Chapter 4 SAS 프로그램 입력 및 출력결과

```
Chapter 4: SAS Programs
 /*read data from the path of dataset*/
Data dat;
infile "C:/Users/HSY/Desktop/DBP.csv" delimiter="," firstobs=2;
input Subject TRT$ DBP1 DBP2 DBP3 DBP4 DBP5 Age Sex$;
 /*create a column diff*/
 diff= DBP5-DBP1;
RUN;
proc print data=dat;
run;
                                        OBS
                                                      Subject
                                                                           TRT
                                                                                         DBP1
                                                                                                         DBP2
                                                                                                                         DBP3
                                                                                                                                         DBP4
                                                                                                                                                         DBP5
                                                                                                                                                                         Age
                                                                                                                                                                                       Sex
                                                                                                                                                                                                     diff
                                                                                                                                         109
103
                                                                                                                                                         105
101
                                                                                                                                                                                                    -9
-15
                                                           1
2
3
                                                                                                                                                                                     FMFFMMFMMFMFMMFMMMFFMFMMMFMMFFMFF
                                          1
2
3
                                                                                                         113
115
                                                                                                                         112
                                                                                                                                                                         51
                                                                           116
                                                                                                                                                         98
101
                                                                                                                                                                                                    -21
-14
-11
-15
                                                                                          119
                                                                                                                         113
                                                                                                                                         104
                                                                                                                                                                        48
42
49
47
                                                                                                         113
112
112
                                                                                                                         112
107
113
                                        4
5
6
7
8
9
10
                                                                                         115
116
                                                                                                                                         109
                                                           4
5
6
7
8
                                                                                                                                                         105
102
                                                                                                                                         104
                                                                                          117
                                                                                                                                         104
                                                                                          118
120
                                                                                                         111
115
                                                                                                                         100
113
                                                                                                                                         109
102
                                                                                                                                                         99
102
                                                                                                                                                                        50
61
                                                                                                                                                                                                    -19
-18
                                                                                                         112
113
                                                                                                                         113
108
                                                                                                                                         109
106
                                                                                                                                                         103
97
                                                                                          114
                                                                                                                                                                        43
51
47
45
54
52
                                                                                                                                                                                                    -11
                                                                                                                                                                                                    -18
                                                          10
                                                                                         115
117
                                       112
                                                                                                                         110
                                                                                                                                         109
                                                                                                                                                         101
                                                                                                                                                                                                    -16
                                                                                                                         113
110
113
                                                                                                                                                                                                    -14
-15
-19
                                                                                          116
                                                                                                         115
117
                                                                                                                                         109
                                                                                                                                                         102
                                                                                                                                         106
102
                                                                                                                                                         104
                                                                                          119
                                                                                          118
                                                                                                         115
                                                                                          115
114
                                                                                                         112
111
                                                                                                                         108
111
                                                                                                                                         105
107
                                                                                                                                                         102
100
                                                                                                                                                                        42
44
                                                                                                                                                                                                    -13
-14
                                                                                          117
120
                                                                                                                                         108
107
                                                                                                                                                         102
103
                                                                                                                                                                        48
63
                                                                                                         114
                                                                                                                         110
                                                                                                                                                                                                    \begin{array}{c} -15 \\ -17 \\ -14 \\ -16 \\ -1 \\ -6 \\ -5 \\ 1 \\ -7 \\ -4 \\ -4 \\ -6 \\ -6 \\ -6 \\ -7 \\ -2 \\ -8 \\ -6 \\ -8 \\ -7 \\ -4 \\ -2 \\ -3 \end{array} 
                                                                                                         115
                                                                                                                         113
                                                                                                                                                                        41
51
39
40
                                                                                         114
117
                                                                                                         113
115
                                                                                                                         109
113
                                                                                                                                         104
109
                                                                                                                                                         100
101
                                                                                          114
116
                                                                                                                         113
114
                                                                                                                                         111
109
                                                                                                                                                         113
110
                                                                                                         114
                                                                                                         115
115
113
                                                                                                                         113
113
113
113
114
                                                                                          114
                                                                                                                                         111
                                                                                                                                                         109
                                                                                                                                                                        39
38
39
41
56
56
                                                                                                                                         114
109
111
                                                                                          114
                                                                                                                                                         115
                                                                                                                                                         109
110
                                                                                          116
                                                                                          114
                                                                                                         115
                                                                                          119
118
                                                                                                         118
117
                                                                                                                         118
117
                                                                                                                                         117
116
                                                                                                                                                         115
112
                                                                                          114
                                                                                                         113
                                                                                                                         113
113
113
112
117
116
                                                                                                                                         109
113
114
109
114
114
                                                                                                                                                         108
113
115
110
115
111
                                                                                                                                                                        38
57
47
48
61
49
52
55
45
42
49
50
                                                                                         120
117
118
121
116
                                                                                                         115
115
114
119
                                                                                                         115
                                                                                          118
119
                                                                                                         118
115
                                                                                                                         113
115
                                                                                                                                         113
114
                                                                                                                                                         112
111
                                                                                                                         113
114
113
                                                                                                                                         109
114
114
                                                                                                                                                         109
112
115
115
                                                                                          116
                                                                                                         114
                                                                                                         115
115
114
                                                                                         116
117
                                                                                          118
                                                                                                                         114
                                                                                                                                         114
```

```
/*************
/*test whether the DBP means are different*/
PROC TTEST data= dat;
class TRT;
var DBP1;
RUN;
                                              The TTEST Procedure
                                              Variable: DBP1
                   TRT
                                         Mean
                                                 Std Dev Std Err
                                 N
                                                                     Minimum
                                                                                  Maximum
                                       116.6
116.8
-0.2000
                                                  1.9861
2.1244
2.0564
                                                             0.4441
0.4750
0.6503
                                                                       114.0
114.0
                                 20
20
                                                                                    120.0
121.0
                   Diff (1-2)
                                                     95% CL Mean
            TRT
                        Method
                                                                      Std Dev
                                                                                  95% CL Std Dev
                                           Mean
                                                                                  1.5104 2.9009
1.6156 3.1029
1.6806 2.6503
                                          116.6
116.8
                                                   115.6
115.8
                                                             117.5 \\ 117.7
                                                                       1.9861
2.1244
            Diff (1-2)
Diff (1-2)
                         Pooled.
                                         -0.2000
-0.2000
                                                   -1.5165
-1.5167
                                                            1.1165
1.1167
                                                                        2.0564
                         Satterthwaite
                           Method
                                           Variances
                                                     DF t Value Pr > |t|
                                                    38
37.829
                                                                -0.31
-0.31
                                                                         0.7601
0.7601
                           Pooled
                                           Equal
                           Satterthwaite
                                          Unequal
                                           Equality of Variances
                                          Num DF Den DF F Value Pr > F
                                Method
                                        19 19 1.14
                                Folded F
                                                                     0.7722
```



```
PROC TRANSPOSE data= freqs out= SexbyTrt(drop=_:);
id Sex;
var count;
by Trt;
RUN;

/*print the table*/
PROC PRINT data= SexbyTrt;
RUN;

OBS TRT F M

1 A 8 12
2 B 10 10
```

```
/*test equality of proportions of 2 treatment groups
using Pearson's Chi squares*/
PROC FREQ data= freqs;
weight count;
tables Trt*Sex/ chisq;
RUN;
                                                                          FREQ 프로시저
                                                                         테이블:TRT * Sex
                                                          TRT
                                                          빈도
백분율
행 백분율 |
칼럼 백분율|F
                                                                                      l M
                                                                                                       합계
                                                                                         12
30.00
60.00
54.55
                                                                             8
20.00
40.00
44.44
                                                          Α
                                                                                                      20
50.00
                                                                             10
25.00
50.00
55.56
                                                                                         10
25.00
50.00
45.45
                                                          В
                                                                                                      20
50.00
                                                          합계
                                                                                 18
                                                                                                     100.00
                                                                             45.00
                                                                                          55.00
                                                               TRT * Sex 테이블에 대한 통계량
                                            통계량
                                                                                     자유도
                                                                                                                       Prob
                                            카이제곱
우도비 카이제곱
우속성 수정 카이제곱
Mantel-Haenszel 카이제곱
파이 계수
우발성 계수
크래머의 V
                                                                                                      0.4040
0.4048
0.1010
                                                                                                                    0.5250
                                                                                                                    0.5246
0.7506
                                                                                                     0.1010
0.3939
-0.1005
0.1000
-0.1005
                                                                                                                    0.5302
                                                                       Fisher의 정확 검정
                                                                 (1,1) 셀 빈도(F)
하단측 p값 Pr <= F
상단측 p값 Pr >= F
                                                                                               0.3756
                                                                                               0.8297
                                                                 테이블 확률 (P)
양측 p값 Pr <= P
                                                                                               0.2053
0.7512
                                                                          표본 크기 = 40
```

