Question Bank-Unit 4 (MATH2300)

(Numerical solution of ODE and PDE)

S.	Questions	СО	Bloom 's Taxon	Diffi cult v	Area	Topic
No.			omy Level	Leve l		
1	State Taylor series method in solving IVP.	CO4	K1	L	Numerical Solution of ODE	Taylor's series Method
2	State a basic difference between Euler and Modified Euler methods.	CO4	K1	L	Numerical Solution of ODE	Euler's Method
3	Write down the Runge Kutta fourth order formula.	CO4	K1	L	Numerical Solution of ODE	R-K Method
4						
5	Define initial value problems (IVP) and boundary value problems (BVP).	CO4	K1	L	Numerical Solution of ODE	Basics of ODE
6						
7	Write down Euler's formula for solving ODE.	CO4	К2	M	Numerical Solution of ODE	Euler's Method
8						
9	What are limitations of Taylor's series method.	CO4	K2	L	Numerical Solution of ODE	Taylor's series Method
10	Write down finite difference scheme for the differential equation- y"+2y=0.	CO4	K1	L	Numerical Solution of ODE	
11	Classify the following PDE- $u_{xx} + 4u_{xy} + 4u_{yy} - u_x + 2u_y = 0$	C06	К2	M	Numerical Solution of PDE	Classification of PDE
12	Classify the given partial differential equation $x^2u_{xx} + (1-y^2)u_{yy} = 0$, $-1 \le y \le 1$	C06	К2	М	Numerical Solution of PDE	Classification of PDE
13	Classify the given partial Differential equation $(1+x^2)u_{xx}+(5+2x^2)u_{xy}+(4+x^2)u_{yy}=0$	C06	K1	L	Numerical Solution of PDE	Classification of PDE
14	Explain diagonal five-point formula by Liebman's method.	C06	K2	M	Numerical Solution of PDE	Elliptic Equations- Solution of Laplace Equation

15	Explain standard five point formula by Liebman's method.	C06	K1	L	Numerical Solution of PDE	Elliptic Equations- Solution of Laplace Equation
16	Write down explicit formula in solving parabolic equations.	C06	K2	M	Numerical Solution of PDE	Parabolic Equations- Bender Schmidt
17	Write down Von- Neumann's stability condition.	C06	K1	М	Numerical Solution of PDE	Parabolic Equations- Bender Schmidt
18	Write down implicit formula in solving parabolic equations.	C06	К2	М	Numerical Solution of PDE	Parabolic Equations- Crank- Nicolson
19	Write down the expression for one dimensional wave equation.	C06	K2	L	Numerical Solution of PDE	Hyperbolic Equations
20	Write down the expression for Laplace equation.	C06	K2	M	Numerical Solution of PDE	Laplace Equations
21	Using Taylor's series method, find the value of y at x=0.1 and 0.2, where $\frac{dy}{dx} = x + y , y(O) = 1$	CO4	К2	М	Numerical Solution of ODE	Taylor's Series
22	Using Euler's method, find an approximate value of y corresponding to x=2, given that $\frac{dy}{dx} = x + 2y$ and $y(1) = 1$.	CO4	К2	М	Numerical Solution of ODE	Euler's Method
23	Using Runge's method to find the value of y at x= 0.2, where $\frac{dy}{dx} = x^2 y - 1 , y(0) = 1$	CO4	K4	М	Numerical Solution of ODE	Runge Kutta Method
24	Using Ranga kutta's fourt order method, find the value of y at x= 0.2, where $\frac{dy}{dx} = x + y$, $y(0) = 1$	CO4	K2	М	Numerical Solution of ODE	Runge Kutta Method
25	Using Ranga kutta's fourt order method, find the value of y at x=0.4 and 0.2, where $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} , y(O) = 1$	CO4	K4	L	Numerical Solution of ODE	Runge Kutta Method
26	Using Taylor's series method, find the value of y at x=0.1 and 0.2, where $\frac{dy}{dx} = x^2 y - 1 , y(0) = 1$	CO4	К2	M	Numerical Solution of ODE	Taylor's Series
27	Using Euler's method, find an approximate value of y corresponding to x=1.6, given that $\frac{dy}{dx} = y^2 - \frac{y}{x}$ and $y(1) = 1$.	CO4	К3	Н	Numerical Solution of ODE	Euler's method

