Assignment Peression bed forecastelp

https://tutorcs.com

Ka-fu WONG

WeChairersity of the res

CONTENTS

1.	Paper	3
2.	Purpose	4
$A_{\bar{i}}^3$	Model for forecasting in Dainal trude oil Trices am	Help
5.	Data	12
6.	In-sample fit	16
7.	Out of stips Foretal toperson. COM	20
8.	Conclusion	23

1. Paper

Chen, Shiu-sheng (2013): "Forecasting Crude Oil Price Movements with

Oil-Sensitive Stocks," Economic Inquiry (forthcoming). ASSIGNMENT Project Exam Help

陳旭昇 [Shiu-Sheng Chen]

Professor of Economics, National Taiwan University Ph.D. in Economics, University of Wisconsin-Madison

Macro and Monetary Economics International Finance **Energy Economics**

2. Purpose

- To find a model that will beat "no change" forecast.
- Regression based models that incorporate oil-sensitive stock price ASSIGNET MATERIAL TO COME TO A STOCK PRICE TO A STOCK PRIC

https://tutorcs.com

3. Model for forecasting nominal crude oil prices

Run the regression using the first R observations

Assignment Project Exam Help

Forecast of \hat{y}_{R+h}

$$\hat{y}_{t+h} = \frac{\hat{op}_{t+h} - op_t}{op_t} = \hat{\alpha} + \hat{\beta}x_t, \quad t = R$$
Assignment Project Exam Help

$$\widehat{op}_{t+h} = (1 + \widehat{\alpha} + \widehat{\beta}x_t) \times op_t, \quad t = R$$

https://tutorcs.com

Repeat by adding one additional observations to the regression sample. So we will have forecast form sample with the following observations in the gression sample:

Assignment Project Exam Help

$$e_{t+h}(M^{SP}) = op_{t+h} - \widehat{op}_{t+h}, \quad t = R, R+1, ..., T-h$$

Compute the formative root of the property of

$$e_{t+h}(\mathbf{M}^{NC}) = op_{t+h} - op_t, \quad t = R, R+1, ..., T-h$$

Model for forecasting nominal crude oil prices

Compute the MSPE

$$Assignment Project Exam Help$$

$$MSPE(M^{SP}) = \underbrace{\sum_{t=R}^{T-h} e_{t+h}^{2}(M^{SP})}_{T-h-R+1}, Help$$

$$MSPE(M^{NC}) = \underbrace{\sum_{t=R}^{T-h} e_{t+h}^{2}(M^{NC})}_{T-h-R+1}$$

Compute the ratio of MSPEs as $\frac{CS}{MSPE(M^{NC})}$

4. Model for forecasting REAL crude oil prices

Run the regression using the first R observations

Assignment Project Exam Help

$$y_{t+h} = \frac{rop_{t+h} - rop_t}{\text{ttps://tutorcs.pon}}, x_t = \frac{rsp_t - rsp_{t-1}}{csp_{t-1}}, rop_t = \frac{op_t}{cp_{t-1}}$$

$$\underbrace{ \mathbf{\hat{y}_{t+h}}}_{\text{Forecast of } rop_{t+h}} \underbrace{ \underbrace{\hat{rop}_{t+h} - rop_{t}}_{\text{}} = \hat{\alpha} + \hat{\beta}x_{t}, \quad t = R$$

$$\widehat{rop}_{R+h} = (1 + \hat{\alpha} + \hat{\beta}x_t) \times rop_t, \quad t = R$$

Repeat by adding one additional observations to the regression sample. So we will have forecast form sample with the following observations in the gression sample:

$$e_{t+h}(RM^{SP}) = rop_{t+h} - \widehat{rop}_{t+h}, \quad t = R, R+1, ..., T-h$$

Compute the forest error to the contract of the contract $e_{t+h}(RM^{NC}) = rop_{t+h} - rop_t, \quad t = R, R+1, ..., T-h$

$$e_{t+h}(RM^{NC}) = rop_{t+h} - rop_t, \quad t = R, R+1, ..., T-h$$

Compute the MSPE

$$Assignment Project Exam Help
$$MSPE(RM^{SP}) = \frac{\sum_{t=R}^{T-h} e_{t+h}^{2}(RM^{SP})}{T-h}, \\ MSPE(RM^{NC}) = \frac{\sum_{t=R}^{T-h} e_{t+h}^{2}(RM^{SP})}{T-h-R+1}$$$$

