生产企业原材料的订购与运输

摘要

近年,随着世界全球化加深,传统的供应关系已经不再适应于当今生产需要,其中原材料供应是企业供应链的主要环节。本文提出了原材料供应数学模型的基础假设,给出企业对供应过程中订购与运输方案的建议。基于 TOPSIS 法,通过 EWM 分析供应商的产业规模、供货能力、违约率、波动情况,建立原材料供应商的综合评价体系,得出出对企业生产最重要的 44 家供货商,并根据 LSTM 预测供应商的供货偏差,以此运用线性规划方法制定出未来 24 周订购方案,检验了方案的优化效果。

关键字: TOPSIS 法 熵权法 LSTM 模型 线性规划

原材料是企业重要的经营性资产,是企业维持正常生产经营活动的基础,原材料管理的好坏直接关系到企业的营运资金利用效率,也关系到企业生产经营的持续性^[1]。改良生产企业的原材料管理方案,能提高原材料的周转率,有效降低仓储成本,也有利于保障生产流程的正常运行,在较大程度上加强企业竞争力^[2]。近年来,随着经济的稳步发展,企业在面对新冠疫情冲击的同时,还面临着更大规模、更高强度的竞争,优化原材料管理方案也较以往更具现实意义。

一、问题分析

制造商为了达到每日生产指标,以满足市场需求,需要向供货商(提供企业所需的原材料)提交订单。由于运输、交付等问题,订购的原材料不能直接用于生产,而需先交付物流转运至仓库,以便企业生产时取用。

现实中,供应商在接到订单后,常因为生产能上限和供应优先度等问题调整原材料产量,导致实际按时提供的原料量与生产需要存在出入。而此时制造商已经完成原料采购,不能通过更改之前的订购方案来弥补缺少原料,只能使用已经转移至仓库中的原料进行加工。若原材料库存不足,原材料的缺口会导致生产线停摆,造成严重的经济损失。为了减轻原料供应量波动对生产的影响,生产企业可提前储存一些原料,减轻生产停摆带来的损失。但与此同时,过多的原材料积存会显著增加企业的仓储成本。因此,为了改良生产企业的原材料管理方案,可根据以往交易数据,推测该供应商供应量的波动幅度,以制定出更加灵活的订购方案,削弱仓储成本,为企业带来更大收益。

供应商提供 A、B、C 三种原材料,容易发现,A、B、C 三种类型的原材料在采购单价不相等的同时,生产单位商品的消耗量也是不同的。其中,A 类型和 C 类型原材料生产单位商品的采购费用相等,且略低于 B 类型原材料(由于相差小于 1%,本文暂且忽略),进而认为三者的本征采购单价相等。为了便于研究,本文先对原材料做了等价代换:将其供应量以原材料的商品生产能力表示,采购单价也以本征采购单价表示。为了最大化经济效益,帮助生产企业做出决策,本文建立了供应量可预测的原材料订购、库存方案优化模型。

1.1 问题一

题目中要求对附件一中 402 家供应商进行量化分析,并建立供应商选择的评价指导体系,确定 44 家最重要的供应商。供应商的重要程度受多种因素影响,通过查阅相关文献,利用定量分析的方法,我们选取出适当的指标并根据熵值赋予权重,建立基于熵权逼近理想解方法的供应商排序模型,最后对供应商进行排序优选。

1.2 问题二

题目中要求在问题一结果的基础上,选出能满足企业生产需求的最少供应商,针对这些供应商分别制定最经济的订购方案和损耗最小的转运方案。我们首先利用 0-1 规划选出必要的供应商,同时为了保证原材料供应量充足,我们运用 LSTM 模型预测出转运商的供应水平,并建立了原材料订购方案的线性规划模型。通过对供应过程的计算机仿真,分析订购和转运模型的实施效果。

1.3 问题三

题目中要求在尽量多地采购 A 类和尽量少地采购 C 类原材料的前提下,制定最经济的原材料订购方案和损耗最小的转运方案,并分析方案的实施效果。我们发现,对原材料种类的限制,能通过对问题二模型进行扩展,以作用于目标函数的形式体现在优化模型当中,即将单目标规划转化为多目标规划问题。模型求解后,仍经过计算机仿真,分析模型的优化效果。

