

Trust Centers and Certificates

Idea for solving the trust problem:

Independent authority – **Trust Center** – certifies the binding of a public key to a person

- Digitally signed binding of a user (name) and it public key and is called a certificate (more precisely a key certificate)
- Certificates are used to ensure that the exchange of information is legally binding. The identity of a user is ensured!
- Participants only have to trust the Trust Center (TC)

. . .

More in our openHPI- course on Digital Identities!

Certificates

Certificate is a document signed by a trustworthy third party ("**Trust Center**")

- It attests the connection between a person/entity and its public key
- If one trusts the trust center that signed the certificate, one can trust the certificate

Certificates need to contain the following information:

- Owner of the certificate (person, company, web server, ...)
- Public key of the owner, and
- Digital signature of the trust center that issued the certificate

Trust Center guarantees the accuracy of these information

PKI – Public Key Infrastructure

To solve the trust problem by means of certificates, a complete infrastructure "Public-Key Infrastructure - PKI" is required

The task of a PKI is the certificate management

- Specification and enforcement of a security policy
- Creation of certificates
- Managing certificates
- Revoking digital certificates

To this end PKI includes software and hardware components as well as staff to manage the **certificate management**

Interaction of the individual components of a Trust Center /
 PKI to solve these tasks is ruled by Certificate Management
 Protocols (CMP)

At the center of a PKI is the **Trust Center** with the following components

- Certification Authority, CA
- **Registration** Authority, RA
- Validation Authority, VA

In addition to the trust center, a PKI includes the following **components**, which can/must be operated **decentralized**:

- Local Registration Authority, LRA
- Revocation Authority, REV
- Personal Security Environment, PSE

http://de.wikipedia.org/wiki/Datei:Public-Key-Infrastructure.svg

CA – Certification Authority

Certification authority – CA is the most important component of a Trust Center

- CA generates certificate
 - receives all information necessary for the certificate
 - generates the certificate and
 - signs the certificate digitally
- CA is a very **security-critical** component if the CA's private key gets into the hands of cybercriminals, the entire PKI is worthless the cybercriminals can then issue certificates as they wish

Signature acts require high demands on the security of a CA before it is allowed to issue certificates for legally binding "qualified digital signatures"

RA – Registration Authority

Registration Authority – RA is the registration office for applying for a digital certificate

- RA can be implemented centralized in a trust center or operated decentralized
- RA collects the necessary data for the creation of a digital certificate and transfers it to the CA
- The type of interaction and verification (personal registration, registration via the Internet) against an RA determines the security level of the PKI
- PKIX standard does not prescribe RA; however, PKI implemented in practice generally does not allow direct communication between users and the CA

VA - Validation Authority

Validation Authority – VA checks the certificate against the stored information and confirms its validity

- Once the certificate is validated, the client can further verify the corresponding digital signature itself
- Communication with the Trust Center is in real time and is also signed
- Simultaneous verification of several certificates is possible

Decentralized Components of a PKI Local Registration Authority

Local registration authority takes over tasks from the central registration authority:

- Not all users can verify themselves in person at one central registration authority
- Therefore, multiple LRAs take over that task
- Can be located at / operated by fitting places/companies
 - Telecommunication provider
 - Universities
 - Technology Companies
 - ...

Decentralized Components of a PKI **Revocation Authority**

Revocation authority is responsible for the "deletion" (**revocation**) of a certificate:

- To remove a certificate, it is not enough to delete it, as it is still signed and malicious people could still abuse it
- The trust of the CA to the particular certificate has to be removed
- This is done by certificate revocation
- Could be needed in several situations
 - private key to a certificate has been lost / stolen
 - information connected to the certificate has changed (such as a URL/Hostname)
 - certificate has expired
 - ...

Decentralized Components of a PKI PSE – Personal Security Environment

- Successful use of asymmetric cryptosystems and protocols (encryption, digital signature, ...) is based on the secrecy of private keys
- If the private key is not kept secret, the identity of the owner can be misused
- Therefore private certificates and keys should be kept in a so-called **personal security environment**
- As private keys should not leave the environment, several tasks have to be performed inside
 - private keys generated
 - decryption of ciphertexts with the private key
 - signing documents (with the private key)

PSE – Personal Security Environment **Example: Software Key**

Simple Security Environment – Software Key:

- Usually password protected area on the PC's hard disk
- Managed with special software
- Security depends on
 - the operating system of the PC and
 - the strength of the password

PSE – Personal Security Environment **Example: Harware Key**

Secure Environment - Hardware Key:

- Smart card a separate computer which stores
 - User's private key
 - Signed certificates

Derived from Chipcard.jpg, Monarch, CC BY-SA 3.0, from Wikimedia Commons

Advantages:

- Card can easily be carried along
- Only few accesses/manipulations are possible via card readers
- Access to keys is not possible/difficult for hackers

Disadvantages:

- Calculations on the chip card are slow
- Solution: only encrypt session keys or document hash values asymmetrically ...