Large Time Behaviour and Metastability in Mean-Field Interacting Particle Systems

Sarath Ampadi Yasodharan

ECE Department, Indian Institute of Science

PhD Thesis Colloquium 27 October 2021

Outline

Part 1: Motivation and Background

Part 2: Large Deviations

Part 3: Main Results

Part 4: Summary and Future Directions

Part 1: Motivation and Background

- ightharpoonup N particles. State space: a finite set \mathcal{Z} .
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.

- \triangleright N particles. State space: a finite set \mathcal{Z} .
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.

- ightharpoonup N particles. State space: a finite set \mathcal{Z} .
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- ► Empirical measure at time t

$$\mu^{N}(t) = rac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}) \subset M_{1}(\mathcal{Z}).$$

- ightharpoonup N particles. State space: a finite set \mathcal{Z} .
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- Empirical measure at time t

$$\mu^{N}(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}) \subset M_{1}(\mathcal{Z}).$$

- ► For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, \infty)$.
- Particle transitions: at time t, a $z \to z'$ transition occurs at rate $\lambda_{z,z'}(\mu^N(t))$. Mean-field interaction.

- ightharpoonup N particles. State space: a finite set \mathcal{Z} .
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- Empirical measure at time t

$$\mu^{N}(t) = rac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}) \subset M_{1}(\mathcal{Z}).$$

- ► For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, \infty)$.
- ▶ Particle transitions: at time t, a $z \to z'$ transition occurs at rate $\lambda_{z,z'}(\mu^N(t))$. Mean-field interaction.
- ▶ $\{(X_n^N(t), 1 \le n \le N), t \ge 0\}$ is a Markov process on \mathbb{Z}^N . $\{\mu^N(t), t \ge 0\}$ is a Markov process on $M_1^N(\mathbb{Z})$.

Example – Interaction in WiFi networks

- ▶ *N* nodes accessing a common wireless medium.
- Interaction among nodes via the distributed MAC protocol.

Example – Interaction in WiFi networks

- N nodes accessing a common wireless medium.
- ▶ Interaction among nodes via the distributed MAC protocol.
- ▶ State $X_n^N(t)$ represents aggressiveness of packet transmission.

Figure: Set of allowed transitions in WiFi example

Example - Interaction in WiFi networks

- ▶ *N* nodes accessing a common wireless medium.
- Interaction among nodes via the distributed MAC protocol.
- ▶ State $X_n^N(t)$ represents aggressiveness of packet transmission.

Figure: Set of allowed transitions in WiFi example

- State evolution:
 - Becomes less aggressive after a collision.
 - Moves to the most aggressive state after a successful packet transmission.

▶ Slotted time. Probability of attemp in state z is $\frac{c_z}{N}$. Suppose the empirical measure is ξ , i.e., $N\xi(z)$ nodes are in state z.

- ▶ Slotted time. Probability of attemp in state z is $\frac{c_z}{N}$. Suppose the empirical measure is ξ , i.e., $N\xi(z)$ nodes are in state z.
- ▶ A node in state z makes a $z \rightarrow 0$ transition with probability

$$\frac{c_z}{N}\left(1-\frac{c_z}{N}\right)^{N\xi(z)-1}\prod_{z'\neq z}\left(1-\frac{c_{z'}}{N}\right)^{N\xi(z')}.$$

- ▶ Slotted time. Probability of attemp in state z is $\frac{c_z}{N}$. Suppose the empirical measure is ξ , i.e., $N\xi(z)$ nodes are in state z.
- ▶ A node in state z makes a $z \rightarrow 0$ transition with probability

$$\frac{c_z}{N} \left(1 - \frac{c_z}{N}\right)^{N\xi(z)-1} \prod_{z' \neq z} \left(1 - \frac{c_{z'}}{N}\right)^{N\xi(z')}.$$

▶ Similarly, a $z \rightarrow z + 1$ transition occurs with probability

$$\frac{c_z}{N} \left(1 - \left(1 - \frac{c_z}{N} \right)^{N\xi(z) - 1} \prod_{z' \neq z} \left(1 - \frac{c_{z'}}{N} \right)^{N\xi(z')} \right).$$

- ▶ Slotted time. Probability of attemp in state z is $\frac{c_z}{N}$. Suppose the empirical measure is ξ , i.e., $N\xi(z)$ nodes are in state z.
- ▶ A node in state z makes a $z \rightarrow 0$ transition with probability

$$\frac{c_z}{N} \left(1 - \frac{c_z}{N}\right)^{N\xi(z)-1} \prod_{z' \neq z} \left(1 - \frac{c_{z'}}{N}\right)^{N\xi(z')}.$$

▶ Similarly, a $z \rightarrow z + 1$ transition occurs with probability

$$\frac{c_z}{N} \left(1 - \left(1 - \frac{c_z}{N} \right)^{N\xi(z) - 1} \prod_{z' \neq z} \left(1 - \frac{c_{z'}}{N} \right)^{N\xi(z')} \right).$$

ightharpoonup Scaling each time slot by 1/N, the transition rates of the continuous time caricature are

$$\lambda_{z,0}(\xi) = c_z \exp\{-\langle c, \xi \rangle\},$$

$$\lambda_{z,z+1}(\xi) = c_z (1 - \exp\{-\langle c, \xi \rangle\}).$$

► Transition rates of a node depend on the states of the other nodes through the empirical measure.

The mean-field limit

▶ Recall μ^N . This is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

The mean-field limit

▶ Recall μ^N . This is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

▶ Typical behaviour of μ^N (mean-field limit):

Let $\mu^N(0) \to \nu$ weakly as $N \to \infty$. Then $\{\mu^N(t), 0 \le t \le T\}$, w.h.p., is "close to" to the solution to the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda_{\mu_t}^* \mu_t, \ \mu_0 = \nu.$$

The mean-field limit

▶ Recall μ^N . This is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

▶ Typical behaviour of μ^N (mean-field limit):

Let $\mu^N(0) \to \nu$ weakly as $N \to \infty$. Then $\{\mu^N(t), 0 \le t \le T\}$, w.h.p., is "close to" to the solution to the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda_{\mu_t}^* \mu_t, \, \mu_0 = \nu.$$

lacktriangle Thus, μ^N is a small random perturbation of the above QDE.

A sample path of μ^N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

Metastability phenomenon: Multiple stable regions in the system. Transition between two stable regions occur over large time durations.

- Multiple stable equilibria. Transitions over large time durations.
- ► Goal: understand and quantify such metastable phenomena in mean-field models.

- Multiple stable equilibria. Transitions over large time durations.
- ► Goal: understand and quantify such metastable phenomena in mean-field models.

- Multiple stable equilibria. Transitions over large time durations.
- ► Goal: understand and quantify such metastable phenomena in mean-field models.

- Multiple stable equilibria. Transitions over large time durations.
- ► Goal: understand and quantify such metastable phenomena in mean-field models.

