Baixe o conteúdo completo em PDF

Ferramentas indispensáveis

- Se virando no Linux
- Se virando no Git

Java

- Introdução ao Java
- Orientação a Objetos

Banco de dados

- Começando com o PostgreSQL
- Entendendo migrações de banco de dados
- Hibernate

MVC, HTTP e Spring

- Como funciona o HTTP e a Web
- Introdução ao Spring

Front-end

- HTML
- CSS
- JavaScript
- Thymeleaf
- Bulma

Infraestrutura, Integração e entrega contínua

- Heroku
- Docker
- Circle CI

O Padrão MVC

Introdução ao Spring

O que é:

O Spring é um framework Java criado com o objetivo de facilitar o desenvolvimento de aplicações, oferecendo um conjunto de soluções prontas para serem implementadas na mesma (Algumas das soluções seriam: MVC, Persistencia, Transaction). O Spring utiliza os conceitos de Inversão de Controle e Injeção de Dependências.

Inversão de Controle:

É um padrão de desenvolvimento onde se insere determinado código da aplicação dentro do framework, que ficará responsável pelo controle da chamada dos métodos diferente da programação tradicional, ou seja, não é determinada diretamente pelo programador. Se um dia o nome da classe ou o lugar onde ela está armazenada for alterado, nós apenas alteraríamos um arquivo de configuração, não mexeríamos em uma única linha do código da classe.

Injeção de Dependência:

Nesta solução as dependências entre os módulos não são definidas programaticamente, mas sim pela configuração de uma infraestrutura de software (container) que é responsável por "injetar" em cada componente suas dependências declaradas. A Injeção de dependência se relaciona com o padrão Inversão de controle mas não pode ser considerada um sinônimo deste.

Outros projetos Spring

- Spring MVC: para desenvolvimento de aplicações web (módulo do Spring Framework).
- Spring Security: para inserção de funcionalidades de autenticação e autorização.
- Spring Data: para aplicações que usam novas tecnologias de armazenamento de dados como bancos NoSQL e serviços na nuvem.
- Além de outros. Visite http://spring.io/projects □

Spring Boot

O que é:

O Spring Boot é **opinativo** e **customizável** e por isso seu objetivo é fornecer um conjunto de ferramentas que facilita a criação de aplicativos baseados em Spring autônomos e de produção que você pode "executar". É uma estrutura leve que simplifica a configuração de aplicativos baseados em Spring e facilita a publicação de nossas aplicações. A intenção é ter o seu projeto rodando o mais rápido possível e sem complicação.

Vantagens do Spring Boot:

Em primeiro lugar o Spring Boot é opinativo, ou seja, tem opiniões. É outra forma de dizer que o Spring Boot tem padrões razoáveis; assim, é possível desenvolver um aplicativo rapidamente utilizando esses valores usados com frequência.

Por exemplo, o Tomcat é um contêiner da web muito popular. Por padrão, um aplicativo da web Spring Boot usa um contêiner Tomcat integrado.

Em segundo lugar, ele é customizável, ou seja, uma estrutura opinativa não será muito boa se não puder mudar de opinião. É possível customizar facilmente um aplicativo Spring Boot conforme suas preferências, tanto na configuração inicial quanto posteriormente, no ciclo de desenvolvimento.

Por exemplo, se você prefere o Maven, pode facilmente fazer alterações de **dependência** no seu arquivo **pom** para substituir o valor padrão do Spring Boot.

Por onde iniciar?

Existem várias formas de se criar um projeto com Spring Boot. Você pode fazer "na mão", pode-se usar o Spring Boot pela linha de comando, uma IDE ou utilizar o **Spring Initializr**.

Caso você esteja utilizando o **IntelliJ**, ele fornece uma opção para se criar um projeto utilizando o Spring Initializr.

Anotações

@SpringBootApplication Para quem usa Spring Boot, essa é uma das primeiras que você. Ela engloba a @Component, @ComponentScan e mais uma chamada @EnableAutoConfiguration, que é utilizada pelo Spring Boot para tentar advinhar as configurações necessárias para rodar o seu projeto.

@Controller Usada para classes controladoras que possuem métodos que processam Requests numa aplicação web.Um Controller é responsável tanto por receber requisições como por enviar a resposta ao usuário, algo

@RequestMapping Geralmente utilizada em cima dos métodos de uma classe anotada com
@Controller. Serve para você colocar os endereços da sua aplicação que, quando acessados por algum cliente, deverão ser direcionados para o determinado método.

Exemplo:

Veja como é simples criar um Controller, mas veja que este não possui nenhum "mapping" atrelado a ele. Então criemos uma view (.jsp) chamada "home.jsp" dentro da pasta "/WEB-INF/views" e criaremos o mapping "/home" para exibir a view criada. Veja a Listagem 2.

```
1
      @Controller //Define que minha classe será uma controladora
      public class HomeController {
2
3
          @RequestMapping("/home") //Define a URL que quando for requisitada ira cha
4
5
          public ModelAndView home(){
               //Retorna a view que deve ser chamada, no caso home (home.jsp) aqui o
6
              return new ModelAndView("home");
7
          }
8
9
      }
```

@Repository É associada com classes que isolam o acesso aos dados da sua aplicação. Comumente associada a DAO's.

@Autowired Anotação utilizada para marcar o ponto de injeção na sua classe. Você pode colocar ela sobre atributos ou sobre o seu construtor com argumentos. Marca um construtor, um campo, um método setter ou um método

@ResponseBody Utilizada em métodos anotados com **@**RequestMapping para indicar que o retorno do método deve ser automaticamente escrito na resposta para o cliente.

Exemplo:

```
@Controller
1
      public class HomeController {
2
3
4
          @ResponseBody
          //Essa anotação renderiza a pagina, que no nosso caso, retorna esse texto:
5
6
7
          @RequestMapping("/home")
          public home(){
8
               return "Hello World";
9
10
11
      }
```

Como mostra a imagem:

@Service Associada com classes que representam a ideia do Service do Domain Driven Design. Para ficar menos teórico pense em classes que representam algum fluxo de negócio da sua aplicação. Por exemplo, um fluxo de finalização de compra envolve atualizar manipular o carrinho, enviar email, processar pagamento etc. Este é o típico código que temos dificuldade de saber onde vamos colocar, em geral ele pode ficar num Service.

@Component A annotation básica que indica que uma classe vai ser gerenciada pelo container do Spring. Todas as annotations descritas acima são, na verdade, derivadas de @Component. A ideia é justamente passar mais semântica.

Spring MVC

O Spring MVC é um dos frameworks para desenvolvimento Web mais utilizados hoje em dia. Com ele, temos à nossa disposição uma implementação do padrão MVC em conjunto com os principais recursos do Spring. Ele já tem todas as funcionalidades que precisamos para:

- atender as requisições HTTP;
- delegar responsabilidades de processamento de dados para outros componentes;
- preparar a resposta que precisa ser dada.

É uma excelente implementação do padrão MVC.

MVC é abreviação de Model, View e Controller, e é bacana entender o papel de cada um deles dentro do sistema, então vamos a explicação:

- Acessamos uma URL no browser que envia a requisição HTTP para o servidor que roda a aplicação web com Spring MVC. Perceba que quem recebe a requisição é o controlador do framework, o Spring MVC.
- 2. O controlador do framework irá procurar qual classe é responsável por tratar essa requisição, entregando a ela os dados enviados pelo browser. Essa classe faz o papel do controller.
- 3. O controller passa os dados para o model, que por sua vez executa todas as regras de negócio, como cálculos, validações e acesso ao banco de dados.
- 4. O resultado das operações realizadas pelo model é retornado ao controller.
- 5. O controller retorna o nome da view, junto com os dados que ela precisa para renderizar a página.
- 6. O Framework encontra a view que processa os dados, transformando o resultado em um
- 7. Finalmente, o HTML é retornado ao browser do usuário.

Na prática, o controller é a classe Java com os métodos que tratam essas requisições. Portanto, tem acesso a toda informação relacionada a ela como parâmetros da URL, dados submetidos através de um formulário, cabeçalhos HTTP, etc.

HTML

A estrutura básica de uma página HTML pode ser vista na Listagem 1, na qual podemos ver as principais tags que são necessárias para que o documento seja corretamente interpretado pelos browsers.

Exemplo

Linha 1: A instrução DOCTYPE deve ser sempre a primeira a aparecer em uma página HTML e indica para o browser qual versão da linguagem está sendo usada. Nesse caso, estamos trabalhando com a HTML5, versão na qual a declaração do DOCTYPE é bastante simples, como podemos ver na listagem;

Linhas 2 e 10: Abertura e fechamento da tag html, que delimita o documento. Sendo assim, todas as demais tags da página devem estar nesse espaço;

Linhas 3 e 6: Abertura e fechamento da tag head, que define o cabeçalho do documento. O conteúdo neste espaço não é visível no browser, mas contém instruções sobre seu conteúdo e comportamento. Dentro dessa tag, por exemplo, podem ser inseridas folhas de estilo e scripts;

Linha 4: A tag meta, nesse caso, especifica qual conjunto de caracteres (character set ou charset) será usado para renderizar o texto da página. O UTF-8 contém todos os caracteres dos padrões Unicode e ASCII, sendo, portanto, o mais utilizado em páginas web.

Linha 5: A tag title define o título da página, aquele que aparece na janela/aba do navegador;

Linhas 7 e 9: Abertura e fechamento da tag body, marcando o espaço no qual deve estar contido o conteúdo visual da página. As demais tags que representam texto, botões, etc. devem ser adicionadas nesse intervalo;

Linha 8: Nessa linha podemos observar a sintaxe para adição de comentários em HTML. Esse trecho não é renderizado pelo browser.

Tags do HTML

Um documento HTML é composto por tags, as quais possuem um nome e aparecem entre os sinais < e > , por exemplo, em <html> e <head> . Naquele exemplo também vimos que algumas tags precisam ser abertas e fechadas, como em <body></body> .Nesse caso, a tag de fechamento deve conter a barra / antes do nome. Outras, porém, não precisam ser fechadas, como a tag <meta> . Nesses casos, a adição da barra / no final da própria tag é opcional.

