1 *PQR* is a right-angled triangle.

Work out the size of the angle marked x. Give your answer correct to 1 decimal place.

(Total for Question 1 is 2 marks)

2 Here is a right-angled triangle.

Diagram **NOT** accurately drawn

Work out the length of AC.

Give your answer correct to 1 decimal place.

cm

(Total for Question 2 is 3 marks)

3

Diagram **NOT** accurately drawn

ABC is a right-angled triangle.

$$AC = 6$$
 cm

$$AB = 13$$
 cm

(a) Work out the length of *BC*.

Give your answer correct to 3 significant figures.

Diagram **NOT** accurately drawn

PQR is a right-angled triangle.

$$PR = 17 \text{ cm}$$

$$PQ = 25 \text{ cm}$$

(b) Work out the size of angle *RPQ*. Give your answer correct to 1 decimal place.

4 ABC is a right-angled triangle.

(a) Work out the length of *BC*. Give your answer correct to 1 decimal place.

PQR is a right-angled triangle.

(b) Work out the size of the angle marked *x*. Give your answer correct to 1 decimal place.

0

5

In triangle *PQR*,

S is the point on PR such that angle $RSQ = 90^{\circ}$

 $RQ = 14 \,\mathrm{cm}$

 $RS = 10 \,\mathrm{cm}$

 $SP = 5 \,\mathrm{cm}$

Work out the length of *PQ*.

6 ABC is a right-angled triangle.

(a) Work out the size of angle *ABC*. Give your answer correct to 1 decimal place.

(2)	

The length of the side AB is reduced by 1 cm.

The length of the side BC is still 7 cm. Angle ACB is still 90°

(b) Will the value of cos *ABC* increase or decrease? You must give a reason for your answer.

(1)

(Total for Question 6 is 3 marks)

M, N and P are points on a circle, centre O. MON is a diameter of the circle.

$$MP = 3.5 \,\mathrm{cm}$$

$$PN = 9.7 \,\mathrm{cm}$$

Angle
$$MPN = 90^{\circ}$$

Work out the circumference of the circle. Give your answer correct to 3 significant figures.

.....cr

8 The diagram shows a shape made from a right-angled triangle and a semicircle.

AC is the diameter of the semicircle.

$$BA = BC = 6 \,\mathrm{cm}$$

Angle $ABC = 90^{\circ}$

Work out the area of the shape.

Give your answer correct to 1 decimal place.

cm²

(Total for Question 8 is 5 marks)

9 A, B and C are points on a circle with centre O.

AOC is a diameter of the circle.

$$AB = 8 \text{ cm}$$
 $BC = 15 \text{ cm}$

Angle
$$ABC = 90^{\circ}$$

Work out the total area of the regions shown shaded in the diagram. Give your answer correct to 3 significant figures.

......em²

10 The diagram shows two hot air balloons.
A is a point on the base of one of the balloons and B is a point on the base of the other balloon.

The distance between A and B is 500 metres. The angle of depression of B from A is 23°

Calculate the vertical height of *A* above *B*. Give your answer correct to one decimal place.

metres

(Total for Question 10 is 3 marks)

11 ABC is a right-angled triangle.

$$AC = 14 \text{ cm}.$$

Angle $C = 90^{\circ}$

size of angle B: size of angle A = 3:2

Work out the length of *AB*.

Give your answer correct to 3 significant figures.

.....cn

(Total for Question 11 is 4 marks)

12 The diagram shows two vertical phone masts, AB and CD, on horizontal ground.

$$AB = 6.2 \,\mathrm{m}$$
 $AC = 244 \,\mathrm{m}$ $CD = 30.7 \,\mathrm{m}$

Work out the size of the angle of depression of B from D Give your answer correct to one decimal place.

.....

(Total for Question 12 is 3 marks)

13 The diagram shows a vertical cliff with a vertical radio mast on top of the cliff and a buoy in the sea.

The height of the cliff is 100 metres.

The buoy is at the point B that is d metres from the base of the cliff.

The angle of elevation from B to the top of the cliff is 20°

(a) Calculate the value of *d*. Give your answer correct to 3 significant figures.

<i>d</i> =	
	(3)

The point A at the top of the radio mast is vertically above the top of the cliff. The angle of elevation from B to A is 25°

(b) Calculate the height of the radio mast. Give your answer correct to 3 significant figures. **14** Here is isosceles triangle *ABC*.

D is the midpoint of AC and DB = 16 cm.

Angle $DAB = 65^{\circ}$

Work out the perimeter of triangle *ABC*. Give your answer correct to one decimal place.

15 *ABCD* is a trapezium.

Diagram **NOT** accurately drawn

$$AD = 10 \text{ cm}$$

 $AB = 9 \text{ cm}$
 $DC = 3 \text{ cm}$
Angle $ABC = \text{angle } BCD = 90^{\circ}$

Calculate the length of AC.

Give your answer correct to 3 significant figures.

