Algebra - Lista 3

Niestety nie udało mi się powiedzieć na wykładzie, jak dodawać i mnożyć przez skalar macierze. Dodajemy po współrzędnych, mnożymy każdą współrzędną z osobna, to znaczy:

$$(a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}} + (b_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}} = (a_{ij} + b_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}}$$
$$\alpha(a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}} = (\alpha a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}}$$

Łatwo też sprawdzić, że mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, gdy tylko takie mnożenie macierzy jest łączne, tj.: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

Zadanie 1 Wyznacz jądro i obraz (np. poprzez podanie generujących je wektorów) dla następujących przekształceń liniowych (z \mathbb{R}^3)

- F(x, y, z) = (2x + y, 3x z, 5x + y z, -2x + 2y 2z);
- F(x, y, z) = (x + y, y 2z, 3z, x y);
- F(x, y, z) = (x + y, y + z);
- F(x, y, z) = (x + y, 2y + z, y z);
- F(x, y, z) = (x + y, 2x + 2y, 3x + 3y)

Zadanie 2 Rozważmy przestrzeń wielomianów o stopniu najwyżej 7 nad ciałem \mathbb{Z}_5 oraz przekształcenie liniowe zdefiniowane jako suma pierwszej i drugiej pochodnej, tj.: $F(x^i) = ix^{i-1} + i(i-1)x^{i-2}$, gdzie $i(i-1)x^{i-2}$ dla i < 2 oznacza 0.

Wyznacz jądro ker F i obraz Im F tego przekształcenia (np. podaj ich bazy). Podaj ich wymiary.

Zadanie 3 Dane jest przekształcenie liniowe $F: V \mapsto W$. Udowodnij, następujące warunki są równoważne:

- F jest różnowartościowe;
- $\dim(\ker(F)) = 0$;
- \bullet ker(F) składa się z jednego wektora;
- $\operatorname{rk}(F) = \dim(V)$.

Zadanie 4 Załóżmy, że dla przekształcenia liniowego $L: \mathbb{R}^2 \mapsto \mathbb{R}^2$ zachodzi $L^3(v) = \vec{\mathbf{0}}$, dla każdego wektora $v \in \mathbb{R}^2$. Pokaż, że wtedy również $L^2(v) = \vec{\mathbf{0}}$, dla każdego wektora v.

Udowodnij także uogólnienie tego twierdzenia: jeśli dla $L: \mathbb{R}^n \to \mathbb{R}^n$ oraz pewnego k > n zachodzi $L^k(v) = \vec{\mathbf{0}}$ dla dowolnego v, to zachodzi również $L^n(v) = \vec{\mathbf{0}}$.

Wskazówka: rozważ wektory $v, L(v), L^2(v), \ldots, L^n(v)$. Są one liniowo zależne.

Zadanie 5(Nierówność Frobeniusa) Udowodnij, że dla dowolnych przekształceń liniowych F, G, H (o odpowiednich dziedzinach i przeciwdzinach) zachodzi:

$$\operatorname{rk}(FG) + \operatorname{rk}(GH) \le \operatorname{rk}(G) + \operatorname{rk}(FGH).$$

Zadanie 6 Pokaż, że dla macierzy A, B, C odpowiednich wymiarów oraz skalara α (Id oznacza macierze identycznościową/jednostkową odpowiedniego wymiaru, tj. mającą na przekątnej jedynkę oraz zera w innych miejscach):

$$Id \cdot A = A \cdot Id$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

$$\alpha(A \cdot B) = (\alpha A) \cdot B = A \cdot (\alpha B)$$

Wywnioskuj z tego, że zbiór macierzy $n \times m$ nad K jest przestrzenią liniową nad K.

Zadanie 7 Definiujemy *transpozycję* macierzy jako "obrócenie" jej wokół przekątnej lewy-górny róg–prawy-dolny róg.

Formalnie:

$$(a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}}^T = (a_{ji})_{\substack{j=1,\dots,m\\i=1,\dots,n}}.$$

Pokaż, że

$$(A \cdot B)^T = B^T \cdot A^T.$$

Zadanie 8 Zdefiniujmy $f_0 = 0, f_1 = 1$ oraz $f_{n+2} = f_{n+1} + f_n$. Rozważmy macierz $M = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Pokaż, że dla $k \ge 1$ zachodzi

$$M^k = \begin{bmatrix} f_{k-1} & f_k \\ f_k & f_{k+1} \end{bmatrix} \text{ oraz } M^k \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} f_k \\ f_{k+1} \end{bmatrix}.$$

Rozważając równość $M^{n+k} = M^k \cdot M^n$ wyprowadź zależność:

$$f_{n+k} = f_{k-1}f_n + f_k f_{n+1} = f_k f_{n-1} + f_{k+1}f_n.$$

Zadanie 9 Oblicz (macierze są nad
$$\mathbb{R}$$
) $\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}^n$; $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^2$; $\begin{bmatrix} 3 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ · $\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix}$.

Zadanie 10 Ustalmy macierzAwymiaru $n\times n.$ Pokaż, że zbiór macierzy B, takich że AB=BA, jest przestrzenią liniową.

Znajdź wszystkie macierze B wymiaru 2×2 spełniające warunek $B \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \cdot B$.