

SH366002通讯协议

1 概述

本文主要介绍SH366002智能电池管理系统支持的通信协议。SH366002底层通信协议有两种:TWI和SWI,芯片出厂时默认为TWI协议;若需要修改为SWI协议,可通过上位机Pro界面中发送TWI转SWI命令后对SH366002重新上电,芯片便转为SWI协议。

两种通信协议均包括标准通信协议和自定义通信协议,标准通信协议用于电池和主机通信,而自定义通信协议用于完成SH366002参数校准、程序在系统更新、转SWI协议等功能。

2 SH366002底层协议

2.1 TWI协议

2.1.1. 单字节读写

WRITE BYTE

	s	address/w	Α	command	Α	data	Α :	stop		
READ E	ЗҮТ	E								
	s	address/w	Α	command	Rs	address/R	Α	data	NACK	stop

2.1.2. 多字节读写(两个或两个以上)

2.2 SWI协议

SWI为单线通讯,只支持单字节读写。如果有多字节读写,可认为是多个单字节读写的集合。

当SWI读取16bit数据时,需要分两次读取。如果读取完高字节后该数据发生变化,则读取的数据会有误差,为解决该问题可采用如下方法:

- 1. 读高字节(H0);
- 2. 读低字节(L0);
- 3. 重复读高字节(H1);

- 4. 若H1=H0,则最终数据为H0*256+L0;
- 5. 若H1≠H0,则重读低字节(L1)。最终数据为H1*256+L1。

注:

- ➤ 在TWI通讯协议时序图中,"S"为Start命令,"Address"默认为"0x55","Command"为命令,"A"为Ack信号,"Nack"为Nack信号,"Stop"为终止信号,下同。
- ➤ 在SWI通讯协议时序图中,"B"为Break信号,"Command"为命令号,"W"为写信号,"R"为读信号,"Response" 为回复信号,"Data"为数据,下同。

3 SH366002标准通信协议

SH366002标准通信协主要用于读取电芯参数等信息,主机向SH366002发送相应命令以获得电芯信息,命令列表如表1所示。详细解释请参考*SH366002 SBS Solution用户指南*。

3.1 标准数据命令

名称	命令号	数据类型	显示格式	单位	读写状态
Control()	0x00 / 0x01	unsigned int	HEX	N/A	可读可写
ControlStatus()	备注	unsigned int	HEX	-	只读
AtRate()	0x02 / 0x03	int	DEC	mA	可读可写
AtRateTimeToEmpty()	0x04 / 0x05	unsigned int	DEC	Minutes	只读
Temperature()	0x06 / 0x07	unsigned int	(T-2731)/10	0.1K	只读
Voltage()	0x08 / 0x09	unsigned int	DEC	mV	只读
Flags()	0x0a / 0x0b	unsigned int	HEX	N/A	只读
NominalAvailableCapacity()	0x0c / 0x0d	unsigned int	DEC	mAh	只读
FullAvailableCapacity()	0x0e / 0x0f	unsigned int	DEC	mAh	只读
RemainingCapacity()	0x10 / 0x11	unsigned int	DEC	mAh	只读
FullChargeCapacity()	0x12 / 0x13	unsigned int	DEC	mAh	只读
AverageCurrent()	0x14 / 0x15	int	DEC	mA	只读
TimeToEmpty()	0x16 / 0x17	unsigned int	DEC	Minutes	只读
TimeToFull()	0x18 / 0x19	unsigned int	DEC	Minutes	只读
StandbyCurrent()	0x1a / 0x1b	int	DEC	mA	只读
StandbyTimeToEmpty()	0x1c / 0x1d	unsigned int	DEC	Minutes	只读
MaxLoadCurrent()	0x1e / 0x1f	int	DEC	mA	只读
MaxLoadTimeToEmpty()	0x20 / 0x21	unsigned int	DEC	Minutes	只读
AvailableEnergy()	0x22 / 0x23	unsigned int	DEC	10mWh	只读
AvailablePower()	0x24 / 0x25	unsigned int	DEC	10mW	只读

