Real Analysis II Lecture Notes

George Z. Miao

2023 Fall

Chapter 5

Integrability in \mathbb{R}

5.1 Riemann Integral

Definition 5.1 (Partition). a < b, a **partition** of [a,b] is $P = \{x_0, x_1, ..., x_n\}$ s.t. $x_0 = a < x_1 < x_2 < \cdots < x_n = b$.

Definition 5.2 (Norm). The **norm** of P is

$$||P|| = \max_{1 \le j \le n} |x_j - x_{j-1}|$$

Definition 5.3 (Refinement). The **refinement** of P is a partition Q such that $Q \supset P$

Ex 5.1 (Dynamic Partition). Prove: $\forall n \in \mathbb{N}$. $P_n = \left\{\frac{j}{2^n} \mid 0 \le j \le 2^n\right\}$ is a partition of [0,1] and P_n is finer than P_n if m > n.

Proof. Since $\frac{j}{2^n} < \frac{j+1}{2^n}$ and $\frac{0}{2^n} = 9$, $\frac{2^n}{2^n} = 1$, then P_n is a partition of [0,1]. To show $P_m \supset P_n$:

$$\forall j \in [0, 2^n]. \frac{j}{2^n} = \frac{j \cdot 2^{m-n}}{2^n \cdot 2^{m-n}}$$
$$= \frac{j \cdot 2^{m-n}}{2^m}$$
$$\Rightarrow P_m \supset P_n$$

Remark 5.1. If P, Q are partitions of [a, b], then $P \cup Q$ is finer than P and Q.

Remark 5.2. Q is finer than P means $||P|| \ge ||Q||$.

Definition 5.4 (Interval). For j = 1, 2, ..., n, let $\Delta x_j = x_j - x_{j-1}$ (length of j-th subinterval).

Definition 5.5 (Upper Riemann Sum). Suppose f is a bounded function on [a,b]. The **Upper Riemann Sum** of f over P is

$$U(f,P) = \sum_{j=1}^{n} M_j(f) \cdot \Delta x_j$$

where $M_j(f) = \sup_{x_{j-1} \le x \le x_j} f(x)$

Definition 5.6 (Lower Riemann Sum). Suppose f is a bounded function on [a,b]. The **Lower Riemann Sum** of f over P is

$$L(f,P) = \sum_{j=1}^{n} m_j(f) \cdot \Delta x_j$$

where $m_j(f) = \inf_{x_{j-1} \le x \le x_j} f(x)$

Remark 5.3. $L(f,P) \leq U(f,P)$. Moreover, if $f=\alpha$ on [a,b], then $U(f,P)=L(f,P)=\alpha(b-a)$ Lemma 5.1. If $Q\supset P$, then $L(f,P)\leq L(f,Q)\leq U(f,Q)\leq U(f,P)$

Proof. Without lost of generality, assume $Q = P \cup \{c\}$, $c \notin P$. It suffices to show that $L(f, P) \leq U(f, Q)$. By definition, $P = \{x_0, \dots, x_n\}$ and $Q = \{x_0, \dots, x_l, c, x_{l+1}, \dots, x_n\}$.

$$L(f,p) = \sum_{j=1}^{n} m_j(f) \Delta x_j$$

$$= \sum_{j\neq l+1}^{n} m_j(f) \Delta x_j + m_{l+1}(f) \Delta x_{l+1}$$

$$= \sum_{j\neq l+1}^{n} m_j(f) \Delta x_j + m_{l+1}(f) (x_{l+1} - x_l)$$

Note that

$$\inf_{[x_{l}, x_{l+1}]} f \leq \inf_{[x_{l}, c]} f$$

$$\inf_{[x_{l}, x_{l+1}]} f \leq \inf_{[c, x_{l+1}]} f$$

$$m_{l+1}(f)(x_{l+1} - x_{l}) = m_{l+1}(f)(x_{l+1} - c) + m_{l+1}(f)(c - x_{l})$$

$$\leq \inf_{[c, x_{l+1}]} f(x_{l+1} - c) + \inf_{[x_{l}, c]} f(c - x_{l})$$

$$L(f, Q) = \sum_{j \neq l+1} m_{j}(f) \Delta x_{j} + \leq \inf_{[c, x_{l+1}]} f(x_{l+1} - c) + \inf_{[x_{l}, c]} f(c - x_{l})$$

$$\geq \sum_{j \neq l+1} m_{j}(f) \Delta x_{j} + m_{l+1}(f)(x_{l+1} - c) + m_{l+1}(f)(c - x_{l})$$

$$= L(f, P)$$

Corollary 5.1. $L(f, P) \leq U(f, Q)$

Proof.

$$P \cup Q \supset P, \quad P \cup Q \supset Q$$

$$L(f,P) \leq L(f,P \cup Q) \leq U(f,P \cup Q) \leq U(f,Q)$$

Definition 5.7 (Reimann Integral). $f:[a,b] \to \mathbb{R}$ is Riemann Integrable if

- 1. f is bounded on [a, b]
- 2. $\forall \epsilon > 0$. $\exists P$. $U(f, P) L(f, P) < \epsilon$

Theorem 5.1. Every continuous functions on [a, b] are Riemann Integrable.

Proof. By extreme value theorem, every continuous functions on [a, b] is bounded. To verify #2 in definition, firstly, if f is continuous, then f is uniformly continuous on [a, b], that is,

$$\forall \epsilon > 0. \ \exists \delta > 0. \ |x_1 - x_2| < \delta \Rightarrow \left| f(x_1) - f(x_2) < \frac{\epsilon}{b - a} \right|$$

Choose partition $P = \{x_0, \dots, x_n\}$ s.t. $||P|| < \delta$, then $|x_j - x_{j-1}| < \delta$, $j = 1, \dots, n$. Again, by extreme value theorem,

$$\exists y_j \in [x_{j-1}, x_j], z_j \in [x_{j-1}, x_j]. \ f(y_j) = M_j(f), f(z_j) = m_j(f)$$

Now consider

$$U(f, P) - L(f, P)$$

$$= \sum_{j=1}^{n} M_j(f) \Delta x_j - \sum_{j=1}^{n} m_j(f) \Delta x_j$$

$$= \sum_{j=1}^{n} (M_j(f) - m_j(f)) \Delta x_j$$

$$= \sum_{j=1}^{n} (f(y_j) - f(z_j)) \Delta x_j$$

$$\leq \sum_{j=1}^{n} |f(y_j) - f(z_j)| \Delta x_j$$

$$< \sum_{j=1}^{n} \frac{\epsilon}{b-a} \Delta x_j = \frac{\epsilon}{b-a} (b-a) = \epsilon$$

Ex 5.2. The Dirichlet Function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is not Riemann Integrable on [0, 1].

