Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Combinatronics & Probability Advanced Counting

COMBINATIONS W/ REPETITIONS

Probability & Combinatronics – Advanced Counting

Review

Salad

Combinations w/ Repetitions

Introduction to Discrete Math

Combinations W/ Repetitions

Review

	With Repetitions	Without Repetitions
Ordered		
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (b,c),	
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (b,c),	(a,b), (a,c), (b,a), (b,c), (c,a), (c,b)
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (b,c),	(a,b), (a,c), (b,a), (b,c), (c,a), (c,b)
Unordered	{a, b}, {a, c}, {b, c} {a, a}, {b, b}, {c, c}	

Review

	With Repetitions	Without Repetitions
Ordered	(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (b,c),	(a,b), (a,c), (b,a), (b,c), (c,a), (c,b)
Unordered	{a, b}, {a, c}, {b, c} {a, a}, {b, b}, {c, c}	{a, b}, {a, c}, {b, c}

Introduction to Discrete Math

Combinations W/ Repetitions

Review

	With Repetitions	Without Repetitions
Ordered		
Unordered		

Introduction to Discrete Math

Combinations W/ Repetitions

Review

	With Repetitions	Without Repetitions
Ordered	Tuples	
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$
Unordered		

Review

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$
Unordered		Combinations

Review

	With Repetitions	Without Repetitions	
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$	
Unordered		Combinations $\binom{n}{k} \longrightarrow \frac{n!}{k! (n - k)}$	[c) !.

Review

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$
Unordered	???	Combinations $\binom{n}{k}$

Example: Voting

Example: Voting

Example: Voting

Example: Voting

There are k-voters that vote for n candidates.

All votes equally matter

Example: Voting

- All votes equally matter
- So votes are unordered

Example: Voting

- All votes equally matter
- So votes are unordered
- Candidates can be voted several times

Example: Voting

- All votes equally matter
- So votes are unordered
- Candidates can be voted several times
- So, voters as a group pick k
 people out of n with repetitions

Probability & Combinatronics – Advanced Counting

Review

Salad

Combinations w/ Repetitions

Salad

Problem

Salad

Problem

There is unlimited supply of tomatoes, bell peppers, and lettuce. We want to make a salad out of 4 units among the three ingredients (we don't need to use all three). How many different salads can we make?

We pick 4 items out of the 3 ingredients with repetitions

Salad

Problem

- We pick 4 items out of the 3 ingredients with repetitions
- Order we pick do not matter

Salad

Problem

- We pick 4 items out of the 3 ingredients with repetitions
- Order we pick do not matter
- This will be the setup

Salad

Problem

- We pick 4 items out of the 3 ingredients with repetitions
- Order we pick do not matter
- This will be the setup
- How do we count the total?

Salad

Problem

- We pick 4 items out of the 3 ingredients with repetitions
- Order we pick do not matter
- This will be the setup
- How do we count the total?
 - List all possible salads then count them

Salad

Problem

- We pick 4 items out of the 3 ingredients with repetitions
- Order we pick do not matter
- This will be the setup
- How do we count the total?
 - List all possible salads then count them
 - We want to do it wisely

Salad

Salad

Salad

Salad

Same salad

Salad

Tomato

Bell Pepper

Lettuce

Same salad

The order does not matter

Salad

Same salad

- The order does not matter
- So we will draw tomatoes first, then bell peppers, then lettuce

Salad

Same salad

- The order does not matter
- So we will draw tomatoes first, then bell peppers, then lettuce
- Let us consider all possible numbers of tomatoes in the salad and count each case separately,

Salad

Combinations W/ Repetitions

Salad

Case 1: 4 tomatoes

Salad

Case 1: 4 tomatoes

• 4 tomatoes: 1 salad

Combinations W/ Repetitions

Salad

Case 2: 3 tomatoes

• 4 tomatoes: 1 salad

Salad

• 4 tomatoes: 1 salad

Salad

Case 2: 3 tomatoes

Combinations W/ Repetitions

Salad

Case 2: 3 tomatoes

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Combinations W/ Repetitions

Salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Combinations W/ Repetitions

