Homework 3: IERG 6300

Due date: 30 September, 2019.

Exercises

1. Let X be integrable. Define variance of X, var(X), as

$$\int X^2 dP - \left(\int X dP\right)^2.$$

Show that $var(X) \geq 0$. Further if $E(X) = \int XdP = \mu_X$, then Var(X) = 0 if and only if $P(X = \mu_X) = 1$.

- 2. If $P(X \in [a, b]) = 1$, then $var(X) \le \frac{(b-a)^2}{4}$.
- 3. Show that for any $X \ge 0$ (no other assumptions on existence of moments) both
 - (a) $\lim_{y \to \infty} y E(X^{-1} 1_{X>y}) = 0$,
 - (b) $\lim_{y\downarrow 0} y E(X^{-1}1_{X>y}) = 0$
- 4. Consider the following:

Definition 1. A collection of random variables $\{X_{\alpha}\}$ is called uniformly integrable (U-I) if

$$\lim_{M \to \infty} \sup_{\alpha} E(|X_{\alpha}| 1_{|X_{\alpha}| > M}) = 0.$$

- (a) Construct a sequence of random variables such that $\sup_n \mathbb{E}(|X_n|) < \infty$ but $\{X_n\}$ is not U-I.
- (b) If $\{X_n\}$ is a U-I sequence and $\{Y_n\}$ is another U-I sequence, then $\{X_n + Y_n\}$ is a U-I sequence.
- 5. Show that if for some $r \in \mathbb{N}$, $\mathrm{E}(|X|^r) < \infty$, then the characteristic function $\phi(t)$ is r-times continuously differentiable. If r is even, show that the converse is true (Hint: use Fatou).