Títulos do HTML

Títulos são normalmente utilizados para identificar páginas e seções, e possuem aparência diferenciada do restante do texto. No HTML há seis níveis de títulos que podem ser utilizados por meio das tags h1, h2, h3, h4, h5 e h6, sendo h1 o maior/mais relevante e h6 o menor/menos relevante.

```
<h1>Título de nível 1</h1>
<h2>Título de nível 2</h2>
<h3>Título de nível 3</h3>
<h4>Título de nível 4</h4>
<h5>Título de nível 5</h5>
<h6>Título de nível 6</h6>
```

Valendo lembrar que essas tags servem apenas para atribuir a importância do título (título, subtítulo, etc) e não apenas para regular o tamanho. O tamanho poderá ser regulado no arquivo do CSS.

O que resultaria em:

Parágrafos no HTML

Parágrafos de texto são gerados na HTML por meio das tags . Esse é um exemplo de tag cuja disposição na tela se dá em forma de bloco, ou seja, um parágrafo é posto sempre abaixo do outro.

Exemplo

Que resultará em:

exemplo2

Imagens no HTML

A inserção de imagens em uma página HTML pode ser feita por meio da tag img, que recebe no atributo src o endereço do arquivo a ser carregado. Além desse, outros dois atributos importantes são o alt, que indica um texto alternativo que será exibido caso o arquivo não possa ser carregado, e title, que indica o texto que aparecerá como tooltip ao passar o mouse sobre a figura.

```
<img src="avatar.png" alt="Texto alternativo" title="Avatar" />
<img src="arquivo_inexistente.jpg" alt="Texto alternativo" title="Outra figura"/>
```

O código a seguir insere uma imagem a partir do arquivo perfil.png, localizado na mesma pasta do arquivo HTML, e uma tag img apontando para um arquivo inexistente. Observe na Figura 3 que enquanto a primeira aparece corretamente, a segunda é exibida com um ícone de erro o texto alternativo que informamos. Note, ainda, que sobre a primeira figura está sendo exibido o tooltip definido no atributo title.

Resultado:

Links no HTML

Links são normalmente utilizados para direcionar o usuário para outras páginas, ou para outras partes da mesma página. Nos dois casos, utilizamos a tag a, que possui o atributo href no qual indicamos o destino daquele link. O seguinte código mostra como adicionar um link para outra página, neste caso, indicada pelo arquivo pagina2.html.

exemplo1

Já o código abaixo mostra como adicionar um link para um elemento na mesma página. Nesse caso, ao clicar no link o browser mudará o foco para o elemento que possui o atributo id igual àquele indicado no href.

exemplo2

Tabelas no HTML

Tabelas são elementos utilizados com frequência para exibir dados de forma organizada em linhas e colunas. No HTML, elas são formadas por três tags básicas: table, para delimitar a tabela; tr, para indicar as linhas; e td para formar as colunas.

Este seria o resultado do código:

Linha 1, Coluna 1 Linha 1, Coluna 2

Linha 2, Coluna 1 Linha 2, Coluna 2

Linha 3, Coluna 1 Linha 3, Coluna 2

Existem ainda outras três tags utilizadas para delimitar, de forma mais organizada, as partes da tabela: thead para o cabeçalho; tbody para o corpo; e tfoot para o rodapé.

Exemplo de tabela mais complexa, utilizando todas as tags:

Observação: por padrão, as tabelas não possuem bordas, isto pode ser adicionado por meio de CSS. Então a tabela ficará assim:

Formulários no HTML

Formulários são normalmente utilizados para integrar a página HTML a algum processamento no lado servidor. Nesses casos, a página envia dados para uma aplicação (Java, PHP, .NET, etc), que os recebe, trata e retorna algum resultado.

No HTML, geralmente usamos a tag form para delimitar a área na qual se encontram os campos a serem preenchidos pelo usuário, a fim de serem enviados para processamento no back-end (enquanto a página HTML é chamada de front-end da aplicação).

A figura mostra um exemplo de formulário com vários tipos de campos para entrada de dados e um botão para submetê-los ao servidor.

Como ficaria no browser:

Formatação de texto As tags de formatação de texto ajudam a destacar trechos da parte escrita da página, seja para fins de SEO ou por requisitos do conteúdo. Formatações como negrito e itálico podem ser aplicadas com facilidade utilizando as várias tags disponíveis para esse fim:

- b e strong para negrito/texto forte;
- i e em para itálico/ênfase;
- small para textos menores que o padrão;
- mark para texto destacado.

```
Texto em negrito com <b>bold</b> e <strong>strong</strong>. Texto em itálico com <i>italics<i> e <em>emphasis</em>. Texto <sup>sobrescrito</sup> e <sub>subscrito</sub>. Texto <ins>inserido</ins> e <del>excluído</del>. Texto <small>pequeno</small> e <mark>destacado</mark>.
```

```
Texto <small>pequeno</small> e <mark>destacado</mark>.
```

Div e Span no HTML

As tags div e span são duas das mais utilizadas no HTML, com objetivos distintos, porém com grande importância para a composição do layout das páginas e formatação do texto.

As divs são normalmente utilizados para representarem containers para outros elementos, agrupando-os visualmente dentro de um bloco que pode conter dimensões e posição definidas. Por padrão, uma div não possui aparência características visuais definidas, isso precisa ser feito via CSS ao atribuir bordas, cores, etc. Sua principal característica, no entanto, é que essa tag representa um elemento do tipo bloco, ou seja, que quando adicionado na página, automaticamente gera uma nova linha no layout (semelhante a um parágrafo), ao invés de ser alocado lateralmente nos demais componentes.

O código a seguir demonstra um uso básico das divs:

```
<input type="text" value="input 1">
<input type="text" value="input 2">
<div><input type="text" value="input 3"></div>
<div><input type="text" value="input 4"></div>
```

Perceba no resultado da imagem que, enquanto os dois primeiros inputs são dispostos lateralmente, os dois últimos aparecem um abaixo do outro, uma vez que estão dentro de divs diferentes.

EexemploResultado

Já a tag span é um elemento do tipo inline, ou seja, quando adicionado na página, ele é inserido lateralmente após os demais componentes, diferente das divs que são elementos do tipo bloco.

Elementos span, por padrão, também não possuem nenhuma característica visual definida, isso precisa ser feito via CSS para destacar ou aplicar uma formatação especial para um certo trecho do texto. Por exemplo, o código abaixo demonstra o uso do span em dois casos. No primeiro, a tag não conta com nenhum atributo adicional; no segundo, adicionamos a ela uma aparência diferenciada via CSS.

O resultado pode ser visto na imagem abaixo e, como esperado, no primeiro caso não conseguimos perceber nenhuma diferença visual devido ao uso do span.

Este é um texto com um trecho em destaque.

Este é um texto com um trecho em destaque

EXERCÍCIOS DE FIXAÇÃO

Baseado no material desta apostila realize cada uma das tarefas a seguir:

Use as imagens em anexo nesta apostila como exemplo para recriar uma página que contenha:

- Título e subtítulo;
- Um parágrafo de texto;
- Uma imagem de sua preferência;
- Crie uma tabela com os seguintes dados:

Nome	E-mail	Idade
João	joao@gmail.com	19
Ana Júlia	anajulia@outlook.com	23
Cláudia	claudia@hotmail.com	29

- Crie um formulário com input para preencher nome e cidade;
- Crie um radio button com opções de gênero;
- Por fim, crie um botão do tipo "submit" no final do formulário.

Para um resultado melhor, poderá consultar a apostila de CSS e utilizar junto aos exercícios de HTML.

CSS

O Cascading Style Sheets (CSS) é uma **"folha de estilo"** e é utilizada para definir a aparência em páginas da internet que adotam para o seu desenvolvimento linguagens de marcação (como XML, HTML e XHTML). O CSS define como serão exibidos os elementos contidos no código de uma página da internet.

Para criar um arquivo .css, basta abrir seu editor preferido e salvar o documento com a extensão .css . Nele basta colocar as regras CSS vinculadas aos elementos do documento HTML.

Importando no HTML

O atributo rel define que o arquivo de destino é uma folha de estilo e href indica o endereço do arquivo .css.

```
1 <head>
2 <meta charset="UTF-8">
3 <title>Exemplo dos elementos apresentados</title>
4 link rel="stylesheet" href="estilo.css">
5 </head>
```

Sintaxe CSS

A sintaxe CSS é formada por três regras fundamentais para definir um estilo:

- · Seletor;
- · Propriedade;
- Valor.

Veja a sintaxe:

```
Seletor {
Propriedade: valor;
}
```

O seletor vincula um elemento do documento HTML a declaração CSS. Declaração CSS é formada pela propriedade e o valor.

A propriedade define uma característica visual para o elemento HTML "selecionado" pelo seletor.

Exemplo: O texto de um parágrafo, marcado com elemento HTML "p", possui uma propriedade de cor denominada "color".

Já o valor define como isto vai ser atribuído à propriedade escolhida.

Exemplo: O valor da propriedade color para o elemento HTML "p" selecionado é "red" (vermelho). Ou seja, o texto do parágrafo terá uma cor vermelha.

Com esta regra qualquer em um documento HTML, após vinculado ao arquivo css, receberá a cor vermelha.

Observação: Uma regra pode ter mais que uma declaração.

```
1  p {
2  font-size: 14px;
3  color: red;
4 }
```

Neste caso, o parágrafo terá a fonte de tamanho 14 pixels e sua cor será vermelha.

Seletor do tipo classe

Este seletor possibilita o uso em mais de um elemento da mesma página. Indicado quando você precisa atribuir algumas propriedades iguais em elementos diferentes. Para construí-lo basta que você crie um nome precedido por um ponto e o chame no elemento HTML.

Exemplo:

No CSS:

```
1    .nome-da-classe {
2     color: blue;
3 }
```

No HTML:

```
1 <title class="nome-da-classe">Document</title>
```

Nestes casos, o título ficará azul e o seletor pode ser usado em outros elementos que você também quer que figuem azuis.

Seletor de atributo:

Este tipo de seletor associa a um atributo utilizado em um elemento HTML.

Código no HTML:

```
1 <input type="submit" value="Enviar">
```

Este é um botão para envio de dados de formulários. Podemos usar o atributo "type" com valor "submit" para estilizar o botão.

Código no CSS:

```
input [ type = "submit" ] {
   font-weight: bold;
}
```

Seletor de tipo de elemento

O seletor "p" que usamos nos exemplos anteriores é um seletor de tipo de elemento. Esta espécie de seletor identifica e vincula um elemento do HTML, basta que para isso coloque o nome do elemento e depois ajuste suas propriedades.

Exemplo:

```
1
      body {
2
           propriedade: valor;
3
      }
4
5
      div {
           propriedade: valor;
6
7
      }
8
9
      p, span, strong {
           propriedade: valor;
10
11
      }
```

Segue abaixo um resumo com as principais propriedades de estilo da linguagem CSS.

