

The Delphion Integrated View

Get Now: PDF More choices	<u>.</u>	Tools:	Add to Work File: Create new World
View: Expand Details INPADOC	Jump to: Top	Go to: Derwent	⊠ <u>Ema</u>

♥Title: WO03097824A1: CRYSTAL OF GLUCOKINASE PROTEIN, AND METHDRUG DESIGN USING THE CRYSTAL[French]

PDerwent Title: Crystal of glucokinase protein with three-dimensional structure and coordinates available for drug design, with screened activators or

inhibitors applicable in treating e.g. diabetes, hypoglycemia, obesity and

ischemic diseases [Derwent Record]

PCountry: WO World Intellectual Property Organization (WIPO)

% Kind: A1 Publ.of the Int.Appl. with Int.search report i

PInventor: KAMATA, Kenji; c/o Tsukuba Research Institute, Banyu Pharmaceutical

Co., Ltd., Okubo 3, Tsukuba-shi, Ibaraki 300-2611, Japan NAGATA, Yasufumi; c/o Tsukuba Research Institute. Banyu

Pharmaceutical Co., Ltd., Okubo 3, Tsukuba-shi, Ibaraki 300-2611, Japan

IWAMA, Toshiharu; c/o Tsukuba Research Institute, Banyu

Pharmaceutical Co., Ltd., Okubo 3, Tsukuba-shi, Ibaraki 300-2611, Japan

PAssignee: BANYU PHARMACEUTICAL CO., LTD., 2-3, Nihombashi-Honcho 2-

chome, Chuo-ku, Tokyo 103-8416, Japan

News, Profiles, Stocks and More about this company

Published / Filed: 2003-11-27 / 2003-05-15

PApplication WO2003JP0006054

Number:

PIPC Code: C12N 9/12; C12Q 1/48;

PECLA Code: C12N9/12B1;

Priority Number: 2002-05-16 JP2002000142232

PAbstract: Glucokinase is crystallized, the three-dimensional structure thereof

is analyzed, and then a compound to be bonded to glucokinase is designed on the basis of the coordinate for the resulting three-dimensional structure. Specifically, glucokinase is freed of a part of amino acid residues being on the N-terminal side thereof, to thereby crystallize it, and the three-dimensional structure of the resulting crystal is elucidated through the X-ray crystallographic analysis

thereof. [French] [Japanese]

PAttorney, Agent KOBAYASHI, Hiroshi; Fukuoka Bldg. 9th Fl., 8-7, Yaesu 2-chome,

or Firm: Chuo-ku, Tokyo 104-0028 Japan

PINPADOC Show legal status actions

Legal Status:

PDesignated AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU Country: CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS

JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX

MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW, European patent: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR, OAPI patent: BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG, ARIPO patent: GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW, Eurasian patent: AM AZ BY KG KZ MD RU TJ TM

8 Family: None

8 Other Abstract None

© 1997-2004 Thomson

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contact Us | Help

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年11月27日(27.11.2003)

PCT

(10) 国際公開番号 WO 03/097824 A1

(51) 国際特許分類?:

(21) 国際出願番号:

C12N 9/12, C12Q 1/48 PCT/JP03/06054

(22) 国際出願日:

2003 年5 月15 日 (15.05.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-142232 2002年5月16日(16.05.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 萬有製薬 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都 中央区 日本橋本町 2 丁目 2番3号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 鎌田 健司 (KA-MATA,Kenji) [JP/JP]; 〒300-2611 茨城県 つくば市 大 久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 長田 安史 (NAGATA, Yasufumi) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 岩間 年治 (IWAMA, Toshiharu) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP).

(74) 代理人: 小林 浩 ,外(KOBAYASHI, Hiroshi et al.); 〒 104-0028 東京都 中央区 八重洲2丁目8番7号 福岡 ビル9階 Tokyo (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CRYSTAL OF GLUCOKINASE PROTEIN, AND METHOD FOR DRUG DESIGN USING THE CRYSTAL

(54) 発明の名称: グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方法

(57) Abstract: Glucokinase is crystallized, the three-dimensional structure thereof is analyzed, and then a compound to be bonded to glucokinase is designed on the basis of the coordinate for the resulting three-dimensional structure. Specifically, glucokinase is freed of a part of amino acid residues being on the N-terminal side thereof, to thereby crystallize it, and the three-dimensional structure of the resulting crystal is elucidated through the X-ray crystallographic analysis thereof.

(57) 要約: 本発明は、グルコキナーゼを結晶化し、その三次元構造を解析し、得られる三次元構造座標に基づいて グルコキナーゼに結合する化合物を設計する。 具体的には、グルコキナーゼのN末端側のアミノ酸残基の一部 を欠失させることによってグルコキナーゼを結晶化し、この結晶についてX線結晶構造解析によってその三次元構 造を解明することによって達成される。

- 1 -

明細書

グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方 法

5 技術分野

本発明は、新規なグルコキナーゼタンパク質(以下、「GKタンパク質」と もいう)の結晶、その結晶を用いて得られる三次元構造座標を用いたドラッグ デザイン方法などに関する。

10 背景技術

15

20

グルコキナーゼ(ATP:D-hexose 6-phosphotran sferaze, EC2. 7. 1. 1)は、哺乳類の4種のヘキソキナーゼアイソザイムのうちの一つ(ヘキソキナーゼ IV)である。これらのアイソザイムは同じ反応を触媒するが、グルコースに対する Km 値に差がある。すなわち、ヘキソキナーゼ I、II、IIIの Km 値は $10^{-6}\sim10^{-4}M$ であるのに対し、グルコキナーゼともよばれるヘキソキナーゼ IVのグルコースに対する Km 値はずっと大きく、約 $10^{-2}M$ である。ヘキソキナーゼは、解糖系の初期段階に関与する酵素であり、グルコースからグルコース 6 リン酸への反応を触媒する。

グルコキナーゼは、主に肝臓と膵臓ベータ細胞に発現が限局しており、それらの細胞におけるグルコース代謝の律速段階を制御することで、体全体の糖代謝に重要な役割を果たしている。肝臓と膵臓ベータ細胞のグルコキナーゼは、それぞれスプライシングの違いによりN末端の15アミノ酸の配列が異なっているが、酵素学的性質は同一である。

10年ほど前から、グルコキナーゼは膵臓ベータ細胞や肝臓のグルコースセンサーとして働くという仮説が提唱されている(Garfinkel D, et al: Am J Physiol 247 (3Pt2):R527-536, 1984)。最近のグルコキナーゼ遺伝子操作マウスの結果から、実際にグルコキナーゼは全身のグルコース恒常性に重要な役割を担うことが明らかになっている。

グルコキナーゼ遺伝子を破壊したマウスは、生後まもなく糖尿病で死亡する

(Grupe A, et al: Cell 83:69-78.1995)。一方、グルコキナーゼを過剰発現させたマウスは血糖値が低くなる(Ferre T, et al: Proc Natl Acad Sci U S A 93:7225-7230.1996)。グルコース濃度上昇によってグルコキナーゼ活性が上昇すると、膵臓ベータ細胞と肝細胞の反応は異なるが、いずれも血糖を低下させる方向に作用する。膵臓ベータ細胞は、より多くのインスリンを分泌するようになり、肝臓は糖を取り込みグリコーゲンとして貯蔵すると同時に糖放出を低下させる。

このようにグルコキナーゼ酵素活性の変動は、肝臓および膵臓ベータ細胞を介した哺乳類のグルコースホメオスタシスにおいて重要な役割を果たしている。
10 MODY2 (maturity-onset diabetes of the young) と呼ばれる若年に糖尿病を発症する症例においてグルコキナーゼ遺伝子の突然変異が発見され、グルコキナーゼ活性の低下が血糖上昇の原因となっている (Vionnet N, et al: Nature 356:721-722, 1992)。一方グルコキナーゼ活性を上昇させる突然変異をもつ家系も見つかっており、このような人たちは低血糖症状を示す (Glaser B, et al: N Engl J Med 338: 226-230. 1998)。

以上より、グルコキナーゼはヒトにおいてもグルコースセンサーとして働き、グルコース恒常性に重要な役割を果たしている。一方、多くの I I 型糖尿病患者のグルコキナーゼは変位を受けていないので、グルコキナーゼセンサーシステムを利用した血糖調節は可能と考えられる。グルコキナーゼ活性化物質には膵臓ベータ細胞のインスリン分泌促進作用と肝臓の糖取り込み亢進および糖放出抑制作用が期待できるので、 I I 型糖尿病患者の治療薬として有用と考えられる。

近年、膵臓ベータ細胞型グルコキナーゼが、ラット脳、なかでも特に摂食中 枢である視床下部腹内側核(Ventromedial hypothala mus, VMH)に限局して発現していることが明らかにされた。VMHの約 2割の神経細胞は、グルコースレスポンシブニューロンと呼ばれ、従来から体 重コントロールに重要な役割を果たすと考えられてきた。ラットの脳内へグル コースを投与すると摂食量が低下するのに対して、グルコース類縁体のグルコ

サミンの脳内投与によってグルコース代謝を抑制すると過食となる。電気生理学的実験からグルコースレスポンシブニューロンは生理的なグルコース濃度変化(5-20mM)に呼応して活性化されるがグルコサミン等でグルコース代謝を抑制すると活性抑制が認められる。VMHのグルコース濃度感知システムには膵臓ベータ細胞のインスリン分泌と同様なグルコキナーゼを介したメカニズムが想定されている。従って肝臓、膵臓ベータ細胞に加えVHMのグルコキナーゼ活性化を行う物質には血糖是正効果のみならず、多くのII型糖尿病患者で問題となっている肥満をも是正できる可能性がある。

一方、DIABETES, vol. 48, 1698-1705, September 1999 にはヘキソキナー 10 ゼ I からグルコキナーゼの立体構造を予測した旨が記載されているが、実際に 結晶化はされていないし、実用的なものではなかった。

以上より、グルコキナーゼの三次元立体構造を明らかにし、グルコキナーゼと相互作用する化合物を効率的に見いだすことを可能にすることは、例えば、糖尿病の治療剤、又は予防剤;網膜症、腎症、神経症、虚血性心疾患、動脈硬化等の糖尿病の慢性合併症の治療剤、又は予防剤;肥満の治療剤、又は予防剤の開発に大きな進展をもたらすと考えられる。

現在ではタンパク質の活性中心の解析や反応機作の予測といった作業にコンピュータを利用したCARDD (Computer Aided Rational Drug Design)が実用的なレベルで活用されるようになっている。

20 CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の 3 次元構造解析データに基づき、タンパク質の活性部位の構造が予測される。 そして、その活性部位の構造と結合し得る化合物の候補に関する情報が化合物 データベースから取得される。その後、ターゲットとなるタンパク質の活性部 位と候補化合物の 3 次元構造や物理的性質を考慮し、ターゲットとなるタンパ 25 ク質に結合しうる化合物の候補を選択する。これらの工程が、いわゆるインシリコスクリーニング工程である。

インシリコスクリーニング工程で選択された化合物が、ターゲットとなるタンパク質と結合し、その活性を変化させるかどうかは、実際の試験(ウエット実験)により調べられる。そして、実際にターゲットとなるタンパク質の活性

を変化させる化合物が医薬の有効成分となる。これにより、実験室で無数の化合物を標的タンパク質に一つ一つ作用させて相互作用を確認するという操作を行うことなく、標的タンパク質と相互作用する化合物を効率よく探し出される。インシリコスクリーニングは、ターゲットとなるタンパク質と結合する化合物の候補を大幅に絞ることができるため医薬品開発に有効な手段であるといえる。

CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の X線構造解析による3次元構造解析データが重要な情報となる。X線構造解析 による3次元構造解析には、解析試料としてターゲットとなるタンパク質の結 晶が必要である。したがってCARDDによる創薬システムに基づいてGKに 関連する創薬の開発を進めるためには、GKの結晶が必要である。しかしなが ら、前述のとおりGKは結晶化が困難で、CARDDに必要な情報を与えうる ものではなかった。

15 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、グルコキナーゼの結晶を得ること、及び、当該結晶から得られた情報に基づいてグルコキナーゼに結合する化合物を設計することを目的とする。

発明の開示

- 20 上記目的の少なくともひとつ以上は、以下の発明により解決される。
 - [1] 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
 - [2] 配列番号5に記載のアミノ酸配列からなることを特徴とする、前記 [1]に記載のタンパク質。
- [3] 配列番号 5 に記載のアミノ酸配列又はそのアミノ酸配列と実質的に 25 同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - [4] 前記タンパク質がグルコキナーゼタンパク質である、前記[3]に記載の結晶。
 - [5] 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[3]に記載の結晶。

[6] 格子定数が、下記式(1)~(4)

a=b=79.9±4オングストローム … (1)

c=322. 2±15オングストローム … (2)

 $\alpha = \beta = 90^{\circ}$... (3)

5 $\gamma = 120^{\circ}$ ··· (4)

を満たす、前記[3]に記載の結晶。

- [7] 空間群がP6s22である、前記[6]に記載の結晶。
- [8] 表1に記載の三次元構造座標データによって特定されるタンパク質の結晶。
- 10 [9] 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子 (Cα原子) と、該Cα原子と対応する前記変更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.6 オングストローム以下である結晶。
- [10] 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成される、[3]~[9]のいずれかに記載の結晶。
 - [11]配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶。
 - [12] 前記化合物が、式(I)で表される、前記[11]に記載の結晶。

(I)

「式中、R¹は、 Λ ロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、0~2の整数を示し、Aは置換されていてもよい直鎖の C_1 - C_1 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、R²は水素原子又は Λ 口ゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す]

[13] 前記化合物が、式(IIIa) \sim 式(IIIc) で表されるいずれかの化合物である前記[12]に記載の結晶。

(IIIa)

$$0 = \stackrel{\mathsf{CH}_3}{\underbrace{\mathsf{H}_3}} 0 \qquad 0 \qquad \stackrel{\mathsf{S}}{\underbrace{\mathsf{NH}_2}} \mathsf{CH}_3 \qquad (IIIc)$$

- [14] 配列番号8に記載のアミノ酸配列からなることを特徴とする、前記 [1] に記載のタンパク質。
- [15] 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
- 10 [16] 前記タンパク質がグルコキナーゼタンパク質である、前記 [15] に記載の結晶。
 - [17] 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[15]に記載の結晶。
 - [18] 格子定数が、下記式
- 15 a=b=103.2±5 オングストローム … (5)

c=281.0±7オングストローム … (6)

$$\alpha = \beta = 90^{\circ} \cdots (7)$$

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、前記 [15] に記載の結晶。

20 [19] 空間群が P6522 である、前記 [18] に記載の結晶。

PCT/JP03/06054

[20] 表2に記載の三次元構造座標データによって特定されるタンパク質の結晶。

[21] 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0. 6 オングストローム以下である結晶。

[22] 配列番号2に記載のアミノ酸配列を有するタンパク質のN末端、C 末端のいずれかまたは両方から、1~50個のアミノ酸残基を欠損したアミノ 10 酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程とを含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 15 方法。

[23] タンパク質の結晶を製造する方法であって、

配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。

20 [24] 前記タンパク質に結合可能な化合物が、式(I)で表される化合物 であることを特徴とする、前記[23]に記載のタンパク質の結晶の製造方法。

$$\begin{array}{c|c}
R^1 & O \\
N & C \\
NH_2 & N
\end{array}$$

[式中、 R^1 は、Nロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五負環又は六員環のアリール基又はヘテロアリール基を示し、

5 R²は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

- 10 [25] 共結晶法又はソーキング法による、前記[23]、又は[24]に 記載の結晶の製造方法。
 - [26] タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、

該タンパク質の立体構造情報が、前記[3]~[13]、又は[15]~[2 1] のうちのいずれか一項に記載の結晶を解析することによって得られる情報 であることを特徴とする、ドラッグデザイン方法。

[27] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合 20 物ライブラリより選択する選択工程と、

を含むことを特徴とする、前記 [26] に記載のドラッグデザイン方法。

[28] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 25 構築する化合物構造構築工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

10

15

20

[29] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

- [30] 前記化合物結合部位が、配列番号 5 に示すアミノ酸配列における、チロシン6 1~セリン6 9、グルタミン酸 9 6 ~グルタミン9 8、イソロイシン1 5 9、メチオニン2 1 0 ~チロシン2 1 5 、ヒスチジン2 1 8 ~グルタミン酸 2 2 1、メチオニン2 3 5、アルギニン2 5 0、ロイシン4 5 1 ~リジン4 5 9 のアミノ酸残基の少なくともひとつによって構成されている、前記 [2
- [31] さらに、前記化合物結合部位に適合すると推定される候補化合物の 生理活性を測定する工程を含む、前記 [26] ~ [30] のいずれか一項に記載のドラッグデザイン方法。

6]~[29]のうちのいずれか一項に記載のドラッグデザイン方法。

- [32] さらに、前記化合物結合部位に適合すると推定される候補化合物と、配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結合するか否か判定する結合判定工程を含む、前記[26]~[30]のいずれか一項に記載のドラッグデザイン方法。
- [33] 前記 [26] ~ [30] のいずれか一項に記載のドラッグデザイン 方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物アレイの製造方法。

25 図面の簡単な説明

図1は、グルコキナーゼの三次元構造を示すリボン図である。

(図 1a は、グルコキナーゼ (Δ 1-1 1)/グルコース/化合物 1 (式 IIIa の化合物) の構造を示すリボン図である。また、右図は、左図を回転した図である。)

(図1 bは、グルコキナーゼ(Δ 1-15)単体の構造を示すリボン図である。また、右図は、左図を回転した図である。)

図 2 は、グルコキナーゼ (Δ 1-1 1) の結合部位に対する化合物 1 (式 IIIa の化合物) の結合様式を示す図である。

5 図3は、グルコキナーゼ(Δ1-11)の結合部位の構造を示す図である。

発明を実施するための最良の形態

本明細書において、アミノ酸、ペプチド、蛋白質は下記に示すIUPAC-IUB生化学命名委員会(CBN)で採用された略号を用いて表される。また、特に明示しない限りペプチド及び蛋白質のアミノ酸残基の配列は、左端から右端にかけてN末端からC末端となるように、またN末端が1番になるように表される。

以下、本発明の各実施態様について詳細に説明する。

15 (グルコキナーゼタンパク質)

10

20

まず、本発明は、結晶化に用いることを特徴とする、グルコキナーゼタンパク質を提供する。グルコキナーゼタンパク質(GKタンパク質)は、上述のように、生体内で極めて重要な糖の代謝に関与している。したがって、GKタンパク質の三次元構造を明らかにし、GKタンパク質の活性部位を解明することによって、GKタンパク質に結合する化合物(すなわち、活性化剤又は阻害剤)を探索することができる。よって、GKタンパク質の三次元構造を明らかにすることは重要である。

タンパク質の3次元構造を明らかにする手法として、X線結晶構造解析が良く知られている。即ち、タンパク質を結晶化し、その結晶に単色化されたX線25 をあて、得られたX線の回折像をもとに、該タンパク質の3次元構造を解明する(Blundell, T. L. 及びJohnson, L. N., PROTEIN CRYSTALLOGRAPHY, 1-565頁, (1976) Academic Press, New York)。GKタンパク質のX線結晶構造解析に供するために、まず、GKタンパク質を結晶化する必要がある。

WO 03/097824 PCT/JP03/06054

ここで、本発明の「GKタンパク質」とは、配列番号2に示すアミノ酸配列を有するヒト由来の肝臓型グルコキナーゼと、配列番号2と実質的に同一のアミノ酸配列を含有するタンパク質をいう。ここで当該実質的に同一のアミノ酸配列を含有するタンパク質としては、グルコキナーゼ活性を有するものが好ましい。したがって、本明細書では、GKタンパク質は、ヒト由来の肝臓型グルコキナーゼのみならず、ヒト由来の膵臓型グルコキナーゼ、マウス、ラット、サル等の非ヒト由来GKタンパク質をも含む。本発明では、ヒト肝臓型グルコキナーゼが好ましく用いられる。ヒト由来のグルコキナーゼにおいて、肝臓型と膵臓型ではN末端の15アミノ酸残基が相違する。ここで、「グルコキナーゼ活性」とは、グルコースからグルコース6リン酸への反応を触媒する活性をいう。

10

15

20

25

タンパク質の結晶化が一般的に困難なことは良く知られており、GKタンパ ク質をそのまま結晶化することはできなかった。本発明者らは、種々、試行錯 誤による実験の結果、GKタンパク質のN末端側のアミノ酸を11個、又は1 5個を欠失させることによって、始めてGKタンパク質の結晶化に成功した。 欠失させた領域は、結晶化を試みた際に球状のGKタンパク質分子より突出し、 その結果、結晶内で隣接するGKタンパク質分子との間で立体的な障害となり GKタンパク質が結晶となるのを妨げていたと考えられる。すなわち、本発明 では、アミノ酸配列が既知でありながら結晶化には成功していなかったグルコ キナーゼにおいて、N末端側の11個のアミノ酸残基を欠失させたGKタンパ ク質(配列番号5)、又はN末端側の15個のアミノ酸残基を欠失させたGK タンパク質(配列番号8)を用いることにより、GKタンパク質の結晶を得た。 ただし、欠失させるアミノ酸は、隣接する結晶との間で立体的な障害がなくな る範囲であればその数は限定されない。具体的には、例えば、配列番号2で表 されるアミノ酸配列において、N末端側の1~50個、好ましくは3~30個、 より好ましくは $5\sim25$ 個、さらに好ましくは $8\sim18$ 個、特に好ましくは11~15個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用 いられる。また、C末端側の1~8個、好ましくは1~7個、より好ましくは 2~6個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用い

られる。

10

15

20

(グルコキナーゼタンパク質の結晶及びその製造方法)

次に、本発明においては、配列番号5、及び配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質を含む結晶を提供する。

上述したように、結晶化に供するGKタンパク質としては、配列番号 5、及び /又は配列番号 8 で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸 配列を含むタンパク質などが用いられる。

配列番号 5、及び/又は配列番号 8で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を含むタンパク質(以下、配列番号 2で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を有するタンパク質と併せて「GKタンパク質」と略すこともある)は、結晶化が可能であればよく、そのアミノ酸配列は特に制限されない。ここで、配列番号 5、及び/又は配列番号8に記載のアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質は、グルコキナーゼ活性を有している必要はなく、ドラッグデザインに必要な情報を得ることができる結晶構造を有するものであれば、不活性な変異体(例えば、ATPの結合部位に変異を有することにより不活性化した変異体)であってもよい。ここで、配列番号 2 又は 5 で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質としては、配列番号 2 又は 5 で表わされるアミノ酸配列と約60%以上、好ましくは約70%以上、さらに好ましくは約80%以上、なかでも好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。また、配列番号 2 又は 5 で表される

25 配列番号2又は5に記載のアミノ酸配列において1~10個、好ましくは1~ 5個、さらに好ましくは1~3個、さらに好ましくは1~2個のアミノ酸残基 が置換、欠失、付加および/または挿入されたアミノ酸配列が例示される。

アミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質として、例えば、

GKタンパク質の3次元構造解析は、例えば、次のようにして行う。まず、 タンパク質を精製する。そして、結晶化、X線回折強度データ収集、各回折斑

点の位相決定、電子密度計算、分子モデル作成、構造の精密化などの一連の工程を行う。タンパク質構造解析を行うための主要な設備として、結晶化用インキュベーター、双眼顕微鏡、X線回折計、3次元コンピュータグラフィックス装置などが用いられる。具体的にタンパク質の結晶を作製する実験過程は、タンパク質を大量に(数mg以上が好ましい。)精製する段階、結晶が得られる条件を広く検索する段階、X線解析に適した良質の結晶を得る段階に分けられる。以下、各工程について具体的に説明する。

結晶化に際しては、GKタンパク質を、高純度に精製する。精製方法としては、公知のものが利用でき、例えば、カラムクロマトグラフィー、塩析、遠心分離などが用いられる。

精製されたGKタンパク質は、結晶化し、X線結晶構造解析のための試料とする。結晶化は、蒸気拡散法や透析法等の公知の方法に基づいて行われる。タンパク質の結晶を得る際に、タンパク質の純度・濃度、温度、pH、使用する沈殿剤濃度等多くの要素を検討する必要がある。結晶化条件の検討は、市販のスクリーニング試薬を使用して広い範囲で行うことができ、1つの条件に $1\sim2\%$ 濃度のタンパク質溶液を $1\sim2\mu$ Lずつ使用して検索することが好ましい。こうして微結晶などが得られた場合には、さらに条件を精密化することが好ましい。

なお、GKタンパク質の結晶を得るためには非常に多くの条件を検索しなけれ 20 ばならない。従って、結晶化条件の検討のためにも、タンパク質の大量発現系 を構築することが好ましい。一般にタンパク質のうち、結晶になるものの多く は、溶液状態で単分散であり、多分散のものは大体において結晶化しない。そ こで、GKタンパク質のN末端を順次切除し、得られたタンパク質について、光 散乱装置を用いてタンパク質溶液の単分散性を判定し、試料が結晶化に適して いるかどうかを検討しても良い。

次に、得られたGKタンパク質の結晶を用いて、X線回折強度測定を行う。 最近では、結晶を細い糸の輪などですくって液体窒素温度に急速冷却してその まま低温で測定する方法も利用されている。回折X線の強度測定は、通常、イ メージングプレートなどの2次元検出器によって行う。X線を当てながら結晶

を回転させることで発生する多くの回折線をイメージングプレートに記録し、 記録された回折強度をレーザーを当てることにより読み取る。

位相が上記の方法で決定したならば、これより電子密度を求める。この精度は、反射の数(分解能)と使用した反射の精度による。分解能は使用する反射の最小面間隔で表す。この電子密度図から分子モデルを組み立てる。分子モデルを組み立てると原子座標が得られるので、これより構造因子の計算値を求め、この大きさを観測値に近づける最小自乗法により原子パラメータの精密化を行う。このようにしてできるだけ妥当な構造情報を取得する。

本発明においては、配列番号5に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(1)~(4):

20 a=b=79.9±4オングストローム … (1) c=322.2±15オングストローム … (2) α=β=90° … (3) γ=120° … (4)

を満たすものであった。また、この結晶は、空間群が $P6_522$ であることが解明された。ここで、前記a=bは 79.9 ± 3 オングストロームであることが好ましく、 79.9 ± 2 オングストロームであることがより好ましく、 79.9 ± 1 オングストロームであることがさらに好ましい。また、前記cは 322.2 ± 10 オングストロームであることが好ましく、 322.2 ± 8 オングストロームであることがより好ましく、 322.2 ± 8 オングストロームであることがより好ましく、 322.2 ± 5 オングストロームであることがさらに好ましい。

- 16 - このようにして得られたGKタンパク質結晶の3次元構造座標を表1に示す。

	表1							
	ATOM	1	CB	THR	14	25. 972 -34. 025	76. 567	1. 00 51. 12
5	ATOM.	2	0G1	THR	14	27. 398 -34. 012	76. 715	1.00 51.49
	ATOM	3	CG2	THR	14	25. 626 -34. 173	75. 095	1. 00 49. 96
	ATOM	4	C	THR	14	24. 138 -32. 317	76. 374	1. 00 50. 95
	ATOM	5	0	THR	14	24. 246 -31. 685	75. 330	1. 00 52. 42
	ATOM	6	N	THR	14	25. 108 -32. 861	78. 611	1. 00 51. 41
10	ATOM	7	CA	THR	14	25. 384 -32. 717	77. 154	1. 00 50. 49
	ATOM	8	N	LEU	15	22. 957 -32. 673	76. 871	1. 00 49. 75
	ATOM	9	CA	LEU	15	21. 733 -32. 307	76. 167	1. 00 49. 25
	ATOM	10	CB	LEU	15	20. 496 -32. 824	76. 904	1. 00 52. 56
	ATOM	11	CG	LEU	15	20. 439 -34. 307	77. 291	1. 00 55. 08
15	ATOM	12		LEU	15	21. 186 -34. 524	78. 610	1. 00 53. 67
	ATOM	13			15	18. 980 -34. 742	77. 438	1. 00 54. 84
	ATOM	14	C		15	21. 676 -30. 781	76. 078	1. 00 48. 68
	ATOM	15	0		15	21. 397 -30. 208	75. 023	1. 00 47. 52
	MOTA	16	N		16	21. 955 -30. 128	77. 201	1. 00 47. 07
20	ATOM	17	CA	VAL		21. 950 -28. 677	77. 265	1. 00 44. 96
	ATOM	18	CB	VAL		21. 988 -28. 188	78. 733	1. 00 46. 09
	ATOM	19		VAL		22. 239 -26. 684	78. 784	1. 00 44. 09
	ATOM	20			16	20. 670 -28. 523	79. 418	1. 00 45. 38
	ATOM		C		16	23. 142 -28. 097	76. 512	1. 00 43. 58
25	ATOM		0			23. 004 -27. 110		
	ATOM	23	N	GLU			76. 672	
	ATOM	24	CA	GLU			75. 998	
	ATOM	25	CB	GLU		26. 759 -28. 931		
	ATOM	26	CG	GLU	17	27. 140 -28. 571	77. 984	1. 00 49. 19

PCT/JP03/06054

- 17 -

1. 00 50. 74 1. 00 50. 39 1. 00 50. 85 1. 00 45. 93 1. 00 44. 10 1. 00 45. 41 1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35 1. 00 43. 20
1. 00 50. 85 1. 00 45. 93 1. 00 44. 10 1. 00 45. 41 1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 45. 93 1. 00 44. 10 1. 00 45. 41 1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 44. 10 1. 00 45. 41 1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 45. 41 1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 46. 37 1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 49. 99 1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 55. 59 1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 58. 40 1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 60. 78 1. 00 56. 40 1. 00 44. 35
1. 00 56. 40 1. 00 44. 35
1. 00 44. 35
1. 00 43. 20
1. 00 41. 97
1. 00 40. 37
1. 00 39. 71
1. 00 39. 42
1. 00 40. 83
1. 00 38. 38
1. 00 39. 01
1. 00 40. 12
1. 00 35. 38
1. 00 34. 35
1. 00 32. 09
1. 00 30. 92
1.00 27.61
1. 00 21. 01
1. 00 29. 31

WO 03/097824 PCT/JP03/06054

- 18 -

	ATOM	1 56	0	LEU 20	26. 066 -23. 087	72. 112	1. 00 34. 19
	ATOM	57	N	ALA 21	25. 946 -25. 336	72. 116	1. 00 33. 16
	ATOM	l 58	CA	ALA 21	27. 030 -25. 509	71. 163	1. 00 34. 30
	ATOM	59	CB	ALA 21	27. 344 -26. 992	70. 993	1. 00 34. 49
5	ATOM	60	C	ALA 21	26. 696 -24. 886	69. 814	1. 00 35. 20
	ATOM	61	0	ALA 21	27. 587 -24. 619	69. 007	1. 00 35. 57
	ATOM	62	N	GLU 22	25. 412 -24. 652	69. 578	1. 00 36. 75
	ATOM	63	CA	GLU 22	24. 961 -24. 053	68. 329	1. 00 37. 80
	ATOM	64	CB	GLU 22	23. 435 -24. 102	68. 256	1. 00 41. 47
10	ATOM	65	CG	GLU 22	22. 878 -23. 851	66. 867	1. 00 47. 91
	ATOM	66	CD	GLU 22	21. 384 -24. 128	66. 767	1. 00 49. 95
	ATOM	67	0E1	GLU 22	20. 857 -24. 163	65. 630	1. 00 50. 84
	ATOM	68	0E2	GLU 22	20. 741 -24. 307	67. 822	1. 00 50. 26
	ATOM	69	C	GLU 22	25. 444 -22. 605	68. 177	1. 00 37. 38
15	ATOM	70	0	GLU 22	25. 380 -22. 039	67. 088	1. 00 38. 34
	ATOM	71	N	PHE 23	25. 928 -22. 012	69. 268	1. 00 35. 41
	ATOM	72	CA	PHE 23	26. 426 -20. 636	69. 249	1. 00 33. 38
	ATOM	73	CB	PHE 23	26. 224 -19. 962	70. 614	1. 00 31. 59
	ATOM	74	CG	PHE 23	24. 826 -19. 470	70. 843	1. 00 29. 81
20	ATOM	75		PHE 23	23. 836 -20. 328	71. 310	1. 00 26. 48
	ATOM	76 		PHE 23	24. 489 -18. 151	70. 555	1. 00 28. 79
	ATOM	77		PHE 23	22. 520 -19. 882	71. 487	1. 00 29. 30
	ATOM	78			23. 177 -17. 691		1. 00 31. 65
0.5	ATOM	79			22. 189 -18. 563		1. 00 28. 91
25	ATOM				27. 899 -20. 542		1. 00 33. 33
	ATOM	81			28. 396 -19. 467		1. 00 34. 12
	ATOM	82			28. 596 -21. 670		1. 00 32. 75
	ATOM	83			30. 016 -21. 716		1. 00 32. 56
	ATOM	84	CB	GLN 24	30. 543 -23. 147	68. 778	1. 00 35. 53

WO 03/097824 PCT/JP03/06054

- 19 -

	ATOM 88	5 CG GLN 24	30. 817 -23. 603	70. 210	1. 00 37. 84
	ATOM 86	G CD GLN 24	31. 214 -25. 074	70. 266	1. 00 42. 36
	ATOM 87	OE1 GLN 24	31. 802 -25. 601	69. 320	1.00 43.06
	ATOM 88	NE2 GLN 24	30. 902 -25. 739	71. 375	1.00 40.61
5	ATOM 89	C GLN 24	30. 335 -21. 233	67. 208	1. 00 31. 93
	ATOM 90	0 GLN 24	29. 508 -21. 320	66. 299	1. 00 30. 32
	ATOM 91	N LEU 25	31. 548 -20. 717	67. 043	1. 00 31. 64
	ATOM 92	CA LEU 25	32. 029 -20. 257	65. 751	1. 00 31. 85
	ATOM 93	CB LEU 25	31. 876 -18. 742	65. 615	1. 00 31. 24
10	ATOM 94	CG LEU 25	30. 441 -18. 211	65. 563	1. 00 29. 93
	ATOM 95	CD1 LEU 25	30. 436 -16. 690	65. 710	1. 00 28. 63
	ATOM 96	CD2 LEU 25	29. 801 -18. 640	64. 262	1. 00 27. 61
	ATOM 97	C LEU 25	33. 502 -20. 635	65. 667	1. 00 33. 30
	ATOM 98	0 LEU 25	34. 298 -20. 218	66. 502	1. 00 33. 97
15	ATOM 99	N GLN 26	33. 856 -21. 450	64. 679	1. 00 34. 57
	ATOM 100	CA GLN 26	35. 244 -21. 860	64. 496	1. 00 36. 87
	ATOM 101	CB GLN 26	35. 330 -23. 053	63. 540	1. 00 40. 20
	ATOM 102	CG GLN 26	35. 105 -24. 414	64. 182	1. 00 46. 34
	ATOM 103	CD GLN 26	33. 863 -24. 462	65. 041	1. 00 48. 48
20	ATOM 104	OE1 GLN 26	33. 918 -24. 229	66. 253	1. 00 49. 27
	ATOM 105		32. 725 -24. 757	64. 417	1. 00 51. 72
	ATOM 106	C GLN 26	36. 024 -20. 688	63. 910	1. 00 36. 49
•	ATOM 107		35. 430 -19. 735	63. 403	1. 00 35. 76
	ATOM 108	N GLU 27	37. 347 -20. 761	63. 981	1. 00 35. 17
25	ATOM 109	CA GLU 27	38. 181 -19. 705	63. 441	1. 00 37. 77
	ATOM 110	CB GLU 27	39. 658 -20. 047	63. 627	1. 00 40. 11
	ATOM 111	CG GLU 27	40. 596 -19. 156	62. 831	1. 00 47. 14
	ATOM 112	CD GLU 27	41. 754 -18. 639	63. 662	1. 00 52. 56
	ATOM 113	OE1 GLU 27	41. 507 -17. 808	64. 567	1. 00 54. 72

PCT/JP03/06054

- 20 -

			20		
	ATOM 114	OE2 GLU 27	42. 906 -19. 067	63. 415	1. 00 54. 43
	ATOM 115	C GLU 27	37. 878 -19. 511	61. 961	1. 00 37. 80
	ATOM 116	0 GLU 27	37. 915 -18. 392	61. 446	1. 00 37. 09
	ATOM 117	N GLU 28	37. 557 -20. 605	61. 282	1. 00 36. 94
5	ATOM 118	CA GLU 28	· 37. 261 -20. 535	59. 862	1. 00 36. 18
	ATOM 119	CB GLU 28	37. 175 -21. 939	59. 267	1. 00 37. 83
	ATOM 120	CG GLU 28	37. 826 -22. 039	57. 902	1. 00 41. 72
	ATOM 121	CD GLU 28	39. 154 -21. 287	57. 843	1. 00 44. 57
	ATOM 122	0E1 GLU 28	40. 033 -21. 531	58. 706	1. 00 46. 91
10	ATOM 123	0E2 GLU 28	39. 313 -20. 446	56. 933	1. 00 44. 10
	ATOM 124	C GLU 28	35. 973 -19. 779	59. 588	1. 00 34. 66
	ATOM 125	0 GLU 28	35. 860 -19. 089	58. 575	1. 00 33. 91
	ATOM 126	N ASP 29	34. 994 -19. 926	60. 472	1. 00 32. 44
	ATOM 127	CA ASP 29	33. 738 -19. 219	60. 301	1. 00 32. 41
15	ATOM 128	CB ASP 29	32. 713 -19. 625	61. 370	1. 00 34. 13
	ATOM 129	CG ASP 29	32. 302 -21. 091	61. 285	1. 00 34. 13
	ATOM 130	OD1 ASP 29	32. 012 -21. 580	60. 173	1. 00 34. 03
	ATOM 131	OD2 ASP 29	32. 246 -21. 749	62. 347	1. 00 35. 16
	ATOM 132	C ASP 29	34. 054 -17. 728	60. 456	1.00 31.21
20	ATOM 133	0 ASP 29	33. 542 -16. 895	59. 717	1. 00 29. 93
	ATOM 134	N LEU 30	34. 912 -17. 403	61. 419	1. 00 29. 60
	ATOM 135	CA LEU 30	35. 274 -16. 016	61. 674	1. 00 28. 38
	ATOM 136	CB LEU 30	36. 101 -15. 901	62. 964	1. 00 23. 67
	ATOM 137	CG LEU 30	35. 435 -16. 298	64. 289	1. 00 23. 54
25	ATOM 138	CD1 LEU 30	36. 314 -15. 823	65. 433	1. 00 22. 55
	ATOM 139	CD2 LEU 30	34. 038 -15. 674	64. 418	1. 00 24. 55
	ATOM 140	C LEU 30	36. 032 -15. 390	60. 499	1. 00 29. 80
	ATOM 141	0 LEU 30	35. 775 -14. 242	60. 139	1. 00 29. 56
	ATOM 142	N LYS 31	36. 963 -16. 131	59. 906	1. 00 29. 13

PCT/JP03/06054

- 21 -

•				- 21	-	
	ATOM 143	3 CA	LYS 31	37. 704 -15. 609	58. 770	1. 00 30. 46
	ATOM 144	CB	LYS 31	38. 823 -16. 574	58. 365	1. 00 32. 24
	ATOM 145	CG	LYS 31	39. 970 -16. 653	59. 374	1. 00 36. 80
	ATOM 146	CD	LYS 31	41. 091 -17. 577	58. 885	1. 00 40. 49
. 5	ATOM 147	CE	LYS 31	42. 291 -17. 534	59. 829	1. 00 44. 52
	ATOM 148	NZ	LYS 31	43. 443 -18. 369	59. 363	1. 00 47. 22
	ATOM 149	С	LYS 31	36. 746 -15. 391	57. 599	1. 00 31. 28
	ATOM 150	0	LYS 31	36. 918 -14. 464	56. 816	1. 00 32. 79
	ATOM 151	N	LYS 32	35. 730 -16. 243	57. 486	1. 00 30. 96
10	ATOM 152	CA	LYS 32	34. 758 -16. 116	56. 406	1. 00 32. 66
	ATOM 153	CB	LYS 32	33. 868 -17. 364	56. 324	1. 00 32. 27
	ATOM 154	CG	LYS 32	32. 921 -17. 362	55. 135	1. 00 34. 72
	ATOM 155	CD	LYS 32	32. 203 -18. 701	54. 965	1. 00 39. 55
	ATOM 156	CE	LYS 32	31. 272 -18. 678	53. 745	1. 00 42. 65
15	ATOM 157	NZ	LYS 32	30.699 -20.026	53. 417	1. 00 42. 72
	ATOM 158	C	LYS 32	33. 890 -14. 868	56. 609	1. 00 32. 63
	ATOM 159	0	LYS 32	33. 607 -14. 140	55. 652	1. 00 32. 25
	ATOM 160	N	VAL 33	33. 463 -14. 629	57. 847	1. 00 30. 17
	ATOM 161	CA	VAL 33	32. 654 -13. 451	58. 149	1. 00 29. 03
20	ATOM 162	CB	VAL 33	32. 154 -13. 460	59. 626	1. 00 30. 49
	ATOM 163	CG1	VAL 33	31. 519 -12. 123	59. 985	1. 00 31. 03
	ATOM 164	CG2	VAL 33	31. 130 -14. 562	59. 815	1. 00 32. 03
	ATOM 165	C	VAL 33	33. 538 -12. 226	57. 908	1. 00 26. 62
	ATOM 166	0	VAL 33	33. 091 -11. 237	57. 338	1. 00 22. 25
25	ATOM 167	N	MET 34	34. 802 -12. 321	58. 317	1. 00 25. 50
	ATOM 168	CA	MET 34	35. 750 -11. 226	58. 142	1. 00 27. 22
	ATOM 169	CB	MET 34	37. 108 -11. 583	58. 748	1. 00 24. 41
	ATOM 170	CG	MET 34	38. 150 -10. 512	58. 537	1. 00 26. 32
	ATOM 171	SD	MET 34	39. 793 -11. 040	59. 074	1. 00 32. 95

- 22 -

			22	_	
	ATOM 172	CE MET 34	40. 162 -12. 313	57. 821	1.00 30.64
	ATOM 173	C MET 34	35. 927 -10. 879	56. 665	1.00 29.30
	ATOM 174	0 MET 34	35. 850 -9. 717	56. 286	1.00 29.01
	ATOM 175	N ARG 35	36. 164 -11. 883	55. 827	1.00 30.96
5	ATOM 176	CA ARG 35	36. 340 -11. 621	54. 403	1. 00 32. 99
	ATOM 177	CB ARG 35	36. 664 -12. 913	53. 641	1. 00 34. 85
	ATOM 178	CG ARG 35	37. 948 -13. 585	54. 081	1. 00 38. 82
	ATOM 179	CD ARG 35	38. 377 -14. 682	53. 126	1. 00 43. 22
	ATOM 180	NE ARG 35	38. 963 -15. 791	53. 869	1. 00 47. 35
10	ATOM 181	CZ ARG 35	38. 260 -16. 801	54. 366	1. 00 47. 12
	ATOM 182	NH1 ARG 35	36. 946 -16. 850	54. 186	1. 00 48. 27
	ATOM 183	NH2 ARG 35	38. 868 -17. 746	55. 064	1. 00 50. 91
	ATOM 184	C ARG 35	35. 090 -10. 997	53. 797	1. 00 33. 31
	ATOM 185	0 ARG 35	35. 178 -10. 089	52. 966	1. 00 33. 49
15	ATOM 186	N ARG 36	33. 926 -11. 493	54. 206	1. 00 32. 00
	ATOM 187	CA ARG 36	32. 673 -10. 982	53. 675	1. 00 31. 76
	ATOM 188	CB ARG 36	31. 511 -11. 857	54. 158	1. 00 29. 95
	ATOM 189	CG ARG 36	30. 191 -11. 607	53. 441	1. 00 31. 90
	ATOM 190	CD ARG 36.	30. 386 -11. 434	51. 929	1. 00 33. 67
20	ATOM 191	NE ARG 36	29. 114 -11. 263	51. 230	1. 00 38. 02
	ATOM 192	CZ ARG 36	28. 229 -12. 238	51.018	1. 00 40. 67
	ATOM 193	NH1 ARG 36	28. 477 -13. 471	51.447	1. 00 40. 50
	ATOM 194	NH2 ARG 36	27. 087 -11. 979	50. 382	1. 00 41. 02
	ATOM 195	C ARG 36	32. 459 -9. 510	54.060	1. 00 31. 54
25	ATOM 196	0 ARG 36	31. 959 -8. 718	53. 260	1. 00 30. 75
	ATOM 197	N MET 37	32. 856 -9. 147	55. 276	1. 00 30. 98
	ATOM 198	CA MET 37	32. 720 -7. 774	55. 742	1. 00 30. 21
	ATOM 199	CB MET 37	33. 134 -7. 663	57. 208	1. 00 27. 60
	ATOM 200	CG MET 37	33. 102 -6. 240	57. 761	1. 00 27. 98

- 23 -

				20		
ATOM 201	SD	MET 37	31. 418	-5. 613	57. 981	1. 00 30. 18
ATOM 202	CE	MET 37	31. 115	-6. 153	59. 683	1. 00 28. 30
ATOM 203	C	MET 37	33. 598	-6. 852	54. 892	1. 00 30. 32
ATOM 204	0	MET 37	33. 162	-5. 782	54. 479	1. 00 31. 66
ATOM 205	N	GLN 38	34. 835	-7. 272	54. 642	1. 00 30. 60
ATOM 206	CA	GLN 38	35. 774	-6. 500	53. 829	1. 00 31. 68
ATOM 207	CB	GLN 38	37. 126	-7. 206	53. 750	1. 00 32. 18
ATOM 208	CG	GLN 38	38. 051	-6. 918	54. 898	1. 00 36. 36
ATOM 209	CD	GLN 38	39. 318	-7. 743	54. 831	1. 00 37. 65
ATOM 210	0E1	GLN 38	39. 352	-8. 890	55. 275	1. 00 41. 25
ATOM 211	NE2	GLN 38	40. 362	-7. 170	54. 258	1. 00 39. 99
ATOM 212	C	GLN 38	35. 241	-6. 337	52. 419	1. 00 32. 20
ATOM 213	0	GLN 38	35. 471	-5. 318	51.769	1. 00 32. 83
ATOM 214	N	LYS 39	34. 541	-7. 360	51. 947	1. 00 31. 94
ATOM 215	CA	LYS 39	33. 965	-7. 343	50. 611	1. 00 33. 33
ATOM 216	CB	LYS 39	33. 515	-8. 754	50. 220	1. 00 34. 32
ATOM 217	CG	LYS 39	33. 757	-9. 105	48. 756	1. 00 41. 05
ATOM 218	CD	LYS 39	32. 994	-8. 183	47. 799	1. 00 43. 55
ATOM 219	CE	LYS 39	33. 319	-8. 502	46. 336	1. 00 47. 30
ATOM 220	NZ	LYS 39	32. 587	-7. 625	45. 363	1. 00 48. 42
ATOM 221	C	LYS 39	32. 774	-6. 378	50. 555	1. 00 32. 37
ATOM 222	0	LYS 39	32. 578	-5. 676	49. 564	1. 00 33. 02
ATOM 223	N	GLU 40	31. 975	-6. 342	51.613	1. 00 31. 82
ATOM 224	CA	GLU 40	30. 831	-5. 442	51.632	1. 00 33. 50
ATOM 225	CB	GLU 40	29. 845	-5. 831	52. 737	1. 00 34. 39
ATOM 226	CG	GLU 40	29. 159	-7. 167	52. 507	1. 00 36. 32
ATOM 227	CD	GLU 40	28. 562	-7. 293	51. 112	1. 00 38. 53
ATOM 228	0E1	GLU 40	27. 878	-6. 350	50. 660	1. 00 39. 61
ATOM 229	0E2	GLU 40	28. 770	-8. 342	50. 469	1. 00 38. 22
	ATOM 202 ATOM 203 ATOM 204 ATOM 205 ATOM 206 ATOM 207 ATOM 208 ATOM 209 ATOM 210 ATOM 211 ATOM 212 ATOM 213 ATOM 214 ATOM 215 ATOM 216 ATOM 217 ATOM 218 ATOM 217 ATOM 218 ATOM 221 ATOM 221 ATOM 222 ATOM 223 ATOM 223 ATOM 224 ATOM 225 ATOM 225 ATOM 226 ATOM 227 ATOM 228	ATOM 202 CE ATOM 203 C ATOM 204 0 ATOM 205 N ATOM 206 CA ATOM 207 CB ATOM 209 CD ATOM 210 OE1 ATOM 211 NE2 ATOM 213 O ATOM 214 N ATOM 215 CA ATOM 216 CB ATOM 217 CG ATOM 218 CD ATOM 219 CE ATOM 220 NZ ATOM 221 C ATOM 221 C ATOM 222 O ATOM 223 N ATOM 224 CA ATOM 225 CB ATOM 226 CG ATOM 227 CD ATOM 226 CG ATOM 227 CD	ATOM 2022 CE MET 37 ATOM 2034 C MET 37 ATOM 2044 O MET 37 ATOM 2055 N GLN 38 ATOM 2066 CA GLN 38 ATOM 2077 CB GLN 38 ATOM 2098 CG GLN 38 ATOM 2100 OEI GLN 38 ATOM 2111 NEE GLN 38 ATOM 2112 C GLN 38 ATOM 2113 O GLN 38 ATOM 213 O GLN 38 ATOM 216 CB LYS 39 ATOM 217 CG LYS 39 ATOM 218 CD LYS 39 ATOM 221 C LYS 39 ATOM 221 C LYS 39 ATOM 221 C LYS 39 </td <td>ATOM 202 CE MET 37 31. 115 ATOM 203 C MET 37 33. 598 ATOM 204 O MET 37 33. 162 ATOM 205 N GLN 38 34. 835 ATOM 206 CA GLN 38 35. 774 ATOM 207 CB GLN 38 37. 126 ATOM 209 CD GLN 38 39. 318 ATOM 210 OE1 GLN 38 39. 352 ATOM 211 NE2 GLN 38 40. 362 ATOM 212 C GLN 38 35. 241 ATOM 213 O GLN 38 35. 471 ATOM 214 N LYS 39 34. 541 ATOM 215 CA LYS 39 33. 515 ATOM 216 CB LYS 39 33. 515 ATOM 217 CG LYS 39 33. 757 ATOM 218 CD LYS 39 33. 757 ATOM 219 CE LYS 39 32. 587 ATOM 220 NZ LYS 39 32. 587 ATOM 221 C LYS 39 32. 587 ATOM 222 O LYS 39 32. 578 ATOM 223 N GLU 40 30. 831 ATOM 224 CA GLU 40 30. 831 ATOM 225 CB GLU 40 29. 159 ATOM 226 CG GLU 40 29. 159 ATOM 227 CD GLU 40 28. 562 ATOM 227 CD GLU 40 27. 878</td> <td>ATOM 202 CE MET 37 31. 115 -6. 153 ATOM 203 C MET 37 33. 598 -6. 852 ATOM 204 O MET 37 33. 162 -5. 782 ATOM 205 N GLN 38 34. 835 -7. 272 ATOM 206 CA GLN 38 35. 774 -6. 500 ATOM 207 CB GLN 38 37. 126 -7. 206 ATOM 209 CD GLN 38 39. 318 -7. 743 ATOM 210 OE1 GLN 38 39. 318 -7. 743 ATOM 211 NE2 GLN 38 40. 362 -7. 170 ATOM 212 C GLN 38 35. 241 -6. 337 ATOM 213 O GLN 38 35. 471 -5. 318 ATOM 214 N LYS 39 34. 541 -7. 360 ATOM 215 CA LYS 39 33. 965 -7. 343 ATOM 216 CB LYS 39 33. 515 -8. 754 ATOM 217 CG LYS 39 33. 757 -9. 105 ATOM 218 CD LYS 39 32. 578 -5. 676 ATOM 221 C LYS 39 32. 578 -5. 676 ATOM 222 O LYS 39 32. 578 -5. 676 ATOM 223 N GLU 40 30. 831 -5. 442 ATOM 224 CA GLU 40 30. 831 -5. 442 ATOM 225 CB GLU 40 29. 845 -5. 831 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 27. 878 -6. 350</td> <td>ATOM 202 CE MET 37 31.115 -6.153 59.683 ATOM 203 C MET 37 33.598 -6.852 54.892 ATOM 204 O MET 37 33.598 -6.852 54.479 ATOM 205 N GLN 38 34.835 -7.272 54.642 ATOM 206 CA GLN 38 35.774 -6.500 53.829 ATOM 207 CB GLN 38 37.126 -7.206 53.750 ATOM 209 CD GLN 38 39.318 -7.743 54.831 ATOM 210 OEI GLN 38 39.318 -7.743 54.831 ATOM 211 NE2 GLN 38 39.352 -8.890 55.275 ATOM 211 NE2 GLN 38 39.352 -8.890 55.275 ATOM 212 C GLN 38 35.241 -6.337 52.419 ATOM 213 O GLN 38 35.241 -6.337 52.419 ATOM 214 N LYS 39 34.541 -7.360 51.947 ATOM 215 CA LYS 39 33.965 -7.343 50.611 ATOM 216 CB LYS 39 33.515 -8.754 50.220 ATOM 217 CG LYS 39 33.515 -8.754 50.220 ATOM 218 CD LYS 39 32.994 -8.183 47.799 ATOM 219 CE LYS 39 32.994 -8.183 47.799 ATOM 220 NZ LYS 39 32.587 -7.625 45.363 ATOM 221 C LYS 39 32.578 -5.676 49.564 ATOM 222 O LYS 39 32.578 -5.676 49.564 ATOM 223 N GLU 40 30.831 -5.442 51.632 ATOM 224 CA GLU 40 29.845 -5.831 52.737 ATOM 225 CB GLU 40 29.845 -5.831 52.737 ATOM 226 CG GLU 40 29.159 -7.167 52.507</td>	ATOM 202 CE MET 37 31. 115 ATOM 203 C MET 37 33. 598 ATOM 204 O MET 37 33. 162 ATOM 205 N GLN 38 34. 835 ATOM 206 CA GLN 38 35. 774 ATOM 207 CB GLN 38 37. 126 ATOM 209 CD GLN 38 39. 318 ATOM 210 OE1 GLN 38 39. 352 ATOM 211 NE2 GLN 38 40. 362 ATOM 212 C GLN 38 35. 241 ATOM 213 O GLN 38 35. 471 ATOM 214 N LYS 39 34. 541 ATOM 215 CA LYS 39 33. 515 ATOM 216 CB LYS 39 33. 515 ATOM 217 CG LYS 39 33. 757 ATOM 218 CD LYS 39 33. 757 ATOM 219 CE LYS 39 32. 587 ATOM 220 NZ LYS 39 32. 587 ATOM 221 C LYS 39 32. 587 ATOM 222 O LYS 39 32. 578 ATOM 223 N GLU 40 30. 831 ATOM 224 CA GLU 40 30. 831 ATOM 225 CB GLU 40 29. 159 ATOM 226 CG GLU 40 29. 159 ATOM 227 CD GLU 40 28. 562 ATOM 227 CD GLU 40 27. 878	ATOM 202 CE MET 37 31. 115 -6. 153 ATOM 203 C MET 37 33. 598 -6. 852 ATOM 204 O MET 37 33. 162 -5. 782 ATOM 205 N GLN 38 34. 835 -7. 272 ATOM 206 CA GLN 38 35. 774 -6. 500 ATOM 207 CB GLN 38 37. 126 -7. 206 ATOM 209 CD GLN 38 39. 318 -7. 743 ATOM 210 OE1 GLN 38 39. 318 -7. 743 ATOM 211 NE2 GLN 38 40. 362 -7. 170 ATOM 212 C GLN 38 35. 241 -6. 337 ATOM 213 O GLN 38 35. 471 -5. 318 ATOM 214 N LYS 39 34. 541 -7. 360 ATOM 215 CA LYS 39 33. 965 -7. 343 ATOM 216 CB LYS 39 33. 515 -8. 754 ATOM 217 CG LYS 39 33. 757 -9. 105 ATOM 218 CD LYS 39 32. 578 -5. 676 ATOM 221 C LYS 39 32. 578 -5. 676 ATOM 222 O LYS 39 32. 578 -5. 676 ATOM 223 N GLU 40 30. 831 -5. 442 ATOM 224 CA GLU 40 30. 831 -5. 442 ATOM 225 CB GLU 40 29. 845 -5. 831 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 29. 8562 -7. 293 ATOM 227 CD GLU 40 27. 878 -6. 350	ATOM 202 CE MET 37 31.115 -6.153 59.683 ATOM 203 C MET 37 33.598 -6.852 54.892 ATOM 204 O MET 37 33.598 -6.852 54.479 ATOM 205 N GLN 38 34.835 -7.272 54.642 ATOM 206 CA GLN 38 35.774 -6.500 53.829 ATOM 207 CB GLN 38 37.126 -7.206 53.750 ATOM 209 CD GLN 38 39.318 -7.743 54.831 ATOM 210 OEI GLN 38 39.318 -7.743 54.831 ATOM 211 NE2 GLN 38 39.352 -8.890 55.275 ATOM 211 NE2 GLN 38 39.352 -8.890 55.275 ATOM 212 C GLN 38 35.241 -6.337 52.419 ATOM 213 O GLN 38 35.241 -6.337 52.419 ATOM 214 N LYS 39 34.541 -7.360 51.947 ATOM 215 CA LYS 39 33.965 -7.343 50.611 ATOM 216 CB LYS 39 33.515 -8.754 50.220 ATOM 217 CG LYS 39 33.515 -8.754 50.220 ATOM 218 CD LYS 39 32.994 -8.183 47.799 ATOM 219 CE LYS 39 32.994 -8.183 47.799 ATOM 220 NZ LYS 39 32.587 -7.625 45.363 ATOM 221 C LYS 39 32.578 -5.676 49.564 ATOM 222 O LYS 39 32.578 -5.676 49.564 ATOM 223 N GLU 40 30.831 -5.442 51.632 ATOM 224 CA GLU 40 29.845 -5.831 52.737 ATOM 225 CB GLU 40 29.845 -5.831 52.737 ATOM 226 CG GLU 40 29.159 -7.167 52.507

- 24 -

					47		
	ATOM 23	0 C	GLU 40	31. 309	-4. 009	51. 833	1. 00 33. 20
	ATOM 23	1 0	GLU 40	30. 691	-3. 072	51. 345	1. 00 33. 12
	ATOM 23	2 N	MET 41	32. 409	-3. 844	52. 556	1. 00 33. 18
	ATOM 233	3 CA	MET 41	32. 957	-2. 515	52. 783	1. 00 34. 90
5	ATOM 234	4 CB	MET 41	34. 173	-2. 585	53. 706	1. 00 32. 91
	ATOM 235	G CG	MET 41	33. 838	-2. 927	55. 154	1. 00 34. 83
	ATOM 236	S SD	MET 41	35. 327	-2. 987	56. 170	1. 00 34. 41
	ATOM 237	CE	MET 41	35. 747	-1. 216	56. 267	1. 00 36. 69
	ATOM 238	C	MET 41	33. 368	-1. 941	51. 430	1. 00 36. 56
10	ATOM 239	0	MET 41	33. 058	-0. 792	51. 108	1. 00 34. 98
	ATOM 240	N	ASP 42	34. 054	-2. 758	50. 639	1. 00 36. 46
	ATOM 241	CA	ASP 42	34. 508	-2. 346	49. 317	1. 00 38. 91
	ATOM 242	CB	ASP 42	35. 318	-3. 470	48. 674	1. 00 42. 09
	ATOM 243	CG	ASP 42	36. 130	-2. 999	47. 490	1. 00 43. 40
15	ATOM 244		ASP 42	37. 081	-2. 216	47. 705	1. 00 45. 67
	ATOM 245	OD2	ASP 42	35. 817	-3. 411	46. 350	1. 00 42. 51
	ATOM 246	C	ASP 42	33. 311	-1. 990	48. 433	1. 00 38. 61
	ATOM 247	0	ASP 42	33. 366	-1. 036	47. 656	1. 00 39. 03
	ATOM 248	N	ARG 43	32. 232	-2. 761	48. 559	1. 00 36. 74
20	ATOM 249	CA	ARG 43	31.012	-2. 524	47. 788	1. 00 33. 90
	ATOM 250	CB	ARG 43	30. 037	-3. 688	47. 967	1. 00 33. 80
	ATOM 251	CG	ARG 43	30. 324	-4. 890	47. 080	1. 00 34. 68
	ATOM 252		ARG 43	29. 654	-6. 163	47. 614	1. 00 34. 89
	ATOM 253		ARG 43			47. 906	1. 00 35. 11
25	ATOM 254						
	ATOM 255		ARG 43	27. 620	-5. 589	45. 719	1. 00 39. 98
	ATOM 256		ARG 43			47. 366	1. 00 36. 46
			ARG 43				1. 00 34. 64
	ATOM 258	0	ARG 43	29. 712	-0. 550	47. 357	1. 00 35. 89

- 25 -

				20		•
	ATOM 259	N GLY 44	30. 382	-0. 892	49. 475	1. 00 31. 21
	ATOM 260	CA GLY 44	29. 744	0. 318	49. 940	1. 00 31. 87
	ATOM 261	C GLY 44	30. 463	1. 579	49. 490	1. 00 33. 29
	ATOM 262	0 GLY 44	29. 854	2. 645	49. 397	1. 00 31. 49
5	ATOM 263	N LEU 45	31. 756	1. 455	49. 200	1. 00 31. 44
	ATOM 264	CA LEU 45	32. 563	2. 595	48. 778	1. 00 32. 24
	ATOM 265	CB LEU 45	34. 033	2. 358	49. 129	1. 00 27. 43
	ATOM 266	CG LEU 45	34. 415	2. 487	50. 601	1. 00 29. 59
	ATOM 267	CD1 LEU 45	35. 832	1. 992	50. 827	1. 00 30. 31
10	ATOM 268	CD2 LEU 45	34. 281	3. 941	51. 022	1. 00 30. 45
	ATOM 269	C LEU 45	32. 455	2. 933	47. 294	1. 00 33. 00
	ATOM 270	0 LEU 45	32. 537	4. 098	46. 924	1. 00 32. 78
	ATOM 271	N ARG 46	32. 277	1. 911	46. 460	1. 00 34. 18
	ATOM 272	CA ARG 46	32. 179	2. 074	45. 009	1. 00 34. 76
15	ATOM 273	CB ARG 46	32. 320	0.714	44. 312	1. 00 36. 33
	ATOM 274	CG ARG 46	33. 519	-0. 119	44. 756	1. 00 39. 02
	ATOM 275	CD ARG 46	34. 794	0. 267	44. 035	1. 00 43. 71
	ATOM 276	NE ARG 46	35. 913	-0. 593	44. 431	1. 00 48. 60
	ATOM 277	CZ ARG 46	37. 142	-0. 527	43. 915	1. 00 49. 59
20	ATOM 278	NH1 ARG 46	37. 429	0. 359	42. 969	1. 00 49. 57
	ATOM 279	NH2 ARG 46	38. 091	-1. 344	44. 354	1. 00 50. 09
	ATOM 280	C ARG 46	30. 856	2. 710	44. 587	1. 00 34. 95
	ATOM 281	0 ARG 46	29. 785	2. 361	45. 091	1. 00 32. 49
	ATOM 282	N LEU 47	30. 935	3. 638	43. 644	1. 00 34. 90
25	ATOM 283	CA LEU 47	29. 741	4. 311	43. 162	1. 00 34. 40
	ATOM 284	CB LEU 47	30. 100	5. 297	42. 049	1. 00 34. 27
	ATOM 285	CG LEU 47	28. 929	6. 085	41. 447	1. 00 33. 85
	ATOM 286	CD1 LEU 47	28. 445	7. 144	42. 442	1. 00 31. 01
	ATOM 287	CD2 LEU 47	29. 381	6. 741	40. 144	1. 00 31. 08

10

15

20

25

ATOM 316

N

GLU 51

24. 657

- 26 -ATOM 288 C LEU 47 28. 727 3. 316 42. 625 1. 00 34. 52 ATOM 289 0 LEU 47 27. 535 3. 411 42. 922 1. 00 32. 39 ATOM 290 N **GLU 48** 29. 202 2. 353 41. 841 1. 00 34. 67 ATOM 291 CA **GLU 48** 28. 301 1. 378 41. 242 1.00 36.59 ATOM 292 CB **GLU 48** 29. 010 0. 589 40. 134 1. 00 38. 07 ATOM 293 CG **GLU 48** 30. 205 -0. 248 40. 562 1.00 39.26 ATOM 294 CD GLU 48 31. 499 0. 534 40. 580 1. 00 40. 85 ATOM 295 0E1 GLU 48 32. 571 -0. 106 40. 497 1.00 44.46 ATOM 296 0E2 GLU 48 31. 454 1. 779 40. 682 1. 00 38. 21 ATOM 297 C GLU 48 27. 600 0.406 42. 188 1.00 37.46 ATOM 298 0 GLU 48 26. 654 -0. 268 41.778 1. 00 37. 82 ATOM 299 N THR 49 28. 037 0. 321 43. 441 1. 00 36. 85 ATOM 300 CA THR 49 27. 371 -0.59144. 370 1. 00 36. 40 ATOM 301 CB THR 49 28. 212 -1.85544. 645 1. 00 34. 37 ATOM 302 OG1 THR 49 29. 554 -1.48044.969 1. 00 33. 33 ATOM 303 CG2 THR 49 28. 215 -2.77043. 437 1. 00 32. 44 ATOM 304 C THR 49 27. 032 0.037 45. 703 1. 00 38. 54 ATOM 305 0 THR 49 26. 536 -0. 647 46. 599 1. 00 40. 86 ATOM 306 N HIS 50 27. 272 1. 335 45. 842 1. 00 38. 89 ATOM 307 CA HIS 50 26. 994 1. 990 47. 115 1.00 41.74 ATOM 308 CB HIS 50 27. 548 3. 422 47. 130 1.00 44.04 ATOM 309 CG HIS 50 26. 666 4. 426 46. 451 1.00 46.35 ATOM 310 CD2 HIS 50 25. 795 5. 331 46. 959 1. 00 48. 65 ATOM 311 ND1 HIS 50 26. 607 4. 565 45. 081 1. 00 47. 18 ATOM 312 CE1 HIS 50 25. 738 5. 512 44.772 1. 00 48. 13 ATOM 313 NE2 HIS 50 25. 231 5. 993 45. 894 1.00 49.20 ATOM 314 HIS 50 C 25. 512 2. 030 47. 466 1. 00 42. 66 ATOM 315 HIS 50 25. 153 2. 046

48. 642

46. 447

2. 034

1. 00 42. 85

1. 00 43. 12

15

20

25

ATOM 345 N

- 27 -ATOM 317 CA GLU 51 23. 213 2. 120 46. 645 1. 00 44. 07 ATOM 318 CB GLU 51 22. 555 2. 574 45. 329 1. 00 44. 83 ATOM 319 CG GLU 51 21.051 2. 824 45. 399 1. 00 46. 43 ATOM 320 CD GLU 51 20. 531 3. 691 44. 243 1. 00 48. 89 ATOM 321 0E1 GLU 51 20.822 3. 385 43.064 1. 00 46. 31 ATOM 322 OE2 GLU 51 19. 821 4. 683 44. 522 1. 00 50. 83 ATOM 323 C GLU 51 22. 543 0. 848 47. 179 1. 00 44. 27 ATOM 324 0 GLU 51 21.630 0.925 48. 000 1. 00 45. 14 ATOM 325 N GLU 52 22. 991 -0.31746. 723 1. 00 44. 47 ATOM 326 GLU 52 CA 22. 422 -1.58547. 178 1. 00 44. 81 ATOM 327 CBGLU 52 22. 199 -2. 521 45. 988 1. 00 47. 15 ATOM 328 CG GLU 52 23. 485 45. 264 1. 00 53. 66 -2.920ATOM 329 CD GLU 52 23. 698 -2.16443. 951 1. 00 57. 63 ATOM 330 0E1 GLU 52 23. 646 -0.90943. 953 1. 00 55. 90 ATOM 331 0E2 GLU 52 23. 925 -2.83542. 917 1. 00 57. 72 ATOM 332 C GLU 52 23. 313 -2. 297 48. 206 1. 00 42. 49 ATOM 333 0 GLU 52 23. 052 -3.44148. 575 1. 00 43. 45 ATOM 334 N ALA 53 24. 362 -1. 626 48. 666 1. 00 39. 72 ATOM 335 CA ALA 53 25. 285 -2. 224 49. 628 1. 00 37. 01 ATOM 336 ALA 53 CB 26. 589 -1.43849. 645 1. 00 35. 23 ATOM 337 C ALA 53 24. 700 -2. 291 51.038 1. 00 35. 27 ATOM 338 0 ALA 53 24. 125 -1.32151. 528 1. 00 34. 63 ATOM 339 N SER 54 24. 845 -3.43951.689 1. 00 32. 88 ATOM 340 CA SER 54 24. 339 -3.59453.052 1. 00 32. 06 ATOM 341 SER 54 CB 24. 397 -5. 062 53. 476 1. 00 30. 23 ATOM 342 0G SER 54 25. 694 -5. 576 53. 261 1. 00 35. 67 ATOM 343 С SER 54 25. 188 -2.74153. 990 1.00 28.49 ATOM 344 0 SER 54

24. 682

VAL 55

-2. 147

54. 934

26. 485 -2. 684 53. 724 1. 00 28. 44

1. 00 29. 57

PCT/JP03/06054

- 28 -

	ATOM 346	CA VA	L 55	27. 386	-1. 876	54. 535	1. 00 28. 63
	ATOM 347	CB VA	L 55	28. 737	-2. 594	54. 726	1. 00 27. 89
	ATOM 348	CG1 VA	L 55	29. 660	-1. 766	55. 599	1. 00 26. 89
	ATOM 349	CG2 VA	L 55	28. 497	-3. 957	55. 365	1. 00 27. 94
5	ATOM 350	C VA	L 55	27. 559	-0. 551	53. 788	1. 00 29. 80
	ATOM 351	O VA	L 55	28. 367	-0. 430	52. 868	1. 00 28. 14
	ATOM 352	N LY	S 56	26. 787	0. 446	54. 205	1. 00 31. 68
	ATOM 353	CA LY	S 56	26. 788	1. 750	53. 550	1. 00 30. 06
	ATOM 354	CB LY	S 56	25. 727	2. 628	54. 203	1. 00 29. 96
10	ATOM 355	CG LY	S 56	24. 312	2. 124	53. 933	1. 00 29. 47
	ATOM 356	CD LY	S 56	23. 279	2. 935	54. 689	1. 00 31. 68
	ATOM 357	CE LY	S 56	23. 417	2. 767	56. 196	1. 00 30. 78
	ATOM 358	NZ LY	S 56	22. 911	1. 428	56. 648	1. 00 36. 66
	ATOM 359	C LYS	5 56	28. 087	2. 535	53. 374	1. 00 28. 33
15	ATOM 360	0 LYS	5 56	28. 222	3. 256	52. 388	1. 00 30. 83
	ATOM 361	N ME	57	29. 044	2. 410	54. 287	1. 00 25. 97
	ATOM 362	CA MET	57	30. 299	3. 149	54. 137	1. 00 23. 92
	ATOM 363	CB MET	57	31. 098	2. 577	52. 964	1. 00 24. 05
	ATOM 364	CG MET	57	31. 383	1. 078	53. 075	1. 00 27. 54
20	ATOM 365	SD MET	57	32. 303	0. 659	54. 580	1. 00 26. 48
	ATOM 366		57		1. 127	54. 113	1. 00 21. 76
	ATOM 367	C MET	57	30. 006	4. 643	53. 887	1. 00 26. 44
	ATOM 368	0 MET	57	30. 460	5. 237	52. 903	1. 00 24. 39
	ATOM 369	N LEU	58	29. 250	5. 235	54. 803	1. 00 26. 42
25	ATOM 370	CA LEU	58	28. 843	6. 630	54. 713	1. 00 26. 83
	ATOM 371	CB LEU	58	27. 684	6. 884	55. 677	1. 00 24. 27
	ATOM 372	•	58	26. 440	6. 043	55. 386	1. 00 30. 26
	ATOM 373	CD1 LEU	58	25. 401	6. 250	56. 473	1. 00 28. 51
	ATOM 374	CD2 LEU	58	25. 874	6. 430	54.016	1. 00 31. 10

- 29 -

					20		
	ATOM 375	C	LEU 58	29. 932	7. 665	54. 965	1. 00 25. 48
	ATOM 376	0	LEU 58	30. 495	7. 742	56. 053	1. 00 25. 30
	ATOM 377	N	PRO 59	30. 242	8. 476	53. 946	1. 00 24. 56
	ATOM 378	CD	PRO 59	29. 764	8. 341	52. 557	1. 00 24. 76
5	ATOM 379	CA	PRO 59	31. 262	9. 528	54. 063	1. 00 26. 48
	ATOM 380	CB	PRO 59	31. 217	10. 196	52. 686	1. 00 26. 76
	ATOM 381	CG	PRO 59	30. 865	9. 036	51. 769	1. 00 26. 41
	ATOM 382	C	PRO 59	30. 820	10. 478	55. 190	1. 00 26. 49
	ATOM 383	0	PRO 59	29. 656	10. 863	55. 239	1. 00 28. 20
10	ATOM 384	N	THR 60	31. 728	10. 845	56. 092	1. 00 27. 28
	ATOM 385	CA	THR 60	31. 372	11. 720	57. 220	1. 00 27. 77
	ATOM 386	CB	THR 60	31. 994	11. 217	58. 544	1. 00 24. 87
	ATOM 387	0G1	THR 60	33. 400	11. 482	58. 536	1. 00 22. 66
	ATOM 388	CG2	THR 60	31. 767	9. 713	58. 726	1. 00 28. 80
15	ATOM 389	C	THR 60	31. 800	13. 196	57. 085	1. 00 30. 72
	ATOM 390	0	THR 60	31. 405	14. 041	57. 897	1. 00 29. 67
	ATOM 391	N	TYR 61	32. 623	13. 485	56. 084	1. 00 30. 13
	ATOM 392	CA	TYR 61	33. 144	14. 824	55. 844	1. 00 33. 87
	ATOM 393	CB	TYR 61	32. 005	15. 837	55. 684	1. 00 32. 96
20	ATOM 394	CG	TYR 61	31. 409	15. 730	54. 298	1. 00 35. 37
				32. 084	16. 251	53. 192	1. 00 36. 43
	ATOM 396	CE1	TYR 61	31. 621	16. 036	51.890	1. 00 34. 05
	ATOM 397	CD2	TYR 61	30. 244	14. 995	54.068	1. 00 34. 99
	ATOM 398	CE2	TYR 61	29. 778	14. 772	52. 768	1. 00 33. 96
25	ATOM 399	CZ	TYR 61	30. 475	15. 294	51. 689	1. 00 33. 72
	ATOM 400	OH '	TYR 61	30. 039	15. 064	50. 402	1. 00 37. 69
	ATOM 401	C í	TYR 61	34. 156	15. 264	56. 890	1. 00 34. 78
	ATOM 402	0 :	TYR 61	34. 712	16. 357	56. 806	1. 00 34. 09
	ATOM 403	N '	VAL 62	34. 407	14. 407	57. 875	1. 00 36. 47

WO 03/097824 PCT/JP03/06054

- 30 -

	ATOM 404	l CA	VAL 62	35. 426	14. 713	58. 869	1. 00 37. 40
	ATOM 405	CB	VAL 62	35. 283	13. 825	60. 116	1. 00 37. 42
	ATOM 406	CG1	VAL 62	36. 410	14. 107	61. 089	1. 00 32. 97
	ATOM 407	CG2	VAL 62	33. 937	14. 073	60. 774	1. 00 36. 34
5	ATOM 408	C	VAL 62	36. 695	14. 335	58. 104	1. 00 41. 04
	ATOM 409	0	VAL 62	36. 944	13. 153	57. 865	1. 00 40. 85
•	ATOM 410	N	ARG 63	37. 475	15. 331	57. 692	1. 00 43. 48
	ATOM 411	CA	ARG 63	38. 682	15. 070	56. 909	1. 00 48. 27
	ATOM 412	CB	ARG 63	38. 843	16. 126	55. 814	1. 00 47. 25
10	ATOM 413	CG	ARG 63	37. 735	16. 112	54. 783	1. 00 49. 66
	ATOM 414	CD	ARG 63	37. 648	17. 447	54.061	1. 00 50. 62
	ATOM 415	NE	ARG 63	36. 482	17. 523	53. 185	1. 00 51. 28
	ATOM 416	CZ	ARG 63	36. 405	16. 961	51. 982	1. 00 50. 52
							1. 00 48. 44
15		NH2	ARG 63	35. 295	17. 089	51. 268	1.00 49.50
	ATOM 419		ARG 63		15. 006	57. 728	1. 00 50. 30
	ATOM 420	0	ARG 63	39. 998	15. 478	58.860	1. 00 49. 69
	ATOM 421		SER 64		14. 431		1. 00 54. 64
	ATOM 422		SER 64	42. 276	14. 280	57. 783	1. 00 60. 87
20	ATOM 423		SER 64	43. 315	13. 760	56. 794	1. 00 60. 13
	ATOM 424		SER 64		13. 381		1. 00 62. 83
	ATOM 425		SER 64	42. 760	15. 583	58. 398	1. 00 65. 69
•	ATOM 426		SER 64		16. 584	57. 703	1. 00 65. 99
	ATOM 427		THR 65	42. 961	15. 530	59. 714	1. 00 71. 92
25	ATOM 428		THR 65	43. 402	16. 649	60. 545	1. 00 77. 78
	ATOM 429		THR 65	44. 529	16. 194	61. 524	1. 00 78. 35
	ATOM 430		THR 65	44. 959	17. 309	62. 317	1. 00 79. 07
	ATOM 431		THR 65	45. 714	15. 611	60. 757	1. 00 79. 19
	ATOM 432	C :	THR 65	43. 839	17. 925	59. 817	1. 00 80. 90

PCT/JP03/06054

- 31 -

					0.1		
	ATOM 433	0	THR 65	45. 033	18. 188	59. 654	1. 00 80. 93
	ATOM 434	N	PRO 66	42. 863	18. 732	59. 364	1. 00 83. 72
	ATOM 435	CD	PRO 66	41. 410	18. 469	59. 372	1. 00 84. 56
	ATOM 436	CA	PRO 66	43. 162	19. 983	58. 661	1. 00 85. 58
5	ATOM 437	CB	PRO 66	41. 871	20. 254	57. 897	1. 00 85. 53
	ATOM 438	CG	PRO 66	40. 827	19. 776	58. 864	1. 00 85. 36
	ATOM 439	C	PRO 66	43. 468	21. 057	59. 710	1. 00 87. 07
	ATOM 440	0	PRO 66	42. 581	21. 812	60. 119	1. 00 87. 87
	ATOM 441	N	GLU 67	44. 726	21. 109	60. 144	1. 00 87. 71
10	ATOM 442	CA	GLU 67	45. 162	22. 055	61. 169	1. 00 87. 66
	ATOM 443	CB	GLU 67	46. 683	22. 238	61. 110	1. 00 88. 42
	ATOM 444	CG	GLU 67	47. 283	22. 824	62. 384	1. 00 89. 15
	ATOM 445	CD	GLU 67	46. 871	22. 058	63. 636	1. 00 89. 71
	ATOM 446	0E1	GLU 67	45. 689	22. 150	64. 037	1. 00 89. 95
15	ATOM 447	0E2	GLU 67	47. 728	21. 359	64. 217	1. 00 89. 51
	ATOM 448	C	GLU 67	44. 463	23. 413	61.095	1. 00 86. 97
	ATOM 449	0	GLU 67	44. 203	23. 944	60. 013	1. 00 86. 95
	ATOM 450	N	GLY 68	44. 160	23. 962	62. 266	1. 00 85. 72
	ATOM 451	CA	GLY 68	43. 475	25. 237	62. 344	1. 00 83. 56
20	ATOM 452	C	GLY 68	42. 274	25. 073	63. 251	1. 00 82. 01
	ATOM 453	0	GLY 68	41. 136	24. 970	62. 784	1. 00 82. 39
	ATOM 454	N	SER 69	42. 530	25. 038	64. 555	1. 00 79. 39
	ATOM 455	CA	SER 69	41. 469	24. 869	65. 537	1. 00 77. 31
	ATOM 456	CB	SER 69	41. 855	23. 784	66. 542	1. 00 77. 69
25	ATOM 457	0G	SER 69	40. 877	23. 677	67. 561	1. 00 78. 20
	ATOM 458	C	SER 69	41. 118	26. 143	66. 294	1. 00 75. 21
	ATOM 459	0	SER 69	41. 993	26. 857	66. 784	1. 00 74. 23
	ATOM 460	N	GLU 70	39. 822	26. 413	66. 386	1. 00 73. 26
	ATOM 461	CA	GLU 70	39. 328	27. 581	67. 096	1. 00 71. 89

		- 32 -					
	ATOM 462	CB GI	.U 70	38. 004	28. 042	66. 482	1. 00 73. 40
	ATOM 463	CG GI	.U 70	37. 897	29. 544	66. 297	1. 00 77. 84
	ATOM 464	CD GL	.U 70	38. 900	30. 073	65. 285	1. 00 80. 27
	ATOM 465	OE1 GL	U 70	38. 763	29. 757	64. 082	1. 00 81. 41
5	ATOM 466	OE2 GL	U 70	39. 830	30. 801	65. 692	1. 00 81. 33
	ATOM 467	C GL	U 70	39. 107	27. 144	68. 543	1. 00 69. 48
	ATOM 468	0 GL	U 70	38. 409	26. 163	68. 789	1. 00 69. 73
	ATOM 469	N VA	L 71	39. 701	27. 853	69. 499	1. 00 65. 92
	ATOM 470	CA VA	L 71	39. 536	27. 490	70. 904	1. 00 62. 64
10	ATOM 471	CB VA	L 71	40. 760	27. 909	71. 746	1. 00 61. 59
	ATOM 472	CG1 VA	L 71	41. 993	27. 156	71. 275	.1.00 61.91
	ATOM 473	CG2 VA	L 71	40. 979	29. 406	71. 642	1. 00 61. 78
	ATOM 474	C VA	L 71	38. 278	28. 105	71. 510	1. 00 61. 05
	ATOM 475	O VAI	71	37. 608	28. 919	70. 877	1. 00 61. 02
15	ATOM 476	N GL	72	37. 952	27. 700	72. 734	1. 00 59. 60
	ATOM 477	CA GLY	72	36. 769	28. 225	73. 390	1. 00 58. 10
	ATOM 478	C GLY	72	35. 841	27. 169	73. 967	1. 00 57. 74
	ATOM 479	0 GLY	72	36. 178	25. 982	74. 006	1. 00 58. 27
	ATOM 480	N ASF	73	34. 664	27. 607	74. 410	1. 00 55. 55
20	ATOM 481	CA ASF	73	33. 663	26. 724	75. 003	1. 00 54. 21
	ATOM 482	CB ASP	73	32. 973	27. 426	76. 181	1. 00 57. 20
	ATOM 483	CG ASP	73	33. 846	27. 496	77. 424	1. 00 59. 78
	ATOM 484	OD1 ASP	73	35. 046	27. 830	77. 299	1. 00 61. 37
	ATOM 485	OD2 ASP	73	33. 324	27. 225	78. 529	1. 00 60. 87
25	ATOM 486	C ASP	73	32. 599	26. 310	73. 994	1. 00 52. 36
	ATOM 487	0 ASP	73	31. 936	27. 161	73. 406	1. 00 52. 44
	ATOM 488	N PHE	74	32. 424	25. 005	73. 800	1. 00 49. 73
	ATOM 489	CA PHE	74	31. 412	24. 519	72. 866	1. 00 46. 98
	ATOM 490	CB PHE	74	32. 019	23. 571	71. 837	1. 00 46. 41

- 33 -

				- 33	_	
	ATOM 491	CG PHE 74	33. 117	24. 179	71. 030	1. 00 47. 09
	ATOM 492	CD1 PHE 74	34. 335	24. 492	71. 618	1. 00 47. 62
	ATOM 493	CD2 PHE 74	32. 930	24. 452	69. 681	1. 00 47. 01
	ATOM 494	CE1 PHE 74	35. 359	25. 071	70. 874	1. 00 49. 47
5	ATOM 495	CE2 PHE 74	33. 943	25. 031	68. 924	1. 00 48. 12
	ATOM 496	CZ PHE 74	35. 161	25. 342	69. 520	1. 00 48. 82
	ATOM 497	C PHE 74	30. 316	23. 783	73. 601	1. 00 45. 68
	ATOM 498	0 PHE 74	30. 485	23. 382	74. 745	1. 00 46. 35
	ATOM 499	N LEU 75	29. 185	23. 615	72. 932	1. 00 45. 12
10	ATOM 500	CA LEU 75	28.064	22. 895	73. 501	1. 00 44. 80
	ATOM 501	CB LEU 75	26. 769	23. 686	73. 333	1. 00 43. 29
	ATOM 502	CG LEU 75	25. 535	23. 023	73. 959	1. 00 45. 05
	ATOM 503	CD1 LEU 75	25. 529	23. 278	75. 466	1. 00 41. 53
	ATOM 504	CD2 LEU 75	24. 259	23. 571	73. 326	1. 00 43. 45
15	ATOM 505	C LEU 75	27. 971	21. 598	72. 708	1. 00 46. 04
	ATOM 506	0 LEU 75	28. 087	21. 611	71. 479	1. 00 46. 97
	ATOM 507	N SER 76	27. 770	20. 484	73. 405	1. 00 45. 48
	ATOM 508	CA SER 76	27. 664	19. 189	72. 744	1. 00 43. 73
	ATOM 509	CB SER 76	28. 837	18. 295	73. 143	1. 00 43. 52
20	ATOM 510	OG SER 76	30. 040	18. 741	72. 551	1. 00 44. 64
	ATOM 511	C SER 76	26. 361	18. 469	73. 051	1. 00 41. 60
	ATOM 512	0 SER 76	26. 026	18. 242	74. 209	1. 00 40. 88
	ATOM 513	N LEU 77	25. 617	18. 130	72. 007	1. 00 41. 06
	ATOM 514	CA LEU 77	24. 369	17. 397	72. 175	1. 00 43. 50
25	ATOM 515	CB LEU 77	23. 281	17. 918	71. 225	1. 00 43. 84
	ATOM 516	CG LEU 77	22. 750	19. 346	71. 401	1. 00 45. 70
	ATOM 517	CD1 LEU 77	21. 587	19. 577	70. 442	1. 00 45. 96
	ATOM 518	CD2 LEU 77	22. 284	19. 550	72. 835	1. 00 46. 75
	ATOM 519	C LEU 77	24. 662	15. 933	71. 851	1. 00 43. 78

PCT/JP03/06054

- 34 -

					04	_	
	ATOM 520	0	LEU 77	25. 529	15. 635	71. 026	1. 00 43. 07
	ATOM 521	N	ASP 78	23. 946	15. 021	72. 496	1. 00 44. 50
	ATOM 522	CA	ASP 78	24. 151	13. 604	72. 244	1. 00 44. 82
	ATOM 523	CB	ASP 78	25. 126	13. 026	73. 271	1. 00 44. 71
5	ATOM 524	CG	ASP 78	25. 597	11. 628	72. 905	1. 00 45. 55
	ATOM 525	0D1	ASP 78	24. 738	10. 750	72. 672	1. 00 41. 76
	ATOM 526	0D2	ASP 78	26 . 828	11. 410	72. 853	1. 00 45. 32
	ATOM 527	C	ASP 78	22. 838	12. 829	72. 276	1. 00 44. 74
	ATOM 528	0	ASP 78	22. 245	12. 633	73. 333	1. 00 45. 25
10	ATOM 529	N	LEU 79	22. 385	12. 398	71. 107	1. 00 45. 72
	ATOM 530	CA	LEU 79	21. 154	11. 630	70. 994	1. 00 47. 25
	ATOM 531	CB	LEU 79	20. 137	12. 351	70. 116	1. 00 45. 37
	ATOM 532	CG	LEU 79	18. 865	11. 530	69. 915	1. 00 43. 65
	ATOM 533	CD1	LEU 79	18. 067	11. 553	71. 200	1. 00 46. 42
15	ATOM 534	CD2	LEU 79	18. 045	12. 086	68. 777	1. 00 43. 81
	ATOM 535	C	LEU 79	21. 491	10. 295	70. 354	1. 00 49. 50
	ATOM 536	0	LEU 79	22. 073	10. 249	69. 274	1. 00 49. 35
	ATOM 537	N	GLY 80	21. 123	9. 207	71.016	1. 00 52. 24
	ATOM 538	CA	GLY 80	21. 421	7. 902	70. 466	1. 00 56. 31
20	ATOM 539	C	GLY 80	20. 965	6. 833	71. 420	1. 00 59. 13
	ATOM 540	0	GLY 80	20. 278	5. 896	71. 027	1. 00 60. 86
	ATOM 541	N	GLY 81	21. 360	6. 966	72. 679	1. 00 62. 30
	ATOM 542	CA	GLY 81	20. 940	6. 002	73. 674	1. 00 65. 60
	ATOM 543	C	GLY 81	19. 551	6. 395	74. 137	1. 00 67. 84
25	ATOM 544	0	GLY 81	18. 936	7. 301	73. 564	1. 00 69. 00
	ATOM 545	N	THR 82	19. 047	5. 722	75. 165	1. 00 69. 33
	ATOM 546	CA	THR 82	17. 726	6. 037	75. 695	1. 00 70. 36
	ATOM 547	CB	THR 82	17. 110	4. 824	76. 418	1. 00 71. 43
	ATOM 548	0G1	THR 82	18. 032	4. 332	77. 398	1. 00 71. 60

- 35 -

				00		
	ATOM 549	GC2 THR 82	16. 784	3. 716	75. 420	1. 00 71. 87
	ATOM 550	C THR 82	17. 846	7. 196	76. 679	1. 00 70. 10
	ATOM 551	0 THR 82	16. 933	7. 458	77. 464	1. 00 71. 18
	ATOM 552	N ASN 83	18. 981	7. 887	76. 625	1. 00 69. 08
5	ATOM 553	CA ASN 83	19. 232	9. 017	77. 508	1. 00 68. 14
	ATOM 554	CB ASN 83	20. 161	8. 584	78. 646	1. 00 69. 98
	ATOM 555	CG ASN 83	19. 862	9. 300	79. 948	1. 00 70. 80
	ATOM 556	OD1 ASN 83	20. 627	9. 213	80. 909	1. 00 71. 46
	ATOM 557	ND2 ASN 83	18. 739	10.004	79. 990	1. 00 72. 56
10	ATOM 558	C ASN 83	19. 866	10. 177	76. 738	1. 00 66. 16
	ATOM 559	0 ASN 83	21.050	10. 136	76. 407	1. 00 66. 52
	ATOM 560	N PHE 84	19. 073	11. 203	76. 447	1. 00 63. 41
	ATOM 561	CA PHE 84	19. 567	12. 375	75. 728	1. 00 60. 93
	ATOM 562	CB PHE 84	18. 398	13. 227	75. 241	1. 00 61. 87
15	ATOM 563	CG PHE 84	18. 817	14. 477	74. 528	1. 00 63. 55
	ATOM 564	CD1 PHE 84	18. 419	15. 724	74. 993	1. 00 63. 38
	ATOM 565	CD2 PHE 84	19. 599	14. 409	73. 381	1. 00 64. 28
		CE1 PHE 84				1. 00 64. 07
	ATOM 567	CE2 PHE 84	19. 979	15. 568	72. 705	1. 00 65. 31
20	ATOM 568	CZ PHE 84	19. 574	16. 810	73. 179	1. 00 64. 75
	ATOM 569	C PHE 84	20. 442	13. 206	76. 658	1. 00 59. 07
	ATOM 570	0 PHE 84	20. 011	13. 582	77. 744	1. 00 59. 19
	ATOM 571	N ARG 85	21. 665	13. 500	76. 232	1. 00 57. 25
	ATOM 572	CA ARG 85	22. 583	14. 272	77. 064	1. 00 56. 05
25	ATOM 573	CB ARG 85	23. 857	13. 467	77. 344	1. 00 56. 68
	ATOM 574	CG ARG 85	23. 605	12. 044	77. 828	1. 00 58. 78
	ATOM 575	CD ARG 85	24. 896	11. 367	78. 267	1. 00 59. 39
	ATOM 576	NE ARG 85	25. 908	11. 348	77. 213	1. 00 59. 87
	ATOM 577	CZ ARG 85	27. 068	11. 994	77. 282	1. 00 60. 09

- 36 -

				00		
	ATOM 578	NH1 ARG 85	27. 366	12. 713	78. 357	1. 00 59. 50
	ATOM 579	NH2 ARG 85	27. 931	11. 920	76. 277	1. 00 60. 92
	ATOM 580	C ARG 85	22. 966	15. 602	76. 433	1. 00 55. 07
	ATOM 581	0 ARG 85	23. 038	15. 725	75. 209	1. 00 54. 93
5	ATOM 582	N VAL 86	23. 211	16. 593	77. 288	1. 00 53. 13
	ATOM 583	CA VAL 86	23. 598	17. 935	76. 861	1. 00 51. 01
	ATOM 584	CB VAL 86	22. 425	18. 939	77. 003	1. 00 51. 19
	ATOM 585	CG1 VAL 86	22. 851	20. 313	76. 509	1. 00 51. 39
	ATOM 586	CG2 VAL 86	21. 216	18. 446	76. 225	1. 00 50. 96
10	ATOM 587	C VAL 86	24. 734	18. 381	77. 767	1. 00 49. 34
	ATOM 588	0 VAL 86	24. 613	18. 316	78. 989	1. 00 48. 07
	ATOM 589	N MET 87	25. 834	18. 835	77. 178	1. 00 49. 52
	ATOM 590	CA MET 87	26. 970	19. 260	77. 981	1. 00 50. 78
	ATOM 591	CB MET 87	27. 864	18. 054	78. 284	1. 00 52. 70
15	ATOM 592	CG MET 87	28. 572	17. 461	77. 072	1. 00 54. 49
	ATOM 593	SD MET 87	29. 005	15. 694	77. 269	1. 00 53. 62
	ATOM 594	CE MET 87	27. 839	14. 951	76. 090	1. 00 51. 63
	ATOM 595	C MET 87	27. 800	20. 363	77. 348	1. 00 50. 56
	ATOM 596	0 MET 87	27. 715	20. 616	76. 149	1. 00 50. 18
20	ATOM 597	N LEU 88	28. 605	21. 015	78. 178	1. 00 50. 90
	ATOM 598	CA LEU 88	29. 477	22. 093	77. 739	1. 00 52. 10
	ATOM 599	CB LEU 88	29. 278	23. 325	78. 631	1. 00 53. 23
	ATOM 600	CG LEU 88	30. 087	24. 580	78. 288	1. 00 54. 71
	ATOM 601	CD1 LEU 88	29. 618	25. 140	76. 951	1. 00 54. 33
25	ATOM 602	CD2 LEU 88	29. 920	25. 623	79. 390	1. 00 54. 33
	ATOM 603	C LEU 88	30. 914	21. 600	77. 847	1. 00 52. 33
	ATOM 604	0 LEU 88	31. 311	21. 048	78. 877	1. 00 53. 12
	ATOM 605	N VAL 89	31. 693	21. 795	76. 789	1. 00 52. 10
	ATOM 606	CA VAL 89	33. 078	21. 342	76. 788	1. 00 52. 46

- 37 -

	ATOM . 607	7 CB VAL 89	33. 241	20. 072	75. 882	1. 00 50. 52
	ATOM 608	3 CG1 VAL 89				
		G2 VAL 89				
	ATOM 610					1. 00 53. 35
5	ATOM 611	0 VAL 89	33. 858	23. 081	75. 336	1. 00 54. 69
	ATOM 612	N LYS 90	35. 096	22. 625	77. 151	1. 00 55. 22
	ATOM 613	CA LYS 90	36. 100	23. 640	76. 868	1. 00 56. 94
	ATOM 614	CB LYS 90	36. 656	24. 205	78. 181	1. 00 57. 66
	ATOM 615	CG LYS 90	37. 642	25. 360	78. 005	1. 00 58. 70
10	ATOM 616	CD LYS 90	38. 140	25. 909	79. 345	1. 00 59. 35
	ATOM 617	CE LYS 90	36. 995	26. 399	80. 226	1. 00 60. 64
	ATOM 618	NZ LYS 90	36. 185	27. 462	79. 568	1. 00 61. 04
	ATOM 619	C LYS 90	37. 237	23. 078	76. 019	1. 00 57. 63
	ATOM 620	0 LYS 90	37. 921	22. 136	76. 417	1. 00 57. 69
15	ATOM 621	N VAL 91	37. 428	23. 670	74. 846	1. 00 58. 29
			-			
	ATOM 623			23. 136	72. 480	1. 00 56. 48
						1. 00 55. 29
		CG2 VAL 91				
20		C VAL 91				
		0 VAL 91				
•	ATOM 628					1. 00 58. 12
	ATOM 629					1. 00 59. 69
	ATOM 630		43. 047			1. 00 61. 78
25	ATOM 631	0 GLY 92				1. 00 61. 06
	ATOM 632	N GLU 93		24. 803		1. 00 65. 18
	ATOM 633	CA GLU 93		24. 426		1. 00 69. 00
	ATOM 634			25. 646		1. 00 71. 56
	ATOM 635	CG GLU 93	47. 082	25. 344	70. 965	1. 00 75. 20

- 38 -

				- 30 -	
	ATOM 636	CD GLU 93	47. 659 26	6. 591 70. 325	5 1. 00 78. 28
	ATOM 637	OE1 GLU 93	46. 893 27	7. 326 69. 659	9 1. 00 80. 05
	ATOM 638	0E2 GLU 93	48. 877 26	3. 834 70. 485	5 1. 00 79. 21
	ATOM 639	C GLU 93	46. 505 23	3. 822 73. 437	7 1. 00 71. 00
5	ATOM 640	0 GLU 93	47. 118 24	4. 500 74. 263	1. 00 70. 74
	ATOM 641	N GLY 94	46. 784 22	2. 544 73. 195	1. 00 72. 97
	ATOM 642	CA GLY 94	47. 849 21	. 869 73. 916	1. 00 74. 44
	ATOM 643	C GLY 94	49. 078 21	. 673 73. 052	1. 00 75. 82
	ATOM 644	0 GLY 94	49. 485 22	2. 577 72. 315	1. 00 76. 47
10	ATOM 645	N GLU 95	49. 682 20	. 496 73. 145	1. 00 75. 73
	ATOM 646	CA GLU 95	50. 859 20	. 195 72. 349	1. 00 76. 61
	ATOM 647	CB GLU 95	52. 023 19.	. 792 73. 249	1. 00 76. 93
	ATOM 648	CG GLU 95	52. 439 20.	. 891 74. 203	1. 00 78. 31
	ATOM 649	CD GLU 95	53. 614 20.	. 497 75. 065	1. 00 78. 40
15	ATOM 650	OE1 GLU 95	54. 715 20.	274 74. 514	1. 00 78. 51
	ATOM 651	OE2 GLU 95	53. 432 20.	408 76. 295	1. 00 78. 60
	ATOM 652	C GLU 95	50. 516 19.	071 71.392	1. 00 76. 91
	ATOM 653	0 GLU 95	49. 833 18.	116 71.764	1. 00 76. 81
	ATOM 654	N GLU 96	50. 987 19.	203 70. 155	1. 00 77. 78
20	ATOM 655	CA GLU 96	50. 733 18.	220 69. 105	1. 00 78. 07
	ATOM 656	CB GLU 96	51. 408 16.	881 69. 440	1. 00 81. 32
	ATOM 657	CG GLU 96	52. 943 16.	930 69. 454	1. 00 85. 11
	ATOM 658	CD GLU 96	53. 541 17.	309 68. 101	1. 00 87. 05
	ATOM 659	OE1 GLU 96	53. 346 16.	551 67. 124	1. 00 88. 73
25	ATOM 660	OE2 GLU 96	54. 207 18.	365 68. 014	1. 00 87. 56
	ATOM 661	C GLU 96	49. 230 18.	025 68. 919	1. 00 75. 88
	ATOM 662	0 GLU 96	48. 784 17.	039 68. 327	1. 00 75. 92
	ATOM 663	N GLY 97	48. 456 18.	980 69. 427	1. 00 72. 88
	ATOM 664	CA GLY 97	47. 013 18.	910 69. 309	1. 00 69. 37

- 39 -

					00		
	ATOM 665	C (LY 97 4	46. 296 1	9. 710 7	0. 380	1. 00 67. 02
	ATOM 666	0 0	LY 97 4	16. 921 2	0. 230 7	1. 305	1. 00 67. 10
	ATOM 667	N G	LN 98 4	14. 978 1	9. 811 7	0. 250	1. 00 64. 76
	ATOM 668	CA G	LN 98 4	14. 166 2	0. 543 7	1. 211	1. 00 62. 45
5	ATOM 669	CB G	LN 98 4	2. 872 2	1. 045 7	0. 562	1. 00 62. 69
	ATOM 670	CG G	LN 98 4	3. 026 2	1. 908 69	9. 315 1	. 00 64. 93
	ATOM 671	CD G	LN 98 4	3. 191 2	1. 095 68	8. 046	. 00 65. 89
	ATOM 672	0E1 G	LN 98 4	4. 299 20	0. 684 - 67	7. 696 1	. 00 65. 96
	ATOM 673	NE2 G	LN 98 4	2. 079 20). 847 67	7. 353 1	. 00 65. 22
10	ATOM 674	C G	LN 98 4	3. 781 19	9. 630 72	2. 369 1	. 00 61. 23
	ATOM 675	0 G	LN 98 4	3. 880 18	3. 403 72	2. 269 1	. 00 62. 18
	ATOM 676	N T	RP 99 4	3. 356 20). 233 73	3. 473 1	. 00 57. 45
	ATOM 677	CA T	RP 99 4	2. 893 19	. 459 74	. 611 1	. 00 54. 44
	ATOM 678	CB TI	P 99 43	3. 639 19	822 75	. 904 1.	00 55. 51
15	ATOM 679	CG TI	P 99 43	3. 770 21	. 291 76	. 211 1.	00 56. 94
	ATOM 680	CD2 TF				. 756 1.	00 56.03
	ATOM 681		P 99 43		. 426 76	. 922 1.	00 57. 25
	ATOM 682				. 969 77.	. 121 1.	00 56.67
	ATOM 683						00 56. 29
20	ATOM 684						00 56. 55
	ATOM 685		P 99 42	2. 635 24.	516 77.	440 1.	00 56. 53
·	ATOM 686						00 56. 67
			P 99 41				
	ATOM 688		P 99 41				
25	ATOM 689						
	ATOM 690				18. 981	75. 545	1. 00 49. 57
		CA SE					1. 00 48. 29
	ATOM 692						1. 00 49. 26
	ATOM 693	OG SEI	R 100	39. 055	17. 196	74. 315	1. 00 47. 27

WO 03/097824 PCT/JP03/06054

- 40 -

	ATOM 694	C S	ER 100	38. 860	18. 655	77. 067	1. 00 47. 91
	ATOM 695	0 SI	ER 100	39. 569	17. 845	77. 662	1. 00 48. 73
	ATOM 696	N V	L 101	37. 718	19. 120	77. 558	1. 00 47. 53
	ATOM 697	CA V	L 101	37. 225	18. 684	78. 852	1. 00 47. 86
5	ATOM 698	CB VA	L 101	38. 102	19. 233	79. 995	1. 00 47. 92
	ATOM 699	CG1 VA	L 101	38. 160	20. 747	79. 923	1.00 49.02
	ATOM 700	CG2 VA	L 101	37. 545	18. 783	81. 342	1.00 47.98
	ATOM 701	C VA	L 101	35. 784	19. 102	79. 101	1. 00 48. 77
	ATOM 702	0 VA	L 101	35. 391	20. 228	78. 798	1. 00 49. 05
10	ATOM 703	N LY	S 102	35. 004	18. 176	79. 649	1. 00 49. 04
	ATOM 704	CA LY	S 102	33. 607	18. 422	79. 969	1. 00 50. 31
	ATOM 705	CB LY	S 102	32. 875	17. 101	80. 220	1. 00 51. 15
	ATOM 706	CG LY	S 102	31. 385	17. 263	80. 452	1. 00 52. 57
	ATOM 707	CD LY	S 102	30. 835	16. 229	81. 425	1. 00 56. 56
15	ATOM 708	CE LY	S 102	30. 955	14. 804	80. 908	1. 00 57. 06
	ATOM 709	NZ LY	S 102	30. 275	13. 804	81. 787	1. 00 58. 08
	ATOM 710	C LY	S 102	33. 587	19. 254	81. 243	1. 00 51. 12
	ATOM 711	0 LY	5 102	34. 220	18. 888	82. 234	1. 00 52. 47
	ATOM 712	N TH	R 103	32. 859	20. 366	81. 217	1. 00 51. 40
20	ATOM 713	CA TH	R 103	32. 774	21. 252	82. 373	1. 00 50. 47
	ATOM 714	CB THI	R 103	33. 004	22. 715	81. 965	1. 00 50. 28
	ATOM 715	OG1 THI	103	31. 992	23. 113	81. 032	1. 00 51. 29
	ATOM 716	CG2 THI	103	34. 368	22. 879	81. 324	1. 00 47. 52
	ATOM 717	C THE	103	31. 416	21. 148	83. 048	1. 00 50. 90
25	ATOM 718	0 THE	103	31. 329	21. 056	84. 268	1. 00 50. 91
	ATOM 719	N LYS	104	30. 358	21. 162	82. 247	1. 00 52. 41
	ATOM 720	CA LYS	104	29. 000	21. 063	82. 770	1. 00 54. 04
	ATOM 721	CB LYS	104	28. 310	22. 436	82. 714	1. 00. 57. 21
	ATOM 722	CG LYS	104	28. 823	23. 450	83. 739	1. 00 59. 16