Proof. Take arbitrary paartition P of [0,1], $M_j(f) = \sup_{[x_{j-1},x_j]} f = 1$ and $m_j = \inf_{[x_{j-1},x_j]} f = 0$, so U(f,P) - L(f,P) = 1.

Definition 5.8 (Upper and Lower integral). $f:[a,b] \to \mathbb{R}$ is bounded, then

1. the **upper integral** of f is

$$(u) \int_{a}^{b} f(x)dx = \inf_{P} U(f, P)$$

2. the **lower integral** of f is

$$(l) \int_{a}^{b} f(x)dx = \sup_{P} L(f, P)$$

3. define

$$\int_a^b f(x) dx = (u) \int_a^b f(x) dx \quad \text{if} \quad (u) \int_a^b f(x) dx = (l) \int_a^b f(x) dx$$

Remark 5.4.

$$(l)$$
 $\int_{a}^{b} f(x)dx \leq (u) \int_{a}^{b} f(x)dx$

Theorem 5.2. Let $f:[a,b] \to \mathbb{R}$ be bounded, then f is integrable on [a,b] iff

$$(u) \int_a^b f(x) dx = (l) \int_a^b f(x)$$

5.2 Riemann Sum

Definition 5.9. A Riemann Sum of f w.r.t. $P = \{x_0, \ldots, x_n\}$ of [a, b] generated by samples $t_j \in [x_{j-1}, x_j]$ is

$$S(f, P, t_j) = \sum_{j=1}^{n} f(t_j) \cdot \Delta x_j$$

Which converges to I(f) as $\|P\| \to 0$ if for any samples $t_j \in [x_{j-1}, x_j]$

$$\forall \epsilon > 0. \ \exists P_{\epsilon} \subseteq [a, b]. \ P = \{x_0, \dots, x_n\} \supset P_{\epsilon} \Rightarrow |S(f, P, t_i) - I(F)| < \epsilon$$

Theorem 5.3. $f:[a,b]\to\mathbb{R}$ bounded then f is integrable on [a,b] iff $\lim_{\|P\|\to 0} S(f,P,t_j)$ exists.

Theorem 5.4 (Linearity). If f, g are intergable on [a, b], $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is also integrable, and moreover

$$\int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

Proof.

$$\int_{a}^{b} f(x)dx = \lim_{\|p\| \to 0} S(f, P, t_j) \tag{$\forall t_j$}$$

$$= \lim_{\|p\| \to 0} \sum_{j=1}^{b} f(t_j) \Delta x_j \tag{\forall t_j}$$

$$\alpha \int_{a}^{b} f(x)dx = \alpha \lim_{\|p\| \to 0} \sum_{j=1}^{b} f(t_{j}) \Delta x_{j}$$
 $(\forall t_{j})$

$$\beta \int_{a}^{b} g(x)dx = \beta \lim_{\|p\| \to 0} \sum_{i=1}^{b} g(s_{i}) \Delta x_{i}$$
 (\forall s_{j})

$$\alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx = \lim_{\|p\| \to 0} \sum_{j=1}^{b} \alpha f(t_j) \Delta x_j + \lim_{\|p\| \to 0} \sum_{j=1}^{b} \beta g(t_j) \Delta x_j \tag{$\forall t_j$}$$

$$= \alpha \lim_{\|p\| \to 0} \sum_{i=1}^{n} (\alpha f + \beta g) \cdot t_j \cdot \Delta x_j \tag{$\forall t_j$}$$

$$= S(\alpha f + \beta g, P, t_j) \tag{\forall t_j}$$

Theorem 5.5. If f is integrable on [a,b], then for all $c \in [a,b]$, f is integrable on [a,c] and [c,b], and moreover

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Theorem 5.6 (Comparison). If f, g are integrable on [a, b] and $f \leq g$ on [a, b], then

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Corollary 5.2. If $m \leq f(x) \leq M$ on [a, b], then

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

5.2. RIEMANN SUM 7

Theorem 5.7. If f is integrable on [a, b], so is |f| and

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Theorem 5.8. If f, g are integrable on [a, b], then so is fg.

Theorem 5.9. If f is integrable on [a, b], $\forall [c, d] \subset [a, b]$. f is integrable on [c, d].

Theorem 5.10 (1st Mean Value Theorem). Let f, g be integrable functions on [a, b]. $g(x) \ge 0$ on [a, b]. If $m = \inf_{[a,b]} f$, $M = \sup_{[a,b]} f$, then

$$\exists C \in [m, M]. \ \int_a^b f(x)g(x)dx = C \int_a^b g(x)dx$$

In particular, if f is continuous on [a, b], then

$$\exists x_0 \in [a,b]. \int_a^b f(x)g(x)dx = f(x_0) \int_a^b g(x)dx$$

Proof. $g(x) \ge 0$ on [a,b], $m \le f(x) \le M$ on [a,b], then $mg(x) \le f(x) \cdot g(x) \le Mg(x)$ on [a,b]. By Comparison,

$$m\int_a^b g(x) = \int_a^b mg(x)dx \le \int_a^b f(x)g(x)dx \le \int_a^b Mg(x)dx = M\int_a^b g(x)dx$$

If $\int_a^b g(x)dx = 0$, then $\int_a^b g(x)dx = 0 = C \int_a^b g(x)dx, \forall C$. Otherwise,

$$m \le C = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \le M$$

In particular, if f is continuous, by Intermidiate Value Theorem, $\exists x_0 \in [a, b]$. $f(x_0) = C$.

Ex 5.3.
$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$
, find $F(x) = \int_0^x f(t) dt$

Answer. If $x \ge 0$, $F(x) = \int_0^x f(t)dt = x$; if x < 0, $F(x) = \int_0^x f(t)dt = -\int_x^0 f(t)dt = -x$. So F(x) = |x|.

Theorem 5.11. If f is integrable on [a, b], then $F(x) = \int_a^x f(t)dt$ exists and continuos on [a, b].

