Projektowanie efektywnych algorytmów Projekt

24/01/2025

Ivan Hancharyk 264511

Zadania 3 i 4: Tabu search oraz Algorytmy genetyczne.

1.	Sformulowanie zadania
2.	Metody4
2.1.	Tabu search4
2.2.	Algorytmy genetyczne5
3.	Dane testowe oraz pliki config9
4.	Procedura badawcza
5.	Wyniki12
6.	Analiza wyników i wnioski
	Efektywność algorytmu Tabu Search31
	Efektywność Algorytmów Genetycznych
	Porównanie Tabu Search i Algorytmów Genetycznych32
	Podsumowanie i rekomendacje32

1. Sformułowanie zadania

Jak i w poprzednim projektu zadanie polega na rozwiązaniu problemu komiwojażera (TSP), ale tym razem przy opracowaniu, implementacji i zbadaniu efektywności algorytmu **Tabu Search** (przeszukiwanie z zakazami) oraz **Algorytmu Genetycznego.**

1.1. **Tabu Search**

W zadaniu musimy zbadać wpływ parametrów takich jak:

- Rozmiar listy ruchów zakazanych (tabu list).
- Długość kadencji określa jak długo dany ruch ma się znajdować na liście tabu. Z każdą iteracją algorytmu długość kadencji dla każdego ruchu na liście jest zmniejszana
- Kryterium aspiracji/aspiracji plus pozwala ono wykonać dany ruch, nawet jeśli znajduje się na liście ruchów zakazanych.
- Sposób generowania sąsiedztwa(2-opt) i wyboru rozwiązania początkowego(losowo/NN).
- Kryteria zakończenia brak poprawy rozwiązania przez określoną liczbę iteracji/przekroczenie limitu czasu wykonania.
- Zdarzenia krytyczne generowanie w pewnych przypadkach nowego rozwiązania startowego.

Porównać wydajność algorytmu dla instancji symetrycznych i asymetrycznych, w tym instancji używanych w zadaniach 1 i 2 oraz danych z TSPLIB.

Zmierzyć czas obliczeń, błędy wynikowe, a także znaleźć "granicę możliwości" algorytmu dla różnych rozmiarów instancji.

Hipotezy badawcze:

Efektywność parametrów: Wzrost rozmiaru listy tabu poprawi unikanie minimów lokalnych, ale będzie wydłużał czas działania algorytmu. Długość kadencji wpływa na dokładność wyników; krótsze kadencje mogą przyspieszyć algorytm kosztem większych błędów, podczas gdy dłuższe kadencje mogą zapewnić lepsze wyniki, ale zwiększą czas obliczeń. Kryterium aspiracji umożliwia wydajniejsze pokonywanie minimów lokalnych, zmniejszając błąd rozwiązania, szczególnie w instancjach o dużej złożoności.

Rodzaj instancji: Algorytm Tabu Search działa skuteczniej (mniejszy błąd i krótszy czas działania) dla instancji symetrycznych w porównaniu do asymetrycznych, ze względu na prostszą strukturę przestrzeni rozwiązań.

Granica możliwości: Tabu Search jest w stanie efektywnie rozwiązywać instancje o rozmiarze do 300 wierzchołków, przy błędzie poniżej 20%, ale czas działania gwałtownie wzrośnie dla większych instancji.

Porównanie z innymi metodami: Spodziewane jest, że możliwe będzie uzyskanie rozwiązań dla większych instancji, niż w przypadku algorytmu przeglądu zupełnego lub podziału i ograniczeń, ale będą to wyniki obarczone pewnym błędem. Dla mniejszych instancji, czyli takich, że poprzednie algorytmy rozwiązały je w czasie skończonym, spodziewane jest uzyskanie wyników w czasie kilkadziesiąt, a może nawet kilkaset razy krótszym.

1.2. Algorytmy Genetyczne

W zadaniu musimy zbadać wpływ kluczowych parametrów, takich jak:

- Rozmiar populacji 500 (niska), 1000 (standardowa) oraz 2000 (wysoka).
- Metody selekcji (np. turniejowa, ruletkowa).
- Prawdopodobieństwo krzyżowania (*pm*): 0,1 (niska), 0,8 (standardowa) oraz 0,9 (wysoka).
- Prawdopodobieństwo mutacji (*pc*): 0,1 (niska), 0,5 (standardowa) oraz 0,85 (wysoka).
- Metoda sukcesji.

Przeanalizować zależność czasu i błędów wynikowych w zależności od rozmiaru instancji, porównując efektywność dla instancji symetrycznych i asymetrycznych z użyciem danych z TSPLIB oraz instancji z zadań 1 i 2.

Hipotezy badawcze:

Wpływ parametrów algorytmu: Zwiększenie rozmiaru populacji poprawi jakość rozwiązania (mniejszy błąd), ale znacząco wydłuży czas działania algorytmu. Prawdopodobieństwo krzyżowania w zakresie 90% pozwala na uzyskanie najlepszych wyników pod względem błędu i czasu działania. Niskie prawdopodobieństwo mutacji (np. 5%) zapewnia stabilność wyników dla małych i średnich instancji, ale wyższe wartości mogą być korzystne w przypadku dużych instancji, zwiększając różnorodność populacji.

Metody selekcji i krzyżowania: Selekcja turniejowa zapewnia lepsze wyniki jakościowe w porównaniu do selekcji ruletkowej, kosztem dłuższego czasu działania. Metoda krzyżowania PMX działa lepiej w przypadku problemu TSP niż metoda OX, szczególnie dla większych instancji, ze względu na zachowanie struktur permutacyjnych.

Ograniczenia błędu:

- n < 25: blad $\leq 0\%$,
- 24 < n < 74: błąd $\leq 50\%$,
- 75 < n < 449: blad $\leq 100\%$,
- 450 < n < 2500: błąd $\le 150\%$.

Algorytm powinien mieścić się w tych wartościach przy rozsądnym czasie działania.

2. Metody

2.1. Tabu search

Metoda poszukiwania z zakazami (ang. Tabu Search) jest metaheurystyką do rozwiązywania problemów optymalizacyjnych, opartą na iteracyjnym przeszukiwaniu przestrzeni rozwiązań, wykorzystującą (zmienne) sąsiedztwo pewnych rozwiązań, zapamiętującą niektóre ruchy i częstość ich występowania, w celu unikania minimów lokalnych i poszukiwania rozwiązań globalnie optymalnych w rozsądnym czasie.

