자료구조 실습 보고서

[제 14-1 주] 사전의 성능 측정

제출일	2017/06/19
학 번	201000287
소 속	일어일문학과
이 름	유다훈

1 프로그램 설명서

- 1 주요 알고리즘 및 자료구조
 - 알고리즘
 - 입출력
 - ◆ 입력은 없음.
 - i 필요한 데이터는 프로그램에서 생성
 - ♦ 출력
 - i 데이터 크기 변화에 따른 성능 측정 결과
 - 자료구조
 - 정렬된 Array List
 - 정렬된 Linked List
 - Binary Search Tree

1 함수 설명서

Class	AppController			
	메소드	파라미터 설명	리턴값	메소드 설명
	AppController()	없음	없	_appView 변수를 초기화 하는 생성자 메소드
	void run()	없음	없음	성능 측정 프로그램을 실행하는 메소드
Method	void showExperimentByListOrderType(ListOrder anOrder)	enum	없음	들어오는 enum 타입에 따라 오름차순, 내림차순, 무작위 데이터 순으로 SortedArray, SortedLinkedList, BinarySearchTree 를 생성한다.
	void showUnitExperimentResult(UnitExperimentResult aResult)	실험결과	없음	전달받은 실험결과를 1000 으로 나누어 보기 편하게 출력한다.
	void showExperimentByDictionaryAndListOrderType (Dictionary <integer, adictionary,="" listorder<br="" string)="">anOrder)</integer,>	Dictionary, enum	없음	오름차순, 내림차순, 무작위 차순에 따라 전달받은 자료구조형태의 사전의 실제 실험결과를 뽑아내는 메소드

Class	AppView			
	메소드	파라미터 설명	리턴값	메소드 설명
Method	AppView()	없음	없음	생성자 메소드 값을 입력받는 스캐너 생성
	void output(String aString)	문자열	없음	줄바꿈을 하지 않는 메세지를 출력

void outputLine(Stirng aString)	문자열	없음	출바꿈을 하는 메세지를 출력.
---------------------------------	-----	----	---------------------

Class	DataGenerator			
	메소드	파라미터 설명	리턴값	메소드 설명
	static int[] ascendingOrderList(int aSize)	크기	정수형 배열	전달받은 크기만큼의 오름차순 데이터를 생성
Method	static int[] descendingOrderList(int aSize)	크기	정수형 배열	전달받은 크기만큼의 내림차순 데이터를 생성
	static int[] randomOrderList(int aSize)	크기	정수형 배열	전달받은 크기만큼의 무작위순 데이터를 생성

Class	ParameterSet					
	메소드	파라미터 설명	리턴값	메소드 설명		
	ParameterSet(int givenNumverOfExperiments, int givenFirstDataSize, int givenSizeIncrement)	측정횟수, 첫 데이터 크기, 증가량	없음	실험의 측정 횟수와 첫 실험 데이터 크기, 각 횟수마다의 증가량을 초기화하는 생성자 메소드		
	int numberOfExperiments()	없음	측정횟수	측정회수를 리턴하는 메소드		
	void setNumberOfExperiments(int newNumberOfExperiments)	측정회수	없음	새로운 측정회수를 설정하는 메소드		
Method	int firstDataSize()	없음	없음	첫 데이터 크기를 리턴하는 메소드		
	void setFirstDataSize(int newFirstDataSize)	첫 데이터 크기	없음	첫 데이터를 새롭게 설정하는 메소드		
	int sizeIncrement()	없음	없음	각 횟수마다의 데이터 증가량을 리턴하는 메소드		
	void setSizeIncrement(int newSizeIncrement)	데이터 증가량	없음	데이터 증가량을 새롭게 설정하는 메소드		
	int maxDataSize()	없음	데이터의 전체 크기	데이터의 전체 크기를 계산하여 리턴하는 메소드		

