

## **Help International**

Identifying countries in dire need of financial aid.





**Anand Yati** 

## Problem Statement

Quantitatively identify countries in dire need of financial aid based on an array of socio-economic indicators. These indicators should be used to create an overall development profile of the country which is then used to segregate countries into a cluster of nations needing assistance.

The output of this exercise would be a prioritised list of countries which can be directly consumed by decision makers of the NGO (CEO, executive audience) to effectively and strategically distribute financial aid.



### Solution approach [Steps involved]

- 1. Procure the data, understand different columns, data types, value ranges etc.
- 2. Perform exploratory data analysis
- 3. Clean data:
  - a. Transforming columns which were % of GDP to absolute values.
  - b. Dropping unnecessary columns (% of GDP columns after obtaining corresponding absolute values)
  - c. Missing value treatment (not required in this case)
  - d. Data type conversions/encoding (not required in this case)
- 4. Prepare data for modeling
  - a. Outlier treatment (performed)
  - b. Scaling (Standard & Min-Max)
- 5. Clustering:
  - a. K means: Choosing K through elbow curve method & Silhouette score method. Clustering and country profiling
  - b. Hierarchical: Choosing single vs complete linkage method, cutting tree into clusters and country profiling.
- 6. Choosing the cluster in most dire need of aid through analysing country profiles based on: income, gdpp, child mortality.
- 7. Prioritising countries inside the cluster which is in dire need of aid. Prioritisation done based on variables in step 6.
- 8. Results summarisation and presentation.



### Data set



<u>Context:</u> Data on socio-economic indicators of countries.

<u>Variables provided:</u> Country, child mortality per 1000 births, exports/imports/health-spends as a % of GDP, income/person, life expectancy, fertility rate, inflation, GDP per person

#### Raw dataset:

• Columns: 10

Rows: 167

#### Data treatments required across columns:

- Some variables (like health spend) are given as % of GDP (another column in dataset) and needs to be converted to absolute values.
- Outlier <u>imputation</u> to inter-quartile range
- Scaling of columns (standard scalar & min-max scalars used)

# Clustering results: Number of clusters

```
For 2 clusters, Silhouette score is: 0.4834991457405332
cluster range = [2,3,4,5,6,7,8,9,10,11,12,13,14,15]
for num clusters in cluster range:
                                          For 3 clusters, Silhouette score is: 0.41278062890648703
 kmeans = KMeans(n clusters=num clusters, verbose=0, max iter=50)
 kmeans.fit(country data scaled[numeric columns])
                                          For 4 clusters, Silhouette score is: 0.39594880315682435
 ssd.append(kmeans.inertia)
                                          For 5 clusters, Silhouette score is: 0.37940355788531294
plt.plot(ssd)
plt.xlabel("Index in cluster range array")
                                          For 6 clusters, Silhouette score is: 0.29479892228279037
plt.vlabel("Sum of square distances"
plt.title("Sum of square distances vs cluster range array index")
                                          For 7 clusters, Silhouette score is: 0.3208016400988546
plt.show()
                                          For 8 clusters, Silhouette score is: 0.33822235751873186
   Sum of square distances vs cluster range array index
                                          For 9 clusters, Silhouette score is: 0.31806476709521836
 800
 700 -
                                          For 10 clusters, Silhouette score is: 0.30391255110072674
 600
                                          For 11 clusters, Silhouette score is: 0.284487682519972
 500
                                          For 12 clusters, Silhouette score is: 0.27643540740556516
 400
                                          For 13 clusters, Silhouette score is: 0.2775904774857871
 300
                                          For 14 clusters, Silhouette score is: 0.26905498259746435
 200
                                          For 15 clusters, Silhouette score is: 0.2718071481688423
```

Elbow curve method points towards 3 being a good cluster count to choose, a high Silhouette score for cluster size 3 confirms it as a choice for number of clusters.

## Cluster comparisons: K Means [Univariate]







Child mortality across clusters

GDP per person across clusters

Income per person across clusters

**Insight:** Cluster 2 has highest child mortality rate along with lowest GDP and Income per person.

Thus Cluster 2 countries are prime candidates for financial aid.

## Cluster comparisons: K Means [Bivariate]







Child mortality Vs. Income per person across clusters

Income per Capita vs GDPP across clusters

Child Mortality Rate vs GDPP across clusters

**Insight:** Cluster 2 [in Green color] has highest child mortality along with lowest income/GDP per capita

Thus Cluster 2 countries are prime candidates for financial aid.