1.4 问题四

题目中要求在供应商和转运商有限的情况下,评估企业每周产能的上限。本题取消生产企业每周产能上限的同时,也消除了原材料的库存问题。本问题也转化为在供应商和转运商有限的情况下,求供应链可向企业输送的最大供给量。而通过分析供货数据我们发现,向企业输送的最大供给量主要取决于转运商的转运能力。因此,我们主要对转运商的转运方案进行优化,并据此给出未来 24 周的订购和转运方案。

最后我们对模型进行了中肯的评价和适当的推广。

二、供应商的选择

通过分析过去五年内,生产企业向 402 家原材料供货商发起的订单数据,可发现其中一些更受该企业青睐,该企业在相同周期里向这些供应商发出更多订单。与之相反,也有一些供应商参与原材料供应较少。因此,为了制定该企业的最优订货策略,有必要筛选出对原材料供应影响较大的供应商,并减少对供应影响较少供应商的依赖。

与此同时,订货法案还受到供货商数量的影响,过多的供应商需要花费企业更多的成本,而且到货的不稳定因素增多,进而有可能影响企业的生产计划;供应商数量过少,虽然能够降低管理成本和订货成本,但是到货的时间和质量的风险增大,从风险规避的角度来说,供应商数量应该维持在高水平状态^[3]。

综上所述,筛选出供应影响力较强的供应商,并结合生产需求选择合适数量的供应 商,与之建立长期、稳定的合作供给关系,能够显著降低该企业的管理成本和资金链风 险。因此,本文通过量化分析供货特征和提出假设,建立并求解相应评价模型,为生产 企业订购决策提供基础和指导。

2.1 指标的选取

为了对供应商的的供货特征进行量化分析,建立合理的评价模型,本文首先选取了以下的指标:

1. 订货次数 N_i :

订货次数表示供应商过去 5 年向生产企业供货的次数,直接反映出该企业对其的依赖程度。订货次数 N_i 越大,表示企业对该供应商越认可。

$$\nu_{ij} = \begin{cases}
0, & \text{供应商 } \mathbf{S}j \text{ 在第 } i \text{ 周没有订单,} \\
1, & \text{供应商 } \mathbf{S}j \text{ 在第 } i \text{ 周接到订单;}
\end{cases} \tag{1}$$

上式中, ν_{ij} 是表示某供应商在该周是否接到订单的逻辑变量。通过累加求和,得到定货次数

$$N_j = \sum_{i=001}^{240} \nu_{ij}. \tag{2}$$

2. 供应商 $S_j(j = 001, 002, \dots, 402)$ 近五年企业的订货总量 \varkappa_i

企业会向重要的供货商订购大量货物。 \varkappa_j 大的供应商更受企业欢迎,对企业的重要性强。对于供应商 \mathbf{S}_j ,有

$$\varkappa_j = \sum_{i=001}^{240} \chi_{ij},\tag{3}$$

其中, χ_{ij} 是第 i 周, 供货商 S_j 接到的订货量。

3. 供应商 $S_j(j = 001, 002, \dots, 402)$ 近五年企业的供货总量 Ψ_j

供应商的供货量能反映供货量的供应能力,供应能力强的供货商能有力地保障 企业生产,所以 Ψ_i 越大,相应的供货商越重要,与 \varkappa_i 类似

$$\Psi_j = \sum_{i=001}^{240} \psi_{ij},\tag{4}$$

其中, ψ_{ij} 是第 i 周,供货商 S_j 对企业的供货量。

4. 平均供货偏差 ε_i :

对企业来讲,越能按照订货量进行供货的供应商是越优质的。我们选择供货量和订货量的差占订货量的比值,表征供货偏差,即供应商 S_i 在第 i 周的供货偏差为

$$\varepsilon_{ij} = \frac{\chi_{ij} - \psi_{ij}}{\chi_{ij}},\tag{5}$$

而平均供货偏差 ε_j 应为 ε_{ij} 的绝对值的平均值,即

$$\varepsilon_j = \frac{\sum_{i=001}^{240} |\varepsilon_{ij}|}{N_j}.$$
 (6)

进而本文得到了供应商在供货时绝对偏差量的期望值

$$E_j = \chi_{ij} \times \varepsilon_j. \tag{7}$$

5. 单次最大供应量 Ψ_i :

