Probability and Statistics Notes

Prabath Peiris

Contents

1	Defi	nitions				
	1.1	Sample Space (S)				
	1.2	Events				
	1.3	Random Variable				
	1.4	Probability Mass Function (pmf)				
2	Lecture 2: (Chapter 4) Conditional Probability					
	2.1	Joint Events				
	2.2	Conditional Probability				
	2.3	Axioms in Conditional Probability				
	2.4	The law of total probability				
	2.5	Statistically independent events				
	2.6	Mutually exclusive events				
	2.7	Probability chain rule				
	2.8	Bayeś Theorem				
	2.9	Bernoulli Sequence				
	2.10	Binomial Probability Law				
	2.11	Geometric Probability Law				
		Multinormal Probability Law				
3	Lecture 3: (Chapter 5) Discrete Random Variable					
	3.1	Discrete Random Variable				
	3.2	Probability Mass Function (pmf)				
	3.3	Poisson Probability Distribution				
	3.4	Approximation of Binomial Probability Mass Function by Pois-				
	2.5	son pmf				
	3.5	Transformation of Discrete Random Variable				

	3.6	Cumulative Distribution Function (CDF)	
		(Distribution function)	10
4	Exp	pected Values for Discrete Random Variables $(E[X] = \mu_x)$	11
	4.1	Expected value of a random variable $E[X]$	11
		4.1.1 Bernoulli Distribution	11
		4.1.2 Binomial Distribution	12
		4.1.3 Poisson Distribution	12
		4.1.4 Geometric Distribution	13
		4.1.5 Gaussian (Normal) Distribution	13
		4.1.6 Rayleigh Distribution	13
		4.1.7 Conditional Distributions	13
	4.2	Not all the PMF have expected values	13
	4.3	Moments of PMF	14
	4.4	Expected $(E[X])$ Value for a Function of a Random Variable .	14
	4.5	Mean Squire Error - MSE	14
	4.6	Variance	14
		4.6.1 Some properties	15
	4.7	Characteristic Function	15
		4.7.1 Expected value using Characteristic function	15
		$4.7.2$ n^{th} moment of a random variable using Characteristic	
		function	16
	4.8	Some Properties of Characteristic function	16
	4.9	Estimating Expected value and the Variance	16
5	Fun	actions of a Random Variable	17
	5.1	Jointly Distributed Random Variables	17
	5.2	Join PMF	17
	5.3	Marginal PMF	17
	5.4	Join CDF	17
6	Two	o Random Variables	18
Ü	6.1	Normal Random Variables	
		6.1.1 mean vector	
		6.1.2 covariance martix	18
	6.2	Conditional Distribution	18

7	\mathbf{Mo}	deling of Photone Detectors	19
	7.1	Contrast	19
	7.2	Rose Model	19
		7.2.1 Signal to Noice ratio	19
	7.3	Detective Quantum Efficiency	19
	7.4	Defining Detector Performance	19
		7.4.1 Statistical	20
		7.4.2 SNR	20

1 Definitions

1.1 Sample Space (S)

The set of all possible outcomes is the sample space S.

1.2 Events

Events are sets of outcomes.

1.3 Random Variable

 $Random\ Variable$ is a function that maps the sample space $\mathcal S$ into a subset of the real line.

1.4 Probability Mass Function (pmf)

probability distribution or probability mass function of a discrete random variable is define for every number x by p(x)

2 Lecture 2: (Chapter 4) Conditional Probability

2.1 Joint Events

- Joint event $A \cap B \ (A \cap B \neq \emptyset)$
- Joint probability $P[A \cap B]$
- \bullet Marginal probability P[B]

2.2 Conditional Probability

Probability of A when probability B given

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \tag{1}$$

 $P[B] \neq 0$

Statistically Independent - P[A] is the same weather or not we know that B has occurred, then A said to be *statistically independent* of the event B.

