Primera Tarea: (Reynaldo Alfonte Zapana)

a) Crear una variable llamada 'historial_J' que almacene en cada iteración del algoritmo Gradient Descent el valor de la Función Costo.

Los archivos matlab modificados estan con el nombre: gradient_descent_one_var.m, linear_reg_script_one_var.m

b) Para valores de alpha = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 1.3, 2, 3. Hacer un gráfico (iter, J) donde se plotee el valor de la Función Costo (J) en la i-ésima iteración (Iter). El máximo número de iteraciones será de 1000.

alpha=0.001

alpha=0.003

alpha = 0.01

alpha = 0.03

apha = 0.1

alpha = 0.3

alpha = 1

alpha = 1.3

alpha = 2

alpha = 3

Pregunta: Cuál valor de alpha cree usted que consigue converger más rápido?

Al parecer cuando alpha = 1, o que se acerque por arriba o por abajo, por ejemplo: alpha = 1.3 (se acerca por arriba). Esto es cuando la variable de X esta normalizada.

Pero cuando no esta normalizada el valor de alpha = 0.01 es muy buena eleccion.