

Universidade Federal do Ceará Instituto de Tecnologia Departamento de Engenharia Elétrica

Circuitos Elétricos – Aula 13

Capítulo 5 – Amplificadores Operacionais

Amplificadores Operacionais

Introdução

*O AMPlificador OPeracional (AMPOP) é um circuito eletrônico composto por duas entradas e uma saída.

*A combinação do AMPOP com resistores possibilita a realização de funções úteis, tais como soma, subtração e multiplicação de sinais elétricos.

Muito utilizado em processamento/condicionamento de sinais.

Amplificadores Operacionais

Terminais do amplificador operacional

Amplificadores Operacionais

Terminais do amplificador operacional

F Simbologias de AMPOPS:

Figura 5.2 ▲ Símbolo de circuito para um amp op.

Figura 5.3 Símbolo de circuito simplificado para um amp op.

Amplificadores Operacionais

Tensões e correntes terminais

Amplificadores Operacionais

Característica de transferência de tensão

7 Tensão de saída é uma função da diferença de tensões de entrada v_p - v_n .

$$v_{0} = \begin{cases} -V_{cc} & A(v_{p} - v_{n}) < -V_{cc} \\ A(v_{p} - v_{n}) & -V_{cc} \le A(v_{p} - v_{n}) \le +V_{cc} \\ +V_{cc} & A(v_{p} - v_{n}) > +V_{cc} \end{cases}$$

Amplificadores Operacionais

Considerações

7 Para trabalhar na região linear:

$$v_n \cong v_p$$
 (curto circuito virtual)

7 A resistência de entrada é muito elevada, então:

$$i_p \cong i_n \cong 0$$

Característica (malha aberta)	ampop ideal	ampop real
ganho tensão	8	10 ⁶ a 10 ⁸
impedância de entrada	8	alguns $M\Omega$
impedância de saída	0	dezenas de Ω
largura de banda	8	dezenas de Hz

Amplificadores Operacionais

Modelo ideal

- * Características:
 - Ganho de tensão de entrada é infinito;
 - A resistência de entrada é infinita;
 - A resistência de saída é nula.

Amplificadores Operacionais

Modelo ideal

*Restrição de tensão de entrada (condição de curto circuito virtual):

$$v_n = v_p$$

*Restrição de corrente de entrada:

$$i_p = i_n = 0$$

$$i_p + i_n + i_0 + i_c^+ + i_c^- = 0$$

$$i_0 = -(i_c^+ + i_c^-)$$

Amplificadores Operacionais

Exemplo:

*a) Calcule v_0 se $v_a=1$ V e $v_b=0$ V

Realimentação negativa região linear

A tensão da entrada inversora é 0, já que:

$$v_p = v_b = 0 \qquad v_n = v_p$$

Equação de tensão do nó para a entrada inversora é:

$$i_{25} + i_{100} = i_n$$

Pela lei de ohm:

$$i_{25} = \frac{(v_a - v_n)}{25 \times 10^3} = \frac{1}{25} mA$$
 $i_{100} = \frac{(v_0 - v_n)}{100 \times 10^3} = \frac{v_0}{100} mA$

Restrição em relação a corrente: $i_n = 0$

$$\frac{1}{25 \times 10^3} + \frac{v_0}{100 \times 10^3} = i_n \qquad v_0 = -4V$$

Região linear, se encontra entre ± 10 V

Amplificadores Operacionais

Exemplo:

7 b) Calcule v_0 se $v_a=1$ V e $v_b=2$ V

Realimentação negativa região linear

A tensão da entrada inversora é 0, já que:

$$v_p = v_b = v_n = 2V$$
 $v_n = v_p$

Equação de tensão do nó para a entrada inversora é:

$$i_{25} = -i_{100}$$

Pela lei de ohm:

$$i_{25} = \frac{(v_a - v_n)}{25 \times 10^3} = -\frac{1}{25} mA$$
 $i_{100} = \frac{(v_0 - v_n)}{100 \times 10^3} = \frac{v_0 - 2}{100} mA$

Restrição em relação a corrente: $i_n = 0$

$$-\frac{1}{25\times10^3} + \frac{v_0 - 2}{100\times10^3} = i_n \qquad v_0 = 6V \quad \text{Região linear, se encontra entre } \pm 10 \text{ V}$$

Amplificadores Operacionais

Exemplo:

fc) Se $v_a=1.5$ V, determine a faixa de v_b para operar na região linear (sem saturação).