## Cluster comparisons: Hierarchical [Univariate]







Child mortality across clusters

GDP per person across clusters

Income per person across clusters

Insight: Cluster 0 has highest child mortality rate along with lowest GDP and Income per person. Thus Cluster 0 countries are prime candidates for financial aid.

Note: Although same countries are clustered together across KMeans and Hierarchical clustering approaches, but there cluster label differs as it changes across iterations randomly.

# Cluster comparisons: K Means [Bivariate]



Child mortality Vs. Income per person across clusters



Income per Capita vs GDPP across clusters



Child Mortality Rate vs GDPP across clusters

**Insight:** Cluster in Green color has highest child mortality along with lowest income/GDP per capita

Thus Cluster 2 countries are prime candidates for financial aid.

### Filtering the countries from target cluster and prioritising them

Countries from Green cluster (cluster labeled as 2 in K-Means and 0 in Hierarchical clustering) were extracted and a composite metric was calculated for ranking of countries within cluster.

Composite metric = min\_max\_scaled\_values ((child mortality + (1-GDPP) + (1-income))

#### Notes:

- Min\_max scaling was done to compress outlier treated data into a uniform range of 0 to 1, this eliminated effect of a higher range of values inside a column and made all 3 variables (child mortality, GDPP & income) uniform.
- GDPP and Income are subtracted from 1 before adding as they are inversely proportional with child mortality.

### Final prioritised list of top 10 countries in dire need of financial aid

| Countries                | Prioritisation score |
|--------------------------|----------------------|
| Central African Republic | 2.98                 |
| Sierra Leone             | 2.97                 |
| Haiti                    | 2.947                |
| Niger                    | 2.945                |
| Mali                     | 2.93                 |
| Chad                     | 2.92                 |
| Congo Dem. Rep           | 2.9                  |
| Burkina Faso             | 2.86                 |
| Guinea-Bissau            | 2.84                 |
| Guinea                   | 2.80                 |

#### **Insights:**

The list of top 10 countries in need of aid is same from both "kMeans" and "Hierarchical" clustering methods.

The high-degree of overlap in countries in dire need of aid showcases robust clustering through both kMeans and Hierarchical methods

### Top 25 countries requiring aid from 2 clustering methods

#### K - Means Clustering

|    | country                  | child_mort | income   | gdpp     | cluster | composite_metrics |
|----|--------------------------|------------|----------|----------|---------|-------------------|
| 0  | Central African Republic | 1.000000   | 0.008431 | 0.012745 | 2       | 2.978823          |
| 1  | Sierra Leone             | 1.000000   | 0.018464 | 0.009959 | 2       | 2.971577          |
| 2  | Haiti                    | 1.000000   | 0.026926 | 0.025550 | 2       | 2.947524          |
| 3  | Niger                    | 0.948929   | 0.006195 | 0.006936 | 2       | 2.935798          |
| 4  | Mali                     | 1.000000   | 0.038107 | 0.028277 | 2       | 2.933616          |
| 5  | Chad                     | 1.000000   | 0.039920 | 0.039481 | 2       | 2.920599          |
| 6  | Congo, Dem. Rep.         | 0.878934   | 0.000000 | 0.006106 | 2       | 2.872829          |
| 7  | Burkina Faso             | 0.878934   | 0.024810 | 0.020392 | 2       | 2.833732          |
| 8  | Guinea-Bissau            | 0.858936   | 0.023602 | 0.018733 | 2       | 2.816602          |
| 9  | Guinea                   | 0.808940   | 0.017558 | 0.024720 | 2       | 2.766662          |
| 10 | Benin                    | 0.828938   | 0.036596 | 0.031241 | 2       | 2.761101          |
| 11 | Nigeria                  | 1.000000   | 0.137228 | 0.124429 | 2       | 2.738343          |
| 12 | Mozambique               | 0.728946   | 0.009338 | 0.011145 | 2       | 2.708463          |
| 13 | Cote d'Ivoire            | 0.828938   | 0.062887 | 0.058628 | 2       | 2.707423          |
| 14 | Cameroon                 | 0.798940   | 0.061981 | 0.063963 | 2       | 2.672996          |
| 15 | Burundi                  | 0.654951   | 0.004684 | 0.000000 | 2       | 2.650267          |
| 16 | Lesotho                  | 0.715947   | 0.053519 | 0.055664 | 2       | 2.606763          |
| 17 | Liberia                  | 0.611954   | 0.002750 | 0.005691 | 2       | 2.603513          |
| 18 | Malawi                   | 0.623953   | 0.012722 | 0.013516 | 2       | 2.597715          |
| 19 | Togo                     | 0.621954   | 0.018162 | 0.015235 | 2       | 2.588557          |
| 20 | Afghanistan              | 0.620954   | 0.030250 | 0.019088 | 2       | 2.571616          |
| 21 | Mauritania               | 0.692948   | 0.081926 | 0.057443 | 2       | 2.553580          |
| 22 | Angola                   | 0.908932   | 0.159892 | 0.195566 | 2       | 2.553474          |
| 23 | Comoros                  | 0.600955   | 0.024206 | 0.031893 | 2       | 2.544856          |
| 24 | Pakistan                 | 0.639952   | 0.110937 | 0.047958 | 2       | 2.481058          |