Compute the ratio of MSPEs as $\frac{1}{MSPE(RM^{NC})}$

5. Data

• Frequency of data: monthly

Sample period: 1984:M10 to 2012:M8

A STREET REPORT 1981:M1 to 2012:M8

Out-of-sample forecast period: 1991:M1 to 2012:M8

https://tutorcs.com

Table 2: Data Description

	Variables	Code	Source
	Baseline (1984M10–2012M8)		
Assi	isment Proje	11177AA2 ZEM17 127 AA2 ZE	am Help
	Bubai	46676AAZZF	IFS
	World Average	00176AAZZF	IFS
	AMEX Oil Index	^XOI	Yahoo Finance
	1&P600	GSPC 400	Yahoo Finance
	Preson Srice Indetutore	Shr fight 111	FRED
	MSCI World Sector Index (1995M1-2012M8)		
	(1) Energy	M1DWE1\$	Datastream
	11.7) Energy 14 hipment & Services	M3DWES\$	Datastream
	V(V2)(Gi) & Gas	M 31 DW C GS	Datastream
	(2) Transportation	M2DWTR\$	Datastream
	(2.1) Air Freight & Logistics	M3DWAF\$	Datastream
	(2.2) Airlines	M3DWAL\$	Datastream
	(2.3) Marine	M3DWMA\$	Datastream
	(2.4) Road & Rail	M3DWRR\$	Datastream

Figure 1: Crude Oil Prices.

Data

Figure 2: AMEX Oil Index and S&P 500 Index

6. In-sample fit

Table 3 (a): In-sample Predictability of Nominal Oil Prices

Assignment $\Pr_{\hat{\beta}}^{y_{t+h} = \alpha + \beta x_t + u_{t+h}} = 2E, R-h$ Help

Baseline (1984:M10–2012:M8)									
AMEX Qil Index	9.43	3.95	0.00	0.48	3.95	0.00			
1 Let obs://tui	6.61	9.07	• 995	0.05	0.14	0.89			
MSCI (1995:M1–2012:M8)									
Energy	0.28	2.51	0.01	0.36	3.17	0.00			
Evergy Equip & Services	0.22	2.82	0.00	0.27	3.28	0.00			
Exercise Equip of Services In at.	6.28	230		0.34	3.03	0.00			
Transportation	0.16	0.95	0.34	0.25	1.49	0.14			
Air Freight & Logistics	0.05	0.46	0.65	0.09	0.80	0.43			
Airlines	0.10	1.03	0.30	0.19	1.99	0.05			
Marine	0.20	1.69	0.09	0.23	1.92	0.05			
Road & Rail	0.03	0.19	0.85	0.10	0.63	0.53			

In-sample fit

AMEX Oil Index

Table 3 (b): In-sample Predictability of Nominal Oil Prices $y_{t+h}=\alpha+\beta x_t+u_{t+h}$ t=2,...,R-h

Assignment Projetcyval Examp-lifelp

0.51 4.53

0.00

0.47

0.00

S&P 500	0.03	0.15	0.88	0.02	0.11	0.92
Mattps://tut	tor	CC	CO	m		
Energy DS.//tu	6.34	3.25	0.00	0.32	2.99	0.00
Energy Equip. & Services	0.25	3.33	0.00	0.25	3.17	0.00
Oil & Gas	0.33	3.11	0.00	0.31	2.85	0.00
ra is ortation	0.22	1.39	0.16	0.20	1.28	0.20
Vir Fresh & Logicals	0.09	081	. (0.41)	0.08	0.69	0.49
Airlines	0.17	1.91	0.06	0.15	1.63	0.10
Marine	0.22	1.93	0.05	0.22	1.87	0.06
Road & Rail	0.07	0.47	0.64	0.06	0.42	0.67

