Prime vs Random Sets

Sebastien Plaasch Maxime Rubio Lucas Villiere

9 avril 2020

Résumé

Resume de notre projet..

Table des matières

Introduction		4
1	Creation d'ensembles aléatoires suivant la distribution de $\pi(x)$ 1.0.1 Ensembles aléatoires	5
2	Ensembles aleatoires et conjonctures	8
\mathbf{C}	onclusion	9

Introduction

Ici on fait l'introduction

1 Creation d'ensembles aléatoires suivant la distribution de $\pi(x)$

Soient $E_n := \{k \in N^* \mid k \le n\}$ l'ensemble des entiers inférieurs ou égaux à n, $P_n := \{k \in E_n \mid k \in$ est premier} l'ensemble des nombres premiers inférieurs ou égaux à n, et la fonction $\pi(n) := \#P_n$, le nombres de premiers inferieurs ou égaux à n.

On a vu que la fonction $\text{Li}(x) = \int_2^{\infty} \frac{dt}{\log t}$ donne une bonne approximation de $\pi(n)$. Cette fonction peut être approximée par la somme de Riemann de pas contant = 1:

$$S(\frac{1}{\log x}) = \sum_{k=0}^{n} \frac{1}{\log(2+k)} = \frac{1}{\log 2} + \sum_{k=3}^{n} \frac{1}{\log k}$$
 (1)

La fonction $\frac{1}{\log x}$ est une fonction continue, décroissante et positive sur l'interval $[2, \infty[$. L'erreur entre Li(n) et la fonction en escalier ci-dessus est donc bornée.

$$\left| S(\frac{1}{\log x}) - Li(n) \right| \le \left| \sum_{k=2}^{n} \frac{1}{\log(k+1)} - \frac{1}{\log k} \right| = \frac{1}{\log(2)} - \frac{1}{\log(n+1)} < \frac{1}{\log 2} < 2$$

1.0.1 Ensembles aléatoires

Nous allons alors générer k ensembles aléatoires $R_{k_n} \subset E_n$ de sorte que :

$$\forall i \in E_n, P(i \in R_{k_n}) = \begin{cases} 0 & \text{si } i = 1\\ 1 & \text{si } i = 2\\ \frac{1}{\log n} & \text{si } i \ge 3 \end{cases}$$

Il est à noter deux cas particuliers:

- Le nombre 1 est exclu. En effet, $\frac{1}{\log 1}$ n'est pas défini. Par définition, 1 n'est pas un nombre
- Le nombre 2 est inclu par défaut. En effet, $P(2 \in R_{k_n}) = \frac{1}{\log 2} > 1$. De plus, le nombre 2 est par définition, un nombre premier.

Nous allons aussi introduire la fonction $\sigma_k(n) := \#R_{k_n}$. Cette fonction mesure la taille de l'ensemble aléatoire.

 $\sigma_k(n)$ est donc une valeur aléatoire strictement inférieure à n dont l'espérance est donnée par la formule suivante:

$$E[\sigma_k(n)] = 0 + 1 + \frac{1}{\log 3} + \dots + \frac{1}{\log n} = 1 + \sum_{k=3}^n \frac{1}{\log k}$$
 (2)

On observe alors que l'erreur entre l'espérance de $\sigma_k(n)$ et la somme de Riemann (1) est constante, égale à $\frac{1}{\log 2} - 1 < 1$.

Les ensembles aléatoires générés de cette manière suivront donc une distribution similaire a Li(x), et donc à $\pi(x)$. (voir figures 1 et 2)

FIGURE 1 – Graphes des fonctions π , Li and σ . On observe que Li et σ sont superposées.

FIGURE 2 – graphes des fonctions $\sigma_k (1 \le k \le 25)$ et π

2 Ensembles aleatoires et conjonctures

Then it's gonna be like this!

Conclusion

Ici on peut mettre la conclusion de notre raport.