Package 'bifactor'

December 30, 2021

Type Package
Title Exploratory Factor, Bi-factor, and Generalized Bi-factor Modeling
Version 0.1.0
Date 2021-11-22
Description Fit exploratory factor, bi-factor, and Generalized Bi-factor Models.
License GPL-3
LazyData TRUE
Depends R (>= 4.0)
Imports Rcpp, Rcsdp
<pre>URL https://github.com/Marcosjnez/bifactor</pre>
BugReports https://github.com/Marcosjnez/bifactor/issues
Encoding UTF-8
RoxygenNote 7.1.2
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Author Marcos Jimenez [aut, cre, cph], Francisco J. Abad [aut, cph], Eduardo Garcia-Garzon [aut, cph], Luis E. Garrido [aut, cph]
Maintainer Marcos Jimenez <marcosjnezhquez@gmail.com></marcosjnezhquez@gmail.com>
R topics documented:
asymp_cov
bifactor
cv_eigen
efast
parallel
random_oblq

2 asymp_cov

	andom_orth	1
	andom_poblq	2
	etr_oblq	3
	etr_orth	3
	etr_poblq	4
	otate	4
	e	6
	im_factor	
	1	8
Index	2	1

asymp_cov

Asymptotic standard errors for correlation matrices.

Description

Get the asymptotic standard errors of correlation matrices of normal or arbitrary random deviates.

Usage

```
asymp_cov(R, X = NULL, eta = 1, type = "normal")
```

Arguments

R	Correlation matrix.
Χ	Optional raw data matrix.
eta	Skewness parameter for elliptical data distributions.
type	Type of random deviates: "normal", "elliptical" or "general".

Details

If type = "normal", the calculation assumes that the raw data follows a multivariate normal distribution. If type = "elliptical", the calculation assumes that the raw data follows an elliptical distribution with skewness parameter eta. If type = "general", no assumption is made but need to provide the raw data via the X argument.

Value

The asymptotic covariance matrix of R.

References

M.W. Browne and A. Shapiro (1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions. Linear Algebra and its Applications, 82, 169-176. https://doi.org/10.1016/0024-3795(86)90150-3

bifactor 3

	bifactor	Fit an exploratory bi-factor or generalized bi-factor model.
--	----------	--

Description

Fit an exploratory bi-factor or generalized bi-factor model with correlated factors.

Usage

```
bifactor(R, n_generals, n_groups, bifactor_method = "GSLiD", projection = "oblq",
PhiTarget = NULL, PhiWeight = NULL, blocks = NULL, oblq_blocks = NULL,
init_Target = NULL, method = "minres", maxit = 20L,
cutoff = 0, w = 1, random_starts = 1L, cores = 1L, init = NULL,
efa_control = NULL, rot_control = NULL,
SL_first_efa = NULL, SL_second_efa = NULL, verbose = TRUE)
```

Arguments

R	Correlation matrix.
n_generals	Number of general factors to extract.
n_groups	Number of group factors to extract.
bifactor_metho	d
	"GSLiD" and "SL" (Schmid-Leiman) Defaults to "GSLiD".
projection	Projection method. Available projections: "orth" (orthogonal), "oblq" (oblique) and "poblq" (partially oblique). Defaults to "oblq".
PhiTarget	Target matrix for the factor correlations. Defaults to NULL.
PhiWeight	Weight matrix for the factor correlations. Defaults to NULL.
blocks	Vector with the number of factors for which seperately applying the roation criterion. Defaults to NULL.
oblq_blocks	Vector with the number of factors for each oblique block. E.g.: c(2, 4) means that there are two blocks of oblique factors: one block with 2 factors and another block with 4 factors. Everything else is orthogonal. Defaults to NULL.
init_Target	Initial target matrix for the loadings. Defaults to NULL.
method	EFA fitting method: "ml" (maximum likelihood for multivariate normal variable), "minres" (minimum residuals), "pa" (principal axis) or "minrank" (minimum rank). Defaults to "minres".
maxit	Maximum number of iterations for the GSLiD algorithm. Defaults to 20L.
cutoff	Cut-off used to update the target matrix upon each iteration. Defaults to 0.
W	\boldsymbol{w} parameter for the extended target criterion ("xtarget"). Defaults to 1L.
random_starts	Number of rotations with different random starting values. The rotation with the smallest cost function value is returned. Defaults to 1L.
cores	Number of cores for parallel execution of multiple rotations. Defaults to 1L.