- Multiple stable equilibria. Transitions over large time durations.
- ► Goal: understand and quantify such metastable phenomena in mean-field models.

Part 2: Large Deviations

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- Let X_1, X_2, \ldots, X_N be i.i.d. ν .

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- ightharpoonup Let X_1, X_2, \ldots, X_N be i.i.d. ν .
- ▶ Define the empirical measure

$$M^N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$

► This is an $M_1(S)$ -valued random variable.

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- ightharpoonup Let X_1, X_2, \ldots, X_N be i.i.d. ν .
- ▶ Define the empirical measure

$$M^N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$

▶ By the weak law of large numbers, $M^N \to \nu$ in $M_1(S)$ as $N \to \infty$, in probability.

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- ▶ Let $X_1, X_2, ..., X_N$ be i.i.d. ν .
- ▶ Define the empirical measure

$$M^N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$

- ► This is an $M_1(S)$ -valued random variable.
- ▶ By the weak law of large numbers, $M^N \to \nu$ in $M_1(S)$ as $N \to \infty$, in probability.
- ▶ But there is a positive probability for M^N to be close to $\mu \neq \nu$.

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- Let X_1, X_2, \ldots, X_N be i.i.d. ν .
- ▶ Define the empirical measure

$$M^N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$

- ► This is an $M_1(S)$ -valued random variable.
- ▶ By the weak law of large numbers, $M^N \to \nu$ in $M_1(S)$ as $N \to \infty$, in probability.
- ▶ But there is a positive probability for M^N to be close to $\mu \neq \nu$.
- ▶ It can be shown that

$$P\left(M^N \in A\right) \sim \exp\{-N\inf_{\mu \in A} D(\mu \| \nu)\}.$$

- ▶ Let S be a finite set. Let ν be a probability measure on S.
- Let X_1, X_2, \ldots, X_N be i.i.d. ν .
- ▶ Define the empirical measure

$$M^N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$

- ► This is an $M_1(S)$ -valued random variable.
- ▶ By the weak law of large numbers, $M^N \to \nu$ in $M_1(S)$ as $N \to \infty$, in probability.
- ▶ But there is a positive probability for M^N to be close to $\mu \neq \nu$.
- It can be shown that

$$P\left(M^N \in A\right) \sim \exp\{-N\inf_{\mu \in A} D(\mu \| \nu)\}.$$

▶ In particular, if dist $(\nu, A) > 0$, then $P\left(M^N \in A\right) \to 0$ exponentially fast as $N \to \infty$.

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Definition (Varadhan, 1966)

 $\{X^N, N \geq 1\}$ is said to satisfy the LDP on S with rate function $I: S \rightarrow [0, \infty]$ if

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Definition (Varadhan, 1966)

 $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function $I: S \to [0, \infty]$ if

• for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Definition (Varadhan, 1966)

 $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function $I: S \to [0,\infty]$ if

- for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;
- for each open set $G \subset S$

$$\liminf_{N\to\infty}\frac{1}{N}\log P(X^N\in\mathcal{G})\geq -\inf_{x\in\mathcal{G}}I(x);$$

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Definition (Varadhan, 1966)

 $\{X^N, N \geq 1\}$ is said to satisfy the LDP on S with rate function $I: S \to [0,\infty]$ if

- for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;
- for each open set $G \subset S$

$$\liminf_{N\to\infty}\frac{1}{N}\log P(X^N\in\mathcal{G})\geq -\inf_{x\in\mathcal{G}}I(x);$$

• for each closed set $F \subset S$

$$\limsup_{N\to\infty}\frac{1}{N}\log P(X^N\in F)\leq -\inf_{x\in F}I(x).$$

Large deviation principle (LDP)

Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

Definition (Varadhan, 1966)

 $\{X^N, N \geq 1\}$ is said to satisfy the LDP on S with rate function $I: S \rightarrow [0, \infty]$ if

- for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;
- for each open set $G \subset S$

$$\liminf_{N\to\infty}\frac{1}{N}\log P(X^N\in\mathcal{G})\geq -\inf_{x\in\mathcal{G}}I(x);$$

• for each closed set $F \subset S$

$$\limsup_{N\to\infty}\frac{1}{N}\log P(X^N\in F)\leq -\inf_{x\in F}I(x).$$

Example: $\{M^N, N \ge 1\}$ satisfies the LDP on $M_1(S)$ with rate function $D(\cdot||\nu)$ (Sanov's theorem).

Large deviations: An equivalent formulation

Definition (Freidlin and Wentzell, ~70s)

 $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function I if

Large deviations: An equivalent formulation

Definition (Freidlin and Wentzell, ~70s)

 $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function I if

- (Compactness of level sets). For any $s \ge 0$, $\Phi(s) := \{x \in S : I(x) \le s\}$ is a compact subset of S;
- (LDP lower bound). For any $\gamma > 0$, $\delta > 0$, and $x \in S$, there exists $N_0 \ge 1$ such that

$$P(d(X^N, x) < \delta) \ge \exp\{-N(I(x) + \gamma)\}$$

for any $N \geq N_0$;

• (LDP upper bound). For any $\gamma>0,\ \delta>0,$ and s>0, there exists $N_0\geq 1$ such that

$$P(d(X^N, \Phi(s)) \ge \delta) \le \exp\{-N(s - \gamma)\}$$

for any $N \geq N_0$.

Consider the standard Poisson point process X(t) for $t \in [0, T]$.

- ▶ Consider $D([0, T], \mathbb{R})$: space of \mathbb{R} -valued functions that are right continuous with left limits.
- ▶ X is a $D([0, T], \mathbb{R})$ -valued random variable.

Consider the time-scaled and amplitude-scaled process: $\frac{1}{N}X(Nt)$.

► The process $\frac{1}{N}X(Nt)$ is a small random perturbation of the ODE

$$\dot{x}(t) = 1, x(0) = 0, t \in [0, 1].$$

• Question: probability that $\frac{1}{N}X(Nt)$ tracks a given function φ ?

• Question: probability that $\frac{1}{N}X(Nt)$ tracks a given function φ ?

▶ One can show that $\{\frac{1}{N}X(Nt), N \ge 1\}$ satisfies the LDP on $D([0, T], \mathbb{R})$ with rate function

$$S(\varphi) = \int_{[0,T]} \tau^*(\dot{\varphi}(t) - 1) dt,$$

if $t\mapsto \varphi(t)$ is absolutely continuous, increasing, and $\varphi(0)=0$; $S(\varphi)=\infty$ otherwise.

► Here,

$$\tau^*(x) = \begin{cases} (x+1)\log(x+1) - x, & \text{if } x \ge -1, \\ \infty, & \text{if } x < -1. \end{cases}$$

Part 3: Main Results

Large time behaviour of finite-state mean-field models

▶ Recall the finite-state mean-field model. *N* particles. Allowed transitions $(\mathcal{Z}, \mathcal{E})$. $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.

