This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:
C07H 21/04 // C12N 15/00
C12N 1/20, C12P 19/34, 21/02
C07K 13/00, C07G 17/00
A61K 39/015, G01N 33/53
(C12N 1/20, C12R 1:19, 1:90)

(11) International Publication Number:

WO 86/ 01802

A1

(43) International Publication Date:

27 March 1986 (27.03.86)

(21) International Application Number:

PCT/AU85/00223

(22) International Filing Date:

10 September 1985 (10.09.85)

(31) Priority Application Numbers:

PG 7066 PG 7067

(32) Priority Dates:

11 September 1984 (11.09.84) 11 September 1984 (11.09.84)

(33) Priority Country:

(71) Applicant (for all designated States except US): THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RE-SEARCH [AU/AU]; Royal Parade, Parkville, VIC 3050 (AU).

(72) Inventors; and
(75) Inventors; Applicants (for US only): KEMP, David, James [AU/AU]; 309 Belmore Road, North Balwyn, VIC 3103 (AU). ANDERS, Robin, Fredric [AU/AU]; 55 Brougham Street, North Melbourne, VIC 3051 (AU). COPPEL, Ross, Leon [AU/AU]; 6 Mercer Road, Armadale, VIC 3143 (AU). BROWN, Graham, Vallancey [AU/AU]; 35 Walsh Street, Balwyn, VIC 3103 (AU). SAINT, Robert, Bryce [AU/AU]; 2 Saville Court, Lower Templestowe, VIC 3107 (AU). COWMAN, Alan, Frederick [AU/AU]; 3/20 Barl Street,

North Carlton, VIC 3054 (AU). BIANCO, Albert, Edward [GB/AU]; 34 Baroda Street, Ascot Vale, VIC 3032 (AU). MITCHELL, Graham, Frank [AU/AU]; 21 Sinclair Avenue, Lower Templestowe, VIC 3107 (AU).

(74) Agents: SLATTERY, John, Michael et al.; Davies & Collison, 1 Little Collins Street, Melbourne, VIC 3000 (AU).

(81) Designated States: BE (European patent), CF (OAPI patent), esignated States: BE (European patent), CF (OAPI patent), CG (OAPI patent), CH (European patent), CM (OAPI patent), DE (European patent), FR (European patent), GA (OAPI patent), GB, GB (European patent), JP, LK, ML (OAPI patent), MR (OAPI patent), NL (European patent), SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report.

(54) Title: ANTIGENS OF PLASMODIUM FALCIPARUM

(57) Abstract

DNA molecules comprising artificially constructed polynucleotide sequences substantially corresponding to all or a portion of the base sequence coding for an antigen of Plasmodium falciparum selected from the group consisting of the RE-SA antigen, the FIRA antigen, and other antigens of P. falciparum cross-reactive therewith. Such DNA molecules are capable of being expressed as polypeptide(s). Synthetic peptides or polypeptides displaying the antigenicity of all or a portion of the RESA or FIRA antigens of P.falciparum. Compositions for stimulating immune responses against P.falciparum antigens in a mammal, comprising at least one polypeptide displaying the antigenicity of the RESA or FIRA antigens of P. falciparum, together with a pharmaceutically acceptable carrier therefor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GA	Gabon	MR	Mauritania
ΑU	Australia	GB	United Kingdom	MW	Malawi
BB	Barbados	HU	Hungary	NL	Netherlands
BE	Belgium	П	Italy	NO	Norway
BG	Bulgaria	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF.	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FI	Finland	MG	Madagascar		
FR	France	ML	Mali		

ANTIGENS OF PLASMODIUM FALCIPARUM

This invention relates to synthetic peptides and polypeptides which have antigenicity suitable for providing protective immunity against Plasmodium
5 falciparum infections, and to methods for the production thereof.

Immunity to <u>Plasmodium falciparum</u>, the protozoan causing the most severe form of human malaria, is acquired only after extensive exposure over a number of years. A large number of <u>P.falciparum</u> polypeptides are natural immunogens in man but it is by no means clear how many are important in protective immunity. Many antigens may have no such role, and indeed it is possible that some are counterproductive, perhaps because collectively they overload the immune system. Antigenic diversity among different strains of the parasite may also play a significant role in the process of immune evasion as a number of <u>P.falciparum</u> antigens that are strain-specific have been identified.

Recently, molecular cloning techniques have facilitated the analysis of individual polypeptide antigens of P.falciparum (1). Many cDNA clones encoding these antigens have been isolated by screening Escherichia coli colonies that express the cloned sequences with human antibodies. The production and

screening of these clones is described in detail in International Patent Specification No. PCT/AU84/00016.

one such antigen has been located at the surface of erythrocytes infected with the immature ring stage of P.falciparum and hence has been designated the Ring-infected Erythrocyte Surface Antigen (RESA).

Because of this exposed location, it appears to be a likely target for immune attack. RESA shows the structural peculiarity that has now been found in a number of Plasmodium antigens, namely multiple tandem repeats of oligopeptides (2-6).

Studies by hybridization and by 15 immunofluorescence suggest that RESA from the Papua New Guinea isolate FC27, may be conserved in a wide range of P.falciparum isolates, including strain NF7 from Ghana. The relationship between RESA cDNA clones from two 20 different strains of P.falciparum has therefore been studied by immunological and sequencing methods. Antibodies that reacted with RESA from strain FC27 of Papua New Guinea were present in patients from Africa and conversely, antibodies that reacted with RESA from 25 strain NF7 were present in patients from Papua New Guinea. From the complete nucleotide sequences of eight cDNA clones encoding portions of RESA from P.falciparum strains FC27 and NF7, it is concluded that the RESA polypeptides from the two strains are closely 30 homologous. The sequencing of these cDNA clones identified in the RESA polypeptide two separate blocks of tandem sequence repeats. One block of repeats, located at the C terminus of RESA in FC27, contains four different but related acidic sequences of eight, four, 35 four and three amino acids. Approximately 600 bases 5'

is a second block of repeats encoding related amino acid sequences which are also rich in acidic amino acids. Consistent with the sequence relationships, the two blocks of repeats have been shown to encode cross-reacting antigenic epitopes.

Immunoblots on the antigens of synchronously growing parasites separated on SDS-PAGE suggested that RESA is synthesized in the mature trophozoite as a 10 Mr 210,000 protein which is processed to the Mr 155,000 form found bound to the membrane of erythrocytes infected with ring stage parasites. The more recent finding that the Mr 210,000 protein does not react with several anti-RESA monoclonal antibodies and anti-RESA peptide antibodies suggests that the Mr 210,000 protein is a cross-reacting antigen and not a precursor of the Mr 155,000 RESA molecule.

The Mr 155,000 polypeptide in merozoites is soluble in the non-ionic detergent Triton X-100 but after transfer to the membrane of the ring-infected erythrocyte it is largely Triton-insoluble. Thus, it seems likely that RESA interacts with the erythrocyte cytoskeleton. Whether RESA penetrates the membrane 25 lipid bilayer is not yet clear, but an important clue may come from the complete sequence of the RESA gene which has now been determined. From this, it is deduced that RESA contains two exons separated by a short intervening sequence (Figure 2). Exon 1 commences with 30 a hydrophobic sequence typical of signal peptides on secreted polypeptides in many organisms. Following this, there is a hydrophilic sequence of approximately 36 amino acid residues and then a second hydrophobic stretch, of 14 residues. 202 bases further downstream

4

exon 2 commences with a 16 amino acid non-charged sequence and then continues with a highly charged region. The hydrophobic sequence generated by excision of the intron is typical of membrane-anchor segments in a number of eukaryotic genes.

As a result of work leading to the present invention, described in detail below, it has been shown on the basis of sequence, hybridization and 10 immunological data that it is likely that RESA is highly conserved in most or all strains of P.falciparum. In addition, as the repetitive structure and the location of RESA at the surface of ring infected erythrocytes are properties highly suited for sensitive detection by such 15 procedures as indirect immunofluorescence, the high degree of immunological similarity of RESA in different strains suggest that RESA is a molecule well suited for immunodiagnostic purposes.

20 Another antigen detected as a result of its cloning and expression in <u>E.coli</u> has been designated the Falciparum Interspersed Repeat Antigen (FIRA) (6). Like some other repetitive antigens FIRA contains a structural unit bearing repeats of a short unit flanked 25 by a highly charged region. However, this entire structural unit is itself repeated several times within the antigen.

