	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

 $Q(\beta^{-}) = -8535 \ 4$; $S(n) = 12761 \ 9$; $S(p) = 7196 \ 6$; $Q(\alpha) = -3570 \ 4$ $Q(\varepsilon)=1275\ 10$, $S(2n)=22824\ 4$, $S(2p)=11378\ 4$ (2021Wa16).

1954Ca03: ⁷⁶Kr produced and identified in spallation reaction: Y(p,X),E=150, 175, 240 MeV from Rochester cyclotron. Measured half-life of 9.7 h 5 for the decay of ⁷⁶Kr. Later studies of decay of ⁷⁶Kr: 1955Th01, 1963Do04, 1973Lo07, 1973Pa02.

Other reactions:

1983Ga19 (also 1984Sn01): 64 Zn(12 C, γ), 58 Ni(18 O, γ),E=42-6 MeV, GDR study. 1993HuZZ: 76 Kr(π^+,π^-),E=294 MeV. Measured $\sigma(\theta)$.

Additional information 1.

Mass measurements: 2008Go23, 2006Ro11, 2005Ch60, 2002He23.

Α

2007Ya06, 2007Ya20: 12 C(76 Kr,X),E \leq 1.05 GeV/nucleon; measured σ ; deduced rms matter radius, Glauber model.

⁷⁶Rb ε+ β ⁺ decay (36.5 s) **F**

⁷⁷Sr εp decay (9.0 s)

⁷⁶Kr Levels

Cross Reference (XREF) Flags

⁷⁸Kr(p,t)

 66 Zn(12 C,2n γ), 58 Ni(24 Mg, α 2p γ)

		C D E	⁴⁰ Ca(⁴⁰ Ca	6 Kr' γ) H 78 Kr(α , 6 He) $_{1}$,4p γ) I Coulomb excitation $_{2}$ 2p γ)					
E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments					
0.0&	0+	14.79 h 5	ABCDEFGHI	%ε+%β ⁺ =100 RMS charge radius $()^{1/2}$ =4.2020 fm 36 (2013An02 evaluation). T _{1/2} : weighted average of 14.82 h 5 (1963Do04, from parent-daughter separations); 14.7 h 1 (1963Do04, growth-decay curve for annihilation radiation, using 16.2 h half-life for ⁷⁶ Br decay); 14.6 h 2 (1973Pa02, γ-decay curves). 1963Do04 measured decay curves for three prominent γ rays and reported T _{1/2} =14.1 h, 14.2 h, and 14.3 h, with a counting uncertainty of 0.1 h but an overall uncertainty of 0.5 h in each value. Others: 10.5 h (1955Th01), 9.7 h 5 (1954Ca03).					
424.05 ^{&} 7	2+	27.1 ps <i>10</i>	ABCDEFGHI	μ =+0.74 22 (2004Ku11,2005Be61,2020StZV) Q=-0.7 2 (2007Cl02) J^{π} : E2 γ to 0 ⁺ . μ : transient-field technique in Coul. ex. (2004Ku11,2005Be61). Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation. $T_{1/2}$: from recommended B(E2)↑=0.758 26 (2016Pr01 evaluation), based on the following measurements: RDDS measurements, mean lifetime τ =41.5 ps 8 (2005Go43), 37.7 ps 30 (1990He04), 36 ps I (1984Wo10) and 35 ps I (1982Ke01). B(E2)↑=0.721 II 0 (2007Cl02, Coul. ex. with incident energy above Coulomb barrier). Other: τ =53 ps I (1974No08) from RDDS seems					
769.94 ^k 9	0+	42 ps 6	A FG I	discrepant. XREF: F(?). J ^{π} : (346 γ)(424 γ)(θ) in ⁷⁶ Br ε decay (1978LiZU). Also L=0 in (p,t). T _{1/2} : from $\beta \gamma$ (t) in ⁷⁶ Rb ε decay. Other: 47.3 ps <i>17</i> (2007Cl02, Coulomb excitation using GOSIA analysis).					
1034.75 9	4+	2.72 ps <i>17</i>	A CDEFG I	Q=-1.7 3 (2007Cl02) B(E2)(from 424,2 ⁺)=0.444 6 (2007Cl02 from Coulomb excitation). J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; rotational band member.					

E(level) [†]	${ m J}^{\pi \#}$	T _{1/2} ‡	XREF	Comments
				T _{1/2} : weighted average of 3.05 ps <i>14</i> (2007Cl02,Coulomb excitation, free fit analysis by GOSIA code), 2.54 ps <i>6</i> (RDDS,2005Go43), 2.08 ps <i>21</i> (RDDS,1998Sk01), 3.4 ps <i>3</i> (RDDS,1984Wo10); 3.5 ps <i>14</i> (DSA,1982Pi01); 2.9 ps <i>7</i> (RDDS,1982WiZS), uncertainty in 2005Go43 was increased to 5%. Others: 5.7 ps <i>16</i> (RDDS,1974No08) seems discrepant; and 4.30 ps <i>14</i> (RDDS,1982Ke01) is effective half-life. Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation.
1221.72 ^c 7	2+	1.11 ps 7	A CDEFGHI	Q=-0.7 3 (2007Cl02) J ^π : L(p,t)=2 from 0 ⁺ . T _{1/2} : from Coulomb excitation using GOSIA analysis (2007Cl02). Other: ≈1 ps (RDDS,1982Ke01). Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation.
1598.07 8	$(0)^{+}$	<4.7 [@] ps	Α	J^{π} : E2 γ to 2 ⁺ ; possible 828-keV E0 transition to 0 ⁺ .
1687.32 ^k 8	2+	0.326 ps <i>35</i>	A FGHI	Q=+1.0 4 (2007Cl02) J^{π} : L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from Coulomb excitation using GOSIA analysis (2007Cl02). Q: from Coulomb excitation (2007Cl02). Other: <4.8 ps from $\beta\gamma$ (t) in ε decay. No value is given in 2021StZZ compilation.
1733.26 ^d 10	3 ⁺	≈1 ps	A DEF	J^{π} : ΔJ=1, M1+E2 γ to 2 ⁺ , M1,E2 γ to 4 ⁺ . T _{1/2} : from RDDS (1982Ke01).
1859.7 ^{&} 4	6+	0.72 ps 8	DEF I	Q=-2.0 3 (2007Cl02) J^{π} : ΔJ =2, E2 γ to 4 ⁺ ; member of rotational band. $T_{1/2}$: weighted average (NRM) of 0.67 ps 20 (RDDS,2005Go43); 0.55 ps 21 (RDDS,1998Sk01); 0.82 ps 9 (DSA,1989Gr21); 1.04 ps 14 (RDDS,1984Wo10); 0.87 ps 8 (DSA,1982Pi01); 0.55 ps 14 (RDDS,1982WiZS); and 0.568 ps 35 (2007Cl02, Coulomb excitation, free first Carlyant projection (2007Cl03)
1957.4 ^c 3	4+	0.90 ps <i>14</i>	CDEF I	Q: from Coulomb excitation (2007Cl02). J^{π} : $\Delta J=2$, E2 γ to 2 ⁺ ; $\Delta J=1$, M1+E2 γ to 4 ⁺ . $T_{1/2}$: from Coul. ex. (2007Cl02) using GOSIA analysis. Other: <0.90 ps 28 (effective half-life from DSAM in (12 C,2n γ), 1982Pi01).
2091.49 10	$(2)^{+}$	<34 [@] ps	A GH	J^{π} : 1321.6 γ M1,E2 to 0+; L(p,t)=(2,3,4) for a 2079 <i>15</i> group would support 2+.
2104.33 <i>9</i> 2140.17 <i>16</i> 2192.50 <i>12</i>	1 ⁻ (1,2 ⁺)	16 [@] ps 5	A A A	J^{π} : E1 γ to 0 ⁺ . J^{π} : 2140.5 γ to 0 ⁺ .
2227.27 ⁸ 9	2-	25 [@] ps 6	A DEF	J^{π} : log ft =6.2 from 1 ⁻ ; E1(+M2) γ to 2 ⁺ ; 493.8 γ to 3 ⁺ can only be D,E2 from RUL.
2257.55 ^h 9 2332.70 <i>16</i>	3 ⁻ (1 ⁻)	<5.7 [@] ps	A CDEFG A	J^{π} : L(p,t)=3 from 0 ⁺ . J^{π} : 2333.2 γ to 0 ⁺ ; 1270.1 γ M1,E2 from 1 ⁻ .
2452.4 ^d 4	5+	<1.04 ps	DEF	$T_{1/2}$: effective half-life=0.76 ps 28 from DSAM in (12 C,2n γ) (1982Pi01). J^{π} : ΔJ=1, M1+E2 γ to 4 ⁺ ; ΔJ=2, E2 γ to 3 ⁺ .
2571.01 8 2581.12 <i>10</i> 2601 <i>15</i> 2622.0 ^g 4	$ \begin{array}{c} 1^{-} \\ (2^{+}) \\ (3^{-},4^{+}) \\ 4^{(-)} \end{array} $	16 [@] ps 4	A A G DEF	J^{π} : 973.0 γ E1 to 0 ⁺ . J^{π} : γ s to 4 ⁺ and 2 ⁺ ; possible β feeding from 1 ⁻ parent. J^{π} : L(p,t)=(3,4) from 0 ⁺ . J^{π} : ΔJ =2, quadrupole γ to 2 ⁻ ; ΔJ =1, dipole γ s to 4 ⁺ and 3 ⁺ ; band assignment.
2683.7 ^h 5	(5 ⁻)		DEF	J^{π} : $\Delta J=1 \gamma$ to 4^{+} ; band assignment.
2700.16 <i>13</i>	2+	<27 [@] ps	A G	J^{π} : L(p,t)=2 from 0 ⁺ .

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
2742.20 ⁱ 21 2763.2 ^c 5	(4 ⁻) (6 ⁺)		A DE DEF I	J^{π} : $\gamma \Delta J=1$ to 3^+ ; band assignment.
2774.94 12	$0^+,1,2$	22 [@] ps 10	A	J^{π} : log ft =6.4 from 1 ⁻ ; 1553.2 γ to 2 ⁺ can only be D,E2 from RUL.
2816.57 <i>18</i>	$(1,2^+)$	<13 [@] ps	A	J^{π} : 2046.5 γ to 0 ⁺ .
2845.1 ^a 5	(4 ⁺)	-	DE	
2872 15	3-	0.21	G	J^{π} : L(p,t)=3 from 0 ⁺ .
2879.4 ^{&} 5	8+	0.21 ps 2	DEF I	J^{π} : $\Delta J=2$, E2 γ to 6 ⁺ ; member of rotaional band. $T_{1/2}$: weighted average of 0.23 ps 2 (DSA,1989Gr21); 0.208 ps 21 (DSA,1982Pi01); 0.22 ps 3 (RDDS,1982WiZS); 0.173 ps 21 (from Coul. ex. using GOSIA analysis, 2007Cl02). Other: 0.31 ps 5 (DSA,1984Wo10, effective half-life).
2926.59 12	$0^-, 1^-, 2^-$	21 [@] ps 5	A	J^{π} : allowed ε decay (log ft =5.8) from 1 ⁻ ; 822.2 γ M1 to 1 ⁻ .
2944.4 ^j 6	(5^{-})	6	DE	
2970.1 <i>3</i>	$(0^+,1,2)$	<39 [@] ps	A	J^{π} : 2546 γ to 2 ⁺ ; possible ε feeding from 1 ⁻ parent.
3024.42 9	(2)-	18 [@] ps 6	Α	J ^{π} : 766.7 γ M1,E2 to 3 ⁻ ; strong ε feeding (log ft =5.9) from 1 ⁻ ; 1291.3 γ to 3 ⁺ .
3096.1 ^b 5	5(+)		DE	J^{π} : 1236y D+Q to 6 ⁺ , 2062y D to 4 ⁺ ; band assignment.
3175.2 ^g 5	6 ⁽⁻⁾		DEF	J ^{π} : 553.1 γ Q, Δ J=2 to 4 ⁽⁻⁾ ; 723.5 γ D, Δ J=1 to 5 ⁺ ; band assignment.
3242.1 3	$(1,2^+)$	<23 [@] ps	A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.5); 3242.3 γ to 0 ⁺ .
3275.90 <i>21</i> 3288.4 ^h <i>5</i>	$(1^+,2)$	1.00 .76 44	A	J ^{π} : possible ε feeding from 1 ⁻ (log f t=6.9); γ to 3 ⁺ .
	(7-)	1.80 ps +76-44	DEF	J ^{π} : ΔJ =2, E2 γ to (5 ⁻) and ΔJ =1 γ to 6 ⁺ ; T _{1/2} : from DSAM in (²⁸ Si,p2n γ) (1999Mu21) (See (¹² C,2n γ) dataset). Other: 0.256 ps 42 (DSAM,1982Pi01).
3296.3 ⁱ 7	$6^{(-)}$		DE	J^{π} : 675 γ Q, ΔJ =2 to 4 ⁽⁻⁾ ; 1436 γ D to 6 ⁺ ; band assignment.
3332.7 ^d 6	7+	<0.92 ps	DEF	J ^{π} : 879.9 γ E2, Δ J=2 to 5 ⁺ ; 1474 γ D+Q to 6 ⁺ . T _{1/2} : effective half-life=0.71 ps 21 from DSAM in (12 C,2n γ) (1982Pi01).
3406.2 ^a 6	(6^+)		DE	
3421.6 5	$(0^+,1,2)$	<24 [@] ps	A	J^{π} : possible ε feedig from 1 ⁻ (log ft=7.1); γ to 2 ⁺ .
3456.1 5	$(0^-,1,2)$		A G	J^{π} : possible ε feedig from 1 ⁻ (log ft =7.2); γ to 2 ⁻ .
3571.2 ^c 8 3573.8 ^j 7	(8 ⁺)		DEF DE	
3602.81 <i>13</i>	(7 ⁻) 1 ⁻	<9.7 [@] ps		J^{π} : E1 γ to 0^+ .
3636.3 <i>3</i>	1,2 ⁽⁺⁾	<9.7 ps	A A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.4); γ to 0 ⁺ .
3672.24 22	(0,1,2)		A	J^{π} : possible ε feeding from 1 ⁻ (log ft =6.8).
3781.9 ^b 8	7 ⁽⁺⁾		DE	J^{π} : 686 γ Q, ΔJ =2 to 5 ⁽⁺⁾ ; 376 γ D, ΔJ =1 to 6 ⁺ ; band assignment.
3900.9 ^g 8	8(-)	1.12 ps +28–19	DEF	J^{π} : E2, $\Delta J = 2 \gamma$ to $6^{(-)}$; 568 γ D, $\Delta J = 1$ to 7^{+} .
3978.0 <i>3</i>	1,2 ⁽⁺⁾	<17 [@] ps	A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.4); 3978.2 γ to 0 ⁺ .
3986.6 <i>3</i>	1,2(+)	27 [@] ps 18	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.3); 3216.3 γ to 0 ⁺ .
4026.72 17	1,2 ⁽⁺⁾	<17 [@] ps	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.1); γ s to 0 ⁺ .
4068.4 11	10 ⁺	0.102 ps <i>14</i>	DEF I	T _{1/2} : from DSA method. Weighted average of 0.097 ps <i>14</i> (1982Pi01); 0.12 ps <i>3</i> (1982WiZS); 0.104 ps <i>21</i> (Coul. ex. using GOSIA analysis, 2007Cl02). Others (effective half-lives): 0.56 ps <i>11</i> (1989Gr21), 0.14 ps <i>4</i> (1984Wo10).
4072.8 ^h 6	(9-)	0.56 ps +9-8	DEF	$T_{1/2}$: from DSAM in (28 Si,p2n γ) (1999Mu21) (See (12 C,2n γ) dataset). Other: 0.35 ps δ (effective half-life, and 0.111 ps 42 from gating above, both from DSAM in (12 C,2n γ),1982Pi01).
4097.75 20	1,2 ⁽⁺⁾	<18 [@] ps	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.0); 3327.6 γ to 0 ⁺ .

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
4118.3 ⁱ 12	(8-)		DE	
4217.8 ^a 9 4289.42 22	(8^+)		DE A	J^{π} : ε feeding from 1 ⁻ (log ft =5.8); 686.5 γ M1,E2 to 1 ⁻ .
4289.42 22 4380.1 ^d 8	$(0,1,2)^-$ (9^+)		A D	J. Electing from 1 (log $fi=3.0$), 000.37 M11,E2 to 1.
4403.7 12	(9) (9 ⁺)	<0.36 ps	F	E(level): this level is only from (12 C,2n γ),(24 Mg, α 2p γ) (1982Pi01, 1989Gr21). It is not reported in more recent studies with high statistics: 54 Fe(28 Si, α 2p γ) (1996Do07) and 40 Ca(40 Ca,4p γ) (2005Va09). T _{1/2} : effective half-life=0.29 ps 7 from DSAM in (12 C,2n γ)
1122 06 0	(10+)			(1982Pi01).
4433.8 ^c 9 4469.8 ^j 9	(10^{+})		DE	
4469.8 ⁷ 9 4700.5 ^b 10	(9 ⁻)		DE	
4700.5° 10 4806.48 10	(9^+) (10^-)	0.55 ps +12-16	DE DEF	
5051.3 ^h 9	(11 ⁻)	0.163 ps 27	DEF	$T_{1/2}$: from DSAM in (12 C,2n γ); weighted average of 0.180 ps +35-28 (1999Mu21) and 0.12 ps 5 (1982Pi01).
5106.3 ⁱ 16	(10^{-})		DE	
5240.5 ^a 11	$10^{(+)}$		DE	
5348.4 ^{&} 15	12+	<0.20 ps	DEF	J ^{π} : member of rotational band. T _{1/2} : effective half-life=0.166 ps 35 from DSAM in (12 C,2n γ) (1982Pi01).
5528.8 ^j 14	(11^{-})		DE	
5566.8° 14	(12^{+})		D	
5589.1 ^d 13	(11^{+})		D	
5795.7 ^b 12	11 ⁽⁺⁾		D	
5873.1 ⁸ 11	(12-)	0.173 ps +35-28	DEF	
6218.3 ^{<i>i</i>} 19 6222.3 ^{<i>h</i>} 13	(12-)	0.000	DE	T. C. DOAN: (28g; 2.) (1000M 21) (9. (12g; 2.)
	(13 ⁻)	0.090 ps 28	DEF	$T_{1/2}$: from DSAM in (28 Si,p2n γ) (1999Mu21) (See (12 C,2n γ) dataset). Other: 0.24 ps 6 (effective half-life from DSAM in (12 C,2n γ),1982Pi01).
6390.2 ^a 13	(12^{+})		D	
6605.4 ^e 18	(12 ⁺)		D	17 AT 0
6650.4 ^{&} 18	14+		DEF	J^{π} : $\Delta J=2 \gamma$ to 12 ⁺ ; member of rotational band.
6681.8 ^{<i>j</i>} 17 6937.1 ^{<i>d</i>} 17	(13 ⁻)		DE	
6937.14 17 7032.4 ^b 14	(13^+) (13^+)		D	
7032.4° 14 7034.9° 17	(13 ⁺) (14 ⁺)		D D	
7110.1 ⁸ 15	(14^{-})	<0.19 ps	DEF	
7435.3 ⁱ 21	(14^{-})	1	D	
7554.3 ^a 15	(14^{+})		D	
7583.3 ^h 17	(15^{-})	<0.14 ps	DEF	
7606.4 ^e 21	(14^{+})		D	
$7870.9^{j} 20$	(15-)		D	T . T . T . T . T . T . T . T . T . T .
8000.4 21	16+		DEF	J^{π} : $\Delta J=2 \gamma$ to 14 ⁺ ; member of rotational band.
8432.1 ^d 19 8521.1 ^g 18	(15^+) (16^-)		D DEF	
8666.9 ^c 20	(16) (16 ⁺)		DEF D	
8717.4 ⁱ 24	(16^{-})		D	
8798.5 ^e 23	(16^{+})		D	

E(level) [†]	$J^{\pi \#}$	XREF	Comments
8829.3 ^a 18	(16^+)	D	
9117.4 ^h 20	(17^{-})	DEF	
9217.9 ^j 22	(17^{-})	D	
9400.5 ^{&} 23	18 ⁺	DEF	J^{π} : E2, $\Delta J=2 \gamma$ to 16^{+} ; member of rotational band.
10050.1 ^d 22	(17^+)	D	, , , , , , , , , , , , , , , , , , ,
10059.18 21	(18^{-})	DEF	
10135 ⁱ 3	(18-)	D	
10139.5 ^e 25	(18^{+})	D	
10470.9 ^c 22	(18^{+})	D	
10640.4 ^h 22	(19^{-})	D F	
10773.9 ^j 24	(19^{-})	D	
10936.5 ^{&} 25	20+	D F	J^{π} : E2, $\Delta J=2 \gamma$ to 18^{+} ; member of rotational band.
11655.1 ^g 23	(20^{-})	D F	
11664 ^e 3	(20^+)	D	
11719 ⁱ 3	(20^{-})	D	
11785.1^{d} 24	(19^+)	D	
12254.4 ^h 24	(21^{-})	D F	
$12397.9^{\circ}24$	(20^+)	D	
12493 ^j 3 12695 ^{&} 3	(21 ⁻)	D D	IT. F2 AI 2 20+
12695 & 3 13352.1 ⁸ 25	22 ⁺ (22 ⁻)	D F D F	J^{π} : E2, $\Delta J=2 \gamma$ to 20^{+} ; member of rotational band.
13352.18 23 13388 ^e 3	(22^{+})	D F D	
$13500^{i} 3$	(22^{-})	D	
13613 ^d 3	(21^+)	D	
14026 ^h 3	(23^{-})	D	
$14020 \ 3$ $14440^{j} \ 3$	(23^{-})	D	
14751 & 3	24+	D F	J^{π} : E2, $\Delta J=2 \gamma$ to 22^{+} ; member of rotational band.
15225 ⁸ 3	(24^{-})	D F	3. LL, LB-L y to LL , inclined of foldifficational reality.
15346 ^e 3	(24^{+})	D	
15503 <i>i</i> 3	(24^{-})	D	
16009 ^h 3	(25^{-})	D	
16650 ^j 3	(25^{-})	D	
17157 <mark>&</mark> 3	26+	D	J^{π} : E2, $\Delta J=2 \gamma$ to 24^{+} ; member of rotational band.
17327 <mark>8</mark> 3	(26^{-})	D	
17550 ^e 4	(26^{+})	D	
17859 ⁱ 4	(26^{-})	D	
18256 ^h 3	(27^{-})	D	
19172 ^j 4	(27^{-})	D	
19741 <i>g</i> 3	(28-)	D	
19950 & 4	28 ⁺	D	J^{π} : E2, $\Delta J=2 \gamma$ to 26^{+} ; member of rotational band.
20045 ^e 4	(28 ⁺)	D	
20538^{i} 4	(28-)	D	
20815 ^h 4 22583 ^g 4	(29^{-})	D	
225838 4 22790 ^e 4	(30^{-}) (30^{+})	D D	
23157 & 4	(30^{+})	D	J^{π} : possible member of rotaional band.
$23737^{h} 4$ $23742^{h} 4$	(30°) (31^{-})	D D	3. possible inclined of fotatolial balla.
23142 4	(31)	ע	

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF
25868 ⁸ 4	(32 ⁻)	D	4847.0+x ^f 20		D
27083 ^h 4	(33^{-})	D	6472.1+x ^f 23		D
$_{\mathbf{X}}f$	(11^{+})	D	8309.1+x ^f 25	(23^{+})	D
966.0+x ^f 10	(13^{+})	D	$10382 + x^{f} 3$	(25^{+})	D
$2097.0+x^{f}$ 15	(15^{+})	D	12696+x ^f 3	(27^{+})	D
3390.0+x ^f 18	(17^{+})	D	15234+x ^f 3	(29^+)	D

[†] From a least squares fit to $E\gamma$ data.

[‡] From DSAM data in (²⁸Si,p²ny) (1999Mu²1) (see (¹²C,2ny) dataset), unless otherwise stated.

[#] For low-spin (J<4), assignments are from ⁷⁶Rb ε decay based on transition multipolarities, log ft values, and decay pattern. For high-spin (J≥4) levels, assignments are based on transition multipolarities from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) values, and band structures.

[@] From $\beta \gamma(t)$ data in ⁷⁶Rb ε decay.

[&]amp; Band(A): g.s. band. Terminating state at 30⁺ is proposed (2005Va09) with configuration= $\pi[((g_{9/2})_8^2)((f_{5/2},p_{3/2})_6^6)]_{14}$ $\otimes \nu[((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_4^8)]_{16}$ and for 26⁺ state: $\pi[((g_{9/2})_8^2)((f_{5/2},p_{3/2})_6^4)]_{12} \otimes \nu[((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_8^2)]_{14}$.

Q(transition) decreases from 2.3 to 1.8 from 18^+ to 30^+ . Band crossings are attributed to alignments of pairs of $g_{9/2}$ protons and neutrons (1989Gr21). Q(intrinsic)=2.90 4 (1989Gr21).

^a Band(B): Band based on $4^+, \alpha=0$.

^b Band(b): Band based on $5^+, \alpha=1$.

^c Band(C): Band based on $2^+, \alpha=0$.

^d Band(c): Band based on $3^+, \alpha=1$.

^e Band(D): Band based on $12^+, \alpha=0$.

^f Band(d): Band based on $11^+, \alpha=1$.

^g Band(E): $\pi 3/2[431] \otimes \pi 3/2[312], \alpha = 0$. Q(transition) decreases from 2.6 to 1.8 from 16⁻ to 30⁻. Terminating state at 32⁻ is proposed (2005 Va09) with configuration= $\pi[((g_{9/2})_{21/2}^3)((f_{5/2},p_{3/2})_{11/2}^5)]_{16} \otimes \nu[((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_4^6)]_{16}$.

^h Band(e): $\pi 3/2[431] \otimes \pi 3/2[312], \alpha=1$. Q(transition) decreases from 2.9 to 2.2 from 17⁻ to 31⁻.

ⁱ Band(F): $v3/2[301] \otimes v5/2[422], \alpha = 0$.

^j Band(f): $v3/2[301] \otimes v5/2[422], \alpha=1$.

^k Band(G): Band based on 770, 0⁺.

Additional information 2.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	δ &	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
424.05	2+	424.0 <i>I</i>	100	0.0 0+	E2		0.00535 8		B(E2)(W.u.)=79.3 +30-28 α (K)=0.00473 7; α (L)=0.000529 7; α (M)=8.55×10 ⁻⁵
769.94	0+	345.9 <i>1</i>	100 [@] 3	424.05 2+	E2		0.01045 <i>15</i>		α (N)=8.46×10 ⁻⁶ <i>12</i> B(E2)(W.u.)=141 +24– <i>18</i> α (K)=0.00922 <i>13</i> ; α (L)=0.001049 <i>15</i> ; α (M)=0.0001696 24
		770		0.0 0+	(E0)			0.26	$\alpha(N)=1.666\times10^{-5} 23$ $\rho^2(E0,0^+ \text{ to } 0^+)=0.079 \ 11; \ X(E0/E2)=0.020 \ 1$ (2005Gi17). $q_K^2(E0/E2)=0.203 \ 8, \ X(E0/E2)=0.0188 \ 12,$
1034.75	4+	610.6 <i>1</i>	100	424.05 2+	E2		1.77×10 ⁻³ 3		ρ^2 (E0)=0.077 12 (2022Ki03 evaluation). B(E2)(W.u.)=128.0 +86-75 α (K)=0.001570 22; α (L)=0.0001716 24; α (M)=2.78×10 ⁻⁵ 4 α (N)=2.77×10 ⁻⁶ 4
1221.72	2+	797.6 1	100 [@] 3	424.05 2+	M1+E2	+0.2 1	0.000755 12		B(M1)(W.u.)=0.0222 17; B(E2)(W.u.)=1.9 +22-14 α (K)=0.000671 10; α (L)=7.12×10 ⁻⁵ 11; α (M)=1.153×10 ⁻⁵ 18 α (N)=1.168×10 ⁻⁶ 18 Mult.,δ: from ce data in ⁷⁶ Rb ε decay and γ (θ) in (12 C,2n γ) Large M1 component seems inconsistent with systematics of δ values for second 2 ⁺ to first 2 ⁺ transitions.
		1221.6 <i>I</i>	69 [@] 4	0.0 0+	E2		0.000328 5		B(E2)(W.u.)= $4.00 + 3I - 28$ $\alpha(K)=0.000281 \ 4; \ \alpha(L)=2.98\times10^{-5} \ 4;$ $\alpha(M)=4.82\times10^{-6} \ 7$ $\alpha(N)=4.87\times10^{-7} \ 7; \ \alpha(IPF)=1.163\times10^{-5} \ 16$
1598.07	(0)+	376.4 1	8.1 @ 4	1221.72 2+	E2		0.00788 11		B(E2)(W.u.)>58 α (K)=0.00696 10; α (L)=0.000786 11; α (M)=0.0001271 18 α (N)=1.252×10 ⁻⁵ 18
		828		769.94 0 ⁺	(E0)			0.0039	$q_K^2(E0/E2)=0.11\ 2,\ X(E0/E2)=0.140\ 26,\ \rho^2(E0)<0.60$ (2022Ki03 evaluation).
		1174.0 <i>1</i>	100 3	424.05 2+	E2		0.000350 5		B(E2)(W.u.)>2.6

γ (⁷⁶Kr) (continued)

						, ·		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ #	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	δ&	α^{\dagger}	Comments
1687.32	2+	466.0 3	4.6 [@] 16	1221.72 2+	[M1,E2]		0.0032 7	$\alpha(K)$ =0.000306 4; $\alpha(L)$ =3.25×10 ⁻⁵ 5; $\alpha(M)$ =5.26×10 ⁻⁶ 7 $\alpha(N)$ =5.31×10 ⁻⁷ 7; $\alpha(IPF)$ =5.02×10 ⁻⁶ 7 $\alpha(K)$ =0.0029 6; $\alpha(L)$ =0.00032 7; $\alpha(M)$ =5.1×10 ⁻⁵ 12 $\alpha(N)$ =5.1×10 ⁻⁶ 12 B(M1)(W.u.)=0.0187 +70-65 if M1, B(E2)(W.u.)=116 +43-41 if E2.
		652.6 1	9.2 [@] 3	1034.75 4+	[E2]		1.47×10 ⁻³ 2	$\alpha(K)$ =0.001303 18; $\alpha(L)$ =0.0001419 20; $\alpha(M)$ =2.296×10 ⁻⁵ 32 $\alpha(N)$ =2.297×10 ⁻⁶ 32 B(E2)(W.u.)=43.1 +57-47
		917.4 <i>I</i>	100 [@] 6	769.94 0+	[E2]		0.000608 9	$\alpha(K)=0.000540 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 8; \ \alpha(M)=9.37\times10^{-6} \ 13$ $\alpha(N)=9.42\times10^{-7} \ 13$ $\alpha(E)=0.000540 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 8; \ \alpha(M)=9.37\times10^{-6} \ 13$
		1263.2 2	21.2 [@] 7	424.05 2+	M1,E2		0.000308 7	$\alpha(K)$ =0.000258 5; $\alpha(L)$ =2.73×10 ⁻⁵ 6; $\alpha(M)$ =4.42×10 ⁻⁶ 9 $\alpha(N)$ =4.47×10 ⁻⁷ 9; $\alpha(IPF)$ =1.73×10 ⁻⁵ 23 B(M1)(W.u.)=0.00433 +57-47 if M1, B(E2)(W.u.)=3.65 +48-40 if E2.
		1687.1 2	28.8 [@] 10	0.0 0+	[E2]		0.000327 5	$\alpha(K)$ =0.0001454 20; $\alpha(L)$ =1.531×10 ⁻⁵ 21; $\alpha(M)$ =2.476×10 ⁻⁶ 35 $\alpha(N)$ =2.506×10 ⁻⁷ 35; $\alpha(IPF)$ =0.0001633 23
1733.26	3+	511.6 2	20 [@] 12	1221.72 2+	[M1,E2]		0.0025 5	B(E2)(W.u.)=1.17 +15-13 α (K)=0.0022 4; α (L)=0.00024 5; α (M)=3.9×10 ⁻⁵ 8 α (N)=3.9×10 ⁻⁶ 8
		698.4 <i>1</i>	8.7 [@] 8	1034.75 4+	M1,E2		0.00111 11	B(M1)(W.u.) \approx 0.026 if M1, B(E2)(W.u.) \approx 1.3×10 ² if E2. α (K)=0.00099 10; α (L)=0.000106 11; α (M)=1.72×10 ⁻⁵ 18 α (N)=1.73×10 ⁻⁶ 18 I_{γ} : 18.2 in ⁴⁰ Ca(⁴⁰ Ca,4p γ).
		1309.3 <i>1</i>	100 4	424.05 2+	M1+E2	+0.38 4	0.000292 4	B(M1)(W.u.)≈0.0044 if M1, B(E2)(W.u.)≈12 if E2. B(M1)(W.u.)≈0.0067; B(E2)(W.u.)≈0.75 α (K)=0.0002381 33; α (L)=2.508×10 ⁻⁵ 35; α (M)=4.06×10 ⁻⁶ 6
1859.7	6+	824.4 7	100	1034.75 4+	E2		0.000792 11	$\alpha(N)=4.11\times10^{-7}$ 6; $\alpha(IPF)=2.39\times10^{-5}$ 4 B(E2)(W.u.)=108 +14-11 $\alpha(K)=0.000703$ 10; $\alpha(L)=7.57\times10^{-5}$ 11; $\alpha(M)=1.225\times10^{-5}$ 17
1957.4	4+	736.0 5	57 6	1221.72 2+	E2		1.06×10 ⁻³ 2	$\alpha(N)=1.230\times10^{-6}\ 17$ B(E2)(W.u.)=46.6 +99-75 $\alpha(K)=0.000942\ 13;\ \alpha(L)=0.0001019\ 14;\ \alpha(M)=1.649\times10^{-5}\ 23$ $\alpha(N)=1.654\times10^{-6}\ 23$
		922.6 5	100 10	1034.75 4+	M1+E2	-0.84 5	0.000570 8	I _y : 81.6 in ⁴⁰ Ca(⁴⁰ Ca,4py). B(M1)(W.u.)=0.0098 +20-15; B(E2)(W.u.)=10.9 +22-18

 ∞

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$lpha^\dagger$	Comments
1957.4	4+	1532.9 5	29 3	424.05 2+	[E2]	0.000295 4	$\alpha(K)=0.000507\ 7;\ \alpha(L)=5.39\times10^{-5}\ 8;\ \alpha(M)=8.73\times10^{-6}\ 13$ $\alpha(N)=8.81\times10^{-7}\ 13$ $B(E2)(W.u.)=0.61\ +14-10$ $\alpha(K)=0.0001755\ 25;\ \alpha(L)=1.851\times10^{-5}\ 26;\ \alpha(M)=2.99\times10^{-6}\ 4$ $\alpha(N)=3.03\times10^{-7}\ 4;\ \alpha(IPF)=9.75\times10^{-5}\ 14$
2091.49	(2)+	403.9 3	20.7 [@] 11	1687.32 2 ⁺	[M1,E2]	0.0049 14	$\alpha(K)$ =0.0043 $I2$; $\alpha(L)$ =4.8×10 ⁻⁴ $I4$; $\alpha(M)$ =7.8×10 ⁻⁵ 23 $\alpha(N)$ =7.7×10 ⁻⁶ 22 B(M1)(W.u.)>8.7×10 ⁻⁴ if M1, B(E2)(W.u.)>7.2 if E2.
		493.4 1	14 [@] 5	1598.07 (0)+	[E2]	0.00333 5	$\alpha(K)=0.00294$ 4; $\alpha(L)=0.000326$ 5; $\alpha(M)=5.27\times10^{-5}$ 7 $\alpha(N)=5.24\times10^{-6}$ 7 B(E2)(W.u.)>1.3
		870 ^a		1221.72 2+	M1,E2	0.00066 4	$\alpha(K)=0.000584 \ 32; \ \alpha(L)=6.2\times10^{-5} \ 4; \ \alpha(M)=1.01\times10^{-5} \ 6$ $\alpha(N)=1.02\times10^{-6} \ 6$
		1321.6 3	100 [@] 3	769.94 0+	(E2)	0.000300 4	B(E2)(W.u.)>0.096 α(K)=0.0002376 33; α(L)=2.515×10 ⁻⁵ 35; α(M)=4.07×10 ⁻⁶ 6 α(N)=4.11×10 ⁻⁷ 6; α(IPF)=3.27×10 ⁻⁵ 5 Mult.: α(K)exp from 2005Gi17 in ⁷⁶ Rb ε decay gives M1,E2; ΔJ^{π} requires E2.
		1667.6 <i>3</i>	78.7 [@] 6	424.05 2+	[M1,E2]	0.000308 15	$\alpha(K)=0.0001484\ 2I;\ \alpha(L)=1.560\times10^{-5}\ 23;\ \alpha(M)=2.52\times10^{-6}\ 4$ $\alpha(N)=2.56\times10^{-7}\ 4;\ \alpha(IPF)=0.000141\ I4$ B(M1)(W.u.)>4.9×10 ⁻⁵ if M1, B(E2)(W.u.)>0.024 if E2.
2104.33	1-	417.1 <i>I</i>	2.0 2	1687.32 2+	[E1]	1.53×10 ⁻³ 2	$\alpha(K)$ =0.001362 19; $\alpha(L)$ =0.0001447 20; $\alpha(M)$ =2.338×10 ⁻⁵ 33 $\alpha(N)$ =2.349×10 ⁻⁶ 33 B(E1)(W.u.)=4.2×10 ⁻⁶ +20−11
		506.0 9	7 3	1598.07 (0)+	[E1]	0.000944 14	$\alpha(K)$ =0.000839 12; $\alpha(L)$ =8.89×10 ⁻⁵ 13; $\alpha(M)$ =1.437×10 ⁻⁵ 21 $\alpha(N)$ =1.446×10 ⁻⁶ 21
		882.4 2	22 5	1221.72 2+	[E1]	0.000273 4	B(E1)(W.u.)=8.3×10 ⁻⁶ +55-36 α (K)=0.0002430 34; α (L)=2.56×10 ⁻⁵ 4; α (M)=4.13×10 ⁻⁶ 6 α (N)=4.17×10 ⁻⁷ 6
		1334.4 3	6.3 23	769.94 0+	[E1]	0.000261 4	B(E1)(W.u.)=4.9×10 ⁻⁶ +25-15 α (K)=0.0001124 16; α (L)=1.177×10 ⁻⁵ 16; α (M)=1.902×10 ⁻⁶ 27 α (N)=1.926×10 ⁻⁷ 27; α (IPF)=0.0001343 19
		1680.3 2	100 5	424.05 2+	E1	0.000478 7	B(E1)(W.u.)= $4.1\times10^{-7} + 25-17$ B(E1)(W.u.)= $3.2\times10^{-6} + 15-8$ $\alpha(K)=7.68\times10^{-5}$ 11; $\alpha(L)=8.01\times10^{-6}$ 11; $\alpha(M)=1.295\times10^{-6}$ 18
		2104.3 5	16.0 5	0.0 0+	[E1]	0.000761 11	α (N)=1.312×10 ⁻⁷ 18; α (IPF)=0.000391 5 B(E1)(W.u.)=2.6×10 ⁻⁷ +12-7

