PRACTICE EXERCISES: BIN-PACKING

THE SOLUTIONS WILL BE AVAILABLE IN 1-3 WEEKS

Hardness and Inapproximability. The objective of this exercise is to prove that the decision version of Bin-Packing is NP-complete and an inapproximability result. In the decision version of Bin-Packing we are given a set of items, a positive integer number k, and the goal is to decide wether is possible to pack the items in those k bins of capacity one. The proof comes from a reduction from the NP-complete $Partition\ problem$,

Partition: Given a sequence a_1, a_2, \ldots, a_n of non-negative integers, decide wether there is a subset $S \subseteq [n]$ such that

$$\sum_{j \in S} a_j = \sum_{j \notin S} a_j.$$

Theorem 1. The decision version of Bin-Packing is NP-complete.

Theorem 2. There is no α -approximation algorithm for Bin-Packing with $\alpha < 3/2$, unless P=NP.

- (1) Given an instance I_P to Partition, the following instance I_B for Bin-Packing is constructed: there are two bins and for each number a_j there is an item j of size $s_j = 2a_j/A$, where $A = \sum_{j \in [n]} a_j$.
 - (a) Prove that if I_P is a YES instance for Partition, then I_B is a YES instance for Bin-Packing.
 - (b) Prove that if I_B is a YES partition for Bin-Packing with two bins, then I_P is a YES instance for Partition.
 - (c) Conclude Theorem 1.
- (2) Suppose that exists $\varepsilon > 0$ and an algorithm that is a $(3/2 \varepsilon)$ -approximation for Bin-Packing. In particular, this algorithm can be run over those instances where the optimal packing uses two bins.
 - (a) Given an instance I for the partition problem, construct the same instance for Bin-Packing as before, and use $(3/2 \varepsilon)$ -approximation to decide wether I is a YES instance.
 - (b) Conclude Theorem 2 using the fact that the algorithm runs in polynomial time, and that Partition is an NP-complete problem.

FFD algorithm. Given a Bin-Packing instance with n items and sizes s_1, \ldots, s_n , we sort them according to non-increasing order. Consider the *First-Fit decreasing* algorithm: a bin j=1 is opened and if item 1 fits in this bin then it is packed in it. We continue with item 2, if it fits into the bin j=1 then it is packed there, and if not then a new bin j=2 is opened. In general, given an item i, it is packed into the first bin where it is possible to pack, and if not then a new bin is opened. Prove that this algorithm returns a packing using at most $3/2 \cdot \text{opt} + 1$ bins.