(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-83638

(P2002-83638A)

(43)公開日 平成14年3月22日(2002.3.22)

(51) Int.Cl. ⁷ H 0 1 R 12/16	識別記号	FI H01R 107:00			テーマコード(参考) 5 E O 2 3		
12/06		23/68			303C 5E077		
24/10 // H 0 1 R 107:00		9/09 23/00 23/68			C R D		
, 110 111 101100				_			
		永龍 查審	未請求	請求項の数10	OL	(全 14 頁)	
(21)出顧番号	特顧2000-271370(P2000-271370)		000006895 矢崎総業株式会社				
(22) 出顧日				東京都港区三田1丁目4番28号(72)発明者 渡部 弘志			
		1		宮野市御宿 1500	矢崎裔	業株式会社	
		(7%)発明者 加藤 光伸 静岡県裾野市御宿1500 矢崎総業株式会社					
		(74)代理人	内 1000606 弁理 士		(外3年	4)	
					;	最終頁に続く	

(54) 【発明の名称】 基板接続用端子及びそれを用いたコネクタ

(57)【要約】

【課題】 交差方向の複数の回路基板を相互に接続する ための端子の接圧を確保する。

【解決手段】 一方に、略円弧状ないし略山型状に突出した第一の弾性接触部70を有し、他方に、第一の弾性接触部70を有し、他方に、第一の弾性接触部71を有し、両弾性接触部が湾曲した第二の弾性接触部71を有し、両弾性接触部が湾曲状ないし真直な中間基板部69を介して連続した基板接続用端子64を採用する。第一の弾性接触部に一方の回路基板55、第二の弾性接触部に他方の回路基板52を接触させるコネクタ50で、基板接続用端子64の少なくとも第一の弾性接触部側を収容するコネクタハウジング62、63に、中間基板部69に対する摺接用の支持部80を設け、第一の弾性接触部側の端部72をコネクタハウジングに当接ないし固定し、基板接続用端子64を支持部80で長手方向摺動自在に支持した。

【特許請求の範囲】

【請求項1】 一方に、略円弧状ないし略山型状に突出した第一の弾性接触部を有し、他方に、該第一の弾性接触部の突出方向と同方向に湾曲状ないし傾斜状に屈曲した第二の弾性接触部を有し、該第一の弾性接触部と該第二の弾性接触部とが湾曲状ないし真直な中間基板部を介して連続したことを特徴とする基板接続用端子。

【請求項2】 前記第一の弾性接触部の自由端側に短い 真直部が形成されたことを特徴とする請求項1記載の基 板接続用端子。

【請求項3】 前記湾曲状ないし傾斜状に屈曲した第二 の弾性接触部に代えて、前記第一の弾性接触部と同じな いし略同じ形状の第二の弾性接触部が回転対称に形成さ れたことを特徴とする請求項1又は2記載の基板接続用 端子。

【請求項4】 請求項1~3の何れかに記載の基板接続 用端子を用いて、前記第一の弾性接触部に一方の回路基 板、前記第二の弾性接触部に他方の回路基板をそれぞれ 接触させるコネクタであって、該基板接続用端子の少な くとも前記第一の弾性接触部側を収容するコネクタハウ ジングに、前記中間基板部に対する摺接用の支持部が設 けられ、該第一の弾性接触部側の端部が該コネクタハウ ジングに当接ないし固定され、該基板接続用端子が該支 持部で長手方向摺動自在に支持されたことを特徴とする コネクタ。

【請求項5】 請求項3記載の基板接続用端子を用いたコネクタであって、前記第二の弾性接触部側の自由端が前記コネクタハウジングで摺動自在に支持されたことを特徴とする請求項4記載のコネクタ。

【請求項6】 前記中間基板部と前記第二の弾性接触部との間に、前記支持部に対する当接用の停止部が形成されたことを特徴とする請求項4又は5記載のコネクタ。 【請求項7】 前記コネクタハウジングが、ヒンジを介して開閉自在な一対のハウジングで構成され、両ハウジングの間に前記一方の回路基板が挿入されることを特徴とする請求項4~6の何れかに記載のコネクタ。

【請求項8】 前記コネクタハウジングが、前記第一の 弾性接触部を突出させる基板挿入孔と、前記第二の弾性 接触部を突出させる開口とを有することを特徴とする請求項4~6の何れかに記載のコネクタ。

【請求項9】 前記コネクタハウジングに、前記他方の回路基板に対する係止手段が設けられたことを特徴とする請求項4~8の何れかに記載のコネクタ。

【請求項10】 前記中間基板部の長さを相違させて、 少なくとも長さの異なる二種類の基板接続用端子を構成 し、前記他方の回路基板の裏側の電源供給用の第三の回 路基板に長い方の基板接続用端子を接触させることを特 徴とする請求項4~9の何れかに記載のコネクタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば自動車内で 交差方向に配置される複数枚の回路基板を相互に接続さ せる基板接続用端子及びそれを用いたコネクタに関する ものである。

[0002]

【従来の技術】図18は、本出願人が先に特開平10-302909号で提案した従来のコネクタを示すものである。このコネクタは、ヒンジ121を支点に開閉自在な雌型のコネクタ122と、雌型のコネクタ122内に挿入される雄型のコネクタ123とで構成されている。

【0003】 雌型のコネクタ122は上下一対の合成樹脂製のハウジング124と、各ハウジング124内に収容された端子125とで構成されている。端子125は一方に弾性接触片(符号125で代用)、他方に電線圧着部(図示せず)をそれぞれ有し、弾性接触片125はハウジング124の矩形状の開口126から突出し、電線圧着部は電線127に圧着接続されている。

【0004】雄型のコネクタ123は合成樹脂製のブロック状のハウジング128と、ハウジング128内に上下二段に収容された端子129とで構成されている。端子129は一方に板状の電気接触部(符号129で代用)、他方に電線圧着部(図示せず)をそれぞれ有し、電気接触部129はハウジング128の表裏両面の開口130から露出している。

【0005】雄型のハウジング128は先端側の上下にテーパ状の押接部131を有し、雌側のハウジング124は奥側(ヒンジ側)に、押接部131に対するテーパ状の被押接部132を有している。

【0006】雄型のコネクタ123を雌型のコネクタ122内に挿入することで、テーバ状の押接部131が被押接部132に当接しつつ、上下一対のハウジング124を閉止させる。これにより、上下の弾性接触片125が電気接触部129に弾性的に接触し、電線127,133相互の接続が行われる。

[0007]