Class	PerformanceMesurement				
	메소드	파라미터 설명	리턴값	메소드 설명	
	PerformanceMeasurement()	없음	없음	ParameterSet 을 디폴트값으로 생성하고 데이터를 만드는 생성자 메소드	
Method	PerformanceMeasurement(int giveNumberOfExperiments, int givenFirstDataSize, int givenSizeIncrement)	측정횟수, 첫 데이터 크기, 증가량	없음	천달받은 값들로 ParameterSet 을 초기화하고, 데이터를 생성하는 생성자 메소드	
	ParameterSet parameterSet()	없음	ParameterSet	생성한 실험의 메타값을 전달한다.	
	<pre>void setParameterSet(ParameterSet newParameterSet)</pre>	ParameterSet	없음	실험의 메타값을 새롭게 설정한다.	
	int[] ascendingList()	없음	정수형 배열	오름차순의 배열을 리턴한다.	
	int[] descendingList()	없음	정수형 배열	내림차순의 배열을 리턴한다.	

int[] randomList()	없음	정수형 배열	무작위순의 배열을 리턴한다.
void generateData()	없음	없음	실험에 사용할 3 가지 데이터들을 최대크기로 생성해놓는다.
int[] experimentList(ListOrder anOrder)	enum	정수형 배열	enum 형태에 맞는 실험용 데이터들을 리턴한다.
UnitExperimentResult unitExperiment(Dictionary <integer, string=""> aDictionary, ListOrder anOrder, int dataSize)</integer,>	Dictionary, enum, 데이터 사이즈	측정 데이터	단위 측정 실험을 실행하고 그 결과를 리턴한다.
UnitExperimentResult[] experimentByDictionaryAndListOrderType (Dictionary <integer, adictionary,="" anorder)<="" listorder="" string)="" td=""><td>Dictionary, enum</td><td>측정 데이터들의 배열</td><td>데이터 크기별로 다시 단위 측정 실험을 실행하고 리턴한다</td></integer,>	Dictionary, enum	측정 데이터들의 배열	데이터 크기별로 다시 단위 측정 실험을 실행하고 리턴한다

Class	UnitExperimentResult			
	메소드	파라미터 설명	리턴값	메소드 설명
	UnitExperimentResult(int givenExperimentSize, double givenTimeForAdd, double givenTimeForSearch, double givenTimeForRemove	데이터 크기, 추가시간, 검색시간, 삭제시간	없음	전달받은 값으로 실험결과를 생성하는 생성자 메소드
	int experimentSize()	없음	데이터크기	데이터 크기를 리턴하는 메소드
	void setExperimentSize(int newExperimentSize)	데이터 크기	없음	전달받은 값으로 데이터 크기를 설정하는 메소드
Method	double timeForAdd()	없음	추가시간	데이터를 자료구조에 추가한 시간을 리턴하는 메소드
	void setTimeForAdd(double newTimeForAdd)	추가시간	없	자료구조에 추가한 시간을 새롭게 설정하는 메소드
	double timeForSearch()	없음	검색시간	데이터를 자료구조에서 검색한 시간을 리턴하는 메소드
	void setTimeForSearch(double newTimeForSearch)	검색시간	없음	데이터를 자료구조에서 검색한 시간을 새롭게 설정하는 메소드
	double timeForRemove()	없음	삭제시간	데이터를 자료구조에서 삭제한 시간을 리턴하는 메소드
	void setTimeForRemove(double newTimeForRemove)	삭제시간	없음	데이터를 자료구조에서 삭제한 시간을 새롭게 설정하는 메소드

Class	LinkedNode			
N 4 - +	메소드 이름	파라미터 설명	리턴값	메소드 설명
Method	LinkedNode(T givenElement)	원소	없	전달받은 원소로 노드를