- ▶ Recall the finite-state mean-field model. *N* particles. Allowed transitions $(\mathcal{Z}, \mathcal{E})$. $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- ▶ The empirical measure μ^N is a Markov process with infinitesimal generator

$$L^{N}f(\xi) = N \sum_{(z,z')\in\mathcal{E}} \xi(z) \lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

- ▶ Recall the finite-state mean-field model. *N* particles. Allowed transitions $(\mathcal{Z}, \mathcal{E})$. $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- lacktriangle The empirical measure $\mu^{\it N}$ is a Markov process with infinitesimal generator

$$L^{N}f(\xi) = N \sum_{(z,z')\in\mathcal{E}} \xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

▶ Recall the typical behaviour of μ^N : McKean-Vlasov equation:

$$\dot{\mu}(t) = \Lambda^*(\mu(t))\mu(t), \, \mu(0) = \nu.$$

- ▶ Recall the finite-state mean-field model. *N* particles. Allowed transitions $(\mathcal{Z}, \mathcal{E})$. $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- ▶ The empirical measure μ^N is a Markov process with infinitesimal generator

$$L^{N}f(\xi) = N \sum_{(z,z')\in\mathcal{E}} \xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

▶ Recall the typical behaviour of μ^N : McKean-Vlasov equation:

$$\dot{\mu}(t) = \Lambda^*(\mu(t))\mu(t), \, \mu(0) = \nu.$$

- Assumptions on the model:
 - ▶ The graph $(\mathcal{Z}, \mathcal{E})$ is irreducible.
 - ▶ The functions $\lambda_{z,z'}: M_1(\mathcal{Z}) \to \mathbb{R}_+$ are Lipschitz continuous, and bounded away from 0.

Large deviations of μ^N

Large deviations of μ^N

Theorem (Léonard (1995), Borkar and Sundaresan (2012))

Let $\nu_N \to \nu$ weakly. Then $\mu^N_{\nu_N}$ satisfies the LDP on $D([0,T],M_1(\mathcal{Z}))$ with rate function $S_{[0,T]}(\cdot|\nu)$ defined as follows. If $\mu_0=\nu$ and $[0,T]\ni t\mapsto \mu_t\in M_1(\mathcal{Z})$ is absolutely continuous,

$$S_{[0,T]}(\mu|\nu) = \int_{[0,T]} \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left\{ \langle \alpha, \dot{\mu}_t - \Lambda_{\mu_t}^* \mu_t \rangle - \sum_{(z,z') \in \mathcal{E}} \tau(\alpha(z') - \alpha(z)) \lambda_{z,z'}(\mu_t) \mu_t(z) \right\} dt,$$

else
$$S_{[0,T]}(\mu|
u)=\infty$$
. Here, $au(u)=e^u-u-1$.

Some notation

- Assumptions on the McKean-Vlasov equation: There exists a finite number of compact sets K_1, K_2, \ldots, K_l such that
 - Every ω -limit set of the McKean-Vlasov equation lies completely in one of the compact sets K_i .
 - No cost of movement within K_i. Positive cost to go out of (or come into) K_i.

 $\tilde{V}(K_i, K_j) = \inf\{S_{[0,T]}(\varphi|\varphi_0) : \varphi_0 \in K_i, \varphi_T \in K_j, \varphi_t \notin \bigcup_{i' \neq i,j} K_{i'}, T > 0\} \text{ (communication cost from } K_i \text{ to } K_j).$

Approximation of $\mu^{\it N}$ using a discrete chain

Approximation of $\mu^{\it N}$ using a discrete chain

Approximation of μ^N using a discrete chain

- $ightharpoonup au_n$: hitting time of μ^N in a given neighbourhood of K_i 's.
- ▶ Hitting time chain: $Z_n^N = \mu^N(\tau_n), n \ge 1.$
- ▶ To quantify the transitions between K_i 's, we need large deviation estimates of μ^N uniformly with respect to the initial condition.

Uniform large deviations

 $\blacktriangleright \mu_{\nu}^{N}$: process starting from ν . Indexed by two parameters.

Uniform large deviations

 $\blacktriangleright \mu_{\nu}^{N}$: process starting from ν . Indexed by two parameters.

Definition

 $\{\mu^N_\nu\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_1(\mathcal{Z})$ if

Uniform large deviations

 $\blacktriangleright \mu_{\nu}^{N}$: process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_{\nu}^{N}\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_{1}(\mathcal{Z})$ if

- ▶ for each $K \subset M_1(\mathcal{Z})$ compact and s > 0, $K = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], M_1(\mathcal{Z}))$;
- ▶ for any $\gamma > 0, \delta > 0, s > 0$ and $A \in A$, there exists $N_0 \ge 1$ such that

$$P_{\nu}(\rho(\mu_{\nu}^{N},\varphi)<\delta)\geq \exp\{-N(S_{[0,T]}(\varphi|\nu)+\gamma)\},$$

for all $\nu \in A$, $\varphi \in \Phi_{\nu}(s)$ and $N \geq N_0$;

• for any $\gamma > 0, \delta > 0, s_0 > 0$ and $A \in \mathcal{A}$, there exists $N_0 \ge 1$ such that

$$P_{\nu}(\rho(\mu_{\nu}^{N}, \Phi_{\nu}(s)) \geq \delta) \leq \exp\{-N(s-\gamma)\},$$

for all $\nu \in A$, $s \leq s_0$ and $N \geq N_0$.

▶ Theorem: $\{\mu_{\nu}^{N}\}$ satisfies the uniform LDP over $M_{1}(\mathcal{Z})$.

Estimates on one step transition probability

Lemma (Borkar and Sundaresan (2012))

The one-step transition probability of the chain Z^N satisfies

$$\exp\{-N(\tilde{V}(K_i,K_j)+\varepsilon)\} \le P(K_i,K_j) \le \exp\{-N(\tilde{V}(K_i,K_j)-\varepsilon)\}.$$

Estimates on one step transition probability

Lemma (Borkar and Sundaresan (2012))

The one-step transition probability of the chain Z^N satisfies

$$\exp\{-N(\tilde{V}(K_i,K_j)+\varepsilon)\} \le P(K_i,K_j) \le \exp\{-N(\tilde{V}(K_i,K_j)-\varepsilon)\}.$$

- ▶ Upon exit from K_i , μ^N is most likely to visit K_j that attains $\min_{j'} \tilde{V}(K_i, K_{j'})$ (= $\tilde{V}(K_i)$).
- ▶ The mean exit time from K_i is of the order of $\exp\{N\tilde{V}(K_i)\}$.

