Lecture 22 Conjugate Gradient Method

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

Conjugate Gradient Method

Outline

Conjugate Gradient Method

Krylov Subspace Algorithms

ullet Create a sequence of Krylov subspaces for $\mathbf{A}\mathbf{x}=\mathbf{b}$

$$\mathcal{K}_n = \{\mathbf{b}, \mathbf{Ab}, \dots, \mathbf{A}^{n-1}\mathbf{b}\}$$

and find an approximate (hopefully optimal) solutions $\mathbf{x}_n \in \mathcal{K}_n$

- Only matrix-vector products involved
- For SPD matrices, most famous algorithm is Conjugate Gradient (CG) method discovered by Hestenes/Stiefel in 1952
 - Find best solution $\mathbf{x}_n \in \mathcal{K}_n$ in norm $\|\mathbf{x}\|_{\mathbf{A}} = \sqrt{\mathbf{x}^T \mathbf{A} \mathbf{x}}$.
 - Only requires storing 4 vectors (instead of n vectors) due to three-term recurrence

Motivation of Conjugate Gradients

• If **A** is $m \times m$ SPD, then quadratic function

$$\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{x}^T\mathbf{b}$$

has unique minimum

· Negative gradient of this function is residual vector

$$-\nabla \phi(\mathbf{x}) = \mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{r}$$

so minimum is obtained precisely when $\mathbf{A}\mathbf{x} = \mathbf{b}$

· Optimization methods have form

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha \mathbf{p}_n$$

where ${\bf p}_n$ is search direction and α is step length chosen to minimize $\phi({\bf x}_n+\alpha{\bf p}_n)$

- Line search parameter can be determined analytically as $\alpha = \mathbf{r}_n^T \mathbf{p}_n / \mathbf{p}_n^T \mathbf{A} \mathbf{p}_n$
- In CG, \mathbf{p}_n is chosen to be **A**-conjugate (or **A**-orthogonal) to previous search directions, i.e., $\mathbf{p}_n^T \mathbf{A} \mathbf{p}_j = 0$ for $j < n_{\text{top}}$

Conjugate Gradient Method

Algorithm: Conjugate Gradient Method

$$\begin{aligned} \mathbf{x}_0 &= \mathbf{0}, \ \mathbf{r}_0 = \mathbf{b}, \ \mathbf{p}_0 = \mathbf{r}_0 \\ \text{for } n &= 1 \text{ to } 1, 2, 3, \dots \\ \alpha_n &= (\mathbf{r}_{n-1}^T \mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}) \\ \mathbf{x}_n &= \mathbf{x}_{n-1} + \alpha_n \mathbf{p}_{n-1} \\ \mathbf{r}_n &= \mathbf{r}_{n-1} - \alpha_n \mathbf{A} \mathbf{p}_{n-1} \\ \beta_n &= (\mathbf{r}_n^T \mathbf{r}_n)/(\mathbf{r}_{n-1}^T \mathbf{r}_{n-1}) \\ \mathbf{p}_n &= \mathbf{r}_n + \beta_n \mathbf{p}_{n-1} \end{aligned} \qquad \text{step length} \\ \text{approximate solution} \\ \text{residual} \\ \text{improvement this step} \\ \text{search direction} \end{aligned}$$

- Only one matrix-vector product \mathbf{Ap}_{n-1} per iteration
- Apart from matrix-vector product, #flops per iteration is $O(m^2)$
- If ${\bf A}$ is sparse with constant number of nonzeros per row, ${\cal O}(m)$ operations per iteration
- CG can be viewed as minimization of quadratic function $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} \mathbf{x}^T\mathbf{b}$ by modifying steepest descent

4□ > 4回 > 4 量 > 4 量 > 1 量 > 9 Q ()

An Alternative Interpretation of CG

CG

$$\begin{aligned} \mathbf{x}_0 &= \mathbf{0}, \ \mathbf{r}_0 = \mathbf{b}, \ \mathbf{p}_0 = \mathbf{r}_0 \\ \text{for } n &= 1 \text{ to } 1, 2, 3, \dots \\ \alpha_n &= (\mathbf{r}_{n-1}^T \mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}) \\ \mathbf{x}_n &= \mathbf{x}_{n-1} + \alpha_n \mathbf{p}_{n-1} \\ \mathbf{r}_n &= \mathbf{r}_{n-1} - \alpha_n \mathbf{A} \mathbf{p}_{n-1} \\ \beta_n &= (\mathbf{r}_n^T \mathbf{r}_n)/(\mathbf{r}_{n-1}^T \mathbf{r}_{n-1}) \\ \mathbf{p}_n &= \mathbf{r}_n + \beta_n \mathbf{p}_{n-1} \end{aligned}$$