				초기화하는 생성자 메소드
	LinkedNode(T givenElement, LinkedNode⟨T⟩ givenNext)	원소, LinkedNode	없음	전달받은 원소와 LinkedNode 값으로 노드의 원소와 노드의 다음값을 생성하는 메소드
	T element()	없음	원소	원소를 리턴하는 메소드
	void setElement(T newElement)	원소	없음	전달받은 원소를 새롭게 설정하는 메소드
	LinkedNode〈T〉 next()	없음	LinkedNode	현재 노드의 다음 노드값을 리턴하는 메소드
	void setNext(LinkedNode <t> newNext)</t>	LinkedNode	없음	전달받은 노드값을 현재 노드의 다음 값으로 설정하는 메소드

Class	BinaryNode				
	메소드 이름	파라미터 설명	리턴값	메소드 설명	
	BinaryNode()	없음	없음	BinaryNode 를 모두 null 값으로 초기화시키는 생성자 메소드	
	BinaryNode(T givenElement, BinaryNode〈T〉 givenLeft, BinaryNode〈T〉 givneRight)	원소, 왼쪽노드, 오른쪽 노드	젒음	전달받은 값으로 BinaryNdoe 의 원소와 왼쪽, 오른쪽 자식을 초기화하는 메소드	
	T element()	없음	원소	원소를 리턴하는 메소드	
Method	void setElement(T newElement)	원소	없음	현재 노드의 원소를 새롭게 지정하는 메소드	
	BinaryNode <t> left()</t>	없음	BinaryNode	현재노드의 왼쪽 노드를 리턴하는 메소드	
	void setLeft(BinaryNode〈T〉 newLeft)	BinaryNode	없	현재 노드의 왼쪽 노드를 새롭게 지정하는 메소드	
	BinaryNode〈T〉 right()	없음	BinaryNode	현재 노드의 오른쪽 노드를 리턴하는 메소드	
	void setRight(BinaryNode⟨T⟩ newRight)	BinaryNode	없음	현재 노드의 오른쪽 노드를 새롭게 지정하는 메소드	

Class	abstact Dictinary〈K, O〉			
	메소드 이름	파라미터 설명	리턴값	메소드 설명
	int size()	없음	크기	사전의 크기값을 리턴하는 메소드
	void setSize(int newSize)	크기	없음	사전의 크기 값을 새롭게 설정하는 메소드
Method	Dictionary()	없음	없음	사전을 생성하는 생성자 메소드
Wiethod	boolean isEmpty()	없음	boolean	사전이 비어있는지 없는지를 리턴하는 메소드
	abstract boolean isFull()	없음	boolean	사전이 꽉 찼는지 아닌지를 리턴하는 메소드
	abstract boolean keyDoesExist(K aKey)	Key	boolean	사전에 해당 키가 존재하는지 여부를 리턴하는 메소드

abstract O objectForKey(K aKey)	key	Object	전달받은 키 값의 오브젝트를 리턴하는 메소드
abstract boolean addKeyAndObject(K aKey, O anObject)	key, object	boolean	키와 오브젝트를 사전에 추가하고 추가 여부를 리턴하는 메소드
abstract O removeObjectForKey(K aKey)	key	object	입력받은 키값과 해당 키값의 오브젝트를 삭제하는 메소드
abstract void clear()	없음	없음	사전을 초기화시키는 메소드

Class	DictinaryElement 〈K extends Comparable〈K〉, O〉					
	메소드 이름	파라미터 설명	리턴값	메소드 설명		
	DictionaryElement(K givenKey, O givenObject)	key, Object	없음	전달받은 키와 오브젝트로 사전의 원소를 생성하는 메소드		
Method	K key()	없음	key	현재 원소의 키를 리턴하는 메소드		
Wiethod	void setKey(K newKey)	key	없음	현재 원소의 키를 새롭게 설정하는 메소드		
	O object()	없음	Object	현재 원소의 오브젝트를 리턴하는 메소드		
	void setObject(O newObject)	Object	없음	현재 원소의 오브젝트를 설정하는 메소드		