Salad

Case 3: 2 tomatoes

- 48 -

• 4 tomatoes: 1 salad

3 tomatoes: 2 salads

Combinations W/ Repetitions

Salad

Case 3: 2 tomatoes

• 3 tomatoes: 2 salads

Combinations W/ Repetitions

Salad

Case 3: 2 tomatoes

• 3 tomatoes: 2 salads

Combinations W/ Repetitions

Salad

Case 3: 2 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads

Combinations W/ Repetitions

Salad

Case 4: 1 tomato

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Combinations W/ Repetitions

Salad

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads

Combinations W/ Repetitions

Salad

Case 4: 1 tomato

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads

Salad

Case 4: 1 tomato

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads

Salad

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads

Salad

- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Combinations W/ Repetitions

Salad

Case 5: 0 tomatoes

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

• 1 tomato : 4 salads

Combinations W/ Repetitions

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Salad

Case 5: 0 tomatoes

- 60 -

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads

Chonbuk National University

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads
- 0 tomatoes: 5 salads

Salad

Case 5: 0 tomatoes

- 4 tomatoes: 1 salad
- 3 tomatoes: 2 salads
- 2 tomatoes: 3 salads
- 1 tomato : 4 salads
- 0 tomatoes: 5 salads

For a total of 15 salad varieties

Combinations W/ Repetitions

Salad

Combinations W/ Repetitions

Summary

The solution looks very structured

Summary

- The solution looks very structured
- Same structure for larger salad

Summary

- The solution looks very structured
- Same structure for larger salad
- But more complicated for more ingredients

Summary

- The solution looks very structured
- Same structure for larger salad
- But more complicated for more ingredients
- Yet, the same strategy works for recursive counting of any salad size with any number of ingredients

Probability & Combinatronics – Advanced Counting

Review

Salad

Combinations w/ Repetitions

Large Salad

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

Large Salad

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

We can use recursive counting here as well

Large Salad

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

- We can use recursive counting here as well
- But now we will obtain a formula

Large Salad

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all four). How many different salads can we make?

- We can use recursive counting here as well
- But now we will obtain a formula
- This will be a general solution

Large Salad

Tomato

Bell Pepper

Lettuce

Eggplant

- \bigcirc
- \bigcirc
- \bigcirc
- \bigcirc
- O > Sauce

Large Salad

Tomato

Bell Pepper

Lettuce

Eggplant

- Tomato Bell Pepper
- Lettuce Eggplant
- - The order does not matter

Large Salad

Tomato

Bell Pepper

Lettuce

Eggplant

- The order does not matter
- For the next part:
 - So we will draw tomatoes first,
 - then bell peppers,
 - then lettuce, and
 - then the eggplant

Introduction to Discrete Math

Combinations W/ Repetitions

Idea 1: To specify the list, it is enough to indicate where the ingredients switch

Large Salad

• Idea 1: To specify the list, it is enough to indicate where the ingredients switch

- Idea 1: To specify the list, it is enough to indicate where the ingredients switch
- Idea 2: We do not even need the text descriptions

- Idea 1: To specify the list, it is enough to indicate where the ingredients switch
- Idea 2: We do not even need the text descriptions
- Idea 3: We can represent places of switch as delimiter signs

- Idea 1: To specify the list, it is enough to indicate where the ingredients switch
- Idea 2: We do not even need the text descriptions
- Idea 3: We can represent places of switch as delimiter signs

- Idea 1: To specify the list, it is enough to indicate where the ingredients switch
- Idea 2: We do not even need the text descriptions
- Idea 3: We can represent places of switch as delimiter signs

- Idea 1: To specify the list, it is enough to indicate where the ingredients switch
- Idea 2: We do not even need the text descriptions
- Idea 3: We can represent places of switch as delimiter signs
- The salad can still be restored:
 - Just color the indicators
 - Tomatoes on the left of the first delimiter
 - Bell peppers to the right of the first delimiter
 - Etc...

Large Salad

 What if one ingredient is missing in the original salad, say, bell peppers?

- What if one ingredient is missing in the original salad, say, bell peppers?
- It is fine

- What if one ingredient is missing in the original salad, say, bell peppers?
- It is fine
 - First and second delimiter will be beside each other

- What if one ingredient is missing in the original salad, say, bell peppers?
- It is fine
 - First and second delimiter will be beside each other
- Now to specify the salad, we need to pick three positions among 10 to place the delimiters

- What if one ingredient is missing in the original salad, say, bell peppers?
- It is fine
 - First and second delimiter will be beside each other
- Now to specify the salad, we need to pick three positions among 10 to place the delimiters
- These are combinations! The answer to the problem is 10 choose 3!

