1 2

1. A method of evaluating the performance of a hybrid analog-digital integrated circuit having
an analog unit, a digital unit, and a substrate on which the units are located, comprising:
identifying a broadband power source that represents noise characteristics of the digital unit;
and
simulating performance of the integrated circuit by evaluating performance of a lumped circuit
in which the source couples to a lumped element representing the substrate and the substrate couples
to a lumped element representing the analog unit.

- 2. The method of claim 1, wherein the identifying includes evaluating one or more characteristics of the power source based on a behavioral simulation model for the digital unit.
- 3. The method of claim 1, further comprising:
 repeating the identifying and simulating for another digital unit; and
 selecting one of the two digital units based on the simulating showing that the integrated
 circuit has a better performance with the one of the units.
- 4. The method of claim 1, further comprising: repeating the simulating for a lumped element representing another substrate; and selecting a better one of the two substrates based on the performances determined by the acts of simulating.

5. A program storage medium encoding a computer executable program of instructions for

- evaluating the performance of a hybrid analog-digital integrated circuit having an analog unit, a digital unit, and a substrate on which the units are located, the instructions to cause the computer to:

 identify a broadband power source that represents noise characteristics of the digital unit; and simulate performance of the integrated circuit by evaluating performance of a lumped circuit in which the source couples to a lumped element representing the substrate and the substrate couples to a lumped element representing the analog unit.
- 6. The medium of claim 5, wherein the instruction to identify evaluates one or more characteristics of the power source based on a behavioral simulation model for the digital unit.
 - 7. The medium of claim 5, wherein the instructions further cause the computer to:
 repeat the identifying and simulating for another digital unit; and
 select one of the two digital units based on the simulating showing that the integrated
 circuit has a better performance with the one of the units.

1

2

4

6

7

1

2

3

1 2

1

2

3

1 2

1 2

1 2

8. The medium of claim 5, wherein the instructions further cause the computer to:
repeat the simulating for a lumped element representing another substrate; and
select a better one of the two substrates based on the performances determined by the
acts of simulating.
0 A method comprising:

- identifying a candidate integrated circuit that comprises a candidate digital circuit;
- determining a power coefficient, S_0 , of said candidate digital circuit; 3
 - predicting a power spectral density, $S(\omega)$, of said candidate digital circuit based on said

power coefficient, S_0 , of said candidate digital circuit; and 5

fabricating said candidate integrated circuit when said power spectral density, $S(\omega)$, of said candidate digital circuit achieves a design goal for said candidate integrated circuit.

- 10. The method of claim 9 further comprising determining a mean bit rate, $\bar{\nu}$, of said candidate digital circuit, wherein said power spectral density, $S(\omega)$, of said candidate digital circuit is based on said power coefficient, S_0 , and on said mean bit rate, $\overline{\nu}$.
- 11. The method of claim 9 wherein said candidate integrated circuit further comprises a candidate analog circuit.
- 12. The method of claim 11 further comprising evaluating a lumped circuit in which a noise source based on $S(\omega)$ is coupled to a multi-port network that represents a candidate substrate which is coupled to a multi-port network that represents said candidate analog circuit.
- 13. The method of claim 9 wherein said candidate integrated circuit comprises a plurality of candidate digital circuits.
- 14. The method of claim 9 wherein said power coefficient, S_0 , is based on the number of switching devices composing said candidate digital circuit.
- 15. The method of claim 9 wherein said power coefficient, S_0 , is based on the clock rate of said candidate digital circuit.
- 16. The method of claim 9 wherein said power coefficient, S_0 , is based on a plurality of 1 2 voltage levels of said candidate digital circuit.

1

2

3

1

2

1

2

3

1 2

- 1 17. The method of claim 9 wherein said power coefficient, S_0 , is based on an activity factor of said candidate digital circuit.
- 3 **18.** A method comprising:
- 4 identifying a candidate integrated circuit that comprises a candidate digital circuit;
- determining a mean bit rate, $\overline{\nu}$, of said candidate digital circuit;
- 6 predicting a power spectral density, $S(\omega)$, of said candidate digital circuit based on said mean
- 7 bit rate, $\overline{\nu}$, of said candidate digital circuit; and
- fabricating said candidate integrated circuit when said power spectral density, $S(\omega)$, of said candidate digital circuit achieves a design goal for said candidate integrated circuit.
 - 19. The method of claim 18 further comprising determining a power coefficient, S_0 , of said candidate digital circuit, wherein said power spectral density, $S(\omega)$, of said candidate digital circuit is based on said power coefficient, S_0 , and on said mean bit rate, v.
 - **20.** The method of claim 18 wherein said candidate integrated circuit further comprises a candidate analog circuit.
 - 21. The method of claim 20 further comprising evaluating a lumped circuit in which a noise source based on $S(\omega)$ is coupled to a multi-port network that represents a candidate substrate which is coupled to a multi-port network that represents said candidate analog circuit.
 - 22. The method of claim 18 wherein said candidate integrated circuit comprises a plurality of candidate digital circuits.
- 1 23. The method of claim 18 wherein said mean bit rate, $\bar{\nu}$, is based on the number of switching devices composing said candidate digital circuit.
- 1 **24.** The method of claim 18 wherein said mean bit rate, $\bar{\nu}$, is based on the clock rate of said candidate digital circuit.
- 1 **25.** The method of claim 18, wherein said mean bit rate, $\bar{\nu}$, is based on a plurality of voltage levels of said candidate digital circuit.

1 26. The method of claim 18 wherein said mean bit rate, $\overline{\nu}$, is based on an activity factor of

2 said candidate digital circuit.