Introducción a la Simulación

Carlos Javier Uribe Martes

Ingeniería Industrial Universidad de la Costa

Febrero 3, 2020

Contenido

- Simulación
- 2 Sistemas
 - Componentes de un sistema
 - Tipos de sistemas
- 3 Modelos

Simulación

■ Simulación se refiere a un conjunto de métodos y aplicaciones que buscan imitar la operación de un sistema o proceso [1, 2].

Simulación

- Implica la generación de una historia artificial del sistema [1].
- Y también la observación de dicha historia artificial para obtener inferencias relacionadas con las características operacionales del sistema [1].

Ventajas de la simulación

Dentro de las ventajas del uso de la simulación se pueden mencionar:

- Se puede experimentar con una variedad de escenarios, lo cual no sería posible en el sistema real [2].
- 2 Se puede obtener una visión de la relación entre las variables y su importancia en el desempeño del sistema [1].
- 3 Se pueden encontrar cuellos de botellas y determinar en qué parte del proceso ocurren demoras excesivas [1].

Desventajas de la simulación

Algunas de las desventajas del uso de la simulación son [1]:

- La construcción de modelos es un arte que requiere entrenamiento y que se aprende con la experiencia.
- 2 Los resultados de los modelos de experimentación pueden ser difíciles de interpretar.
- Modelar y analizar un problema con simulación puede ser costoso y laborioso.

Sistemas

- Un sistema es un conjunto de elementos interdependientes que interactúan hacia el logro de un objetivo en común [3].
- Durante el modelado, es necesario determinar los límites entre el sistema y su entorno. Esta decisión puede depender de los objetivos del estudio [3].

Entidades

- Una entidad es un objeto de interés dentro del sistema.
- La mayoría de entidades representan objetos reales dentro del sistema. Sin embargo, en ocasiones se utilizan entidades *dummies* o falsas para representar algunas situaciones dentro del sistema [2].

Atributos

- Un atributo es una propiedad de una entidad.
- Los atributos son características comunes para todas las entidades, pero cada entidad puede tener un valor diferente para cada característica.

Variables de estado

- Una variable representa un valor o característica de todo el sistema.
- Pueden ser escalares, vectores o matrices, suelen representar valores que cambian a lo largo de la simulación.
- Son accesibles por cualquier entidad, pertenecen al sistema y tienen un valor único en cada momento (ej: Reloj de la simulación).

Estado del sistema

■ El estado del sistema se define como el conjunto mínimo de variables necesarias para caracterizar o describir todos aquellos aspectos de interés del sistema en un instante dado.

Recursos

- Un *recurso* se refiere a un servidor (operario, máquina, ubicación, etc.) capaz de ofrecer algún servicio a las entidades.
- Se asocia a restricciones del sistema.
- Las entidades compiten por el uso de los recursos.

Actividades

- Una actividad representa un lapso de una duración especificada.
- Se asocia a menudo operaciones que demandan tiempo de uno o más recursos.

Eventos

- Un evento se define como una ocurrencia instantánea que puede cambiar el estado del sistema.
- Durante la simulación se lleva un registro de los eventos que se espera que ocurran en el futuro; esta información se almacena en un calendario de eventos.

Ejemplos

Sistema	Bancario	Producción	Inventario
Entidad	Cliente	Órdenes de producción	Productos
Atributo	Edad	Tamaño de orden	Volumen
	Saldo en cuenta	Prioridad del cliente	Ubicación
Actividad	Depósito	Soldadura	Inspección
		Maquinado	Picking
Evento	Llegada	Falla de una	Llegada de un
	Salida	máquina	pedido
	Número de	Estado de	
Variables	cajeros ocupados	las máquinas	Nivel de inventario
de estado	Número de	Producto en	Demanda atrasada
	clientes esperando	proceso	

Tipos de sistemas

Un sistema discreto es aquel en el cual las variables de estado cambian solo en puntos discretos en el tiempo.

Figura: Sistema discreto

Un sistema continuo es aquel en el cual las variables de estado cambian continuamente a lo largo del tiempo.

Figura: Sistema continuo

Estudio de sistemas complejos

La simulación es un método de estudiar un sistema complejo. Pero no es el único.

Figura: Aproximaciones al estudio de un sistema

Modelos

Un *modelo* es definido como una representación de un sistema con el propósito de estudiarlo [3].

Tipos de Modelos

Los modelos pueden clasificarse de acuerdo con diferentes criterios:

- Matemáticos vs físicos.
- Estáticos vs dinámicos.
- Determinísticos vs estocásticos.
- Discretos vs continuos.

Referencias

- Banks, J., Carson II, J. S., Nelson, B. L. y Nicol, D. M. *Discrete-Event System Simulation*. Fifth (Pearson, 2014).
- Kelton, W. D., Sadoski, R. P. y Sturrock, D. T. Simulation with ARENA. Fourth (McGraw-hill, 2002).
- Law, A. M. Simulation modeling and analysis. Fifth (McGraw-Hill, 2015).

