Bargaining Notes

Cooperative Game Theory of Bargaining

- Definition (Bargaining Problem)
 - A bargaining problem is a pair (U,d), where U is the set of possible agreement payoff vectors, and d is the disagreement payoff vector. $U = \{(u_1(\overrightarrow{\mathbf{x}}), \dots, u_n(\overrightarrow{\mathbf{x}}) : \overrightarrow{\mathbf{x}} \in X\}$ where X is the set of possible agreements. $\overrightarrow{\mathbf{d}} = (d_1 \equiv u_1(\overrightarrow{\mathbf{D}}), \dots, d_n \equiv u_n(\overrightarrow{\mathbf{D}}))$ where $\overrightarrow{\mathbf{D}}$ is the disagreement.
 - It is common to suppose that $\overrightarrow{\mathbf{D}} \in X \Leftrightarrow \overrightarrow{\mathbf{d}} \in U$, i.e. it is possible to "agree to disagree", $\exists \overrightarrow{\mathbf{v}} \in U : \forall i : v_i > d_i$, i.e. some agreement Pareto-dominates disagreement, and U is convex, closed, and bounded, i.e.

$$\forall \overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}} \in U : \forall \alpha \in [0,1] : \alpha \overrightarrow{\mathbf{v_1}} + (1-\alpha) \overrightarrow{\mathbf{v_2}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v}_{\infty}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}}\}_{i=1}^{\infty} : (\forall i : \overrightarrow{\mathbf{v_i}} \in U) \Rightarrow \overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall \{\overrightarrow{\mathbf{v_i}} \in U \text{ and } \forall (\overrightarrow{\mathbf{v_i}}) \in U \text{ and } \forall (\overrightarrow{\mathbf{v_i}$$

 $\overrightarrow{\exists \mathbf{u}} \in U : \exists i : u_i = \infty \lor u_i = -\infty$, i.e. if $\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}} \in U$ then any weighted average of the two elements is also an element of U, and if all members of a sequence are in U then the limit of that sequence is also in U, and there is a finite upper bound and a finite lower bound on each dimension of U.

- Definition (Bargaining Solution)
 - A bargaining solution is a function $F(U, \overrightarrow{\mathbf{d}})$ from bargaining problems $(U, \overrightarrow{\mathbf{d}})$ to agreements $\overrightarrow{\mathbf{u}} \in U$.

Nash Bargaining Theorem

- Definition (Weak Pareto Efficiency)
 - Suppose that $F(U, \overrightarrow{\mathbf{d}}) = \overrightarrow{\mathbf{u}}$, then $\overrightarrow{\not{\exists \mathbf{v}}} \in U : \forall i : v_i > u_i$, i.e. there is no agreement that strictly Pareto-dominates $\overrightarrow{\mathbf{u}}$.
- Definition (Symmetry)
 - Consider n=2. Bargaining problem $(U, \overrightarrow{\mathbf{d}} \equiv (d_1, d_2))$ is symmetric iff $d_1=d_2$ and $\forall (u_1, u_2) \in U: (u_2, u_1) \in U$. Suppose that $F(U, \overrightarrow{\mathbf{d}}) = \overrightarrow{\mathbf{u}} \equiv (u_1, u_2)$, then $u_1=u_2$, i.e. if a bargaining problem is symmetric, then its solution is also symmetric.
- Definition (Invariance to Equivalent Payoff Representations)
 - Let $f_i(u_i) = \alpha_i u_i + \beta_i$ where $\alpha_i > 0$ for all $i \in \{1, \dots, n\}$. Let $U' = \{(f_1(u_1), \dots, f_n(u_n)) : (u_1, \dots, u_n) \in U\}$, $\overrightarrow{\mathbf{d}'} = (f_1(d_1), \dots, f_n(d_n))$, and $\overrightarrow{\mathbf{u}'} = (f_1(u_1), \dots, f_n(u_n))$. Suppose that $F(U, \overrightarrow{\mathbf{d}}) = \overrightarrow{\mathbf{u}}$ then $F(U', \overrightarrow{\mathbf{d}'}) = \overrightarrow{\mathbf{u}'}$, i.e. if one bargaining problem is a linear transformation of another, then the solution of the former is obtained by applying the same transformation to the solution of the latter.
- Definition (Independence of Irrelevant Alternatives)
 - Suppose that $U' \subseteq U$ and $\overrightarrow{\mathbf{d}'} = \overrightarrow{\mathbf{d}}$ and $F(U, \overrightarrow{\mathbf{d}}) \subseteq U'$, then $F(U', \overrightarrow{\mathbf{d}'}) = F(U, \overrightarrow{\mathbf{d}})$, i.e. removal of non-solution possible agreements does not affect the solution.
- Nash Bargaining Theorem
 - $F(U, \overrightarrow{\mathbf{d}}) = \overrightarrow{\mathbf{u}^*} \equiv (u_1^*, \dots, u_n^*) \equiv \arg\max_{(u_1, \dots, u_n)} \Pi_{i=1}^n (u_i d_i)$ subject to $(u_1, \dots, u_n) \in U$ and $\forall i : u_i \geq d_i$ uniquely satisfies the Nash bargaining axioms.
- Definition (Kalai Smorodinsky Bargainign Solution)
 - The Kalai-Smorodinsky bargaining solution is the point on the Pareto frontier (u_1^*,u_2^*) such that $\frac{u_1^*-d_1}{u_2^*-d_2}=\frac{\max u_1-d_1}{\max u_2-d_2}$.

Non-Cooperative Game Theory of Bargaining

- Relationship (Cooperative and Non-Cooperative Game Theory of Bargaining)
 - In the infinite repetition offer-counteroffer game, as the probability α of breakdown converges to zero, the subgame perfect equilibrium allocation converges to the Nash bargaining solution.
- At the stationary equilibrium of the infinite repetition offer-counteroffer game, each player makes the same offer every time, and each player is indifferent between accepting and rejecting each offer.
 - If some player strictly prefers accepting, then the offering player has a strictly profitable deviation to a less generous but still acceptable offer.
 - If some player *A* strictly prefers rejecting, then this is only because *A* has greater payoff from rejecting and making an acceptable counteroffer. This counteroffer is less generous to the initial offering player *B* than *B*'s initial offer. So *B* has strictly profitable deviation to a more generous, acceptable offer.

- The general algebraic solution to such a game is as follows.
 - $x_2^1 = (1-lpha)x_2^2$,
 - $ullet \ x_1^2 = (1-lpha)x_1^1 \Rightarrow (1-x_2^2) = (1-lpha)(1-x_2^1).$
- The result of this Rubinstein model converges to the Nash bargaining solution as the probability of breakdown converges to zero.