Linear and Convex Optimization Homework 04

Qiu Yihang, 2021/10/25-10/27

1.(a) Proof:

$$f(x) = \log x$$
 is obviously concave. (Since $\operatorname{dom} f = \mathbb{R}^+, f'(x) = \frac{1}{x}, f''(x) = -\frac{1}{x^2} < 0$.)

For any $\mathbf{x} = (x_1, x_2, ..., x_n)^T \in \Delta_{n-1}$, we know $x_i \ge 0, \forall i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^n x_i = 1$. Let $\|\mathbf{x}\|_0 = k$. Obviously $k \le n$.

Without loss of generality, assume the first k components of x are nonzero, i.e.

$$x_i$$
 $> 0, \forall i \in \{1, 2, ..., k\}$
= 0, $\forall i \in \{k + 1, ..., n\}$

Now we prove $H(x) = -\sum_{i=1}^{n} x_i \log x_i \le k$ by proving the proposition below inductively:

$$\frac{-\sum_{i=1}^{p} x_i \log x_i}{\sum_{i=1}^{p} x_i} = \frac{\sum_{i=1}^{p} x_i \log \frac{1}{x_i}}{\sum_{i=1}^{p} x_i} \le \log \left(\frac{p}{\sum_{i=1}^{p} x_i}\right), 1 \le p \le k.$$

BASE STEP. When p = 1,

$$\frac{x_1}{x_1}\log\left(\frac{1}{x_1}\right) = \log\left(\frac{1}{x_1}\right).$$

INDUCTIVE STEP.

Suppose when
$$p = m$$
, $\frac{\sum_{i=1}^{p} x_i \log \frac{1}{x_i}}{\sum_{i=1}^{p} x_i} \le \log \left(\frac{p}{\sum_{i=1}^{p} x_i}\right)$.

When $p = m + 1 \le k$, since $f(x) = \log x$ is concave, we have

$$\begin{split} \frac{\sum_{i=1}^{m+1} x_i \log \frac{1}{x_i}}{\sum_{i=1}^{m+1} x_i} &= \frac{\sum_{i=1}^{m} x_i}{\sum_{i=1}^{m+1} x_i} \frac{\sum_{i=1}^{m} x_i \log \frac{1}{x_i}}{\sum_{i=1}^{m+1} x_i} + \frac{x_{m+1} \log \frac{1}{x_{m+1}}}{\sum_{i=1}^{m+1} x_i} \\ &\leq \frac{\sum_{i=1}^{m} x_i}{\sum_{i=1}^{m+1} x_i} \log \left(\frac{m}{\sum_{i=1}^{m} x_i}\right) + \frac{x_{m+1}}{\sum_{i=1}^{m+1} x_i} \log \frac{1}{x_{m+1}} \\ &= \log \left(\frac{\sum_{i=1}^{m} x_i}{\sum_{i=1}^{m+1} x_i} \frac{m}{\sum_{i=1}^{m} x_i} + \frac{x_{m+1}}{\sum_{i=1}^{m+1} x_i} \frac{1}{x_{m+1}}\right) = \log \left(\frac{m+1}{\sum_{i=1}^{m+1} x_i}\right) \end{split}$$

i.e.

$$\frac{-\sum_{i=1}^{p} x_{i} \log x_{i}}{\sum_{i=1}^{p} x_{i}} = \frac{\sum_{i=1}^{p} x_{i} \log \frac{1}{x_{i}}}{\sum_{i=1}^{p} x_{i}} \le \log \left(\frac{p}{\sum_{i=1}^{p} x_{i}}\right)$$

still holds when $p = m + 1 \le k$.

Let p = k. Since $\sum_{i=1}^{n} x_i = 1$, $0 \log 0 = 0$, we have

$$H(x) = -\sum_{i=1}^{n} x_i \log x_i = -\sum_{i=1}^{k} x_i \log x_i \le \log\left(\frac{k}{1}\right) = \log||x||_0 \le \log n.$$

(b) Proof:

Let
$$C = \{x \in \Delta_{n-1} : x > 0\}, x = (x_1, x_2, ..., x_n)^T$$
.

