Sales_Analytics_In_Advance

1.Data Preparation

import pandas as pd import datetime as dt data=pd.read_csv("sales_data.csv") df=pd.DataFrame(data) df['Sale_Date']=pd.to_datetime(df['Sale_Date']) df['Month']=df['Sale_Date'].dt.month df['Year']=df['Sale_Date'].dt.year df['Quarter']=df['Sale_Date'].dt.quarter df.head()

Quantity_Sold	Product_Category	Unit_Cost	Unit_Price	Customer_Type	Discount	Payment_Method	Sales_Channel	Region_and_Sales_Rep	Month	Year	Quarter
18	Furniture	152.75	267.22	Returning	0.09	Cash	Online	North-Bob	2	2023	1
17	Furniture	3816.39	4209.44	Returning	0.11	Cash	Retail	West-Bob	4	2023	2
30	Food	261.56	371.40	Returning	0.20	Bank Transfer	Retail	South-David	9	2023	3
39	Clothing	4330.03	4467.75	New	0.02	Credit Card	Retail	South-Bob	8	2023	3
13	Electronics	637.37	692.71	New	0.08	Credit Card	Online	East-Charlie	3	2023	1

2.Monthly_Sales

monthly_sales=df.groupby(['Year';Month'])['Sales_Amount'].sum().reset_index() monthly_sales['Monthly_Number']=range(1,len(monthly_sales)+1) print(monthly_sales)

	Year	Month	Sales_Amount	Monthly_Number
0	2023	1	476092.36	1
1	2023	2	368919.36	2
2	2023	3	402638.77	3
3	2023	4	438992.61	4
4	2023	5	389078.76	5
5	2023	6	418458.34	6
6	2023	7	374242.88	7
7	2023	8	443171.28	8
8	2023	9	367837.60	9
9	2023	10	460378.78	10
10	2023	11	467482.90	11
11	2023	12	392643.58	12
12	2024	1	19328.01	13

3.Now rolling averages

monthly_sales['Sales_MA3'] = monthly_sales['Sales_Amount'].rolling(window=3, min_periods=1).mean() monthly_sales['Sales_MA6'] = monthly_sales['Sales_Amount'].rolling(window=6, min_periods=1).mean()

print(monthly_sales.tail(6))

	Year	Month	Sales_Amount	Monthly_Number	Sales_MA3	Sales_MA6
7	2023	8	443171.28	8	411957.500000	411097.106667
3	2023	9	367837.60	9	395083.920000	405296.911667
9	2023	10	460378.78	10	423795.886667	408861.273333
10	2023	11	467482.90	11	431899.760000	421928.630000
11	2023	12	392643.58	12	440168.420000	417626.170000
12	2024	1	19328.01	13	293151.496667	358473.691667

```
4. Predictive Modeling (Linear Regression)
```

```
import numpy as np

X = monthly_sales[['Monthly_Number']]
y = monthly_sales['Sales_Amount']

model = LinearRegression()
model.fit(X, y)
# Predict for next 3 months
future = pd.DataFrame({
    "Monthly_Number": [len(monthly_sales)+1,
```

from sklearn.linear_model import LinearRegression

})
predictions = model.predict(future)
monthly_sales['Predicted'] = model.predict(X)
print(monthly_sales)

len(monthly_sales)+2, len(monthly_sales)+3]

```
        Year
        Month
        Sales_Amount
        Monthly_Number
        Sales_MA3
        Sales_MA6

        0
        2023
        1
        476092.36
        1
        476092.360000
        42505.860000
        42505.860000
        422505.860000
        422505.860000
        422505.860000
        422505.860000
        422505.860000
        422505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
        42505.860000
```

Predicted
0 462455,545714
449729.175659
2 437092.885604
3 424276,435549
411559.065495
5 39822.695440
6 386097.325385
7 373379.9555338
8 360644.585275
9 347918.215220
18 335191.845165
11 322465,475110
2 309739.105955

