Analisis exploratorio Series de tiempo y sus componentes

UASD ASOECO

José Ant. Burgos

Agradecimientos

- Asociación de Estudiantes de Economía (ASOECO) por la oportunidad de compartir conocimientos.
- Escuela de Economía por la formación académica.

Section 1

Series de tiempo

Series de tiempo

Los datos de series de tiempo consisten en observaciones de una variable o varias variables a lo largo del tiempo, y se caracteriza principalmente por tener un orden temporal. (Wooldridge, 2010)

$$X_t, t = 1, 2, ...T (1)$$

Donde: $X_t = Variable de interés en el periodo t$

T = Número de observaciones

Series de tiempo

Ejemplos:

- Tasas de interés mensuales.
- Tipo de cambio.
- Los datos económicos registrados durante una periodicidad dada:
 - ► IMAE (Mensual).
 - ▶ IPC (Mensual).
 - ▶ PIB (Trimestral).
 - Desempleo (trimestral).

5/33

Series de tiempo

Ejemplos

Índice Mensual de Actividad Económica (IMAE) año 2023

República Dominicana

Fecha	IMAE
•	
Septiembre	196
Octubre	207
Noviembre	220
Diciembre	230

Fuente: BCRD

Frecuencia o periodicidad

Frecuencia son la cantidad de veces que se toman las observaciones en un periodo de tiempo. Por ejemplo, el PIB se mide de forma anual o trimestral.

- Anual (PIB, inflación).
- Trimestral (PIB).
- Mensual (IMAE).
- Semanal (*Precios de acciones*).
- Diaria (Tipo de cambio).

Características de datos de series de tiempo

Las series de tiempo presentan 4 elementos esenciales en su composición.

Componentes:

- ullet Estacionalidad m_t
- Tendencia s_t
- Aleatoriedad ϵ_t
- Observación x_t

Estacionalidad

Son los movimientos que una serie de tiempo presenta en determinados periodos de la misma, la cual se presenta con un patrón de fluctuaciones. *Ejemplo: el consumo de energía eléctrica es mayor en verano que en invierno.*

Tendencia

La tendencia se refiere a la dirección general en la que se mueve una serie de tiempo. Por ejemplo, el PIB tiende a crecer a lo largo del tiempo.

Fuente: BCRD

Aleatoriedad

Puede denominarse al término de **aleatorio** a todos aquellos movimientos no observados en la serie, que no presentan patrón alguno dentro de la estacionalidad ni tendencia. Estos movimientos se le atribuyen generalmente a variaciones no previstas.

11/33

Observación

La observación en una serie de tiempo se compone de elementos estacionales y de tendencia, junto con términos de error. Esta definición refleja la presencia de patrones estacionales y direcciones de cambio a lo largo del tiempo, así como la inevitable incertidumbre introducida por los términos de error (Chatfield, 2004).

$$x_t = m_t + s_t + \epsilon_t \tag{2}$$

$$x_t = m_t * s_t * \epsilon_t \tag{3}$$

Nota

Existen dos metodos de descomposición de series de tiempo:

- 1. Aditivo (más común)
- 2. Multiplicativo (cuando la variabilidad de la serie aumenta con el tiempo)

UASD, ASOECO Analisis exploratorio José Ant. Burgos 12 / 33

Section 2

Análisis de una serie de tiempo

Análisis de una serie de tiempo

El análisis de una serie de tiempo se compone de tres partes:

- Hacer visualizaciones y conocer algunas medidas estadísticas.
- ② Descomposición.
- Análisis de los componentes.

