Sea $\mathbf{X} = (X_1, X_2, X_3)'$ un vector aleatorio tridimensional que sigue una distribución normal con media $\boldsymbol{\mu} = (1, 0, -2)'$ y matriz de varianzas-covarianzas

$$\Sigma = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 4 & 1 \\ 0 & 1 & 6 \end{array} \right).$$

- (a) Escribase la forma cuadrática $Q(x_1, x_2, x_3)$ del exponente de la densidad del vector aleatorio \mathbf{X} .
- (b) Escríbase la matriz de covarianzas cruzadas entre $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ y X_2 .
- (c) Encuéntrese la correlación entre X_1 y X_3 condicionadas por $X_2 = x_2$.
- (d) Hállese $var(X_1|X_2=x_2)$ y compárese con $var(X_1)$.

Ayuda para la parte a:

$$Q(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)$$

Ayuda para la parte b:

$$\operatorname{Cov}\left(\left(\begin{array}{c} X_1 \\ X_3 \end{array}\right), X_2\right) = \left(\begin{array}{c} \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_3, X_2) \end{array}\right)$$

Ayuda para las partes c y d:

. Consideremos la siguiente partición del vector X = (X'₁, X'₂)', donde X₁ = (X₁,..., X_{p₁})', X₂ = (X_{p₁+1},..., X_p)' y p₂ = p - p₁. Sean μ₁ = E(X₁) y μ₂ = E(X₂) los vectores de esperanzas. La matriz de covarianzas de X puede particionarse en bloques como:

$$\Sigma = \left(\begin{array}{c|c} \Sigma_{11} & \Sigma_{12} \\ \hline \Sigma_{21} & \Sigma_{22} \end{array} \right),$$

donde
$$\Sigma_{11} = Var(\mathbf{X}_1)$$
, $p_1 \times p_1$, $\Sigma_{22} = Var(\mathbf{X}_2)$, $p_2 \times p_2$,
 $\Sigma_{12} = Cov(\mathbf{X}_1, \mathbf{X}_2)$, $p_1 \times p_2$, y $\Sigma_{21} = \Sigma'_{12}$.

La distribución de \mathbf{X}_1 condicionada a $\mathbf{X}_2 = \mathbf{x}_2^0$ es normal con vector de esperanzas $\mathsf{E}(\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2^0) = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2^0-\boldsymbol{\mu}_2)$ y matriz de covarianzas $Var(\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2^0) = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$.

Sea X_1, \ldots, X_{80} una muestra de una población con media μ y matriz de covarianzas Σ .

(a) ¿Cuál es la distribución aproximada de

$$\bar{\mathbf{X}} = \sum_{i=1}^{80} X_i / 80$$
 ?

(b) Tómense N=200 muestras de tamaño n=80 de un vector $\mathbf{X}=(X_1,X_2)'$ con distribución uniforme en el cuadrado $[0,1] \times [0,1]$. Calcúlense las medias $\bar{\mathbf{x}}_1,\ldots,\bar{\mathbf{x}}_N$ de estas muestras y dibújese el histograma correspondiente a las medias, comprobando si se asemeja a una densidad normal.

Sean X_1 , X_2 y X_3 los niveles de solvencia de tres bancos españoles. Supongamos que la distribución conjunta de los tres niveles es $N_3(\mu, \Sigma)$ con $\mu = (0.7, 0.8, 0.9)'$ y

$$\Sigma = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Consideremos un nivel de solvencia medio para los tres bancos que se obtiene mediante el promedio $W = (X_1 + X_2 + X_3)/3$.

- (a) Calcúlese la distribución del nivel de solvencia medio W.
- (b) Encuéntrese la distribución de $(X_1, X_2)'$ condicionada a que W vale 1.
- (c) ¿Son X_2 y W independientes?

Ayuda:

. Consideremos la siguiente partición del vector X = (X'₁, X'₂)', donde X₁ = (X₁,..., X_{p₁})', X₂ = (X_{p₁+1},..., X_p)' y p₂ = p - p₁. Sean μ₁ = E(X₁) y μ₂ = E(X₂) los vectores de esperanzas. La matriz de covarianzas de X puede particionarse en bloques como:

$$oldsymbol{\Sigma} = \left(egin{array}{c|c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ \hline oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \ \end{array}
ight),$$

donde $\Sigma_{11} = Var(\mathbf{X}_1)$, $p_1 \times p_1$, $\Sigma_{22} = Var(\mathbf{X}_2)$, $p_2 \times p_2$, $\Sigma_{12} = Cov(\mathbf{X}_1, \mathbf{X}_2)$, $p_1 \times p_2$, y $\Sigma_{21} = \Sigma'_{12}$.

