### Sistemas Electrónicos



# Capítulo 1, Parte 6: Circuitos básicos RL e RC





Sistemas Electrónicos - 2020/2021

#### Sumário

- Resposta natural do circuito RL
- Energia no circuito RL;
- Propriedades da resposta exponencial
- Distinção entre  $t = 0^-$  e  $t = 0^+$
- Circuitos RL com várias bobinas e resistências
- Resposta natural do circuito RC
- Circuitos RC com vários condensadores e resistências
- Resposta completa de circuitos RL e RC;
- Função degrau unitário

# Resposta natural de circuitos RL e RC



E. Martins, DETI Universidade de Aveiro

1.6-3

Sistemas Electrónicos - 2020/2021

### Resposta natural de circuitos RL e RC

• O termo resposta natural (resposta livre ou resposta transitória) refere-se ao comportamento que o circuito exibe (em termos de correntes e tensões) quando a energia armazenada na bobina ou condensador é libertada;



● Em *t* = 0 a energia armazenada na bobina é:

$$W_0 = \frac{1}{2} L I_0^2$$

Queremos saber o que se passa aqui para t > 0

### Resposta natural de circuitos RL e RC





- Como o circuito não tem para já fontes externas, o seu comportamento é ditado apenas pela sua própria natureza e pelos valores de L ou C e de R;
- A resposta natural do circuito é dada pela solução da equação diferencial (linear homogénea de 1ª ordem) que o caracteriza;
- RL e RC são circuitos de 1ª ordem porque são descritos por equações lineares de 1ª ordem.

E. Martins, DETI Universidade de Aveiro

1.6-5

Sistemas Electrónicos - 2020/2021

# Resposta natural do circuito RL

### Resposta natural do circuito RL



E. Martins, DETI Universidade de Aveiro

1.6-7

Sistemas Electrónicos - 2020/2021

## Resposta natural do circuito RL



Aplicando KVL:

$$v_L + v_R = 0$$

$$\Leftrightarrow L\frac{di}{dt} + Ri = 0$$

• Há várias maneiras de determinar uma expressão para *i(t)* que satisfaça a equação diferencial. Uma dela é o método das variáveis separáveis.

#### Método das variáveis separáveis

$$L\frac{di}{dt} + Ri = 0 \iff \frac{di}{dt} + \frac{R}{L}i = 0 \iff \frac{di}{dt} = -\frac{R}{L}i \iff \frac{di}{i} = -\frac{R}{L}dt$$

Integrando

$$\int_{I_0}^{i(t)} \frac{di}{i} = \int_{0}^{t} -\frac{R}{L} dt \iff \ln i \Big|_{I_0}^{i(t)} = -\frac{R}{L} t \Big|_{0}^{t} \iff \ln i(t) - \ln I_0 = -\frac{R}{L} t$$

$$\Leftrightarrow \ln \frac{i(t)}{I_0} = -\frac{R}{L}t$$

A solução da equação diferencial é  $i(t)=I_0e^{-rac{R}{L}t}$ 

que confirma  $i(\theta) = I_{\theta}$ 

E. Martins, DETI Universidade de Aveiro

1.6-9

Sistemas Electrónicos - 2020/2021

Energia no circuito RL





• Em t = 0 a energia armazenada na bobina é

$$W_0 = \frac{1}{2} L I_0^2$$

• Para t > 0, esta energia é transferida para a resistência onde é transformada em calor;

• A energia total que é entregue à resistência é:

$$W_R = \int_0^\infty P_R dt = \int_0^\infty Ri^2 dt$$

# Energia no circuito RL

$$W_{R} = \int_{0}^{\infty} Ri^{2} dt = \int_{0}^{\infty} R \left( I_{0} e^{-\frac{R}{L}t} \right)^{2} dt = R I_{0}^{2} \int_{0}^{\infty} e^{-2\frac{R}{L}t} dt$$

$$W_R = RI_0^2 \left( -\frac{L}{2R} \right) e^{-2\frac{R}{L}t} \Big|_0^{\infty}$$

$$W_R = \frac{1}{2}LI_0^2$$



 $i(t) = I_0 e^{-\frac{R}{L}t}$ 

 Ou seja, a energia total entregue à resistência é igual à energia inicial na bobina.