First we prove $H(x) = -\sum_{i=1}^{n} x_i \log x_i$ is strictly concave on C.

$$\nabla H(\mathbf{x}) = (-\log x_1 - 1, -\log x_2 - 1, ..., -\log x_n - 1)^T,$$

$$\nabla^{2}H(\mathbf{x}) = \begin{pmatrix} -\frac{1}{x_{1}} & 0 & \cdots & 0 \\ 0 & -\frac{1}{x_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\frac{1}{x_{n}} \end{pmatrix} \prec \mathbf{0} \text{ (Since } x_{i} > 0, \forall i \in \{1, 2, \dots, n\})$$

Thus, H(x) is strictly concave.

The constrain is $g(x) = \sum_{i=1}^{n} x_i - 1$. Use Lagrange Method to calculate the conditioned extreme value. Let $\mathcal{L}(x,\lambda) = H(x) + \lambda g(x)$.

When
$$\nabla \mathcal{L}(\boldsymbol{x}, \lambda) = \boldsymbol{0}$$
 i.e. $(-\log x_1 - 1 + \lambda, \ldots, -\log x_n - 1 + \lambda, \sum_{i=1}^n x_i - 1)^T = \boldsymbol{0}$, we know
$$\begin{cases} x_1 = 1/n \\ \vdots \\ x_n = 1/n \end{cases}$$

In this case, $H(x) = \log n$. Thus, H(x) reaches a local maximum at $\overline{x} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^T$ on C.

Since H(x) is strictly concave, $H(\overline{x})$ is the unique global maximum of H(x) on C.

Now we consider H(x) on $\Delta_{n-1}\backslash C$.

 $\forall x \in \Delta_{n-1} \setminus C$, $\|x\|_0 < n$. From (a) we know $H(x) \le \log \|x\|_0 < \log n = H(\overline{x})$.

Therefore, $H(\overline{x})$ is the unique global maximum of H(x) on Δ_{n-1} .

Qed.

2.(a) Proof:

Considering $a < s < \mu < u < b$, let $\theta = \frac{\mu - s}{u - s} \in [0,1]$, $\bar{\theta} = 1 - \theta = \frac{u - \mu}{u - s}$.

By convexity of f,

$$f(\mu) = f\left(\frac{\mu - s}{u - s}u + \frac{u - \mu}{u - s}s\right) = f(\theta u + \bar{\theta}s) \le \theta f(u) + \bar{\theta}f(s) = \frac{\mu - s}{u - s}f(u) + \frac{u - \mu}{u - s}f(s)$$

$$\Leftrightarrow (u - \mu + \mu - s)f(\mu) \le (\mu - s)f(u) + (u - \mu)f(s)$$

$$\Leftrightarrow (u - \mu)(f(\mu) - f(s)) \le (\mu - s)(f(u) - f(\mu))$$

i.e.

$$\frac{f(\mu) - f(s)}{\mu - s} \le \frac{f(u) - f(\mu)}{u - \mu}.$$

(b) Proof:

Let
$$\beta = \sup_{a < s < \mu} \frac{f(\mu) - f(s)}{\mu - s}$$
.

Obviously $\beta \ge \frac{f(\mu) - f(s)}{\mu - s} > -\infty$ (since $f: (a, b) \to \mathbb{R}$).

From (a) we know $\forall s \in (a, \mu), \frac{f(\mu) - f(s)}{\mu - s} \le \frac{f(u) - f(\mu)}{u - \mu} < +\infty$. Thus, $-\infty < \beta < +\infty$.

CASE 01. $\mu < x < b$.

From (a) we know $\forall s \in (a, \mu), \frac{f(\mu) - f(s)}{\mu - s} \le \frac{f(x) - f(\mu)}{x - \mu}$.

