PRZEDMIOT: Systemy baz danych

KLASA: 1A gr. 2

Tydzień 1 Lekcja 1

Temat: Wprowadzenie do Baz Danych

Definicja bazy danych i jej znaczenie:

Definicja bazy danych:

Baza danych to cyfrowy, uporządkowany zbiór informacji, zapisany i przechowywany w sposób ustrukturyzowany, który umożliwia łatwe i szybkie wyszukiwanie, pobieranie, dodawanie, modyfikowanie i usuwanie danych.

Znaczenie bazy danych:

- **Przechowywanie danych** umożliwia gromadzenie dużych ilości informacji w jednym miejscu.
- **Szybki dostęp i wyszukiwanie** dzięki językom zapytań (np. SQL) można błyskawicznie znaleźć potrzebne dane.
- Relacje i spójność pozwala łączyć dane ze sobą (np. klient ↔ zamówienia),
 zachowując integralność.
- **Wielu użytkowników** umożliwia jednoczesną pracę wielu osób/ aplikacji z tymi samymi danymi.
- **⊜ Bezpieczeństwo** zapewnia mechanizmy kontroli dostępu i ochrony przed utratą danych.
- Aktualność zmiany wprowadzane w jednym miejscu są natychmiast widoczne dla wszystkich użytkowników.
- **Uniwersalność** używane w niemal każdej dziedzinie (bankowość, handel, medycyna, edukacja, serwisy internetowe).

Bazy danych można podzielić według sposobu organizacji i przechowywania danych:

•	1. Bazy relacyjne (RDB – Relational Database)□ Najpopularniejszy typ.
	☐ Dane są przechowywane w tabelach (wiersze = rekordy, kolumny = pola).
	\square Tabele są powiązane kluczami (np. użytkownik \rightarrow zamówienia).
	□ Do zarządzania używa się języka SQL.
	☐ Przykłady: MySQL, PostgreSQL, Oracle, MS SQL Server.
•	2. Bazy nierelacyjne (NoSQL)
	☐ Dane przechowywane w innych formach niż tabele.
	□ Rodzaje/modele:
	 Dokumentowe dane przechowywane w formie dokumentów (np. JSON, BSON, XML).
	 Grafowe - dane są przechowywane w postaci grafu (Neo4j – dane jako grafy),
	 Klucz–wartość - dane przechowywane jako para: klucz →
	wartość.(Redis, DynamoDB),
	 Kolumnowe - dane zapisane w kolumnach zamiast wierszy
	(odwrotnie niż w SQL)(Cassandra, HBase).
•	3. Bazy obiektowe
	☐ Dane przechowywane jako obiekty (tak jak w programowaniu obiektowym).
	☐ Mogą przechowywać nie tylko liczby i tekst, ale także multimedia czy złożone
	struktury.
	☐ Przykład: db4o, ObjectDB.
•	4. Bazy obiektowo-relacyjne
	☐ Hybryda relacyjnych i obiektowych.
	☐ Dane przechowywane są w postaci obiektów
	☐ Obsługują tabele, ale także bardziej złożone typy danych.
	☐ Przykład: PostgreSQL, Oracle.
•	5. Bazy hierarchiczne
	☐ Dane są zorganizowane w strukturę drzewa (rodzic–dziecko).
	□ Każdy rekord ma jeden nadrzędny i wiele podrzędnych.
	☐ Szybki dostęp, ale trudne do modyfikacji, mało elastyczne.
	☐ Przykład: IBM IMS (starsze systemy bankowe).

5. Bazy sieciowe

		Dane zorganizowane w strukturze przypominającej sieć lub graf – rekordy mogą mieć wielu rodziców i wielu potomków.
		Stanowią one rozwinięcie modelu hierarchicznego
		Pozwalają na reprezentację danych, gdzie jeden element może być powiązany z wieloma innymi elementami, a te z kolei mogą być
		powiązane z wieloma kolejnymi elementami , tworząc złożoną, grafową strukturę.
		Przykład: IDS (Integrated Data Store).
•	6. E	Bazy rozproszone
		Dane nie są przechowywane w jednym miejscu (na jednym serwerze), tylko
		rozsiane po wielu komputerach/serwerach, często w różnych lokalizacjach geograficznych.
		Łatwo dodać nowe serwery, gdy rośnie liczba danych.
		Dane są podzielone na części i każda część jest przechowywana na innym
	;	serwerze pp. użytkownicy A–M są na serwerze 1, a N–Z na serwerze 2.

Omówienie podstawowych koncepcji: tabele, rekordy, pola

📌 1. Tabela

To główna struktura w relacyjnej bazie danych. Można ją porównać do arkusza w Excelu – ma wiersze i kolumny. Każda tabela przechowuje dane dotyczące jednego typu obiektów.

→ Przykład: Tabela Studenci przechowuje informacje o studentach.

2. Rekord (wiersz, ang. row/record)

Pojedynczy wiersz w tabeli. Odpowiada jednej jednostce danych (np. jednemu studentowi). Składa się z pól (kolumn).

Przykład rekordu w tabeli Studenci:

ID Imię Nazwisko Wiek Kierunek

1 Anna Kowalska 21 Informatyka

Ten jeden wiersz to rekord opisujący Annę Kowalską.

📌 3. Pole (kolumna, ang. field/column)

To kolumna w tabeli, przechowująca określony typ danych.

Każde pole ma nazwę i jest określonego typu danych (np. liczba, tekst, data).

Przykłady pól w tabeli Studenci:

Imię – tekst, Nazwisko – tekst, Wiek – liczba całkowita, Kierunek – tekst.

Klucze

🔑 Klucz główny (Primary Key, PK)

To unikalny identyfikator rekordu w tabeli.

Gwarantuje, że każdy wiersz można jednoznacznie odróżnić.

Kluczem głównym może być:

 \square liczba całkowita (np. ID = 1, 2, 3...),

☐ unikalny kod (np. PESEL, NIP),

ID Imię Nazwisko Wiek 1 Anna Kowalska 21

Tutaj ID jest kluczem głównym.

Klucz obcy (Foreign Key, FK)

To pole w tabeli, które wskazuje na klucz główny w innej tabeli.

Dzięki temu możemy powiązać dane między tabelami.

 ← Przykład: Tabela Zapisy (które kursy student wybrał) może mieć klucze obce: StudentID → odwołanie do tabeli Studenci(ID), KursID → odwołanie do tabeli Kursy(ID).
✓ Podsumowanie w skrócie:
□ Relacyjna baza danych – dane w tabelach powiązane relacjami
PK – unikalny identyfikator w tabeli.
☐ FK – łączy jedną tabelę z drugą.