Totally Bounded, Compact and Complete Metric Spaces

Anmol Bhullar

MATC27

December 2017

Consider (-1,1) as a topological space.

■ We might be tempted to say this is bounded but we have no machinery to do so.

Consider (-1,1) as a topological space.

- We might be tempted to say this is bounded but we have no machinery to do so.
- Enter Metric Spaces

Consider (-1,1) as a topological space.

- We might be tempted to say this is bounded but we have no machinery to do so.
- Enter Metric Spaces
- Not all metric spaces are bounded but it would be interesting some conditions that guarantee the bounded property

Consider (-1,1) as a topological space.

- We might be tempted to say this is bounded but we have no machinery to do so.
- Enter Metric Spaces
- Not all metric spaces are bounded but it would be interesting some conditions that guarantee the bounded property
- Intuitively, we want the existence of a real number r such that the distance between any two points in the space is less than r.

Definition

A metric space (X, d) is bounded if there exists some number $r \in \mathbb{R}$ such that $d(x, y) \le r$ for all $x, y \in X$. We might say r is *upper bound*, and the smallest of all such r's is said to be the *diameter* of the set X (in the context of d).

Homeomorphic to another bounded space?

Definition

A metric space (X, d) is bounded if there exists some number $r \in \mathbb{R}$ such that $d(x, y) \le r$ for all $x, y \in X$. We might say r is *upper bound*, and the smallest of all such r's is said to be the *diameter* of the set X (in the context of d).

- Homeomorphic to another bounded space?
- Subspace of a bounded space?

Definition

A metric space (X, d) is bounded if there exists some number $r \in \mathbb{R}$ such that $d(x, y) \le r$ for all $x, y \in X$. We might say r is *upper bound*, and the smallest of all such r's is said to be the *diameter* of the set X (in the context of d).

- Homeomorphic to another bounded space?
- Subspace of a bounded space?
- Product of a bounded space?

Definition

A metric space (X, d) is bounded if there exists some number $r \in \mathbb{R}$ such that $d(x, y) \le r$ for all $x, y \in X$. We might say r is *upper bound*, and the smallest of all such r's is said to be the *diameter* of the set X (in the context of d).

- Homeomorphic to another bounded space?
- Subspace of a bounded space?
- Product of a bounded space?
- Compactness?

When is a metric space bounded?

Theorem

If $f: X \to Y$ is a homeomorphism and X is bounded, Y is not necessairly bounded. Subspace of a bounded metric is bounded. (At most) countable products of bounded metric spaces are bounded.

Proof:

 $-1,1)\cong \mathbb{R}$

When is a metric space bounded?

Theorem

If $f: X \to Y$ is a homeomorphism and X is bounded, Y is not necessairly bounded. Subspace of a bounded metric is bounded. (At most) countable products of bounded metric spaces are bounded.

Proof:

- $(-1,1)\cong \mathbb{R}$
- Recall the subspace is given the submetric. So if Y is a subspace of X which is a bounded space, then $d_Y(x,y) = d_X(x,y) < r$.

The Product Metric

Definition (The product metric)

Let $(X_1, d_1), \ldots, (X_n, d_n), \ldots$ be a sequence of metric spaces. For a finite product, we have $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) =$

$$\sqrt{d_1(x_1,y_1)^2+d_2(x_2,y_2)^2+\ldots+d_n(x_n,y_n)^2}$$

where d is a metric on $X_1 \times ... \times X_n$. For an infinite product on $\prod_{k=1}^{\infty} X_k$, we have:

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)}$$

Main Idea:

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)} < \sum_{i=1}^{\infty} \frac{1}{2^k} \frac{r_k}{1 + r_k} \in \mathbb{R}$$

or

$$d(x,y) = \left(\sum_{k=1}^{n} d_k(x_k, y_k)^2\right)^{\frac{1}{2}} < \left(\sum_{k=1}^{n} r_k^2\right)^{\frac{1}{2}} \in \mathbb{R}$$

No generalization possible for uncountable products of metric spaces

Compactness

We have already seen that every compact metric space is bounded. Let us recall the definition of compactness in a topological space.

Definition (Open Cover Definition)

Let X be a topological space. X is compact iff each of its open covers admit a finite subcover.

Compactness

We have already seen that every compact metric space is bounded. Let us recall the definition of compactness in a topological space.

Definition (Open Cover Definition)

Let X be a topological space. X is compact iff each of its open covers admit a finite subcover.

■ We might want to re-write this definition to emphasize the boundedness property.

Compactness

We have already seen that every compact metric space is bounded. Let us recall the definition of compactness in a topological space.

Definition (Open Cover Definition)

Let X be a topological space. X is compact iff each of its open covers admit a finite subcover.