2.3 Axioms in Conditional Probability

All axioms are in ordinary probability are true in conditional probability

• Axiom 1

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \ge 0$$

• Axiom 2

$$P[S] = \frac{P[S \cap B]}{P[B]} = \frac{P[B]}{P[B]} = 1$$

• Axiom 3

$$P[A \cup C|B] = P[A|B] + P[C|B]$$

(A and C are mutually exclusive)

proof:

$$P[A \cup C|B] = \frac{P[(A \cup C) \cap B]}{P[B]}$$

$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P[B]}$$

$$= \frac{P[A \cap B]}{P[B]} + \frac{P[C \cap B]}{P[B]}$$

$$= P[A|B] + P[C|B]$$

2.4 The law of total probability

$$P[A] = \sum_{i}^{N} P[A|B_i]P[B_i]$$

$$S = \bigcup_{i=1}^{N} B_i \ (B_i \cap B_j = \emptyset, \ i \neq j) \ (B_i \text{ is a partition of } S)$$

proof:

$$P[A] = P[A \cap S]$$

$$= P\left[A \cap \left(\bigcup_{i}^{N} B_{i}\right)\right]$$

$$= P[(A \cap B_{1}) \cup (A \cap B_{2}) \dots \cup (A \cap B_{N})]$$

$$= P[(A \cap B_{1})] + P[(A \cap B_{2})] \dots P[(A \cap B_{N})]$$

$$= P[(A|B_{1})] P[B_{1}] + P[(A|B_{2})] P[B_{2}] \dots P[(A|B_{N})] P[B_{N}]$$

$$= \sum_{i}^{N} P[A|B_{i}] P[B_{i}]$$

2.5 Statistically independent events

A and B are statistically independent, then

$$P[A|B] = P[A]$$

$$P[A \cap B] = P[A]P[B]$$

In general events $E_1, E_2 \dots E_N$ define to be statistically independent if

$$P[E_1E_2...E_N] = P[E_1]P[E_2]...P[E_N]$$

2.6 Mutually exclusive events

$$P[A|B] = \frac{P[A \cap B]}{P[B]} = 0$$

2.7 Probability chain rule

Events A, B, C are statistically independent

$$P[A \cap B \cap C] = P[A|(B \cap C)]P[B|C]P[C]$$

2.8 Bayeś Theorem

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

P[B|A] - Posterior Probability

P[B] - Prior Probability

P[A|B] - Conditional Probability

2.9 Bernoulli Sequence

Bernoulli Trial - Single tossing of a coin with probability p of heads is an example for Bernoulli trial

Bernoulli Sequence - Consecutive independent Bernoulli trials is the Bernoulli sequence

2.10 Binomial Probability Law

$$P[k] = \binom{M}{k} p^k (1-p)^{M-k}$$

M - trials

k - successes

p - probability of successes

P[k] - probability of k successes in M trials

2.11 Geometric Probability Law

$$P[k] = (1 - p)^{k-1}p$$

P[k] - k^{th} appearance of first successes

p - probability of successes

2.12 Multinormal Probability Law

Sequence with independent trials with more then 2 outcomes (coin toss as only 2 outcomes, H and T)

 $S = \{1, 2, 3\}$ - given trial can have a 1, 2 or 3. (for the coin with this will H and T only)

 p_1, p_2, p_3 - probabilities of getting 1,2 or 3 for a trial $(p_1 + p_2 + p_3 = 1)$

M - Trials

Expecting two 1s $(2p_1)$, three 2s $(3p_2)$ and one 3s $(1p_3)$

The probability of getting this combinations within M - trials

$$\binom{M}{2,3,1} p_1^2 p_2^3 p_3^1$$

 ${M\choose 2,3,1}=\frac{M!}{2!3!1!}$ - Multinomial coefficient

3 Lecture 3: (Chapter 5) Discrete Random Variable

3.1 Discrete Random Variable

Random Variable is a function that maps the sample space S into a subset of the real line.

A discrete random variable is an rv whose possible values either constitute a finite set or else be listed in an infinite sequence in which there is a first element, a second element, and so on.