9

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&}$	$lpha^\dagger$	Comments
								$\alpha(K)=5.43\times10^{-5} 8$; $\alpha(L)=5.66\times10^{-6} 8$; $\alpha(M)=9.14\times10^{-7} 13$ $\alpha(N)=9.27\times10^{-8} 13$; $\alpha(IPF)=0.000700 10$
2140.17 2192.50	$(1,2^+)$	918.5 <i>7</i> 2140.5 2 1768.4 2	100 <i>33</i> 26 <i>3</i> 100	1221.72 2 ⁺ 0.0 0 ⁺ 424.05 2 ⁺				<i>u</i> (1)=5.27×10 13, <i>u</i> (11)=0.000700 10
2227.27	2-	493.8 7	6.4 [@] 18	1733.26 3 ⁺	[E1]		1.00×10 ⁻³ 1	$\alpha(K)$ =0.000890 <i>13</i> ; $\alpha(L)$ =9.44×10 ⁻⁵ <i>14</i> ; $\alpha(M)$ =1.526×10 ⁻⁵ 22 $\alpha(N)$ =1.535×10 ⁻⁶ 22
		540.0 <i>I</i>	2.2 [@] 2	1687.32 2+	[E1]		0.000806 11	B(E1)(W.u.)= $6.3\times10^{-6} +26-21$ $\alpha(K)=0.000717 \ 10; \ \alpha(L)=7.59\times10^{-5} \ 11;$ $\alpha(M)=1.227\times10^{-5} \ 17$ $\alpha(N)=1.235\times10^{-6} \ 17$
		1005.5 1	19.1 [@] 6	1221.72 2+	[E1]		0.0002113 30	B(E1)(W.u.)= $1.65 \times 10^{-6} + 52 - 36$ $\alpha(K)=0.0001881 \ 26; \ \alpha(L)=1.975 \times 10^{-5} \ 28;$ $\alpha(M)=3.19 \times 10^{-6} \ 4$ $\alpha(N)=3.23 \times 10^{-7} \ 5$
		1803.2 <i>1</i>	100 [@] 3	424.05 2+	E1(+M2)	0.33 +18-33	0.000540 23	B(E1)(W.u.)= $2.22 \times 10^{-6} + 67 - 45$ B(E1)(W.u.)= $1.82 \times 10^{-6} + 91 - 56$; B(M2)(W.u.)< 0.79 α (K)= $8.6 \times 10^{-5} 19$; α (L)= $9.0 \times 10^{-6} 20$; α (M)= $1.45 \times 10^{-6} 32$
2257.55	3-	1035.5 1	11.8 [@] 9	1221.72 2+	[E1]		0.0001998 28	$\alpha(N)=1.47\times10^{-7}$ 33; $\alpha(IPF)=0.00044$ 4 $\alpha(K)=0.0001778$ 25; $\alpha(L)=1.867\times10^{-5}$ 26; $\alpha(M)=3.02\times10^{-6}$ 4 $\alpha(N)=3.05\times10^{-7}$ 4 B(E1)(W.u.)>4.2×10 ⁻⁶ E _{γ} : level-energy difference=1035.8, energy uncertaint
		1222.6 6	26 [@] 15	1034.75 4+	[E1]		0.0002066 29	is probably underestimated. $\alpha(K)=0.0001311\ I8;\ \alpha(L)=1.373\times10^{-5}\ I9;$ $\alpha(M)=2.220\times10^{-6}\ 3I$ $\alpha(N)=2.246\times10^{-7}\ 32;\ \alpha(IPF)=5.94\times10^{-5}\ 9$
		1833.6 <i>I</i>	100 [@] 3	424.05 2+	E1(+M2)	0.12 +28-12	0.000577 29	B(E1)(W.u.)>3.1×10 ⁻⁶ B(E1)(W.u.)>6.0×10 ⁻⁶ α (K)=6.9×10 ⁻⁵ 21; α (L)=7.2×10 ⁻⁶ 22; α (M)=1.17×10 ⁻⁶ 35
2332.70	(1-)	1908.5 2 2333.2 <i>4</i>	100 <i>5</i> 31 <i>8</i>	424.05 2 ⁺ 0.0 0 ⁺				$\alpha(N)=1.2\times10^{-7} 4$; $\alpha(IPF)=0.00050 5$

10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_{\scriptscriptstyle f}^\pi$	Mult.&	δ&	$lpha^\dagger$	Comments
2452.4	5 ⁺	719.9 10	50	1733.26 3+	E2		1.13×10 ⁻³ 2	B(E2)(W.u.)>37 α (K)=0.000998 <i>14</i> ; α (L)=0.0001082 <i>16</i> ; α (M)=1.751×10 ⁻⁵ <i>25</i>
		1417.2 5	100	1034.75 4+	M1+E2	+4 2	0.000288 5	$\alpha(N)=1.755\times10^{-6} 25$ I_{γ} : from 40 Ca(40 Ca,4p $_{\gamma}$). B(M1)(W.u.)>1.2×10 ⁻⁴ ; B(E2)(W.u.)>2.3 $\alpha(K)=0.0002055 29$; $\alpha(L)=2.170\times10^{-5} 3I$; $\alpha(M)=3.51\times10^{-6} 5$
2571.01	1-	378.5 <i>I</i>	0.70 3	2192.50	M1+E2	0.9 +8-5	0.0057 11	$\alpha(M)=3.51\times 10^{-7}$ 5; $\alpha(IPF)=5.66\times 10^{-5}$ 19 B(M1)(W.u.)=7.8×10 ⁻⁵ +51-43; B(E2)(W.u.)=0.59 +46-42 $\alpha(K)=0.0051$ 10; $\alpha(L)=0.00056$ 12; $\alpha(M)=9.1\times 10^{-5}$ 19 $\alpha(N)=9.1\times 10^{-6}$ 18
		466.9 13	0.3 1	2104.33 1	[M1,E2]		0.0032 7	$\alpha(K)=0.0029 \ 6; \ \alpha(L)=0.00031 \ 7; \ \alpha(M)=5.1\times10^{-5} \ 12$ $\alpha(N)=5.1\times10^{-6} \ 12$ $\alpha(M)=0.00031 \ 7; \ \alpha(M)=0.00031 \ $
		479.5 1	2.25 8	2091.49 (2)+	E1(+M2)	<0.17	0.00117 10	+98-73 if E2. B(E1)(W.u.)=3.8×10 ⁻⁶ +17-11 α (K)=0.00104 9; α (L)=0.000111 10; α (M)=1.80×10 ⁻⁵ 16 α (N)=1.81×10 ⁻⁶ 16
		883.6 <i>1</i>	12.5 4	1687.32 2+	E1		0.000272 4	B(M2)(W.u.)<3.1 upper limit exceeds RUL=1. B(E1)(W.u.)=3.4×10 ⁻⁶ +12-7 α (K)=0.0002423 34; α (L)=2.55×10 ⁻⁵ 4; α (M)=4.12×10 ⁻⁶ 6
		973.0 <i>I</i>	6.1 2	1598.07 (0)+	E1		0.0002251 32	$\alpha(N)=4.16\times10^{-7} 6$ B(E1)(W.u.)=1.24×10 ⁻⁶ +42-26 $\alpha(K)=0.0002004$ 28; $\alpha(L)=2.105\times10^{-5}$ 29; $\alpha(M)=3.40\times10^{-6}$ 5
		1349.3 <i>I</i>	2.22 7	1221.72 2+	[E1]		0.000268 4	$\alpha(N)=3.40 \times 10^{-7} 5$ $\alpha(K)=0.0001103 \ 15; \ \alpha(L)=1.154 \times 10^{-5} \ 16;$ $\alpha(M)=1.866 \times 10^{-6} \ 26$ $\alpha(N)=1.889 \times 10^{-7} \ 26; \ \alpha(IPF)=0.0001437 \ 20$
		2147.2 3	1.39 7	424.05 2+	[E1]		0.000788 11	B(E1)(W.u.)=1.70×10 ⁻⁷ +58-35 α (K)=5.27×10 ⁻⁵ 7; α (L)=5.49×10 ⁻⁶ 8; α (M)=8.87×10 ⁻⁷
		2571.1 2	100 4	0.0 0+	[E1]		1.04×10 ⁻³ 2	$\alpha(N)=8.99\times10^{-8}\ 13;\ \alpha(IPF)=0.000729\ 10$ $B(E1)(W.u.)=2.63\times10^{-8}\ +9I-55$ $\alpha(K)=4.07\times10^{-5}\ 6;\ \alpha(L)=4.23\times10^{-6}\ 6;\ \alpha(M)=6.83\times10^{-7}$ 10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	δ&	$lpha^\dagger$	Comments
									$\alpha(N)=6.93\times10^{-8}\ 10;\ \alpha(IPF)=0.000999\ 14$
									B(E1)(W.u.)= $1.10\times10^{-6} +37-22$
2581.12	(2^{+})	1359.4 <i>I</i>	100 4	1221.72	2+				()(,
		1546.1 <i>3</i>	47 19	1034.75					
2622.0	4 ⁽⁻⁾	364		2257.55	3-				E_{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
		395.2 6	26	2227.27		Q			<i>y</i>
		888 <i>1</i>	60	1733.26	3 ⁺	Ď			
		1588 <i>1</i>	100	1034.75	4+	D			
2683.7	(5^{-})	426 <i>1</i>	6.7	2257.55	3-				
		1649 <i>1</i>	100	1034.75	4+	D+Q	+0.04 3		
2700.16	2+	1665.6 5	25 [@] 4	1034.75	4+	[E2]		0.000321 5	$\alpha(\rm K){=}0.0001491$ 21; $\alpha(\rm L){=}1.570{\times}10^{-5}$ 22; $\alpha(\rm M){=}2.54{\times}10^{-6}$ 4 $\alpha(\rm N){=}2.57{\times}10^{-7}$ 4; $\alpha(\rm IPF){=}0.0001539$ 22 B(E2)(W.u.)>0.014
		2276.6 4	100 [@] 5	424.05	2+	[M1,E2]		0.000510 28	$\alpha(K)=8.34\times10^{-5}$ 12; $\alpha(L)=8.73\times10^{-6}$ 13; $\alpha(M)=1.412\times10^{-6}$ 20 $\alpha(N)=1.432\times10^{-7}$ 20; $\alpha(IPF)=0.000417$ 28
									$B(M1)(W.u.) > 5.3 \times 10^{-5}$ if M1, $B(E2)(W.u.) > 0.014$ if E2.
2742.20	(4^{-})	483		2257.55	3-				E_{γ} : from 54 Fe(28 Si, α 2p γ) only.
		1009.0 2	100	1733.26	3 ⁺	D			
2763.2	(6^+)	805.7 <i>5</i>	100		4+	Q			
2774.94	$0^+,1,2$	1553.2 <i>I</i>	56 <i>3</i>	1221.72					
		2350.9 <i>4</i>	100 4	424.05					
2816.57	$(1,2^+)$	2046.5 2	30 2	769.94					
		2392.8 4	100 3	424.05	2+				
		2816.6 <i>4</i>	< 56	0.0					
2845.1	(4^{+})	223 1	7.7	2622.0					
		1112 <i>I</i>	100	1733.26		D+Q			
2070 4	0.4	1811 <i>I</i>	7.7	1034.75		D		0.000.452.5	D/D2\/W_\ 100 10 11
2879.4	8+	1019.7 2	100	1859.7	ρ,	E2		0.000473 7	B(E2)(W.u.)=128 +13-11
									$\alpha(K) = 0.000421 \text{ 6}; \ \alpha(L) = 4.49 \times 10^{-5} \text{ 6}; \ \alpha(M) = 7.26 \times 10^{-6} \text{ 10}$
2026.50	0-1-6	255 6 3	100.2	2571.01		1.61/ EG:	0.12	0.00404.6	$\alpha(N)=7.32\times10^{-7}\ 10$
2926.59	0-,1-,2-	355.6 <i>1</i>	100 3	2571.01	1-	M1(+E2)	< 0.12	0.00484 8	B(M1)(W.u.)=0.0203 +75-47; B(E2)(W.u.)<4.2
									$\alpha(K)=0.00429\ 7;\ \alpha(L)=0.000464\ 7;\ \alpha(M)=7.52\times10^{-5}\ 12$
									$\alpha(N)=7.58\times10^{-6}\ 12$
		822.2 2	14 <i>4</i>	2104.33	1-	M1		0.000703 10	$\alpha(K)=0.000625$ 9; $\alpha(L)=6.63\times10^{-5}$ 9; $\alpha(M)=1.073\times10^{-5}$ 15
									$\alpha(N)=1.086\times10^{-6} \ 15$
									$B(M1)(W.u.)=2.31\times10^{-4}+95-72$
2944.4	(5^{-})	261 <i>I</i>	39	2683.7	(5^{-})	D			
		987		-,-,.	4+				E_{γ} : from 54 Fe(28 Si, $\alpha 2$ p γ) only.
		1084 <i>I</i>	100		6+	D			
2970.1	$(0^+,1,2)$	2546.0 <i>3</i>	100	424.05	2+				

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ&	$lpha^\dagger$	Comments
3024.42	(2)-	324.3 1	14.5 8	2700.16 2+	[E1]		0.00299 4	$\alpha(K)=0.00265 \ 4; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=4.56\times10^{-5} \ 6$ $\alpha(N)=4.57\times10^{-6} \ 6$
		443.3 <i>1</i>	5.0 5	2581.12 (2+)	[E1]		1.31×10 ⁻³ 2	B(E1)(W.u.)=3.4×10 ⁻⁵ +17-9 α (K)=0.001166 16; α (L)=0.0001238 17; α (M)=2.000×10 ⁻⁵ 28 α (N)=2.010×10 ⁻⁶ 28
		453.5 2	100 4	2571.01 1	M1(+E2)	0.3 3	0.00282 30	B(E1)(W.u.)= $4.6\times10^{-6} +24-12$ B(M1)(W.u.)= $0.0046 +33-20$; B(E2)(W.u.)< 14 α (K)= $0.00251 \ 26$; α (L)= $0.000270 \ 31$; α (M)= $4.4\times10^{-5} \ 5$ α (N)= $4.4\times10^{-6} \ 5$
		766.7 1	56.6 17	2257.55 3-	M1,E2		0.00089 7	$\alpha(K)$ =0.00079 6; $\alpha(L)$ =8.4×10 ⁻⁵ 7; $\alpha(M)$ =1.36×10 ⁻⁵ 12 $\alpha(N)$ =1.37×10 ⁻⁶ 11 B(M1)(W.u.)=5.8×10 ⁻⁴ +30–15 if M1, B(E2)(W.u.)=1.34 +69–34 if E2.
		920.2 1	16.8 8	2104.33 1	M1,E2		0.000578 27	$\alpha(K)$ =0.000513 24; $\alpha(L)$ =5.47×10 ⁻⁵ 28; $\alpha(M)$ =8.9×10 ⁻⁶ 5 $\alpha(N)$ =8.9×10 ⁻⁷ 4 B(M1)(W.u.)=1.00×10 ⁻⁴ +52-26 if M1, B(E2)(W.u.)=0.159 +82-41 if E2.
		1291.3 3	8.5 13	1733.26 3+	[E1]		0.0002397 34	$\alpha(K)$ =0.0001190 17; $\alpha(L)$ =1.246×10 ⁻⁵ 17; $\alpha(M)$ =2.014×10 ⁻⁶ 28 $\alpha(N)$ =2.039×10 ⁻⁷ 29; $\alpha(IPF)$ =0.0001060 15 B(E1)(W.u.)=3.2×10 ⁻⁷ +17-9
		2600.2 4	61 2	424.05 2+	[E1]		$1.06 \times 10^{-3} \ 2$	$\alpha(K)=4.00\times10^{-5}$ 6; $\alpha(L)=4.16\times10^{-6}$ 6; $\alpha(M)=6.72\times10^{-7}$ 9 $\alpha(N)=6.82\times10^{-8}$ 10; $\alpha(IPF)=0.001016$ 14 $\alpha(M)=6.82\times10^{-7}$ 114–7
3096.1	5 ⁽⁺⁾	252 <i>I</i> 354 <i>I</i> 412 <i>I</i> 1236 <i>I</i> 1363 <i>I</i>	100 20 53 53 13	2845.1 (4 ⁺) 2742.20 (4 ⁻) 2683.7 (5 ⁻) 1859.7 6 ⁺ 1733.26 3 ⁺	D D D D+Q			
3175.2	6 ⁽⁻⁾	2062 <i>I</i> 433 491 553.1 <i>6</i> 723.5 <i>I0</i>	90 100	1034.75 4 ⁺ 2742.20 (4 ⁻) 2683.7 (5 ⁻) 2622.0 4 ⁽⁻⁾ 2452.4 5 ⁺	D Q Q D			E _{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only. E _{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
3242.1	$(1,2^+)$	2817.3 <i>9</i> 3242.3 <i>3</i>	100 [@] 29 57 [@] 9	424.05 2 ⁺ 0.0 0 ⁺				
3275.90	(1+,2)	1542.6 2 2054.3 5	35 <i>4</i> 100 <i>5</i>	1733.26 3 ⁺ 1221.72 2 ⁺				

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\&}$	$lpha^\dagger$	Comments
3288.4	(7-)	525		2763.2	(6 ⁺)				E_{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
	(,)	604.9 5	85	2683.7	(5^{-})	E2		$1.82 \times 10^{-3} \ 3$	B(E2)(W.u.)=93 +34-30
					(-)				$\alpha(K)=0.001613\ 23;\ \alpha(L)=0.0001763\ 25;$
									$\alpha(M)=2.85\times10^{-5} 4$
									$\alpha(N) = 2.85 \times 10^{-6} 4$
		1428.5 <i>5</i>	100	1859.7	6 ⁺	(E1(+M2))	0.00 4	0.000308 4	$B(E1)(W.u.)=3.9\times10^{-5} +14-12$; $B(M2)(W.u.)<0.27$
		1 120.5 5	100	1037.7	O	(E1(+1412))	0.00 7	0.000300 7	$\alpha(K)=0.0001001 \ 15; \ \alpha(L)=1.047\times10^{-5} \ 16;$
									$\alpha(M)=1.692\times10^{-6} 25$
									$\alpha(\text{N})=1.092\times10^{-25}$ $\alpha(\text{N})=1.714\times10^{-7}$ 26; $\alpha(\text{IPF})=0.0001951$ 28
2206.2	6(-)	554 1	2.4	27.42.20	(4-)	0			$\alpha(N)=1.714\times10^{-1}$ 20; $\alpha(1PF)=0.0001951$ 28
3296.3	0()	554 <i>1</i>	24	2742.20		Q			
		675 1	100	2622.0	4(-)	Q			
2222.7	7+	1436 <i>I</i>	62	1859.7	6 ⁺	D		0.000672.0	D/E2\/W_\; 20
3332.7	7.	879.9 <i>5</i>	100	2452.4	5+	E2		0.000673 9	B(E2)(W.u.)>29
									$\alpha(K)$ =0.000598 8; $\alpha(L)$ =6.42×10 ⁻⁵ 9; $\alpha(M)$ =1.038×10 ⁻⁵ 15
									$\alpha(N)=1.044\times10^{-6}\ 15$
		1474 <i>1</i>	72	1859.7	6+	(M1+E2)		0.000280 10	$\alpha(K)=0.0001889 \ 28; \ \alpha(L)=1.990\times10^{-5} \ 31; \ \alpha(M)=3.22\times10^{-6} \ 5$
									$\alpha(N)=3.26\times10^{-7} 5$; $\alpha(IPF)=6.8\times10^{-5} 8$
									Mult.: D+Q, $\Delta J=1$ from $\gamma\gamma$ (DCO) in (40 Ca,4p γ);
									$\Delta \pi$ =no from level scheme.
									B(M1)(W.u.)>0.0024 if M1, B(E2)(W.u.)>1.5 if E2.
3406.2	(6^+)	231 <i>I</i>	31	3175.2	$6^{(-)}$				
	, ,	311 <i>I</i>	100	3096.1	5(+)	D			
		461 <i>I</i>	31	2944.4	(5^{-})	D			
		561 <i>1</i>	56	2845.1	(4^{+})	Q			
3421.6	$(0^+,1,2)$	2997.5 5	100	424.05	2+				
3456.1	$(0^-,1,2)$	431.7 5	100	3024.42	$(2)^{-}$				
3571.2	(8^{+})	808 <i>1</i>	53	2763.2	(6^{+})	Q			
		1712 <i>I</i>	100	1859.7	6+	Q			
3573.8	(7^{-})	285 <i>1</i>	47	3288.4	(7^{-})				
		630 <i>1</i>	100	2944.4	(5^{-})				
		890		2683.7	(5^{-})				E_{γ} : from 54 Fe(28 Si, α 2p γ) only.
3602.81	1-	1270.1 2	4.0 3	2332.70	(1-)	M1,E2		0.000306 7	$\alpha(K)=0.000255$ 5; $\alpha(L)=2.70\times10^{-5}$ 6; $\alpha(M)=4.37\times10^{-6}$ 9 $\alpha(N)=4.42\times10^{-7}$ 8; $\alpha(IPF)=1.86\times10^{-5}$ 25
									$\alpha(N)=4.42\times10^{-8}$ 8; $\alpha(1PF)=1.80\times10^{-9}$ 23 B(M1)(W.u.)>2.4×10 ⁻⁵ if M1, B(E2)(W.u.)>0.02 if E2.
		1463.0 2	4.2 9	2140.17	(1.2+)				$D(W11)(W.u.)>2.4\times10^{-5}$ II W11, $B(E2)(W.u.)>0.02$ II E2.
		1403.0 <i>2</i> 1498.4 <i>3</i>	4.2 <i>9</i> 3.4 <i>4</i>	2104.33		[M1,E2]		0.000282 10	$\alpha(K)=0.0001829\ 27;\ \alpha(L)=1.925\times10^{-5}\ 30;$

14

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
								$\alpha(M)=3.11\times10^{-6} 5$ $\alpha(N)=3.15\times10^{-7} 5$; $\alpha(IPF)=7.6\times10^{-5} 8$ $\beta(M1)(W.u.)>1.2\times10^{-5} \text{ if } M1, \beta(E2)(W.u.)>0.0072 \text{ if } E2.$
3602.81	1-	3178.3 2	100 12	424.05	2+	[E1]	1.35×10 ⁻³ 2	$\alpha(K)=3.04\times10^{-5}$ 4; $\alpha(L)=3.16\times10^{-6}$ 4; $\alpha(M)=5.10\times10^{-7}$ 7 $\alpha(N)=5.18\times10^{-8}$ 7; $\alpha(IPF)=0.001313$ 18 $\alpha(M)=5.10\times10^{-7}$ 18 $\alpha(M)=5.10\times10^{-7}$ 18 $\alpha(M)=5.10\times10^{-7}$ 19
		3602.8 <i>10</i>	36 7	0.0	0+	E1	1.54×10 ⁻³ 2	B(E1)(W.u.)>7.4×10 B(E1)(W.u.)>1.6×10 ⁻⁷ α (K)=2.58×10 ⁻⁵ 4; α (L)=2.67×10 ⁻⁶ 4; α (M)=4.32×10 ⁻⁷ 6 α (N)=4.38×10 ⁻⁸ 6; α (IPF)=0.001512 21
3636.3	1,2(+)	3214.2 <i>14</i>	100 @ 23	424.05				a(1) 100/11 3, a(111) 01001012 21
3672.24	(0,1,2)	3636.1 <i>3</i> 432.0 <i>9</i> 1567.8 <i>2</i>	44 [@] 8 19 <i>10</i> 100 <i>6</i>	0.0 3242.1 2104.33	$(1,2^+)$			
3781.9	7 ⁽⁺⁾	376 <i>1</i>	100	3406.2	(6^{+})	D		
3900.9	8(-)	686 <i>1</i> 568 <i>1</i>	60 15	3096.1 3332.7	5 ⁽⁺⁾ 7 ⁺	Q (E1)	0.000715 10	$B(E1)(W.u.)=2.39\times10^{-4}+84-72$
3700.7	O	300 1	13	3332.1	,	(LI)	0.000713 10	$\alpha(K)=0.000636 \ 9; \ \alpha(L)=6.73\times10^{-5} \ 10; \ \alpha(M)=1.087\times10^{-5} \ 16$ $\alpha(N)=1.095\times10^{-6} \ 16$
		726 1	100	3175.2	6 ⁽⁻⁾	E2	1.10×10 ⁻³ 2	B(E2)(W.u.)=113 24 α (K)=0.000976 14; α (L)=0.0001058 15; α (M)=1.711×10 ⁻⁵ 25 α (N)=1.716×10 ⁻⁶ 25
3978.0	$1,2^{(+)}$	3553.6 4	100 [@] 17	424.05	2+			
		3978.2 4	93 [@] 14	0.0				
3986.6	$1,2^{(+)}$	3216.3 <i>4</i> 3562.7 <i>4</i>	100 <i>16</i> 93 <i>14</i>	769.94 424.05				
4026.72	1,2 ⁽⁺⁾	2805.5 <i>3</i> 3257.4 <i>5</i> 3602.2 <i>2</i>	32 <i>3</i> 27 <i>9</i> 100 <i>24</i>	1221.72 769.94 424.05	0 ⁺ 2 ⁺			
4068.4	10 ⁺	4026.8 <i>6</i> 1189 <i>I</i>	51 9 100	0.0 2879.4		E2	0.000342 5	B(E2)(W.u.)=122 +19-15 α (K)=0.000298 4; α (L)=3.16×10 ⁻⁵ 4; α (M)=5.12×10 ⁻⁶ 7 α (N)=5.16×10 ⁻⁷ 7; α (IPF)=6.76×10 ⁻⁶ 16
4072.8	(9-)	784.4 <i>4</i>	100	3288.4	(7-)	[E2]	0.000899 13	$\alpha(N)=3.16\times10^{-7}$; $\alpha(IPF)=6.76\times10^{-6}$ 16 B(E2)(W.u.)=178 +30-25 $\alpha(K)=0.000798$ 11; $\alpha(L)=8.61\times10^{-5}$ 12; $\alpha(M)=1.393\times10^{-5}$ 20 $\alpha(N)=1.398\times10^{-6}$ 20
4097.75	1,2 ⁽⁺⁾	3327.6 <i>5</i> 3673.6 2	13 <i>4</i> 100 <i>11</i>	769.94 424.05				
		4098.8 <i>17</i>	46 8	0.0	0^{+}			

γ (⁷⁶Kr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
4118.3	(8-)	822 1	100	3296.3	6(-)	Q		
4217.8	(8+)	436 <i>1</i>	100	3781.9	7(+)	D		
	(-)	811 <i>I</i>	91	3406.2		Q		
4289.42	$(0,1,2)^{-}$	686.5 <i>4</i>	14.4 11	3602.81		M1,E2	0.00116 12	$\alpha(K)=0.00103 \ 10; \ \alpha(L)=0.000111 \ 12; \ \alpha(M)=1.80\times10^{-5} \ 20$
	. , , ,					,		$\alpha(N)=1.81\times10^{-6}\ 19$
		1718.6 <i>4</i>	100 4	2571.01	1-	M1,E2	0.000319 16	$\alpha(K) = 0.0001401 \ 20; \ \alpha(L) = 1.472 \times 10^{-5} \ 21; \ \alpha(M) = 2.381 \times 10^{-6} \ 34$
		1,10.0	100 .	2071101	•	1,11,22	0.000017 10	$\alpha(N)=2.413\times10^{-7}$ 34; $\alpha(IPF)=0.000162$ 15
		2185.0 <i>3</i>	55 <i>3</i>	2104.33	1-			
4380.1	(9^+)	1047 <i>I</i>	100	3332.7				
	, ,	1501 <i>1</i>	45	2879.4	8+			
4403.7	(9^+)	1071 <i>I</i>	100	3332.7	7+	[E2]	0.000423 6	$\alpha(K)=0.000376\ 5;\ \alpha(L)=4.01\times10^{-5}\ 6;\ \alpha(M)=6.48\times10^{-6}\ 9$
	, ,					. ,		$\alpha(N)=6.53\times10^{-7} 9$
								B(E2)(W.u.)>58
4433.8	(10^{+})	863 1	54	3571.2	(8^{+})			
		1554 <i>1</i>	100	2879.4	8+			
4469.8	(9^{-})	397		4072.8	(9^{-})			E_{γ} : from 54 Fe(28 Si, α 2p γ) only.
		896 <i>1</i>	100	3573.8	(7^{-})	Q		
4700.5	(9^{+})	483 <i>1</i>	58	4217.8	(8^{+})	D		
		919 <i>1</i>	100	3781.9	7 ⁽⁺⁾	Q		
4806.4	(10^{-})	905.5 <i>5</i>	100	3900.9	$8^{(-)}$	[E2]	0.000628 9	B(E2)(W.u.)=88 +35-16
								$\alpha(K)=0.000557 \ 8; \ \alpha(L)=5.98\times10^{-5} \ 8; \ \alpha(M)=9.67\times10^{-6} \ 14$
								$\alpha(N)=9.73\times10^{-7} 14$
5051.3	(11^{-})	978.5 <i>6</i>	100	4072.8	(9^{-})	E2	0.000521 7	B(E2)(W.u.)=202 +41-29
								$\alpha(K)=0.000463 \ 7; \ \alpha(L)=4.95\times10^{-5} \ 7; \ \alpha(M)=8.01\times10^{-6} \ II$
								$\alpha(N)=8.07\times10^{-7} II$
5106.3	(10^{-})	988 <i>1</i>	100	4118.3	(8^{-})			
5240.5	$10^{(+)}$	541 <i>1</i>	42	4700.5	(9^+)	D		
		1022 <i>1</i>	100	4217.8	(8+)	Q		
5348.4	12+	1280 <i>1</i>	100	4068.4	10 ⁺	[E2]	0.000309 4	B(E2)(W.u.)>43
								$\alpha(K)=0.000254 \ 4; \ \alpha(L)=2.69\times10^{-5} \ 4; \ \alpha(M)=4.36\times10^{-6} \ 6$
								$\alpha(N)=4.40\times10^{-7} 6$; $\alpha(IPF)=2.32\times10^{-5} 4$
5528.8	(11^{-})	1059 <i>1</i>	100	4469.8	(9^{-})	Q		
5566.8	(12^{+})	1133 <i>1</i>	100	4433.8	(10^{+})	Q		
5589.1	(11^{+})	1209 <i>1</i>	100	4380.1	(9^+)	Q		
5795.7	$11^{(+)}$	555 <i>1</i>	38	5240.5	10 ⁽⁺⁾	D		
		1095 <i>1</i>	100	4700.5	(9 ⁺)	Q		
5873.1	(12^{-})	1066.6 <i>4</i>	100	4806.4	(10^{-})	E2	0.000427 6	B(E2)(W.u.)=124 +24-21
								$\alpha(K)=0.000379 \ 5; \ \alpha(L)=4.04\times10^{-5} \ 6; \ \alpha(M)=6.54\times10^{-6} \ 9$
			100	#40 c =				$\alpha(N) = 6.59 \times 10^{-7} 9$
6218.3	(12^{-})	1112 <i>I</i>	100	5106.3	(10^{-})	Q		

16

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
6222.3	(13 ⁻)	1171 <i>I</i>	100	5051.3		E2	0.000351 5	B(E2)(W.u.)=149 +68-35 α (K)=0.000308 4; α (L)=3.27×10 ⁻⁵ 5; α (M)=5.29×10 ⁻⁶ 7 α (N)=5.34×10 ⁻⁷ 8; α (IPF)=4.71×10 ⁻⁶ 12 Additional information 3.
6390.2	(12^{+})	596 <i>1</i> 1150 <i>1</i>	25 100	5795.7 5240.5		(D) Q		
6605.4	(12^{+})	1257 <i>I</i>	100	5348.4		D		
6650.4	14+	1302 <i>I</i>	100	5348.4		Q		Additional information 4.
6681.8	(13^{-})	1153 <i>I</i>	100	5528.8		Q		
6937.1 7032.4	(13^+) (13^+)	1348 <i>I</i> 643 <i>I</i>	100 100	5589.1 6390.2	. ,	Q D		
7032.4	(13)	1235 <i>I</i>	40	5795.7		Q		
7034.9	(14^{+})	1468 <i>I</i>	100	5566.8		Q		
7110.1	(14^{-})	1237 <i>I</i>	100	5873.1		E2	0.000322 5	B(E2)(W.u.)>54
								$\alpha(K)=0.000273 \ 4; \ \alpha(L)=2.90\times10^{-5} \ 4; \ \alpha(M)=4.69\times10^{-6} \ 7$
								$\alpha(N)=4.74\times10^{-7}$ 7; $\alpha(IPF)=1.438\times10^{-5}$ 28
								Additional information 5.
7435.3	(14^{-})	1217 <i>I</i>	100	6218.3	. ,	Q		
7554.3	(14^{+})	521 <i>I</i>	38	7032.4		D		
7583.3	(15^{-})	1165 <i>I</i> 1361 <i>I</i>	100 100	6390.2 6222.3	. ,	Q E2	0.000294 4	B(E2)(W.u.)>45
7363.3	,		100	0222.3	(13)	E2.	0.000294 4	$\alpha(K)=0.0002235 \ 3I; \ \alpha(L)=2.364\times10^{-5} \ 33; \ \alpha(M)=3.82\times10^{-6} \ 5$ $\alpha(N)=3.86\times10^{-7} \ 5; \ \alpha(IPF)=4.22\times10^{-5} \ 6$ Additional information 6.
7606.4	(14^{+})	1001 <i>I</i>	100	6605.4				
7870.9	(15^{-})	1189 <i>I</i>	100	6681.8		Q		
8000.4	16 ⁺ (15 ⁺)	1350 <i>I</i> 1495 <i>I</i>	100	6650.4		Q		
8432.1			100	6937.1		Q E2	0.000289 4	$\alpha(K)=0.0002075\ 29;\ \alpha(L)=2.192\times10^{-5}\ 31;\ \alpha(M)=3.55\times10^{-6}\ 5$
8521.1	(16 ⁻)	1411 <i>I</i>	100	7110.1	,		0.000289 4	$\alpha(K)=0.0002075$ 29; $\alpha(L)=2.192\times10^{-5}$ 31; $\alpha(M)=3.53\times10^{-5}$ 3 $\alpha(N)=3.59\times10^{-7}$ 5; $\alpha(IPF)=5.55\times10^{-5}$ 8
8666.9	(16^{+})	1632 <i>I</i>	100	7034.9	. ,	Q		
8717.4 8798.5	(16^{-}) (16^{+})	1282 <i>I</i> 1192 <i>I</i>	100 100	7435.3 7606.4		Q Q		
8829.3	(16^{+})	1192 <i>I</i> 1275 <i>I</i>	100	7554.3		Q		
9117.4	(17^{-})	1534 <i>I</i>	100	7583.3		E2	0.000295 4	$\alpha(K)=0.0001753\ 25;\ \alpha(L)=1.848\times10^{-5}\ 26;\ \alpha(M)=2.99\times10^{-6}\ 4$
	, ,						3.000222	$\alpha(N)=3.02\times10^{-7} 4$; $\alpha(IPF)=9.80\times10^{-5} 14$
9217.9	(17^{-})	1347 1	100	7870.9	` /	Q	0.000280.4	(W) 0.0002109 20 (U) 2.229 (10 ⁻⁵ 21 (M) 2.60 (10 ⁻⁶ 5
9400.5	18+	1400 <i>I</i>	100	8000.4		E2	0.000289 4	$\alpha(K)=0.0002108 \ 30; \ \alpha(L)=2.228\times10^{-5} \ 31; \ \alpha(M)=3.60\times10^{-6} \ 5$ $\alpha(N)=3.64\times10^{-7} \ 5; \ \alpha(IPF)=5.23\times10^{-5} \ 8$
10050.1	(17^{+})	1618 <i>I</i>	100	8432.1	(15 ⁺)	Q		