La distribución de \mathbf{X}_1 condicionada a $\mathbf{X}_2 = \mathbf{x}_2^0$ es normal con vector de esperanzas $\mathsf{E}(\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2^0) = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2^0-\boldsymbol{\mu}_2)$ y matriz de covarianzas $Var(\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2^0) = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$.

Una distribución muy relacionada con la ley normal multivariante, y que es el análogo multivariante de la ley χ^2 , es la distribución Wishart. Dados $\mathbf{X}_1, \ldots, \mathbf{X}_n$ vectores aleatorios i.i.d. $\sim N_p(\mathbf{0}, \mathbf{\Sigma})$, la matriz $p \times p$

$$\mathbf{Q} = \sum_{i=1}^{n} \mathbf{X}_{i} \, \mathbf{X}_{i}' \sim W_{p}(\mathbf{\Sigma}, n)$$

sigue una ley Wishart con parámetro de escala Σ y n grados de libertad. Dadas las variables aleatorias $\mathbf{Z} \sim N_p(\mathbf{0},\mathbf{I})$ y $\mathbf{Q} \sim W_p(\mathbf{I},n)$ estocásticamente independientes, la variable aleatoria

$$T^2 = n \mathbf{Z}' \mathbf{Q}^{-1} \mathbf{Z} \sim T^2(p, n)$$

sigue una ley T^2 de Hotelling con p y n grados de libertad. Si p=1, entonces $T^2(1,n)$ es el cuadrado de una variable aleatoria con ley t de Student y n grados de libertad. En general, $T^2(p,n)$ es proporcional a una F de Fisher

$$\frac{n-p+1}{n \, p} \, T^2(p,n) = F(p,n-p+1).$$

La variable T^2 se utiliza de manera análoga a la ley t de Student, en contrastes sobre medias multivariantes.

Para p y n fijos, genérese una muestra de tamaño N de una ley $T^2(p,n)$ de Hotelling. Represéntense los resultados mediante un histograma.

Si $\mathbf{A} \sim W_p(\mathbf{\Sigma}, a)$ y $\mathbf{B} \sim W_p(\mathbf{\Sigma}, b)$ son independientes, $\mathbf{\Sigma}$ es regular y $a \geq p$, la variable aleatoria

$$\Lambda = \frac{|\mathbf{A}|}{|\mathbf{A} + \mathbf{B}|}$$

tiene una ley Lambda de Wilks, $\Lambda(p, a, b)$, con parámetros p, a y b.

La ley Λ no depende del parámetro Σ de \mathbf{A} y \mathbf{B} , por lo que es suficiente considerarla para $\Sigma = \mathbf{I}$. Tiene la misma distribución que un producto de b v.a. independientes con distribución Beta, es decir, si $L \sim \Lambda(p,a,b)$ entonces

$$L = \prod_{i=1}^b u_i, \quad \textit{donde } u_i \sim \textit{Beta}\left(rac{a+i-p}{2}, rac{p}{2}
ight).$$

Genérese una muestra de tamaño N de una ley Λ de Wilks. Represéntense los resultados mediante un histograma.

La Tabla 3.1 contiene las medidas de 5 variables biométricas sobre gorriones hembra, recogidos casi moribundos después de una tormenta. Los primeros 21 sobrevivieron mientras que los 28 restantes no lo consiguieron. Las variables son $X_1 = \text{longitud}$ total, $X_2 = \text{extensión del ala}$, $X_3 = \text{longitud del pico y de la cabeza}$, $X_4 = \text{longitud}$ del húmero y $X_5 = \text{longitud del esternón}$.

Realicense comparaciones de medias y de covarianzas entre el grupo de supervivientes y el de no supervivientes.

La tabla 3.1 está disponible en Aula digital, pestaña Actividades, con el nombre "gorriones.xlsx".