The corresponding cDNA clone expressing FIRA

30 in Escherichia coli reacted in an in situ colony assay with sera from up to \$93% of people living in an area endemic for P.falciparum. Human antibodies affinity-purified on immobilized lysates of the corresponding cDNA clone identified the corresponding

5

parasite antigen as a polypeptide of Mr >300,000. It was present in schizonts and also in ring-stage trophozoites, where a speckled immunofluorescence pattern suggested an association with the erythrocyte. . Its mRNA was enriched in merozoites, a distinctive 5 property shared by RESA which is located on the surface of ring-infected erythrocytes and it is encoded by a single gene with a number of allelic variants. complete nucleotide sequence of the cDNA clone revealed 10 a structural unit comprised of 13 hexapeptide repeats flanked by a highly charged region containing both acidic and basic amino acids. This structural unit is itself repeated, so that blocks of repeats and charged units are interspersed along the molecule. The sequence 15 within the repeats vary much more extensively than those in the charged units.

The sequence of a chromosomal FIRA clone demonstrates that the FIRA gene is organised in a manner analogous to that of RESA (Figure 8). It contains a short 5' exon, a much longer 3' exon and a hydrophobic segment at the boundary of the two exons. As with RESA, the repeats in FIRA are restricted to the 3' exon only.

25 According to the present invention, there is provided a DNA molecule comprising a nucleotide sequence substantially corresponding to all or a portion of the base sequence coding for an antigen of P.falciparum selected from the group consisting of the Ring-infected Erythrocyte Surface Antigen (RESA), the Falciparum Interspersed Repeat Antigen (FIRA), and other antigens of P.falciparum cross-reactive therewith. In particular, there is provided a DNA molecule comprising a nucleotide sequence characterised by at least a

6

portion thereof comprising all or a portion of the base sequence shown in Figure 1 or Figure 7. Such a nucleotide sequence codes for a polypeptide comprising at least a portion which corresponds to the amino acid sequence of RESA or FIRA.

As noted above, and set out in greater detail in Figure 1 and 7, the amino acid sequences of RESA and FIRA consist of repeat units and flanking non-repeat peptide units. Accordingly, the base sequences referred to above may code for polypeptides corresponding to one or more of these repeat and/or flanking units, or to polypeptides corresponding to combinations of these repeat and/or flanking units.

15

The present invention also extends to synthetic peptides or polypeptides displaying the antigenicity of all or a portion of an antigen selected from the group consisting of the RESA antigen, the FIRA 20 antigen, and other antigens of P.falciparum which are cross-reactive therewith, as well as to compositions for stimulating immune responses against P.falciparum in a mammal, which compositions comprise at least one synthetic peptide or polypeptide as described above, 25 together with a pharmaceutically acceptable carrier therefor. The synthetic peptides or polypeptides according to this aspect of the invention may be prepared by expression in a host cell containing a recombinant DNA molecule which comprises a nucleotide 30 sequence as broadly described above operatively linked to an expression control sequence, or a recombinant DNA cloning vehicle or vector containing such a recombinant DNA molecule. The synthetic peptide or polypeptide so expressed may be a fusion polypeptide comprising a

7

portion displaying the antigenicity of all or a portion of RESA or FIRA or other cross-reactive antigen, and an additional polypeptide coded for by the DNA of the recombinant DNA molecule fused thereto. Alternatively, the synthetic peptides or polypeptides may be produced by chemical means, such as by the well-known Merrifield solid-phase synthesis procedure.

Further details of the present invention will be apparent from the detailed description hereunder, and from the accompanying Figures. In the Figures:

Figure 1 shows the nucleotide sequence and predicted amino acid sequence of RESA. The nucleotide sequence was determined by the dideoxy procedure (8).

Figure 2 shows the structure of the RESA gene, as deduced from the sequence given in Figure 1. The 5' and 3' exons are indicated.

Figure 3 shows:

A. Western blot of asynchronous cultures of two isolates of <u>P.falciparum</u> lysed in electrophoresis

25 sample buffer and probed with anti-RESA antibodies.

B.& C. Western blots of <u>P.falciparum</u> (1) ring stages, (2) mature trophozoites, (3) schizonts, and (4) merozoites using affinity-purified human antibodies to RESA. (B) Antigens extracted in

30 Triton X-100. (C) Antigens insoluble in Triton X-100 but soluble in electrophoresis sample buffer.

Radioactive molecular weight markers were obtained from Amersham Internat., Buckinghamshire, England

20

5

and were myosin (200 Kdaltons), phosphorylase-b (93 Kdaltons) and bovine serum albumin (69 Kdaltons).

- Figure 4 is an immunoelectronmicrograph showing the location of RESA (→) in small dense vesicles presumably micronemes within the developing merozoites in a schizont, detected with rabbit anti-RESA and protein A gold. The rhoptries (R) are unlabelled. (x 41,700; inset x 73,000).
- Figure 5 is an immunoelectronmicrograph showing a section of a ring-infected erythrocyte reacted with rabbit anti-RESA. Also shown is part of an uninfected erythrocyte.
- Figure 6 is a Western blot of ring-stage infected erythrocytes digested with chymotrypsin (20μg/ml) for 0 min. (1), 20 min. (2) and 60 min. (3).

 Subsequent to enzyme digestion the intact erythrocytes were washed, lysed in electrophoresis sample buffer, electrophoresed on a 10% SDS-polyacrylamide gel and then electrophoretically transferred to nitrocellulose. The nitrocellulose filters were then probed with rabbit anti-RESA at a dilution of 1:500. Molecular weights are indicated in Kdaltons, and correspond to RESA (155Kd), β-galactosidase (116Kd) and phosphorylase-b (93Kd).
- amino acid sequence of the FIRA gene. The nucleotide sequence was determined by the dideoxy procedure (8). The EcoRl linker ligated to the 3' end during construction of the library was absent and so the sequence is incomplete at the 3' end, perhaps due to a deletion.

9

- Figure 8 shows the structure of the FIRA gene as deduced from the sequence given in Figure 7.
- Figure 9 shows immunoassays (A & B) and Western blots.

 (C & D) with human antibodies affinity-purified from a serum pool derived from individuals exposed to malaria. In A and C the antibodies were purified on a FIRA-Sepharose absorbent whereas in B & D the antibodies were purified on an λamp3-Sepharose absorbent. The P.falciparum isolates in C and D were: 1, FC27 from Papua New Guinea; 2, Kl from Thailand; and 3, NF7 from Ghana.
- Figure 10 shows affinity purified anti-FIRA antibodies
 assayed by solid-phase ELISA using microtitre
 plates coated with purified fusion polypeptides
 (2µg/ml) corresponding to: O, a fragment of FIRA;
 D, 5' repeat by RESA; A, 3' repeat of RESA.

DETAILED DESCRIPTION OF THE INVENTION

MATERIALS AND METHODS

P.falciparum isolates

Isolates FCQ27/PNG (FC27), IMR143/PNG (IMR143),
IMR144/PNG (IMR144) and MAD71/PNG (MAD71) were obtained
through collaboration with the Papua New Guinea
Institute of Medical Research. NF7, originating from
Ghana, and K1 originating from Thailand were obtained
from D.Walliker, Edinburgh University.

Colony Immunoassays

Replicas of arrays of antigen-positive clones were grown overnight at 30°C, induced at 38°C, and lysed (7).

20

PCT/AU85/00223

Sera were absorbed to remove anti-E.coli reactivity, diluted 1:500 at pH 9.6 in 3% bovine serum albumin and finally incubated with ¹²⁵I protein A from Staphylococcus aureus and autoradiographed overnight (7).

Sera

5

Sera were obtained with informed consent from individuals from Madang, Papua New Guinea. Some
10 patients presented with acute malaria while in others, asymptomatic parasitemia was detected in the course of routine surveys. Parasitemic individuals were treated with chloroquine. Parental consent was obtained before taking samples from children.

15
Hybridization experiments

The phage DNA was purified by CsCl-equilibrium density centrifugation, digested with EcoRI, and size-fractionated on a 1% low-melting agarose-gel, recovered by phenol extraction and labelled by nick-translation. 3ml of labelled insert (3 x 10 cpm) in 1ml 0.75 M NaCl/0.75 M Na citrate/50% formamide/50µg ml salmon sperm DNA/10µg ml poly (C)/0.02% Ficoll/0.02% polyvinylpyrollidone/0.02% BSA was hybridized to the array of antigen-positive clones. The inserts were subcloned in pUC-9 (9), purified and then nick-translated as described above and used in Southern blot experiments.

Isolation and sequencing of cloned chromosomal segments

The chromosomal RESA clones were isolated from a
λgt10 library, and the EcoR1 inserts subcloned into
pUC8. Rsa I, Aha III and Ssp I fragments of the EcoR1
inserts were subcloned into M13mp18 and mp19 vectors,

and sequenced by the dideoxy technique (8). Synthetic primers were also used. The results were processed by the program of Staden (10). The sequence shown consists of the 3.5 Kb chromosomal EcoR1 fragment, joined at the . EcoR1 site to that of the cDNA clone Ag 46.

