Problems

- [17.] When a 4.00-kg object is hung vertically on a ceramitrain light spring that obeys Hooke's law, the spring stretches 2.50 cm. If the 4.00-kg object is removed, (a) how far will the spring stretch if a 1.50-kg block is hung on it? (b) How much work must an external agent do to stretch the same spring 4.00 cm from its unstretched position?
- 18. Hooke's law describes a certain light spring of unstretched length 35.0 cm. When one end is attached to the top of a doorframe and a 7.50-kg object is hung from the other end, the length of the spring is 41.5 cm. (a) Find its spring constant. (b) The load and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a force of 190 N. Find the length of the spring in this situation.
- 19. An archer pulls her bowstring back 0.400 m by exerting a force that increases uniformly from zero to 230 N. (a) What is the equivalent spring constant of the bow? (b) How much work does the archer do on the string in drawing the bow?
- **25.** A small particle of mass *m* is pulled to the top of a frictionless half-cylinder (of radius *R*) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.25. (a) Assuming the particle moves at

Figure P7.25

- a constant speed, show that $F = mg \cos \theta$. Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating $W = \int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, find the work done in moving the particle at constant speed from the bottom to the top of the half-cylinder.
- 28. A 100-g bullet is fired from a rifle having a barrel 0.600 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is 15 000 + 10 000x 25 000x², where x is in meters. (a) Determine the work done by the gas on the bullet as the bullet travels the length of the barrel. (b) What If? If the barrel is 1.00 m long, how much work is done, and (c) how does this value compare with the work calculated in part (a)?
- 31. A 3.00-kg object has a velocity $(6.00\,\hat{\mathbf{i}} 2.00\,\hat{\mathbf{j}})$ m/s. W (a) What is its kinetic energy at this moment? (b) What is the net work done on the object if its velocity changes to $(8.00\,\hat{\mathbf{i}} + 4.00\,\hat{\mathbf{j}})$ m/s? (*Note:* From the definition of the dot product, $v^2 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$.)

- 35. A 2 100-kg pile driver is used to drive a steel I-beam into

 M the ground. The pile driver falls 5.00 m before coming into contact with the top of the beam, and it drives the beam 12.0 cm farther into the ground before coming to rest. Using energy considerations, calculate the average force the beam exerts on the pile driver while the pile driver is brought to rest.
- **38. Review.** A 7.80-g bullet moving at 575 m/s strikes the hand of a superhero, causing the hand to move 5.50 cm in the direction of the bullet's velocity before stopping. (a) Use work and energy considerations to find the average force that stops the bullet. (b) Assuming the force is constant, determine how much time elapses between the moment the bullet strikes the hand and the moment it stops moving.