如果供应商能一次性向企业提供大量原材料,其就能在一定程度上向企业证明 其的供应能力强大,更适合成为对于企业重要的供应商。即单次最大供应量 Ψ_j' 越 大,相对的供应商越重要

$$\Psi'_{j} = \max\{\psi_{1j}, \psi_{2j}, \dots, \psi_{240j}\}. \tag{8}$$

2.2 基于熵权的 TOPSIS 方法选优

根据过去五年的交易数据,本文建立了基于熵权法的理想解法供应商评价体系,并 根据评价得分选出供应影响力较强的供应商。

理想解法亦称 TOPSIS 法,是一种有效的多指标评价方法。理想解法通过构造评价问题的正、负理想解,根据每个供应商到理想供应商的相对贴近度,即控制靠近正理想解或远离负理想解的程度,来对方案进行排序,以选出最优方案。

TOPSIS 法对样本数据无特殊要求,并且能清晰地反映各方案的差距,被广泛应用于 多方案多目标的决策评价^[4],但使用 TOPSIS 法之前必须确定各评价指标的权重系数。

在传统评价模型的应用过程中,由于指标权重难以确定,使用场景有很大的局限性。而常见的多要素问题中指标权重的确定方法有:专家评测法、层次分析法、二向系数法、熵值法、环比分析法、模糊聚类分析法等。由于前三种方法存在着较大的主观因素,而最后一种方法主要用于模糊指标的重要程度分类,为提高综合评价的准确性和客观性,本文故采用熵权法来解决供应商评价选优模型中的权重赋值问题^[5]。

熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,从而得出较为客观的指标权重。

2.2.1 权重计算

1. 构造原始数据矩阵

 $\mathbf{A} = (a_{jk})_{402 \times 5}$ (用 a_{jk} 指代各供应商的评价值),将以上五个指标放入以下矩

阵。

$$\begin{pmatrix}
W_1 & W_2 & \dots & W_{402} \\
\varkappa_1 & \varkappa_2 & \dots & \varkappa_4 02 \\
\Psi_1 & \Psi_2 & \dots & \Psi_4 02 \\
\varepsilon_1 & \varepsilon_2 & \dots & \varepsilon_4 02 \\
N_1 & N_2 & \dots & N_4 02
\end{pmatrix} \tag{9}$$

2. 规范化属性值

得到数据矩阵 $\mathbf{B} = (b_{jk})_{402 \times 5}$,为了使每个属性变换后的最优值为 1,且最差值为 0,这里先进行 0—1 标准化

$$b'_{jk} = \frac{b_{jk} - b_{min}}{b_{max} - b_{min}}. (10)$$

此外,为了减小矩阵中的订货量和供货量波动过大的影响,对其进行对数化处理。重新赋值,得

$$b_{jk}^{"} = \ln b_{jk}^{'}(k=1,2,5). \tag{11}$$

3. 利用数据矩阵

计算 $p_{jk}(k=1,2,3,4,5)$, 即第 j 家供应商关于第 k 个指标值的比重

$$p_{jk} = \frac{b_{jk}^{"}}{\sum_{j=1}^{402} b_{jk}^{"}}. (12)$$

4. 计算第 k 项指标的熵值

熵本源于热力学与统计物理,后由香农引入信息论。根据熵的定义,有

$$e_k = -\frac{1}{\ln 402} \sum_{j=1}^{402} p_{jk} \ln p_{jk}.$$
 (13)

5. 计算第 k 指标的变异系数

$$g_k = 1 - e_k, \tag{14}$$

对于第k 项指标, e_k 越大,指标值的变异程度就越小。

6. 计算第 k 指标的权重

$$\omega_k = \frac{g_k}{\sum_{k=1}^5 g_k}. (15)$$

2.2.2 供应商评价

1. 用向量规划化的方法求得规范决策矩阵

$$\mathbf{\overline{B}} = (\breve{b}_{jk})_{402 \times 5},\tag{16}$$

其中

$$\breve{b}_{jk} = \frac{b''_{jk}}{\sqrt{\sum_{j=1}^{402} b''_{jk}^2}}.$$
(17)

2. 构造加权规范阵 $\mathbf{B} = (\check{b}_{jk})_{402 \times 5}$

凭借熵权法给定的各属性的权重,得权重向量 $\square = (\omega_1, \omega_2, \omega_3, \omega_4, \omega_5)$,则有

$$\check{b}_{jk} = \omega_k \check{b}_{jk}. \tag{18}$$

3. 确定正、负理想解 $\mathbb{C}^+ = (c_1^+, c_2^+, c_3^+, c_4^+, c_5^+)$ 、 $\mathbb{C}^- = (c_1^-, c_2^-, c_3^-, c_4^-, c_5^-)$ 正理想解

$$c_k^+ = \begin{cases} \max_j \check{b}_{jk}, & k \text{ 为效益型属性,} \\ \min_j \check{b}_{jk}, & k \text{ 为成本型属性;} \end{cases}$$
 (19)