Proof. Since $[a,x] \subset [a,b]$, then $\int_a^x f(t)dt$ exists. Show F(x) is continuous on [a,b] by proving $\forall \epsilon > 0 \exists \delta > 0$. $\forall x_0 \in [a,b]$. $|x-x_0| < \delta \Rightarrow |F(x)-F(x_0)| < \epsilon$ assume $\exists M>0$. $|f| \leq M$ on [a,b]. Choose $\delta = \frac{\epsilon}{M}$, assume $x_0 < x < x_0 + \delta$,

$$|F(x) - F(x_0)| = \left| \int_a^x f(t)dt - \int_a^{x_0} f(t)dt \right|$$

$$= \left| \int_{x_0}^x f(t)dt \right|$$

$$\leq \int_{x_0}^x |f(t)| dt$$

$$\leq \int_{x_0}^x Mdt$$

$$= M(x - x_0)$$

$$< M\delta = \epsilon$$

Theorem 5.12 (2nd Mean Value Theorem). Let f, g be integrable in [a, b]. Assume $g \ge 0$ on [a, b]. Let $m \le \inf_{[a, b]} f$, $M \ge \sup_{[a, b]} f$. Then

$$\exists c \in [m, M]. \ \int_a^b f(x)g(x)dx = m \int_a^c g(x)dx + M \int_c^b g(x)dx$$

In particular, if $f \ge 0$ on [a, b], then

$$\exists c. \in [a,b] \int_a^b f(x)g(x)dx = M \int_c^b g(x)dx$$

Proof. Use m=0, then 2nd statement follows from the 1st statement. To prove 1st statement, define $h:[a,b]\to\mathbb{R}$ to be

$$h(x) = m \int_{a}^{x} g(x)dt + M \int_{x}^{b} g(t)dt$$

then h is continuous on [a,b]. $g \ge 0$, $m \le f \le M$, gives $m \cdot g \le f \cdot g \le M \cdot g$. By assumption,

$$h(b) = \int_a^b g(t)dt \le \int_a^b f(t)g(t) \le \int_a^b g(t)dt = h(a)$$

By IVT, there exists $c \in [a, b]$ s.t.

$$h(c) = m \int_{a}^{x} g(x)dt + M \int_{x}^{b} g(t)dt = \int_{a}^{b} f(x)g(x)dx$$

5.3 Fundamental Theorem of Calculus

Theorem 5.13 (FTC). $f:[a,b] \rightarrow \mathbb{R}$

1) If f is continuous on [a, b], define

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

then $F \in C^1([a,b])$ and $\forall x \in [a,b]$. F'(x) = f(x).

2) If f is differentiable on [a, b] and f' is integrable on [a, b], then

$$\forall x \in [a,b].$$
 $\int_{a}^{x} f'(t)dt = f(x) - f(a)$

Proof of FTC

1) *Proof.* By symmetry, it suffices to show that if $f(x_0+) = f(x_0)$ then

$$\lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{t} = f(x_0)$$

By definition, $\forall \epsilon > 0$. $\exists \delta > 0$. $x_0 < x < x_0 + \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$. Fix $0 < h < \delta$,

$$F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(t)dt - \int_a^{x_0} f(t)dt$$
$$= \int_{x_0}^{x_0 + h} f(t)dt$$

Note that

$$f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt$$

$$\implies \left| \frac{F(x_0+h) - F(x_0)}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt - \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt \right|$$

$$= \frac{1}{h} \left| \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{h} \int_{x_0}^{x_0+h} |f(t) - f(x_0)| dt$$

$$\leq \frac{1}{h} \int_{x_0}^{x_0+h} \epsilon dt$$

$$< \epsilon$$

$$\Leftrightarrow f(x_0) = \lim_{h \to 0^+} \frac{F(x_0+h) - F(x_0)}{h}$$

2) Proof. By definition,

$$\forall \epsilon > 0. \ \exists P = \{x_0, \dots, x_n\} \subseteq [a, x]. \ \left| \sum_{j=1}^n f'(t_j) \cdot \Delta x_j - \int_a^x f'(t) dt \right| < \epsilon$$

By MVT (4.15 (ii) on P.111), which says if f is differentiable on [a, b], then $\exists c \in [a, b]$. f(b) - f(a) = f'(c)(b-a), there exists $t_j \in [x_{j-1}, x_j]$ s.t.

$$f'(t_j) \cdot \Delta x_j = f'(t_j)(x_j - x_{j-1})$$

$$= f(x_j) - f(x_{j-1})$$

$$\implies \left| \sum_{j=1}^n (f(x_j) - f(x_{j-1})) - \int_a^x f'(t) dt \right| < \epsilon$$

Since

$$\sum_{j=1}^{n} (f(x_j) - f(x_{j-1})) = f(x) - f(a)$$

$$\implies \left| f(x) - f(a) - \int_{a}^{x} f'(t) dt \right|$$

$$\iff f(x) - f(a) = \int_{a}^{x} f'(t) dt$$

Remark 5.5. *The hypothesis in FTC cannot be relaxed.*

Theorem 5.14.

$$F(x) = \int_{a}^{g(x)} g(t)dt$$
$$\frac{dF}{dx} = f(g(x)) \cdot g'(x)$$

Proof. Define

$$G(u) = \int_{a}^{u} f(t)dt$$

then

$$\begin{split} F(x) &= G(g(x)) \\ \frac{dF}{dx} &= G'(g(x)) \cdot g'(x) \\ &\stackrel{\text{FTC}}{=} f(g(x)) \cdot g'(x) \end{split}$$

Theorem 5.15 (Intergration By Part). If:

- f, g are differentiable on [a, b]
- f', g' are integrable on [a, b]

Then

$$\int_{a}^{b} f'(x)g(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

Or

$$\int_{a}^{b} g \cdot df = (f \cdot g) \Big|_{a}^{b} - \int_{a}^{b} f \cdot dg$$

Proof.

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\implies \int_{a}^{b} (f(x) \cdot g(x))' dx = \int_{a}^{b} f'(x) \cdot g(x) + f(x) \cdot g'(x) dx$$

$$f(x) \cdot g(x)|_{a}^{b} = \int_{a}^{b} f'(x) \cdot g(x) + f(x) \cdot g'(x) dx$$

$$\iff \int_{a}^{b} f'(x)g(x) dx = f(x) \cdot g(x)|_{a}^{b} - f(x) \cdot g'(x) dx$$

Theorem 5.16 (Change of Variables). Let $\phi \in C^1([a,b])$ and F be continuous on $\phi([a,b])$, then

$$\int_{\phi(a)}^{\phi(b)} f(t)dt \stackrel{t=\phi(x)}{=} \int_{a}^{b} f(\phi(x))\phi'(x)dx$$

5.4 Improper Integral

Theorem 5.17. Let f be integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{\substack{c \to a^{+} \\ d \to b^{-}}} \int_{c}^{d} f(x)dx$$

Proof.

$$\begin{split} F(x) &= \int_a^x f(t)dt \ \text{ is continuous in } [a,b] \\ \int_a^b f(x)dx &= F(b) - F(a) \\ &= \lim_{d \to b^-} F(d) - \lim_{c \to a^+} F(c) \\ &= \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d f(x)dx \end{split}$$

