Negotiating With Batteries: The Unfortunate Tetrahedron

Daniel Steingart

Princeton University

Princeton Lab for Electrochemical Engineering Systems Research Department of Mechanical and Aerospace Engineering Andlinger Center for Energy and the Environment

Brief Introduction To Me

If a battery falls does it make a sound?

Can a battery constantly short circuit and not kill us?

(Yes and it's really telling)

(Yes and it opens up new designs)

My group studies and exploits systemic behaviors in batteries

Tolstoy On Batteries

"All happy families are alike; each unhappy family is unhappy in its own way"

"If you look for perfection, you'll never be content"

"Anything is better than lies and deceit!"

The Original Compromise

The Hidden Metric in Ragone

V. Srivansan, GigaOM, 2012

More Energy @ Unlimited Rate

$$rac{\Delta E}{C_p*m} = \Delta T$$
Less Mass

Pick Two Out Of Three

In any triangle pick two out of three

The Unfortunate Tetrahedron

Constraints To Opportunity

99% of the literature

How Much Can It Cost?

"\$100/kWh" <- Is this an effective target?

Global Upper Bound

GDP: \$63,000,000,000,000

Consumption: 517,000,000 TJ (on fuel basis)

Max \$/E: \$120/TJ or **\$0.44/kWhr**

(there are, of course, massive local fluctuations)

Cell Cost Comparison

System	\$/kWhr	Cycle Life @ 80% DOD	LCOE \$/kWhr-Cycle	Notes
Lead Acid	\$250.00	300	\$0.83	Exide
Nickel Zinc	\$350.00	500	\$0.70	EEI
Lion ("Weekly")	\$320.00	500	\$0.64	Tesla
V Redox	\$1,000.00	5000	\$0.20	PNNL
Lion ("Daily")	\$430.00	3600	\$0.12	Tesla
Nickel Zinc/Modified	\$500.00	5000	\$0.10	CUNY
Na-Ion	\$250.00	3000	\$0.08	CMU/Aquion
NaS	\$400.00	5000	\$0.08	Difficult
NaMCI	\$400.00	5000	\$0.08	GE
ZnMnO2/ Modified	\$100.00	2000	\$0.05	CUNY/Princeton
Group Target	\$50.00	5000	\$0.01	Crazy?

Battery vs. Turbine

Carbon cost is 0 and gas price passed directly to consumer

So a 10 year battery (to grid) can cost \$50/kWhr for 15 hours, \$100/for 7.5 hours, etc.

Case Study: Home Powerwall

Without knowing anything else about the battery, as Tesla held the power density constant we can s

Technology

Wall mounted, rechargeable lithium ion battery with liquid thermal control.

Models

10 kWh \$3,500 For backup applications

7 kWh \$3,000 For daily cycle applications

Warranty 10 years

Efficiency

92% round-trip DC efficiency

Power

2.0 kW continuous, 3.3 kW peal

Voltage

350 - 450 volts

Currer

5.8 amp nominal, 8.6 amp peak output

Compatibility

Single phase and three phase utility grid compatible

Operating Temperature

-4°F to 110°F / -20°C to 43°C

Enclosur

Rated for indoor and outdoor installation.

Installation

Requires installation by a trained electrician. DC-AC inverter not included.

Weight

220 lbs / 100 kg

Dimensions

51.2" x 33.9" x 7.1" 1300 mm x 860 mm x 180 mm

Certification

NRTL listed to UL standards

	Weekly System	Daily System
\$/kWh	\$350	\$429
\$/kW	\$1000	\$1000
Cycle Life	520	3650
\$/kWhr-cycle	\$0.67	\$0.12

Electricity in NYC is \$0.22/kWhr \$0.11/kWhr is just the *distribution* cost

Can Batteries Be Cheaper?

Probably much cheaper, but at a performance penalty

Biswas E&ES 2016

Where we can go if there's little carbon degradation and we can make bigger cells

How Long Should It Last?

As in cycle life/calendar life, not run time

There are Hard Limits:

- Energy Density:
 - Lithium vs. ??
 - Flourine, Oxygen, Sulfur
 - Order ~3W/g in theory
 - More like 1 W/g in practice
 - Still far away
- Power Density
 - We can likely get to a 5 minute charge
 - With a lot of blood sweat and tears

There Are Not Hard Limits:

- Cycle Life
 - 1,000 cycles?
 - 10,000 cycles?
 - 100,000 cycles?
 - Maybe
- Calendar Life
 - 50 years? Forever?
 - Why not?

What's the Catch?

The Catch 22

- Who wants to pay for it (any of it):
 - Electricity, at least in the US, is a bargain
 - Short of backup power, as grid batteries get closer to the point of demand in 2017 they only make electricity more expensiv
 - Power quality matters elsewhere
 - Because power quality issues exist where batteries are required, they are "unstable" test beds
- This challenge is either instantly commodifying new technology in developing markets and or weathering black swan after black swan in developing markets

Who's going to make it?

- A lot more R&D and NRE is going to be required to realize such a cell
- The market has a nasty habit of driving companies with reasonable technologies into bankruptcy
 - A123, Alevo, Aquion (and those are just the A's)
- The Fortune 500 response to date has been
 - "I'll just wait for the battery to be cheap"
- But its (likely) going to take a Fortune 500 (ish) company to get it there

Someone Not Waiting?

The Takeaway

- Batteries can be big and cheap
- Batteries can be made to last a very long time, perhaps forever
- But who is going to design and make these wonderful batteries, and what is in store for them? Riches or bankruptcy?
 - Because history indicates far more corpses than kings

The Wanton Speculation

- "China" will do for Lithium Ion what it did for PV
 - Drive cost to materials + a dimiminus processing fee
 - This gets us to ~\$130/kWh for a pack +/- \$30
 - Unclear what balance of plant costs can do
- For grid scale storage, there are clearly markets this addresses
- Many it does not

The Wanton Speculation

- There is room, and capability for a radically different chemistry near below \$100/kWh for a pack
 - Maybe even for a system
- If the "China" model can apply to lithium ion batteries, how far out can it push others?
- "Diesel gate" likely the best thing to happen yet for electrification of transport

Thanks!