【発明が解決しようとする課題】しかしながら、上記従来のコネクタ122にあっては、端子125と回路導体である電線127とを圧着や圧接あるいは溶接といった手段で永久接続しなければならないために、多くの工数がかかると共に、端子125と回路導体(電線)127との取付や取外しの自由度がなく、メンテナンス性や車種毎ないし種類毎の互換性に欠けるという問題があった。また、コネクタ122に対して平行(水平)な方向にしか相手側の回路(端子)129を接続できず、水平及び垂直な方向(直交方向)ないし交差方向に回路、特に回路基板を容易に接続することのできる手段が切望されていた。

【0008】また、コネクタ122の端子125の弾性 接触片の前後両端をハウジング124の開口126内に 両持ちで固定した場合には、弾性接触片のばね係数が大

きくなり、少しの変位で高荷重を発生し、端子125の 成形寸法誤差やガタ等で弾性接触片の変位量が正規に確 保できない場合等には、所要の接圧(接触圧力)が得ら れなくなるという懸念があり、寸法誤差等で弾性接触片 の突出量が小さい場合には、相手端子(回路導体)12 9に対する接圧が小さくなり、電気的接続の信頼性が低 下するという懸念があった。

【0009】本発明は、上記した点に鑑み、交差方向な いし直交方向の回路基板に適用でき、回路導体との接続 工数を低減させ、回路導体に対する取付や取外しの自由 度を高めることができると共に、回路導体に対して所要 の接圧を容易に且つ確実に発揮させることができ、両回 路基板を適切な接圧で確実に接続させることのできる基 板接続用端子及びそれを用いたコネクタを提供すること を目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため に、本発明は、一方に、略円弧状ないし略山型状に突出 した第一の弾性接触部を有し、他方に、該第一の弾性接 触部の突出方向と同方向に湾曲状ないし傾斜状に屈曲し た第二の弾性接触部を有し、該第一の弾性接触部と該第 二の弾性接触部とが湾曲状ないし真直な中間基板部を介 して連続したことを特徴とする基板接続用端子を採用す る(請求項1)。前記第一の弾性接触部の自由端側に短 い真直部が形成されたことも有効である

(請求項2)。また、前記湾曲状ないし傾斜状に屈曲し た第二の弾性接触部に代えて、前記第一の弾性接触部と 同じないし略同じ形状の第二の弾性接触部が回転対称に 形成されたことも有効である(請求項3)。また、請求 項1~3の何れかに記載の基板接続用端子を用いて、前 記第一の弾性接触部に一方の回路基板、前記第二の弾性 接触部に他方の回路基板をそれぞれ接触させるコネクタ であって、該基板接続用端子の少なくとも前記第一の弾 性接触部側を収容するコネクタハウジングに、前記中間 基板部に対する摺接用の支持部が設けられ、該第一の弾 性接触部側の端部が該コネクタハウジングに当接ないし 固定され、該基板接続用端子が該支持部で長手方向摺動 自在に支持されたことを特徴とするコネクタを併せて採 用する(請求項4)。請求項3記載の基板接続用端子を 用いたコネクタであって、前記第二の弾性接触部側の自 由端が前記コネクタハウジングで摺動自在に支持された ことを特徴とする請求項4記載のコネクタも有効である (請求項5)。また、前記中間基板部と前記第二の弾性 の回路基板が挿入されることも有効である(請求項 7)。また、前記コネクタハウジングが、前記第一の弾

接触部との間に、前記支持部に対する当接用の停止部が 形成されたことも有効である(請求項6)。また、前記 コネクタハウジングが、ヒンジを介して開閉自在な一対 のハウジングで構成され、両ハウジングの間に前記一方

性接触部を突出させる基板挿入孔と、前記第二の弾性接

触部を突出させる開口とを有することも有効である(請 求項8)。また、前記コネクタハウジングに、前記他方 の回路基板に対する係止手段が設けられたことも有効で ある(請求項9)。また、前記中間基板部の長さを相違 させて、少なくとも長さの異なる二種類の基板接続用端 子を構成し、前記他方の回路基板の裏側の電源供給用の 第三の回路基板に長い方の基板接続用端子を接触させる ことも有効である(請求項10)。

[0011]

【発明の実施の形態】以下に本発明の実施の形態の具体 例を図面を用いて詳細に説明する。図1~図5は、本発 明に係る基板接続用端子及びそれを用いたコネクタの第 一の実施形態を示すものである。

【0012】図1はコネクタ22を用いた接続構造の一 形態を示すものであり、コネクタ22を自動車のインス トルメントパネル周りの回路体と補機との接続に適用し たものである。図1において、1はインパネコアとして のケース、2はクラスタとしてのカバーをそれぞれ示 す。

【0013】ケース1は垂直な後壁3と両側の側壁4と 前側の鍔壁5とを備え、後壁3と両側の側壁4とで囲ま れた凹溝状の空間6を有している。この空間6内に垂直 なパネルである第一(他方)の回路基板7が収容されて いる。両側の側壁4には垂直方向の第一のガイド部8が 設けられ、その内側のガイド溝9に第一の回路基板7が スライド式に嵌合されている。なお、ケース1の前後の 定義は運転席に近い側を前として説明する。

【0014】第一の回路基板7はインパネ側の回路体と して作用するもので、合成樹脂製の絶縁基板10の表面 側に例えば電源回路や信号回路としての複数本の垂直方 向のフラット回路導体11を並列に且つ等ピッチで有し ている。フラット回路導体11の長手方向の一部は絶縁 基板10上の絶縁皮膜から露出され、各回路導体11の 露出部(露出導体)11aは同一高さで並列に配置され ている。各露出導体11aの間において絶縁基板10に コネクタ係止用の長方形状の係合孔(係合部)12が等 ピッチで複数並列に設けられている。係合孔12は上下 方向に長く形成されている。

【0015】係合孔12の左右外側において絶縁基板1 0に、補機側の第二(一方)の回路基板13に対する水 平方向の第二のガイド部14が設けられている。第二の ガイド部14は水平方向のガイド溝15と回路基板固定 用の垂直方向の孔部16とを有している。

【0016】第二の回路基板13はプリント回路基板で あり、カバー2内に配置される図示しない補機に接続さ れて水平に位置し、合成樹脂製の絶縁基板17の裏面 (下面)側に複数本の回路導体(プリント回路)18を 並列に有し、回路導体18は端末側(先端側)で露出さ れている。第二の回路基板13は先端に凹部19を有 し、凹部19の両側の突出部20に、第二のガイド部1

4の孔部16に対応する固定用の孔部21を有している。第二の回路基板13と第二のガイド部14とは図示しないボルトとナットあるいは係止クリップ等の固定手段で固定される。

