Discrete Mathematics

Rafał Włodarczyk

INA 2, 2024

Contents

1 Basic formulas and operators

1.1 Factorials

Definition. Factorial. Factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n.

Definition. Falling Factorial. Falling factorial (sometimes called the descending factorial) is defined as the polynomial:

$$(x)_n = x^{\underline{n}} = \underbrace{x(x-1)(x-2)\cdots(x-n+1)}_{n \text{ factors}}$$

$$= \prod_{k=1}^{n} (x-k+1) = \prod_{k=0}^{n-1} (x-k).$$

Definition. Rising Factorial. Rising factorial (sometimes called the descending factorial) is defined as the polynomial:

$$x^{(n)} = x^{\overline{n}} = \underbrace{x(x+1)(x+2)\cdots(x+n-1)}_{n \text{ factors}}$$
$$= \prod_{k=1}^{n} (x+k-1) = \prod_{k=0}^{n-1} (x+k).$$

1.2 Binomial Coefficient

Definition. Binomial Coefficient. Let $n, k \in \mathbb{N}$ and $n \ge k$. The binomial coefficient is the number of k-element subsets of an n-element set, and it is defined as:

$$\binom{n}{k} = \frac{n!}{k!} = \frac{n!}{k!(n-k)!}$$

Furthermore let $x \in \mathbb{R}$, and again $k \in \mathbb{N}$. Then we define the binomial coefficient as:

$$\binom{x}{k} = \frac{x^{\underline{k}}}{k!}$$

1.3 Binomial Coefficient Identities

Identities. Binomial Coefficient. The binomial coefficient carries within itself a lot of identities, most of which can be easily observed in the Pascal's Triangle:

1. First identity.

$$\binom{n}{k} = \binom{n}{n-k}$$

2. Recursion for binomial coefficients.

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

alternatively re-indexed as $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k-1}$.

3. Another recursion.

$$\binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k}$$

4. Another identity.

$$\binom{n}{k}\binom{k}{j} = \binom{n}{j}\binom{n-k}{k-j}$$

5. Bookkeeper sum.

$$\sum_{k=2}^{n} \binom{k}{2} = \binom{n+1}{3}$$

6. Sum of coefficients.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$\sum_{k=0}^{n} \binom{n}{k} k = n \cdot 2^{n-1}$$

7. Pascal diagonal sums.

$$\sum_{j=k}^{n} \binom{j}{k} = \binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

8. Alternating Sums.

$$\sum_{\substack{k=0\\k \text{ even}}}^{n} \binom{n}{k} = \sum_{\substack{k=0\\k \text{ odd}}}^{n} \binom{n}{k}$$

9. Strong sum.

$$\sum_{k=0}^{n} \binom{n}{k} k x^{k-1} = n(1+x)^{n-1}$$

1.4 Binomial Theorem

Theorem. Binomial Theorem. The expansion of any non-negative integer power $n \in \mathbb{Z}^+$ of the binomial $(x + y) : x, y \in \mathbb{R}$ is a sum of the form:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Notable example for when y = 1:

$$(1+x)^{n} = \binom{n}{0}x^{0} + \binom{n}{1}x^{1} + \binom{n}{2}x^{2} + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^{n}$$
$$= \sum_{k=0}^{n} \binom{n}{k}x^{k}.$$

1.5 Vandermonde Convolution Identity

Theorem. Vandermonde's Convolution Identity. Let $m, n, k \in \mathbb{N}$. The identity states:

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

1.6 Binomial Coefficient Combinatorics

Information. Choosing k **elements from** n**.** Let $n, k \in \mathbb{N}, k \leq n$. Combinatorial formulas for choosing k elements from n:

Selection Method	Order	No Order
No Repetition	$n^{\underline{k}}$	$\binom{n}{k}$
Repetition	n^k	$\binom{n+k-1}{k}$

2 Combinatorical Principles

2.1 Inclusion–exclusion principle

Definition. Inclusion—exclusion principle. Inclusion—exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets. Symbolically expressed as:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

For n=2,3. Or further in general $n\in\mathbb{N}$ by the formula:

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n A_i - \sum_{1 \le i \le j \le n}^n |A_i \cap A_j| + \sum_{1 \le i \le j \le k \le n} |A_i \cap A_j \cap A_k| + \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

2.2 Pigeonhole principle

Definition. Pigeonhole principle. Let S be a finite set. Let s_1, s_2, \ldots, s_k be the subsets, which satisfy $(\forall i \neq j) i, j \in [k] s_i \cap s_j = \emptyset$ and $s_1 \dot{\cup} s_2 \dot{\cup} s_3 \dot{\cup} \ldots \dot{\cup} s_k = S$. Then:

$$(\exists i \in [k]) |s_i| \geqslant \frac{|S|}{k}$$

3 Asymptotic Notation

- 1. $H_n \approx \ln(n)$
- 2. $\sum_{k=1}^{n} k^s \approx \frac{k^{s+1}}{s+1} \in O(k^{s+1})$

