Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{2} \cdot (3 + 2\sqrt{2}) - 3\sqrt{2} + 3 = 3\sqrt{2} + 2\sqrt{2} \cdot \sqrt{2} - 3\sqrt{2} + 3 =$	2p
	=4+3=7	3 p
2.	f(m) = 3m - 6, pentru orice număr real m	3p
	3m-6=3, de unde obținem $m=3$	2p
3.	4x-2=2, de unde obținem $4x=4$	3 p
	x=1	2p
4.	$\frac{30}{100} \cdot 300 = 90 \text{ de lei}$	3p
	Prețul după ieftinire este 300 – 90 = 210 de lei	2p
5.	$3 = \frac{1+5}{2} \text{ si } 4 = \frac{m+1}{2}$	3p
	m=7	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 60^\circ = \frac{1}{2}$	3p
	$2(\sin 45^\circ + \sin 30^\circ)(\sin 45^\circ - \sin 30^\circ) = 2\left(\left(\frac{\sqrt{2}}{2}\right)^2 - \left(\frac{1}{2}\right)^2\right) = \frac{1}{2} = \cos 60^\circ$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \implies \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 1 \cdot 0 - 1 \cdot 0 =$	3p
	=0-0=0	2p
b)	$A(3) + A(5) = \begin{pmatrix} 1 & 3 \\ 4 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 5 \\ 6 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 10 & 0 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix}1&4\\5&0\end{pmatrix}=2A(4)$	2p
c)	$A(n) + I_2 = \begin{pmatrix} 1 & n \\ n+1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & n \\ n+1 & 1 \end{pmatrix} $ şi $\det(A(n) + I_2) = 2 - n(n+1)$, pentru orice	2p
	număr natural <i>n</i>	
	$n(n+1) \le 2$ şi, cum n este număr natural, obținem $n=0$ şi $n=1$	3 p
2.a)	$f(0) = 0^3 - 3 \cdot 0^2 + m \cdot 0 - 1 =$	3p
	=0-0+0-1=-1, pentru orice număr real m	2p
b)	$x_1 + x_2 + x_3 = 3$	2p
	$x_1x_2x_3 = 1$, de unde obținem $x_1 + x_2 + x_3 = 3x_1x_2x_3$, pentru orice număr real m	3p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

c)	$f(1) = 1^3 - 3 \cdot 1^2 + m \cdot 1 - 1 = 1 - 3 + m - 1 = m - 3$, pentru orice număr real m	2p	1
	f(1) = 0, de unde obținem $m = 3$	3 p	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{x' \cdot (x^2 + 1) - x \cdot (x^2 + 1)'}{(x^2 + 1)^2} =$	3p
	$= \frac{x^2 + 1 - 2x^2}{\left(x^2 + 1\right)^2} = \frac{1 - x^2}{\left(x^2 + 1\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} x f(x) = \lim_{x \to +\infty} \frac{x^2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2}{x^2 \left(1 + \frac{1}{x^2}\right)} =$	3р
	$= \lim_{x \to +\infty} \frac{1}{1 + \frac{1}{x^2}} = 1$	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1$ şi $x = 1$; $f'(x) \le 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare	3р
	pe $(-\infty, -1]$; $f'(x) \ge 0$, pentru orice $x \in [-1, 1] \Rightarrow f$ este crescătoare pe $[-1, 1]$	
	$f'(x) \le 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	2p
2.a)	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} \frac{(x^{2} + 1)e^{x}}{e^{x}} dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right)\Big _{0}^{1} =$	3р
	$= \frac{1}{3} + 1 - 0 - 0 = \frac{4}{3}$	2p
b)	Funcția F este derivabilă și $F'(x) = (2x-2)e^x + (x^2-2x+3)e^x = (x^2+1)e^x$	3p
	F'(x) = f(x), pentru orice număr real x , deci funcția F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{0}^{2} f(x) dx = \int_{0}^{2} (x^{2} + 1) e^{x} dx = F(x) _{0}^{2} = F(2) - F(0) =$	3р
	$=3e^2-3=3(e^2-1)$	2p