

# MM54HC244/MM74HC244 Octal TRI-STATE® Buffer

### **General Description**

These TRI-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. All three devices have a fanout of 15 LS-TTL equivalent inputs.

The MM54HC244/MM74HC244 is a non-inverting buffer and has two active low enables (1G and 2G). Each enable independently controls 4 buffers. This device does not have Schmitt trigger inputs.

All inputs are protected from damage due to static discharge by diodes to  $\mbox{V}_{\mbox{\footnotesize{CC}}}$  and ground.

### **Features**

- Typical propagation delay: 14 ns
- TRI-STATE outputs for connection to system buses
- Wide power supply range: 2-6V
- Low quiescent supply current: 80 μA (74 Series)
- Output current: 6 mA

### **Connection Diagram**

#### **Dual-In-Line Package**



TL/F/5327-1

Order Number MM54HC244 or MM74HC244

### **Truth Table**

### 'HC244

| 1G | 1A | 1Y | 2G | 2A | 2Y |
|----|----|----|----|----|----|
| L  | L  | L  | L  | L  | L  |
| L  | Н  | Н  | L  | Н  | Н  |
| Н  | L  | Z  | Н  | L  | Z  |
| Н  | Н  | Z  | Н  | Н  | Z  |

H = high level, L = low level, Z = high impedance

TRI-STATE® is a registered trademark of National Semiconductor Corp

# Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )                        | -0.5 to $+7.0$ V                                |
|----------------------------------------------------------|-------------------------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                      | $-$ 1.5 to $V_{CC}$ $+$ 1.5 $V$                 |
| DC Output Voltage (V <sub>OUT</sub> )                    | $-0.5$ to $V_{CC} + 0.5V$                       |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> ) | $\pm$ 20 mA                                     |
| DC Output Current, per pin (IOUT)                        | $\pm35~\text{mA}$                               |
| DC $V_{CC}$ or GND Current, per pin ( $I_{CC}$ )         | $\pm70~mA$                                      |
| Storage Temperature Range (T <sub>STG</sub> )            | $-65^{\circ}\text{C to } + 150^{\circ}\text{C}$ |

Power Dissipation (P<sub>D</sub>)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature  $(T_L)$ 

(Soldering 10 seconds) 260°C

## **Operating Conditions**

|                                               | Min | Max      | Units |
|-----------------------------------------------|-----|----------|-------|
| Supply Voltage (V <sub>CC</sub> )             | 2   | 6        | V     |
| DC Input or Output Voltage                    | 0   | $V_{CC}$ | V     |
| (V <sub>IN</sub> , V <sub>OUT</sub> )         |     |          |       |
| Operating Temp. Range (T <sub>A</sub> )       |     |          |       |
| MM74HC                                        | -40 | +85      | °C    |
| MM54HC                                        | -55 | + 125    | °C    |
| Input Rise or Fall Times                      |     |          |       |
| $(t_{\rm f}, t_{\rm f})$ $V_{\rm CC} = 2.0 V$ |     | 1000     | ns    |
| $V_{CC} = 4.5V$                               |     | 500      | ns    |
| $V_{CC} = 6.0V$                               |     | 400      | ns    |
|                                               |     |          |       |

