I. INTRODUCTION

FIG. 1: Test

FIG. 2: Test

FIG. 3: Test

FIG. 6: Test

FIG. 4: Test

FIG. 5: Test

FIG. 7: Test

FIG. 8: Test

I

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

	Counter		Words	
	1 Col	2 Col	1 Col	2 Col
Words			134	
Figure	5	4	200	400
Table	0	0	13	26
Table Row	0	0	5	13
Eq Row	0	0	7	13
Pages	3		3	
Total			2734	

¹A. G. Peeters, F. Rath, R. Buchholz, Y. Camenen, J. Candy, F. J. Casson, S. R. Grosshauser, W. A. Hornsby, D. Strintzi, and A. Weikl, "Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold," Phys. Plasmas 23, 082517 (2016).

²F. Rath, A. G. Peeters, R. Buchholz, S. R. Grosshauser, P. Migliano, A. Weikl, and D. Strintzi, "Comparison of gradient and flux driven gyrokinetic turbulent transport," Phys. Plasmas 23, 052309 (2016).

³A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland, "Comparisons and physics basis of tokamak

transport models and turbulence simulations," Phys. of Plasmas 7,969-983 (2000).

⁴F. Rath, A. G. Peeters, and A. Weikl, "Analysis of zonal flow pattern formation and the modification of staircase states by electron dynamics in gyrokinetic near marginal turbulence," Phys. of Plasmas 28, 072305 (2021).

⁵A. Weikl, A. G. Peeters, F. Rath, S. R. Grosshauser, R. Buchholz, W. A. Hornsby, F. Seiferling, and D. Strintzi, "Ion temperature gradient turbulence close to the finite heat flux threshold," Phys. Plasmas **24**, 102317 (2017).

⁶R. E. Waltz, G. D. Kerbel, J. Milovich, and G. W. Hammett, "Advances in the simulation of toroidal gyro-landau fluid model turbulence," Physics of Plasmas **2**, 2408–2416 (1995).

⁷X. Garbet, Y. Idomura, L. Villard, and T. Watanabe, "Gyrokinetic simulations of turbulent transport," Nuclear Fusion **50** (2010).

⁸A. Hasegawa, C. G. Maclennan, and Y. Kodama, Phys. Fluids 22, 2122 (1979).

 R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994).
P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).

¹¹A. G. Peeters, Y. Camenen, F. J. Casson, W. A. Hornsby, A. P. Snodin, D. Strintzi, and G. Szepesi, Comput. Phys. Commun. 180, 2650 (2009).

¹²J. Candy and R. E. Waltz, Phys. Plasmas **13**, 032310 (2006).

¹³T.-H. Watanabe and H. Sugama, Nucl. Fusion **46**, 24 (2006).

¹⁴T. Tatsuno, W. Dorland, A. A. Schekochihin, G. G. Plunk, M. Barnes, S. C. Cowley, and G. G. Howes, Phys. Rev. Lett. **103**, 015003 (2009).

¹⁵M. Barnes, F. I. Parra, and A. A. Schekochihin, Phys. Rev. Lett. **107**, 115003 (2011).

¹⁶J. Candy and R. E. Waltz, J. Comput. Phys. **186**, 545 (2003).

¹⁷A. I. Smolyakov, P. H. Diamond, and A. I. Shevchenko, Phys. Plasmas 7, 1349 (2000)

¹⁸L. Chen, Z. Lin, and R. White, Phys. Plasmas **7**, 3129 (2000).

¹⁹B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85, 5336 (2000)

²⁰G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, P. Ghendrih, A. Strugarek, S. Ku, and C. S. Chang, Phys. Rev. E 82, 025401 (2010).