密级状态:绝密() 秘密(√) 内部资料(√) 公开()

文档编号: (芯片型号) - ASR6505(英文、数字)

ASR6505 硬件设计指南

文件状态:	当前版本:	V0.1
[√] 正在修改	作者:	ASR6505 AE Team
[]正式发布	启动日期:	2019-5-03
	审核:	
	完成日期:	2019-5-08

翱捷科技(上海)有限公司

ASR Microelectronics Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	修改日期	作 者	修 改 说 明
V0. 0	2019. 05. 03	ASR6505 AE Team	Created by AE Team
V0. 1	2019. 05. 24	ASR6505 AE Team	1) 更新 ASR6505 原理图设计,主要是 ASR6505
			的封装和 pin 定义,和 Datasheet 保持一致。
			2) 更正本文档中的文字错误。

Table of Contents

1	概述	•••••		4
2	ASR6	505 硬化	件设计	4
	2.1		505 模组方框图	
	2.2		505 芯片管脚定义	
	2.3	ASR65	505 客户模组参考设计	7
	2.4	ASR65	505 电路解析	7
	2	2.4.1	电源电路	7
	2	2.4.2	晶振电路	8
	2	2.4.3	射频电路	g
	2	2.4.4	模组接口	g
	2.5	ASR65	505 芯片封装定义	10
3	Alm 東江 ユ		有	
3	初件人			
	3.1	晶振.		11
	3.2	射频测	开关	11
	3.3	功率日	电感	11
	3.4		 天线	
			· · · · · · · · · · · · · · · · · · ·	
4	LAYC			
	4.1		走线	
	4.2	RF 走	.线	12
	4.3		走线	

1 概述

ASR6505 是一款通用的 LoRa 无线通讯芯片,该芯片集成了 LoRa 射频收发器,LoRa 调制解调器和 8 位的 RISC MCU。 MCU 采用 ST 的 STM8L152 系列芯片,Harvard architecture and 3-stage pipeline; Max freq: 16 MHz, 16 CISC MIPS peak, up to 64-KB Flash, 2-KB data EEPROM, RTC, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, comparators; LoRa 射频收发器的频率覆盖 150M-960M 的连续频段; LoRa 调制解调器除支持 LoRa 调制还支持(G)FSK 调制。

ASR6505 在 SF12 下接受灵敏超过-140dBm,最大的发送功率为 22dBm,最大的工作电流为 108mA, Sleep mode 下电流低至 1.8uA,因此 ASR6505 芯片特别适合超远距离,超低功耗,高性价比的 LPWAN 应用。

该应用笔记主要用于指导客户进行ASR6505的硬件设计,包括原理图参考设计,layout注意事项,以及重要物料选型和替换。

2 ASR6505 硬件设计

2.1 ASR6505 模组方框图

ASR6505 LoRa 模组方框图如下:

图 2-1-1 ASR6505 模组方框图

注意事项:

- 1) ASR6505 是基于 LoRa 射频芯片 SX1262 和 STM8L152 的 SIP 封装的 LoRa 芯片组,因此 ASR6505 的射频性 能和 Semtech SX1262 性能基本一样,MCU 的参数也和 STM 的 STM8L152 芯片性能一致。
- 2) LoRa 射频芯片(SX1262)和MCU 芯片(STM8L152)两者通过 SPI 接口进行通讯,SX1262和STM8L152的 SPI 信号已经在芯片内部相连。