/*Fit the main effect model on "Sex" and "Age"*/ PROC GLM data= dat; class Sex(ref="F"); model DBP1= Sex Age / solution; RUN; The GLM Procedure Class Level Information Class Levels Values 2 ΜF Sex Number of Observations Read Number of Observations Used 40 40 Dependent Variable: DBP1 Sum of DF Source Squares Mean Square F Value Pr > F2 Model 128.0280063 64.0140031 71.62 <.0001 37 33.0719937 0.8938377 Error 39 161.1000000 Corrected Total R-Square Coeff Var Root MSE DBP1 Mean 0.794711 0.810484 0.945430 116.6500 Source DF Type I SS F Value Pr > FMean Square 8.7363636 119.2916426 9.77 133.46 8.7363636 119.2916426 0.0034 <.0001 Sex Age DF Source Type III SS F Value Pr > FMean Square 4.0532688 119.2916426 4.0532688 119.2916426 4.53 133.46 0.0399 <.0001 Sex Age Standard Error Estimate t Value Pr > |t|Parameter <.0001 0.0399 Intercept 104.3833726 B 1.12875520 Sex Sex -0.6422010 B 0.0000000 B 0.30157658 -2.13 0.02284142 <.0001 11.55 Age 0.2638753 NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

```
Section 4.3.1.2
 /*stepwise model selection */
PROC GLMSELECT data= dat;
class Trt Sex;
model diff= Trt|Sex|Age
/ selection= stepwise(select= AIC) stats= all;
RUN;
                                                              The GLMSELECT Procedure
                                               Data Set
Dependent Variable
Selection Method
Select Criterion
Stop Criterion
Effect Hierarchy Enforced
                                                                              WORK.DAT
diff
Stepwise
AIC
AIC
                                               Number of Observations Read
Number of Observations Used
                                                       Class Level Information
                                                              Levels Values
                                                      Sex
                                                               Dimensions
                                                       Number of Effects
Number of Parameters
  Stepwise Selection Summary
                                       Number Number Model Adjusted
Effects In Parms In R-Square R-Square
   Effect
Step Entered
                        Effect
                                                                                           AIC
                                                                                                     AICC
                                                                                                                      BIC
                                                                                                                                      CP
      0 Intercept
                                                1 1 0.0000 0.0000
                                                                                      185.0544 185.3787 142.0692 184.3130
      1 Age*TRT
                                                                                     115.9144* 117.0572* 76.6053*
                                                           3 0.8393 0.8307*
                                                                                                                                1.7155*
                                                     * Optimal Value of Criterion
                                                       Stepwise Selection Summary
                Effect
Step Entered
                                      Effect
                                                          SBC
                                                                         PRESS
                                                                                            ASE F Value
                                                                                                                  Pr > F
                                     Removed
                    0 Intercept
                                                       144.7433
                                                                      1430.6377
                                                                                          34.0000
                                                                                                         0.00
                                                                                                                   1.0000
                                                                                           5.4622
                    1 Age*TRT
                                                       78.9810*
                                                                   252.4546*
                                                                                                         96.65
                                                                                                                   < .0001
                                                      * Optimal Value of Criterion
                                     Selection stopped at a local minimum of the AIC criterion.
                                                              Stop Details
                                      Candidate
For
                                                                   Candidate
AIC
                                                                                        Compare
AIC
                                                     Effect
                                                                    117.6498
185.0544
                                                                                        115.9144
115.9144
                                       Entry
                                                      Äge*TRT
   Selected Model
                                     The selected model is the model at the last step (Step 1).
                                                     Effects: Intercept Age*TRT
                                                          Analysis of Variance
                                                                      Sum of
                                                                                        Square
                                                                                                  F Value
                                Source
                                                                      Squares
                                                                  1141.51043
218.48957
1360.00000
                                                                                    570.75521
5.90512
                                Mode1
                                                                                                     96.65
                                Error
Corrected Total
                                                                           2.43005
-10.00000
                                                     Root MSE
                                                    Root MSE
Dependent Mean
R-Square
Adj R-Sq
AIC
AICC
BIC
C(p)
                                                                           -10.00000
0.8393
0.8307
115.91435
117.05721
76.60535
1.71549
252.45464
78.98099
5.46224
                                                          Parameter Estimates
                                                                                  Standard
Error
                                                    DF
                                   Parameter
                                                                Estimate
                                                                                                 t Value
                                                               -0.538700
-0.301210
-0.091047
                                   Intercept
Age*TRT
Age*TRT
                                                                                  2.834116
0.058563
0.059960
                                                                                                  -0.19
-5.14
-1.52
```