Class	DictionaryBySortedArray〈K extends Comparable〈K〉, O〉 extends Dictionary〈K, O〉				
	메소드 이름	파라미터 설명	리턴값	메소드 설명	
	DictionaryBySortedArray()	없음	없음	디폴트값으로 사전의 최대 크기와 배열의 크기를 생성하는 생성자 메소드	
	DictionaryBySortedArray(int givenCapacity)	정수	없음	전달받은 값으로 사전의 최대 크기와 배열의 크기를 생성하는 생성자 메소드	
	int capacity()	없음	정수	사전의 최대 용량을 전달하는 메소드	
Method	void setCapacity(int newCapacity)	정수	없음	사전의 최대 용량을 새롭게 설정하는 메소드	
Wethod	int positionFor(K aKey)	key	정수	전달받은 키를 검색하여 배열 내에 키가 어디에 위치하고 있는지 리턴하는 메소드	
	void makeRoomAt(int aPosition)	정수	없음	해당 정수값의 위치까지의 배열의 데이터들을 한 칸씩 뒤로 이동시키는 메소드	
	void removeGapAt(int aPosition)	정수	없음	해당 정수값의 위치까지 배열의 데이터들을 한칸 씩 앞으로 이동시키는 메소드	

Class	DictionaryBySortedLinkedList <k comparable<k="" extends="">, O> enxtends Dictionary<k, o=""></k,></k>				
	메소드 이름	파라미터 설명	리턴값	메소드 설명	
Method	DictionaryBySortedLinkedList()	없음	없음	LinkedList 를 초기화시키는 메소드	
	LinkedNode〈DictionaryElement〈K, O〉〉 head()	없	LinkedNode	LinkedList의 헤드값을 리턴하는 메소드	
	void setHead(LinkedNode〈DictionaryElement〈K, O〉〉newHead)	LinkedNode	없음	LinkedList의 헤드값을 새롭게 설정하는 메소드	

Class	DictionaryByBinarySearchTree〈K extends Comparable〈K〉, O〉 extends Dictionary〈K, O〉				
	메소드 이름	파라미터 설명	리턴값	메소드 설명	
	DictionaryByBinarySearchTree()	없음	없음	BinarySearchTree 를 초기화시키는 메소드	
	BinaryNode〈DictinaryElement〈K,O〉〉 root()	없음	BinaryNode	트리의 루트값을 리턴하는 메소드	
Method	void setRoot(BinaryNode〈DictinaryElement〈K,O〉〉 newRoot)	BinaryNode	없음	트리의 루트값을 새롭게 설정하는 메소드	
	DictionaryElement elementForKey(K aKey)	Key	DictionaryElement	키가 들어있는 노드를 찾아 해당 키와 맞는 노드의 원소를 리턴한다.	
	DictionaryElement〈K, O〉 removeRightMostElementOfLeftSubTree (BinaryNode〈DictinaryElement〈K,O〉〉root)	root	DictionaryElement	왼쪽 서브트리의 최대값을 찾아 삭제하는 메소드	

2 종합 설명서

- 프로그램을 실행하면 오름차순, 내림차순, 무작위순의 데이터가 추가적인 입력없이 자동으로 생성된다.
- 해당 데이터들을 세 개의 자료구조에 넣으면서 오름차순으로 정렬하며, 원하는 키를 검색하고, 다시 삭제하는 동안의 각각의 자료구조에서 걸리는 시간을 측정한다.
 - PerformanceMeasurement 메소드에서 측정.
 - 정렬된 배열, 정렬된 연결체인, 이진탐색트리.

2 프로그램 장단점 분석

- 장점
 - 오름차순, 내림차순, 무작위 순의 데이터를 세 가지의 자료구조에 다시 오름차순으로 정렬해가며 삽입하는 시간, 특정 값을 검색하는 시간, 삭제하는 시간을 비교하여 어떠한 상황에 어떠한 자료구조 제일 적합한지를 파악할 수 있다.
- 단점
 - 프로그램을 구현하면서, 이해하기가 어렵다.

