Q₅: **Reconstruction from practical data.** Given the noisy data $m = Af + \varepsilon$, how to approximate f in a noise-robust fashion?

3.5 The SVD for matrices

In practice the continuum measurement model (1.1) of the form $\mathbf{m} = \mathcal{A} f + \varepsilon$ needs to be approximated by a discrete model of the form $\mathbf{m} = A\mathbf{f} + \varepsilon$, where A is a matrix, $\mathbf{f} \in \mathbb{R}^n$, and $\mathbf{m} \in \mathbb{R}^k$. Let us now discuss a tool that allows explicit analysis of Hadamard's conditions in this finite-dimensional setting, namely, *singular value decomposition (SVD)* of A.

We know from matrix algebra that any matrix $A \in \mathbb{R}^{k \times n}$ can be written in the form

$$A = UDV^T, (3.12)$$

where $U \in \mathbb{R}^{k \times k}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, that is,

$$U^T U = U U^T = I$$
, $V^T V = V V^T = I$,

and $D \in \mathbb{R}^{k \times n}$ is a diagonal matrix. The rigt-hand side of (3.12) is called the SVD of matrix A, and the diagonal elements d_j are the *singular values* of A. The properties of d_j , and the columns u_i of U, and the columns V_i of V correspond to those of the SVE.

In the case k = n the matrix D is square-shaped: $D = \text{diag}(d_1, \dots, d_k)$. If k > n, then

$$D = \begin{bmatrix} \operatorname{diag}(d_{1}, \dots, d_{n}) \\ \mathbf{0}_{(k-n) \times n} \end{bmatrix} = \begin{bmatrix} d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & d_{n} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix},$$
(3.13)

and in the case k < n the matrix D takes the form

$$D = [\operatorname{diag}(d_1, \dots, d_k), \mathbf{0}_{k \times (n-k)}]$$

$$= \begin{bmatrix} d_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & d_2 & \vdots & \vdots & & \vdots \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & \cdots & d_k & 0 & \cdots & 0 \end{bmatrix}.$$
(3.14)

The diagonal elements d_i are nonnegative and in decreasing order:

$$d_1 \ge d_2 \ge \dots \ge d_{\min(k,n)} \ge 0. \tag{3.15}$$

Note that some or all of the d_i can be equal to zero.

Recall the definitions of the following linear subspaces related to the matrix A:

$$\operatorname{Ker}(A) = \{ \mathbf{f} \in \mathbb{R}^n : A\mathbf{f} = 0 \},$$

 $\operatorname{Range}(A) = \{ \mathbf{m} \in \mathbb{R}^k : \text{there exists } \mathbf{f} \in \mathbb{R}^n \text{ such that } A\mathbf{f} = \mathbf{m} \},$
 $\operatorname{Coker}(A) = (\operatorname{Range}(A))^{\perp} \subset \mathbb{R}^k.$

See Figure 3.3 for a diagram illustrating these concepts.

Figure 3.3. This diagram illustrates various linear subspaces related to a matrix mapping \mathbb{R}^n to \mathbb{R}^k . The two thick vertical lines represent the linear spaces \mathbb{R}^n and \mathbb{R}^k ; in this schematic picture we have n=7 and k=6. Furthermore, $\dim(\operatorname{Ker}(A))=3$ and $\dim(\operatorname{Range}(A))=4$ and $\dim(\operatorname{Coker}(A))=2$. Note that the four-dimensional orthogonal complement of $\operatorname{Ker}(A)$ in \mathbb{R}^n is mapped in a bijective manner to $\operatorname{Range}(A)$. The points $\mathbf{f}_0 \in \operatorname{Ker}(A)$ and $\mathbf{m}_0 \in \operatorname{Coker}(A)$ are used in the text.

Failure of Hadamard's existence and uniqueness conditions can now be detected from the matrix D. If k > n, then $\dim(\operatorname{Range}(A)) < k$ and we can choose a nonzero $\mathbf{m}_0 \in \operatorname{Coker}(A)$ as shown in Figure 3.3. Even in the case $\varepsilon = 0$ we have problems since there does not exist any $\mathbf{f} \in \mathbb{R}^n$ satisfying $A\mathbf{f} = \mathbf{m}_0$, and consequently the existence condition H_1 fails since the output $A^{-1}\mathbf{m}_0$ is not defined for the input \mathbf{m}_0 . In case of nonzero random noise the situation is even worse since even though $A\mathbf{f} \in \operatorname{Range}(A)$, it might happen that $A\mathbf{f} + \varepsilon \notin \operatorname{Range}(A)$. If k < n, then $\dim(\operatorname{Ker}(A)) > 0$ and we can choose a nonzero $\mathbf{f}_0 \in \operatorname{Ker}(A)$ as shown in Figure 3.3. Then even in the case $\varepsilon = 0$ we have a problem of defining $A^{-1}\mathbf{m}$ uniquely since both $A^{-1}\mathbf{m}$ and $A^{-1}\mathbf{m} + \mathbf{f}_0$ satisfy $A(A^{-1}\mathbf{m}) = \mathbf{m} = A(A^{-1}\mathbf{m} + \mathbf{f}_0)$. Thus the uniqueness condition H_2 fails unless we specify an explicit way of dealing with the nullspace of A. Note that if $d_{\min(k,n)} = 0$, then both conditions H_1 and H_2 fail.

