MPI: A Message-Passing Interface Standard Version 2.2

Message Passing Interface Forum

August 31, 2009

This document describes the Message-Passing Interface (MPI) standard, version 2.2. The MPI standard includes point-to-point message-passing, collective communications, group and communicator concepts, process topologies, environmental management, process creation and management, one-sided communications, extended collective operations, external interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for C, C++ and Fortran are defined.

Technically, this version of the standard is based on "MPI: A Message-Passing Interface Standard, version 2.1, June 23, 2008. The MPI Forum added three new routines and a number of enhancements and clarifications to the standard.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1 (June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality, to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2 and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008), combining the previous documents. This version, MPI-2.2, is based on MPI-2.1 and provides additional clarifications and errata corrections as well as a few enhancements.

©1993, 1994, 1995, 1996, 1997, 2008, 2009 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all or part of this material is granted, provided the University of Tennessee copyright notice and the title of this document appear, and notice is given that copying is by permission of the University of Tennessee.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifications to the MPI 2.1 document. A few extensions have been added; however all correct MPI 2.1 programs are correct MPI 2.2 programs. New features were adopted only when there were compelling needs for users, open source implementations, and minor impact on existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May 30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations have been merged into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June 12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began meeting to consider corrections and extensions. MPI-2 has been focused on process creation and management, one-sided communications, extended collective communications, external interfaces and parallel I/O. A miscellary chapter discusses items that don't fit elsewhere, in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the standard "MPI-2: Extensions to the Message-Passing Interface", July 18, 1997. This section contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only new function in MPI-1.2 is one for identifying to which version of the MPI Standard the implementation conforms. There are small differences between MPI-1 and MPI-1.1. There are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2 and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum reconvened to correct errors and make clarifications in the MPI document of May 5, 1994, referred to below as Version 1.0. These discussions resulted in Version 1.1, which is this document. The changes from Version 1.0 are minor. A version of this document with all changes marked is available. This paragraph is an example of a change.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation from over 40 organizations, has been meeting since January 1993 to discuss and define a set of library interface standards for message passing. MPIF is not sanctioned or supported by any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used standard for writing message-passing programs. As such the interface should establish a practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This document contains all the technical features proposed for the interface. This copy of the draft was processed by LATEX on May 5, 1994.

Please send comments on MPI to mpi-comments@mpi-forum.org. Your comment will be forwarded to MPI Forum committee members who will attempt to respond.

Contents

A	cknov	vledgments	viii
1	Intr	oduction to MPI	1
	1.1	Overview and Goals	1
	1.2	Background of MPI-1.0	2
	1.3	Background of MPI-1.1, MPI-1.2, and MPI-2.0	3
	1.4	Background of MPI-1.3 and MPI-2.1	3
	1.5	Background of MPI-2.2	4
	1.6	Who Should Use This Standard?	4
	1.7	What Platforms Are Targets For Implementation?	4
	1.8	What Is Included In The Standard?	5
	1.9	What Is Not Included In The Standard?	6
	1.10	Organization of this Document	6
2	MPI	Terms and Conventions	9
	2.1	Document Notation	9
	2.2	Naming Conventions	9
	2.3	Procedure Specification	10
	2.4	Semantic Terms	11
	2.5	Data Types	12
		2.5.1 Opaque Objects	12
		2.5.2 Array Arguments	14
		2.5.3 State	14
		2.5.4 Named Constants	14
		2.5.5 Choice	15
		2.5.6 Addresses	15
		2.5.7 File Offsets	16
	2.6	Language Binding	16
		2.6.1 Deprecated Names and Functions	16
		2.6.2 Fortran Binding Issues	17
		2.6.3 C Binding Issues	18
		2.6.4 C++ Binding Issues	18
		2.6.5 Functions and Macros	21
	2.7	Processes	22
	2.8	Error Handling	22
	2.9	Implementation Issues	23
		2.9.1 Independence of Basic Runtime Routines	23

		2.9.2	Interaction with Signals	 	 	 			. 24
	2.10	Examp	oles	 	 	 			. 24
3	Poir	nt-to-P	Point Communication						25
	3.1	Introd	uction	 		 			. 25
	3.2		ng Send and Receive Operations						
		3.2.1	Blocking Send						
		3.2.2	Message Data						
		3.2.3	Message Envelope						
		3.2.4	Blocking Receive						
		3.2.5	Return Status						
		3.2.6	Passing MPI_STATUS_IGNORE for Status						
	3.3		Γype Matching and Data Conversion						
		3.3.1	Type Matching Rules						
		0.0.1	Type MPI_CHARACTER						
		3.3.2	Data Conversion						
	3.4	0.0	unication Modes						
	3.5		tics of Point-to-Point Communication						
	3.6		Allocation and Usage						
	0.0	3.6.1	Model Implementation of Buffered Mode						
	3.7		ocking Communication						
	0.1	3.7.1	Communication Request Objects						
		3.7.2	Communication Initiation						
		3.7.3	Communication Completion						
		3.7.4	Semantics of Nonblocking Communications						
		3.7.4 $3.7.5$	Multiple Completions						
		3.7.6	Non-destructive Test of status						
	3.8		and Cancel						
	3.9		sent Communication Requests						
	3.10		Receive						
	00								
	5.11	Null F	rocesses	 	 •	 • •	•	•	. 16
4		atypes							77
	4.1		d Datatypes	 	 	 	•	•	. 77
		4.1.1	Type Constructors with Explicit Addresses						
		4.1.2	Datatype Constructors						
		4.1.3	Subarray Datatype Constructor						
		4.1.4	Distributed Array Datatype Constructor						
		4.1.5	Address and Size Functions						
		4.1.6	Lower-Bound and Upper-Bound Markers .						
		4.1.7	Extent and Bounds of Datatypes						
		4.1.8	True Extent of Datatypes						
		4.1.9	Commit and Free						
		4.1.10	Duplicating a Datatype	 	 	 			. 100
			Use of General Datatypes in Communication						
		4.1.12	Correct Use of Addresses	 	 	 			. 104
		4.1.13	Decoding a Datatype	 	 	 			. 104
		4.1.14	Examples		 	 			. 112