名称	命令号	数据类型	显示格式	单位	读写状态
TTEatConstantPower()	0x26 / 0x27	unsigned int	DEC	Minutes	只读
Internal_Temp()	0x28 / 0x29	unsigned int	(T-2731)/10	0.1°K	只读
CycleCount()	0x2a / 0x2b	unsigned int	DEC	Counts	只读
StateOfCharge()	0x2c / 0x2d	unsigned int	DEC	%	只读
StateOfHealth()	0x2e / 0x2f	unsigned int	DEC	% / num	只读
PassedCharge()	0x34 / 0x35	int	DEC	mAh	只读
DOD0()	0x36 / 0x37	unsigned int	DEC	HEX#	只读
PackConfiguration()	0x3a / 0x3b	unsigned int	HEX	HEX#	只读

表1. 标准命令列表

备注: ControlStatus命令为一套组合命令,顺序为:

- 1. 往命令号0x00/0x01中写入0x0007;
- 2. 读命令号0x00/0x01;
- 3. 往命令号0x00/0x01中写入0x0000;
- 4. 读命令号0x00/0x01;
- 5. 往命令号0x00/0x01中写入步骤2中读到的数值。

3.2 扩展命令

名称	命令号	单位	读写状态
DesignCapacity()	0x3c / 0x3d	mAh	R
DataFlashClass() (备注1)	0x3e	N/A	N/A
DataFlashBlock() (备注1)	0x3f	N/A	R/W
BlockData() / Authenticate()(备注2)	0x400x53	N/A	R/W
BlockData() / AuthenticateCheckSum() (备注2)	0x54	N/A	R/W
BlockData()	0x550x5f	N/A	R
BlockDataCheckSum()	0x60	N/A	R/W
BlockDataControl()	0x61	N/A	N/A
DeviceNameLength()	0x62	N/A	R
DeviceName()	0x630x6B	N/A	R
Reserved	0x6C0x7f	N/A	R

表2. 扩展命令列表

备注1: 在加密状态下, Data Flash命令0x3e不能被读写;

备注2: BlockData()命令可访问通用数据区,也可访问认证数据。

4 SH366002 数据存取组合通信协议

SH366002各参数保存在DataFlash列表中,系统在解密模式下,可按照下面数据格式对DataFlash进行读取或者写入。为保证程序的正常运行,请不要对未列明子类号和偏移地址进行写操作。

4.1 DataFlash数据表

下表中子类号、偏移地址与长度均为十进制。

名称	类型	子类号	偏移地址	长度
OT Chg	12	2	0	2
OT Chg Time	U1	2	2	1
OT Chg Recovery	12	2	3	2
OT Dsg	12	2	5	2
OT Dsg Time	U1	2	7	1
OT Dsg Recovery	12	2	8	2
Chg Inhibit Temp Low	12	32	0	2
Chg Inhibit Temp High	12	32	2	2
Temp Hys	12	32	4	2
Charging Voltage	U2	34	2	2
Suspend Low Temp	12	34	6	2
Suspend High Temp	12	34	8	2
Taper Current	12	36	2	2
Min Taper Capacity	U2	36	4	2
Taper Voltage	U2	36	6	2
Current Taper Window	U1	36	8	1
TCA Set %	I1	36	9	1
TCA Clear %	I1	36	10	1
FC Set %	I1	36	11	1
FC Clear %	I1	36	12	1
Qmax0	12	48	2	2
TerminateVoltage	U2	48	4	2
Reserve Cap mAh	12	48	6	2
Initial Standby	I1	48	8	1
Initial MaxLoad	12	48	9	2
Load Mode	U1	48	11	1
UpdateStatus	H1	48	12	1
Cycle Count	U2	48	17	2
CC Threshold	U2	48	19	2
Reserve Cap mWh	12	48	21	2
Design Capacity	U2	48	23	2
Design Energy	U2	48	25	2

