4.7.13

We have the following linear system

$$\begin{bmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

We carry out two iterations using the Jacobi method with our initial guess $x^{(0)} = (0, 0, 0)$.

This means to find $x^{(1)}$ we need to solve

$$\begin{bmatrix} 2x_1^{(1)} & 0 & 0\\ 0 & -10x_2^{(1)} & 0\\ 0 & 0 & 4x_3^{(1)} \end{bmatrix} = \begin{bmatrix} 1\\ -12\\ 2 \end{bmatrix}$$

Where 0 has replaced the coordinates that are multiplied with coordinates from $x^{(0)}$. We find that $x^{(1)} = (\frac{1}{2}, \frac{6}{5}, \frac{1}{2})$. With our new approximation of (x_1, x_2, x_3) we solve the following

$$\begin{bmatrix} 2x_1^{(2)} & 0x_2^{(1)} & -1x_3^{(1)} \\ -2x_1^{(1)} & -10x_2^{(2)} & 0x_3^{(1)} \\ -1x_1^{(1)} & -1x_2^{(1)} & 4x_3^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

Rewritten to

$$\begin{bmatrix} 2x_1^{(2)} & 0 & -\frac{1}{2} \\ -1 & -10x_2^{(2)} & 0 \\ -\frac{1}{2} & -\frac{6}{5} & 4x_3^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

Using Maple to calculate these simple equations we find $x^{(2)} = (\frac{3}{4}, \frac{11}{10}, \frac{37}{40})$. We can see the convergence towards the actual solution (1, 1, 1)

Now we do two iteration of the Gauss Seidel method with the same initial guess. This means we need to solve

$$\begin{bmatrix} 2x_1^{(2)} & 0 & 0 \\ -2x_1^{(2)} & -10x_2^{(2)} & 0 \\ -1x_1^{(2)} & -1x_2^{(2)} & 4x_3^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

Where 0 has replaced the coordinates that are multiplied with coordinates from $x^{(0)}$. We find that $x^{(1)} = (\frac{1}{2}, \frac{11}{10}, \frac{9}{10})$. For the second iteration we need

to solve the following

$$\begin{bmatrix} 2x_1^{(2)} & 0x_2^{(1)} & -1x_3^{(1)} \\ -2x_1^{(2)} & -10x_2^{(2)} & 0x_3^{(1)} \\ -1x_1^{(2)} & -1x_2^{(2)} & 4x_3^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

Rewritten to

$$\begin{bmatrix} 2x_1^{(2)} & 0 & -\frac{9}{10} \\ -2x_1^{(2)} & -10x_2^{(2)} & 0 \\ -x_1^{(2)} & -1x_2^{(2)} & 4x_3^{(2)} \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

Using Maple, we find that $x^{(2)} = (\frac{19}{20}, \frac{101}{100}, \frac{99}{100})$. This is close to the actual solution (1, 1, 1)

Finally, we want to do two iterations with the Conjugate gradient method. Our initial guess is the same. We start off by calculating the residual vector r_0 associated with x_0 .

$$r_0 = b - Ax_0 = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}$$

This is the first iteration, so we set our search direction $p_0 = r_0$. Now we compute the scalar α_0

$$\alpha_0 = \frac{r_0^T r_0}{p_0^T A p_0} = \frac{\begin{bmatrix} 1 & -12 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}}{\begin{bmatrix} 1 & -12 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}} = -\frac{149}{1378}$$

This means we can compute x_1 as

$$x_1 = x_0 + \alpha_0 p_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \frac{149}{1378} \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{149}{1378} \\ \frac{894}{689} \\ -\frac{149}{689} \end{bmatrix} \approx \begin{bmatrix} -0.11 \\ 1.30 \\ -0.22 \end{bmatrix}$$

Now we need to do the second iteration. We start by computing our new residual vector r_1 by the following formula

$$r_1 = r_0 - \alpha_0 A p_0 = \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix} + \frac{149}{1378} \begin{bmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{523}{689} \\ \frac{5587}{1378} \end{bmatrix} \approx \begin{bmatrix} 1 \\ 0.76 \\ 4.05 \end{bmatrix}$$

Now we need to compute the next scalar β_0 so we can later find p_1 . This is done by the following formula

$$\beta_0 = \frac{r_1^T r_1}{r_0^T r_0} = \frac{\begin{bmatrix} 1 & \frac{523}{689} & \frac{5587}{1378} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{523}{689} \\ \frac{5587}{1378} \end{bmatrix}}{\begin{bmatrix} 1 \\ -12 \\ 2 \end{bmatrix}} = \frac{\frac{34207569}{1898884}}{149} \approx 0.12$$

This means we can now compute p_1 as

$$p_1 = r_1 + \beta_0 p_0 = \begin{bmatrix} 1\\ \frac{523}{689}\\ \frac{5587}{1378} \end{bmatrix} + \frac{\frac{34207569}{1898884}}{149} \begin{bmatrix} 1\\ -12\\ 2 \end{bmatrix} = \begin{bmatrix} \frac{2128465}{1898884}\\ \frac{328396}{474721}\\ \frac{2039512}{474721} \end{bmatrix} \approx \begin{bmatrix} 1.12\\ -0.69\\ 4.30 \end{bmatrix}$$

Now that we found p_1 we can compute the new scalar α_1 and then finally find x_2 .

$$\alpha_1 = \frac{r_1^T r_1}{p_1^T A p_1} = \frac{\begin{bmatrix} 1 & \frac{523}{689} & \frac{5587}{1378} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{523}{689} \\ \frac{5587}{1378} \end{bmatrix}}{\begin{bmatrix} \frac{1}{523} \\ \frac{689}{689} \\ \frac{5587}{1378} \end{bmatrix}} = \frac{\begin{bmatrix} \frac{2128465}{1898884} & -\frac{328396}{474721} & \frac{2039512}{474721} \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} \frac{2128465}{1898884} \\ -\frac{328396}{474721} \\ \frac{2039512}{474721} \end{bmatrix}} = \frac{\frac{34207569}{1898884}}{\frac{17387590081}{2616669152}} \approx 0.27$$

And finally, we can find x_2 in the samme manner as x_1

$$x_2 = x_1 + \alpha_1 p_1 = \begin{bmatrix} -\frac{149}{1378} \\ \frac{894}{689} \\ -\frac{149}{689} \end{bmatrix} + \frac{\frac{34207569}{1898884}}{\frac{173875590081}{2616662152}} \begin{bmatrix} \frac{2128465}{1898884} \\ -\frac{328396}{474721} \\ \frac{2039512}{474721} \end{bmatrix} = \begin{bmatrix} \frac{117367462}{599574001} \\ \frac{568573243}{599574001} \end{bmatrix} \approx \begin{bmatrix} 0.207892 \\ 0.20782 \\ 0.95782 \\ 0.9$$

The fractions may be a little heavy to look at, but we need to work with exact arithmetics or the values may vary greatly.

We see that x_2 converges closer to 1 in two of the coordinates but not the first one.