28	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x, 0) = \sin \pi x$, $0 < x < 1$,; $u(0, t) = u(1, t) = 0$, $t \ge 0$. Find u for x=0.6 at t=.04.	C06	КЗ	M	Numerical Solution of PDE	Bender Schmidt
29	Solve the equation $2\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = x(4-x)$, $0 < x < 5$, $u(0, t) = u(4, t) = 0$, $t \ge 0$ taking h=1 Find the values of u upto t=5.	CO6	K4	M	Numerical Solution of PDE	Bender Schmidt
30	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the conditions $u(x,0)=0$, $u(0,t)=0$ and $u(1,t)=t$, for two time steps.	C06	К3	М	Numerical Solution of PDE	Crank Nicolson Method
31	Solve BVP defined by $u_{tt}=4u_{xx}$ subject to the conditions- $u(0,t)=0=u(4,t)$, $u_t(x,0)=0$, $u(x,0)=4x-x^2$.	C06	K4	Н	Numerical Solution of PDE	Wave Equation
32	Write method of solving Laplace equation by Liebman's method. [only for 3x3 table]	C06	K2	M	Numerical Solution of PDE	Laplace Equation
33	Define Runge Kutta 4 th order formula for solving ordinary differential equations.	C06	K1	M	Numerical Solution of ODE	R-K Method
34	Using Euler's modified method, find the value of y at x=0.3 where $\frac{dy}{dx} = x + y$, $y(0) = 1$	C06	К3	M	Numerical Solution of ODE	Euler's Modified method
35	$\frac{dy}{dx} = x + y , y(O) = 1$ Given that $\frac{dy}{dx} = x(x^2 + y^2)e^{-x}$, $y(0) = 1$, find y at x=0.1, 0.2, 0.3 by Taylor's series method and compute $y(0.4)$ by Milne's method.	CO4	К3	M	Numerical Solution of ODE	Taylor's Series/ Milne's Method
36	Using Runge's method, find the value of y at x=0.2 where $\frac{dy}{dx} = x + y$, $y(0) = 1$	CO4	K4	Н	Numerical Solution of ODE	Runge Kutta Method
37	Apply Euler's modified method to solve $\frac{dy}{dx} = x + 3y$ subject to $y(0) = 1$ and, hence find an approximate value of y when x=1. Take h=0.2	CO4	КЗ	Н	Numerical Solution of ODE	Euler's modified method
38	Using Euler's modified method, find the value of y at x=0.2 where $\frac{dy}{dx} = y + e^x$, $y(0) = 0$	CO4	K4	Н	Numerical Solution of ODE	Milne's method
39	Using Euler's modified method, find the value of y at x=1.2 where $\frac{dy}{dx} = \log(x + y) , y(0) = 2, takeh = 0.2$	CO4	K4	L	Numerical Solution of ODE	Euler's modified method
40	Using Taylor's series method, find the value of y at x=0.1, 0.2 and 0.3, where $\frac{dy}{dx} = (x^3 + xy^2) / e^x , y(0) = 1$	CO4	K4	M	Numerical Solution of ODE	Taylor's Series
41		CO4	К3	M	Numerical Solution of ODE	Finite difference Method
42	Using Euler's method, find the value of y at x=1 where	CO4	K4	Н	Numerical	Eulers Method

	I y					T
	$\frac{dy}{dx} = x + y , y(0) = 1$				Solution of ODE	
43	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ within the square given below. Perform three iterations.	C06	K4	Н	Numerical Solution of PDE	Laplace equation
44	Solve $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ in the domain of the figure given below by Liebman's method,	C06	K4	Н	Numerical Solution of PDE	Laplace equation
	1 1 1 1 0 0 T ₇ T ₈ T ₉ 0 0 0 T ₄ T ₅ T ₆ 0 0 0 0 0 0 0 0 0					
45	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x, 0) = x^2(25 - x^2)$, $0 < x < 5$, $u(0, t) = u(5, t) = 0$, $t \ge 0$ taking h=1, k= 1/2.	C06	КЗ	M	Numerical Solution of PDE	Bender Schmidt Method
46	Solve the equation $16 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $0 < x < 1$, $t > 0$; $u(x,0)=0$, $u(0, t)=0$, $u(1,t)=100t$. Compute u for one step in t direction taking h=1/4.	C06	К3	M	Numerical Solution of PDE	Crank Nicolson's Method
47	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ by Liebman's iteration process for the domain of the figure, given below:	C06	К3	L	Numerical Solution of PDE	Laplace equation

	۰	500	1000 5	500] ⁰					
	1000	u ₁	u ₂	u _a	1000					
		u _a	uc	u _o						
	2000	- U.S			2000					
	1000	u ₇	ug	ug	1000					
	0	500	1000 5	600	0					
48	Evaluate the pivotal values o	f the equ	ation $\frac{\partial^2}{\partial t}$	$\frac{u}{2} = 16$	$\frac{\partial^2 u}{\partial x^2}$, taking h=1 up to	C06	К3	Н	Numerical Solution of PDE	Hyperbolic
	t=1.25. The boundary condit	u(0,t) =	$u_t(x, 0) = 0$ and				Solution of PDE			
	$u(x,0) = x^2(5-x).$									
49	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x, 0) = \sin \pi x$, $0 < x$							M	Numerical Solution of PDE	Crank Nicolson's
	<1, ; u(0, t) = u(1, t) = 0,	ind u for				Solution of FDE	Method			
50	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ within the square given below. Perform three iterations.							М	Numerical Solution of PDE	Laplace equation
		1 0 4 u ₃ 0 1 u ₂ 0				Solution of FDE	equation			
51.	r i i i i i i i i i i i i i i i i i i i							L		
	$u_{xx} + u_{yy} = 0$							M		
	For what value of c the wave equation $u_{tt} = c^2 u_{xx}$ has the accurate and						K2	IVI		
	stable solution									