Algorithm Design & Analysis (CSE222)

Lecture-14

Recap

- DFS Revisit
 - Back Edge, Forward Edge and Cross Edge
 - Start / Finish Time
 - v is descented of u if start(u) < start(v) < finish(v) < finish(u)
 - u and v are not related if finish(u) < start(v) or finish(v) < start(u)

- DFS Application
 - Cycle identification
 - Longest heavy path using topological sorting.

Outline

• Strongly Connected Components

Strongly Connected

Two vertices u and v are **strongly connected** if u can reach v as well as v can reach u.

A directed graph is **strongly connected** if and only if every pair of vertices is strongly connected.

Strongly Connected

Two vertices u and v are **strongly connected** if u can reach v as well as v can reach u.

A directed graph is **strongly connected** if and only if every pair of vertices is strongly connected.

A **strong connected component (SSC or SC)** of a graph G is the maximal strongly connected subgraph of G.

Strongly Connected

Two vertices u and v are **strongly connected** if u can reach v as well as v can reach u.

A directed graph is **strongly connected** if and only if every pair of vertices is strongly connected.

A **strong connected component (SSC or SC)** of a graph G is the maximal strongly connected subgraph of G.

A directed graph is strongly connected if and only if G has exactly one strong component.

What is the strong component in a DAG?

20,000

Let G be a directed graph.

Collapse every strong component to a single vertex.

- Collapse parallel edges between these vertex.

The resultant graph is called **meta-graph** or **condensation** of S.)——> (52)

Prove that condensation of G is a DAG.

Design an algorithm to compute all the strong components from a vertex v.

- Run DFS on G and compute reach(v)
- Run DFS on G and compute reach⁻¹(v).
- Compute reach(v) ∩ reach⁻¹(v).

What is the running time to check if the complete graph G is strongly connected?

Design an algorithm for computing all strong component in G.

<u>Claim:</u> Fixing a DFS traversal of any directed graph G. Each strong component C of G has exactly one node that does not have a parent in C.

Proof:

- Let C be an arbitrary sc of G. Consider a path $v \in C$ to $w \in C$.
- Every vertex in this path can reach w and it can also reach C.
- Similarly every vertex in this path cab reached from v and can also be reached from any vertex in C.
- So every vertex in this path is also in C.
- Let v ∈ C is the earliest vertex, i.e., start(v) is lowest among all vertices ∈ C.
- So, at the call DFS(v) all vertex in C were not visited, so any w ∈ C is a descendant of v. So except v, parent of every vertex in path v to w is in C.

Algorithm Strong Component

```
STRONGCOMPONENTS(G):

count \leftarrow 0

while G is non-empty

C \leftarrow \emptyset

count \leftarrow count + 1

v \leftarrow \text{any vertex in a sink component of } G \quad \langle\langle Magic! \rangle\rangle

for all vertices w in reach(v)

w.label \leftarrow count

add w to C

remove C and its incoming edges from G
```

How to find sink component?

SC(G) is equal to SC(reverse(G))

CGFEDBA

- Find source component of G.
- Compute SC(reverse(G)). (why?)

<u>Claim:</u> The last vertex in any post ordering of directed a graph lies in a source component of G.

Algorithm

Input: Graph G

Output: Compute strong components.

- 1. Compute postordering(G) and store it in a stack.
- 2. Compute G⁻¹.
- 3. Pop vertex from stack and save nodes reachable from that vertex in G⁻¹.
- 4. Remove the all the reachable vertices from the stack and repeat 3.

Input: Graph G Output: Compute strong components.

- 1. Compute postordering (c) (V+) and store it in a stack.
- 2. Compute G⁻¹.
- 3. Pop vertex from stack and save nodes reachable from that vertex in G⁻¹.
- 4. Remove the all the reachable vertices from the stack and repeat 3.

Reference

Slides

Jeff Erickson Chp-6.5 & 6.6