Application 1

Télécabine à stabilité accrue : le funitel – Corrigé

Mines Ponts PSI - 2003.

Mise en situation

Objectif

On étudiera la situation suivante (qui correspond à la situation la plus défavorable) : redémarrage de l'installation après un incident avec une accélération de $0,15\,\mathrm{m\,s^{-2}}$. On se place à l'instant ou la vitesse de $7,2\,\mathrm{m\,s^{-1}}$ va être atteinte, 8 cabines chargées de passagers sont en montée, 8 cabines vides sont en descente et un vent de vitesse $V_e = 30\,\mathrm{m\,s^{-1}}$ souffle parallèlement à la ligne dans le sens de la descente.

Question 1 Déterminer l'énergie cinétique galiléenne, notée E_{c_T} , des 4 brins de câble, de l'ensemble des cabines sur la ligne et de la motorisation, en fonction de M_c , M_p , μ , L, V, D_P et I_M .

Correction

- ► Énergie cinétique des 4 brins de câbles : \mathscr{E}_c (cables/0) = $\frac{1}{2}4L\mu V^2$.
- Énergie cinétique des 8 cabines montantes : $\mathscr{C}_c\left(C_m/0\right) = \frac{1}{2}8\left(M_c + M_p\right)V^2$.
- ► Énergie cinétique des 8 cabines descendantes : $\mathscr{E}_c(C_d/0) = \frac{1}{2}8M_cV^2$.
- ► Énergie cinétique de la motorisation : \mathscr{E}_{c} (M/0) = $\frac{1}{2}I_{M}\omega_{M}^{2}$.

On a par ailleurs $V = \omega_M \cdot \frac{D_p}{2}$.

On a donc
$$\mathscr{C}_c(\Sigma/0) = \frac{1}{2} \left(4L\mu + 16M_c + 8M_p + I_M \frac{4}{D_p^2} \right) V^2.$$

On a donc $M_{\text{eq}} = 4L\mu + 16M_c + 8M_p + I_M \frac{4}{D_p^2} = 4 \times 1669 \times 8,47 + 16 \times 2500 + 8 \times 2080 + 1600 \times 10^{-2}$

$$575 \times 10^3 \frac{4}{16} = 256\,936\,\text{kg et}\,\mathscr{C}_c(\Sigma/0) = 6.7\,\text{MJ}.$$

Question 2 Déterminer la puissance galiléenne, notée P_p , des actions de pesanteur sur l'installation en fonction de M_p , V, h, g et L.

Correction

Les puissances de la pesanteur sur les cabines montantes s'exprime ainsi :

$$\mathcal{P}(\text{pes} \to C_m/0) = \{\mathcal{T}(\text{pes} \to C_m)\} \otimes \{\mathcal{V}(C_m/0)\} = 8\left\{\frac{-(M_c + M_p)}{0}g^{\frac{-1}{2}}\right\}_{G_c} \otimes \left\{\frac{\overrightarrow{0}}{V_i}\right\}_{G_c}$$

$$= -8 (M_c + M_p) gV \overrightarrow{z} \cdot \overrightarrow{i} = -8 (M_c + M_p) gV \sin \alpha.$$

Les puissances de la pesanteur sur les cabines descendantes s'exprime ainsi :

$$\mathcal{P}(\text{pes} \to C_d/0) = \{\mathcal{T}(\text{pes} \to C_d)\} \otimes \{\mathcal{V}(C_d/0)\} = 8\left\{\begin{array}{c} -M_c g \overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_{G_c} \otimes \left\{\begin{array}{c} \overrightarrow{0} \\ -V \overrightarrow{i} \end{array}\right\}_{G_c}$$

$$= 8M_c g V \overrightarrow{z} \cdot \overrightarrow{i}$$
$$= 8M_c g V \sin \alpha.$$

Remarque : la puissance de la pesanteur sur le câble sont opposées pour la partie montante et la partie descendante.

Ainsi, $\mathcal{P}(\text{pes} \to C_d + C_m/0) = 8M_c gV \sin \alpha - 8(M_c + M_p) gV \sin \alpha = -8M_p gV \sin \alpha = -359289 \text{ W}.$

Question 3 Après avoir évalué la vitesse relative et l'action du vent sur une cabine en montée et une cabine en descente, déterminer la puissance galiléenne, notée P_v des actions du vent sur l'ensemble des cabines en fonction de ρ , S_f , V, V_e et $\alpha = \arcsin(h/L)$.

Correction Le vent va dans le sens de la descente. En montée V.C. vent/C.

Le vent va dans le sens de la descente. En montée, $\overrightarrow{V(G_c, \text{vent}/C_m)} = \overrightarrow{V(G_c, \text{vent}/0)} - \overrightarrow{V(G_c, C_m/0)} = -V_e \overrightarrow{i} - V \overrightarrow{i}$.