3.1 Big O

Definition. Big O Asymptotic Notation. Let $g: \mathbb{N} \to \mathbb{R}^+$ We define:

$$O\left(g(n)\right) = \left\{f : \mathbb{N} \to \mathbb{R}^+ : \left(\exists c \in \mathbb{R}^+\right) \left(\exists n_0 \in \mathbb{N}\right) \left(\forall n > n_0\right) f(n) \leqslant c \cdot g(n)\right\}$$

For when $g: \mathbb{N} \to \mathbb{R}$ one can write $|f(n)| \leq |c \cdot g(n)|$.

Even though O(g(n)) is clearly a set we often write f = O(g(n)), instead of $f \in O(g(n))$.

Fact. Big O Limit. Let $f, g \in \mathbb{N} \to \mathbb{R}^+$. As a fact:

$$f(n) = O(g) \iff \limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

3.2 Big Theta

Definition. Big Theta Asymptotic Notation. Let $g: \mathbb{N} \to \mathbb{R}^+$ We define:

$$\Theta\left(g(n)\right) = \left\{f: \mathbb{N} \to \mathbb{R}^+: \left(\exists c_1, c_2 \in \mathbb{R}^+\right) \left(\exists n_0 \in \mathbb{N}\right) \left(\forall n > n_0\right) c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)\right\}$$

Furthermore:

$$f(n) = \Theta(g(n)) \iff \begin{cases} f(n) = O(g(n)) \\ g(n) = O(f(n)) \end{cases}$$

Fact. Big Theta Limit. Let $f, g \in \mathbb{N} \to \mathbb{R}^+$. As a fact:

$$f(n) = \Theta(g) \iff \left(\limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty\right) \land \left(\limsup_{n \to \infty} \frac{f(n)}{g(n)} > 0\right)$$

3.3 Approximate Notation

Definition. \approx **Notation.** Let $f, g \in \mathbb{N} \to \mathbb{R}^+$. We define:

$$f(n) \approx g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \in \mathbb{R}^+$$

4 Integral Sum Approximation

Theorem. Sum Approximation. Let $a,b \in \mathbb{N}, f:[a,b] \to \mathbb{R}$ non-decreasing, differentiable. Then:

$$f(a) + \int_a^b f(x)dx \leqslant \sum_{k=a}^b f(k) \leqslant \int_a^b f(x)dx + f(b)$$

Analogically. Let $a,b\in\mathbb{N}, f:[a,b]\to\mathbb{R}$ non-increasing, differentiable. Then:

$$f(a) + \int_{a}^{b} f(x)dx \geqslant \sum_{k=a}^{b} f(k) \geqslant \int_{a}^{b} f(x)dx + f(b)$$

4.1 Stirling formula

$$n! \approx \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

5 Stirling numbers of the second kind

We define $\binom{n}{k}$ as the number of ways to partition a set of n objects into k non-empty subsets.

5.1 Basic values

- 1. ${0 \brace 0} = 1, {n \brack 0} = 0$
- 2. $\binom{n}{n} = \binom{n}{1} = 1$
- 3. $\binom{n}{n-1} = \binom{n}{2}$
- 4. $\binom{n}{2} = \frac{2^n 2}{2} = 2^{n-1} 1$

5.2 Properties

1. Explicit formula

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} (k-j)^n (-1)^j$$

2. Pascal identity:

$$\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$$

3. Expansion

$$x^n = \sum_{k=0}^n \binom{n}{k} x^{\underline{k}}$$

4. Boundary for triangle row inequality at $k_n \frac{n}{\ln(n)}$

$${n \brace 1} \leqslant \dots \leqslant {n \brace k_n} \geqslant \dots \geqslant {n \brace n}$$

5.3 Bell Numbers

Bell number B_n is the number of all partitions of an n-element set:

$$B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$$

Bell numbers satisfyy the following recurrence relation:

$$\begin{cases} B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k \\ B_0 = 1 \end{cases}$$

5.4 Stirling Number Combinatorics

Information. Choosing k **elements from** n**.** Let $n, k \in \mathbb{N}, k \leq n$. Combinatorial formulas for choosing k non empty subsets from a set of size n:

- 1. TOP Elements
- 2. SIDE Subsets

Selection Method	Distinguishable	Non-distinguishable
Distinguishable	$\binom{n}{k} \cdot k!(\text{surj.})$	$\binom{n-1}{k-1}$
Non-distinguishable	${n \brace k}$	$\binom{n+k-1}{k}$

6 Permutations

6.1 Permutation

A **permutation** of a set A is a bijection from the set A to itself. A permutation σ can be written as:

$$\sigma:A\to A$$

where σ reorders the elements of A.