E. Martins, DETI Universidade de Aveiro

1.6-11

Sistemas Electrónicos - 2020/2021

### **Exemplo 1 -** Calcular a tensão v para t = 0.2s.

Começamos por calcular a corrente na bobina para  $t \leq 0$ 

A bobina é um curto-circuito para DC, portanto

$$i_L(0) = \frac{24}{10} = 2.4A = I_0$$



Para t > 0 sabemos que a corrente vai variar de acordo com a expressão

$$i_L(t) = I_0 e^{-\frac{R}{L}t}$$

Em que 
$$R = 10 + 40 = 50\Omega$$
 e  $L = 5H$   $i_L(t) = 2.4e^{-10t}$ 

$$i_{t}(t) = 2.4e^{-10t}$$
  $t \ge 0$ 

### Exemplo 1

$$i_L(t) = 2.4e^{-10t}$$

A tensão v é

$$v(t) = 40(-i_L(t))$$

$$v(t) = -96e^{-10t} \qquad t \ge 0$$

Para t = 0.2s teremos

$$v(0.2s) = -96e^{-10(0.2)} = -13V$$





E. Martins, DETI Universidade de Aveiro

1.6-13

Sistemas Electrónicos - 2020/2021

# Solução básica do circuito RL

No exemplo anterior vimos que

$$i_L(t) = 2.4e^{-10t}$$

$$v(t) = -96e^{-10t}$$

• A expressão de  $i_L(t)$  é a chamada solução básica do problema.



Duma forma geral, todas as correntes e tensões num circuito RL terão a forma genérica

 $Ke^{-\frac{R}{L}t}$ 

sendo K uma constante determinada através das condições iniciais de cada tensão ou corrente.

# Resposta natural do circuito RL

#### Propriedades da resposta exponencial

E. Martins, DETI Universidade de Aveiro

1.6-15

Sistemas Electrónicos - 2020/2021

## Propriedades da resposta exponencial

- A resposta do circuito depende apenas da razão *L/R*;
- Quanto maior for L/R, mais tempo leva i a decair para zero;
- Para quantificar esta dependência, calculamos o tempo que  $iI_0$  levaria para chegar a zero, se decaísse à taxa inicial;



• A taxa inicial de decaimento é dada pela derivada de  $i/I_0$  em t = 0:

$$\left. \frac{d}{dt} \left( \frac{i}{I_0} \right) \right|_{t=0} = -\frac{R}{L} e^{-\frac{R}{L}t} \bigg|_{t=0} = -\frac{R}{L}$$

• Se *i/I<sub>0</sub>* decaísse constantemente a esta taxa, a sua equação seria:

$$\frac{i}{I_0} = -\frac{R}{L}t + 1$$

e a corrente anular-se-ia no instante t = L/R;

Este valor designa-se por constante de tempo:

$$\tau = \frac{L}{R}$$



• A constante de tempo dum circuito dá uma ideia quantitativa da velocidade a que o circuito reage.

E. Martins, DETI Universidade de Aveiro

1.6-17

Sistemas Electrónicos - 2020/2021

• Calculemos  $i/I_0$  para  $t = \tau$ 

$$e^{-\frac{R}{L}t}\Big|_{t=\tau} = e^{-1} = 0.368$$

- Ou seja, para  $t = \tau$  a corrente *i* decai para 36.8% do seu valor inicial;
- Para outros valores de t,  $i/I_0$  é:

| t   | <i>i/I</i> <sub>0</sub> |
|-----|-------------------------|
| τ   | 0.368                   |
| 2τ  | 0.135                   |
| 3 τ | 0.0498                  |
| 4 τ | 0.0183                  |
| 5 τ | 0.0067                  |



- Para  $t = 5\tau$  a corrente corresponde a menos que 1% do seu valor inicial;
- Em circuitos práticos considera-se que para  $t \ge 5\tau$  a corrente é nula.

# Distinção entre $t = 0^+$ e $t = 0^+$

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

# Distinção entre $t = 0^+$ e $t = 0^+$

- Na resolução destes problemas é comum distinguir-se *dois instantes*:
  - $> t = 0 \rightarrow 0$  instante imediatamente antes da abertura do interruptor;
  - $> t = 0^+ \rightarrow 0$  instante imediatamente depois da abertura do interruptor.

