Biological molecular networks

An introduction

Key concepts in networks

- What are molecular networks?
 - Graph-theoretic representation
 - Different types of networks
- Why are they useful for interpreting biological data?
 - Analysis of global network properties
 - Data integration
 - Hypothesis generation
- How can we learn networks from high-throughput data?
 - Classes of methods for expression-based network inference
 - Probabilistic graphical models

Understanding a cell as a system

- Measure: identify the parts of a system
 - Parts: different types of bio-molecules
 - Genes, proteins, metabolites
 - High-throughput assays to measure these molecules
- Model: how these parts are put together
 - Clustering
 - Network inference and analysis

Representing molecular networks

- Molecular networks typically represented by graphs
- Vertices/Nodes = a molecular part
- Edges = connections or interactions between parts
- Edges can have directionality, signs, and/or weight

Different types of molecular networks

- Depends on what
 - the vertices represent
 - the edges represent
 - whether edges directed or undirected

Transcriptional regulatory networks

Nodes: Regulatory protein like a TF, or target gene

Edges: TF A regulates gene \$

Transcription factors (TFs)

Directed, weighted

E. coli: 153 TFs and 1319 target genes

6

Detecting protein-DNA interactions

- ChIP-chip and ChIP-seq binding profiles for transcription factors
- Determine the (approximate) locations in the genome where a protein binds

Protein-protein interaction networks

Vertices: Proteins

Edges: Protein U physically interacts with protein X

Yeast protein interaction network

Metabolic networks

Vertices: Enzymes

Edges: Enzyme M and N share a metabolite

Metabolic networks

Vertices: Enzymes

Edges: Enzyme M and N share a metabolite

Overview of the *E. coli* Metabolic Pathway Map

Image from the KEGG database

Signaling networks

Sachs et al., 2005, Science

Computational problems in networks

Analysis of network properties

- Degree distributions
- Network motifs
- Network modules
- Highly connected nodes and relationship to lethality

Network applications

- Interpretation of gene sets
- Identification of condition-specific subnetworks or pathways
- Using networks to infer functions of a gene

Network reconstruction

- Infer the structure and parameters of networks
- We will examine this problem in the context of "expression-based network inference"

Network reconstruction

- Given
 - A set of measurements associated with network nodes
 - Typically measurements are mRNA levels
- Do
 - Infer which nodes interact
- Algorithms for network reconstruction can vary based on their meaning of interaction
 - Similarity
 - Mutual information
 - Predictive ability

Computational methods to infer networks

- We will focus on transcriptional regulatory networks
- These networks are often inferred from gene expression data
- Many methods to do network inference
 - We will focus on probabilistic graphical models

Modeling a regulatory network

16

Mathematical representations of networks

Boolean Networks

Differential equations

$$\frac{dX_3(t)}{dt} = \\ \kappa \ g(X_1(t), X_2(t))$$
 Rate equations

Probabilistic graphical models

$$P(X_3|X_1, X_2) = N(X_1a + X_2b, \sigma)$$

Probability distributions

Summary

- Many types of molecular networks
 - Transcriptional regulatory
 - Protein-protein interaction
 - Metabolic
 - Signaling
- Variety of computational tasks associated with networks
- Our focus: reconstruction of transcriptional regulatory networks
- Variety of approaches to modeling transcriptional regulatory networks
- Our focus: probabilistic graphical models