2.2 ASR6505 芯片管脚定义

Pin Type	Description
Ι	Input
О	Output
I/O	Input/output
P	Power
G	Ground

表2-2-1 ASR6501管脚类型定义

DIR	NO.	PIN_NAME	Default	Fuction1	Fuction2	Fuction3	Fuction4
	1	VR_PA	VR_PA				
	2	VDD_IN	VDD_IN				
	3	GND_PLL	GND_PLL				
	4	XTA	XTA				
	5	ХТВ	ХТВ				
	6	NC	NC				
	7	DIO3	DIO3			A	
	8	VREG	VREG				
LEFT	9	GND_DCC	GND_DCC				
	10	DCC_SW	DCC_SW				7
	11	VBAT_RF	VBAT_RF			V.A.	
	12	VBAT_DIO	VBAT_DIO				
	13	DIO2	DIO2				
	14	SWIM	SWIM				
	15	NRST	NRST				
	16	LCD_COM0	LCD_COM0	ADC1_IN2	COMP1_INP)	
	17	LCD_COM1	LCD_COM1	ADC1_IN1	COMP1_INP		
	18	LCD_COM2	LCD_COM2	ADC1_IN1	COMP1_INP	ADC1_TRIG	
	19	VDDA	VDD1/VDDA				
	20	VREFP	VREFP				
	21	UART1_RX	UART3_RX	LCD_SEG28			
	22	UART1_TX	UART3_TX	LCD_SEG29			
	23	VLCD	VLCD				
	24	LCD_SEG0	LCD_SEG4	UART2_RX			
	25	LCD_SEG1	LCD_SEG5	UART2_TX	DAC_TRIG1	DAC_TRIG2	
воттом	26	LCD_SEG2	LCD_SEG6	ADC1_IN23	COMP1_INP	COMP2_INP	
	27	LCD_SEG3	LCD_SEG7	ADC1_IN22		COMP2_INP	ADC1_TRIG
	28	LCD_COM3	LCD_COM3	COMP1_INP	COMP2_INP	ADC1_IN21	
	29	LCD_SEG4	LCD_SEG8	ADC1_IN20	COMP1_INP		
	30	LCD_SEG5	LCD_SEG9	ADC1_IN19	COMP1_INP		
	31	UARTO_RX	UART2_RX				
	32	UARTO_TX	UART2_TX				
	33	VDDD1	VDD3				
N.	34	LCD_SEG6	LCD_SEG14	SPI1_NSS	ADC1_IN14	COMP1_INP	DAC_OUT2
	35	LCD_SEG7	LCD_SEG15	SPI1_SCK	ADC1_IN13	COMP1_INP	DAC_OUT2
	36	LCD_SEG8	LCD_SEG16	SPI1_MOSI	ADC1_IN12	COMP1_INP	DAC_OUT2
	37	LCD_SEG9	LCD_SEG17	SPI1_MISO	ADC1_IN11	COMP1_INP	
RIGHT	38	VDDD2	VDD4				
	39	SPI_MISO	SPI1_MISO		ADC1_IN24		DAC_OUT1
	40	SPI_MOSI	SPI1_MOSI		ADC1_IN25		DAC_OUT2
	41	SPI_SCK	SPI1_SCK		ADC1_IN26		
	42	SPI_NSS	SPI1_NSS		ADC1_IN27		

	43	LCD SEG10	LCD_SEG40	LCD_COM4			
	44	LCD_SEG11	LCD_SEG41	LCD_COM5			
	45	LCD_SEG12	LCD_SEG42	LCD_COM6			
	46	LCD_SEG13	LCD_SEG43	LCD_COM7			
	47	LCD_SEG14	LCD_SEG18		ADC1_IN10	COMP1_INP	
	48	LCD_SEG15	LCD_SEG19		ADC1_IN9	COMP1_INP	
	49	LCD_SEG16	LCD_SEG20	SPI2_SCK	ADC1_IN8	COMP1_INP	VREF_INT
	50	GPIO1	GPIO1	SPI2_NSS	ADC1_IN7	COMP1_INP	VREF_INT
	51	GPIO0	GPIO0	SPI2_MOSI			
	52	LCD_SEG17	LCD_SEG35	SPI2_MISO	LCD_SEG35		
	53	I2C_SDA	I2C1_SDA				
	54	I2C_SCL	I2C1_SCL				
	55	VDDD3	VDD2				
	56	ADC_IN0	ADC1_IN6	UART1_RX	LCD_SEG22	COMP1_INP	
	57	ADC_IN1	ADC1_IN5	UART1_TX	LCD_SEG23	COMP1_INP	COMP2_INM
	58	GPIO2	GPIO2	LCD_COM4	ADC1_IN4	COMP1_INP	COMP2_INM
	59	OSC32K_IN	OSC32_IN	SPI1_NSS	UART1_TX		
TOP	60	OSC32K_OUT	OSC32_OUT	SPI1_SCK	UART1_RX		
	61	ADC_IN2	ADC1_IN3	LCD_COM5	LCD_SEG25	COMP1_INP	COMP2_INM
	62	GPIO3	GPIO3	LCD_COM6	LCD_SEG26	UART3_TX	
	63	GPIO4	GPIO4	LCD_COM7	LCD_SEG27	UART3_RX	
	64	NSS	NSS				
	65	SCAN	SCAN				
	66	RFI_P	A				
	67	RFI_N					
	68	RFO					

