SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance
- Circuit Architecture Allows Easy Synchronization

description

The TL494 incorporates on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, this device offers the systems engineer the flexibility to tailor the power supply control circuitry to a specific application.

The TL494 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V, 5%-precision regulator, and output-control circuits.

The error amplifiers exhibit a common-mode voltage range from -0.3 V to V_{CC} -2 V. The dead-time control comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator may be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it may drive the common circuits in synchronous multiple-rail power supplies.

TL494C, TL494I . . . D, N, OR PW PACKAGE TL494M . . . J PACKAGE (TOP VIEW)

TL494M . . . FK PACKAGE

NC - No internal connection

FUNCTION TABLE

INPUT TO OUTPUT CTRL	OUTPUT FUNCTION
$V_I = GND$	Single-ended or parallel output
$V_I = V_{ref}$	Normal push-pull operation

AVAILABLE OPTIONS

	PACKAGED DEVICES								
TA	SURFACE MOUNT (D)†	CHIP CARRIER (FK)	CERAMIC DIP PLASTIC DIP SHRINK SMALL OUTLINE (PW) [‡]		CHIP FORM (Y)				
0°C to 70°C	TL494CD	_	_	TL494CN	TL494CPW	TL494Y			
-40°C to 85°C	TL494ID	_	_	TL494IN		_			
−55°C to 125°C	_	TL494MFK	TL494MJ						

[†] The D package is available taped and reeled. Add R suffix to device type (e.g., TL494CDR).

[‡] The PW package is only available left-end taped and reeled.

SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

description (continued)

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. The TL494 provides for push-pull or single-ended output operation, which may be selected through the output-control function. The architecture of this device prohibits the possibility of either output being pulsed twice during push-pull operation.

The TL494C is characterized for operation from 0°C to 70°C. The TL494I is characterized for operation from -40°C to 85°C. The TL494M is characterized for operation from -55°C to 125°C.

functional block diagram

NOTE A. The terminal numbers indicated apply only to the D, J, N, and PW packages.

SLVS074A – JANUARY 1983 – REVISED AUGUST 1995

TL494Y chip information

This chip, when properly assembled, display characteristics similar to the TL494C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

	TL494C	TL494I	TL494M	UNIT
Supply voltage, V _{CC} (see Note 1)	41	41	41	V
Amplifier input voltage, V _I	V _{CC} + 0.3	V _{CC} + 0.3	V _{CC} + 0.3	V
Collector output voltage, VO	41	41	41	V
Collector output current, IO	250	250	250	mA
Continuous total power dissipation	See Dissipation Rating Table			
Operating free-air temperature range, T _A	0 to 70	-40 to 85	-55 to 125	°C
Storage temperature range, T _{Stg}	-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds, T _C : FK package	_	_	260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package	260	260	_	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J package	_	_	300	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	900 mW	7.6 mW/°C	25°C	558 mW	444 mW	
FK	1375 mW	11.0 mW/°C	25°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	25°C	880 mW	715 mW	275 mW
N	1000 mW	9.2 mW/°C	41°C	733 mW	595 mW	_
PW	700 mW	5.6 mW/°C	25°C	448 mW	_	_

recommended operating conditions

	TL494C		TL4	941	TL494M		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	UNII
Supply voltage, V _{CC}	7	40	7	40	7	40	V
Amplifier input voltage, V _I	-0.3	V _{CC} -2	-0.3	V _{CC} -2	-0.3	V _{CC} -2	V
Collector output voltage, VO		40		40		40	V
Collector output current (each transistor)		200		200		200	mA
Current into feedback terminal		0.3		0.3		0.3	mA
Oscillator frequency, f _{OSC}	1	300	1	300	1	300	kHz
Timing capacitor, C _T	0.47	10000	0.47	10000	0.47	10 000	nF
Timing resistor, R _T	1.8	500	1.8	500	1.8	500	kΩ
Operating free-air temperature, TA	0	70	-40	85	-55	125	°C

SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$, f = 10 kHz (unless otherwise noted)

reference section

DADAMETED	TEST SOMBITIONS!	TL494C, TL494I			TL494M			
PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
Output voltage (REF)	I _O = 1 mA	4.75	5	5.25	4.75	5	5.25	V
Input regulation	V _{CC} = 7 V to 40 V		2	25		2	25	mV
Output regulation	I _O = 1 mA to 10 mA		1	15		1	15	mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$		2	10		2	30*	mV/V
Short-circuit output current§	REF = 0 V		25			-25		mA

