L Chimie de la conduction électrique

1.1 Dernière couche électronique

1. 1. Électron-volt

Les couches électroniques $K, L, M \dots$ répartissent les électrons autour du noyau atomique :

- Plus un électron est proche du noyau atomique, plus l'énergie nécessaire pour arracher l'électron du champ électrique du noyau sera grande ;
- Énergie quantifiée en électron-volt eV.

Un électron-volt est la mesure physique de l'énergie cinétique d'un électron accéléré sous l'action d'une différence de potentiel d'1 V. Il est égal à :

$$U = \frac{W}{Q}$$

$$eV = \sqrt{\frac{2h\alpha}{\mu c_0}} \frac{W}{Q}$$

$$= 1,602 \, 176 \, 634 \times 10^{-19} \, \text{J}$$
(1.1)

ÉQ 1: Valeur expérimentale de l'eV

Avec:

Grandeur dans l'ISQ	Unité SI de mesure		\mathbf{Valeur}
U: différence de potentiel	volt	(V)	$V = kg m^2 s^{-3} A^{-1}$
W: énergie	joule	(J)	$J = kg m^2/s^2$
Q: charge électrique	coulomb	(C)	C = A s
eV : électron-volt	joule	(J)	$eV = 1,602176634 \times 10^{-19} J$
h: constante de Planck	joule seconde	(Js)	$h = 6,62607015 \times 10^{-34}\mathrm{Js}$
α : constante de structure fine	sans dimension	()	$\alpha = 7,2973525564 \times 10^{-3}$
μ : perméabilité magnétique du vide	henry par mètre	$(H m^{-1})$	$\mu = 4\pi \times 10^{-7} \mathrm{H}\mathrm{m}^{-1}$
c_0 : vitesse de la lumière dans le vide	mètre par seconde	$(m s^{-1})$	$c_0 = 2,99792458 \times 10^8 \mathrm{m s^{-1}}$