4 bifactor

init	Initial uniquenesses values for exploratory factor analysis estimation. Defaults to NULL.
efa_control	List of control parameters for efa fitting. Defaults to NULL.
rot_control	List of control parameters for the rotation algorithm. Defaults to NULL.
SL_first_efa	List of arguments to pass to efast to perform the first-order solution for the Schmid-Leiman method. Defaults to NULL.
SL_second_efa	List of arguments to pass to efast to perform the second-order solution for the Schmid-Leiman method. Defaults to NULL.
verbose	Print the convergence progress information. Defaults to TRUE.

Details

If efa.control = NULL, then list(maxit = 1e4) is passed to efa.control. If rot_control = NULL, then list(maxit = 1000, eps = 1e-05) is passed to rot_control, where eps is the absolute tolerance. When the objective function does not make a larger improvement than eps, the algorithm is assumed to converge.

If Target is provided but not Weight, then Weight = 1 - Target by default, which means a partially specified target rotation is performed. The same applies for PhiTarget and PhiWeight.

If init = NULL, then the squared multiple correlations of each item with the remaining ones are used as initial values (These are known to be upper bounds).

If init_Target is provided, then an initial target by means of the Schmid-Leiman transformation is not necessary.

If cutoff is not 0, loadings smaller than such a cut-off are fixed to 0. When cutoff = 0, an empirical cut-off is used for each column of the loading matrix. They are the mean of the one-lagged differences of the sorted squared normalized loadings. Then, the target is determined by fixing to 0 the squared normalized loadings smaller than such cut-offs.

Value

List of class bifactor.

efa List containing objects related to the exploratory factor analysis estimation. See

efast.

bifactor List with the following components:

• loadings - Rotated loading matrix.

- Phi Factor correlation matrix.
- T Transformation matrix.
- f Objective value at the minimum.
- iterations Number of iterations performed by the rotation algorithm.
- convergence Convergence of the rotation algorithm.
- uniquenesses Vector of uniquenesses.
- Rhat Correlation matrix predicted by the model.
- Target Updated target matrix.

cv_eigen 5

- Weight Weight matrix. It is the complement of the updated target.
- GSLiD_iterations Number of iterations performed by the GSLiD algorithm.
- GSLiD_convergence Convergence of the GSLiD algorithm.
- min_congruences Vector containing, for each iteration, the minimum Tucker's congruence between the current loading matrix and the previous loading matrix.
- max_abs_diffs Vector containing, for each iteration, the maximum absolute difference between the current loading matrix and the previous loading matrix.

elapsed

Total amount of time spent for execution (in nanoseconds).

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

Examples

```
## Not run: # Simulate data:
sim <- sim_factor(n_generals = 3, groups_per_general = 5, items_per_group = 6,
generals_rho = 0.3)
scores <- MASS::mvrnorm(1e4, rep(0, nrow(sim$R)), Sigma = sim$R)
s <- cor(scores)

# Fit an Generalized exploratory bi-factor model with GSLiD:
GSLiD <- bifactor(s, n_generals = 3, n_groups = 15, method = "minres",
projection = "poblq", bifactor_method = "GSLiD", oblq_blocks = 3,
random_starts = 10, cores = 8, w = 1, maxit = 20, verbose = TRUE)

## End(Not run)</pre>
```

cv_eigen

Cross-validated eigenvalues.

Description

Estimate cross-validated eigenvalues and the dimensionality using the Kaiser's rule.

Usage

```
cv_eigen(X, N = 100L, hierarchical = FALSE, efa = NULL, cores = 1L)
```

6 efast

Arguments

X Raw data matrix.