/*fit the reduced model*/
PROC GLM data= dat; class TRT(ref="A"); model diff= Age Trt / solution; RUN; The GLM Procedure Class Level Information Class Levels Values TRT 2 B A Number of Observations Read Number of Observations Used 40 40 Dependent Variable: diff Sum of DF Source Squares Mean Square F Value Pr > F2 Model 1132.669217 566.334608 92.18 <.0001 37 227.330783 6.144075 Error Corrected Total 39 1360.000000 R-Square Coeff Var Root MSE diff Mean 0.832845 -24.78725 2.478725 -10.00000 Source DF Type I SS F Value Pr > FMean Square 120.488476 1012.180741 19.61 164.74 120.488476 1012.180741 <.0001 <.0001 Age TRT DF Source Type III SS F Value Pr > FMean Square 51.069217 1012.180741 51.069217 1012.180741 8.31 164.74 0.0065 <.0001 Age TRT Standard Error Estimate t Value Pr > |t|Parameter -2.28 -2.88 12.84 Intercept -6.78085500 B 2.97236119 0.0284 -0.17323344 10.13148817 B 0.06008698 0.78935519 0.0065 <.0001 Age TRT 0.00000000 B TRT Α

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter $^{\prime}B^{\prime}$ are not uniquely estimable.

```
Section 4.3.1.3: MACNOVA for Treatment Difference
      /* create the data*/
  data mdat;
set dat;
diff2to1 = DBP2-DBP1;
diff3to1 = DBP3-DBP1;
diff4to1 = DBP4-DBP1;
diff5to1 = DBP5-DBP1;
run;
proc print data=mdat;
run;
                                                             Subject
                                                                                                                                               TRT
                                                                                                                                                                                                  DBP1
                                                                                                                                                                                                                                                             DBP2
                                                                                                                                                                                                                                                                                                                        DBP3
                                                                                                                                                                                                                                                                                                                                                                                   DBP4
                                                                                                                                                                                                                                                                                                                                                                                                                                                 DBP5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Sex
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               diff
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             diff2to1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       diff3to1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       diff4tol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    diff5to1
                       1 2 3 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 7 18 9 20 21 22 23 24 4 25 6 27 28 8 29 30 31 32 33 34 35 6 37 38 39 40
                                                                                                                                                                                                                                                                                109
103
104
109
104
109
102
109
106
109
106
107
108
107
108
107
108
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
111
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
119
11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \begin{array}{c} -1 \\ -44 \\ -63 \\ -9 \\ -44 \\ -17 \\ -77 \\ -39 \\ -57 \\ -37 \\ -77 \\ -75 \\ -44 \\ -12 \\ -11 \\ -77 \\ -46 \\ -40 \\ -3 \\ -22 \\ -44 \\ -44 \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \begin{array}{c} -5 \\ -13 \\ -6 \\ -12 \\ -9 \\ -18 \\ -9 \\ -7 \\ -13 \\ -10 \\ -7 \\ -13 \\ -10 \\ -7 \\ -9 \\ -13 \\ -10 \\ -7 \\ -9 \\ -7 \\ -3 \\ -2 \\ -2 \\ -2 \\ -7 \\ -3 \\ -7 \\ -2 \\ -5 \\ -7 \\ -2 \\ -3 \\ -4 \\ \end{array}
                                                                                                                                                                8 9 10 11 12 13 144 15 166 177 18 19 20 21 223 224 25 266 27 28 29 30 31 32 33 34 35 366 37 38 340
                                                                                                                                                                                                                       118
```

```
/* manova using glm*/
PROC glm data= mdat;
class TRT;
model diff2tol diff3tol diff4tol diff5tol= TRT Age/ss3;
contrast '1 vs 2' TRT 1 -1;
manova h=_all_;
RUN;
                                                       The GLM Procedure
                                                     Class Level Information
                                                                 Levels
                                                                            Values
                                                  TRT
                                                                      2
                                                                            АВ
                                            Number of Observations Read
Number of Observations Used
                                                                                     40
    Dependent Variable: diff2to1
                                                                Sum of
                                                   DF
                                                                                             F Value
                                                                                                        Pr > F
                    Source
                                                               Squares
                                                                            Mean Square
                    Model
                                                    2
                                                            51.6829719
                                                                             25.8414860
                                                                                                9 89
                                                                                                        0 0004
                    Error
                                                   37
                                                            96.7170281
                                                                              2.6139737
                                                           148.4000000
                    Corrected Total
                                                   39
                                     R-Square
                                                   Coeff Var
                                                                   Root MSE
                                                                                 diff2to1 Mean
                                     0.348268
                                                   -70.29473
                                                                   1.616779
                                                                                     -2.300000
                                                   DF
                                                           Type III SS
                                                                                            F Value
                                                                                                         Pr > F
                    Source
                                                                            Mean Square
                     TRT
                                                           16.58847237
                                                                             16.58847237
                                                                                                6.35
                                                                                                         0.0162
                                                           29.18297194
                                                                            29.18297194
                                                                                               11.16
                                                                                                         0.0019
                     Age
                                                   DF
                                                                                             F Value
                    Contrast
                                                           Contrast SS
                                                                                                         Pr > F
                                                                            Mean Square
                    1 vs 2
                                                           16.58847237
                                                                            16.58847237
                                                                                                6.35
                                                                                                         0.0162
   Dependent Variable: diff3to1
                                                                Sum of
                    Source
                                                   DF
                                                               Squares
                                                                            Mean Square
                                                                                             F Value
                                                                                                         Pr > F
                                                    2
                    Model
                                                           148.3384479
                                                                             74.1692240
                                                                                                9 61
                                                                                                         0.0004
                    Error
                                                   37
                                                           285.6365521
                                                                              7.7199068
                                                   39
                                                           433.9750000
                    Corrected Total
                                     R-Square
                                                   Coeff Var
                                                                   Root MSE
                                                                                diff3to1 Mean
                                     0.341813
                                                   -64.99350
                                                                   2.778472
                                                                                     -4.275000
                    Source
                                                   DF
                                                           Type III SS
                                                                            Mean Square
                                                                                            F Value
                                                                                                         Pr > F
                                                           82.16915840
49.11344792
                                                                            82.16915840
49.11344792
                     TRT
                                                                                                         0.0024
                                                                                               10.64
                                                                                                         0.0024
                                                                                                6.36
                    Age
                    Contrast
                                                   DF
                                                           Contrast SS
                                                                            Mean Square
                                                                                             F Value
                                                                                                         Pr > F
                    1 vs 2
                                                           82.16915840
                                                                            82.16915840
                                                                                               10.64
                                                                                                         0.0024
   Dependent Variable: diff4to1
                                                                Sum of
                    Source
                                                   DF
                                                               Squares
                                                                            Mean Square
                                                                                             F Value
                                                                                                         Pr > F
                    Mode 1
                                                    2
                                                           426 7762068
                                                                            213.3881034
                                                                                               26 35
                                                                                                        < 0001
                    Error
                                                   37
                                                           299.6237932
                                                                              8.0979404
                    Corrected Total
                                                   39
                                                           726.4000000
                                     R-Square
                                                   Coeff Var
                                                                   Root MSE
                                                                                diff4to1 Mean
                                     0.587522
                                                   -38.98203
                                                                   2.845688
                                                                                     -7.300000
                                                   DF
                                                           Type III SS
                                                                            Mean Square
                                                                                            F Value
                                                                                                        Pr > F
                    Source
                                                          319.5860981
66.7762068
                                                                            319.5860981
66.7762068
                                                                                               39.47
8.25
                                                                                                         < .0001
                     TRT
                                                                                                         0.0067
                     Age
                                                   DF
                                                           Contrast SS
                                                                            Mean Square
                                                                                             F Value
                                                                                                         Pr > F
                    Contrast
                    1 \text{ vs } 2
                                                           319.5860981
                                                                            319.5860981
                                                                                               39.47
                                                                                                         <.0001
```

