The Predicate Calculus

Outline

- Motivation
- The Language and Its Syntax
- Semantics
- Quantification
- Semantics of Quantifiers
- Predicate Calculus as a Language for Representing Knowledge

Motivation

- Propositional calculus
 - Expressional limitation
 - Atoms have no internal structures.
- First-order predicate calculus
 - has names for objects as well as propositions.
 - Symbols
 - Object constants
 - Relation constants
 - Function constants
 - Other constructs
 - Refer to objects in the world
 - Refer to propositions about the world

The Language and its Syntax

- Components
 - Infinite set of object constants
 - Aa, 125, 23B, Q, John, EiffelTower
 - Infinite set of function constants
 - fatherOf¹, distanceBetween², times²
 - Infinite set of relation constants
 - Parent², Large¹, Clear¹
 - Propositional connectives

$$\vee$$
, \wedge , \neg , \supset

- Delimiters
 - (,), [,] ,(separator)

The Language and its Syntax

- Terms
 - Object constant is a term
 - Functional expression
 - fatherOf(John, Bill), times(4, plus(3, 6)), Sam
- wffs
 - Atoms
 - Relation constant of arity n followed by n terms is an atom (atomic formula)
 - An atom is a wff.
 - Greaterthan(7,2), P(A, B, C, D), Q
 - Propositional wff

 $[Greaterthan(7,2) \land Lessthan(15,4)] \lor \neg Brother(John, Sam) \lor P$

Semantics

Worlds

- Individuals
 - Objects
 - Concrete examples: Block A, Mt. Whitney, Julius Caesar, ...
 - Abstract entities: 7, set of all integers, ...
 - Fictional/invented entities: beauty, Santa Claus, a unicorn, honesty, ...
- Functions on individuals
 - Map n tuples of individuals into individuals
- Relations over individuals
 - Property: relation of arity 1 (heavy, big, blue, ...)
 - Specification of n-ary relation: list all the n tuples of individuals 6

Semantics

- Interpretations
 - Assignment: maps the followings
 - object constants into objects in the world
 - *n*-ary constants into *n*-ary functions
 - *n*-ary relation constants into *n*-ary relations
 - called denotations of corresponding predicate-calculus expressions
 - Domain
 - Set of objects to which object constant assignments are made
 - True False values

Table 1: A Mapping between Predicate Calculus and the World

Determination of the value of some predicate-claculus wffs

On(A,B) is *False* because $\langle A,B \rangle$ is not in the relation **On**.

Clear(B) is *True* because is in the relation **Clear**.

On(C,F1) is *True* because <C,Floor> is in the relation **On**.

 $On(C,F1) \land \neg On(A,B)$ is *True* because both On(C,F1) and $\neg On(A,B)$ are True

Semantics

- Models and Related Notions
 - An interpretation satisfies a wff
 - wff has the value *True* under that interpretation
 - Model of wff
 - An interpretation that satisfies a wff
 - Valid wff
 - Any wff that has the value True under all interpretations
 - inconsistent unsatisfiable wff
 - Any wff that does not have a model
 - Δ logically entails ω ($\Delta \mid = \omega$)
 - A wff ω has value *True* under all of those interpretations for which each of the wffs in a set Δ has value *True*
 - Equivalent wffs
 - Truth values are identical under all interpretations

Semantics

- Knowledge
 - Predicate-calculus formulas
 - represent knowledge of an agent
 - Knowledge base of agent
 - Set of formulas

Fig. 2: Three Blocks-World Situations

Quantification

- Finite domain
 - Clear(B1) ∧ Clear(B2) ∧ Clear(B3) ∧ Clear(B4)
 - Clear(B1) \(\times \) Clear(B2) \(\times \) Clear(B3) \(\times \) Clear(B4)
- Infinite domain
 - Problems of long conjunctions or disjunctions → impractical
- New syntactic entities
 - Variable symbols
 - consist of strings beginning with lowercase letters
 - term
 - Quantifier symbols → give expressive power to predicate-calculus
 - ∀: universal quantifier
 - ∃: existential quantifier

Quantification

- $(\forall \zeta)\omega$, $(\exists \zeta)\omega$: wff
 - ω : wff \rightarrow within the scope of the quantifier
 - ζ: quantified variable
- Closed wff (closed sentence)
 - All variable symbols besides ζ in ω are quantified over in ω

$$(Ax)[P(x) \supset R(x)], \quad (\exists x)[P(x) \supset (Ey)[R(x, y) \supset S(f(x))]]$$

Property

$$(\forall x)[(\forall y)\omega] = (\forall y)[(\forall x)\omega] = (\forall x, y)\omega$$
$$(\forall x)[(\exists y)\omega] \neq (\exists y)[(\forall x)\omega]$$

- First-order predicate calculi
 - restrict quantification over relation and function symbols