【0017】第二の回路基板13の先端側にコネクタ22が接続される。コネクタ22は、回動自在な合成樹脂製の上下の各ハウジング23,24と、下側のハウジング24内に後半部を収容され、前半部を第一の回路基板側に露出させた略L字状の基板接続用端子26とで構成されている。各ハウジング23,24を合体させてコネクタハウジング25が構成される。なお、コネクタ22の前後の定義は第一の回路基板7寄りを前、第二の回路基板13寄りを後として説明する。

【0018】下側のハウジング24の両側に合成樹脂製の一対の係止アーム(係止手段)27が第一の回路基板7に向けて回動自在に設けられている。係止アーム27は先端側に外向きの爪状の係止突起28を有している。係止突起28は第一の回路基板7の係合孔12に係合する。係止アーム27は上下のハウジング23,24の高さ方向中間に位置している。

【0019】係合孔12の上下方向の長さは係止突起28(係止アーム27)の上下方向の幅よりも長く形成され、コネクタ22の上下方向の位置ずれを吸収可能となっている。第一の回路基板7の露出導体11aの長さは係合孔12の長さよりもやや長い。コネクタ22の位置が上下にずれても、端子26が第一の回路基板7の露出導体11aに確実に接触するから、電気的接続の信頼性が高い。また、コネクタ22の係止アーム27を第一の回路基板7の所望の係合孔12に選択的に係合させることで、所望の回路導体11に端子26を接続可能である

【0020】図2は、本発明に係るコネクタの一実施形態を示すものであり、下側のハウジング24の前端部の両側に半円板状の軸受29が上向きに突設され、係止アーム27の基端側に直交した短円柱状の軸部30が軸受29の孔部を貫通して内側に突出している。軸部30の先端部に上側のハウジング23の前端側の軸受32が係合する。

【0021】図2において係止アーム27は例えば係止 突起28の突出方向の可撓性を有し、第一の回路基板7 (図1)の係合孔12に係止突起28の傾斜面が摺接す ると同時に係止アーム27が内側に撓み、係止突起28 が係合孔12を貫通すると同時に係止アーム27が外側 に弾性的に復元して、係止突起28のほぼ垂直な係止面 が第一の回路基板7の裏面に係合する。あるいは爪状の 係止突起28のみを弾性的に撓み可能としてもよい。係 止アーム27は第一の回路基板7に向けて端子26より もやや長く突出している。

【0022】下側のハウジング24の上面には複数の端 子収容溝33が並列に形成されている。端子収容溝33 の深さは端子26の板厚と同程度かやや深い程度である。各端子収容溝33に略し字状の端子26の後側の弾性接触部(第一の弾性接触部)34の前側と後側とが係合支持され、端子収容溝33上に前側の弾性接触部(第二の弾性接触部)35が上向きに湾曲状ないし傾斜状に突出している。

【0023】図3にも示す如く、後側の弾性接触部34 は上向きに円弧状に湾曲し、弾性接触部34の後端側は 短く真直に形成され(真直部又は端部34a)、弾性接 触部34の前側は下向きにやや湾曲した中間基板部36 を経て、斜め上向きに立ち上げられた前側の弾性接触部 35に続き、前半の弾性接触部35は第一の回路基板7 (図1)に向けてやや湾曲しつつ斜め上向きに延びて上 方に自由端35aを有している。後側の弾性接触部34 の突出方向と前側の弾性接触部35の突出方向はほぼ同 じである。前側の弾性接触部35は後側の弾性接触部3 4の湾曲前半部34bとほぼ直交する方向に突出している。

【0024】このように端子26は、自由状態において、上向きに円弧状に湾曲した後側の弾性接触部34と、弾性接触部34の後端側の短い真直部34aすなわちハウジング24に対する当接部ないし固定部と、弾性接触部34の前方に下向きに円弧状に湾曲して続き、前側の弾性接触部35の弾性を発揮させる中間基板部36と、中間基板部36から外向きに開いた状態すなわち斜め上向きにほぼ真直にないし若干湾曲して続く前側の弾性接触部35とで構成されている。

【0025】前後二つの湾曲状の弾性接触部34,36 で略S字状の屈曲部が構成されている。中間基板部36 は必ずしも湾曲していなくてもよく、前側の弾性接触部35の弾性が確保されれば、真直な形状であってもよい。上記端子26は一枚ないし一本の導電金属片ないし導電金属板を略L字状に屈曲させるだけで簡単に形成され、構造がシンプルで且つ安価である。

【0026】後側の弾性接触部34が第二の回路基板13(図1)の露出導体(図示せず)に弾性的に接触し、前半の弾性接触部35が第一の回路基板7(図1)の露出導体11aに弾性的に接触する。両弾性接触部34,35の間の下向きにやや湾曲した部分(中間基板部)36は図2の下側のハウジング24の前端側においてハウジング24と一体の支持壁(支持部)37で摺動(移動)自在に支持されている。

【0027】後側の弾性接触部34の後端側は水平方向に短い長さで真直に形成され、この真直部34aがハウジング24の端子収容溝33(図2)の後端に当接して後方への端子26の移動が阻止されている。端子収容溝33の後端に端子26の後端部34aを挿入固定する穴ないし溝(図示せず)を設けてもよい。

【0028】端子26を下側のハウジング24に装着した状態で、あるいは装着する前に、図2の如く例えば上

側のハウジング23の軸受32を内側に撓ませつつ軸部30に軸受32の孔部を係合させることで、下側のハウジング24に上側のハウジング23を容易に組み付けることができる。軸受32は下側のハウジング24の軸受29の内面に接する。両軸受29,32と軸部30とでヒンジ41が構成される。上側のハウジング23は下側のハウジング24と同程度の板厚と幅と長さに形成されている。

【0029】図4はコネクタ22を第一の回路基板7に 係止させた状態、図5はコネクタ22に第二の回路基板 13を接続させた状態をそれぞれ示すものである。

【0030】図4の如く、ハウジング24の支持壁37の下面と端子収容溝33の底面との間に端子26の板厚以上の隙間42ないし孔部が形成されており、端子26は隙間42内を端子長手方向に摺動ないし撓み自在となっている。支持壁37の内面は端子26の湾曲状の中間基板部36に沿って湾曲して形成されることが好ましい。また、例えば後側の弾性接触部34を隙間42内に挿通させることで、端子26を下側のハウジング24に簡単に組み付けることができる。後側の弾性接触部34の後端の真直部34aは端子収容溝33の終端に当接する。真直部34aはハウジング24の穴ないし溝(図示せず)に挿入して(引っ掛けて)固定してもよい。