Source		DF S	Sum of Squares	Mean	Square	F Value	Pr > F
Model		2 1132	. 669217	566.	.334608	92.18	<.0001
Error		37 227	. 330783	6.	. 144075		
Corrected To	tal	39 1360	.000000				
	R-Square	Coeff Var	Root M	ISE o	diff5to1	Mean	
	0.832845	-24.78725	2.4787	25	-10.0	00000	
					_		
Source			III SS		Square	F Value	Pr > F
TRT Age			. 180741 . 069217		. 180741 . 069217	164.74 8.31	<.0001 0.0065
Contrast		DF Cont	rast SS	Mean	Square	F Value	Pr > F
1 vs 2		1 1012	. 180741	1012	. 180741	164.74	<.0001
Multivariate Analysis of Va	riance						
	Characterist	tic Roots and V H = Type III S E = Erro		x for 7		, where	
Characteristic Root	Percent	Characteristi diff2to1		V'EV=1 f3to1	d	iff4to1	diff5to1
4.82671479	100.00	-0.03557795		67843		0217534	0.07292943
0.0000000 0.0000000 0.0000000	0.00 0.00 0.00	-0.08658748 0.09807889 0.02813182		395376 36329 95893	0.00	0030295 0047048 7179300	-0.01015642 -0.01577305 0.03701285
MANOVA Test Cr	iteria and Ex	xact F Statisti H = Type III S E = Erro	cs for the SCP Matrix r SSCP Mat	for Ti	hesis of RT	No Overal	l TRT Effect
		S=1 N	M=1 N=1	.6			
Statistic		S=1 N Value			Num DF	Den DF	Pr > F
Wilks' Lam Pillai's T	race Lawley Trace		e F Val 0 41. 0 41. 9 41.	ue 1 03 03 03	Num DF 4 4 4 4	Den DF 34 34 34 34 34	Pr > F <.0001 <.0001 <.0001 <.0001
Wilks' Lam Pillai's T Hotelling-	race Lawley Trace test Root	Value 0.1716233 0.8283767 4.8267147 4.8267147 tic Roots and V H = Type III	e F Val 0 41. 0 41. 9 41. 9 41.	ue N 03 03 03 03 03	4 4 4 4 erse * H	34 34 34 34	<.0001 <.0001 <.0001
Wilks' Lam Pillai's T Hotelling-	race Lawley Trace test Root	Value 0.1716233 0.8283767 4.8267147 4.8267147 tic Roots and V H = Type III	e F Val 0 41. 0 41. 9 41. 9 41. ectors of: SSCP Matri r SSCP Mat	ue M 03 03 03 03 03 E Invex for A	4 4 4 4 erse * H	34 34 34 34	<.0001 <.0001 <.0001
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic	race Lawley Trace test Root Characterist	Valu 0.1716233 0.82837677 4.8267147 4.8267147 4.8267147 E. C. Roots and V. H = Type III S E = Error Characteristi	e F Val 0 41. 0 41. 9 41. 9 41. ectors of: SSCP Matri r SSCP Matri c Vector dif 0.009	ue N 03 03 03 03 03 03 E Invo x for A rix V'EV=1 f3to1 980365 05131 585332	4 4 4 4 4 4 4 4 4 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	34 34 34 34 , where	<.0001 <.0001 <.0001 <.0001
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 0.000000	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex	Value 0.1716233 0.82837677 4.8267147 4.8267147 4.8267147 E. C. Roots and V. H = Type III S E = Error Characteristi- diff2to1 0.05099586 -0.08952795 -0.04144328 -0.08270836 Mact F Statisti H = Type III S	e F Val 0 41. 0 41. 9 41. 9 41. ectors of: SSCP Matrir r SSCP Matric c Vector dif 0.009 0.074 -0.005 -0.002 cs for the	ue N 03 03 03 03 03 03 03 03 E Invex x for A rix V'EV=1 f3to1 080365 05131 885332 84742 E Hypotic f for Ag	4 4 4 4 4 4 erse * H de 0.0 -0.00 -0.00 0.00	34 34 34 34 34 , where iff4to1 1912575 0232116 3905817 5711880	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 0.000000	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex	Value 0.1716233 0.82837677 4.8267147 4.8267147 4.8267147 tic Roots and V. H = Type III S E = Erroi Characteristi diff2to1 0.0509586 -0.08952795 -0.04144328 -0.08270836 xact F Statisti H = Type III S E = Erroi	e F Val 0 41. 0 41. 9 41. 9 41. ectors of: SSCP Matrir SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the	03 03 03 03 03 03 03 03 E Invex x for A rix V'EV=1 f3to1 980365 105131 885332 984742 e Hypoth	4 4 4 4 4 4 erse * H de 0.0 -0.00 -0.00 0.00	34 34 34 34 34 , where iff4to1 1912575 0232116 3905817 5711880	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 0.000000	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex	Value 0.1716233 0.82837677 4.8267147 4.8267147 4.8267147 tic Roots and V. H = Type III S E = Erroi Characteristi diff2to1 0.0509586 -0.08952795 -0.04144328 -0.08270836 xact F Statisti H = Type III S E = Erroi	e F Val 0 41. 9 41. 9 41. 9 41. cectors of: SSCP Matri r SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the SSCP Matrix r SSCP Matrix	ue N 03 03 03 03 03 03 03 E Invex x for A frix V'EV=1 f3to1 885332 884742 e Hypoth f for A grix 6	4 4 4 4 4 4 erse * H de 0.0 -0.00 -0.00 0.00	34 34 34 34 34 , where iff4to1 1912575 0232116 3905817 5711880	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 MANOVA Test Cr Statistic Wilks' Lam	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex	Value 0.1716233 0.8283767 4.8287167 4.8267147 4.8267147 4.8267147 4.8267147 4.8267147 6.6267 6.7267	e F Val 0 41. 9 41. 9 41. 9 41. cectors of: SSCP Matri r SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the SCP Matrix r SSCP Mat r SSCP Matrix	ue N 03 03 03 03 03 03 03 03 E Invex x for A frix V'EV=1 f3to1 885332 884742 e Hypoth for A frix 6 ue N 43	4 4 4 4 4 4 4 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	34 34 34 34 34 , where iff4tol 1912575 2332116 3905817 5711880 No Overal	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000 l Age Effect Pr > F
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 MANOVA Test Cr Statistic Wilks' Lam Pillai's T	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex bda race Lawley Trace	Value 0.1716233 0.82837677 4.8267147 4.8267147 4.8267147 Tic Roots and V. H = Type III S E = Erroi Characteristi diff2tol 0.05099586 -0.08952795 -0.04144328 -0.08270836 Value Value	e F Val 0 41. 0 41. 9 41. 9 41. ectors of: SSCP Matri r SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the SCP Matrix r SSCP Matri wr SSCP Matri e F Val 3 3. 7 3. 9 3.	03 03 03 03 03 03 03 03 05 E Invex for Arrix V'EV=1 f3to1 080365 05131 685332 06 Hypotle for Agrix 66 ue M	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34 34 34 34 34 , where iff4tol 1912575 0232116 3905817 5711880 No Overal	<.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000 l Age Effect
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 MANOVA Test Cr Statistic Wilks' Lam Pillai's T Hotelling-	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex bda race Lawley Trace test Root Characterist	Value 0.1716233 0.8283767 4.8267147 4.8267147 4.8267147 4.8267147 Tic Roots and V. H = Type III S E = Error Characteristi diff2tol 0.05099586 -0.08952795 -0.04144328 -0.08270836 Mact F Statisti H = Type III S E = Error S=1	e F Val 0 41. 9 41. 9 41. 9 41. cectors of: SSCP Matri r SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the SCP Matrix r SSCP Mat F SSCP Matrix r SSCP Matrix	ue N 03 03 03 03 03 03 03 03 03 03 03 03 05 E Invex for A frix 105131 185332 184742 1843 43 43 43 43 43 43 43 43 43 43 43 43 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34 34 34 34 34 34 , where iff4tol 1912575 0232116 3905817 5711880 No Overal Den DF 34 34 34 34	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000 l Age Effect Pr > F 0.0185 0.0185 0.0185
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 MANOVA Test Cr Statistic Wilks' Lam Pillai's T Hotelling-	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex bda race Lawley Trace test Root Characterist	Value 0.1716233 0.8283767 4.8267147 4.8267147 4.8267147 4.8267147 Tic Roots and V. H = Type III S E = Error Characteristi diff2tol 0.05099586 -0.08952795 -0.04144328 -0.08270836 Mact F Statisti H = Type III S E = Error S=1	e F Val 0 41. 0 41. 9 41. 9 41. 9 41. cectors of: SSCP Matrix r SSCP Matri c Vector dif 0.009 0.074 -0.005 -0.002 cs for the SCP Matrix r SSCP Mat 1 N=1 e F Val 3 3. 7 3. 9 3. 9 3. ectors of: CP Matrix r SSCP Mat c Vector	ue N 03 03 03 03 03 03 03 03 03 E Invex x for A frix V'EV=1 f3to1 885332 884742 E Hypoti for A frix 6 ue N 43 43 43 43 43 43	4 4 4 4 4 4 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	34 34 34 34 34 34 , where iff4tol 1912575 0232116 3905817 5711880 No Overal Den DF 34 34 34 34	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000 l Age Effect Pr > F 0.0185 0.0185 0.0185
Wilks' Lam Pillai's T Hotelling- Roy's Grea Characteristic Root 0.40347759 0.00000000 0.00000000 0.00000000 MANOVA Test Cr Statistic Wilks' Lam Pillai's T Hotelling- Roy's Grea	race Lawley Trace test Root Characterist Percent 100.00 0.00 0.00 0.00 iteria and Ex bda race Lawley Trace test Root Characterist	Value 0.1716233 0.8283767 4.8267147 4.8267147 4.8267147 4.8267147 Tic Roots and V. H = Type III S E = Error Characteristi diff2tol 0.05099586 -0.08952795 -0.04144328 -0.08270836 Mact F Statisti H = Type III S E = Error S=1 N Value 0.7125158 0.2874841 0.4034775 0.4034775 0.4034775 Lic Roots and V. I = Contrast SSC E = Error Characteristi	e F Val 0 41. 9 41. 9 41. 9 41. 19 41. 10 41. 9 41. 10 41. 11 41. 12 41. 13 41. 14 -0.005 15 -0.002 15 for the SCP Matrix of SCP	ue N 03 03 03 03 03 03 03 03 03 03 03 03 03	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34 34 34 34 34 34 34 34 , where	<.0001 <.0001 <.0001 <.0001 <.0001 diff5to1 0.01885157 -0.00228788 0.08173113 0.00000000 l Age Effect Pr > F 0.0185 0.0185 0.0185 0.0185 0.0185

```
Characteristic Roots and Vectors of: E Inverse * H, where H = Contrast SSCP Matrix for 1 vs 2 E = Error SSCP Matrix
                                      Characteristic Vector V'EV=1
diff2to1 diff3to1
Characteristic
                                                                                      diff4to1
                                                                                                           diff5to1
                       Percent
            Root
     0.00000000
                            0.00
                                         0.09807889
                                                              0.01036329
                                                                                    0.00047048
                                                                                                        -0.01577305
     0.00000000
                            0.00
                                         0.02813182
                                                           -0.00095893
                                                                                  -0.07179300
                                                                                                         0.03701285
MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall 1 vs 2 Effect H = Contrast SSCP Matrix for 1 vs 2 E = Error SSCP Matrix
                                               S=1 M=1 N=16
      Statistic
                                                  Value F Value
                                                                             Num DF
                                                                                          Den DF
                                                                                                        Pr > F
      Wilks' Lambda
Pillai's Trace
Hotelling-Lawley Trace
                                            0.17162330
