Esocosi Analysis

- D Rounding Off Eswass
 - L→ 24.564986 → 24.5650
- Absolute Exurasi

 La Différence between toute value and approximate value
 - A Relative Frozon
 Li Ratio of absolute error and true error value
- # Relative Percentage Esonar La Relative Esonar × 100
- 9. Write down the approximate representation of 2
 correct to 4th significant significa figure and then find
- Dabsolute evico @ Relative evicor @Relative y. eviror

 Approximate value: 0.6667
 - Absolute evoror = True value Approximate value = |2 -0.6667| = +3.3333333333 × 10⁻⁵
 - Relative Footor = Absolute Footor = +5×10-5
 Tome Value

Relative Y Equar = 05 × 105 × 100 = 05 × 105 = 0.005

9. Write down the approx value of MA and find the (1) absolute evoror (11) relative evoror (11) sielative /, evoror -> Apporoximate. value = -1.83 - 0.7854 Absolute evour = -1.83660255x10-6 = 1.83660255×16-6 Relative exerci = + 2.338434995 x10-6 Relative 1. eror = + 2.338434995 x 10-4

9				
7				
	Method of Bisa	continuous		
2			in [a,b] such t	
			one of the most	s will lie between
7	a an) b		
7 0	End the	Luca De la di	the egn x3-3x	+1.06 = 0 by
1	f(x) = x3-3x		o 3 decimalpla	
1	f(0) = 1.06			
1	f(1) = -0.9			
	f(2) = 3.06			
			wo of the root	3 lie between
		d x = (1,2)		
3	For 31 = (0	,1)		
	an (+ve)		$\alpha_{n+1} = \alpha_n + bn$	P(2n1)
	0	bn(Ave)	0-5	-0.315
	0	0.5	0.25	0.325
	00.25	6.5	0.375	-cb.437 - 0.0122
	0.25	0.375	0.3125	6.1530
3	0.3125	0.375	0.34375	0.069
=	75848.0	0.375	0.359375	0.029
	0.359	0375	0.367	0.008
	0.367	6.375	6.371	_0.002
	0.367	0.371	0.369	6.663
	0.369	0.371	0.370	0.000ê 3

an (ave)	bn (-ve)	Mnt1 = antbn	f(2n+1)
0.370	6.371	6.3705	- 0.600 G
0.370	0.3705	6.37025	- 0.000006
0.37025	0.3705	6.370375	-0.0003
6.37025	0.376375	6.376312	

Heno, the value of scoot is 0.3703

(@)

Q.	Solve the equa	thon 23-	9x+1=0 which	is lying between
			significant figure	
_ >	f(a) = 23-9x	+1		
	an (ave)	ba (+ve)	1. Anti= antbn	A(ann)
	2	3	1.5	-9.125
	1.5	3	2-25	-7-8593
	2.25	3	2.625	-4.5371
	2-625	3	2-8125	-2-665185547
	2-8125	3	2.90625	- 0.6092
	2.90675	Circle Co	2.983125	B.175922
	2-90625	2.953125	2.92968	S 635×10-17
	2-92968	2-953125	2-9414025	-0.02405
	29414025	2.953125	2-94726375	0.0756
	2.9414025	2.9472637	r 2.944333125	1 5750.0
	2.9414625	29443331	25 2.942867813	0.008
•	2.9414025	2.9428678	313 2.942135157	-0.0116
	2.942135157	2.9428678	313 2.942501485	
		and bearing	CALLED TO THE STATE OF	
7 39		111		