【0031】上下のハウジング23,24を鋭角的に開いた状態で、係止アーム27の爪部28を第一の回路基板7の係合孔12に係合させる。これによりコネクタ22が第一の回路基板7に固定される。上下のハウジング23,24の開き状態は、例えば下側のハウジング24に設けたばね片等の弾性部材(図示せず)の先端で上側のハウジング23が支持されることで達成される。両ハウジング23,24が開いた状態で、端子26の前側の弾性接触部35は第一の回路基板7の回路導体11に隙間を存して対向している。

【0032】図5の如く両ハウジング23,24を水平に閉じるに伴って、端子26が下側のハウジング24と一体に回動し、前側の弾性接触部35が第一の回路基板7の露出導体11aに弾性的に接触する。これと同時に、水平方向の第二の回路基板13が上下のハウジング23,24の間に挟持され、ハウジング23,24内の端子26の後側の弾性接触部34が第二の回路基板13の回路導体45の露出導体45aに弾性的に接触する。上側のハウジング23は第二の回路基板13の表面に押接する。このようにして直交方向の両回路基板7,13が接続され、補機とインパネ内の電源回路や信号回路が接続される。上下のハウジング23,24は例えば図示しない係止手段で閉止状態に保持される。

【0033】上下のハウジング23,24の閉じ操作は 従来(図18)と同様に両ハウジング23,24の前端 内側にテーパ状の傾斜部(図示せず)を形成しておき、 両傾斜部に第二の回路基板13の先端を突き当てること で自動的に且つ強制的に行わせる。なお、開いた状態の両ハウジング23,24の間に第二の回路基板13が挿入された際に、両ハウジング23,24を開状態に支持するばね片は例えば回路基板13の先端で押されて付勢に抗して倒され、それにより上側のハウジング23の支えがなくなり、ハウジング23の閉止が許容される。【0034】これらコネクタ22と両回路基板7,13との接続構造については本出願人が先に特願2000-55460号で提案済である。本発明の特徴は、端子26の形状と、端子26がハウジング24に長手方向移動(撓み)自在に支持されたことにある。

【0035】この構成によって、図4のコネクタ22の

非接続状態から図5の接続状態に移行した際に、すなわ

ち端子26の前側の弾性接触部35が垂直な第一の回路 基板7に押接した際に、その押圧力すなわち弾性接触部 35の撓みが前側の弾性接触部35から後側の弾性接触 部34に伝播され、後側の弾性接触部34が強い圧力で 水平な第二の回路基板13に接触する。これと同時に、 後側の弾性接触部34が第二の回路基板13から受けた 反力で撓み、その撓みが端子26の長手方向に伝播さ れ、前側の弾性接触部35に伝わって、前側の弾性接触 部35が強い圧力で第一の回路基板7に接触する。この ようにして、両側の弾性接触部34,35の接圧が均衡 し、両弾性接触部34,35がばらつきのない均一な接 圧で各回路基板13.7に確実に接触する。これによ り、二枚の回路基板7、13をコネクタ22を介して接 続する構造における電気的接続の信頼性が向上する。 【0036】その他の効果として、本実施形態によれ ば、ワイヤハーネス等の電線を用いずに、補機と車両側 の回路(第一の回路基板7)とを簡単に且つ確実に接続 させることができる。電線を用いないから、構造が簡素 化、コンパクト化され、接続工数が低減される。また、 コネクタ22の係止アーム27が回動自在に設けられて いるから、第一の回路基板7に対するコネクタ22の位

【0037】図6~図9は、本発明に係る基板接続用端子及びそれを用いたコネクタの第二の実施形態を示すものである。図6は、コネクタ50を用いた接続構造の一形態を示すものであり、図1の形態とほぼ同様に、自動車のインパネコアであるケース51内に配置された垂直な第一の回路基板52と、ケース51の両側壁53に設けられた水平なガイド部54と、ガイド部54に沿って挿入される水平な第二(一方)の回路基板55とを備え、さらに第一(他方)の回路基板52の裏側においてケース51の背壁に垂直方向の複数の電源用のバスバー57を等ピッチで配設して成る第三の回路基板56を備えている。このバスバー57を用いた構成は本出願人が先に特願平11-341055号で提案済のものであ

置が上下方向にややずれた場合でも、係止アーム27が

係合孔12に確実に係合し、端子26と露出導体11a

との接触が確実に行われる。

る。

【0038】第一の回路基板52の垂直方向の複数の回路導体(プリント導体)58は信号用のものである。第二の回路基板55の表面側の複数の回路導体(プリント導体)59,60は信号用と電源用のものである。第二の回路基板55は中央と両側とが前方に突出し、中央の突出部61に回路導体59,60の端末が位置している。それ以外の構成は図1の形態と同様である。

【0039】図7にコネクタ50の分解図を示す如く、合成樹脂製の上下のハウジング62,63と、上側のハウジング62に配置される電源用の端子(基板接続用端子)65と、両ハウジング62,63の前端側のヒンジ部66に軸部67で回動自在に軸支される係止アーム68とで構成されている。図2のコネクタ22とは端子64,65の配置が上下逆になっている点と、幅広な電源用の端子64と幅狭な信号用の端子65を混載している点で主に相違している

【0040】電源用の端子64は一枚の導電金属板から打抜き及び屈曲成形により容易に形成され、水平で真直な中間基板部69の後側に円弧状に下向きに湾曲した弾性接触部(第一の弾性接触部)70を有し、中間基板部69の前側にほぼ直交する方向に滑らかに湾曲した、ないしは斜め前方に向けて下向きに傾斜した弾性接触部(第二の弾性接触部)71を有している。前側の弾性接触部70とは真直な中間基板部69を介して続いている。前述の図3の端子26は中間基板部36がやや湾曲している点で相違している。後側の弾性接触部70は後端側の短い真直部(端部)72に続いている。前側の弾性接触部71は図6の垂直な第三の回路基板56のバスバー57に接触し、後側の弾性接触部70は水平な第二の回路基板55の回路導体60に接触する。

【0041】図7で信号用の細幅な端子65は電源用の端子64とほぼ同様な屈曲形状を呈し、全長すなわち中間基板部89の長さが電源用の端子64の中間基板部69よりも短くなっている。信号用の端子65は一枚の導電金属片から打抜き及び屈曲成形により簡単に形成される。

