ESP32-PICO-D4

技术规格书

关于本文档

本文档为用户提供 ESP32-PICO-D4 模组的技术规格信息。

修订历史

请至文档最后页查看修订历史。

文档变更通知

用户可以通过乐鑫官网订阅页面 www.espressif.com/zh-hans/subscribe 订阅技术文档变更的电子邮件通知。

证书下载

用户可以通过乐鑫官网证书下载页面 www.espressif.com/zh-hans/certificates 下载产品证书。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。版权归 © 2019 乐鑫所有。保留所有权利。

目录

1	概述	1
2	管脚定义	2
2.1	管脚布局	2
2.2	管脚描述	2
2.3	Strapping 管脚	4
3	功能描述	6
3.1	CPU 和片上存储	6
3.2	外部 Flash 和 SRAM	6
3.3	晶振	6
3.4	RTC 和低功耗管理	6
4	外设接口和传感器	7
5	电气特性	8
5.1	绝对最大额定值	8
5.2		8
5.3		8
5.4 5.5	• • • • • • • • • • • • • • • • • • • •	9
0.0	5.5.1 接收器	9
	5.5.2 发射器	10
5.6		11
6		
6	原理图	12
7	外围设计原理图	13
Ω	封装信息	10
O	为农间心	16
9	学习资源	17
9.1	必读资料	17
9.2	必备资源	17
修	订历史	18

表格

1	ESP32-PICO-D4 产品规格	1
2	管脚定义	2
3	Strapping 管脚	4
4	绝对最大额定值	8
5	建议工作条件	8
6	直流电气特性 (3.3 V, 25 °C)	8
7	Wi-Fi 射频特性	9
8	低功耗蓝牙接收器特性	9
9	低功耗蓝牙发射器特性	10

插图

1	ESP32-PICO-D4 管脚布局(俯视图)	2
2	回流焊温度曲线	11
3	ESP32-PICO-D4 模组原理图	12
4	ESP32-PICO-D4 模组外围设计原理图	13
5	VDD33 放电电路图	14
6	复位电路	14
7	ESP32-PICO-D4 封装信息	16

1. 概述

ESP32-PICO-D4 是一款基于 ESP32 的系统级封装 (SiP) 模组,可提供完整的 Wi-Fi 和蓝牙功能。该模组的外观尺寸仅为 (7.000 ± 0.100) mm × (7.000 ± 0.100) mm × (0.940 ± 0.100) mm,整体占用的 PCB 面积最小,已集成 1 个 4 MB 串行外围设备接口 (SPI) flash。

ESP32-PICO-D4 的核心是 ESP32 芯片*。ESP32 是集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,采用台积电 (TSMC) 超低功耗的 40 纳米工艺。ESP32-PICO-D4 模组已将晶振、flash、滤波电容、RF 匹配链路等所有外围器件无缝集成进封装内,不再需要外围元器件即可工作。此时,由于无需外围器件,模组焊接和测试过程也可以避免,因此 ESP32-PICO-D4 可以大大降低供应链的复杂程度并提升管控效率。

ESP32-PICO-D4 具备体积紧凑、性能强劲及功耗低等特点,适用于任何空间有限或电池供电的设备,比如可穿戴设备、医疗设备、传感器及其他 IoT 设备。

说明:

