CM2604 Machine Learning

Introduction to Machine Learning

Week 01 | Prasan Yapa

Module Requirements

- Prerequisites for the Module CM1601 or equivalent, CM1606 or equivalent
- Corequisites for the module None
- Precluded Modules None

Aims of Module

To provide a theoretical underpinning of a range of established machine learning (ML) algorithms with focus on implications of real-world deployment.

Learning Outcomes

- 1. To create a dataset for ML using data and feature engineering methods applied to a real-world data collection.
- 2. To critically analyze the theory including statistical and mathematical underpinning of a range of ML algorithms.
- 3. To use ML evaluation methodologies to compare and contrast supervised and unsupervised ML algorithms using an established machine learning framework.
- 4. To analyze the ethical, social, professional and legal issues associated with collecting /creating datasets and use of machine learning models in the real-world.

Module Content

- Data cleansing, missing values handling, stemming, lemming, encoding of textual data, recognition of independent / dependent variables, over fitting, under-fitting, dimensionality reduction.
- Supervised Learning Techniques: Regression techniques, Bayer's theorem,
 Naïve Bayer's, SVM, Decision Trees and Random Forest.
- Un-supervised Learning Techniques: Clustering, K-Means clustering, Association Mining, Apriori.
- Ensemble Techniques: Ada-Boost, Bagging, Stacking.
- Evaluation and Testing mechanisms: Precision, Recall, F-Measure, Confusion Matrices, ROC, AUC.
- Data Protection Act, BCS Code of conduct, Ethical Principles.

Module Delivery

- Lectures 2 hours/Week
- Labs 2 hours/Week
- Tutorial Feedback Sessions 2 hours/Week

Assessment Plan

- Examination 60%
- Coursework 40%

Recommended Material

- Geron, A. 2020. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly
- Han, J. and Kamber, M. 2006. Data Mining: Concepts and Techniques. 2nd ed.
 Morgan Kaufmann
- Bishop, C. 2007. Pattern Recognition and Machine Learning. Springer Verlag
- Provost, F. and Fawcett, T. 2013. Data Science for Business. O'Reilly Media
- Tan, P., Steinbach, M. and and Kumbar, V. 2005. Introduction to Data Mining.
 Addison-Wesley

What is ML

Machine Learning

- An evolving branch of computational algorithms that are designed to emulate human intelligence.
- Techniques based on machine learning have been applied successfully in diverse fields.
- ML is widely used in software to enable an improved experience with the user.
- The main advantage is that, once an algorithm learns what to do with data, it can do its work automatically.

ML for Pattern Recognition

B. N. Narayanan, O. Djaneye-Boundjou and T. M. Kebede, Performance analysis of machine learning and pattern recognition algorithms for Malware classification, 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS).

ML for Computer Vision

ML for Engineering

ML for Finance

ML for Entertainment

ML for Medicine

Types of ML

Types of Machine Learning

- Supervised Learning
- Un-supervised Learning
- Semi-supervised Learning
- Reinforcement Learning
- Ensemble Learning

Supervised Machine Learning

Supervised Machine Learning

Classification

- Grouping the output inside a class (binary vs multiclass classification).
- K-Nearest Neighbor, Random Forest, SVM, Decision Trees.

Regression

- Predicting a single output value using training data.
- Outputs always have a probabilistic interpretation.
- Linear Regression and Logistical Regression.

Un-supervised Machine Learning

How **Unsupervised** Machine Learning Works

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLUSTERING

Identifying similarities in groups

For Example: Are there patterns in the data to indicate certain patients will respond better to this treatment than others?

ANOMALY DETECTION

Identifying abnormalities in data

For Example: Is a hacker intruding in our network?

Unsupervised learning

Variable 2

Variable 2

) Supervised learning

Variable 2

Variable 2

Un-supervised Machine Learning

Clustering

- Grouping unlabeled data based on their similarities or differences.
- Can be categorized such as specifically exclusive, overlapping, hierarchical, and probabilistic.
- K-means clustering and Gaussian Mixture Models.

Association Mining

- Finding relationships between variables in a given dataset using a rulebased method.
- Used for market basket analysis, products categorization etc.
- Apriori algorithms.

Ensemble Learning

Ensemble Learning

- Seeking better predictive performance by combining the predictions from multiple models.
- The three main classes of ensemble learning methods are bagging, stacking, and boosting.
- Bagging learns independently from each other in parallel and combines them.
- Stacking learns in parallel and combines them by training a metamodel to output a prediction.
- Boosting learns sequentially in a very adaptative way and combines them following a deterministic strategy.

Questions