2.3 ASR6505 客户模组参考设计

注意事项:

- 1)请注意 ASR6505 客户模组参考电路默认的匹配网络为 470MHz,如需其他频率的匹配网络请参考文档: 31_ASR6501_2 Matching。
- 2) LoRa 射频芯片(SX1262)和MCU 芯片(STM8L152)两者通过SPI 接口进行通讯,且已经在芯片内部连接。 ASR6505 预留一组SPI 供客户使用。
- 4)特别注意 DC-DC 的上拉电感 L6(15uH)必须用功率电感,功率电感的具体要求参考本文档第4章物料选型指南。VR_PA 处的电感 L1(56nH)强烈建议选用 0402 封装,额定电流更大,对提升 TX 的发射功率有帮助。

2.4 ASR6505 电路解析

2.4.1 电源电路

ASR6505有电源分成三个部分: VDDD, VDDA, 和VDD_RF。 VDDD给MCU的数字部分供电, VDDA给MCU的模拟部分(ADC)供电, VDD_RF给射频部分供电。

SX1262内部Regulator(REG PA)通过外部的上拉电感L1给PA的输出级RFO提供偏置。内部Regulator(REG PA)由芯片内部集成DC-DC或LDO供电, DC-DC和LDO由VDD_IN供电,VDD_IN要么来自电池或者外部电源,VDD_IN正常工作范围为1.8-3.7V,推荐电压为3.3V。

图2-6-1 PA Supply Scheme in DC-DC Mode

图2-6-2 SX1262 Diagram with the DC-DC Regulator Power Option

2.4.2 晶振电路

ASR6505 Demo Module 用到 2 种晶振: 1)32MHz TCXO/XO for LoRa,晶振负载电容为 10pf;如果用 class B 或者窄带调制(BW 低于 62.5K)强烈推荐 TCXO;如果采用 XO,SX1262 内部集成负载电容矩阵,不需要外加负载电容;2)32.768kHz XO for MCU,晶振的负载电容为 6pf,为了便于起振,外接的负载电容可以 CL可以小于 12pf,建议用 10pf。

Crystal Oscillator Circuit 1)32MHz TCXO/XO for LoRa can use TCXO or XO. a)BW Lower than 62.5K, recommand TCXO b) ClassB application recommand TCXO 2)32.768kHz XO for MCU. 32.768KHz XO Load cap is 6pf U3 U4 OSC32K_OUT C5 0R VCC VOUT XTA XTB NC(10pF) XO 32.768K C9 C8 GND GND Load Cap: 6pf 10pF TCXO/XO_32M 10pF Load Cap: 10pf 12 If XO is adopted: 1) C13, C6, R3, NC. 2) C5 solder OR RES. TCXO is adopted: Τf 1) R4,C13 NC 2) C5 solder 100pf ,C6 solder 0.1uf 3) R3,R1,C12 solder 0R RES 3) R1, R4 solder OR RES

2.4.3 射频电路

RF Input and Output Circuit:

 RF matching network parameter default is 470MHz, other frequency matching network parameter is different.

- 1) ASR6505 客户模组参考设计原理图默认的匹配网络为 470MHz, 如需其他频率的匹配网络请参考文档: 31_ASR6501_2 Matching。
- 2) XMSSJR6G0BA 采用单端控制模式, pin6 为 TRSW 的 CTRL 信号接到 SX1262 的 DIO2, DIO2 的控制逻辑 为: A) DIO2 为高,RF2->TX; DIO2 为低,RF1->RX; 注意不同的 RFSW 控制逻辑和管脚不一样,画电路时一定要参考对应 RFSW 的 Datasheet。
- 3)GPIO 接 TRSW 的 VDD pin,Lora 芯片正常工作时,GPIO 为高。Lora 芯片为 Sleep mode 时,GPIO 拉低关 掉 TRSW,防止 TRSW 漏电(XMSSJR6G0BA 大概有 5uA 的漏电),如果对功耗不敏感,GPIO 可以用作其 他用途,VDD RF 连到 RFSW 的 VDD 即可。
- 4) RFSW XMSSJR6G0BA 物料不容易找到,可以用替换料取代,具体参考本文档第4章物料选型指南。