3 실행 결과 분석

1 입력과 출력

프로그램 실행				
<<"Di		스타 등 성 성능 측정을 시작	합니다.>>	
		F정 (단위: micr		
		ray"로 구현된 /		
크기		검색		
[10000]	811			
[20000]	2014	2337		
[30000]	3296	3239		
	3639	4113	780048	
[50000]	5205	6021	1191644	
출력 1-	2 - 오름차순 데이터	를 사용한 측정 : Sort	edLinkedList	
"Dictionar	vBvSortedLin	kedList"로 구현	여된 사전의 성능	
크기	산입	검색	-	
_	243773		890	
	1013266		1047	
	2147483		1272	
	2147483		1886	
_ [50000]	2147483	2147483	1970	
<u></u> 출력 1-	3 - 오름차순 데이터를	를 사용한 측정 : Bina	rySearchTree	
		ırchTree"로 구		
크기	삽입	검색	' - ' - ' - ' - ' - ' - ' - ' - ' -	
	251110		2095	
	1082232			
	2147483			
	2147483		2143	
	2147483		2198	
출력 2-	 1 - 내림차순 데이터	 를 사용한 측정 :Sc	ortedArrayList	
			-	

<내림차순 데이터를 사용한 측정 (단위: micro second) >					
		'ay"로 구현된 시	·전의 성능		
		검색	삭제		
[10000]	45113	1170	772		
[20000]	198835	1951	1499		
[30000]	434002	3325	2542		
[40000]	780387	5610	3340		
			4333		
 출력 2-2	- 내림차순 데이터를	를 사용한 측정 : Sort	redLinkedList		
"Dictionar	yBySortedLin	kedList"로 구현	현된 사전의 성능		
크기	삽입	검색	삭제		
[10000]	479	228921	238577		
[20000]	936	718063	711465		
[30000]	1422	2147483	2147483		
[40000]	1977	2147483	2147483		
[50000]	2839	2147483	2147483		
출력 2-3	- 내림차순 데이터를	├ 사용한 측정 : Bina	rySearchTree		
"Dictionar	yByBinarySea	rchTree"로 구현	현된 사전의 성능		
크기	삽입	검색	삭제		
[10000]	278911	280163	610		
[20000]	1023670	996275	870		
[30000]	2147483	2147483	1244		
[40000]	2147483	2147483	2337		
[50000]	2147483	2147483	2369		

출력 3-1 - 무작위 데이터를 사용한 측정 : SortedArrayList

<무작위 데이터	터를 사용한 측정 ((단위: micro s	second) >
"Dictionar	yBySortedArro	ɪy"로 구현된 사건	전의 성능
크기	삽입	검색	삭제
[10000]	25943	1830	22622
[20000]	93176	4720	81059
[30000]	217646	7903	172294
[40000]	375770	10121	313423
[50000]	590424	13815	500281
[30000] [40000]	217646 375770	7903 10121	172294 313423

출력 3-2 - 무작위 데이터를 사용한 측정: SortedLinkedList

"Diction	aryBySortedLin	kedList"로 ⁻	구현된 사전의 성능
크기	삽입	검색	삭제
[10000]	233016	592134	219406
[20000]	1220371	2147483	1295672
[30000]	2147483	2147483	2147483
[40000]	2147483	2147483	2147483
[50000]	2147483	2147483	2147483

출력 3-3 - 무작위 데이터를 사용한 측정 : BinarySearchTree

"Diction	aryByBinarySeard	chTree"로 구현	면된 사전의 성능
크기	삽입	검색	삭제
[10000]	2033	2368	1906
[20000]	5425	6056	5112
[30000]	10246	8247	9419
[40000]	15123	10801	14328
[50000]	16284	18250	16479

