4. Знайти за визначенням множину ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_2 \to \max, x_1 + x_2 \le 5, 4x_1 + x_2 \le 0, x_1 - 4x_2 \le 0, x_{12} \ge 0.$$

5. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \rightarrow \max, \ x_1 + 4x_2 \rightarrow \max, \ 3x_1 + x_2 \le 9, \ x_1 + 3x_2 \le 9, \ x_1 + x_2 \le 4, \ x_{1,2} \ge 0.$$

6. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \rightarrow \max, x_2 \rightarrow \max, x_1 + x_2 \le 5, -2x_1 + x_2 \le -1, x_1 - x_2 \le 3, x_{1,2} \ge 0.$$

7. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, \quad x_1 + 2x_2 \to \max, \quad x_1 + 2x_2 \le 2, \ 3x_1 - 2x_2 \le 6, \ x_{1,2} \ge 0.$$

8. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_2 \to \max, 2x_1^2 + x_2^2 \le 4, x_{1,2} \ge 0$$
.

9. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_1 + x_2 \to \max, x_1^2 + 2x_2^2 \le 4, x_{1,2} \ge 0.$$

10. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \to \max, x_2 \to \max, x_1^2 + x_2^2 \le 1, x_{1,2} \ge 0.$$

§ 2. Умови оптимальності

У цьому розділі встановлюються умови оптимальності [10] без будьяких істотних припущень щодо структури множини альтернатив X і властивостей заданої на ній вектор-функції критеріїв $f = (f_1, ... f_m)$. Для простоти й наочності викладення будемо розглядати умови оптимальності стосовно до оцінок альтернатив, маючи на увазі, що отримані результати легко переносяться і на самі альтернативи.

Теорема 4.2.1. (умови слабкої ефективності оцінок (Гермейєр)). Припустимо, що $y^0 > 0$. Оцінка $y^0 \in$ слабко ефективною тоді й тільки тоді,

коли існує вектор
$$\mu \in M^+ = \left\{ \mu = (\mu_i)_{i \in M} \middle| \sum_{i \in M} \mu_i = 1; \quad \mu_i > 0, \quad i \in M \right\}$$
 такий, що:
$$\min_{i \in M} \mu_i y_i^0 = \max_{y \in Y} \min_{i \in M} \mu_i y_i. \tag{4.2.1}$$

Для слабко ефективної оцінки $y^0 \in Y$ можна прийняти $\mu = \mu^0 \in M^+$, де μ^0 – вектор з компонентами

$$\mu_i^0 = \lambda^0 / y_i^0, \quad i \in M; \quad \lambda^0 = 1 / \sum_{k \in M} \frac{1}{y_k^0},$$
(4.2.2)

і тоді $\max_{y \in Y} \min_{i \in M} \mu_i^0 y_i = \lambda^0$.

Доведення. Достатність. Із рівності (4.2.1) випливає, що для кожного $y \in Y$ існує номер $i \in M$ такий, що $y_i^0 \ge y_i$. Тому $\neg \exists y \in Y : y >> y^0$. Звідси y^0 є слабко ефективною оцінкою.

Доведемо необхідність. Для цього візьмемо вектор із компонентами, які визначені формулами (4.2.2). Відмітимо, що $\mu^0 \in M^+$. З $y^0 \in S(Y)$ випливає, що для кожного $y \in Y$ існує $j \in M$, при якому виконується нерівність $y^0_j \geq y_j$, а, отже, і нерівність $\mu^0_j y^0_j \geq \mu^0_j y_j$. Оскільки $\mu^0_j y^0_j = \lambda^0 = \sqrt{\sum_{i \in M} \frac{1}{y^0_i}} = \mathrm{const}$, то $\forall y \in Y$ $\min_{i \in M} \mu^0_i y^0_i \geq \min_{i \in M} \mu^0_i y_i$. Звідси

випливає (4.2.1). ♦

Із рис. 4.2.1 бачимо, що $y^0 \in S(Y)$ тоді і тільки тоді, коли у внутрішність ортанта $E^m_{\geq 0}$, зсунутого у точку y^0 , не потрапляє жодна точка з Y.