En descente, $\overrightarrow{V(G_c, \text{vent}/C_d)} = \overrightarrow{V(G_c, \text{vent}/0)} - \overrightarrow{V(G_c, C_d/0)} = -V_e \overrightarrow{i} + V \overrightarrow{i}$.

Les puissances du vent sur les cabines montantes s'expriment ainsi : $p = \frac{1}{2}\rho V_a^2 =$

$$\frac{1}{2}\rho\left(-V-V_{e}\right)^{2}\mathcal{P}\left(\text{vent}\to C_{m}/0\right) = \left\{\mathcal{T}\left(\text{vent}\to C_{m}\right)\right\}\otimes\left\{\mathcal{V}\left(C_{m}/0\right)\right\} = 8\left\{\begin{array}{c} -pS_{f}\overrightarrow{y}\\ \overrightarrow{0} \end{array}\right\}_{G_{c}}\otimes\left\{\left(\overrightarrow{S}_{c}\right)\right\}$$

$$\left\{ \begin{array}{c} \overrightarrow{0} \\ V \overrightarrow{i} \end{array} \right\}_{G_c} = -8S_f V \frac{1}{2} \rho \left(V + V_e\right)^2 \cos \alpha.$$

Les puissances du vent sur les cabines montantes s'expriment ainsi : $p = \frac{1}{2}\rho V_a^2$

$$\frac{1}{2}\rho\left(V-V_{e}\right)^{2}\mathcal{P}\left(\text{vent}\to C_{m}/0\right)=\left\{\mathcal{T}\left(\text{vent}\to C_{m}\right)\right\}\otimes\left\{\mathcal{V}\left(C_{m}/0\right)\right\}=8\left\{\begin{array}{c}-pS_{f}\overrightarrow{y}\\\overrightarrow{0}\end{array}\right\}_{G_{e}}\otimes$$

$$\left\{ \begin{array}{c} \overrightarrow{0} \\ -V \overrightarrow{i} \end{array} \right\}_{G_c} = 8S_f V \frac{1}{2} \rho \left(V - V_e \right)^2 \cos \alpha.$$

Au final,
$$\mathcal{P}\left(\text{vent} \to C_m + C_d/0\right) = 8S_f V \frac{1}{2} \rho \left((V - V_e)^2 - (V + V_e)^2\right) \cos \alpha$$

$$=8S_fV\frac{1}{2}\rho\left(-4VV_e\right)\cos\alpha$$

=
$$-16S_f \rho V^2 V_e \cos \alpha$$
. On a donc \mathcal{P} (vent $\rightarrow C_m + C_d/0$) = -218677 W

Question 4 En déduire une estimation de la puissance galiléenne nécessaire, notée P_T pour l'entrainement de la ligne entre les gares dans la situation étudiée. La puissance effectivement installée par le constructeur est de 1560 kW, commentez vos résultats par rapport à cette valeur.

Correction

On applique le théorème de l'énergie cinétique :

$$\frac{d\mathscr{E}_c\left(\Sigma/0\right)}{dt} = \mathscr{P}\left(\text{vent} \to C_m + C_d/0\right) + \mathscr{P}\left(\text{pes} \to C_m + C_d/0\right) + \mathscr{P}\left(\text{frottement} \to \Sigma/0\right) + \mathscr{P}\left(\text{moteur} \to \Sigma/0\right).$$

On a donc, en régime permanent : $0 = -229672 - 359289 - 400000 + P_T P_T = 218677 + 359289 + 400000 = 977966 W <math>\simeq 1000$ kW.

En tenant compte de l'accélération, on a $P_T = 1000 \, \mathrm{kW} + M_{\mathrm{eq}} V \dot{V} = 1000 \, \mathrm{kW} + M_{\mathrm{eq}} 7, 2 \cdot 0, 15 \simeq 1266 \, \mathrm{kW}$

Le surplus de puissance est nécessaire en cas de situation plus défavorable (plus de vent, dépassement du nombre de passagers...).

Question 5 Quelle est alors la durée t de la phase d'accélération? Exprimer la longueur x (en mètre) de la zone rectiligne en fonction de a, v_0 , t et V. Pour que l'accélération

de $1.3\,\mathrm{m\,s^{-2}}$ permette le lancement des cabines de $v_0=0.3\,\mathrm{m\,s^{-1}}$ à $V=7.2\,\mathrm{m\,s^{-1}}$, l'application numérique donne environ : $x=20\,\mathrm{m}$.

Correction

On a v(t) = at + k. Par ailleurs, $v(t_2) = V = at_2 + k$ et $v(t_1) = v_0 = at_1 + k$. On a donc $V - v_0 = a\tau$ soit $\tau = \frac{V - v_0}{a} = \frac{6,9}{1,3} = 5,3$ s. La distance parcourue pendant la durée τ correspond à l'intégrale de la vitesse soir à l'aire sous la courbe. On a donc $x = \tau \cdot \frac{1}{2} (V + v_0) = 5,3 \times 0,5 \times 7,5 = 19,875$ m.