	4.2	Pack and Unpack	121
	4.3	Canonical MPI_PACK and MPI_UNPACK	127
5	Coll	lective Communication	131
	5.1	Introduction and Overview	131
	5.2	Communicator Argument	134
		5.2.1 Specifics for Intracommunicator Collective Operations	134
		5.2.2 Applying Collective Operations to Intercommunicators	134
		5.2.3 Specifics for Intercommunicator Collective Operations	137
	5.3	Barrier Synchronization	137
	5.4	Broadcast	138
		5.4.1 Example using MPI_BCAST	138
	5.5	Gather	139
		5.5.1 Examples using MPI_GATHER, MPI_GATHERV	142
	5.6	Scatter	149
		5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV	152
	5.7	Gather-to-all	154
		5.7.1 Exampleusing MPI_ALLGATHER	156
	5.8	All-to-All Scatter/Gather	157
	5.9	Global Reduction Operations	162
		5.9.1 Reduce	163
		5.9.2 Predefined Reduction Operations	164
		5.9.3 Signed Characters and Reductions	167
		5.9.4 MINLOC and MAXLOC	167
		5.9.5 User-Defined Reduction Operations	171
		Example of User-defined Reduce	174
		5.9.6 All-Reduce	175
		5.9.7 Process-local reduction	176
	5.10	Reduce-Scatter	177
		5.10.1 MPI_REDUCE_SCATTER_BLOCK	178
		5.10.2 MPI_REDUCE_SCATTER	179
	5.11	Scan	180
		5.11.1 Inclusive Scan	180
		5.11.2 Exclusive Scan	181
		5.11.3 Example using MPI_SCAN	182
	5.12	Correctness	183
6	Cno	ups, Contexts, Communicators, and Caching	187
U	6.1	Introduction	187
	0.1	6.1.1 Features Needed to Support Libraries	187
		6.1.2 MPI's Support for Libraries	188
	6.2	Basic Concepts	190
	0.2	6.2.1 Groups	190
		6.2.2 Contexts	190
		6.2.3 Intra-Communicators	190
		6.2.4 Predefined Intra-Communicators	191
	6.3	Group Management	$191 \\ 192$
	0.0	6.3.1 Group Accessors	192
		V.O.1 VIIVIII AUGOOUIO	1.27.2

	6.3.2	Group Constructors
	6.3.3	Group Destructors
6.4	Comn	nunicator Management
	6.4.1	Communicator Accessors
	6.4.2	Communicator Constructors
	6.4.3	Communicator Destructors
6.5		ating Examples
0.0	6.5.1	Current Practice #1
	6.5.2	Current Practice #2
	6.5.3	(Approximate) Current Practice #3
	6.5.4	Example #4
	6.5.5	Library Example #1
	6.5.6	Library Example #2
6.6		Communication
0.0	6.6.1	Inter-communicator Accessors
	6.6.2	
	6.6.3	Inter-Communication Examples
		Example 1: Three-Group "Pipeline"
	G 1.	Example 2: Three-Group "Ring"
6.7		ng
	6.7.1	Functionality
	6.7.2	Communicators
	6.7.3	Windows
	6.7.4	Datatypes
	6.7.5	Error Class for Invalid Keyval
	6.7.6	Attributes Example
6.8	Namir	$ \text{ng Objects} \dots \dots \dots 238 $
6.9	Forma	dizing the Loosely Synchronous Model
	6.9.1	Basic Statements
	6.9.2	Models of Execution
		Static communicator allocation
		Dynamic communicator allocation
		The General case
\mathbf{Pro}	$\cos T$	opologies 245
7.1	Introd	$\frac{1}{245}$
7.2	Virtua	al Topologies
7.3	Embe	dding in MPI
7.4	Overv	iew of the Functions
7.5	Topole	ogy Constructors
	7.5.1	Cartesian Constructor
	7.5.2	Cartesian Convenience Function: MPI_DIMS_CREATE
	7.5.3	General (Graph) Constructor
	7.5.4	Distributed (Graph) Constructor
	7.5.5	Topology Inquiry Functions
	7.5.6	Cartesian Shift Coordinates
	7.5.7	Partitioning of Cartesian structures
	7.5.8	Low-Level Topology Functions
	1.0.0	Down Dovor Topology Tunolions

	7.6	An Appl	lication Example	268
8	MPI	Environ	nmental Management	271
	8.1	Impleme	entation Information	271
		8.1.1 V	Version Inquiries	271
		8.1.2 E	Environmental Inquiries	272
		Γ	Tag Values	272
		Н	Iost Rank	272
		I	O Rank	273
			Clock Synchronization	273
	8.2	Memory	Allocation	274
	8.3	Error Ha	andling	276
			Error Handlers for Communicators	278
			Error Handlers for Windows	280
			Error Handlers for Files	281
			reeing Errorhandlers and Retrieving Error Strings	282
	8.4		odes and Classes	283
	8.5		asses, Error Codes, and Error Handlers	286
	8.6		and Synchronization	289
	8.7			290
	0	_	Allowing User Functions at Process Termination	$\frac{295}{295}$
			Determining Whether MPI Has Finished	296
	8.8		MPI Process Startup	297
	0.0	1 or table	The First Court of the Court of	20.
9	The	Info Ob	ject	299
10	Pro	cess Cre	ation and Management	305
			tion	305
			namic Process Model	306
			tarting Processes	306
			The Runtime Environment	306
	10.3		Manager Interface	308
			Processes in MPI	308
			tarting Processes and Establishing Communication	308
			tarting Multiple Executables and Establishing Communication	313
			Reserved Keys	315
			pawn Example	316
			Manager-worker Example, Using MPI_COMM_SPAWN	316
	10 4		hing Communication	318
	10.1		Names, Addresses, Ports, and All That	318
			Server Routines	320
			Client Routines	$\frac{320}{322}$
			Name Publishing	323
			Reserved Key Values	325
			Client/Server Examples	325
			Simplest Example — Completely Portable	325
		(cean / Almosphere - Benes on Name Phonsons	- 570
			Ocean/Atmosphere - Relies on Name Publishing	$\frac{326}{326}$

