

ANNÉE UNIVERSITAIRE 2011/2012 Session 1 d'Automne

Master Sciences et Technologies, Mention Mathématiques ou Informatique Spécialité Cryptologie et Sécurité Informatique

UE M1MA7W01: Arithmétique

Responsable: M. Jean-Paul Cerri

Date: 14/12/2011. Durée: 3h.

Les exercices 4 et 5 sont fortement liés mais peuvent être faits indépendamment.

Exercice 1 – On considère dans $\mathbb{F}_7[X]$ le polynôme $P(X) = X^2 + 2X + 6$ et on note A l'anneau $\mathbb{F}_7[X]/(P(X))$.

- 1) Quelle est la caractéristique de A? Quel est le cardinal de A?
- (2) L'anneau A est-il un corps?
- 3) Quel est le cardinal du groupe multiplicatif A^{\times} ?
- 4) Montrer que tout $a \in A$ vérifie $a^7 = a$.
- 5) Le groupe A^{\times} est-il cyclique?

Exercice 2 -

- 1) En utilisant les polynômes $X^9 X$ et $X^{81} X$ déterminer le nombre de polynômes unitaires irréductibles de degrés 2 et 4 dans $\mathbb{F}_3[X]$.
 - 2) Dans chaque cas, quel est le nombre de polynômes primitifs?
- **Exercice 3** Combien la décomposition en produit d'irréductibles de $X^{21} + 1$ dans $\mathbb{F}_2[X]$ comporte-t-elle de facteurs? Quels sont leurs degrés respectifs?

Exercice 4 -

- 1) Montrer que $P(X) = X^4 + X^3 + 1$ est un polynôme irréductible de $\mathbb{F}_2[X]$. Est-il primitif?
- **2)** Soit α une racine de P(X) dans \mathbb{F}_{16} . On pose $\beta = \alpha^3$. L'élément β est-il primitif dans \mathbb{F}_{16} ?
- 3) Quels sont les sous-corps de \mathbb{F}_{16} ? L'élément β appartient-il à un sous-corps strict de \mathbb{F}_{16} ?
- 4) Mêmes questions avec l'élément $\gamma = \alpha^5$.
- 5) On considère la suite $(s_i)_{i\geqslant 0}$ à éléments dans \mathbb{F}_2 définie par $s_i=\operatorname{Tr}(\alpha^i)$. Rappeler pourquoi (s_i) est définie par une relation de récurrence linéaire que l'on explicitera.
- 6) Montrer que (s_i) est périodique et qu'il s'agit d'une MLS (maximum length sequence) de période π à préciser.

- 7) On considère l'ensemble \mathcal{C} dont les éléments sont le π -uplet $(s_0, s_1, \ldots, s_{\pi-2}, s_{\pi-1})$, ses $\pi-1$ décalés $(s_{\pi-1}, s_0, \ldots, s_{\pi-3}, s_{\pi-2}), \ldots, (s_1, s_2, \ldots, s_{\pi-1}, s_0)$ et le π uplet nul $(0, 0, \ldots, 0, 0)$. Montrer que \mathcal{C} est un code linéaire.
- 8) Montrer que \mathcal{C} est un code cyclique et déterminer sa dimension.
- 9) Quel est le polynôme générateur de \mathcal{C} .
- 10) Quelle est la distance minimale de C?

Exercise 5 – Soit $P(X) = X^4 + X + 1$.

- 1) Montrer que P(X) est irréductible dans $\mathbb{F}_2[X]$ et rappeler pourquoi P(X) divise $X^{15} + 1$ dans $\mathbb{F}_2[X]$ sans avoir recours à la division euclidienne.
- 2) À tout 15-uplet binaire $\mathbf{c} = (c_0, c_1, \ldots, c_{14}) \in \mathbb{F}_2^{15}$ on associe le polynôme $\mathbf{c}(X) = c_0 + c_1 X + \cdots c_{14} X^{14} \in \mathbb{F}_2[X]$. On considère le code \mathcal{C} constitué par les \mathbf{c} tels que $\mathbf{c}(X)$ soit un multiple de P(X). Expliquer pourquoi \mathcal{C} est cyclique et déterminer sa dimension.
- 3) Montrer que \mathcal{C} est un code de Hamming.
- 4) Sachant qu'un code de Hamming a pour distance minimale 3 (théorème du cours), quel est l'ordre de la condition de décodage vérifiée par C?
- 5) Montrer que \mathcal{C}^{\perp} code dual de \mathcal{C} est aussi un code de Hamming et déterminer ses paramètres.
- 6) Soit α une racine de P(X) dans \mathbb{F}_{16} . Quel est le polynôme minimal sur \mathbb{F}_2 de α^3 ? On note ce polynôme Q(X).
- 7) On considère maintenant le code \mathcal{C}' constitué des 15-uplets \mathbf{c} tels que $\mathbf{c}(\alpha) = \mathbf{c}(\alpha^3) =$
- 0. Montrer que \mathcal{C}' est cyclique. Déterminer sa dimension et son polynôme générateur.
- 8) L'ordre de la condition de décodage de \mathcal{C}' est-il meilleur que celui de \mathcal{C} ?

Exercice 6 – On considère le code de Reed-Solomon C défini sur \mathbb{F}_5 de longueur 4, de dimension 2 et de matrice génératrice

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \end{pmatrix}.$$

On a pris 2 pour élément primitif de \mathbb{F}_5 . On sait que C est MDS (théorème du cours), donc que sa distance minimale est 3. C vérifie donc la condition de décodage d'ordre 1.

- 1) Un mot c est envoyé à l'aide du polynôme P(X) de degré < 2. On reçoit le mot (4,2,0,0). Calculer le polynôme interpolateur $R(X) \in \mathbb{F}_5[X]$ de degré ≤ 3 qui vérifie R(1) = 4, R(2) = 2, R(4) = 0 et R(3) = 0.
- 2) À l'aide du début du développement en fraction continue de $\frac{R(X)}{X^4-1}$, retrouver P(X) et le mot envoyé.