

Técnicas de diseño de algoritmos **Algoritmos voraces** Ejercicio: Problema de la mochila Supón que nos dan *n* objetos y una mochila. Para i=1,2,...,n cada objeto tiene un peso positivo p_i y un beneficio b_i. La mochila puede llevar un peso máximo M. Si n = 3, M = 20, p = (18, 15, 10), b = (25, 24, 15) El problema se ajusta para la aplicación de un algoritmo voraz: Conjunto de candidatos: cada uno de los n objetos de partida. Función solución: tendremos una solución si hemos introducido en la mochila el peso máximo M, o si se han acabado los objetos. Función seleccionar: escoger el objeto "más prometedor". Función de factibilidad: será siempre cierta (se pueden añadir Añadir o insertar a la solución: añadir objeto entero o un trozo. Función objetivo: maximizar la suma de los beneficios de cada candidato por la proporción seleccionada del mismo. Sólo falta aclarar cuál sería el objeto "más prometedor".


```
Técnicas de diseño de algoritmos
Algoritmos voraces
Ejercicio: Problema de la mochila
    Supón que nos dan n objetos y una mochila. Para i=1,2,...,n cada objeto tiene
    un peso positivo p<sub>i</sub> y un beneficio b<sub>i</sub>.
   La mochila puede llevar un peso máximo M.
Si n = 3, M = 20, p = (18, 15, 10), b = (25, 24, 15)
¿Cuál es el "mejor objeto restante"?
 Posibles criterios:
   1. El objeto con más beneficio b_i= Max{b_1, b_2, ..., b_n} (para obtener mayor beneficio)
         El objeto menos pesado p<sub>i</sub>=Min{p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>n</sub>}
                                                                (para poder añadir muchos objetos)
 ¿Cuál es el mejor criterio de selección?
    ¿Cuál garantiza la solución óptima?
    ¿Se te ocurre algún otro criterio?
     Otro criterio de selección:
        3. El objeto con mejor proporción b<sub>i</sub>/p<sub>i</sub> (coste por unidad de peso)
             Max\{b_1/p_1, b_2/p_2, ..., b_n/p_n\}
```

Técnicas de diseño de algoritmos

Algoritmos voraces

(Greedy)

Ejercicio: Problema de la mochila

- Supón que nos dan *n* objetos y una mochila. Para i=1,2,...,n cada objeto tiene un peso positivo **p**₁ y un beneficio **b**₁.
- La mochila puede llevar un peso máximo M.

 Objetivo: llenar la mochila, maximizando el beneficio obtenido por los objetos transportados y respetando la limitación de la capacidad M.

Ejemplo:

Si n = 5, M = 100, p=(10,20,30,40,50), b=(20,30,66,40,60) y b/p=(2.0,1.5,2.2,1.0,1.2)

Analizando

Aplicando cada uno de los criterios de selección, se obtendrían las siguientes fracciones de los pesos x_i:

Seleccionar	X_{i}					Valor
Max b _i	0	0	1	0.5	1	146
Min p _i	1	1	1	1	0	156
Max b _i /p _i	1	1	1	0	0.8	164

69

Técnicas de diseño de algoritmos

Algoritmos voraces

(Greedy)

Ejercicio: Problema de la mochila

- Supón que nos dan n objetos y una mochila. Para i=1,2,...,n cada objeto tiene un peso positivo p_i y un beneficio b_i.
- La mochila puede llevar un peso máximo M.

 Objetivo: llenar la mochila, maximizando el beneficio obtenido por los objetos transportados y respetando la limitación de la capacidad M.

Ejemplo:

Si n = 5, M = 100, p=(10,20,30,40,50), b=(20,30,66,40,60) y b/p=(2.0,1.5,2.2,1.0,1.2)

Complejidad

- Para el algoritmo externo voraz:
 - Tamaño de la entrada: n
 - Operación básica: comparaciones con M

- Observa que existe una búsqueda interna (el arreglo p_i no está ordenado)
 - Tamaño de la entrada: n
 - Operación básica: Comparación con el máximo.