Рис. 4.2.1

Оскільки гіперповерхня $\min_{i\in M}\mu_iy_i=\lambda$ при $\lambda=0$ і додатних μ_i представляє собою границю цього ортанта, зсув якого в y^0 можна здійснити присвоєнням відповідних значень параметрам μ_i і λ , то з'являється можливість сформульований геометричний факт виразити в термінах функції $\min_{i\in M}\mu_iy_i$. Ця можливість і реалізована в теоремі.

Приклад 1. Побудувати слабко-ефективні альтернативи за теоремою Гермейєра для такої двокритеріальної задачі:

$$2x_1 + x_2 \rightarrow \max,$$

 $x_1 + 2x_2 \rightarrow \max,$
 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

На рис. 4.2.2 зображена множина альтернатив X; лінії рівнів першого й другого критеріїв, відповідно (1), (2); x', x'' – найкращі відповідно за першим і другим критерієм альтернативи.

Рис. 4.2.2

За визначенням можна встановити, що множиною слабко ефективних альтернатив буде відрізок [x',x'']. Спробуємо побудувати якісь слабко ефективні альтернативи. За теоремою Гермейєра для того,

щоб альтернатива x^* була слабко ефективною альтернативою, необхідно й достатньо:

$$\exists \mu \in \mathbf{M}^+ = \left\{ \mu = (\mu_1, ..., \mu_n) : \mu_i > 0, \ i = \overline{1, m}, \ \sum_{i=1}^m \mu_i = 1 \right\}$$

і тоді альтернатива x^* буде розв'язком такої параметричної задачі: $\max_{x \in X} \min_{i=1,m} \mu_i f_i(x)$.

Для нашого прикладу ця задача матиме такий вигляд:

$$F(x,\mu) = \min\{\mu_1(2x_1 + x_2), \mu_2(x_1 + 2x_2)\} \rightarrow \max,$$

 $x_1 + x_2 \le 5, \quad 0 \le x_{1,2} \le 4.$

Зафіксуємо вектор параметрів $\mu=(\mu_1,\mu_2)\in M^+$, наприклад, нехай $\mu_1=\mu_2=\frac{1}{2}$, і розв'яжемо графічно параметричну задачу. Для цього побудуємо лінію рівня її цільової функції. Наприклад, сталому значенню функції 2 буде відповідати множина векторів $x=(x_1,x_2)$, задана рівнянням: $F(x,(0,5,0,5))=\min\{0,5(2x_1+x_2),0,5(x_1+2x_2)\}=2$.

Для побудови цієї множини розглянемо такі випадки: якщо $x_1+\frac{1}{2}x_2<\frac{1}{2}x_1+x_2 \Rightarrow x_1< x_2$ (півплощина, що знаходиться над бісектрисою прямого кута), то рівняння набуде вигляду: $2x_1+x_2=4$; якщо $x_1+\frac{1}{2}x_2\geq \frac{1}{2}x_1+x_2 \Rightarrow x_1\geq x_2$ (півплощина, що знаходиться під бісектрисою прямого кута), то рівняння набуде вигляду: $x_1+2x_2=4$. На рис. 2.3 можна побачити лінію рівня цільової функції параметричної задачі, яка має вигляд кута, вершина якого знаходиться в точці x на прямій $x_1=x_2$, що задається умовою рівності аргументів функції $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а бокові сторони цього кута паралельні лініям

рівня відповідних критеріїв (1) і (2). Для того, щоб побачити, куди є спрямованим субградієнт функції (використовуємо поняття субградієнта, оскільки $F(x,\mu)$ є недиференційованою функцією), візьмемо більший її рівень, наприклад, 3,75, і побудуємо лінію цього рівня. У цьому випадку отримаємо: якщо $x_1 < x_2$, то $2x_1 + x_2 = 7,5$; а якщо $x_1 \ge x_2$, то $x_1 + 2x_2 = 7,5$.