                                                                 41.03
                                                                                                34
                                                                                                        <.0001
                                            0.82837670
4.82671479
                                                                 41.03
41.03
                                                                                                34
34
                                                                                                        <.0001
<.0001
       Roy's Greatest Root
                                            4.82671479
                                                                  41.03
                                                                                                        <.0001
```

```
/*********
Section 4.3.2
/*read data from the path of dataset*/
Data dat1;
infile "C:/Users/HSY/Desktop/betablocker.csv" delimiter="," firstobs=2;
input Deaths Total Center Treatment$;
RUN:
proc print data=dat1;
run:
                                                   OBS
                                                           Deaths
                                                                         Total
                                                                                    Center
                                                                                                  Treatment
                                                                                                 Control
                                                    2
3
4
                                                              14
                                                                          116
                                                                                      2
3
4
5
6
7
8
9
                                                                                                 Control
                                                             11
127
                                                                         93
1520
                                                                                                 Control
                                                                                                 Control
                                                              27
6
                                                                          365
52
                                                                                                  Control
                                                    5
6
7
8
9
                                                                                                 Control
                                                             152
                                                                          939
                                                                                                  Control
                                                              48
37
                                                                          471
282
                                                                                                 Control
                                                                                                 Control
                                                                         1921
                                                   10
                                                             188
                                                                                                 Control
                                                              52
47
                                                                          583
266
                                                                                      11
12
                                                   11
12
                                                                                                 Control
                                                                          293
883
                                                                                      13
14
                                                   \begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ \end{array}
                                                               16
                                                                                                  Control
                                                              45
31
38
                                                                                                 Control
                                                                          147
213
                                                                                      15
                                                                                                 Control
                                                                                      16
17
18
                                                                                                 Control
                                                              12
                                                                          122
154
                                                                                                 Control
                                                              3
40
                                                                          134
218
                                                                                      19
20
                                                                                                 Control
                                                                                                 Control
                                                              43
39
                                                                          364
674
                                                                                      21
22
                                                                                                 Control
                                                                                                 Control
                                                                          38
114
                                                                                      1
2
3
4
5
6
7
8
9
10
                                                                                                  Treated
                                                                                                  Treated
                                                                           69
                                                                                                 Treated
                                                             102
                                                                         1533
                                                                                                  Treated
                                                                          355
59
                                                              28
                                                                                                  Treated
                                                                                                  Treated
                                                              98
                                                                          945
632
                                                                                                  Treated
                                                              60
                                                                                                  Treated
                                                             25
138
                                                                         278
1916
                                                                                                  Treated
                                                                                                  Treated
                                                                                      11
12
13
14
                                                                          873
263
291
                                                              64
45
9
57
25
33
                                                                                                 Treated
                                                                                                  Treated
                                                                                                  Treated
                                                                          858
                                                                                                  Treated
                                                                          154
207
251
                                                                                      15
16
17
18
19
                                                                                                  Treated
                                                                                                  Treated
                                                              28
8
6
                                                                                                  Treated
                                                                          151
174
209
                                                                                                  Treated
                                                                                                  Treated
                                                              32
27
22
                                                                                      20
                                                                                                  Treated
                                                   43
44
                                                                          391
680
                                                                                      21
22
                                                                                                  Treated
Treated
```

```
/*fit the logistic regression model*/
PROC GENMOD data= dat1;
class Center(ref="1") Treatment(ref="Control");
model Deaths/Total= Center Treatment/dist= binomial link= logit;
RUN;
```