* 更多有关 ESP32 的信息,请参考 _《ESP32 技术规格书》。

表 1 列出了 ESP32-PICO-D4 的产品规格。

表 1: ESP32-PICO-D4 产品规格

类别	项目	产品规格		
	44.377	802.11 b/g/n (802.11n 的速度高达 150 Mbps)		
Wi-Fi	协议	支持 A-MPDU 和 A-MSDU 聚合;支持 0.4 μs 保护间隔		
	频率范围	2.4 GHz ~ 2.5 GHz		
	协议	蓝牙 V4.2 BR/EDR 和 BLE 标准		
		NZIF 接收器,灵敏度达-97 dBm		
蓝牙	射频	Class-1、Class-2 和 Class-3 发射器		
		AFH		
音频模组接口	音频	CVSD 和 SBC		
		ADC、DAC、触摸传感器、SD/SDIO/MMC 主机控制器、SPI、		
	模组接口	SDIO/SPI 从机控制器、EMAC、电机 PWM、LED PWM、		
		UART、I ² C、I ² S、红外远程控制器、GPIO、脉冲计数器		
	片上传感器	霍尔传感器		
福化	集成晶振	40 MHz 晶振		
	集成 SPI flash	4 MB		
	工作电压/供电电压	2.7 V ~ 3.6 V		
	工作电流	平均: 80 mA		
	供电电流	最小: 500 mA		
	建议工作温度范围	-40 °C ~ 85 °C		
	封装尺寸	(7.000±0.100) mm×(7.000±0.100) mm×(0.940±0.100) mm		

2. 管脚定义

2.1 管脚布局

图 1: ESP32-PICO-D4 管脚布局 (俯视图)

2.2 管脚描述

ESP32-PICO-D4 模组共有 48 个管脚, 具体描述参见表 2.

表 2: 管脚定义

名称	序号	类型	功能
VDDA	1	Р	模拟电源 (2.3 V ~ 3.6 V)
LNA_IN	2	I/O	射频输入输出
VDDA3P3	3	Р	模拟电源 (2.3 V ~ 3.6 V)
VDDA3P3	4	Р	模拟电源 (2.3 V ~ 3.6 V)
SENSOR_VP	5	1	GPIO36、ADC1_CH0、RTC_GPIO0
SENSOR_CAPP	6	I	GPIO37、ADC1_CH1、RTC_GPIO1
SENSOR_CAPN	7	1	GPIO38、ADC1_CH2、RTC_GPIO2
SENSOR_VN	8	I	GPIO39、ADC1_CH3、RTC_GPIO3
			高电平: 模组使能;
EN	9	1	低电平: 模组关闭;
			注意:不能让这个管脚浮空。