$$\tilde{V}$$
 values:
$$\begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$\tilde{V}$$
 values:
$$\begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$\tilde{V}$$
 values:
$$\begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$\tilde{V}$$
 values:
$$\begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$\tilde{V} \text{ values: } \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$\tilde{V} \text{ values: } \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Decomposition into cycles - example

Large time behaviour

- ▶ Cycles are "very stable" subsets of $M_1(\mathcal{Z})$.
- ▶ Let $\tilde{V}(K_i) = \min_{j \neq i} \tilde{V}(K_i, K_j)$

Large time behaviour

- ▶ Cycles are "very stable" subsets of $M_1(\mathcal{Z})$.
- ▶ Let $\tilde{V}(K_i) = \min_{i \neq i} \tilde{V}(K_i, K_i)$

Theorem (Informal statement)

Let $W = L \setminus K_1$. We have

$$\exp\{-N(\tilde{V}(K_i, K_j) - \tilde{V}(K_i) + \varepsilon)\} \le P_{K_i}(\mu^N(\hat{\tau}_W) \in K_j) \\
\le \exp\{-N(\tilde{V}(K_i, K_j) - \tilde{V}(K_i) - \varepsilon)\}.$$

▶ Proof via the application of the uniform LDP for μ^N .

- ▶ Recall the discrete time chain $Z^N = \mu^N(\tau_n)$.
- ▶ (i,j)th entry of its transition probability matrix (P^Z) is $\exp\{-N\tilde{V}(K_i,K_i)\}$.

- ▶ Recall the discrete time chain $Z^N = \mu^N(\tau_n)$.
- ▶ (i,j)th entry of its transition probability matrix (P^Z) is $\exp\{-N\tilde{V}(K_i,K_j)\}$.
- ▶ We anticipate that μ^N mixes well when Z^N mixes well.

- ▶ Recall the discrete time chain $Z^N = \mu^N(\tau_n)$.
- ▶ (i,j)th entry of its transition probability matrix (P^Z) is $\exp\{-N\tilde{V}(K_i,K_j)\}$.
- ▶ We anticipate that μ^N mixes well when Z^N mixes well.
- ▶ Re $(1 \tilde{\lambda}_2^N)$ governs the mixing time of Z^N .
 - ► The coefficients of powers of λ in $det(\lambda I P^Z)$ are sum of products of $exp\{-N\tilde{V}\}$.
 - lacktriangle The leading terms can be described by minimum of sums of $ilde{V}$.

- ▶ Recall the discrete time chain $Z^N = \mu^N(\tau_n)$.
- ▶ (i,j)th entry of its transition probability matrix (P^Z) is $\exp\{-N\tilde{V}(K_i,K_j)\}$.
- ▶ We anticipate that μ^N mixes well when Z^N mixes well.
- ▶ Re $(1 \tilde{\lambda}_2^N)$ governs the mixing time of Z^N .
 - ► The coefficients of powers of λ in $det(\lambda I P^Z)$ are sum of products of $exp\{-N\tilde{V}\}$.
 - lacktriangle The leading terms can be described by *minimum of sums* of \mathring{V} .
- It can be shown that $\text{Re}(1 \tilde{\lambda}_2^N) \sim \exp\{-N\Lambda\}$, where $\Lambda > 0$ is described using minimum of sums of \tilde{V} .
- ▶ When time is of the order of $\exp\{N\Lambda\}$, we expect Z^N to mix well.

Convergence to the invariant measure

Theorem

Given $\delta>0$, there exist $\varepsilon>0$ and $N_0\geq 1$ such that for all $\nu\in M_1^N(\mathcal{Z})$ and $N\geq N_0$

$$\left| E_{\nu}(f(\mu^{N}(T))) - \langle f, \wp^{N} \rangle \right| \leq \|f\|_{\infty} \exp\{-\exp(N\varepsilon)\},$$

where $T = \exp\{N(\Lambda + \delta)\}$ and $f \in B(M_1(\mathcal{Z}))$.

Convergence to the invariant measure

Theorem

Given $\delta>0$, there exist $\varepsilon>0$ and $N_0\geq 1$ such that for all $\nu\in M_1^N(\mathcal{Z})$ and $N\geq N_0$

$$\left| E_{\nu}(f(\mu^{N}(T))) - \langle f, \wp^{N} \rangle \right| \leq \|f\|_{\infty} \exp\{-\exp(N\varepsilon)\},$$

where $T = \exp\{N(\Lambda + \delta)\}$ and $f \in B(M_1(\mathcal{Z}))$.

▶ Proof via exploration of cycles. Mean passage times are of the order $\exp\{N\tilde{V}\}$, and has probability at least $\exp\{-N\varepsilon\}$. Ideas from Freidlin and Wentzell (1984), and Hwang and Sheu (1999).

Convergence to the invariant measure

Theorem

Given $\delta>0$, there exist $\varepsilon>0$ and $N_0\geq 1$ such that for all $\nu\in M_1^N(\mathcal{Z})$ and $N\geq N_0$

$$\left| E_{\nu}(f(\mu^{N}(T))) - \langle f, \wp^{N} \rangle \right| \leq \|f\|_{\infty} \exp\{-\exp(N\varepsilon)\},$$

where $T = \exp\{N(\Lambda + \delta)\}$ and $f \in B(M_1(\mathcal{Z}))$.

- ▶ Proof via exploration of cycles. Mean passage times are of the order $\exp\{N\tilde{V}\}$, and has probability at least $\exp\{-N\varepsilon\}$. Ideas from Freidlin and Wentzell (1984), and Hwang and Sheu (1999).
- ► This constant Λ is sharp; over time durations $\exp\{N(\Lambda \delta)\}$, there are points in $M_1(\mathcal{Z})$ starting from which the process μ^N would not mix well.

Asymptotics of the second eigenvalue

▶ If μ^N is reversible, the spectral decomposition of L^N tells us that

$$E_{\nu}f(\mu^{N}(t)) = \langle f, \wp^{N} \rangle + \sum_{k>2} e^{-t\lambda_{k}^{N}} (f, u_{k}^{N}) u_{k}^{N}(\nu),$$

• Mixing time of μ^N is governed by λ_2^N .

Asymptotics of the second eigenvalue

▶ If μ^N is reversible, the spectral decomposition of L^N tells us that

$$E_{\nu}f(\mu^{N}(t)) = \langle f, \wp^{N} \rangle + \sum_{k>2} e^{-t\lambda_{k}^{N}} (f, u_{k}^{N}) u_{k}^{N}(\nu),$$

▶ Mixing time of μ^N is governed by λ_2^N .

Theorem

Assume that L^N is reversible with respect to \wp^N . Then,

$$\lim_{N\to\infty}\frac{1}{N}\log\lambda_2^N=-\Lambda.$$

Convergence to a global minimum

- ▶ Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.