3.2 Probability Mass Function (pmf)

probability distribution or probability mass function of a discrete random variable is define for every number x by p(x)

$$p(x) = P(X = x) = P(\forall \in \mathcal{S} : X(s) = x)$$

Conditions

- $0 \le p(x) \le 1$
- $\bullet \ \sum_{i=1}^{\infty} p(x_i) = 1$

3.3 Poisson Probability Distribution

A random variable X is said to have a Poisson Distribution with parameter $\lambda(\lambda \geq 0)$ if the pmf of X is

$$p(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

 λ is frequently a rate per unit time or per unit area

3.4 Approximation of Binomial Probability Mass Function by Poisson pmf

When $M \to \infty$ and $p \to 0$, Binomial pmf become a Poisson pmf $(\lambda = Mp)$

3.5 Transformation of Discrete Random Variable TODO

3.6 Cumulative Distribution Function (CDF) (Distribution function)

$$F_X(x) = P[X \le x]$$
Note: $P[X \le x] = P[x_1] + P[x_2] + P[x_3] \cdot \cdot \cdot + P[x]$

$$P[a < X < b] = F_X(b^-) - F_X(a^+)$$

$$P[a \le X < b] = F_X(b^-) - F_X(a^-)$$

$$P[a < X < b] = F_X(b^+) - F_X(a^+)$$

Note: a^+ - denotes value just slightly larger than a, and a^- - denotes value just smaller than b

Properties of CDF

- $0 \le F_X(x) \le 1$
- $\bullet \lim_{x \to -\infty} F_X = 0$
- $\bullet \lim_{x \to \infty} F_X = 1$
- if $(x_1 < x_2)$ then $F_X(x_1) \le F_X(x_2)$ CDF is monotonically increasing
- $P(x_1 < Xx_2) = F_X(x_2) F_X(x_1) (x_1 < x_2)$
- $F_X(x^+) = F_X$ where $x_+ = x + \epsilon$ with $\epsilon \to 0, F_X(x)$ is continuous from the right.

4 Expected Values for Discrete Random Variables $(E[X] = \mu_x)$

4.1 Expected value of a random variable E[X]

Expected value of a random variable is the average value of the outcomes of a large number of experiments.

Average value converge to expected value

Expected value of X =expectation of X =average of X =mean of X

$$E[X] = \sum_{i} x_i p_X(x_i)$$

Expected value = best prediction of the outcome of random experiment of a single trial

Expected value analogues to the center of mass of a system of linearly arranged masses.

4.1.1 Bernoulli Distribution

It is a discrete distribution pertains to an experiment which has exactly two outcomes, which may be labeled $\{0,1\}$ or $\{\text{True}, \text{False}\}$, for example. One of the outcomes, usually True or 1, has probability p and the other has probability 1-p.

Expected (mean) value E[X] = pVariance var[X] = p(1-p)

proof:

$$E[X] = \sum_{k=0}^{1} x_i p_X[k]$$
=0.(1 - p) + 1.p
=p

4.1.2 Binomial Distribution

Consider a random walk in which a unit step to the East occurs with probability p and to the West with probability q = 1 - p. After n steps the probability of taking k steps to the East and n-k to the West is (def)

Expected value E[X] = MpVariance var(X)=Mp(1-p)

proof:

$$E[X] = \sum_{k=0}^{M} k p_{X}[k]$$

$$= \sum_{k=0}^{M} k \binom{M}{k} p^{k} (1-p)^{M-k}$$

$$= \sum_{k=0}^{M} k \frac{M!}{(M-k)!k!} p^{k} (1-p)^{M-k}$$

$$= \sum_{k=1}^{M} \frac{M!}{(M-k)!(k-1)!} p^{k} (1-p)^{M-K}$$

$$= Mp \sum_{k'=0}^{M'} \frac{M'!}{(M'-k')!(k'!)} p^{k'} (1-p)^{M'-k'}$$

$$= Mp \sum_{k'=0}^{M'} \binom{M'}{k'} p^{k'} (1-p)^{M'-k'}$$

$$= Mp$$

4.1.3 Poisson Distribution

(def) Expected value $E[X] = \lambda$ Variance = λ Standard Diviation = $\sqrt{\lambda}$