Por exemplo, a tensão  $v \text{ em } t = 0^+ \text{ \'e}$ 

$$v(0^+) = v(0) = -96V$$

e em t = 0 o valor de v é

$$v(0^-) = 24V$$



1.6-19

#### Distinção entre $t = 0^+$ e $t = 0^+$



Temos portanto  $v(0^-) \neq v(0^+)$  (acontece por vezes)

• Mas nas bobinas temos SEMPRE!

$$i_L(\theta^{\scriptscriptstyle -}) = i_L(\theta^{\scriptscriptstyle +})$$

(caso contrário  $di_L/dt$  seria infinito para  $t = \theta$ )



1.6-21

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

#### Circuitos RL com mais bobinas e resistências

• Podemos estender os resultados anteriores a circuitos com várias bobinas e resistências:



em que 
$$L_{eq} = L_1 + \frac{L_2 L_3}{L_2 + L_3}$$
 e  $R_{eq} = \frac{R_1 R_2}{R_1 + R_2} + R_3$ 

• A constante de tempo do circuito é  $au = rac{L_{eq}}{R_{eq}}$ 

$$i_L(t) = i_L(0)e^{-t/\tau}$$

#### **Exemplo 2** - Calcular $i_L(t)$ e $i_2(t)$ para todo o t.



Começamos por calcular  $L_{eq}$ ,  $R_{eq}$  e a constante de tempo,  $\tau$ :



$$L_{eq} = 1 + \frac{(2)(3)}{2+3} = 2.2mH$$

$$R_{eq} = \frac{(180)(90)}{180 + 90} + 50 = 110\Omega$$

$$\begin{cases} L_{eq} = 1 + \frac{(2)(3)}{2+3} = 2.2mH & R_{eq} = \frac{(180)(90)}{180+90} + 50 = 110\Omega \\ \tau = \frac{L_{eq}}{R_{eq}} = \frac{0.0022}{110} = 20\,\mu\text{s} & \frac{1}{\tau} = 50000\,\text{s}^{-1} \end{cases}$$

$$\frac{1}{\tau} = 50000s^{-1}$$

E. Martins, DETI Universidade de Aveiro

1.6-23

Sistemas Electrónicos - 2020/2021

Note-se que, apesar de termos calculado os valores de  $L_{eq}$  e  $R_{eq}$ , vamos continuar com o circuito original para não perdermos de vista  $i_2(t)$ .



Depois do interruptor abrir, qualquer corrente ou tensão no circuito será dada por

$$Ke^{-t/\tau} = Ke^{-50000t}$$

Em particular, para a corrente  $i_L(t)$   $K = i_L(0^+) = i_L(0^-)$ 



$$i_L(0^-) = \frac{18}{50} = 0.36A = i_L(0^+) \quad | \qquad \qquad i_L = \begin{cases} 0.36 \, A & t < 0 \\ 0.36 e^{-50000t} \, A & t \ge 0 \end{cases}$$

A corrente  $i_2(t)$  para  $t > \theta$  será dada por  $i_2(0^+)e^{-50000t}$ 

Imediatamente antes do interruptor abrir, sabemos que  $i_2(0^-) = \frac{18}{90} = 0.2A$ 

Mas  $i_2(\theta^-)$  não nos permite determinar  $i_2(\theta^+)$ !

E. Martins, DETI Universidade de Aveiro

1.6-25



 $i_2(\theta^+)$  deve ser calculado partindo de  $i_L(\theta^+)$ 

usando a fórmula do divisor de corrente:

$$i_2(0^+) = \frac{R_1}{R_1 + R_2} (-i_L(0^+))$$
$$= \frac{180}{180 + 90} (-0.36) = -0.24A$$

pelo que

$$i_2 = \begin{cases} 0.2 A & t < 0 \\ -0.24 e^{-50000t} A & t \ge 0 \end{cases}$$



# Resposta natural do circuito RC

E. Martins, DETI Universidade de Aveiro

1.6-27

Sistemas Electrónicos - 2020/2021

### Resposta natural do circuito RC

Aplicando KVL:

$$i_{C} = C \frac{dv}{dt} \iff -\frac{v}{R} = C \frac{dv}{dt}$$

$$\Leftrightarrow$$
  $C \frac{dv}{dt} + \frac{v}{R} = 0$ 



... equação que é muito semelhante à do circuito RL: 
$$L\frac{di}{dt} + Ri = 0$$

Se substituíssemos nesta expressão i por v, L por C e R por G (1/R), obteríamos a expressão correspondente ao circuito RC.

● Isto acontece porque o circuito RC é dual do circuito RL.