Convergence to a global minimum

- ▶ Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.
- Small c: particles are added too frequently; $\bar{\mu}$ could get trapped in a local minimum of s depending on $\bar{\mu}(0)$.
- ▶ Large c: sufficient time for exploration, $\bar{\mu}$ converges to a desired equilibrium (K_{i_0}) .

Theorem

For $c > c^*$ and any $\rho_1 > 0$,

$$P_{0,
u}(\bar{\mu}(t)\in K_{i_0}) o 1$$

as $t \to \infty$, uniformly for all $\nu \in M_1^{N_0}(\mathcal{Z})$.

Large deviations of two time scale mean-field models

N particles and an environment.

- N particles and an environment.
- At time *t*,
 - ▶ The state of the *n*th particle is $X_n^N(t) \in \mathcal{X}$;
 - ▶ The state of the environment is $Y^{N}(t) \in \mathcal{Y}$.
- Certain allowed transitions.
 - ▶ Particles: a directed graph $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$;
 - **Environment**: a directed graph $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$.
- Empirical measure of the system of particles at time t:

$$\mu^{N}(t) := \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{X}) \subset M_{1}(\mathcal{X}).$$

- N particles and an environment.
- At time t,
 - ▶ The state of the *n*th particle is $X_n^N(t) \in \mathcal{X}$;
 - ▶ The state of the environment is $Y^{N}(t) \in \mathcal{Y}$.
- Certain allowed transitions.
 - ▶ Particles: a directed graph $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$;
 - **Environment**: a directed graph $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$.
- Empirical measure of the system of particles at time t:

$$\mu^{N}(t) := \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{X}) \subset M_{1}(\mathcal{X}).$$

- We are given functions $\lambda_{x,x'}(\cdot,y)$, $(x,x') \in \mathcal{E}_{\mathcal{X}}$, $y \in \mathcal{Y}$ and $\gamma_{y,y'}(\cdot)$, $(y,y') \in \mathcal{E}_{\mathcal{Y}}$ on $M_1(\mathcal{X})$.
- Markovian evolution at time t:
 - ▶ Particles: $x \to x'$ at rate $\lambda_{x,x'}(\mu^N(t), Y^N(t))$;

- N particles and an environment.
- At time *t*,
 - ▶ The state of the *n*th particle is $X_n^N(t) \in \mathcal{X}$;
 - ▶ The state of the environment is $Y^{N}(t) \in \mathcal{Y}$.
- Certain allowed transitions.
 - ▶ Particles: a directed graph $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$;
 - Environment: a directed graph $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$.
- Empirical measure of the system of particles at time t:

$$\mu^{N}(t) := rac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{X}) \subset M_{1}(\mathcal{X}).$$

- ▶ We are given functions $\lambda_{x,x'}(\cdot,y)$, $(x,x') \in \mathcal{E}_{\mathcal{X}}$, $y \in \mathcal{Y}$ and $\gamma_{y,y'}(\cdot)$, $(y,y') \in \mathcal{E}_{\mathcal{Y}}$ on $M_1(\mathcal{X})$.
- Markovian evolution at time t:
 - ▶ Particles: $x \to x'$ at rate $\lambda_{x,x'}(\mu^N(t), Y^N(t))$;
 - ► Environment: $y \to y'$ at rate $N\gamma_{y,y'}(\mu^N(t))$.

$$\begin{split} f \mapsto & \sum_{(x,x') \in \mathcal{E}_{\mathcal{X}}} \mathsf{N}\xi(x) \lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{\mathsf{N}} - \frac{\delta_{x}}{\mathsf{N}}, y\right) - f(\xi,y) \right] \\ & + \mathsf{N} \sum_{y': (y,y') \in \mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y)) \gamma_{y,y'}(\xi), \\ (\xi,y) \in & M_{1}^{N}(\mathcal{X}) \times \mathcal{Y}. \end{split}$$

 \blacktriangleright (μ^N, Y^N) is a Markov process with infinitesimal generator

$$f \mapsto \sum_{(x,x')\in\mathcal{E}_{\mathcal{X}}} N\xi(x)\lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{N} - \frac{\delta_{x}}{N},y\right) - f(\xi,y) \right]$$
$$+ N \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y))\gamma_{y,y'}(\xi),$$

$$(\xi,y)\in M_1^N(\mathcal{X})\times\mathcal{Y}.$$

A "fully coupled" two time scale process.

$$f \mapsto \sum_{(x,x')\in\mathcal{E}_{\mathcal{X}}} N\xi(x)\lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{N} - \frac{\delta_{x}}{N},y\right) - f(\xi,y) \right]$$
$$+ N \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y))\gamma_{y,y'}(\xi),$$

$$(\xi,y)\in M_1^N(\mathcal{X})\times\mathcal{Y}.$$

- A "fully coupled" two time scale process.
- Assumptions:
 - ▶ The graphs $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$ are irreducible.

$$f \mapsto \sum_{(x,x')\in\mathcal{E}_{\mathcal{X}}} N\xi(x)\lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{N} - \frac{\delta_{x}}{N},y\right) - f(\xi,y) \right]$$
$$+ N \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y))\gamma_{y,y'}(\xi),$$

$$(\xi,y)\in M_1^N(\mathcal{X})\times\mathcal{Y}.$$

- A "fully coupled" two time scale process.
- Assumptions:
 - ▶ The graphs $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$ are irreducible.
 - The functions $\lambda_{x,x'}(\cdot,y)$ are Lipschitz continuous and $\inf_{\xi} \lambda_{x,x'}(\xi,y) > 0$ for all $(x,x') \in \mathcal{E}_{\mathcal{X}}$ and $y \in \mathcal{Y}$.

$$f \mapsto \sum_{(x,x')\in\mathcal{E}_{\mathcal{X}}} N\xi(x)\lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{N} - \frac{\delta_{x}}{N},y\right) - f(\xi,y) \right]$$
$$+ N \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y))\gamma_{y,y'}(\xi),$$

$$(\xi,y)\in M_1^N(\mathcal{X})\times\mathcal{Y}.$$

- A "fully coupled" two time scale process.
- Assumptions:
 - ▶ The graphs $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$ are irreducible.
 - ► The functions $\lambda_{x,x'}(\cdot,y)$ are Lipschitz continuous and $\inf_{\mathcal{E}} \lambda_{x,x'}(\xi,y) > 0$ for all $(x,x') \in \mathcal{E}_{\mathcal{X}}$ and $y \in \mathcal{Y}$.
 - The functions $\gamma_{y,y'}(\cdot)$ are continuous and $\inf_{\xi} \gamma_{y,y'}(\xi) > 0$ for all $(y,y') \in \mathcal{E}_{\mathcal{Y}}$.

- Fix a time duration T > 0.
- As before, view μ^N as a random element of $D([0, T], M_1(\mathcal{X}))$.

