CSE 321a: Computer Organization (I) Third Year, Computer & Systems Engineering

Solution to Assignment #2

Two otherwise identical memory systems, MS₁ and MS₂, have slightly different cache ...

1. Show the address format for each of the two memory systems MS₁ and MS₂.

 $s + w = log_2 16K = 14$ For **MS**₁: $w = log_2 (128/8) = 4$ $r = log_2 8 = 3$ Tag (s-r)Line (r) Word (w) Format: [7 bits] [3 bits] [4 bits] For MS₂: $w = log_2 (64/8) = 3$ $d = log_2(8/2) = 2$ Word (w) Tag (s-d)Set (d) Format: [9 bits] [2 bits] [3 bits]

2. Fill up the following table according to the read and write operations ...

	Iteration	1 st							$2^{ m nd}$						
	Instruction	1 st	2 nd	3 rd		4 th		5 th	1 st	2 nd	3 rd		4 th		5 th
	Fetch/Execute (F/E)	F	F	F	Е	F	Е	F	F	F	F	Е	F	Е	F
	Read/Write (R/W)	R	R	R	W	R	R	R	R	R	R	W	R	R	R
	Address (Hexadecimal)	2DB0	2DB8	2DC0	3FB0	2DC8	3FC0	2DD0	2DB0	2DB8	2DC0	3FB0	2DC8	3FC0	2DD0
MS_1	Line (Hexadecimal)	3	3	4	3	4	4	5	3	3	4	3	4	4	5
	Tag (Hexadecimal)	5B	5B	5B	7F	5B	7F	5B	5B	5B	5B	7F	5B	7F	5B
	<u>H</u> it/ <u>M</u> iss (H/M)	M	Н	M	M	Н	M	M	Н	Н	M	M	Н	M	Н
	Allocate line? (Y/N)	Y	N	Y	N	N	Y	Y	N	N	Y	N	N	Y	N
MS_2	Set (Hexadecimal)	2	3	0	2	1	0	2	2	3	0	2	1	0	2
	Tag (Hexadecimal)	16D	16D	16E	1FD	16E	1FE	16E	16D	16D	16E	1FD	16E	1FE	16E
	<u>H</u> it/ <u>M</u> iss (H/M)	M	M	M	M	M	M	M	M	Н	Н	M	Н	Н	M
	Write back? (Y/N)	N	N	N	N	N	N	N	Y	N	N	N	N	N	N

3. Which of the two memory systems would definitely have smaller average access time?

 MS_1 and MS_2 have the same hit ratio in steady state ==> H_1 = $H_2 \approx 4/7$ MS_1 cache has smaller associativity ==> MS_1 hit time (T_{c1}) may be **less** than MS_2 hit time (T_{c2}) MS_2 cache has smaller size ==> MS_1 hit time (T_{c1}) may be **greater** than MS_2 hit time (T_{c2}) Therefore, based on the given information, it will not be possible to decide which of the two memory systems MS_1 and MS_2 would definitely have a smaller hit time! Since the average access time of MS_1 (T_{av1}) = T_{c1} + (1- H_1) T_M and the average access time of MS_2 (T_{av2}) = T_{c2} + (1- H_2) T_M . Then it will not be possible to say for sure which of the two memory systems MS_1 and MS_2 has a smaller average access time!!

4. Calculate the access time of the cache used in MS₁ ...

```
Average access time of MS_1 (T_{av1}) = 72 ns Memory access time (T_m) = 140 ns Cache access time (T_{c1}) is unknown Hit ratio (H_1) = number of hits / number of accesses \approx 4/7 T_{av1} = T_{c1} + (1 - H_1) * T_m \Rightarrow 72 = T_{c1} + (1 - 4/7) * 140 \Rightarrow T_{c1} = 12 ns
```

5. Would it possible to use an L2 cache ... to reduce the average access time of MS1 ...

```
L2 cache access time (T_{c2}) = 56 \text{ ns}

Hit ratio of L2 cache (H_2) is unknown

New average access time of MS_1 (T_{av1}') = 0.5 * T_{av1} = 0.5 * 72 \text{ ns} = 36 \text{ ns}

T_{av1}' = T_{c1} + (1 - H_1) * (T_{c2} + (1 - H_2) * T_m)

\Rightarrow 36 = 12 + (1 - 4/7) * (56 + (1 - H_2) * 140)

\Rightarrow H_2 = 1

\Rightarrow To achieve the target reduction: L2 cache must have a perfect hit ratio!!

\Rightarrow This is theoretically possible but practically impossible!!!!
```