LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Equivalências Notáveis

EQUIVALÊNCIAS NOTÁVEIS					
IDEM	p ⇔ p ^ p		$p \Leftrightarrow p v p$		
COM	p ^ q ⇔ q ^ p		$p v q \Leftrightarrow q v p$		
ASSOC	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$		$p v (q v r) \Leftrightarrow (p v q) v r$		
ID	p ^ t ⇔ p	p ^ c ⇔ c	p v t ⇔ t	$p \ v \ c \Leftrightarrow p$	
	onde $t = V$ (verdadeiro) e $c = F$ (falso)				
DIST	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$		$ p v (q ^ r) \Leftrightarrow (p v q) ^ (p v r) $		
ABS	$p \land (p \lor q) \Leftrightarrow p$		$p \vee (p \wedge q) \Leftrightarrow p$		

Equivalências Notáveis

EQUIVALÊNCIAS NOTÁVEIS (Continuação)				
DN	p ⇔ ~~p			
DM	~(p ^ q) ⇔ ~p v ~q	~(p v q) ⇔ ~p ^ ~q		
COND	$p \rightarrow q \Leftrightarrow \sim p \vee q$			
BICOND	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$		
		$p \leftrightarrow q \Leftrightarrow (\sim p \ v \ q) \land (\sim q \ v \ p)$		
CP	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$			
EI	$p \land q \rightarrow r \iff p \rightarrow (q \rightarrow r)$			
Outras	$p \underline{v} q \Leftrightarrow \sim (p \leftrightarrow q)$			
	p ↓ q ⇔ ~p ^ ~q			
	p ↑ q ⇔ ~p v ~q			

Seja P(p,q,r,...) uma proposição qualquer, diz-se que ela está na Forma Normal (FN) se e somente se:

 Contém, quando muito, apenas os conectivos ~, ^ e v ;

Exemplos: p ^ q, ~(p v q), ~pvq^~r

Toda proposição pode ser levada a uma FN equivalente substituindo-se os conectivos \rightarrow e \leftrightarrow , se houverem.

- Lembrando que
 - $p \rightarrow q \Leftrightarrow \sim p \vee q$
 - $p \leftrightarrow q \Leftrightarrow (\sim p \lor q) \land (\sim q \lor p)$
 - Ou ainda: $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$

Exemplo: Apresentar a forma normal da seguinte proposição: $(p \rightarrow q) \leftrightarrow r$.

Exemplo: Apresentar a forma normal da seguinte proposição: $(p \rightarrow q) \leftrightarrow r$.

$$(p \rightarrow q) \leftrightarrow r \Leftrightarrow (\sim p \vee q) \leftrightarrow r (Cond)$$

$$\Leftrightarrow$$
 (~(~p v q) v r) ^ (~r v (~p v q)) (Bicond)

 A proposição encontra-se na FN, pois apresenta apenas os conectivos ~, ^ e v

Seja P(p,q,r,...) uma proposição qualquer, diz-se que ela está na Forma Normal Conjuntiva(FNC) se e somente se:

- Está na FN, ou seja, contém, quando muito, apenas os conectivos ~, ^ e v;
- ~ não aparece repetido (como ~~) e não tem alcance sobre ^ e v (como ~(p^q) ou ~(pvq), por exemplo). Isto é, só incide sobre letras proposicionais.
- v não tem alcance sobre ^ , isto é, não existe componentes do tipo p v (q ^ r), por exemplo.