Definition 5.10 (Improper Integral). Let (a,b) be an open interval, possibly unbounded, $f:(a,b)\to\mathbb{R}$. Then

- f is locally integrable on (a,b) if f is integrable on each $[c,d]\subset (a,b)$
- f is **improperly integrable** if f is locally integrable on (a,b) and

$$\int_{a}^{b} f(x)dx \stackrel{\text{def}}{=} \lim_{\substack{c \to a^{+} \\ d \to b^{-}}} \int_{c}^{d} f(x)dx$$

exists and is finite. The limit is called the **improper integral** of f on (a, b)

Ex 5.4. Show: $f(x) = x^{-\frac{1}{3}}$ is improperly integrable on (0,1]

Proof. Since f is continuous on (0,1], then f is integrable on every $[a,b] \in (0,1]$, or it's locally integrable.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} x^{-\frac{1}{3}} dx$$

$$= \frac{2}{3} x^{\frac{2}{3}} \Big|_{a}^{b}$$

$$= \frac{3}{2} (b^{\frac{2}{3}} - a^{\frac{2}{3}})$$

$$\lim_{a \to 0^{+}} \int_{a}^{1} f(x) dx = \lim_{a \to 0^{+}} \frac{3}{2} \left(1 - a^{\frac{2}{3}}\right)$$

$$= \frac{3}{2}$$

By definition,

$$\int_{a}^{1} f(x)dx = \frac{3}{2}$$

Ex 5.5.

- $f(x) = x^{-\alpha}$ is improperly integrable on (0,1) iff $\alpha < 1$
- $f(x) = x^{-\alpha}$ is improperly integrable on $(1, \infty)$ iff $\alpha > 1$

Theorem 5.18 (Linearity). If f, g are improperly integrable on (a, b), then $\alpha f + \beta g$ is also improperly integrable on (a, b) and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is improperly integrable on (a, b) and

$$\int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

Theorem 5.19 (Comparison).

- f, g: locally integrable on (a, b)
- $\forall x \in (a, b). \ 0 \le f(x) \le g(x)$
- g is improperly integrable on (a,b)

then f is improperly integrable on (a, b) and

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Ex 5.6. Prove: $f(x) = \frac{\sin x}{\sqrt{x^3}}$ is improperly integrable on (0,1].

Proof. $f \ge 0$ on (0,1]. f is continuous gives that f is locally integrable on (0,1]. Notice that $\sin x \le x$ on (0,1], gives that

$$\frac{\sin x}{x^{\frac{3}{2}}} \le \frac{x}{x^{\frac{3}{2}}} = x^{-\frac{1}{2}}$$

Since $x^{-\frac{1}{2}}$ is improperly integrable on (0,1], by comparison, f is improperly integrable on (0,1].

Ex 5.7. Prove $f(x) = \frac{\log x}{x^{\frac{5}{2}}}$ is improperly integrable on $[1, \infty)$.

Proof. $f \ge 0$ on $[1, \infty)$. Since f is continuous on $[1, \infty)$, f is locally integrable on $[1, \infty)$. Notice that $\log x \le x$ on $[1, \infty)$, gives that

$$\frac{\log x}{x^{\frac{5}{2}}} \le \frac{x}{x^{\frac{5}{2}}} = x^{-\frac{3}{2}}$$

Since $x^{-\frac{3}{2}}$ is improperly integrable on $[1,\infty)$, by comparison, f is improperly integrable on $[1,\infty)$.

Corollary 5.3. Assume:

- f is bounded, locally integrable on (a, b)
- |q| is locally integrable on (a, b)

Then $|f \cdot g|$ is improperly integrable on (a, b)

Definition 5.11 (Absolute Integrability). f is **absolutely integrable** on (a,b) if f is locally integrable on (a,b) and |f| is improperly integrable on (a,b).

Definition 5.12 (Conditionally Integrability). f is **conditionally integrable** on (a,b) if f is locally integrable on (a,b) and |f| is not improperly integrable on (a,b).

Theorem 5.20. If f is absolutely integrable then f is improperly integrable on (a,b) and

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f|(x) dx$$

Ex 5.8. $\frac{\sin x}{x}$ is conditionally integrable on $[0, \infty)$.

Chapter 6

Infinite series of numbers

6.1 Introduction

Definition 6.1. Let $S = \sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots$,

- $\forall n \in \mathbb{N}$, the partial sum of S of order n is $S_n = \sum_{k=1}^n a_k$.
- S is convergent if $\{S_n\}_{n=1}^{\infty}$ converges. If $S_n \to S$ as $n \to \infty$ then S converges to s, denoted as $\sum_{k=1}^{\infty} a_k = s$
- S is divergent if $\{S_n\}_{n=1}^{\infty}$ is divergent. When $\{S_n\}_{n=1}^{\infty}$ diverges to $\pm \infty$, write $\sum_{k=1}^{\infty} a_k = \pm \infty$.

Ex 6.1. $\sum_{k=1}^{\infty} (-1)^k$ is divergent.

Proof.

$$S_1 = -1, S_2 = 0, S_3 = -1, S_4 = 0, \dots \Rightarrow \{S_n\}_{n=1}^{\infty} = \{-1, 0, -1, 0, \dots\}$$

which is divergent.

Ex 6.2. *Prove that* $\sum_{k=1}^{\infty} 2^{-k} = 1$

Proof.

$$S_n = \sum_{k=1}^{n} 2^{-k} = 1 - 2^{-n}$$
$$\lim_{n \to \infty} S_n = 1$$

Ex 6.3 (Harmonic Series). *Prove*: $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges

Proof.

$$S_n = \sum_{k=1}^n \frac{1}{k} > \sum_{k=1}^n \int_{k-1}^k \frac{1}{x+1} dx$$

$$= \int_0^n \frac{1}{x+1} dx$$

$$\lim_{n \to \infty} \int_0^n \frac{1}{x+1} dx = \int_0^\infty \frac{1}{x+1} dx$$

$$\Rightarrow \{S_n\} \text{ diverges}$$

$$\Rightarrow \sum_{k=1}^\infty \frac{1}{k} \text{ diverges}$$

Theorem 6.1 (Divergent Test). Let $\{a_k\}$ be a sequence, with $a_k \not\to 0$ as $k \to \infty$. Then $\sum_{k=1}^{\infty} a_k$ diverges.