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	α^{\dagger}	Comments
10059.1	(18-)	1538 <i>I</i>	100	8521.1	(16-)	E2	0.000296 4	$\alpha(K)$ =0.0001744 25; $\alpha(L)$ =1.839×10 ⁻⁵ 26; $\alpha(M)$ =2.97×10 ⁻⁶ 4 $\alpha(N)$ =3.01×10 ⁻⁷ 4; $\alpha(IPF)$ =9.96×10 ⁻⁵ 15 Additional information 7.
10135	(18^{-})	1418 <i>1</i>	100	8717.4	(16^{-})	Q		
10139.5	(18^{+})	1341 <i>1</i>	100	8798.5		Q		
10470.9	(18^{+})	1804 <i>1</i>	100	8666.9	. ,			
10640.4	(19-)	1523 <i>I</i>	100	9117.4		E2	0.000294 4	$\alpha(K)$ =0.0001778 25; $\alpha(L)$ =1.875×10 ⁻⁵ 26; $\alpha(M)$ =3.03×10 ⁻⁶ 4 $\alpha(N)$ =3.07×10 ⁻⁷ 4; $\alpha(IPF)$ =9.37×10 ⁻⁵ 14
10773.9	. ,	1556 <i>1</i>	100	9217.9		(Q)		
10936.5	20+	1536 <i>I</i>	100	9400.5	18 ⁺	E2	0.000295 4	$\alpha(K)$ =0.0001748 25; $\alpha(L)$ =1.844×10 ⁻⁵ 26; $\alpha(M)$ =2.98×10 ⁻⁶ 4 $\alpha(N)$ =3.02×10 ⁻⁷ 4; $\alpha(IPF)$ =9.88×10 ⁻⁵ 14 Additional information 8.
11655.1	(20-)	1596 <i>I</i>	100	10059.1	(18 ⁻)	E2	0.000306 4	$\alpha(K)$ =0.0001621 23; $\alpha(L)$ =1.708×10 ⁻⁵ 24; $\alpha(M)$ =2.76×10 ⁻⁶ 4 $\alpha(N)$ =2.79×10 ⁻⁷ 4; $\alpha(IPF)$ =0.0001237 18
11664	(20^+)	1525 <i>1</i>	100	10139.5	(18^{+})	Q		
11719	(20^{-})	1584 <i>1</i>	100	10135		Q		
11785.1	(19^+)	1735 <i>1</i>	100	10050.1				
12254.4	(21-)	1614 <i>I</i>	100	10640.4		E2	0.000310 4	$\alpha(K)=0.0001585 \ 22; \ \alpha(L)=1.670\times10^{-5} \ 23; \ \alpha(M)=2.70\times10^{-6} \ 4$ $\alpha(N)=2.73\times10^{-7} \ 4; \ \alpha(IPF)=0.0001314 \ 19$
12397.9	(20^+)	1927 <i>1</i>	100	10470.9				
12493	(21^{-})	1719 <i>1</i>	100	10773.9				
12695	22+	1759 <i>1</i>	100	10936.5	20 ⁺	E2	0.000346 5	$\alpha(K)$ =0.0001343 <i>19</i> ; $\alpha(L)$ =1.412×10 ⁻⁵ <i>20</i> ; $\alpha(M)$ =2.284×10 ⁻⁶ <i>32</i> $\alpha(N)$ =2.312×10 ⁻⁷ <i>32</i> ; $\alpha(IPF)$ =0.0001952 <i>28</i> Additional information 9.
13352.1	(22-)	1697 <i>1</i>	100	11655.1	(20-)	E2	0.000329 5	$\alpha(K)=0.0001438\ 20;\ \alpha(L)=1.514\times10^{-5}\ 21;\ \alpha(M)=2.448\times10^{-6}\ 34$ $\alpha(N)=2.478\times10^{-7}\ 35;\ \alpha(IPF)=0.0001677\ 24$
13388	(22^{+})	1723 <i>1</i>	100	11664	(20^+)	Q		
13500	(22^{-})	1781 <i>I</i>	100		(20^{-})	-		
13613	(21^{+})	1828 <i>1</i>	100	11785.1				
14026	(23-)	1772 <i>I</i>	100	12254.4	(21-)	E2	0.000350 5	$\alpha(K)=0.0001324$ 19; $\alpha(L)=1.392\times10^{-5}$ 20; $\alpha(M)=2.251\times10^{-6}$ 32 $\alpha(N)=2.280\times10^{-7}$ 32; $\alpha(IPF)=0.0002011$ 29
14440	(23^{-})	1947 <i>1</i>	100	12493	(21^{-})			
14751	24+	2055 1	100	12695	22+			E_{γ} : tentative 2049 in ($^{24}Mg_{,}\alpha^2p\gamma$).
15225	(24-)	1873 <i>I</i>	100	13352.1	(22-)	E2	0.000382 5	$\alpha(K)=0.0001193\ 17;\ \alpha(L)=1.253\times10^{-5}\ 18;\ \alpha(M)=2.026\times10^{-6}\ 28$ $\alpha(N)=2.052\times10^{-7}\ 29;\ \alpha(IPF)=0.0002479\ 35$
15346	(24^{+})	1958 <i>I</i>	100	13388	(22^{+})	Q		
15503	(24^{-})	2003 <i>1</i>	100		(22^{-})	-		
16009	(25 ⁻)	1983 <i>I</i>	100	14026	(23-)	E2	0.000421 6	$\alpha(K)$ =0.0001073 15; $\alpha(L)$ =1.126×10 ⁻⁵ 16; $\alpha(M)$ =1.821×10 ⁻⁶ 26 $\alpha(N)$ =1.845×10 ⁻⁷ 26; $\alpha(IPF)$ =0.000301 4

γ (⁷⁶Kr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^{\dagger}$	Comments
16650	(25^{-})	2210 <i>I</i>	100	14440	(23-)			
17157	26+	2406 <i>1</i>	100	14751	24+	E2	0.000591 8	$\alpha(K)=7.60\times10^{-5}\ II;\ \alpha(L)=7.94\times10^{-6}\ II;\ \alpha(M)=1.285\times10^{-6}\ I8$ $\alpha(N)=1.303\times10^{-7}\ I8;\ \alpha(IPF)=0.000506\ 7$
17327	(26-)	2102 <i>1</i>	100	15225	(24-)	E2	0.000467 7	$\alpha(K)=9.65\times10^{-5}$ 14; $\alpha(L)=1.011\times10^{-5}$ 14; $\alpha(M)=1.636\times10^{-6}$ 23 $\alpha(N)=1.658\times10^{-7}$ 23; $\alpha(IPF)=0.000358$ 5
17550	(26^+)	2204 <i>1</i>	100	15346	(24^{+})	Q		a(1) 1.050/10 25, a(111) 0.0005505
17859	(26^{-})	2356 <i>1</i>	100	15503	(24^{-})			
18256	(27-)	2247 1	100	16009	(25-)	E2	0.000525 7	$\alpha(K)=8.56\times10^{-5}\ 12;\ \alpha(L)=8.97\times10^{-6}\ 13;\ \alpha(M)=1.450\times10^{-6}\ 20$ $\alpha(N)=1.470\times10^{-7}\ 21;\ \alpha(IPF)=0.000429\ 6$
19172	(27^{-})	2522 1	100	16650	(25^{-})			
19741	(28-)	2414 <i>1</i>	100	17327	(26-)	E2	0.000595 8	$\alpha(K)=7.55\times10^{-5} II; \alpha(L)=7.90\times10^{-6} II; \alpha(M)=1.277\times10^{-6} I8$ $\alpha(N)=1.295\times10^{-7} I8; \alpha(IPF)=0.000510 7$
19950	28+	2793 1	100	17157	26 ⁺	E2	0.000752 11	$\alpha(K)=5.89\times10^{-5} 8$; $\alpha(L)=6.15\times10^{-6} 9$; $\alpha(M)=9.94\times10^{-7} 14$ $\alpha(N)=1.008\times10^{-7} 14$; $\alpha(IPF)=0.000686 10$
20045	(28^+)	2495 <i>1</i>	100	17550	(26^+)			, , , , , , , , , , , , , , , , , , , ,
20538	(28^{-})	2678 <i>1</i>	100	17859	(26^{-})			
20815	(29-)	2558 <i>1</i>	100	18256	(27-)	E2	0.000655 9	$\alpha(K)=6.83\times10^{-5}\ 10;\ \alpha(L)=7.14\times10^{-6}\ 10;\ \alpha(M)=1.155\times10^{-6}\ 16$ $\alpha(N)=1.171\times10^{-7}\ 16;\ \alpha(IPF)=0.000578\ 8$
22583	(30^{-})	2842 <i>1</i>	100	19741	(28^{-})			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
22790	(30^{+})	2745 1	100	20045	(28^{+})			
23157	(30^+)	3207 <i>1</i>	100	19950	28 ⁺			
23742	(31^{-})	2927 <i>1</i>	100	20815	(29^{-})			
25868	(32^{-})	3285 <i>1</i>	100	22583	(30^{-})			
27083	(33^{-})	3341 <i>1</i>	100	23742	(31^{-})			
966.0+x	(13^{+})	966 <i>1</i>	100	X	(11^{+})			
2097.0+x	(15^{+})	1131 <i>I</i>	100	966.0+x		Q		
3390.0+x	(17^{+})	1293 <i>1</i>	100	2097.0+x		Q		
4847.0+x	(19^+)	1457 <i>1</i>	100	3390.0+x		Q		
6472.1+x	(21^{+})	1625 <i>1</i>	100	4847.0+x		Q		
8309.1+x	(23^{+})	1837 <i>I</i>	100	6472.1+x		Q		
10382+x	(25^{+})	2073 <i>1</i>	100	8309.1+x		Q		
12696+x	(27^{+})	2314 <i>I</i>	100	10382+x	(25^+)			
15234+x	(29^+)	2538 <i>1</i>	100	12696+x	(27^{+})			

19

[†] Additional information 10. [‡] Values for low-spin (J≤4) states are from ⁷⁶Rb ε decay, whereas data are higher-spin states are from ⁴⁰Ca(⁴⁰Ca,4pγ), ⁵⁴Fe(²⁸Si,α2pγ), and (²⁴Mg,α2pγ), unless otherwise noted. # Detailed intensity data are available for γ rays from low-spin (J \leq 4) states populated in 76 Rb ε decay. Note that for γ rays from some of the levels, more precise

γ (76Kr) (continued)

branching ratios (listed under comments in $^{76}\text{Rb}\ \varepsilon$ decay dataset) are available which are adopted here in place of branching ratios deduced from relative intensity data. For high-spin states, only nominal intensities, without explicitly quoted uncertainties, are available from only $^{40}\text{Ca}(^{40}\text{Ca},4\text{p}\gamma)$ and $(^{12}\text{C},2\text{n}\gamma)$. For the latter dataset, evaluators assigned 10% uncertainty for I γ values taken from (1982Pi01). Intensity data were not provided in $^{54}\text{Fe}(^{28}\text{Si},\alpha2\text{p}\gamma)$ reaction.

- [@] From ⁷⁶Rb ε decay, when a level is also populated in other reactions. Branching ratios listed in comments in ⁷⁶Rb ε decay dataset are used in place of relative intensities.
- *Erom $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (12 C,2n γ) for high-spin (J>4) states. Transitions with dominant quadrupole content are assumed as E2 from comparison of T1/2(level) and RUL for E2 and M2. For low-spin (J≤4) levels, multipolarity assignments are generally from conversion coefficients deduced from ce data in 76 Rb ε decay.
- ^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{76}_{36}{\rm Kr}_{40}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{76}_{36} \mathrm{Kr}_{40}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 γ Decay (Uncertain)

Band(d): Band based on $11^+, \alpha=1$

 (29^{+}) 15234+x 2538 (27^{+}) 12696+x (25^{+}) 10382+x (23^{+}) 8309.1+x 1837 (21^{+}) 6472.1+x (19^{+}) 4847.0+x 1457 3390.0+x (17^{+}) 1293 2097.0+x (15^{+}) (13⁺) 1131 966.0+x

 (11^{+})

X

Band(e): $\pi 3/2[431] \otimes \pi 3/2[312]$, $\alpha = 1$

Band(G): Band based on 770, 0^+

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009

 $Q(\beta^{-}) = -7244 \ 4$; $S(n) = 12081.5 \ 21$; $S(p) = 8234 \ 3$; $Q(\alpha) = -4391.3 \ 7$ 2012Wa38

Note: Current evaluation has used the following Q record.

S(2n)=21308 4, S(2p)=13505.6 7 (2009AuZZ,2003Au03). Values In 2003Au03 are very nearly the same As In 2009AuZZ except for small differences In uncertainties.

Measured mass excess=-74179.4 9 (2006Ri15).

 $Q(\beta^{-}) = -7243 \ 8$; $S(n) = 12081.4 \ 2I$; $S(p) = 8234 \ 3$; $Q(\alpha) = -4391.9 \ 8$ 2009AuZZ,2003Au03

Mass measurements: 2006Ri15 (LEBIT-NSCL Penning-trap method), 2006Ro11, 2005Sc26, 2002He23, 1978Di09.

Measurement of Hyperfine structure, isotope shift, etc.: 1995Ke04, 1992Sc19, 1990Ca26, 1990Sc30, 1989Tr04, 1981Ge06, 1979Ge06, 1977Ge05.

Additional information 1. 78 Se(π^+,π^-): 1995Hu09.

Structure calculations (rotational bands, levels, deformation, transition probabilities, shape coexistence, etc.): 2007An01, 2006Be31, 2006Pe03, 2006Ve11, 2005Al19, 2003Sh17, 2000Gi16, 1996Tr01, 1995De02, 1991Jo03, 1991Le26, 1988Pr03, 1984Er02, 1984Se01, 1982So09, 1981Bu06, 1979Ka30.

⁷⁸Kr Levels

Cross Reference (XREF) Flags

	A B C D	78 Rb ε deca	cay (6.46 min):? ay (17.66 min) ay (5.74 min) Bpy),(²⁷ Al,\alpha3py),	$\begin{array}{llll} {\bf E} & ^{65}{\bf Cu}(^{16}{\bf O},{\rm p2n\gamma}), (^{19}{\bf F},\alpha 2{\rm n\gamma}) & {\bf I} & ^{78}{\rm Kr}({\rm p,p'}), ({\rm p,p'\gamma}) \\ {\bf F} & ^{68}{\rm Zn}(^{12}{\bf C},2{\rm n\gamma}) \; {\rm E}{=}33{\text -}38 \; {\rm MeV} & {\bf J} & {\rm Coulomb \; excitation} \\ {\bf G} & ^{68}{\rm Zn}(^{12}{\bf C},2{\rm n\gamma}) \; {\rm E}{=}36 \; {\rm MeV} & {\rm K} & ^{79}{\rm Br}({\rm p,2n\gamma}) \\ {\bf H} & ^{76}{\rm Se}(\alpha,2{\rm n\gamma}) & {\bf L} & ^{80}{\rm Kr}({\rm p,t}) \\ \end{array}$				
E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments				
0.0^{a}	0+	stable	ABCDEFGHIJK	XREF: A(?). $< r^2 > ^{1/2} = 4.2032$ fm <i>16</i> (2004An14 evaluation). $T_{1/2}$: $\ge 1.5 \times 10^{21}$ y (2006Ga43, 90% confidence limit) for double β decay (2ε(K),2ν+0ν mode). Others: 2000Ga54, 1998Ga27, 1995Sa58, 1994Sa31. See also 2002Tr04 evaluation. Additional information 2.				
455.033 ^a 23	2+	21.6 ps 7	ABCDEFGHIJK	μ =+0.86 2 (2004Ku11) XREF: A(?). $\beta_2(p,p')$ =0.351 (DWBA analysis), 0.317 (coupled-channel). μ : transient magnetic field technique following Coulomb excitation (2004Ku11). Other: +0.86 6 (2001Me20). See also 2005St24 compilation. J^{π} : L(p,p')=2 and also from $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of values from recoil-distance Doppler-shift method in in-beam γ -ray studies, DSA and B(E2) in Coul. ex. Values in ps are: 21.7 +7-8 (B(E2) In Coul. ex.,2006Be18), 22.2 14 (RDDS,2002Jo07), 19.1 17 (DSAM In Coul. ex.,2001Me20), 21.1 9 (RDDS,1990Ga22), 22.9 21 (RDDS,1985Wi01,1982An06), >3.5 (DSA,1980Ro02), 22.2 14 (RDDS,1979He18), 25 3 (RDDS,1974No08).				
1017.18 3	0+	10.8 ps 9	BCD IJ L	J^{π} : E0 transition to 0 ⁺ (1995Gi13); L(p,t)=0. $T_{1/2}$: weighted average of 11.1 ps 6 (B(E2) in Coul. ex.,2006Be18) and 7.6 ps 21 (DSA in (p,p' γ ,1995Gi13).				
1119.48 ^a 4	4+	2.52 ps <i>12</i>	BCDEFGHIJK	μ =+1.84 28 (2001Me20) μ : transient magnetic field technique following Coulomb excitation (2001Me20). See also 2005St24 compilation.				

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
				$β_2(\text{DWBA})$ =0.101, B(E4)(W.u.)=5.5 II in (p,p'). J^π : L(p,p')=4 and from $γ(θ)$ and $γ(\text{linear pol})$. $T_{1/2}$: weighted average of values from recoil-distance Doppler-shift method in in-beam $γ$ -ray studies, DSA and B(E2) in Coul. ex. Values in ps are: 2.42 +8- II (B(E2) In Coul. ex.,2006Be18), 2.36 2 II (RDDS,2002Jo07), 2.09 II 8 (DSAM In Coul. ex.,2001Me20), 2.70 II 8 (DSA,1993Bi04), 2.91 II 9 (RDDS,1990Ga22), 2.56 II 9 (RDDS,1985Wi01,1982An06), 6.2 II 8 (DSA,1980Ro02), 2.50 II 9 (RDDS,1979He18).
1147.901 [@] 24	2+	3.3 ps 6	BCDEFGHIJK	μ =+1.08 20 (2001Me20) μ : transient magnetic field technique following Coulomb excitation (2001Me20). See also 2005St24 compilation. β_2 (DWBA)=0.065, B(E2)(W.u.)=1.8 4 from (p,p'). J^{π} : L(p,p')=2 and from $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of 2.2 ps +5-4 (B(E2) in Coul. ex.,2006Be18), 3.1 ps 6 (RDDS,1982An06) and 4.02 ps 35 (RDDS,1979He18). Other: >0.6 ps (DSA,1980Ro02).
1564.76 ^{&} 4	3+	4.73 ps <i>35</i>	BCDEFGH K	J^{π} : $\gamma(\theta)$; $\gamma(\text{linear pol})$ of 735 γ from 5 ⁺ (2299) level. $T_{1/2}$: weighted average of 5.1 ps 4 (RDDS,1982An06) and 4.44 ps 35 (RDDS,1979He18). Other: >1.0 ps (DSA,1980Ro02).
1653.9? <i>4</i> 1755.86 <i>3</i>	2+	5.3 ps 4	F BCD J	E(level): level is suspect, reported only in one study. J^{π} : E2 γ 's to 0^{+} and 4^{+} . $T_{1/2}$: from B(E2) for 739 γ In Coul. ex. (2006Be18). Other: 0.074 ps 12 from B(E2) for 1756 γ In Coul. ex. (2006Be18) is discrepant.
1772.93 4	$(1,2)^+$		BC	J^{π} : M1,E2 γ to 2^{+} ; γ to 0^{+} .
1872.91 [@] 4	4+	1.58 ps <i>17</i>	CDEFGH JK	J^{π} : $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of 1.72 ps +14-20 (B(E2) in Coul. ex.,2006Be18), 2.1 ps 7 (RDDS,1982An06) and 1.32 ps 21 (RDDS,1979He18). Other: >2.1 ps (DSA,1980Ro02).
1977.91 ^a 7	6+	0.65 ps 7	BCDEFGH JK	XREF: B(?). J^{π} : $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of values from Doppler-shift (DSA) method in in-beam γ -ray studies and B(E2) in Coul. ex. Values in ps are: 0.61 7 (B(E2) In Coul. ex.,2006Be18), 0.82 19 (DSA,2006Dh01), 0.57 21 (DSA,2002Jo07), 0.83 14 (DSA,1993Bi04), 0.49 14 (DSA) and 0.69 14 (RDDS) (1985Wi01,1982An06), 1.25 28 (DSA,1980Ro02), 0.62 10 (RDDS and DSA,1979He18), <2 (RDDS,1974No08).
2007.41 5	(0 to 3)		ВС	XREF: $C(?)$. J^{π} : γ' s from (1^+) .
2234.19 <i>4</i> 2240.69 <i>5</i>	$(0 \text{ to } 4)^+$ $(1,2)^+$		BC BC	J^{π} : M1,E2 γ to 2 ⁺ . J^{π} : M1+E2 γ to 2 ⁺ ; γ' s to 0 ⁺ and 3 ⁺ .
2299.78 ^{&} 5	5+	0.57 ps <i>16</i>	CDEFGH K	J^{π} : $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of 0.44 ps 9 (DSA,2002Jo07), 1.10 ps 28 (RDDS,1982An06), 1.0 +10-3 (DSA,1980Ro02) and 1.25 ps 28 (RDDS,1979He18).
2399.03 ^f 5	3-	0.62 ps <i>14</i>	BCDEFGHI L	B(E3) \uparrow =0.042 <i>14</i> (1978Ma11,2002Ki06) XREF: I(2384)L(2380). J ^{π} : L(p,p')=3. L(p,t)=3. T _{1/2} : from DSA (1985Wi01,1982An06).
2413.41 <i>11</i> 2443.37 <i>5</i>	2 ⁺ ,3 ⁺ ,4 ⁺ (1,2) ⁺		CD BC J	J^{π} : M1,E2 γ to 2 ⁺ and 3 ⁺ ; possible β feeding from 4 ⁽⁻⁾ . XREF: J(?). J^{π} : M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ .
2472.0 <i>5</i> 2508.02 <i>9</i>	(2,3)		F BC	J^{π} : $\Delta J = 0,1 \ \gamma \text{ to } 2^{+}$. J^{π} : $\gamma \text{ to } 2^{+}$.
2573.36 7	1-,2-,3-		BCD	J^{π} : E1 γ to 2^+ . Small ε feedings from $4^{(-)}$ and $0^{(+)}$ giving
			Continued or	n next page (footnotes at end of table)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
		·		inconsistent assignments are probably not reliable.
2656.12 5	(0,1)		В	J^{π} : log $ft=7.7$ from $O^{(+)}$; γ to 2^{+} .
2677.63 9	3-		CD	J^{π} : E1 γ to 2 ⁺ ; log ft =6.9 from 4 ⁽⁻⁾ .
2731.7 [@] 4	(6 ⁺)	1.5 ps 7	DEFGH J	XREF: J(?). J^{π} : band assignment; γ' s to 4 ⁺ and 6 ⁺ . $T_{1/2}$: weighted average of 1.4 ps 7 (RDDS,1982An06), 1.7 ps 9
2740.75 f. 7	-	1.26 27	CD FFC CI	(DSA,1980Ro02) and 1.4 ps 7 (DSA,1979He18).
2749.75 ^f 7	5-	1.36 ps <i>21</i>	CDEFGH	J^{π} : $\gamma(\theta)$ and $\gamma(\text{linear pol})$. $T_{1/2}$: weighted average of 0.76 ps +62-28 (DSA,1985Wi01,1982An06), 0.9 +14-5 (DSA,1980Ro02) and 1.52 ps 21 (RDDS,1979He18).
2764.10 ^e 5	(4)	1.9 ps 5	CDEFGH	J^{π} : E1 γ 's to 3 ⁺ and 4 ⁺ ; log ft =6.2 from 4 ⁽⁻⁾ . $T_{1/2}$: from <2.08 ps 35 (effective half-life,RDDS,1985Wi01,1982An06) and >1.4 ps (DSA,1985Wi01).
2882.07 9	3-		BC I L	XREF: I(2871)L(2874). B(E3)(W.u.)=6.2 9 from (p,p').
2002 04 7	(1)		D	J^{π} : L(p,p')=3 and L(p,t)=3.
2882.84 7	(1)		В	J^{π} : log f t=7.7 from $O^{(+)}$; γ' s to O^{+} and O^{+} .
2890.66 ^d 11 2901.82 24 2968.48 19	(4^{-}) $(4,5,6^{+})$		D D D	J^{π} : γ' s to 3^+ and 4^+ . J^{π} : γ to 4^+ .
2992.55 7			BC	J^{π} : γ to 2^+ .
2993.52 ^a 12	8+	0.31 ps <i>3</i>	DEFGH J	J ^π : γ(θ) and γ(pol). T _{1/2} : weighted average of values from Doppler-shift (DSA) method in in-beam γ-ray studies and B(E2) in Coul. ex. Values in ps are: 0.28 3 (B(E2) In Coul. ex.,2006Be18), 0.28 7 (DSA,2006Dh01), 0.44 9 (DSA,2002Jo07), 0.37 5 (DSA,1993Bi04), 0.25 4 (DSA,1985Wi01), 0.30 +10-7, 0.26 6, 0.22 4 (DSA,1982An06), 0.49 14 (DSA,1980Ro02), 0.31 4 (DSA,1979He18).
2999.37 <i>8</i> 3036.5 <i>5</i>	3-		CD D	J^{π} : E1 γ to 4^+ ; γ to 2^+ .
3064.71 ^b 10	(5)-	1.0 ps +8-4	BCD GH	XREF: B(?). J^{π} : E1 γ to 6^+ ; γ to 5^+ ; $\Delta J = (0) \gamma$ to 5^- . $T_{1/2}$: from DSA (1982An06).
3072.40 ^c 7	(5^{-})		CD	J^{π} : log ft =6.8 from $4^{(-)}$; γ to 4^{+} .
3105.36 6	3-,4-,5-		C	J^{π} : E1 γ to 4 ⁺ ; log ft =6.6 from 4 ⁽⁻⁾ .
3137.4 3	2-		D	II. E1 ./- 4- 2+ and 4+
3161.18 6	3-	0.50	CD	J^{π} : E1 γ' s to 2^+ and 4^+ .
3202.7 ^{&} 3	(7)+	0.50 ps <i>14</i>	DEFGH	J^{π} : ΔJ=2, E2 γ to 5 ⁺ ; band assignment. $T_{1/2}$: weighted average of 0.62 ps 21, 0.38 ps 14, 0.49 ps 14 (DSA,1982An06), 0.69 ps 28 (DSA,1980Ro02) and 0.62 ps +42-21 (DSA,1979He18).
3219.88 ^e 22	(6-)	5.0 ps <i>14</i>	DEFGH	J^{π} : $\gamma(\theta)$; γ' s to 5 ⁺ and 6 ⁺ ; band assignment. $T_{1/2}$: weighted average of 4.9 ps 14 (RDDS,1985Wi01) and 5.1 ps +21-14 (RDDS,1982An06).
3230.48 <i>5</i> 3233.55 <i>6</i>	(1) 3 ⁻ ,4 ⁻		B C	J^{π} : log ft =7.2 from $0^{(+)}$; γ' s to 0^{+} and 2^{+} . J^{π} : E1 γ' s to 3^{+} and 4^{+} .
3288.36 ^f 10	7-	1.95 ps 2 <i>I</i>	DEFGH	J^{π} : $\gamma(\theta)$, $\gamma(\text{linear pol})$; band assignment. $T_{1/2}$: weighted average of 1.94 ps 21 (RDDS,1985Wi01,1982An06), 1.3 ps 8 (DSA,1980Ro02) and 2.01 ps 21 (RDDS,1979He18).
3337.86 25	(6-)		D	
3340.64 ^d 24	(6 ⁻)		D	J^{π} : $\Delta J = 1$ γ to (5) ⁻ ; γ to and (4 ⁻).
3361.12 <i>11</i>	4 ⁻ ,5 ⁻ ,6 ⁻		C	J^{π} : M1 γ to 5 ⁻ ; 6 ⁻ is less likely from log ft =6.9 from 4 ⁽⁻⁾ . J^{π} : log ft =6.1 from 0 ⁽⁺⁾ ; γ' s to 0 ⁺ and 2 ⁺ .
3437.42 <i>5</i> 3440.4 <i>4</i>	(1)		B D	J. $\log \mu$ =0.1 from $\sigma^{(\gamma)}$; γ s to $\sigma^{(\gamma)}$ and $\sigma^{(\gamma)}$.
2			-	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
3539.07 <i>4</i> 3548.1 <i>4</i>	(1)		B D	J^{π} : log ft =6.4 from $0^{(+)}$; γ' s to 0^{+} and 2^{+} .
3575.08 6	(1)		В	J^{π} : log ft=6.8 from $0^{(+)}$; γ to 0^{+} .
3607.6 4	7-	1.7 ps 5	D FGH	J^{π} : $\gamma(\theta)$ and $\gamma(\text{linear pol})$. $T_{1/2}$: weighted average of 1.9 ps 5 (DSA,line shape), 2.6 ps +10-8 (RDDS)(1982An06) and 1.0 ps +14-4 (DSA,1980Ro02).
3662.17 <i>5</i>	(1)		В	J^{π} : log $ft=6.5$ from $O^{(+)}$; γ' s to O^{+} and $O^{(+)}$.
3669.22 6	3-,4-		С	J^{π} : M1 γ to 3 ⁻ ; log $ft = 6.2$ from 4 ⁽⁻⁾ .
3703.9 ^c 3	(7^{-})		D FGH	J^{π} : $\Delta J = 1$ γ to 6^+ ; γ to (5^-) .
3725.48 6	$3^{+},4^{+}$		CD	J^{π} : E1 γ to 3 ⁻ ; log ft =6.2 from 4 ⁽⁻⁾ .
3749.14 9	$(3,4,5^{-})$		BCD	J^{π} : log ft =6.9 from 4 ⁽⁻⁾ ; γ to 3 ⁻ .
3770.9 [@] 5	(8+)	0.186 ps <i>30</i>	DEFGH	J ^π : ΔJ=2, E2 γ to 6 ⁺ ; band assignment. T _{1/2} : weighted average of 0.16 ps 4 (DSA,line shape), 0.208 ps 35 (DSA), 0.187 ps 35 (DSA) (1982An06) and 0.24 ps 7 (DSA,1980Ro02).
3771.32 ^b 25	(7^{-})	0.62 ps +49-21	D FGH	J^{π} : γ' s to 6^+ and (5^-) .
	()	1		T _{1/2} : from DSA (1982An06).
3774.59 5	$(3)^{-}$		CD	J^{π} : M1+E2 γ to 3 ⁻ ; γ' s to 2 ⁺ and 4 ⁺ .
3791.7 5		>0.7 ps	D GH	$T_{1/2}$: from DSA (1982An06).
3829.45 6	(1)		В	J^{π} : log $ft = 6.5$ from $O^{(+)}$; γ' s to O^{+} and O^{+} .
3893.27 <i>5</i> 3918.4 ^e <i>3</i>	(1)	0.05 = 21	В	J^{π} : log $ft=5.7$ from $O^{(+)}$; γ' s to O^{+} and O^{+} .
3916.4 3	(8-)	0.95 ps 21	DEFGH	J^{π} : $\gamma(\theta)$ and γ (linear pol). $T_{1/2}$: weighted average of 0.83 ps 35
2010 7 ((RDDS,1985Wi01,1982An06), 1.39 ps <i>35</i> (DSA,1980Ro02) and 0.83 ps <i>21</i> (RDDS,1979He18).
3919.7 <i>6</i> 3922.8 <i>4</i>			D D	
3937.57 <i>4</i>	(1)		В	J^{π} : log ft =6.4 from $0^{(+)}$; γ' s to 0^{+} and 2^{+} .
4007.80 5	(1)		BC	XREF: C(?). J^{π} : log ft =6.5 from $0^{(+)}$; γ' s to 0^+ and 2^+ .
4028.75 ^f 14	(9-)	0.81 ps 7	DEFGH	J^{π} : $\gamma(\theta)$, $\gamma(\text{linear pol})$.
	(-)			T _{1/2} : weighted average of 0.94 ps 14 (DSA,2006Dh01), 0.97 ps 28 (DSA) and 1.2 ps 5 (RDDS)(1985Wi01,1982An06), 1.5 ps 6 (DSA,1980Ro02) and 0.76 ps 7 (RDDS,1979He18).
4040.39 5	(1)		В	J^{π} : log ft =6.3 from $O^{(+)}$; γ to O^{+} .
4089.32 <i>5</i> 4106.0 ^{<i>a</i>} <i>3</i>	(1) 10 ⁺	0.21 ps <i>3</i>	B DEFGH J	J ^π : log ft =6.3 from 0 ⁽⁺⁾ ; γ' s to 0 ⁺ and 2 ⁺ . J ^π : ΔJ=2, E2 γ to 8 ⁺ .
				$T_{1/2}$: weighted average of values from Doppler-shift (DSA) method in in-beam <i>γ</i> -ray studies and B(E2) in Coul. ex. Values in ps are: 0.24 +2-3 (B(E2) In Coul. ex.,2006Be18), 0.152 <i>35</i> (DSA,2006Dh01), 0.20 <i>4</i> (DSA,2002Jo07, also 0.19 <i>8</i> and <0.35 listed), 0.42 <i>14</i> (DSA,1993Bi04,effective value), 0.21 <i>4</i> (DSA,1985Wi01, 1982An06), 0.208 <i>35</i> (DSA,line shape) and 0.097 28 (DSA) (1982An06), 0.33 7 (DSA,1980Ro02).
4201.68 8	(1)		В	J^{π} : log ft =6.9 from $O^{(+)}$; γ' s to O^{+} and O^{+} .
4213.3 ^d 4	(8-)		D	J^{π} : $\Delta J = (2) \gamma$ to (6^{-}) ; γ to (7^{-}) .
4253.7 ^{&} 5	(9+)	0.19 ps 6	DEFGH	J ^π : ΔJ=(2), (E2) γ to 7 ⁺ . T _{1/2} : unweighted average of 0.083 ps 28 (DSA,line shape), 0.125 ps 35 (DSA), 0.21 ps 8 (DSA) (1982An06), 0.35 ps 7 (DSAM,1980Ro02).
4396.5 4	(10+)	0.146 ps 28	D GH	J^{π} : $\Delta J=(0)$, (M1) γ to 10^+ ; γ to 8^+ . $T_{1/2}$: from DSA (1985Wi01,1982An06). Other: 0.10 ps 4, 0.08 ps $+5-4$ (DSA) (1982An06).
4420.86 9	(1)		В	J^{π} : log ft =6.6 from $0^{(+)}$; γ' s to 0^{+} and 2^{+} .
4673.1 ^c 5	(9-)		D	J^{π} : $\Delta J=2 \gamma$ to (7^{-}) ; $\Delta J=1 \gamma$ to 8^{+} .
			Continued on r	next page (footnotes at end of table)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
4732.0 ^b 7	(9-)		D	J^{π} : γ to (7^{-}) .
4808.5 ^e 3	(10^{-})	<1.6 ps	DEFGH	J^{π} : $\Delta J=2$, E2 γ to 8 ⁻ .
		•		$T_{1/2}$: weighted average of 1.25 35 (DSA,1985Wi01,1982An06) and 1.11 ps 35 (RDDS,1985Wi01,1982An06) is 1.18 ps 35. As stated by 1985Wi01 this value is effective half-life, thus given as an upper limit here. Other: \leq 1.0 ps (RDDS,1979He18).
4858.7? [@] 5	(10^{+})	0.45 17	DE	J^{π} : possible γ to (8^+) ; possible band member.
4955.4 7	(10^+)	0.45 ps <i>17</i>	GH	J^{π} : γ to (8 ⁺). $T_{1/2}$: from DSA (line-shape) (1982An06). Other: 0.24 ps 9 and 0.12 ps 6 from DSA (1982An06).
4965.86 ^f 24	(11 ⁻)	0.34 ps <i>6</i>	DEFGH	J ^π : ΔJ=2, E2 γ to 9 ⁻ . T _{1/2} : from DSA. Weighted average of 0.24 ps 6 (2006Dh01), 0.38 ps 7 (1985Wi01,1982An06), 0.49 ps +35-21 and 0.44 ps +23-15 (1982An06), 0.49 ps 7 (1980Ro02), 0.25 8 (1979He18).
5011.52 7	(1)		В	J^{π} : log ft =6.1 from $O^{(+)}$; γ' s to O^{+} and O^{+} .
5061.68 <i>17</i>	(1)		В	J^{π} : log ft =6.2 from $0^{(+)}$ and γ to 2^{+} .
5180.74 8	(1)		В	J^{π} : log ft =5.8 from $0^{(+)}$; γ' s to 0^{+} and 2^{+} .
5192.50 <i>11</i>	(1)		В	J^{π} : log ft=5.7 from $0^{(+)}$ and γ' s to 0^{+} , 2^{+} .
5217.1 ^d 7	(10^{-})		D	J^{π} : $\Delta J=(2) \gamma$ to (8^-) .
5217.8 <mark>a</mark> 5	12+	0.18 ps 3	DEFGH J	XREF: J(?).
				J ^{π} : ΔJ =2, E2 γ to 10 ⁺ . T _{1/2} : from DSA. Weighted average of 0.15 ps 4 (2006Dh01), 0.18 ps 3 and 0.21 ps 4 (2002Jo07), 0.17 ps 10 (1985Wi01).
5222.58 11	(1)		В	J^{π} : log ft =6.1 from $O^{(+)}$; γ to $O^{(+)}$
5244.01 8	(1)		В	J^{π} : log ft =5.9 from $O^{(+)}$; γ' s to O^{+} and O^{+} .
5333.04 12	(1)		В	J^{π} : log ft =5.9 from $O^{(+)}$; γ' s O^{+} and O^{+} .
5369.56 <i>15</i>	(1)		В	J^{π} : log $ft=6.1$ from $0^{(+)}$.
5441.7 11	(11+)	0.21 ps 8	D GH	J^{π} : γ to (9 ⁺). $T_{1/2}$: from DSA (1982An06). Weighted average of 0.24 ps 10, 0.21 ps 8 and 0.18 ps 9.
5529.19 <i>11</i>	(1)		В	J^{π} : log ft =5.5 from $O^{(+)}$; γ to O^{+} .
5543.68 <i>16</i>	(1)		В	J^{π} : log ft =6.1 from $0^{(+)}$.
5567.79 16	(1)		В	J^{π} : log ft =5.8 from $O^{(+)}$; γ' s to O^{+} and O^{+} .
5586.08 <i>16</i>	(1)		В	J^{π} : log ft =6.1 from $O^{(+)}$.
5776.3 ^c 9	(11^{-})		D	J^{π} : γ to (9^{-}) .
5838.0 ^b 12	(11^{-})		D	J^{π} : γ to (9^{-}) .
5855.0 ^e 6	(12^{-})		D	J^{π} : $\Delta J=2 \gamma$ to (10^{-}) .
6087.2 ^f 8	(13 ⁻)	0.14 ps <i>3</i>	DE	J ^{π} : ΔJ=2, E2 γ to (11 ⁻). T _{1/2} : from DSA. Weighted average of 0.132 ps 28 (2006Dh01), 0.22 ps 10 (1979He18).
6305.1 ^d 12	(12^{-})		DE	J^{π} : γ to (10^{-}) .
6480.3 ^a 6	14+	0.092 ps <i>21</i>	DE GH	J ^{π} : ΔJ=2, E2 γ to 12 ⁺ . T _{1/2} : from DSA. Weighted average of 0.118 ps 35 (2006Dh01), 0.09 ps 4 and 0.076 ps 21 (2002Jo07), 0.15 ps 6 (1979He18).
6832.7? <i>13</i>	(13^{+})		D	J^{π} : possible γ to (11 ⁺); possible yrast state.
6853.3 ^c 13	(13^{-})		D	J^{π} : γ to (11 ⁻).
7066.8 ^e 9	(14^{-})		D	J^{π} : γ to (12 ⁻).
7392.5 ^f 11	(15 ⁻)	0.083 ps 28	D	J^{π} : γ to (13 ⁻). $T_{1/2}$: from DSA (2006Dh01).
7457.1? ^d 13	(14^{-})		D	J^{π} : γ to (12 ⁻).
7938.0 ^a 10	16 ⁺	0.152 ps <i>35</i>	DE	J ^π : ΔJ=(2), (E2) γ to 14 ⁺ . T _{1/2} : from DSA. Weighted average of 0.20 ps 5 (2006Dh01), 0.10 ps 6 and 0.146 ps 35 (2002Jo07). Other:≤0.14 ps (1979He18).

