北京理工大学 2016-2017 学年第二学期

《工科数学分析》(下)期末试题(A卷)

班级	学号	姓名

(试卷共6页,十个大题,解答题必须有过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)

题	_	\equiv	三	四	五.	六	七	八	九	+	总分
号											
得											
分											
签											
名											

- 一、填空题(每小题 4 分, 共 20 分)
- 1. 过点 M(1,0,-1) 且平行于向量 a=(2,1,1) 和 b=(1,-1,0) 的平面方程为_____
- 2. 函数 u = x + y + z 在球面 $x^2 + y^2 + z^2 = 1$ 上点 $P(x_0, y_0, z_0)$ 处,沿球面在该点的外法线方向的方向导数为______.
- 4. 已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$,计算 $\int_L x dl =$ ______.
- 5. 设常数 $\lambda > 0$, 且级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛, 则级数 $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{|a_n|}{\sqrt{n^2 + \lambda}}$ 是______ 收敛.
- 二、计算题(每小题5分,共20分)
- 1. 求点 M(1,0,2) 到直线 $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-1}{1}$ 的距离.
- 2. 设 $z = y^x \ln(xy)$, 求 $\frac{\partial^2 z}{\partial x^2}$.
- 3. 计算 $I = \iint_S (x^2 + y^2) dS$, S 为锥面 $z^2 = 3(x^2 + y^2)$ 被平面 z = 0 及 z = 3 所截得的部分.

- 三、(8分) 求曲面 $x = u \cos v$, $y = u \sin v$, z = 2v 在 u = 2, $v = \frac{\pi}{4}$ 处的切平面方程.
- 四、 $(6\, \mathcal{G})$ 设 Ω 是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与抛物面 $z = 2 x^2 y^2$ 所围成的均匀立体 (密度 $\mu = 1$),求 Ω 对于 z 轴的转动惯量.
- 五、(8分) 求坐标原点到曲线 Γ : $\begin{cases} x^2 + y^2 z^2 = 1 \\ 2x y z = 1 \end{cases}$ 的最短距离.
- 六、(8 分) 设 $\varphi(x)$ 是 $(-\infty,+\infty)$ 内不取零值的可微函数, $\varphi(0)=1$.已知

 $\varphi(x)(2xy+x^2y+\frac{y^3}{3})dx+\varphi(x)(x^2+y^2)dy$ 是某二元函数u(x,y)的全微分.

- (1) 求 $\varphi(x)$ 满足的微分方程及 $\varphi(x)$ 的表达式; (2)求u(x,y)的表达式.
- 七、 $(8 \, f)$ 求幂级数 $\sum_{n=1}^{\infty} \frac{2^n}{2n-1} x^{2n}$ 的收敛域及和函数.
- 八、(8分) 设 f(x) 是周期为 2π 的周期函数.它在 $[-\pi,\pi)$ 上的表达式为 f(x)=x,

f(x) 展开的傅里叶级数为 $\sum_{n=1}^{\infty} b_n \sin nx$, 且 $S(x) = \sum_{n=1}^{\infty} b_n \sin nx$, 求 b_3 及 $S(\pi)$.

- 九、(8 分) 计算 $I = \iint_S xy^2 dydz + yx^2 dzdx + zdxdy$, 其中 S 为曲面 $z = x^2 + y^2$ (0 ≤ z ≤ 1) 的上侧.
- 十、(6分)流速 $\vec{v} = \{x^3, y^2, z^4\}$ 的不可压缩的密度为 1 的流体,流过由 $z = 4 (x^2 + y^2) = z = 1 \frac{1}{4} (x^2 + y^2)$ 所围立体,有平行于xoz面的平面截此立

体,问单位时间内沿 y 轴方向通过哪个截面的流量最大?