text{Type II Error} = \text{Pr(accept } H_0 \mid H_0 \text{ is false)}$ $\text{Power} = 1 - \beta = \text{Pr(reject } H_0 \mid H_0 \text{ is false)}$ p-value = smallest value of type I error that leadsto rejection of H_0

Testing Goodness-of-Fit (continued)

- Graphical approaches
 - The Q-Q plot graphs the quantiles of the fitted distribution vs. the sample quantiles. It emphasizes poor fitting at the tails
 - The P-P plot graphs the fitted CDF vs. the empirical CDF

$$\overline{F}(X) = \frac{\text{number of } X_i \le X}{n}, -\infty < X < \infty$$

Computation: Sort $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$. Then

$$\bar{F}(X_{(i)}) = \frac{i}{n}$$

It emphasizes poor fitting in the middle of the fitted CDF

Testing Goodness-of-Fit (continued)

Statistical Tests

- The chi-square test
- The Kolmogorov-Smirnov test
- The Anderson-Darling test

The Chi-square Test

- Split the range of X into k adjacent intervals
- Let

$$I_i = [a_{i-1}, a_i) = \text{ith interval}$$

 O_i = number of observations in interval i

 E_i = expected number of observations in interval i

$$= n[\hat{F}(a_{i}) - \hat{F}(a_{i-1})]$$

CDF of fitted distribution

The Chi-square Test (continued)

□ The null hypothesis is rejected (at level a) if

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} > \chi_{k-s-1,\alpha}^2$$

where *s* is the number of parameters replaced by their MLEs

- One should use $E_i \ge 5$
- The test has maximum power if the E_i are equal (the intervals are equiprobable)

The Kolmogorov-Smirnov Test

- Is applicable to continuous distributions only
- It generally assumes that all parameters are known
- Sort the data and define the empirical CDF

$$\overline{F}(x) = \frac{\text{number of } X_{i} \le x}{n} \\
= \begin{cases}
0 & \text{if } x < X_{(1)} \\
\frac{i}{n} & \text{if } X_{(i)} \le x < X_{(i+1)}, \ 1 \le i \le n-1 \\
1 & \text{if } x > X_{(n)}
\end{cases}$$

The Kolmogorov-Smirnov Test (continued)

The null hypothesis is rejected (at level a) if

$$D_{n} = \sup \left| \hat{F}(x) - \bar{F}(x) \right|$$

$$= \max \left\{ \max \left[\frac{i}{n} - \hat{F}(X_{(i)}) \right], \max \left[\hat{F}(X_{(i)}) - \frac{i-1}{n} \right] \right\} > \underbrace{d_{n,\alpha}}_{\text{tabulated}}$$

The Kolmogorov-Smirnov Test (continued)

■ We usually simplify the above inequality by computing an adjusted test statistic and a modified critical value c_{α} :

Adjusted Test Statistic >
$$c_{\alpha}$$

- When parameters are replaced by MLEs modified K-S test statistics exist for the following distributions:
 - Normal
 - Exponential
 - Weibull
 - Log-logistic

The Kolmogorov-Smirnov Test (continued)

Modified critical values for adjusted K-S test statistics

		Type I error α				
Case	Adjusted Test Statistic	0.150	0.100	0.050	0.025	0.001
All parameters known	$\left(\sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}\right) D_n$	1.138	1.224	1.358	1.480	1.628
$Nor(\bar{X}_n, S_n^2)$	$\left(\sqrt{n}-0.01+\frac{0.85}{\sqrt{n}}\right)D_n$	0.775	0.819	0.895	0.955	1.035
Expo $(1/\bar{X}_n)$	$\left(D_n - \frac{0.2}{n}\right)\left(\sqrt{n} + 0.26 + \frac{0.5}{\sqrt{n}}\right)$	0.926	0.990	1.094	1.190	1.308

Example

- The following observations are times-to-failure (in days) for a piece of equipment: 0.83, 0.32, 4.35, 2.34, 0.75
- We wish to test the fit of the exponential distribution
- Since the parameter of the distribution has not been specified, we compute the MLE

$$\hat{\lambda} = 1 / \bar{X}_5 = 0.582$$

The fitted CDF is

$$\hat{F}(x) \equiv F(x; \hat{\lambda}) = 1 - e^{-0.582x}, x > 0$$

■ We sort the data in increasing order:

Example (continued)

$X_{(i)}$	0.32	0.75	0.83	2.34	4.35
$\hat{F}(X_{(i)})$	0.170	0.354	0.383	0.744	0.921
$\frac{i}{5} - \hat{F}(X_{(i)})$	0.030	0.046	0.217	0.056	0.079
$\hat{F}(X_{(i)}) - \frac{i-1}{5}$	0.170	0.154	_	0.144	0.121

The test statistic is $D_5 = 0.217$ and the adjusted test statistic is

$$\left(D_5 - \frac{0.2}{5}\right)\left(\sqrt{5} + 0.26 + \frac{0.5}{5}\right) = 0.332$$

Since $0.332 \le c_{\alpha}$ for $\alpha \le 0.15$, we fail to reject the hypothesis that the data come from the exponential distribution

No Data?

