Apprendimento e predizione di dati fluviali tramite reti neurali

Marco Varesi

Università di Parma

20 Dicembre 2018

Indice

- 1 Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approcci
- 6 Risultati

Indice

- Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approcci
- Risultati

Introduzione

- Alla base di questa tesi vi è l'analisi e la previsione dei dati fluviali
- In particolare, si pone l'attenzione sul reverse flow problem
- L'obiettivo della tesi è quello di utilizzare una rete neurale per risolverlo

Indice

- Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approcci
- 6 Risultati

Reverse flow problem

- Stimare l'idrogramma di un fiume a monte, utilizzando solo le informazioni a valle
- Il fiume preso in considerazione è il fiume Secchia

• Cellule destinate allo scambio e alla produzione di segnali

- Cellule destinate allo scambio e alla produzione di segnali
- Ci sono circa 100 miliardi di neuroni nel cervello umano

- Cellule destinate allo scambio e alla produzione di segnali
- Ci sono circa 100 miliardi di neuroni nel cervello umano
- Sono caratterizzati da 3 regioni:

- Cellule destinate allo scambio e alla produzione di segnali
- Ci sono circa 100 miliardi di neuroni nel cervello umano
- Sono caratterizzati da 3 regioni:
 - I dendriti

- Cellule destinate allo scambio e alla produzione di segnali
- Ci sono circa 100 miliardi di neuroni nel cervello umano
- Sono caratterizzati da 3 regioni:
 - I dendriti
 - L'assone

- Cellule destinate allo scambio e alla produzione di segnali
- Ci sono circa 100 miliardi di neuroni nel cervello umano
- Sono caratterizzati da 3 regioni:
 - I dendriti
 - L'assone
 - Il corpo cellulare

Il neurone artificiale

- Modello molto semplificato del neurone biologico
- Ad ogni input x_i è associato un peso w_i con valore positivo o negativo per eccitare o inibire il neurone
- \bullet Tra i pesi ve ne è uno speciale che prende il nome di bias

Il neurone artificiale

- Modello molto semplificato del neurone biologico
- Ad ogni input x_i è associato un peso w_i con valore positivo o negativo per eccitare o inibire il neurone
- \bullet Tra i pesi ve ne è uno speciale che prende il nome di bias
- \bullet L'output del neurone è il risultato della funzione di attivazione f con argomento la somma pesata dei dati in input con i relativi pesi

Il neurone artificiale

Una rete neurale

- Tipicamene in una rete neurale sono presenti:
 - un livello di input
 - uno o più livelli nascosti
 - un livello di output

Apprendimento

Apprendimento non supervisionato

- Non vengono forniti esempi con cui allenare la rete
- La rete cercherà di dividere autonomamente in gruppi i dati in input

Apprendimento supervisionato

- Viene utilizzato un training set
- Vengono aggiornati i pesi in base a una Error-correction rules

Validation set

- Coppie, non presenti nel training set, su cui viene calcolato l'errore
- Forniscono una buona approssimazione della generalizzazione della rete

Validation set

- Coppie, non presenti nel training set, su cui viene calcolato l'errore
- Forniscono una buona approssimazione della generalizzazione della rete

Classificazione e Regressione

Classificazione

- Determinare l'appartenenza di un elemento ad una classe
- L'output può assumere quindi un numero finito di valori

Regressione

- L'output è un valore numerico
- Si suppone che esista una funzione output atteso = f(input)

Indice

- Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approces
- Risultati

Obiettivi tesi

- Studiare la struttura della rete
- Costruzione di un training set efficace
- Ottenere la massima precisione nei picchi
- Tempo di training ragionevole

Indice

- Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approcci
- Risultati

Determinare i sample in ingresso

- numero di misurazioni che occorrono per ottenere la precisione maggiore
- metro di giudizio: errore quadratico medio
- test eseguiti con 5, 8, 10, 12, 15, 20 sample

Determinare i sample in ingresso

- numero di misurazioni che occorrono per ottenere la precisione maggiore
- metro di giudizio: errore quadratico medio
- test eseguiti con 5, 8, 10, 12, 15, 20 sample

Test effettuato sull'anno 2016

Aumentare la precisione della rete

• Aumentare da 3 a 5 il numero di anni nel training set

Aumentare la precisione della rete

- Aumentare da 3 a 5 il numero di anni nel training set
- Introdurre una soglia

Aumentare la precisione della rete

- Aumentare da 3 a 5 il numero di anni nel training set
- Introdurre una soglia
- Utilizzo dell'interpolazione per aumentare ulteriormente le dimensioni del training set

Interpolazione lineare

- Per ogni coppia di punti consecutivi chiamati (x_a, y_a) e (x_b, y_b) , definiamo come funzione interpolante nell'intervallo $[x_a, x_b]$ la seguente funzione f
- $\bullet f(x) = \frac{x x_b}{x_a x_b} y_a \frac{x x_a}{x_a x_b} y_b$

Indice

- Introduzione
- 2 Background
- 3 Obiettivo tesi
- 4 Approcci
- 6 Risultati

Anno 2014

- Approssimato con molti errori nei picchi usando solo 3 anni nel training set
- Rottura dell'argine durante la giornata del 19 gennaio
- si ha un grosso miglioramento nella previsione con l'utilizzo di 5 anni nel training set

2014 training set di 3 anni

2014 training set di 5 anni

2012 training set di 5 anni

2012 training set di 5 anni con soglia

2012 con interpolazione e soglia

Errore quadratico medio

- **2011** 1,5 cm
- **2012** 1 cm
- **2014** 1, 2 cm
- **2015** 0,61 cm
- **2016** 0,88 cm
- **2017** 0,51 cm

Grazie per l'attenzione