Samples

Avogadro's Law SOLUTIONS

1. The chemical equation is: $3O_2(g) \rightarrow 2O_3(g)$

The number of moles
$$O_3$$
 produced = 8.80mol $O_2 \times \frac{2\text{mol }O_3}{3\text{mol }O_2}$
= 5.87mol O_3

Since
$$V/n$$
 is constant, $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

$$\therefore V_2 = \frac{n_2}{n_1} \times V_1$$

$$= \frac{5.87 \text{mol}}{8.80 \text{mol}} \times 11.2 \text{L}$$

$$= 7.5 \text{L}$$

2. The chemical equation is: $3O_2(g) \rightarrow 2O_3(g)$

The number of moles
$$O_3$$
 produced = 2.90mol $O_2 \times \frac{2\text{mol }O_3}{3\text{mol }O_2}$
= 1.93mol O_3

Since
$$V/n$$
 is constant, $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

$$\therefore V_2 = \frac{n_2}{n_1} \times V_1$$

$$= \frac{1.93 \text{mol}}{2.90 \text{mol}} \times 19.2 \text{L}$$

$$= 12.8 \text{L}$$

3. The chemical equation is: $3O_2(g) \rightarrow 2O_3(g)$

The number of moles
$$O_3$$
 produced $= 9.50 \text{mol } O_2 \times \frac{2 \text{mol } O_3}{3 \text{mol } O_2}$
 $= 6.33 \text{mol } O_3$

Since
$$V/n$$
 is constant, $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

$$\therefore V_2 = \frac{n_2}{n_1} \times V_1$$

$$= \frac{6.33 \text{mol}}{9.50 \text{mol}} \times 6.1 \text{L}$$

$$= 4.1 \text{L}$$