安徽大学 2013—2014 学年第二学期

《 高等数学 A(二)、B(二) 》考试试卷(A 卷) 时间 120 分钟)

考场登记表序号_____

题 号	_	=	=	四	五	总分
得 分						
阅卷人						

-、填空题(每小题 2 分,共 10 分)

得分

- 1. 已知 $|\dot{a}|=5$, $|\dot{b}|=2$, $|\dot{a}|=6$, 则 $|\dot{a}|=6$
- 2. 过点 (0,2,4) 且与平面 x+2z=1 及 y-3z=2 都平行的直线为
- 3. 极限 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin(xy) \arcsin(xy)}{x^3 y^3} = \underline{\hspace{1cm}}$.
- 4. 设向量场 $\mathbf{F} = xz^3\mathbf{i} 2x^2yz\mathbf{j} + 2yz^4\mathbf{k}$,则 \mathbf{F} 在点 (1, -2, 1) 处的旋度为______
- 5. 设 f(x) 是以 2p 为周期的周期函数,它在 (-p,p] 上的表达式为

$$f(x) = \begin{cases} \frac{p}{2} + x, & -p < x < 0, \\ \frac{p}{2} - x, & 0 \le x \le p. \end{cases}$$

则将 f(x) 展开成 Fourier 级数为

二、选择题(每小题2分,共10分)

得 分

- 6. 设直线 L为 $\begin{cases} x+y+3z=0 \\ x-y-z=0 \end{cases}$,平面 p 为 x-y-z+1=0,则 L与 p 的夹角为(
 (A) 0; (B) $\frac{p}{2}$; (C) $\frac{p}{3}$; (D) $\frac{p}{4}$.

7. "函数 $z = f(x, y)$ 在点 (x_0, y_0) 的全微分存在"是" $f(x, y)$ 在该点连续"的(条件. (A) 充分非必要; (B) 必要非充分; (C) 充分必要; (D) 既非充分,也非必要. 8. 设 $f(x, y)$ 为连续函数,则累次积分 $\int_0^1 dy \int_{-\sqrt{1-x^2}}^{1-y} f(x, y) dx$ 交换积分次序后为()。 (A) $\int_0^1 dx \int_0^{x-1} f(x, y) dy + \int_{-1}^0 dx \int_0^1 dx \int_{-\sqrt{1-x^2}}^0 f(x, y) dy$; (B) $\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_0^1 dx \int_{-\sqrt{1-x^2}}^0 f(x, y) dy$; (C) $\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_0^1 dx \int_0^1 f(x, y) dy$; (D) $\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_0^1 f(x, y) dy$. 9. 若 p 为常数,则级数 $\sum_{n=1}^\infty \frac{(-1)^n}{n^p}$ 是()。 (A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 0$ 时发散; (C) $p > 0$ 时收敛, $p \ge 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散。 10. 已知幂级数 $\sum_{n=1}^\infty \frac{2^n + (-1)^n}{n} x^n$,则其收敛域为()。 (A) $\left[-\frac{1}{2}, \frac{1}{2}\right]$; (B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$; (C) $\left(-\frac{1}{2}, \frac{1}{2}\right]$; (D) $\left(-\frac{1}{2}, \frac{1}{2}\right)$				
(A) 充分非必要; (B) 必要非充分; (C) 充分必要; (D) 既非充分,也非必要. (B) 必要非充分; (D) 既非充分,也非必要. (D) 既非充分,也非必要. (E) 公人公人公人公人公人公人公人公人公人公人公人公人公人公人公人公人公人公人公人			微分存在"是" $f(x,y)$ 在该点连续"的(
(A) $\int_{0}^{1} dx \int_{0}^{x-1} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy$; (B) $\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$; (C) $\int_{0}^{1} dx \int_{0}^{x-1} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$; (D) $\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy$. 9. 若 p 为常数,则级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ 是 (). (A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 1$ 时发散; (C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散.	条件.	(A) 充分非必要;		
(B) $\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$; (C) $\int_{0}^{1} dx \int_{0}^{x-1} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$; (D) $\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy$. 9. 若 p 为常数,则级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ 是 () . (A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 1$ 时发散; (C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散.	8.	设 $f(x,y)$ 为连续函数,则累次积分	$\int_{0}^{1} dy \int_{-\sqrt{1-y^{2}}}^{1-y} f(x,y) dx$ 交换积分次序后为().
(C) $\int_{0}^{1} dx \int_{0}^{x-1} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$; (D) $\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy$. 9. 若 p 为常数,则级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ 是 () . (A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 1$ 时发散; (C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散. 10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2^{n} + (-1)^{n}}{n} x^{n}$,则其收敛域为 () .		(A) $\int_0^1 dx \int_0^{x-1} f(x, y) dy + \int_{-1}^0 dx \int_0^{\sqrt{1-x}}$	$\frac{1}{2} f(x,y)dy;$	
$(D) \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy.$ $9. E p 为常数, 则级数 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}} E \qquad (B) p \leq 1 Br br$		(B) $\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_{-\sqrt{1-x}}^0 dx$	$\frac{1}{x^2}f(x,y)dy$;	
9. 若 p 为常数,则级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 是() . (A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 1$ 时发散; (C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散. 10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{n} x^n$,则其收敛域为() .		(C) $\int_0^1 dx \int_0^{x-1} f(x, y) dy + \int_{-1}^0 dx \int_{-\sqrt{1-x}}^0 dx$	$\frac{1}{x^2}f(x,y)dy$;	
(A) $p > 1$ 时收敛, $p \le 1$ 时发散; (B) $p \le 1$ 时收敛, $p > 1$ 时发散; (C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散. 10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{n} x^n$,则其收敛域为().		(D) $\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_0^{\sqrt{1-x}}$	$\int_{0}^{2} f(x,y)dy.$	
(C) $p > 0$ 时收敛, $p \le 0$ 时发散; (D) $p \le 0$ 时收敛, $p > 0$ 时发散. 10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{n} x^n$,则其收敛域为().	9.	若 p 为常数,则级数 $\sum_{n}^{\infty} \frac{(-1)^n}{n^p}$ 是() .	
10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{n} x^n$,则其收敛域为().				
n=1		(C) $p > 0$ 时收敛, $p \le 0$ 时发散;	(D) $p \le 0$ 时收敛, $p > 0$ 时发散.	
(A) $\left[-\frac{1}{2}, \frac{1}{2}\right];$ (B) $\left[-\frac{1}{2}, \frac{1}{2}\right];$ (C) $\left(-\frac{1}{2}, \frac{1}{2}\right];$	10.	已知幂级数 $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{n} x^n$,则其收	敛域为().	
		(A) $\left[-\frac{1}{2}, \frac{1}{2}\right]$; (B) $\left[-\frac{1}{2}, \frac{1}{2}\right)$; (C) $\left(-\frac{1}{2}, \frac{1}{2}\right]$; (D) $\left(-\frac{1}{2}\right)$	$(\frac{1}{2})$

