

정규분포

정규분포 이해하기

정규분포와 표준편차

🌣 평균 μ (뮤)와 표준편차 σ (시그마)의 관계

어떤 과목을 더 잘 봤을까

❖ 철수는 영어와 중국어 시험을 응시해 800점과 65점을 받았습니다. 두 어학시험 의 응시자들의 점수는 정규분포를 따르고 평균과 표준편차가 다음과 같을 때 철 수는 영어와 중국어 어능 과목의 등수가 높을까요?

과목	만점기준	평균	표준편차	취득점수
영어	1000	600	100	800
중국어	100	50	5	65

100점 환산

❖ 기존 점수

과목	만점기준	평균	표준편차	취득점수
영어	1000	600	100	800
중국어	100	50	5	65

❖ 100점 만점 환산

과목	취득점수	평균	표준편차	개인편차
영어	80	60	10	20
중국어	65	50	5	15

상위 2.3%

- ❖ 평균을 기존으로 좌우 50% 차지
- ❖ 좌측 50% +1 σ (34.1%)+2 σ (13.6%) = 97.7%

상위 2.3% 점수 환산

❖ 기존 점수

과목	만점기준	평균	표준편차	취득점수
영어	1000	600	100	800
중국어	100	50	5	65

❖ 환산

과목	만점기준	평균	표준편차	환산점수(상위 2.3%)
영어	1000	600	100	800(600+100*2)
중국어	100	50	5	60(50+5*2)

pnorm(q, mean, sd, lower.tail)

```
#전체 응시자 중 800점 이하 비중(영어)
pnorm(800, mean=600, sd=100)
[1] 0.9772499
#전체 응시자 중 800점 초과 비중
pnorm(800, mean=600, sd=100, lower.tail=F)
[1] 0.02275013
```

#전체 응시자 중 65점 이하 비중(중국어) pnorm(65, mean=50, sd=5) [1] 0.9986501 #전체 응시자 중 65점 초과 비중 pnorm(65, mean=50, sd=5, lower.tail=F) [1] 0.001349898

1000명의 수험생이 응시했을 경우 영어: 0.02275013*1000 = 22.75013 즉. 23등

중국어: 0.001349898 * 1000 = 1.349898

즉, 2등