Lecture 4: OpenMP – Homework

- Use OpenMP (not MPI) to implement xGEMM in parallel and compare with sequential implementation
 - No need to implement all variants, assume (as an eample) xGEMM("No transpose", "No transpose", M, N, K, $\alpha = -1$, A, B, $\beta = 1$, C)
 - You can make the dimensions "convenient"
 - Divisible by number of threads, cores, ...
 - Divisible by 100 or your other favorite integers
 - Make sure though that the matrix dimensions can grow so you can test weak scaling (larger size for more threads).
- Alternative: Use OpenMP (not MPI) to implement xTRSM in parallel
 - Simplify accordingly in a similar way as you did for xGEMM.
- Comment on performance and ease of implementation in comparison to each other and the pthread implementation
 - Things to keep in mind is scalability, productivity, potential for concurrency bugs.

Details on TRSM

- TRSM = **TR**iangular **S**olve with **M**atrix
- Reference implementation: http://netlib.org/blas/dtrsm.f
 - If you don't know where to start then you can select one of the loop nests in the reference implementation and focus on parallelizing the selected code.
 - To simplify parallelization you should assume that the if statements are predetermined. That's why I allow you to select particular values for SIDE, UPLO TRANSA, and DIAG input parameters.
- This is a pictorial representation of what the TRSM routine does

■ The TRSM routine solves AX = B system where A is either upper or lower triangular. The solution matrix X is returned in the space occupied by B.

Details on the Submission

■ Submission file is first_last_hw2.tar.gz and its content is:

(DGEMM with OpenMP)

(DTRSM with OpenMP)

(sequential DGEMM)

(sequential DTRSM)

(if needed)

(if needed)

- first_last_hw2/first_last_hw2.pdf
- Circt lest les 2/------
- first_last_hw2/omp_dgemm.c
- first_last_hw2/omp_dtrsm.c
- first_last_hw2/seq_dgemm.c
 first_last_hw2/seq_dtrsm.c
- first_last_hw2/other_file.c
- first_last_hw2/Makefile
- "cpp"; Fortran files: "f"
- Do not include code in the PDF file.
- Ideas for writing (you don't need to exceed three pages, a graph per page):

If you're using C++ your source files should have extension

- What worked? What didn't work?
- Any difference between xGEMM and xTRSM? Why or why not?
- If you had more time, what would you do differently?