Activity 3

Group: Margaret Walters, Phillip Bindeman, Lyell Read

1. Formal languages can be used to describe a variety of two-dimensional figures. Chain-code languages are defined on the alphabet $\Sigma = \{u, d, r, l\}$, where these symbols stand for unit-length straight lines in the directions up, down, right, and left, respectively. An example of this notation is urdl, which stands for a square with sides of unit length. Let L be the set of all $w \in \{u, r, l, d\}^*$ that describe rectangles. Show that L is not a regular language.

$$L_{urdl} = \{u^a r^b d^a l^b : a > 0, b > 0\}$$

Pumping Lemma

- 1. Assume for contradiction that L_{urdl} is a regular language.
- 2. Given that L_{urdl} is infinite, we can apply Pumping Lemma to prove that L_{urdl} is regular.
- 3. Choose Pumping Lemma integer m>0
- 4. For string w in L, $u^{m+a}r^{m+b}d^{m+a}l^{m+b}$
- 5. For string w, we can define w = xyz such that $x = u^k$, $y = u^g$, $z = u^{((k+g)-(m+a))}r^{m+b}d^{m+a}l^{m+b}$, such that (k+g) <= m, g >= 1
- 6. $x = u^k$, $y = u^g$, and $|xy| \le m$, |y| >= 1
- 7. Thus, $xy^{j}z$ in L for j = 3
- 8. Thus $u^{(2k+3g-m-a)}r^{m+b}d^{m+a}l^{m+b}$ in L
- 9. But $u^{(2k+3g-m-a)}r^{m+b}d^{m+a}l^{m+b}$ **not** in L, therefore contradiction.
- 10. By contradiction of the Pumping Lemma, we can assert that L is not a regular language.
- 11. In the same manner, each of L_{dlur} , L_{rdlu} , L_{lurd} ... are also not regular.
- 2. Prove or disprove the following statement: If L_1 and L_2 are nonregular languages, then $L_1 \cup L_2$ is also nonregular. A counter example is sufficient to disprove the statement.

Disproof by counterexample: Take language $L_1 = \{a^n : n = k^3\}$, which is not regular. Take the complement of that language L_{1_bar} . L_{1_bar} is also non regular by closure. However, when we take $L_1 \cup L_{1_bar}$, we get every string possible with the alphabet of the languages. Therefore, we can state that $L_1 \cup L_{1_bar} \{a^*\}$, which is regular.