10.5	Other Functionality	8
	10.5.1 Universe Size	28
	10.5.2 Singleton MPI_INIT	29
	10.5.3 MPI_APPNUM	9
	10.5.4 Releasing Connections	0
	10.5.5 Another Way to Establish MPI Communication	
11 One	e-Sided Communications 33	۲
	Introduction	
	Initialization	
11.2		
11.0		
11.3	Communication Calls	
	11.3.1 Put	
	11.3.2 Get	
	11.3.3 Examples	
	11.3.4 Accumulate Functions	
11.4	Synchronization Calls	
	11.4.1 Fence	
	11.4.2 General Active Target Synchronization	3
	11.4.3 Lock	7
	11.4.4 Assertions	8
	11.4.5 Miscellaneous Clarifications	0
11.5	Examples	0
11.6	Error Handling	3
	11.6.1 Error Handlers	3
	11.6.2 Error Classes	3
11.7	Semantics and Correctness	
2211	11.7.1 Atomicity	
	11.7.2 Progress	
	11.7.3 Registers and Compiler Optimizations	
10 E /		· n
	ernal Interfaces 37	
	Introduction	
12.2	Generalized Requests	
	12.2.1 Examples	
	Associating Information with Status	
12.4	MPI and Threads	
	12.4.1 General	1
	12.4.2 Clarifications	2
	12.4.3 Initialization	4
13 I/O	38	9
	Introduction	9
	13.1.1 Definitions	
13.9	File Manipulation	
10.2	13.2.1 Opening a File	
	13.2.2 Closing a File	
	<u> </u>	

	13.2.3	Deleting a File
	13.2.4	Resizing a File
	13.2.5	Preallocating Space for a File
	13.2.6	Querying the Size of a File
	13.2.7	Querying File Parameters
	13.2.8	File Info
		Reserved File Hints
13.3	File V	iews
13.4	Data A	Access
	13.4.1	Data Access Routines
		Positioning
		Synchronism
		Coordination
		Data Access Conventions
	13.4.2	Data Access with Explicit Offsets
	13.4.3	Data Access with Individual File Pointers
		Data Access with Shared File Pointers
		Noncollective Operations
		Collective Operations
		Seek
	13.4.5	Split Collective Data Access Routines
13.5	File In	teroperability
	13.5.1	Datatypes for File Interoperability
	13.5.2	External Data Representation: "external32"
	13.5.3	User-Defined Data Representations
		Extent Callback
		Datarep Conversion Functions
	13.5.4	Matching Data Representations
13.6	Consis	tency and Semantics
		File Consistency
		Random Access vs. Sequential Files
	13.6.3	Progress
	13.6.4	Collective File Operations
	13.6.5	Type Matching
	13.6.6	Miscellaneous Clarifications
	13.6.7	MPI_Offset Type
	13.6.8	Logical vs. Physical File Layout
	13.6.9	File Size
	13.6.10	Examples
		Asynchronous I/O
13.7	I/O E	cror Handling
		rror Classes
13.9	Examp	oles
	13.9.1	Double Buffering with Split Collective I/O
		Subarray Filetype Constructor 450

14 Pr	ofiling 1	Interface 4	5 3
14.	1 Requir	rements	53
14.	2 Discus	sion	53
14.	3 Logic	of the Design	54
	14.3.1	Miscellaneous Control of Profiling	54
14.	4 Exam	ples	55
	14.4.1	Profiler Implementation	55
	14.4.2	MPI Library Implementation	56
			56
			56
	14.4.3	Complications	57
		Multiple Counting	57
			57
14.	5 Multip	ble Levels of Interception	58
			5 9
			59
15.	2 Depre	cated since MPI-2.2	65
16 La	nguage	Bindings 4	67
			67
10			67
			67
			68
			68
			69
			71
		5 T	74
			76
			77
			77
16			80
10			80
			81
	10.2.2	<u> </u>	82
			82
			84
		•	84
			.85
	16 9 9		87 87
		**	:01 :88
	10.2.4		
		1	88 20
	16 2 5	••	.89 .89
	10.2.3		
		Parameterized Datatypes with Specified Precision and Exponent Range4 Support for Size-specific MPI Datatypes	.90 .94
			.94 .96
16	2 Langu		$90 \\ 97$
10	o Dangu	age imeroperadimy	31

		16.3.1	Introduction	497
		16.3.2	Assumptions	498
		16.3.3	Initialization	498
		16.3.4	Transfer of Handles	498
		16.3.5	Status	502
		16.3.6	MPI Opaque Objects	502
			Datatypes	503
			Callback Functions	504
			Error Handlers	504
			Reduce Operations	504
			Addresses	504
		16.3.7	Attributes	505
		16.3.8	Extra State	509
		16.3.9	Constants	509
		16.3.10	Interlanguage Communication	510
A			Bindings Summary	512
	A.1	Defined	d Values and Handles	512
		A.1.1	Defined Constants	512
		A.1.2	Types	523
		A.1.3	Prototype definitions	524
			Deprecated prototype definitions	527
		A.1.5	Info Keys	528
		A.1.6	Info Values	528
	A.2		m lings	530
			Point-to-Point Communication C Bindings	530
		A.2.2	Datatypes C Bindings	531
		A.2.3	Collective Communication C Bindings	533
		A.2.4	Groups, Contexts, Communicators, and Caching C Bindings	534
		A.2.5	Process Topologies C Bindings	537
		A.2.6	MPI Environmenta Management C Bindings	538
		A.2.7	The Info Object C Bindings	539
		A.2.8	Process Creation and Management C Bindings	539
		A.2.9	One-Sided Communications C Bindings	540
		A.2.10	External Interfaces C Bindings	540
		A.2.11	I/O C Bindings	541
		A.2.12	Language Bindings C Bindings	543
		A.2.13	Profiling Interface C Bindings	544
		A.2.14	Deprecated C Bindings	544
	A.3	Fortrar	a Bindings	546
		A.3.1	Point-to-Point Communication Fortran Bindings	546
		A.3.2	Datatypes Fortran Bindings	548
		A.3.3	Collective Communication Fortran Bindings	551
		A.3.4	Groups, Contexts, Communicators, and Caching Fortran Bindings	553
		A.3.5	Process Topologies Fortran Bindings	557
		A.3.6	MPI Environmenta Management Fortran Bindings	558
		A.3.7	The Info Object Fortran Bindings	560
		A.3.8	Process Creation and Management Fortran Bindings	561
			<u>-</u>	