- Fix a time duration T > 0.
- ▶ As before, view μ^N as a random element of $D([0, T], M_1(\mathcal{X}))$.
- ► Consider the occupation measure of the fast environment:

$$\theta^{N}(t)(\cdot) := \int_{0}^{t} 1_{\{Y^{N}(s) \in \cdot\}} ds, \ 0 \leq t \leq T.$$

▶ θ^N is a random element of $D_{\uparrow}([0, T], M(\mathcal{Y}))$, the set of θ such that $\theta_t - \theta_s \in M(\mathcal{Y})$ and $\theta_t(\mathcal{Y}) = t$ for $0 \le s \le t \le T$.

- Fix a time duration T > 0.
- ▶ As before, view μ^N as a random element of $D([0, T], M_1(\mathcal{X}))$.
- ► Consider the occupation measure of the fast environment:

$$\theta^{N}(t)(\cdot) := \int_{0}^{t} 1_{\{Y^{N}(s) \in \cdot\}} ds, \ 0 \leq t \leq T.$$

- ▶ θ^N is a random element of $D_{\uparrow}([0, T], M(\mathcal{Y}))$, the set of θ such that $\theta_t \theta_s \in M(\mathcal{Y})$ and $\theta_t(\mathcal{Y}) = t$ for $0 \le s \le t \le T$.
- ▶ $\theta \in D_{\uparrow}([0, T], M(\mathcal{Y}))$ is also viewed as a measure on $[0, T] \times \mathcal{Y}$ and obeys the disintegration $\theta(dydt) = m_t(dy)dt$ where $m_t \in M_1(\mathcal{Y})$.

- Fix a time duration T > 0.
- ▶ As before, view μ^N as a random element of $D([0, T], M_1(\mathcal{X}))$.
- ► Consider the occupation measure of the fast environment:

$$\theta^{N}(t)(\cdot) := \int_{0}^{t} 1_{\{Y^{N}(s) \in \cdot\}} ds, \ 0 \leq t \leq T.$$

- ▶ θ^N is a random element of $D_{\uparrow}([0,T],M(\mathcal{Y}))$, the set of θ such that $\theta_t \theta_s \in M(\mathcal{Y})$ and $\theta_t(\mathcal{Y}) = t$ for $0 \le s \le t \le T$.
- ▶ $\theta \in D_{\uparrow}([0, T], M(\mathcal{Y}))$ is also viewed as a measure on $[0, T] \times \mathcal{Y}$ and obeys the disintegration $\theta(dydt) = m_t(dy)dt$ where $m_t \in M_1(\mathcal{Y})$.
- ▶ We consider the process (μ^N, θ^N) with sample paths in $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$.

Suppose we freeze $\mu^N(t)$ to be ξ .

- Suppose we freeze $\mu^N(t)$ to be ξ .
 - ▶ Y^N is Markov with transition rates $N\gamma_{y,y'}(\xi)$.
 - For large N, it would quickly equilibrate to its unique invariant probability measure (π_{ξ}) .

- Suppose we freeze $\mu^N(t)$ to be ξ .
 - Y^N is Markov with transition rates $N\gamma_{y,y'}(\xi)$.
 - For large N, it would quickly equilibrate to its unique invariant probability measure (π_{ξ}) .
- For a particle, an (x, x') transition occurs at rate $\sum_{y \in \mathcal{Y}} \lambda_{x,x'}(\xi, y) \pi_{\xi}(y) =: \bar{\lambda}_{x,x'}(\xi, \pi_{\xi}).$

- ▶ Suppose we freeze $\mu^{N}(t)$ to be ξ .
 - Y^N is Markov with transition rates $N\gamma_{y,y'}(\xi)$.
 - For large N, it would quickly equilibrate to its unique invariant probability measure $(\pi_{\mathcal{E}})$.
- For a particle, an (x, x') transition occurs at rate $\sum_{y \in \mathcal{Y}} \lambda_{x,x'}(\xi, y) \pi_{\xi}(y) =: \bar{\lambda}_{x,x'}(\xi, \pi_{\xi}).$

Theorem (Bordenave et al. 2009)

Suppose that $\mu^N(0) \to \nu$ in $M_1(\mathcal{X})$. Then μ^N converges in probability, in $D([0,T],M_1(\mathcal{X}))$, to the solution to the ODE

$$\dot{\mu}_t = \bar{\Lambda}^*_{\mu_t, \pi_{\mu_t}} \mu_t, \, 0 \le t \le T, \, \mu_0 = \nu.$$

where $\bar{\Lambda}_{\mu_t,\pi_{\mu_t}}(x,x')=\bar{\lambda}_{x,x'}(\mu_t,\pi_{\mu_t}).$

- ▶ Suppose we freeze $\mu^{N}(t)$ to be ξ .
 - Y^N is Markov with transition rates $N\gamma_{y,y'}(\xi)$.
 - For large N, it would quickly equilibrate to its unique invariant probability measure (π_{ξ}) .
- For a particle, an (x, x') transition occurs at rate $\sum_{y \in \mathcal{Y}} \lambda_{x,x'}(\xi, y) \pi_{\xi}(y) =: \bar{\lambda}_{x,x'}(\xi, \pi_{\xi}).$

Theorem (Bordenave et al. 2009)

Suppose that $\mu^N(0) \to \nu$ in $M_1(\mathcal{X})$. Then μ^N converges in probability, in $D([0,T],M_1(\mathcal{X}))$, to the solution to the ODE

$$\dot{\mu}_t = \bar{\Lambda}^*_{\mu_t, \pi_{\mu_t}} \mu_t, \, 0 \le t \le T, \, \mu_0 = \nu.$$

where $\bar{\Lambda}_{\mu_t,\pi_{\mu_t}}(x,x')=\bar{\lambda}_{x,x'}(\mu_t,\pi_{\mu_t}).$

 μ^N is a small random perturbation of the above ODE. We study large deviations of (μ^N, θ^N) .

Main result

Theorem

Suppose that $\{\mu^N(0), N \geq 1\}$ satisfies the LDP on $M_1(\mathcal{X})$ with rate function I_0 . Then the sequence $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \geq 1\}$ satisfies the LDP on $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$ with rate function

$$I(\mu,\theta):=I_0(\mu(0))+J(\mu,\theta).$$

The rate function *J*

$$\begin{split} J(\mu,\theta) &:= \int_{[0,T]} \left\{ \sup_{\alpha \in \mathbb{R}^{|\mathcal{X}|}} \left(\left\langle \alpha, (\dot{\mu}_t - \bar{\Lambda}^*_{\mu_t,m_t} \mu_t) \right\rangle \right. \\ & - \sum_{(x,x') \in \mathcal{E}_{\mathcal{X}}} \tau(\alpha(x') - \alpha(x)) \bar{\lambda}_{x,x'}(\mu_t, m_t) \mu_t(x) \right) \\ & + \sup_{g \in \mathbb{R}^{|\mathcal{Y}|}} \sum_{y \in \mathcal{Y}} \left(-L_{\mu_t} g(y) \right. \\ & \left. - \sum_{y': (y,y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g(y') - g(y)) \gamma_{y,y'}(\mu_t) \right) m_t(y) \right\} dt \end{split}$$

whenever the mapping $[0, T] \ni t \mapsto \mu_t \in M_1(\mathcal{X})$ is absolutely continuous, where $\theta(dtdy) = m_t(dy)dt$, and $J(\mu, \theta) = +\infty$ otherwise.

$$ightharpoonup au(u) = e^u - u - 1, u \in \mathbb{R}.$$

Main ideas in the proof

▶ Method of stochastic exponentials, Puhalskii (1994, 2016).