Із рис. 4.2.3 бачимо, що лінія рівня 3,75 цільової функції параметричної задачі також матиме вигляд кута, вершина якого знаходиться

вже в точці x^* і також на прямій $x_1 = x_2$, що задається умовою рівності аргументів функції $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а бокові сторони цього кута також паралельні лініям рівня відповідних критеріїв (1) і (2). Цей рівень 3,75 і буде максимальним значенням $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а точка $x^* = (2,5,\ 2,5)$ буде оптимальним розв'язком параметричної задачі і за теоремою Гермейєра слабко-ефективною альтернативою початкової двокритеріальної задачі.

Спробуємо тепер поміняти вектор параметрів $\mu = (\mu_1, \mu_2) \in M^+$ на інший, наприклад, $\mu_1 = \frac{3}{7}$, $\mu_2 = \frac{4}{7}$, і подивимось, яку слабкоефективну альтернативу отримаємо в цьому випадку.

Цільова функція параметричної задачі тепер матиме вигляд:

$$F\left(x,\left(\frac{3}{7},\frac{4}{7}\right)\right) = \min\left\{\frac{3}{7}(2x_1 + x_2), \frac{4}{7}(x_1 + 2x_2)\right\}.$$

На рис. 4.2.5 бачимо лінії рівнів $\frac{90}{49}$ і $\frac{180}{49}$ цієї функції, які утворюють кути, вершини яких x і x^* знаходяться на прямій $2x_1 = 5x_2$,

яка визначається умовою рівності аргументів функції $F\left(x,\left(\frac{3}{7},\frac{4}{7}\right)\right)$, а бокові сторони паралельні лініям рівня відповідних критеріїв початкової двокритеріальної задачі. Рівень $\frac{180}{49}$ буде максимальним значенням функції, а точка $x^* = \left(\frac{25}{7},\frac{10}{7}\right)$ буде оптимальним розв'язком параметричної задачі і за теоремою Гермейєра слабко-ефективною альтернативою початкової дво-критеріальної задачі. Якщо порівняти випадки задання різних параметрів $\mu = (\mu_1,\mu_2) \in M^+$, то можна підтвердити висновок теореми Гермейєра, що таким чином можна отримати будь-яку слабко-ефективну альтернативу цієї задачі.

Рис. 4.2.5

Теорема 4.2.2. (умова ефективності оцінок (Подіновський)). Оцінка y^0 ефективна тоді і тільки тоді, коли для кожного $i \in M$

$$y_i^0 = \max_{y \in Y^i} y_i, (4.2.3)$$

де

$$Y^{i} = \left\{ y \in Y \middle| y_{j} \ge y_{j}^{0}, \ j \in M; \ j \ne i \right\}. \tag{4.2.4}$$

Якщо $y^0 \in Y$ ефективна, то вона є єдиною в Y точкою, що задовольняє (4.2.3) при кожному $i \in M$.

Доведення. Доведемо достатність. Нехай $y_i^0 = \max_{y \in Y^i} y_i$. Припустимо супротивне, що $y^0 \notin P(Y)$. Тоді знайдеться така оцінка $y \in Y$, що $y_i \geq y_i^0$, $\forall i \in M$; $\exists j \in M : y_j > y_j^0$. Таким чином, $y \in Y^i$, $y_i > y_i^0$. Звідси випливає, що $y_i^0 < \max_{u \in Y^i} y_i$. Одержали суперечність.

Доведемо необхідність. Нехай $y^0 \in P(Y)$. Побудуємо множини Y^i , $\forall i \in M$, за умовами (4.2.4). Помітимо, що $Y^i \neq \emptyset$, $\forall i \in M$. Припустимо супротивне, що $\exists i \in M: y_i^0 < \max_{y \in Y^i} y_i$. Тоді для оцінки $y^* \in Y^i$, $y_i^* = \max_{y \in Y^i} y_i$ маємо $y_j^* \geq y_j^0$, $\forall j \in M; \ y_i^* > y_i^0$. Звідси, за означенням ефективної оцінки, одержимо $y^0 \notin P(Y)$.

Варто зауважити, що досить неконструктивну умову (4.2.3) теореми Подіновського можна значно послабити, якщо множина оцінок задачі буде строго опуклою. Цей факт у термінах альтернатив формалізує така теорема.