- What if one ingredient is missing in the original salad, say, bell peppers?
- It is fine
 - First and second delimiter will be beside each other
- Now to specify the salad, we need to pick three positions among 10 to place the delimiters
- These are combinations! The answer to the problem is 10 choose 3!

$$\binom{10}{3}$$
 = 120

How Did We Get Here

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all four). How many different salads can we make?

How Did We Get Here

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

Main ideas:

Order salad in a convenient way

How Did We Get Here

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

Main ideas:

- Order salad in a convenient way
- Salad is determined by delimiters between the types of ingredients

How Did We Get Here

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

Main ideas:

- Order salad in a convenient way
- Salad is determined by delimiters between the types of ingredients
- Place delimiters in line with the ingredients

How Did We Get Here

Problem

We now have an unlimited supply of tomatoes, bell peppers, lettuce, and eggplant. We want to make a salad out of 7 units among the four ingredients (we don't need to use all three). How many different salads can we make?

Main ideas:

- Order salad in a convenient way
- Salad is determined by delimiters between the types of ingredients
- Place delimiters in line with the ingredients
- Choose place for delimiters in the line

General Case

Combinations with Repetitions

The number of combinations of size k of n objects with

repetitions is equal to:
$$\binom{k+n-1}{n-1}$$

General Case

Combinations with Repetitions

The number of combinations of size k of n objects with repetitions is equal to: $\binom{k+n-1}{n-1}$

• Size of combination (k) = size of salad

General Case

Combinations with Repetitions

The number of combinations of size k of n objects with repetitions is equal to: $\binom{k+n-1}{n-1}$

- Size of combination (k) = size of salad
- Number of objects (n) = number of ingredients

General Case

Combinations with Repetitions

The number of combinations of size k of n objects with repetitions is equal to: $\binom{k+n-1}{n-1}$

- Size of combination (k) = size of salad
- Number of objects (n) = number of ingredients
- The same general argument works

General Case

Combinations with Repetitions

The number of combinations of size k of n objects with repetitions is equal to: $\binom{k+n-1}{n-1}$

- Size of combination (k) = size of salad
- Number of objects (n) = number of ingredients
- The same general argument works
- Why k+n-1 and n-1?

General Case

Combinations with Repetitions

The number of combinations of size *k* of *n* objects with

repetitions is equal to: $\binom{k+n-1}{n-1}$

- Size of combination (k) = size of salad
- Number of objects (n) = number of ingredients
- The same general argument works
- Why k+n-1 and n-1?
 - n ingredients means there will be n-1 delimiter

General Case

Combinations with Repetitions

The number of combinations of size *k* of *n* objects with

repetitions is equal to: $\binom{k+n-1}{n-1} \xrightarrow{i_0} \xrightarrow{3} \xrightarrow{4+3-1} \xrightarrow{2} \xleftarrow{k=9}$

$$\begin{pmatrix} n-1 \end{pmatrix} \rightarrow 3$$

- Size of combination (k) = size of salad
- Number of objects (n) = number of ingredients
- The same general argument works
- Why k+n-1 and n-1?
 - *n* ingredients means there will be n-1 delimiter -n-(-)
 - Choosing (n-1) element in the line of k+(n-1) elements

Standard Settings

Let us consider selection of k-items out of n possible options.

	With Repe <u>titions</u>	Without Repetitions	
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$	
Unordered	???	$\underbrace{\begin{array}{c} \textbf{Combinations} \\ \begin{pmatrix} n \\ k \end{pmatrix} \end{array}}$	k! (n-4) !.

Standard Settings

Let us consider selection of k-items out of n possible options.

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$
Unordered	Combinations w/ repetitions	Combinations $\binom{n}{k}$

Standard Settings

Let us consider selection of k-items out of n possible options.

	With Repetitions	Without Repetitions
Ordered	Tuples n^k	Permutations $\frac{n!}{(n-k)!}$
Unordered	Combinations w/ repetitions $\binom{k+n-1}{n-1}$	Combinations $\binom{n}{k}$

Thank you.