If |A| = n, without loss of generality we can assume: $A = \{1, 2, \dots, n\}$.

6.2 Set of permutations

$$S_n = \{f : [n] \xrightarrow{\text{bijection}} [n]\} \text{ and } |S_n| = n!$$

6.3 Cycle

A **cycle** in a permutation σ is a subset of elements in S that are permuted among themselves, with each element mapping to the next element in the subset, and the last element mapping back to the first. A cycle of length k is written as:

$$\sigma = (a_1 \, a_2 \, \dots \, a_k)$$

indicating that $\sigma(a_i) = a_{i+1}$ for i = 1, 2, ..., k-1 and $\sigma(a_k) = a_1$.

6.4 Two-Line Notation for Permutations

In **two-line notation**, a permutation σ is written as:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

where the top row lists the elements of the set S, and the bottom row lists their images under σ .

For example:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

6.5 One-Line Notation for Permutations

In **one-line notation**, a permutation σ is written as a partition into disjoint cycles:

$$\sigma = (1\,2\,3)(4\,5)$$

6.6 Fixed point

Let σ be a permutation of a set S. A fixed point of σ is an element $x \in S$ such that $\sigma(x) = x$. For example Id. (identity) has n fixed points.

6.7 Derangement

A **derangement** is a permutation of a set where no element appears in its original position. More formally, for a set of n elements, a derangement is a permutation σ such that $\sigma(i) \neq i$ for all i in the set.

$$D_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

6.8 Transposition

A **transposition** is a cycle of length 2, i.e., it swaps two elements and leaves the others unchanged. It is written as:

$$\sigma = (a b)$$

indicating that $\sigma(a) = b$ and $\sigma(b) = a$, with $\sigma(x) = x$ for all $x \neq a, b$.

6.9 Inversion

Let $\sigma \in S_n$. An inversion is a pair $(\sigma(i), \sigma(j))$, which satisfies:

$$i < j$$
 and $\sigma(i) > \sigma(j)$

One may think these two are "not in order".

6.10 Sign of a permutation (sgn)

The **sign** (or **parity**) of a permutation σ , denoted $sgn(\sigma)$, is defined as number of inversions in a permutation. It satisfies the following property:

$$sgn(\sigma) = (-1)^{N(\sigma)}$$

Where $N(\sigma)$ is number of transpositions in the decomposition of σ .

A permutation is called even if $sgn(\sigma) = +1$ and odd if $sgn(\sigma) = -1$.

For example:

Consider the permutation $\sigma = (1\,3\,2)$. This can be decomposed into transpositions as:

$$\sigma = (1\,3)(3\,2)$$

Since there are 2 transpositions, $sgn(\sigma) = (-1)^2 = 1$. Therefore, σ is an even permutation.

6.11 Order of a permutation (ord)

The **order** of a permutation σ , denoted $\operatorname{ord}(\sigma)$, is the smallest positive integer k such that σ^k is the identity permutation. Formally,

$$\operatorname{ord}(\sigma) = \min\{k \in \mathbb{N} \mid \sigma^k = \operatorname{id}\}\$$

For σ built of disjoint cycles of length c_1, c_2, \ldots, c_k , its order satisfies:

$$\operatorname{ord}(\sigma) = \operatorname{lcm}(c_1, c_2, \dots, c_k)$$

For example:

Consider the permutation $\sigma = (1\,2\,3)$. Applying σ three times returns to the identity permutation:

$$\sigma = (1\,2\,3)$$
 $\sigma^2 = (1\,3\,2)$ $\sigma^3 = id$

Thus, $\operatorname{ord}(\sigma) = 3$.

7 Stirling numbers of the first kind

The Stirling numbers $\binom{n}{k}$ is the number of permutations in S_n , which have exactly k-disjoint cycles.

with the initial conditions:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \quad \text{and} \quad \begin{bmatrix} n \\ 0 \end{bmatrix} = 0 \quad \text{for} \quad n > 0.$$

and some interesting features:

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)! \quad \text{and} \quad \begin{bmatrix} n \\ n \end{bmatrix} = 1 \quad \text{and} \quad \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}$$

the following is also true:

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)! \cdot H_{n-1}$$

7.1 Properties

1. Factorial correlation

$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!.$$

2. Stirling relation

$$\begin{bmatrix} n \\ k \end{bmatrix} \geqslant \begin{Bmatrix} n \\ k \end{Bmatrix}$$

3. Relation for $x^{\underline{n}}$:

$$x^{\underline{n}} = \sum_{k=0}^{n} (-1)^{k+n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

4. Harmonic relation

$$n!H_n = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} k$$

5. Weird Pascal recurrence

$$\begin{bmatrix} n+m+1 \\ n \end{bmatrix} = \sum_{k=0}^{m} (n+k) \begin{bmatrix} n+k \\ k \end{bmatrix}$$

6. Another sum

8 Fibonacci Numbers

8.1 Definition

The Fibonacci sequence (F_n) is defined as follows:

$$F_0 = 0, \quad F_1 = 1$$
 (1)

$$F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n \geqslant 2$$
 (2)

8.2 Closed Form (Binet's Formula)

The *n*-th Fibonacci number can be expressed in closed form using Binet's formula:

$$F_n = \frac{\varphi^n - \psi^n}{\sqrt{5}} \tag{3}$$

where $\varphi = \frac{1+\sqrt{5}}{2}$ (the golden ratio) and $\psi = \frac{1-\sqrt{5}}{2}$.

