M1 IEAP - BTI/FH/IEMH FIEA11CM : Analyse et Traitement du Signal

Flavy ROSEREN Martin EGIZIANO Frank BULOUP

Aix Marseille Université Institut des Sciences du Mouvement

Deuxième Partie

Calcul numérique

La plupart des traitements mathématiques peuvent être réalisés en calcul numérique sur ordinateur :

- Moyenne
- Dérivée
- Lissage

Calcul numérique

La plupart des traitements mathématiques peuvent être réalisés en calcul numérique sur ordinateur :

- Moyenne
- Dérivée
- Lissage

Filtre numérique

Ces traitements peuvent être représentés par un filtre numérique

- Moyenne ⇔ filtre moyenneur ⇔ filtre passe-bas
- Dérivée ⇔ filtre dérivateur ⇔ **filtre passe-haut**
- Lissage ⇔ généralisation du filtre passe-bas

Filtre passe-bande = filtre passe-bas + filtre passe-haut

Moyenne

Moyenne sur *N* points :

$$s(n) = \frac{1}{N} \sum_{k=0}^{N-1} e(n-k)$$

Sur quatre points :

$$s(n) = \frac{e(n) + e(n-1) + e(n-2) + e(n-3)}{4}$$

Moyenne

Moyenne sur *N* points :

$$s(n) = \frac{1}{N} \sum_{k=0}^{N-1} e(n-k)$$

Sur quatre points :

$$s(n) = \frac{e(n) + e(n-1) + e(n-2) + e(n-3)}{4}$$

Dérivée

Le signal a été échantillonné à la fréquence F_e :

$$s(n) = \frac{e(n) - e(n-1)}{Te}$$

Généralisation

Filtres non récursifs

Les échantillons passés de la sortie ne sont pas réemployés dans les calculs :

$$s(n) = \sum_{k=0}^{N-1} b(k)e(n-k)$$

Généralisation

Filtres non récursifs

Les échantillons passés de la sortie ne sont pas réemployés dans les calculs :

$$s(n) = \sum_{k=0}^{N-1} b(k)e(n-k)$$

Filtres récursifs

Des échantillons passés de la sortie sont mémorisés et réemployés dans les calculs :

$$s(n) = \sum_{k=0}^{N-1} b(k)e(n-k) - \sum_{k=0}^{M-1} a(k)s(n-k)$$

Représenter un filtre numérique sous la forme d'une équation de récurrence n'est pas la seule possibilité. En passant de l'espace temporel à l'espace fréquenciel par transformée de Fourier, on obtient une autre représentation qui fait apparaître l'opérateur de retard, noté z^{-1} . Cet opérateur, appliqué à un signal s(n), le retarde d'un échantillon.

Représenter un filtre numérique sous la forme d'une équation de récurrence n'est pas la seule possibilité. En passant de l'espace temporel à l'espace fréquenciel par transformée de Fourier, on obtient une autre représentation qui fait apparaître l'opérateur de retard, noté z^{-1} . Cet opérateur, appliqué à un signal s(n), le retarde d'un échantillon.

Transformée en z

La transformée en z découle directement de la TFD (Cf. séquence 5). En posant $z=e^{2i\pi\frac{k}{N}}$ dans l'expression de la TFD, on obtient :

$$S(z) = \sum_{k=0}^{N-1} s(k)z^{-k}$$

Transformée en z: l'opérateur z^{-1}

Exercice sur l'opérateur de retard

Calculer les TZ des signaux suivants :

- e(n-1)
- e(n-2)
- e(n-3)
- Généraliser pour en déduire le théorème du retard

Exercice sur l'opérateur de retard

$$TZ\{e(n-1)\}=z^{-1}E(z)$$

Exercice sur l'opérateur de retard

$$TZ\{e(n-1)\}=z^{-1}E(z)$$

$$TZ\{e(n-1)\}=z^{-2}E(z)$$

$$TZ\{e(n-3)\}=z^{-3}E(z)$$

Exercice sur l'opérateur de retard

$$TZ\{e(n-1)\}=z^{-1}E(z)$$

$$TZ\{e(n-1)\}=z^{-2}E(z)$$

$$TZ\{e(n-3)\}=z^{-3}E(z)$$

$$TZ\{e(n-m)\}=z^{-m}E(z)$$

Calculer les TZ des équations suivantes :

- La moyenne : $s(n) = \frac{e(n) + e(n-1) + e(n-2) + e(n-3)}{4}$
- La dérivée : $s(n) = \frac{e(n) e(n-1)}{T_e}$
- Un filtre non récursif : $s(n) = \sum_{k=0}^{N-1} b(k)e(n-k)$
- Un filtre récursif : $s(n) = \sum_{k=0}^{N-1} b(k)e(n-k) \sum_{k=1}^{M-1} a(k)s(n-k)$

