Plan Encinas 2030

Centro de Datos Rural y Sostenible · IA · GPU · Colocation

Ubicación: Encinas de Esgueva (Valladolid, España)

Autor: Marco■Antonio Pascual Presa — Impulsor del Proyecto Data Center Encinas

Contacto: mpascual582@alumno.uned.es

Resumen Ejecutivo

Data Center Encinas 2030 es un proyecto piloto de innovación rural que transforma un colegio en desuso en un centro de datos modular, eficiente y alineado con los ODS. El objetivo es acercar infraestructura de computación (IA/GPU, colocation y VPS/backup) a PYMEs, administraciones y proyectos de I+D, con energía renovable local y aprovechamiento térmico del calor residual para servicios comunitarios.

Fecha: 17/10/2025

1. Propuesta de valor

Acercamos capacidad de cómputo de alto rendimiento al territorio, reduciendo latencia, costes y barreras de entrada. Ofrecemos un ecosistema local de servicios cloud sostenibles, con soporte cercano y transparencia total.

Beneficios clave

- Baja latencia y proximidad a usuarios locales y regionales.
- Energía renovable y diseño eficiente (free cooling, reutilización de calor).
- Escalabilidad modular: empezar pequeño, crecer por bloques.
- Impacto social y empleo cualificado en la comarca.
- Cumplimiento RGPD y soberanía del dato cercana.

2. Portfolio de Servicios

Servicio	Descripción	A quién va dirigido
GPU Cloud	Instancias con GPU para IA/ML, inferencia y entre	n āmimetsasoterdatos , I+D, universidades.
Colocation	Alojamiento seguro para tu hardware con energía	/UP1Segradoessti, vildiSePspratersio instración.
VPS & Backup	Servidores virtuales con copias georredundantes	y PèdMesravoiélo s, apps cívicas y e ≡ commerce

Modalidades y SLA

- SLA adaptados por criticidad (estándar, avanzado, misión-crítica).
- Monitoreo 24/7 y soporte escalable por niveles.
- Facturación transparente y predecible.

3. Arquitectura técnica y eficiencia energética

Diseño modular en contenedores/salas con pasillos frío/caliente, aislamientos y flujo de aire optimizado. Free cooling estacional y recuperación de calor para equipamientos municipales (p.ej., centro cívico o piscinas). La topología contempla UPS, generador de backup, sensores ambientales y monitorización continua (DCIM).

Puntos técnicos

- Racks iniciales: 2–4 (fase piloto), escalables por módulos.
- Red: fibra monomodo y respaldo inalámbrico; segmentación y VLANs.
- Almacenamiento: híbrido (SSD + HDD) y backup georredundante.
- Seguridad física: control de accesos, CCTV y registro.
- Refrigeración: pasivo/prioritario; soporte a refrigeración líquida si se requiere.

4. Energía, sostenibilidad y ODS

Compromiso con los ODS 7, 8, 9, 11, 12 y 13. Integración progresiva de renovables locales, optimización del PUE y economía circular (reacondicionamiento y fin de vida responsable).

ODS	Compromiso
07	Energía limpia: fotovoltaica, optimización PUE y free cooling.
08	Empleo cualificado y formación local en TIC.
09	Infraestructura e innovación: IA/GPU de proximidad.
11	Rehabilitación de espacios públicos y servicios digitales locales.
12	Consumo responsable: reacondicionamiento, gestión de residuos.
13	Acción climática: eficiencia y reducción de huella.

5. Roadmap por fases

Secuencia sugerida para desplegar el piloto y su escalado controlado.

- Fase 1 (0-3 meses): permisos, diseño básico, acondicionamiento de sala, 2 racks, conectividad y VPS/backup.
- Fase 2 (3-6 meses): GPU cloud inicial, DCIM, mejora térmica y primeros clientes piloto.
- Fase 3 (6–12 meses): integración renovables, expansión colocation, acuerdos con centros formativos.
- Fase 4 (12–24 meses): escalado modular, recuperación de calor comunitaria, alianzas industriales.

Hitos de validación

- SLA cumplidos y métricas de disponibilidad.
- PUE objetivo alcanzado (mejora continua).
- Clientes locales activos y testimonios.
- Impacto social (empleo y formación).

6. Indicadores y precios orientativos

Los precios se ajustan por proyecto. A continuación se muestran referencias de partida y los indicadores a monitorizar para asegurar calidad y sostenibilidad.

Servicio	Desde (€/mes)	Notas
VPS Base	15	Uso general, sitios web, apps ligeras.
Colocation 1U	49	Energía/UPS, conectividad, monitorización.
GPU Cloud	Consultar	Según GPU/VRAM/horas y SLA.

KPIs sugeridos

- Disponibilidad (SLA), latencia media, throughput.
- PUE estimado/real, consumo kWh, % free cooling.
- Tasa de incidentes y MTTR.
- Satisfacción de cliente (CSAT/NPS).

7. Casos de uso y clientes tipo

- Ayuntamientos: digitalización de servicios y hosting de proximidad.
- PYMEs industriales: analítica, IoT y backup local/regional.
- I+D y educación: recursos GPU para IA/ML y simulación.
- E■commerce y medios: hosting y cache de baja latencia.

Requisitos comunes

- Conectividad fiable y segura (VPN, VLANs).
- Cumplimiento RGPD y gestión de accesos.
- Escalabilidad y previsión de picos estacionales.

8. Gobernanza, cumplimiento y riesgos

Gobernanza clara del servicio, políticas de privacidad y seguridad de la información, y gestión proactiva de riesgos operativos y medioambientales.

Riesgos y mitigaciones

- Interrupciones eléctricas: UPS, generador y planes de contingencia.
- Picos térmicos: sensores, free cooling y capacidad adicional.
- Ciberseguridad: segmentación, parches y monitorización continua.
- Cadena de suministro: contratos con proveedores alternativos.

9. Próximos pasos

- Explorar piloto con 1–3 clientes locales.
- Definir requisitos GPU/colocation y SLA concreto.
- Visita técnica al emplazamiento y plan térmico/eléctrico.
- Calendario de puesta en marcha (Fase 1).

Contacto

Marco
■Antonio Pascual Presa — Impulsor del Proyecto Data Center Encinas Email: mpascual582@alumno.uned.es
Encinas de Esgueva (Valladolid) · España

© Plan Encinas 2030 — Documento informativo para captación de interesados.