Opis działania algorytmu:

• Inicjalizacja:

- Wygenerowanie początkowego rozwiązania losowo lub za pomocą heurystyki (NN).
- Inicjalizacja listy tabu, która przechowuje zakazane ruchy, aby zapobiec powrotowi do wcześniej odwiedzonych rozwiązań.
- Rozmiar listy tabu i kadencji są obliczane w kodzie (współczyniki są podowane w pliku config.txt):
 - Rozmiar listy tabu = tabu list multiplier * liczba wierzchołków.
 - Kadencja = tabu tenure multiplier * liczba wierzchołków.

• Główna pętla:

- **Generowanie sąsiedztwa:** Utworzenie zbioru sąsiadów bieżącego rozwiązania poprzez wykonanie **2-zamiany** (swap) albo **2-opt** (zamiana dwóch krawędzi między soba).
- Ocena sąsiedztwa: Obliczenie wartości funkcji celu dla każdego sąsiada (koszt cyklu Hamiltona).
- **Wybór najlepszego sąsiada:** Wybranie rozwiązania spośród sąsiadów z uwzględnieniem listy tabu i kryterium aspiracji.
- Kryterium aspiracji plus: Kryterium aspiracji plus pozwala na rozszerzenie przeglądu sąsiedztwa, jeśli znaleziony sąsiad spełnia warunek, że jego wartość jest większa lub równa określonemu progowi aspiracji (MVal ≥ Aspiration). W takim przypadku algorytm przegląda dodatkowych Plus sąsiadów, ale nie więcej niż do maksymalnej liczby maxM. Spośród wszystkich przeglądanych sąsiadów wybierane jest najlepsze rozwiązanie. Mechanizm ten zwiększa szanse na znalezienie lepszych rozwiązań w obiecującym obszarze przestrzeni poszukiwań.
- **Aktualizacja listy tabu:** Dodanie nowego ruchu do listy i usunięcie najstarszych elementów, jeśli lista przekracza maksymalny rozmiar.
- **Aktualizacja najlepszego rozwiązania:** Jeśli nowe rozwiązanie jest lepsze niż dotychczasowe najlepsze, zostaje ono zapamiętane.
- Obsługa zdarzeń krytycznych: W przypadku, gdy algorytm nie znajduje żadnego sąsiada spełniającego kryteria ruchu, uruchamiany jest mechanizm zdarzenia krytycznego. Algorytm generuje nowe losowe rozwiązanie startowe. Jeśli koszt tego rozwiązania jest lepszy od dotychczas najlepszego, aktualizowane jest globalne rozwiązanie, a licznik stagnacji zostaje zresetowany. Jeśli obsługa zdarzeń krytycznych jest wyłączona, algorytm kończy działanie.

2.2. Algorytmy genetyczne

Algorytmy genetyczne oparte są na biologicznym procesie ewolucji. Założeniem jest, że gorzej przystosowane osobniki z populacji zostaną wyeliminowane z populacji, a lepiej przystosowane osobniki po wykonaniu operacji genetycznych tworzących nowe osobniki stworzą subpopulację, która będzie lepiej przystosowana niż oryginalna populacja. Powtórzenie tego procesu wielokrotnie, za każdym razem eliminując nieprzystosowane osobniki spowoduje otrzymanie efektywnego rozwiązania instancji problemu zbyt dużej, aby przeszukać całą przestrzeń rozwiązań.

Na początku inicjowana jest populacja początkowa w sposób losowy a następnie obliczany jest koszt każdej ze ścieżek wchodzących w skład populacji początkowej. Kolejnym krokiem jest wybranie za pomocą selekcji osobników, które będą wchodziły w skład populacji macierzystej (rodzicielskiej). Dla populacji rodzicielskiej wykonywane są operacje genetyczne z pewnym prawdopodobieństwem, operacja krzyżowania i mutacji. Z tak powstałej subpopulacji wybierany jest za pomocą sukcesji nowa populacja w której skład będzie wchodził pewien fragment osobników ze starej populacji i osobniki z nowopowstałej subpopulacji i cały schemat jest powtarzany tak długo aż osiągnięty zostanie czas wykonywania lub nie zmieni się nic w populacji przez kilka iteracji lub po wykonaniu określonej ilości iteracji. Na poszczególne chromosomy genu składają się ścieżki na które składają się geny czyli konkretne miasta, a z kolei na geny składają się allele które są wartościami jakie mogą przyjmować geny czyli w tym wypadku numery miast.

W implementacji tego algorytmu opisywanej w tym sprawozdaniu zostały zaimplementowane dwa sposoby na selekcje oraz dwa sposoby krzyżowania. Sposoby selekcji są następujące:

1) Selekcja poprzez metodę turniejowa:

Jest to sposób selekcji oparty na procesie rywalizacji dwóch osobników, z których wygrywa ten lepiej przystosowany.

Z populacji losuje się **x** osobników. Spośród tych osobników wybierany jest zwycięzca, czyli ten, który ma najlepsze przystosowanie (*najniższą wartość funkcji kosztu w TSP*). Następnie dodajemy go do puli macierzystej. Należy powtórzyć podany schemat następnie **N-1** razy (*N* – *rozmiar populacji*), aby wybrać całą pulę rodziców.

2) Selekcja poprzez metodę ruletki:

Metoda ta ma symulować losowanie ruletki. Cechą tej metody jest to, że do populacji rodzicielskiej mogą dostać się osobniki gorzej przystosowane w stosunku do pozostałych. Metoda ta odbywa się poprzez wyliczenie prawdopodobieństwa wyboru osobników z populacji na podstawie względnego przystosowania:

$$p_s(x_i) = \frac{f(x_i)}{\sum_{i=1}^{N} f(x_i), i = 1, 2, ..., N}$$

W przypadku tego wzoru $f(x_i)$ jest to funkcja przystosowania czyli w przypadku tego algorytmu koszt ścieżki, a N to ilość elementów populacji.

Następnie należy obliczyć dystrybuantę dla sekwencji osobników

$$q(x_i) = \sum_{j=1}^i p_s(x_j)$$

A następnie należy wylosować wartość $r \in [0,1]$ i ustalić pierwszego osobnika w populacji dla którego będzie spełniony warunek $r \le q(xi)$ i powtórzyć N krotnie proces losowania r oraz znajdowania osobników w populacji.