负理想解反之。

4. 计算各供应商与正、负理想解的距离

与正理想解的距离

$$s_j^+ = \sqrt{\sum_{k=1}^5 (\check{b}_{jk} - c_k^+)^2},\tag{20}$$

与负理想解的距离同理。

5. 计算各供应商对理想解的相对接近程度作排序指标值(即综合评价指数)

$$f_j = \frac{s_j^-}{s_j^- + s_j^+}. (21)$$

6. 按 f_i 由大到小排列供应商的优劣次序

2.3 供应商的评价结果

2.3.1 各个指标的权重

运用熵权法,对过去交易数据进行分析,得到各个特征指标的权重,如图 1 所示。

图1 各指标权重

Fig. 1 Weights of each indicator

2.3.2 供应商综合评价指数

根据评价指标和上文计算出的权重,对供应商进行评价,表 1 是各供应商的综合评价得分。

Fig. 1 Weights of each indicator

Table 1 Weights of each indicator

单次最大供应量	平均供货偏差	供货总量	订货总量	订货次数	供应商
9.090909091	0.837362637	74.24242424	350	91	0
111.6666667	0.490977444	455	515	95	1
537.5	0.206018934	18247.22222	19831.94444	199	2
12.12121212	0.794073047	96.96969697	1080.30303	103	3
213.3333333	0.171227722	11520	10896.66667	114	4
6.94444444	0.871212121	41.66666667	641.6666667	55	5
258.3333333	0.379053947	11580	11193.33333	240	6
18.05555556	0.776785714	56.9444444	130.555556	56	7
6.060606061	0.81125	46.96969697	1083.333333	80	8
45.45454545	0.746306818	257.5757576	872.7272727	88	9
15.27777778	0.494601329	118.0555556	116.6666667	43	10
10	0.907352941	48.33333333	513.3333333	68	11
12.5	0.562931034	61.11111111	61.11111111	29	12
5	0.574074074	46.6666667	53.33333333	27	13
6.666666667	0.808641975	46.6666667	46471.66667	54	14
11.66666667	0.315909091	61.66666667	63.33333333	22	15
41.66666667	0.710465529	230	323.3333333	67	16
10.60606061	0.740625	100	171.2121212	72	17

2.3.3 供应商的预选

根据以上评价模型对于各供应商的得分,将供应商由高到低排序,并分别以各供应商及其评价分数为、横坐标,绘制图像。由图 2 可见,供应商的得分状况呈积聚分布,并且在 0.416 分处,有显著的拐点。因此,本文先根据评价分数,首先筛选出 66 家高分供应商。

2.4 供应商数量优化

通过预选供应商,本文已筛选出供应能力较突出的供应商。为了进一步得到合适数量的供应商,满足企业每周生产需求,并使供货最稳定,本文建立供应商选择 0-1 规划模型,以决定实际供货商选取:

$$\begin{array}{ll} \mathbf{min} & \Lambda = \sum_{j=1}^{66} \lambda_j \varepsilon_j \\ \mathbf{s.t.} & \sum_{j=1}^{66} \lambda_j \bar{y}_j > 2.84 \times 10^4 \end{array} \tag{22}$$

其中, λ_j 是表示第 j 家供应商是否被选上的 0–1 变量,而 \bar{y}_j 表示第 j 家供应商的供货能力,计算方法见于后文。通过对模型的求解,得到最终选定的 44 家供应商。

三、预测未来供货量

3.1 基于神经网络的供货能力预测

为了优化订购方案,首先需要确定可能的供应量,因此对筛选后的供货商的供应量进行预测,再据此制定相应的订货方案。供应商接受订单后,会在自身供货能力范围内,调整供货量以满足订单需要。当订货量过大时,供应商会仅能提供其最大供应量,因此往年供应数据可以反映出供应商的供货能力上限,本文依据供应商历史供应情况来预测其未来供应情况。