Proof. Argue by contradiction. Suppose $\sum_{k=1}^{\infty} a_k$ converges. By definition, $\{S_n\}_{n=1}^{\infty}$ converges to $a \in \mathbb{R}$, gives that $a_k = S_k - S_{k-1} \to a - a = 0$ as $k \to \infty$. This is a contradiction. Then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem 6.2 (Telescope Series). Assume $a_k \to a$ as $k \to +\infty$, then

$$\sum_{k=1}^{a} (a_k - a_{k+1}) = a_1 - a$$

Proof.

$$S_n = \sum_{k=1}^n (a_k - a_{k+1})$$

$$= (a_1 - a_2) + (a_2 - a_3) + \dots + (a_n - a_{n+1})$$

$$= a_1 - a_{n+1}$$

$$\to a_1 - a \text{ as } n \to \infty$$

By definition, $\sum_{k=1}^{\infty} (a_k - a_{k+1}) = a_1 - a_1$

Theorem 6.3 (Geometric Series). $\sum_{k=n}^{\infty} x^k$ converges iff |x| < 1. In particular,

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Proof. When $|x| \ge 1$, then $x^k \ne 0$ as $k \to \infty$. By definition, $\sum k = n^{\infty} x^k$ is divergent. When |x| < 1, then

$$(1-x)S_n = (1-x)(1+x+x^2+\cdots+x^n)$$

$$= 1+x+x^2+\cdots+x^n - (x+x^2+\cdots+x^{n+1})$$

$$= 1-x^{n+1} \to 1 \text{ as } n \to \infty$$

$$\Rightarrow \sum_{k=n}^{\infty} x^k \text{ converges and } \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Theorem 6.4 (Cauchy Criterion). $\sum_{k=1}^{\infty}$ converges iff

$$\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ \left| \sum_{k=m}^{n} a_k \right| < \epsilon, \quad \forall n \ge m \ge N$$

Theorem 6.5. Let $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ be convergent series. Then: $\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k)$ converges and

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \sum_{k=1}^{\infty} \alpha a_k + \sum_{k=1}^{\infty} \beta b_k$$

6.2 Series with non-negative terms

Theorem 6.6. Assume $a_k \geq 0$, then the series $\sum_{k=0}^{\infty} a_k$ converges iff $\{S_n\}$ is bounded, namely

$$\forall n. \ \exists M > 0. \ \left| \sum_{k=1}^{n} a_k \right| \le M$$

Proof.

- " \Rightarrow ": If $\sum_{k=1} a_k$ converges, by definition, $\{S_n\}$ converges.
- " \Leftarrow ": Note that $\{S_n\}$ is increasing. If $\{S_n\}$ is bounded, by monotone convergence theorem, $\{S_n\}$ converges. By definition, $\sum_{k=1} a_k$ converges.

Theorem 6.7 (Integral Test). Let $f:[1,\infty)\to\mathbb{R}$ positive, decreasing, then $\sum_{k=1}^{\infty}f(k)$ converges iff f is improperly integrable on $[0,\infty)$, i.e.,

$$\int_{1}^{\infty} f(x)dx < \infty$$

Proof. Let

$$S_n = \sum_{k=1}^n f(k)$$

$$t_n = \int_1^n f(x) \ dx$$

$$f(k-1) \ge f(k) \ge f(k+1)$$
 (f decreasing)
$$f(k) \ge \int_k^{k+1} f(x) \ dx \ge f(k+1)$$
 (Comparison)

Sum $k = 1, 2, 3, \dots, n-1$

$$\underbrace{\sum_{S_n - f(1)}^{n} f(k)}_{S_n - f(1)} \le \underbrace{\int_{1}^{n} f(x) \, dx}_{t_n} \le \underbrace{\sum_{k=1}^{n-1} f(k)}_{S_n - f(n)}$$

$$0 \le f(n) \le S_n - t_n \le f(1)$$

If $\sum_{k=1} f(k)$ converges, then $\sum_{k=1} f(k)$ is bounded

$$t_n = \int_1^n f(x) \; dx \; \text{is bounded}$$

$$\int_1^\infty f(x) \; dx = \text{converge by MCT}$$

If $\int_1^\infty f(k) \ dx < \infty$, then $t_n = \int_1^\infty g(x) dx < \infty$

 S_n is bounded

$$\sum_{k=1}^{\infty} f(k) \text{ converges}$$

Corollary 6.1 (p-series).

$$\sum_{k=1}^{\infty} k^{-p} \text{ converges iff } p > 1$$

Proof. Let $f(x) = k^{-p}$. When $p \le 0$, $k^{-p} \ne 0$, as $k \to \infty$. By diverge test,

$$\sum_{k=1}^{\infty} k^{-p} \text{ diverges}$$

When p > 0, f(x) is positive and decreasing. Note

$$\int_{1}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{1}{x^{p}} dx$$

converges iff p > 1. By integral test, $\sum_{k=1}^{\infty} k^{-p}$ converges iff p > 1.

Theorem 6.8 (Comparison Test). Given $0 \le a_k \le b_k$.

- If $\sum_k b_k$ converges, then $\sum_k a_k$ converges.
- If $\sum_k a_k$ diverges, then $\sum_k b_k$ diverges.

Ex 6.4. Determine

$$\sum_{k=1}^{\infty} \frac{3k}{k^2 + k} \sqrt{\frac{\log k}{k}}$$

converges or not

Proof. Notice that $\forall k \geq 1$. $\log k \leq 2k^{\frac{1}{2}}$ because $\log 1 \leq 2 \cdot 1^{\frac{1}{2}}$ and $(\log k)' = \frac{1}{k} < (2 \cdot k^{\frac{1}{2}})' = k^{-\frac{1}{2}}$. This gives that

$$\frac{3k}{k^2 + k} \sqrt{\frac{\log k}{k}} \le \frac{3k}{k^2} \sqrt{\frac{2k^{\frac{1}{2}}}{k}}$$

$$= 3\sqrt{2} \cdot \frac{1}{k^{\frac{5}{4}}}$$
(Converges by p-series)

By comparison, it converges.

Theorem 6.9 (Limit Comparison Test). Let $a_k \geq 0, b_k \geq 0$. Assume $L = \lim_{k \to \infty} \frac{a_k}{b_k} (\geq 0)$.

- 1. If $0 < L < \infty$, then $\sum_{k=1}^{\infty} a_k$ converges iff $\sum_{k=1}^{\infty} b_k$ converges.
- 2. If L = 0, and $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- 3. If $L = \infty$, and $\sum_{k=1}^{\infty} b_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

Proof.

