Hashing

Rômulo César Silva

Unioeste

Junho de 2016

Sumário

- 1 Endereçamento Direto
- 2 Hash Table
- Funções Hash
- 4 Endereçamento Aberto
 - Sondagem Linear
 - Sondagem Quadrática
 - Hashing Duplo
- Bibliografia

Tabelas de Endereçamento Direto

A técnica de **endereçamento direto** para representar um conjunto dinâmico consiste em usar um vetor ou array tal que cada posição ou *slot* corresponde a uma chave do conjunto universo $U = \{0,1,...,m-1\}$ de chaves possíveis. Isto é, seja T a tabela de endereçamento direto. T[k] aponta para um elemento no conjunto cuja chave é k. Caso o conjunto não contenha tal elemento, T[k] = NULL.

- abordagem interessante para as situações em que *m* não é muito grande.
- T[k] pode armazenar diretamente o elemento, desde que se tenha alguma maneira de indicar quando a posição está vazia.
- operações de inserção, busca e remoção levam tempo O

Tabela de endereçamento direto - exemplo

Tabelas de Endereçamento Direto

Limitações:

- se o universo U é grande, armazenar uma tabela de tamanho |U| torna-se impraticável
- o conjunto K de chaves realmente armazenadas pode ser tão pequeno em relação a U que a maioria do espaço alocado para T seja desperdiçado.

Hash Table

Hash Table

Enquanto com endereçamento direto um elemento de chave k é armazenado na posição k, em uma hash table ele é armazenado na posição h(k). Isto é, uma função hash é usada para calcular a posição da chave k. A função h mapeia o universo U de chaves em slots de uma tabela hash T[0..m-1]:

$$h: U \to \{0, 1, ..., m-1\}.$$

- h(k) é o valor hash da chave k
- a função hash deve reduzir o intervalo de índices que precisam ser manipulados. Ao invés de |U| valores, precisa-se manipular somente m valores.
- se duas chaves tem o mesmo valor hash, há então uma colisão

Hash Table - exemplo

Resolução de colisão por encadeamento

Todos os elementos que tem o mesmo valor *hash* são ligados usando lista encadeada.

Resolução de colisão por encadeamento

Fator de carga

Dada uma hash table T com m slots que armazenam n elementos, o **fator de carga** α para T é definido como sendo n/m, isto é, a média de elementos armazenados em uma lista encadeada.

- pior caso: a função h distribui todas as n chaves no mesmo slot, situação em que a complexidade de busca é O(n).
- a performance média depende de como a função *h* distribui as chaves nos *m slots*.

Funções hash

Idealmente uma função hash:

- deve produzir um número baixo de colisões
- ser facilmente computável
- ser uniforme: todos os *slots* devem ter a mesma probabilidade de serem escolhidos.

Aplicações de funções Hash

- busca de elementos em base de dados: estruturas de dados em memória, bancos de dados e mecanismos de busca na Internet
- verificação de integridade de dados e autenticação de mensagens: envio dos dados junto com o valor do hash calculado
- implementação da tabela de símbolos de compiladores
- criptografia: MD5 e família SHA (Secure Hash Algorithm)

Funções hash

- A maioria das funções *hash* supõem que o universo de chaves é o conjunto dos números naturais $\mathbb{N} = \{0, 1, 2, ...\}$
- Quando as chaves não são números naturais, precisa ser encontrada uma maneira de interpretá-las como sendo números naturais. Exemplo: para cadeia de caracteres fazer operações usando o código ASCII.
- Há diferentes métodos para se criar funções hash:
 - método da divisão
 - método da multiplicação
 - hashing universal

Método da Divisão

Mapeia uma chave k em um dos m slots através do resto da divisão de k por m. Isto é:

$$h(k) = k \mod m$$
.

Exemplo: se a tabela T tem tamanho m=12 e a chave k=100, então h(k)=4.

- Desde que a operação de divisão é simples, o cálculo é bastante rápido.
- Alguns valores *m* devem ser evitados:
 - potência de 2: $m=2^p$, então h(k) é justamente os p bits de mais baixa ordem de k.
 - potência de 10: se a aplicação usa números decimais como chaves, desde que a função não depende de todos os dígitos decimais de k

Método da Divisão

Bons valores para m são primos não muito próximos de potências exatas de 2.

Por exemplo, se n=2000 e supondo que se examine uma média de 3 elementos em busca sem sucesso, o tamanho da tabela *hash* deve ser m=701. Pois 701 é primo próximo a $\alpha=2000/3$, mas não próximo de qualquer potência de 2. Assim $h(k)=k \mod 701$.

Método da Multiplicação

Opera em 2 passos:

- multiplica-se a chave k por uma constante A no intervalo 0 < A < 1 e extrai-se a parte fracional de kA.
- multiplica-se este valor por m e faz-se o truncamento do resultado

$$h(k) = \lfloor m(k \land mod \land 1) \rfloor$$

o valor de m não é crítico como no método da divisão,
 pondendo ser escolhido inclusive tipicamente uma potência de
 2: m = 2^p para algum inteiro p.