Ayuda:

Comparación de covarianzas. Supondremos que X es una muestra aleatoria simple de tamaño n_X de una ley normal multivariante $\mathbf{X} \sim N_5(\mu_X, \Sigma_X)$ y que Y es otra muestra aleatoria simple independiente de la anterior y de tamaño n_Y de una ley normal multivariante $\mathbf{Y} \sim N_5(\mu_Y, \Sigma_Y)$. Queremos contrastar la hipótesis de igualdad de covarianzas, es decir:

$$H_0: \Sigma_X = \Sigma_Y = \Sigma$$

Utilizaremos el contraste de la razón de verosimilitudes, cuyo estadístico es

$$\lambda_R = \frac{|\mathbf{S}_X|^{n_X/2} |\mathbf{S}_Y|^{n_Y/2}}{|\mathbf{S}|^{n/2}},$$

donde S_X y S_Y son las matrices de covarianzas muestrales de cada grupo, $n = n_X + n_Y$ y S es la matriz de covarianzas común, que se obtiene mediante la siguiente ponderación:

$$\mathbf{S} = \frac{n_X \, \mathbf{S}_X + n_Y \, \mathbf{S}_Y}{n_X + n_Y}.$$

Bajo la hipótesis nula dada por (3.6), tenemos que

$$-2\log(\lambda_R) \sim \chi_q^2$$
,

donde

$$q = (g-1)p(p+1)/2$$
,

g es el número de grupos y p es el número de variables.

Para implementar este contraste

$$-2\log(\lambda_R) = n \log |\mathbf{S}| - (n_X \log |\mathbf{S}_X| + n_Y \log |\mathbf{S}_Y|).$$

En una fábrica de zumos se diseña el siguiente procedimiento de control de calidad. Se toma una muestra piloto (véase la Tabla 3.2) de n=50 extracciones de zumo cuando el proceso de fabricación funciona correctamente y en ella se mide la concentración de p=11 aminoácidos, $\mathbf{X}=(X_1,\ldots,X_{11})'$. Supóngase que \mathbf{X} sigue una distribución normal. A continuación cada día se observan estas mismas variables con objeto de detectar algún cambio significativo en la calidad del proceso (véase Tabla 3.3). Supóngase que estas sucesivas observaciones, $\mathbf{y}_i, i=1,\ldots,10$, son independientes de la muestra piloto y entre sí.

Constrúyase un gráfico de control para estos nuevos diez días como se indica a continuación. En primer lugar calcúlense la media \bar{x} y la matriz de covarianzas S para la muestra piloto. A continuación para la observación y_i constrúyase el estadístico

$$T^{2}(i) = \frac{n}{n+1} (\mathbf{y}_{i} - \bar{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{y}_{i} - \bar{\mathbf{x}})$$

que debería seguir una $T^2(p, n-1)$ si la distribución de \mathbf{y}_i es la misma que la de la muestra piloto.

Represéntense secuencialmente los valores de $T^2(i)$ en un gráfico y márquese en él un límite de control $LC = \frac{(n-1)\,p}{n-p}\,F^\alpha(p,n-p)$, siendo α el nivel de significación que deseemos fijar ($\alpha=0.05$, por ejemplo). Párese el proceso de fabricación el primer día i que una observación y_i esté fuera de la región de control, es decir, $y_i > LC$.

Las tablas de datos están disponible en Aula Digital, pestaña Actividades con nombres nombre "tabla_3_2.txt" y tabla_3_3.txt".

Con algunos programas de ordenador sólo se pueden generar muestras normales univariantes. Supongamos, sin embargo, que deseamos generar una muestra de un vector bidimensional $\mathbf{Y} = (Y_1, Y_2)'$ con distribución $N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, donde

$$\mu = (\mu_1, \mu_2)',$$

$$\Sigma = \left(egin{array}{cc} \sigma_{11} & \sqrt{\sigma_{11}}\sqrt{\sigma_{22}}
ho \ \sqrt{\sigma_{11}}\sqrt{\sigma_{22}}
ho \end{array}
ight)$$

 $y \rho$ denota la correlación entre Y_1 e Y_2 . Entonces podemos recurrir al procedimiento que explicamos a continuación.

(a) genera observaciones normales univariantes e independientes entre sí, y para un tamaño muestral n a elegir, genérese una muestra

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix}$$
(3.1)

de un vector $\mathbf{X} = (X_1, X_2)'$ con distribución $N_2(\mathbf{0}, \mathbf{I})$.

(b) Ahora consideremos las siguientes transformaciones lineales de X

$$Y_1 = \mu_1 + \sqrt{\sigma_{11}} X_1$$

$$Y_2 = \mu_2 + \sqrt{\sigma_{22}} (\rho X_1 + \sqrt{1 - \rho^2} X_2).$$
(3.2)

Demuéstrese que $\mathbf{Y} = (Y_1, Y_2)'$ sigue una distribución $N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

(c) Elíjanse unos valores concretos para μ , σ_{11} , σ_{22} y ρ . Utilizando la combinación lineal (3.2), genérese con Matlab una muestra de \mathbf{Y} a partir de la muestra (3.1) obtenida en (a).