1. W procesie technologicznym obserwowano średnie rozmiary drobin Y (w mikronach). Technologom wydaje się, że kluczowe znaczenie dla tej wielkości ma prędkość liniowa X_1 obwodu koła rozdrabniającego, wielkość dopływu X_2 surowca na to koło oraz lepkość X_3 surowca. Opisać zależność rozmiarów uzyskiwanych drobin od pozostałych zmiennych.

Lp	X_1	X_2	X_3	Y	Lp	X_1	X_2	X_3	Y
1	0.0174	5300	0.108	25.4	19	0.1010	5700	0.098	39.7
2	0.0630	5400	0.107	31.6	20	0.0622	6200	0.102	31.5
3	0.0622	8300	0.107	25.7	21	0.0622	7700	0.102	26.9
4	0.0118	10800	0.106	17.4	22	0.0170	10200	0.100	18.1
5	0.1040	4600	0.102	38.2	23	0.0118	4800	0.102	28.4
6	0.0118	11300	0.105	18.2	24	0.0408	6600	0.102	27.3
7	0.0122	5800	0.105	26.5	25	0.0622	8300	0.102	25.8
8	0.0122	8000	0.100	19.3	26	0.0170	7700	0.102	23.1
9	0.0408	10000	0.106	22.3	27	0.0408	9000	0.613	23.4
10	0.0408	6600	0.105	26.4	28	0.0170	10100	0.619	18.1
11	0.0630	8700	0.104	25.8	29	0.0408	5300	0.671	30.9
12	0.0408	4400	0.104	32.2	30	0.0622	8000	0.624	25.7
13	0.0415	7600	0.106	25.1	31	0.1010	7300	0.613	29.0
14	0.1010	4800	0.106	39.7	32	0.0118	6400	0.328	22.0
15	0.0170	3100	0.106	35.6	33	0.0170	8000	0.341	18.8
16	0.0412	9300	0.105	23.5	34	0.0118	9700	1.845	17.9
17	0.0170	7700	0.098	22.1	35	0.0408	6300	1.940	28.4
18	0.0170	5300	0.099	26.5					

2. Przeprowadzić analizę regresji ciężaru właściwego drewna (Y) od liczby włókien na mm² w drewnie wiosennym (X_1) i letnim (X_2) , procentu drewna wiosennego (X_3) oraz procentu absorpcji światła drewna wiosennego (X_4) i letniego (X_5) .

X_1	X_2	X_3	X_4	X_5	Y	X_1	X_2	X_3	X_4	X_5	Y
573	1059	46.5	53.8	84.1	0.534	651	1336	52.7	54.5	88.7	0.535
606	1273	49.4	52.1	92.0	0.570	630	1151	48.9	50.3	87.9	0.528
547	1135	53.1	51.9	91.5	0.548	557	1236	54.9	55.2	91.4	0.555
489	1231	56.2	45.5	82.4	0.481	685	1564	56.6	44.3	91.3	0.516
536	1182	59.2	46.4	85.4	0.475	685	1564	63.1	56.4	91.4	0.486
664	1588	50.6	48.1	86.7	0.554	703	1335	51.9	48.4	81.2	0.519
653	1395	62.5	51.9	89.2	0.492	586	1114	50.5	56.5	88.9	0.517
534	1143	52.1	57.0	88.9	0.502	523	1320	50.5	61.2	91.9	0.508
580	1249	54.6	60.8	95.4	0.520	448	1028	52.2	53.4	91.8	0.506
476	1057	42.9	53.2	92.9	0.595	528	1057	42.4	56.6	90.9	0.568

3. Niedaleko autostraty *San Diego* w Los Angeles umieszczono przyrządy pomiarowe. Począwszy od północy mierzono co godzinę stężenie CO, natężenie ruchu oraz składową prostopadłą prędkości wiatru: szybkość wiatru-cosinus(kierunek wiatru – kierunek prostopadły do autostrady).

Godzina	CO	Natężenie	Składowa	Godzina	$_{\rm CO}$	Natężenie	Składowa
1	2.4	50	-0.2	13	5.8	179	4.6
2	1.7	26	0.0	14	5.5	178	5.4
3	1.4	16	0.0	15	5.9	203	5.9
4	1.2	10	0.0	16	6.8	264	5.9
5	1.2	12	0.1	17	7.0	289	5.6
6	2.0	41	-0.1	18	7.4	308	4.9
7	3.4	157	-0.1	19	6.4	267	3.8
8	5.8	276	-0.2	20	5.0	190	2.5
9	6.8	282	0.2	21	3.8	125	1.4
10	6.6	242	1.0	22	3.5	120	0.6
11	6.6	200	2.3	23	3.3	116	0.4
12	6.3	186	3.8	24	3.1	87	0.1

4. Przeprowadzić analizę regresji gęstości gotowego wyrobu (Y) od ilości wody w mieszaninie produktu (X_1) , ilości przerobionego surowca w mieszaninie produktu (X_2) , temperatury mieszaniany (X_3) , temperatury powietrza w komorze suszenia oraz przyrostu temperatury (X_5) będącego miernikiem jakości surowca.