Teraz zostaną omówione metody krzyżowania. Zostały zaimplementowane metody OX oraz PMX:

1) Metoda OX (order crossover)

Metoda polega na względnym zachowaniu kolejności miast w cyklu

- W pierwszej kolejności należy wylosować w osobnikach sekcje, która zostanie przeniesiona do potomka. Do potomka pierwszego przeniesiona zostanie sekcja z pierwszego rodzica a do drugiego analogicznie z drugiego.
- Następnie w przypadku potomka z sekcją z pierwszego rodzica kopiowane są pozostałe miasta zgodnie z kolejnością z drugiego rodzica i analogicznie dla drugiego potomka.
- Ostatecznie zwracani są obaj potomkowie

Rys 1: Zobrazowanie metody OX – słajd z wykłady "Algorytmy Genetyczne w7"

2) Metoda PMX (partially matched)

Metoda polegająca na krzyżowaniu z częściowym odwzorowaniem. Przebieg tej metody wygląda następująco:

- Na początku należy wyznaczyć (np. wylosować) sekcje dopasowania, która nie może być mniejsza lub równa 1 oraz nie może być większa lub równa od długości osobnika
- Następnie należy skopiować te sekcje analogicznie do potomka pierwszego i drugiego. -Następnie trzeba skopiować sekcje które powtarzają się w jednym i drugim osobniku populacji rodzicielskiej.
- Wyznaczyć pary (i,j) w sekcjach dopasowania gdzie $i,j=1,2,3,\ldots,n;$ n< l-p+1 to są kolejne indeksy w osobnikach wybranych z puli rodzicielksiej
- Następnie należy wstawić allele, które nie występują w sekcjach dopasowania z pierwszego rodzica do drugiego potomka i analogicznie z drugiego rodzica do pierwszego potomka
- Pozostałe allele należy wstawić na miejsca w potomkach zgodnie z przyporządkowaniami w parach (*i,j*).

9 z P1 na miejsce 4 w P2 do N2; 1 z P1 na miejsce 6 w P2 – ponieważ 6 jest w sekcji dopasowania, zatem 1 na miejsce 3 w P2 do N2; itd.

Rys2: zobrazowanie działania metody PMX słajd z wykłady "Algorytmy Genetyczne w7"

Metoda mutacji:

Jako metodę służącą do mutacji zaimplementowana została metoda wzajemnej wymiany (ang. Reciprocal exchange) polegająca na wybraniu pary genów w osobniku a następnie zamienieniu miejscami.

Metoda sukcesji:

Metoda partialReplacement implementuje sukcesję "elitizm z uzupełnieniem" (elitism with replacement) w algorytmie genetycznym, w której nowa populacja jest budowana w dwóch etapach. Najpierw x%(x – wybierany w config) najlepszych osobników (elita) z obecnej populacji jest bezpośrednio przenoszonych do nowej populacji, co pozwala zachować najlepsze rozwiązania. Następnie pozostałe miejsca w populacji są wypełniane nowymi osobnikami generowanymi przez krzyżowanie i mutację wybranych rodziców (wybór za pomocą ruletki lub turniejowy). Pętla uzupełnia populację do pełnej liczebności, zapewniając, że w każdej generacji populacja ma stały rozmiar. Na końcu nowa populacja zastępuje starą, przygotowując algorytm do kolejnej iteracji.

3. Dane testowe oraz pliki config

Do wykonania badań wybrano następujący zestaw instancji (z TSPLIB i ze strony Dr. Jarosława Mierzwy):

```
Instancje symetryczne:
tsp10_as.txt 142 [0 7 4 2 9 6 8 3 5 1 0]
tsp12 as.txt 203 [0 2 11 7 10 4 8 1 5 6 3 9 0]
ftv33.txt 1286
ftv38.txt 1530
ftv64.txt 1839
ftv70.txt 1950
rbg323.txt 1326
kroB150.txt 26130
Instancje asymetryczne:
tsp10_as.txt 142 [0 7 4 2 9 6 8 3 5 1 0]
tsp12_as.txt 203 [0 2 11 7 10 4 8 1 5 6 3 9 0]
ftv33.txt 1286
ftv38.txt 1530
ftv64.txt 1839
ftv70.txt 1950
rbg323.txt 1326
```

Badania zostały przeprowadzone na laptopie HP Pavilion 15:

- Procesor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, 2419 Mhz, 4 Core(s), 8 Logical Processor(s)
- Pamięć RAM DDR4 16.0 GB
- System Windows 10 Pro

Jest tym samem urządzeniem, na którym były prezentowane programy. Laptop pracował przy podpiętym zasilaniu, a podczas robienia pomiarów wszystkie programy poza środowiskiem pracowniczym były zamknięte.

Opis pliku konfiguracji:

Tabu search:

- data_file: Ścieżka do pliku wejściowego z danymi TSP.
- output_file: Ścieżka do pliku wynikowego, gdzie zapisywane są rezultaty algorytmu.
- repeats: Liczba powtórzeń algorytmu na tej samej instancji.
- **show_progress:** Określa, czy postęp algorytmu ma być wyświetlany w konsoli.
- initial_solution: Sposób generowania początkowego rozwiązania (np. 2 dla metody Nearest Neighbor).
- **swap_way:** Wybrana metoda generowania sąsiedztwa (np. 0 dla 2-opt).
- **aspiration_criterion:** Minimalna wartość, aby ruch tabu mógł zostać zaakceptowany.
- aspiration_plus: Aktywacja kryterium aspiracji plus.
- minM: Minimalna liczba przeglądanych sąsiadów.
- maxM: Maksymalna liczba przeglądanych sąsiadów.
- plus: Liczba dodatkowych sąsiadów przeglądanych w przypadku aspiracji plus.
- tabu_list_multiplier: Współczynnik określający rozmiar listy tabu.
- **tabu_tenure_multiplier:** Współczynnik określający kadencję tabu (czas zakazu ruchu).
- enable_critical_event_handling: Aktywacja obsługi zdarzeń krytycznych.
- maxIterationsWithoutImprovement: Maksymalna liczba iteracji bez poprawy, po której algorytm się zatrzymuje.
- **termination time:** Maksymalny czas działania algorytmu w milisekundach.