E(level) [†]	$J^{\pi #}$	T _{1/2} ‡	XREF	Comments
8469.2 ^e 12	(16 ⁻)		D	J^{π} : γ to (14 ⁻).
8882.4 ^f 14	(17^{-})		D	J^{π} : γ to (15 ⁻).
9570.0 ^a 14	18 ⁺	0.061 ps 23	D	J^{π} : γ to 16^+ .
				$T_{1/2}$: from DSA. Weighted average of 0.055 ps 21 (2006Dh01) and 0.15 ps 8 (2002Jo07).
10061.2 ^e 16	(18^{-})		D	J^{π} : γ to (16 ⁻).
10551.4 ^f 17	(19^{-})		D	J^{π} : γ to (17 ⁻).
11314.0 ^a 18	20+	0.072 ps <i>35</i>	D	J^{π} : γ to 18^+ .
				$T_{1/2}$: from DSA. Weighted average of 0.062 ps 35 (2006Dh01) and 0.10 ps 6 (2002Jo07).
12389.4 ^f 20	(21^{-})		D	J^{π} : γ to (19 ⁻).
13159.0 ^a 20	22+	0.062 ps 35	D	J^{π} : γ to 20^+ .
				$T_{1/2}$: from DSA. Weighted average of 0.055 ps 35 (2006Dh01) and 0.15 ps 12 (2002Jo07).
15163.2 ^a 21	(24^{+})	<0.64 ps	D	J^{π} : γ to 22^+ .
		-		$T_{1/2}$: <0.42 ps 22 from DSA (2002Jo07).
15198.8? <i>21</i>	(24^{+})		D	J^{π} : possible γ to 22^+ .
17296.5? ^a 21	(26^+)		D	J^{π} : possible γ to (24 ⁺).

[†] From least-squares fit to Ey's. Uncertainty of 0.5 keV used for Ey when not stated. Normalized $\chi^2=1.2$.

 $^{^{\}ddagger}$ Weighted average of different measurements have been taken. Most values are from recoil-distance Doppler shift (RDDS) and DSA methods in in-beam γ -ray measurements. Some values are also deduced from B(E2) values in Coulomb excitation . Note that some of the values in 1985Wi01 and 1982An06 seem to be from the same experiment as several authors are common in these two papers. In the averaging procedure, value from only one of these two papers is used when this is the case, even though all values are stated in comments for the sake of completeness.

[#] For high-spin (J>5) levels, assignments are based on $\gamma(\theta)$ and $\gamma(\text{pol})$ measurements and band associations in in-beam γ -ray studies. Ascending spins with rise in excitation energy are assumed in these reactions. Other complementary arguments are given under comments. For low-spin (J<6)states, the assignments are based on log ft values and ce data for selected transitions.

[@] Band(A): γ band, even spins.

[&]amp; Band(a): γ band, odd spins.

^a Band(B): g.s. band. The band is forked above 22⁺. Average g factor=0.54 5 (1981Wa16), same value for J=2 to 8 levels and J=8 to 12 levels, suggesting no change in g factor in the band up to spin 12. In this g factor, uncertainty of 20% in the calibration of the field is not included.

^b Band(C): Band based on 5⁻, 3065.

^c Band(D): Band based on (5⁻), 3072.

^d Band(E): Band based on (4⁻), 2891.

^e Band(F): Band based on 4⁻, 2764.

f Band(G): Band based on 3-.

$\gamma(^{78}{\rm Kr})$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$\alpha^{\&}$	Comments
455.033	2+	454.99 5	100	$0.0 0^{+}$	E2			B(E2)(W.u.)=67.9 22
1017.18	0^{+}	562.15 5	100	455.033 2 ⁺	E2			B(E2)(W.u.)=47 4
		1017		$0.0 0^{+}$	E0			$q_K^2(E0/E2)=0.136$ 6, $X(E0/E2)=0.024$ 1,
		1017		0.0	Lo			$\rho^2(E0) = 0.047 \ 13 \ (2005 \text{Ki} 02 \text{ evaluation, data fron})$
								1995Gi13).
1119.48	4+	664.42 5	100	455.033 2+	E2			1995G115). B(E2)(W.u.)=88 5
1119.48	2 ⁺	692.88 5	100.0 6	455.033 2 ⁺	M1+E2	+0.45 10		B(M1)(W.u.)=0.0103 21; B(E2)(W.u.)=5.6 24
1147.901	2	1147.87 5	62.4 12	$0.0 0^{+}$	E2	+0.43 10		
156476	3 ⁺	416.77 5						B(E2)(W.u.)=1.7 3
1564.76	3.	416.77 3	17.2 7	1147.901 2+	(M1)			B(M1)(W.u.)=0.0090 8
		445.00.5	5.2.2	1110.40 4	(3.51)			Additional information 3.
		445.28 5	5.3 3	1119.48 4+	(M1)			B(M1)(W.u.)=0.00228 22
1652.00		1109.72 5	100.0 16	455.033 2+	E2+M1			
1653.9?		534.4	24 5	1119.48 4+				
		1198.9 ^c	100 19	455.033 2 ⁺				E_{γ} : this γ is placed from three other levels,
								placement here is suspect.
1755.86	2+	607.94 8	4.7 10	1147.901 2+	E2+M1	4.0 35		B(E2)(W.u.)=1.5 4; $B(M1)(W.u.)=3.E-5 +5-3$
								Mult., δ : from $\alpha(K)$ exp In ⁷⁸ Rb ε decay (17.66 min)
		636.27 10	11.9 <i>4</i>	1119.48 4+	E2			B(E2)(W.u.)=3.2 3
		738.66 5	51.7 8	$1017.18 0^{+}$	E2			B(E2)(W.u.)=6.55
		1300.83 5	100.0 <i>16</i>	455.033 2 ⁺	M1+E2	-1.32 + 12 - 55	3.00×10^{-4}	B(M1)(W.u.)=0.00036 5; B(E2)(W.u.)=0.47 5
		1755.94 10	25.4 8	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.042 4
1772.93	$(1,2)^+$	1317.90 5	100 6	455.033 2 ⁺	M1,E2			
	() /	1772.89 5	24 5	$0.0 0^{+}$,			
1872.91	4+	725.06 8	100 3	1147.901 2+	E2			B(E2)(W.u.)=51 6
		753.37 8	62.5 16	1119.48 4+	E2+M1	+3.2 +23-12	9.85×10^{-4} 22	B(M1)(W.u.)=0.0010 +14-10; $B(E2)(W.u.)=24 4$
		155.51 0	02.5 10	1117.10	D2 (WII	13.2 123 12).03×10 22	Additional information 4.
		1417.90 8	15.2 9	455.033 2+	E2			B(E2)(W.u.)=0.27 4
1977.91	6+	858.33 10	100	1119.48 4+	E2			B(E2)(W.u.)=94 11
2007.41	(0 to 3)	859.56 <i>10</i>	100	1119.48 4 1147.901 2 ⁺	L'A			D(D2)(W.U.)-97 11
2007.41	(0 to 3) $(0 \text{ to } 4)^+$	1779.11 5	100	455.033 2 ⁺	M1.E2			
2240.69	(0.10.4) $(1,2)^+$	675.89 9	25.8 18	1564.76 3 ⁺	1011,12			
44 4 0.09	(1,4)	1785.55 <i>12</i>	62.7 18	455.033 2 ⁺	M1,E2			
		1785.55 <i>12</i> 2240.69 <i>7</i>	100 3	$0.0 0^{+}$	W11,EZ			
	-1							
2299.78	5 ⁺	426.5 ^{#c} 4	44 5	1872.91 4+	(M1)			B(M1)(W.u.)=0.124
		734.98 5	100 5	1564.76 3 ⁺	E2			$B(E2)(W.u.)=1.3\times10^2 4$
		1180.35 7	40 <i>3</i>	1119.48 4+	E2+M1	+2 1		B(M1)(W.u.)=0.0010 9; B(E2)(W.u.)=3.8 14
2399.03	3-	1943.97 5	100	455.033 2 ⁺	(E1)			$B(E1)(W.u.)=8.1\times10^{-5}$ 19
		(2399)		$0.0 0^{+}$	` /			B(E3)(W.u.)=16.7 25
		, ,						B(E3)(W.u.) from (p,p') .
2413.41	$2^+, 3^+, 4^+$	848.58 <i>15</i>	53 4	1564.76 3 ⁺	M1,E2			Additional information 5.
	,- ,-	1265.63 <i>15</i>	100 5	1147.901 2+	M1,E2			
		1293.5 ^{#c} 4	38 10	1119.48 4+	,			
		1293.5" 4	<i>38 10</i>	1119.48 4 ⁺				

γ (⁷⁸Kr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
2443.37	$(1,2)^+$	687.55 8	70 4	1755.86 2+	M1,E2		
		1295.45 8	61 4	1147.901 2+	M1,E2		
		1988.20 <i>15</i>	100 <i>3</i>	455.033 2 ⁺	M1,E2		
		2443.32 8	86.1 <i>16</i>	$0.0 0^{+}$			
2472.0	(2,3)	2016.9	100	455.033 2 ⁺	D		
2508.02		2052.96 8	100	455.033 2+			
2573.36	1-,2-,3-	1425.56 <i>14</i>	36 <i>3</i>	1147.901 2+	E1		
		2118.28 8	100 3	455.033 2+			
2656.12	(0,1)	1508.22 <i>6</i>	50.5 18	1147.901 2+			
		2201.04 6	100 4	455.033 2+			
2677.63	3-	1529.81 <i>12</i>	100 <i>3</i>	1147.901 2+	E1		
		2222.49 12	53 3	455.033 2 ⁺			
2731.7	(6^{+})	753 <i>1</i>	33 13	1977.91 6+	(M1)		B(M1)(W.u.)=0.009 6
		858.9 7	100 17	1872.91 4 ⁺	E2		B(E2)(W.u.)=31 <i>16</i>
2749.75	5-	350.5 ^{#c} 6	6 2	2399.03 3-	E2		B(E2)(W.u.)=210 80
		771.95 <i>7</i>	8.8 8	1977.91 6 ⁺	(E1)		$B(E1)(W.u.)=4.5\times10^{-5} 9$
		1630.28 <i>6</i>	100.0 25	1119.48 4+	E1(+M2)	-0.034	B(E1)(W.u.)= $(5.5\times10^{-5} 9)$; B(M2)(W.u.)= $(0.08 +23-8)$
2764.10	$(4)^{-}$	364.4 ^{#c} 3	20 4	2399.03 3-			
	()	1199.33 ^b 5	94.7 ^b 23	1564.76 3 ⁺	E1		$B(E1)(W.u.)=5.0\times10^{-5}$ 14
		11//.55	74.7 23	1304.70 3	Li		I_{γ} : $I_{\gamma}(1199\gamma)/I_{\gamma}(1645\gamma)=0.35$ 17, 3.6 11, 1.35 In reaction data.
		1644.61 <i>5</i>	100.0 23	1119.48 4+	E1		$B(E1)(W.u.)=2.0\times10^{-5}$ 6
2882.07	3-	2427.00 8	100.0 23	455.033 2+	Li		$D(E1)(W.u.) - 2.0 \times 10^{-0}$
2882.84	(1)	1734.93 7	100 6	1147.901 2+			
2002.01	(1)	2882.75 12	46 4	$0.0 0^{+}$			
2890.66	(4^{-})	1017.7 <i>1</i>	≈45	1872.91 4 ⁺			
	· · /	1326.2 4	100 27	1564.76 3+			
2901.82	$(4,5,6^+)$	1781.6 <i>4</i>	100	1119.48 4+			
2968.48	. , , ,	291.0 <i>3</i>	100 21	2677.63 3-			
		569.1 <i>3</i>	26 11	2399.03 3-			
		1403.8 7	37 11	1564.76 3 ⁺			
		1820.9 <i>6</i>	21 5	1147.901 2+			
		1849.3 <i>6</i>	84 21	1119.48 4+			
2992.55		1844.66 7	100 4	1147.901 2+			
		2537.37 11	65 9	455.033 2 ⁺			
2993.52	8+	1015.5 <i>1</i>	100	1977.91 6 ⁺	E2		B(E2)(W.u.)≈85
2999.37	3-	1852.55 ^b 6	76 <mark>b</mark> 12	1147.901 2+			E_{γ} : E_{γ} not used in least-squares fit procedure.
		1879.87 <i>7</i>	100 15	1119.48 4 ⁺	E1		* *
3036.5		1917.0 5	100	1119.48 4+			
3064.71	(5)	315 ^{#c} 1	91 <i>36</i>	2749.75 5	(M1)		B(M1)(W.u.)=0.29 +18-27 Mult.: ΔJ =(0) transition.
							· ·
		765 [#] c	27 9	2299.78 5+	[E1]		B(E1)(W.u.)=0.00010 +6-10

 ∞

γ (⁷⁸Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	δ^{\ddagger}	Comments
3072.40	(5 ⁻)	1199.33 ^b 5	≈28 ^b	1872.91	4+			E_{γ} : E_{γ} not used in least-squares fit procedure.
		1952.91 6	100 23	1119.48	4+			
3105.36	3-,4-,5-	341.26 7	100 8	2764.10	$(4)^{-}$	M1		
		1232.44 7	87.2 21	1872.91	4+	E1		
3137.4		1158.6 <i>6</i>	100 <i>31</i>	1977.91	6 ⁺			
		2017.4 6	77 23	1119.48	4+			
3161.18	3-	1288.45 <i>15</i>	18.3 18	1872.91	4 ⁺	E1		
		1595.8 ^{#c} 5	44 17	1564.76	3 ⁺			
		2013.25 6	100 <i>3</i>	1147.901	2+	E1		
		2041.52 <i>15</i>	28.4 13	1119.48	4+			I_{γ} : other: 72 17 In reaction data.
3202.7	$(7)^{+}$	902.8 <i>3</i>	100	2299.78	5 ⁺	E2		B(E2)(W.u.)≈95
	. ,	1225		1977.91	6 ⁺			
3219.88	(6^{-})	455.5 6	<28	2764.10	$(4)^{-}$	[E2]		B(E2)(W.u.)=14 + 15 - 14
								I_{γ} : other: ≈ 160 .
		470.0 5	84 13	2749.75	5-	(M1)		B(M1)(W.u.)=0.0135
								I_{γ} : other: 50.
		488 ^c	<40	2731.7	(6^+)	[E1]		B(E1)(W.u.)=5.E-5.5
		920.1 5	100 8	2299.78	5 ⁺	(E1)		$B(E1)(W.u.)=3.4\times10^{-5} 11$
		1241.7 6	64 8	1977.91	6 ⁺	(E1)		B(E1)(W.u.)=9.E-6.3
						,		Mult.: $\Delta J = (0)$ transition.
3230.48	(1)	2082.60 6	71.0 24	1147.901	2+			
		2213.24 6	41.1 24	1017.18	0^{+}			
		3230.37 8	100 4	0.0	0^{+}			
3233.55	3-,4-	1360.63 7	66 <i>4</i>	1872.91	4+	E1		
		1668.61 <i>15</i>	100 6	1564.76	3 ⁺	E1		
		2114.07 7	88 5	1119.48	4+	E1		
3288.36	7-	294.2 <i>4</i>	17 <i>6</i>	2993.52	8+	(E1)		B(E1)(W.u.)=0.00063 24
		538.9 <i>1</i>	85 <i>5</i>	2749.75	5-	E2		B(E2)(W.u.)=136 <i>18</i>
		1310.2 <i>I</i>	100 6	1977.91	6 ⁺	E1(+M2)	-0.067	$B(E1)(W.u.)=(4.2\times10^{-5} 6); B(M2)(W.u.)=(0.4 +10-4)$
3337.86		338.6 <i>3</i>	≈29	2999.37	3-			
		1773.1 5	86 29	1564.76	3 ⁺			
		2217.7 7	100 43	1119.48	4+			
3340.64	(6^{-})	268.6 <i>4</i>	22 6	3072.40	(5^{-})			
		276.1 5	100 <i>36</i>	3064.71	$(5)^{-}$	D		
		449.6 <i>4</i>	53 19	2890.66	(4^{-})			
		591.6 8	4.7 16	2749.75	5-			
3361.12	4-,5-,6-	611.37 8	100	2749.75	5-	M1		
3437.42	(1)	1203.13 5	1.69 24	2234.19	$(0 \text{ to } 4)^+$			
	-	2289.66 15	29.2 5	1147.901	2+			
		2420.27 6	88.6 12	1017.18	0_{+}			
		2982.37 16	100.0 18	455.033	2+			
		3437.38 <i>15</i>	87 <i>4</i>	0.0	0_{+}			
3440.4		690.7 5	50 20	2749.75	-			

9

γ (⁷⁸Kr) (continued)

								_
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	δ^{\ddagger}	Comments
3440.4		1041.3 7	100 30	2399.03	3-			
3539.07	(1)	2391.26 12	6.7 <i>3</i>	1147.901	2+			
		2521.80 <i>12</i>	4.0 5	1017.18	0_{+}			
		3083.95 <i>5</i>	100.0 <i>13</i>	455.033	2+			
		3539.00 7	38.9 9	0.0	0_{+}			
3548.1		1248.1 5	20 10	2299.78	5 ⁺			
		1570.5 6	100 30	1977.91	6 ⁺			
3575.08	(1)	2557.85 10	12.1 10	1017.18	0_{+}			
		3574.99 6	100.0 10	0.0	0_{+}			
3607.6	7-	614.3 5	100 25	2993.52	8+	E1(+M2)	< 0.012	B(E1)(W.u.)>0.00058?; B(M2)(W.u.)<2.3? Mult.: ΔJ=(0) transition.
		1630.4 8	44 13	1977.91	6+	[E1]		$B(E1)(W.u.)=3.0\times10^{-5}$ 15
3662.17	(1)	1428.08 <i>12</i>	4.6 28	2234.19	$(0 \text{ to } 4)^+$. ,		
	(-)	1906.28 7	7.4 4	1755.86	2+			
		2514.13 8	100.0 17	1147.901	2+			
		3662.13 8	5.5 4	0.0	0^{+}			
3669.22	3-,4-	1096.02 <i>15</i>	65 <i>3</i>	2573.36	$1^{-},2^{-},3^{-}$	M1,E2		
	,	1270.17 6	100 4	2399.03	3-	M1		
		1796.25 9	99 <i>7</i>	1872.91	4+			
3703.9	(7^{-})	482.7 ^c	≈25	3219.88	(6^{-})			
	. ,	632.4 5	≈25	3072.40	(5^{-})			
		1726.0 5	100 25	1977.91	6+	D		
3725.48	3+,4+	823.1 [#] <i>c</i> 4	20 9	2901.82	$(4,5,6^+)$			
	- ,.	1326.48 9	19.9 23	2399.03	3-	E1		
		1852.55 ^b 6	100 ^b 8	1872.91	4+	(M1,E2)		
		1969.6 ^{#c} 6				(WII,E2)		
			29 20	1755.86	2+			
		3270.35 [@] 9	33.1 20	455.033	2+			
3749.14	$(3,4,5^{-})$	611.3 ^{#c} 4	≈13	3137.4				E_{γ} : a 611 γ is placed from 3361 level In ⁷⁸ Rb ε decay.
		1350.11 8	100 40	2399.03	3-			•
3770.9	(8^{+})	1039.2 <i>1</i>	100	2731.7	(6^+)	E2		$B(E2)(W.u.)\approx 1.3\times 10^2$
3771.32	(7^{-})	698.9 <i>4</i>	≈19	3072.40	(5^{-})			
		1793.4 <i>3</i>	100 <i>19</i>	1977.91	6+	[E1]		B(E1)(W.u.)=9.E-5+4-8
3774.59	$(3)^{-}$	872.6 [#] <i>c</i> 4	9 3	2901.82	$(4,5,6^+)$			
	(-)	1199.3 ^{#c} 4	21 4	2573.36	1-,2-,3-			E_{γ} : 1199 γ is placed from three different levels by 1999Su02 In
		1177.5	21 7	2373.30	1 ,2 ,3			reaction data but placement from 3775 level In 78 Rb ε decay is inconsistent with level-energy difference.
								Additional information 6.
		1375.61 <i>12</i>	42.3 20	2399.03	3-	M1,E2		
		1901.79 <i>15</i>	20.7 14	1872.91	4+			
		2209.76 8	27.5 20	1564.76	3+			
		2626.86 [@] 13	98 <i>4</i>	1147.901	2+			
		2654.97 [@] 12	40.3 17	1119.48	4+			
		2031.71 12	10.5 17	1117,70	•			

10

γ (⁷⁸Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.‡	Comments
3774.59	$(3)^{-}$	3319.50 [@] 7	100 3	455.033 2 ⁺		
3791.7		653.9 7	20	3137.4		
		1814.1 <i>6</i>	100 20	1977.91 6 ⁺		
3829.45	(1)	1595.32 7	44.1 20	$2234.19 (0 \text{ to } 4)^+$		
		1822.00 <i>15</i>	100 10	2007.41 (0 to 3)		
		2681.33 <i>14</i>	78 <i>3</i>	1147.901 2+		
		3374.06 16	91 <i>4</i>	455.033 2 ⁺		
		3829.41 <i>17</i>	15.1 <i>13</i>	$0.0 0^{+}$		
3893.27	(1)	1652.68 20	5.35 17	$2240.69 (1,2)^{+}$		
		1885.97 20	1.57 23	2007.41 (0 to 3)		
		2137.41 8	16.16 23	1755.86 2+		
		2745.19 12	5.4 <i>4</i>	1147.901 2 ⁺		
		3438.16 <i>15</i>	100 <i>3</i>	455.033 2+		
		3893.15 <i>6</i>	35.4 5	$0.0 0^{+}$		
3918.4	(8^{-})	629.4 8	12 <i>3</i>	3288.36 7-	[M1+E2]	
		698.6 2	100 5	3219.88 (6-)	E2	$B(E2)(W.u.)=140 \ 40$
		715 <i>1</i>	4.2 23	$3202.7 (7)^{+}$	(E1)	$B(E1)(W.u.)=3.6\times10^{-5} 21$
		924.4 7	10 4	2993.52 8+	[E1]	B(E1)(W.u.)=3.9×10 ⁻⁵ 18
3919.7		1520.7 6	100	2399.03 3	[121]	D(D1)(W.d.)=3.5/N10 10
3922.8		314.8 4	100 30	3607.6 7		
3722.0		1945.8 6	90 30	1977.91 6 ⁺		
3937.57	(1)	1930.07 7	21.4 17	2007.41 (0 to 3)		
3737.37	(1)	2789.59 7	33.2 17	1147.901 2+		
		2920.36 7	59.6 23	1017.18 0+		
		3482.50 7	86 3	455.033 2+		
		3937.50 7	100 3	$0.0 0^{+}$		
4007.80	(1)	1767.05 8	59 7	$2240.69 (1,2)^{+}$		
1007.00	(1)	2000.45 12	20 4	2007.41 (0 to 3)		
		2990.38 12	100 5	1017.18 0+		
		3552.70 9	80 <i>3</i>	455.033 2+		
		4007.77 9	51 3	$0.0 0^{+}$		
4028.75	(9^{-})	740.4 1	100 6	3288.36 7	E2	B(E2)(W.u.)=143 18
. 520.70	()	1034.7 6	11 3	2993.52 8+	(E1)	B(E1)(W.u.)=4.1×10 ⁻⁵ 12
4040.39	(1)	1467.24 18	2.9 6	2573.36 1-,2-,3-	(11)	D(D1)(1100) - 111/10 12
10 10.37	(1)	1806.22 10	17.9 6	2234.19 (0 to 4) ⁺		
		2284.64 17	12.3 9	1755.86 2 ⁺		
		2892.36 8	100 3	1147.901 2+		
		3023.20 16	27.0 18	1017.18 0 ⁺		
		4040.20 9	17.3 9	$0.0 0^{+}$		
4089.32	(1)	1855.06 8	51.6 16	2234.19 (0 to 4) ⁺		
1007.32	(1)	2333.32 8	78 3	1755.86 2 ⁺		
		2941.40 7	100.0 16	1147.901 2 ⁺		
		3634.28 20	11.8 22	455.033 2 ⁺		
		2027.20 20	11.0 22	155.055 2		

γ (⁷⁸Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	Comments
				0.0	$\frac{f}{0^{+}}$		
4089.32 4106.0	(1) 10 ⁺	4089.36 <i>12</i> 1112.2 ^a 3	16.1 22 100	2993.52	8+	E2	B(E2)(W.u.)=80 12
4201.68	(1)	3053.61 20	59 9	1147.901		EZ	D(E2)(W.u.)=00 12
7201.00	(1)	3746.58 8	100 5	455.033			
		4201.44 20	61 7	0.0	0^{+}		
4213.3	(8^{-})	508.6 7	21 8	3703.9	(7^{-})		
	` /	872.9 <i>4</i>	100 29	3340.64	(6-)	(Q)	
4253.7	(9^{+})	1051.0 4	100	3202.7	$(7)^{+}$	(E2)	B(E2)(W.u.)=120 40
4396.5	(10^{+})	289.5 5	23 9	4106.0	10 ⁺	(M1)	B(M1)(W.u.)=1.2 6
							Additional information 7.
		= 00 <i>C</i>		2 < 0 = <			Mult.: $\Delta J = (0)$ transition.
		790°	100.27	3607.6	7-	[EQ]	D/E2\/W \ 20.12
1420.96	(1)	1402.3 6	100 27	2993.52	8 ⁺	[E2]	B(E2)(W.u.)=29 12
4420.86	(1)	3272.88 <i>10</i> 4420.75 <i>15</i>	34 <i>3</i> 100 <i>5</i>	1147.901 0.0	0+		
4673.1	(9-)	969.3 6	100 3	3703.9	(7^{-})	Q	
40/3.1	())	1679.4 6	71 29	2993.52	8+	D	
4732.0	(9^{-})	960.7 6	100	3771.32	(7^{-})		
4808.5	(10^{-})	890.1 <i>I</i>	100	3918.4	(8-)	E2	B(E2)(W.u.)>32
4858.7?	(10^{+})	1087.8° 2	100	3770.9	(8+)		E_{γ} : γ also placed from 6305 level.
4955.4	(10^{+})	1184.5	100	3770.9	(8^{+})	[E2]	B(E2)(W.u.)=27 11
4965.86	(11^{-})	937.1 2	100	4028.75	(9-)	E2	B(E2)(W.u.)=116 21
5011.52	(1)	3863.51 9	100 8	1147.901			
		3994.23 9	81 8	1017.18	0+		
5061.60	(1)	4556.38 19	43 6	455.033			
5061.68 5180.74	(1)	3913.67 <i>16</i> 3173.36 <i>14</i>	100 65 7	1147.901 2007.41	(0 to 3)		
3160.74	(1)	4725.60 11	77 <i>7</i>	455.033			
		5180.40 <i>13</i>	100 5	0.0	0+		
5192.50	(1)	4044.31 15	100 3	1147.901			
	(-)	4175.38 19	24.4 17	1017.18	0+		
		4737.44 22	29 <i>3</i>	455.033	2+		
5217.1	(10^{-})	1003.8 5	100	4213.3	(8^{-})	(Q)	
5217.8	12+	821	≈10	4396.5	(10^{+})	[E2]	
		1112.2 ^a 5	100	4106.0	10+	E2	B(E2)(W.u.)=85 15
5222.58	(1)	3215.22 15	60 7	2007.41	(0 to 3)		
5244.01	(1)	4074.45 15	100 14	1147.901			
5244.01	(1)	4095.98 <i>10</i> 5243.85 <i>12</i>	26 <i>10</i> 100 <i>4</i>	1147.901 0.0	0+		
5333.04	(1)	3325.65 15	62 10	2007.41	(0 to 3)		
3333.04	(1)	4877.76 25	22 4	455.033			
		5332.70 22	100 8	0.0	0+		
5369.56	(1)	3361.99 20	100 15	2007.41	(0 to 3)		

[†] The values given here represent weighted averages of all available data for energies and intensities of γ rays. The gamma rays for low-spin levels (J<5) are mainly from ⁷⁸Rb decays and for high-spin levels (J>5) from five heavy-ion in-beam γ -ray studies.

[‡] For gamma transitions from low-spin levels (J<5), the assignments are from ce data in 78 Rb ε decay; and for transitions from high-spin levels, the assignments are based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and $\gamma(0)$ measurements in in-beam γ -ray studies covered in four different reaction dataset. When the assignments are

γ (⁷⁸Kr) (continued)

are quadrupole or dipole+quadrupole from angular distribution/ correlation data in in-beam γ -ray experiments, RUL is used to assign E2 or M1+E2. In other cases M1 and E1 are assigned in parentheses when dipole is indicated by angular distribution/correlation data and level J^{π} 's are well established.

- # From 58 Ni(23 Na, 3 p γ),(27 Al, 23 p γ) (1999Su02) only, not reported In 78 Rb ε decay. With the intensity of this γ ray reported In the reaction data, it should have been seen In the 78 Rb ε data from 1981Ba40. This discrepancy is difficult to explain. IT is considered As questionable by the evaluators.
- [@] From ⁷⁸Rb ε decay only; not reported In In-beam γ -ray data, probably because of energy limits set In γ -ray spectrum from reactions.
- & Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^a Multiply placed.
- ^b Multiply placed with intensity suitably divided.
- ^c Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{78}_{36} \mathrm{Kr}_{42}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

Legend

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105,223 (2005)	22-Jun-2005

 $Q(\beta^{-}) = -5717.8 \ 20$; $S(n) = 11522 \ 4$; $S(p) = 9114.2 \ 14$; $Q(\alpha) = -5066.3 \ 7$ 2012Wa38

Note: Current evaluation has used the following Q record \$ -5720 7 11521 4 9112.9 24 -5065.422 2003Au03. Other reactions:

 79 Br(p,γ) E=1.7, 2.4 MeV: 1983Ra02, prompt γ rays in 80 Kr at 617, 640, 820, 1172 and 1257 keV are reported. This suggests population of levels in 80 Kr at 617, 1256, 1436 and 1788.

⁷⁶Ge(³²S, ²⁸Mg) E=100 MeV: 1974We04 (cross section data through measurement of ²⁸Mg activity).

 80 Se(π^+,π^-): 1995Hu09 (E=293.2 MeV), 1991Fo02, 1988Mo01, 1987Gi04 (E=100-190 MeV); 1991Wi13 (E=450,500 MeV; cross section for g.s. and double IAS). Other: 1996Fo08.

⁶⁴Zn(¹⁶O,X) GDR study: 1985GuZZ.

Hyperfine structure and isotope-shift data: 1995Ke04, 1992Sc19, 1990Ca26, 1990Sc30, 1989Tr04, 1981Ge06 (also 1979Ge05,1977Ge05). Other: 1996Li25.

Mass measurement: 2002He23 (Penning-trap method), 1986Bu18 (from 80Kr(d,p)); 1978Di09, 1963Ri07.

Isotopic abundance: 1971Me13.

Additional information 1.

In 80 Rb ε decay, 1993Gi01 attempted to identify third 0^+ state around 2 MeV from ce data. From the absence of any conversion electron line in the range 1900-2100 keV, 1993Gi01 deduced Ice(K)(third 0^+ to g.s.)/Ice(K)(second 0^+ to g.s.)<0.05 (with 95% confidence limit).

80Kr Levels

Cross Reference (XREF) Flags

Α	80 Br β^{-} decay (17.68 min)	F	79 Br(3 He,d)
В	80 Rb ε decay (34 s)	G	80 Kr(p,p'),(p,p' γ)
C	65 Cu(18 O,p2n γ), 65 Cu(19 F,2p2n γ)	H	Coulomb excitation
D	70 Zn(12 C, 2 n γ)	I	82Kr(p,t)
E	78 Se(α , 2n γ), 80 Se(α , 4n γ).		

E(level)#	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	XREF	Comments
0.0	0+	stable	ABCDEFGHI	$(r^2)^{1/2}$ =4.1976 fm 13 (2004An14).
616.60 [@] 10	2+	8.3 ps 5	ABCDEFGH	μ =+0.76 10 (2001Me20) J ^{π} : E2 γ to 0 ⁺ . T _{1/2} : weighted average of 8.3 ps 7(DSAM,2001Mu25); 7.8 ps 5 (DSAM in Coul. ex.); 8.3 ps 7 (DSAM and RDM,1981Fu03); 8.8 ps 5 (RDM,1975Fr04). Evaluation by 2001Ra27 adopted 8.6 ps 5 from 1981Fu03 and 1975Fr04.
				$μ$: transient-field technique in Coul. ex. (2001Me20). $β_2(p,p')=0.28$ (1979Sa14). $T_{1/2}$: others: 9.4 ps (from B(E2)(Coul. ex.)=0.34). $Δ(^{80}Kr-^{86}Kr)=0.088$ fm ² 7 (1990Sc30), 0.0866 fm ² 9 (1981Ge06,1979Ge06), 0.144 fm ² 7 (1995Ke04). Uncertainties quoted are statistical only. The total uncertainties including the systematic errors are: 0.068 fm ² (1990Sc30), 0.044 fm ² (1995Ke04).
1256.24 ^{&} 12	2+	7.6 ps <i>14</i>	ABCDEFGH	μ =+1.3 7 (2001Me20) J ^π : E2 γ to 2 ⁺ . μ : transient-field technique in Coul. ex. (2001Me20). $\beta_2(p,p')$ =0.059 (1979Sa14).
1320.51 22	0+	4.9 ps 21	AB FGH	J^{π} : $(704\gamma)(617\gamma)(\theta)$ in 80 Br β^{-} ; E0 transition to 0^{+} . $T_{1/2}$: DSAM in $(p,p'\gamma)$ (1993Gi01).