		New	on Rapson	Method		
(D)	Find to				n is between	3 and 4
					uptora 3 decima	
=		= 263-8				
	f(3)	= -1				
	f(4)) = 28				
	f'(x)	$=3x^2-8$				
	f'(3)	= 19				
	2	Nn	+(xn)	f1(xn)	hn = - f(xn)	Mnti= Mn+hn
	0	3			0.05	3.05
	1	3.05	-0.027	19.9075	0.0014	3.0514
	2	3.0514	0.000513	19.9331	-0-0000257	3.051374
	3	3.05137	4 -0.00005	19.932649	0.00000025	3.0513742
	Hence	the val	wof the:	scoot is 3.0'	51	
9.	Find to	re positi	re swot of	$x^2 + 2x - 2$	= 0 by New	ton Rapson
	Melho	2 correct	· uplo 2 de	cima tigu	54	
\rightarrow			$(x) = x^2 + 2x$			
	f(1)=	1 1	"(x)=2x+	2		
	Hence,		churen 0 a		85-1-2	
	8 7	2(n	A(2/n)	f'(an)	h= = +1(xn) >1,	nti = Xn+hn
	0	0	-2	12	3 \	
	1	1	1	\$3	-113	2/3
	2	0.6667	-0.2221	3.3334	0.0666	6.7333
	3	0 7333	0.00432		-0.001246	
6	4	0.732054	0.000010869	3,464108	0-000003057	0732057

	Regular Falsi Method			
(H)	Regular Falsi Method			
9.	Compute the roots of egn 2n-logox-7 by Regular Falsi			
	method, which lie between 3 and 4 upto 3 decimal places			
\longleftrightarrow	n an(-ve) bn(+ve) $f(a_n)$ $f(b_n)$ $h_n = \frac{ f(a_n) b_n - a_n }{ f(a_n) + f(b_n) } $ $\frac{1}{ f(a_n) + f(b_n) }$			
	0 3 4 -1.48 0.40 0.79 3.79 0.0014			
	1 3 3-79 -1.48 0.0014 6.789 3.789 -000052			
	2 3.789 3.79 -0.00052 0.0014 0-0.00271 3.789271 -0.000000			
	3 3.789271 3.79 -0.0000014 0.0014 0.0000067 3.7892717 -			
	Hence, value of 5100 t = 3.789			
	rence, value or stool = 2.0			
A	[1 His mat of the sounding By-corn-1=0 by Rosellan			
9.	Find the scoot of the equation 3x-cocx-1=0 by Regular			
	Falsi method correct to four significant tique.			
	f(0) = -2			
	F(1) = [.000]			
	Hence scoot lies between 0 and 1			
	n au(-ve) bn(+ve) f(an) f(bn) hn= [f(an)]+ f(bn) 2n+ -un+hn f(nn+)			
	0 0 1 -2 1 70.006667 D.6667 1.6410			
	1 0 06667 -2 1.6×10-4 0.66664 0.6664 -1.23×165			
	2 0-6664 0.6667 -1.23×105 1.6×104 -2.5012×105 0.666374			

Language's Interpolation formula Ly=f(x)=(x-x,)(x-xe)(x-x3)...(x-xn) yo (xo-N)(xo-N2) (xo-Xn) + (x-x0)(x-x2)(x-x3)-...(x-xn) ay, + (N,-No) (x,-N2) (N,-Nn) (2-20)(x-x,)(x-x2)...(x-2n-1) y (2/n-20)(2n-20) ... (2n-2n-1) Q. Find the value of f(3,2) by language's Interpolation method RCM) 2 4 10 16 26 24 38 y = f(x) = (x - 81)(2-2)(x-3) - (x - 6) 2 y = f(x) = (x - 2)(x - 3)(x - 4)(x + 5)(x - 6) (1 - 6)= f(9/2) = (3.2-1)(3/2-2)(3.2-3)(3/2-4)(3.2-5)(3.2-6) (2-1)(2-2) $\rightarrow y = f(3.2) = (3.2-2)(3.2-3)(3.2-4)(3.2-5)(3.2-6)(4)$ (1-2) (1-3) (1-4) (1-5) (1-6) + (3.2-1) (3.2-3) (3.2-4) (3.2-5) (3.2-6) (10) (2-1)(2-3)(2-4)(2-5)(2-6)+ (3.2-1)(3.2-2)(3.2-3)(3.2-4)(3.2-5)(38) (6-1) (6-2) (5-3) (6-4) (6-5) = 0.032256 + -0.0002 +17.7408 +4.4352 - 0.0006 +0.240768 = 20.527104

