Nuclear and Radiation Physics (PHY2005) Lecture 6

D. Margarone

2021-2022

Recap & Learning Goals

Summary of Lecture 5 (Chap.3)

- The Liquid Drop Model
 - √ Semi-empirical mass formula
- The Collective Model
 - ✓ Nuclear vibrations (A<150)
 - ✓ Nuclear rotations (150<A<190 A>220)
 - ✓ Magnetic quadrupole moment

$$M_{Z,A} = f_0(Z,A) + f_1(Z,A) + f_2(Z,A) + f_3(Z,A) + f_4(Z,A) + f_5(Z,A)$$

$$\mu(I) = I \frac{Z}{A} \mu_N$$

oblate deformation (β<0)

prolate deformation (β>0)

$$E = \frac{\hbar^2}{2\Im}I(I+1)$$

Learning goals of of Lecture 6 (Chap.4)

- Knowing the terminology and notation of the nuclear decay law
- Understanding physical reasoning behind the nuclear decay law

4. Nuclear Decays Introduction

Nuclear decays (categories)

- α -decay \rightarrow <u>spontaneous</u> emission of an α -particle (⁴He nucleus) from a nucleus with a large *A* (upper limit on the atomic numbers of the chemical elements)
- β -decay \rightarrow <u>spontaneous</u> emission (or absorption) of an electron (or a positron) by a nucleus
- γ-decay → <u>spontaneous</u> emission of high-energy photons (transitions from a nucleus in an excited state)

4. Nuclear Decays 4.1 Decay law I

Decay law

- unstable nuclei (natural events) → radioactive nuclei
- nuclear decay process → <u>radioactive decay</u> (or radioactivity)
- radioactive decays → origin of the universe
- let's consider a system with N(0) nuclei at some initial condition (zero) and a nuclear decay rate R
- ... and N undecayed nuclei at a time t

 $N(t) = N(0)e^{-Rt}$

nuclear decay law

radioactivity in meteorites (origin of heaviest elements in our solar system)

4. Nuclear Decays 4.1 Decay law II

Decay law (characteristics)

- T → <u>lifetime</u> (average time a nucleus survives before it decays)
- $T_{1/2} \rightarrow \underline{\text{half-life}}$ (required time for undecayed nuclei to decrease by a factor of 2)
- calculations involve probabilities → results are correct only in the average

4. Nuclear Decays 4.1 Decay law (C-14 dating)

Carbon-14 dating (application)

14C (radioactive isotope of C) undergoes β-decay:

$$^{14}_{6}C \rightarrow ^{14}_{7}N + e^{-} + \bar{\nu}_{e}$$

- biological material fossil dating (high accuracy)
- the moment of death of the plant can be retrieved:

$$t = \frac{1}{R} \ln \frac{N(t)}{N(0)} = T \frac{N(t)}{N(0)} = \frac{T_{1/2}}{0.693} \ln \frac{N(t)}{N(0)}$$

- $T_{1/2} = 5730 \text{ years}$
- the sample is assumed to have originally had the same14C/12Cas in the atmosphere (N(0) is known)

4. Nuclear Decays Derivation/Example 4.1

Derive the following expression:

$$N(t) = N(0)e^{-Rt}$$

4. Nuclear Decays Example 4.2

Samples of the Dead Sea Scrolls were analysed by carbon dating. The C-14 present had an activity of 11 d/min.g (disintegrations per minute per gram). Knowing that living material exhibits an activity of 14 d/min.g, calculate how old are the Dead Sea Scrolls.

 $t = \frac{T_{1/2}}{0.693} ln \frac{N(0)}{N(t)}$ $T_{1/2} = 5730 \text{ years}$

Dead Sea Scrolls (ancient Jewish religious manuscripts)

4. Nuclear Decays Example 4.3

A smoke alarm prototype is tested and shows a detector sensitivity (smallest current detectable) for α -radiation of approximately 2 μ A. Calculate the activity in Curie corresponding to 2 μ A current of α -particles, and explain why the result is unreasonable for a smoke alarm for home use. [activity of a typical Am-241 detector \sim 1 μ Ci]