【0042】信号用の端子65は、下向きに円弧状に湾曲した後側の弾性接触部(第一の弾性接触部)73と、弾性接触部73の後端側に短く突出した真直部(端部)74と、弾性接触部73の前方に水平に延びる真直な中間基板部89と、中間基板部89から下向きに湾曲状ないし傾斜状に滑らかに屈曲された前側の弾性接触部(第二の弾性接触部)75とで構成されている。

【0043】図7で、符号76は係止爪、77は端子位 置決め溝をそれぞれ示す。両ハウジング62,63でコネクタハウジング78が構成される。上側のハウジング62は、図8に示す如く端子収容溝79を並列に有し、 前端側に端子64,65の中間基板部69,89を摺動自在に支持する支持壁(支持部)80を有し、後端側に端子64,65の後端の真直部72,74を挿入固定させる溝部81を有している。支持壁80は複数の端子収容溝79毎に溝底面に対向して横断方向に配置されている。電源用の端子64に対する幅広な端子収容溝79がハウジング62の両側に配置され、その内側に信号用の端子65に対する幅狭な端子収容溝(図示せず)が配置されている。

【0044】図8の両ハウジング62,63の開き状態で、電源用の端子64の前側の弾性接触部71は信号用の端子65よりも前方に突出して第三の回路基板56のバスバー57に軽く接し、信号用の端子65の前側の弾性接触75(図7)は第一の回路基板52の回路導体58(図6)に軽く接している。係止アーム68は垂直な両回路基板52,56を貫通して、係止爪76が第三の回路基板56の裏面に係止されている。

【0045】図8で、電源用の端子64の後側の弾性接 触部70は上側のハウジング62から下向きに突出し、 後端の真直部72はハウジング62の溝81に係合して 固定され、中間基板部69はハウジング62の支持壁8 0と基板部83との間の矩形スリット状の隙間ないし孔 部80a内で摺動自在に支持され、下向きに湾曲ないし 傾斜して突出した前側の弾性接触部71が第三の回路基 板56のバスバー57の表面に軽く接している。孔部8 0 a の内寸は端子6 4 の外寸よりもやや大きく、中間基 板部69は孔部80a内をスムーズに移動可能である。 第一の回路基板52には、電源用の端子64の前側の弾 性接触部71を挿通させる孔部82が設けられている。 【0046】信号用の端子65も電源用の端子64とほ ぼ同じ形態でハウジング62の支持壁80と基板部83 との間の矩形状の孔部80a内に摺動自在に支持され、 下向きに湾曲ないし傾斜して突出した前側の弾性接触部 75(図7)が第一の回路基板52の回路導体58の表 面に接している。支持壁80の孔部80aの内寸は端子 65の外寸よりもやや大きい。

【0047】端子64,65は例えばハウジング62の基板部83と支持壁80との間の孔部80aに後端側から挿入され、孔部80aを後側の弾性接触部70,73が挿通した時点で円弧状に復元しつつ、後端の真直部72,74がハウジング62の溝部81に挿入ないし圧入固定される。あるいは、前側の弾性接触部71,75を端子収容溝79側から孔部80aに挿通して前方に突出させることで、前側の弾性接触部71,75が湾曲ないし傾斜状に復元し、次いで後端の真直部72,74を溝部81に挿入ないし圧入する。

【0048】上下のハウジング62,63はヒンジ部すなわち軸受66と軸部67を中心に閉止方向に回動自在である。両ハウジング62,63の後部開口84に向けて第二の回路基板55が挿入される。第二の回路基板5

5は電装部品といった補機に接続されている。

【0049】図9の如く、第二の回路基板55を挿入すると同時に両ハウジング62,63の前端側のテーパ状の傾斜部(図示せず)に第二の回路基板55の先端が当接し、両ハウジング62,63が閉止する。それと同時に電源用及び信号用の各端子64,65の後側の弾性接触部70,73が第二の回路基板55の回路導体59に弾性的に接触し、且つ前側の弾性接触部71,75の前面が図8の状態よりも強く第三の回路基板56のバスバー57や第一の回路基板52の回路導体58に弾性的に接触する。これは端子64,65がヒンジ66,67を中心に上側のハウジング62と一体に回動して、前側の弾性接触部71,75が前方へ突き出されるからである。

【0050】そして、端子64,65の後側の弾性接触部70,73は第二の回路基板55に対する反力で矢印Aの如く上向きに撓み、それにより端子64,65の中間基板部69,89が矢印Bの如く前方へスライドし、前側の弾性接触部71,75が第三又は第一の回路基板56,52の各回路導体57,58に強く押し付けられる。

【0051】また、前側の弾性接触部71,75は第三 又は第一の回路基板56,52に対して矢印D方向の反 力を受け、それにより中間基板部69,89が矢印Cの 如く後方へスライドし、後側の弾性接触部70,73の 湾曲形状が膨らむ方向の力を受け、後側の弾性接触部7 0,73が第二の回路基板55の回路導体59,60に 強く押し付けられる。

【0052】これらの作用で、前側と後側の各弾性接触部70,71,73,75が各回路基板52,55,56に均一な接圧で確実に接触し、端子64,65と各回路基板52,55,56との電気的接続の信頼性が向上する。

【0053】例えばコネクタ50の位置が後側に寄り過ぎて、第三又は第一の回路基板56,52と前側の弾性接触部71,75との接圧が弱い場合でも、後側の弾性接触部70,73が第二の回路基板55に押圧されて撓んで、中間基板部69,89と一体に前側の弾性接触部71,75が前向きに押し出されることで、前側の弾性接触部71,75が第三又は第一の回路基板56,52に十分な接圧で接触する。

【0054】逆に、ハウジング62の端子収容溝79の深さが深すぎる場合や、後側の弾性接触部70,73の突出量が小さい場合には、前側の弾性接触部71,75が第三又は第一の回路基板56,52に接触した際に、後側の弾性接触部70,73が前側の弾性接触部71,75の反力で補強され、第二の回路基板55に十分な接圧で接触する。これらにより、コネクタ50の電気的接続の信頼性が向上する。

【0055】図10~図12は、上記コネクタ50の端子支持壁80(図8)に代えて上側のハウジング62に左右各一対(計二対)の端子支持兼係止用の支持突起(支持部)85を設けて、ハウジング62の端子収容溝79の底面と支持突起85との間で端子64,65(図11)を長手方向スライド自在に支持する構造のコネクタの第三の実施形態を示すものである。下側のハウジング(図示せず)は図8の形態と同様である。支持突起85以外の構成は上記実施形態と同様であるので、同一の符号を用いて説明する。