- We might want to re-write this definition to emphasize the boundedness property.
- This is the motivation for our next definition

Consider:

■ Let X be a compact metrizable space. Choose an open cover which is a collection of open balls of at most diameter ϵ .

- Let X be a compact metrizable space. Choose an open cover which is a collection of open balls of at most diameter ϵ .
- Through compactness, we can find a *finite* collection of open balls which are at most diameter ϵ .

- Let X be a compact metrizable space. Choose an open cover which is a collection of open balls of at most diameter ϵ .
- Through compactness, we can find a *finite* collection of open balls which are at most diameter ϵ .
- We can do this for all $\epsilon > 0$

- Let X be a compact metrizable space. Choose an open cover which is a collection of open balls of at most diameter ϵ .
- Through compactness, we can find a *finite* collection of open balls which are at most diameter ϵ .
- We can do this for all $\epsilon > 0$
- Therefore, for all $\epsilon > 0$, we can find a finite collection of open balls at most diameter ϵ which cover X.

- Let X be a compact metrizable space. Choose an open cover which is a collection of open balls of at most diameter ϵ .
- Through compactness, we can find a *finite* collection of open balls which are at most diameter ϵ .
- We can do this for all $\epsilon > 0$
- Therefore, for all $\epsilon > 0$, we can find a finite collection of open balls at most diameter ϵ which cover X.
- Call X totally bounded

Totally Bounded

Definition

A metric space (X, d) is totally bounded if and only if for every real number $\epsilon > 0$, there exists a finite collection of open balls in X of radius ϵ whose union contains X.

Now, we check if at least total bounded \implies bounded. If this is not true, we have a big problem with out definition :(

Theorem (Totally Bounded ⇒ Bounded)

Let X be a totally bounded metric space. We show that X is bounded and show the converse is not necessairly true.

Proof:

Theorem (Totally Bounded ⇒ Bounded)

Let X be a totally bounded metric space. We show that X is bounded and show the converse is not necessairly true.

Proof:

■ Choose $\epsilon > 0$, and choose the associated finite collection of open balls which cover X. (denote by \mathcal{B}). Suppose these are centered at $x_0, x_1, \ldots, x_k \in X$.

Theorem (Totally Bounded ⇒ Bounded)

Let X be a totally bounded metric space. We show that X is bounded and show the converse is not necessairly true.

Proof:

- Choose $\epsilon > 0$, and choose the associated finite collection of open balls which cover X. (denote by \mathcal{B}). Suppose these are centered at $x_0, x_1, \ldots, x_k \in X$.
- Show $d(x_i, x)$ is bounded and $d(x_i, y)$ is bounded.

Theorem (Totally Bounded ⇒ Bounded)

Let X be a totally bounded metric space. We show that X is bounded and show the converse is not necessairly true.

Proof:

- Choose $\epsilon > 0$, and choose the associated finite collection of open balls which cover X. (denote by \mathcal{B}). Suppose these are centered at $x_0, x_1, \ldots, x_k \in X$.
- Show $d(x_i, x)$ is bounded and $d(x_i, y)$ is bounded.
- Use this to show d(y,x) is bounded (triangle inequality)

Now for a counterexample to show bounded \implies totally bounded is not true!

■ Think simple! What is simple? The discrete metric

- Think simple! What is simple? The discrete metric
- Let $|X| = \infty$. Equip this with the discrete metric d. This is bounded (why?)

- Think simple! What is simple? The discrete metric
- Let $|X| = \infty$. Equip this with the discrete metric d. This is bounded (why?)
- Can we cover this with a collection of open balls with diameter $\epsilon \leq 1$?

- Think simple! What is simple? The discrete metric
- Let $|X| = \infty$. Equip this with the discrete metric d. This is bounded (why?)
- Can we cover this with a collection of open balls with diameter $\epsilon < 1$?
- Are we done the proof? No. Recall, we want to show the converse is not necessairly true!

- Think simple! What is simple? The discrete metric
- Let $|X| = \infty$. Equip this with the discrete metric d. This is bounded (why?)
- Can we cover this with a collection of open balls with diameter $\epsilon \leq 1$?
- Are we done the proof? No. Recall, we want to show the converse is not necessairly true!
- Is (-1,1) totally bounded? compact?

Totally Bounded \implies compact?

Totally Bounded \implies compact?

lacktriangle We've established that compact \implies totally bounded

Totally Bounded \implies compact?

- We've established that compact ⇒ totally bounded
- We've also seen that totally bounded ⇒ compact is not necessairly true.

Totally Bounded \implies compact?