The chromosomal FIRA clone was initially identified as a 6 Kb Aha III fragment in Agt10. This Aha III fragment was subcloned into pUC8. Pvu II and Rsa I fragments were then subcloned into M13mp8 and 9 vectors and sequenced by the dideoxy technique.

Affinity purification of anti-RESA and anti-FIRA antibodies.

Induced cultures (50ml) of clones Ag28, Ag231 and Amp3 were prepared as described previously (5 and 6). The pelleted bacteria were sonicated in 100mM Na phosphate buffer, pH 6.8/10mM dithiothreitol followed by mixing at room temperature with the addition of 1% NaDodSO4. The soluble bacterial proteins were equilibrated with 100mM Na phosphate, pH 6.8/1mM dithiothreitol/0.1% NaDodSO4 by passage through Sephadex G-10 and conjugated to CNBr-activated Sepharose (Pharmacia, Sweden) at room temperature according to the manufacturers instructions.

A pool of human sera collected from individuals living in Papua New Guinea was clarified by centrifugation, diluted with an equal volume of 30 phosphate buffered saline (Pi/NaCl) and preabsorbed on a \(\lambda\text{amp3-Sepharose}\) absorbent before passage over the Ag28 or Ag231 absorbent. Non-specifically bound proteins were removed by repeated wash cycles of 100mM Na borate/500mM NaCl/0.05% Tween 20, pH 8.5 followed by

Pi/NaCl. Bound antibodies were eluted with 100mM glycine/150mM NaCl, pH 2.6 and immediately adjusted to pH 7.0 with 2M Tris; HCl, pH 8.0.

Western blots

Protein extracts of cultures of <u>P.falciparum</u> were prepared and fractionated on 7.5% polyacrylamide/NaDodSO₄ gels. Proteins from the gels were transferred electrophoretically to nitrocellulose, incubated in 5% non-fat milk powder in Pi/NaCl before reaction with affinity purified human antibodies. The filters were incubated with ¹²⁵I-labelled protein A and autoradiographed.

15 Immunoelectronmicroscopy

Human antibodies affinity purified on Ag28 and Ag231 immunosorbents, or rabbit antisera raised against the fused polypeptide produced by Ag28 were used in immunoelectronmicroscopy employing the protein A-gold 20 procedure. Samples for immunoelectronmicroscopy were fixed with 0.25% glutaraldehyde (10 min at 25°C), diluted in 50mM NH_ACl in 0.1M phosphate buffer, pH7.4, and then left in fresh 50mM NHACl in phosphate buffer for 30 min. Cells were then washed twice in phosphate 25 buffer and dehydrated in 70% ethanol before being embedded in L.R. White resin, hard grade (London Resin Co. Ltd., Basingstoke, England). Sections were incubated in 1% bovine serum albumin or ovalbumin in 0.05M phosphate, pH7.4, containing 0.25% Tween-20 30 (PO4: Tween) for 5 min. before transfer to a drop of rabbit anti-RESA antiserum (diluted 1:100) or affinity-purified human anti-RESA antibodies in PO_A:Tween for 30-60 min. at room temperature. After being washed in PO4: Tween the sections were transferred

13

to protein A-gold (E-Y Laboratories, Inc.) diluted 1:10 in PO₄:Tween for 30-60 min. After further washing, the sections were stained with aqueous uranyl acetate. Isolated merozoites were fixed at 4°C in 0.25% glutaraldehyde for 10 min. and then processed in the same manner as infected cells.

RESULTS - RESA

10 Isolation of a RESA cDNA clone from FC27

The preparation of the RESA cDNA clones is described in detail in the Examples of International Patent Specification No. PCT/AU84/00016, and incorporated herein by reference.

15
Identification of the RESA polypeptides

Human antibodies specific for the RESA polypeptides were purified by affinity chromatography. In Western blots the antibodies reacted with a prominent band at Mr 155,000 which, in some experiments, resolved into a closely migrating doublet. A higher molecular weight polypeptide reacting with the anti-RESA antibodies varied in size in different isolates (Figure 3A); it was at Mr 210,000 in isolate FC27. In addition, a smaller molecular weight polypeptide (Mr 80,000) was detected in some antigen preparations (Figure 3A). The abundance of the Mr 210,000 polypeptide was greatest in schizonts (Figure 3B). In contrast, the Mr 155,000 antigen was abundant in the merozoites, rings and trophozoites with small amounts of schizonts (Figure 3, B and C.)

The solubility of RESA in detergents was determined to examine the nature of the interaction between RESA

and the erythrocyte membrane. The Mr 210,000 polypeptide was soluble in solutions of the nonionic detergent Triton X-100, as was the most of the Mr 155,000 polypeptide present in merozoites (Figure 3B). In contrast, the bulk of the Mr 155,000 antigen in rings and other life-cycle stages was insoluble in Triton X-100 but could be solubilised in electrophoresis sample buffer containing SDS and 2-mercaptoethanol (Figure 3, B and C).

10

When identical immunoblots were probed with monoclonal antibodies raised against the Ag28 fused polypeptide, or antisera raised in mice against RESA synthetic peptides, the Mr 210,000 polypeptide was not detected although the Mr 155,000 polypeptide gave a strong signal. Thus, it appears that the Mr 210,000 polypeptide is another gene product that cross-reacts with RESA and not the initial RESA translation product.

20 Antibodies against RESA in patients from Africa react with RESA from a Papua New Guinea strain.

Previous studies with mouse antibodies against RESA fused polypeptides expressed in E.coli demonstrated cross reactions with all P.falciparum strains tested, from diverse locations. These RESA cDNA clones were isolated by virtue of their reactivity to sera from Papua New Guinea. To determine whether equivalent antibodies that cross react with RESA from widely differing locations occur in humans exposed to

10 P.falciparum, African sera were tested against a number of cDNA clones expressing portions of RESA, derived from the Papua New Guinea strain FC27. The sera were reacted with an array of 133 independently isolated antigen positive clones, 16 of which encoded RESA, by the

15

in situ colony immunoassay procedure as described (7).

Both African sera reacted with the RESA cDNA clones.

The extent of reaction was quite comparable to many of the PNG sera. However, it is important to note that the extent of reaction varies considerably in different PNG sera. The African sera also reacted with a variety of other cDNA clones including cDNA clones that encode FIRA that consists largely of divergent repeats of a hexapeptide sequence. In contrast, they did not react with cDNA clones encoding the strain-specific S-antigen of FC27. Thus RESA polypeptides from geographically diverse areas must share non-reacting epitopes that are natural immunogens in man.

15 Antigenic determinants of RESA

All RESA cDNA expression clones previously studied immunologically were bounded at the 5' terminus by the internal EcoR1 site. To examine whether any antigenic determinants were located 5' to this site, the large 20 EcoRl fragment from NF7 AG13 was subcloned into pUC9, randomly fragmented by sonication and the fragments were recloned in Amp3. To identify clones expressing defined regions of this fragment, the resulting clones were screened by hybridization with 3 different 25 restriction fragments, located 5' to the repeats, spanning the repeats and 3' to the repeats, respectively. Selected clones were then examined for expression of large fused polypeptides, detectable by Coomassie blue staining after polyacrylamide gel $_{30}$ electrophoresis of total protein extracts from the cells. Because there are multiple stop codons in all but the correct frame of the sequence, it could be concluded that such clones expressed defined fragments

16

of RESA, 5' to any fragments that had previously been analysed for antibody binding.

Clones expressing 5' repeats were then examined by in situ colony immunoassays with sera from PNG patients with a history of exposure to P.falciparum. Some clones containing the 5' repeat segment reacted with the sera. It is concluded that there are antigenic determinants that are natural immunogens in man in the 5' RESA repeats, as well as the 3' repeats.

A 36 amino acid peptide corresponding to the sequence from residue 17 to residue 52 in exon 1 of RESA (Figure 1) was synthesised and used to test sera from individuals exposed to malaria for antibodies to this region of RESA. Some individuals had significant levels of antibodies reactive with this peptide as measured in a solid-phase radio-immunoassay. Thus there are naturally immunogenic epitopes in exon 1 of RESA which must be encoded by non-repeat sequences.

Immunogenicity of RESA sequences

RESA/β-galactosidase fused polypeptides were isolated from clones expressing the 3' and 5' repeats of RESA. These proteins were tested for immunogenicity by immunising rabbits with 0.25-0.5mg amounts of antigen together with complete Freund's adjuvant. The rabbits were boosted with similar amounts of antigen in incomplete adjuvant 4-6 weeks later. In each case, antibodies were elicited which reacted with the RESA molecule expressed in P.falciparum growing in vitro.

