Machine Learning

Greedy Local Search

ML in a Nutshell

- Every machine learning algorithm has three components:
 - Representation
 - E.g., Decision trees, instances
 - Evaluation
 - E.g., accuracy on test set
 - Optimization
 - How do you **find** the best hypothesis?

Hill-climbing (greedy local search)

find
$$x_{\max} = \underset{x \in X}{\operatorname{arg} \max} (f(x))$$

Greedy local search needs

- A "successor" function
 Says what states I can reach from the current one.
 Often implicitly a distance measure.
- An objective (error) function
 Tells me how good a state is
- Enough memory to hold
 The best state found so far
 The current state
 - The state it's considering moving to

Hill-climbing search

 "Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then return \text{State}[current] current \leftarrow neighbor
```

Hill-climbing (greedy local search)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing (greedy local search)

It is easy to get stuck in local maxima

Example: *n*-queens

 Put n queens on an n x n board with no two queens on the same row, column, or diagonal

Greedy local search needs

- A "successor" (distance?) function
 Any board position that is reachable by moving one queen in her column.
- An optimality (error?) measure
 How many queen pairs can attack each other?

Hill-climbing search: 8-queens problem

 h = number of pairs of queens that are attacking each other, either directly or indirectly

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-Annealing (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T. a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

 One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

Let's look at a demo

Results on 8-queens

	Random	Sim Anneal	Greedy
	600+	173	4
	15	119	4
	154	114	5
Average	256+	135	4

Note: on other problems, your mileage may vary

Continuous Optimization

- Many AI problems require optimizing a function f(x), which takes continuous values for input vector x
- Huge research area
- Examples:
 - Machine Learning
 - Signal/Image Processing
 - Computational biology
 - Finance
 - Weather forecasting
 - Etc., etc.

Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k
 best successors from the complete list and
 repeat.

Gradient Ascent

 Idea: move in direction of steepest ascent (gradient)

•
$$\mathbf{x}_k = \mathbf{x}_{k-1} + \eta \nabla f(\mathbf{x}_{k-1})$$

X	f(x)	gradient	xnew
5.000	9.000	6.000	4.000
4.000	4.000	4.000	3.333
3.333	1.778	2.667	2.889
2.889	0.790	1.778	2.593
2.593	0.351	1.185	2.395
2.395	0.156	0.790	2.263
2.263	0.069	0.527	2.176
2.176	0.031	0.351	2.117
2.117	0.014	0.234	2.078
2.078	0.006	0.156	2.052
2.052	0.003	0.104	2.035
2.035	0.001	0.069	2.023
2.023	0.001	0.046	2.015
2.015	0.000	0.031	2.010

Types of Optimization

Linear vs. non-linear

Analytic vs. Empirical Gradient

Convex vs. non-convex

Constrained vs. unconstrained

Continuous Optimization in Practice

Lots of previous work on this

Use packages

Rules of Thumb: Gradient Descent

- Stochastic vs. Batch
 - Try stochastic first

- Analytic Gradients are hard to debug
 - Use packages with gradients built in (e.g. Tensorflow)
 - Do gradient checking

Final example: weights in NN

$$d(x, y) = (x_1 - y_1)^2 + (x_2 - y_2)^2$$

$$d(x, y) = (x_1 - y_1)^2 + (x_2 - y_2)^2 \quad d(x, y) = (x_1 - y_1)^2 + (3x_2 - 3y_2)^2$$

Reading

- Gradient Descent
 - See e.g. the python example midway down the page

- Previous:
 - Nearest neighbor (<u>Elements of Statistical</u>
 <u>Learning</u> 2.3, 13.3)