

大学计算机基础

(理科类)

第11讲 数据可视化

北京航空航天大学

目录

11.1 数据可视化基础

11.2 使用Matplotlib绘制数据图形

本讲重点和难点

重点

- Matplotlib的使用方法
- 掌握折线图的绘制
- 掌握柱状图的绘制

难点

■ 如何选择合适的可视化图形?

11.1 数据可视化基础

北京航空航天大学

数据可视化技术

数据可视化技术: 将数据集中每一个数据项作为单个图元元素

(如柱形、折线、气泡、圆点、扇面) 表示,同时将数据的各个

属性值以多维数据的形式表示,可以从不同的维度观察数据,从

而对数据进行更深入的观察和分析

- 数据可视化技术应用领域
 - ◆ 数据采集
 - ◆ 数据分析
 - ◆ 数据管理

- ◆ 数据挖掘
- ◆ 科学计算结果展示
- ◆ 科技论文撰写

典型图形展示方式

爆炸饼切片图

高低图

带状图

OHLC Chart

蛛网图 (雷达图)

多窗格图

典型图形展示方式(续)

气泡图

堆叠柱状图

箭头图

| 1200 | 1 pm | 1,000 mg max | 1,000

折线图

带缩放窗口的区域图

1、柱状图

1、柱状图 (Bar Chart)

- ◆ **柱状图**是一种以长方形的**长度**为变量的表达图形的统计报告图, 由一系列高度不等的**纵向条纹**表示数据分布的情况,用来比较 两个或两个以上的数值(不同时间或者不同条件下)
- ◆ 通常用于较小的二维数据集分析,只比较其中一维数据

用途:主要用于比较每个数据点的大小

柱状图示例

班级平均成绩的柱状图

各年销售额柱状图

■ 如果有**多个数据集**,且是**黑白打印**,则每个数据集的柱 状图最好选择不同的底纹显示,以便区分不同的数据集

2、折线图

折线图 (Line Chart)

- ◆ 折线图用一个单位长度表示一定的数值,根据数值的大小描出各数据点(每个数据点包括两个值:x和y)的位置;然后用线段把各点顺次连接起来,形成一条连续的折线
- ◆ 折线图不但可以表示数据项的具体数值,还能清楚地反映事物**变化** 的情况
- ◆ 适合二维的大数据集,尤其是那些**趋势**比单个数据点更重要的场合

折线图示例

滤波前后实验数据比较折线图

3、饼图

3、饼图 (Sector Graph, Pie Graph)

- ◆ <mark>饼图用于显示一个数据系列</mark>中各数据项的大小,以及每项数值与 各项总和的比例关系。饼图中的数据点反映了某个部分占整体的 比重,显示为整个饼图的百分比
- ◆ 饼图适合于二维的数据集
- ◆ 饼图以二维或三维格式显示每一数值相对于总数值的大小。可以 手动拖出饼图的扇面来强调它们
 - ◆ 用途: 主要用于观察每项数据在整个数据集里所占的比例

饼图示例

2012年贵州省前三季度GDP

2012年贵州省前三季度GDP饼图

13

優火市

22%

4、散点图

4、散点图 (Scatter Diagram)

- ◆ 散点图将数据序列显示为一组点。值由点在图表中的位置表示, 类别由图表中的不同标记(颜色或图形)表示
- ◆ 当需要观察**因变量随自变量**而变化的大致**趋势**,或者大规模数据的**聚合特征**时,宜采用散点图
- ◆ 适用于二维或三维数据集;当用于三维数据集时,其中只有两维需要比较,另一维用不同标记表示
- ◆ 用途: 大规模数据的比较,便于观察聚合特征

散点图示例

【例】分析各国居民的预期寿命与医疗支出是否存在线性关系。三个维度分别为**国家、医疗支出、预期寿命**,只有后两个维度需要比较

结论:并不是医疗支出 占整个GDP的比例越大, 预期寿命就越长

5、雷达图

- 5、雷达图(蛛网图) (Radar Chart, Spider Chart)
 - ◆ **雷达图**将不同数据系列的各个数据项画在一个圆形图的不同轴向上,各数据项的数值大小通过**半径**的大小来区分,从而能够直观比较不同数据系列的同一个数据项的大小。
 - ◆ 适用于多维数据(四维以上),且每个维度必须可以排序
 - ◆ 局限:数据系列最多不宜超过7个,否则无法辨别,因此适用场合有限
 - ◆ 用途: 常用于比较不同数据系列的多个属性值

