Twitter Sentiment Analysis of Public Reaction to COVID-19 News

Prepared and Presented by Alexandra Yakovleva

Project Overview

Motivation:

By leveraging Natural Language Processing (NLP) and sentiment analysis models, we aim to gain insights into online conversations surrounding the pandemic.

Project Overview

Potential Stakeholders:

Public Health Officials, Media Outlets, Government Agencies, Researchers.

Business Problem and Objectives

Problem Statement:

Potential Stakeholders need **better understanding** of how their announcements influence public sentiment on Social Media.

Business Problem and Objectives

Key Questions:

- What is the sentiment?
- Can we identify features related to specific sentiment?

Business Problem and Objectives

Project Objectives:

- Develop NLP pipeline for Social Media data analysis
- Deploy robust sentiment classification model
- Visualize and interpret results

Data Acquisition and Preparation

Covid-19 Twitter Dataset: A large collection of COVID-19-related tweets from Kaggle.

GloVe Embeddings: Pretrained word embeddings from Stanford NLP Group.

Data Limitations: Paywalled Access to Twitter Data

Data Limitations: Sentiment Labels

- Imbalanced Distribution.
- Unverified Labels.
- Unknown Labeling Algorithm.

Sentiment Distribution

Data Limitations: Date Ranges

Data Cleaning and EDA

Date: Temporal trends of tweet data are extracted.

Language: Relevant language is subset to increase relevant tweet ratio.

Location: Location data is standardized and processed for geocoding.

Source: Platforms (e.g., Twitter for Android) are identified.

Sentiment: Sentiment labels are explored and distributions analyzed.

Social Connections: Mentions and retweets are analyzed for network insights.

Text Preprocessing and Feature Engineering

Cleaning: another day in paradise grinning face with big eyes

Preprocessing: another day paradise grinning face big eye

Feature Extraction: 'another day', 'another day paradise', 'grinning face'

Sentiment
Analysis with
Supervised
Machine
Learning

Methods:

- **Features:** X (170679 x 10200)
- Target: y (sentiment categories)
- Data Split: Train (70%) Test (15%) Validate (15%)
- Sentiment Classification: Logistic Regression
- **Performance Metric:** balance of precision and recall.

Results and Visualization: Performance

Weighted Accuracy 94%

Results and Visualization: Predictive Features

Positive Great, Best, Free

Neutral Number, Support, Death

Negative Death, Ban, Dangerous

Conclusion

- **Summary:** Developed a system to classify sentiment and extract informative features.
- Strengths: Model performs well on new data and can provide actionable insights for the stakeholders.
- Limitations: Model is limited by a specific sentiment classification. Model covers extensive time-period and is not specific to a particular stakeholder.
- Future Work: Implement advanced sentiment classification and feature engineering. Re-train model on more specific subset of data.