- font-family: Define a família da fonte utilizada.
- font-style: Define a propriedades de estilos que podem ser: normal, italic ou oblique.
- font-size: Define o tamanho da fonte.
- line-height: Controla a altura entre as linhas do texto de um paragrafo.
- text-align: Controla o posicionamento horizontal do conteúdo de um elemento. Os valores possíveis são: left, right, center e justify.

- text-decoration: Define um efeito decorativo no texto. Podendo entre eles ser: none (sem decoração); underline (sublinhado), entre outros.
- color: Define a cor de um texto.
- width: Define o comprimento (largura) de um elemento.
- border: Define bordas para um elemento (espessura, cor).
- · height: define a altura de um elemento.
- background: Define as propriedades relacionadas ao fundo de exibição.
- margin: Controla as margens de um elementos. Se forem indicados quatro valores, eles dizem respeito, respectivamente, às margens superior, direita, inferior e esquerda. Se for fornecido apenas um valor, ele é aplicado às quatro margens.
- padding: Controla os espaçamentos de um elemento. Se forem indicados quatro valores, eles dizem respeito, respectivamente, aos espaçamentos superior, direito, inferior e esquerdo. Se for fornecido apenas um valor, ele é aplicado aos quatro espaçamentos.

EXERCÍCIOS DE FIXAÇÃO

Baseado no material desta apostila realize cada uma das tarefas a seguir:

- Quais são os três estilos que o font-style tem?
- Como controlamos os espaçamentos de um elemento?
- Como definimos o posicionamento de um elemento e quais os quatro valores possíveis?
- Como definimos a altura de um elemento?
- · Como definimos o tamanho da fonte?
- · Como definimos a cor de uma texto?
- Como definimos bordas para um elemento?
- Como definimos o comprimento(largura) de um elemento?
- Como controlamos as margens de um elemento?
- O que usamos para definir a fonte?

JavaScript

Para que Serve:

O JavaScript (JS) é uma linguagem de programação utilizada principalmente em páginas web. Com o JS, você pode mostrar mensagens e outras informações interessantes, fazer verificações ou mudar dinamicamente a apresentação visual das páginas, conforme o comportamento que você deseja que sua página (ou aplicação) possua.

Inserindo o código JavaScript na página HTML

Para inserir o código direto na estrutura do HTML, utilizamos as tags e

exemplo:

```
1 <script type="text/javascript">
2 //código JavaScript
3 </script>
```

Inserindo código JavaScript interno no HTML

O código JavaScript também pode ser mantido em um arquivo separado do HTML.

exemplo:

```
<!DOCTYPE html>
1
2
      <html>
        <head>
3
          <script type="text/javascript" src="meuArquivo.js"></script>
4
        </head>
5
        <body>
6
7
        </body>
8
       </html>
```

Usando variáveis no JavaScript

Essa linguagem possui tipagem dinâmica, ou seja, não é necessário definir o tipo das variáveis ao declará-las, para isso basta usar a palavra reservada **var** ou **let** que é basicamente, uma nova forma de declarar variáveis no JavaScript, em que todas as chaves criam um novo escopo para as variáveis; isso é, ele funciona da mesma forma que o var já funciona, porém as variáveis que estão dentro de qualquer chaves {...} não são acessíveis fora delas.

Funções

Para criar funções, utilizamos a palavra reservada function.

exemplo:

```
function minhaFuncao(p1, p2) {
   return p1 + p2;
   //a função retorna o produto p1 e p2
}
```

EXERCÍCIOS DE FIXAÇÃO

• Faça um programa que leia três notas de um aluno e diga se ele está aprovado ou reprovado.

Aprovado: se a média das notas for maior ou igual a 5.

Reprovado: se a média das notas for menor que 5.

A média deve ser calculada somando as três notas e dividindo o resultado por 3.

Faça o mesmo programa mostrar qual foi a maior nota do aluno. Faça o programa também mostrar qual foi a sua menor nota.

 Crie um programa que leia a idade e diga se o voto da pessoa é facultativo, obrigatório ou proibido.

Lembrando que:

Facultativo para adolescentes entre 16 e 17 anos. Obrigatório para adultos de 18 até 70 anos de idade. Após os 70 o voto se torna facultativo de novo. Menores de 16 anos: proibido.

Thymeleaf

O que é?

Thymeleaf é um motor de templates para Java, ou seja, um mecanismo com capacidade para processar e criar HTML, XML, JavaScript, CSS e texto. Os templates são escritos, em sua maioria, com código HTML5 sendo mais adequado para servir XHTML / HTML5 na camada de visualização de aplicativos da Web baseados em MVC, mas pode processar arquivos mesmo em ambientes off-line e tem boa integração com o Spring Framework.

Como Funciona:

Dialetos padrão:

O thymeleaf vem com algo chamado dialetos padrão (chamados *Standard* e *SpringStandard*) que definem um conjunto de recursos que devem ser mais do que suficientes para a maioria dos cenários. Você pode identificar quando esses dialetos padrão estão sendo usados em um modelo porque ele conterá atributos começando com o **th**(prefixo), como ****.

Os dialetos Standard e SpringStandard são quase idênticos, exceto que o SpringStandard inclui recursos específicos para integração em aplicações Spring MVC.

Sintaxe de expressão padrão:

A maioria dos atributos Thymeleaf permite que seus valores sejam definidos como ou contendo expressões que chamaremos de Expressões Padrão por causa dos dialetos nos quais são usados. Eles podem ser de cinco tipos:

- \${...} : Expressões variáveis.
- *{...} : Expressões de seleção.
- #{...} : Mensagens (i18n) expressões.
- @{...} : Expressões de link (URL).
- ~{...} : Expressões de fragmento.

Exemplos:

- th:each : Percorre uma coleção de objetos enviada pelo controller;
- th:if: Habilita e desabilita controles do HTML de acordo com a condição recebida;
- th:object : Define o objeto que o controller irá receber e enviar por meio de um formulário;
- th:field: Faz bind dos atributos do objeto do formulário com os inputs;
- th:href: Para adicionar um link.

No código:

URLs absolutas permitem que você crie links para outros servidores. Eles começam especificando um nome de protocolo (http:// ou https://)

```
1 <a th:href="@{http://www.thymeleaf/documentation.html}">
```

Os tipos de URLs mais usados são os relativos ao contexto. Estas são as URLs que devem ser relativas à raiz da aplicação Web. URLs relativos ao contexto começam com /:

```
1 <a th:href="@{/order/list}">
```

Basicamente um for each, onde percorre uma lista de objetos(no nosso caso mensagens)

```
1
```

Bulma

O Bulma é uma estrutura CSS livre e de código aberto baseada no Flexbox (organiza elementos na página quando o layout precisa ser visualizado em telas e dispositivos de tamanhos diferentes).

A configuração

Configurar o Bulma é super fácil, e você pode fazê-lo de várias maneiras diferentes, baixá-lo diretamente dos documentos ou usando um CDN. Após instalar o bulma, adicionaremos ao código:

<link rel="stylesheet"</pre>

href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.6.2/css/bulma.min.css">

Isso nos dará acesso às classes Bulma. E isso é tudo o que Bulma é: uma coleção de classes.

Modificadores (classes)

A primeira coisa que você deve aprender sobre o Bulma são as classes modificadoras. Estes permitem que você defina estilos alternativos para quase todos os elementos Bulma. Todos começam com is- *ou has*-, e então você substitui o *com o estilo que você quer.

Vamos começar com alguns exemplos básicos:

Botões

para transformar um botão normal em um botão Bulma, vamos simplesmente dar a classe de button.

<button class = "button">Click here/ button>

Que resulta no seguinte estilo:

Click here

Como você pode ver, ele tem um bom design plano por padrão. Para mudar o estilo, usaremos modificadores Bulma. Vamos começar fazendo o botão maior (classe "is-larger"), verde (classe "is-success") e com cantos arredondados (classe "is-rounded"):

<button class = "button is-larger is-success is-rounded">Click here/ button>

O resultado é um botão de aparência agradável:

Finalmente, vamos também usar um dos "has-*"modificadores. Eles normalmente controlam o que está dentro do elemento. No nosso caso, o texto. Vamos adicionar "has-text-weight-bold" para deixar o texto em negrito.

Aqui está o resultado:

Eu recomendo que você brinque com combinações das várias classes para entender como esse sistema é flexível. As combinações são quase infinitas. Confira a seção de botões nos documentos para mais informações.

Colunas

O principal de qualquer framework CSS é como eles resolvem colunas, o que é relevante para quase todos os sites que você já construiu. O Bulma é baseado no Flexbox, então é muito simples criar colunas. Vamos criar uma linha com quatro colunas.

Primeiro, estamos criando uma <div> container com uma classe "columns", em seguida, damos a cada uma das divs menores uma classe "column". Isso resulta no seguinte:

First column	Second column	Third column	Fourth column	

Observe que você pode adicionar quantas colunas desejar. O Flexbox se encarrega de dividir o espaço igualmente entre eles.

Para dar as cores das colunas, podemos substituir o texto dentro delas por uma tag e dar a ela a "notification" classe e um "is-*" modificador. Assim, por exemplo:

```
 Primeira coluna
```

Vamos fazer isso usando os "is-info", "is-success", "is-warning" e "is-danger" modificadores, o que resulta no seguinte:

A classe "notification" é, na verdade, apenas destinada a alertar os usuários sobre algo, pois permite preencher o plano de fundo com uma cor usando os "is-*" modificadores.

Também podemos controlar facilmente a largura de uma coluna. Vamos adicionar o "is-half" modificador à coluna verde.

O que resulta na segunda coluna ocupando agora metade da largura, enquanto os outros três ocupam um terço da metade restante de cada um.

Hero

Finalmente, vamos também aprender como criar um hero em Bulma. Vamos usar a semântica <section>, dar uma classe "hero" e "is-info" dar alguma cor. Também precisamos adicionar uma <div> criança à turma hero-body.

O resultado será este:

```
This is the hero body
```

Para fazer esse hero fazer algo significativo, vamos adicionar um elemento de contêiner dentro do corpo e adicionar um título e uma legenda.

Primary title Primary subtitle

Agora está começando a ficar bom! Se quisermos que seja maior, podemos simplesmente adicionar "is-medium" na própria tag:

```
1 <section class="hero is-info is-medium">
2 ...
3 </section>
```

Primary title

E é isso!