雷达图示例

【例】比较2011-12赛季迈阿密热火队首发的五名篮球选手在比赛中 对球队的贡献。除了姓名,每个数据系列有**五个维度**,分别是**得分、**

篮板球、助攻、抢断、封盖。

同一数据序列的所有属性值所围成的图形用某种颜色表示——采用**不**同的颜色区分不同的数据系列

典型图形展示方式的比较

	图表	维度	特点
	柱状图	二维	适用于小数据集,侧重于比较每个数据点的大小
	折线图	二维	适用于 <mark>较大</mark> 的数据集,侧重于比较同一数据集整个数据走势或不同数据集的 <mark>趋势</mark>
	饼图	二维	侧重于反映 <mark>部分与整体的比例</mark> 关系
	散点图	二维或三维	有两个维度需要比较。适用于 大规模 数据集,便 于观察 <mark>聚合</mark> 特征或因变量随自变量变化的趋势
养养	雷达图	四维以上	适用于小数据集,常用于比较不同数据系列的多 个属性值。数据系列最好不超过7个

常用的数据可视化软件:(1)Excel

■ 常用的数据可视化软件有Excel、Matlab和Matplotlib等

(1) Excel

- ◆ 美国微软公司Office套件中软件之一,一个功能强大的电子表格软件
- ◆ 具有强大的**数据输入、编辑、计算与分析处理**功能
- ◆ **绘图功能**:将数据用**表格**及各种**统计图、透视图**的形式表示
- ◆ 柱形图、折线图、饼图、条形图、面积图、散点图、股价图、曲面图、 圆环图、气泡图、雷达图
- ◆ 不足:但Excel的绘图功能相对弱小,展示方式比较单调,难以满足科学计算中丰富的展示要求

(2) MATLAB

(2) MATLAB

- 美国Mathworks公司开发的商业数学软件
- 用于**算法开发、数据可视化、数据分析**以及**数值计算**的高级技术 计算语言和交互式环境
 - ◆ **功能**:数值计算、绘图、符号计算、系统建模、仿真与分析
 - ◆ **优势**: 强大的**矩阵计算**以及**仿真**能力
 - ◆ 丰富的图形绘制功能:可以绘制各种二维曲线和图形,三维图形(三维线图、网线图、曲面图)
 - ◆ **不足**:需要基于自身的**脚本语言**开发程序,给使用者提出了较高的使用要求

(3) Matplotlib

(3) Matplotlib

- 基于Python的**第三方绘图库**,它提供了匹敌(甚至超过)MATLAB的 **专业级科学计算结果展示**能力
- 实际上是一套**面向对象**的绘图库,所绘制图表中的每个**绘图元素**(折线、柱形、x轴标签、y轴标签、图标题……),在内存中都有一个对象与之对应
- 通过matplotlib.pyplot模块提供了一套绘图API(应用程序接口)
 - ◆ 用户只需调用pyplot模块所提供的函数,就可以实现快速绘图以及设置

- Matplotlib风格与Matlab很相似,同时继承了Python简单明了的风格,可以很方便地绘制各种二维和三维图形
 - ◆ 二维曲线/折线图
 - ◆ 柱状图
 - ◆ 散点图
 - ◆ 等高线图
 - ◆ 灰度图

- ◆ 饼图
- ◆ 量场图 (Quiver Plots)
- ◆ 极轴图
- ◆ 三维图

NumPy: 科学计算基础库

- 使用Matplotlib 绘图,有时还需要利用NumPy库生成数据
- NumPy的主要功能
 - ◆ 可以创建一维、二维、N维数组,支持N维数组运算
 - ◆ 内置许多ufunc (通用) 函数
 - ✓ 分为一元func,对一个数组进行运算的函数。如abs:计算绝对值,sqrt:计算各元素的平方根,square:计算各元素的平方,三角函数cos,sin等
 - ✓ **二元func**, 对**两个数组**进行运算的函数。如add: 两个数组对应元素相加, subtract: 两个数组对应元素相减......
 - ◆ 处理**大型矩阵**,成熟的广播函数库,矢量运算
 - ◆ 线性代数,傅里叶变换、随机数生成
 - ◆ 提供用于读写硬盘上基于数组的数据集的工具
 - ◆ 提供用于将C、C++、Fortran代码集成到Python的工具

matplotlib.pyplot模块

Matplotlib通过matplotlib.pyplot模块来提供绘图功能

- matplotlib.pyplot模块提供了一批操作和绘图函数(方法),如创建绘图区域、绘制折线图、添加标注或修改坐标轴等
 - ◆ figure函数用于创建一个全局绘图区域
 - ◆ bar函数用于绘制柱状图
 - ◆ plot函数用于绘制折线图
 - ◆ xlabel函数用于用户设置坐标系X轴的说明(x轴标签)
 - ◆ ylabel函数用于用户设置坐标系Y轴的说明 (y轴标签)

