Department of Electrical & Electronic Engineering Southern University of Science and Technology

EE323 Digital Signal Processing Week 13 Quiz

ACADEMIC YEAR 2019-2020 SEMESTER 1

Name:		Date: 4 Dec. 2019	Paper A
Matricu	ılation No:	Major:	
Time A	llowed: 50 mins		
This Qu	aiz consists of 7 pages and 5 questions		
Answei	r all 6 questions.		
Q1-Q5: Short Questions, and 20 marks for each question.			
Standa	rd Sequences		
	[n] = 1 for $n = 0$ and 0 otherwise. $[n] = 1$ for $n \ge 0$ and 0 otherwise.		
Forward and Inverse Transforms			
DTFT:	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega}$	$e^{j\omega n}d\omega$
DFT:	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{jx}$	$2\pi \frac{kn}{N}$
<i>z</i> :	$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	$x[n] = \frac{1}{2\pi i} \oint_{\mathcal{C}} X(z) z^{n-1}$	$^{-1}$ dz
Convol	ution $v[n] = x[n] \circledast y[n] \triangleq \sum_{r=-\infty}^{\infty} x[r]y $	$[n-r] \qquad \Leftrightarrow \qquad \mathbb{I}$	$Y(\rho^{j\omega}) = X(\rho^{j\omega})Y(\rho^{j\omega})$
2111.			
	$v[n] = x[n]y[n] \qquad \Longleftrightarrow \qquad V(e^{j\omega})$	$=X(e^{j\omega}) (*) Y(e^{j\omega}) = \frac{1}{2\pi} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{j\omega} ds$	$-\pi^{X(e^{j\sigma})Y(e^{j(\omega-\sigma)})d\theta}$

Geometric Progression

$$\sum_{n=0}^{r} a^n z^{-n} = \frac{1 - a^{r+1} z^{-r-1}}{1 - a z^{-1}} \text{ provided that } az^{-1} \neq 1$$

$$\sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1 - a z^{-1}} \text{ provided that } |az^{-1}| < 1$$

 $v[n] = x[n] \bigotimes y[n] \triangleq \sum_{r=0}^{N-1} x[r] h[\langle n-r \rangle_N]$

 $v[n] = x[n]y[n] \qquad \Leftrightarrow \qquad V[k] = \frac{1}{N}X[k] \bigotimes Y[k] = \frac{1}{N}\sum_{r=0}^{N-1}X[r]Y[\langle k-r\rangle_N]$

 $\Leftrightarrow V[k] = X[k]Y[k]$