Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Porovnanie návrhových vzorov Flux v jazyku Dart a Redux v ECMAScript® 2016 a ich vplyv na vývoj single-page aplikácie

Bakalárska práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Porovnanie návrhových vzorov Flux v jazyku Dart a Redux v ECMAScript® 2016 a ich vplyv na vývoj single-page aplikácie

Bakalárska práca

Študijný program: Informatika

Študijný odbor: 2508 Informatika Školiace pracovisko: Katedra informatiky Školiteľ: Mgr. Jakub Uhrík

Bratislava, 2017 Alena Poláchová

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Alena Poláchová

Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor:informatikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Porovnanie návrhových vzorov Flux v jazyku Dart a Redux v ECMAScript®

2016 a ich vplyv na vývoj single-page aplikácie

Comparison of design patterns Flux in programming language Dart and Redux in ECMAScript® 2016 and their impact on the development of a single-page

application

Cieľ: Porovnanie použitia návrhového vzoru Flux v programovacom jazyku

Dart s použitím návrhového vzoru Redux v programovacom jazyku ECMAScript® 2016 pri vývoji single-page aplikácií. Zameranie pozornosti komparácie na jednoduchosť a udržateľnosť zdrojového kódu. Ilustrovanie vyššie spomenutých vzorov použitých v daných programovacích jazykoch na konkrétnom príklade migrácie aplikácie z návrhového vzoru Flux v programovacom jazyku Dart do návrhového vzoru Redux v programovacom

jazyku ECMAScript® 2016.

Vedúci: Mgr. Jakub Uhrík

Katedra: FMFI.KI - Katedra informatiky **Vedúci katedry:** prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 24.10.2016

Dátum schválenia: 24.10.2016 doc. RNDr. Daniel Olejár, PhD.

garant študijného programu

študent	vedúci práce

Poďakovanie: Tu môžete poďakovať školiteľovi, prípadne ďalším osobám, ktoré vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stručne sumarizuje výsledky práce. Mal by byť pochopiteľný pre bežného informatika. Nemal by teda využívať skratky, termíny alebo označenie zavedené v práci, okrem tých, ktoré sú všeobecne známe.

Kľúčové slová: jedno, druhé, tretie (prípadne štvrté, piate)

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

Obsah

U	Uvod			
1	Pro	$\operatorname{stredie}$	2	
	1.1	Single-Page Application (SPA)	2	
2	Pro	gramovacie jazyky Dart a ECMAScript® 2016	ç	
	2.1	Dart	9	
		2.1.1 Triedy	3	
		2.1.2 Typy	4	
		2.1.3 Premenné	Ę	
		2.1.4 Funkcie	Ę	
		2.1.5 Upozornenia a chyby		
		2.1.6 Súkromie	6	
		2.1.7 Knižnice	6	
		2.1.8 Súbežnosť		
	2.2	ECMAScript® 2016 a jeho porovnanie s jazykom Dart	8	
		2.2.1 Triedy		
		2.2.2 Typy	Ć	
		2.2.3 Premenné	11	
		2.2.4 Upozornenia a chyby	12	
		2.2.5 Súkromie	12	
		2.2.6 Knižnice	12	
		2.2.7 Súbežnosť	12	
		2.2.8 TODO	13	
	2.3	Spoločné znaky jazykov Dart a ECMAScript® 2016	13	
		2.3.1 Tabuľka porovnania	14	
	2.4	Rozdiely a ich prepojenie	14	
3	Náv	vrhové vzory Flux a Redux	15	
	3.1	Flux	15	
		3 1 1 Tok dát	1.5	

OBSAH	vii

Záver		22
3.7	Riešenie	21
3.6	Návrhy migrácie Flux do Redux	21
3.5	Postrehy	21
	3.4.1 Simulovanie behu programu	21
3.4	Porovnanie vzorov Flux a Redux	20
3.3	Knižnice open source	19
	3.2.7 Middlewares	19
	3.2.6 Immutable štruktúry	19
	3.2.5 Reducer	18
	3.2.4 Akcie	18
	3.2.3 Komponenty	18
	3.2.2 Store	17
	3.2.1 Tok dát	17
3.2	Redux	17
	3.1.5 Views	17
	3.1.4 Akcie	16
	3.1.3 Store	16
	3.1.2 Dispečer (dispatcher)	16

$\mathbf{\acute{U}vod}$

Tu bude úvod do problematiky o mojej bakalárskej práci, načrtnutie problému a stručné popísanie obsahu jednotlivých kapitol.

Kapitola 1

Prostredie

V tejto kapitole si predstavíme vstupný popis kódu, ktorý sa budeme snažiť podľa zadaných podmienok zmeniť.

Pôvodná aplikácia je napísaná v jazyku Dart, ktorý bližšie popíšeme v podkapitole 2.1. Je to internetová aplikácia bežiaca v prehliadači založená na princípoch SPA-aplikácie.

1.1 Single-Page Application (SPA)

SPA, teda aplikácia fungujúca na jedno načítanie je model internetovej aplikácie. Ponúka rýchlosť desktopovej aplikácie a zároveň dostupnosť internetovej stránky.