### **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                                      | Conditions                                                                              | v <sub>cc</sub> | T <sub>A</sub> = | = 25°C | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units |
|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|------------------|--------|--------------------------------------|---------------------------------------|-------|
|                 |                                                |                                                                                         |                 | Тур              |        | Guaranteed Limits                    |                                       |       |
| V <sub>IH</sub> | Minimum High Level                             |                                                                                         | 2.0V            |                  | 1.5    | 1.5                                  | 1.5                                   | ٧     |
|                 | Input Voltage                                  |                                                                                         | 4.5V            |                  | 3.15   | 3.15                                 | 3.15                                  | V     |
|                 |                                                |                                                                                         | 6.0V            |                  | 4.2    | 4.2                                  | 4.2                                   | V     |
| $V_{IL}$        | Maximum Low Level                              |                                                                                         | 2.0V            |                  | 0.5    | 0.5                                  | 0.5                                   | V     |
|                 | Input Voltage**                                |                                                                                         | 4.5V            |                  | 1.35   | 1.35                                 | 1.35                                  | V     |
|                 |                                                |                                                                                         | 6.0V            |                  | 1.8    | 1.8                                  | 1.8                                   | V     |
| $V_{OH}$        | Minimum High Level                             | $V_{IN} = V_{IH}$ or $V_{IL}$                                                           |                 |                  |        |                                      |                                       |       |
|                 | Output Voltage                                 | I <sub>OUT</sub>  ≤20 μA                                                                | 2.0V            | 2.0              | 1.9    | 1.9                                  | 1.9                                   | V     |
|                 |                                                |                                                                                         | 4.5V            | 4.5              | 4.4    | 4.4                                  | 4.4                                   | V     |
|                 |                                                |                                                                                         | 6.0V            | 6.0              | 5.9    | 5.9                                  | 5.9                                   | V     |
|                 |                                                | V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub>                                     |                 |                  |        |                                      |                                       | V     |
|                 |                                                | I <sub>OUT</sub>  ≤6.0 mA                                                               | 4.5V            | 4.2              | 3.98   | 3.84                                 | 3.7                                   | V     |
|                 |                                                | I <sub>OUT</sub>  ≤7.8 mA                                                               | 6.0V            | 5.7              | 5.48   | 5.34                                 | 5.2                                   | V     |
| $V_{OL}$        | Maximum Low Level                              | V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub>                                     |                 |                  |        |                                      |                                       |       |
|                 | Output Voltage                                 | I <sub>OUT</sub>  ≤20 μA                                                                | 2.0V            | 0                | 0.1    | 0.1                                  | 0.1                                   | V     |
|                 |                                                |                                                                                         | 4.5V            | 0                | 0.1    | 0.1                                  | 0.1                                   | V     |
|                 |                                                |                                                                                         | 6.0V            | 0                | 0.1    | 0.1                                  | 0.1                                   | V     |
|                 |                                                | V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub>                                     |                 |                  |        |                                      |                                       |       |
|                 |                                                | I <sub>OUT</sub>  ≤6.0 mA                                                               | 4.5V            | 0.2              | 0.26   | 0.33                                 | 0.4                                   | V     |
|                 |                                                | I <sub>OUT</sub>  ≤7.8 mA                                                               | 6.0V            | 0.2              | 0.26   | 0.33                                 | 0.4                                   | V     |
| I <sub>IN</sub> | Maximum Input<br>Current                       | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                 | 6.0V            |                  | ±0.1   | ±1.0                                 | ±1.0                                  | μΑ    |
| l <sub>OZ</sub> | Maximum TRI-STATE<br>Output Leakage<br>Current | $V_{IN} = V_{IH}$ , or $V_{IL}$<br>$V_{OUT} = V_{CC}$ or GND<br>$\overline{G} = V_{IH}$ | 6.0V            |                  | ±0.5   | ±5                                   | ±10                                   | μΑ    |
| Icc             | Maximum Quiescent<br>Supply Current            | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$                                            | 6.0V            |                  | 8.0    | 80                                   | 160                                   | μΑ    |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup> V<sub>IL</sub> limits are currently tested at 20% of V<sub>CC</sub>. The above V<sub>IL</sub> specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.