The above problems with existence and uniqueness are quite clear since they are related to integer-valued dimensions. In contrast, ill-posedness related to the continuity condition H_3 is more tricky in our finite-dimensional context. Consider the case n = k so A is a square matrix, and assume that A is invertible. In that case we can write

$$A^{-1}\mathbf{m} = A^{-1}(A\mathbf{f} + \varepsilon) = \mathbf{f} + A^{-1}\varepsilon, \tag{3.16}$$

where the error $A^{-1}\varepsilon$ can be bounded by

$$||A^{-1}\varepsilon|| \le ||A^{-1}|| ||\varepsilon||.$$

Now if $\|\varepsilon\|$ is small and $\|A^{-1}\|$ has reasonable size, then the error $A^{-1}\varepsilon$ is small. However, if $\|A^{-1}\|$ is large, then the error $A^{-1}\varepsilon$ can be huge even when ε is small. This is the kind of amplification of noise we see in Figures 2.5, 2.9, and 2.19.

Note that if $\varepsilon = 0$ in (3.16), then we do have $A^{-1}\mathbf{m} = \mathbf{f}$ even if $||A^{-1}||$ is large. However, in practice the measurement data always has some noise, and even computer simulated data is corrupted with roundoff errors. Those inevitable perturbations prevent using $A^{-1}\mathbf{m}$ as a reconstruction method for an ill-posed problem.

To define ill-posedness related to the continuity condition H_3 rigorously, we must consider the relative sizes of the singular values. Consider the case n = k and $d_n > 0$, when we do not have the above problems with existence or uniqueness. It seems that nothing is wrong since we can invert the matrix A as

$$A^{-1} = V D^{-1} U^T, \qquad D^{-1} = \operatorname{diag}\left(\frac{1}{d_1}, \dots, \frac{1}{d_k}\right),$$

and define $\mathcal{R}(\mathbf{m}) = A^{-1}\mathbf{m}$ for any $\mathbf{m} \in \mathbb{R}^k$. The problem comes from the *condition number*

$$Cond(A) := \frac{d_1}{d_k} \tag{3.17}$$

being large. Namely, if d_1 is several orders of magnitude greater than d_k , then numerical inversion of A becomes difficult since the diagonal inverse matrix D^{-1} contains floating point numbers of very different sizes. This in turn leads to uncontrollable amplification of truncation errors.

Strictly mathematically speaking, though, A is an invertible matrix even in the case of large condition number. For a rigorous definition, we must return to the continuum problem approximated by the matrix model. Suppose that we model the continuum measurement by a sequence of matrices A_k having size $k \times k$ for $k = k_0, k_0 + 1, k_0 + 2, \ldots$ so that the approximation to the forward problem becomes better as k grows. Then we say that condition H_3 fails if

$$\lim_{k \to \infty} \operatorname{Cond}(A_k) = \infty. \tag{3.18}$$

Thus, the ill-posedness cannot be rigorously detected from one approximation matrix A_k but only from the sequence $\{A_k\}_{k=k_0}^{\infty}$. Theorem 3.3 tells us further that the ill-posedness of the problem is not evident from a single approximation matrix A_k to the operator \mathcal{A} , but only from a sequence of approximations.

3.6 SVD for the guiding examples

We start with the one-dimensional convolution example introduced in Section 2.1. We compute the singular values of measurement matrices for the two resolutions k = n = 64 and k = n = 128. See Figure 3.4 for a logarithmic plot of the singular values. The singular values decrease very quickly towards zero but nevertheless stay positive; this is a sign of ill-posedness.

Next we consider the heat propagation model discussed in Section 2.2. Singular values of the matrix A defined by (3.6) for T = 0.1 and T = 0.4 are shown in Figure 3.5. The distribution of the singular values does not change significantly with Δx , but does have some dependence on the final time T. It is an exercise to compute the condition number of A.

Finally, Figure 3.6 shows singular values of a measurement matrix related to the X-ray tomography problem. The matrix is the one constructed in Section 2.3.5 for the resolution 50×50 and with 50 projection directions.