1. Fix $\epsilon = \frac{L}{2}$, by definition of limit,

$$\exists N \in \mathbb{N}. \ \left| \frac{a_k}{b_k} - L \right| < \frac{L}{2}$$

$$\frac{L}{2} \le \frac{a_k}{b_k} \le \frac{3L}{2}$$

$$(k \ge N)$$

$$\frac{L}{2} \cdot b_k \le a_k \le \frac{3L}{2} \cdot b_k \tag{k \ge N}$$

$$\sum_{k=1}^{\infty} a_k \text{ converges}$$
 (Comparison)

2. If $\frac{a_k}{b_k} \to 0$ as $k \to \infty$, then

$$\exists N. \frac{a_k}{b_k} < 1 \tag{k \ge N}$$

$$a_k < b_k$$
 $(k \ge N)$

$$\sum_{k=1}^{\infty} b_k \text{ converges} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ converges}$$
 (Comparison)

3. If $\frac{a_k}{b_k} \to \infty$ as $k \to \infty$, then $\exists N. \ a_k > b_k$ as k > N. By Comparion, $\sum_{k=1}^{\infty} b_k$ converges gives that $\sum_{k=1}^{\infty} a_k$ converges.

Ex 6.5. Determine converge or not:

$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{2k^4 + k^2} - k}$$

Answer. Let $a_k = \frac{1}{k}$

$$\frac{\frac{k}{\sqrt{2k^4 + k^2 - k}}}{\frac{1}{k}} = \frac{k^2}{\sqrt{2k^4 + k^2} - k} \to \frac{1}{\sqrt{2}} \text{ as } k \to \infty$$

Since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, by limit comparison test

$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{2k^4 + k^2} - k} \quad diverges$$

Ex 6.6. Let $a_k \to 0$ as $k \to \infty$, Prove that $\sum_{k=1}^{\infty} \sin|a_k|$ converges iff $\sum_{k=1}^{\infty} |a_k|$ converges.

Proof. Recall $\frac{\sin x}{x} \to 1$ as $x \to 0$. Because $|a_k| \ge 0$, $\sin |a_k| \ge 0$ as $k \to \infty$. Since $\frac{\sin |a_k|}{|a_k|} \to 1$ as $k \to \infty$ by limit comparison test.

$$\sum_{k=1}^{\infty} \sin |a_k| \text{ converges iff } \sum_{k=1}^{\infty} |a_k| \text{ converges}$$

6.3 Absolute Convergence

Definition 6.2. $S = \sum_{k=1}^{\infty} a_k$,

 $1. \ \ S \ \textbf{converges absolutely} \ if$

$$\sum_{k=1}^{\infty} |a_k| < \infty$$

2. S converges conditionally if S converges but not converge absolutely.

Ex 6.7.

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$

converge conditionally.

Theorem 6.10. If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k$ converges.

Definition 6.3 (Limit Supremum). Let $\{x_n\}_{n=1}^{\infty}$ be a sequence,

$$\limsup_{k\to\infty} x_k = \lim_{n\to\infty} \left\{ \sup_{k>n} x_k \right\} \in \bar{\mathbb{R}}$$

Ex 6.8. $X_k = k$,

$$\limsup_{k \to \infty} k = \lim \left\{ \sup_{k > n} k \right\} = \lim_{n \to \infty} \infty = \infty$$

Ex 6.9.

$$\begin{split} \lim\sup_{k\to\infty}(-k) &= \lim_{n\to\infty}(\sup_{k>n}(-k))\\ &= \lim_{n\to\infty}-(n+1)\\ &= -\infty \end{split}$$

Ex 6.10.

$$\limsup_{k \to \infty} \frac{1 + (-1)^k}{k} = \lim_{k \to \infty} \left\{ 0, 1, 0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, \dots \right\}$$
$$= \lim_{n \to \infty} \left\{ \sup_{k > n} \frac{1 + (-1)^k}{k} \right\}$$
$$= 0$$

Fact 6.1. $\limsup_{k\to+\infty} a_k$ is the largest possible limit among all convergent subsequences of $\{x_k\}_{k=1}^{\infty}$. Proposition 6.1.

- 1. If $\limsup_{k \to +\infty} x_k < x$, then $x_k < x$ for large k.
- 2. If $\limsup_{k\to+\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- 3. If $x_k \to x$ as $k \to +\infty$, then $\limsup_{k \to \infty} x_k = x$.

Theorem 6.11 (Root Test). Let $r=\limsup_{k\to\infty}|a_k|^{\frac{1}{k}}.$

- 1. If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely
- 2. If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges

Theorem 6.12 (Ratio Test). Let $r = \lim_{k \to \infty} \frac{|a_k + 1|}{|a_k|}$,

- 1. If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely
- 2. If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges

6.4 Alternating Series

Lemma 6.1 (Abel's Lemma). Let $\{a_k\}_{k\in\mathbb{N}}$, $\{b_k\}_{k\in\mathbb{N}}$ be real sequences. $\forall n\geq m>1$, set $A_{n,m}=\sum_{k=m}^n a_k$. Then

$$\sum_{k=m}^{n} a_k b_k = A_{n,m} b_n - \sum_{k=m}^{n-1} A_{k,m} (b_{k+1} - b_k)$$

Theorem 6.13 (Dirichlet Test). $a_k, b_k \in \mathbb{R}$. If $S_n = \sum_{k=1}^n a_k$ is bounded and $b_k \downarrow 0$ as $k \to 0$. Then

$$\sum_{k=1}^{\infty} a_k b_k$$

converges

Proof. Choose M > 0 s.t.

$$\begin{split} \forall n \in \mathbb{N}. \ |S_n| &= \left| \sum_{k=1}^n a_k \right| \leq \frac{M}{2} \\ |A_{n,m}| &= |S_n - S_{m-1}| \leq |S_n| \\ \forall n \geq m \geq 1. \ |S_{m-1}| \leq \frac{M}{2} + \leq \frac{M}{2} = M \end{split}$$

