

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A) 昭60-239341

⑬ Int.Cl.

C 03 C 3/062
A 61 L 27/00
C 03 C 3/097
3/112
4/00
10/02
10/04

識別記号

府内整理番号

6674-4G
6779-4C
6674-4G
6674-4G
6674-4G
6674-4G
6674-4G

⑭ 公開 昭和60年(1985)11月28日

審査請求 未請求 発明の数 1 (全3頁)

⑮ 発明の名称 生体活性ガラスまたはガラスセラミックス

⑯ 特 願 昭59-97166

⑰ 出 願 昭59(1984)5月14日

⑱ 発明者 高橋 博 大阪市東区安土町2丁目30番地 大阪国際ビル ミノルタ
カメラ株式会社内

⑲ 発明者 竹中 克成 大阪市東区安土町2丁目30番地 大阪国際ビル ミノルタ
カメラ株式会社内

⑳ 出願人 ミノルタカメラ株式会社 大阪市東区安土町2丁目30番地 大阪国際ビル
社

明細書

ラスセラミックスに関する。

1. 発明の名称

生体活性ガラスまたはガラスセラミックス

2. 特許請求の範囲

重量%で下記組成範囲からなることを特徴とする生体活性ガラスまたはガラスセラミックス；

SiO₂ 20~55 重量%

Al₂O₃ 20~40 重量%

Na₂O 5~20 重量%

CaO 2~24 重量%

P₂O₅ 2~20 重量%

MgO 0~1.5 重量%

K₂O 0~5 重量%

TiO₂とZrO₂との合計量 0~5 重量%

フッ素 0~3 重量%

3. 発明の詳細な説明

本発明は、人工移植材として、それ単独でもしくは金属や無機物質と複合化して用いられる生体活性ガラス及びそれに熱処理を加えて得られるガ

従来、特公昭51-8970号公報において生体内で骨と自発的に結合する生体活性を有するガラス及びそれに熱処理を施して結晶化されたガラスセラミックスが知られている。しかしながら、この生体活性ガラスは耐水性及び耐酸性などの化学的耐久性に劣るという欠点がある。例えば、上記公報の第2表に実施例No.12として示された生体活性ガラスに日本光学碍子工業会規格に定められた化学的耐久性のテストを行なったところ、耐水性が2級、耐酸性が4級となり、非常に悪い結果が得られた。

本発明は、この欠点に鑑みてなされたものであり、その目的は上記従来例に比べて化学的耐久性を向上せしめることができる生体活性ガラス及びガラスセラミックスを提供することにある。

そして、上記目的を達成する為に、本発明に係る生体活性ガラス及びガラスセラミックスは重量%で以下の組成範囲からなることを特徴とする。

SiO₂ 20~55 重量%

Al ₂ O ₃	20~40 重量%
Na ₂ O	5~20 重量%
CaO	2~24 重量%
P ₂ O ₅	2~20 重量%
MgO	0~15 重量%
K ₂ O	0~5 重量%
TiO ₂ と ZrO ₂ との合計量	0~5 重量%
フッ素	0~3 重量%

以下、この限界理由について説明する。SiO₂は第2層の骨格を安定化させる為の成分であり、20重量%（以下、単に%と略す）より少ないと乳白色となって失透傾向が増大してしまうし、55%より多いと高温粘性が大きくてガラス化が困難となる。Al₂O₃もガラスの骨格を安定させるための成分であるが、20%より少ないとその作用を充分に得ることができないし、40%より多いと著しく粘性が悪化してガラス化が困難になる。Na₂Oは溶融性を向上させる為の成分であるが、5%より少ないとその作用が充分に得られないし、20%より多いと分相して乳白色化してしまう。CaOは生体活性に寄与するとともに溶融性を向上させる為の成分であるが、2%より少ないと粘性が大きすぎてガラス化が困難となり、24%より多いと分相乳白色化する。P₂O₅も生体活性に寄与するとともにガラスの骨格を形成して安定化させる成分であるが、2%より少ないと乳白色となつて失透傾向が増大し、20%より多いと分相して乳白色となる。

MgOは溶融性を向上させる成分であるが、15%を越えると分相乳白色化する。K₂Oも溶融性を向上させる成分であるが5%を越えると分相乳白色化する。フッ素は熱処理を行う時の核形成剤であるが、3%を越えるとフッ素の生体への刺激が大きくなり好ましくない。尚、フッ素としてはCaF₂などのフッ化物を用いれば良い。TiO₂及びZrO₂は共にガラスを安定化させる為の成分であるが、合計量が5%を越えると溶融性が悪くなり好ましくない。ここで、TiO₂とZrO₂とは合計して5%以下であれば良く、TiO₂のみでもZrO₂のみでも両者の混合でも良い。