프로그램 종료

<<"Dictionary" 의 성능 측정을 종료합니다. >>

2 결과 분석

● 오름차순

- Sorted Array List
 - i 오름차순인 데이터를 그냥 오름차순으로 삽입하기 때문에 삽입속도가 매우 짧다.
 - ii 이미 정렬 되어있는 데이터에서 특정 데이터를 검색하기 위해 검색을 하는 positionFor()메소드의 경우, 전체 사이즈에서 중간값을 정하여 큰 값은 배열의 오른쪽, 작은 값은 배열의 왼쪽으로 진행하는 단순한 원리로 인하여, 검색 속도가 짧다.
 - iii 삭제 시 원하는 데이터 삭제를 하고 해당 데이터 이후의 배열의 모든 데이터를 한 칸씩 이동을 시켜주어야 하기 때문에 시간이 걸린다.

Sorted Linked List

- i 오름차순을 삽입 할 때에는 항상 현재 노드의 뒷부분에 삽입을 해줘야 하기 때문에, 값이 커지면 커질수록 시간이 오래걸린다.
- ii 원하는 값을 검색하는 경우에도 모든 노드를 원하는 값이 나올 때까지 하나하나 확인을 해야하기 때문에 오래 걸린다.
- iii 삭제를 할 때에는 오름차순의 데이터를 입력받았을 때, 이미 자료구조는 오름차순 순이므로, LinkedList의 특성상 앞의 head 만 삭제하고 뒤 노드들을 앞으로 당겨주기만 하면 되므로 시간이 오래걸리지 않는다.

Binary Search Tree

- i 이진탐색트리의 특성상 현재 노드값보다 큰 값은 무조건 오른쪽으로만 가게된다. 즉 오름차순 데이터를 입력받으면 무조건 오른쪽 서브트리만 생기게 된다. 이것은 연결체인의 구조와 똑같은 구조이다. 삽입시간이 연결체인만큼 걸리는 것도 같은 구조이기 때문이다
- ii 검색 역시 원하는 값을 찾을 때까지 모든 노드를 검색해야하는 연결체인과 같은 구조이다. 시간이 오래걸린다.
- iii 삭제 시의 현재 삭제를 원하는 노드가 헤드인지, 혹은 노드에 자식이 오른쪽에만 있는지, 왼쪽에만 있는지, 양쪽 다 있는지 확인해야하기 때문에, 연결체인과 같은 구조이지만 삭제시 시간이 연결체인보다 약간 더 걸린다.

● 내림차순

Sorted Array List

- i 삽입 시에 현재 들어있는 데이터를 한 칸씩 뒤로 미루면서 삽입해야 하기 때문에 시간이 오래걸린다.
- ii 중간값을 정하여 큰 값은 배열의 오른쪽, 작은 값은 배열의 왼쪽으로

진행하는 알고리즘으로 인해 검색시간이 짧다.

iii 내림차순으로 들어오는 데이터를 삭제할 때에는, 자료구조 내에서 정렬된 상태에서 데이터를 삭제하는 것이다. 내림차순 데이터에서 제일 큰 값은 배열의 제일 뒤에 있으므로 나머지 배열의 데이터에 대해서 공간을 앞뒤로 밀거나 당길 필요가 없어서 삭제 시간이 빠르다.

Sorted Linked List

- i 값을 비교하여 삽입할 때, 무조건 이전 값보다 작은값이 들어오기 때문에, head 의 위치에만 넣어주면 되므로 시간이 짧게 걸린다.
- ii 모든 노드를 검색해야하기 때문에 검색 시간이 오래걸린다. 더군다나 삽입되는 데이터는 연결 체인의 뒷부분에 있으므로 무조건 모든 노드를 검색 해야하며 그만큼 시간이 오래 걸린다.
- iii 삭제도 검색과 같은 이유로 인하여 시간이 오래 걸린다.