Existem vários componentes como cards, tabelas, menus, barras de navegação e várias outras coisas fáceis de usar e simples de compreender. Você agora tem um gostinho básico de como Bulma funciona, e a melhor parte é que o resto da biblioteca é tão intuitivo e fácil quanto os conceitos que você viu até agora. Então, se você entender isso, você entenderá o resto sem problemas.

Caso queira explorar, a documentação do Bulma se encontra em: https://bulma.io/documentation/ $\ensuremath{\square}$

EXERCÍCIOS DE FIXAÇÃO

Baseado no material desta apostila realize cada uma das tarefas a seguir:

- Crie um botão e mude ele para tres cores diferentes usando as classes do bulma;
- Mude a largura do botão;
- · Deixe o botão arredondado;
- · Crie um Hero;
- Mude o tamanho do Hero;
- Modifique o que está dentro do elemento, no nosso caso o texto do botão;
- Crie uma coluna e defina a sua largura.

Se virando no Linux

Comandos Básicos

```
cd [nome da pasta/] Comando para entrar ou mudar de pasta.
```

- cd .. Volta um nível.
- 1s Lista conteúdo da pasta onde o usuário se encontra.
- 1s -1 Lista todos os itens da pasta atual com detalhes
- mkdir [nome da pasta] Cria nova pasta onde o usuário se encontra.
- rm -rf [nome da pasta] Remove pasta especificada.
- > [nome do arquivo] Cria um arquivo onde o usuário se encontra.
- rm [nome do arquivo] Remove o arquivo.
- **mv item destino/caminho** Move o arquivo (ou pasta) ao destino escolhido (se o seu destino não existir, o arquivo será renomeado com tal).
- cp item copia-do-item Cria uma cópia do arquivo (ou pasta).
- man [nome do comando]

O comando "man" exibe a função de determinado comando. Ele é muito útil quando não se sabe o que um comando faz, ou quando se pretende aprender mais sobre a sua utilização. Aconselhase a leitura do manual sempre que houver dúvidas.

Flags

Flags são diferentes funcionalidades do comando que podemos utilizar, ou seja, moldar o que o comando irá fazer.

Tomemos o comando **1s** como exemplo. Como mencionado anteriormente, este comando serve para listar o conteúdo de um diretório. Temos a seguinte estrutura de pastas:

```
uma-pasta/
pasta-filha
pasta-neta
```

Quando estamos dentro da pasta uma-pasta e executamos o comando 1s , a saída será:

```
1 $ ls
2 arquivo.txt pasta-filha
```

Podemos usar as **flags** para modificar o comportamento do comando Is. Passando a flag **-1**, o comando mostrará a saída em formato de lista:

```
1 $ ls -l
2
3 total 12
4 -rw-r--r-- 1 yrachid yrachid 0 jan 23 11:27 arquivo.txt
5 drwxr-xr-x 3 yrachid yrachid 4096 jan 23 11:27 pasta-filha
```

A maioria dos comandos, possui a flag **-h ou --help**, que irá mostrar todas as flags que você pode usar para aquele comando.

Formatos de flags

Geralmente, as flags dos comandos possuem dois formatos: abreviado e expandido.

Por exemplo, quando chamamos o comando como no exemplo **rm** -**rf** a parte em que usamos -**rf** estamos falando para o comando que queremos fazer um **remove** recursivo (flag -**r**) e forçado (flag -**f**). Neste caso, usamos o formato **abreviado** destas flags, mas também poderíamos utilizar seus formatos expandidos:

```
1 rm --recursive --force
```

Exemplos

man ls – Exibe o que faz o comando ls e quais são suas variações. Para sair do man pressione a tecla "q".

Exercícios de Fixação

Baseado no material desta apostila informe os comandos necessários para realizar cada uma das tarefas a seguir:

Imagine que estamos na seguinte estrutura de diretórios:

- Liste os arquivos do diretório aceleradora .
- Entre no diretório pasta .
- Dentro do diretório pasta crie um arquivo chamado arquivo02.txt .
- Volte ao diretório anterior.
- Sem sair do diretório atual, copie o arquivo compactado.zip para dentro do diretório pasta .
- Ainda no seu diretório atual, exclua o arquivo compactado.zip .
- Mova tudo o que há dentro do diretório pasta para o diretório aceleradora .

- Exclua o diretório pasta .
- Crie um diretório chamado [seu-nome] .
- Entre no diretório [seu-nome] .
- Crie três arquivo, tais com nomes de três características suas.
- Liste detalhadamente os arquivos do diretório **[seu-nome]** .

Se virando no Git

Git

Git é um sistema de controle de versão de arquivos. Através deles podemos desenvolver projetos na qual diversas pessoas podem contribuir simultaneamente no mesmo, permitindo que os mesmos possam existir sem o risco de suas alterações serem sobrescritas. Se não houvesse um sistema de versão, imagine o caos entre duas pessoas abrindo o mesmo arquivo ao mesmo tempo. Uma das aplicações do git é justamente essa, permitir que um arquivo possa ser editado ao mesmo tempo por pessoas diferentes.

GitHub

O GitHub é uma plataforma de hospedagem de código-fonte com controle de versão usando Git. Nele criamos repositórios onde colocamos nossos projetos que vamos desenvolver. No Github o projeto é dividido em branches, elas são separações de código. Normalmente são utilizados para separar alterações ou novas funcionalidades do projeto.

Instalação

Você instalará o Git com este comando (via terminal - Linux):

```
1 sudo apt-get install git
```

Depois de instalar, a primeira coisa que você deve fazer é configurar o Git. Para isso, abra uma janela de terminal e digite os seguintes comandos:

```
git config --global user.name "Seu Nome"
git config --global user.email "seu@email.com"
```

A partir daí, o Git irá usar essas informações para registrar quem foi que fez as alterações nos arquivos.

Após isso já poderá realizar os comando do git pelo terminal.

Nota: Esse exemplo configura o mesmo usuário para todos os projetos presentes no computador (isso se dá por conta da flag --global). Podemos também configurar usuários para cada projeto, bastando remover a flag --global .

Comando básicos

Criando um repositório:

Criar um repositório no Git é muito simples, apenas siga esta sequência completa dos comandos:

```
mkdir meu-projeto (irá criar o diretório)

cd meu-projeto (irá entrar dentro do diretório)

git init (irá criar o repositório git)
```

Após isso, basta começar a trabalhar, criando, removendo e alterando arquivos.

Outros Comandos:

```
git clone [link do repositório] Para clonar o projeto do repositório;

git checkout -b [nome da branch] Para criar uma nova branch;

git checkout [nome da branch] Para trocar de branch;

git status Para você visualizar os arquivos que modificou;

git add . Para você adicionar as modificações feitas;

git commit -m ["mensagem"] Para você comentar brevemente sobre as modificações feitas;

git push origin [nome da branch] Sobe as alterações feitas para a branch remota(para onde quero enviar, por isso usamos origin) do GitHub

git pull origin master Recebe as alterações feitas na branch remota origin master;
```

Mas se houver conflitos:

```
git pull -r origin master Facilita na hora de resolver conflitos.
```

Ex: Deram push em uma atualização de código da linha 11, e você localmente modificou esta linha e quer dar push, o git ficará sem saber o que fazer e resultará em conflitos, você terá que escolher entre uma das atualizações, ou em deixar as duas.

Após isso para ter certeza de que não tenha mais nada diferente execute:

```
git rebase --continue
```

Nota: Este comando só funcionará se usar a flag -r no git pull

Se não houver mais conflito pode dar seu push tranquilo, caso contrario terá que resolver todos os conflitos para dar push.

```
git reverse --hard HEAD~1 Exclui commit local
```

Caso já tenha enviado ao seu repositório será necessário executar este comando também para exclui-lo:

```
git push origin HEAD --force
```

Importante: Não é muito recomendável usar estes últimos dois comandos exceto em casos muito extremos, eles podem causar grandes complicações.

Exercícios de Fixação

Baseado no material desta apostila informe os comandos necessários para realizar cada uma das tarefas a seguir:

Imagine que criamos um repositório no GitHub:

- [] Clone este repositório para seu computador
- [] Crie uma branch
- [] Entre na branch criada
- [] Envie as modificações para o repositório
- [] Acesse o site do GitHub e crie um repositório chamado exercicioGitHubAcelera
- [] Agora, dentro de algum diretório de seu computador, inicie um repositório Git local
- [] Clone este repositório (exercicioGitHubAcelera) para seu computador
- [] Faça qualquer alteração neste diretório (crie arquivos novos, modifique algum existente e etc) e em seguida adicione estas alterações neste repositório Git local
- [] Realize um **commit** destas alterações ao seu repositório Git local, informando uma mensagem explicando o que esta sendo salvo neste **commit**
- [] Agora, envie as modificações para o repositório

Introdução ao Java

Neste capítulo, veremos alguns conceitos fundamentais do Java para que possamos começar a utilizar a linguagem.

- Escrevendo um "olá, mundo" em Java
- · Tipos de dados
- Estruturas condicionais (se, senão, senão se)
- Estruturas de repetição (enquanto, para)
- Operadores

Olá, mundo

No Java o seu código sempre será escrito dentro de classes e métodos. Uma classe é um bloco de código que contém atributos (variáveis) e métodos (funções). Os atributos irão guardar dados e os métodos irão executar lógica/comportamento. Para este capítulo, isto é tudo que precisamos saber sobre classes e métodos, veremos mais sobre eles no capítulo de orientação a objetos.

Sabendo disto, vejamos então como escrever um olá, mundo em Java:

```
public class Ola {
   public static void main(String [] args) {
      System.out.println("Ola, mundo");
}
```

No exemplo acima, criamos a classe **01a**, que possui o método **main**, o qual irá escrever uma mensagem na tela utilizando o método **System.out.println** do Java.

Existem algumas palavras chave neste exemplo que podem parecer bastante confusas (public , static , void , String[]). Por enquanto, não precisamos nos preocupar com elas, e iremos entender o que cada uma significa em outros capítulos.

Tipos de dados

A linguagem Java oferece diversos tipos de dados com os quais podemos trabalhar. Há basicamente duas categorias em que se encaixam estes tipos de dados: **tipos primitivos** e **tipos de referência**.