5.Growth_rate

 $monthly_sales['Growth_Rate'] = monthly_sales['Sales_Amount'].pct_change() * 100 \\ print(monthly_sales)$

```
Monthly_Number Sales_MA3 Sales_MA6
1 476923.360000 476992.360000
2 422595.860000 422595.860000
3 415883.496667 415883.496667
4 403516.913333 415660.775900
6 415599.99333 415567.70000
7 393926.660000 308721.786667
8 411957.500000 41097.106667
9 395083.920000 405296.911667
10 423795.886667 408861.273333
11 431899.760000 417626.370000
12 440168.420000 417626.370000
13 293151.496667 358473.691667
           Year Month Sales_Amount Monthly_Number
2023 1 476092.36 1
2023 2 369919.36 2
2023 3 402638.77 3
2023 4 438992.61 4
                                                                                                                                                                                                            Sales_MA6 \
                                                            389078.76
418458.34
374242.88
           2023
                                                          374242.88
443171.28
367837.60
460378.78
467482.90
392643.58
19328.01
           2023
            2023
            2023
         2023
2023
2023
2024
                      Predicted Growth_Rate
            462455.545714
                                                           -22.510968
            449729.175659
            437002.805604
           437002.805604
424276.435549
411550.065495
398823.695440
386097.325385
373370.955330
360644.585275
347918.215220
335191.845165
                                                                    9.028897
                                                                    1.543103
          335191.845165
322465.475110
                                                           -16.008996
-95.077467
12 309739.105055
```

6.Recommendation for growth_rate

def recommendation(growth):
 if growth > 5:
 return "Stock More"
 elif growth < -5:
 return "Promote"
 else:
 return "Stable"</pre>

 $monthly_sales['Action'] = monthly_sales['Growth_Rate']. apply(recommendation) \\ print(monthly_sales.head())$

	Year	Month	Sales_Amount	Monthly_Number	er	Sales_MA3	Sales_MA6	\
0	2023	1	476092.36		1	476092.360000	476092.360000	
1	2023	2	368919.36		2	422505.860000	422505.860000	
2	2023	3	402638.77		3	415883.496667	415883.496667	
3	2023	4	438992.61		4	403516.913333	421660.775000	
4	2023	5	389078.76		5	410236.713333	415144.372000	
	P	redicted	d Growth_Rate	Action				
0	46245	5.54571	4 NaN	Stable				
1	44972	9.175659	-22.510968	Promote				
2	43700	2.805604	9.140049	Stock More				
3	42427	6.435549	9.028897	Stock More				
4	41155	0.06549	-11.370089	Promote				

7.Visuale Chart

import matplotlib.pyplot as plt import seaborn as sns

Actual vs Predicted

plt.plot(monthly_sales['Monthly_Number'], monthly_sales['Sales_Amount'], label="Actual")
plt.plot(monthly_sales['Monthly_Number'], monthly_sales['Predicted'], label="Predicted", linestyle="--")
plt.legend()
plt.title("Actual vs Predicted Sales")
plt.show()

Growth Rate Trend

sns.lineplot(x='Monthly_Number', y='Growth_Rate', data=monthly_sales)
plt.title("Monthly Growth Rate")
plt.show()

8. Average monthly sales in 2023 and Contribution Ratio

avg_sales = monthly_sales['Sales_Amount'].mean()

Contribution ratio = actual / average

monthly_sales['Contribution_Ratio'] = monthly_sales['Sales_Amount'] / avg_sales

 $print(monthly_sales[['Month', Sales_Amount', Contribution_Ratio']])$

	Month	Sales_Amount	Contribution_Ratio
0	1	476092.36	1.233089
1	2	368919.36	0.955509
2	3	402638.77	1.042843
3	4	438992.61	1.137000
4	5	389078.76	1.007722
5	6	418458.34	1.083816
6	7	374242.88	0.969297
7	8	443171.28	1.147823
8	9	367837.60	0.952707
9	10	460378.78	1.192390
10	11	467482.90	1.210790
11	12	392643.58	1.016955
12	1	19328.01	0.050060