订货商的供应量受多种不可控因素影响,若仅根据时间变量构建时间序列预测模型,难以准确拟合供应量曲线,预测效果差。若将其做主要影响因素的回归分析,由于影响因素众多且相互耦合,无法综合分析,与此同时,预测过程中也有预测函数难以构建的问题^[6]。

对于复杂的长时间序列预测的问题,相比于传统时间序列预测手段,深度学习方法有着更好的拟合与预测能力。深度学习模型是一种拥有多个非线性映射层级的深度神经网络模型,能够对输入信号逐层抽象并提取特征,挖掘出更深层次的潜在规律^[7]。其中,LSTM模型弥补了循环神经网络的梯度消失和梯度爆炸、长期记忆能力不足等问题,使得循环神经网络能够真正有效地利用长距离的时序信息^[8]。

因此,本文使用 LSTM 分别对选中的 44 家公司的供货量进行预测。本文在过去五年的交易数据中,以前四年训练神经网络,取第五年为测试集。

LSTM 是由一系列节点(又称 LSTM 单元)组成的。如图??? 所示,LSTM 单元内部主要有三个阶段。在第t个节点中:

(1) 忘记阶段——对上一个节点的输入进行选择性忘记,即遗忘门

$$f^t = \sigma \left(\omega^f \frac{x^t}{h^{t-1}} \right). \tag{23}$$

该阶段通过 Sigmoid 函数,计算得到的 f^t 是一个向量,且每个分量均属于 [0,1]。一般分量的值会极其接近 0 或 1,为后续选择 c^{t-1} 中用于计算 c^t 的特征做准备。

(2) 记忆阶段——选择有效的输入值,即输入门

$$i^t = \sigma \left(\omega^i \frac{x^t}{h^{t-1}} \right). \tag{24}$$

该阶段工作原理与忘记阶段类似,将用于对输入的 x^t 进行选择。

(3) 选择阶段——选择输出并放缩,即输出门

$$o^t = \sigma \left(\omega^o \frac{x^t}{h^{t-1}} \right). \tag{25}$$

本阶段得到的 o^t 会放缩 c^t , 进而决定节点的输出

LSTM 的优势是前一节点的状态将随数据一起传入后一节点,但并不向外输出,具体来说也有三个:

(1) 单元状态更新值

$$\check{c}^t = \sigma \left(\omega^c \frac{x^t}{h^{t-1}} \right).$$
(26)

事实上,单元状态更新值与遗忘门、输入门和输出门的作用类似,而且并不传入后一节点。

(2) 单元状态

$$c^t = f^t c^{t-1} + i^t \check{c}^t. (27)$$

(3) 隐藏状态

$$h^t = o^t tanh(c^t). (28)$$

最终节点的输出 y^t 也是由 h^t 变化而成的,本文使用的是

$$y^t = \sigma(\omega' h^t), \tag{29}$$

在后文中,使用 ψ_{ij} 以表示,即通过预测得到的第 i 周第 j 家供应商的供应量。 本文的 LSTM 是由 PyTorch 实现的,结构如图??? 所示:

图 2 LSTM 网络结构图

Fig. 2 LSTM network structure diagram

Algorithm 1 Long short-term memory for out model.

Input: 从原始数据中获取原始的订购与供应数据; 从原始数据中挑取前一步筛选的 44 家供应商信息;

Output: 第 i 周第 j 家供应商的预测值 ψ_{ij} ;

- 1: 对数据的 A、B、C 分类, 做均一化预处理;
- 2: 将数据按供应商拆分为一维时间序列数据;
- 3: 将一维时间序列数据先按时间窗口切分为二维数据,以同样的方法,再将每个时间 窗口中的数据切分为特征向量:
- 4: 对升维后的数据做一次正态标准化缩放,保存缩放参数;
- 5: 将处理后的数据送入 LSTM 网络, 训练完毕后, 返回神经网络;
- 6. 每次预测 1 周,将预测的得到的 1 周数据重新送入神经网络,迭代指定此时以得到相应的预测步数;
- 7: 使用保存的缩放数据,将预测数据复原。
- 8: return ψ_{ii} .