Section 3

Rstudio

16/33

- Trabajar en proyectos es mucho más eficiente.
- ② Utilizar atajos de teclado (' $ctrl + enter \mid 1 \mid 2$ ').
- Nombre de los objetos y funciones descriptivos.
- Utilizar comentarios en los avances del código.

```
notas_examen <- c(90, 80, 70, 60, 50)
pib_real_2010_2020 <- read_excel("pib_real.xlsx")

# Esta función permite leer los datos
# de la serie de tiempo
read_data_series <- function(file){
   read_excel(file)
}</pre>
```

Funciones del tidyverse para manipular datos

Columnas

- select(): seleccionar.
- mutate(): crear nuevas columnas.
- group_by(): agrupar datos.
- summarise(): resumir por agrupaciones o conjunto de datos.

Filas

- filter(): filtrar filas.
- arrange(): organizar datos.
- distinct(): valores existente.
- ount(): conteo de observaciones.

Section 4

Analizando los datos

Cargar datos y manipularlos

Paquetes necesarios:

```
library(readx1) # Cargar datos
library(fpp3) # Descomposición
# Cargar datos
imae <- read_excel("recursos/datos/imae.xlsx") |>
    mutate(fecha = as.Date(fecha))
```

Estructura de los datos

fecha	year	mes	indice_original
2023-07-01	2023	Julio	196.0485
2023-08-01	2023	Agosto	203.0587
2023-09-01	2023	Septiembre	195.5634
2023-10-01	2023	Octubre	206.6591
2023-11-01	2023	Noviembre	219.8314
2023-12-01	2023	Diciembre	229.7057

```
imae |>
  tail(n = 3) >
  glimpse()
## Rows: 3
## Columns: 4
## $ fecha
                     <date> 2023-10-01, 2023-11-01, 2023-12-03
## $ year
                     <dbl> 2023, 2023, 2023
## $ mes
                     <chr> "Octubre", "Noviembre", "Diciembre"
## $ indice original <dbl> 206.6591, 219.8314, 229.7057
```

Visualización de los datos

Variaciones mensuales y anuales

```
imae_variacion <- imae |>
  rename(indice = indice_original) |>
  mutate(
    variacion_mensual = indice - lag(indice),
    variacion_anual = indice - lag(indice, 12)
)
```

Visualización de las variaciones

Variación del IMAE

Análisis agrupados

Section 5

Descomposición de series de tiempo

Descomposición de series de tiempo

La descomposición de una serie de tiempo consiste en separar la serie en sus componentes: estacionalidad (m_t) , tendencia (s_t) y aleatoriedad (ϵ_t) .

Descomposición aditiva

$$x_t = m_t + s_t + \epsilon_t \tag{4}$$

UASD, ASOECO Analisis exploratorio José Ant. Burgos 27 / 33

Descomposición STL

STL es un método versátil y robusto para descomponer series temporales. STL es un acrónimo de "descomposición estacional y de tendencias utilizando Loess", mientras que loess es un método para estimar relaciones no lineales. El método STL fue desarrollado por RB Cleveland et al. (1990).

Nota

El método STL es el más utilizado para descomponer series de tiempo.

```
imae_ts <- imae |>
  filter(fecha >= "2010-01-01" & fecha <= "2019-01-01") |>
  mutate(month_year = yearmonth(fecha)) |>
  select(month_year, indice = indice_original) |>
  as_tsibble(index = month_year) |>
  model(
    STL(indice)
)
```

Gráfico de la serie descompuesta

STL decomposition

Guardar en excel los datos descompuestos

```
imaes <- components(imae_ts) |>
  as_tsibble() |>
  select(-c(.model, season_year, trend)) |>
  as.data.frame()
```

- Chatfield, C. (2003). The Analysis of Time Series: An Introduction.
- Wooldridge, J. M. (2010). Introducción a la econometría: un enfoque moderno.
- Cleveland, RB, Cleveland, WS, McRae, JE y Terpenning, IJ (1990).
 STL: Procedimiento de descomposición de tendencias estacionales basado en loess. Revista de Estadísticas Oficiales, 6 (1), 3–33.
- Hyndman, R. J., Athanasopoulos, G. (2018). Forecasting: principles and practice. Monash University, Australia.