WO 03/097824 PCT/JP03/06054

- 41 -

	ATOM 723	CD LYS	104	28. 138	24. 809	83. 576	1. 00 62. 54
	ATOM 724	CE LYS	104	28. 398	25. 734	84. 766	1. 00 62. 99
	ATOM 725	NZ LYS	104	27. 798	25. 217	86. 037	1. 00 64. 17
	ATOM 726	C LYS	104		20. 047		
5	ATOM 727	0 LYS	104	28. 411	19. 941	80. 740	1. 00 53. 53
	ATOM 728	N HIS	105	27. 330	19. 299	82. 600	1. 00 53. 65
	ATOM 729	CA HIS	105	26. 539	18. 295	81. 903	1. 00 55. 05
	ATOM 730	CB HIS	105	27. 316	16. 972	81. 837	1. 00 55. 94
	ATOM 731	CG HIS	105	27. 668	16. 397	83. 176	1. 00 55. 84
10	ATOM 732	CD2 HIS	105	28. 793	16. 501	83. 924	1. 00 55. 19
	ATOM 733	ND1 HIS	105	26. 803	15. 602	83. 897	1. 00 55. 83
	ATOM 734	CE1 HIS	105	27. 380	15. 241	85. 030	1. 00 56. 35
	ATOM 735	NE2 HIS	105	28. 589	15. 773	85. 071	1. 00 55. 64
	ATOM 736	C HIS	105	25. 169	18. 074	82. 534	1. 00 56. 32
15	ATOM 737	0 HIS	105	24. 903	18. 535	83. 640	1. 00 56. 55
	ATOM 738	N GLN	106	24. 302	17. 365	81. 817	1. 00 58. 21
	ATOM 739	CA GLN	106	22. 950	17. 090	82. 289	1. 00 60. 74
	ATOM 740	CB GLN	106	22. 108	18. 367	82. 224	1. 00 61. 97
	ATOM 741	CG GLN	106	20. 775	18. 285	82. 945	1. 00 64. 86
20	ATOM 742	CD GLN	106	20. 928	18. 379	84. 447	1. 00 67. 03
	ATOM 743	OE1 GLN	106	21. 447	19. 370	84. 969	1. 00 68. 82
	ATOM 744	NE2 GLN	106	20. 479	17. 348	85. 155	1. 00 67. 41
	ATOM 745	C GLN	106	22. 322	16. 025	81. 396	1. 00 61. 62
	ATOM 746	0 GLN	106	22. 532	16. 027	80. 186	1. 00 62. 03
25	ATOM 747	N MET	107	21. 550	15. 121	81. 990	1. 00 63. 03
	ATOM 748	CA MET	107	20. 900	14. 058	81. 232	1. 00 64. 74
	ATOM 749	CB MET	107	21. 322	12. 688	81. 769	1. 00 66. 23
	ATOM 750	CG MET	107	22. 821	12. 456	81. 786	1. 00 68. 74
	ATOM 751	SD MET	107	23. 248	10. 812	82. 388	1. 00 70. 84

- 42 -

						10		
	ATOM 752	CE	MET	107	23. 427	9. 926	80. 853	1. 00 71. 13
	ATOM 753	C	MET	107	19. 385	. 14. 175	81. 313	1. 00 65. 81
	ATOM 754	0	MET	107	18. 837	14. 489	82. 369	1. 00 65. 52
	ATOM 755	N	TYR	108	18. 712	13. 915	80. 196	1. 00 66. 87
5	ATOM 756	CA	TYR	108	17. 258	13. 984	80. 143	1. 00 68. 20
	ATOM 757	CB	TYR	108	16. 800	15. 167	79. 286	1. 00 67. 20
	ATOM 758	CG	TYR	108	17. 436	16. 484	79. 660	1. 00 66. 35
	ATOM 759	CD1	TYR	108	18. 781	16. 731	79. 386	1. 00 65. 95
	ATOM 760	CE1	TYR	108	19. 380	17. 929	79. 746	1. 00 65. 76
10	ATOM 761	CD2	TYR	108	16. 702	17. 477	80. 307	1. 00 66. 24
	ATOM 762	CE2	TYR	108	17. 292	18. 683	80. 674	1. 00 65. 93
	ATOM 763	CZ	TYR	108	18. 633	18. 902	80. 391	1. 00 66. 14
	ATOM 764	ОН	TYR	108	19. 235	20. 083	80. 763	1. 00 64. 27
	ATOM 765	C	TYR	108	16. 706	12. 700	79. 549	1. 00 70. 20
15	ATOM 766	0	TYR	108	16. 995	12. 363	78. 404	1. 00 70. 55
	ATOM 767	N	SER	109	15. 912	11. 982	80. 331	1. 00 73. 54
	ATOM 768	CA	SER	109	15. 322	10. 739	79. 863	1. 00 76. 84
	ATOM 769	CB	SER	109	14. 524	10. 082	80. 992	1. 00 77. 63
	ATOM 770	0G	SER	109	15. 353	9. 837	82. 120	1. 00 78. 13
20	ATOM 771	C	SER	109	14. 419	11. 020	78. 664	1. 00 78. 98
	ATOM 772	0	SER	109	13. 936	12. 138	78. 486	1. 00 78. 51
	ATOM 773	N	ILE	110	14. 198	10. 002	77. 841	1. 00 82. 34
	ATOM 774	CA	ILE	110	13. 369	10. 143	76. 651	1. 00 86. 07
	ATOM 775	CB	ILE	110	13. 892	9. 249	75. 511	1. 00 86. 28
25	ATOM 776	CG2	ILE	110	13. 092	9. 505	74. 242	1. 00 86. 56
	ATOM 777	CG1	ILE	110	15. 379	9. 529	75. 275	1. 00 86. 19
	ATOM 778	CD1	ILE	110	16. 025	8. 612	74. 258	1. 00 86. 76
	ATOM 779	C :	ILE	110	11. 916	9. 772	76. 927	1. 00 88. 58
	ATOM 780	0	LE	110	11. 596	8. 606	77. 152	1. 00 88. 69

- 43 -

					- 43 -		
	ATOM 781	N PRO) 111	11. 016	10. 767	76. 910	1. 00 91. 13
	ATOM 782	CD PRO) 111	11. 319	12. 205	76. 811	1. 00 91. 83
	ATOM 783	CA PRO	111	9. 585	10. 562	77. 157	1. 00 93. 32
	ATOM 784	CB PRO	111	9. 015	11. 975	77. 062	1. 00 93. 16
5	ATOM 785	CG PRO	111	10. 147	12. 819	77. 536	1. 00 92. 31
	ATOM 786	C PRO	111	8. 928	9. 613	76. 159	1. 00 95. 40
	ATOM 787	O PRO	111	9. 466	9. 355	75. 082	1. 00 95. 80
	ATOM 788	N GLU	112	7. 758	9. 101	76: 529	1. 00 97. 55
	ATOM 789	CA GLU	112	7. 006	8. 185	75. 679	1. 00 99. 50
10	ATOM 790	CB GLU	112	5. 816	7. 611	76. 458	1. 00100. 31
	ATOM 791	CG GLU	112	4. 745	6. 971	75. 589	1. 00101. 76
	ATOM 792	CD GLU	112	5. 316	5. 989	74. 587	1. 00102. 84
	ATOM 793	OE1 GLU	112	5. 967	5. 012	75. 014	1. 00103. 66
	ATOM 794	OE2 GLU	112	5. 113	6. 196	73. 372	1. 00103. 00
15	ATOM 795	C GLU	112	6. 508	8. 884	74. 418	1. 00100. 37
	ATOM 796	0 GLU	112	6. 914	8. 545	73. 304	1. 00100. 17
	ATOM 797	N ASP	113	5. 625	9. 859	74. 606	1. 00101. 44
	ATOM 798	CA ASP	113	5. 056	10.620	73. 499	1. 00102. 05
	ATOM 799	CB ASP	113	4. 087	11.680	74. 038	1. 00102. 23
20	ATOM 800	CG ASP	113	4. 682	12. 494	75. 177	1. 00102. 33
	ATOM 801	OD1 ASP	113	4. 961	11. 913	76. 249	1. 00102. 01
	ATOM 802	OD2 ASP	113	4. 870	13. 716	74. 999	1. 00101. 99
	ATOM 803	C ASP	113	6. 131	11. 282	72. 638	1. 00102. 09
	ATOM 804	0 ASP	113	5. 843	11. 789	71. 553	1. 00101. 96
25	ATOM 805	N ALA	114	7. 368	11. 273	73. 126	1. 00102. 12
	ATOM 806	CA ALA	114	8. 484	11. 869	72. 401	1. 00102. 09
	ATOM 807	CB ALA	114	9. 590	12. 256	73. 377	1. 00101. 76
	808 MOTA	C ALA	114	9. 022	10. 895	71. 358	1. 00102. 06
	ATOM 809	0 ALA	114	9. 763	11. 282	70. 455	1. 00101. 89

- 44 -

					44			
	ATOM 810	N ME	ET 115	8. 640	9. 630	71. 491	1. 00102. 04	
	ATOM 811	CA ME	ET 115	9. 081	8. 592	70. 569	1. 00102. 05	
	ATOM 812	CB ME	T 115	9. 466	7. 331	71. 346	1. 00102. 77	
	ATOM 813	CG ME	T 115	10. 637	7. 509	72. 307	1. 00103. 47	
5	ATOM 814	SD ME	T 115	12. 256	7. 549	71. 502	1. 00104. 26	
	ATOM 815	CE ME	T 115	12. 740	5. 824	71. 638	1. 00103. 48	
	ATOM 816	C ME	T 115	8. 004	8. 253	69. 538	1. 00101. 77	
	ATOM 817	0 ME	T 115	8. 268	8. 275	68. 337	1. 00102. 14	
	ATOM 818	n th	R 116	6. 796	7. 942	70. 006	1. 00101. 14	
10	ATOM 819	CA TH	R 116	5. 690	7. 590	69. 110	1. 00100. 36	
	ATOM 820	CB TH	R 116	4. 517	6. 927	69. 880	1. 00100. 42	
	ATOM 821	OG1 TH	R 116	5. 004	5. 805	70. 625	1. 00100. 29	
	ATOM 822	CG2 TH	R 116	3. 441	6. 441	68. 911	1. 00100. 05	
	ATOM 823	C TH	R 116	5. 150	8. 816	68. 379	1. 00 99. 62	
15	ATOM 824	0 TH	R 116	4. 423	8. 694	67. 391	1. 00 99. 72	
	ATOM 825	N GL	117	5. 510	9. 996	68. 870	1. 00 98. 62	
	ATOM 826	CA GLY	117	5. 048	11. 224	68. 252	1. 00 97. 42	
	ATOM 827	C GLY	117	5. 619	11. 447	66. 866	1. 00 96. 48	
	ATOM 828	0 GLY	117	5. 746	10. 511	66. 074	1. 00 96. 38	
20	ATOM 829	N THE	118	5. 962	12. 696	66. 570	1. 00 95. 25	
	ATOM 830	CA THE	118	6. 521	13. 050	65. 273	1. 00 93. 78	
	ATOM 831	CB THR	118	5. 679	14. 133	64. 578	1. 00 93. 57	
	ATOM 832	OG1 THR	118	5. 735	15. 343	65. 342	1. 00 93. 50	
	ATOM 833	CG2 THR	118	4. 234	13. 685	64. 457	1. 00 93. 65	
25	ATOM 834	C THR	118	7. 936	13. 583	65. 440	1. 00 92. 67	
	ATOM 835	0 THR	118	8. 335	13. 976	66. 537	1. 00 92. 39	
	ATOM 836	N ALA	119	8. 687	13. 593	64. 343	1. 00 91. 30	
	ATOM 837	CA ALA	119	10. 058	14. 084	64. 356	1. 00 90. 00	
	ATOM 838	CB ALA	119	10. 643	14. 031	62. 956	1. 00 89. 81	

PCT/JP03/06054

- 45 -

						10		
	ATOM 83	9 C	ALA	119	10. 066	15. 513	64. 867	1. 00 89. 21
	ATOM 840	0 (ALA	119	11. 045	15. 972	65. 455	1. 00 88. 98
	ATOM 84	l N	GLU	120	8. 959	16. 210	64. 636	1. 00 88. 61
	ATOM 842	CA	GLU	120	8. 819	17. 593	65. 063	1. 00 87. 61
5	ATOM 843	B CB	GLU	120	7. 505	18. 177	64. 536	1. 00 87. 74
	ATOM 844	CG	GLU	120	7. 138	17. 763	63. 112	1. 00 86. 31
	ATOM 845	CD	GLU	120	8. 269	17. 956	62. 120	1. 00 85. 84
	ATOM 846	0E1	GLU	120	8. 884	19. 042	62. 113	1. 00 84. 76
	ATOM 847	0E2	GLU	120	8. 535	17. 020	61. 336	1. 00 85. 71
10	ATOM 848	C	GLU	120	8. 837	17. 658	66. 588	1. 00 86. 71
	ATOM 849	0	GLU	120	9. 610	18. 412	67. 179	1. 00 86. 71
	ATOM 850	N	MET	121	7. 980	16. 859	67. 216	1. 00 85. 74
	ATOM 851	CA	MET	121	7. 895	16. 817	68. 671	1. 00 84. 85
	ATOM 852	CB	MET	121	6. 798	15. 842	69. 111	1. 00 84. 04
15	ATOM 853	CG	MET	121	5. 390	16. 273	68. 740	1. 00 81. 88
	ATOM 854	SD	MET	121	4. 152	15. 078	69. 268	1. 00 80. 83
	ATOM 855	CE	MET	121	3. 772	14. 283	67. 730	1. 00 78. 55
	ATOM 856	C	MET	121	9. 226	16. 397	69. 286	1. 00 84. 73
	ATOM 857	0	MET	121	9. 687	17. 003	70. 255	1. 00 84. 87
20	ATOM 858	N	LEU	122	9. 839	15. 360	68. 717	1. 00 84. 21
	ATOM 859	CA	LEU	122	11. 115	14. 851	69. 211	1. 00 83. 20
	ATOM 860	CB :	LEU	122	11.711	13. 847	68. 221	1. 00 83. 29
	ATOM 861	CG	LEU	122	12. 966	13. 109	68. 697	1. 00 83. 07
	ATOM 862	CD1	LEU	122	12. 612	12. 232	69. 885	1. 00 82. 78
25	ATOM 863	CD2 1	LEU	122	13. 533	12. 261	67. 572	1. 00 82. 52
	ATOM 864	C I	LEU	122	12. 110	15. 980	69. 448	1. 00 82. 61
	ATOM 865	0 I	LEU	122	12. 546	16. 204	70. 575	1. 00 82. 47
	ATOM 866	N F	PHE	123	12. 467	16. 694	68. 385	1. 00 82. 28
	ATOM 867	CA F	PHE	123	13. 414	17. 794	68. 512	1. 00 82. 09

PCT/JP03/06054

- 46 -

					70		
	ATOM 868	CB PHE	123	13. 898	18. 251	67. 136	1. 00 82. 08
	ATOM 869	CG PHE	123	14. 948	17. 357	66. 547	1.00 81.61
	ATOM 870	CD1 PHE	123	14. 616	16. 098	66. 060	1. 00 81. 34
	ATOM 871	CD2 PHE	123	16. 281	17. 756	66. 523	1. 00 81. 33
5	ATOM 872	CE1 PHE	123	15. 594	15. 246	65. 559	1. 00 80. 67
	ATOM 873	CE2 PHE	123	17. 268	16. 912	66. 026	1. 00 81. 58
	ATOM 874	CZ PHE	123	16. 923	15. 653	65. 543	1. 00 81. 33
	ATOM 875	C PHE	123	12. 834	18. 964	69. 288	1. 00 81. 98
	ATOM 876	0 PHE	123	13. 570	19. 838	69. 747	1. 00 81. 74
10	ATOM 877	N ASP	124	11. 512	18. 980	69. 429	1. 00 82. 09
	ATOM 878	CA ASP	124	10. 852	20. 028	70. 195	1. 00 82. 29
	ATOM 879	CB ASP	124	9. 329	19. 909	70. 073	1. 00 81. 96
	ATOM 880	CG ASP	124	8. 731	20. 961	69. 157	1. 00 81. 56
	ATOM 881	OD1 ASP	124	7. 510	20. 897	68. 901	1. 00 81. 25
15	ATOM 882	OD2 ASP	124	9. 477	21. 855	68. 701	1. 00 80. 94
	ATOM 883	C ASP	124	11. 279	19. 808	71. 641	1. 00 82. 22
	ATOM 884	0 ASP	124	11. 819	20. 707	72. 287	1. 00 81. 61
	ATOM 885	N TYR	125	11. 047	18. 595	72. 133	1. 00 82. 59
	ATOM 886	CA TYR	125	11. 420	18. 233	73. 494	1. 00 83. 66
20	ATOM 887	CB TYR	125	11. 048	16. 771	73. 767	1. 00 85. 84
	ATOM 888	CG TYR	125	11. 533	16. 240	75. 100	1. 00 88. 74
	ATOM 889	CD1 TYR	125	12. 763	15. 590	75. 209	1. 00 89. 83
	ATOM 890	CE1 TYR	125	13. 222	15. 110	76. 437	1. 00 91. 28
	ATOM 891	CD2 TYR	125	10. 770	16. 399	76. 257	1. 00 90. 41
25	ATOM 892	CE2 TYR	125	11. 221	15. 926	77. 493	1. 00 91. 86
	ATOM 893	CZ TYR	125	12. 448	15. 281	77. 574	1. 00 92. 09
	ATOM 894	OH TYR	125	12. 896	14. 807	78. 789	1. 00 93. 08
	ATOM 895	C TYR	125	12. 917	18. 451	73. 704	1. 00 82. 86
	ATOM 896	0 TYR	125	13. 352	18. 829	74. 792	1. 00 82. 74

- 47 -

						11		
	ATOM 897	N	ILE	126	13. 701	18. 215	72. 655	1. 00 81. 74
	ATOM 898	CA	ILE	126	15. 146	18. 398	72. 727	1. 00 80. 58
	ATOM 899	CB	ILE	126	15. 824	18. 005	71. 397	1. 00 79. 32
	ATOM 900	CG2	ILE	126	17. 277	18. 443	71. 398	1. 00 78. 57
5	ATOM 901	CG1	ILE	126	15. 719	16. 494	71. 194	1. 00 78. 47
	ATOM 902	CD1	ILE	126	16. 408	15. 993	69. 946	1. 00 78. 42
	ATOM 903	C	ILE	126	15. 479	19. 852	73. 047	1. 00 80. 87
	ATOM 904	0	ILE	126	16. 334	20. 133	73. 887	1. 00 79. 71
	ATOM 905	N	SER	127	14. 799	20. 772	72. 370	1. 00 81. 80
10	ATOM 906	CA	SER	127	15. 018	22. 196	72. 594	1. 00 82. 44
	ATOM 907	CB	SER	127	14. 160	23. 021	71. 636	1. 00 82. 62
	ATOM 908	0G	SER	127	14. 559	22. 807	70. 294	1. 00 83. 20
	ATOM 909	C	SER	127	14. 668	22. 543	74. 034	1. 00 82. 44
	ATOM 910	0	SER	127	15. 318	23. 382	74. 660	1. 00 81. 86
15	ATOM 911	N	GLU	128	13. 636	21. 884	74. 553	1. 00 83. 04
	ATOM 912	CA	GLU	128	13. 202	22. 106	75. 927	1. 00 83. 79
	ATOM 913	CB (GLU	128	11. 944	21. 289	76. 232	1. 00 84. 79
	ATOM 914	CG (GLU	128	11. 408	21. 490	77. 645	1. 00 86. 70
	ATOM 915	CD (GLU	128	10. 425	20. 409	78. 061	1. 00 88. 14
20	ATOM 916	0E1 (GLU	128	9. 408	20. 222	77. 357	1. 00 88. 36
	ATOM 917	0E2 (GLU	128	10. 672	19. 747	79. 094	1. 00 88. 06
	ATOM 918	C (GLU	128	14. 318	21. 686	76. 877	1. 00 83. 42
	ATOM 919	0 (GLU	128	14. 483	22. 261	77. 952	1. 00 84. 16
	ATOM 920	N C	CYS	129	15. 081	20. 675	76. 475	1. 00 82. 77
25	ATOM 921	CA C	CYS	129	16. 177	20. 179	77. 295	1. 00 81. 21
	ATOM 922	CB C	YS	129	16. 554	18. 760	76. 873	1. 00 81. 07
	ATOM 923	SG C	YS	129	15. 206	17. 569	77. 006	1. 00 80. 63
	ATOM 924	C C	YS	129	17. 391	21. 089	77. 178	1. 00 80. 64
	ATOM 925	0 C	YS	129	18. 092	21. 330	78. 160	1. 00 79. 84

WO 03/097824 PCT/JP03/06054

- 48 -

	ATOM 926	N ILE	130	17. 644	21. 591	75. 975	1. 00 80. 16
	ATOM 927	CA ILE	130	18. 782	22. 475	75. 775	1. 00 80. 33
	ATOM 928	CB ILE	130	18. 944	22. 860	74. 298	1. 00 79. 59
	ATOM 929	CG2 ILE	130	20. 253	23. 614	74. 102	1. 00 79. 29
5	ATOM 930	CG1 ILE	130	18. 933	21. 599	73. 436	1. 00 79. 00
	ATOM 931	CD1 ILE	130	19. 069	21. 860	71. 958	1. 00 79. 73
	ATOM 932	C ILE	130	18. 559	23. 735	76. 595	1. 00 80. 49
	ATOM 933	0 ILE	130	19. 475	24. 241	77. 239	1. 00 80. 22
	ATOM 934	N SER	131	17. 326	24. 229	76. 574	1. 00 81. 09
10	ATOM 935	CA SER	131	16. 970	25. 428	77. 320	1. 00 82. 28
	ATOM 936	CB SER	131	15. 525	25. 826	77. 006	1. 00 83. 15
	ATOM 937	OG SER	131	14. 641	24. 736	77. 195	1. 00 82. 88
	ATOM 938	C SER	131	17. 136	25. 195	78. 820	1. 00 82. 33
	ATOM 939	0 SER	131	17. 843	25. 940	79. 501	1. 00 82. 07
15	ATOM 940	N ASP	132	16. 478	24. 155	79. 322	1. 00 82. 42
	ATOM 941	CA ASP	132	16. 540	23. 792	80. 735	1. 00 82. 24
	ATOM 942	CB ASP	132	15. 893	22. 411	80. 934	1. 00 83. 24
	ATOM 943	CG ASP	132	15. 836	21. 981	82. 393	1. 00 83. 66
	ATOM 944	OD1 ASP	132	15. 165	20. 963	82. 678	1. 00 83. 28
20	ATOM 945	OD2 ASP	132	16. 458	22. 645	83. 250	1. 00 83. 85
	ATOM 946	C ASP	132	17. 996	23. 778	81. 200	1. 00 81. 62
	ATOM 947	0 ASP	132	18. 324	24. 293	82. 270	1. 00 82. 12
	ATOM 948	N PHE	133	18. 866	23. 193	80. 383	1. 00 80. 65
	ATOM 949	CA PHE	133	20. 286	23. 118	80. 698	1. 00 79. 47
25	ATOM 950	CB PHE	133	21. 033	22. 331	79. 616	1. 00 77. 80
	ATOM 951	CG PHE	133	22. 528	22. 391	79. 750	1. 00 75. 86
	ATOM 952	CD1 PHE	133	23. 178	21. 695	80. 761	1. 00 75. 50
	ATOM 953	CD2 PHE	133	23. 284	23. 179	78. 889	1. 00 75. 39
	ATOM 954	CE1 PHE	133	24. 562	21. 785	80. 914	1. 00 74. 78

WO 03/097824 PCT/JP03/06054

- 49 -

					10		
	ATOM 955	CE2 PHE	133	24. 667	23. 275	79. 035	1. 00 74. 59
	ATOM 956	CZ PHE	133	25. 305	22. 578	80. 049	1. 00 74. 18
	ATOM 957	C PHE	133	20. 876	24. 519	80. 786	1. 00 79. 33
	ATOM 958	0 PHE	133	21. 690	24. 810	81. 659	1. 00 79. 06
5	ATOM 959	N LEU	134	20. 459	25. 382	79. 869	1. 00 79. 23
	ATOM 960	CA LEU	134	20. 951	26. 748	79. 828	1. 00 79. 59
	ATOM 961	CB LEU	134	20. 482	27. 412	78. 534	1. 00 79. 43
	ATOM 962	CG LEU	134	21. 043	26. 703	77. 297	1. 00 78. 61
	ATOM 963	CD1 LEU	134	20. 401	27. 247	76. 032	1. 00 78. 47
10	ATOM 964	CD2 LEU	134	22. 554	26. 878	77. 264	1. 00 77. 75
	ATOM 965	C LEU	134	20. 524	27. 565	81. 043	1. 00 79. 41
	ATOM 966	0 LEU	134	21. 324	28. 310	81. 609	1. 00 78. 74
	ATOM 967	N ASP	135	19. 268	27. 423	81. 448	1. 00 80. 16
	ATOM 968	CA ASP	135	18. 780	28. 152	82. 609	1. 00 80. 92
15	ATOM 969	CB ASP	135	17. 271	27. 966	82. 777	1. 00 80. 81
	ATOM 970	CG ASP	135	16. 474	28. 778	81. 783	1. 00 81. 08
	ATOM 971	OD1 ASP	135	16. 801	29. 970	81. 599	1. 00 82. 67
	ATOM 972	OD2 ASP	135	15. 517	· 28. 234	81. 195	1. 00 81. 12
	ATOM 973	C ASP	135	19. 486	27. 686	83. 872	1. 00 81. 80
20	ATOM 974	0 ASP	135	20. 090	28. 490	84. 578	1. 00 82. 12
	ATOM 975	N LYS	136	19. 418	26. 384	84. 143	1. 00 82. 43
	ATOM 976	CA LYS	136	20. 041	25. 811	85. 333	1. 00 83. 25
	ATOM 977	CB LYS	136	19. 750	24. 307	85. 418	1. 00 82. 64
	ATOM 978	CG LYS	136	18. 288	23. 970	85. 677	1. 00 82. 57
25	ATOM 979	CD LYS	136	18. 095	22. 487	85. 952	1. 00 82. 49
	ATOM 980	CE LYS	136	16. 630	22. 154	86. 182	1. 00 82. 31
	ATOM 981	NZ LYS	136	16. 053	22. 914	87. 323	1. 00 82. 43
•	ATOM 982	C LYS	136	21. 548	26. 044	85. 429	1. 00 84. 12
	ATOM 983	0 LYS	136	22. 185	25. 610	86. 390	1. 00 84. 51

- 50 -

								٠.	•					
	ATOM	984	N H	IIS	137	22	. 119	26	. 727	84.	442	1. 00	85	. 08
	ATOM	985	CA H	IS	137	23	. 551	27	. 010	84.	450	1. 00	86.	. 27
	ATOM	986 (CB H	IS	137	24	. 280	26	. 115	83.	438	1. 00	86.	74
	ATOM	987 (CG H	IS	137	24	. 169	24	. 649	83.	730	1. 00	87.	04
5	ATOM	988 (CD2 H	IS	137	25.	112	23.	. 729	84.	047	1. 00	86.	44
	ATOM	989 N	VD1 H	IS	137	22.	968	23.	971	83.	708	1. 00	87.	51
	ATOM	990 (E1 H	IS	137	23.	176	22.	699	83.	999	1. 00	86.	59
	ATOM	991 N	IE2 H	IS	137	24.	468	22.	526	84.	209	1. 00	86.	35
	ATOM	992 0	H	IS	137	23.	820	28.	476	84.	123	1. 00	87.	11
10	ATOM	993 0	H	IS	137	24.	943	28.	842	83.	776	1. 00	86.	73
	ATOM	994 N	G]	LN	138	22.	784	29.	307	84.	249	1. 00	88.	41
	ATOM	995 C	A Gl	LN	138	22.	883	30.	736	83.	955	1. 00	89.	43
	ATOM	996 C	B GI	LN	138	23.	469	31.	512	85.	140	1. 00	90.	47
	ATOM	997 C	G GI	LN	138	22.	654	31.	451	86. 4	419	1. 00	92.	10
15	ATOM	998 C	D GI	LN	138	22.	738	30.	099	87. (095	1. 00	93.	09
	ATOM	999 0	E1 GI	.N	138	23.	829	29.	598	87. 3	372	1. 00	93.	35
•	ATOM	1000	· NE2	GLN	138		21. 58	4	29. 50	1 8	37. 37	1 1.	00	93. 71
	ATOM	1001	C	GLN	138		23. 77	9	30. 93	1 8	32. 74	7 1. (00	89. 90
	ATOM	1002	0	GLN	138		24. 92	2	31. 37	6 . 8	32. 87	5 1. (00	89. 53
20	ATOM	1003	N	MET	139		23. 26	2	30. 59	1 8	31. 57	3 1. (00	89. 97
	ATOM	1004		MET	139		24. 04	6	30. 72	5 8	30. 35	9 1. (00	90. 27
	ATOM	1005	CB	MET	139		24. 99	5	29. 52	9 8	30. 23	5 1. (0 !	90. 82
	ATOM	1006	CG	MET	139		26. 31	4	29. 83	8 7	9. 542	2 1. 0	00 !	91. 26
	ATOM	1007	SD	MET	139		27. 52	6	28. 50	8 7	9. 736	3 1. (0 9	90. 73
25	ATOM	1008	CE	MET	139		28. 30	3	28. 97	4 8	1. 303	3 1.0	0 9	91. 08
	ATOM	1009	С	MET	139		23. 13	7	30. 820	7	9. 140	1.0	0 9	90. 17
	ATOM	1010	0	MET	139	;	23. 610) ;	30. 894	1 7	8. 006	1. 0	0 9	90. 11
	ATOM	1011	N	LYS	140	4	21. 829	9 ;	30. 829	7	9. 380	1.0	0 8	39. 92
	ATOM	1012	CA.	LYS	140	2	20. 85	1 8	30. 92 1	1 7	8. 300	1. 0	0 8	89. 78

- 51 -

	ATOM	1013	3 CI	B LYS	140	19. 434	30. 922	78. 874	1. 00 89. 37
	ATOM	1014	l Co	G LYS	140	18. 357	31. 239	77. 852	1. 00 89. 17
	ATOM	1015	CI	LYS	140	16. 972	31. 055	78. 438	1. 00 89. 06
	ATOM	1016	CE	LYS	140	16. 688	29. 588	78. 675	1. 00 88. 66
5	ATOM	1017	NZ	LYS	140	16. 797	28. 822	77. 406	1. 00 88. 73
	ATOM	1018	C	LYS	140	21.067	32. 179	77. 466	1. 00 89. 78
	ATOM	1019	0	LYS	140	20. 593	32. 278	76. 334	1. 00 89. 28
	ATOM	1020	N	HIS	141	21. 794	33. 133	78. 037	1. 00 90. 38
	ATOM	1021	CA	HIS	141	22. 082	34. 401	77. 376	1. 00 90. 81
10	ATOM	1022	CB	HIS	141	22. 222	35. 506	78. 427	1. 00 90. 98
	ATOM	1023	CG	HIS	141	23. 294	35. 243	79. 443	1. 00 91. 18
	ATOM	1024	CD	2 HIS	141	24. 520	35. 794	79. 610	1. 00 91. 04
	ATOM	1025	ND	1 HIS	141	23. 163	34. 294	80. 434	1. 00 91. 11
	ATOM	1026	CE	1 HIS	141	24. 262	34. 273	81. 168	1. 00 91. 45
15	ATOM	1027	NE	2 HIS	141	25. 102	35. 174	80. 688	1. 00 90. 96
	ATOM	1028	С	HIS	141	23. 349	34. 367	76. 516	1. 00 90. 72
	ATOM	1029	0	HIS	141	24. 048	35. 374	76. 399	1. 00 91. 00
	ATOM	1030	N	LYS	142	23. 648	33. 220	75. 912	1. 00 90. 17
	ATOM	1031	CA	LYS	142	24. 845	33. 109	75. 082	1. 00 89. 12
20	ATOM	1032	CB	LYS	142	26.000	32. 529	75. 908	1. 00 89. 54
	ATOM	1033	CG	LYS	142	26. 424	33. 406	77. 079	1. 00 90. 51
	ATOM	1034	CD	LYS	142	27. 490	32. 730	77. 926	1. 00 91. 91
	ATOM	1035	CE	LYS	142	27. 867	33. 579	79. 131	1. 00 92. 42
	ATOM	1036	NZ	LYS	142	28. 820	32. 863	80. 026	1. 00 92. 34
25	ATOM	1037	С	LYS	142	24. 643	32. 276	73. 815	1. 00 87. 58
	ATOM	1038	0	LYS	142	23. 763	31. 418	73. 749	1. 00 87. 74
	ATOM	1039	N	LYS	143	25. 465	32. 554	72. 808	1. 00 85. 65
	ATOM	1040	CA	LYS	143	25. 414	31. 849	71. 532	1. 00 83. 45
	ATOM	1041	CB	LYS	143	25. 052	32. 819	70. 402	1. 00 83. 10

PCT/JP03/06054

- 52 -

	ATOM	1042	2 C(LYS	1/12		0 <i>6</i>) 99 969	. 60 noc) 1 00 00 55
	ATOM	1043			143 143			68. 988	
	ATOM					24. 890			
		1044			143	25. 289			
	ATOM	1045			143	24. 519	31. 749	66. 045	1. 00 82. 29
5	ATOM	1046	C	LYS	143	26. 790	31. 252	71. 283	1. 00 82. 32
	ATOM	1047	0	LYS	143	27. 751	31. 974	71.002	1. 00 82. 33
	ATOM	1048	N	LEU	144	26. 884	29. 932	71. 409	1. 00 79. 90
	ATOM	1049	CA	LEU	144	28. 146	29. 233	71. 198	1. 00 77. 12
	ATOM	1050	CB	LEU	144	28. 653	28. 634	72. 517	1. 00 78. 89
10	ATOM	1051	CG	LEU	144	29. 417	29. 543	73. 491	1. 00 80. 11
	ATOM	1052	CD	1 LEU	144	28. 560	30. 727	73. 924	1. 00 81. 77
	ATOM	1053	CD	2 LEU	144	29. 836	28. 721	74. 698	1. 00 80. 96
	ATOM	1054	C	LEU	144	27. 993	28. 132	70. 156	1. 00 73. 23
	ATOM	1055	0	LEU	144	26. 876	27. 742	69. 810	1. 00 72. 89
15	ATOM	1056	N	PRO	145	29. 119	27. 628	69. 628	1. 00 70. 01
	ATOM	1057	CD	PR0	145	30. 498	28. 104	69. 833	1. 00 68. 83
	ATOM	1058	CA	PRO	145	29. 081	26. 565	68. 621	1. 00 67. 77
	ATOM	1059	CB	PRO	145	30. 555	26. 356	68. 285	1. 00 68. 79
	ATOM	1060	CG	PRO	145	31. 159	27. 706	68. 542	1. 00 69. 21
20	ATOM	1061	С	PRO	145	28. 434	25. 299	69. 181	1. 00 65. 49
	ATOM	1062	0	PRO	145	28. 615	24. 963	70. 351	1. 00 64. 23
	ATOM	1063	N	LEU	146	27. 677	24. 603	68. 340	
	ATOM	1064	CA	LEU	146	27. 007	23. 383	68. 757	1. 00 61. 72
	ATOM	1065	СВ	LEU	146	25. 492	23. 532	68. 602	1. 00 62. 15
25	ATOM	1066	CG	LEU	146	24. 678	22. 285	68. 945	1. 00 62. 90
	ATOM	1067	CD1	LEU	146	25. 011	21. 842	70. 353	1. 00 64. 57
	ATOM	1068		LEU	146	23. 194	22. 577	68. 817	1. 00 65. 06
	ATOM	1069	С	LEU	146	27. 473	22. 152	67. 985	1. 00 59. 94
	ATOM	1070	0	LEU	146	27. 342	22. 086	66. 763	1. 00 59. 94
		· -	-		- 10	J., U14	<i></i> 000	00. 100	1. 00 03. 04

WO 03/097824 PCT/JP03/06054

- 53 -

	ATOM	1071	N	GLY	147	28. 028	21. 189	68. 721	1. 00 58. 65
	ATOM	1072	CA	GLY	147	28. 492	19. 939	68. 136	1. 00 54. 15
	ATOM	1073	C	GLY	147	27. 444	18. 891	68. 465	1. 00 49. 71
	ATOM	1074	0	GLY	147	27. 175	18. 628	69. 635	1. 00 50. 70
5	ATOM	1075	N	PHE	148	26. 854	18. 287	67. 440	1. 00 46. 12
	ATOM	1076	CA	PHE	148	25. 795	17. 297	67. 635	1. 00 42. 39
	ATOM	1077	CB	PHE	148	24. 610	17. 675	66. 740	1. 00 39. 68
	ATOM	1078	CG	PHE	148	23. 366	16. 864	66. 977	1. 00 38. 24
	ATOM	1079	CD1	PHE	148	22. 326	16. 901	66. 056	1. 00 36. 04
10	ATOM	1080	CD2	PHE	148	23. 212	16. 102	68. 132	1. 00 36. 13
	ATOM	1081	CE1	PHE	148	21. 148	16. 194	66. 279	1. 00 38. 53
	ATOM	1082	CE2	PHE	148	22. 042	15. 395	68. 365	1. 00 35. 28
	ATOM	1083	CZ	PHE	148	21. 005	15. 440	67. 437	1. 00 37. 48
	ATOM	1084	C	PHE	148	26. 197	15. 840	67. 354	1. 00 41. 67
15	ATOM	1085	0	PHE	148	26. 463	15. 475	66. 205	1. 00 42. 24
	ATOM	1086	N	THR	149	26. 247	15. 013	68. 398	1. 00 40. 23
	ATOM	1087	CA	THR	149	26. 562	13. 593	68. 222	1. 00 36. 30
	ATOM	1088	CB	THR	149	27. 281	13. 001	69. 442	1. 00 36. 36
	ATOM	1089	0G1	THR	149	28. 580	13. 597	69. 560	1. 00 37. 54
20	ATOM	1090	CG2	THR	149	27. 444	11. 492	69. 286	1. 00 37. 01
	ATOM	1091	С	THR	149	25. 212	12. 909	68. 039	1. 00 34. 65
	ATOM	1092	0	THR	149	24. 412	12. 836	68. 967	1. 00 31. 13
	ATOM	1093	N	PHE	150	24. 972	12. 422	66. 825	1. 00 33. 67
	ATOM	1094	CA	PHE	150	23. 714	11. 782	66. 456	1. 00 34. 60
25	ATOM	1095	CB	PHE	150	23. 061	12. 614	65. 336	1. 00 32. 78
	ATOM	1096	CG	PHE	150	21. 739	12. 086	64. 854	1. 00 30. 57
	ATOM	1097	CD1	PHE	150	21. 625	11. 513	63. 595	1. 00 30. 43
	ATOM	1098	CD2	PHE	150	20. 598	12. 213	65. 637	1. 00 31. 90
	ATOM	1099	CE1	PHE	150	20. 382	11. 076	63. 115	1. 00 34. 54

- 54 -

	ATOM	1100	CE	2 PHE	150	19. 356	11. 783	65. 176	1. 00 30. 63
	ATOM	1101	CZ	PHE	150	19. 241	11. 213	63. 913	1. 00 32. 01
	ATOM	1102	. C	PHE	150	24. 011	10. 358	65. 991	1. 00 35. 95
	ATOM	1103	0	PHE	150	24. 369	10. 128	64. 836	1. 00 38. 42
5	ATOM	1104	N	SER	151	23. 843	9. 412	66. 908	1. 00 36. 96
	ATOM	1105	CA	SER	151	24. 129	7. 995	66. 680	1. 00 34. 37
	ATOM	1106	CB	SER	151	24. 186	7. 271	68. 025	1. 00 35. 80
	ATOM	1107	0G	SER	151	25. 111	7. 897	68. 892	1. 00 39. 97
	ATOM	1108	C	SER	151	23. 189	7. 228	65. 770	1. 00 32. 05
10	ATOM	1109	0	SER	151	22. 537	6. 292	66. 215	1. 00 32. 11
	ATOM	1110	N	PHE	152	23. 110	7. 611	64. 505	1. 00 31. 41
	ATOM	1111	CA	PHE	152	22. 253	6. 902	63. 563	1. 00 31. 81
	ATOM	1112	CB	PHE	152	20. 824	7. 464	63. 570	1. 00 34. 43
	ATOM	1113	CG	PHE	152	20. 149	7. 372	64. 904	1. 00 34. 95
15	ATOM	1114	CD1	PHE	152	20. 278	8. 401	65. 838	1. 00 32. 95
	ATOM	1115	CD2	PHE	152	19. 439	6. 228	65. 256	1. 00 35. 34
	ATOM	1116	CE1	PHE	152	19. 713	8. 291	67. 108	1. 00 35. 00
	MOTA	1117	CE2	PHE	152	18. 868	6. 102	66. 526	1. 00 35. 79
	ATOM	1118	CZ	PHE	152	19. 005	7. 135	67. 454	1. 00 38. 15
20	ATOM	1119	C	PHE	152	22. 845	7. 010	62. 171	1. 00 31. 95
	ATOM	1120	0	PHE	152	23. 727	7. 831	61. 921	1. 00 31. 72
	ATOM	1121	N	PRO	153	22. 386	6. 164	61. 247	1. 00 32. 44
	ATOM	1122	CD	PRO	153	21. 374	5. 098	61. 343	1. 00 30. 73
	ATOM	1123	CA	PRO	153	22. 942	6. 248	59. 896	1. 00 34. 59
25	ATOM	1124	CB	PRO	153	22. 397	4. 991	59. 225	1. 00 31. 34
	ATOM	1125	CG	PRO	153	21.072	4. 812	59. 884	1. 00 31. 98
	ATOM	1126	C	PRO	153	22. 507	7. 535	59. 201	1. 00 37. 30
	ATOM	1127	0	PRO	153	21. 310	7. 813	59. 067	1. 00 39. 02
	ATOM	1128	N	VAL	154	23. 483	8. 325	58. 770	1. 00 39. 02

					U	טו		
	MOTA	1129	CA V	AL 154	23. 187	9. 581	58. 092	1. 00 40. 43
	ATOM	1130	CB V	AL 154	23. 446	10. 792	59. 007	1. 00 39. 28
	ATOM	1131	CG1 V	AL 154	23. 191	12. 081	58. 238	1. 00 41. 18
	ATOM	1132	CG2 V	AL 154	22. 557	10. 727	60. 221	1. 00 38. 37
5	ATOM	1133	C V.	AL 154	24. 023	9. 785	56. 837	1. 00 41. 48
	ATOM	1134	0 V.	AL 154	25. 241	9. 602	56. 861	1. 00 41. 28
	ATOM	1135	N A	RG 155	23. 365	10. 162	55. 743	1. 00 43. 31
	ATOM	1136	CA A	RG 155	24. 072	10. 441	54. 495	1. 00 46. 32
	ATOM	1137	CB Al	RG 155	23. 233	10. 058	53. 280	1. 00 47. 31
10	ATOM	1138	CG A	RG 155	23. 809	10. 586	51. 968	1. 00 52. 20
	ATOM	1139	CD AI	RG 155	23. 563	9. 614	50. 844	1. 00 55. 56
	ATOM	1140	NE AF	RG 155	24. 419	8. 437	50. 968	1. 00 59. 93
	ATOM	1141	CZ AF	G 155	24. 068	7. 217	50. 573	1. 00 61. 41
	ATOM	1142	NH1 AF	G 155	22. 874	7. 011	50. 032	1. 00 63. 00
15	ATOM	1143	NH2 AR	G 155	24. 910	6. 203	50. 717	1. 00 63. 35
	ATOM	1144	C AR	G 155	24. 367	11. 934	54. 456	1. 00 46. 23
	MOTA	1145	0 AR	G 155	23. 486	12. 737	54. 166	1. 00 47. 64
	ATOM	1146	N HI	S 156	25. 613	12. 291	54. 754	1. 00 47. 03
	ATOM	1147	CA HI	S 156	26. 046	13. 682	54. 791	1. 00 48. 05
20	ATOM	1148	CB HI	S 156	27. 318	13. 834	55. 632	1. 00 49. 62
	ATOM	1149	CG HI	S 156	27. 157	13. 444	57. 066	1. 00 52. 65
	ATOM	1150	CD2 HI	S 156	26. 274	12. 619	57. 676	1. 00 53. 99
	MOTA	1151	ND1 HI	S 156	27. 990	13. 916	58. 057	1. 00 53. 35
	ATOM	1152	CE1 HI	S 156	27. 625	13. 401	59. 218	1. 00 54. 78
25	ATOM	1153	NE2 HI	5 156	26. 586	12. 610	59. 014	1. 00 54. 28
	ATOM	1154	C HIS	5 156	26. 334	14. 317	53. 440	1. 00 48. 30
	ATOM	1155	0 HIS	156	26. 872	13. 677	52. 535	1. 00 47. 38
	ATOM	1156	N GLI	157	25. 969	15. 589	53. 319	1. 00 47. 98
	ATOM	1157	CA GLI	J 157	26. 256	16. 343	52. 114	1. 00 48. 38

PCT/JP03/06054

- 56 -

					- ;	00 -		
	ATOM	1158	CB (GLU 157	25. 113	17. 296	51. 749	1. 00 51. 05
	ATOM	1159	CG	GLU 157	25. 462	18. 198	50. 558	1. 00 57. 22
	ATOM	1160	CD	GLU 157	24. 422	19. 276	50. 275	1. 00 58. 92
	ATOM	1161	0E1 (GLU 157	23. 299	18. 931	49. 845	1. 00 60. 91
5	ATOM	1162	0E2 (GLU 157	24. 734	20. 471	50. 485	1. 00 60. 69
	ATOM	1163	C (GLU 157	27. 475	17. 138	52. 547	1. 00 45. 12
	ATOM	1164	0 (GLU 157	28. 349	17. 457	51. 749	1. 00 43. 91
	ATOM	1165	N A	ASP 158	27. 529	17. 427	53. 843	1. 00 43. 85
	ATOM	1166	CA A	ASP 158	28. 633	18. 174	54. 416	1. 00 43. 81
10	ATOM	1167	CB A	ASP 158	28. 479	19. 654	54. 085	1. 00 46. 74
	ATOM	1168	CG A	ISP 158	29. 743	20. 445	54. 349	1. 00 49. 54
	ATOM	1169	OD1 A	SP 158	29. 760	21. 651	54. 016	1. 00 53. 34
	ATOM	1170	OD2 A	SP 158	30. 716	19. 869	54. 884	1. 00 49. 62
	ATOM	1171	C A	SP 158	28. 671	17. 972	55. 928	1. 00 43. 93
15	ATOM	1172	0 A	SP 158	27. 724	17. 447	56. 518	1. 00 43. 97
	ATOM	1173	N I	LE 159	29. 767	18. 399	56. 547	1. 00 43. 75
	ATOM	1174	CA I	LE 159	29. 963	18. 250	57. 983	1. 00 44. 27
	ATOM	1175	CB I	LE 159	31. 248	18. 971	58. 452	1. 00 45. 07
	ATOM	1176	CG2 II	LE 159	31. 069	20. 480	58. 354	1. 00 47. 24
20	ATOM	1177	CG1 II	LE 159	31. 544	18. 617	59. 907	1. 00 45. 29
	ATOM	1178	CD1 II	LE 159	31. 733	17. 140	60. 152	1. 00 48. 99
	ATOM	1179	C II	LE 159	28. 795	18. 744	58. 829	1. 00 44. 47
	ATOM	1180	0 11	LE 159	28. 583	18. 254	59. 941	1. 00 44. 15
	ATOM	1181	N AS	SP 160	28. 037	19. 709	58. 317	1. 00 44. 10
25	ATOM	1182	CA AS	SP 160	26. 904	20. 239	59. 072	1. 00 42. 92
	ATOM	1183	CB AS	SP 160	27. 103	21. 734	59. 360	1. 00 44. 13
	ATOM	1184	CG AS	SP 160	27. 448	22. 533	58. 118	1. 00 45. 52
	ATOM	1185	OD1 AS	SP 160	28. 258	23. 479	58. 239	1. 00 47. 57
	ATOM	1186	OD2 AS	P 160	26. 912	22. 228	57. 031	1. 00 45. 51

- 57 -

						•) (—		
	ATOM	1187	7 C	ASP	160	25. 559	20. 005	58. 410	1. 00 42. 92
	ATOM	1188	3 0	ASP	160	24. 579	20. 691	58. 706	1. 00 44. 48
	ATOM	1189	N	LYS	161	25. 509	19. 026	57. 518	1. 00 41. 57
	ATOM	1190	CA	LYS	161	24. 267	18. 692	56. 838	1. 00 41. 51
5	ATOM	1191	CB	LYS	161	24. 067	19. 597	55. 618	1. 00 41. 19
	ATOM	1192	CG	LYS.	161	22. 783	19. 306	54. 863	1. 00 41. 39
	ATOM	1193	CD	LYS	161	22. 687	20. 094	53. 557	1. 00 43. 25
	ATOM	1194	CE	LYS	161	21. 366	19. 809	52. 860	1. 00 40. 06
	ATOM	1195	NZ	LYS	161	21. 335	20. 312	51. 468	1. 00 41. 02
10	ATOM	1196	C	LYS	161	24. 258	17. 224	56. 397	1. 00 41. 66
	ATOM	1197	0	LYS	161	25. 239	16. 725	55. 838	1. 00 39. 36
	ATOM	1198	N	GLY	162	23. 143	16. 546	56. 654	1. 00 40. 90
	ATOM	1199	CA	GLY	162	23. 005	15. 152	56. 276	1. 00 42. 70
	ATOM	1200	C	GLY	162	21. 618	14. 645	56. 615	1. 00 43. 15
15	ATOM	1201	0	GLY	162	21.019	15. 085	57. 594	1. 00 43. 59
	ATOM	1202	N	ILE	163	21.096	13. 722	55. 816	1. 00 43. 93
	ATOM	1203	CA	ILE	163	19. 763	13. 190	56. 068	1. 00 45. 03
	ATOM	1204	CB	ILE	163	18. 958	13. 031	54. 755	1. 00 46. 16
	ATOM	1205	CG2	ILE	163	18. 943	14. 352	53. 985	1. 00 45. 82
20	ATOM	1206	CG1	ILE	163	19. 585	11. 938	53. 889	1. 00 46. 11
	ATOM	1207	CD1	ILE	163	18. 812	11. 638	52. 613	1. 00 48. 51
	ATOM	1208	C	ILE	163	19. 812	11. 833	56. 764	1. 00 46. 49
	ATOM	1209	0	ILE	163	20. 771	11. 074	56. 609	1. 00 45. 36
	ATOM	1210	N	LEU	164	18. 767	11: 545	57. 533	1. 00 47. 21
25	ATOM	1211	CA	LEU	164	18. 649	10. 286	58. 253	1. 00 47. 53
	ATOM	1212	CB	LEU	164	17. 623	10. 414	59. 379	1. 00 47. 11
	ATOM	1213	CG	LEU	164	17. 135	9. 126	60. 049	1. 00 47. 15
	ATOM	1214	CD1	LEU	164	18. 265	8. 469	60. 832	1. 00 45. 45
	ATOM	1215	CD2	LEU	164	15. 981	9. 465	60. 977	1. 00 47. 00

						- 0	0 –		
	ATOM	1216	C	LEU	164	18. 189	9. 220	57. 277	1. 00 48. 06
	ATOM	1217	0	LEU	164	17. 137	9. 352	56. 657	1. 00 48. 49
	ATOM	1218	N	LEU	165	18. 977	8. 161	57. 137	1. 00 48. 32
	ATOM	1219	CA	LEU	165	18. 614	7. 093	56. 224	1. 00 47. 47
5	ATOM	1220	CB	LEU	165	19. 827	6. 208	55. 954	1. 00 45. 44
	ATOM	1221	CG	LEU	165	20. 867	6. 978	55. 140	1. 00 47. 60
	ATOM	1222	CD1	LEU	165	22. 128	6. 155	54. 956	1. 00 47. 47
	ATOM	1223	CD2	LEU	165	20. 261	7. 342	53. 786	1. 00 48. 48
	ATOM	1224	C	LEU	165	17. 460	6. 300	56. 814	1. 00 46. 86
10	ATOM	1225	0.	LEU	165	16. 497	5. 985	56. 120	1. 00 46. 90
	ATOM	1226	N	ASN	166	17. 562	5. 992	58. 101	1. 00 46. 60
	ATOM	1227	CA	ASN	166	16. 521	5. 266	58. 817	1. 00 47. 23
	ATOM	1228	CB	ASN	166	16. 282	3. 883	58. 200	1. 00 49. 17
	ATOM	1229	CG	ASN	166	17. 542	3. 053	58. 118	1. 00 50. 36
15	ATOM	1230	OD1	ASN	166	18. 205	2. 997	57. 076	1. 00 50. 62
	ATOM	1231	ND2	ASN	166	17. 888	2. 406	59. 223	1. 00 50. 50
	ATOM	1232	C .	ASN	166	16. 913	5. 123	60. 279	1. 00 47. 60
	ATOM	1233	0	ASN	166	18. 096	5. 177	60. 623	1. 00 48. 53
	ATOM	1234	N	TRP	167	15. 916	4. 966	61. 142	1. 00 46. 96
20	ATOM	1235	CA	TRP	167	16. 166	4. 815	62. 571	1. 00 45. 46
	ATOM	1236	CB	TRP	167	14. 890	5. 085	63. 376	1. 00 47. 63
	ATOM	1237	CG	TRP	167	14. 433	6. 519	63. 454	1. 00 49. 15
	ATOM	1238	CD2	TRP	167	15. 093	7. 602	64. 126	1. 00 49. 07
	ATOM	1239	CE2	TRP	167	14. 237	8. 725	64. 050	1. 00 48. 21
25	ATOM	1240	CE3	TRP	167	16. 321	7. 732	64. 787	1. 00 49. 17
	ATOM	1241	CD1	TRP	167	13. 242	7. 022	63. 003	1. 00 49. 03
	ATOM	1242	NE1	TRP	167	13. 117	8. 343	63. 361	1. 00 48. 46
	ATOM	1243	CZ2	TRP	167	14. 569	9. 962	64. 614	1. 00 47. 68
	ATOM	1244	CZ3	TRP	167	16. 652	8. 966	65. 348	1. 00 49. 58

PCT/JP03/06054

WO 03/097824

- 59 -ATOM 1245 CH2 TRP 167 15. 777 10.064 65. 256 1. 00 48. 80 ATOM 1246 C TRP 3. 394 167 16. 647 62. 890 1. 00 43. 28 ATOM 1247 0 TRP 167 16. 425 2. 461 62. 119 1. 00 42. 86 ATOM 1248 N THR 168 17. 297 3. 245 64. 038 1.00 41.63 5 ATOM 1249 CA THR 168 17. 796 1. 953 64. 501 1. 00 40. 13 ATOM 1250 CB THR 19. 275 168 1. 723 64.086 1.00 37.87 ATOM 1251 OG1 THR 20.082 168 2. 795 64. 587 1. 00 33. 52 **ATOM** 1252 CG2 THR 168 19. 417 1. 647 62. 566 1. 00 34. 11 1253 C ATOM THR 168 17. 719 1.943 66.029 1. 00 41. 33 10 ATOM 1254 0 THR 168 17. 382 2. 953 66. 649 1.00 41.41 ATOM 1255 N LYS 0.799 169 18. 025 66. 631 1.00 42.06 ATOM 1256 CA LYS 169 18. 013 0.672 68. 083 1.00 42.59 ATOM 1257 CB LYS 169 19.077 1.594 68. 683 1.00 39.56 **ATOM** 1258 CG LYS 169 20. 497 1. 209 68. 287 1.00 36.24 15 ATOM 1259 CD LYS 169 21. 528 2. 170 68. 840 1. 00 33. 26 ATOM 1260 CE LYS 169 21. 481 3. 514 68. 133 1. 00 30. 26 **ATOM** 1261 NZ LYS 169 22. 589 4. 373 68. 610 1. 00 32. 75 **ATOM** 1262 C LYS 169 16.661 0. 933 68. 751 1. 00 45. 26 **ATOM** 1263 0 LYS 169 16.598 1. 191 69. 955 1.00 45.85 ATOM 20 1264 N GLY 170 15. 583 0.881 67. 975 1. 00 47. 46 ATOM 1265 CA GLY 170 14. 267 1. 083 68. 555 1.00 52.44 **ATOM** 1266 C GLY 170 13. 552 2. 394 68. 295 1. 00 55. 24 ATOM 1267 0 GLY 170 12. 324 2. 422 68. 275 1. 00 56. 11 **ATOM** 1268 N PHE 171 14. 293 3. 482 68. 118 1. 00 58. 10 ATOM 25 1269 CA PHE 171 13.668 4. 777 67.861 1. 00 61. 86 ATOM 1270 CB PHE 171 14. 734 5.846 67.613 1. 00 62. 35 ATOM 1271 CG PHE 171 15. 449 6. 285 68. 856 1. 00 64. 08 CD1 PHE ATOM 1272 171 16.060 5. 354 69.691 1.00 66.00 ATOM 1273 CD2 PHE 171 15. 511 7. 630 69. 196 1. 00 64. 53

- 60 -

						- ()U –		
	ATOM	1274	l CE	1 PHE	171	16. 721	5. 760	70. 851	1. 00 66. 96
	ATOM	1275	CE	2 PHE	171	16. 170	8. 046	70. 352	1. 00 65. 93
	ATOM	1276	CZ	PHE	171	16. 776	7. 109	71. 180	1. 00 66. 07
	ATOM	1277	C	PHE	171	12. 727	4. 697	66. 663	1. 00 63. 91
5	ATOM	1278	0	PHE	171	12. 994	3. 975	65. 702	1. 00 63. 50
	ATOM	1279	N	LYS	172	11. 620	5. 430	66. 727	1. 00 65. 77
	ATOM	1280	CA	LYS	172	10. 657	5. 424	65. 633	1. 00 68. 37
	ATOM	1281	CB	LYS	172	9. 738	4. 197	65. 727	1. 00 70. 16
	ATOM	1282	CG	LYS	172	8. 814	4. 035	64. 517	1. 00 72. 04
10	ATOM	1283	CD	LYS	172	7. 867	2. 842	64. 647	1. 00 73. 43
	ATOM	1284	CE	LYS	172	6. 977	2. 718	63. 406	1. 00 74. 42
	ATOM	1285	NZ	LYS	172	5. 933	1. 655	63. 525	1. 00 73. 62
	ATOM	1286	C	LYS	172	9. 808	6. 688	65. 606	1. 00 69. 18
	ATOM	1287	0	LYS	172	8. 599	6. 642	65. 838	1. 00 70. 01
15	ATOM	1288	N	ALA	173	10. 445	7. 820	65. 332	1. 00 68. 98
	ATOM	1289	CA	ALA	173	9. 734	9. 086	65. 251	1. 00 69. 07
	ATOM	1290	CB	ALA	173	10. 598	10. 210	65. 818	1. 00 68. 41
	ATOM	1291	C	ALA	173	9. 424	9. 339	63. 776	1. 00 69. 07
	ATOM	1292	0	ALA	173	10. 336	9. 471	62. 962	1. 00 69. 61
20	ATOM	1293	N	SER	174	8. 139	9. 394	63. 432	1. 00 69. 06
	ATOM	1294	CA	SER	174	7. 735	9. 620	62. 047	1. 00 68. 32
	ATOM	1295	CB	SER	174	6. 217	9. 491	61. 901	1. 00 69. 02
	ATOM	1296	0G	SER	174	5. 546	10. 503	62. 632	1. 00 68. 18
	ATOM	1297	C	SER	174	8. 173	10. 996	61. 568	1. 00 67. 71
25	ATOM	1298	0	SER	174	8. 410	11. 897	62. 370	1. 00 68. 23
	ATOM	1299	N	GLY	175	8. 288	11. 148	60. 254	1. 00 67. 37
	ATOM	1300	CA	GLY	175	8. 688	12. 424	59. 690	1. 00 67. 08
	ATOM	1301	C	GLY	175	10. 143	12. 787	59. 915	1. 00 66. 86
	ATOM	1302	0	GLY	175	10. 507	13. 962	59. 855	1. 00 67. 38

							11		
	ATOM	1303	N	ALA	176	10. 979	11. 786	60. 172	1. 00 66. 42
	ATOM	1304	CA	ALA	176	12. 400	12. 018	60. 401	1. 00 64. 67
•	ATOM	1305	CB	ALA	176	12. 828	11. 360	61. 699	1. 00 64. 11
	ATOM	1306	C	ALA	176	13. 229	11. 475	59. 242	1. 00 64. 02
5	ATOM	1307	0	ALA	176	14. 053	12. 183	58. 667	1. 00 65. 00
	ATOM	1308	N	GLU	177	12. 993	10. 214	58. 903	1. 00 63. 24
	ATOM	1309	CA	GLU	177	13. 710	9. 544	57. 825	1. 00 63. 08
	ATOM	1310	CB	GLU	177	13. 147	8. 127	57. 639	1. 00 62. 97
	ATOM	1311	CG	GLU	177	13. 315	7. 224	58. 865	1. 00 64. 81
10	ATOM	1312	CD	GLU	177	12. 712	5. 837	58. 682	1. 00 64. 99
	ATOM	1313	OE I	GLU	177	12. 948	4. 972	59. 552	1. 00 65. 80
	ATOM	1314	0E2	GLU	177	12. 003	5. 612	57. 677	1. 00 64. 52
	ATOM	1315	C	GLU	177	13. 669	10. 293	56. 491	1. 00 62. 92
	ATOM	1316	0	GLU	177	12. 602	10. 489	55. 908	1. 00 63. 26
15	ATOM	1317	N	GLY	178	14. 838	10. 708	56. 013	1. 00 62. 46
	ATOM	1318	CA	GLY	178	14. 911	11. 406	54. 741	1. 00 61. 36
	ATOM	1319	C	GLY	178	15. 095	12. 911	54. 805	1. 00 60. 52
	ATOM	1320	0	GLY	178	15. 337	13. 539	53. 777	1. 00 61. 73
	ATOM	1321	N	ASN	179	14. 990	13. 498	55. 993	1. 00 59. 84
20	ATOM	1322	CA	ASN	179	15. 139	14. 942	56. 134	1. 00 59. 11
	ATOM	1323	CB	ASN	179	13. 985	15. 512	56. 959	1. 00 59. 72
	ATOM	1324	CG	ASN	179	12. 630	15. 217	56. 342	1. 00 61. 46
	ATOM	1325	OD1	ASN	179	12. 423	15. 416	55. 143	1. 00 61. 86
	ATOM	1326	ND2	ASN	179	11.696	14. 743	57. 161	1. 00 61. 02
25	ATOM ·	1327	C	ASN	179	16. 463	15. 349	56. 765	1. 00 58. 81
	ATOM	1328	0	ASN	179	17. 108	14. 553	57. 441	1. 00 59. 10
	ATOM	1329	N	ASN	180	16. 860	16. 599	56. 537	1. 00 58. 30
	ATOM	1330	CA	ASN	180	18. 107	17. 130	57. 079	1. 00 57. 96
	ATOM	1331	CB	ASN	180	18. 362	18. 539	56. 539	1. 00 58. 57

- 62 -

					U	4			
ATOM	1332	CG	ASN	180	19. 693	19. 112	57. 001	1. 00 6	0. 99
ATOM	1333	0D1	ASN	180	20. 278	18. 647	57. 983	1. 00 6	0. 88
ATOM	1334	ND2	ASN	180	20. 171	20. 139	56. 302	1. 00 6	0. 74
ATOM	1335	C	ASN	180	18. 036	17. 183	58. 600	1. 00 5	7. 30
ATOM	1336	0	ASN	180	17. 388	18. 064	59. 162	1. 00 5	7. 94
ATOM	1337	N	VAL	181	18. 709	16. 245	59. 261	1. 00 5	5. 49
ATOM	1338	CA	VAL	181	18. 716	16. 189	60. 720	1. 00 5	4. 19
ATOM	1339	CB	VAL	181	19. 698	15. 109	61. 229	1. 00 5	3. 15
ATOM	1340	CG1	VAL	181	19. 756	15. 121	62. 748	1. 00 50). 90
ATOM	1341	CG2	VAL	181	19. 258	13. 742	60. 731	1.00 5	l. 33
ATOM	1342	C	VAL	181	19. 089	17. 534	61. 333	1. 00 54	1. 31
ATOM	1343	0	VAL	181	18. 473	17. 979	62. 299	1. 00 53	3. 21
ATOM	1344	N	VAL	182	20. 110	18. 174	60. 777	1. 00 56	3. 27
ATOM	1345	CA	VAL	182	20. 533	19. 472	61. 271	1. 00 58	3. 32
ATOM	1346	CB	VAL	182	21. 706	20. 033	60. 447	1. 00 58	3. 42
ATOM	1347	CG1	VAL	182	22. 135	21. 373	61.007	1. 00 58	3. 05
ATOM	1348	CG2	VAL	182	22. 867	19. 054	60. 460	1. 00 59	. 02
ATOM	1349	C	VAL	182	19. 339	20. 410	61. 125	1. 00 60	. 16
ATOM	1350	0	VAL	182	19. 052	21. 220	62. 008	1. 00 59	. 87
ATOM	1351	N	GLY	183	18. 640	20. 275	60.003	1.00 61	. 05
ATOM	1352	CA	GLY	183	17. 480	21. 103	59. 741	1. 00 63	. 47
ATOM	1353	C	GLY	183	16. 412	20. 967	60. 805	1. 00 64	. 68
ATOM	1354	0	GLY	183	15. 873	21. 966	61. 280	1.00 64	. 59
ATOM	1355	N	LEU	184	16. 103	19. 733	61. 187	1. 00 65	. 39
ATOM	1356	CA	LEU	184	15. 091	19. 502	62. 203	1.00 66	. 47
ATOM	1357	CB	LEU	184	14. 855	18. 005	62. 387	1.00 66	. 17
ATOM	1358	CG	LEU	184	14. 407	17. 254	61. 132	1. 00 67	. 51
ATOM	1359	CD1	LEU	184	14. 116	15. 805	61. 486	1. 00 66	. 63
ATOM	1360	CD2	LEU	184	13. 168	17. 913	60. 546	1. 00 68	. 22
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1333 ATOM 1334 ATOM 1335 ATOM 1336 ATOM 1336 ATOM 1337 ATOM 1338 ATOM 1340 ATOM 1341 ATOM 1342 ATOM 1343 ATOM 1344 ATOM 1345 ATOM 1346 ATOM 1347 ATOM 1348 ATOM 1348 ATOM 1350 ATOM 1350 ATOM 1351 ATOM 1352 ATOM 1353 ATOM 1353 ATOM 1354 ATOM 1355 ATOM 1355 ATOM 1356 ATOM 1357 ATOM 1358 ATOM 1358	ATOM 1333 OD1 ATOM 1334 ND2 ATOM 1335 C ATOM 1336 O ATOM 1337 N ATOM 1338 CA ATOM 1339 CB ATOM 1340 CG1 ATOM 1341 CG2 ATOM 1342 C ATOM 1344 N ATOM 1345 CA ATOM 1346 CB ATOM 1347 CG1 ATOM 1348 CG2 ATOM 1349 C ATOM 1349 C ATOM 1350 O ATOM 1351 N ATOM 1351 N ATOM 1352 CA ATOM 1353 C ATOM 1354 O ATOM 1355 N ATOM 1355 N ATOM 1356 CA ATOM 1357 CB ATOM 1357 CB ATOM 1358 CG ATOM 1358 CG	ATOM 1333 OD1 ASN ATOM 1334 ND2 ASN ATOM 1335 C ASN ATOM 1336 O ASN ATOM 1337 N VAL ATOM 1338 CA VAL ATOM 1349 CB VAL ATOM 1341 CG2 VAL ATOM 1343 O VAL ATOM 1343 O VAL ATOM 1344 N VAL ATOM 1345 CA VAL ATOM 1346 CB VAL ATOM 1347 CG1 VAL ATOM 1348 CG2 VAL ATOM 1349 C VAL ATOM 1350 O VAL ATOM 1351 N GLY ATOM 1352 CA GLY ATOM 1353 C GLY ATOM 1354 O GLY ATOM<	ATOM 1333 OD1 ASN 180 ATOM 1334 ND2 ASN 180 ATOM 1335 C ASN 180 ATOM 1336 O ASN 180 ATOM 1337 N VAL 181 ATOM 1338 CA VAL 181 ATOM 1339 CB VAL 181 ATOM 1340 CG1 VAL 181 ATOM 1341 CG2 VAL 181 ATOM 1342 C VAL 181 ATOM 1343 O VAL 181 ATOM 1344 N VAL 182 ATOM 1345 CA VAL 182 ATOM 1346 CB VAL 182 ATOM 1347 CG1 VAL 182 ATOM 1348 CG2 VAL 182 ATOM 1349 C VAL 182 ATOM 1350 O VAL 182 ATOM 1351 N GLY 183 ATOM 1352 CA GLY 183 ATOM <t< th=""><th>ATOM 1332 CG ASN 180 19.693 ATOM 1333 OD1 ASN 180 20.278 ATOM 1334 ND2 ASN 180 20.171 ATOM 1335 C ASN 180 18.036 ATOM 1336 O ASN 180 17.388 ATOM 1337 N VAL 181 18.709 ATOM 1338 CA VAL 181 19.698 ATOM 1340 CG1 VAL 181 19.756 ATOM 1341 CG2 VAL 181 19.258 ATOM 1342 C VAL 181 19.258 ATOM 1343 O VAL 181 19.059 ATOM 1344 N VAL 182 20.110 ATOM 1345 CA VAL 182 21.706 ATOM 1346 CB VAL 182</th><th>ATOM 1333 OD1 ASN 180 20. 278 18. 647 ATOM 1334 ND2 ASN 180 20. 171 20. 139 ATOM 1335 C ASN 180 18. 036 17. 183 ATOM 1336 O ASN 180 17. 388 18. 064 ATOM 1337 N VAL 181 18. 709 16. 245 ATOM 1338 CA VAL 181 18. 709 16. 245 ATOM 1339 CB VAL 181 19. 698 15. 109 ATOM 1340 CG1 VAL 181 19. 756 15. 121 ATOM 1341 CG2 VAL 181 19. 756 15. 121 ATOM 1342 C VAL 181 19. 059 17. 534 ATOM 1344 N VAL 182 20. 110 18. 174 ATOM 1345 CA VAL 182</th><th>ATOM 1332 CG ASN 180 19. 693 19. 112 57. 001 ATOM 1333 OD1 ASN 180 20. 278 18. 647 57. 983 ATOM 1334 ND2 ASN 180 20. 171 20. 139 56. 302 ATOM 1335 C ASN 180 18. 036 17. 183 58. 600 ATOM 1336 O ASN 180 17. 388 18. 064 59. 162 ATOM 1337 N VAL 181 18. 709 16. 245 59. 261 ATOM 1339 CB VAL 181 19. 698 15. 109 61. 229 ATOM 1340 CGI VAL 181 19. 698 15. 109 61. 229 ATOM 1341 CG2 VAL 181 19. 258 13. 742 60. 731 ATOM 1343 O VAL 181 19. 089 17. 534 61. 333 ATOM 1</th><th>ATOM 1332 CG ASN 180 19.693 19.112 57.001 1.00 66 ATOM 1333 OD1 ASN 180 20.278 18.647 57.983 1.00 66 ATOM 1334 ND2 ASN 180 20.171 20.139 56.302 1.00 66 ATOM 1335 C ASN 180 18.036 17.183 58.600 1.00 57 ATOM 1336 O ASN 180 17.388 18.064 59.162 1.00 57 ATOM 1337 N VAL 181 18.709 16.245 59.261 1.00 57 ATOM 1338 CA VAL 181 18.709 16.245 59.261 1.00 57 ATOM 1339 CB VAL 181 19.698 15.109 61.229 1.00 57 ATOM 1340 CG1 VAL 181 19.698 15.109 61.229 1.00 57 ATOM 1341 CG2 VAL 181 19.089 17.534 61.333 1.00 57 ATOM 1342 C VAL 181 19.089 17.534 61.333 1.00 57 ATOM 1343 O VAL 181 18.473 17.979 62.299 1.00 53 ATOM 1344 N VAL 182 20.110 18.174 60.777 1.00 58 ATOM 1346 CB VAL 182 20.110 18.174 60.777 1.00 58 ATOM 1348 CG2 VAL 182 22.135 21.373 61.007 1.00 58 ATOM 1348 CG2 VAL 182 22.867 19.054 60.460 1.00 59 ATOM 1349 C VAL 182 19.339 20.410 61.125 1.00 60 ATOM 1350 O VAL 182 19.339 20.410 61.125 1.00 60 ATOM 1351 N GLY 183 18.640 20.275 60.003 1.00 64 ATOM 1352 CA GLY 183 17.480 21.103 59.741 1.00 63 ATOM 1353 C GLY 183 17.480 21.103 59.741 1.00 63 ATOM 1355 N LEU 184 16.103 19.733 61.187 1.00 64 ATOM 1357 CB LEU 184 16.103 19.733 61.187 1.00 65 ATOM 1357 CB LEU 184 16.103 19.733 61.187 1.00 65 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67</th></t<>	ATOM 1332 CG ASN 180 19.693 ATOM 1333 OD1 ASN 180 20.278 ATOM 1334 ND2 ASN 180 20.171 ATOM 1335 C ASN 180 18.036 ATOM 1336 O ASN 180 17.388 ATOM 1337 N VAL 181 18.709 ATOM 1338 CA VAL 181 19.698 ATOM 1340 CG1 VAL 181 19.756 ATOM 1341 CG2 VAL 181 19.258 ATOM 1342 C VAL 181 19.258 ATOM 1343 O VAL 181 19.059 ATOM 1344 N VAL 182 20.110 ATOM 1345 CA VAL 182 21.706 ATOM 1346 CB VAL 182	ATOM 1333 OD1 ASN 180 20. 278 18. 647 ATOM 1334 ND2 ASN 180 20. 171 20. 139 ATOM 1335 C ASN 180 18. 036 17. 183 ATOM 1336 O ASN 180 17. 388 18. 064 ATOM 1337 N VAL 181 18. 709 16. 245 ATOM 1338 CA VAL 181 18. 709 16. 245 ATOM 1339 CB VAL 181 19. 698 15. 109 ATOM 1340 CG1 VAL 181 19. 756 15. 121 ATOM 1341 CG2 VAL 181 19. 756 15. 121 ATOM 1342 C VAL 181 19. 059 17. 534 ATOM 1344 N VAL 182 20. 110 18. 174 ATOM 1345 CA VAL 182	ATOM 1332 CG ASN 180 19. 693 19. 112 57. 001 ATOM 1333 OD1 ASN 180 20. 278 18. 647 57. 983 ATOM 1334 ND2 ASN 180 20. 171 20. 139 56. 302 ATOM 1335 C ASN 180 18. 036 17. 183 58. 600 ATOM 1336 O ASN 180 17. 388 18. 064 59. 162 ATOM 1337 N VAL 181 18. 709 16. 245 59. 261 ATOM 1339 CB VAL 181 19. 698 15. 109 61. 229 ATOM 1340 CGI VAL 181 19. 698 15. 109 61. 229 ATOM 1341 CG2 VAL 181 19. 258 13. 742 60. 731 ATOM 1343 O VAL 181 19. 089 17. 534 61. 333 ATOM 1	ATOM 1332 CG ASN 180 19.693 19.112 57.001 1.00 66 ATOM 1333 OD1 ASN 180 20.278 18.647 57.983 1.00 66 ATOM 1334 ND2 ASN 180 20.171 20.139 56.302 1.00 66 ATOM 1335 C ASN 180 18.036 17.183 58.600 1.00 57 ATOM 1336 O ASN 180 17.388 18.064 59.162 1.00 57 ATOM 1337 N VAL 181 18.709 16.245 59.261 1.00 57 ATOM 1338 CA VAL 181 18.709 16.245 59.261 1.00 57 ATOM 1339 CB VAL 181 19.698 15.109 61.229 1.00 57 ATOM 1340 CG1 VAL 181 19.698 15.109 61.229 1.00 57 ATOM 1341 CG2 VAL 181 19.089 17.534 61.333 1.00 57 ATOM 1342 C VAL 181 19.089 17.534 61.333 1.00 57 ATOM 1343 O VAL 181 18.473 17.979 62.299 1.00 53 ATOM 1344 N VAL 182 20.110 18.174 60.777 1.00 58 ATOM 1346 CB VAL 182 20.110 18.174 60.777 1.00 58 ATOM 1348 CG2 VAL 182 22.135 21.373 61.007 1.00 58 ATOM 1348 CG2 VAL 182 22.867 19.054 60.460 1.00 59 ATOM 1349 C VAL 182 19.339 20.410 61.125 1.00 60 ATOM 1350 O VAL 182 19.339 20.410 61.125 1.00 60 ATOM 1351 N GLY 183 18.640 20.275 60.003 1.00 64 ATOM 1352 CA GLY 183 17.480 21.103 59.741 1.00 63 ATOM 1353 C GLY 183 17.480 21.103 59.741 1.00 63 ATOM 1355 N LEU 184 16.103 19.733 61.187 1.00 64 ATOM 1357 CB LEU 184 16.103 19.733 61.187 1.00 65 ATOM 1357 CB LEU 184 16.103 19.733 61.187 1.00 65 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67 ATOM 1358 CG LEU 184 14.407 17.254 61.132 1.00 67

						•	, 0		
	ATOM	1361	C	LEU	184	15. 502	20. 130	63. 528	1. 00 67. 67
	ATOM	1362	0	LEU	184	14. 651	20. 570	64. 301	1. 00 68. 91
	ATOM	1363	N	LEU	185	16. 804	20. 176	63. 790	1. 00 68. 11
	ATOM	1364	CA	LEU	185	17. 297	20. 759	65. 031	1. 00 68. 91
5	ATOM	1365	CB	LEU	185	18. 797	20. 501	65. 194	1. 00 67. 32
	ATOM	1366	CG	LEU	185	19. 409	21. 060	66. 482	1. 00 66. 21
	ATOM	1367	CD	1 LEU	185	18. 776	20. 375	67. 676	1. 00 65. 16
	ATOM	1368	CD2	2 LEU	185	20. 913	20. 851	66. 486	1. 00 66. 43
	ATOM	1369	C	LEU	185	17. 034	22. 262	65. 058	1. 00 70. 10
10	ATOM	1370	0	LEU	185	16. 422	22. 776	65. 991	1. 00 70. 26
	ATOM	1371	N	ARG	186	17. 505	22. 962	64. 033	1. 00 71. 83
	ATOM	1372	CA	ARG	186	17. 314	24. 403	63. 948	1. 00 73. 78
	ATOM	1373	CB	ARG	186	18. 015	24. 941	62. 700	1. 00 73. 97
	ATOM	1374	CG	ARG	186	19. 533	24. 881	62. 804	1. 00 74. 09
15	ATOM	1375	CD	ARG	186	20. 206	24. 984	61. 448	1. 00 74. 37
	MOTA	1376	NE	ARG	186	21. 662	24. 945	61. 571	1. 00 75. 77
	ATOM	1377	CZ	ARG	186	22. 503	24. 860	60. 543	1. 00 75. 94
	ATOM	1378	NH1	ARG	186	22. 036	24. 800	59. 303	1. 00 75. 97
	ATOM	1379	NH2	ARG	186	23. 815	24. 841	60. 755	1. 00 75. 99
20	ATOM	1380	C	ARG	186	15. 825	24. 737	63. 927	1. 00 74. 93
	ATOM	1381	0	ARG	186	15. 365	25. 609	64. 665	1. 00 74. 59
	ATOM	1382	N	ASP	187	15. 074	24. 023	63. 095	1. 00 76. 23
	ATOM	1383	CA	ASP	187	13. 632	24. 225	62. 981	1. 00 77. 59
	ATOM	1384	CB	ASP	187	13. 018	23. 128	62. 102	1. 00 75. 83
25	ATOM	1385	CG	ASP	187	13. 203	23. 391	60. 614	1. 00 74. 87
	ATOM	1386	OD1	ASP	187	14. 193	24. 051	60. 234	1. 00 73. 64
	ATOM	1387	OD2	ASP	187	12. 359	22. 924	59. 820	1. 00 74. 33
	ATOM	1388	C	ASP	187	12. 945	24. 236	64. 349	1. 00 79. 78
	ATOM	1389	0	ASP	187	11. 963	24. 952	64. 551	1. 00 80. 50

- 64 -

						-	64 -		
	ATOM	1390	N	ALA	188	13. 461	23. 445	65. 286	1. 00 81. 21
	ATOM	1391	CA	ALA	188	12. 883	23. 379	66. 625	1. 00 82. 86
	ATOM	1392	CB	ALA	188	13. 118	22. 000	67. 230	1. 00 83. 00
	ATOM	1393	C	ALA	188	13. 477	24. 456	67. 525	1. 00 84. 14
5	ATOM	1394	0	ALA	188	12. 783	25. 019	68. 376	1. 00 84. 10
	ATOM	1395	N	ILE	189	14. 763	24. 736	67. 338	1. 00 85. 33
	ATOM	1396	CA	ILE	189	15. 445	25. 753	68. 127	1. 00 86. 87
	ATOM	1397	CB	ILE	189	16. 947	25. 819	67. 776	1. 00 86. 40
	ATOM	1398	CG	2 ILE	189	17. 585	27. 049	68. 409	1. 00 85. 37
10	ATOM	1399	CG	1 ILE	189	17. 641	24. 541	68. 253	1. 00 86. 52
	ATOM	1400	CD	ILE	189	19. 136	24. 516	68. 004	1. 00 86. 36
	ATOM	1401	C	ILE	189	14. 812	27. 114	67. 871	1. 00 88. 85
	ATOM	1402	0	ILE	189	14. 802	27. 978	68. 748	1. 00 89. 64
	ATOM	1403	N	LYS	190	14. 278	27. 295	66. 666	1. 00 90. 36
15	ATOM	1404	CA	LYS	190	13. 638	28. 551	66. 291	1. 00 91. 75
	ATOM	1405	CB	LYS	190	13. 678	28. 729	64. 770	1. 00 92. 26
	ATOM	1406	CG	LYS	190	15. 032	29. 205	64. 234	1. 00 93. 56
	ATOM	1407	CD	LYS	190	16. 174	28. 282	64. 652	1. 00 94. 17
	ATOM	1408	CE	LYS	190	17. 507	28. 722	64.064	1. 00 94. 42
20	ATOM	1409	NZ	LYS	190	18. 605	27. 773	64. 409	1. 00 93. 91
	ATOM	1410	C	LYS	190	12. 202	28. 645	66. 803	1. 00 92. 34
	ATOM	1411	0	LYS	190	11. 612	29. 723	66. 817	1. 00 92. 82
	ATOM	1412	N	ARG	191	11. 639	27. 516	67. 221	1. 00 92. 78
	ATOM	1413	CA	ARG	191	10. 286	27. 502	67. 763	1. 00 93. 41
25	ATOM	1414	CB	ARG	191	9. 674	26. 108	67. 658	1. 00 93. 77
	ATOM	1415	CG	ARG	191	9. 711	25. 497	66. 275	1. 00 93. 66
	ATOM	1416	CD	ARG	191	9. 530	23. 993	66. 378	1. 00 93. 81
	ATOM	1417	NE	ARG	191	9. 816	23. 310	65. 123	1. 00 93. 99
	ATOM	1418	CZ	ARG	191	10. 012	22. 000	65. 017	1. 00 94. 26

- 65 -

						_	65 -		
	ATOM	1419) NE	II ARG	191	9. 954	21. 231	66. 095	1. 00 94. 65
	ATOM	1420) NH	12 ARG	191	10. 269	21. 459	63. 835	1. 00 94. 96
	ATOM	1421	C	ARG	191	10. 432	27. 866	69. 233	1. 00 94. 00
	ATOM	1422	0	ARG	191	9. 526	27. 654	70. 036	1. 00 94. 16
5	ATOM	1423	N	ARG	192	11. 596	28. 408	69. 574	1. 00 94. 91
	ATOM	1424	CA	ARG	192	11. 897	28. 795	70. 943	1. 00 96. 15
	ATOM	1425	CB	ARG	192	13. 049	27. 944	71. 482	1. 00 96. 57
	ATOM	1426	CG	ARG	192	12. 733	26. 469	71. 581	1. 00 97. 44
	ATOM	1427	CD	ARG	192	11. 737	26. 209	72. 689	1. 00 98. 38
10	ATOM	1428	NE	ARG	192	11. 339	24. 808	72. 745	1. 00 98. 97
	ATOM	1429	CZ	ARG	192	10. 624	24. 278	73. 730	1. 00 99. 63
	ATOM	1430	NH:	1 ARG	192	10. 230	25. 035	74. 746	1. 00 99. 17
	ATOM	1431	NH2	2 ARG	192	10. 300	22. 992	73. 700	1. 00 99. 97
	ATOM	1432	C	ARG	192	12. 273	30. 265	71. 062	1. 00 96. 50
15	ATOM	1433	0	ARG	192	11. 603	31. 035	71. 752	1. 00 96. 60
	ATOM	1434	N	GLY	193	13. 352	30. 652	70. 386	1. 00 96. 89
	ATOM	1435	CA	GLY	193	13. 812	32. 026	70. 465	1. 00 97. 08
	ATOM	1436	C	GLY	193	14. 385	32. 217	71. 855	1. 00 97. 08
	ATOM	1437	0	GLY	193	15. 060	33. 204	72. 147	1. 00 96. 46
20	ATOM	1438	N	ASP	194	14. 104	31. 235	72. 707	1. 00 97. 36
	ATOM	1439	CA	ASP	194	14. 552	31. 205	74. 092	1. 00 97. 35
	ATOM	1440	CB	ASP	194	13. 938	29. 984	74. 789	1. 00 98. 43
	ATOM	1441	CG	ASP	194	13. 764	30. 181	76. 284	1. 00 99. 62
	ATOM	1442	0D1	ASP	194	13. 117	31. 173	76. 683	1. 00100. 29
25	ATOM	1443	0D2	ASP	194	14. 262	29. 338	77. 059	1. 00 99. 87
	ATOM	1444	C	ASP	194	16. 078	31. 122	74. 122	1. 00 96. 90
	ATOM	1445	0	ASP	194	16. 715	31. 471	75. 118	1. 00 97. 50
	ATOM	1446	N	PHE	195	16. 657	30. 655	73. 018	1. 00 95. 62
	ATOM	1447	CA	PHE	195	18. 105	30. 524	72. 896	1. 00 94. 15

- 66 -

							00		
	ATOM	1448	B CB	PHE	195	18. 598	29. 309	73. 697	1. 00 94. 86
	ATOM	1449) CG	PHE	195	18. 043	27. 988	73. 224	1. 00 95. 10
	ATOM	1450	CD	1 PHE	195	18. 560	27. 360	72. 095	1. 00 95. 09
	ATOM	1451	CD	2 PHE	195	17. 005	27. 369	73. 916	1. 00 95. 17
5	ATOM	1452	CE	1 PHE	195	18. 053	26. 136	71. 663	1. 00 95. 14
	ATOM	1453	CE	2 PHE	195	16. 491	26. 145	73. 492	1. 00 95. 12
	ATOM	1454	CZ	PHE	195	17. 016	25. 528	72. 364	1. 00 94. 97
	ATOM	1455	C	PHE	195	18. 508	30. 393	71. 430	1. 00 92. 64
	ATOM	1456	0	PHE	195	17. 667	30. 131	70. 569	1. 00 92. 22
10	ATOM	1457	N	GLU	196	19. 793	30. 583	71. 148	1. 00 90. 93
	ATOM	1458	CA	GLU	196	20. 292	30. 486	69. 779	1. 00 89. 04
	ATOM	1459	CB	GLU	196	20. 249	31. 861	69. 102	1. 00 89. 55
	ATOM	1460	CG	GLU	196	18. 846	32. 395	68. 832	1. 00 90. 25
	ATOM	1461	CD	GLU	196	18. 859	33. 771	68. 187	1. 00 90. 61
15	ATOM	1462	0E1	GLU	196	19. 342	34. 728	68. 830	1. 00 90. 30
	ATOM	1463	0E2	GLU	196	18. 390	33. 895	67. 035	1. 00 90. 79
	ATOM	1464	C	GLU	196	21. 711	29. 923	69. 694	1. 00 87. 11
	ATOM	1465	0	GLU	196	22. 681	30. 589	70. 066	1. 00 86. 83
	ATOM	1466	N	MET	197	21. 824	28. 692	69. 201	1. 00 84. 23
20	ATOM	1467	CA	MET	197	23. 121	28. 043	69. 045	1. 00 80. 79
	ATOM	1468	CB	MET	197	23. 067	26. 586	69. 524	1. 00 81. 16
	ATOM	1469	CG	MET	197	22. 633	26. 389	70. 967	1. 00 80. 14
	ATOM	1470	SD	MET	197	23. 597	27. 356	72. 135	1. 00 81. 93
	ATOM	1471	CE	MET	197	25. 195	26. 640	71. 968	1. 00 81. 72
25	ATOM	1472	C	MET	197	23. 502	28. 070	67. 568	1. 00 77. 74
	ATOM	1473	0	MET	197	22. 695	28. 436	66. 716	1. 00 76. 30
	ATOM	1474	N	ASP	198	24. 733	27. 672	67. 269	1. 00 75. 73
	ATOM	1475	CA	ASP	198	25. 214	27. 652	65. 894	1. 00 72. 50
	ATOM	1476	CB	ASP	198	26. 297	28. 723	65. 720	1. 00 73. 47

- 67 -

						- (), –		
	ATOM	1477	CG	ASP	198	26. 573	29. 046	64. 265	1. 00 75. 34
	ATOM	1478	OD1	ASP	198	27. 407	29. 941	64. 005	1. 00 75. 72
	ATOM	1479	0D2	ASP	198	25. 954	28. 407	63. 384	1. 00 76. 53
	ATOM	1480	C	ASP	198	25. 769	26. 265	65. 544	1. 00 69. 75
5	ATOM	1481	0	ASP	198	26. 962	26. 005	65., 703	1. 00 69. 48
	ATOM	1482	N	VAL	199	24. 892	25. 383	65. 068	1. 00 66. 43
	ATOM	1483	CA	VAL	199	25. 266	24. 018	64. 697	1. 00 62. 47
	ATOM	1484	CB	VAL	199	24. 055	23. 266	64. 113	1. 00 62. 19
	ATOM	1485	CG1	VAL	199	24. 426	21. 823	63. 827	1. 00 61. 88
10	ATOM	1486	CG2	VAL	199	22. 886	23. 340	65. 083	1. 00 61. 21
	ATOM	1487	C	VAL	199	26. 409	23. 986	63. 682	1. 00 60. 44
	ATOM	1488	0	VAL	199	26. 192	24. 135	62. 479	1. 00 59. 37
	ATOM	1489	N	VAL	200	27. 624	23. 774	64. 180	1. 00 58. 00
	ATOM	1490	CA	VAL	200	28. 820	23. 741	63. 341	1. 00 56. 24
15	ATOM	1491	CB	VAL	200	30. 048	24. 278	64. 128	1. 00 57. 42
	ATOM	1492	CG1	VAL	200	31. 326	24. 071	63. 331	1. 00 57. 94
	ATOM	1493	CG2	VAL	200	29. 859	25. 761	64. 433	1. 00 59. 29
	ATOM	1494	C	VAL	200	29. 159	22. 357	62. 785	1. 00 54. 53
	ATOM	1495	. 0	VAL	200	29. 759	22. 242	61. 715	1. 00 54. 29
20	ATOM	1496	N	ALA	201	28. 779	21. 306	63. 503	1. 00 52. 88
	ATOM	1497	CA	ALA	201	29. 085	19. 953	63. 048	1. 00 49. 83
	ATOM	1498	CB	ALA	201	30. 541	19. 627	63. 349	1. 00 47. 49
	ATOM	1499	C	ALA	201	28. 196	18. 887	63. 654	1. 00 46. 62
	ATOM	1500	0	ALA	201	27. 803	18. 973	64. 810	1. 00 47. 96
25	ATOM	1501	N i	MET	202	27. 873	17. 883	62. 851	1. 00 44. 82
	ATOM	1502	CA	MET	202	27. 065	16. 762	63. 309	1. 00 42. 12
	ATOM	1503	CB 1	MET	202	25. 731	16. 695	62. 567	1. 00 39. 23
	ATOM	1504	CG 1	MET	202	24. 886	15. 520	63. 014	1. 00 38. 13
	ATOM	1505	SD 1	MET	202	23. 425	15. 193	62. 026	1. 00 40. 98

- 68 -

	ATOM	1506	CE	MET	202	24. 134	15. 162	60. 401	1. 00 37. 63
	ATOM	1507	C	MET	202	27. 865	15. 489	63. 027	1. 00 40. 68
	ATOM	1508	0	MET	202	28. 274	15. 251	61. 888	1. 00 38. 74
	ATOM	1509	N	VAL	203	28. 092	14. 679	64. 060	1. 00 39. 90
5	ATOM	1510	CA	VAL	203	28. 851	13. 438	63. 901	1. 00 37. 47
	ATOM	1511	CB	VAL	203	30. 264	13. 549	64. 517	1. 00 36. 73
	ATOM	1512	CG1	VAL	203	31. 078	14. 615	63. 796	1. 00 34. 96
	ATOM	1513	CG2	VAL	203	30. 155	13. 852	65. 996	1. 00 37. 90
	ATOM	1514	C	VAL	203	28. 190	12. 199	64. 505	1. 00 37. 09
10	ATOM	1515	0	VAL	203	27. 250	12. 284	65. 309	1. 00 36. 61
	ATOM	1516	N	ASN	204	28. 707	11. 039	64. 101	1. 00 36. 09
	ATOM	1517	CA	ASN	204	28. 228	9. 749	64. 584	1. 00 31. 60
	ATOM	1518	CB	ASN	204	28. 461	8. 695	63. 497	1. 00 32. 07
	ATOM	1519	CG	ASN	204	27. 949	7. 322	63. 888	1. 00 31. 63
15	ATOM	1520	OD1	ASN	204	28. 729	6. 443	64. 250	1. 00 30. 91
	ATOM	1521	ND2	ASN	204	26. 634	7. 135	63. 824	1. 00 28. 99
	ATOM	1522	C	ASN	204	29. 027	9. 454	65. 853	1. 00 28. 81
	ATOM	1523	0	ASN	204	30. 122	9. 990	66. 019	1. 00 30. 24
	ATOM	1524	N	ASP	205	28. 498	8. 639	66. 765	1. 00 27. 90
20	ATOM	1525	CA	ASP	205	29. 240	8. 361	67. 995	1. 00 26. 70
	ATOM	1526	CB	ASP	205	28. 369	7. 627	69. 028	1. 00 27. 65
	ATOM	1527	CG	ASP	205	27. 642	6. 438	68. 455	1. 00 30. 26
	ATOM	1528	OD 1	ASP	205	27. 079	5. 655	69. 256	1. 00 28. 60
	ATOM	1529	OD2	ASP	205	27. 623	6. 289	67. 213	1. 00 31. 99
25	MOTA	1530	C	ASP	205	30. 573	7. 630	67. 791	1. 00 26. 87
	ATOM	1531	0	ASP	205	31. 498	7. 810	68. 581	1. 00 27. 79
	ATOM	1532	N	THR	206	30. 686	6. 816	66. 740	1. 00 24. 79
	ATOM	1533	CA	THR	206	31. 951	6. 146	66. 476	1. 00 24. 03
	ATOM	1534	CB	THR	206	31. 886	5. 236	65. 206	1. 00 25. 43

- 69 -

	•					U	J		
	ATOM	1535	0G	1 THR	206	31. 401	5. 999	64. 089	1. 00 26. 30
	ATOM	1536	CG	2 THR	206	30. 976	4. 032	65. 444	1. 00 16. 83
	ATOM	1537	C	THR	206	32. 970	7. 258	66. 220	1. 00 24. 75
	ATOM	1538	0	THR	206	34. 025	7. 326	66. 858	1. 00 25. 65
5	ATOM	1539	N	VAL	207	32. 632	8. 136	65. 285	1. 00 22. 49
	ATOM	1540	CA	VAL	207	33. 487	9. 257	64. 917	1. 00 23. 51
	ATOM	1541	CB	VAL	207	32. 775	10. 133	63. 855	1. 00 25. 35
	ATOM	1542	CG	1 VAL	207	33. 617	11. 362	63. 521	1. 00 24. 61
	ATOM	1543	CG	2 VAL	207	32. 509	9. 299	62. 609	1. 00 21. 66
10	ATOM	1544	C	VAL	207	33. 897	10. 119	66. 126	1. 00 23. 48
	ATOM	1545	0	VAL	207	35. 061	10. 470	66. 279	1. 00 26. 51
	ATOM	1546	N	ALA	208	32. 948	10. 452	66. 989	1. 00 24. 53
	ATOM	1547	CA	ALA	208	33. 262	11. 251	68. 169	1. 00 26. 32
	ATOM	1548	CB	ALA	208	31. 980	11533	68. 958	1. 00 27. 56
15	ATOM	1549	C	ALA	208	34. 287	10. 530	69. 055	1. 00 28. 84
	ATOM	1550	0	ALA	208	35. 247	11. 138	69. 549	1. 00 27. 69
	ATOM	1551	N	THR	209	34. 084	9. 228	69. 258	1. 00 28. 76
	ATOM	1552	CA	THR	209	35. 006	8. 447	70. 075	1. 00 28. 08
	ATOM	1553	CB	THR	209	34. 474	7. 001	70. 271	1. 00 31. 76
20	ATOM	1554	0G1	THR	209	33. 373	7. 027	71. 181	1. 00 33. 12
	ATOM	1555	CG2	THR	209	35. 550	6. 080	70. 818	1. 00 30. 03
	ATOM	1556	C	THR	209	36. 382	8. 414	69. 418	1. 00 26. 73
	ATOM	1557	0	THR	209	37. 399	8. 611	70. 078	1. 00 28. 00
	ATOM	1558	N	MET	210	36. 421	8. 191	68. 110	1. 00 28. 44
25	ATOM	1559	CA	MET	210	37. 703	8. 143	67. 419	1. 00 28. 08
	ATOM	1560	CB	MET	210	37. 516	7. 851	65. 932	1. 00 26. 94
	ATOM	1561	CG	MET	210	38. 842	7. 766	65. 168	1. 00 28. 59
	ATOM	1562	SD	MET	210	38. 643	7. 734	63. 374	1. 00 32. 14
	ATOM	1563	CE	MET	210	38. 216	9. 518	63. 083	1. 00 33. 30

- 70 -

						_	10 -		
	ATOM	1564	ł C	MET	210	38. 467	9. 452	67. 578	1. 00 29. 43
	ATOM	1565	0	MET	210	39. 636	9. 459	67. 972	1. 00 30. 57
	ATOM	1566	N	ILE	211	37. 799	10. 561	67. 281	1. 00 31. 16
	ATOM	1567	CA	ILE	211	38. 433	11. 873	67. 376	1. 00 30. 57
5	ATOM	1568	CB	ILE	211	37. 418	13. 012	67. 019	1. 00 29. 75
	ATOM	1569	CG	2 ILE	211	38. 086	14. 390	67. 177	1. 00 28. 08
	ATOM	1570	CG	1 ILE	211	36. 928	12. 837	65. 578	1. 00 22. 83
	ATOM	1571	CD	1 ILE	211	38. 021	12. 979	64. 553	1. 00 26. 28
	ATOM	1572	C	ILE	211	39. 014	12. 128	68. 762	1. 00 30. 30
10	ATOM	1573	0	ILE	211	40. 185	12. 489	68. 897	1. 00 31. 89
	ATOM	1574	N	SER	212	38. 203	11. 914	69. 792	1. 00 32. 78
	ATOM	1575	CA	SER	212	38. 639	12. 146	71. 164	1. 00 35. 84
	ATOM	1576	CB	SER	212	37. 499	11. 852	72. 140	1. 00 35. 91
	ATOM	1577	0G	SER	212	37. 317	10. 455	72. 307	1. 00 41. 55
15	ATOM	1578	C	SER	212	39. 864	11. 334	71. 566	1. 00 37. 74
	ATOM	1579	0	SER	212	40. 684	11. 803	72. 354	1. 00 41. 44
	ATOM	1580	N	CYS	213	39. 990	10. 121	71. 040	1. 00 38. 07
	ATOM	1581	CA	CYS	213	41. 132	9. 273	71. 374	1. 00 39. 83
	ATOM	1582	CB	CYS	213	40. 802	7. 799	71. 108	1. 00 38. 31
20	ATOM	1583	SG	CYS	213	39. 513	7. 129	72. 185	1. 00 38. 48
	ATOM	1584	C	CYS	213	42. 372	9. 666	70. 582	1. 00 41. 86
	ATOM	1585	0	CYS	213	43. 503	9. 426	71. 012	1. 00 38. 47
	ATOM	1586	N	TYR	214	42. 149	10. 261	69. 413	1. 00 45. 32
	ATOM	1587	CA	TYR	214	43. 243	10. 701	68. 554	1. 00 45. 02
25	ATOM	1588	CB	TYR	214	42. 705	11. 506	67. 370	1. 00 45. 88
	ATOM	1589	CG	TYR	214	43. 798	12. 171	66. 573	1. 00 45. 72
	ATOM	1590	CD1	TYR	214	44. 509	11. 465	65. 608	1. 00 46. 39
	ATOM	1591	CE1	TYR	214	45. 556	12. 061	64. 913	1. 00 47. 16
	ATOM	1592	CD2	TYR	214	44. 160	13. 498	66. 823	1. 00 44. 53

- 71 -

						• •	•		
	ATOM	1593	CE2	TYR	214	45. 203	14. 099	66. 134	1. 00 45. 20
	ATOM	1594	CZ	TYR	214	45. 896	13. 375	65. 183	1. 00 46. 22
	ATOM	1595	ОН	TYR	214	46. 942	13. 955	64. 510	1. 00 50. 31
	ATOM	1596	C	TYR	214	44. 226	11. 573	69. 322	1. 00 44. 69
5	ATOM	1597	0	TYR	214	45. 420	11. 296	69. 363	1. 00 44. 40
	ATOM	1598	N	TYR	215	43. 713	12. 635	69. 924	1. 00 45. 92
	ATOM	1599	CA	TYR	215	44. 556	13. 552	70. 667	1. 00 48. 38
	ATOM	1600	CB	TYR	215	43. 713	14. 716	71. 175	1. 00 51. 93
	ATOM	1601	CG	TYR	215	43. 192	15. 545	70. 021	1. 00 57. 70
10	ATOM	1602	CD1	TYR	215	41. 918	15. 330	69. 484	1. 00 58. 41
	ATOM	1603	CE1	TYR	215	41. 478	16. 047	68. 363	1. 00 61. 27
	ATOM	1604	CD2	TYR	215	44. 011	16. 498	69. 413	1. 00 59. 13
	ATOM	1605	CE2	TYR	215	43. 586	17. 214	68. 300	1. 00 61. 22
	ATOM	1606	CZ	TYR	215	42. 325	16. 991	67. 780	1. 00 62. 20
15	ATOM	1607	ОН	TYR	215	41. 928	17. 728	66. 688	1. 00 61. 67
	ATOM	1608	C	TYR	215	45. 304	12. 871	71. 792	1. 00 48. 87
	ATOM	1609	0	TYR	215	46. 282	13. 407	72. 318	1. 00 49. 38
	ATOM	1610	N	GLU	216	44. 852	11. 672	72. 142	1. 00 47. 69
	ATOM	1611	CA	GLU	216	45. 496	10. 889	73. 181	1. 00 47. 03
20	ATOM	1612	CB	GLU	216	44. 474	9. 979	73. 863	1. 00 49. 83
	ATOM	1613	CG	GLU	216	44. 837	9. 550	75. 270	1. 00 55. 37
	ATOM	1614	CD	GLU	216	44. 998	10. 735	76. 208	1. 00 59. 31
	ATOM	1615	0E1	GLU	216	44. 285	11. 747	76. 012	1. 00 59. 95
	ATOM	1616	0E2	GLU	216	45. 824	10. 649	77. 146	1. 00 60. 13
25	ATOM	1617	C	GLU	216	46. 552	10. 044	72. 477	1. 00 45. 45
	ATOM	1618	0	GLU	216	47. 673	9. 905	72. 958	1. 00 45. 05
	ATOM	1619	N	ASP	217	46. 183	9. 495	71. 321	1. 00 43. 73
	ATOM	1620	CA	ASP	217	47. 074	8. 643	70. 530	1. 00 41. 33
	ATOM	1621	CB	ASP	217	46. 776	7. 171	70. 845	1. 00 40. 13

