"transcendante").

La situation générale s'éclaire considérablement sur l'exemple particulier précédent, $F = i_*(\mathbb{C}_Y)$, où $i: Y \to X$ est l'inclusion d'un sous-espace analytique fermé de X. Alors le deuxième membre de (11) est un faisceau de cohomologie locale à supports dans y - un invariant **transcendant**, tandis que le premier membre

$$\lim_{\stackrel{\longrightarrow}{n}} \underline{Ext}_{\underline{O}_X}^d(\underline{O}_{X_n},\underline{O}_X),$$

est l'expression bien connue que j'avais introduite pour la cohomologie locale, dans le cadre schématique. La fibre de ce faisceau en un point $x \in Y$ n'est autre chose que la cohomologie locale, sur le spectre X_x de $O(X_x)$, du faisceau structural à supports dans la "trace" $O(X_x)$ de $O(X_x)$.

On voit sur cet exemple à quel point l'idée de Deligne est proche de celles que j'avais développées sur le thème de la cohomologie locale, aux débuts des années soixante⁷⁰⁰(**). Toujours est-il que le thème principal des travaux de Mebkhout, entre 1972 et 1976, était justement d'étudier la flèche (11) dans ce cas crucial

$$\lim_{\stackrel{\longrightarrow}{n}} \underline{Ext}_{\underline{O}_X}^d(\underline{O}_{X_n}, X) \stackrel{\text{dfn}}{=} \underline{H}_Y^d(\underline{O}_X)_{alg} \longrightarrow \underline{H}_Y^d(\underline{O}_X). \tag{12}$$

Il prouve dans ce cas la relation annoncée plus haut, et de plus (chose que j'avais omis tantôt d'inclure dans l'énoncé) que le premier membre de (12) \mathscr{D} -Module **cohérent**, et même, holonome et régulier. A partir de là, l'énoncé analogue pour (11) doit être une conséquence immédiate par dévissage $^{701}(**)$, (y compris dans le cas où F, au lieu d'être un faisceau de \mathbb{C} -vectoriels constructible, est un complexe dans $\underline{Cons}^*(X,\mathbb{C})$. Le seul grain de sel, à part la construction en forme du foncteur de Deligne, est dans la définition du $\underline{RHom}_{\underline{O}_X}$ d'un complexe de promodules stratifiés, à valeurs dans un complexe de Modules stratifiés i.e. dans un complexe de \mathscr{D} -Modules (en l'occurrence, \underline{O}_X), en tant que complexe de \mathscr{D} -Modules (et comme objet d'une catégorie dérivée).

Modulo ce grain de sel, on trouve donc une description tout ce qu'il y a de simple et conceptuelle, du foncteur du bon Dieu M "algébrique" (par opposition au foncteur du bon Dieu M_∞ "transcendant"), ou plutôt du contrafoncteur associé Δ et de son quasi-inverse δ

$$\Delta = MD = DM, \qquad \delta = mD = Dm, \tag{13}$$

par une double-formule qui paraphrase (8). Mais pour l'écrire, utilisant l'équivalence de Deligne

$$Del: \underline{Cons}^*(X, \mathbb{C}) \xrightarrow{\approx} DRD^*(X)$$
 (14)

on va plutôt regarder les foncteurs correspondants Δ ^, δ ^ entre $DRD^*(X)$ et $DRM^*(X)$, où les signes ^ sont censés rappeler qu'on va travailler (du côté "constructible ") avec des **pro-objets**. On trouve alors les formules remarquables (moralement contenues dans (8), mais reliant cette fois des coefficients "de nature algébrique"

 $^{^{700}(**)}$ Il va apparaître plus bas que l'idée de Deligne est aussi intimement liée a celle que j'avais introduite en 1966 (dans [Crystals]) : pour tout complexe d'opérateurs différentiels, je considère son "formalisé" $P^{\infty}(L)$ comme un complexe de pro-module stratifi és ou, mieux encore, comme défi nissant un **complexe cristallin**, dont la cohomologie cristalline (globale) s'identifi e à la cohomologie (globale) de L.

 $^{^{701}}$ (***) (22 mai) Je suis un peu vif ici! Les "types élémentaires" de faisceaux \mathbb{C} -constructibles sont de nature plus générale que les seuls \mathbb{C}_Y , (Mais il est vrai que la démonstration du théorème général utilise la même technique que le cas particulier de 1976.)