Hermite Interpolation formula

H(x;)=
$$f(x;)$$

H'(x;)= $f'(x_i)$, (i=0,1,2,...,n)

H(x)= $\sum_{j=0}^{n} A_i(x) f(x_i) + \sum_{j=0}^{n} B_i(x) f'(a_i)$
 $A_i(x) = [1-2(x-\alpha_i)]_i'(\alpha_i) [\lambda_i^2(a_i)]_i'(a_i)$
 $A_i(x) = (x-\alpha_i) [\lambda_i^2(x_i)]_i'(a_i)$
 $A_i(x) = (x-\alpha_i) [\lambda_i^2(x_i)]_i'(a_i)$
 $A_i(x) = (x-\alpha_i) [\lambda_i^2(x_i)]_i'(a_i)$
 $A_i(x) = (x-\alpha_i) [\lambda_i^2(x_i)]_i'(a_i-x_i) ... (x-\alpha_i) (x-\alpha_i) ... (x-\alpha_i)$
 $A_i(x) = (x-\alpha_i) [x-\alpha_i) (x-\alpha_i) ... (x_i-\alpha_i) (x_i-\alpha_i) ... (x_i-\alpha_i)$

$$\frac{1}{(x_0)} \frac{1}{10 = (x - x_1)(x - x_2)} = \frac{(x - 0)(x - 1)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 1)}{(-1 - 0)(-1 - 1)} = \frac{x^2 - x}{2}$$

$$l_0' = \frac{2x-1}{2} = 1 \cdot l_0'(-1) = \frac{-3}{2}$$

$$A_{6}(-1) = [1-2(20.5+1).(-3)][0.5^{2}-0.5]^{2}$$

$$= [1+4.5][6.-0.25]^{2}$$

$$= (5.5)(1) = 11$$

$$= (64) = 128$$

$$A_{1}(x) = *0$$

$$A_{2}(x) = \frac{3}{2}$$

$$A_{0}(x) = \frac{1}{4}(3x^{5} - 2x^{4} - 5x^{3} + 4x^{2})$$

$$A_{1}(x) = x^{4} - 2x^{2} + 1$$

$$A_{2}(x) = \frac{1}{4}(-3x^{5} - 2x^{4} + 5x^{3} + 4x^{2})$$

$$B_{0}(x) = \frac{1}{4}(x^{5} - x^{4} - x^{5} + x^{2})$$

$$B_{1}(x) = x^{5} - 2x^{3} + x$$

$$B_{2}(x) = \frac{1}{4}(x^{5} + x^{4} - x^{5} - x^{2})$$

$$Hence, H(x) = A_{0}f(x) + A_{1}f(x) + A_{2}f(x) + B_{2}f'(x)$$

$$= 2x^{4} - x^{2} + x + 1$$

$$A_{1} = x^{2} - 0.7, H(0.5) = -33/64$$

$$A_{2} = 0.7, H(0.5) = -33/64$$

Numerical Differentiation Newton Forward and Bacheward Formulae 1 Ly Newton Forward Farmulae

$$f''(x_0) = \frac{1}{h^3} \left[\Delta^3 f(x_0) - \frac{3}{2} \delta^4 f(x_0) + \frac{7}{4} \Delta^5 f(x_0) + \dots \right]$$
where $h \rightarrow \text{interval}$

Newton Badward formulae

$$\frac{f'(x_n) = 1}{h^2} \left[\Delta f(x_{n-1}) + \frac{1}{2} \Delta^2 f(x_{n-2}) + \frac{1}{3} \Delta^3 f(x_{n-3}) + \cdots \right]$$

$$f''(\alpha_{n}) = \frac{1}{h^{2}} \left[\Delta^{2} f(\alpha_{n-2}) + \Delta^{3} f(\alpha_{n-3}) + \frac{11}{12} \Delta^{4} f(\alpha_{n-1}) - \frac{1}{5} \Delta^{5} f(\alpha_{n-1}) \right]$$

$$f''(x_n) = 1 \left[\Delta^3 f(x_{n-3}) + \frac{3}{2} \Delta^4 f(x_{n-4}) + \frac{7}{4} \Delta^5 f(x_{n-5}) + \dots \right]$$