- ▶ Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$

- Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$
- ▶ There exists a subsequence along which the LDP holds. Let \tilde{l} denote the rate function.

- Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$
- ▶ There exists a subsequence along which the LDP holds. Let \tilde{l} denote the rate function.
- A necessary condition for \tilde{l} in terms of an exponential martingale.

(E.g.: Let X be the standard Poission point process. Then X(t)-t, $\exp\{\beta(X(t)-t)-\tau(\beta)t\}$ are martingales.)

- Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$
- ▶ There exists a subsequence along which the LDP holds. Let \tilde{l} denote the rate function.
- A necessary condition for \tilde{I} in terms of an exponential martingale.
 - (E.g.: Let X be the standard Poission point process. Then X(t) t, $\exp{\{\beta(X(t) t) \tau(\beta)t\}}$ are martingales.)
- ▶ Necessary condition: $\sup_{(\mu,\theta)\in\Gamma}(U^{\alpha,g}_T(\mu,\theta)-\tilde{I}(\mu,\theta))=0.$

- Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$
- ▶ There exists a subsequence along which the LDP holds. Let \tilde{l} denote the rate function.
- A necessary condition for \tilde{I} in terms of an exponential martingale.
 - (E.g.: Let X be the standard Poission point process. Then X(t) t, $\exp{\{\beta(X(t) t) \tau(\beta)t\}}$ are martingales.)
- ▶ Necessary condition: $\sup_{(\mu,\theta)\in\Gamma}(U^{\alpha,g}_T(\mu,\theta)-\tilde{I}(\mu,\theta))=0.$
- ▶ Duality principle suggests that $I^* = \sup_{\alpha, g} U_T^{\alpha, g}(\mu, \theta)$ is a candidate rate function.

- Method of stochastic exponentials, Puhalskii (1994, 2016).
- Show the exponential tightness of the family $\{(\mu^N(t), \theta^N(t)), t \in [0, T], N \ge 1\}.$
- ▶ There exists a subsequence along which the LDP holds. Let \tilde{l} denote the rate function.
- A necessary condition for \tilde{l} in terms of an exponential martingale.
 - (E.g.: Let X be the standard Poission point process. Then X(t) t, $\exp{\{\beta(X(t) t) \tau(\beta)t\}}$ are martingales.)
- ▶ Necessary condition: $\sup_{(\mu,\theta)\in\Gamma}(U^{\alpha,g}_T(\mu,\theta)-\tilde{I}(\mu,\theta))=0.$
- ▶ Duality principle suggests that $I^* = \sup_{\alpha, g} U_T^{\alpha, g}(\mu, \theta)$ is a candidate rate function.
- The problem now is to uniquely identify \tilde{l} (i.e., show that $\tilde{l} = l^*$).

- ▶ For "nice" elements of $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, we show that $\tilde{I} = I^*$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

- ▶ For "nice" elements of $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, we show that $\tilde{I} = I^*$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

- ▶ For "nice" elements of $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, we show that $\tilde{I} = I^*$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

- ▶ For "nice" elements of $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, we show that $\tilde{I} = I^*$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

Large deviations of the invariant measure in countable-state mean-field models

- $ightharpoonup \mathcal{Z}$ denotes the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.

- Z denotes the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ► The empirical measure of the states of all the particles at time *t*:

$$\mu^{N}(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}).$$

- ▶ We are given the functions $\lambda_{z,z'}: M_1(\mathcal{Z}) \to \mathbb{R}_+$, $(z,z') \in \mathcal{E}$.
- At time t, a particle at state z makes a $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.

- Z denotes the set of nonnegative integers.
- N particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ► The empirical measure of the states of all the particles at time *t*:

$$\mu^{N}(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}).$$

- ▶ We are given the functions $\lambda_{z,z'}: M_1(\mathcal{Z}) \to \mathbb{R}_+$, $(z,z') \in \mathcal{E}$.
- At time t, a particle at state z makes a $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- μ^N is a Markov process with state space $M_1^N(\mathcal{Z}) \subset M_1(\mathcal{Z})$.

- Z denotes the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ► The empirical measure of the states of all the particles at time *t*:

$$\mu^{N}(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}).$$

- ▶ We are given the functions $\lambda_{z,z'}: M_1(\mathcal{Z}) \to \mathbb{R}_+$, $(z,z') \in \mathcal{E}$.
- At time t, a particle at state z makes a $z \to z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- ▶ μ^N is a Markov process with state space $M_1^N(\mathcal{Z}) \subset M_1(\mathcal{Z})$. Under suitable assumptions, it possess an invariant probability measure \wp^N .

- Z denotes the set of nonnegative integers.
- N particles. The state of the nth particle at time t is $X_n^N(t) \in \mathcal{Z}$.
- ▶ There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of the states of all the particles at time t:

$$\mu^{N}(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}^{N}(\mathcal{Z}).$$

- We are given the functions $\lambda_{z,z'}: M_1(\mathcal{Z}) \to \mathbb{R}_+, (z,z') \in \mathcal{E}$.
- At time t, a particle at state z makes a $z \rightarrow z'$ transition at rate $\lambda_{z,z'}(\mu^N(t))$.
- \blacktriangleright μ^N is a Markov process with state space $M_1^N(\mathcal{Z}) \subset M_1(\mathcal{Z})$. Under suitable assumptions, it possess an invariant probability measure \wp^N .
- ▶ Goal: study the large deviations of the family $\{\wp^N, N \ge 1\}$.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

► There is a unique \wp^N for each N. By Sanov's theorem, it satisfies the LDP with rate function $D(\cdot||\xi^*|)$.

► Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

- ► There is a unique \wp^N for each N. By Sanov's theorem, it satisfies the LDP with rate function $D(\cdot||\xi^*|)$.
- $\{\mu^{N}(\cdot), N \geq 1\}$ satisfies the LDP with rate function $S_{[0,T]}(\cdot|\nu), \nu \in \mathcal{Z}$.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

- ► There is a unique \wp^N for each N. By Sanov's theorem, it satisfies the LDP with rate function $D(\cdot||\xi^*|)$.
- $\{\mu^N(\cdot), N \geq 1\}$ satisfies the LDP with rate function $S_{[0,T]}(\cdot|\nu), \nu \in \mathcal{Z}$.
- ▶ Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

▶ Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

- ► There is a unique \wp^N for each N. By Sanov's theorem, it satisfies the LDP with rate function $D(\cdot || \xi^*)$.
- $\{\mu^{N}(\cdot), N \geq 1\}$ satisfies the LDP with rate function $S_{[0,T]}(\cdot|\nu), \nu \in \mathcal{Z}$.
- ▶ Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \, \xi \in M_1(\mathcal{Z}).$$

▶ We show that $V \neq D(\cdot || \xi^*)$.

