NeRF实践

小组成员: 黄宇悦 黄婧媛 吴欣怡 周涛

组员	任务	
黄宇悦 20300246005	完成拓展部分 DreamGaussian	
黄婧媛 21300246010	完成基础部分 Nerfacto和Splatfacto	
吴欣怡 20300246007	撰写实验报告	
周涛 21307130239	制作PPT和汇报	

技术介绍

NeRF技术概览

利用神经网络重建3D 场景,从二维图像中 提取复杂细节,实现 高逼真度的视图合成。

NeRF发展与应用

研究领域持续扩展,新方 法减少训练图像需求,支 持动态场景和多视图渲染, 广泛应用于模拟、游戏和 媒体。

NerfStudio

提供模块化PyTorch框架,简化NeRF研究,包含实时可视化、数据导入和多格式输出工具,便于研究和实践。

技术介绍

01

Nerf 效率优化

Nerfacto和Splatfacto模型提升 训练效率和渲染速度,确保高质 量重建的同时,增强实际应用性 能。 02

COLMAP在三维重建中 的应用

通用的三维重建管道,支持图像特征提取、匹配、稀疏重建等,为NeRF提供有序和无序图像集的重建功能。

开发环境

01

在线开发环境

使用Kaggle提供的GPU P100

02

本地开发环境

WSL Ubuntu 22.04.3 LTS

配置: AMD Ryzen 4800H + Nvidia

GTX 1650

开发环境

环境配置

安装PyTorch+CUDA、CUDA Toolkit、 Ninja、tiny-cuda-nn和COLMAP。

```
# 用conda设置名为nerfstudio的新环境
conda create --name nerfstudio -y python=3.10
conda activate nerfstudio
python -m pip install --upgrade pip
# 安装PyTorch和CUDA
pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118
    --extra-index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
## 安装Ninja和tiny-cuda-nn
pip install ninja
curl -L
"https://github.com/OutofA1/tiny-cuda-nn-wheels/releases/download/Kaggle-P100/
tinycudann-1.7-cp310-cp310-linux_x86_64.whl" -o
    tinycudann-1.7-cp310-cp310-linux_x86_64.whl
pip install tinycudann-1.7-cp310-cp310-linux_x86_64.whl
    --force-reinstall --no-cache-dir
1mport t1nycudann as tcnn
# 安装nerfstud1o
pip install nerfstudio
# 安装COLMAP
conda install -c conda-forge colmap
# 安装ffmpeg
conda install -c conda-forge ffmpeg
```


数据集介绍

Tanks and Temples数 据集简介

由英特尔实验室2017年发布,包含高清视频,用于三维重建研究。数据集包含训练和测试两部分,测试部分分为中级和高级。

数据集内容

训练集有7个场景的7个高分 辨率视频,测试集有14个场 景的14个视频。测试集的中 级和高级组分别包含不同复 杂度的场景。

M60坦克视频

M60坦克视频作为测试数据的一部分,提供不同角度和距离的5620帧图像,高分辨率图像有助于分析坦克的复杂细节。

数据处理

01

数据集转换格式

使用COLMAP,将图像处理为nerfstudio 兼容格式,包括提取特征、匹配和稀疏重 构。整个过程耗时22分钟。

02

图像处理步骤

对原始数据执行图像特征提取、匹配和场 景重构,以适应NERFStudio

COLMAP 处理过程和结果

训练Nerfacto模型

ns-train nerfacto --viewer.websocket-port 7007 --viewer.make-share-url
True nerfstudio-data --data
/kaggle/input/tanks-and-temple-m60-colmap-preprocessed/m60

模型介绍

01

Nerfacto模型

Nerfstudio 的默认模型,保持高质量重建的同时,通过优化网络结构和训练策略,大幅提高了训练效率43分钟完成训练

02

Splatfacto模型

基于3DGS技术,通过高斯函数优化 渲染速度,保持竞争力的训练时间, 27分钟完成训练。

Nerfacto重建和渲染结果

Splatfacto重建和渲染结果

- PSNR (峰值信噪比) 是渲染图像与地面实况图像之间峰值误差的测量值, 用分贝 (dB) 表示。
- PSNR值越高,表示图像质量越好,与地面实况图像越接近。

数据集	模型	PSNR
M60 坦克数据集	Nerfacto	19.25
M60 坦克数据集	Splatfacto	27.46

拓展部分

01

DreamGaussian

DreamGaussian 于 ICLR 2024 Oral 提出的新 颖3D内容生成框架,2分钟内实现Image-to-3D 和Text-to-3D,基于3D高斯拼接模型,高效重 建纹理细节。

02

DreamGaussian流程简介

从2D图像或文本提取信息,通过3DGS生成纹理网格,UV空间细化恢复几何形状、纹理和色彩。

103 **坦克玩具3D重建** 我们从互联网上搜到了一个坦克玩具的二维展示图,并将其进行了3D重建。

拓展部分

二维图像处理后,通过 DreamGaussian进行三维重建

```
# 安装环境依赖
git clone -b dev https://github.com/camenduru/dreamgaussian
pip install -q torch-ema einops tensorboard% plyfile dearpygui
    huggingface hub diffusers == 0.21.4 accelerate transformers xatlas
pip install -q trimesh PyMCubes pymeshlab rembg[gpu,cli] omegaconf ninja
git clone --recursive
    https://github.com/ashawkey/diff-gaussian-rasterization
pip install -q ./diff-gaussian-rasterization
pip install -q ./simple-knn
pip install -q
    https://github.com/camenduru/wheels/releases/download/colab/nvd1ffrast-0.3.1-py3-none-any.whl
pip install -q git+https://github.com/ashawkey/kiuikit
# 导入二维基础图
NAME="tank"
IMAGE="tank.png"
IMAGE_PROCESSED="tank_rgba.png"
# 训练DreamGaussian - 第1阶段
run main.py --config configs/image.yaml input=data/{IMAGE_PROCESSED}
    save_path={NAME} elevation=0 force_cuda_rast=True
# 训练DreamGaussian - 第2阶段
run main2.py --config configs/image.yaml input=data/{IMAGE_PROCESSED}
    save_path={NAME} elevation=0 force_cuda_rast=True
```

结果展示

DreamGaussian重建和渲染结果

项目链接

项目仓库(包含所有模型、代码、动图结果): https://github.com/JinnyWong/NeRF

参考文献

- [1] Ben Mildenhall et al. Fields for View 2020. arXiv: 2003. 08934 [cs. CV].
- [2] Matthew Tancik et al. "Nerfstudio: A Modular Framework for Neural Radiance Field Development". In: SIGGRAPH ACM, July 2023. DOI: 10.1145/3588432. 3591516. URL: http://dx.doi.org/10.1145/3588432.3591516.
- [3] Johannes Lutz Schönberger and Jan-Michael Frahm. "Structure-from- Motion Revisited". In: Recognition 2016.
- [4] Arno Knapitsch et al. "Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction" .In: ACM Transactions on Graphics 36. 4 (2017).
- [5] Bernhard Kerbl et al. 3D Gaussian Splatting for Real-Time Radiance arXiv: 2308. 04079 [cs. GR].
- [6] Jiaxiang Tang et al. arXiv: 2309. 16653 [cs. CV].

谢谢!