南 大 学 考 试 卷(A卷) 东

课程名称

工程矩阵理论 考试学期 2022 年春 得分

适用专业

工科研究生

考试形式

闭卷

考试时间长度 150 分钟

一. (20%) 已知矩阵
$$M=\begin{pmatrix}1&1\\-1&-1\end{pmatrix}$$
,复数域 C 上线性空间 $C^{2\times 2}$ 上的变换 f 定义如下:

$$\forall X \in \mathbb{C}^{2\times 2}$$
 , $f(X) = XM$.

1. 证明: $f \in C^{2\times 2}$ 上的线性变换.

2. 求 f 在基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵.

3. 求 f 的值域 R(f) 及核子空间 K(f) 的一组基.

4. 问 $C^{2\times 2} = R(f) + K(f)$ 是否成立? 请说明你的理由.

共 4 页

页

拱

小小

二. (14%) 已知矩阵
$$A=\begin{pmatrix}1&1&0&1\\1&2&2&3\end{pmatrix}$$
, $B=\begin{pmatrix}1&2&1&2\\1&3&2&3\end{pmatrix}$. C^4 的子空间
$$V_1=\{x\,|\,Ax=\theta\}\,,\quad V_2=\{x\,|\,Bx=\theta\}\,.$$

1. 求 $V_1 \cap V_2$ 的一组基.

2. 求 V_1^{\perp} 的一组标准正交基.

三(20%)已知矩阵
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$
,分别求 A^+ 和多项式 $f(\lambda)$ 使得 $f(A) = e^{At}$.

四. (12%). 已知V 是n 维欧氏空间, $\omega \in V$,且 $\|\omega\| = \sqrt{2}$,a,b 是实数. V 上的线性变换 f 定义如下: $\forall x \in V$, $f(x) = ax + b < x, \omega > \omega$. 若 f 是正交变换,求参数 a,b 的值.

五. (14%) 已知矩阵
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 3 & 0 & a & 0 \\ 0 & 0 & 7 & -8 \\ 0 & 0 & 4 & -5 \end{pmatrix}$$
 , $B = \begin{pmatrix} b & c & 7 & 3 \\ 0 & b & -5 & -2 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 4 \end{pmatrix}$.

1. 根据参数 a 的值,求 A 的 Jordan 标准形;

2. 问:参数 a,b,c 取什么值的时候,A,B 相似?

共 4 页 第 页

六. (20%) 证明题:

1. 设A 是n 阶正规阵,若A 的特征值都是实数,证明:A 是 Hermite 矩阵.

2. 对任意 $s \times n$ 矩阵 A , 证明: $r(A) = r(A^+)$.

3. 设 α , β 都是列向量,矩阵 $A=\alpha\beta^H$,证明: $\left\|A\right\|_F=\left\|A\right\|_2$.

4. 设A,B为n阶正定矩阵,证明:对于行列式,不等式 $\left|A+B\right| \geq \left|A\right| + \left|B\right|$ 成立.

共 4 页 第 页