- 72 -

						- (<u> </u>		
	ATOM	1622	CG	ASP	217	47. 780	6. 208	70. 226	1. 00 39. 76
	ATOM	1623	OD	1 ASP	217	48. 461	6. 571	69. 249	1. 00 40. 95
	ATOM	1624	OD	2 ASP	217	47. 876	5. 062	70. 712	1. 00 42. 61
	ATOM	1625	C	ASP	217	46. 852	8. 921	69. 033	1. 00 40. 53
5	ATOM	1626	0	ASP	217	45. 862	8. 474	68. 443	1. 00 37. 20
	ATOM	1627	N	HIS	218	47. 779	9. 657	68. 427	1. 00 41. 94
	ATOM	1628	CA	HIS	218	47. 689	10. 008	67. 007	1. 00 44. 23
	ATOM	1629	CB	HIS	218	48. 912	10. 828	66. 603	1. 00 47. 00
	ATOM	1630	CG	HIS	218	48. 860	12. 244	67. 079	1. 00 51. 95
10	ATOM	1631	CD	2 HIS	218	49. 230	13. 402	66. 483	1. 00 54. 47
	ATOM	1632	ND 1	HIS	218	48. 371	12. 592	68. 320	1. 00 54. 33
	ATOM	1633	CE	HIS	218	48. 439	13. 903	68. 467	1. 00 55. 83
	ATOM	1634	NE2	HIS	218	48. 957	14. 419	67. 367	1. 00 55. 95
	ATOM	1635	C	HIS	218	47. 528	8. 810	66. 074	1. 00 42. 66
15	ATOM	1636	0	HIS	218	47. 157	8. 963	64. 909	1. 00 42. 00
	ATOM	1637	N	GLN	219	47. 793	7. 620	66. 597	1. 00 41. 40
	ATOM	1638	CA	GLN	219	47. 667	6. 394	65. 820	1. 00 41. 15
	ATOM	1639	CB	GLN	219	48. 592	5. 321	66. 397	1. 00 45. 16
	ATOM	1640	CG	GLN	219	50. 070	5. 611	66. 214	1. 00 49. 72
20	ATOM	1641	CD	GLN	219	50. 566	5. 230	64. 832	1. 00 55. 92
	ATOM	1642	0E1	GLN	219	49. 997	5. 646	63. 813	1. 00 57. 28
	ATOM	1643	NE2	GLN	219	51.636	4. 429	64. 787	1. 00 57. 32
	ATOM	1644	C	GLN	219	46. 228	5. 869	65. 792	1. 00 37. 41
	ATOM	1645	0	GLN	219	45. 927	4. 904	65. 091	1. 00 37. 06
25	ATOM	1646	N	CYS	220	45. 342	6. 488	66. 562	1. 00 34. 18
	ATOM	1647	CA	CYS	220	43. 955	6. 038	66. 578	1. 00 32. 52
	ATOM	1648	CB	CYS	220.	43. 199	6. 597	67. 783	1. 00 28. 93
	ATOM	1649	SG	CYS	220	41. 420	6. 288	67. 739	1. 00 31. 90
	ATOM	1650	C	CYS	220	43. 272	6. 474	65. 303	1. 00 32. 01

- 73 -

	ATOM	1651	0	CYS	220	43. 010	7. 664	65. 096	1. 00 32. 91
	ATOM	1652	N	GLU	221	42. 993	5. 505	64. 442	1. 00 29. 12
	ATOM	1653	CA	GLU	221	42. 343	5. 785	63. 176	1. 00 28. 98
	ATOM	1654	CB	GLU	221	43. 273	5. 437	62. 009	1. 00 30. 00
5	ATOM	1655	CG	GLU	221	44. 481	6. 366	61. 853	1. 00 35. 29
	ATOM	1656	CD	GLU	221	45. 190	6. 166	60. 515	1. 00 36. 83
	ATOM	1657	0E 1	GLU	221	44. 490	6. 007	59. 498	1. 00 38. 09
	ATOM	1658	0E2	GLU	221	46. 436	6. 176	60. 465	1. 00 40. 80
	ATOM	1659	C	GLU	221	41. 057	4. 991	63. 059	1. 00 25. 46
10	ATOM	1660	0	GLU	221	40. 513	4. 835	61. 970	1. 00 22. 65
	ATOM	1661	N	VAL	222	40. 569	4. 491	64. 185	1. 00 25. 43
	ATOM	1662	CA	VAL	222	39. 337	3. 703	64. 179	1. 00 25. 45
	ATOM	1663	CB	VAL	222	39. 625	2. 172	64. 189	1. 00 24. 36
	ATOM	1664	CG1	VAL	222	38. 318	1. 391	64. 122	1. 00 21. 56
15	ATOM	1665	CG2	VAL	222	40. 533	1. 795	63. 029	1. 00 21. 70
	ATOM	1666	C	VAL	222	38. 527	4. 016	65. 414	1. 00 25. 44
	ATOM	1667	0	VAL	222	39. 076	4. 192	66. 492	1. 00 25. 99
	ATOM	1668	N	GLY	223	37. 217	4. 090	65. 240	1. 00 25. 97
	ATOM	1669	CA	GLY	223	36. 328	4. 347	66. 349	1. 00 25. 83
20	ATOM	1670	C	GLY	223	35. 337	3. 201	66. 340	1. 00 25. 37
	ATOM	1671	0	GLY	223	34. 852	2. 812	65. 273	1. 00 25. 38
	ATOM	1672	N	MET	224	35. 044	2. 647	67. 511	1. 00 24. 88
	ATOM	1673	CA	MET	224	34. 114	1. 527	67. 587	1. 00 25. 47
	ATOM	1674	CB	MET	224	34. 881	0. 187	67. 638	1. 00 22. 66
25	ATOM	1675	CG	MET	224	33. 956	-1.041	67. 634	1. 00 25. 14
	ATOM	1676	SD	MET	224	34. 806	-2. 680	67. 748	1. 00 22. 18
	ATOM	1677	CE	MET	224	35. 380	-2. 594	69. 396	1. 00 16. 01
	ATOM	1678	C	MET	224	33. 177	1.618	68. 780	1. 00 22. 20
	ATOM	1679	0	MET	224	33. 577	1. 978	69. 881	1. 00 22. 65

- 74 -

						•	•		
	ATOM	1680	N	ILE	225	31. 915	1. 295	68. 543	1. 00 21. 12
	ATOM	1681	CA	ILE	225	30. 936	1. 314	69. 604	1. 00 21. 34
	ATOM	1682	CB	ILE	225	29. 757	2. 295	69. 293	1. 00 25. 85
	ATOM	1683	CG2	2 ILE	225	28. 739	2. 268	70. 446	1. 00 25. 47
5	ATOM	1684	CG	ILE	225	30. 273	3. 734	69. 107	1. 00 25. 08
	ATOM	1685	CD1	ILE	225	30. 838	4. 355	70. 382	1. 00 22. 09
	ATOM	1686	C	ILE	225	30. 321	-0. 080	69. 789	1. 00 22. 30
	ATOM	1687	0	ILE	225	29. 885	-0. 712	68. 826	1. 00 24. 03
	ATOM	1688	N	VAL	226	30. 313	-0. 563	71. 025	1. 00 22. 67
10	ATOM	1689	CA	VAL	226	29. 645	-1. 817	71. 341	1. 00 21. 60
	ATOM	1690	CB	VAL	226	30. 618	-2. 993	71. 634	1. 00 21. 77
	ATOM	1691	CG1	VAL	226	29. 821	-4. 291	71. 718	1. 00 21. 54
	ATOM	1692	CG2	VAL	226	31. 663	-3. 113	70. 541	1. 00 17. 23
	ATOM	1693	C	VAL	226	28. 838	-1. 493	72. 604	1. 00 21. 49
15	ATOM	1694	0	VAL	226	29. 316	-1. 633	73. 723	1. 00 18. 90
	ATOM	1695	N	GLY	227	27. 615	-1. 016	72. 402	1. 00 25. 39
	ATOM	1696	CA	GLY	227	26. 744	-0. 675	73. 518	1. 00 26. 76
	ATOM	1697	C	GLY	227	25. 353	-1. 140	73. 150	1. 00 28. 03
	ATOM	1698	0	GLY	227	25. 155	-2. 315	72. 846	1. 00 29. 80
20	ATOM	1699	N	THR	228	24. 384	-0. 235	73. 161	1. 00 27. 62
	ATOM	1700	CA	THR	228	23. 031	-0. 607	72. 788	1. 00 27. 59
	ATOM	1701	CB	THR	228	22. 083	0. 601	72. 911	1. 00 29. 15
	ATOM	1702	0G1	THR	228	21. 937	0. 932	74. 294	1. 00 32. 52
	ATOM	1703	CG2	THR	228	20. 719	0. 291	72. 339	1. 00 28. 08
25	ATOM	1704	C	THR	228	23. 094	-1. 080	71. 345	1. 00 26. 98
	ATOM	1705	0	THR	228	22. 460	-2. 065	70. 960	1. 00 27. 95
	ATOM	1706	N	GLY	229	23. 890	-0. 374	70. 554	1. 00 26. 02
	ATOM	1707	CA	GLY	229	24. 050	-0. 718	69. 154	1. 00 25. 33
	ATOM	1708	C	GLY	229	25. 503	-1. 055	68. 911	1. 00 24. 09

- 75 -

	ATOM	1709	0	GLY	229	26. 312	-1. 004	69. 838	1. 00 23. 25
	ATOM	1710	N	CYS	230	25. 850	-1. 395	67. 677	1. 00 24. 12
	ATOM	1711	CA	CYS	230	27. 235	-1. 750	67. 376	1. 00 23. 83
	ATOM	1712	CB	CYS	230	27. 395	-3. 280	67. 425	1. 00 20. 39
5	ATOM	1713	SG	CYS	230	29. 076	-3. 879	67. 182	1. 00 25. 34
	ATOM	1714	C	CYS	230	27. 627	-1. 204	66. 010	1. 00 20. 45
	ATOM	1715	0	CYS	230	26. 919	-1. 406	65. 035	1. 00 20. 28
	ATOM	1716	N	ASN	231	28. 763	-0. 526	65. 935	1. 00 23. 86
	ATOM	1717	CA	ASN	231	29. 196	0. 076	64. 669	1. 00 24. 35
10	ATOM	1718	CB	ASN	231	28. 267	1. 261	64. 355	1. 00 25. 51
	ATOM	1719	CG	ASN	231	28. 598	1. 962	63. 042	1. 00 27. 76
	ATOM	1720	OD	1 ASN	231	28. 930	1. 331	62. 039	1. 00 24. 60
	ATOM	1721	ND	2 ASN	231	28. 472	3. 288	63. 043	1. 00 30. 91
	ATOM	1722	C	ASN	231	30. 640	0. 553	64. 784	1. 00 23. 81
15	ATOM	1723	0	ASN	231	31. 184	0. 624	65. 885	1. 00 23. 94
	ATOM	1724	N	ALA	232	31. 249	0. 885	63. 651	1. 00 22. 70
	ATOM	1725	CA	ALA	232	32. 626	1. 359	63. 636	1. 00 25. 15
	ATOM	1726	CB	ALA	232	33. 580	0. 169	63. 463	1. 00 24. 36
	ATOM	1727	C	ALA	232	32. 867	2. 372	62. 511	1. 00 26. 31
20	ATOM	1728	0	ALA	232	32. 127	2. 416	61. 530	1. 00 28. 47
	ATOM	1729	N	CYS	233	33. 911	3. 176	62. 664	1. 00 24. 88
	ATOM	1730	CA	CYS	233	34. 291	4. 160	61. 653	1. 00 26. 51
	ATOM	1731	CB	CYS	233	33. 899	5. 583	62. 076	1. 00 24. 89
	ATOM	1732	SG	CYS	233	34. 875	6. 224	63. 436	1. 00 25. 76
25	ATOM	1733	C	CYS	233	35. 805	4. 055	61. 555	1. 00 25. 08
	ATOM	1734	0	CYS	233	36. 450	3. 564	62. 480	1. 00 25. 19
	ATOM	1735	N	TYR	234	36. 373	4. 505	60. 442	1. 00 25. 32
	ATOM	1736	CA	TYR	234	37. 820	4. 427	60. 245	1. 00 23. 93
	ATOM	1737	CB	TYR	234	38. 200	3. 020	59. 760	1. 00 20. 70

- 76 -

	ATOM	1738	CG	TYR	234	37. 782	2. 771	58. 328	1. 00 16. 78
	ATOM	1739	CD	TYR	234	38. 712	2. 786	57. 302	1. 00 18. 75
	ATOM	1740	CE	TYR	234	38. 326	2. 668	55. 975	1. 00 18. 89
	ATOM	1741	CD2	2 TYR	234	36. 443	2. 622	57. 990	1. 00 19. 60
5	ATOM	1742	CE	2 TYR	234	36. 043	2. 506	56. 666	1. 00 18. 40
	ATOM	1743	CZ	TYR	234	36. 990	2. 535	55. 665	1. 00 21. 55
	ATOM	1744	ОН	TYR	. 234	36. 603	2. 479	54. 346	1. 00 23. 25
	ATOM	1745	C	TYR	234	38. 254	5. 452	59. 194	1. 00 26. 41
	ATOM	1746	0	TYR	234	37. 436	5. 929	58. 404	1. 00 27. 14
10	ATOM	1747	N	MET	235	39. 543	5. 769	59. 179	1. 00 27. 10
	ATOM	1748	CA	MET	235	40. 094	6. 722	58. 224	1. 00 28. 74
	ATOM	1749	CB	MET	235	41. 383	7. 331	58. 789	1. 00 29. 38
	ATOM	1750	CG	MET	235	41. 169	8. 180	60. 035	1. 00 31. 43
	ATOM	1751	SD	MET	235	39. 947	9. 503	59. 750	1. 00 32. 30
15	ATOM	1752	CE	MET	235	40. 866	10. 535	58. 591	1.00 34.11
	ATOM	1753	C	MET	235	40. 374	6.066	56. 869	1.00 29.42
	ATOM	1754	0	MET	235	41. 170	5. 134	56. 767	1.00 30.49
	ATOM	1755	N	GLU	236	39. 714	6. 565	55. 829	1.00 31.08
	ATOM	1756	CA	GLU	236	39. 867	6. 040	54. 476	1.00 31.04
20	ATOM	1757	CB	GLU	236	38. 491	5. 743	53. 879	1. 00 31. 57
	ATOM	1758	CG	GLU	236	38. 536	5. 161	52. 474	1. 00 32. 18
	ATOM	1759	CD	GLU	236	39. 330	3. 875	52. 427	1. 00 32. 52
	ATOM	1760	0E1	GLU	236	40. 565	3. 952	52. 273	1.00 34.34
	ATOM	1761	0E2	GLU	236	38. 723	2. 789	52. 571	1.00 30.79
25	ATOM	1762	C	GLU	236	40. 598	7. 030	53. 574	1. 00 33. 43
	ATOM	1763	0	GLU	236	40. 583	8. 238	53. 818	1. 00 29. 93
	ATOM	1764	N	GLU	237	41. 240	6. 506	52. 532	1. 00 35. 85
	ATOM	1765	CA	GLU	237	41. 969	7. 333	51. 575	1. 00 37. 83
	ATOM	1766	CB	GLU	237	42. 934	6. 462	50. 764	1. 00 40. 16

- 77 -

	ATOM	1767	CG	GLU	237	43. 684	5. 426	51. 602	1. 00 43. 86
	ATOM	1768	CD	GLU	237	44. 466	6. 049	52. 743	1. 00 47. 85
	ATOM	1769	OE1	GLU	237	44. 806	5. 322	53. 704	1. 00 51. 02
	ATOM	1770	0E2	GLU	237	44. 747	7. 264	52. 681	1. 00 48. 78
5	ATOM	1771	C	GLU	237	40. 920	7. 969	50. 657	1. 00 37. 87
	ATOM	1772	0	GLU	237	40. 058	7. 268	50. 122	1. 00 38. 29
	ATOM	1773	N	MET	238	40. 987	9. 287	50. 477	1. 00 37. 42
	ATOM	1774	CA	MET	238	40. 009	9. 987	49. 644	1. 00 37. 50
	ATOM	1775	CB	MET	238	40. 375	11. 467	49. 501	1. 00 38. 62
10	ATOM	1776	CG	MET	238	39. 772	12. 355	50. 587	1. 00 40. 32
	ATOM	1777	SD	MET	238	37. 956	12. 144	50. 764	1. 00 42. 83
	ATOM	1778	CE	MET	238	37. 308	13. 116	49. 410	1. 00 44. 06
	ATOM	1779	C	MET	238	39. 796	9. 374	48. 270	1. 00 36. 21
	ATOM	1780	0	MET	238	38. 685	9. 413	47. 740	1. 00 33. 93
15	ATOM	1781	N	GLN	239	40. 848	8. 803	47. 690	1. 00 35. 50
	ATOM	1782	CA	GLN	239	40. 714	8. 184	46. 378	1. 00 36. 82
	ATOM	1783	CB	GLN	239	42. 078	7. 732	45. 846	1. 00 39. 35
	ATOM	1784	CG	GLN	239	42. 839	6. 804	46. 774	1. 00 44. 12
	ATOM	1785	CD	GLN	239	43. 900	7. 534	47. 584	1. 00 49. 18
20	ATOM	1786	0E1	GLN	239	43. 635	8. 580	48. 192	1. 00 49. 88
	ATOM	1787	NE2	GLN	239	45. 111	6. 981	47. 600	1. 00 49. 95
	ATOM	1788	C	GLN	239	39. 762	6. 986	46. 395	1. 00 35. 72
	ATOM	1789	0	GLN	239	39. 276	6. 568	45. 348	1. 00 37. 20
	ATOM	1790	N	ASN	240	39. 503	6. 419	47. 570	1. 00 34. 56
25	ATOM	1791	CA	ASN	240	38. 604	5. 272	47. 648	1. 00 33. 20
	ATOM	1792	CB	ASN	240	39. 118	4. 239	48. 658	1. 00 33. 68
	ATOM	1793	CG	ASN	240	40. 548	3. 802	48. 369	1. 00 34. 24
	ATOM	1794	0D1	ĄSN	240	40. 963	3. 710	47. 210	1. 00 33. 87
	ATOM	1795	ND2	ASN	240	41. 306	3. 523	49. 424	1. 00 34. 32

- 78 -

							•		
	ATOM	1796	C	ASN	240	37. 190	5. 690	48. 011	1. 00 33. 25
	ATOM	1797	0	ASN	240	36. 259	4. 886	47. 936	1. 00 33. 86
	ATOM	1798	N	VAL	241	37. 024	6. 946	48. 414	1. 00 32. 52
	ATOM	1799	CA	VAL	241	35. 702	7. 441	48. 753	1. 00 31. 62
5	ATOM	1800	CB	VAL	241	35. 755	8. 559	49. 811	1. 00 29. 14
	ATOM	1801	CG1	VAL	241	34. 339	8. 948	50. 204	1. 00 31. 00
	ATOM	1802	CG2	VAL	241	36. 530	8. 107	51. 021	1. 00 26. 87
	ATOM	1803	C	VAL	241	35. 102	8. 010	47. 474	1. 00 33. 73
	ATOM	1804	0	VAL	241	35. 048	9. 224	47. 286	1. 00 35. 18
10	ATOM	1805	N	GLU	242	34. 643	7. 132	46. 595	1. 00 33. 33
	ATOM	1806	CA	GLU	242	34. 075	7. 572	45. 324	1. 00 33. 69
	ATOM	1807	CB	GLU	242	33. 788	6. 364	44. 431	1. 00 31. 05
	ATOM	1808	CG	GLU	242	34. 983	5. 457	44. 222	1. 00 33. 00
	ATOM	1809	CD	GLU	242	34. 767	4. 451	43. 115	1. 00 33. 45
15	ATOM	1810	0E1	GLU	242	33. 595	4. 162	42. 776	1. 00 33. 74
	ATOM	1811	0E2	GLU	242	35. 778	3. 940	42. 592	1. 00 35. 96
	ATOM	1812	C	GLU	242	32. 812	8. 437	45. 427	1. 00 34. 45
	ATOM	1813	0	GLU	242	32. 406	9. 061	44. 442	1. 00 32. 92
	ATOM	1814	N	LEU	243	32. 192	8. 471	46. 602	1. 00 33. 82
20	ATOM	1815	CA	LEU	243	30. 982	9. 262	46. 799	1. 00 36. 13
	ATOM	1816	CB	LEU	243	30. 080	8. 598	47. 844	1. 00 33. 99
	ATOM	1817	CG	LEU	243	29. 168	7. 490	47. 297	1. 00 37. 04
	ATOM	1818	CD1	LEU	243	27. 999	8. 096	46. 545	1. 00 36. 01
	ATOM	1819	CD2	LEU	243	29. 969	6. 560	46. 384	1. 00 36. 49
25	ATOM	1820	C	LEU	243	31. 290	10. 700	47. 199	1. 00 35. 69
	ATOM	1821	0	LEU	243	30. 406	11. 458	47. 585	1. 00 37. 51
	ATOM	1822	N	VAL	244	32. 560	11.062	47. 117	1. 00 37. 53
	ATOM	1823	CA	VAL	244	32. 992	12. 411	47. 426	1. 00 37. 50
	ATOM	1824	СВ	VAL	244	33. 537	12. 547	48. 861	1. 00 36. 75

- 79 -

	ATOM	1825	CG1	VAL	244	33. 967	13. 990	49. 109	1. 00	36. 55
	ATOM	1826	CG2	VAL	244	32. 465	12. 160	49. 870	1. 00	37. 02
	ATOM	1827	C	VAL	244	34. 099	12. 727	46. 446	1. 00	39. 75
	ATOM	1828	0	VAL	244	35. 090	12. 003	46. 361	1. 00	39. 55
5	ATOM	1829	N	GLU	245	33. 909	13. 802	45. 688	1. 00	42. 16
	ATOM	1830	CA	GLU	245	34. 880	14. 232	44. 695	1. 00	42. 30
	ATOM	1831	CB	GLU	245	34. 372	15. 487	43. 989	1. 00	45. 34
	ATOM	1832	CG	GLU	245	34. 886	15. 636	42. 576	1. 00	48. 54
	ATOM	1833	CD	GLU	245	34. 377	16. 893	41. 901	1. 00	50. 12
10	ATOM	1834	0E1	GLU	245	33. 192	17. 249	42. 107	1. 00	49. 37
	ATOM	1835	0E2	GLU	245	35. 164	17. 511	41. 152	1. 00	52. 40
	ATOM	1836	C	GLU	245	36. 203	14. 532	45. 378	1. 00	41.00
	ATOM	1837	0	GLU	245	36. 230	15. 132	46. 446	1. 00	42. 20
	ATOM	1838	N	GLY	246	37. 297	14. 107	44. 761	1. 00	41. 28
15	ATOM	1839	CA	GLY	246	38. 606	14. 349	45. 336	1. 00	42.88
	ATOM	1840	C	GLY	246	39. 362	13. 066	45. 618	1. 00	45. 38
	ATOM	1841	0	GLY	246	38. 774	12. 056	45. 997	1. 00	45. 50
	ATOM	1842	N	ASP	247	40. 675	13. 105	45. 443	1. 00	47. 31
	ATOM	1843	CA	ASP	247	41. 509	11. 940	45. 687	1. 00	49. 13
20	ATOM	1844	CB	ASP	247	42. 139	11. 454	44. 384	1. 00	51.65
	ATOM	1845	CG	ASP	247	41. 131	10. 836	43. 449	1. 00	56.09
	ATOM	1846	OD1	ASP	247	41. 534	10. 410	42. 345	1. 00	58. 83
	ATOM	1847	OD2	ASP	247	39. 936	10. 770	43. 819	1. 00	59. 44
	ATOM	1848	C	ASP	247	42. 611	12. 274	46. 667	1. 00	49. 51
25	ATOM	1849	0	ASP	247	43. 406	11. 415	47. 039	1. 00	49. 57
	ATOM	1850	N	GLU	248	42. 661	13. 531	47. 086	1. 00	50. 49
	ATOM	1851	CA	GLU	248	43. 696	13. 957	48. 011	1. 00	50. 97
	ATOM	1852	CB	GLU	248	44. 198	15. 351	47. 634	1. 00	54. 71
	ATOM	1853	CG	GLU	248	45. 670	15. 391	47. 259	1. 00	62. 15

- 80 -

						0,	v		
	ATOM	1854	CD	GLU	248	46. 067	14. 259	46. 317	1. 00 66. 63
	ATOM	1855	0E1	GLU	248	46. 196	13. 105	46. 788	1. 00 68. 58
	ATOM	1856	0E2	GLU	248	46. 241	14. 520	45. 105	1. 00 68. 21
	ATOM	1857	C	GLU	248	43. 222	13. 955	49. 446	1. 00 47. 90
5	ATOM	1858	0	GLU	248	42. 063	14. 250	49. 726	1. 00 46. 55
	ATOM	1859	N	GLY	249	44. 133	13. 614	50. 351	1. 00 45. 49
	ATOM	1860	CA	GLY	249	43. 799	13. 590	51. 759	1. 00 44. 30
	ATOM	1861	C	GLY	249	43. 138	12. 301	52. 205	1. 00 42. 85
	ATOM	1862	0	GLY	249	43. 257	11. 259	51. 552	1. 00 42. 97
10	ATOM	1863	N	ARG	250	42. 444	12. 380	53. 335	1. 00 41. 43
	ATOM	1864	CA	ARG	250	41. 747	11. 232	53. 897	1. 00 39. 63
	ATOM	1865	CB	ARG	250	42. 625	10. 532	54. 931	1. 00 40. 69
	ATOM	1866	CG	ARG	250	44. 092	10. 454	54. 559	1. 00 43. 91
	ATOM	1867	CD	ARG	250	44. 903	9. 902	55. 714	1. 00 45. 22
15	ATOM	1868	NE	ARG	250	44. 630	8. 487	55. 940	1. 00 45. 43
	ATOM	1869	CZ	ARG	250	45. 040	7. 813	57. 007	1. 00 44. 67
	ATOM	1870	NH1	ARG	250	45. 738	8. 426	57. 954	1. 00 46. 95
	ATOM	1871	NH2	ARG	250	44. 761	6. 524	57. 121	1. 00 46. 99
	ATOM	1872	C	ARG	250	40. 486	11. 726	54. 580	1. 00 37. 70
20	ATOM	1873	0	ARG	250	40. 430	12. 865	55. 042	1. 00 37. 51
	ATOM	1874	N	MET	251	39. 473	10. 867	54. 630	1. 00 35. 10
	ATOM	1875	CA	MET	251	38. 216	11. 197	55. 277	1. 00 32. 34
	ATOM	1876	CB	MET	251	37. 137	11. 517	54. 242	1. 00 33. 00
	ATOM	1877	CG	MET	251	35. 803	11. 907	54. 868	1. 00 31. 56
25	ATOM	1878	SD	MET	251	34. 474	12. 160	53. 677	1. 00 37. 84
	ATOM	1879	CE	MET	251	35. 067	13. 715	52. 885	1. 00 32. 92
	ATOM	1880	C	MET	251	37. 764	10. 007	56. 121	1. 00 32. 47
	ATOM	1881	0	MET	251	38. 024	8. 852	55. 777	1. 00 31. 05
	ATOM	1882	N	CYS	252	37. 088	10. 292	57. 229	1. 00 30. 16

						- 0.	1 -		
	ATOM	1883	CA	CYS	252	36. 595	9. 236	58. 092	1. 00 30. 32
	ATOM	1884	CB	CYS	252	36. 364	9. 762	59. 517	1. 00 30. 54
	ATOM	1885	SG	CYS	252	35. 601	8. 557	60. 676	1. 00 28. 61
	ATOM	1886	C	CYS	252	35. 292	8. 717	57. 511	1. 00 29. 86
5	ATOM	1887	0	CYS	252	34. 422	9. 495	57. 114	1. 00 29. 84
	ATOM	1888	N	VAL	253	35. 170	7. 397	57. 438	1. 00 28. 79
	ATOM	1889	CA	VAL	253	33. 960	6. 776	56. 921	1. 00 27. 69
	ATOM	1890	CB	VAL	253	34. 291	5. 761	55. 816	1. 00 28. 07
	ATOM	1891	CG1	VAL	253	33. 033	5. 005	55. 405	1. 00 26. 98
10	ATOM	1892	CG2	VAL	253	34. 898	6. 484	54. 624	1. 00 24. 14
	ATOM	1893	C	VAL	253	33. 200	6.069	58. 038	1. 00 28. 79
	ATOM	1894	0	VAL	253	33. 801	5. 448	58. 922	1. 00 31. 23
•	ATOM	1895	N	ASN	254	31. 879	6. 188	58. 000	1. 00 28. 38
	ATOM	1896	CA	ASN	254	31. 003	5. 557	58. 976	1. 00 27. 73
15	ATOM	1897	CB	ASN	254	29. 834	6. 473	59. 328	1. 00 27. 41
	ATOM	1898	CG	ASN	254	28. 803	5. 779	60. 181	1. 00 31. 67
	ATOM	1899	OD1	ASN	254	29. 048	4. 675	60. 677	1. 00 32. 14
	ATOM	1900	ND2	ASN	254	27. 643	6. 415	60. 367	1. 00 29. 17
	ATOM	1901	C	ASN	254	30. 480	4. 295	58. 299	1. 00 27. 41
20	ATOM	1902	0	ASN	254	29. 575	4. 372	57. 467	1. 00 25. 53
	ATOM	1903	N	THR	255	31. 049	3. 142	58. 654	1. 00 24. 66
	ATOM	1904	CA	THR	255	30. 662	1. 883	58. 016	1. 00 24. 86
	ATOM	1905	CB	THR	255	31. 501	0. 665	58. 527	1. 00 23. 42
	ATOM	1906	0G1	THR	255	31. 071	0. 310	59. 849	1. 00 23. 50
25	ATOM	1907	CG2	THR	255	32. 973	0. 982	58. 558	1. 00 23. 88
	ATOM	1908	C	THR	255	29. 207	1. 488	58. 195	1. 00 23. 00
	ATOM	1909	0	THR	255	28. 589	0. 984	57. 259	1. 00 24. 38
	ATOM	1910	N	GLU	256	28. 673	1. 710	59. 394	1. 00 23. 70
	ATOM	1911	CA	GLU	256	27. 306	1. 305	59. 721	1. 00 26. 37

- 82 -

	ATOM	1912	CB	GLU	256	26. 271	0 <i>2</i> l 2. 017	58. 838	1. 00 26. 22
	ATOM	1913	CG	GLU	256	25. 974			
	ATOM	1914	CD	GLU	256	25. 284	3. 644		
	ATOM	1915	0E	1 GLU	256	24. 489	2. 764	60. 953	
5	ATOM	1916	0E2	2 GLU	256	25. 523	4. 682	61. 218	1. 00 30. 04
	ATOM	1917	C	GLU	256	27. 269	-0. 203	59. 458	1. 00 27. 40
	ATOM	1918	0	GLU	256	26. 369	-0. 713	58. 782	1. 00 26. 71
	ATOM	1919	N	TRP	257	28. 269	-0. 912	59. 982	1. 00 25. 98
	ATOM	1920	CA	TRP	257	28. 335	-2. 356	59. 774	1. 00 24. 56
10	ATOM	1921	CB	TRP	257	29. 714	-2. 928	60. 180	1. 00 21. 05
	ATOM	1922	CG	TRP	257	-30. 100	-2. 891	61. 653	1. 00 17. 51
	ATOM	1923	CD2	TRP	257	31. 429	-3. 026	62. 182	1. 00 16. 19
	ATOM	1924	CE2	TRP	257	31. 320	-3. 077	63. 588	1. 00 14. 42
	ATOM	1925	CE3	TRP	257	32. 705	-3. 112	61. 597	1. 00 16. 23
15	ATOM	1926	CD1	TRP	257	29. 264	-2. 862	62. 733	1. 00 18. 14
	ATOM	1927	NE1	TRP	257	29. 990	-2. 977	63. 902	1. 00 19. 95
	ATOM	1928	CZ2	TRP	257	32. 435	-3. 214	64. 421	1. 00 17. 46
	ATOM	1929	CZ3	TRP	257	33. 815	-3. 246	62. 424	1. 00 13. 91
	ATOM	1930	CH2	TRP	257	33. 672	-3. 294	63. 822	1. 00 14. 28
20	ATOM	1931	C	TRP	257	27. 218	-3. 091	60. 500	1. 00 24. 58
	ATOM	1932	0	TRP	257	27. 067	-4. 305	60. 352	1. 00 24. 81
	ATOM	1933	N	GLY	258	26. 427	-2. 354	61. 273	1. 00 23. 21
	ATOM	1934	CA	GLY	258	25. 328	-2. 981	61. 982	1. 00 23. 11
	ATOM	1935	C	GLY	258	24. 385	-3. 640	60. 991	1. 00 25. 72
25	ATOM	1936	0	GLY	258	23. 758	-4. 660	61. 285	1. 00 28. 37
	ATOM	1937	N	ALA	259	24. 288	-3. 067	59. 796	1. 00 24. 64
	ATOM	1938	CA	ALA	259	23. 406	-3. 630	58. 789	1. 00 25. 53
	ATOM	1939	CB	ALA	259	22. 866	-2. 519	57. 874	1. 00 25. 11
	ATOM	1940	C	ALA	259	24. 084	-4. 724	57. 961	1. 00 25. 44

						_	00 —		
	ATOM	1941	0	ALA	259	23. 515	-5. 205	56. 985	1. 00 24. 68
	ATOM	1942	N	PHE	260	25. 306	-5. 101	58. 329	1. 00 26. 96
	ATOM	1943	CA	PHE	260	25. 995	-6. 175	57. 614	1. 00 28. 11
	ATOM	1944	CB	PHE	260	27. 359	-6. 440	58. 254	1. 00 30. 88
5	ATOM	1945	CG	PHE	260	28. 127	-7. 569	57. 625	1. 00 33. 87
	ATOM	1946	CD	1 PHE	260	28. 496	-7. 525	56. 286	1. 00 33. 60
	ATOM	1947	CD2	PHE	260	28. 499	-8. 675	58. 380	1. 00 37. 30
	ATOM	1948	CE	PHE	260	29. 220	-8. 564	55. 716	1. 00 33. 58
	ATOM	1949	CE2	PHE	260	29. 229	-9. 720	57. 808	1. 00 35. 65
10	ATOM	1950	CZ	PHE	260	29. 586	-9. 660	56. 478	1. 00 34. 41
	ATOM	1951	C	PHE	260	25. 080	-7. 388	57. 783	1. 00 28. 87
	ATOM	1952	0	PHE	260	24. 487	-7. 576	58. 849	1. 00 27. 08
	ATOM	1953	N	GLY	261	24. 941	-8. 193	56. 737	1. 00 28. 88
	ATOM	1954	CA	GLY	261	24. 074	-9. 357	56. 826	1. 00 30. 83
15	ATOM	1955	C	GLY	261	22. 664	-9. 092	56. 317	1. 00 32. 15
	ATOM	1956	0	GLY	261	21. 905	-10. 021	56. 043	1. 00 34. 22
	ATOM	1957	N	ASP	262	22. 307	-7. 822	56. 175	1. 00 33. 45
	ATOM	1958	CA	ASP	262	20. 975	-7. 456	55. 701	1. 00 35. 91
	ATOM	1959	CB	ASP	262	20. 761	-5. 948	55. 868	1. 00 35. 78
20	ATOM	1960	CG	ASP	262	20. 674	-5. 541	57. 323	1. 00 35. 93
	ATOM	1961	OD1	ASP	262	20. 903	-6. 415	58. 182	1. 00 37. 70
	ATOM	1962	OD2	ASP	262	20. 382	-4. 364	57. 615	1. 00 35. 14
	ATOM	1963	C	ASP	262	20. 676	-7. 884	54. 262	1. 00 36. 35
	ATOM	1964	0	ASP	262	19. 546	-7. 758	53. 799	1. 00 37. 40
25	ATOM	1965	N	SER	263	21. 685	-8. 380	53. 554	1. 00 37. 07
	ATOM	1966	CA	SER	263	21. 488	-8. 863	52. 189	1. 00 37. 53
	ATOM	1967	CB	SER	263	22. 420	-8. 155	51. 200	1. 00 37. 00
	ATOM	1968	0G	SER	263	22. 028	-6. 815	50. 991	1. 00 38. 85
	ATOM	1969	C	SER	263	21. 770	-10. 359	52. 161	1. 00 37. 06

- 84 -

						01		
	ATOM	1970	0	SER	263	22. 062 -10. 923	51. 107	1. 00 36. 90
	ATOM	1971	N	GLY	264	21. 697 -10. 988	53. 331	1. 00 36. 97
	ATOM	1972	CA	GLY	264	21. 934 -12. 418	53. 428	1. 00 37. 50
	ATOM	1973	C	GLY	264	23. 370 -12. 857	53. 663	1. 00 38. 59
5	ATOM	1974	0	GLY	264	23. 666 -14. 050	53. 573	1. 00 40. 28
	ATOM	1975	N	GLU	265	24. 263 -11. 915	53. 961	1. 00 37. 52
	ATOM	1976	CA	GLU	265	25. 671 -12. 237	54. 199	1. 00 36. 34
	ATOM	1977	CB	GLU	265	26. 488 -10. 965	54. 438	1. 00 35. 82
	ATOM	1978	CG	GLU	265	26. 535 -9. 976	53. 289	1. 00 38. 57
10	ATOM	1979	CD	GLU	265	25. 270 -9. 148	53. 158	1. 00 39. 55
	ATOM	1980	0 E 1	GLU	265	24. 600 -8. 901	54. 173	1. 00 38. 51
	ATOM	1981	0E2	GLU	265	24. 953 -8. 722	52. 031	1. 00 43. 82
	ATOM	1982	C	GLU	265	25. 906 -13. 171	55. 391	1. 00 36. 38
	ATOM	1983	0	GLU	265	26. 899 -13. 906	55. 425	1. 00 35. 35
15	ATOM	1984	N	LEU	266	24. 996 -13. 140	56. 362	1. 00 34. 63
	ATOM	1985	CA	LEU	266	25. 130 -13. 955	57. 567	1. 00 35. 02
	ATOM	1986	CB	LEU	266	25. 008 -13. 054	58. 803	1. 00 31. 68
	ATOM	1987	CG	LEU	266	26. 017 -11. 914	58. 973	1. 00 33. 35
	ATOM	1988	CD1	LEU	266	25. 555 -10. 975	60. 077	1. 00 32. 52
20	ATOM	1989	CD2	LEU	266	27. 383 -12. 480	59. 294	1. 00 32. 43
	ATOM	1990	C	LEU	266	24. 108 -15. 092	57. 674	1. 00 35. 37
	ATOM	1991	0	LEU	266	24. 047 -15. 779	58. 696	1. 00 35. 21
	ATOM	1992	N	ASP	267	23. 321 -15. 300	56. 627	1. 00 36. 35
	ATOM	1993	CA	ASP	267	22. 286 -16. 332	56. 643	1. 00 39. 50
25	ATOM	1994	CB	ASP	267	21. 664 -16. 480	55. 248	1. 00 42. 21
	ATOM	1995	CG	ASP	267	20. 666 -15. 369	54. 921	1. 00 45. 43
	ATOM	1996	OD1	ASP	267	20. 205 -15. 320	53. 759	1. 00 48. 41
	ATOM	1997	OD2	ASP	267	20. 332 -14. 554	55. 813	1. 00 45. 57
	ATOM	1998	C	ASP	267	22. 676 -17. 715	57. 171	1. 00 38. 87

- 85 -

						~ ~		
	ATOM	1999	0	ASP	267	21. 888 -18. 353	57. 867	1. 00 39. 64
	ATOM	2000	N	GLU	268	23. 879 -18. 179	56. 860	1. 00 38. 72
	ATOM	2001	CA	GLU	268	24. 301 -19. 502	57. 313	1. 00 39. 91
	ATOM	2002	CB	GLU	268	25. 510 -19. 971	56. 495	1. 00 40. 60
5	ATOM	2003	CG	GLU	268	26. 847 -19. 444	56. 976	1. 00 43. 85
	ATOM	2004	CD	GLU	268	27. 969 -19. 710	55. 981	1. 00 47. 64
	ATOM	2005	0E1	GLU	268	28. 013 -19. 017	54. 941	1. 00 49. 73
	ATOM	2006	0E2	GLU	268	28. 802 -20. 612	56. 232	1. 00 48. 40
	ATOM	2007	C	GLU	268	24. 633 -19. 577	58. 807	1. 00 40. 59
10	ATOM	2008	0	GLU	268	24. 790 -20. 667	59. 360	1. 00 41. 43
	ATOM	2009	N	PHE	269	24. 734 -18. 427	59. 462	1. 00 39. 17
	ATOM	2010	CA	PHE	269	25. 070 -18. 402	60. 882	1. 00 37. 75
	ATOM	2011	CB	PHE	269	26. 182 -17. 385	61. 127	1. 00 34. 69
	ATOM	2012	CG	PHE	269	27. 435 -17. 675	60. 369	1. 00 35. 74
15	ATOM	2013	CD1	PHE	269	28. 144 -18. 853	60. 599	1. 00 35. 94
	ATOM	2014	CD2	PHE	269	27. 910 -16. 781	59. 416	1. 00 34. 75
	ATOM	2015	CE1	PHE	269	29. 306 -19. 136	59. 891	1. 00 34. 71
	ATOM	2016	CE2	PHE	269	29. 068 -17. 050	58. 701	1. 00 34. 58
	ATOM	2017	CZ	PHE	269	29. 770 -18. 233	58. 939	1. 00 35. 80
20	ATOM	2018	C	PHE	269	23. 898 -18. 085	61. 793	1. 00 36. 73
	ATOM	2019	0	PHE	269	23. 932 -18. 384	62. 984	1. 00 36. 59
	ATOM	2020	N	LEU	270	22. 861 -17. 480	61. 231	1. 00 37. 18
	ATOM	2021	CA	LEU	270	21. 696 -17. 107	62. 012	1. 00 37. 71
	ATOM	2022	CB	LEU	270	20. 712 -16. 332	61. 135	1. 00 36. 52
25	ATOM	2023	CG	LEU	270	21. 264 -15. 036	60. 521	1. 00 37. 18
	ATOM	2024	CD1	LEU	270	20. 299 -14. 516	59. 466	1. 00 38. 72
	ATOM	2025	CD2	LEU	270	21. 488 -13. 990	61. 604	1. 00 34. 72
	ATOM	2026	C	LEU	270	21. 010 -18. 312	62. 644	1. 00 38. 27
	ATOM	2027	0	LEU	270	20. 794 -19. 333	61. 995	1. 00 39. 49

						- 00 -		
	ATOM	2028	N	LEU	271	20. 685 -18. 176	63. 924	1. 00 37. 92
	ATOM	2029	CA	LEU	271	20. 010 -19. 212	64. 693	1. 00 38. 22
	ATOM	2030	CB	LEU	271	20. 657 -19. 339	66. 078	1. 00 37. 71
	ATOM	2031	CG	LEU	271	21. 897 -20. 220	66. 261	1. 00 38. 14
5	ATOM	2032	CD	1 LEU	271	22. 827 -20. 111	65. 075	1. 00 39. 09
	ATOM	2033	CD	2 LEU	271	22. 596 -19. 830	67. 549	1. 00 35. 73
	ATOM	2034	C	LEU	271	18. 536 -18. 845	64. 855	1. 00 39. 78
	ATOM	2035	0	LEU	271	18. 125 -17. 721	64. 538	1. 00 38. 05
	ATOM	2036	N	GLU	272	17. 751 -19. 794	65. 358	1. 00 39. 69
10	ATOM	2037	CA	GLU	272	16. 322 -19. 590	65. 575	1. 00 41. 03
	ATOM	2038	CB	GLU	272	15. 697 -20. 842	66. 219	1. 00 43. 64
	ATOM	2039	CG	GLU	272	16. 221 -21. 179	67. 627	1. 00 47. 44
	ATOM	2040	CD	GLU	272	15. 685 -22. 509	68. 182	1. 00 49. 81
	ATOM	2041	0E1	GLU	272	16. 081 -23. 580	67. 666	1. 00 51. 29
15	ATOM	2042	0E2	GLU	272	14. 869 -22. 484	69. 134	1. 00 47. 60
	ATOM	2043	C	GLU	272	16. 084 -18. 377	66. 466	1. 00 39. 89
	ATOM	2044	0	GLU	272	15. 151 -17. 602	66. 250	1. 00 40. 35
	ATOM	2045	N	TYR	273	16. 944 -18. 208	67. 465	1. 00 38. 65
	ATOM	2046	CA	TYR	273	16. 813 -17. 095	68. 393	1. 00 35. 97
20	ATOM	2047	CB	TYR	273	17. 829 -17. 238	69. 530	1. 00 35. 50
	ATOM	2048	CG	TYR	273	18. 008 -18. 658	70. 009	1. 00 34. 45
	ATOM	2049	CD1	TYR	273	19. 109 -19. 416	69. 611	1. 00 32. 53
	ATOM	2050	CE1	TYR	273	19. 252 -20. 740	70. 017	1. 00 35. 58
	ATOM	2051	CD2	TYR	273	17. 053 -19. 258	70. 830	1. 00 34. 35
25	ATOM	2052	CE2	TYR	273	17. 185 -20. 580	71. 241	1. 00 34. 82
	ATOM	2053	CZ	TYR	273	18. 281 -21. 314	70. 830	1. 00 35. 96
	ATOM	2054	OH	TYR	273	18. 381 -22. 626	71. 208	1. 00 38. 31
	ATOM	2055	C	TYR	273	17. 021 -15. 763	67. 680	1. 00 35. 11
	ATOM	2056	0	TYR	273	16. 404 -14. 752	68. 031	1. 00 34. 85

						• •		
	ATOM	2057	N	ASP	274	17. 888 -15. 763	66. 676	1. 00 36. 47
	ATOM	2058	CA	ASP	274	18. 164 -14. 541	65. 933	1. 00 36. 65
	ATOM	2059	CB	ASP	274	19. 405 -14. 718	65. 059	1. 00 32. 36
	ATOM	2060	CG	ASP	274	20. 627 -15. 072	65. 869	1. 00 32. 89
5	ATOM	2061	0D1	ASP	274	20. 949 -14. 315	66. 810	1. 00 30. 53
	ATOM	2062	0D2	ASP	274	21. 265 -16. 104	65. 569	1. 00 32. 08
	ATOM	2063	C	ASP	274	16. 968 -14. 165	65. 081	1. 00 37. 27
	ATOM	2064	0	ASP	274	16. 571 -13. 001	65. 040	1. 00 37. 20
	ATOM	2065	N	ARG	275	16. 380 -15. 148	64. 410	1. 00 39. 32
10	ATOM	2066	CA	ARG	275	15. 222 -14. 866	63. 574	1. 00 41. 70
	ATOM	2067	CB	ARG	275	14. 803 -16. 121	62. 809	1. 00 44. 47
	ATOM	2068	CG	ARG	275	15. 908 -16. 666	61. 914	1. 00 49. 05
	ATOM	2069	CD	ARG	275	15. 516 -18. 002	61. 303	1. 00 53. 46
	ATOM	2070	NE	ARG	275	16. 668 -18. 740	60. 779	1. 00 57. 36
15	ATOM	2071	CZ	ARG	275	17. 352 -18. 408	59. 685	1. 00 58. 81
	ATOM	2072	NH 1	ARG	275	18. 383 -19. 148	59. 296	1. 00 60. 43
	ATOM	2073	NH2	ARG	275	17. 005 -17. 341	58. 976	1. 00 61. 75
	ATOM	2074	C	ARG	275	14. 079 -14. 353	64. 446	1. 00 41. 43
	ATOM	2075	0	ARG	275	13. 350 -13. 444	64. 059	1. 00 40. 04
20	ATOM	2076	N	LEU	276	13. 939 -14. 927	65. 637	1. 00 40. 97
	ATOM	2077	CA	LEU	276	12. 888 -14. 507	66. 556	1. 00 42. 14
	ATOM	2078	CB	LEU	276	12. 831 -15. 450	67. 761	1. 00 44. 12
	ATOM	2079	CG	LEU	276	12. 315 -16. 862	67. 468	1. 00 47. 86
	ATOM	2080	CD1	LEU	276	12. 662 -17. 800	68. 618	1. 00 48. 62
25	ATOM	2081	CD2	LEU	276	10. 808 -16. 808	67. 236	1. 00 47. 43
	ATOM	2082	C	LEU	276	13. 094 -13. 072	67. 034	1. 00 40. 87
	ATOM	2083	0	LEU	276	12. 152 -12. 281	67. 072	1. 00 41. 20
	ATOM	2084	N	VAL	277	14. 322 -12. 740	67. 412	1. 00 39. 68
	ATOM	2085	CA	VAL	277	14. 617 -11. 390	67. 876	1. 00 40. 86

- 88 -

	1.00.1	0000	an		0.55	10 00 11 000		
	ATOM	2086		VAL				
	ATOM	2087		VAL		16. 447 -9. 802	68. 497	1. 00 43. 25
	ATOM	2088	CG2	VAL	277	16. 290 -12. 012	69. 647	1. 00 41. 47
	ATOM	2089	C	VAL	277	14. 363 -10. 381	66. 761	1. 00 40. 10
5	ATOM	2090	0	VAL	277	13. 813 -9. 305	66. 993	1. 00 41. 12
	ATOM	2091	N	ASP	278	14. 767 -10. 738	65. 550	1. 00 39. 42
	ATOM	2092	CA	ASP	278	14. 592 -9. 867	64. 398	1. 00 40. 24
	ATOM	2093	CB	ASP	278	15. 356 -10. 434	63. 195	1. 00 38. 24
	ATOM	2094	CG	ASP	278	15. 179 -9. 598	61. 943	1. 00 40. 23
10	ATOM	2095	OD1	ASP	278	15. 260 -8. 351	62. 043	1. 00 39. 72
	ATOM	2096	OD2	ASP	278	14. 969 -10. 187	60. 860	1. 00 38. 10
	ATOM	2097	C	ASP	278	13. 120 -9. 669	64. 043	1. 00 41. 19
	ATOM	2098	0	ASP	278	12. 693 -8. 545	63. 791	1. 00 40. 82
	ATOM	2099	N	GLU	279	12. 347 -10. 754	64. 035	1. 00 43. 34
15	ATOM	2100	CA	GLU	279	10. 922 -10. 688	63. 696	1. 00 46. 81
	ATOM	2101	CB	GLU	279	10. 321 -12. 097	63. 627	1. 00 50. 53
	ATOM	2102	CG	GLU	279	10. 870 -12. 965	62. 496	1. 00 56. 10
	ATOM	2103	CD	GLU	279	10. 320 -14. 382	62. 523	1. 00 59. 07
	ATOM	2104	0E1	GLU	279	10. 336 -15. 006	63. 607	1. 00 60. 28
20	ATOM	2105	0E2	GLU	279	9. 880 -14. 876	61. 461	1. 00 60. 79
	ATOM	2106	C	GLU	279	10. 086 -9. 840	64. 652	1. 00 47. 25
	ATOM	2107	0	GLU	279	9. 048 -9. 303	64. 260	1. 00 46. 34
	ATOM	2108	N	SER	280	10. 535 -9. 722	65. 899	1. 00 46. 87
	ATOM	2109	CA	SER	280	9. 809 -8. 948	66. 900	1. 00 47. 53
25	ATOM	2110	CB	SER	280	9. 769 -9. 708	68. 228	1. 00 49. 98
	ATOM	2111	0G	SER	280	9. 043 -10. 919	68. 093	1. 00 52. 36
	ATOM	2112	C	SER	280	10. 415 -7. 575	67. 129	1. 00 47. 33
	ATOM	2113	0	SER	280	9. 909 -6. 788	67. 936	1. 00 45. 86
	ATOM	2114	N	SER	281	11. 499 -7. 289	66. 416	1. 00 46. 95

- 89 -

						•	•		
	ATOM	2115	CA	SER	281	12. 172	-6. 004	66. 552	1. 00 46. 75
	ATOM	2116	CB	SER	281	13. 581	-6. 081	65. 971	1. 00 47. 24
	ATOM	2117	0G	SER	281	13. 524	-6. 172	64. 559	1. 00 47. 80
	ATOM	2118	C	SER	281	11. 391	-4. 915	65. 824	1. 00 45. 65
5	ATOM	2119	0	SER	281	10. 514	-5. 199	65. 013	1. 00 45. 10
	ATOM	2120	N	ALA	282	11. 723	-3. 667	66. 123	1. 00 45. 75
	ATOM	2121	CA	ALA	282	11. 066	-2. 530	65. 500	1. 00 45. 70
	ATOM	2122	CB	ALA	282	11. 257	-1. 289	66. 354	1. 00 45. 60
	ATOM	2123	C	ALA	282	11. 617	-2. 286	64. 100	1. 00 46. 48
10	ATOM	2124	0	ALA	282	11. 252	-1. 303	63. 449	1. 00 48. 61
	ATOM	2125	N	ASN	283	12. 493	-3. 172	63. 633	1. 00 43. 90
	ATOM	2126	CA	ASN	283	13. 076	-3. 015	62. 306	1. 00 41. 45
	ATOM	2127	CB	ASN	283	14. 300	-2. 092	62. 384	1. 00 40. 08
	ATOM	2128	CG	ASN	283	15. 398	-2. 631	63. 289	1. 00 39. 25
15	ATOM	2129	OD1	ASN	283	15. 136	-3. 308	64. 289	1. 00 37. 65
	ATOM	2130	ND2	ASN	283	16. 641	-2. 310	62. 950	1. 00 37. 96
	ATOM	2131	C	ASN	283	13. 433	-4. 350	61. 655	1. 00 41. 06
	ATOM	2132	0	ASN	283	14. 585	-4. 606	61. 318	1. 00 40. 48
	ATOM	2133	N	PR0	284	12. 423	-5. 211	61. 455	1. 00 40. 23
20	ATOM	2134	CD	PR0	284	11. 013	-4. 898	61. 751	1. 00 40. 75
	ATOM	2135	CA	PR0	284	12. 534	-6. 540	60. 851	1. 00 40. 08
	ATOM	2136	CB	PR0	284	11. 080	-6. 914	60. 581	1. 00 40. 52
	ATOM	2137	CG	PR0	284	10. 364	-6. 260	61. 712	1. 00 41. 21
	ATOM	2138	C	PRO	284	13. 366	-6. 565	59. 579	1. 00 39. 55
25	ATOM	2139	0	PR0	284	13. 054	-5. 868	58. 617	1. 00 40. 95
	ATOM	2140	N	GLY	285	14. 416	-7. 382	59. 576	1. 00 38. 56
	ATOM	2141	CA	GLY	285	15. 266	-7. 491	58. 407	1. 00 35. 73
	ATOM	2142	C	GLY	285	16. 428	-6. 516	58. 371	1. 00 35. 10
	ATOM	2143	0	GLY	285	17. 288	-6. 624	57. 500	1. 00 36. 22

- 90 -

	ATOM	2144	l N	GLN	286	16. 468	-5. 573	59. 308	1. 00 34. 06
	ATOM	2145	CA	GLN	286	17. 547	-4. 584	59. 348	1. 00 34. 96
	ATOM	2146	СВ	GLN	286	16. 974	-3. 166	59. 321	1. 00 39. 16
	ATOM	2147	CG	GLN	286	16. 189	-2. 825	58. 067	1. 00 45. 72
5	ATOM	2148	CD	GLN	286	15. 698	-1. 384	58. 074	1. 00 51. 15
	ATOM	2149	0E	1 GLN	286	14. 816	-1. 018	58. 860	1. 00 52. 21
	ATOM	2150	NE:	2 GLN	286	16. 276	-0. 555	57. 203	1. 00 50. 85
	ATOM	2151	C	GLN	286	18. 439	-4. 719	60. 573	1. 00 33. 59
	ATOM	2152	0	GLN	286	17. 993	-5. 157	61. 637	1. 00 33. 18
10	ATOM	2153	N	GLN	287	19. 701	-4. 334	60. 408	1. 00 32. 85
	ATOM	2154	CA	GLN	287	20. 691	-4. 375	61. 484	1. 00 32. 45
	ATOM	2155	CB	GLN	287	20. 248	-3. 456	62. 636	1. 00 33. 34
	ATOM	2156	CG	GLN	287	19. 955	-1. 999	62. 251	1. 00 31. 48
	ATOM	2157	CD	GLN	287	21. 188	-1. 259	61. 743	1. 00 31. 78
15	ATOM	2158	0E1	GLN	287	21. 330	-1. 010	60. 544	1. 00 33. 25
	ATOM	2159	NE2	GLN	287	22. 090	-0. 921	62. 652	1. 00 27. 51
	ATOM	2160	C	GLN	287	20. 924	-5. 788	62. 032	1. 00 30. 79
	ATOM	2161	0	GLN	287	21. 120	-5. 957	63. 229	1. 00 29. 31
	ATOM	2162	N	LEU	288	20. 921	-6. 791	61. 158	1. 00 29. 33
20	ATOM	2163	CA	LEU	288	21. 101	-8. 181	61. 585	1. 00 27. 53
	ATOM	2164	CB	LEU	288	20. 940	-9. 129	60. 393	1. 00 28. 13
	ATOM	2165	CG	LEU	288	19. 599	-9. 090	59. 647	1. 00 29. 14
	ATOM	2166	CD1	LEU	288	19. 390 -	-10. 418	58. 922	1. 00 27. 60
	ATOM	2167	CD2	LEU	288	18. 453	-8. 844	60. 621	1. 00 27. 42
25	ATOM	2168	C	LEU	288	22. 418	-8. 476	62. 297	1. 00 27. 92
	ATOM	2169	0	LEU	288	22. 438	-9. 184	63. 303	1. 00 28. 24
	ATOM	2170	N	TYR	289	23. 520	-7. 946	61. 776	1. 00 27. 17
	ATOM	2171	CA	TYR	289	24. 819	-8. 153	62. 399	1. 00 24. 83
	ATOM	2172	CB	TYR	289	25. 899	-7. 458	61. 583	1. 00 24. 32

- 91 -

						0.2	•		
	ATOM	2173	CG	TYR	289	27. 303	-7. 575	62. 137	1. 00 21. 26
	ATOM	2174	CD1	TYR	289	27. 951	-8. 814	62. 208	1. 00 20. 00
	ATOM	2175	CE1	TYR	289	29. 281	-8. 909	62. 616	1. 00 18. 43
	ATOM	2176	CD2	TYR	289	28. 013	-6. 441	62. 503	1. 00 18. 12
5	ATOM	2177	CE2	TYR	289	29. 338	-6. 520	62. 918	1. 00 20. 65
	ATOM	2178	CZ	TYR	289	29. 976	-7. 762	62. 966	1. 00 21. 27
	ATOM	2179	ОН	TYR	289	31. 314	-7. 833	63. 326	1. 00 19. 02
	ATOM	2180	C	TYR	289	24. 771	-7. 566	63. 799	1. 00 26. 94
	ATOM	2181	0	TYR	289	25. 221	-8. 175	64. 776	1. 00 27. 95
10	ATOM	2182	N	GLU	290	24. 198	-6. 374	63. 892	1. 00 27. 68
	ATOM	2183	CA	GLU	290	24. 078	-5. 686	65. 165	1. 00 26. 41
	ATOM	2184	€B	GLU	290	23. 484	-4. 309	64. 927	1. 00 26. 55
	ATOM	2185	CG	GLU	290	23. 059	-3. 595	66. 180	1. 00 27. 05
	ATOM	2186	CD	GLU	290	22. 815	-2. 142	65. 913	1. 00 25. 47
15	ATOM	2187	0E1	GLU	290	23. 716	-1. 336	66. 204	1. 00 27. 17
	ATOM	2188	0E2	GLU	290	21. 731	-1. 815	65. 398	1. 00 29. 09
	ATOM	2189	C	GLU	290	23. 218	-6. 463	66. 159	1. 00 26. 59
	ATOM	2190	0	GLU	290	23. 458	-6. 430	67. 371	1. 00 25. 62
	ATOM	2191	N	LYS	291	22. 216	-7. 166	65. 646	1. 00 26. 31
20	ATOM	2192	CA	LYS	291	21. 343	-7. 942	66. 509	1. 00 27. 77
	ATOM	2193	CB	LYS	291	20. 110	-8. 394	65. 722	1. 00 28. 30
	ATOM	2194	CG	LYS	291	19. 096	-7. 263	65. 585	1. 00 33. 35
	ATOM	2195	CD	LYS	291	18. 005	-7. 529	64. 555	1. 00 33. 56
	ATOM	2196	CE	LYS	291	17. 038	-6. 330	64. 522	1. 00 36. 46
25	ATOM	2197	NZ	LYS	291	16. 150	-6. 319	63. 327	1. 00 36. 55
	ATOM	2198	C	LYS	291	22. 073	-9. 123	67. 138	1. 00 26. 53
	ATOM	2199	0	LYS	291	21. 584	-9. 736	68. 084	1. 00 27. 81
	ATOM	2200	N	LEU	292	23. 261	-9. 426	66. 628	1. 00 26. 02
	ATOM	2201	CA	LEU	292	24. 043 -	-10. 523	67. 168	1. 00 25. 35

						•	<i>,</i> ,		
	ATOM	2202	СВ	LEU	292	24. 922	-11. 140	66. 079	1. 00 25. 16
	ATOM	2203	CG	LEU	292	24. 229	-11. 746	64. 856	1. 00 26. 25
	ATOM	2204	CD	1 LEU	292	25. 274	-12. 190	63. 827	1. 00 23. 09
	ATOM	2205	CD	2 LEU	292	23. 359	-12. 912	65. 297	1. 00 24. 40
5	ATOM	2206	C	LEU	292	24. 942	-10. 030	68. 283	1. 00 25. 18
	ATOM	2207	0	LEU	292	25. 392	-10. 808	69. 120	1. 00 23. 84
	ATOM	2208	N	ILE	293	25. 179	-8. 723	68. 308	1. 00 24. 94
	ATOM	2209	CA	ILE	293	26. 107	-8. 140	69. 267	1. 00 23. 59
	ATOM	2210	CB	ILE	293	27. 259	-7. 468	68. 476	1. 00 24. 66
10	ATOM	2211	CG	2 ILE	293	28. 233	-6. 762	69. 409	1. 00 21. 05
	ATOM	2212	CG	ILE	293	27. 952	-8. 527	67. 618	1. 00 24. 42
	ATOM	2213	CD	ILE	293	28. 715	-7. 965	66. 441	1. 00 25. 64
	ATOM	2214	C	ILE	293	25. 560	-7. 148	70. 278	1. 00 25. 10
	ATOM.	2215	0	ILE	293	25. 797	-7. 289	71. 474	1. 00 23. 79
15	ATOM	2216	N	GLY	294	24. 845	-6. 136	69. 781	1. 00 28. 83
	ATOM	2217	CA	GLY	294	24. 302	-5. 071	70. 615	1. 00 26. 73
	ATOM	2218	C	GLY	294	23. 551	-5. 379	71. 898	1. 00 29. 79
	ATOM	2219	0	GLY	294	22. 757	-6. 318	71. 964	1. 00 27. 85
	ATOM	2220	N	GLY	295	23. 794	-4. 553	72. 918	1. 00 30. 56
20	ATOM	2221	CA	GLY	295	23. 136	-4. 722	74. 204	1. 00 33. 01
	ATOM	2222	C	GLY	295	21. 628	-4. 539	74. 144	1. 00 34. 05
	ATOM	2223	0	GLY	295	20. 927	-4. 810	75. 107	1. 00 34. 93
	ATOM	2224	N	LYS	296	21. 124	-4. 058	73. 016	1. 00 35. 19
	ATOM	2225	CA	LYS	296	19. 690	-3. 868	72. 851	1. 00 36. 24
25	ATOM	2226	CB	LYS	296	19. 419	-2. 988	71. 626	1. 00 38. 05
	ATOM	2227	CG	LYS	296	17. 961	-2. 910	71. 181	1. 00 40. 26
	ATOM	2228	CD	LYS	296	17. 122	-2. 093	72. 141	1. 00 43. 32
	ATOM	2229	CE	LYS	296	15. 730	-1. 862	71. 579	1. 00 44. 42
	ATOM	2230	NZ	LYS	296	14. 842	-1. 175	72. 562	1. 00 44. 77

- 93 - .

							•	•	
	ATOM	2231	C	LYS	296	19. 045	-5. 235	72. 654	1. 00 36. 63
	ATOM	2232	0	LYS	296	17. 867	-5. 420	72. 963	1. 00 38. 56
	ATOM	2233	N	TYR	297	19. 836	-6. 193	72. 168	1. 00 34. 63
	ATOM	2234	CA	TYR	297	19. 346	-7. 539	71. 890	1. 00 33. 22
5	ATOM	2235	CB	TYR	297	19. 487	-7. 810	70. 389	1. 00 34. 65
	ATOM	2236	CG	TYR	297	19. 073	-6. 631	69. 535	1. 00 36. 28
	ATOM	2237	CD1	TYR	297	20. 010	-5. 677	69. 125	1. 00 34. 21
	ATOM	2238	CE1	TYR	297	19. 622	-4. 548	68. 404	1. 00 36. 22
	ATOM	2239	CD2	TYR	297	17. 732	-6. 431	69. 195	1. 00 34. 24
10	ATOM	2240	CE2	TYR	297	17. 330	-5. 305	68. 476	1. 00 35. 71
	ATOM	2241	CZ	TYR	297	18. 280	-4. 368	68. 082	1. 00 37. 38
	ATOM	2242	OH	TYR	297	17. 887	-3. 258	67. 375	1. 00 35. 33
	ATOM	2243	C	TYR	297	19. 968	-8. 713	72. 670	1. 00 33. 21
	ATOM	2244	0	TYR	297	19. 392	-9. 800	72. 716	1. 00 33. 78
15	ATOM .	2245	N	MET	298	21. 126	-8. 504	73. 283	1. 00 31. 19
	ATOM	2246	CA	MET	298	21. 803	-9. 576	74. 005	1. 00 30. 16
	ATOM	2247	CB	MET	298	23. 075	-9. 038	74. 644	1. 00 30. 05
	ATOM	2248	CG	MET	298	23. 957	-10. 104	75. 231	1. 00 26. 86
	ATOM	2249	SD	MET	298	25. 486	-9. 405	75. 850	1. 00 32. 83
20	ATOM	2250	CE	MET	298	26. 409	-9. 201	74. 338	1. 00 29. 59
	ATOM	2251	C	MET	298	20. 963	-10. 296	75. 066	1. 00 31. 27
	ATOM	2252	0	MET	298	20. 882	-11. 529	75. 077	1. 00 29. 78
	ATOM	2253	N	GLY	299	20. 353	-9. 530	75. 963	1. 00 30. 40
	ATOM	2254	CA	GLY	299	19. 534	-10. 132	76. 998	1. 00 31. 32
25	ATOM	2255	C	GLY	299	18. 354	-10. 869	76. 393	1. 00 33. 32
	ATOM	2256	0	GLY	299	17. 988	-11. 962	76. 831	1. 00 33. 97
	ATOM	2257	N	GLU	300	17. 752	-10. 265	75. 377	1. 00 31. 78
	ATOM	2258	CA	GLU	300	16. 617	-10. 874	74. 707	1. 00 31. 93
	ATOM	2259	CB	GLU	300	16. 080	-9. 937	73. 621	1. 00 29. 00

PCT/JP03/06054

- 94 -

						0.1		
	ATOM	2260	CG	GLU	300	14. 877 -10. 486	72. 881	1. 00 32. 60
	ATOM	2261	CD	GLU	300	13. 655 -10. 655	73. 769	1. 00 31. 13
	ATOM	2262	0E1	GLU	300	12. 629 -11. 144	73. 265	1. 00 34. 55
	ATOM	2263	0E2	GLU	300	13. 714 -10. 299	74. 963	1. 00 33. 16
5	ATOM	2264	C	GLU	300	17. 013 -12. 215	74. 092	1. 00 30. 90
	ATOM	2265	0	GLU	300	16. 225 -13. 156	74. 090	1. 00 32. 89
	ATOM	2266	N	LEU	301	18. 234 -12. 301	73. 570	1. 00 31. 16
	ATOM	2267	CA	LEU	301	18. 714 -13. 546	72. 973	1. 00 28. 93
	ATOM	2268	CB	LEU	301	20. 085 -13. 339	72. 325	1. 00 24. 69
10	ATOM	2269	CG	LEU	301	20. 152 -12. 667	70. 952	1. 00 24. 17
	ATOM	2270	CD1	LEU	301	21. 607 -12. 326	70. 628	1. 00 23. 70
	ATOM	2271	CD2	LEU	301	19. 560 -13. 598	69. 886	1. 00 23. 13
	ATOM	2272	C	LEU	301	18. 814 -14. 616	74. 056	1. 00 29. 42
	ATOM	2273	0	LEU	301	18. 408 -15. 761	73. 853	1. 00 32. 03
15	ATOM	2274	N	VAL	302	19. 365 -14. 239	75. 204	1. 00 28. 73
	ATOM	2275	CA	VAL	302	19. 505 -15. 164	76. 317	1. 00 29. 42
	ATOM	2276	CB	VAL	302	20. 265 -14. 510	77. 497	1. 00 26. 51
	ATOM	2277	CG1	VAL	302	20. 172 -15. 395	78. 740	1. 00 25. 63
	ATOM	2278	CG2	VAL	302	21. 731 -14. 301	77. 117	1. 00 25. 98
20	ATOM	2279	C	VAL	302	18. 127 -15. 624	76. 795	1. 00 31. 88
•	ATOM	2280	0	VAL	302	17. 934 -16. 795	77. 112	1. 00 32. 71
	ATOM	2281	N	ARG	303	17. 171 -14. 703	76. 835	1. 00 32. 91
	ATOM	2282	CA	ARG	303	15. 818 -15. 039	77. 270	1. 00 36. 08
	ATOM	2283	CB	ARG	303	14. 910 -13. 802	77. 250	1. 00 35. 86
25	ATOM	2284	CG	ARG	303	13. 524 -14. 055	77. 847	1. 00 36. 97
	ATOM	2285	CD	ARG	303	12. 660 -12. 802	77. 833	1. 00 39. 15
	ATOM	2286	NE	ARG	303	12. 105 -12. 529	76. 511	1. 00 41. 95
	ATOM	2287	CZ	ARG	303	11. 090 -13. 197	75. 968	1. 00 43. 84
	ATOM	2288	NH1	ARG	303	10. 502 -14. 182	76. 631	1. 00 42. 47

- 95 -

						00		
	ATOM	2289	NH2	ARG	303	10. 666 -12. 885	74. 750	1. 00 43. 86
	ATOM	2290	C	ARG	303	15. 215 -16. 110	76. 373	1. 00 36. 97
	ATOM	2291	0	ARG	303	14. 554 -17. 032	76. 851	1. 00 37. 22
	ATOM	2292	N	LEU	304	15. 432 -15. 970	75. 068	1. 00 37. 86
5	ATOM	2293	CA	LEU	304	14. 914 -16. 924	74. 103	1. 00 37. 63
	ATOM	2294	CB	LEU	304	15. 113 -16. 387	72. 687	1. 00 38. 69
	ATOM	2295	CG	LEU	304	13. 944 -15. 590	72. 104	1. 00 40. 35
	ATOM	2296	CD1	LEU	304	13. 486 -14. 516	73. 062	1. 00 40. 85
	ATOM	2297	CD2	LEU	304	14. 378 `-14. 986	70. 785	1. 00 42. 07
10	ATOM	2298	C	LEU	304	15. 602 -18. 272	74. 262	1. 00 37. 69
	ATOM	2299	0	LEU	304	14. 978 -19. 324	74. 120	1. 00 38. 84
	ATOM	2300	N	VAL	305	16. 893 -18. 238	74. 558	1. 00 36. 28
	ATOM	2301	CA	VAL	305	17. 647 -19. 466	74. 753	1. 00 34. 31
	ATOM	2302	CB	VAL	305	19. 148 -19. 184	74. 908	1. 00 32. 24
15	ATOM	2303	CG1	VAL	305	19. 868 -20. 438	75. 390	1. 00 28. 85
	ATOM	2304	CG2	VAL	305	19. 717 -18. 713	73. 578	1. 00 29. 80
	ATOM	2305	C	VAL	305	17. 153 -20. 158	76. 012	1. 00 35. 48
	ATOM	2306	0	VAL	305	17. 079 -21. 389	76. 070	1. 00 34. 47
	ATOM	2307	N	LEU	306	16. 820 -19. 362	77. 023	1. 00 34. 14
20	ATOM	2308	CA	LEU	306	16. 328 -19. 921	78. 273	1. 00 35. 52
	ATOM	2309	CB	LEU	306	16. 257 -18. 841	79. 353	1. 00 32. 11
	ATOM	2310	CG	LEU	306	17. 601 -18. 289	79. 829	1. 00 32. 53
	ATOM	2311	CDi	LEU	306	17. 359 -17. 326	80. 964	1. 00 33. 54
	ATOM	2312	CD2	LEU	306	18. 515 -19. 420	80. 287	1. 00 30. 60
25	ATOM	2313	C	LEU	306	14. 948 -20. 532	78. 049	1. 00 37. 53
	ATOM	2314	0	LEU	306	14. 637 -21. 608	78. 566	1. 00 33. 87
	ATOM	2315	N	LEU	307	14. 129 -19. 850	77. 257	1. 00 39. 39
	ATOM	2316	CA	LEU	307	12. 787 -20. 336	76. 971	1. 00 41. 43
	ATOM	2317	CB	LEU	307	12. 011 -19. 296	76. 165	1. 00 40. 84

- 96 -

	ATOM	2318	CG	LEU	307	10. 932 -18. 527	76. 935	1. 00 43. 43
	ATOM	2319	CD1	LEU	307	11. 389 -18. 243	78. 356	1. 00 43. 36
	ATOM	2320	CD2	LEU	307	10. 610 -17. 233	76. 197	1. 00 41. 75
	ATOM	2321	C	LEU	307	12. 802 -21. 674	76. 239	1. 00 42. 39
5	ATOM	2322	0	LEU	307	11. 974 -22. 537	76. 514	1. 00 42. 90
	ATOM	2323	N	ARG	308	13. 729 -21. 860	75. 306	1. 00 42. 02
	ATOM	2324	CA	ARG	308	13. 771 -23. 132	74. 605	1. 00 42. 88
	ATOM	2325	CB	ARG	308	14. 765 -23. 125	73. 445	1. 00 43. 55
	ATOM	2326	CG	ARG	308	14. 891 -24. 514	72. 837	1. 00 47. 00
10	ATOM	2327	CD	ARG	308	15. 908 -24. 626	71. 729	1. 00 49. 25
	ATOM	2328	NE	ARG	308	16. 079 -26. 026	71. 349	1. 00 52. 10
	ATOM	2329	CZ	ARG	308	16. 915 -26. 456	70. 410	1. 00 52. 45
	ATOM	2330	NH1	ARG	308	17. 663 -25. 591	69. 739	1. 00 54. 77
	ATOM	2331	NH2	ARG	308	17. 016 -27. 756	70. 154	1. 00 51. 73
15	ATOM	2332	C	ARG	308	14. 181 -24. 222	75. 582	1. 00 43. 27
	ATOM	2333	0	ARG	308	13. 654 -25. 333	75. 540	1. 00 42. 09
	ATOM	2334	N	LEU	309	15. 135 -23. 895	76. 452	1. 00 42. 54
	ATOM	2335	CA	LEU	309	15. 627 -24. 837	77. 447	1. 00 42. 29
	ATOM	2336	CB	LEU	309	16. 771 -24. 207	78. 248	1. 00 40. 55
20	ATOM	2337	CG	LEU	309	18. 193 -24. 656	77. 886	1. 00 39. 65
	ATOM	2338	CD1	LEU	309	18. 313 -24. 973	76. 416	1. 00 38. 56
	ATOM	2339	CD2	LEU	309	19. 171 -23. 569	78. 284	1. 00 37. 67
	ATOM	2340	C	LEU	309	14. 515 -25. 302	78. 379	1. 00 42. 66
	ATOM	2341	0	LEU	309	14. 509 -26. 450	78. 818	1. 00 41. 33
25	ATOM	2342	N	VAL	310	13. 570 -24. 416	78. 676	1. 00 44. 27
	ATOM	2343	CA	VAL	310	12. 464 -24. 789	79. 543	1. 00 46. 40
	ATOM	2344	CB	VAL	310	11. 711 -23. 546	80. 111	1. 00 46. 06
	ATOM	2345	CG1	VAL	310	12. 682 -22. 613	80. 807	1. 00 45. 43
	ATOM	2346	CG2	VAL	310	10. 976 -22. 825	79. 014	1. 00 48. 29

- 97 -

						01		
	ATOM	2347	C	VAL	310	11. 479 -25. 666	78. 769	1. 00 48. 00
	ATOM	2348	0	VAL	310	10. 952 -26. 638	79. 311	1. 00 47. 71
	ATOM	2349	N	ASP	311	11. 242 -25. 333	77. 501	1. 00 49. 58
	ATOM	2350	CA	ASP	311	10. 313 -26. 104	76. 683	1. 00 52. 37
5	ATOM	2351	CB	ASP	311	9. 978 -25. 365	75. 382	1. 00 54. 70
	ATOM	2352	CG	ASP	311	9. 318 -24. 014	75. 626	1. 00 58. 89
	ATOM	2353	OD1	ASP	311	8. 742 -23. 808	76. 719	1. 00 60. 74
	ATOM	2354	OD2	ASP	311	9. 364 -23. 158	74. 713	1. 00 60. 54
	ATOM	2355	C	ASP	311	10. 872 -27. 485	76. 365	1. 00 52. 35
10	ATOM	2356	0	ASP	311	10. 131 -28. 388	75. 982	1. 00 55. 07
	ATOM	2357	N	GLU	312	12. 180 -27. 642	76. 515	1. 00 51. 23
	ATOM	2358	CA	GLU	312	12. 828 -28. 926	76. 279	1. 00 51. 12
	ATOM	2359	CB	GLU	312	14. 277 -28. 729	75. 834	1. 00 52. 62
	ATOM	2360	CG	GLU ·	312	14. 445 -28. 141	74. 448	1. 00 57. 13
15	ATOM	2361	CD	GLU	312	14. 187 -29. 153	73. 358	1. 00 58. 40
	ATOM	2362	0E1	GLU	312	14. 831 -30. 222	73. 385	1. 00 59. 31
	ATOM	2363	0E2	GLU	312	13. 346 -28. 879	72. 476	1. 00 60. 41
	ATOM	2364	C	GLU	312	12. 810 -29. 660	77. 611	1. 00 50. 76
	ATOM	2365	0	GLU	312	13. 292 -30. 787	77. 720	1. 00 50. 64
20	ATOM	2366	N	ASN	313	12. 265 -28. 989	78. 624	1. 00 50. 08
	ATOM	2367	CA	ASN	313	12. 154 -29. 533	79. 974	1. 00 51. 37
	ATOM	2368	CB	ASN	313	11. 428 -30. 886	79. 932	1. 00 53. 51
	ATOM	2369	CG	ASN	313	10. 846 -31. 275	81. 271	1. 00 55. 73
	ATOM	2370	OD1	ASN	313	10. 011 -30. 560	81. 824	1. 00 58. 95
25	ATOM	2371	ND2	ASN	313	11. 281 -32. 415	81. 803	1. 00 59. 16
	ATOM	2372	C	ASN	313	13. 524 -29. 693	80. 635	1. 00 50. 00
	ATOM	2373	0	ASN	313	13. 733 -30. 595	81. 447	1. 00 50. 40
	ATOM	2374	N	LEU	314	14. 449 -28. 799	80. 296	1. 00 48. 35
	ATOM	2375	CA	LEU	314	15. 805 -28. 843	80. 835	1. 00 45. 12

	ATOM	2376	СВ	LEU	314	16. 819 -28. 785	79. 688	1. 00 44. 25
	ATOM	2377	CG	LEU	314	16. 759 -29. 872	78. 611	1. 00 45. 98
	ATOM	2378	CD1	LEU	314	17. 619 -29. 465	77. 416	1. 00 43. 63
	ATOM	2379	CD2	LEU	314	17. 232 -31. 201	79. 196	1. 00 45. 09
5	ATOM	2380	C	LEU	314	16. 119 -27. 724	81. 829	1. 00 43. 38
	ATOM	2381	0	LEU	314	17. 180 -27. 732	82. 449	1. 00 41. 90
	ATOM	2382	N	LEU	315	15. 211 -26. 765	81. 982	1. 00 41. 74
	ATOM	2383	CA	LEU	315	15. 446 -25. 645	82. 899	1. 00 42. 39
	ATOM	2384	CB	LEU	315	15. 907 -24. 407	82. 116	1. 00 40. 17
10	ATOM	2385	CG	LEU	315	17. 243 -23. 721	82. 428	1. 00 39. 81
	ATOM	2386	CD1	LEU	315	17. 262 -22. 383	81. 689	1. 00 41. 89
	ATOM	2387	CD2	LEU	315	17. 421 -23. 482	83. 920	1. 00 37. 58
	ATOM	2388	C	LEU	315	14. 198 -25. 278	83. 694	1. 00 42. 28
	ATOM	2389	0	LEU	315	13. 103 -25. 214	83. 144	1. 00 40. 83
15	ATOM	2390	N	PHE	316	14. 377 -25. 021	84. 986	1. 00 43. 70
	ATOM	2391	CA	PHE	316	13. 271 -24. 648	85. 863	1. 00 46. 70
	ATOM	2392	CB	PHE	316	12. 717 -23. 278	85. 459	1. 00 47. 06
	ATOM	2393	CG	PHE	316	13. 776 -22. 247	85. 187	1. 00 47. 07
	ATOM.	2394	CD1	PHE	316	14. 824 -22. 051	86. 082	1. 00 47. 24
20	ATOM	2395	CD2	PHE	316	13. 722 -21. 467	84. 037	1. 00 47. 25
	ATOM	2396	CE1	PHE	316	15. 803 -21. 094	85. 835	1. 00 46. 12
	ATOM	2397	CE2	PHE	316	14. 695 -20. 507	83. 782	1. 00 47. 70
	ATOM	2398	CZ	PHE	316	15. 738 -20. 321	84. 683	1. 00 47. 68
	ATOM	2399	C	PHE	316	12. 131 -25. 672	85. 857	1. 00 48. 45
25	ATOM	2400	0	PHE	316	10. 960 -25. 306	85. 967	1. 00 48. 86
	ATOM	2401	N	HIS	317	12. 473 -26. 950	85. 725	1. 00 50. 80
	ATOM	2402	CA	HIS	317	11. 469 -28. 009	85. 712	1. 00 53. 83
	ATOM	2403	CB	HIS	317	10. 655 -27. 986	87. 010	1. 00 57. 67
	ATOM	2404	CG	HIS	317	11. 496 -27. 985	88. 246	1. 00 61. 10

- 99 -

						• •		
	ATOM	2405	CD	2 HIS	317	11. 558 -27. 116	89. 282	1. 00 63. 07
	ATOM	2406	ND:	1 HIS	317	12. 430 -28. 965	88. 509	1. 00 62. 35
	ATOM	2407	CE	HIS	317	13. 032 -28. 699	89. 655	1. 00 64. 77
	ATOM	2408	NE	2 HIS	317	12. 521 -27. 582	90. 144	1. 00 65. 99
5	ATOM	2409	C	HIS	317	10. 521 -27. 859	84. 534	1. 00 53. 57
	ATOM	2410	0	HIS	317	9. 429 -28. 425	84. 537	1. 00 53. 60
	ATOM	2411	N	GLY	318	10. 939 -27. 090	83. 534	1. 00 52. 50
	ATOM	2412	CA	GLY	318	10. 113 -26. 881	82. 358	1. 00 51. 83
	ATOM	2413	C	GLY	318	8. 940 -25. 958	82. 615	1. 00 51. 72
10	ATOM	2414	0	GLY	318	7. 939 -25. 999	81. 904	1. 00 50. 88
	ATOM	2415	N	GLU	319	9. 073 -25. 110	83. 627	1. 00 53. 43
	ATOM	2416	CA	GLU	319	8. 014 -24. 182	83. 996	1. 00 55. 73
	ATOM	2417	CB	GLU	319	7. 510 -24. 544	85. 392	1. 00 58. 85
	ATOM	2418	CG	GLÚ	319	6. 145 -23. 998	85. 761	1. 00 63. 60
15	ATOM	2419	CD	GLU	319	5. 590 -24. 664	87. 016	1. 00 66. 32
	ATOM	2420	0E1	GLU	319	6. 206 -24. 527	88. 100	1. 00 65. 47
	ATOM	2421	0E2	GLU	319	4. 540 -25. 335	86. 913	1. 00 67. 45
	ATOM	2422	C	GLU	319	8. 538 -22. 748	83. 966	1. 00 55. 18
	ATOM	2423	0	GLU	319	9. 278 -22. 324	84. 851	1. 00 55. 23
20	ATOM	2424	N	ALA	320	8. 145 -22. 006	82. 938	1. 00 55. 14
	ATOM	2425	CA	ALA	320	8. 585 -20. 630	82. 780	1. 00 55. 95
	ATOM	2426	CB	ALA	320	8. 609 -20. 265	81. 304	1. 00 55. 13
	ATOM	2427	C	ALA	320	7. 708 -19. 649	83. 544	1. 00 56. 88
	ATOM	2428	0	ALA	320	6. 487 -19. 789	83. 584	1. 00 58. 58
25	ATOM	2429	N	SER	321	8. 344 -18. 648	84. 141	1. 00 57. 00
	ATOM	2430	CA	SER	321	7. 644 -17. 625	84. 902	1. 00 56. 57
	ATOM	2431	CB	SER	321	8. 649 -16. 808	85. 705	1. 00 56. 74
	ATOM	2432	0G	SER	321	8. 013 -15. 725	86. 349	1. 00 57. 41
	ATOM	2433	C	SER	321	6. 853 -16. 689	83. 995	1. 00 58. 61

- 100 -

						100		
	ATOM	2434	0	SER	321	7. 054 -16. 665	82. 783	1. 00 58. 41
	ATOM	2435	N	GLU	322	5. 955 -15. 914	84. 595	1. 00 60. 41
	ATOM	2436	CA	GLU	322	5. 133 -14. 960	83. 858	1. 00 62. 09
	ATOM	2437	CB	GLU	322	4. 171 -14. 254	84. 819	1. 00 65. 34
5	ATOM	2438	CG	GLU	322	3. 185 -13. 299	84. 165	1. 00 69. 70
	ATOM	2439	CD	GLU	322	2. 075 -14. 020	83. 418	1. 00 73. 68
	ATOM	2440	0E1	GLU	322	1. 379 -14. 851	84. 046	1. 00 74. 78
	ATOM	2441	0E2	GLU	322	1. 896 -13. 751	82. 208	1. 00 75. 02
	ATOM	2442	C	GLU	322	6. 047 -13. 929	83. 204	1. 00 61. 24
10	ATOM	2443	0	GLU	322	5. 913 -13. 612	82. 022	1. 00 60. 81
	ATOM	2444	N	GLN	323	6. 987 -13. 420	83. 991	1. 00 60. 42
	ATOM	2445	CA	GLN	323	7. 935 -12. 422	83. 521	1. 00 58. 63
	ATOM	2446	CB	GLN	323	8. 729 -11. 863	84. 700	1. 00 59. 77
	ATOM	2447	CG	GLN	323	7. 902 -11. 039	85. 658	1. 00 61. 20
15	ATOM	2448	CD	GLN	323	8. 690 -10. 608	86. 873	1. 00 63. 03
	ATOM	2449	0E1	GLN	323	9. 672 -9. 866	86. 767	1. 00 63. 70
	ATOM	2450	NE2	GLN	323	8. 266 -11. 074	88. 044	1. 00 64. 05
	ATOM	2451	C	GLN	323	8. 904 -12. 955	82. 478	1. 00 56. 96
	ATOM	2452	0	GLN	323	9. 244 -12. 255	81. 526	1. 00 56. 89
20	ATOM	2453	N	LEU	324	9. 351 -14. 190	82. 652	1. 00 53. 93
	ATOM	2454	CA	LEU	324	10. 298 -14. 763	81. 713	1. 00 52. 62
	ATOM	2455	CB	LEU	324	10. 745 -16. 151	82. 180	1. 00 51. 22
	ATOM	2456	CG	LEU	324	11. 830 -16. 826	81. 334	1. 00 50. 58
	ATOM	2457	CD1	LEU	324	13. 076 -15. 952	81. 299	1. 00 49. 50
25	ATOM	2458	CD2	LEU	324	12. 160 -18. 192	81. 909	1. 00 49. 35
	ATOM	2459	C	LEU	324	9. 730 -14. 855	80. 306	1. 00 52. 38
	ATOM	2460	0	LEU	324	10. 485 -14. 870	79. 337	1. 00 51. 83
	ATOM	2461	N	ARG	325	8. 405 -14. 902	80. 193	1. 00 52. 63
	ATOM	2462	CA	ARG	325	7. 759 -15. 015	78. 887	1. 00 53. 00

- 101 -

						- 101 -		
	ATOM	2463	CB	ARG	325	6. 477 -15. 848	79. 000	1. 00 54. 77
	ATOM	2464	e CG	ARG	325	6. 585 -17. 005	79. 985	1. 00 58. 57
	ATOM	2465	CD	ARG	325	6. 013 -18. 330	79. 458	1. 00 60. 34
	ATOM	2466	NE	ARG	325	6. 881 -18. 961	78. 464	1. 00 62. 28
5	ATOM	2467	CZ	ARG	325	6. 953 -20. 273	78. 249	1. 00 62. 81
	ATOM	2468	NH	1 ARG	325	6. 208 -21. 109	78. 963	1. 00 62. 98
	MOTA	2469	NH	2 ARG	325	7. 769 -20. 752	77. 317	1. 00 62. 50
	ATOM	2470	C	ARG	325	7. 430 -13. 663	78. 266	1. 00 52. 20
	ATOM	2471	0	ARG	325	6. 835 -13. 595	77. 194	1. 00 51. 65
10	ATOM	2472	N	THR	326	7. 820 -12. 589	78. 940	1. 00 51. 52
	ATOM	2473	CA	THR	326	7. 562 -11. 248	78. 438	1. 00 53. 54
	ATOM	2474	CB	THR	326	7. 031 -10. 343	79. 570	1. 00 54. 40
	ATOM	2475	0G1	THR	326	8. 068 -10. 120	80. 534	1. 00 56. 68
	ATOM	2476	CG2	THR	326	5. 858 -11. 012	80. 274	1. 00 53. 00
15	ATOM	2477	C	THR	326	8. 853 -10. 655	77. 850	1. 00 54. 00
	ATOM	2478	0	THR	326	9. 891 -10. 626	78. 515	1. 00 53. 48
	ATOM	2479	N	ARG	327	8. 782 -10. 191	76. 604	1. 00 54. 30
	ATOM	2480	CA	ARG	327	9. 948 -9. 628	75. 923	1. 00 55. 25
	ATOM	2481	CB	ARG	327	9. 568 -9. 074	74. 550	1. 00 58. 73
20	ATOM	2482	CG	ARG	327	9. 050 -10. 101	73. 572	1. 00 62. 94
	ATOM	2483	CD	ARG	327	9. 189 -9. 599	72. 143	1. 00 66. 63
	ATOM	2484	NE	ARG	327	8. 462 -10. 454	71. 213	1. 00 70. 25
	ATOM	2485	CZ	ARG	327	7. 136 -10. 522	71. 154	1. 00 72. 29
	ATOM	2486	NH1	ARG	327	6. 399 -9. 778	71. 969	1. 00 72. 86
25	ATOM	2487	NH2	ARG	327	6. 546 -11. 338	70. 288	1. 00 73. 24
	ATOM	2488	C	ARG	327	10. 660 -8. 529	76. 688	1. 00 53. 79
	ATOM	2489	0	ARG	327	10. 027 -7. 690	77. 326	1. 00 55. 10
	ATOM	2490	N	GLY	328	11. 986 -8. 535	76. 604	1. 00 50. 97
	ATOM	2491	CA	GLY	328	12. 773 -7. 520	77. 276	1. 00 50. 03

- 102 -

							_			
	ATOM	2492	C	GLY	328	12. 922	-7. 715	78. 770	1. 00	49. 36
	ATOM	2493	0	GLY	328	13. 622	-6. 942	79. 426	1. 00	49. 68
	ATOM	2494	N	ALA	329	12. 274	-8. 740	79. 315	1. 00	47. 47
	ATOM	2495	CA	ALA	329	12. 354	-9. 007	80. 749	1. 00	46. 93
5	ATOM	2496	CB	ALA	329	11. 468	-10. 184	81. 115	1. 00	48. 23
	ATOM	2497	C	ALA	329	13. 786	-9. 287	81. 173	1. 00	45. 48
	ATOM	2498	0	ALA	329	14. 247	-8. 794	82. 203	1. 00	44. 91
	ATOM	2499	N	PHE	330	14. 490	-10. 088	80. 383	1. 00	43. 75
	ATOM	2500	CA	PHE	330	15. 870	-10. 392	80. 710	1. 00	42. 95
10	ATOM	2501	CB	PHE	330	16. 271	-11. 760	80. 156	1. 00	39. 40
	ATOM	2502	CG	PHE	330	17. 478	-12. 350	80. 829	1. 00	36. 90
	ATOM	2503	CD1	PHE	330	18. 761	-11. 985	80. 436	1. 00	35. 73
	ATOM	2504	CD2	PHE	330	17. 330	-13. 241	81. 893	1. 00	35. 23
	ATOM	2505	CE1	PHE	330	19. 878	-12. 496	81. 093	1. 00	33. 48
15	ATOM	2506	CE2	PHE	330	18. 443	-13. 759	82. 558	1. 00	31.61
	ATOM	2507	CZ	PHE	330	19. 716	-13. 387	82. 160	1. 00	33. 39
	ATOM	2508	C	PHE	330	16. 752	-9. 292	80. 130	1. 00	43. 51
	ATOM	2509	0	PHE	330	17. 202	-9. 373	78. 986	1. 00	44. 11
	ATOM	2510	N	GLU	331	16. 962	-8. 254	80. 935	1. 00	43. 95
20	ATOM	2511	CA	GLU	331	17. 777	-7. 099	80. 569	1. 00	43. 11
	ATOM	2512	CB	GLU	331	17. 767	-6. 068	81. 697	1. 00	46. 19
	ATOM	2513	CG	GLU	331	16. 393	-5. 551	82. 092	1. 00	50. 13
	ATOM	2514	CD	GLU	331	16. 458	-4. 651	83. 316	1. 00	53. 54
	ATOM	2515	0E1	GLU	331	17. 324	-3. 745	83. 343	1. 00	55. 03
25	ATOM	2516	0E2	GLU	331	15. 646	-4. 846	84. 247	1. 00	53. 56
	ATOM	2517	C	GLU	331	19. 216	-7. 511	80. 310	1. 00	42. 02
	ATOM	2518	0	GLU	331	19. 742	-8. 411	80. 968	1. 00	42. 05
	ATOM	2519	N	THR	332	19. 855	-6. 830	79. 365	1. 00	39. 23
	ATOM	2520	CA	THR	332	21. 235	-7. 122	79. 017	1. 00	36. 08

- 103 -

						- '	• •		
	· ATOM	2521	CB	THR	332	21. 713	-6. 200	77. 869	1. 00 36. 47
	ATOM	2522	0G1	THR	332	21. 297	-6. 762	76. 618	1. 00 33. 61
	ATOM	2523	CG2	THR	332	23. 235	-6. 030	77. 884	1. 00 31. 36
	ATOM	2524	C	THR	332	22. 159	-6. 987	80. 219	1. 00 35. 73
	5 ATOM	2525	0	THR	332	23. 209	-7. 634	80. 280	1. 00 35. 30
	ATOM	2526	N	ARG	333	21. 782	-6. 151	81. 180	1. 00 34. 21
	ATOM	2527	CA	ARG	333	22. 632	-6. 003	82. 353	1. 00 34. 18
	ATOM	2528	CB	ARG	333	22. 211	-4. 786	83. 193	1. 00 36. 60
	ATOM	2529	CG	ARG	333	20. 830	-4. 854	83. 835	1. 00 39. 58
1	O ATOM	2530	CD	ARG	333	20. 488	-3. 518	84. 520	1. 00 42. 78
	ATOM	2531	NE	ARG	333	19. 264	-3. 590	85. 316	1. 00 45. 29
	ATOM	2532	CZ	ARG	333	19. 205	-4. 039	86. 567	1. 00 47. 32
	ATOM	2533	NH1	ARG	333	20. 305	-4. 455	87. 182	1. 00 49. 55
	ATOM	2534	NH2	ARG	333	18. 042	-4. 080	87. 205	1. 00 48. 70
1	5 ATOM	2535	C	ARG	333	22. 609	-7. 298	83. 181	1. 00 31. 65
	ATOM	2536	0	ARG	333	23. 584	-7. 625	83. 863	1. 00 31. 61
	ATOM	2537	N	PHE	334	21. 513	-8. 049	83. 105	1. 00 31. 01
	ATOM	2538	CA	PHE	334	21. 431	-9. 317	83. 835	1. 00 30. 67
	ATOM	2539	CB	PHE	334	20. 048	-9. 967	83. 678	1. 00 30. 39
20	O ATOM	2540	CG	PHE	334	18. 923	-9. 210	84. 330	1. 00 30. 58
	ATOM	2541	CD1	PHE	334	19. 170	-8. 214	85. 269	1. 00 29. 37
	ATOM	2542	CD2	PHE	334	17. 600	-9. 522	84. 019	1. 00 31. 94
	ATOM	2543	CE1	PHE	334	18. 113	-7. 539	85. 891	1. 00 31. 67
	ATOM	2544	CE2	PHE	334	16. 535	-8. 851	84. 636	1. 00 32. 25
25	ATOM	2545	CZ	PHE	334	16. 796	-7. 857	85. 575	1. 00 28. 89
	ATOM	2546	C	PHE	334	22. 496 -	-10. 287	83. 295	1. 00 30. 73
	ATOM	2547	0	PHE	334	23. 136 -	-11. 016	84. 064	1. 00 30. 77
	ATOM	2548	N	VAL	335	22. 685 -	-10. 290	81. 973	1. 00 29. 44
	ATOM	2549	CA	VAL	335	23. 672 -	-11. 165	81. 350	1. 00 30. 61

- 104 -

						104		
	ATOM	2550	CB	VAL	335	23. 777 -10. 921	79. 831	1. 00 30. 75
	ATOM	2551	CG1	VAL	335	24. 774 -11. 898	79. 216	1. 00 32. 48
	ATOM	2552	CG2	VAL	335	22. 424 -11. 078	79. 181	1. 00 29. 80
	ATOM	2553	C	VAL	335	25. 041 -10. 904	81. 964	1. 00 31. 64
5	ATOM	2554	0	VAL	335	25. 759 -11. 830	82. 356	1. 00 31. 87
	ATOM	2555	N	SER	336	25. 382 -9. 623	82. 048	1. 00 33. 23
	ATOM	2556	CA	SER	336	26. 655 -9. 173	82. 593	1. 00 32. 42
	ATOM	2557	CB	SER	336	26. 778 -7. 660	82. 384	1. 00 33. 94
	ATOM	2558	0G	SER	336	28. 080 -7. 204	82. 682	1. 00 38. 27
10	ATOM	2559	C	SER	336	26. 793 -9. 524	84. 078	1. 00 32. 82
	ATOM	2560	0	SER	336	27. 863 -9. 917	84. 529	1. 00 33. 76
	ATOM	2561	N	GLN	337	25. 711 -9. 389	84. 839	1. 00 32. 64
	ATOM	2562	CA	GLN	337	25. 753 -9. 715	86. 260	1. 00 34. 83
	ATOM	2563	CB	GLN	337	24. 480 -9. 233	86. 958	1. 00 37. 43
15	ATOM	2564	CG	GLN	337	24. 339 -7. 721	86. 972	1. 00 42. 29
	ATOM	2565	CD	GLN	337	22. 984 -7. 260	87. 471	1. 00 44. 59
	ATOM	2566	0E1	GLN	337	22. 710 -6. 062	87. 525	1. 00 46. 49
	ATOM	2567	NE2	GLN	337	22. 128 -8. 209	87. 835	1. 00 43. 79
	ATOM	2568	C	GLN	337	25. 899 -11. 217	86. 447	1. 00 33. 66
20	ATOM	2569	0	GLN	337	26. 663 -11. 674	87. 297	1. 00 35. 28
	ATOM	2570	N	VAL	338	25. 159 -11. 983	85. 655	1. 00 31. 29
	ATOM	2571	CA	VAL	338	25. 236 -13. 432	85. 743	1. 00 29. 21
	ATOM	2572	CB	VAL	338	24. 326 -14. 102	84. 690	1. 00 28. 27
	ATOM	2573	CG1	VAL	338	24. 687 -15. 571	84. 525	1. 00 27. 17
25	ATOM	2574	CG2	VAL	338	22. 877 -13. 984	85. 129	1. 00 26. 99
	ATOM	2575	C	VAL	338	26. 678 -13. 877	85. 547	1. 00 27. 35
	ATOM	2576	0	VAL	338	27. 176 -14. 722	86. 284	1. 00 26. 69
	ATOM	2577	N	GLU	339	27. 361 -13. 283	84. 576	1. 00 27. 29
	ATOM	2578	CA	GLU	339	28. 747 -13. 657	84. 314	1. 00 27. 15

- 105 -1. 00 27. 02 2579 29. 136 -13. 303 82. 871 **ATOM** CB GLU 339 ATOM 2580 CG GLU 339 28. 404 -14. 185 81. 843 1. 00 30. 73 80. 425 1. 00 30. 33 **ATOM** 2581 CD GLU 339 28. 942 -14. 063 ATOM 2582 OE1 GLU 339 30. 121 -14. 414 80. 185 1. 00 34. 73 2583 OE2 GLU 28. 179 -13. 619 79. 548 1. 00 29. 50 ATOM 339 5 ATOM 2584 C GLU 339 29. 749 -13. 085 85. 311 1. 00 26. 93 2585 GLU 339 30. 940 -13. 345 85. 209 1. 00 27. 69 ATOM 0 ATOM 2586 N SER 340 29. 264 -12. 320 86. 285 1. 00 27. 55 2587 87. 318 1. 00 28. 61 ATOM CA SER 340 30. 140 -11. 763 ATOM 2588 CB SER 340 29. 741 -10. 323 87.667 1. 00 29. 40 10 29. 800 -9. 485 86. 528 1. 00 35. 97 ATOM 2589 0G SER 340 2590 ATOM C SER 340 30. 029 -12. 615 88. 583 1. 00 27. 94 2591 30. 811 -12. 448 89. 526 1.00 24.04 ATOM 0 SER 340 ATOM 2592 N ASP 341 29. 042 -13. 511 88. 600 1. 00 28. 02 ATOM 2593 **ASP** 28. 812 -14. 387 89. 748 1.00 29.66 CA 341 15 ATOM 2594 CB ASP 341 27. 808 -15. 490 89. 393 1. 00 30. 94 **MOTA** 2595 CG ASP 27. 296 -16. 227 90.620 1. 00 33. 11 341 ATOM 2596 OD1 ASP 26. 289 -15. 778 91. 217 1. 00 28. 78 341 ATOM 2597 OD2 ASP 341 27. 918 -17. 247 90. 991 1. 00 32. 82 ATOM 2598 C ASP 30. 137 -15. 003 90. 163 1. 00 30. 38 20 341 ATOM 2599 **ASP** 30. 853 -15. 564 89. 342 1. 00 30. 59 0 341 2600 THR 30. 466 -14. 886 91.443 1. 00 33. 59 ATOM N 342 2601 THR 31. 729 -15. 405 1. 00 37. 01 ATOM CA 342 91. 953 1. 00 38. 81 2602 CB THR ATOM 342 32. 013 -14. 836 93. 350 ATOM 2603 OG1 THR 342 31. 012 -15. 304 94. 265 1. 00 43. 90 25 **ATOM** 2604 CG2 THR 342 31. 972 -13. 316 93. 317 1. 00 35. 79 2605 THR 31. 780 -16. 929 92. 027 1. 00 37. 87 ATOM C 342 2606 THR 32. 853 -17. 514 1. 00 39. 64 ATOM 0 342 92. 191

ATOM

2607

N

GLY

343

30. 625 -17. 568 91. 894

1. 00 36. 81

PCT/JP03/06054

- 106 -

						100		
	ATOM	2608	CA	GLY	343	30. 578 -19. 018	91. 970	1. 00 39. 26
	ATOM	2609	C	GLY	343	29. 631 -19. 515	93. 053	1. 00 38. 98
	ATOM	2610	0	GLY	. 343	29. 293 -20. 695	93. 090	1. 00 39. 46
	ATOM	2611	N	ASP	344	29. 204 -18. 615	93. 935	1. 00 38. 20
5	ATOM	2612	CA	ASP	344	28. 287 -18. 980	95. 005	1. 00 39. 74
	ATOM	2613	CB	ASP	344	28. 480 -18. 071	96. 231	1. 00 39. 14
	ATOM	2614	CG	ASP	344	28. 267 -16. 595	95. 928	1. 00 41. 19
	ATOM	2615	0D1	ASP	344	27. 733 -16. 256	94. 848	1. 00 39. 57
	ATOM	2616	0D2	ASP	344	28. 627 -15. 767	96. 794	1. 00 42. 27
10	ATOM	2617	C	ASP	344	26. 842 -18. 926	94. 516	1. 00 40. 25
	ATOM	2618	0	ASP	344	25. 904 -19. 235	95. 257	1. 00 39. 36
	ATOM	2619	N	ARG	345	26. 680 -18. 525	93. 259	1. 00 38. 45
	ATOM	2620	CA	ARG	345	25. 374 -18. 449	92. 618	1. 00 37. 30
	ATOM	2621	CB	ARG	345	24. 738 -19. 847	92. 587	1. 00 37. 49
15	ATOM	2622	CG	ARG	345	25. 657 -20. 935	92. 044	1. 00 38. 81
	ATOM	2623	CD	ARG	345	24. 976 -22. 301	92. 046	1. 00 40. 19
	MOTA	2624	NE	ARG	345	25. 790 -23. 327	91. 397	1. 00 42. 18
	ATOM	2625	CZ	ARG	345	26. 730 -24. 051	91. 999	1. 00 43. 19
	ATOM	2626	NH1	ARG	345	26. 990 -23. 880	93. 288	1. 00 43. 31
20	ATOM	2627	NH2	ARG	345	27. 421 -24. 947	91. 302	1. 00 40. 56
	ATOM	2628	C	ARG	345	24. 397 -17. 456	93. 246	1. 00 37. 06
	ATOM	2629	0	ARG	345	23. 231 -17. 395	92. 837	1. 00 35. 44
	ATOM	2630	N	LYS	346	24. 855 -16. 681	94. 228	1. 00 37. 09
	ATOM	2631	CA	LYS	346	23. 977 -15. 704	94. 876	1. 00 39. 61
25	ATOM	2632	CB	LYS	346	24. 710 -14. 964	96. 005	1. 00 43. 18
	ATOM	2633	CG	LYS	346	25. 084 -15. 826	97. 214	1. 00 47. 92
	ATOM	2634	CD	LYS	346	25. 835 -15. 009	98. 285	1. 00 50. 48
	ATOM	2635	CE	LYS	346	26. 274 -15. 887	99. 466	1. 00 53. 20
	ATOM	2636	ŅZ	LYS	346	27. 039 -15. 136	100. 520	1. 00 54. 15

- 107 -

	ATOM	2637	C	LYS	346	23. 467 -14. 690	93. 858	1. 00 39. 25
	ATOM	2638	0	LYS	346	22. 271 -14. 400	93. 795	1. 00 38. 51
	ATOM	2639	N	GLN	347	24. 384 -14. 158	93. 055	1. 00 40. 01
	ATOM	2640	CA	GLN	347	24. 036 -13. 169	92. 037	1. 00 39. 62
5	ATOM	2641	CB	GLN	347	25. 301 -12. 725	91. 290	1. 00 44. 30
	ATOM	2642	CG	GLN	347	25. 117 -11. 507	90. 403	1. 00 50. 12
	ATOM	2643	CD	GLN	347	24. 996 -10. 214	91. 196	1. 00 54. 40
	ATOM	2644	0E1	GLN	347	24. 699 -9. 153	90. 637	1. 00 57. 36
	ATOM	2645	NE2	GLN	347	25. 234 -10. 295	92. 501	1. 00 55. 02
10	ATOM	2646	C	GLN	347	23. 015 -13. 735	91. 046	1. 00 36. 71
	ATOM	2647	0	GLN	347	22. 012 -13. 087	90. 732	1. 00 35. 38
	ATOM	2648	N	ILE	348	23. 264 -14. 949	90. 563	1. 00 33. 61
	ATOM	2649	CA	ILE	348	22. 360 -15. 579	89. 610	1. 00 30. 26
	ATOM	2650	CB	ILE	348	22. 946 -16. 906	89. 103	1. 00 31. 09
15	ATOM	2651	CG2	ILE	348	21. 983 -17. 561	88. 102	1. 00 24. 14
	ATOM	2652	CG1	ILE	348	24. 315 -16. 641	88. 467	1. 00 24. 89
	ATOM	2653	CD1	ILE	348	25. 016 -17. 870	87. 989	1. 00 26. 20
	ATOM	2654	C	ILE	348	20. 990 -15. 836	90. 231	1. 00 32. 47
	ATOM	2655	0	ILE	348	19. 946 -15. 578	89. 607	1. 00 28. 48
20	ATOM	2656	N	TYR	349	20. 996 -16. 330	91. 468	1. 00 33. 64
	ATOM	2657	CA	TYR	349	19. 757 -16. 622	92. 173	1. 00 33. 94
	ATOM	2658	CB	TYR	349	20. 023 -17. 189	93. 566	1. 00 35. 19
	ATOM	2659	CG	TYR	349	18. 728 -17. 513	94. 273	1. 00 35. 54
	ATOM	2660	CD1	TYR	349	18. 085 -18. 737	94. 064	1. 00 35. 44
25	ATOM	2661	CE1	TYR	349	16. 847 -19. 009	94. 647	1. 00 35. 96
	ATOM	2662	CD2	TYR	349	18. 100 -16. 569	95. 083	1. 00 34. 28
	ATOM	2663	CE2	TYR	349	16. 860 -16. 833	95. 665	1. 00 34. 50
	ATOM	2664	CZ	TYR	349	16. 242 -18. 053	95. 441	1. 00 34. 82
	ATOM	2665	ОН	TYR	349	15. 007 -18. 305	95. 990	1. 00 39. 44

- 108 -18. 888 -15. 390 92. 339 1. 00 35. 45 ATOM 2666 C TYR 349 92.042 1. 00 37. 11 2667 0 TYR 17. 698 -15. 419 ATOM 349 19. 475 -14. 312 92.846 1. 00 37. 18 ATOM 2668 N ASN 350 2669 ASN 350 18. 722 -13. 082 93. 049 1. 00 38. 47 ATOM CA 93. 630 1. 00 40. 65 5 ATOM 2670 CB ASN 350 19. 617 -11. 985 ATOM 2671 CG ASN 350 20. 014 -12. 263 95.065 1. 00 45. 75 2672 OD1 ASN 19. 176 -12. 638 95. 893 1. 00 45. 11 ATOM 350 ND2 ASN 21. 298 -12. 075 95. 373 1. 00 46. 81 ATOM 2673 350 91. 768 1. 00 37. 56 ATOM 2674 C ASN 350 18. 085 -12. 585 91.769 ATOM 2675 ASN 350 16. 924 -12. 186 1. 00 40. 92 0 10 2676 ILE 18. 839 -12. 601 90. 673 1. 00 37. 62 ATOM N 351 2677 18. 310 -12. 139 89. 395 1. 00 37. 09 ATOM CA ILE 351 88. 308 1. 00 38. 11 2678 CB ILE 19. 401 -12. 130 ATOM 351 **ATOM** 2679 CG2 ILE 18. 771 -11. 955 86. 938 1. 00 37. 56 351 ATOM 2680 CG1 ILE 20. 400 -11. 004 88. 588 1. 00 38. 11 351 15 ATOM 2681 CD1 ILE 351 21. 726 -11. 178 87. 879 1. 00 36. 24 2682 C ILE 17. 144 -12. 997 88. 921 1. 00 36. 57 ATOM 351 ATOM 2683 0 ILE 351 16. 120 -12. 474 88. 479 1. 00 38. 22 2684 LEU 17. 291 -14. 314 89. 012 1. 00 35. 96 ATOM N 352 20 ATOM 2685 CA LEU 352 16. 219 -15. 206 88. 577 1. 00 36. 28 1. 00 32. 41 2686 CBLEU ATOM 352 16. 740 -16. 640 88. 443 2687 CG 352 17. 845 -16. 828 87. 395 1.00 30.66 ATOM LEU ATOM 2688 CD1 LEU 352 18. 465 -18. 226 87. 496 1. 00 25. 83 ATOM 2689 CD2 LEU 352 17. 262 -16. 597 86. 025 1. 00 27. 66 15. 039 -15. 156 89. 547 2690 C LEU 352 1. 00 37. 27 25 ATOM 13. 896 -15. 356 89. 145 1. 00 38. 32 ATOM 2691 0 LEU 352 ATOM 2692 N SER 353 15. 322 -14. 888 90. 819 1. 00 39. 41 1. 00 42. 13 14. 279 -14. 794 91. 838 ATOM 2693 CA SER 353

2694

ATOM

CB

SER

353

14. 893 -14. 708 93. 237

1. 00 43. 72

- 109 -3 13. 883 -14.