Теорема 4.2.3. Нехай множина альтернатив $X \in \text{опуклою}$, а $f(x) \in \text{строго увігнутою вектор-функцією}$. Для ефективності альтернативи x^* необхідно й достатньо, щоб існував вектор $\mu \geq 0$, при якому

$$\langle \mu, f(x^*) \rangle = \max_{x \in X} \langle \mu, f(x) \rangle.$$

Приклад 5. Побудувати ефективні альтернативи за теоремою Подіновського для такої двокритеріальної задачі:

$$x_1 + 2x_2 \rightarrow \max,$$

 $3x_1 + x_2 \rightarrow \max,$
 $x_1 + x_2 \le 4, \quad 3x_1 + x_2 \le 9, \quad x_{1,2} \ge 0.$

На рис. 4.2.6 зображена множина альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1) і (2); x', [x'', x'''] – найкращі відповідно за першим й другим критерієм задачі альтернативи (через [x'', x'''] позначений відрізок прямої $3x_1 + x_2 = 6$ між точками x'', x'''). За визначенням можна встановити, що множиною ефективних альтернатив буде відрізок [x', x''] прямої $x_1 + x_2 = 5$. Побудуємо ефективні альтернативи за теоремою Подіновського. Запишемо параметричну задачу для деякого $i = \overline{1, m}$:

$$f_i(x) \to \max$$

$$f_j(x) \ge \xi_j, \ j = \overline{1, m}, j \ne i,$$
 $x \in X,$

де $\xi_j \in \left[d_j, h_j\right], \ d_j = \min_{\mathbf{x} \in X} f_j\left(\mathbf{x}\right), \ h_j = \max_{\mathbf{x} \in X} f_j\left(\mathbf{x}\right), \ j = \overline{1,m}$.

Рис. 4.2.6

При i = 1 ця задача набуде такого вигляду:

$$x_1 + 2x_2 \to \max,$$

 $x_1 + 3x_2 \ge \xi_2, \quad \xi_2 \in [0, 9],$
 $x \in X.$

Зафіксуємо значення параметра $\xi_2=6$. Із рис. 4.2.7 бачимо, що ξ_2 буде відповідати оптимальному розв'язку параметричної задачі $x^*=(1,\ 3)$, який буде ефективною альтернативою початкової двокритеріальної задачі. Вибираючи інші значення параметра $\xi_2\in[0,\ 9]$, можемо отримати будь-яку ефективну альтернативу. Нехай тепер i=2, тоді параметрична задача набуде такого вигляду:

$$3x_1 + x_2 \to \max,$$

 $x_1 + 2x_2 \ge \xi_1, \quad \xi_1 \in [0, 8],$
 $x \in X.$

Рис. 4.2.7

Зафіксуємо значення параметра $\xi_1 = 6$. Із рис. 4.2.8 бачимо, що цьому значенню параметра буде відповідати оптимальний розв'язок параметричної задачі $x^* = (2, 2)$, який буде ефективною альтернативою початкової двокритеріальної задачі. Вибираючи інші значення параметра $\xi_1 \in [5,5,8]$, можемо отримати будь-яку ефективну альтернативу. Але при значеннях параметра $\xi_1 \in [0, 5, 5)$, розв'язок параметричної задачі не буде єдиним і серед них, окрім ефективної альтернативи x'', будуть і слабко ефективні. Із цієї причини теорема Подіновського і вимагає, щоб ефективна альтернатива була одночасно розв'язком відповідних параметричних задач для всіх $i \in M$. Наприклад, нехай i=2, $\xi_1=4$. Із рис. 4.2.9 бачимо, що цьому значенню параметра буде відповідати максимальне значення дев'ятої цільової функції параметричної задачі і вже не одна точка, а множина оптимальних розв'язків. Це будуть точки відрізку [x'', x'''] із яких тільки x'' = (2, 5, 1, 5)буде ефективною альтернативою початкової двокритеріальної задачі, а інші будуть слабко ефективними альтернативами.