Binary Search Tree

- i 값을 비교하여 삽입할 때, root 보다 작은 값은 무조건 왼쪽의 자식이 되므로, 연결체인과 같은 한 방향 트리가 생성된다. 자식으로 지정하는 것을 모든 노드를 거쳐가며 노드의 맨 끝에서 왼쪽자식으로 지정해주는 것이므로 시간이 오래 걸린다.
- ii 검색 역시 원하는 값을 찾기 위해 모든 노드를 방문해야한다.
- iii 삭제 시의 이진탐색트리는 내림차순으로 정렬되어있기 때문에, 내림차순의 데이터가 들어오면 루트 노드만 반환해주면 되므로 시간이 빠르다

● 무작위순

Sorted Array List

- i 무작위로 삽입되는 데이터들을 배열내에 삽입되었던 데이터와 비교하고, 그냥 넣을지 아니면 공간을 만들어 데이터와 데이터 사이에 넣을지의 문제가 발생하므로 삽입 시 시간이 걸린다. 그러나 모든 데이터를 계속해서 뒤로 밀어야 하는 내림차순보다는 시간이 덜 걸린다.
- ii 데이터를 검색 한 후 찾은 인덱스로 바로 검색을 할 수 있다.
- iii 무작위로 들어온 데이터를 찿아서 삭제 후, 해당 데이터의 뒤의 공간에 있는 데이터를 앞으로 당길지 말지의 여부때문에 삭제 또한 삽입과 비슷한 시간이 걸린다.

Sorted Linked List

- i 무작위로 들어온 데이터를 삽입하기 위해서 모든 노드들과 하나하나 비교를 해야하기 때문에, 데이터가 많아지면 많아질 수록 시간이 오래걸린다.
- ii 검색 역시 원하는 데이터를 찾을 때 까지 연결체인을 검색해야만

하다

iii 삭제 또한 원하는 데이터를 찾을때까지 연결체인을 검색해야만 한다.

Binary Search Tree

- i 삽입 시에 루트노드와 비교하여 루트노드보다 작으면 왼쪽, 크면 오른쪽으로 보내고, 해당 자리가 null 이면 그 자리에 지정을 하는 단순한 원리때문에 시간이 적게 걸린다.
- ii 검색 또한 루트노드와만 비교하면 되므로 시간이 덜 걸린다.
- iii 삭제 또한 루트노드와 비교하고 서브트리에서 값을 끌어 올릴지 말지의 여부만 정하면 되므로 시간이 적게 걸린다.

결론

Sorted Array List

	오름차순	내림차순	무작위
삽입	O(1)	O(n)	O(n)
검색	O(1)	O(1)	O(1)
삭제	O(n)	O(1)	O(n)

Sorted Linked List

	오름차순	내림차순	무작위
삽입	O(n)	O(1)	O(n)
검색	O(n)	O(n)	O(n)
삭제	O(1)	O(n)	O(n)

Binary Search Tree

	오름차순	내림차순	무작위
삽입	O(n)	O(n)	O(log n)
검색	O(n)	O(n)	O(log n)
삭제	O(1)	O(1)	O(log n)

- 오름차순 데이터를 이용한 성능 분석 시 Array List 가 좋다.(삽입과 검색)
- 내림차순을 이용한 성능 분석 시 Array List 가 좋다. (검색과 삭제)
- 무작위 데이터를 이용한 성능 분석 시 Binary Search Tree 가 모든 면에서 월등히 좋다.
- 클래스의 상속을 통해 size()메소드를 각각의 자료구조마다 구현하지 않고 사용할 수 있었으며, 또한 각각의 자료구조마다 똑같은 파라미터를 가진 메소드를 구현하여 손쉽게 구현할 수 있었다.
- Binary Search Tree 는 노드마다의 비교때문에 구현해야할 코드의 량이 길고 복잡했지만 성능이 월등히 우수하다.