X_1	X_2	X_3	X_4	X_5	Y	X_1	X_2	X_3	X_4	X_5	Y
0	800	135	578	13.195	104	75	800	135	550	12.745	103
0	800	135	578	13.195	102	75	800	135	550	12.745	111
0	800	135	578	13.195	100	75	800	135	550	12.745	111
0	800	135	578	13.195	96	75	800	135	550	12.745	107
0	800	135	578	13.195	93	75	800	135	550	12.745	112
0	800	135	578	13.195	103	75	800	135	550	12.745	106
0	800	150	585	13.180	118	75	800	150	595	13.885	111
0	800	150	585	13.180	113	75	800	150	595	13.885	107
0	800	150	585	13.180	107	75	800	150	595	13.885	104
0	800	150	585	13.180	114	75	800	150	595	13.885	103
0	800	150	585	13.180	110	75	800	150	595	13.885	104
0	800	150	585	13.180	114	75	800	150	595	13.885	103
0	1000	135	590	13.440	97	75	1000	135	530	11.705	116
0	1000	135	590	13.440	87	75	1000	135	530	11.705	108
0	1000	135	590	13.440	92	75	1000	135	530	11.705	104
0	1000	135	590	13.440	85	75	1000	135	530	11.705	116
0	1000	135	590	13.440	94	75	1000	135	530	11.705	116
0	1000	135	590	13.440	102	75	1000	135	530	11.705	112
0	1000	150	590	13.600	104	75	1000	150	590	13.835	111
0	1000	150	590	13.600	102	75	1000	150	590	13.835	110
0	1000	150	590	13.600	101	75	1000	150	590	13.835	115
0	1000	150	590	13.600	104	75	1000	150	590	13.835	114
0	1000	150	590	13.600	98	75	1000	150	590	13.835	114
0	1000	150	590	13.600	101	75	1000	150	590	13.835	114

5. Zbadać, czy istnieje zależność między plonem pewnej rośliny, a nawożeniem mineralnym (NPK), nawożeniem naturalnym (naturalne), opadem (opad) oraz długością okresu wegetacji (wegetacja). Jeżeli taka zależność istnieje, to znaleźć najlepszy ilościowy opis tej zależności.

WOJEWÓDZTWA	plon	NPK	naturalne	opad	wegetacja
krakowskie	31.1	70.4	44	720	248
zamojskie	30.4	54.0	36	572	245
opolskie	39.0	138.0	34	571	274
wrocławskie	39.2	115.1	19	641	275
elbląskie	35.0	113.7	28	731	275
legnickie	38.6	86.6	21	486	275
przemyskie	30.1	60.2	39	668	245
lubelskie	27.5	122.6	40	662	244
tarnobrzeskie	27.7	50.5	38	572	260
tarnowskie	30.8	53.9	51	623	244
rzeszowskie	27.4	36.1	50	700	245
wałbrzyskie	40.2	88.5	22	648	259
toruńskie	34.7	174.0	40	612	258
leszczyńskie	41.9	98.4	55	598	275
płockie	29,0	41.0	44	686	262
szczecińskie	33.9	73.9	18	722	277
bydgoskie	32.6	120.8	37	644	253
katowickie	33.1	71.5	37	755	274
kieleckie	26.3	56.1	47	639	244
olsztyńskie	27.7	48.8	30	737	248
chełmskie	27.2	59.4	27	606	244
poznańskie	41.3	118.4	42	586	274
jeleniogórskie	30.4	50.1	21	744	257
wrocławskie	31.9	119.8	40	645	258
gorzowskie	35.7	89.9	21	616	277

6. Samochodami chłodniami transportowane jest mięso. W czasie transportu następuje ubytek masy przewożonego mięsa. Znaleźć zależność między ubytkiem masy mięsa a czasem transportu i odległością na jaką jest ono transportowane oraz temperaturą panującą w chłodni.

Ubytek	Czas	Odległość	Temperatura
6.15	138	75.6	4.5
4.30	62	43.6	7.0
4.90	85	52.8	6.5
6.10	122	77.6	4.9
6.80	141	93.6	4.0
4.45	74	42.0	6.8
6.45	128	92.0	4.2
5.05	90	60.8	5.2
6.45	135	81.6	4.8
4.45	62	50.0	5.9
4.20	74	48.8	6.2
4.45	85	57.6	7.1
4.20	67	46.4	6.8
6.15	124	81.6	4.6
5.75	119	67.2	5.0
5.20	99	56.0	5.2

7. Zbadać, czy istnieje zależność między stopą bezrobocia, a nakładami na inwestycje w gminach, dochodami gmin, subwencjami oraz dotacjami. Jeżeli taka zależność istnieje to znaleźć najlepszy jej opis ilościowy.

