Предел функции

Определение (no Kowu). Пусть функция f(x) определена на множестве $X \subset \mathbb{R}$, a — предельная точка множества X. Говорят, что f(x) имеет предел при x, стремящемся к a, если для всякого $\varepsilon > 0$ найдется такое число $\delta > 0$, что для любого $x \in X$, лежащего в проколотой δ -окрестности точки a, f(x) лежит в ε -окрестности точки A.

Обозначения: $A = \lim_{x \to a} f(x)$ или $f(x) \to A$ при $x \to a$.

Задача 32.1. Может ли у функции быть два предела в одной точке?

Задача 32.2. Найдите пределы (с явным отысканием δ по ε): (a) $\lim_{x\to 5} 3x$; (б) $\lim_{x\to 3} \sqrt{x-2}$;

(в) $\lim_{x\to 1}\{x\}$; (г) $\lim_{x\to 0}\frac{\sqrt{1+x}-1}{x}$; (д) $\lim_{x\to 1}\frac{x^n-1}{x-1}$; (е) $\lim_{x\to 0}x\sin\frac{1}{x}$. Задача 32.3. Пусть существуют пределы $A=\lim_{x\to a}f(x)$ и $A=\lim_{x\to a}g(x)$. Сформулируйте и

докажите теоремы о пределах $x \to a$ функций (a) cf(x); (б) f(x) + g(x); (в) $f(x) \cdot g(x)$; (r) f(x)/g(x).

Задача 32.4. Найдите $\lim_{x\to\infty}\frac{a_nx^n+\ldots+a_1x+a_0}{b_mx^m+\ldots+b_1x+b_0}$. **Задача 32.5.** Сформулируйте и докажите аналог теоремы о двух милиционерах для функции. Задача 32.6 (Предел сложной функции). (a) Пусть функции f и g определены на \mathbb{R} , причем $\lim_{x\to a} f(x) = b$ и $\lim_{y\to b} g(y) = c$. Пусть также $\forall x \neq a$ верно, что $f(x) \neq b$. (б) Докажите, что $\lim_{x\to a} g(f(x)) = c$. Зачем нужно второе условие?

Задача 32.7(Первый замечательный предел). (a) Докажите, что $\sin x < x < \tan x$ при $x \in (0; \frac{\pi}{2})$ (6) Докажите, что $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Задача 32.8(Второй замечательный предел). Докажите, что $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e.$

Определение (по Гейне). Пусть функция f(x) определена на множестве $X \subset \mathbb{R}$. Пусть действительное число (принадлежащее M или нет). Говорят, что f(x) имеет предел A при x, стремящемся к a, если для каждой сходящейся к a последовательности $\{x_n\}$, все элементы которой отличны от a и принадлежат X, справедливо равенство $\lim n \to \infty f(x_n) = A$.

Задача 32.9. Докажите эквивалентность определений по Коши и по Гейне.

Задача 32.10. Приведите пример функции, определенной на \mathbb{R} , не равной тождественно нулю ни на каком интервале, но имеющей в каждой точке нулевой предел.

Задача 32.11. (a) Приведите пример функции, определенной на Q, имеющей в каждой действительной точке бесконечный предел. (б) Существует ли функция, определенная на $\mathbb{R},$ имеющая в каждой действительной точке бесконечный предел?