Model Information

Data Set	WORK . DAT1
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	Deaths
Response Variable (Trials)	Total

Number of Observations Read Number of Observations Used Number of Events Number of Trials

Class Level Information

Class Levels Values

Center 22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1

Treatment 2 Treated Control

Response Profile

Ordered	Binary	Total
Value	Outcome	Frequency
1	Event	1811

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better)	21 21 21 21 21	23.6206 23.6206 23.5593 23.5593 -5948.8017 -120.5256 287.0511 342.2511	1.1248 1.1248 1.1219 1.1219
BIC (smaller is better)		328 0875	

Algorithm converged.

NOTE: The scale parameter was held fixed.

Analysis Of Maximum Likelihood Parameter Estimates

				Standard		Confidence	Wald	
Parameter		DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept		1	-2.3493	0.4260	-3.1842	-1.5144	30.42	<.0001
Center	2	1	0.1739	0.4832	-0.7731	1.1209	0.13	0.7189
Center	2 3	1	0.2428	0.5004	-0.7380	1.2236	0.13	0.6275
Center		1	-0.0391	0.4309	-0.8837	0.8055	0.01	0.9278
Center	4 5	1	-0.0217	0.4480	-0.8997	0.8563	0.00	0.9614
Center	6	1	0.1685	0.5395	-0.8888	1.2259	0.10	0.7548
Center	7	1	0.5966	0.4308	-0.2477	1.4410	1.92	0.1661
Center	8	î	0.2715	0.4373	-0.5857	1.1286	0.39	0.5348
Center	9	î	0.3888	0.4462	-0.4859	1.2634	0.76	0.3836
Center	10	ī	0.0958	0.4293	-0.7457	0.9373	0.05	0.8234
Center	11	ī	0.0520	0.4363	-0.8032	0.9072	0.01	0.9051
Center	12	ī	0.9153	0.4406	0.0517	1.7790	4.32	0.0378
Center	13	1	-0.6357	0.4720	-1.5608	0.2894	1.81	0.1780
Center	14	1	-0.3065	0.4375	-1.1639	0.5510	0.49	0.4836
Center	15	1	1.0016	0.4505	0.1186	1.8846	4.94	0.0262
Center	16	1	0.8799	0.4449	0.0079	1.7519	3.91	0.0480
Center	17	1	0.3997	0.4573	-0.4966	1.2959	0.76	0.3821
Center	18	1	-0.5635	0.5059	-1.5549	0.4280	1.24	0.2653
Center	19	1	-1.0144	0.5436	-2.0798	0.0510	3.48	0.0620
Center	20	1	0.8759	0.4447	0.0044	1.7474	3.88	0.0488
Center	21	1	0.1966	0.4436	-0.6728	1.0659	0.20	0.6576
Center	22	1	-0.5812	0.4451	-1.4537	0.2912	1.70	0.1917
Center	1	0	0.0000	0.0000	0.0000	0.0000		
Treatment	Treated	1	-0.2610	0.0499	-0.3589	-0.1631	27.30	<.0001
Treatment	Control	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		

```
/*disperson of parameter*/
/*check table "Criteria For Assessing Goodness Of Fit"
line "pearson chi sqaure*/
/*adjust model fitting with estimate of dispersion*/
PROC GENMOD data= dat1;
class Center(ref="1") Treatment(ref="Control");
model Deaths/Total= Center Treatment
/dist= binomial link= logit scale= pearson;
RUN;
```

Model Information

Data Set	WORK . DAT1
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	Deaths
Response Variable (Trials)	Total
Number of Observations Read	44

44 44 1811 Number of Observations Read Number of Observations Used Number of Events Number of Trials

Class Level Information

Class Levels Values

Center

Treatment

Response Profile

Ordered	Binary	Total
Value	Outcome	Frequency
1 2	Event Nonevent	1811 18479

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	21 21 21 21 21	23,6206 21,0546 23,5593 21,0000 -5302,5729 -120,5256 287,0511 342,2511 328,0875	1.1248 1.0026 1.1219 1.0000