•		-							
bezrobocie	nakłady	dochody	subwencje	dotacje	bezrobocie	nakłady	dochody	subwencje	dotacje
0.85	3.71	3.62	0.34	0.34	0.83	10.80	7.63	0.66	0.77
0.82	3.62	3.79	0.11	1.75	0.95	4.14	0.49	0.20	1.74
0.95	5.69	7.00	0.14	1.28	0.68	7.31	6.11	0.66	0.37
0.89	7.58	0.97	0.56	0.72	0.80	3.46	5.27	0.08	1.46
0.82	4.63	6.31	0.44	1.03	0.89	10.84	3.71	0.38	1.51
0.82	9.83	7.56	0.49	1.54	0.95	3.38	0.45	0.53	1.87
0.94	5.27	3.36	0.37	0.67	0.66	6.70	6.00	0.41	0.31
0.89	7.96	5.59	0.28	1.21	0.74	10.50	5.30	0.45	0.40
0.98	6.93	7.47	0.61	1.34	0.83	2.59	7.53	0.15	1.59
0.89	8.22	1.31	0.17	0.12	0.83	2.99	6.66	0.04	0.25
1.12	10.34	3.68	0.55	1.76	0.78	6.69	7.77	0.47	0.25
0.95	6.63	1.77	0.52	1.87	0.76	9.69	3.50	0.57	1.38
1.00	6.33	1.78	0.70	0.30	0.70	2.50	0.84	0.14	0.88
0.80	2.54	0.70	0.68	1.47	0.93	7.74	6.03	0.08	1.14
0.97	5.43	4.05	0.69	0.16	0.83	6.21	3.88	0.27	0.33
0.94	4.27	6.80	0.66	0.23	0.97	5.14	4.98	0.58	1.44
0.91	7.55	1.52	0.10	0.39	0.72	9.24	1.57	0.11	1.33
0.82	7.92	3.61	0.65	1.98	0.89	2.11	2.88	0.60	1.05
0.90	5.94	2.94	0.63	1.94	0.79	6.92	3.50	0.09	1.13
0.72	10.78	6.57	0.16	1.01	0.95	5.09	4.53	0.44	0.29
0.84	5.99	1.08	0.32	1.84	1.07	7.78	0.90	0.33	0.49
0.72	3.25	5.15	0.33	2.00	0.98	6.64	0.71	0.08	0.53
0.75	4.12	7.19	0.32	0.20	0.92	7.20	7.22	0.22	0.72
0.96	6.10	7.95	0.04	0.57	0.97	9.73	1.71	0.29	1.51
1.04	7.41	1.78	0.14	1.43	0.79	6.96	7.52	0.15	1.00
0.81	4.09	1.04	0.14	1.73	0.92	6.92	1.31	0.57	1.51
0.91	3.53	3.60	0.67	0.09	0.78	9.45	6.85	0.35	1.99
0.78	4.26	1.61	0.26	0.24	0.76	3.97	2.62	0.57	0.71
0.83	7.93	4.97	0.68	0.75	0.91	8.44	1.01	0.29	0.28
0.83	2.01	1.64	0.19	0.24	0.78	7.36	7.05	0.41	1.22
0.72	4.19	6.27	0.55	1.78	0.75	3.86	6.48	0.50	0.81
0.84	4.79	5.98	0.10	0.77	0.96	2.55	3.68	0.46	1.65
0.85	5.82	0.47	0.50	0.54	0.81	7.46	0.51	0.38	0.19
0.77	6.92	6.06	0.42	0.89	0.87	7.49	0.54	0.18	0.57
0.92	2.47	0.64	0.27	0.75	0.88	4.50	3.62	0.17	1.20
0.90	7.46	4.89	0.03	1.78	0.98	10.57	3.12	0.60	0.38
1.02	3.57	4.53	0.60	1.70	0.81	4.28	4.53	0.57	1.06
0.75	10.60	4.66	0.33	0.90	0.97	9.30	2.99	0.62	0.96
0.76	2.95	2.26	0.05	0.98	1.01	10.68	3.72	0.49	0.73
1.09	9.43	3.33	0.10	1.55	0.97	10.02	4.48	0.15	1.82
0.93	8.41	5.12	0.22	1.16	0.83	9.77	0.39	0.28	0.05
0.85	8.65	5.57	0.46	1.73	0.76	6.08	0.72	0.59	1.49
0.91	7.46	5.15	0.10	0.54	0.83	5.26	6.73	0.50	0.09
0.78	7.79	6.22	0.65	1.41	0.99	6.32	4.08	0.54	1.15
0.84	7.96	7.23	0.47	1.54	0.97	5.97	6.86	0.58	1.36
0.67	7.17	7.49	0.66	0.21	0.85	7.36	2.86	0.62	1.81
0.89	5.27	6.74	0.12	1.92	0.86	7.28	0.60	0.56	1.62
0.97	7.56	6.16	0.49	0.37	0.84	2.32	3.72	0.06	0.11
0.85	10.20	5.31	0.24	1.08	0.89	7.13	2.22	0.05	1.67
0.79	7.56	6.47	0.67	1.14	0.99	5.43	4.20	0.64	1.12

8. Badano zależność ubytku masy lnu na skutek procesu zmiękczania w zależności od średniej dziennej temperatury (w stopniach Farenheita), średnich dziennych opadów (w punktach) oraz długości procesu zmiękczania (w dniach). Znajdź postać badanej zależności oraz zbadaj jej istotność.

