

Logic Synthesis – Part 1

Technology-Independent Optimization

Prof. Chien-Nan Liu Institute of Electronics National Chiao-Tung Univ.

Tel: (03)5712121 ext:31211 E-mail: jimmyliu@nctu.edu.tw http://www.ee.ncu.edu.tw/~jimmy

Courtesy: Prof. Jing-Yang Jou

NCTU MSEDA Lab.

Outline

- Synthesis overview
- RTL synthesis
- Two-level logic optimization
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

HDL Synthesis

- Logic synthesis programs transform Boolean expressions or register-transfer level (RTL) description (in Verilog/VHDL/C) into logic gate networks (netlist) in a particular library.
- Advantages
 - Reduce time to generate netlists
 - Easier to retarget designs from one technology to another
 - Reduce debugging effort
- Requirement
 - Robust HDL synthesizers

Synthesis Procedure

Synthesis = Domain Translation + Optimization

Structural domain

Domain Translation

Consistent with data manipulation functions

Consistent with special semantics

Optimization

- Technology-independent optimization: logic optimization
 - Work on Boolean expression equivalent
 - Estimate size based on # of literals
 - Use simple delay models
- Technology-dependent optimization: technology mapping/library binding
 - Map Boolean expressions into a particular cell library
 - May perform some optimizations in addition to simple mapping
 - Use more accurate delay models based on cell structures

Technology-Independent Logic Optimization

- **Two-level:** minimize the # of product terms.
 - $F = \bar{x_1}\bar{x_2}\bar{x_3} + \bar{x_1}\bar{x_2}x_3 + x_1\bar{x_2}\bar{x_3} + x_1\bar{x_2}x_3 + x_1x_2\bar{x_3} \Rightarrow F = \bar{x_2} + x_1\bar{x_3}.$
- Multi-level: minimize the #'s of literals, variables.
 - E.g., equations are optimized using a smaller number of literals.

 Methods/CAD tools: Quine-McCluskey method (exponential-time exact algorithm), Espresso (heuristics for two-level logic), MIS (heuristics for multi-level logic), Synopsys, etc.

NCTU MSEDA Lab.

7

Technology Mapping

- Goal: translation of a technology independent representation (e.g. Boolean networks) of a circuit into a circuit in a given technology (e.g. standard cells) with optimal cost
- Optimization criteria:
 - Minimum area
 - Minimum delay
 - Meeting specified timing constraints
 - Meeting specified timing constraints with minimum area
- Usage:
 - Technology mapping after technology independent logic optimization
 - Technology translation

Standard Cells for Design Implementation

Timing Optimization

- There is always a trade-off between area and delay
- Optimize timing to meet delay spec. with minimum area

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Two-level logic optimization
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

11

Typical Domain Translation Flow

- Translate original HDL code into 3-address format
- Conduct special element inferences before combinational circuit generation
- Conduct special element inferences process by process (local view)

Combinational Circuit Generation

- Functional unit allocation
 - Straightforward mapping with 3-address code
- Interconnection binding
 - Using control/data flow analysis

- 3-address code
 - -x = y op z in general form
 - Function unit op with inputs y and z and output x

Functional Unit Allocation

Interconnection Binding

- Need the dependency information among functional units
 - Using control/data flow analysis
 - A traditional technique used in compiler design for a variety of code optimizations
 - Statically analyze and compute the set of assignments reaching a particular point in a program

Control/Data Flow Analysis

- Terminology
 - A definition of a variable x
 - An assignment assigns a value to the variable x
 - d1 can reach d4 but cannot reach d3
 - d1 is killed by d2 before reaching d3
- A definition can only be affected by those definitions being able to reach it
- Use a set of data flow equations to compute which assignments can reach a target assignment

16

Combinational Circuit Generation: An Example

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Two-level logic optimization
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

Special Element Inferences

- Given a HDL code at RTL, three special elements need to be inferred to keep the special semantics
 - Latch (D-type) inference
 - Flip-Flop (D-type) inference
 - Tri-state buffer inference
- Some simple rules are used in typical approaches

reg Q; always@(D or en) if(en) Q = D; reg Q; always@(posedge clk) Q = D; reg Q; always@(D or en) if(en) Q = D; else Q = 1'bz;

Latch inferred!!

Flip-flop inferred!!

Tri-state buffer inferred!!

NCTU MSEDA Lab.