Three RESA synthetic peptides (Table 1) conjugated to Keyhole Limpet Haemocyanin, were used to immunise

17

mice and the resulting antisera were assayed against each of the three peptides conjugated to bovine serum albumin, and against fused polypeptides corresponding to the 3' and 5' repeats of RESA and sonicates of infected erythrocytes. All mice immunised with these peptides produced antibodies that were reactive with the homologous peptide and the fused polypeptide containing that sequence. In addition, peptide RESA 3'-2 (EENV x4), induced antibodies that also reacted with the other 3' repeat peptide, RESA 3'-1 (EENVEHDA) which has a 5 amino acid sequence in common. The reverse, however, was not true: anti-RESA 3'-1 antibodies did not react with RESA 3'-2.

When these anti-peptide antisera were assayed on peptide-BSA conjugates there was no apparent cross-reactivity between the 5' and 3' repeats of RESA. However, assaying the same sera on fused polypeptides revealed that the peptides had induced antibodies that reacted with both repeat structures, although the reaction with the heterologous repeat was very weak in comparison to that with the homologous repeat.

The anti-peptide antisera were used to probe
25 Western blots of infected erythrocytes. All of the
antisera reacted specifically with the Mr 155,000 RESA
polypeptide.

30

..

TABLE 1
Sequences and synthetic peptides corresponding to repeats in RESA

Region of RESA	Repeat Sequences	Peptides Synthesized*
3' Repeat	EENVEHDA (5)+	RESA 3'-1 EENVEHDA
	EENA (1)	
	EENV (29)	RESA 3'-2 (EENV)n n ∿4
	EE-V (4)	
	EEYD (3)	
5' Repeat	-EENEEEHTV- (1)	
	DDEHVEEHT-A (1)	
	DDEHVEEPTVA (2)	RESA 5'-1 DDEHVEEPTVAY
	-DEHVEEPTVA (1)	
	-EEHVEEPTVA (1)	
	-EEHVEEPA (1)	

^{*} The peptides were synthesized by the Merrifield solidphase method except the RESA 5'-1 peptide was synthesized by the FMOC solid-phase synthesis methodology of Atherton et al (11) on a Kieselguhr KA resin support.

⁺ The numbers in brackets indicate the number of times the respective sequences occur within the blocks of repeats.

19

Location of RESA

RESA was detected by immunoelectronmicroscopy at the membrane of erythrocytes infected with ring-stage parasites but not in association with immature parasites within the erythrocyte (Figure 5). In contrast, the membranes of erythrocytes containing mature parasites were not labelled, but gold particles were associated with electron-dense organelles presumed to be micronemes within the parasite cytoplasm (Figure 4). Control antibodies to S antigens did not react with merozoites or the erythrocyte membrane.

The labelling of merozoites was clearly internal, with no indication of specific labelling of the 15 merozoite surface. Labelling occurred in clusters away from the nucleus and occasionally over a rhoptry. In other merozoites, gold particles were more dispersed but were located near the rhoptries, which were particle-free. Similar distributions of gold were 20 observed with both affinity-purified human antibodies and rabbit antibodies raised against the cloned antigen, although higher background labelling was evident with the affinity-purified human antibodies. The specificity of the observed patterns of labelling was demonstrated 25 by the different patterns, or by the lack of labelling when the same procedures were used with affinity-purified human antibodies or rabbit antisera to other cloned P.falciparum antigens (e.g. S antigen).

30 The location of RESA was further examined by studying its accessability to attack by proteolytic enzymes. When intact erythrocytes infected with ring-stage parasites (approximately 5% parasitaemia) were treated with chymotrypsin or trypsin, the

Mr 155,000 polypeptide was partially cleaved at a limited number of sites generating two main fragments which like the intact molecule reacted with anti-RESA antibodies (Figure 6). This result indicates that at least part of the RESA molecule is exposed on the external surface of the ring-infected erythrocyte.

Inhibition of parasite growth in vitro

Asynchronous cultures of P.falciparum were cultured for 48 hours in the presence of affinity-purified human anti-RESA antibodies. The degree of inhibition was variable with typical results showing 20-40% inhibition compared with control cultures.

15 RESULTS - FIRA

cDNA clones expressing FIRA

FIRA cDNA clones reacted with up to 93% of a set of more than 100 PNG sera from 65 individuals, varying in clinical status. Further, they gave the most intense signals with a majority of the sera, although many sera reacted strongly with additional clones.

FIRA is encoded by a single polymorphic gene

Chromosomal DNA from 5 P.falciparum isolates (FC27, IMR143, IMR144, MAD71 from Papua New Guinea, and NF7 from Ghana) was restricted with EcoRI, AhaIII and RsaI and analysed by Southern blotting. In each isolate, a single very large (>20 kb) EcoRI fragment hybridized (data not shown). In the AhaIII and RsaI digests, smaller single fragments of varying sizes hybridized, revealing that the FIRA gene was polymorphic and present in each isolate investigated. The different fragment sizes most likely represent different alleles of the

21

FIRA gene. As at least three different alleles were detected in only 5 different isolates, the total number of alleles is presumably very large. The single fragment size in each isolate is in accord with a haploid genome in blood stage Plasmodium.

Identification of the FIRA polypeptide

Human antibodies specific for the FIRA polypeptide (Fig. 9) were purified by affinity chromatography. 10 Western blots the antibodies reacted strongly with a P.falciparum polypeptide of very large apparent size, nominally of Mr >300,000, that was present in each isolate (Fig.9C). Although there were no accurate size markers in this extreme range, the mobility of FIRA was 15 considerably less than that of the Mr 200,000 S antigen of FC27. Isolate differences in the sizes of FIRA polypeptides that might be expected to correlate with the slight differences in size of the DNA fragments could not be detected (Fig. 9C). The antibodies also 20 reacted weakly and variably with a number of smaller polypeptides (Fig. 9C), presumably proteolytic cleavage products of the Mr >300,000 molecule. The control antibodies, purified from the same serum on a vector absorbent did not react (Fig.9D). Further, antibodies 25 purified from the same serum on absorbents from other antigen-positive clones reacted specifically with other polypeptides, not the Mr >300,000 polypeptide (data not shown).

It is concluded that FIRA is a very large polypeptide that is expressed in each isolate of P.falciparum tested, and that antibodies to the allele of FIRA expressed by FC27 cross-react with the alleles expressed by K1 and NF7.

Location and stage specificity of FIRA and its mRNA

The affinity-purified human antibodies and serum from mice immunized with clone Ag231 or members of the Ag231 family reacted with mature parasites (containing pigment) and also with cells containing immature (ring-form) parasites. The fluorescence over ring-infected cells was uneven and apparently distributed beyond the limits of the parasite. Hence it is likely that FIRA is external to the parasite, although no staining of the erythrocyte surface was detected when the antibodies were reacted in suspension with non-fixed parasitized cells or with lightly glutaraldehyde-fixed and air-dried monolayers of parasitized crythrocytes (12).

15

20

The stage specificity of FIRA is therefore in some ways analogous to RESA (2). Hybridization of cDNA prepared from mRNA of highly purified merozoites to the array of 133 colonies revealed another parallel with RESA. All members of the Ag231 family hybridized to merozoite cDNA. Remarkably, the only other clones in this array or in a separate array of 78 antigen positive clones, that hybridize to merozoite cDNA encode RESA (2,13). Hence FIRA and RESA mRNAs are unusual among mRNAs for P.falciparum antigens in that they are greatly enriched in merozoites.

FIRA Sequence

The chromosomal clone encompassing the AhaIII fragment, cloned in \$\lambda gt10\$ and designated Ag231.5 has been fully sequenced. The gene contains an intervening sequence and is remarkably like RESA in overall structure. Exon 1 consists of a segment that may be a signal peptide (although it is very short), then a

23

region of hydrophilic amino acid followed by a stretch of 32 uncharged amino acids. The intervening sequence is located immediately adjacent to this relatively hydrophobic segment. The remaining sequence is composed of blocks of repetitive and interspersed non-repetitive sequences. In all cases, the repetitive sequences occur as groups of 13 hexamers, but the most 5' group of these lack interspersed non-repetitive sequences - i.e. there is a block of 39 hexamers. It appears that a deletion at the 3' end has altered the linker - Aha join, so the structure at the 3' end is uncertain.