Opad	Dlugość	Temperatura	Ubytek	Opad	Dlugość	Temperatura	Ubytek
4.3	62	78	17.3	3.4	70	76	15.8
4.3	62	78	15.8	3.6	77	75	16.1
4.5	68	78	17.6	3.6	77	75	19.4
4.5	68	78	18.9	3.9	63	73	17.3
4.3	74	78	15.0	3.9	63	73	16.1
4.3	74	78	15.8	5.1	70	71	18.4
6.1	71	78	18.1	5.1	70	71	16.1
6.1	71	78	17.6	5.9	77	70	17.3
5.6	78	78	18.7	5.9	77	70	18.2
5.6	78	78	18.7	4.9	63	68	16.1
5.6	85	77	17.9	4.9	63	68	15.0
5.6	85	77	19.2	4.6	70	68	15.9
6.1	69	76	18.4	4.6	70	68	14.3
6.1	69	76	16.7	4.8	77	66	14.6
5.5	76	76	18.1	4.8	77	66	14.9
5.5	76	76	17.5	4.9	56	66	16.5
5.0	83	76	16.3	4.9	56	66	14.2
5.0	83	76	19.1	5.1	63	65	15.8
5.6	70	76	19.4	5.1	63	65	15.5
5.6	70	76	17.5	5.4	70	63	19.5
5.2	77	76	17.6	5.4	70	63	19.4
5.2	77	76	18.3	6.5	49	62	15.3
4.8	84	75	19.5	6.5	49	62	18.8
4.8	84	75	18.7	6.8	56	60	17.4
3.8	63	77	12.7	6.8	56	60	18.7
3.8	63	77	16.8	6.2	63	60	17.6
3.4	70	76	17.0	6.2	63	60	17.6

9. Badano dochód przypadający na jednego mieszkańca w zależności od procentu siły roboczej zangażowanej w rolnictwo oraz przemysł. W jaki sposób dochód zależy od stopnia zaangażowania kraju w rolnictwo oraz przemysł?

Dochód	Rolnictwo	Przemysł	Dochód	Rolnictwo	Przemysł
938	13	43	639	25	47
927	14	53	921	11	49
1202	11	56	574	23	47
1133	15	51	330	36	30
1507	4	56	575	27	46
1042	18	45	274	33	35
881	15	60	91	56	24
788	20	44	264	42	37
1377	6	52	293	44	33
743	20	49	47	79	12

10. W kilkudziesięciu metropoliach badano poziom śmiertelności w zależności od poziomu edukacji, proporcji kolorowych, przeciętnego dochodu, gęstości zaludnienia oraz proporcji pracujących w biurach i bankach. Znajdź i opisz tę zależność.

Smiert	Edukacja	Kolorowi	Zaludn	BiurBank	Smiert	Edukacja	Kolorowi	Zaludn	BiurBank
877	11.4	8.8	3243	42.6	519	12.1	2.0	2095	51.9
901	11.0	3.5	4281	50.7	640	11.5	13.5	4657	47.3
1081	9.8	0.8	4260	39.4	921	11.1	5.8	2934	44.1
227	11.1	27.1	3125	50.2	521	12.1	2.0	2095	51.9
158	9.6	24.4	6441	43.7	777	10.1	21.0	2682	46.1
808	10.1	13.0	4101	45.7	1055	11.3	8.8	3327	45.3
1143	12.1	3.5	4679	49.2	85	9.7	31.4	3172	45.5
969	10.6	5.3	2140	40.4	555	10.7	11.3	7462	48.7
1012	10.5	8.1	6582	42.5	590	10.5	17.5	6092	45.3
782	10.7	6.7	4213	41.1	773	10.6	8.1	3437	45.5
276	9.6	22.2	2302	41.3	919	12.0	3.6	3387	50.3
907	10.9	16.3	6122	44.9	1122	10.1	2.2	3508	38.8
810	10.2	13.0	4101	45.7	1345	9.6	2.7	4843	38.6
579	11.1	14.7	3042	44.6	511	11.0	28.6	3768	49.5
718	11.9	13.1	4259	49.6	1065	11.1	5.0	4355	46.4
258	11.8	14.8	1441	51.2	961	9.7	17.2	5160	45.1
969	11.4	12.4	4029	44.1	707	12.1	5.9	3033	51.1
485	12.2	4.7	4824	53.1	591	12.2	13.7	4253	51.2
528	10.8	15.8	4834	43.5	1233	12.2	3.0	2702	51.9
1404	10.8	13.1	3694	33.8	586	12.2	5.7	3626	54.3
680	11.4	11.5	1844	48.1	1091	11.1	3.4	1883	41.9
913	10.9	5.1	3226	45.2	1078	11.4	3.8	4923	50.5
902	11.4	15.3	4412	46.6	673	10.7	9.5	3249	43.9
708	11.5	7.2	2909	51.6	827	10.3	2.5	1671	47.4
531	11.4	21.0	2647	46.9	358	12.3	25.9	5308	59.7
912	11.4	15.6	4412	46.6	498	12.1	7.5	3665	51.6
889	12.0	12.6	3262	48.6	857	11.3	12.1	3152	47.3
912	9.5	2.9	3214	43.7	937	11.1	1.0	3678	44.8
659	12.1	7.8	4700	48.9	879	9.0	4.8	9699	62.2
592	9.9	13.1	4474	42.6	593	10.7	11.7	3451	37.5

11. W pewnej metropilii badano cenę mieszkań w zależności od odległości od centrum miasta (CM), odległości do pasów szybkiego ruchu (PSR), liczby uczniów przypadających na jednego nauczyciela w okolicznych szkołach (LU) oraz średniej odległości od centrów handlowych (CH). Znajdź i opisz tę zależność.