N Number of cross-validated samples.

hierarchical Logical indicating whether a second cross-validated eigenvalues estimation should

be performed from the factor scores obtained after a first factor analysis analysis.

efa A list of arguments to pass to efast when hierarchical = TRUE.

cores Number of cores to perform parallel computations.

Details

None yet.

Value

A list with the cross-validated eigenvalues and the estimated dimensionality.

References

Chen F., Roch S., Rohe K., Yu S (2021). Estimating Graph Dimension with Cross-validated Eigenvalues, arXiv. https://arxiv.org/abs/2108.03336

efast

Fast exploratory factor analysis.

Description

Fast exploratory factor analysis.

Usage

```
efast(R, n_factors, method = "minres",
rotation = "oblimin", projection = "oblq",
Target = NULL, Weight = NULL, PhiTarget = NULL, PhiWeight = NULL,
blocks = NULL, oblq_blocks = NULL, normalize = FALSE, gamma = 0,
epsilon = 1e-02, k = 0, w = 1, random_starts = 1L, cores = 1L,
init = NULL, efa_control = NULL, rot_control = NULL)
```

Arguments

R Correlation matrix.

n_factors Number of common factors to extract.

method EFA fitting method: "ml" (maximum likelihood for multivariate normal vari-

ables), "minres" (minimum residuals), "pa" (principal axis) and "minrank" (min-

imum rank). Defaults to "minres".

7 efast

Rotation criterion. Available rotations: "varimax", "cf" (Crawford-Ferguson), rotation "oblimin", "geomin", "target", "xtarget" (extended target) and "none". Defaults

to "oblimin".

Projection method. Available projections: "orth" (orthogonal), "oblq" (oblique), projection

"poblg" (partially oblique). Defaults to "oblg".

Target matrix for the loadings. Defaults to NULL. Target Weight Weight matrix for the loadings. Defaults to NULL.

PhiTarget Target matrix for the factor correlations. Defaults to NULL.

Weight matrix for the factor correlations. Defaults to NULL. Vector with the number of factors for which seperately applying the roation blocks

criterion. Defaults to NULL.

oblq_blocks Vector with the number of factors for each oblique block. E.g.: c(2, 4) means

that there are two blocks of oblique factors: one block with 2 factors and another

block with 4 factors. Everything else is orthogonal. Defaults to NULL.

normalize Kaiser normalization. Defaults to FALSE.

 γ parameter for the oblimin criterion. Defaults to 0 (quartimin). gamma

epsilon ϵ parameter for the geomin criterion. Defaults to 0.01.

k parameter for the Crawford-Ferguson family of rotation criteria. Defaults to k

w parameter for the extended target criterion ("xtarget"). Defaults to 1L.

random_starts Number of rotations with different random starting values. The rotation with the

smallest cost function value is returned. Defaults to 1L.

Number of cores for parallel execution of random starts. Defaults to 1L. cores

Initial uniquenesses values for exploratory factor analysis estimation. Defaults init

to NULL.

List of control parameters for efa fitting. Defaults to NULL. efa_control

rot_control List of control parameters for the rotation algorithm. Defaults to NULL.

Details

PhiWeight

If efa.control = NULL, then list(maxit = 1e4) is passed to efa.control. If rot_control = NULL, then list(maxit = 1000, eps = 1e-05) is passed to rot_control, where eps is the absolute tolerance. When the objective function does not make a larger improvement than eps, the algorithm is assumed to converge.

If Target is provided but not Weight, then Weight = 1 -Target by default, which means a partially specified target rotation is performed. The same applies for PhiTarget and PhiWeight.

If init = NULL, then the squared multiple correlations of each item with the remaining ones are used as initial values (These are known to be upper bounds).

If a Heywood case is encountered, then method = "minrank" is automatically applied to ensure positive uniquenesses.

8 efast

Value

List of class efast with the following components:

efa List containing the following objects:

- loadings Unrotated loadings.
- uniquenesses Vector of uniquenesses.
- Rhat Correlation matrix predicted by the model.
- residuals Residual correlation matrix.
- f Objective value at the minimum.
- Heywood TRUE if any Heywood case is encountered and FALSE otherwise.
- iterations Number of iterations for the L-BFGS-B algorithm to converge.
- convergence TRUE if the L-BFGS-B algorithm converged and FALSE otherwise.
- method Method used to fit the exploratory factor analysis.

rotation List of class rotation. Only if the argument rotation is not "none". See rotate for the components.

elapsed Total amount spent for execution (in nanoseconds).