				0002 XII
名称	类型	子类号	偏移地址	长度
State of Health Load	12	48	27	2
Device Name	S9	48	29	9
SOC1 Set Threshold	U2	49	0	2
SOC1 Clear Threshold	U2	49	2	2
SOCF Set Threshold	U2	49	4	2
SOCF Clear Threshold	U2	49	6	2
Pack Lot Code	H2	56	0	2
PCB Lot Code	H2	56	2	2
Firmware Version	H2	56	4	2
Hardware Revision	H2	56	6	2
Cell Revision	H2	56	8	2
DF Config Version	H2	56	10	2
Block A [0 - 31]	H1	58	0 - 31	32
Block B [0 - 31]	H1	58	32 - 63	32
Block C [0 - 31]	H1	58	64 - 95	32
Pack Configuration	H2	64	0	2
Flash Update OK Voltage	12	68	0	2
Sleep Current	12	68	2	2
Hibernate I	12	68	11	2
Hibernate V	12	68	13	2
FS Wait	U1	68	15	1
Dsg Current Threshold	12	81	0	2
Chg Current Threshold	12	81	2	2
Quit Current	12	81	4	2
Dsg Relax Time	U2	81	6	2
Chg Relax Time	U1	81	8	1
Quit Relax Time	U1	81	9	1
CCGain	U2	104	0	2
CC Offset	12	104	2	2
Board Offset	12	104	4	2
Int Temp Offset	12	104	6	2
Ext Temp Offset	I1	104	8	1
Pack V Gain	U2	104	11	2
Pack V Offset	12	104	13	2
Deadband	U1	107	1	1
Sealed to Unsealed	H4	112	0	4
Unsealed to Full	H4	112	4	4
Authen Key3	H4	112	8	4

名称	类型	子类号	偏移地址	长度
Authen Key2	H4	112	12	4
Authen Key1	H4	112	16	4
Authen Key0	H4	112	20	4
AlgorithmData0	U1	123	0-95	96
AlgorithmData1	U1	124	0-95	96
AlgorithmData2	U1	125	0-95	96
AlgorithmData3	U1	126	0-95	96
AlgorithmData4	U1	127	0-29	30

表3. 数据区概述列表

4.2 解密模式下标准Data Flash读写

在解密模式下,用户可通过上位机发送一系列命令对Data Flash区的参数进行读写,目前SH366002支持单个参数写、全读、全写。SH366002的读取或写入都是以子类为模块进行的。

单个参数写:从该参数所在子类的偏移量开始,完成参数的改写之后,再读取完整子类。

全读: 从第一个子类到最后一个子类的完整读取。

全写: 从第一个子类到最后一个子类的完整写入, 以及全读。

4.2.1. 完整子类读取

操作顺序如下:

- 1. 往命令号0x61写入数据0x00;
- 2. 往命令号0x3E写入数据子类号;
- 3. 往命令号0x3F写入数据Block号。每个block代表32byte数据,block号可由Offset/32取整得出;
- 4. 通过命令号0x40 读取此子类数据(数据长度取决子类数据大小,最大32字节);
- 5. 若该子类数据多于32字节,再往命令号0x3f写入数据0x01~0x02(其中1对应偏移32~63,2对应偏移64~95), 重复步骤4,直至整个子类读取完成。

TWI模式:

SWI模式:

7

e.g.1 读取温度保护子类(ClassID= 2)

- 1. 美闭其他通讯
- 2. 向命令号 0x61 写入 00.
- 3. 向命令号 0x3E 写入子类号 0x02
- 4. 向命令号 0x3F 写入 Block 号 0x00
- 5. 从 0x40~0x5F 读取 32byte, 其中前 10 byte 为有效数据

4.2.2. 完整子类写入

操作顺序如下:

