CS/MATH 111, Discrete Structures - Fall 2018. Discussion 5 - Linear Recurrence Relations

Andres, Sara, Elena

University of California, Riverside

October 24, 2018

Outline

Fibbonacci recurrence

Homogeneous Recurrence Equations

- Fibonnacci numbers / Fibonnacci sequence
- First two and subsequent numbers:
 - $F_0 = 1$
 - $F_1 = 1$
 - $ightharpoonup F_n = F_{n-1} + F_{n-2}$, when $n \ge 2$.
- Fibbonacci grows exponentially with *n*.
- Prove that:

$$0.5 \cdot 1.5^n \leq F_n \leq 2^n$$

Proof by induction using $F_0 = 1, F_1 = 1, ...$:

$$0.5 \cdot 1.5^n \le F_n \le 2^n \tag{1}$$

- 1. Base case:
 - $n = 0, F_0 = 1: 0.5 \cdot 1.5^0 \le 1 \le 2^0 = 0.50 \le 1 \le 1.$
 - $n = 1, F_1 = 1 : 0.5 \cdot 1.5^1 < 1 < 2^1 = 0.75 < 1 < 2$.
 - $n = 2, F_2 = 2 : 0.5 \cdot 1.5^2 \le 1 \le 2^2 = 1.125 \le 2 \le 4.$
- 2. Assumption step:
 - Assume (1) holds for all $n \le k 1$.
- 3. Induction step:
 - ▶ Prove that (1) holds for all $n \le k$.

Proof by induction using $F_0 = 1, F_1 = 1, ...$:

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

3 Induction step:

Prove that (1) holds for all $n \leq k$.

1)
$$F_k \leq 2^k$$
 $F_k = F_{k-1} + F_{k-2}$
 $F_k \leq 2^{k-1} + 2^{k-2}$ (by assumption.)
 $F_k = 2^{k-2} \cdot (2+1)$
 $F_k = 2^{k-2} \cdot 3$
 $F_k \leq 2^{k-2} \cdot 4$
 $F_k = 2^{k-2} \cdot 2^2$
 $F_k = 2^k$
 $F_n = \mathcal{O}(2^n)$

Proof by induction using $F_0 = 1, F_1 = 1, ...$:

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

3 Induction step:

▶ Prove that (1) holds for all $n \le k$.

2)
$$F_k \ge \frac{1}{2} \cdot 1.5^k$$

 $F_k = F_{k-1} + F_{k-2}$
 $F_k \ge 1.5^{k-1} + 1.5^{k-2}$ (by assumption.)
 $F_k = 1.5^{k-2} \cdot (1.5 + 1)$
 $F_k = 1.5^{k-2} \cdot 2.5$
 $F_k \ge 1.5^{k-2} \cdot 2.25$
 $F_k = 1.5^{k-2} \cdot 1.5^2$
 $F_k = 1.5^k$
 $F_n = \Omega(1.5^n)$

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$
 $F_n = \mathcal{O}(2^n)$ $F_n = \Omega(1.5^n)$ is $F_n = \Theta(\cdot)$?

Outline

Fibbonacci recurrence

Homogeneous Recurrence Equations

Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$ and $a_1 = 7$.

1. Characteristic equation and its roots:

$$x^2 - x - 2 = 0$$

 $(x+1)(x-2) = 0$
So, $x_1 = 2$ and $x_2 = -1$.

Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$ and $a_1 = 7$.

1. Characteristic equation and its roots:

$$x^2 - x - 2 = 0$$

 $(x+1)(x-2) = 0$
So, $x_1 = 2$ and $x_2 = -1$.

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$ and $a_1 = 7$.

1. Characteristic equation and its roots:

$$x^2 - x - 2 = 0$$

 $(x+1)(x-2) = 0$
So, $x_1 = 2$ and $x_2 = -1$.

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$
So, $\alpha_1 = 3$ and $\alpha_2 = -1$.

Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$ and $a_1 = 7$.

1. Characteristic equation and its roots:

$$x^2 - x - 2 = 0$$

 $(x+1)(x-2) = 0$
So, $x_1 = 2$ and $x_2 = -1$.

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$
So, $\alpha_1 = 3$ and $\alpha_2 = -1$.

4. Final answer:

$$a_n = 3 \cdot 2^n - (-1)^n$$
 is a solution.

What is the solution of the recurrence relation $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$ with initial conditions $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$.

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$

 $(x+1)(x+2)(x-2) = 0$
So, $x_1 = -1$, $x_2 = -2$ and $x_3 = 2$.

What is the solution of the recurrence relation $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$ with initial conditions $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$.

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$

 $(x+1)(x+2)(x-2) = 0$
So, $x_1 = -1$, $x_2 = -2$ and $x_3 = 2$.

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$$
.

What is the solution of the recurrence relation

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$
 with initial conditions $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$.

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$

 $(x+1)(x+2)(x-2) = 0$
So, $x_1 = -1$, $x_2 = -2$ and $x_3 = 2$.

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$$
.

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 + \alpha_3 = 8$$

 $a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$
 $a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$
So, $\alpha_1 = 2$, $\alpha_2 = 1$ and $\alpha_3 = 5$.

What is the solution of the recurrence relation

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$
 with initial conditions $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$.

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$

 $(x+1)(x+2)(x-2) = 0$
So, $x_1 = -1$, $x_2 = -2$ and $x_3 = 2$.

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$$
.

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 + \alpha_3 = 8$$

 $a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$
 $a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$
So, $\alpha_1 = 2$, $\alpha_2 = 1$ and $\alpha_3 = 5$.

4. Final answer:

$$a_n = 2 \cdot (-1)^n + (-2)^n + 5 \cdot 2^n$$
 is a solution.

