Yash Sanghvi

□ +1 765-409-8824 • ☑ ysanghvi@purdue.edu Homepage: sanghviyashiitb.github.io

Research Interests

Computational Imaging, Inverse Problems, Signal Processing, Compressive Sensing, Machine Learning

Education

Purdue University

Aug.'19 - Present

Graduate Research Assistant *Advisor*: Prof. Stanley Chan

Indian Institute of Technology Bombay

Jul.'13 - Jul.'18

CGPA: 9.12

Thesis Title: "Application of Wavelets in Inverse Scattering"

Dual Degree (B.Tech. + M. Tech.) in Electrical Engineering

Advisor: Prof. Vikram M. Gadre

Academic Achievements

- Recipient of Ross Fellowship from School of Electrical and Computer Engineering, Purdue University
- Awarded Certificate of Appreciation for commendable performance of T.A. duty in the undergraduate course Network Theory, held in Autumn Semester
- Awarded Undergraduate Research Award [URA-01] for project titled 'Chirp Signal Parametrization using Particle Swarm Optimization'

Publications

- o Yash Sanghvi, Hrishitosh Bisht, VM Gadre, SV Kulkarni, "Iteratively reweighted $\ell_1 \ell_2$ norm minimization using wavelets in inverse scattering", Journal of the Optical Society of America
- Yash Sanghvi, Yaswanth Kalepu, and Uday Khankhoje, "Embedding Deep Learning in Inverse Scattering Problems", IEEE Transactions on Computational Imaging
- Yaswanth Kalepu, Yash Sanghvi, and Uday Khankhoje, "Reconstructing dispersive scatterers with minimal frequency data",d IEEE Geoscience and Remote Sensing Letters

Selected Work and Research Experience

o Embedding Deep Learning in Inverse Scattering | Project Scientist

Guide: Prof. Uday Khankhoje

Sep.'18-Present

Developing a deep learning based framework to solve the electromagnetic inverse scattering problem, building up on the existing iterative solutions and aimed at addressing the issue of imaging strong scatterers.

Wavelets in Inverse Scattering | Master's Thesis

Guide: Prof. V.M. Gadre May'17 - May'18

- Formulated iteratively reweighted variation of the joint ℓ_1 - ℓ_2 regularization Born iterative method to obtain improved dielectric profile reconstructions.
- Developed a non-linear constrained optimization framework to solve inverse scattering problem.
 The local minima encountered are circumvented by a penalty function based approach to imposing physical constraints.
- o Real Time Beat Tracker | IEEE Signal Processing Cup

Guide: Prof. V. Rajbabu

Oct.'16 - Dec.'16

Formulated a novel real-time beat tracking algorithm with ability to account for time-varying tempo and implemented on a Raspberry Pi; achieved 55.13% accuracy on the test dataset

• Texas Instruments, Bangalore | Summer Intern

Time-of-Flight Camera Team

May'16 - Jul.'16

- Developed novel metrology system to extract dimensions of objects from ToF images using classical computer vision based methods. The metrology system was integrated into *Voxel Viewer*, the in-house software for depth image visualization and camera-to-PC interface.
- Formulated a novel calibration procedure for low resolution depth camera $(60 \times 80 \text{ and } 240 \times 320)$ which simultaneously estimated the camera parameters (optical center and focal length) and per-pixel phase offset.
- Design Engineer | IIT Bombay Racing

Battery Management Subsystem

Mar.'15 – Apr.'16

- Designed and assembled 389V battery from lithium ion cells, along with auxiliary management system for voltage & temperature monitoring of cells
- Designed an integrated PCB responsible for interfacing battery and motor controllers which included several smaller components such as pre-charge discharge circuits, energy monitoring

Teaching

o Introduction to Machine Learning | Teaching Assistant

Instructor: Prof. Amit Sethi

Jan.'18 - Apr.'18

Network Theory | Teaching Assistant

Instructor: Prof. V.M. Gadre

Jun.'17 - Nov.'17

- Awarded Certificate of Appreciation as recognition for commendable work as TA
- Fundamentals of Wavelets | Teaching Assistant

Instructor: Prof. V.M. Gadre

Jan.'17 - Apr.'17

Technical Skills

• Languages: C++, Python, MATLAB, LATEX, Octave

- o Packages: Numpy, Scipy, PyTorch, Tensorflow, OpenCV, OpenCL
- o Software / Hardware: LTSpice, Eagle, Quartus, GNURadio, Arduino, ATMega AVR,