【0056】図10の如く端子64はその真直な中間基板部69を支持突起85で支持されて矢印B、Cの如く前後に摺動自在である。端子64の後端側の真直部72は溝部81に挿入ないし圧入で固定されている。支持突起85とハウジング62の基板部83との間の隙間は端子64の板厚よりもやや大きい。真直な中間基板部69が前後各一対のある程度の間隔をあけた支持突起85で安定に支持されることで、第二の回路基板55(図8)に対する後側の弾性接触部70の押圧時や、第三の回路基板52、56(図8)に対する前側の弾性接触部71の押圧時における中間基板部69の摺動が極めてスムーズに行われる。

【0057】図11(正面図),図12(平面図)は上側のハウジング62を示し、両側に幅広な端子収容溝79が配置され、その内側に幅狭な端子収容溝86が配置されている。各端子収容溝79,86の前端寄りの両側に二対の支持突起85が左右対向して配置されている。

【0058】各支持突起85は下向きの傾斜面85aと上向きの支持面(係止面)85bとを有している。傾斜面85aに沿って端子64,65の中間基板部69,89が板厚方向に押入され、これにより端子64,65がハウジング62にワンタッチで簡単に装着される。支持面85bで端子64,65が抜け出しなく支持される。支持突起85は内向きに撓んで端子64,65の挿入を許容する。あるいは端子64が板厚方向に撓んで挿入される。符号66はヒンジを構成する軸受を示す。

【0059】図13〜図17は、本発明に係る基板接続 用端子及びそれを用いたコネクタの第四の実施形態を示すものである。このコネクタ90は、上記した開閉自在な上下一対のハウジング62、63で構成されるコネクタハウジング78に代えて、一つの雄型のコネクタハウジング91と、コネクタハウジング91内に摺動自在に収容される略し字状の端子(基板接続用端子)92と電源用の端子93とを用いて構成されるものである。

【0060】図13で、符号94は垂直な第一の回路基板、95は、コネクタ90に後方から挿入接続される水平な第二の回路基板である補機側のプリント回路基板、96は第一の回路基板94の裏側に配置されるバスバー97を含むインパネコアとしての垂直な第三の回路基板をそれぞれ示す。

【0061】図14の如くコネクタ90は、略矩形状の 絶縁樹脂製のコネクタハウジング91の内側に複数の信 号用の端子92を並列に収容すると共に、コネクタハウ ジング91の両側に左右一対の電源用の端子93を収容 して成るものである。本発明においては信号用の端子9 2が主要な構成を呈している。

【0062】信号用の端子92は、図16にも示す如く、第一の回路基板94に対して略山型状に前方に突出した前側の弾性接触部(第二の弾性接触部)98と、第二の回路基板95に対して略山型状に下方に突出した後側の弾性接触部(第一の弾性接触部)99とを直交方向に配して成り、両弾性接触部98,99を連結する中間基板部100をコネクタハウジング91に対して摺動自在に支持させたことを特徴とするものである。両弾性接触部98,99はほぼ90°の回転対称で同一形状ないし略同一形状に形成されている。前後の弾性接触部98,99のばね定数は同一ないしばほぼ同一である。

【0063】第二の回路基板95に対する後側の弾性接触部98は前後一対の傾斜片99a,99bと、両傾斜片99a,99bと、両傾斜片99a,99bと、両傾斜片99a,99bと、両傾斜片99a、後側の傾斜片99bは後端側の短い水平な真直部101に続き、真直部101はコネクタハウジング91の溝部102に挿入固定されている。前側の傾斜片99aは真直で水平な中間基板部100に続き、中間基板部100は直交方向に屈曲した停止部102に続き、停止部102は、第一の回路基板95に対する前側の弾性接触部98の上側の傾斜片98aに続き、上側の傾斜片98aは湾曲状の接点98cを経て下側の傾斜面98bに続き、下側の傾斜片98bは下側の自由端である短い真直部(自由端)103に続いている。

【0064】コネクタハウジング91には、第二の回路基板95に対する水平な基板挿入孔104が設けられ、基板挿入孔104内に後側の弾性接触部99が突出して位置している。後側の弾性接触部99の前後端部及び中間基板部100に立る。中間基板部100において端子収容溝105内に位置している。中間基板部100において端子収容溝105の終端壁を兼ねる垂直な支持壁(支持部)106の先端と収容溝105の底面との間に、端子92の板厚よりもやや広い端子挿通用の孔部107ないし隙間が形成され、孔部内に中間基板部100が摺動自在に支持されている。中間基板部100の長さは支持壁106の板厚よりも長く設定されている。

【0065】水平な端子収容溝105は孔部107を介して垂直な端子収容溝108に続き、垂直な端子収容溝108に前側の弾性接触部98の上下端部が配置され、垂直な端子収容溝108は第一の回路基板94に対向する前部開口109に続き、前部開口109から前側の弾性接触部98の接点98c側が突出している。前側の弾性接触部98に続く自由端側の短い真直部103は端子収容溝108の下端(終端)108aとの間に少しの隙

間を存して位置し、収容溝108の底面でスライド自在 に支持されている。コネクタハウジング91は縦断面略 L字状に構成されている。

【0066】図14において、両側の電源用の端子93は、第二の回路基板95に対する円弧状の弾性接触部110と、弾性接触部110に続く中間基板部111と、中間基板部111に続く雌型の電気接触部112とを有している。電気接触部112は略U字状の弾性接触片を有して、第三の回路基板96(図13)の孔部113において縦型のバスバー97を板厚方向に挟持接続する。第一の回路基板94には電源用の端子93とハウジング91の係止アーム(係止手段)115に対する挿通用の孔部114が設けられている。

【0067】コネクタハウジング91の両側端には上下各一対の可撓性の係止アーム115が突設され、係止アーム115は係止用の爪部116を有し、各一対の係止アーム115は第一及び第三の回路基板94,96の孔部114,113を貫通して図15の如くコネクタ90を係止させる。

【0068】図16の如くコネクタ90の係止状態で前側の弾性接触部98は軽く第一の回路基板94の回路導体117に接し、後側の弾性接触部99は基板挿入孔104内に大きく突出し、接点99cは下側の挿入孔内壁面104aに近接している。中間基板部100は支持壁106で長手方向摺動自在に支持され、停止部102は支持壁106の前端面に当接している。この状態で中間基板部100は支持壁106の板厚程度の長さで真直に延長されている。

【0069】図16の如く前側の弾性接触部98が第一の回路基板94に初期接触した際に、停止部102寸なわちストッパによって後側の弾性接触部99の初期形状が維持され、弾性接触部99との間で第二の回路基板95に対する挿入隙間が確保され、これにより第二の回路基板95の挿入力が低く抑えられる。これにより第二の回路基板95に挿入がスムーズに行われ、擦れによる後側の弾性接触部99の磨耗や変形や第二の回路基板95の回路導体の磨耗や傷付きが防止される。