Universal Quantifiers

- $(\forall \zeta)\omega(\zeta) = True$
 - $\omega(\zeta)$ is *True* for *all* assignments of ζ to objects in the domain
- Example: (∀x)[On(x,C) ⊃ ¬Clear(C)]? in Fig. 1
 - x: A, B, C, Floor
 - investigate each of assignments in turn for each of the interpretations

Existential Quantifiers

- $(\exists \zeta)\omega(\zeta) = True$
 - $\omega(\zeta)$ is *True* for *at least one* assignments of ζ to objects in the domain

Useful Equivalences

- $\neg (\forall \xi) \omega(\zeta) \equiv (\exists \zeta) \neg \omega(\zeta)$
- $\neg (\exists \xi) \omega(\zeta) \equiv (\forall \zeta) \neg \omega(\zeta)$
- $(\forall \xi)\omega(\zeta) \equiv (\forall \eta) \omega(\eta)$

Rules of Inference

- Propositional-calculus rules of inference → predicate calculus
 - modus ponens
 - Introduction and elimination of ∧
 - Introduction of
 - elimination
 - Resolution
- Two important rules
 - Universal instantiation (UI)
 - Existential generalization (EG)

- Universal instantiation
 - $(\forall \xi)\omega(\zeta) \rightarrow \omega(\alpha)$
 - $\omega(\zeta)$: wff with variable ζ
 - α: constant symbol
 - $\omega(\alpha)$: $\omega(\zeta)$ with substituted for ζ throughout ω
 - Example: $(\forall x)P(x, f(x), B) \rightarrow P(A, f(A), B)$

- Existential generalization
 - $\omega(\alpha) \rightarrow (\exists \xi)\omega(\zeta)$
 - $\omega(\alpha)$: wff containing a constant symbol α
 - $\omega(\zeta)$: form with ξ replacing every occurrence of α throughout ω
 - Example: $(\forall x)Q(A, g(A), x) \rightarrow (\exists y)(\forall x)Q(y, g(y), x)$

Predicate Calculus as a Language for Representing Knowledge

Conceptualizations

- Predicate calculus
 - language to express and reason the knowledge about real world
 - represented knowledge: explored throughout logical deduction
- Steps of representing knowledge about a world
 - To conceptualize a world in terms of its objects, functions, and relations
 - To invent predicate-calculus expressions with objects, functions, and relations
 - To write wffs satisfied by the world: wffs will be satisfied by other interpretations as well

Predicate Calculus as a Language for Representing Knowledge

- Usage of the predicate calculus to represent knowledge about the world in AI
 - John McCarthy (1958): first use
 - Guha & Lenat 1990, Lenat 1995, Lenat & Guha 1990
 - CYC project
 - represent millions of commonsense facts about the world
 - Nilsson 1991: discussion of the role of logic in AI
 - Genesereth & Nilsson 1987: a textbook treatment of AI based on logic

Predicate Calculus as a Language for Representing Knowledge

Examples

- Examples of the process of conceptualizing knowledge about a world
- packages in an office building
 - Package(x): the property of something being a package
 - **Inroom**(x, y): certain object is in a certain room
 - Relation constant **Smaller**(x,y): certain object is smaller than another certain object
 - "All of the packages in room 27 are smaller than any of the packages in room 28"

```
(\forall x, y)\{[\text{Package}(x) \land \text{Package}(y) \land \text{Inroom}(x,27) \land \text{Inroom}(y,28)] \supset \text{Smaller}(x,y)\}
```

Language for Representing Knowledge

 "Every package in room 27 is smaller than one of the packages in room 28"

```
(\exists y)(\forall x)\{[\operatorname{Package}(x) \land \operatorname{Package}(y) \land \operatorname{Inroom}(x,27) \land \operatorname{Inroom}(y,28)] \supset \operatorname{Smaller}(x,y)\}
(\forall x)(\exists y)\{[\operatorname{Package}(x) \land \operatorname{Package}(y) \land \operatorname{Inroom}(x,27) \land \operatorname{Inroom}(y,28)] \supset \operatorname{Smaller}(x,y)\}
```

- Way of stating the arrival time of an object
 - Arrived(x,z)
 - X: arriving object
 - Z: time interval during which it arrived
 - "Package A arrived before Package B"
 (∃z1, z2)[Arrive d(A, z1) ∧ Arrived(B, z2) ∧ Before(z1, z2)]
 - Temporal logic: method of dealing with time in computer science and AI

Language for Representing Knowledge

- Difficult problems in conceptualization
 - "The package in room 28 contains one quart of milk"
 - Mass nouns
 - Is milk an object having the property of being white?
 - What happens when we divide quart into two pints?
 - Does it become two objects, or does it remain as one?
 - Extensions to the predicate calculus
 - allow one agent to make statements about the knowledge of another agent
 - "Robot A knows that Package B is in room 28"