从Matplotlib的官网,可以查阅所有其支持的绘制函数

matplotlib.pyplot模块的主要方法

序号	方法	描述	
1	annotate	为指定数据点添加一段注解文字	
2	axes	为figure对象添加一个axe,即添加一个新的子图	
3	bar	绘制柱状图	
4	figure	创建一个绘图对象,类似于创建一张画布	
5	fill	在指定多边形内部填充颜色	
6	grid	控制axe的栅格的显示与关闭	
7	legend	生成 <mark>图例</mark> 说明	
8	pie	绘制饼图	
9	plot	在当前axe中绘制 曲线 或者 离散数据点	
10	polar	绘制极坐标图	
11	sca	设置当前活动axe	

matplotlib.pyplot模块的主要方法(续)

序号	方法	描述
12	subplot	在全局绘图区域内创建子绘图区域
13	text	为当前axe添加文字描述
14	title	为当前axe添加标题
15	xlabel	为当前axe添加x轴标签
16	xlim	为当前axe添加x轴上限、下限
17	xscale	为当前axe设置x轴尺度
18	xticks	为当前axe设置x轴的刻度
19	ylabel	为当前axe添加y轴标签
20	ylim	为当前axe添加y轴上限、下限
21	yscale	为当前axe设置y轴尺度
22	yticks	为当前axe设置y轴的刻度

二维图形可能包含的元素

■ 一个图表中一般包括哪些元素? 如何设置?

- ◆ 图标题 (title函数)
- ◆ x轴标签 (xlabel函数)
- ◆ y轴标签 (ylabel函数)
- ◆ x轴记号/刻度 (xticks函数)
- ◆ y轴记号/刻度 (yticks函数)
- ◆ 文本标注(text函数)
- ◆ 颜色 (plot函数或bar函数中的color参数)
- ◆ 图例 (legend函数)

二维图表示例 ΣS **™** Figure 1 图标题 sinx和cosx曲线 1.0 cosx sinx 图例 v=cosx y=sinx 0. 5 文本标注 纵轴坐标记号 0.0 y轴标签 -0.5 -1. 0 L x axis 横轴坐标记号

11.2 使用Matplotlib 绘制数据图形

北京航空航天大学

11.2.1 绘制折线图

- 会制折线图,调用matplotlib.pyplot模块中的plot函数
- plot函数用来绘制二维折线/曲线,或者绘制离散的数据点
- 其用法与MATLAB二维曲线绘图指令非常相似

格式 plot(x,y,type)

如: plt.plot(x1, y1, 'ko-') #绘制离散数据点,黑色,形状为实心圆点;绘制连续曲线,线形为实线

或: plot(X, C, color="blue", linewidth=1.0, linestyle="-", label="cosx") #label指定了图例的文字说明

plot函数的参数

输入参数

x: 数据点的横坐标值, 列表、元组或数组

y: 数据点的纵坐标值, 列表、元组或数组

type: 绘图样式 (颜色, 离散数据点的形状, 曲线的线形、线宽等)

◆ 方法一: 用字母和符号来表示绘图样式(并用单引号或双引号括起来)

如: plt.plot(x1, y1, 'ko-') #黑色, 离散数据点形状为实心圆点, 曲线

线形为实线

◆ 方法二: 用参数指定绘图样式

color (颜色), linewidth (线宽), linestyle (曲线的线形), label (图例的文字说明)

如: plt.plot(x1, y1, color='black',marker='o',linestyle='-')

type参数指定绘图样式

- type参数指定绘图样式
 - ◆ **颜色**: b(蓝)、g(绿)、r(红)、c(青)、m(紫)、y(黄)、k(黑)、w(白)
 - ◆ 离散数据点形状: .(黑点)、+(加号)、*(星号)、o(实心圆点)、d(菱形)、p(五角星)、h(六角星)、x(X号)、s(方块)、...
 - ◆ 连续线型: -(实线)、:(虚线)、-.(点划线)、--(虚划线)例如: 'ko-' : 黑色线, 圆形数据点, 实线

