ELT330 – Sistemas de Controle I

Prof. Tarcísio Pizziolo

Aula 22 – Controlador Proporcional P

1. Projeto de Controlador Proporcional

(https://www.embarcados.com.br/controlador-proporcional/)

Como o nome sugere, em um controlador proporcional a saída do mesmo, também conhecida como sinal de controle (ou ação de controle), é diretamente proporcional ao sinal de erro, ou seja, ao erro atuante.

No domínio da frequência (Transformada de Laplace) tem-se o seguinte diagrama de blocos para o controle proporcional e,

$$M(s) = K_{P.}E(s)$$

1. Sistemas de 1ª Ordem com realimentação unitária

Para um processo de 1ª ordem tem-se a função de transferência em malha aberta,

$$G_{P}(s) = \frac{K}{Ts + 1}$$

Conectando o controlador proporcional K_P em série com o processo $G_P(s)$ e montando a malha fechada tem-se,

A função de transferência em malha fechada será,

$$F(s) = \frac{K_P G_P(s)}{1 + K_P G_P(s)} = \frac{K_P \left(\frac{K}{Ts + 1}\right)}{1 + K_P \left(\frac{K}{Ts + 1}\right)} \Longrightarrow F(s) = \frac{\frac{KK_P}{T}}{s + (\frac{1 + KK_P}{T})}$$

A equação característica é dada por,

$$s + \left(\frac{1 + KK_P}{T}\right) = 0 \Longrightarrow s = -\left(\frac{1 + KK_P}{T}\right)$$

Nota-se que a localização do polo do sistema pode variar de acordo com a variação do valor do ganho proporcional Kp.

Exemplo: Considere que $G_P(s)$ possua um polo em s=10 e tenha ganho unitário K=1. Então.

$$G_{P}(s) = \frac{1}{s - 10}$$

A função de transferência em malha fechada será,

$$F(s) = \frac{K_{P}}{s + (K_{P} - 10)}$$

A equação característica é dada por,

$$s + (K_P - 10) = 0$$

E o polo será em,

$$s = (10 - K_P)$$

Para que o polo esteja localizado no semiplano esquerdo do plano complexo, (sistema estável), deve-se ter s < 0, então,

$$10 - K_p < 0 \Longrightarrow K_p > 10$$

O gráfico a seguir ilustra a variação da localização dos polos do sistema de acordo com a variação do ganho proporcional Kp.

Observe que conforme Kp é incrementado, o polo do sistema é deslocado para a esquerda, de modo que, para Kp = 10, o mesmo permanece sobre a origem. Ao passo que para Kp = 20, o polo em questão pode ser localizado em -10.

Pode-se então projetar um controlador proporcional para estabilizar um determinado sistema instável em malha aberta tronando-o estável em malha fechada no regime transitório.

Exemplo: Projetar um controlador proporcional $G_C(s) = K_P$ de forma que o sistema dado pela sua função de transferência $G_P(s)$ torne-se estável quando excitado por uma entrada degrau unitário em malha fechada conforme o diagrama de blocos dado.

A função de transferência G_P(s) no padrão de 1ª ordem é,

$$G_P(s) = \frac{4}{s-2} \Longrightarrow G_P(s) = \frac{2}{(\frac{1}{2}s-1)}$$

Assim, K = 2 e T = 0.5.

A função de transferência $G_c(s)G_P(s) = K_PG_P(s)$,

$$K_PG_P(s) = \frac{2K_P}{(\frac{1}{2}s - 1)}$$

A função de transferência F(s) de malha fechada é dada por,

A função de transferência F(s) de malha fechada é dada por,

$$F(s) = \frac{\frac{2K_{P}}{(\frac{1}{2}s - 1)}}{1 + \frac{2K_{P}}{(\frac{1}{2}s - 1)}} \Rightarrow F(s) = \frac{8K_{P}}{\frac{1}{2}s - 1 + 2K_{P}} \Rightarrow F(s) = \frac{16K_{P}}{s + (4K_{P} - 2)}$$

O polo de F(s) em malha fechada é,

$$s + (4K_P - 2) = 0 \implies s = -(4K_P - 2)$$

Então, para que o sistema se estabilize, o polo deverá se localizar à esquerda do semiplano esquerdo do plano complexo onde s <0.

$$-(4K_{P}-2)<0 \Longrightarrow (4K_{P}-2)>0 \Longrightarrow K_{P}>\frac{1}{2}$$

Ou seja, para quaisquer valores de K_P > 0,5 o sistema se estabilizará.

A escolha do valor de K_P dependerá da limitação do erro em regime permanente que será abordada na próxima aula.

3. Sistemas de 2ª Ordem com realimentação unitária

3.1. Projeto pelo Requisito de Sobressinal Máximo (overshoot) MP

Seja a seguinte função de transferência de um sistema em malha aberta,

$$G_{P}(s) = \frac{1}{s(s+a)}$$

Pode-se projetar um controlador proporcional de tal maneira a diminuir o sobressinal máximo (*overshoot*) da resposta do sistema a seguir.