..... cn

(Total for Question 15 is 5 marks)

16 Here is a right-angled triangle.

The shaded shape below is made from two of these triangles.

Work out the perimeter of the shaded shape. Give your answer correct to 3 significant figures.

..... mm

17 The diagram shows triangle ABP inside the regular hexagon ABCDEF

 $AB = 5 \,\mathrm{cm}$

BP = 2 cm

Angle $ABP = 90^{\circ}$

Work out the size of angle *PAF*

Give your answer correct to 3 significant figures.

(

18 Here is triangle *ABD*.

Diagram **NOT** accurately drawn

The point C lies on BD.

$$AD = 13 \,\mathrm{cm}$$

$$BC = 8 \,\mathrm{cm}$$

angle
$$ADB = 90^{\circ}$$

angle
$$CAD = 20^{\circ}$$

Calculate the size of angle BAC.

Give your answer correct to 1 decimal place.

19 The diagram shows four congruent right-angled triangles *ABJ*, *BCI*, *CDH* and *DEG*. The diagram also shows the straight line *ABCDEF*.

$$AJ = 15 \text{ cm}$$

Angle $BAJ = 35^{\circ}$

$$AF = 80 \,\mathrm{cm}$$

Work out the length of EF.

Give your answer correct to 3 significant figures.

..... cm

(Total for Question 19 is 5 marks)

20 The diagram shows a quadrilateral *ABCD*.

$$AB = 16$$
 cm.

$$AD = 12 \text{ cm}.$$

Angle
$$BCD = 40^{\circ}$$
.

Angle
$$ADB$$
 = angle CBD = 90°.

Calculate the length of CD.

Give your answer correct to 3 significant figures.

.....cm

21 *ABC* is an isosceles triangle.

Diagram **NOT** accurately drawn

Work out the area of the triangle.

Give your answer correct to 3 significant figures.

..... cm²

(Total for Question 21 is 4 marks)

22 ABC and ACD are right-angled triangles.

$$DC = 8 \,\mathrm{cm}$$

Angle $ADC = 45^{\circ}$

Angle $ABC = 20^{\circ}$

Work out the length of AB.

Give your answer correct to 3 significant figures.

..... cm

23 The diagram shows triangle ABC.

ADC and DEB are straight lines.

$$AD = 4.4 \,\mathrm{cm}$$

$$BC = 8.6 \,\mathrm{cm}$$

E is the midpoint of DB.

Angle
$$CDB = 90^{\circ}$$

Angle
$$DCB = 40^{\circ}$$

Work out the size of angle *EAD*.

Give your answer correct to 1 decimal place.

You must show all your working.

.....

24 Here is a parallelogram.

Diagram **NOT** accurately drawn

DC = 7 cm CB = 5 cmAngle ABC is 40°

Work out the area of the parallelogram. Give your answer correct to 1 decimal place.

 	cm

(Total for Question 24 is 3 marks)

25 *ABCD* is a trapezium.

Work out the size of angle x.

Give your answer correct to 1 decimal place.

.....

(Total for Question 25 is 4 marks)

26 A zip wire is shown as the dashed line *AC* in the diagram.

The zip wire is supported by two vertical posts AB and CD standing on horizontal ground.

$$CD = 2.6 \,\mathrm{m}$$
 $BD = 12 \,\mathrm{m}$

The zip wire makes an angle x with the horizontal, as shown in the diagram. The design of the zip wire requires the angle x to be at least 5°

Work out the least possible height of the post AB Give your answer correct to 3 significant figures.

.....

27 In the diagram, ABC is a right-angled triangle and DEF is a semicircular arc.

In triangle ABC

$$BC = 24 \,\mathrm{cm}$$

angle
$$ABC = 90^{\circ}$$

angle
$$BCA = 30^{\circ}$$

The points D and F lie on AC so that DF is the diameter of the semicircular arc DEF The radius of the semicircular arc is 3 cm.

Work out the length of AFEDC

Give your answer correct to 2 significant figures.

cm
(T) . 10 O
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)
(Total for Question 27 is 5 marks)

28 The diagram shows a right-angled triangle.

Five of these triangles are put together to make a shape.

Diagram **NOT** accurately drawn

ABCD is a rectangle. CDE is a straight line.

AB = 12 cmAngle $ACB = 60^{\circ}$ Angle $EAC = 90^{\circ}$

Calculate the length of *CE*. You must show all your working.

..... cr

(Total for Question 29 is 4 marks)

30 The diagram shows trapezium *ABCD* in which *BC* and *AD* are parallel.

The trapezium has exactly one line of symmetry.

$$BC = 8.4 \,\mathrm{cm}$$

$$AD = 17.6 \, \text{cm}$$

The trapezium has area 179.4 cm²

Work out the size of angle ABC.

Give your answer correct to 1 decimal place.

31 A right-angled triangle is formed by the diameters of three semicircular regions, A, B and C as shown in the diagram.

Show that

area of region A = area of region B + area of region C

(Total for Question 31 is 3 marks)