绘制折线图的应用场合

■ 两种情况

- ◆ (1) 已知一系列数据点(x,y),要求绘制由所有数据点连成的 折线图
 - ✓ 直接使用plot函数绘制
- ◆ (2) 已知x的范围[a,b]和某一函数f(x),要求绘制函数曲线
 - ✓ 在X轴上[a,b]区间内利用NumPy库提供的arange函数或linspace 函数,生成一组x坐标值
 - ✓ 根据函数,对应各x值**计算**y值,得到一组数据点(x,y)
 - ✓ 再利用plot函数绘制

教材【微实例5.6】绘制折线图示例1

- ◆ (1) 已知一系列数据点(x,y), 要求绘制由所有数据 点连成的折线图
- 教材 【微实例5.6】 某毕业班6个学期期末语文成绩绘制。
- 某学校统计了毕业班过去6个学期的期末考试成绩,某班1~6学期的语文成绩平均分为[78,85,80,82,79,89],请绘制出该班的语文成绩的折线图。

【微实例5.6】程序

微实例5.6-line.py

(1) 导入三方库

import matplotlib.pyplot as plt #导入matplotlib.pyplot模块,别名取为plt

(2) 为了在生成的图像中正确显示中文,需要设置字体属性

from matplotlib.font_manager import FontProperties #导入FontProperties函数 #设置字体对象,本例选择的是简宋字体,字号是14

font = FontProperties(fname=r''c:\windows\fonts\simsun.ttc'', size=14)

(3) 用列表存储(x,y)数据

用元组也可以

x1 = [1,2,3,4,5,6]y1 = [78,85,80,82,79,89]

(4) 绘制折线图

plt.plot(x1, y1, 'ro-',linewidth=2.5)

使用库名.函数名()调用模块中的函数

【微实例5.6】程序(续)

必须指定字体属性

(5) 美化图表
plt.xlabel('学期、fontproperties=font) #设置x轴标签(x轴含义)
plt.ylabel('分数', fontproperties=font) #设置y轴标签(y轴含义)
plt.title('语文成绩变化趋势图', fontproperties=font) #设置图标题

plt.ylim(50,+100)

#设置纵轴的上下限

plt.show()

#使图在屏幕上显示

绘制折线图——子图

■ 问题: 怎样在一张图纸上绘制多幅图形 (每 个有独立的坐标系),以进行比较?

【例11.1】绘制折线图示例2

◆ (2) 已知x的范围[a,b]和某一函数f(x), 要求绘制函数曲线

【例11.1】在2张子图上绘制函数y=cos(2 π x) 和y=cos(2 π x) *e-x在区间[0.0, 5.0]内的曲线。分别在两条曲线的旁边添加文字标注。

【例11.1】子图样式

技巧: 如何在一张图表中绘制多个子图?

- 有时候,需要在同一图形窗中绘制多幅不同坐标系中的图形,以进行对比
- 两种方法: 使用plt的subplot()函数或subplots()函数
- subplot()函数将整个绘图区域等分为numRows行*numCols列个子区域,然后按照从左到右、从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1
 - ◆ 创建子绘图区域后,即在该语句的下面编写绘制曲线的语句, 就是在该子图中绘图

subplot函数的用法

subplot函数的调用形式

subplot(numRows, numCols, plotNum)
subplot函数每次只创建一张子图,通过
plotNum参数指明子图的编号(即位置)

1	2	3
4	5	6

◆ 在例11.1-subplot.py程序中:

```
plt.subplot(2,1,1) # 创建子图1 plt.plot(x1, y1, 'kx-') #绘制离散点和连续曲线
```

• • • • •

plt.subplot(2,1,2) # 创建**子图**2 plt.plot(x2, y2, 'ro-') #绘制离散点和连续曲线

subplot函数的用法(续)

■ subplot函数的参数

(1) 输入参数

numRows:子图的行数,默认值为1

numCols:子图的列数,默认值为1

plotNum: 指明图样放在哪个子区域中

(2) 返回值: (fig, ax)元组

fig: matplotlib.figure.Figure对象(绘图区域)

ax: 所创建的Axes对象(子图),可以将它用变量保存起来,然后

用sca()函数交替让它们作为当前Axes对象,并调用plot()在其中绘图

技巧:如何生成一组x值?

