第2章作业参考答案

P35/1(1): 略

P35/1(2): 略

P35/1(4) (max,min): 略

P36/2(2):

$$A = (a_1, a_2, a_3, a_4) = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 2 & -1 & 0 & 2 \end{pmatrix}$$

a)
$$B = (a_1, a_2)$$
, $\begin{cases} Ax = b \\ x_3 = x_4 = 0 \end{cases}$, 得关于 B 的基本可行解 $x^0 = (30, 50, 0, 0)^T$, 目标值是-10

b)
$$B = (\mathbf{a}_1, \mathbf{a}_3)$$
, $\begin{cases} A\mathbf{x} = \mathbf{b} \\ x_2 = x_4 = 0 \end{cases}$, 得关于 B 的基本解 $\mathbf{x}^0 = (-5, 0, 15, 0)^T$, 不可行

c)
$$B = (\mathbf{a}_1, \mathbf{a}_4)$$
, $\begin{cases} A\mathbf{x} = \mathbf{b} \\ x_2 = x_3 = 0 \end{cases}$, 得关于 B 的基本可行解 $\mathbf{x}^0 = (25/2, 0, 0, 15/2)^T$, 不可行

d)
$$B = (\mathbf{a}_2, \mathbf{a}_3)$$
, $\begin{cases} A\mathbf{x} = \mathbf{b} \\ x_1 = x_4 = 0 \end{cases}$, 得关于 B 的基本可行解 $\mathbf{x}^0 = (0, -10, 30, 0)^T$, 不可行

e)
$$B = (a_2, a_4)$$
,
$$\begin{cases} Ax = b \\ x_1 = x_3 = 0 \end{cases}$$
, 得关于 B 的基本可行解 $x^0 = (0, 10, 0, 10)^T$, 目标值是 110

f)
$$B = (a_3, a_4)$$
, $\begin{cases} Ax = b \\ x_1 = x_2 = 0 \end{cases}$, 得关于 B 的基本可行解 $x^0 = (0, 0, 15, 5)^T$, 目标值是 65

因此最优解 $\mathbf{x}^* = (30, 50, 0, 0)^T$ 。

P36/4:

分析:题目要求 A_1 满足: $A_1 x^0 = b_1$, $r(A_1) = n$ 即 A_1 的n个行向量线性无关,因此先对A

和
$$b$$
 进行行分块: $A = \begin{pmatrix} A' \\ A'' \end{pmatrix}$, $\boldsymbol{b} = \begin{pmatrix} \boldsymbol{b}' \\ \boldsymbol{b}'' \end{pmatrix}$: $A'\boldsymbol{x}^0 = \boldsymbol{b}'$, $A''\boldsymbol{x}^0 > \boldsymbol{b}''$ 。只要 $r(A') = n$ (即列满秩),

那么A'中就可以找到n个线性无关的行向量,这些行向量组成的矩阵就可以作为A。

可以反证 r(A')=n,即设 r(A')< n,则 A'y=0 有非零解,由此来构造 S 上两个不同点,并且 \mathbf{x}^0 表示成这两个点的严格凸组成,那么就与 \mathbf{x}^0 是极点矛盾了。

(必要性) 令
$$A = \begin{pmatrix} A' \\ A'' \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} \boldsymbol{b}' \\ \boldsymbol{b}'' \end{pmatrix}$$
: $A'\boldsymbol{x}^0 = \boldsymbol{b}', A''\boldsymbol{x}^0 > \boldsymbol{b}''$ 。 下证 $r(A') = n$ 。

否则 r(A') < n,则存在 $y \neq 0$,使 A'y = 0,则当 $|\theta| > 0$ 充分小时,

$$A'(\mathbf{x}^0 \pm \theta \mathbf{y}) = \mathbf{b}', A''(\mathbf{x}^0 \pm \theta \mathbf{y}) > \mathbf{b}''$$

即当 $|\theta|$ 0 充分小时 $x^0 \pm \theta y \in S$, $x^0 + \theta y \neq x^0 - \theta y$ 并且

$$x^{0} = \frac{1}{2}[(x^{0} + \theta y) + (x^{0} - \theta y)]$$

与 x^0 是 S 的极点矛盾,故 r(A') < n。取 A' 中 n 个线性无关的行向量组成 $A_{\rm l}$,则 $A_{\rm l}$ 的秩为

$$n,A$$
 中除 A_1 外余下部分记作 A_2 ,即记 $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$,对应记, $m{b}=\begin{pmatrix}m{b}_1\\m{b}_2\end{pmatrix}$,则 $A_1m{x}^0=m{b}_1,A_2m{x}^0\geq m{b}_2$ 。

(充分性) 假设 \mathbf{x}^0 不是 S 的极点,则存在 $\mathbf{x}^1,\mathbf{x}^2\in S,\mathbf{x}^1\neq\mathbf{x}^2,\lambda\in(0,1)$,使

$$x^{0} = \lambda x^{1} + (1 - \lambda)x^{2}$$
, $\text{ MJ } A_{1}x^{0} = \lambda A_{1}x^{1} + (1 - \lambda)A_{1}x^{2}$, $\text{ MJ } A_{2}x^{0} = \lambda A_{1}x^{0} + (1 - \lambda)A_{2}x^{0}$

$$A_1 x^0 - b_1 = \lambda (A_1 x^1 - b_1) + (1 - \lambda)(A_1 x^2 - b_1)$$

因为
$$A_1 x^0 - b_1 = 0, \lambda > 0, A_1 x^1 - b_1 \ge 0, 1 - \lambda > 0, A_1 x^2 - b_1 \ge 0$$
,因此

$$A_1 x^1 - b_1 = 0, A_1 x^2 - b_1 = 0$$

即
$$x^1 = x^2 = A_1^{-1}b_1$$
,与 $x^1 \neq x^2$ 矛盾。