	A.3.9 One-Sided Communications Fortran Bindings	562
	A.3.10 External Interfaces Fortran Bindings	563
	A.3.11 I/O Fortran Bindings	563
	A.3.12 Language Bindings Fortran Bindings	567
	A.3.13 Profiling Interface Fortran Bindings	
	A.3.14 Deprecated Fortran Bindings	568
A.4	C++ Bindings (deprecated)	
	A.4.1 Point-to-Point Communication C++ Bindings	570
	A.4.2 Datatypes C++ Bindings	573
	A.4.3 Collective Communication C++ Bindings	575
	A.4.4 Groups, Contexts, Communicators, and Caching C++ Bindings	576
	A.4.5 Process Topologies C++ Bindings	579
	A.4.6 MPI Environmenta Management C++ Bindings	581
	A.4.7 The Info Object C++ Bindings	. 582
	A.4.8 Process Creation and Management C++ Bindings	583
	A.4.9 One-Sided Communications C++ Bindings	584
	A.4.10 External Interfaces C++ Bindings	585
	A.4.11 I/O C++ Bindings	585
	A.4.12 Language Bindings C++ Bindings	589
	A.4.13 Profiling Interface C++ Bindings	589
	A.4.14 C++ Bindings on all MPI Classes	590
	A.4.15 Construction / Destruction	590
	A.4.16 Copy / Assignment	590
	A.4.17 Comparison	590
	A.4.18 Inter-language Operability	590
_ ~-		
	ange-Log	592
B.1	Changes from Version 2.1 to Version 2.2	
B.2	Changes from Version 2.0 to Version 2.1	595
Biblio	graphy	599
Examp	oles Index	603
MPI (Constant and Predefined Handle Index	606
MPI I	Declarations Index	612
MPI (Callback Function Prototype Index	614
MPI F	unction Index	615

List of Figures

5.1	Collective comminucations, an overview	132
5.2	Intercommunicator allgather	136
5.3	Intercommunicator reduce-scatter	136
5.4	Gather example	143
5.5	Gathery example with strides	144
5.6	Gatherv example, 2-dimensional	145
5.7	Gatherv example, 2-dimensional, subarrays with different sizes	146
5.8	Gatherv example, 2-dimensional, subarrays with different sizes and strides .	147
5.9	Scatter example	152
5.10	Scattery example with strides	153
5.11	Scattery example with different strides and counts	154
5.12	Race conditions with point-to-point and collective communications	185
6.1	Intercommunicator create using MPI_COMM_CREATE	204
6.2	Intercommunicator construction with MPI_COMM_SPLIT	207
6.3	Three-group pipeline.	221
6.4	Three-group ring	223
7.1	Set-up of process structure for two-dimensional parallel Poisson solver	270
11.1	Active target communication	349
11.2	Active target communication, with weak synchronization	350
11.3	Passive target communication	351
11.4	Active target communication with several processes	355
11.5	Schematic description of window	364
11.6	Symmetric communication	370
11.7	Deadlock situation	370
	No deadlock	370
13.1	Etypes and filetypes	390
13.2	Partitioning a file among parallel processes	390
13.3	Displacements	402
13.4	Example array file layout	450
	Example local array filetype for process 1	451

List of Tables

2.1	Deprecated constructs	17
3.1 3.2 3.3	Predefined MPI datatypes corresponding to Fortran datatypes Predefined MPI datatypes corresponding to C datatypes Predefined MPI datatypes corresponding to both C and Fortran datatypes	27 28 29
4.1	combiner values returned from MPI_TYPE_GET_ENVELOPE	106
6.1	MPI_COMM_* Function Behavior (in Inter-Communication Mode)	218
8.1 8.2	Error classes (Part 1)	
11.1	Error classes in one-sided communication routines	363
13.2	Data access routines	404 433 448
16.2	C++ names for the MPI C and C++ predefined datatypes	472

Acknowledgments

This document represents the work of many people who have served on the MPI Forum. The meetings have been attended by dozens of people from many parts of the world. It is the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed by the full committee. During the period of development of the Message-Passing Interface (MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

- Jack Dongarra, David Walker, Conveners and Meeting Chairs
- Ewing Lusk, Bob Knighten, Minutes
- Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
- Al Geist, Marc Snir, Steve Otto, Collective Communication
- Steve Otto, Editor
- Rolf Hempel, Process Topologies
- Ewing Lusk, Language Binding
- William Gropp, Environmental Management
- James Cownie, Profiling
- Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups, Contexts, and Communicators
- Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1 process not mentioned above.

Ed Anderson	Robert Babb	Joe Baron	Eric Barszcz
Scott Berryman	Rob Bjornson	Nathan Doss	Anne Elster
Jim Feeney	Vince Fernando	Sam Fineberg	Jon Flower
Daniel Frye	Ian Glendinning	Adam Greenberg	Robert Harrison
Leslie Hart	Tom Haupt	Don Heller	Tom Henderson
Alex Ho	C.T. Howard Ho	Gary Howell	John Kapenga
James Kohl	Susan Krauss	Bob Leary	Arthur Maccabe
Peter Madams	Alan Mainwaring	Oliver McBryan	Phil McKinley
Charles Mosher	Dan Nessett	Peter Pacheco	Howard Palmer
Paul Pierce	Sanjay Ranka	Peter Rigsbee	Arch Robison
Erich Schikuta	Ambuj Singh	Alan Sussman	Robert Tomlinson
Robert G. Voigt	Dennis Weeks	Stephen Wheat	Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft available by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant ASC-9310330, the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, and by the Commission of the European Community through Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

- Ewing Lusk, Convener and Meeting Chair
- Steve Huss-Lederman, Editor
- Ewing Lusk, Miscellany
- Bill Saphir, Process Creation and Management
- Marc Snir, One-Sided Communications
- Bill Gropp and Anthony Skjellum, Extended Collective Operations
- Steve Huss-Lederman, External Interfaces
- Bill Nitzberg, I/O
- Andrew Lumsdaine, Bill Saphir, and Jeff Squyres, Language Bindings
- Anthony Skjellum and Arkady Kanevsky, Real-Time

The following list includes some of the active participants who attended MPI-2 Forum meetings and are not mentioned above.

