ΜΑΣ026 - Μαθηματικά για Μηγανικούς ΙΙ Εαρινό εξάμηνο 2020

Ασκήσεις 4ου Κεφαλαίου

1. Έστω $f(x,y) = x + \sqrt[3]{xy}$. Να υπολογιστούν τα:

i)
$$f(2,1)$$

ii)
$$f(t, t^2)$$

iii)
$$f(2y^2, 4y)$$

2. Έστω $f(x, y, z) = xy^2z^3 + 3$. Να υπολογιστούν τα:

i)
$$f(2,1,2)$$

ii)
$$f(a, a, a)$$

iii)
$$f(t, t^2, -t)$$

iii)
$$f(t, t^2, -t)$$
 iv) $f(a + b, a - b, b)$

3. Να προσδιοριστεί το πεδίο ορισμού των συναρτήσεων. Στην περίπτωση των δύο μεταβλητών να δοθεί κι ένα πρόχειρο σχέδιο.

i)
$$f(x,y) = \ln(1 - x^2 - y^2)$$

ii)
$$f(x,y) = \sqrt{x^2 + y^2 - 4}$$

iii)
$$f(x,y) = \frac{1}{x - y^2}$$

iv)
$$f(x,y) = \ln(xy)$$

v)
$$f(x, y, z) = xe^{-\sqrt{y+2}}$$

vi)
$$f(x, y, z) = \sqrt{25 - x^2 - y^2 - z^2}$$
.

4. Να υπολογιστούν τα όρια ή να αποδειχθεί ότι δεν υπάρχουν.

i)
$$\lim_{(x,y)\to(1,3)} 4(xy^2 - x)$$

ii)
$$\lim_{(x,y)\to(-1,2)} \frac{xy^3}{x+y}$$

iii)
$$\lim_{(x,y)\to(0,0)} \frac{3}{x^2+2y^2}$$

iv)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x^2+y^2}$$

v)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 + y^2}$$

vi)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + 2y^2}$$

vii)
$$\lim_{(x,y,z)\to(2,-1,2)} \frac{xz^2}{\sqrt{x^2+y^2+z^2}}$$

5. Έστω $f(x,y)=e^{2x}\sin y$. Να υπολογιστούν τα:

i)
$$\frac{\partial f}{\partial x}$$

ii)
$$\frac{\partial f}{\partial y}$$

iii)
$$f_x(0,y)$$

1

iv)
$$f_y(\ln 2, 0)$$

6. Να υπολογιστούν οι παρακάτω μερικές παράγωγοι.

i)
$$\frac{\partial z}{\partial x}$$
 $\tan \frac{\partial z}{\partial y}$, $\sin z = 9x^2y - 3x^5y$

ii)
$$\frac{\partial z}{\partial x}$$
 και $\frac{\partial z}{\partial y}$, για $z=xe^{\sqrt{15xy}}$

