Optimization

Lusine Poghosyan

AUA

February 25, 2019

Newton's Method

Let $f \in \mathbb{C}^2(\mathbb{R}^n)$ and our aim is to find the minimizer of f.

Let $x^{(0)} \in \mathbb{R}^n$ be the starting point. Then we construct a quadratic function that matches its value, first and second derivatives at $x^{(0)}$ with that of the function f. This quadratic function has the form

$$q(x) = f\left(x^{(0)}\right) + \nabla f\left(x^{(0)}\right)^{T} \left(x - x^{(0)}\right) + \frac{1}{2} \left(x - x^{(0)}\right)^{T} \nabla^{2} f\left(x^{(0)}\right) \left(x - x^{0}\right).$$

Then, instead of minimizing f, we minimize its approximation q.

The FONC for q yields

$$\nabla q(x) = \nabla f\left(x^{(0)}\right) + \nabla^2 f\left(x^{(0)}\right)\left(x - x^{(0)}\right) = 0.$$

The solution of this system

$$x^{(1)} = x^{(0)} - \left[\nabla^2 f(x^{(0)})\right]^{-1} \nabla f(x^{(0)})$$

will be our next approximation. Reapplying this procedure we get the sequence defined by Newton's Method

$$x^{(k+1)} = x^{(k)} - \left[\nabla^2 f(x^{(k)})\right]^{-1} \nabla f(x^{(k)}), \quad k = 0, 1, \dots$$

The *k*-th iteration can be written in two steps:

- **1.** Solve $\nabla^{2} f(x^{(k)}) d^{(k)} = -\nabla f(x^{(k)})$.
- **2.** Set $x^{(k+1)} = x^{(k)} + d^{(k)}$.

- The convergence is local.
- Suppose that $f \in C^3$ and $x^* \in \mathbb{R}^n$ is a point such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is invertible. Then, for all $x^{(0)}$ sufficiently close to x^* , Newton's method is well-defined for all k and converges to x^* with an order of convergence at least 2.
- The direction of search is

$$d^{(k)} = -\left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right).$$

If $\nabla^2 f(x^{(k)})$ is positive definite, then $d^{(k)}$ is a descent direction.

Modification of Newton's method

The step size is usually $\alpha_k = 1$ but sometimes one takes other step size and gets

$$x^{(k+1)} = x^{(k)} - \alpha_k \left[\nabla^2 f\left(x^{(k)}\right) \right]^{-1} \nabla f\left(x^{(k)}\right), \quad k = 0, 1, \dots$$

For example we can take

$$\alpha_k = \operatorname{arg\,min}_{\alpha \ge 0} f\left(x^{(k)} - \alpha \left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)\right)$$

to ensure that $f(x^{(k+1)}) < f(x^{(k)})$.

Stopping conditions

- $||\nabla f(\mathbf{x}^{(k)})|| < \varepsilon$
- $||x^{(k+1)} x^{(k)}|| < \varepsilon$ or $\frac{||x^{(k+1)} x^{(k)}||}{||x^{(k)}||} < \varepsilon$ if $||x^{(k)}|| \neq 0$
- $|f(x^{(k+1)}) f(x^{(k)})| < \varepsilon$ or $\frac{|f(x^{(k+1)}) f(x^{(k)})|}{|f(x^{(k)})|} < \varepsilon$ if $f(x^{(k)}) \neq 0$.

Example

Assume we want to use the Newton's Method to minimize

$$f(x_1,x_2)=2x_1^2+x_2^2-2x_1x_2.$$

We start with $x^{(0)} = (1,1)^T$. Calculate $x^{(2)}$ by using the Newton's Method. Explain why after one iteration we have that $\nabla f(x^{(1)}) = 0$.