

PROBLEMAS PROPUESTOS. MOVIMIENTO EN UNA DIMENSIÓN

COMPRENSIÓN

Dadas las siguientes afirmaciones indique sí es verdadero o falso		
1	La distancia recorrida por una partícula siempre es igual a su desplazamiento.	
2	La velocidad media de una partícula es siempre un numero positivo	
3	Sí la velocidad media de una partícula en un determinado intervalo es cero la partícula está en reposo durante el intervalo	
4	Sí la velocidad instantánea de una partícula es cero equivale a decir que esa partícula esta en reposo	
5	Sí la aceleración media de una partícula en un determinado intervalo de tiempo es cero entonces su velocidad permanece constante durante el intervalo.	

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

- 1 Con respecto a la velocidad durante el movimiento, se puede afirmar que
 - Aumenta desde A hasta B
 - B Disminuye desde A hasta B
 - C Disminuye desde B hasta C
 - D Su modulo permanece constante
- 2 Con respecto al movimiento del carrito se puede afirmar que en el intervalo de tiempo:
 - A y B frena B C y D acelera C D y E acelera D D y E frena

SP. 2

Un automovilista viaja hacia el norte desde su casa (origen del sistema de referencia) durante 30 minutos con rapidez constante de 80km/h, luego se detiene durante 30 minutos en un autoservicio. Después continúa su viaje en la misma dirección y sentido, recorriendo 60 Km en 1 hora con un movimiento rectilíneo uniforme.

Al final del recorrido de 60 km se da cuenta que dejo algo olvidado durante su parada, se detiene y se devuelve al autoservicio con aceleración constante de 500 Km/h² hasta alcanzar una rapidez de 100 Km/h y luego se mantiene a velocidad constante.

2 La gráfica velocidad tiempo que describe el movimiento del automovilista en el retorno es:

APLICACIÓN

Dadas las siguientes afirmaciones indique sí es verdadero o falso

1	Una partícula cuyo movimiento viene dado por $\vec{x} = C \times t^2$, siendo C una constante, se mueve a velocidad constante	
2	Sí en un momento dado la aceleración instantánea de la partícula es cero, su velocidad es constante	
3	Una partícula en caída libre en la proximidad de la superficie terrestre se mueve con aceleración constante hacia el centro de la tierra	

Dadas las siguientes situaciones, seleccione la opción

que usted considere correcta

- 45 m
- 60 m
- 30 m
- El desplazamiento realizado por el carrito entre los 6 y los 10 s es aproximadamente de
 - 45 m
- 60 m
- 30 m
- 0 m
- 3 La aceleración del carro en el instante t=7s es de (en m/s²):
 - 7,5
- -7,5
- 15
- -15

Pág. 4 de 11

Dadas las siguientes situaciones, seleccione la opción

que usted considere correcta

- carrito en el instante t=3s es de (en m):
 - 30
- 2 Y en el instante t=7s, la posición del carrito es de (en m): 86.25 30 11.25

SP. 2 Un automovilista viaja hacia el norte desde su casa (origen del sistema de referencia) durante

30 minutos con rapidez constante de 80km/h, luego se detiene durante 30 minutos en un autoservicio. Después continúa su viaje en la misma dirección y sentido, recorriendo 60 Km en 1 hora con un movimiento rectilíneo uniforme.

- La distancia total recorrida por el vehículo, es en Km:
 - 120 140 100
- La velocidad media del automovilista durante todo su viaje, es en km/h: 50 20

Al final del recorrido de 60 km se da cuenta que dejo algo olvidado durante su parada, se detiene y se devuelve al autoservicio con aceleración constante de 500 Km/h² hasta alcanzar una rapidez de 100 Km/h y luego se mantiene a velocidad constante

le Matemática y Física Pág. 5 de 11

La distancia que recorre el automovilista mientras acelera, es en Km:

A 2

B 12

C) 15

(D) 10

El tiempo que tarda en llegar al autoservicio en el retorno, es en horas:

A 0.70

B 0.20

(C) 0.50

1.67

Pág. 6 de 11

PROBLEMAS GENERALES

Problema Nº 1

En una competencia de formula 1 del año 2002. M. Schumacher toma la recta y observa que tiene a J. P. Montoya a 50 metros delante de él. El movimiento de los dos corredores se muestra en la gráfica de velocidad en función del tiempo que se presenta a continuación.

Determinar:

- 1. El valor de la aceleración media experimentada por Schumacher en el intervalo [0; 10]
- 2. El valor de la aceleración de Schumacher en el instante de tiempo t=2.5s
- 3. La velocidad de Montoya en el instante t= 6.5s
- 4. La velocidad media experimentada por Montoya entre los [0; 5] s
- 5. La posición de Schumacher a los 5 s
- 6. En el instante de tiempo t=5s ¿Qué distancia separa a los dos pilotos?
- 7. La posición de Montoya cuando Schumacher esta en la posición x = 180 m
- 8. En que instante logra Schumacher pasar a Montoya.