- 7. Έστω $f(x,y) = \sqrt{3x + 2y}$.
 - i) Να υπολογιστεί η κλίση της επιφάνειας z=f(x,y) στην x-κατεύθυνση στο (4,2).
 - ii) Να υπολογιστεί ο ρυθμός μεταβολής ως προς y της f στο (4,2).
- **8.** Για τη συνάρτηση $f(x,y,z)=z\ln(x^2y\cos z)$ να υπολογιστούν οι $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$ και $\frac{\partial f}{\partial z}$.
- 9. Ένα σωματίδιο κινείται στην τομή του ελλειπτικού παραβολοειδούς $z=x^2+3y^2$ και του επιπέδου y=1. Ποιος είναι ο ρυθμός μεταβολής του z ως προς x όταν το σωματίδιο βρίσκεται στο (2,1,7);
- **10.** Ο όγκος V ενός κυλίνδρου δίνεται από τον τύπο $V = \pi r^2 h$, όπου r είναι η ακτίνα και h το ύψος.
 - i) Ποιος είναι ο ρυθμός μεταβολής του V ως προς r όταν το h είναι σταθερό;
 - ii) Ποιος είναι ο ρυθμός μεταβολής του V ως προς h όταν το r είναι σταθερό;
 - iii) Αν h=4 και το r μεταβάλλεται ελεύθερα, ποιος είναι ο ρυθμός μεταβολής του V ως προς r όταν r=6;
- 11. Για την συνάρτηση $f(x,y) = 4x^2 8xy^4 + 7y^5 3$ να αποδειχθεί ότι $f_{xy} = f_{yx}$.
- 12. Για την συνάρτηση $f(x,y)=x^3y^5-2x^2y+x$ να υπολογιστούν οι παράγωγοι $f_{xxy},\,f_{yxy}$ και f_{yyy} .
- 13. Να χαρακτηριστεί η κάθε πρόταση ως σωστή (Σ) ή λάθος (Λ) και να αιτιολογηθεί η απάντησή σας.
 - i) Αν υπάρχουν οι μερικές παράγωγοι της συνάρτηση f(x,y) στο σημείο (x_0,y_0) , τότε η f είναι παραγωγίσιμη στο (x_0,y_0) .
 - ii) Αν οι f_x και f_y είναι συνεχείς στο (0,0), τότε και η f(x,y) είναι συνεχής στο (0,0).
- **14.** Να υπολογιστεί η παράγωγος dz/dt χρησιμοποιώντας τον κανόνα αλυσίδας.
 - i) $z = 3x^2y^3, x = t^4, y = t^2$
 - ii) $z = \ln(2x^2 + y), x = \sqrt{t}, y = t^{2/3}$
 - iii) $z = 3\cos x \sin(xy), x = 1/t, y = 3t$
- **15.** Να υπολογιστεί η παράγωγος dw/dt χρησιμοποιώντας τον κανόνα αλυσίδας.
 - i) $w = 5x^2y^3z^4$, $x = t^2$, $y = t^3$, $z = t^5$
 - ii) $w = 5\cos(xy) \sin(xz), x = 1/t, y = t, z = t^3$
- **16.** Να υπολογιστούν οι μερικές παράγωγοι $\frac{\partial z}{\partial u}$ και $\frac{\partial z}{\partial v}$ χρησιμοποιώντας τον κανόνα αλυσίδας.
 - i) $z = 8x^2y 2x + 3y$, x = uv, y = u v
 - ii) $z = x/y, x = 2\cos u, y = 3\sin v$
- 17. Να βρεθούν οι μερικές παράγωγοι χρησιμοποιώντας κανόνα αλυσίδας.
 - i) $dR/d\phi$, $R = e^{2s-t^2}$, $s = 3\phi$, $t = \phi^{1/2}$
 - ii) $\frac{dw}{dx}$, $w = 3xy^2z^3$, $y = 3x^2 + 2$, $z = \sqrt{x-1}$.
- **18.** Να βρεθούν οι μερικές παράγωγοι $\frac{\partial z}{\partial x}$ και $\frac{\partial z}{\partial y}$ στις παρακάτω περιπτώσεις.
 - i) $x^2 3yz^2 + xyz 2 = 0$

- ii) $ye^x 5\sin(3z) = 3z$
- **19.** Να βρεθεί η $D_{\vec{u}}f$ στο σημείο P.

i)
$$f(x,y) = (1+xy)^{3/2}$$
, $P(3,1)$, $\vec{u} = \frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}j$

ii)
$$f(x,y) = \sin(5x - 3y), P(3,5), \vec{u} = \frac{3}{5}i - \frac{4}{5}j$$

iii)
$$f(x,y) = \ln(1+x^2+y), P(0,0), \vec{u} = -\frac{1}{\sqrt{10}}i - \frac{3}{\sqrt{10}}j$$

iv)
$$f(x,y,z) = 4x^5y^2z^3$$
, $P(2,-1,1)$, $\vec{u} = \frac{1}{3}\imath + \frac{2}{3}\jmath - \frac{2}{3}k$

- **20.** Να βρεθεί η κατευθυνόμενη παράγωγος της f στο P στην κατεύθυνση του \vec{a} .
 - i) $f(x,y) = 4x^3y^2$, P(2,1), $\vec{a} = 4i 3j$

ii)
$$f(x,y,z) = \frac{z-x}{z+y}$$
, $P(1,0,-3)$, $\vec{a} = -6i + 3j - 2k$.