W(n)=n

Entonces el algoritmo completo tendría una complejidad de:

W(n) = 2n + n + n + ... + nW(n) = $2n + \sum_{n=1}^{\infty} n = 2n + n^2$

IMTA. Dr. Alberto Gonzále:

Grafos

Problema de la mochila (Knapsack problem)

Recordando la programación dinámica (DP)

- DP es un método para resolver cierto tipo de problemas.
- La DP se puede aplicar cuando la solución de un problema incluye soluciones a subproblemas.
- Se necesita encontrar una fórmula recursiva para la solución.
- Se pueden resolver subproblemas de forma recursiva, partiendo del caso trivial, y guardando sus soluciones en memoria.
- Al final, se obtendrá la solución para todo el problema.

Propiedades de un problema que se puede resolver con DP

- Subproblemas simples
 - Se debería poder dividir el problema original en subproblemas más pequeños que tienen la misma estructura.
- Subestructura óptima de los problemas
 - La solución al problema debe ser una composición de soluciones de subproblemas.
- Traslapes
 - Los subproblemas de optimizacion para problemas no relacionados pueden tener subproblemas en común.

ITESM Dr Gildardo Sánchez Anti

77

Grafos

Problema de la mochila (Knapsack problem)

Con el enfoque de fuerza bruta...

Primero solucionemos este problema con un algoritmo sencillo:

- Dado que hay n elementos, hay 2ⁿ combinaciones posibles de elementos.
- Pasamos por todas las combinaciones y encontramos la que tiene el mayor valor total y con un peso total menor o igual a W.
- El tiempo de ejecución será O(2ⁿ).

¿Podemos resolverlo de mejor forma?

- → Sí, con un algoritmo basado en programación dinámica.
 - ✓ Se necesitan identificar cuidadosamente los subproblemas.

Definiendo los subproblemas...

- Si los elementos están etiquetados como 1..n, entonces un subproblema sería encontrar una solución óptima para S_k = {elementos etiquetados como 1, 2, .. k}.
 - o Ésta es una definición de subproblema válida.
 - o La pregunta es: ¿podemos describir la solución final (S_n) en términos de subproblemas (S_k) ?
 - o Desafortunadamente, no se puede hacer eso.

....

79

Grafos

Problema de la mochila (Knapsack problem)

Definiendo un subproblema...

- Por lo que la definición del subproblema es errónea y se necesita otra.
- Si se agrega otro parámetro: w, que representará el peso exacto de cada subconjunto de elementos.
 - El subproblema entonces será calcular B[k, w].

Fórmula recursiva para subproblemas

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- Significa que el mejor subconjunto de S_k que tiene un peso total w es uno de los siguientes dos:
 - 1) el mejor subconjunto de S_{k-1} que tiene un peso total w.
 - 2) el mejor subconjunto de S_{k-1} que tiene peso total w- w_k más el elemento k.
- ightharpoonup El mejor subconjunto de S_k que tiene el peso total w, puede contener o no al elemento k.
 - Primer caso: $w_k > w$.
 - El elemento k no puede ser parte de la solución, ya que si lo fuera, el peso total sería > w, lo cual es inaceptable.
 - ❖ Segundo caso: w_k <= w.</p>
 - \circ El elemento k puede estar en la solución, y se elige el caso con mayor valor.

ITESM Dr Gildardo Sánchez Ante

81

Grafos Algoritmo de la mochila (Knapsack problem) for w = 0 to W B[0,w] = 0for i = 0 to n B[i,0] = 0for w = 0 to W if W_i <= W // el objeto puede ser parte de la solución if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] // $w_i > w$ Tiempo de ejecución for w = 0 to W ¿Cuál es el tiempo de ejecución de este algoritmo? B[0,w] = 0for i = 0 to n Se repite *n* veces O(n*W) B[i,0] = 0O(W) for w = 0 to W Recuerda que con el algoritmo de < el resto del código > brute-force, se ejecutaría en O(2ⁿ).

