Polynomial Regression

Multiple Regression

Describing Relationships *Among* Variables (Ch. 4)

Dason Kurkiewicz

Iowa State University

June 3, 2013

Outline

Describing Relationships Among Variables (Čh. 4)

Dason Kurkiewicz

Polynomial Regression

Polynomial Regression

$$y_i \approx b_0 + b_1 x_i$$

Polynomial regression: fit a polynomial:

$$y_i \approx b_0 + b_1 x_i + b_2 x_i^2 + b_3 x_i^3 + \dots + b_{p-1} x_i^{p-1}$$

▶ The *p* coefficients $b_0, b_1, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0,\ldots,b_{p-1})=\sum_{i=1}^n(y_i-(b_0+b_1x_i+\cdots+b_{p-1}x_i^{p-1}))^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP 10, a statistical software tool.

Dason Kurkiewicz

Polynomial Regression

Regression

- A researcher studied the compressive strength of concrete-like fly ash cylinders. The cylinders were made with varying amounts of ammonium phosphate as an additive.
- ▶ We want to investigate the relationship between the amount ammonium phosphate added and compressive strength.

Additive Concentrations and Compressive Strengths for Fly Ash Cylinders

x, Ammonium Phosphate (%)	y, Compressive Strength (psi)	x, Ammonium Phosphate (%)	y, Compressive Strength (psi)
0	1221	3	1609
0	1207	3	1627
0	1187	3	1642
1	1555	4	1451
1	1562	4	1472
1	1575	4	1465
2	1827	5	1321
2	1839	5	1289
2	1802	5	1292

Describing
Relationships
Among Variables
(Ch. 4)

Polynomial Regression

Multiple Regression

Regression Analysis

The regression equation is $y = 1243 + 383 \times 76.7 \times 2$

P
000
000
000

S = 82.14

R-Sq = 86.7%

R-Sq(adj) = 84.9%

Analysis of Variance

Source Regression Residual E Total		DF 2 15 17	SS 658230 101206 759437	MS 329115 6747	F 48.78	P 0.000
Source x x**2	DF 1 1		eq SS 21 88209			

Polynomial Regression

- ▶ The parabolic fit explained 86.7% of the variation in compressive strength.
- ▶ Note: for polynomial regression (and later, multiple regression) R^2 does not equal the squared correlation r_{xy} between x and y.
- ▶ Instead, $R^2 = r_{v\hat{v}}$:

$$r_{y\widehat{y}} = \frac{\sum (y_i - \overline{y})(\widehat{y}_i - \overline{\widehat{y}}_i)}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (\widehat{y}_i - \overline{\widehat{y}}_i)^2}}$$

Polynomial Regression

Regression Analysis

The regression equation is y = 1188 + 633 x - 214 x**2 + 18.3 x**3

Predictor	Coef	StDev	T	Р
Constant	1188.05	28.79	41.27	0.000
X	633.11	55.91	11.32	0.000
x**2	-213.77	27.79	-7.69	0.000
x**3	18.281	3.649	5.01	0.000

$$S = 50.88$$
 $R-Sq = 95.2\%$ $R-Sq(adj) = 94.2\%$

Analysis of Variance

Source	DF	SS	MS	F	Р
Regression	3	723197	241066	93.13	0.000
Residual Error	14	36240	2589		
Total	17	759437			

Describing Relationships Among Variables (Ch. 4)

Dason Kurkiewicz

Polynomial Regression

Outline

Describing Relationships Among Variables (Čh. 4)

Dason Kurkiewicz

Multiple Regression

Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

▶ The *p* coefficients $b_0, b_1, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0,\ldots,b_p)=\sum_{i=1}^n(y_i-(b_0+b_1x_{i,1}+\cdots+b_{p-1}x_{i,p-1}))^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP 10.

▶ Nitrogen content is a measure of river pollution.

Variable	Definition
Y	Mean nitrogen concentration (mg/liter) based on samples taken at regular intervals during the spring, summer, and fall months
X_1	Agriculture: percentage of land area currently in agricultural use
X_2	Forest: percentage of forest land
X_3	Residential: percentage of land area in residential use
X_4	Commercial/Industrial: percentage of land area in either commercial or industrial use

► I will fit each of:

$$\widehat{y}_i = b_0 + b_1 x_{i,1}$$

$$\widehat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4}$$

and evaluate fit quality.

