Knowledge Discovery and Data Mining

Class 2 Data Collecting, Data Sampling and Missing Values

Xuan Song songx@sustech.edu.cn

What is Data?

What is Data?

Collection of data objects and their attributes

					1
	id	height	weight	score	type
	1	157	61	28.7	А
	2	155	50	7.0	Α
Objects	3	155	63	17.8	В
	4	154	44	15.1	В
	5	153	70	15.1	В
	6	151	60	13.6	В
	7	158	38	29.6	С
	8	152	44	8.1	D
	9	149	57	2.1	D
	10	153	41	27.0	D

This is data.

Attributes

```
Attributes
        { "name":"Alice",
          "age":18,
          "favorite_color":["red","blue","green"]
        { "name": "Bob",
          "age":25,
Objects
          "favorite_color":["red","black"],
          "city":"California"
        { "name":"Dogg",
          "age":30,
          "favorite_color":["pink","purple","yellow"]
          "membership":null
```

This is also data.

Attributes

• An attribute is a property or characteistic of an object.

Attribute is also known as "variable", "field", "characteristic", "dimension", or "feature"

Objects

A collection of attributes describe an object

Bird

"has beak"

"has wing"

"feather"

"has head"

"has leg"

Cow

"has ear"

"has snout"

"furry"

"has head"

"has leg"

	Presence		Rating		
Attributes	walrus	polar bear	walrus	polar bear	
Spot	no	no	less relevant	irrelevant	
Blue	no	no	irrelevant	less relevant	
Swim	yes	yes	highly relevant	relevant	
Coastal	yes	yes	relevant	highly relevant	

Object is also known as "record", "point", "case", "sample", "entity" or "instance".

¹⁾ Retrieved from https://www.ecse.rpi.edu/~cvrl/database/AttributeDataset.htm

²⁾ Retrieved from http://segamlab.com/2016/01/01/attribute-rating-for-classification-of-visual-objects/

Attribute Values

mountain_height = 8848 (meter)

mountain_height = 29032 (feet)

id is a Cardinal number value

id	18
name	Alice
age	18

age is a Ratio value

Types of Attributes

Properties of Attribute Values

Rank	Incremental Progress	Measure Property	Mathematical Operators	Advanced Operations	Central Tendency	Туре	Discreteness
1	Nominal (定类数据)	Classification, Membership	=, ≠	Grouping	Mode	Qualitative	Discrete
2	Ordinal(定 序数据)	Comparison, Level	>, <	Sorting	Median	Qualitative	Discrete
3	Interval(定 距数据)	Difference, Affinity	+, -	Yardstick	Mean, Deviation	Quantitative	Continuous
4	Ratio(定比 数据)	Magnitude, Amount	*, /	Ratio	Geometric Mean, Coefficient of variation	Quantitative	Continuous

Types of Data

1x (10 x 10 px) 2x (20 x 20 px) **3x** (30 x 30 px)

Basic Data Types

Types of Data Sets - Record

id	height	weight	score	type
1	157	61	28.7	А
2	155	50	7.0	А
3	155	63	17.8	В
4	154	44	15.1	В
5	153	70	15.1	В
6	151	60	13.6	В
7	158	38	29.6	С
8	152	44	8.1	D
9	149	57	2.1	D
10	153	41	27.0	D

Types of Data Sets - Record

Documents

laina antrony of traffic We study the complexity of influencing elections through bribery: How computationally complex is it for an external actor to determine whether by a certain amount of bribing voters a specified candidate can be made the election's winner? We study this problem for election systems as varied as scoring ...

Vector-space representation

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

Types of Data Sets - Record

Account	Transaction Date	Transaction Type	Transaction Amount	
12345	3/1/2017	Initial Deposit	\$1,000	
12345	3/3/2017	Payroll Deposit	\$500	
12345	3/3/2017	ATM Withdrawal	\$100	
12345	3/7/2017	Check	\$75	
12345	3/10/2017	Payroll Deposit	\$500	
12345	3/11/2017	ATM	\$250	
12345	3/17/2017	Payroll Deposit	\$500	
12345	3/20/2017	Check	\$110	
12345	3/22/2017	Web Payment	\$135	
12345	3/24/2017	Payroll Deposit	\$500	
12345	3/24/2017	Web Payment	\$90	
12345	3/24/2017	ATM Withdrawal	\$125	
12345	3/28/2017	Check	\$50	
12345	3/30/2017	ATM Withdrawal	\$65	
12345	3/31/2017	Payroll Deposit	\$500	

¹⁾ Retrieved from https://www.nuwavesolutions.com/snapshot-fact-tables/

Types of Data Sets - Graph

Types of Data Sets - Graph

Types of Data Sets - Graph

Types of Data Sets - Ordered Data

Large DNA molecule

Types of Data Sets - Ordered Data

Quality of Data

Data Quality

Data Quality Common Problems

- What problems should we worry about?
- How can we detect problems with the data?
- What can we do about these problems?

Noise

Noise

Information Sources

Att. Noise

Class Noise

Kinds of Noise

Class Noise

- Contradictory examples
- Mislabeled examples

Attribute Noise

- Erroneous values
- Missing values
- Don't care values

Outliers

Duplicate Data

Missing Values

Data Quality

Data Quality

Presented by Jared Hillam, EIM Practice Director

COMPARING DQ & MDM TOOL

Preprocessing

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature Subset Selection
- Feature Creation
- Discretization and Binarization
- Attribute Transformation

Data Preparation

Data Aggregation

Aggregate by Year

Data Sampling

Types of Data Sampling

Simple Random Sampling

Stratified Sampling

Sampling Size

Dimension Reduction

Feature Subset Selection

All Features

Feature Selection

Final Features

Feature Creation

Attribute Transformation

Calculating Similarity

Similarity/Dissimilarity

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$
		$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$

Euclidean Distance

 Euclidean Distance represents the shortest distance between two points.

¹⁾ Retrieved from https://medium.com/analytics-vidhya/role-of-distance-metrics-in-machine-learning-e43391a6bf2e

Manhattan Distance

 Manhattan Distance is the sum of absolute differences between points across all the dimensions.

¹⁾ Retrieved from https://medium.com/analytics-vidhya/role-of-distance-metrics-in-machine-learning-e43391a6bf2e

Cosine Similarity

Consider similarity based on the angle between the two points

Cosine Distance/Similarity

Summary of Distance Calculation

End of Class 2