4.1.4 Geometric Distribution

(def:) Expected value $E[X] = \frac{1}{p}$

4.1.5 Gaussian (Normal) Distribution

$$f_X(x;\mu.\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = E[X]$$
 and $\sigma^2 = \text{var}[X]$

CDF is related to error function

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

4.1.6 Rayleigh Distribution

TODO

4.1.7 Conditional Distributions

TODO

4.2 Not all the PMF have expected values

- * Discrete random variables with a finite number of values always have E[X]
- * Countably infinite numbers of values, a discrete random variable **may not** have an E[X]

Some properties of E[X]

- E[X] is locate at the "center" of the PMF if PMF symmetric about the same point
- IT does NOT generally indicate the most probable value of the random variable
- More than one PMF may have the same E[X] value

4.3 Moments of PMF

- First Moment Expected value E[X]
- Second Moment $E[X^2]$
- Third Moment -

4.4 Expected (E[X]) Value for a Function of a Random Variable

Function Y = g(X)Expectation value $E[Y] = \sum_i y_i p_Y[y_i]$

Using function g(x):

$$E[g(x)] = \sum_{i} g(x)p_{Y}(y_{i})$$

Expectation operator E is linear

$$E[a_1g_1(X) + a_2g_2(X)] = a_1E[g_1(X)] + a_2E[g_2(X)]$$

Expectation operator does not commute

$$E[g(X)] \neq g(E[X])$$

4.5 Mean Squire Error - MSE

$$E[(X-b)^2]$$

X - true out come of an experiment b - prediction

4.6 Variance

The variance of a random variable is the expected value of the squared difference from the mean.

$$var(X) = E[(X - E[X])^{2}]$$
$$var(X) = E[X^{2}] - E[X]^{2}$$

4.6.1 Some properties

$$var(c) = 0$$
$$var(X + c) = var(X)$$
$$var(cX) = c^{2}var(X)$$

Variance operator is a nonlinear operator

$$var(g_1(x) + g_2(x)) \neq var(g_1(x)) + var(g_2(x))$$

4.7 Characteristic Function

Characteristic Function use to calculate moments of random variables Characteristic Function of a random variable X

$$\phi_X(\omega) = E[e^{i\omega X}] = \sum_{k=1}^{\infty} p_X[k]e^{i\omega k}$$

$$e^{i\omega X} = \cos(\omega X) + i\sin(\omega X)$$

$$\phi_X(\omega) = E[e^{i\omega X}]$$

$$= E[\cos(\omega X)] + iE[\sin(\omega X)]$$

$$= \sum_i p_X[x_i]\cos(\omega X) + \sum_i p_X[x_i]\sin(\omega X)$$

$$= \sum_i p_X[x_i]e^{i\omega X}$$

4.7.1 Expected value using Characteristic function

$$\frac{d\phi_X(\omega)}{d\omega} = \sum_{k=-\infty}^{+\infty} p_X[x_i](ik)e^{i\omega k}$$

$$E[X] = \frac{1}{i} \frac{d\phi_X(\omega)}{d\omega} \Big|_{\omega=0} = \sum_{k=-\infty}^{+\infty} p_X[x_i](k)e^{i\omega k}$$
(2)

4.7.2 n^{th} moment of a random variable using Characteristic function

$$E[X^n] = \frac{1}{i^n} \frac{d^n \phi_X(\omega)}{d\omega^n} |_{\omega=0}$$

4.8 Some Properties of Characteristic function

• $\phi_X(\omega)$ always exists since

$$|\phi_X(\omega)| < \infty$$

• $\phi_X(\omega)$ is periodic with period 2π

$$\phi_X(\omega + 2\pi m) = \phi_X(\omega)$$

• The PMF may be can recover from the characteristic function.

$$p_X[k] = \int_{-\pi}^{\pi} \phi_X(\omega) e^{-i\omega k} \frac{d\omega}{2\pi} (-\infty < k < \infty)$$