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

oscillator section, C_T = 0.01 μ F, R_T = 12 $k\Omega$ (see Figure 1)

DADAMETER	TEST SOMBITIONS!	TL494C, TL494I	TL494M	LINUT
PARAMETER	TEST CONDITIONS†	MIN TYP‡ MAX	MIN TYP‡ MAX	UNIT
Frequency		10	10	kHz
Standard deviation of frequency¶	All values of V_{CC} , CT, RT, and T_A constant	100	100	Hz/kHz
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V}, \qquad T_A = 25^{\circ}\text{C}$	1	1	Hz/kHz
Frequency change with temperature#	$\Delta T_A = MIN \text{ to MAX}$	10	10*	Hz/kHz

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

¶ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

 $\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{X})^2}{N-1}}$

error amplifier section (see Figure 2)

PARAMETER	TEST CONI	TEST CONDITIONS			TL494C, TL494I TL494M			
Input offset voltage	V _O (FEEDBACK) = 2.5 V			2	10	mV		
Input offset current	V _O (FEEDBACK) = 2.5 V			25	250	nA		
Input bias current	V _O (FEEDBACK) = 2.5 V			0.2	1	μΑ		
Common-mode input voltage range	V _{CC} = 7 V to 40 V		−0.3 to V _{CC} −2			٧		
Open-loop voltage amplification	$\Delta V_O = 3 \text{ V}, \qquad \text{R}_L = 2 \text{ k}\Omega,$	$V_0 = 0.5 \text{ V to } 3.5 \text{ V}$	70	95		dB		
Unity-gain bandwidth	$V_0 = 0.5 \text{ V to } 3.5 \text{ V},$	$R_L = 2 k\Omega$		800		kHz		
Common-mode rejection ratio	$\Delta V_O = 40 \text{ V}, \qquad T_A = 25^{\circ}\text{C}$		65	80		dB		
Output sink current (FEEDBACK)	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$	V (FEEDBACK) = 0.7 V	0.3	0.7		mA		
Output source current (FEEDBACK)	V_{ID} = 15 mV to 5 V,	V (FEEDBACK) = 3.5 V	-2		·	mA		

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[§] Duration of the short circuit should not exceed one second.

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ All typical values except for parameter changes with temperature are at $T_A = 25^{\circ}C$.

[#] Temperature coefficient of timing capacitor and timing resistor not taken into account.

SLVS074A – JANUARY 1983 – REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, f = 10 kHz, T_A = 25°C (unless otherwise noted)

reference section

DADAMETED	TEGT CONDITIONS	Т	L494Y		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Output voltage (REF)	I _O = 1 mA		5		V
Input regulation	V _{CC} = 7 V to 40 V		2		mV
Output regulation	I _O = 1 mA to 10 mA		1		mV
Short-circuit output current‡	REF = 0 V		25		mA

oscillator section, C_T = 0.01 μ F, R_T = 12 $k\Omega$ (see Figure 1)

DADAMETED	TEST CONDITIONS				
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Frequency			10		kHz
Standard deviation of frequency§	All values of V _{CC} , CT, RT, and T _A constant		100		Hz/kHz
Frequency change with voltage	V _{CC} = 7 V to 40 V, T _A = 25°C		1		Hz/kHz

error amplifier section (see Figure 2)

	TEGT CONDITIONS	TL494Y	
PARAMETER	TEST CONDITIONS MIN TY		UNIT
Input offset voltage	V _O (FEEDBACK) = 2.5 V	2	mV
Input offset current	V _O (FEEDBACK) = 2.5 V	25	nA
Input bias current	V _O (FEEDBACK) = 2.5 V	0.2	μΑ
Open-loop voltage amplification	$\Delta V_{O} = 3 \text{ V}, \qquad R_{L} = 2 \text{ k}\Omega, \qquad V_{O} = 0.5 \text{ V to } 3.5 \text{ V}$	95	dB
Unity-gain bandwidth	$V_O = 0.5 \text{ V to } 3.5 \text{ V}, \qquad \qquad R_L = 2 \text{ k}\Omega$	800	kHz
Common-mode rejection ratio	$\Delta V_{O} = 40 \text{ V}, \qquad T_{A} = 25^{\circ}\text{C}$	80	dB
Output sink current (FEEDBACK)	$V_{ID} = -15 \text{ mV to } -5 \text{ V}, \qquad V \text{ (FEEDBACK)} = 0.7 \text{ V}$	0.7	mA

[†] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

$$x_{n} = \sqrt{\frac{\sum_{n=1}^{N} (x_{n} - \overline{X})^{2}}{N - 1}}$$

[‡] Duration of the short circuit should not exceed one second.

