SISTEMA DE ECUACIONES LINEALES

LUIS CARLOS SANCHEZ JULIAN DAVID LEDEZMA

ANDRES FELIPE ESCALLON Ingeniero

UNIVERSIDAD COOPERATIVA DE COLOMBIA

FACULTAD DE INGENIERÍA

VI INGENIERIA DE SISTEMAS

AREA DE ANALISIS NÚMERICO

POPAYÁN

2010

Método Gauss Seidel

Se utilizó el respectivo código del Método de Gauss Seidel implementado en MATLAB para la solución del siguiente sistema de ecuaciones lineales propuestas.

$$17c_1 - 2c_2 - 3c_3 = 500$$
$$-5c_1 - 5c_2 - 22c_3 = 30$$
$$-5c_1 + 21c_2 - 2c_3 = 200$$

Como las dos ultimas no cumplen se re organizaron para poder encontrar la solución correcta de la siguiente manera:

$$17c_1 - 2c_2 - 3c_3 = 500$$
$$-5c_1 + 21c_2 - 2c_3 = 200$$
$$-5c_1 - 5c_2 - 22c_3 = 30$$

```
C:\MATLAB6p1\work\qaussseidel.m*
 <u>File Edit View Text Debug Breakpoints Web Window Help</u>
 □ 🚅 🗐 🚭 | % 🖺 🛍 ∽ 🖂 | 🐴 f > | 🔁 🛣 | 🥫 🟗 🗊 🗐 ½ | Stack 🖼
                                                                                               ×
          function [iter,x,ea] = gaussseidel(x0,tol)
          svms x1 x2 x3
                                      %subfunción de las ecuaciones a resolver
          ecu=ecugauss;
  4
5
6
7
8
9
10
          y(1) = solve(ecu(1), x1);
          y(2) = solve(ecu(2), x2);
          y(3) = solve(ecu(3), x3);
          ea=[100 100 100];
          x1-x0(1); x2-x0(2); x3-x0(3);
   12
          while ((ea(1)>tol) | (ea(2)>tol) | (ea(3)>tol))
  13 -
14 -
              x(1) = eval(y(1));
               x1ante=x1;
   15
               x1=x(1);
  16
               x(2) = eval(y(2));
  17
18
               x2ante=x2;
               x2=x(2):
  19
               x(3) = eval(y(3));
  20
21
               x3ante=x3;
               x3=x(3);
               iter=iter+1;
               ea(1)=abs((x1-x1ante)*100/x1);
               ea(2) = abs((x2-x2ante)*100/x2);
ea(3) = abs((x3-x3ante)*100/x3);
  24
25
  26
  27
  28
29
          function [ecu] = ecugauss
  30
          syms x1 x2 x3
  31
          f(1)=17*x1-2*x2-3*x3-500;
  32
33
          f(2) = -5*x1+21*x2-2*x3-200;

f(3) = -5*x1-5*x2+22*x3-30;
          ecu=[f(1);f(2);f(3)];
Ready
```

Ejecución del programa

Al ejecutar el programa en la 3ra iteración se hallan los valores de c1, c2 y c3 asi:

Método de Jacobi

Se utilizó el respectivo código del Método de Jacobi implementado en MATLAB para la solución del siguiente sistema de ecuaciones lineales propuestas. (Ejercicio 4)

$$-5x_1 + 12x_2 = 80$$
$$4x_1 - x_2 - x_3 = -2$$
$$6x_1 + 8x_2 = 45$$

Las ecuaciones se organizaron de la siguiente manera para aplicar el respectivo código:

$$4x_1 - x_2 - x_3 = -2$$
$$6x_1 + 8x_2 = 45$$
$$-5x_1 + 12x_2 = 80$$

```
C:\MATLAB6p1\work\jacobi.m*
                                                                        _ D X
<u>File Edit View Text Debug Breakpoints Web Window Help</u>
 D 😅 🗐 😂 | ¼ 📭 🖺 ∽ ∼ | 🙌 f>
                                             ×
         function [iter,x,ea] = jacobi(x0,tol)
         %Función para solucionar un sistema de tres ecuaciones lineales
   3
         %ecugauss es una subfunción que contiene las ecuaciones
   4
         $x0 son los valores iniciales en fila, tol la tolerancia en *porcentaje
         syms x1 x2 x3
   6
                               %subfunción de las ecuaciones a resolver
         ecu=ecugauss:
         y(1) = solve(ecu(1), x1);
   8
         y(2) = solve(ecu(2), x2);
   9
         y(3) = solve(ecu(3), x3);
  10
  11
         iter=0;
  12 -
         ea=[100 100 100];
  13
         x1=x0(1); x2=x0(2); x3=x0(3);
  14
  15
         while ((ea(1)>tol) | (ea(2)>tol) | (ea(3)>tol))
  16
             iter=iter+1;
  17
             x(1) = eval(y(1));
  18
             x(2) = eval(y(2));
  19
             x(3) = eval(y(3));
  20
             x1ante=x1;
  21
             x1=x(1);
  22
             x2ante=x2:
  23
             x2=x(2);
  24
             x3ante=x3;
  25
             x3=x(3);
  26
             ea(1)=abs((x1-x1ante)*100/x1);
  27
             ea(2)=abs((x2-x2ante)*100/x2);
  28
             ea(3)=abs((x3-x3ante)*100/x3);
  29
  30
  31
         function [ecu] = ecugauss
  32
         %función que entrega el sistema de tres ecuaciones lineales
  33
         %para el método de Gauss Seidel y Jacobi
  34
  35
         syms x1 x2 x3
  36
         f(1)=4*x1-1*x2-1*x3+2;
                                   %ecuación 1
  37
         f(2)=6*x1+8*x2+0*x3-45;
                                    %ecuación 2
         f(3) = -5 \times x1 + 0 \times x2 + 12 \times x3 - 80;
  38
                                        %ecuación 3
  39
         ecu=[f(1);f(2);f(3)];
Ready
```

Ejecución del programa

Al ejecutar el programa en la 3ra iteración se hallan los valores de x1, x2 y x3 asi:

x1 = 2.3550 x2 = 3.8561 x3 = 7.6494