A non-standard CG

$$\begin{aligned} \mathbf{x}_0 &= \mathbf{0}, \ \mathbf{r}_0 &= \mathbf{b}, \ \mathbf{p}_0 &= \mathbf{r}_0 \\ \text{for } n &= 1 \text{ to } 1, 2, 3, \dots \\ \alpha_n &= (\mathbf{r}_{n-1}^T \mathbf{p}_{n-1})/(\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}) \\ \mathbf{x}_n &= \mathbf{x}_{n-1} + \alpha_n \mathbf{p}_{n-1} \\ \mathbf{r}_n &= \mathbf{b} - \mathbf{A} \mathbf{x}_n \\ \beta_n &= -\mathbf{r}_n^T \mathbf{A} \mathbf{p}_{n-1}/(\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}) \\ \mathbf{p}_n &= \mathbf{r}_n + \beta_n \mathbf{p}_{n-1} \end{aligned}$$

- The non-standard one is less efficient but easier to understand
- It is easy to see $\mathbf{r}_n = \mathbf{r}_{n-1} \alpha_n \mathbf{A} \mathbf{p}_{n-1} = \mathbf{b} \mathbf{A} \mathbf{x}_n$
- We need to show:
 - α_n minimizes ϕ along search direction \mathbf{p}_n
 - α_n and β_n are equivalent to those in standard CG
 - Minimizing ϕ along \mathbf{p}_n also minimizes ϕ within Krylov subspace

Optimality of Step Length

- Select step length α_n over vector \mathbf{p}_{n-1} to minimize $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} \mathbf{x}^T\mathbf{b}$
- Let $\mathbf{x}_n = x_{n-1} + \alpha_{n-1} \mathbf{p}_{n-1}$,

$$\begin{split} \phi(\mathbf{x}_n) &= \frac{1}{2} \alpha_n^2 \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1} + \alpha_n \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{x}_{n-1} - \alpha_n \mathbf{p}_{n-1}^T \mathbf{b} + \text{constant} \\ &= \frac{1}{2} \alpha_n^2 \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1} - \alpha_n \mathbf{p}_{n-1}^T \mathbf{r}_{n-1} + \text{constant} \end{split}$$

Therefore,

$$\frac{d\phi}{d\alpha_n} = 0 \Rightarrow \alpha_n \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1} - \mathbf{p}_{n-1}^T \mathbf{r}_{n-1} = 0 \Rightarrow \alpha_n = \frac{\mathbf{p}_{n-1}^T \mathbf{r}_{n-1}}{\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}}$$

• In addition, $\mathbf{p}_{n-1}^T \mathbf{r}_{n-1} = \mathbf{r}_{n-1}^T \mathbf{r}_{n-1}$ because $\mathbf{p}_{n-1} = \mathbf{r}_{n-1} + \beta_n \mathbf{p}_{n-2}$ and $\mathbf{r}_{n-1}^T \mathbf{p}_{n-2} = 0$ due to the following theorem.

Properties of Conjugate Gradients

Theorem

If $\mathbf{r}_{n-1} \neq \mathbf{0}$, spaces spanned by approximate solutions \mathbf{x}_n , search directions \mathbf{p}_n , and residuals \mathbf{r}_n are all equal to Krylov subspaces

$$\mathcal{K}_n = \langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle = \langle \mathbf{p}_0, \dots, \mathbf{p}_{n-1} \rangle = \langle \mathbf{r}_0, \dots, \mathbf{r}_{n-1} \rangle$$

The residuals are orthogonal (i.e., $\mathbf{r}_n^T \mathbf{r}_j = 0$ for j < n) and search directions are **A**-conjugate (i.e., $\mathbf{p}_n^T \mathbf{A} \mathbf{p}_j = 0$ for j < n).

This theorem implies that

$$\alpha_n = (\mathbf{r}_{n-1}^T\mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{p}_{n-1}) = \mathbf{r}_{n-1}^T\mathbf{p}_{n-1}/(\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{p}_{n-1})$$

and

$$\beta_n = \frac{\mathbf{r}_n^T \mathbf{r}_n}{\mathbf{r}_{n-1}^T \mathbf{r}_{n-1}} = \frac{\mathbf{r}_n^T (\mathbf{r}_{n-1} - \alpha_n \mathbf{A} \mathbf{p}_{n-1})}{\mathbf{r}_{n-1}^T \mathbf{r}_{n-1}} = -\frac{\mathbf{r}_n^T \mathbf{A} \mathbf{p}_{n-1}}{\mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_{n-1}}$$

Proof of Theorem

Prove based on notation of standard CG.

