Chapitre 6 : Programmation dynamique INF4705 - Analyse et conception d'algorithmes

Gilles Pesant Simon Brockbank

École Polytechnique Montréal gilles.pesant@polymtl.ca, simon.brockbank@polymtl.ca

Hiver 2017

Plan

- Introduction
- 2 Faire de la monnaie
- 3 Voyageur de commerce
- 4 Plus courts chemins

Formulation récursive de ce calcul (relation de récurrence)

Dénotons ce nombre de façons $\binom{n}{k}$ et considérons un objet quelconque :

- soit on le choisit, et il reste alors $\binom{n-1}{k-1}$ façons
- soit on ne le choisit pas, et il reste alors $\binom{n-1}{k}$ façons

Ainsi
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Cas de base :
$$\binom{n}{0} = \binom{n}{n} = 1$$

Conservons nos résultats intermédiaires dans un tableau!

n	k	0	1	2	3
0					
1					
2					
3			?	?	?
4				?	?
5					?

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

n k	0	1	2	3
0	1			
1	1	1		
2 3	1		1	
3	1			1
4	1			
4 5	1			

Cas de base

n k	0	1	2	3
0	1			
1	1	1		
2 3	1		1	
3	1			1
4	1			
4 5	1			

Cas de base Remplissons le reste

n k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

Cas de base Remplissons le reste

n	k	0	1	2	3
0		1			
1		1	1		
2		1	2	1	
3		1	3	3	1
4		1	4	6	4
5		1	5	10	10

Triangle de Pascal

Cas de base Remplissons le reste

Analyse de la consommation de l'espace mémoire

Le tableau contient $\sum_{i=0}^{n} (\min(i, k) + 1) \in \Theta(nk)$ cases.

Analyse de la consommation du temps de calcul

On doit remplir chaque case, qui se calcule en $\Theta(1)$: deux lectures au tableau et une addition.

Donc $\Theta(nk)$ en tout.

Par exemple, si k = n/2 on obtient $\Theta(n^2)$.

n k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

Même analyse du temps de calcul pour l'approche DpR

Plusieurs sous-exemplaires sont répétés : on refait donc des calculs inutilement. Si on prend "+1" comme instruction baromètre, on obtient un temps dans $\Theta(\binom{n}{k})$.

Par exemple, si k = n/2:

$$\binom{n}{n/2} = \frac{n!}{((n/2)!)^2}$$

$$= \frac{n}{n/2} \times \frac{n-1}{n/2-1} \times \dots \times \frac{n-(n/2-1)}{1}$$

$$\geq (\frac{n}{n/2})^{n/2}$$

$$= (\sqrt{2})^n$$

Peut-on économiser de l'espace mémoire?

			_	_
n k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

Peut-on économiser de l'espace mémoire?

Plutôt que tout le tableau, on ne garde que deux lignes à la fois :

1	3	3	1
1			

n k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

Peut-on économiser de l'espace mémoire?

Encore mieux! Une seule ligne qu'on met à jour de droite à gauche :

Nous n'aurons ainsi plus besoin de $\Theta(nk)$ espace mais plutôt de $\Theta(k)$ espace.

n k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

Principe général

Principe

On définit un tableau devant contenir la solution de chacun des sous-exemplaires potentiels de l'exemplaire originel. On remplit le tableau dans un certain ordre en utilisant les valeurs déjà présentes, puis on y lit notre réponse.

Remarques

- Un algorithme de programmation dynamique procède de bas en haut ("bottom-up") alors qu'un algorithme diviser-pour-régner procède de haut en bas ("top-down").
- Définir un tableau qu'on doit remplir est avant tout une image qui permet de bien saisir la méthode. Fondamentalement il s'agit d'une méthode de calcul d'une récurrence.