80 Kr Levels (continued)

E(level)#	Jπ‡	${ m T}_{1/2}{}^{\dagger}$	XREF	Comments
1436.09 [@] 16	4+	1.07 ps <i>15</i>	CDEFGH	μ =+1.8 6 (2001Me20) B(E4)↑=0.0015 3 (1978Ma11) J ^π : γ (θ ,pol); E2 γ to 2 ⁺ . T _{1/2} : DSAM in Coul. ex. (2001Me20). Others: 1.7 ps 2 (1975Fr04), 1.6 ps 4 (1981Fu03). μ : transient-field technique in Coul. ex. (2001Me20). β_4 (p,p')=0.061 (1979Sa14).
1787.99 <mark>&</mark> <i>14</i>	3 ⁺	7.1 ps 9	CDE	J^{π} : 532 $\gamma(\theta)$, 1171 $\gamma(\theta,\text{pol})$; E2+M1 γ to 2 ⁺ .
2145.88 ^{&} 16	4 ⁺	0.76 ps <i>42</i>	CDE H	J^{π} : $\gamma(\theta,\text{pol})$; E2 γ to 2^{+} .
2392.06 [@] 18	6 ⁺	0.56 ps 14	CDE	J^{π} : $\gamma(\theta, pol)$; E2 γ to 4 ⁺ .
2439.21 ^a 22	3-	1.4 ps +14-5	CDE G I	B(E3)↑=0.043 15 (1978Ma11,2002Ki06) XREF: G(2414)I(2424). J ^π : L(p,p')=3.
2659.74 <mark>&</mark> 18	5 ⁺	0.83 ps 28	CDE	J^{π} : 871 $\gamma(\theta, pol)$; E2 γ to 3 ⁺ .
2793.05 ^e 17	4-	2.1 ps 4	CDE	J^{π} : $\gamma(\theta, pol)$.
2859.53 ^a 17	5-	2.4 ps 11	CDE	J^{π} : $\gamma(\theta, pol)$; E1 γ to 4^{+} .
2969 15	3-		GI	$B(E3)\uparrow=0.00038\ 6\ (1978Ma11)$ J^{π} : $L(p,p')=L(p,t)=3$.
2997.6? 4	(5-)	1.5 /	DE	III (0 I)
3039.57 22 3041.74 ^e 17	(5 ⁻) 6 ⁻	1.5 ps 4 2.2 ns 2	CDE CDE	J^{π} : $\gamma(\theta, \text{pol})$. J^{π} : $\gamma(\theta, \text{pol})$; E2 γ to 4 ⁻ .
				$T_{1/2}$: from 1981Fu03. Other: 1.8 ns 2 (γ (t) in (α ,2n γ)) (1984Do02).
3110.21 ^{&} 21	(6^+)	0.83 ps +62-35	CDE	J^{π} : $\gamma(\theta)$; (E2) γ to 4^+ .
3172.81 24	(5,6,7-)	4.0	C	J^{π} : γ' s to 6 ⁺ and 5 ⁻ . J^{π} =(5 ⁻) proposed by 1995Do15.
3345.81 ^d 18	6-	4.9 ps <i>21</i>	CDE	J^{π} : $\gamma(\theta, \text{pol})$.
3409.98 [@] 23	8+	0.28 ps +28-14	CDE	J^{π} : $\gamma(\theta, \text{pol})$; E2 γ to 2 ⁺ .
3488.0 ^a 3	(6 ⁻)		CDE	J^{π} : γ' s to 5 ⁻ and 4 ⁻ . Greater $\sigma(\gamma)$ of 628 γ and 695 γ in $(\alpha,4n\gamma)$ as compared to those in $(\alpha,2n\gamma)$ favors J=6 (1981Fu03).
3530.31 19	7-		CDE	J^{π} : $\gamma(\theta, \text{pol})$; E2+M1 γ to 6 ⁻ .
3558.66 ^a 21	$(7)^{-}$		CDE	J^{π} : $\gamma(\theta)$; E2+M1 γ to 6 ⁻ ; γ from (9 ⁻).
3581.69 ^c 19	7-	2.7 ps 3	CDE	J^{π} : $\gamma(\theta)$; E2 γ to 5 ⁻ .
3635.3 ^{&} 4	(7^{+})	≥0.7 ps	CDE	J^{π} : $\gamma(\theta)$; γ to 6^+ .
3699.75 ^b 25	8+		CDE	J^{π} : $\gamma(\theta, pol)$; M1 γ to 8^+ .
3916.6 <i>4</i>	(8^{+})	≤0.14 ps	CE	J^{π} : γ to 6^+ ; possible γ to 8^+ .
4126.23 ^d 20	(8-)	≥1.7 ps	CDE	J^{π} : $\gamma(\theta)$; probable band assignment.
4153.2 ^b 11	(8^{+})		E	J^{π} : γ to (6^+) ; probable band assignment.
4163.2 ^e 3	(8^{-})		CE	J^{π} : $\gamma(\theta)$; band assignment.
4377.9 ^b 3	10+	0.40 ps +8-7	CDE	J^{π} : $\Delta J=2$, E2 γ to 8^+ ; band member.
4393.70 ^a 24	(9-)		CDE	J^{π} : $\gamma(\theta)$; band assignment.
4562.47 ^c 25	(9 ⁻)	0.40	CDE	J^{π} : $\gamma(\theta)$; band assignment.
4648.9 [@] 3 4975.1 6	(10^+) (10^+)	0.49 ps 21	CDE C	J^{π} : ΔJ =2, (E2) γ to 8 ⁺ ; (M1) γ to 10 ⁺ . J^{π} : ΔJ =(2) γ to 8 ⁺ ; possible γ to 10 ⁺ .
5159.0^{d} 4			CE	
5374.6 ^e 5	(10^{-}) (10^{-})		CE	J^{π} : γ to (8 ⁻); probable band assignment. J^{π} : γ to (8 ⁻).
5397.4 ^a 4	(10°) (11^{-})		C	J^{π} : $\Delta J=2 \gamma$ to (9^{-}) .
5437.8 ^b 4	12 ⁺	0.23 ps +4-5	CDE	J^{π} : $\Delta J = 2$, $E2 \gamma$ to 10^{+} ; band member.
5665.5° 4	(11^{-})	5.20 ps 1, 5	C	J^{π} : γ to (9^{-}) .
5889.9 [@] 5	(12^{+})		С	J^{π} : $\Delta J = 2 \gamma$ to (10^{+}) ; γ to (12^{+}) .
6181.2 ^d 6	(12^{-})		С	J^{π} : γ to (10 ⁻); band assignment.
6522.2 ^a 6	(13-)		C	J^{π} : $\Delta J=2 \gamma$ to (11^{-}) .

80 Kr Levels (continued)

E(level)#	$J^{\pi \ddagger}$	T _{1/2} [†]	XREF	Comments
6681.4 ^b 6	14+	0.18 ps +6-5	C E	J^{π} : $\Delta J=2$, E2 γ to 12 ⁺ ; band member.
7221.6 [@] 9	(14^{+})		С	J^{π} : $\Delta J=(2) \gamma$ to (12^+) .
7771.0 ^a 9	(15^{-})		C	J^{π} : $\Delta J=(2) \gamma$ to (13^{-}) .
8087.9 ^b 9	(16^{+})	0.21 ps 8	С	J^{π} : $\Delta J=2$, (E2) γ to (14 ⁺).
8564.6? [@] <i>13</i>	(16^{+})		C	J^{π} : $\Delta J=(2) \gamma$ to (14^+) .
9195.2 ^a 11	(17^{-})		C	J^{π} : γ to (15 ⁻); band assignment.
9690.6 ^b 11	(18^{+})	0.12 ps 5	С	J^{π} : $\Delta J = 2$, (E2) γ to (16 ⁺).
10844.3 ^a 15	(19^{-})	-	C	J^{π} : γ to (17 ⁻); band assignment.
11483.6 ^b 23	(20^{+})	<0.10 ps	С	J^{π} : $\Delta J=2$, (E2) γ to (18 ⁺).

[†] From recoil-distance method (RDM) and Doppler-shift attenuation methods (DSAM) (2001Mu25,1981Fu03,1975Fr04) in in-beam γ -ray experiments.

$\gamma(^{80}\text{Kr})$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
616.60	2+	616.6 <i>1</i>	100	$0.0 0^{+}$	E2		B(E2)(W.u.)=37.3 22
1256.24	2+	639.6 <i>1</i>	100 4	616.60 2+	E2+M1	+6 1	B(E2)(W.u.)= 25 5; B(M1)(W.u.)=0.00023 9
		1256.3 <i>3</i>	32.3 22	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.30 7
1320.51	0^{+}	703.9 2	100	616.60 2+	E2#		
		1320.5		0.0 0+	E0		E_{γ} : ce(K) and ce(L) from 1993Gi01 in 80 Rb ε decay.
							ρ^2 (E0: to g.s.)=0.021 9; X[(B(E0):E0 to
							g.s.)/(B(E2):E2 to 617,2 ⁺)]=0.022 2 (1993Gi01).
1436.09	4+	819.5 2	100	616.60 2+	E2		B(E2)(W.u.)=70 10
1787.99	3+	351.8 2	12 2	1436.09 4+	E2(+M1)	>6	B(E2)(W.u.)=50 10; B(M1)(W.u.)<0.00016
		531.7 <i>1</i>	82 <i>3</i>	1256.24 2+	E2+M1	+3.0 4	B(E2)(W.u.)=34 5; B(M1)(W.u.)=0.00086 24
		1171.5 2	100 5	616.60 2+	E2+M1	+1.3 3	B(E2)(W.u.)=0.57 14; B(M1)(W.u.)=0.00037 12
2145.88	4+	709.8 2	27 <i>4</i>	1436.09 4+	E2+M1	+2.0 8	B(E2)(W.u.)=32 20; B(M1)(W.u.)=0.003 2
		889.7 2	100 4	$1256.24 \ 2^{+}$	E2		B(E2)(W.u.)=50 30
		1529.5 <i>3</i>	7.7 26	616.60 2+			If E2, B(E2)(W.u.)=0.26 18.
2392.06	6+	956.0 2	100	1436.09 4 ⁺	E2		B(E2)(W.u.)=62 16
2439.21	3-	1822.1 5	100	$616.60 \ 2^{+}$			If E1, B(E1)(W.u.)= 4×10^{-5} 2.
2659.74	5+	871.6 2	100 4	1787.99 3 ⁺	E2		B(E2)(W.u.)=50 17
		1223.6 <i>3</i>	24 9	1436.09 4+	M1+E2	+0.8 3	B(E2)(W.u.)=1.2 7; B(M1)(W.u.)=0.0022 10
2793.05	4-	353.7 <i>3</i>	10	2439.21 3-			
		647.2 ^{&} 2	7 <mark>&</mark> 4	2145.88 4+			If E1, B(E1)(W.u.)= $4 \times 10^{-5} \ 3$.

 $[\]dot{\tau}$ Based primarily on $\gamma(\theta)$, $\gamma(\text{linear polarization})$, $\gamma\gamma(\theta)$, and ce data in in-beam γ -ray studies. It is assumed that levels of ascending spins are populated in in-beam γ -ray spectroscopy as the excitation energy increases. The γ decay pattern, generally, supports this assumption.

[#] From least-squares fit to $E\gamma$'s.

[@] Band(A): g.s. band.

[&]amp; Band(B): γ band.

^a Band(C): 3⁻ Octupole band.

^b Band(D): band based on 8⁺.

^c Band(E): γ cascade based on 7^- .

^d Band(F): γ cascade based on 6⁻.

^e Band(G): γ cascade based on 4⁻.

γ (80Kr) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α@	Comments
2793.05	4-	1005.0 <i>2</i> 1357.1 <i>4</i>	100 <i>9</i> 20 <i>10</i>	1787.99 3 ⁺ 1436.09 4 ⁺	(E1)			B(E1)(W.u.)=1.6×10 ⁻⁴ 4
2859.53	5-	420.3 <mark>&</mark> 2	4.9 <mark>&</mark> 16	2439.21 3-				If E2, B(E2)(W.u.)=40 <i>30</i> .
2997.6?		1423.6 <i>3</i> 605.5 <i>a 3</i>	100 <i>11</i> 100	1436.09 4 ⁺ 2392.06 6 ⁺	E1			B(E1)(W.u.)= $5.0 \times 10^{-5} 25$
3039.57	(5-)	647.4 <mark>&</mark> 2	47 <mark>&</mark> 18	2392.06 6+				If E1, B(E1)(W.u.)=0.00029 14.
3037.37	(5)	893.8 <i>3</i>	100 12	2145.88 4+	(E1)			B(E1)(W.u.)=0.00023 8
3041.74	6-	182.3 <i>I</i>	59 6	2859.53 5	M1+E2	+0.07 3	0.026	B(E2)(W.u.)=0.11 +16-6; B(M1)(W.u.)=0.00056 9
								I _y : from $(\alpha,2ny)$, $(\alpha,4ny)$. Values from heavy-ion reactions relative to Iy for 248.6y are
		249.6.1	100 6	2702.05 4-	E2		0.024	too high.
		248.6 <i>I</i> 382.1 2	100 0	2793.05 4 ⁻ 2659.74 5 ⁺	EZ		0.034	B(E2)(W.u.)=7.6 10 If E1, B(E1)(W.u.)= 1.7×10^{-7} 4.
		649.6 3	20	2392.06 6 ⁺				II E1, B(E1)(w.u.)=1.7×10 4.
3110.21	(6^+)	718.2 4	11 5	2392.06 6+				If E2, B(E2)(W.u.)=17 15. If
		06442	100.7	2145 00 4+	(E2)			M1, B(M1)(W.u.)=0.007 6.
		964.4 2 1674 ^a	100 7 <9	2145.88 4 ⁺ 1436.09 4 ⁺	(E2) [E2]			B(E2)(W.u.)=33 <i>17</i> B(E2)(W.u.)<0.23
3172.81	$(5,6,7^{-})$	313.3 2	100	2859.53 5	[122]			B(E2)(W.u.) \(\cdot \cdot \cdo
		780.7 <i>3</i>	100	2392.06 6+				
3345.81	6-	486.1 2	23 7	2859.53 5-				If E2, B(E2)(W.u.)=50 30. If M1, B(M1)(W.u.)=0.009 5.
		553.6 <i>3</i>	19 6	2793.05 4-				If E2, B(E2)(W.u.)=21 11.
		686.0 <i>1</i>	100 <i>16</i>	2659.74 5 ⁺	(E1)			B(E1)(W.u.)=0.00023 11
		954 <i>1</i>	≈32	2392.06 6+				I_{γ} : not resolved from 955.8 γ .
3409.98	8+	1017.9 2	100	2392.06 6+	E2			If E1, B(E1)(W.u.) \approx 1.6×10 ⁻⁵ . B(E2)(W.u.)=90 +90-45
3488.0	6 (6 ⁻)	628.5 3	53 13	2859.53 5 ⁻	D+Q	-1.0 7		B(E2)(W.u.)=90 +90-45
2.00.0	(0)	694.9 <i>3</i>	100 27	2793.05 4	2.4	1.0 /		
		1096.1 5	<100	2392.06 6+				
3530.31	7-	420.2 2	17 ^{&} 6	3110.21 (6+)				
		488.6 2	100 9	3041.74 6	E2+M1	-1.6 4		
		490.5 <i>4</i> 1138.2 <i>3</i>	<17 34 <i>6</i>	3039.57 (5 ⁻) 2392.06 6 ⁺	D			
3558.66	$(7)^{-}$	516.9 2	100 14	3041.74 6 ⁻	E2+M1	-1.25		
	,	699.2 <i>3</i>	29 14	2859.53 5				I_{γ} : other: 67 17 in $(\alpha, 2n\gamma), (\alpha, 4n\gamma)$.
		1166.6 <i>3</i>	14	2392.06 6+				I_{γ} : other: 61 11 in
3581.69	7-	539.8 ^a 2	22 6	3041.74 6-				$(\alpha,2n\gamma),(\alpha,4n\gamma).$ If E2, B(E2)(W.u.)=24 8. If M1,
3301.09	/	339.6" 2	22 0	3041.74 0				$B(M1)(W.u.)=0.0056 \ I7.$
		722.1 <i>1</i>	83 8	2859.53 5	E2			B(E2)(W.u.)=21 4
0.40.7.0	(=±\)	1189.7 2	100 8	2392.06 6+	D			If E1, B(E1)(W.u.)= 3.9×10^{-5} 6.
3635.3	(7^{+})	975.5 <i>3</i> 1242 ^{<i>a</i>} <i>1</i>	100 14	2659.74 5 ⁺ 2392.06 6 ⁺				If E2, B(E2)(W.u.)≤45. If E2, B(E2)(W.u.)≤2.6. If M1,
		1242" 1	≈24	2392.00 0				$B(M1)(W.u.) \le 2.0.11 M1,$ $B(M1)(W.u.) \le 0.0032.$
3699.75	8+	289.8 1	100 5	3409.98 8+	M1			$\delta(E2/M1) = +0.3$ in ($^{12}C, 2n\gamma$).
2016.6	(0±)	1308.2 5	21 5	2392.06 6+				
3916.6	(8+)	216.8 ^a 4 507 ^a 1	100 <100	3699.75 8 ⁺ 3409.98 8 ⁺				
		1524.6 8	100	2392.06 6+				If E2, B(E2)(W.u.)≥24.
4126.23	(8-)	490.5 ^a 2	39 12	3635.3 (7 ⁺)				If E1, B(E1)(W.u.) \leq 0.00044.

$\gamma(^{80}{\rm Kr})$ (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
4126.23	(8-)	596.0 <i>3</i>	21 9	3530.31	7-		If E2, B(E2)(W.u.)≤28. If M1, B(M1)(W.u.)≤0.008.
	(-)	780.4 <i>1</i>	100 6	3345.81			If E2, B(E2)(W.u.) \leq 35. If M1, B(M1)(W.u.) \leq 0.017.
4153.2	(8^{+})	1043 <i>I</i>	100	3110.21			I_{γ} : complex line.
4163.2	(8-)	582 <i>1</i>	33	3581.69	7-		, -
		632.7 <i>3</i>	33	3530.31	7-		
		1121.6 <i>3</i>	100 33	3041.74		(Q)	
4377.9	10 ⁺	678.3 <i>3</i>	2.5	3699.75			
		967.8 2	100 5	3409.98		E2	$B(E2)(W.u.)=47\ 24$
4393.70	(9-)	811.8 <i>3</i>	57 14	3581.69		Q	
		835.1 <i>3</i>	100 14	3558.66		Q	
		863.3 <i>3</i>	70 10	3530.31		(Q)	
	(0-)	984.1 <i>4</i>	14	3409.98			
4562.47	(9-)	436.1 ^a 4	<25	4126.23			
		980.6 <i>3</i>	100 11	3581.69			
		1032.7 ^{&} a 4	39 <mark>&</mark> 11	3530.31			
		1152.4 4	25	3409.98			
4648.9	(10^+)	271.0 2	56 14	4377.9	10 ⁺	(M1)	B(M1)(W.u.)=0.8 4
		949.4 <i>3</i>	67 33	3699.75			If E2, $B(E2)(W.u.) \le 20$. If M1, $B(M1)(W.u.) < 0.015$.
		1238.6 <i>3</i>	100 10	3409.98		(E2)	B(E2)(W.u.)=10.5
4975.1	(10^+)	326 ^a 1	<50	4648.9	(10^{+})		
		597 ^a 1	<50	4377.9	10 ⁺	(0)	
		1565.4 8	100 50	3409.98		(Q)	
5159.0	(10^{-})	1032.8 ^{&} 3	100 <mark>&</mark>	4126.23			
5374.6	(10^{-})	1211.4 4	100	4163.2	(8-)	_	
5397.4	(11^{-})	1003.7 3	100	4393.70		Q	
5437.8	12+	1059.9 3	100	4377.9	10+	E2	B(E2)(W.u.)=90 50
5665.5	(11^{-})	1103.0 3	100	4562.47			
5889.9	(12^+)	452.0 5	33 17	5437.8	12+	0	
6101.2	(12=)	1241.1 4	100 33	4648.9	(10^{+})	Q	
6181.2 6522.2	(12^{-})	1022.2 <i>4</i> 1124.8 <i>4</i>	100 100	5159.0 5397.4	(10^{-})	0	
6681.4	(13 ⁻) 14 ⁺	1124.8 <i>4</i> 1243.6 <i>4</i>	100	5437.8	(11 ⁻) 12 ⁺	Q E2	B(E2)(W.u.)>13
7221.6	(14^{+})	1331.7 7	100	5889.9	(12^{+})	(Q)	D(E2)(W.u.)>13
7771.0	(15^{-})	1248.8 6	100	6522.2	(12^{-}) (13^{-})	(Q) (Q)	
8087.9	(16^+)	1406.5 6	100	6681.4	14+	(E2)	
8564.6?	(16^+)	1343 ^a 1	100	7221.6	(14^{+})	(Q)	
9195.2	(17^{-})	1424.2 7	100	7771.0	(15^{-})	(4)	
9690.6	(18^{+})	1602.6 7	100	8087.9	(16^{+})	(E2)	
10844.3	(19^{-})	1649 <i>I</i>	100	9195.2	(17^{-})	\/	
11483.6	(20^{+})	1793 2	100	9690.6	(18^{+})	(E2)	

[†] From $\gamma(\theta, \text{pol})$, ce, $\gamma\gamma(\theta)$ measurements in in-beam γ -ray studies. For levels of known $T_{1/2}$, RUL (for E2 and M2 transitions) is also used in the assignment of multipolarity.

[‡] Weighted averages taken when data of comparable precision available from more than one dataset. Most data are from in-beam γ -ray studies. # From $^{80}{\rm Br}~\beta^-$ decay.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

eme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

$$^{80}_{36}{
m Kr}_{44}$$

Band(D): Band based on 8+

$$^{80}_{36} \text{Kr}_{44}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019

 $Q(\beta^{-}) = -4404 \ 3$; $S(n) = 10966.9 \ 11$; $S(p) = 9903.7 \ 10$; $Q(\alpha) = -5990.76 \ 18$ 2017Wa10

Isotopic shift and mean-square radius measurements: 1990Ca26, 1989Tr04, 1981Ge06, 1979Ge06.

Theoretical calculations:

g.s. properties, rms radius, isotope shift, deformation using relativistic mean field theory: 1995La07.

⁸²Rb ε decay (1.2575 min) **E**

Symmetry character of bands, IBA model: 2000Gi16 interacting boson model: 1995De02, 1991Jo03, 1991Do08, 1990Ba11, 1983Me08.

Microscopic studies: 1992Ho18. Boson expansion theory: 1988Pe04.

Pairing-vibration model: 1983Ta03, 1982Br01.

Hartree-Fock calculations of E2 transition probabilities: 1982Ah06. Ground state f-p-g shell occupancies: 1985Na12, 1982Ko10.

Microscopic analysis of deformations: 1985Na02.

Potential energy surfaces: 1981Bu06.

82Kr Levels

Cross Reference (XREF) Flags

 80 Se(α ,2n γ)

 81 Br(3 He,d)

			ε decay (6.472 h β^- decay (6.13 n	
			β^- decay (35.282)	
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
0.0#	0+	stable	ABCDEFGHIJK	Δ <r<sup>2>(⁸²Kr-⁸⁶Kr)=0.071 fm² 3 (1995Ke04, total uncertainty including systematic uncertainty is 0.028), 0.053 fm² 7 (1990Sc30, the uncertainty is 0.044 fm² including systematic errors). Δ<r<sup>2>(⁸²Kr-⁸¹Kr)=-0.028 fm² 5 (1996Li25) (uncertainty only statistical). Δ<r<sup>2>(⁸³Kr-⁸²Kr)=-0.040 fm² 4 (1996Li25) (uncertainty only statistical).</r<sup></r<sup></r<sup>
776.526# 8	2+	4.45 ps <i>18</i>	ABCDEFGHIJ	 μ=+0.80 4 (2001Me20) J^π: L(p,p')=2. First excited state in Coulomb excitation. T_{1/2}: from measured B(E2) in Coul. Ex. Others: 4.7 ps 7 from recoil-distance Doppler shift in (α,2nγ) (1984Ke10), 4.8 ps 8 from resonance fluorescence (1966Be16).
1474.900 [@] 8	2+	≈12 ps	ABCDEFGHIJ	J^{π} : L(p,p')=2. T _{1/2} : from B(E2) measured in Coulomb excitation; other: <5 ps (HI,xn γ).
1487.70 5	0_{+}	10 ps 3	A C HI	J^{π} : E0 to 0 ⁺ . $T_{1/2}$: from B(E2) measured in Coulomb excitation.
1820.536# 9	4+	0.67 ps 25	ABCDEFGHIJ	μ =+1.2 8 (2001Me20) $T_{1/2}$: from B(E2) measured in Coulomb excitation. Others: 1.0 ps +10-6 from recoil distance, 0.8 ps +10-4 from Doppler shift attenuation, both observed in $(\alpha,2n\gamma)$ (1984Ke10). J^{π} : L(p,p')=4.
1885?			I	
1956.775 <i>11</i>	(2^{+})	1.1 ps 8	ABCDE GHI	J^{π} : log ft =7.4 from 1 ⁺ , γ to 0 ⁺ , γ from (4 ⁺). $T_{1/2}$: from B(E2) measured in Coulomb excitation.
2094.019 <i>9</i> 2171.81 <i>5</i>	3 ⁺ 0 ⁺		ABCDEFG A CD H	J^{π} : (1317 γ)(776 γ)(θ) (1977CoZO,1966Et01). E2+M1 γ to 2 ⁺ . J^{π} : uniquely determined by $\gamma\gamma(\theta)$ in β^+ decay (1.273 min).

82Kr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
2426.895 9	(4 ⁺)	0.57 ps <i>16</i>	B DEFGH	J ^π : $\gamma(\theta)$ in $(\alpha,2n\gamma)$ indicates J=4 (1984Ke10,1983Me08) with quadrupole γ to 2 ⁺ probably being E2. $\gamma\gamma(\theta)$ results in β^- decay are in strong conflict (1980So06 and 1968Gu08 concluded J=3, while 1977CoZO deduced J=4).
2450.19 5	0+	≈0.17 ps	A H	$T_{1/2}$: from B(E2) measured in Coulomb excitation. J^{π} : from $\gamma\gamma(\theta)$ in ⁸² Rb ε decay (1.2575 min). $T_{1/2}$: from B(E2) measured in Coulomb excitation.
2480.07 4	2+		A C G	J^{π} : log ft =5.5 from 1^+ , γ to 0^+ , 4^+ .
2547.452 18	(3 ⁻)		ABCDE g JK	J^{π} : log ft =7.6, (log $f^{lu}t$ =7.8) from 2 ⁻ , γ from 5 ⁽⁻⁾ . Also supported by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2556.184 [@] 9	(4+)	1.4 ps 4	BCDEFgH	J ^π : stretched (E2) to 2 ⁺ indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ (1984Ke10). 1983Me08 deduced J=3 from their $\gamma(\theta)$ data.
2648.369 9	4-	<7 ps	B DEFg	$T_{1/2}$: from B(E2) measured in Coulomb excitation. J^{π} : log ft =5.0 from 5 ⁻ , E1 γ to 3 ⁺ . $T_{1/2}$: from (HI,xn γ).
2655.96 4	2+	0.03 ps 1	A C gH	J^{π} : from $\gamma \gamma(\theta)$ in ⁸² Rb ε decay (1.2575 min).
				$T_{1/2}$: from B(E2) measured in Coulomb excitation.
2676.0 <i>3</i> 2684.45 <i>12</i> 2797.56? <i>5</i>			A A B	
2828.137 12	5 ⁽⁻⁾	14 ps 7	B DEF	J^{π} : J=3,5 from $(1007\gamma)(1044\gamma)(\theta)$ (1969Li14). log ft =6.1,
				(log $f^{1u}t=5.9$) from 5 ⁻ , Polarization of 1007 γ in (α ,2n γ) indicates $\pi=-$ (1984Ke10).
2849.75 9	(4^{+})		B G	J^{π} : log $ft=7.1$, (log $f^{1u}t=8.1$) from 5 ⁻ , γ to 2 ⁺ .
2919.73 [#] 8	(6 ⁺)	3 ps 1	B DEF H	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. $T_{1/2}$: average of 2 ps I from Doppler-shift attenuation, 3 ps $+2-I$ from recoil distance, both observed in $(\alpha, 2n\gamma)$, and 4 ps 2 from recoil distance observed in (HI,xn γ). Other: 0.8 ps 4 from B(E2) measured in Coulomb excitation.
2944.52 <i>4</i>	2+		A G	J ^π : from $\gamma\gamma(\theta)$ in ⁸² Rb ε decay (1.2575 min), log ft =5.4 from 1 ⁺ , γ to 0 ⁺ .
2964.82 16			A	
2993.43 <i>18</i> 3011.21 <i>5</i>	(5)	2 ps 1	A B EFG	J^{π} : log $ft=5.9$ from 5^- , $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3011.21 3	(3)	2 ps 1	D LIG	$T_{1/2}$: From (HI,xn γ).
3037.85 7	(6-)	0.58 ns 7	B EF	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$. $T_{1/2}$: from recoil-distance Doppler shift in $(\alpha, 2n\gamma)$. Others: 0.55 ns 14 from $\gamma(t)$, 0.26 ns 7 from recoil distance in (HI,xn γ).
3077? 10			G	
3131.34 <i>17</i> 3167.57 9	(6 ⁺)	0.76 ps 21	A EF H	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
3186.93 ^{&} 20	(6)	0.76 ps 21		$T_{1/2}$: other: 0.7 ps 4 from B(E2) measured in Coulomb excitation.
3187.15 5	$(0)^{+}$		E g A g	J^{π} : log $ft=5.5$ from 1 ⁺ , Q to 2 ⁺ .
3207.1 <i>3</i> 3217.1 <i>3</i>	(0)		A A	
3234.07 10	(0^+)	0.26	Α	J^{π} : ε from 1^+ , $Q \gamma$ to 2^+ .
3255.90 <i>13</i> 3285.81 <i>5</i>	(6^+)	0.36 ps <i>10</i>	EF A	J^{π} : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3322 7	3-		G JK	XREF: K(3297). E(level): weighted average of 3320 keV 8 (α ,p) and 3328 keV 15 (p,p'). J^{π} : L(p,p')=3.
3348.49 7	(6-)	42 ps <i>14</i>	EF	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
3355.99 <i>7</i> 3392.2? <i>7</i>	1,2 ⁽⁺⁾		A G B	J^{π} : log $ft=6.7$, (log $f^{1u}t=7.3$) from 1^{+} , γ to 0^{+} .

82 Kr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$		XREF	Comments
3438.15 <i>12</i>			Α		
3457.21 <i>14</i>	$1,2^{(+)}$		Α	G	J^{π} : log ft=7.1 from 1 ⁺ , γ to 0 ⁺ .
3461.66 20	(8^{+})	96 ps 12		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3496.60 <i>10</i>	(7^{-})	14 ps +14-7		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3565.13 <i>5</i>	$(0)^{+}$	•	Α		J^{π} : log ft=5.8 from 1 ⁺ , γ to 2 ⁺ .
3595.14 9	(7^{-})	>7 ps		EFG	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
3655.56 9	$4^{(+)},5,6^{(+)}$		В	G	XREF: G(3643).
					J^{π} : log $ft=6.4$, (log $f^{1u}t=6.8$) from 5 ⁻ , γ' s to 4 ⁺ and (6 ⁺).
3681 10	.=1.			G	
3709.37 <i>17</i>	(7^+)	<0.8 ps		EFG	XREF: G(3681).
					J^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3716.14 <i>6</i>	(2^{+})		Α		J^{π} : log ft =5.7 from 1 ⁺ ; γ to 2 ⁺ , 3 ⁺ ,(3 ⁻); 0 ⁺ from $\gamma\gamma(\theta)$ in ⁸² Rb
					ε decay (1.2575 min).
3742.76? <i>6</i>			Α	G	XREF: G(3733).
3815.25 7	$1,2^{(+)}$		Α		J^{π} : log ft=6.5 from 1 ⁺ , γ to 0 ⁺ .
3836.13 <i>6</i>	1,2		Α	g	J^{π} : log $ft=5.9$ from 1 ⁺ , γ to 0 ⁺ .
3846.14 <i>17</i>				E g	
3881.00 7	1,2 ⁽⁺⁾		Α		J^{π} : log ft =6.1 from 1 ⁺ , γ to 0 ⁺ .
3910.85 <i>12</i>	$1,2^{(+)}$		Α	g	XREF: g(3930).
					J^{π} : log $ft=7.0$, (log $f^{1u}t=7.0$) from 1^{+} , γ to 0^{+} .
3920.01 <i>24</i>	(.)		Α		
3951.5 <i>4</i>	$4,5,6^{(+)}$		В	g	XREF: g(3930).
					J^{π} : log $ft=7.0$, (log $f^{1u}t=7.0$) from 5^{-} , γ to 4^{+} .
3958.05 <i>14</i>	$1,2^{(+)}$		Α		J^{π} : log ft=7.0 from 1 ⁺ . γ to 0 ⁺ .
3997.91 <i>10</i>	$4,5,6^{(+)}$		В		J^{π} : log $ft=6.3$, (log $f^{1u}t=6.2$) from 5 ⁻ , γ to 4 ⁺ .
4016.28 <i>13</i>	(8^+)	1.0 ps + 10-4		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
4033.80 12		1.1 ps <i>3</i>		E	
4063.50 10	$4,5,6^{(+)}$		В		J^{π} : log $ft=6.4$ (log $f^{1u}t=6.2$) from 5 ⁻ , γ to 4 ⁺ .
4068.05 8	$4,5^{(+)}$		В		J^{π} : log ft =6.0, (log $f^{1u}t$ =5.8) from 5 ⁻ , γ to 3 ⁺ .
4125.13 <i>14</i>	(8^{+})	6 ps 2		E	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4135.6? 5		•	В		• • • • • • • • • • • • • • • • • • • •
4170.94 <i>16</i>	(8^{-})	2.4 ps + 24 - 8		EF	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
4343.1 <i>3</i>		1.0 ps +24-3		E	
4437.6 <i>4</i>		0.17 ps +8-4		E	
4609.50 20	(10^+)	1.2 ps +7-3		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
4667.91 <i>17</i>	(9-)	1.1 ps <i>3</i>		EF	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
4746.81 <i>23</i>	(9^{-})	0.6 ps <i>1</i>		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
4822.15 <i>16</i>	(10^{+})	1.2 ps 2		EF	J^{π} : stretched (E2) cascade indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4896.7? 11				E	
5011.88 22	$(8^+, 9, 10^+)$			E	J^{π} : γ' s to (8 ⁺) and (10 ⁺).
5325.41 22	(10^{-})	<1.0 ps		EF	J^{π} : from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
5702.8 11				E	
5992.5 <i>4</i>		0.3 ps <i>1</i>		E	
6009.5 4		0.20 7		E	
6011.7 4		0.39 ps 7		E	

 $^{^{\}dagger}$ From least-squares fit to Ey.

^{\ddagger} From recoil-distance Doppler shift in $(\alpha,2n\gamma)$, except where given given otherwise.

[#] Band(A): π =+ band-1. Yrast band (2000Gi16). @ Band(B): π =+ band-2. Band built on 2+ (2000Gi16). & Band(C): π =+ band-3. Band built on 3+ (2000Gi16).