图 2 LSTM 网络结构图

Fig. 2 LSTM network structure diagram

通过分析往年交易数据,供应商总是根据企业订货量来供应原材料。由于没有考虑 提高订购量对供应量的影响,仅根据往年交易数据进行预测,模型对供应商实际供应的 预测值会偏小。通过对预测结果的检验,预测中筛选得到的供应商的总供应量确实小于 预期。

3.2 供应量修正

为了提高预测的准确性,本文为模型添加了反映订货量影响的修正。数据显示,一定范围内,供应商的供应量会随订货量的增加而增多。而当订货量超出其的供应能力后,供应商的供货量限于生产条件达到其最大值,即最大供应量。

进而定义该家供货商的修正比 α_i :

$$\alpha_j = \frac{\beta_j - \gamma_j}{\gamma_j},\tag{30}$$

在第j家供应商的历史数据中,当供货量超过订货量时供货量的平均值记为 B_n ,而 c_n 为当供货量小于订货量时供货量的平均值。

修正后第 j 家供货商在第 i 周的实际供货能力 $\hat{\psi}_{ij} = \alpha_j y_j^i$ 。

3.3 预测模型检验

本文基于企业前四年的供应数据,建立如上原材料供应量预测模型,并将模型预测结果与真实数据比较以检验模型预测准确性,如下图所示:

Fig. 2 Comparison

拟合效果较好,故采取该预测模型以预测供应商供货量。

四、制定订购、库存方案

4.1 基于订货量的供货量确定

在生产厂家选择确定的供应商并发出订单后,供应商在其供货能力范围内将尽可能按照订货量进行供货,实际供货量受其自身供货能力的影响;为了模拟现实中供货量的波动情况,本文令实际供货量偏差符合该供货商过去的供货偏差情况。

预测的供货量为:

$$u_{ij} = \begin{cases} E_j v_{ij}, & v_{ij} \le \psi_{ij}, \\ E_j \psi_{ij}, & v_{ij} \ge \psi_{ij}; \end{cases}$$
(31)

当订货量高于供应商的能力时,供货量不再随订货量增长,可令此时订货量等于供应能力。在此基础上,本文在后文中通过约束 $v_{ij} \leq \psi_{ij}$,解决了分段函数线性化的问题。

4.2 制定订购方案

为获得最高收益,在制定订购方案时,需要平衡原料库存量。在供应充足时适当扩大库存,以填补未来原材料不足造成的的缺口,使其生产活动稳定进行。为了在尽可能保证产量的前提下,使存储成本最小,本文建立了如下线性规划模型以确定每周的订货量。

分析预测结果,虽然平均每周的供货总量充足(大于 $2.84 \times 10^4 m^3$),但仍有部分周供应不足,记缺货量为 $D_i = 2.84 \times 10^6 - u_i$ (供货量充足时, $D_i = 0$)。为了在供应不足时也能尽可能地发挥产能,该企业会在供货总量充足的时候中增加进货,即额外订购量 $d_i = u_i - 2.84 \times 10^6$ (供货总量低于 $2.84 \times 10^4 m^3$ 时, $d_i = 0$)。

为了保证订购的原材料均被加工为产品,要求 $\sum_{i=1}^{24} D_i \ge \sum_{i=1}^{24} d_i$ 。令目标函数为企业利润,使企业收益最大,构建线性规划模型:

max
$$p_1 \eta - p_2 \mu_i$$

s.t. $\sum_{i=1}^{24} D_i \ge \sum_{i=1}^{24} d_i$ (32)

其中, η 为 24 周内的总产量, $\eta=24\times 2.84\times 10^6-\sum_{i=1}^{24}D_i+\sum_{i=1}^{24}d_i$;第 t 周的原材料库存量 $\mu_t=2.84-\sum_{i=1}^tD_i+\sum_{i=1}^td_i$ 。 p_1 为单位产品的售价,则 $p_1\eta$ 为企业 24 周的生产所得; p_2 为单位产品所需原料的平均运输和储存成本。该模型中的 p_1 和 p_2 是关键参数:当 p_1 较大时,企业会倾向多投入存储费用来保证产能不被浪费,以生产更多产品赚取高额利润;当 p_2 较大时,企业则会牺牲产量来避免支付昂贵的仓储费用。本文在测试时,产品的售价约比仓储成本高一个数量级。需要泛用时, p_1 和 p_2 应根据实际情况灵活取值。

以上模型的决策变量是订购量 v_{ij} , 得到的最优解代表着每周最经济的订货量。此处由于三种类型原材料的本征采购单价相等,因此在进行运筹时并没有在目标函数中计算。另外,通过对结果的检验,本文发现最优解得订购方案在转运商的能力范围之内,因此忽略了转运商的能力对订货量的限制。