 $\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ 0 \leq b_k < \frac{\epsilon}{M} \ \text{as} \ k \geq N$

$$\left| \sum_{k=m}^{n} a_{k} b_{k} \right| = \left| A_{n,m} b_{n} - \sum_{k=m}^{n-1} A_{k,m} (b_{k+1} - b_{k}) \right|$$

$$\leq |A_{n,m} b_{n}| + \sum_{k=m}^{n-1} |A_{k,m}| |b_{k+1} - b_{k}|$$

$$= |A_{n,m} b_{n}| + \sum_{k=m}^{n-1} |A_{k,m}| (b_{k} - b_{k+1})$$

$$\leq M \cdot \frac{\epsilon}{M} + \sum_{k=m}^{n-1} M \cdot (b_{k} - b_{k+1})$$

$$= \epsilon + M(b_{m} - b_{n})$$

$$\leq \epsilon + M \cdot b_{m} \leq \epsilon + M \cdot \frac{\epsilon}{M} = 2\epsilon$$

$$(n \geq m > N)$$

By Cachy Criterion

$$\sum_{k=1}^{\infty} a_k b_k \text{ converges}$$

Corollary 6.2 (Alternating Series Test). *If* $b_k \downarrow 0$ *as* $k \to \infty$, *then*

$$\sum_{k=1}^{\infty} (-1)^k b_k$$

converges

Ex 6.11. $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges conditionally

Ex 6.12. $\sum_{k=1}^{\infty} \frac{(-1)^k}{\log k}$ converges conditionally

General Procedure. Let $S = \sum_{k=1}^{\infty} a_k$,

- Step 1. Apply divergent test. Namely, verify if $a_k \not\to 0$ as $k \to \infty$
- Step 2. Determine if S is geometric or p-series or if S looks like geometric or p-series; apply comparison test or limit comparison test to $\sum_{k=1}^{\infty} |a_k|$
- $\underline{\text{Step 3.}} \text{ Apply root test or ratio test. Namely, find } r = \limsup_{k \to +\infty} |a_k|^{\frac{1}{k}} \text{ or } r = \lim_{k \to \infty} \frac{|a_{k+1}|}{a_k}. \text{ If } r < 1 \text{ then } S$ converges absolutely. If r > 1, S diverges.
- Step 4. If S alternates, apply alternating series test.

Chapter 7

Infinite Series of Functions

7.1 Uniform Converges of Sequences

Definition 7.1. $\{f_n\}$ converges uniformly to f on E if

$$\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ \forall n \geq N. \ |f_n - f| < \epsilon$$

Theorem 7.1. Assume $f_n \to f$ uniformly on E and assume each f_n is continuous on E, then f is continuous on E

Theorem 7.2. Assume $f_n \to f$ uniformly on [a,b] and assume each f_n is integrable on [a,b], then f is integrable on [a,b]. Moreover,

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to +\infty} \int_{a}^{b} f_n(x) \ dx$$

Lemma 7.1 (Uniform Cauchy Criterion). $f_n \to f$ uniformly on E as $n \to +\infty$ iff

$$\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ \forall i, j \geq N. \ |f_i - f_j| < \epsilon$$

Theorem 7.3. Assume

- 1. (a,b) is bounded open interval
- 2. f_n is differentiable on (a,b) for every n
- 3. $\exists x_0 \in (a,b)$. such that $f_n(x_0)$ converges
- 4. f'_n converges uniformly on (a, b)

then $f_n \to f$ to f on (a, b), and

$$\forall x \in (a, b). \ f'(x) = \lim_{n \to \infty} f'_n(x)$$

Proof. Fix $c \in (a, b)$, define

$$g_n(x) = \begin{cases} \frac{f_n(x) - f_n(c)}{x - c} & x \neq c \\ f'_n(c) & x = c \end{cases}$$

then g_n is continuous on (a, b).

Lemma 7.2. $g_n(x)$ converges uniformly on (a, b)

Proof.

1. When $x \neq c$,

$$g_n(x) - g_m(x) = \frac{f_n(x) - f_n(c)}{x - c} - \frac{f_m(x) - f_m(c)}{x - c}$$

$$= \frac{(f_n - f_m)(x) - (f_n - f_m)(c)}{x - c}$$

$$= (f_n - f_m)'(\xi), \quad \xi \in (x, c)$$

$$\Rightarrow |g_n(x) - g_m(x)| = |f'_n(x) - f'_m(x)| < \epsilon, \quad n, m \ge N$$

2. When x = c

$$|g_n(c) - g_m(c)| = |f'_n(c) - f'_m(c)| < \epsilon, \quad n, m \ge N$$

Combining 1 and 2,

$$\forall x \in (a, b). \ \forall n, m \ge N. \ |g_n(x) - g_m(x) < \epsilon|$$

then g_n converges uniformly on (a, b).

Let $x_0 = c$,

$$f_n(x) = g_n(x)(x - x_0) + f_n(x_0)$$

then

$$|f_n(x) - f_m(x)| = |[g_n(x)(x - x_0) + f_n(x_0)] - [g_m(x)(x - x_0) + f_m(x_0)]|$$

$$\leq |x - x_0| \cdot |g_n(x) - g_m(x)| + |f_n(x_0) - f_m(x_0)|$$

$$< (b - a) \cdot \epsilon + \epsilon$$

$$= (b - a + 1) \cdot \epsilon$$

By uniform Cauchy criterion, f_n converges uniformly on (a,b).

7.2 Uniforma Converges of Series

Definition 7.2 (Series of Functions).

$$S(x) = \sum_{k=1}^{\infty} f_k(x)$$

Definition 7.3 (Pointwise Convergence). The series $\sum_{k=1}^{\infty} f_k(x)$ converges pointwisely on E iff

$$\forall x \in E. \sum_{k=1}^{\infty} f_k(x) \text{ converges}$$

or $S_n(x)$ converges as $n \to \infty$

Definition 7.4 (Uniform Convergence). The series $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly on E iff

$$\forall x \in E. \sum_{k=1}^{\infty} f_k(x)$$
 converges uniformly

Theorem 7.4 (Weierstrass M-test). $f_k: E \to \mathbb{R}$. Suppose $\exists M_k > 0$. $|f_k| \leq M_k$ on E,

$$\sum_{k=1}^{\infty} M_k \ \text{converges} \Longrightarrow \sum_{k=1}^{\infty} f_k(x) \ \text{converges uniformly on } E$$

Proof. By definition, $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly on E if $S_n(x)$ converges uniformly on E. Prove by using uniform Cauchy criterion:

$$\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ \forall m > n \ge N. \ |S_m(x) - S_n(x)| < \epsilon \iff \left| \sum_{k=n+1}^m f_k(x) \right| < \epsilon$$

Since $\sum_{k=1}^{\infty} M_k < \infty$, by the Cauchy criterion,

$$\forall \epsilon > 0. \ \exists N \in \mathbb{N}. \ \forall m > n \ge N. \ \left| \sum_{k=n+1}^{m} M_k \right| < \epsilon$$

Because $|f_k| \leq M_k$, then

$$\left| \sum_{k=n+1}^{m} f_k(x) \right| \le \sum_{k=n+1}^{m} |f_k(x)| \le \sum_{k=n+1}^{m} M_k < \epsilon$$

Definition 7.5 (Absolute Convergence). The series $\sum_{k=1}^{\infty} f_k(x)$ converges absolutely on E iff

$$\forall x \in E. \sum_{k=1}^{\infty} |f_k(x)| \text{ converges}$$

Theorem 7.5. $f_k: E \to \mathbb{R}$. If f_k is continuous at $x_0 \in E$ and $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly on E, then f is continuous at x_0 .