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	Wald 95% Lim	Confidence its	Wald Chi-Square	Pr > ChiSq
Intercept		1	-2.3493	0.4512	-3.2336	-1.4650	27.11	<.0001
Center	2	1	0.1739	0.5118	-0.8291	1.1769	0.12	0.7340
Center	3	1	0.2428	0.5300	-0.7961	1.2817	0.21	0.6469
Center	4	1	-0.0391	0.4564	-0.9337	0.8555	0.01	0.9318
Center	5	1	-0.0217	0.4745	-0.9516	0.9083	0.00	0.9636
Center	6	1	0.1685	0.5714	-0.9514	1.2884	0.09	0.7681
Center	7	1	0.5966	0.4563	-0.2977	1.4910	1.71	0.1910
Center	8	1	0.2715	0.4632	-0.6364	1.1794	0.34	0.5578
Center	9	1	0.3888	0.4727	-0.5376	1.3152	0.68	0.4108
Center	10	1	0.0958	0.4547	-0.7955	0.9871	0.04	0.8331
Center	11	1	0.0520	0.4621	-0.8538	0.9578	0.01	0.9104
Center	12	1	0.9153	0.4667	0.0006	1.8301	3.85	0.0498
Center	13	1	-0.6357	0.4999	-1.6156	0.3442	1.62	0.2035
Center	14	1	-0.3065	0.4634	-1.2147	0.6018	0.44	0.5084
Center	15	1	1.0016	0.4772	0.0663	1.9368	4.41	0.0358
Center	16	1	0.8799	0.4713	-0.0438	1.8036	3.49	0.0619
Center	17	1	0.3997	0.4843	-0.5496	1.3490	0.68	0.4093
Center	18	1	-0.5635	0.5358	-1.6136	0.4867	1.11	0.2930
Center	19	1	-1.0144	0.5758	-2.1429	0.1140	3.10	0.0781
Center	20	1	0.8759	0.4710	-0.0471	1.7990	3.46	0.0629
Center	21	1	0.1966	0.4698	-0.7242	1.1174	0.18	0.6756
Center	22	1	-0.5812	0.4715	-1.5053	0.3429	1.52	0.2177
Center	1	0	0.0000	0.0000	0.0000	0.0000		
Treatment	Treated	1	-0.2610	0.0529	-0.3647	-0.1573	24.34	<.0001
Treatment	Control	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0592	0.0000	1.0592	1.0592		

NOTE: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

```
random _residual_;
RUN;
                                                                                  The GLIMMIX Procedure
                                                                                   Model Information
                                                            Data Set
Response Variable (Events)
Response Variable (Trials)
Response Distribution
Link Function
Variance Function
Variance Matrix
Estimation Technique
Degrees of Freedom Method

WORK.DAT1
Deaths
Total
Binomial
Logit
Default
Default
Nariance Matrix
Diagonal
Maximum Likelihood
Residual
```

Class Level Information

Class	Levels	Values

22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 Treated Control Center

Treatment

Number of Observations Read Number of Observations Used Number of Events Number of Trials 44 44 1811

Dimensions

Covariance Parameters Columns in X Columns in Z Subjects (Blocks in V) Max Obs per Subject

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 23
Lower Boundaries 0
Upper Boundaries 0
Fixed Effects Not Profiled

Iteration History

Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient
0 1 2 3	0 0 0 0	4 3 3 3	120.62135 120.52557325 120.52555502 120.52555502	0.09577675 0.00001824 0.00000000	9.701853 0.082238 0.000016 1.55E-12

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics

-2 Log Likelil	nood	241.05	
AIC (smaller	is better)	287.05	
AICC (smaller	is better)	342.25	
	BIC (smaller	is better)	328.09
CAIC (smaller	is better)	351.09	
HQIC (smaller	is better)	302.27	
Pearson Chi-Se	quare	23.56	
Pearson Chi-Sc	nuare / DF	1 12	

Parameter Estimates

Effect	Treatment	Center	Estimate	Standard Error	DF	t Value	Pr > t
Intercept			-2.3493	0.4512	21	-5.21	<.0001
Center '		2	0.1739	0.5118	21	0.34	0.7374
Center		3	0.2428	0.5300	21	0.46	0.6516
Center		4	-0.03907	0.4564	21	-0.09	0.9326
Center		2 3 4 5 6	-0.02168	0.4745	21	-0.05	0.9640
Center		6	0.1685	0.5714	21	0.29	0.7710
Center		7	0.5966	0.4563	21	1.31	0.2052
Center		8	0.2715	0.4632	21	0.59	0.5641
Center		9	0.3888	0.4727	21	0.82	0.4200
Center		10	0.09580	0.4547	21	0.21	0.8352
Center		11	0.05200	0.4621	21	0.11	0.9115
Center		12	0.9153	0.4667	21	1.96	0.0632
Center		13	-0.6357	0.4999	21	-1.27	0.2174
Center		14	-0.3065	0.4634	21	-0.66	0.5156
Center		15	1.0016	0.4772	21	2.10	0.0481
Center		16	0.8799	0.4713	21	1.87	0.0759
Center		17	0.3997	0.4843	21	0.83	0.4185
Center		18	-0.5635	0.5358	21	-1.05	0.3049
Center		19	-1.0144	0.5758	21	-1.76	0.0926
Center		20	0.8759	0.4710	21	1.86	0.0770
Center		21 22	0.1966	0.4698	21 21	0.42	0.6799
Center		22	-0.5812	0.4715	21	-1.23	0.2313
Center Treatment	Treated	1	-0.2610	0.05290	2i	-4.93	<.0001
Treatment	Control		-0.2010	0.05290	21	-4.95	<.0001
Residual	COILLIOI		1.1219		•		
icordua1			1.1213	•	•	•	•

```
/*Section 4.3.3*/
/*read data from the path of dataset*/
Data dat2;
infile "C:/Users/HSY/Desktop/polyps.csv" delimiter="," firstobs=2;
input number treat$ age;
RUN;
proc print data=dat2;
run;

OBS number treat age

1 63 placebo 20
2 2 drug 16
3 28 placebo 18
4 17 drug 22
5 61 placebo 13
6 1 drug 23
7 7 placebo 34
8 15 placebo 50
9 44 placebo 19
10 25 drug 17
11 3 drug 23
12 28 placebo 19
10 25 drug 17
11 3 drug 23
12 28 placebo 22
13 10 placebo 30
14 4 0 placebo 30
15 33 drug 23
16 46 placebo 30
14 40 placebo 30
14 40 placebo 30
14 40 placebo 30
14 40 placebo 30
15 33 drug 23
16 46 placebo 22
17 50 placebo 34
18 3 drug 23
19 1 drug 23
19 1 drug 22
20 4 drug 42
```

```
/*fit poisson regression model*/
PROC GENMOD data= dat2;
class treat(ref="placebo");
model number= age|treat / dist= poisson link= log;
RUN;
```

Model Information

Data Set	WORK . DAT2
Distribution	Poisson
Link Function	Log
Dependent Variable	number

Number of Observations Read 20 Number of Observations Used 20

Class Level Information

Class	Levels	Values
treat	2	drug placebo

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	16 16 16 16	179.4906 179.4906 182.0059 182.0059 1148.2295 -133.9133 275.8266 278.4933 279.8095	11.2182 11.2182 11.3754 11.3754

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	Wald 95% (Lim	Confidence its	Wald Chi-Square	Pr > ChiSq
Intercept age treat treat age*treat age*treat Scale	drug placebo drug placebo	1 1 0 1 0 0	4.5191 -0.0384 -1.2573 0.0000 -0.0046 0.0000 1.0000	0.1534 0.0062 0.4716 0.0000 0.0208 0.0000 0.0000	4.2185 -0.0506 -2.1816 0.0000 -0.0454 0.0000 1.0000	4.8197 -0.0262 -0.3329 0.0000 0.0362 0.0000 1.0000	868.30 37.81 7.11 0.05	<.0001 <.0001 0.0077 0.8240

NOTE: The scale parameter was held fixed.

