Evaluating the effects of sex

Geisinger

chromosome dosage on autism spectrum disorder risk

Alexander S.F. Berry¹; Brenda M. Finucane¹; Scott M. Myers¹; John Seibert¹; David H. Ledbetter¹; Christa Lese Martin¹; Matthew T. Oetjens¹

¹Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA

Background

- Autism spectrum disorder (ASD) is 3.8 times more prevalent among males than females, however an explanatory mechanism remains elusive.¹
- Individuals with an atypical number of X and/or Y chromosomes, a genetic condition called sex chromosome aneuploidy (SCA), can be a useful model to examine the relationship between sex chromosome dosage and human phenotypes.
- The prevalence of ASD reported among the four most common SCAs (45,X, 47,XXX, 47,XXY) were aggregated from clinical studies and summarized into a model by Green et al.²

• In this study, we genetically identified individuals with SCA and tested this model of how sex chromosome dosage modulates ASD risk and contributes to the sex difference in ASD prevalence.

Methods

Identify sex chromosome aneuploidy from genotype array

	,	
	Cases Count (Prevalence)	Controls Count (Prevalence)
47,XXY	37 (1 in 529)	88 (1 in 675)
47,XYY	41 (1 in 478)	53 (1 in 1,121)
47,XXX	8 (1 in 687)	79 (1 in 1,176)
45,X	12 (1 in 458)	32 (1 in 2,904)
46,XY	19,512	59,278
46,XX	5,475	92,801
	j	

Combine into case-control cohort

Calculate Odds ratios for having an ASD diagnosis for pairs of sex chromosome complements using logistic regression

Logistic regression analyses were weighted by a sex-normalization coefficient to account for sex biases in ascertainment of controls.

Results

Association between sex chromosome dosage and ASD. Forest plot shows the odds ratios of having an ASD diagnosis for one sex chromosome complement relative to another.

Summary of Results:

- 1. The Y chromosome increases ASD risk among males
- 2. No evidence of a dosage sensitive factor on the X chromosome protective of ASD
- 3. Haploinsufficiency of the X chromosome substantially increases ASD risk.

Conclusions and Future Directions

- By confirming the Green model in a large genetic cohort, this study bridges findings from decades of observational studies of SCA among clinical cohorts with emerging studies of SCA in large scale genetic biobanks.
- Our study provides a framework for using SCA to understand the role of X and Y chromosome dosage on phenotypes with a sex bias.
- Plan to use this framework to study the association between sex chromosome dosage and other phenotypes with sex biases.

Acknowledgements

Funding/Support: This study was supported by grants R01MH074090 (Gene Dosage) and U01MH119705 (G2MH) from the National Institute of Mental Health

References

- 1. Maenner, M. J. (2023). Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8
 Years Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. *Morbidity and Mortality Weekly Report. Surveillance Summaries*
- 2. Green, T., Flash, S., & Reiss, A. L. (2019). Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. *Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 44*(1), 9–21.