γ (82Kr)

							γ (*-K	<u>(1)</u>	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\ddagger @}$	$\alpha^{\#}$	Comments
776.526	2+	776.511 10	100	0.0	0+	E2		9.23×10 ⁻⁴	$\alpha(K)$ =0.000819 12; $\alpha(L)$ =8.84×10 ⁻⁵ 13; $\alpha(M)$ =1.430×10 ⁻⁵ 20 $\alpha(N)$ =1.436×10 ⁻⁶ 21 B(E2)(W.u.)=21.3 9
1474.900	2+	698.361 10	100.0 8	776.526	2+	E2+M1	+2.1 4	1.18×10 ⁻³ 2	$\alpha(K)=0.001048 \ 2I; \ \alpha(L)=0.0001134 \ 23;$ $\alpha(M)=1.83\times10^{-5} \ 4$ $\alpha(N)=1.84\times10^{-6} \ 4$ $\alpha(M1)(W.u.)\approx0.00063; \ B(E2)(W.u.)\approx6.9$
		1474.895 10	57.7 6	0.0	0+	E2		2.89×10 ⁻⁴	$\alpha(\text{K})=0.000190 \ 3; \ \alpha(\text{L})=2.00\times10^{-5} \ 3;$ $\alpha(\text{M})=3.24\times10^{-6} \ 5$ $\alpha(\text{N})=3.27\times10^{-7} \ 5; \ \alpha(\text{IPF})=7.58\times10^{-5} \ 11$ $\alpha(\text{B})=0.00190 \ 3; \ \alpha(\text{B})=0.00\times10^{-5} \ 3;$
1487.70	0+	711.09 7	100 5	776.526	2+	[E2]		1.16×10 ⁻³	B(E2)(W.u.)=15 5 α (K)=0.001032 15; α (L)=0.0001119 16; α (M)=1.81×10 ⁻⁵ 3 α (N)=1.81×10 ⁻⁶ 3
1820.536	4+	1488 1044.005 <i>10</i>	100	0.0 776.526	0 ⁺ 2 ⁺	E0 E2		4.48×10 ⁻⁴	ce(K)/(γ +ce)=0.76; ce(L)/(γ +ce)=0.07 B(E2)(W.u.)=32 12 α (K)=0.000398 6; α (L)=4.25×10 ⁻⁵ 6; α (M)=6.87×10 ⁻⁶ 10 α (N)=6.93×10 ⁻⁷ 10
1956.775	(2+)	1180.209 24	100 <i>I</i>	776.526	2+	(M1+E2)	-0.52 16	3.36×10 ⁻⁴	$\alpha(K)=0.000295 5$; $\alpha(L)=3.11\times10^{-5} 5$; $\alpha(M)=5.04\times10^{-6} 8$ $\alpha(N)=5.10\times10^{-7} 8$; $\alpha(IPF)=4.58\times10^{-6} 16$ $\alpha(M)=0.007 5$; $\alpha(E)=0.007 5$; $\alpha(E)=0.00$
		1956.740 <i>21</i>	43.4 9	0.0	0+	[E2]		4.11×10 ⁻⁴	$\alpha(K)=0.0001100 \ 16; \ \alpha(L)=1.154\times10^{-5} \ 17;$ $\alpha(M)=1.87\times10^{-6} \ 3$ $\alpha(N)=1.89\times10^{-7} \ 3; \ \alpha(IPF)=0.000288 \ 4$ $\alpha(M)=0.26 \ 19$
2094.019	3+	137.244 <i>10</i> 273.492 <i>10</i>	0.21 <i>I</i> 1.84 2	1956.775 1820.536		(M1+E2)	+0.3 1	0.0103 8	$\alpha(K)$ =0.0092 7; $\alpha(L)$ =0.00101 9; $\alpha(M)$ =0.000164 14 $\alpha(N)$ =1.64×10 ⁻⁵ 14
		619.105 <i>10</i>	100 I	1474.900	2+	E2+M1	+2.1 7	0.00163 7	$\alpha(K)$ =0.00145 6; $\alpha(L)$ =0.000157 7; $\alpha(M)$ =2.55×10 ⁻⁵
		1317.485 <i>10</i>	61.6 6	776.526	2+	E2+M1	+5.0 5	3.00×10^{-4}	$\alpha(N)=2.55\times10^{-6} II$ $\alpha(K)=0.000239 4; \alpha(L)=2.53\times10^{-5} 4;$ $\alpha(M)=4.09\times10^{-6} 6$ $\alpha(N)=4.13\times10^{-7} 6; \alpha(IPF)=3.14\times10^{-5} 5$
2171.81	0+	214.8 ^a		1956.775	(2+)	[E2]		0.0556	$\alpha(N)=4.13\times10^{-6}$; $\alpha(IPF)=3.14\times10^{-5}$ $\alpha(K)=0.0487$ 7; $\alpha(L)=0.00587$ 9; $\alpha(M)=0.000949$ 14 $\alpha(N)=9.12\times10^{-5}$ 13
		696.85 7	4.6 <i>1</i>	1474.900	2+	[E2]		1.23×10^{-3}	$\alpha(K) = 0.001089 \ 16; \ \alpha(L) = 0.0001183 \ 17;$

γ (82Kr) (continued)

							$\frac{\gamma(}{}$	Kr) (continued	<u>a)</u>	
]	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ ^{‡@}	$lpha^{ extbf{\#}}$	Comments
2	2171.81	0+	1395.26 7	100 5	776.526	2+	E2		2.90×10 ⁻⁴	$\alpha(M)=1.91\times10^{-5} 3$ $\alpha(N)=1.92\times10^{-6} 3$ $B(E2)(W.u.)\approx1.2$ $\alpha(K)=0.000212 3; \alpha(L)=2.24\times10^{-5} 4;$ $\alpha(M)=3.63\times10^{-6} 5$
			2172		0.0	0+	E0			$\alpha(N)=3.67\times10^{-7}$ 6; $\alpha(IPF)=5.11\times10^{-5}$ 8 ce(K)/(γ +ce)=0.3; ce(L)/(γ +ce)=0.03
2	2426.895	(4+)	332.78 9	0.6 10	2094.019	-	[M1+E2]		0.0088 32	$\alpha(K)=0.0078\ 28;\ \alpha(L)=8.7\times10^{-4}\ 33;$ $\alpha(M)=1.41\times10^{-4}\ 53$
			470.07 ^a 3	1.77 14	1956.775	(2 ⁺)	[E2]		0.00386	$\alpha(N)=1.39\times10^{-5}$ 51 $\alpha(K)=0.00342$ 5; $\alpha(L)=0.000379$ 6; $\alpha(M)=6.14\times10^{-5}$ 9
			<0<-2-0-10	4000 -	1000 704		24 72			$\alpha(N)=6.09\times10^{-6} 9$ B(E2)(W.u.)=19 6
			606.358 10	100.0 7	1820.536	4+	(M1+E2)	+0.1 +19-4	0.0014 4	$\alpha(K)=0.0012 \ 3; \ \alpha(L)=1.31\times10^{-4} \ 36;$ $\alpha(M)=2.12\times10^{-5} \ 57$ $\alpha(N)=2.14\times10^{-6} \ 55$
			952.03 2	30.8 3	1474.900	2+	[E2]		5.56×10 ⁻⁴	B(M1)(W.u.)=0.09 5; B(E2)(W.u.) \approx 3 α (K)=0.000494 7; α (L)=5.29×10 ⁻⁵ 8; α (M)=8.56×10 ⁻⁶ 12
			1650.35 <i>I</i>	60.1 6	776.526	2+	(E2)		3.18×10^{-4}	$\alpha(N)=8.61\times10^{-7}$ 12 B(E2)(W.u.)=10 3 $\alpha(K)=0.0001518$ 22; $\alpha(L)=1.598\times10^{-5}$ 23;
			1030.33 1	00.1 0	770.320	2.	(E2)		3.18×10	$\alpha(M)=2.59\times10^{-6} 4$ $\alpha(N)=2.62\times10^{-7} 4$; $\alpha(IPF)=0.0001472 2I$
2	2450.19	0+	975.22 7	100 4	1474.900					B(E2)(W.u.)=1.2 4
2	2480.07	2+	1673.70 7 523.24 ^a 7 659.38 7 992.27 9	81 <i>5</i> 17.2 <i>6</i> 1.39 <i>8</i> 3.86 <i>11</i>	776.526 1956.775 1820.536 1487.70	(2 ⁺) 4 ⁺				
			1703.54 7 2480.23 7	100 <i>6</i> 66.7 28	776.526		D+Q	1.03 10		
2	2547.452	(3-)	1072.99 <i>7</i> 1771.0 ^{<i>a</i>} <i>3</i>	100 <i>5</i> 4 <i>4</i>	1474.900 776.526					E _y : not reported In 2011Kr06.
2	2556.184	(4 ⁺)	129.34 <i>3</i>	1.82 13	2426.895	(4 ⁺)	[M1+E2]		0.21 15	$\alpha(K)$ =0.18 13; $\alpha(L)$ =0.024 18; $\alpha(M)$ =0.0039 29 $\alpha(N)$ =3.6×10 ⁻⁴ 27
			599.29 9	1.19 18	1956.775	(2+)	[E2]		0.00187	$\alpha(K)$ =0.001656 24; $\alpha(L)$ =0.000181 3; $\alpha(M)$ =2.93×10 ⁻⁵ 5 $\alpha(N)$ =2.93×10 ⁻⁶ 5 B(E2)(W.u.)=2.3 8
			735.645 ^{&} 12	9.87 <i>13</i>	1820.536	4+				D(E2)(W.u.)=2.3 0

S

γ (82 Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	$\delta^{\ddagger @}$	$lpha^{\#}$	Comments
2556.184	(4+)	1081.288 <i>10</i>	100.0 10	1474.900 2+	(E2)		4.14×10 ⁻⁴	$\alpha(K)=0.000368 \ 6; \ \alpha(L)=3.92\times10^{-5} \ 6; \ \alpha(M)=6.34\times10^{-6}$
		1779.623 <i>13</i>	17.27 <i>13</i>	776.526 2+	[E2]		3.52×10 ⁻⁴	$\alpha(N)=6.39\times10^{-7} 9$ B(E2)(W.u.)=10 3 $\alpha(K)=0.0001313 19; \alpha(L)=1.381\times10^{-5} 20;$ $\alpha(M)=2.23\times10^{-6} 4$ $\alpha(N)=2.26\times10^{-7} 4; \alpha(IPF)=0.000205 3$
2648.369	4-	92.188 <i>10</i>	1.00 2	2556.184 (4+)	[E1]		0.1147	B(E2)(W.u.)=0.14 4 B(E1)(W.u.)>0.00047 α (K)=0.1017 15; α (L)=0.01103 16; α (M)=0.001770 25 α (N)=0.0001734 25
		100.948 <i>16</i>	0.09 1	2547.452 (3-)	[M1+E2]		0.51 39	$\alpha(K) = 0.44 \ 33; \ \alpha(L) = 0.063 \ 51; \ \alpha(M) = 0.0101 \ 82$ $\alpha(N) = 9.3 \times 10^{-4} \ 73$
		221.478 <i>10</i>	3.18 4	2426.895 (4 ⁺)	(E1)		0.00870	$\alpha(K)=0.00773$ 11; $\alpha(L)=0.000826$ 12; $\alpha(M)=0.0001332$ 19 $\alpha(N)=1.329\times10^{-5}$ 19
		554.352 10	100.0 11	2094.019 3+	E1		7.57×10 ⁻⁴	B(E1)(W.u.)>0.00011 α (K)=0.000673 10; α (L)=7.13×10 ⁻⁵ 10; α (M)=1.152×10 ⁻⁵ 17 α (N)=1.160×10 ⁻⁶ 17
		827.826 10	34.68 <i>35</i>	1820.536 4+	E1		3.11×10 ⁻⁴	B(E1)(W.u.)>0.00022 α (K)=0.000277 4; α (L)=2.91×10 ⁻⁵ 4; α (M)=4.71×10 ⁻⁶
		1173.432 <i>13</i>	0.02 1	1474.900 2+	[M2]		7.31×10 ⁻⁴	$\alpha(N)=4.76\times10^{-7}$ 7 B(E1)(W.u.)>2.2×10 ⁻⁵ $\alpha(K)=0.000648$ 9; $\alpha(L)=6.95\times10^{-5}$ 10; $\alpha(M)=1.127\times10^{-5}$ 16 $\alpha(N)=1.141\times10^{-6}$ 16; $\alpha(IPF)=6.34\times10^{-7}$ 9
		1871.807 <i>15</i>	0.05 1	776.526 2+	[M2]		3.55×10 ⁻⁴	B(M2)(W.u.)>0.015 α (K)=0.000223 4; α (L)=2.35×10 ⁻⁵ 4; α (M)=3.81×10 ⁻⁶ α (N)=3.87×10 ⁻⁷ 6; α (IPF)=0.0001045 15
2675.96 2676.0 2684.45	2+	699.41 <i>13</i> 1168.23 <i>7</i> 1181.05 <i>7</i> 1879.61 <i>7</i> 2655.56 <i>8</i> 1899.5 <i>3</i> 1907.90 <i>12</i>	6.2 9 8.8 4 13.4 12 100 6 20.7 4 100 100	1956.775 (2 ⁺) 1487.70 0 ⁺ 1474.900 2 ⁺ 776.526 2 ⁺ 0.0 0 ⁺ 776.526 2 ⁺ 776.526 2 ⁺	D+Q	-0.71 21		B(M2)(W.u.)>0.0037
2797.56?		703.56 ^a 10 976.9 ^a 2	100 <i>18</i> 47 <i>6</i>	2094.019 3 ⁺ 1820.536 4 ⁺				

6

γ (82 Kr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$\delta^{\ddagger @}$	$lpha^{\#}$	Comments
2828.137	5 ⁽⁻⁾	179.80 4	0.64 6	2648.369 4	[M1+E2]		0.066 40	$\alpha(K)$ =0.058 35; $\alpha(L)$ =0.0071 45; $\alpha(M)$ =0.00114 72 $\alpha(N)$ =1.10×10 ⁻⁴ 68
		271.96 5	1.41 <i>15</i>	2556.184 (4+)	[E1]		0.00486	$\alpha(K)$ =0.00431 6; $\alpha(L)$ =0.000460 7; $\alpha(M)$ =7.43×10 ⁻⁵ 11 $\alpha(N)$ =7.43×10 ⁻⁶ 11 B(E1)(W.u.)=1.6×10 ⁻⁵ 9
		280.73 ^a 6	0.68 10	2547.452 (3-)	[E2]		0.0214	$\alpha(K)$ =0.0188 3; $\alpha(L)$ =0.00219 3; $\alpha(M)$ =0.000354 5 $\alpha(N)$ =3.45×10 ⁻⁵ 5 B(E2)(W.u.)=7 4
		401.249 <i>13</i>	6.60 6	2426.895 (4 ⁺)	[E1]		1.69×10^{-3}	$\alpha(K)=0.001505 \ 2I; \ \alpha(L)=0.0001600 \ 23;$ $\alpha(M)=2.58\times10^{-5} \ 4$ $\alpha(N)=2.60\times10^{-6} \ 4$ B(E1)(W.u.)=2.4×10 ⁻⁵ 12
		1007.589 <i>10</i>	100.0 13	1820.536 4+	(E1+M2)	+0.00 3	2.10×10 ⁻⁴	$\alpha(K)=0.000187 \ 3; \ \alpha(L)=1.97\times10^{-5} \ 3; \ \alpha(M)=3.18\times10^{-6} \ 5 \ \alpha(N)=3.22\times10^{-7} \ 5$
2849.75	(4 ⁺)	755.76 <i>10</i> 1374.80 <i>20</i> 2073.0 <i>3</i>	100 5 30 8 7.6 22	2094.019 3 ⁺ 1474.900 2 ⁺ 776.526 2 ⁺				$B(E1)(W.u.)=2.3\times10^{-5} 12$
2919.73	(6 ⁺)	1099.9 ^a 2	100	1820.536 4+	[E2]		3.98×10^{-4}	$\alpha(K)$ =0.000354 5; $\alpha(L)$ =3.77×10 ⁻⁵ 6; $\alpha(M)$ =6.10×10 ⁻⁶ 9 $\alpha(N)$ =6.15×10 ⁻⁷ 9 B(E2)(W.u.)=5.5 19
2944.52	2+	396.93 20 850.37 7 987.60 21 1469.64 9 2168.06 7	1.11 <i>19</i> 0.99 8 1.18 <i>19</i> 6.1 4 100 5	2547.452 (3 ⁻) 2094.019 3 ⁺ 1956.775 (2 ⁺) 1474.900 2 ⁺ 776.526 2 ⁺	D+Q	<0.06		B(E2)(W.u.)=3.3 19
2964.82 2993.43		2944.61 <i>12</i> 2188.26 <i>16</i> 2217.7 <i>3</i> 2992.97 <i>21</i>	13.7 7 100 59 24 100 12	0.0 0 ⁺ 776.526 2 ⁺ 776.526 2 ⁺ 0.0 0 ⁺				
3011.21	(5)-	183.27 10	100 2	2828.137 5 ⁽⁻⁾	(M1)		0.0254	α (K)=0.0225 4; α (L)=0.00248 4; α (M)=0.000402 6 α (N)=4.04×10 ⁻⁵ 6 B(M1)(W.u.)=0.7 4
		455.28 10	60 4	2556.184 (4 ⁺)	[E1]		1.23×10 ⁻³	$\alpha(K)$ =0.001090 <i>16</i> ; $\alpha(L)$ =0.0001157 <i>17</i> ; $\alpha(M)$ =1.87×10 ⁻⁵ <i>3</i> $\alpha(N)$ =1.88×10 ⁻⁶ <i>3</i> B(E1)(W.u.)=0.00048 <i>24</i>
		583.80 <i>10</i>	63 2	2426.895 (4 ⁺)	[E1]		6.70×10^{-4}	$\alpha(K)=0.000596 \ 9; \ \alpha(L)=6.31\times10^{-5} \ 9;$ $\alpha(M)=1.019\times10^{-5} \ 15$ $\alpha(N)=1.027\times10^{-6} \ 15$ B(E1)(W.u.)=0.00024 \ 12

γ (82 Kr) (continued)

							•	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$lpha^{\#}$	Comments
3011.21	(5)-	1190.81 10	13.5 8	1820.536	4+	[E1]	1.94×10 ⁻⁴	$\alpha(K)$ =0.0001374 20; $\alpha(L)$ =1.440×10 ⁻⁵ 21; $\alpha(M)$ =2.33×10 ⁻⁶ 4 $\alpha(N)$ =2.36×10 ⁻⁷ 4; $\alpha(PF)$ =3.98×10 ⁻⁵ 6 B(E1)(W.u.)=6.E-6 3
3037.85	(6^{-})	209.70 20	5.7 4	2828.137	5(-)			
		389.4 1	100 <i>I</i>	2648.369	4-	(E2)	0.00705	$\alpha(K)$ =0.00622 9; $\alpha(L)$ =0.000701 10; $\alpha(M)$ =0.0001134 16 $\alpha(N)$ =1.119×10 ⁻⁵ 16 B(E2)(W.u.)=4.8 6
3131.34		1656.47 22	60 14	1474.900	2+			
		2354.73 24	100 20	776.526				
3167.57	(6^{+})	247.80 <i>20</i>	8.8 15	2919.73	(6^{+})			
		1347.00 <i>10</i>	100 6	1820.536		(E2)	2.96×10^{-4}	B(E2)(W.u.)=7.3 21 α (K)=0.000228 4; α (L)=2.42×10 ⁻⁵ 4; α (M)=3.91×10 ⁻⁶ 6 α (N)=3.95×10 ⁻⁷ 6; α (IPF)=3.87×10 ⁻⁵ 6
3186.93		1092.90 <i>20</i>	100	2094.019				
3187.15	$(0)^{+}$	1230.35 7	8.1 4	1956.775				
		1712.24 7	7.9 6	1474.900				
2207.1		2410.65 17	100 5	776.526		Q		
3207.1		2430.5 3	100	776.526				
3217.1	(0±)	1742.23 30	100	1474.900	2† 2+			
3234.07	(0^+)	754.03 16	100 <i>12</i> 96 <i>16</i>	2480.07 1956.775	_			
		1276.93 <i>19</i> 2457.69 <i>15</i>	100 <i>10</i>	776.526		Q		
3255.90	(6^+)	88.3 ^a 2	0.48 12	3167.57	(6 ⁺)	Q		
3233.90	(0)	336.2 2	27.5 25	2919.73	(6^+)			
		1435.1 2	100 20	1820.536	. ,	[E2]	2.88×10^{-4}	B(E2)(W.u.)=10 4
						[L2]	2.00×10	$\alpha(K)=0.000200 \ 3; \ \alpha(L)=2.12\times10^{-5} \ 3; \ \alpha(M)=3.42\times10^{-6} \ 5$ $\alpha(N)=3.46\times10^{-7} \ 5; \ \alpha(PF)=6.27\times10^{-5} \ 9$
3285.81		805.76 7	25.2 23	2480.07	2+			
		1113.71 <i>15</i>	4.1 12	2171.81	0+			
		1191.61 <i>18</i>	28.1 18	2094.019				
		2509.31 7	100 5	776.526				
3348.49	(6-)	310.6 <i>I</i>	30.3 16	3037.85	(6-)			
		337.4 2	88 6	3011.21	(5)	FF-13	1 12 10-3	(II) 0.0010(0.10 (I) 0.0001045 10 (0.5) 0.10 10=5.0
		428.9 2	34 3	2919.73	(6 ⁺)	[E1]	1.43×10^{-3}	$\alpha(K)$ =0.001268 <i>18</i> ; $\alpha(L)$ =0.0001347 <i>19</i> ; $\alpha(M)$ =2.18×10 ⁻⁵ <i>3</i> $\alpha(N)$ =2.19×10 ⁻⁶ <i>3</i> B(E1)(W.u.)=1.4×10 ⁻⁵ <i>5</i>
		520.3 <i>1</i>	100 6	2828.137	5(-)			
		700.0 ^a 3	19 6	2648.369				
3355.99	$1.2^{(+)}$	1399.31 23	16 <i>3</i>	1956.775				
3	- ,	2579.18 <i>11</i>	100 8	776.526				
		3356.09 10	30.2 16	0.0	0^{+}			
3392.2?		836.0 ^a 7	100	2556.184	(4^{+})			

 ∞

γ (82Kr) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult.‡	<u>α</u> #	Comments
3438.15		1963.21 <i>20</i> 2661.58 <i>14</i>	44 <i>11</i> 100 <i>9</i>	1474.900 2 ⁺ 776.526 2 ⁺			
3457.21	$1,2^{(+)}$	2681.5 <i>4</i>	100 21	776.526 2 ⁺			
	-,-	3457.03 <i>14</i>	47 3	0.0 0+			
3461.66	(8+)	542.0 ^{&} 10	100	2919.73 (6+)	(E2)	0.00251	α (K)=0.00222 4; α (L)=0.000244 4; α (M)=3.95×10 ⁻⁵ 6 α (N)=3.93×10 ⁻⁶ 6 B(E2)(W.u.)=5.9 8
3496.60	(7^{-})	458.6 2	26.4 19	3037.85 (6-)			
		576.9 2	23 6	2919.73 (6 ⁺)	[E1]	6.89×10^{-4}	B(E1)(W.u.)= $2.1 \times 10^{-5} + 33 - 13$ α (K)= 0.000613 9; α (L)= 6.49×10^{-5} 9; α (M)= 1.048×10^{-5} 15 α (N)= 1.056×10^{-6} 15
		668.4 2	100 8	2828.137 5 ⁽⁻⁾	(E2)	1.38×10^{-3}	B(E2)(W.u.)=10 +11-5 α (K)=0.001220 18; α (L)=0.0001327 19; α (M)=2.15×10 ⁻⁵ 3 α (N)=2.15×10 ⁻⁶ 3
3565.13	$(0)^{+}$	908.85 22	21 5	2655.96 2+			a(N)−2.13×10 3
		1085.08 11	16.5 2 <i>1</i>	2480.07 2+			
		1608.21 7	100 5	1956.775 (2+)	Q		
		2090.00 29	23 4	1474.900 2 ⁺			
3595.14	(7-)	2788.81 <i>9</i> 98.5 <i>1</i>	37 <i>3</i> 28.9 26	776.526 2 ⁺ 3496.60 (7 ⁻)			
3373.14	(7)	246.5 2	15.0 <i>13</i>	3348.49 (6-)			
		427.5 2	66 5	3167.57 (6 ⁺)			
		557.2 ^a 3	5.3 26	3037.85 (6-)			
		584.0 2	84 8	3011.21 (5)			
		675.5 1	100 8	2919.73 (6+)			
	(1) (1)	767.1 ^a 3	16 5	2828.137 5 ⁽⁻⁾			
3655.56	$4^{(+)},5,6^{(+)}$	735.64 ^{&} 10	100 16	2919.73 (6 ⁺)			
		1228.9 ^a 4 1835.2 <i>I</i>	19 8 37.8 27	2426.895 (4 ⁺) 1820.536 4 ⁺			
3709.37	(7 ⁺)	247.8 2	37.8 27 19 6	3461.66 (8 ⁺)			
3107.31	(7)	453.3 2	94 6	3255.90 (6 ⁺)	(M1)	0.00269	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000257 \ 4; \ \alpha(M)=4.16\times10^{-5} \ 6$
		133.3 2	710	3233.70 (0)	(1411)	0.0020)	$\alpha(N)=4.20\times10^{-6}$ 6
							B(M1)(W.u.)>0.13
		542.0 <mark>&</mark> 10	100 19	3167.57 (6 ⁺)			
3716.14	(2^{+})	1168.40 8	11.8 7	2547.452 (3-)			
		1621.99 <i>13</i>	7.4 7	2094.019 3+			
		1759.25 25	9.6 15	1956.775 (2 ⁺)	0		
3742.76?		2940.09 10	100 4	776.526 2 ⁺	Q		
3142.10!		1195.72 <i>16</i> 1570.88 <i>15</i>	5.6 <i>6</i> 7.8 <i>11</i>	2547.452 (3 ⁻) 2171.81 0 ⁺			
			1.0 11				
		1648.76 23	12.2 17	2094.019 3+			

9

γ (82Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^{π}	Mult.‡	α#	Comments
3742.76?		2255.02 31	14.4 17	1487.70	0+			
		2268.24 21	23 4	1474.900				
		2966.17 14	23.3 22	776.526				
3815.25	$1,2^{(+)}$	3038.3 ^a 4	25 6	776.526				
3013.23	1,2	3815.15 7	100 3	0.0	0+			
3836.13	1,2	1741.73 18	74 6	2094.019				
3030.13	1,2	2360.96 21	79 13	1474.900				
		3059.47 12	100 8	776.526				
		3836.18 8	26.6 15	0.0	0+			
3846.14		497.8 <i>3</i>	15 5		(6-)			
		1017.9 3	100 25	2828.137				
3881.00	$1.2^{(+)}$	1400.82 10	100 23	2480.07				
3001.00	1,2	1786.7 <i>3</i>	44 5	2094.019				
		2405.95 <i>13</i>	23 5	1474.900				
		3104.60 23	36 5	776.526				
		3881.47 <i>19</i>	10.5 13	0.0	0+			
3910.85	1,2(+)	3910.75 12	10.5 15	0.0	0+			
3910.83	1,2	3143.42 24	100	776.526				
	156(+)							
3951.5	$4,5,6^{(+)}$	1395.4 5	100 67	2556.184				
2050.05	1.0(+)	2130.8 4	77 23	1820.536				
3958.05	1,2 ⁽⁺⁾	3957.95 <i>14</i>	100	0.0	0+			
3997.91	$4,5,6^{(+)}$	987.1 5	21 16	3011.21	(5)			
101 - 00	(0.1)	1441.70 <i>10</i>	100 16	2556.184				
4016.28	(8+)	554.0 10	17 3	3461.66	(8^{+})			
		760.30 <i>20</i>	7 2	3255.90	(6^{+})	[E2]	9.75×10^{-4}	B(E2)(W.u.)=6 +8-4
								$\alpha(K)=0.000865 \ 13; \ \alpha(L)=9.35\times10^{-5} \ 14; \ \alpha(M)=1.512\times10^{-5} \ 22$
								$\alpha(N)=1.517\times10^{-6} 22$
		848.6 <i>3</i>	8.3 4	3167.57	(6^{+})	[E2]	7.37×10^{-4}	$\alpha(K)=0.000654 \ 10; \ \alpha(L)=7.03\times10^{-5} \ 10; \ \alpha(M)=1.138\times10^{-5} \ 16$
								$\alpha(N)=1.143\times10^{-6} 16$
								B(E2)(W.u.)=3.8 +40-22
		1096.6 2	100 15	2919.73	(6^+)	(E2)	4.01×10^{-4}	B(E2)(W.u.)=13+10-7
					()	()		$\alpha(K)=0.000356$ 5; $\alpha(L)=3.79\times10^{-5}$ 6; $\alpha(M)=6.14\times10^{-6}$ 9
								$\alpha(N)=6.19\times10^{-7} 9$
4033.80		187.7 2	80 20	3846.14				u(11)=0.17/\10 /
1022.00		685.3 <i>I</i>	100 20	3348.49	(6-)			
4063.50	4,5,6 ⁽⁺⁾	1506.8 5	17 8	2556.184				
T005.30	7,5,0	2242.95 10	100 8	1820.536				
4068.05	4,5 ⁽⁺⁾	1218.0^{a} 10	38 31	2849.75	(4^+)			
4008.03	4,3`	1218.0" 10 1641.3 4	23 8	2426.895				
		1974.00 <i>10</i>	100 8	2094.019				
		2247.47 13	72 6	1820.536) /+			
4125.13	(8 ⁺)	108.8 1	61 6	4016.28				
T14J.1J	(0)	100.0 1	01 0	TU1U.20	(0)			

10

γ (82 Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	$\alpha^{\#}$	Comments
4125.13	(8+)	415.7 2	56 6	3709.37	(7+)	(M1)	0.00330	B(M1)(W.u.)=0.010 4 α (K)=0.00293 5; α (L)=0.000315 5; α (M)=5.11×10 ⁻⁵ 8 α (N)=5.16×10 ⁻⁶ 8
		663.8 4	72 6	3461.66	(8 ⁺)			$\alpha(N) = 3.10 \times 10^{-6} \text{ s}$
		1205.6 2	100 11	2919.73	(6 ⁺)	(E2)	3.34×10^{-4}	B(E2)(W.u.)=0.61 22 α (K)=0.000289 4; α (L)=3.07×10 ⁻⁵ 5; α (M)=4.96×10 ⁻⁶ 7 α (N)=5.01×10 ⁻⁷ 7; α (IPF)=9.06×10 ⁻⁶ 13
4135.6?		2315.0 ^a 5	100	1820.536	4+			
4170.94	(8-)	575.8 <i>3</i>	28 7	3595.14	(7^{-})			
		822.40 20	100 4	3348.49	(6-)	[E2]	7.97×10^{-4}	B(E2)(W.u.)=23 +14-12 α (K)=0.000707 10; α (L)=7.62×10 ⁻⁵ 11; α (M)=1.232×10 ⁻⁵ 18 α (N)=1.238×10 ⁻⁶ 18
4343.1		172.00° 20	14 4	4170.94	(8-)			
4437.6		1305.2 <i>3</i> 312.6 ^{<i>a</i>} <i>3</i>	100 22 3.8 <i>19</i>	3037.85 4125.13	(6^{-}) (8^{+})			
4437.0		421.3 ^a 3	3.8 19	4016.28	(8 ⁺)			
		1517.9 3	100 14	2919.73	(6^+)			
4609.50	(10+)	1147.8 <i>I</i>	100	3461.66	(8+)	(E2)	3.65×10^{-4}	$\alpha(K)$ =0.000322 5; $\alpha(L)$ =3.42×10 ⁻⁵ 5; $\alpha(M)$ =5.53×10 ⁻⁶ 8 $\alpha(N)$ =5.58×10 ⁻⁷ 8; $\alpha(IPF)$ =2.77×10 ⁻⁶ 4 B(E2)(W.u.)=11 +3-7
4667.91	(9-)	496.9 2	22 5	4170.94	(8-)			D(E2)(w.u.)-11 +3-7
	(-)	1072.8 2	100 20	3595.14	(7^{-})	[E2]	4.21×10^{-4}	B(E2)(W.u.)=14 6
					()	. ,		$\alpha(K)=0.000374 \ 6; \ \alpha(L)=3.99\times10^{-5} \ 6; \ \alpha(M)=6.45\times10^{-6} \ 9$ $\alpha(N)=6.51\times10^{-7} \ 10$
4746.81	(9-)	1250.2 2	100	3496.60	(7^{-})	(E2)	3.18×10^{-4}	B(E2)(W.u.)=14.6 25
								$\alpha(K)=0.000267 \ 4; \ \alpha(L)=2.83\times10^{-5} \ 4; \ \alpha(M)=4.58\times10^{-6} \ 7$ $\alpha(N)=4.63\times10^{-7} \ 7; \ \alpha(IPF)=1.693\times10^{-5} \ 24$
4822.15	(10^+)	212.5 2	4.0 4	4609.50	(10^{+})			
		805.9 1	100.0 20	4016.28	(8+)	(E2)	8.39×10^{-4}	B(E2)(W.u.)=63 11 α (K)=0.000744 11; α (L)=8.03×10 ⁻⁵ 12; α (M)=1.298×10 ⁻⁵ 19 α (N)=1.304×10 ⁻⁶ 19
4896.7?		1435 ^a	100	3461.66	(8^{+})			
5011.88	$(8^+, 9, 10^+)$	189.7 2	29 14	4822.15	(10^{+})			
5225 41	(10-)	886.8 <i>3</i>	100 29	4125.13	(8^+)			
5325.41	(10^{-})	657.4 3	26 9	4667.91	(9^{-})			
5702.8		1154.5 2 956	100 <i>9</i> 100	4170.94 4746.81	(8 ⁻) (9 ⁻)			
5992.5		1383.0 <i>3</i>	100	4609.50	(9) (10^+)			
6009.5		1400.0 3	100	4609.50	(10^{+})			
6011.7		1189.5 3	100	4822.15	(10^{+})			

γ (82Kr) (continued)

- [†] From decay data and $(\alpha,2n\gamma)$.
- ‡ From ce, $\gamma\gamma(\theta)$ in β^- decay (35.282 h) (1994Go12), $\gamma\gamma(\theta)$ in 82 Rb ε decay (1.2575 min) (2016Ni03), and $\gamma(\theta)$ in $(\alpha,2n\gamma)$. Quadrupole transitions and transitions with strong quadrupole admixtures are assumed to be E2.
- # Additional information 1.
 [@] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- & Multiply placed.
- ^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, A. Luca, S. Juutinen, and B. Singh	NDS 110.2815 (2009)	30-Sep-2009

 $Q(\beta^{-}) = -2680.4 \ 22$; $S(n) = 10520.6 \ 3$; $S(p) = 10715 \ 4$; $Q(\alpha) = -7104.8 \ 13$

Note: Current evaluation has used the following Q record -2686.3 2710520.6 3 10722 5 -7104.4 15

Values in 2003Au03 are: $Q(\beta^-) = -2681.0 23$, S(n) = 10520.6 3, S(p) = 10711 4, $Q(\alpha) = -7096 3$.

Theory/calculations:

2009Tu04: quadrupole moment and B(E2) (IBA model).

1995La07: relativistic mean-field theory).

1995De02,1990Zo02,1987Ha21,1984Er02: interacting-boson model.

1991Jo03: description of 8⁺ states.

1989Co02: octupole bands.

1988Er07: calculated levels.

1988Pe04: microscopic boson expansion model.

1987Ha21: quadrupole moment, dynamic deformation model 1982Ah06: quadrupole moment, projected Hartree-Fock model.

Isotope shift and nuclear charge radius:

1987Ha21: dynamic deformation model.

1986Di06: two-hole cluster-phonon coupling model.

1982Br01: monopole and quadrupole pairing vibration model.

1981Bu06: liquid drop plus Strutinsky shell corrections plus pairing.

Reduced transition probabilities: 1982Ah06 (projected Hartree-Fock model) 1995Zh26, 1992Er02 (systematics), 1995La07,

1992Sc19, 1992Ne09, 1992Li24, 1989Tr04, 1984Lo06, 1980Ca23,1975So06. First-unique forbidden β decay matrix elements for ⁸⁴Br and ⁸⁴Rb decays: 1986Ci02, 1972Ej01.

Other experiments:

Recent atomic mass measurements using Penning-trap systems: 2009Re03 (supersedes 2005Sh38), 2006De36, 2006Ri15 (also 2005Sc26).

Measurements of isotope shift and nuclear charge radius: 1995Ke04, 1990Sc30, 1990Ca26, 1989Tr04, 1981Ge06, 1979Ge06, 1977Ge05.

Five neutron resonances from 28.05 eV to 1100 eV are known according 2006MuZX evaluation, see ⁸³Kr(n,γ):resonances dataset.

⁸⁴Kr Levels

Cross Reference (XREF) Flags

			B 84B C 84R	r $β$ ⁻ decay (31.76 min) r $β$ ⁻ decay (6.0 min) b $ε$ decay e($α$,2n $γ$)	E F G H	83 Kr(n, γ) E=thermal 84 Kr(p,p') Coulomb excitation (HI,xn γ)
E(level) [†]	$J^{\pi #}$	$T_{1/2}^{\ddagger}$	XREF			Comments
0.0	0^+	stable	ABCDEFGH	$\langle r^2 \rangle^{1/2} = 4.1882 \text{ fm } 14$	(200	4An14 evaluation).
					0.042	surement (1933Ko02) consistent with J=0. 12 fm ² from isotope shift (1995Ke04). Others: 179Ge06).
881.615 [@] 3	2+	4.05 ps <i>13</i>	ABCDEFGH	μ =+0.534 26 (2001Me	20,20	005St24)
				J ^{π} : L(p,p')=2. μ : from g=+0.267 13	(2001	Me20, transient-field technique).
						A in Coul ex. Other: 4.35 ps 18 from B(E2)=0.122 5

⁸⁴Kr evaluated by J.K. Tuli, A. Luca, S. Juutinen, and B. Singh.