上記組成範囲を満足する生体活性ガラスの実施

例の組成をそのガラス転移点、軟化点、膨張係数とともに表1に示す。表1において各成分の含有量は重量%で示され、-はその成分が含まれていないことを示す。

以下余白

実施例	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	29.0	29.0	29.0	29.0	30.0	30.0	40.0	39.0	30.0	25.0	40.0	30.0	55.0	
P ₂ O ₅	11.5	11.5	11.5	11.5	11.5	11.5	11.4	6.9	6.9	11.4	16.0	2.3	16.0	6.9
Al ₂ O ₃	32.0	32.0	31.0	35.0	30.0	31.0	34.0	34.0	34.0	35.0	30.0	35.0	25.0	26.0
Na ₂ O	10.0	10.0	10.0	5.0	5.0	10.0	6.0	10.0	10.0	10.0	10.0	20.0	5.0	10.0
K ₂ O	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MgO	-	-	-	-	-	5.0	10.0	-	3.0	-	-	-	-	-
CaO	13.5	13.5	13.5	13.5	13.5	13.5	13.6	8.1	8.1	13.6	19.0	2.7	24.0	8.1
TiO ₂	-	3.0	2.0	-	-	-	-	-	-	-	-	-	-	-
ZrO ₂	3.0	-	2.0	-	-	-	-	-	-	-	-	-	-	-
CaF ₂	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	-	-
ガラス転移点(℃)	673	652	655	663	653	643	665	668	665	683	653	641	616	685
軟化点(℃)	715	738	755	743	740	745	750	763	763	760	731	730	783	
膨脹係数(×10 ⁻⁷ /℃)	8.1	7.5	8.1	6.6	7.9	7.9	7.0	7.5	7.4	8.3	7.7	6.5	8.1	6.4

表 1

上記各実施例の生体活性ガラスは、それぞれ、ガラスとして400℃になるように各成分を秤量して充分に混合し、白金るつぼに入れて1500~1600℃で5時間熔融した後に、鋳型に流し出して徐冷することによって製造される。表1の各成分はこのようにして製造されたガラスの重量%を示している。このようにして製造されたガラスを4^φ × 15^L mmの丸棒に加工して成犬の大腸骨に骨の長尺方向に対して垂直に埋め込み、8週間後に術部を切開して棒の引抜きを試みたが、極密に骨と結合していて分離不可能であり、生体活性を有することを確認した。

また、表1の生体活性ガラスに800~1000℃の熱処理を施すと、CaF₂を含有しないもの(実施例No.10~14)についてはネフェリン及びラブライドライトが析出され、CaF₂を含有するもの(実施例No.1~9)についてはアバタイトが析出されてガラスセラミックス(結晶化ガラス)が得られる。これらのガラスセラミックスについても上記生体活性ガラスと同じ実験を行い、同様に生体活性を

有することを確認した。

本発明の効果を示す為に、表1の実施例No.6の生体活性ガラスについて前述の化学的耐久性のテストを行なったところ、耐水性、耐酸性とも1級という結果が得られた。すなわち、本発明によれば、充分な生体活性を有しつつ、かつ生体活性化の速度が比較的遅くて長期間の使用に適した生体活性ガラス及びガラスセラミックスを得ることができる。

出願人

ミノルタカメラ株式会社

手 線 補 正 書

昭和59年06月29日

特許庁長官 志賀 学 殿

通

1. 事件の表示

昭和59年特許願第97166号

2. 発明の名称

生体活性ガラスまたはガラスセラミックス

3. 補正をする者

事件との関係 出願人

住所 大阪市東区安土町2丁目30番地 大阪国際ビル

名称 (607) ミノルタカメラ株式会社

代表者 田嶋 英雄

4. 補正命令の日付

自発補正

5. 補正の対象

(1)明細書の「発明の詳細な説明」の欄

Date: October 25, 2004

Declaration

*I, Mariko Uchida, a translator of Fukuyama Sangyo Honyaku Center, Ltd., of 16-3,
2-chome, Nogami-cho, Fukuyama, Japan, do solemnly and sincerely declare that I
understand well both the Japanese and English languages and that the attached
document in English is a full and faithful translation, of the copy of Japanese
Unexamined Patent Publication No. Sho-60-239341 laid open on November 28,
1985.*

Mariko Uchida
Mariko Uchida

Fukuyama Sangyo Honyaku Center, Ltd.

