OTIMIZAÇÃO LINEAR

PEDRO GIGECK FREIRE

1) Resolva o problema abaixo pelo método das duas fases

max
$$3x_1 + x_2$$

50j. $x_1 - x_2 \le -1$
 $-x_1 - x_2 \le -3$
 $2x_1 + x_2 \le 4$
 $x_1 > 0$, $x_2 > 0$

Primeiro, vanvos trocar as designaldades por igualdades, com as folgas

max
$$3x_1 + x_2$$

Sujato a $x_3 = -1 - x_1 + x_2$
 $x_4 = -3 + x_1 + x_2$
 $x_5 = 4 - 2x_1 - x_2$
 $x_6 = 70$

Agora, como $(x_1=0, x_2=0)$ não é uma solução factivel, vamos usar a primeira fase do método das duas fases para encontrar algum ponto factível. Isto é, adicionor uma variável artificial x_0 e resolver o novo problem

max
$$-x_0$$

Suy $x_3 = -1 - x_1 + x_2 + x_0$
 $x_4 = -3 + x_1 + x_2 + x_0$
 $x_5 = 4 - 2x_1 - x_2 + x_0$
 $x_6 > 0$

E agora resolvemos esse problema auxiliar pelo método simplex

· Escrevemos
$$x_0$$
 em função do x_4 $\left(x_0 = 3 - x_1 - x_2 + x_4\right)$

max
$$-3 + \chi_1 + \chi_2 - \chi_4$$

Suj $\chi_3 = 2 - 2\chi_1 + \chi_4$
 $\chi_0 = 3 - \chi_1 - \chi_2 + \chi_4$
 $\chi_5 = 7 - 3\chi_1 - 2\chi_2 + \chi_4$
 $\chi_1 \ge 0$

· Agora resolvemos por Simplex

Entra X2 sai X0

$$x_3 = 2 - 2x_1 + x_4$$

$$x_2 = 3 - x_1 - x_0 + x_4$$

$$x_5 = 7 - 3x_1 - 2x_2 + x_4$$

max 0 - X0

$$X_2 = 3 - X_1 - X_0 + X_4$$

$$X_5 = 1 - X_1 + 2X_0 - X_4$$

Agora, ja encontramos um ponto factivel, podemos eliminar o xo e retornar ao austo original

$$max 3x_1 + x_2$$

$$x_3 = 2 + 2x_1 + x_4$$

$$x_2 = 3 - x_1 + x_4$$

$$x_s = 1 - x_1 - x_4$$

$$X_i \geqslant 0$$
.

Como X2 é básica, varnos substituir ela no custi

max
$$3 + 2x_1 + x_4$$

Suj $x_3 = 2 - 2x_1 + x_4$
 $x_2 = 3 - x_1 + x_4$
 $x_5 = 1 - x_1 - x_4$
 $x_i \ge 0$

E agora resolvemes com o método simplex

Vames aumenton o XI

max
$$5 - x_4 - 2x_5$$

Suj $x_3 = 3x_4 + 2x_5$.
 $x_2 = 2 + 2x_4 + x_5$
 $x_1 = 1 - x_5 - x_4$
 $x_i > 0$

Assim acabou, remos a solusão ótima X4 = X5 = 0

Portanto, no nosso problema original, a solução ótima é

$$x_1 = 1$$
$$x_2 = 2$$

Com valor otimo 3x1 + X2 = 5.

2) Resolva o problema abaixo pelo método das duas fases max " $3x_1 + x_2$ suj $x_1 - x_2 \leqslant -1$

$$-x_1 - x_2 \leq -3$$

$$2 \times_1 + \times_2 \leq 2$$

 $x_1 \geqslant 0$, $x_2 \geqslant 0$.