- 利用Matplotlib绘制某个函数的图形,首先需要创建一个一维数组来存储一组x坐标值
 - ◆ 方法一: 利用numpy提供的arange函数,通过指定开始值、终值和步长(均可以是浮点数)来创建。注意数组不包括终值!
 - ◆ 方法二:利用numpy提供的linspace函数,通过指定开始值、终值和元素个数来创建。通过endpoint关键字指定是否包括终值, 缺省为包括终值

arange函数的用法

arange函数的用法

◆ 在区间[<**开始值**>,<**终值**>]之间以<**步长**>为步长生成一个包含等间距 的若干个元素的**数组**

格式 arange(<开始值>,<终值>,<步长>)

>>> import numpy as np

>>> np.arange(0,1,0.1)

array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) 此函数在区间[0,1]之间以0.1为步长生成一个**数组**。

◆ 第三个参数为**步长,缺省时为1。也可以为负数**

>>> np.arange(0,10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

range函数

range函数

- ◆ range函数是Python**内建函数**,不必导入库
- ◆ 用于生成指定取值范围(整数)内的若干个整数,指定的范围包含下限,但不包括上限
- ◆ 下限为0时,可以省略。第三个参数为**步长,缺省时为1。也可**以为负数

range (<下限>, <上限>, <歩长>)

■ 注意: 上限、下限必须是整数, 步长也必须是整数! 否则出错!

linspace函数的用法

linspace函数的用法

(1) 在区间[<开始值>,<终值>]之间等间距生成包含<元素个数>指

定个数的元素(为浮点数)的一个数组

格式 linspace(<开始值>,<终值>,<元素个数>)

>>> import numpy as np

>>>np.linspace(0, 1.2, 13.6)

array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2])

>>> np.linspace(0, 10, 11)

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

linspace函数的用法(续1)

- 开始值、终值可以为浮点数
- 若元素个数为浮点数,运算时向下取整
- 无论开始值、终值是否为整数,无论生成的元素的值是否为整数,显示时都以**浮点数**形式显示
 - (2) 第三个参数为**元素个数**, 缺省时为50 >>> np.linspace(0,10) #缺省包括上限

```
>>> import numpy as np
>>> np.linspace(0,10)
array([ 0.
                                                0.6122449 ,
              , 0.20408163,
                                  0.40816327,
        0.81632653, 1.02040816,
                                  1.2244898 ,
                                               1.42857143.
        1.63265306, 1.83673469,
                                  2.04081633,
                                               2,24489796,
        2.44897959, 2.65306122,
                                  2.85714286, 3.06122449,
        3.26530612, 3.46938776,
                                  3.67346939, 3.87755102,
        4.08163265, 4.28571429,
                                  4.48979592,
                                                4.69387755,
        4.89795918, 5.10204082,
                                  5.30612245,
                                                5.51020408,
        5.71428571, 5.91836735,
                                  6.12244898,
                                               6.32653061,
        6.53061224, 6.73469388,
                                  6.93877551, 7.14285714,
        7.34693878,
                    7.55102041,
                                  7.75510204, 7.95918367,
        8.16326531,
                     8.36734694,
                                  8.57142857, 8.7755102,
                                  9.3877551 .
        8.97959184
                     9.18367347,
                                                9.59183673,
        9.79591837,
```


linspace函数的用法(续2)

(3) 通过endpoint关键字指定是否包括终值,缺省为包括终值

```
>>> np.linspace(0,1,11,endpoint=True)
```

#生成0、0.1、0.2、.....、1共11个数

包括终值

```
>>> np.linspace(0,1,11)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, (1.)])
```


【例11.1】的设计思路

■ 程序包括4个部分

(1) 导入三方库

import numpy as np #导入科学计算基础库,别名为np import matplotlib.pyplot as plt #导入绘图库,别名为plt

(2) 生成绘制曲线所需的x、y坐标点

- ✓ 使用numpy库中linspace函数在指定]区间内等间隔产生 100个或50个数据点的x值,数组形式
- ✓ 利用给定函数y=cos(2 π x) 和y=cos(2 π x) *e-x计算对 应的y值

【例11.1】的设计思路(续)

(3) 创建子图,绘制曲线

先后创建2个子图, 并分别绘图

- ✓ 使用plt中的subplot函数创建子图 (则成为当前绘图区域)
- ✓ 使用plt中的plot函数绘制曲线
- ✓ 使用plt中的xlabel函数创建x标签, ylabel函数创建y标签
- ✓ 使用plt中的title函数创建图标题(只需一个)

(4) 在屏幕上显示绘图对象

✓ 使用plt中的show()函数

【例11.1】程序

(1) 导入三方库

import numpy as np import matplotlib.pyplot as plt #导入科学计算基础库,别名为np #导入绘图库,别名为plt