Theorem 7.6 (Turn by turn integration). $f_k : [a,b] \to \mathbb{R}$. If f_k is integrable on [a,b] and $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly on [a,b], then

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{\infty} \int_{a}^{b} f_k(x) dx$$

Theorem 7.7 (Turn by turn differentiation). $f_k:(a,b)\to\mathbb{R}$. If f_k is differentiable on (a,b) and $\sum_{k=1}^\infty f_k(x)$ converges at $x_0\in(a,b)$, and $\sum_{k=1}^\infty f_k'(x)$ converges uniformly to f on (a,b), f is differentiable and

$$\forall x \in (a, b). \ f'(x) = \sum_{k=1}^{\infty} f'_k(x)$$

Ex 7.1. Show $\sum_{k=1}^{\infty} \frac{x^k}{k}$ converges uniformly on $\left[-\frac{1}{3}, \frac{1}{2}\right)$

Proof. Notice that

$$\forall k \in \mathbb{N}. \left| \frac{x^k}{k} \right| \le \left| x^k \right| \le \left| \frac{1}{2} \right|^k$$

and

$$\sum_{k=1}^{\infty} \left| \frac{1}{2} \right|^k \text{ converges}$$

By Weierstrass M-test, $\sum_{k=1}^{\infty}\frac{x^k}{k}$ converges uniformly on $\left[-\frac{1}{3},\frac{1}{2}\right)$

7.3 Power Series

Definition 7.6 (Power Series). Given $a_k, x_0 \in \mathbb{R}$

$$S(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

Definition 7.7. A non-negative extended real number R is called the **radius of convergence** of a power series S(x) if S(x) converges absolutely for $|x - x_0| < R$ and diverges for $|x - x_0| > R$.

Ex 7.2. Consider special case

$$\sum_{k=0}^{\infty} k^k x^k$$

in which $a_k = k^k$, $x_0 = 0$. By root test,

$$\limsup_{k \to +\infty} \left| k^k x^k \right|^{\frac{1}{k}} = \limsup_{k \to \infty} k \left| x \right|$$

For it to converge, it requires kx < 1 as $k \to \infty$, namely x = 0. Therefore, the series converges only at x = 0.

Theorem 7.8 (Root Test). Given power series $S(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$. Let

$$R = \frac{1}{\limsup_{k \to \infty} |a_k|^{\frac{1}{k}}}$$

then R is the radius of convergence for S(x). Moreover,

- 1. S(x) converges absolutely $\forall x \in (x_0 R, x_0 + R)$
- 2. S(x) converges uniformly on $[a,b] \subset (x_0 R, x_0 + R)$
- 3. When $R < +\infty$, S(x) diverges for $x \notin [x_0 R, x_0 + R]$

Proof. Define

$$R = \frac{1}{\limsup_{k \to \infty} |a_k|^{\frac{1}{k}}}$$

Apply root test to S(x), define

$$r(x) = \limsup_{k \to \infty} |a_k(x - x_0)^k|^{\frac{1}{k}}$$
$$= |x - x_0| \cdot \limsup_{k \to \infty} |a_k|^{\frac{1}{k}}$$
$$= \frac{|x - x_0|}{R}$$

<u>Case 1</u>. R = 0, then

$$r(x) = \begin{cases} +\infty & \text{if } x \neq x_0 \\ 0 & \text{if } x = x_0 \end{cases}$$

Then the theorem is proved

Case 2. $R = +\infty$, then r(x) = 0. By root test, S(x) converges absolutely for all $x \in \mathbb{R}$.

<u>Case 3.</u> $0 < R < \infty$. Then by root test, S(x) converges absolutely if $r(x) < 1 \iff |x - x_0| < R$ and diverges if $r(x) > 1 \iff |x - x_0| > R$

7.3. POWER SERIES 25

Suppose $[a, b] \subset (x_0 - R, x_0 + R)$, then

$$\exists 0 < c < 1. \ \forall x \in [a, b]. \ a_k |(x - x_0)^k| \le c^k$$

By Weierstrass M-test, S(x) converges uniformly on [a, b].

Theorem 7.9 (Ratio Test). If $\rho = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}$ exists as an extended real number, the ρ is the radius of convergence for a power series.

Definition 7.8 (Interval of converges). The interval of convergence of a power series S(x) is the interval where S(x) converges.

Remark 7.1.

- 1. If R = 0, then $I = \{x_0\}$
- 2. If $R = +\infty$, then $I = \mathbb{R}$
- 3. If $0 < R < +\infty$, then I is $(x_0 R, x_0 + R)$, $[x_0 R, x_0 + R]$, $(x_0 R, x_0 + R]$ or $[x_0 R, x_0 + R]$. Consider $x = x_0 R$ and $x = x_0 + R$.

Ex 7.3. Find the interval of convergence of

$$S(x) = \sum_{k=1}^{\infty} \frac{x^k}{\sqrt{k}}$$

By ratio test,

$$R = \lim_{k \to \infty} \frac{\frac{1}{\sqrt{k}}}{\frac{1}{\sqrt{k+1}}} = 1$$

When x = -1,

$$S(-1) = \sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$$

converge by alternating series test. When x = 1,

$$S(1) = \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

diverges by p-series test. Therefore, the interval of convergence is [-1,1).

Ex 7.4. Find the inteval of convergence of

- 1. $\sum_{k=1}^{\infty} x^k$. Apply ratio test: R=1. When x=-1, $\sum_{k=1}^{\infty} (-1)^k$ diverges by alternating series test. When x=1, $\sum_{k=1}^{\infty} 1$ diverges by p-series test. Therefore, the interval of convergence is (-1,1)
- 2. $\sum_{k=1}^{\infty} \frac{x^k \cdot (-1)^k}{k}$. Apply ratio test:

$$\lim_{k \to \infty} \frac{\left| \frac{(-1)^{k+1}}{k+1} \right|}{\left| \frac{(-1)^k}{k} \right|} = \lim_{k \to \infty} \frac{k}{k+1} = 1$$

When x=-1, $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges by p-series test. When x=1, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by alternating series test. Therefore, the interval of convergence is (1,-1]

3.
$$\sum_{k=1}^{\infty} \frac{x^k}{k^2}$$
. $[-1,1]$