► Consider *N* independent, identical, positive recurrent M/M/1 queues. Let ξ^* be the stationary distribution of one queue.

- ► There is a unique \wp^N for each N. By Sanov's theorem, it satisfies the LDP with rate function $D(\cdot || \xi^*)$.
- $\{\mu^{N}(\cdot), N \geq 1\}$ satisfies the LDP with rate function $S_{[0,T]}(\cdot|\nu), \nu \in \mathcal{Z}$.
- ▶ Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \, \xi \in M_1(\mathcal{Z}).$$

- ▶ We show that $V \neq D(\cdot || \xi^*)$. Let $\vartheta(z) = z \log z$.
 - If $\xi \in M_1(\mathcal{Z})$ is such that $\sum z\xi(z) < \infty$ and $\sum \vartheta(z)\xi(z) = \infty$, then $V(\xi) = \infty$ but $D(\xi\|\xi^*) < \infty$.

- ▶ We make the following assumptions on the mean-field model.
 - ► Transition graph:

- We make the following assumptions on the mean-field model.
 - Transition graph:

▶ There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- We make the following assumptions on the mean-field model.
 - ► Transition graph:

▶ There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

The functions $(z+1)\lambda_{z,z+1}(\cdot)$, $z \in \mathcal{Z}$, and $\lambda_{z,0}(\cdot)$, $z \in \mathcal{Z} \setminus \{0\}$, are uniformly Lipschitz continuous on $M_1(\mathcal{Z})$.

- We make the following assumptions on the mean-field model.
 - ► Transition graph:

▶ There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions $(z+1)\lambda_{z,z+1}(\cdot)$, $z \in \mathcal{Z}$, and $\lambda_{z,0}(\cdot)$, $z \in \mathcal{Z} \setminus \{0\}$, are uniformly Lipschitz continuous on $M_1(\mathcal{Z})$.
- There is a unique globally asymptotically stable equilibrium for the McKean-Vlasov equation (ξ^*).

- We make the following assumptions on the mean-field model.
 - ► Transition graph:

▶ There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions $(z+1)\lambda_{z,z+1}(\cdot)$, $z \in \mathcal{Z}$, and $\lambda_{z,0}(\cdot)$, $z \in \mathcal{Z} \setminus \{0\}$, are uniformly Lipschitz continuous on $M_1(\mathcal{Z})$.
- There is a unique globally asymptotically stable equilibrium for the McKean-Vlasov equation (ξ^*) .
- ► Under the above assumptions, we first show that, for each $N \ge 1$, there is a unique invariant measure \wp^N for μ^N .

Theorem

Theorem

- ▶ Main difficulty: the space $M_1(\mathcal{Z})$ is infinite dimensional. It is not locally compact.
- ▶ Since *V* has compact level sets, it cannot be continuous.

Theorem

- ▶ Main difficulty: the space $M_1(\mathcal{Z})$ is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).

Theorem

- ▶ Main difficulty: the space $M_1(\mathcal{Z})$ is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).
- Main ingredient is a continuity property of V:

Theorem

- ▶ Main difficulty: the space $M_1(\mathcal{Z})$ is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).
- Main ingredient is a continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.

Proof sketch: Lower bound

- ▶ The second inequality uses the uniform LDP over compact subsets of $M_1(\mathcal{Z})$.

Proof sketch: Upper bound

```
\wp^{N}(\sim \mathsf{nbd}(\Phi(s)))
\leq \exp\{-Ns\} + P(\mu_{\Phi(s)}^{N}(T) \notin \mathsf{nbd}(\Phi(s))
\leq \exp\{-Ns\}
+ \frac{P(\mu_{\Phi(s)}^{N} \mathsf{does} \mathsf{not} \mathsf{hit} \mathsf{nbd}(\xi^{*}))}{P(\mu_{\mathsf{nbd}(\xi^{*})}^{N} \in \mathsf{nbd}(\varphi))}
\leq \exp\{-N(s-\gamma)\}
```


- ► The first inequality uses exponential tightness.
- ► The second inequality uses the continuity of V under the convergence of z log z-moments, and the strong Markov property.
- ▶ The third inequality uses the uniform LDP over compact subsets of $M_1(\mathcal{Z})$.

Part 4: Summary and Future Directions

► We studied large time behaviour and metastability in models of weakly interacting Markov processes with jumps.

- We studied large time behaviour and metastability in models of weakly interacting Markov processes with jumps.
 - Finite-state mean-field models.
 - Two time scale mean-field models.

- We studied large time behaviour and metastability in models of weakly interacting Markov processes with jumps.
 - Finite-state mean-field models.
 - Two time scale mean-field models.
- Large deviations of the invariant measure in countable-state mean-field models.

- We studied large time behaviour and metastability in models of weakly interacting Markov processes with jumps.
 - Finite-state mean-field models.
 - Two time scale mean-field models.
- Large deviations of the invariant measure in countable-state mean-field models.
- General strategy:
 - Study the process-level large deviations of the empirical measure process.
 - Use this to study the large time behaviour, and the large deviations of the invariant measure.

 Uniform LDP (over open sets) for countable-state mean-field models

- Uniform LDP (over open sets) for countable-state mean-field models
- ► A generalised quasipotential

- Uniform LDP (over open sets) for countable-state mean-field models
- A generalised quasipotential
- Process-level LDP for processes with diminishing transition rates

- Uniform LDP (over open sets) for countable-state mean-field models
- A generalised quasipotential
- Process-level LDP for processes with diminishing transition rates
- ► Countable-state mean-field models with time scale separation

Acknowledgements

- Professor Rajesh Sundaresan
- ► All the faculty members of the Division of EECS and the Department of Mathematics
- Labmates: Karthik, Nihesh, Krishna, Chetan, Kishan, Akhil, Nidhin, Thirumulanathan
- ► All friends and family
- Centre for Networked Intelligence, IISc
- Indo-French Centre for Applied Mathematics

Acknowledgements

- Professor Rajesh Sundaresan
- ► All the faculty members of the Division of EECS and the Department of Mathematics
- Labmates: Karthik, Nihesh, Krishna, Chetan, Kishan, Akhil, Nidhin, Thirumulanathan
- All friends and family
- Centre for Networked Intelligence, IISc
- Indo-French Centre for Applied Mathematics

Thank you!