

5.)
$$f(x) = ax^{2}$$
 $0 \le x \le 2$
 $f(x) = 1 = 1$
 $f(y) = 1 = 1$
 $f(y) = 1 = 1$
 $f(y) = 1 = 1$
 $f(x) = 1 =$

8.)
$$\times \sqrt{|(o_1 \frac{1}{2})|} \Rightarrow \sigma^2 \frac{1}{2}, \sigma = \frac{1}{\sqrt{2}} \frac{\sigma_2}{2} = \frac{1}{2}$$
 $Y \sim g(y) = 2y, 0 \leq y \leq n$
 $f(X,y) = ?, P(X > n, y < 0.5) = ?, E(Xy) = ?$
 $f(X > n) = \frac{1}{2} - \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = \frac{1}{2} - \frac{1}{2} \varphi'(12) = 0,07927$
 $f(X > n) = \frac{1}{2} - \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = \frac{1}{2} - \frac{1}{2} \varphi'(12) = 0,07927$
 $f(X > n) = \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = \frac{1}{2} \varphi'(12) = 0.07927$
 $f(X > n) = f(X) + f(y) = \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = 0.07927$
 $f(X, y) = f(X) + f(y) = \frac{1}{2} \varphi'(\frac{1 - 0}{2}) = \frac{1}{2} \varphi$

18.)
$$f(x,y) = Cxy$$

$$0 \le x \le 1, 0 \le y \le 1, x + y \le 1$$

$$C = \frac{7}{3}, 4(x) = \frac{7}{3}, (x \times 1) \times (x + y \times 2) = \frac{7}{3}$$

$$f(x) = \frac{7}{3}, (x \times 1) \times (x \times 1) \times (x \times 2) = \frac{7}{3}, (x \times 2) \times (x$$

28.)
$$f(x,y) = A \sin(x+y)$$
, $O(x < \frac{\pi}{2}, O < y < \frac{\pi}{2})$
 $A = ?$, $f_{x}(x), f_{y}(y) = ?$, $f(x < \frac{\pi}{4}, x < \frac{\pi}{4})$
 $A = ?$, $f_{x}(x), f_{y}(y) = ?$, $f(x < \frac{\pi}{4}, x < \frac{\pi}{4})$
 $A = ?$, $f_{x}(x), f_{y}(x) = ?$, $f(x < \frac{\pi}{4}, x < \frac{\pi}{4})$
 $A = ?$, $f_{x}(x), f_{y}(x) = ?$, $f_{y}(x) = ?$, $f_{y}($

SLUŽBENA RJEŠENJA:

§ 7. Slučajni vektori

- 1. Ne.
- **2.** F(x,y) =

$$\begin{cases} 0 & ,x \leq 0 \text{ ili } y \leq 0, \\ xy & ,0 < x \leq 1, 0 < y \leq 1, \\ x & ,0 \leq x < 1, 1 < y, \\ y & ,1 < x, 0 \leq y < 1, \\ 1 & ,1 < x, 1 < y. \end{cases}$$

3.
$$f(x,y) = \frac{4xy}{R^2\pi\sqrt{x^2 - y^2}}, \ \mathbf{0} \leqslant y \leqslant x \leqslant R.$$

- **4.** a) $\frac{1}{\pi\sqrt{1-x^2}}$; b) $\frac{1}{2}$, $|x| \le 1$.
- 5. $\frac{3}{4}$.
- **6.** 0.245.
- 7. 0.190.

8.
$$f(x,y) = \frac{2y}{\sqrt{\pi}}e^{-x^2}, \ 0 \le y \le 1;$$

$$p = 0.0198$$
; $E(XY) = 0$.

9.
$$k=6$$
; $\frac{3}{5e^2}$.

10. X i Y su nezavisne,
$$P(A) = \frac{1}{3}$$
, $P(B) = 0$.

11.
$$F(x, y) = 1 - e^{-x}$$
, ako je $x^2 < y$; $1 - e^{-\sqrt{y}}$, ako je $y < x^2$.

- **12.** 0.275.
- 13. $\frac{11}{40}$

14.
$$f_X(x) = 4x^3$$
, $x \in [0, 1]$; $f_Y(y) = 4y - 4y^3$, $y \in [0, 1]$;

- X i Y su zavisne; $\frac{18}{19}$
- **15.** $P(A \mid B) = \frac{123}{160}$
- 17. $1 (\lambda + 1)e^{-\lambda}$

18.
$$C = 24$$
; $f_X(x) = 12x(1-x)^2$, $x \in [0,1]$; $p = \frac{8}{11}$.