Cross-reactions amongst repeats

Human antibodies affinity-purified on Ag231.6

(FIRA) when tested in an ELISA gave a very strong signal on Ag231.6, a weaker but very definite signal on Ag13.1.7.5 (RESA 5' repeat), and no signal on Ag13 (RESA 3' repeat) (Figure 10). This cross-reaction is consistent with the sequence homology between the repeats in these otherwise distinct antigens.

A full description of the preparation of recombinant DNA molecules, and of recombinant DNA cloning vehicles and vectors, of host cell-cloning

25 vehicle combinations, and of the expression of polypeptides by host cells is contained in International Patent Specification No. PCT/AU84/00016. This specification also describes in detail the use of DNA molecules and polypeptides expressed thereby in serological diagnosis, and in the preparation of single and multivalent vaccines for stimulating protective antibodies against Plasmodia. That description is equally applicable to the present invention and is incorporated herein by reference.

REFERENCES

- Kemp, D.J., Coppel, R.L., Cowman, A.F., Saint, R.B., Brown, G.V. & Anders, R.F. (1983) Proc.Natl.Acad.Sci.USA 80, 3787-3791. 1.
 - Coppel, R.L., Cowman, A.F., Anders, R.F., Bianco, A.E., Saint, R.B., Lingelbach, K.R., Kemp, D.J. & Brown, G.V. (1984) Nature (London) 310, 789-792. 2.
 - 3. Ozaki, L.S., Svec, P., Nussenzweig, R.S., Nussenzweig, V. & Godson, G.N. (1983). Cell 34,
 - Dame, J.B., Williams, J.L., McCutchan, T.F., Weber, 815-822. J.L., Wirtz, R.A., Hockmeyer, W.T., Sanders, G.S., Reddy, E.P., Maloy, W.L., Haynes, J.D., Schneider, I., Roberts, D., Diggs, C.L.& Miller, L.H. (1984) 4. Science 225, 593-599.
 - Coppel, R.L., Cowman, A.F., Lingelbach, K.R., Brown, G.V., Saint, R.B., Kemp, D.J. & Anders, R.F. (1983) Nature (London) 306, 751-756. 5.
 - Stahl, H-D., Crewther, P.E., Anders, R.F., Brown, G.V., Coppel, R.L., Bianco, A.E., Mitchell, G.F. and Kemp, D.J. (1985). Proc.Natl.Acad.Sci.USA. 6 -<u>82</u>, 543-547.
 - Stahl, H-D., Coppel, R.L., Brown, G.V., Saint, R.B., Lingelbach, K., Cowman, A.F., Anders, R.F. & 7.

- Kemp, D.J. (1984) Proc.Nat.Acad.Sci.USA 81,
 2456-2460.
- Sanger, R., Nicklen, S. & Coulson, A.R. (1977)
 Proc.Nat.Acad.Sci.USA 74, 5463-5467.
- 9. Messing, J. & Vieira, J. (1982) Gene 19, 269-276.
- 10. Staden, R. (1980) Nucl. Acids. Res. 8, 3673-3694.
- 11. Atherton, E., Caviezel, M., Fox, H., Harkiss, D., Over, H., Sheppard, R.C. (1983) J.Chem.Soc.Perkin Trans. 1, 65-73.
- Perlmann, H., Berzins, K., Wahlgren, M., Carlsson,
 J., Björkmann, A., Patarvoyo, M.E., and Perlmann,
 P. (1984) J.Exp.Med. 159, 1686-1704.
- 13. Anders, R.F., Coppel, R.L., Brown, G.V., Saint, R.B., Cowman, A.F., Lingelbach, K.R., Mitchell, G.F. and Kemp, D.J. (1984) Molec.Biol.Med. 2, 177-191.

CLAIMS:

- 1. A DNA molecule comprising a nucleotide sequence substantially corresponding to all or a portion of the base sequence coding for an antigen of P.falciparum selected from the group consisting of the Ring-Infected Erythrocyte Surface Antigen (RESA), the Falciparum Interspersed Repeat Antigen (FIRA), and other antigens of P.falciparum cross-reactive therewith.
- 2. A DNA molecule according to claim 1, wherein said nucleotide sequence codes for a polypeptide of P.falciparum which substantially corresponds to the RESA antigen of P.falciparum.
- 3. A DNA molecule according to claim 1, wherein said nucleotide sequence codes for a polypeptide of P.falciparum which substantially corresponds to the FIRA antigen of P.falciparum.
- 4. A DNA molecule according to claim 1, wherein said nucleotide sequence is characterised by at least a portion thereof comprising a base sequence substantially as shown in Figure 1.
- 5. A DNA molecule according to claim 1, wherein said nucleotide sequence is characterised by at least a portion thereof comprising a base sequence substantially as shown in Figure 7.
- 6. A DNA molecule comprising a nucleotide sequence capable of being expressed as at least one polypeptide displaying the antigenicity of an antigen of P.falciparum selected from the group consisting of the

RESA antigen, the FIRA antigen, and other antigens of P.falciparum cross-reactive therewith.

- 7. A recombinant DNA molecule comprising a ... nucleotide sequence according to any one of claims 1 to 6, operatively linked to an expression control sequence.
- 8. A recombinant DNA cloning vehicle or vector capable of expressing all or a portion of at least one polypeptide or protein of P.falciparum, and having inserted therein a nucleotide sequence according to any one of claims 1 to 6, said sequence being operatively linked to an expression control sequence.
- 9. A recombinant DNA cloning vehicle or vector according to claim 8, characterised in that said nucleotide sequence and said expression control sequence are inserted into a bacteriophage.
- 10. A recombinant DNA cloning vehicle or vector according to claim 9, characterised in that said bacteriophage is bacteriophage λ Amp 3.
- 11. A host cell containing a recombinant DNA molecule according to claim 7, or a recombinant DNA cloning vehicle or vector according to claim 8.
- 12. A synthetic peptide or polypeptide displaying the antigenicity of all or a portion of an antigen of P.falciparum selected from the group consisting of the RESA antigen, the FIRA antigen, and other antigens of P.falciparum cross-reactive therewith.

- 13. A synthetic peptide or polypeptide according to claim 12, characterised in that it displays the antigenicity of all or a portion of the RESA antigen of P.falciparum.
- 14. A synthetic peptide or polypeptide according to claim 12, characterised in that it displays the antigenicity of all or a portion of the FIRA antigen of P.falciparum.
- 15. A fused polypeptide comprising a polypeptide sequence displaying the antigenicity of an antigen of P.falciparum selected from the group consisting of the RESA antigen, the FIRA antigen, and other antigens of P.falciparum cross-reactive therewith as the C-terminal sequence, and an additional polypeptide as the N-terminal sequence fused thereto.
- 16. A fused polypeptide according to claim 15, wherein the additional polypeptide is a polypeptide coded for by the DNA of a recombinant DNA cloning vehicle or vector.
- 17. A composition for stimulating immune responses against P.falciparum antigens in a mammal, comprising at least one polypeptide displaying the antigenicity of an antigen of P.falciparum selected from the group consisting of the RESA antigen, the FIRA antigen, and other antigens of P.falciparum cross-reactive therewith, together with a pharmaceutically acceptable carrier therefor.
- 18. A composition according to claim 17, further comprising an adjuvant.

PCT/AU85/00223

- 19. A composition for stimulating immune responses against <u>P.falciparum</u> antigens in a mammal, comprising a virus or microorganism in association with a pharmaceutically acceptable carrier, the virus or microorganism having inserted therein a DNA molecule comprising a nucleotide sequence capable of being expressed at least one polypeptide displaying the antigenicity of an antigen of <u>P.falciparum</u> selected from the group consisting of the RESA antigen, the FIRA antigen, and other antigens of <u>P.falciparum</u> cross-reactive therewith.
- 20. A method of stimulating immune responses against <u>P.falciparum</u> antigens in a mammal, which comprises administering a composition according to claim 17 or claim 18 to said mammal.