Problema N° 2

Dos Jugadores de béisbol SS (campo corto) y CF (jardinero central) observan que la pelota va de flight entre campo corto y jardín central. En ese instante el jugador SS arranca del reposo en dirección de CF y en el mismo instante el CF (que esta a una distancia de 20 m de SS) arranca hacia el SS en la misma dirección, pero con sentido contrario. Ambos jugadores se mueven en línea recta, tal y como se muestra en la figura.

- 1. ¿Cuál es la aceleración media experimentada por CF en el intervalo de $0 \le t \le 3$ s?
- **2.** En el instante t = 2 s ¿Cuál es la distancia que separa a los dos jugadores?
- **3.** ¿Cuál es la velocidad media experimentado por SS en el intervalo de $0 \le t \le 3$ s?
- 4. ¿Si justo en el momento en que SS atrapa la pelota, el CF choca con él. En que instante el SS atrapo la pelota?

Pág. 7 de 11

Problema N° 3

En un semáforo se encuentra parado un automóvil esperando el cambio de luz. Repentinamente pasa un camión a velocidad constante de $20\,\text{m/s}$, tal y como se muestra en la figura. El semáforo cambia la luz $10\,\text{s}$ más tarde, y el automóvil tarda $2\,\text{s}$ más en iniciar su movimiento con una aceleración de $6\,\text{m/s}^2$ durante un tiempo de $10\,\text{s}$. A partir de ese momento el auto se desplaza con velocidad constante durante $18\,\text{s}$.

 Para la situación planteada se puede afirmar que el gráfico de v(t) que describe el movimiento del Camión y del Automóvil es:

a.

b.

C.

d.

- 2. La aceleración media experimentada por el automóvil entre los 15 y 25 s, es:
- 3. Cuando el camión esta en la posición $\vec{x}_c = 440 \, \text{m}$, el automóvil se encuentra en la posición:
- 4. Y el instante de tiempo en el cual se encuentran el automóvil y el camión es:

Problema N° 4

Los gráficos x=X(t) y V=V(t), muestra la función itinerario del carro A y la función velocidad del carro B que se desplazan en línea recta uno hacia el otro. En el instante t=0 s, el carro A se encuentra a 20 m a la izquierda del origen y el carro B a 28 m a la derecha del origen, como se muestra en el esquema.

GRAFICA X=X(t) PARA EL CARRO A

GRAFICA V=V(t) PARA EL CARRO B

Determinar:

- 1. La velocidad media del carro B, en el intervalo de tiempo (6 ≤t≤12) s (en m/s)
- 2. La distancia que separa los carros A y B en el instante t = 12 s (en m)
- La función posición o itinerario de los carros para el intervalo de tiempo (12 ≤t≤16)s

le Matemática y Física Pág. 8 de 11

4. La función velocidad del carro A para el intervalo de tiempo (16 ≤t≤20)s;

Problema N° 5

Los carros A y B se encuentran en el instante t = 0 s ocupando las posiciones $X_{A=}$ - 400 (m) y X_{B} = 200 (m), sobre la misma recta. La gráfica v = v(t) nos muestra la función velocidad de los dos carros.

- 1. ¿Cuál es la aceleración experimentada por el carro B en el instante t = 8 s (en m/s²)?
- 2. ¿Cuál es la velocidad media del carro B, en el intervalo de tiempo $(8 \le t \le 16)$ s (en m/s)?
- 3. ¿Cuál es la distancia que separa los carros A y B en el instante t = 10 s (en m)?
- 4. ¿Cuál es el valor del tiempo en que se encuentran los carros (en s)?

Problema N° 6

Juan y Hernán se desplazan en sus carros a lo largo de una línea recta. El carro de Hernán (**B**) en el instante t = 0s se encuentra a 50 m a la izquierda del punto "**0**", mientras que el carro de Juan (**A**) se encuentra a 365 m a la derecha del mismo punto "**0**".

La grafica v = v(t) describe el movimiento de ambos carros.

Determinar:

- 1. La velocidad media del carro **A** en el intervalo de t = 0s a t = 7s es (en m/s)
- **2.** En el instante t = 3s ¿Cuál es la aceleración del carro **B** (en m/s²)?
- 3. La posición del carro A en el instante t = 9s es (en m)
- 4. El instante de tiempo en el cual se encuentran los carros es (en s)

Problema Nº 7

Dos profesores de la UNET que pertenecen al Núcleo de Física I, entrenando para los Juegos de Profesores 2005 asisten a una competencia de fogueo en caminata, en donde el profesor Juan Carlo inicia la carrera en la $x_0 = 0m$ y la profesora Irma en ese mismo instante t = 0s se encuentra en $x_0 = 100m$, como se ve en la figura. El movimiento de los dos profesores se describe en la gráfica de velocidad en función del tiempo que se presenta a continuación.