[§] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$, f = 10 kHz (unless otherwise noted)

output section

PARAMETER		TEST COND	TEST CONDITIONS			94I 94Y	UNIT
				MIN	TYP†	MAX	
Collector off-state current		V _{CE} = 40 V,	V _{CC} = 40 V		2	100	μΑ
Emitter off-state current		$V_{CC} = V_C = 40 \text{ V},$	VE = 0			-100	μΑ
Collector-emitter saturation voltage	Common emitter	VE = 0,	$I_C = 200 \text{ mA}$		1.1	1.3	V
Collector-entitler saturation voltage	Emitter follower	$V_{O(C1 \text{ or } C2)} = 15 \text{ V},$	$I_E = -200 \text{ mA}$		1.5	2.5	V
Output control input current	_	$V_I = V_{ref}$				3.5	mA

[†] All typical values except for temperature coefficient are at $T_A = 25^{\circ}C$.

dead-time control section (see Figure 1)

PARAMETER	TEST CONDITIONS	TL494C, TL494I TL494Y			TL494M			UNIT
		MIN	TYP†	MAX	MIN	TYP [†]	MAX	
Input bias current (DEAD-TIME CTRL)	V _I = 0 to 5.25 V		-2	-10		-2	-10	μΑ
Maximum duty cycle, each output	V_{I} (DEAD-TIME CTRL) = 0, C_{T} = 0.1 μ F, R_{T} = 12 $k\Omega$		45%			45%	50%*	
Leavest three should use the use (DEAD TIME OTDL)	Zero duty cycle		3	3.3		3	3.3	
Input threshold voltage (DEAD-TIME CTRL)	Maximum duty cycle	0			0*			V

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

PWM comparator section (see Figure 1)

PARAMETER	TEST CONDITIONS	TL494C, TL494I TL494M, TL494Y			UNIT
			TYP†	MAX	
Input threshold voltage (FEEDBACK)	Zero duty cycle		4	4.5	V
Input sink current (FEEDBACK)	V (FEEDBACK) = 0.7 V	0.3	0.7		mA

[†] All typical values except for temperature coefficient are at $T_A = 25^{\circ}C$.

total device

PARAMETER	TEST CONDITIONS		TL494C, TL494I TL494Y			TL494M			UNIT
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
Standby supply current	RT = V _{ref} , All other inputs and outputs open	V _{CC} = 15 V		6	10		6	21	mA
		V _{CC} = 40 V		9	15		9	26	IIIA
Average supply current	V _I (DEAD-TIME CTRL) = 2 V,	See Figure 1		7.5			7.5		mA

 $^{^{\}dagger}$ All typical values except for temperature coefficient are at T_A = 25°C.

[†] All typical values except for temperature coefficient are at $T_A = 25$ °C.

SLVS074A - JANUARY 1983 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, f = 10 kHz (unless otherwise noted) (continued)

switching characteristics, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS		TL494C, TL494I TL494Y			TL494M			UNIT
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
Rise time	Common omitter configuration	See Figure 3		100	200		100	200*	ns
Fall time	Common-emitter configuration,	See Figure 3		25	100		25	100*	ns
Rise time	Emitter-follower configuration,	See Figure 4		100	200		100	200*	ns
Fall time		See rigure 4		40	100		40	100*	ns

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

[†] All typical values except for temperature coefficient are at $T_A = 25^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Operational Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 2. Amplifier Characteristics

NOTE A. C_L includes probe and jig capacitance.

Figure 3. Common-Emitter Configuration

NOTE A. C_L includes probe and jig capacitance.

Figure 4. Emitter-Follower Configuration

TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY AND FREQUENCY VARIATION†

Figure 5

 R_T – Timing Resistance – Ω

40 k 100 k

400 k

1 M

10 k

† Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

1 k

AMPLIFIER VOLTAGE AMPLIFICATION vs **FREQUENCY** 100 V_{CC} = 15 V 90 $\Delta V_0 = 3 \text{ V}$ A - Amplifier Voltage Amplification - dB T_A = 25°C 80 70 60 50 40 30 20 10 0 10 1 k 10 k 100 k 1 M f - Frequency - Hz

Figure 6

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated

http://www.21icsearch.com

http://www.21icsearch.com