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

Examples

```
## Not run:
# Simulate data:
sim <- sim_factor(n_generals = 2, groups_per_general = 5, items_per_group = 6)
scores <- MASS::mvrnorm(1e3, rep(0, nrow(sim$R)), Sigma = sim$R)
s <- cor(scores)

# Fit efa:
efa <- efast(s, n_factors = 12, method = "minres", rotation = "oblimin",
projection = "oblq", gamma = 0, random_starts = 10L, cores = 1L)
## End(Not run)</pre>
```

get_target 9

get_target	Get a target from a loading matrix.	

Description

Get a target for the loading matrix using a custom or empirical cut-off.

Usage

```
get_target(loadings, Phi = NULL, cutoff = 0)
```

Arguments

loadings A matrix of loadings.

Phi A correlation matrix among the factors. Defaults to NULL.

cutoff The cut-off used to create the target matrix. Defaults to 0.

Details

If cutoff is not 0, loadings smaller than such a cut-off are fixed to 0. When cutoff = 0, an empirical cut-off is used for each column of the loading matrix. They are the mean of the one-lagged differences of the sorted squared normalized loadings. Then, the target is determined by fixing to 0 the squared normalized loadings smaller than such cut-offs.

Value

A target matrix.

References

Garcia-Garzon, E., Abad, F. J., & Garrido, L. E. (2019). Improving bi-factor exploratory modeling: Empirical target rotation based on loading differences. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 15(2), 45–55. https://doi.org/10.1027/1614-2241/a000163

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

10 parallel

parallel	Hierarchical parallel analysis using either principal components
paratter	
	(PCA) or principal axis factoring (PAF).

Description

Perform hierarchical parallel analysis to detect dimensionality using either principal components or principal axis factoring.

Usage

```
parallel(X, n_boot = 100L, quant = NULL, mean = TRUE, replace = FALSE,
PA = NULL, hierarchical = FALSE, efa = NULL, cores = 1L)
```

Arguments

Χ	Raw data matrix.
n_boot	Number of bootstrap samples.
quant	Vector of quantiles of the distribution of bootstrap eigenvalues to which the compare the sample eigenvalues.
mean	Logical. Compare the sample eigenvalues to the mean of the bootstrap eigenvalues. Defaults to TRUE.
replace	Logical indicating whether the columns of \boldsymbol{X} should be permuted with replacement.
PA	Parallel analysis method. It can be either principal components ("PCA"), principal axis ("PAF") or both ("PCA" and "PAF"). Defaults to NULL, which sets $c("PCA", "PAF")$.
hierarchical	Logical indicating whether a second parallel analysis should be performed from the factor scores obtained after a first factor analysis analysis.
efa	A list of arguments to pass to efast when hierarchical = TRUE.
cores	Number of cores to perform the parallel bootstrapping.

Details

Not yet.

Value

A list with the bootstrapped eigenvalues and the estimated dimensionality.

References

Horn, J. L. (1965). A Rationale and Test For the Number of Factors in Factor Analysis, Psychometrika, 30, 179-85. https://doi.org/10.1007/BF02289447

random_oblq 11

random_oblq

Generate random oblique matrices.

Description

Generate random oblique matrices from a standard normal distribution.

Usage

```
random_oblq(p, q)
```

Arguments

p Number of rows.

q Number of columns. Should not be greater than p.

Value

An oblique matrix with normally distributed data.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

random_orth

Generate random orthogonal matrices.

Description

Generate random orthogonal matrices from a standard normal distribution. First, a matrix of random standard normal variables is simulated and then, the Q factor from the QR decomposition is returned.

Usage

```
random_orth(p, q)
```

Arguments

p Number of rows.

q Number of columns. Should not be greater than p.

Value

An orthogonal matrix with normally distributed data.

random_poblq

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

random_poblq

Generate a random partially oblique matrix.

