

INF 1010 Estruturas de Dados Avançadas

Tabelas de Dispersão (*Hash tables*)

tabelas de dispersão

Uma tabela de dispersão/espalhamento (hash table) é um método muito rápido de se encontrar registros.

A busca é feita em uma tabela indexada

tabelas de dispersão - objetivo

acesso rápido (O(1)) a um elemento, dada sua chave

tabelas de dispersão - características

Chaves podem ser muito grandes e não servem como índice de vetor

```
ex.: matrícula de alunos da PUC (turmas de até 50 alunos; números de matrícula entre 0000001 a 9999999) ex.: dicionário com o nome das funções utilizadas em um programa
```

Como resolver

```
criar uma função de dispersão h que,
a partir de uma chave muito grande x,
gera uma chave menor h(x),
que pode ser utilizada como índice em um vetor
```

tabelas de dispersão

funções de dispersão - exemplo

N é o conjunto de todas as cadeias alfabéticas

M é um inteiro entre 65 e 90

h é o código ASCII do primeiro caractere da cadeia

$$h('AMORA') = 65$$

$$h('ZEBRA') = 90$$

Essa é uma boa função de dispersão?

funções de dispersão - discussão

Idealmente, para $x \neq y$, $h(x) \neq h(y)$ (h é função injetiva)

Quando isto é possível?

 $|N| \leq |M|$

Mas, em geral, |N| >> |M|

tabelas de dispersão - problemas

Podem ocorrer colisões

se a função não for injetiva, ou seja, se, para duas chaves $x \neq y$, h(x) = h(y)

- → devemos evitar colisões
- → devemos tratar colisões

funções de dispersão - discussão

Considere o conjunto S de nomes dos alunos deste curso:

|S| < 100

O domínio de h é o conjunto de todas as cadeias alfabéticas (de até 40 caracteres)

Qual seria uma boa função de dispersão para esse domínio?

funções de dispersão > características desejáveis

produzir poucas colisões

- depende de se conhecer algo sobre a distribuição das chaves sendo acessadas
- ex.: se as chaves começam sempre por 'A' ou 'B', usar o primeiro caractere das chaves vai levar a muitas colisões

ser fácil de computar

tipicamente, conter poucas operações aritméticas

ser uniforme

 idealmente, o número máximo de chaves mapeadas num mesmo índice deve ser |N|/|M|

funções de dispersão > método da divisão

Assumindo $N = \{0 ... n - 1\}$ e $M = \{0 ... m - 1\}$, a função de dispersão é dada por

 $h(x) = f(x) \mod m$

Qual deve ser o valor de m?

não deve ser uma potência de 2

se $m = 2^k$, h(x) = k bits menos significativos de x

não deve ser um número par

se m é par, então h(x) é par $\Leftrightarrow x$ é par

na prática, bons resultados são obtidos com:

m = número primo não próximo a uma potência de 2

m = número sem divisores primos menores que 20

funções de dispersão > método da divisão (cont.)

Não é bom que chaves sucessivas sejam mapeadas em índices sucessivos. Por isso, comumente se multiplica a chave por uma constante k antes de se fazer a divisão (m e k devem ser primos entre si):

```
h(x) = (k \cdot f(x)) \mod m
```

Exemplo:

funções de dispersão > método da multiplicação

Assume-se $m = 2^k$.

Multiplica-se a chave por ela mesma ou por alguma constante c.

Se o resultado cabe numa palavra com b bits, toma-se os k bits do meio da palavra, descartando os (b - k)/2 bits mais e menos significativos

$$h(x) = (x^2 \text{ div } 2^{(b-k)/2}) \text{ mod } 2^k$$

ou
 $h(x) = ((x \cdot c) \text{ div } 2^{(b-k)/2}) \text{ mod } 2^k$

funções de dispersão > método da multiplicação

Exemplos:

```
h(x) = (x^2 \text{ div } 2^{(b-k)/2}) \text{ mod } 2^k
```

```
b=8,k=2: h(1001_b) = (1001_b^2 \text{ div } 2^{(8-2)/2}) \text{ mod } 2^2 = (01010001_b/2^3) \text{ mod } 4 = 01010_b \text{ mod } 4 = 2
```

b=8,k=2:
$$h(11111_b) = (11111_b^2 \text{ div } 2^{(4-2)/2}) \text{ mod } 2^2 = (111000001_b/2^3) \text{ mod } 4 = 11100_b \text{ mod } 4 = 0$$

$$h(x) = ((x \cdot c) \text{ div } 2^{(b-k)/2}) \text{ mod } 2^k$$

b=6,k=4,c=3: h(111_b) = (3•111_b div
$$2^{(6-4)/2}$$
) mod 2^4 = $(010101_b/2^1)$ mod $16 = 01010_b$ mod $16 = 10$

B=6,k=4:
$$h(10101_b) = (3 \cdot 10101_b \text{ div } 2^{(6-4)/2}) \text{ mod } 2^4$$