【0070】図15,図16の矢印の如く第二の回路基板95の先端部がコネクタ90の挿入孔104内に挿入される。これにより、図17の如く、後側の弾性接触部99が矢印Aの如く上向きに圧縮されつつ第二の回路基板95に接触し、これに伴って中間基板部100が支持壁106上を(孔部107内を)前方に摺動し、前側の弾性接触部98が第一の回路基板94に向けて強く押し付けられる。これにより、前側の弾性接触部98が第一の回路基板94に強い接圧で確実に接触する。

【0071】前側の弾性接触部98は第一の回路基板94に対して矢印Dの如く直交方向の反力を受ける。これにより中間基板部100が矢印Cの如く後方に向けて摺動し、後側の弾性接触部99が膨らむ方向に撓んで、第

二の回路基板95に強い接圧で確実に接触する。

【0072】このようにして、前側と後側の弾性接触部98,99の接触圧力が均衡し、接圧のバランスがとれて、両弾性接触部98,99が両回路基板94,95に確実に接触する。すなわち、前側の弾性接触部98の接圧が弱い場合は後側の弾性接触部99の接圧が前側の弾性接触部98の接圧が横側の弾性接触部98の接圧が後側の弾性接触部99の接圧が後側の弾性接触部98の接圧が後側の弾性接触部98の接圧が後側の弾性接触部98,99の接圧を補強する。このように両弾性接触部98,99の接圧が互いに補われて均一化され、両回路基板94,95とコネクタ90との電気的接続の信頼性が向上する。

【0073】図17の形態においては、特に前側の弾性接触部98の自由端(下端)をコネクタハウジング91の端子収容溝108の底面に支持させているから、第一の回路基板94が前側に弾性接触部98を後方に押圧した際に、端子92の中間基板部100が確実に且つスムーズに後方に摺動して、後側の弾性接触部99の接圧の調整(補強)がスムーズ且つ確実に行われる。

【0074】なお、図16の端子においては略山型状の 弾性接触部98,99を用いたが、山型状に代えて円弧状の弾性接触部を形成することも可能である。この場合、前後の弾性接触部98,99は等しい形状とすることが接圧を均衡させる点から好ましい。また、図16の端子92の前側の弾性接触部98を図4の端子26の前側の弾性接触部35のように湾曲状ないし傾斜状に突出させることも可能である。この際、前側の弾性接触部の自由端側をコネクタハウジング91の端子収容溝108の底壁に摺動自在とするように屈曲させることも可能である。

【0075】また、図14のコネクタ90の電源用の端子93を図7のコネクタ50の電源用の端子64と同様に図14の信号用の端子92を一回り大きく且つ長く形成して構成し、図8のバスバー57と同様の形態の電源用のバスバーを使用することも可能である。また、例えば図2の二つの端子26の後端側を相互に連結させてジョイント端子とすることも可能である。

[0076]

【発明の効果】以上の如く、請求項1記載の発明によれば、第一の弾性接触部を一方の回路基板に接触させ、第二の弾性接触部を他方の回路基板に接触させることで、交差方向ないし直交方向の両回路基板を容易に且つ確実に且つ低コストで接続させることができる。すなわち、従来の電線と端子とを圧着接続する等の作業が不要であるから、端子と回路基板の回路導体との接続工数が低減され、回路導体に対する端子の取付や取外しの自由度が高まり、組付性やメンテナンス性が向上する。

【0077】また、第一の弾性接触部の突出方向と同方向に第二の弾性接触部が屈曲形成されたから、第一の弾

性接触部が一方の回路基板に押接され、第二の弾性接触部が他方の回路基板に押接された際に、両弾性接触部の撓み姿勢が安定する。そして、中間基板部を介して両弾性接触部の弾性力すなわち回路基板に対する接圧がスムーズに調整(均一化)され、これにより両弾性接触部が均一で適切な接圧で両回路基板に接触し、電気的接続の信頼性が向上する。

【0078】また、請求項2記載の発明によれば、第一の弾性接触部の自由端側の真直部をコネクタハウジングに当接ないし固定することで、第一の弾性接触部が一方の回路基板に押接して撓んだ際に、自由端とは反対の方向すなわち第二の弾性接触部の方向に移動可能となる。あるいは第二の弾性接触部が他方の回路基板に押接した際に第一の弾性接触部がその撓み反力を確実に受けることができる。これらにより、両弾性接触部の接圧調整がスムーズ且つ確実に行われる。

【0079】また、請求項3記載の発明によれば、第一の弾性接触部と第二の弾性接触部とが同じ形状を呈しているから、両弾性接触部の接圧が均一化しやすく、請求項1,2記載の発明の効果である両回路基板に対する両弾性接触部の接圧が正確にバランスされ、これにより電気的接続の信頼性が一層向上する。また、両弾性接触部を回転対称に形成したことで、交差方向ないし直交方向の両回路基板の接続を容易に行うことができる。

【0080】また、請求項4記載の発明によれば、第一の弾性接触部を一方の回路基板に接触させ、第二の弾性接触部を他方の回路基板に接触させることで、交差方向ないし直交方向の両回路基板を容易に且つ確実に且つ低コストで接続させることができる。すなわち、従来の電線と端子とを圧着接続する等の作業が不要であるから、端子と回路基板の回路導体との接続工数が低減され、回路導体に対する端子の取付や取外しの自由度が高まり、組付性やメンテナンス性が向上する。

【0081】また、第一の弾性接触部が一方の回路基板に押接され、第二の弾性接触部が他方の回路基板に押接された際に、どちらか弱い接圧の方の弾性接触部に向けてコネクタハウジングの支持部に沿って端子が移動(摺動)し、弱い接圧の弾性接触部の接圧が補強されて、強い接圧の方の弾性接触部と接圧が均衡するから、両回路基板に対する両弾性接触部の接触が適切な接圧で確実に行われ、電気的接続の信頼性が向上する。

【0082】また、請求項5記載の発明によれば、第一の弾性接触部と同じないし略同じ形状の第二の弾性接触部側の自由端がコネクタハウジングに摺動自在に支持されたことで、第二の弾性接触部が他方の回路基板に押接した際に、第二の弾性接触部が自由端を支点として撓み、コネクタハウジングの支持部に沿ってスムーズに移動(摺動)するから、第一の弾性接触部の接圧が少ない場合に、第一の弾性接触部の接圧の補給が一層確実に行われる。

