Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

SCC0112 – Organização de Computadores Digitais I

2º Trabalho Prático:

Análise de Desempenho de Memória Cache

Carlos Humberto dos Santos Baqueta – 7987456 Elias Italiano Rodrigues – 7987251 Ricardo Issamu Fukuda Gunzi – 7986729

Sumário

1	Intr	oduçã	0	2
2	Des	envolv	imento	2
	2.1	O sim	ulador Amnesia	2
	2.2	Arquiv	vos de trace	3
		2.2.1	Não-espacial e não-temporal	3
		2.2.2	Espacial	4
		2.2.3	Temporal	4
		2.2.4	Espacial e temporal	5
		2.2.5	Aleatório	5
	2.3	Arquit	teturas	6
		2.3.1	Base	6
		2.3.2	Variadas	6
	2.4	Result	ados das execuções	8
		2.4.1	Relação da taxa de acerto com o tamanho da cache	8
		2.4.2	Relação da taxa de acerto com o tamanho do bloco	9
		2.4.3	Relação da taxa de acerto com o nível de associatividade	9
		2.4.4	Relação da taxa de acerto com o algoritmo de substituição	10
		2.4.5	Relação da taxa de acerto com o número de <i>caches</i>	10
		2.4.6	Combinação das arquiteturas	10
3	Con	ıclusão		11
\mathbf{R}	eferê	ncias		11

1 Introdução

Este segundo trabalho da disciplina de Organização de Computadores Digitais I tem como objetivo analisar o desempenho de uma hierarquia de memórias cache com relação à taxa de acerto (hit rate). Os resultados para a análise foram gerados por meio de simulações em software. Para isso, foi escolhido o simulador Amnesia [1] e nele foram executados diferentes traces sobre uma variedade de arquiteturas de memórias cache definidas de acordo com as limitações do simulador.

O desenvolvimento deste trabalho está organizado da seguinte maneira: primeiramente é apresentado o simulador Amnesia, em seguida são comentados e mostrados os arquivos de trace e as arquiteturas definidas pelo grupo do trabalho e então, por meio de tabelas e gráficos, são analisadas as taxas de acerto com relação as características das arquiteturas (tamanho da cache, tamanho do bloco, associatividade, algoritmo de substituição e quantidade de caches).

Os arquivos utilizados neste trabalho devem acompanhar este documento.

2 Desenvolvimento

2.1 O simulador Amnesia

De acordo com a página oficial do Amnesia [1]:

"O Amnesia é um simulador de hierarquia de memória, de sistemas computacionais, com fins didáticos. Ele permite simular o comportamento de registradores em um processador, memórias cache, memória principal e memória virtual paginada.

O Amnesia representa as estruturas de hardware e software usadas pela hierarquia de memória, a funcionalidade das mesmas e o impacto no desempenho quando esta hierarquia é usada. Diferentes configurações da hierarquia de memória podem ser estabelecidas e comparadas durante as atividades de simulação."

Isso faz desse simulador uma boa escolha para este trabalho, pois atende à necessidade de definir diferentes configurações de hierarquia de memória (arquiteturas) para as simulações. E ainda, é um *software* desenvolvido e mantido pela própria instituição de ensino da disciplina deste trabalho:

"O simulador está em desenvolvimento, desde 2007, por alunos de graduação e da pós-graduação do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP), orientados pelos professores Paulo Sérgio Lopes de Souza e Sarita Mazzini Bruschi."

Observação: importante ressaltar que o Amnesia é um simulador com propósito didático que incorpora características de Objetos de Aprendizagem (OA) e Recursos Educacionais Abertos (REA) para auxiliar professores e alunos durante o processo de aprendizagem. Portanto, não é adequado usá-lo para um processo de benchmark que também não é o propósito deste trabalho.

2.2 Arquivos de trace

Arquivos de trace, ou arquivos de rastro, são arquivos de texto ASCII que contém em cada linha uma dupla: rótulo (decimal) e endereço (hexadecimal). Qualquer outra informação é vista como um comentário. O rótulo representa uma operação de memória a ser feita sobre o endereço. O rótulo pode ser:

- 0: leitura de dados;
- 1: gravação de dados;
- 2: busca de instrução;
- 3: registro escape (tratado como tipo de acesso desconhecido);
- 4: registro escape (operação de cache flush).

Observação: como o objetivo deste trabalho é analisar a taxa de acerto e não foi considerada uma política de escrita para as *caches*, então o rótulo utilizado para as operações é indiferente. Por definição, foi utilizado o **rótulo 2** para todas operações dos arquivos de *trace*.

