Lab - Building a Switch and Router Network

Notes

- 1. By no means are they correct nor accurate. They are only used as reference & comparison tool.
- 2. Highly similar to 6.5.1.2 Lab Building a Switch and Router Network Answers
- 3. First step: Options > Preferences > Always Show Port Labels in Logical Workspace
- 4. Exam Notes:
 - 1. Sometimes, the IP Address is empty in table will be EMPTY. However, the question will tell you how to figure it out.
 - 1. Eg: go to the subnet, use the third usable address to link and so on.
 - 2. Not more than 3 columns blank
 - 2. Don't configure password first, put it at the last.
 - 1. If you forgot, if you lucky, power cycle the modem, else, you have to reset the entire thing. Extremely time-wasting. Better to complete everything except passwords first and get near max marks.
 - 2. If question ask router, then router. If question ask router and switch, then router and switch.

Q&A

Topology

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	G0/0 (IPv4)	192.168.0.1	255.255.255.0	N/A
	G0/1 (IPv4)	192.168.1.1	255.255.255.0	N/A
	G0/1 (IPv6) Link Local	2001:CAFE:1:1::4 FE80::1	/64 /64	N/A N/A
S1	VLAN 1	192.168.1.5	255.255.255.0	192.168.1.1
PC-A	NIC (IPv4)	192.168.1.3	255.255.255.0	192.168.1.1
	NIC (IPv6)	2001:CAFE:1:1::5	/64	
РС-В	NIC (IPv4)	192.168.0.3	255.255.255.0	192.168.0.1

Step 1: Configure the router.

Note: Things inside [here] are optional. Might have shorter ones but I don't feel like testing them. **Always cop[y] ru[**nning-config**] st[**artup-config**] after** you're successful in a step.

- a. Console into the router and enable privileged EXEC mode.
 - 1) Click Router2
 - 2) Go into CLI tab, type 'en[able]'
- b. Enter configuration mode.
 - 1) Conf[igure] t[erminal]
- c. Assign a device name to the router.
 - 1) h[ost] Router2
 - 2) Honestly, no right or wrong answer, just put whatever you want.
- d. Disable DNS lookup to prevent the router from attempting to translate incorrectly entered commands as though they were host names.
 - 1) Must be done in `conf t`
 - 2) `no ip domain-lookup`
 - 3) If successful: `sh[ow] r[un] | i[nclude] dom[ain-lookup]` should show "no ip domain lookup"
- e. Assign **claS\$** as the privileged EXEC encrypted password.
 - 1) Conf t
 - 2) Ena[ble] s[ecret] claS\$
- f. Assign CISCO123 as the console password and enable login.
 - 1) Enable
 - 2) Configure terminal
 - 3) Line console 0
 - 4) Password CISCO123
 - 5) login
- g. Assign CISCO123 as the VTY password and enable login.
 - 1) Enable
 - 2) Conf term
 - 3) Line vty 0 4 (get figure from `show running-config`)
 - 4) Password CISCO123
 - 5) login
- h. Encrypt the clear text passwords.
 - Conf[ig] t[erminal]
 - 2) Se[rvice] p[assword-encryption]
- i. Create a banner that warns anyone accessing the device that unauthorized access is prohibited.
 - 1) config t
 - 2) banner motd "This is a secure system. Authorized Access Only!"
 - () (Note: or similar texts)

- j. Configure and activate both interfaces on the router.
 - 1) Show ip int brief
 - 2) En[able] (Note: can do before show and after show, doesn't matter)
 - 3) Conf t

4) For interface GigabitEthernet0/0

- () Inter g0/0
- () Ip ad[dress] 192.168.0.1 255.255.255.0
- () No sh
- () Exit

5) For interface GigabitEthernet0/1

- () Inter g0/1
- () Ip ad[dress] 192.168.1.1 255.255.255.0
- () No sh
- () exit

6) IF SUCCESS:

- () Show ip int brief should show gigabitEthernet0/0 and gigabitEthernet0/1 as up up. You should see two wires with green triangles
- k. Configure an interface description for each interface indicating which device is connected to it.
 - 1) Gigabit 0/0
 - () En[able]
 - () Conf[igure] t[erminal]
 - () Int[erface] g[igabitEthernet]0/0
 - () Desc Link Router2 ⇔ PC1 (Note: or whatever description you want, just don't mislead people)
 - () Exit

