TENSOR FIELDS

We prove a result regarding characterisations for smoothness of a tensor field. In what follows, let M be a smooth manifold of dimension n.

Definition. We define the (k, l)-tensor bundle to be the set

$$T^{(k,l)}TM := \coprod_{p \in M} T^{(k,l)}(T_pM) = \Big\{(p,A_p) \ \Big| \ p \in M, A_p \in T^{(k,l)}(T_pM)\Big\}.$$

Let $\pi: T^{(k,l)}TM \to M$ denote the projection map $(p, A_p) \mapsto p$.

The charts on $T^{(k,l)}TM$ are constructed in the following way: Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ be the smooth structure for M. For each α , we define $\widetilde{U}_{\alpha} := \pi^{-1}(U_{\alpha})$, and we define $\widetilde{\pi}_{\alpha} : \widetilde{U}_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n^{k+l}}$ by

$$(p, A_{j_1 \cdots j_l}^{i_1 \cdots i_k} \partial_{i_1} \otimes \cdots \partial_{i_k} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_l}|_p) \mapsto (\varphi_{\alpha}(p), (A_{j_1 \cdots j_l}^{i_1 \cdots i_k})).$$

Proposition. There exists a unique topology for $T^{(k,l)}TM$ which makes $T^{(k,l)}TM$ an $(n+n^{k+l})$ -dimensional topological manifold, with $\widetilde{\mathcal{A}} = \{(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})\}$ as a smooth atlas.

We have already proven the result above for the tangent bundle. The proof for the general case is analogous.

Definition. A rough (k,l)-tensor field is a map $A:M\to T^{(k,l)}TM$ such that $\pi\circ A=\mathrm{Id}_M.$

We denote the space of smooth (k, l)-tensor fields by $\Gamma(T^{(k, l)}TM)$. We denote the spaces of smooth vector and covector fields by $\mathfrak{X}(M)$ and $\mathfrak{X}^*(M)$, respectively.

Proposition. Let $A: M \to T^{(k,l)}TM$ be a rough tensor field. Then the following are equivalent:

- (a) A is smooth.
- (b) In every chart, the component functions of A are smooth.
- (c) Each point in M is contained in a chart where the component functions of A are smooth.
- (d) For every $\omega^1, \ldots, \omega^k \in \mathfrak{X}^*(M)$ and $X_1, \ldots, X_l \in \mathfrak{X}(M)$, the map

$$f := A(\omega^1, \dots, \omega^k, X_1, \dots, X_l) : M \to \mathbb{R}$$

is smooth.

(e) For each open $U \subseteq M$, if $\omega^1, \ldots, \omega^k : U \to T^*M$ and $X_1, \ldots, X_l : U \to TM$ are smooth covector and vector fields, respectively, then the map

$$q := A(\omega^1, \dots, \omega^k, X_1, \dots X_l) : U \to \mathbb{R}$$

is smooth.

Proof. We prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$, then $(a) \Rightarrow (d) \Rightarrow (e) \Rightarrow (b)$.

To prove $(a) \Rightarrow (b)$, suppose A is smooth. Let (U, φ) be a chart for M. Let $(\widetilde{U}, \widetilde{\varphi})$ denote the corresponding chart for $T^{(k,l)}TM$. Then observe that we can write

$$A^{i_1...i_k}_{j_1...j_l} = \Pi \circ \widetilde{\varphi} \circ A,$$

where $\Pi: \mathbb{R}^{n+n^{k+l}} \to \mathbb{R}$ is the projection map onto the corresponding coordinate. Thus, each component function is a composition of smooth maps.

It is immediate that $(b) \Rightarrow (c)$.

To prove $(c) \Rightarrow (a)$, suppose each point in M is contained in a chart where the component functions of A are smooth. Let $p \in M$. Then there exists a chart (U, φ) for M containing p such that the induced component functions $A_{j_1...j_l}^{i_1...i_k}$ are smooth. Let $(\widetilde{U}, \widetilde{\varphi})$ denote the corresponding chart for $T^{(k,l)}TM$. Then

$$\widetilde{\varphi} \circ A \circ \varphi^{-1} = \left(\operatorname{Id}_{\mathbb{R}^n}, \left(A_{j_1 \cdots j_l}^{i_1 \cdots i_k} \circ \varphi^{-1} \right) \right),$$

which is smooth.

To prove $(b) \Rightarrow (d)$, suppose the component functions of A induced by any chart are smooth. Fix $\omega^1, \ldots, \omega^k \in \mathfrak{X}^*(M)$ and $X_1, \ldots, X_l \in \mathfrak{X}(M)$. Fix $p \in M$, and let (U, φ) be a chart containing p. Let us write $\omega^r = \omega^i_{i_r} dx^{i_r}$ and $X_s = X^{j_s}_s \partial_{j_s}$. Then

$$f = \omega_{i_1}^1 \cdots \omega_{i_k}^k X_1^{j_1} \cdots X_l^{j_l} A_{j_1 \cdots j_l}^{i_1 \cdots i_k}.$$

Thus, f is smooth on a neighbourhood around every point in its domain.

To prove $(d) \Rightarrow (e)$, suppose f in the proposition is smooth for any choice of smooth covector and vector fields on M. Let $U \subseteq M$ be open, and fix smooth covector and vector fields

$$\omega^1, \dots, \omega^k : U \to T^*M$$
 and $X_1, \dots, X_l : U \to TM$.

Fix $p \in U$. We can write $p \in B \subseteq \overline{B} \subseteq U$ for some open $B \subseteq M$. Let $\widetilde{\omega}^1, \ldots, \widetilde{\omega}^k \in \mathfrak{X}^*(M)$ and $\widetilde{X}_1, \ldots, \widetilde{X}_l \in \mathfrak{X}(M)$ be fields such that $\widetilde{\omega}^i|_B = \omega^i|_B$ and $\widetilde{X}_j|_B = X_j|_B$. Then

$$g = A(\widetilde{\omega}^1, \dots, \widetilde{\omega}^k, \widetilde{X}_1, \dots, \widetilde{X}_l) \quad \text{on } B,$$

which means that q is smooth on a neighbourhood around every point in its domain.

Finally, to prove $(e) \Rightarrow (b)$, suppose that g is smooth on any open V and for any choice of covector and vector fields on V. Let (U,φ) be a chart on M. Then we can write $A_{j_1\cdots j_l}^{i_1\cdots i_k}=A(dx^{i_1},\ldots,dx^{i_k},\partial_{j_1},\ldots,\partial_{j_l})$.

Proposition. The space of smooth (k, l)-tensor fields is a $C^{\infty}(M)$ -module.

Proof. First, it is straightforward to check that rough (k,l)-tensor fields form a $C^{\infty}(M)$ -module.

Now, given $A, B \in \Gamma(T^{(k,l)}TM)$ and $f \in C^{\infty}(M)$, we find that $(A+B)^{i_1\cdots i_k}_{j_1\cdots j_l} = A^{i_1\cdots i_k}_{j_1\cdots j_l} + B^{i_1\cdots i_k}_{j_1\cdots j_l}$ and $(fA)^{i_1\cdots i_k}_{j_1\cdots j_l} = fA^{i_1\cdots i_k}_{j_1\cdots j_l}$ in any chart in M. The previous proposition then tells us that A+B and fA are also smooth.