Patron de conception de la programmation dynamique

```
fonction programmation_dynamique(x {exemplaire}) : {solution} définir un tableau T à d dimensions; initialiser les valeurs frontières dans T; pour i_1 = deb_1 à fin_1 faire \vdots pour i_d = deb_d à fin_d faire T[i_1, \ldots, i_d] \leftarrow \text{expression utilisant des cases déjà calculées et <math>x; retourner expression utilisant des cases de T;
```

Comment utiliser la programmation dynamique?

Cinq étapes

- Définition du tableau : quels sont les sous-exemplaires d'intérêt ?
- 2 Définition de la relation de récurrence.
- Établissement des valeurs frontières.
- Remplissage du tableau, dans un ordre établi d'après la récurrence.
- Secupération de la solution, à partir de certaines cases du tableau.

Quand utiliser la programmation dynamique?

Chevauchement des sous-exemplaires

Une approche récursive résolverait alors de nombreuses fois le même sous-exemplaire. La programmation dynamique, elle, ne le résoudra qu'une seule fois et le stockera dans un tableau, ce qui est beaucoup plus efficace.

C'est une condition souhaitable afin de gagner en efficacité.

Sous-structure optimale ("Principe d'optimalité")

La solution optimale à un exemplaire est la combinaison des solutions optimales de certains de ses sous-exemplaires. Autrement dit, dans une suite optimale de décisions ou de choix, chaque sous-suite doit aussi être optimale.

C'est une condition nécessaire.

Ce Principe d'optimalité ne s'applique pas toujours?

Ex. Plus court chemin *simple* avec arêtes de longueur possiblement négative

Ce Principe d'optimalité ne s'applique pas toujours?

Ex. Plus court chemin *simple* avec arêtes de longueur possiblement négative

$$pccs(s,t) = 1$$

Ce Principe d'optimalité ne s'applique pas toujours?

Ex. Plus court chemin *simple* avec arêtes de longueur possiblement négative

$$pccs(s, a) = 0$$

+ $pccs(a, t) = 0$

Le plus court chemin simple de s à t ne peut pas être la combinaison des plus courts chemins simples de s à a et de a à t.

Le Principe d'optimalité ne s'applique donc pas ici.

Alternative : Fonction à mémoire (mémoïzation)

Patron

```
fonction f(x_1, ..., x_d)

si T[x_1, ..., x_d] \neq la valeur d'initialisation

alors retourner T[x_1, ..., x_d];

s \leftarrow calcul récursif de f(x_1, ..., x_d);

T[x_1, ..., x_d] \leftarrow s; {on note la valeur de la solution}

retourner s;
```

Pour:

 On ne calcule pas inutilement certaines cases du tableau.

Contre:

- On perd la possibilité de parfois réduire la taille du tableau.
- En pratique, la récursivité est plus lourde.

Plan

- Introduction
- 2 Faire de la monnaie
- 3 Voyageur de commerce
- 4 Plus courts chemins

Faire de la monnaie

Rappel

Minimiser le nombre de pièces utilisées pour totaliser un montant donné.

- Un algorithme glouton peut le faire pour certaines combinaisons de valeurs de pièces disponibles seulement.
- Ici nous y arriverons peu importe la valeur des pièces.

Principe d'optimalité (sous-structure optimale)?

Rappel ("Prouver l'optimalité d'un algorithme glouton")

Soit une solution optimale $\langle p_1, \ldots, p_k, p_{k+1}, \ldots, p_n \rangle$.

Considérons $\langle p_1,\ldots,p_k\rangle$ et $\langle p_{k+1},\ldots,p_n\rangle$: chacune doit être une solution optimale pour la sous-somme correspondante, sinon on obtiendrait une meilleure solution en leur substituant une (sous-) solution utilisant moins de pièces.

Étape 1 : Définition du tableau

Étant donné n types de pièces $1, \ldots, n$ de valeur d_1, \ldots, d_n et une somme N à rendre...

Étape 1 : Définition du tableau

Étant donné n types de pièces $1, \ldots, n$ de valeur d_1, \ldots, d_n et une somme N à rendre...

