МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №6 по дисциплине «ИНФОРМАТИКА»

по теме: РАБОТА С СИСТЕМОЙ КОМПЬЮТЕРНОЙ ВЁРСТКИ \LaTeX

Вариант №81

Выполнил: Студент группы Р3117

Павленко И. Д.

Проверил:

Марухленко Д. С.

С. Овчинников, И. Шарыгин

Метод бесконечного спуска

Какое иррациональное число самое «старое»? Несомненно, $\sqrt{2}$. Мы не знаем точно, кто первый доказал иррациональность этого числа, однако мы убеждены, что сделано было это примерно так.

Доказательство первое

Допустим, что число $\sqrt{2}$ рационально. Геометрически это означает, что диагональ квадрата длины с соизмерима с его стороной длины a, то есть найдутся отрезок длины d и целые числа m и n такие, что c=dm, a=dn. Отметим m-1 точек на диагонали АС и n-1 точек на стороне DC, делящие эти отрезки на кусочки длины d. Докажем, что треугольники АСD и КЕС подобны. Отложим на |AC| отрезок AK: |AK| = |AD|; на |DC| - отрезок DE: |DE| = |KC|. Точки K и E попадут в отмеченные точки (рис 1). Докажем, что треугольники

Рис. 1.

ACD и KEC подобны. Угол C у них общий. Достаточно, значит, проверить равенство $\frac{|KC|}{|EC|} = \frac{|CD|}{|AC|}$.

Заметим, что |KC|=c-a, |EC|=2a-c. Поэтому $\frac{|KC|^2}{|EC|^2}=\frac{c^2+a^2-2ac}{c^2+4a^2-4ac}$. Поскольку $c^2=2a^2$, $\frac{|KC|^2}{|EC|^2}=\frac{3a^2-2ac}{6a^2-4ac}=\frac{1}{2}=\frac{|AD|^2}{|AC|^2}$. Таким образом, $\triangle KEC$, подобный $\triangle ACD$, -

прямоугольный равнобедренный, и мы можем проделать на его сторонах такое же построение, как на сторонах треугольника ACD. Отложим на |EC| Отрезок EK_1 : $|EK_1| = |KC|$; на |KC|- отрезок KE_1 : $|KE_1| = |K_1C|$. точки K_1 и E_1 вновь попадут в точки деления. Треугольник K_1CE , снова окажется прямоугольным равнобедренным. Для него мы тем же способом построим треугольник K_2CE_2 ; эту процедуру можно продолжать без конца. При этом треугольники K_jCE_j , становятся все мельче, но всякий раз точки K_i и E_i , будут попадать в первоначальные точки деления отрезков AC и CD. Но ведь этих точек только конечное число! А треугольников K_iCE_i бесконечно много. Это противоречие и доказывает иррациональ-

Прошли века... Появилось алгебраическое доказательство, пожалуй, более простое.

Доказательство второе

Иррациональность $\sqrt{2}$ означает, что у уравнения $x^2=2y^2$ нет решений в натуральных числах x,y. Допустим, что такие решения есть, и $x=m,\,y=n$ - одно из них.

Из уравнения следует, что m - четное число, $m=2m_1$. Подставляя $m=2m_1$ в уравнение, получаем $n^2=2m_1^2$, то есть $x=n,\ y=m_1$ - тоже решение. Отметим при этом, что $n< m,\ m_1< n$. Теперь видно, что и n - четное число, $n=2n_1$, следовательно, $m_1^2=2n_1^2$. Таким об-