名称	序号	类型	功能				
IO34	10	1	ADC1_CH6、RTC_GPIO4				
IO35	11	I	ADC1_CH7、RTC_GPIO5				
IO32	12	I/O	32K_XP(32.768 kHz 晶振输入)、ADC1_CH4、TOUCH9、RTC_GPIO9				
IO33	13	I/O	32K_XN(32.768 kHz 晶振输出)、ADC1_CH5、TOUCH8、RTC_GPIO8				
1025	14	I/O	GPIO25、DAC_1、ADC2_CH8、RTC_GPIO6、EMAC_RXD0				
IO26	15	I/O	GPIO26、DAC_2、ADC2_CH9、RTC_GPIO7、EMAC_RXD1				
1027	16	I/O	GPIO27、ADC2_CH7、TOUCH7、RTC_GPIO17、EMAC_RX_DV				
			ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,				
IO14	17	I/O	SD_CLK、EMAC_TXD2				
10.40	1.0	1/0	ADC2_CH5、TOUCH5、RTC_GPIO15、MTDI、HSPIQ、HS2_DATA2、				
IO12	18	I/O	SD_DATA2、EMAC_TXD3				
VDD3P3_RTC	19	Р	RTC IO 电源输入 (2.3 V ~ 3.6 V)				
10.40		1/0	ADC2_CH4、TOUCH4、RTC_GPIO14、MTCK、HSPID、HS2_DATA3、				
IO13	20	I/O	SD_DATA3、EMAC_RX_ER				
10.15	0.1	1/0	ADC2_CH3、TOUCH3、RTC_GPIO13、MTDO、HSPICSO、HS2_CMD、				
IO15	21	I/O	SD_CMD、EMAC_RXD3				
100	00	1/0	ADC2_CH2、TOUCH2、RTC_GPIO12、HSPIWP、HS2_DATA0、				
IO2	22	I/O	SD_DATA0				
100	23	I/O	ADC2_CH1、TOUCH1、RTC_GPIO11、CLK_OUT1、EMAC_TX_CLK				
104	0.4	1/0	ADC2_CH0、TOUCH0、RTC_GPIO10、HSPIHD、HS2_DATA1、				
104 24 1/0		1/0	SD_DATA1、EMAC_TX_ER				
IO16	25	I/O	GPIO16、HS1_DATA4、U2RXD、EMAC_CLK_OUT				
VDD_SDIO	26	Р	VDD3P3_RTC 电源输出				
IO17	27	I/O	GPIO17、HS1_DATA5、U2TXD、EMAC_CLK_OUT_180				
SD2	28	I/O	GPIO9、SD_DATA2、SPIHD、HS1_DATA2、U1RXD				
SD3	29	I/O	GPIO10、SD_DATA3、SPIWP、HS1_DATA3、U1TXD				
CMD	30	I/O	GPIO11、SD_CMD、SPICSO、HS1_CMD、U1RTS				
CLK	31	I/O	GPIO6、SD_CLK、SPICLK、HS1_CLK、U1CTS				
SD0	32	I/O	GPIO7、SD_DATA0、SPIQ、HS1_DATA0、U2RTS				
SD1	33	I/O	GPIO8、SD_DATA1、SPID、HS1_DATA1、U2CTS				
IO5	34	I/O	GPIO5、VSPICSO、HS1_DATA6、EMAC_RX_CLK				
IO18	35	I/O	GPIO18、VSPICLK、HS1_DATA7				
IO23	36	I/O	GPIO23、VSPID、HS1_STROBE				
VDD3P3_CPU	37	Р	CPU IO 电源输入 (1.8 V ~ 3.6 V)				
IO19	38	I/O	GPIO19、VSPIQ、U0CTS、EMAC_TXD0				
IO22	39	I/O	GPIO22、VSPIWP、U0RTS、EMAC_TXD1				
U0RXD	40	I/O	GPIO3、U0RXD、CLK_OUT2				
UOTXD	41	I/O	GPIO1、U0TXD、CLK_OUT3、EMAC_RXD2				
IO21	42	I/O	GPIO21、VSPIHD、EMAC_TX_EN				
VDDA	43	Р	模拟电源 (2.3 V ~ 3.6 V)				
XTAL_N_NC	44	-	NC				
XTAL_P_NC	45	-	NC				
VDDA	46	Р	模拟电源 (2.3 V ~ 3.6 V)				
CAP2_NC	47	_	NC				

名称	序号	类型	功能
CAP1_NC	48	-	NC

注意:

- IO16、IO17、CMD、CLK、SD0 和 SD1 用于连接嵌入式 flash,不建议用于其他功能。详见章节 6 原理图。
- 如果要外接 PSRAM, 推荐使用 SD3 (GPIO10) 用于 PSRAM_CS,请参考章节 7 外围设计原理图。

2.3 Strapping 管脚

ESP32 共有 5 个 Strapping 管脚,可参考章节 6 电路原理图:

- MTDI
- GPI00
- GPI02
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)放开的过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有外部连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电复位 放开时的 Strapping 管脚电平。

复位放开后,Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 3。

表 3: Strapping 管脚

内置 LDO (VDD_SDIO) 电压						
管脚	默认	3.3 V	1.8 V			
MTDI	下拉	0	1			
		系统启动模式				
管脚	默认	SPI 启动模式	下载启动模式			
GPIO0	上拉	1	0			
GPIO2	下拉	无关项	0			
		系统启动过程中,控制 U0TXD 打	印			
管脚	默认	UOTXD 正常打印	U0TXD 上电不打印			
MTDO	上拉	1	0			
		SDIO 从机信号输入输出时序				

管脚	默认	下降沿采样 下降沿输出	下降沿采样 上升沿输出	上升沿采样 下降沿输出	上升沿采样 上升沿输出
MTDO	上拉	0	0	1	1
GPIO5	上拉	0	1	0	1

