Teoria de Grafos

Árvores de Cobertura

Prof. Ademar Schmitz, M.Sc. http://paginas.unisul.br/ademar

24/5/2009

Problema 01

- Temos um mapa modelado por um grafo: os vértices correspondem a cidades e os arcos representam estradas de terra batida entre as cidades adjacentes, com os rótulos indicando a respectiva distância. O governo do estado planeja asfaltar alguma estradas, tornando possível sair de qualquer cidade para outra em estrada asfaltada.
- Que estradas deveriam ser asfaltadas?
- Seria possível decidir como minimizar o total de asfalto a ser gasto?

Teoria de Gratos 24/5/2009 Prof. Ademar Schmitz, M.Sc.

Problema 02

- Em um sistema de abastecimento de água existem vários tanques para armazenamento e tratamento da água.
- Como definir a forma de interligar esses tanques sabendo que, em princípio, qualquer par de tanques pode ser interligado?
- A solução ideal é aquela em que todos os tanques serão abastecidos e que o custo das obras seja mínimo.

24/5/2009

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

Árvore de Cobertura

- Os dois problemas acima são conhecidos como o problema de conexão mínima.
- Este problema, na teoria de grafos é conhecimento como o problema de encontrar a *árvore de cobertura mínima* do grafo.
- Árvores de cobertura são também conhecidas como árvores geradoras ou árvores expandidas.

Teoria de Grafos 24/5/2009 Prof. Ademar Schmitz, M.Sc.

Árvore de Cobertura

- Algumas definições de árvore:
 - Grafo conexo sem ciclos;
 - Grafo no qual cada par de vértices é ligado por um e somente um caminho simples;
 - Grafo conexo, porém, se qualquer de suas arestas for retirada, a conexidade fica interrompida;
 - Outras....

24/5/2000

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

Árvore de Cobertura

- Uma árvore de cobertura ou árvore geradora de uma grafo conectado G é um subgrafo que forma uma árvore e que inclui cada um dos vértices de G.
- Uma árvore de cobertura mínima para um grafo valorado é uma árvore de cobertura em que a soma dos pesos das arestas é mínima.

24/5/2009

Teoria de Grafos Prof. Ademar Schmitz, M.Sc

1

Árvore de Cobertura

- O conceito de árvore de cobertura só existe para grafos conectados.
- Se o grafo tem n vértices, a árvore de cobertura tem n-1 vértices.

 Teoria de Grafos

 24/5/2009
 Prof. Ademar Schmitz, M.Sc.
 8

Árvore de Cobertura

- Para determinar uma árvore de cobertura:
 - Se o grafo G não tem ciclos, G é uma árvore de cobertura.
 - Se G tem ciclo, é necessário remover recursivamente arcos até achar uma árvore, mantendo o grafo conectado.

| Teoria de Grafos | 24/5/2009 | Prof. Ademar Schmitz, M.Sc. | 9

Árvore de Cobertura Algoritmo

Entrada: Grafo G(V,E), conexo **Saída:** Árvore de cobertura $T(V_1,E_1)$

- P1. Escolha um ciclo de G e remova uma aresta qualquer.
- P2. Repita o passo P1 até não existir mais ciclo em G.
- P3. O grafo resultante será uma árvore de cobertura.

Teoria de Grafos 2009 Prof. Ademar Schmitz, M.Sc. 10

Árvore de Cobertura Exemplo de Aplicação do Algoritmo

 Encontre pelo menos duas árvores de cobertura para o grafo ao lado.

Teoria de Grafos
24/5/2009 Prof. Adamor Schmitz, M.Sc.

Geração das Árvores Expandidas do Grafo

- Existem situações em que é necessário conhecer a lista de todas as árvores expandidas de um grafo.
- O número de árvores expandidas de uma grafo completo não dirigido, foi primeiro calculado por Cayley, em 1889, como sendo igual a nⁿ⁻².
- Existem vários métodos para a geração de todas as árvores de cobertura.