Tipos primitivos

Os tipos primitivos correspondem a dados simples escalares (que possuem um tamanho fixo na memória). No java, existem oito tipos primitivos, mas nem todos são comumente utilizados. Os tipos que você utilizará com mais frequência serão:

- boolean: Assume os valores booleanos true (verdadeiro) ou false (falso).
- int: serve para armazenar números inteiros entre -2^{31} e $2^{31}-1$
- double: armazena números decimais (quebrados, ou com vírgula).
- char: O char é um tipo de variável que aceita a inserção de um caractere apenas.

```
boolean verdade = true;
boolean mentira = false;

int numero = 5;
double numeroQuebrado = 5.00000001;

char umCaractere = 'a';
```

Tipos primitivos menos comuns

Além dos tipos mais comuns, ainda temos alguns outros tipos primitivos para guardar números:

- float: armazena números decimais (quebrados, ou com vírgula) com uma precisão menor (menos números depois da vírgula) que o double .
- short: armazena valores inteiros entre -32768 e 32767
- long: armazena valores inteiros entre.
- byte: armazena valores inteiros entre -128 e 127

Estes tipos são muito similares aos tipos mais comuns. No entanto, eles existem para casos muito específicos, especialmente para quando precisamos economizar memória ou precisamos utilizar valores inteiros muito grandes (declarando-os como **long** em vez de **int**, por exemplo). Não estamos preocupados com estas situações neste momento.

Links da documentação

Alguns destes são tópicos bastante avançados, mas caso queira entender um pouco mais sobre alguns detalhes, aqui estão alguns links da documentação oficial do Java:

- Sobre tipos primitivos □
- Explicação sobre a precisão de números decimais ☑
- O padrão Unicode (utilizado pelo Java para representar variáveis do tipo char) □

Tipos de referência

Os tipos de referência armazenam objetos. Neste momento, não faz sentido tentarmos entender a fundo o que isto significa. Sugerimos que depois de você dar uma lida no capítulo de orientação a objetos, revisite esta parte da apostila para entender um pouco melhor.

Nas primeiras interações com a linguagem, você irá utilizar quase que constantemente dois tipos de referências:

- Arrays (vetores)
- Strings

Portanto, neste momento, vamos nos concentrar em entender estes tipos primeiro.

Arrays (vetores)

Arrays (ou vetores) são uma estrutura utilizada para quando necessitamos armazenar um conjunto de valores em uma variável, como uma lista.

Por que utilizamos vetores?

Pensemos em um caso de uso. Estamos escrevendo um programa que armazena 10 valores aleatórios inteiros na memória, multiplica cada um por 2 e exibe os resultados na tela. Podemos resolver isto de duas maneiras:

Criando 10 variáveis

```
int valor0 = 5;
1
      int valor1 = 11;
2
      int valor2 = 8;
3
      int valor3 = 13;
4
      int valor4 = 18;
5
6
      int valor5 = 20;
      int valor6 = 30;
7
      int valor7 = 35;
8
      int valor8 = 2;
      int valor9 = 4;
10
11
      System.out.println(valor0 * 2);
12
13
      System.out.println(valor1 * 2);
      System.out.println(valor2 * 2);
14
      System.out.println(valor3 * 2);
15
16
      System.out.println(valor4 * 2);
      System.out.println(valor5 * 2);
17
      System.out.println(valor6 * 2);
18
      System.out.println(valor7 * 2);
19
      System.out.println(valor8 * 2);
20
21
      System.out.println(valor9 * 2);
```

Esta alternativa não é um bom caminho, pois nosso código ficaria imenso e confuso. Imagine ter que fazer isto com 100 variáveis?

Vejamos a outra alternativa:

Criando um vetor de 10 posições

Antes de mais nada, para criar um vetor de valores inteiros, fazemos o seguinte:

```
int[] valores = new int[10];
```

Utilizamos os colchetes [] para indicar que a variável será um array de inteiros. Para criar um array, precisamos dizer qual será seu tamanho, ou em outras palavras, quantos elementos ele poderá guardar. Neste caso, estamos dizendo que o array poderá guardar 10 elementos.

Precisamos falar sobre índices

Como mencionando anteriormente, arrays são uma lista de valores e, para guardar ou acessar elementos desta lista, utilizamos um índice, que indica em qual posição da lista está o elemento que queremos acessar.

Ao criar um array de inteiros de tamanho 10, inicialmente, todas as suas 10 posições conterão o valor **9** :

```
1 { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
```

Vamos adicionar o valor **15** à segunda posição do array. Os índices começam em **0**, portanto, para acessar a segunda posição, utilizamos o índice **1**:

```
1 valores[1] = 15;
```

Ao executar o código acima, o valor do nosso array agora será:

```
1 { 0, 15, 0, 0, 0, 0, 0, 0, 0 }
```

De volta ao problema

Para resolver o nosso problema utilizando arrays, basta adicionar os números em cada posição do array:

```
valores[0] = 5;
1
2
      valores[1] = 11;
3
      valores[2] = 8;
4
      valores[3] = 13;
      valores[4] = 18;
5
6
      valores[5] = 20;
7
      valores[6] = 30;
8
      valores[7] = 35;
      valores[8] = 2;
9
10
      valores[9] = 4;
```

Segura o cavaco!

Parando para pensar, até agora não ganhamos muita coisa ao utilizar um array em vez de 10 variáveis, nosso código está ficando muito parecido e até um pouco mais complexo que a primeira alternativa (de criarmos dez variáveis).

Qual é a moral de usar esse negócio então?

Uma das maiores vantagem de utilizar um array em vez de várias variáveis é que eles nos permitem utilizar **estruturas de repetição!**

Vamos resolver nosso problema utilizando um loop for :

```
1
      valores[0] = 5;
2
      valores[1] = 11;
3
      valores[2] = 8;
      valores[3] = 13;
4
      valores[4] = 18;
5
6
      valores[5] = 20;
      valores[6] = 30;
7
      valores[7] = 35;
8
      valores[8] = 2;
9
10
      valores[9] = 4;
11
      for (int i = 0; i < valores.length; <math>i++) {
12
13
        System.out.println(valores[i] * 2);
      }
14
```

Sabemos que ainda não chegamos na parte das estruturas de repetição, mas tenha em mente que em algumas situações, é melhor utilizar arrays e eles existem por ótimos motivos, não se preocupe em entender como tudo funciona agora, por enquanto, apenas guarde isso na sua mente:

"Arrays existem por bons motivos, fique de olho em onde você poderá utilizá-los."

• Regina Casé

Bônus: Definindo valores direto na declaração

No caso do nosso problema, os arrays nos dão uma outra vantagem bacana. Podemos criar o array já preenchido com os valores que precisamos, o que simplifica bastante nosso código:

```
int [] valores = { 5, 11, 8, 13, 18, 20, 30, 35, 2, 4 };

for (int i = 0; i < valores.length; i++) {
    System.out.println(valores[i] * 2);
}</pre>
```

Strings

String é uma das classes mais importantes do Java, sendo vastamente utilizada. Strings servem para representar e manipular texto.

Para declarar uma String, basta fazer o seguinte:

```
1 String dia = "Sexta";
```

Ao começar no Java, muitas pessoas pensam que String é um tipo primitivo, o que não é verdade, pois ela é uma classe e valores String armazenados em variáveis são do tipo referência. Esta confusão geralmente acontece pois ela é a única classe na linguagem que possui uma representação literal, ou seja, é possível criar novas Strings utilizando aspas duplas.

Manipulando Strings

Strings são úteis para resolver incontáveis tipos de problemas, por isso, é interessante revisar como manipulamos valores String utilizando seus métodos. Vejamos alguns métodos úteis:

length

Nome em português:

```
length: tamanho
```

Retorna o tamanho da String. O tamanho é a quantidade de caracteres que a String possui:

```
String texto = "0i";

int tamanho = texto.length(); // tamanho sera 2;
```

equals

Nome em português:

```
equals: igual ou é igual a
```

Compara duas strings e retorna verdadeiro (true) caso elas sejam iguais:

```
String texto = "0i";
String outroTexto = "0i";

boolean saoIguais = texto.equals(outroTexto); //saoIguais sera true
```

ou falso (false) caso elas sejam diferentes:

```
String texto = "0i";
String outroTexto = "0pa";

boolean saoIguais = texto.equals(outroTexto); //saoIguais sera false
```

replace

Nome em português:

```
replace: substituir
```

Este método recebe dois argumentos:

- conteudoAntigo
- conteudoNovo

Ele retorna uma nova String substituindo todas as ocorrências do valor **conteudoAntigo** encontradas na String por **conteudoNovo** :

```
String bomDia = "Bom Dia!";

String boaNoite = bomDia.replace("Dia", "Noite"); // boaNoite sera "Boa Noite!
```

substring

Este método recebe dois argumentos:

- indicelnicial
- indiceFinal

Retorna uma nova String contendo a porção que está entre as posições indicelnicial e indiceFinal:

```
String texto = "Aceleradora";

String pedaco = texto.substring(0, 3); // pedaco sera "Ace"
```

split

Nome em português:

```
split: separar
```

Este método recebe um argumento:

token

Retorna um array de Strings, formado pela divisão da String original. Este método irá dividir a String cada vez que encontrar o **token** no conteúdo da String:

```
String texto = "A,B,C";

String[] pedacos = texto.split(","); // pedacos sera um array contendo {"A", "
```

Dica, caso queira transformar uma String em um array de Strings, utilize este método passando uma String vazia:

```
String texto = "dica";

String[] pedacos = texto.split(""); //pedacos sera um array contendo {"d", "i"
```

contains

Nome em português:

```
contains: contém
```

Este método recebe um argumento:

busca

Retorna verdadeiro caso a String contenha o valor especificado na **busca** ou falso caso contrário.

```
String texto = "Aceleradora";

texto.contains("A"); // sera verdadero

texto.contains("B"); // sera falso

texto.contains("Ace"); // sera verdadeiro

texto.contains("radora"); // sera verdadeiro
```

toLowerCase

Nome em português:

toLowerCase: para minusculas

Retorna uma nova String com todas as letras maiúsculas trocadas por minúsculas:

```
String texto = "BOM DIA";

String textoMinusculo = texto.toLowerCase(); // textoMinusculo sera "bom dia"

String outroTexto = "Bom Dia";

String outroTextoMinusculo = texto.toLowerCase(); // outroTextoMinusculo sera
```

toUpperCase

Nome em português:

toUpperCase: para maiusculas

Retorna uma nova String com todas as letras minúsculas trocadas por maiúsculas:

```
String texto = "bom dia";

String textoMaiusculo = texto.toUpperCase(); // textoMaiusculo sera "BOM DIA"

String outroTexto = "Bom Dia";

String outroTextoMaiusculo = texto.toUpperCase(); // outroTextoMaiusculo sera
```

Documentação Java:

• Lista completa dos métodos da classe string ☐

Operadores

Como o próprio nome diz, os operadores permitem executar operações sobre um ou dois **valores primitivos**.