Celá stránka je načítaná len raz, a to na začiatku. Logika aplikácie je potom kontrolovaná skriptom v prehliadači na strane klienta. Komunikácia so serverom prebieha len v malom množstve prípadov, ako je napríklad validácia údajov, autentifikácia alebo dostupnosť zdieľaných dát. Taktiež v čase, keď klient komunikuje so serverom, je možné zobraziť používateľovi vhodnú hlášku o spracovaní dát (na rozdiel od aplikácií, kde je stránka generovaná na serveri a zobrazí sa klientovi až po úplnom načítaní).

V takýchto aplikáciách sa často využíva práve jazyk JavaScript. Veľkou výhodou je multiplatformová dostupnosť vďaka internetovým prehliadačom a bez nutnosti inštalácie ďalších podporných programov. Podrobnejší popis sa dá nájsť v manuáli o SPA [7].

Kapitola 2

Programovacie jazyky Dart a ECMAScript® 2016

V tejto kapitole si povieme niečo o programovacích jazykoch Dart a ECMAScript® 2016, s ktorými budeme počas celej práce robiť.

2.1 Dart

V tejto sekcii si predstavíme hlavné črty programovacieho jazyka Dart. Dart je objektovo orientovaný programovací jazyk. Je založený na definovaní tried, kde trieda môže dediť od najviac jednej inej triedy. Jazyk Dart je voliteľne typovaný. (Túto vlastnosť si bližšie popíšeme v podkapitole 2.1.2). Informácie do tejto kapitoly boli čerpané najmä zo špecifikácie jazyka[1].

2.1.1 Triedy

Trieda (*class*) definuje formu a správanie určitej množine objektov. Tieto objekty nazývame inštancie (*instance*) danej triedy. Trieda môže byť definovaná deklaráciou samotnej triedy, alebo pomocou mixinov.

Trieda má konštruktory a členy (členy danej inštancie a statické členy). Členy sú metódy, premenné, gettery a settery.

Nadtrieda Každá trieda má práve jednu nadtriedu (*superclass*) okrem triedy *Object*, ktorá nemá. Táto nadtrieda sa uvádza za kľúčovým slovom *extends*, alebo je určená implicitne ako *Object*. Daná trieda dedí od nadtriedy všetky dostupné členy danej inštancie, ktoré neboli preťažené (*override*).

Rozhranie Trieda môže implementovať (*implements*) niekoľko rozhraní (*interface*). Rozhranie definuje, ako by sa malo pracovať s objektom. Má metódy, gettery, settery

a množinu "nadrozhraní", ktoré rozširuje.

Mixin Mixin opisuje rozdiel medzi triedou a jej nadtriedou. Mixin je vždy odvodený od deklarácie existujúcej triedy. Mixin môžeme použiť pri definovaní novej triedy pomocou kľúčového slova $with \ M$ (kde M je mixin). Mixin je užitočný v prípadoch, kedy viacerým zdanlivo nezávislým triedam chceme pridať rovnakú funkcionalitu.

Abstraktná trieda Trieda môže byť abstraktná, vtedy ju definujeme kľúčovým slovom *abstract*. Takáto trieda nemusí mať implementované všetky metódy. Mixiny sú abstraktné triedy.

Konštruktor Konštruktor triedy je špeciálna funkcia, ktorá vytvára inštanciu triedy. Volá sa rovnako ako trieda, ktorej prislúcha. Ak nie je špecifikovaná, volá sa v implicitnom konštruktore konštruktor nadtriedy.

2.1.2 Typy

Programovací jazyk Dart podporuje voliteľné typovanie založené na typoch rozhrania.

Statické typy Statické typy sú použité pri deklarovaní premenných, pri definícii návratových hodnôt funkcií a v ohraničení typu premenných. Tieto statické typy sú použité iba pri statickej kontrole a v kontrolovanom móde. Na produkčný mód nesmú mať žiaden vplyv. Medzi základné typy patria:

- konštanty (constants): čísla (number), booleovské premenné (bool), reťazce znakov (string), nulový objekt (null)
- kolekcie viacerých prvkov: zoznamy (objekt *List*), mapy (objekt *Map*)

Pri produkčnom móde sa všetky typy nahradia jednotným typom *dynamic*. Ten označuje neznámy typ.

Dynamic Typ *dynamic* má definovanú každú možnú operáciu s všetkými možnými počtami parametrov. Návratová hodnota týchto operácií je vždy *dynamic*. Chceme tak zabezpečiť, aby nám typ *dynamic* nikdy nevrátil chybovú hlášku o nesprávnom type. *Dynamic* je považovaný za typový objekt, aj keď to nie je trieda.

Void Typ *void* možno použiť len ako návratovú hodnotu funkcie. *Void* nie je považovaný za typový objekt. Môže oznamovať upozornenia v kontrolovanom móde, ak funkcia vracia inú hodnotu ako *null*.

Null Rezervované slovo *null* označuje null-ový objekt. Je to jediná inštancia triedy *Null*. Rozširovanie, implementovanie alebo použitie tejto triedy ako mixin spôsobí chybu pri kompilácii (*compile-time error*). Volanie akejkoľvek metódy na objekte *null* spôsobí chybu.

This Slovo *this* označuje aktuálne používanú inštanciu triedy, s ktorou pracujeme. Statický typ *this* je potom rozhranie tejto triedy.

2.1.3 Premenné

Premenné sú úložiská v pamäti. Neinicializovaná premenná má hodnotu null.

Static variable je taká premenná, ktorá nie je asociovaná s konkrétnou inštanciou, ale s celou knižnicou alebo triedou.

