Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2009/2010 AL2 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 3 - 21 Ottobre 2009 Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

In $(\mathbb{Z}_{20}, +)$ si descrivano $H = \langle \bar{4} \rangle$ e $K = \langle \bar{5} \rangle$.

Dopo aver giustificato il passaggio al quoziente, descrivere i gruppi quoziente \mathbb{Z}_{20}/H e \mathbb{Z}_{20}/K . Calcolare inoltre l'ordine di ogni laterale.

Esercizio 2.

Sia G un gruppo abeliano, siano $a, b \in G$ tali che $o(a) < \infty$ e $o(b) = \infty$. Dimostrare che $o(ab) = \infty$.

La tesi è vera se a e b sono entrambi aperiodici?

Esercizio 3.

Sia $G = Z_{10}$, si consideri $f : G \longrightarrow G$ con $f(a^k) = a^{3k}$ dove a indica un generatore di G.

- \bullet Dimostrare che f è un isomorfismo
- Considerato f come elemento del gruppo di tutte le applicazioni biunivoche da G in G (i.e. S_G), calcolare il periodo di f, gli elementi del sottogruppo ciclico H generato da f e tutti i generatori di H

Esercizio 4.

Dire se l'applicazione $f: M_2(\mathbb{Z}) \longrightarrow \mathbb{Z}$ t.c. $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a$ è un omomorfismo di gruppi. Dopo averne determinato il nucleo descrivere il gruppo quoziente $M_2(\mathbb{Z})/Ker(f)$.

Esercizio 5.

Sia C_n il gruppo delle radici n-esime complesse dell'unità.

Sia $x_m = cos(2\pi \frac{m}{n}) + isin(2\pi \frac{m}{n}) \ m \in \mathbb{Z}$

Dire se l'applicazione $f:(C_n,\cdot)\longrightarrow (\mathbb{Z},+)$ definita da $x_m\longmapsto m$, è un omomorfismo di gruppi. Determinarne nucleo e immagine.

Esercizio 6.

Dimostrare che un gruppo G, con notazione moltiplicativa, è abeliano se e solo se l'applicazione $f: G \longmapsto G$ t.c. $f(a) = a^2$ è un omomorfismo.

Esercizio 7.

Sia $f:\mathbb{Z}_{30}\longrightarrow G$ un omomorfismo, ove G è un gruppo di ordine 5. Determinare il nucleo di f.

Esercizio 7.

Dire se le seguenti applicazioni, f,g e h, da \mathbb{C}^* in sè sono omomorfismi, in caso affermativo verificare inoltre se sono anche isomorfismi:

- f(a+ib) = a-ib
- $g(a+ib) = a^2 + b^2$
- $h(a+ib) = \frac{a+ib}{a^2+b^2}$

Esercizio 7.

Determinare tutti gli omomorfismi suriettivi da \mathbb{Z}_{50} in \mathbb{Z}_{20}