

پروژه درس سیستم های دیجیتال 2 مدرس: دکتر رسول دلیر روی فرد مصطفی لطیفیان - 40122193

پروژه شماره 5 بازی حافظه دو نفره برای محاسبه راحت تر زمان 200 میلی ثانیه از فرکانس 1.024 MHz استفاده می کنیم.

$$f_{timer} = \frac{fcpu}{prescaler} = \frac{1.024 \; Mhz}{1024} = 1 Khz \; , \\ T_{timer} = 1 ms \; , \\ counter = \frac{200 ms}{1 ms} = 200 \; , \\ 256 - 200 = 56 \; , \\ 256$$

ابتدا آدرس های مربوطه و تایمر و قفه ها را ست می کنیم.

```
.include "m64def.inc"

.org 0x0000
jmp main

.ORG 0X0002
JMP EXT_INT0_ISR

.ORG 0X0004
JMP EXT_INT1_ISR

.ORG 0X0014
JMP T2_OV_ISR

.org 0x0050
```

در مرحله بعدی در برنامه اصلی آدرس پشته هارا ست می کنیم.

```
main:
LDI R20 , LOW(RAMEND)
OUT SPL , R20
LDI R20 , HIGH(RAMEND)
OUT SPH , R20 ; set stack pointer
```

حال پذیرش وقفه های 0 و 1 را فعال و همچنین برای آن ها لبه پایین رونده را ست میکنیم.

حال برای تایمر 2 مقادیر مورد نیاز را قرار میدهیم.

در قسمت بعدی پورت های A و C را به عنوان ورودی و پورت E را به عنوان خروجی تعریف می کنیم، همچنین برای خاموش ماندن ال ای دی های سفید در ابتدای بازی که به پورت E متصل هستند تمام پورت E را با توجه به طراحی انجام شده در پروتئوس برابر یک قرار میدهیم.

```
LDI R20 , 0X00
OUT DDRA , R20 ;Set input Port A
OUT DDRC , R20 ;Set input Port C
LDI R20 , 0X0FF
OUT DDRE , R20 ;Set output Port E
OUT PORTE , R20 ;Write 0xFF in Port E
```

بیت های 0 و 1 پورت D را برابر یک قرار میدهیم تا ورودی شوند که این کار به علت این است که وقفه های صفر و یک پذیرفته شوند، همچنین بیت های 2 و 3 و 4 پورت D را خروجی میکنیم و به علت اتصال ال ای دی های وضعیت در آن یک را قرار میدهیم.

```
CBI DDRD
CBI DDRD
                            ;Set input bit 0,1 Port D
SBI DDRD
SBI DDRD
          , 3
SBI DDRD
                            ;Set output bit 2,3,4 Port D
SBI PORTD , 0
SBI PORTD , 1
SBI PORTD , 2
SBI PORTD , 3
SBI PORTD , 4
                         ;Write 1 in Port D
         , 0X0FF
LDI R20
OUT PORTC , R20
                                   ;Write 1 in Port C
```

در R16 عدد 5 را قرار میدهیم و این رجیستر برای کاهش زمان برای پس از پیروزی است. رجیستر R17 و R27 شرط شروع و پایان وقفه ها را انجام میدهند. R18 نیز در وقفه یک قرار دارد، R21 برای شمارش هر 200ms است. R22 برای شمارش تعداد پیروزی های بازیکن B است و R23 برای تعداد حرکت های بازیکن B است و R30 برای ذخیره محتوای پورت C در نظر گرفته شده است و در بیت I را فعال میکنیم.

```
LDI R16
                  ;Set for wining time
LDI R17
                     ;Set for intrupt condition
       , 0X0FF
CLR R27
                                ;Set for intrupt condition
LDI R18
                  ;Set for intrupt1
CLR R21
                  ;Timer counter 200ms
CLR R22
                                ;win counter
CLR R23
LDI R30 ,0X0FF
!<del>-----</del>
```

