

PIG: A DICE GAME OF STRATEGIC CHANCE

By Elder Veliz 12-03-2024

HOW TO PLAY

- Set-up: 1 fair, six-sided die and 1 + (non-)human players
- O Player(s) alternate turns:
 - o If a player rolls a 1, they lose all points **accumulated** in that turn and their turn ends.
 - o If a player rolls a 2-6, they can choose to:
 - o "hold" and bank the points accumulated in that turn,
 - or roll again.
- The first player to reach or exceed the target score of 100 wins the game.

HEURISTIC STRATEGY

Let X be the number of successful rolls until the first failure (i.e. roll a 1)

$$X \sim Geom\left(\frac{1}{6}\right)$$
, $\mathbb{E}(X) = \frac{6}{1} - 1 = 5$ rolls

Let **R** be the value of a successful die roll

$$R \sim Discrete\ Uniform(2,6),\ \mathbb{E}(R) = \frac{2+6}{2} = 4$$

We might be inclined to believe X, R are independent, in which case:

$$\mathbb{E}(X \cdot R) = \mathbb{E}(X) \cdot \mathbb{E}(R) = 5 * 4 = 20$$

This has spurred the following heuristic:

Let T denote the cumulative turn total.

"Roll" while T < 20; "Hold" when $T \ge 20$.

RESULTS OF DIFFERENT "HOLD" THRESHOLDS

Probability Distributions for Different Hold Thresholds

Single-Player Heuristic Strategy (n=100,000)

Hold Threshold
$$+17 +19 +21 +23 +25$$

 $+18 +20 +22 +24 +26$

PMFs were 'smoothed' into PDFs solely for visual comparison purposes.

RESULTS OF DIFFERENT "HOLD" THRESHOLDS

Threshold	Mean	Median	Variance
17	13.06	12	4.03
18	12.96	12	4.25
19	12.64	12	4.38
20	12.61	12	4.43
21	12.80	12	4.58
22	13.00	12	4.81
23	12.96	12	5.06
24	12.73	12	5.23
25	12.70	12	5.28
26	12.80	12	5.39

MARKOV DECISION PROCESS (MDP)

Used to model decision-making in situations where outcomes are jointly under the control of a **decision-maker** and partly **random**.

Assumptions:

Markov Property: $P(s_{t+1}|s_t, a_t, \dots, s_0, a_0) = P(s_{t+1}|s_t, a_t)$

i.e. the future state depends only on the current state and action

Finite State and Action Spaces

Stationary Transition Probabilities and Rewards

Full Observability

Bounded Reward

MARKOV DECISION PROCESS (MDP)

An **agent** will cycle through a series of states, actions, and rewards

Framework:

Set of Possible States

Set of Possible Actions

Reward Model: assigns rewards to given state and action

Value Function: total reward expected to accumulate from given state

Transition Model: PMF over next state given current state and action

Policy (π): maps an action to a given state

TOWARD AN "OPTIMAL" STRATEGY

In a 2-player game, observe that Pig is a sequence of transitions between states. Our goal is maximize expected gains while managing risks.

Let the triplet (T, S_{me}, S_{op}) define a game state (S):

Our current turn total, $T \in [0,105]$

Our current score, $S_{me} \in [0.105]$

Our opponent's score, $S_{op} \in [0.105]$

At each game state, we can take two actions (A):

Roll the die and

- a) roll a 2:6, and add its outcome R to the turn total T
- b) roll a 1, ending our turn

Hold the turn total T, add it to our current score S_{me} , and end our turn

TOWARD AN "OPTIMAL" STRATEGY

The outcome of the die determines our transition probabilities between states:

Roll 1: Our turn ends; state transitions to $(0, S_{me}, S_{op})$ with the opponent's turn.

Roll 2-6: Turn total **T** increases; state transitions to $(T + R, S_{me}, S_{op})$, still our turn.

Define a simple **reward model**:

- **+1** if we win $(S_{me} + T \ge 100)$
- **-1** if we lose ($S_{op} \ge 100$)
- 0 otherwise

SOLVING FOR THE "OPTIMAL" STRATEGY

We use a zero-sum framework where maximizing our pay minimizes opponent's payoff

Utility of Holding:

If
$$(S_{me} + T \ge 100)$$
: $V(T, S_{me}, S_{op}) = 1$

Otherwise:

$$V_{Hold}(T, S_{me}, S_{op}) = -V(0, \mathbf{S_{op}}, \mathbf{S_{me}} + T)$$

Utility of Rolling:

$$V_{Roll}(T, S_{me}, S_{op}) = \frac{1}{6} (-V(0, S_{op}, S_{me}) + \sum_{R=2}^{6} V(T + R, S_{me}, S_{op}))$$

For given state $s \in S$, value function:

$$V(s) = \max_{a \in \{Roll, Hold\}} Expected Utility of Action a$$

Bellman Equation:
$$V(s) = \max_{a \in A} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

Policy: At each state, action with highest utility recorded as optimal action.

ADJUSTMENTS FOR CONVERGENCE

 $\gamma = 1$, discount factor chosen emphasize future over immediate rewards

 $T \in [0, 50]$, turn total truncated to reduce computation

Zero-Sum framework assumes both players play optimally

EVIDENCE OF SENSIBLE OPTIMAL POLICY

EVIDENCE OF SENSIBLE STATE VALUES

TWO HEURISTIC AGENTS

TWO OPTIMAL AGENTS

OPTIMAL VS. HEURISTIC AGENT

FURTHER INVESTIGATIONS

Starting player advantage

Determine viable method to balance the game.

Finetuning of γ (balance between immediate and future rewards)

• Will propensity to "hold" with smaller γ yield benefits?

Influence of target score on strategies

• How does decreasing or increasing target score affect heuristic and optimal policy strategies?

Incorporate slight randomness in policy choices

Will a non-deterministic decision-making process more realistically model human behavior?

REFERENCES

Adams, R. P. (2019). *Markov Decision Processes*. COS324 Elements of Machine Learning, Princeton University. Retrieved from https://www.cs.princeton.edu/courses/archive/spring19/cos324/files/expectimax.p

Game On Family, "How to Play the Pig Dice Game," https://gameonfamily.com/pig-dice/.

Lafferty, J. (2024). *Reinforcement Learning: Policy Methods*. S&DS 365 Intermediate Machine Learning, Yale University. Retrieved from https://github.com/YData123/sds365-fa24/raw/main/lectures/lecture-oct-30.pdf