10

Preliminaries

- Sequential section
 - Edge triggered always statement
- Combinational section
 - All signals whose values are used in the always statement are included in the sensitivity list

reg Q; always@(posedge clk) Q = D;

Sequential section Conduct flip-flop inference

reg Q; always@(in or en) if(en) Q=in;

Combinational section Conduct latch inference

Typical Latch Inference

- Conditional assignments are not completely specified
 - Check if the else-clause exists
 - Check if all case items exist
- Outputs conditionally assigned in an if-statement are not assigned before entering or after leaving the ifstatement

$$always@(D \text{ or } S) \\ if(S) Q = D; \\ begin \\ Q = A; \longrightarrow Do \text{ not infer} \\ for Q \\ end$$

Terminology (1/2)

Conditional assignment

• Selector: S

• Input: D

• Output: Q

Terminology (2/2)

- A variable Q has a branch for a value of selector s
 - The variable Q is assigned a value in a path going through the branch

NCTU MSEDA Lab.

Rules of Latch Inference (1/2)

- Condition 1: <u>There is no branch</u> associated with the output of a conditional assignment for a value of the selector
 - Output depends on its previous value implicitly

Rules of Latch Inference (2/2)

 Condition 2: The output value of a conditional assignment depends on its previous value explicitly

Terminology

- Clocked statement: edge-triggered always statement
 - Simple clocked statement
 - e.g., always @ (posedge clock)
 - Complex clocked statement
 - e.g., always @ (posedge clock or posedge reset)
- Flip-flop inference must be conducted only when synthesizing the clocked statements

Infer FF for Simple Clocked Statements (1/2)

• Infer a flip-flop for **each variable** being assigned in the simple clocked statement

Infer FF for Simple Clocked Statements (2/2)

- Two post-processes
 - Propagating constants
 - Removing the flip-flops without fanouts

Infer FF for Complex Clocked Statements

- The edge-triggered signal not used in the following operations is chosen as the clock signal
- The usage of asynchronous control pins requires the following syntactic template
 - An if-statement immediately follows the always statement
 - Each variable in the event list except the *clock signal* must be a selective signal of the if-statements
 - Assignments in the blocks B1 and B2 must be constant assignments (e.g., x=1, etc.)

always @ (posedge clock or posedge reset or negedge set)

if(reset) begin **B1** end else if (!set) begin **B2** end else begin **B3** end

NCTU MSEDA Lab.

Typical Tri-State Buffer Inference (1/2)

- If a data object Q is assigned a high impedance value
 'Z' in a multi-way branch statement (if, case, ?:)
 - Associated Q with a tri-state buffer
- If Q associated with a tri-state buffer has also a memory attribute (latch, flip-flop)
 - Have the Hi-Z propagation problem
 - Real hardware cannot propagate Hi-Z value
 - Require two memory elements for the control and the data inputs of tri-state buffer

```
reg Q; reg Q; always @ (En or D)
if(En) Q = D; else Q = 1'bz;

reg Q; always @ (posedge clk)

q if(En) Q = D; else Q = 1'bz;
```

Typical Tri-State Buffer Inference (2/2)

- It may suffer from mismatches between synthesis and simulation
 - Process by process
 - May incur the Hi-Z propagation problem

```
reg QA, QB;
always @ (En or D)
if(En) QA = D;
else QA = 1'bz;

always @ (posedge clk)

QB = QA;

assignment can pass Hi-Z
to QB in simulation
```

NCTU MSEDA Lab.

31

Outline

- Synthesis overview
- RTL synthesis
- Two-level logic optimization
 - Basic logic operations
 - Exact minimization
 - Heuristic methods
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

Two-Level Logic Optimization

- Two-level logic optimization
 - Key technique in logic optimization
 - Many efficient algorithms to find a near minimal representation in a practical amount of time
 - In commercial use for several years
 - Minimization criteria: number of product terms
- Example: F = XYZ + X

$$F = X\overline{Y} + YZ$$

NCTU MSEDA Lab.

22

Optimization Approach

- Exact Methods:
 - Compute minimum cover
 - Often impossible for large functions
 - Ex: Karnaugh maps, Quine-McCluskey
- Heuristic Methods:
 - Compute minimal covers (possibly minimum) in reasonable time
 - Large variety of methods and programs
 - Ex: MINI, PRESTO, ESPRESSO

Boolean Functions

- $B = \{0,1\}, Y = \{0,1,D\}$
- A Boolean function $f: B^m \to Y^n$

$$= f = \overline{X}_1 \overline{X}_2 + \overline{X}_1 \overline{X}_3 + \overline{X}_2 X_3 + X_1 X_2 + X_2 \overline{X}_3 + X_1 X_3$$

- Input variables: $x_1, x_2, ...$
- The value of the output partitions B^m into three sets
 - the on-set
 - the off-set
 - the dc-set (don't-care set)

/

Minterms and Cubes

- A minterm is a product of all input variables or their negations.
 - A minterm corresponds to a single point in B^n .
- A cube is a product of the input variables or their negations.
 - The fewer the number of variables in the product, the bigger the space covered by the cube.