Example: New York rivers data

Row	River	Y	X_1	X_2	X_3	X_4
1	Olean	1.10	26	63	1.2	0.29
2	Cassadaga	1.01	29	57	0.7	0.09
3	Oatka	1.90	54	26	1.8	0.58
4	Neversink	1.00	2	84	1.9	1.98
5	Hackensack	1.99	3	27	29.4	3.11
6	Wappinger	1.42	19	61	3.4	0.56
7	Fishkill	2.04	16	60	5.6	1.11
8	Honeoye	1.65	40	43	1.3	0.24
9	Susquehanna	1.01	28	62	1.1	0.15
10	Chenango	1.21	26	60	0.9	0.23
11	Tioughnioga	1.33	26	53	0.9	0.18
12	West Canada	0.75	15	75	0.7	0.16
13	East Canada	0.73	6	84	0.5	0.12
14	Saranac	0.80	3	81	0.8	0.35
15	Ausable	0.76	2	89	0.7	0.35
16	Black	0.87	6	82	0.5	0.15
17	Schoharie	0.80	22	70	0.9	0.22
18	Raquette	0.87	4	75	0.4	0.18
19	Oswegatchie	0.66	21	56	0.5	0.13
20	Cohocton	1.25	40	49	1.1	0.13

Describing Relationships Among Variables (Čh. 4)

Dason Kurkiewicz

Multiple Regression

▶ It looks like the data could be roughly linear, although there are too few points to be sure.

<u>▼</u> —Linear	Fit					
Linear F	it					
Nitrogen = 0.	9269285 + 0	.0118851*A	gr			
▼ Summa	ary of Fit					
RSquare		0.1	60762			
RSquare A			14137			
	Square Erro		10975			
Mean of R	esponse ons (or Sum '		1.1575 20			
		vygis)	20			
Lack O	f Fit					
▼ Analys	is of Var	iance				
		Sum of				
Source			Mean Squa			
Model		5823712	0.5823			
Error		0402038	0.1689			
C. Total	19 3.	6225750		0.0798		
▼ Parame	Parameter Estimates					
Term	Estimate	Std Erro	r t Ratio	Prob>ltl		
Intercept				<.0001*		
Agr	0.0118851	0.00640	1 1.86	0.0798		

Polynomial

Multiple Regression

June 3, 2013

- ► A low R² means the model isn't very useful for predicting the pollution of other New York rivers outside our dataset.
- ► However, the lack of a pattern in the residual plot shows that the model is valid.
- ► The residuals depart from a bell shape slightly, but not enough to interfere with statistical inference.

Polynomial Regression

Multiple Regression

Respo	nse N	itrogen			
▼ Summa	ry of	Fit			
RSquare			0.709398		
RSquare Ad	dj		0.631904		
Root Mean	Square	Error	0.264919		
Mean of Re	1.1575				
Observation	ns (or S	um Wgts)	20		
▼ Analysi	s of \	/ariance			
		Sum o	f		
Source	DF	Square	s Mean Sq	uare	F Ratio
Model	4	2.5698462	2 0.64	2462	9.1542
Error	15	1.0527288	0.07	0182	Prob > F
C. Total	19	3.6225750)		0.0006

Parami	eter Estin	iales		
Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	1.7222135	1.234082	1.40	0.1832
Agr	0.0058091	0.015034	0.39	0.7046
Forest	-0.012968	0.013931	-0.93	0.3667
Rsdntial	-0.007227	0.03383	-0.21	0.8337
ComIndl	0.3050278	0.163817	1.86	0.0823

Darameter Estimates

Describing Relationships Among Variables (Ch. 4)

Dason Kurkiewicz

Polynomial Regression

Regression

- ▶ A higher R² indicates that the full model is more useful for predicting river pollution than the agriculture-only model.
- ▶ The residual plots show that the full model is valid too.

Multiple Regression

▶ I can fit the model:

$$\hat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4} + c x_{i,4}^2$$

which is a combination of polynomial regression and multiple regression.

June 3, 2013

The JMP Spreadsheet

Describing Relationships Among Variables (Ch. 4)

Dason Kurkiewicz

Polynomial Regression

Polynomial Regression

Multiple Regression

▼ Summary of Fit

 RSquare
 0.897008

 RSquare Adj
 0.860226

 Root Mean Square Error
 0.163247

 Mean of Response
 1.1575

 Observations (or Sum Wgts)
 20

Analysis of Variance

		Sum or		
Source	DF	Squares	Mean Square	F Ratio
Model	5	3.2494798	0.649896	24.3867
Error	14	0.3730952	0.026650	Prob > F
C. Total	19	3.6225750		<.0001*

▼ Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	1.2942455	0.765169	1.69	0.1129
X1	0.0049001	0.009266	0.53	0.6052
X2	-0.010462	0.008599	-1.22	0.2438
X3	0.0737788	0.026304	2.80	0.0140*
X4	1.2715886	0.216387	5.88	<.0001*
X4^2	-0.532452	0.105436	-5.05	0.0002*

The model looks valid: no pattern in the residuals

Describing Relationships Among Variables (Ch. 4)

Dason Kurkiewicz

Multiple Regression

-0.3

-0.4 0.5

1.5 Predicted Y

June 3, 2013

The model can be used for statistical inference: the residuals look normally distributed.

Describing Relationships Among Variables (Ch. 4)

Dason Kurkiewicz