Os arquivos de *trace* para este trabalho foram criados de tal modo que as heurísticas do princípio de localidade espacial e temporal fossem exploradas. Assim, criou-se quatro arquivos tais que: um não houvesse localidade espacial e nem temporal, um houvesse somente localidade espacial, um houvesse somente localidade temporal e outro com ambos os princípios de localidade. Além disso, criou-se um quinto arquivo de *trace* com endereços aleatórios na tentativa de avaliar o algoritmo de substituição.

Para gerar os arquivos de trace, usou-se um programa simples em linguagem C, trace_gen.c, que imprime na saída padrão um arquivo de trace com um dos casos citados acima.

Com exceção do primeiro *trace*, a **quantidade de operações** foi definida em **32768**, pois assim é possível que um *trace* acesse cada palavra da memória principal cujo tamanho está especificado mais adiante na Seção 2.3.

Devido ao tamanho dos arquivos de *trace*, não é conveniente inseri-los inteiramente neste documento. Então seguem trechos dos arquivos com comentários sobre suas características.

2.2.1 Não-espacial e não-temporal

```
Gerado com:
```

```
for (i = 0; i < 2978; i++) {
    printf("2 %x\n", (i * 11));
}</pre>
```

Trecho do arquivo trace-00.txt:

- 2 0
- 2 b
- 2 16
- 2 21
- 2 2c
- 2 37

. . .

Neste trace os endereços das palavras tem um intervalo suficientemente grande: 11 que é maior do que qualquer uma das quantidades de palavras por bloco presentes nas arquiteturas definidas. Isso proporciona característica não-espacial. Além disso, não é feito acesso repetido a um mesmo endereço o que proporciona característica não-temporal. Em particular, a quantidade de operações deste trace é menor, pois caso contrário seriam gerados endereços de palavras inexistentes na memória principal.

2.2.2 Espacial

Gerado com:

```
for (i = 0; i < 32768; i++) {
    printf("2 %x\n", i);
}</pre>
```

Trecho do arquivo trace-01.txt:

- 2 0
- 2 1
- 2 2
- 2 3
- 2 4
- 2 5
- 2 6

. . .

Neste *trace* os endereços das palavras são bem próximos (consecutivos), porém com nenhum acesso repetido. Isso proporciona característica espacial e não-temporal.

2.2.3 Temporal

Gerado com:

```
int *address = (int *)malloc(sizeof(int) * 96);
address[0] = 0;
for (i = 1; i < 96; i++) {
    address[i] = address[i-1] + 11;
}
for (i = 0; i < 32768; i++) {
    printf("2 %x\n", address[i % 96]);
}
free(address);</pre>
```

Trecho do arquivo trace-10.txt:

```
2 0
2 b
2 16
2 21
2 2c
...
2 0 nonagésima sétima operação: começa a repetir
2 b
2 16
...
```

Neste *trace* os endereços são de palavras distantes (novamente 11 posições de distância que é suficiente para não serem do mesmo bloco em nenhuma das *caches*), porém a cada 96 operações são realizados acessos repetidos aos mesmos endereços anteriores. Isso proporciona característica temporal e não-espacial.

2.2.4 Espacial e temporal

Gerado com:

}

```
for (i = 0; i < 32768; i++) {
    printf("2 %x\n", i % 320);
```

Trecho do arquivo trace-11.txt:

```
2 0
2 1
2 2
2 3
2 4
2 5
...
2 0 tricentésima vigésima primeira operação: começa a repetir
2 1
2 2
```

Neste *trace* os endereços das palavras são bem próximos (consecutivos) e ocorre repetição dos endereços a cada 320 operações. Isso proporciona característica espacial e temporal.

2.2.5 Aleatório

Gerado com:

```
srand(time(NULL));
for (i = 0; i < 32768; i++) {
    printf("2 %x\n", rand() % 192);
}</pre>
```

Trecho do arquivo trace-rand.txt:

- 2 16
- 2 2a
- 2 59
- 2 b9
- 2 40
- 2 65

. . .

Neste *trace* os endereços das palavras foram gerados aleatoriamente dentro um intervalo de 0 a 191 usando a função rand() da linguagem C.

2.3 Arquiteturas

Foram definidas uma arquitetura base e outras dez arquiteturas com configurações variadas a partir da arquitetura base. Toda palavra tem tamanho fixo de 4 bytes (32 bits) e a memória principal é endereçada a byte.

