PQC Function Evaluation Weeks 1-3

David Amorim

01/07/2024 - 19/07/2024

1/10

Table of Contents

Background

- 2 Approach: a QCNN
 - Convolutional Layers
 - Input Layers
 - Summary: QCNN Structure

2/10

David Amorim PQC Function Evaluation 2024

Background

 Haves 2023¹ presents a scheme to encode a complex vector $\mathbf{h} = {\tilde{A}_i e^{i\Psi(j)} | 0 \le j < N}$ as the state

$$|h\rangle = \frac{1}{|\tilde{A}|} \sum_{j=0}^{2^n-1} \tilde{A}(j) e^{i\Psi(j)} |j\rangle,$$
 (1)

using $n = \lceil \log_2 N \rceil$ qubits

• This requires operators \hat{U}_{Δ} and \hat{U}_{W} such that

$$\hat{U}_A |0\rangle^{\otimes n} = \frac{1}{|\tilde{A}|} \sum_{j=0}^{2^n - 1} \tilde{A}(j) |j\rangle, \qquad (2)$$

$$\hat{U}_{\Psi} |j\rangle = e^{i\Psi(j)} |j\rangle \tag{3}$$

David Amorim PQC Function Evaluation 3/10

https://arxiv.org/pdf/2306.11073

Background

• \hat{U}_{Ψ} is constructed via an operator \hat{Q}_{Ψ} that performs function evaluation in an ancilla register:

$$\hat{Q}_{\Psi} |j\rangle |0\rangle_{a}^{\otimes m} = |j\rangle |\Psi'(j)\rangle_{a}, \qquad (4)$$

with $\Psi'(j) \equiv \Psi(j)/2\pi$

• Currently, \hat{Q}_{Ψ} is implemented using gate-intensive linear piecewise functions (LPF)

David Amorim PQC Function Evaluation 2024 4 / 10

Background

Aim

Implement \hat{Q}_{Ψ} in a gate-efficient way using a parametrised quantum circuit (PQC)

Remark

The *n*-qubit register containing the $|j\rangle$ and the *m*-qubit register containing the $|\Psi'(j)\rangle$ will be referred to as the input register and target register, respectively.

Approach: a QCNN

- A quantum convolutional neural network (QCNN) is used to tackle the problem
- A QCNN is a parametrised quantum circuit involving multiple layers
- Two types of network layers are implemented:
 - Convolutional layers (CL) involve multi-qubit entanglement gates
 - Input layers (IL)² involve controlled single-qubit operations on target qubits
- Input qubits only appear as controls throughout the QCNN

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

6 / 10

Convolutional Layers (CLs)

- Each CL involves the cascaded application of a two-qubit operator on the target register
- A general two-qubit operator involves 15 parameters
- To reduce the parameter space, the three-parameter gate

$$\mathcal{N}(\alpha, \beta, \gamma) = \exp\left(i\left[\alpha X \otimes X + \beta Y \otimes Y + \gamma Z \otimes Z\right]\right) \tag{5}$$

is applied, at the cost of restricting the search space

- This can be decomposed³ into 3 CX, 3 R_z , and 2 R_y gates
- A two-parameter real version, $\mathcal{N}_{\mathbb{R}}(\lambda,\mu)$, can be obtained by removing the R_z

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくで

7 / 10

David Amorim PQC Function Evaluation 2024

³https://arxiv.org/pdf/quant-ph/0308006

Convolutional Layers (CLs)

- Two types of convolutional layers are implemented:
 - Neighbour-to-neighbour / linear CLs: the \mathcal{N} (or $\mathcal{N}_{\mathbb{R}}$) gate is applied to neighbouring target qubits
 - All-to-all /quadratic CLs: the \mathcal{N} (or $\mathcal{N}_{\mathbb{R}}$) gate is applied to all combinations of target qubits
- The \mathcal{N} -gate cost of neighbour-to-neighbour (NN) layers is $\mathcal{O}(m)$ while that of all-to-all (AA) layers is $\mathcal{O}(m^2)$
- Currently, the QCNN uses alternating linear and quadratic CLs

8/10

David Amorim PQC Function Evaluation 2024

Input Layers (ILs)

- ILs, replacing pooling layers, feed information about the input register into the target register
- An IL involves a sequence of controlled generic single-qubit rotations (CU3 gates) on the target qubits, with input qubits as controls
- For an IL producing states with real amplitudes, the CU3 gates are replaced with CR_v gates
- Each input qubit controls precisely one $CU3/CR_y$ operation, resulting in an $\mathcal{O}(n)$ gate cost (no CX gates!)
- ILs are inserted after every second convolutional layer, alternating between control states 0 and 1

Summary: QCNN Structure

David Amorim PQC Function Evaluation 2024 10 / 10

Training the QCNN

ADD SUBSECTIONS: SEQUENTIAL, SUPERPOSITION, ASIDE: AMPLITUDES (maybe put the aside as a footnote for superposition)... add smth about challenges ??