AATTCCGAATCCCTTT	777777777	TCTTTTCTTTT	TTTACTTATT
10	20	30	
TAATAAAATAAAATAA	ΔΑΑΤΑΑΑΑΤ <i>ί</i>	4AATAAATAAA	TTTATT TAAT
100	110	120	130
TGGTTAAATTTTAAAA	TATATAAAA [*]	TACTTTACTGT	GGTTGAATTA
190	200	210	220
TGGTTGTTATATATTT	GTTCTTTTT	TATTTTGATAA	AATACAAAAA
280	290	300	310
TAATTTTTTTTTATTT	TATATTTTT	TTATGTATTTT	TTGTTAGAAA
370	380	390	400
AATATTTTTTTTTAT	TATTTTATAT	TGATAGCGAAA	AAAAAAAAA
460	470	480	490
TATTTATATATTATTT	TTTTTTTTT	TTTTTATATAT	TTTATATAAA
550		570	580
ATTTATAATAATATTT 640	777777777 650	ГАБААААААА 660	ATTTACTATT
AAAAAAAAAAAAAA	AAAATTAC TT	TGGTTTTAATT	TTTTACTTTT
730	740	750	760
HisAlaTyrSerTr TTCATGCATATAGTTG 820	GATTTTTTCT		
GluLysArgAsnGl	uAsnLysSer	PheLeuLysV	alLeuCysSe
AAGAAAAAAGAAATGA	AAATAAGAG(TTTTTAAAGG	TGTTGTGTTC
910	920	930	940
Asn TAAATGTAAGTTTTTT 1000	TTTTTTTTT 1010	TTTTTTTGAA 1020	ATAAAATACA 1030 j
ATTCTATTCTTTTTTA	TATGTCATGO	ATATTTTATA	TATTATAATA
1090	1100	1110	1120
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TTTTTTCA1 1190	GlyAsnLe TAGGGTAATCT 1200	uGlyTyrAsn TGGATATAAT 1210
AsnLeuTyrGlyGlu	ThrLeuPro\	STAAACCCATA	rAlaAspSer
AAATTTATACGGGGAA	ACATTGCCA0		TGCTGATTCT
1270	1280		1300

Fig./(A).a.

ATATTTTTT.	ATTAAGTGAA	44444444	AAAAAAAATA	АТАА
	60	70	80	90
AATTTTTATA	TAGATTTAATA 150	ATATATCGGT 160	TGATAGATTT	CGTT 180
TTAAAAAAAA	AAAATAATAA	ATAAATTAAA	AGCTTCCTTA	TTCT
230	240	250	260	270
AAAAATAATA	AAACCTAATTA	ATAAAAAAAA	AATAAAAGTTI	CATA
320	330	340	350	360
410	4AAAAAAAAAA	JAAATAATTT	ATTTATAATA	TATA
	420	430	440	450
AAAAAAATAA	AATAATTTTT	AAAAATATTT	TATTATTATT	444A
500	510	520		540
TAACATTTTC	TATAAATTAAA	ATATATTTTA	ATATATATATA	4TAT
	600	610	620	630
TTTATATTTA	TATATATTATA	AATATTATTT	AGACATATTA	TTAA
	690	700	710	720
ACATAATTTA 770	TAATAAGAAAA 780 .	ATATCTAAAT 790	MetArgl AATTATGAGA(800	ProPhe CCTT 810
sAsnVal Lysi	GAAAAAAATCO	roThrIleTy	rSerPheAsp/	Aspūlu
AAATGTTAAG		CCACCATATA	TTCATTTGAT(GATG
860		880	890	900
r LysAr gGl y	ValLeuProII	leIleGlyIl	eLeuTyrIle	IleLeu
TAAACG TGGT(GTTCTTCCAA	TTATTGGAAT	ACTATATATC	ATTT
950	960	970	980	990
TATTTTTTAT,	ATTTAATTTT	TTATGTTAAT	GCTTATTTTA	TTTT
1040	1050	1060	1070	1080
CCGTTTTTAA	TAATATATAA 1140	TATATCTTTG 1150		TAAT 1170
GlySerSerS GGAAGTTCAT 1220	CTTCTGGCGTA	ACAATTTACT	GATAGATGTT	erArg TAAG 1260
GluAsnProI GAAAACCCAA 1310	TAGTTGTAAGT	TCAGGTATTT	GGT TTACCC T	reGlu TCGA 1350

Fig. I(A)b

LysProThrPheThrLeuGluSerProProAspIleAspHisThr AAAACCTACGTTTACCTTAGAAAGTCCTCCTGATATTGATCATACA 1360 1370 1380 1390 TyrArgTyrSerAsnAsnTyrGluAlaIleProHisIleSerGlu ATATCGATATTC TAATAAC TATGAAGCC ATTCCTCATATAAGTGAGI 1450 1460 1470 LysValAspAsnLeuGlyArgSerGlyGlyAspIleIleLysLys AAAGGTTGATAACTTAGGAAGAAGTGGAGGAGACATTATAAAAAAA TyrAspSerLeuLysGluLysLeuGlnLysThrTyrSerGlnTyr ATATGAT TCTTTAAAAGAAAATTACAGAAAACTTACAGTCAGTAC 1640 1650 ThrGlnCysIleLysLeuIleAspGlnGlyGlyGluAsnLeuGlu GACACAATGCATAAAACTTATTGATCAAGGAGGAGAGAACCTTGAA 1730 1720 1740 1750 LeuAsnLeuGluGluTyrArgArgLeuThrValLeuAsnGlnIle TTTAAATCTTGAAGAATATAGAAGATTGACTGTGTTGAACCAAATC

1810 1820 1830 1840

IleMetAsnSerAspIleSerSerPheLysHisIleAsnGluLeu AATTATGAATAGTGACATTTCTTCCTTTAAACATATAAATGAATTG 1900 1910 1920 1930

LysLysArqAlaGlnLysProLysLysLysLysSerArqArqGly GAAGAAAAGĀGCTCAAAAACCGAAGAAGAAAAAAAAGTAGĀAGĀGGĀ 1990 2000 2010

GlnGluGluProValGlnThrValGlnGlüGlnGlnValAsnGlu ACAAGAAGAACCAGTCCAAACCGTTCAAGAACAACAAGTAAATGAA 2090 2100

AlaIleAsnTyrTyrAspThrValLysAspGlyValThrLeuAsp AGCTATTAATTATTATGATACCGTAAAAGATGGTGTATACTTAGAC 2180 2190

AspLeuGluLysGlnLysTyrMetAspMetLeuAspThrSerGlu TGATTTGGAAAAACAAAATATATGGATATGTTAGATACATCTGAA 2270 2280 2290 2260

GluHisValGluGluHisThrAlaAspAspGluHisValGluGlu TGAACATGTAGAAGAACACACTGCTGATGACGAACATGTAGAAGAA 2350 2360 2370 2380

AspGluHisValGluGluProThrValAlaGluGluHisValGlu TGATGAACACGTAGAAGAACCAACTGTTGCTGAAGAACATGTAGAA 2440 2450 2460 2470

AsnIleLeuGlyPheAsnGluL AATATTTTGGGTTTTAATGAGA 1400 1410 14	ysPheMetThrAspValAsnArg AGTTCATGACTGATGTAAATAG 20 1430 1440
PheAsnProLeuIleValAspLy TTCAATCCACTTATTGTAGATA 1490 1500 15	ysValLeuPheAspTyrAsnGlu AAGTTCTTTTCGACTATAACGA 10 1520 1530
MetGlnThrLeuTrpAspGluI ATGCAAACTTTATGGGATGAAA 1580 1590 16	leMetAspIleAsnLysArgLys TAATGGATATTAATAAAAGAAA 00 1610 1620
LysValGlnTyrAspMetProLy AAGGTTCAATATGATATGCCAA 1670 1680 169	AAGAAGCATATGAGAGCAAATG
GluArgLeuAsnSerGlnPheLy GAAAGATTGAACTCACAATTTA/ 1760 1770 178	NAAACTGGTACAGGCAGAAATA
AlaTrpLysAlaLeuSerAsnGl GCTTGGAAAGCTTTATCCAACCA 1850 1860 187	In I leGlnTyrSerCysArgLys AAATTCAATATTCATGCAGAAA 70 1880 1890
LysSerLeuGluHisArgAlaAl AAAAGTTTAGAACACAGAGCCGC 1940 1950 196	AAAAGCTGCAGAAGCAGAAAT
TrpLeuCysCysGlyGlyGlyAs TGGTTATGTTGTGGGGGGGGGAGA 2030 2040 205	spileGluThrValGluProGln ATATCGAAACAGTTGAACCACA 50 2060 2070
TyrGlyAspIleLeuProSerLe TATGGTGATATATTACCATCATT 2120 2130 214	TAAGGGCC AG TATTAC TAATTC
HisGluThrSerAspAlaLeuTy CATGAAACATCAGATGCTCTTTA 2210 2220 223	ATACAGATGAAGATTTGTTATT
GluGluSerValGluGluAsnGl GAAGAATCTGTTGAAGAAAATGA 2300 2310 232	VAGAAGAACACACTGTTGATGA
ProThrValAlaAspAspGluHi CCAACTGTTGCTGATGATGAACA 2390 2400 241	ATGTAGAAGAACCAACTGTTGC
GluProThrValAlaGluGluHi GAACCAACTG:TGCTGAAGAACA 2480 2490 250	ACGTAGAAGAACCAGCTAGTGA

Fig. I(C).a.