Thus,
$$\beta \le \frac{f(x)-f(\mu)}{x-\mu}$$
, i.e. $f(\mu) + \beta(x-\mu) \le f(\mu) + \frac{f(x)-f(\mu)}{x-\mu}(x-\mu) = f(x)$.

CASE 02. $a < x < \mu$.

By the definition of β , we know $\beta \ge \frac{f(\mu) - f(x)}{\mu - x}$ (since $\alpha < x < \mu$).

Thus,
$$f(\mu) + \beta(x - \mu) = f(\mu) - \beta(\mu - x) \le f(\mu) - \frac{f(\mu) - f(x)}{\mu - x}(\mu - x) = f(x)$$
.

In conclusion, $f(x) \ge f(\mu) + \beta(x - \mu)$, $\forall x \in (a, b)$.

Qed.

(c) Proof:

From (b) we know $f(x) \ge f(\mu) + \beta(x - \mu)$, $\forall x \in (a, b)$, where $\mu = \mathbb{E}X$.

Since X is a random variable taking values in (a, b), $f(X) \ge f(\mu) + \beta(X - \mu)$,

By the isotonicity of expectation E, we have

$$\mathbb{E}f(X) \ge \mathbb{E}(f(\mu) + \beta(X - \mu)).$$

By the linearity of expectation E, we have

$$\mathbb{E}(f(\mu) + \beta(X - \mu)) = \mathbb{E}f(\mu) + \beta\mathbb{E}(X - \mu) = f(\mu) + \beta(\mathbb{E}X - \mathbb{E}\mu) = f(\mu) + \beta(\mathbb{E}X - \mu)$$
$$= f(\mu) + 0 = f(\mathbb{E}X).$$

Thus,

$$\mathbb{E} f(X) \geq f(\mathbb{E} X).$$

Qed.

3. Solution:

S is a convex set. The proof is as follows.

Since $\|\cdot\|$ is a convex function, its affine composition $\|Ax + b\|$ is convex.

Considering x^3 is a convex function on \mathbb{R}^+ , the composition of convex functions ||Ax + b|| and x^3 , i.e. $||Ax + b||^3$ is convex.

Since $\log(1+e^x)$ is convex and $3x_1 + 2x_2$ is affine, we know $\log(1+e^{3x_1+2x_2})$ is convex. Therefore, $f(x) = \max\{\|Ax + b\|^3, \log(1+e^{3x_1+2x_2})\}$ is a convex function.

By the definition of S, we know S is a **2-**sublevel set of f.

Since f is convex, its sublevel set S is convex.

Qed. \square

4.(a) Solution:

The Problem (a) is a convex optimization problem.

(Proof:

Since $(x_1 - x_2)^2$ is convex and $x_1 + x_2$ is affine and thus convex, the objective function $f(x) = (x_1 - x_2)^2 + x_1 + x_2$ is convex.

Since $(x_1 + x_2)^2$ and $e^{x_1 + x_2}$ are both convex, inequality constraint function $g(x) = (x_1 + x_2)^2 + e^{x_1 + x_2}$ is convex.

Regarding that objective function f(x) and inequality constraint function g(x) are both convex while equality constraint function $h(x) = x_1 - 3x_2$ is affine, the problem (a) is a convex optimization problem.)

(b) Solution:

The Problem (b) is not a convex optimization problem.

(Disproof:

Consider the first inequality constraint function $g_1(\mathbf{x}) = x_1 e^{-(x_1 + x_2)}$.

Let
$$x = (3, -3), y = (-1, 3), \theta = \bar{\theta} = \frac{1}{2}$$
. Then $\theta x + \bar{\theta} y = (1, 0)$.

$$g_1(\theta x + \bar{\theta} y) = e > \theta g_1(x) + \bar{\theta} g_1(y) = \frac{3e^0 - e^2}{2} = \frac{3 - e^2}{2}$$
. Thus, $g_1(x)$ is not convex.

Also, the equality constraint function $h(x) = 6x_1^2 - 7x_2$ is not affine.

Therefore, the problem (b) is not a convex optimization problem.)