Final variable je taká premenná, ktorá je zviazaná s konkrétnym objektom od jej deklarácie. Spôsobuje static warning ak je inicializovaná aj v konštruktore. Spôsobuje compile-time errror ak nie je inicializovaná pri deklarácii. Constant variable je implicitne final.

Ak deklarácia nešpecifikuje typ premennej, tak je dynamic, čo predstavuje neznámy typ.

Gettery a settery Ku premenným pristupujeme pomocou prirodzených getterov a setterov. Getter je funkcia bez argumentov, ktorá v čase zavolania vyhodnotí výraz, ktorý definuje danú premennú a vráti výsledok. Setter je funkcia s jedným argumentom, ktorá danej premennej priradí hodnotu jej argumentu. Final premenné nemajú settery.

2.1.4 Funkcie

Funkcie predstavujú vykonateľné akcie. Funkcie pozostávajú z deklarácií, metód, getterov, setterov, konštruktorov. Každá funkcia má 2 časti: popis(signature) a telo(body). Popis funkcie obsahuje formálne parametre a môže obsahovať typ návratovej hodnoty. Telo funkcie môže mať 2 tvary:

- blok príkazov v zložených zátvorkách ({, }). Ak tento blok príkazov neobsahuje príkaz return, automaticky sa na koniec pridáva s návratovou hodnotou null.
- => e, čo je ekvivalentné {return e;}

Oba bloky príkazov môžu byť vykonané synchrónne (modifikátor $sync^*$) alebo asynchrónne ($async, async^*$).

Každá funkcia má zoznam parametrov, ktorý obsahuje zoznam povinných pozičných parametrov, potom zoznam voliteľných parametrov. Voliteľné parametre môžu byť pomenované alebo pozičné ale nie obe súčasne.

Ak sa neuvedie typ návratovej funkcie explicitne, jej typ je *dynamic*, alebo daná trieda, ak ide o konštruktor.

Externá funkcia (external) je funkcia, ktorá má deklaráciu a telo funkcie na rôznych miestach v kóde. Môžu to byť napríklad funkcie implementované externe v inom programovacom jazyku alebo také, ktoré sú dynamicky generované ale ich popis je statický a známy.

2.1.5 Upozornenia a chyby

Dart rozlišuje niekoľko druhov chýb. Napríklad:

- Kompilačné chyby (compile-time errors) teda chyby v čase kompilácie, ktoré bránia ďalšiemu behu programu. Tieto musia byť nahlásené kompilátorom pred spustením samotného chybného kódu.
- Statické upozornenia (*static warnings*) sú chyby zistené statickou kontrolou (teda nie za behu programu). Nemajú žiaden efekt v čase behu programu. Statická kontrola sa týka najmä konzistentnosti typov, ale neznemožňuje kompiláciu ani beh samotného programu. Statickú kontrolu by mali zabezpečovať vývojové prostredia a kompilátory.

Módy behu programu Programy môžu byť spustené v dvoch módoch:

- \bullet Checked mode ($kontrolovaný\ mód$) v tomto móde fungujú $static\ warnings$ aj $compile\text{-}time\ errors.$ Je vhodný na písanie kódu a ladenie programu.
- Production mode (produkčný mód) ako samotný názov napovedá, tento mód je určený na beh programu u klienta. V tomto móde sa static warnings nevyskytujú, sú tu len compile-time errors a chyby, ktoré sa vyskytli priamo pri behu aplikácie.

2.1.6 Súkromie

Dart podporuje dve úrovne súkromia, private (súkromný) a public (verejný). Objekt, ktorý je deklarovaný s kľúčovým slovom private je súkromný, inak je každý objekt verejný. Tiež môžeme definovať súkromný objekt tak, že jeho názov začína podčiarkovníkom ("_").

Programy v jazyku Dart sú organizované do knižníc. Objekt je dostupný v knižnici len ak je definovaný v danej knižnici, alebo ak je public.

2.1.7 Knižnice

Program v jayzku Dart pozostáva z jednej alebo viacerých knižníc. Môže byť vytvorený z viacerých kompilačných jednotiek (compilation units). Kompilačná jednotka môže byť

knižnica alebo *part*. Knižnice sú jednotkami súkromia. Kód definovaný vrámci knižnice ako súkromný je dostupný len vrámci danej knižnice.

Knižnica pozostáva z množiny importov, exportov a verejne deklarovaných objektov. Tieto môžu byť triedy, funkcie alebo premenné.

Import Kľúčové slovo import prepája knižnice. Určuje, ktoré knižnice môžu byť použité pri programovaní inej knižnice. Import umožňuje explicitne povedať, ktoré objekty z kategórie public chceme skryť, tie uvedieme za kľúčovým hide. Alebo vybrať podmnožinu objektov, ktoré chceme ponechať (a ostatné sa nám skryjú) pomocou kľúčového slova show. Ak by sa nám mohlo stať, že názvy funkcií alebo premenných sa vo viacerých knižniciach prekrývajú (čo je problém a snažíme sa tomu zabrániť), môžeme premenovať dané objekty pomocou kľúčového slova as. Podobne sa dá pomenovať aj samotná knižnica, kde potom voláme prvky knižnice nasledovne: libraryName.objectName.

