Homework - Topic 7:

Analysis of HRV in Time in Nonlinear Domains

Lai Hui Shan M5281022

1. Comprehensive Data Preprocessing

Original Data Overview

- The input data was normalized to the range -1 to +1 for preprocessing.
- The first two columns (timestamps) were ignored, and the remaining data was reshaped into a single column.

Outlier Detection and Handling

1. Grubbs' Test:

- Identified outliers using Grubbs' Statistic (*G*), with a threshold of 2.5.
- o Outliers were replaced with NaN.

2. Median Filter:

• Applied a median filter with a window size of 5 to further smooth the data.

3. Missing Data Handling:

• Missing values were filled using **bootstrap resampling** to preserve data variability.

Smoothing and Signal Reconstruction

- A wavelet-based smoothing method was applied with the following parameters:
 - Wavelet Function: bior4.4
 - o Maximum Scale: 6
 - o Threshold Factor: 0.01
- The smoothed data exhibited reduced noise amplitude while retaining the signal's overall structure.

2. HRV Analysis in the Time Domain

Parameters and Results

The following HRV parameters were calculated from the smoothed RRI data:

Parameter	Value
Mean RRI (ms)	9.35
SDNN (ms)	12.21

Parameter	Value
RMSSD (ms)	0.37
NN50	0
pNN50 (%)	0.00
HRV Triangular Index	25.70
TINN (ms)	26.35

Key Observations

- The **Mean RRI** value is consistent with a stable heart rate, though very small.
- Both NN50 and pNN50 are zero, indicating minimal short-term variability.
- HRV Triangular Index and TINN suggest a narrow RRI distribution.

Time Domain Visualization

• **Figure 1**: RRI histogram with triangular interpolation.

3. Nonlinear HRV Analysis

Poincaré Plot

- Objective:
 - Evaluate short-term (SD1) and long-term (SD2) variability.
- Results:
 - o SD1 (Short-term variability): **0.07 ms**
 - SD2 (Long-term variability): **12.55 ms**

• Figure 2: Poincaré plot showing the distribution of successive RRI intervals.

Sample Entropy (SampEn)

- Objective:
 - Quantify the complexity of the RRI data using SampEn.
- Result:
 - Sample Entropy: **0.53** (indicating moderate complexity).

Nonlinear Visualization

 The Poincaré plot and SampEn results reveal minimal short-term variability but consistent long-term patterns.

4. Summary and Observations

Comparison with Topic 5 Analysis

- 1. Additional Nonlinear Metrics:
 - Unlike Topic 5, this report includes Poincaré plot analysis and Sample Entropy.
- 2. Improved Data Handling:
 - Advanced outlier removal (bootstrap) and smoothing methods were applied, enhancing data reliability.

Conclusion

- The dataset exhibits low short-term variability (SD1 and RMSSD) but stable long-term variability (SD2 and SDNN).
- While time-domain parameters remain similar to Topic 5, the nonlinear analysis provides additional insights into data complexity and variability patterns.

Appendices: MATLAB Code

```
% Homework: HRV Time and Nonlinear Domain Analysis
% -----
% Step 1: Load Data
% -----
[data_file, data_path] = uigetfile('*.txt', 'Select a data file'); % Open file
dialog
data = load([data_path, data_file]); % Load data
data = data(:, 3:end); % Ignore the first two columns (timestamps)
data = data(:); % Reshape into a single column
data = (data - 2^16 / 2) / (2^16 / 2); % Normalize data
% -----
% Step 2: Preprocessing
% ------
% Grubbs' Test for outlier detection
mu = mean(data, 'omitnan');
sigma = std(data, 'omitnan');
G = abs(data - mu) / sigma; % Grubbs' Statistic
threshold = 2.5;
data(G > threshold) = NaN;
% Fill missing data with bootstrap
data = fillmissing(data, 'linear');
bootstrap_sample = datasample(data(~isnan(data)), sum(isnan(data)), 'Replace',
true);
data(isnan(data)) = bootstrap_sample;
% Wavelet smoothing
WAVELET FUNC = 'bior4.4';
MAX SCALE = 6;
[c, 1] = wavedec(data, MAX_SCALE, WAVELET_FUNC);
a6 = wrcoef('a', c, 1, WAVELET_FUNC, 6);
data smoothed = a6;
% -----
% Step 3: HRV Analysis
% Time domain parameters
RRI = data smoothed;
mean_RRI = mean(RRI) * 1000;
SDNN = std(RRI) * 1000;
diff_RRI = diff(RRI);
RMSSD = sqrt(mean(diff RRI.^2)) * 1000;
NN50 = sum(abs(diff_RRI) > 0.05);
pNN50 = (NN50 / length(RRI)) * 100;
[hist counts, bin centers] = hist(RRI, 128);
HRV_Triangular_Index = sum(hist_counts) / max(hist_counts);
[~, max_bin] = max(hist_counts);
left bound = find(hist counts(1:max bin) <= max(hist counts) / 2, 1, 'last');</pre>
```

```
right_bound = find(hist_counts(max_bin:end) <= max(hist_counts) / 2, 1, 'first') +
TINN = bin_centers(right_bound) - bin_centers(left_bound);
% Poincaré analysis
SD1 = sqrt(var(diff_RRI) / 2);
SD2 = sqrt(2 * var(RRI) - var(diff_RRI) / 2);
% Sample Entropy
SampEn = sample_entropy(RRI, 2, 0.2 * std(RRI));
% -----
% Step 4: Visualizations
% -----
% Histogram
figure; bar(bin_centers, hist_counts);
title('RRI Histogram'); xlabel('RRI (ms)'); ylabel('Frequency');
% Poincaré Plot
figure; scatter(RRI(1:end-1), RRI(2:end), 'b.');
title('Poincaré Plot'); xlabel('RRI_n (ms)'); ylabel('RRI_{n+1} (ms)');
```