

# Gaussian Process Morphable Models KI, der wir vertrauen können

Marcel Lüthi, Departement Mathematik und Informatik, Universität Basel

#### Übersicht

- 1. Künstliche Intelligenz und variational Autoencoders
- 2. Gaussian Process Morphable Models
- 3. Modellierung mit Gaussian Process Morphable Models

**Anwendungsbeispiel:** Design eines Nasenimplantats



## **Mein Background**

#### **Dozent Informatik**

Forschung im Bereich Formmodellierung und Bildanalyse

- Probabilistische Modellierung
- Bayessche Methoden / Analysis by Synthesis
- Anwendung in der Medizin

Autor/Maintainer der Opensource Software Scalismo Mitgründer Shapemeans GmbH









| Was ist Künstliche Intelligenz?                                                            |
|--------------------------------------------------------------------------------------------|
|                                                                                            |
| Intelligence measures an agent's ability to achieve goals in a wide range of environments. |
| Shane Legg and Marcus Hutter. A collection of definitions of intelligence. 2007.           |
|                                                                                            |
|                                                                                            |

#### KI in der Praxis – maschinelles lernen



## Manigfaltigkeit-Hypothese

Hochdimensionale Daten der realen Welt liegen auf einer tief-dimensionalen Oberfläche die im hochdimensionalen Raum, beobachteten Raum, eingebettet ist.



## Beispielsystem: Variational Autoencoder



Kingma, Durk P., et al. "Semi-supervised learning with deep generative models." *Advances in neural information processing systems* 27 (2014).

# **Autoencoder als generative Modelle**



# Anwendungen von generativen Modellen



#### **Datengenerierung**

• Testen auf realistischen, aber simulierten Daten



#### **Design von Implantaten**

Finde wahrscheinlichste Form zu gegebener Form



#### **Shape und Bildanalyse**

- Diagnose
- Operationsplanung
- Statistische Inferenz auf Formen

# Gaussian process morphable models

#### **Variational Autoencoder**



#### **Gaussian Process Morphable Models**



Lüthi, Marcel, et al. "Gaussian process morphable models." *IEEE transactions on pattern analysis and machine intelligence* 40.8 (2017): 1860-1873.

#### Wann macht Annahme Sinn?

- Formveränderungen sind nicht zu gross
- Ein klarer Mittelwert exisiert
- Punkt-zu-Punkt Korrespondenz existiert
- Rotation/Translation ist normalisiert



#### Gut fundierte Statistische Theorie





On Growth and Form, D. Thompson, 1917

# Modellieren mit GPMMs

## Code, Daten und Dokumentation online verfügbar



https://github.com/shape-the-world/nose-implant-case-study

# **Problemstellung**





Datensatz: Öffentliche Gesichter des Basel Face Model (faces.dmi.unibas.ch)

# Aus zwei Gesichtern werden viele Gesichter



# **Modell aus 9 Gesichtern**



# **Beste Rekonstruktion – Leave one out Experiment**



Beobachtung: Fehler sind lokal und glatt auslaufend

#### Modellieren mit Gaussian Prozessen

Gauss Prozesse unterstützen flexible Algebra zum Modellieren.

$$u \sim GP(\mu_{PDM}, k_{PDM} + k_{Gauss})$$



# Modell aus 9 Gesichtern mit zusätzlicher Flexibilität



# **Beste Rekonstruktion – Leave one out Experiment**





# Vorhersagen der Nase

# **Mathematisches Problem** Bays'sche lineare Regression Gegeben: Daten x Modelliert: Verteilung $P(x) \sim GP(\mu, k)$

 $P(z \mid x)$ 

## Vorhersagen der Nase

#### **Mathematisches Problem**



# Verteilung möglicher Nasen



Unsicherheit in der Vorhersage kann abgeschätzt und visualisiert werden.

#### GPMMs – KI der wir vertrauen können

#### Ziel des maschinellen Lernens

Latenten Raum finden in der wir Daten einfach interpolieren können

# Laterder Basum Datenraum

#### Allgemeine KI-Ansätze

- + Enorme Flexibilität Neuronaler dank neuronaler Netze
- + Können beliebige Datenverteilungen repräsentieren
- Schwierig zu verstehen, wenig explizite Annahmen
- Oft sehr datenhungrig

#### **Gaussian Process Morphable Models**

- Eingeschränkt auf Normalverteilungen
- Explizite Modellierung benötigt
- + Modellierung passiert im Datenraum
- + Eigenschaften / Limitierungen können vollständig verstanden werden
- + Kann auf kleinen Datensätzen gelernt werden
- + Unsicherheit/Varianz aller Vorhersagen verfügbar





#### Danke für Ihre Aufmerksamkeit!



Implementation und Daten: <a href="https://github.com/shape-the-world/nose-implant-case-study">https://github.com/shape-the-world/nose-implant-case-study</a> Kontakt: marcel.luethi@unibas.ch