FACULTAD DE CIENCIAS

Escuela Profesional de Ciencia de la Computacion Cod. CC312 Administracion de Redes

Administracion de la Red

Prof. Jose Lozano

2021

Administracion de la Red

Definicion

Designa las operaciones de control de red con la gestion de configuraciones y de seguridad Tiene por objetivo:

- Ofrecer a los usuarios una cierta calidad de servicio
- Permitir la evolucion del sistema incluyendo nuevas funcionalidades
- Poner operacional el sistema.
- Una de las formas de gestion es el uso de DHCP, LDAP

Dynamic Host Configuration Protocol (DHCP)

Proposito de DHCP

- DHCP es usado para permitir a los hosts dinamicamente aprender varios aspectos de su configuracion de red como la direccion IP, mascara de subred, y su pasarela (gateway) por defecto, etc, sin necesidad de configurarlo manualmente.
- Es parte esencial de las redes modernas, por ejemplo, cuando nos conectamos a una red wifi, acaso preguntamos que IP asignarle a nuestro dispositivo?
- Tipicamente usado por dispositivos cliente como smartphones, pcs etc
- Dispositivos como routers, servidores, son configurados manualmente
- En redes pequeñas, el router tipicamente actua como servidor DHCP para los hosts de la LAN
- En redes grandes, un servidor DHCP es usualmente un servidor Linux / Windows

Caracteristicas de DHCP

- Se basa en el paradigma cliente-servidor
- Un servidor DHCP puede asignar direcciones IP a clientes y proporcionar parámetros adicionales de configuración.
- Utiliza el puerto UDP 67 para servidor y 68 para cliente

Funciones de DHCP

- Evita problemas de asignación manual de direcciones IP: Errores de asignación, IPs duplicadas, esfuerzo administrativo de mantenimiento
- Facilita cambios de subred en equipos itinerantes
- Centraliza cambios de red: nueva máscara, cambio servidor DNS...
- Control del uso de la red: guarda información de la direccion IP asignada, MAC, hora de asignación, tiempo validez préstamo...
- DHCP permite arranque en red de equipos sin disco.

Modelos de asignacion de IPs

La asignacion puede ser:

- Automática, sin limite de tiempo (hasta que el cliente no libere la direccion IP, por ejemplo apagándose)
- Dinámica, durante un periodo de tiempo determinado por el servidor
- Manual, el servidor asigna direcciones IP a determinadas direcciones MAC previamente configuradas manualmente por el administrador

Intercambio de Informacion

Caracteristicas

- Servidor y cliente deben estar en la misma red
 - Porque cliente y servidor necesitan comunicarse sin que el cliente tenga configuración alguna.
 - Existen agentes DHCP relay que permiten retransmitir mensajes DHCP entre redes distintas (se necesita entonces un agente por red).
- En una misma red puede haber más de un servidor DHCP
 - Por razones de protección ante posibles fallos
 - En este caso todos contestarían con un DHCPOFFER y el cliente puede elegir uno y excluir los demás (especificándolo en el DHCPREQUEST)
- Si un cliente se apaga y rearranca puede mantener la misma configuración

Mensajes DHCP

- DHCPDISCOVER: broadcast para localizar servidores DHCP activos.
- DHCPOFFER: respuesta con oferta de parámetros de configuración.
- DHCPREQUEST: renovar solicitud de una dirección IP obtenida anteriormente.
- DHCPACK: confirmación del servidor al cliente.
- DHCPNACK: servidor informa al cliente de:
 - La direccion IP que solicita no es válida para la subred en la que se encuentra
 - La dirección IP ya no le pertenece porque la ha obtenido otro equipo.
- DHCPDECLINE: informa de que la dirección está en uso.
- DHCPRELEASE: informa fin de uso de la dirección IP.

Ilustracion

Servidor DHCP: Caracteristicas

- Debe tener un servicio/demonio DHCP a la espera.
- El rango (alcance) del servidor DHCP debe estar definido.
 - Ámbito de direcciones IP que el servidor puede asignar.
 - Puede ser configurado para asignar direcciones estaticamente.
- Debe tener configuración estática,
 - No puede ser un cliente DHCP.
 - Su direccion IP será de su rango y debe ser eliminada del mismo.
- Comunicación con otros servidores DHCP.
 - Cuando existen varios servidores DHCP, se recomienda que compartan las direcciones IP y balanceen la carga.