Model Information

Data Set	WORK . DAT2
Distribution	Poisson
Link Function	Log
Dependent Variable	number

Number of Observations Read 20 Number of Observations Used 20

Class Level Information

Class	Levels	Values
treat	2	drug placebo

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) BIC (smaller is better)	16 16 16 16	179. 4906 15. 7789 182. 0059 16. 0000 100. 9400 -133. 9133 275. 8266 278. 4933 279. 8095	11.2182 0.9862 11.3754 1.0000

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	Wald 95% C Limi		Wald Chi-Square	Pr > ChiSq
Intercept age treat treat age*treat age*treat age*treat Scale	drug placebo drug placebo	1 1 1 0 1 0	4.5191 -0.0384 -1.2573 0.0000 -0.0046 0.0000 3.3727	0.5173 0.0211 1.5907 0.0000 0.0702 0.0000 0.0000	3.5053 -0.0797 -4.3749 0.0000 -0.1423 0.0000 3.3727	5.5329 0.0029 1.8604 0.0000 0.1330 0.0000 3.3727	76.33 3.32 0.62 0.00	<.0001 0.0683 0.4293 0.9474

 ${\tt NOTE:}\ \ {\tt The\ scale\ parameter\ was\ estimated\ by\ the\ square\ root\ of\ Pearson's\ Chi-Square/DOF.}$

Model Information

Data Set	WORK . DAT2
Distribution	Poisson
Link Function	Log
Dependent Variable	number

Number of Observations Read 20 Number of Observations Used 20

Class Level Information

Class	Levels	Values
treat	2	drug placebo

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AICC (smaller is better) AICC (smaller is better) BIC (smaller is better)	17 17 17 17	179.5408 16.7360 182.3731 17.0000 107.0304 -133.9384 273.8768 275.3768 276.8640	10.5612 0.9845 10.7278 1.0000

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF Esti	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq	
Intercept age treat treat Scale	drug placebo	1 1 1 0	4.5290 -0.0388 -1.3591 0.0000 3.2753	0.4811 0.0195 0.3853 0.0000 0.0000	3.5862 -0.0771 -2.1143 0.0000 3.2753	5.4719 -0.0006 -0.6039 0.0000 3.2753	88.64 3.96 12.44	<.0001 0.0465 0.0004	

 ${\tt NOTE:}\ \ {\tt The\ scale\ parameter\ was\ estimated\ by\ the\ square\ root\ of\ Pearson's\ Chi-Square/DOF.}$

```
/*disperson of parameter*/
/*check table "Criteria For Assessing Goodness Of Fit"
 line "pearson chi sqaure*/
/*fit the quasi poisson*/
PROC GLIMMIX data= dat2;
class treat(ref="placebo");
model number= age treat / dist= poisson link= log solution;
 random _residual_;
RUN:
                                                                              The GLIMMIX Procedure
                                                                                 Model Information
                                                          Data Set
Response Variable
Response Distribution
Link Function
Variance Function
Variance Matrix
                                                                                                        WORK.DAT2
                                                                                                         number
                                                                                                        Poisson
                                                                                                        Log
Default
                                                                                                         Diagonal
                                                          Variance Matrix
Estimation Technique
Degrees of Freedom Method
                                                                                                        Maximum Likelihood
Residual
                                                                             Class Level Information
                                                                       Class Levels
                                                                                                    Values
                                                                                            2
                                                                                                    drug placebo
                                                                       treat
                                                                Number of Observations Read
Number of Observations Used
                                                                                                                           20
                                                                                        Dimensions
                                                                       Covariance Parameters
                                                                       Columns in X
Columns in Z
                                                                       Subjects (Blocks in V)
Max Obs per Subject
                                                                                                                      20
                                                                            Optimization Information
                                                             Optimization Technique
Parameters in Optimization
Lower Boundaries
Upper Boundaries
Fixed Effects
                                                                                                             Newton-Raphson
                                                                                                             3
                                                                                                             Not Profiled
                                                                                   Iteration History
                                                                                                    Objective
                                                                                                                                                          Max
                                 Iteration
                                                                        Evaluations
                                                                                                                                   Change
                                                                                                                                                   Gradient
                                                     Restarts
                                                                                                       Function
                                              0
                                                                                                150.45214679
                                                                                                                                                   99.74975
                                                                                                134.54270883
133.94007739
133.93841261
133.93841259
                                                                                                                           15.90943796
0.60263144
0.00166478
                                                                 0
                                                                                                                                                   12.75127
0.563253
0.001658
                                                                                        3
3
3
                                              1
2
3
4
                                                                0
                                                                 0
                                                                0
                                                                                        3
                                                                                                                            0.00000002
                                                                                                                                                   1.533E-8
                                                            Convergence criterion (GCONV=1E-8) satisfied.
                                                                                     Fit Statistics
                                                                   -2 Log Likelihood
AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)
CAIC (smaller is better)
HQIC (smaller is better)
Pearson Chi-Square
Pearson Chi-Square / DF
                                                                                                                   267.88
273.88
275.38
276.86
279.86
274.46
182.37
10.73
                                                                                Parameter Estimates
                                                                                             Standard
                                    Effect
                                                                          Estimate
                                                                                                                     DF
                                                                                                                              t Value
                                                                                                                                                Pr > |t|
                                                         treat
                                                                                                 Error
                                                                             4.5290
                                                                                                0.4811
                                                                                                                     17
                                                                                                                                   9.41
                                                                                                                                                   <.0001
                                    Intercept
                                                                          -0.03883
-1.3591
                                                                                              0.01951
0.3853
                                                                                                                                  -1.99
-3.53
                                                                                                                                                   0.0628
0.0026
                                    age
treat
                                                         drug
                                    treat
Residual
                                                         placebo
                                                                            10.7278
                                                                       Type III Tests of Fixed Effects
                                                                                Num
DF
                                                                                              Den
DF
                                                          Effect
                                                                                                         F Value
                                                                                                                          Pr > F
```

0.0628

0.0026

3.96

12.44

17 17

age treat

```
/*fit the negative-binomial model*/
PROC GENMOD data= dat2;
class treat(ref="placebo");
model number= age treat / dist= negbin;
RUN;
```

/*parameter estimate: k=1/dispersion: 1/0.5816= 1.7194*/

The GENMOD Procedure

Model Information

Data Set	WORK.DAT2
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	number

Number of Observations Read 20 Number of Observations Used 20

Class Level Information

Class Levels Values
treat 2 drug placebo

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	17 17 17 17	22.0022 22.0022 19.7505 19.7505 1203.7028 -78.4400 164.8800 167.5467 168.8629	1.2942 1.2942 1.1618 1.1618

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept age treat treat Dispersion	drug placebo	1 1 1 0 1	4.5260 -0.0386 -1.3681 0.0000 0.5816	0.5918 0.0207 0.3701 0.0000 0.2052	3.3660 -0.0791 -2.0936 0.0000 0.2913	5.6860 0.0020 -0.6427 0.0000 1.1612	58.48 3.47 13.66	<.0001 0.0625 0.0002

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.