Основные понятия теории графов

1 Основные определения графов

Существует два основных определения графа:

- 1. Комбинаторное (используется далее)
- 2. Топологическое

Определение 1. Граф G — это тройка G = (V, E, f), где:

- V множество вершин,
- E множество рёбер,
- $f: E \to V_1 \cup V_2$ отображение инцидентности (V_k множество k-элементных подмножеств V).

Определение 2. Вершина v инцидентна ребру e, если $v \in f(e)$ (и наоборот).

1.1 Обозначения

- G(n,m) граф с n вершинами и m рёбрами.
- V(G), E(G) число вершин и рёбер в G.

1.2 Дополнительные определения

- Кратные рёбра рёбра, инцидентные одной и той же паре вершин.
- **Петля** ребро, инцидентное одной вершине.
- Простой граф граф без петель и кратных рёбер.
- Степень вершины количество инцидентных ей рёбер.

Лемма 1 (О рукопожатиях). Сумма степеней всех вершин равна удвоенному числу рёбер:

$$\sum_{v \in V} \deg(v) = 2|E|.$$

2 Основные матрицы графов

1. Матрица смежности А:

 $A_{i,j}$ = число рёбер между вершинами i и j.

Лемма 2. $A^k(i,j)$ — число путей длины k из i в j.

2. Матрица Лапласа L:

$$L = D - A$$
,

где D — диагональная матрица степеней вершин.

3. Матрица инцидентности В:

$$B_{i,j} = egin{cases} 1, & \text{если ребро } j \ \text{выходит из } i, \ -1, & \text{если входит в } i, \ 0, & \text{иначе.} \end{cases}$$

Лемма 3. $L = BB^T$.

3 Связность графов

3.1 Типы связности

- Слабая: неориентированный вариант ориентированного графа связен.
- Полная: для любых u, v существует путь $u \to v$ или $v \to u$.
- Сильная: для любых u, v существуют пути $u \to v$ и $v \to u$.

Определение 3. *Компонента связности* — максимальный связный подграф.

Теорема 1. Если в неориентированном графе G(n,m) выполняется $m > \binom{n-1}{2}$, то граф связен.

Лемма 4. Для неориентированного G(n,m):

$$rank(B) = n - число компонент связности.$$

4 Гамильтоновы и эйлеровы циклы

Определение 4. • *Гамильтонов цикл* — npoxodum все вершины ровно no odnomy pasy.

• Эйлеров цикл — проходит все рёбра ровно по одному разу.

Теорема 2 (Критерий эйлеровости). Связный граф эйлеров \Leftrightarrow степени всех вершин чётны.

Теорема 3 (Ope). Если для любых несмежных u, v верно $\deg(u) + \deg(v) \ge n$, то граф гамильтонов.

Теорема 4 (Дирака). *Если* $\deg(v) \ge n/2$ для всех вершин, граф гамильтонов.

5 Деревья

Определение 5. Дерево — связный граф без циклов.

5.1 Свойства

- Лист вершина степени 1.
- Лемма о двух листьях: В любом дереве есть минимум два листа.
- Остовное дерево подграф с n вершинами, являющийся деревом.

Теорема 5 (Критерий дерева). $G(n,m) - \partial epeso \Leftrightarrow m = n - 1$.

Теорема 6 (Кирхгофа). Для связного неориентированного графа любое алгебраическое дополнение матрицы Лапласа равно числу остовных деревьев.

6 Планарные графы

Определение 6. Граф **планарен**, если его можно нарисовать на плоскости без пересечений рёбер.

Теорема 7 (Эйлера). Для планарного графа:

$$V - E + F = 2$$
.

 $rde\ F$ — число граней (включая внешнюю).

Теорема 8 (Понтрягина-Куратовского). Граф планарен \Leftrightarrow не содержит подграфов K_5 и $K_{3,3}$.

7 Многогранники

7.1 Основные определения

Определение 7. Пусть L – замкнутая не самопересекающаяся ломаная. По теореме Жордана, она разбивает плоскость на две компоненты (ограниченную и неограниченную). Многоугольником называется замкнутая не самопересекающаяся ломаная вместе с ограниченной компонентой.

Определение 8. Два плоских многоугольника, расположенных в пространстве, называются **смежными по ребру** а, если отрезок а является их общей стороной.

Определение 9. *Многогранной поверхностью* называется набор многоугольников, расположенных в пространстве так, что:

- Для каждой стороны каждого многоугольника существует ровно один смежный многоугольник по этому ребру
- Отношение смежности симметрично

Определение 10. *Многогранная поверхность называется вложенной*, *если:*

- 1. Любая внутренняя точка грани принадлежит только этой грани
- 2. Любая внутренняя точка ребра принадлежит ровно двум граням
- 3. Для любой вершины все содержащие её грани образуют замкнутую цепочку

Определение 11. *Многогранником* называется связная вложенная многогранная поверхность вместе с одной из двух компонент (на которые она разбивает пространство), которая ограничена.

7.2 Свойства многогранников

Определение 12. Многогранник называется выпуклым, если множество его точек образует выпуклое подмножество в \mathbb{R}^3 .

Теорема 9 (Эйлера для выпуклых многогранников). Для любого выпуклого многогранника выполняется:

$$V - E + F = 2$$

где:

- \bullet V число вершин
- Е число рёбер
- F число граней

Определение 13. *Правильный многогранник* – многогранник, y которого:

- Все грани одинаковые правильные п-угольники
- Все двугранные углы равны

Теорема 10 (О правильных многогранниках). Существует ровно 5 типов правильных многогранников (Платоновых тел):

- 1. Тетраэдр (4 треугольные грани)
- 2. Куб (6 квадратных граней)
- 3. Октаэдр (8 треугольных граней)
- 4. Додекаэдр (12 пятиугольных граней)
- 5. Икосаэдр (20 треугольных граней)

7.3 Связь с теорией графов

Определение 14. *Граф многогранника* – граф, образованный вершинами и рёбрами многогранника.

Теорема 11. Граф любого выпуклого многогранника является:

- Планарным
- 3-связным
- Гамальтоновым

Теорема 12 (Штайница). Граф является графом выпуклого многогранника тогда и только тогда, когда он планарен и 3-связен.