= $(111111_b/2^1) \text{ mod } 16 = 11111_b \text{ mod } 16 = 15$

funções de dispersão > método da dobra

Suponha que a chave seja dada por uma seqüência de dígitos escritos numa folha de papel. O método consiste em dobrar sucessivamente a folha de papel após o j-ésimo dígito, somando os dígitos que se superpõem (sem fazer o "vai um")

funções de dispersão > método da dobra (variação)

A dobra pode ser feita de k em k bits, ou seja, considerando os "dígitos" 0 e 1 da representação binária do número. O resultado é um índice entre 0 e $2^k - 1$

Em vez de somar os bits, utiliza-se uma operação de ou-exclusivo "\textitus" entre os bits

Não se usa "e" (nem "ou"), pois estes produzem resultados menores (maiores) que os operandos

Exemplo: Suponha k = 5

$$71 = 0001000111_2$$

$$h(71) = 01000_2 \ xor \ 00111_2 = 011111_2 = 15$$

funções de dispersão > método da análise dos dígitos

Usado em casos especialíssimos

É preciso conhecer todos os valores de antemão

gperf [Schmidt 90]: função de hash "perfeita", ajustada para uma coleção particular de chaves (não gera colisões)

[Schmidt 90]: Douglas C. Schmidt, GPERF: A Perfect Hash Function Generator, in Proceedings of the 2 nd C++ Conference, 1990, pp 87--102.

tratamento de colisões

Por que tratar colisões?

Mesmo com boas funções de dispersão, à medida que o fator de carga α aumenta, a probabilidade de haver colisões aumenta.

$$\alpha = N / M$$
, onde

N é o número de chaves armazenadas

M é o número de índices na tabela

$$(0 \le \alpha \le 1)$$

Tipos de tratamento de colisões

- encadeamento exterior (separado)
- encadeamento interior
- endereçamento aberto

Encadeamento exterior

cada posição da tabela pode ser ocupada por mais de uma chave

ex.: uma lista de chaves

Encadeamento exterior (cont.)

Quantas comparações podemos esperar em média para um acesso a chaves ausentes (buscas sem sucesso)?

Supondo que h é uma função uniforme, que o fator de carga da tabela é α e que as listas não são ordenadas

Então a probabilidade de h computar cada índice i é uniforme e igual a 1/m

O número de comparações feitas ao se acessar a entrada i da tabela é o comprimento da lista L_i

Então,

Custo Médio =
$$\frac{1}{m} \sum_{i=0}^{m-1} |L_i| = \frac{n}{m} = \alpha$$
 = Fator de Carga

Encadeamento exterior (cont.)

Quantas comparações podemos esperar em média para um acesso a chaves presentes (buscas bem-sucedidas)?

Para achar uma chave x, pesquisa-se uma lista Li

Além da comparação bem sucedida com a chave armazenada em Li, o número de comparações mal-sucedidas é o comprimento da lista Li no momento em que x foi originalmente inserida na tabela

Se x foi a (j+1)-ésima chave a ser incluída, então o comprimento médio de Li é j/m

Então o custo médio é dado por

$$CM = \frac{1}{n} \sum_{j=0}^{n-1} (1 + \frac{j}{m}) = \frac{1}{n} \left(n + \frac{1}{m} \sum_{j=0}^{n-1} j \right) = 1 + \frac{n(n-1)}{2nm} = 1 + \frac{\alpha}{2} - \frac{1}{2m}$$

Encadeamento exterior (cont.)

Se o fator de carga for baixo, a complexidade média da busca é O(1)

desvantagem do encadeamento exterior:

requer o uso de estruturas externas

→ alocação dinâmica de memória

alternativas:

encadeamento interior ou

endereçamento aberto

Encadeamento interior (variação 1)

A idéia é usar como nós das listas as próprias entradas da tabela, numa área de *overflow*.

Pode acontecer que a área de overflow seja toda tomada sem que todas as entradas da tabela tenham sido usadas.

Pode-se aumentar a área de *overflow* diminuindo-se p, mas isso também é ineficiente. No limite, p = 1 e a tabela resume-se a uma lista encadeada.

Encadeamento interior (variação 2)

Na segunda variante, todo o espaço de endereçamento é usado.

Quando ocorre uma colisão, a chave é armazenada na primeira posição livre após h(x), a posição d, digamos.

Se agora incluirmos y tal que h(y)=d, teremos a fusão das listas correspondentes a h(x) e h(y), diminuindo a eficiência do esquema.

O maior problema dessa abordagem é que pode haver colisões secundárias, isto é colisões em que $h(x) \neq h(y)$.

Encadeamento interior - exclusão

Não se pode simplesmente retirar o elemento da cadeia São necessários valores de chave especiais:

- "posição vazia"
- "elemento removido" (uma inserção posterior pode reaproveitar posições marcadas com o elemento removido, chamado de "lápide")

Na verdade, encadeamento interior com espaço de endereçamento único não é uma boa idéia, já que os problemas são os mesmos encontrados no tratamento de colisões por endereçamento aberto, sendo que nesse último temos a vantagem de não precisar de ponteiros.