- Exemplos:
- ▶ (~p v ~q) ^ (q v r)
- ▶ ~p v q
- p ^ q ^ r
- ~p ∧ ~q
- $(q v \sim r) \wedge (p v q) \wedge (\sim r v \sim s)$

- Uma proposição pode ser levada a uma FNC equivalente utilizando-se as equivalências notáveis:
- Lembrando que

```
(Cond)
p \rightarrow q \Leftrightarrow p \vee q
• p \leftrightarrow q \Leftrightarrow (\sim p \vee q) \wedge (\sim q \vee p) (Bicond)

    ~~p ⇔ p (DN)

~(p ∨ q) ⇔ ~p ^ ~q
                                           (DM)
\circ \sim (p \land q) \Leftrightarrow \sim p \lor \sim q \qquad (DM)
• p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)
                                                      (Dist)
• p v (q \wedge r) \Leftrightarrow (p v q) \wedge (p v r) (Dist)
  p \land (q \land r) \Leftrightarrow (p \land q) \land r
                                            (Assoc)
p v (q v r) \Leftrightarrow (p v q) v r
                                           (Assoc)
```

Exemplo: Apresentar a FNC da seguinte proposição: $(p \rightarrow q) \leftrightarrow r$.

$$(p \rightarrow q) \leftrightarrow r \Leftrightarrow (\sim p \vee q) \leftrightarrow r (Cond)$$

$$\Leftrightarrow$$
 (~(~p v q) v r) ^ (~r v (~p v q)) (Bicond)

$$\Leftrightarrow$$
 (~~p ^ ~q) v r) ^ (~r v (~p v q)) (DM)

Exemplo: Apresentar a FNC da seguinte proposição: $(p \rightarrow q) \leftrightarrow r$.

- \Leftrightarrow (p \land \sim q) v r) \land (\sim r v (\sim p v q)) (DN)
- \Leftrightarrow ((p v r) \land (\sim q v r)) \land (\sim r v (\sim p v q)) (Dist)
- \Leftrightarrow (p v r) \land (\sim q v r) \land (\sim r v \sim p v q) (Assoc)

Exemplo: Apresentar a forma normal conjuntiva (FNC) da seguinte proposição: (p ∧ q) ↔ r.

 Exemplo: Apresentar a forma normal conjuntiva (FNC) da seguinte proposição: (p ^ q) ↔ r.

```
(p \land q) \leftrightarrow r \Leftrightarrow (\sim (p \land q) \lor r) \land (\sim r \lor (p \land q)) (Bicond)
```

$$\Leftrightarrow$$
 ((\sim p v \sim q) v r) \wedge (\sim r v (p \wedge q)) (DM)

 \Leftrightarrow (~p v ~q v r) \land ((~r v p) \land (~r v q)) (Assoc,Dist)

Exemplo: Apresentar a forma normal conjuntiva (FNC) da seguinte proposição: (p ^ q) ↔ r.

 \Leftrightarrow (~p v ~q v r) \land (~r v p) \land (~r v q) (Assoc)

Exercício: Apresentar a forma normal conjuntiva (FNC) da seguinte proposição: (p v q) ↔ r.

Exercício: Apresentar a forma normal Conjuntiva (FNC) da seguinte proposição: (p v q) ↔ r.

```
(p \ v \ q) \leftrightarrow r \Leftrightarrow (\sim (p \ v \ q) \ v \ r) \land (\sim r \ v \ (p \ v \ q)) (Bicond)
```

$$\Leftrightarrow$$
 ((\sim p $\wedge \sim$ q) v r) \wedge (\sim r v (p v q)) (DM)

$$\Leftrightarrow$$
 ((\sim p $\land \sim$ q) v r) \land (\sim r v p v q) (Assoc)

$$\Leftrightarrow$$
 ((\sim p v r) \land (\sim q v r)) \land (\sim r v p v q) (Dist)

 \Leftrightarrow (~p v r) ^ (~q v r) ^ (~r v p v q) (Assoc)

Seja P(p,q,r,...) uma proposição qualquer, diz-se que ela está na Forma Normal Disjuntiva (FND) se e somente se:

- Está na FN, ou seja, contém, quando muito, apenas os conectivos ~, ^ e v;
- ~ não aparece repetido (como ~~) e não tem alcance sobre ^ e v (como ~(p^q) ou ~(pvq), por exemplo. Isto é, só incide sobre letras proposicionais.
- ^ não tem alcance sobre v , isto é, não existe componentes do tipo p ^ (q v r), por exemplo.