ACATTATATT		raggtgttggt	ValAsnAlaAsp GTTAATGCTGA 2600 20	
ProTyrGlnA	GATCAGGTTC	erThrValPhe	HisAs nPheArc	JLys
CCATACCAAA		TACTGTTTT(CACAACTTTAGO	JAA
2660		2680	2690 27	700
TrpTyrAsnL	ysTyrGlyTy	rAspGlyIle	LysGlnValAsr	Phe
TGGTACAATA	AATACGGATA	ATGATGGAATA	AAACAAGTCAAC	TT
2750	2760	2770	2780 27	790
JAAAGATTTTA	hrGlyThrPr CCGGAACAC(2850	CCAAATAGTA	ThrLeuLeuArc ACTCTTTTGAGA 2870 28	Phe TT 880
GAACATTTAT	euLysPheMe TAAAATTTAT 2940	[GGAACAATAT	GlnLysGluArc CAAAAAGAAAGA 2960 29	gG lu NGA 170
AlaGlyAspS	CAAAATGGAA	snValProIle	IleThrLysLeu	iG lu
GCTGGTGATT		NTGTACCAATT	ATAACAAAACTT	GA
3020		3040	3050 30)60
	TCAAACATGT		HisLeuLysLys CATTTGAAAAAA 3140 31	AT C
CAAGAATTAG	ICAAATATAAA		MetSerThrLeu ATGAGTACATTO 3230 32	
ITTCGAAAACA	TCAATTCCAA	ιΤΓΙ ΤΤΓΙΔ ΤΔ ΔΓ	GlyAsnGlnSer GGAAACCAATCA 3320 33	Lys AA 30
LysIleValS	erTyrIleVo	llAspIleSer	LeuTyrAspIle	Glu
IAAAATTGTTA	GTTATATAGT	AGATATTTCC	CTTTATGATATA	GA
3380	3390	3400	3410 34	20
ValAspGluL	ysThrLeuLy	s LysArgAlo	GlnSerLeuLys	Lys
GTAGATGAAA	AAACTCTTAA	AAAGAGAGCT	CAATCATTAAAA	AA
3470	3480	3490	3500 35	10
LysLysSerL	ysAsnPheAs	SpThrLysAsp	IleValGlyTyr	Ile
AAAAAATCAA	AAAATTTTGA	STACCAAAGAT	ATTGTAGGATAT	AT
3560	3570	3580	3590 36	00

F1G. /(C).b.

MetHisGlyIleSerThrIleAsnThrGluMetLysAsnGlnAsn TATGCATGGAATTAGCACAATTAATACAGAAATGAAAAACCAAAAT GluHisAspAlaGluGluAsnValGluHisAspAlaGluGluAsn AGAACATGATGCTGAAGAAAATGTAGAACATGATGCTGAAGAAAAT As n Va l G l u H i s A s p A l a G l u G l u A s n Va l G l u G l u A s n Va l G l u AAATGTAGAACATGATGCTGAAGAAAATGTAGAAGAAAATGTTGAA GluAsnValGluGluValGluGluAsnValGluGluAsnValGlu AGAAAATGTTGAAGAAGTAGAAGAAAATGTAGAAGAAAATGTAGAA GluGluAsnValGluGluAsnValGluGluAsnValGluGluTyr ValGluGluAsnValGluGluAsnValGluGluAsnValGluGlu AsnValGluGluAsnValGluGluAsnValGluGluTyrAspGlu AATATATATATAAAGTTTTAATTTTTATAAACAGAATAATACTAA ATTTATTTCTTTTAATTTGCGATATGATATTACATGTAAATAATAA CATTGTAATTTATATTGTTGTATTTTTAATGTTTTCACATTTT C

Fig. I(D).a.

													_			
	GluA GAAA 3650	ATG			ΙΑΑ(TAC				TGC			4ΑΑ		iΤ
	ValG GTAG 3740	IAAC			ic To		IAA				ACA					īΑ
	GluV GAAG 3830	TAG			AT(iAA(٩GA		_	ATG		jΑ
	GluA GAAA 3920	ATG			AA		TTO				TGT					iΤ
	AspG GATG 4010	IAAG			TTO		AA(4 AG		AΑ
	ValG GTAG 4100	iAAG/			TAC		IAA				4GA			TAG		jΑ
	GluA GAAA 4190	ATG			iAA(ATO				TGA				AA/ 423	
	ATGA 4280	ACG	ATT	TCT 429		TAT		AAA 300	TAA	4 AA ⁻		TT# 10	AAA		GA1 432	
	TTTT 4370	CTT	3CA	TGA 438		TAT	TT0	TT. 390	ΔΤΊ	ΓΤΤ		AT7 00	TG		TT/ 441	
!	TTT 0		TTT	ATA 447		TTT	C T T	TT 80	CT	TTT		TT1 90	TA.		TAT 450	
	ATTT 4550		TTT	TTT 456		ATTA		TT.	AA	4 AA		AAA 80	ΔΑΑ (AAT 459	

FIG. 1(D).b.

RING-INFECTED ERYTHROCYTE SURFACE ANTIGEN

F16 2

-Asp Asp Glu His Val Glu Glu Pro Thr Val Ala

Glu Glu Asn Val Glu His Asp Ala

SUBSTITUTE SHEET

FIG. 3.

FIG. 4.

F1G. 5.

1 2 3 FIG. 6.

GlnAsnLysAlaSerSerProSerIleAsnValAspGluTyrSe CACAAAATAAAGCTTCTAGTCCAAGCATAAATGTAGATGAATATTC 100 110 120 130

ThrAsnLeuThrProAspGlnIleSerAlaLeuAsnAlaHisLe TTACGAATCTAACACCTGATCAAATAAGTGCATTGAATGCGCATTT 190 200 210 220

AsnAsnGluAsnGluValAsnProLeuValProSerSerIleSe CAAATAACGAAAATGAAGTAAATCCATTAGTACCATCAATTTC 280 290 300 310

AATATTCATGTATAAAATAATTTTAACCTATCATACATGTTTTAAT 460 470 480 490

ArgLysLysSerGinThrTyrAsnLys TTTTATATTTTTTCTTTAGCGAAAGAAATCACAAACATACAATAAA 550 560 570 580

AlaThrGlnGlnGluAsnSerAsnGlnAsnLysGluIleAsnGlu TGCAACACAGCAAGAAAATAGTAATCAAAATAAGGAAATTAATGAA 640 650 660 670

ThrValThrThrGlnAlaAlaAlaThrProGlnGluThrValGlu AACAGTCACAACACAAGCAGCAGCACCACAAGAAACAGTCGAA 730 740 750 760

ProvalThrThrGlnGluProIleThrValGlnGluProValThr ACCTGTAACAACACAAGAACCTATAACGGTACAAGAACCAGTCACA 820 830 840 850

ProValThrValGlnGluProValThrValGlnGluProValThr ACCAGTCACAGTACAAGAACCAGTCACAG 910 920 930 940

Fig. 7(A).a.

Fig. 7(A).b.

ProValThrProGlnGluProValThrProGlnGluProValThr ACCTGTGACACCACAAGAACCTGTGACACCACAAGAACCTGTGACA 1000 1010 1020 ProValThrIleGluGluProValThrThrGlnGluProValThr ACCAGTAACAATAGAAGAACCAGTAACACACACAAGAACCAGTAACA
1090 1100 1120 ProValThrThrGlnGluProValThrThrGlnGluProValThr ACCAGTAACACACAGAACCAGTAACACACACAGAACCAGTAACA 1180 1190 1200 1210 ProValThr ValGluGluHis I leAspGluLysLysGlySerGlu ACCAGTAACAGTAGAAGAACATATTGATGAGAAAAAAGGATCAGAA 1270 1280 1290 1300 LysSerHisThrLysLysLysLysSerSerTrpLeuLysPheGly AAAATCTCACACAAAAAAAAAAAAAAAGCAGCTGGCTTAAATTTGGA 1360 1370 1380 SerLeuGluSerValLysGlnAsnAlaAspGluGlnLysGluGln TTCATTAGAAAGTGTAAAACAAAATGCTGATGAACAAAAAGAACAA 1450 1460 1470 IleGlnGluProThrAlaThrGlnGluProProThrThrGlnGlu 1540 1550 GluGlnGluProThrThrGlnGluThrValThrAlaGlnGlu AGAACAAGAACCAACAACACACAGAAACAGTAACAGCACAAGAA 1630 1640 1650 1660 ThrGlnGluLeuIleAlaThrGlnGluProSerThrThrGlnGlu AACACAAGAACTAATCGCAACACAAGAACCATCCACAACACAAGAA 1720 1730 1740 1750 SerArgLeuSerGluGluThrGluGluLysSerHisThrLysLys AAGCAGATTATCGGAAGAAACTGAAGAAAAATCTCACACAAAAAA

Fig.7(B).a.