- 1. 往命令号0x61写入数据0x00;
- 2. 往命令号0x3E写入数据子类号;
- 3. 往命令号0x3F写入数据Block号:
- 4. 往命令号0x40写入此子类数据(数据长度取决子类数据大小,最大32字节);
- 5. 往命令号0x60写入CheckSum(CheckSum=255-(data1+...+dataN))。若子集内容超过32byte,则checksum 为当前block中数据的checksum值;否则为该子集内数据的checksum。延时120ms后,再进行下一步通讯;
- 6. 若该子类多于32bytes字节,再往命令号0x3f写入数据0x01~0x02(其中1对应偏移32~63,2对应偏移64~95), 重复步骤4、5,直至整个子类写入完成。此时的checksum即为写入block的block数据checksum。

TWI模式:

SWI模式:

e.g.2 写入 ManufacturerB

- 1. 向命令号 0x61 写入数据 0x00
- 2. 向命令号 0x3E 写入子类号 0x3A
- 3. 向命令号 0x3F 写入 Block 号,偏移量为 32~63,故 block 号为 1
- 4. 向命令号 0x40~0x5F 写入 32byte 有效数据
- 5. 向命令号 0x60 写入该 block 中新数据的 checksum 值

4.2.3. 单参数写入

操作顺序如下:

- 1. 往命令号0x61写入数据0x00;
- 2. 往命令号0x3E写入数据子类号;
- 3. 往命令号0x3F写入数据子类偏移量/32;
- 4. 通过命令号0x60读取旧的CheckSum;
- 5. 通过命令号(0x40+子类偏移量%32)读取旧的数据
- 6. 往命令号(0x40+子类偏移量%32)写入新的数据;
- 7. 若修改数据有多个字节,则重复步骤5、6,直至该子类所需修改数据完成;

- 8. 往命令号0x60写入新的CheckSum(算法为旧CheckSum+旧数据和新数据的差值),延时120ms后,再进行下一步通讯;
- 9. 若子类偏移量大于等于32,重复步骤3~8,直至所有数据修改完成。

TWI模式:

SWI模式:

e.g.3 写入 Current Thersholds 子类

- 1. 向命令号 0x61 写入命令号 0x00
- 2. 向命令号 0x3E 写入子类号 0x51
- 3. 向命令号 0x3F 写入 Block 号 0x00
- 4. 从命令号 0x60 读取旧 Checksum 值
- 5. 从命令号 0x40+(offset%32)读取旧数据
- 6. 向命令号 0x40+(offset%32)写入新数据
- 7. 由于该子类中数据小于32个,故仅需重复5、6,直至写入完成。
- 8. 向命令号 0x60 写入新的 checksum 值

4.3 加密模式下认证码与制造商信息读写

读取顺序:

- 1. 往命令号0x61写入数据0x01;
- 2. 往命令号0x3F写入数据0x00/01/02/03;
- 3. 通过命令号0x40读取32字节数据,分别为认证码/ManufacturerA/B/C。

写入顺序: (加密模式下只可对ManufacturerB/C进行写操作)

- 1. 往命令号0x61写入数据0x01;
- 2. 往命令号0x3F写入数据0x02/0x03;
- 3. 往命令号0x40写入32字节数据,分别为ManufacturerB/C;
- 4. 往命令号0x60写入CheckSum(CheckSum=255-(data1+...+data32)),每一个block的checksum仅针对此block 中的32byte数据。延时120ms后,再进行下一步通讯

e.g.4 读取SHA-1

- 1. 在加密模式下,向命令号0x61写入命令号0x01
- 2. 向命令号0x3F中写入数据0x00
- 3. 从命令号0x40~0x5F中读取数据。其中前20byte为有效SHA-1数据

e.g.5 写入BlockC

- 1. 在加密模式下,向命令号0x61写入命令号0x01
- 2. 向命令号0x3F中写入数据0x03
- 3. 向命令号0x40~0x5F中写入32byte数据
- 4. 向命令号0x60中写入该block中32byte数据的CheckSum