A função de transferência em malha fechada para o sistema dado é,

$$F(s) = \frac{K_P G_P(s)}{1 + K_P G_P(s)} = \frac{K_P \left(\frac{1}{s(s+a)}\right)}{1 + K_P \left(\frac{1}{s(s+a)}\right)} \Longrightarrow F(s) = \frac{K_P}{s^2 + as + K_P}$$

Comparando essa função de transferência com a expressão padrão de um sistema de 2ª ordem tem-se,

$$F(s) = \frac{K_P}{s^2 + as + K_P} = \frac{w_n^2}{s^2 + 2\xi w_n s + w_n^2}$$

$$w_n^2 = K_P \Longrightarrow w_n = \sqrt{K_P}$$

$$2\xi w_n = a \Longrightarrow (2\xi\sqrt{K_P})^2 = a^2 \Longrightarrow (2\xi\sqrt{K_P})^2 = a^2 \Longrightarrow K_P = \frac{a^2}{4\xi^2}$$

Partindo da fórmula de cálculo do valor da especificação de sobressinal máximo da resposta de sistemas de 2ª ordem subamortecido dada uma entrada degrau unitário, pode-se determinar ξ. Assim,

$$\begin{split} M_p &= e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} \Longrightarrow \ln(M_p) = -\frac{\xi\pi}{\sqrt{1-\xi^2}} \Longrightarrow \left[\ln(M_p)\right]^2 = \frac{(\xi\pi)^2}{1-\xi^2} \Longrightarrow \\ & \Longrightarrow \left[\ln(M_p)\right]^2 (1-\xi^2) = (\xi\pi)^2 \Longrightarrow \left[\ln(M_p)\right]^2 - \xi^2 \left[\ln(M_p)\right]^2 = (\xi\pi)^2 \Longrightarrow \\ & \Longrightarrow (\xi\pi)^2 + \xi^2 \left[\ln(M_p)\right]^2 = \left[\ln(M_p)\right]^2 \Longrightarrow \xi^2 \left\{\pi^2 + \left[\ln(M_p)\right]^2\right\} = \left[\ln(M_p)\right]^2 \Longrightarrow \\ & \Longrightarrow \xi = \sqrt{\frac{\left[\ln(M_p)\right]^2}{\pi^2 + \left[\ln(M_p)\right]^2}} \end{split}$$

Então, dado M_P desejado pode-se calcular o valor de ξ . Substituindo ξ^2 determina-se K_P tem-se,

$$K_{p} = \frac{a^{2} \left\{ \pi^{2} + \left[\ln(M_{p}) \right]^{2} \right\}}{4 \left[\ln(M_{p}) \right]^{2}}$$

Exemplo: Projetar um controlador proporcional para satisfazer a um sobressinal máximo de 10% para o sistema dado.

A função de transferência em malha fechada com o controlador proporcional é dada por,

$$F(s) = \frac{K_P\left(\frac{1}{s(s+1)}\right)}{1 + K_P\left(\frac{1}{s(s+1)}\right)} \Longrightarrow F(s) = \frac{K_P}{s^2 + s + K_P}$$

Substituindo os valores de a = 1 e de $M_P = 0,1$ obtemos,

$$K_{P} = \frac{a^{2} \left\{ \pi^{2} + \left[\ln(M_{p}) \right]^{2} \right\}}{4 \left[\ln(M_{p}) \right]^{2}} \Longrightarrow K_{P} = \frac{1^{2} \left\{ \pi^{2} + \left[\ln(0,1) \right]^{2} \right\}}{4 \left[\ln(0,1) \right]^{2}} \Longrightarrow$$
$$\Longrightarrow K_{P} = \frac{15,171}{21,208} \Longrightarrow K_{P} = 0,715$$

A função de transferência em malha fechada com o controlado proporcional será,

$$F(s) = \frac{0,715}{s^2 + s + 0,715}$$

Gráfico de resposta ao degrau unitário com sobresinal máximo (overshoot) de 10%.

3.2. Projeto pelo Requisito de Instante e Pico tp

Seja a mesma função de transferência de um sistema em malha aberta,

$$G_{P}(s) = \frac{1}{s(s+a)}$$

Pode-se projetar um controlador proporcional para se obter um valor de instante de pico desejado na resposta do sistema a seguir.