Définissons un tableau c[1...N] où c[j] est le nombre minimum de pièces requises pour totaliser un montant j.

Exemple (
$$N = 8, n = 3, d_1 = 1, d_2 = 4, d_3 = 6$$
)

montant : | 1 2 3 4 5 6 7 8

nb de pièces :

Soit on sépare en deux sous-montants 1 et j-1

Soit on sépare en deux sous-montants 1 et j-1 ou encore en deux sous-montants 2 et j-2

```
Soit on sépare en deux sous-montants 1 et j-1 ou encore en deux sous-montants 2 et j-2 ou encore 3 et j-3 :
```

Relation de récurrence

$$c[j] = egin{cases} 1 & ext{, si } j = d_i ext{ pour un certain } i \ \min_{i=1}^{\lfloor j/2
floor} (c[i] + c[j-i]) & ext{, sinon} \end{cases}$$

Soit on sépare en deux sous-montants 1 et j-1 ou encore en deux sous-montants 2 et j-2 ou encore 3 et j-3 :

Étape 3 : Les valeurs frontières

Valeurs frontières? $c[d_i] = 1, \quad \forall \ 1 \le i \le n$

Exemple ($N = 8$	<u>, n</u>	= 3	$, a_{1}$		L, a_2	= 4	+, a ₃	= 0
montant :	1	2	3	4	5	6	7	8
nb de pièces :	1			1		1		

Étape 4 : Remplissage du tableau

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2

Étape 4 : Remplissage du tableau

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2

Étape 4 : Remplissage du tableau

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2

Dans quel ordre?

Selon la récurrence, on consulte des cases à gauche de la case courante.

Donc, on remplira le tableau de gauche à droite.

$$c[j] = \min_{i=1}^{\lfloor j/2 \rfloor} (c[i] + c[j-i])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 1 2 3 4 5 6 7 8

nb de pièces: 1 2 3 1 2 1 2 2

Étape 5 : Récupération de la réponse

Où est notre réponse?

À la case c[N].

Et pour retrouver les pièces qu'il faut donner?

- On retrace nos pas à partir de la case réponse, identifiant laquelle des alternatives nous avons utilisée à chaque étape.
- On crée un autre tableau qui mémorise l'index i qui minimise l'expression (négatif si c'est une valeur frontière).

Exemple (
$$N = 8, n = 3, d_1 = 1, d_2 = 4, d_3 = 6$$
)

montant :	1	2	3	4	5	6	7	8
nb de pièces :	1	2	3	1	2	1	2	2
index :	-1	1	1	-2	1	-3	1	4

Algorithme

```
fonction faire monnaie(N, n, \langle d_1, \ldots, d_n \rangle)
      définir c[1...N] et I[1...N];
      pour i = 1 à N faire
            c[i] \leftarrow \infty:
      pour i=1 à n faire
            c[d_i] \leftarrow 1;
            I[d_i] \leftarrow -i:
      pour i = 1 à N faire
            si c[j] \neq 1 alors
                  pour i = 1 à |j/2| faire
                       \operatorname{si} c[i] > c[i] + c[i-i] alors
                             c[i] \leftarrow c[i] + c[i-i]:
                             I[i] \leftarrow i:
      retourner c[N] et I;
```

Analyse de la consommation de ressources

```
fonction faire monnaie(N, n, \langle d_1, \ldots, d_n \rangle)
      définir c[1...N] et I[1...N];
      pour i = 1 à N faire
           c[i] \leftarrow \infty:
      pour i=1 à n faire
           c[d_i] \leftarrow 1:
           I[d_i] \leftarrow -i:
      pour i = 1 à N faire
           si c[j] \neq 1 alors
                 pour i = 1 à |j/2| faire
                      si c[i] > c[i] + c[j - i] alors
                            c[i] \leftarrow c[i] + c[i-i]:
                            I[i] \leftarrow i:
      retourner c[N] et I;
```

Polynomial?