Implicant and Cover

- An implicant is a cube whose points are either in the on-set or the dc-set.
- A prime implicant is an implicant that is not included in any other implicant.
- A set of prime implicants that together cover all points in the on-set (and some or all points of the dc-set) is called a prime cover.
- A prime cover is irredundant when none of its prime implicants can be removed from the cover.
- An irredundant prime cover is minimal when the cover has the minimal number of prime implicants.

NCTU MSEDA Lab.

Cover Examples

$$\bullet \ f = \overline{X}_1 \overline{X}_3 + \overline{X}_2 X_3 + X_1 X_2$$

$$\bullet \ f = \overline{X_1} \ \overline{X_2} + X_2 \ \overline{X_3} + X_1 \ X_3$$

The Positional-Cube Notation

• Encode each symbol by 2-bit fields as follows:

φ 000 101 01* 11

One 32-bit integer → 16 binary digits								
digit 15	digit 14		digit 1	digit 0				
2b	2b		2b	2b				

• Example: f = a'd' + a'b + ab' + ac'd

10 11 11 10
$$(a'-d')$$

10 01 11 11 $(a'b--)$
01 10 11 11 $(ab'--)$
01 11 10 01 $(a-c'd)$

• Example: f₁ = a'b' + ab; f₂ = ab; f₃ = ab' + a'b

NCTU MSEDA Lab.

AND Operation

Can be finished with a bit-wise AND instruction!!

10 11 01 11 a'c

∩ 11 01 11 01 b d

10 01 01 01 a'b c d

10 11 01 11 a'c ∩ 01 11 10 11 a c'

00 11 00 11

Sharp Operation

$$\alpha_1 b_1' \quad a_2 \quad \dots \quad a_{n-1} \quad a_n$$

$$a_1 \quad a_2 b_2' \quad \dots \quad a_{n-1} \quad a_n$$

$$\alpha \# \beta = \quad \dots \quad \dots \quad \dots \quad \dots$$

$$a_1 \quad \dots \quad \dots \quad a_{n-1} b_{n-1}' \quad a_n$$

$$a_1 \quad \dots \quad a_{n-1} \quad a_n b_n'$$

• Example 10 11 11 # 01 01 = 11 10

NCTU MSEDA Lab.

Disjoint Sharp Operation

• Example

10 11

11 11 # 01 01 = 01 10

Effects of Basic Logic Operations

- Consider each implicant as a set
- Intersection is the largest cube contained in both implicants and is computed by AND operation
- The distance between two implicants is the number of empty fields in their intersection
 - If there is any empty field, the two implicants are disjoint
- The supercube of two sets (the sum of two functions) can be obtained by union the sets (bit-wise OR)
 - The smallest cube containing both implicants
- The (disjoint) sharp operation can be used to compute the complementation

$$R = U \# (F^{ON} \cup F^{DC})$$

NCTU MSEDA Lab.

Cofactor (Restriction)

- Cofactor of f with respect to x_i = 0
 - $f_{xi'} = f_{xi=0} = f(x_1, x_2, ..., x_i = 0, ..., x_n)$
- Cofactor of f with respect to x_i = 1
 - $f_{xi} = f_{xi=1} = f(x_1, x_2, ..., x_i = 1, ..., x_n)$
 - Example:

$$f(x,y,z) = xy + yz' + x'z'$$

 $f_{x=0} = yz' + z'$ $f_{x=1} = y + yz'$

- Cofactor with respect to any cube
 - Example:

$$f(x,y,z,w) = xy + zw' + w'x'$$

 $f_{x'y'} = f_{x=0,y=0} = zw' + w'$
 $f_{xy'} = f_{x=1,y=0} = zw'$

Cofactor of Implicants

- The cofactor of an implicant α w.r.t an implicant β is:
- α_{β} = ϕ when α does not intersect β Otherwise, α_{β} = a_1+b_1 ' a_2+b_2 ' ... a_n+b_n '
- Example: Given f = a'b' + ab, calculate f_a

$$f = {10 \atop 01} {10 \atop 01}$$
 $c(a) = 01 \atop c(a') = 10 \atop 00$ (cube representation)

The cofactor of the first implicant is void

— a'b' intersect with a is empty

The cofactor of the second implicant is 11 01

$$-(01 \ 01) + (10 \ 00) = (11 \ 01)$$

 $\rightarrow f_a = b$

NCTU MSEDA Lab.