	ATOM	2695	OG	SER	353	13. 883 -14. 546	94. 224	1. 00 48. 17
	ATOM	2696	C	SER	353	13. 431 -13. 557	91. 590	1. 00 43. 61
	ATOM	2697	0	SER	353	12. 229 -13. 552	91. 858	1. 00 42. 99
	ATOM	2698	N	THR	354	14. 066 -12. 506	91. 081	1. 00 44. 80
5	ATOM	2699	CA	THR	354	13. 363 -11. 267	90. 785	1. 00 46. 06
	ATOM	2700	CB	THR	354	14. 356 -10. 122	90. 497	1. 00 47. 48
	ATOM	2701	0G1	THR	354	15. 100 -9. 820	91. 687	1. 00 47. 39
	ATOM	2702	CG2	THR	354	13. 615 -8. 877	90. 034	1. 00 47. 87
	ATOM	2703	C	THR	354	12. 446 -11. 455	89. 579	1. 00 46. 06
10	ATOM	2704	0	THR	354	11. 443 -10. 757	89. 436	1. 00 47. 23
	ATOM	2705	N	LEU	355	12. 788 -12. 406	88. 717	1. 00 46. 03
•	ATOM	2706	CA	LEU	355	11. 983 -12. 679	87. 533	1. 00 46. 26
	ATOM	2707	CB	LEU	355	12. 875 -13. 157	86. 390	1. 00 46. 43
	ATOM	2708	CG	LEU	355	14. 030 -12. 210	86. 063	1. 00 46. 85
15	ATOM	2709	CD1	LEU	355	14. 861 -12. 813	84. 950	1. 00 47. 00
	ATOM	2710	CD2	LEU	355	13. 497 -10. 844	85. 660	1. 00 45. 99
	ATOM	2711	C	LEU	355	10. 908 -13. 722	87. 821	1. 00 46. 88
	ATOM	2712	0	LEU	355	10. 370 -14. 346	86. 902	1. 00 47. 28
	ATOM	2713	N	GLY	356	10. 609 -13. 912	89. 105	1. 00 47. 29
20	ATOM	2714	CA	GLY	356	9. 586 -14. 858	89. 511	1. 00 44. 74
	ATOM	2715	C	GLY	356	9. 959 -16. 321	89. 396	1. 00 44. 45
	ATOM	2716	0	GLY	356	9. 097 -17. 163	89. 146	1. 00 45. 09
	ATOM	2717	N	LEU	357	11. 235 -16. 635	89. 575	1. 00 43. 26
	ATOM	2718	CA	LEU	357	11. 681 -18. 018	89. 485	1. 00 41. 29
25	ATOM	2719	CB	LEU	357	12. 653 -18. 187	88. 310	1. 00 42. 15
	ATOM	2720	CG	LEU	357	12. 171 -17. 833	86. 896	1. 00 41. 21
	ATOM	2721	CD1	LEU	357	13. 366 -17. 781	85. 972	1. 00 39. 61
	ATOM	2722	CD2	LEU	357	11. 153 -18. 849	86. 393	1. 00 39. 50
	ATOM	2723	C.	LEU	357	12. 361 -18. 455	90. 780	1. 00 40. 57

PCT/JP03/06054 WO 03/097824

- 110 -12. 780 -17. 627 91. 590 1. 00 38. 53 2724 ATOM 0 LEU 357 2725 12. 448 -19. 766 90. 970 1. 00 39. 68 ATOM N ARG 358 ATOM 2726 CA ARG 358 13. 092 -20. 355 92. 139 1. 00 40. 04 2727 ARG 93. 112 1. 00 42. 61 ATOM CB 358 12. 048 -20. 916 93.760 ATOM 2728 CG ARG 358 11. 172 -19. 845 1.00 46.08 2729 CD ARG 12. 019 -18. 871 94. 560 1. 00 49. 74 ATOM 358 ATOM 2730 NE ARG 358 11. 355 -17. 588 94. 772 1. 00 55. 41 ATOM 2731 CZARG 358 10. 588 -17. 293 95. 816 1. 00 58. 08 ATOM 2732 NH1 ARG 10. 376 -18. 195 96. 771 1. 00 59. 09 358 NH2 ARG ATOM 2733 358 10. 035 -16. 087 95. 906 1. 00 58. 98 ATOM 2734 C ARG 358 13. 954 -21. 471 91. 576 1. 00 38. 39 2735 ARG 13. 569 -22. 641 91. 586 1.00 37.47 ATOM 0 358 2736 PR0 15. 140 -21. 109 91. 065 ATOM N 359 1. 00 36. 51 ATOM 2737 CD PR₀ 15. 664 -19. 728 91.087 359 1. 00 36. 88 ATOM 2738 PR₀ 16. 123 -22. 006 90. 461 CA 359 1. 00 34. 17 2739 CB PR₀ 17. 035 -21. 039 89. 722 1. 00 35. 29 ATOM 359 ATOM 2740 CG PR₀ 359 17. 135 -19. 925 90. 703 1. 00 34. 03 1. 00 33. 10 ATOM 2741 C PR₀ 359 16. 915 -22. 872 91. 416 ATOM 2742 0 PR0 359 17. 140 -22. 520 92. 566 1. 00 31. 20 ATOM 2743 N SER 17. 365 -24. 004 90. 899 1. 00 33. 97 360 ATOM 2744 CA SER 18. 183 -24. 931 91. 658 360 1. 00 34. 21 CB SER 17. 912 -26. 363 91. 210 ATOM 2745 360 1. 00 34. 53 $18.\ 287\ -26.\ 530$ **ATOM** 2746 0G SER 360 89. 851 1. 00 33. 54

5 10 15 20 ATOM 2747 C SER 360 19. 618 -24. 568 91. 307 1.00 34.99 ATOM 2748 0 SER 360 19. 855 -23. 673 90. 495 1. 00 35. 49 25 ATOM 2749 N THR 361 20. 564 -25. 267 91. 920 1. 00 34. 70 ATOM 2750 CA THR 361 21. 977 -25. 048 91. 673 1. 00 36. 89 ATOM 2751 CB THR 361 22. 838 -26. 003 92. 535 1.00 36.99 2752 OG1 THR ATOM 361 22. 828 -25. 558 93. 898 1. 00 38. 93

- 111 -

	ATOM	2753	CG2	THR	361	24. 260 -26. 041	92. 033	1. 00 38. 24
	ATOM	2754	C	THR	361	22. 303 <i>-</i> 25. 291	90. 201	1. 00 37. 14
	ATOM	2755	0	THR	361	23. 142 -24. 606 ⁶	89. 616	1. 00 37. 81
	ATOM	2756	N	THR	362	21. 635 -26. 273	89. 612	1. 00 35. 92
5	ATOM	2757	CA	THR	362	21. 865 -26. 614	88. 223	1. 00 34. 91
	ATOM	2758	CB	THR	362	21. 369 -28. 037	87. 914	1. 00 36. 12
	ATOM	2759	0G1	THR	362	19. 969 -28. 117	88. 199	1. 00 40. 45
	ATOM	2760	CG2	THR	362	22. 113 -29. 063	88. 771	1. 00 34. 62
	ATOM	2761	C	THR	362	21. 181 -25. 626	87. 292	1. 00 33. 53
10	ATOM	2762	0	THR	362	21. 684 -25. 360	86. 205	1. 00 33. 46
	ATOM	2763	N	ASP	363	20. 034 -25. 091	87. 698	1. 00 31. 06
	ATOM	2764	CA	ASP	363	19. 355 -24. 115	86. 860	1. 00 32. 46
	ATOM	2765	CB	ASP	363	18. 018 -23. 690	87. 468	1. 00 34. 45
	ATOM	2766	CG	ASP	363	16. 964 -24. 783	87. 409	1. 00 37. 91
15	ATOM	2767	0D1	ASP	363	16. 889 -25. 504	86. 388	1. 00 38. 99
	ATOM	2768	O D2	ASP	363	16. 194 -24. 907	88. 385	1. 00 38. 23
	ATOM	2769	C	ASP	363	20. 254 -22. 878	86. 718	1. 00 32. 88
	ATOM	2770	0	ASP	363	20. 419 -22. 331	85. 629	1. 00 30. 65
	ATOM	2771	N	CYS	364	20. 833 -22. 451	87. 836	1. 00 33. 86
20	ATOM	2772	CA	CYS	364	21. 712 -21. 292	87. 860	1. 00 32. 22
	ATOM	2773	CB	CYS	364	22. 186 -21. 015	89. 289	1. 00 31. 35
	ATOM	2774	SG	CYS	364	20. 915 -20. 338	90. 389	1. 00 31. 77
	ATOM	2775	C	CYS	364	22. 914 -21. 493	86. 950	1. 00 30. 91
	ATOM	2776	0	CYS	364	23. 207 -20. 645	86. 119	1. 00 30. 71
25	ATOM	2777	N	ASP	365	23. 608 -22. 614	87. 107	1. 00 31. 25
	ATOM	2778	CA	ASP	365	24. 774 -22. 894	86. 280	1. 00 32. 00
	ATOM	2779	CB	ASP	365	25. 389 -24. 243	86. 659	1. 00 32. 78
	ATOM	2780	CG	ASP	365	26. 037 -24. 211	88. 023	1. 00 35. 48
	ATOM	2781	OD 1	ASP	365	26. 017 -23. 127	88. 650	1. 00 37. 01

- 112 -

	ATOM	2782	OD2	2 ASP	365	26. 564 -25. 251	88. 466	1. 00 35. 21
	ATOM	2783	C	ASP	365	24. 405 -22. 886	84. 810	1. 00 30. 41
	ATOM	2784	0	ASP	365	25. 166 -22. 407	83. 966	1. 00 31. 73
	ATOM	2785	N	ILE	366	23. 225 -23. 408	84. 514	1. 00 29. 17
5	ATOM	2786	CA	ILE	366	22. 739 -23. 462	83. 148	1. 00 30. 58
	ATOM	2787	CB	ILE	366	21. 456 -24. 318	83. 058	1. 00 30. 61
	ATOM	2788	CG2	ILE	366	20. 779 -24. 118	81. 712	1. 00 28. 15
	ATOM	2789	CG1	ILE	366	21. 808 -25. 797	83. 261	1. 00 33. 09
	ATOM	2790	CD1	ILE	366	20. 577 -26. 702	83. 405	1. 00 32. 69
10	ATOM	2791	C	ILE	366	22. 462 -22. 066	82. 576	1. 00 29. 08
	ATOM	2792	0	ILE	366	22. 729 -21. 815	81. 405	1. 00 28. 78
	ATOM	2793	N	VAL	367	21. 906 -21. 170	83. 386	1. 00 27. 52
	ATOM	2794	CA	VAL	367	21. 632 -19. 817	82. 910	1. 00 27. 71
	ATOM	2795	CB	VAL	367	20. 803 -19. 021	83. 943	1. 00 26. 66
15	ATOM	2796	CG1	VAL	367	20. 812 -17. 531	83. 609	1. 00 24. 57
	ATOM	2797	CG2	VAL	367	19. 373 -19. 535	83. 928	1. 00 26. 09
	ATOM	2798	C	VAL	367	22. 979 -19. 143	82. 643	1. 00 28. 05
	ATOM	2799	0	VAL	367	23. 144 -18. 409	81. 670	1. 00 28. 53
	ATOM	2800	N	ARG	368	23. 940 -19. 436	83. 508	1. 00 27. 74
20	ATOM	2801	CA	ARG	368	25. 300 -18. 927	83. 386	1. 00 30. 76
	ATOM	2802	CB	ARG	368	26. 172 -19. 575	84. 458	1. 00 31. 66
	ATOM	2803	CG	ARG	368	27. 023 -18. 648	85. 269	1. 00 38. 26
	ATOM	2804	CD	ARG	368	28. 312 -18. 282	84. 579	1. 00 41. 00
	ATOM	2805	NE	ARG	368	29. 272 -17. 763	85. 547	1. 00 43. 72
25	ATOM	2806	CZ	ARG	368	30. 397 -17. 135	85. 226	1. 00 46. 75
	ATOM	2807	NH1	ARG	368	30. 710 -16. 938	83. 954	1. 00 48. 06
	ATOM	2808	NH2	ARG	368	31. 212 -16. 708	86. 179	1. 00 47. 96
	ATOM	2809	C	ARG	368	25. 841 -19. 317	82. 003	1. 00 30. 63
	ATOM	2810	0	ARG	368	26. 343 -18. 469	81. 256	1. 00 27. 84

- 113 -

						110		
	ATOM	2811	N	ARG	369	25. 735 -20. 606	81. 677	1. 00 27. 70
	ATOM	2812	CA	ARG	369	26. 228 -21. 115	80. 399	1. 00 28. 24
	MOTA	2813	CB	ARG	369	26. 077 -22. 645	80. 327	1. 00 26. 69
	ATOM	2814	CG	ARG	369	27. 044 -23. 429	81. 224	1. 00 29. 04
5	ATOM	2815	CD	ARG	369	28. 506 -23. 228	80. 815	1. 00 31. 91
	ATOM	2816	NE	ARG	369	28. 752 -23. 683	79. 445	1. 00 35. 74
	ATOM	2817	CZ	ARG	369	29. 117 -22. 892	78. 439	1. 00 36. 75
	ATOM	2818	NH1	ARG	369	29. 291 -21. 590	78. 638	1. 00 36. 65
	ATOM	2819	NH2	ARG	369	29. 291 -23. 400	77. 225	1. 00 36. 11
10	ATOM	2820	C	ARG	369	25. 528 -20. 472	79. 208	1. 00 27. 14
	ATOM	2821	0	ARG	369	26. 160 -20. 188	78. 189	1. 00 28. 06
	ATOM	2822	N	ALA	370	24. 224 -20. 252	79. 327	1. 00 25. 64
	ATOM	2823	CA	ALA	370	23. 480 -19. 634	78. 238	1. 00 25. 08
	ATOM	2824	CB	ALA	370	21. 991 -19. 587	78. 574	1. 00 25. 47
15	ATOM	2825	C	ALA	370	24. 015 -18. 218	78. 006	1. 00 25. 14
	ATOM	2826	0	ALA	370	24. 196 -17. 793	76. 870	1. 00 25. 23
	ATOM	2827	N	CYS	371	24. 268 -17. 491	79. 087	1. 00 24. 15
	ATOM	2828	CA	CYS	371	24. 785 -16. 135	78. 965	1. 00 25. 09
	ATOM	2829	CB	CYS	371	24. 855 -15. 467	80. 338	1. 00 22. 74
20	ATOM	2830	SG	CYS	371	23. 239 -15. 076	81. 033	1. 00 25. 40
	ATOM	2831	C	CYS	371	26. 161 -16. 127	78. 300	1. 00 24. 93
	ATOM	2832	0	CYS	371	26. 392 -15. 358	77. 367	1. 00 25. 49
	ATOM	2833	N	GLU	372	27. 062 -16. 991	78. 765	1. 00 24. 70
	ATOM	2834	CA	GLU	372	28. 411 -17. 073	78. 207	1. 00 26. 69
25	ATOM	2835	CB	GLU	372	29. 247 -18. 105	78. 975	1. 00 27. 07
	ATOM	2836	CG	GLU	372	29. 232 -17. 890	80. 481	1. 00 32. 77
	ATOM	2837	CD	GLU	372	30. 016 -18. 945	81. 243	1. 00 33. 87
	ATOM	2838	0E1	GLU	372	29. 905 -20. 139	80. 892	1. 00 36. 95
	ATOM	2839	0E2	GLU	372	30. 733 -18. 583	82. 200	1. 00 35. 18

- 114 -76. 718 1. 00 27. 23 ATOM 2840 C GLU 372 28. 418 -17. 420 1. 00 29. 09 29. 259 -16. 922 75. 966 ATOM 2841 0 GLU 372 1. 00 25. 93 27. 489 -18. 273 76. 296 **ATOM** 2842 N SER 373 27. 403 -18. 664 74. 894 1. 00 27. 07 SER 373 ATOM 2843 CA 74. 718 1. 00 25. 93 ATOM 2844 CB SER 373 26. 393 -19. 803 5 26. 784 -20. 951 75. 457 1. 00 32. 56 ATOM 2845 0G SER 373 2846 C 1. 00 25. 31 ATOM SER 373 26. 988 -17. 471 74. 034 72. 998 1. 00 24. 49 SER 27. 585 -17. 207 ATOM 2847 0 373 1. 00 25. 87 ATOM 2848 N VAL 374 25. 962 -16. 754 74. 475 1. 00 25. 12 25. 473 -15. 596 73. 743 2849 CA VAL 374 ATOM 10 24. 139 -15. 103 74. 319 1. 00 26. 07 ATOM 2850 CB VAL 374 23. 754 -13. 766 73.682 1. 00 29. 29 2851 CG1 VAL 374 ATOM 23. 055 -16. 127 74.061 1. 00 25. 56 ATOM 2852 CG2 VAL 374 26. 465 -14. 429 73. 742 1.00 24.54 2853 C VAL 374 ATOM 26. 657 -13. 792 72. 714 1. 00 25. 64 2854 0 VAL 374 ATOM 15 2855 N SER 375 27. 094 -14. 144 74. 878 1. 00 21. 70 ATOM 74. 922 1. 00 23. 89 2856 SER 375 28. 029 -13. 034 ATOM CA ATOM 2857 CB SER 375 28. 298 -12. 585 76. 365 1. 00 23. 28 77. 120 1.00 29.71 2858 0G SER 375 28. 986 -13. 565 ATOM 1. 00 24. 77 ATOM 2859 C SER 375 29. 324 -13. 391 74. 210 20 1.00 23.61 2860 0 SER 375 29. 873 -12. 560 73. 490 ATOM 1.00 23.54 **ATOM** 2861 N THR 376 29. 805 -14. 623 74. 386 THR 376 31. 029 -15. 052 73. 707 1. 00 23. 38 ATOM 2862 CA ATOM 2863 CBTHR 376 31. 444 -16. 501 74.096 1. 00 23. 76 2864 OG1 THR 31. 874 -16. 527 75. 458 1. 00 26. 36 ATOM 376 25 73. 222 1. 00 21. 48 ATOM 2865 CG2 THR 376 32. 594 -16. 987 2866 C THR 376 30. 859 -14. 996 72. 189 1. 00 22. 33 ATOM ATOM 2867 0 THR 376 31. 810 -14. 694 71. 465 1. 00 23. 88 377 29. 660 -15. 293 71. 695 1. 00 20. 80 2868 N ARG ATOM

PCT/JP03/06054

- 115 -

	ATOM	2869	CA	ARG	377	29. 452 -15. 239	70. 253	1. 00 21. 46
	ATOM	2870	CB	ARG	377	28. 141 -15. 918	69. 839	1. 00 22. 21
	ATOM	2871	CG	ARG	377	27. 958 -15. 875	68. 312	1. 00 25. 01
	ATOM	2872	CD	ARG	377	26. 601 -16. 377	67. 827	1. 00 27. 70
5	ATOM	2873	NE	ARG	377	25. 491 -15. 558	68. 302	1. 00 25. 17
	ATOM	2874	CZ	ARG	377	24. 255 -15. 637	67. 825	1. 00 26. 42
	ATOM	2875	NH	1 ARG	377	23. 973 -16. 492	66. 850	1. 00 25. 23
	ATOM	2876	NH	2 ARG	377	23. 294 -14. 877	68. 339	1. 00 26. 96
	ATOM	2877	C	ARG	377	29. 439 -13. 773	69. 787	1. 00 21. 55
10	ATOM	2878	0	ARG	377	29. 856 -13. 462	68. 670	1. 00 20. 80
	ATOM	2879	N	ALA	378	28. 951 -12. 879	70. 639	1. 00 19. 46
	ATOM	2880	CA	ALA	378	28. 927 -11. 463	70. 302	1. 00 21. 17
	ATOM	2881	CB	ALA	378	28. 239 -10. 653	71. 412	1. 00 20. 68
	ATOM	2882	C	ALA	378	30. 374 -11. 015	70. 151	1. 00 20. 18
15	ATOM	2883	0	ALA	378	30. 747 -10. 420	69. 145	1. 00 20. 36
	ATOM	2884	N	ALA	379	31. 191 -11. 326	71. 153	1. 00 19. 41
	ATOM	2885	CA	ALA	379	32. 600 -10. 950	71. 138	1. 00 20. 64
	ATOM	2886	CB	ALA	379	33. 296 -11. 515	72. 371	1. 00 20. 04
	ATOM	2887	C	ALA	379	33. 332 -11. 405	69. 869	1. 00 22. 79
20	ATOM	2888	0	ALA	379	34. 054 -10. 620	69. 234	1. 00 21. 82
	ATOM	2889	N	HIS	380	33. 139 -12. 666	69. 489	1. 00 22. 45
	ATOM	2890	CA	HIS	380	33. 803 -13. 208	68. 305	1. 00 22. 78
	ATOM	2891	CB	HIS	380	33. 726 -14. 745	68. 314	1. 00 22. 80
	ATOM	2892	CG	HIS	380	34. 584 -15. 384	69. 364	1. 00 26. 52
25	ATOM	2893	CD2	HIS	380	35. 557 -14. 870	70. 152	1. 00 27. 81
	ATOM	2894	ND1	HIS	380	34. 499 -16. 720	69. 687	1. 00 28. 99
	ATOM	2895	CE1	HIS	380	35. 383 -17. 002	70. 627	1. 00 28. 15
	ATOM	2896	NE2	HIS	380	36. 039 -15. 896	70. 927	1. 00 28. 70
	ATOM	2897	C	HIS	380	33. 242 -12. 657	66. 994	1. 00 22. 38

- 116 -

						110		
	ATOM	2898	0	HIS	380	33. 988 -12. 368	66. 073	1. 00 20. 71
	ATOM	2899	N	MET	381	31. 926 -12. 524	66. 915	1. 00 23. 83
	ATOM	2900	CA	MET	381	31. 285 -12. 018	65. 713	1. 00 26. 66
	ATOM	2901	CB	MET	381	29. 760 -12. 086	65. 899	1. 00 29. 06
5	ATOM	2902	CG	MET	381	28. 926 -12. 031	64. 622	1. 00 34. 34
	ATOM	2903	SD	MET	381	29. 456 -13. 157	63. 312	1. 00 33. 69
	ATOM	2904	CE	MET '	381	28. 228 -14. 472	63. 429	1. 00 34. 64
	ATOM	2905	C	MET	381	31. 781 -10. 580	65. 509	1. 00 27. 50
	ATOM	2906	0	MET	381	32. 153 <i>-</i> 10. 188	64. 406	1. 00 26. 70
10	ATOM	2907	N.	CYS	382	31. 830 -9. 813	66. 595	1. 00 26. 32
	ATOM	2908	CA	CYS	382	32. 302 -8. 441	66. 536	1. 00 24. 87
	ATOM	2909	CB	CYS	382	32. 102 -7. 769	67. 896	1. 00 26. 05
	ATOM	2910	SG	CYS	382	32. 389 -5. 962	67. 931	1. 00 26. 70
	ATOM	2911	C	CYS	382	33. 785 -8. 355	66. 122	1. 00 24. 60
15	ATOM	2912	0	CYS	382	34. 187 -7. 457	65. 360	1. 00 19. 92
	ATOM	2913	N	SER	383	34. 590 -9. 288	66. 623	1. 00 22. 62
	ATOM	2914	CA	-SER	383	36. 017 -9. 302	66. 327	1. 00 22. 35
	ATOM	2915	CB	SER	383	36. 716 -10. 439	67. 096	1. 00 23. 03
	ATOM	2916	0G	SER	383	36. 361 -11. 712	66. 571	1. 00 24. 25
20	ATOM	2917	C	SER	383	36. 272 -9. 463	64. 834	1. 00 23. 77
	ATOM	2918	0	SER	383	37. 202 -8. 875	64. 288	1. 00 24. 79
	ATOM	2919	N	ALA	384	35. 448 -10. 269	64. 173	1. 00 24. 03
	ATOM	2920	CA	ALA	384	35. 612 -10. 480	62. 743	1. 00 25. 52
	ATOM	2921	CB	ALA	384	34. 649 -11. 552	62. 256	1. 00 22. 05
25	ATOM	2922	C	ALA	384	35. 369 -9. 182	61. 980	1. 00 25. 61
	ATOM	2923	0	ALA	384	35. 990 -8. 942	60. 947	1. 00 25. 37
	ATOM	2924	N	GLY	385	34. 450 -8. 360	62. 490	1. 00 25. 67
	ATOM	2925	CA	GLY	385	34. 134 -7. 098	61. 842	1. 00 23. 86
	ATOM	2926	C	GLY	385	35. 289 -6. 128	61. 944	1. 00 20. 99

- 117 -

						-	* •		
	ATOM	2927	0	GLY	385	35. 702	-5. 531	60. 960	1. 00 22. 47
	ATOM	2928	N	LEU	386	35. 811	-5. 962	63. 148	1. 00 22. 82
	ATOM	2929	CA	LEU	386	36. 937	-5. 065	63. 364	1. 00 25. 33
	ATOM	2930	CB	LEU	386	37. 259	-4. 971	64. 850	1. 00 23. 48
5	ATOM	2931	CG	LEU	386	37. 800	-3. 658	65. 425	1. 00 27. 75
	ATOM	2932	CD1	LEU	386	38. 641	-4. 007	66. 641	1. 00 26. 18
	ATOM	2933	CD2	LEU	386	38. 621	-2. 865	64. 428	1. 00 25. 52
	ATOM	2934	C	LEU	386	38. 172	-5. 584	62. 616	1. 00 26. 01
	ATOM	2935	0	LEU	386	38. 953	-4. 794	62. 067	1. 00 26. 60
10	ATOM	2936	N	ALA	387	38. 356	-6. 904	62. 601	1. 00 23. 95
	ATOM	2937	CA	ALA	387	39. 509	-7. 482	61. 902	1. 00 24. 13
	ATOM	2938	CB	ALA	387	39. 585	-8. 989	62. 135	1. 00 20. 59
	ATOM	2939	C	ALA	387	39. 405	-7. 181	60. 411	1. 00 24. 07
	ATOM	2940	0	ALA	387	40. 419	-6. 990	59. 730	1. 00 22. 59
15	ATOM	2941	N	GLY	388	38. 175	-7. 141	59. 904	1. 00 24. 30
	ATOM	2942	CA	GLY	388	37. 975	-6. 838	58. 497	1. 00 24. 40
	ATOM	2943	C	GLY	388	38. 380	-5. 398	58. 203	1. 00 25. 62
	ATOM	2944	0	GLY	388	39. 048	-5. 114	57. 205	1. 00 25. 24
	ATOM	2945	N	VAL	389	37. 974	-4. 488	59. 084	1. 00 25. 15
20	ATOM	2946	CA	VAL	389	38. 294	-3. 072	58. 950	1. 00 23. 08
	ATOM	2947	CB	VAL	389	37. 581	-2. 259	60. 057	1. 00 21. 38
	ATOM .	2948	CG1	VAL	389	38. 083	-0. 820	60. 076	1. 00 21. 90
	ATOM	2949	CG2	VAL	389	36. 078	-2. 303	59. 819	1. 00 20. 64
	ATOM	2950	C	VAL	389	39. 802	-2. 858	59. 034	1. 00 24. 13
25	ATOM	2951	0	VAL	389	40. 402	-2. 198	58. 178	1. 00 25. 99
	ATOM	2952	N	ILE	390	40. 424	-3. 429	60.054	1. 00 24. 21
	ATOM	2953	CA	ILE	390	41. 866	-3. 289	60. 209	1. 00 25. 31
	ATOM	2954	CB	ILE	390	42. 317	-3. 883	61. 576	1. 00 25. 21
	ATOM	2955	CG2	ILE	390	43. 831	-3. 962	61.661	1. 00 27. 92

- 118 -

	ATOM	2956	CG	1 ILE	390	41. 778	-2. 993	62. 708	1. 00 26. 03
	ATOM	2957	CD	1 ILE	390	42. 091	-3. 476	64. 094	1. 00 27. 41
	ATOM	2958	C	ILE	390	42. 668	-3. 899	59. 040	1. 00 26. 27
	ATOM	2959	0	ILE	390	43. 622	-3. 287	58. 563	1. 00 25. 08
5	ATOM	2960	N	ASN	391	42. 286	-5. 082	58. 561	1. 00 27. 72
	ATOM	2961	CA	ASN	391	43. 026	-5. 689	57. 448	1. 00 29. 87
	ATOM	2962	CB	ASN	391	42. 649	-7. 162	57. 250	1. 00 27. 74
	ATOM	2963	CG	ASN	391	43. 147	-8. 044	58. 375	1. 00 29. 54
	ATOM	2964	OD 1	ASN	391	44. 216	-7. 804	58. 939	1. 00 28. 68
10	ATOM	2965	ND2	ASN	391	42. 383	-9. 079	58. 699	1. 00 26. 84
	ATOM	2966	C	ASN	391	42. 805	-4. 930	56. 144	1. 00 31. 14
	ATOM	2967	0	ASN	391	43. 688	-4. 903	55. 281	1. 00 29. 49
	ATOM	2968	N	ARG	392	41. 627	-4. 331	55. 991	1. 00 31. 07
	ATOM	2969	CA	ARG	392	41. 358	-3. 553	54. 795	1. 00 33. 43
15	ATOM	2970	CB	ARG	392	39. 921	-3. 018	54. 780	1. 00 35. 04
	ATOM	2971	CG	ARG	392	39. 597	-2. 307	53. 483	1. 00 35. 84
	ATOM	2972	CD	ARG	392	38. 614	-1. 173	53. 650	1. 00 37. 18
	ATOM	2973	NE	ARG	392	38. 804	-0. 186	52. 589	1. 00 35. 89
	ATOM	2974	CZ	ARG	392	38. 518	-0. 390	51. 309	1. 00 36. 67
20	ATOM	2975	NH1	ARG	392	38. 006	-1. 550	50. 911	1. 00 38. 42
	ATOM	2976	NH2	ARG	392	38. 788	0. 553	50. 417	1. 00 37. 33
	ATOM	2977	C	ARG	392	42. 335	-2. 377	54. 831	1. 00 33. 73
	ATOM	2978	0	ARG	392	43. 028	-2. 107	53. 858	1. 00 34. 52
	ATOM	2979	N	MET	393	42. 396	-1. 691	55. 967	1. 00 34. 05
25	MOTA	2980	CA	MET	393	43. 298	-0. 554	56. 126	1. 00 35. 93
	ATOM	2981	CB	MET	393	43. 119	0. 073	57. 517	1. 00 32. 21
	ATOM	2982	CG	MET	393	41. 801	0. 834	57. 692	1. 00 28. 72
	ATOM	2983	SD	MET	·393	41. 530	1. 348	59. 400	1. 00 27. 28
	ATOM	2984	CE	MET	393	42. 652	2. 753	59. 533	1. 00 24. 26

- 119 -

	ATOM	2985	5 C	MET	393	44. 751	-0. 979	55. 947	1. 00 39. 48
	ATOM	2986	0	MET	393	45. 579	-0. 216	55. 448	1. 00 39. 63
	ATOM	2987	N	ARG	394	45. 049	-2. 205	56. 364	1. 00 43. 20
	ATOM	2988	CA	ARG	394	46. 391	-2. 766	56. 277	1. 00 45. 79
5	ATOM	2989	СВ	ARG	394	46. 381	-4. 180	56. 870	1. 00 49. 86
	ATOM	2990	CG	ARG	394	47. 670	-4. 595	57. 551	1. 00 53. 76
	ATOM	2991	CD	ARG	394	48. 587	-5. 335	56. 612	1. 00 56. 09
	ATOM	2992	NE	ARG	394	49. 896	-5. 554	57. 217	1. 00 60. 36
	ATOM	2993	CZ	ARG	394	50. 797	-4. 596	57. 411	1. 00 60. 35
10	ATOM	2994	NH	ARG	394	50. 528	-3. 353	57. 042	1. 00 61. 48
	ATOM	2995	NH2	ARG	394	51. 964	-4. 878	57. 978	1. 00 60. 51
	ATOM	2996	C	ARG	394	46. 912	-2. 792	54. 835	1. 00 46. 90
	ATOM	2997	0	ARG	394	48. 117	-2. 697	54. 606	1. 00 44. 95
	ATOM	2998	N	GLU	395	46. 005	-2. 906	53. 869	1. 00 48. 68
15	ATOM	2999	CA	GLU	395	46. 387	-2. 943	52. 459	1. 00 52. 84
	ATOM	3000	CB	GLU	395	45. 165	-3. 275	51. 590	1. 00 54. 51
	ATOM	3001	CG	GLU	395	44. 388	-4. 508	52. 051	1. 00 60. 85
	ATOM	3002	CD	GLU	395	43. 310	-4. 952	51.061	1. 00 64. 84
	ATOM	3003	0E1	GLU	395	42. 485	-4. 105	50. 642	1. 00 65. 83
20	ATOM	3004	0E2	GLU	395	43. 286	-6. 155	50. 708	1. 00 66. 43
	ATOM	3005	C	GLU	395	47. 008	-1. 621	51. 991	1. 00 54. 64
	ATOM	3006	0	GLU	395	47. 791	-1. 594	51. 039	1. 00 53. 71
	ATOM	3007	N	SER	396	46.660	-0. 528	52. 666	1. 00 56. 54
	ATOM	3008	CA	SER	396	47. 179	0. 794	52. 313	1. 00 58. 22
25	ATOM	3009	CB	SER	396	46. 037	1. 808	52. 266	1. 00 57. 21
	ATOM	3010	0G	SER	396	44. 980	1. 340	51. 448	1. 00 59. 52
	ATOM	3011	C	SER	396	48. 221	1. 268	53. 318	1. 00 60. 22
	ATOM	3012	0	SER	396	48. 394	2. 468	53. 527	1. 00 60. 38
	ATOM	3013	N	ARG	397	48. 915	0. 324	53. 941	1. 00 62. 22

- 120 -

						1	40			
	ATOM	3014	CA	ARG	397	49. 924	0. 663	54. 933	1. 00 64. 67	
	ATOM	3015	CB	ARG	397	49. 430	0. 260	56. 324	1. 00 65. 24	
	ATOM	3016	CG	ARG	397	49. 798	1. 218	57. 444	1. 00 67. 16	
	ATOM	3017	CD	ARG	397	49. 178	2. 596	57. 244	1. 00 68. 03	
5	ATOM	3018	NE	ARG	397	48. 803	3. 208	58. 516	1. 00 69. 13	
	ATOM	3019	CZ	ARG	397	47. 681	2. 933	59. 178	1. 00 70. 58	
	ATOM	3020	NH	1 ARG	397	46. 813	2. 059	58. 687	1. 00 71. 37	
	ATOM	3021	NH	2 ARG	397	47. 429	3. 521	60. 340	1. 00 70. 29	
	ATOM	3022	C	ARG	397	51. 222	-0. 063	54. 611	1. 00 65. 54	
10	ATOM	3023	0	ARG	397	51. 416	-1. 215	54. 998	1. 00 66. 75	
	ATOM	3024	N	SER	398	52. 106	0. 621	53. 894	1. 00 66. 86	
	ATOM	3025	CA	SER	398	53. 388	0. 052	53. 508	1. 00 67. 48	
	ATOM	3026	CB	SER	398	53. 980	0. 832	52. 331	1. 00 67. 48	
	ATOM	3027	0G	SER	398	53. 155	0. 725	51. 181	1. 00 66. 93	
15	ATOM	3028	C	SER	398	54. 358	0.063	54. 679	1. 00 68. 36	
	ATOM	3029	0	SER	398	55. 036	1. 063	54. 934	1. 00 69. 35	
	ATOM	3030	N	GLU	399	54. 413	-1. 059	55. 388	1. 00 67. 90	
	ATOM	3031	CA	GLU	399	55. 297	-1. 206	56. 533	1. 00 68. 16	
	ATOM	3032	CB	GLU	399	55. 002	-0. 126	57. 564	1. 00 68. 95	
20	ATOM	3033	CG	GLU	399	53. 540	0. 020	57. 889	1. 00 71. 05	
	ATOM	3034	CD	GLU	399	53. 261	1. 318	58. 598	1. 00 71. 37	
	ATOM	3035	0E1	GLU	399	53. 871	1. 545	59. 662	1. 00 72. 25	
	ATOM	3036	0E2	GLU	399	52. 443	2. 111	58. 089	1. 00 71. 32	
	ATOM	3037	C	GLU	399	55. 167	-2. 581	57. 168	1. 00 67. 57	
25	ATOM	3038	0	GLU	399	54. 078	-3. 155	57. 232	1. 00 67. 34	
	ATOM	3039	N	ASP	400	56. 301	-3. 091	57. 635	1. 00 66. 86	
	ATOM	3040	CA	ASP	400	56. 397	-4. 400	58. 265	1. 00 65. 75	
	ATOM	3041	CB	ASP	400	57. 739	-4. 507	58. 989	1. 00 68. 55	
	ATOM	3042	CG	ASP	400	58. 892	-3. 961	58. 157	1. 00 71. 49	

PCT/JP03/06054

- 121 -

							• •		
	ATOM	3043	OD 1	ASP	400	59. 015	-4. 356	56. 976	1. 00 72. 29
	ATOM	3044	O D2	ASP	400	59. 675	-3. 136	58. 682	1. 00 72. 38
	ATOM	3045	C	ASP	400	55. 247	-4. 676	59. 233	1. 00 63. 41
	ATOM	3046	0	ASP	400	54. 385	-5. 514°	58. 962	1. 00 63. 27
5	ATOM	3047	N	VAL	401	55. 241	-3. 973	60. 361	1. 00 59. 50
	ATOM	3048	CA	VAL	401	54. 193	-4. 138	61. 360	1. 00 55. 59
	ATOM	3049	CB	VAL	401	54. 789	-4. 439	62. 757	1. 00 55. 81
	ATOM	3050	CG1	VAL	401	53. 698	-4. 375	63. 818	1. 00 54. 69
	ATOM	3051	CG2	VAL	401	55. 442	-5. 817	62. 757	1. 00 54. 18
10	ATOM	3052	C	VAL	401	53. 345	-2. 876	61. 454	1. 00 53. 78
	ATOM	3053	0	VAL	401	53. 841	-1. 807	61. 820	1. 00 53. 39
	ATOM	3054	N	MET	402	52. 065	-2. 991	61. 114	1. 00 50. 91
	ATOM	3055	CA	MET	402	51. 190	-1. 834	61. 194	1. 00 47. 59
	ATOM	3056	CB	MET	402	49. 992	-1. 958	60. 250	1. 00 46. 98
15	ATOM	3057	CG	MET	402	49. 043	-0. 768	60. 387	1. 00 47. 22
	ATOM	3058	SD	MET	402	47. 505	-0. 874	59. 461	1. 00 48. 69
	ATOM	3059	CE	MET	402	46. 622	-2. 099	60. 439	1. 00 48. 15
	ATOM	3060	C	MET	402	50. 670	-1. 643	62. 605	1. 00 44. 98
	ATOM	3061	0	MET	402	49. 945	-2. 483	63. 134	1. 00 43. 92
20	ATOM	3062	N	ARG	403	51. 054	-0. 533	63. 219	1. 00 43. 27
	ATOM	3063	CA	ARG	403	50. 587	-0. 229	64. 556	1. 00 41. 71
	ATOM	3064	CB	ARG	403	51.673	0. 484	65. 350	1. 00 45. 65
	ATOM	3065	CG	ARG	403	52. 903	-0. 356	65. 596	1. 00 52. 20
	ATOM	3066	CD	ARG	403	53. 973	0. 474	66. 262	1. 00 57. 99
25	ATOM	3067	NE	ARG	403	55. 137	-0. 324	66. 630	1. 00 65. 47
	ATOM	3068	CZ	ARG	403	56. 251	0. 184	67. 149	1. 00 68. 76
	ATOM	3069	NH1	ARG	403	56. 349	1. 493	67. 357	1. 00 69. 34
	ATOM	3070	NH2	ARG	403	57. 265	-0. 615	67. 468	1. 00 69. 59
	ATOM	3071	C	ARG	403	49. 388	0. 685	64. 372	1. 00 37. 99

- 122 -

	ATOM	3072	0	ARG	403	49. 471	1. 692	63. 679	1. 00 37. 13
	ATOM	3073	N	ILE	404	48. 267	0. 322	64. 975	1. 00 34. 39
	ATOM	3074	CA	ILE	404	47. 069	1. 129	64. 854	1. 00 31. 53
	ATOM	3075	CB	ILE	404	46. 161	0. 577	63. 735	1. 00 33. 38
5	ATOM	3076	CG2	ILE	404	45. 681	-0. 829	64. 096	1. 00 32. 57
	ATOM	3077	CG1	ILE	404	44. 987	1. 524	63. 500	1. 00 35. 77
	ATOM	3078	CD1	ILE	404	44. 144	1. 153	62. 300	1. 00 38. 45
	ATOM	3079	C	ILE	404	46. 322	1. 152	66. 179	1. 00 28. 96
	ATOM	3080	0	ILE	404	46. 393	0. 204	66. 956	1. 00 29. 35
10	ATOM	3081	N	THR	405	45. 632	2. 250	66. 453	1. 00 28. 84
	ATOM	3082	CA	THR	405	44. 874	2. 359	67. 693	1. 00 27. 84
	ATOM	3083	CB	THR	405	45. 323	3. 558	68. 535	1. 00 26. 65
	ATOM	3084	0G1	THR	405	46. 663	3. 335	68. 990	1. 00 30. 48
	ATOM	3085	CG2	THR	405	44. 428	3. 715	69. 749	1. 00 27. 32
15	ATOM	3086	C	THR	405	43. 387	2. 460	67. 408	1. 00 27. 13
	ATOM	3087	0	THR	405	42. 964	3. 127	66. 462	1. 00 24. 36
	ATOM	3088	N	VAL	406	42. 604	1. 786	68. 245	1. 00 25. 61
	ATOM	3089	CA	VAL	406	41. 160	1. 737	68. 107	1. 00 23. 67
	ATOM	3090	CB	VAL	406	40. 705	0. 244	67. 973	1. 00 23. 64
20	ATOM	3091	CG1	VAL	406	39. 189	0. 138	67. 798	1. 00 24. 19
	ATOM	3092	CG2	VAL	406	41. 405	-0. 399	66. 783	1. 00 21. 36
	ATOM	3093	C	VAL	406	40. 493	2. 392	69. 320	1. 00 26. 21
	ATOM	3094	0	VAL	406	40. 763	2. 018	70. 469	1. 00 26. 86
	ATOM	3095	N	GLY	407	39. 644	3. 389	69. 072	1. 00 25. 61
25	ATOM	3096	CA	GLY	407	38. 943	4. 044	70. 168	1. 00 23. 09
	ATOM	3097	C .	GLY	407	37. 645	3. 285	70. 387	1. 00 21. 77
	ATOM	3098	0	GLY	407	36. 919	3. 011	69. 426	1. 00 23. 17
	ATOM	3099	N	VAL	408	37. 334	2. 943	71. 632	1. 00 20. 52
	ATOM	3100	CA	VAL	408	36. 128	2. 167	71. 907	1. 00 21. 51

- 123 -

						1.	50		
	ATOM	3101	CB	VAL	408	36. 500	0. 684	72. 252	1. 00 23. 04
	ATOM	3102	CG	l VAL	408	35. 237	-0. 176	72. 351	1. 00 19. 52
	ATOM	3103	CG2	VAL	408	37. 436	0. 121	71. 201	1. 00 20. 49
	ATOM	3104	C	VAL	408	35. 282	2. 704	73. 060	1. 00 23. 66
5	ATOM	3105	0	VAL	408	35. 814	3. 223	74. 045	1. 00 23. 60
	ATOM	3106	N	ASP	409	33. 963	2. 580	72. 923	1. 00 24. 58
	ATOM	3107	CA	ASP	409	33. 040	2. 992	73. 975	1. 00 26. 70
	ATOM	3108	CB	ASP	409	32. 612	4. 455	73. 803	1. 00 30. 78
	ATOM	3109	CG	ASP	409	31. 909	4. 998	75. 041	1. 00 31. 51
10	ATOM	3110	0D1	ASP	409	32. 322	4. 625	76. 156	1. 00 31. 70
	ATOM	3111	0D2	ASP	409	30. 955	5. 794	74. 910	1. 00 35. 70
	ATOM	3112	C	ASP	409	31. 824	2. 083	73. 898	1. 00 25. 68
	ATOM	3113	0	ASP	409	31. 639	1. 396	72. 901	1. 00 27. 99
	ATOM	3114	N	GLY	410	30. 999	2. 079	74. 943	1. 00 28. 67
15	ATOM	3115	CA	GLY	410	29. 807	1. 233	74. 964	1. 00 29. 54
	ATOM	3116	C	GLY	410	29. 755	0. 355	76. 212	1. 00 30. 09
	ATOM	3117	0	GLY	410	30. 787	-0. 138	76. 657	1. 00 28. 57
	ATOM	3118	N	SER	411	28. 560	0. 150	76. 767	1. 00 30. 89
	ATOM	3119	CA	SER	411	28. 392	-0. 649	77. 983	1. 00 32. 71
20	ATOM	3120	CB	SER	411	26. 941	-0. 554	78. 490	1. 00 32. 88
	ATOM	3121	0G	SER	411	26. 011	-0. 884	77. 473	1. 00 36. 82
	ATOM	3122	C	SER	411	28. 804	-2. 121	77. 840	1. 00 31. 25
	ATOM	3123	0	SER	411	29. 480	-2. 661	78. 712	1. 00 29. 96
	ATOM	3124	N	VAL	412	28. 398	-2. 768	76. 754	1. 00 29. 78
25	ATOM	3125	CA	VAL	412	28. 780	-4. 158	76. 535	1. 00 28. 59
	ATOM	3126	CB	VAL	412	28. 264	-4. 665	75. 174	1. 00 29. 68
	ATOM	3127	CG1	VAL	412	28. 772	-6. 088	74. 908	1. 00 27. 25
	ATOM	3128	CG2	VAL	412	26. 739	-4. 642	75. 173	1. 00 29. 93
	ATOM	3129	C	VAL	412	30. 307	-4. 320	76. 584	1. 00 29. 24

- 124 -

						1	144 -		
	ATOM	3130	0	VAL	412	30. 831	l -5. 145	77. 340	1. 00 28. 78
	ATOM	3131	N	TYR	413	31. 023	3. 522	75. 796	1. 00 27. 57
	ATOM	3132	C.A	TYR	413	32. 482	-3. 602	75. 763	1. 00 24. 60
	ATOM	3133	CE	3 TYR	413	33. 049	-2. 730	74. 645	1. 00 19. 87
5	ATOM	3134	CG	TYR	413	34. 568	-2. 710	74. 587	1. 00 20. 22
	ATOM	3135	CD	1 TYR	413	35. 270	-3. 566	73. 735	1. 00 21. 52
	ATOM	3136	CE	1 TYR	413	36. 667	-3. 519	73. 655	1. 00 19. 93
	ATOM	3137	CD	2 TYR	413	35. 300	-1. 819	75. 363	1. 00 14. 63
	ATOM	3138	CE	2 TYR	413	36. 690	-1. 770	75. 294	1. 00 17. 31
10	ATOM	3139	CZ	TYR	413	37. 364	-2. 616	74. 439	1. 00 19. 92
	ATOM	3140	ОН	TYR	413	38. 737	-2. 547	74. 362	1. 00 23. 08
	ATOM	3141	C	TYR	413	33. 151	-3. 193	77. 072	1. 00 26. 48
	ATOM	3142	0	TYR	413	34. 085	-3. 849	77. 534	1. 00 26. 86
	ATOM	3143	N	LYS	414	32. 690	-2. 108	77. 669	1. 00 26. 13
15	ATOM	3144	CA	LYS	414	33. 309	-1. 640	78. 902	1. 00 29. 80
	ATOM	3145	CB	LYS	414	33. 001	-0. 147	79. 117	1. 00 29. 42
	ATOM	3146	CG	LYS	414	33. 882	0. 802	78. 302	1. 00 32. 94
	ATOM	3147	CD	LYS	414	33. 558	2. 275	78. 559	1. 00 34. 12
	ATOM	3148	CE	LYS	414	34. 553	3. 179	77. 833	1. 00 36. 09
20	ATOM	3149	NZ	LYS	414	34. 170	4. 626	77. 859	1. 00 35. 28
	ATOM	3150	C	LYS	414	32. 966	-2. 400	80. 181	1. 00 29. 74
	ATOM	3151	0	LYS	414	33. 850	-2. 677	80. 988	1. 00 28. 77
	ATOM	3152	N	LEU	415	31. 696	-2. 749	80. 357	1. 00 30. 99
	ATOM	3153	CA	LEU	415	31. 255	-3. 395	81. 591	1. 00 34. 39
25	ATOM	3154	CB	LEU	415	29. 942	-2. 738	82. 041	1. 00 34. 94
	ATOM	3155	CG	LEU	415	29. 964	-1. 195	82. 012	1. 00 38. 17
	ATOM	3156	CD1	LEU	415	28. 610	-0. 647	82. 469	1. 00 38. 59
	ATOM	3157	CD2	LEU	415	31. 080	-0. 660	82. 901	1. 00 34. 42
	ATOM	3158	C	LEU	415	31. 113	-4. 923	81. 657	1. 00 34. 46

- 125 -

						140			
	ATOM	3159	0	LEU	415	31. 202	-5. 493	82. 741	1. 00 33. 89
	ATOM	3160	N	HIS	416	30. 886	-5. 586	80. 531	1. 00 34. 56
	ATOM	3161	CA	HIS	416	30. 746	-7. 041	80. 561	1. 00 36. 94
	ATOM	3162	CB	HIS	416	30. 394	-7. 572	79. 175	1. 00 39. 81
5	ATOM	3163	CG	HIS	416	29. 811	-8. 949	79. 192	1. 00 44. 04
	ATOM	3164	CD	2 HIS	416	28. 536	-9. 375	79. 038	1. 00 43. 02
	ATOM	3165	ND:	HIS	416	30. 573 -	10. 080	79. 402	1. 00 44. 57
	ATOM	3166	CE	HIS	416	29. 791 -	11. 144	79. 374	1. 00 44. 76
	ATOM	3167	NE	HIS	416	28. 550 -	10. 744	79. 156	1. 00 46. 14
10	ATOM	3168	C	HIS	416	32. 046	-7. 673	81. 060	1. 00 35. 57
	ATOM	3169	0	HIS	416	33. 103 -	-7. 483	80. 471	1.00 37.06
	ATOM	3170	N	PRO	417	31. 973 -	-8. 445	82. 153	1. 00 33. 55
	ATOM	3171	CD	PRO	417	30. 727 -	-8. 999	82. 700	1. 00 32. 04
	ATOM	3172	CA	PR0	417	33. 134 -	-9. 109	82. 757	1. 00 33. 47
15	ATOM	3173	CB	PR0	417	32. 504 -1	0. 219	83. 614	1. 00 31. 67
	ATOM	3174	CG	PR0	417	31. 142 -1	0. 410	83. 016	1. 00 32. 88
	ATOM	3175	C	PR0	417	34. 252 -	9. 628	81. 849	1. 00 32. 70
	ATOM	3176	0	PRO	417	35. 428 -	9. 411	82. 146	1. 00 36. 28
	ATOM	3177	N	SER	418	33. 929 -1	0. 302	80. 752	1. 00 29. 70
20	ATOM	3178	CA	SER	418	35. 015 -1	0. 808	79. 915	1. 00 28. 37
	ATOM	3179	CB	SER	418	35. 215 -1	2. 314	80. 163	1. 00 30. 65
	ATOM	3180	0G	SER	418	35. 798 -1	2. 555	81. 439	1. 00 35. 61
	ATOM	3181	C	SER	418	34. 895 -1	0. 560	78. 418	1. 00 25. 27
	ATOM	3182	0	SER	418	35. 730 -1	1. 028	77. 648	1. 00 23. 69
25	ATOM	3183	N	PHE	419	33. 856 -9	9. 846	78. 004	1. 00 21. 86
	ATOM	3184	CA	PHE	419	33. 673 -9	9. 543	76. 587	1. 00 24. 13
	ATOM	3185	CB	PHE	419	32. 551 -8	8. 522	76. 407	1. 00 22. 03
	ATOM	3186	CG	PHE	419	32. 270 -8	3. 187	74. 978	1. 00 24. 42
	ATOM	3187	CD1	PHE	419	31. 273 -8	3. 860	74. 276	1. 00 23. 32

- 126 -

						1.0				
	ATOM	3188	CD	2 PHE	419	33. 033	-7. 231	74. 312	1. 00	22. 16
	ATOM	3189	CE	PHE	419	31. 038	-8. 593	72. 932	1. 00	23. 49
	ATOM	3190	CE	PHE	419	32. 808	-6. 961	72. 967	1. 00	25. 91
	ATOM	3191	CZ	PHE	419	31. 806	-7. 645	72. 275	1. 00	24. 70
5	ATOM	3192	C	PHE	419	34. 961	-8. 965	76. 000	1. 00	24. 09
	ATOM	3193	0	PHE	419	35. 491	-9. 455	75. 009	1. 00	26. 51
	ATOM	3194	N	LYS	420	35. 432	-7. 899	76. 628	1. 00	25. 00
	ATOM	3195	CA	LYS	420	36. 641	-7. 179	76. 238	1. 00	26. 79
	ATOM	3196	CB	LYS	420	36. 984	-6. 207	77. 370	1. 00	28. 35
10	ATOM	3197	CG	LYS	420	38. 241	-5. 396	77. 229	1. 00	30. 04
	ATOM	3198	CD	LYS	420	38. 433	-4. 537	78. 497	1. 00	33. 98
•	ATOM	3199	CE	LYS	420	37. 170	-3. 740	78. 832	1. 00	31. 09
	ATOM	3200	NZ	LYS	420	37. 322	-2. 923	80. 067	1. 00	36. 69
	ATOM	3201	C	LYS	420	37. 819	-8. 118	75. 968	1. 00	25. 76
15	ATOM	3202	0	LYS	420	38. 446	-8. 064	74. 911	1. 00	25. 94
	ATOM	3203	N	GLU	421	38. 111	-8. 961	76. 951	1. 00	24. 13
	ATOM	3204	CA	GLU	421	39. 195	-9. 929	76. 887	1. 00	26. 26
	ATOM	3205	CB	GLU	421	39. 204 -	-10. 781	78. 155	1. 00	32. 38
	ATOM	3206	CG	GLU	421	39. 547 -	-10. 043	79. 417	1. 00	38. 45
20	ATOM	3207	CD	GLU	421	38. 700	-8. 798	79. 664	1. 00	41. 54
	ATOM	3208	0E1	GLU	421	37. 458	-8. 844	79. 501	1. 00	42. 17
	ATOM	3209	0E2	GLU	421	39. 300	-7. 767	80. 053	1. 00	42. 62
	ATOM	3210	C	GLU	421	39. 075 -	-10. 864	75. 699	1. 00	24. 57
	ATOM	3211	0	GLU	421	40. 017 -	-11. 023	74. 930	1. 00	25. 86
25	ATOM	3212	N	ARG	422	37. 921 -	-11. 509	75. 576	1. 00	24. 00
	ATOM	3213	CA	ARG	422	37. 682 -	-12. 439	74. 480	1. 00	26. 01
	ATOM	3214	CB	ARG	422	36. 284 -	-13. 063	74. 610	1. 00	27. 36
	ATOM	3215	CG	ARG	422	36. 076 -	-13. 878	75. 887	1. 00	31. 58
	ATOM	3216	CD	ARG	422	34. 600 -	14. 053	76. 188	1. 00	35. 39

- 127 -

						101		
	ATOM	3217	NE	ARG	422	34. 390 -14. 834	77. 397	1. 00 40. 58
	ATOM	3218	CZ	ARG	422	33. 232 -14. 911	78. 046	1. 00 44. 53
	ATOM	3219	NH1	ARG	422	32. 171 -14. 243	77. 596	1. 00 41. 79
	ATOM	3220	NH2	ARG	422	33. 141 -15. 651	79. 150	1. 00 41. 67
5	ATOM	3221	C	ARG	422	37. 794 -11. 691	73. 160	1. 00 24. 48
	ATOM	3222	0	ARG	422	38. 439 -12. 148	72. 221	1. 00 22. 97
	ATOM	3223	N	PHE	423	37. 153 -10. 531	73. 094	1. 00 24. 48
	ATOM	3224	CA	PHE	423	37. 189 -9. 737	71. 879	1. 00 22. 97
	ATOM	3225	CB	PHE	423	36. 403 -8. 442	72. 089	1. 00 24. 98
10	ATOM	3226	CG	PHE	423	36. 494 -7. 484	70. 939	1. 00 25. 21
	ATOM	3227	CD1	PHE	423	37. 468 -6. 490	70. 926	1. 00 25. 04
	ATOM	3228	CD2	PHE	423	35. 618 -7. 584	69. 861	1. 00 23. 47
	ATOM	3229	CE1	PHE	423	37. 568 -5. 607	69. 857	1. 00 24. 77
	ATOM	3230	CE2	PHE	423	35. 710	68. 784	1. 00 25. 48
15	ATOM	3231	CZ	PHE	423	36. 684 -5. 715	68. 780	1. 00 24. 31
	ATOM	3232	C	PHE	423	38. 629 -9. 442	71. 456	1. 00 21. 03
	ATOM	3233	0	PHE	423	38. 989 -9. 680	70. 308	1. 00 19. 38
	ATOM	3234	N	HIS	424	39. 454 -8. 952	72. 381	1. 00 20. 46
	ATOM	3235	CA	HIS	424	40. 846 -8. 631	72. 054	1. 00 23. 40
20	ATOM	3236	CB	HIS	424	41. 602 -8. 128	73. 293	1. 00 24. 89
	ATOM	3237	CG	HIS	424	41. 133 -6. 803	73. 808	1. 00 25. 28
	ATOM	3238	CD2	HIS	424	40. 391 -5. 828	73. 230	1. 00 24. 67
	ATOM	3239	ND1	HIS	424	41. 419 -6. 361	75. 083	1. 00 25. 18
	ATOM	3240	CE1	HIS	424	40. 869 -5. 174	75. 269	1. 00 22. 64
25	ATOM	3241	NE2	HIS	424	40. 239 -4. 829	74. 161	1. 00 24. 12
	ATOM	3242	C	HIS	424	41. 604 -9. 834	71. 486	1. 00 24. 51
	ATOM	3243	0	HIS	424	42. 239 -9. 741	70. 432	1. 00 23. 58
	ATOM	3244	N	ALA	425	41. 540 -10. 962	72. 191	1. 00 24. 51
	ATOM	3245	CA	ALA	425	42. 242 -12. 164	71. 746	1. 00 26. 94

- 128 -

	ATOM	3246	CB	ALA	425	42. 068 -13. 306	72. 774	1. 00 27. 10
	ATOM	3247	C	ALA	425	41. 759 -12. 605	70. 370	1. 00 25. 71
	ATOM	3248	0	ALA	425	42. 559 -12. 937	69. 505	1. 00 27. 02
	ATOM	3249	N	SER	426	40. 453 -12. 600	70. 151	1. 00 24. 30
5	ATOM	3250	CA	SER	426	39. 967 -13. 003	68. 850	1. 00 23. 93
	ATOM	3251	CB	SER	426	38. 450 -13. 142	68. 863	1. 00 20. 85
	ATOM	3252	0G	SER	426	38. 007 -13. 582	67. 596	1. 00 21. 86
	ATOM	3253	C	SER	426	40. 394 -12. 039	67. 743	1. 00 25. 72
	ATOM	3254	0	SER	426	40. 760 -12. 483	66. 660	1. 00 25. 40
10	ATOM	3255	N	VAL	427	40. 363 -10. 727	68. 007	1. 00 27. 03
	ATOM	3256	CA	VAL	427	40. 761 -9. 750	66. 983	1. 00 27. 43
	ATOM	3257	CB	VAL	427	40. 591 -8. 269	67. 450	1. 00 28. 91
	ATOM	3258	CG1	VAL	427	40. 999 -7. 323	66. 314	1. 00 29. 57
	ATOM	3259	CG2	VAL	427	39. 150 -7. 990	67. 852	1. 00 27. 73
15	ATOM	3260	C	VAL	427	42. 226 -9. 919	66. 601	1. 00 28. 67
	ATOM	3261	0	VAL	427	42. 582 -9. 858	65. 424	1. 00 27. 30
	ATOM	3262	N	ARG	428	43. 076 -10. 119	67. 603	1. 00 28. 43
	ATOM	3263	CA	ARG	428	44. 498 -10. 281	67. 350	1. 00 31. 91
	ATOM	3264	CB	ARG	428	45. 273 -10. 231	68. 670	1. 00 31. 80
20	ATOM	3265	CG	ARG	428	45. 449 -8. 793	69. 130	1. 00 31. 90
	ATOM	3266	CD	ARG	428	45. 662 -8. 639	70. 617	1. 00 34. 40
	ATOM	3267	NE	ARG	428	45. 867 -7. 231	70. 971	1. 00 34. 78
	ATOM	3268	CZ	ARG	428	45. 668 -6. 728	72. 186	1. 00 38. 69
	ATOM	3269	NH1	ARG	428	45. 251 -7. 516	73. 172	1. 00 38. 56
25	ATOM	3270	NH2	ARG	428	45. 901 -5. 442	72. 424	1. 00 39. 08
	ATOM	3271	C	ARG	428	44. 797 -11. 548	66. 572	1. 00 33. 56
	ATOM	3272	0	ARG	428	45. 694 -11. 558	65. 731	1. 00 32. 81
	ATOM	3273	N	ARG	429	44. 037 -12. 609	66. 837	1. 00 34. 25
	ATOM	3274	CA	ARG	429	44. 224 -13. 859	66. 115	1. 00 33. 42

PCT/JP03/06054

- 129 -

	ATOM	3275	CB	ARG	429	43. 252 -14. 941	66. 601	1. 00 36. 36
	ATOM	3276	CG	ARG	429	43. 756 -15. 769	67. 760	1. 00 43. 73
	ATOM	3277	CD	ARG	429	42. 930 -17. 038	67. 939	1. 00 47. 67
	ATOM	3278	NE	ARG	429	41. 561 -16. 789	68. 398	1. 00 51. 58
5	ATOM	3279	CZ	ARG	429	41. 222 -16. 467	69. 646	1. 00 51. 70
	ATOM	3280	NH1	ARG	429	42. 154 -16. 345	70. 585	1. 00 50. 85
	ATOM	3281	NH2	ARG	429	39. 945 -16. 288	69. 962	1. 00 49. 95
	ATOM	3282	C	ARG	429	43. 960 -13. 618	64. 639	1. 00 32. 81
	ATOM	3283	0	ARG	429	44. 610 -14. 215	63. 783	1. 00 32. 29
10	ATOM	3284	N	LEU	430	43. 001 -12. 741	64. 345	1. 00 30. 18
	ATOM	3285	CA	LEU	430	42. 623 -12. 455	62. 965	1. 00 29. 19
	ATOM	3286	CB	LEU	430	41. 132 -12. 109	62. 904	1. 00 29. 15
	ATOM	3287	CG	LEU	430	40. 173 -13. 164	63. 453	1. 00 31. 83
	ATOM	3288	CD1	LEU	430	38. 746 -12. 629	63. 437	1. 00 28. 32
15	ATOM	3289	CD2	LEU	430	40. 281 -14. 441	62. 613	1. 00 32. 03
	ATOM	3290	C	LEU	430	43. 407 -11. 355	62. 251	1. 00 27. 64
	ATOM	3291	0	LEU	430	43. 244 -11. 151	61. 048	1. 00 28. 08
	ATOM	3292	N	THR	431	44. 261 -10. 645	62. 966	1. 00 28. 04
	ATOM	3293	CA	THR	431	44. 988 -9. 567	62. 326	1. 00 31. 15
20	ATOM	3294	CB	THR	431	44. 569 -8. 201	62. 934	1. 00 30. 03
	ATOM	3295	0G1	THR	431	44. 666 -8. 254	64. 363	1. 00 31. 84
	ATOM	3296	CG2	THR	431	43. 137 -7. 879	62. 561	1. 00 26. 93
	ATOM	3297	C	THR	431	46. 507 -9. 719	62. 367	1. 00 34. 65
	ATOM	3298	0	THR	431	47. 190 -9. 015	63. 101	1. 00 34. 08
25	ATOM	3299	N	PRO	432	47. 049 -10. 655	61. 566	1: 00 37. 36
	ATOM	3300	CD	PRO	432	46. 296 -11. 603	60. 726	1. 00 37. 91
	ATOM	3301	CA	PRO	432	48. 489 -10. 923	61. 484	1. 00 38. 59
	ATOM	3302	CB	PRO	432	48. 572 -12. 080	60. 487	1. 00 38. 98
	ATOM	3303	CG	PRO	432	47. 245 -12. 758	60. 630	1. 00 40. 10

- 130 -

	ATOM	3304	C	PRO	432	49. 224	-9. 689	60. 969	1. 00 39. 65
	ATOM	3305	0	PRO	432	48. 712	-8. 968	60. 113	1. 00 39. 80
	ATOM	3306	N	SER	433	50. 420	-9. 461	61. 495	1. 00 39. 94
	ATOM	3307	CA	SER	433	51. 254	-8. 326	61. 112	1. 00 42. 47
5	ATOM	3308	CB	SER	433	51. 467	-8. 280	59. 586	1. 00 44. 12
	ATOM	3309	0G	SER	433	50. 363	-7. 707	58. 898	1. 00 48. 10
	ATOM	3310	C	SER	433	50. 687	-6. 996	61. 598	1. 00 42. 26
	ATOM	3311	0	SER	433	51. 085	-5. 932	61. 121	1. 00 42. 50
	ATOM	3312	N	CYS	434	49. 756	-7. 053	62. 544	1. 00 40. 68
10	ATOM	3313	CA	CYS	434	49. 184	-5. 831	63. 092	1. 00 40. 64
	ATOM	3314	CB	CYS	434	47. 679	-5. 735	62. 826	1. 00 39. 36
	ATOM	3315	SG	CYS	434	47. 196	-5. 674	61. 111	1. 00 39. 36
	ATOM	3316	C	CYS	434	49. 398	-5. 789	64. 590	1. 00 40. 17
	ATOM	3317	0	CYS	434	49. 258	-6. 801	65. 281	1. 00 40. 51
15	ATOM	3318	N	GLU	435	49. 743	-4. 609	65. 081	1. 00 38. 91
	ATOM	3319	CA	GLU	435	49. 945	-4. 388	66. 504	1. 00 39. 30
	ATOM	3320	CB	GLU	435	51. 302	-3. 733	66. 738	1. 00 42. 29
	ATOM	3321	CG	GLU	435	51. 779	-3. 766	68. 162	1. 00 49. 24
	ATOM	3322	CD	GLU	435	53. 072	-2. 993	68. 340	1. 00 53. 77
20	ATOM	3323	0E1	GLU	435	54. 106	-3. 421	67. 781	1. 00 56. 24
	ATOM	3324	0E2	GLU	435	53. 047	-1. 950	69. 032	1. 00 54. 88
	ATOM	3325	C	GLU	435	48. 801	-3. 430	66. 839	1. 00 37. 06
	ATOM	3326	0	GLU	435	48. 866	-2. 241	66. 532	1. 00 34. 30
	ATOM	3327	N	ILE	436	47. 749	-3. 971	67. 449	1. 00 36. 39
25	ATOM	3328	CA	ILE	436	46. 552	-3. 203	67. 786	1. 00 34. 47
	ATOM	3329	CB	ILE	436	45. 280	-4. 040	67. 508	1. 00 34. 15
	ATOM	3330	CG2	ILE	436	44. 024	-3. 166	67. 639	1. 00 33. 64
	ATOM	3331	CG1	ILE	436	45. 357	-4. 633	66. 100	1. 00 36. 06
	ATOM	3332	CD1	ILE	436	44. 166	-5. 487	65. 719	1. 00 36. 35

- 131 -

						10			
	ATOM	3333	C	ILE	436	46. 492	-2. 717	69. 228	1. 00 34. 50
	ATOM	3334	0	ILE	436	46. 612	-3. 506	70. 164	1. 00 35. 88
	ATOM	3335	N	THR	437	46. 308	-1. 411	69. 405	1. 00 32. 66
	ATOM	3336	CA	THR	437	46. 196	-0. 837	70. 741	1. 00 30. 32
5	ATOM	3337	CB	THR	437	47. 134	0. 370	70. 930	1. 00 29. 83
	ATOM	3338	0G1	THR	437	48. 496	-0.060	70. 833	1. 00 33. 74
	ATOM	3339	CG2	THR	437	46. 925	0. 996	72. 294	1. 00 28. 96
	ATOM	3340	C	THR	437	44. 759	-0. 377	70. 949	1. 00 29. 92
	ATOM	3341	0	THR	437	44. 177	0. 293	70. 090	1. 00 28. 24
10	ATOM	3342	N	PHE	438	44. 179	-0. 750	72. 083	1. 00 29. 43
	ATOM	3343	CA	PHE	438	42. 807	-0. 359	72. 390	1. 00 29. 35
	ATOM	3344	CB	PHE	438	41. 991	-1. 567	72. 853	1. 00 27. 92
	ATOM	3345	CG	PHE	438	41. 794	-2. 614	71. 789	1. 00 27. 95
	ATOM	3346	CD1	PHE	438	42. 695	-3. 661	71. 648	1. 00 27. 90
15	ATOM	3347	CD2	PHE	438	40. 703	-2. 549	70. 930	1. 00 24. 76
	ATOM	3348	CE1	PHE	438	42. 505	-4. 634	70. 662	1. 00 29. 21
	ATOM	3349	CE2	PHE	438	40. 506	-3. 505	69. 950	1. 00 28. 87
	ATOM	3350	CZ	PHE	438	41. 408	-4. 554	69. 814	1. 00 28. 70
	ATOM	3351	C	PHE	438	42. 772	0. 712	73. 467	1. 00 30. 41
20	ATOM	3352	0	PHE	438	43. 469	0.601	74. 474	1. 00 30. 53
	ATOM	3353	N	ILE	439	41. 968	1. 752	73. 250	1. 00 30. 35
	ATOM	3354	CA	ILE	439	41. 839	2. 832	74. 220	1. 00 31. 89
	ATOM	3355	CB	ILE	439	42. 544	4. 124	73. 751	1. 00 33. 03
	ATOM	3356	CG2	ILE	439	42. 233	5. 269	74. 721	1. 00 36. 00
25	ATOM	3357	CG1	ILE	439	44. 053	3. 916	73. 704	1. 00 33. 82
	ATOM	3358	CD1	ILE	439	44. 818	5. 165	73. 296	1. 00 36. 93
	ATOM	3359	C	ILE	439	40. 373	3. 158	74. 420	1. 00 32. 85
	ATOM	3360	0	ILE	439	39. 603	3. 157	73. 467	1. 00 33. 09
	ATOM	3361	N	GLU	440	39. 991	3. 442	75. 659	1. 00 35. 09

- 132 -

	ATOM	3362	CA	GLU	440	38. 608	3. 789	75. 956	1. 00 39. 34
	ATOM	3363	CB	GLU	440	38. 133	3. 041	77. 199	1. 00 37. 95
	ATOM	3364	CG	GLU	440	38. 213	1. 526	77. 038	1. 00 39. 96
	ATOM	3365	CD	GLU	440	37. 837	0. 773	78. 298	1. 00 40. 82
5	ATOM	3366	0E1	GLU	440	38. 058	-0. 456	78. 340	1. 00 41. 23
	ATOM	3367	0E2	GLU	440	37. 318	1. 403	79. 245	1. 00 41. 08
	ATOM	3368	C	GLU	440	38. 495	5. 298	76. 156	1. 00 41. 28
	ATOM	3369	0	GLU	440	39. 356	5. 918	76. 769	1. 00 42. 10
	ATOM	3370	N	SER	441	37. 431	5. 886	75. 627	1. 00 43. 99
10	ATOM	3371	CA	SER	441	37. 231	7. 327	75. 738	1. 00 48. 53
	ATOM	3372	CB	SER	441	36. 390	7. 823	74. 550	1. 00 47. 96
	ATOM	3373	0G	SER	441	35. 196	7. 066	74. 390	1. 00 48. 42
	ATOM	3374	C	SER	441	36. 577	7. 752	77. 051	1. 00 50. 20
	ATOM	3375	0	SER	441	35. 654	7. 087	77. 531	1. 00 51. 01
15	ATOM	3376	N	GLU	442	37. 060	8. 852	77. 634	1. 00 53. 24
	ATOM	3377	CA	GLU	442	36. 490	9: 359	78. 885	1. 00 55. 51
	ATOM	3378	CB	GLU	442	37. 362	10. 454	79. 507	1. 00 60. 16
	ATOM	3379	CG	GLU	442	36. 822	10. 936	80. 859	1. 00 65. 44
	ATOM	3380	CD	GLU	442	37. 596	12. 107	81. 450	1. 00 69. 63
20	ATOM	3381	0E1	GLU	442	38. 824	11. 984	81. 667	1. 00 71. 27
	ATOM	3382	0E2	GLU	442	36. 965	13. 155	81. 709	1. 00 72. 91
	ATOM	3383	C	GLU	442	35. 118	9. 938	78. 579	1. 00 54. 68
	ATOM	3384	0	GLU	442	34. 104	9. 495	79. 126	1. 00 56. 30
	ATOM	3385	N	GLU	443	35. 094	10. 942	77. 714	1. 00 51. 73
25	ATOM	3386	CA	GLU	443	33. 840	11. 555	77. 307	1. 00 51. 12
	ATOM	3387	CB	GLU	443	33. 706	12. 960	77. 888	1. 00 51. 77
	ATOM	3388	CG	GLU	443	32. 561	13. 086	78. 869	1. 00 49. 05
	ATOM	3389	CD	GLU	443	31. 202	12. 812	78. 239	1. 00 48. 41
	ATOM	3390	0E1	GLU	443	30. 245	12. 572	79. 006	1. 00 48. 06

- 133 -

							, ,		
	ATOM	3391	0E2	2 GLU	443	31. 084	12. 842	76. 990	1. 00 44. 46
	ATOM	3392	C	GLU	443	33. 851	11.614	75. 793	1. 00 50. 48
	ATOM	3393	0	GLU	443	33. 624	12. 662	75. 191	1. 00 50. 61
	ATOM	3394	N	GLY	444	34. 131	10. 458	75. 199	1. 00 49. 69
5	ATOM	3395	CA	GLY	444	34. 213	10. 321	73. 760	1. 00 46. 29
	ATOM	3396	C	GLY	444	33. 300	11. 190	72. 928	1. 00 45. 39
	ATOM	3397	0	GLY	444	33. 786	12. 031	72. 181	1. 00 44. 10
	ATOM	3398	N	SER	445	31. 990	10. 996	73. 052	1. 00 44. 40
	ATOM	3399	CA	SER	445	31. 035	11. 765	72. 263	1. 00 45. 82
10	ATOM	3400	CB	SER	445	29. 614	11. 258	72. 505	1. 00 43. 70
	ATOM	3401	OG	SER	445	29. 248	11. 396	73. 860	1. 00 51. 13
	ATOM	3402	C	SER	445	31. 108	13. 265	72. 523	1. 00 45. 79
	ATOM	3403	0	SER	445	31. 381	14. 043	71. 607	1. 00 46. 62
	ATOM	3404	N	GLY	446	30. 867	13. 666	73. 766	1. 00 45. 46
15	ATOM	3405	CA	GLY	446	30. 924	15. 075	74. 112	1. 00 44. 61
	ATOM	3406	C	GLY	446	32. 176	15. 778	73. 615	1. 00 44. 65
	ATOM	3407	0	GLY	446	32. 085	16. 754	72. 872	1. 00 45. 17
	ATOM	3408	N	ARG	447	33. 344	15. 286	74. 024	1. 00 44. 10
	ATOM	3409	CA	ARG	447	34. 615	15. 878	73. 615	1. 00 44. 23
20	ATOM	3410	CB	ARG	447	35. 765	15. 244	74. 396	1. 00 44. 71
	ATOM	3411	CG	ARG	447	36. 079	15. 917	75. 720	1. 00 46. 63
	ATOM	3412	CD	ARG	447	36. 405	14. 896	76. 794	1. 00 48. 87
	ATOM	3413	NE	ARG	447	37. 226	13. 804	76. 286	1. 00 53. 97
	ATOM	3414	CZ	ARG	447	38. 507	13. 915	75. 956	1. 00 55. 65
25	ATOM	3415	NH1	ARG	447	39. 130	15. 076	76. 085	1. 00 56. 71
	ATOM	3416	NH2	ARG	447	39. 161	12. 862	75. 486	1. 00 58. 00
	ATOM	3417	C	ARG	447	34. 891	15. 739	72. 122	1. 00 45. 53
	ATOM	3418	0	ARG	447	35. 506	16. 617	71. 508	1. 00 45. 95
	ATOM	3419	N	GLY	448	34. 444	14. 630	71. 543	1. 00 45. 12

- 134 -

						10-	1		
	ATOM	3420	CA	GLY	448	34. 667	14. 395	70. 129	1. 00 43. 75
	ATOM	3421	C	GLY	448	33. 915	15. 390	69. 275	1. 00 44. 42
	ATOM	3422	0	GLY	448	34. 497	16. 033	68. 401	1. 00 43. 25
	ATOM	3423	N	ALA	449	32. 617	15. 508	69. 530	1. 00 44. 33
5	ATOM	3424	CA	ALA	449	31. 764	16. 435	68. 798	1. 00 46. 02
	ATOM	3425	CB	ALA	449	30. 349	16. 393	69. 362	1. 00 44. 02
	ATOM	3426	C	ALA	449	32. 334	17. 852	68. 901	1. 00 47. 27
	ATOM	3427	0	ALA	449	32. 388	18. 585	67. 910	1. 00 46. 99
	ATOM	3428	N	ALA	450	32. 771	18. 226	70. 100	1. 00 47. 32
10	ATOM	3429	CA	ALA	450	33. 337	19. 549	70. 320	1. 00 48. 93
	ATOM	3430	CB	ALA	450	33. 590	19. 771	71. 803	1. 00 48. 70
	ATOM	3431	C	ALA	450	34. 630	19. 752	69. 537	1. 00 49. 10
	ATOM	3432	0	ALA	450	34. 795	20. 770	68. 864	1. 00 51. 55
	ATOM	3433	N	LEU	451	35. 546	18. 792	69. 625	1. 00 47. 13
15	ATOM	3434	CA	LEU	451	36. 828	18. 889	68. 923	1. 00 46. 08
	ATOM	3435	CB	LEU	451	37. 693	17. 661	69. 226	1. 00 43. 72
	ATOM	3436	CG	LEU	451	38. 376	17. 636	70. 598	1. 00 44. 07
	ATOM	3437	CD1	LEU	451	38. 798	16. 218	70. 955	1. 00 41. 74
	ATOM	3438	CD2	LEU	451	39. 577	18. 574	70. 574	1. 00 40. 23
20	ATOM	3439	C	LEU	451	36. 672	19. 055	67. 410	1. 00 45. 46
	ATOM	3440	0	LEU	451	37. 495	19. 708	66. 760	1. 00 46. 36
	ATOM	3441	N	VAL	452	35. 618	18. 465	66. 857	1. 00 43. 95
	ATOM	3442	CA	VAL	452	35. 348	18. 552	65. 428	1. 00 44. 38
	ATOM	3443	CB	VAL	452	34. 426	17. 376	64. 959	1. 00 43. 85
25	ATOM	3444	CG1	VAL	452	33. 998	17. 576	63. 513	1. 00 41. 59
	ATOM	3445	CG2	VAL	452	35. 169	16. 040	65. 087	1. 00 40. 86
	ATOM	3446	C	VAL	452	34. 687	19. 905	65. 125	1. 00 45. 31
	ATOM	3447	0	VAL	452	34. 881	20. 482	64. 056	1. 00 42. 97
	ATOM	3448	N	SER	453	33. 912	20. 411	66. 077	1. 00 46. 60

_ 135 -

							00		
	ATOM	3449	CA	SER	453	33. 253	21. 693	65. 900	1. 00 49. 07
	ATOM	3450	CB	SER	453	32. 204	21. 902	66. 986	1. 00 47. 21
	ATOM	3451	0G	SER	453	31. 146	20. 972	66. 845	1. 00 44. 37
	ATOM	3452	C	SER	453	34. 293	22. 806	65. 951	1. 00 51. 53
5	ATOM	3453	0	SER	453	34. 150	23. 820	65. 281	1. 00 52. 56
	ATOM	3454	N	ALA	454	35. 352	22. 593	66. 728	1. 00 54. 40
	ATOM	3455	CA	ALA	454	36. 430	23. 567	66. 881	1. 00 56. 39
	ATOM	3456	CB	ALA	454	37. 336	23. 158	68. 031	1. 00 55. 74
	ATOM	3457	C	ALA	454	37. 259	23. 751	65. 614	1. 00 58. 75
10	ATOM	3458	0	ALA	454	37, 863	24. 807	65. 408	1. 00 59. 45
	ATOM	3459	N	VAL	455	37. 310	22. 719	64. 779	1. 00 60. 29
	ATOM	3460	CA	VAL	455	38. 063	22. 796	63. 535	1. 00 61. 78
	ATOM	3461	CB	VAL	455	38. 603	21. 416	63. 112	1. 00 61. 44
	ATOM	3462	CG1	VAL	455	39. 090	21. 464	61. 672	1. 00 60. 81
15	ATOM	3463	CG2	VAL	455	39. 737	21. 005	64. 031	1. 00 60. 68
	ATOM	3464	C	VAL	455	37. 152	23. 330	62. 442	1. 00 63. 56
	ATOM	3465	0	VAL	455	37. 550	24. 176	61. 643	1. 00 63. 25
	ATOM	3466	N	ALA	456	35. 921	22. 835	62. 416	1. 00 65. 38
	ATOM	3467	CA	ALA	456	34. 959	23. 275	61. 422	1. 00 69. 39
20	ATOM	3468	CB	ALA	456	33. 751	22. 354	61. 423	1. 00 68. 17
	ATOM	3469	C	ALA	456	34. 522	24. 709	61.710	1. 00 73. 10
	ATOM	3470	0	ALA	456	33. 975	25. 382	60. 837	1. 00 73. 04
	ATOM	3471	N	CYS	457	34. 771	25. 170	62. 935	1. 00 77. 06
	ATOM	3472	CA	CYS	457	34. 390	26. 521	63. 341	1. 00 81. 01
25	ATOM	3473	CB	CYS	457	34. 192	26. 599	64. 856	1. 00 80. 51
	ATOM	3474	SG	CYS	457	33. 478	28. 151	65. 432	1. 00 81. 75
	ATOM	3475	C	CYS	457	35. 420	27. 554	62. 916	1. 00 83. 65
	ATOM	3476	0	CYS	457	35. 312	28. 726	63. 275	1. 00 85. 11
	ATOM	3477	N	LYS	458	36. 430	27. 118	62. 172	1. 00 86. 29

- 136 -

						-			
	ATOM	3478	CA	LYS	458	37. 441	28. 041	61. 683	1. 00 89. 14
	ATOM	3479	CB	LYS	458	38. 843	27. 441	61. 803	1. 00 88. 60
	ATOM	3480	CG	LYS	458	39. 932	28. 486	61. 632	1. 00 89. 51
	ATOM	3481	CD	LYS	458	41. 276	27. 992	62. 130	1. 00 89. 70
5	ATOM	3482	CE	LYS	458	42. 257	29. 146	62. 269	1. 00 89. 22
	ATOM	3483	NZ	LYS	458	41. 718	30. 194	63. 180	1. 00 88. 81
	ATOM	3484	С	LYS	458	37. 096	28. 310	60. 232	1. 00 91. 26
	ATOM	3485	0	LYS	458	37. 936	28. 733	59. 438	1. 00 91. 56
	ATOM	3486	N	LYS	459	35. 834	28. 043	59. 901	1. 00 93. 94
10	ATOM	3487	CA	LYS	459	35. 302	28. 240	58. 548	1. 00 96. 28
	ATOM	3488	CB	LYS	459	35. 323	26. 923	57. 765	1. 00 96. 25
	ATOM	3489	CG	LYS	459	36. 719	26. 409	57. 421	1. 00 96. 30
	ATOM	3490	CD	LYS	459	37. 458	27. 348	56. 475	1. 00 96. 73
	ATOM	3491	CE	LYS	459	38. 833	26. 801	56. 111	1. 00 97. 12
15	ATOM	3492	NZ	LYS	459	39. 577	27. 717	55. 197	1. 00 97. 75
	ATOM	3493	C	LYS	459	33. 863	28. 759	58. 624	1. 00 97. 78
	ATOM	3494	0	LYS	459	33. 417	29. 516	57. 758	1. 00 98. 11
	ATOM	3495	N	ALA	460	33. 153	28. 327	59. 666	1. 00 99. 29
	ATOM	3496	CA	ALA	460	31. 778	28. 738	59. 916	1. 00100. 54
20	ATOM	3497	CB	ALA	460	31. 028	27. 644	60. 681	1. 00100. 58
	ATOM	3498	C	ALA	460	31. 765	30. 042	60. 719	1. 00101. 56
•	ATOM	3499	0	ALA	460	30. 755	30. 750	60. 777	1. 00101. 79
	ATOM	3500	N	CYS	461	32. 899	30. 360	61. 338	1. 00102. 59
	ATOM	3501	CA	CYS	461	33. 033	31. 572	62. 156	1. 00103. 00
25	ATOM	3502	CB	CYS	461	33. 145	31. 169	63. 624	1. 00103. 05
	ATOM	3503	SG	CYS	461	33. 354	32. 536	64. 774	1. 00103. 32
	ATOM	3504	С	CYS	461	34. 265	32. 367	61.753	1. 00103. 21
	ATOM	3505	0	CYS	461	34. 788	33. 098	62. 620	1. 00103. 54
	ATOM	3506	OXT	CYS	461	34. 665	32. 248	60. 578	1. 00103. 24

- 137 -

						10			
	TER 35	i07 (CYS	461					
	ATOM	3508	C1	GLC	500	23. 469	1. 767	65. 521	1. 00 30. 82
	ATOM	3509	C2	GLC	500	23. 418	3. 122	64. 706	1. 00 29. 40
	ATOM	3510	C3	GLC	500	24. 837	3. 619	64. 445	1. 00 29. 78
5	ATOM	3511	C4	GLC	500	25. 496	3. 860	65. 778	1. 00 28. 77
	ATOM	3512	C5	GLC	500	25. 529	2. 514	66. 593	1. 00 27. 72
	ATOM	3513	C6	GLC	500	26. 162	2. 717	67. 936	1. 00 26. 98
	ATOM	3514	01	GLC	500	24. 127	0. 765	64. 857	1. 00 36. 62
	ATOM	3515	02	GLC	500	22. 756	2. 872	63. 483	1. 00 32. 75
10	ATOM	3516	03	GLC	500	24. 786	4. 837	63. 698	1. 00 29. 31
	ATOM	3517	04	GLC	500	26. 853	4. 253	65. 639	1. 00 29. 10
	ATOM	3518	05	GLC	500	24. 152	2. 040	66. 770	1. 00 29. 59
	ATOM	3519	06	GLC	500	25. 517	3. 687	68. 814	1. 00 30. 98
	TER 35	20 G	LC	500					
15	ATOM	3521	S 1	CP1	501	36. 312	19. 051	60. 824	1. 00 50. 83
	ATOM	3522	C2	CP1	501	35. 720	19. 405	59. 240	1. 00 49. 96
	ATOM	3523	C3	CP1	501	36. 398	18. 662	58. 318	1. 00 49. 96
	ATOM	3524	N4	CP1	501	37. 363	17. 829	58. 827	1.00 49.99
	ATOM	3525	C5	CP1	501	37. 429	17. 932	60. 162	1.00 49.39
20	ATOM	3526	N6	CP1	501	38. 317	17. 183	60. 878	1.00 48.07
	ATOM	3527	C7	CP1	501	38. 575	17. 220	62. 294	1. 00 46. 71
	ATOM	3528	08	CP1	501	37. 968	18. 001	63. 039	1. 00 47. 48
	ATOM	3529	C9	CP1	501	40. 386	16. 405	64. 107	1. 00 46. 71
	ATOM	3530	C10	CP1	501	39. 620	16. 253	62. 884	1. 00 47. 34
25	ATOM	3531	C11	CP1	501	39. 831	15. 053	62. 110	1. 00 46. 39
	ATOM	3532	C12	CP1	501	40. 749	14. 066	62. 520 _.	1. 00 46. 34
	ATOM	3533	C13	CP1	501	41. 496	14. 237	63. 722	1. 00 47. 57
	ATOM	3534	F	CP1	501	42. 392	13. 310	64. 155	1. 00 48. 24
	ATOM	3535	C15	CP1	501	41. 306	15. 404	64. 502	1. 00 46. 98

- 138 -ATOM 3536 S16 CP1 40. 907 12. 638 501 61. 485 1. 00 44. 61 **ATOM** 3537 N17 CP1 501 42. 782 10.864 62. 327 1.00 40.11 ATOM 3538 C18 CP1 501 42. 525 11. 942 61. 488 1.00 41.49 ATOM 3539 N19 CP1 501 43. 528 12. 436 60. 686 1. 00 42. 95 ATOM 3540 C20 CP1 5 501 44. 549 11. 571 61. 054 1. 00 43. 00 ATOM 3541 C21 CP1 501 44. 116 10.651 62. 014 1. 00 39. 24 ATOM 3542 C22 CP1 501 41. 894 10. 152 63. 276 1.00 32.83 ATOM 3543 N23 CP1 501 40. 279 17. 465 64. 913 1.00 46.10 TER 3544 CP1 501 JJJJ ATOM 3545 NA+1 NA1 10 36. 903 600 10.609 46. 484 1.00 48.71 ATOM 3546 O HOH 601 20. 332 -23. 624 70. 208 1.00 45.57 **ATOM** 3547 **0** HOH 602 18. 766 -22. 456 65. 630 1. 00 41. 87 **ATOM** 3548 **0** НОН 603 13. 471 -20. 599 70. 297 1. 00 45. 83 ATOM 3549 0 HOH 604 11. 104 -30. 408 72. 307 1. 00 48. 61 ATOM 3550 O 15 HOH 605 6. 606 -26. 352 79. 319 1. 00 59. 47 ATOM 3551 0 HOH 606 15. 315 -28. 400 85. 522 1. 00 48. 85 ATOM 3552 0 HOH 607 18. 765 -29. 705 82. 807 1.00 55.60 ATOM 3553 0 HOH 608 27. 649 -22. 465 84. 914 1. 00 39. 29 ATOM 3554 0 HOH 609 28. 890 -18. 936 88. 942 1. 00 38. 24 20 ATOM 3555 0 HOH 610 31. 397 -19. 437 88. 300 1. 00 44. 33 ATOM 3556 0 HOH 611 33. 495 -12. 487 88. 943 1. 00 40. 63 ATOM 3557 0 HOH 612 28. 110 -14. 193 93. 119 1. 00 37. 41 ATOM 3558 O HOH 613 22. 501 -9. 921 93. 883 1. 00 55. 62 ATOM 3559 0 HOH 614 18. 084 -9. 259 91. 966 1. 00 48. 69 ATOM 25 3560 0 HOH 615 19. 985 -7. 585 89. 518 1. 00 54. 30 ATOM 3561 0 HOH 616 18. 162 -4. 982 77. 583 1. 00 42. 44 **ATOM** 3562 0 HOH 617 **15.** 728 **-5.** 792 77. 752 1. 00 49. 61 ATOM 3563 0 HOH 618 17. 869 -7. 338 75. 263 1. 00 52. 43

ATOM

3564 0

HOH

619

14. 631 -9. 827 77. 339

1. 00 27. 38

- 139 -1.00 38.14 3565 14. 305 -5. 926 ATOM 0 HOH 620 69. 446 3566 ATOM HOH 621 68. 452 1. 00 51. 29 0 13. 616 -3. 087 3567 15. 537 -2.60266.865 1. 00 35. 42 ATOM 0 HOH 622 ATOM 3568 0 HOH 623 18. 821 -1. 831 65. 405 1.00 31.67 3569 HOH 17. 261 0. 174 60. 996 1. 00 34. 87 5 ATOM 0 624 3570 18. 895 58. 995 1. 00 41. 82 ATOM 0 HOH 625 -0.65355. 373 1.00 35.91 ATOM 3571 HOH 626 20.053 -2.4780 ATOM 3572 HOH 627 22. 217 -1.01955.062 1. 00 36. 64 0 ATOM 3573 HOH 628 25. 137 -0. 153 56. 470 1. 00 24. 69 0 3574 22. 562 59. 774 1. 00 31. 68 ATOM 0 HOH 629 1. 498 10 62. 135 1. 00 25. 12 ATOM 3575 HOH 630 24. 912 0. 122 0 ATOM 3576 0 HOH 631 25.071 2. 179 71. 129 1. 00 26. 49 3577 HOH 27. 157 5.888 71.903 1. 00 41. 05 ATOM 0 632 ATOM 3578 0 HOH 633 29. 481 7. 227 73. 290 1. 00 47. 52 ATOM 3579 0 HOH 634 31. 223 8. 383 71. 417 1. 00 44. 33 15 ATOM 3580 0 НОН 635 32. 517 7. 788 77. 983 1. 00 44. 30 3581 80. 298 ATOM 0 HOH 636 35. 945 15. 748 1. 00 32. 85 ATOM 3582 0 HOH 637 41. 395 13. 522 74. 250 1. 00 52. 40 ATOM 3583 HOH 638 41. 454 16.603 73. 492 1. 00 35. 38 0 639 20 ATOM 3584 0 HOH 44. 238 18. 657 64. 621 1. 00 57. 41 ATOM 3585 HOH 640 48. 524 12.679 62. 857 1. 00 55. 80 0 **ATOM** 3586 0 HOH 641 50.088 10.035 69. 707 1. 00 37. 86 ATOM 3587 0 HOH 642 47. 834 4.897 73.654 1. 00 43. 91 1.00 46.89 ATOM 75. 515 3588 0 HOH 643 47. 658 2. 456 ATOM HOH 1.00 36.22 3589 0 644 45. 862 0.872 75. 793 25 ATOM -0.4011.00 46.09 3590 0 HOH 645 42. 167 77. 407 ATOM 3591 0 HOH 646 39. 939 -1.66476. 818 1. 00 28. 80 ATOM 3592 0 · HOH 647 41.804 2. 590 77. 672 1. 00 30. 06