- 1. Para el instante t =150 s ¿Cuál es la posición de Juan Carlo y de Irma (en m)?
- 2. ¿Cuál es la función posición para Juan Carlo, en el intervalo de tiempo 250 ≤ t ≤ 300 s?
- 3. ¿Cuál es la velocidad de Irma a los 450 s (en m/s)?
- 4. ¿Cuál es la velocidad media de Juan Carlo en el intervalo de 0 a 250 s?
- 5. ¿Cuál es el primer instante en que Juan Carlo logra alcanzar a Irma?

Problema N° 8

Un cohete se lanza verticalmente hacia arriba con $\vec{v}_0 = 80 \hat{j} \, m/s$. El cohete acelera hacia arriba a razón de $4 \hat{j} \, m/s^2$ hasta alcanzar una altura de 1000 m. en este punto los motores fallan y el cohete entra en caída libre con aceleración de gravedad igual a $\vec{r}_0 = 0.9 \hat{j} \, m/s^2$. Patarminare

- $\vec{g} = -9.8 \hat{j} m/s^2$. Determinar:
- El tiempo en que el cohete alcanza los 1000m.
- 2. El tiempo en alcanzar el cohete la altura máxima, desde que comenzó su movimiento.
- 3. La altura máxima alcanzada.
- 4. La velocidad del cohete en el preciso momento de chocar en tierra.
- 5. El tiempo empleado por el cohete desde el momento de lanzamiento hasta chocar en tierra.

Problema N° 9

El tripulante de un globo aerostático, esta subiendo verticalmente con velocidad constante de magnitud de $5\,m/s$. El tripulante suelta un saco de arena cuando el globo esta a 40 m sobre el suelo. Utilizar $g=9,8\,m/s^2$. Calcular:

- ¿Cuál es la posición, velocidad y aceleración del saco a los 0,5 s y a los 2 s después de ser lanzado?
- 2. ¿Cuánto tardara el saco en chocar contra el suelo?
- 3. ¿Cuál será la magnitud de la velocidad al chocar contra el suelo?
- 4. ¿Qué altura máxima alcanzara el saco respecto del suelo?

Pág. 10 de 11

Problema N° 10 Gráfico v = v(t)

El gráfico v=v (t), señala la velocidad de dos partículas A y B en movimiento rectilíneo. En el instante t=0 s, la posición inicial de A es $x_{0A}=-80m$, con velocidad $\vec{v}_{0A}=40\hat{i}~m/s$. La posición de B es $x_{0B}=380m$, con velocidad $\vec{v}_{0B}=-20\hat{i}~m/s$. Determinar:

- 1. Desplazamiento de A y B de t = 0 s a t = 8 s.
- 2. Posición de A y B en el instante t = 12 s.
- 3. Aceleración media de A y B de t = 4 s a t = 12 s.
- 4. Aceleración de A y B en t = 14 s.
- 5. ¿En que instante se encuentra A con B?

Problema N° 11

Dos ciclistas A y B se desplazan a lo largo de una avenida recta. El ciclista A en el instante t=0 s esta a 200 m a la derecha del punto "O" (origen) parte del reposo y experimenta una aceleración constante durante 20 s hasta alcanzar una rapidez de $15\hat{i}$ m/s. A partir de ese momento mantiene su rapidez constante. El ciclista B en t=0 s se encuentra a 50 m a la izquierda del origen y se mueve con velocidad constante de $25\hat{i}$ m/s durante 25 s.

s se encuentra a 50 m a la izquierda del origen y se mueve con velocidad constante de 25i m/s durante 25 s. Finalizado este tiempo el ciclista B empieza a frenar hasta que se detiene en el instante t = 40 s.

Determinar:

- 1. ¿Dónde se encontraba el ciclista B respecto al origen en el instante t = 20 s.?
- 2. ¿En qué tiempo el ciclista B da alcance al ciclista A?
- 3. ¿A que distancia del origen se produce el encuentro?
- 4. ¿Cuál es la velocidad media del ciclista B en el intervalo $(5 \le t \le 40)s$?

Problema N° 12

Se dispara desde el suelo en forma vertical un cohete y un mortero en forma simultanea. La información del movimiento de los dos cuerpos se da en la gráfica v=v(t). Utilice gravedad $g=10\,m/s^2$.

Determinar:

- 1. En el instante t = 2 s ¿Cuál es la altura del cohete y del mortero?
- 2. ¿Cuál es la altura máxima alcanzada por el cohete y por el mortero?
- 3. ¿Cuál es el tiempo que tarda cada uno en llegar el suelo?
- 4. ¿Cuál es la velocidad que tiene cada uno al momento de llegar al suelo?
- 5. ¿Cuál es el tiempo en que el cohete y el mortero se encuentran?
- 6. ¿Qué velocidad llevan en el momento del encuentro?

Pág. 11 de 11