说明:

- 固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输出时序"的设定。
- ESP32-PICO-D4 集成的外部 SPI flash 工作电压为 3.3 V, 因此在上电复位过程中需保持 Strapping 管脚 MTDI 为低电平。

3. 功能描述

本章描述 ESP32-PICO-D4 的具体功能。

3.1 CPU 和片上存储

ESP32-PICO-D4 搭载 2 个低功耗 Xtensa® 32-bit LX6 微处理器。

ESP32-PICO-D4 片上存储包括:

- 448 KB 的 ROM, 用于程序启动和内核功能调用
- 用于数据和指令存储的 520 KB 片上 SRAM
- RTC 快速存储器,为 8 KB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问
- RTC 慢速存储器,为 8 KB的 SRAM,可以在 Deep-sleep 模式下被协处理器访问
- 1 Kbit 的 eFuse, 其中 256 bit 为系统专用 (MAC 地址和芯片设置); 其余 768 bit 保留给用户程序, 这些程序包括 flash 加密和芯片 ID

3.2 外部 Flash 和 SRAM

ESP32 支持多个外部 QSPI flash 和静态随机存储器 (SRAM)。详情可参考<u>《ESP32 技术参考手册》</u>中的 SPI 章节。ESP32 还支持基于 AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。

ESP32 可通过高速缓存访问外部 QSPI flash 和 SRAM:

- 外部 flash 可以同时映射到 CPU 指令和只读数据空间。
 - 当映射到 CPU 指令空间时,一次最多可映射 11 MB + 248 KB。如果一次映射超过 3 MB + 248 KB,则 cache 性能可能由于 CPU 的推测性读取而降低。
 - 当映射到只读数据空间时, 一次最多可以映射 4 MB。支持 8-bit、16-bit 和 32-bit 读取。
- 外部 SRAM 可映射到 CPU 数据空间。一次最多可映射 4 MB。支持 8-bit、16-bit 和 32-bit 访问。

ESP32-PICO-D4 集成了 4 MB 的外部 SPI flash。

3.3 晶振

ESP32-PICO-D4 已集成 40 MHz 晶振。

3.4 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的功耗模式之间切换。

关于 ESP32 在不同的功耗模式下的电流消耗, 详见《ESP32 技术规格书》中章节 "RTC 和低功耗管理"。

4. 外设接口和传感器

详见<u>《ESP32 技术规格书》</u>中外设接口和传感器章节。

说明:

- IO16、IO17、CMD、CLK、SDO 和 SD1 用于连接嵌入式 flash,不建议用于其他功能。详见章节 6 原理图。
- 如果要外接 PSRAM,推荐使用 SD3 (GPIO10)用于 PSRAM_CS,请参考章节 7 外围设计原理图。

5. 电气特性

5.1 绝对最大额定值

超出绝对最大额定值表可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。建议工作条件请参考表 5。

表 4: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	供电电压	-0.3	3.6	V
I_O^1	IO 输出总电流	-	1,100	mA
T_{store}	存储温度	-40	150	°C

- 1. 模组的 IO 输出总电流的测试条件为 25 °C 环境温度, VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO 三个电源域的管脚输出高电平且直接接地。此时模组在保持工作状态 24 小时后, 仍能正常工作。其中 VDD_SDIO 电源域的管脚不包括连接 flash 和/或 PSRAM 的管脚。
- 2. 关于电源域请参考《ESP32 技术规格书》 附录中表 IO_MUX。

5.2 建议工作条件

表 5: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	供电电压	2.7	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	-	-	А
Т	工作温度	-40	-	85	°C

5.3 直流电气特性 (3.3 V, 25 °C)

表 6: 直流电气特性 (3.3 V, 25 °C)