19.
$$f_X(x) = 1$$
, $0 < x < 1$, $f_Y(y) = 1 + 2y - 3y^2$, $0 < y < 1$.

20.
$$f_X(x) = f_Y(x) = e^{-x}, x > 0.$$

21.
$$f_X(x) = e^{-x}, x > 0;$$

$$f_Y(y) = \frac{1}{(1+y)^2}, \ y > 0.$$

22.
$$f_X(x) = \begin{cases} \frac{1}{6}, & x \in [0, 4], \\ \frac{8-x}{24}, & x \in [4, 8], \end{cases}$$

$$f_Y(y) = \frac{8-y}{24}, y \in [0,4].$$

23. $f_X(x) = f_Y(x) = \frac{2}{\pi R^2} \sqrt{R^2 - x^2},$

$$|x| < R$$
; $f_Z(z) = \frac{1}{2H}$, $-H < z < H$.

Zavisne su.

25.
$$F_X(x) = \frac{x^2}{4}$$
, $0 < x < 2$; $E(X) = \frac{4}{3}$

26.
$$f_X(x) = \frac{1}{2}(1-x) = f_Y(x)$$
.

27.
$$f_X(x) = 2$$
, $0 \leqslant x \leqslant \frac{1}{2}$; $E(X) = \frac{1}{4}$;

$$f_{Y}(y) = 2, \ \frac{1}{2} \leqslant y \leqslant 1; \ \boldsymbol{E}(Y) = \frac{3}{4};$$

$$X ext{ i } Y ext{ su zavisne}, \ E(XY) = \frac{1}{6}.$$

28.
$$A = 0.5$$
; $F_X(x) = \frac{1}{2}(1 + \sin x - \cos x)$; $F_Y(y) = \frac{1}{2}(1 + \sin y - \cos y)$; 0.2071.

29.
$$f_X(x) = \frac{3}{4}x^2 + \frac{3}{2}x$$
, $x \in [0, 1]$; $E(X) = \frac{11}{16}$

30.
$$F(x,y) = F_X(x) \cdot F_Y(y)$$
, $F_X(x) = 1 - e^{-\alpha x}$, $F_Y(y) = 1 - e^{-\beta y}$; $E(X) = \frac{1}{\alpha}$, $E(Y) = \frac{1}{\beta}$,

$$D(X) = \frac{1}{\alpha^2}$$
, $D(Y) = \frac{1}{\beta^2}$. Nezavisne su.

31.
$$-\frac{1}{2}$$
.

32.
$$cov(Y_1, Y_2) = 0$$
. Zavisne su.

33.
$$E(Y) = 3$$
, $D(Y) = 4.246$.

34. 0,
$$\frac{\sqrt{21}}{5}$$

35.
$$D(X) = \frac{1}{2}$$
, $D(Y) = \frac{1}{4n-1}$, $r_{xy} = \frac{\sqrt{3(4n-1)}}{2n+1}$.

37.
$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

38.
$$\cos x \cos y$$
, $\begin{pmatrix} \pi-3 & 0 \\ 0 & \pi-3 \end{pmatrix}$.

39.
$$\frac{3\sqrt{5}}{7}$$
.

41.
$$\frac{407}{9}$$
.

62.
$$E(X) = \frac{1}{3}$$
.

63.
$$\mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$$
.

64.
$$\mathcal{N}(0, 2\sigma^2(1+r))$$
.

65.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
.

66.
$$\frac{1}{2\pi\sqrt{6\pi}}\exp(-\frac{1}{6}(5x^2+2y^2+2z^2-2xy+4xz-2yz-12x+6y-6z+5)).$$

67.
$$\mathcal{N}(\frac{1}{2},1)$$
.

70.
$$\frac{2}{\pi\sqrt{3}[\frac{1}{3}(2z-1)^2+1]}$$
.

71.
$$\sqrt{\frac{2}{5\pi}} \exp(-\frac{2}{5}x^2)$$
, $\sqrt{\frac{2}{\pi}} \exp(-2y^2)$, $\frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2)$, $\frac{1}{2\pi} \exp(-\frac{1}{2}(u^2 - 2uv + 2v^2))$,

72.
$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
.

74.
$$f_Z(z) = \frac{1}{\pi\sqrt{1-r^2}} \int_{-\infty}^z \exp(-\frac{u^2-2ruz+z^2}{2(1-r^2)}) du$$
, $E(Z) = \sqrt{(1-r^2)/\pi}$

LITERATURA: [1] Neven Elezović: Slučajne varijable, Element 2010.godine