Export Kľúčové slovo *export* definuje množinu objektov, ktoré sú prístupné po importovaní danej knižnice L, v ktorej sa *export* nachádza. Môžeme exportovať množinu objektov, alebo celú knižnicu. Tiež môžeme obmedziť export knižnice pomocou *show* a *hide* rovnako, ako pri importovaní.

Parts Ak máme veľkú knižnicu, môžeme ju rozdeliť do viacerých súborov pomocou *part* a *part of.* Všetky definície objektov, aj súkromné, sú medzi týmito časťami vzájomne viditeľné.

Hlavný súbor obsahuje kľúčové *part*, kde pomenuje cestu ku druhému súboru, ktorá reprezentuje časť knižnice. Tá pomenuje, ku ktorému hlavnému súboru prislúcha za kľúčovým *part of.* Importovanie ďalších knižníc potom stačí uviesť v hlavnom súbore.

Scripts Skript sa nazýva knižnica, ktorá obsahuje funkciu main. Takáto funkcia môže byť v jednom projekte práve jedna. Je to funkcia, ktorá sa spúšťa na začiatku programu.

Pub O to, aby boli všetky knižnice, ktoré sú importované, dostupné a aktualizované zabezpečuje špeciálny správca knižníc *pub* (*package manager*). Každá knižnica má zoznam závislostí - aké verzie cudzích knižníc používa. Pub vyžaduje špeciálny súbor (pubspec.yaml) obsahujúci zoznam knižníc s požadovanými verziami ku každej knižnici. Na základe tohoto súboru pracuje príkaz *pub get*, ktorý stiahne potrebné zmeny.

Okrem iného spravuje pub mená publikovaných knižníc, aby sa zabránilo kolíziám.

2.1.8 Súbežnosť

Kód v jazyku Dart je vždy jednovláknový. Ak chceme vykonávať viac súbežných činností, používame špeciálnu entitu *isolates*, ktorá má vlastnú pamäť a vlastnú kontrolu

vlákna. Tieto entity medzi sebou komunikujú pomocou posielania správ, nezdieľajú žiaden stav.

Dart podporuje asynchrónnosť vykonávania programu. Kľúčovým await odovzdáme kontrolu, pokým sa výraz za await vyhodnotí. Ak sa nevie vyhodnotiť v čase vykonávania tejto inštrukcie, namiesto hodnoty sa vytvorí inštancia triedy Future, za ktorú sa neskôr po dopočítaní dosadí daná hodnota výrazu.

2.2 ECMAScript® 2016 a jeho porovnanie s jazykom Dart

Hlavné črty programovacieho jazyka ECMAScript® 2016.

ECMAScript bol pôvodne navrhnutý ako webový skriptovací jazyk, ktorý upravuje internetové stránky v prehliadači a vykonáva výpočty v prehliadači. Dnes je to plne vybavený všeobecne navrhnutý objektovo orientovaný programovací jazyk. Skriptovací jazyk je programovací jazyk zameraný na výpočty a manipuláciu s objektami už existujúceho systému. **TODO**

2.2.1 Triedy

JavaScript má niektoré syntaktické prvky, ktoré sa spájajú s triedami, ako napríklad new, class alebo instanceof. Avšak triedy ako také nemá. Na triedy sa môžeme pozrieť ako na návrhový vzor.

Objekty Všetko v JavaScripte sú vlastne objekty a teda aj trieda je objekt. Funkcie, ktoré sú volané s kľúčovým *new* sa bežne volajú konštruktory, aj keď v JavaScripte nevytvoria štandardnú triedu ako v iných triedovo orientovaných jazykoch. Ak hovoríme o inštancii triedy, myslíme tým kópiu daného objektu. Polymorfizmus na inštanciách triedy je opäť len výsledkom kopírovania vlastností. Preto aj odvodená trieda nemá odkaz na rodičovskú triedu, má od nej len nakopírované potrebné údaje.

Rozšírenia Mixin/extends pridáva špecifickú funkcionalitu z iného objektu. Pridáva ju kopírovaním. Avšak robí toto kopírovanie iba na prvej úrovni, teda ak hodnoty, ktoré sú ukladané pod kľúčmi nie sú primitívne, objekty, sú to objekty zdieľané referenciou. Čiastočne môžeme používať viacnásobné dedenie, ale nevyhneme sa kolíziám pri kopírovaní prvkov s rovnakým menom z viacerých zdrojov.

TODOzdroje

Prototype V JavaScripte existuje možnosť, ako previazať objekty medzi sebou. Každý objekt má vlastnosť prototype(predvolená hodnota je na Object.prototype). Táto vlast-

nosť nám umožňuje používať funkcie, ktoré sme objektu nešpecifikovali explicitne (napríklad funkcia toString).

Pomocou prototype môžeme robiť dedenie, ktoré sa veľmi podobá tomu z tried. Prototype nekopíruje, ale robí odkaz na objekt, "kam sa pozeráme, keď nevieme, aký objekt máme použiť". Na programovanie v JavaScripte sa však môžeme pozrieť aj ako na delegovanie správania medzi objektami, namiesto dedenia medzi triedami.

Nový objekt Volanie funkcie s kľúčovým new vytvorí nový objekt, a vykoná telo funkcie. Funkcia ktorá je volaná ako konštruktor, nie je ničím iná od obyčajnej funkcie a každá môže vytvoriť objekt. Ak tejto funkcii pridáme prototype, budú ho mať všetky z nej odvodené objekty. Funkcia, ktorú nastavíme pre prototype sa nekopíruje medzi ostatné objekty, ale je zdieľaná. Ak chceme, aby program pridal linku na iný objekt (prototype) za nás, môžeme namiesto kľúčového slova new použiť funkciu Object.create(...), ktorá vytvorí objekt za nás.