BIOACTIVE GLASS OR BIOACTIVE GLASS CERAMIC

Japanese Unexamined Patent Publication No. Sho-60-239341

Laid-open on: November 28, 1985

Application No. Sho-59-97166

Filed on: May 14, 1984

Inventor: Hiroshi TAKAHASHI and Katunari KTAKENAKA

Applicant: Minolta Camera Co., Ltd.

SPECIFICATION

1. TITLE OF THE INVENTION

BIOACTIVE GLASS OR BIOACTIVE GLASS CERAMIC

2. WHAT IS CLAIMED IS;

A bioactive glass or a bioactive glass ceramic comprising
the following compositions at weight percentage:

SiO₂: 20 to 55 weight %

Al₂O₃: 20 to 40 weight %

Na₂O: 5 to 20 weight %

CaO: 2 to 24 weight %

P₂O₅: 2 to 20 weight %

MgO: 0 to 15 weight %

K₂O: 0 to 5 weight %

Combined quantity of TiO₂ and ZrO₂: 0 to 5 weight %

Fluorine: 0 to 3 weight %

3. DETAILED DESCRIPTION OF THE INVENTION

This invention relates to a bioactive glass for artificial implants used as a single substance or a composite with a metal or an inorganic substance and also relates to a bioactive glass ceramic prepared by heat treatment of the bioactive glass.

Some conventional implants are those described in Japanese Patent Application No. Sho-51-8970, or bioactive glasses spontaneously bonding with bones in the body and glass ceramics crystallized by heat treatment of the bioactive glasses. However, such bioactive glasses have disadvantages or inferior chemical endurance such as low water resistance and low acid resistance. For example, the bioactive glass listed as sample No. 12 in Table 2 of the above Japanese Patent Application No. Sho-51-8970 was tested for the chemical endurance, according to the procedures set by the Japanese Optical Glass Industrial Standards, to yield very poor results, namely, second grade of water resistance and fourth grade of acid resistance.

This invention has been made in view of improving these disadvantages, aiming at providing a bioactive glass and a bioactive glass ceramic capable of improving chemical endurance, as compared with the above example.

In addition, the invention relates to a bioactive glass and

the bioactive glass ceramic comprising the following compositions at weight percentage.

SiO_2 : 20 to 55 weight %

Al_2O_3 : 20 to 40 weight %

Na_2O : 5 to 20 weight %

CaO : 2 to 24 weigh t%

P_2O_5 : 2 to 20 weigh t%

MgO : 0 to 15 weight %

K_2O : 0 to 5 weight %

Combined quantity of TiO_2 and ZrO_2 : 0 to 5 weight %

Fluorine: 0 to 3 weight %

Reasons for restricting the compositions will be explained as follows. SiO_2 is a composition for stabilizing the structure of the second layer (II), and a content of below 20 weight % (hereinafter abbreviated as %) would result in opalescence and an increased tendency of devitrification, whereas a content of above 55% would result in a greater viscosity at high temperatures and a subsequent difficulty in vitrification. Al_2O_3 is also a composition for stabilizing the structure of glass, and a content of below 20% would result in an insufficient performance whereas a content of above 40% would result in a markedly deteriorated viscosity and a subsequent difficulty in vitrification. Na_2O is a composition

for improving meltability, and a content of below 5% would result in an insufficient performance whereas a content of above 20% would result in phase splitting and opalescence. CaO is a composition for contributing to bioactivity and improving meltability, and a content of below 2% would result in an excessively increased viscosity and a subsequent difficulty in vitrification whereas a content of above 24% would result in phase splitting and opalescence. P₂O₅ is a composition for contributing to the bioactivity and forming the structure of glass to attain stabilization and a content of below 2% would result in opalescence and an increased tendency of devitrification, whereas a content of above 20% would result in phase splitting and opalescence.

MgO is a composition for improving meltability, and a content exceeding 15% would result in phase splitting and opalescence. K₂O is a composition for improving meltability, and a content exceeding 5% would result in phase splitting and opalescence. Fluorine is a core-forming agent for heat treatment and a content exceeding 3% would result in a greater stimulation to the body, which is not favorable. Fluorine includes fluorides such as CaF₂. TiO₂ and ZrO₂ are compositions for stabilizing glass, and a combined content of these exceeding 5% would result in a poor melting property, which is not favorable. In this

instance, a favorable combined content of TiO_2 and ZrO_2 is 5% or less. TiO_2 or ZrO_2 may be used solely or in combination.