Non, car la consommation de l'algorithme dépend de la *magnitude* des nombres en entrée (ici, N dans la consommation $\Theta(n+N^2)$) : elle est polynomiale dans la *valeur* de l'exemplaire, mais exponentielle dans la *taille* de l'exemplaire (nombre de bits ou de chiffres décimaux pour le représenter).

On dit qu'il s'agit d'un algorithme pseudo-polynomial.

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

Étant donné n types de pièces $1, \ldots, n$ de valeur d_1, \ldots, d_n et une somme N à rendre...

Étant donné n types de pièces $1, \ldots, n$ de valeur d_1, \ldots, d_n et une somme N à rendre...

Définissons un tableau $c[1 \dots n, 0 \dots N]$ où c[i, j] est le nombre minimum de pièces requises pour totaliser un montant j en n'utilisant que des pièces parmi les i premières.

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: 0 1 2 3 4 5 6 7 8

 $d_1 = 1$
 $d_2 = 4$
 $d_3 = 6$

Soit on utilise une pièce de type $i: 1 + c[i, j - d_i]$

Soit on utilise une pièce de type $i: 1 + c[i, j - d_i]$

Soit on n'en utilise pas : c[i-1,j]

Relation de récurrence

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Soit on utilise une pièce de type $i: 1 + c[i, j - d_i]$

Soit on n'en utilise pas : c[i-1,j]

Valeurs frontières? c[i, 0] = 0Mais aussi...

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant:
$$\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$$

Valeurs frontières? c[i, 0] = 0Mais aussi...

- aucune pièce disponible : $c[0,j] = \infty$
- somme négative : $c[i,j] = \infty$, j < 0

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple
$$(N = 8, n = 3, d_1 = 1, d_2 = 4, d_3 = 6)$$

Valeurs frontières? c[i, 0] = 0Mais aussi...

- aucune pièce disponible : $c[0,j] = \infty$
- somme négative : $c[i,j] = \infty$, j < 0

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple
$$(N = 8, n = 3, d_1 = 1, d_2 = 4, d_3 = 6)$$

montant:
$$\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$$

Dans quel ordre? Consultons la récurrence :

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$?

Dans quel ordre? Consultons la récurrence :

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$?

Donc : ligne par ligne, ou encore colonne par colonne, ou encore. . .

Pouvons-nous réduire la taille du tableau?

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$

Pouvons-nous réduire la taille du tableau?

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$

• On pourrait ne garder qu'une seule ligne, qu'on met à jour de gauche à droite.

Pouvons-nous réduire la taille du tableau?

$$c[i,j] = \min(1 + c[i,j-d_i], c[i-1,j])$$

Exemple (
$$N = 8$$
, $n = 3$, $d_1 = 1$, $d_2 = 4$, $d_3 = 6$)

montant: $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ d_1 = 1 & 0 & & & & \\ d_2 = 4 & 0 & & & & \\ d_3 = 6 & 0 & & & & \end{vmatrix}$

- On pourrait ne garder qu'une seule ligne, qu'on met à jour de gauche à droite.
- Mais pour pouvoir retrouver les pièces, on conservera tout le tableau.

Étape 5 : Récupération de la réponse

Où est notre réponse?

À la case c[n, N].

Et pour retrouver les pièces qu'il faut donner?

On retrace nos pas à partir de la case réponse, identifiant à chaque étape laquelle des deux alternatives nous avons utilisée.

montant :									
$d_1 = 1$ $d_2 = 4$ $d_3 = 6$	0	1	2	3	4	5	6	7	8
$d_2 = 4$	0	1	2	3	1	2	3	4	2
$d_3 = 6$	0	1	2	3	1	2	1	2	2

Analyse de la consommation de ressources

montant :	0	1	2	3	4	5	6	7	8
$d_1 = 1$	0	1	2	3	4	5	6	7	8
$d_2 = 4$	0	1	2	3	1	2	3	4	2
$d_1 = 1$ $d_2 = 4$ $d_3 = 6$	0	1	2	3	1	2	1	2	2

On a un tableau de taille $n \times (N+1)$ à remplir et deux alternatives à considérer pour chaque case.