ATOM

3593

0

HOH

648

35. 946

-0.230

81. 704

1. 00 44. 47

- 140 -

	ATOM	2504		mon	0.40	05 000 0 000	04 700	
	ATOM	3594		НОН	649			
	ATOM	3595		НОН	650	35. 503 -5. 648	82. 602	1. 00 39. 36
	ATOM	3596	0	НОН	651	34. 249 -6. 282	78. 743	1. 00 28. 80
	ATOM	3597	0	НОН	652	41. 570 -6. 014	79. 114	1. 00 41. 31
5	ATOM	3598	0	НОН	653	42. 725 -8. 259	76. 851	1. 00 34. 12
	ATOM	3599	0	НОН	654	42. 400 -10. 619	75. 649	1. 00 32. 12
	ATOM	3600	0	НОН	655	44. 745 -10. 112	73. 414	1. 00 30. 95
	ATOM	3601	0	НОН	656	44. 977 -6. 287	75. 709	1. 00 54. 82
	ATOM	3602	0	НОН	657	49. 536 -3. 896	71. 639	1. 00 46. 68
10	ATOM	3603	0	НОН	658	47. 500 -6. 424	68. 659	1. 00 37. 00
	ATOM	3604	0	НОН	659	46. 887 -8. 289	65. 948	1. 00 35. 73
	ATOM	3605	0	НОН	660	45. 007 -14. 004	70. 403	1. 00 31. 53
	ATOM	3606	0	НОН	661	44. 785 -16. 666	70. 958	1. 00 39. 67
	ATOM	3607	0	НОН	662	39. 546 -15. 899	74. 666	1. 00 38. 86
15	ATOM	3608	0	НОН	663	38. 539 -14. 985	72. 232	1. 00 34. 80
	ATOM	3609	0	НОН	664	38. 252 -17. 032	68. 208	1. 00 47. 76
	ATOM	3610	0	НОН	665	39. 836 -15. 454	66. 437	1. 00 38. 55
	ATOM	3611	0	НОН	666	36. 975 -19. 549	67. 636	1. 00 43. 12
	ATOM	3612	0	НОН	667	37. 200 -20. 262	70. 388	1. 00 51. 64
20	ATOM	3613	0	НОН	668	33. 328 -20. 695	70. 543	1. 00 49. 91
	ATOM	3614	0	НОН	669	32. 877 -18. 716	69. 209	1. 00 30. 69
	ATOM	3615	0	НОН	670	30. 463 -18. 228	69. 770	1. 00 29. 35
	ATOM	3616	0	НОН	671	29. 403 -18. 862	72. 028	1. 00 29. 94
	ATOM	3617	0	нон	672	31. 677 -19. 876	75. 929	1. 00 57. 83
25	ATOM	3618	0	НОН	673	32. 105 -15. 120	81. 811	1. 00 56. 36
	ATOM	3619	0	НОН	674	25. 408 -13. 262	70. 399	1. 00 19. 73
	ATOM	3620	0	НОН	675	20. 199 -11. 770	66. 567	1. 00 31. 95
	ATOM	3621	0	НОН	676	20. 589 -11. 169	63. 684	1. 00 28. 18
	ATOM	3622	0	нон	677	18. 416 -12. 169	62. 695	1. 00 34. 73

- 141 -

	ATOM	3623	0	НОН	678	18. 037	-12. 657	56. 097	1. 00 62. 31
	ATOM	3624	0	НОН	679	15. 700	-10. 616	55. 942	1. 00 49. 61
	ATOM	3625	0	НОН	680	17. 485	-8. 240	55. 372	1. 00 37. 91
	ATOM	3626	0	НОН	681	22. 370	-12. 555	56. 733	1. 00 27. 53
5	ATOM	3627	0	НОН	682	21. 048	-16. 039	51. 265	1. 00 53. 09
	ATOM	3628	0	НОН	683	25. 649	-8. 890	49. 620	1. 00 43. 30
	ATOM	3629	0	НОН	684	25. 472	-5. 908	50. 031	1. 00 43. 23
	ATOM	3630	0	НОН	685	27. 841	-3. 633	51. 119	1. 00 34. 64
	ATOM	3631	0	НОН	686	23. 209	1. 359	50. 792	1. 00 44. 06
10	ATOM	3632	0	НОН	687	26. 198	3. 711	50. 151	1. 00 38. 65
	ATOM	3633	0	НОН	688	27. 728	6. 416	50. 494	1. 00 39. 66
	ATOM	3634	0	НОН	689	30. 171	5. 238	50. 152	1. 00 36. 90
	ATOM	3635	0	НОН	690	32. 248	6. 334	48. 750	1. 00 33. 36
	ATOM	3636	0	НОН	691	36. 665	2. 495	46. 196	1. 00 32. 68
15	ATOM	3637	0	НОН	692	37. 821	0. 573	47. 634	1. 00 47. 42
	ATOM	3638	0	НОН	693	42. 794	0. 201	52. 097	1. 00 44. 65
	ATOM	3639	0	НОН	694	41. 559	1. 725	53. 810	1. 00 38. 52
	ATOM	3640	0	НОН	695	43. 105	3. 662	55. 242	1. 00 34. 89
	ATOM	3641	0	НОН	696	45. 510	2. 836	56. 086	1. 00 40. 92
20	ATOM	3642	0	НОН	697	50. 206	2. 510	60. 598	1. 00 45. 86
	ATOM	3643	0	НОН	698	52. 258	1. 308	61. 720	1. 00 45. 43
	ATOM	3644	0	НОН	699	48. 954	1. 961	67. 618	1. 00 35. 43
	ATOM	3645	0	НОН	700	49. 694	-0. 399	68. 442	1. 00 39. 38
	ATOM	3646	0	НОН	701	40.015	-5. 106	51. 960	1. 00 36. 49
25	ATOM	3647	0	НОН	702	34. 048 -	12. 903	50. 839	1. 00 37. 87
	MOTA	3648	0	НОН	703	33. 190 -	14. 541	52. 882	1. 00 51. 09
	ATOM	3649	0	НОН	704	34. 961 -	16. 254	52. 067	1. 00 35. 42
	ATOM	3650	0	НОН	705	30. 397 -	15. 105	52. 902	1. 00 39. 69
	ATOM	3651	0	НОН	706	31.770 -	20. 985	57. 467	1. 00 48. 16

PCT/JP03/06054

- 142 -

	MOTA	3652	0	НОН	707	37. 192	-19. 637	55. 866	1. 00 46. 43
	ATOM	3653	0	НОН	708	38. 187	-23. 567	61. 924	1. 00 40. 92
	ATOM	3654	0	НОН	709	38. 470	-23. 126	65. 456	1. 00 45. 43
٠.	ATOM	3655	0	НОН	710	30. 533	-23. 844	62. 578	1. 00 37. 90
5	ATOM	3656	0	НОН	711	26. 515	-21. 678	62. 544	1. 00 39. 08
	ATOM	3657	0	НОН	712	27. 242	-20. 400	65. 671	1. 00 33. 60
	ATOM	3658	0	НОН	713	25. 907	-18. 116	65. 171	1. 00 24. 64
	ATOM	3659	0	НОН	714	28. 226	-26. 567	74. 622	1. 00 44. 93
	ATOM	3660	0	НОН	715	31. 091	-28. 151	73. 632	1. 00 39. 43
10	ATOM	3661	0	НОН	716	28. 020	-32. 685	74. 512	1. 00 48. 35
	ATOM	3662	0	НОН	717	28. 401	-36. 363	77. 956	1. 00 47. 24
	ATOM	3663	0	НОН	718	26. 796	-22. 733	95. 375	1. 00 34. 50
	ATOM	3664	0	НОН	719	23. 506	-18. 729	96. 532	1. 00 46. 50
	ATOM	3665	0	HOH	720	7. 193 -	-13. 392	87. 134	1. 00 48. 33
15	ATOM	3666	0	НОН	721	23. 769	-2. 393	77. 130	1. 00 39. 79
	ATOM	3667	0	НОН	722	21. 538	6. 141	76. 432	1. 00 52. 58
	ATOM	3668	0	НОН	723	26. 038	13. 552	80. 579	1. 00 47. 60
	ATOM	3669	0	НОН	724	25. 460	9. 823	62. 329	1. 00 33. 10
	ATOM	3670	0	НОН	725	27. 321	10. 443	60. 403	1. 00 39. 23
20	ATOM	3671	0	НОН	726	26. 658	8. 602	58. 871	1. 00 32. 16
	ATOM	3672	0	НОН	727	29. 670	11. 059	61. 417	1. 00 24. 95
	ATOM	3673	0	НОН	728	30. 585	13. 937	60. 932	1. 00 41. 90
	ATOM	3674	0	НОН	729	34. 591	18. 790	55. 094	1. 00 40. 47
	ATOM	3675	0	НОН	730	34. 117	19. 353	52. 182	1. 00 54. 62
25	ATOM	3676	0	НОН	731	31. 428	16. 535	48. 224	1. 00 37. 06
	ATOM	3677	0	НОН	732	31. 432	15. 488	46. 047	1. 00 33. 85
	ATOM	3678	0	НОН	733	27. 660	11. 291	51. 289	1. 00 40. 74
	ATOM	3679	0	НОН	734	27. 629	10. 029	53. 857	1. 00 30. 56
	ATOM	3680	0	НОН	735	22. 996	7. 311	45. 724	1. 00 57. 65

PCT/JP03/06054

	1 4 9	
_	145	_

	ATOM	3681	0	НОН	736	25. 532	2. 038	43. 263	1. 00 34. 43
	ATOM	3682	0	НОН	737	33. 508	3. 221	40. 211	1. 00 45. 05
	ATOM	3683	0	НОН	738	35. 525	1. 426	41. 242	1. 00 44. 71
	ATOM	3684	0	НОН	739	37. 227	9. 576	44. 352	1. 00 31. 96
5	ATOM	3685	0	НОН	740	39. 858	15. 804	52. 237	1. 00 43. 41
	ATOM	3686	0	НОН	741	42. 053	15. 415	53. 940	1. 00 47. 39
	ATOM	3687	0	НОН	742	32. 200	24. 148	58. 683	1. 00 45. 42
	ATOM	3688	0	НОН	743	28. 016	21. 804	51. 201	1. 00 44. 12
	ATOM	3689	0	НОН	744	22. 797	26. 498	63. 763	1. 00 53. 69
10	ATOM	3690	0	НОН	745	10. 552	26. 073	62. 119	1. 00 43. 13
	ATOM	3691	0	НОН	746	11. 190	7. 673	68. 338	1. 00 57. 06
	ATOM	3692	0	НОН	747	20. 818	-3. 881	51. 225	1. 00 56. 55
	ATOM	3693	0	НОН	748	29. 885	-6. 633	43. 981	1. 00 46. 17
	ATOM	3694	0	НОН	749	40. 811	30. 945	68. 309	1. 00 45. 88
15	TER	3695		НОН					

なお、表1は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表1中、GLCはグルコース分子を表 し、CP1は式III a で表される化合物を表し、HOHは水分子を表す。

また、本発明においては、配列番号8に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(5)~(8):

25 $a=b=103. 2\pm 5$ オングストローム … (5) $c=281. 0\pm 7$ オングストローム … (6) $\alpha=\beta=90^\circ$ … (7) $\gamma=120^\circ$ … (8)

を満たすものであった。また、この結晶は、空間群が $P6_522$ であることが

- 144 -

解明された。ここで、前記 a=b は 103.2 ± 3 オングストロームであることが好ましく、 103.2 ± 1 オレイ、 103.2 ± 2 オングストロームであることがより好ましく、 103.2 ± 1 オングストロームであることがさらに好ましい。また、前記 c は 281.0 ± 6 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることが分ましく、 281.0 ± 4 オングストロームであることがより好ましく、 281.0 ± 2 オングストロームであることがさらに好ましい。このようにして得られたCKタンパク質結晶のS 3次元構造座標を表S 2 に示す。

	表 2								
	ATOM	1	CB	MET	15	54. 150	5. 972	67. 103	1. 00 55. 10
10	ATOM	2	CG	MET	15	55. 594	5. 943	67. 591	1. 00 55. 46
	ATOM	3	SD	MET	15	56. 013	4. 505	68. 603	1. 00 52. 92
	ATOM	4	CE	MET	15	56. 517	5. 326	70. 108	1. 00 51. 73
	ATOM	5	C	MET	15	52. 357	4. 955	65. 669	1. 00 56. 87
	ATOM	6	0	MET	15	52. 057	4. 609	64. 524	1. 00 57. 60
15	ATOM	7	N	MET	15	54. 770	4. 766	65. 028	1. 00 55. 00
	ATOM	8	CA	MET	15	53. 800	4. 813	66. 167	1. 00 56. 04
	ATOM	9	N	VAL	16	51. 468	5. 456	66. 525	1. 00 55. 58
	ATOM	10	CA	VAL	16	50. 065	5. 625	66. 154	1. 00 52. 87
	ATOM	11	CB	VAL	16	49. 141	4. 862	67. 129	1. 00 49. 32
20	ATOM	12	CG1	VAL	16	47. 696	5. 016	66. 716	1. 00 48. 26
	ATOM	13	CG2	VAL	16	49. 508	3. 394	67. 126	1. 00 47. 28
	ATOM	14	C	VAL	16	49. 666	7. 097	66. 085	1. 00 53. 26
	ATOM	15	0	VAL	16	49. 218	7. 563	65. 040	1. 00 52. 32
	ATOM	16	N	GLU	17	49. 845	7. 828	67. 182	1. 00 56. 12
25	ATOM	17	CA	GLU	17	49. 511	9. 253	67. 210	1. 00 59. 41
	ATOM	18	CB	GLU	17	50. 102	9. 921	68. 456	1. 00 63. 35
	ATOM	19	CG	GLU	17	49. 063	10. 373	69. 484	1. 00 68. 69
	ATOM	20	CD	GLU	17	48. 174	11. 525	69. 004	1. 00 72. 00
	ATOM	21	0E1	GLU	17	47. 314	11. 964	69. 805	1. 00 74. 22

PCT/JP03/06054 WO 03/097824

- 145 -**ATOM** 22 0E2 GLU 17 48. 328 | 11. 992 67. 847 1. 00 72. 36 ATOM 23 C **GLU 17** 50. 035 9. 963 65. 967 1. 00 59. 05 ATOM 24 0 **GLU 17** 49. 521 11.011 65. 566 1. 00 57. 70 ATOM 25 N **GLN 18** 51.070 9. 389 65. 367 1. 00 60. 75 **GLN 18** 64. 170 ATOM 26 CA 51.661 9. 960 1. 00 61. 70 ATOM 27 CB **GLN 18** 53.038 9. 329 63. 895 1. 00 66. 55 ATOM 28 CG **GLN 18** 54.001 9. 219 65. 110 1. 00 72. 22 ATOM 29 CD**GLN** 18 54. 509 10. 566 65. 654 1. 00 75. 87 66. 595 ATOM OE1 GLN 18 55. 317 30 10. 605 1. 00 75. 55 ATOM 31 NE2 GLN 18 54. 037 11.669 65.067 1. 00 77. 63 ATOM 32 C **GLN 18** 50.709 9.682 63.004 1. 00 59. 33 ATOM 33 0 **GLN 18** 50. 322 10.601 62. 287 ATOM **ILE 19** 34 N 50. 321 8. 418 62.832 **ATOM** 35 CA ILE 19 49.416 8.029 61. 747 ATOM 36 CB ILE 19 49. 113 6. 529 61.778 ATOM CG2 ILE 19 37 47.964 6. 211 60. 832 CG1 ILE 19 ATOM 38 50. 374 5. 754 61. 389 ATOM 39 CD1 ILE 19 50. 186 61. 274 4. 256 ATOM 40 C ILE 19 48. 088 8. 774 61. 741 ATOM 41 0 ILE 19 47. 791 9. 528 60. 812 ATOM 42 N LEU 20 47. 279 62.766 8. 548 ATOM 43 CA LEU 20 45.997 62.861 9. 228 ATOM CB LEU 20 44 45. 336 8. 937 64. 195 ATOM CG LEU 20 45 44. 563 7. 632 64. 212

5

10

1. 00 59. 09 1. 00 55. 64 1. 00 53. 41 1. 00 52. 34 15 1. 00 50. 69 1. 00 52. 73 1. 00 53. 73 1.00 53.03 20 1. 00 52. 86 1. 00 52. 38 1. 00 51. 95 1. 00 50. 70 1. 00 51. 65 25 ATOM 46 CD1 LEU 20 45. 450 63.803 1. 00 51. 77 6. 454 ATOM 47 CD2 LEU 20 44.010 65. 599 1.00 51.02 7. 463 ATOM 48 C LEU 20 46. 158 62. 727 10. 723 1. 00 52. 33 ATOM LEU 20 49 0 45. 204 11. 427 62. 401 1. 00 54. 11 ATOM 50 N ALA 21 47. 366 11. 207 62. 990 1. 00 51. 49

- 146 -

	ATOM	51	CA	ALA 2	1 47. 643	3 12. 628	62. 907	1. 00	49. 87
	ATOM	52	CB	ALA 2	1 49. 06	6 12. 899	63. 342	1. 00	50. 58
	ATOM	53	C	ALA 2	47. 41	4 13. 133	61. 491	1. 00	48. 63
	ATOM	54	0	ALA 2	47. 090	14. 301	61. 286	1. 00	47. 74
5	ATOM	55	N	GLU 2	2 47. 57	1 12. 243	60. 517	1. 00	47. 60
	ATOM	56	CA	GLU 22	47. 383	3 12. 605	59. 121	1. 00	48. 69
	ATOM	57	CB	GLU 22	47. 818	3 11. 457	58. 215	1. 00	51. 49
	ATOM	58	CG	GLU 22	49. 282	2 11. 520	57. 838	1. 00	59. 47
	ATOM	59	CD	GLU 22	49. 738	3 10. 335	57. 003	1. 00	64. 78
10	ATOM	60	0E1	GLU 22	50. 896	10. 369	56. 519	1. 00	66. 47
	ATOM	61	0E2	GLU 22	48. 948	9. 373	56. 839	1. 00	68. 05
	ATOM	62	C	GLU 22	45. 954	12. 999	58. 794	1. 00	48. 26
	ATOM	63	0	GLU 22	45. 683	13. 538	57. 721	1. 00	48. 86
•	ATOM	64	N	PHE 23	45. 036	12. 733	59. 715	1. 00	47. 14
15	ATOM	65	CA	PHE 23	43. 641	13. 076	59. 490	1. 00	45. 51
	ATOM	66	CB	PHE 23	42. 722	12. 045	60. 147	1. 00	41. 36
	ATOM	67	CG	PHE- 23	42. 544	10. 783	59. 347	1. 00	37. 96
	ATOM	68	CD1	PHE 23	43. 208	9. 613	59. 697	1. 00	35. 23
	ATOM	69	CD2	PHE 23	41. 687	10. 758	58. 255	1. 00	37. 67
20	ATOM	70	CE1	PHE 23	43. 016	8. 435	58. 968	1. 00	32. 67
	ATOM	71	CE2	PHE 23	41. 492	9. 583	57. 523	1. 00	37. 15
	ATOM	72	CZ	PHE 23	42. 158	8. 423	57. 883	1. 00	33. 48
	ATOM	73	C	PHE 23	43. 310	14. 468	60. 013	1. 00	47. 24
	ATOM	74	0	PHE '23	42. 227	14. 993	59. 767	1. 00	46. 34
25	ATOM	75	N	GLN 24	44. 245	15. 068	60. 735	1. 00	50. 44
	ATOM	76	CA	GLN 24	44. 028	16. 400	61. 279	1. 00	55. 06
	ATOM	77	CB	GLN 24	45. 306	16: 882	61. 979	1. 00	59. 10
	ATOM	78	CG	GLN 24	45. 715	16. 023	63. 168	1. 00	62. 03
	ATOM	79	CD	GLN 24	44. 686	16.075	64. 277	1. 00	65. 56

ATOM

108 C

GLU 27

41. 905

26. 454

59. 380

1. 00 55. 70

- 147 -ATOM 80 0E1 GLN 24 44. 653 15. 207 65. 156 1. 00 66. 95 ATOM 81 NE2 GLN 24 43. 834 17. 103 64. 245 1. 00 65. 89 ATOM 82 C **GLN 24** 43. 644 17. 359 60. 149 1. 00 56. 09 ATOM 83 0 GLN 24 43. 892 17.073 58. 979 1. 00 57. 63 ATOM 5 84 N LEU 25 43.016 18. 476 60. 504 1. 00 55. 99 ATOM 85 CA LEU 25 42. 616 19.501 59. 540 1. 00 55. 27 ATOM 86 CB LEU 25 41. 303 19. 128 58. 841 1. 00 54. 71 ATOM CG LEU 25 87 41. 325 17. 896 57. 922 1. 00 53. 30 ATOM CD1 LEU 25 88 39. 928 17. 618 57. 419 1. 00 53. 18 ATOM CD2 LEU 25 10 89 42. 264 18. 113 56.755 1.00 51.55 ATOM C 90 LEU 25 42. 444 20. 786 60.336 1.00 56.31 ATOM 91 0 LEU 25 41. 377 21. 061 60. 889 1.00 55.85 ATOM 92 N GLN 26 43. 519 21. 563 60. 399 1. 00 58. 22 ATOM 93 CA **GLN 26** 61.153 43. 527 22. 807 1.00 58.31 ATOM 15 94 CB **GLN 26** 44. 980 23. 280 61. 361 1. 00 63. 03 ATOM 95 CG GLN 26 45. 118 24. 480 62. 313 1. 00 69. 87 ATOM 96 CD GLN 26 46. 490 25. 161 62. 245 1. 00 73. 70 ATOM 97 OE1 GLN 26 47.009 25. 446 61. 158 1.00 74.68 ATOM 98 NE2 GLN 26 47.067 25. 446 63. 411 1. 00 74. 99 20 ATOM 99 C **GLN 26** 42. 702 23. 903 60. 485 1. 00 55. 29 ATOM 100 0 **GLN 26** 42. 358 23.811 59. 308 1. 00 51. 30 ATOM 101 N GLU 27 42. 389 24. 931 61. 267 1. 00 55. 08 **ATOM** 102 CA **GLU 27** 41. 617 26. 083 60. 824 1. 00 55. 66 ATOM 103 CB GLU 27 41. 940 27. 280 61.709 1. 00 57. 13 25 ATOM 104 CG GLU 27 41.029 28. 469 61. 523 1. 00 59. 64 ATOM 105 CD **GLU 27** 39. 694 28. 272 62. 208 1. 00 62. 00 ATOM 106 0E1 GLU 27 39. 685 27.840 63.382 1. 00 62. 44 ATOM 107 0E2 GLU 27 38. 653 28. 559 61. 581 1. 00 64. 27

PCT/JP03/06054 WO 03/097824

- 148 -ATOM 109 0 GLU 27 41.025 26. 416 58. 531 1. 00 56. 30 ATOM 110 N **GLU 28** 43. 147 26. 828 59. 113 1. 00 56. 74 ATOM 111 CA GLU 28 43. 571 27. 208 57. 770 1. 00 58. 34 ATOM CB112 GLU 28 45. 102 27. 226 57. 714 1. 00 63. 94 ATOM CG GLU 28 45. 704 28. 026 5 113 56. 573 1. 00 70. 36 ATOM CD GLU 28 114 45. 615 29. 524 56.806 1. 00 74. 74 ATOM 115 0E1 GLU 28 46. 245 30. 289 56.040 1. 00 77. 18 ATOM 116 0E2 GLU 28 44. 912 29. 938 57. 755 1. 00 77. 44 ATOM C 117 GLU 28 43. 032 26. 231 56. 721 1. 00 56. 56 ATOM 118 0 . GLU 28 42. 375 10 26. 641 55. 764 1. 00 54. 38 MOTA 119 N ASP 29 43. 316 24. 942 56. 921 1.00 55.20 ATOM 120 CA ASP 29 42.893 23. 869 56.015 1. 00 53. 13 ATOM 121 CB ASP 29 43. 106 22. 499 56.667 1.00 56.36 ATOM 122 CG ASP 29 44. 570 22. 116 56. 758 1.00 59.69 ATOM 123 OD1 ASP 29 15 45. 263 22. 198 55. 717 1.00 61.07 ATOM 124 OD2 ASP 29 21. 727 45. 021 57. 863 1. 00 60. 92 ATOM 125 C ASP 29 41. 439 23. 995 55. 607 1. 00 49. 74 ATOM 126 0 ASP 29 41. 100 23. 924 54. 424 1. 00 47. 81 ATOM 127 N LEU 30 40. 579 24. 156 56.603 1.00 46.04 20 ATOM 128 CA LEU 30 24. 309 39. 167 56. 344 1.00 43.06 ATOM 129 CB LEU 30 38. 393 24. 491 57.649 1. 00 39. 08 ATOM 130 CG LEU 30 38. 026 23. 218 58. 404 1. 00 36. 61 ATOM CD1 LEU 30 131 39. 280 22. 441 58.756 1. 00 37. 28 ATOM CD2 LEU 30 13237. 233 23. 576 59.642 1.00 35.29 ATOM 25 133 C LEU 30 25. 516 38. 948 55. 452 1. 00 44. 18 ATOM LEU 30 134 0 38. 410 25. 388 54. 354 1.00 45.60 ATOM LYS 31 135 N 39. 381 26. 685 55. 920 1.00 44.63 ATOM 136 CA LYS 31 39. 206 27. 927 55. 170 1.00 43.67 ATOM 137 CB LYS 31

40. 136

29. 020

55.695

1. 00 45. 23

- 149 -ATOM 138 CG LYS 31 39. 968 29. 361 57. 165 1. 00 46. 98 ATOM 139 CD LYS 31 38. 743 30. 221 57.440 1. 00 45. 54 ATOM 140 CE LYS 31 38. 695 30. 675 58. 915 1. 00 45. 82 ATOM 141 NZ LYS 31 39. 836 31. 545 59. 387 1. 00 42. 73 142 C LYS 31 ATOM -39. 483 27. 725 53. 697 1. 00 42. 23 ATOM 143 0 LYS 31 38. 759 28. 241 52. 855 1. 00 41. 29 ATOM 144 N LYS 32 40. 535 26. 976 53. 385 1.00 41.79 ATOM 145 CA LYS 32 40. 877 26. 737 51. 994 1. 00 43. 47 ATOM 146 CB LYS 32 42. 171 25. 928 51. 888 1. 00 45. 16 ATOM 147 LYS 32 10 CG 42.811 25. 974 50.499 1. 00 50. 49 ATOM 148 CD LYS 32 44. 302 25. 565 50. 510 1. 00 54. 48 ATOM CE LYS 32 149 44. 505 24. 086 50. 900 1. 00 57. 45 ATOM 150 NZ LYS 32 45. 934 23.610 51.002 1. 00 56. 65 ATOM LYS 32 151 · C 39. 740 25.995 51.308 1. 00 43. 99 ATOM 152 0 LYS 32 15 39. 260 26. 407 50. 246 1. 00 43. 34 ATOM 153 N VAL 33 39. 306 24. 901 51.925 1. 00 43. 47 ATOM 154 CA VAL 33 38. 218 24. 100 51. 382 1. 00 40. 87 ATOM 155 CB VAL 33 37. 895 22. 927 52. 310 1. 00 40. 53 **ATOM** 156 CG1 VAL 33 21. 939 36. 977 51. 604 1.00 40.20 20 ATOM CG2 VAL 33 157 22. 248 39. 183 52. 729 1. 00 40. 29 **ATOM** 158 C VAL 33 36. 994 24. 981 51. 226 1. 00 39. 39 ATOM 159 0 VAL 33 36. 370 25. 011 50. 165 1. 00 37. 22 ATOM 160 N **MET 34** 36. 675 25. 707 52. 290 1. 00 39. 46 ATOM 161 CA MET 34 35. 539 26. 609 52. 288 1. 00 42. 17 ATOM 25 162 **MET 34** CB 35. 515 27. 460 53. 555 1.00 43.81 ATOM MET 34 163 CG 34. 259 28. 305 53. 656 1. 00 48. 81 ATOM **MET 34** 164 SD 34. 302 29. 606 54. 908 1. 00 56. 60 ATOM MET 34 165 CE 1.00 55.54 34. 576 31. 074 53. 859

ATOM

166 C

MET 34

35. 612

27. 535

51.086

1. 00 43. 35

- 150 -ATOM 167 MET 34 0 34. 626 27. 735 50. 383 1. 00 43. 86 ATOM 168 N ARG 35 36. 785 28. 104 50. 847 1.00 44.90 ATOM 169 CA ARG 35 36. 938 29. 015 49. 729 1. 00 45. 60 ATOM 170 CB ARG 35 38. 286 29. 727 49. 815 1.00 49.40 5 ATOM 171 CG ARG 35 38. 459 30. 563 51.075 1.00 53.81 ATOM 172 CD ARG 35 38. 231 32.052 50.851 1.00 57.78 ATOM 173 NE ARG 35 38. 483 32. 807 52. 077 1.00 63.20 ATOM 174 CZ ARG 35 39. 587 32.696 52. 820 1. 00 65. 30 ATOM 175 NH1 ARG 35 40. 557 31.854 52.466 1.00 64.80 10 ATOM NH2 ARG 35 176 39. 720 33. 425 53. 925 1.00 66.89 ATOM 177 C ARG 35 36. 814 28. 262 48. 418 1.00 44.08 ATOM 178 0 ARG 35 35. 977 28. 605 47.586 1. 00 43. 75 ATOM 179 N ARG 36 37. 633 27. 227 48. 245 1.00 43.43 ATOM 180 CA ARG 36 37. 612 26. 418 47.026 1.00 43.94 15 ATOM 181 CB ARG 36 38. 547 25. 212 47. 174 1.00 44.76 ATOM 182 CG ARG 36 40. 020 25. 580 47. 244 1.00 44.66 ATOM 183 .CD ARG 36 40. 898 24. 392 47.617 1.00 44.20 ATOM ARG 36 184 NE 41. 728 23. 919 46. 512 1.00 44.66 ATOM 185 CZ ARG 36 42. 890 23. 292 46. 678 1. 00 45. 10 20 ATOM 186 NH1 ARG 36 43. 350 23. 075 47. 900 1.00 44.34 ATOM 187 NH2 ARG 36 43. 590 22.870 45. 631 1. 00 45. 47 **ATOM** 188 C ARG 36 36. 202 25. 941 46. 660 1. 00 43. 73 ATOM 189 ARG 36 0 35. 921 25. 645 45. 497 1. 00 43. 31 ATOM 190 N MET 37 35. 324 25. 851 47.656 1. 00 42. 87 25 ATOM 191 CA MET 37 33. 946 25. 440 47. 413 1.00 41.30 ATOM 192 CB MET 37 33. 222 25. 136 48. 726 1. 00 43. 30

ATOM

ATOM

ATOM

193

194

195

CG

SD

CE

MET 37

MET 37

MET 37

31. 782

31.646

31. 892

24.636

22. 826

22. 708

48. 556

48. 280

46. 492

1. 00 45. 16

1. 00 52. 61

1. 00 46. 47

	161	_
_	1 :1 1	_

	ATOM	196	С	MET	37	33. 249	26. 603	46. 723	1. 00 39. 52
	ATOM	197	0	MET	37	32. 702	26. 458	45. 635	1. 00 39. 06
	ATOM	198	N	GLN	38	33. 275	27. 767	47. 359	1. 00 37. 22
	ATOM	199	CA	GLN	38	32. 637	28. 927	46. 776	1. 00 35. 67
5	ATOM	200	CB	GLN	38	32. 874	30. 155	47. 643	1. 00 36. 29
	ATOM	201	CG	GLN	38	32. 128	30. 122	48. 950	1. 00 37. 44
	ATOM	202	CD	GLN	38	32. 689	31. 108	49. 950	1. 00 41. 99
	ATOM	203	0E 1	l GLN	38	33. 841	30. 992	50. 376	1. 00 44. 33
	ATOM	204	NE2	GLN	38	31. 880	32. 091	50. 331	1. 00 44. 58
10	ATOM	205	C	GLN	38	33. 184	29. 155	45. 382	1. 00 35. 21
	ATOM	206	0	GLN	38	32. 454	29. 557	44. 486	1. 00 34. 82
	ATOM	207	N	LYS	39	34. 467	28. 884	45. 188	1. 00 36. 41
	ATOM	208	CA	LYS	39	35. 069	29. 081	43. 875	1. 00 38. 60
	ATOM	209	CB	LYS	39	36. 560	28. 708	43. 888	1. 00 42. 47
15	ATOM	210	CG	LŸS	39	37. 395	29. 263	42. 714	1. 00 45. 02
	ATOM	211	CD	LYS	39	37. 638	30. 775	42. 861	1. 00 49. 54
	ATOM	212	CE	LYS	39	38. 523	31. 365	41.752	1. 00 51. 65
	ATOM	213	NZ	LYS	39	38. 621	32. 865	41.821	1. 00 53. 58
	ATOM	214	C	LYS	39	34. 339	28. 196	42. 884	1. 00 38. 31
20	ATOM	215	0	LYS	39	34. 229	28. 534	41.710	1. 00 40. 28
	ATOM	216	N	GLU	40	33. 827	27. 066	43. 369	1. 00 37. 21
	ATOM	217	CA	GLU	40	33. 117	26. 107	42. 525	1. 00 34. 69
	ATOM	218	CB	GLU	40	33. 329	24. 705	43.072	1. 00 32. 80
	ATOM	219	CG	GLU	40	34. 742	24. 245	42. 900	1. 00 33. 53
25	ATOM	220	CD	GLU 4	40	35. 164	24. 348	41. 459	1. 00 36. 48
	ATOM	221	0E1	GLU 4	40	34. 318	24. 044	40. 589	1. 00 39. 36
	ATOM	222	0E2	GLU 4	40	36. 326	24. 720	41. 187	1. 00 37. 18
	ATOM	223	C	GLU 4	40	31. 632	26. 387	42. 375	1. 00 34. 48
	ATOM	224	0	GLU 4	40	31. 040	26. 110	41. 332	1. 00 32. 30

- 152 -ATOM 225 N MET 41 31. 030 26. 928 43. 425 1.00 35.61 **ATOM** 226 CA MET 41 29. 621 27. 256 43. 373 1.00 39.30 ATOM 227 CB MET 41 29. 155 27. 852 44. 692 1. 00 39. 16 **ATOM** 228 CG MET 41 29. 146 26. 910 45. 867 1. 00 40. 71 5 ATOM 229 SD MET 41 27. 930 27. 569 47. 040 1. 00 46. 34 ATOM 230 CE MET 41 28. 978 28. 338 48. 243 1. 00 46. 54 ATOM 231 C MET 41 29. 336 28. 258 42. 251 1. 00 42. 24 ATOM 232 0 MET 41 28. 358 28. 113 41. 517 1. 00 44. 97 ATOM 233 N ASP 42 30. 173 29. 284 42. 118 1. 00 43. 47 234 10 ATOM CA ASP 42 29. 952 30. 274 41.069 1. 00 42. 69 ATOM CB 235 ASP 42 30. 848 31. 497 41. 249 1.00 44.70 ATOM 236 CG ASP 42 30. 548 32. 254 42. 523 1. 00 49. 63 ATOM 237 0D1 ASP 42 31. 352 32. 128 43. 477 1. 00 52. 14 ATOM 238 0D2 ASP 42 29. 510 32. 968 42.572 1.00 49.66 15 ATOM 239 C ASP 42 29. 641 30. 248 39. 739 1. 00 41. 40 ATOM 240 0 ASP 42 29. 880 29. 550 38. 759 1. 00 41. 06 ATOM 241 N ARG 43 31. 289 28. 826 39. 707. 1. 00 39. 70 ATOM 242 ARG 43 CA 31.668 28. 171 38. 477 1.00 39.99 ATOM ARG 43 243 CB 32. 835 27. 227 38. 739 1. 00 43. 98 ATOM 20 244 CG ARG 43 26. 482 33. 329 37. 516 1. 00 49. 72 ATOM 245 CD ARG 43 34. 636 25. 777 37. 831 1. 00 55. 67 ATOM ARG 43 246 NE 34. 962 24. 746 36. 854 1. 00 62. 98 ATOM 247 CZ ARG 43 36.062 24. 002 36. 899 1. 00 67. 95 ATOM 248 NH1 ARG 43 36. 950 24. 178 37. 877 1. 00 69. 41 25 ATOM 249 NH2 ARG 43 36. 269 23.075 35. 969 1. 00 70. 32 ATOM 250 C ARG 43 30. 488 27. 417 37. 881 1. 00 38. 35 ATOM 251 ARG 43 0 30. 253 27. 493 36. 677 1. 00 38. 07 ATOM 252 N GLY 44 29. 739 26.709 38. 728 1. 00 36. 44 ATOM 253 CA GLY 44 28. 592 25. 938 38. 262 1. 00 32. 80

							•			
	ATOM	254	C	GLY	44	27. 344	26. 772	38. 062	1. 00	31. 71
	ATOM	255	0	GLY	44	26. 483	26. 448	37. 251	1. 00	30. 43
	ATOM	256	N	LEU	45	27. 258	27. 854	38. 820	1. 00	31. 23
	ATOM	257	CA	LEU	45 [°]	26. 144	28. 774	38. 761	1. 00	31. 72
5	ATOM	258	CB	LEU	45	26. 168	29. 638	40. 010	1. 00	30. 96
	ATOM	259	CG	LEU	45	25. 063	29. 363	41. 013	1. 00	34. 38
	ATOM	260	CD1	LEU	45	25. 346	30. 066	42. 334	1. 00	34. 74
	ATOM	261	CD2	LEU	45	23. 750	29. 849	40. 413	1. 00	37. 12
	ATOM	262	C	LEU	45	26. 204	29. 666	37. 517	1. 00	33. 39
10	ATOM	263	0	LEU	45	25. 184	30. 211	37. 086	1. 00	34. 01
	ATOM	264	N	ARG	46	27. 402	29. 813	36. 955	1. 00	34. 39
	ATOM	265	CA	ARG	46	27. 628	30. 651	35. 774	1. 00	37. 39
	ATOM	266	CB	ARG	46	29. 092	31. 140	35. 744	1. 00	42. 80
	ATOM	267	CG	ARG	46	29. 463	32. 067	34. 562	1. 00	48. 17
15	ATOM	268	CD	ARG	46	30. 951	32. 487	34. 546	1. 00	49. 35
	ATOM	269	NE	ARG	46	31. 250	33. 400	33. 441	1. 00	54. 04
	ATOM	270	CZ	ARG	46	30. 599	34. 542	33. 216	1. 00	57. 98
	ATOM	271	NH1	ARG	46	29. 608	34. 915	34. 019	1. 00	56. 34
	ATOM	272	NH2	ARG	46	30. 936	35. 316	32. 187	1. 00	59. 91
20	ATOM	273	C	ARG	46	27. 301	29. 920	34. 477	1. 00	37. 53
	ATOM	274	0	ARG	46	27. 773	28. 804	34. 243	1. 00	38. 11
	ATOM	275	N	LEU	47	26. 515	30. 573	33. 623	1. 00	36. 42
	ATOM	276	CA	LEU	47	26. 089	29. 993	32. 350	1. 00	35. 82
	ATOM	277	CB	LEU	47	25. 151	30. 957	31. 617	1. 00	31. 45
25	ATOM	278	CG	LEU	47	24. 771	30. 548	30. 196	1. 00	29. 68
	ATOM	279	CD1	LEU	47	24. 031	29. 240	30. 230	1. 00	28. 93
	ATOM	280	CD2	LEU	47	23. 929	31. 622	29. 559	1. 00	28. 83
	ATOM	281	C	LEU	47	27. 223	29. 578	31. 418	1. 00	37. 14
	ATOM	282	0	LEU	47	27. 152	28. 534	30. 764	1. 00	36. 41

- 154 -ATOM 283 N **GLU 48** 28. 272 30. 383 31. 347 1. 00 39. 28 ATOM 284 CA **GLU 48** 29. 371 30. 034 30. 462 1. 00 42. 38 ATOM 285 CB GLU 48 30. 448 31. 126 30. 473 1. 00 43. 91 ATOM 286 CG GLU 48 30. 126 32. 354 29. 631 1. 00 46. 02 ATOM 287 CD **GLU 48** 29. 022 33. 215 5 30. 221 1. 00 48. 71 ATOM 288 0E1 GLU 48 28. 581 34. 157 29. 524 1. 00 48. 10 0E2 GLU 48 ATOM 289 28. 600 32. 959 31. 375 1. 00 49. 31 ATOM 290 С **GLU 48** 30. 005 28. 691 30. 809 1. 00 43. 42 ATOM 291 0 **GLU 48** 30. 593 28. 045 29. 939 1. 00 43. 61 ATOM 292 THR 49 10 N 29.873 28. 262 32.066 1. 00 44. 28 ATOM 293 CA THR 49 30. 484 26. 999 32. 508 1. 00 46. 81 ATOM 294 CB THR 49 31. 761 27. 267 33. 366 1. 00 47. 70 ATOM 295 OG1 THR 49 28. 265 31. 477 34. 356 1. 00 45. 18 ATOM 296 CG2 THR 49 27. 739 32. 921 32.486 1. 00 48. 17 ATOM 297C THR 49 26.024 15 29. 595 33. 293 1.00 46.50 ATOM 298 0 THR 49 24. 932 30. 043 33. 683 1. 00 45. 72 **ATOM** 299 N HIS 50 28. 340 26. 405 33.508 1. 00 44. 18 ATOM HIS 50 300 CA 27. 416 25. 565 34. 262 1.00 41.93 ATOM HIS 50 301 CB 25. 980 26. 129 34. 190 1. 00 38. 83 **ATOM** 20 302 CG HIS 50 25. 217 25. 754 32. 953 1. 00 35. 50 ATOM 303 CD2 HIS 50 23. 950 25. 304 32. 795 1. 00 33. 70 ATOM ND1 HIS 50 304 25. 730 25. 894 31. 682 1. 00 36. 24 ATOM 305 CE1 HIS 50 24. 812 25. 550 30. 796 1. 00 33. 56 ATOM 306 NE2 HIS 50 23. 722 25. 189 1.00 32.06 31. 446 ATOM HIS 50 25 307 C 27. 447 24. 117 33. 804 1. 00 41. 73 ATOM HIS 50 308 0 23. 212 27. 144 34. 572 1.00 41.14 ATOM GLU 51 309 N 27. 848 23. 883 32. 566 1. 00 42. 00 ATOM 310 CA GLU 51 27. 863 22. 519 32. 103 1. 00 45. 79 ATOM 311 CB GLU 51 27. 573 22. 463 30. 617 1. 00 46. 76

- 155 -ATOM 312 CG GLU 51 27. 523 21. 048 30. 100 1. 00 50. 98 ATOM 313 CD GLU 51 26. 521 20. 885 28. 989 1. 00 53. 94 ATOM 314 OE1 GLU 51 25. 313 21. 082 29. 253 1. 00 55. 61 ATOM OE2 GLU 51 315 26. 940 20. 560 27. 857 1. 00 55. 48 5 ATOM 316 C GLU 51 29. 139 21. 757 32. 402 1. 00 48. 17 ATOM 317 **GLU 51** 0 29. 094 20.657 32. 953 1. 00 49. 35 ATOM 318 N GLU 52 30. 276 22. 331 32. 034 1. 00 50. 75 ATOM 319 CA GLU 52 31. 565 21. 681 32. 264 1. 00 52. 07 ATOM 320 CB **GLU 52** 32. 633 22. 321 31. 352 1.00 56.66 10 ATOM 321 CG GLU 52 32. 768 23. 854 31. 476 1.00 63.81 ATOM 322 CD GLU 52 33. 420 24. 528 30. 253 1.00 67.84 **ATOM** $323 \cdot$ OE1 GLU 52 33. 601 25. 770 30. 278 1. 00 68. 83 ATOM 324 OE2 GLU 52 33. 742 23.826 29. 266 1. 00 70. 00 ATOM 325C GLU 52 31. 982 21.760 33. 738 1. 00 49. 95 15 ATOM 3260 GLU 52 33. 013 21. 215 34. 132 1. 00 47. 47 ATOM 327N ALA 53 31. 162 22. 429 34. 548 1. 00 48. 46 ATOM 328 CA ALA 53 31. 449 22. 594 35. 972 1. 00 47. 88 ATOM 329 CB ALA 53 30. 418 23. 510 36. 615 1. 00 47. 30 **ATOM** 330 C ALA 53 31. 510 21. 278 36. 731 1. 00 46. 84 20 ATOM 331 0 ALA 53 31. 287 20. 206 36. 172 1. 00 48. 51 ATOM 332 N SER 54 31.816 21. 353 38. 016 1. 00 44. 67 ATOM 333 CA SER 54 31. 895 20. 133 38. 792 1. 00 42. 38 **ATOM** SER 54 334 CB 33. 201 20.090 39. 581 1. 00 44. 26 ATOM 335 0G **SER 54** 33. 290 18. 883 40.316 1. 00 45. 49 ATOM 25 336 C **SER 54** 30. 712 20.059 39. 734 1. 00 39. 72 ATOM 337 0 SER 54 30.058 19. 028 39. 841 1. 00 41. 09 ATOM 338 N VAL 55 30. 440 21. 165 40. 411 1. 00 34. 77 ATOM 339 CA VAL 55 29. 326 21. 239 41. 343 1. 00 30. 58 ATOM 340 CB VAL 55 29. 682 22. 186 42. 498 1. 00 28. 73

- 156 -ATOM CG1 VAL 55 341 28. 480 22. 433 43. 383 1. 00 30. 75 CG2 VAL 55 ATOM 342 30. 814 21. 596 43. 297 1.00 25.80 ATOM 343 C VAL 55 28. 094 21. 760 40. 597 1.00 30.28 ATOM 344 0 VAL 55 27. 704 22. 920 40. 745 1. 00 32. 16 345 ATOM N LYS 56 27. 482 20.887 39. 803 5 1. 00 26. 82 ATOM 346 CA LYS 56 26. 323 21. 235 38. 986 1.00 21.66 ATOM 347 CB LYS 56 25. 362 20.046 38.891 1. 00 26. 53 ATOM 348 CG LYS 56 25. 936 18. 737 38. 337 1. 00 29. 32 ATOM 349 CD LYS 56 26. 311 18.836 36. 875 1. 00 29. 86 ATOM 10 350 CE LYS 56 27. 609 19. 592 36. 698 1. 00 29. 73 ATOM 351 NZ LYS 56 27. 932 19. 759 35. 259 1. 00 32. 80 ATOM 352 C LYS 56 25. 520 22. 470 39. 374 1.00 17.56 ATOM 353 0 LYS 56 25. 133 23. 236 38. 498 1.00 15.95 ATOM 354 N **MET 57** 25. 257 22.660 40.665 1.00 14.30 15 ATOM 355 CA MET 57 24. 462 23. 803 41. 128 1. 00 12. 73 ATOM 356 CB 25. 277 MET 57 25. 089 41.059 1.00 9.92 ATOM 357 CG MET 57 26. 515 25.090 41.930 1.00 6.47 ATOM SD 358 MET 57 26. 219 25. 164 43.694 1.00 8.00 ATOM 359 MET 57 CE 25. 523 26. 842 43. 905 1.00 1.00 20 ATOM 360 C MET 57 23. 207 23. 953 40. 270 1. 00 14. 05 ATOM 361 0 MET 57 24. 972 23. 000 39.610 1. 00 12. 36 ATOM 362 N LEU 58 22. 923 22. 371 40. 290 1. 00 17. 80 ATOM 363 CA LEU 58 22. 914 21. 154 39. 498 1. 00 19. 02 ATOM 364 CB LEU 58 20. 710 21. 466 39. 245 1. 00 18. 03 25 ATOM 365 CG LEU 58 21. 726 20. 444 38. 720 1. 00 16. 28 ATOM 366 CD1 LEU 58 19.068 21. 193 39. 021 1.00 20.44 ATOM 367 CD2 LEU 58 21. 999 20.608 37. 233 1.00 15.03 ATOM 368 C LEU 58 20. 005 23. 696 40. 134 1. 00 20. 20 ATOM 369 0 LEU 58 23. 602 19. 752 41. 340 1.00 19.91

- 157 -

	ATOM	370	N	PRO	59	19. 316	24. 507	39. 320	1. 00 20. 57
	ATOM	371	CD	PRO	59	19. 856			1. 00 20. 39
	ATOM	372	CĄ	PRO	59	18. 171	25. 342		1. 00 22. 50
	ATOM	373	CB	PRO	59			38. 437	
5	ATOM	374	CG	PRO	59	19. 306	26. 329	37. 906	1. 00 21. 92
	ATOM	375	C	PR0	59	16. 975	24. 437	40. 010	1. 00 23. 49
	ATOM	376	0	PRO	59	16. 698	23. 504	39. 264	1. 00 25. 36
	ATOM	377	N	THR	60	16. 258	24. 714	41. 092	1. 00 22. 35
	ATOM	378	CA	THR	60	15. 133	23. 871	41. 469	1. 00 20. 99
10	ATOM	379	CB	THR	60	15. 097	23. 607	42. 964	1. 00 22. 35
	ATOM	380	0G1	THR	60	14. 823	24. 837	43. 647	1. 00 24. 53
	ATOM	381	CG2	THR (60	16. 408	23. 049	43. 441	1. 00 24. 88
	ATOM	382	C	THR 6	60	13. 815	24. 516	41. 160	1. 00 20. 21
	ATOM	383	0	THR 6	60	12. 793	23. 848	41. 119	1. 00 24. 18
15	ATOM	384	N	TYR 6	31	13. 839	25. 822	40. 973	1. 00 19. 09
	ATOM	385	CA	TYR 6	31	12. 628	26. 595	40. 715	1. 00 20. 03
	ATOM	386	CB	TYR 6	61	11. 955	26. 172	39. 427	1. 00 13. 50
	ATOM	387	CG	TYR 6	1	12. 581	26. 830	38. 234	1. 00 13. 18
	ATOM	388	CD1	TYR 6	1	12. 028	27. 983	37. 666	1. 00 8. 00
20	ATOM	389		TYR 6		12. 596	28. 551	36. 536	1. 00 4. 24
	ATOM	390		TYR 6		13. 725			1. 00 14. 04
	ATOM	391	CE2	TYR 6	1	14. 296	26. 843	36. 529	1. 00 10. 05
	ATOM	392	CZ 1	TYR 6	1	13. 730	27. 963	35. 976	1. 00 5. 80
	ATOM	393		TYR 6		14. 307	28. 423	34. 828	1. 00 4. 54
25	ATOM			TYR 6		11. 620	26. 572	41. 833	1. 00 21. 95
	ATOM			TYR 6		10. 437	26. 816	41. 609	1. 00 22. 47
	ATOM			/AL 62		12. 102	26. 293	43. 037	1. 00 24. 47
	ATOM			/AL 62		11. 265	26. 288	44. 218	1. 00 29. 86
	ATOM	398	CB V	AL 62	2	11. 750	25. 231	45. 207	1. 00 28. 92

- 158 -

						•	• •		
	ATOM	399	CG	1 VAI	62	10. 780	25. 091	46. 370	1. 00 28. 30
	ATOM	400	CG	2 VAI	62	11. 909	23. 926	44. 480	1. 00 28. 58
	ATOM	401	C	VAI	62	11. 494	27. 680	44. 786	1. 00 34. 67
	ATOM	402	0	VAI	62	11. 584	27. 879	45. 993	1. 00 39. 01
5	ATOM	403	N	ARO	63	11. 589	28. 638	43. 874	1. 00 38. 40
	ATOM	404	CA	ARC	63	11. 847	30. 038	44. 182	1. 00 41. 10
	ATOM	405	CB	ARC	63	12. 041	30. 804	42. 874	1. 00 42. 02
	ATOM	406	CG	ARG	63	10. 794	30. 798	41. 996	1. 00 44. 76
	ATOM	407	CD	ARG	63	11. 072	31. 197	40. 550	1. 00 46. 61
10	ATOM	408	NE	ARG	63	9. 827	31. 366	39. 804	1. 00 48. 56
	ATOM	409	CZ	ARG	63	8. 972	30. 381	39. 541	1. 00 50. 39
	ATOM	410	NH	ARG	63	9. 225	29. 145	39. 955	1. 00 50. 83
	ATOM	411	NH2	2 ARG	63	7. 854	30. 635	38. 875	1. 00 51. 11
	ATOM	412	C	ARG	63	10. 788	30. 751	45. 004	1. 00 42. 71
15	ATOM	413	0	ARG	63	9. 790	30. 167	45. 424	1. 00 41. 58
	ATOM	414	N	SER	64	11. 047	32. 036	45. 224	1. 00 46. 12
	ATOM	415	CA	SER	64	10. 155	32. 922	45. 954	1. 00 49. 96
	ATOM	416	CB	SER	64	10. 400	32. 826	47. 454	1. 00 50. 57
	ATOM	417	0G	SER	64	9. 374	33. 507	48. 157	1. 00 53. 70
20	ATOM	418	C	SER	64	10. 435	34. 340	45. 458	1. 00 51. 04
	ATOM	419	0	SER	64	11. 300	35. 047	45. 985	1. 00 50. 38
	ATOM	420	N	THR	65	9. 690	34. 728	44. 425	1. 00 53. 23
	ATOM	421	CA	THR	65	9. 827	36. 031	43. 791	1. 00 54. 89
	ATOM	422	CB	THR	65	10. 151	35. 871	42. 281	1. 00 56. 21
25	ATOM	423	0G1	THR	65	9. 094	35. 158	41. 622	1. 00 55. 23
	ATOM	424	CG2	THR	65	11. 461	35. 112	42. 103	1. 00 56. 71
	ATOM	425	C	THR	65	8. 582	36. 911	43. 939	1. 00 56. 01
	ATOM	426	0	THR	65	7. 503	36. 430	44. 291	1. 00 56. 26
	ATOM .	427	N	PR0	66	8. 728	38. 222	43. 676	1. 00 56. 49

- 159 -ATOM PRO 66 428 CD 10. 019 38. 866 43. 377 1. 00 56. 96 ATOM 429 CA PRO 66 7. 666 39. 228 43. 758 1.00 56.28 ATOM CB PRO 66 8. 369 40. 502 43. 313 430 1.00 57.08 ATOM 431 CG PRO 66 9. 759 40. 287 43. 786 1. 00 58. 08 PRO 66 ATOM 432 C 6. 487 38. 901 42.864 1. 00 56. 75 5 ATOM 433 0 PRO 66 5. 477 39.604 42.874 1. 00 57. 23 **ATOM** 6.631 42.072 434 N **GLU 67** 37. 849 1. 00 56. 42 ATOM 435 CA GLU 67 5. 540 37. 445 41. 193 1. 00 56. 82 **ATOM** 436 CB GLU 67 6.048 36. 487 40. 115 1. 00 61. 19 10 ATOM 437 CG **GLU 67** 6. 421 35. 108 40.637 1.00 66.99 ATOM 438 CD GLU 67 7. 123 34. 261 39. 594 1.00 69.61 ATOM 8. 253 439 0E1 GLU 67 34. 618 39. 201 1. 00 70. 19 ATOM 440 0E2 GLU 67 6. 541 33. 241 39. 168 1. 00 70. 18 ATOM 441 C **GLU 67** 4. 406 36.803 41.984 1. 00 54. 30 ATOM 442 0 GLU 67 3. 241 36.940 41. 633 1. 00 54. 25 15 ATOM 443 N GLY 68 4. 753 36. 116 43.076 1. 00 50. 50 ATOM 444 CA GLY 68 3. 741 35. 478 43.901 1. 00 45. 77 ATOM 445 C GLY 68 4. 166 44. 316 34.087 1.00 43.04 ATOM 446 0 GLY 68 3. 626 33. 503 45. 259 1. 00 40. 69 ATOM 447 N **SER 69** 33. 564 43. 599 20 5. 154 1. 00 42. 30 ATOM 448 CA **SER 69** 5. 690 32. 230 43. 845 1. 00 41. 02 ATOM 449 CB **SER 69** 6. 769 31.902 42. 804 1. 00 41. 03 ATOM 450 0G SER 69 6. 438 32. 404 41. 517 1. 00 42. 34 451 C 6. 301 45. 240 ATOM SER 69 32. 126 1. 00 39. 68 25 ATOM 452 0 SER 69 7. 163 32. 920 45.607 1. 00 38. 89 ATOM 453 N **GLU** 70 5. 857 31. 143 46. 014 1. 00 39. 96 ATOM 454 CA **GLU 70** 6. 388 30. 942 47. 355 1. 00 40. 53 CB ATOM 455 **GLU 70** 5. 265 31.074 48. 391 1. 00 44. 80

ATOM

456

CG

GLU 70

4. 675

32. 483

48. 492

1. 00 52. 74

- 160 -ATOM 457 CD GLU 70 5. 705 33. 554 48. 900 1. 00 58. 55 ATOM 0E1 GLU 70 458 5. 362 34. 763 48.866 1. 00 59. 55 ATOM 459 0E2 GLU 70 6.852 33. 192 49. 258 1.00 60.30 ATOM 460 C **GLU** 70 7. 075 29. 583 47. 483 1. 00 38. 65 ATOM 461 5 0 **GLU 70** 6.807 28.660 46. 704 1. 00 37. 89 ATOM 462 N VAL 71 7. 962 29. 459 48.466 1. 00 35. 96 **ATOM** 463 CA VAL 71 8. 670 28. 207 48. 653 1.00 34.46 ATOM 464 CB VAL 71 9. 723 28. 319 49. 755 1. 00 33. 00 ATOM 465 CG1 VAL 71 10. 236 26. 949 50. 120 1. 00 33. 91 10 ATOM 466 CG2 VAL 71 10.885 29. 152 49. 249 1. 00 32. 56 ATOM 467 C VAL 71 7. 730 27. 042 48. 931 1.00 34.75 **ATOM** 468 VAL 71 0 7. 851 25. 985 48. 310 1. 00 37. 23 ATOM 469 N GLY 72 27. 219 6. 783 49.841 1. 00 33. 37 ATOM 470 CA **GLY** 72 5. 842 26. 139 50. 105 1. 00 32. 39 ATOM 15 471 **GLY 72** C 25. 644 5.066 48.879 1. 00 31. 10 ATOM 472 0 **GLY 72** 4. 631 24. 493 48. 859 1. 00 28. 98 ATOM 473 N ASP 73 4.878 26. 503 47. 870 1.00 31.05 **ATOM** 474 CA ASP 73 26. 129 4. 156 46. 650 1.00 31.14 ATOM 475 CB ASP 73 4. 389 27. 147 45. 532 1.00 34.00 20 ATOM 476 CG **ASP 73** 3. 759 28. 491 45. 817 1. 00 38. 43 ATOM 0D1 ASP 73 477 3. 758 29. 355 44. 907 1. 00 41. 88 **ATOM** 478 OD2 ASP 73 3. 262 28. 690 46. 945 1. 00 41. 23 ATOM 479 **ASP 73** C 4. 675 24. 785 46. 189 1. 00 30. 89 ATOM 480 0 ASP 73 5. 875 24. 544 46. 256 1. 00 32. 81 25 **ATOM** 481 N PHE 74 3. 796 23. 921 45. 694 1.00 28.84 ATOM 482 CA PHE 74 4. 233 22. 595 45. 271 1. 00 27. 21 ATOM 483 CB PHE 74 4. 728 21. 834 46. 502 1. 00 26. 13 ATOM PHE 74 484 CG 5. 407 20. 551 46. 185 1. 00 25. 61 ATOM 485 CD1 PHE 74 6. 641 20. 546 45. 547 1. 00 29. 29

- 161 -ATOM CD2 PHE 74 46. 496 1. 00 24. 94 486 4. 805 19. 344 ATOM CE1 PHE 74 45. 213 1.00 31.36 487 7. 259 19. 354 CE2 PHE 74 ATOM 488 5.408 18. 149 46. 168 1. 00 27. 38 ATOM 489 CZPHE 74 6.640 18. 149 45. 527 1. 00 30. 18 ATOM 1.00 27.31 C PHE 74 3.080 44. 604 5 490 21. 837 ATOM 491 PHE 74 1. 912 22. 034 44. 951 1. 00 28. 04 0 ATOM 492 LEU 75 3. 402 20.965 43.654 1. 00 23. 99 N ATOM 493 LEU 75 2. 370 20. 214 42. 958 1.00 20.00 CA ATOM 494 CB LEU 75 2. 222 20.725 41. 534 1.00 19.88 0.868 40.865 ATOM 495 CG LEU 75 20. 487 1. 00 21. 27 10 ATOM 496 CD1 LEU 75 1. 083 20. 282 39. 354 1. 00 19. 58 ATOM 497 CD2 LEU 75 0. 190 19. 279 41. 474 1. 00 18. 85 LEU 75 2. 755 ATOM 498 C 18. 758 42. 911 1. 00 18. 82 ATOM 499 0 LEU 75 3. 587 18. 369 42. 102 1. 00 19. 49 ATOM 500 N **SER 76** 2. 143 17. 957 43. 774 1.00 21.08 15 ATOM 501 CA **SER 76** 2. 434 16. 530 43. 834 1. 00 22. 49 ATOM 502 2. 333 CB **SER 76** 16.001 45. 261 1. 00 22. 74 2.591 MOTA 503 0G **SER 76** 14. 612 45. 292 1. 00 20. 37 ATOM 504 C **SER 76** 1. 507 15. 720 42.967 1. 00 23. 58 ATOM 505 20 0 SER 76 0.309 15. 980 42.866 1. 00 23. 06 ATOM 506 N LEU 77 2.064 14. 686 42. 378 1. 00 25. 35 ATOM 507 CA LEU 77 1. 280 13.862 41.509 1. 00 27. 55 ATOM 508 CB LEU 77 1. 758 14. 122 40.089 1. 00 29. 38 ATOM 509 CG LEU 77 1. 176 13. 275 38. 980 1. 00 32. 75 ATOM CD1 LEU 77 -0.33425 510 13. 434 38. 974 1. 00 34. 55 ATOM 511 CD2 LEU 77 1. 796 13. 695 37.661 1. 00 32. 83 ATOM 512 C LEU 77 1. 445 12. 402 41. 913 1. 00 28. 86 ATOM 513 0 LEU 77 2. 527 11. 826 41. 760 1. 00 26. 84 ATOM N ASP 78 0.386 514 11. 811 42. 465 1. 00 29. 41

						- 16	2 -		
	ATOM	515	CA	ASP	78	0. 457	10. 407	42. 865	1. 00 30. 41
	ATOM	516	CB	ASP	78	-0. 150	10. 186	44. 255	1. 00 31. 87
	ATOM	517	CG	ASP	78	-0. 286	8. 702	44. 606	1. 00 33. 99
	ATOM	518	0D1	ASP	78	-1. 025	7. 993	43. 894	1. 00 35. 38
5	ATOM	519	0D2	ASP	78	0. 338	8. 241	45. 586	1. 00 33. 31
	ATOM	520	C	ASP	78	-0. 270	9. 530	41. 860	1. 00 29. 41
	ATOM	521	0	ASP	78	-1. 484	9. 587	41. 732	1. 00 29. 74
	ATOM	522	N	LEU	79	0. 472	8. 710	41. 143	1. 00 27. 93
	ATOM	523	CA	LEU	79	-0. 169	7. 858	40. 184	1. 00 28. 08
10	ATOM	524	CB	LEU	79	0. 323	8. 173	38. 781	1. 00 25. 78
	ATOM	525	CG	LEU	79	1. 676	7. 627	38. 371	1. 00 24. 57
	ATOM	526	CD1	LEU	79	1. 845	7. 871	36. 904	1. 00 25. 82
	ATOM	527	CD2	LEU	79	2. 779	8. 274	39. 166	1. 00 26. 37
	ATOM	528	C	LEU	79	0. 114	6. 420	40. 548	1. 00 31. 25
15	ATOM	529	0	LEU	79	1. 265	6. 017	40. 712	1. 00 32. 14
	ATOM	530	N	GLY	80	-0. 955	5. 652	40. 699	1. 00 34. 99
	ATOM	531	CA	GLY	80	-0. 812	4. 259	41. 056	1. 00 38. 29
	ATOM	532	C	GLY	80	-2. 088	3. 499	40. 776	1. 00 40. 81
	ATOM	533	0	GLY	80	-3. 100	3. 686	41. 452	1. 00 40. 77
20	ATOM	534	N	GLY	81	-2. 038	2. 642	39. 765	1. 00 43. 19
	ATOM	535	CA	GLY	81	-3. 197	1. 850	39. 422	1. 00 45. 84
	ATOM	536	C	GLY	81	-3. 936	2. 428	38. 244	1. 00 49. 22
	ATOM	537	0	GLY	81	-3. 328	2. 825	37. 241	1. 00 49. 20
	ATOM	538	N	THR	82	-5. 260	2. 465	38. 365	1. 00 51. 93
25	ATOM	539	CA	THR	82	-6. 117	3. 003	37. 312	1. 00 54. 41
	ATOM	540	CB	THR	82	-7. 344	2. 090	37. 060	1. 00 56. 74
	ATOM	541	0G1	THR	82	-6. 908	0. 727	36. 952	1. 00 60. 43
	ATOM	542	CG2	THR	82	-8. 043	2. 473	35. 752	1. 00 58. 23
	ATOM	543	C	THR	82	-6. 584	4. 382	37. 759	1. 00 52. 48

- 163 -ATOM 544 THR 82 -7.3080 5. 077 37. 046 1. 00 52. 21 **ASN 83** ATOM 545 N -6. 148 38. 946 4. 778 1. 00 50. 63 ATOM 546 CA ASN 83 -6.52339. 466 6.071 1. 00 50. 52 ATOM 547 CB ASN 83 -7. 574 5. 911 40. 568 1. 00 53. 97 5 ATOM 548 CG ASN 83 -8. 955 5. 560 40. 020 1. 00 58. 88 ATOM 549 OD1 ASN 83 -9.50839. 190 6. 290 1. 00 60. 51 ATOM 550 ND2 ASN 83 -9.5214. 444 40. 489 1.00 60.30 ATOM 551 C ASN 83 -5.3386.861 39. 997 1. 00 48. 79 ATOM 552 0 **ASN 83** -4. 682 40.956 6. 442 1. 00 48. 09 ATOM 553 10 N PHE 84 -5.068 8. 003 39. 356 1. 00 45. 51 ATOM 554 CA PHE 84 -3.9958. 907 39. 772 1. 00 40. 32 ATOM 555 CBPHE 84 -2.9989. 145 38. 644 1. 00 39. 20 ATOM 556 CG PHE 84 -3.43610. 175 37. 652 1. 00 39. 52 CD1 PHE 84 ATOM 557 -4.0969.802 36. 494 1. 00 40. 87 15 ATOM 558 CD2 PHE 84 -3. 159 11. 524 37.860 1.00 39.69 ATOM 559 CE1 PHE 84 -4. 479 10. 758 35. 549 1.00 41.79 ATOM CE2 PHE 84 560 -3.54012. 490 36. 922 1.00 40.16 ATOM CZ PHE 84 561 -4. 198 12. 105 35. 762 1.00 40.38 ATOM 562 C PHE 84 -4. 604 10. 246 40. 176 1.00 37.84 20 ATOM 563 PHE 84 0 10.806 -5. 405 39. 439 1. 00 37. 11 ATOM 564 N ARG 85 -4.21610. 762 41. 338 1. 00 36. 37 ATOM 565 CA ARG 85 -4.73812. 032 41. 840 1. 00 35. 14 ATOM 566 CB ARG 85 -5.49611. 779 43. 136 1. 00 39. 80 ATOM 567 CG ARG 85 -4.88810. 677 43. 970 1. 00 47. 71 ATOM 25 568 CD ARG 85 -5.9489. 964 44. 805 1. 00 55. 73 ATOM 569 NE ARG 85 -5. 391 8. 801 45. 493 1. 00 62. 76 ATOM 570 CZ ARG 85 -4. 799 7. 772 44. 883 1. 00 65. 65 ATOM NH1 ARG 85 571 -4.6847. 749 43. 557 1. 00 63. 79

-4. 314

6. 765

45. 605

1.00 66.67

ATOM

572 NH2 ARG 85

- 164 -ARG 85 ATOM 573 C 13. 088 42. 075 1. 00 32. 14 -3. 664 ATOM ARG 85 42. 522 1. 00 32. 77 574 0 -2.56112. 772 14. 345 41.778 1. 00 27. 45 ATOM 575 N VAL 86 -3.977ATOM 576 CA VAL 86 -2.99715. 405 41. 983 1. 00 26. 49 ${\tt ATOM}$ CB VAL 86 -2.97516. 400 40. 821 1. 00 24. 77 5 577 ATOM CG1 VAL 86 -3.03315. 655 39. 510 1. 00 26. 70 578 CG2 VAL 86 17. 373 40. 948 1. 00 24. 73 ATOM 579 -4.109ATOM 580 C VAL 86 -3. 292 16. 177 43. 257 1.00 26.66 43.779 ATOM 581 0 VAL 86 -4. 401 16. 121 1.00 28.06 ATOM 582 MET 87 -2.28916.888 43. 757 1. 00 26. 93 10 N ATOM **MET 87** -2.42744. 973 1.00 25.08 583 CA 17. 677 ATOM 584 CB MET 87 -1.74816. 979 46. 138 1. 00 25. 05 ATOM 585 CG MET 87 -1.67417.833 47. 375 1. 00 24. 83 ATOM 586 SD **MET 87** -0.50917.090 48. 503 1.00 30.68 ATOM **MET 87** -1.54416.749 587 CE 49. 894 1. 00 29. 41 15 ATOM 588 C **MET 87** -1.768-19.02144. 774 1. 00 24. 52 19.097 ATOM 589 **MET 87** -0.63844. 298 0 1. 00 27. 12 ATOM 590 LEU 88 45. 146 N -2.45520. 087 1. 00 22. 16 ATOM 591 CA LEU 88 -1.87221. 398 44. 975 1.00 20.70 ATOM 592 CB LEU 88 -2.82522. 309 20 44. 230 1. 00 20. 34 ATOM 593 CG LEU 88 23. 663 -2. 178 43. 991 1.00 23.49 CD1 LEU 88 ATOM 594 -0.80623. 470 43. 354 1.00 24.39 ATOM 595 CD2 LEU 88 -3.07824. 493 43. 094 1. 00 25. 91 ATOM LEU 88 596 C -1.53522. 021 46. 301 1.00 19.94 ATOM 597 0 LEU 88 -2.22521. 794 47. 282 1. 00 21. 18 25 **ATOM** 598 N **VAL 89** -0. 463 22. 799 46. 343 1.00 20.16 ATOM 599 CA VAL 89 . -0. 082 23. 462 47. 580 1. 00 21. 15 ATOM CB VAL 89 600 0. 984 22. 676 48. 357 1. 00 14. 95

ATOM

601

CG1 VAL 89

1. 292

23. 385

49. 657

1. 00 7. 73

			- 165 -						
	ATOM	602	CG2	VAL	89	0. 515	21. 268	48, 609	1. 00 10. 59
	ATOM	603	C	VAL	89	0. 491	24. 829	47. 254	1. 00 27. 10
	ATOM	604	0	VAL	89	1. 410	24. 939	46. 442	1. 00 27. 22
	ATOM	605	N	LYS	90	-0. 066	25. 866	47. 875	1. 00 33. 21
5	ATOM	606	CA	LYS	90	0. 401	27. 235	47. 671	1. 00 40. 01
	ATOM	607	CB	LYS	90	-0. 443	27. 962	46. 604	1. 00 41. 03
	ATOM	608	CG	LYS	90	-1. 941	27. 979	46. 850	1. 00 47. 19
	ATOM	609	CD	LYS	90	-2. 749	28. 454	45. 622	1. 00 52. 33
	ATOM	610	CE	LYS	90	-4. 274	28. 393	45. 899	1. 00 55. 73
10	ATOM	611	NZ	LYS	90	-5. 161	28. 724	44. 731	1. 00 56. 02
	ATOM	612	C	LYS	90	0. 384	28. 009	48. 981	1. 00 43. 61
	ATOM	613	0	LYS	90	-0. 577	27. 943	49. 747	1. 00 44. 04
	ATOM	614	N	VAL	91	1. 469	28. 728	49. 241	1. 00 47. 88
	ATOM	615	CA	VAL	91	1. 587	29. 513	50. 458	1. 00 51. 82
15	ATOM	616	CB	VAL	91	3. 059	29. 780	50. 788	1. 00 51. 29
	ATOM	617	CG1	VAL	91	3. 160	30. 748	51. 947	1. 00 54. 88
	ATOM	618	CG2	VAL	91	3. 749	28. 479	51. 137	1. 00 48. 18
	ATOM	619	C	VAL	91	0. 849	30. 846	50. 355	1. 00 55. 01
	ATOM	620	0	VAL	91	0. 994	31. 569	49. 369	1. 00 54. 57
20	ATOM	621	N	GLY	92	0.060	31. 157	51. 382	1. 00 59. 16
	ATOM	622	CA	GLY	92	-0. 696	32. 396	51. 401	1. 00 64. 58
	ATOM	623	C	GLY	92	-0. 305	33. 297	52. 558	1. 00 68. 39
	ATOM	624	0	GLY	92	0. 637	32. 992	53. 295	1. 00 66. 92
	ATOM	625	N	GLU	93	-1. 025	34. 410	52. 712	1. 00 73. 13
25	ATOM	626	CA	GLU	93	-0. 751	35. 351	53. 792	1. 00 78. 27
	ATOM	627	CB	GLU	93	-0. 623	36. 780	53. 248	1. 00 79. 11
	ATOM	628	CG	GLU	93	0. 334	37. 635	54. 077	1. 00 82. 44
	ATOM	629	CD	GLU	93	0. 218	39. 120	53. 795	1. 00 84. 34
	ATOM	630	0E1	GLU	93	-0. 877	39. 688	54. 018	1. 00 84. 71

- 166 -

	ATOM	631	0E2	GLU	93	1. 228	39. 718	53. 359	1. 00 85. 45
	ATOM	632	C	GLU	93	-1. 813	35. 309	54. 904	1. 00 80. 72
	ATOM	633	0	GLU	93	-1. 469	35. 340	56. 086	1. 00 81. 42
	ATOM	634	N	GLY	94	-3. 093	35. 240	54. 536	1. 00 83. 03
5	ATOM	635	CA	GLY	94	-4. 153	35. 182	55. 538	1. 00 85. 37
	ATOM	636	C	GLY	94	-4. 867	36. 502	55. 792	1. 00 87. 51
	ATOM	637	0 (GLY	94	-4. 356	37. 562	55. 430	1. 00 88. 65
	ATOM	638	N (GLU	95	-6. 041	36. 447	56. 427	1. 00 88. 43
	ATOM	639	CA (GLU	95	-6. 831	37. 653	56. 716	1. 00 88. 66
10	ATOM	640	CB (GLU	95	-8. 192	37. 281	57. 328	1. 00 89. 61
	ATOM	641	CG (GLU	95	-9. 077	36. 406	56. 448	1. 00 90. 41
	ATOM	642	CD C	GLU	95	-8. 620	34. 958	56. 408	1. 00 91. 01
	ATOM	643	0E1 6	LU	95	-9. 089	34. 211	55. 523	1. 00 90. 26
	ATOM	644	0E2 G	LU	95	-7. 800	34. 565	57. 266	1. 00 91. 81
15	ATOM	645	C G	LU	95	-6. 115	38. 625	57. 652	1. 00 88. 62
	ATOM	646	0 G	LU	95	-6. 576	39. 748	57. 868	1. 00 88. 29
	ATOM	647	N G	LU 9	96	-4. 991	38. 182	58. 208	1. 00 89. 03
	ATOM	648	CA G	LU 9	96	-4. 200	38. 995	59. 124	1. 00 88. 80
	ATOM	649	CB G	LU 9	96	-4. 065	38. 282	60. 476	1. 00 88. 55
20	ATOM	650	CG G	LU 9	96	-5. 368	38. 155	61. 268	1. 00 89. 59
	ATOM	651		LU 9		-6. 400	37. 262	60. 593	1. 00 90. 56
	ATOM	652	OE1 G			-6. 163	36. 040	60. 481	1. 00 90. 53
	ATOM	653	OE2 GI			-7. 452	37. 785	60. 172	1. 00 90. 67
	ATOM			LU 9		-2. 810	39. 327	58. 519	1. 00 88. 40
25	ATOM			LU 9		-2. 097	40. 166	59. 052	1. 00 89. 12
	ATOM			LY 9		-2. 431	38. 700	57. 404	1. 00 86. 87
	ATOM			Y 9		-1. 133	38. 917	56. 789	1. 00 85. 05
	ATOM			Y 9		-0. 161	37. 976	57. 494	1. 00 84. 17
	ATOM	659	0 GL	Y 9	7	1. 044	38. 179	57. 605	1. 00 83. 49

- 167 -

	ATOM	660	N	GLN	98	-0. 820	36. 901	57. 977	1. 00 83. 07
	ATOM	661	CA	GLN	98	-0. 253	35. 810	58. 769	1. 00 82. 28
	ATOM	662	CB	GLN	98	-1. 346	34. 825	59. 250	1. 00 82. 41
	ATOM	663	CG	GLN	98	-2. 647	35. 462	59. 699	1. 00 83. 61
5	ATOM	664	CD	GLN	98	-3. 740	34. 427	60. 007	1. 00 84. 16
	ATOM	665	0E1	GLN	98	-3. 606	33. 239	59. 714	1. 00 84. 01
	ATOM	666	NE2	GLN	98	-4. 905	34. 685	60. 592	1. 00 84. 46
	ATOM	667	C	GLN	98	0. 735	34. 981	58. 011	1. 00 81. 85
	ATOM	668	0	GLN	98	1. 955	35. 200	57. 956	1. 00 83. 51
10	ATOM	669	N	TRP	99	0. 118	33. 962	57. 470	1. 00 79. 05
	ATOM	670	CA	TRP	99	0. 703	32. 914	56. 706	1. 00 75. 85
	ATOM	671	CB	TRP	99	1. 993	32. 398	57. 308	1. 00 73. 88
	ATOM	672	CG	TRP	99	2. 968	31. 780	56. 325	1. 00 71. 82
	ATOM	673	CD2	TRP	99	3. 211	30. 386	56. 075	1. 00 70. 49
15	ATOM	674	CE2	TRP	99	4. 222	30. 308	55. 123	1. 00 69. 72
	ATOM	675	CE3	TRP	99	2. 671	29. 200	56. 550	1. 00 69. 52
	ATOM	676	CD1	TRP	99	3. 832	32. 464	55. 525	1. 00 71. 99
	ATOM ·	677	NE1	TRP	99	4. 598	31. 589	54. 790	1. 00 71. 07
	ATOM	678	CZ2	TRP	99	4. 692	29. 089	54. 624	1. 00 67. 81
20	ATOM	679	CZ3	TRP	99	3. 136	27. 984	56. 080	1. 00 67. 31
	ATOM	680	CH2	TRP	99	4. 151	27. 945	55. 111	1. 00 67. 77
	ATOM	681	C	TRP	99	-0. 247	31. 793	56. 673	1. 00 74. 58
	ATOM	682	0	TRP	99	-1. 060	31. 567	57. 556	1. 00 75. 00
	ATOM	683	N	SER	100	-0. 090	31. 087	55. 647	1. 00 72. 11
25	ATOM	684	CA	SER	100	-0. 948	29. 999	55. 517	1. 00 68. 48
	ATOM	685	CB	SER	100	-2. 376	30. 466	55. 232	1. 00 68. 40
	ATOM	686	0G	SER	100	-2. 467	31. 128	53. 985	1. 00 68. 76
	ATOM	687	C	SER	100	-0. 522	29. 152	54. 382	1. 00 66. 28
	ATOM	688	0	SER	100	0. 405	29. 473	53. 632	1. 00 65. 13

- 168 -ATOM 689 N VAL 101 -1.22528. 028 54. 291 1.00 64.27 27. 030 53. 262 ATOM VAL 101 -0.9821. 00 62. 66 690 CA 26. 023 ATOM 691 CB VAL 101 0.090 53. 715 1. 00 62. 98 CG1 VAL 101 1.493 26. 554 53. 459 1.00 66.77 ATOM 692 55. 198 ATOM 693 CG2 VAL 101 -0.07525. 688 1.00 63.17 5 ATOM 694 C VAL 101 -2.21926. 243 52. 878 1. 00 60. 88 ATOM 695 0 VAL 101 -2.56125. 258 53. 530 1.00 60.62 LYS 102 -2.88026. 671 51.810 1.00 58.24 ATOM 696 N 51. 337 ATOM 697 CA LYS 102 -4.06625. 981 1. 00 56. 12 1.00 57.06 50.410 ATOM 698 CB LYS 102 -4.88726. 880 10 ATOM 699 CG LYS 102 -5. 884 27. 806 51. 111 1. 00 60. 55 700 CD LYS 102 -7.05627. 038 51.748 1.00 63.17 ATOM -8. 282 ATOM 701 CE LYS 102 27. 944 52. 036 1. 00 64. 70 -8.021 ATOM 702 NZ LYS 102 29. 150 52. 899 1. 00 63. 52 -3.67724.710 **ATOM** 703 C LYS 102 50. 596 1.00 54.04 15 ATOM LYS 102 -2.59924.609 50.007 1.00 52.35 704 0 705 N THR 103 -4.57623. 738 50.631 1. 00 52. 24 ATOM ATOM THR 103 -4.34522. 474 49.972 1.00 49.72 706 CA ATOM 707 CB THR 103 -4.13921. 385 51.010 1.00 49.49 **ATOM** 708 OG1 THR 103 -3.39920. 316 50. 422 1. 00 53. 11 20 CG2 THR 103 -5.47520.861 51. 517 1.00 48.32 ATOM 709 ATOM 710 C THR 103 -5.56322. 158 49. 106 1.00 49.61 -6.69349.507 1.00 50.24 ATOM 711 0 THR 103 22. 435 ATOM 712 N LYS 104 -5.33021. 587 47. 924 1. 00 48. 56 ATOM CA LYS 104 -6.40421. 251 46. 983 1.00 48.50 25 713 ATOM 714 CBLYS 104 -6. 469 22. 298 45.864 1.00 49.98 CG LYS 104 -6.75323. 737 46. 313 1.00 56.05 ATOM 715 ATOM 716 CD LYS 104 -8.19523. 932 46. 814 1. 00 60. 38 717 · CE LYS 104 -8.45625. 383 1. 00 62. 32 ATOM 47. 254

						- 169	-		
	ATOM	718	NZ	LYS	104	-9. 845	25. 649	47. 761	1. 00 61. 31
	ATOM	719	C	LYS	104	-6. 224	19. 878	46. 332	1. 00 48. 13
	ATOM	720	0	LYS	104	-5. 286	19. 685	45. 563	1. 00 49. 60
	ATOM	721	N	HIS	105	-7. 127	18. 936	46. 606	1. 00 47. 57
5	ATOM	722	CA	HIS	105	-7. 023	17. 601	46. 010	1. 00 47. 23
	ATOM	723	CB	HIS	105	-7. 165	16. 529	47. 074	1. 00 47, 40
	ATOM	724	CG	HIS	105	-6. 241	16. 709	48. 228	1. 00 49. 37
	ATOM	725	CD2	HIS	105	-5. 098	16. 066	48. 563	1. 00 49. 55
	ATOM	726	ND1	HIS	105	-6. 459	17. 648	49. 212	1. 00 50. 43
10	ATOM	727	CE1	HIS	105	-5. 493	17. 571	50. 110	1. 00 51. 38
	ATOM	728	NE2	HIS	105	-4. 655	16. 619	49. 740	1. 00 50. 58
	ATOM	729	C	HIS	105	-8. 030	17. 304	44. 907	1. 00 46. 39
	ATOM	730	0	HIS	105	-9. 195	17. 692	44. 985	1. 00 49. 62
	ATOM	731	N	GLN	106	-7. 575	16. 580	43. 894	1. 00 42. 98
15	ATOM	732	CA	GLN	106	-8. 419	16. 226	42. 771	1. 00 40. 44
	ATOM	733	CB	GLN	106	-8. 284	17. 285	41. 685	1. 00 40. 41
	ATOM	734	CG	GLN	106	-9. 546	17. 548	40. 908	1. 00 40. 59
	ATOM	735	CD	GLN	106	-10. 428	16. 324	40. 813	1. 00 40. 54
	ATOM	736	0E1	GLN	106	-11. 061	15. 927	41. 795	1. 00 39. 16
20	ATOM	737	NE2	GLN	106	-10. 475	15. 712	39. 631	1. 00 40. 06
	ATOM	738	C	GLN	106	-7. 940	14. 878	42. 249	1. 00 40. 70
	ATOM	739	0	GLN	106	-6. 745	14. 699	42. 012	1. 00 41. 69
	ATOM	740	N	MET	107	-8. 867	13. 937	42. 066	1. 00 41. 01
	ATOM	741	CA	MET	107	-8. 532	12. 588	41. 599	1. 00 40. 17
25	ATOM	742	CB	MET	107	-9. 083	11. 551	42. 588	1. 00 42. 07
	ATOM	743	CG	MET	107	-8. 772	10. 094	42. 249	1. 00 44. 67
	ATOM	744	SD	MET	107	-10. 185	9. 202	41. 551	1. 00 50. 71
	ATOM	745	CE	MET	107	-10. 688	8. 056	42. 927	1. 00 43. 37
	ATOM	746	C	MET	107	-9. 059	12. 294	40. 204	1. 00 38. 93

- 170 -1.00 41.30 747 MET 107 **-10.** 264 12. 285 39. 979 ATOM 0 ATOM 748 N TYR 108 -8. 161 12.044 39. 264 1.00 37.96 11. 750 1.00 38.48 749 CA TYR 108 -8. 588 37. 907 ATOM ATOM 750 CBTYR 108 -7. 670 12. 454 36. 900 1. 00 35. 63 ATOM TYR 108 -7.73213. 972 36. 977 1. 00 35. 18 751 CG 5 CD1 TYR 108 14. 645 ATOM 752 -7.49238. 180 1.00 37.21 CE1 TYR 108 -7.55016.047 38. 268 1. 00 34. 81 ATOM 753 ATOM 754 CD2 TYR 108 -8.03114. 735 35. 857 1. 00 34. 14 CE2 TYR 108 -8.09216. 134 35. 931 1.00 35.09 ATOM 755 ATOM 756 CZTYR 108 -7. 852 16. 783 37. 139 1.00 35.25 10 -7. 937 18. 158 37. 211 1.00 33.27 ATOM 0HTYR 108 757 ATOM 758 C TYR 108 -8.583 10. 241 37.689 1. 00 40. 17 TYR 108 -7.8179. 514 38. 325 1.00 38.04 ATOM 759 0 9.765 1.00 42.63 **ATOM** 760 N **SER 109** -9.46936. 818 ATOM 761 **SER 109** -9.5248. 341 36. 530 1.00 44.60 CA 15 7. 787 36. 736 1.00 43.05 ATOM 762 CB SER 109 -10.9296. 385 ATOM 763 **SER 109** -10.92636. 522 1.00 41.66 0G ATOM 764 C **SER 109** -9.0908. 106 35. 097 1. 00 46. 74 ATOM 765 0 SER 109 -9.5318. 799 34. 182 1. 00 44. 65 7. 120 ATOM 766 -8.21734. 918 1. 00 50. 31 20 N ILE 110 ILE 110 -7.6866. 782 33.608 1. 00 55. 29 ATOM 767 CA ILE 110 -6.3266.060 33. 731 1.00 54.32 ATOM 768 CB CG2 ILE 110 -5. 690 5. 932 32. 364 1.00 56.16 ATOM 769 CG1 ILE 110 -5.3736.844 1. 00 53. 30 ATOM 770 34. 626 CD1 ILE 110 -4.0676. 117 34. 869 1.00 51.57 ATOM 771 25 **ATOM** 772 C ILE 110 -8.6215. 882 32. 799 1. 00 59. 70 ILE 110 -8.9064. 749 33. 199 1. 00 58. 82 ATOM 773 0 PRO 111 -9. 114 6.381 1. 00 64. 10 ATOM 774 N 31. 650 ATOM 775 CD PRO 111 -8.9727. 759 31. 142 1.00 64.05

- 171 -ATOM 776 CA PRO 111 -10.0121.00 68.40 5. 608 30. 788 **ATOM** CB PRO 111 777 -10. 118 6. 484 29. 547 1. 00 67. 29 ATOM PRO 111 7.860 778 CG -10.10530. 144 1.00 63.88 ATOM 779 C PRO 111 -9. 416 4. 231 30. 494 1.00 72.88 ATOM 780 PRO 111 -8. 195 4.065 5 0 30. 506 1. 00 73. 72 ATOM 3. 250 781 N GLU 112 -10.28030. 239 1. 00 77. 60 ATOM 782 CA GLU 112 -9.8451.879 29.958 1.00 80.79 ATOM 783 CB GLU 112 -11.0720.968 29. 798 1.00 82.29 ATOM 784 CG GLU 112 -10.748-0.49829. 524 1. 00 83. 62 ATOM CD GLU 112 -11. 896 -1.24728.851 10 785 1.00 85.04 ATOM 0E1 GLU 112 786 -11. 697 -2.42328. 470 1.00 85.60 ATOM 787 0E2 GLU 112 -12.995-0.66528.700 1. 00 85. 42 ATOM 788 C GLU 112 -8.9711.806 28. 702 1. 00 82. 21 ATOM 789 0 **GLU 112** -7.9361. 137 28.693 1. 00 82. 17 ATOM 790 N 2.501 15 ASP 113 -9.39427.649 1. 00 83. 97 ATOM 791 CA ASP 113 -8. 660 2. 522 26. 385 1. 00 85. 79 ATOM 792 ASP 113 -9.5063. 221 CB 25. 302 1. 00 86. 45 ATOM 793 CG ASP 113 4.624 -9.96125. 712 1. 00 87. 32 -ATOM 794 OD1 ASP 113 -10.655 4.756 26. 748 1. 00 86. 75 ATOM 795 OD2 ASP 113 20 -9.6295. 595 24. 991 1.00 87.18 **ATOM** 796 C ASP 113 -7. 297 3. 215 26. 533 1.00 86.44 ATOM 797 0 ASP 113 -6.4673. 195 25. 617 1.00 86.35 ATOM 798 N ALA 114 **−7.** 075 3.813 27. 701 1. 00 86. 34 ATOM 799 CA ALA 114 -5. 837 4. 533 28.000 1. 00 85. 22 25 ATOM 800 CB ALA 114 5.904 28. 585 -6.1741. 00 84. 46 ATOM 801 C ALA 114 -4.92828.963 3. 768 1.00 83.67 ATOM 802 0 ALA 114 -3.7163. 692 28. 762 1. 00 83. 48 ATOM 803 N MET 115 -5.5283. 212 30.012 1. 00 81. 79 ATOM 804 CA MET 115 -4. 802 1. 00 78. 70 2. 457 31. 023

- 172 -ATOM 805 CB MET 115 -5. 776 2. 050 32. 135 1.00 81.16 **ATOM** 806 MET 115 CG -5. 148 1.863 33. 503 1. 00 84. 52 ATOM 807 SD MET 115 -3.9780.492 33. 553 1. 00 90. 44 ATOM 808 CE MET 115 -5.060-0.891 34. 119 1. 00 88. 49 ATOM 809 C 5 MET 115 -4. 145 1. 224 30. 391 1. 00 76. 27 ATOM 810 MET 115 -3.0660.809 0 30.813 1. 00 74. 47 ATOM 811 N THR 116 -4.7960.658 29. 372 1.00 74.50 ATOM THR 116 812 CA -4. 282 -0.51828. 666 1. 00 72. 46 ATOM . 813 CB THR 116 -5. 399 -1.52428. 309 1. 00 72. 22 ATOM 814 OG1 THR 116 10 -6.200-0.99327. 244 1. 00 71. 17 ATOM CG2 THR 116 815 -6. 275 -1.80529.516 1.00 71.94 ATOM 816 C THR 116 -3.621-0. 110 27. 356 1. 00 71. 75 ATOM 817 0 THR 116 -3.562-0.89926. 412 1. 00 71. 39 ATOM 818 N **GLY 117** -3.1421. 131 27. 301 1. 00 71. 09 15 ATOM 819 CA GLY 117 -2.4771. 639 26. 110 1. 00 68. 62 ATOM 820 C GLY 117 -0.9611.651 26. 260 1. 00 66. 70 ATOM 821 0 **GLY 117** -0.3840.702 26. 798 1. 00 67. 20 ATOM 822 N THR 118 -0. 313 2.716 25. 783 1.00 63.05 ATOM 823 CA THR 118 1. 142 2. 844 25. 876 1. 00 59. 92 ATOM 20 824 CB THR 118 1. 796 3. 020 24. 502 1. 00 59. 06 825 ATOM OG1 THR 118 1.013 3. 926 23. 718 1. 00 57. 88 ATOM 826 CG2 THR 118 1. 917 1. 688 23. 794 1. 00 59. 21 ATOM 827 C THR 118 1. 548 4. 038 26. 721 1. 00 58. 97 **ATOM** 828 THR 118 0 0. 764 26. 912 4. 971 1. 00 58. 11 25 ATOM 829 N ALA 119 2. 782 4.001 27. 218 1. 00 56. 72 ATOM 830 CA ALA 119 3. 313 5. 071 28. 052 1. 00 52. 86 ATOM ALA 119 831 CB 4. 807 4. 938 28. 177 1. 00 51. 30 ATOM 832 C ALA 119 2. 972 6. 399 27. 421 1. 00 51. 58 ATOM 833 0 2. 456 ALA 119 7. 301 28.080 1. 00 52. 70

- 173 -ATOM 834 N GLU 120 3. 260 6. 502 26. 131 1. 00 48. 02 ATOM 835 CA GLU 120 1. 00 46. 07 2. 994 7. 716 25. 386 GLU 120 ATOM 836 CB 3. 194 7. 471 23. 894 1. 00 49. 10 ATOM 837 CG GLU 120 4. 210 6. 381 23. 550 1. 00 52. 89 ATOM 838 5 CD GLU 120 5.630 6. 736 23. 945 1. 00 53. 64 ATOM 839 0E1 GLU 120 5.962 6.621 25. 141 1. 00 55. 30 0E2 GLU 120 ATOM 840 6.411 7. 139 23.057 1. 00 52. 83 ATOM 841 C GLU 120 1. 557 8. 140 25. 630 1. 00 44. 27 ATOM 842 0 GLU 120 1. 295 9. 257 26.070 1. 00 44. 84 ATOM 843 10 N MET 121 0.627 7. 235 25. 351 1. 00 41. 37 ATOM 844 CA MET 121 -0. 791 7. 525 25. 513 1. 00 38. 57 ATOM 845 CB MET 121 -1.6266. 358 24.. 990 1. 00 41. 30 ATOM 846 CG MET 121 -1.7216. 328 23. 479 1. 00 46. 24 ATOM 847 SD MET 121 -2.4834.835 22. 838 1. 00 50. 88 ATOM 848 CE MET 121 15 -3.9084.669 23.961 1. 00 50. 02 ATOM 849 C MET 121 -1.1907.820 26. 937 1. 00 34. 60 ATOM 850 0 MET 121 -1.9108.780 27. 204 1. 00 31. 69 ATOM 851 N LEU 122 -0.7196.985 27. 852 1. 00 32. 63 ATOM 852 CA LEU 122 -1.0517. 141 29. 263 1. 00 30. 24 ATOM 20 853 CB LEU 122 30. 108 -0.2566. 140 1. 00 27. 33 ATOM 854 CG LEU 122 -0.778 5. 923 31. 533 1. 00 21. 99 ATOM 855 CD1 LEU 122 -0. 279 4.601 32. 031 1. 00 22. 53 **ATOM** CD2 LEU 122 856 -0. 366 7. 034 32. 456 1. 00 17. 78 ATOM 857 C LEU 122 -0. 759 29. 746 8. 551 1. 00 28. 67 ATOM 25 858 0 LEU 122 -1.6199. 228 30. 326 1. 00 25. 21 ATOM PHE 123 859 N 0.469 8. 987 29. 502 1. 00 26. 83 ATOM PHE 123 860 CA 0.871 10. 306 29. 929 1. 00 25. 29 ATOM 861 CB PHE 123 2. 387 29. 908 10. 398 1. 00 20. 22 ATOM 862 CG PHE 123 3.015 9. 772 31. 112 1. 00 15. 51

- 174 -ATOM CD1 PHE 123 3. 538 863 8. 494 31. 064 1. 00 12. 96 **ATOM** CD2 PHE 123 864 3. 028 10. 457 32. 328 1. 00 13. 35 ATOM CE1 PHE 123 865 4.067 7. 910 32. 217 1. 00 12. 87 CE2 PHE 123 ATOM 866 3. 552 9.879 33. 484 1.00 9.69 ATOM CZPHE 123 5 867 4.072 8.609 33. 432 1. 00 9. 56 ATOM 868 C PHE 123 0.202 11. 432 29. 157 1. 00 26. 20 ATOM 869 0 PHE 123 -0.10212. 489 29.722 1.00 26.61 ATOM 870 N ASP 124 -0.05311. 207 27. 875 1. 00 24. 47 ATOM 871 CA ASP 124 -0.75012. 210 27. 090 1. 00 23. 14 ATOM 10 872 CB ASP 124 -1.22811.614 25. 785 1.00 24.52 ATOM 873 CG ASP 124 -0.17811.628 24. 747 1. 00 27. 01 ATOM 874 OD1 ASP 124 -0.37610. 955 23.715 1. 00 26. 39 ATOM 875 OD2 ASP 124 0.839 12. 325 24. 968 1.00 29.23 **ATOM** 876 C ASP 124 -1.96712.650 27. 875 1.00 21.89 ATOM 877 0 ASP 124 -2.36115 13. 815 27. 841 1.00 20.01 ATOM 878 N TYR 125 -2.56211. 688 28. 574 1.00 20.84 ATOM 879 CA TYR 125 -3.74911. 943 29. 371 1. 00 20. 51 ATOM TYR 125 880 CB -4. 414 10.619 29. 792 1. 00 20. 43 ATOM 881 CG TYR 125 -5.79610. 794 30. 394 1. 00 22. 84 ATOM 20 882 CD1 TYR 125 -6.08310. 358 31. 692 1. 00 23. 51 ATOM 883 CE1 TYR 125 -7.34510. 584 32. 268 1.00 31.08 ATOM CD2 TYR 125 884 -6.80311. 451 29. 678 1. 00 26. 43 ATOM CE2 TYR 125 885 -8.064 11. 685 30. 232 1. 00 31. 61 ATOM 886 CZ TYR 125 -8.33611. 255 31. 528 1.00 34.64 **ATOM** 25 887 OH TYR 125 -9.58511. 520 32.073 1. 00 38. 10 ATOM 888 C TYR 125 -3. 382 12. 752 30.605 1. 00 19. 11 ATOM 889 0 TYR 125 -3. 904 13. 848 30. 824 1. 00 16. 08 ATOM 890 N ILE 126 -2.46512. 212 31.399 1. 00 17. 91 ATOM 891 CA ILE 126 -2.04912. 879 32. 615 1. 00 17. 82

- 175 -ATOM ILE 126 892 CB -0.81912. 236 33. 203 1.00 19.82 CG2 ILE 126 ATOM 893 -0.48912. 905 34. 538 1.00 18.77 ATOM CG1 ILE 126 894 -1.05510. 732 33. 331 1. 00 21. 27 CD1 ILE 126 ATOM 895 0.045 9. 984 34.062 1. 00 23. 92 ATOM 896 C ILE 126 -1.71714. 313 32. 325 5 1. 00 18. 09 ATOM 897 0 ILE 126 -1.99115. 205 33. 123 1.00 16.68 898 ATOM SER 127 -1.10814. 532 31. 172 N 1. 00 19. 12 ATOM 899 CA SER 127 -0. 747 15. 877 30. 789 1.00 20.96 900 ATOM CB SER 127 -0.057 15. 857 29. 432 1. 00 19. 89 SER 127 10 ATOM 901 0G 0. 569 17. 100 29. 190 1. 00 22. 20 ATOM -2.011902 C SER 127 16. 742 30.746 1.00 21.92 ATOM 903 0 **SER 127** -2.17717. 658 31. 551 1. 00 20. 25 ATOM **GLU 128** -2.902904 N 16. 431 29.813 1. 00 23. 87 ATOM 905 CA **GLU 128** -4. 152 17. 161 29.670 1. 00 26. 98 ATOM 906 CB GLU 128 -5. 111 16. 353 28.802 15 1. 00 33. 10 **ATOM** 907 CG GLU 128 -6.47116. 990 28. 544 1. 00 39. 51 ATOM 908 CD GLU 128 -7.28016. 175 27. 544 1. 00 44. 52 ATOM 909 OE1 GLU 128 -7.21116. 481 26. 327 1. 00 46. 11 ATOM OE2 GLU 128 910 -7.96315. 218 27. 980 1. 00 43. 93 ATOM 911 C GLU 128 17. 431 20 -4. 797 31. 020 1. 00 26. 55 ATOM 912 0 **GLU 128** 18. 561 -5. 177 31. 334 1. 00 26. 16 ATOM N CYS 129 -4.929913 16. 384 31. 820 1.00 26.36 CYS 129 ATOM 914 CA -5. 532 16. 535 33. 130 1. 00 26. 47 CYS 129 ATOM 915 CB -5. 452 15. 219 33. 893 1.00 28.39 25 ATOM 916 SG CYS 129 -6.45013. 922 33. 126 1.00 37.58 **ATOM** 917 C CYS 129 -4.85317.636 33.914 1. 00 25. 00 ATOM 918 CYS 129 0 -5. 515 18. 561 34. 372 1. 00 24. 97 ATOM ILE 130 919 N -3. 532 17. 536 34. 059 1. 00 24. 74 ATOM 920 CA ILE 130 -2.76318. 536 34. 793 1. 00 21. 55

- 176 -ATOM CB ILE 130 921 -1.24518. 255 1.00 17.55 34. 709 ATOM CG2 ILE 130 922 -0.45819. 404 35. 304 1.00 15.00 CG1 ILE 130 ATOM 923 -0. 915 16. 984 35. 490 1. 00 16. 42 ATOM 924 CD1 ILE 130 0. 574 16. 713 35. 623 1. 00 18. 34 ATOM 925 ILE 130 C -3.07019. 910 34. 219 1. 00 23. 54 ATOM 926 ILE 130 -3.5720 20. 780 34. 926 1.00 21.27 ATOM 927 N SER 131 -2.78520.091 32. 933 1. 00 26. 25 ATOM 928 SER 131 CA -3.04821. 353 32. 270 1. 00 28. 50 ATOM 929 CB SER 131 -3.01121. 186 30. 764 1. 00 28. 76 ATOM 930 10 0G SER 131 -3.85622. 154 30. 164 1. 00 32. 87 ATOM 931 C SER 131 -4.41721.851 32.661 1.00 31.48 ATOM 932 0 SER 131 -4.58623. 002 33. 057 1.00 33.67 ATOM 933 N ASP 132 -5. 411 20. 986 32. 546 1.00 34.56 ATOM 934 ASP 132 CA -6.75321. 397 32.908 1.00 39.04 ATOM 935 CB ASP 132 -7.73515 20. 248 32. 694 1.00 44.84 ATOM 936 CG ASP 132 -9.16520. 650 32. 987 1. 00 50. 51 ATOM 937 OD1 ASP 132 -9.76421. 347 32. 131 1. 00 53. 56 ATOM 938 OD2 ASP 132 -9.67420. 283 34.078 1. 00 52. 37 ATOM 939 C ASP 132 -6.79021. 843 34. 376 1. 00 38. 23 ATOM ASP 132 20 940 0 -7. 160 22. 982 34. 677 1. 00 36. 81 ATOM 941 N PHE 133 -6.39420. 932 35. 270 1. 00 36. 88 ATOM 942 PHE 133 CA -6.37221. 170 36. 713 1.00 34.85 ATOM 943 CB PHE 133 -5.60420.060 37. 433 1. 00 33. 59 ATOM CG PHE 133 944 -5. 343 20. 362 38. 878 1. 00 34. 77 ATOM CD1 PHE 133 25 945 -6.39620. 547 39. 760 1. 00 35. 58 ATOM CD2 PHE 133 946 -4. 043 20. 523 39. 348 1. 00 37. 81 ATOM CE1 PHE 133 947 -6.15920. 896 41. 091 1. 00 37. 66 ATOM 948 CE2 PHE 133 -3.79220. 872 40. 678 1. 00 38. 00 ATOM CZ PHE 133 949 -4.85021. 059 41. 548 1. 00 38. 85