Como citado anteriormente, o propósito deste trabalho e do simulador Amnesia não é o de benchmark, portanto as configurações foram escolhidas de acordo com as limitações do simulador e também dos computadores pessoais do grupo do trabalho usados para executar o simulador. O tamanho da **memória principal** é fixo de **128KiB** (portanto 32768 palavras) e os tamanhos para as **caches** podem ser de **512B**, **1KiB** e **2KiB**.

No Amnesia, o arquivo de arquitetura é definido no formato XML e um exemplo de arquitetura pode ser consultado no manual que acompanha o simulador.

Observação: as caches definidas para este trabalho são todas do tipo unified, ou seja, não há separação dentro da cache entre as palavras que representam instruções e as que representam dados como há no tipo split. Como políticas de escrita não foram consideradas e por definição as operações de memória são apenas de busca de instrução (rótulo 2), não há motivo para escolher o tipo split.

2.3.1 Base

A arquitetura base foi definida no arquivo arch-00.xml e possui as configurações especificadas na Tabela 1.

Tabela 1: Configuração da arquitetura base.

	arch-00			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	2	Direto	

2.3.2 Variadas

As dez arquiteturas variadas foram definidas nos respectivos arquivos arch-01.xml, arch-02.xml, ..., arch-10.xml e possuem as configurações especificadas na Tabela 2.

Tabela 2: Configurações variadas. Em itálico estão os valores alterados com relação a arquitetura base.

	arch-01			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	256 palavras (1KiB)	2	Direto	

	arch-02			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	512 palavras (2KiB)	2	Direto	

	arch-03			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	4	Direto	

	arch-04			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	8	Direto	

	arch-05			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	2	Associativo (2)	FIFO

	arch-06			
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	2	Associativo (4)	FIFO

	arch-07			
Cache	Tamanho	Palavras por bloco	Mapeamento	$Substitui$ ç $ ilde{a}o$
L1	128 palavras (512B)	2	Associativo (4)	LRU

arch-08				
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição
L1	128 palavras (512B)	2	Direto	
L2	256 palavras (1KiB)	2	Direto	

	arch-09					
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição		
L1	128 palavras (512B)	2	Direto			
L2	256 palavras (1KiB)	2	Direto			
L3	512 palavras (2KiB)	2	Direto			

	arch-10					
Cache	Tamanho	Palavras por bloco	Mapeamento	Substituição		
L1	128 palavras (512B)	2	Direto			
L2	256 palavras (1KiB)	4	Associativo (2)	LRU		
L3	512 palavras (2KiB)	8	Associativo (4)	LRU		

2.4 Resultados das execuções

Para cada arquitetura, foram executados os cinco arquivos de *trace* no simulador Amnesia. As taxas de acerto coletadas são mostradas na Tabela 3.

arch-	Cache	trace-00	trace-01	trace-10	trace-11	trace-rand	Média
00	L1	0	0.5	0.332489	0.5	0.66537476	0.49946594
01	L1	0	0.5	0.97628784	0.796875	0.9970703	0.817558285
02	L1	0	0.5	0.97628784	0.9951172	0.9970703	0.867118835
03	L1	0	0.75	0	0.75	0.66882324	0.54220581
04	L1	0	0.875	0	0.875	0.6715698	0.60539245
05	L1	0	0.5	0.020751953	0.5	0.6673279	0.42201996325
06	L1	0	0.5	0	0.5	0.66674805	0.4166870125
07	L1	0	0.5	0	0.5	0.66656494	0.416641235
08	L1	0	0.5	0.332489	0.5	0.66537476	0.49946594
	L2	0	0	0.96447676	0.59375	0.99124485	0.6373679025
09	L1	0	0.5	0.332489	0.5	0.66537476	0.49946594
	L2	0	0	0.96447676	0.59375	0.99124485	0.6373679025
	L3	0	0	0	0.97596157	0	0.2439903925
	L1	0	0.5	0.332489	0.5	0.66537476	0.49946594
10	L2	0	0.5	0.86983955	0.6982422	0.99562246	0.7659260525
	L3	0	0.5	0.95539165	0.9919094	0.5	0.7368252625

Tabela 3: Taxa de acerto para cada arquitetura e arquivo de trace.

2.4.1 Relação da taxa de acerto com o tamanho da cache

Para avaliar o impacto do tamanho da *cache* na taxa de acerto, contrastou-se as taxas de acerto das arquiteturas arch-00, arch-01 e arch-02. O resultado pode ser visto na Figura 1.