Vamos fazer os mesmos passos do exercício anterior

· Adicionar as variáveis de tolga para obter as igualdades

max
$$3x_1 + x_2$$

Suj' $x_3 = -1 - x_1 + x_2$
 $x_4 = -3 + x_1 + x_2$
 $x_5 = 2 - 2x_1 - x_2$

 $x_i \geq 0$

· Adicionamos a vouvairel ourificial xo para encontrar uma solusão factivel

max -xo

Suj
$$\chi_3 = -1 - \chi_1 + \chi_2 + \chi_0$$

 $\chi_4 = -3 + \chi_1 + \chi_2 + \chi_0$
 $\chi_5 = 2 - 2\chi_1 - \chi_2 + \chi_0$
 $\chi_1 \geqslant 0$

. Escrevemos x_0 em função de x_4 $(x_0 = 3 - x_1 - x_2 + x_4)$

max
$$-3 + x_1 + x_2 - x_4$$

Suj $x_3 = 2 - 2x_1 + x_4$
 $x_0 = 3 - x_1 - x_2 + x_4$
 $x_5 = 5 - 3x_1 - 2x_2 + x_4$
 $x_1 \ge 0$

· Resolvemos via Simplex: Entra Xz sai Xo.

max
$$0 - x_0$$

Suj $x_3 = 2 - 2x_1 + x_4$
 $x_2 = 3 - x_1 - x_0 + x_4$
 $x_3 = -1 - x_1 + 2x_0 - x_4$

Agora, Temos um caso parvicular!

Como Xo = 0 não é factivel nesse problema auxilian, então, pelo resultado visto na aula 13, temos que o problema original é INFACTIVEL

3) Qual é o Dual so problema

max
$$5x_1 + 6x_2 + 5x_3$$

suj $2x_1 + 4x_2 + 7x_3 \le 20$
 $x_1 - x_2 - x_3 = 10$
 $3x_1 - 2x_2 - 3x_3 \ge 30$
 $x_1 \ge 0$ $x_2 \le 0$ x_3 irrestrito.

min
$$20y_1 + 10y_2 + 30y_3$$

$$y_1 + y_2 + 3y_3 > 5$$

$$4y_1 - y_2 - 2y_3 = 6$$

$$7y_3 - y_3 - 3y_3 \leq 5$$

$$y_1 \ge 0$$
 $y_2 \le 0$ y_3 irrestrito

4 Envoire e prove o recrema fraço de dualidade. Envoire o recrema forte de dualidade.

Teorema fraco de Dualidade

Se x é uma solução factivel de um problema primal du maximização e y é uma solução factivel do dual então (onde C é o custo do primal e)

Prova:

Na aula, vimos uma prova explicitando as desigualdades, aqui, faremos a prova mantendo a notasão matricial.

Sabemos que todas as restrisões podem ser escritas como designaldades "¿".
Seja o problema primal

move C^TX suj. $Ax \leq b$

Com o problema dual min by suj. $A^{t}y \geqslant c$

Como x é factivel, remos que

 $A_{\times} \leq b$

⇒ ytAx ≤ ytb

 $\Rightarrow (y^{\dagger}A_{\times})^{\dagger} \leq (y^{\dagger}b)^{\dagger}$

⇒ xt Aty & bty

⇒ xtc, & bty

⇒ c^T X ≤ b^t y

multiplicando yt em ambos os lados Transpondo ambos os lados

como y é factivel, temos Aty & c
como xtc é um número, temos xtc=cty

Teorema forte de Dualidade

Se o primal tem uma solução ótima x então o dual tem uma solução ótima y e $C^Tx = b^Ty$.

max
$$3x_1 + 2x_2 + 4x_3$$

suj. $x_1 + x_2 + 2x_3 \le 4$
 $2x_1 + 3x_3 \le 5$
 $2x_1 + x_2 + 3x_3 \le 7$
 $x_1 \ge 0$ $x_2 \ge 0$ $x_3 \ge 0$

· Vamos avuscentar as folgas (o que será o xb)