经过以上的优化,本文已经确定了每周的订货总量,需根据各供货商供货能力分配订单。本文依据2.2中的各供应商选优顺序,向筛选后的供应商依次订货,直到预计供货量达到预期。

4.3 制定转运方案

为了保证生产的经济效应,企业不仅需要制定订货方案,计划转运商的运输方案也 是必要的,本文希望根据上文制定的订货方案进一步计划损耗最少的转运方案。在实际 转运过程中,原材料会有一定的损耗,损耗量占供货量的百分比称为"损耗率"。通常情 况下,一家供应商每周供应的原材料尽量由一家转运商运输。为体现供应商 S_j 选择的转运商 T_l ,引入 0-1 变量假设同一家转运商 T_l 的损耗率总是恒定的 t_l ,则有:

式中 p_3 是原材料的采购单价,根据供应商贩卖的原材料类型确定。目标函数 L_i 是第 i 周的损失价值,故希望最小。该 0—1 规划模型每周运筹一次,制定该周的转运方案。约束条件表示一家供应商每周供应的原材料只由一家转运商运输,且每家转运商的运输原料的能力为 6000 立方米/周。事实上,根据预测模型,发现有的供应商单周供应量大于6000 立方米,此时便无法只由一家转运商运输了。但这种情况发生次数较少,通过手工分配后,转运效果整体良好。

五、 模型检验

最后,本文根据前四年的交易数据,基于以上方法制定了优化后的订购方案,对第 五年企业生产情况进行模拟,与现实情况比较以检验模型实施效果。

Fig. 3 finaltest

六、 原材料的订购和转运方案扩展

本题要求在尽量多地采购 A 类和尽量少地采购 C 类原材料的前提下,制定最经济的原材料订购方案和损耗最小的转运方案,并分析方案的实施效果。

6.1 制定订购方案

该企产成本,要减少转运及仓储的成本。三类原材料运输和业为了压缩生存储的单位费用相同,但 A 类原材料的商品生产能力比 C 类原材料强,因此企业会尽量多地采购 A 类和尽量少地采购 C 类原材料。本文忽略了原材料类型偏好对每周订货总量的影响,而主要关注于供应商订购量分配的变化。因此,问题 2 中的每周订货总量计划保持不变。

问题 2 中,原材料的订购数量是直接根据供应商的评价来进行分配的。问题 1 中建立的评价模型并未重点关注供应商贩卖的原材料类型,本文通过依据供应商贩卖的原材料类型,对供应商的评价加分,以尽量多地采购 A 类和尽量少地采购 C 类原材料。考虑到综合评价指标均小于 1 分,本文对售卖 A 类原材料的供应商加 1 分,令企业尽量多地采购 A 类原材料。联系上文,B 类原材料的本征采购单价实际上略高,因此,本文没有对 C 类原材料的供应商扣分。

6.2 制定运输方案

因为 A 类原材料的采购单价较高,因此对转运损耗更加敏感。问题 3 中企业计划尽量多地采购 A 类原材料,所以迫切需要制定合理的运输方案,以确保转运商的转运损耗率尽量少,来达到压缩生产成本的目的。问题 2 中侧重于经济效益,要求损耗最少,而问题 3 要求转运损耗率尽量少,因此对问题 2 中的 0–1 规划模型稍加改动:

式中 L_i' 代表第 i 周的转运损耗量,由于希望转运损耗率尽量少,故此处转运损耗量应取最小值。

参考文献

- [1] 杨庆军, 孙满. 浅谈 ERP 环境下的原材料管理[J]. 中国外资, 2012(7): 196-196.
- [2] 李红燕. 论企业原材料的管理和研究[J]. 财会学习, 2018(2): 181-181.
- [3] 顾丽娟. 基于最优供应商数量的补货策略研究[J]. 洛阳理工学院学报: 社会科学版, 2014(6): 21-24.
- [4] 金王莉. 基于熵权 TOPSIS 法的产业综合优势分析——以苏州制造业为例[J]. 中国商论, 2018(28): 159-162.
- [5] 马丽娟. 基于供应链管理的供应商选择问题初探[J]. 工业工程与管理, 2002(06): 23-25.
- [6] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术, 2018, 42(12): 4045-4052.

- [7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
- [8] 王鑫, 吴际, 刘超, 等. 基于 LSTM 循环神经网络的故障时间序列预测[J]., 2018.