三、计算题(每小题9分,共63分)

得分

11. 设空间曲面 Σ 的方程为 $e^z-z+xy=3$,求 Σ 在点(2,1,0)处的切平面与法线方程.

12. 设
$$z^3 - 3xyz = a^3$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

13. 计算三重积分 $\iint_V z dx dy dz$,其中V 由曲面 $z = \sqrt{2-x^2-y^2}$ 及 $z = x^2+y^2$ 所围成的闭区域.

14. 计算曲线积分 $\int_L [e^x \sin y - (x+y)] dx + (e^x \cos y - x) dy$, 其中 L 为从点 (2,0) 沿曲线 $y = \sqrt{2x - x^2}$ 到点 (0,0) 的弧.

15. 计算第一类曲面积分 $\iint_{\Sigma} (x+y+z)dS$,其中 Σ 为球面 $x^2+y^2+z^2=4$ 上 $z \ge 1$ 的部分.

16. 计算第二类曲面积分 $\iint_{\Sigma} (x-1)^2 dy dz + (y-1)^2 dz dx + (z-1) dx dy$,其中 Σ 为曲面 $z = x^2 + y^2$ ($z \le 1$),方向取上侧.

17. 将 $f(x) = (1+x)\ln(1+x)$ 展开成 x 的幂级数,并求 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 的和.

四、应用题(每小题6分,共12分)

18. 求函数 $z = x^2 + y^2 - 3$ 在附加条件 x - y + 1 = 0 下的极值.

得 分

19. 已知一条非均匀金属丝L的方程为 $L: x = a\cos t$, $y = a\sin t$, z = bt , $(0 \le t \le 2p)$. 它 在点(x,y,z)处的线密度是 $\mathbf{r}(x,y,z) = x^2 + y^2 + z^2$,求该金属丝的质量.

五、证明题(每小题5分,共5分)

得 分

20. 设数列 $\{u_n\}$ 满足 $u_1=1$, $u_{n+1}=\cos u_n$,证明级数 $\sum_{n=1}^{\infty}u_n$ 发散.