SSID: WWCode Password: password

WOMEN WHO

Machine Learning and Al Study Group

Twitter: @wwcodemanila FB: fb.com/wwcodemanila

#WWCodeManila #WWCode.ML.AI #StudyGroup

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

STUDY GROUP

Study groups are events where women can come together and help each other learn and understand a specific programming language, technology, or anything related to coding or engineering.

GUIDELINES

- Study groups are **not** a class/lecture
- If you have a question, just **ask**
- If you have an idea, share it
- Make friends and learn from your study groupmates
- Do not recruit or promote your business

New Member's Introduction

AGENDA

- 1. Review: Exploratory Analysis
- 2. Today's Topic: Feature Scaling
- 3. Exercise
- 4. Presentations

REVIEW

EXPLORATORY ANALYSIS OF DATA IN PYTHON

TODAY'S TOPIC

DATA PRE-PROCESSING: FEATURE SCALING

FEATURE SCALING

Different features → measured on different scales.

- height centimetres
- weight kilograms
- blood pressure mmHg

Some classifiers combine and compare feature values (e.g. Euclidean distance).

FEATURE SCALING

Features with a broad range of values \rightarrow dominate features with a smaller range of values:

- percentage of unemployment in a city ranges from 0.0 to 1.0
- o population of the city can range up to 500,000

Feature scaling transforms the data so that the features have a uniform range.

Scales values to a range of [0, 1].

Rescaling feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Example:

$$z_1 = \frac{22 - 22}{42 - 22} = 0.0$$

ID	Age	Age_Scaled
1	22	0.00
2	25	0 0 0 1 1 1 1 0
3	30	011
4	42	1101000

Rescaling feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Example:

$$z_2 = \frac{25 - 22}{42 - 22} = 0.15$$

ID	Age	Age_Scaled
1	22	0.00
2	25	0.15
3	30	011
4	42	1101000

Rescaling feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Example:

$$z_3 = \frac{30 - 22}{42 - 22} = 0.4$$

ID	Age	Age_Scaled
1	22	0.00
2	25	0.15
3	30	0.40
4	42	1.00

Standardization

Scales features so that they are centered around 0 with a standard deviation of 1.

Standardization

Rescaling feature vector *X*:

$$z_i = \frac{x_i - \mu}{\sigma}$$

where μ is the mean (average)

 σ is the standard deviation

Exercise 1: Check that $\mu = 29.75$, $\sigma = 8.81$ and that the values in the Age_Scaled are correct.

ID	Age	Age_Scaled
1	22	-1.01
2	25	-0.62
3	30	0.03
4	42	1.60

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Standardization

Rescaling feature vector *X*:

$$z_i = \frac{x_i - \mu}{\sigma}$$

where μ is the mean (average)

 σ is the standard deviation

Exercise 2: Check that after scaling, the values for
μ and σ are approximately 0 and 1, respectively.

ID	Age	Age_Scaled
1	22	-1.01
2	25	-0.62
3	30	0.03
4	42	1.60

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Normalization

Scales the feature vector to a unit vector

Normalization

ID	Age	Age_Scaled
1	3	$^{3}/_{5}=0.6$
2	4	$^{4}/_{5} = 0.8$

(Norm) A vector with n elements has length:

$$||v|| = \sqrt[2]{v_1^2 + v_2^2 + \dots + v_n^2}$$

Feature Scaling

Min-max Scaling
Standardization
Normalization
Binarization

EXERCISES

- ML beginners: Start with the 'Introduction to ML Tutorial' and work your way up.
- If you haven't finished an exercise/assignment, try finishing that one first before moving to the next.
- Have a question? Post it here: https://gitter.im/WWCodeManila-ML-AI/
- When you're done, share your work! :D

Partner/Group/Individual Exercise:

1. EXPLORATORY DATA ANALYSIS 2. FEATURE SCALING

Partner/Group/Individual Presentation

ASSIGNMENTS

- If you didn't finish the exercise (and other past exercises), you can finish it at home.
- Make sure you submit/share your work when you're done. ©

Assignment

Binarize Features in the Handwritten Digit Recognition Exercise

References:

WWCodeLondon Slides

http://scikit-learn.org/stable/modules/preprocessing.html

http://sebastianraschka.com/Articles/2014_about_feature_scaling. html

T.I.L.

SHARE IT! In front!

On Twitter: @wwcodemanila

Or FB: fb.com/wwcodemanila

Don't forget to tag WWCodeManila so we can retweet or share it.

THANK YOU:)