一、 L^p 空间和Banach空间

1 L^p 空间

 σ -有限测度空间:以X表示底层空间,F表示可测集的 σ -代数, μ 表示测度,那么称 (X, \mathcal{F}, μ) 为 σ -有限测度空间。

 L^p **空间**: 对于 $1 \leq p \leq \infty$, 空间 $L^p(X, \mathcal{F}, \mu)$ 表示满足如下条件的复值可测函数构成的集合。

$$\int_X |f|^p \mathrm{d}\mu < \infty \tag{1}$$

 L^p **范数**: 对于 $f \in L^p(X, \mathcal{F}, \mu)$, 定义其 L^p 范数为

$$||f||_{L^p(X,\mathcal{F},\mu)} = \left(\int_X |f|^p \mathrm{d}\mu\right)^{1/p} \tag{2}$$

1.1 Holder不等式和Minkowski不等式

共轭(conjugate)指数/对偶(dual)指数: 称p,q为共轭指数或对偶指数,如果满足 $1 \leq p,q \leq \infty$,且

$$\frac{1}{p} + \frac{1}{q} = 1\tag{3}$$

定理1.1 Holder不等式: 对于共轭指数 $1< p,q<\infty$,如果 $f\in L^p$ 且 $g\in L^q$,那么 $fg\in L^1$,且

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q} \tag{4}$$

定理1.2 Minkowski不等式: 如果 $1 \leq p < \infty$ 且 $f,g \in L^p$,那么 $f+g \in L^p$,且

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p} \tag{5}$$

1.2 L^p 的完备性

定理1.3: $L^p(X,\mathcal{F},\mu)$ 空间关于范数 $\|\cdot\|_{L^p}$ 是完备的。

1.3 进一步的解释

命题1.4: 如果X为有限正测度集合,且 $p_0 < p$,那么 $L^p \subset L^{p_0}$,且

$$\frac{1}{\mu(X)^{1/p_0}} \|f\|_{L^{p_0}} \le \frac{1}{\mu(X)^{1/p}} \|f\|_{L^p} \tag{6}$$

命题1.5: 如果 \mathbb{Z} 有计数测度,且 $p_0 \leq p$,那么 $L^{p_0} \subset L^p$,且 $\|f\|_{L^p} \leq \|f\|_{L^{p_0}}$ 。