- Exemplos:
- (~p ^ ~q) v (q ^ r)
- ~p ^ q
- pvqvr
- ∼p v ~q
- $(q \land \sim r) \lor (p \land q) \lor (\sim r \lor \sim s)$

- Uma proposição pode ser levada a uma FND equivalente utilizando-se as equivalências notáveis:
- Lembrando que

```
(Cond)
p \rightarrow q \Leftrightarrow p \vee q
• p \leftrightarrow q \Leftrightarrow (\sim p \vee q) \wedge (\sim q \vee p) (Bicond)
\circ ~~p \Leftrightarrow p (DN)
\circ \sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q \qquad (DM)
\circ \sim (p \land q) \Leftrightarrow \sim p \lor \sim q \qquad (DM)
• p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)
                                                            (Dist)
• p v (q \wedge r) \Leftrightarrow (p v q) \wedge (p v r) (Dist)
  p \land (q \land r) \Leftrightarrow (p \land q) \land r
                                                 (Assoc)
p v (q v r) \Leftrightarrow (p v q) v r
                                               (Assoc)
```

Exemplo: Apresentar a forma normal Disjuntiva (FND) da seguinte proposição: $(p \rightarrow q) \land (q \rightarrow p)$.

$$\Leftrightarrow$$
 (~p v q) ^ (~q v p) (Cond)

$$\Leftrightarrow$$
 ((~p v q) ^ ~q) v ((~p v q) ^ p) (Dist)

$$\Leftrightarrow$$
 ((\sim p $\wedge \sim$ q) v (q $\wedge \sim$ q) v ((\sim p \wedge p) v (q \wedge p) (Dist)

Exemplo: Apresentar a forma normal Disjuntiva (FND) da seguinte proposição: $(p \rightarrow q) \land (q \rightarrow p)$.

$$\Leftrightarrow$$
 ((\sim p $\land \sim$ q) \lor c) \lor (c \lor (q \land p), onde c = contradição

$$\Leftrightarrow$$
 (~p ^ ~q) v (q ^ p) (ID)

$$\Leftrightarrow$$
 (p \(^1q\)) \(^1q\)) \(^1q\) \(^1q\) \(^1q\) \(^1q\)

Exercício: Apresentar a forma normal Disjuntiva (FND) da seguinte proposição: ~(((p v q) ^ ~q) v (q ^ r)).

Exercício: Apresentar a forma normal Disjuntiva (FND) da seguinte proposição: ~(((p v q) ^ ~q) v (q ^ r)).

```
\Leftrightarrow \sim ((p \lor q) \land \sim q) \land \sim (q \land r) \quad (DM)
\Leftrightarrow (\sim (p \lor q) \lor \sim \sim q) \land (\sim q \lor \sim r) \quad (DM)
\Leftrightarrow ((\sim p \land \sim q) \lor \sim \sim q) \land (\sim q \lor \sim r) \quad (DM)
\Leftrightarrow ((\sim p \land \sim q) \lor q) \land (\sim q \lor \sim r) \quad (DN)
\Leftrightarrow ((\sim p \lor q) \land (\sim q \lor q)) \land (\sim q \lor \sim r) \quad (Dist)
\Leftrightarrow (\sim p \lor q) \land (\sim q \lor \sim r) \quad (ID)
\Leftrightarrow ((\sim p \lor q) \land \sim q) \lor ((\sim p \lor q) \land \sim r) \quad (Dist)
```

Exercício: Apresentar a forma normal Disjuntiva (FND) da seguinte proposição: ~(((p v q) ^ ~q) v (q ^ r)).

$$\Leftrightarrow$$
 ((\sim p \wedge \sim q) v (q \wedge \sim q)) v ((\sim p \wedge \sim r) v (q \wedge \sim r)) (Dist)

$$\Leftrightarrow (\sim p \land \sim q) \lor ((\sim p \land \sim r) \lor (q \land \sim r))$$
 (ID)

$$\Leftrightarrow (\sim p \land \sim q) \lor (\sim p \land \sim r) \lor (q \land \sim r)$$
 (Assoc)