Funciones del Servidor

- Comprobar la ubicación del equipo entonces podemos obtener la subred de la que procede, para escoger el rango.
- Validación de la configuración de un equipo.
 - Si anteriormente obtuvo una direccion IP y está libre entonces se le oferta (DHCPREQUEST).
 - Si no es válida (por cambio de red) servidor envía DHCPNACK.
 - El cliente iniciará la secuencia con un DHCPDISCOVER.
- Verificación de uso de una dirección IP.
 - El servidor debe verificar que una dirección IP no esté en uso.
 - Antes de ofrecer una direccion IP, verifica el uso mediante ping u otro método.
 - Configurable el número de intentos que hará antes de conceder la direccion IP (en el conf).
- Gestionar los recursos.
 - El servidor almacena datos sobre las direcciones IP.
 - Esta información será accesible por el administrador de este servicio (en el log).

Configuracion del servidor: Definit el ambito de IPs

- Ámbito direccion IP (scope) es el conjunto de direcciones IPs que puede asignar. Se define especificando las direcciones de inicio y final.
- Consideraciones:
 - ¿Van a funcionar todos los ordenadores como clientes DHCP? : No clientes: tendrán direccion IP estática que se eliminará del rango.
 - ¿Suministran los servidores DHCP IPs a múltiples subredes?
 Necesidad de DHCP Relay Agent en routers.
 - ¿Cuántos servidores DHCP necesitamos?: Crear un rango de direcciones IP diferente para cada servidor.

Configuracion del servidor: Definir opciones del ambito

- La máscara de red
- direcciones IP de router por defecto (default gateway)
- direcciones IP de servicios adicionales como DNS, NTP, SMTP.
- Definir parámetros de configuración del DHCP por el usuario.

Configuracion del servidor: Definir asignaciones estaticas

- Definir asignaciones fijas a máquinas en función de su direccion MAC.
- Rango de reserva: direcciones que no se distribuyen dinámicamente pero sí estáticamente.
- Rango de exclusión: direcciones que no van a ser distribuidas.

Configuracion del servidor: Definir periodo de alquiler

- Normalmente suele ser de 48 o 72 horas.
- Renovación del periodo de alquiler en direccion IP asignadas.
- Si el cliente no libera la conexión, se quedará reservada al apagarlo.

Configuracion en cliente

- En sistemas Red Hat
 - "/etc/sysconfig/network-scripts/ifcfg-<dispositivo>.

En sistemas Debian: "/etc/network/interfaces" o fichero netplan.
 Asignamos las configuraciones de red dependiendo de la interfaz a configurar

El cliente DHCP

- Programa /sbin/dhclient.
- Fichero de configuración /etc/dhclient.conf. Puede no existir instalacion del paquete: apt install dhcp-client
- Opciones de configuración:
 - Parámetros temporales.
 - Opciones de solicitud.
 - Modificaciones de opciones.
 - Otros modificadores.

Parametros temporales

- timeout <valor>: Tiempo de espera de la respuesta (60 segundos).
- retry <valor>: Tiempo entre reintentos (300 segundos).
- select-timeout <valor>: Tiempo de espera de más respuestas (0 segundos).
- reboot <valor>: Tiempo de reasignación (10 segundos).
- dhcp-lease-time <valor>: Tiempo que se desea la asignación (sin valor por defecto).
- reject <dirección IP> : Rechaza las respuestas de ese servidor DHCP.
- interface <nombre> declaraciones : Declaraciones de modificadores para el interfaz indicado por <nombre>.

Fichero cliente: /etc/dhclient.conf

```
timeout 60;
retry 120:
select-timeout 60;
reboot 10;
reject 147.156.222.65;
interface "eth0" {
   send host-name "fc.uni.edu.pe";
   send dhcp-lease-time 3600;
   supersede domain-name "fc.uni.edu.pe";
   prepend domain-name-servers 147.156.222.65;
   request subnet-mask, broadcast-address, domain-name, routers, domain-
   name-servers, host-name;
   require subnet-mask, domain-name-servers:
```

Configuracion en servidor

- Es el programa /usr/sbin/dhcpd.
- Por defecto escucha el puerto 67 UDP.
- Su funcionamiento es:
 - Almacenar en memoria las asignaciones, validez, etc.
 - Escribe en /var/lib/dhcp/dhcpd.leases las asignaciones, etc., enviando la respuesta cuando están escritas.
 - Periódicamente:
 - o Crea un fichero temporal con la información valida.
 - Renombra dhcpd.leases a dhcpd.leases
 - o Renombra el fichero temporal a dhcpd.leases.

Configuracion en servidor

- Su configuración se realiza en los archivos:
 - /etc/sysconfig/dhcpd.
 - /etc/dhcp/dhcpd.conf.
- El fichero /etc/sysconfig/dhcpd especifica el interfaz de red para el que se activa el servidor.
 - Por defecto se activa para todos los interfaz que pueden recibir mensajes broadcast.
 - DHCPARGS="eth0"
- /etc/dhcp/dhcpd.conf contiene los valores de configuración del servidor.