2.4.4 模组接口

1) 上述的信号建议引到模组的邮票孔 pad 处,RF ANT 建议预留 IPEX 天线接口,方便模组的射频测试。

2) 原理图上 COM 和 SEG 的序号为 ASR 自定义序号,LCD 编程以 STM8L152 的实际序号为准,两者不是一一对应,请参考本文档中 **ASR6505 管脚复用定义表**

2.5 ASR6505 芯片封装定义

图 2-6-1 管脚类型定义

3 物料选型指南

3.1 晶振

Ref	Description	Requirement	Demo Module	参考电路	Vendor
			默认晶体	推荐晶体	
U6	32MKHz XO	Load Cap 10pf, no need to mount,	DSB211SDN(TCXO)	鸿星 XO: E1FB32E007900E	
		SX126X include, ±10ppm is preferred	DSX211G(XO)	晶技 XO: 8Y32000002	替换料及价格参考:
				泰晶 XO: SX-3225	OSC_List.xlsx
U9	32.768KHz XO	Load Cap 12pf, \pm 20ppm, -40-85	DST1610A(XO)		

3.2 射频开关

Ref	Description	Requirement	Demo 模组	参考电路	Vendor
			采用物料	推荐晶体	
		Frequency Range:0.1-3 GHz,			
		Insertion Loss:0.35 dB typ.@ 1000		MXD8625C/PE4259	替换料及价格参考:
U10	RFSW	MHz ; 0.5 dB typ.@ 2000 MHz	XMSSJR6G0BA-093	/CKRF2214MM66	RFSW_List.xlsx
		Isolation: 30 dB @ 1000 MHz	CAL		
		Switch time: 1.5us			

3.3 功率电感

若采用DC-DC给Regulator(REG PA)供电,则功率电感L6必不可少,功率电感要求为: 1)15uH inductor; 2)DCR (max) = 2 ohms 3)ldc (min) = 100 mA 4)Freq (min) = 20 MHz

Reference	Manufacturer	Value (μH)	Idc max (mA)	Freq (MHz)	DCR (ohm)	Package (L x W x H In mm)
LPS3010-153	Coilcraft	15	370	43	0.95	2.95 x 2.95 x 0.9
MLZ2012N150L	TDK	15	90	40	0.47	2 x 1.25 x 1.25
MLZ2012M150W	TDK	15	120	40	0.95	2 x 1.25 x 1.25
VLS2010ET-150M	TDK	15	440	40	1.476	2 x 2 x 1
VLS2012ET-150M	TDK	15	440	40	1.062	2 x 2 x 1.2

3.4 外置天线

NΑ

4 Layout 指导

4.1 电源走线

- 1) 电源最好加 2.2uF 和 0.1uF 电容滤波滤除低频和高频电源噪声。
- 2) 电源线走线尽可能的宽,不应低于 18mil,为了减少线间串扰,间距符合 3W 规则。
- 3) 电源线不要跨其他电源线和高频走线,避免对电源造成干扰。
- 4) VDD_IN 的最大电流为 108mA,需要给 VDD_IN 的走线可以承受 300mA 的电流。

4.2 RF 走线

- 在 PCB 中射频走线如图5-2-1所示,必须要注意下列事项:
- 1) 射频线的匹配网络器件尽量靠近芯片放置。
- 2) 射频线走在 top 层,不可穿层走线,传输线要求做50 欧姆特征阻抗处理。
- 3) 射频线不可以有 90 度直角和锐角走线,尽量使用 135° 角走线或圆弧走线。
- 4) 射频线两旁的屏蔽地要尽量完整,第2层的GND要完整,天线和射频线周围尽量多的地过孔。
- 5) 射频线附近不能有高频信号线。射频上的天线必须远离所有传输高频信号的器件,比如晶体,UART、PWM、SDIO等。
- 6) RF传输线特征阻抗为50欧姆,推荐18mi1线宽,14mi1间距,具体根据PCB板层数和叠构调整(但宽度不应小于12mi1),和焊盘连接处最好采用渐增线以降低阻抗突变。

图 5-2-1 gradually increased lines

4.3 晶体走线

- 1) 晶体的时钟要在 top 层走线,不可以穿层和交叉,并且周围要用GND 屏蔽。
- 2) 晶体的下面不可以走高速信号线,第 2 层要求完整的GND。
- 3) 晶体的负载电容尽量放置到时钟线末端。
- 4) 晶体的周围不要放置磁性元件,如电感,磁珠等。
- 5) 晶体表层的铜皮挖空, 防止周边器件的热量传导到晶体产生温漂。