COMP229: Introduction to Data Science Lecture 6: areas and volumes

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

Use your card with the scanner for registration

More invariants of shapes

In addition to distances, which aren't always complete, other useful geometric invariants (preserved under isometries) are areas, volumes.

Given 3 points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) in \mathbb{R}^2 , write down the area of the triangle on these points.

Determinant is the signed area

Claim 6.1. The signed area A of a triangle with vertices (x_1, y_1) , (x_2, y_2) , (x_3, y_3) in \mathbb{R}^2 ordered clockwisely equals $\frac{1}{2} \det \begin{pmatrix} x_3 - x_1 & x_2 - x_1 \\ y_3 - y_1 & y_2 - y_1 \end{pmatrix}$.

Let
$$\vec{u} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} x_3 - x_1 \\ y_3 - y_1 \end{pmatrix}$ be the vectors along two sides of the triangle. Claim 6.1 says that the area is $A = \frac{1}{2} \det \begin{pmatrix} v_x & u_x \\ v_y & u_y \end{pmatrix}$, where $\vec{v} = (v_x, v_y)$ is rotated to $\vec{u} = (u_x, u_y)$ through A .

Basic definition of an area

Definition 6.2. The *length* of a segment $[a, b] \subset \mathbb{R}$ is |a - b|. The *area* of a rectangle $[a, b] \times [c, d]$ in the plane \mathbb{R}^2 is the product $|a - b| \cdot |c - d|$.

The areas of all other shapes in \mathbb{R}^2 can be deduced from Definition 6.2, e.g. approximating by small rectangles, which is often non-trivial.

Claim 6.3. The area A of a triangle is $\frac{bh}{2}$, where b is one side (base), h is the height to this base.

Outline. A is a half of the rectangle area $b \cdot h$. \Box

The area under a line segment

Claim 6.4. The area between the vector segment connecting points $(x_1, y_1), (x_2, y_2)$ and the x-axis is $\frac{y_1 + y_2}{2}(x_2 - x_1)$.

Proof. The area of the trapezium on the vertices $(x_1, 0), (x_2, 0), (x_2, y_2), (x_1, y_1)$ is the height $x_2 - x_1$ (assuming $x_1 < x_2$) times the average of the parallel sides $\frac{y_1 + y_2}{2}$ (assuming $y_1, y_2 > 0$).

The formula makes sense if $x_1 > x_2$ or $y_1, y_2 < 0$ (negative areas under left-oriented vectors).

A triangle is a sum of three trapezia

Claim 6.5. The area of the triangle on the points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ ordered clockwisely is the sum of the signed areas between the *x*-axis and $(x_1, y_1), (x_2, y_2), (x_2, y_2), (x_3, y_3), (x_3, y_3), (x_1, y_1)$.

Outline. In the picture the first two areas are positive, the last is negative, triangle = two trapezia minus one trapezium under $(x_3, y_3), (x_1, y_1)$. All other cases are very similar.

Proof of the triangle area

Apply Claims 6.4 and 6.5: the doubled sum of the areas of the (x_1,y_1) \vec{v} (x_3,y_3) trapezia is (please expand all brackets, collect similar terms)

$$2A = (y_1 + y_2)(x_2 - x_1) + (y_2 + y_3)(x_3 - x_2) + (y_3 + y_1)(x_1 - x_3) = y_1x_2 - y_2x_1 + y_2x_3 - y_3x_2 + y_3x_1 - y_1x_3$$

$$= (x_3 - x_1)(y_2 - y_1) - (x_2 - x_1)(y_3 - y_1) =$$

$$\det \begin{pmatrix} x_3 - x_1 & x_2 - x_1 \\ y_3 - y_1 & y_2 - y_1 \end{pmatrix} = \det \begin{pmatrix} v_x & u_x \\ v_y & u_y \end{pmatrix}.$$

Gauss formula for any polygon

Claim 6.6. The area of the polygon on the points $(x_1, y_1), \ldots, (x_n, y_n)$ ordered clockwisely equals $\sum_{i=1}^{n} \frac{y_i + y_{i+1}}{2} (x_{i+1} - x_i), \text{ where } (x_{n+1}, y_{n+1}) = (x_1, y_1).$

Outline. Similarly to Claim 6.5 the area is obtained by adding the signed areas of the trapezia between the x-axis and vectors $(x_i, y_i), (x_{i+1}, y_{i+1}), \dots$

The volume of shapes in \mathbb{R}^m

Definition 6.7. The *volume* of a rectangular box $\prod_{i=1}^{m} [a_i, b_i] \subset \mathbb{R}^m \text{ is the product } \prod_{i=1}^{m} (b_i - a_i).$

Claim 6.8. In \mathbb{R}^3 the signed volume of any parallelepiped (non-rectangular box) spanned by

3 vectors
$$\vec{u}$$
, \vec{v} , \vec{w} in \mathbb{R}^3 is $\det \begin{pmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{pmatrix}$,

where u_x , u_y , u_z are the x, y, z-coordinates of \vec{u} .

Can you now state Pythagoras' theorem?

Necessity and sufficiency

Pythagoras' theorem illustrates the key logical concepts of *necessary* and *sufficient* conditions.

Direct claim: any right-angled triangle with sides $a \le b < c$ satisfies $a^2 + b^2 = c^2$ (it's *necessary*).

Converse claim: any triangle whose sides satisfy $a^2 + b^2 = c^2$ (it's *sufficient*) is right-angled.

Claim 6.9. A triangle with sides $a \le b < c$ is right-angled *if and only if* $a^2 + b^2 = c^2$.

Hint. Prove the converse using the direct one.

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Find the area of the triangle on the vertices (1,1), (3,2), (2,3) in \mathbb{R}^2 .

Answer to the quiz and summary

Answer. By the determinant formula the area is $\frac{1}{2}\det\begin{pmatrix}3-1 & 2-1\\2-1 & 3-1\end{pmatrix}=\frac{1}{2}\det\begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}=\frac{3}{2}.$

- The area (take the modulus if you struggle with signs) of the parallelogram spanned by vectors \vec{u} , \vec{v} (clockwisely) is $\det\begin{pmatrix} v_x & u_x \\ v_y & u_y \end{pmatrix}$.
- The signed area of a polygon on vertices (x_i, y_i) , i = 1, ..., n is $\sum_{i=1}^{n} \frac{y_i + y_{i+1}}{2} (x_{i+1} x_i)$, where $(x_{n+1}, y_{n+1}) = (x_1, y_1)$.