- 177 - . ATOM 950 C PHE 133 **-5.** 755 **22.** 503 37.094 1. 00 34. 28 ATOM 951 PHE 133 **-6.** 274 23. 226 0 37. 947 1. 00 33. 97 **ATOM** 952 LEU 134 **-4.** 622 22. 813 N 36. 482 1.00 33.97 **ATOM** CA LEU 134 -3. 958 24. 070 953 36. 766 1. 00 31. 79 5 ATOM 954 CB LEU 134 -2.59024. 109 36. 089 1. 00 24. 12 ATOM 955 CG LEU 134 -1.61823. 026 36. 545 1.00 16.64 ATOM 956 CD1 LEU 134 -0. 368 23. 101 35. 705 1.00 15.98 ATOM 957 CD2 LEU 134 -1.30523. 184 38. 014 1. 00 10. 77 LEU 134 ATOM 958 C **-4.** 855 25. 176 36. 234 1. 00 34. 44 10 ATOM 959 0 LEU 134 -5. 111 26. 163 36. 920 1. 00 34. 41 ATOM 960 N ASP 135 · -5.36524. 999 35. 022 1.00 37.26 ATOM 961 CA ASP 135 -6.23026.014 34. 454 1. 00 42. 65 ATOM 962 CB ASP 135 -6.81525. 565 33. 121 1. 00 46. 76 ATOM 963 CG ASP 135 -7.70726. 629 32. 509 1. 00 52. 18 ATOM 15 964 OD1 ASP 135 -8. 659 26. 271 31. 772 1.00 53.75 ATOM 965 OD2 ASP 135 -7. 443 27. 829 32. 772 1. 00 52. 70 ATOM 966 C ASP 135 -7.38626. 381 35. 383 1. 00 43. 96 ATOM ASP 135 967 0 -7.64327. 563 35. 619 1. 00 44. 98 ATOM 968 N LYS 136 -8.08425. 368 35. 894 1. 00 44. 30 20 ATOM 969 CA LYS 136 -9.22525. 578 36. 780 1. 00 44. 56 ATOM 970 CB LYS 136 -9.88924. 237 37. 124 1. 00 46. 76 ATOM 971 CG LYS 136 -11. 195 **24.** 350 37. 941 1. 00 52. 67 ATOM 972 CD LYS 136 -11. 910 22. 981 38. 128 1. 00 55. 98 ATOM 973 CE LYS 136 -13.36723. 120 38. 628 1. 00 55. 25 ATOM 25 974 NZ LYS 136 -14. 106 21. 817 38. 719 1.00 51.28 ATOM 975 C LYS 136 **-8.** 862 26. 306 38. 069 1. 00 44. 85 ATOM 976 0 LYS 136 -9.73026. 894 38. 717 1. 00 45. 87 ATOM 977 N HIS 137 -7.58626. 273 38. 444 1. 00 44. 25 ATOM 978 CA HIS 137 -7. 149 26. 937 39. 670 1. 00 43. 21

- 178 -ATOM 979 CB HIS 137 -6.43425. 937 40. 585 1.00 44.13 ATOM CG HIS 137 24. 915 41. 199 1.00 45.24 980 -7. 344 CD2 HIS 137 24. 680 42.492 ATOM 981 -7. 676 1.00 45.35 ATOM 982 ND1 HIS 137 -8.04223. 991 40.452 1.00 45.45 ATOM 983 CE1 HIS 137 -8. 764 23. 231 41. 257 1.00 45.40 5 NE2 HIS 137 -8. 560 42.500 ATOM 984 23. 629 1.00 44.34 39.400 ATOM 985 C HIS 137 -6.24228. 132 1.00 41.96 ATOM 986 HIS 137 -5. 592 28.649 40.307 1.00 40.24 0 ATOM 987 N **GLN 138** -6.21728. 577 38. 151 1. 00 42. 87 ATOM GLN 138 -5.39029. 706 988 CA 37. 766 1. 00 44. 93 10 -5. 949 ATOM 989 CB GLN 138 30. 993 38. 373 1. 00 47. 58 ATOM 990 CG GLN 138 -7. 258 31. 448 37. 749 1.00 51.96 991 CD**GLN 138** -7.41632. 966 ATOM 37. 766 1. 00 55. 20 ATOM 992 0E1 GLN 138 -6.68033. 698 37.088 1. 00 56. 05 ATOM NE2 GLN 138 -8.37533. 445 15 993 38. 546 1.00 55.44 ATOM 994 C GLN 138 -3.92129. 537 38. 162 1.00 44.67 ATOM 995 **GLN 138** -3.31630. 437 38. 747 0 1. 00 45. 78 ATOM 996 -3.35028. 383 37.836 N MET 139 1. 00 41. 86 ATOM 997 CA MET 139 -1.95128. 109 38. 138 1. 00 38. 60 ATOM 998 39. 236 20 CB MET 139 -1.84627. 062 1. 00 39. 19 ATOM 999 MET 139 27.660 CG -2.04840.604 1. 00 41. 24 1000 ATOM SD MET 139 -0.85928. 992 40.852 1. 00 47. 65 ATOM 1001 CE MET 139 0.308 28. 217 42.007 1. 00 44. 32 1002 ATOM C MET 139 -1.23227. 653 36. 881 1. 00 36. 60 25 ATOM 1003 0 MET 139 26. 823 1. 00 35. 29 -0.31636. 910 ATOM 1004 N LYS 140 -1.65935.771 1. 00 34. 23 28. 237 ATOM 1005 CA LYS 140 -1. 101 27. 921 34. 477 1. 00 32. 15 ATOM 1006 CB LYS 140 -2.19828. 062 33. 417 1. 00 31. 04 ATOM 1007 CG LYS 140 -1.97027. 293 32. 116 1. 00 31. 48

						- 179	-			
	ATOM	1008	CD	LYS	140	-2. 184	25. 780	32. 275	1. 00	32. 43
	ATOM	1009	CE	LYS	140	-2. 112	25. 015	30. 925	1. 00	30. 89
	ATOM	1010	NZ	LYS	140	-0. 811	25. 130	30. 168	1. 00	29. 56
	ATOM	1011	C	LYS	140	0. 085	28. 834	34. 161	1. 00	31. 02
5	ATOM	1012	0	LYS	140	0. 047	30. 045	34. 412	1. 00	29. 99
	ATOM	1013	N	HIS	141	1. 143	28. 228	33. 627	1. 00	31. 35
	ATOM	1014	CA	HIS	141	2. 353	28. 940	33. 244	1. 00	30. 03
	ATOM	1015	CB	HIS	141	1. 989	30. 145	32. 385	1. 00	30. 05
	ATOM	1016	CG	HIS	141	1. 001	29. 836	31. 305	1. 00	31. 15
10	ATOM	1017	CD2	HIS	141	-0. 132	30. 473	30. 927	1. 00	30. 91
	ATOM	1018	ND 1	HIS	141	1. 148	28. 769	30. 448	1. 00	33. 49
	ATOM	1019	CE1	HIS	141	0. 147	28. 763	29. 584	1. 00	35. 03
	ATOM	1020	NE2	HIS	141	-0. 643	29. 787	29. 853	1. 00	32. 67
	ATOM	1021	C	HIS	141	3. 138	29. 396	34. 460	1.00	29. 17
15	ATOM	1022	0	HIS	141	4. 211	29. 983	34. 341	1. 00	28. 17
	ATOM	1023	N	LYS	142	2. 601	29. 108	35. 635	1. 00	28. 81
	ATOM	1024	CA	LYS	142	3. 248	29. 505	36. 869	1. 00	29. 17
	ATOM	1025	CB	LYS	142	2. 317	29. 240	38. 065	1. 00	33. 65
	ATOM	1026	CG	LYS	142	0. 986	30. 042	38. 072	1. 00	39. 35
20	ATOM	1027	CD	LYS	142	1. 194	31. 561	38. 214	1. 00	42. 74
	ATOM	1028	CE	LYS	142	-0. 122	32. 360	38. 170	1. 00	45. 49
	ATOM	1029	NZ	LYS	142	0. 110	33. 844	38. 325	1. 00	46. 19
	ATOM	1030	C	LYS	142	4. 575	28. 785	37. 075	1. 00	26. 49
	ATOM	1031	0	LYS	142	5. 340	29. 138	37. 966	1. 00	26. 10
25	ATOM	1032	N	LYS	143	4. 862	27. 784	36. 254	1. 00	24. 58
	ATOM	1033	CA	LYS	143	6. 106	27. 042	36. 416	1. 00	22. 67
	ATOM	1034	CB	LYS	143	7. 258	27. 847	35. 836	1. 00	21. 51
	ATOM	1035	CG	LYS	143	8. 533	27. 071	35. 737	1. 00	22. 59
	ATOM	1036	CD	LYS	143	9. 319	27. 510	34. 516	1. 00	25. 81

		- 180 -								
	ATOM	1037	CE	LYS	143	10. 455	26. 542	34. 240	1. 00	28. 01
	ATOM	1038	NZ	LYS	143	11. 140	26. 828	32. 959	1. 00	27. 25
	ATOM	1039	C	LYS	143	6. 383	26. 732	37. 896	1. 00	22. 14
	ATOM	1040	0	LYS	143	7. 133	27. 459	38. 556	1. 00	21. 99
5	ATOM	1041	N	LEU	144	5. 766	25. 655	38. 401	1. 00	20. 81
	ATOM	1042	CA	LEU	144	5. 910	25. 214	39. 797	1. 00	16. 90
	ATOM	1043	CB	LEU	144	4. 577	25. 351	40. 567 '	1. 00	16. 78
	ATOM	1044	CG	LEU	144	3. 208	24. 956	39. 983	1. 00	18. 43
	ATOM	1045	CD1	LEU	144	2. 148	24. 915	41. 074	1. 00	17. 60
10	ATOM	1046	CD2	LEU	144	2. 795	25. 960	38. 929	1. 00	19. 20
	ATOM	1047	C	LEU	144	6. 432	23. 781	39. 933	1. 00	15. 80
	ATOM	1048	0	LEU	144	6. 265	22. 958	39. 032	1. 00	12. 24
	ATOM	1049	N	PRO	145	7. 078	23. 478	41. 076	1. 00	16. 26
	ATOM	1050	CD	PR0	145	7. 227	24. 446	42. 172	1. 00	15. 64
15	ATOM	1051	CA	PRO	145	7. 678	22. 196	41. 467	1. 00	14. 17
	ATOM	1052	CB	PRO	145	8. 079	22. 427	42. 923	1. 00	18. 10
	ATOM	1053	CG	PR0	145	8. 378	23. 860	42. 963	1. 00	17. 14
	ATOM	1054	C	PR0	145	6. 707	21. 050	41. 357	1. 00	12. 75
	ATOM	1055	0	PRO	145	5. 580	21. 141	41. 852	1. 00	12. 27
20	ATOM	1056	N	LEU	146	7. 160	19. 957	40. 758	1. 00	10. 29
	ATOM	1057	CA	LEU	146	6. 290	18. 804	40. 560	1. 00	11. 21
	ATOM	1058	CB	LEU	146	6. 156	18. 539	39. 075	1. 00	7. 24
	ATOM	1059	CG	LEU	146	5. 160	17. 439	38. 824	1. 00	3. 01
	ATOM	1060	CD1	LEU	146	3. 817	17. 832	39. 389	1. 00	1. 00
25	ATOM	1061	CD2	LEU	146	5. 083	17. 215	37. 342	1. 00	3. 06
	ATOM	1062	C	LEU	146	6. 696	17. 502	41. 233	1. 00	12. 36
	ATOM	1063	0	LEU	146	7. 629	16. 851	40. 790	1. 00	15. 11
	ATOM	1064	N	GLY	147	5. 972	17. 086	42. 262	1. 00	14. 72
	ATOM	1065	CA	GLY	147	6. 333	15. 851	42. 937	1. 00	17. 81

- 181 -5. 716 1. 00 18. 51 **GLY 147** 14. 586 42. 371 ATOM 1066 C 14. 644 41.704 1. 00 20. 85 ATOM 1067 0 **GLY 147** 4. 689 13. 440 42.631 1. 00 19. 28 PHE 148 6. 342 ATOM 1068 N 5.825 12. 167 42. 142 1. 00 20. 55 ATOM 1069 CA PHE 148 1. 00 16. 36 6. 707 11. 635 41.023 ATOM 1070 CB PHE 148 12. 409 39. 759 1. 00 17. 72 1071 PHE 148 6. 593 ATOM CG 39.753 1.00 17.99 CD1 PHE 148 6. 792 13. 779 ATOM 1072 CD2 PHE 148 6. 298 11.769 38.560 1. 00 21. 10 ATOM 1073 CE1 PHE 148 6.695 14. 509 38. 570 1. 00 22. 37 ATOM 1074 6. 198 12. 494 37. 362 1. 00 22. 82 1075 CE2 PHE 148 ATOM 10 13.864 37.366 1. 00 21. 67 PHE 148 6. 398 ATOM 1076 CZPHE 148 5. 712 11. 104 43. 222 1. 00 22. 75 ATOM 1077 C 6.691 10. 783 43.885 1. 00 24. 66 ATOM 1078 0 PHE 148 THR 149 4. 513 10. 562 43. 403 1. 00 24. 45 ATOM 1079 N 4. 312 9. 514 44. 387 1. 00 24. 75 ATOM 1080 CA THR 149 15 ATOM 1081 CB THR 149 3. 365 9. 917 45. 497 1. 00 23. 76 11. 175 1. 00 25. 51 OG1 THR 149 45. 192 ATOM 1082 2. 757 ATOM 1083 CG2 THR 149 4. 107 9. 989 46. 786 1. 00 22. 63 3.705 8. 306 43.715 1. 00 27. 38 ATOM 1084 C THR 149 ATOM 1085 0 THR 149 3. 093 8. 405 42. 647 1. 00 24. 58 20 7. 160 44. 361 1. 00 30. 07 1086 PHE 150 3. 857 ATOM N 3. 327 5. 936 43.811 1. 00 32. 54 ATOM 1087 CA PHE 150 1088 PHE 150 4. 455 5. 120 43. 215 1. 00 29. 97 ATOM CB 1. 00 27. 55 ATOM 1089 CG PHE 150 5. 172 5. 820 42. 119 CD1 PHE 150 6. 134 6.770 42. 397 1. 00 27. 41 ATOM 1090 25 1.00 27.56 40.798 ATOM 1091 CD2 PHE 150 4.850 5. 561 1092 CE1 PHE 150 6.770 7. 447 41. 366 1. 00 28. 61 ATOM 1. 00 26. 86 ATOM 1093 CE2 PHE 150 5. 481 6. 231 39. 762 6. 437 40.045 1. 00 27. 37 ATOM 1094 CZ PHE 150 7. 177

		- 182 -							
	ATOM	1095	C	PHE 1	50 2.	561 5.	093 44. 80	8 1. 00 35. 78	
	ATOM	1096	0	PHE 1	50 3.	095 4.	695 45. 84	5 1. 00 36. 93	
	ATOM	1097	N	SER 1	51 1.	305 4.	813 44. 46	7 1. 00 38. 60	
	ATOM	1098	CA	SER 1	51 0.	420 4.	006 45. 29	5 1.00 40.51	
5	ATOM	1099	CB	SER 1	51 -0.	830 4.	802 45.64	1 1.00 41.51	
	ATOM	1100	0G	SER 1	51 -1.	507 5.	159 44. 45	3 1. 00 47. 40	
	ATOM	1101	C	SER 1	51 0.	038 2.	736 44. 53	3 1. 00 41. 75	
	ATOM	1102	0	SER 1	51 0.	069 2.	696 43. 30	1 1. 00 40. 78	
	ATOM	1103	N	PHE 1	52 -0.	336 1.	704 45. 278	3 1. 00 43. 86	
10	ATOM	1104	CA	PHE 18	52 -0.	684 0. 4	421 44.687	7 1. 00 45. 76	
	ATOM	1105	CB	PHE 19	52 0.	465 -0. 9	557 44. 969	5 1. 00 51. 67	
	ATOM	1106	CG	PHE 15	0.	429 -1.8	808 44. 133	3 1. 00 57. 82	
	ATOM	1107	CD 1	PHE 18	0.	597 -1. 7	749 42. 751	1. 00 59. 39	
	ATOM	1108	CD2	PHE 15	0. 3	256 -3. ()5 6 44. 739	1. 00 60. 37	
15	ATOM	1109	CE1	PHE 15	0. 9	598 –2. 9	915 41. 979	1. 00 61. 23	
	ATOM	1110	CE2	PHE 15	2 0. 2	254 -4. 2	232 43. 978	1. 00 61. 76	
	ATOM	1111	CZ	PHE 15	2 0. 4	426 -4. 1	61 42. 593	1. 00 61. 46	
	ATOM	1112	C	PHE 15	2 -2. (007 -0. 1	34 45. 238	1. 00 43. 74	
	ATOM	1113	0	PHE 15	2 -2. 1	137 -0. 3	882 46. 437	1. 00 43. 01	
20	ATOM	1114	N	PRO 15	3 -3. (005 -0.3	322 44. 359	1. 00 40. 65	
	ATOM	1115	CD	PRO 15	3 –2. 9	93 0. 1	79 42. 979	1. 00 39. 35	
	ATOM	1116	CA	PRO 15	3 -4. 3	330 -0.8	44 44. 685	1. 00 38. 88	
	ATOM	1117	CB	PRO 15	3 -5.0)45 –0. 8	03 43. 352	1. 00 36. 16	
	ATOM	1118	CG	PRO 15	3 -4. 4	154 0. 3	59 42.711	1. 00 37. 38	
25	ATOM	1119	C	PRO 15	3 -4. 2	235 -2. 2	55 45. 192	1. 00 41. 30	
	ATOM	1120	0	PRO 15	3 -3. 4	81 -3.0	57 44.657	1. 00 42. 17	
	ATOM	1121	N	VAL 15	4 -5. 0	13 -2. 5	65 46. 215	1. 00 45. 30	
	ATOM	1122	CA	VAL 15	4 -5.0	16 -3. 9	05 46. 767	1. 00 49. 50	
	ATOM	1123	CB	VAL 15	4 -4. 1	24 -3. 9	89 47. 990	1. 00 45. 75	

- 183 -1124 CG1 VAL 154 -4. 297 -5. 331 48. 638 ATOM 1. 00 45. 79 ATOM 1125 CG2 VAL 154 -2. 684 -3. 772 47. 594 1. 00 44. 88 ATOM 1126 C VAL 154 -6. 432 -4. 268 47. 181 1. 00 55. 51 ATOM 1127 0 VAL 154 -6. 963 -3. 683 48. 119 1. 00 58. 30 1128 ATOM N ARG 155 **-7. 042 -5. 232 46. 495** 1.00 61.06 5 ATOM 1129 **CA ARG 155** -8. 413 -5. 643 46. 812 1.00 67.71 1130 ARG 155 -8.812 -6.847 45.956ATOM CB 1. 00 71. 43 ATOM 1131 CG ARG 155 -9.033 -6.50144. 501 1. 00 76. 11 1132 ATOM CD ARG 155 **-9.** 094 **−7.** 736 43. 621 1. 00 78. 73 1133 NE ARG 155 10 ATOM -9.292 -7.35242. 226 1. 00 81. 59 ATOM 1134 CZARG 155 -9.138-8. 168 41. 190 1. 00 82. 83 ATOM 1135 NH1 ARG 155 -8. 778 -9. 432 41. 386 1. 00 83. 55 ATOM 1136 NH2 ARG 155 -9.340**-7.** 717 **39.** 956 1. 00 82. 01 ATOM 1137 C ARG 155 -8.639**-5.** 965 48. 291 1. 00 70. 15 ATOM 1138 0 ARG 155 -7.689 -6.25549. 022 1. 00 71. 24 15 ATOM 1139 N HIS 156 -9.903 -5.92348. 720 1. 00 71. 23 ATOM 1140 CA HIS 156 -10.265 -6.18450. 117 1. 00 72. 30 ATOM 1141 **CB HIS 156** -11. 724 *-*5. 769 50. 365 1. 00 73. 82 ATOM 1142 CG HIS 156 51. 808 -12.049 -5.5061. 00 76. 32 ATOM 1143 CD2 HIS 156 -11. 335 -5. 722 52. 941 20 1. 00 76. 70 ATOM 1144 ND1 HIS 156 -13. 243 -4. 944 52. 211 1. 00 76. 54 ATOM 1145 CE1 HIS 156 **-13. 251 -4. 823** 53. 527 1. 00 76. 16 ATOM 1146 NE2 HIS 156 -12.106-5. 288 53. 994 1. 00 77. 55 ATOM 1147 C HIS 156 -10.063**-7.** 645 50. 522 1. 00 72. 42 25 ATOM 1148 0 HIS 156 -9. 196 **-7.** 957 51. 345 1. 00 71. 15 ATOM 1149 N ASN 180 11. 816 6. 551 32. 482 1. 00 43. 22 ATOM 1150 CA ASN 180 11. 492 7. 278 33. 706 1. 00 42. 73 ATOM 1151 CBASN 180 12. 677 8. 168 34. 155 1. 00 46. 67 **ATOM** 1152 CG ASN 180 13. 189 9.094 33. 052 1. 00 50. 13

- 184 -1. 00 51. 24 ATOM 1153 OD1 ASN 180 14. 152 8. 777 32. 336 ATOM ND2 ASN 180 12. 547 10. 250 32. 915 1.00 51.73 1154 ASN 180 10. 228 8. 110 33. 523 1.00 38.44 ATOM 1155 C ATOM 1156 ASN 180 9. 941 8. 600 32. 431 1. 00 36. 40 0 1157 VAL 181 9. 473 8. 257 34. 603 1. 00 34. 02 5 ATOM N 8. 218 8. 995 34. 577 1. 00 31. 37 ATOM 1158 CA VAL 181 7.498 8.874 35. 957 1. 00 34. 84 ATOM 1159 CB VAL 181 ATOM 1160 CG1 VAL 181 6.091 9. 484 35. 909 1. 00 32. 59 7. 414 7. 405 36. 353 1.00 38.00 ATOM 1161 CG2 VAL 181 ATOM 1162 VAL 181 8. 426 10. 458 34. 221 1. 00 26. 36 C 10 33. 237 1163 VAL 181 7. 882 10. 964 1. 00 23. 28 ATOM 0 ATOM 1164 N VAL 182 9.228 11. 131 35.030 1. 00 23. 56 CA 12. 538 34. 826 1165 VAL 182 9. 518 1. 00 18. 23 ATOM ATOM 1166 CB VAL 182 10.702 12. 958 35. 716 1. 00 14. 26 ATOM 1167 CG1 VAL 182 11.905 12.084 35. 426 1. 00 14. 73 15 ATOM 1168 CG2 VAL 182 11.001 14. 403 35. 508 1. 00 11. 08 ATOM 1169 VAL 182 9. 773 12. 882 33. 352 1. 00 15. 36 C ATOM 1170 0 VAL 182 9. 330 13. 924 32. 875 1. 00 15. 32 ATOM 1171 N GLY 183 10. 467 12. 009 32. 632 1. 00 13. 34 ATOM 1172 CA **GLY 183** 10.713 12. 267 31. 228 1. 00 12. 56 20 ATOM 1173 C **GLY 183** 9.458 12. 098 30. 382 1. 00 13. 06 1174 0 9. 104 12. 978 29. 601 1. 00 12. 05 ATOM GLY 183 8. 772 10. 971 30. 540 1. 00 15. 78 ATOM 1175 N LEU 184 1176 7.549 10. 708 29. 777 1. 00 15. 21 ATOM CA LEU 184 ATOM 1177 CB LEU 184 6.858 9. 435 30. 295 1. 00 16. 78 25 ATOM 1178 CG LEU 184 7. 613 8. 108 30.075 1. 00 15. 45 ATOM 1179 CD1 LEU 184 7. 037 7. 023 30. 951 1. 00 10. 71 CD2 LEU 184 7. 708 ATOM 1180 7. 548 28. 608 1. 00 16. 62 ATOM 1181 C LEU 184 6.601 11. 894 29.863 1. 00 13. 07

- 185 -ATOM 1182 0 LEU 184 6. 041 12. 311 28. 855 1. 00 13. 90 ATOM 1183 N LEU 185 6. 430 12. 436 31.064 1. 00 11. 99 ATOM 1184 CA LEU 185 5. 571 13. 600 31. 250 1. 00 12. 43 ATOM 1185 CB5. 524 LEU 185 13. 997 32. 729 1. 00 13. 27 ATOM 1186 5 CG LEU 185 4.630 15. 191 33. 080 1. 00 11. 52 ATOM 1187 CD1 LEU 185 3. 256 14. 936 32. 515 1. 00 10. 60 ATOM 1188 CD2 LEU 185 4. 553 15. 395 34. 600 1. 00 12. 16 ATOM 1189 C LEU 185 6.077 14. 788 30. 419 1. 00 12. 48 ATOM 1190 0 LEU 185 5. 289 15. 488 29. 784 1. 00 9. 22 ATOM 1191 10 N ARG 186 7. 388 15. 020 30. 428 1. 00 13. 24 ATOM 1192 CA ARG 186 7. 946 16. 123 29. 661 1. 00 14. 83 ATOM 1193 CB ARG 186 9. 478 16. 135 29. 727 1. 00 14. 69 ATOM 1194 CG ARG 186 10. 112 17. 274 30. 526 1. 00 18. 47 ATOM 1195 CD ARG 186 11. 633 17. 063 30. 663 1. 00 25. 71 ATOM 15 1196 NE ARG 186 12. 325 18. 069 31. 484 1. 00 37. 62 ATOM 1197 CZ ARG 186 12.048 18. 357 32. 764 1. 00 42. 54 ATOM 1198 NH1 ARG 186 11.070 17. 721 33.407 1. 00 43. 86 ATOM 1199 NH2 ARG 186 12. 762 19. 277 33. 414 1. 00 39. 97 ATOM 1200 C ARG 186 7. 510 15. 968 28. 220 1. 00 16. 38 ATOM 20 1201 0 ARG 186 6.857 16. 851 27. 673 1. 00 17. 00 ATOM 1202 N ASP 187 7.850 27.616 14. 832 1. 00 19. 34 ATOM 1203 CA ASP 187 7. 519 14. 579 26. 214 1. 00 24. 04 ATOM 1204 CB ASP 187 7. 799 25. 822 13. 123 1. 00 30. 35 ATOM 1205 CG ASP 187 9. 226 12. 696 26. 123 1. 00 37. 33 ATOM 25 1206 OD1 ASP 187 9. 479 12. 216 27. 251 1. 00 40. 99 ATOM OD2 ASP 187 1207 10.096 12. 845 25. 234 1. 00 40. 65 **ATOM** 1208 C ASP 187 6.069 14. 889 25. 912 1. 00 23. 78 ATOM 1209 0 ASP 187 5. 756 15. 541 24. 909 1. 00 25. 37 ATOM 1210 N ALA 188 5. 185 14. 413 26. 780 1. 00 20. 98

- 186 -ATOM 1211 CA ALA 188 3. 761 14. 634 26. 603 1. 00 17. 11 ATOM 1212 CB ALA 188 2. 996 13. 943 27. 722 1.00 19.70 ATOM 1213 C ALA 188 3. 475 16. 130 26. 600 1. 00 14. 48 ATOM 1214 ALA 188 0 2. 911 16.660 25. 646 1.00 11.69 ATOM 1215 ILE 189 N 3.873 16.801 27.677 1. 00 13. 32 ATOM 1216 ILE 189 CA 3. 682 18. 239 27.817 1. 00 13. 84 ATOM 1217 CB ILE 189 4. 422 18. 754 29.056 1.00 12.34 ATOM 1218 CG2 ILE 189 4.368 20. 266 29. 118 1. 00 13. 98 ATOM 1219 CG1 ILE 189 3.776 18. 153 30. 302 1. 00 14. 10 ATOM 1220 CD1 ILE 189 10 4. 455 18. 530 31. 595 1. 00 14. 04 ATOM 1221 C ILE 189 4. 223 18. 928 26. 575 1. 00 15. 60 ATOM 1222 0 ILE 189 3. 634 19. 888 26. 058 1. 00 14. 87 ATOM 1223 N LYS 190 5.351 18. 408 26. 103 1. 00 16. 13 ATOM 1224 CA LYS 190 6.010 18. 913 24. 918 1. 00 16. 34 ATOM 1225 CB 15 LYS 190 7.361 18. 211 24. 737 1. 00 18. 43 **ATOM** 1226 CG LYS 190 8. 503 19.081 24. 175 1. 00 24. 32 ATOM 1227 CD LYS 190 8. 539 19. 154 22. 631 1. 00 28. 76 ATOM 1228 CE LYS 190 9. 830 19. 841 22. 125 1. 00 30.07 **ATOM** 1229 NZ LYS 190 10.060 19. 788 20.642 1. 00 27. 01 20 ATOM 1230 C LYS 190 5. 101 18. 652 23. 718 1. 00 16. 41 ATOM 1231 0 LYS 190 4.786 22. 981 19. 575 1. 00 17. 80 ATOM 1232 N ARG 191 4. 656 23. 529 17. 413 1. 00 14. 92 ATOM 1233 CA ARG 191 3. 798 17. 107 22. 386 1. 00 15. 62 ATOM 1234 CB ARG 191 3. 241 15. 684 22. 491 1. 00 19. 10 25 ATOM ARG 191 1235 CG 4. 071 14. 622 21. 775 1. 00 20. 57 ATOM 1236 CD ARG 191 3. 634 13. 221 22. 156 1. 00 19. 26 ATOM 1237 NE ARG 191 3.950 12. 925 23. 547 1. 00 23. 45 ATOM 1238 CZARG 191 3. 732 11. 747 24. 119 1. 00 28. 59 ATOM 1239 NH1 ARG 191 3. 194 10. 767 23. 406 1. 00 32. 19

- 187 -ATOM 1240 NH2 ARG 191 4. 062 11. 537 25. 391 1. 00 29. 84 ATOM 1241 C ARG 191 2. 652 18.086 22. 207 1. 00 15. 44 ATOM 1242 ARG 191 0 2. 383 18. 513 21.098 1. 00 15. 17 ATOM 1243 N ARG 192 1.980 18. 441 23. 295 1. 00 17. 09 ATOM 1244 5 CA ARG 192 0.853 19. 372 23. 253 1.00 19.02 ATOM 1245 ARG 192 CB 0.588 19. 885 24. 647 1.00 17.94 ATOM 1246 CG ARG 192 0. 579 18. 785 25. 635 1. 00 20. 35 ATOM 1247 CD ARG 192 -0.81218. 328 25. 855 1. 00 22. 03 ATOM 1248 NE ARG 192 -1.56519. 332 26. 586 1. 00 27. 30 ATOM 10 1249 CZ ARG 192 -2.82419. 164 26.954 1. 00 32. 13 ATOM 1250 NH1 ARG 192 -3. 437 18. 028 26. 639 1. 00 34. 51 ATOM 1251 NH2 ARG 192 -3.46520. 115 27. 631 1. 00 33. 64 ATOM 1252 C ARG 192 1. 010 20. 572 22. 321 1. 00 22. 21 ATOM 1253 0 ARG 192 0.017 21. 184 21.937 1. 00 24. 03 ATOM 15 1254 N GLY 193 2. 245 20. 923 21.975 1. 00 24. 28 ATOM 1255 GLY 193 CA 2. 472 22. 052 21.088 1. 00 25. 59 ATOM 1256 C GLY 193 2. 351 23. 417 21. 750 1. 00 27. 55 ATOM 1257 0 GLY 193 2. 734 24. 437 21. 163 1. 00 26. 53 ATOM 1258 N ASP 194 1. 836 23. 434 22. 981 1. 00 28. 09 ATOM 20 1259 CA ASP 194 1. 634 24. 678 23. 725 1. 00 28. 74 ATOM 1260 CB ASP 194 0. 349 24. 597 24. 548 1. 00 32. 11 ATOM 1261 CG ASP 194 -0. 873 24. 329 23. 692 1.00 36.60 **ATOM** 1262 OD1 ASP 194 -1.05322.668 25. 025 1. 00 38. 48 **ATOM** OD2 ASP 194 1263 -1.65923. 424 24. 046 1. 00 40. 23 ATOM 25 1264 C ASP 194 2. 774 25. 089 24. 641 1.00 27.04 ATOM 1265 0 ASP 194 3. 815 24. 439 24. 689 1. 00 26. 55 ATOM 1266 N PHE 195 2. 565 26. 181 25. 370 1. 00 25. 47 ATOM 1267 PHE 195 CA 3. 582 26. 691 26. 274 1. 00 25. 41 ATOM PHE 195 1268 CB 3. 083 27. 932 27.016 1. 00 27. 05

- 188 -1269 PHE 195 26. 201 1. 00 28. 43 ATOM CG 3. 156 29. 192 CD1 PHE 195 **ATOM** 1270 2. 032 29. 686 25. 550 1. 00 31. 56 1271 CD2 PHE 195 4. 353 29. 880 26.067 1. 00 29. 11 ATOM ATOM 1272 CE1 PHE 195 2. 097 30. 852 24. 771 1. 00 30. 45 1273 CE2 PHE 195 25. 290 ATOM 4. 426 31. 046 1. 00 30. 62 5 ATOM 1274 CZPHE 195 3. 294 31. 528 24. 644 1. 00 29. 47 1275 PHE 195 4. 024 25. 642 27. 267 1. 00 24. 15 ATOM C ATOM 1276 0 PHE 195 3. 214 25. 083 28. 000 1. 00 25. 61 5. 324 ATOM 1277 N GLU 196 25. 385 27. 280 1. 00 22. 49 10 ATOM 1278 CA GLU 196 5. 897 24. 394 28. 166 1. 00 23. 12 ATOM 1279 CB **GLU 196** 7. 117 23. 754 27. 499 1. 00 21. 72 6. 942 ATOM 1280 CG **GLU 196** 23. 418 26. 020 1. 00 22. 22 ATOM 1281 CD **GLU 196** 8. 121 22. 629 25. 477 1. 00 24. 60 ATOM 1282 OE1 GLU 196 8.336 22. 601 24. 241 1. 00 23. 54 ATOM 1283 0E2 GLU 196 8.839 22. 026 26. 301 1. 00 26. 49 15 **ATOM** 1284 C **GLU 196** 6. 314 25. 066 29. 466 1. 00 24. 25 ATOM 1285 0 7.467 24. 966 29. 882 1. 00 26. 05 GLU 196 **ATOM** 1286 5.376 25. 729 N MET 197 30. 126 1. 00 25. 12 ATOM 1287 5. 711 26. 444 CA MET 197 31. 352 1. 00 27. 52 ATOM 1288 CB 5. 546 27. 942 31.096 1. 00 29. 51 20 MET 197 ATOM 1289 CG MET 197 6. 758 28. 782 31.466 1. 00 33. 61 ATOM 1290 SD MET 197 7. 208 29. 992 30. 181 1. 00 35. 72 ATOM 1291 CE MET 197 5. 967 31. 256 30. 466 1. 00 37. 45 4.906 ATOM 1292 C MET 197 26. 045 32. 583 1. 00 27. 47 25 ATOM 1293 0 MET 197 4. 921 26. 749 33. 597 1. 00 25. 63 ATOM 1294 N ASP 198 4. 230 24. 903 32. 502 1. 00 27. 57 24. 430 ATOM 1295 CA ASP 198 3. 384 33. 598 1. 00 26. 12 1296 1. 00 29. 89 ATOM CB ASP 198 23. 298 2. 462 33. 110 ATOM 1297 CG ASP 198 1. 326 23. 796 32. 232 1. 00 31. 76

- 189 -ATOM 1298 OD1 ASP 198 0. 736 24. 840 32. 590 1.00 30.59 ATOM 1299 OD2 ASP 198 1. 023 23. 135 31. 203 1.00 32.71 ATOM 1300 C ASP 198 4. 110 23. 959 34. 853 1.00 22.26 ATOM 1301 0 ASP 198 3.960 24. 551 35. 923 1.00 18.00 1302 N 5 ATOM VAL 199 4.873 22. 878 34. 717 1.00 19.81 ATOM 1303 CA VAL 199 5. 605 22. 301 35. 841 1. 00 18. 78 ATOM 1304 CB VAL 199 5. 133 20. 852 36. 115 1.00 16.48 ATOM 1305 CG1 VAL 199 3.736 20. 859 36. 696 1. 00 19. 07 ATOM 1306 CG2 VAL 199 5. 150 20. 042 34. 823 1.00 10.86 ATOM 10 1307 C VAL 199 7. 121 22. 267 35. 648 1.00 20.19 ATOM 1308 0 VAL 199 7.665 22. 752 34. 655 1. 00 21. 16 ATOM 1309 VAL 200 N 7. 798 21. 695 36. 629 1. 00 20. 40 ATOM 1310 CA VAL 200 9. 237 21. 547 36. 594 1.00 22.39 ATOM 1311 CBVAL 200 9. 975 22. 834 37. 007 1.00 24.84 ATOM 1312 CG1 VAL 200 15 9. 331 23. 406 38. 255 1.00 31.58 ATOM 1313 CG2 VAL 200 11.465 22. 539 37. 266 1.00 21.54 ATOM 1314 C VAL 200 9. 502 20. 457 37. 598 1.00 23.06 ATOM 1315 0 VAL 200 9.039 20. 501 38. 755 1. 00 22. 26 ATOM 1316 N ALA 201 10. 229 19. 460 37. 120 1. 00 23. 03 20 ATOM 1317 CA ALA 201 10.569 37. 907 18. 300 1. 00 22. 74 ATOM 1318 CB ALA 201 11.460 17. 418 37. 112 1. 00 23. 66 ATOM 1319 C ALA 201 11. 236 39. 209 18. 646 1. 00 24. 47 ATOM 1320 0 ALA 201 12.045 19. 564 39. 285 1. 00 27. 55 ATOM 1321 N MET 202 10.872 17. 914 40. 244 1. 00 25. 96 ATOM 1322 25 CA MET 202 11. 479 18. 106 41. 547 1. 00 27. 52 **ATOM** 1323 CB MET 202 10.720 19. 124 42. 386 1. 00 27. 45 ATOM 1324 CG MET 202 11.516 19. 580 43. 597 1. 00 27. 56 ATOM 1325 SD MET 202 11. 967 18. 244 44. 740 - 1. 00 28. 85 ATOM 1326 CE MET 202 10. 732 18. 486 46. 045 1. 00 23. 74

- 190 -

						100	,		
	ATOM	1327	C	MET	202	11. 436	16. 752	42. 219	1. 00 28. 79
	ATOM	1328	0	MET	202	10. 377	16. 290	42. 653	1. 00 25. 51
	ATOM	1329	N	VAL	203	12. 600	16. 118	42. 293	1. 00 29. 76
	ATOM	1330	CA	VAL	203	12. 695	14. 802	42. 883	1. 00 28. 97
5	ATOM	1331	CB	VAL	203	12. 943	13. 727	41. 813	1. 00 25. 86
	ATOM	1332	CG1	VAL	203	11. 936	13. 870	40. 681	1. 00 22. 02
	ATOM	1333	CG2	VAL	203	14. 361	13. 831	41. 310	1. 00 23. 30
	ATOM	1334	C	VAL	203	13. 815	14. 713	43. 890	1. 00 31. 36
	ATOM	1335	0	VAL	203	13. 934	13. 713	44. 585	1. 00 34. 93
10	ATOM	1336	N	ASN	204	14. 638	15. 745	43. 987	1. 00 32. 12
	ATOM	1337	CA	ASN	204	15. 741	15. 674	44. 929	1. 00 33. 37
	ATOM	1338	CB	ASN	204	16. 667	16. 867	44. 736	1. 00 36. 19
	ATOM	1339	CG	ASN	204	18. 052	16. 601	45. 260	1. 00 39. 20
	ATOM	1340	OD1	ASN	204	18. 847	15. 905	44. 621	1. 00 41. 71
15	ATOM	1341	ND2	ASN	204	18. 349	17. 133	46. 440	1. 00 39. 72
	ATOM	1342	C	ASN	204	15. 220	15. 625	46. 363	1. 00 32. 02
	ATOM	1343	0	ASN	204	14. 382	16. 439	46. 751	1. 00 28. 87
	ATOM	1344	N	ASP	205	15. 705	14. 665	47. 149	1. 00 31. 97
	ATOM	1345	CA	ASP	205	15. 245	14. 538	48. 541	1. 00 33. 94
20	ATOM	1346	CB	ASP	205	15. 792	13. 266	49. 197	1. 00 32. 38
	ATOM	1347	CG	ASP	205	15. 163	12. 017	48. 642	1. 00 31. 18
	ATOM	1348	OD1	ASP	205	15. 386	10. 935	49. 217	1. 00 31. 15
	ATOM	1349	OD2	ASP	205	14. 450	12. 118	47. 625	1. 00 28. 42
	ATOM	1350	C	ASP	205	15. 626	15. 722	49. 414	1. 00 33. 64
25	ATOM	1351	0	ASP	205	14. 909	16. 080	50. 356	1. 00 33. 83
	ATOM	1352	N	THR	206	16. 770	16. 313	49. 092	1. 00 31. 15
	ATOM	1353	CA	THR	206	17. 290	17. 449	49. 826	1. 00 25. 09
	ATOM	1354	CB	THR	206	18. 646	17. 825	49. 278	1. 00 25. 45
	ATOM	1355	0G1	THR	206	19. 423	16. 630	49. 123	1. 00 24. 81

- 191 -CG2 THR 206 19. 350 1.00 26.26 ATOM 1356 18. 769 50. 232 ATOM 1357 C THR 206 16. 347 18. 634 49. 734 1.00 20.16 1358 THR 206 15. 923 19. 184 50. 755 1. 00 17. 86 **ATOM** 0 ATOM 1359 N VAL 207 16.009 19. 016 48. 510 1. 00 12. 86 1360 CA ATOM VAL 207 15. 106 20. 133 48. 308 1.00 9. 27 5 ATOM 1361 CB VAL 207 14. 582 20. 164 46.867 1.00 5. 21 CG1 VAL 207 13. 555 21. 243 46.720 **ATOM** 1362 1.00 1. 26 ATOM 1363 CG2 VAL 207 15. 714 20. 397 45. 910 1.00 4. 57 13. 917 ATOM 1364 C VAL 207 19. 992 49. 255 1.00 11.72 13. 584 20. 909 10 ATOM 1365 0 VAL 207 50.016 1.00 9.00 ATOM 1366 **ALA 208** 13. 291 18. 819 49. 212 1.00 14.04 N ATOM 1367 CA ALA 208 12. 122 18. 523 50.041 1. 00 14. 67 1368 **ALA 208** 11. 598 17. 148 49. 702 1.00 14.60 ATOM CB 1369 ALA 208 12.422 18.615 51.537 1.00 15.41 ATOM C 1.00 14.28 ATOM 1370 0 ALA 208 11. 514 18. 770 52. 362 15 1371 N THR 209 13.699 18. 498 51.879 1.00 13.94 ATOM ATOM 1372 THR 209 14. 123 18. 591 53. 261 CA 1. 00 13. 05 ATOM 1373 CB THR 209 15. 567 18. 237 53. 423 1.00 11.66 ATOM 1374 OG1 THR 209 15. 887 17. 177 52. 525 1. 00 12. 70 ATOM 1375 CG2 THR 209 15.833 17.807 54.846 1.00 7.92 20 **ATOM** 1376 C THR 209 14.007 20.041 53.626 1. 00 14. 97 ATOM 1377 0 THR 209 13. 554 20. 401 54. 714 1. 00 14. 80 ATOM 1378 N MET 210 14. 447 20.885 52. 707 1. 00 15. 34 ATOM 1379 CA MET 210 14. 363 22. 298 52.965 1.00 16.36 25 ATOM 1380 CB MET 210 15.043 23. 091 51.845 1.00 19.89 1. 00 23. 82 ATOM 1381 CG MET 210 15. 119 24. 592 52. 103 ATOM 1382 SD MET 210 15. 258 25. 542 50. 561 1. 00 29. 33 ATOM 1383 CE MET 210 13. 547 25.995 1.00 27.80 50. 325 ATOM 1384 C MET 210 12.864 22. 592 53. 031 1. 00 14. 33

- 192 -ATOM 1385 0 MET 210 12. 332 22. 896 54. 102 1. 00 15. 04 1386 ILE 211 ATOM N 12. 180 22. 452 51. 898 1. 00 11. 15 ATOM 1387 CA ILE 211 10. 743 22. 708 51. 831 1. 00 9. 09 **ATOM** 1388 CB ILE 211 10. 157 22. 122 50. 566 1. 00 5. 39 5 ATOM 1389 CG2 ILE 211 8. 748 22. 693 50. 337 1.00 3. 22 CG1 ILE 211 ATOM 1390 11. 111 22. 412 49. 412 1.00 2.02 ATOM 1391 CD1 ILE 211 10. 580 22. 065 48.067 1.00 1. 00 1392 ATOM C ILE 211 9. 987 22. 129 53. 022 1. 00 10. 92 1393 ATOM 0 ILE 211 9. 117 22. 781 53.605 1. 00 7. 92 10 ATOM 1394 N SER 212 10.319 20. 891 53. 364 1.00 12.74 ATOM 1395 CA SER 212 9. 701 20. 254 54. 489 1. 00 15. 18 ATOM 1396 CBSER 212 10.300 18. 880 54. 704 1. 00 12. 84 **ATOM** 1397 0G **SER 212** 10.216 18. 533 56.078 1. 00 19. 56 ATOM 1398 С SER 212 9.918 21. 101 55. 736 1. 00 19. 90 ATOM 15 1399 0 SER 212 8.969 21. 432 56. 435 1. 00 21. 30 ATOM 1400 N CYS 213 11. 161 21. 476 56.016 1. 00 24. 22 ATOM 1401 CA CYS 213 11. 432 22. 259 57. 219 1. 00 28. 52 ATOM 1402 CB CYS 213 22. 367 12. 934 57. 464 1. 00 30. 65 ATOM 1403 SG CYS 213 13. 713 20. 766 57. 805 1. 00 39. 09 20 ATOM 1404 C CYS 213 10.822 23. 637 57. 168 1. 00 29. 40 **ATOM** 1405 0 CYS 213 10.366 24. 150 58. 186 1. 00 30. 64 **ATOM** 1406 N TYR 214 10.816 24. 229 55. 981 1. 00 29. 50 ATOM 1407 CA TYR 214 10. 243 25. 548 55. 788 1. 00 29. 27 ATOM 1408 CB TYR 214 10. 168 25. 846 54. 292 1. 00 31. 33 ATOM 25 1409 CG TYR 214 9. 637 27. 212 53. 985 1. 00 33. 15 ATOM 1410 CD1 TYR 214 10. 182 28. 328 54. 594 1. 00 36. 28 ATOM 1411 CE1 TYR 214 9.694 29. 592 54. 341 1. 00 39. 73 ATOM 1412 CD2 TYR 214 8. 582 27. 390 53. 100 1. 00 35. 23 ATOM 1413 CE2 TYR 214 8.080 28. 656 52. 833 1. 00 39. 38

- 193 -TYR 214 8. 644 29. 758 53. 463 1.00 41.11 ATOM 1414 CZ 8. 168 31. 034 53. 241 1. 00 43. 33 **ATOM** 1415 OH TYR 214 8. 848 25. 649 56. 429 1. 00 28. 57 ATOM 1416 C TYR 214 8. 561 26. 578 57. 185 1. 00 27. 99 ATOM 1417 0 TYR 214 7.986 24. 685 56. 136 1. 00 27. 91 1418 TYR 215 ATOM N 5 24. 685 56. 691 TYR 215 6. 642 1. 00 27. 12 ATOM 1419 CA ATOM 1420 CB TYR 215 5. 922 23. 403 56. 309 1. 00 21. 95 5. 723 23. 235 54. 829 1. 00 18. 06 ATOM 1421 CG TYR 215 6.064 22. 048 54. 197 1. 00 17. 25 1422 CD1 TYR 215 ATOM 21.867 52.841 1. 00 17. 47 ATOM 1423 CE1 TYR 215 5.835 10 ATOM 1424 CD2 TYR 215 5. 152 24. 246 54. 065 1. 00 16. 51 CE2 TYR 215 4. 917 24. 075 52. 711 1. 00 15. 51 ATOM 1425 CZTYR 215 5. 257 22. 882 52. 109 1. 00 17. 82 ATOM 1426 1427 TYR 215 4.979 22. 681 50. 785 1. 00 20. 98 ATOM OH ATOM 1428 TYR 215 6.658 24. 810 58. 201 1. 00 30. 19 C 15 TYR 215 5. 780 25. 438 58. 778 1. 00 31. 10 ATOM 1429 0 **ATOM** 1430 N GLU 216 7. 640 24. 197 58. 850 1. 00 35. 15 24. 278 ATOM 1431 CA **GLU 216** 7. 725 60. 306 1. 00 41. 19 ATOM 1432 CB GLU 216 8. 560 23. 132 60. 876 1. 00 44. 10 21. 767 60. 887 1. 00 52. 19 ATOM 1433 CG GLU 216 7.877 20 **ATOM** 1434 CD GLU 216 6. 579 21. 749 61. 685 1. 00 54. 93 22. 481 62. 702 ATOM 1435 OE1 GLU 216 6. 491 1. 00 55. 44 ATOM 1436 OE2 GLU 216 5. 658 20. 988 61. 296 1. 00 56. 26 ATOM 8. 369 25. 591 60. 707 1. 00 43. 33 1437 С GLU 216 1438 0 7. 787 26. 385 61. 449 1.00 44.64 25 ATOM GLU 216 25. 802 1. 00 44. 35 ATOM 1439 N ASP 217 9. 583 60. 209 27. 007 ATOM 1440 CA ASP 217 10. 357 60. 489 1. 00 44. 65 26.623 ATOM 1441 CB ASP 217 11. 734 61.033 1. 00 47. 71 12.667 27.806 61. 136 1.00 50.46 MOTA 1442 CG ASP 217

- 194 -ATOM 1443 OD1 ASP 217 13. 252 28. 205 60. 106 1. 00 51. 95 ATOM OD2 ASP 217 62. 252 1. 00 54. 06 1444 12. 804 28. 346 **ATOM** 1445 C ASP 217 10. 514 27. 820 59. 215 1. 00 43. 04 ATOM 1446 ASP 217 11. 372 27. 527 58. 385 1.00 44.60 0 1447 HIS 218 9.691 28. 848 59. 059 1. 00 41. 00 5 ATOM N 9.750 29.671 ATOM 1448 CA HIS 218 57. 862 1. 00 39. 42 ATOM 1449 CBHIS 218 8. 569 30. 630 57. 826 1. 00 40. 46 ATOM 1450 CG HIS 218 7. 261 29.960 58.083 1. 00 44. 54 ATOM 1451 CD2 HIS 218 6. 652 28. 930 57. 450 1. 00 45. 30 ATOM 1452 6. 449 30. 290 59. 147 ND1 HIS 218 1. 00 47. 09 10 5. 397 ATOM . 1453 CE1 HIS 218 29. 492 59. 161 1.00 45.61 ATOM 1454 NE2 HIS 218 5. 497 28. 657 58. 142 1.00 46.44 ATOM 1455 HIS 218 11.036 30. 452 C 57. 759 1. 00 37. 69 ATOM 56.974 1456 0 HIS 218 11. 120 31. 381 1. 00 37. 21 30.076 ATOM 1457 N GLN 219 12.041 58. 537 1. 00 37. 38 15 **ATOM** 1458 CA GLN 219 13. 312 30. 779 58. 494 1. 00 38. 18 1459 GLN 219 13. 727 31. 186 ATOM CB 59. 910 1. 00 41. 72 1460 14. 577 32. 451 ATOM CG GLN 219 60.011 1.00 48.69 ATOM 1461 CD GLN 219 13. 836 33. 718 59. 546 1. 00 55. 14 ATOM 1462 0E1 GLN 219 33. 945 20 12.665 59. 908 1. 00 55. 89 ATOM 1463 NE2 GLN 219 14. 523 34. 555 58. 751 1. 00 55. 41 1464 ATOM C GLN 219 14. 348 29. 846 57. 886 1. 00 36. 85 1465 ATOM 0 GLN 219 15. 508 30. 200 57. 735 1. 00 37. 28 1466 ATOM N CYS 220 13. 912 28. 647 57. 535 1. 00 36. 02 ATOM 1467 CA CYS 220 14. 790 27.646 1. 00 37. 10 25 56. 950 **ATOM** 1468 CB CYS 220 14. 103 26. 286 57. 043 1. 00 38. 40 ATOM 1469 SG CYS 220 15.067 56. 396 24. 916 1. 00 44. 24 ATOM 1470 C CYS 220 15. 106 27. 970 55. 486 1. 00 37. 48 ATOM 1471 0 CYS 220 14. 193 28. 081 54. 672 1.00 40.52

- 195 -GLU 221 16. 382 28. 123 1.00 36.17 ATOM 1472 55. 137 N 1.00 35.58 ATOM 1473 CA GLU 221 16. 742 28. 428 53. 746 17. 116 29. 911 53. 591 1. 00 38. 60 ATOM 1474 CB GLU 221 ATOM 1475 CG GLU 221 15. 921 30. 878 53. 645 1. 00 42. 48 1. 00 42. 62 1476 GLU 221 16. 325 32. 347 53. 760 ATOM CD 5 ATOM 1477 0E1 GLU 221 17. 120 32. 815 52.909 1. 00 42. 89 0E2 GLU 221 15.835 33.024 54.700 1.00 40.36 1478 ATOM ATOM 1479 C GLU 221 17.896 27. 566 53. 260 1. 00 33. 89 1480 GLU 221 18. 498 27. 826 52. 217 1. 00 32. 29 ATOM 0 54.018 1.00 32.57 ATOM 1481 N VAL 222 18. 199 26. 525 10 VAL 222 19. 286 25. 654 53.645 1. 00 31. 01 ATOM 1482 CA 20. 548 26.041 ATOM 1483 CB VAL 222 54. 376 1. 00 29. 59 1484 CG1 VAL 222 21.673 25. 102 53. 995 1. 00 29. 07 ATOM CG2 VAL 222 20.895 27. 465 54.043 1.00 30.00 ATOM 1485 ATOM 1486 C VAL 222 18. 983 24. 214 53. 966 1. 00 31. 75 15 1487 VAL 222 18.872 23. 846 55. 132 1. 00 33. 50 ATOM 0 1488 N **GLY 223** 18.858 23. 400 52. 925 1. 00 31. 02 ATOM 18. 575 21. 994 53. 119 1. 00 28. 49 ATOM 1489 CA **GLY 223** 1490 **GLY 223** 19. 847 21. 184 53. 026 1. 00 26. 21 ATOM C 1491 **GLY 223** 20. 757 21. 528 52. 267 1. 00 25. 39 ATOM 0 20 ATOM 1492 N MET 224 19. 911 20.098 53. 786 1.00 24.93 ATOM 1493 CA MET 224 21. 101 19. 267 53. 774 1.00 24.66 1.00 26.07 ATOM 1494 CBMET 224 22. 164 19. 958 54. 623 19. 535 1. 00 26. 25 ATOM 1495 CG MET 224 23. 584 54. 358 25 ATOM 1496 SD MET 224 24. 664 20. 375 55. 525 1. 00 28. 76 ATOM 1497 CE MET 224 24. 493 19. 328 56. 939 1. 00 27. 46 ATOM 1498 C MET 224 20. 867 17. 819 54. 253 1. 00 23. 62 ATOM 1499 0 20. 243 17. 581 55. 294 1.00 21.62 MET 224 16.867 ATOM 1500 N ILE 225 21. 389 53. 478 1. 00 21. 96

- 196 -ATOM 1501 CA ILE 225 21. 265 15. 434 53. 764 1. 00 21. 80 ATOM 1502 CBILE 225 20. 514 14. 706 52.662 1. 00 23. 26 ATOM 1503 CG2 ILE 225 20.389 13. 242 53. 026 1. 00 22. 57 ATOM 1504 CG1 ILE 225 19. 142 15. 332 52. 463 1. 00 26. 22 ATOM 1505 CD1 ILE 225 5 18. 270 15. 229 53.688 1. 00 30. 06 ATOM 1506 ILE 225 C 22. 595 14. 702 53. 904 1.00 21.76 ATOM 1507 ILE 225 0 23. 204 14. 299 52. 909 1. 00 20. 84 ATOM 1508 N VAL 226 23.008 14. 492 55. 146 1. 00 22. 14 ATOM 1509 CA VAL 226 24. 263 13.824 55. 454 1. 00 22. 07 ATOM 1510 10 CB VAL 226 25. 031 14.613 56. 514 1. 00 22. 20 ATOM 1511 CG1 VAL 226 26. 321 13. 905 56. 872 1. 00 20. 57 ATOM 1512 CG2 VAL 226 25. 283 16.016 56.005 1. 00 22. 66 ATOM 1513 C VAL 226 24.060 12. 411 55.972 1. 00 22. 96 ATOM 1514 0 VAL 226 24. 032 12. 172 57. 183 1. 00 23. 79 ATOM 1515 15 N GLY 227 23. 924 11. 470 55. 054 1. 00 23. 08 ATOM 1516 CA GLY 227 23. 738 10.094 55. 459 1. 00 25. 20 ATOM 1517 C GLY 227 24.623 9. 207 54. 621 1. 00 25. 79 ATOM 1518 0 GLY 227 25. 820 9. 447 54. 501 1. 00 26. 18 ATOM 1519 N THR 228 24. 039 8. 181 54. 026 1. 00 27. 28 20 ATOM 1520 CA THR 228 24. 822 7. 291 53. 200 1.00 29.44 ATOM 1521 CB THR 228 23. 900 6. 356 52. 413 1. 00 28. 91 ATOM 1522 OG1 THR 228 24. 691 5. 441 51.650 1.00 27.54 **ATOM** CG2 THR 228 1523 22. 983 7. 159 51. 496 1. 00 30. 69 ATOM 1524 C THR 228 25. 705 8. 139 52. 267 1. 00 30. 87 ATOM 25 1525 0 THR 228 26.878 7.834 52.072 1. 00 32. 00 ATOM 1526 N **GLY 229** 25. 140 9. 216 51. 723 1. 00 31. 23 ATOM 1527 CA GLY 229 25. 888 10. 111 50.855 1. 00 30. 25 ATOM 1528 C GLY 229 25. 716 11. 501 51. 434 1. 00 32. 12 ATOM 1529 0 GLY 229 25. 139 11. 632 52. 518 1. 00 33. 23

- 197 -1.00 31.95 ATOM 1530 CYS 230 26. 208 12. 535 50. 749 N **ATOM** 1531 CA CYS 230 26. 057 13. 909 51. 247 1.00 31.05 27. 344 14. 417 51.891 1532 CB CYS 230 1.00 31.11 ATOM ATOM 1533 SG CYS 230 27. 145 16. 090 52. 562 1.00 40.64 1534 C CYS 230 25. 650 14. 909 50. 183 1.00 29.04 5 ATOM ATOM 1535 CYS 230 26. 202 14. 913 49.087 1.00 30.85 0 1536 ASN 231 24. 701 15. 775 50. 513 1. 00 26. 12 ATOM N ATOM 1537 CA ASN 231 24. 267 16. 773 49. 554 1. 00 26. 17 1538 23. 380 16. 130 ATOM CB ASN 231 48. 505 1. 00 24. 13 ATOM 1539 ASN 231 23. 146 17. 030 47. 341 1. 00 24. 98 CG 10 22. 505 ATOM 1540 OD1 ASN 231 18.064 47. 463 1.00 24.73 ATOM 1541 ND2 ASN 231 23. 684 16.656 46. 196 1. 00 29. 51 23. 529 ATOM 1542 ASN 231 17. 927 50. 213 1. 00 27. 77 C ATOM 1543 0 ASN 231 22. 929 17. 757 51. 275 1.00 28.70 ATOM 1544 **ALA 232** 23. 569 19. 103 49. 587 1.00 27.44 N 15 **ATOM** 1545 CA ALA 232 22. 890 20. 258 50. 158 1.00 26.70 ATOM 1546 ALA 232 23.806 20.963 51. 113 1.00 26.89 CB 1547 ALA 232 22. 366 21. 245 49. 144 1.00 26.61 ATOM C 1.00 26.44 ATOM 1548 0 ALA 232 22. 693 21. 184 47. 963 ATOM 1549 CYS 233 21. 537 22. 161 49.617 1.00 27.04 20 N ATOM 1550 CA CYS 233 20.976 23. 172 48. 743 1.00 31.21 1551 CB CYS 233 19.676 22.666 48. 127 1.00 31.60 ATOM CYS 233 18. 376 22. 446 1.00 35.31 ATOM 1552 SG 49. 348 20.708 1.00 31.98 ATOM 1553 C CYS 233 24. 408 49. 589 ATOM 1554 CYS 233 20. 596 24. 303 50.809 1.00 32.62 25 0 ATOM 1555 N TYR 234 20. 621 25. 572 48. 949 1.00 30.70 ATOM 1556 CA TYR 234 20. 366 26. 822 49.660 1.00 30.60 ATOM 1557 CB TYR 234 21. 684 27. 524 50.026 1. 00 29. 53 ATOM 1558 CG TYR 234 22. 464 28. 011 48. 829 1. 00 27. 41

- 198 -29. 327 48. 393 1. 00 25. 56 ATOM 1559 CD1 TYR 234 22. 363 29. 739 47. 217 1. 00 25. 47 **ATOM** CE1 TYR 234 22. 981 1560 27. 121 48. 061 1. 00 28. 10 **ATOM** 1561 CD2 TYR 234 23. 218 27. 524 46. 882 1. 00 26. 39 CE2 TYR 234 23. 838 **ATOM** 1562 ATOM 1563 CZTYR 234 23. 707 28. 830 46. 462 1. 00 25. 77 5 29. 201 45. 253 1.00 27.36 0HTYR 234 24. 240 ATOM 1564 19. 531 27. 742 48. 797 1. 00 32. 10 ATOM 1565 C TYR 234 1. 00 32. 79 19. 211 27. 411 47. 657 ATOM 1566 0 TYR 234 ATOM 1567 N MET 235 19. 184 28. 897 49. 357 1.00 34.08 18. 380 29. 908 48. 679 1. 00 34. 57 MET 235 ATOM 1568 CA 10 30. 617 49. 697 1.00 34.74 ATOM 1569 CB MET 235 17. 492 29. 699 50. 305 1. 00 34. 74 1570 MET 235 16. 489 ATOM CG 28. 985 48. 959 1. 00 35. 81 ATOM 1571 SD MET 235 15. 575 14. 171 30. 092 48. 917 1. 00 34. 50 CE MET 235 ATOM 1572 30. 933 48. 009 1.00 35.41 1573 C MET 235 19. 270 ATOM 15 1574 0 MET 235 19.631 31. 930 48. 625 1. 00 37. 55 ATOM 30. 702 46. 753 1. 00 35. 58 **GLU 236** 19. 626 ATOM 1575 N **GLU 236** 20. 487 31.643 46.049 1. 00 36. 59 ATOM 1576 CA 30. 949 44. 869 **GLU 236** 21. 168 1. 00 38. 16 ATOM 1577 CB ATOM 1578 CG GLU 236 22. 051 31. 861 44. 051 1.00 39.44 20 23. 107 **GLU 236** 32. 542 44. 890 1.00 41.44 ATOM 1579 CD 31. 891 45. 240 ATOM 1580 OE1 GLU 236 24. 116 1.00 40.65 OE2 GLU 236 22. 918 33. 735 45. 208 1. 00 42. 03 ATOM 1581 32. 838 45. 564 ATOM 1582 C GLU 236 19. 679 1. 00 37. 02 32. 810 45. 580 1. 00 38. 00 1583 0 GLU 236 18. 452 25 ATOM 33. 898 45. 149 1. 00 38. 75 ATOM 1584 N GLU 237 20. 354 CA GLU 237 19. 634 35. 062 44. 668 1. 00 41. 18 ATOM 1585 1. 00 39. 63 ATOM 1586 CB GLU 237 20. 482 36. 317 44. 830 46. 258 1. 00 36. 10 1587 CG GLU 237 20. 912 36. 579 ATOM

- 199 -1.00 35.20 37. 022 47. 131 19. 764 ATOM 1588 CD GLU 237 0E1 GLU 237 1.00 34.49 37. 971 46. 726 19.056 ATOM 1589 1. 00 33. 72 36. 434 48. 221 1590 0E2 GLU 237 19. 574 ATOM 19.307 34. 836 43. 206 1.00 43.71 **GLU 237** C ATOM 1591 1. 00 43. 65 34. 351 42. 437 ATOM 1592 0 **GLU 237** 20. 143 5 35. 172 42. 832 1. 00 45. 47 18.078 1593 MET 238 ATOM N 1.00 47.13 41. 457 17.625 35. 013 1594 CA MET 238 **ATOM** 16. 275 35. 705 41. 275 1.00 47.10 1595 CBMET 238 ATOM 41. 721 1. 00 46. 82 15.094 34. 875 ATOM 1596 CG MET 238 33. 548 40. 554 1. 00 45. 37 14. 773 SD MET 238 ATOM 1597 10 1. 00 46. 47 34. 332 39. 412 13. 564 ATOM 1598 CE MET 238 18.629 35. 589 40. 466 1. 00 48. 34 MET 238 ATOM 1599 C 1. 00 49. 97 35.061 39. 371 18. 814 ATOM 1600 0 MET 238 1.00 48.44 GLN 239 36. 672 19. 280 40.868 1601 N ATOM 1.00 49.76 40.026 20. 252 37. 344 GLN 239 ATOM 1602 CA 15 1. 00 54. 00 GLN 239 20. 398 38. 794 40. 491 ATOM 1603 CB 1. 00 58. 66 38.963 42. 007 20. 375 GLN 239 ATOM 1604 CG 1. 00 63. 23 40. 394 42. 447 GLN 239 20.056 1605 CD ATOM 1. 00 65. 75 40. 624 43. 593 OE1 GLN 239 19.660 ATOM 1606 1. 00 63. 23 41. 540 ATOM 1607 NE2 GLN 239 20. 233 41. 359 20 40.011 1. 00 48. 87 36. 665 GLN 239 21. 612 1608 C ATOM 1.00 49.50 39. 687 22.611 37. 295 1609 0 GLN 239 ATOM 40. 354 1. 00 47. 67 **ASN 240** 21.656 35. 384 N ATOM 1610 1.00 47.01 40. 379 34. 660 ATOM 1611 CA ASN 240 22. 926 1.00 47.66 34. 278 41. 809 23. 301 CB ASN 240 ATOM 1612 25 1. 00 45. 71 35. 347 42. 518 24. 101 ATOM 1613 CG ASN 240 43. 021 1. 00 43. 88 1614 OD1 ASN 240 23. 553 36. 328 ATOM 1.00 46.64 42. 561 35. 159 ATOM 1615 ND2 ASN 240 25. 414 33. 393 39. 550 1. 00 46. 58 22.861 ASN 240 ATOM 1616 C

- 200 -ATOM **ASN 240** 23. 888 32. 840 39. 137 1. 00 46. 44 1617 0 1618 N VAL 241 21. 643 32. 919 39. 340 1.00 44.69 ATOM ATOM 1619 CA VAL 241 21. 426 31. 717 38. 564 1. 00 43. 22 ATOM 1620 CB VAL 241 20. 103 31.056 38. 948 1. 00 43. 93 1621 CG1 VAL 241 20.071 29. 643 38. 412 ATOM 1. 00 44. 87 5 1622 CG2 VAL 241 19. 922 ATOM 31.091 40. 456 1. 00 40. 98 ATOM 1623 C VAL 241 21. 358 32. 182 37. 126 1.00 41.83 ATOM 1624 0 VAL 241 20. 351 32. 739 36. 685 1. 00 42. 56 ATOM 1625 **GLU 242** 22. 433 31. 974 N 36. 386 1. 00 39. 79 1626 ATOM **GLU 242** 22. 426 32. 440 35.017 10 CA 1. 00 38. 35 ATOM 1627 CB GLU 242 23. 841 32. 438 34. 435 1. 00 41. 38 1628 GLU 242 24.874 33.080 ATOM CG 35. 345 1. 00 43. 21 1629 **GLU 242** 26.062 33. 639 **ATOM** CD 34. 588 1. 00 46. 65 1630 OE1 GLU 242 33.026 **ATOM** 26. 489 33. 581 1. 00 46. 29 1631 0E2 GLU 242 26. 581 34. 694 15 ATOM 35. 014 1. 00 49. 23 ATOM 1632 21. 495 31.626 C GLU 242 34. 144 1. 00 34. 71 ATOM 1633 0 GLU 242 21. 135 32.057 33. 054 1. 00 33. 08 ATOM 1634 N LEU 243 21.085 30. 456 34. 612 1. 00 31. 90 ATOM 1635 CA LEU 243 20. 194 29. 652 33. 794 1. 00 30. 72 ATOM 1636 CB LEU 243 20 20. 125 28. 214 34. 285 1.00 29.40 **ATOM** CG LEU 243 1637 21. 244 27. 279 33. 833 1. 00 28. 38 CD1 LEU 243 ATOM 1638 21. 264 27. 192 32. 321 1. 00 23. 84 ATOM 1639 CD2 LEU 243 22. 570 27. 786 34. 381 1. 00 31. 28 ATOM 1640 C LEU 243 18. 799 30. 222 33. 763 1. 00 31. 18 ATOM 1641 0 LEU 243 18. 143 30. 153 25 32. 729 1. 00 32. 86 ATOM 1642 N VAL 244 18. 350 30. 779 34. 887 1. 00 30. 11 **ATOM** 1643 CA VAL 244 17. 011 31. 361 34. 979 1. 00 30. 23 ATOM 1644 CB VAL 244 16. 549 31. 527 36. 432 1. 00 31. 77 ATOM 1645 CG1 VAL 244 15. 085 31. 981 36. 444 1. 00 31. 84

- 201 -ATOM 1646 CG2 VAL 244 16. 748 30. 234 37. 213 1. 00 31. 59 ATOM 1647 C VAL 244 16. 955 32. 746 34. 361 1.00 30.94 ATOM 1648 0 17. 919 VAL 244 33. 499 34. 458 1. 00 31. 77 ATOM 15. 819 1649 N GLU 245 33.083 33. 753 1. 00 32. 44 **ATOM** 1650 CA **GLU 245** 15. 625 34. 389 33. 125 1.00 36.05 ATOM 1651 CB GLU 245 14. 384 34. 384 32. 237 1. 00 35. 98 **GLU 245** ATOM 1652 CG 14. 542 35. 203 30. 981 1. 00 38. 72 ATOM 1653 CD GLU 245 15. 357 34. 449 29. 959 1. 00 41. 52 **ATOM** 1654 0E1 GLU 245 15. 957 33. 428 30. 356 1.00 40.02 OE2 GLU 245 ATOM 1655 15. 402 34.859 28.776 10 1. 00 43. 26 ATOM 1656 C GLU 245 15. 453 35. 511 34. 149 1. 00 39. 49 ATOM 1657 0 GLU 245 15. 995 36.603 33. 978 1. 00 39. 69 ATOM 1658 N **GLY 246** 14.676 35. 239 35. 197 1. 00 42. 62 ATOM 1659 CA GLY 246 14. 417 36. 228 36. 233 1.00 44.14 ATOM 1660 C GLY 246 15. 642 36. 762 36. 953 1. 00 44. 54 15 ATOM 1661 0 16. 720 **GLY 246** 36. 163 36. 906 1. 00 43. 59 ATOM 1662 N ASP 247 15. 476 37. 896 37. 627 1.00 44.51 ATOM 1663 CA ASP 247 16. 582 38. 500 38. 345 1. 00 45. 26 ATOM 1664 CB ASP 247 17. 179 39. 654 37. 540 1.00 48.06 **ATOM** 1665 CG ASP 247 18. 102 20 39. 173 36. 436 1. 00 52. 60 ATOM 1666 OD1 ASP 247 38. 376 19. 016 36. 744 1.00 54.76 ATOM OD2 ASP 247 1667 17. 923 39. 584 35. 265 1.00 54.15 ATOM 1668 C ASP 247 16. 213 38. 993 39. 720 1.00 44.83 ATOM 1669 0 ASP 247 17. 087 39. 306 40. 518 1. 00 45. 80 25 ATOM 1670 N **GLU 248** 14. 930 39.064 40. 022 1. 00 44. 56 GLU 248 ATOM 1671 CA 14. 561 39. 546 1. 00 45. 70 41. 336 ATOM 1672 CB **GLU 248** 13. 610 40. 727 41. 206 1. 00 50. 66 ATOM 1673 CG GLU 248 12. 441 40.458 40. 298 1.00 60.84 ATOM 1674 CD GLU 248 11. 394 41. 556 40. 355 1. 00 67. 29

0

- 202 -41. 702 41. 414 1. 00 69. 90 10. 742 1675 0E1 GLU 248 ATOM 39. 340 1.00 71.41 **ATOM** 1676 0E2 GLU 248 11. 223 42. 273 13. 952 38. 482 42. 224 1. 00 43. 15 ATOM 1677 C **GLU 248** 1. 00 42. 29 ATOM 1678 0 GLU 248 12. 986 37. 827 41. 855 38. 315 43. 404 1. 00 42. 35 **GLY 249** 14. 530 ATOM 1679 N 5 37. 327 44. 330 1. 00 42. 91 ATOM 1680 CA **GLY 249** 14. 023 15.044 36. 247 44. 625 1. 00 43. 93 ATOM 1681 C **GLY 249** ATOM 1682 0 **GLY 249** 16. 177 36. 294 44. 145 1. 00 43. 62 35. 267 45. 427 1. 00 43. 38 1683 ARG 250 14. 644 ATOM N 34. 160 45. 781 1.00 41.04 ATOM 1684 CA ARG 250 15. 526 10 1685 ARG 250 15.819 34. 207 47. 293 1. 00 42. 27 ATOM CB 14. 745 34. 934 48. 114 1. 00 46. 82 ATOM 1686 CG ARG 250 35. 142 49. 584 1.00 51.21 1687 ARG 250 15. 139 ATOM CD 1.00 55.52 35. 828 49.730 ARG 250 16. 425 **ATOM** 1688 NE 36. 394 50. 855 1.00 55.63 15 ATOM 1689 CZARG 250 16.864 NH1 ARG 250 36. 375 51.956 1. 00 55. 05 1690 16. 121 ATOM 1691 NH2 ARG 250 18. 063 36. 962 50. 885 1.00 54.32 ATOM 1. 00 38. 25 1692 C ARG 250 14. 905 32. 812 45. 359 ATOM 1693 ARG 250 13. 681 32. 640 45. 394 1. 00 37. 44 ATOM 0 15. 760 31.880 44. 932 1. 00 33. 58 1694 MET 251 ATOM N 20 30. 543 44. 492 1.00 29.34 ATOM 1695 CA MET 251 15. 352 30. 471 42.966 1.00 24.54 ATOM 1696 CB MET 251 15. 326 42. 379 1. 00 17. 89 ATOM 1697 CG MET 251 15. 180 29.069 1. 00 18. 23 1698 14. 994 29.090 40. 552 ATOM SD MET 251 1. 00 12. 48 16. 329 28. 087 40. 075 **ATOM** 1699 CE MET 251 25 1. 00 30. 48 16. 316 29. 481 45. 004 **ATOM** 1700 C MET 251 1.00 31.49 MET 251 17. 529 29.640 44. 895 ATOM 1701 0 CYS 252 15. 775 28. 392 45. 546 1.00 29.56 **ATOM** 1702 N 1. 00 26. 54 1703 CA CYS 252 16. 599 27. 298 46. 059 ATOM

- 203 -1. 00 27. 29 CYS 252 46. 612 15. 710 26. 185 1704 CB ATOM CYS 252 46. 927 1. 00 29. 14 1705 16.613 24. 659 ATOM SG 1.00 23.38 26. 704 44. 975 CYS 252 17. 492 **ATOM** 1706 C 1707 0 CYS 252 17. 104 26. 639 43. 816 1. 00 22. 79 **ATOM** 26. 268 45. 349 1. 00 20. 80 18.688 1708 N VAL 253 5 ATOM 44. 377 1. 00 20. 25 VAL 253 19.584 25. 660 ATOM 1709 CA 1. 00 19. 02 26. 583 43.969 20.740 1710 CB VAL 253 ATOM 1711 CG1 VAL 253 21. 623 25. 881 42. 936 1. 00 15. 42 ATOM 1. 00 19. 77 20. 198 27.866 43. 411 1712 CG2 VAL 253 ATOM 24. 374 44.900 1. 00 22. 35 1713 VAL 253 20. 191 ATOM C 10 20.705 24. 305 46.023 1. 00 22. 21 VAL 253 ATOM 1714 0 23. 352 1. 00 24. 23 ATOM 1715 N ASN 254 20. 127 44.060 22. 045 1. 00 22. 10 20.661 44. 390 1716 CA ASN 254 ATOM 1. 00 21. 49 19.860 20. 975 43.647 ATOM 1717 CB ASN 254 1. 00 22. 93 ASN 254 20. 479 19.604 43. 747 ATOM 1718 CG 15 1. 00 20. 03 21.074 19. 232 44. 764 ATOM 1719 OD1 ASN 254 1.00 26.40 20. 325 18. 827 42.687 1720 ND2 ASN 254 ATOM 22. 124 22. 046 43. 975 1. 00 19. 26 1721 C ASN 254 ATOM 22. 155 42. 795 1. 00 15. 88 ATOM 1722 0 ASN 254 22. 454 1. 00 15. 23 23.001 21. 949 44.961 1723 THR 255 20 ATOM N 1. 00 15. 03 1724 CA THR 255 24. 428 21. 962 44.691 ATOM 1725 CB THR 255 25. 193 22. 217 45. 944 1. 00 13. 56 ATOM 1.00 14.56 OG1 THR 255 25. 035 21. 087 46. 808 ATOM 1726 24.670 1. 00 14. 18 CG2 THR 255 23. 458 46. 617 ATOM 1727 1. 00 15. 21 1728 C THR 255 24. 957 20.665 44. 127 ATOM 25 1. 00 12. 07 1729 THR 255 25. 675 20. 647 43. 126 ATOM 0 1. 00 18. 83 1730 N GLU 256 24. 594 19.570 44. 777 ATOM 1. 00 22. 28 ATOM 25.076 18. 268 44. 355 1731 CA GLU 256 1. 00 25. 93 ATOM 1732 CB GLU 256 24. 795 18. 025 42. 876

- 204 -ATOM 1733 CG GLU 256 23. 377 18. 345 42. 454 1.00 31.90 ATOM 1734 CD GLU 256 22. 500 17. 121 42. 336 1.00 34.74 ATOM 1735 OE1 GLU 256 22. 191 16. 510 43. 386 1. 00 36. 97 ATOM 1736 OE2 GLU 256 22. 122 16. 777 41. 188 1. 00 35. 26 5 ATOM 1737 C GLU 256 26. 562 18. 402 44. 559 1. 00 21. 32 ATOM 1738 0 GLU 256 27. 359 18. 032 43. 701 1.00 23.09 ATOM 1739 N TRP 257 26. 931 18.966 45. 699 1.00 17.36 **ATOM** 1740 TRP 257 CA 28. 327 19. 141 45. 985 1. 00 14. 83 ATOM 1741 CB TRP 257 28. 514 20.074 47. 176 1.00 11.59 10 ATOM 1742 CG TRP 257 28. 038 19. 561 48. 478 1. 00 8. 69 ATOM 1743 CD2 TRP 257 27.830 49.676 20. 332 1.00 9.05 CE2 TRP 257 ATOM 1744 27. 562 19. 410 50. 715 1.00 7.00 ATOM 1745 CE3 TRP 257 27. 845 21. 703 49. 964 1.00 7. 18 ATOM 1746 CD1 TRP 257 27. 881 18. 265 48. 827 1.00 7. 58 15 ATOM 1747 NE1 TRP 257 27. 602 18. 163 50. 172 1. 00 7. 99 ATOM 1748 CZ2 TRP 257 27. 325 19. 818 52. 038 1.00 4. 73 ATOM 1749 CZ3 TRP 257 27. 605 22. 108 51. 280 1.00 7. 12 ATOM 1750 CH2 TRP 257 27. 346 21. 164 52. 300 1.00 5. 47 ATOM 1751 C TRP 257 29. 033 17. 813 46. 224 1. 00 17. 81 ATOM 20 1752 0 TRP 257 30. 221 17. 776 46. 523 1.00 19.44 ATOM 1753 N **GLY 258** 28. 318 16. 708 46. 099 1. 00 21. 88 ATOM 1754 CA **GLY 258** 28. 991 15. 444 46. 303 1. 00 23. 25 ATOM 1755 C GLY 258 30. 137 15. 303 45. 316 1.00 23.01 ATOM 1756 0 GLY 258 31. 133 14. 629 45. 600 1.00 21.92 ATOM 25 1757 N ALA 259 29. 997 15. 943 44. 156 1. 00 23. 11 ATOM 1758 CA ALA 259 31. 015 15. 863 43. 113 1. 00 27. 74 ATOM 1759 CB ALA 259 30.400 16. 139 41. 766 1.00 27.03 ATOM 1760 ALA 259 C 32. 176 16.806 43. 335 1. 00 30. 23 **ATOM** 1761 0 ALA 259 33. 178 16. 748 42. 622 1. 00 32. 12

- 205 -ATOM 1762 PHE 260 32. 041 17. 680 44. 320 1.00 32.43 N ATOM 1763 CA PHE 260 33. 093 18. 627 44. 611 1.00 36.43 PHE 260 ATOM 1764 CB 32. 804 19. 343 45. 924 1.00 39.42 ATOM 1765 CG PHE 260 33. 932 20. 206 46. 411 1.00 43.92 ATOM 1766 CD1 PHE 260 34.660 5 21.003 45. 534 1.00 46.49 1767 CD2 PHE 260 ATOM 34. 232 20. 263 47. 765 1.00 45.64 ATOM 1768 CE1 PHE 260 35. 672 21. 835 46.002 1.00 47.73 ATOM 1769 CE2 PHE 260 35. 242 21. 093 48. 242 1.00 46.62 ATOM 1770 CZPHE 260 35. 958 21. 882 47. 360 1. 00 47. 27 ATOM 1771 PHE 260 34. 412 C 17. 897 44.695 10 1.00 39.39 ATOM 1772 0 PHE 260 16.800 34. 495 45. 243 1.00 40.20 1773 N ATOM GLY 261 35. 441 18. 511 44. 127 1.00 41.71 ATOM 1774 CA GLY 261 36. 753 17. 911 44. 152 1. 00 43. 62 ATOM 1775 C GLY 261 36.967 16.857 43.090 1.00 44.99 ATOM 1776 0 GLY 261 38. 049 16. 282 15 43. 015 1. 00 47. 22 ATOM 1777 N ASP 262 35. 961 16. 578 42. 270 1.00 46.06 ATOM 1778 CA ASP 262 36. 143 15. 574 41. 229 1.00 47.68 ATOM 1779 CB ASP 262 34. 800 15. 197 40. 602 1.00 50.82 ATOM 1780 CG ASP 262 34. 024 14. 187 41. 445 1.00 53.64 ATOM 1781 OD1 ASP 262 32. 815 13. 996 41. 191 20 1.00 54.63 OD2 ASP 262 **ATOM** 1782 34.624 13. 578 42. 356 1.00 54.71 ATOM 1783 ASP 262 37.089 C 16. 129 40. 177 1.00 47.19 37. 539 ATOM 1784 0 ASP 262 15. 400 39. 292 1.00 47.09 ATOM 1785 N SER 263 37. 380 17. 427 40. 298 1.00 46.38 ATOM 25 1786 CA SER 263 38. 289 18. 147 39. 401 1. 00 44. 53 ATOM 1.00 43.57 1787 CB SER 263 37. 651 38. 903 19. 445 **ATOM** 1788 0G SER 263 36. 341 19. 246 38. 415 1. 00 43. 79 ATOM 1789 C SER 263 39. 552 18. 513 40. 174 1.00 43.93 ATOM 1790 0 SER 263 40.061 19.632 40.059 1.00 44.40

		- 206 -								
	ATOM	1791	N	GLY	264	40. 039	17. 577	40. 979	1. 00	43. 71
	ATOM	1792	CA	GLY	264	41. 235	17. 825	41. 762	1. 00	42. 64
	ATOM	1793	C	GLY	264	41. 133	18. 889	42. 845	1. 00	40. 75
	ATOM	1794	0	GLY	264	42. 052	19. 012	43. 648	1. 00	42. 90
5	ATOM	1795	N	GLU	265	40. 040	19. 647	42. 887	1. 00	38. 43
	ATOM	1796	CA	GLU	265	39. 881	20. 700	43. 893	1. 00	37. 42
	ATOM	1797	СВ	GLU	265	38. 437	21. 227	43. 907	1. 00	39. 11
	ATOM	1798	CG	GLU	265	37. 986	21. 928	42. 632	1. 00	40. 76
	ATOM	1799	CD	GLU	265	37. 198	21. 023	41. 701	1. 00	43. 56
10	ATOM	1800	0E1	GLU	265	36. 904	21. 461	40. 565	1. 00	45. 26
	ATOM -	1801	0E2	GLU	265	36. 863	19. 883	42. 099	1. 00	42. 42
	ATOM	1802	C	GLU	265	40. 266	20. 299	45. 321	1. 00	36. 38
	ATOM	1803	0	GLU	265	40. 410	21. 160	46. 185	1. 00	33. 59
	ATOM	1804	N	LEU	266	40. 425	19. 004	45. 573	1. 00	37. 71
15	ATOM	1805	CA	LEU	266	40. 783	18. 534	46. 912	1. 00	40. 56
	ATOM	1806	CB	LEU	266	39. 597	17. 831	47. 567	1. 00	40. 03
	ATOM	1807	CG	LEU	266	38. 371	18. 631	48. 001	1. 00	40. 79
	ATOM	1808	CD1	LEU	266	37. 234	17. 673	48. 259	1. 00	40. 27
	ATOM	1809	CD2	LEU	266	38. 677	19. 432	49. 253	1. 00	41. 81
20	ATOM	1810	C	LEU	266	41. 949	17. 563	46. 880	1. 00	43. 51
	ATOM	1811	0	LEU	266	42. 363	17. 045	47. 919	1. 00	43. 63
	ATOM	1812	N	ASP	267	42. 475	17. 324	45. 682	1. 00	47. 00
	ATOM	1813	CA	ASP	267	43. 584	16. 393	45. 480	1. 00	48. 18
	ATOM	1814	CB	ASP	267	44. 222	16. 622	44. 097	1. 00	50. 89
25	ATOM	1815	CG	ASP	267	44. 982	15. 391	43. 584	1. 00	54. 98
	ATOM	1816	OD 1	ASP	267	45. 239	15. 317	42. 360	1. 00	56. 65
	ATOM	1817	OD2	ASP	267	45. 328	14. 499	44. 398	1. 00	55. 43
	ATOM	1818	C	ASP	267	44. 659	16. 440	46. 571	1. 00	46. 46
	ATOM	1819	0	ASP	267	45. 205	15. 397	46. 960	1. 00	45. 37

- 207 -47.084 1. 00 44. 63 **ATOM** 1820 **GLU 268** 44. 957 17. 630 N 1821 **GLU 268** 45. 990 17. 721 48. 109 1. 00 44. 67 ATOM CA 19. 024 ATOM 1822 CB **GLU 268** 46. 805 47. 956 1. 00 44. 68 48.934 1. 00 43. 60 ATOM 1823 CG GLU 268 46. 508 20. 163 1824 CD **GLU 268** 45. 234 20. 915 48. 613 1. 00 43. 53 ATOM 5 1825 0E1 GLU 268 45. 020 21. 258 47. 423 1. 00 42. 43 ATOM ATOM 1826 0E2 GLU 268 44. 461 21. 174 49. 561 1.00 40.84 ATOM 1827 C GLU 268 45. 457 17. 569 49. 528 1. 00 43. 45 1. 00 46. 29 1828 **GLU 268** 46. 102 17. 961 50. 499 ATOM 0 16. 971 1. 00 38. 78 1829 PHE 269 44. 286 49.656 10 ATOM N 16. 785 ATOM 1830 CA PHE 269 43. 729 50. 974 1. 00 33. 75 1831 PHE 269 42. 480 17.614 51. 135 1. 00 33. 69 ATOM CB PHE 269 42. 733 18. 990 51.639 1. 00 34. 75 ATOM 1832 CG CD1 PHE 269 43. 435 19. 193 52.822 1. 00 36. 51 ATOM 1833 ATOM 1834 CD2 PHE 269 42. 161 20. 079 51.001 1. 00 34. 78 15 1835 CE1 PHE 269 43. 548 20. 469 53. 365 1. 00 37. 39 ATOM ATOM 1836 CE2 PHE 269 42. 266 21. 354 51. 532 1. 00 35. 15 ATOM 1837 CZ PHE 269 42. 955 21. 551 52. 717 1. 00 37. 68 15. 343 51. 225 ATOM 1838 C PHE 269 43. 405 1. 00 32. 83 1839 PHE 269 43. 206 14. 952 52. 365 1. 00 31. 85 ATOM 0 20 1840 43.355 14. 555 50. 157 1. 00 33. 85 ATOM N LEU 270 1841 LEU 270 43.046 13. 130 50. 259 1. 00 34. 53 ATOM CA 1842 42.712 1. 00 35. 63 ATOM CB LEU 270 12. 553 48. 884 41.326 12. 857 1. 00 37. 61 ATOM 1843 CG LEU 270 48. 321 ATOM 1844 CD1 LEU 270 41. 323 14. 293 47.842 1. 00 35. 85 25 CD2 LEU 270 ATOM 40.966 11. 878 1.00 37.50 1845 47. 177 1.00 33.68 12. 298 ATOM C LEU 270 44. 172 50.845 1846 ATOM 1847 LEU 270 45. 334 12.640 50.695 1.00 35.64 0 1848 N 43. 829 11. 200 1. 00 33. 66 ATOM LEU 271 51. 507

- 208 -44.850 10. 324 52. 059 1. 00 34. 55 ATOM 1849 CA LEU 271 10. 032 53. 519 1. 00 30. 63 1850 CBLEU 271 44.610 ATOM 11. 238 54. 383 1. 00 29. 49 ATOM 1851 CG LEU 271 44. 870 CD1 LEU 271 43.855 12. 324 54. 075 1. 00 27. 82 ATOM 1852 CD2 LEU 271 10. 798 55. 824 1.00 31.04 1853 44. 783 ATOM 5 9.010 51. 324 1. 00 37. 04 LEU 271 44.884 ATOM 1854 C 1. 00 36. 79 ATOM 1855 0 LEU 271 44.009 8. 715 50. 513 8. 209 51. 638 1. 00 40. 66 ATOM 1856 N GLU 272 45. 890 6. 927 50.989 1. 00 44. 99 **GLU 272** 46.052 ATOM 1857 CA 6. 182 51.590 1. 00 51. 18 1858 GLU 272 47. 256 10 ATOM CB5. 781 53.075 1. 00 58. 46 ATOM 1859 CG GLU 272 47. 124 5. 077 1. 00 62. 56 1860 CDGLU 272 48. 371 53. 641 ATOM 0E1 GLU 272 49.393 5. 772 53.876 1. 00 64. 96 ATOM 1861 1. 00 61. 73 0E2 GLU 272 48. 325 3. 835 53. 849 ATOM 1862 1863 GLU 272 44. 789 6.080 51. 092 1. 00 44. 62 ATOM C 15 1864 GLU 272 44. 377 5. 452 50. 116 1. 00 44. 50 ATOM 0 6.079 52. 266 ATOM 1865 N TYR 273 44. 163 1. 00 43. 42 TYR 273 52. 486 1. 00 40. 23 ATOM 1866 42. 955 5. 284 CA 1. 00 38. 82 ATOM 1867 CB TYR 273 42. 537 5. 377 53. 958 1. 00 36. 38 1868 TYR 273 43.709 5. 401 54. 923 ATOM CG 20 CD1 TYR 273 44. 126 6.602 55. 505 1. 00 35. 57 ATOM 1869 CE1 TYR 273 45. 210 6. 647 56. 380 1. 00 34. 95 ATOM 1870 4. 231 55. 243 1. 00 35. 34 ATOM 1871 CD2 TYR 273 44. 413 45. 509 4. 264 56. 122 1. 00 34. 05 ATOM 1872 CE2 TYR 273 5. 481 1. 00 34. 66 1873 CZ TYR 273 45.897 56. 685 25 ATOM 5. 556 1. 00 33. 77 TYR 273 46. 966 57. 550 ATOM 1874 0HATOM 5. 749 51. 567 1. 00 38. 50 TYR 273 41.826 1875 C ATOM 1876 TYR 273 41. 264 4. 967 50. 804 1. 00 35. 21 0 7. 030 51. 638 1. 00 38. 17 ATOM 1877 N ASP 274 41. 507

- 209 -1.00 40.03 50. 796 7. 579 40. 473 ATOM 1878 CA ASP 274 1. 00 41. 17 9.083 50. 929 ASP 274 40. 470 **ATOM** 1879 CB52. 341 1. 00 43. 77 9. 512 CG ASP 274 40. 252 ATOM 1880 OD1 ASP 274 39. 123 9. 327 52. 839 1.00 46.59 1881 **ATOM** OD2 ASP 274 10.010 52. 958 1. 00 44. 41 41. 212 ATOM 1882 5 40.740 7. 200 49. 359 1.00 40.92 ASP 274 ATOM 1883 C 48. 595 1.00 41.41 6. 937 39.819 ATOM 1884 0 ASP 274 ARG 275 42.007 7. 160 48. 984 1.00 42.93 1885 ATOM N 1.00 45.81 6.819 47. 613 42. 333 ATOM 1886 CA ARG 275 1.00 49.53 6. 993 47. 365 1887 ARG 275 43.831 ATOM CB 10 7. 563 45. 995 1. 00 53. 24 ARG 275 44. 191 ATOM 1888 CG ARG 275 45. 702 7. 772 45. 886 1. 00 58. 85 1889 CDATOM 8.663 46. 933 1. 00 62. 67 46. 213 NE ARG 275 ATOM 1890 1. 00 62. 82 CZ ARG 275 47.088 8. 308 47.876 1891 ATOM 1892 7.068 47. 922 1. 00 61. 28 NH1 ARG 275 47. 571 ATOM 15 9. 201 48.777 1.00 61.64 1893 NH2 ARG 275 47. 476 ATOM 47.316 1.00 46.01 5. 390 ARG 275 41. 901 1894 C ATOM 1. 00 45. 19 5. 160 46. 382 ATOM 1895 ARG 275 41. 134 0 42. 382 4. 437 48. 113 1. 00 47. 51 **ATOM** 1896 N LEU 276 47. 922 1.00 48.68 3. 030 ATOM 1897 CA LEU 276 42.026 20 2. 197 49. 134 1.00 45.63 LEU 276 42. 460 1898 CB ATOM 1. 999 49. 287 1. 00 43. 28 43.971 ATOM 1899 CG LEU 276 50.686 1. 00 42. 53 1900 CD1 LEU 276 44. 418 2. 379 ATOM 1.00 42.97 48.994 44. 321 0. 557 ATOM 1901 CD2 LEU 276 40. 520 2.915 47. 718 1. 00 51. 24 1902 C LEU 276 ATOM 25 2. 133 46. 891 1. 00 52. 38 1903 LEU 276 40.050 **ATOM** 0 39. 772 3. 710 48. 475 1. 00 53. 11 1904 N VAL 277 ATOM 1.00 54.05 3. 722 48. 372 VAL 277 38. 321 ATOM 1905 CA 37. 703 4.640 49. 423 1. 00 52. 84 VAL 277 ATOM 1906 CB

- 210 -36. 210 49. 249 1. 00 52. 71 1907 CG1 VAL 277 4. 682 ATOM 50.804 1. 00 54. 87 CG2 VAL 277 38.069 4. 156 ATOM 1908 1909 C VAL 277 37. 906 4. 231 46. 999 1. 00 55. 80 ATOM 1. 00 57. 15 3. 474 46. 185 ATOM 1910 0 VAL 277 37. 381 46. 754 1. 00 56. 71 ASP 278 38. 146 5. 518 ATOM 1911 N 5 6. 146 45. 481 1. 00 57. 65 ATOM 1912 CA ASP 278 37.804 1913 ASP 278 38. 479 7. 514 45. 353 1. 00 59. 73 ATOM CB 1. 00 61. 93 ATOM 1914 CG ASP 278 38. 243 8. 163 43. 989 38.990 9. 110 43. 642 1. 00 61. 47 ATOM 1915 OD1 ASP 278 OD2 ASP 278 37.308 7. 733 43. 273 1. 00 62. 11 ATOM 1916 10 ATOM 1917 C ASP 278 38. 263 5. 281 44. 328 1. 00 58. 14 37.645 5. 271 43. 266 1. 00 58. 75 ATOM 1918 0 ASP 278 4. 563 44. 538 1. 00 58. 33 1919 GLU 279 39. 358 ATOM N 3.710 43. 498 1.00 59.14 1920 GLU 279 39.900 ATOM CA 3.808 43. 477 1. 00 60. 99 ATOM 1921 CB GLU 279 41. 437 15 5. 219 43. 178 1. 00 61. 92 ATOM 1922 GLU 279 41. 978 CG 1923 GLU 279 43. 497 5. 276 43. 014 1. 00 60. 92 ATOM CD 1924 OE1 GLU 279 44. 219 4.874 43. 953 1. 00 60. 85 ATOM ATOM 1925 OE2 GLU 279 43.965 5. 733 41. 946 1. 00 58. 99 ATOM 1926 C GLU 279 39. 467 2. 261 43. 664 1. 00 58. 04 20 ATOM 1927 0 **GLU 279** 40. 196 1. 346 43. 298 1. 00 59. 38 ATOM 1928 N **SER 280** 38. 283 2. 044 44. 219 1. 00 57. 21 ATOM 1929 CA SER 280 37. 798 0.679 44. 390 1. 00 56. 55 ATOM 1930 **SER 280** 38. 283 0.091 45. 719 1. 00 56. 66 CB -1.29845. 774 1. 00 54. 41 25 ATOM 1931 0G **SER 280** 38. 015 0.671 1. 00 55. 29 ATOM 1932 C SER 280 36. 282 44. 334 -0.371ATOM 1933 0 SER 280 35. 640 44. 472 1. 00 53. 68 1.854 1934 SER 281 35. 725 44. 113 1. 00 54. 58 ATOM N 2. 038 44.020 1. 00 55. 36 ATOM 1935 CA SER 281 34. 288

					- 21	1 -		
	ATOM	1936	CB	SER 2	33. 919	3. 451	44. 464	1. 00 56. 89
	ATOM	1937	OG	SER 28	34. 565	4. 415	43. 649	1. 00 56. 89
	ATOM	1938	C	SER · 28	33. 843	1. 832	42. 584	1. 00 54. 80
	ATOM	1939	0	SER 28	34. 652	1. 905	41. 664	1. 00 55. 85
5	ATOM	1940	N	ALA 28	32. 553	1. 587	42. 389	1. 00 53. 75
	ATOM	1941	CA	ALA 28	2 32. 025	1. 379	41. 050	1. 00 52. 42
	ATOM	1942	CB	ALA 28	2 30. 626	0. 809	41. 133	1. 00 52. 26
	ATOM	1943	C	ALA 28	2 32. 012	2. 679	40. 250	1. 00 51. 83
	ATOM	1944	0	ALA 28	2 31. 632	2. 685	39. 081	1. 00 52. 27
10	ATOM	1945	N	ASN 28	3 32. 441	3. 772	40. 879	1. 00 50. 19
	ATOM	1946	CA	ASN 28	32. 465	5. 089	40. 239	1. 00 47. 37
	ATOM	1947	CB	ASN 28	31. 338	5. 945	40. 790	1. 00 47. 04
	ATOM	1948	CG	ASN 28	31. 482	6. 191	42. 276	1. 00 47. 38
	ATOM	1949	0D 1	ASN 28	31. 584	5. 255	43. 068	1. 00 46. 86
15	ATOM	1950	ND2	ASN 28	31. 497	7. 455	42. 662	1. 00 49. 96
	ATOM	1951	C	ASN 28	33. 777	5. 806	40. 513	1. 00 46. 64
	ATOM	1952	0	ASN 28	33. 783	6. 894	41. 081	1. 00 48. 74
	ATOM	1953	N	PRO 284	34. 905	5. 214	40. 110	1. 00 45. 15
	ATOM	1954	CD	PRO 284	35. 028	3. 896	39. 462	1. 00 44. 41
20	ATOM	1955	CA	PRO 284	36. 227	5. 814	40. 327	1. 00 43. 24
	ATOM	1956	CB	PRO 284	37. 151	4. 855	39. 583	1. 00 44. 66
	ATOM	1957	CG	PRO 284	36. 459	3. 532	39. 756	1. 00 44. 93
	ATOM	1958	C	PRO 284	36. 389	7. 267	39. 856	1. 00 41. 14
	ATOM	1959	0	PRO 284	35. 978	7. 624	38. 755	1. 00 40. 17
25	ATOM	1960	N	GLY 285	36. 994	8. 099	40. 695	1. 00 39. 45
	ATOM	1961	CA	GLY 285	37. 208	9. 484	40. 321	1. 00 40. 34
	ATOM	1962	C	GLY 285	35. 964	.10. 343	40. 401	1. 00 42. 06
	ATOM	1963	0	GLY 285	36. 035	11. 576	40. 367	1. 00 43. 11
	ATOM	1964	N	GLN 286	34. 811	9. 699	40. 510	1. 00 42. 34

- 212 -**GLN 286** 33. 555 10. 427 40.601 1. 00 41. 88 ATOM 1965 CA 39. 758 1.00 44.97 1966 CB **GLN 286** 32. 490 9. 717 ATOM 38. 588 ATOM 1967 CG GLN 286 31. 973 10. 544 1. 00 49. 89 31. 043 11. 668 39. 043 1. 00 54. 72 ATOM 1968 CD GLN 286 39. 483 1. 00 56. 09 1969 0E1 GLN 286 29. 911 11. 419 ATOM 5 12. 911 38.950 NE2 GLN 286 31. 519 1. 00 54. 20 ATOM 1970 ATOM 1971 C GLN 286 33. 113 10. 541 42.063 1. 00 40. 59 33. 396 9. 660 42. 879 1. 00 39. 39 ATOM 1972 0 GLN 286 11. 648 42. 389 1.00 39.59 ATOM 1973 **GLN 287** 32. 445 N 31. 939 11. 913 43. 741 1.00 38.06 ATOM 1974 GLN 287 10 CA 30.770 10.969 44.053 1. 00 37. 29 ATOM 1975 CB GLN 287 1.00 35.04 42. 939 GLN 287 29. 732 10. 837 ATOM 1976 CG GLN 287 28. 912 12. 100 42. 736 1. 00 33. 74 ATOM 1977 CD 1.00 28.89 1978 0E1 GLN 287 28. 906 12. 692 41.647 ATOM 1979 NE2 GLN 287 28. 204 12. 514 43. 786 1. 00 31. 49 15 ATOM 1980 33. 015 11. 744 44. 820 1. 00 37. 30 ATOM C GLN 287 ATOM 1981 0 **GLN 287** 32. 958 10.813 45. 624 1. 00 37. 53 12. 643 ATOM 1982 N LEU 288 33. 990 44. 856 1. 00 34. 03 ATOM 1983 CA LEU 288 35. 051 12. 516 45. 844 1. 00 29. 84 1984 CB LEU 288 36. 351 13. 071 45. 293 1. 00 30. 50 ATOM 20 11. 960 1985 LEU 288 37. 285 44.819 1.00 32.69 ATOM CG 1986 CD1 LEU 288 36. 645 11. 102 43. 728 1.00 31.90 ATOM 38. 546 12. 611 44. 323 1.00 36.00 **ATOM** 1987 CD2 LEU 288 1988 34. 729 13. 180 47. 156 1. 00 26. 53 ATOM C LEU 288 1.00 26.76 ATOM 1989 0 LEU 288 34. 991 12. 627 48. 218 25 TYR 289 14. 374 1. 00 23. 58 ATOM 1990 N 34. 172 47. 086 TYR 289 33.809 15.074 1.00 22.36 ATOM 1991 CA 48. 292 ATOM 1992 CB TYR 289 33.086 16. 365 47. 939 1. 00 20. 16 1993 32. 716 1. 00 18. 61 ATOM -CG TYR 289 17. 186 49. 136