01:Apresentar a Forma Normal Conjuntiva (FNC) das seguintes proposições:

a)
$$\sim p \downarrow (q \underline{v} p)$$

b)
$$p \uparrow (q \underline{v} r)$$

c)
$$(\sim (\sim p \uparrow \sim q)) \downarrow (r \rightarrow \sim p)$$

02: Apresentar a Forma Normal Disjuntiva (FND) das seguintes proposições:

a)
$$\sim$$
(p \rightarrow q)

b)
$$(p \rightarrow q) \land \sim p$$

c)
$$p \leftrightarrow \sim p$$

03: Demonstre as relações abaixo utilizando as equivalências notáveis:

- $p \rightarrow q \land r \Leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$
- $p \rightarrow q \lor r \Leftrightarrow (p \rightarrow q) \lor (p \rightarrow r)$
- $p \wedge (r \vee s \vee t) \Leftrightarrow (p \wedge r) \vee (p \wedge s) \vee (p \wedge t)$
- $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$
- \rightarrow ~(~p \rightarrow ~q) \Leftrightarrow ~p \land q

04: Demonstre as leis de Morgan para três proposições:

$$\sim$$
 (p \wedge q \wedge r) \Leftrightarrow \sim p \vee \sim q \vee \sim r

$$\sim$$
 (p \vee q \vee r) \Leftrightarrow \sim p \wedge \sim r

05: Demonstre, utilizando as equivalências notáveis, que as relações de implicação são válidas:

▶ Regra da simplificação: p ∧ q ⇒ q (EXEMPLO)

Para provarmos uma relação de implicação temos que demonstrar que a condicional p \land q \rightarrow q é tautológica, ou seja, que a condicional

$$p \land q \rightarrow q \Leftrightarrow V$$

Desenvolvendo o lado esquerdo da equivalência, tem-se:

$$\begin{array}{l} p \wedge q \rightarrow q \Leftrightarrow \\ \sim \!\!\! (\ p \wedge q\) \vee q \Leftrightarrow \ (COND) \\ \sim \!\!\! p \vee \sim \!\!\! q \vee q \Leftrightarrow \ (DM) \\ \sim \!\!\! p \vee V \Leftrightarrow \ (ID) \end{array}$$

Portanto, está provado que $p \land q \Rightarrow q$ é uma tautologia

05: Demonstre, utilizando as equivalências notáveis, que as relações de implicação são válidas:

- ▶ Regra da adição: p ⇒ p ∨ q
- ▶ Regra do Silogismo Disjuntivo: $(p \lor q) \land \neg q \Rightarrow p$
- ▶ Regra de Modus Ponens: $(p \rightarrow q) \land p \Rightarrow q$
- ▶ Regra de Modus Tollens: $(p \rightarrow q) \land \sim q \Rightarrow \sim p$

```
SE (fluxo_ext > fluxo_int) \( \simeq \cdot \) fluxo_ext > fluxo_int \( \simeq \) pressão \( < 1000 \)) ENTÃO \( \frac{1}{2} \) faça bloco de comandos A \( \frac{1}{2} \) SENÃO \( \frac{1}{2} \) faça bloco de comandos B</p>
```

```
SE ~(idade > 21 ∨ sexo="F") ∨ ( ~(idade > 21) ∧ sexo="F") ENTÃO faça bloco de comandos A SENÃO faça bloco de comandos B
```

```
SE (cab="loiro" \( \) pele="morena"\) \( \) (cab="loiro" \( \) pele="branca"\) ENTÃO faça bloco de comandos A SENÃO faça bloco de comandos B
```

```
SE (cab="loiro" y pele="morena") y (cab="loiro" y pele="branca") ENTÃO faça bloco de comandos A SENÃO faça bloco de comandos B
```

10: Reescreva o teste abaixo reduzindo as condições através das relações de equivalência:

SE (cidade="Curitiba") ENTÃO SE (bairro="Centro" v bairro="Rebouças") ENTÃO faça bloco de comandos A.