Cena	$_{\mathrm{CM}}$	PSR	$_{\mathrm{CH}}$	LU		Cena	$_{\mathrm{CM}}$	PSR	$_{\mathrm{CH}}$	LU
780	14	8	5	28	П	539	11	3	17	20
663	13	7	11	30		705	15	4	12	22
902	8	2	3	22		995	7	1	9	26
961	9	1	12	25		787	12	1	15	17
688	18	6	13	34		721	9	3	12	20
872	12	4	6	23		964	4	0	1	20
947	3	2	3	31		691	8	4	12	21
935	5	2	3	23		776	15	6	7	28
921	11	3	4	29		1047	7	1	12	28
970	3	1	2	32		1000	7	1	7	22
739	13	5	14	35		724	9	1	16	20
613	12	6	13	29		743	8	2	14	20
884	5	4	5	24		871	8	2	7	17
736	11	4	13	28		758	8	2	14	18
912	7	4	6	28	Ш	885	10	3	8	25
691	8	4	13	25		653	10	5	11	20
838	8	3	11	25		819	7	1	15	22
826	11	2	17	32		647	7	3	13	16
802	10	1	18	25	Ш	1006	2	1	6	21
893	9	4	8	29		699	14	7	8	25
1129	5	0	11	35		959	6	2	9	23
842	11	5	8	30	Ш	904	6	2	10	21
967	9	1	10	26		711	14	2	14	18
675	17	8	11	37		736	8	5	9	21
951	5	1	9	22						

12. Dystrybutor piwa jest zainteresowany sprawnością systemu dostaw piwa. Czynniki wpływające na czas dostawy (Y) to liczba skrzynek (X_1) , które dostawca musi rozwieźć do różnych punktów sprzedaży detalicznej, odległość (X_2) , którą musi pokonać oraz godzina rozpoczęcia procesu dostawy (X_3) .

Polecenia:

- 1) Opisz ilościowo średni czas dostawy wględem pozostałych zmiennych (znajdź odpowiedni model regresji wielokrotnej).
- 2) Podaj unterpretację współczynników wybranego modelu.
- 3) Ile wynosi średni czas dwudziestokilometrowej dostawy 200 skrzynek, przy założeniu że jest to wczesna dostawa, tzn. rozpoczynająca się o godzinie 5.00?

Y	X_1	X_2	X_3												
125	220	26	9	91	201	23	8	108	178	20	7	115	215	26	9
73	95	11	5	41	51	6	4	148	248	29	11	135	273	30	13
141	268	30	12	127	268	29	11	62	147	16	6	172	259	29	11
89	179	20	7	57	54	6	21	161	253	28	10	119	264	28	10
106	167	20	7	94	159	16	6	38	195	20	7	150	248	26	9
103	259	28	10	91	219	23	8	92	145	16	6	157	239	26	9
148	268	29	11	176	253	30	12	88	238	26	9	159	172	20	7
141	246	26	9	168	272	29	11	138	222	26	9	168	258	30	12
154	218	23	8	52	136	16	6	155	274	30	12	173	252	29	11
116	260	28	10	74	160	16	6	134	275	30	12	89	60	6	4
156	263	29	14	124	273	30	13	183	274	28	10	10	106	11	5
70	124	11	5	127	224	23	8	96	204	23	8	43	45	6	21
123	266	30	12	168	261	29	14								

13. Poniższe dane dotyczą wielkości produkcji (Y) pewnego towaru, procentu wypełnienia magazynów surowcami (X_1) , poziomu zapotrzebowania na produkowany towar (X_2) u dystrybutorów krajowych, kosztu transportu surowców (X_3) potrzebnych do produkcji tego towaru oraz kosztu ich nabycia (X_4) dla pięćdziesięciu wybranych okresów produkcyjnych pewnego zakładu.

Polecenia:

- 1) Znajdź odpowiedni model regresji wielokrotnej dla wielkości produkcji względem pozostałych zmiennych.
- 2) Podaj interpretację współczynników znalezionego modelu.
- 3) Jaka jest średnia wielkość produkcji tego zakładu przy dziesięcioprocentowym wypełnieniu magazynów, zapotrzebowaniu na produkowany towar na poziomie 15 jednostek, koszcie transportu surowców równym 10 jednostek oraz koszcie nabycia surowców wynoszacym 12 jednostek?

Y	X_1	X_2	X_3	X_4	Y	X_1	X_2	X_3	X_4	Y	X_1	X_2	X_3	X_4	Y	X_1	X_2	X_3	X_4
41.1	12	12	4	14	38.2	8	9	8	6	29.9	8	6	6	11	32.6	16	12	8	11
23.6	8	14	11	9	28.2	5	7	5	14	26.0	8	10	10	11	36.9	16	13	9	12
10.2	13	6	10	10	14.3	6	12	11	12	19.0	8	10	12	8	7.5	9	10	11	13
20.5	11	9	9	12	20.3	7	12	11	9	12.8	15	14	11	14	22.8	14	10	9	9
1.3	9	12	14	13	15.7	7	10	11	11	34.6	9	10	8	7	19.0	10	14	11	11
19.3	7	16	11	6	17.7	8	9	10	14	32.6	8	15	7	10	19.3	7	7	13	5
11.5	7	16	9	12	27.4	11	7	10	4	15.8	11	13	9	15	14.8	10	10	12	12
23.2	12	15	13	6	34.0	19	17	8	11	17.1	12	9	9	10	12.8	13	8	11	11
13.0	14	9	10	11	13.0	6	10	9	13	1.4	7	7	15	13	38.9	8	10	6	5
20.9	9	5	9	8	12.3	8	7	12	9	26.6	9	9	10	7	32.0	9	4	7	9
1.3	11	12	13	13	37.7	9	9	7	6	17.2	6	9	9	12	25.0	14	12	10	13
15.9	11	16	10	14	14.2	7	8	10	8	14.4	9	10	10	12	38.3	15	11	6	16
46.7	15	10	7	5	28.1	9	9	10	7										