Plan,

- Introduction
- 2 Faire de la monnaie
- 3 Voyageur de commerce
- 4 Plus courts chemins

Voyageur de commerce

Rappel: Tournée hamiltonienne la plus courte

- Identifions les sommets par les entiers $\{1, 2, ..., n\}$.
- Sans perte de généralité, notre tournée débutera à 1.
- Dénotons la distance du sommet i au sommet j par d_{ij} .

Introduction
Faire de la monnaie
Voyageur de commerce
Plus courts chemins

Étape 1 : Définition du tableau

Définissons un tableau D où D[i,S] représente la longueur d'un plus court chemin partant de i, passant par tous les sommets de S et se terminant à 1.

Exemple
$$(n = 4)$$

i S $\{\}$ $\{2\}$ $\{3\}$ $\{4\}$ $\{2,3\}$ $\{2,4\}$ $\{3,4\}$

2
3
4

Ce tableau a...

Définissons un tableau D où D[i,S] représente la longueur d'un plus court chemin partant de i, passant par tous les sommets de S et se terminant à 1.

Exemple
$$(n = 4)$$

i S $\{\}$ $\{2\}$ $\{3\}$ $\{4\}$ $\{2,3\}$ $\{2,4\}$ $\{3,4\}$

2
3
4

Ce tableau a... n-1 rangées et...

Définissons un tableau D où D[i,S] représente la longueur d'un plus court chemin partant de i, passant par tous les sommets de S et se terminant à 1.

Exemple
$$(n = 4)$$

i S $\{\}$ $\{2\}$ $\{3\}$ $\{4\}$ $\{2,3\}$ $\{2,4\}$ $\{3,4\}$

2
3
4

Ce tableau a... n-1 rangées et... $2^{n-1}-1$ colonnes

Voyageur de commerce

Principe d'optimalité?

Il s'applique :

une tournée la plus courte sera composée de chemins les plus courts entre une origine et une destination donnée et passant par un sous-ensemble donné des sommets.

S'il existait une façon plus courte d'enchaîner ces sommets, on l'utiliserait dans notre tournée.

Relation de récurrence

$$D[i, S] =$$

Relation de récurrence

$$D[i,S] = egin{cases} \min_{j \in S} (d_{ij} + D[j,S \setminus \{j\}]) & ext{, si } S
eq \emptyset \ d_{i1} & ext{, si } S = \emptyset \end{cases}$$

Valeurs frontières? $D[i, \{\}] = d_{i1}, \quad \forall \ 2 \le i \le n$

Exemple
$$(n = 4)$$

i S | {} {2} {3} {4} {2,3} {2,4} {3,4}

2 | d_{21}
3 | d_{31}
4 | d_{41}

Dans quel ordre?

$$D[i,S] = \min_{j \in S} (d_{ij} + D[j,S \setminus \{j\}])$$

```
Exemple (n = 4)

i S \{\} \{2\} \{3\} \{4\} \{2,3\} \{2,4\} \{3,4\}

2 d_{21}
3 d_{31}
4 d_{41}
```


Exemple									
i	S	{}	{2}	{3}	{4 }	{5}	{6}		
2		2	-	6	7	5	∞		
3		3	5	-	5	∞	∞		
4		4	5	4	-	4	2		
5		2	5	∞	6	-	4		
6		1	∞	∞	5	5	-		

Exemple

```
S | \{2,3\} \{2,4\} \{2,5\} \{2,6\} \{3,4\} \{3,5\} \{3,6\} \{4,5\} \{4,6\} \{5,6\}
2
                                                 7
                                                                                       5
                                                          \infty
                                                                   \infty
3
                    6
                                                                              5
                                      \infty
                                                                                                \infty
4
                                                                                                 6
                                      \infty
                                                          \infty
5
                                                 6
                                      \infty
                    6
                                                 5
6
                                                                              5
          \infty
                                                          \infty
```