- Proof of equality of subspaces by simple induction.
- To prove $\mathbf{r}_n^T \mathbf{r}_j = 0$, note that $\mathbf{r}_n = \mathbf{r}_{n-1} \alpha_n \mathbf{A} \mathbf{p}_{n-1}$ and $(\mathbf{A} \mathbf{p}_{n-1})^T = \mathbf{p}_{n-1}^T \mathbf{A}$, so

$$\mathbf{r}_n^T \mathbf{r}_j = (\mathbf{r}_{n-1} - \alpha_n \mathbf{A} \mathbf{p}_{n-1})^T \mathbf{r}_j = \mathbf{r}_{n-1}^T \mathbf{r}_j - \alpha_n \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{r}_j$$

- if j < n-1, then both terms on right are zero by induction.
- If j=n-1, plug in $\alpha_n=(\mathbf{r}_{n-1}^T\mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{p}_{n-1})$

$$\mathbf{r}_{n-1}^T\mathbf{r}_j - \alpha_n\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{r}_j = \mathbf{r}_{n-1}^T\mathbf{r}_{n-1} - \mathbf{r}_{n-1}^T\mathbf{r}_{n-1}\frac{\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{r}_{n-1}}{\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{p}_{n-1}}$$

which in zero because

$$\mathbf{p}_{n-1}^T\mathbf{A}\mathbf{p}_{n-1} = \mathbf{p}_{n-1}^T\mathbf{A}(\mathbf{r}_{n-1} + \beta_n\mathbf{p}_{n-2}) = \mathbf{p}_{n-1}^T\mathbf{A}\mathbf{r}_{n-1}$$

by induction hypothesis.

Proof of Theorem Cont'd

• To prove $\mathbf{p}_n^T \mathbf{A} \mathbf{p}_j = 0$, note that $\mathbf{p}_n = \mathbf{r}_n + \beta_n \mathbf{p}_{n-1}$, so

$$\mathbf{p}_n^T \mathbf{A} \mathbf{p}_j = \mathbf{r}_n^T \mathbf{A} \mathbf{p}_j + \beta_n \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_j$$

- If j < n-1, then both terms on right are zero by induction.
- If j = n 1, plug in $\beta_n = (\mathbf{r}_n^T \mathbf{r}_n)/(\mathbf{r}_{n-1}^T \mathbf{r}_{n-1})$,

$$\begin{split} \mathbf{r}_n^T \mathbf{A} \mathbf{p}_j + \beta_n \mathbf{p}_{n-1}^T \mathbf{A} \mathbf{p}_j &= \mathbf{r}_n^T \mathbf{A} \mathbf{p}_{n-1} + \frac{1}{\alpha_n} \mathbf{r}_n^T \mathbf{r}_n \\ &= \frac{1}{\alpha_n} \mathbf{r}_n^T (\mathbf{r}_n + \alpha_n \mathbf{A} \mathbf{p}_{n-1}) \\ &= \frac{1}{\alpha_n} \mathbf{r}_n^T \mathbf{r}_{n-1} \\ &= 0 \end{split}$$

Optimality of Conjugate Gradients

Theorem

If $\mathbf{r}_{n-1}
eq \mathbf{0}$, then error $\mathbf{e}_n = \mathbf{x}_* - \mathbf{x}_n$ are minimized in **A**-norm in \mathcal{K}_n

Proof.

Consider arbitrary point $\mathbf{x} = \mathbf{x}_n - \Delta \mathbf{x} \in \mathcal{K}_n$ with error $\mathbf{e} = \mathbf{x}_* - \mathbf{x} = \mathbf{e}_n + \Delta \mathbf{x}$. So

$$\|\mathbf{e}\|_{\mathbf{A}}^2 = (\mathbf{e}_n + \Delta \mathbf{x})^T \mathbf{A} (\mathbf{e}_n + \Delta \mathbf{x}) = \mathbf{e}_n^T \mathbf{A} \mathbf{e}_n + \Delta \mathbf{x}^T \mathbf{A} \Delta \mathbf{x} + 2 \mathbf{e}_n^T \mathbf{A} \Delta \mathbf{x}$$

where $\mathbf{e}_n^T \mathbf{A} \Delta \mathbf{x} = \mathbf{r}_n^T \Delta \mathbf{x} = 0$ because $\mathbf{r}_n \perp \mathcal{K}_n$. Since **A** is SPD, $\|\mathbf{e}\|_{\mathbf{A}}^2 \geqslant \|\mathbf{e}_n\|_{\mathbf{A}}^2$ and equality holds iff $\Delta \mathbf{x} = \mathbf{0}$.

ullet Because \mathcal{K}_n grows monotonically, error decreases monotonically.

Rate of Convergence

- In addition, CG can be studied in terms of polynomial approximation
 - It finds optimal polynomial $p_n \in \mathbf{P}_n$ of degree n with p(0) = 1, minimizing $||p_n(\mathbf{A})\mathbf{e}_0||_{\mathbf{A}}$ with initial error $\mathbf{e}_0 = \mathbf{x}_*$.
 - Convergence results can be obtained from this polynomial approximation
- Some important convergence results
 - If **A** has n distinct eigenvalues, CG converges in at most n steps
 - If **A** has 2-norm condition number κ , the errors are

$$\frac{\|\mathbf{e}_n\|_{\mathbf{A}}}{\|\mathbf{e}_0\|_{\mathbf{A}}} \leqslant 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^n$$

• In general, CG performs well with clustered eigenvalues