Question Number	Answer		Mark
20(a)	Top row correct	(1)	
	Bottom row correct	(1)	2
	Example of calculation	(1)	_
	$^{225}_{89}\text{Ac} \rightarrow ^{221}_{87}\text{Fr} + ^{4}_{2}\alpha$		
20(b)	Use of 1 $u = 1.66 \times 10^{-27} \text{ kg}$	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	Use of 1 J = 1.6×10^{-19} eV	(1)	
	1 u = 934 (MeV)	(1)	4
	Example of calculation		
	$\Delta E = (3.0 \times 10^8 \text{ m s}^{-1})^2 \times 1.66 \times 10^{-27} \text{ kg} = 1.494 \times 10^{-10} \text{ J}$		
	$\therefore \Delta E = \frac{1.494 \times 10^{-10} \text{ J}}{1.6 \times 10^{-13} \text{ J MeV}^{-1}} = 934 \text{ MeV}$		
20(c)	Use of 1 $u = 934$ MeV (ecf from (b) [Accept calculation from first principles]	(1)	
	The mass of the Fr nucleus is much greater than the mass of the α	(1)	
	Momentum is conserved so (recoil) velocity of Fr nucleus is much less than the velocity of the $\boldsymbol{\alpha}$	(1)	
	So the kinetic energy of the α is much greater than the kinetic energy of the Fr \mathbf{Or} (after the decay) the α has most of the kinetic energy [MP4 dependent upon MP2 or MP3]	(1)	
	OR		
	Use of 1 u = 934 MeV (ecf from (b) [Accept calculation from first principles]	(1)	
	Mathematical statement of momentum conservation	(1)	
	Use of $E_{\mathbf{k}} = \frac{p^2}{2m}$		
	Or use of $E_k = \frac{1}{2}mv^2$ and $p = mv$	(1)	
	E_k calculated and statement that E_k is just less than 5.9 MeV Or E_k calculated and statement that α has most of the kinetic energy	(1)	4
	Example of calculation		
	$\Delta E = 6.35 \times 10^{-3} \text{ u} \times 934 \text{ MeV u}^{-1} = 5.93 \text{ MeV}$		
	[5.91 MeV if "show that" value used]		

20(d)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	Use of $A = -\lambda N$	(1)	
	Use of $N = N_0 e^{-\lambda t}$ $N = 5.6 \times 10^{13}$	(1)	
	$N = 5.6 \times 10^{13}$	(1)	4
	Example of calculation		
	$\lambda = \frac{\ln 2}{9.9 \times 24 \times 3600 \text{ s}} = 8.10 \times 10^{-7} \text{s}^{-1}$		
	$N = \frac{7.4 \times 10^7 \text{s}^{-1}}{8.10 \times 10^{-7} \text{s}^{-1}} = 9.13 \times 10^{13}$		
	$N = 9.13 \times 10^{13} \times e^{-8.10 \times 10^{-7} \text{s}^{-1} \times 7.0 \times 24 \times 3600 \text{ s}} = 5.59 \times 10^{13}$		

14

Total for question 20