Aircraft Structures (202000157)

Homework Assignment #1

Wouter Grouve (w.j.b.grouve@utwente.nl)
Due date: 01-05-2021 17:00

Question 1 The two dimensional stress state at a particular point in a structure equals $\sigma_{\rm x}=350$ MPa, $\sigma_{\rm y}=225$ MPa and $\tau_{\rm xy}=100$ MPa.

1. Calculate the principal stresses and the orientation of the corresponding principal planes.

Answer

The principal stresses are: $\sigma_{\rm I}=405$ MPa and $\sigma_{\rm II}=170$ MPa, while the principal planes are oriented at $\theta=0.51\pm\pi/2$ or $\theta=29^{\circ}\pm90^{\circ}$.

As a reminder, the equations for the principal stresses are:

$$\sigma_{\rm I,II} = \frac{\sigma_{\rm x} + \sigma_{\rm y}}{2} \pm \frac{1}{2} \sqrt{(\sigma_{\rm x} - \sigma_{\rm y})^2 + 4\tau_{\rm xy}^2},$$

while the principal planes can be found using:

$$\tan 2\theta = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}.$$

2. What is the magnitude of the shear stress acting on the principal planes?

Answer

The shear stress on the principal planes equals 0 MPa.

Question 2 The turbine blades in modern jet engines are subjected to intense heat and extreme loads...