- 213 -ATOM 1994 CD1 TYR 289 33. 660 17. 486 1. 00 18. 65 50. 105 CE1 TYR 289 ATOM 1995 33. 347 18. 269 51. 195 1. 00 18. 34 ATOM 1996 CD2 TYR 289 31. 433 17. 693 49. 288 1. 00 18. 91 ATOM 1997 CE2 TYR 289 31. 105 18. 484 50. 378 1. 00 18. 97 1998 TYR 289 ATOM CZ 32.073 18. 768 51. 327 1. 00 20. 15 5 ATOM 1999 OH TYR 289 31. 788 19. 565 52. 408 1. 00 22. 93 ATOM 2000 C TYR 289 32. 894 14. 165 49. 105 1. 00 25. 30 ATOM 2001 0 TYR 289 32. 991 14. 106 50. 337 1. 00 24. 21 2002 ATOM N GLU 290 32. 005 13. 448 48. 411 1. 00 27. 35 **ATOM** 2003 10 CA GLU 290 31.071 12. 532 49.084 1. 00 26. 68 ATOM 2004 CB **GLU 290** 30.081 11. 904 48.090 1. 00 26. 17 ATOM 2005 12. 216 CG GLU 290 28. 614 48. 413 1. 00 25. 68 ATOM 2006 CD GLU 290 27.617 11. 404 47. 591 1. 00 26. 93 ATOM 2007 0E1 GLU 290 27.735 11. 363 46. 337 1. 00 22. 27 0E2 GLU 290 ATOM 2008 26. 702 10. 815 48. 215 1. 00 27. 37 15 ATOM 2009 C GLU 290 31.838 11. 425 49. 781 1. 00 25. 75 ATOM 2010 0 **GLU 290** 31.649 11. 193 50. 974 1. 00 26. 23 ATOM 2011 N LYS 291 32.706 10.756 49. 024 1.00 24.16 ATOM 2012 CA LYS 291 33. 526 9.666 49. 538 1. 00 24. 45 ATOM 2013 CB LYS 291 34. 342 9.063 48. 408 1. 00 24. 19 20 ATOM 2014 CG LYS 291 33. 506 8. 383 47. 354 1. 00 28. 37 ATOM 2015 CD LYS 291 34. 322 8. 162 46. 094 1. 00 31. 52 ATOM 2016 CE LYS 291 33. 533 7. 434 45. 030 1. 00 31. 16 ATOM 2017 NZ LYS 291 34. 367 7. 299 1. 00 33. 55 43. 813 ATOM 2018 LYS 291 34.460 10. 143 25 C 50.636 1. 00 24. 99 ATOM 2019 LYS 291 9. 522 0 35. 488 50. 918 1. 00 25. 78 ATOM 2020 LEU 292 N 34. 095 11. 254 51. 255 1. 00 24. 20 ATOM 2021 LEU 292 34.894 CA 11. 809 52. 318 1. 00 25. 20 ATOM 2022 CB LEU 292 35. 544 13. 106 51.843 1. 00 25. 62

- 214 -**ATOM** 2023 CG LEU 292 36. 904 13. 450 52. 464 1.00 26.59 2024 CD1 LEU 292 37. 935 12. 396 52.035 1. 00 26. 37 ATOM 2025 CD2 LEU 292 37. 343 14. 853 52. 025 1.00 24.08 ATOM 33. 999 12.063 53. 528 1.00 26.58 2026 C LEU 292 ATOM 2027 LEU 292 34. 431 11. 924 54. 671 1. 00 27. 91 ATOM 0 5 2028 ILE 293 32. 744 12. 421 53. 272 1.00 27.03 **ATOM** N 12. 689 1.00 26.01 ATOM 2029 CA ILE 293 31. 783 54. 342 54.019 1.00 26.42 2030 ILE 293 30. 948 13. 956 ATOM CB **ATOM** 2031 CG2 ILE 293 30. 184 14. 431 55. 247 1.00 25.08 ATOM 2032 CG1 ILE 293 31.866 15. 085 53. 573 1.00 24.53 10 ATOM CD1 ILE 293 31. 131 16. 366 53. 336 1. 00 23. 77 2033 ILE 293 30. 827 11. 503 54. 489 1.00 24.65 ATOM 2034 C **ATOM** 2035 0 ILE 293 30.681 10. 919 55. 565 1.00 23.84 ATOM 2036 N **GLY 294** 30. 197 11. 159 53. 374 1. 00 24. 02 ATOM 2037 CA GLY 294 29. 237 10. 073 53. 325 1.00 25.49 15 2038 8.815 ATOM C GLY 294 29. 454 54. 142 1.00 24.75 2039 8. 079 53.953 ATOM 0 **GLY 294** 30. 427 1. 00 26. 25 2040 28. 517 8. 556 55. 044 1. 00 22. 54 ATOM N GLY 295 7. 369 55. 851 1. 00 22. 80 ATOM 2041 CA GLY 295 28. 607 6. 125 **ATOM** 2042 C **GLY 295** 28. 530 54. 986 1. 00 25. 08 20 5. 047 **ATOM** 2043 0 **GLY 295** 28. 252 55. 497 1.00 27.80 ATOM 2044 N LYS 296 28. 748 6. 238 53. 680 1. 00 25. 43 ATOM 2045 CA LYS 296 28. 696 5. 039 52. 849 1. 00 25. 87 ATOM 2046 CB LYS 296 28. 313 5. 354 51. 411 1.00 27.04 ATOM 2047 CG LYS 296 28. 036 4.096 50. 587 1.00 30.40 25 **ATOM** 2048 CD LYS 296 29. 249 3. 562 49. 842 1. 00 30. 20 **ATOM** 2049 CE LYS 296 28. 954 2. 204 49. 176 1. 00 32. 59 **ATOM** 2050 NZ LYS 296 29. 015 1. 038 50. 135 1. 00 32. 31 ATOM 2051 C LYS 296 30. 044 4. 364 52. 828 1. 00 28. 34

- 215 -1.00 29.08 ATOM 2052 LYS 296 30. 158 3. 185 52. 507 0 TYR 297 31.075 5. 122 53. 163 1. 00 29. 56 ATOM 2053 N **ATOM** 2054 CA TYR 297 32. 414 4. 582 53. 147 1. 00 29. 25 5. 230 ATOM 2055 CB TYR 297 33. 208 52. 022 1. 00 30. 07 2056 CG TYR 297 32. 620 5. 025 50.650 1. 00 30. 84 ATOM 5 32.023 6.082 49.960 1. 00 32. 45 ATOM 2057 CD1 TYR 297 ATOM 2058 CE1 TYR 297 31. 544 5. 915 48. 665 1. 00 35. 21 ATOM 2059 CD2 TYR 297 32. 715 3. 789 50. 015 1. 00 30. 51 CE2 TYR 297 32. 244 3. 604 48. 724 1. 00 34. 82 ATOM 2060 ATOM 2061 CZTYR 297 31.661 4.673 48.049 1.00 37.82 10 ATOM 2062 OH TYR 297 31. 219 4. 504 46. 753 1. 00 41. 74 TYR 297 33.097 4. 842 54. 465 1. 00 27. 53 ATOM 2063 C TYR 297 34. 174 4. 312 54. 731 1.00 28.35 ATOM 2064 0 5.665 55. 288 ATOM 2065 N MET 298 32. 464 1. 00 24. 45 6.000 56. 580 1. 00 23. 96 ATOM 2066 CA MET 298 33. 025 15 57. 454 ATOM 2067 CB MET 298 31. 959 6. 652 1. 00 21. 69 ATOM 2068 CG MET 298 32. 436 6. 992 58. 850 1. 00 20. 73 ATOM 2069 SD MET 298 31. 288 8. 100 59. 701 1. 00 20. 68 ATOM 2070 CE MET 298 31. 435 9. 523 58. 620 1. 00 18. 32 33. 579 57. 254 ATOM 2071 C MET 298 4. 750 1. 00 24. 25 20 ATOM 2072 0 MET 298 34. 776 4.656 57. 529 1. 00 24. 74 57. 494 ATOM 2073 N **GLY 299** 32. 707 3. 779 1. 00 26. 72 ATOM 2074 CA GLY 299 33. 135 2. 552 58. 135 1. 00 25. 77 ATOM 2075 C **GLY 299** 34. 301 1. 906 57. 424 1. 00 25. 50 **ATOM** 2076 **GLY 299** 35. 162 1. 331 58.076 1. 00 26. 16 25 0 **ATOM GLU 300** 34. 325 2.004 56. 095 1. 00 25. 37 2077 N **ATOM GLU 300** 35. 389 55. 282 1. 00 24. 57 2078 CA 1. 418 ATOM 2079 CB **GLU 300** 35.057 53.800 1. 00 24. 05 1. 551 ATOM 2080 CG **GLU 300** 36.066 0.859 52. 905 1. 00 24. 66

- 216 -36. 018 -0. 662 53. 004 1. 00 24. 52 GLU 300 ATOM 2081 CD **-1.** 195 54. 054 1. 00 24. 02 0E1 GLU 300 35. 581 ATOM 2082 **-1.** 319 **52.** 026 1. 00 22. 70 0E2 GLU 300 36. 438 2083 ATOM 2084 C **GLU 300** 36. 734 2. 082 55. 550 1. 00 25. 31 ATOM 55. 663 1. 00 22. 71 1. 408 **GLU 300** 37. 769 5 ATOM 2085 0 55. 622 1. 00 26. 47 LEU 301 36. 712 3. 409 ATOM 2086 N 4. 174 55. 900 1. 00 26. 65 CA LEU 301 37.919 2087 ATOM CB LEU 301 37.600 5. 676 55. 992 1. 00 26. 57 ATOM 2088 54. 701 1. 00 26. 02 6. 395 CG LEU 301 37. 165 ATOM 2089 7. 784 55. 047 1. 00 27. 06 CD1 LEU 301 36. 684 ATOM 2090 10 6. 474 53. 701 1. 00 25. 38 CD2 LEU 301 38. 312 ATOM 2091 1. 00 26. 23 2092 C LEU 301 38. 452 3.648 57. 226 ATOM 39. 594 3. 209 57. 313 1. 00 26. 97 LEU 301 2093 0 ATOM 3. 670 58. 259 1. 00 26. 05 ATOM 2094 N VAL 302 37.623 CA VAL 302 38.068 3. 154 59. 542 1.00 27.56 2095 ATOM 15 3. 034 60. 524 1. 00 28. 13 **ATOM** 2096 CB VAL 302 36. 911 2. 285 61. 777 1. 00 26. 62 CG1 VAL 302 37. 354 **ATOM** 2097 4. 424 60. 882 1. 00 30. 95 CG2 VAL 302 36. 433 ATOM 2098 1. 786 59. 386 1. 00 27. 42 2099 C VAL 302 38. 723 ATOM 1. 00 29. 00 39. 765 1. 529 59. 977 20 ATOM 2100 0 VAL 302 0.906 58. 593 1. 00 25. 04 2101 ARG 303 38. 127 ATOM N -0. 395 58. 417 1. 00 25. 12 2102 CA ARG 303 38. 723 ATOM 1. 00 26. 51 -1.25457. 475 ATOM 2103 CB ARG 303 37. 906 1. 00 28. 11 ARG 303 -2.55857. 126 2104 CG 38. 587 ATOM 1. 00 31. 77 ARG 303 37.609 -3.52056. 490 25 ATOM 2105 CD ARG 303 38. 260 -4. 456 55. 583 1. 00 32. 46 2106 NE ATOM ARG 303 38. 483 -4. 215 54. 296 1. 00 34. 64 ATOM 2107 CZ1. 00 33. 51 NH1 ARG 303 38. 103 -3. 059 53. 759 ATOM 2108 1. 00 35. 80 NH2 ARG 303 39. 082 -5. 136 53. 546 2109 ATOM

- 217 -1. 00 27. 77 ARG 303 40. 111 -0. 242 57. 854 ATOM 2110 C -0. 788 58. 401 1. 00 30. 47 ATOM 2111 0 ARG 303 41.073 0.495 56. 754 1. 00 27. 67 LEU 304 40. 236 ATOM 2112 N LEU 304 41.562 0. 674 56. 147 1.00 24.93 ATOM 2113 CA LEU 304 1. 526 54. 865 1.00 22.51 ATOM 2114 CB 41.464 0.902 53. 718 2115 CG LEU 304 40.640 1. 00 19. 14 ATOM CD1 LEU 304 40.386 1. 957 52. 675 1.00 19.15 ATOM 2116 CD2 LEU 304 -0. 295 53. 105 1.00 14.45 ATOM 2117 41. 352 1. 290 57. 168 1. 00 21. 35 ATOM 2118 C LEU 304 42. 523 0.736 2119 LEU 304 43. 584 57. 432 1. 00 20. 90 ATOM 0 10 2.406 2120 VAL 305 42. 142 57. 770 1. 00 17. 52 ATOM N VAL 305 43.003 3.011 58. 758 1.00 17.43 ATOM 2121 CA 4. 162 59. 423 1.00 14.40 2122 CB VAL 305 42. 316 ATOM 2123 CG1 VAL 305 43. 154 4.673 60. 583 1. 00 14. 53 ATOM 2124 CG2 VAL 305 42.095 5. 240 58. 408 1. 00 14. 33 ATOM 15 59. 829 ATOM 2125 C VAL 305 43. 400 2. 010 1. 00 20. 92 2.071 2126 VAL 305 60. 387 1. 00 22. 69 ATOM 0 44. 497 ATOM 2127 N LEU 306 42.502 1.085 60. 126 1. 00 24. 02 42. 783 0.081 61. 144 1.00 26.64 **ATOM** 2128 CA LEU 306 20 ATOM 2129 CB LEU 306 41. 481 -0. 585 61. 594 1. 00 27. 02 -0.56363. 087 1. 00 27. 64 ATOM 2130 CG LEU 306 41. 154 0. 873 63. 592 1. 00 27. 51 ATOM 2131 CD1 LEU 306 41.094 2132 CD2 LEU 306 39. 826 -1.26763. 311 1. 00 28. 07 ATOM 1. 00 27. 73 ATOM 2133 C LEU 306 43. 721 -0. 965 60. 566 44. 745 -1.30361. 157 1. 00 26. 86 ATOM 2134 0 LEU 306 25 43. 360 -1.46759. 394 1. 00 28. 77 ATOM 2135 N LEU 307 44. 156 -2. 478 ATOM 2136 CA LEU 307 58. 733 1. 00 32. 47 43. 465 -2. 893 57. 437 1. 00 29. 90 ATOM 2137 CB LEU 307 43. 477 -4. 392 57. 130 1.00 29.19 ATOM 2138 CG LEU 307

- 218 -1.00 28.38 2139 CD1 LEU 307 43. 104 -5. 210 58. 361 ATOM CD2 LEU 307 56. 015 1. 00 29. 88 ATOM 2140 42. 495 **-4.** 648 2141 C LEU 307 45. 553 -1.91658. 466 1.00 35.49 ATOM 1.00 36.50 ATOM 2142 0 LEU 307 46. 542 -2.64558. 394 ARG 308 -0.60258. 332 1.00 38.03 2143 N 45. 622 ATOM 5 0.080 58. 101 1.00 41.29 ATOM 2144 CA ARG 308 46.882 ARG 308 46.603 1. 580 57. 936 1.00 47.88 **ATOM** 2145 CBATOM 2146 CG ARG 308 47. 706 2. 544 58. 368 1. 00 54. 88 48.819 2. 693 57. 338 1.00 60.14 ATOM 2147 CD ARG 308 3. 958 57. 540 1. 00 65. 47 ATOM 2148 NE ARG 308 49. 524 10 ATOM 2149 CZARG 308 50. 523 4. 401 56. 784 1.00 67.54 3.673 1.00 68.57 ATOM 2150 NH1 ARG 308 50. 954 55. 757 5. 584 1.00 66.83 2151 NH2 ARG 308 51.074 57. 046 ATOM -0. 182 **ATOM** 2152 C ARG 308 47. 783 59. 301 1.00 40.42 -0.6941.00 40.04 ATOM 2153 0 ARG 308 48. 889 59. 159 15 **ATOM** 2154 N LEU 309 47. 287 0. 152 60. 487 1. 00 39. 27 ATOM LEU 309 48. 043 -0.02761. 717 1. 00 38. 92 2155 CA 2156 CB LEU 309 47. 224 0. 484 62. 895 1. 00 33. 74 ATOM ATOM CG LEU 309 46. 852 1. 958 62. 854 1.00 30.26 2157 ATOM 2158 CD1 LEU 309 45. 453 2. 121 63. 368 1.00 30.84 20 ATOM 2159 CD2 LEU 309 47.819 2. 766 63. 683 1.00 27.57 ATOM 2160 C LEU 309 48. 461 -1.47361. 984 1.00 41.92 ATOM 2161 0 LEU 309 49. 600 -1.74162. 364 1. 00 42. 73 -2.40661. 788 1.00 44.59 ATOM 2162 N VAL 310 47. 541 -3. 811 62. 039 1.00 46.67 ATOM 2163 CA VAL 310 47. 829 25 ATOM 2164 CB VAL 310 46. 606 -4. 651 61. 798 1.00 46.95 ATOM 2165 CG1 VAL 310 45. 419 -4.00662. 479 1.00 49.54 60. 312 ATOM CG2 VAL 310 46. 368 -4.7791.00 47.77 2166 48. 929 -4. 321 61. 139 1. 00 47. 55 ATOM 2167 C VAL 310

- 219 -ATOM 2168 VAL 310 49. 488 -5. 392 61. 374 1. 00 48. 66 0 **ATOM** 2169 N ASP 311 49. 217 -3. 559 60.093 1. 00 48. 93 ASP 311 ATOM 2170 CA 50. 262 -3. 927 59. 160 1. 00 52. 04 ATOM 2171 CB ASP 311 49. 993 -3. 298 57. 793 1. 00 57. 14 ATOM 2172 CG ASP 311 48. 752 -3. 869 57. 135 1. 00 61. 79 5 **ATOM** 2173 OD1 ASP 311 48. 348 -3. 377 56.054 1. 00 63. 59 ATOM 2174 OD2 ASP 311 48. 180 -4. 819 57. 713 1. 00 63. 98 ATOM 2175 ASP 311 51. 618 -3. 490 C 59. 698 1.00 51.94 **ATOM** 2176 ASP 311 52. 580 -4.2560 59. 653 1. 00 53. 89 ATOM 2177 N GLU 312 51.702 -2.26710 60. 212 1. 00 49. 51 ATOM 2178 GLU 312 52. 961 -1. 785 CA 60. 762 1. 00 47. 68 ATOM 2179 CBGLU 312 -0.27253. 071 60.632 1.00 48.44 ATOM 2180 CG GLU 312 52.900 0. 221 59. 216 1. 00 51. 79 ATOM 2181 CD GLU 312 53. 122 1.713 59.084 1. 00 53. 56 ATOM 2182 0E1 GLU 312 52. 698 2. 280 58. 047 1. 00 49. 90 15 **ATOM** 2183 0E2 GLU 312 53. 725 2. 309 60.013 1. 00 56. 82 ATOM 2184 C 53.075 GLU 312 -2.17262. 222 1. 00 46. 11 ATOM 2185 0 GLU 312 53. 514 1.00 46.75 -1.37763. 049 ATOM 2186 ASN 313 N 52. 666 -3.39762. 527 1. 00 45. 02 ATOM 2187 CA ASN 313 20 52. 720 -3.93863.879 1.00 44.64 ATOM 2188 CBASN 313 54. 100 -4.55064. 119 1. 00 43. 84 ATOM 2189 CG ASN 313 54. 028 -5. 860 64. 863 1. 00 45. 16 ATOM 2190 OD1 ASN 313 53. 377 -5. 965 65. 906 1. 00 43. 79 ATOM 2191 ND2 ASN 313 54. 701 -6.87564. 333 1. 00 46. 05 ASN 313 25 ATOM 2192 C 52. 408 -2.92164. 991 1. 00 44. 49 ATOM 2193 0 ASN 313 53. 303 -2.50965. 728 1. 00 45. 19 ATOM LEU 314 2194 N 51. 142 -2.53065. 126 1. 00 43. 02 ATOM 2195 CA LEU 314 50. 743 -1.56366. 159 1. 00 40. 80 ATOM 2196 CBLEU 314 50. 639 -0. 167 65. 549 1. 00 34. 97

- 220 -65. 127 1. 00 29. 58 ATOM 2197 CG LEU 314 51.940 0. 499 ATOM 2198 CD1 LEU 314 51.698 1. 453 63. 981 1. 00 28. 94 ATOM 2199 CD2 LEU 314 52. 516 1. 212 66. 311 1. 00 28. 16 ATOM 2200 C -1.924LEU 314 49. 396 66. 777 1. 00 42. 38 2201 0 LEU 314 49.026 -1.42267.848 1. 00 39. 73 ATOM 5 2202 48. 689 -2. 812 ATOM N LEU 315 66.078 1.00 44.49 ATOM 2203 CA LEU 315 47. 352 -3. 268 66. 439 1. 00 45. 22 ATOM 2204 CB LEU 315 46. 354 -2. 695 65. 445 1. 00 43. 49 ATOM 2205 CG LEU 315 45. 121 -2. 063 66. 045 1. 00 43. 28 **ATOM** 2206 CD1 LEU 315 44. 055 -1. 976 10 64. 972 1. 00 43. 01 ATOM 2207 CD2 LEU 315 44. 643 -2. 907 67. 209 1.00 46.13 ATOM 2208 C LEU 315 47. 214 -4. 781 66. 407 1.00 46.34 ATOM 2209 0 LEU 315 47. 828 -5. 439 65. 577 1.00 47.74 ATOM 2210 N PHE 316 46. 380 -5. 318 67. 292 1. 00 48. 50 ATOM 2211 15 CA PHE 316 46. 125 -6. 760 67. 369 1. 00 50. 80 ATOM 2212 PHE 316 45. 054 -7. 186 CB 66. 347 1. 00 48. 89 ATOM 2213 CG PHE 316 43. 829 -6. 312 66. 331 1.00 46.47 ATOM 2214 CD1 PHE 316 43. 163 -5. 999 67. 508 1. 00 45. 93 ATOM 2215 CD2 PHE 316 43. 350 -5. 791 65. 134 1. 00 44. 48 ATOM 2216 CE1 PHE 316 -5. 183 20 42. 043 67. 491 1.00 44.57 ATOM 2217 CE2 PHE 316 42. 229 -4. 974 65. 109 1.00 43.59 ATOM CZ PHE 316 2218 41. 577 -4. 669 66. 290 1. 00 44. 05 ATOM 2219 C PHE 316 47. 371 -7.60567. 124 1.00 53.06 **ATOM** 2220 0 PHE 316 47. 342 -8. 521 66. 299 1.00 54.62 1.00 54.60 ATOM 2221 N HIS 317 48. 456 -7.30467. 835 25 ATOM 2222 CA HIS 317 49. 710 -8. 046 67. 691 1. 00 55. 95 ATOM 2223 CB HIS 317 49.676 -9.30168. 569 1. 00 54. 90 ATOM 2224 CG HIS 317 49.708 -9.00470.034 1. 00 55. 21 ATOM CD2 HIS 317 2225 49. 686 -9. 823 71. 113 1. 00 55. 22

- 221 -70. 528 1. 00 54. 55 2226 ND1 HIS 317 49. 778 -7. 718 ATOM 2227 CE1 HIS 317 49. 798 -7. 756 71. 848 1.00 55.21 ATOM 1.00 56.90 49. 744 -9. 020 72. 229 ATOM 2228 NE2 HIS 317 2229 C HIS 317 50. 004 -8. 426 66. 240 1. 00 58. 27 ATOM 65. 950 1. 00 58. 90 2230 0 HIS 317 50. 521 -9. 514 5 ATOM · 49. 665 -7. 513 65. 335 1. 00 59. 86 ATOM 2231 N **GLY 318** 49. 881 -7. 734 63. 921 1.00 60.72 2232 CA GLY 318 ATOM 2233 C GLY 318 49. 290 -9. 022 63. 379 1. 00 62. 25 ATOM 63.080 1. 00 63. 75 2234 GLY 318 50. 031 -9. 956 ATOM 0 2235 47. 962 -9. 087 63. 277 1.00 62.86 ATOM N GLU 319 10 1.00 62.72 47. 277 -10. 257 62.716 ATOM 2236 CA GLU 319 ATOM 2237 CBGLU 319 47. 663 -11. 545 63. 439 1.00 66.93 1.00 73.23 2238 GLU 319 47. 437 -12. 784 62. 575 CG ATOM ATOM 2239 CD GLU 319 47. 862 -14. 068 63. 262 1. 00 78. 58 1.00 80.57 0E1 GLU 319 49. 020 -14. 129 63.745 **ATOM** 2240 15 1.00 81.49 ATOM 2241 0E2 GLU 319 47. 043 -15. 019 63. 310 45. 765 -10. 097 62. 739 1.00 59.42 ATOM 2242 C GLU 319 45. 098 -10. 387 63. 735 1.00 57.03 ATOM 2243 0 GLU 319 ATOM 2244 N ALA 320 45. 246 -9. 643 61.604 1. 00 55. 74 1. 00 54. 02 20 ATOM 2245 CA ALA 320 43. 828 -9. 394 61. 414 43. 657 -8. 357 60. 338 1. 00 52. 55 2246 CB ALA 320 **ATOM** 43. 052 -10. 650 61.043 1. 00 54. 49 2247 C ALA 320 ATOM 1. 00 55. 61 ATOM 2248 0 ALA 320 43. 620 -11. 565 60. 457 1.00 55.01 2249SER 321 41. 762 -10. 698 61. 388 ATOM N 2250 40. 924 -11. 856 61.050 1. 00 55. 90 ATOM CA SER 321 25 1. 00 56. 08 39. 649 -11. 911 61.895 2251 CB SER 321 ATOM 38. 814 -12. 975 61. 445 1. 00 53. 96 ATOM 2252 0G SER 321 1. 00 55. 49 2253 C SER 321 40. 513 -11. 780 59. 589 ATOM 2254 0 SER 321 40. 367 -10. 689 59. 041 1. 00 54. 92 ATOM

- 222 -1. 00 54. 84 2255 **GLU 322** 40. 292 -12. 933 58. 967 ATOM N 2256 GLU 322 39. 917 -12. 951 57. 563 1. 00 56. 14 ATOM CA 1. 00 58. 38 ATOM 2257 CB GLU 322 39. 646 -14. 382 57. 092 2258 CG GLU 322 40. 173 -14. 697 55. 681 1. 00 63. 26 ATOM 2259 CD GLU 322 41. 712 -14. 670 55. 574 1. 00 66. 36 5 ATOM 2260 0E1 GLU 322 ATOM 42. 296 -13. 571 55. 432 1. 00 66. 15 ATOM 2261 0E2 GLU 322 42. 339 -15. 754 55. 637 1. 00 66. 78 ATOM 2262 C 38. 685 -12. 085 57. 354 1. 00 55. 71 GLU 322 2263 56. 227 1. 00 54. 93 ATOM 0 GLU 322 38. 343 -11. 727 38. 027 -11. 740 1. 00 55. 82 ATOM 2264 N GLN 323 58. 454 10 ATOM 2265 CA GLN 323 36. 838 -10. 904 58. 393 1. 00 55. 20 ATOM 2266 CBGLN 323 35. 995 -11. 101 59. 659 1. 00 57. 22 GLN 323 1. 00 60. 42 ATOM 2267 CG 35. 737 -12. 571 59. 983 ATOM 2268 CD GLN 323 34. 801 -12. 778 61. 164 1. 00 62. 11 ATOM 2269 OE1 GLN 323 34. 596 -13. 909 61. 612 1. 00 63. 58 15 ATOM 2270NE2 GLN 323 34. 223 -11. 690 61.668 1. 00 61. 37 2271 C GLN 323 *37.* 259 −9. 445 58. 249 1. 00 53. 59 ATOM ATOM 2272 0 GLN 323 36. 963 -8. 800 57. 242 1. 00 53. 27 ATOM 2273 N LEU 324 37. 973 -8. 936 59. 248 1. 00 50. 98 20 ATOM 2274 CA LEU 324 38. 430 -7. 553 59. 224 1. 00 48. 40 39. 396 2275 CBLEU 324 -7. 294 60. 378 1. 00 46. 63 ATOM ATOM 2276 CG LEU 324 39.956 -5.87660. 498 1. 00 44. 87 ATOM 2277 CD1 LEU 324 38. 846 -4. 837 60. 390 1. 00 44. 21 ATOM CD2 LEU 324 -5.7582278 40.671 61. 827 1. 00 43. 22 C -7.224ATOM 2279 LEU 324 39. 115 57. 911 1. 00 47. 25 25 2280 ATOM 0 LEU 324 39. 181 -6. 065 57. 505 1. 00 44. 86 ATOM 2281 N ARG 325 39. 627 -8. 253 57. 252 1. 00 48. 35 ATOM 2282 CA ARG 325 40. 309 -8. 057 55. 988 1. 00 50. 22 ATOM 2283 CB ARG 325 41. 473 -9. 055 55. 839 1. 00 53. 47

- 223 -ARG 325 1.00 57.97 ATOM 2284 CG 42. 580 -8. 896 56. 894 ATOM 2285 . CD ARG 325 43. 660 -9. 986 56.808 1.00 61.92 2286 NE ARG 325 ATOM 44. 564 -9. 957 57. 966 1.00 67.95 ATOM 2287 CZ ARG 325 45. 535 -10. 844 58. 206 1. 00 70. 27 2288 NH1 ARG 325 45. 753 -11. 854 1.00 69.69 ATOM 57. 371 5 ATOM 2289 NH2 ARG 325 46. 290 -10. 725 59. 293 1.00 70.39 2290 **ATOM** C ARG 325 39. 320 -8. 224 54.850 1.00 48.80 ATOM 2291 0 ARG 325 39. 617 -8. 859 53. 847 1.00 50.46 2292 38. 131 -7. 663 54. 999 ATOM N THR 326 1.00 46.54 THR 326 ATOM 2293 CA 37. 162 -7. 783 53. 929 1. 00 45. 13 10 2294 CB THR 326 36. 108 -8. 810 ATOM 54. 264 1.00 44.85 ATOM 2295 OG1 THR 326 36. 749 -10. 061 54. 546 1.00 44.98 CG2 THR 326 ATOM 2296 35. 160 -8. 973 53. 092 1.00 43.46 ATOM 2297 C THR 326 36.500 -6.45353. 687 1.00 44.79 ATOM 2298 0 THR 326 36. 256 -5.70554.626 1.00 45.01 15 2299 ATOM N ARG 327 36. 216 -6.14352. 430 1.00 45.02 2300 ATOM CA ARG 327 35. 590 **-4.** 866 52. 136 1. 00 45. 97 ATOM 2301 CBARG 327 35. 476 -4. 655 50. 623 1. 00 48. 63 2302 ATOM CG ARG 327 34. 961 -3.28350. 229 1. 00 53. 97 2303 ATOM CD ARG 327 -3.07248. 722 20 34. 975 1. 00 58. 44 ATOM 2304 NE ARG 327 -2.41048. 282 1.00 66.14 33. 747 ATOM 2305 CZARG 327 -1.17848.648 33. 387 1. 00 69. 53 2306 NH1 ARG 327 ATOM 34. 167 -0.47149. 458 1. 00 69. 84 ATOM NH2 ARG 327 2307 32. 242 -0.65248. 220 1.00 68.29 25 ATOM 2308 C ARG 327 34. 217 -4.79052. 794 1.00 44.69 ATOM 2309 0 ARG 327 33. 486 -5.78452. 861 1.00 44.55 ATOM 2310 N GLY 328 33. 888 -3. 605 53. 302 1. 00 42. 14 ATOM 1.00 37.48 CA GLY 328 32. 606 -3. 394 2311 53. 952 ATOM 2312 C GLY 328 32. 480 -4. 007 55. 334 1.00 33.00

- 224 -1. 00 32. 88 31. 693 -3. 532 GLY 328 56. 148 ATOM 2313 0 55. 601 1. 00 29. 02 ATOM 2314 N ALA 329 33. 258 -5. 049 56. 885 1. 00 26. 22 -5.743CA ALA 329 33. 227 ATOM 2315 CB ALA 329 34. 452 -6.62357. 028 1. 00 28. 65 **ATOM** 2316 58. 115 1. 00 24. 38 ALA 329 33. 092 -4. 861 ATOM 2317 C 2318 0 32. 490 -5.27659. 097 1. 00 26. 43 ALA 329 ATOM 1. 00 21. 81 -3.66358. 091 PHE 330 33. 663 ATOM 2319 N PHE 330 33. 547 -2. 776 59. 242 1. 00 18. 07 ATOM 2320 CA 59. 558 1. 00 13. 90 PHE 330 34. 887 -2. 137 ATOM 2321 CB PHE 330 34. 913 -1. 404 60.862 1. 00 12. 45 2322 CG ATOM 10 -0.09660.961 1. 00 12. 64 34. 460 2323 CD1 PHE 330 ATOM 2324 CD2 PHE 330 35. 436 -2.00961. 995 1. 00 12. 73 ATOM 62. 188 1. 00 12. 83 CE1 PHE 330 34. 535 0.605 2325 ATOM 2326 CE2 PHE 330 35. 515 -1.31563. 221 1. 00 11. 49 ATOM 1.00 8.96 -0.00863. 315 **ATOM** CZPHE 330 35. 066 2327 15 58. 886 ATOM 2328 C PHE 330 32. 528 -1.7161. 00 17. 48 58. 273 1. 00 17. 97 PHE 330 32. 855 -0.7022329 0 ATOM 59. 275 1. 00 16. 36 31. 288 -1.976ATOM 2330 N GLU 331 58. 998 GLU 331 30. 149 -1.1051. 00 18. 14 ATOM 2331 CA -1. 889 1. 00 22. 08 59. 308 20 ATOM 2332 CB GLU 331 28. 865 -3. 226 58. 546 1. 00 26. 82 CG GLU 331 28. 790 ATOM 2333 1. 00 28. 86 -4.38259. 346 2334 CD GLU 331 28. 183 ATOM -5.55258. 931 1. 00 28. 12 ATOM 2335 OE1 GLU 331 28. 381 -4.1291. 00 30. 16 0E2 GLU 331 27. 509 60. 371 ATOM 2336 0. 248 59.719 1. 00 16. 36 ATOM 2337 C GLU 331 30. 126 25 30.596 0.380 60. 849 1. 00 16. 97 ATOM 2338 0 GLU 331 1. 263 59.060 1.00 14.04 ATOM 2339 N THR 332 29. 583 1.00 14.47 THR 332 2. 568 59.695 ATOM 2340 CA 29. 494 CB THR 332 28. 747 3. 562 58. 825 1. 00 10. 93 ATOM 2341

						- 225	-			
	ATOM	2342	0G1	THR	332	29. 473	3. 751	57. 611	1.00 6	. 57
	ATOM	2343	CG2	THR	332	28. 597	4. 890	59. 550	1.00 6	. 34
	ATOM	2344	C	THR	332	28. 725	2. 382	60. 994	1.00 18	. 42
	ATOM	2345	0	THR	332	29. 125	2. 872	62. 052	1. 00 17	. 70
5	ATOM	2346	N	ARG	333	27. 609	1. 671	60. 892	1. 00 21	. 79
	ATOM	2347	CA	ARG	333	26. 783	1. 346	62. 040	1. 00 24	. 44
	ATOM	2348	СВ	ARG	333	26. 095	0.001	61. 764	1. 00 28	. 62
	ATOM	2349	CG	ARG	333	25. 291	-0. 590	62. 910	1. 00 34	. 65
	ATOM	2350	CD	ARG	333	24. 308	-1. 664	62. 401	1. 00 39	. 87
10	ATOM	2351	NE	ARG	333	24. 953	-2. 887	61. 910	1. 00 43	. 42
	ATOM	2352	CZ	ARG	333	25. 198	-3. 969	62. 653	1. 00 46	. 01
	ATOM	2353	NH1	ARG	333	24. 852	-3. 992	63. 940	1. 00 45	. 10
	ATOM	2354	NH2	ARG	333	25. 791	-5. 030	62. 104	1. 00 43	. 75
	ATOM	2355	C	ARG	333	27. 638	1. 271	63. 323	1. 00 24	. 88
15	ATOM	2356	0	ARG	333	27. 242	1. 803	64. 358	1. 00 24	. 00
	ATOM	2357	N	PHE	334	28. 818	0. 635	63. 232	1. 00 23	. 97
	ATOM	$235\dot{8}$	CA	PHE	334	29. 740	0. 458	64. 371	1. 00 19	. 64
	ATOM	2359	CB	PHE	334	30. 877	-0. 509	64. 033	1. 00 20	. 52
	ATOM	2360	CG	PHE	334	30. 420	-1. 813	63. 468	1. 00 24	. 74
20	ATOM	2361	CD1	PHE	334	29. 469	-2. 574	64. 121	1. 00 25	. 94
	ATOM	2362	CD2	PHE	334	30. 938	-2. 279	62. 262	1. 00 26	. 47
	ATOM	2363	CE1	PHE	334	29. 039	-3. 780	63. 575	1. 00 28	. 43
	ATOM	2364	CE2	PHE	334	30. 514	-3. 483	61.711	1. 00 24	. 74
	ATOM	2365	CZ	PHE	334	29. 565	-4. 233	62. 365	1. 00 26	. 41
25	ATOM	2366	C	PHE	334	30. 382	1. 739	64. 842	1. 00 16	. 52
	ATOM	2367	0	PHE	334	30. 434	2. 020	66. 039	1. 00 16	. 16
	ATOM	2368	N	VAL	335	30. 907	2. 509	63. 905	1. 00 13	. 20
	ATOM	2369	CA	VAL	335	31. 546	3. 752	64. 284	1. 00 11	. 36
	ATOM	2370	CB	VAL	335	31. 877	4. 565	63. 033	1. 00 8	3. 08

- 226 -6.003 32. 113 63. 402 1. 00 8. 71 2371 CG1 VAL 335 ATOM ATOM 2372 CG2 VAL 335 33.082 3. 979 62. 358 1.00 1.00 1.00 13.02 30.653 4. 558 65. 249 **ATOM** 2373 C VAL 335 ATOM 2374 0 VAL 335 31. 126 5.066 66. 264 1.00 10.40 4.640 64. 934 1. 00 16. 23 2375 N SER 336 29. 359 5 ATOM 28. 365 5. 372 65. 740 1. 00 18. 55 ATOM 2376 CA SER 336 27.017 5. 350 65. 039 1. 00 19. 92 ATOM 2377 CB SER 336 ATOM 2378 OG SER 336 26.611 3. 999 64. 866 1. 00 25. 40 4. 766 67. 118 1. 00 17. 99 ATOM 2379 C SER 336 28. 162 2380 0 SER 336 27. 896 5. 465 68. 100 1.00 14.64 ATOM 10 GLN 337 28. 239 3. 445 67. 159 1.00 19.48 ATOM 2381 N ATOM 2382 CA GLN 337 28.061 2. 719 68. 394 1. 00 21. 39 27. 995 1. 223 1. 00 21. 42 2383 CB GLN 337 68. 123 ATOM 0.800 ATOM 2384 CG GLN 337 26.829 67. 264 1. 00 23. 07 CD GLN 337 26. 920 -0.65466. 895 1.00 24.96 ATOM 2385 15 ATOM 2386 0E1 GLN 337 27. 243 -1.49667. 735 1. 00 28. 83 ATOM NE2 GLN 337 26.633 -0.96665. 638 1. 00 24. 29 23872388 C 29. 260 3. 011 69. 240 1. 00 20. 91 ATOM GLN 337 ATOM 2389 0 **GLN 337** 29. 205 2. 963 70. 464 1. 00 23. 32 ATOM 2390 N VAL 338 30. 362 3. 317 68. 584 1. 00 20. 52 20 ATOM 2391 CA VAL 338 31. 559 3. 589 69. 337 1. 00 21. 67 2392 CB VAL 338 32.812 3. 470 68. 443 1. 00 20. 93 ATOM 3. 624 69. 279 1. 00 19. 79 ATOM 2393 CG1 VAL 338 34. 065 2. 126 1. 00 16. 69 ATOM 2394 CG2 VAL 338 32. 811 67. 739 ATOM 2395 C VAL 338 31. 480 4. 973 69. 977 1. 00 23. 61 25 ATOM 2396 0 VAL 338 31. 385 5. 079 71. 203 1. 00 21. 96 ATOM 2397 N GLU 339 31. 486 6. 020 69. 146 1. 00 25. 05 7.406 2398 CA GLU 339 31. 455 69. 620 1. 00 26. 21 ATOM 8. 402 ATOM 2399 CB GLU 339 31. 460 68. 440 1. 00 26. 37

- 227 -GLU 339 67. 282 1. 00 31. 63 30. 515 8. 082 ATOM 2400 CG 66. 311 1.00 36.86 30. 287 9. 267 ATOM 2401 CD GLU 339 1. 00 37. 19 0E1 GLU 339 29. 542 10. 219 66. 663 ATOM 2402 65. 187 1. 00 37. 90 ATOM 2403 0E2 GLU 339 30.850 9. 243 70. 541 1.00 26.44 30. 299 7. 735 2404 C GLU 339 ATOM 5 1.00 27.55 8. 613 71. 396 **ATOM** 2405 0 GLU 339 30. 423 29. 189 7. 017 70. 380 1. 00 26. 30 2406 N SER 340 ATOM 7. 246 71. 181 1. 00 25. 08 ATOM 2407 CA SER 340 27. 987 6. 322 70. 717 1. 00 23. 68 26. 861 2408 CBSER 340 ATOM 4.970 70.957 1.00 23.58 27. 191 ATOM 2409 0G SER 340 10 72.676 1. 00 26. 02 2410 **SER 340** 28. 211 7.065 **ATOM** C 1. 00 26. 83 27. 415 7. 539 73. 488 ATOM 2411 0 SER 340 6.380 73. 033 1. 00 27. 41 2412 ASP 341 29. 294 ATOM N 6. 143 74. 434 1. 00 27. 85 ASP 341 29.630 **ATOM** 2413 CA 28. 939 4. 885 74. 953 1. 00 27. 41 ATOM 2414 CB ASP 341 15 4. 621 76. 410 1. 00 26. 49 ATOM 2415 CG ASP 341 29. 253 2416 OD1 ASP 341 29. 628 5. 591 77. 107 1. 00 26. 07 ATOM 1. 00 25. 64 OD2 ASP 341 29. 117 3. 463 76. 862 ATOM 2417 2418 ASP 341 31. 128 6.008 74. 672 1. 00 28. 59 ATOM C 5. 049 74. 229 1. 00 30. 06 ATOM 2419 ASP 341 31. 757 0 20 6.965 75. 398 1. 00 27. 34 ATOM 2420 N THR 342 31.688 6. 953 75. 694 1. 00 26. 74 ATOM 2421 CA THR 342 33. 105 1. 00 26. 75 ATOM 2422 CBTHR 342 33. 681 8. 348 75. 553 1. 00 25. 10 OG1 THR 342 33.072 9. 217 76. 511 ATOM 2423 1. 00 29. 29 33. 387 8. 881 74. 171 ATOM 2424 CG2 THR 342 25 77. 114 1. 00 27. 84 33. 292 6. 477 ATOM 2425 C THR 342 1. 00 27. 29 THR 342 6.625 77. 692 ATOM 2426 0 34. 365 GLY 343 32. 223 5.908 77.662 1. 00 30. 32 2427 N ATOM 79. 020 1. 00 31. 31 2428 CA GLY 343 32. 234 5. 398 ATOM

- 228 -1. 00 32. 13 **GLY 343** 4. 083 79. 178 32. 970 ATOM 2429 C 3. 944 80. 105 1.00 34.00 **GLY 343** 33. 765 ATOM 2430 0 3. 114 78. 304 1.00 31.93 32.712 ASP 344 ATOM 2431 N CA ASP 344 33. 400 1.836 78. 411 1. 00 34. 25 2432 ATOM 1. 00 38. 13 79. 267 ASP 344 32. 592 0.857 ATOM 2433 CB 5 31. 205 0.646 78. 744 1. 00 43. 49 CG ASP 344 2434 ATOM 79. 426 1.00 47.59 -0.029OD1 ASP 344 30. 399 **ATOM** 2435 OD2 ASP 344 30. 923 1. 159 77. 643 1. 00 46. 67 **ATOM** 2436 1. 196 77. 075 1. 00 33. 85 33. 744 ATOM 2437 С ASP 344 33. 354 1.681 76.015 1. 00 32. 12 ASP 344 ATOM 2438 0 10 77. 148 1.00 34.54 34. 490 0.098 ARG 345 ATOM 2439 N CA ARG 345 34. 935 -0. 626 75. 968 1. 00 35. 60 2440 ATOM 1.00 35.33 -1. 278 76. 233 36. 297 ARG 345 ATOM 2441 CB 1. 00 35. 88 ARG 345 37. 339 -0. 370 76. 864 ATOM 2442 CG -1.00676.879 1. 00 35. 19 ARG 345 38. 729 ATOM 2443 CD 15 ATOM 2444 NE ARG 345 39. 507 -0. 597 78. 054 1. 00 36. 95 0.629 78. 275 1. 00 36. 97 CZARG 345 39. 984 ATOM 2445 1.605 77. 396 1. 00 36. 40 ATOM 2446 NH1 ARG 345 39. 780 NH2 ARG 345 40.654 0.885 79. 394 1.00 36.46 ATOM 2447 75. 551 1. 00 36. 31 ATOM 2448 C ARG 345 33. 961 -1.71620 74. 461 1.00 37.64 34. 080 -2.2800 ARG 345 ATOM 2449 76. 420 1. 00 35. 01 33. 004 -2.020ATOM 2450 N LYS 346 2451 CA LYS 346 32. 050 -3.08176. 134 1. 00 33. 81 ATOM 1. 00 33. 64 -2.97577. 041 ATOM 2452 CB LYS 346 30. 824 -4.22376. 985 1. 00 33. 85 LYS 346 29. 942 ATOM 2453 CG 25 30. 759 -5. 505 77. 186 1. 00 31. 48 LYS 346 **ATOM** 2454 CD 30.061 -6.69976. 542 1. 00 32. 39 2455 CE LYS 346 ATOM 30. 855 -7. 968 76. 542 1.00 30.01 ATOM 2456 NZLYS 346 31. 613 -3. 093 . 74. 684 1. 00 33. 18 LYS 346 ATOM 2457 C

-229 -31. 746 -4. 101 73. 995 1. 00 31. 98 ATOM 2458 0 LYS 346 31. 101 -1. 967 74. 214 1.00 33.36 GLN 347 ATOM 2459 N -1.88772. 839 1. 00 34. 32 30.662 ATOM 2460 CA GLN 347 30.014 -0. 530 72. 589 1. 00 37. 17 2461 CB GLN 347 ATOM 28. 510 -0. 578 72. 703 1. 00 39. 97 ATOM 2462 CG GLN 347 5 GLN 347 -1. 436 71. 611 1. 00 43. 97 27. 905 **ATOM** 2463 CD -2.62671. 491 1. 00 43. 88 28. 219 ATOM 2464 0E1 GLN 347 NE2 GLN 347 27. 039 -0.83570. 799 1. 00 46. 46 **ATOM** 2465 -2. 144 71. 844 1. 00 34. 27 2466 C 31. 799 ATOM GLN 347 -2. 922 70. 902 1. 00 35. 29 GLN 347 31. 630 2467 0 ATOM 10 -1.502 72.054 1. 00 31. 49 32. 952 ATOM 2468 N ILE 348 34. 109 -1. 679 71. 165 1. 00 25. 43 2469 CA ILE 348 ATOM -0.82671. 614 1. 00 21. 01 ILE 348 35. 309 ATOM 2470 CB CG2 ILE 348 36. 369 -0.826 70.540 1.00 15.50 2471 ATOM 0.606 71.875 1. 00 22. 27 CG1 ILE 348 34. 852 2472 ATOM 15 2473 CD1 ILE 348 35. 914 1. 509 72. 462 1. 00 24. 55 ATOM -3.13971. 211 1. 00 24. 70 34. 524 2474 C ILE 348 ATOM 1.00 23.36 ATOM 2475 ILE 348 34. 793 -3.76370. 182 0 1. 00 23. 30 34. 560 -3. 681 72. 421 2476 TYR 349 **ATOM** N 1.00 23.65 ATOM 2477 CA TYR 349 34. 933 -5.06172. 597 20 1. 00 25. 21 -5. 491 74. 047 2478 TYR 349 34. 727 ATOM CB 1. 00 31. 27 -6.98974. 221 ATOM 2479 CG TYR 349 34. 779 1. 00 33. 98 2480 CD1 TYR 349 35. 990 -7. 665 74. 333 ATOM 1. 00 36. 98 CE1 TYR 349 -9.06274. 435 ATOM 2481 36. 028 74. 216 1.00 34.38 33. 607 -7. 740 ATOM 2482 CD2 TYR 349 25 1.00 36.69 33.628 -9. 125 74. 312 ATOM 2483 CE2 TYR 349 34. 837 -9. 786 1. 00 37. 89 CZTYR 349 74. 421 ATOM 2484 34. 834 -11. 165 74. 512 1. 00 37. 12 ATOM 2485 0H TYR 349 TYR 349 **34.** 105 −5. 945 71. 676 1. 00 23. 47 2486 C ATOM

- 230 -ATOM 2487 TYR 349 34. 654 -6. 602 70. 794 1. 00 21. 02 0 ATOM 2488 ASN 350 32. 783 -5. 934 71.872 1. 00 25. 29 N 1. 00 25. 07 ATOM 2489 CA ASN 350 31. 850 -6. 766 71. 091 2490 ATOM CB ASN 350 30. 379 -6. 500 71. 482 1. 00 23. 90 2491 CG ASN 350 30. 069 -6. 844 72. 941 1. 00 25. 09 ATOM 5 2492 30. 413 -7. 924 ATOM OD1 ASN 350 73. 440 1. 00 22. 84 ATOM 2493 ND2 ASN 350 29. 398 -5. 923 73.626 1. 00 25. 65 ASN 350 ATOM 2494 C 31. 982 -6. 620 69. 580 1. 00 25. 25 ATOM 2495 ASN 350 31. 994 -7. 619 1. 00 25. 84 0 68. 859 ATOM 2496 ILE 351 32. 068 -5. 392 1. 00 25. 43 10 N 69. 083 ATOM 2497 CA ILE 351 **32.** 195 −5. 227 67. 642 1. 00 25. 64 2498 ILE 351 32. 388 -3. 745 ATOM CB 67. 248 1. 00 24. 60 32. 282 -3. 600 ATOM 2499 CG2 ILE 351 65. 743 1.00 23.69 CG1 ILE 351 ATOM 2500 31. 305 -2. 882 67. 903 1. 00 22. 24 CD1 ILE 351 ATOM 2501 31. 357 -1. 431 67. 509 1. 00 19. 88 15 ILE 351 2502 ATOM C 33. 415 -6. 047 67. 224 1. 00 26. 73 ATOM 2503 0 ILE 351 33. 282 -7. 047 66. 517 1. 00 25. 71 ATOM 2504 N LEU 352 34. 592 -5.62967.695 1. 00 27. 08 ATOM 2505 CA LEU 352 35. 847 -6.31267. 397 1. 00 27. 36 2506 ATOM CB LEU 352 36. 994 -5. 700 68. 206 1. 00 24. 45 20 ATOM 2507 CG LEU 352 37. 295 -4.20868.090 1. 00 23. 84 ATOM 2508 CD1 LEU 352 38. 464 -3. 838 68. 995 1. 00 21. 54 **ATOM** 2509 CD2 LEU 352 37. 620 -3.87266. 660 1. 00 23. 96 ATOM 2510 LEU 352 35. 746 -7. 798 С 67. 737 1. 00 29. 42 **ATOM** 25 2511 0 LEU 352 36. 045 -8. 670 66. 912 1. 00 29. 43 ATOM 2512 · N SER 353 35. 336 -8. 087 68. 965 1. 00 30. 73 ATOM 2513 CA SER 353 35. 206 -9. 468 69. 398 1. 00 32. 72 ATOM 1. 00 32. 86 2514 CB SER 353 34. 408 -9. 531 70. 711 ATOM 2515 0G SER 353 34. 187 -10. 870 71. 126 1. 00 35. 10

001	

						201				
	ATOM	2516	C	SER	353	34. 513 -	-10. 277	68. 295	1. 00	33. 76
	ATOM	2517	0	SER	353	35. 123 -	-11. 149	67. 670	1. 00	34. 42
	ATOM	2518	N	THR	354	33. 252	-9. 941	68. 035	1. 00	34. 17
	ATOM	2519	CA	THR	354	32. 437 -	-10. 621	67. 031	1. 00	32. 96
5	ATOM	2520	CB	THR	354	30. 999 -	-10. 073	67. 076	1. 00	33. 01
	ATOM	2521	0G1	THR	354	30. 120 -	-10. 980	66. 408	1. 00	32. 52
	ATOM	2522	CG2	THR	354	30. 922	-8. 702	66. 411	1. 00	34. 65
	ATOM	2523	C	THR	354	33. 007 -	-10. 503	65. 608	1. 00	32. 28
	ATOM	2524	0	THR	354	32. 444 -	-11. 038	64. 646	1.00	30. 58
10	ATOM	2525	N	LEU	355	34. 137	-9. 807	65. 497	1. 00	31. 47
	ATOM	2526	CA	LEU	355	34. 832	-9. 612	64. 227	1. 00	30. 67
	ATOM	2527	CB	LEU	355	35. 488	-8. 239	64. 187	1. 00	28. 42
	ATOM	2528	CG	LEU	355	34. 780	-7. 240	63. 293	1. 00	27. 13
	ATOM	2529	CD1	LEU	355	35. 387	-5. 874	63. 487	1. 00	26. 09
15	ATOM	2530	CD2	LEU	355	34. 898	-7. 698	61. 859	1. 00	27. 39
	ATOM	2531	C	LEU	355	35. 905	-10. 668	64. 061	1. 00	31. 14
	ATOM	2532	0	LEU	355	36. 573	-10. 735	63. 033	1. 00	30. 59
	ATOM	2533	N	GLY	356	36. 074	-11. 484	65. 091	1. 00	32. 64
	ATOM	2534	CA	GLY	356	37. 068	-12. 530	65. 030	1. 00	35. 49
20	ATOM	2535	C	GLY	356	38. 435	-12. 074	65. 493	1. 00	37. 44
	ATOM	2536	0	GLY	356	39. 443	-12. 492	64. 930	1. 00	37. 31
	ATOM	2537	N	LEU	357	38. 471	-11. 222	66. 516	1. 00	39. 40
	ATOM	2538	CA	LEU	357	39. 729	-10. 717	67. 057	1. 00	41. 85
	ATOM	2539	CB	LEU	357	39. 898	-9. 239	66. 705	1. 00	41. 35
25	ATOM	2540	CG	LEU	357	39. 816	-8. 876	65. 218	1. 00	43. 17
	ATOM	2541	CD1	LEU	357	39. 953	-7. 375	65.064	1. 00	42. 98
	MOTA	2542	CD2	LEU	357	40. 904	-9. 585	64. 428	1. 00	43. 93
-	MOTA	2543	С	LEU	357	39. 759	-10. 888	68. 571	1. 00	44. 59
	ATOM	2544	0	LEU	357	38. 750	-11. 247	69. 176	1. 00	45. 94

_	_	_	
 า	2	")	_

	ATOM	2545	N	ARG	358	40. 919	-10. 643	69. 178	1. 00	46. 55
	ATOM	2546	CA	ARG	358	41. 080	-10. 752	70. 632	1. 00	48. 12
	ATOM	2547	CB	ARG	358	42. 113	-11. 819	70. 994	1. 00	52. 19
	ATOM	2548	CG	ARG	358	41. 649	-13. 258	70. 839	1. 00	61.21
5	ATOM	2549	CD	ARG	358	40. 870	-13. 768	72. 064	1. 00	68. 48
	ATOM	2550	NE	ARG	358	39. 519	-13. 206	72. 184	1. 00	74.00
	ATOM	2551	CZ	ARG	358	38. 629	-13. 577	73. 104	1. 00	75. 57
	ATOM	2552	NH1	ARG	358	38. 935	-14. 517	73. 998	1. 00	75. 58
	ATOM	2553	NH2	ARG	358	37. 431	-13. 005	73. 131	1. 00	74. 54
10	ATOM	2554	C	ARG	358	41. 558	-9. 418	71. 174	1. 00	46. 76
	ATOM	2555	0	ARG	358	42. 702	-9. 284	71. 580	1. 00	49. 52
	ATOM	2556	N	PRO	359	40. 679	-8. 412	71. 197	1. 00	45. 33
	ATOM	2557	CD	PRO	359	39. 271	-8. 532	70. 791	1. 00	45. 90
	ATOM	2558	CA	PRO	359	40. 956	-7. 056	71. 677	1. 00	44.06
15	ATOM	2559	CB	PRO	359	39. 565	-6. 449	71. 784	1. 00	45. 14
	ATOM	2560	CG	PR0	359	38. 865	-7. 086	70. 643	1. 00	46. 70
	ATOM	2561	C	PRO	359	41. 725	-6. 936	72. 986	1. 00	42. 11
	ATOM	2562	0	PRO	359	41. 662	-7. 797	73. 860	1. 00	42. 98
	ATOM	2563	N	SER	360	42. 449	-5. 840	73. 118	1. 00	38. 55
20	ATOM	2564	CA	SER	360	43. 209	-5. 608	74. 321	1. 00	35. 42
	ATOM	2565	CB	SER	360	44. 701	-5. 624	74. 014	1. 00	38. 45
	ATOM	2566	0G	SER	360	45. 100	-4. 379	73. 453	1. 00	37. 32
	ATOM	2567	C	SER	360	42. 847	-4. 234	74. 818	1. 00	33. 26
	ATOM	2568	0	SER	360	42. 530	-3. 345	74. 028	1. 00	30. 55
25	ATOM	2569	N	THR	361	42. 907	-4.060	76. 128	1. 00	31. 87
	ATOM	2570	CA	THR	361	42. 625	-2. 771	76. 721	1. 00	33. 02
	ATOM	2571	CB	THR	361	43. 285	-2. 646	78. 083	1. 00	32. 00
	ATOM	2572	0G1	THR	361	42. 697	-3. 593	78. 981	1. 00	31. 30
	ATOM	2573	CG2	THR	361	43. 135	-1. 223	78. 618	1. 00	28. 90

- 233 -ATOM 2574 C THR 361 43. 162 -1. 637 75. 853 1. 00 35. 59 2575 0 THR 361 42. 600 -0. 545 75. 837 1. 00 37. 16 ATOM 44. 253 -1. 879 75. 135 1. 00 37. 62 ATOM 2576 N THR 362 -0.81974. 303 1. 00 37. 63 2577 CA THR 362 44. 812 ATOM 2578 CB THR 362 46. 341 -0. 949 74. 156 1. 00 38. 04 ATOM 5 OG1 THR 362 46. 950 -0.98175. 453 1. 00 37. 77 ATOM 2579 73. 395 1. 00 37. 49 ATOM 2580 CG2 THR 362 46. 890 0. 242 THR 362 -0.83972. 928 1. 00 36. 67 2581 44. 183 ATOM C ATOM 2582 THR 362 43.758 0. 194 72.416 1. 00 34. 48 0 ATOM 2583 ASP 363 44. 132 -2.03272. 345 1. 00 37. 88 N 10 2584 CA ASP 363 43. 555 -2.24671. 024 1. 00 40. 18 ATOM -3.72970.842 1. 00 42. 13 ATOM 2585 CB ASP 363 43. 238 ATOM 2586 CG ASP 363 44. 477 -4.55770.666 1. 00 45. 73 **ATOM** 2587 OD1 ASP 363 44. 433 -5. 779 70. 932 1. 00 49. 54 ATOM 2588 OD2 ASP 363 45. 500 -3.97670. 247 1.00 46.04 15 -1.42970.841 1.00 40.28 ATOM 2589 C ASP 363 42. 289 2590 ASP 363 -0.80169.802 1.00 38.03 ATOM 0 42.070 2591 71.871 1. 00 41. 60 ATOM N CYS 364 41. 455 -1. 449 1. 00 41. 33 -0.72471.849 **ATOM** 2592 CA CYS 364 40. 197 CYS 364 -1.036**ATOM** 2593 CB 39. 426 73. 131 1.00 41.81 20 -2.81873. 225 **ATOM** 2594 SG. CYS 364 39. 078 1.00 41.98 0.766 ATOM 2595 C CYS 364 40. 447 71. 685 1. 00 39. 78 1. 382 **ATOM** 2596 CYS 364 39. 991 70. 721 1. 00 37. 44 0 ATOM 2597 N ASP 365 41. 194 1. 333 72.622 1.00 38.65 ASP 365 41. 525 2. 744 72.580 1.00 37.87 ATOM 2598 CA 25 ATOM 2599 CB ASP 365 42. 498 3.060 73. 709 1.00 39.53 **ATOM** 2600 CG ASP 365 42.073 2. 424 75.014 1. 00 42. 28 ATOM 2601 OD1 ASP 365 40. 887 2.000 75.096 1.00 43.06 ATOM 2602 OD2 ASP 365 42. 908 2. 355 75. 949 1.00 41.82

- 234 -1. 00 35. 70 2603 ASP 365 42. 123 3. 092 71. 220 ATOM C 70.682 1. 00 35. 49 ATOM 2604 0 ASP 365 41. 887 4. 173 2605 ILE 366 42.895 2. 175 70.655 1. 00 32. 72 ATOM N 2606 ATOM CA ILE 366 43. 469 2. 428 69. 347 1. 00 31. 21 1. 241 68.891 1. 00 30. 98 ATOM 2607 CB ILE 366 44. 345 5 1.488 1.00 30.08 **ATOM** 2608 CG2 ILE 366 44.878 67. 482 2609 CG1 ILE 366 45. 472 1. 010 69.907 1. 00 30. 05 ATOM ATOM 2610 CD1 ILE 366 46. 426 2. 165 70.071 1. 00 26. 19 2. 622 68. 384 1. 00 30. 65 ATOM 2611 ILE 366 42. 292 C 3. 686 ATOM 2612 0 ILE 366 42. 140 67. 790 1. 00 29. 65 10 ATOM 2613 N VAL 367 41. 451 1. 598 68. 255 1. 00 29. 81 1.665 1. 00 27. 24 ATOM 2614 CA VAL 367 40. 287 67. 378 0. 424 1. 00 26. 77 2615 VAL 367 39. 397 67. 541 ATOM CB 1. 00 25. 16 2616 CG1 VAL 367 38. 193 0. 520 66.630 ATOM ATOM 2617 CG2 VAL 367 40. 190 -0. 817 67. 220 1. 00 27. 90 15 ATOM 2618 VAL 367 39. 453 2.910 67. 657 1. 00 26. 82 C 2619 VAL 367 39.061 3.606 66. 727 1. 00 27. 16 ATOM 0 2620 ARG 368 39.171 3. 191 68. 927 1. 00 25. 49 ATOM N 2621 ARG 368 38. 398 4. 380 69. 266 1. 00 24. 26 ATOM CA 2622 CB ARG 368 38. 431 4. 644 70. 772 1. 00 23. 73 ATOM 20 ATOM 2623 CG ARG 368 37.765 5. 951 71. 217 1. 00 26. 32 **ATOM** 2624 CD ARG 368 36. 239 5. 948 71.033 1. 00 32. 00 1. 00 33. 36 ATOM 2625 NE ARG 368 35. 542 5. 015 71. 926 5.096 1.00 33.30 ATOM 2626 CZARG 368 35. 558 73. 253 25 **ATOM** 2627 NH1 ARG 368 36. 237 6.069 73. 843 1. 00 36. 87 ATOM 2628 NH2 ARG 368 34. 904 4. 209 73. 990 1. 00 30. 08 ATOM 2629 C ARG 368 39. 034 5. 545 68. 539 1. 00 25. 24 ATOM 2630 ARG 368 38. 403 6. 175 67.700 1. 00 26. 08 0 1.00 26.69 ATOM 2631 N ARG 369 40. 299 5. 808 68. 844

						- 235	-		
	ATOM	2632	CA	ARG	369	41. 022	6. 905	68. 226	1. 00 28. 80
	ATOM	2633	CB	ARG	369	42. 500	6. 842	68. 619	1. 00 33. 81
	ATOM	2634	CG	ARG	369	42. 992	8. 041	69. 421	1. 00 41. 54
	ATOM	2635	CD	ARG	369	44. 246	8. 666	68. 797	1. 00 47. 78
5	ATOM	2636	NE	ARG	369	44. 827	9. 709	69. 642	1. 00 53. 83
	ATOM	2637	CZ	ARG	369	45. 436	9. 479	70. 803	1. 00 57. 34
	ATOM	2638	NH1	ARG	369	45. 547	8. 234	71. 256	1. 00 57. 39
	ATOM	2639	NH2	ARG	369	45. 925	10. 492	71. 517	1. 00 58. 51
	ATOM	2640	C	ARG	369	40. 888	6. 941	66. 704	1. 00 27. 66
10	ATOM	2641	0	ARG	369	40. 898	8. 017	66. 116	1. 00 27. 35
	ATOM	2642	N	ALA	370	40. 760	5. 778	66.071	1. 00 28. 23
	ATOM	2643	CA	ALA	370	40. 622	5. 699	64. 613	1. 00 29. 69
	ATOM	2644	CB	ALA	370	40. 779	4. 264	64. 144	1. 00 27. 18
	ATOM	2645	C	ALA	370	39. 266	6. 218	64. 184	1. 00 32. 49
15	ATOM	2646	0	ALA	370	39. 155	7. 084	63. 313	1. 00 33. 37
	ATOM	2647	N	CYS	371	38. 229	5. 663	64. 797	1. 00 35. 80
	ATOM	2648	CA	CYS	371	36. 860	6. 053	64. 500	1. 00 37. 09
	ATOM	2649	CB	CYS	371	35. 892	5. 310	65. 427	1. 00 37. 67
	ATOM	2650	SG	CYS	371	35. 709	3. 539	65. 052	1. 00 43. 56
20	ATOM	2651	C	·CYS	371	36. 692	7. 555	64. 663	1. 00 36. 66
	ATOM	2652	0	CYS	371	36. 237	8. 231	63. 746	1. 00 36. 14
	ATOM	2653	N	GLU	372	37. 079	8. 065	65. 829	1. 00 36. 70
	ATOM	2654	CA	GLU	372	36. 962	9. 482	66. 140	1. 00 37. 83
	ATOM	2655	CB	GLU	372	37. 440	9. 741	67. 569	1. 00 41. 72
25	ATOM	2656	CG	GLU	372	37. 405	11. 202	67. 993	1. 00 50. 44
	ATOM	2657	CD	GLU	372	38. 615	11. 981	67. 504	1. 00 56. 78
	ATOM	2658	0E1	GLU	372	39. 747	11. 656	67. 940	1. 00 60. 05
	ATOM	2659	0E2	GLU	372	38. 437	12. 914	66. 685	1. 00 59. 31
	ATOM	2660	C	GLU	372	37. 736	10. 344	65. 163	1. 00 36. 14

-236 -1.00 34.24 11. 410 64. 745 ATOM 2661 0 GLU 372 37. 280 **ATOM** 2662 **SER 373** 38. 917 9.890 64. 793 1.00 37.31 N 63.856 2663 **SER 373** 39. 703 10.662 1.00 39.48 ATOM CA ATOM 2664 CB **SER 373** 41.095 10. 040 63. 694 1.00 40.54 1. 00 41. 31 8. 697 63. 253 2665 **SER 373** 41.014 5 ATOM 0G 2666 38.966 10.713 62.516 1. 00 38. 54 ATOM C SER 373 11. 790 61.953 1. 00 39. 30 **ATOM** 2667 0 **SER 373** 38. 778 2668 N VAL 374 38. 528 9. 552 62.029 1. 00 35. 74 ATOM 9. 462 60. 755 1. 00 34. 53 2669 CA VAL 374 37. 817 ATOM 2670 CB VAL 374 37. 519 7. 987 60.388 1.00 33.30 ATOM 10 7.897 59. 119 2671 CG1 VAL 374 36.688 1.00 30.40 ATOM ATOM 2672 CG2 VAL 374 38.811 7. 257 60. 186 1. 00 34. 78 1. 00 35. 17 10. 250 2673 VAL 374 36. 512 60. 736 ATOM C ATOM 2674 0 VAL 374 36. 253 11.010 59. 797 1.00 34.51 1.00 35.24 ATOM 2675 SER 375 35. 700 10.080 61.775 N 15 10.768 ATOM 2676 CA SER 375 34. 416 61.866 1.00 34.91 2677 CB SER 375 33. 641 10. 312 63. 103 1. 00 35. 91 ATOM 2678 SER 375 33. 802 11. 230 64. 178 1. 00 37. 28 ATOM 0G ATOM 2679 C **SER 375** 34. 585 12. 272 61. 933 1.00 34.67 2680 33.865 13. 010 61. 266 1. 00 35. 17 20 ATOM 0 SER 375 2681 35. 534 12. 725 62. 743 1.00 34.00 ATOM N THR 376 2682 35. 768 14. 150 62.889 1. 00 35. 55 ATOM CA THR 376 14. 421 63. 954 1.00 38.06 ATOM 2683 CB THR 376 36. 827 13. 739 65. 158 1. 00 40. 51 ATOM 2684 OG1 THR 376 36. 461 2685 CG2 THR 376 36.926 15. 923 64. 239 1. 00 38. 22 25 ATOM 1. 00 34. 80 ATOM 2686 C THR 376 36. 208 14. 788 61. 583 ATOM 2687 THR 376 35. 794 15. 901 61. 241 1. 00 32. 23 0 ATOM 2688 N ARG 377 37. 049 14.078 60. 848 1. 00 36. 51 ATOM 2689 CA ARG 377 37. 523 14.601 59. 581 1.00 38.20

- 237 -58. 956 1.00 41.90 **ATOM** 2690 CB ARG 377 38. 535 13. 640 **ATOM** 2691 CG ARG 377 39. 417 14. 271 57. 892 1. 00 43. 83 2692 38. 735 14. 280 56. 551 1. 00 46. 24 ATOM CD ARG 377 ATOM 2693 NE ARG 377 38. 467 12. 921 56.074 1. 00 50. 02 2694 CZ ARG 377 39. 400 12. 058 55. 679 1. 00. 48. 89 ATOM 5 ATOM 2695 NH1 ARG 377 40.681 12. 405 55. 700 1. 00 47. 77 2696 39.050 10.849 55. 256 1. 00 48. 65 ATOM NH2 ARG 377 **ATOM** 2697 C ARG 377 36. 311 14. 759 58. 688 1. 00 37. 15 2698 36. 163 15. 780 58. 016 1. 00 37. 23 ATOM 0 ARG 377 ATOM 2699 N ALA 378 35. 445 13. 744 58. 706 1. 00 36. 43 10 2700 ALA 378 34. 212 13. 732 57. 920 1. 00 35. 58 ATOM CA 33.470 12. 430 ATOM 2701 CB ALA 378 58. 130 1. 00 35. 75 2702 ALA 378 33. 314 14. 897 58. 304 1. 00 34. 75 ATOM C 2703 ALA 378 32.675 15. 507 57. 451 1. 00 34. 63 ATOM 0 ATOM 2704 N ALA 379 33. 249 15. 204 59. 590 1. 00 34. 17 15 2705 ALA 379 32. 427 16. 317 60.009 1. 00 34. 54 ATOM CA 2706 ALA 379 32. 281 16. 340 61. 515 1. 00 32. 43 ATOM CB2707 ALA 379 33.073 17. 607 59. 519 1. 00 35. 95 ATOM C ATOM 2708 ALA 379 32. 465 18. 358 58. 761 1. 00 38. 27 0 ATOM 2709 HIS 380 34. 314 17. 856 59. 925 1. 00 35. 13 N 20 ATOM 2710 CA HIS 380 34. 994 19. 083 59. 526 1.00 34.04 19. 031 **ATOM** 2711 CB HIS 380 36. 448 59. 968 1. 00 37. 01 1. 00 42. 02 ATOM 2712 CG HIS 380 36. 628 19. 284 61. 430 2713 CD2 HIS 380 35. 734 19.637 62.385 1. 00 43. 27 ATOM 37. 852 19. 206 25 ATOM 2714 ND1 HIS 380 62.058 1.00 44.66 37. 704 19. 500 ATOM 2715 CE1 HIS 380 63. 339 1. 00 46. 06 NE2 HIS 380 19.766 ATOM 2716 36. 429 63. 562 1. 00 44. 63 HIS 380 34. 894 19. 405 ATOM 2717 C 58.045 1. 00 32. 37 ATOM 2718 HIS 380 34. 581 20. 536 0 57. 671 1. 00 29. 98

- 238 -ATOM 2719 N MET 381 35. 154 18. 417 57. 197 1. 00 30. 55 2720 MET 381 35. 055 18. 640 55. 764 1.00 30.35 ATOM CA ATOM 2721 CBMET 381 35. 383 17. 365 54. 992 1.00 28.41 2722 ATOM CG MET 381 36. 852 17. 181 54. 767 1. 00 28. 31 1. 00 31. 73 2723 SD MET 381 37. 505 18. 684 ATOM 54. 017 5 2724 CE ATOM MET 381 38. 142 18. 070 52. 446 1.00 30.02 ATOM 2725 C MET 381 33. 647 19. 101 55. 415 1.00 32.29 ATOM 2726 0 MET 381 33. 453 19. 930 54. 527 1. 00 32. 42 ATOM 2727 CYS 382 32.660 18. 566 56. 124 1. 00 33. 02 N **ATOM** 2728 CYS 382 31. 279 18. 942 55. 869 1.00 33.44 10 CA ATOM 2729 CB CYS 382 30. 323 18. 012 56. 625 1. 00 33. 78 ATOM 2730 SG CYS 382 28. 582 18. 152 56. 124 1.00 40.21 2731 C CYS 382 31. 087 20. 387 56. 316 ATOM 1. 00 33. 02 2732 CYS 382 30.566 21. 218 55. 563 ATOM 0 1. 00 32. 71 ATOM 2733 N SER 383 31. 528 20. 686 57. 537 1.00 33.57 15 273431. 418 22.037ATOM CA SER 383 58. 097 1. 00 33. 39 ATOM 2735 CB SER 383 32. 232 22. 159 59. 392 1. 00 32. 88 ATOM 2736 0G SER 383 33. 605 21. 877 59. 176 1. 00 31. 29 ATOM 2737 C SER 383 31. 935 23. 042 57. 085 1. 00 32. 50 ATOM 2738 0 31. 314 24. 073 56. 832 20 SER 383 1. 00 32. 64 ATOM 2739 N 33. 082 22. 729 ALA 384 56. 501 1. 00 30. 75 ATOM ALA 384 33. 663 23. 607 55. 510 2740 CA 1. 00 29. 62 ATOM ALA 384 34. 787 2741 CB 22. 885 54. 789 1.00 29.04 ATOM 32. 604 2742 C ALA 384 24. 095 54. 509 1.00 29.94 ATOM 25 2743 0 ALA 384 32. 211 25. 259 54. 544 1. 00 28. 35 ATOM 2744 N GLY 385 32. 141 23. 193 53. 639 1. 00 31. 38 23. 525 ATOM 2745 CA GLY 385 31. 149 52. 621 1. 00 30. 00 ATOM 2746 C GLY 385 29.870 24. 198 53. 090 1.00 30.54 ATOM 2747 0 GLY 385 29. 522 25. 285 52. 613 1. 00 28. 88

- 239 -1. 00 29. 58 LEU 386 29. 151 23. 559 54. 010 ATOM 2748 N ATOM 2749 LEU 386 27. 917 24. 148 54. 522 1. 00 28. 86 CA 27. 410 23. 374 55. 749 1. 00 25. 55 2750 CB LEU 386 ATOM ATOM 2751 CG LEU 386 26. 141 23. 824 56. 493 1. 00 21. 28 CD1 LEU 386 26. 504 24. 768 57. 605 1. 00 18. 56 2752 5 ATOM 2753 CD2 LEU 386 25. 157 24. 456 55. 533 1. 00 17. 77 ATOM 1.00 30.29 C LEU 386 28. 199 25. 595 54. 898 ATOM 2754 **ATOM** 2755 0 LEU 386 27. 344 26. 458 54. 728 1. 00 30. 86 29. 413 25. 846 55. 393 1. 00 32. 40 ATOM 2756 N ALA 387 ATOM 2757 CA ALA 387 29.851 27. 184 55. 799 1. 00 32. 84 10 31. 181 27. 101 56. 536 1. 00 31. 99 ATOM 2758 CB ALA 387 ATOM 2759 C ALA 387 29.991 28. 098 54. 585 1. 00 34. 20 29.509 29. 235 54. 588 1. 00 34. 34 2760 0 ALA 387 ATOM 30.663 27. 597 53. 553 1. 00 34. 88 **ATOM** 2761 N **GLY 388 ATOM** 2762 GLY 388 30.831 28. 378 52. 344 1. 00 35. 13 CA 15 28. 833 2763 29. 467 51. 867 1. 00 35. 42 ATOM C GLY 388 29. 257 30.005 51. 545 1. 00 36. 39 ATOM 2764 0 GLY 388 28. 524 27.898 51. 839 1. 00 34. 42 ATOM 2765 N VAL 389 27. 167 28. 202 1. 00 32. 28 ATOM 2766 CA VAL 389 51. 402 26. 266 26. 949 51. 487 1. 00 31. 56 ATOM 2767 CB VAL 389 20 ATOM 2768 CG1 VAL 389 24.856 27. 285 51. 027 1. 00 28. 68 2769 CG2 VAL 389 26.853 25. 836 50. 638 1. 00 28. 05 ATOM 1.00 30.86 2770 VAL 389 26. 579 29. 307 52. 273 ATOM C 1. 00 26. 91 2771 VAL 389 26.072 30. 304 51. 762 ATOM 0 ATOM 2772 N ILE 390 26.665 29. 115 53. 586 1.00 31.06 25 **ATOM** 2773 CA ILE 390 26. 146 30. 073 54. 548 1. 00 34. 83 ATOM 2774 CB ILE 390 26. 262 29. 538 56.001 1.00 32.76 1. 00 31. 45 CG2 ILE 390 25. 733 30. 562 ATOM 2775 56. 996 ATOM 2776 CG1 ILE 390 25. 425 28. 274 56. 154 1. 00 32. 06

- 240 -25. 311 27. 804 57. 572 1. 00 31. 73 ATOM 2777 CD1 ILE 390 54. 444 1. 00 39. 01 ILE 390 26. 858 31. 415 ATOM 2778 C 32. 465 54. 370 1. 00 42. 11 ILE 390 26. 209 ATOM 2779 0 28. 186 31. 398 54. 437 1. 00 41. 07 2780 N ASN 391 **ATOM** 1. 00 42. 97 32. 652 54. 326 ATOM 2781 CA ASN 391 28. 921 5 32. 386 54. 290 1. 00 47. 00 CB ASN 391 30. 430 ATOM 2782 55. 678 1. 00 51. 32 31.061 32. 452 ATOM 2783 CG ASN 391 32. 205 32. 029 55. 878 1. 00 51. 98 2784 OD1 ASN 391 **ATOM** 30. 312 32. 996 56. 646 1. 00 51. 87 **ATOM** 2785 ND2 ASN 391 33. 377 53.070 1. 00 42. 59 2786 C ASN 391 28. 459 ATOM 10 1.00 40.64 34. 488 53. 141 27. 927 ATOM 2787 0 ASN 391 ARG 392 28.638 32. 723 51. 928 1. 00 43. 30 ATOM 2788 N 28. 237 33. 277 50. 644 1. 00 45. 75 ARG 392 ATOM 2789 CA ARG 392 28. 328 32. 182 49. 571 1. 00 48. 20 ATOM 2790 CB 31.811 48. 892 1. 00 54. 22 ARG 392 27.020 **ATOM** 2791 CG 15 ATOM 2792 CD ARG 392 26. 803 32. 578 47. 590 1. 00 59. 36 31. 984 1. 00 66. 46 ARG 392 27. 491 46. 437 ATOM 2793 NE 32. 098 1. 00 69. 91 ATOM 2794 CZARG 392 28. 794 46. 156 NH1 ARG 392 29.613 32. 793 46. 941 1. 00 69. 61 ATOM 2795 31. 524 45.063 1. 00 70. 50 ATOM 2796 NH2 ARG 392 29. 279 20 50.711 1. 00 45. 30 26. 822 33. 854 2797 C ARG 392 ATOM 1. 00 44. 35 26. 474 34. 777 49. 973 ATOM 2798 0 ARG 392 2799 MET 393 26.009 33. 316 51. 607 1. 00 47. 21 ATOM N 33. 785 51. 739 1. 00 50. 87 ATOM 2800 CA MET 393 24. 640 52.346 1.00 49.84 MET 393 23. 761 32. 687 ATOM 2801 CB 25 1.00 45.97 23. 427 31. 551 51. 389 ATOM 2802 CG MET 393 1. 00 42. 67 2803 SD MET 393 22. 244 30. 416 52. 096 ATOM 1. 00 42. 67 20. 761 31. 465 52. 244 ATOM 2804 CE MET 393 1.00 54.43 24. 559 35. 046 52. 581 ATOM 2805 C MET 393

- 241 -1. 00 53. 85 MET 393 23. 631 35. 851 52. 443 ATOM 2806 0 35. 208 53. 469 1.00 59.09 ARG 394 25. 528 ATOM 2807 N 36. 386 54. 314 1. 00 64. 57 ARG 394 25. 568 **ATOM** 2808 CA ARG 394 26. 624 36. 224 55. 404 1. 00 65. 91 2809 CB ATOM ARG 394 26. 830 37, 477 56. 228 1. 00 67. 95 ATOM 2810 CG 37. 364 57. 130 1.00 69.02 2811 ARG 394 28. 048 ATOM CD 28. 499 38. 673 57. 600 1. 00 68. 97 **ATOM** 2812 NE ARG 394 ARG 394 27.776 39. 494 58. 357 1. 00 69. 21 2813 CZ**ATOM** 39. 151 58. 743 1. 00 70. 35 ATOM 2814 NH1 ARG 394 26. 553 NH2 ARG 394 40. 662 58. 732 1. 00 68. 24 28. 281 ATOM 2815 10 1.00 67.94 25. 952 37. 537 53. 404 ATOM 2816 C ARG 394 ARG 394 25. 306 38. 588 53. 391 1. 00 67. 14 ATOM 2817 0 1.00 72.08 37. 313 52. 633 2818 GLU 395 27. 012 ATOM N 1.00 77.04 GLU 395 27. 513 38. 314 51. 707 ATOM 2819 CA 1.00 78.09 2820 GLU 395 28. 578 37. 691 50. 784 ATOM CB 15 ATOM 2821 CG GLU 395 29. 425 38. 685 49. 955 1.00 81.99 1.00 84.19 2822 30. 402 39. 533 50. 789 ATOM CD GLU 395 **ATOM** 2823 0E1 GLU 395 29.949 40. 442 51. 526 1.00 83.64 31. 631 39. 290 50. 702 1. 00 84. 22 **ATOM** 2824 0E2 GLU 395 ATOM 2825 C GLU 395 26. 340 38. 873 50. 898 1. 00 79. 30 20 40.078 50. 683 1. 00 81. 15 ATOM 2826 GLU 395 26. 250 0 38.007 50.481 1.00 81.59 ATOM 2827 N SER 396 25. 423 2828 SER 396 24. 276 38. 451 49. 696 1. 00 83. 40 ATOM CA 1. 00 84. 05 ATOM 2829 CB SER 396 23. 379 37. 264 49. 366 1.00 86.28 24. 123 36. 252 48. 716 ATOM 2830 0G SER 396 25 1.00 84.36 39. 526 50.406 ATOM 2831 C SER 396 23. 462 2832 0 SER 396 23. 578 40. 708 50.092 1. 00 84. 49 ATOM 1.00 86.41 ATOM 2833 N ARG 397 22. 639 39. 118 51. 362 21. 812 40. 070 52. 090 1. 00 88. 71 ATOM 2834 CA ARG 397

- 242 -1.00 89.74 20. 682 39. 335 52. 816 ARG 397 ATOM 2835 CB 19. 579 40. 241 53. 346 1.00 90.87 ARG 397 ATOM 2836 CG 54. 713 1.00 91.04 39. 776 ARG 397 19.096 ATOM 2837 CD 20.021 40. 158 55. 782 1. 00 89. 87 2838 NE ARG 397 ATOM 57. 047 1. 00 89. 80 19. 905 39. 766 ATOM 2839 CZ ARG 397 5 18.906 38. 971 57. 409 1.00 91.15 NH1 ARG 397 ATOM 2840 40. 174 57. 955 1. 00 87. 97 20.779 NH2 ARG 397 ATOM 2841 22.653 40. 847 53. 102 1. 00 89. 74 2842 C ARG 397 ATOM 40. 588 54. 305 1. 00 90. 41 2843 0 22. 585 ATOM ARG 397 23. 448 41. 795 52. 614 1. 00 90. 58 N SER 398 ATOM 2844 10 42. 602 53. 492 1.00 91.09 24. 288 **SER 398** ATOM 2845 CA SER 398 24. 903 43. 782 52. 718 1.00 91.14 **ATOM** 2846 CB 51. 747 1.00 89.49 25. 845 43. 347 **SER 398** ATOM 2847 0G 54. 677 1. 00 91. 27 2848 C **SER 398** 23. 470 43. 129 ATOM 43.810 54. 496 1.00 91.10 2849 SER 398 22. 458 ATOM 0 15 55. 887 1.00 91.43 ATOM 2850 N GLU 399 23. 904 42. 786 1. 00 90. 89 23. 238 43. 233 57. 108 **GLU 399** ATOM 2851 CA 1.00 91.87 21. 799 42. 705 57. 183 ATOM 2852 CB GLU 399 GLU 399 20.969 43. 349 58. 298 1. 00 93. 31 ATOM 2853 CG 58.064 1.00 94.22 44. 836 20 ATOM 2854 CD GLU 399 20. 726 20. 270 45. 533 58. 999 1.00 93.53 0E1 GLU 399 ATOM 2855 1.00 94.80 45. 307 56. 936 0E2 GLU 399 20.986 ATOM 2856 1. 00 89. 25 58. 339 2857 C GLU 399 24. 013 42. 774 ATOM 1.00 88.96 58. 236 24. 987 42. 029 ATOM 2858 0 GLU 399 23. 570 43. 226 59. 502 1. 00 87. 38 2859 N ASP 400 ATOM 25 24. 214 42. 883 60. 754 1. 00 85. 70 2860 ASP 400 ATOM CA 23. 332 43. 352 61. 915 1. 00 88. 35 ATOM 2861 CB ASP 400 1.00 90.64 22. 861 44. 795 61. 743 CG ASP 400 ATOM 2862 22. 059 45. 055 60. 817 1.00 91.42 ATOM 2863 OD1 ASP 400

_	243	-
3.	297	4

	ATOM	2864	0D2	ASP	400	23. 297	45. 671	62. 524	1. 00	91. 68
	ATOM	2865	C	ASP	400	24. 496	41. 385	60. 853	1. 00	82. 94
	ATOM	2866	0	ASP	400	25. 506	40. 900	60. 346	1. 00	82. 03
	ATOM	2867	N	VAL	401	23. 593	40. 658	61. 502	1. 00	79. 90
5	ATOM	2868	CA	VAL	401	23. 738	39. 219	61. 682	1. 00	75. 91
	ATOM	2869	СВ	VAL	401	23. 607	38. 841	63. 153	1. 00	74. 20
	ATOM	2870	CG1	VAL	401	24. 803	39. 343	63. 927	1. 00	73. 12
	ATOM	2871	CG2	VAL	401	22. 314	39. 430	63. 710	1. 00	72. 79
	ATOM	2872	C	VAL	401	22. 662	38. 458	60. 925	1. 00	74. 63
10	ATOM	2873	0	VAL	401	21. 489	38. 846	60. 942	1. 00	75. 56
	ATOM	2874	N	MET	402	23. 063	37. 365	60. 278	1. 00	70. 61
	ATOM	2875	CA	MET	402	22. 130	36. 539	59. 521	1. 00	65. 65
	ATOM	2876	CB	MET	402	22. 818	35. 887	58. 325	1. 00	62. 74
	ATOM	2877	CG	MET	402	21. 897	34. 958	57. 543	1. 00	56. 61
15	ATOM	2878	SD	MET	402	22. 543	34. 551	55. 906	1. 00	52. 49
	ATOM	2879	CE	MET	402	23. 857	33. 399	56. 323	1. 00	49. 76
	ATOM	2880	C	MET	402	21. 532	35. 450	60. 381	1. 00	65. 00
	ATOM	2881	0	MET	402	22. 222	34. 513	60. 781	1. 00	65. 18
	ATOM	2882	N	ARG	403	20. 241	35. 575	60. 657	1. 00	63. 62
20	ATOM	2883	CA	ARG	403	19. 535	34. 593	61. 462	1. 00	61. 57
	ATOM	2884	CB	ARG	403	18. 418	35. 275	62. 262	1. 00	64. 83
	ATOM	2885	CG	ARG	403	18. 856	36. 547	62. 987	1. 00	70. 01
	ATOM	2886	CD	ARG	403	17. 691	37. 205	63. 724	1. 00	75. 36
	ATOM	2887	NE	ARG	403	17. 412	36. 582	65. 018	1. 00	80. 50
25	ATOM	2888	CZ	ARG	403	16. 305	36. 788	65. 731	1. 00	83. 41
	ATOM	2889	NH1	ARG	403	15. 358	37. 603	65. 277	1. 00	84. 55
	ATOM	2890	NH2	ARG	403	16. 147	36. 187	66. 907	1. 00	83. 64
	ATOM	2891	C	ARG	403	18. 946	33. 560	60. 504	1. 00	57. 99
	ATOM	2892	0	ARG	403	17. 775	33. 639	60. 135	1. 00	58. 57

- 244 -60.091 1. 00 52. 97 19. 762 32. 597 ILE 404 ATOM 2893 N 1.00 49.14 ILE 404 19. 301 31. 570 59. 170 ATOM 2894 CA 31. 412 57. 999 1. 00 47. 44 20. 293 ILE 404 ATOM 2895 CB CG2 ILE 404 21. 538 30. 680 58. 458 1. 00 43. 94 2896 ATOM 1. 00 48. 45 30. 649 56. 854 CG1 ILE 404 19.629 ATOM 2897 5 1. 00 48. 95 20. 477 30. 559 55. 598 CD1 ILE 404 ATOM 2898 30. 222 59.879 1. 00 48. 34 19. 126 **ILE 404** ATOM 2899 C 0 19. 771 29. 967 60. 897 1. 00 48. 83 ILE 404 ATOM 2900 1.00 46.42 29. 380 59. 346 18. 236 ATOM 2901 N THR 405 59.892 1. 00 42. 37 17. 956 28. 043 THR 405 ATOM 2902 CA 10 27. 838 60. 222 1.00 41.93 16. 451 THR 405 ATOM 2903 CB 61. 145 1. 00 43. 89 OG1 THR 405 16. 010 28. 839 2904 ATOM 1.00 38.85 26. 475 60. 849 16. 227 CG2 THR 405 ATOM 2905 26.990 58. 857 1.00 39.95 2906 C THR 405 18. 332 ATOM 18. 178 27. 204 57. 653 1. 00 38. 97 THR 405 ATOM 2907 0 15 1. 00 38. 10 25. 844 59. 324 ATOM 2908 N VAL 406 18.809 24. 776 58. 414 1. 00 36. 64 19. 195 VAL 406 ATOM 2909 CA 24. 442 58. 563 1. 00 35. 12 20.686 ATOM 2910 CB VAL 406 23. 342 57. 600 1. 00 35. 29 CG1 VAL 406 21. 069 ATOM 2911 1. 00 35. 40 25. 672 58. 303 21. 515 ATOM 2912 CG2 VAL 406 20 1. 00 35. 83 18. 390 23. 499 58. 635 C VAL 406 2913 ATOM 1.00 37.06 18. 214 23. 058 59. 765 VAL 406 ATOM 2914 0 17. 895 22. 915 57. 549 1.00 34.50 2915 N **GLY 407** ATOM 1.00 32.79 21. 680 57. 653 17. 143 ATOM 2916 CA **GLY 407** 1.00 32.90 18. 074 20. 522 57. 353 2917 C GLY 407 ATOM 25 18. 704 20. 467 1. 00 33. 85 56. 294 2918 **GLY 407** ATOM 0 1.00 31.27 18. 177 19. 585 58. 279 ATOM 2919 N VAL 408 1.00 29.57 18. 466 58.054 19.064 2920 CA VAL 408 ATOM 1.00 29.66 2921 VAL 408 20. 199 18. 491 59. 042 CB ATOM

- 245 -1. 00 31. 77 58. 468 17. 767 21. 390 ATOM 2922 CG1 VAL 408 1.00 29.91 20. 515 19. 916 59. 412 CG2 VAL 408 ATOM 2923 58. 206 1. 00 29. 58 18. 366 17. 135 VAL 408 ATOM 2924 C 1. 00 28. 54 VAL 408 17. 392 17. 015 58. 942 2925 0 **ATOM** 1. 00 30. 15 16. 131 57. 509 ASP 409 18. 878 ATOM 2926 N 5 1. 00 31. 95 18. 324 14. 789 57. 598 CA ASP 409 ATOM 2927 56. 674 1.00 35.66 17. 109 14. 635 ASP 409 **ATOM** 2928 CB CG ASP 409 16. 455 13. 252 56. 775 1. 00 40. 01 2929 ATOM 55. 898 1. 00 40. 26 12. 928 15. 613 ATOM 2930 OD1 ASP 409 1. 00 39. 33 16. 773 12. 499 57. 728 OD2 ASP 409 ATOM 2931 10 1.00 31.91 13.824 57. 180 19. 415 ASP 409 **ATOM** 2932 C 1. 00 32. 39 ASP 409 20. 352 14. 208 56. 484 **ATOM** 2933 0 1.00 31.09 12. 574 57. 607 19. 300 GLY 410 ATOM 2934 N 57. 233 1.00 29.56 CA GLY 410 20. 299 11. 593 ATOM 2935 1. 00 29. 32 20. 703 10. 704 58. 385 C **GLY 410** ATOM 2936 15 1. 00 28. 27 11. 041 59. 558 **ATOM** 2937 0 GLY 410 20. 510 58. 053 1. 00 28. 24 21. 282 9. 559 SER 411 ATOM 2938 N 59.086 1. 00 27. 52 8. 631 ATOM 2939 CA SER 411 21.699 1. 00 29. 46 58. 481 SER 411 22. 018 7. 253 **ATOM** 2940 CB 1. 00 31. 64 57. 471 7. 316 ATOM 2941 0G SER 411 23. 016 20 1. 00 25. 78 22. 895 9. 160 59. 863 2942 C SER 411 ATOM 22. 909 9. 113 61.090 1. 00 25. 89 SER 411 ATOM 2943 0 9. 687 59. 161 1. 00 23. 18 ATOM 2944 N VAL 412 23. 890 59.839 1. 00 21. 25 10. 185 25. 076 ATOM 2945 CA VAL 412 1. 00 20. 56 26. 099 10.669 58. 841 2946 CB VAL 412 ATOM 25 1. 00 17. 73 27. 372 11. 084 59. 564 2947 CG1 VAL 412 ATOM 1. 00 20. 59 26. 378 9. 552 57. 857 ATOM 2948 CG2 VAL 412 1.00 20.44 11. 300 60.818 24. 769 2949 C VAL 412 ATOM 1.00 21.51 25. 182 11. 262 61. 983 2950 0 VAL 412 ATOM

- 246 -1. 00 16. 42 12. 288 60. 340 **ATOM** 2951 N TYR 413 24. 033 61. 171 1. 00 16. 41 23.659 13. 409 TYR 413 ATOM 2952 CA 60. 288 1. 00 16. 40 23.095 14. 526 ATOM 2953 CBTYR 413 15. 762 61.051 1. 00 14. 37 TYR 413 22.700 2954 CG **ATOM** 16. 707 61. 434 1. 00 13. 43 ATOM 2955 CD1 TYR 413 23.645 5 62. 226 1. 00 13. 93 23. 296 17. 789 CE1 TYR 413 ATOM 2956 1. 00 13. 10 15. 939 61. 470 ATOM 2957 CD2 TYR 413 21. 401 17.007 62. 256 1. 00 15. 82 21.049 CE2 TYR 413 ATOM 2958 17. 927 62. 638 1. 00 14. 65 ATOM 2959 CZ TYR 413 21.994 18. 948 63. 475 1. 00 16. 02 21.620 OH TYR 413 ATOM 2960 10 62. 233 1. 00 17. 41 22.626 13.007 ATOM 2961 C TYR 413 13. 758 63. 172 1. 00 18. 36 TYR 413 22. 364 ATOM 2962 0 11.826 62. 103 1. 00 18. 12 22.035 ATOM 2963 N LYS 414 21.033 11. 426 63.083 1. 00 19. 00 LYS 414 2964 CA ATOM 1. 00 19. 22 19.706 11. 130 62. 384 CBLYS 414 ATOM 2965 15 1. 00 18. 92 LYS 414 18. 962 12. 358 61. 894 **ATOM** 2966 CG 61. 314 1. 00 21. 36 11. 965 LYS 414 17. 615 ATOM 2967 CD 13. 181 60. 855 LYS 414 16.829 1.00 25.08 **ATOM** 2968 CE 12.829 60. 132 1. 00 28. 46 15. 567 **ATOM** 2969 NZ LYS 414 ATOM 2970 C LYS 414 21. 400 10. 249 63. 975 1.00 20.50 20 9.883 64.871 1. 00 21. 27 20. 637 ATOM 2971 0 LYS 414 9.655 63. 753 1. 00 22. 22 2972 N LEU 415 22. 565 ATOM 22. 958 8. 511 64. 565 1. 00 23. 27 2973 CA LEU 415 ATOM 1. 00 21. 47 ATOM 2974 CB LEU 415 22. 679 7. 218 63. 784 1. 00 17. 45 6. 978 63. 313 CG LEU 415 21. 234 ATOM 2975 25 1.00 16.66 5. 672 62. 545 ATOM 2976 CD1 LEU 415 21. 158 CD2 LEU 415 20. 293 6. 954 64. 498 1.00 14.44 2977 ATOM 8. 566 1. 00 25. 05 ATOM 2978 C LEU 415 24. 418 65. 033 24. 921 7. 625 65. 657 1. 00 26. 05 2979 0 LEU 415 ATOM

- 247 -ATOM 2980 N HIS 416 25. 095 9. 673 1.00 24.04 64. 736 ATOM 2981 CA HIS 416 26. 481 65. 147 9.852 1.00 22.40 ATOM 2982 CB HIS 416 27. 365 9. 997 63. 922 1. 00 23. 29 ATOM 2983 CG HIS 416 27. 383 8. 774 63.069 1. 00 25. 75 ATOM 2984 CD2 HIS 416 28. 392 7. 937 62. 729 5 1. 00 27. 82 ATOM 2985 ND1 HIS 416 26. 241 8. 248 62. 506 1. 00 26. 69 ATOM 2986 CE1 HIS 416 26. 545 7. 138 61.857 1. 00 28. 69 **ATOM** 2987 NE2 HIS 416 27. 844 6. 926 61. 977 1. 00 28. 20 **ATOM** 2988 C HIS 416 26. 577 11.080 66. 027 1. 00 21. 63 10 ATOM 2989 0 HIS 416 26.808 12. 184 65. 558 1. 00 22. 44 ATOM 2990 N PRO 417 26. 386 10. 898 67. 331 1. 00 21. 25 ATOM 2991 CD PRO 417 26. 126 9. 627 68. 015 1. 00 22. 18 ATOM 2992 CA PRO 417 26. 440 11. 991 68. 297 1. 00 22. 07 ATOM 2993 CB PRO 417 26.447 11. 258 69.627 1. 00 21. 52 15 ATOM 2994 CG PRO 417 25. 565 10. 108 69. 340 1. 00 23. 41 ATOM 2995 C PRO 417 27.655 12. 874 68. 113 1. 00 22. 46 PRO 417 ATOM 2996 0 27. 519 14. 076 67.878 1. 00 22. 18 ATOM 2997 N SER 418 68. 221 28. 835 12. 262 1. 00 20. 96 2998 ATOM CA SER 418 30. 105 12. 959 68. 064 1. 00 18. 32 ATOM 2999 20 CB SER 418 31. 264 11. 962 68. 076 1. 00 20. 88 ATOM 3000 0G SER 418 32. 419 67.460 12. 512 1. 00 24. 12 ATOM 3001 С SER 418 30.099 66. 757 13. 720 1. 00 15. 71 ATOM 3002 0 SER 418 30. 269 66. 742 14. 935 1.00 16.10 ATOM 3003 N PHE 419 29. 905 13. 010 65. 656 1.00 11.39 ATOM 3004 PHE 419 25 CA 29. 864 13. 683 64. 379 1. 00 10. 22 ATOM 3005 CB PHE 419 29. 243 63. 335 12. 789 1.00 5. 53 ATOM 3006 PHE 419 CG 29. 035 13. 468 62. 034 1. 00 1. 42 ATOM 3007 CD1 PHE 419 29.814 13. 137 60. 942 1.00 3. 13 ATOM 3008 CD2 PHE 419 28.080 14. 449 61. 893 1.00 1.00

- 248 -1. 47 13. 773 59. 712 1.00 ATOM 3009 CE1 PHE 419 29. 648 60.670 1.00 2. 68 15.088 CE2 PHE 419 27. 909 ATOM 3010 59. 575 1. 00 1. 00 14. 746 CZPHE 419 28.699 ATOM 3011 29.037 14. 965 64. 472 1. 00 12. 48 PHE 419 C ATOM 3012 16.048 64. 156 1. 00 12. 11 3013 0 PHE 419 29. 520 ATOM 5 64. 900 1. 00 15. 88 27. 785 14. 838 LYS 420 3014 ATOM N 1. 00 20. 63 16.000 64. 994 CA LYS 420 26. 917 ATOM 3015 65. 522 1. 00 21. 26 25. 525 15. 610 CB LYS 420 ATOM 3016 65. 361 1. 00 22. 35 ATOM 3017 CG LYS 420 24. 470 16. 730 65. 686 1. 00 22. 81 23.045 16. 288 LYS 420 ATOM CD 10 3018 67. 102 1. 00 25. 24 22. 942 15. 740 3019 CE LYS 420 ATOM 21.616 15. 092 67. 350 1. 00 27. 51 LYS 420 3020 NZ ATOM 65. 866 1. 00 24. 04 LYS 420 27.505 17. 099 ATOM 3021 C 27. 533 18. 260 65. 465 1. 00 23. 74 LYS 420 3022 ATOM 0 1.00 29.67 27.978 16. 733 67. 053 GLU 421 ATOM 3023 N 15 GLU 421 28. 550 17. 701 67. 999 1.00 34.96 **ATOM** 3024 CA 29. 075 69. 244 1.00 36.76 16. 972 GLU 421 ATOM 3025 CB 1. 00 40. 52 GLU 421 29. 292 17. 843 70. 480 ATOM 3026 CG 17. 047 71. 638 1. 00 43. 55 GLU 421 29.895 **ATOM** 3027 CD **ATOM** 3028 0E1 GLU 421 30. 981 16. 467 71. 445 1. 00 47. 03 20 1. 00 43. 28 72. 734 29. 294 16. 990 0E2 GLU 421 ATOM 3029 1. 00 36. 40 18. 512 67. 369 3030 C GLU 421 29.680 ATOM 29. 689 19. 745 67. 442 1. 00 38. 37 3031 0 GLU 421 ATOM 1.00 35.66 66. 751 ATOM 3032 N ARG 422 30. 629 17. 816 1. 00 35. 13 18. 477 66. 124 3033 CA ARG 422 31. 755 ATOM 25 1. 00 38. 76 32. 801 17. 449 65. 684 ATOM 3034 CB ARG 422 1. 00 46. 51 33. 277 16. 525 66. 811 ATOM 3035 CG ARG 422 17. 286 67. 980 1. 00 51. 67 ATOM 3036 CD ARG 422 33. 915 1.00 57.41 35. 322 17. 578 67. 732 3037 NE ARG 422 ATOM

