Calculus of polar coordinates *

Dr Juan H Klopper

Contents

- **Derivatives of polar coordinate functions** 1
- Integrals of polar coordinate functions 2

Derivatives of polar coordinate functions 1

Definition 1.1. The derivative of a polar equation in rectangular coordinates is given in (1).

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{dt}} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$
 (1)

Derivation 1.1. In polar equations r is a function of θ , seen in (2). The familiar conversions from rectangular coordinates to polar coordinates are shown in (3) and (4).

$$r = f(\theta) \tag{2}$$

$$x = r\cos\theta = f(\theta)\cos\theta \tag{3}$$

$$y = r\sin\theta = f(\theta)\sin\theta \tag{4}$$

The derivatives of y and x are shown in (5) and (6), where the power rule of differentiation is applied.

$$\frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta$$

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta$$
(5)

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta \tag{6}$$

This gives rise to equation (1).

^{*}A course in vector calculus

2 Integrals of polar coordinate functions

Definition 2.1. The integral of a polar coordinate curve, $r = f(\theta)$, on the interval $\theta = [a, b]$, given that r is continuous and positive on this interval, is given in (7)

$$A = \int_{a}^{b} \frac{1}{2} (f(\theta))^{2} d\theta \tag{7}$$

Derivation 2.1. The fraction of a circle with radius r at angle θ (counterclockwise from the positive x-axis) is given in (8).

$$A = \pi r^2 \frac{\theta}{2\pi} = \frac{1}{2}r^2\theta \tag{8}$$

Dividing the interval $\theta = a$ to $\theta = b$ up into n equal angled sections results in (9).

$$\Delta \theta = \frac{b-a}{n} = \theta_i - \theta_{i-1}, n \in \mathbb{N}$$
(9)

The approximate area of one such sectional area, A_{i} , is given in (10).

$$A_i \approx \frac{1}{2} (f(\theta_i))^2 \Delta \theta \tag{10}$$

The addition of all the sectional areas, A_i is given in (11).

$$A \approx \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \frac{1}{2} (f(\theta_i))^2 \Delta \theta$$
 (11)

Taking the limit as $n \to \infty$ results in the integral given in (12).

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} (f(\theta_i))^2 \Delta \theta = \int_a^b \frac{1}{2} (f(\theta))^2 d\theta$$
 (12)