Suj.
$$x_4 = 4 - x_1 - x_2 - 2x_3$$

 $x_5 = 5 - 2x_1 - 3x_3$
 $x_6 = 7 - 2x_1 - x_2 - 3x_3$
 $x_6 \ge 0$

Entra
$$x_1$$
 sai x_5 $(x_1 = \frac{5}{2} - \frac{3}{2}x_3 - \frac{x_5}{2})$

max
$$15/2 + 2 \times_2 - \frac{1}{2} \times_3 - \frac{3}{2} \times_5$$

Suj $x_4 = \frac{3}{2} - \frac{1}{2} \times_3 - \frac{1}{2} \times_3 - \frac{1}{2} \times_3 - \frac{1}{2} \times_5$
 $x_1 = \frac{5}{2} - \frac{3}{2} \times_3 - \frac{1}{2} \times_5$
 $x_6 = 2 - x_2 + x_5$
 $x_6 \ge 0$

Entra
$$x_2$$
 sai x_4 $(x_2 = \frac{3}{2} - \frac{1}{2}x_3 - x_4 - \frac{1}{2}x_5)$

max
$$\frac{21}{2} - \frac{3}{2} \times_3 - 2 \times_4 - \frac{5}{2} \times_5$$

$$\begin{array}{lll} x_{1} &=& 3/_{2} - 1/_{2} \times_{3} - \times_{4} - 1/_{2} \times_{5} \\ &\times_{1} &=& 5/_{2} - 3/_{2} \times_{3} - 1/_{2} \times_{5} \\ &\times_{6} &=& 1/_{2} \times_{3} + 1/_{2} \times_{3} + \times_{4} + 3/_{2} \times_{5} \\ &\times_{6} &=& 0 \end{array}$$

Assim, chegamos na solução ótimo $x_3 = x_4 = x_5 = 0$

E. no problema original, a solução ótima é $(x_1 = \frac{5}{2}, x_2 = \frac{3}{2}, x_3 = 0)$.

6 Prove que x = {0,4/3,2/3,5/3,0} NÃO à a solução ótima do problema

max
$$7x_1 + 6x_2 + 5x_3 - 2x_4 + 3x_5$$

suj. $x_1 + 3x_2 + 5x_3 - 2x_4 + 2x_5 \le 4$
 $4x_1 + 2x_2 - 2x_3 + x_4 + x_5 \le 3$
 $2x_1 + 4x_2 + 4x_3 - 2x_4 + 5x_5 \le 5$
 $3x_1 + x_2 + 2x_3 - x_4 - 2x_5 \le 1$
 $x_1 \ge 0$

Vamos usar o Teorema 5.3, do livro que diz que uma solução é ótima se e somente se existe uma solução para o dual y, y2, y3, y4 tais que

(i)
$$\sum_{i=1}^{m-4} a_{ij} y_i = C_j \quad \text{se} \quad x_j > 0$$

(ii)
$$y_i = 0$$
 se $\sum_{j=1}^{n=5} a_{ij} x_j < b_i$

(iii)
$$\sum_{i=1}^{m-4} a_{ij} y_i \geqslant C_i \quad \forall j=1,2,...,n=5$$

$$(inj)$$
 $y_i \ge 0$ $\forall i = 1,2,..., m = 4$

(15TO é, Teorema pas folgas complementares)

Varmos conferin rodas essas condisões

Por (ii), remos que

Yamos mentar o sistema descrito per (i) (com j=2,3,4)

$$\begin{vmatrix} 3y_1 + 2y_2 + y_4 = 6 \\ 5y_1 - 2y_2 + 2y_4 = 5 \\ -2y_1 + y_2 - y_4 = -2 \end{vmatrix}$$

Vannos resolver esse sistema:

(somando a segunda equação com o dobro da terceira temos)

$$5y_1 - 2y_2 + 2y_4 + 2(-2y_1 + y_2 - y_4) = 5 + 2(-2)$$

Agora, somamos as duas printeras equações e obtenos

$$8y_1 + 3y_4 = 11 \Rightarrow$$

$$3y_4 = 11 - 8y_1 \Rightarrow (como y_1 = 1)$$

$$3y_4 = 3$$

$$4 \quad y_4 = 1$$

Substituindo esses valores na primeira equação, terros

$$3y_{1} + 2y_{2} + y_{4} = 6 \Rightarrow$$

$$3 + 2y_{2} + 1 = 6 \Rightarrow$$

$$2y_{2} = 2 \Rightarrow$$

$$4 \qquad y_{2} = 1$$

Com isso, obtemos a solusão $(y_1 = 1, y_2 = 1, y_3 = 0, y_4 = 1)$ Porém, essa 'solusão do dual não satisfaz o item (iii) do teorema, pois quando j = 5, temos que