(2) 生成绘制曲线所需的x、y坐标点

```
#在指定区间等间隔产生100个数据点
x1 = np.linspace(0.0, 5.0, 100)
                           #默认在指定区间等间隔产生50个数据点
x2 = np.linspace(0.0, 5.0)
```

y1 = np.cos(2 * np.pi * x1)

y2 = np.cos(2 * np.pi * x2) * np.exp(-x1)

(3) 创建子图1, 绘制曲线

plt.subplot(2, 1, 1)

#子图1 (2行, 1列, 第1幅图)

plt.plot(x1, y1, 'kx-')

#绘图样式。黑色, 离散数据点形状为"x", 曲线为实线

plt.xlabel('time (s)')

#x轴标签

plt.ylabel('Undamped')

#y轴标签

plt.title('A tale of 2 subplots') #图标题

例11.1-subplot.py

【例11.1】程序(续)

(3) 创建子图2, 绘制曲线 第2幅图)

plt.subplot(2, 1, 2) #子图2

plt.plot(x2, y2, 'ro-') #红色, 离散数据点形状为实心圆点, 曲线为

实线

plt.xlabel('time (s)')

plt.ylabel('Damped oscillation')

plt.show()

#使图形显示

必须有此句! 否 则看不到图形

【例11.1】运行结果

53

绘制折线图小结

- 绘制折线图的步骤
 - ◆ 准备数据 (x,y)
 - ✓ 已知实验数据存入列表或元组
 - ✓ 绘制函数时,采用arange函数或linspace函数生成一系列等间隔的数据(数组)
 - 根据需要创建子图
 - ✓ subpolt函数或subpolts函数

如果只有一个坐标系 则不必创建子图

- ◆ 使用plot()函数绘制折线
- ◆ 通过颜色 (color 参数) 、离散点形状 (marker 参数) 和线型 (linestyle 参数) 进行区分
- 輔以必要的坐标轴标签、图标题修饰
 - ✓ xlabel、ylabel、titile方法

11.2.2 绘制柱状图

■ 柱状图的要素

- ◆ 数据,误差,图例,坐标轴标签.....
- matplotlib.pyplot模块中的bar函数用于绘制矩形柱状图

格式

bar(left, height, width=0.8, bottom=None,
hold=None, **kwargs)

◆ 【例】rects1 = plt.bar(ind, menMeans, width)

bar函数的用法

■ bar函数的常用参数

(1) 输入参数

left : 柱状图的左边缘的x坐标序列(列表或元组)

height: 柱状图的高度序列 (列表或元组)

width : 柱状图的宽度, 默认值为0.8

bottom: bar 的底部高度,默认值为None

**kwargs: 其他可选参量,参见Matplotlib的官网中

"matplotlib.patches.Polygon" (完全一致)

bar函数的用法(续)

(2) 返回值

返回: class (类): `matplotlib.patches.Rectangle`的实例

◆ 如果一张图表中绘制有多个数据集的柱状图, 当需要给每种柱形添加图例时,需要使用bar 函数的返回值作为legend函数的参数

bar函数的参数

序号	参 数	含义
1	left	设置柱状图的左边界
2	height	设置柱状图的高度
3	width	设置柱状图的宽度, 默认为0.8
4	bottom	设置柱状图底部的y轴坐标,默认值为None
5	color	指定柱状图的填充显示颜色,默认值为None(蓝色)
6	edgecolor	指定柱状图的边缘显示颜色,默认值为None
7	linewidth	指定柱状图的边缘线宽,默认值是None

bar函数的参数(续)

序号	参 数	含义
8	tick_label	指定刻度显示,默认值为None
9	xerr	指定柱状图的x轴的误差显示。默认值为None
10	yerr	指定柱状图的y轴的误差显示。默认值为None
11	align	设置柱状图的对齐方式,如果是left,当柱状图的显示为垂直方向时代表左边对齐,当柱状图的显示为水平方向时代表下边对齐
12	orientation	设置柱状图的朝向, vertical或horizontal, 默认值为vertical
13	log	指定坐标轴的尺度为对数方式,若为true,为对数轴。默认值为 False

legend函数的用法

■ matplotlib.pyplot模块的legend函数用来设置图例,其用法 legend(*args, **kwargs)

【例】:

```
rects1 = plt.bar(ind, menMeans, width, color = 'r', yerr=menStd) #红色
rects2 = plt.bar(ind+width, womenMeans, width, color='y', yerr=womenStd) #黄色
plt.legend((rects1, rects2), ('Men', 'Women'))
#给柱状图rects1、rects2添加图例'Men'、'Women'
```