Algorytm genetyczny:

- **data_file:** Ścieżka do pliku wejściowego zawierającego dane TSP (macierz odległości).
- **output_file:** Ścieżka do pliku wynikowego, gdzie zapisywane są wyniki działania algorytmu(.xls).
- repeats: Liczba powtórzeń algorytmu na tej samej instancji.
- **show_progress:** Określa, czy postęp algorytmu ma być wyświetlany w konsoli.
- **population_size:** Rozmiar populacji w algorytmie genetycznym.
- max_generations: Maksymalna liczba generacji, po których algorytm kończy działanie.
- mutation_probability: Prawdopodobieństwo wykonania mutacji na osobniku.
- **elitePercentage:** procent najlepszych osobników (elity), które są przenoszone do kolejnej generacji bez zmian.
- **selectionMethod:** Wybór metody selekcji osobników rodzicielskich (np. "roulette" dla ruletki).
- **crossoverMethod:** Wybór metody krzyżowania (np. "ox" dla Order Crossover).
- **crossover_probability:** Prawdopodobieństwo wykonania krzyżowania.
- **timeout:** Maksymalny czas działania algorytmu w sekundach.

4. Procedura badawcza

Procedura miała na celu potwierdzenie lub odrzucenie postawionych hipotez.

Tabu Search:

Parametry domyślne algorytmu:

- **Rozmiar listy tabu:** $3 \times n$, gdzie n to liczba miast w instancji.
- Kadencja tabu: 25% × n.
- Rozwiązanie początkowe: NN.
- Kryterium aspiracji: Akceptacja rozwiązań na liście tabu, jeśli są lepsze o 20.
- **Aspiracja plus:** włączona plus=5, minM=3, maxM=20.
- **Metoda wyboru rozwiązania w sąsiedztwie:** 2-opt (swap_way = 0).
- **Kryterium zakończenia:** Maksymalna czas wykonania 15min lub brak poprawy przez 400 iteracji.
- **Obsługa zdarzeń krytycznych:** Włączona (restart z losowym rozwiązaniem przy stagnacji).
- 1. Uruchomiono algorytm dla instancji o różnych rozmiarach, od 10 do 323 miast, zapisując wyniki w formacie .xls.
- 2. Każda instancja była rozwiązywana 10-krotnie dla rozmiarów n≤100, a 5-krotnie dla n>100, w celu analizy stabilności wyników.

Algorytm genetyczny:

Parametry domyślne algorytmu:

- Wielkość populacji: 500.
- Metoda selekcji: Turnejowa.
- Prawdopodobieństwo krzyżowania: 0.7.
- Prawdopodobieństwo mutacji: 0.3.
- Metoda krzyżowania: Order Crossover (OX).
- Elita: 0.3.
- Kryterium zatrzymania:
 - Brak zmian w populacji przez 300 iteracji.
 - Limit czasu: 15 minut.
- Testowano algorytm na instancjach o rozmiarze od 10 do 323 miast, zapisując wyniki w plikach .xls.
- Każda instancja była rozwiązywana 10-krotnie, aby zbadać stabilność i średnią jakość wyników.

Wyniki opracowano za pomocą programu MS Excel. Wartość błędu liczono według wzoru:

$$\delta = \frac{|x - x_0|}{x} \cdot 100\%$$

Gdzie x to wartość optymalna, a x₀ to uzyskany koszt.

5. Wyniki

Błąd jest w %, czas dla Tabu search w sekundach, natomiast dla GA jest w milisekundach.

Tabu search:

			3 x n			5 x n			7 x n	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	213	0,4	0,013	213	0,47	0,013	213	0,47	0,013
tsp_12	264	264	0	0,013	264	0	0,01	264	0	0,014
gr21	2707	3002	10,89	0,03	3002	10,89	0,05	3002	10,89	0,032
gr24	1272	1334	7,30	0,044	1472	15,72	0,044	1472	15,72	0,043
gr96	55209	65342	18,35	1,83	65342	18,35	2,01	65342	18,35	1,818
kroA100	21282	24698	15,70	1,99	24698	15,7	2,32	24698	15,7	2,09
kroB150	26130	31611	18,30	6,5	31611	18,3	6,9	31611	18,3	6,67
tsp10_as	142	200	40,84	0,1	200	40,84	0,1	200	40,84	0,01
tsp12_as	203	218	7,30	0,012	218	7,3	0,012	218	7,3	0,013
ftv33	1286	1590	23,60	0,09	1590	23,63	0,09	1590	23,63	0,1
ftv38	1530	1759	14,96	0,14	1759	14,96	0,14	1759	14,96	0,14
ftv64	1839	2202	19,70	0,58	2202	19,73	0,58	2202	19,73	0,568
ftv70	1950	2287	17,20	0,75	2287	17,28	0,75	2287	17,28	0,768
rbg323	1326	1702	28,30	68,06	1702	28,35	72,06	1702	28,35	63,488

Tabela 1: wyniki wpływu rozmiaru listy tabu

Rysunek 3: wykres zależności czasu od rozmiaru instancji dla róznych rozmiarów listy tabu

Rysunek 4: wykres zależności błędu od rozmiaru instancji dla róznych rozmiarów listy tabu