$$\sum_{i=1}^{4} a_{ij} y_{i} = z + 1 + 0 - z = 1 < 3.$$

Portanto, não existe uma solução do dual que satisfaça rodas as condições, logo, x não é óτimo.

FESOLVA O PROBLEMA

max
$$-x_1 - 2x_2$$

Suj $-3x_1 + x_2 \le -1$
 $x_1 - x_2 \le 1$
 $-2x_1 + 7x_2 \le 6$
 $9x_1 - 4x_2 \le 6$
 $-5x_1 + 2x_2 \le -3$
 $7x_1 - 3x_2 \le 6$
 $x_1 \ge 0$

Como (0,0) não é factível (pela 1ª restrição por exemplo), vamos aplicar a primiria faxe do método simplex.

· Adicionando as folgas

· Adicionando a variável autificial xo (para achar um ponto factivel)

marc - Xo

Suj
$$X_3 = -1 + 3x_1 - x_2 + x_0$$

 $X_4 = 1 - x_1 + x_2 + x_0$
 $X_5 = 6 + 2x_1 - 7x_2 + x_0$
 $X_6 = 6 - 9x_1 + 4x_2 + x_0$
 $X_7 = -3 + 5x_1 - 2x_2 + x_0$
 $X_8 = 6 - 7x_1 + 3x_2 + x_0$

. Escrevemos
$$x_0$$
 em função do x_4 $\left(x_0 = 3 - 5x_1 + 2x_2 + x_9\right)$

Max
$$-3 + 5X_1 - 2X_2 - X_7$$

$$x_4 = 4 - 6x_1 + 3x_2 + x_7$$

$$x_5 = 9 - 3x_1 - 5x_2 + x_7$$

$$x_c = 9 - 14x_1 + 6x_2 + x_7$$

$$X_0 = 3 - 5x_1 + 2x_2 + x_7$$

$$x_8 = 9 - 12x_1 + 5x_2 + x_3$$

$$x_{i} \ge 0$$

Entra x_{1} sai x_{0} $\left(x_{1} = \frac{3}{5} + \frac{2}{5}x_{2} + \frac{1}{5}x_{3} - \frac{1}{5}x_{0}\right)$

suj.
$$x_3 = \frac{4}{5} + \frac{1}{5} \times_2 + \frac{3}{5} \times_7 - \frac{2}{5} \times_0$$

$$x_4 = \frac{2}{5} + \frac{3}{5} x_2 - \frac{1}{5} x_7 - \frac{6}{5} x_0$$

$$x_5 = \frac{36}{5} - \frac{31}{5} x_2 + \frac{9}{5} x_7 - \frac{3}{5} x_0$$

$$x_6 = \frac{3}{5} + \frac{2}{5}x_2 - \frac{9}{5}x_4 - \frac{14}{5}x_0$$

$$x_1 = \frac{3}{5} + \frac{2}{5}x_2 + \frac{1}{5}x_3 - \frac{1}{5}x_0$$

$$X_8 = \frac{9}{5} + \frac{1}{5} X_2 - \frac{7}{5} X_3 - \frac{12}{5} X_0$$
 $(x_i > 0)$

Agora remos a solução xo=0 e podemos voltar ao problema original, eliminando o xo e voltando ao custo correto

X130

Como XI está no custo e na base, vamos substituir ele no custo

max $-3/5 - 12/5 \times_2 - 1/5 \times_4$ suj. (mesmas restrições)

Assim, obtemos a solução ótima $(x_2 = 0, x_3 = 0)$

No problema original, a solução ótima é $x_1 = \frac{3}{5}$, $x_2 = 0$.

Com valor ótimo 3=-3/5.