4.4 认证码更新

顺序如下:

- 1. 往命令号0x61写入数据0x01;
- 2. 往命令号 0x40写入21字节数据(20字节随机认证码+1字节 CheckSum),其中 CheckSum为 0xff-(data1+...+data20);
- 3. 写完之后,读取0x40~0x53即为经过SHA-1运算后的认证码。

5 SH366002自定义通信协议

SH366002自定义通信用于校准、在系统更新和TWI转SWI协议等。

5.1 参数校准

上位机通过校准指令对SH366002进行电压、电流、温度以及板级偏移进行校准。

5.1.1. 电压校准

SH366002电压校准步骤: (系统无充放电动作)

- 1. 往Control()中写入0x0081, 进入校准模式;
- 2. 往Control()中写入0x0000, 读取ControlStatus值;
- 3. 若ControlStatus&0x0C00为0x0C00(即[CCA]=1, [BCA]=1),表示已经在校准模式,下一步执行步骤4,否则执行步骤7;
- 4. 往Control()中写入0x0063启动电压校准;
- 5. 往Control()中写入真实电压值,电压精度为1mV;
- 6. 往Control()中写入0x0000,读取ControlStatus值。若[CCA]=0,表示电压校准结束,执行步骤7,否则执行步骤4:
- 7. 在Control()中写入0x0080退出校准模式,延时120ms后,再进行下一步通讯。

5.1.2. 温度校准

SH366002温度校准步骤:

- 1. 往Control()中写入0x0081, 进入校准模式;
- 2. 往Control()中写入0x0000,读ControlStatus值;
- 3. 若ControlStatus&0x0C00为0x0C00(即[CCA]=1, [BCA]=1), 表示已经在校准模式,下一步执行步骤4; 否则执行步骤7;
- 4. 往Control()中写入0x0064/0x0065启动外部温度/内部温度校准;
- 5. 往Control()中写入真实温度值,温度精度为0.1K;
- 6. 往Control()中写入0x0000,读取ControlStatus值。若[CCA]=0,表示温度校准结束,执行步骤7,否则执行步骤4:
- 7. 在Control(0x00)中写入0x0080退出校准模式,延时120ms后,再进行下一步通讯。

5.1.3. 板级偏移校准

SH366002板级偏移校准步骤: (系统无充放电动作)

- 1. 往Control()中写入0x0081, 进入校准模式;
- 2. 往Control()中写入0x0000, 读取ControlStatus值;
- 3. 若ControlStatus&0x0C00为0x0C00(即[CCA]=1, [BCA]=1), 表示已经在校准模式,下一步执行步骤4; 否则执行步骤6;
- 4. 往Control()中写入0x0061启动板级偏移校准;
- 5. 往Control()中写入0x0000,读取ControlStatus值;若[**BCA**]=0,表示板级偏移校准结束,执行步骤6,否则执行步骤4:
- 6. 往Control()中写入0x0080退出校准模式, 延时120ms后, 再进行下一步通讯。

5.1.4. 电流校准

SH366002电流校准步骤: (推荐用1000mA负载电流做校准)

- 1. 往Control()中写入0x0081, 进入校准模式;
- 2. 往Control()中写入0x0000,读取ControlStatus值;
- 3. 若ControlStatus&0x0C00为0x0C00(即[CCA]=1, [BCA]=1), 表示已经在校准模式,下一步执行步骤4; 否则执行步骤7;
- 4. 往Control()中写入0x0062启动电流校准;
- 5. 往Control()中写入真实负载电流值,电流精度为1mA;
- 6. 往Control()中写入0x0000,读取ControlStatus值;若[CCA]=0,表示电流校准结束,执行步骤7,否则执行步骤4:
- 7. 往Control()中写入0x0080退出校准模式。

电流校准和板级偏移校准配合完成电流及电量精度的校准,延时120ms后,再进行下一步通讯。

5.2 TWI协议转SWI协议

TWI切换至SWI协议流程如下:

- 1. 上位机按照标准通信协议, 往Control()写0x0F0F, 进入烧写SWI模式;
- 2. 通信命令采用命令字0FFH,以区别标准通信协议(如下图);

s	Battery Address 01010101	0	Α	FFH	Α	0x54	Α	0x6F	Α	0x48	Α	0x44	Α	0x51	А	Р]

3. 往Control()中写入0x00C0,读取ControlStatus值,如是0x6A59表示转换成功,否则持续执行步骤3。

5.3 Fusion Gauge电池模型写入

相关子类号为0x7b, 0x7c, 0x7d, 0x7e,0x7f.相关数据为*.afi文件末尾的AlgorithmData,其中0x7b~0x7e子类分别有96个byte, 0x7f有30个byte。

以上子类写入协议与普通的DF子类写入协议相同。

在量产写入AFI完毕后,可立即发送Control指令"0x55ff",此命令可令下位机立即更新写入参数至Flash中,等待1s后再进行其他操作。若不发送此指令,建议等待3s以上令SH366002更新Flash。

6 SH366002通信时序

6.1 硬件时序

6.1.1. TWI时序

Symbol	Parameters	Min.	Тур.	Max.	Unit	Conditions		
f_{SMB}	TWI通讯频率	10	-	200	kHz			
ISMB	TVVIJI 以例外	10	-	400	KI IZ			
t _{BUF}	停止和起始间总线空闲时间	4.7	-	-	μs			
BUF	[7] 工作应知问心以上的时间	1.3	-	-	μδ			
t_{LOW}	时钟低电平时间	4.7	-	-	μs			
LOW	HI WHE I HI HI	1.3	-	-	μδ			
t _{HIGH}	时钟高电平时间	4.0	-	50	110			
ЧНІGН	17 环间电 17 17	0.6	-	50	μs			
4	数据保持时间	300	-	-			no	
t _{HD: DAT}	数据 体付 凹 回	0	-	-	ns	NZ		
4	数据建立时间	250	-	-	ns	通过 PackConfiguration 的 [NCSMB],选择 TWI 工作频率,		
t _{su: dat}	数	100	-	-		详见 SH366002 SBS Solution 用		
4	起始保持时间	4.0	-	-		- <i>户指南</i> 。		
t _{HD: STA}	地 好	0.6	-	-	μs			
	垃圾 净之时间	4.7	-	-				
t _{su: sta}	起始建立时间	0.6			μs			
	停止建立时间	4.0	-	-				
t _{su: sto}	停止 建立时间	0.6	-	-	μs			
4	时钟/数据上升时间	-	-	1000	no]		
t _R	四 777 双 4石 上 丌 四 四			300	ns			
t _F	时钟/数据下降时间	-	-	300	ns]		
t _{TIMEOUT}	时钟低电平超时时间	-	25	-	ms			

表4. TWI时序

6.1.2. SWI时序

参数	符号	最小值	典型值	最大值	单位	条件
Cycle time, host to SH366002	t _(CYCH)	190	-	-	μs	2011
Cycle time, SH366002 to host	t _(CYCD)	190	-	250	μs	
Host sends 1 to SH366002	t _(HW1)	0.5	-	50	μs	
SH366002 sends 1 to host	t _(DW1)	32	-	50	μs	
Host sends 0 to SH366002	t _(HW0)	86	-	145	μs	
SH366002 sends 0 to host	t _(DW0)	80	-	145	μs	
Response time, SH366002 to host	t _(RSPS)	190	-	950	μs	
Break time	t _(B)	190	-	-	μs	
Break recovery time	t _(BR)	40	-	-	μs	
SWI line rising time to logic 1 (1.2V)	t _(RISE)	-	-	950	ns	

表5. SWI时序

6.2 软件时序

各命令之间时间间隔需大于1ms,写命令0x60之后需保证120ms以上。