12.215 Modern Navigation

```
Thomas Herring (<u>tah@mit.edu</u>), MW 11:00-12:30 Room 54-322
```

http://geoweb.mit.edu/~tah/12.215

Review of last Class

- Motion of the Earth and Sun
 - -Geometry of Earth/Sun system
 - -Astronomical coordinates
 - -Motion of the Earth around the sun
 - -Equation of Time
- Astronomical positioning
 - -Latitude and Longitude determination using astronomical bodies
- Error contributions to latitude and longitude measurements.

Today's Class

- Almanacs: Paper and electronics
 - -Paper Almanacs: Nautical Almanac
 - -Electronic: Available on many web
 sites

Nautical Almanac

- Probably most common for ship navigation in US. Published by the US Naval Observatory and Her Majesty's Nautical Almanac Office.
- Contains all the necessary information for celestial navigation
- New volume published each year and contains information from Jan 1 to Dec 31 of that year
- Largest part of book gives the RA and Declinations of Sun, Moon, Aries, Venus, Mars, Jupiter and Saturn every hour of every day

Cover of Nautical Almanac

Call Numbers

Sun and Moon Tables

2002 OCTOBER 1, 2,

UT SUN MOON	HP
	HP
GHA Dec GHA v Dec d	• • • •
01 197 32.3	57.7 57.7 57.8 57.8 57.8 57.9 57.9 58.0 58.0 58.1 58.1 58.2 58.3 58.3 58.3 58.3 58.4 58.5 58.5 58.5

Entries in Table

GHA - Greenwich Hour Angle

Dec - Declination

v - Rate of change
of GHA ('/hr)

d - Rate of change
of declination
('/hr)

HP - Horizontal
parallax

Explanation

- Greenwich Hour Angle is the angle between a body and the Greenwich meridian measured positive west (note sign convention difference).
- The Greenwich Hour Angle of the Sun is always near 0 at 12:00UT (difference is equation of time).
- The GHA of the first point of Aries is the negative of Greenwich sidereal time.
- v and d are computed simply by differencing values and make hand calculations easier

Horizontal Parallax of Moon

- Tables are given to the center of a body from the center of the Earth. The moon is close enough that the finite sizes of the Earth and Moon affect measurements.
- HP of moon is difference in angles between edge of Earth and edge of moon.
 See

http://www.fourmilab.ch/earthview/moon_a

Equation of Time

• Also given in the Almanac is the equation of time for each day of the year. From this entry you can calculate when the meridian crossing will be a Greenwich.

• The difference between the Greenwich

		SUN		MOON							
Day	Eqn. c	of Time	Mer.	Mer.	Pass.	Age	Phase				
	00 ^h	12 ^h	Pass.	Upper	Lower						
q	m s	m s	h m	h m	h m	d	%				
1	10 08	10 18	11 50	07 22	19 50	24	32				
2	10 27	10 37	11 49	08 19	20 47	25	22 (
3	10 46	10 56	11 49	09 15	21 42	26	13				

Phases of the moon

QuickTime™ and a decompressor are needed to see this picture.

http://www.usno.navy.mil/USNO/ astronomical-applications/ images_aa/Moon_phases.jpg

Comments on Nautical Almanacs

- The nautical Almanac contains many other tables and explanations. Many of these tables were used before the advent of calculators and computer programs.
- Paper almanacs are meant to be used by ships at sea with little computational power.
- Altitude (elevation angles) corrections are given for the size of the Sun (~16') and atmospheric refraction. For atmospheric

