Функционални зависимости II част

Обвивки и покрития

Функционална зависимост (FD)

$A_1, A_2, ..., A_n \rightarrow B$

- Ако два кортежа от r(R) съвпадат по атрибутите A₁, A₂, ..., A_n of R, те трябва да съвпадат и по атрибута В
- Ако

$$-A_1 A_2 \dots A_n \rightarrow B_1$$

$$-A_1 A_2 \dots A_n \rightarrow B_2$$

$$-A_1 A_2 \dots A_n \rightarrow B_m$$

TO

$$-A_1 A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$$

Обвивка на множество от функционални зависимости

Def. Heка F е множество от FD's. F^+ - Обвивка на F е множество от FD's, които логически следват от F.

 $F^+ = \{X \rightarrow Y \mid X \models Y \}$ са логически следствия от F

Приложение на правилата на Amstrong: Пример

Дадено е м-во от функционални зависимости:

$$AB \rightarrow C$$
, $CD \rightarrow E$

 $ABD \rightarrow E$?

 \blacksquare AB \rightarrow C

■ ABD \rightarrow CD

CD →E

ABD → E

дадено

A2

дадено

A3

Hадежност (soundness) на аксиомите Armstrong

■Лема:

Аксиомите на Армстронг са надеждни,

т.е ако $X \rightarrow Y$ е изведено от F чрез аксиомите,

то $X \rightarrow Y$ е вярно за всяка релация, в която важат зависимостите F.

Правила за разделяне и обединение

- Имаме право да разделим множеството атрибути в дясната част на FD и да поставим всеки от тях в дясната част на нова FD.
- Правило за декомпозиция:

- Ако
$$AA \to B_1$$
, B_2 , ..., B_n , то $AA \to B_1$..., $AA \to B_2$, ..., $AA \to B_n$

Правила за разделяне и обединение

■Правило за обединение:

AKO
$$AA \rightarrow B_1$$

$$AA \rightarrow B_2$$

$$AA \rightarrow B_n$$

$$AA \rightarrow B_1, B_2, ..., B_n$$

Приложение на правилата на Amstrong: Пример

Дадено е м-во от функционални зависимости:

$$A \rightarrow B, B \rightarrow C, A \rightarrow D, CE \rightarrow HG$$

- Прилагайки транзитивното правило към А → В и В → С, получаваме А → С.
- Прилагайки правилото за обединение към A \to B и A \to D, получаваме A \to BD
- Прилагайки правилото за псевдотранзитивност към CE →HG и резултатът A → C, получаваме AE → HG
- Прилагайки правилото за декомпозиция към горния резултат, получаваме АЕ → Н и АЕ → G

Намиране на FD's

$$F$$

$$AB \rightarrow C$$

$$union \quad AB \rightarrow BCD \qquad decomp$$

$$A \rightarrow D \quad aug \quad AB \rightarrow BD \qquad trans \quad AB \rightarrow BCDE \quad AB \rightarrow CDE$$

$$D \rightarrow E \quad aug \quad BCD \rightarrow BCDE$$

 $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$ и $AB \rightarrow CDE$

Пълнота на аксиомите на Armstrong

Теорема:

Аксиомите на Армстронг са надеждни и пълни.

Еквивалентна дефиниция на F+

■ Следствие: Нека F е множество от FD's. F^+ - Обечека на F е множество от FD's $\{X \to Y \mid X \to Y \mid \text{могат да бъдат извлечени от } F$ чрез аксиомите на Армстронг $\}$

 Кои зависимости принадлежат на обвивката на множеството F от предходния пример?

Намиране на F^+

$$F$$

$$AB \rightarrow C$$

$$union \quad AB \rightarrow BCD$$

$$A \rightarrow D \quad aug \quad AB \rightarrow BD$$

$$trans \quad AB \rightarrow BCDE \quad AB \rightarrow CDE$$

$$D \rightarrow E \quad aug \quad BCD \rightarrow BCDE$$

 $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$ и $AB \rightarrow CDE$ са елементи на F^+

Обвивка на атрибут

Def. Обвивка на атрибута (множество от атрибути) X се нарича множеството от атрибути X+:

$$X^{+} = \bigcup \{Y \mid X \rightarrow Y \in F^{+}\}$$

Функционалната зависимост X → Y е от F (следва от правилата на Армстронг) само ако Y ⊆ X+

Пълнота (soundness) на аксиомите Armstrong

■ Лема: Нека F е множество от FD's. Функционалната зависимост $X \to Y$ е от F (следва от правилата на Армстронг) само ако $Y \subseteq X^+$

