CS3081: Assignment 1

Conor McCauley - 17323203

February 26, 2020

Answers

Question 2.31

- a. (ii) 13
- b. (i) 0

Question 3.2

- a. (ii) 0.8125
- b. (ii) 0.85261
- c. (iv) 0.85261

Question 4.24

a. (i)

$$\begin{pmatrix}
-0.7143 & 0 & 1.4286 \\
0.2571 & 0.1 & 0.2857 \\
-0.2286 & -0.2 & 0.8571
\end{pmatrix}$$

b. (i)

$$\begin{pmatrix}
1.6667 & 2.8889 & -2.2222 & 1 \\
0 & 0.3333 & -0.3333 & 0 \\
-0.3333 & -0.4444 & 0.1111 & 0 \\
1.5 & 2 & -1.5 & 0.5
\end{pmatrix}$$

Solutions

Question 2.31

a.

$$\det \begin{pmatrix} 1 & 5 & 4 \\ 2 & 3 & 6 \\ 1 & 1 & 1 \end{pmatrix}$$

$$= 1 \cdot \begin{vmatrix} 3 & 6 \\ 1 & 1 \end{vmatrix} - 5 \cdot \begin{vmatrix} 2 & 6 \\ 1 & 1 \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix}$$

$$= 1 \cdot (3 \cdot 1 - 6 \cdot 1) - 5 \cdot (2 \cdot 1 - 6 \cdot 1) + 4 \cdot (2 \cdot 1 - 3 \cdot 1)$$

$$= 1 \cdot (3 - 6) - 5 \cdot (2 - 6) + 4 \cdot (2 - 3)$$

$$= 1 \cdot (-3) - 5 \cdot (-4) + 4 \cdot (-1)$$

$$= -3 + 20 - 4 = 13$$

b.

$$\det \begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{pmatrix}$$

$$= 1 \cdot \begin{vmatrix} 6 & 7 & 8 \\ 10 & 11 & 12 \\ 14 & 15 & 16 \end{vmatrix} - 2 \cdot \begin{vmatrix} 5 & 7 & 8 \\ 9 & 11 & 12 \\ 13 & 15 & 16 \end{vmatrix} + 3 \cdot \begin{vmatrix} 5 & 6 & 8 \\ 9 & 10 & 12 \\ 13 & 14 & 16 \end{vmatrix} - 4 \cdot \begin{vmatrix} 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{vmatrix}$$

$$= 1 \cdot \left(6 \cdot \begin{vmatrix} 11 & 12 \\ 15 & 16 \end{vmatrix} - 7 \cdot \begin{vmatrix} 10 & 12 \\ 14 & 16 \end{vmatrix} + 8 \cdot \begin{vmatrix} 10 & 11 \\ 14 & 15 \end{vmatrix} \right)$$

$$-2 \cdot \left(5 \cdot \begin{vmatrix} 11 & 12 \\ 15 & 16 \end{vmatrix} - 7 \cdot \begin{vmatrix} 9 & 12 \\ 13 & 16 \end{vmatrix} + 8 \cdot \begin{vmatrix} 9 & 11 \\ 13 & 15 \end{vmatrix} \right)$$

$$+3 \cdot \left(5 \cdot \begin{vmatrix} 10 & 12 \\ 14 & 16 \end{vmatrix} - 6 \cdot \begin{vmatrix} 9 & 12 \\ 13 & 16 \end{vmatrix} + 8 \cdot \begin{vmatrix} 9 & 10 \\ 13 & 14 \end{vmatrix} \right)$$

$$-4 \cdot \left(5 \cdot \begin{vmatrix} 10 & 11 \\ 14 & 15 \end{vmatrix} - 6 \cdot \begin{vmatrix} 9 & 11 \\ 13 & 15 \end{vmatrix} + 7 \cdot \begin{vmatrix} 9 & 10 \\ 13 & 14 \end{vmatrix} \right)$$

$$= 1 \cdot (6 \cdot (11 \cdot 16 - 12 \cdot 15) - 7 \cdot (10 \cdot 16 - 12 \cdot 14) + 8 \cdot (10 \cdot 15 - 11 \cdot 14))$$

$$-2 \cdot (5 \cdot (11 \cdot 16 - 12 \cdot 15) - 7 \cdot (9 \cdot 16 - 12 \cdot 13) + 8 \cdot (9 \cdot 15 - 11 \cdot 13))$$

$$+3 \cdot (5 \cdot (10 \cdot 16 - 12 \cdot 14) - 6 \cdot (9 \cdot 16 - 12 \cdot 13) + 8 \cdot (9 \cdot 14 - 10 \cdot 13))$$

$$-4 \cdot (5 \cdot (10 \cdot 15 - 11 \cdot 14) - 6 \cdot (9 \cdot 15 - 11 \cdot 13) + 7 \cdot (9 \cdot 14 - 10 \cdot 13))$$

