2/2

3/3

2/2

4/4

Note: 20/20 (score total: 26/26)

+25/1/12+

IPS - S7A - Jean-Matthicu Bourgeot

QCM2

	Ι	PS
Quizz	$d\mathbf{u}$	13/11/2013

Nom	et prénom	:								
45.	MEVEL	Vincent	 							

... des températures.

... des courants.

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.
Question $1 \bullet $ Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
approximation successives - flash - simple rampe - double rampe
double rampe - flash - approximation successives - simple rampe
flash - approximation successives - double rampe - simple rampe
flash - approximation successives - simple rampe - double rampe
approximation successives - flash - double rampe - simple rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant
V_G \bigcap
Question $3 \bullet$ Quelle est la capacité d'un condensateur plan? On note : • ϵ : Permittivité du milieu entre les armatures. • S : Surface des armatures. • d : Distance entre les armatures.
$\Box C = \frac{\epsilon}{Sd} \qquad \Box C = \epsilon dS \qquad \Box C = \frac{\epsilon d}{S} \qquad \Box C = \frac{\epsilon S}{d}$
Question 4 •
Le capteur sur la photo ci-contre permet de mesurer

... des résistances.

...des différences de températures.

... des différences de potentiels.

... des potentiels.

	Question 5 • Pourquoi faire du sur-échantillonnage ?
2/2	Pour supprimer les perturbations de mode commun. Pour réduire le bruit de quantification Pour améliorer l'efficacité du filtre antirepliement.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	La course électrique. La longueur du potentiomètre La taille des grains de la poudre utilisée La résistance maximale du potentiomètre Le pas de bobinage
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des grands déplacements des courants des flux lumineux des déformations des températures des résistances.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des déplacement linéaire des flux lumineux des températures des courants des déplacements angulaires
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
3/3	Le gain est fixé par une seule résistance. De rejeter les perturbations de mode différentiel. Les voies sont symétriques. Les impédances d'entrées sont élevés. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C=1 \mathrm{ms}$. Quel est le pas de quantification de ce CAN ?
1/1	☐ 1.25 V ☐ 78 mV ☐ 10 mV.s ⁻¹ ☐ 80 mV.s ⁻¹
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	