Greg Astfalk	Robert Babb	Ed Benson	Rajesh Bordawekar
Pete Bradley	Peter Brennan	Ron Brightwell	Maciej Brodowicz
Eric Brunner	Greg Burns	Margaret Cahir	Pang Chen
Ying Chen	Albert Cheng	Yong Cho	Joel Clark
Lyndon Clarke	Laurie Costello	Dennis Cottel	Jim Cownie
Zhenqian Cui	Suresh Damodaran-Kan	nal	Raja Daoud
Judith Devaney	David DiNucci	Doug Doefler	Jack Dongarra
Terry Dontje	Nathan Doss	Anne Elster	Mark Fallon
Karl Feind	Sam Fineberg	Craig Fischberg	Stephen Fleischman
Ian Foster	Hubertus Franke	Richard Frost	Al Geist
Robert George	David Greenberg	John Hagedorn	Kei Harada
Leslie Hart	Shane Hebert	Rolf Hempel	Tom Henderson
Alex Ho	Hans-Christian Hoppe	Joefon Jann	Terry Jones
Karl Kesselman	Koichi Konishi	Susan Kraus	Steve Kubica
Steve Landherr	Mario Lauria	Mark Law	Juan Leon
Lloyd Lewins	Ziyang Lu	Bob Madahar	Peter Madams

John May	Oliver McBryan	Brian McCandless	Tyce McLarty	1
Thom McMahon	Harish Nag	Nick Nevin	Jarek Nieplocha	2
Ron Oldfield	Peter Ossadnik	Steve Otto	Peter Pacheco	3
Yoonho Park	Perry Partow	Pratap Pattnaik	Elsie Pierce	4
Paul Pierce	Heidi Poxon	Jean-Pierre Prost	Boris Protopopov	5
James Pruyve	Rolf Rabenseifner	Joe Rieken	Peter Rigsbee	6
Tom Robey	Anna Rounbehler	Nobutoshi Sagawa	Arindam Saha	7
Eric Salo	Darren Sanders	Eric Sharakan	Andrew Sherman	8
Fred Shirley	Lance Shuler	A. Gordon Smith	Ian Stockdale	9
David Taylor	Stephen Taylor	Greg Tensa	Rajeev Thakur	10
Marydell Tholburn	Dick Treumann	Simon Tsang	Manuel Ujaldon	11
David Walker	Jerrell Watts	Klaus Wolf	Parkson Wong	12
	Jerren watts	Maus Woll	rarkson wong	
Dave Wright				13
The MPI Forum	also acknowledges ar	nd appreciates the val	luable input from people via	14
e-mail and in person.	_	• •		15
1				16
The following ins	stitutions supported	the MPI-2 effort thro	ugh time and travel support	17
for the people listed a	= =	the mire energening	agn time and traver support	18
for the people fisted t	above.			19
Argonne Nationa	al Laboratory			20
Bolt, Beranek, an	nd Newman			21
California Institu	ite of Technology			22
Center for Comp	outing Sciences			23
Convex Compute	er Corporation			24
Cray Research	1			25
Digital Equipmen	nt Corporation			26
	nect Solutions, Inc.			27
Edinburgh Parallel Computing Centre			28	
General Electric Company			29	
	German National Research Center for Information Technology			30
Hewlett-Packard		i imormation recime	,108,	31
Hitachi				32
Hughes Aircraft	Company			33
Intel Corporation	= -			34
International Bus				35
Khoral Research				36
		1		37
	nore National Labora	ntory		
Los Alamos Nati	·			38
MPI Software Te				39
Mississippi State University			40	
NEC Corporation				41
National Aerona	utics and Space Adn	ninistration		42
National Energy	Research Scientific (Computing Center		43
National Institute of Standards and Technology			44	
National Oceanic and Atmospheric Adminstration			45	
Oak Ridge National Laboratory			46	
Ohio State University			47	
DATIAGO III				40

PALLAS GmbH

1 Pacific Northwest National Laboratory 2 Pratt & Whitney 3 San Diego Supercomputer Center Sanders, A Lockheed-Martin Company 5 Sandia National Laboratories 6 Schlumberger Scientific Computing Associates, Inc. 8 Silicon Graphics Incorporated 9 Sky Computers 10 Sun Microsystems Computer Corporation 11 Syracuse University 12 The MITRE Corporation 13 Thinking Machines Corporation 14 United States Navy 15 University of Colorado 16 University of Denver 17 University of Houston 18 University of Illinois 19 University of Maryland 20 University of Notre Dame 21 University of San Fransisco 22 University of Stuttgart Computing Center

University of Wisconsin

232425

26

27

28

29

MPI-2 operated on a very tight budget (in reality, it had no budget when the first meeting was announced). Many institutions helped the MPI-2 effort by supporting the efforts and travel of the members of the MPI Forum. Direct support was given by NSF and DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and Esprit under project HPC Standards (21111) for European participants.