21. Να βρεθεί η κατευθυνόμενη παράγωγος της f στο P στην κατεύθυνση του διανύσματος που σχηματίζει γωνία θ με τον θετικό άξονα x.

i)
$$f(x,y) = \sqrt{xy}, P(1,4), \theta = \pi/3$$

ii)
$$f(x,y) = \frac{x-y}{x+y}$$
, $P(-1,-2)$, $\theta = \pi/2$

- **22.** Έστω ότι $D_{\vec{u}}f(1,2)=-5$ και $D_{\vec{v}}f(1,2)=10$, όπου $\vec{u}=\frac{3}{5}\imath-\frac{4}{5}\jmath$ και $\vec{v}=\frac{4}{5}\imath+\frac{3}{5}\jmath$.
 - i) Να βρεθούν τα $f_x(1,2)$ και $f_y(1,2)$.
 - ii) Να βρεθεί η κατευθυνόμενη παράγωγος της f στο (1,2) στην κατεύθυνση που δείχνει στην αρχή των αξόνων.
- **23.** Έστω $f_x(-5,1) = -3$ και $f_y(-5,1) = 2$. Να βρεθεί η κατευθυνόμενη παράγωγος της f στο P(-5,1) στην κατεύθυνση από το P στο Q(-4,3).
- **24.** Να βρεθεί μοναδιαίο διάνυσμα στην κατεύθυνση γρηγορότερης αύξησης της f στο P και ο ρυθμός μεταβολής σε εκείνη την κατεύθυνση.
 - i) $f(x,y) = 4x^3y^2$, P(-1,1)
 - ii) $f(x, y, z) = x^3 z^2 + y^3 z + z 1, P(1, 1, -1)$
 - iii) $f(x, y, z) = \frac{x}{z} + \frac{z}{y^2}$, P(1, 2, -2)
- **25.** Να βρεθεί μοναδιαίο διάνυσμα στην κατεύθυνση γρηγορότερης μείωσης της f στο P και ο ρυθμός μεταβολής σε εκείνη την κατεύθυνση.

i)
$$f(x,y) = 20 - x^2 - y^2$$
, $P(-1, -3)$

ii)
$$f(x, y, z) = 4e^{xy}\cos z$$
, $P(0, 1, \pi/4)$

- **26.** Να χαρακτηριστεί η κάθε πρόταση ως σωστή (Σ) ή λάθος (Λ) και να αιτιολογηθεί η απάντησή σας.
 - i) Αν $\vec{v} = 2\vec{u}$ τότε η κατευθυνόμενη παράγωγος της f στην κατεύθυνση του \vec{v} είναι διπλάσια από την κατευθυνόμενη παράγωγο στην κατεύθυνση του \vec{u} σε ένα σημείο (x_0, y_0) .
 - ii) Αν \vec{u} είναι μοναδιαίο διάνυσμα και $D_{\vec{u}}f(x,y)=0$ για κάθε (x,y), τότε η f είναι σταθερή.

- **27.** Η κατευθυνόμενη παράγωγος της f(x,y,z) στο (3,-2,1) στην κατεύθυνση του $\vec{a}=2i-j-2k$ είναι -5 και $\|\nabla f(3,-2,1)\|=5$, να βρεθεί το $\nabla f(3,-2,1)$.
- **28.** Να βρεθεί η εξίσωση του εφαπτόμενου επιπέδου και οι παραμετρικές εξισώσεις της κάθετης ευθείας στο σημείο P.

i)
$$x^2 + y^2 + z^2 = 25$$
, $P(-3, 0, 4)$

ii)
$$x^2 - xyz = 56, P(-4, 5, 2)$$

iii)
$$z = e^{3y} \sin 3x$$
, $P(\pi/6, 0, 1)$

- **29.** Έστω το ελλειψοειδές $x^2 + y^2 + 4z^2 = 12$.
 - i) Να βρεθεί η εξίσωση του εφαπτόμενου επιπέδου στο (2,2,1).
 - ii) Να βρεθούν οι παραμετρικές εξισώσεις της κάθετης ευθείας στο (2,2,1).
 - iii) Να βρεθεί η γωνία του εφαπτόμενου επιπέδου στο (2,2,1) με το xy-επίπεδο.
- 30. Να βρεθούν τα σημεία της επιφάνειας στα οποία το εφαπτόμενο επίπεδο είναι οριζόντιο.

i)
$$z = x^3 y^2$$

ii)
$$z = x^2 - xy + y^2 - 2x + 4y$$

- **31.** Να βρεθεί σημείο της επιφάνειας $z=3x^2-y^2$ στο οποίο το εφαπτόμενο επίπεδο είναι παράλληλο στο επίπεδο 6x+4y-z=5.
- **32.** Να δειχθεί ότι κάθε ευθεία κάθετη στη σφαίρα $x^2 + y^2 + z^2 = 1$ διέρχεται από την αρχή των αξόνων.