符号	参数	Ţ	最小值	典型值	最大值	单位
C_{IN}	管脚电容		-	2	-	рF
V_{IH}	高电平输入电压		0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	低电平输入电压		-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	高电平输入电流		-	-	50	nA
_{IL}	低电平输入电流		-	-	50	nA
V_{OH}	高电平输出电压	0.8×VDD ¹	-	-	V	
V_{OL}	低电平输出电压	-	-	0.1×VDD ¹	V	
	高电平拉电流	VDD3P3_CPU 电源域 1, 2	-	40	-	mA
$ _{OH}$	$ (VDD^1 = 3.3 \text{ V}, V_{OH} >= 2.64 \text{ V}, $	VDD3P3_RTC 电源域 1, 2	-	40	-	mA
	管脚输出强度设为最大值)	VDD_SDIO 电源域 ^{1, 3}	-	20	-	mA
	低电平灌电流					
I_{OL}	$(VDD^1 = 3.3 \text{ V}, V_{OL} = 0.495 \text{ V},$	-	28	-	mA	
	管脚输出强度设为最大值)					

符号	参数	最小值	典型值	最大值	单位
R_{PU}	上拉电阻	-	45	-	kΩ
R_{PD}	下拉电阻	-	45	-	kΩ
V_{IL_nRST}	CHIP_PU 关闭芯片的低电平输入电压	-	-	0.6	V

说明:

- 1. VDD 是 I/O 的供电电源。关于电源域请参考_《ESP32 技术规格书》_ 附录中表 IO_MUX。
- 2. VDD3P3_CPU 和 VDD3P3_RTC 电源域管脚的单个管脚的拉电流随管脚数量增加而减小,从约 40 mA 减小到约 29 mA。
- 3. VDD_SDIO 电源域的管脚不包括连接 flash 和/或 PSRAM 的管脚。

5.4 Wi-Fi 射频

表 7: Wi-Fi 射频特性

参数	最小值	典型值	最大值	单位	
输入频率	2412	-	2484	MHz	
输出阻抗	-	50	-	Ω	
	输出功率				
72.2 Mbps PA 输出功率	13	14	15	dBm	
11b 模式下 PA 输出功率	19.5	20	20.5	dBm	
	灵敏度				
DSSS, 1 Mbps	-	-98	-	dBm	
CCK, 11 Mbps	-	-91	-	dBm	
OFDM, 6 Mbps	-	-93	-	dBm	
OFDM, 54 Mbps	-	−75	-	dBm	
HT20, MCS0	-	-93	-	dBm	
HT20, MCS7	-	-73	-	dBm	
HT40, MCS0	-	-90	-	dBm	
HT40, MCS7	-	-70	-	dBm	
MCS32	-	-89	-	dBm	
邻道抑制					
OFDM, 6 Mbps	-	37	-	dB	
OFDM, 54 Mbps	-	21	-	dB	
HT20, MCS0	-	37	-	dB	
HT20, MCS7	-	20	-	dB	

5.5 低功耗蓝牙射频

5.5.1 接收器

表 8: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-	-97	-	dBm

参数	条件	最小值	典型值	最大值	单位
最大接收信号 @30.8% PER	-	0	-	-	dBm
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 -1 MHz	-	- 5	-	dB
邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB
お面地町に O/I	F = F0 −2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 –3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
	2000 MHz ~ 2400 MHz	-27	-	-	dBm
177四季	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	_	-	dBm
互调	-	-36	-	-	dBm

5.5.2 发射器

表 9: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率	-	-	0	-	dBm
增益控制步长	-	-	3	-	dBm
射频功率控制范围	-	-12	-	+9	dBm
	$F = F0 \pm 2 MHz$	-	-52	-	dBm
邻道发射功率	$F = F0 \pm 3 \text{ MHz}$	-	-58	-	dBm
	$F = F0 \pm > 3 \text{ MHz}$	-	-60	-	dBm
$\Delta f1$ avg	-	-	-	265	kHz
$\Delta f2_{max}$	-	247	-	-	kHz
$\Delta f 2$ avg $/\Delta f 1$ avg	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μs
偏移	-	-	2	-	kHz