Foi possível observar que o aumento no tamanho da *cache* implicou no aumento da taxa de acerto como esperado. Quanto maior o tamanho da *cache*, menor é a quantidade de falhas por capacidade, pois menos blocos disputam por uma mesma posição.

Figura 1: Comparação da taxa acerto com relação ao tamanho da cache.

2.4.2 Relação da taxa de acerto com o tamanho do bloco

Para avaliar o impacto do tamanho do bloco na taxa de acerto, contrastou-se as taxas de acerto das arquiteturas arch-00, arch-03 e arch-04. O resultado pode ser visto na Figura 2.

Quanto ao trace-rand, houve pouca variação na taxa de acerto, mas foi possível observar que a média de acertos aumentou conforme o tamanho do bloco.

Significativamente, observou-se aumento para os trace-01 e trace-11 e declínio para zero do trace-10. Isso aconteceu pois, uma vez que o tamanho do bloco foi aumentado, os trace-01 e trace-11 que possuem princípio de localidade espacial tem mais chance de acerto já que uma maior quantidade de palavras são copiadas para a *cache*. Quanto ao declínio para zero do trace-10 deve-se ao fato dele possuir somente característica temporal, o que leva a um pior desempenho com blocos maiores, pois ocorre sobrescrita das palavras que possivelmente seriam utilizadas novamente durante a execução.

Figura 2: Comparação da taxa acerto com relação ao tamanho do bloco.

2.4.3 Relação da taxa de acerto com o nível de associatividade

Para avaliar o impacto do nível de associatividade na taxa de acerto, contrastou-se as taxas de acerto das arquiteturas arch-00, arch-05 e arch-06. O resultado pode ser visto na Figura 3.

Quanto ao trace-01 e trace-11, que possuem característica espacial, não houve diferença na taxa de acerto, pois o tamanho do bloco não foi aumentado. Por outro lado, para o trace-10 que possui somente característica temporal, houve diminuição na taxa de acerto conforme o aumento do nível de associatividade. Esse comportamento é esperado para este *trace*, pois foi aumentado o nível de associatividade sem aumentar o tamanho do bloco o que gerou mais falhas para localidade temporal.

Figura 3: Comparação da taxa acerto com relação o nível de associatividade.

2.4.4 Relação da taxa de acerto com o algoritmo de substituição

Para avaliar a taxa de acerto com relação ao algoritmo de substituição, observou-se as arquiteturas arch-06 e arch-07. Pela Tabela 3, pode-se notar que a diferença entre as duas foi mínima, havendo pequena alteração somente para o trace-rand. Isso mostra que os arquivos de trace gerados não foram suficientes para avaliar o algoritmo de substituição. Com exceção do trace-rand, os demais traces tem padrões de acesso sistemáticos o que implica na indiferença do algoritmo de substituição escolhido.

2.4.5 Relação da taxa de acerto com o número de caches

Para avaliar o impacto do número de *caches* na taxa de acerto, contrastou-se as taxas de acerto das arquiteturas arch-00, arch-08 e arch-09. Notoriamente o aumento do número de *caches* diminui a quantidade de acessos à memória principal, pois proporciona mais alternativas de acesso. O problema que o número de *caches* pode ocasionar é com relação à atualização dos dados (escrita) que não foi abordada nesse trabalho.

2.4.6 Combinação das arquiteturas

A arquitetura arch-10 proposta é uma combinação das demais com o objetivo de conseguir um melhor desempenho. A partir da Tabela 3 constatou-se que houve um melhor desempenho, pois com exceção das arquiteturas arch-01 e arch-02 que possuem tamanho da L1 maior, a arch-10 proporcionou, em média geral, uma taxa de acerto maior que todas as demais arquiteturas.

3 Conclusão

O trace-00, que não possui característica de localidade espacial e nem temporal, resultou em taxas de acerto zero para todas as arquiteturas utilizadas. Isso evidencia que a hierarquia de memórias *cache* é fundamentada nesse princípio e, portanto, na ausência dele a *cache* se torna um *overhead* para sistema computacional.

De modo geral, os comportamentos da taxa de acerto conforme as variações nas características da *cache* já eram os esperados, pois é parte do conteúdo da disciplina SCC0112. Portanto, este trabalho serviu para consolidar o que foi aprendido em sala de aula por meio de uma abordagem prática ao tema definindo as arquiteturas e simulando em *software*.

Referências

[1] Amnesia: Memory Hierarchy Simulator
Disponível em http://amnesia.lasdpc.icmc.usp.br/