- Happens more often than you would like
- No good solution; some (bad) options:
 - Interview "experts"
 - Min, Max: Uniform
 - Average, % error or absolute error: Uniform
 - Min, Mode, Max: Triangular
 - Mode can be different from Mean allows asymmetry (skewness)
 - Use the Distribution Viewer tool in ExpertFit® to match mean, variance, mode and various quantiles
 - Interarrivals independent, stationary
 - Exponential still need some value for mean
 - Number of "random" events in an interval: Poisson
 - Sum of independent "pieces": normal
 - Bounded task times: beta
 - Unbounded task times: lognormal or Weibull

Case Study: Times-to-Failure

- A data set contains 200 times-to-failure for a piece of equipment
- We use ExpertFit[®]
- To assess independence, we create a scatter plot

Case Study — Scatter Plot

The data appear to be independent

Case Study — Data Summary

Data Characteristic Value

Source file TTF.DAT

Observation type Real valued

Number of observations 200

Minimum observation 162.26205

Maximum observation 2,351.98858

Mean 768.91946

Median 709.90162

Variance 157,424.22579

Coefficient of variation 0.51601

Skewness 1.02670

Can the data be from

- The normal distribution?
- The exponential distribution?

Case Study — Histogram with 16 Intervals

Case Study — Model Guessing

- We will allow ExpertFit to choose a continuous distribution automatically
- We will tell it that
 - the left limit for the underlying random variable is zero and
 - the tight limit is infinity

Case Study — ExpertFit's Choice...

Case Study — Histogram Comparisons

Case Study — Graphical Goodness-of-Fit Tests

Case Study — Graphical Goodness-of-Fit Tests (continued)

Case Study — A-D & K-S Goodness-of-Fit Tests

Anderson-Darling Test With Model 1 - Weibull(E)

Sample size 200 Test statistic 0.33184

Note: No critical values exist for this special case.

The following critical values are for the case where all parameters are known, and are conservative.

	Critical Va	Critical Values for Level of Significance (alpha)							
Sample Size	0.250	0.250 0.100 0.050 0.025 0.010 0.005							
200	1.248	1.248 1.933 2.492 3.070 3.857 4.500							
Reject?	No	No							

Kolmogorov-Smirnov Test With Model 1 - Weibull(E)

Sample size 200 Normal test statistic 0.04426 Modified test statistic 0.62593

Note: No critical values exist for this special case.

The following critical values are for the case where all parameters are known, and are conservative.

	Critical Values for Level of Significance (alpha)						
Sample Size	0.150	0.150 0.100 0.050 0.025 0.010					
200	1.128	1.213	1.346	1.467	1.613		
Reject?	No						

Anderson-Darling Test With Model 3 - Gamma

Sample size 200 Test statistic 0.48640

Note: The following critical values are approximate.

	Critical V	Critical Values for Level of Significance (alpha)							
Sample Size	0.250	0.100	0.100 0.050 0.025 0.010 0.005						
200	0.474	0.638 0.761 0.884 1.047 1.1							
Reject?	Yes	No							

Kolmogorov-Smirnov Test With Model 3 - Gamma

Sample size 200 Normal test statistic 0.04957 Modified test statistic 0.70106

Note: No critical values exist for this special case.

The following critical values are for the case where all parameters are known, and are conservative.

	Critical Values for Level of Significance (alpha)							
Sample Size	0.150	0.150 0.100 0.050 0.025 0.010						
200	1.128	1.213	1.346	1.467	1.613			
Reject?	No							

Case Study — Chi-square Goodness-of-Fit Tests

Equal-Probable Chi-Square Test With Model 1 - Weibull(E)

Number of intervals 20 Expected (model) count 10 Test statistic 14.6

Warning: The test may not be statistically valid because a method

other than maximum likelihood was used to estimate parameters.

Degrees	Observed Level	Critical Values for Level of Significance (alpha)					
of Freedom	of Significance	0.25	0.15	0.10	0.05	0.01	
16	0.554	19.369	21.793	23.542	26.296	32.000	
19	0.748	22.718	25.329	27.204	30.144	36.191	
	Reject?	No					

Beware:

Outcomes depend on the number of intervals!

What distribution gives a better fit?

Equal-Probable Chi-Square	Test With Model 3 -	Gamma
---------------------------	---------------------	-------

Number of intervals 20 Expected (model) count 10 Test statistic 28

Degrees	Observed Level	Critical Values for Level of Significance (alpha)					
of Freedom	of Significance	0.25	0.15	0.10	0.05	0.01	
17	0.045	20.489	22.977	24.769	27.587	33.409	
19	0.083	22.718	25.329	27.204	30.144	36.191	
	Reject?	Yes			No		

Case Study — Additional Graphical Comparisons

Case Study — Simio Expression for "Winner"

Simio Representation of Model 1 - Weibull(E)

Use:

