

Quantitative estimation of the evolution of entanglement in Grover's algorithm

Henri de Boutray

Univ. of Bourgogne Franche-Comté FEMTO-ST Institute, DISC department, VESONTIO team ANR project I-QUINS

henri.de_boutray@univ-fcomte.fr

Joint work with Alain Giorgetti, Frédéric Holweck, Pierre-Alain Masson and Hamza Jaffali

November 28, 2019

Estimation of entanglement in Grover's algorithm

Objectives

- ► Role of entanglement in quantum speed-up?
- Establish entanglement-related properties in quantum algorithms

Tackled point

- ► Algorithm: Grover's quantum search
- ► Evaluation method: Mermin polynomials

Overview

- Grover's algorithm
- 2 Entanglement evaluation
- Properties
- Results
- 5 Future work

Grover algorithm in a nutshell

Results

- Search an item x_0 in an unsorted database Ω of $N = 2^n$ objects
- Just by applications of the Boolean function $f:\Omega\to\{0,1\}$ such that $f(z) = 1 \Leftrightarrow z = x_0$
- \triangleright $\mathcal{O}(\sqrt{N})$ complexity: quadratic improvement over classical search
- Oracle U_f defined by $U_f |x, y\rangle = |x, y \oplus f(x)\rangle$
- Amplitude amplification

State before U_f

Results Grover's amplitude amplification

Grover's amplitude amplification

Grover's amplitude amplification

Entanglement evaluations

- entanglement quantification: Geometric Mesurement of entanglement [WG03], Bell-Mermin inequalities [Mer90, ACG+16]
- entanglement classification: Secant varieties [HJN16]

T -C Wei and P.M. Goldbart [WG03]

> Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Physical Review A. 68(4):042307, October 2003.

[Mer90] N David Mermin.

Extreme quantum entanglement in a superposition of macroscopically distinct states.

Physical Review Letters, 65(15):1838-1840, October 1990.

[ACG+16] Daniel Alsina, Alba Cervera, Dardo Goyeneche, José I. Latorre, and Karol Życzkowski.

Operational approach to Bell inequalities: Applications to gutrits.

Physical Review A. 94(3):032102. September 2016.

[HJN16] Frédéric Holweck, Hamza Jaffali, and Ismaël Nounouh.

Grover's algorithm and the secant varieties.

Quantum Information Processing, 15(11):4391-4413, November 2016.

Definition (Mermin polynomials)

Let $(a_n)_{n\geq 1}$ and $(a'_n)_{n\geq 1}$ be two families of observables, let's also generalize $(\cdot)'$ as such: A''=A, $(\lambda A+\gamma B)'=\lambda A'+\gamma B'$ and $(A\otimes B)'=A'\otimes B'$. The Mermin polynomial M_n is defined by:

$$\begin{cases} M_1 = a_1 & \text{and} \\ M_n = \frac{1}{2} M_{n-1} \otimes (a_n + a'_n) + \frac{1}{2} M'_{n-1} \otimes (a_n - a'_n) & \text{for } n \ge 2 \end{cases}$$

Definition (Mermin polynomials)

Let $(a_n)_{n\geq 1}$ and $(a'_n)_{n\geq 1}$ be two families of observables, let's also generalize $(\cdot)'$ as such: A''=A, $(\lambda A+\gamma B)'=\lambda A'+\gamma B'$ and $(A\otimes B)'=A'\otimes B'$. The Mermin polynomial M_n is defined by:

$$\begin{cases} M_1 = a_1 & \text{and} \\ M_n = \frac{1}{2} M_{n-1} \otimes (a_n + a'_n) + \frac{1}{2} M'_{n-1} \otimes (a_n - a'_n) & \text{for } n \ge 2 \end{cases}$$

Example: For two qubits, $M_2 = \frac{1}{2}(a_1 \otimes a_2 + a_1 \otimes a_2' + a_1' \otimes a_2 - a_1' \otimes a_2')$ Remark: When $a_1 = X$, $a_2 = \frac{Z+X}{\sqrt{2}}$, $a_1' = Z$ and $a_2' = \frac{Z-X}{\sqrt{2}}$, M_2 is the Bell operator

Mermin polynomials

Definition (Mermin polynomials)