14. Poniższe dane dotyczą stu firm pewnego typu. Dla każdej zebrano informacje o osiąganych zyskach (Y), frakcji pracowników należących do zawiązków zawodowych (X_1) , poziomie zatrudnienia (X_2) , kosztach transportu (X_3) oraz wielkości sprzedaży (X_4) .

Polecenia:

- 1) Znajdź odpowiedni model regresji wielokrotnej dla zysku względem pozostałych zmiennych.
- 2) Podaj interpretację współczynników znalezionego modelu.
- 3) Ile wynosi średni zysk zakładów o poziomie zatrudnienia 11, sprzedaży 12, w których pracownicy należą w 10% do związków zawodowych, a koszty transportu wynoszą 11 jednostek.

Y	X_1	X_2	X_3	X_4	Y	X_1	X_2	X_3	X_4		Y	X_1	X_2	X_3	X_4	Y	X_1	X_2	X_3	X_4
2630	15	8	10	16	1138	4	11	15	5	П	2095	7	8	11	8	1379	8	7	11	6
1891	8	8	9	8	1502	10	13	10	11		1296	10	5	8	12	1388	8	3	8	12
1933	13	4	9	16	1661	9	13	13	9		1760	7	11	13	6	996	11	14	6	10
1800	9	9	10	7	685	8	9	6	5		1243	8	14	9	8	1361	11	6	8	9
2823	14	8	12	18	1747	13	8	9	12		1253	12	9	9	11	1955	13	4	7	13
1730	9	6	12	10	1423	12	3	9	15		1563	10	9	8	10	1814	12	8	11	11
1326	11	10	12	9	1126	8	9	8	8		693	8	8	7	9	2052	7	6	12	9
1241	6	14	13	7	1948	9	9	10	9		1037	7	12	13	9	805	9	11	4	7
1310	8	12	11	9	1095	6	13	8	7		773	10	10	7	10	2177	10	15	12	12
1731	10	11	10	11	1210	10	10	10	7		1543	4	10	10	8	1745	10	13	8	9
1587	9	12	6	7	1831	10	8	8	7		2212	10	12	13	9	1865	14	14	9	13
1984	11	14	11	10	1477	17	10	7	18		1629	11	13	8	12	1559	13	8	7	14
1507	10	11	10	11	999	7	15	11	2		2695	16	11	10	19	2098	11	9	14	9
1709	8	10	11	9	2532	17	8	8	20		951	5	12	14	5	956	7	9	11	8
1872	9	3	8	8	1507	7	13	13	7		2803	19	10	10	19	1128	9	6	9	7
1231	10	4	8	10	1763	12	13	12	12		1256	10	9	6	13	2062		11	9	13
1878	12	13	10	12	1426	10	9	10	5		2124	11	7	10	16	2441	14	9	14	13
2416	12	7	14	11	1707	8	10	9	8		1005	6	8	9	7	2261	9	7	11	11
821	9	9	6	7	2190	10	10	11	10		1799	6	11	12	8	564	8	8	7	5
2314	11	12	14	14	1861	10	8	13	11		1946	14	8	8	13	1922		12	8	10
1430	8	9	8	5	2939	12	12	11	13		1580	9	10	11	8	2224		6	11	10
723	9	7	4	8	740	7	10	5	10		1716	8	7	9	9	1246	8	7	9	5
2335	13	15	16	11	447	8	12	6	7		1506	10	7	10	10	1011	12	11	6	13
778	9	8	7	8	1502	10	5	9	12		1312	8	12	10	7	1177	8	4	8	11
642	7	9	7	4	1421	9	5	10	8		1784	8	6	15	7	2126	13	3	9	13

- 15. Poniższe dane dla czterdziestu sześciu krajów, określanych jako rozwijające się, dotyczą:
- 1. średniego poziomu zmian wielkości produktu krajowego brutto w skali roku (PKB);
- 2. średniego rocznego udziału inwestycji zagranicznych w produkcie krajowym brutto (IZ);
- 3. średniego rocznego udziału inwestycji krajowych w produkcie krajowym brutto (IK);
- 4. średniego poziomu zmian wielkości siły roboczej w skali roku (SR);
- 5. średniego poziomu zmian wielkości eksportu w skali roku (EX);
- 6. rodzaju strategii goospodarczej kraju (**Typ**, Typ=0-kraje promujące eksport, Typ=1-kraje promujące produkcję substytutów towarów importowanych).