◆ 当只有一种柱形时,不必添加图例

legend函数的参数

■ legend函数的参数

(1) 输入参数

args:参数序列(图形对象,为bar函数的返回值)

kwargs:参数所对应的图例序列(元组,文字说明,每个图例用单引

号括起来)

loc参数:指定图例所在位置, loc='upper right':右上角,默认值,可省

略; loc='lower right', 右下角; loc='upper left': 左上角; loc='lower left', 左

下角

(2) 无返回值

【例11.2】绘制柱状图示例

【例11.2】 (1) 已知有2组离散数据保存于列表menMeans、womenMeans中,假设每组包含5个数据点,试间隔一定的距离,绘制其相应的柱状图。

menMeans = (20, 35, 30, 35, 27)womenMeans = (25, 32, 34, 20, 25)

(2) 假设两组数据存在一定的**统计误差**,试以柱状图的顶部为基准,标示正负误差。

menStd = (2, 3, 4, 1, 2)womenStd = (3, 5, 2, 3, 3)

(3) **美化图表**,如添加图例,设置图的标题、 x轴标签、y轴标签等。

【例11.2】 Python程序

import numpy as np import matplotlib.pyplot as plt

(1) 生成绘制柱状图所需的数据

N = 5

menMeans = (20, 35, 30, 35, 27)

womenMeans = (25, 32, 34, 20, 25)

menStd = (2, 3, 4, 1, 2)

womenStd = (3, 5, 2, 3, 3)

ind = np.arange(N)

width = 0.35

#柱形的**左边缘的x坐标** #柱的宽度 例11.2-bar_legend.py

【例11.2】Python程序(续)

添加图例

误差

(2) 绘制柱状图

rects1 = plt.bar(ind, menMeans, width, color = 'r', yerr=menStd)

rects2 = plt.bar(ind+width, womenMeans, width, color='y', yerr=womenStd)

(3) 美化图表

plt.legend((rects1, rects2), ('Men', 'Women')) #默认右上角

plt.xlabel('men and women') #设置横坐标名称

plt.ylabel('Scores') #设置纵坐标名称

plt.title('Scores by group and gender') #设置图的标题

#plt.xticks(ind+ 1/2*width, ('G1', 'G2', 'G3', 'G4', 'G5')) #xticks函数设置当前坐标

图的x轴刻度标记。第1个参数指定标记位置,第2个参数指定标记的符号

#如果用户不设置轴坐标记号,系统会自动根据柱形的左边缘的x坐标按**合适的间隔**标记

64

【例11.2】运行结果

不设置轴坐标记号

设置当前坐标图的**x轴刻度标记** plt.xticks(ind+ 1/2*width, ('G1', 'G2', 'G3', 'G4', 'G5'))

绘制柱状图小结

- 绘制柱状图的步骤
 - ◆ 准备数据 (x,y)
 - ✓ 已知实验数据存入列表或元组
 - ✓ y误差,柱形的**左边缘的x坐标**
 - ◆ 根据需要创建子图
 - ✓ subpolt函数或subpolts函数

如果只有一个坐标系 则不必创建子图

- ◆ 使用bar()函数绘制柱状图
- ◆ 通过颜色 (color 参数)、底纹进行区分
- ◆ 辅以必要的坐标轴标签、图标题修饰
 - ✓ xlabel、ylabel、titile方法
- ◆ 当一幅图中有多种柱形时,必须使用legend函数添加图例

绘制折线图时如何添加图例?

■ 当一幅图中有多种柱形时,必须使用legend函数添加图例

(1) 在调用plt.plot()绘制折线时,用label参数指定图例的文字说明

#绘制正弦和余弦曲线

plt.plot(X, S, color='green', linewidth=1.0, linestyle='--', label='sinx') plt.plot(X, C, color='blue', linewidth=1.0, linestyle='-', label='cosx')

(2) 调用plt.legend()函数,添加图例

#添加图例

plt.legend() right')效果相同 #添加图例,默认是右上角,与plt.legend(loc='upper

#plt.legend(loc='lower right')

#在右下角添加图例

【例11.3】绘制正弦和余弦函数曲线

【例11.3】在同一张图上绘制正弦函数和余弦函数在区间[$-\pi$, π]内的曲线。分别在两条曲线的旁边添加文字标注"y=sinx", "y=cosx"。添加图例。

)如何解决Matplotlib无法显示中文字体的问题?