Description

First, a matrix is simulated from a standard normal distribution. Second, the matrix is normalized and the Gram-Schmidt process is performed between the oblique blocks. Finally, the orthogonal blocks correspond to those columns of the Q matrix from the QR decomposition.

Usage

```
random_poblq(p, q, oblq_blocks)
```

Arguments

p Number of rows.

q Number of columns. Should not be greater than p.

oblq_blocks A vector with the number of factors for each oblique block. E.g.: c(2, 4) means

that there are two blocks of oblique factors: one with 2 factors and another with

4 factors. Everything else is orthogonal.

Value

A partially oblique matrix.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

Examples

```
random_poblq(p = 7, q = 7, oblq_blocks = c(3, 2))
```

retr_oblq 13

retr_oblq

Retraction of a matrix onto the oblique manifold.

Description

Transform a matrix into an oblique matrix.

Usage

```
retr_oblq(X)
```

Arguments

Χ

A matrix.

Value

An oblique matrix.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

retr_orth

Retraction of a matrix onto the orthogonal manifold.

Description

Transform a matrix into an orthogonal matrix.

Usage

```
retr_orth(X)
```

Arguments

Χ

A matrix.

Value

An orthogonal matrix.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

14 rotate

retr_poblq

Retraction of a matrix onto the partially oblique manifold.

Description

Transform a matrix into a partially oblique matrix.

Usage

```
retr_poblq(X, oblq_blocks)
```

Arguments

X A matrix.

oblq_blocks

A vector with the number of factors for each oblique block. E.g.: c(2, 4) means that there are two blocks of oblique factors: one with 2 factors and another with 4 factors. Everything else is orthogonal.

Value

A partially oblique matrix.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

Examples

```
X <- replicate(8, rnorm(8))
retr_poblq(X, c(2, 3, 3))</pre>
```

rotate

Fast rotation algorithm for factor analysis.

Description

Riemannian Newton Trust-Region algorithm to quickly perform (parallel) rotations with different random starting values.

Usage

```
rotate(loadings, rotation = "oblimin", projection = "oblq",
Target = NULL, Weight = NULL, PhiTarget = NULL, PhiWeight = NULL,
blocks = NULL, oblq_blocks = NULL, gamma = 0, epsilon = 0.01, k = 0, w = 1,
random_starts = 1L, cores = 1L, rot_control = NULL)
```

rotate 15

Arguments

loadings Unrotated loading matrix.

rotation Rotation criterion. Available rotations: "varimax", "cf" (Crawford-Ferguson),

"oblimin", "geomin", "target", "xtarget" (extended target) and "none". Defaults

to "oblimin".

projection Projection method. Available projections: "orth" (orthogonal), "oblq" (oblique),

"poblq" (partially oblique). Defaults to "oblq".

Target Target matrix for the loadings. Defaults to NULL.

Weight Weight matrix for the loadings. Defaults to NULL.

PhiTarget Target matrix for the factor correlations. Defaults to NULL.

PhiWeight Weight matrix for the factor correlations. Defaults to NULL.

blocks Vector with the number of factors for which seperately applying the roation

criterion. Defaults to NULL.

oblq_blocks Vector with the number of factors for each oblique block. E.g.: c(2, 4) means

that there are two blocks of oblique factors: one block with 2 factors and another

block with 4 factors. Everything else is orthogonal. Defaults to NULL.

gamma γ parameter for the oblimin criterion. Defaults to 0 (quartimin).

epsilon ϵ parameter for the geomin criterion. Defaults to 0.01.

k parameter for the Crawford-Ferguson family of rotation criteria. Defaults to

0.

w parameter for the extended target criterion ("xtarget"). Defaults to 1.

random_starts Number of rotations with different random starting values. The rotation with the

smallest cost function value is returned. Defaults to 1L.

cores Number of cores for parallel execution of random starts. Defaults to 1L. rot_control List of control parameters for the rotation algorithm. Defaults to NULL.