【0083】また、請求項6記載の発明によれば、先ず第二の弾性接触部を他方の回路基板に初期接触させた際に(第一の弾性接触部は未だ一方の回路基板に接触していない)、端子の停止部がコネクタハウジングの支持部に当接して、それ以上、第一の弾性接触部側に端子が移動せず、第一の弾性接触部側に一方の回路基板に対する挿入隙間が確保され、一方の回路基板の挿入力の増大が防止され、一方の回路基板の挿入が小さな力でスムーズに行われる。これにより、回路基板の接続作業性が向上する。

【0084】また、請求項7記載の発明によれば、他方の回路基板を一対のハウジング間に挿入して両ハウジングが閉止され、端子がハウジングと一体に閉止方向に回動し、第二の弾性接触部が他方の回路基板に押し付けられる。このように、両弾性接触部と両回路基板との接触が同時に行われ、両弾性接触部の接圧の均一化が促進される。

【0085】また、請求項8記載の発明によれば、基板 挿入孔に一方の回路基板を挿入することで、第一の弾性 接触部が一方の回路基板に弾性的に接触し、第二の弾性 接触部は開口から他方の回路基板に弾性的に接触する。 これにより、交差方向ないし直交方向の両回路基板が両 弾性接触部を介して容易に且つ確実に接続される。

【0086】また、請求項9記載の発明によれば、コネクタハウジングを他方の回路基板に係止することで、第二の弾性接触部が他方の回路基板に接触(請求項8記載のコネクタの場合)ないし接触に近い状態(請求項7記載のコネクタの場合)となり、一方の回路基板を第一の弾性接触部に向けて容易に挿入することができる。

【0087】また、請求項10記載の発明によれば、少なくとも中間基板部の長さを変更することで、容易に電源用と信号用の各端子を形成することができ、端子の低コスト化が図られる。

【図面の簡単な説明】

【図1】本発明に係る端子とそれを用いたコネクタの第一の実施形態とコネクタの適用例を示す分解斜視図である。

【図2】同じくコネクタを示す要部斜視図である。

【図3】同じく端子を示す側面図である。

【図4】コネクタを垂直な回路基板に係止した状態を示 す縦断面図である。

【図5】コネクタを介して垂直と水平な各回路基板を接続した状態を示す縦断面図である。

【図6】本発明に係るコネクタの第二の実施形態とコネ

クタの適用例を示す分解斜視図である。

【図7】同じくコネクタを示す分解斜視図である。

【図8】コネクタを垂直な回路基板に係止した状態を示す縦断面図である。

【図9】コネクタに水平な回路基板を挿入接続した状態を示す縦断面図である。

【図10】本発明に係るコネクタの第三の実施形態を示す要部縦断面図である。

【図11】同じく上側のハウジングを示す正面図である。

【図12】 同じく上側のハウジングを示す平面図であ ス

【図13】本発明に係る端子とそれを用いたコネクタの 第四の実施形態とコネクタの適用例を示す分解斜視図で ある。

【図14】同じくコネクタを示す斜視図である。

【図15】コネクタを垂直な回路基板に係止接続した状態を示す斜視図である。

【図16】同じくコネクタを垂直な回路基板に接続した 状態を示す縦断面図である。

【図17】水平な回路基板をコネクタに挿入接続した状態を示す縦断面図である。

【図18】従来の端子を用いたコネクタの一形態を示す 分解斜視図である。

【符号の説明】

7, 52, 94	第一(他方)の回路基板			
13, 55	第二 (一方) の回路基板			
22, 50, 90	コネクタ			
23, 24	ハウジング			
25, 78, 91	コネクタハウジング			
26, 64, 65, 92	基板接続用端子			
27, 68, 115	係止アーム(係止手段)			
34, 70, 73, 99	後側(第一)の弾性接触部			
34a, 72, 74	真直部(端部)			
35, 71, 75, 98	前側(第二)の弾性接触部			
36, 69, 89, 100	中間基板部			
37, 80, 106	支持壁(支持部)			
56	第三の回路基板			
85	支持突起(支持部)			
102	停止部			
103	真直部(自由端)			
104	基板挿入孔			
109	前部開口(開口)			

【図1】

【図2】

【図3】

【図4】

【図5】

(14) 月2002-83638 (P2002-83638A)

【図18】

フロントページの続き

Fターム(参考) 5E023 AA04 AA16 AA26 AA30 BB01

BB22 BB29 CC12 CC16 CC23

DD02 DD06 DD25 DD28 EE01

EE06 EE19 EE20 EE27 FF07

GG03 GG07 GG09 HH08 HH18

HH30

5E077 BB23 BB31 BB37 CC15 CC23

CC27 DD14 DD15 EE18 GG05

GG10 GG12 JJ15 JJ20

TERMINAL FOR SUBSTRATE CONNECTION AND CONNECTOR USING THE SAME

Publication number: JP2002083638 (A)

Publication date: 2002-03-22

WATABE HIROSHI; KATO MITSUNOBU Inventor(s):

YAZAKI CORP Applicant(s):

Classification:

H01R12/16; H01R 12/00; H01R12/04; H01R12/06; - international:

H01R24/00; H01R 24/10; H05K1/00; H01R107/00; H01R12/00; H01R24/00; H05K1/00; (IPC1-7): H01R12/16;

H01R12/06; H01R24/10; H01R107/00

- European:

H01R23/70B

Application number: JP20000271370 20000907 Priority number(s): JP20000271370 20000907

Abstract of JP 2002083638 (A)

PROBLEM TO BE SOLVED: To secure contact pressure of a terminal for connecting plural circuit boards of mutually crossing directions. S OLUTION: A terminal 64 for substrate connection is adopted, which has a first elastic contact part 70, protruding in nearly circular or nearly peak-formed state on one side and a second elastic contact part 71 bending in a curving state or inclined state in the same directions as the protruding direction of the first elastic contact part on the other side, and where both the elastic contact parts are succeeding via a curved or straight intermediate substrate part 69. This is the connector where a circuit board 55 of one side is made to be connected with the first elastic contact part and a circuit board 52 of the other side is made to be connected with the second elastic contact part, and a support part 80 for slidecontacting against the intermediate substrate part 69 is installed at connector housings 62, 63 to house at the least the first elastic contact part side of the terminal 64, and an end part 72 of the first electric contact part side is abutted on or fixed to the connector housing, and the terminal 64 for the substrate connection is slidably supported by the support part 80 in the longitudinal direction.

Also published as:

US6524114 (B2)

🔁 US2002028588 (A1)

Data supplied from the esp@cenet database — Worldwide