$$= 1 \cdot (6 \cdot (176 - 180) - 7 \cdot (160 - 168) + 8 \cdot (150 - 154))$$

$$-2 \cdot (5 \cdot (176 - 180) - 7 \cdot (144 - 156) + 8 \cdot (135 - 143))$$

$$+3 \cdot (5 \cdot (160 - 168) - 6 \cdot (144 - 156) + 8 \cdot (126 - 130))$$

$$-4 \cdot (5 \cdot (150 - 154) - 6 \cdot (135 - 143) + 7 \cdot (126 - 130))$$

$$= 1 \cdot (6 \cdot (-4) - 7 \cdot (-8) + 8 \cdot (-4))$$

$$-2 \cdot (5 \cdot (-4) - 7 \cdot (-12) + 8 \cdot (-4))$$

$$-4 \cdot (5 \cdot (-4) - 6 \cdot (-8) + 7 \cdot (-4))$$

$$= 1 \cdot (-24 + 56 - 32) - 2 \cdot (-20 + 84 - 64)$$

$$+3 \cdot (-40 + 72 - 32) - 4 \cdot (-20 + 48 - 28)$$

 $= 1 \cdot 0 - 2 \cdot 0 + 3 \cdot 0 - 4 \cdot 0 = 0$

Question 3.1

a.

	a	b	c	f(a)	f(c)	Comment
0	0	1	$\frac{0+1}{2} = 0.5$	-2	-0.713	f(a) and $f(c)$ have same sign so set $a = c$
1	0.5	1	$\frac{0.5+1}{2} = 0.75$	-0.713	-0.1947	f(a) and $f(c)$ have same sign so set $a = c$
2	0.75	1	$\frac{0.75+1}{2} = 0.875$	-0.1947	0.0412	f(a) and $f(c)$ have different sign so set $b = c$
3	0.75	0.875	$\frac{0.75 + 0.875}{2} = 0.8125$	-0.1947	-0.0749	root = 0.8125

b.

n	x_{n-1}	x_n	x_{n+1}
2	$x_1 = 0$	$x_2 = 1$	$x_3 = 1 - \frac{f(1) \cdot (0-1)}{f(0) - f(1)} = 1 - \frac{0.264 \cdot -1}{-2 - 0.264} = 0.883$
3	$x_2 = 1$	$x_3 = 0.883$	$x_4 = 0.883 - \frac{f(0.883) \cdot (1 - 0.883)}{f(1) - f(0.883)} = 0.883 - \frac{0.056 \cdot 0.117}{0.264 - 0.056} = 0.8515$
4	$x_3 = 0.883$	$x_4 = 0.8515$	$x_5 = 0.8515 - \frac{f(0.8515) \cdot (0.883 - 0.8515)}{f(0.883) - f(0.8515)} = 0.8515 - \frac{-0.002 \cdot 0.0315}{0.056 - (-0.002)}$ $= 0.852 \approx 0.85261$

c. In order to use Newton's method we must first find the derivative of f(x):

$$\frac{d}{dx}(x - 2e^{-x})$$
= $1 - \frac{d}{dx}(2e^{-x})$
= $1 - (-1 \cdot 2e^{-x})$
= $1 + 2e^{-x}$

n	x_n	x_{n+1}	
1	1	$1 - \frac{1 - 2e^{-1}}{1 + 2e^{-1}} = 0.84776$	
2	0.84776	$0.84776 - \frac{0.84776 - 2e^{-0.84776}}{1 + 2e^{-0.84776}} = 0.8526$	
3	0.8526	$0.8526 - \frac{0.8526 - 2e^{-0.8526}}{1 + 2e^{-0.8526}} = 0.852606 \approx 0.85261$	

Question 4.24

The following Matlab code can be used to calculate the inverse of the matrices given in the question:

```
\% calculate the inverse of a matrix A
function [Ainv] = Inverse(A)
    [N, \tilde{a}] = size(A); % get the size of the matrix
    Ainv = Identity(N); \% construct the identity matrix
    % for each row in the (augmented) matrix
    for i = 1:N
        % make diagonal column 1
        u = A(i, i);
        for j = 1:N
            A(i, j) = A(i, j) / u;
             Ainv(i, j) = Ainv(i, j) / u;
        end
        % make non-diagonal columns 0
        for j = 1:N
             if j = i
                 v = A(j, i);
                 for k = 1:N
                     A(j\;,\;\;k)\;=A(j\;,\;\;k)\;-\;(A(i\;,\;\;k)\;\;*\;\;v\;);
                     Ainv(j, k) = Ainv(j, k) - (Ainv(i, k) * v);
                 end
             end
```

end

end

end

For the matrix in question (a) the code gives the following answer:

$$\begin{pmatrix}
-0.7143 & 0 & 1.4286 \\
0.2571 & 0.1 & 0.2857 \\
-0.2286 & -0.2 & 0.8571
\end{pmatrix}$$

For the matrix in question (b) the code gives the following answer:

$$\begin{pmatrix}
1.6667 & 2.8889 & -2.2222 & 1 \\
0 & 0.3333 & -0.3333 & 0 \\
-0.3333 & -0.4444 & 0.1111 & 0 \\
1.5 & 2 & -1.5 & 0.5
\end{pmatrix}$$

These results both match the answers given in (i).