Exemple											
i S	{2,3}	{2,4} {2	2,5} {2,6]	{3,4}	{3,5}	{3,6} {	[4,5]	{4,6}	{5,6}		
2	-	-		7	∞	∞	7	5	7		
3	-	6	8 ∞	-	-	-	5	3	∞		
4	6	-	7 ∞	-	∞	∞	-	-	6		
5	9	7	- ∞	6	-	-	-	4	-		
6	∞	6	8 -	5	∞	-	5	-	-		
$i S[2,3,4]{2,3,5}{2,3,6}{2,4,5}{2,4,6}{2,5,6}{3,4,5}{3,4,6}{3,5,6}{4,5,6}$											
2	-	-	-	-	-	-		8	6	∞	9
3	-	-	-	8	8	10)	-	-	-	7
4	-	9	∞	-	-	10)	-	-	∞	-
5	8	-	∞	-	8	-		-	8	-	-
6	7	12	-	8	-	-		9	-	-	-

```
Exemple
  S{2,3,4}{2,3,5}{2,3,6}{2,4,5}{2,4,6}{2,5,6}{3,4,5}{3,4,6}{3,5,6}{4,5,6}
2
                                                                         \infty
3
                                 8
                                         8
                                                 10
4
                                                 10
                        \infty
                                                                         \infty
5
                                         8
                                                                  8
                        \infty
6
               12
                                 8
                                                          9
  S{2,3,4,5}{2,3,4,6}{2,3,5,6}{2,4,5,6}{3,4,5,6}
                                                   10
3
                                        11
4
                             11
5
6
        10
```

Étape 5 : Récupération de la réponse

Où est notre réponse ? $D[1, \{2, 3, \ldots, n\}]$.

Exemple

i S	$\{2, 3, 4, 5\}$	$\{2, 3, 4, 6\}$	$\{2,3,5,6\}$	$\{2,4,5,6\}$	$\{3,4,5,6\}$
2	-	-	-	-	10
3	-	-	-	11	-
4	-	-	11	-	-
5	-	9	-	-	-
6	10	-	-	-	-

$$D[1,\{2,3,4,5,6\}] = min\{ d_{12} + D[2,\{3,4,5,6\}], d_{13} + D[3,\{2,4,5,6\}], d_{14} + D[4,\{2,3,5,6\}], d_{15} + D[5,\{2,3,4,6\}], d_{16} + D[6,\{2,3,4,5\}]\}, = min\{12, 14, 15, 11, 11\} = 11$$

Étape 5 : Récupération de la réponse

Analyse de la consommation de ressource

Relation de récurrence

$$D[i,S] = egin{cases} \min_{j \in S} (d_{ij} + D[j,S \setminus \{j\}]) & ext{, si } S
eq \emptyset \ d_{i1} & ext{, si } S = \emptyset \end{cases}$$

Plan

- 1 Introduction
- 2 Faire de la monnaie
- 3 Voyageur de commerce
- 4 Plus courts chemins

Plus courts chemins

Problème

Soit G = (N, A) un graphe orienté avec $N = \{1, ..., n\}$ et dont les arcs ont une longueur non négative.

Quelle est la longueur du plus court chemin entre chaque paire de sommets?

Étape 1 : Définition du tableau

Définissons un tableau $D[1 \dots n, 1 \dots n, 0 \dots n]$ où D[i, j, k] est la longueur du plus court chemin de i à j dont les sommets intermédiaires sont parmi $1, \dots, k$.

