

Universität Stuttgart Institute für Navigation

Inertialnavigation Übung 1

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart

Ziqing Yu, 3218051

Stuttgart, May 19, 2021

Betreuer: Prof. Dr. techn. Thomas Hobiger

Universität Stuttgart

Dipl.Ing. Doris Becker, Universität Stuttgart

Kapitel 1

Ausarbeitung

1.1 Aufgabe 1

Die Drehraten sind von der Erdrotation befreit: $\omega_e = 0$, das gilt:

$$\omega_{ep}^p = \omega_{ip}^p$$

 $\boldsymbol{\omega}_{ip}^{p}$ sind die gemessene Drehraten, die Elementen von \boldsymbol{A} Matrix sind bekannt.

$$oldsymbol{q}(t+\Delta t) = e^{rac{A\Delta t}{2}} \cdot oldsymbol{q}(t)$$
 $oldsymbol{q}(0) = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}$

Für jede Epoche sind dann DCM mit q bestimmbar, dann gibt es:

$$egin{aligned} oldsymbol{g}^e &= -9,81 \cdot rac{oldsymbol{x}}{|oldsymbol{x}|} \ \dot{oldsymbol{v}}^e &= oldsymbol{C} oldsymbol{a}^p + oldsymbol{g}^e \ oldsymbol{v}^e(t) &= oldsymbol{v}^e(t-1) + \dot{oldsymbol{v}}^e \cdot \Delta t \ oldsymbol{x}^e(t) &= oldsymbol{x}^e(t-1) + oldsymbol{v}^e \cdot \Delta t \end{aligned}$$

Die Trajektorie liegt in Abbildung 1.1. Sie liegt in x-z Ebene und wölbt sich nach innen.

 $\sqrt{x^2+y^2+z^2}$ sind immer kleiner als Erdradius, deswegen ist der Verlauf nicht realistisch.

1.1 Aufgabe 1 2

Abbildung 1.1: Trajektorie

1.2 Aufgabe 2 3

1.2 Aufgabe 2

Analog wie Aufgabe 1, die Positionen werden rückwärts geschätzt.

$$egin{aligned} oldsymbol{\omega}_{rueck} &= -oldsymbol{\omega}_{vor} \ oldsymbol{a}_{rueck} &= -oldsymbol{a}_{vor} \ oldsymbol{v}_{rueck}(1) &= oldsymbol{v}_{vor}(end) \end{aligned}$$

Die Biasoffset hat 8 Möglichkeiten:

$$\delta a_1 = \begin{bmatrix} 0,1 & 0,1 & 0,1 \end{bmatrix}$$

$$\delta a_2 = \begin{bmatrix} 0,1 & 0,1 & -0,1 \end{bmatrix}$$

$$\delta a_3 = \begin{bmatrix} 0,1 & -0,1 & 0,1 \end{bmatrix}$$

$$\delta a_4 = \begin{bmatrix} 0,1 & -0,1 & -0,1 \end{bmatrix}$$

$$\delta a_5 = \begin{bmatrix} -0,1 & 0,1 & 0,1 \end{bmatrix}$$

$$\delta a_6 = \begin{bmatrix} -0,1 & 0,1 & -0,1 \end{bmatrix}$$

$$\delta a_7 = \begin{bmatrix} -0,1 & -0,1 & 0,1 \end{bmatrix}$$

$$\delta a_8 = \begin{bmatrix} -0,1 & -0,1 & -0,1 \end{bmatrix}$$

Die Ursprünliche Position werden berechnet

bias offset	x_1	x_2	x_3
δa_1	-4,60e04	4,25e3	-1,29e5
δa_2	-3,95e04	-6,42e3	-1,14e5
δa_3	-4,60e04	-4,25e3	-1,29e5
δa_4	-3,95e4	6,42e3	-1,14e5
δa_5	-1,33e5	-9,38e3	-2,45e5
δa_6	-1,84e4	1,89e4	-6,47e4
δa_7	-1,33e5	9,38e3	-2,45e5
δa_8	-1,84e4	-1,89e4	-6,47e4

Alle neu Trajektorie liegen in 1.2

1.2 Aufgabe 2 4

1.2 Aufgabe 2 5

Die Streuung der Positionen:

Bias offset	Streuung [m]
δa_1	1,37e5
δa_2	1,21e5
δa_3	1,37e5
δa_4	1,21e5
δa_5	2,79e5
δa_6	6,99e4
δa_7	2,79e5
δa_8	6,99e4

Es ist zu sehen, wenn die Bias Offset in x und y gleich sind, sind die Streuung auch gleich. Der Grund dafür ist: Sensor messt Beschleunigung nur in x und z Richtungen und Drehraten um y Achse. Deswegen hängen die y Koordinaten und die Geschwindigkeit in y Richtung nur von Bias offset und Gravitation ab.