Lösungen: Diffusion

1.) Independent Cascade Model: Beschreibung der Ausbreitung

Gegeben ein Netzwerk von Personen. Zusätzlich sind die benötigten Werte zur Berechnung der Ausbreitung im ICM in einer Tabelle abgebildet. Der Knoten 1 beginnt, die Information im Netzwerk zu verbreiten. Beschreiben Sie, welche Knoten in welcher Reihenfolge die Information übernehmen. Die Nachbars-Knoten werden immer aufsteigend abgearbeitet (z.B: Falls der Knoten 2 die Information übernommen hat von der 1, dann wird nacheinander 3,4,5 und 6 geprüft. Übernehmen mehrere Knoten die Information, werden auch diese im nächsten Schritt auch in aufsteigender Reihenfolge abgearbeitet).

Abbildung 1: Netzwerk für ICM mit Knoten- und Kantenbezeichnungen

Kante	p-Wert	r-Wert	Kante	p-Wert	r-Wert
1	0.8	0.2	7	0.9	0.2
2	0.2	0.6	8	0.4	0.3
3	0.6	0.5	9	0.7	0.4
4	0.4	0.6	10	0.2	0.4
5	0.7	0.3	11	0.8	0.9
6	0.1	0.7			

Die Informationen verbreiten sich in der folgenden Knoten-Reihenfolge:

1, 2, 4, 5, 8, 7, 6,

© Michael Henninger 1

2.) Independent Cascade Model: Maximale Ausbreitung

Berechnen Sie im untenstehenden Netzwerk (zur Vereinfachung bidirektional), welche k=2 Knoten initial aktiviert werden müssen, um eine möglichst maximale Ausbreitung zu erreichen. Die Aktivierungsfunktion wurde einfach gehalten: Die Kantenbezeichnung gibt an, ob die Information über die entsprechende Kante ausgebreitet wird (j= ja, n=nein). Sollten bei einem Schritt mehrere Knoten die gleiche maximale Ausbreitung erreichen, nehmen Sie den Knoten mit der tiefsten Zahl als Knoten-Label in *S* auf.

 $S = \{4, 2\}$

© Michael Henninger 2