Для всех задач:

 Имя входного файла:
 input.txt

 Имя выходного файла:
 output.txt

 Ограничение по памяти:
 64 Мб

Ограничение по времени: 1 секунда на тест

 Максимальная оценка за задачу:
 10 баллов

 Время сдачи:
 на полный балл:
 по 26.06.2013

-20% с **27.05** по **31.05.**2013 -50% после **31.05.2013**

+10% TO 16.05.2013

Задача 1. Компоненты связности (обход в глубину)

Вам задан неориентированный граф с N вершинами и M ребрами. В графе отсутствуют петли и кратные ребра. Определите компоненты связности заданного графа.

Входные данные

Граф задан во входном файле следующим образом: первая строка содержит числа N и M ($1 \le N \le 20000$, $1 \le M \le 200000$). Каждая из следующих M строк содержит описание ребра — два целых числа из диапазона от 1 до N — номера концов ребра.

Выходные данные

На первой строке выходного файла выведите число L — количество компонент связности заданного графа. На следующей строке выведите N чисел из диапазона от 1 до L — номера компонент связности, которым принадлежат соответствующие вершины. Компоненты связности следует занумеровать от 1 до L произвольным образом.

Пример

input.txt	output.txt
4 2	2
1 2	1 1 2 2
3 4	

Примечание В тестах 1 - 10 выполняется ограничение $N \le 1000$.

Задача 2. Лабиринт (обход в ширину)

Для заданного лабиринта найти кратчайший путь от входа до выхода.

Входные данные

В первой строке входного файла находятся целые числа M и N ($1 \le M$, $N \le 100$) — высота и ширина лабиринта. Каждая из следующих M строк содержит N символов, при этом символ '.' обозначает пустую клетку, символ ' \mathbf{x} ' — блок, символ ' \mathbf{s} ' — начальную клетку, символ ' \mathbf{r} ' — конечную клетку.

Выходные данные

Выведите в выходной файл минимальное число шагов, за которое можно добраться от начальной клетки до конечной, каждый раз переходя на соседнюю по стороне клетку и не ступая на блоки, либо число -1, если это невозможно.

Пример

input.txt	output.txt
6 7	11
X.	
.XXF.	
XXXX.	
.X	
.XX	
SX	

Задача 3. Шлю я за пакетом пакет... (алгоритм Дейкстры)

В базе данных роутера хранится информация о нескольких серверах, некоторые из них связаны между собой напрямую, другие — только опосредованно. Получая электронное письмо от сервера с номером M (отправителя), предназначенное для сервера с номером N (получателя), роутер должен найти в своей базе данных самый короткий путь пересылки этого письма по сети.

Напишите программу, которая, зная информацию о всевозможных соединениях и их длительности, осуществляла бы поиск самого короткого пути пересылки и выдавала бы информацию о времени, за которое письмо преодолеет весь этот путь.

Входные данные

В первой строке входного файла содержится одно натуральное число N — количество серверов, информация о которых записана в базе данных роутера ($1 \le N \le 100$).

Во второй строке — два целых числа $1 \le S_1$, $S_2 \le N$, разделенные пробелом — номера сервераотправителя и сервера-получателя. Начиная с третьей строки и до конца файла, записаны имеющиеся между серверами активные каналы связи и скорость передачи данных по этим каналам. Сначала записаны номера серверов $1 \le S_i$, $S_j \le N$, а затем скорость передачи данных между ними — целое число $0 \le K \le 1000$. Все числа в одной строке разделены пробелами.

Выходные данные

В выходной файл нужно записать одно целое число — время, необходимое письму для прохождения по самому быстрому пути связи. Если такого пути нет (например, на промежуточном сервере произошла авария), то необходимо выдать сообщение **no**.

Примеры

input.txt	output.txt
4	11
4 1	
1 2 10	
1 3 2	
2 4 1	
3 4 10	
4	no
1 4	
1 2 100	
1 3 20	
2 3 57	

Задача 4. Фиолетовое такси (алгоритм Флойда)

"Фиолетовое такси" предложило клиентам новую услугу — теперь можно узнать кратчайшее время проезда для любых мест отправления и назначения. Однако диспетчеры не успевают отвечать на все запросы.

Вас просят написать программу, которая поможет диспетчерам быстро получать время пути между двумя пунктами.

Входные данные

В первой строке входного файла записаны два числа: N ($1 \le N \le 300$) — количество мест, на которых люди садятся и выходят из такси, и M ($1 \le M \le 30000$) — количество дорог, их соединяющих. Далее в M строках описываются дороги, по 3 числа в каждой строке — номера двух пунктов, соединенных этой дорогой и время t_i пути в минутах ($1 \le t_i \le 10000$). Все дороги — двусторонние. Далее в одной строке записано число K ($1 \le K \le 100000$) — количество запросов. В следующих K строках даны запросы — номера пункта отправления и пункта назначения. Любую пару мест может соединять несколько дорог.

Задание 14

Выходные данные

Для каждого запроса нужно на отдельной строке вывести одно число — время пути в минутах. Гарантируется, что все места соединены между собой.

Пример

<i>input.txt</i>	output.txt
5 6	12
4 2 2	8
1 4 4	
2 3 6	
1 5 7	
2 1 6	
4 3 9	
2	
1 3	
4 3	