		20% x n		50% x n			70% x n		
koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
212	213	0,4	0,012	213	0,4	0,012	213	0,4	0,014
264	264	0	0,014	264	0	0,0131	264	0	0,013
2707	3002	10,89	0,032	3002	10,89	0,033	3002	10,89	0,032
1272	1472	15,72	0,043	1472	15,72	0,049	1472	15,72	0,045
55209	65342	18,35	1,81	65342	18,35	1,804	65342	18,35	1,9
21282	24698	15,70	2,007	24698	15,70	2,03	24698	15,70	2,01
26130	31611	18,30	6,54	31611	18,30	7,66	31611	18,30	7,65
142	200	40,84	0,012	200	40,84	0,01	200	40,84	0,014
203	218	7,30	0,013	218	7,30	0,01	218	7,30	0,013
1286	1590	23,60	0,098	1590	23,60	0,1	1590	23,60	0,96
1530	1759	14,96	0,143	1759	14,96	0,14	1759	14,96	0,14
1839	2202	19,70	0,572	2202	19,70	0,58	2202	19,70	0,57
1950	2287	17,20	0,748	2287	17,20	0,77	2287	17,20	0,74
1326	1702	28,30	69,07	1702	28,30	81,29	1702	28,30	78,3
	212 264 2707 1272 55209 21282 26130 142 203 1286 1530 1839 1950	212 213 264 264 2707 3002 1272 1472 55209 65342 21282 24698 26130 31611 142 200 203 218 1286 1590 1530 1759 1839 2202 1950 2287	koszt optymalny średni koszt błąd 212 213 0,4 264 264 0 2707 3002 10,89 1272 1472 15,72 55209 65342 18,35 21282 24698 15,70 26130 31611 18,30 142 200 40,84 203 218 7,30 1286 1590 23,60 1530 1759 14,96 1839 2202 19,70 1950 2287 17,20	koszt optymalny średni koszt błąd czas średni 212 213 0,4 0,012 264 264 0 0,014 2707 3002 10,89 0,032 1272 1472 15,72 0,043 55209 65342 18,35 1,81 21282 24698 15,70 2,007 26130 31611 18,30 6,54 142 200 40,84 0,012 203 218 7,30 0,013 1286 1590 23,60 0,098 1530 1759 14,96 0,143 1839 2202 19,70 0,572 1950 2287 17,20 0,748	koszt optymalny średni koszt błąd czas średni średni koszt 212 213 0,4 0,012 213 264 264 0 0,014 264 2707 3002 10,89 0,032 3002 1272 1472 15,72 0,043 1472 55209 65342 18,35 1,81 65342 21282 24698 15,70 2,007 24698 26130 31611 18,30 6,54 31611 142 200 40,84 0,012 200 203 218 7,30 0,013 218 1286 1590 23,60 0,098 1590 1530 1759 14,96 0,143 1759 1839 2202 19,70 0,572 2202 1950 2287 17,20 0,748 2287	koszt optymalny średni koszt błąd czas średni średni koszt błąd 212 213 0,4 0,012 213 0,4 264 264 0 0,014 264 0 2707 3002 10,89 0,032 3002 10,89 1272 1472 15,72 0,043 1472 15,72 55209 65342 18,35 1,81 65342 18,35 21282 24698 15,70 2,007 24698 15,70 26130 31611 18,30 6,54 31611 18,30 142 200 40,84 0,012 200 40,84 203 218 7,30 0,013 218 7,30 1286 1590 23,60 0,098 1590 23,60 1530 1759 14,96 0,143 1759 14,96 1839 2202 19,70 0,572 2202 19,70 1950	koszt optymalny średni koszt błąd czas średni średni koszt błąd czas średni 212 213 0,4 0,012 213 0,4 0,012 264 264 0 0,014 264 0 0,0131 2707 3002 10,89 0,032 3002 10,89 0,033 1272 1472 15,72 0,043 1472 15,72 0,049 55209 65342 18,35 1,81 65342 18,35 1,804 21282 24698 15,70 2,007 24698 15,70 2,03 26130 31611 18,30 6,54 31611 18,30 7,66 142 200 40,84 0,012 200 40,84 0,01 203 218 7,30 0,013 218 7,30 0,01 1286 1590 23,60 0,098 1590 23,60 0,14 1839 2202 19,70	koszt optymalny średni koszt błąd czas średni średni koszt błąd czas średni średni koszt błąd czas średni średni koszt 212 213 0,4 0,012 213 0,4 0,012 213 264 264 0 0,014 264 0 0,0131 264 2707 3002 10,89 0,032 3002 10,89 0,033 3002 1272 1472 15,72 0,043 1472 15,72 0,049 1472 55209 65342 18,35 1,81 65342 18,35 1,804 65342 21282 24698 15,70 2,007 24698 15,70 2,03 24698 26130 31611 18,30 6,54 31611 18,30 7,66 31611 142 200 40,84 0,012 200 40,84 0,01 200 203 218 7,30 0,013 218 7,30	koszt optymalny średni koszt błąd czas średni średni koszt błąd zas średni średni koszt błąd 212 213 0,4 0,012 213 0,4 0,012 213 0,4 264 264 0 0,014 264 0 0,0131 264 0 2707 3002 10,89 0,032 3002 10,89 0,033 3002 10,89 1272 1472 15,72 0,043 1472 15,72 0,049 1472 15,72 55209 65342 18,35 1,81 65342 18,35 1,804 65342 18,35 21282 24698 15,70 2,007 24698 15,70 2,03 24698 15,70 26130 31611 18,30 6,54 31611 18,30 7,66 31611 18,30 142 200 40,84 0,012 200 40,84 0,01 20 40,84 203 </td

Tabela 2: wyniki wpływu długości kadencji

Rysunek 5: wykres zależności czasu od rozmiaru instancji dla róznych długości kadencji

Rysunek 6: wykres zależności błędu od rozmiaru instancji dla róznych długości kadencji

			brak			15			50	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	213	0,4	0,014	213	0,4	0,013	213	0,4	0,0134
tsp_12	264	264	0	0,105	264	0	0,014	264	0	0,0133
gr21	2707	2933	8,34	0,035	3002	10,89	0,034	3002	10,89	0,034
gr24	1272	1472	15,72	0,055	1472	15,72	0,051	1472	15,72	0,045
gr96	55209	65342	18,35	1,98	65342	18,35	1,832	65342	18,35	1,82
kroA100	21282	24698	15,70	2,05	24698	15,70	2,03	24698	15,70	2,03
kroB150	26130	31611	18,30	7,93	31611	18,30	6,62	31611	18,30	6,61
tsp10_as	142	200	40,84	0,01	200	40,84	0,01	200	40,84	0,01
tsp12_as	203	218	7,30	0,017	218	7,30	0,014	218	7,30	0,013
ftv33	1286	1590	23,60	0,105	1590	23,60	0,097	1590	23,60	0,101
ftv38	1530	1759	14,96	0,146	1759	14,96	0,14	1759	14,96	0,141
ftv64	1839	2202	19,70	0,58	2202	19,70	0,583	2202	19,70	0,58
ftv70	1950	2287	17,20	0,74	2287	17,20	0,756	2287	17,20	0,78
rbg323	1326	1702	28,30	82,28	1702	28,30	82,18	1702	28,30	63,3

Tabela 3: wyniki wpływu kryterium aspiracji

Rysunek 7: wykres zależności czasu od rozmiaru instancji dla róznych wartości kryterium aspiracji