Shannon Expansion

- $\bullet f = x' \bullet f_{x=0} + x \bullet f_{x=1}$ $= x_i' \bullet y_j' \bullet f_{x_i'y_j'} + x_i \bullet y_j' \bullet f_{x_iy_j'} + x_i' \bullet y_j \bullet f_{x_i'y_j} + x_i \bullet y_j \bullet f_{x_iy_j}$
- Example:

$$f_x = y + zw'$$

 $f_{x'} = zw' + w'$
 $f = x(y + zw') + x'(zw' + w')$

 Decompose a function into two components, one for the subspace x = 0, the other for the subspace x = 1

$$f = x'f_{x'} + xf_{x}$$

- Allow a divide and conquer strategy on several problems
 - $= f_{x'}$ and f_x do not depend on x and thus have one less variable

Consensus Operator

- Definition: $\forall x(f) = f_x \cdot f_{x'}$
- $\forall x(f)$ evaluate f to be true for x = 1 and x = 0
- Represent the component that is independent of that variable
- Example:

$$f(x,y,z,w) = xy + zw' + w'x'$$

$$f_x \cdot f_{x'} = zw' + w'y$$

NCTU MSEDA Lab.

Smoothing Operations

- Definition: $\exists x(f) = f_x + f_{x'}$
- $\exists x(f)$ evaluate f to be true when x = 1 or x = 0
- Example:

$$f(x,y,z,w) = xy + zw' + w'x'$$

 $\exists x(f) = f_x + f_{x'} = (zw' + w') + (zw' + y)$

Boolean Difference

- $\frac{\partial f}{\partial x}$ is called Boolean difference of f with respect to x
- Definition: $\frac{\partial f}{\partial x} = f_x \oplus f_{\overline{x}}$
- f is sensitive to the value of x when $\frac{\partial f}{\partial x} = 1$
- Example: f(x,y,z,w) = xy + zw' + w'x' $f_{x'} = f(x=0,y,z,w) = zw' + w'$ $f_x = f(x=1,y,z,w) = y + zw'$ $f_{x'} \oplus f_x = (zw' + w') \oplus (y + zw')$

NCTU MSEDA Lab.

Outline

- Synthesis overview
- RTL synthesis
- Two-level logic optimization
 - Basic logic operations
 - Exact minimization
 - Heuristic methods
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

The Quine-McCluskey Algorithm

- Theorem:[Quine,McCluskey] There exists a minimum cover for F that is prime
 - Need to look just at primes (reduces the search space)
- Classical methods: two-step process
 - 1. Generation of all prime implicants (of the union of the on-set and dc-set)
 - 2. Extraction of a minimum cover (covering problem)
- Exponential-time exact algorithm, huge amounts of memory!
- Other methods do not first enumerate all prime implicants; they use an implicit representation by means of ROBDDs.

51

Primary Implicant Generation (1/5)

Primary Implicant Generation (2/5)

Primary Implicant Generation (3/5)

	Implication Table							
	Column I	Column II						
#	0000	0-00						
		-000						
A	0100							
1	1000	010-						
	11.000	01-0						
	0101	100-						
1	0110	10-0						
1	1001							
	1010	01-1						
		-101						
A	0111	011-						
1	1101	1-01						
¥	1111	-111						
		11-1						

Primary Implicant Generation (4/5)

Implication Table							
Column I	Column II	Column III					
0000	0-00 *	01 *					
	-000 *						
0100		-1-1 *					
1000	010-						
	01-0						
0101	100- *						
0110	10-0 *						
1001							
1010	01-1						
	-101						
0111	011-						
1101	1-01 *						
1111	-111						
	11-1						

NCTU MSEDA Lab.

Primary Implicant Generation (5/5)

Prime Implicants:

$$0-00 = a'c'd'$$

$$1-01 = ac'd$$

$$-1-1 = bd$$

$$-000 = b'c'd'$$

$$10-0 = ab'd'$$

$$01-- = a'b$$

Column Covering (1/4)

	4	5	6	8	9	10	13
0,4 (0-00)	×						
0,8 (-000)				×			
8,9 (100-)				×	×		
8,10 (10-0)				×		×	
9,13 (1-01)					×		×
4,5,6,7 (01)	×	×	×				
5,7,13,15 (-1-1)		×					×

rows = prime implicants columns = ON-set elements place an "X" if ON-set element is covered by the prime implicant

NCTU MSEDA Lab.

Column Covering (2/4)

If column has a single X, then the implicant associated with the row is essential. It must appear in minimum cover

Column Covering (3/4)

Eliminate all columns covered by essential primes

DA Lab.

NCTU MSEDA Lab.

