Siliconix 2N3819

N-Channel JFETs

Product Summary

V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)
≤ −8	-25	2	2

Features

- Excellent High-Frequency Gain: Gps 11 dB @ 400 MHz
- Very Low Noise: 3 dB @ 400 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation
- High Gain: $A_V = 60 @ 100 \mu A$

Benefits

- · Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

Applications

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

Description

The 2N3819 is a low-cost, all-purpose JFET which offers good performance at mid-to-high frequencies. It features low noise and leakage and guarantees high gain at 100 MHz.

Its TO-226AA (TO-92) package is compatible with various tape-and-reel options for automated assembly (see Packaging Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet.

TO-226AA (TO-92)

Top View

Absolute Maximum Ratings

 Notes

a. Derate 2.8 mW/°C above 25°C

P-37407—Rev. B (07/04/94)

2N3819 **Siliconix**

Specifications^a

				Limits			
Parameter	Symbol	Test Conditions		Min	Typb	Max	Unit
Static							
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-25	-35		¥.7
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = 15 \text{ V}, I_{D} = 2 \text{ nA}$			-3	-8	V
Saturation Drain Current ^c	I_{DSS}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$		2	10	20	mA
Gate Reverse Current	I	$V_{GS} = -15 \text{ V}, V_{DS}$	S = 0 V		-0.002	-2	nA
Gate Reverse Current	I_{GSS}		$T_A = 100$ °C		-0.002	-2	μΑ
Gate Operating Current ^d	I_G	$V_{DG} = 10 \text{ V}, I_{D} = 1 \text{ mA}$			-20		- 1
Drain Cutoff Current	I _{D(off)}	$V_{DS} = 10 \text{ V}, V_{GS} = -8 \text{ V}$			2		pA
Drain-Source On-Resistance r _{DS(on)}		$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$			150		Ω
Gate-Source Voltage	V_{GS}	$V_{DS} = 15 \text{ V}, I_{D} = 200 \mu\text{A}$		-0.5	-2.5	-7.5	v
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 1 \text{ mA}$, $V_{DS} = 0 \text{ V}$			0.7		1 °
Dynamic							
Common-Source Forward Transconductance ^d	a.	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	f = 1 kHz	2	5.5	6.5	mS
Common-Source Forward Transconductance	g fs		f = 100 MHz	1.6	5.5		iiio
Common-Source Output Conductance ^d	gos		f = 1 kHz		15	50	μS
Common-Source Input Capacitance	C _{iss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$			2.2	8	pF
Common-Source Reverse Transfer Capacitance	C _{rss}				0.7	4	
Equivalent Input Noise Voltage ^d	\overline{e}_n	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 100 \text{ Hz}$			6		$ \frac{\text{nV/}}{\sqrt{\text{Hz}}} $

gfs - Forward Transconductance (mS)

 $T_A = 25$ °C unless otherwise noted.

Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Pulse test: PW $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$. This parameter not registered with JEDEC.

Typical Characteristics

P-37407—Rev. B (07/04/94)

NH

Siliconix 2N3819

Typical Characteristics (Cont'd)

 V_{DG} – Drain-Gate Voltage (V)

Transfer Characteristics $V_{GS(off)} = -2 V \qquad V_{DS} = 10 V$ $T_{A} = -55^{\circ}C$ $T_{A} = -55^{\circ}C$ $125^{\circ}C$ $0 \qquad -0.4 \qquad -0.8 \qquad -1.2 \qquad -1.6 \qquad -2$ $V_{GS} - \text{Gate-Source Voltage (V)}$

I_D - Drain Current (mA)

10

0.1

Transfer Characteristics $V_{GS(off)} = -3V$ $V_{DS} = 10V$ $V_{DS} = 10V$

 V_{GS} – Gate-Source Voltage (V)

2N3819 Siliconix

Typical Characteristics (Cont'd)

Siliconix 2N3819

Typical Characteristics (Cont'd)