#### Resposta do circuito RC

• Sendo os circuitos duais, se a resposta em corrente do circuito RL é

$$i(t) = I_0 e^{-\frac{R}{L}t}$$

então a resposta em tensão do circuito RC será

$$v(t) = V_0 e^{-t/RC}$$

- Ou seja, partindo do valor inicial  $V_0$ , a tensão v decai exponencialmente para zero à medida que o condensador se descarrega sobre a resistência;
- Todo o estudo desenvolvido até aqui para o circuito RL pode ser aplicado ao circuito RC.

E. Martins, DETI Universidade de Aveiro

1.6-29

Sistemas Electrónicos - 2020/2021

### Constante de tempo

• Também por analogia, se a constante de tempo do circuito RL é

$$\tau = \frac{L}{R}$$

então a constante de tempo do circuito **RC** será

$$\tau = RC$$

- Quanto maior C, maior a carga armazenada e maior o tempo de descarga do condensador;
- Quanto maior *R*, menor a corrente de descarga, e maior o tempo de descarga do condensador.





#### Circuitos RC com mais condensadores e resistências

• Para usar os resultados anteriores em circuitos com várias resistências, calculamos a resistência equivalente *vista* pelo condensador:

$$R_{eq} = R_2 + R_1 // R_3 = R_2 + \frac{R_1 \cdot R_3}{R_1 + R_3}$$

ullet A constante de tempo do circuito é  $\ au=R_{eq}C$  e

$$v(t) = V_0 e^{-t/\tau}$$

• Se tivéssemos mais condensadores, teríamos de calcular  $C_{eq}$  de forma a reduzir o problema a um circuito RC simples.



E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

### Aspectos a ter em atenção

 Todas as correntes e tensões num circuito RC terão a forma genérica

$$Ke^{-t/\tau}$$

sendo K uma constante determinada através das condições iniciais de cada tensão ou corrente.

- $\begin{cases} \mathbf{i}_{1} \\ \mathbf{R}_{1} \\ \mathbf{v} \\ \mathbf{C} \\ \mathbf{V}_{0} = v(t=0) \end{cases}$
- A tensão no condensador será  $v(t) = v(0^+)e^{-t/\tau}$
- Havendo descontinuidades provocadas por interruptores, no condensador teremos SEMPRE  $v(0^+) = v(0^-)$
- A corrente  $i_1(t)$  será dada por  $i_1(t) = i_1(0^+)e^{-t/\tau}$ Mas é bem provável que  $i_1(0^+) \neq i_1(0^-)$

#### **Exemplo 3** - Determinar $v_0$ para $t = 0^+$ , $t = 0^+$ e t = 1.3ms.



Comecemos por determinar o valor de  $v_0$  para t = 0

Assim, antes do interruptor abrir, a tensão em v<sub>0</sub> é

$$v_0(0^-) = v_1(0^-) \frac{400}{100 + 400}$$
  $v_1(0^-) = \frac{2k //(100 + 400)}{2k //(100 + 400) + 600} 120 = 48V$ 

**pelo que** 
$$v_0(0^-) = 48 \frac{400}{100 + 400} = 38.4V$$

E. Martins, DETI Universidade de Aveiro

1.6-33

#### Sistemas Electrónicos - 2020/2021



Consideremos agora o valor de  $v_0$  para  $t = 0^+$ 

 $v_{\theta}(\theta^{+})$  pode ser diferente de  $v_{\theta}(\theta^{-})$ . Deve ser calculado a partir de  $v_{C}(\theta^{+}) = v_{C}(\theta^{-})$ 

$$v_C(0^-) = 120 \frac{1250}{1250 + 250} = 100V = v_C(0^+)$$

$$v_0(0^+) = v_1(0^+) \frac{400}{100 + 400}$$
  $v_1(0^+) = \frac{2k / (100 + 400)}{2k / (100 + 400) + 600 + 250} v_C(0^+) = 32V$ 

**pelo que**  $v_0(0^+) = 25.6V$ 



• A tensão 
$$v_0(t)$$
 é dada por  $v_0(t) = v_0(0^+)e^{-t/\tau}$   $\tau = R_{eq}C$ 

em que 
$$R_{eq} = [(400 + 100)//2K + 600 + 250]//1250 = 625\Omega$$

pelo que 
$$\tau = R_{eq}C = (625)(4.10^{-6}) = 2.5 ms$$

$$\mathbf{assim} \quad v_0(t) = (25.6)e^{-400t}$$

e portanto 
$$v_0(1.3ms) = (25.6)e^{-400(0.0013)} = 15.22V$$

1.6-35