

Небеска шетња

Тадија поучен примером свог пријатеља Николе и његове успешне обућарске радње, одлучио је да покрене сопствени бизнис у Бакуу. Одлучио је да направи одређени број небодера(зграда) и повеже их небеским стазама.

Тадија је нацртао план зграда и небеских стаза дуж једне стране главне авеније града Баку. Постоји укупно n зграда означених бројевима од 0 до n-1 и m небеских стаза означених бројевима од 0 до m-1. Цели план је нацртан у равни, где су зграде и небеске стазе вертикални и хоризонтални сегменти редом.

Подножје зграде i $(0 \le i \le n-1)$ се налази у тачки (x[i],0), и зграда има висину h[i]. Дакле, то је сегмент који повезује тачке (x[i],0) и (x[i],h[i]).

Небеска стаза j $(0 \le j \le m-1)$ има крајње тачке на зградама под бројевима l[j] и r[j] и има позитивну у-координату y[j]. Дакле, то је сегмент који повезује тачке (x[l[j]],y[j]) и (x[r[j]],y[j]).

Небеска стаза и зграда **се пресецају** ако имају заједничку тачку. Дакле, једна небеска стаза сигурно пресеца две зграде у њене две крајње тачке, а може пресецати и неке друге зграде између њих.

Тадија би желео да пронађе дужину најкраћег могућег пута од подножја зграде s до подножја зграде g, претпостављајући да је могуће ићи само по зградама и дуж небеских стаза, или утврдити да не постоји један такав пут. Имајте на уму да није допуштено ходати по земљи, тј. дуж хоризонталне линије која има y-координату 0.

Могуће је прећи са једне стазе у зграду једино у њиховој тачки пресека и обрнуто из једне зграде на небеску стазу. Ако су крајње тачке две небеске стазе у истој тачки онда је могуће прећи директно са једне небеске стазе на другу.

Ваш задатак је да помогнете Тадији да пронађе жељени најкраћи пут.

Детаљи имплементације

Треба да имплементирате следећу процедуру. Грејдер ће позвати ову процедуру једном за сваки тест пример.

- x и h:низови целих бројева дужине n
- ullet l, r и y: низови целих бројева дужине m
- ullet s и g: два цела броја
- Ова процедура треба да врати дужину најкраћег пута између подножја зграде s и подножја зграде g, ако један такав пут уопште постоји. У супротном, треба да врати -1,

Примери

Пример 1

Посматрајмо следећи позив:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
        [8, 7, 9, 7, 6, 6, 9],
        [0, 0, 0, 2, 2, 3, 4],
        [1, 2, 6, 3, 6, 4, 6],
        [1, 6, 8, 1, 7, 2, 5],
        1, 5)
```

Тачан одговор је 27.

Слика испод одговара Примеру 1:

Пример 2

Тачан одговор је 21.

Ограничења

 $ullet \ s
eq g$

• Никоје две небеске стазе немају заједничку тачку, осим можда у њиховим крајевима.

Подзадаци

```
1. (10 поена) n,m \leq 50
2. (14 поена) Свака небеска стаза пресеца највише 10 зграда.
3. (15 поена) s=0,\,g=n-1, и све зграде су исте висине.
```

4. (18 поена) s = 0, q = n - 1

5. (43 поена) Нема додатних ограничења.

Грејдер

Грејдер учитава улазне податке у следећем формату:

```
• линија 1: n m
• линија 2+i (0\leq i\leq n-1): x[i] h[i]
• линија n+2+j (0\leq j\leq m-1): l[j] r[j] y[j]
• линија n+m+2: s g
```

Грејдер исписује једну линију која садржи вредност враћену позивањем процедуре min_distance.