Lecture 20

11.8 Power Series

Definition 1. The series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_n(x-a)^n + \cdots$$

is called a power series in x-a or a power series centered at a or a power series about a. Constants c_n are called coefficients of the series.

Theorem 1. For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:

- (i) The series converges only when x = a.
- (ii) The series converges for all real x.
- (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R. In this case the series may or may not converge at either of two endpoints x = a R and x = a + R.

Definition 2. We call the interval, where $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges, the **interval of convergence** of the series.

It must be one of the form:

- (i) The isolated point x = a.
- (ii) The entire real line $(-\infty, \infty)$.
- (iii) A finite interval centered at x = a:

$$(a-R, a+R), [a-R, a+R), (a-R, a+R], [a-R, a+R]$$

Definition 3. The number R is called the **radius of convergence** of the series.

There are only three possibilities:

- (i) R = 0.
- (ii) $R = \infty$).
- (iii) R is finite positive number.

Algebraic Operations on Power Series

Theorem 2. Let $\sum_{n=0}^{\infty} a_n(x-a)^n$ and $\sum_{n=0}^{\infty} b_n(x-a)^n$ be two series with the radius of convergence R_a and R_b , respectively. Let c be a real constant. Then

$$\sum_{n=0}^{\infty} a_n (x-a)^n \pm \sum_{n=0}^{\infty} b_n (x-a)^n = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-a)^n,$$

$$R = \min\{R_a, R_b\}$$

2
$$c \sum_{n=0}^{\infty} a_n (x-a)^n = \sum_{n=0}^{\infty} (ca_n)(x-a)^n$$
, $R = R_a$

Definition 4. The sum $\sum_{n=0}^{\infty} c_n(x-a)^n$ is called the **Cauchy product of series** $\sum_{n=0}^{\infty} a_n(x-a)^n$ and $\sum_{n=0}^{\infty} b_n(x-a)^n$.