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
				measured in Coulomb excitation (1982Ke01); 3.2 ps 14 from recoil-distance in $(\alpha,2n\gamma)$. 2001Ra27 evaluation gives adopted half-life=4.26 ps 20 and B(E2)(\uparrow)=0.125 6.
1837.3 20	0^{+}	25 ps 10	A D FG	J^{π} : L(p,p')=0.
1897.783 ^{&} 10	2+	0.24 ps 5	ABCDEFG	J^{π} : E2 γ to 0^+ . $T_{1/2}$: From 2001Me20, DSA in Coul ex. Others: 0.30 ps +7-3 from $(\alpha,2n\gamma)$.
2095.00 [@] 7	4+	0.66 ps <i>13</i>	A DEFGH	$T_{1/2}$: From 2001Me20, DSA in Coul ex. Others: 0.45 ps +5-7 from $(\alpha,2n\gamma)$. J^{π} : $L(p,p')=4$.
2345.46 ^{&} 7	4+	24 ps <i>3</i>	AB DEFG	J ^π : L(p,p')=4. 1987Ha21, from their (n, γ) study, propose that the 446.9 γ and 1463.8 γ deexcite two levels at 2344.3 keV and 2345.6 keV. The 2344.3 is assigned 3 ⁺ on the basis of systematics. These conclusions are not adopted by the evaluators since (1) the intensity ratios I γ (446.9)/I γ (1463.8) are nearly the same in (n, γ), β ⁻ decay (31.76 min), and β ⁻ decay (6.0 min), and (2) log β t=7.0, log β tut=8.3 for β - decay from (5 ⁻ ,6 ⁻) would limit J=4 to 7.
2489.2 <i>4</i>	$(2^+,3^-)$ 2^+		A	J^{π} : probable γ to 4^+ . γ from 1^- .
2622.98 <i>17</i> 2700.28 <i>8</i>	2 ⁺ 3 ⁻	0.28 ps <i>14</i> 1.7 ps + <i>14</i> - <i>11</i>	A DEF A DEF	J^{π} : uniquely determined by $\gamma\gamma(\theta)$ in β^- decay. M1+E2 γ to 2 ⁺ . J^{π} : L(p,p')=3. B(E3)(↑)=0.042 <i>15</i> (2002Ki06 evaluation, data from 1978Ma11, 1974Ar29). Deduced B(E3)(W.u.)=14 5.
2759.28 <i>13</i> 2770.94 ^a 9	2 ⁺ 5 ⁻	7.6 ps <i>21</i>	A E B DE	J^{π} : log ft =7.5 from 2 ⁻ , γ to 0 ⁺ , (M1+E2) γ to 2 ⁺ , $\gamma\gamma(\theta)$. J^{π} : stretched E1 to 4 ⁺ .
2775 20	2+	۲	F	J^{π} : L(p,p')=2.
2861.09 <i>8</i> 3042.11 <i>7</i>	$(2^+,3,4^+)$ $(2^+,3,4^+)$		E DEF	J^{π} : γ' s to 2^+ and 4^+ . J^{π} : γ' s to 2^+ and 4^+ .
3082.38 8	3		A E	J^{π} : log ft =6.6, log $f^{1u}t$ =7.6 from 2 ⁻ . J=1,2 excluded by $\gamma\gamma(\theta)$ in β^{-} decay.
3172.55 [@] 16 3183.29 25	6 ⁺ (2 ⁺ ,3,4 ⁺)	2.6 ps 7	DE H E	J^{π} : stretched E2 indicated by $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. J^{π} : γ' s to 2^+ and 4^+ .
3219.35 ^b 11	5-	17 ps 4	DE	J ^π : from $\gamma(\theta)$, linear pol in (α ,2n γ), 1124 γ is stretched E1, 448 γ is M1 with ΔJ =0.
3225 20	(1-)		F	J^{π} : L(p,p')=(1).
3236.07 [@] 18	8+	1.83 μs 4	D H	%IT=100 μ =-1.968 <i>16</i> (1982Za04,1989Ra17)
				Q=0.36 4 (2006Sc22) J ^π : E2 γ to 6 ⁺ in (α,2nγ). Configuration=(ν g _{9/2}) ⁻² . μ: TDPAD method in (α,2nγ) (1982Za04). See also 2005St24 compilation. Q: from level-mixing spectroscopy (LEMS) technique (2006Sc22) using Q(⁷⁹ Kr, 5/2 ⁻)=0.456 26 as reference value. T _{1/2} : from 2006Sc22. Others: 1.89 μs 4 from time-differential perturbed angular distribution observed in (α,2nγ); 1.4 μs 4
				(1997Is13) based on particle- γ - γ measurement in 76 Ge+ 198 Pt reaction.
3288.68 12	5 ⁺	0.31 ps <i>10</i>	DE	J^{π} : stretched E1 transition from 6 ⁻ , linear polarization of M1+E2 943 γ to 4 ⁺ .
3312.39 <i>13</i>	(3)-		E	J^{π} : J=3 preferred from $\gamma\gamma(\theta)$ in (n,γ) , but other J values are not definitely excluded. M1+E2 γ to 3 ⁻ .
3335? 20 3365.88 20 3408.15 11	(1,2 ⁺) (3 ⁻ ,4,5 ⁻)		F A E	Possibly identical to 3312 level. J^{π} : γ to 0^+ . J^{π} : γ' s to 3^- and 5^- .
	. , ,- ,			•

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
3426.74 12	$(2^+,3,4^+)$		E	J^{π} : γ' s to 2^+ and 4^+ .
3463.0 <i>5</i> 3475.75 <i>21</i>	(1-)		E A F	J^{π} : $L(p,p')=(1)$.
3570 20	(3^{-})		F	J^{π} : L(p,p')=(3).
3587.12 ^b 11	6-	5.5 ps <i>14</i>	DE	J^{π} : deexcites by M1+E2 to 5 ⁻ , fed by M1+E2 from 7 ⁻ .
3638.50 <i>10</i> 3651.61 ^a <i>18</i>	(5 ⁻) 7 ⁻	0.69 ps +28-21	DEF D	J^{π} : L(p,p')=(5). γ 's to 3 ⁻ and 5 ⁻ . J^{π} : 180 γ from 3832, 7 ⁻ level is ΔJ=0, M1+E2 from $\gamma(\theta)$, linear
3031.01 78	/		D	pol in $(\alpha, 2n\gamma)$.
3705.87 19	$1^{(-)}, 2, 3^{(-)}$		A	J^{π} : log ft =6.0, log $f^{1}ut$ =6.5 from 2 ⁻ . γ' s to (1 ⁻) and 3 ⁻ .
3718.22 22 3777.0 <i>3</i>	(3-)		EF EF	J^{π} : L(p,p')=(3).
3831.62 ^b 12	7-	4.9 ps 21	D	J^{π} : stretched E2 to 5 ⁻ , E1 to 6 ⁺ , excit.
3870.1 5	1,2,3	1	A	J^{π} : log ft =6.9, log $f^{1u}t$ =7.2 from 2 ⁻ .
3878.8 <i>3</i>	$(2^+,3)$		A	J^{π} : log $ft=6.6$, log $f^{1}ut=7.0$ from 2^{-} . γ to 4^{+} .
3927.33 22 3951.23 ^{&} 16	1 ⁻ 6 ⁺	0.9 ps 5	A F D	J^{π} : log ft =4.9 from 2 ⁻ . Strong γ to 0 ⁺ . J^{π} : cascades to 4 ⁺ via stretched Q.
4001.82 11	(4-)	0.35 ps 10	DEF	J. Cascades to 4 Via stretched Q.
4084.3 5	$(1,2^+)$	·	A F	J^{π} : γ to 0^+ .
4116.8 <i>5</i> 4189.2 <i>5</i>	$1^-,2^ (2^+,3)$		A A F	J^{π} : log ft =5.2 from 2 $^{-}$. Weak γ to 0 $^{+}$. XREF: F(4157).
1107.2 3	(2 ,3)			J^{π} : log ft =6.0, log $f^{1}ut$ =6.0 from 2 ⁻ . γ to 4 ⁺ .
4214.43 <i>13</i>			E	
4238.5 <i>6</i> 4278.3 <i>5</i>			E E	
4350.12 23	(5 ⁻)	0.28 ps + 14-7	D	
4388.20 ^b 19	8-	6.7 ps 17	D	J^{π} : M1+E2 γ to 7^{-} .
4407.8 <i>4</i> 4455.6 <i>4</i>	(6-)	0.31 ps <i>14</i>	D E	
4594.8 <i>5</i>			E	
4676.62 <i>19</i> 4707 <i>20</i>			EF F	XREF: F(4707).
4718.54 ^{&} 16	8+	5.5 ps 21	D	J^{π} : cascades to 4 ⁺ via two Q γ' s.
4852.25 ^a 21	9-	0.8 ps 4	D	J^{π} : stretched E2 to 7 ⁻ , excit, 1616 γ is stretched d.
4898 20 4928.99 ^b 22	(0=)	0.55	F	
4928.99° 22 4976.1 11	(9 ⁻) (9 ⁺)	0.55 ps 21	D D	
5204.1 [@] 3	10+	0.14 ps 4	D H	J^{π} : stretched E2 cascade indicated by $\gamma(\theta)$ and linear polarization
5250 20				in $(\alpha,2n\gamma)$.
5358 20 5373.4 [@] 4	12+	43.7 ns <i>21</i>	F D H	%IT=100
3373.4 4	12	43.7 118 21	υп	μ =+2.04 24 (1990Ro10,1985Ro22)
				μ : from TDPAD method in $(\alpha,2n\gamma)$ (1990Ro10,1985Ro22). See also
				2005St24 and 1989Ra17 compilations. J^{π} : stretched E2 cascade indicated by $\gamma(\theta)$ and linear polarization
				in $(\alpha,2n\gamma)$.
5448.75 <mark>&</mark> 19	10+	2.5	_	$T_{1/2}$: from $\alpha, \gamma(t)$ in $(\alpha, 2n\gamma)$.
5448.75° 19 5466	10 ⁺	3.5 ps <i>14</i>	D F	J^{π} : stretched E2 to 8^+ .
5640.70 ^b 24	(10^{-})	0.49 ps <i>21</i>	D	
5901.7 ^a 3	11-	1.9 ps 6	D	J^{π} : stretched E2 to 9 ⁻ .
6067.4 <i>11</i> 6472.2 <i>4</i>			D D	
6572.1 4	$(12)^{-}$	0.42 ps 14	D	J^{π} : E1 γ to 12 ⁺ consistent with $\Delta J=0$.

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
6590.3 <i>6</i>	· · · · · · · · · · · · · · · · · · ·		D	
7015.8 <i>4</i>	$(13)^{-}$	0.17 ps 7	D	J^{π} : stretched M1 to $(12)^{-}$.
7653.2 5	(14^{-})	0.28 ps 7	D	J^{π} : cascades via stretched d.
(10520.6 3)	4+,5+		E	E(level), J^{π} : thermal neutron-capture state by $9/2^+$ target. S(n) from $2009 \text{Au} / 7$, $2003 \text{Au} / 3$.

[†] From least-squares fit to adopted gammas if γ decay is observed. Other level energies are from (p,p').

[‡] From Doppler-shift attenuation and recoil-distance technique in $(\alpha,2n\gamma)$, unless indicated otherwise.

[#] J^{π} for the levels seen in $(\alpha, 2n\gamma)$ are based upon $\gamma(\theta)$, excit, multipolarity of transitions.

[@] Band(A): Sequence based on ground state.

[&]amp; Band(B): Sequence based on 1898, 2+.

^a Band(C): $\pi = -$, $\Delta J = 2$ sequence.

^b Band(D): $\pi=-$, $\Delta J=1$ sequence.

0	4
$\gamma(\delta)$	4Kı

						/(111)		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
881.615	2+	881.610 <i>3</i>	100	0.0 0+	[E2]			B(E2)(W.u.)=12.0 4
1837.3	0+	955.7 20	100	881.615 2+				E_{γ} : 950.0 2 in $(\alpha, 2n\gamma)$.
1897.783	2+	1016.162 <i>13</i>	47.1 <i>16</i>	881.615 2+	M1+E2	0.84 7		B(M1)(W.u.)=0.016 4; B(E2)(W.u.)=13 3
		1897.761 <i>14</i>	100.0	$0.0 0^{+}$	E2			B(E2)(W.u.)=3.0 7
2095.00	4+	1213.39 10	100	881.615 2 ⁺	E2		0.004.50.5	B(E2)(W.u.)=15 3
2345.46	4+	446.9 <i>3</i>	2.73 19	1897.783 2 ⁺	[E2]		0.00453 7	B(E2)(W.u.)=1.61 23
								$\alpha(K)=0.00400 \ 6; \ \alpha(L)=0.000446 \ 7; \ \alpha(M)=7.21\times10^{-5}$
								11; $\alpha(N+)=7.15\times10^{-6}$ 11
		1462.04.0	100 0 12	001 (15 0+	F2			$\alpha(N)=7.15\times10^{-6} 11$
		1463.84 9	100.0 12	881.615 2+	E2			B(E2)(W.u.)=0.156 20
2489.2	$(2^+,3^-)$	394.1 <mark>&</mark> 7		2095.00 4+				
2622.00	2+	1607.6 4	100 4	881.615 2 ⁺ 881.615 2 ⁺	M1+E2	-1.5 +5-10		D(M1)/W) 0.004 2; D(E2)/W) 2.4.10
2622.98	2.	1741.3 2	100 4	881.615 2	M1+E2	-1.5 + 3 - 10		B(M1)(W.u.)=0.004 3; B(E2)(W.u.)=3.4 19 Mult.: the large mixing ratio excludes E1+M2.
		2622.7 4	18 <i>3</i>	$0.0 0^{+}$				with the large mixing ratio excludes E1+Wi2.
2700.28	3-	354.7 2	4.9 5	2345.46 4+				
2700.20	J	605.1 3	26.6 15	2095.00 4+	(E1+M2)	+0.025 23		B(E1)(W.u.)=(0.00018 + $I2-I6$); B(M2)(W.u.)=(1 + $3-I$)
		802.56 14	100.0 15	1897.783 2+	E1			B(E1)(W.u.)=0.00030 +20-25
		1818.7 <i>4</i>	4.0 6	881.615 2 ⁺	LI			D(L1)(W.u.)=0.00030 120 23
2759.28	2+	1877.80 <i>14</i>	100	881.615 2 ⁺	(M1+E2)	-0.10 8		
		2758.4 3	53 13	$0.0 0^{+}$,			
2770.94	5-	425.30 11	100	2345.46 4+	E1		0.001458 <i>21</i>	B(E1)(W.u.)=0.00060 17
								$\alpha(K)=0.001295 \ 19; \ \alpha(L)=0.0001376 \ 20;$
								$\alpha(M)=2.22\times10^{-5} 4; \alpha(N+)=2.23\times10^{-6}$
								$\alpha(N)=2.23\times10^{-6} 4$
								Mult.: M2 admixture with δ <0 needed to explain large anisotropy for 424 γ (1992Pr06).
2861.09	$(2^+,3,4^+)$	765.74 25	12 8	2095.00 4+				range amsocropy for 4247 (19921100).
2001.07	(2 ,5,1)	963.44 <i>13</i>	61.5 21	1897.783 2 ⁺				
		1979.34 <i>11</i>	100.0 21	881.615 2+				
3042.11	$(2^+,3,4^+)$	946.5 5	77 3	2095.00 4+				
		2160.48 7	100.0 25	881.615 2+				
3082.38	3	382.0 2	52 7	2700.28 3-				
		736.5 <i>3</i>	100 12	2345.46 4+	D+Q	-0.09 3		
		987.62 <i>17</i>	73 6	2095.00 4+	D+Q	-0.09 4		
		1185.0 7	8.4 17	1897.783 2 ⁺				
3172.55	6+	2200.85 <i>11</i> 1077.55 <i>25</i>	78 <i>3</i> 100	881.615 2 ⁺ 2095.00 4 ⁺	E2			B(E2)(W.u.)=6.9 19
31/2.33	O.	10/7.55 25	100	2093.00 4	E2			Mult.: from $\gamma(\theta)$, linear polarization and $\alpha(K)$ exp in $(\alpha, 2n\gamma)$.

5

γ (84Kr) (continued)

$E_i(level)$	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
3183.29	$(2^+,3,4^+)$	1087.8 <i>3</i>	76 10	2095.00	4+				
	()- /	2302.5 4	100 16	881.615					
3219.35	5-	448.11 <i>11</i>	41.6 <i>13</i>	2770.94		M1		0.00277 4	B(M1)(W.u.)=0.0040 10
									$\alpha(K)=0.00245$ 4; $\alpha(L)=0.000264$ 4; $\alpha(M)=4.27\times10^{-5}$
									6; $\alpha(N+)=4.32\times10^{-6}$ 6
									$\alpha(N)=4.32\times10^{-6} 6$
		519.3 ^a 5	9 3	2700.28	3-				u(11)-4.32×10 0
		1124.5 2	100.0 15	2095.00	4 ⁺	E1			$B(E1)(W.u.)=9.7\times10^{-6} 23$
3236.07	8+	63.5 1	100.0 13		6 ⁺	E2		4.89	$\alpha(K)=3.98 \ 6; \ \alpha(L)=0.779 \ 13; \ \alpha(M)=0.1262 \ 20;$
3230.07	O	03.3 1	100	3172.33	U	E2		4.07	$\alpha(N+)=0.01078 \ 17$
									$\alpha(N=0.01078 \ 17)$
									B(E2)(W.u.)=2.33 6
3288.68	5 ⁺	943.36 <i>14</i>	100	2345.46	4+	M1+E2	0.4 1		B(M1)(W.u.)=0.073 24; B(E2)(W.u.)=15 9
3312.39	(3)	541.50 12	71 3	2770.94	5-	W11 LL2	0.7 1		D(W11)(W.u.)=0.073 24, D(D2)(W.u.)=13 9
3312.37	(3)	612.0 3	100 6	2700.28	3-	M1+E2	+0.41 3	0.001408 22	$\alpha(K)=0.001250 \ 19; \ \alpha(L)=0.0001339 \ 21;$
		012.0 5	100 0	2700.20	5	1111 1 22	10.11 5	0.001 100 22	$\alpha(M) = 2.17 \times 10^{-5} 4$; $\alpha(N+) = 2.19 \times 10^{-6}$
									$\alpha(N)=2.19\times10^{-6}$ 4
									Mult.: the large mixing ratio excludes E1+M2.
		967.0 <i>5</i>	20 7	2345.46	4+				with the large mixing ratio excludes £1+1v12.
3365.88	$(1,2^+)$	2484.1 3	100 10	881.615					
3303.00	(1,2)	3365.8 4	43 6	0.0	0^{+}				
3408.15	$(3^-,4,5^-)$	546.98 12	100 4	2861.09	$(2^+,3,4^+)$				
5 100.15	(5,1,5)	637.13 18	77 7	2770.94	5-				
		708.24 21	67 6	2700.28	3-				
3426.74	$(2^+,3,4^+)$	1331.89 <i>13</i>	100 14	2095.00	4+				
	()- /	2544.72 19	69 7	881.615	2+				
3463.0		243.7 <i>4</i>	100	3219.35					
3475.75	(1^{-})	394.1 <mark>&</mark> 7		3082.38	3				
3173.73	(1)	1578.1 4	100 19	1897.783					
		2593.7 6	21 4	881.615					
3587.12	6-	298.5 1	11.7 13	3288.68		E1		0.00375 6	B(E1)(W.u.)=0.00023 7
	-	_, _, _							$\alpha(K)=0.00333\ 5;\ \alpha(L)=0.000355\ 5;\ \alpha(M)=5.73\times10^{-5}$
									8; $\alpha(N+)=5.74\times10^{-6}$ 8
									$\alpha(N)=5.74\times10^{-6}$ 8
		367.6 <i>1</i>	100 11	3219.35	5-	M1+E2	0.24 6	0.00466 14	B(M1)(W.u.)=0.063 19; B(E2)(W.u.)=31 18
		307.0 1	100 11	3417.33	5	1V11 TL:2	0.24 0	0.00 1 00 14	$\alpha(K)=0.00413 \ 12; \ \alpha(L)=0.000448 \ 14;$
									$\alpha(M) = 7.25 \times 10^{-5} \ 22; \ \alpha(N+) = 7.30 \times 10^{-6} \ 22$
									$\alpha(N)=7.30\times10^{-6}$ 22, $\alpha(N+)=7.30\times10^{-22}$
		816.6 2	10 <i>3</i>	2770.94	5-				$u(11) - 1.30 \times 10 = 22$
3638.50	(5-)	419.4 5	100.0 17		5 5-				
2020.20	(2)	717.7 J	100.0 1/	3417.33	J				

6

γ (84Kr) (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{ extbf{@}}$	a^{\dagger}	Comments
3705.87 1 (-) 2,3 (-) 230 20 20 27 4 3475.75 (1-) 339.8 4 6.3 15 3365.88 (1,2*) 947.5 7 31 7 2759.28 2* 1005.7 7 41 11 2700.28 3* 1082.6 4 12.6 22 262.29 2* 1807.8 8 3.7 11 1897.783 2* 2324.1 4 100 15 881.615 2* 3777.0 1682.0 3 100 2095.00 4* 3831.62 7- 180.1 2 31 5 3651.61 7- M1+E2 -0.12 8 0.0277 20 B(M1)(W.u.)=0.09 5; B(E2)(W.u.)=5.E+1+7 α(K)=0.0245 /7; α(L)=0.00272 22; α(M)=0.0 α(K)=0.0186 21; α(M)= 4; α(K)=0.01685 19; α(L)=0.001186 21; α(M)= 4; α(K)=0.0159 22; α(K)=0.0169 24; α(K)=0.0159 22; α(K)=0.0166 34; α(K)=0		3638.50	(5-)	1293.20 <i>13</i> 1543.27 <i>19</i>	61 <i>4</i>	2345.46 2095.00	4 ⁺ 4 ⁺				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				230.20 20 339.8 4 947.5 7 1005.7 7 1082.6 4 1807.8 8	27 4 6.3 15 31 7 41 11 12.6 22 3.7 11	3475.75 3365.88 2759.28 2700.28 2622.98 1897.783	(1 ⁻) (1,2 ⁺) 2 ⁺ 3 ⁻ 2 ⁺ 2 ⁺	E2			E_{γ} : from E(level) difference.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(3-)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7-					M1+E2	-0.12 8	0.0277 20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			244.5 1	52 5	3587.12	6-	M1+E2	0.07 3	0.01225 <i>21</i>	B(M1)(W.u.)=0.06 3; B(E2)(W.u.)=6 6 α (K)=0.01085 19; α (L)=0.001186 21; α (M)=0.000192 4; α (N+)=1.94×10 ⁻⁵ 4
659.1 2 63 10 3172.55 6 ⁺ E1 3870.1 1,2,3 394.1 7 3475.75 (1 ⁻) 2988.7 7 881.615 2 ⁺ 3878.8 (2 ⁺ ,3) 1119.1 4 100 18 2759.28 2 ⁺ 1255.5 6 32 6 2622.98 2 ⁺ 1534.7 6 71 15 2345.46 4 ⁺ 3927.33 1 ⁻ 561.4 5 1.2 3 3365.88 (1,2 ⁺) 1438.0 7 0.92 25 2489.2 (2 ⁺ ,3 ⁻) 2029.6 5 31 6 1897.783 2 ⁺ 3045.4 4 37 6 881.615 2 ⁺ 3927.5 4 100 10 0.0 0 ⁺ 3951.23 6 ⁺ 662.6 3 ≈67 3288.68 5 ⁺ 1605.7 3 47 20 2345.46 4 ⁺ 1856.2 3 100 27 2095.00 4 ⁺ Q B(E1)(W.u.)=6.E-5 3 B(E1)(W.u.)=6.E-5 3				612.1 2	100 14	3219.35	5-	E2		0.001760 25	B(E2)(W.u.)=25 12 α (K)=0.001559 22; α (L)=0.0001704 24; α (M)=2.76×10 ⁻⁵ 4; α (N+)=2.75×10 ⁻⁶
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3870.1	1,2,3	394.1 <mark>&</mark> 7	63 10	3475.75	(1^{-})	E1			B(E1)(W.u.)=6.E-5 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3878.8	$(2^+,3)$	1119.1 <i>4</i> 1255.5 <i>6</i>	32 6	2759.28 2622.98	2 ⁺ 2 ⁺				
1605.7 3 47 20 2345.46 4 ⁺ 1856.2 3 100 27 2095.00 4 ⁺ Q B(E2)(W.u.)=0.6 4		3927.33	1-	561.4 5 1438.0 7 2029.6 5 3045.4 4	1.2 <i>3</i> 0.92 25 31 <i>6</i> 37 <i>6</i>	3365.88 2489.2 1897.783 881.615	(1,2 ⁺) (2 ⁺ ,3 ⁻) 2 ⁺ 2 ⁺				
		3951.23	6+	662.6 <i>3</i> 1605.7 <i>3</i>	≈67 47 <i>20</i>	3288.68 2345.46	4+	Q			B(E2)(W.u.)=0.6 4
1230.82 <i>11</i> 100 <i>4</i> 2770.94 5 ⁻		4001.82	(4-)	919.79 <i>19</i>	72 5	3082.38		-			

γ (84Kr) (continued)

E_i (level)	J_i^{π}	${\rm E}_{\gamma}{}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
4001.82	(4-)	1656.15 <i>18</i>	90 14	2345.46	4+				
4084.3	$(1,2^+)$	3202.1 7	76 <i>15</i>	881.615					
4116.8	1-,2-	4084.6 <i>6</i> 2218.5 <i>12</i>	100 <i>15</i> 3.3 <i>16</i>	0.0 1897.783	0 ⁺				
4110.0	1 ,2	3235.3 5	100 16	881.615					
		4115.8 <i>15</i>	0.19 4	0.0	0_{+}				
4189.2	$(2^+,3)$	2094.2 5	100	2095.00	4+				
4214.43		902.11 <i>15</i> 1443.43 <i>11</i>	58 <i>5</i> 100 <i>4</i>	3312.39 2770.94	(3) ⁻ 5 ⁻				
4238.5		236.7 5	100 4	4001.82	(4^{-})				
4278.3		1507.3 5	100	2770.94	5-				
4350.12	(5 ⁻)	763.0 2	100	3587.12	6-				
4388.20	8-	556.6 2	100 12	3831.62	7-	M1+E2	0.17 4	0.00169 3	B(M1)(W.u.)=0.013 4; B(E2)(W.u.)=1.4 8 α (K)=0.001501 23; α (L)=0.0001606 25; α (M)=2.60×10 ⁻⁵ 4; α (N+)=2.63×10 ⁻⁶ 4 α (N)=2.63×10 ⁻⁶ 4
		801.1 <i>3</i>	46 <i>14</i>	3587.12	6-	E2			B(E2)(W.u.)=3.7 16
4407.8	(6-)	1636.8 <i>4</i>	100	2770.94	5-				_(
4455.6		1283.0 3	100	3172.55	6 ⁺				
4594.8 4676.62		1823.8 <i>5</i> 1905.65 <i>17</i>	100 100	2770.94 2770.94	5 ⁻ 5 ⁻				
4718.54	8+	767.3 2	95 15	3951.23	6 ⁺	Q			B(E2)(W.u.)=5.7 25
		886.9 2	100 15	3831.62	7-	E1			$B(E1)(W.u.)=3.1\times10^{-5}$ 14
4050.05	0=	1546.0 2	100 20	3172.55	6 ⁺	Q			B(E2)(W.u.)=0.18 8
4852.25	9-	1200.7 2 1616.1 2	100 <i>19</i> 42 <i>12</i>	3651.61 3236.07	7 ⁻ 8 ⁺	E2 (E1)			B(E2)(W.u.)=9 5 Mult.: $\Delta J=1$ dipole from $\gamma(\theta)$, $\Delta \pi=yes$ from level scheme.
4928.99	(9-)	540.7 2	75 25	4388.20	8-	D+Q	0.18 5	0.00181 3	$\alpha(K)$ =0.00161 3; $\alpha(L)$ =0.000172 3; $\alpha(M)$ =2.79×10 ⁻⁵ 5; $\alpha(N+)$ =2.82×10 ⁻⁶ 5
									$\alpha(N)=2.82\times10^{-6}$ 5
									B(M1)(W.u.)=0.11 7; B(E2)(W.u.)=14 11
4976.1	(9 ⁺)	1097.3 <i>3</i> 1740 <i>I</i>	≈100 100	3831.62 3236.07	7 ⁻ 8 ⁺				
5204.1	10+	1968.0 2	100	3236.07	8 ⁺	E2			B(E2)(W.u.)=6.3 18
5373.4	12+	169.3	100	5204.1	10 ⁺	E2		0.1324	$\alpha(K)$ =0.1153 17; $\alpha(L)$ =0.01455 21; $\alpha(M)$ =0.00235 4;
									$\alpha(N+)=0.000223$ 4 $\alpha(N)=0.000223$ 4
									B(E2)(W.u.)=3.76 22
5448.75	10 ⁺	730.2 <i>1</i>	100	4718.54	8+	E2		0.001084 16	Mult.: from $\gamma(\theta)$, linear polarization, and $\alpha(K)$ exp in $(\alpha,2n\gamma)$. B(E2)(W.u.)=36 15
J 11 0./J	10	750.2 1	100	7/10.54	o	2ن		0.00100+ 10	$\alpha(K)=0.000962 \ 14; \ \alpha(L)=0.0001041 \ 15; \ \alpha(M)=1.685\times10^{-5} \ 24$ $\alpha(N)=1.689\times10^{-6} \ 24$

 ∞

γ (84Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
5640.70	(10^{-})	711.6 2	82 27	4928.99	(9-)		·	
		1252.6 2	100 27	4388.20	8-			
5901.7	11-	1049.4 2	100	4852.25	9-	E2		B(E2)(W.u.)=114
6067.4		694 <i>1</i>	100	5373.4	12+			
6472.2		1268.1 <i>3</i>	100	5204.1	10 ⁺			
6572.1	$(12)^{-}$	670.4 2	46 17	5901.7	11-			
		1198.6 2	100 <i>21</i>	5373.4	12 ⁺	E1		B(E1)(W.u.)=0.00033 15
6590.3		1141.5 <i>5</i>	100	5448.75	10^{+}			
7015.8	$(13)^{-}$	443.7 2	100	6572.1	$(12)^{-}$	M1	0.00283 4	B(M1)(W.u.)=1.5 7
								$\alpha(K)$ =0.00251 4; $\alpha(L)$ =0.000270 4; $\alpha(M)$ =4.37×10 ⁻⁵ 7; $\alpha(N+)$ =4.42×10 ⁻⁶ 7 $\alpha(N)$ =4.42×10 ⁻⁶ 7
7653.2	(14^{-})	637.4 <i>3</i>	100	7015.8	$(13)^{-}$	D		

[†] Additional information 1. † Most precise value from β^- decay, β^+ decay, (n,γ) , $(\alpha,2n\gamma)$, or weighted average of the most precise values.

[#] From $\gamma\gamma(\theta)$ in (n,γ) and β^- decay (31.76 min), $\gamma(\theta)$, $\alpha(K)$ exp, linear polarization measurements in $(\alpha,2n\gamma)$, unless indicated otherwise. @ From $\gamma\gamma(\theta)$ observed in (n,γ) and β^- decay (31.76 min) or $\gamma(\theta)$ in $(\alpha,2n\gamma)$.

[&]amp; Multiply placed.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(C): π =-, Δ J=2 sequence

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014	

 $Q(\beta^-) = -518.66 \ 20; \ S(n) = 9856.7 \ 20; \ S(p) = 11979 \ 3; \ Q(\alpha) = -8096.7 \ 14$ 2012Wa38

 $S(2n)=16968.96\ 1$, $S(2p)=21895.9\ 20$, $Q(2\beta^-)=1257.5\ 11\ (2012Wa38)$.

Mean square charge radius and isotopic shift: 2000Ga58, 1995Ke04, 1992Sc19, 1990Ca26. Additional information 1.

⁸⁶Kr Levels

Cross Reference (XREF) Flags

Α	⁸⁶ Br $β$ ⁻ decay (55.1 s)	F	86 Kr (γ, γ')	K	87 Rb(d, 3 He)
В	86 Rb ε decay (18.642 d)	G	86 Kr(n,n' γ)	L	87 Rb(t, α)
C	87 Br β^{-} n decay (55.65 s)	H	86 Kr(p,p')	M	208 Pb(18 O,F γ)
ъ.	820 (71: 2)	-	8617(1.1/)		

D 82 Se($^{\prime}$ Li,p2n γ) I 86 Kr(d,d $^{\prime}$)
E 84 Kr(t,p) J Coulomb excitation

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}$		XREF		Comments
0	0+	stable	AB	CDEFGHI	JKLM	Spin: optical spectroscopy measurement (1933Ko02). RMS charge radius $\langle r^2 \rangle^{1/2} = 4.1835$ fm 21 (2013An02).
1564.61 7	2+	0.286 ps +28-24	A	DEFGHI:	JKLM	RMS charge radius $\langle r \rangle^{4/2} = 4.1853 \text{ Im } 21 \text{ (2013Ano2)}.$ $\mu = +2.20 10 \text{ (2014Ku10)}$ $B(E2)\uparrow = 0.106 10 \text{ (2013PrZY)}$ $\beta_2 = 0.106 \text{ (1974Ar29)}$ μ : from g factor=+1.10 5 (2014Ku10) measured using
						transient-field technique in Coulomb excitation. Other: +2.24 28 (2001Me20,2014StZZ). J ^{\pi} : L(t,p)=2.
						T _{1/2} : weighted average of 0.308 ps <i>17</i> (DSA, 2001Me20) and B(E2)=0.128 <i>10</i> (1981Ji03), both in Coulomb excitation. Other: B(E2)=0.11 <i>3</i> (1981Ca01) in Coulomb excitation. <i>μ</i> : (2001Me20).
2250.01 10	4+	3.1 ns 6	A	DE GHI	JKLM	μ=+4.12 56 (2014Ku10) μ: from g=+1.03 14 (2014Ku10) measured using transient-field technique in Coulomb excitation.
						J^{π} : $L(p,p')=4$. $T_{1/2}$: from $\gamma(t)$ in $^{82}Se(^{7}Li,p2n\gamma)$. Configuration= $\pi f_{5/2}^{-1}\otimes \pi p_{3/2}^{-1}$.
2349.47 <i>7</i> 2726.4 <i>4</i>	2 ⁺ 0 ⁺		A	EFGHI E GH		J^{π} : L(t,p)=2. J^{π} : L(t,p)=0.
2850.72 9	$(2,3)^+$		Α	HI		J^{π} : L(t, α)=1 from 3/2 ⁻ ; γ to 2 ⁺ ; γ from (3 ⁻).
2916.83 <i>11</i>	(3-)		A	G		J^{π} : γ rays to 2^+ and 4^+ ; possible β feeding from (1 ⁻) parent; No γ to g.s
2926.16 8	$(2)^{+}$		A		KL	J^{π} : γ to 0^+ ; $L(t,\alpha)=3$ from $3/2^-$; γ from (3^-) .
3009.43 11	$(1,2)^+$		A	GH	L	J^{π} : L(t, α)=3 from 3/2 ⁻ ; γ to g.s
3098.85 9	3-		A	E GHI	L	J^{π} : L(p,p')=3. B(E3)=0.036 <i>12</i> (2002Ki06 evaluation based on β_3 from data in 1974Ar29 and 1978Ma11).
3328.1 5	$(3^+,4^+)$			GH	L	J^{π} : L(p,p')=(4) suggests (4 ⁺); L(t, α)=(1) from 3/2 ⁻ suggests (\leq 3) ⁽⁺⁾ ; γ to 2 ⁺ .
3541.3 <i>4</i>	0+			E GH	L	J^{π} : L(t,p)=0; γ to 2 ⁺ .

⁸⁶Kr isotope identified in mass spectroscopic studies by Aston, Nature 105, 8 (1920); also 1921As01. Other reaction:

 $^{^{86}}$ Kr(n,n) E≤1 MeV: 1989Jo01 analyzed σ (E) to deduce optical model parameter.