Details

If rot_control = NULL, then list(maxit = 1000, eps = 1e-05) is passed to rot_control, where eps is the absolute tolerance. When the objective function does not make a larger improvement than eps, the algorithm is assumed to converge. If Target is provided but not Weight, then Weight = 1 -Target by default, which means a partially specified target rotation is performed. The same applies for PhiTarget and PhiWeight.

Value

List of class rotation with the following components:

loadings Rotated loading matrix.

Phi Correlation matrix among the factors.

T Rotation matrix.

f Objective value at the minimum.

iterations Number of iterations for the rotation algorithm to converge.

Convergence TRUE if the algorithm converged and FALSE otherwise.

elapsed Total amount of time spent for execution (in nanoseconds).

16 se

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64 Zhang, G., Hattori, M., Trichtinger, L. A., & Wang, X. (2019). Target rotation with both factor loadings and factor correlations. Psychological Methods, 24(3), 390–402. https://doi.org/10.1037/met0000198

se Standard errors for rotated factor loadings, factor correlations and uniquenesses.

Description

Compute the sandwich standard errors of factor loadings, factor correlations and uniquenesses.

Usage

```
se(n, fit = NULL, R = NULL, Lambda = NULL, Phi = NULL, X = NULL,
method = "minres", projection = "oblq", rotation = "oblimin",
Target = NULL, Weight = NULL, PhiTarget = NULL, PhiWeight = NULL,
gamma = 0, k = 0, epsilon = 0.01, w = 1, type = "normal", eta = 1)
```

Arguments

n	Sample size.
fit	Optional efast model.
R	Correlation matrix.
Lambda	Estimated factor loadings.
Phi	Estimated factor correlations.
Χ	Raw data matrix.
method	Method used to estimate the factor model: "minres", "pa", "ml", or "minres".
projection	Projection used to rotate the factor loadings: "orth", "oblq" or "poblq".
rotation	Rotation criterion. Available rotations: "varimax", "cf" (Crawford-Ferguson), "oblimin", "geomin", "target", "xtarget" (extended target) and "none". Defaults to "oblimin".
Target	Target matrix for the loadings. Defaults to NULL.
Weight	Weight matrix for the loadings. Defaults to NULL.
PhiTarget	Target matrix for the factor correlations. Defaults to NULL.
PhiWeight	Weight matrix for the factor correlations. Defaults to NULL.
gamma	γ parameter for the oblimin criterion. Defaults to 0 (quartimin).
k	\boldsymbol{k} parameter for the Crawford-Ferguson family of rotation criteria. Defaults to 0.
epsilon	ϵ parameter for the geomin criterion. Defaults to 0.01.
W	\boldsymbol{w} parameter for the extended target criterion ("xtarget"). Defaults to 1L.
type	Type of random deviates: "normal", "elliptical" or "general".
eta	Skewness parameter for elliptical data distributions.

sim_factor 17

Details

Currently, only available for method = minres.

Value

A list with the standard errors of the rotated factor loadings, factor correlations and uniquenesses.

References

Zhang G, Preacher KJ, Hattori M, Jiang G, Trichtinger LA (2019). A sandwich standard error estimator for exploratory factor analysis with nonnormal data and imperfect models. Applied Psychological Measurement, 43, 360–373. https://doi.org/10.1177/0146621618798669

sim_factor

Simulate a bi-factor or generalized bifactor population structure.

Description

Simulate a bi-factor or generalized bifactor population structure with cross-loading, pure items and correlated factors.

Usage

```
sim_factor(n_generals, groups_per_general, items_per_group,
loadings_g = "medium", loadings_s = "medium",
crossloadings = 0, pure = FALSE,
generals_rho = 0, groups_rho = 0, confirmatory = TRUE,
method = "minres", fit = "rmsr", misfit = 0)
```

Arguments

n_generals Number of general factors.

groups_per_general

Number of group factors per general factor.

items_per_group

Number of items per group factor.

loadings_g Loadings' magnitude on the general factors: "low", "medium" or "high". De-

faults to "medium".

loadings_s Loadings' magnitude on the group factors: "low", "medium" or "high". Defaults

to "medium".

crossloadings Magnitude of the cross-loadings among the group factors. Defaults to 0.

pure Fix a pure item on each general factor. Defaults to FALSE.

generals_rho Correlation among the general factors. Defaults to 0. groups_rho Correlation among the group factors. Defaults to 0.