A função de transferência em malha fechada para o sistema dado é,

$$F(s) = \frac{K_P G_P(s)}{1 + K_P G_P(s)} = \frac{K_P \left(\frac{1}{s(s+a)}\right)}{1 + K_P \left(\frac{1}{s(s+a)}\right)} \Longrightarrow F(s) = \frac{K_P}{s^2 + as + K_P}$$

Comparando essa função de transferência com a expressão padrão de um sistema de 2ª ordem tem-se,

$$F(s) = \frac{K_P}{s^2 + as + K_P} = \frac{w_n^2}{s^2 + 2\xi w_n s + w_n^2}$$

$$w_n^2 = K_P \Longrightarrow w_n = \sqrt{K_P}$$

$$2\xi w_n = a \Longrightarrow 2\xi \sqrt{K_P} = a \Longrightarrow \xi = \frac{a}{2\sqrt{K_P}}$$

Partindo da fórmula de cálculo do valor da especificação de instante de pico da resposta de sistemas de 2ª ordem subamortecido dada uma entrada degrau unitário, tem-se,

$$t_{\rm P} = \frac{\pi}{w_{\rm d}} \Longrightarrow w_{\rm d} = \frac{\pi}{t_{\rm P}}$$

Então, dado t_P desejado pode-se calcular o valor de w_d . Substituindo w_n e ξ em w_d determina-se K_P ,

$$\begin{split} w_{\mathrm{d}} &= \frac{\pi}{t_{\mathrm{p}}} \Longrightarrow w_{\mathrm{n}} \sqrt{1 - \xi^2} = \frac{\pi}{t_{\mathrm{p}}} \Longrightarrow \sqrt{K_{\mathrm{p}}} \sqrt{1 - \left(\frac{a}{2\sqrt{K_{\mathrm{p}}}}\right)^2} = \frac{\pi}{t_{\mathrm{p}}} \Longrightarrow \\ & \Longrightarrow \left[\sqrt{K_{\mathrm{p}}} \sqrt{1 - \left(\frac{a}{2\sqrt{K_{\mathrm{p}}}}\right)^2} \right]^2 = \left(\frac{\pi}{t_{\mathrm{p}}}\right)^2 \Longrightarrow K_{\mathrm{p}} \left[1 - \left(\frac{a}{2\sqrt{K_{\mathrm{p}}}}\right)^2 \right] = \left(\frac{\pi}{t_{\mathrm{p}}}\right)^2 \Longrightarrow \\ & \Longrightarrow K_{\mathrm{p}} \left[1 - \frac{a^2}{4K_{\mathrm{p}}} \right] = \frac{\pi^2}{t_{\mathrm{p}}^2} \Longrightarrow K_{\mathrm{p}} - \frac{a^2}{4} = \frac{\pi^2}{t_{\mathrm{p}}^2} \Longrightarrow K_{\mathrm{p}} = \frac{\pi^2}{t_{\mathrm{p}}^2} + \frac{a^2}{4} \end{split}$$

Exemplo: Projetar um controlador proporcional para satisfazer a um instante de pico $t_P = \pi$ s para o sistema dado.

A função de transferência em malha fechada com o controlador proporcional é dada por,

$$F(s) = \frac{K_P\left(\frac{1}{s(s+1)}\right)}{1 + K_P\left(\frac{1}{s(s+1)}\right)} \Longrightarrow F(s) = \frac{K_P}{s^2 + s + K_P}$$

Substituindo os valores de a = 1 e de $t_P = \pi$ s obtemos,

$$K_{P} = \frac{\pi^{2}}{t_{P}^{2}} + \frac{a^{2}}{4} \Longrightarrow K_{P} = \frac{\pi^{2}}{\pi^{2}} + \frac{1^{2}}{4} \Longrightarrow K_{P} = \frac{5}{4} \Longrightarrow K_{P} = 1.25$$

A função de transferência em malha fechada com o controlado proporcional será,

$$F(s) = \frac{1,25}{s^2 + s + 1,25}$$

Gráfico de resposta ao degrau unitário com instante de pico em t_P = π s. Resposta ao Degrau Unitário

Exercícios

Exercício 1) Projetar um controlador proporcional **K**_P para que a resposta do sistema de controle em malha fechada a seguir tenha um *oveershoot* de 6% para uma entrada degrau unitária.

R.: $K_P = 3$

Exercício 2) Projetar um controlador proporcional **K**_P para que a resposta do sistema de controle em malha fechada a seguir tenha um tempo de pico igual a 31,4 s para uma entrada degrau unitária.

 $R.: K_P = 0.02$

Exercício 3) Seja o sistema de controle dado pelo diagrama de blocos a seguir. A entrada é um degrau unitário.

a) Traçar o gráfico de resposta c(t) com suas especificações MP e tP.

R.: $M_P = 10.8 \% e T_P = 1.57 s$

b) Projetar um controlador Proporcional K_P a ser instalado em série com a planta para obter um sobressinal máximo M_P igual à metade do atual na resposta c(t) em malha fechada para uma entrada degrau unitário.

R.: $K_p = 0.72$

- c) Traçar o gráfico de resposta c(t) com o controlador projetado no item b) assinalando Mp.
- d) Projetar um controlador Proporcional K_P a ser instalado em série com a planta para obter um o tempo de pico t_P 50% menor que o atual na resposta c(t) em malha fechada para uma entrada degrau unitário.

R.: $K_P = 3$

e) Traçar o gráfico de resposta c(t) com o controlador projetado no item d) assinalando tp.