Método da Multiplicação

Exemplo: Suponha que $A = (\sqrt{5} - 1)/2 = 0.6180339887...,$ k = 123456 e m = 10000.

$$h(k) = \lfloor 10000 \times (123456 \times 0.61803... \mod 1) \rfloor$$
 (1)

$$= \lfloor 10000 \times (76300.0041151... \, mod \, 1) \rfloor \tag{2}$$

$$= \lfloor 10000 \times 0.0041151... \rfloor \tag{3}$$

$$= |41.151...|$$
 (4)

$$= 41 \tag{5}$$

Hashing universal

Consiste em selecionar uma função *hash* aleatoriamente em tempo de execução dentro de uma classe de funções cuidadosamente escolhida.

Definindo matematicamente: seja \mathcal{H} uma coleção finita de funções hash que mapeiam o universo de chaves no intervalo $\{0,1,...,m-1\}$. Tal coleção é dita ser **universal** se para cada par distinto de chaves $x,y\in U$, o número de funções $h\in\mathcal{H}$ para os quais h(x)=h(y) é exatamente $|\mathcal{H}|/m$.

Segue dessa definição que se h é escolhida uniformemente de modo aleatório de \mathcal{H} , a probabilidade de uma colisão entre x e y é 1/m.

 a função deve ser escolhida aleatoriamente no início da execução da aplicação (por ex., na criação da tabela hash)

Hashing universal

Exemplo de construção de uma família de funções \mathcal{H} :

- selecionar um m primo
- ② decompor a chave k em r+1 dígitos: $k=< k_0, k_1, ..., k_r>$ onde $k_i \in \{0, 1, ..., m-1\}$. Equivalente a escrever a chave k na base m.
- **3** Escolher aleatoriamente $a = \langle a_0, a_1, ..., a_r \rangle$, sendo cada $a_i \in \{0, 1, ..., m-1\}$

É quando todos os elementos são armazenados na própria tabela hash. Isto é, cada entrada contém um elemento ou NULL.

- não há listas encadeadas armazenadas fora da tabela
- ullet o fator de carga lpha nunca pode exceder 1
- para fazer a inserção é necessário fazer a sondagem da tabela hash até encontrar um slot vazio no qual a chave é colocada.
- para determinar quais slots sondar, a função hash é extendida para incluir o número de sondagem (iniciando de 0) como uma segunda entrada. Assim a função se torna:

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

Para cada chave k, é requerido que a sequência de sondagem dada por:

$$< h(k,0), h(k,1),...,h(k,m-1)>$$
 seja uma permutação de $<0,1,...,m-1>$

```
function INSERE_HASH(\mathcal{T}, k)
i \leftarrow 0
repeat
j \leftarrow h(k, i)
if \mathcal{T}[j] = NIL then
\mathcal{T}[j] \leftarrow k
return j
else
i \leftarrow i + 1
end if
until i = m
error "hash table overflow"
end function
```

▷ insere chave k na hash T

Algoritmo de Busca com endereçamento aberto:

```
function Busca_Hash(T, k) i \leftarrow 0 repeat j \leftarrow h(k,i) if T[j] = k then return j end if i \leftarrow i+1 until T = NIL or i = m return NIL end function
```

▷ busca chave k na hash T

Tipos de sondagem

- Linear
- Quadrática
- Hash duplo

Sondagem Linear

Dada uma função $hash\ h': U \to \{0,1,...,m-1\}$, o método de **sondagem linear** usa a função hash:

$$h(k, i) = (h'(k) + i) \mod m \text{ para } i = 0, 1, ..., m - 1.$$

Assim, o primeiro *slot* sondado é T[h'(k)]. Em seguida, T[h'(k) + 1], e então até T[m - 1].

Sondagem Linear

- vantagem: fácil de implementar
- desvantagem: tendência de produzir longos trechos consecutivos de memória ocupados (agrupamento primário)

Sondagem Quadrática

O método de **sondagem quadrática** usa uma função *hash* da forma:

$$h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$

- Vantagem: evita criação de agrupamentos primários
- Desvantagem: chaves que gerem a mesma posição de slot inicial, também produzirão as mesmas posições subsequentes (agrupamento secundário). Porém, ainda assim a degradação é menor quando comparado ao agrupamento primário da sondagem linear.

Sondagem Linear x Sondagem Quadrática

Hashing Duplo

O método de **hash duplo** usa uma função *hash* da forma:

$$h(k, i) = (h_1(k) + i h_2(k)) \mod m$$

onde h_1 e h_2 são funções hash auxiliares.

• A posição inicial sondada é $T[h_1(k)]$, e as posições sondadas seguintes são deslocamentos das posições prévias de quantidade $h_2(k)$ módulo m.

Exemplo de hashing duplo

Enderecamento Direto

m=13, $h_1(k)=k \mod 13$, $h_2(k)=1+(k \mod 11)$. Como 14 $\mod 13=1$ e 14 $\mod 11=3$, a chave 14 será inserida no slot 9 após sondar os slots 1 e 5 e verificar que ambos estão ocupados.

Hashing Duplo

 $h_2(k)$ e m devem ser primos entre si para que a tabela hash inteira possa ser pesquisada. Se m e $h_2(k)$ tem um máximo divisor comum d>1 para alguma chave k, então a pesquisa pela chave k examinaria somente 1/d da tabela hash.

Soluções possíveis:

- m ser potência de 2 e escolher h_2 tal que sempre produza número ímpar
- ② m ser primo e escolher h_2 tal que sempre retorne inteiro positivo menor que m

Bibliografia I

[Cormen 1997] Cormen, T.; Leiserson, C.; Rivest, R. *Introduction to Algorithms*. McGrawHill, New York, 1997.