18 sl

confirmatory Logical. Should the misfit value be computed according to a confirmatory model

(TRUE) or an exploratory model (FALSE). Defaults to TRUE.

method Method used to generate population error: "minres" or "ml".

fit Fit index to control the population error.
misfit Misfit value to generate population error.

Details

sim_factor generates bi-factor and generalized bifactor patterns with cross-loadings, pure items and correlations among the general and group factors. When crossloading is different than 0, one cross-loading is introduced for an item pertaining to each group factor. When pure is TRUE, one item loading of each group factor is removed so that the item loads entirely on the general factor. To maintain the item communalities constant upon these modifications, the item loading on the other factors may shrunk (if adding cross-loadings) or increase (if setting pure items).

Loading magnitudes may range between 0.3-0.5 ("low"), 0.4-0.6 ("medium") and 0.5-0.7 ("high").

Value

List with the following objects:

lambda Population loading matrix.

Phi Population factor correlation matrix.

R Population correlation matrix.

R_error Population correlation matrix with error.

uniquenesses Vector of population uniquenesses.

delta Minimum of the objective function that correspond to the misfit value.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Exploratory generalized bifactor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

sl Schmid-Leiman Transformation.

Description

Schmid-Leiman transformation into a bi-factor or generalized bi-factor pattern.

Usage

```
sl(R, n_generals, n_groups, first_efa = NULL, second_efa = NULL)
```

sl 19

Arguments

R Correlation matrix.

n_generalsn_groupsNumber of general factors.Number of group factors.

first_efa Arguments to pass to efast in the first-order factor extraction. See efast for

the default arguments.

second_efa Arguments to pass to efast in the second-order factor extraction. See efast for

the default arguments.

Details

First, a hierarchical factor model is fitted using a second-order factor analysis on the factor correlation obtained from a first-order factor analysis. Then, the item loadings on the general factors are assumed to be the direct effects of the general factors according to such hierarchical model. On the other hand, the item loadings on the group factors become the originally first-order loadings post-multiplied by the diagonal matrix containing the root of the item uniquenesses.

Obviously, the first-order factor analysis should be oblique to perform a second exploratory factor analysis.

If the second-order solution does not use an orthogonal projection, then the correlation matrix among the general factors for the Schmid-Leiman solution is simply that obtained from such second-order solution.

Value

loadings Loading matrix of the Schmid-Leiman solution.

first_order_solution

Object of class efast with the first-order solution.

second_order_solution

Object of class efast with the second-order solution.

uniquenesses Vector of uniquenesses.

Rhat Correlation matrix predicted by the (hierarchical) model.

References

Jiménez, M., Abad, F.J., Garcia-Garzon, E., Garrido, L.E. (2021, June 24). Generalized exploratory bi-factor Modeling. Under review. Retrieved from https://osf.io/7aszj/?view_only=8f7bd98025104347a96f60a6736f5a64

Examples

```
## Not run:
# Simulate data:
sim <- sim_factor(n_generals = 2, groups_per_general = 3, items_per_group = 5)
lambda <- sim$lambda
Target <- ifelse(lambda > 0, 1, 0)
# Target rotation for the first-order efa and oblimin for the second-order efa:
```

20 sl

```
first <- list(rotation = "target", projection = "oblq", Target = Target)
second <- list(rotation = "oblimin", projection = "oblq", gamma = 0)

SL <- sl(sim$R, n_generals = 2, n_groups = 6, first, second)
## End(Not run)</pre>
```

Index

```
\texttt{asymp\_cov}, \textcolor{red}{2}
bifactor, 3
cv_eigen, 5
efast, 6
get_target, 9
parallel, 10
\verb"random_oblq, 11"
random\_orth, 11
random\_poblq, 12
retr_oblq, 13
retr_orth, 13
retr_poblq, 14
rotate, 14
se, 16
sim\_factor, 17
sl, 18
```