Endereçamento aberto

utiliza-se uma segunda função de dispersão, que fornece o próximo índice a ser tentado

h(x, k) onde

x é a chave

k = 0, 1, 2, etc. é o número da tentativa

h(x, k) tem que visitar todos os m endereços em m tentativas

No pior caso, m tentativas são feitas

Endereçamento aberto

tentativa linear

$$h(x, k) = (f'(x) + k) \mod m$$

Tem a desvantagem de agrupar tentativas consecutivas

tentativa quadrática

$$h(x, k) = (f'(x) + c_1k + c_2k^2) \mod m$$

Resolve o problema do agrupamento primário

Problema do agrupamento secundário

chaves x e y tais que h'(x) = h'(y) geram a mesma sequência de tentativas

dispersão dupla

$$h(x, k) = (f'(x) + k \cdot f''(x)) \mod m$$

Tabelas de Dispersão Dinâmica (Dinamic Hash)

Hash Estático

Problemas:

Alocar uma tabela hash de acordo com a quantidade estimada de registros e aceitar queda de desempenho com colisões e estouros devido a crescimento (no número de registros)

X

Alocar mais espaço que o necessário e gerar desperdício inicial de memória

Criação de Hash Estático

Previsão insuficiente de espaço:

- Solução:
 escolher uma nova função hash e
 reorganizar toda a tabela
- Problemas:

 operação demorada
 bloqueia o acesso a estrutura de dados

Hash Dinâmico

Hash Dinâmico:

Reorganização dinâmica, sem bloquear acesso à estrutura de dados

Técnica mais usada:

Hash Expansível (ou Extensível) O(1) e baixa sobrecarga

Hash Expansível - Estrutura

Buckets ("Baldes" ⊗):

Armazenam os dados

Dimensionados em função do tamanho do sistema de armazenamento

Hash Expansível - Estrutura

Separação Binária

Registros ímpares e pares em *buckets* distintos

Para localiza o *bucket*, basta verificar o bit menos significativo do valor gerado pela função de *hash* gerado para a chave 0 - para os pares e 1 - para os impares

Hash Expansível - Estrutura

Trie (*Prefix tree*):

Forma de representar Separação Binária

Um ramo representa os pares e outro os ímpares

Bucket Completo:

O que fazer quando o bucket é preenchido?

Exemplo: número de pares não cabe mais no Bucket dos pares

Hash Expansível

usa apenas os *bits de relevância* resultantes da função de *hash*

• Bits de Relevância (i)

Indica que *i* bits da função hash são necessários para determinar o bucket correto Info adicional do Bucket inteiro indicando o número de bits comuns a todos os seus registros número de posições na tabela de endereços para o bucket j:

i ...00 ...01 ...10

...11

7(i-ij)

Hash Expansível - Busca

Busca

Use os *i* bits do valor da função de *hash* para localizar o *bucket*

Pesquise o bucket para encontrar o registro

Hash Expansível - Exemplo de busca

27/8/12

Inserção

Localize o *bucket* a ser usado na inserção

Considere 3 casos:

Caso 1: bucket ainda tem espaço

Caso 2: bucket está completo, mas pode ser dividido

Caso 3: bucket está completo e só possui uma referência

Caso 1: bucket ainda tem espaço

Caso 2:

bucket está completo, mas pode ser dividido

Se i_i < i, então o *bucket* pode ser dividido

A tabela de endereçamento precisa então distinguir entre os dois *buckets*

Caso 3:

bucket está completo e só possui uma referência

Se $i_j = i$ então o bucket possui só uma referencia

Para dividir a tabela de endereçamento é preciso dobrá-la de tamanho e reorganizar os ponteiros para os buckets

Caso particular

- Se a divisão da tabela de endereçamento leva todos os registros para um mesmo *bucket*,
 - então uma nova divisão pode ser necessária se a inserção for nesse ponto

Hash Expansível - Bucket overflow

Bucket overflow

Colisões de chaves podem acontecer com *hash* dinâmico Tratamento por encadeamento exterior pode ser usado

Hash Expansível - Remoção

Remoção

Localize o bucket com a chave

Considere 3 casos:

Caso 1: Remoção de *bucket* vazio

Caso 2: Combinação de *buckets*

Caso 3: Redução da tabela de endereços pode ser reduzida

Hash Expansível - Remoção

Caso 2: Combinação de buckets

Combine o *bucket* que está na mesma profundidade do *bucket* sendo removido

Os buckets diferem apenas no bit mais significativo

Hash Expansível - Desempenho

Considerações sobre desempenho

Como as operações de crescimento e redução são realizadas localmente em *buckets*, a queda de desempenho por bloqueio é baixa

A tabela de endereçamento desperdiça memória e introduz indireção

Hash Expansível - Função de hash

Escolha da função de hash

Para evitar modificação na função de *hash* o número de bits gerado deve ser alto

Exemplo:

32 bits são suficientes para

2³² ≅ 4 bilhões de registos

Hash Expansível

Referência

Abraham Silberschatz, Henry F. Korth, S. Sudarshan. Database System Concepts. McGraw Hill (6th Edition).

dúvidas?