4. Ile jest takich permutacji zbioru $\{1,2,\ldots,n\}$, że żadna z liczb $i\in\{1,2,\ldots,k\}, (k< n)$ nie znajdzie się

wszystkich permutacji jest n!

20:22

Niech Ai = {JES, | Ju)=ig, czyli Ai jest zbiorem tych permutayi, htóre działają identycznościowo now i-tym elemennie zbioru d1,2,..., ng.

Chaeny policzyć n/- | UAi ! many

| Ail = (n-1)! [\vi] $|Ai| = (n-1)! [\nabla i]$ dua elementy prechodzą na siebie reste ustawiany na $(n-2)! [\nabla i] i \neq j$ na (n-2)! sposobów

1 A: n A; n A, I = (n-3)! [Vi,j,k roznych od siebie]

l A, n A₂ n. n A₁ l = 1 (pernutaga identycznościowa)

 $z = z_0 =$

czyci permutaiji z treści zest $n! - 2(n)(-n)^{i+1}(n-i)!$