Hierarchical Clustering

Toby Dylan Hocking

Visualize iris data with labels

Visualize iris data without labels

- Let $X = [x_1 \cdots x_n]^{\mathsf{T}} \in \mathbb{R}^{n \times p}$ be the data matrix (input for clustering), where $x_i \in \mathbb{R}^p$ is the input vector for observation i.
- **Example** iris n = 150 observations, p = 2 dimensions.

##		Petal.Width	Petal.Length
##	[1,]	0.2	1.4
##	[2,]	0.2	1.4
##	[3,]	0.2	1.3
##	[4,]	0.2	1.5

Which pair of rows is most similar?

This is a visualization of 15 rows and two columns from the iris data.

Hyper-parameter choices (must be fixed prior to learning)

How to compute similarity/distance between rows?

- Let $x, x' \in \mathbb{R}^p$ be two feature vectors (rows of data matrix).
- ▶ L1/manhattan distance: $||x x'||_1 = \sum_{j=1}^p |x_j x_j'|$.
- ▶ L2/euclidean distance: $||x x'||_2 = \sqrt{\sum_{j=1}^p (x_j x_j')^2}$.

How to compute distance with a group/cluster? There are several rules, or agglomeration methods:

- single: min distance from any point,
- complete: max distance from any point,
- average: mean distance over all points,
- there are others.

Hierarchical clustering inputs a pairwise distance matrix

Only need lower triangle (symmetry)

Find the closest pairs

Join one of the closest pairs (iteration 1)

Visualization of dendrogram (tree diagram)

Cutting the tree to get two clusters

Cutting the tree to get three clusters

Cutting the tree to get four clusters

ARI computation

Another 2d data set

K-means fails

Hierarchical with two clusters fails

Hierarchical with single linkage and 3 clusters better

Gene expression clustering (cancer classes)

Small Round Blue Cell Tumors (SRBCT) of childhood cancer study of Khan et al. (2001).

Clustering samples

Possible Exam Questions

What is the big O notation asymptotic time complexity of the following algorithms in terms of N (number of data observations/rows), P (number of data features/columns), and K (number of clusters).

- K-means.
- Gaussian mixture model with diagonal covariance matrix.
- Gaussian mixture model with unconstrained covariance matrix.
- Hierarchical clustering with single linkage.

Possible Exam Questions 2

- ▶ What are the two hyper-parameters that must be chosen before running the hierarchical clustering algorithm?
- ► For a data set with N=200 observations/rows, how large is the pairwise distance matrix? How many iterations of the cluster joining occur?