 Teoria de Grafos
 12

 24/5/2009
 Prof. Ademar Schmitz, M.Sc.
 12

Árvore de Cobertura para Dígrafos

- Árvore dirigida, também chamada de arborescência, é um dígrafo acíclico, onde o grau de entrada de cada vértice é 1, exceto o da raiz, que possui grau de entrada zero.
- Um vértice é dito terminal ou folha, se o grau de saída for zero.

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

24/5/2009

Árvore de Cobertura para Dígrafos

- Um conjunto de vértices de uma árvore está no mesmo nível i, se e somente se a distância da raiz até esses vértices for a mesma.
- Importante: Nem todo dígrafo possui uma árvore de cobertura.

Teoria de Grafos 24/5/2009 Prof. Ademar Schmitz, M.Sc. 14

Árvore de Cobertura para Dígrafos Exemplo

 Encontre uma árvore de cobertura para o dígrafo abaixo.

Teoria de Grafos 24/5/2009 Prot. Ademar Schmitz, M.Sc. 15

Árvore de Cobertura de Custo Mínimo

- Seja G(V,E) um grafo conexo com uma função de custo mapeando as arestas aos números reais.
- O custo de uma árvore de cobertura é a soma dos custos de suas arestas.
- A meta é achar uma árvore expandida de custo mínimo para G.

| Teoria de Gratos | 24/5/2009 | Prof. Ademar Schmitz, M.Sc. | 16

Algoritmo de Kruskal

- Este algoritmo usa três conjuntos E, T e VS.
 - E é o conjunto das arestas de G.
 - O conjunto T é usado para guardar as arestas da árvore expandida.
 - O conjunto VS contém os conjuntos das árvores.

| Teoria de Grafos | 24/5/2009 | Prof. Ademar Schmitz, M.Sc. | 17

Algoritmo de Kruskal

Entrada: Grafo G(V,E) com uma função de custo C associada as arestas.

Saída: Árvore de Cobertura S(V,T) de custo mínimo de G.

Teoria de Grafos
24/5/2000 Prof. Arlamar Schmitz, M.Sc. 18

Algoritmo de Kruskal construa Q, uma fila de prioridade contendo todas as arestas de E. para cada vértice v € V faça adicione {v} em VS enquanto |VS| > 1 faça escolha (v,w), aresta em Q de menor custo apague (v,w) de Q apague (v,w) de $\mathbb Q$ se v e w estão em conjuntos diferentes $\mathbb W_1$ e $\mathbb W_2$ pertencente a VS, então substitua $\mathbb W_1$ e $\mathbb W_2$ em VS por $\mathbb W_1$ U $\mathbb W_2$ adicione (v,w) a T Teoria de Grafos Prof. Ademar Schmitz, M.Sc. 24/5/2009

Algoritmo de Dijkstra

- Fornece uma árvore expandida de custo mínimo, trabalhando por inclusão de vértices, onde cada vértice leva apenas uma aresta à árvore.
- Logo, não há preocupação com a formação de ciclos.

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

Algoritmo de Dijkstra

Entrada: Grafo G(V,E), representando pela lista de arestas e seus custos.

Saída: Árvore de Cobertura T(V1,E1) de custo mínimo.

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

Algoritmo de Dijkstra

P1. T ← 0

P2. Construa uma fila de prioridade Q contendo todas as arestas de E.

P3. Escolha (v, w), uma aresta de menor custo.

P4. Enquanto |V| > 0

retire (v, w) de Q

adicione (v, w) a T

apague v, w de V

escolha (v, w), a aresta em Q de menor custo, tal que v \in V e w \in V1.

Exercícios

- Para os grafos dado, encontre:
 - 1. Pelo menos duas árvores de cobertura.
 - 2. A árvore de cobertura mínima definida pelo algoritmo de Kruskal.
 - 3. A árvore de cobertura mínima definida pelo algoritmo de Dijkstra.

24/5/2009

Teoria de Grafos Prof. Ademar Schmitz, M.Sc.

0.5