Rysunek 8: wykres zależności błędu od rozmiaru instancji dla róznych wartości kryterium aspiracji

			random			NN	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	511	141,03	0,014	213	0,4	0,016
tsp_12	264	501	89,77	0,015	264	0	0,014
gr21	2707	8082	198,55	0,032	3002	10,89	0,03
gr24	1272	3341	162,65	0,045	1472	15,72	0,46
gr96	55209	340912	517,49	1,83	65342	18,35	1,82
kroA100	21282	160816	655,64	1,99	24698	15,70	2,05
kroB150	26130	240812	821,592	7,82	31611	18,30	6,67
tsp10_as	142	290	104,22	0,012	200	40,84	0,01
tsp12_as	203	646	218,22	0,015	218	7,30	0,013
ftv33	1286	3888	202,33	0,102	1590	23,60	0,098
ftv38	1530	5005	227,12	0,14	1759	14,96	0,147
ftv64	1839	7697	318,54	0,62	2202	19,70	0,59
ftv70	1950	9539	389,17	0,79	2287	17,20	0,74
rbg323	1326	5929	347,13	79,91	1702	28,30	64,35

Tabela 4: wyniki wpływu metody generowania rozwiązania początkowego

Rysunek 9: wykres zależności czasu od rozmiaru instancji dla róznych metod tworzenia rozwiązania pierwotnego

Rysunek 10: wykres zależności błędu od rozmiaru instancji dla róznych metod tworzenia rozwiązania pierwotnego

			2-opt			2-swap	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	213	0,4	0,013	213	0,4	0,012
tsp_12	264	264	0	0,014	264	0	0,014
gr21	2707	3002	10,89	0,033	3002	10,89	0,032
gr24	1272	1472	15,72	0,046	1472	15,72	0,043
gr96	55209	65342	18,35	1,82	65342	18,35	1,81
kroA100	21282	24698	15,70	2	24698	15,70	2,007
kroB150	26130	31611	18,30	6,58	31611	18,30	6,54
tsp10_as	142	200	40,84	0,012	200	40,84	0,012
tsp12_as	203	218	7,30	0,013	218	7,30	0,013
ftv33	1286	1590	23,60	0,1	1590	23,60	0,098
ftv38	1530	1759	14,96	0,14	1759	14,96	0,143
ftv64	1839	2202	19,70	0,59	2202	19,70	0,572
ftv70	1950	2287	17,20	0,75	2287	17,20	0,748
rbg323	1326	1702	28,30	63,14	1702	28,30	69,07

Tabela 5: wyniki wpływu metody rozwiązania w sąsiedztwie

Rysunek 11: wykres zależności czasu od rozmiaru instancji dla róznych metod przeglądu sąsiedztwa

Rysunek 12: wykres zależności błędu od rozmiaru instancji dla róznych metod przeglądu sąsiedztwa

		zdarzen	ia krytyczi	ne - off	zdarze	nia krytycz	ne - on
instancja	koszt optymalny		błąd	_	średni koszt		czas średni
tsp_10	212	213	0,4	0,013	213	0,4	0,012
tsp_12	264	264	0	0,014	264	0	0,013
gr21	2707	3002	10,89	0,032	3002	10,89	0,340,034
gr24	1272	1472	15,72	0,43	1472	15,72	0,045
gr96	55209	65342	18,35	1,83	65342	18,35	1,78
kroA100	21282	24698	15,70	2,03	24698	15,70	2,02
kroB150	26130	31611	18,30	7,71	31611	18,30	8,01
tsp10_as	142	200	40,84	0,013	200	40,84	0,015
tsp12_as	203	218	7,30	0,015	218	7,30	0,013
ftv33	1286	1590	23,60	0,098	1590	23,60	0,1
ftv38	1530	1759	14,96	0,147	1759	14,96	0,14
ftv64	1839	2202	19,70	0,581	2202	19,70	0,58
ftv70	1950	2287	17,20	0,746	2287	17,20	0,75
rbg323 1326		1702	28,30	76,29	1702	28,30	82,01

Tabela 6: wyniki wpływu obsługizdarzeń krytycznych

Rysunek 13: wykres zależności czasu od rozmiaru instancji przy włączonej/wylączonej obsłudze zdarzeń krytycznych

Rysunek 14: wykres zależności błędu od rozmiaru instancji przy włączonej/wylączonej obsłudze zdarzeń krytycznych

			TAK			NIE		
instancja	oszt optymalr	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	
tsp_10	212	213	0,4	0,013	213	0,4	0,014	
tsp_12	264	264	0	0,013	264	0	0,017	
gr21	2707	3002	10,89	0,031	2933	8,34	0,035	
gr24	1272	1472	15,72	0,044	1472	15,72	0,048	
gr96	55209	65342	18,35	1,83	65342	18,35	1,82	
kroA100	21282	24698	15,70	2,04	24698	15,70	2,04	
kroB150	26130	31611	18,30	7,62	31611	18,30	6,59	
tsp10_as	142	200	40,84	0,013	200	40,84	0,013	
tsp12_as	203	218	7,30	0,014	218	7,30	0,015	
ftv33	1286	1590	23,60	0,097	1590	23,60	0,103	
ftv38	1530	1759	14,96	0,146	1759	14,96	0,14	
ftv64	1839	2202	19,70	0,59	2202	19,70	0,586	
ftv70	1950	2287	17,20	0,74	2287	17,20	0,762	
rbg323	1326	1702	28,30	79,21	1702	28,30	63,642	

Tabela 7: wyniki wpływu kryterium aspiracji plus

Rysunek 15: wykres zależności czasu od rozmiaru instancji przy włączonej/wylączonej obsłudze kryterium aspiracji plus

Rysunek 16: wykres zależności błędu od rozmiaru instancji przy włączonej/wylączonej obsłudze kryterium aspiracji plus

Algorytmy gentyczne:

			Pc=70%			Pc=80%			Pc=90%	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	212	0	475	212	0	463	212	0	502
tsp_12	264	264	0	502	264	0	538	264	0	553
gr21	2707	2707	0	764	2707	0	813	2707	0	857
gr24	1272	1348	5,97	885	1342	5,5	915	1272	0	983
gr96	55209	117078	112	6673	111716	102	8490	123875	124	8262
kroA100	21282	39548	85,82	7152	73734	246	9109	50653	138	8925
kroB150	26130	96413	268	15075	86313	230	20549	115847	343	21670
tsp10_as	142	142	0	471	142	0	457	142	0	488
tsp12_as	203	206	1,47	488	206	1,4	511	203	0	547
ftv33	1286	1403	9,09	1307	1377	7,07	1477	1420	10,41	1603
ftv38	1530	1671	9,21	1599	1721	12,48	1771	1672	9,2	1942
ftv64	1839	2972	61	3381	2841	54,4	4146	953	51,8	4644
ftv70	1950	2957	51,64	3918	3076	57,74	4830	3301	69,28	4993
rbg323	1326	3274	146	64702	3494	163	90371	3728	181	97274