2) Gigabit0/1

- () En[able]
- () Conf[igure] t[erminal]
- () Int[erface] g[igabitEthernet]0/0
- () Desc Link Router2 \Leftrightarrow S1 (Note: or whatever description you want, just don't mislead people)
- () Exit

3) If correct

- () You can see with `show int g0/0' and `show int g0/1'
- I. Save the running configuration to the startup configuration file.
 - 1) You should be doing this repeatedly, basically `cop ru st`
- m. Set the clock on the router.
 - 1) En
 - 2) Clock set hh:mm:ss dd MONTH YYYY

3) To check: Use 'show clock'

Note: Use the question mark (?) to help with the correct sequence of parameters needed to execute this command.

n. Print screen your results as shown below:

From PC-B TO:	PING SUCCESSFUL ?
PC-B (IPv4) To R1	yes
PC-B (IPv4) To S1	yes
PC-B (IPv4) To PC-A	yes
R1 (IPv6) To PC-A	yes

^{**} your answer should be all YES. Troubleshoot your configuration commands if any of the answer is "NO".

Note: This question is designed to produce NO in a lot of cases. If you didn't notice, aside from the G0/0 and G0/1, all the IP are NOT properly configured. So, take a breath, and lets get started. Oh and go section-by-section, each section step is "somewhat" dependent on the last section setup. TIP: DO NOT assume that on your first 'ping', if 'ping' timed out for first 1-3 packets it will time out ALL.

1. [PC-B (IPv4) To R1] Configure PC-B

a. Desktop → IP Configuration

IP Address	192.168.0.3
Subnet Mask	255.255.255.0
Default Gateway	192.168.0.1
DNS Server	0.0.0.0

c. Desktop → Command Prompt

```
C:\>ping 192.168.0.1

Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time=lms TTL=255
Reply from 192.168.0.1: bytes=32 time<lms TTL=255
Reply from 192.168.0.1: bytes=32 time=lms TTL=255
Reply from 192.168.0.1: bytes=32 time<lms TTL=255
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

2. PC-B (IPv4) To S1 Configure S1

a. $S1 \rightarrow CLI$

b.

d.

- i. `en`
- ii. `conf t`

```
iii. `ip default-gateway 192.168.1.1`
iv. `inter vlan1`
v. `ip addr 192.168.1.5 255.255.255.0`
vi. `no sh`
vii. `exi`
viii. `cop st ru`
```

b. [In PC-B] Desktop → Command Prompt

```
Pinging 192.168.1.5 with 32 bytes of data:

Request timed out.

Request timed out.

Reply from 192.168.1.5: bytes=32 time<1ms TTL=254

Reply from 192.168.1.5: bytes=32 time<1ms TTL=254

Ping statistics for 192.168.1.5:

Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

3. PC-B (IPv4) To PC-A

- a. If you didn't noticed, the link between PC-B and S1 is still red, head into S1's CLI, note, switches DO NOT need their IP Addresses configured (in this case) as long as the VLAN is configured correctly
 - i. En
 - ii. Conf t
 - iii. Inter f0/6
 - iv. No sh
- b. Configure PC-A IP Address

```
IP Address
                                            192.168.1.3
    Subnet Mask
                                            255.255.255.0
    Default Gateway
                                            192.168.1.1
    DNS Server
                                            0.0.0.0
C:\>ping 192.168.1.3
Pinging 192.168.1.3 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.3: bytes=32 time<1ms TTL=127
Reply from 192.168.1.3: bytes=32 time<1ms TTL=127
Reply from 192.168.1.3: bytes=32 time=7ms TTL=127
Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss)
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 7ms, Average = 2ms
```

4. R1 (IPv6) To PC-A

C.

- a. Setup PC-A IPv6
 - i. Go into PC-A → Desktop → IP Configuration
 - ii. IPv6 Address: 2001:CAFE:1:1::5/64
 - iii. Link Local Address: FE80::1
- b. Setup Router IPv6
 - i. En
 - ii. Conf t
 - iii. Inter g0/1
 - iv. Ipv6 addr 2001:CAFE:1:1::4/64
 - v. lpv6 addr FE80::1 link-local
 - vi. exit
 - vii. cop ru st
- c. Pinging
 - i. Go into R1 → CLI
 - ii. Ping [ipv6] 2001:CAFE:1:1::5

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2001:CAFE:1:1::5, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

III.
```