W jaki sposób zmiany wielkości produktu krajowego brutto zależą od inwestycji zagranicznych, krajowych oraz pozastałych zmiennych? Czy na przykład rodzaj strategii gospodarczej jest istotną zmienną wyjaśniającą zmiany w poziomie produktu kajowego brutto? Jeżeli tak, to która z wymienionych strategii częściej się sprawdza.

	PKB	$_{\rm IZ}$	IK	$_{ m SR}$	EX	Тур	П	PKB	$_{\rm IZ}$	IK	$_{ m SR}$	EX	Тур
_	5.30	0.007	11.9	2.713	4.0	1	П	4.60	1.380	33.6	2.674	-4.0	1
	2.80	0.003	13.5	2.186	13.8	1	l	5.00	0.090	19.0	2.578	4.8	1
	5.70	0.060	12.0	2.955	3.3	1		6.40	0.160	18.7	2.830	11.3	1
	4.20	0.010	15.4	2.040	3.3	1	l	4.90	0.080	25.6	2.599	4.5	1
	0.82	0.340	19.7	1.130	6.0	1		6.60	0.420	28.5	2.347	-3.4	1
	1.90	0.280	25.5	2.399	-0.8	1		4.60	0.300	25.1	3.103	1.0	0
	3.40	0.750	21.3	2.967	2.8	1		2.80	0.080	35.0	1.405	6.7	0
	6.68	0.580	12.6	2.889	10.2	1		1.70	0.090	19.7	2.958	1.8	0
	6.60	0.890	13.5	2.690	18.5	1		3.50	0.070	29.8	3.734	0.2	0
	4.80	0.300	16.9	3.113	14.9	1		4.90	0.350	12.8	2.720	6.6	0
	3.00	0.007	18.1	2.181	-3.0	1		8.40	0.170	5.6	2.636	20.4	0
	-0.03	0.120	24.7	2.154	-4.8	1		3.40	0.160	25.0	3.146	$^{2.6}$	0
	-0.80	0,003	22.6	3.929	-7.1	1		4.60	0.040	22.9	2.093	3.4	0
	4.88	0.330	22.9	2.834	2.2	1		4.10	0.180	25.8	3.815	4.8	0
	5.20	0.030	24.9	1.973	14.9	1		3.70	0.330	17.2	3.496	3.9	0
	1.60	0.030	26.7	2.552	0.5	1		1.10	0.670	3.0	1.463	-7.8	0
	2.20	0.070	14.2	1.664	5.2	1		6.80	0.590	18.9	2.600	5.3	0
	0.60	0.360	20.4	0.512	3.9	1		1.50	0.810	30.1	2.296	-1.1	0
	6.50	0.120	16.0	3.120	7.6	1		1.91	0.045	6.7	2.262	7.5	0
	2.10	0.460	36.1	2.813	5.3	1		-0.70	0.170	17.1	2.220	-2.4	0
	2.50	0.390	22.4	2.129	1.3	1		8.30	1.010	21.3	3.075	6.0	0
	8.00	0.480	26.9	2.233	6.3	1		8.80	1.090	25.8	3.636	10.3	0
	4.30	0.210	29.6	2.755	3.9	1		10.20	3.400	19.2	2.364	10.8	0

16. Notowano zużycie paliwa w samochodach osobowych. Przypuszcza się, że zużycie paliwa uzależnione jest od pojemności silnika, mocy silnika (konie mechaniczne), wagi samochodu oraz przyspieszenia. Znaleźć tę zależność.