Https://tul	tor	CS	CO	m		
Energy	0.26	2.41	0.02	0.34	3.15	0.00
Energy Equip. & Services	0.21	2.79	0.01	0.26	3.29	0.00
Oil & Gas	0.24	2.23	0.03	0.33	3.00	0.00
raisvortation has at:	0.14	0.89	0.37	0.24	1.50	0.13
Air Freigh & Logistis	0.04	0.44	0.00	0.09	0.79	0.43
Airlines	0.09	1.00	0.32	0.18	2.01	0.04
Marine	0.20	1.71	0.09	0.23	1.96	0.05
Road & Rail	0.01	0.06	0.95	0.09	0.58	0.56

Table 4 (b): In-sample Predictability of Real Oil Prices
$$y_{t+h} = \alpha + \beta x_t + u_{t+h}$$
 $t = 2, ..., R-h$

Assignment Projectale xamp-vIII elp

Daseine (1764.W110-2012.W16)		_				
AMEX Oil Index	0.49	4.64	0.00	0.45	4.29	0.00
S&P 500	0.02	0.11	0.91	0.01	0.08	0.94
MS (1950) S201/ WU	tor	00	CO	m		
Energy DS.//tu	0.32	3.22	0.00	0.30	2.95	0.00
Energy Equip. & Services	0.24	3.32	0.00	0.24	3.17	0.00
Oil & Gas	0.31	3.07	0.00	0.29	2.79	0.01
Transportation	0.20	1.37	0.17	0.19	1.25	0.21
Ary rechte Logs as t	0.09	0.80		007	0.66	0.51
Airlines	0.16	1.91	0.06	0.14	1.63	0.10
Marine	0.22	1.96	0.05	0.21	1.90	0.06
Road & Rail	0.05	0.38	0.70	0.05	0.33	0.74

7. Out-of-sample Forecast Comparison

Table 5 (a): Out-of-sample forecast comparsion (Nominal Oil Prices)

Assignment $\underset{MSPE(M^{NC})}{\operatorname{Project}}$ Exam Help

https://tutorcs.com

	WTI		B	Brent		Dubai		erage
	MSPE	Success	MSPE	Success	MSPE	Success	MSPE	Success
Horizon	Ritio	Raio		Ratio	Ratio	Ratio	Ratio	Ratio
h = 1	0.78	0.63	0.76	0.62	0.72	0.61	0.74	0.63
3	0.95	0.57	0.94	0.57	0.92	0.60	0.94	0.57
6	1.02	0.54	1.01	0.56	1.00	0.55	1.01	0.55
9	1.04	0.53	1.01	0.55	1.01	0.56	1.02	0.54
12	1.04	0.53	0.99	0.54	0.98	0.58	1.00	0.56

The success ratio is constructed using the proportion of forecasts that correctly predict the sign of the change in the oil price.

Assignment Project Exam Help

https://tutorcs.com

Table 5 (b): Out-of-sample forecast comparsion (Real Oil Prices)

Assignment Project Exam Help

_	WTI		Brent		Dubai		Average	
N	ISPE	Success	MSPE	Success	MSPE	Success	MSPE	Success
Horizo1	Rati	S Ratio/1	Ratio (14a10 S	Ratio	Ratio	Ratio	Ratio
h = 1	0.80	0.62	0.79	0.65	0.74	0.63	0.77	0.63
3 (0.95	0.54	0.94	0.53	0.93	0.55	0.94	0.52
41	1701	9.52	1.00	0.51	0.99	0.51	1.00	0.52
9	1.0	<u>ال</u> الحارف	1.01	28.51 S & U	tor	\mathbb{C}_{8}	1.01	0.57
12	1.03	0.58	0.99	0.58	0.98	0.57	1.00	0.57

The success ratio is constructed using the proportion of forecasts that correctly predict the sign of the change in the oil price.

8. Conclusion

• Using the NYSE Arca (AMEX) oil index as a predictor, the one-month-ahead forecasts for nominal crude oil prices reduce the mean S Squard prediction terror by tween 22% (Square West Texas naturally and 28% (for the Dubai oil price).

 Moreover, the directional forecast based the AMEX oil index is significantly betwee than a 50:50 coin toss.

WeChat: cstutorcs

// 23