Como antes:
$$v_p = v_n = v_b$$
 $i_{25} = -i_{100}$

$$i_{25} = -i_{100}$$

$$i_{25} = \frac{(1.5 - v_b)}{2.5 \times 10^3} mA$$

$$i_{100} = \frac{(v_0 - v_b)}{100 \times 10^3} mA$$

 $v_b = \frac{1}{5}(6 + v_0)$ $v_0 = 5v_b - 6$ Resolvendo v_b como uma função de v_0 temos:

 $-10V \le v_0 \le 10V$ Se o amplificador estiver operando na faixa linear:

 $-0.8V \le v_b \le 3.2V$ Então v_b está limitada a:

ara
$$v_{a} = v_{b} = v_{b}$$

Amplificadores Operacionais

Circuito Amplificador Inversor:

Fequação de tensão no nó inversor:

$$i_s + i_f = i_n$$

$$i_s = \frac{v_s}{R_s}$$

$$i_f = \frac{v_o}{R_f}$$

$$i_n = 0$$

$$\frac{v_s}{R_s} + \frac{v_o}{R_f} = 0$$

$$\frac{v_o}{R_f} = -\frac{v_s}{R_s}$$

$$v_o = -\frac{R_f}{R} v_s$$

Válido se o AMPOP for ideal (ganho A e a resistência de entrada são infinitas).

Amplificadores Operacionais

Circuito Amplificador Inversor:

 * O limite superior para o ganho $R_{\rm f}/R_{\rm s}$ é determinado pelas tensões da fonte de alimentação e pelo valor da tensão $v_{\rm s}$.

F Se admitirmos tensões iguais das fontes de alimentação:

Temos:
$$\left| v_o \right| \le V_{cc}$$
, $\left| \frac{R_f}{R_s} v_s \right| \le V_{cc}$ $\frac{R_f}{R_s} \le \left| \frac{V_{cc}}{v_s} \right|$

7 Se:
$$V_{cc} = 15V e v_s = 10 mV$$

Então: $\frac{R_f}{R} \le 1500$

Amplificadores Operacionais

Circuito Amplificador Inversor:

- # Exercício:
- *Calcule o valor de v_o para os seguintes valores de v_s :

$$a)v_{s} = 0.4V$$

$$v_{n} = v_{p} = 0$$

$$\frac{(v_{s} - v_{n})}{16k} + \frac{(v_{o} - v_{n})}{80k} = 0$$

$$0.4 \quad v_{n} = 0$$

$$\frac{0.4}{16k} + \frac{v_o}{80k} = 0 \qquad v_o = -2V$$

ou

$$v_o = -\frac{R_f}{R}v_s$$
 $v_o = -\frac{80k}{16k}0, 4 = -2V$

$$a)v_s = 2.0V, 3.5V, -0.6V, -1.6V$$

Amplificadores Operacionais

Circuito Amplificador Inversor:

FExercício:

b) Determine a faixa de v_s que não sature o amplificador

$$-15 \le v_o \le 10$$

$$\frac{v_s}{16k} + \frac{v_o}{80k} = 0$$

$$v_s = -16k \frac{v_o}{80k}$$

$$p/v_o = -15V$$
 $v_s = -16k \frac{-15}{80k} = 3V$

$$p/v_o = 10V$$
 $v_s = -16k \frac{10}{80k} = -2V$

$$-2 \le v_s \le 3$$

Referências Bibliográficas:

Nilsson, J.W. e Riedel, S.A., Circuitos Elétricos, 8^a Edição, Pearson Prentice Hall, São Paulo, 2009.

Svodoba, J.A. and Dorf, R.C., Introduction to Electric Circuits, 9th edition, Wiley, 2011.