 $\Delta \varepsilon = 60^{\circ}/(\tan x + 0.028)$

Atmospheric refraction

Error in simple refraction model

Nautical Almanac Correction

Based on Pressure and temperature zone

Corrections

From Zone and altitude additional

	App. Alt.	A	В	С	D	E	F	G	Н	J	K	L	M	Z	App. Alt.
	0 00	-6·9	-5.7	-4.6	-3.4	-2·3	-1.1	0 •0	+1.1	+2.3	+3.4	+4.6	+5·7	+6.9	ů oó
	0 30 I 00	5.2	4.4	3·5 2·8	2.6	1.7	0.9	0.0	0.9	1.7	2.6	3.5	4.4	5.2	0 30
	I 30	4.3	3·5 2·9	2.4	2·I I·8	I·4 I·2	0.7	0.0	0.7	1-4	2·I	2.8	3.5	4.3	I 00
	2 00	3·5 3·0	2.5	2.0	1.2	1.0	0.5	0.0		I·2	1.8	2.4	2.9	3.5	I 30
1	2 00	3.0	2.2		1.2	1.0	0.5	0.0	0.5	1.0	1.5	2.0	2.5	3.0	2 00
1	2 30	-2.5	-2·I	-1.6	-1.2	~o.8	-0.4	0.0	+0.4	+0-8	+1.2	+1.6	+2·I	+2.5	2 30
	3 00	2.2	1.8	1.5	1.1	0.7	0.4	0.0	0.4	0.7	1-1	1.5	1.8	2.2	3 00
	3 30	2.0	1.6	1.3	1.0	0.7	0.3	0.0	0-3	0.7	1-0	1.3	1.6	2.0	3 30
	4 00	I · 8	1.5	1.2	0.9	0.6	0.3	0.0	0.3	0-6	0-9	I·2	1.5	1.8	4 00
ł	4 30	1.6	1.4	1.1	0-8	0.5	0.3	0.0	0-3	0.5	0-8	1.1	1.4	1.6	4 30
1	5 00	-1.5	-1.3	-1.0	-o·8	-0.5	-0.2	0.0	+0-2	+0-5	+0-8	+1.0	+1.3	+1.5	5 00
	6	1.3	I·I	0.9	0.6	0.4	0.2	0.0	0-2	0-4	0-6	0.0	I·I	1.3	6
	7	1.1	0.9	0.7	0.6	0.4	0.2	0.0	0-2	0-4	0-6	0.7	0.0	1.1	7
ł	8	1.0	0⋅8	0.7	0.5	0.3	0.2	0.0	0.2	0-3	0-5	0.7	0.8	1.0	ś
	9	0.9	0.7	0.6	0.4	0.3	0.1	0.0	0-1	0.3	0-4	0.6	0.7	0.9	9
	10 00	–o⋅8	-0.7	0.5	-0.4	-0.3	-0·I	0.0	+0-1	+0-3	+0-4	+0.5	+0.7	+0.8	10 00
- 1	12	0.7	0.6	0.5	0.3	0.2	0.1	0.0	0-1	0.2	0.3	0.5	0.6	0.7	10 00
	14	0.6	0.5	0.4	0.3	0.2	0.1	0.0	0.1	0.2	0-3	0.4	0.5	0.6	14
	16	0.5	0.4	0.3	0.3	0.2	0·I	0.0	0.1	0-2	0-3	0.3	0.4	0.5	16
1	18	0.4	0.4	0.3	0.2	0.2	0.1	0.0	0.1	0-2	0.2	0.3	0.4	0.4	18
		•	•										•	'	
- 1	20 00	-0.4	-0.3	-0.3	-0.2	-0·I	-0·I	0.0	+0-1	+0·1	+0-2	+0.3	+0.3	+0.4	20 00
	25	0.3	0.3	0.2	0.2	0.1	-0·I	0.0	+0·I	0-1	0-2	0.2	0.3	0.3	25
	30	0·3	0.2	0·2 0·1	0.1	0.1	0.0	0.0	0-0	0·I	0-1	0.2	0.2	0.3	30
	35	0.2	0·2 0·1	0.1	0.1	0.1	0.0	0.0	0.0	0-1	0-I	0.1	0.2	0.2	35
1	(*	0.2	"1	0.1	0.1	-0·I	0.0	0.0	0.0	+0·1	0-1	0-1	0·1	0.2	40
L	50 00	-0-1	-0·I	-0·I	-0·I	0.0	0.0	0.0	0.0	0-0	+0-1	+0-1	+0·1	+0.1	50 00

On-line almanacs

- If access to the internet is possible then the online versions of almanacs are much easier to use
- Computer programs are also available which can be run locally. All of the values in the Almanac are now computed (observations are no longer needed).
- http://www.usno.navy.mil/USNO has many resources including an on-line access to many astronomical data types. http://www.usno.navy.mil/USNO/astronomicalapplications/data-services/
- Other on-line sources:
 http://www.tecepe.com.br/nav/almanac.html-ssi
 http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa
 http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa

Nautical Alamanac