حال به سراغ حلقه اصلی بازی می رویم، در ابتدا شرط آمدن وقفه صفر را بررسی می کنیم و تا هنگامی که وقفه صفر فشرده نشده باشد ورودی پذیرفته نمی شود بعد از آمدن وقفه صفر به سراغ دریافت شماره ال ای دی های صفر تا چهار توسط بازیکن A می رویم و پس از آمدن وقفه صفر برای بار دوم نوبت بازیکن A تمام می شود و پردازنده منتظر وقفه O می شود تا بازیکن B حدس زدن خود را همانند بازیکن A شروع کند. همچنین R19 به عنوان نگه دارنده الگوی بازیکن A است.

```
GAME:
                CALL SHART
                              ;IntO check for player B start
                CALL DARYAFT
                CALL DARYAFT
                CALL DARYAFT
                CALL DARYAFT ;Get input from Player A
                CALL SHART
                            ;IntO check for player A end
                            ,R30
                MOV
                      R19
                                         ;Hold Player A inputs
                LDI
                      R30
                            ,0X0FF
                MOV
                      R24
                            ,R23
                                     ;Counting Player A inputs
                CLR
                      R23
```

برنامه شرط به صورت زیر است و بعد از هر بار پذیرش وقفه صفرم R17 مکمل می شود و شرط را اجرا می کند.

```
EXT_INTO_ISR:

COM R17
RETI

SHART:

CP R17 , R27
BRNE SHART
COM R27
RET
```

برنامه دریافت نیز به این صورت است که در R18 عدد یک ذخیره شده است و پس از آمدن هربار وقفه صفر می شود و به برنامه دریافت می رود و تا زدن بار چهارم وقفه یک اعداد را از پورت A دریافت می کند و پس از دریافت هر عدد آن را با عدد ال ای دی متناظر چک می کند و در صورت برابر بودن ال ای دی مدنظر را روشن می کند و در صورت نابرابری یک عدد از تعداد الگو ها کم می کنیم.

نحوه روشن کردن ال ای دی ها به این صورت است که بیت متناظر را برابر صفر قرار میدهیم و پس از 1 ثانیه آن را یک میکنیم تا ال ای دی مورد نظر خاموش شود و همچنین عدد را در R30 ذخیره میکنیم.

```
EXT_INT1_ISR:

CLR R18

RETI
```

```
DARYAFT:
      SHART1:
                    , 51
                             ;Counting for 10s
          CPI
               R21
          BRCC
               END
          CPI
               R18
          BRNE
               SHART1
          INC
               R23
          CPI
               R23 , 5
          BRCC
               BAZGASHT
          IN
               R20 , PINA
                           ;Get number for turn on LED
          CPI
               R20
                   , 1
          BREQ
               LED1
          CPI
               R20
          BREO
               LED2
               R20 , 3
          CPI
              LED3
          BREQ
               R20 , 4
          CPI
          BREQ LED4
          DEC R23
          JMP BAZGASHT
BAZGASHT:
          LDI R18
           RETI
LED1:
           CBI PORTE , 0
                    , PINC
           IN R30
           ANDI R30
                    ,0X0FF
           CALL DELAY1s
          SBI PORTE , 0
           JMP BAZGASHT
LED2:
           CBI PORTE
                    , PINC
           IN R30
                    ,0X0FF
           ANDI R30
           CALL DELAY1s
```

```
SBI PORTE , 1
            JMP BAZGASHT
LED3:
            CBI PORTE , 2
                       , PINC
            IN R30
                       ,0X0FF
            ANDI R30
            CALL DELAY1s
            SBI PORTE , 2
            JMP BAZGASHT
LED4:
            CBI PORTE , 3
                       , PINC
            IN R30
            ANDI R30
                       ,0X0FF
            CALL DELAY1s
            SBI PORTE , 3
```