• Convergence of characteristic function guarantees convergence of PMF

4.9 Estimating Expected value and the Variance

$$E[X] = \sum_{k=1}^{N} k p_{X}[k] = \sum_{k=1}^{N} k(\frac{N_{k}}{N}) = \frac{1}{N} \sum_{k=1}^{N} k N_{k}$$

$$var(X) = \frac{1}{N} \sum_{k=1}^{N} x_i^2 - (\frac{1}{N} \sum_{k=1}^{N} x_i)^2$$

5 Functions of a Random Variable

5.1 Jointly Distributed Random Variables

Two random variables that are defined on the $same \ sample \ space \ S$ are said to be $jointly \ distributed$

5.2 Join PMF

$$p_{X,Y}[x_i, y_j] = P[X(s) = x_i, Y(s) = y_j]$$

Properties

• Range of values of joint PMF

$$0 \le p_{X,Y}[x_i, y_j] \le 1$$

• Sum of values of joint PMF

$$\sum_{i}^{N_X} \sum_{j}^{N_Y} p_{X,Y}[x_i, y_j] = 1$$

5.3 Marginal PMF

If the join PMF known, then PMF for X and Y $(p_X[x_i], p_Y[y_i])$ can be determine

$$p_X[x_i] = \sum_{j=1}^{\infty} p_{X,Y}[x_k, y_j]$$

$$p_Y[y_i] = \sum_{i=1}^{\infty} p_{X,Y}[x_i, y_k]$$

Join PMF ⇒ marginal PMSs Marginal PMFs ⇒ marginal PMSs

5.4 Join CDF

$$F_{X,Y}(x,y) = P[X \le x, Y \le y]$$

6 Two Random Variables

6.1 Normal Random Variables

suppose that x and y are normal random variables. The vector $z = [x, y]^T$ is a random point in the plane that can be described by a *mean vector* and *covariance matrix*

6.1.1 mean vector

$$\mu = E[z] = \left[\begin{array}{c} E[x] \\ E[z] \end{array} \right] = \left[\begin{array}{c} \mu_x \\ \mu_y \end{array} \right]$$

6.1.2 covariance martix

$$\Sigma = \begin{bmatrix} E[(x - \mu_x)^2] & E[(x - \mu_x)(y - \mu_y)] \\ E[(x - \mu_x)(y - \mu_y)] & E[(y - \mu_y)^2] \end{bmatrix} = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_x^2 & r\sigma_x\sigma_y \\ r\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix} = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$

6.2 Conditional Distribution

$$F_z(z|M) = \frac{P(z \le z|M)}{P(M)}$$

7 Modeling of Photone Detectors

7.1 Contrast

Irradiance - power of electromagnetic radiation per unit area at a surface. Brightness of a Object is

$$C = \frac{|\bar{q}_b - \bar{q}_o|}{\bar{q}_b}$$

 \bar{q}_o - Irradiance of the object

 \bar{q}_b - Irradiance of the background

7.2 Rose Model

7.2.1 Signal to Noice ratio

$$SNR_{Rose} = \frac{|\bar{q}_b - \bar{q}_o|A}{\sqrt{A\bar{q}_b}} = C\sqrt{A\bar{q}_b}$$

7.3 Detective Quantum Efficiency

DQE - Ability to detect a random signal against the background of random radiation.

$$DQE = \frac{SNR_{ouput}^2}{SNR_{input}^2} = \frac{(\Delta X)^2 \sigma_Y^2}{(\Delta Y)^2 \sigma_X^2} = \frac{G\sigma_X^2}{\sigma_Y^2}$$

7.4 Defining Detector Performance

- Statistical
- SNR
- Minimum integration time

7.4.1 Statistical

DEQ is define as the ratio of the variance of the tw estimates.

$$DEQ = \frac{variance - of - the - ideal - estimator}{variance - of - actual - estimator} = \frac{\sigma_{q-ideal}^2}{\sigma_{q-actual}^2}$$

 ${\rm Maximum~DQE}=1$

7.4.2 SNR

$$SNR = \frac{\bar{X}}{\sigma_X}$$

$$\bar{X} = E[X]$$