МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЦИФРОВОЙ КОМПАРАТОР

ОТЧЕТ

студента 3 курса 331 группы
направления 10.05.01 — Компьютерная безопасность
факультета КНиИТ
Бородина Артёма Горовича

Проверил	
аспирант	 А. А. Мартышкин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Задание 1	4
Задание 2	5
Задание 3	
Тестовые задания	7
ЗАКЛЮЧЕНИЕ	8

введение

Целью данной работы служит ознакомление с основными характеристиками интегрального цифрового компаратора и его испытание.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **31.2.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *цифрового компаратора* и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему на страницу отчета.

Рисунок 1 – Схема цифрового компаратора.

Задание 2.

Получить временные диаграммы входных и выходных сигналов на экране анализатора **XLA1** при пошаговой подаче на входы компаратора сигналов с выходов генератора слова **XWG1** ($f_{\Gamma} = 500 \text{ к}\Gamma\text{ц}$).

Для этого:

• **щелкнуть** мышью на изображении генератора **XWG1** и **записать** в его первые ячейки памяти 10 произвольных 11-разрядных кодовых последовательностей, причем в первые четыре разряда записать (справа налево) значения (1 или 0) числа $\bf A$, то есть A3A2A1A0, в следующие три разряда — трехразрядные двоичные числа ($\bf A > B$, $\bf A = B$ и $\bf A < B$ с одним высоким уровнем, равным 1, остальные 0) с выходов предыдущей микросхемы сравнения и, наконец, в последние четыре разряда — значения B3B2B1B0 числа $\bf B$;

Рисунок 2 – Интерфейс генератора **XWG1**.

- **щелкнуть** мышью на изображении логического анализатора **XLA1** и **установить** в его окне частоту $f_a = 10$ МГц таймера, уровень высокого напряжения $U_m = 4$ В и число импульсов таймера, приходящихся на одно деление, **Clocks/div** = 20;
 - запустить программу моделирования компаратора;
- последовательно щелкая мышью на кнопке **Step** генератора **XWG1**, **получить** временные диаграммы входных и выходных сигналов на экране анализатора **XLA1**.

Задание 3.

Скопировать на страницу отчета диалоговое окно генератора **XWG1** и окно анализатора **XLA1** с временными диаграммами входных и выходных сигналов.

Рисунок 3 – Интерфейс логического анализатора **XLA1**.

Тестовые задания

- 1. Укажите:
- а) можно ли установить **факт равенства** двухразрядных бинарных чисел **A** и **B** с помощью приведенного устройства сравнения: **да**;
- б) какой **уровень** сигнала установится на его выходе при равенстве чисел **A** и **B**: **1**;

Рисунок 4 – Устройство сравнения двухразрядных бинарных чисел.

- 2. Укажите, какую **функцию** выполняет цифровой компаратор: сравнение двух бинарных чисел **A** и **B** одинаковой разрядности с целью определения равенства $\mathbf{A} = \mathbf{B}$ или неравенства $\mathbf{A} < \mathbf{B}$ и $\mathbf{A} > \mathbf{B}$;
- 3. Укажите **логическую функцию**, выражающую равенство i-x разрядов двоичных чисел: $y=a_ib_i+\overline{a}_i\overline{b}_i$;
- 4. Укажите, к какому **типу** цифровых устройств относят компараторы: **к комбинационным**;
- 5. Укажите **число активных** логических сигналов, формирующихся на выходе компаратора при сравнении многоразрядных двоичных чисел: **1**;
- 6. Укажите, чем определяется **число входов** цифрового компаратора: **число входов определяется разрядностью сравниваемых бинарных чисел**.
- 7. Укажите, можно ли построить устройство сравнения требуемой разрядности, используя цифровые компараторы с ограниченной разрядностью (например, четырехразрядные): да.

ЗАКЛЮЧЕНИЕ

В ходе данной лабораторной работы мы познакомились с основными характеристиками интегрального цифрового компаратора и испытали его на практике.