■ Теорема: Аксиомите на Армстронг са надеждни и пълни

Обвивка на атрибут

- ■Обвивката X+ на X е максималният атрибут, за който $X \to X^+$ е от F^+
- $\blacksquare X \subseteq X^+$
- Намиране на обвивка

```
closure:= X;
repeat until there is no change {
    if there is an fd U → V in F
        such that U is in closure
        then add V to closure}
```

Алгоритъм за намиране на

ОБВИВКА Намиране на обвивката на $\{A_1, A_2, ..., A_n\}$

- Нека променливата X представлява м-во от атрибути, което ще се разшири до обвивката на {A₁, A₂, ..., A_n }. Първоначално X = {A₁, A₂, ..., A_n }
- 2. Търсим FD ($Z \to C$) $B_1 B_2 \dots B_m \to C$, такава че $B_1 B_2 \dots B_m \subseteq X$, но $C ! \subseteq X$ Ако съществува такава **FD**, C се добавя към X
- 3. Ст.2 се повтаря докато има **FD**, които позволяват включване на атрибут в X.
- 4. След завършване X съдържа {A₁, A₂, ..., A_n }+

Намиране на Х+

?
$$Z \rightarrow C$$

Пример: обвивка на атрибут

```
AB \rightarrow C (a)

A \rightarrow D (b)

D \rightarrow E (c)

AC \rightarrow B (d)

\{AB\}^+ ???
```

Решение:

$${AB}^{+} = {AB}$$

(a) ${AB}^{+} = {ABC}$
(b) ${AB}^{+} = {ABCD}$
(c) ${AB}^{+} = {ABCDE}$

Намиране на всички функционални зависимости

Проверка дали една FD $A_1A_2...A_n \to B$ е част от м-во от функционални зависимости S

- 1. Намираме {A₁, A₂, ..., A_n }⁺ като използваме S
- 2. Ако B $\in \{A_1, A_2, ..., A_n\}^+$ то FD $A_1A_2...A_n \to B$ следва от S
- 3. В противен случай В не следва от S

FD's и ключове

Ако R е релационна схема с атрибути A1. . .An и м-во от функционални зависимости F и X A₁,A₂,...,A_n , то казваме, че X е ключ на релацията R ако:

$$\blacksquare X \rightarrow A_1, A_2, \dots, A_n$$

За никое Y <> 0, Y ⊆ X не е вярно, че

$$Y \rightarrow A_1, A_2, \dots, A_n$$

Обвивки и ключове

{A₁, A₂, ..., A_n }⁺ е множеството от всички атрибути на релацията R тогава и само тогава, когато A₁, A₂, ..., A_n суперключ за тази релация.

Обосновка на алгоритъм за намиране на обвивка

- Алгоритъмът за намиране на обвивката на атрибут (м-во от атрибути) намира само верни FD's
- Алгоритъмът за намиране на обвивката на атрибут (м-во от атрибути) намира всички верни FD's

Намиране на "скрити" FD's

- Мотивация: "нормализация," процес на разбиване на релационната схема на 2 или повече схеми
- ■Пример: *ABCD* c FD's

 $AB \rightarrow C$, $C \rightarrow D$, and $D \rightarrow A$.

— Да разделим ли на *ABC*, *AD*. Какви FD's има в *ABC* ?

Еквивалентност на м-ва от FD's

Def. Две множества от FD's, F и G, са еквивалентни ако $F^+ = G^+$

Пример:

$$\{AB \rightarrow C, A \rightarrow B\}$$
 и $\{A \rightarrow C, A \rightarrow B\}$ са еквивалентни.

Def. Всяко м-во от FD's, еквивалентно на *F* + , се нарича *покритие* на F

- *F* + с-жа голям брой FD's
- Малки еквиваленти множества

Минимално покритие

 $\frac{\mathsf{Def}}{\mathsf{ako}}$: Множеството от FD's F е минимално ако:

- 1. Всяка FD от F е във вида $X \to A$, където A е единичен атрибут
- 2. За никоя FD $X \to A$ от F , множеството $F \{X \to A\}$ не е еквивалентно на F.
- 3. За никоя $X \to A$ от F и $Z \subseteq X$, множеството

 $F - \{X \to A\} \cup \{Z \to A\}$ не е еквивалентно на F.

Минимално покритие

Теорема

Всяко множество FD's F е еквивалентно на някакво минимално множество F!