Moyenne:

$$S(z) = \frac{E(z) + z^{-1}E(z) + z^{-2}E(z) + z^{-3}E(z)}{4}$$

Moyenne:

$$S(z) = \frac{E(z) + z^{-1}E(z) + z^{-2}E(z) + z^{-3}E(z)}{4}$$

Dérivée :

$$S(z) = \frac{E(z) - z^{-1}E(z)}{T_e}$$

Filtre non récursif :

$$S(z) = \sum_{k=0}^{N-1} b(k) z^{-k} E(z)$$

Filtre non récursif :

$$S(z) = \sum_{k=0}^{N-1} b(k)z^{-k}E(z)$$

Filtre récursif :

$$S(z) = \sum_{k=0}^{N-1} b(k)z^{-k}E(z) - \sum_{k=1}^{M-1} a(k)z^{-k}S(z)$$

L'utilsation de la transformée en z, et donc le passage dans le domaine fréquenciel, permet de simplifier l'écriture en ne faisant apparaître que l'opérateur z^{-1} . Par exemple :

$$s(n) = e(n) + e(n-1)$$

On obtient par TZ:

$$S(z) = E(z) + z^{-1}E(z) = (1 + z^{-1})E(z)$$

Et on peut alors écrire :

$$\frac{S(z)}{E(z)}=1+z^{-1}$$

Défintion

On appelle fonction de transfert en z, que l'on note souvent H(z), le quotient de S(z) par E(z) :

$$H(z) = \frac{S(z)}{E(z)}$$

Défintion

On appelle fonction de transfert en z, que l'on note souvent H(z), le quotient de S(z) par E(z) :

$$H(z) = \frac{S(z)}{E(z)}$$

Remarques

- H(z) est une fraction rationnelle en z
- On utilise son expression pour créer un filtre sous Python
- II faut la toolbox Signal Processing
- On ne saisit alors que les coefficients des polynômes en z du dénominateur et du numérateur de H(z)

Par exemple :
$$H(z) = 1 + z^{-1} = \frac{1+z^{-1}}{1} = \frac{b(1)+b(2)z^{-1}}{a(1)}$$

On peut alors en déduire les vecteurs suivants sous Python :

$$b = [1, 1]$$
 et $a = [1]$

Calcul de fonction de transfert H(z)

Écrire les fonctions de transfert pour le filtre :

- moyenneur
- dérivateur
- récursif
- non récursif

Donner les vecteurs a et b pour les deux premiers filtres

Moyenneur:

$$H(z) = \frac{1}{4} + \frac{1}{4}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3}$$

Moyenneur:

$$H(z) = \frac{1}{4} + \frac{1}{4}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3}$$

Dérivateur :

$$H(z) = \frac{1 - z^{-1}}{T_e}$$

Filtre non récursif :

$$H(z) = \sum_{k=0}^{N-1} b(k)z^{-k}$$

Filtre non récursif :

$$H(z) = \sum_{k=0}^{N-1} b(k)z^{-k}$$

Filtre récursif :

$$H(z) = \frac{\sum_{k=0}^{N-1} b(k) z^{-k}}{1 + \sum_{k=1}^{M-1} a(k) z^{-k}}$$

Filtre non récursif

Dit aussi filtre à réponse impulsionnelle finie (RIF)

Propriétés

- Ils sont toujours stables
- Ils ne propage pas les erreurs de calculs numériques
- Ils sont à phase linéaire (retard uniquement)
- Ils sont moins sélectifs que les RII pour un même ordre

Filtre récursif

Dit aussi filtre à réponse impulsionnelle infinie (RII)

Propriétés

- Ils ne sont pas toujours stables (choisir une méthode de synthèse)
- Ils faut mémoriser plus d'échantillons passés
- Ils propagent les erreurs de calculs
- Ils sont à phase non linéaire (déformation du signal)
- Ils sont plus sélectifs que les RIF pour un même ordre

Exercice I

Soit le signal suivant s(t) échantillonné à $F_e = 4Hz$:

$$s(t) = 3 + \sin(2\pi t)$$

- Représenter le signal sur une durée de 10s
- 2 Lire l'aide de la fonction Python filter
- Programmer un filtre moyenneur sur 4 points
- Programmer un filtre dérivateur
- 6 Comparer la dérivée théorique avec la sortie du dérivateur. Conclusion ?

Exercice II

- Charger le fichier de la note Mi
- ② Calculer le module de la TFD de ce signal
- Tracer le spectre monolatéral. Quelles informations en tirez-vous?
- Ajouter un bruit blanc (voir avec le prof.)
- Filtrer avec un filtre de type RII. Utiliser la fonction butter
- Proposer un ordre et une fréquence de coupure permettant de supprimer au mieux le bruit sans détruire l'information
- Filtrer avec un filtre de type RIF. Utiliser la fonction firpm
- Proposer un filtre RIF qui soit équivalent au filtre RII précédent
- Onclure