8.3 Matrix Representation

Fibonacci numbers can also be represented using matrices:

$$Q = \begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Then:

$$Q^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

9 Catalan Numbers

The *n*-th Catalan number C_n is the number of ways to triangulate a convex polygon with n+2 sides. C_n can be defined using the binomial coefficients:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} \tag{4}$$

It can also be defined recursively as:

$$C_0 = 1 \tag{5}$$

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \quad \text{for} \quad n \geqslant 0$$
 (6)

9.1 Asymptotic growth

$$c_n = \frac{1}{n+1} \cdot {2n \choose n} \approx \frac{1}{n} \frac{4^n}{\pi n}$$
 (Stirling approx.)

9.2 Alternate definitions

- 1. The number of ways to correctly parenthesize a product of n + 1 factors is the n-th Catalan number.
- 2. The number of distinct binary trees with n+1 leaves (or n internal nodes) is the n-th Catalan number.
- 3. The number of mountain up-right, down-right paths of length 2n (paths from (0,0) to (2n,0) that do not dip below the x-axis) is given by the n-th Catalan number.

10 Generating Functions

A generating function for a sequence $\{a_n\}_{n=0}^{\infty}$ is a formal power series of the form:

$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

The coefficients a_n represent terms of the sequence.

10.1 Geometric series

The geometric series for $a_n = a_0 \cdot q^n$ is defined as:

$$A(x) = a_0 \cdot \sum_{n=1}^{\infty} (qx)^n = \frac{a_0}{1 - qx}$$

10.2 Exponential Generating Functions

The Taylor series for e^x is defined as:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

10.3 Generating function for the Fibonacci sequence

Let $\{F_n\}$ denote the Fibonacci sequence defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. The generating function for the Fibonacci sequence is:

$$F(x) = \sum_{n=0}^{\infty} F_n x^n = \frac{x}{1 - x - x^2}$$

10.4 Generating function for binomial coefficient

The generating function for the binomial coefficient $\binom{n}{k}$ is:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

10.5 Generating function for n

Use derivation to find the generating function for the coefficient n is.

$$\sum_{n=0}^{\infty} nx^n = \frac{x}{1-x^2}$$

$$\sum_{n\geqslant 0} \binom{n+k}{k} x^n = \frac{1}{(1-x)^{k+1}}$$

10.6 Generating function 1/(x+1)

The generating function $\frac{1}{1+x}$ is the sum:

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k$$

10.7 Identities

- 1. A(x) + B(x) is the generating function for $c_n = a_n + b_n$
- 2. cA(x) is the generating function for $c_n = c \cdot a_n$
- 3. A(x)B(x) is the generating function for $c_n = \sum_{k=0}^n a_k b_{n-k}$ (convolution)
- 4. A'(x) is the generating function for $c_n = (n+1)a_{n+1}$
- 5. $\frac{A(x)-a_0}{x}$ is the generating function for $c_n=a_{n+1}$

11 Counting functions

11.1 Number of functions

- 1. Number of functions $|f:[k] \to [n]| = n^k$
- 2. Number of 1-1 functions $|f_{1-1}:[k]\to [n]|=n^{\underline{k}}$
- 3. Number of surjective functions $|f_{surj.}:[k] \to [n]| = \sum_{i=0}^n \binom{n}{i} (n-i) (-1)^i = k! \cdot \binom{n}{k}$
- 4. Number of growing functions $|f_{grow}:[k] \to [n]| = \binom{n}{k}$

11.2 Solutions to $x_1 + x_2 + ... + x_k = n$

For when $x_i \ge 1$. We can write $x' = x_i - 1$, then $x' \in \{0, 1, 2, ..\}$. But now:

$$x_1' + x_2' + \dots + x_k' = n - k$$

There are:

$$\binom{k+(n-k-1)}{k-1} = \binom{n-1}{k-1}$$

unique solutions to this equation.

11.3 Expansion coefficient

Coefficient for $a^{k_1}b^{k_2}\dots$ in the expansion of $(a+b+c+\dots)^n$

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \dots k_m!}$$

12 Helpful integrals

1. ln(x)

$$\int \ln(x)dx = x\ln(x) - x + C$$