Table 1 shows the compositions of the bioactive glass example meeting a range of the above compositions, together with the glass transition point, softening point and expansion coefficient. In this table, contents of all the compositions are expressed in weight % and a mark of - indicates that the composition concerned is not contained.

Blank space

Example No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	29.0	29.0	29.0	29.0	29.0	30.0	30.0	40.0	39.0	30.0	25.0	40.0	30.0	55.0
Al ₂ O ₃	11.5	11.5	11.5	11.5	11.5	11.4	6.9	6.9	11.4	16.0	2.3	16.0	6.9	
Al ₂ O ₃	32.0	32.0	31.0	35.0	30.0	34.0	34.0	34.0	34.0	35.0	30.0	35.0	25.0	20.0
Na ₂ O	10.0	10.0	10.0	5.0	5.0	10.0	6.0	10.0	10.0	10.0	10.0	20.0	5.0	10.0
K ₂ O	-	-	-	-	-	-	1.0	-	-	-	-	-	-	-
MgO	-	-	-	5.0	10.0	-	3.0	-	-	-	-	-	-	-
CaO	13.5	13.5	13.5	13.5	13.5	13.5	13.6	8.1	8.1	13.6	19.0	2.7	24.0	8.1
TiO ₂	-	3.0	2.0	-	-	-	-	-	-	-	-	-	-	-
ZrO ₂	3.0	-	2.0	-	-	-	-	-	-	-	-	-	-	-
CaF ₂	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	-	-	-	-	-	-
Glass transition point (°C)	673	652	665	663	653	643	665	668	665	683	653	641	646	685
Softening point (°C)	775	738	755	755	743	740	745	780	763	760	731	730	783	
Expansion coefficient ($\times 10^{-7}/^{\circ}\text{C}$)	81	75	83	66	79	79	70	75	74	83	77	85	81	64

Table 1

The above bioactive glass examples were prepared by the following steps, namely, individual compositions were weighed so as to give 400g glass, well mixed, melted at 1500 to 1600°C for 5 hours in a platinum crucible, then cast into molds and the molded articles were taken out and cooled gradually. Table 1 enlists the individual compositions at weight % for the thus prepared glasses. These glasses were processed into a round bar ($4^{\Phi} \times 15^1$ mm) which was implanted longitudinally into the thigh bone of an adult dog. The implanted bar was attempted to be removed by incision 8 weeks after surgery, but it closely bonded with the bone and could not be detached, from which the bioactivity was confirmed.

When the bioactive glasses enlisted in Table 1 were heat-treated at 800 to 1000°C, those free of CaF₂ (Example No.10 to 14) exhibited precipitation of nefeline and labradorite, whereas those containing CaF₂ (Example No.1 to 9) exhibited precipitation of apatite to obtain glass ceramics (crystalline glasses). These glass ceramics were tested in the same way as in the above bioactive glass, from which the bioactivity was also confirmed.

In order to demonstrate the effect of the invention, the bioactive glass (Example No.6) enlisted in Table 1 was tested for chemical endurance in the same way as previously to obtain

results, which were the first grade of water resistance and also the first grade of acid resistance. In other words, the present invention is able to provide a bioactive glass or a bioactive glass ceramic capable of retaining a sufficient bioactivity which is also appropriate for a prolonged use, with relatively slow acquisition of bioactivity.

Applicant: MINOLTACAMERA Co., Ltd.

AMENDMENT

June 29, 1984

To: Mr. Manabu Shiga
Commissioner of the Patent Office

1. Indication of the case

Patent application No. 97166 filed in 1984

2. Title of the invention

Bioactive glass or bioactive glass ceramic

3. Person to make an amendment

Relation with the case: applicant

Address: Osaka Kokusai building, 30, 2-chome Azuchi-cho,
Higashi-ku, Osaka,

Company name (607): Minolta Camera Co., Ltd.

Representative: Hideo Tajima

4. Date of amendment order

Voluntary amendment

5. Object of amendment

(1) Column of the specification, "Detailed description of the invention"

6. Contents of amendment

(1) "the second layer (II)" on the 10th line, page 3, in the specification shall be deleted.

(2) "a relatively slow acquisition of the bioactivity" on the 6th line, page 8, in the specification shall be deleted.

Applicant: Minolta Camera Co., Ltd.