Fichero /etc/dhcpd.conf

```
Parámetros globales
subred <dirección de subred> netmask <máscara> {
   Parámetros específicos de la subred
   ...
   range <dirección de inicio> <dirección de fin>;
host <nombre> {
   Parámetros específicos del ordenador
```

Fichero de configuracion

- Los parámetros globales se aplican a todas las subredes y ordenadores (host).
- Las subredes y ordenadores pueden:
 - Modificar parámetros globales asignando otro valor.
 - Asignar parámetros no especificados de forma global
- Las subredes:
 - Poseen el rango de direcciones IP que puedenasignar

Parametros de Servidor I

<u>Parámetro</u>	<u>Descripción</u>
authoritative; / not authoritative;	Indica si el servidor de DHCP puede enviar respuestas DHCPNAK, indicando a los clientes que la IP que poseen no es valida (authoritative) o no puede enviar dichas respuestas (not authoritative, que es el valor por defecto). Esta entrada debe ser la primera en los parámetros globales.
boot-unknow-clients {on,off};	Indica si se asigna una dirección IP a los clientes que no tienen una entrada host propia (valor on) o no (valor off). El valor por defecto es on.
{allow,ignore} client-updates;	Indica si un cliente puede solicitar al servidor que actualice las entradas del DNS (allow, valor por defecto) o no (ignore).
ddns-update-style <valor>;</valor>	Indica el modo de actualización de los servidores de DNS al asignar una dirección IP. Sus valores son <i>none</i> (sin actualización), <i>ad-hoc</i> (actualización a medida del servidor DNS, es un valor obsoleto) o <i>interim</i> (actualización mediante interacción DHCP-DNS).
ddns-updates {on,off};	Permite especificar si, con los valores ad-hoc o interim del parámetro ddns-update-style, se debe permitir la actualización del DNS (valor por defecto on) o no (valor off) para una cierta subred o grupo.

Parametros de Servidor II

<u>Parámetro</u>	<u>Descripción</u>
default-lease-time <tiempo>;</tiempo>	Tiempo por defecto en que la concesión de la IP es valida.
local-port <puerto>;</puerto>	Puerto UDP en que escucha las peticiones. Por defecto es el 67. $$
local-address <dirección>;</dirección>	Dirección IP que escucha las peticiones. Por defecto se escuchan peticiones por todos los interfaces de red.
max-lease-time <tiempo>;</tiempo>	Tiempo máximo que se permite asignar a una concesión de dirección IP. $ \\$
min-lease-time <tiempo>;</tiempo>	Tiempo mínimo que se permite asignar a una concesión de dirección IP. $ \\$
min-secs <tiempo>;</tiempo>	Tiempo mínimo que debe transcurrir entre la petición DHCP y la respuesta al cliente. Se utiliza para dar prioridad a unos servidores DHCP sobre otros.
server-name <nombre>;</nombre>	Nombre del servidor que se debe enviar al cliente. El valor por defecto es el nombre asignado a la dirección IP por la que se recibió la petición.

Opciones de configuracion

<u>Opción</u>	<u>Descripción</u>
broadcast-address <dirección ip="">;</dirección>	Especifica la dirección IP de broadcast de la subred del cliente.
default-ip-ttl <valor>;</valor>	TTL que el cliente debe usar en los datagramas que envíe.
domain-name <dominio>;</dominio>	Nombre del dominio del cliente.
domain-name-servers <ip>[,<ip>];</ip></ip>	Lista de direcciones IP con las direcciones de los servidores de nombres.
hardware ethernet <mac></mac>	Indica la dirección MAC que corresponde a un cliente.
host-name <nombre>;</nombre>	Especifica el nombre del cliente.
routers <ip>,[<ip>];</ip></ip>	Lista de direcciones IP con las direcciones de los routers.
subnet-mask <máscara>;</máscara>	Máscara de la subred.

Ejemplo de fichero: etc/dhcpd.conf

```
# Indicamos que el servidor es una
autoridad
authoritative:
```

Indicamos el modo de actualizacion del servidor DNS

ddns-update-style none;

Tiempo por defecto de concesion de la IP

default-lease-time 600;

Tiempo maximo que podemos dar la IP si el cliente lo solicita

max-lease-time 7200;

Mascara de subred option subnet-mask 255.255.254.0;

```
# Direction broadcast de la subred option broadcast-address 147.156.223.255; 
# Router de la subred option routers 147.156.222.1; 
# Servidores de nombres de la subred option domain-name-servers 147.156.1.1, 
147.156.1.3; 
# Nombre del dominio de la subred option domain-name "uni.edu.pe."; 
# Declaracion de la subred y el rango de valores a asignar 
subnet 147.156.222.0 netmask 
255.255.254.0 { 
range 147.156.222.2 147.156.223.254;
```