Тому розглянемо параметричну задачу при i=1 й при $\xi_2=9$ (нагадаємо, що 9 – це значення другого критерію, що відповідає максимальному значенню цільової функції параметричної задачі при i=2). Із рис. 4.2.9 бачимо, що ця параметрична задача вже буде мати єдиний розв'язок $x''=(2,5,\ 1,5)$, який буде ефективною альтернативою початкової двокритеріальної задачі.

Теорема 4.2.4. (умова власної ефективності оцінок (Ногін)). Оцінка $y^0 \in Y$ є власно-ефективною тоді і тільки тоді, коли існує набір векторів $\mu^1,...,\mu^p \in M^+$, $p \le m$ такий, що для кожної оцінки $y \in Y$ знайдеться номер $i \in \{1,...,p\}$, при якому виконується нерівність для скалярних добутків:

$$\langle \mu^i, y^0 \rangle \ge \langle \mu^i, y \rangle.$$
 (4.2.5)

Доведення. Не зменшуючи загальності, покладемо $y^0 = 0$. Відзначимо наступний факт, що безпосередньо випливає з визначення власно-ефективної оцінки. Включення $y^0 \in G(Y)$ має місце в тому і тільки в тому випадку, коли існує число N > 0 таке, що для кожного $i \in M$ система нерівностей:

$$y^{i} > 0,$$

 $y_{i} + Ny_{j} > 0, \quad j \in M; \quad j \neq i,$ (4.2.6)

не має розв'язку на множині Ү.

Достатність. Не важко перевірити, що оцінка $y^0 = 0$ є ефективною. Доведемо включення $0 \in G(Y)$. Нехай

$$N = \max \left\{ \frac{m\mu_j^i}{\mu_k^i} \middle| j, k \in M; \quad i = 1, 2, ..., p \right\} > 0.$$
 (4.2.7)

Якщо $0 \notin G(Y)$, то для цього числа N існує індекс $k \in M$ і точка $y' \in Y$ такі, що:

$$y'_k > 0, \ y'_k + Ny'_j > 0, \ j \in M; \ j \neq k.$$
 (4.2.8)

Позначимо $M_0 = \left\{ j \in M \,\middle|\, y_j' < 0 \right\}$. Оскільки $0 \in P(Y)$, виконується $M_0 \neq \varnothing$. З (4.2.8) випливає :

$$my'_k + N \sum_{j \in M_0} y'_j > 0.$$
 (4.2.9)

З іншого боку, за умовою теореми, для точки y' існує вектор $\mu^i \in M$ такий, що $\left\langle \mu^i, y' \right\rangle \leq 0$. Звідси $\mu^i_k y'_k + \sum_{j \in M_0} \mu^i_j y'_j \leq 0$. З огляду на (4.2.7), отримаємо нерівність $my'_k + N \sum_{j \in M_0} y'_j \leq 0$, яка суперечить (4.2.9).

 $Heoбxi\partial hicm$ ь. Нехай $y^0 \in G(Y)$, тобто існує таке N>0, що для будь-якого $i \in M$, система нерівностей (4.2.6) є несумісною на Y. Візьмемо довільну оцінку $y \in Y$. Для кожного $i \in M$ виконується або $y_i \leq 0$, або $y_i + Ny_j \leq 0$ при деякому $j \in M \setminus \{i\}$. Взявши суму по $i \in M$ усіх таких нерівностей, одержимо $\sum_{i \in M} N_i y_i \leq 0$, де $N_i > 0$ для будьякого $i \in M$. Звідси випливає нерівність (4.2.5) при $y^0 = 0$ і $\mu_i = \overline{\mu}_i = \left(N_1 / \sum_i N_i, ..., N_m / \sum_i N_i\right)$.