Column Covering (4/4)

Find minimum set of rows that cover the remaining columns f = ab'd' + ac'd + a'b

Petrick's Method

- Solve the satisfiability problem of the following function

$$P = (P1+P6)(P6+P7)P6(P2+P3+P4)(P3+P5)P4(P5+P7)=1$$

		4	5	6	8	9	10	13
P 1	0,4 (0-00)	×						
P2	0,8 (-000)				×			
P3	8,9 (100-)				×	×		
P4	8,10 (10-0)				×		×	
P5	9,13 (1-01)					×		×
P6	4,5,6,7 (01)	×	×	×				
P7	5,7,13,15 (-1-1)		×					×

- Each term represents a corresponding column
- Each column must be chosen at least once
- All columns must be covered

NCTII MSEDA Lab

ROBDDs and Satisfiability

- A Boolean function is **satisfiable** if an assignment to its variables exists for which the function becomes '1'
- Any Boolean function whose ROBDD is unequal to '0' is satisfiable.
- Suppose that choosing a Boolean variable x_i to be '1' costs c_i . Then, the **minimum-cost satisfiability** problem asks to minimize: $\sum_{i=1}^{n} c_i \mu(x_i)$

where $\mu(x_i) = 1$ when $x_i = 1$ and $\mu(x_i) = 0$ when $x_i = 0$.

- Solving minimum-cost satisfiability amounts to computing the shortest path in an ROBDD, which can be solved in linear time.
 - Weights: $w(v, \eta(v)) = c_i$, $w(v, \lambda(v)) = 0$, variable $x_i = \phi(v)$.

Brute Force Technique

• Brute force technique: Consider all possible elements

- Complete branching tree has 2|P| leaves!!
 - Need to prune it
- Complexity reduction
 - Essential primes can be included right away
 - If there is a row with a singleton "1" for the column
 - Keep track of best solution seen so far
 - Classic branch and bound

TU MSEDA Lab.

63

Branch and Bound Algorithm

Outline

- Synthesis overview
- RTL synthesis
- Two-level logic optimization
 - Basic logic operations
 - Exact minimization
 - Heuristic methods
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

ICTU MSEDA Lab.

Why Heuristic Optimization?

- Generation of all prime implicants is impractical
 - The number of prime implicants for functions with n variables is in the order of $3^n/n$
- Finding an exact minimum cover is NP-hard
 - Cannot be finished in polynomial time
- Heuristic method: provide irredundant covers with reasonably small cardinality
 - Fast and applicable to most functions
- Key idea: avoid generation of all prime implicants
 - Given initial cover
 - Make it prime
 - Make it irredundant
- Iterative improvement by modifying the implicants

Logic Minimizer -- ESPRESSO

- "ESPRESSO" developed by UC Berkeley
 - The kernel of existing synthesis tools
- EXPAND:
 - A minterm of ON(f) is selected, and expanded until it becomes a prime implicant
 - Make implicants prime
- IRREDUNDANT COVER:
 - The prime implicant is put in the final cover, and all minterms covered by this prime implicant are removed
 - Make cover irredundant
- REDUCE:
 - Reduce size of each implicant while preserving cover
- Iteratively find alternative covers
 - Repeat the 3 steps to find the solutions with lower costs

NCTU MSEDA Lab.

ESPRESSO - Illustrated

Pseudo Code of ESPRESSO

```
/* F = ON SET, D = DC SET*/
espresso (F, D)
 R = complement (F + D);
                                /* R = OFF SET */
 F = expand (F, R);
                                /* initial expansion */
 F = irredundant cover (F, D); /* initial irredundant cover */
 E = essential primes (F, D); /* extract essential primes */
 C = F - E;
 D = D + E:
 repeat {
    C = reduce(C, D);
    C = expand(C, R);
    C = irredundant cover (C, D);
 } until (C unchanged);
return C + E :
```

MCTU

NCTU MSEDA Lab.

Expand (1/3)

- Increase the size of each implicant
 - Implicants of smaller size can be covered and deleted
 - Maximally expanded implicants are primes
 - Raising one (or more) of its 0s to 1
- Validity checking
 - Checking for an intersection of the expanded implicant with F^OFF
- Two factors affect the quality and the efficiency of the algorithm
 - The order in which the implicants are selected
 - The order in which the 0 entries are raised to 1

Expand (2/3)

- Heuristic on the order of implicants
 - Compute column count vector (number of '1' in each column)
 - The weight of each cube is the inner product of itself and the column count vector
 - Sort implicants in ascending order of weight
 - Low weight correlates to having few 1s in the columns
 - Expand first those cubes that are unlikely to be covered
 - Ex: f = a'b'c' + ab'c' + a'bc' + a'b'c; don't care : abc'

NCTU MSEDA Lab.