## AC Electrical Characteristics MM54HC244/MM74HC244

 $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ ,  $t_r = t_f = 6$  ns

| Symbol                              | Parameter                                | Conditions                         | Тур | Guaranteed<br>Limit | Units |
|-------------------------------------|------------------------------------------|------------------------------------|-----|---------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay             | $C_L = 45 pF$                      | 14  | 20                  | ns    |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Enable Delay to Active Output    | $R_L = 1 k\Omega$<br>$C_L = 45 pF$ | 17  | 28                  | ns    |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Disable Delay from Active Output | $R_L = 1 k\Omega$<br>$C_L = 5 pF$  | 15  | 25                  | ns    |

## $\textbf{AC Electrical Characteristics} \ \textit{V}_{CC} = 2.0 \textit{V} - 6.0 \textit{V}, \ \textit{C}_{L} = 50 \ \textit{pF}, \ \textit{t}_{r} = \textit{t}_{f} = 6 \ \textit{ns} \ (\textit{unless otherwise specified})$

| Symbol                              | Parameter                                 | Conditions V <sub>CC</sub>                                             | T <sub>A</sub> =     | 25°C                  | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units           |                |
|-------------------------------------|-------------------------------------------|------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------|---------------------------------------|-----------------|----------------|
|                                     |                                           |                                                                        |                      | Typ Guaranteed Limits |                                      |                                       | Limits          | 7              |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay              | $C_L = 50 \text{ pF}$<br>$C_L = 150 \text{ pF}$                        | 2.0V<br>2.0V         | 58<br>83              | 115<br>165                           | 145<br>208                            | 171<br>246      | ns<br>ns       |
|                                     |                                           | $C_L = 50 \text{ pF}$<br>$C_L = 150 \text{ pF}$                        | 4.5V<br>4.5V         | 14<br>17              | 23<br>33                             | 29<br>42                              | 34<br>49        | ns<br>ns       |
|                                     |                                           | $C_L = 50 \text{ pF}$<br>$C_L = 150 \text{ pF}$                        | 6.0V<br>6.0V         | 10<br>14              | 20<br>28                             | 25<br>35                              | 29<br>42        | ns<br>ns       |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Output Enable<br>Time             | $R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$ | 2.0V<br>2.0V         | 75<br>100             | 150<br>200                           | 189<br>252                            | 224<br>298      | ns<br>ns       |
|                                     |                                           | C <sub>L</sub> =50 pF<br>C <sub>L</sub> =150 pF                        | 4.5V<br>4.5V         | 15<br>30              | 30<br>40                             | 38<br>50                              | 45<br>60        | ns<br>ns       |
|                                     |                                           | $C_L = 50 \text{ pF}$<br>$C_L = 150 \text{ pF}$                        | 6.0V<br>6.0V         | 13<br>17              | 26<br>34                             | 32<br>43                              | 38<br>51        | ns<br>ns       |
| $t_{PHZ}$ , $t_{PLZ}$               | Maximum Output Disable<br>Time            | $R_L = 1 k\Omega$<br>$C_L = 50 pF$                                     | 2.0V<br>4.5V<br>6.0V | 75<br>15<br>13        | 150<br>30<br>26                      | 189<br>38<br>32                       | 224<br>45<br>38 | ns<br>ns<br>ns |
| t <sub>TLH</sub> , t <sub>THL</sub> | Maximum Output<br>Rise and Fall Time      |                                                                        | 2.0V<br>4.5V<br>6.0V |                       | 60<br>12<br>10                       | 75<br>15<br>13                        | 90<br>18<br>15  | ns<br>ns<br>ns |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5) | (per buffer) $\overline{G} = V_{IH}$ $\overline{G} = V_{IL}$           |                      | 12<br>50              |                                      |                                       |                 | pF<br>pF       |
| C <sub>IN</sub>                     | Maximum Input Capacitance                 |                                                                        |                      | 5                     | 10                                   | 10                                    | 10              | pF             |
| C <sub>OUT</sub>                    | Maximum Output<br>Capacitance             |                                                                        |                      | 10                    | 20                                   | 20                                    | 20              | pF             |

 $\textbf{Note 5: } C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text$ 





Dual-In-Line Package Order Number MM54HC244J or MM74HC244J NS Package J20A

### Physical Dimensions inches (millimeters) (Continued)



Dual-In-Line Package Order Number MM74HC244N NS Package N20A

### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (652) 2737-1600 Fax: (652) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408