30 31 32

33

34 35

36 37

38

39 40

41 42

43

44 45

46

MPI-1.3 and MPI-2.1:

The editors and organizers of the combined documents have been:

- Richard Graham, Convener and Meeting Chair
- Jack Dongarra, Steering Committee
- Al Geist, Steering Committee
- Bill Gropp, Steering Committee
- Rainer Keller, Merge of MPI-1.3
- Andrew Lumsdaine, Steering Committee
- Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata Ballots 1, 2 (May 15, 2002)

• Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots 3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served as authors for the necessary modifications are:

- Bill Gropp, Frontmatter, Introduction, and Bibliography
- Richard Graham, Point-to-Point Communication
- Adam Moody, Collective Communication
- Richard Treumann, Groups, Contexts, and Communicators
- Jesper Larsson Träff, Process Topologies, Info-Object, and One-Sided Communications

12

14 15

16

18

19 20

21 22

23

2425

26

27 28

43 44

45

46

47

- George Bosilca, Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI 2.1 Secretary
- Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
- Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum meetings and in the e-mail discussions of the errata items and are not mentioned above.

			29
Pavan Balaji	Purushotham V. Bangalore	Brian Barrett	Richard Barrett ₃₀
Christian Bell	Robert Blackmore	Gil Bloch	Ron Brightwell 31
Jeffrey Brown	Darius Buntinas	Jonathan Carter	Nathan DeBardeleben ₂
Terry Dontje	Gabor Dozsa	Edric Ellis	Karl Feind 33
Edgar Gabriel	Patrick Geoffray	David Gingold	Dave Goodell 34
Erez Haba	Robert Harrison	Thomas Herault	Steve Hodson 35
Torsten Hoefler	Joshua Hursey	Yann Kalemkarian	Matthew Koop 36
Quincey Koziol	Sameer Kumar	Miron Livny	Kannan Narasimhan 37
Mark Pagel	Avneesh Pant	Steve Poole	Howard Pritchard 38
Craig Rasmussen	Hubert Ritzdorf	Rob Ross	Tony Skjellum
Brian Smith	Vinod Tipparaju	Jesper Larsson Träff	Keith Underwood 40

The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support for the people listed above.

Argonne National Laboratory Bull

```
Cisco Systems, Inc.
2
          Cray Inc.
3
          The HDF Group
          Hewlett-Packard
5
          IBM T.J. Watson Research
6
          Indiana University
          Institut National de Recherche en Informatique et Automatique (INRIA)
          Intel Corporation
9
          Lawrence Berkeley National Laboratory
10
          Lawrence Livermore National Laboratory
11
          Los Alamos National Laboratory
12
          Mathworks
13
          Mellanox Technologies
14
          Microsoft
15
          Myricom
16
          NEC Laboratories Europe, NEC Europe Ltd.
17
          Oak Ridge National Laboratory
18
          Ohio State University
19
          Pacific Northwest National Laboratory
20
          QLogic Corporation
21
          Sandia National Laboratories
22
          SiCortex
23
          Silicon Graphics Incorporated
24
          Sun Microsystems, Inc.
25
          University of Alabama at Birmingham
26
          University of Houston
27
          University of Illinois at Urbana-Champaign
28
          University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
29
          University of Tennessee, Knoxville
30
          University of Wisconsin
31
32
          Funding for the MPI Forum meetings was partially supported by award #CCF-0816909
33
     from the National Science Foundation.
34
          In addition, the HDF Group provided travel support for one U.S. academic.
35
```

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as authors for the necessary modifications are:

- William Gropp, Frontmatter, Introduction, and Bibliography; MPI 2.2 chair.
- Richard Graham, Point-to-Point Communication and Datatypes
- Adam Moody and Torsten Hoefler, Collective Communication
- Richard Treumann, Groups, Contexts, and Communicators

47 48

36 37

38 39

40

41 42

43

44 45

- Jesper Larsson Träff and Torsten Hoefler, Process Topologies,
- Jesper Larsson Träff, Info-Object and One-Sided Communications

- George Bosilca, Datatypes, Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI 2.2 Secretary
- Rolf Rabenseifner, Deprecated Functions, and Annex Change-Log
- Alexander Supalov and Rolf Rabenseifner, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum meetings and in the e-mail discussions of the errata items and are not mentioned above.

Pavan Balaji	Purushotham V. Bangalore	Brian Barrett
Richard Barrett	Christian Bell	Robert Blackmore
Gil Bloch	Ron Brightwell	Greg Bronevetsky
Jeff Brown	Darius Buntinas	Jonathan Carter
Nathan DeBardeleben	Terry Dontje	Gabor Dozsa
Edric Ellis	Karl Feind	Edgar Gabriel
Patrick Geoffray	Johann George	David Gingold
David Goodell	Erez Haba	Robert Harrison
Thomas Herault	Marc-Andra Hermanns	Steve Hodson
Joshua Hursey	Yutaka Ishikawa	Bin Jia
Hideyuki Jitsumoto	Terry Jones	Yann Kalemkarian
Ranier Keller	Matthew Koop	Quincey Koziol
Manojkumar Krishnan	Sameer Kumar	Miron Livny
Andrew Lumsdaine	Miao Luo	Ewing Lusk
Timothy I. Mattox	Kannan Narasimhan	Mark Pagel
Avneesh Pant	Steve Poole	Howard Pritchard
Craig Rasmussen	Hubert Ritzdorf	Rob Ross
Martin Schulz	Pavel Shamis	Galen Shipman
Christian Siebert	Anthony Skjellum	Brian Smith
Naoki Sueyasu	Vinod Tipparaju	Keith Underwood
Rolf Vandevaart	Abhinav Vishnu	Weikuan Yu

The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-2.2 effort through time and travel support for the people listed above.

Argonne National Laboratory Auburn University

Bull

Cisco Systems, Inc.