Introduction Faire de la monnaie Voyageur de commerce Plus courts chemins

Étape 2 : Définition de la récurrence

Étape 2 : Définition de la récurrence

Soit on passe par
$$k : D[i, j, k] = D[i, k, k - 1] + D[k, j, k - 1]$$

Étape 2 : Définition de la récurrence

Soit on passe par
$$k : D[i, j, k] = D[i, k, k - 1] + D[k, j, k - 1]$$

Soit on n'y passe pas :
$$D[i,j,k] = D[i,j,k-1]$$

Étape 2 : Définition de la récurrence

Relation de récurrence

$$D[i,j,k] = \min(D[i,k,k-1] + D[k,j,k-1], D[i,j,k-1])$$

Soit on passe par
$$k : D[i, j, k] = D[i, k, k - 1] + D[k, j, k - 1]$$

Soit on n'y passe pas :
$$D[i, j, k] = D[i, j, k - 1]$$

Plus courts chemins

Principe d'optimalité?

Il s'applique :

si $\alpha \cdot \beta$ (où $\alpha = \langle i, \dots, k \rangle$ et $\beta = \langle k, \dots, j \rangle$) est un plus court chemin de i à j alors α et β doivent aussi être les plus courts.

Étape 3 : Les valeurs frontières

Valeurs frontières? D[i, j, 0] = longueur de l'arc (i, j)

Dans quel ordre?

$$D[i,j,k] = \min(D[i,k,k-1] + D[k,j,k-1], D[i,j,k-1])$$

Dans quel ordre?

$$D[i,j,k] = \min(D[i,k,k-1] + D[k,j,k-1], \ D[i,j,k-1])$$

Selon k croissant.

Pouvons-nous réduire la taille du tableau?

$$D[i,j,k] = \min(D[i,k,k-1] + D[k,j,k-1], D[i,j,k-1])$$

Puisque le calcul d'une case $D[\cdot, \cdot, k]$ ne sollicite que des cases $D[\cdot, \cdot, k-1]$, on pourrait utiliser un tableau de dimensions $n \times n \times 2$.

On pourrait même éliminer la 3^e dimension (k) au complet à condition de garantir que D[i, k, k] et D[k, j, k] sont mis à jour après D[i, j, k].

Mais les $k^{\text{ième}}$ ligne et colonne ne changeront pas durant cette itération : D[i, k, k] = D[i, k, k-1] et D[k, j, k] = D[k, j, k-1].

On peut donc passer à un tableau $n \times n$.

Étape 5 : Récupération de la réponse

Où est notre réponse?

Aux cases $D[\star, \star]$ à la fin de l'algorithme $(D[\star, \star, n]$ dans l'ancien tableau)

Et pour retrouver ces plus courts chemins?

On maintient un autre tableau I de mêmes dimensions qui contient, pour chaque paire de sommets $\langle i,j \rangle$, la dernière itération à laquelle D[i,j] a été modifiée :

- si $I[i,j] = \ell > 0$ alors ce chemin passe par ℓ et on consultera les cases $I[i,\ell]$ et $I[\ell,j]$ pour la suite;
- si I[i,j] = 0 alors c'est l'arc (i,j).

Algorithme de Floyd

```
fonction Floyd(L[1..n, 1..n]:longueurs): deux tableaux [1..n, 1..n]
     tableaux D[1..n, 1..n] et I[1..n, 1..n];
      D \leftarrow I:
      I \leftarrow 0:
      pour k=1 à n faire
           pour i = 1 à n faire
                pour i=1 à n faire
                    si D[i, j] > D[i, k] + D[k, j]) alors
                         D[i,j] \leftarrow D[i,k] + D[k,j];
                         I[i,j] \leftarrow k:
      retourner D et 1:
```

Analyse de la consommation de ressources

```
fonction Floyd(L[1..n, 1..n]:longueurs): deux tableaux [1..n, 1..n]
     tableaux D[1..n, 1..n] et I[1..n, 1..n];
     D \leftarrow L:
     I \leftarrow 0:
     pour k=1 à n faire
          pour i=1 à n faire
               pour i=1 à n faire
                    si D[i, j] > D[i, k] + D[k, j]) alors
                         D[i,j] \leftarrow D[i,k] + D[k,j];
                         I[i,j] \leftarrow k:
     retourner D et 1:
```