Alguns links da documentação oficial do Java:

- Introdução a operadores Java ₫

Operador de atribuição

Pode ser que isto passe despercebido, mas ao atribuir um valor à uma variável, estamos utilizando um operador, o operador de atribuição (=):

```
1 int cinco = 5;
```

Operadores de Igualdade

Os operadores de igualdade são utilizados para fazer a comparação de dois valores, ou seja, utilizamos estes operadores quando precisamos saber se um valor é **igual** , **diferente** , **maior** ou **menor** do que outro:

Nome	Sintaxe	Exemplo	Significado
Igual	==	x == y	x éiguala y
Diferente	!=	x != y	x é diferente de y
Maior que	>	x > y	x é maior que y
Menor que	<	x < y	x é menor que y
Maior ou igual	>=	x >= y	x é maior ou igual a y
Menor ou igual	<=	x <= y	x é menor ou igual a y

O uso de operadores de igualdade resulta em um valor booleano, o que permite utilizar estes operadores de diferentes maneiras:

Podemos utilizá-los diretamente dentro de estruturas condicionais:

```
if (5 > 2) {
    System.out.println("5 eh maior que 2");
} else {
    System.out.println("5 nao eh maior que 2");
}
```

Ou podemos guardar o resultado em uma variável, o que nos ajuda escrever código de uma maneira um pouco mais legível em algumas situações:

```
boolean cincoEhMaiorQueDois = 5 > 2;

if (cincoEhMaiorQueDois) {
    System.out.println("5 eh maior que 2");
} else {
    System.out.println("5 nao eh maior que 2");
}
```

Operadores Condicionais

Operadores condicionais são utilizados em valores booleanos. Eles são úteis quando precisamos verificar mais de uma condição ou precisamos inverter o valor de um booleano (trocar de true para false ou vice-versa):

And (&&):

Em inglês a palavra "and" é equivalente ao "e" do português (como na frase Maria **e** João), logo, este operador verifica duas condições e resulta em verdadeiro somente se as duas forem verdadeiras, caso contrário, resulta em falso:

```
if (vaiChover == true && ehSexta == true) {
    System.out.println("Hoje irei embora mais cedo, pois eh sexta E esta chovend
} else {
    System.out.println("Hoje ficarei até mais tarde.");
}
```

No código acima, a pessoa só iria para casa somente se fosse sexta e fosse chover.

Or (||):

Em inglês a palavra "or" significa "ou", logo, este operador verifica duas condições e resulta em verdadeiro se pelo menos uma das duas for verdadeira, e, somente caso as duas sejam falsas, resulta em falso:

```
if (vaiChover == true || ehSexta == true) {
   System.out.println("Hoje irei embora mais cedo, pois eh sexta ou esta choven
} else {
   System.out.println("Hoje ficarei até mais tarde.");
}
```

No código acima, a pessoa iria para casa se fosse chover, independentemente do dia da semana. Ou, caso fosse sexta mas não estivesse chovendo, ela também iria para casa.

Not (!):

Em inglês, "not" significa "não" ou negação. Este operador inverte o valor booleano de uma expressão ou variável:

Expressão:

```
boolean naoEhCincoNemMaiorQueDez = !(numero == 5 || numero > 10)

Variável:

boolean verdade = true;
boolean mentira = !verdade;
```

Exemplo de uso:

Temos que escrever um programa que valida o embarque de passageiros em um avião. O programa só deve permitir pessoas maiores de idade **e** que possuam passaporte. Caso a pessoa seja maior de idade mas não possua passaporte o sistema deve notificá-la. Caso a pessoa seja menor de idade, o programa deve notificá-la para estar acompanhada dos pais:

```
public void verificaEmbarque(int idade, boolean possuiPassaporte) {
1
        boolean ehMaiorDeIdade = idade >= 18;
2
3
4
        if (ehMaiorDeIdade && possuiPassaporte) {
          System.out.println("Pode embarcar");
5
        } else if (ehMaiorDeIdade && !possuiPassaporte) {
6
          System.out.println("Nao pode embarcar. Apresente o passaporte.");
7
        } else if (!ehMaiorDeIdade) {
8
          System.out.println("Nao pode embarcar. Venha com seus pais.");
9
10
        }
11
      }
```

Operadores Numéricos

Os operadores numéricos servem para executar operações com números. Temos dois tipos de operadores numéricos:

Binários

São os operadores que executam operações entre dois números:

Nome	Sintaxe	Exemplo	Resultado
Soma	+	1 + 1	2
Subtração	-	2 - 2	0
Multiplicação	*	2 * 2	4
Divisão	/	4 / 2	2
Módulo	%	4 % 2	0

Exemplos de uso

Podemos utilizá-los para criar uma calculadora em Java:

```
public class Calculadora {
1
          public int soma(int a, int b) {
2
              return a + b;
3
4
          }
5
          public int subtrai(int a, int b) {
6
7
              return a - b;
8
9
          public int multiplica(int a , int b) {
10
              return a * b;
11
12
13
          public int divide(int a, int b) {
14
              return a / b;
15
16
          }
17
      }
```

Unários

São operadores que executam operações com apenas **um** número. Estes operadores não funcionam diretamente em números literais, apenas variáveis (veja os exemplos para entender isto melhor):

Nome	Sintaxe
Incrementa	++
Decrementa	
Acumula soma	+=
Acumula multiplicação	*=
Acumula subtração	-=
Acumula divisão	/=

Exemplo:

```
5++; // nao funciona
1
2
      int numero = 4;
3
4
      numero++; // numero agora tem o valor 5
      numero--; // numero agora tem o valor 4
5
      numero += 2; // numero agora tem o valor 6
6
7
      numero -= 2; // numero agora tem o valor 4
      numero *= 2; // numero agora tem o valor 8
8
      numero /= 2; // numero agora tem o valor 4
9
```

Fim do capítulo

E isso é quase tudo que você deve saber para começar a se aventurar no Java! Este capítulo serve como um pontapé inicial, mas ainda temos muita coisa para ver! Caso você tenha interesse, dê uma lida nos tópicos complementares mais abaixo, que tentam explicar um pouco mais sobre algumas coisas que foram comentadas neste capítulo, mas que podem ser meio confusas neste momento.

Recomendamos revisitar estes tópicos complementares depois da leitura do capítulo de orientação a objetos e da realização de alguns exercícios.

Exercícios de fixação

No repositório da trilha de exercícios, você encontrará alguns desafios de lógica de programação que lhe ajudarão a fixar os conceitos apresentados nesta introdução.

Acesse o repositório aqui: https://github.com/aceleradora-TW/trilha-de-exercicios ☑

Tópicos complementares

Strings

Representação literal

Quando falamos *representação literal*, estamos nos referindo às *aspas duplas*. No Java, quando queremos criar um objeto de alguma classe, sempre temos que utilizar a palavra **new**. Vamos supor que nosso programa tem as classes **Carro** e **Papagaio**. Para criar objetos destas classes e guardá-los em variáveis, teríamos que utilizar o new:

```
1 Carro carro = new Carro();
2 Papagaio passaro = new Papagaio();
```

Seguindo esta lógica, teríamos que fazer o mesmo com a String, certo? Afinal, ela é uma classe! Teríamos que fazer algo como:

```
1 String dia = new String();
```

Ainda que isto seja possível, não é necessário, pois String é uma classe tão comumente utilizada, que o Java nos dá a facilidade de utilizar as aspas duplas em vez de new:

```
1 String dia = "Sexta";
```

Imutabilidade

Quando dizemos que as Strings são imutáveis, basicamente significa que o valor de uma variável String não pode ser alterado em algumas situações. Isto gera bastante confusão.

Podemos sobrescrever o valor de uma variável

Qual a diferença entre tipos primitivos e tipos de referência?

Existem grandes diferenças entre estes tipos, no entanto, para nós esta diferença ainda não é clara, pois não exploramos os conceitos de orientação a objetos. Basicamente, tipos primitivos guardam valores, enquanto tipos de referência guardam a referência para um objeto na memória. Esta ideia pode soar bastante estranha por enquanto, pois ainda não sabemos o que é um objeto.

Para saber quando uma variável é primitiva e quando ela é referência, podemos observar o uso da palavra chave **new** (exceto com as Strings). Esta palavra é responsável por criar uma instância de objeto. Em outras palavras, ela colocará os dados do objeto em memória e adicionará na variável uma referência para a posição de memória onde estão estes dados para que possamos manipulá-los (daí o nome tipo de referência).

Não se preocupe se nada disto fizer sentido agora, recapitularemos estas ideias posteriormente com mais detalhes.

Com tudo isto em mente, vejamos uns exemplos:

```
// Um tipo primitivo:
1
2
      int numero = 5;
4
      // Um tipo de referencia
      Carro carro = new Carro();
5
6
7
      Strings sao a unica excessao a regra da palavra new.
8
9
10
      Elas tambem sao um tipo por referencia, mas nao precisamos da palavra new, em
      podemos utilizar as aspas duplas para declarar uma nova String e o Java vai en
11
12
      String dia = "Sexta";
13
```

Uma diferença muito importante entre tipos primitivos e tipos de referência é que tipos de referência, por serem objetos, possuem atributos e métodos. Ou seja, em um tipo por referência, eu posso fazer o seguinte:

```
1 String dia = "SEXTA";
2
3 // Chamar um metodo da String
4 String diaMinusculo = dia.toLowerCase();
```

```
5
6  int [] vetor = new int [5];
7
8  // Acessar um atributo do vetor
9  int tamanhoVetor = vetor.length;
```

Já nos tipos, primitivos, nada disto é possível, pois eles não possuem atributos nem métodos, pois variáveis primitivas apenas guardam um valor bruto.

Depois de ler o capítulo de orientação a objetos, recomendamos que vocês revisite esta parte, prometemos que tudo fará um pouco mais de sentido.

Orientação a Objetos

Classes

No Java o seu código sempre será escrito dentro de classes e métodos. Uma classe é um elemento do código Java que utilizamos para representar objetos do mundo real. Na orientação a objetos, sempre tentamos pensar em como abstrair conceitos do mundo real dentro do código.