Очевидно, що $\bar{\mu}_i \in M^+$. Таким чином, для кожного $y \in Y$ існує вектор $\mu_i = \bar{\mu}_i$, при якому має місце нерівність (4.2.5). Причому, завдяки скінченності множини індексів M, число таких векторів, що мають необхідні властивості, є скінченним. Тобто, існує кінцевий набір векторів $\{\bar{\mu}^1,...,\bar{\mu}^p\}\subset M^+$ з такою властивістю, що для кожного $y\in Y$ знайдеться $i\in\{1,2,...,p\}$, при якому має місце (4.2.5). Вкажемо набір не більш, ніж з m векторів, що мають необхідні властивості. Нехай є = $\min\{\bar{\mu}_j^i|j\in M,\ i=1,2,...,p\}$. Розглянемо вектори $\mu^j=(\mu_i^j)_{j\in M}$ з компонентами:

$$\mu_j^i = \begin{cases} \varepsilon, & j \in M; \quad j \neq i; \\ 1 - (m - 1)\varepsilon, & j = i; \end{cases}$$

$$(4.2.10)$$

Очевидно, для кожного $\mu^i \in M^+$ для будь-якого $i \in M$. Доведемо включення $\left\{\overline{\mu}^1, ..., \overline{\mu}^p\right\} \subseteq \operatorname{conv}\left\{\mu^1, ..., \mu^m\right\}$. Для цього візьмемо довільний вектор $\overline{\mu}^l$ "старого" набору. Якщо $\varepsilon = 1/m$, то, очевидно, $\overline{\mu}^l = 1/m$, $i \in M$. У цьому випадку для $\lambda_1 = ... = \lambda_m = 1/m$ маємо:

$$\sum_{i \in M} \lambda_i \mu_j^i = \overline{\mu}_j^i, \quad j \in M , \qquad (4.2.11)$$

тобто $\overline{\mu}^i \in \operatorname{conv}\left\{\mu^1,\ldots,\mu^m\right\}$. Якщо $\varepsilon < 1/m$, то беремо $\lambda_i = \frac{\overline{\mu}_i^l - \varepsilon}{1-m\varepsilon},$ $i \in M$, де $\sum_{i \in M} \lambda_i = 1$. Для цих λ_i рівності (4.2.11) також мають місце.

Включення доведене. Припустимо, що "новий" набір векторів (4.2.10) не має необхідних властивостей, тобто знайдеться оцінка $y \in Y$ така, що

$$\langle \mu^i, y \rangle > 0, \quad i \in M.$$
 (4.2.12)

Для довільного $l \in \{1,2,...,p\}$ при деяких $\lambda_j \geq 0$, $j \in M$, $\sum_{j \in M} \lambda_j = 1$, має місце представлення (4.2.11). Тому з (4.2.12) одержуємо нерівності $\sum_{j \in M} \lambda_j \left\langle \mu^j, y \right\rangle = \left\langle \overline{\mu}^l, y \right\rangle > 0$, l = 1, 2, ..., p, які означають, що і "старий" набір векторів також не має необхідних властивостей. Це суперечить отриманому раніше припущенню. lacktriangle

Примітка. Якщо множина Y складається зі скінченного числа елементів, то умова доведеної теореми є необхідною й достатньою для того, щоб $y^0 \in P(Y)$, оскільки має місце рівність G(Y) = P(Y).

Із цієї теореми (частина "достатність") при p=1 випливає

Наслідок. Якщо всі $\mu_i > 0$, то будь-яка точка максимуму функції $\sum_{i=1}^n \mu_i y_i$ на множині Y є власне ефективною оцінкою.

У випадку опуклості множини оцінок цей наслідок є необхідною й достатньою умовою власне ефективності. Це твердження, сформульоване в термінах альтернатив, складає відому теорему.

Теорема 2.5. (Джеофріон). Нехай $X \in$ опуклою множиною, а $f(x) \in$ увігнутою вектор-функцією. Для власної ефективності альтернативи x^* необхідно й достатньо, щоб $\exists \mu > 0 : \langle \mu, f(x^*) \rangle = \max_{x \in X} \langle \mu, f(x) \rangle$.

