Nama anggota:

1.	Asfiah Adiba	(G1401211004)
2.	Alfikri Ihsan	(G1401211058)
3.	Fajryanti Kusuma Wardani	(G1401211098)
4.	Jonatahan Marjono	(G1401211064)
5.	Kheni Hikmah Lestari	(G1401211029)
6.	Muhammad Hafizd Harkaputra	(G1401211099)
7.	Pratama Fajrialdy	(G1401211081)
8.	Rifqi Rustu Andana	(G1401211067)
9.	Tubagus Fadhila Hafidh	(G1401211080)

1. a)
$$\int_{a}^{\infty} \frac{x}{\sqrt{16+x^{2}}} dx = \lim_{b \to \infty} \left(\int_{3}^{b} \frac{x}{\sqrt{16+x^{2}}} dx \right)$$

$$= \lim_{b \to \infty} \left[\sqrt{16+x^{2}} \right]_{3}^{b}$$

$$= \lim_{b \to \infty} \left(\sqrt{16+x^{2}} - \sqrt{16+3^{2}} \right)$$

$$= \lim_{b \to \infty} \left(\sqrt{16+a^{2}} - 5 \right)$$

$$= + \infty$$
Nilai integral divergen

1b)
$$\int_{-\infty}^{\infty} \frac{x}{\sqrt{g+x^2}} = \int_{-\infty}^{\infty} \frac{x}{\sqrt{g+x^2}} dx + \int_{0}^{\infty} \frac{x}{\sqrt{g+x^2}} dx$$

misal:

 $u = g + x^2$
 $du = 2x \cdot dx$
 $dx = du$
 $= \lim_{a \to -\infty} \int_{0}^{0} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{b \to \infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx$
 $= \lim_{a \to -\infty} \int_{0}^{9} \frac{x}{\sqrt{g+x^2}} dx + \lim_{$

2b)

b)
$$\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx$$
 $\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{x}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{x}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{x}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{x}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)} dx$
 $\int_{0}^{\infty} \frac{1}{(x^2+4)} dx + \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{(x^2+4)}$

3a.)
$$\int_{2}^{\infty} \frac{1}{x \ln x}$$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 00} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \int_{2}^{b} \frac{1}{x \cdot \ln x} dx$
 $= \lim_{b \to 0}^{b} \int_{2}^{b} \frac{1}{x$

3)b)
$$\int_{-\infty}^{\infty} \frac{1}{x^{2} + 4y + 0} dx = \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{x^{2} + 4y + 0} dx + \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{x^{2} + 4y + 0} dx$$

$$= \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{(x + 2)^{2} + (x + 2)^{2}} dx + \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{(x + 2)^{2} + (x + 2)^{2}} dx$$

$$= \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{(x + 2)^{2} + (x + 2)^{2}} dx + \lim_{\alpha \to -\infty} \int_{0}^{\infty} \frac{1}{(x + 2)^{2} + (x + 2)^{2}} dx$$

$$= \lim_{\alpha \to +\infty} \left(\frac{1}{15} \arctan\left(\frac{2\sqrt{5}}{5}\right) - 45 \arctan\left(\frac{2\sqrt{5}}{5}\right) - 45 \arctan\left(\frac{2\sqrt{5}}{5}\right) \right)$$

$$= \lim_{\alpha \to +\infty} \left(\frac{\sqrt{5}}{5} \arctan\left(\frac{2\sqrt{5}}{5}\right) + \sqrt{5} \right) - \frac{1}{15} \arctan\left(\frac{2\sqrt{5}}{5}\right)$$

$$= 2\sqrt{5} \arctan\left(\frac{2\sqrt{5}}{5}\right) + \sqrt{5} \right)$$

$$= \sqrt{5} \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10}$$

$$= \sqrt{5} \frac{1}{10} + \frac{1}{10} = \frac{1}{$$

4a)

$$A(a) \int_{a}^{\infty} \frac{1}{\chi (h\chi)^{2}} d\chi$$

$$= \lim_{b \to \infty} \int_{2}^{b} \frac{1}{\chi (h\chi)^{2}} d\chi \quad \text{misalkan:}$$

$$= \lim_{b \to \infty} \int_{\ln(2)}^{\ln(b)} \frac{\chi du}{\chi \cdot u^{2}} \quad du = \frac{1}{2} d\chi$$

$$= \lim_{b \to \infty} \int_{\ln(2)}^{\ln(b)} \frac{1}{u^{2}} \cdot du$$

$$= \lim_{b \to \infty} \left(-\frac{1}{u} \right)_{\ln(2)}^{\ln(b)}$$

$$= \lim_{b \to \infty} -\frac{1}{\ln(b)} - \left(-\frac{1}{\ln(2)} \right)$$

2-0- (-1,4427)

4b)

Ab.
$$\int_{-\infty}^{\infty} \frac{x}{e^{|x|}} dx$$

$$= \lim_{\alpha \to -\infty} \int_{\alpha}^{\infty} \frac{x}{e^{-x}} dx + \lim_{\alpha \to \infty} \int_{\alpha}^{\infty} \frac{x}{e^{-x}} dx$$

$$= \lim_{\alpha \to -\infty} \int_{\alpha}^{\infty} x e^{x} + \lim_{\alpha \to -\infty} \int_{\alpha}^{\infty} x e^{-x} dx$$
Integral porsion

$$\int_{0}^{x} x \cdot e^{-x} \longrightarrow u \cdot x \quad du \cdot 1$$

$$dv \cdot e^{-x} \quad v \cdot -e^{-x}$$

$$= \lim_{a \to -\infty} e^{x} (x-1) \Big|_{a}^{0} + \lim_{b \to -\infty} e^{x} (-x-1) \Big|_{b}^{b}$$

$$= \left(e^{0} (0-1) - e^{-\alpha} (-\alpha-1) \right) + \left(e^{-\alpha} (-\alpha-1) - e^{0} (0-1) \right)$$

$$= 0$$