Hierarchical Clustering [Cluster: k-means cluster number, cluster\_labels\_hierarchy: Hierarchical clustering labels]

|    | country                  | child_mort | income   | gdpp     | cluster | cluster_labels_hierarchy | composite_metrics |
|----|--------------------------|------------|----------|----------|---------|--------------------------|-------------------|
| 0  | Central African Republic | 1.000000   | 0.008431 | 0.012745 | 4       | 0                        | 2.978823          |
| 1  | Sierra Leone             | 1.000000   | 0.018464 | 0.009959 | 4       | 0                        | 2.971577          |
| 2  | Haiti                    | 1.000000   | 0.026926 | 0.025550 | 4       | 0                        | 2.947524          |
| 3  | Niger                    | 0.958680   | 0.006195 | 0.006936 | 4       | 0                        | 2.945549          |
| 4  | Mali                     | 1.000000   | 0.038107 | 0.028277 | 4       | 0                        | 2.933616          |
| 5  | Chad                     | 1.000000   | 0.039920 | 0.039481 | 4       | 0                        | 2.920599          |
| 6  | Congo, Dem. Rep.         | 0.902049   | 0.000000 | 0.006106 | 0       | 0                        | 2.895943          |
| 7  | Burkina Faso             | 0.902049   | 0.024810 | 0.020392 | 4       | 0                        | 2.856846          |
| 8  | Guinea-Bissau            | 0.885869   | 0.023602 | 0.018733 | 4       | 0                        | 2.843535          |
| 9  | Guinea                   | 0.845418   | 0.017558 | 0.024720 | 4       | 0                        | 2.803141          |
| 10 | Benin                    | 0.861599   | 0.036596 | 0.031241 | 4       | 0                        | 2.793762          |
| 11 | Mozambique               | 0.780697   | 0.009338 | 0.011145 | 4       | 0                        | 2.760215          |
| 12 | Cote d'Ivoire            | 0.861599   | 0.062887 | 0.058628 | 4       | 0                        | 2.740083          |
| 13 | Nigeria                  | 1.000000   | 0.137228 | 0.124429 | 0       | 0                        | 2.738343          |
| 14 | Burundi                  | 0.720830   | 0.004684 | 0.000000 | 4       | 0                        | 2.716146          |
| 15 | Cameroon                 | 0.837328   | 0.061981 | 0.063963 | 4       | 0                        | 2.711384          |
| 16 | Liberia                  | 0.686043   | 0.002750 | 0.005691 | 4       | 0                        | 2.677602          |
| 17 | Malawi                   | 0.695751   | 0.012722 | 0.013516 | 4       | 0                        | 2.669512          |
| 18 | Lesotho                  | 0.770180   | 0.053519 | 0.055664 | 4       | 0                        | 2.660997          |
| 19 | Togo                     | 0.694133   | 0.018162 | 0.015235 | 4       | 0                        | 2.660736          |
| 20 | Afghanistan              | 0.693324   | 0.030250 | 0.019088 | 4       | 0                        | 2.643986          |
| 21 | Comoros                  | 0.677144   | 0.024206 | 0.031893 | 4       | 0                        | 2.621045          |
| 22 | Mauritania               | 0.751573   | 0.081926 | 0.057443 | 0       | 0                        | 2.612205          |
| 23 | Angola                   | 0.926320   | 0.159892 | 0.195566 | 0       | 0                        | 2.570861          |
| 24 | Uganda                   | 0.618895   | 0.028135 | 0.021578 | 4       | 0                        | 2.569182          |