Find dy and dy cut x=1 and 6 for the hinchon y= f(n)

7.3891

For 26 = 1 +(a)= 1 [0.6027-1(0.2315)+1(0.032)-1×(0.003)+10.0058] = 0.548035 $f''(x) = \frac{1}{12} \left[0.1315 - 0.0821 + 11 (0.0031) - \frac{5}{6} (0.0058) \right]$ = \$ 0.0974083 For x=6 f'(a) = 1 [= 1 (0.0441) - 4 1 (0.0089) + 1 (0.0058) f"(2)= 1 [0.2429 - 0.0441 +11 (0.0089) - 5 (0.0018)] = 0.202125

Grauss Elimination Method

$$\frac{1}{\alpha_{22} - \alpha_{12} \alpha_{21}} \alpha_{2} + (\alpha_{23} - \alpha_{13} \alpha_{21}) \alpha_{3} = (b_{2} - b_{1} \alpha_{21}) \alpha_{11}$$

$$\xrightarrow{\left(a_{32} - a_{12} a_{31} \right)} x_2 + \left(\underbrace{a_{33} - a_{13} a_{31}}_{a_{11}} \right) x_3 = \left(\underbrace{b_3 - b_1 a_{31}}_{a_{11}} \right)$$

$$\chi_1 + 2\alpha_2 + 3\chi_3 = 6$$

N2 = -20-32 = 1.61

 $\chi_3 = \frac{5}{18} = 0.278$

$$a_{21} = 1$$
 $|a_{22} = 2$ $|a_{23} = 3$ $|b_{2} = 6$

$$a_{31} = 3 | a_{32} = 1 | a_{33} = 2 | b_3 = 8$$

$$\left(2-\frac{(3)(1)}{2}\right)\chi_{2}+\left(3-\frac{(3)(1)}{2}\right)\chi_{3}=\left(6-\frac{9(1)}{2}\right)$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$(1-3(3))$$
 $\lambda_2 + (2-(1)(3))$ $\lambda_3 = 8-9(3)$

$$\frac{2}{3} - \frac{1}{7} \times \frac{2}{2} + \frac{1}{7} = -5.5 = 3 + \frac{2}{7} \times \frac{2}{7} - \frac{2}{7} = -5.5 = 3 + \frac{2}{7} \times \frac{2}{7} = -11 = -11$$

Grauss - Siedal Method

$$x_1 + x_2 + 4x_3 = 9$$
 (1)
 $8x_1 - 3x_2 + 2x_3 = 20$ (1)
 $4x_1 + 11x_2 - x_3 = 33$ (1)

$$x_1 = 20 + 3x_2 - 2x_3$$
 — (1)

$$\chi_2 = \frac{33 - 47 + 23}{11}$$

$$\chi_3 = \frac{9 - \chi_1 - \chi_2}{4}$$

Forom (N), putting 72= x3=0, x1=2.5

Putting x, = 2.5 and x3 = 0, we get x2 = 2.0909

Putting x, = 2.5 and x2 = 2.0909, we get x3 = 1.01023

Finally pulling

Now, putting 2 = 2.0909 and 23 = 1.1023 in (1), x,= 3.0085

Putting X31 = 3.0085 and X2 = 2001.1023 in @, we get 72 = 2.0002

Putting x1 = 2.0062 and x1 = 3.0085, we get x3=0.09963

Now, n2 = 2.0062 and x3 = 0.9963 in (1), x1= 3.0632 ≈ 3.00

x, = 3.0032 and x3 = 0.9963 in Q, x2 = 1.9985 ≈ 2.00

7, = 3.0032 and 2,= \$1.9985 in (1), x3 = 0.0963 x 8000

Hence, 2, -> 3.00

x2 →2.00

93 -> 889 1.00