71

Expand (3/3)

01 10 10 → 11 10 10 **OK**11 10 10 → 11 11 10 **OK**11 11 10 → 11 11 11 X

F updated to:

11 11 10 10 10 01

 $10\ 10\ 01\ \rightarrow\ 11\ 10\ 01\ X$ $10\ 10\ 01\ \rightarrow\ 10\ 11\ 01\ X$ $10\ 10\ 01\ \rightarrow\ 10\ 10\ 11\ OK$

Expanded cover:

11 11 10 10 10 11

Reduce (1/2)

- Decrease the size of each implicant of a given cover F
 - → successive expansion may lead to smaller cover
 - A reduced implicant is valid when, along with the remaining implicants, it still covers the function
 - The reduced cover has the same cardinality as the original one
- Let $\alpha \in F$ be an implicant and $Q = F \cup F^{DC} \{\alpha\}$
 - The maximally reduced cube is $\alpha'' = \alpha \cap \text{supercube}(Q_{\alpha'})$ // the part not covered by other implicants
- $\alpha \# Q = \alpha \cap Q'$ can yield a set of cubes

```
\begin{split} \alpha \ "&=\alpha \ \cap \text{supercube (Q')} \\ &=\alpha \ \cap \text{supercube (}(\alpha \ \cap \mathsf{Q}_\alpha \ ') \cup (\alpha \ '\cap \mathsf{Q}_{\alpha'} \ ')) \\ &=\alpha \ \cap \text{supercube (}(\mathsf{Q}_\alpha \ ') \end{split}
```

CTU MSEDA Lab.

73

Reduce (2/2)

- Sorting the implicants
 - Weight the implicants as for the Expand operator
 - Sort implicants in descending order of weight
 - First process those that overlap many other implicants
 - Lower as many * as possible to 1 or 0
- Replacing each implicant by the maximally reduced one

 β " \rightarrow In β but not in Q

F: α 11 11 10 β 10 10 11 column count vector = [212121]^T weight vector = [8,7]

Reduce α first \rightarrow fail Reduce β :

Q = F
$$\cup$$
 F^{DC} - { β } = { α , β } - { β }
= 11 11 10 // only α is left
Q' = 11 11 01 , Q $_{\beta}$ ' = Q'
supercube(Q $_{\beta}$ ') = Q' // not in Q
 β " = $\beta \cap$ Q' = 10 10 01

Reduced cover is

11 11 10

10 10 **01**

Outline

- Synthesis overview
- RTL synthesis
- Two-level logic optimization
- Multi-level logic optimization
- Technology mapping
- Timing analysis
- Timing optimization
- Synthesis for low power

NCTU MSEDA Lab.

Multi-Level Logic Optimization

- Level: maximum number of gates cascaded in series between the inputs and outputs of a network
 - Can be considered as an indication for worst-case delay
 - Assume all variables and their complements are available
- Two-level networks have the least depth, not least area
 - It's possible to further reduce the number of gates by increasing the logic levels and reusing existing logic gates
 - Common factors or kernel extraction
 - Common expression resubstitution
- Example:

$$f1 = abcd + abce + abcd + abcd + abcd + abcdf$$

$$ac + cdf + abcde + abcdf$$

$$f1 = c (a + x) + acx$$

$$f2 = gx$$

$$f2 = bdg + bdfg + bdg + bdeg$$

$$x = d (b + f) + d (b + e)$$

Multi-Level Logic

- Multi-level logic:
 - A set of logic equations with no cyclic dependencies
- Example: Z = (AB + C)(D + E + FG) + H
 - 4-level, 6 gates, 13 gate inputs

b. Meru work

NCTII MSEDA Lab

Multi-Level v.s. Two-Level

- Two-level:
 - Often used in control logic design

$$f_1 = X_1 X_2 + X_1 X_3 + X_1 X_4$$

$$f_2 = X_1 X_2 + X_1 X_3 + X_1 X_4$$

- Only x_1x_4 shared
- Sharing restricted to common cube

- Multi-level:
 - Datapath or control logic design
 - Can share $x_2 + x_3$ between the two expressions
 - Can use complex gates

$$g_1 = X_2 + X_3$$

 $g_2 = X_1 X_4$
 $f_1 = X_1 y_1 + y_2$
 $f_2 = X_1' y_1 + y_2$
(y_i is the output of gate g_i)

Factored Forms (1/2)

- A factored from is defined recursively by the following rules:
 - A literal is a factored form
 - A sum of two factored form is a factored form
 - A product of two factored forms is a factor form
- A factored form describes an implementation of the function as a complex gate
 - Any depth of sum-of-product
- Ex: a

 a'
 ab'c
 ab + c'd
 (a + b)(c + a' + de) + f

NCTU MSEDA Lab.

