CLAIMS

What is Claimed:

1. A cobalt-porphyrin complex having the structure:

$$R_3$$
 CH_3
 R_4
 CH_3
 R_1
 R_2
 R_2

or a salt thereof, wherein:

 R_1 and R_2 are the same or different and independently $-(CH_2)_n$ -A- R_5 , wherein A is $-C(=O)O_-$, $-OC(=O)_-$, $-C(=O)N(R)_-$, $-N(R)C(=O)_-$, $-C(=O)_-$, $-N(R)_-$, $-O_-$ or $-S_-$, and R is hydrogen, alkyl, substituted alkyl, arylalkyl, or substituted arylalkyl, and n is 2 or 3;

 R_3 and R_4 are the same or different and independently -CH=CH₂ or -CH₂CH₃;

 R_5 is, at each occurrence, the same or different and independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl or substituted arylalkyl; and L_1 and L_2 are optional ligands;

and with the proviso that the cobalt-porphyrin complex of structure (I) has no more than 5% of the redox activity of cobalt mesoporphyrin.

- 2. The complex of claim 1 wherein A is -C(=O)O-.
- 3. The complex of claim 1 wherein A is -OC(=O)-.

- 4. The complex of claim 1 wherein A is -C(=O)N(R)-.
- 5. The complex of claim 1 wherein A is -N(R)C(=O)-.
- 6. The complex of claim 1 wherein A is -C(=O)-.
- 7. The complex of claim 1 wherein A is -N(R)-.
- 8. The complex of claim 1 wherein A is -O-.
- 9. The complex of claim 1 wherein A is -S-.
- 10. The complex of claim 1 wherein n is 2.
- 11. The complex of claim 1 wherein n is 3.
- 12. The complex of claim 1 wherein R is hydrogen.
- 13. The complex of claim 1 wherein R is lower alkyl.
- 14. The complex of claim 1 wherein R_5 is hydrogen.
- 15. The complex of claim 1 wherein R_5 is alkyl.
- 16. The complex of claim 15 wherein R_5 is lower alkyl.
- 17. The complex of claim 1 wherein R_5 is substituted alkyl.
- 18. The complex of claim 1 wherein R_5 is aryl or substituted aryl.

- 19. The complex of claim 1 wherein R₅ is arylalkyl or substituted arylalkyl.
- 20. The complex of claim 19 wherein arylalkyl is benzyl.
- 21. The complex of claim 1 wherein R_3 and R_4 are the same.
- 22. The complex of claim 20 wherein R₃ and R₄ are -CH=CH₂.
- 23. The complex of claim 20 wherein R₃ and R₄ are -CH₂CH₃.
- 24. The complex of claim 1 wherein at least one of L_1 or L_2 is present.
- 25. The complex of claim 1 wherein both L_1 and L_2 are present.
- 26. The complex of claim 25 wherein L_1 and L_2 are glycinate.
- 27. The complex of claim 25 wherein L_1 and L_2 are imidazole.
- 28. The complex of claim 25 wherein L_1 and L_2 are halogen.
- 29. The complex of claim 25 wherein L_1 and L_2 are a mono- or di-substituted amino.
- 30. The complex of claim 25 where L_1 and L_2 are a substituted or unsubstituted heterocycle.
- 31. A composition comprising a compound of claim 1 in combination with a pharmaceutically acceptable carrier.

32. A method for treating obesity, comprising administering an effective amount of a composition comprising a cobalt-porphyrin complex and a pharmaceutically acceptable carrier, wherein the cobalt-porphyrin complex has the structure:

$$R_3$$
 CH_3
 R_4
 CH_3
 R_1
 R_2
 R_2

or a salt thereof, wherein:

 R_1 and R_2 are the same or different and independently -(CH₂)_n-A-R₅, wherein A is -C(=O)O-, -OC(=O)-, -C(=O)N(R)-, -N(R)C(=O)-, -C(=O)-, -O- or -S-, and R is hydrogen, alkyl, substituted alkyl, arylalkyl, or substituted arylalkyl, and n is 2 or 3;

R₃ and R₄ are the same or different and independently -CH=CH₂ or -CH₂CH₃;

R₅ is, at each occurrence, the same or different and independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl or substituted arylalkyl; and L₁ and L₂ are optional ligands;

and with the proviso that the cobalt-porphyrin complex of structure (I) has no

- more than 50% of the redox activity of cobalt mesoporphyrin.
- 33. The method of claim 32 wherein the composition is administered by injection.
 - 34. The complex of claim 32 wherein A is -C(=O)O-.

- 35. The complex of claim 32 wherein A is -OC(=O)-.
- 36. The complex of claim 32 wherein A is -C(=O)N(R)-.
- 37. The complex of claim 32 wherein A is -N(R)C(=0)-.
- 38. The complex of claim 32 wherein A is -C(=O)-.
- 39. The complex of claim 32 wherein A is -N(R)-.
- 40. The complex of claim 32 wherein A is -O-.
- 41. The complex of claim 32 wherein A is -S-.
- 42. The complex of claim 32 wherein n is 2.
- 43. The complex of claim 32 wherein n is 3.
- 44. The complex of claim 32 wherein R is hydrogen.
- 45. The complex of claim 32 wherein R is lower alkyl.
- 46. The complex of claim 32 wherein R_5 is hydrogen.
- 47. The complex of claim 32 wherein R_5 is alkyl.
- 48. The complex of claim 47 wherein R_5 is lower alkyl.

- 49. The complex of claim 32 wherein R_5 is substituted alkyl.
- 50. The complex of claim 32 wherein R_5 is anyl or substituted anyl.
- 51. The complex of claim 50 wherein R_5 is arylalkyl or substituted arylalkyl.
- 52. The complex of claim 51 wherein arylalkyl is benzyl.
- 53. The complex of claim 32 wherein R_3 and R_4 are the same.
- 54. The complex of claim 53 wherein R_3 and R_4 are -CH=CH₂.
- 55. The complex of claim 53 wherein R₃ and R₄ are -CH₂CH₃.
- 56. The complex of claim 32 wherein one of L_1 or L_2 is present.
- 57. The complex of claim 32 wherein both L_1 and L_2 are present.
- 58. The complex of claim 57 wherein L_1 and L_2 are glycinate.
- 59. The complex of claim 57 wherein L_1 and L_2 are imidazole.
- 60. The complex of claim 57 wherein L_1 and L_2 are halogen.
- The complex of claim 57 wherein L_1 and L_2 are a mono- or di-substituted amino.
- 62. The complex of claim 57 wherein $_1$ and L_2 are a substituted or unsubstituted heterocycle.