2.2.2 Typy

Jazyk ECMAScript® 2016 nie je typovaný jazyk. Napriek tomu rozlišuje niekoľko základných typov, na ktorých má definované konkrétne operácie. Typy jazyka ECMAScript sú *Undefined*, *Null*, *Boolean*, *String*, *Symbol*, *Number* a *Object*. Každá hodnota premennej v tomto jazyku je charakterizovaná jedným z uvedených typov. V JavaScripte nemajú typ premenné, ale hodnoty premenných, ktoré sú v nich uložené.

- Primitívne typy sú string, number, boolean, symbol, null, undefined a object
- Objekty sú ostatné typy. Každý primitívny typ má aj svoj objektový ekvivalent, na ktorom môžeme robiť operácie(napríklad zistiť dĺžku stringu). Funkcia je objekt, ktorý obsahuje aj vykonateľné príkazy. Ďalšie objekty sú napríklad Array, Date, RegExp alebo Error.

Objekty Vieme definovať priamo, teda vymenovaním obsahu, alebo cez kľúčové new. Obe metódy vytvoria rovnaký objekt. Všeobecne sa preferuje definovanie vymenovaním prvkov. Obsah objektu môžeme plniť viacerými možnosťami. Vymenovaním (riadok 4), cez bodku (riadok 7 a 9) alebo cez hranaté zátvorky (riadok 8 a 10). Platí, že keď používame bodkovú konvenciu, môžeme mená kľúčov nazývať iba jednoslovnými názvami bez medzier a špeciálnych znakov. Do hranatých zátvoriek môžeme dať ľubovolný string vrátane medzier. Ak chceme použiť ako kľúč hodnotu premennej, musíme použiť hranaté zátvorky. Použitím rovnakého kľúča cez bodku aj v hranatej zátvorke sa dostaneme ku rovnakej hodnote.

```
1
     var objectString = new String("I am String");
2
     var primitiveString = "I am primitive string";
3
4
     var myObject = {
       key1: 'value1';
5
 6
     myObject.key2 = primitiveString;
 7
8
     myObject["with space!"] = 'value2';
     console.log(myObject.key1); // 'value1'
9
10
     console.log(myObject["with space!"]); // 'value2'
```

Listing 2.1: tvorba objektu

Undefined typ má práve jednu hodnotu *undefined*. Každá premenná, ktorá nemá priradenú žiadnu hodnotu, ale je vytvorená, má práve túto hodnotu.

Null typ má práve jednu hodnotu, null. Null predstavuje prázdny objekt. Od unde-fined sa líši tým, že null môže byť priradený ako hodnota do premennej.

This Kľúčové slovo this má v JavaScripte svoje špeciálne miesto. V iných jazykoch je to obvykle objekt, v ktorom sa nachádzame, definoval ho autor pri písaní kódu (authortime binding). V JavaScripte je to objekt, ktorý volal náš objekt a je definovaný počas behu programu (runtime binding). This ukazuje väčšinou na miesto, odkial bola daná funkcia volaná, teda keď sa pozrieme do zásobníka volaní, bude to funkcia, ktorá je hneď pred našou.

- default binding this predstavuje miesto, odkial bola funkcia volaná. V striktnom móde defaultné nastavenie this nefunguje.
- *implicit binding* ak voláme metódu na objekte v danom čase, this ukazuje na daný objekt
- explicit binding vznikne použitím funkcie call() alebo apply() kde ako prvý parameter dáme odkaz na this ktorý chceme využiť. Podskupinou je hard binding kde spravíme wrapper okolo funkcie, ktorá nastaví hodnotu this na danú nemmennú hodnotu určenú argumentom. od verzie ES6 existuje metóda bind() pre funkcie ktorá robí hard binding
- new binding keď funkciu vytvoríme kľúčovým new, vytvorí sa nová inštancia objektu, ktorá má v čase vykonávania this nasmerované na seba

Špeciálne správanie majú arrow functions, kde sa this správa ako štandardné, ktoré poznáme z iných programovacích jazykov. V takejto funkcii this odkazuje na seba.

Podrobnejšie informácie možno nájsť v literatúre ...

2.2.3 Premenné

TODOak je v normálnom, a má danej premennej priradiť hodnotu, vytvorí ju ako globálnu ak je v striktnom móde behu programu, globálnu premennú nevytvorí ale vyhodi ReferenceError TypeError vráti, ak napríklad objekt zavoláme ako funkciu, on nájde daný objekt ale danú operáciu s ním nevie vykonať. ReferenceError vyhodí, ak premennú nenájde a je v striktnom behu programu.

ReferenceError is Scope resolution-failure related, whereas TypeError implies that Scope resolution was successful, but that there was an illegal/impossible action attempted against the result.

Deklarovanie premenných v ECMAScript® 2016 ECMAScript® 2016 podporuje primárne tri typy deklarovania premenných. Sú to *var*, *const* a *let*.

V prípade *const* a *let* ide o premenné, ktoré sa nedajú deklarovať dvakrát s rovnakým menom a platia len vrámci daného bloku kódu. V štandardnej terminológii by sme ich mohli nazvať aj lokálne premenné.