5.6 回流焊温度曲线

图 2: 回流焊温度曲线

6. 原理图

9

原理图

图 3: ESP32-PICO-D4 模组原理图

7. 外围设计原理图

外围设计原理图

图 4: ESP32-PICO-D4 模组外围设计原理图

图 5: VDD33 放电电路图

说明:

放电电路用在需要快速反复开关 VDD33,且 VDD33 外围电路上有大电容的场景。详情请参考_《ESP32 技术规格书》中**电源管理**章节。

图 6: 复位电路

说明:

当使用电池给 ESP32 系列芯片和模组供电时,为避免电池电压过低导致芯片进入异常状态不能正常启动,一般推荐外接 Power Supply Supervisor。建议检测到供给 ESP32 的电压低于 2.3 V 时将 ESP32 的 CHIP_PU 脚拉低。

7. 外围设计原理图

8. 封装信息

8. 封装信息

图 7: ESP32-PICO-D4 封装信息

9. 学习资源

9.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• 《ESP32 技术规格书》

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

《ESP-IDF 编程指南》

ESP32 相关开发文档的汇总平台,包含硬件手册,软件 API 介绍等。

• 《ESP32 技术参考手册》

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• 《ESP32 硬件设计指南》

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP32 模组以及开发板。

• 《ESP32 AT 指令集与使用示例》

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令, Wi-Fi 功能 AT 指令, TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

• 《乐鑫产品订购信息》

9.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师 (E2E) 的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 GitHub

乐鑫在 GitHub 上有众多开源的开发项目。

• ESP32 工具

ESP32 flash 下载工具以及《ESP32 认证测试指南》。

• ESP-IDF

ESP32 所有版本 IDF。

• ESP32 资源合集

ESP32 相关的所有文档和工具资源。

修订历史

日期	版本	发布说明
		更新表 2 的说明和章节 4 的说明;
2019.01	V1.5	更新章节 7 外围设计原理图,增加 ESP32-PICO-D4 外挂 PSRAM 的连接方式;
		将表 9 中的"射频功率控制范围"从-12~+12 改为-12~+9 dBm。
		删除表 1 "ESP32-PICO-D4 产品规格"中软件相关内容;
2018.10	V1.4	在表 4 "绝对最大额定值"中增加 "IO 输出总电流";
		在表 6 "DC 直流电气特性"中增加各个电源域的拉电流平均值。
		● 将表 2 管脚描述中 VDD3P3_RTC 电压范围由 1.8-3.6V 改为 2.3-3.6V;
		● 将表 2 管脚描述中 VDD_SDIO 电压范围由 "1.8V 或 VDD3P3_RTC 电源输
		出"改为 "VDD3P3_RTC 电源输出";
	V1.3	● 删除有关温度传感器、LNA 前置放大器的内容;
		● 更新章节 3 功能描述;
2018.06		● 更新章节 4 外设接口和传感器中的说明;
2010.00		• 删除章节 7 外围设计原理图中关于管脚 49 的说明,新增两条说明;
		电气特性相关的更新:
		• 更新表 4 绝对最大额定值;
		• 增加表 5 建议工作条件;
		● 增加表 6 DC 直流电气特性;
		• 更新表 9 低功耗蓝牙发射器特性中"增益控制步长","邻道发射功率"参数。
	V1.2	更新章节 2.2 中有关 VDD_SDIO 的管脚描述;
2018.03		更新章节 2.1 中的 ESP32-PICO-D4 管脚布局图;
2010.00		更新章节 6 中的 ESP32-PICO-D4 模组原理图;
		更新章节 7 中的 ESP32-PICO-D4 模组外围设计参考图。
2017.09	V1.1	更新工作电压/供电电压范围为 2.7V ~ 3.6V;
2017.09	V 1.1	更新章节7,增加一条说明。
2017.08	V1.0	首次发布。