Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних

циклічних алгоритмів»

Варіант<u>22</u>

Виконав студент	ІП-13, Музичук Віталій Андрійович		
•	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
1 1	(прізвище, ім'я, по батькові)		

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 22

Із заданою точністю обчислити значення математичної константи е:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Постановка задачі

Для обчислення константи e з заданою точністю нам необхідно застосувати ітераційний цикл, щоб знайти частину нескінченної прогресії, де n-ний член визначається за формулою $\frac{1}{fact}$. Цикл працює допоки модуль поточного члена ряду більший за задане число **accuracy**. Оскільки кожен наступний член ряду > 0, то для всіх членів відкриваємо модуль без зміни знаку. Якщо поточний член більший за задану точність, то до константи e додаємо цей член послідовності та продовжуємо цикл, якщо ж ні — ми знайшли шукане число, тому дія циклу припиняється і виводиться значення e.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Задана точність обчислення	Дійсний	accuracy	Початкове значення
Поточний член ряду	Дійсний	current	Проміжне значення
Значення константи	Дійсний	e	Кінцеве значення
Значення факторіалу	Цілий	fact	Проміжне значення

Алгоритми та структури даних. Основи алгоритмізації

Ітераційна змінна	Цілий	i	Ітераційна змінна
-------------------	-------	---	-------------------

- 1. Для факторіалу числа будемо користуватися змінною **fact**, яка буде обчислюватися кожну ітерацію за формулою **fact** := **fact** * i.
- 2. Поточний член ряду (current) визначається за формулою 1 / fact
- 3. Значення константи e визначаємо за формулою $e := e + \mathbf{current}$

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначаємо основні дії

Крок 2. Вводимо данні та декларуємо змінні

Крок 3. Деталізуємо дію ітераційного циклу

Псевдокод

крок 1

початок

вводимо данні та декларуємо змінні

деталізація дії циклу

виведення е

кінець

крок 2

початок

введення accuracy

e := 1

i := 0

fact := 1

current := 0

деталізація дії ітераційного циклу

виведення е

кінець

крок 3

початок

введення accuracy

e := 1

i := 0

fact := 1

current := 0

повторити

e := e + current

i := i + 1

fact := fact * i

current := 1 / fact

поки current > accuracy

все повторити

виведення *е*

кінець

Блок-схема

Крок 1

Крок 3

Випробування алгоритму:

Блок	Дія
	Початок
1	Введення: ассигасу := 0.01
2	e := 1
3	i := 0
4	fact := 1
5	current := 0
6	e := 1
7	i := 1
8	fact := 1
9	current := 1
10	e := 2
11	i := 2
12	fact := 2
13	current := 0.5
14	e := 2.5
15	i := 3
16	fact := 6
17	current := 0.16666666666
18	<i>e</i> := 2.666666666
19	i := 4
20	fact := 24
21	current := 0.041666666666
22	e := 2.7083333333333
23	i := 5
24	fact := 120
25	current := 0.0083333333333
26	Виведення: $e := 2.708333333333$

Висновки:

Ми дослідили оператори повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій, закріпили вміння декомпозувати задачу. В результаті виконання лабораторної роботи ми отримали алгоритм для обчислення суми відрізка нескінченного ряду.