Deklarovanie kľúčovým let nám zabezpečí, že pôsobnosť premennej je iba v aktuálnom najmenšom bloku ohraničenom zátvorkami $\{\}$. Užitočnosť let môžeme vidieť napríklad aj v cykloch $for(let\ i=0,\ldots)\{\}$.

Narozdiel od týchto, premennú *var* môžeme deklarovať aj viackrát a môžeme sa na ňu pýtať aj mimo bloku kde sme ju deklarovali. V ukážke vidíme viacnásobné deklarovanie, volanie premennej mimo bloku, kde bola zavolaná aj volanie premennej predtým, ako bola vytvorená. Tieto premenné by sme mohli nazvať aj globálne premenné.

Ak sa vyskytne v kóde premenná, kompilátor hľadá, kde bola definovaná. Ak ju nenájde, vytvorí novú premennú s daným menom ako globálnu. Ak beží tento skript v prehliadači, môžeme sa na túto premennú pozrieť aj ako na premennú daného okna, a pristupovať ku nej nasledovne window.meno_premennej. (Takto v ukážke funguje premenná k.)

```
1
     var i = 2;
2
     if (i >= 0) {
3
       console.log(i, j); // i = 2, j = undefined
4
       var j = 5;
5
       var i = 3;
       k = 10;
6
     } else {
 7
8
       var j = 4;
9
     }
     console.log( i, j, k ); // i = 3 , j = 5 , k = 10
10
```

Listing 2.2: JavaScript deklarovanie

2.2.4 Upozornenia a chyby

TODOStrict mode - podporovaný rôzne rôznymi prehliadačmi - mení niektoré tiché chyby, tým že spraví throws ...mistakes -> errors- zabraňuje niektorým chybám, aby engine ktorý kompiluje a vykonáva kód, mohol lepšie optimalizovať - zakazuje niektoré syntaktické konštrukcie(napríklad definovať viackrát rovnakú premennú, alebo priradiť hodnotu neexistujúcej premennej) - pridáva nové rezervované slová (implements, interface, let, package, private, protected, public, static, and yield)

- má dosah na funkciu alebo na celý skript - zapína sa príkazom 'use strict'; na začiatku funkcie/skriptu

2.2.5 Súkromie

?? čo k tomu?? TODO

2.2.6 Knižnice

TODOimport, export, npm vs. pub

Dostupnosť

Dostupnosť jazykov Dart a ECMAScript® 2016 je rôzna. Zatiaľ čo jazyk JavaScript vie (takmer) každý prehliadač reprezentovať priamo, jazyk Dart je potrebné v produkcii prekladať do jazyka JavaScript (Pri vývoji aplikácie v Darte je možné použiť špeciálny prehliadač na tento jazyk).

Jazyk JavaScript (ECMAScript® 2016) vie bežať v prehliadači. Správanie prehliadačov sa však môže mierne líšiť.

Pre jazyk ECMAScript® 2016 je dostupné množstvo knižníc. Veľká časť z nich je dostupná cez správcu npm. Vkladanie knižnice do projektu je veľmi jednoduché volanie príkazu npm s vhodnou kombináciou prepínačov. (Volanie funkcie z priečinka projektu s prepínačom –save bolo u nás postačujúce.)

2.2.7 Súbežnosť

JS beží v prehliadači, teda ten rozhoduje o tom, čo je kedy vykonané, často je kód vykonaný sekvenčne(za sebou), nie paralelne.

potrebujeme robiť asynchrónny kód (napríklad dotazy na server). Nemôžeme si dovoliť čakať na odpoveď, ktorá trvá dlho (a ani nevieme, či príde). Potrebujeme reagovať na používateľa.

callback je funkcia, ktorá sa zavolá, keď sa daný kód vykoná. Callback nie je úplne spoľahlivé riešenie.

Promise - potrebujeme nástroj na ktorý sa môžeme spoľahnúť. Promise vykonáva asynchrónny kód, je thenable, teda môžeme na ňom zavolať metódu then, ktorá sa vykoná až vtedy, keď sa naplní promise. Poskytuje nám spôsob, ako spracovať neúspešný pokus o vykonanie kódu. Podobne ako then použijeme catch funkciu, ktorá odchytí chybovú hlášku, ak nejaká nastala. Malo by platiť, že vždy sa vykoná vetva then alebo vetva catch.

Promise sa nevyhýba callbackom - vhodne ich zaobaluje, aby sa s nimi spoľahlivo pracovalo.

(Alternativne new $Promise(function(resolve, reject)\{...\}).$)

Promise vie čakať na viac promisov (*Promise.all([...])*) alebo na prvý z množiny (*Promise.race([...])*). Promises môžeme reťaziť za sebou. To nám umožňuje rozmýšľať aj nad asynchrónnymi operáciami sekvenčne.

Generátory it = function *foo(){} - yield preruší vykonávanie funkcie, môže vrátiť nejakú hodnotu - it.next() pokračuje od posledného prerušenia, môže poskytnúť hodnotu ako argument - využiteľné napríklad keď čakáme na odpoveď zo servera - yield-neme request na server a keď je hotový, naša funkcia bude zavolaná a do nej doplnená odpoveď (naša funkcia sa správa ako generátor)

Web Workers - JavaScript je jednovláknový jazyk. Niektoré prehliadače však poskytujú nástroj (Worker), ako vykonávať úlohy vo viacerých vláknach paralelne (task paralelism). Tento nástroj sa v praxi používa na vykonávanie ťažkých matematických operácií, prácu a triedenie veľkých dát alebo spravovanie veľkého množstva komunikácie.