Tabela 8: wyniki wpływu prawdopodobieństwa krzyżowania

Rysunek 17: wykres zależności czasu od rozmiaru instancji przy róznych wartościach prawdopodobieństwa krzyżownia

Rysunek 18: wykres zależności błędu od rozmiaru instancji przy przy róznych wartościach prawdopodobieństwa krzyżownia

		Р	m=10%			Pm=30%	5		Pm=50%	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	212	0	470	212	0	477	212	0	472
tsp_12	264	264	0	486	264	0	495	264	0	521
gr21	2707	2707	0	741	2707	0	762	2707	0	758
gr24	1272	1323	4	988	1318	3,61	851	1279	0,5	857
gr96	55209	94212	70,64	6666,72	115965	110	6573	105852	91,72	6631
kroA100	21282	35963	68,98	7135	39123	83	7015	52967	148,88	7081
kroB150	26130	76285	191	15200	86346	230	15268	91732	251	15124
tsp10_as	142	142	0	441	142	0	457	142	0	445
tsp12_as	203	206	1,47	477	203	0	486	206	3	1,47
ftv33	1286	1444	12,28	1282	1453	12,98	1326	1386	7,77	1308
ftv38	1530	1693	10,65	1575	1919	25,42	1576	1759	14,96	1596
ftv64	1839	3403	85	3452	2682	45,84	3572	2591	40,8	3363
ftv70	1950	2835	45	3975	2941	50,82	3926	3057	56,76	3982
rbg323	1326	3386	155	65200	3359	153	64916	3353	152	65086

Tabela 9: wyniki wpływu prawdopodobieństwa mutacji

Rysunek 19: wykres zależności czasu od rozmiaru instancji przy róznych wartościach prawdopodobieństwa mutacji

Rysunek 20: wykres zależności błędu od rozmiaru instancji przy przy róznych wartościach prawdopodobieństwa mutacji

			n=500			n=1000		n=2000		
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	212	0	233	212	0	462	212	0	941
tsp_12	264	264	0	259	264	0	514	264	0	1121
gr21	2707	2707	0	369	2707	0	765	2707	0	1542
gr24	1272	1418	11,47	429	1364	7,2	854	1289	1,33	1739
gr96	55209	114551	107	3403	94334	70,86	6607	99339	79,93	13252
kroA100	21282	49843	134	3598	53539	151	7145	56213	164	14135
kroB150	26130	85858	228	8496	100191	283	22230	75728	189	34375
tsp10_as	142	142	0	218	142	0	448	142	0	893
tsp12_as	203	206	1,47	244	211	8	479	203	0	979
ftv33	1286	1456	13,2	639	1436	11,6	1299	1373	6,76	2624
ftv38	1530	1771	15,75	786	1675	9,47	1568	1610	5,22	3338
ftv64	1839	2998	63	1681	2692	46,38	3401	2416	31,37	7977
ftv70	1950	3140	61	2027	2895	48	3934	2867	47,02	8598
rbg323	1326	3423	158	40183	3632	173	76584	3259	145,77	208973

Tabela 10: wyniki wpływu wielkości populacji

Rysunek 21: wykres zależności czasu od rozmiaru instancji przy róznych wartościach wielkości populacji

Rysunek 22: wykres zależności błędu od rozmiaru instancji przy przy róznych wartościach wielkości populacji

			Turniej			Ruletka	
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	212	0	233	212	0	879
tsp_12	264	264	0	255	264	0	846
gr21	2707	2707	0	376	2915	7,68	972
gr24	1272	1278	0,47	430	1415	11,24	1032
gr96	55209	111667	102	3454	139433	152	3922
kroA100	21282	52923	148	3732	51591	142	4142
kroB150	26130	86440	230	8736	100865	286	8107
tsp10_as	142	142	0	215	142	0	844
tsp12_as	203	203	0	233	206	1,47	869
ftv33	1286	1379	7,23	662	1593	23,8	1284
ftv38	1530	1668	9,01	780	1930	26,14	1395
ftv64	1839	2775	50,89	1703	3663	99,18	2298
ftv70	1950	2961	51,84	2005	3641	876	2588
rbg323	1326	3467	161	40065	3750	182	32824

Tabela 11: wyniki wpływu metody selekcji

Rysunek 23: wykres zależności czasu od rozmiaru instancji przy różnych metodach selekcji

Rysunek 24: wykres zależności błędu od rozmiaru instancji przy przy różnych metodach selekcji

		OX			PMX		
instancja	koszt optymalny	średni koszt	błąd	czas średni	średni koszt	błąd	czas średni
tsp_10	212	212	0	247	212	0	235
tsp_12	264	264	0	268	264	0	257
gr21	2707	2707	0	457	2707	0	448
gr24	1272	1272	0	516	1272	0	505
gr96	55209	163335	195	4206	56847	2,96	4108
kroA100	21282	59085	177	4521	22520	5,81	4431
kroB150	26130	98939	278	9518	26217	0,33	9421
tsp10_as	142	142	0	233	142	0	240
tsp12_as	203	203	0	258	203	0	247
ftv33	1286	1508	17,26	774	1556	20,9	750
ftv38	1530	1744	13.98	953	2230	45,7	930
ftv64	1839	2937	59,7	2116	1960	6,57	2100
ftv70	1950	3752	92,41	2503	2280	16,92	2590
rbg323	1326	3712	179	41752	1698	28,05	40932

Tabela 12: wyniki wpływu metody krzyżowania

Rysunek 25: wykres zależności czasu od rozmiaru instancji przy różnych metodach krzyżowania

Rysunek 26: wykres zależności błędu od rozmiaru instancji przy przy różnych metodach krzyżowania

Nazwa pliku	BF	NN	Random	BFS	DFS	LowestCost
tsp_4_1	0	0,00035	0	0	0	0
tsp_6_1	1	0,00197	0,002	0,005	0,003	0,008
tsp_10	2,932	0,045	1,761	15,683	0,345	0,6
tsp_12	125,215	0,016	247,457	161,732	22,695	50,48
tsp_13	1800	0,02	1800	1800	73,057	165
tsp_14	1800	0,022	1800	1800	269,23	330,43
tsp_101	1800	969,906	1800	1800	1800	1800
tsp6_as	0,001	0,007	0,004	0,004	0,001	0,009
tsp8_as	0,048	0,005	0,068	0,187	0,019	0,427
tsp10_as	3,105	0,007	3,89	13,837	0,149	0,8
tsp12_as	122,87	0,011	255,63	244,486	1,83	5,2
tsp13_as	1800	0,012	1800	1800	2,142	4,06
tsp14_as	1800	0,012	1800	1800	9,87	10,90