Factored Forms (2/2)

- A CMOS complex gate implementing
 f = ((a + bc)(c + d))'
 2 *literal count = # transistors
- Adv:
 - Nature multi-level representation
 - Good estimate of the complexity of function
 - Represent both the function and its complement
- Disadv:
 - More difficult to manipulate than twolevel form
 - Lack of the notion of optimality

Boolean Network

- Directed acyclic graph (DAG)
- Each source node is a primary input
- Each sink node is a primary output
- Each internal node represents an equation

• Arcs represent variable dependencies

A B d C

fanin of y : a, b fanout of x : F

Boolean Network: An Example

Multi-Level Logic Optimization

- Technology independent
- Decomposition/Restructuring
 - Algebraic
 - Functional
- Node optimization
 - Two-level logic optimization techniques are used

Decomposition / Restructuring

- Goal : given initial network, find best network
- Two problems:
 - Find good common subfunctions
 - How to perform division
- Example:

```
f_1 = abcd + abce + ab'cd' + ab'c'd' + a'c + cdf + abc'd'e' + ab'c'df'

f_2 = bdg + b'dfg + b'd'g + bd'eg
```

minimize (in sum-of-products form):

$$f_1 = bcd + bce + b'd' + b'f + a'c + abc'd'e' + ab'c'df'$$

 $f_2 = bdg + dfg + b'd'g + d'eg$

decompose:

$$f_1 = c(a' + x) + ac'x'$$
 $x = d(b + d) + d'(b' + e)$
 $f_2 = gx$

Basic Operations (1/2)

1. decomposition

(single function)

$$f = abc + abd + a'c'd' + b'c'd'$$

$$f = xy + x'y'$$

$$x = ab$$

$$y = c + d$$

2. extraction

(multiple functions)

$$f = (az + bz')cd + e$$

$$g = (az + bz')e'$$

$$h = cde$$

$$f = xy + e$$

$$g = xe'$$

$$h = ye$$

$$x = az + bz'$$

$$y = cd$$

NCTU MSEDA Lab.

Basic Operations (2/2)

3. factoring

(series-parallel decomposition)

$$f = ac + ad + bc + bd + e$$

$$f = (a + b)(c + d) + e$$

4. substitution

(with complement)

$$g = a + b$$

$$f = a + bc + b'c'$$

$$f = g(a + c) + g'c'$$

5. elimination

$$f = ga + g'b$$

$$g = c + d$$

$$f = ac + ad + bc'd'$$

$$g = c + d$$

"Division" plays

a key role!!

Division

- Division: p is a Boolean divisor of f if $q \neq \phi$ and r exist such that f = pq + r
 - p is said to be a factor of f if in addition $r = \phi$:

$$f = pq$$

- q is called the quotient
- _ r is called the remainder
- _ q and r are not unique
- Weak division: the unique algebraic division such that r has as few cubes as possible
 - The quotient q resulting from weak division is denoted by f / p
 (it is unique)

NCTU MSEDA Lab.

Weak Division Algorithm (1/2)

```
Weak_div(f, p):

U = \text{Set } \{u_j\} of cubes in f with literals not in p deleted

V = \text{Set } \{v_j\} of cubes in f with literals in p deleted

/* note that u_jv_j is the j-th cube of f */

V^i = \{v_j \in V : u_j = p_i\}

q = \cap V^i

r = f - pq

return(q, r)
```

Weak Division Algorithm (2/2)

Example

Algebraic Substitution (1/3)

• Idea: An existing node in a network may be a useful divisor in another node.

Algebraic Substitution (2/3)

 $f_t = kq + e$

Algebraic Substitution (3/3)

- Consist of the process of dividing the function f_i at node
 i in the network by the function f_j (or by f_j') pairwise
- During substitution, f_i is transformed into $f_i = (f_i/f_j)y_j + (f_i/f_j)y_j' + r$ if f_i/f_j and/or f_i/f_j' are not null
- No need to try all pairs. The cases where f_j is not an algebraic divisor of f_i can be excluded
 - $= f_i$ contains a literal not in f_i
 - $= f_i$ contains more terms than f_i
 - for any literal, the count in f_i exceeds that in f_i
 - $= f_i$ is f_i 's transitive fanin (cycle)

Algebraic Divisor

• Example:

$$X = (a + b + c)de + f$$

 $Y = (b + c + d)g + aef$
 $Z = aeg + bc$

- Single-cube divisor: ae
- Multiple-cube divisor: b + c
- Extraction of common sub-expression is a global area optimization effort

Kernels and Kernel Intersections

- An expression is *cube-free* if no cube divides the expression evenly
 - e.g., ab + c is cube-free; ab + ac and abc are not cube-free
 - A cube-free expression must have more than one cube
- The *primary divisors* of an expression f are the set of expressions

$$D(f) = \{f/c \mid c \text{ is a cube}\}$$

The kernels of an expression f are the set of expressions
 K(f) = {g | g∈ D(f) and g is cube free}

Co-Kernels

- A cube c used to obtain the kernel k = f/c is called a cokernel of k
 - C(f) is used to denote the set of co-kernels of f
- Example

$$x = adf + aef + bdf + bef + cdf + cef + g$$
$$= (a + b + c)(d + e)f + g$$

Kernel	Co-kernel				
a + b + c	df, ef				
d + e	af, bf, cf				
(a+b+c)(d+e)f+g	1				

 Kernels and co-kernels can help to find common divisors between expressions

NCTU MSEDA Lab.