Vejamos por exemplo uma classe que representa um carro:

```
public class Carro {
1
2
3
        String marca;
4
        int quantidadeDePneus;
        //Tipos De Variáveis e atributos
5
6
7
        public Carro() {
8
          //construtor sem parâmetros
9
10
11
        public void andar() {
12
13
         //método
14
        }
15
      }
```

Na orientação a objetos (ou a até mesmo na programação em geral), sempre teremos dois elementos:

- (Representação de) Dados
- Comportamento

Atributos

Quando se está estudando e utilizando orientação a objetos, muito ouve-se falar dos tais atributos. Estes nada mais são que variáveis que pertencem a uma classe. No caso da nossa classe carro, temos dois atributos:

- Marca
- Quantidade de pneus

Podemos informar a visibilidade da classe, que pode ser **public**, **private** ou **default**. Utilizamos a palavra reservada **class** seguida pelo nome da classe. Logo após, entre chaves, definimos os elementos a ela relacionados: atributos, construtores e métodos.

Construtores

Para que servem?

Métodos construtores servem para construir um objeto da classe. Ao contrário de outros métodos, um construtor não pode ser chamado diretamente. Para isso usamos a palavra **new** para criar o objeto e então atribuí-lo a uma variável de mesmo tipo.

Exemplo de instanciação de classe:

Chama-se instância de uma classe, a criação um objeto (através do método construtor) cujo comportamento e estado são definidos pela classe.

```
1 Carro carrinho = new Carro();
```

Extends

Quando uma classe precisa herdar características de outra, fazemos uso de herança. Em Java, é representado pela palavra-chave **extends**. Todos os atributos e métodos não-privados serão herdados pela outra classe. Por isso, é comum dizer que a classe herdada é pai da classe que herdou seus elementos.

Nota: Em Java não existe herança múltipla. Assim, uma classe pode herdar apenas de outra.

Exemplo:

```
public class Produto {
1
2
        public double valorCompra;
3
4
        public double valorVenda;
5
        public class Computador extends Produto {
6
          private String processador;
7
8
        }
9
      }
10
```

A palavra-chave **extends** foi utilizada na declaração da classe Computador. Assim, além do atributo processador, devido à herança, a classe Computador também terá os atributos valorCompra e valorVenda, sem que seja necessário declará-los novamente, sem repetir código.

Implements

Quando uma classe precisa implementar os métodos de uma interface, utiliza-se a palavra reservada implements :

Exemplo:

Considerando a interface IProduto:

```
public interface IProduto {

double calculaFrete();

}
```

Podemos ter a classe Televisao implementando-a:

```
public class Televisao implements IProduto {
1
2
        private double peso;
        private double altura;
3
4
5
        @Override
          public double calculaFrete() {
6
7
            //código para cálculo do frete
8
9
      }
```

A anotação **@override** explicita os métodos que foram codificados/sobrescritos.

Nota: Podemos implementar várias interfaces. Para isso, basta separá-las por vírgula.

Também é possível utilizar **extends** conjuntamente com **implements**. Trata-se de um recurso útil quando deseja-se tornar uma classe mais específica e implementar novos comportamentos definidos em interfaces.

Exemplo:

```
public class ClasseFilha extends ClassePai implements NomeInterface {
    // Atributos, construtores e métodos da ClasseFilha
    //Métodos implementados da interface
}
```

Regras para nomeação de classes:

- Manter o nome simples e descritivo;
- Usar palavras inteiras, isto é, sem siglas e abreviações;
- A primeira letra de cada palavra devem ser maiúsculas. (camel casing)

Constantes

Uma constante é declarada quando precisamos lidar com dados que não devem ser alterados durante a execução do programa. Para isso, utilizamos conjuntamente as palavra reservadas **final** e **static**.

Exemplo:

```
public static final float PI = 3.14;
public static final String MEU_NOME = "Cassia";
```

- A palavra final indica que a variável não pode ter seu valor modificado.
- A palavra static indica que todos os objetos de uma classe compartilharão o mesmo valor.

Nota: Por convenção, usamos letras maiúsculas e underscores (_)para declarar constantes e assim distingui-las das variáveis.

Enums

Em Java, uma enum é um tipo especial de classe no qual declaramos um conjunto de valores constantes pré-definidos. usamos a palavra chave **enum** que antecede seu nome.

Exemplo:

```
public enum Turno {
    MANHA, TARDE, NOITE;
}
```

Por serem os campos de uma enum constantes, seus nomes são escritos em letras maiúsculas.

Para atribuir um desses valores a uma variável podemos fazer como no código abaixo:

Exemplo:

```
1 Turno turno = Turno.MANHA;
```

Por que usar enums?

Enums são extremamente úteis quando precisamos representar um conjunto restrito de valores de uma maneira mais segura em vez de usar apenas Strings. Eles nos garantem que o compilador irá aceitar somente o conjunto de possibilidades que nós definimos, o que deixa o código menos propenso a erros. Vejamos um exemplo à respeito disso.

Precisamos fazer um programa para gerenciar as turmas de uma escola. Para isso, criamos primeiro uma classe para representar as turmas:

```
public class Turma {
   private String nome;
   private String turno;

public String getTurno() {
   return turno;
}

}
```

Uma das funcionalidades do programa é informar o horário de início das turmas de acordo com seus turnos. Para isso, implementamos o seguinte:

```
1
      public class GestaoDeTurmas {
2
        public void mostraHorarioDaTurma(Turma turma) {
3
          if (turma.getTurno().equals("manha")) {
4
            System.out.println("As aulas comecam as 7h30min");
5
          } else if (turma.getTurno().equals("tarde")) {
6
7
            System.out.println("As aulas comecam as 13h30min");
          } else {
8
            System.out.println("As aulas comecam as 18h30min");
9
10
11
12
        }
13
      }
```

Não temos como garantir a integridade dos valores que receberemos, ou seja, pode ser que as nossas usuárias escrevam manha , manhã , Manhã , De tardezinha para representar o turno, o que causará comportamentos estranhos.

Vejamos como os enums podem ajudar a garantir um comportamento mais previsível:

Primeiro, criamos um enum para representar os turnos que o programa suporta:

```
public enum Turno {
    MANHA, TARDE, NOITE;
}
```

Depois, mudamos a nossa classe Turma para que ela utilize o enum:

```
public class Turma {
   private String nome;
   private Turno turno;

public Turno getTurno() {
   return turno;
}

}
```

Agora, a **GestaoDeTurmas** pode ser um pouco mais precisa, utilizando somente os tipos que o programa aceita e informando o usuário caso a informação recebida seja inválida:

```
public class GestaoDeTurmas {

public void mostraHorarioDaTurma(Turma turma) {

if (turma.getTurno() == Turno.MANHA) {

System.out.println("As aulas comecam as 7h30min");

} else if (turma.getTurno() == Turno.TARDE) {

System.out.println("As aulas comecam as 13h30min");
```

Os 4 pilares da Programação Orientada a Objetos

Abstração

É utilizada para a definição de entidades do mundo real. Sendo onde são criadas as classes. Essas entidades são consideradas tudo que é real, tendo como consideração as suas características e ações.

Entidade	Características	Ações
Carro, Moto	tamanho, cor, peso, altura	acelerar, parar, ligar, desligar
Elevador	tamanho, peso máximo	subir, descer, escolher andar
Conta Banco	saldo, limite, número	depositar, sacar, ver extrato

Encapsulamento

É a técnica utilizada para esconder uma ideia, ou seja, não expor detalhes internos para o usuário, tornando partes do sistema mais independentes possível. Por exemplo, quando um controle remoto estraga apenas é trocado ou consertado o controle e não a televisão inteira. Nesse exemplo do controle remoto, acontece a forma clássica de encapsulamento, pois quando o usuário muda de canal não se sabe que programação acontece entre a televisão e o controle para efetuar tal ação.

Herança

Na Programação Orientada a Objetos o significado de herança tem o mesmo significado para o mundo real. Assim como um filho pode herdar alguma característica do pai, na Orientação a Objetos é permitido que uma classe possa herdar atributos e métodos da outra, tendo apenas uma restrição para a herança. Os modificadores de acessos das classes, métodos e atributos só podem estar com visibilidade **public** e **protected** para que sejam herdados.

Polimorfismo

O polimorfismo consiste na alteração do funcionamento interno de um método herdado de um objeto pai.

Exemplo:

EXERCÍCIOS DE FIXAÇÃO

Clone o projeto do GitHub link: https://github.com/aceleradora-TW/laboratorio-oo-java ♂

Faça os exercícios e deixe os testes passar

Divirta-se!

Começando com o PostgreSQL

São um conjunto de arquivos relacionados entre si com registros sobre pessoas, lugares ou coisas, são coleções organizadas de dados. Sempre que for possível agrupar informações que se relacionam e tratam de um mesmo assunto, posso dizer que tenho um banco de dados.

Já um sistema de gerenciamento de banco de dados (SGBD) é um software que possui recursos capazes de manipular as informações do banco de dados e interagir com o usuário. Um exemplo de SGBD é:

Postgre SQL É um Sistema Gerenciador de Bancos de dados Relacional estendido e de código aberto(SGBDR- o R é porque ele é relacional). Existem vários Modelos de Base de Dados, alguns exemplos são: Modelo em Rede, Modelo Hierárquico, Modelo Relacional, Orientado a Objetos.

Para criar a base de dados o SGBD utiliza uma linguagem. A mais utilizada atualmente é o SQL, (Structured Query Language). Para armazenar um dado em um banco de dados, é necessário criar tabelas e dentro delas são criadas colunas, onde as informações são armazenadas.

sudo apt-get udpdate - Geralmente quando vamos instalar algum programa via terminal, precisamos digitar sudo apt-get update.

sudo apt-get install postgresql postgresql-contrib - Esse comando instala o pacote Postgres junto com um -contribpacote que adicione alguns utilitários e funcionalidades adicionais.

sudo -i -u postgres - Alternando para a conta postgres.

Comandos SQL(utilizando PostgreSQL)

psql - Acessando um prompt do Postgres

Isso fará você entrar no prompt do PostgreSQL e, a partir daqui, você estará livre para interagir com o sistema de gerenciamento de banco de dados imediatamente.