TODO asynchrónnosť, niečo ako await?

2.2.8 TODO

[6, introduction] [2, ECMAScript® 2016]

2.3 Spoločné znaky jazykov Dart a ECMAScript® 2016

Spoločné črty programovacích jazykov Dart a ECMAScript® 2016. Pravdepodobne odkaz na tabuľku s podrobnejším popisom vybraných spoločných a rozdielných príkazov.

Postrehy pri písaní *Mixiny* som nahradila čistými funkciami, ktoré som dala do samostatného súboru a vytvorila tak malú knižnicu funkcií. Nevýhodou pri používaní

funkcií namiesto mixinov je nemožnosť využiť gettery. Všetky hodnoty, ktoré chceme použiť vrámci jednej funkcie musíme mať ako vstupné parametre funkcie.

2.3.1 Tabuľka porovnania

Vlastnosť	Dart	ECMAScript® 2016
definovanie premenných	var, dynamic, (int, boolean,)	var, let, const
typy premenných	8	9
funkcie	(){} aj =>	(){} aj =>
triedy	má	nemá, simuluje pomocou prototype
objekty	objektovo orientovaný jazyk	objektovo orientovaný jazyk
asynchrónnosť	8	9
7	8	9
7	8	9
7	8	9

2.4 Rozdiely a ich prepojenie

Rozdielne časti daných jazykov a návrh riešenia, ako by sa dali nahradiť. Využitie zaujímavých čŕt jazyka ECMAScript® 2016.

npm vs. pub

Kapitola 3

Návrhové vzory Flux a Redux

V tejto kapitole si povieme niečo o návrhových vzoroch Flux a Redux, ktoré sú určené na spracovávanie udalostí v aplikácii.

3.1 Flux

Hlavné črty návrhového vzoru Flux. [5, Overview]

Flux je vzor pre spravovanie dát v aplikácii. Najdôležitejším konceptom je tok informácií jedným smerom. Obsahuje štyri základné časti.

- Akcie, ktoré vytvára používateľ, prostredie, kde aplikácia beží alebo aj časti aplikácie.
- Dispečer spravuje všetky vytvorené akcie.
- Store reaguje na akcie a spravuje stav aplikácie.
- View ktorý vykresľuje stav aplikácie.

3.1.1 Tok dát

- 1. daný úvodný stav
- 2. vykreslenie komponentov
- 3. vznik akcie, oznámenie akcie dispečeru (funkcia dispatch)
- 4. dispečer upozorní všetky story
- 5. každý store spracuje akciu, prípadne zmení stav
- 6. zmena v stave sa vykreslí do komponentov (2. bod)

Obr. 3.1: Flux architektúra

3.1.2 Dispečer (dispatcher)

Dispečer spravuje všetky akcie vykonané v aplikácii. V celej aplikácii by mal byť len jeden. Dispečer obsahuje spätné volanie (callback) na každý store v aplikácii. Keď sa vykoná nová akcia, dispečer pošle túto akciu všetkým storom. Sám nemusí obsahovať akúkoľ vek vyššiu logiku, slúži len na distribúciu.

3.1.3 Store

Story obsahujú stav a logiku aplikácie. Store reaguje na akciu, na základe ktorej môže zmeniť stav, ktorý spravuje. Storov môže byť viac a každý upravuje nejakú podčasť dát. Každý store poskytuje dispečerovi na seba callback, aby keď sa udeje nejaká akcia, bol o tom upozornený. Na základe typu akcie sa rozhodne, či a ako bude meniť stav aplikácie. (Napríklad ak máme dva story Images a Texts, tak pri vytvorení akcie EditText sa pravdepodobne store Image rozhodne nič nerobiť.) Po zmene stavu vytvorí udalosť, ktorou upozorní view časť, že treba prekresliť údaje.

3.1.4 Akcie

Akcie definujú internú API aplikácie. Zachytávajú možnosti interakcie s aplikáciou. Sú to jednoduché objekty s kľúčom *typ* a voliteľnými pridanými informáciami. Typ akcie by nemal obsahovať žiadne implementačné detaily.

Akcie vytvára view časť (napríklad keď reagujeme na stlačenie tlačidla), server (napríklad chybová hláška počas komunikácie) alebo aj store (keď odstránime používateľa, chceme odstrániť aj všetky jeho príspevky).

Listing 3.1: Akcia vo Flux architektúre

3.1.5 Views

View časť je tá, ktorá vykresľuje stav zo storu. Aby bola táto časť vždy aktuálna, musí daný view komponent počúvať na všetky udalosti od storu, ktoré hovoria o zmene relevantných dát. Ak sa zmení stav, store vytvorí udalosť a view sa prekreslí. Architektúra flux neurčuje, ako má byť tento stav vykreslený.

TODO side effects

3.2 Redux

Hlavné črty návrhového vzoru Redux.