Pal	Poj	Konie	Przysp	Waga	Pal	Poj	Konie	Przysp	Waga	Pal	Poj	Konie	Przysp	Waga
6.55	1.474	48	21.5	900.4	8.28	1.409	65	15.2	895.9	8.74	1.589	67	17.8	936.7
7.82	1.605	66	14.4	816.5	7.91	1.605	80	14.4	868.6	7.63	1.392	65	19.4	895.9
8.61	1.278	52	19.4	900.4	10.30	1.982	80	15.0	1211.1	7.49	1.458	62	17.3	929.9
7.17	1.392	70	18.6	939.0	11.12	2.998	77	20.1	1601.2	8.28	1.491	68	16.0	900.4
7.82	1.491	60	16.4	816.5	12.28	5.735	125	17.4	1769.0	8.14	1.720	63	14.9	1004.7
14.19	4.260	110	15.5	1526.4	10.38	2.310	71	24.8	1447.0	8.21	1.605	65	16.2	927.6
14.55	5.211	140	13.2	1694.2	11.81	4.260	90	22.2	1551.3	9.44	1.605	65	20.7	1079.6
13.98	4.948	139	12.8	1619.4	8.26	1.720	70	13.2	997.9	8.56	1.720	74	14.2	993.4
14.70	3.785	105	19.2	1603.5	8.18	1.720	70	14.9	975.2	8.38	1.753	75	14.4	1002.5
13.77	3.277	95	18.2	1431.1	8.88	1.392	65	19.2	916.3	8.71	1.769	75	16.8	1066.0
13.98	3.277	85	15.8	1344.9	7.57	1.491	69	14.7	966.2	8.58	1.950	100	14.8	1186.2
11.25	2.294	88	15.4	1233.8	9.94	2.474	90	16.0	1211.1	8.93	1.966	74	18.3	1195.2
13.77	3.687	100	17.2	1555.8	9.80	2.834	115	11.3	1177.1	10.05	2.310	80	20.4	1465.1
14.55	3.801	90	17.2	1456.1	10.53	2.834	115	12.9	1224.7	9.20	2.376	76	19.6	1433.4
13.71	3.785	105	15.8	1533.2	8.43	2.474	90	13.2	1159.4	11.12	2.753	116	12.6	1315.4
13.57	3.277	85	16.7	1392.6	6.80	1.605	76	14.7	972.5	11.67	2.392	120	13.8	1329.0
15.18	3.687	110	18.7	1642.0	7.41	1.458	60	18.8	892.7	12.60	3.785	110	15.8	1549.0
15.60	4.227	120	15.1	1546.8	8.80	1.605	70	15.5	961.6	10.61	5.735	105	19.0	1689.7
14.70	4.998	145	13.2	1553.6	7.59	1.409	65	16.4	915.8	13.98	3.277	88	17.1	1388.0
15.95	3.785	165	13.4	1562.7	10.08	2.474	90	16.5	1214.7	16.04	3.687	85	16.6	1571.7
15.60	4.948	139	11.2	1453.8	10.69	2.294	88	18.1	1301.8	10.08	1.835	88	19.6	1181.6
16.13	5.211	140	13.7	1850.7	11.62	2.474	90	20.1	1362.2	10.46	1.835	88	18.6	1197.5
9.41	1.605	68	16.5	977.5	14.78	3.687	90	18.7	1533.6	8.30	1.835	88	18.0	1086.4
10.27	2.195	95	14.2	1161.2	8.23	1.589	78	15.8	992.5	9.11	1.835	85	16.2	1168.0
10.38	1.950	97	14.7	1043.3	9.47	2.195	90	15.5	1229.7	9.74	2.212	84	16.0	1145.3
9.14	1.720	75	14.5	1011.5	9.02	1.966	75	17.5	1153.1	10.46	2.474	90	18.0	1240.6
13.38	2.195	95	14.8	1140.8	7.63	1.950	92	15.0	1104.1	11.76	2.294	92	16.4	1299.6
12.17	2.556	105	16.7	1245.1	8.77	1.769	75	15.2	1027.4	7.84	1.720	74	15.3	898.1
11.86	2.474	85	17.6	1295.0	6.06	1.409	65	17.9	957.1	7.63	1.491	68	18.2	918.5
11.81	1.950	97	14.9	1090.9	10.12	2.556	105	14.4	1270.1	9.11	1.491	68	17.6	893.6
13.91	2.146	103	15.9	1283.7	6.92	1.392	65	19.2	957.1	7.43	1.720	63	14.7	963.9
16.61	2.671	125	13.6	1424.3	6.37	1.474	48	21.7	945.8	7.84	1.605	70	17.3	963.9
13.07	1.982	115	15.7	1267.8	6.51	1.474	48	23.7	1059.2	7.84	1.966	88	14.5	979.8
17.43	2.671	133	15.8	1546.8	7.76	1.982	67	19.9	1338.1	7.84	1.753	75	14.5	1000.2
8.96	1.458	71	14.9	902.7	9.29	2.392	67	21.8	1474.2	8.30	1.769	70	16.9	1018.3
9.57	1.605	68	16.6	968.4	6.33	1.491	67	13.8	839.2	7.43	1.491	67	15.0	891.3
13.13	3.785	115	15.4	1471.9	8.35	1.589	67	18.0	973.0	8.82	1.491	67	15.7	891.3
14.26	3.277	85	18.2	1356.3	9.47	1.458	62	15.3	836.9	7.43	1.491	67	16.2	904.9
12.66	2.294	88	17.3	1310.9	8.63	2.753	132	11.4	1320.0	11.29	2.966	110	16.4	1335.9
13.98	3.801	90	18.2	1481.0	11.91	1.147	100	12.5	1097.7	7.43	4.293	85	17.0	1367.6
13.71	3.687	110	16.6	1524.1	8.07	1.999	88	15.1	1134.0	10.86	2.556	92	14.5	1172.6
16.61	4.998	130	15.4	1741.8	8.71	1.753	72	17.0	1038.7	12.83	3.801	112	14.7	1286.0
16.04	4.948	129	13.4	1689.7	10.38	2.212	84	15.7	1129.5	8.82	2.359	96	13.9	1208.8
17.11	5.751	138	13.2	1794.0	10.61	2.474	84	16.4	1195.2	7.84	2.212	84	13.0	1075.0
15.51	5.211	135	15.2	1737.3	10.94	2.556	92	14.4	1188.4	10.46	2.474	90	17.3	1338.1
16.71	5.735	155	14.9	1977.7	12.01	2.834	110	12.6	1236.1	10.46	2.294	86	15.6	1265.5
18.21	5.751	142	14.3	1838.9	9.41	2.212	84	12.9	1081.8	6.42	1.589	52	24.6	966.2
14.70	4.375	125	15.0	1635.2	7.22	1.294	58	16.9	796.1	8.82	2.212	84	11.6	1041.0
15.26	5.899	150	13.0	1787.2	7.24	1.409	64	16.4	850.5	10.08	1.966	79	18.6	1190.7
8.85	1.458	71	14.0	873.2	8.04	1.327	60	16.1	798.3	9.11	1.950	82	19.4	1233.8