1830

1840

1820

1810

ProGlnGluProValThrThrGlnGluProValThrThrGlnGlu CCACAAGAACCAGTAACAACACACAGAACCAGTAACAACACAGA IleGluGluProValThrThrGlnGluProValThrIleGluGlu ATAGAAGAACCAGTAACAACACAGAACCAGTAACAATAGAAGA ThrGlnGluProValThrThrGlnGluProValThrThrGlnGlu ACACAAGAACCAGTAACAACACAAGAACCAGTAACAACACAAGA GlyAspAsnIleSerLeuSerSerLeuSerGluGluThrGluGlu GGTGATAACATTTCATTAAGCAGCTTATCGGAAGAAACTGAAGA ArgGlyAsnLysAsnAspLysLysSerLysAsnGluLysLysPro ProThrAspSerGlnIleSerValAsnAlaGlnAspSerValThr CCTACAGATTCACAAATATCTGTTAATGCGCAAGATTCAGTAAC LeuThrAlaThrGlnGluProThrThrThrGlnGluThrValThr CTAACCGCAACACAAGAACCAACCACGACACAAGAAACAGTAAC 1610. Pro I le Thr Thr Gl n GluPro Val Thr AlaGl n GluPro Val Thr CCTATAACTACGCAAGAACCTGTTACAGCTCAAGAACCAGTCAC HisAlaAspGluLysLysAlaSerGluGlyAspAsnIleSerLeu CATGCTGATGAGAAGAAGCATCAGAAGGTGATAACATTTCATT LysLysSerSerTrpLeuLysPheGlyArgGlyAsnLysAsnAsp AAAAAAAGCAGCTGGCTTAAATTTGGAAGAGGAAATAAAAATGA

Fig. 7(B).b.

LysLysSerLysAsnGluLysLysProSerLeuGluSerValLys CAAAAAAGTAAAAACGAAAAAAACCTTCATTAGAAAGTGTAAAA 1910 SerValAsnAlaGlnAspSerValThrIleGlnGluProThrAla 1990 2000 2010 ProThrThrThrGlnGluThrValThrGluGlnGluProThrThr ACCAACCACGACACAAGAACAGTAACAGAACAAGAACCAACAACA 2090 2100 ProValThrAlaGlnGluProValThrThrGlnGluLeuI leAla ACCTGTTACAGCTCAAGAACCAGTCACAACACAAGAACTAATCGCA 2180 AlaSerGluGlyAspAsnIleSerLeuSerArgLeuSerGluGlu AGCATCAGAAGGTGATAACATTTCATTAAGCAGATTATCGGAAGAA 2270 2280 LysPheGlyArqGlyAsnLysAsnAspLysLysSerLysAsnGlu TAAATTTGGAAGAGGAAATAAAAATGACAAAAAAGTAAAAACGAA 2360 2370 LysGluGlnProThrAspSerGlnIleSerValAsnAlaGlnAsp AAAAGAACAACCTACAGATTCACAAATATCTGTTAATGCGCAAGAT 2440 2450 2470 ThrGlnGluLeuThrAlaThrGlnGluProThrThrGlnGlu AACACAAGAACTAACCGCAACACAAGAACCAACCACGACACAAGAA 2530 2540 2560 AlaGlnGluProIleThrThrGlnGluProValThrAlaGlnGlu AGCACAAGAACCTA TAACTACGCAAGAACCTGTTACAGCTCAAGAA 2620 2630 2640 ThrGlnGluHisAlaAspGluLysLysAlaSerGluGlyAspAsn AACAC AAGAAC A TGC TGATGAGAAGAAAGC A TCAGAAGG TGATAA C 2720

Fig. 7(C).a.

Fig. 7(C).b.

ThrLysLysLysSerSerTrpLeuLysPheGlyArgGlyAsn CACAAAAAAAAAAAAAAGCAGCTGGCTTAAATTTGGAAGAGGAAAT 2800 2810 2830

SerValLysGlnAsnAlaAspGluGlnLysGluGlnProThrAsp AAGTGTAAAACAAAATGCTGATGAACAAAAGAACAGCCTACAGAT 2890 2900 2910 2920

ProIleThrAlaGlnGluThrValThrAspGlnGluProIleThr ACCTATTACAGCTCAAGAACTGTTACAGATCAAGAACCTATAACA 2980 2990 3000 3010

ThrValThrSerLeuValProAsnArgAsnThrArgAsnSerAsn AACGGTTACTTCTCTTGTTCCGAATCGCAACACAAGAAACAGTAAC 3070 3080 3090 3100

ProvalThrAlaGlnGluProvalThrThrGlnGlu ACCTGTTACAGCTCAAGAACCAGTGACAACACAAGAA 3160 3170 3180

Fig.7(D).a.

3110

3120

LysAsnAspLysLysSerLysAsnGluLysLysProSerLeuGlu AÁAAATGACAÁAAÁAAGTAÁAAACGAAAÁAAÁACCTTCATTAGA 2840 2850 2860 2870 SerGlnIleSerValAsnAlaGlnAspSerValThrThrGlnGlu TCACAAATATCTGTTAATGCACAAGATTCAGTAACAACTCAAGA 2930 2940 2950 2960 ThrGluGluProLeuThrThrGlnGluThrValThrThrGlnGlu ACTGAAGAACCCTTAACCACACAGAAACGGTTACAACACAAGA 3020 3030 3040 3050 3060 3050 3060 ArgThrArgThrIleThrThrGlnGluProIleThrThrGlnGlu

AGÃACAAGÃACTATAACGACACAGAGAACCTATAACGACACAAGA

3120 ·

3140

Fig. 7(D).b.

FALCIPARUM INTERSPERSED REPEAT ANTIGEN (FIRA)

F16.8.

SUBSTITUTE SHEET

FIG. 9.

INTERNATIONAL SEARCH REPORT

International Application No PCT/AU 85/00223

I. CLASSIFICATIO	N OF SUBJECT MATTER (if several classific	ation sympois apply, indicate all) *	<u></u>		
Int. C1.4 C	onal Patent Classification (IPC) or to both Nation 107H 21/04 // C12N 15/00, 1, 107G 17/00, A61K 39/015, G01	/20, C12P 19/34, 21/02	, CO7K 13/00, 12R 1:19, 1:90)		
II. FIELDS SEARCH	IED				
	Minimum Documenta	ition Searched 7	·		
Classification System	CI	assification Symbols			
IPC US C1.	CO7H 21/04 536/27, 536/28, 536/29	an Minimum Documentation			
	to the Extent that such Documents a	re Included in the Fields Searched *			
AU: IPC	as above		·		
III. DOCUMENTS	ONSIDERED TO BE RELEVANT				
Category * Citat	ion of Document, 11 with indication, where appro	priate, of the relevant passages 12	Relevant to Claim No. 13		
: OF M See	, 23842/84 (THE WALTER AND EDICAL RESEARCH) 9 August 1 especially claim 7; page 6 6 line 30 to page 7 line 2	.984 (09.08.84) lines 20-25; and	(1-6)		
	1, 84/02917 (THE WALTER AND EDICAL RESEARCH) 2 August 1		(1-6)		
A,P AU,A 5 Se	, 39046/85 (THE WELLCOME FO ptember 1985 (05.09.85)	UNDATION LIMITED)	(1-6)		
"T" later document published after the international filing or promy date and not in conflict with the application cried to understand the principle or theory underlying filing date. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(a) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published after the international filing date but later than the priority date claimed. "T" later document published after the international filing or priority date and not in conflict with the application cried to understand the principle or theory underlying cried to understand the principle or theory under					
11 December	er 1985 (11.12.85)	20 DECEMBER 1985	20,12.89/		
International Search Australia	n Patent Office	Signature of Authorized Officer	R.M.F. BOYS		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL APPLICATION NO. PCT/AU 85/00223

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	ent Document ed in Search Report		Patent Family Members						
AU	39046/85	DK GB GB	799/85 8504429 8424340	EP GB	154454 2154592	GB IL	8404692 74409		
AU	23842/84	DK IL WO GB	4674/84 70776 8402917 8424104	EP NO JP ZA	134799 843872 60500478 840605	GB PT FI	2143830 78032 843797		
MO	84/02917	DK GB JP ZA	4674/84 8424104 60500478 840605	· EP GB NO	134799 2143830 843872	FI IL PT	843797 70776 78032		

END OF ANNEX