Приклад 6. Побудувати власне ефективні альтернативи за теоремою Джеофріона для такої двокритеріальної задачі:

$$2x_1 + x_2 \to \max,$$

 $x_1 + 2x_2 \to \max,$
 $(x_1 - 1)^2 + (x_2 - 1)^2 \le 4, \quad x_{1,2} \ge 0.$

На рис. 4.2.10 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1) і (2); x', x'' – найкращі, відповідно за першим і другим критерієм задачі, альтернативи. За визначенням можна встановити, що множиною ефективних альтернатив буде дуга [x', x''] кола $(x_1 - 1)^2 + (x_2 - 1)^2 = 4$, а множиною власноефективних альтернатив буде дуга (x', x'') (точки x', x'' є ефективними, але не власно-ефективними альтернативами). Параметрична задача в загальній постановці: $\max_{x \in X} F_{\mu}(x) = \max_{x \in X} \sum_{i=1}^{m} \mu_i f_i(x)$, де $\mu = (\mu_1, ... \mu_m) \in M^+$, щодо нашого прикладу матиме такий вигляд:

$$F_{\mu} = x_1 \mu_1 + x_2 \mu_2 \to \max,$$

 $(x_1 - 1)^2 + (x_2 - 1)^2 \le 4,$

$$x_{1,2} \ge 0$$
, $\mu_1 + \mu_2 = 1$, $\mu_{1,2} > 0$.

Рис. 4.2.10

Нехай $\mu_1 = \mu_2 = \frac{1}{2}$. Із рис. 4.2.11 бачимо, що розв'язком параметричної задачі буде точка $x^* = (2+\sqrt{2},\ 2+\sqrt{2})$, яка є власно-ефективною альтернативою; при значеннях $\mu_1 = \frac{1}{3}$, $\mu_2 = \frac{2}{3}$ отримаємо іншу власно-ефективну альтернативу x^{**} . Вибираючи інші значення параметрів $\mu_1,\ \mu_2:\ \mu_1 + \mu_2 = 1,\ \mu_{1,2} > 0$, можемо отримати будь-яку власне ефективну альтернативу.

Контрольні завдання до § 2

1. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_1 - x_2 \le 3$, $x_2 \le 2$, $x_{1,2} \ge 0.2$.

2. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \to \max, \ x_1 + 3x_2 \to \max, \ -2x_1 + x_2 \le 0, \ 2x_1 + x_2 \le 8, \ x_{1,2} \ge 0.$$

3. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + x_2 \rightarrow \max$$
, $2x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 5$, $-4x_1 + x_2 \le 0$, $x_1 - 4x_2 \le 0$, $x_{1,2} \ge 0$.

4. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_1 - x_2 \le 3$, $x_2 \le 2$, $x_{1,2} \ge 0$.

5. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$3x_1 + x_2 \rightarrow \max, x_1 + 3x_2 \rightarrow \max, -2x_1 + x_2 \le 0, 2x_1 + x_2 \le 8, x_{1,2} \ge 0.$$

6. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + 2x_2 \rightarrow \max$$
, $2x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 5$, $-4x_1 + x_2 \le 0$, $x_1 - 4x_2 \le 0$, $x_{1,2} \ge 0$.

7. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \rightarrow \max, x_1 + 3x_2 \rightarrow \max, x_1 - x_2 \le 3, -5x_1 - 3x_2 \le -15, x_1 + 2x_2 \le 9.$$

8. Проілюструвати побудову множини власне ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 \to \max, x_2 \to \max, 2x_1^2 + x_2^2 \le 4, x_{1,2} \ge 0$$
.

9. Проілюструвати побудову множини власне ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 \to \max, x_1 + x_2 \to \max, x_1^2 + 2x_2^2 \le 4, x_{1,2} \ge 0.$$

§ 3. Методи Багатокритеріальної оптимізації

Висновок, який можна эробити з попереднього розділу, полягає в тому, що вибір альтернативи, яка буде розв'язком задачі багатокритеріальної оптимізації, потрібно робити з множини ефективних альтернатив (чи слабко ефективних альтернатив, чи власно ефективних альтернатив) — залежно від вимог ОПР і предметної області, у якій приймається рішення (далі, для спрощення викладання припустимо, що вибирається ефективна альтернатива).

Але яку, однак, ефективну альтернативу вибирати? Звичайно, якщо множина абсолютно оптимальних альтернатив не с порожньою, то будьяка з них (варто нагадати, що всі абсолютно оптимальні альтернативи рівноцінні між собою) може вважатися розв'язком багатокритеріальної