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
3583.4 <i>5</i>	$(0^+ \text{ to } 4^+)$	GH		J^{π} : γ to 2^+ .
3782.8 4	(≤3) ⁽⁺⁾		L	J^{π} : L(t, α)=(1) from 3/2 ⁻ .
3816.32 <i>19</i>	(5 ⁺)	D Gh	M	J^{π} : $\Delta J=1 \gamma$ from (6^+) ; γ to 4^+ .
3832 10	0+	E h		J^{π} : L(t,p)=0.
3935.1 <i>3</i>	(5)	D GH	M	XREF: H(3938).
0,00.1	(5)	2 0		J^{π} : L(p,p')=(5) suggests 5 ⁻ . J^{π} =5 ⁺ is also proposed in (p,p') from $\sigma(\theta)$ data and
				$\nu(d_{5/2}g_{9/2}^{-1})$ excitation.
3959 10	$(3^-,4^+)$	E 1	L	XREF: L(3930).
	(- ,.)			J^{π} : L(t,p)=3,4; L(t, α)=(3) from 3/2 ⁻ suggests (1 to 5) ⁽⁺⁾ .
				E(level): this level is most likely different from 3935 due to different spin
				assignments implied from L-transfers.
4038.6 <i>3</i>	$(2,3)^{-}$	F H 1	L	J^{π} : L(t, α)=4 from 3/2 ⁻ ; γ to g.s
4064.12 19	(6^+)	D G	M	Configuration= $\pi f_{5/2}^{-3} \otimes \pi p_{3/2}^{-1} \otimes \pi p_{1/2}^{+2}$ $_{0+} \otimes v g_{9/2}^{-1} \otimes v d_{5/2}^{+1}$.
1001.12 17	(0)	<i>D</i> 0		J^{π} : $\Delta J=2$, E2 γ to 4^{+} .
4072 10	(5^{-})	ЕН		XREF: H(4090).
.0,210	(0)			$J^{\pi}: L(t,p)=(5).$
4111 10	2+	E		J^{π} : L(t,p)=2.
4175 20	(4 ⁺)		1	J^{π} : $L(p,p')=(4)$.
4194 10	2+		1	E(level): this level is most likely different from 4175 due to different spin
.17.10	_		_	assignments implied from L-transfers.
				J^{π} : L(t,p)=2.
4277 10	(7 ⁺) [#]	H 1	L	(-,
4315.82 8	(2^{-})	AEH	L	XREF: E(4298)H(4308).
4313.02 0	(2)	A L II		J^{π} : γ rays to 2^+ and 3^- ; no γ rays to 0^+ and 4^+ ; level not populated in (γ, γ') ;
				possible allowed β transition (log ft =5.4) from (1 ⁻) parent. L(t,p)=3,4 is
				inconsistent, unless $S=1$ is involved with $L=3$ in the transfer of two neutrons.
4200.20	(4 ⁺) [#]	11		inconsistent, unless 5-1 is involved with E-3 in the transfer of two neutrons.
4399 20	1@	H		
4400.82 10		F		
4430.50 25	(6-)	D	M	J^{π} : $\Delta J=1$, D+Q γ to (5 ⁻) and probable configuration=
				$\pi g_{9/2}^{+1} \otimes \pi f_{5/2}^{-1} \otimes \pi g_{9/2}^{+1} \otimes \pi p_{3/2}^{-1}.$
4559 20	$(4^+)^{\#}$	H		
4666 10	$(3^-,4^+)$	E H		J^{π} : L(t,p)=3,4.
4693.3 <i>3</i>	(7)	D	M	J^{π} : $\Delta J=1 \gamma$ rays to (6^-) and (6^+) .
4706 9		E H		
4755.77 25	(7^{+})	D	M	J^{π} : $\Delta J=1$, D+Q γ rays to (6 ⁻) and (6 ⁺); possible configuration= $\nu g_{9/2}^{-1} \otimes \nu d_{5/2}^{+1}$.
4819 <i>12</i>	(2^{+})	E H		J^{π} : L(t,p)=(2).
4867.5 6	(1 ⁻) [@]	F		
4928 10	(4+)	Н		J^{π} : L(p,p')=(4).
4932.55 20		F		
4948 10	(2^{+})	E		J^{π} : L(t,p)=(2).
4991 <i>10</i>		E		
5127 20		H		
5203 20		H		
5313.98 20		A H		
5406.10 <i>23</i>	(1,2)	A H		J^{π} : γ to 0^+ .
5438 10		E		
5517.42 <i>18</i>	1-@	A EF		
5571.2 <i>12</i>	1@	F H		
5637? 10		E		
5660.3 <i>3</i>	(8^+)	D	M	J^{π} : $\Delta J=(2) \gamma$ to (6^+) ; $\Delta J=1$, D+Q γ to (7^+) and possible configuration= $\pi g_{9/2}^{+2}$.
5669.1 5	(-)	D	M	7, 10 (0), = 0 -, = 0 (0) and positive configuration 7.59/2.
5707 10		E		
5788.4 <i>3</i>	(1) [@]	F		
5799 9	(1)	ЕH		
51777				

E(level) [†]	$J^{\pi \ddagger}$		XREF		Comments
5814.5 <i>4</i>	(9+)		D	M	J^{π} : $\Delta J=2 \gamma$ to (7^+) ; $\Delta J=1 \gamma$ to (8^+) .
5862 9			E H		
5924.3 <i>4</i>	1-@		F H		
5981 <i>10</i>			E		
6085.1 5	(1.2)		D	M	J^{π} : γ to 0^+ .
6089.1 <i>5</i> 6118 <i>10</i>	(1,2)	A	E		J ^{**} : γ to 0 [*] :
6160.34 20	1-@	Α	F		
6211.8 3	1@	A	EF		
6248.0 <i>4</i>	(10)	11	D	M	J^{π} : $\Delta J=1 \gamma$ to (9^+) .
6318 <i>10</i>			E		
6328.8 <i>3</i>	1-@		F		
6397 10			E		
6432.16 20	1-@		F		
6463.2 <i>3</i>	1-@		F		
6531.97 20	1-@		F		
6678.9 <i>5</i>	1@		F		
6720.5 6	(1,2)	A			J^{π} : γ to 0^+ .
6768.30 22	(1,2) 1 ⁻ @	A	_		J^{π} : γ to 0^+ .
6818.6 <i>4</i>	1-@		F		
7028.4 <i>4</i> 7128.1 <i>5</i>	(10)		F D		J^{π} : $\Delta J=(1) \gamma$ to (9^+) ; γ to (10) .
7234.6 <i>4</i>	(10) (1)		F		$S: \Delta S=(1) $
7304.5 5	1-@		F		
7314.6 3	1-@		F		
7459.5 5	(11)		D		J^{π} : $\Delta J=1 \gamma$ to (10).
7570.0 <i>4</i>	1-@		F		, , ,
7675.7 4	1@		F		
7745.8 <i>4</i>	1@		F		
7797.9 <i>4</i>	1-@		F		
7846.6 <i>5</i>	1-@		F		
7874.2 7	1-@		F		
7876.4 <i>6</i>	(12)		D		J^{π} : $\Delta J=(1) \gamma$ to (11).
7958.4 <i>4</i>	1-@		F		
8428.6 <i>4</i>	1-@		F		
8621.7 8	1-@		F		
8651.3 <i>3</i>	1-@		F		
8802.5 6	1@		F		
8841.6 8	1-@		F		
9014.4 6	1-@		F		
9068.1 <i>10</i>	1@		F		
9086.1 8	1-@		F		
9452.9 5	1 [@]		F		
9478.0 18	1 [@]		F		
10116.2 8	1 5		F		

⁸⁶Kr Levels (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^π	Mult.	Comments
1564.61	2+	1564.67 9	100	0	0+	E2	B(E2)(W.u.)=9.4 8
2250.01	4+	685.35 7	100	1564.61	2+	E2	B(E2)(W.u.)=0.054 11
2349.47	2+	784.96 8	41 4	1564.61	2+		I_{γ} : unweighted average from ⁸⁶ Br β^- and $(n,n'\gamma)$.
		2349.37 12	100	0	0_{+}		
2726.4	0_{+}	376.8	70 6	2349.47			
		1162.0	100	1564.61			
2850.72	$(2,3)^+$	501.25 7	22.2 20	2349.47			
		1286.08 9	100.0 <i>19</i>	1564.61			
2916.83	(3 ⁻)	666.77 7	100	2250.01			
		1352.1	25 4	1564.61			γ from $(n,n'\gamma)$ only, not reported in β^- decay.
2926.16	$(2)^{+}$	576.72 8	4.8 4	2349.47			γ from β^- decay only, not reported in $(n,n'\gamma)$.
		1361.63 <i>10</i>	100	1564.61			
2000 42	(1.0)±	2925.93 20	21.3 25	0	0+		
3009.43	$(1,2)^+$	660.02 10	79 6	2349.47			
2000.05	2-	3009.0 <i>3</i>	100	0	0+		
3098.85	3-	1534.24 8	100	1564.61			
3328.1	$(3^+,4^+)$ 0^+	1763.5	100	1564.61			
3541.3	0.	1191.6 1976.9	100 50 8	2349.47			
3583.4	$(0^+ \text{ to } 4^+)$	2018.8	100	1564.61 1564.61			
3782.8	$(\le 3)^{(+)}$	3782.7 4	100	0	0 ⁺		
	(≤ 3) (5^+)	1566.3 2	100	2250.01	-		
3816.32 3935.1	(5)	1685.1 3	100	2250.01			
4038.6	$(2,3)^{-}$	4038.5 3	100	0	0+	[M2,E3]	
4064.12	$(2,3)$ (6^+)	247.8 3	38	3816.32		D+Q	E_{γ} : γ not reported In $(n,n'\gamma)$.
4004.12	(0)	1814.1 2	100	2250.01		E2	Lγ. γ not reported in (n,n γ).
4315.82	(2^{-})	1217.02 9	34.6 7	3098.85		22	
	(-)	1306.57 25	2.01 23	3009.43			
		1389.73 9	53.2 10	2926.16			
		1398.48 22	1.8 3	2916.83			
		1465.09 10	39.0 10	2850.72			
		1966.27 <i>11</i>	34.4 10	2349.47			
		2751.06 <i>15</i>	100 <i>3</i>	1564.61	2+		
		4316.5 [‡] 6	0.6 3	0	0^{+}	[M2]	
4400.82	1	4400.7 <i>1</i>	100	0	0_{+}	D	
4430.50	(6-)	495.3 <i>4</i>	42	3935.1	(5)		
		614.2 <i>3</i>	100	3816.32	(5^{+})		
4693.3	(7)	262.8 <i>3</i>	100	4430.50			
		629.3 <i>4</i>	76	4064.12			
		758.2 <i>4</i>	≈32	3935.1	(5)		
4755.77	(7^{+})	325.3 4	20	4430.50			
		691.6 2	100	4064.12	` '		
4867.5	(1^{-})	4867.4 6	100	0	0+	(E1)	
4932.55		4932.4 2	100	0	0+		

 $[\]dagger$ From least-squares fit to E γ values for levels populated in γ -ray studies. Others are weighted averages of values observed in particle reaction studies.

[‡] For high-spin (J>6), the assignments are based on $\gamma(\theta)$ data in (7 Li,p2n γ), unless otherwise stated. # From $\sigma(\theta)$ in (p,p') and assumption of $\nu(d_{5/2}g_{9/2}^{-1})$ excitation.

[@] From $(\gamma \gamma')$ data, transition to 0⁺ g.s. is E1 or dipole.

γ (86Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	Comments
5313.98		2387.79 18	100 11	2926.16	(2)+		
		3064.38 [‡] <i>19</i>	34 <i>4</i>	2250.01	4+		
5406.10	(1,2)	2480.4 5	7.1 11	2926.16			
		5405.80 25	100 6	0	0_{+}		
5517.42	1-	2418.24 23	22 9	3098.85			E_{γ} : γ from ⁸⁶ Br decay only.
		5517.58 25	100 5	0	0+	E1	
5571.2	1	5571.0 12	100	0	0+	D	
5660.3	(8^{+})	904.4 4	63	4755.77			
		967.0 <i>4</i> 1596.2 <i>4</i>	100 88	4693.3 4064.12	(7) (6 ⁺)		
5669.1		1238.6 4	100	4430.50			
5788.4	(1)	5788.2 3	100	0	0+	(D)	
5814.5	(9 ⁺)	154.2 3	100	5660.3	(8 ⁺)	(2)	
		1058.7 <i>3</i>	63	4755.77			
5924.3	1-	5924.1 <i>4</i>	100	0	0+	E1	
6085.1		1391.8 <i>4</i>	100	4693.3	(7)		
6089.1	(1,2)	6088.9 5	100	0	0+		
6160.34	1-	6160.1 2	100	0	0+	E1	
6211.8	1	6211.6 3	100	0	0^{+}	D	
6248.0	(10)	433.5 2	100	5814.5	(9^+)	E1	
6328.8 6432.16	1 ⁻ 1 ⁻	6328.6 <i>3</i> 6431.9 2	100 100	0	0^{+}	E1 E1	
6463.2	1-	6462.9 3	100	0	0+	E1	
6531.97	1-	6531.7 2	100	0	0+	E1	
6678.9	1	6678.6 5	100	0	0^{+}	D	
6720.5	(1,2)	6720.2 6	100	0	0^{+}		
6768.30	(1,2)	3758.8 <i>3</i>	100 12	3009.43			
		6768.0 <i>3</i>	14.8 <i>16</i>	0	0_{+}		
6818.6	1-	6818.3 <i>4</i>	100	0	0+	E1	
7028.4	1-	7028.1 4	100	0	0+	E1	
7128.1	(10)	880.0 4	≈100	6248.0	(10)		
7234.6	(1)	1313.7 <i>4</i> 7234.3 <i>4</i>	≈70 100	5814.5 0	(9^+)	(D)	
7304.5	(1) 1 ⁻	7304.2 5	100	0	0+	E1	
7314.6	1-	7314.3 3	100	0	0+	E1	
7459.5	(11)	331.4 3	100	7128.1	(10)		
	. ,	1211.5 <i>4</i>	≈25	6248.0	(10)		
7570.0	1-	7569.6 <i>4</i>	100	0	0^+	E1	
7675.7	1	7675.3 <i>4</i>	100	0	0+	D	
7745.8	1	7745.4 <i>4</i>	100	0	0+	D	
7797.9	1-	7797.5 4	100	0	0+	E1	
7846.6	1 ⁻ 1 ⁻	7846.2 <i>5</i>	100	0	0^{+}	E1	
7874.2 7876.4	(12)	7873.8 <i>7</i> 416.9 <i>3</i>	100 100	7459.5	(11)	E1	
7958.4	1-	7958.0 <i>4</i>	100	0	0+	E1	
8428.6	1-	8428.2 <i>4</i>	100	0	0+	E1	
8621.7	1-	8621.2 8	100	0	0+	E1	
8651.3	1-	8650.8 <i>3</i>	100	0	0^{+}	E1	
8802.5	1	8802.0 6	100	0	0_{+}	D	
8841.6	1-	8841.1 8	100	0	0+	E1	
9014.4	1-	9013.9 6	100	0	0+	E1	
9068.1	1	9067.6 10	100	0	0+	D	
9086.1	1-	9085.6 8	100	0	0^{+}	E1	
9452.9	1	9452.3 5	100	0	U	D	

γ (86Kr) (continued)

 $^{^{\}dagger}$ Weighted average from $^{86}{\rm Br}~\beta^-$ and $(^7{\rm Li,p2n}\gamma).$ ‡ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013

 $Q(\beta^{-})=2918 \ 3; \ S(n)=7053 \ 3; \ S(p)=13089 \ 4; \ Q(\alpha)=-6168 \ 3$ 2012Wa38 S(2n)=12568 3; S(2p)=23766 4 (2012Wa38).

 α : Additional information 1.

⁸⁸Kr Levels

Cross Reference (XREF) Flags

- ⁸⁸Br β⁻ decay ⁸⁹Br β⁻n decay ²⁵²Cf SF decay Α Coulomb excitation:projectile $^{208}\text{Pb}(^{18}\text{O},\text{X}\gamma)$ В F G
- 86 Kr(t,p) C

²⁴⁸Cm SF decay

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	2.825 h <i>19</i>	ABCDEFG	$\%\beta^{-}=100$
				$T_{1/2}$: weighted average of 2.804 h <i>15</i> (2012Wa21), 2.860 h <i>17</i> (1972Eh02) and 2.805 h <i>25</i> (1964Cl01). Others: 2.78 h <i>6</i> (1949Ko13), 2.92 h <i>17</i> (1940Gl05). $\delta < r^2 > = 0.282 \text{ fm}^2$ 4 relative to 86 Kr (2013An02 evaluation). Measured values: 0.282 fm ² <i>53</i> (1995Ke04) and 0.304 fm ² <i>37</i> (1990Sc30).
775.32 4	2+	11.1 ps <i>12</i>	ABCDEFG	$0.282 \text{ fm}^{-3.5} (1993 \text{ KeO}^4)$ and $0.304 \text{ fm}^{-3.7} (1990 \text{ SC}^{-3.0})$. B(E2) \uparrow =0.090 9
773.32 7	-	11.1 ps 12	IIDCDLI G	J^{π} : L(t,p)=2.
				T _{1/2} : deduced from measured B(E2) and adopted γ-ray properties. B(E2)↑: preliminary result given in 2007Mu07, 2009MuZW.
1577.43 <i>4</i>	2+		ABCD	XREF: C(1588).
				J^{π} : L(t,p)=2.
1643.78 <i>6</i>	4 ⁺		ABCDE G	XREF: B(?)C(1654).
2103.81 8	(4^{+})		A CDE G	J^{π} : (E2) 868 γ to 2 ⁺ , L(t,p)=3,4.
2103.81 8	(4)		A CDE G	XREF: C(2115). J^{π} : stretched Q or ΔJ =0, D 460 γ gives J=4 or 6. 1328 γ to 2 ⁺ prefers J=4
				and non-zero mixing ratio suggests positive parity.
2216.08 6	2+		A C	XREF: C(2224).
				J^{π} : L(t,p)=2.
2341.99 6	$(3,4^+)^{\ddagger}$		Α	
2370.26 7			A C	XREF: C(2379).
2419.62 <i>6</i>	(3^{-})		A C	XREF: C(2428).
2550 24 11	(4^{+})		A C	J^{π} : L(t,p)=3,4 with L=3 better fit.
2550.34 11	(4')		A C	XREF: C(2558). J^{π} : L(t,p)=3,4 with L=4 better fit.
2630.58 <i>6</i>	$(3,4^+)^{\ddagger}$		A	J . L(t,p)-3,4 with L-4 better in.
2651.21 6	(3,4)· 2+		A C	XREF: C(2658).
2031.21 0	2		ис	J^{π} : L(t,p)=2.
2775.83 10	0^{+}		A C	XREF: C(2789).
				J^{π} : L(t,p)=0.
2828.49 7	$(1,2^+)^{@}$		A	
2855.5 <i>3</i>	(5)	≤1 ps	E G	J^{π} : D+Q 752 γ to (4 ⁺).
				$T_{1/2}$: from observed Doppler broadening of the 752 γ in 208 Pb(18 O,X γ).
2875.04 7	(2+)		A	J^{π} : 1231 γ to 4 ⁺ , 2875 γ to 0 ⁺ .
2929.32 8	$(3,4^+)^{\ddagger}$		A	
2945.45 10	$(1,2^+)^{\textcircled{0}}$		Α	
2966 10	(3^{-})		C	J^{π} : L(t,p)=3,4 with L=3 slightly better fit.
3044.64 9			A	

⁸⁸Kr Levels (continued)

```
E(level)
                                                    XREF
                                       T_{1/2}
                                                                                                                       Comments
                      (1,2^+)^{\textcircled{@}}
3113.51 21
3160.93<sup>&</sup> 25
                      (5)
                                                      c E G
                                                                   J<sup>\pi</sup>: (D+Q) 1517\gamma to 4<sup>+</sup>, L(p,t)≥5 for level at 3169 10.
3163.43 9
                      (3,4^+)^{\ddagger}
                                                   Α
3167.15<sup>&</sup> 25
                                                                  J^{\pi}: Q 1523\gamma to 4<sup>+</sup>, L(p,t)\geq5 for level at 3169 10.
                      (6)
                                                      c E G
3204.00 11
                                                   Α
                      3^{-},4^{+}
3246 10
                                                      C
                                                                   J^{\pi}: L(t,p)=3,4.
3295.2 3
                                                                   T_{1/2}: from observed Doppler broadening of the 752\gamma in ^{208}Pb(^{18}O,X\gamma).
                      (5,6)
                                                         E G
                                       ≤1 ps
                                                                   J^{\pi}: D 440\gamma to (5).
                                                      C
3312 10
                                                                   J^{\pi}: L(t,p)\geq5.
                      (1,2^+)^{\textcircled{a}}
3331.62 21
                                                   A
3335.92 8
                      (3,4^+)^{\ddagger}
                                                   Α
3341.49 11
                      (2^{+})
                                                   Α
                                                                   J^{\pi}: 1698\gamma to 4<sup>+</sup>, 3341\gamma to 0<sup>+</sup>.
3362.13 7
                                                   Α
                      (1,2^+)^{\textcircled{a}}
3399.19 8
                                                   Α
3519 10
                                                      C
3553.3 10
                                                         Ε
                      2+
                                                      C
3608 10
                                                                   J^{\pi}: L(t,p)=2.
3652 10
                      3^{-},4^{+}
                                                                   J^{\pi}: L(t,p)=3,4.
                                                      C
3710.04 11
                      (3)
                                                   A C
                                                                   XREF: C(3706).
                                                                   J^{\pi}: L(t,p)=3,4 with L=4 better fit but log ft=7.1 from (2<sup>-</sup>).
3761 10
                      3^{-},4^{+}
                                                      C
                                                                   J^{\pi}: L(t,p)=3,4.
3770.78 8
                      (1^-,2^+)
                                                                   J^{\pi}: 1351\gamma to (3<sup>-</sup>), 3770\gamma to 0<sup>+</sup>.
                                                   A
                                                      C
3866 10
3904.7 5
                                                         E G
3920.9 3
                      (7)
                                                       DE G
                                                                   J^{\pi}: D+Q 754\gamma to (6), Q 760\gamma to (5).
3932 10
                      (2^{+})
                                                   A C
4048.4 3
                                                                   XREF: C(4036).
                                                                   J^{\pi}: L(t,p)=(2).
4100.34 11
                      (3^{-})
                                                   A C
                                                                   XREF: C(4075).
                                                                   J^{\pi}: L(t,p)=(3).
4220 10
                      (3^-,4^+)
                                                      C
                                                                   J^{\pi}: L(t,p)=(3,4).
                                                                   XREF: C(4261).
4268.32 11
                                                   A C
                      (1^-,2,3)
                                                                   J^{\pi}: 1849\gamma to (3<sup>-</sup>), 3493\gamma to 2<sup>+</sup>, log ft=6.9 from (2<sup>-</sup>).
                      (1,2^+)^{@}
4287.7 3
                                                   Α
4342.6 4
                                                             G
                                                                   J^{\pi}: 422\gamma to (7), 1175.5\gamma to (6).
                      (8)
4372 10
                                                      C
4430 10
                      (2^{+})
                                                      C
                                                                   J^{\pi}: L(t,p)=(2).
                                                             G
4479.2 7
4560.15 22
                      (1,2,3)^{\#}
                                                   A
                      (1,2^+)^{@}
4563.2 3
                                                   Α
                      (1^-,2^+)
4596.85 17
                                                   A
                                                                   J^{\pi}: 2177\gamma to (3<sup>-</sup>), 4597\gamma to 0<sup>+</sup>.
4707.78 15
                      (1^-,2^+)
                                                                   J^{\pi}: 2288\gamma to (3<sup>-</sup>), 4708\gamma to 0<sup>+</sup>.
                                                   A
4857.5 5
                                                             G
4923.51 10
                      (1^-,2,3)
                                                                   J^{\pi}: 2504\gamma to (3<sup>-</sup>), log ft=6.2 from (2<sup>-</sup>).
                                                   Α
                      (1,2^+)^{@}
4985.75 15
                                                   Α
                      (1,2^+)^{@}
5018.7 3
                                                   A
5070.27 18
                      (2^+,3,4^+)
                                                                   J^{\pi}: 3426\gamma to 4<sup>+</sup>, 3493\gamma to 2<sup>+</sup>.
                                                   Α
                      (1,2^+)^{@}
5088.2 4
                                                   A
                                                                  J^{\pi}: 850\gamma to (8), 1272\gamma to (7).
5193.0 5
                      (9)
                      (1,2,3)#
5270.5 5
                                                   Α
5439.4 5
                      (1,2,3)^{\#}
                                                   Α
5495.81 20
                      (1,2,3)
                                                   Α
                                                                   J^{\pi}: 3076\gamma to (3<sup>-</sup>), log ft=6.0 from (2<sup>-</sup>).
```

⁸⁸Kr Levels (continued)

E(level) [†]	J^π	XREF	Comments
5503.3 <i>3</i>	$(1,2^+)^{@}$	A	
5627.1 4	$(1,2,3)^{\#}$	A	
5693.4 3	(1,2,3)	Α	J^{π} : 3274 γ to (3 ⁻), log ft =7.2 from (2 ⁻).
5726.2 3		A	
5856.8 <i>6</i> 5914.99 <i>20</i>	$(1^-,2^+,3^-)$	G A	J^{π} : 3496 γ to 3 ⁻ , 5916 γ to 0 ⁺ .
5972.9 <i>5</i>	$(1,2,3)^{\#}$	A	
5977.47 23	$(1,2,3)^{\#}$	A	
5988.5 <i>3</i>	(1,2,3)	Α	J^{π} : 3569 γ to (3 ⁻); log ft =6.3 from (2 ⁻).
6034.4 4	$(1,2^+)^{\bigcirc}$	Α	
6071.2 4	$(1,2^+)^{\textcircled{@}}$	Α	
6109.2 <i>12</i>		G	
6231.7 3	$(1,2^+)^{\textcircled{0}}$	A	
6233.5 7	#	G	
6539.2 5	$(1,2,3)^{\#}_{\mu}$	A	
6718.3 <i>4</i>	$(1,2,3)^{\#}$	A	
6758.0 <i>5</i>	$(1,2,3)^{\#}$	A	
6999.5 5	$(1,2^+)^{\textcircled{0}}$	A	
7490.6 <i>10</i>		G	
7969.5 11		G	

 $^{^{\}dagger}$ Levels with ΔE <2 keV are deduced from the Adopted Gammas using least-squares fit, the others are from (t,p).

[‡] From γ to 2⁺ and 4⁺ levels, no γ to 0⁺, log ft=7.4 - 8.0 in β ⁻ decay of (2⁻) ⁸⁸Br. # From γ to 2⁺, log ft=6.2 - 7.3 in β ⁻ decay of (2⁻) ⁸⁸Br.

[@] From γ to 0⁺.

[&]amp; Ordering of the 754y-1524y and 760y-1517y cascades is reversed in ²⁴⁸Cm SF decay (2000Rz02) and ²⁵²Cf SF decay (2011Li34) resulting in levels at 2397 and 2404 in the former and 3161 and 3168 in the latter. The level scheme of 2011Li34 is adopted here based on the observation of an additional linking transition and the presence of a corresponding level observed in (t,p).

$\gamma(^{88}{\rm Kr})$

						/	<u>, , , , , , , , , , , , , , , , , , , </u>	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
775.32	2+	775.28 6	100	0.0 0+	E2		9.27×10 ⁻⁴	$\alpha(K)$ =0.000822 12; $\alpha(L)$ =8.88×10 ⁻⁵ 13; $\alpha(M)$ =1.436×10 ⁻⁵ 21; $\alpha(N)$ =1.442×10 ⁻⁶ 21 B(E2)(W.u.)=7.8 9 Mult.: from $\gamma\gamma(\theta)$ in ²⁴⁸ Cm SF decay and Coulomb Excitation.
1577.43	2+	802.14 <i>6</i> 1577.41 <i>6</i>	100.0 <i>10</i> 26.34 <i>24</i>	775.32 2 ⁺ 0.0 0 ⁺				name. From 77(0) in the original and contains Exchange.
1643.78	4+	868.4 1	100	775.32 2+	(E2)		6.96×10^{-4}	$\alpha(K)$ =0.000617 9; $\alpha(L)$ =6.63×10 ⁻⁵ 10; $\alpha(M)$ =1.073×10 ⁻⁵ 15; $\alpha(N)$ =1.079×10 ⁻⁶ 16 Mult.: Q from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay, assumed E2.
2103.81	(4 ⁺)	460.02 5	100‡ 17	1643.78 4+	M1+E2	+0.26# 4		Mult.: D+Q from $\gamma\gamma(\theta)$ in 252 Cf SF decay, $\Delta\pi$ =no from level scheme.
2216.08	2+	1328.9 [‡] <i>3</i> 1440.5 <i>1</i> 2216.3 <i>3</i>	13 [‡] 4 100.0 <i>12</i> 17.1 <i>12</i>	775.32 2 ⁺ 775.32 2 ⁺ 0.0 0 ⁺				
2341.99	(3,4+)	125.9 <i>I</i> 698.2 <i>I</i> 764.6 <i>I</i> 1566.7 <i>I</i>	1.1 <i>4</i> 11.3 9 21.7 <i>13</i>	2216.08 2 ⁺ 1643.78 4 ⁺ 1577.43 2 ⁺				
2370.26		792.9 <i>I</i> 1594.8 <i>I</i>	100 <i>19</i> 100 <i>4</i> 17 <i>8</i>	775.32 2 ⁺ 1577.43 2 ⁺ 775.32 2 ⁺				
2419.62	(3^{-})	1644.3 <i>I</i>	100.0 21	775.32 2 ⁺				
2550.34	(4 ⁺)	1775.0 <i>1</i>	100	775.32 2 ⁺				
2630.58	(3,4+)	288.68 <i>10</i> 986.4 <i>1</i> 1053.5 <i>1</i>	13.1 <i>17</i> 19.5 <i>21</i> 100.0 <i>21</i>	2341.99 (3,4 ⁺) 1643.78 4 ⁺ 1577.43 2 ⁺				
2651.21	2+	1855.2 <i>I</i> 309.2 <i>3</i> 1073.74 <i>6</i> 1876.0 <i>I</i> 2650.8 <i>3</i>	51 4 8 3 100 3 32 5 15 5	775.32 2 ⁺ 2341.99 (3,4 ⁺) 1577.43 2 ⁺ 775.32 2 ⁺ 0.0 0 ⁺				
2775.83	0+	1198.4 <i>I</i> 2000.4 <i>3</i>	100 7 55 9	1577.43 2 ⁺ 775.32 2 ⁺				
2828.49	(1,2+)	486.5 <i>I</i> 612.4 <i>I</i> 1251.1 <i>I</i> 2053.08 <i>I2</i> 2828.5 <i>3</i>	25 7 100 20 40 10 64 5 74 6	2341.99 (3,4 ⁺) 2216.08 2 ⁺ 1577.43 2 ⁺ 775.32 2 ⁺ 0.0 0 ⁺				
2855.5 2875.04	(5) (2 ⁺)	751.8 [‡] 3 658.9 1 1231.3 1 1297.6 1 2099.6 3	100 [‡] 13 <i>3</i> 9.6 22 10.4 <i>11</i> 14 <i>3</i>	2103.81 (4 ⁺) 2216.08 2 ⁺ 1643.78 4 ⁺ 1577.43 2 ⁺ 775.32 2 ⁺	D+Q [#]			

γ (88Kr) (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	Comments
	2875.04	(2+)	2875.1 3	100 4	0.0 0+		
	2929.32	$(3,4^+)$	1285.9 <i>1</i>	35.4 <i>23</i>	1643.78 4 ⁺		
			1351.5 <i>1</i>	100 23	1577.43 2 ⁺		
			2154.1 <i>3</i>	54 8	775.32 2 ⁺		
	2945.45	$(1,2^+)$	1368.0 <i>I</i>	41 3	1577.43 2 ⁺		
			2169.8 <i>3</i>	27.6 21	775.32 2+		
			2945.7 <i>3</i>	100 <i>3</i>	$0.0 0^{+}$		
	3044.64		1467.0 <i>1</i>	47 3	1577.43 2+		
			2269.67 14	100 7	775.32 2 ⁺		
	3113.51	$(1,2^+)$	2338.2 <i>3</i>	100 33	775.32 2+		
			3113.4 <i>3</i>	50 27	$0.0 0^{+}$		
	3160.93	(5)	1517.1 [‡] <i>3</i>	100 [‡]	1643.78 4 ⁺	$(D+Q)^{\#}$	
	3163.43	$(3,4^+)$	743.7 <i>1</i>	100 23	2419.62 (3-)		
			1519.8 <i>I</i>	13 <i>3</i>	1643.78 4+		
			2387.7 <i>3</i>	51 <i>5</i>	775.32 2 ⁺		
	3167.15	(6)	1523.4 [‡] <i>3</i>	100 [‡]	1643.78 4+		Mult.: Q from $\gamma \gamma(\theta)$ in 208 Pb(18 O,X γ).
	3204.00	,	862.0 <i>1</i>	27 5	2341.99 (3,4+)		
			2428.7 <i>3</i>	100 8	775.32 2+		
ι	3295.2	(5,6)	439.8 <i>3</i>	100 30	2855.5 (5)	D	E_{γ} , I_{γ} , Mult.: From ²⁰⁸ Pb(¹⁸ O, X_{γ}).
			1191.2 5	40 13	2103.81 (4+)		E_{γ}, I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X γ).
	3331.62	$(1,2^+)$	2556.1 <i>3</i>	100 20	775.32 2+		
			3331.7 <i>3</i>	40 20	$0.0 0^{+}$		
	3335.92	$(3,4^+)$	1692.0 <i>1</i>	16 <i>10</i>	1643.78 4 ⁺		
			1758.6 <i>1</i>	100 12	1577.43 2 ⁺		
	3341.49	(2^{+})	1697.7 <i>1</i>	25 15	1643.78 4+		
			3341.4 <i>3</i>	100 50	$0.0 0^{+}$		
	3362.13		942.5 1	90 15	2419.62 (3-)		
			1146.0 <i>I</i>	69 13	2216.08 2+		
			1784.7 <i>I</i>	46 7	1577.43 2+		
ļ	2200 10	(1.0+)	2586.9 3	100 12	775.32 2 ⁺		
	3399.19	$(1,2^+)$	1028.9 <i>I</i>	23 4	2370.26		
			1821.7 <i>I</i>	15 3	1577.43 2 ⁺		
			2624.0 3	100 4	775.32 2+		
			3399.5 3	37 5	0.0 0+		
	3553.3	(2)	1909.5 [‡]	100‡	1643.78 4+		
	3710.04	(3)	1290.4 <i>I</i>	21.2 16	2419.62 (3 ⁻)		
ļ			2132.7 3	2.8 16	1577.43 2 ⁺		
ļ	2770.70	(1- 2+)	2934.7 3	100 4	775.32 2 ⁺		
ļ	3770.78	$(1^-,2^+)$	1351.2 1	71 48	2419.62 (3 ⁻)		
			1428.8 1	100 10	2341.99 (3,4+)		
Į			2995.2 3	100 17	775.32 2 ⁺ 0.0 0 ⁺		
- 1			3770.3 <i>3</i>	29 10	$0.0 0^{+}$		

5

γ (88Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
3904.7		609.5 4	100	3295.2	(5,6)		E_{γ} , I_{γ} : From ²⁰⁸ Pb(¹⁸ O, $X\gamma$).
3920.9	(7)	753.8 [‡] 2	100 [‡] 25	3167.15	(6)	D+Q#	
	,	760.0 [‡] 2	88 [‡] 25	3160.93		Q [#]	
4048.4	(2^{+})	2470.9 3	20 8	1577.43		Q	
	(-)	4048.2 5	100 50	0.0			
4100.34	(3^{-})	2522.87 10	100	1577.43			
4268.32	$(1^{-},2,3)$	1848.7 <i>I</i>	4.2 16	2419.62			
		3492.8 <i>3</i>	100 11	775.32	2+		
4287.7	$(1,2^+)$	3512.5 <i>3</i>	100 33	775.32			
		4287.2 5	53 23	0.0	0_{+}		
4342.6	(8)	421.6 <i>4</i>	100 <i>50</i>	3920.9	(7)		E_{γ} , I_{γ} : From 208 Pb(18 O, X_{γ}).
		1175.5 7	70 <i>30</i>	3167.15	(6)		E_{γ} , I_{γ} : From 208 Pb(18 O, X_{γ}).
4479.2		574.4 <i>4</i>	100	3904.7			E_{γ} , I_{γ} : From 208 Pb(18 O, X_{γ}).
4560.15	(1,2,3)	2983.1 <i>3</i>	100 <i>13</i>	1577.43			
		3784.3 <i>3</i>	21 10	775.32	2+		
4563.2	$(1,2^+)$	2192.9 3	5.0 16	2370.26			
		4563.3 5	100.0 20	0.0			
4596.85	$(1^-,2^+)$	2177.3 3	34 3	2419.62			
		3019.3 3	100 6	1577.43			
		3821.4 3	13.5 24	775.32			
4707.78	$(1^-,2^+)$	4596.7 5	4.1 18	0.0	0^{+}		
4/0/./8	(1,2)	2288.0 <i>3</i> 2492.0 <i>3</i>	11.8 <i>8</i> 8.2 <i>16</i>	2419.62 2216.08			
		3130.4 3	18 3	1577.43			
		3932.0 <i>3</i>	100 3	775.32			
		4707.8 5	8.2 16	0.0	0^{+}		
4857.5		936.6 4	100	3920.9	(7)		E_{γ},I_{γ} : From ²⁰⁸ Pb(¹⁸ O,X γ).
4923.51	$(1^-,2,3)$	2503.90 12	10.9 16	2419.62			2),1). 110m 10(0,11)).
.,	(- ,-,-)	2707.3 3	6.4 6	2216.08			
		4148.05 <i>13</i>	100 <i>3</i>	775.32			
4985.75	$(1,2^+)$	4209.9 5	6 3	775.32			
		4985.64 <i>16</i>	100 <i>3</i>	0.0			
5018.7	$(1,2^+)$	3440.9 <i>3</i>	13 <i>3</i>	1577.43			
		5019.5 <i>5</i>	100 4	0.0			
5070.27	$(2^+,3,4^+)$	2650.8 <i>3</i>	46 16	2419.62			
		3426.2 <i>3</i>	100 14	1643.78			
* 000 *	(4.94)	3492.8 <i>3</i>	40 20	1577.43			
5088.2	$(1,2^+)$	4312.4 5	100 9	775.32			
5102 °	(0)	5088.4 5	42 10	0.0	0+		F I F 208p (180 M)
5193.0	(9)	850 1	15 7	4342.6	(8)		E_{γ}, I_{γ} : From ${}^{208}\text{Pb}({}^{18}\text{O}, X_{\gamma})$.
5070.5	(1.0.0)	1272.1 5	100 30	3920.9	(7)		E_{γ} , I_{γ} : From 208 Pb(18 O, X_{γ}).
5270.5	(1,2,3)	4495.1 <i>5</i>	100	775.32	21		

6

γ (88 Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
5439.4	(1,2,3)	4663.9 5	100	775.32 2+	
5495.81	(1,2,3)	3076.4 <i>3</i>	2.8 19	2419.62 (3-)	
		3279.2 [@] 3	100 9	2216.08 2+	
		4720.9 5	88 6	775.32 2 ⁺	
5503.3	$(1,2^+)$	3161.2 3	100 33	2341.99 (3,4+)	
	())	5503.2 5	13 10	0.0 0+	
5627.1	(1,2,3)	4049.6 5	32 21	1577.43 2 ⁺	
		4851.6 5	100 7	775.32 2+	
5693.4	(1,2,3)	3273.7 <i>3</i>	100	2419.62 (3-)	
5726.2		3510.0 <i>3</i>	100	2216.08 2+	
5856.8		999.2 <i>4</i>	100	4857.5	E_{γ} , I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X_{γ}).
5914.99	$(1^-,2^+,3^-)$	3495.5 <i>3</i>	100 11	2419.62 (3-)	
		3698.3 <i>3</i>	55 41	2216.08 2+	
		5915.7 <i>5</i>	23 5	$0.0 0^{+}$	
5972.9	(1,2,3)	5197.4 <i>5</i>	100	775.32 2+	
5977.47	(1,2,3)	3635.3 <i>3</i>	14 7	2341.99 (3,4+)	
		4400.0 5	70 <i>7</i>	1577.43 2 ⁺	
		5202.2 <i>5</i>	100 <i>43</i>	$775.32 \ 2^{+}$	
5988.5	(1,2,3)	3568.8 <i>3</i>	60 <i>7</i>	2419.62 (3-)	
		5213.1 5	100 9	775.32 2+	
6034.4	$(1,2^+)$	5259.3 5	38 23	775.32 2+	
6071.2	(1.0±)	6033.8 5	100 23	$0.0 0^{+}$	
6071.2	$(1,2^+)$	5295.7 5	100 6	775.32 2+	
		6071.0 5	7 4	$0.0 0^{+}$	709-119
6109.2	(4 a+)	1630 <i>I</i>	100	4479.2	E_{γ},I_{γ} : From ²⁰⁸ Pb(¹⁸ O,X γ).
6231.7	$(1,2^+)$	4015.5 5	59 10	2216.08 2+	
		5456.3 5	100 6	775.32 2+	
		6231.5 5	5 3	$0.0 0^+$	208 0 18 0 7
6233.5	(1.2.2)	1040.5 5	100	5193.0 (9)	E_{γ},I_{γ} : From ²⁰⁸ Pb(¹⁸ O,X γ).
6539.2	(1,2,3)	5763.7 5	100	775.32 2 ⁺	
6718.3	(1,2,3)	4376.2 5	100 63	2341.99 (3,4+)	
6759.0	(1.2.2)	5942.8 5	100 50	775.32 2 ⁺	
6758.0	(1,2,3)	5982.5 5	100	775.32 2+	
6999.5	$(1,2^+)$	6999.2 5	100	0.0 0+	E. J., E., 208pt/180 V.)
7490.6		1257.1 7	100	6233.5	E_{γ},I_{γ} : From ${}^{208}\text{Pb}({}^{18}\text{O},X_{\gamma})$.
7969.5		478.9 <i>4</i>	100	7490.6	E_{γ} , I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X_{γ}).

 $^{^{\}dagger}$ From $^{88}{\rm Br}\,\beta^-$ decay, unless noted otherwise. ‡ From $^{252}{\rm Cf}$ SF decay. $^{\#}$ From $\gamma\gamma(\theta)$ in $^{252}{\rm Cf}$ SF decay. $^{@}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