Cray Inc. 2 Forschungszentrum Jülich 3 Fujitsu The HDF Group 5 Hewlett-Packard 6 International Business Machines Indiana University 8 Institut National de Recherche en Informatique et Automatique (INRIA) 9 Institute for Advanced Science & Engineering Corporation 10 Lawrence Berkeley National Laboratory 11 Lawrence Livermore National Laboratory 12 Los Alamos National Laboratory 13 Mathworks 14 Mellanox Technologies 15Microsoft 16 Myricom 17 **NEC Corporation** 18 Oak Ridge National Laboratory 19 Ohio State University 20 Pacific Northwest National Laboratory 21 QLogic Corporation 22 Sandia National Laboratories 23 SiCortex, Inc. 24 Silicon Graphics Inc. 25 Sun Microsystems, Inc. 26 Tokyo Institute of Technology 27 University of Alabama at Birmingham University of Houston 28 29 University of Illinois at Urbana-Champaign 30 University of Stuttgart, High Performance Computing Center Stuttgart (HLRS) 31 University of Tennessee, Knoxville 32 University of Tokyo 33 University of Wisconsin 34 Funding for the MPI Forum meetings was partially supported by award #CCF-0816909 35 from the National Science Foundation. 36 In addition, the HDF Group provided travel support for one U.S. academic. 37 38 39 40 41 42 43 44 45

1

Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All parts of this definition are significant. MPI addresses primarily the message-passing parallel programming model, in which data is moved from the address space of one process to that of another process through cooperative operations on each process. (Extensions to the "classical" message-passing model are provided in collective operations, remote-memory access operations, dynamic process creation, and parallel I/O.) MPI is a specification, not an implementation; there are multiple implementations of MPI. This specification is for a library interface; MPI is not a language, and all MPI operations are expressed as functions, subroutines, or methods, according to the appropriate language bindings, which for C, C++, Fortran-77, and Fortran-95, are part of the MPI standard. The standard has been defined through an open process by a community of parallel computing vendors, computer scientists, and application developers. The next few sections provide an overview of the history of MPI's development.

The main advantages of establishing a message-passing standard are portability and ease of use. In a distributed memory communication environment in which the higher level routines and/or abstractions are built upon lower level message-passing routines the benefits of standardization are particularly apparent. Furthermore, the definition of a message-passing standard, such as that proposed here, provides vendors with a clearly defined base set of routines that they can implement efficiently, or in some cases provide hardware support for, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used standard for writing message-passing programs. As such the interface should establish a practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

- Design an application programming interface (not necessarily for compilers or a system implementation library).
- Allow efficient communication: Avoid memory-to-memory copying, allow overlap of computation and communication, and offload to communication co-processor, where available.
- Allow for implementations that can be used in a heterogeneous environment.

- Allow convenient C, C++, Fortran-77, and Fortran-95 bindings for the interface.
- Assume a reliable communication interface: the user need not cope with communication failures. Such failures are dealt with by the underlying communication subsystem.
- Define an interface that can be implemented on many vendor's platforms, with no significant changes in the underlying communication and system software.
- Semantics of the interface should be language independent.
- The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-passing systems, rather than selecting one of them and adopting it as the standard. Thus, MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2], Intel's NX/2 [38], Express [12], nCUBE's Vertex [34], p4 [7, 8], and PARMACS [5, 9]. Other important contributions have come from Zipcode [40, 41], Chimp [16, 17], PVM [4, 14], Chameleon [25], and PICL [24].

The MPI standardization effort involved about 60 people from 40 organizations mainly from the United States and Europe. Most of the major vendors of concurrent computers were involved in MPI, along with researchers from universities, government laboratories, and industry. The standardization process began with the Workshop on Standards for Message-Passing in a Distributed Memory Environment, sponsored by the Center for Research on Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [48]. At this workshop the basic features essential to a standard message-passing interface were discussed, and a working group established to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel, Hey, and Walker in November 1992, and a revised version was completed in February 1993 [15]. MPI1 embodied the main features that were identified at the Williamsburg workshop as being necessary in a message passing standard. Since MPI1 was primarily intended to promote discussion and "get the ball rolling," it focused mainly on point-to-point communications. MPI1 brought to the forefront a number of important standardization issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at which it was decided to place the standardization process on a more formal footing, and to generally adopt the procedures and organization of the High Performance Fortran Forum. Subcommittees were formed for the major component areas of the standard, and an email discussion service established for each. In addition, the goal of producing a draft MPI standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every 6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI standard at the Supercomputing 93 conference in November 1993. These meetings and the email discussion together constituted the MPI Forum, membership of which has been open to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI Forum began meeting to consider corrections and extensions to the original MPI Standard document [21]. The first product of these deliberations was Version 1.1 of the MPI specification, released in June of 1995 [22] (see http://www.mpi-forum.org for official MPI document releases). At that time, effort focused in five areas.

- 1. Further corrections and clarifications for the MPI-1.1 document.
- 2. Additions to MPI-1.1 that do not significantly change its types of functionality (new datatype constructors, language interoperability, etc.).
- 3. Completely new types of functionality (dynamic processes, one-sided communication, parallel I/O, etc.) that are what everyone thinks of as "MPI-2 functionality."
- 4. Bindings for Fortran 90 and C++. MPI-2 specifies C++ bindings for both MPI-1 and MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to handle Fortran 90 issues.
- 5. Discussions of areas in which the MPI process and framework seem likely to be useful, but where more discussion and experience are needed before standardization (e.g. zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chapter 3 of the MPI-2 document: "Version 1.2 of MPI." That chapter also contains the function for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the above list) are in the remaining chapters of the MPI-2 document, and constitute the specification for MPI-2. Items of type 5 in the above list have been moved to a separate document, the "MPI Journal of Development" (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of MPI compliance a given implementation has:

- MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of compliance. It means that the implementation conforms to the clarifications of MPI-1.1 function behavior given in Chapter 3 of the MPI-2 document. Some implementations may require changes to be MPI-1 compliant.
- MPI-2 compliance will mean compliance with all of MPI-2.1.
- The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1 program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3 program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for both standard documents (MPI-1.1 and MPI-2.0). The short document "Errata for MPI-1.1" was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for

MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done electronically. Both ballots were combined into one document: "Errata for MPI-2", May 15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors kept working on new requests for clarification.