\q - Saia do prompt do PostgreSQL digitando esse comando.

```
CREATE TABLE pessoa (
id serial primary key,
nome varchar(255));
```

O comando CREATE TABLE cria uma tabela, pessoa é um exemplo de nome para sua tabela e dentro dos () vai as suas colunas, como exemplos temos id e nome.

```
1 INSERT INTO TABLE pessoa VALUES (1,"Ingrid");
```

O comando INSERT INTO TABLE insere na tabela pessoa respectivamente os seguintes valores: id=1 e nome=Ingrid.

```
1 SELECT * FROM pessoa;
```

Seleciona toda a tabela pessoa.

```
1 UPDATE pessoa SET nome = 'Brenda' WHERE id = 1;
```

Atualiza o nome do cliente para Brenda se o ld for igual a 1

```
1 DELETE FROM pessoa WHERE id = 1;
```

Exclui as linhas onde o id é igual a 1 na tabela especificada. Se o id não for especificado, o efeito é excluir todas as linhas da tabela.

EXERCÍCIOS DE FIXAÇÃO

Baixe o postgreSQL

Comandos para Linux:

sudo apt-get update

sudo apt-get install postgresql postgresql-contrib

sudo -i -u postgres

psql

/q

FERRAMENTAS ADICIONAIS

PGADMIN 3

Para uma interface gráfica de usuário do PostgreSQL, use o seguinte comando:

sudo apt-get install pgadmin3

sudo su postgres -c psql postgres

ALTER USER postgres WITH PASSWORD 'postgres';

Execute os seguintes comandos

```
CREATE TABLE cliente(id_cliente INTEGER, nome_cliente VARCHAR (255), CONSTRAIN
CREATE TABLE pedido(id_pedido INTEGER, total REAL, cliente_id_cliente INTEGER
INSERT INTO cliente (id_cliente, nome_cliente) VALUES (2334, 'Joao da silva');
INSERT INTO cliente (id_cliente, nome_cliente) VALUES (3456, 'Ana Maria Braga'
INSERT INTO cliente (id_cliente, nome_cliente) VALUES (8275, 'Joana Barcelos V
INSERT INTO cliente (id_cliente, nome_cliente) VALUES (9812, 'Carlos Schallenb
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (752, 100.23, 23
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (334, 1456.00, 2
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (498, 278.98, 98
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (125, 874.98, 98
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (365, 286.30, 98
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (775, 134.54, 98
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (834, 187.34, 34
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (998, 234.34, 82
INSERT INTO pedido(id_pedido,total,cliente_id_cliente) VALUES (101, 456.87, 82
SELECT * FROM cliente;
SELECT * FROM pedido;
UPDATE cliente SET nome_cliente = 'Ronaldo';
SELECT * FROM cliente;
DELETE FROM cliente WHERE id_cliente = 8275;
```

Entendendo migrações de banco de dados

Hibernate

O que é?

O Hibernate é um framework utilizado para mapear as classes java que são suas entidades de negócio para tabelas no banco relacional, economizando tempo.

Bibliotecas do Hibernate e JPA

Vamos usar o JPA com Hibernate, ou seja, precisamos baixar os JARs no site do Hibernate. O site oficial do Hibernate é o www.hibernate.org, onde você baixa a última versão na seção ORM e Download.

Com o ZIP baixado em mãos, vamos descompactar o arquivo. Dessa pasta vamos usar todos os JARs obrigatórios (required). Não podemos esquecer o JAR da especificação JPA que se encontra na pasta jpa.

Para usar o Hibernate e JPA no seu projeto é necessário colocar todos esses JARs no classpath.

O Hibernate vai gerar o código SQL para qualquer banco de dados. Continuaremos utilizando o banco MySQL, portanto também precisamos o arquivo .jar correspondente ao driver JDBC.

Mapeando uma classe Tarefa para nosso Banco de Dados

Para isso, continuaremos utilizando a classe que representa uma tarefa:

```
package br.com.caelum.tarefas.modelo;

public class Tarefa {
   private Long id;
   private String descricao;
   private boolean finalizado;
   private Calendar dataFinalizacao;
}
```

Criamos os getters e setters para manipular o objeto, mas fique atento que só devemos usar esses métodos se realmente houver necessidade.

Essa é uma classe como qualquer outra que aprendemos a escrever em Java. Precisamos configurar o Hibernate para que ele saiba da existência dessa classe e, desta forma, saiba que deve inserir uma linha na tabela Tarefa toda vez que for requisitado que um objeto desse tipo seja salvo. Em vez de usarmos o termo "configurar", falamos em mapear uma classe a tabela.

Para mapear a classe Tarefa, basta adicionar algumas poucas anotações em nosso código. Anotação é um recurso do Java que permite inserir metadados em relação a nossa classe, atributos e métodos. Essas anotações depois poderão ser lidas por frameworks e bibliotecas, para que eles tomem decisões baseadas nessas pequenas configurações.

Para essa nossa classe em particular, precisamos de apenas quatro anotações:

```
1
      @Entity
2
      public class Tarefa {
3
          @Id
          @GeneratedValue
5
          private Long id;
6
          private String descricao;
          private Boolean finalizado;
8
9
10
          @Temporal(TemporalType.DATE)
          private Calendar dataFinalizacao;
11
12
          // métodos...
13
14
      }
```

@Entity indica que objetos dessa classe se tornem "persistivel" no banco de dados.

@Id indica que o atributo id é nossa chave primária (você precisa ter uma chave primária em toda entidade) e @GeneratedValue diz que queremos que esta chave seja populada pelo banco (isto é, que seja usado um auto increment ou sequence, dependendo do banco de dados).

Com **@Temporal** configuramos como mapear um Calendar para o banco, aqui usamos apenas a data (sem hora), mas poderíamos ter usado apenas a hora (TemporalType.TIME) ou timestamp (TemporalType.TIMESTAMP). Essas anotações precisam dos devidos imports, e pertencem ao pacote javax.persistence.

Mas em que tabela essa classe será gravada? Em quais colunas? Que tipo de coluna? Na ausência de configurações mais específicas, o Hibernate vai usar convenções: a classe Tarefa será gravada na tabela de nome também Tarefa, e o atributo descricao em uma coluna de nome descricao também!

Se quisermos configurações diferentes das convenções, basta usarmos outras anotações, que são completamente opcionais. Por exemplo, para mapear o atributo dataFinalizacao numa coluna chamada data_finalizado faríamos:

```
1 @Column (name = "data_finalizado", nullable = true)
2 private Calendar dataFinalizacao;
```

Para usar uma tabela com o nome tarefas:

```
1 @Entity
2 @Table (name="tarefas")
3 public class Tarefa
```

EXERCÍCIOS DE FIXAÇÃO

Primeiros passos para mapear uma tabela simples com hibernate

Imagine que temos o hibernate configurado, o próximo passo é realizar o mapeamento das classes ás tabelas do banco de dados.

- 1. Qual é a anotação que usaremos para indicar que a classe será utilizada como uma entidade, ou seja, que os dados serão "persistiveis" pelo banco de dados?
- 2. Qual anotação é utilizada para indicar o identificador único da tabela?
- 3. Qual a notação que informa que queremos que esta chave seja populada pelo banco?

Como funciona o HTTP e a Web

HTTP (Hypertext Transfer Protocol)

O que é?

O HTTP é um protocolo da camada de aplicação, normalmente baseado numa camada TCP/IP, e que é utilizada para a transmissão de documentos hipermidia, como o HTML (Hypertext Markup Language). O protocolo é baseado na ideia de cliente -> servidor, o que significa que as conexões são abertas pelo cliente, que envia uma requisição e espera o servidor retornar uma resposta. Esse protocolo é mais conhecido por ser utilizado em larga escala na WWW (World Wide Web ou Rede Mundial de Computadores). Quando utilizamos nosso navegador para acessar a página principal do Google, por exemplo, estamos fazendo o seguinte (simplificadamente para a explicação):

- Abrimos uma conexão com o servidor do Google
- Pedimos ao servidor a página inicial
- Esperamos o servidor retornar alguma resposta
- Apresentamos a resposta que o servidor nos mostrou
- Fechamos nossa conexão

Estes passos acontecem diversas vezes, toda vez que precisamos de um novo recurso, devemos repetir esses passos, somente mudando o que iremos pedir para o servidor fazer. Para isso, devemos informar qual o servidor queremos acessar, no nosso exemplo www.google.com.br (que irá ser convertido para um endereço de IP por um servidor de DNS), falando que queremos (GET) a página principal, ou seja GET é um dos verbos definidos pelo protocolo HTTP, e vamos olhar mais a fundo eles no próximo módulo.

HTTP Request and Response

Métodos HTTP (Verbos)

Existem vários métodos HTTP, cada um deles é uma maneira de informar ao servidor o que estamos requisitando. Os mais utilizados são:

- **GET**: O método **GET** é utilizado quando estamos pedindo para o servidor nos retornar algum recurso. Como, por exemplo, quando pedimos a página inicial do Google.
- POST: O método POST é utilizando quando estamos enviando informações ao servidor para que ele faça alguma coisa com esses dados. Por exemplo, quando vamos nos cadastrar no GMAIL, após pedirmos a página onde haverá o formulário(ou seja, utilizando um GET) enviaremos as informações para o servidor com um POST.
- **DELETE**: O método **DELETE** é utilizado, como o próprio nome diz, para deletar alguma coisa.

 Por exemplo, quando temos uma conta num site, e queremos excluir ela, devemos informar um **ID** e fazer uma requisição com o método **DELETE** para o servidor.
- PUT/PATCH: Os métodos PUT ou PATCH é utilizado para atualizar alguma informação que
 foi previamente salva pelo servidor. Por exemplo, quando queremos atualizar nosso endereço
 no cadastro do Gmail, vamos mandar uma requisição com método PUT e as informações para
 que o servidor saiba alterar.

Códigos de status HTTP

Os códigos HTTP servem como uma ferramenta para que saibamos o que aconteceu com a nossa requisição. Estes status sempre são retornados juntamente com a resposta. Os mais conhecidos/utilizados são

- 200: Significa que a nossa requisição funcionou como deveria e que o que pedimos deve ter sido retornado.
- 404: Significa que o recurso que estamos procurando n\u00e3o foi encontrado no servidor, por exemplo, quando pedimos uma p\u00e1gina que n\u00e3o existe no servidor.
- 500: Significa que alguma erro aconteceu no servidor e que ele n\u00e3o pode responder a nossa requisi\u00e7\u00e3o.

Estes são alguns dos mais utilizados, podemos encontrar uma lista mais detalhada em: https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Status □

EXERCÍCIOS DE FIXAÇÃO

Baseado no material desta apostila realize cada uma das tarefas a seguir:

- 1. Para que serve o método GET?
- 2. Para que serve o método POST?
- 3. Para que usamos o método DELETE?
- 4. Qual a semelhança entre os métodos PUT/PATCH?