پس از اتمام نوبت بازیکن A بعد از آمدن وقفه صفرم نوبت بازیکن B میشود و چراغ زرد روشن میشود. نحوه وارد کردن الگو توسط بازیکن B درست همانند بازیکن A میباشد. R29 برای نگه داری ورودی بازیکن B و R25 برای شمارش تعداد الگوی وارد شده توسط بازیکن B است.

```
CALL SHART
     PORTD ,4
                     ;Turn on Yellow LED
CBI
CLR
      R21
                     ;Set counter again
LDI
      R20 ,56
     TCNT2 ,R20
OUT
CALL DARYAFT
CALL DARYAFT
CALL DARYAFT
                    ;Get input from player B
CALL DARYAFT
CPI R21 , 51
                    ;Counting 10s
BRCC END
                     ;End game after 10s
CALL SHART
                     ;Turn off Yellow LED B
SBI
     PORTD , 4
MOV
           , R30
                     ;Hold player B inputs
      R29
           ,0X0FF
                     ;Reset R30 for next round
LDI
     R30
MOV
     R25
           , R23
                     ;Counting Player B inputs
CLR
     R23
```

پس از اتمام نوبت بازیکن B به سراغ چک کردن درستی جواب میرویم، ابتدا تعداد الگو ها را محاسبه می کنیم و در صورت برابر بودن الگو ها را با یکدیگر مقایسه می کنیم.

در صورت اشتباه بودن پاسخ بازیکن B چراغ قرمز به مدت ثانیه و در صورت درست بودن پاسخ چراغ سبز به مدت 5 ثانیه روشن می شود و R16 را یک عدد کاهش می دهیم تا از زمان نشان دادن چراغ سفید 200msکم شود و پس از اتمام هریک از آن ها بازی به حالت اول بازمی گردد.

```
R25 , R24
                           ;First check
           BRNE GHERMEZ
                           ;Second check
           CP
                R19 , R29
           BREQ SABZ
GHERMEZ:
          CBI PORTD , 2
                                   ;Torn on RED LED
          CALL DELAY3s
                                    ;Turn off RED LED
          SBI PORTD , 2
          LDI R16
                  , 1
           LDI R18
                            ;Ready for intrupt1
          CLR R23
                  , 0X0FF
          LDI R17
          CLR R27
                            ;Ready for next round
          JMP GAME
```

```
SABZ:
        CBI PORTD ,3
                             ;Turn on GREEN LED
        CALL DELAY5s
                                    ;Turn off GREEN LED
        SBI PORTD ,3
                              ;Counting number of player B wins
        STS 0X6400 ,R22
        DEC R16
                                      ;For decrement 1s
        CPI R16
                   ,1
        BREQ END
                   ,0X0FF
        LDI R17
        CLR
             R27
        LDI R18
                  ,1
        CLR R23
        SBI PORTD ,4
        JMP GAME
```

برنامه دیلی یا تاخیر برای چراغ سبز و قرمز نیز به صورتی نوشته شده است که تا هنگامی که میزان زمان خواسته شده سپری نشده باشد از حلقه خواسته شده خارج نشود.

```
DELAY1s: SEI
                  R21
          CLR
                  R20
          LDI
                           , 56
                          , R20
          OUT
                  TCNT2
                           , R16
CPAGAIN1: CP
                  R21
          BRNE
                  CPAGAIN1
                 CLI
          RET
DELAY3s:
          CLR
                  R21
          LDI
                  R20
                           , 56
                           , R20
          OUT
                  TCNT2
                          , 15
CPAGAIN3: CPI
                  R21
                  CPAGAIN3
          BRNE
          RET
DELAY5s:
          CLR
                  R21
                          , 56
          LDI
                  R20
                           , R20
          OUT
                  TCNT2
CPAGAIN5: CPI
                  R21
          BRNE
                  CPAGAIN5
          RET
```

در صورت اتمام زمان نیز بازی به پایان خواهد رسید و تمام مقادیر اصلی دوباره مقدار دهی میشوند.

همچنین پروژه پیاده سازی شده در پروتئوس نیز به شکل زیر است.

توضیحات بیشتر درمورد نحوه کارکرد این پروژه در ویدیو ذکر شده است.