- 问题: 如何解决Matplotlib无法显示中文字体的问题?
 - ◆ 有时候,图像中图标题、x轴标签或y轴标签中中文显示为 乱码
 - ◆ 解决方法:在程序开始添加语句:

from pylab import mpl

mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体为黑体mpl.rcParams['axes.unicode_minus'] = False #解决将负号'-'显示为方块的问题

技巧: 如何在图表中添加文本标注?

- 当一张图表中包含多条曲线时,最好为每条曲线添加文本标注,使每条曲线 意义明显。或者在柱状图中为每个柱形标注高度
- **text函数**用于在绘图区域**添加文本**, 其用法 **text**(*x*, *y*, *s*, *fontdict=None*, *withdash=False*, ***kwargs*)
- text函数的参数

x,y: 文本的x、y坐标值

s: 要添加的文本 (用**单引号或双引号**括起来)

fontdict:字典,可选参数,缺省: None。用于覆盖默认的文本参数。若为None,

则默认值由你的rc参数决定

withdash: 布尔值,可选参数,缺省: False,创建一个带破折号的文本实例

text函数的用法

**kwargs: 文本属性, 其它各种文本参数, ha表示text的水平对齐(horizontal align) 方式(其值为center—x坐标位置在文字的中心, left—x坐标位置在文字的左边, right—x坐标位置在文字的右边); va表示垂直对齐(vertical align) 方式(其值为center—y坐标位置在文字的中心, top—y坐标位置在文字的上面, bottom—y坐标位置在文字的下面); fontsize表示字体大小(缺省值为12)

from pylab import mpl

#导入pylab的mpl模块

text(-1.5, 0.5, 'y=cosx', fontsize=10, ha='center', va='bottom')

#在(-1.5, 0.5)坐标位置添加文本'y=cosx',字体为10号,文字以x坐标位

置为中心, y坐标位置在文字的下面

【例11.3】程序

例11.3-sin_cos.py

(1) 导入三方库

import numpy as np import matplotlib.pyplot as plt

from pylab import mpl

#导入pylab的mpl模块。必须这么写

(2) 创建图表

plt.figure('绘制正弦和余弦函数曲线',figsize=(8,6), dpi=80)

#创建一个8*6 的图表,第一个参数为图表名称或序号;并设置分辨率为80 #plt.figure(1) #也可以这样写,创建图表1,默认图表名称为 "Figure 1"

(3) 生成绘制曲线所需的数据

X = np.linspace(-np.pi, np.pi, 256,endpoint=True) #产生区间[-π,+π]内等间隔的256个值

S,C = np.sin(X), np.cos(X) #计算函数值

 $XX = \frac{\text{np.arange}(-4.0,4.0,0.1)}{\text{mp.arange}(-4.0,4.0,0.1)}$ #产生区间[-4,+4]内步长为0.1的X值,即0轴的X值

YY=XX*0 #产生0轴相应的Y值

【例11.3】Python程序(续1)

用于添加图例

(4) 绘制正弦和余弦曲线

plt.plot(X, S, color='green', linewidth=1.0, linestyle='--', label='sinx') #正弦曲线,绿色,、宽度为1(像素)的虚划线,label指定了图例的文字说明 plt.plot(X, C, color='blue', linewidth=1.0, linestyle='-', label='cosx') #余弦曲线,蓝色、宽度为1(像素)的实线 plt.plot(XX, YY, color='red', linewidth=1.0, linestyle='-') #绘制0轴

(5) 美化图表

mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体(解决中文显示为乱码)
mpl.rcParams['axes.unicode_minus'] = False #解决将负号'-'显示为方块的问题
plt.title('sinx和cosx曲线') #设置图标题(中文)
plt.xlabel('x axis') #设置x轴标签
plt.ylabel('y axis') #设置y轴标签

【例11.3】Python程序(续2)

```
#在曲线旁添加文本标注
```

```
plt.text(-1.5, 0.5, 'y=cosx', fontsize=10, withdash=True, ha='center', va='bottom') plt.text(3, 0.5, 'y=sinx', fontsize=10, ha='center', va='bottom')#单引号或双引号都可以
```

```
plt.xlim(-4.0,4.0) #设置横轴的上下限
plt.xticks(np.linspace(-4,4,9,endpoint=True)) #设置横轴刻度标记
plt.ylim(-1.0,1.0) #设置纵轴的上下限
plt.yticks(np.linspace(-1,1,5,endpoint=True)) #设置纵轴刻度标记
plt.legend() #添加图例,默认是右上角,与plt.legend(loc='upper right')效果相同
#plt.legend(loc='lower right') #添加图例,右下角
```

plt.show()

#在屏幕上显示

【例11.3】程序运行结果