- We've established that compact ⇒ totally bounded
- We've also seen that totally bounded ⇒ compact is not necessairly true.
- Is there some condition we can add to totally bounded to give us compactness? Hint: What went wrong in (-1,1)?

Totally Bounded \implies compact?

- lacktriangle We've established that compact \Longrightarrow totally bounded
- We've also seen that totally bounded ⇒ compact is not necessairly true.
- Is there some condition we can add to totally bounded to give us compactness? Hint: What went wrong in (-1,1)?
- Does it make more sense to want closedness or completeness ?

Complete Metric Spaces

Definition

A sequence $\{x_n\}$ in a metric space (X, d) is called a Cauchy sequence iff for every $\epsilon > 0$ there exists an integer N such that $d(x_m, x_n) < \epsilon$ whenever m, n > N.

Why Cauchy convergence and not the normal notion?

Example

Let $x_n := \frac{1}{n}$. The set (x_n) has no limit point but we can still talk about its Cauchy convergence with no reference to what it might converge to.

Definition

A complete metric space is a metric space in which every Cauchy sequence converges to some point *in* the same space.

Definition

A complete metric space is a metric space in which every Cauchy sequence converges to some point *in* the same space.

■ Let's return to (-1,1). This is not complete, but we can see that [-1,1] is. How did I get to [-1,1]?

Definition

A complete metric space is a metric space in which every Cauchy sequence converges to some point *in* the same space.

- Let's return to (-1,1). This is not complete, but we can see that [-1,1] is. How did I get to [-1,1]?
- Every compact metric space is complete (converse not true in general)

Definition

A complete metric space is a metric space in which every Cauchy sequence converges to some point *in* the same space.

- Let's return to (-1,1). This is not complete, but we can see that [-1,1] is. How did I get to [-1,1]?
- Every compact metric space is complete (converse not true in general)
- Is this a topological property? (There \exists a one line "proof" to this)

Recall: x is a limit point of the set A, if every deleted neighbourhood U of x has a non-empty intersection with A.

Recall a set is closed iff it contains all of its limit points. What might that say for the points that Cauchy sequences converge to?

- Recall a set is closed iff it contains all of its limit points. What might that say for the points that Cauchy sequences converge to?
- Recall if a topological space is compact, and a subspace of it is closed, then...

- Recall a set is closed iff it contains all of its limit points. What might that say for the points that Cauchy sequences converge to?
- Recall if a topological space is compact, and a subspace of it is closed, then...
- How might we choose a subspace to show that *X* is compact?

- Recall a set is closed iff it contains all of its limit points. What might that say for the points that Cauchy sequences converge to?
- Recall if a topological space is compact, and a subspace of it is closed, then...
- How might we choose a subspace to show that *X* is compact?
- Don't forget the ■

Proof.

Proof.

Let X be a totally bounded and complete metric space where d is our metric.

■ Pick an open cover $\{\theta_{\alpha}\}$ and assume it has no finite subcover.

Proof.

- lacksquare Pick an open cover $\{\theta_{lpha}\}$ and assume it has no finite subcover.
- Use the totally bounded condition and pick a collection of open balls of radius 1. One such ball is not covered by a finite subcollection of $\{\theta_{\alpha}\}$. Pick such a ball $B_d(x_0, 1)$.

Proof.

- lacksquare Pick an open cover $\{ heta_lpha\}$ and assume it has no finite subcover.
- Use the totally bounded condition and pick a collection of open balls of radius 1. One such ball is not covered by a finite subcollection of $\{\theta_{\alpha}\}$. Pick such a ball $B_d(x_0, 1)$.
- Repeat process so we get a sequence $x_n := x_i \in B(x_i, 2^{-n})$. Note each $B(x_i, 2^{-n})$ cannot be covered by a finite subcollection of $\{\theta_{\alpha}\}$.

Proof.

- lacksquare Pick an open cover $\{ heta_lpha\}$ and assume it has no finite subcover.
- Use the totally bounded condition and pick a collection of open balls of radius 1. One such ball is not covered by a finite subcollection of $\{\theta_{\alpha}\}$. Pick such a ball $B_d(x_0, 1)$.
- Repeat process so we get a sequence $x_n := x_i \in B(x_i, 2^{-n})$. Note each $B(x_i, 2^{-n})$ cannot be covered by a finite subcollection of $\{\theta_{\alpha}\}$.
- $x \in \theta_{\alpha} \implies \exists r > 0$ such that $B(x,r) \subseteq \theta_{\alpha}$. Show this covers infinite points of x_n which is a contradiction.

$Compact \implies Complete + Totally Bounded$

We have shown Compact \implies Totally Bounded. We have shown Compact \implies Complete.

A compact meme