Let $(a_n)_{n\geq 1}$ and $(a'_n)_{n\geq 1}$ be two families of observables, let's also generalize $(\cdot)'$ as such: A''=A, $(\lambda A+\gamma B)'=\lambda A'+\gamma B'$ and $(A\otimes B)'=A'\otimes B'$. The Mermin polynomial M_n is defined by:

$$\begin{cases} M_1 = a_1 & \text{and} \\ M_n = \frac{1}{2} M_{n-1} \otimes (a_n + a'_n) + \frac{1}{2} M'_{n-1} \otimes (a_n - a'_n) & \text{for } n \ge 2 \end{cases}$$

Example: For two qubits,
$$M_2 = \frac{1}{2}(a_1 \otimes a_2 + a_1 \otimes a_2' + a_1' \otimes a_2 - a_1' \otimes a_2')$$
Remark: When $a_1 = X$, $a_2 = \frac{Z+X}{\sqrt{2}}$, $a_1' = Z$ and $a_2' = \frac{Z-X}{\sqrt{2}}$, M_2 is the Bell operator

To detect entanglement of a given state, we instantiate those Mermin polynomials M_n with specific values of a_n and a'_n .

Mermin evaluation and classical limit

- ▶ Mermin evaluation: $f_{M_n}: |\varphi\rangle \mapsto \langle \varphi|M_n|\varphi\rangle$
- ightharpoonup |arphi
 angle classical $\implies f_{M_n}(|arphi
 angle) \leq 1$
- ► Mermin evaluation is an entanglement witness

Mermin operator optimization

Results

 $\triangleright |\varphi\rangle$ non-local?

Find an M_n such that $f_{M_n}(|\varphi\rangle) > 1$

 $ightharpoonup M_n$ is a function of $(a_i)_{1 < i < n}$

$$\forall i, a_i = \alpha X + \beta Y + \delta Z$$

Find (α, β, δ) such that $f_{M_n}(|\varphi\rangle) > 1$

States enumeration in the Grover algorithm

Preamble

$$|\varphi_{k}\rangle = \alpha_{k} |\mathbf{x}_{0}\rangle + \beta_{k} |+\rangle^{\otimes n}$$

$$|\varphi_{\lfloor k_{opt}/2 \rfloor}\rangle \qquad \qquad \qquad \times$$

$$|\varphi_{\lfloor k_{opt}/2 \rfloor}\rangle \qquad \qquad \qquad \times$$

the middle point is
$$|\varphi_{\mathit{ent}}\rangle = \frac{|\mathbf{x_0}\rangle + |+\rangle^{\otimes n}}{K}$$

Results

$$\left| \varphi_{k_{\rm opt}/2} \right\rangle pprox \left| \varphi_{\rm ent} \right\rangle$$

Graph trends

If M_n is chosen to optimize $f_{M_n}(|\varphi_{ent}\rangle)$, then we expect f_{M_n} to behave like a distance measure from $|\varphi_{ent}\rangle$.

Thus we anticipate that:

- $f_{M_n}(|\varphi_k\rangle)$ reaches maximum around $k_{opt}/2$
- $f_{M_n}(|\varphi_k\rangle)$ grows for k in $[0, \lfloor k_{opt}/2 \rfloor]$
- $f_{M_n}(|\varphi_k\rangle)$ decreases for k in $[\lfloor k_{opt}/2 \rfloor + 1, k_{opt}]$

Assumption: some states are non local: $\exists k, f_{M_n}(|\varphi_k\rangle) > 1$

$$\{ \text{Maximum reached around } k_{opt}/2 \} \implies f_{M_n}(\left| \varphi_{\lfloor k_{opt}/2 \rfloor} \right\rangle) > 1$$

(in fact probably for more k's than just $\lfloor k_{opt}/2 \rfloor$)

Results, 4 to 8

For 8 qubits, 1 week of computation on personal computer with naive implementation.

n	4	5	6	7	8
k _{opt}	2	3	5	8	12

On the Mesocenter:

n	9	10	11	12
k _{opt}	17	25	36	50

Future work

- Use Qbricks to prove algorithm properties
 - Grover
 - Deutsch-Jozsa

Results

- Shor
- ▶ Use the work done with Jessy Colonval [Cd19] to establish more quantum properties to use in quantum program verification (Contextuality)

[Cd19] Jessy Colonval, Henri de Boutray.

Formalisation et validation d'une méthode de construction de systèmes de blocs. AFADL 2019.

Thank you for your attention