- 249 -1.00 60.70 67.625 ARG 422 36. 269 16. 649 ATOM 3038 CZ1. 00 60. 82 15. 364 67. 749 35. 956 NH1 ARG 422 ATOM 3039 1.00 61.68 67. 380 17.002 37. 529 NH2 ARG 422 ATOM 3040 1. 00 33. 47 31. 256 19. 278 64. 942 ARG 422 C ATOM 3041 1. 00 35. 28 64. 803 31. 585 20. 450 3042 0 ARG 422 **ATOM** 5 1. 00 32. 46 18.654 64.096 30. 446 PHE 423 3043 N ATOM 62.930 1. 00 30. 30 19. 348 29. 901 3044 CA PHE 423 ATOM 28. 949 18. 423 62. 165 1. 00 27. 32 PHE 423 CB ATOM 3045 1. 00 23. 75 61.063 28. 188 19. 106 **ATOM** 3046 CG PHE 423 1. 00 22. 33 26. 891 19. 552 61. 270 CD1 PHE 423 3047 10 ATOM 59.814 1. 00 23. 98 19. 293 28. 765 **ATOM** CD2 PHE 423 3048 1. 00 22. 83 26. 178 20. 169 60. 245 CE1 PHE 423 ATOM 3049 1.00 22.46 58. 784 28.061 19. 909 ATOM 3050 CE2 PHE 423 1. 00 22. 73 59.001 PHE 423 26.769 20. 347 CZ 3051 ATOM 1. 00 29. 75 20.663 63. 280 PHE 423 29. 185 ATOM 3052 C 15 1. 00 27. 58 62. 568 PHE 423 29. 328 21.652 ATOM 3053 0 64. 363 1. 00 30. 19 20. 694 28. 415 HIS 424 ATOM 3054 N 1. 00 32. 48 21. 936 64. 692 HIS 424 27. 743 **ATOM** 3055 CA 65. 835 1. 00 32. 75 26. 754 21. 760 CB HIS 424 **ATOM** 3056 1. 00 31. 94 65. 387 25. 412 21. 279 ATOM 3057 CG HIS 424 20 1.00 29.85 20.860 64. 176 24. 980 CD2 HIS 424 3058 ATOM 1. 00 32. 28 21. 147 66. 243 24. 341 3059 ND1 HIS 424 ATOM 1. 00 30. 67 20.661 65. 580 CE1 HIS 424 23. 308 3060 ATOM 1. 00 30. 19 64. 323 3061 NE2 HIS 424 23.670 20. 477 ATOM 1. 00 35. 15 28. 737 23. 011 65.048 HIS 424 3062 C ATOM 25 1. 00 36. 91 28. 689 24. 102 64. 487 ATOM 3063 0 HIS 424 1. 00 36. 32 **ALA 425** 29. 636 22. 711 65. 979 ATOM 3064 N 1. 00 36. 74 23.675 66. 395 30. 652 ATOM 3065 CA ALA 425

31. 542

ALA 425

3066

ATOM

CB

23.058

67. 444

1. 00 35. 43

-250 -1.00 37.82 31. 492 24. 149 65. 201 ATOM 3067 C -ALA 425 64. 809 1.00 38.66 31. 420 25. 316 ATOM ALA 425 3068 0 23. 243 64. 617 1. 00 37. 75 32. 274 **ATOM** 3069 N SER 426 33. 113 23. 576 63. 466 1. 00 37. 83 SER 426 3070 CA ATOM 1.00 38.67 62. 782 22. 289 ATOM 3071 CB SER 426 33. 602 5 22. 560 61. 667 1. 00 37. 85 34. 440 3072 0G SER 426 ATOM 62. 445 1. 00 37. 21 32. 390 24. 461 ATOM 3073 C SER 426 33. 025 25. 151 61.657 1. 00 37. 08 SER 426 ATOM 3074 0 1. 00 37. 84 24. 443 62. 450 ATOM 3075 N VAL 427 31. 064 25. 269 61. 510 1. 00 38. 87 30. 321 3076 CA VAL 427 ATOM 10 1. 00 39. 38 24. 667 61. 194 28. 935 ATOM 3077 CB VAL 427 1.00 37.50 28. 000 25. 744 60. 633 3078 CG1 VAL 427 ATOM 1. 00 36. 83 29. 092 23. 534 60. 188 CG2 VAL 427 ATOM 3079 VAL 427 30. 138 26. 655 62. 090 1.00 39.54 **ATOM** 3080 C 61. 512 1. 00 40. 58 VAL 427 30. 578 27. 639 ATOM 3081 0 15 **ATOM** 3082 N ARG 428 29. 483 26. 724 63. 238 1. 00 40. 14 27. 993 63. 897 1. 00 42. 86 ARG 428 29. 247 ATOM 3083 CA 27. 739 65. 258 1. 00 42. 72 ATOM 3084 CB ARG 428 28. 603 27. 288 26. 982 65. 186 1. 00 43. 31 ATOM 3085 CG ARG 428 66. 378 1. 00 46. 03 ATOM 3086 CD ARG 428 27. 139 26. 044 20 66. 485 1. 00 47. 83 25. 802 25. 461 3087 NE ARG 428 ATOM 66. 648 1. 00 48. 39 CZ ARG 428 24. 690 26. 173 ATOM 3088 1. 00 47. 35 3089 NH1 ARG 428 24. 757 27. 499 66. 716 ATOM 1. 00 47. 34 NH2 ARG 428 23. 516 25. 559 66. 756 ATOM 3090 28. 768 64.064 1. 00 44. 67 C ARG 428 30. 561 ATOM 3091 25 30. 577 30.001 64.060 1. 00 45. 05 ARG 428 ATOM 3092 0 31. 663 28. 037 64. 195 1. 00 45. 77 · ATOM 3093 N ARG 429 28. 652 1. 00 46. 48 ARG 429 32. 972 64. 378 ATOM 3094 CA 33. 849 27. 738 65. 244 1. 00 52. 63 ATOM 3095 CB ARG 429

		- 251 -								
	ATOM	3096	CG	ARG	429	33. 260	27. 471	66. 648	1. 00	59. 36
	MOTA	3097	CD	ARG	429	33. 828	26. 199	67. 328	1. 00	64. 53
	MOTA	3098	NE	ARG	429	35. 247	26. 286	67. 677	1. 00	66. 23
5	ATOM	3099	CZ	ARG	429	35. 963	25. 274	68. 159	1. 00	66. 80
	ATOM	3100	NH1	ARG	429	35. 398	24. 083	68. 357	1. 00	66. 02
	ATOM	3101	NH2	ARG	429	37. 249	25. 455	68. 435	1. 00	68. 38
	ATOM	3102	C	ARG	429	33. 657	28. 954	63. 049	1. 00	44. 06
	ATOM	3103	0	ARG	429	34. 885	28. 943	62. 954	1. 00	43. 92
	ATOM	3104	N	LEU	430	32. 847	29. 221	62. 029	1. 00	41. 46
10	ATOM	3105	CA	LEU	430	33. 333	29. 551°	60. 692	1. 00	40. 12
	ATOM	3106	CB	LEU	430	33. 495	28. 300	59. 830	1. 00	35. 57
	MOTA	3107	CG	LEU	430	34. 755	27. 468	60. 042	1. 00	34. 48
	ATOM	3108	CD1	LEU	430	34. 764	26. 279	59. 101	1. 00	32. 77
	ATOM	3109	CD2	LEU	430	35. 965	28. 332	59. 806	1. 00	33. 57
15	ATOM	3110	C	LEU	430	32. 332	30. 468	60. 029	1. 00	42. 10
	ATOM	3111	0	LEU	430	32. 503	30. 868	58. 880	1. 00	42. 67
	MOTA	3112	N	THR	431	31. 280	30. 797	60. 763	1. 00	44. 70
	ATOM	3113	CA	THR	431	30. 238	31. 658	60. 239	1. 00	48. 98
	ATOM	3114	CB	THR	431	28. 923	30. 928	60. 113	1. 00	49. 80
20	ATOM	3115	0G1	THR	431	28. 533	30. 463	61. 410	1. 00	50. 69
	ATOM	3116	CG2	THR	431	29. 048	29. 758	59. 159	1. 00	51. 11
	ATOM	3117	C	THR	431	29. 999	32. 820	61. 174	1. 00	51.66
	ATOM	3118	0	THR	431	28. 986	32. 868	61. 881	1. 00	52. 07
	ATOM	3119	N	PRO	432	30. 935	33. 774	61. 190	1. 00	52. 95
25	ATOM	3120	CD	PR0	432	32. 179	33. 719	60. 403	1. 00	51.90
	ATOM	3121	CA	PR0	432	30. 886	34. 980	62. 020	1. 00	52. 47
	MOTA	3122	CB	PRO	432	32. 135	35. 733	61. 587	1. 00	54. 48
	MOTA	3123	CG	PRO	432	33. 073	34. 623	61. 176	1. 00	54. 21
	ATOM	3124	C	PRO	432	29. 620	35. 783	61. 739	1. 00	52. 15

- 252 -60. 582 1. 00 49. 70 ATOM 3125 0 PRO 432 29. 257 35. 981 62. 793 1.00 53.82 28. 955 36. 243 **ATOM** 3126 N SER 433 27. 734 37. 042 62.652 1. 00 57. 56 ATOM 3127 CA SER 433 3128 28.055 38. 372 61.952 1.00 59.89 CB **SER 433** ATOM ATOM 3129 0G SER 433 28. 537 38. 176 60. 633 1. 00 62. 34 5 3130 SER 433 26.570 36. 340 61.926 1. 00 57. 57 ATOM C 36. 923 1.00 57.63 ATOM 3131 0 SER 433 25. 907 61.056 62.306 1.00 56.67 3132 CYS 434 26. 327 35. 088 ATOM N ATOM 3133 CA CYS 434 25. 256 34. 275 61. 738 1. 00 54. 67 3134 25. 805 33. 375 60.634 1. 00 54. 21 ATOM CB CYS 434 10 26. 729 34. 213 59. 354 1. 00 55. 95 ATOM 3135 SG CYS 434 33. 390 1.00 54.71 3136 C CYS 434 24. 657 62. 832 ATOM 25. 381 32. 663 63. 513 1. 00 54. 74 ATOM 3137 0 CYS 434 3138 23. 344 33. 454 63.011 1. 00 54. 63 ATOM N GLU 435 3139 **GLU 435** 22. 681 32. 621 64.009 1. 00 54. 57 ATOM CA 15 ATOM 3140 CB GLU 435 21. 529 33. 383 64. 681 1. 00 59. 73 **GLU 435** 21. 927 34. 615 65. 511 1. 00 64. 17 ATOM 3141 CG ATOM 3142 CD GLU 435 20.717 35. 479 65.902 1.00 67.96 36. 554 1.00 68.24 ATOM 3143 0E1 GLU 435 20.905 66. 521 20 ATOM 3144 0E2 GLU 435 19. 574 35. 079 65. 584 1. 00 69. 98 31. 378 ATOM 3145 C GLU 435 22. 134 63. 289 1. 00 51. 70 31. 412 62.685 1. 00 51. 14 ATOM 3146 0 GLU 435 21.058 ATOM 3147 ILE 436 22. 889 30. 288 63. 350 1.00 47.61 N ATOM 3148 CA ILE 436 22. 497 29. 046 62. 702 1. 00 43. 09 23.719 28. 331 62. 118 - 1. 00 38. 65 ATOM 3149 CB ILE 436 25 23. 278 61.300 1. 00 38. 13 ATOM 3150 CG2 ILE 436 27. 138 3151 CG1 ILE 436 24. 502 29. 286 61. 234 1. 00 34. 79 ATOM 28. 686 1. 00 34. 08 ATOM 3152 CD1 ILE 436 25. 768 60. 710 63. 664 1. 00 42. 96 3153 C 28. 088 ATOM ILE 436 21. 798

- 253 -22. 403 27. 608 64. 621 1. 00 43. 46 ATOM 3154 ILE 436 0 ATOM 3155 THR 437 20. 521 27. 821 63. 402 1. 00 41. 73 N THR 437 19. 724 26. 910 64. 218 1.00 39.10 ATOM 3156 CA ATOM 3157 CB THR 437 18. 384 27. 553 64. 638 1. 00 37. 86 3158 OG1 THR 437 18. 182 28. 763 63.899 1. 00 37. 22 5 ATOM CG2 THR 437 18.370 27. 856 66. 130 1.00 37.07 ATOM 3159 63.380 1. 00 38. 74 ATOM 3160 C THR 437 19. 430 25. 672 ATOM 3161 0 THR · 437 18. 979 25. 784 62. 238 1. 00 39. 10 **ATOM** 3162 PHE 438 19.696 24. 494 63. 936 1. 00 36. 24 N 3163 CA PHE 438 19.449 23. 257 63. 210 1. 00 33. 18 ATOM 10 20. 556 22. 256 63.491 1. 00 30. 88 ATOM 3164 CB PHE 438 ATOM 3165 CG PHE 438 21. 905 22. 742 63.093 1. 00 32. 48 3166 CD1 PHE 438 22. 597 23. 652 63.887 1.00 31.95 ATOM **ATOM** 3167 CD2 PHE 438 22. 489 22. 301 61.913 1. 00 32. 85 CE1 PHE 438 23.857 24. 118 63. 507 ATOM 3168 1. 00 31. 30 15 1. 00 32. 28 ATOM 3169 CE2 PHE 438 23. 745 22. 758 61. 522 PHE 438 24. 432 23. 668 62. 320 ATOM 3170 CZ 1. 00 31. 80 ATOM 3171 C PHE 438 18. 102 22. 648 63. 563 1. 00 33. 15 ATOM 3172 0 PHE 438 17. 662 22. 729 64. 705 1. 00 '34. 90 20 ATOM 3173 N ILE 439 17. 450 22. 049 62. 570 1.00 31.06 ATOM 3174 CA ILE 439 16. 150 21. 412 62. 738 1. 00 28. 59 ATOM 3175 CB ILE 439 15.010 22. 347 62. 321 1.00 26.74 ATOM 3176 CG2 ILE 439 15. 268 22. 879 60. 937 1. 00 27. 91 CG1 ILE 439 21. 591 62. 312 **ATOM** 3177 13. 683 1. 00 27. 91 CD1 ILE 439 22. 406 **ATOM** 3178 12. 545 61.776 1. 00 26. 70 25 ATOM 3179 C ILE 439 16. 113 20. 190 61.837 1.00 29.76 ATOM 3180 0 ILE 439 16. 208 20. 310 60. 618 1. 00 29. 55 ATOM 3181 N GLU 440 15. 977 19.014 62. 434 1. 00 30. 76 ATOM 3182 CA GLU 440 15. 934 17. 781 61. 666 1. 00 32. 34

- 254 -16. 028 16. 592 62. 609 1.00 34.09 ATOM **GLU 440** 3183 CB 16. 583 63. 458 1.00 38.93 ATOM 3184 CG GLU 440 17. 272 17. 339 15. 367 64. 353 1. 00 43. 10 ATOM 3185 CD GLU 440 ATOM 3186 OE1 GLU 440 16. 378 15. 162 65. 131 1. 00 44. 22 0E2 GLU 440 18. 346 14. 623 64. 277 1.00 44.99 ATOM 3187 5 ATOM 3188 C GLU 440 14. 648 17. 687 60. 854 1. 00 33. 11 18. 445 61. 086 1. 00 31. 25 ATOM 3189 0 **GLU 440** 13. 703 ATOM 3190 N SER 441 14. 613 16. 764 59. 896 1.00 34.70 SER 441 13. 416 16. 587 59. 086 1. 00 37. 07 ATOM 3191 CA ATOM 3192 CBSER 441 13. 738 15. 904 57. 761 1. 00 34. 79 10 14. 579 57. 988 14. 159 1. 00 34. 61 ATOM 3193 0G SER 441 ATOM 3194 C SER 441 12. 452 15. 724 59. 889 1. 00 40. 43 SER 441 12.866 14. 964 60. 773 1. 00 38. 99 ATOM 3195 0 GLU 442 11. 168 15. 855 59. 571 1. 00 43. 31 ATOM 3196 N ATOM 3197 CA GLU 442 10.099 15. 135 60. 254 1. 00 45. 59 15 8. 764 15. 638 59. 724 1.00 46.37 ATOM 3198 CB GLU 442 7. 575 15. 244 60. 549 1.00 49.47 ATOM 3199 CG GLU 442 6.653 16. 421 60. 794 1. 00 52. 25 **ATOM** 3200 CD GLU 442 5. 425 16. 199 60. 895 1. 00 52. 44 ATOM 3201 OE1 GLU 442 0E2 GLU 442 7. 160 17. 568 60. 894 1. 00 53. 16 ATOM 3202 20 ATOM 3203 C GLU 442 10. 165 13. 607 60. 174 1. 00 47. 69 ATOM 3204 0 GLU 442 10.828 13. 035 59. 314 1. 00 47. 21 ATOM 3205 N GLU 443 9. 435 12. 964 61. 076 1. 00 50. 15 GLU 443 9.382 1. 00 52. 79 ATOM 3206 11. 508 61. 210 CA 25 **ATOM** 3207 CB GLU 443 8. 911 11. 204 62. 623 1. 00 55. 86 ATOM 3208 CG GLU 443 9. 468 12. 183 63. 635 1. 00 61. 71 ATOM 3209 CD GLU 443 10. 948 11. 962 63. 877 1. 00 66. 19 ATOM 0E1 GLU 443 11. 689 11. 746 62.886 1. 00 68. 22 3210 0E2 GLU 443 ATOM 3211 11. 365 12. 006 65. 058 1. 00 67. 57

- 255 -1.00 53.03 **GLU 443** 60. 218 8. 521 10. 711 ATOM 3212 C 10.999 60.025 1.00 54.82 **GLU 443** 7. 344 ATOM 3213 0 9.702 59. 593 1. 00 52. 26 9. 116 ATOM 3214 N **GLY 444** 8. 373 8.861 58. 667 1. 00 52. 32 3215 CA **GLY 444 ATOM** 57. 302 1. 00 53. 07 7.966 9. 389 ATOM 3216 C **GLY 444** 5 9.460 57. 003 1. 00 52. 97 **GLY 444** 6. 767 ATOM 3217 0 56. 483 1. 00 52. 71 8.961 9. 750 ATOM 3218 N SER 445 8.760 10. 239 55. 104 1. 00 50. 05 3219 CA SER 445 **ATOM** 11. 464 55. 084 1.00 51.01 7.836 ATOM 3220 CB SER 445 6.487 11. 084 55. 318 1. 00 46. 84 3221 OG SER 445 ATOM 10 10.076 10. 545 54. 356 1.00 46.51 SER 445 **ATOM** 3222 C 10.710 54.976 SER 445 11. 123 1. 00 45. 30 ATOM 3223 0 10.013 10. 603 53. 026 1. 00 43. 17 3224 N **GLY 446** ATOM **GLY 446** 11. 207 10. 842 52. 235 1. 00 40. 08 ATOM 3225 CA 12. 057 51. 330 1. 00 39. 05 **GLY 446** 11. 199 **ATOM** 3226 C 15 **ATOM** 3227 0 GLY 446 11. 414 13. 164 51. 803 1. 00 42. 74 11. 873 50. 039 1. 00 37. 60 ATOM ARG 447 10. 940 3228 N 49.098 1. 00 37. 46 ATOM 3229 CA ARG 447 10.956 13. 000 11. 549 12. 546 47. 747 1. 00 45. 51 ATOM 3230 CB ARG 447 11. 401 47. 014 1. 00 53. 91 20 ATOM 3231 CG ARG 447 10. 793 10. 902 45. 743 1. 00 58. 18 CD 11. 521 ATOM 3232 ARG 447 45. 975 1. 00 63. 62 3233 NE ARG 447 12. 939 10. 598 ATOM 3234 CZ 46. 769 1. 00 66. 02 ATOM ARG 447 13. 399 9. 623 1. 00 67. 97 3235 NH1 ARG 447 12. 560 8. 825 47. 425 ATOM 3236 NH2 ARG 447 14.711 9. 447 46. 924 1. 00 69. 08 ATOM 25 9.642 13. 737 48. 848 1. 00 32. 93 ATOM 3237 C ARG 447 9. 122 14. 416 49. 741 1. 00 29. 46 ATOM 3238 0 ARG 447 13. 625 47. 607 1. 00 30. 52 **GLY 448** 9. 150 ATOM 3239 N 7. 902 14. 245 47. 202 1. 00 26. 03 ATOM 3240 CA GLY 448

- 256 -1. 00 25. 25 13. 828 48. 200 3241 C **GLY 448** 6. 845 **ATOM** 3242 **GLY 448** 5. 752 14. 378 48. 244 1.00 24.59 **ATOM** 0 12.840 49.018 1.00 23.74 7. 186 **ATOM** 3243 N **ALA 449** 3244 CA ALA 449 6. 282 12. 362 50. 035 1.00 20.54 **ATOM** 10. 917 50. 410 1. 00 18. 12 3245 CB ALA 449 6. 611 5 ATOM 1. 00 22. 37 **ALA 449** 6.340 13. 251 51. 282 ATOM 3246 C 1.00 22.56 5. 307 13. 782 51. 693 3247 0 **ALA 449** ATOM 3248 ALA 450 7. 524 13. 443 51. 881 1. 00 22. 28 **ATOM** N 7.605 14. 261 53. 088 1. 00 20. 98 3249 ALA 450 ATOM CA 3250 ALA 450 9.056 14. 432 53. 535 1.00 9.63 ATOM CB10 3251 15. 594 52.872 1.00 20.66 6. 937 ATOM C ALA 450 **ATOM** 3252 0 ALA 450 6.417 16. 168 53. 826 1. 00 19. 81 6.943 16. 109 51. 702 1. 00 19. 91 3253 LEU 451 ATOM N 17. 379 51.602 1. 00 22. 22 ATOM 3254 CA LEU 451 6. 279 1. 00 26. 74 6.586 18.056 50. 279 **ATOM** 3255 CBLEU 451 15 19. 496 1.00 34.07 ATOM 3256 CG LEU 451 6.089 50. 144 20. 425 1.00 37.55 ATOM 3257 CD1 LEU 451 6. 894 51.040 48. 696 1.00 36.19 3258 CD2 LEU 451 6. 160 19. 955 ATOM 1.00 23.24 ATOM 3259 C LEU 451 4. 774 17. 157 51.686 17. 474 52. 699 1. 00 21. 18 3260 LEU 451 4. 136 20 ATOM 0 VAL 452 4. 212 16. 613 50. 608 1. 00 26. 44 **ATOM** 3261 N VAL 452 2.798 16. 405 50. 557 1.00 26.90 ATOM 3262 CA 15. 179 49.666 1. 00 28. 65 ATOM 3263 CBVAL 452 2. 454 3. 082 15. 353 48. 300 1. 00 26. 01 ATOM 3264 CG1 VAL 452 3265 CG2 VAL 452 2. 933 13.886 50. 313 1. 00 31. 22 ATOM 25 3266 C VAL 452 2. 217 16. 308 51. 935 1. 00 26. 69 **ATOM** 1. 00 24. 86 3267 0 VAL 452 1. 181 16. 878 52. 234 ATOM 1. 00 26. 07 3268 SER 453 2. 880 15. 579 52. 769 **ATOM** N 3269 CA SER 453 2. 377 15. 346 54. 125 1.00 26.79 ATOM

- 257 -1.00 28.88 14. 127 54. 756 SER 453 3. 058 ATOM 3270 CB1.00 37.16 13. 881 56. 057 SER 453 2. 553 ATOM 3271 0G 55. 028 1.00 26.82 2. 571 16. 558 SER 453 ATOM 3272 C SER 453 1. 658 17. 301 55. 377 1. 00 26. 28 3273 **ATOM** 0 1. 00 26. 83 55. 389 3. 831 16. 701 ATOM 3274 N ALA 454 5 4. 250 17. 807 56. 177 1. 00 23. 37 ALA 454 **ATOM** 3275 CA 55. 937 1. 00 17. 54 5. 719 18. 128 ATOM 3276 CB ALA 454 3. 381 19. 002 55. 866 1.00 21.80 3277 C ALA 454 ATOM 1. 00 21. 02 19. 883 56. 714 3. 194 ATOM 3278 0 ALA 454 1.00 21.59 2. 848 19. 044 54. 656 VAL 455 ATOM 3279 N 10 1.00 25.32 54. 281 2.020 20. 156 VAL 455 ATOM 3280 CA 2. 313 20. 557 52. 841 1. 00 28. 03 ATOM 3281 CB VAL 455 51.871 1.00 29.06 1.676 19. 583 ATOM 3282 CG1 VAL 455 52. 577 1. 00 29. 98 CG2 VAL 455 1.813 21.961 ATOM 3283 0.528 19.890 54. 469 1. 00 27. 69 VAL 455 ATOM 3284 C 15 54. 911 1. 00 28. 10 ATOM 3285 0 VAL 455 -0. 202 20. 783 1. 00 30. 51 0.061 18. 681 54. 142 3286 ALA 456 ATOM N 1.00 31.54 -1.36718. 349 54. 318 ATOM 3287 CA ALA 456 1. 00 25. 20 -1.66616. 937 53. 836 **ATOM** 3288 CB ALA 456 1. 00 31. 77 18. 505 55. 797 ATOM 3289 C ALA 456 -1.70220 18. 713 56. 176 1. 00 33. 11 -2. 853 3290 0 ALA 456 ATOM 18. 384 56. 625 1. 00 31. 33 -0.673ATOM 3291 N CYS 457 18. 538 58. 049 1. 00 33. 33 3292 CA CYS 457 -0. 843 **ATOM** 1. 00 36. 53 0. 262 17. 815 58. 811 ATOM 3293 CB CYS 457 1.040 16. 448 57. 890 1. 00 44. 65 CYS 457 ATOM 3294 SG 25 -0.90319. 990 58. 438 1. 00 34. 59 CYS 457 ATOM 3295 C 1.00 34.67 -1.74520. 391 59. 237 ATOM 3296 0 CYS 457 0.005 20. 779 57. 881 1. 00 37. 14 LYS 458 ATOM 3297 N 0.060 22. 199 58. 190 1. 00 38. 61 CA LYS 458 ATOM 3298

		- 258 -								
	ATOM	3299	CB	LYS	458	1. 363	22. 799	57. 669	1. 00 37. 21	
	ATOM	3300	CG	LYS	458	2. 573	22. 474	58. 538	1. 00 37. 81	
	ATOM	3301	CD	LYS	458	2. 501	23. 206	59. 874	1. 00 38. 84	
5	ATOM	3302	CE	LYS	458	3. 820	23. 143	60. 639	1. 00 38. 18	
	ATOM	3303	NZ	LYS	458	3. 812	24. 023	61. 851	1. 00 36. 51	
	ATOM	3304	C	LYS	458	-1. 128	22. 920	57. 596	1. 00 40. 24	
	ATOM	3305	0	LYS	458	-1. 377	24. 079	57. 898	1. 00 39. 64	
	ATOM	3306	N	LYS	459	-1. 869	22. 223	56. 752	1. 00 43. 69	
	ATOM	3307	CA	LYS	459	-3. 036	22. 820	56. 147	1. 00 50. 66	
10	ATOM	3308	CB	LYS	459	-3. 242	22. 248	54. 747	1. 00 55. 88	
	ATOM	3309	CG	LYS	459	-4. 657	22. 405	54. 183	1. 00 63. 64	
	ATOM	3310	CD	LYS	459	-5. 037	23. 850	53. 856	1. 00 66. 97	
	ATOM	3311	CE	LYS	459	-6. 431	23. 941	53. 226	1. 00 68. 86	
	ATOM	3312	NZ	LYS	459	-7. 531	23. 519	54. 152	1. 00 71. 25	
15	ATOM	3313	C	LYS	459	-4. 262	22. 562	57. 018	1. 00 52. 41	
	ATOM	3314	0	LYS	459	-5. 132	23. 425	57. 132	1. 00 51. 90	
	ATOM	3315	N	ALA	460	-4. 322	21. 380	57. 634	1. 00 54. 96	
	ATOM	3316	CA	ALA	460	-5. 449	20. 997	58. 495	1. 00 57. 72	
	ATOM	3317	CB	ALA	460	-5. 201	19. 620	59. 111	1. 00 54. 90	
20	ATOM	3318	С	ALA	460	-5. 736	22. 018	59. 596	1. 00 60. 41	
	ATOM	3319	0	ALA	460	-6. 773	21. 950	60. 261	1. 00 60. 54	
	ATOM	3320	N	CYS	461	-4. 815	22. 965	59. 776	1. 00 63. 50	
	ATOM	3321	CA	CYS	461	-4. 961	24. 022	60. 776	1. 00 66. 18	
	ATOM	3322	CB	CYS	461	-3. 580	24. 489	61. 252	1. 00 67. 98	
25	ATOM	3323	SG	CYS	461	-3. 604	26. 041	62. 185	1. 00 75. 61	
	ATOM	3324	C	CYS	461	-5. 727	25. 217	60. 200	1. 00 65. 92	
	ATOM	3325	0	CYS	461	-6. 940	25. 348	60. 490	1. 00 65. 70	
	ATOM	3326	OXT	CYS	461	-5. 099	26. 001	59. 454	1. 00 65. 20	
	ATOM	3327	S	S04	600	20. 24	1 7. 47	7 54.65	5 1.00 35.04	

						- 259 -			
	ATOM	3328	01	S04	600	19. 370	7. 951	53. 566	1. 00 33. 14
	ATOM	3329	02	S04	600	20. 343	8. 532	55. 683	1. 00 32. 80
5	ATOM	3330	03	S04	600	19. 690	6. 249	55. 260	1. 00 33. 32
	ATOM	3331	04	S04	600	21. 572	7. 178	54. 108	1. 00 33. 97
	ATOM	3332	S	S04	601	22. 953	22. 471	69. 199	1. 00 77. 32
	ATOM	3333	01	S04	601	21. 971	21. 759	68. 356	1. 00 76. 19
	ATOM	3334	02	S04	601	22. 411	23. 803	69. 553	1. 00 77. 48
	ATOM	3335	03	S04	601	23. 205	21. 698	70. 433	1. 00 77. 23
	ATOM	3336	04	S04	601	24. 224	22. 628	68. 461	1. 00 77. 19
10	ATOM	3337	NA+1	NA1	602	17. 158	10. 244	54. 280	1. 00 10. 17
	ATOM	3338	OH2	НОН	603	19. 770	14. 543	47. 159	1. 00 1. 00
	ATOM	3340	OH2	НОН	604	20. 723	24. 387	67. 178	1. 00 17. 94
15	ATOM	3341	0H2	НОН	605	10. 880	33. 802	37. 628	1. 00 1. 00
	ATOM	3342	OH2	НОН	606	22. 743	28. 762	37. 147	1. 00 31. 78
	ATOM	3343	0H2	НОН	607	38. 906	1. 328	74. 611	1. 00 37. 76
	ATOM	3344	OH2	НОН	608	1. 237	30. 510	46. 162	1. 00 32. 40
	ATOM	3345	0H2	НОН	609	34. 702	-1. 731	56. 455	1. 00 62. 03
	END								

20 なお、表 2 は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表 2 中、HOHは水分子を表す。

本発明においては、配列番号 5、及び/又は配列番号 8 と実質的に同一のアミノ酸配列を有し、グルコキナーゼ活性を有するタンパク質の結晶は本発明の範囲内である。そのような結晶としては、例えば、表 1、及び/又は表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 1、及び/又は表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0.

20

25

6オングストローム以下である結晶が挙げられる。原子の位置を表す座標の数値が異なっても、構造座標に含まれる対応する原子の位置を重ね合わせることができる二つの構造座標は、同一の三次元構造を表すものである。

5 なお、表1、及び/又は表2に記載のGKタンパク質の三次元構造座標は、 ドラッグデザインのための重要な情報であり、必要に応じて、コンピュータ読 み取り可能な記憶媒体に保存され、コンピュータでこの情報を処理してドラッ グデザインを行う。したがって、本発明の別の態様によれば、コンピュータを、 表1、及び/又は表2に記載のアミノ酸残基の三次元座標を記憶する三次元座 標記憶手段として機能させるためのプログラムを記録したコンピュータ読み取 り可能な記録媒体が提供される。

また、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標に関する情報を記憶した三次元座標記憶手段と、前記三次元座標記憶手段に記憶された表1、及び/又は表2に記載のアミノ酸残基の三次元座標を用いて配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位を推測する結合部位推測手段と、タンパク質と結合する化合物の種類と、当該化合物の三次元構造に関する情報を記憶した結合化合物記憶手段と、少なくとも、前記結合部位推測手段によって推測された配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位の三次元構造に関する情報と、前記結合化合物記憶手段に記憶された化合物の三次元構造に関する情報とを用いて前記配列表の配列番号1で表されるアミノ酸配列を有するタンパク質の化合物結合部位に適合する化合物の候補を選択する結合化合物候補選択手段、として機能させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。さらに、本発明の別の態様によれば、上記各手段を備えるコンピュータも提供される。

(GKタンパク質とそれに結合する化合物との複合体の結晶) 次に、本発明の別の態様によれば、配列番号5、又は配列番号8に記載のア

ミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶及びその製造方法が提供される。

GKタンパク質と結合する化合物が得られた場合は、まず、GKタンパク質とその化合物を、例えば、水溶液中で混合し、複合体を形成する。このような複合体の結晶は、共結晶法、ソーキング法などの公知の共結晶の製造方法が用いられる。結晶化条件、結晶化方法については、上述した方法が参照される。

GKタンパク質と結合する化合物は、例えば、上記式(I)で表される化合物群から選択される。

また、上記式(I)のA、B及び式(II)のヘテロアリール基における置

10 ここで、上記式(I)のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが例示され、これらの中でも塩素原子が好ましい。

換基としては、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミル基、直鎖の C_1-C_6 アルキル基、環状の C_3-C_6 炭化水素基、アラルキル基、N-Pラルキルアミノ基、N,N-Vアラルキルアミノ基、アラルキルオキシ基、アラルキルカルボニル基、N-Pラルキルカルバモイル基、アリール基、アリールチオ基、N-Pリールアミノ基、アリールオキシ基、アリールスルホニル

25 N-C₁-C₆アルキルスルホニルアミノ基、C₁-C₆アルコキシ基、C₁-C₆アルコキシカルポニル基又はC₁-C₆アルキルアミノ基を示す)などが挙げられる。ここで用いられる好ましい置換基は、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミ

ル基、直鎖のC,-C。アルキル基などが例示される。

ここで、「炭化水素基」は、炭素数1乃至6の直鎖のアルキル基を示すか、 又は該アルキル基を構成する炭素原子のうち、1又は2の、好ましくは1の炭 素原子が窒素原子、硫黄原子又は酸素原子で置き換わっていてもよいか、及び /又は該炭素数1乃至6の直鎖のアルキル基中の炭素原子同士が二重結合又は 三重結合で結合されていてもよい基である。該二重結合又は三重結合の数は、 1又は2であることが好ましく、1であることがより好ましい。

該炭化水素基としては、具体的には、メチル基、エチル基、プロピル基若しくはイソプロピル基、ブチル基又は下記式

15

で表される基であることが好ましい。より好ましい炭化水素基は、メチル基、 エチル基、プロピル基、イソプロピル基又は下記式

20

- 263 - '

で表される基である。

好ましいAとしては (p=0 の場合)、例えば、次の基が挙げられる。

5

好ましいBとしては、例えば、次の基が挙げられる。

10

- 264 -

式 (II) で示されるヘテロアリール基としては、例えば、次の複素環基が 5 挙げられる。

なお、特に好ましい化合物は、上述した式(IIIa)~式(IIIc)で表される いずれかの化合物である。

本発明の化合物(I)は、公知の反応手段を用いるか、或いは公知の方法に従って容易に製造することができる。なお、本発明の一般式(I)の化合物は、通常の液相における合成のみならず、近年発達の目覚しい例えばコンビナトリアル合成法やパラレル合成法等の固相を用いた合成によっても製造することができる。好ましくは例えば以下の方法により製造することができる。

PCT/JP03/06054

[式中、各配号は前配定義に同じ]

(工程1)

5

10

15

本工程は、カルボン酸化合物(1)又はその反応性誘導体と前記式(2)で表される置換されていてもよい単環の、又は双環のヘテロアリール基を有するアミノ化合物又はその塩とを反応させて、化合物(3)を製造する方法である。本反応は文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、丸善、1983年、コンプリヘンシブ オーガニック シンセシス(Comprehensive Organic Synthesis)、第6巻、Pergamon Press社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより、通常のアミド形成反応を行えばよく、即ち、当業者に周知の縮合剤を用いて行うか、或いは、当業者に利用可能なエステル活性化方法、混合酸無水物法、酸クロリド法、カルボジイミド法等により行うことができる。このようなアミド形成試薬としては、例えば塩化チオニル、N,Nージシクロヘキシルカルボジイミド、1ーメチルー2ープロモピリジニウムアイオダイド、N,N'ーカルボニルジイミダゾール、ジフェニルフォスフォリルクロリド、ジフェニルフオスフォリルアジド、N,N'ージスク

シニミジルカルボネート、 N, N'ージスクシニミジルオキザレート、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、クロロギ酸エチル、クロロギ酸イソプチル又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムへキサフルオロフォスフェイト等が挙げられ、中でも例えば塩化チオニル、N, Nージシクロへキシルカルボジイミド又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムへキサフルオロフォスフェイト等が好適である。またアミド形成反応においては、上記アミド形成試薬と共に塩基、縮合補助剤を用いてもよい。

用いられる塩基としては、例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ[5.4.0]ウンデカー7ーエン(DBU)、1, 5ーアザビシクロ[4.3.0]ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン等が挙げられ、中でも例えば第3級脂肪族アミン等が好ましく、特に例えばトリエチルアミン又はN, Nージイソプロピルエチルアミン等が好適である。

用いられる縮合補助剤としては、例えばN-ヒドロキシベンゾトリアゾール 20 水和物、N-ヒドロキシスクシンイミド、N-ヒドロキシ-5-ノルボルネン -2, 3-ジカルボキシイミド又は3-ヒドロキシ-3, 4-ジヒドロ-4-オキソ-1, 2, 3-ベンゾトリアゾール等が挙げられ、中でも例えばN-ヒドロキシベンゾトリアゾール等が好適である。

用いられるアミノ化合物(2)の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、0.02乃至50当量、好ましくは0.2乃至2当量である。ここにおいて、反応性誘導体としては、通常有機化学の分野において用いられる、例えば活性エステル誘導体、活性アミド誘導体等が挙げられる。

用いられるアミド形成試薬の量は、用いられる化合物及び溶媒の種類その他

の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる縮合補助剤の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1 当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件 により異なるが、通常1乃至50当量、好ましくは3万至5当量である。

本工程において用いられる反応溶媒としては、例えば不活性有機溶媒であり、 反応に支障のない限り、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、トルエン、1,4-ジオキサン、テトラヒドロフラン、ジメトキシエタン又はそれらの混合溶媒が挙げられるが、好適な反応温度確保の点から、特に例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、アセトニトリル又はN,N-ジメチルホルムアミド等が好適である。

反応温度は、-100℃乃至溶媒の沸点温度、好ましくは0乃至30℃である。

反応時間は、0.5乃至96時間、好ましくは3乃至24時間である。

本工程1で用いられる塩基、アミド形成試薬、縮合補助剤は、一種又はそれ 20 以上組み合わせて使用することができる。

化合物(3)が保護基を有している場合には、適宜当該保護基を除去することが可能である。当該補助基の除去は、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groupsin Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(3)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

(工程2)

本工程は、上記工程1で得られたアミド化合物(3)と化合物(4)とを反応させることにより化合物(5)を製造する方法である。

本反応においては、反応系中に必要に応じて塩基を加えてもよい。用いられ 5 る化合物(4)としては、好ましくはフェノール誘導体又はチオール誘導体が 好ましい。該フェノール誘導体又はチオール誘導体としては、例えばフェノー ル、チオフェノール、チオイミダゾール、チオトリアゾール等が挙げられる。 用いられる化合物(4)の量は、用いられる化合物及び溶媒の種類その他の反 応条件により異なるが、通常アミノ誘導体(3)1当量に対して、2乃至50 当量、好ましくは2乃至5当量である。用いられる塩基としては、例えばトリー メチルアミン、トリエチルアミン、N, N-ジイソプロピルエチルアミン、N ーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, N ージメチルアニリン、1,8-ジアザビシクロ[5.4.0]ウンデカー7-エン (DBU) 、1, 5-アザビシクロ [4.3.0] ノナー5-エン (DB 15 N) 等の第3級脂肪族アミン: 例えばピリジン、4-ジメチルアミノピリジン、 ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン;例えば金 属カリウム、金属ナトリウム、金属リチウム等のアルカリ金属;例えば水素化 ナトリウム、水素化カリウム等のアルカリ金属水素化物;例えばプチルリチウ ム等のアルカリ金属アルキル化物:例えばカリウム-tertーブチラート、 20 ナトリウムエチラート又はナトリウムメチラート等のアルカリ金属アルコキシ ド:例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;例 えば炭酸カリウム等のアルカリ金属炭酸塩等が挙げられ、中でも例えば第3級 脂肪族アミン、アルカリ金属水素化物又はアルカリ金属炭酸塩が好ましく、特 に例えばトリエチルアミン、N, N-ジイソプロピルエチルアミン、水素化ナ 25 トリウム又は炭酸カリウムが好適である。

用いられる当該塩基の量は、用いられる化合物及び溶媒の種類その他の反応 条件により異なるが、アミド化合物(3)1当量に対して通常0乃至50当量、 好ましくは2乃至10当量である。該塩基は、必要に応じて一種又は2種以上 用いることができる。

用いられる不活性有機溶媒としては、反応に支障のないものであれば、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、水、トルエン、1,4-ジオキサン、テトラヒドロフラン又はこれらの混合溶媒等が挙げられる。

このようにして得られる化合物(5)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製することができる。

(工程3)

10

15

20

25

本工程は化合物(5)を還元して、本発明で用いる化合物(I)を製造する方法である。本工程において用いられる還元反応は、当業者に周知の方法が用いられる。本工程においてもちいられる還元反応としては、具体的には、例えば(1)水素、蟻酸、蟻酸アンモニウム、ヒドラジン水和物とパラジウム、白金、ニッケル触媒を用いる接触還元法、(2)塩酸、塩化アンモニウムと鉄を用いる還元法、(3)メタノールと塩化スズを用いる還元法等が挙げられる。

上記還元反応において用いられる還元剤の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、化合物(5)1当量に対して通常1 乃至50当量、好ましくは2乃至20当量である。

用いられる反応溶媒としては、反応に支障のない限り、特に限定されないが、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素類、例えばジエチルエーテル、 tertーブチルメチルエーテル、 テトラヒドロフラン等のエーテル類、例えばN, Nージメチルホルムアミド、N, Nージメチルアセトアミド等のアミド類、例えばジメチルスルホキシド等のスルホキシド類、例えばアセトニトリル等のニトリル類、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、水或いはこれらの混合溶媒を用いることができる。

15

25

反応温度及び反応時間は特に限定されないが、-10万至100℃程度、好ましくは0万至50℃程度の反応温度で1万至20時間程度、好ましくは1万至5時間程度反応を行う。

このようにして得られる本発明で用いる化合物(I)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく、次工程に付すことができる。

上記各工程の化合物は、各置換基上に保護基を有していてもよい。当該保護基は、各工程において適宜、公知の方法これに準じた方法、又はこれらと常法とを組み合わせた方法により除去することができる。除去の態様は、化合物、反応の種類その他の反応条件により、適宜の除去反応が可能であるが、個別に各保護基を除去する場合、各保護基を同時に除去する場合等が考えられ、当業者が適宜選択可能である。当該保護基としては、例えばヒドロキシ基の保護基、アミノ基の保護基、カルボキシル基の保護基、アルデヒドの保護基、ケト基の保護基等が挙げられる。また、当該保護基の除去順序は、特に限定されるものではない。

ヒドロキシ基の保護基としては、例えば $t e r t - \vec{J}$ チルジメチルシリル基、 $t e r t - \vec{J}$ チルジフェニルシリル基等の低級アルキルシリル基、例えばメトキシメチル基、 $2 - \vec{J}$ トキシエトキシメチル基等の低級アルコキシメチル基、

0 例えばベンジル基、p-メトキシベンジル基等のアラルキル基、例えばホルミル基、アセチル基等のアシル基等が挙げられ、これらのうち、特にtert-ブチルジメチルシリル基、アセチル基等が好ましい。

アミノ基の保護基としては、例えばベンジル基、pーニトロベンジル基等のアラルキル基、例えばホルミル基、アセチル基等のアシル基、例えばエトキシカルボニル基、tertーブトキシカルボニル基等の低級アルコキシカルボニル基、例えばベンジルオキシカルボニル基、pーニトロベンジルオキシカルボニル基等のアラルキルオキシカルボニル基等が挙げられ、これらのうち、特にニトロベンジル基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基等が好ましい。

カルボキシル基の保護基としては、例えばメチル基、エチル基、tertーブチル基等の低級アルキル基、例えばベンジル基、p-メトキシベンジル基等のアラルキル基等が挙げられ、これらのうち、特にメチル基、エチル基、tertーブチル基、ベンジル基等が好ましい。

5 ケト基の保護基としては、例えばジメチルケタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチオラン基等が挙げられ、これらのうち、ジメチルケタール基、1,3-ジオキソラン基等がより好ましい。

アルデヒド基の保護基としては、例えば、ジメチルアセタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチアン基、1,3-ジオチオラン基等が挙げられ、これらのうちジメチルアセタール基、1,3-ジオキソラン基等がより好ましい。

本発明で用いる化合物を製造するに当たっては、反応を効率よく進行させる ために、官能基に保護基を導入する場合もある。これらの保護基の導入は、当 業者に適宜選択可能であり、当該保護基の除去は、前記記載のプロテクティブ グループス イン オーガニックシンセシス等の方法、これに準じた方法又は これらと常法とを組み合わせることにより行うことができる。なお、保護基の 除去の順序についても、当業者が適宜選択可能である。

このようにして得られる化合物(I)は、公知の分離精製手段、例えば濃縮、 20 減圧濃縮、結晶化、再沈殿、溶媒抽出、クロマトグラフィー等により単離精製 するか又は単離精製することなく次工程に付すことができる。

また、本発明で用いる化合物である(I)は、下記の工程によっても製造することができる。

[式中各記号は前記定義に同じ]

上記工程4、工程5及び工程6については、試薬の量、反応溶媒、反応温度 5 等その他の反応条件は、前記工程2、工程1及び工程3と同様にして行うこと ができる。

R²に保護基が必要な場合には、前記記載のプロテクティブグループス インオーガニックシンセシス等の方法、それに準じた方法又はこれらと常法とを組み合わせることにより、当業者が保護基を適宜選択することによって行うことができる。

このようにして得られる化合物(6)、(5')は、公知の分離精製手段、 例えば濃縮、減圧濃縮、結晶化、再沈殿、溶媒抽出等により単離精製するか、 又は単離精製することなく次工程に付すことができる。

本発明で用いる化合物 (I) は、公知の分離精製手段、例えば濃縮、減圧濃 15 縮、結晶化、再沈殿、溶媒抽出等により単離精製することができる。

上記工程1万至6において、保護基の除去は、当該保護基の種類及び化合物の安定性により異なるが、前記記載のプロテクティブ グループス イン オーガニック シンセシス ((Protective Groups in O

rganic Synthesis)、T. W. Green著 第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。例えば酸又は塩基を用いる加溶媒分解、水素化金属錯体等を用いる化学的還元又はパラジウム炭素触媒、ラネーニッケル等を用いる接触還元等により行うことができる。

本発明によって提供されるベンズアミド化合物は、薬学的に許容される塩として存在することができる。当該塩は、常法に従って製造することができる。 具体的には、上記化合物(I)が、当該分子内に例えばアミノ基、ピリジル基等に由来する塩基性基を有している場合には、当該化合物を酸で処理することにより、相当する薬学的に許容される塩に変換することができる。

10

当該酸付加塩としては、例えば塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩、炭酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の低級アルキルスルホン酸塩;ベンゼンスルホン酸塩、

p-トルエンスルホン酸塩等のアリールスルホン酸塩;フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及びグルタミン酸塩、アスパラギン酸塩等のアミノ酸等の有機酸である酸付加塩を挙げることができる。また、本発明の化合物が酸性基を当該基内に有している場合、例えばカルボキシル基等を有している場合には、当該化合物を塩基で処理することによっても、相当する薬学的に許容される塩に変換することができる。当該塩基付加塩としては、例えば例えばナトリウム、カリウム等のアルカリ金

属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、 グアニジン、トリエチルアミン、ジシクロヘキシルアミン等の有機塩基による 塩が挙げられる。さらに本発明の化合物は、遊離化合物又はその塩の任意の水 和物又は溶媒和物として存在してもよい。

本発明においては、実施例の記載にて詳述するように、配列番号5に示すアミノ酸配列を有するGKタンパク質と上記式(IIIa)~式(IIIc)との化合物の複合体の結晶が得られている。これらの、結晶の3次元構造座標を解析することによって、配列番号5で示すGKタンパク質においては、化合物結合部位

が、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基から構成されることが解明されている。

5

15

20

25

WO 03/097824

なお、本発明の別の態様によれば、配列番号2に記載のアミノ酸配列を有するタンパク質から、上述のようにN末端側、および/またはC末端側の所定の数のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させる工程とを含む、タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶を製造する方法が提供される。

上記タンパク質製造工程において製造されるタンパク質としては、結晶内で 隣接するGKタンパク質との間で立体的な障害がなくなる範囲であればその数 は限定されない。具体的には、例えば、配列番号 2 で表されるアミノ酸配列に おいて、N末端側の $1\sim5$ 0個、好ましくは $3\sim3$ 0個、より好ましくは $5\sim2$ 5個、さらに好ましくは $8\sim1$ 8個、特に好ましくは $11\sim1$ 5個のアミノ 酸残基を欠失させたアミノ酸配列などが挙げられる。また、C末端側の $1\sim8$ 個、好ましくは $1\sim7$ 個、より好ましくは $2\sim6$ 個のアミノ酸残基を欠失させ たアミノ酸配列などが挙げられる。

(3次元構造座標を用いるドラッグデザイン方法)

上記のようにして得られる本発明のGKタンパク質の3次元構造は、CAR DD (Computer Aided Rational Drug Design) による創薬システムのための重要な情報である。このGKタンパク質の活性中心、及びアロステリック部位を明らかにし、その部位に適合し、GKタンパク質と相互作用することにより、GKタンパク質を阻害、または活性化する物質を検索することは、GKタンパク質をターゲットとする創薬開発の重要なステップである。

すなわち、本発明の別の態様によれば、タンパク質の立体構造情報に基づい

て該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、該タンパク質の立体構造情報が、上述のようにして得られる結晶を解析することによって得られる情報であることを特徴とする、ドラッグデザイン方法が提供される。このようなドラッグデザイン方法としては、エネルギー計算、若しくはこれに類似する活性予測値、又はファルマコフォアを用いてドラッグデザインする手法と、コンピュータグラフィックスの技術を用いて視覚的にドラッグデザインをする手法がある。

エネルギー計算、若しくはこれに類する活性予測値、又はファルマコフォアを用いる手法による方法としては、(1)上述したようにして得られる立体構造情報に基づいて、上記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合物ライブラリより選択する選択工程とを含むことを特徴とするドラッグデザイン方法、(2)前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を構築する化合物構造構築工程とを含むことを特徴とする、ドラッグデザイン方法などが例示される。

15

20

25

上記タンパク質の化合物結合部位を推測する方法としては、例えば、化合物との共結晶においてリガンドが結合している部位をコンピュータのディスプレイ上で目視で確認して特定する方法の他、リガンドが結合していない状態で解かれたタンパク質結晶構造に対してリガンドが結合しそうな部位を推定して特定する方法が挙げられる。いずれの方法においても公知の方法や市販のコンピュータソフトウエアを用いることができる。前者の方法においては、例えば、Insight II (Accelrys Inc.), SYBYL (Tripos Inc.), MOE (Chemical Computing Group)等のソフトウエアを用いることができる。一方、後者の方法においては、例えば、Cavity search: an algorithm for the isolation and display of cavity-like binding regions. (Journal of Computer-Aided Molecular Design. 4(4):337-54, 1990)等の公知の手法を用いることができ、SiteID (Tripos Inc.)等のソフトウエアを用いて実施することができる。

タンパク質における化合物との結合部位が推測できたら、その推測された結

10

15

20

合部位に適合し得る化合物を選択する。この化合物候補を選択する方法としては、既存の化合物ライブラリからの化合物の構造情報を入手して、そのライブラリ中の化合物の構造情報と上記のようにして推測された結合部位の構造情報とを比較することによって、結合可能化合物候補を選択する。

より具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9)から 1 つないしは 2 つ以上の残基もしくは複合体中のリガンドの官能基から形成される水素結合性または疎水性などのファルマコフォアと、蛋白構造またはその一部の側鎖の配向を改変させた構造から作成される蛋白表面を検索条件として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら条件を満たすかどうかを判断して選択する。

他の代替方法として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら、アミノ酸残基(チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459)から構成されるリガンド結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して候補化合物をバーチャルでドッキングさせ、アミノ酸残基(チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459)から1つないしは2つ以上の残基と4オングストローム以下で近接した相互作用を形成したものを選択したり、エネルギー評価関数を用いた選択を行う。

25 一方、候補化合物は、上記のようにして推測された結合部位の構造情報に基づいて結合可能化合物を設計することによっても選択することができる。より 具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、ア

ルギニン 250、ロイシン4 5 1 ~ リジン4 5 9)から構成される化合物結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して、1つないしは2つ以上の残基と相互作用するように各種原子種、官能基を種々つなぎ合わせて化合物構造を構築する。この方法としては、メチル、エチル等の化学基を活性部位に並べて適合する化合物を探す方法と、原子を活性部位にコンピュータプログラムを用いて結合させていく方法とが知られている。

なお、コンピュータによるエネルギー評価による方法では、例えば分子力場計算を用いて化合物と、GKタンパク質との結合のエネルギーを求める方法が挙げられる。その計算をデータベースの中の各化合物に適用し、安定に結合できる化合物候補を、ライブラリ化合物の中から求める。Insight IIのLudiなどコンピュータプログラムによっては、蛋白質分子において相互作用するアミノ酸残基の3次元構造座標を与えると、自動的に結合可能な化合物の候補を選択し出力するものもあり、好適に利用することができる。

また、分子の3次元構造に基づくドラッグデザインについては、医薬品の開発・第7巻「分子設計」(廣川書店)をはじめとして数多くの文献が知られている。具体的には、第一にFlexiDock、FlexX等のフレキシブルリガンドバインディングシミュレーションソフトウエアを用いて、低分子(分子量1000以下)化合物のライブラリ(たとえば約150000種)をコンピュータでスクリーニングすることができる。このライブラリ内の化学物質はCONCORD等のプログラムで3次元構造を構築し、活性部位に適合する化合物を選択することができる。

一方、目視的によりドラッグデザインする方法としては、前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程とを含むことを特徴とする、ドラッグデザイン方法が挙げられる。例えば、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギ

10

15

20

25

ニン 250、ロイシン 4 5 1 ~ リジン 4 5 9) から構成されるリガンド結合部位 の構造またはその一部の側鎖の配向を改変させた構造に対して、これらの残基 のうち 1 つないしは 2 つ以上の残基と相互作用するように目視による構造構築、もしくは構造改変を行う。

具体的には、視覚的方法では、まずコンピュータの画面上にGKタンパク質 とそれに結合する化合物との複合体の結晶の構造を、得られた構造座標に従っ て表示する。そして、コンピュータ上で化学的相互作用を考慮しながら、ライ ブラリ中にある化合物とGKタンパク質との結合可能性を順次検討する。ここ で考慮すべき化学的相互作用は静電相互作用、疎水性相互作用、水素結合、フ ァンデルワールス相互作用などである。すなわち、該化合物の3次元空間での 構造が、その官能基群においてカルボキシル基、ニトロ基、ハロゲン基などの 陰性電荷を帯びやすい基が、GKタンパク質のリジン、アルギニン、ヒスチジ ンといった正電荷を持つアミノ酸残基に相互作用するように、アミノ基、イミ ノ基、グアニジル基などの陽性電荷を帯びやすい基が、GKタンパク質のグル タミン酸、アスパラギン酸といった負電荷を持つアミノ酸残基に相互作用する ように、脂肪族基や芳香族基といった疎水性の官能基が、アラニン、ロイシン、 イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン及びメ チオニンといった疎水性のアミノ酸残基と相互作用するように、水酸基、アミ ド基などの水素結合に関与する基が、GKタンパク質の主鎖や側鎖部分と水素 結合ができるように、更には、該化合物とGKタンパク質の結合において立体 的な障害が生じないように、また、更には、空隙部分がなるべくできないよう に空隙部分が充填され、ファンデルワールス相互作用が大きくなるようになど、 相互作用に好ましい構造になっているかを総合的に考慮する。このように、静 電相互作用、疎水性相互作用、ファンデルワールス相互作用、水素結合などの 因子を、コンピュータ画面上で視覚的に総合的に考慮して、最終的に候補化合 物がGKタンパク質に結合し得るか否かの判断を行う。

このように目視によって化合物候補を選択するプログラムとしては、 Insight II や MOE 等のシミュレーションプログラムが例示される。 G K タン パク質と相互作用する化合物の有力候補を挙げるために、候補化合物とG K タ

ンパク質と接触させ、GKタンパク質の活性を測定する。有力候補化合物を実際にGKタンパク質と混合し、結晶化し適合するかどうかを検討する。更に適合した複合物を有機合成を用いて修飾することにより、より望ましい構造とする。

- 5 なお、視覚的手法と、エネルギーを考慮した手法は、適宜組合わせて用いることもできる。そのようなコンピュータソフトウエアとしては、FlexiDock (Tripos Inc.)、FlexX (Tripos Inc.)、SYBYL (Tripos Inc.)、Insight II (Accelrys Inc.)、MOE (Chemical Computing Group Inc.) などが挙げられる。
- 10 なお、本発明においては、上述したドラッグデザイン方法によって選択された化合物を実際に合成し、これらの化合物群を化合物アレイ(又は化合物ライブラリ)として提供することができる。このような化合物アレイを利用すれば、ハイスループットスクリーニングの技術などを用いて、一度に大量の候補化合物をアッセイすることができるので、グルコキナーゼの活性化剤又は阻害剤を効率良くスクリーニングすることができる。

(本発明の方法によって得られる化合物及びそれを含む治療剤)

上記のドラッグデザイン方法によって設計される化合物は、グルコキナーゼ と結合する能力を有するので、グルコキナーゼの活性化化合物又はグルコキナーゼ阻害化合物として用いることができる。また、このような化合物を含有する治療剤又は医薬組成物は、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療剤)として有効に用いることができる。

上記医薬組成物は、本発明のグルコキナーゼと結合する化合物を有効成分として、その薬学的有効量を、適当な薬学的に許容される担体ないし希釈剤と共に含有する。上記医薬組成物(医薬製剤)に利用できる薬学的に許容できる担体としては、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤などの希釈剤或は賦形剤などが例示される。これらの担体は、得られる製剤の投与単位形態に応じて適宜選択使用される。

10

15

20

本発明の医薬組成物の投与単位形態としては、各種の形態が治療目的に応じ て選択でき、その代表的なものとしては、錠剤、丸剤、散剤、粉末剤、顆粒剤、 カプセル剤などの固体投与形態や、溶液、懸濁剤、乳剤、シロップ、エリキシ ルなどの液剤投与形態が含まれ、これらは更に投与経路に応じて経口剤、非経 口剤、経鼻剤、経膣剤、坐剤、舌下剤、軟膏剤などに分類され、それぞれ通常 の方法に従い、調合、成形、調製することができる。例えば、錠剤の形態に成 形するに際しては、上記製剤担体として例えば乳糖、白糖、塩化ナトリウム、 ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケ イ酸、リン酸カリウムなどの賦形剤、水、エタノール、プロパノール、単シロ ップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、 ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドンな どの結合剤、カルボキシメチルセルロースナトリウム、カルボキシメチルセル ロースカルシウム、低置換度ヒドロキシプロピルセルロース、乾燥デンプン、 アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭 酸カルシウムなどの崩壊剤、ポリオキシエチレンソルビタン脂肪酸エステル類、 ラウリル硫酸ナトリウム、ステアリン酸モノグリセリドなどの界面活性剤、白 糖、ステアリン、カカオバター、水素添加油などの崩壊抑制剤、第4級アンモ ニウム塩基、ラウリル硫酸ナトリウムなどの吸収促進剤、グリセリン、デンプ ンなどの保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ 酸などの吸着剤、精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリ コールなどの滑沢剤などを使用できる。更に錠剤は必要に応じ通常の剤皮を施 した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング 錠とすることができ、また二重錠ないしは多層錠とすることもできる。

丸剤の形態に成形するに際しては、製剤担体として例えばブドウ糖、乳糖、 25 デンプン、カカオ脂、硬化植物油、カオリン、タルクなどの賦形剤、アラピア ゴム末、トラガント末、ゼラチン、エタノールなどの結合剤、ラミナラン、カ ンテンなどの崩壊剤などを使用できる。

カプセル剤は、常法に従い通常本発明の有効成分を上記で例示した各種の製剤担体と混合して硬質ゼラチンカプセル、軟質カプセルなどに充填して調整さ

れる。

経口投与用液体投与形態は、慣用される不活性希釈剤、例えば水、を含む医薬的に許容される溶液、エマルジョン、懸濁液、シロップ、エリキシルなどを包含し、更に湿潤剤、乳剤、懸濁剤などの助剤を含ませることができ、これらは常法に従い調製される。

非経口投与用の液体投与形態、例えば滅菌水性乃至非水性溶液、エマルジョン、懸濁液などへの調製に際しては、希釈剤として例えば水、エチルアルコール、プロピレングリコール、ポリエチレングリコール、エトキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル及びオリーブ油などの植物油などを使用でき、また注入可能な有機エステル類、例えばオレイン酸エチルなどを配合できる。これらには更に通常の溶解補助剤、緩衝剤、湿潤剤、乳化剤、懸濁剤、保存剤、分散剤などを添加することもできる。 滅菌は、例えばバクテリア保留フィルターを通過させる濾過操作、殺菌剤の配合、照射処理及び加熱処理などにより実施できる。また、これらは使用直前に滅菌水や適当な滅菌可能媒体に溶解することのできる滅菌固体組成物形態に調製することもできる。

坐剤や膣投与用製剤の形態に成形するに際しては、製剤担体として、例えば ポリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエス テル類、ゼラチン及び半合成グリセライドなどを使用できる。

20 ペースト、クリーム、ゲルなどの軟膏剤の形態に成形するに際しては、希釈剤として、例えば白色ワセリン、パラフイン、グリセリン、セルロース誘導体、プロピレングリコール、ポリエチレングリコール、シリコン、ベントナイト及びオリーブ油などの植物油などを使用できる。

経鼻又は舌下投与用組成物は、周知の標準賦形剤を用いて、常法に従い調製 25 することができる。

尚、本発明薬剤中には、必要に応じて着色剤、保存剤、香料、風味剤、甘味 剤などや他の医薬品などを含有させることもできる。

上記医薬製剤中に含有されるべき有効成分の量及びその投与量は、特に限定されず、所望の治療効果、投与法、治療期間、患者の年齢、性別その他の条件

などに応じて広範囲より適宜選択される。一般的には、投与量は、通常、1日当り体重60kg当り、約0.01mg ~ 100 mg、好ましくは約1mg ~ 100 mgとするのがよく、1日に1~数回に分けて投与することができる。

5 本明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

ヒト由来肝臓型グルコキナーゼをコードするDNAの塩基配列を示す。

〔配列番号:2〕

ヒト由来肝臓型グルコキナーゼのアミノ酸配列を示す。

10 〔配列番号:3〕

ヒト由来 β 細胞グルコキナーゼのアミノ酸配列を示す。

〔配列番号:4〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質をコードするDNAの塩基配列を示す。

15 〔配列番号:5〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質のアミノ酸配列を示す。

〔配列番号:6〕

以下の実施例 1 における P C R 反応で使用した、プライマー 1 の塩基配列を 20 示す。

〔配列番号:7〕

以下の実施例1におけるPCR反応で使用した、プライマー2の塩基配列を示す。

〔配列番号:8〕

25 ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基15個を欠失させ たタンパク質のアミノ酸配列を示す。

〔配列番号:9〕

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

- 284 -

[配列番号:10]

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

5 (実施例)

以下、本発明を、実施例を用いて具体的に説明する。

(変異型酵素の精製方法)

Human グルコキナーゼには、プロモーターの違いよって肝臓型と膵臓型が存在し、N 末端の 15 残基が異なる。三次元構造解析を目的に結晶化を行うために、この部分の一部あるいはすべてを欠損した変異型酵素を以下の方法で作成した。

pCR2. 1 (INTROGEN 社製) 上にクローニングされた Human 肝臓型グルコキナーゼの cDNA と 2 種のプライマーセット

- 5' gtcacaaggagccagaagcttatggccttgactctggtag- 3'(配列番号6) 及び 15 5' -gaagccccacgacattgttcccttctgc - 3 (配列番号7)の組み合わせ、ならびに、
 - 5' ccaggcccagacagcctatggtagagcagatcc- 3'、 (配列番号9) 及び
 - 5' -gaagccccacgacattgttcccttctgc 3' (配列番号10)

を用いて PCR 反応を行った。得られた PCR 産物の Hind III、ClaI 断片を pFLAG・CTC ベクター (Eastman Kodak) の Hind III, Eco RI 部位にクローニン グされていた肝臓型 GK の Hind III - Cla I 領域と置換することで、肝臓型 GK の $1\sim11$ 残基を欠損する変異型 GK ($\Delta 1-11$)、及び $1\sim15$ 残基を欠損 する変異型 GK ($\Delta 1-15$) をコードする cDNA を得た。得られた cDNA の配 列を確認した後、これらのベクターを発現ベクターとし、大腸菌 DH5 α 株(宝 酒造社製)を形質変換した。

形質変換体を LB 培地で 600nm の吸収が 0.8 になるまで 37 $^{\circ}$ で培養した後、終濃度が 0.4mM になるようにイソプロピルー 1 ーチオー β ーDーガラクシド (和光純薬社製) を加え、25 $^{\circ}$ で 16 時間、タンパク質の生産誘導を行った。

培養された大腸菌を遠心機で収集し、以下の成分を含む緩衝液(50 mM リン酸カリ (Potassium Phosphate) pH7.5, 50mM NaCl, 2 mM DTT, 0.5 mM Pefabloc SC (関東化学社製)、a proteinase inhibitor mixture (Roche 社製)) に懸濁した。

5 収集した大腸菌は、超音波破砕法によって破砕し、可溶化画分を上記の緩衝液に対して透析した後、HiTrapQカラム(アマシャム社製)により精製した。 HiTrapQカラムより塩化カリウムのグラジエントにより溶出された GK 画分を 希釈により塩濃度 50mM に希釈した。

希釈された GK 画分を論文 (Preparative Biochemistry, 20 (2), 163-178 (1990)) に示されている方法で作製した Glucosamin Sepharose カラムにより精製した。 GK 画分を Glucosamin Sepharose カラムに吸着させ 100mM 塩化ナトリウムで不純物を除いた後、1M のグルコースにより溶出させた。

溶出された GK 画分は、MonoQ10/10 カラムにより精製した。MonoQ10/10 カラム (アマシャム社製) より塩化ナトリウムのグラジエントにより溶出された GK 画分を、移動層として 50mM Tris-Cl pH7. 2, 50mM NaCl 緩衝液を用いて、Superdex200 カラム (アマシャム社製) により精製した。

(結晶化方法)

10

15

(変異型 GK (Δ1-11) /グルコース/化合物複合体の結晶)

20 変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体の結晶は、以下に示す蒸気拡散の手法を用いて得た。なお、変異型 $GK(\Delta 1-11)$ は、配列番号 5 で表されるアミノ酸配列を有するグルコキナーゼを意味する。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/ml 程度の変異型 GK の溶液 (25 mM Tris-Cl, 50 mM NaCl, 5 mM TCEP) とした。これに最終濃度 20mM のグルコース、及び最終濃度 0.3 mM の GK を活性化する下記化合物1 (式 IIIa の化合物)を加え、結晶化に用いた。タンパク質溶液 1~5 μ1 に結晶化溶液として 28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6)を等量加えて混合した溶液を 0.5~1ml の結晶化溶液を入れた密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1ヶ月の静置の

後に、試料溶液中に最大 $0.4 \text{ mm} \times 0.4 \text{ mm} \times 0.7 \text{ mm}$ 程度の結晶が得られた(実施例 1)。

さらに上記の方法で得られた結晶を下記化合物 2 (式III b で表される化合物) が0.3 mMの濃度で含まれるようにして、28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6)溶液に3~7日程度浸透することによって、下記化合物 2 と上記変異型GKの複合体結晶を得た(実施例 2)。

化合物1

10 化合物 2

また、前記化合物1に代えて化合物3 (式 III c で表される化合物) を用いた以外は、実施例1と同様にして結晶化を試みた結果、それぞれ実施例1と同様な結晶が得られた(実施例3)。

化合物3

10

15

20

25

得られた結晶を10%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 KEK-PF の BL6B において振動法により、凍結した結晶の X 線回折データを 100 K 窒素気流中で収集した。得られた回折像から、DENZO/SCALEPACK(HKL 社製)を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系で空間群は $P6_522$ あるいは $P6_122$ を有し、結晶の単位格子は、a=b=79.9 オングストローム,c=322.2 オングストローム, $\alpha=\beta=90^\circ$ 、 $\gamma=120^\circ$ であるとわかった。

得られた構造因子と Human ヘキソキナーゼ タイプ1の3次元構造座標を用いて分子置換法を行い構造を解析した。計算には8オングストロームから4オングストロームの分解能のデータを用い、CCP4 (Council for the Central laboratory of the Research Councils) の Amore プログラムにより行った。計算により得られた構造のR因子は、53.7%であり、結晶の空間群はP6 $_5$ 22で非対称単位に変異型 GK 一分子を含むことが分かった。この構造と構造因子から電子密度マップを得て、プログラム0 (Dat-ONO 社製)を用いて変異型グルコキナーゼの構造を決定した。

次に CNX(Accelrys Inc.)を用いてアミノ酸の位置の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのスレオニン 14 からシステイン 461 までの 448 アミノ酸残基の構造座標、1 分子のグルコース分子、1 分子の化合物 A、1 個のナトリウムイオン、及び 149 個の水分子を同定し構造座標を決定した。最終的に決定された構造の正確さの指標とされる R 因子は、30 オングストロームから 2.3 オングストロームの分解能のデータに対して R=23.2%であり、構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 27.4%であった。

ラマチャンドラン・プロットで確認したところ許容されない構造を持ったアミノ酸残基はなかった。

決定された変異型グルコキナーゼの構造は、アイソザイムであるヘキソキナーゼの構造と似たものであったが、グルコキナーゼを活性化する化合物1(式IIIaの化合物)の結合している部位の構造は異なっていた。この構造の相違は、現在の計算化学の能力で予想できうるものでなく、今回の構造解析により、この部位がアクティベーターの結合部位であること、そしてその詳細な立体構造が初めて明らかとなった。図1 a は、ここで解明されたグルコキナーゼの三次元構造を示すリボン図である。図1 a に示されるように、新規に見つかったアクティベーター結合部位は、ラージドメインとスモールドメインの間に位置しており、基質であるグルコースが結合しているグルコキナーゼの活性中心から、約20 オングストローム離れていた。アクティベーター結合部位を構成しているグルコキナーゼのアミノ酸残基は以下のとおりであった。チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459。

10

15

また、この結合部位に対する化合物1 (式 IIIa の化合物)の結合様式を図2に、グルコキナーゼの結合部位の構造を図3に示す。チアゾール環は、バリン62、バリン452、バリン455のそれぞれのアミノ酸側鎖の分子とファンデルワールス接触をしており、またチアゾール環上の窒素原子がアルギニン63の主鎖の窒素原子と水素結合をしていた。化合物1上のアミドの窒素原子は、アルギニン63の主鎖の酸素原子と水素結合をしていた。化合物1のベンゼン環部分はイソロイシン211とファンデルワールス接触をしており、ベンゼン環に置換したフッ素原子はチロシン214の側鎖とファンデルワールス接触をしていた。化合物1のアニリン構造は、チロシン215の側鎖の酸素原子と水素結合を形成していた。硫黄を介してベンゼン環と結合しているイミダゾール環部分は、メチオニン210、メチオニン235、チロシン214のアミノ酸側鎖部分とファンデルワールス接触をしていた。ラージドメインとスモールドメインを結んでいる、セリン64~セリン69の部分は、溶液に露出した構造をしており、化合物

PCT/JP03/06054 WO 03/097824

1は、この部分が形作るアーチ状構造の下部に結合していた(図3)。

(実施例4:ドラッグデザインの実施例)

ソフトウエア UNITY (トライポス社製) を用い、Arg63 の主鎖 NH, CO からそ 5 れぞれ発生させた水素結合アクセプター、水素結合ドナーのファルマコフォア と、複合体を形成するリガンドのアニリン部分のフェニル基に相当する空間に 形成された疎水性のファルマコフォア、および蛋白の構造を元に作成した蛋白 表面を検索条件としてライブラリ化合物をスクリーニングし、下記化合物 4、 及び化合物5が得られ、アッセイを行ったところ、それぞれ780%、および 560%の活性が認められた。なお活性が780%とは、グルコキナーゼの活 性をコントロールを100%としたときに、これらの化合物によって780% まで増強されたことを示す (グルコース 2.5M 及びリガンド $10\,\mu\mathrm{M}$ を使用)。

化合物 4

10

15

化合物 5

活性:560%

(実施例5) 20

(変異型 GK (Δ1-15) の結晶)

変異型 $GK(\Delta 1-15)$ (配列番号8で表されるアミノ酸配列を有するグ ルコキナーゼ)の単体の結晶は、以下に示す蒸気拡散の手法を用いて得た。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/ml 程度の変異型 GK の溶液 (25 mM Tris-Cl pH7. 2, 50 mM NaCl, 5 mM TCEP) とした。 タンパク質溶液 1~5 μ l に結晶化溶液 (1.5 ~ 1.6 M 硫酸アンモニウム、50mM NaCl、0.1 M Bicine NaOH (pH8.7)) を等量加えて混合した溶液を 0.5~1ml の結晶化溶液が入った密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1ヶ月の静置の後に、試料溶液中に最大 0.07mm×0.5mm 程度の大きさの結晶が得られた。

得られた結晶を 20%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 Spring-8 の BL32B2 において、振動法により、凍結した結晶の X 線回折データを 100K 窒素気流中で収集した。得られた回折像から、Mosflm を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系であり、空間群は $P6_522$ あるいは $P6_122$ を有し、結晶の単位格子は、a=b=103.2 Å,c=281.0Å, $\alpha=\beta=90$ °, $\gamma=120$ ° であることが明らかとなった。

次に、CNX(モレキュラーシミュレーション社製)を用いてアミノ酸の位置 の精密化を行い、プログラム0を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのメチオニン15からヒスチジン156とアスパラギン180からシステイン461までの424アミノ酸残基の構造座標、2分子の硫酸イオン、1個のナトリウムイオン、及び7個の水分子を同定し構造座標を決定した。最終的に決定された構造の正確さの指標とされるR因

子は、50~3.4 オングストロームの分解能のデータに対して R=23.8%であり、 構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 30.6%であった。ラマチャンドラン・プロットで確認したところ、許容されな い構造を持ったアミノ酸残基はなかった。

図1a及び図1bに、それぞれグルコキナーゼ(Δ1-11)/グルコース/化 合物1の構造を示すリボン図、及びグルコキナーゼ(Δ1-15)単体の構造を 示すリボン図を示す。なお、右図は、左図を回転した図である。決定された変 異型 $GK(\Delta 1-15)$ 単体の構造においてラージドメイン及びスモールドメ インの主要部分の構造は、変異型 GK (Δ1-11) /グルコース/化合物複 合体結晶により決定されたグルコキナーゼにおけるそれぞれの構造と似たもの 10 であったが、2 つのドメインの相対位置が大きく異なっていた。変異型 GK (Δ 1-15) 単体構造においてスモールドメインの主要部分は、変異型 GK(Δ 1-11) /グルコース/化合物複合体構造におけるスモールドメインの位置 からおよそ 99 度回転していた。また、グルコキナーゼの C 末端領域に位置し 変異型 GK (Δ1-11) /グルコース/化合物複合体構造においてはスモー 15 ルドメインを構成していた α 13ヘリックスは、変異型GK(Δ 1-15)単 体構造においてはもはやスモールドメインを構成せず、両ドメイン間に位置し ていた。さらに、変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体構造 における基質グルコースの結合部位及び活性化剤結合部位はどちらも2つのド メイン間に存在していたため、新たに決定した構造ではそれらの部位の構造は 20 大きく変化していた。変異型 GK (Δ1-15) 単体構造では酵素活性に重要 な役割を果たすアミノ酸残基が活性部位を形成しておらず、今回解析した変異 型 $GK(\Delta 1-15)$ 単体の構造は、グルコキナーゼの不活性状態の構造であ った。また、変異型 GK (Δ1-15) 単体の構造において活性化剤結合部位 は、完全に消失していた。変異型 $GK(\Delta 1-11)$ /グルコース/化合物複 25 合体構造および変異型 GK (Δ1-15) 単体構造により観測されたグルコキ ナーゼの構造変化(約99度のドメインの回転)は、今まで知られていたヘキソ キナーゼの構造変化(約12度のドメインの回転)と比較してはるかに大きな

- 292 -

ものであり、現在の計算化学の能力で予想でき得るものではなく、今回の構造 解析により初めて明らかとなったものである。

また、不活性型である変異型 $GK(\Delta 1-15)$ 単体構造への構造変化を阻害する目的として、変異型 $GK(\Delta 1-11)$ / グルコース/化合物複合体構造で示された化合物結合部位に結合する化合物を設計することにより、グルコキナーゼの活性化剤を設計できることが明らかとなった。

産業上の利用可能性

以上説明したように、本発明によれば、従来は結晶化が困難であったグルコキナーゼタンパク質の結晶を得ることができた。この結晶の構造を解析することによって得られる三次元構造座標は、グルコキナーゼに結合する化合物を設計するために好適に用いることができる。また、このようにして設計される化合物は、グルコキナーゼに結合するので、グルコキナーゼ活性化剤又は阻害剤として、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療15 剤)として用いることができる。

- 293 -

請求の範囲

- 1. 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
- 2. 配列番号5に記載のアミノ酸配列からなることを特徴とする、請求項1
- 5 に記載のタンパク質。
 - 3. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - 4. 前記タンパク質がグルコキナーゼタンパク質である、請求項3に記載の結晶。
- 10 5. 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、請求項3に記載の結晶。
 - 6. 格子定数が、下記式(1)~(4): a=b=79.9±4オングストローム …(1) c=322.2±15オングストローム …(2)
- 15 $\alpha = \beta = 90^{\circ}$... (3) $\gamma = 120^{\circ}$... (4)

を満たす、請求項3に記載の結晶。

- 7. 空間群がP6,22である、請求項6に記載の結晶。
- 8. 表1に記載の三次元構造座標データによって特定されるタンパク質の結
- 20 晶。
 - 9. 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子($C\alpha$ 原子)と、該 $C\alpha$ 原子と対応する前記変更した三次元構造座標データで示される $C\alpha$ 原子との平均二乗偏差が、0.6オン
- 25 グストローム以下である結晶。
 - 10. 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459

- 294 -

のアミノ酸残基の少なくともひとつによって構成されている、請求項3~9の いずれかに記載の結晶。

- 11. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との 5 複合体を含む結晶。
 - 12. 前記化合物が、式(I)で表される、請求項11に記載の結晶。

(1)

[式中、 R^1 は、 Λ ロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O10 -Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五負環又は六負環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又は Λ 口ゲン原子を示し、

(11)

'

15

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

13. 前記化合物が、式(IIIa)~式(IIIc)で表されるいずれかの化合物である請求項12に記載の結晶。

$$0 = \stackrel{\mathsf{CH}_3}{=} 0 \qquad 0 \qquad \stackrel{\mathsf{S}}{\longrightarrow} \mathsf{CH}_3$$

$$0 = \stackrel{\mathsf{N}}{\longrightarrow} \mathsf{N} \qquad \mathsf{CH}_3$$

$$\mathsf{NH}_2 \qquad \mathsf{(IIIc)}$$

14. 配列番号8に記載のアミノ酸配列からなることを特徴とする、請求項1に記載のタンパク質。

15. 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同 0 一のアミノ酸配列からなることを特徴とするタンパク質の結晶。

16. 前記タンパク質がグルコキナーゼタンパク質である、請求項15に記載の結晶。

17. 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、請求項15に記載の結晶。

15 18. 格子定数が、下記式

5

a=b=103.2±5オングストローム … (5)

c=281.0±7オングストローム …(6)

$$\alpha = \beta = 90^{\circ} \quad \cdots \quad (7)$$

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、請求項15に記載の結晶。

- 19. 空間群が P6,22 である、請求項18 に記載の結晶。
- 20. 表2に記載の三次元構造座標データによって特定されるタンパク質の
- 5 結晶。
 - 21. 表2に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表2に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α原子)と、該C α原子と対応する前記変更した三次元構造座標データで示されるC α原子との平均二乗偏差が、0.6オングストローム以下である結晶。
 - 22. 配列番号 2 に記載のアミノ酸配列を有するタンパク質のN 末端、C 末端のいずれかまたは両方から、 $1\sim5$ 0 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タ 15 ンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程と を含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 方法。

- 23. タンパク質の結晶を製造する方法であって、
- 20 配列番号 5 に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。
 - 24. 前記タンパク質に結合可能な化合物が、式(I)で表される化合物であることを特徴とする、請求項23に記載のタンパク質の結晶の製造方法。

(1)

[式中、 R^1 は、Nロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_8 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又はNロゲン原子を示し、

(II)

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す)

- 25. 共結晶法又はソーキング法による、請求項23、又は請求項24に記載の結晶の製造方法。
- 26. タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物 の構造をデザインするドラッグデザイン方法であって、
- 15 該タンパク質の立体構造情報が、請求項3~13、請求項15~21のうちのいずれか一項に記載の結晶を解析することによって得られる情報であることを 特徴とする、ドラッグデザイン方法。
 - 27. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 20 前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合

物ライブラリより選択する選択工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 28. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 5 前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 構築する化合物構造構築工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 29. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 10 前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデ ザイン工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 30. 前記化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成されている、請求項26~29のうちのいずれか一項に記載のドラッグデザイン方法。
- 20 31. さらに、前記化合物結合部位に適合すると推定される候補化合物の生理活性を測定する工程を含む、請求項26~30のいずれか一項に記載のドラッグデザイン方法。
- 32. さらに、前記化合物結合部位に適合すると推定される候補化合物と、 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミ ノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結 合するか否か判定する結合判定工程を含む、請求項26~30のいずれか一項 に記載のドラッグデザイン方法。
 - 33. 請求項26~30のいずれか一項に記載のドラッグデザイン方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物

- 299 -

アレイの製造方法。

5

図1

2/3

図2

図3

1/15 SEQUENCE LISTING

- <110> Banyu Pharmaceutical Co., Ltd.
- <120> Crystal of Glucokinase Protein and Drug Desing Method Using Thereof
- <130> P03-0064PCT

<140>

<141>

<150> JP2002-142232

<151> 2002-05-16

<160> 10

<170> PatentIn Ver. 2.1

⟨210⟩ 1

<211> 1401

<212> DNA

<213> Homo sapiens

<400> 1

atggcgatgg atgtcacaag gagccaggcc cagacagcct tgactctggt agagcagatc 60 ctggcagagt tccagctgca ggaggaggac ctgaagaagg tgatgagacg gatgcagaagg 120 gagatggacc gcggcctgag gctggagacc catgaagagg ccagtgtgaa gatgctgccc 180 acctacgtgc gctccacccc agaaggctca gaagtcgggg acttcctctc cctggacctg 240 ggtggcacta acttcagggt gatgctggtg aaggtgggag aaggtgagga ggggcagtgg 300 agcgtgaaga ccaaacacca gatgtactcc atcccgagg acgccatgac ggggcagtgg 300 gagatgctct tcgactacat ctctgagtgc atctccgact tcctggacaa gcatcagatg 420 aaacacaaga agctgccct gggcttcacc ttctccttc ctggacca ggaagggaac 480 gataagggca tccttctcaa ctggaccaag ggcttcaagg cctcaggagc agaagggaac 540 aatgtcgtgg ggcttctgcg agacgctatc aaacggagag gggactttga aatggatgt 600 gtggcaatgg tgaatgacac ggtggccacg atgatctcc gctactacga agaccatca 660

2/15

tgcgaggtcg gcatgatcgt gggcacggc tgcaatgcct gctacatgga ggagatgcag 720
aatgtggagc tggtggaggg ggacgaggc cgcatgtgcg tcaataccga gtggggcgcc 780
ttcggggact ccggcgagct ggacgagttc ctgctggagt atgaccgcct ggtggacgag 840
agctctgcaa accccggtca gcagctgtat gagaagctca taggtggcaa gtacatgggc 900
gagctggtgc ggcttgtgct gctcaggctc gtggacgaaa acctgctctt ccacggggag 960
gcctccgagc agctgcgcac acgcggagcc ttcgagacg gcttcgtgc gcaggtggag 1020
agcgacacgg gcgaccgcaa gcagatctac aacatcctga gcagctggg gctgcgacc 1080
tcgaccaccg actgcgacat cgtgcgccg gcctgcgaga gcgtgtctac gcgcggtgg 1140
cacatgtgct cggcgggct ggcggcgtc atcaaccgca tgcgcgaga ccgcagcgag 1200
gacgtaatgc gcatcactgt gggcgtggat ggctccgtgt acaagctgca ccccagcttc 1260
aaggagcggt tccatgccag cgtgcgagg ctgacgccca gctgcgagat caccttcatc 1320
gagtcggagg agggcagtgg ccggggcgc gccctggtct cggcggtggc ctgtaagaag 1380
gcctgtatgc tgggccagtg a

<210> 2

<211> 466

<212> PRT

<213> Homo sapiens

⟨400⟩ 2

Met Ala Met Asp Val Thr Arg Ser Gln Ala Gln Thr Ala Leu Thr Leu 1 5 10 15

Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys 20 25 30

Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu 35 40 45

Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg 50 55 60

Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu 65 70 75 80

								3/1	5						
Gly	Gly	Thr	Asn	Phe 85	Arg	Val	Met	Leu	Val 90	Lys	Val	Gly	Glu	Gly 95	Glu
Glu	Gly	Gln	Trp 100	Ser	Val	Lys	Thr	Lys 105	His	Gln	Met	Tyr	Ser 110	Ile	Pro
Glu	Asp	Ala 115	Met	Thr	Gly	Thr	Ala 120	Glu	Met	Leu	Phe	Asp 125	Tyr	Ile	Ser
Glu	Cys 130	Ile	Ser	Asp	Phe	Leu 135	Asp	Lys	His	Gln	Met 140	Lys	His	Lys	Lys
Leu 145	Pro	Leu	Gly	Phe	Thr 150	Phe	Ser	Phe	Pro	Val 155	Arg	His	Glu	Asp	Ile 160
Asp	Lys	Gly	Ile	Leu 165	Leu	Asn	Trp	Thr	Lys 170	Gly	Phe	Lys	Ala	Ser 175	Gly
Ala	Glu	Gly	Asn 180	Asn	Val	Val	Gly	Leu 185	Leu	Arg	Asp	Ala	Ile 190	Lys	Arg
Arg	Gly	Asp 195	Phe	Glu	Met	Asp	Val 200	Val	Ala	Met	Val	Asn 205	Asp	Thr	Val
Ala	Thr 210	Met	Ile	Ser	Cys	Tyr 215	Tyr	Glu	Asp	His	Gln 220	Cys	Glu	Val	Gly
Met 225	Ile	Val	Gly	Thr	Gly 230	Cys	Asn	Ala	Cys	Tyr 235	Met	Glu	Glu	Met	Gln 240
Asn	Val	Glu	Leu	Val 245	Glu	Gly	Asp	Glu	Gly 250	Arg	Met	Cys	Val	Asn 255	Thr
Glu	Trp	Gly	Ala 260	Phe	Gly	Asp	Ser	Gly 265	Glu	Leu	Asp	Glu	Phe 270	Leu	Leu

4/15

Glu Tyr Asp Arg Leu Val Asp Glu Ser Ser Ala Asn Pro Gly Gln Gln 275 280 285

Leu Tyr Glu Lys Leu Ile Gly Gly Lys Tyr Met Gly Glu Leu Val Arg 290 295 300

Leu Val Leu Leu Arg Leu Val Asp Glu Asn Leu Leu Phe His Gly Glu 305 310 315 320

Ala Ser Glu Gln Leu Arg Thr Arg Gly Ala Phe Glu Thr Arg Phe Val 325 330 335

Ser Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile 340 345 350

Leu Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val 355 360 365

Arg Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser 370 375 380

Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu 385 390 395 400

Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu 405 410 415

His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr 420 425 430

Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg 435 440 445

Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu 450 455 460

5/15

Gly Gln 465

⟨210⟩ 3

<211> 465

<212> PRT

<213> Homo sapiens

<400> 3

Met Leu Asp Asp Arg Ala Arg Met Glu Ala Ala Lys Lys Glu Lys Val 1 5 10 15

Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys Lys 20 25 30

Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu Glu 35 40 45

Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg Ser 50 55 60

Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu Gly 65 70 75 80 .

Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Glu Glu 85 90 95

Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile Pro Glu 100 105 110

Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile Ser Glu 115 120 125

Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys Leu 130 135 140

6/15

Pro 145	Leu	Gly	Phe	Thr	Phe 150	Ser	Phe	Pro	Val	Arg 155	His	Glu	Asp	Ile	Asp 160
Lys	Gly	Ile	Leu	Leu 165	Asn	Trp	Thr	Lys	Gly 170	Phe	Lys	Ala	Ser	Gly 175	Ala
Glu	Gly	Asn	Asn 180	Val	Val	Gly	Leu	Leu 185	Arg	Asp	Ala	Ile	Lys 190	Arg	Arg
Gly	Asp	Phe 195	Glu	Met	Asp	Val	Val 200	Ala	Met	Val	Asn	Asp 205	Thr	Val	Ala
Thr	Met 210	Ile	Ser	Cys	Tyr	Tyr 215	Glu	Asp	His	Gln	Cys 220	Glu	Val	Gly	Me t
Ile 225	Val	Gly	Thr	Gly	Cys 230	Asn	Ala	Cys	Tyr	Met 235	Glu	Glu	Met	Gln	Asn 240
Val	Glu	Leu	Val	Glu 245	Gly	Asp	Glu	Gly	Arg 250	Met	Cys	Val	Asn	Thr 255	Glu
Trp	Gly	Ala	Phe 260	Gly	Asp	Ser	Gly	Glu 265	Leu	Asp	Glu	Phe	Leu 270	Leu	Glu
Tyr	Asp	Arg 275	Leu	Val	Asp	Glu	Ser 280	Ser	Ala	Asn	Pro	Gly 285	Gln	Gln	Leu
Tyr	Glu 290	Lys	Leu	Ile	Gly	Gly 295	Lys	Tyr	Met	Gly	G1u 300	Leu	Val	Arg	Leu
Val 305	Leu	Leu	Arg	Leu	Val 310	Asp	Glu	Asn	Leu	Leu 315	Phe	His	Gly	Glu	Ala 320
Ser	Glu	Gln	Leu	Arg 325	Thr	Arg	Gly	Ala	Phe 330	Glu	Thr	Arg	Phe	Val 335	Ser

7/15 .

Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile Leu 340 345 350

Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val Arg 355 360 365

Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser Ala 370 375 380

Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu Asp 385 390 395 400

Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu His 405 410 415

Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr Pro 420 425 430

Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg Gly 435 440 445

Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu Gly 450 455 460

Gln

465

⟨210⟩ 4

<211> 1368

<212> DNA

⟨213⟩ Homo sapiens

⟨400⟩ 4

atggccttga ctctggtaga gcagatcctg gcagagttcc agctgcagga ggaggacctg 60

8/15

aagaaggtga tgagacggat gcagaaggag atggaccgcg gcctgaggct ggagacccat 120 gaagaggcca gtgtgaagat gctgcccacc tacgtgcgct ccaccccaga aggctcagaa 180 gtcggggact tcctctcct ggacctggt ggcactaact tcagggtgat gctggtgaag 240 gtgggagaag gtgaggagg gcagtggagc gtgaagacca aacaccagat gtactccatc 300 cccgaggacg ccatgaccgg cactgctgag atgctcttcg actacatctc tgagtgcatc 360 tccgacttcc tggacaagca tcagatgaaa cacaagaagc tgcccctggg cttcaccttc 420 tcctttcctg tgaggcacga agacatcgat aagggcatcc ttctcaactg gaccaagggc 480 ttcaaggcct caggagcaga agggaacaat gtcgtggggc ttctgcgaga cgctatcaaa 540 cggagaggg actttgaaat ggatgtggtg gcaatggtga atgacacggt ggccacgatg 600 atctcctgct actacgaaga ccatcagtgc gaggtcggca tgatcgtggg cacgggctgc 660 aatgcctgct acatggagga gatgcagaat gtggagctgg tggaggggga cgagggccgc 720 atgtgcgtca ataccgagtg gggcgccttc ggggactccg gcgagctgga cgagttcctg 780 ctggagtatg accgcctggt ggacgagagc tctgcaaacc ccggtcagca gctgtatgag 840 aagctcatag gtggcaagta catgggcgag ctggtgcggc ttgtgctgct caggctcgtg 900 gacgaaaacc tgctcttcca cggggaggcc tccgagcagc tgcgcacacg cggagccttc 960 gagacgcgct tcgtgtcgca ggtggagagc gacacgggcg accgcaagca gatctacaac 1020 tgcgagagcg tgtctacgcg cgctgcgcac atgtgctcgg cggggctggc gggcgtcatc 1140 aaccgcatgc gcgagagccg cagcgaggac gtaatgcgca tcactgtggg cgtggatggc 1200 tccgtgtaca agctgcaccc cagcttcaag gagcggttcc atgccagcgt gcgcaggctg 1260 acgcccagct gcgagatcac cttcatcgag tcggaggagg gcagtggccg gggcgcgccc 1320 1368 ctggtctcgg cggtggcctg taagaaggcc tgtatgctgg gccagtga

⟨210⟩ 5

<211> 455

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Leu Thr Leu Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln
1 5 10 15

Glu Glu Asp Leu Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp 20 25 30

_			-
n	/	1	_
9	,	1	- 1

- Arg Gly Leu Arg Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu 35 40 45
- Pro Thr Tyr Val Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe 50 55 60
- Leu Ser Leu Asp Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys 65 70 75 80
- Val Gly Glu Gly Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln 85 90 95
- Met Tyr Ser Ile Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu 100 105 110
- Phe Asp Tyr Ile Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln 115 120 125
- Met Lys His Lys Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val 130 · 135 140
- Arg His Glu Asp Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly 145 150 155 160
- Phe Lys Ala Ser Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg 165 170 175
- Asp Ala Ile Lys Arg Arg Gly Asp Phe Glu Met Asp Val Val Ala Met 180 185 190
- Val Asn Asp Thr Val Ala Thr Met Ile Ser Cys Tyr Tyr Glu Asp His 195 200 205
- Gln Cys Glu Val Gly Met Ile Val Gly Thr Gly Cys Asn Ala Cys Tyr 210 215 220

10/15

Me t 225	Glu	Glu	Met	Gln	Asn 230	Val	Glu	Leu	Val	Glu 235	Gly	Asp	Glu	Gly	Arg 240
Met	Cys	Val	Asn	Thr 245		Trp	Gly	Ala	Phe 250		Asp	Ser	Gly	Glu 255	Leu

- Asp Glu Phe Leu Leu Glu Tyr Asp Arg Leu Val Asp Glu Ser Ser Ala 260 265 270
- Asn Pro Gly Gln Gln Leu Tyr Glu Lys Leu Ile Gly Gly Lys Tyr Met 275 280 285
- Gly Glu Leu Val Arg Leu Val Leu Leu Arg Leu Val Asp Glu Asn Leu 290 295 300
- Leu Phe His Gly Glu Ala Ser Glu Gln Leu Arg Thr Arg Gly Ala Phe 305 310 315 320
- Glu Thr Arg Phe Val Ser Gln Val Glu Ser Asp Thr Gly Asp Arg Lys 325 330 335
- Gln Ile Tyr Asn Ile Leu Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr 340 345 350
- Asp Cys Asp Ile Val Arg Arg Ala Cys Glu Ser Val Ser Thr Arg Ala 355 360 365
- Ala His Met Cys Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg 370 375 380
- Glu Ser Arg Ser Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly 385 390 395 400
- Ser Val Tyr Lys Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser 405 410 415

11/15

Val Arg Arg Leu Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu 420 425 430

Glu Gly Ser Gly Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys 435 440 445

Lys Ala Cys Met Leu Gly Gln 450 455

<210> 6

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 6

gtcacaagga gccagaagct tatggcctga ctctggtag

39

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 7

gaagccccac gacattgttc ccttctgc

28

<210> 8

<211> 451

12/15

$\langle 2$	1	2>	PR7
\4	1	4/	1 1/1

<213 Homo sapiens

<400> 8

Met Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu 1 5 10 15

Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg 20 25 30

Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val 35 40 45

Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp 50 55 60

Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Gly 65 70 75 80

Glu Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile 85 90 95

Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile 100 105 110

Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys 115 120 125

Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val Arg His Glu Asp 130 135 140

Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly Phe Lys Ala Ser 145 150 155 160

Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg Asp Ala Ile Lys 165 170 175 13/15

A	lrg	Arg	Gly	Asp 180	Phe	Glu	Met	Asp	Val 185	Val	Ala	Met	Val	Asn 190	Asp	Thi
1	al	Ala	Thr 195	Met	Ile	Ser	Cys	Tyr 200	Tyr	Glu	Asp	His	Gln 205	Cys	Glu	Val
(ly	Met 210	Ile	Val	Gly	Thr	Gly 215	Cys	Asn	Ala	Cys	Tyr 220	Met	Glu	Glu	Met
	31 n 225	Asn	Val	Glu	Leu	Val 230	Glu	Gly	Asp	Glu	Gly 235	Arg	Met	Cys	Val	Asr 240
1	`hr	Glu	Trp	Gly	Ala 245	Phe	Gly	Asp	Ser	Gly 250	Glu	Leu	Asp	Glu	Phe 255	Leu
L	eu	Glu	Tyr	Asp 260	Arg	Leu	Val	Asp	Glu 265	Ser	Ser	Ala	Asn	Pro 270	Gly	Gln
G	ln	Leu	Tyr 275	Glu	Lys	Leu	Ile	Gly 280	Gly	Lys	Tyr	Met	G1y 285	Glu	Leu	Val
A	.rg	Leu 290	Val	Leu	Leu	Arg	Leu 295	Val	Asp	Glu	Asn	Leu 300	Leu	Phe	His	Gly
	lu 05	Ala	Ser	Glu	Gln	Leu 310	Arg	Thr	Arg	Gly	Ala 315	Phe	Glu	Thr	Arg	Phe 320
V	al	Ser	Gln	Val	Glu 325	Ser	Asp	Thr	Gly	Asp 330	Arg	Lys	Gln	Ile	Tyr 335	Asn
I	le	Leu	Ser	Thr 340	Leu	Gly	Leu	Arg	Pro 345	Ser	Thr	Thr	Asp	Cys 350	Asp	Ile
V	al	Arg	Arg 355	Ala	Cys	Glu	Ser	Val 360	Ser	Thr	Arg	Ala	A1a 365	His	Met	Cys

14/15

Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser 370 375 380

Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys 385 390 395 400

Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu 405 410 415

Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly 420 425 430

Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met 435 440 445

Leu Gly Gln 450

<210> 9

⟨211⟩ 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 9

ccaggcccag acagccaagc ttatggtaga gcagatcc

38

<210> 10

⟨211⟩ 28

<212> DNA

<213> Artificial Sequence

15/15

<220>

<223> Description of Artificial Sequence:Primer

<400> 10

gaagcccac gacattgttc ccttctgc

28

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

		_ i					
	SIFICATION OF SUBJECT MATTER C1 C12N9/12, C12Q1/48						
According t	o International Patent Classification (IPC) or to both n	ational classification and IPC					
B. FIELD	S SEARCHED						
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C12N9/12, C12Q1/48						
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched				
CA(S	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), BIOSIS(DIALOG), WPI(DIALOG), SwissProt/PIR/Genbank/EMBL/DDBJ/GeneSeq						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
X A	TANIZAWA, Y. et al., Human Liver Glucokinase Gene: Cloning and Sequence Determination of Two Alternatively Spliced cDNAs, Proc.Natl.Acad.Sci. USA., 1991, Vol.88, pages 7294 to 7297						
A	MAHALINGAM B. et al., Structu glucokinase in complex with o Diabetes, 1999, Vol.48, pages	glucose and ATP.,	1-25				
A	WILLSON M. et al., Yeast hexedesigned from the 3-D enzyme J. Enzyme Inhib., 1997, Vol.1 to 121	1-25					
		,					
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.					
"A" docume conside "E" earlier date docume cited to special docume means docume than the	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed actual completion of the international search fune, 2003 (12.06.03)	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 24 June, 2003 (24.06.03)					
Name and m	nailing address of the ISA/	Authorized officer					
Japa	nese Patent Office						
Facsimile N	0	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 26 to 33 because they relate to subject matter not required to be searched by this Authority, namely: Inventions according to said claims relate to subject matters not required to be searched by this Authority in accordance with PCT Article 17 (2) (a) and PCT Rule 39.1. (see extra sheet for details)
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06054

Continuation of Box No.I-1 of continuation of first sheet(1)

"Method for drug design" according to the present invention relates to the design of a compound to be bonded to a protein, on the basis of the information on the three-dimensional structure of the protein. The design according to the present invention involves the work of the inventor to estimate a suitable compound by his mental acts, and such work is considered to correspond to the performance of purely mental acts.

			
	属する分野の分類(国際特許分類(IPC)) 2N9/12, C12Q1/48		
B. 調査を	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	最小限資料(国際特許分類(IPC))		
Int. Cl' Cl	2N9/12, C12Q1/48		
ı			
最小限資料以	外の資料で調査を行った分野に含まれるもの		
1			_
国際調査で使	用した電子データベース(データベースの名称、	調査に使用した用語)	
CA (STN), B	OSIS (DIALOG), WPI (DIALOG)		
SwissProt/F	PIR/Genbank/EMBL/DDBJ/GeneSeq		
	ると認められる文献		
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連する。	ときけ その関連する祭命の事景	関連する 請求の範囲の番号
			明不の処因の番ヶ
$\frac{X}{A}$	TANIZAWA Y. Tanizawa, et al., Hum Cloning and Sequence Determination		$\frac{1}{2-25}$
, A	Spliced cDNAs	on or two Arternativery	2-20
1	Proc. Natl. Acad. Sci. USA., 1991, Vo	ol 88. p 7294–7297	
	1100.11401.11044.001.001., 1001, 10	71.00, p. 1201 1231	
A	MAHALINGAM B. et al., Structural	model of human glucokinase	1-25
	in complex with glucose and ATP.		
1	Diabetes, 1999, Vol.48, p1698-170	05	
× C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献の	ウカテゴリー	の日の後に公表された文献	
	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	
しまり 国際出版	頂日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、¾ の理解のために引用するもの	8明の原理又は理論
1	公表されたもの	「X」特に関連のある文献であって、	当該文献のみで発明
	上張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	えられるもの
	(は他の特別な理由を確立するために引用する 里由を付す)	「Y」特に関連のある文献であって、当 上の文献との、当業者にとって自	
	まれなわりた よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	
	質日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完了	71 & 0	国際調本規集の数学日 幻 4 0 0 0	
一国欧州国で元	12.06.03	国際調査報告の発送日 24.06.0	لَّحُ
FT INV SIR-L-LUA PD	D. D. Th. T. and h. and the	the the declarate of a Charge of the country of the	
	D名称及びあて先 国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 鈴木 恵理子 印	4B 3037
	郵便番号100-8915	MAN 空海工 (日)	,
	部千代田区霞が関三丁目 4番3号	電話番号 03-3581-1101	内線 3488

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WILLSON M. et al., Yeast hexokinase inhibitors designed from the 3-D enzyme structure reboilding. J. Enzyme Inhib., 1997, Vol. 12, No. 2, p. 101-121	1-25
·		
•		

国際調査報告

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) ▶第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. 🗵	請求の範囲26-33は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、当該請求の範囲に記載された発明は、PCT17条(2)(a)(i)及びPCT規則39.1(i i i)の規定により、この国際調査機関が調査することを要しない対象に係るものである。(詳細は「特別ページ」を参照されたい)
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に並	だべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 .
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	至手数料の異職の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。] 追加調査手数料の納付と共に出願人から異議申立てがなかった。

『第1ページの続葉 (1) 「第I欄1.」』の続き

本願発明に係る「ドラッグデザイン方法」は、タンパク質の立体構造情報に基づいて該タンパク質 に結合する化合物の構造をデザインすることであるが、発明者がその精神活動によって適切な化合物 を推測する行為を包含しており、これは純粋に精神的な行為の遂行に相当すると認められる。