Sensors connection guidelines

1) Infrared (IR) rangefinder:

- a. Analogue output (Max output voltage 2.6V);
- b. Must be connected to an ADC.

2) Ultrasonic (US) rangefinder:

- a. Analogue output, i.e. needs an ADC;
- b. Digital output (PWM), i.e. can use a GPIO.

Table 1: Expansion connector pinout (wire side view)

Pins/wires description

#	Pin/wire name	Function/features	Use for the project	Colour of 1-pin connector
1.	PC4	GPIO, or ADC4, or SDA	IMU (SDA line).	Blue
2.	PC3	GPIO or ADC3	Connect an analogue sensor.	
3.	PD4	GPIO , or XCK, or T0	Connect a digital signal and work with it in either non-interrupt mode (polling) or pinchange interrupt mode.	
4.	PC5	GPIO, or ADC5, or SCL	IMU (SCL line).	Green
5.	PD3	GPIO, or OC2B, or INT1	Connect a digital signal and work with it in either non-interrupt mode (polling) or hardware (INT1) interrupt mode.	
6.	PD ₂	GPIO or INTO	Connect a digital signal and work with it in either non-interrupt mode (polling) or hardware (INTO) interrupt mode.	
7.	+5V	Poly-fuse protected +5V power	Power the sensors, 3.3V voltage regulator, etc.	Red
8.	GND	System ground	Must be connected to all peripherals.	Black

Figure 1: Sensors wiring

Programming instructions

- 1) Copy "init_290.c" and "init_290.h" to your working directory.
- 2) Add "#include "init_290.h"" at the beginning of your code.
- 3) In the "setup()" section:
- 4) Initialise the GPIO:
 gpio_init();
- 5) Initialise Timer1 to generate 20ms interrupts:

```
timer1_50Hz_init(IRQ_enable);
```

Now, TCNT1 will increment every 20ms/2500=8us. You can use it to measure the width of the US sensor response.

If you wish to use Timer1 as a 20ms increment scheduler, you need to **enable the interrupt** and include in your code the ISR, something like:

```
ISR(TIMER1_CAPT_vect){ //system tick: 50Hz, 20ms
time++; //aka 20ms ticks counter
delay_ms+=20; // variable that tracks real time in ms. It could be reset independently from
"time"
flags.sample=1; // e.g. can be used in main() to start IMU sampling every 20mS
}
```

6) Initialise the ADC:

}

```
adc_init (channel_number, enable_IRQ);
As only ADC3 is available, use "adc_init (3,0);"
```

If you wish to use the interrupt, you have to define the ISR. The code below averages ADS_sample_max samples and filters the values that are below the threshould: ISR (ADC_vect){