Academic Honesty Pledge

I pledge that the answers in this exam/quiz are my own and that I will not seek or obtain an unfair advantage in producing these answers. Specifically,

- I will not plagiarize (copy without citation) from any source;
- I will not communicate or attempt to communicate with any other person during the exam/quiz; neither will I give or attempt to give assistance to another student taking the exam/quiz; and
- I will use only approved devices (e.g., calculators) and/or approved device models.

I understand that any act of academic dishonesty can lead to disciplinary action.

Student ID:		
Signature <u>:</u>		
Date:		

CITY UNIVERSITY OF HONG KONG

Course code & title : MA3524/3526 Analysis

Session : Semester B, 2021-2022

Time Allowed : Two hours

This paper has <u>two</u> pages. (including this page)

Instructions to candidates:

- 1. Answer all questions.
- 2. Start each main question on a new page.
- 3. Show all steps.

Materials, aids & instruments which students are permitted to use during examination:

Non-programmable portable battery operated calculator

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorized materials or aids are found on them.

- 1. (a) (15 points) Let $f:(0,\pi)\to\mathbb{R}$ be a bounded continuous function. Show that $\sin(x)f(x)$ is uniformly continuous on $(0,\pi)$.
 - (b) (15 points) Let $g:(0,\infty)\to\mathbb{R}$ and $g(x)=\sin(1/x)$. Is g uniformly continuous? Why?
- 2. (20 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that f'(a) < f'(b). Given a number L such that f'(a) < L < f'(b), show that there exists a value $c \in (a, b)$ such that f'(c) = L.

(Hint: we define a function g(x) = Lx - f(x) for $x \in [a, b]$. Where is the possible maximum of g(x) for $x \in [a, b]$.)

- 3. (a) (10 points) Let $\{f_n\}$ be a sequence of increasing functions defined on [0,1] (that is, $f_n(x) \geq f_n(y)$ whenever $1 \geq x \geq y \geq 0$). Suppose $f_n(0) = 0$ or all n, and $\lim_{n\to\infty} f_n(1) = 0$. Show that $\{f_n\}$ converges uniformly to 0.
 - (b) (20 points) Assume $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ are uniformly convergent sequences of functions on common domain A and $|f_n| + |g_n| \leq M$ for all $n \in \mathbb{N}$, verify that $\{f_ng_n\}_{n=1}^{\infty}$ converges uniformly.
- 4. (10 points) Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence, and define the set

 $S = \{x \in \mathbf{R} : \text{there exist at most finite number of terms } a_n \text{ satisfying } x < a_n\}.$

Show that $s = \inf S$ exists and there exists a subsequences $\{a_{n_k}\}_{k=1}^{\infty}$ converging to s.

5. (10 points) Define that a set $A \subseteq \mathbb{R}$ is dense in \mathbb{R} if, for any two real numbers a < b, there exists a point $x \in A$ such that a < x < b.

If $\{O_1, O_2, O_3, ...\}$ is a countable collection of open, dense sets, prove that the intersection $\bigcap_{n=1}^{\infty} O_n$ is not empty.

(Hint: applying Nested Interval Property.)

—END—