Communication and Protocols

CSC309 Mark Kazakevich

Before we get to web programming...

- We should have a basic idea of how the internet works
 - And what the web is, but we'll get to that later..

 Nothing too detailed, but enough to give some context to what we'll be doing

Let's say we wanted to build a **network** of computers...

- What do we need at the minimum?
 - Computers
 - A method of communication between those computers

Communicating computers

- Computers have to "talk" to each other
- They need a language (set of rules)
 - o Is one enough?
 - Not really...
- We need an efficient multi-step system

Network 4-Layer Model

Application Layer

HTTP, FTP, SSH, SMTP, POP3, ...

Transport Layer

TCP, UDP, ...

Internet Layer

IP

Link Layer

Ethernet, Wifi, ...

TCP/IP: A suite of protocols

Application Layer

HTTP, FTP, SSH, SMTP, POP3

Transport Layer

TCP

Internet Layer

IP

Link Layer

Client-Server

- Client initiates request to server
- Server accepts or rejects connection
- If a connection is established, data can flow until connection terminates

- TCP/IP facilitates connections between client and server over many networks
 - o The internet!

Application Layer

- Application
 Transport
 Internet
 Link
- Provides applications with standardized protocols to exchange data
 - Example: Web browsers need a protocol to get and send data
- Protocols include
 - HTTP, FTP, SSH, SMTP, POP3...

Transport Layer

- Provides host-to-host communication services
 - "Connection-oriented"
 - Sends segments of data from the application layer (packets)
- Transport protocol for TCP/IP is TCP
 - We'll talk more about it later

Other transport protocols include UDP

Internet Layer

 Provides protocols for sending packets across a network or through multiple networks

- The Internet Protocol (IP) handles this in TCP/IP
 - Routes data across networks using IP addresses

IP protocol

- "Connection-less" protocol
 - No prearranged connection required to send data

- IP just sends packets over networks
 - no assurance that they will be delivered
 - no way to find out if they were
 - nothing to let the destination know to expect a packet

IP packets

- Easy to 'spoof' packets
 - Connectionless protocol means you can send around packets that pretend they came from a specific IP address
 - Defense against this can come from higher network layers and network monitoring

Link Layer

- Protocols of the physical link between the nodes of the network
 - Ethernet, WiFi, DSL
- Lowest level
 - TCP/IP can sit on top of any Link layer

Application

Transport

Internet

Link

The Internet

Application Layer

HTTP, FTP, SSH, SMTP, POP3

Transport Layer

Internet Layer

Link Layer

More on TCP

TCP

- Recall: Connection-oriented
 - Needs to have a pre-arranged connection before sending data
 - Should be bi-directional
 - Both client and server should acknowledge when they get data

How do we start a connection using TCP?

3-way Handshake

"Hi! Let's talk"

SYN

"Ok, let's talk."

Server

ACK

Application

Transport

Internet

Link

Client and Server can now send each other data, and must acknowledge to each other when they recieve something

Acknowledgements

- An important part of TCP because...
 - Can check packet is from correct host
 - Losing packets is a real problem

- If no acknowledgment that packet was received...
 - Packet sent again
- TCP is reliable
 - But reacts to losing packets by slowing connection
 - UDP is not reliable, but doesn't react to packet loss

Keep this in mind as we start

Application Layer

HTTP, FTP, SSH, SMTP, POP3

Transport Layer

TCP

Internet Layer

IP

Link Layer

Next Time...

Application Layer

HTTP, FTP, SSH, SMTP, POP3

Transport Layer

TCP

Internet Layer

IP

Link Layer