Kerneling Illustrated

$$abcd + abce + adfg + aefg + adbe + acdef + beg$$

Cube-Literal Matrix & Rectangles (1/2)

- Cube-literal matrix
 - Each matrix element indicates if this literal appears in the cube
- Ex: $f = x_1x_2x_3x_4x_7 + x_1x_2x_3x_4x_8 + x_1x_2x_3x_5 + x_1x_2x_3x_6 + x_1x_2x_9$

	X ₁	X ₂	X ₃	X_4	X ₅	X ₆	X ₇	X ₈	X ₉
$X_1X_2X_3X_4X_7$	1	1	1	1	0	0	1	0	0
$X_1X_2X_3X_4X_8$	1	1	1	1	0	0	0	1	0
$X_1X_2X_3X_5$	1	1	1	0	1	0	0	0	0
$X_1X_2X_3X_6$	1	1	1	0	0	1	0	0	0
$X_1X_2X_9$	1	1	0	0	0	0	0	0	1

NCTU MSEDA Lab.

Cube-Literal Matrix & Rectangles (2/2)

 A rectangle (R, C) of a matrix A is a subset of rows R and columns C such that

$$A_{ij} = 1 \forall i \in R, j \in C$$

- Rows and columns need not be continuous
- A prime rectangle is a rectangle not contained in any other rectangle
 - A prime rectangle indicates a co-kernel kernel pair
- Example:

$$R = \{\{1, 2, 3, 4\}, \{1, 2, 3\}\}$$

— co-kernel: x₁x₂x₃

- kernel: $x_4x_7 + x_4x_8 + x_5 + x_6$

X ₁	X_2	X_3	X_4
[1	1	11	1
! 1	1	1	1
1	1	1	0
1	1	_1,1	0
1	1	0	0
	1 1	1 1	1 1 1 1

Rectangles and Logic Synthesis

- Kernels <=> prime rectangles of the cube-literal martrix
- Optimum selection of kernels <=> rectangle covering
 - Kernel intersection <=> finding rectangles
- Ex: single cube extraction

F = abc + abd + eg
G = abfg
H = bd + ef

$$(\{1,2,4\},\{1,2\}) \le ab$$

 $(\{2,5\},\{2,4\}) \le bd$

F = Xc + XY + eg,	X = ab
G = Xfg,	Y = bd
H = Y + ef	

		a 1	b 2	<i>c</i> 3	d 4	e 5	<i>f</i> 6	g 7
abc	1	1	1	1	0	0	0	0
abd	2	1	1	0	1	0	0	0
eg	3	0	0	0	0	1	0	1
abfg	4	1	1	0	0	0	1	1
bd	5	0	1	0	1	0	0	0
ef	6	0	0	0	0	1	1	0

0.0

Kernel Extraction (1/2)

- 1.Find all kernels of all functions
- 2.Choose one with best "value"
- 3.Create new node with this as function
- 4.Algebraically substitute new node everywhere
- Repeat 1,2,3,4 until best value ≤ threshold

Kernel Extraction (2/2)

After

Before

Literals after =
$$5+7+5=17$$
 Literals before = $9+15 = \underline{24}$
before - after = value = 7

NCTU MSEDA Lab.

Example – Decomposition (1/2)

Original:
$$f_1 = ab(c(d + e) + f + g) + h$$
 (literal = 8+8 =16)
 $f_2 = ai(c(d + e) + f + j) + k$

Kernel extraction: (literal = 2+7+7 = 16)

$$K^{0}(f_{1}) = K^{0}(f_{2}) = \{d + e\}$$

 $I = d + e$

$$f_1 = ab(cl + f + g) + h$$

 $f_2 = ai(cl + f + j) + k$

Kernel extraction: (literal = 2+3+5+5 =15)

$$K^{0}(f_{1}) = \{cl + f + g\}$$

 $K^{0}(f_{2}) = \{cl + f + j\}$
 $K^{0}(f_{1}) \cap K^{0}(f_{2}) = cl + f$

$$m = cl + f$$

$$f_1 = ab(m + g) + h$$

$$f_2 = ai(m + j) + k$$

Cube extraction: (literal = 2+3+2+5+5=17)

$$n = am$$

$$f_1 = b(n + ag) + h$$

 $f_2 = i(n + aj) + k$

Example – Decomposition (2/2)

NCTU MSEDA Lab.