Tabela 9: wyniki czasy w sekundach dla algorytmów z projektów 1 i 2

6. Analiza wyników i wnioski

Na podstawie analizy wyników eksperymentów z algorytmami Tabu Search i Algorytmami Genetycznymi w odniesieniu do problemu komiwojażera (TSP), można sformułować następujące wnioski:

Efektywność algorytmu Tabu Search

1. Skuteczność parametrów:

- o **Rozmiar listy tabu:** Zwiększenie listy tabu poprawiło zdolność algorytmu do unikania minimów lokalnych, co szczególnie uwidoczniło się w instancjach średniej wielkości (np. 150 miast), jednak prowadziło do wydłużenia czasu działania w większych problemach.
- Kadencja tabu: Optymalną wartością okazała się kadencja 20% × n, co pozwalało na utrzymanie równowagi między dokładnością a czasem obliczeń.
- Kryterium aspiracji i aspiracja plus: Kryterium aspiracji znacząco zmniejszało błędy wynikowe, umożliwiając akceptowanie rozwiązań znajdujących się na liście tabu, jeśli były wystarczająco dobre. Dodatkowe rozszerzenie przez aspirację plus było szczególnie efektywne dla instancji asymetrycznych i większych problemów.

2. Porównanie z wynikami algorytmów zadań 1 i 2 (Brute Force i Branch and Bound):

- W porównaniu z algorytmem brute force, Tabu Search był zdecydowanie szybszy w instancjach większych niż 50 miast, jednak kosztem wyższego błędu wynikowego.
- Dla małych instancji (n<25) algorytmy brute force oraz podział i ograniczenia były dokładniejsze (0% błędu), natomiast Tabu Search osiągał błędy na poziomie kilku procent.

3. Rodzaj instancji:

Algorytm lepiej radził sobie z instancjami symetrycznymi, w których błędy były niższe i czas działania krótszy w porównaniu do asymetrycznych.

4. Granice możliwości:

 Tabu Search działał efektywnie w instancjach do około 300 wierzchołków, z błędem na poziomie 20%. Dla większych problemów czas działania stawał się nieproporcjonalnie długi.

Efektywność Algorytmów Genetycznych

1. Wpływ parametrów:

- o **Rozmiar populacji:** Zwiększenie populacji do 1000 osobników poprawiło wyniki dla instancji większych niż 100 miast, ale kosztem wydłużenia czasu działania. Dla mniejszych instancji populacja 500 była wystarczająca.
- Krzyżowanie i mutacja: Prawdopodobieństwo krzyżowania na poziomie 90% oraz mutacji na poziomie 10% zapewniło najlepsze wyniki pod względem jakości i różnorodności rozwiązań.
- Metoda selekcji: Selekcja turniejowa dawała lepsze wyniki jakościowe, szczególnie w dużych instancjach, choć była bardziej czasochłonna niż selekcja ruletkowa.

 Krzyżowanie PMX: Było bardziej efektywne w zachowaniu strukturalnych zależności rozwiązań w dużych problemach (n>150), szczególnie w asymetrycznych instancjach.

2. Porównanie z algorytmami zadań 1 i 2:

- Algorytmy genetyczne były znacznie szybsze niż brute force i Branch and Bound w dużych instancjach (n>50), gdzie algorytmy przeglądu zupełnego stają się niepraktyczne.
- o Dla małych instancji (n<25) algorytmy genetyczne były mniej efektywne czasowo i osiągały podobne wyniki do brute force.

3. Rodzaj instancji:

 Algorytmy genetyczne wykazywały większą elastyczność niż Tabu Search w instancjach asymetrycznych, gdzie lepiej radziły sobie z eksploracją bardziej złożonej przestrzeni rozwiązań.

4. Granice możliwości:

 Algorytmy genetyczne skutecznie rozwiązywały instancje do 100 miast, z błędami mieszczącymi się w zadanych granicach.

Porównanie Tabu Search i Algorytmów Genetycznych

1. Czas działania:

- Tabu Search był szybszy w mniejszych instancjach (n≤100), co czyniło go bardziej odpowiednim do szybkiego rozwiązywania problemów średniej wielkości.
- Algorytmy genetyczne lepiej radziły sobie z bardzo dużymi instancjami (n>300), gdzie czas działania Tabu Search gwałtownie wzrastał.

2. Jakość wyników:

Tabu Search osiągał mniejsze błędy dla symetrycznych i mniejszych instancji, ale algorytmy genetyczne były bardziej skuteczne w asymetrycznych i dużych problemach, szczególnie przy optymalnych ustawieniach populacji i mutacji.

3. Zastosowanie w praktyce:

- Tabu Search jest idealny do problemów, w których kluczowa jest szybkość działania przy akceptowalnym poziomie błędu.
- o Algorytmy genetyczne sprawdzają się lepiej w przypadkach, gdzie priorytetem jest dokładność, a czas działania jest mniej istotny.

Podsumowanie i rekomendacje

- 1. **Potwierdzenie hipotez:** Badania potwierdziły, że oba algorytmy są efektywne w rozwiązywaniu problemu TSP, ale ich skuteczność różni się w zależności od wielkości i rodzaju instancji.
- 2. **Optymalizacja:** Zarówno Tabu Search, jak i algorytmy genetyczne mogą być jeszcze bardziej zoptymalizowane przez dostosowanie parametrów do specyfiki instancji. W szczególności Algorytmy genetyczny, które wykazali bardzo mocną czujność na rozmiar instancji. Badania pokazały, że jeden zestaw parametrów już może nie być korzystny do innego większego bądź mniejszego. I zależyć tu może może więcej niż na jednej wartości i jednej nie optymalnej wartości, któregośz etapów postępu algorytmu.

Wyniki badawcze wskazują, że oba algorytmy mogą być efektywnie stosowane w różnych scenariuszach problemu komiwojażera, co czyni je wartościowym narzędziem w rozwiązywaniu złożonych problemów optymalizacyjnych.