Restarting regular work of the MPI Forum was initiated in three meetings, at EuroPVM/MPI'06 in Bonn, at EuroPVM/MPI'07 in Paris, and at SC'07 in Reno. In December 2007, a steering committee started the organization of new MPI Forum meetings at regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum decided to combine the existing and future MPI documents to one single document for each version of the MPI standard. For technical and historical reasons, this series was started with MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995 up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft document, for each chapter, a chapter author and review team were defined. They cleaned up the document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document was finished in June 2008, and finally released with a second vote in September 2008 in the meeting at Dublin, just before EuroPVM/MPI'08. The major work of the current MPI Forum is the preparation of MPI-3.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version address additional errors and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number of extensions to MPI-2.1 that met the following criteria:

- Any correct MPI-2.1 program is a correct MPI-2.2 program.
- Any extension must have significant benefit for users.
- Any extension must not require significant implementation effort. To that end, all such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing programs in Fortran, C and C++. This includes individual application programmers, developers of software designed to run on parallel machines, and creators of environments and tools. In order to be attractive to this wide audience, the standard must provide a simple, easy-to-use interface for the basic user while not semantically precluding the high-performance message-passing operations available on advanced machines.

1.7 What Platforms Are Targets For Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide portability. Programs expressed this way may run on distributed-memory multiprocessors,

networks of workstations, and combinations of all of these. In addition, shared-memory implementations, including those for multi-core processors and hybrid architectures, are possible. The paradigm will not be made obsolete by architectures combining the shared-and distributed-memory views, or by increases in network speeds. It thus should be both possible and useful to implement this standard on a great variety of machines, including those "machines" consisting of collections of other machines, parallel or not, connected by a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those written in the more restricted style of SPMD. MPI provides many features intended to improve performance on scalable parallel computers with specialized interprocessor communication hardware. Thus, we expect that native, high-performance implementations of MPI will be provided on such machines. At the same time, implementations of MPI on top of standard Unix interprocessor communication protocols will provide portability to workstation clusters and heterogenous networks of workstations.

1.8 What Is Included In The Standard?

The standard includes:

- Point-to-point communication
- Datatypes
- Collective operations
- Process groups
- Communication contexts
- Process topologies
- Environmental Management and inquiry
- The info object
- Process creation and management
- One-sided communication
- External interfaces
- Parallel file I/O
- Language Bindings for Fortran, C and C++
- Profiling interface

1.9 What Is Not Included In The Standard?

The standard does not specify:

- Operations that require more operating system support than is currently standard; for example, interrupt-driven receives, remote execution, or active messages,
- Program construction tools,
- Debugging facilities.

There are many features that have been considered and not included in this standard. This happened for a number of reasons, one of which is the time constraint that was self-imposed in finishing the standard. Features that are not included can always be offered as extensions by specific implementations. Perhaps future versions of MPI will address some of these issues.

1.10 Organization of this Document

The following is a list of the remaining chapters in this document, along with a brief description of each.

- Chapter 2, MPI Terms and Conventions, explains notational terms and conventions used throughout the MPI document.
- Chapter 3, Point to Point Communication, defines the basic, pairwise communication subset of MPI. *Send* and *receive* are found here, along with many associated functions designed to make basic communication powerful and efficient.
- Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of structures in the memory, which can be used as message send or receive buffer.
- Chapter 5, Collective Communications, defines process-group collective communication
 operations. Well known examples of this are barrier and broadcast over a group of
 processes (not necessarily all the processes). With MPI-2, the semantics of collective
 communication was extended to include intercommunicators. It also adds two new
 collective operations.
- Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of processes are formed and manipulated, how unique communication contexts are obtained, and how the two are bound together into a *communicator*.
- Chapter 7, Process Topologies, explains a set of utility functions meant to assist in the mapping of process groups (a linearly ordered set) to richer topological structures such as multi-dimensional grids.
- Chapter 8, MPI Environmental Management, explains how the programmer can manage
 and make inquiries of the current MPI environment. These functions are needed for the
 writing of correct, robust programs, and are especially important for the construction
 of highly-portable message-passing programs.

- Chapter 9, The Info Object, defines an opaque object, that is used as input of several MPI routines.
- Chapter 10, Process Creation and Management, defines routines that allow for creation of processes.
- Chapter 11, One-Sided Communications, defines communication routines that can be completed by a single process. These include shared-memory operations (put/get) and remote accumulate operations.
- Chapter 12, External Interfaces, defines routines designed to allow developers to layer
 on top of MPI. This includes generalized requests, routines that decode MPI opaque
 objects, and threads.
- Chapter 13, I/O, defines MPI support for parallel I/O.
- Chapter 14, Profiling Interface, explains a simple name-shifting convention that any MPI implementation must support. One motivation for this is the ability to put performance profiling calls into MPI without the need for access to the MPI source code. The name shift is merely an interface, it says nothing about how the actual profiling should be done and in fact, the name shift can be useful for other purposes.
- Chapter 15, Deprecated Functions, describes routines that are kept for reference. However usage of these functions is discouraged, as they may be deleted in future versions of the standard.
- Chapter 16, Language Bindings, describes the C++ binding, discusses Fortran issues, and describes language interoperability aspects between C, C++, and Fortran.

The Appendices are:

- Annex A, Language Bindings Summary, gives specific syntax in C, C++, and Fortran, for all MPI functions, constants, and types.
- Annex B, Change-Log, summarizes major changes since the previous version of the standard.
- Several Index pages are showing the locations of examples, constants and predefined handles, callback routines' prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI implementations. Among these are the canonical data representation for MPI I/O and for MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual binding of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum and deemed to have value, but are not included in the MPI Standard. They are part of the "Journal of Development" (JOD), lest good ideas be lost and in order to provide a starting point for further work. The chapters in the JOD are

• Chapter 2, Spawning Independent Processes, includes some elements of dynamic process management, in particular management of processes with which the spawning processes do not intend to communicate, that the Forum discussed at length but ultimately decided not to include in the MPI Standard.

- Chapter 3, Threads and MPI, describes some of the expected interaction between an MPI implementation and a thread library in a multi-threaded environment.
- Chapter 4, Communicator ID, describes an approach to providing identifiers for communicators.
- Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particular single-copy routines for use in shared-memory environments and new datatype constructors.
- Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a more elaborate Fortran 90 interface.
- Chapter 7, Split Collective Communication, describes a specification for certain non-blocking collective operations.
- Chapter 8, Real-Time MPI, discusses MPI support for real time processing.