Redux je popis spracovania udalostí v aplikácii. Dáva do popredia lieárne spracovanie udalosti. Pozostáva zo štyroch hlavných častí:

- jeden *store*, ktorý spravuje celý stav aplikácie
- reducer čistá funkcia, ktorá jediná mení stav aplikácie
- komponenty vykresľujú aktuálny stav aplikácie
- akcie, ktoré definujú vnútorné rozhranie aplikácie

3.2.1 Tok dát

- 1. daný úvodný stav
- 2. vykreslenie komponentov
- 3. vznik akcie, dispatchnutie akcie pre store
- 4. reducer na akcii a aktuálnom stave, ktorý vráti nový stav
- 5. zmena v dátach sa vykreslí do komponentov (2. bod)

3.2.2 Store

Store, správca stavu, vystupuje ako jediný zdroj pravdy v aplikácii. Všetky data, ktoré sú vykreslené, pochádzajú zo stavu. Teda ak poznáme tento stav, veľmi jednoducho vieme potom nasimulovať prostredie, v ktorom celá aplikácia beží. Rovnako v prípade chýb vieme oveľa jednoduchšie zistiť, kde chyba nastala. Tento stav je nemenný(immutable). Ak ho chceme teda zmeniť, musíme vytvoriť novú inštanciu, v ktorej urobíme potrebné zmeny. Toto je dôležité, aby sme vedeli sledovať beh aplikácie.

Store má svoju funkciu dispatch() ktorá slúži na prijímanie podnetov zvonka, aby store zmenil svoj stav.

Redux Flow

Obr. 3.2: Redux architektúra

3.2.3 Komponenty

Komponenty slúžia na vykreslenie stavu aplikácie pre užívateľa. Ponúkajú rozhranie pre používateľa na komunikáciu s programom a v prípade reduxovej aplikácie je to práve pomocou vytvárania akcií. Komponenty vieme rozdeliť na "múdreä "hlúpe".Hlúpe komponenty iba vykresľujú data, ktoré dostanú. Tieto sú potom veľmi ľahko znovupoužiteľné. Tie múdre komunikujú spätne s dátami. V reduxovej aplikácii poskytujú rozhranie pre vytváranie akcií a majú prístup ku funkcii dispatch.

3.2.4 Akcie

Akcia je akákoľvek udalosť, ktorá sa môže v aplikácii vyskytnúť, od stlačenia tlačidla užívateľom, až po chybové hlášky alebo stiahnutie dát zo servera. Na vytvorenie akcie používame funkciu dispatch. Každá akcia musí obsahovať typ a môže voliteľne obsahovať aj nejaké prídavné data. Na základe tejto akcie potom reducer vypočíta nový stav.

3.2.5 Reducer

Všetká logika aplikácie sa deje v reduceroch. Reducery sú jediný objekt, ktorý môže meniť stav aplikácie.

Reducer je čistá funkcia. Má dva argumenty, stav aplikácie a akciu, ktorá sa vykonala a výstupom je nový stav. Vďaka tejto vlastnosti, že nemá žiadne "side effects"ju

môžeme veľmi ľahko testovať.

Reducer môžeme vyskladať z viacerých menších čistých funkcií, kde každá z nich sa stará len o určitú malú časť stavu. Vďaka tomu zostáva kód prehľadný a jednoduchý.Pri písaní reduceru nesmieme zabúdať na to, že nový stav, ktorý vrátime, nesmie byť "starý prerobenýäle musíme ho prekopírovať a dáta zmeniť až v novej inštancii.

3.2.6 Immutable štruktúry

Na to, aby sme neporušili myšlienku reducera, teda že to má byť čistá funkcia, tak nesmieme zmeniť vstupné parametre. Preto je vhodné použiť nemenné (immutable) štruktúry. Pre väčšínu jazykov existuje podpora alebo knižnica pre takéto štruktúry. Daľšou alternatívou je striktne dodržiavať zásadu nemeniť existujúce dáta a pri zmene vrátiť novú štruktúru s aktuálnymi zmenami. Pri (string, number, boolean) toto platí, pri vyšších objektoch si to však musíme skontrolovať sami.

3.2.7 Middlewares

Niekedy treba robiť aj akcie, ktoré nevieme robiť lineárne, nemôžeme robiť lineárne, alebo na ne len nechceme čakať. Príkladom je dopyt na server, kedy čas príchodu odpovede nezávisí úplne od nášho programu. Vtedy môžeme použiť...**TODO**

3.3 Knižnice open source

Este Celú aplikáciu sme začali vyvýjať v prostredí este. Snaha držať sa agilného prístupu vývoja aplikácie nás nasmerovala na využitie čo najviac už existujúceho kódu. [4, Este starter kit]

React Na vykreslenie komponentov sme pri vývoji použili knižnicu React. Jej veľkou výhodou je, že je rozšírená medzi programátormi a existuje pre ňu mnoho ďalších kompatibilných knižníc. Tiež veľmi pekne spolupracuje s našim návrhovým vzorom Redux, keďže React-ové komponenty majú úlohu iba dáta vykresliť.

Komponenty material dizajnu react-toolbox

material-ui - onTouchTap - vhodné pre natívne aplikácie a pre mobilné aplikácie - my vyvíjame aplikáciu pre prehliadač

Router O niečo zložitejšie je routovanie a správa url v aplikácii. Existuje viacero možností, ako riešiť routovanie.

Na túto funkciu sme využili knižnicu react-router. Jej výhodou je, že routovanie z komponentov je veľmi jednoduché a prirodzené. Čo mne osobne chýbalo, bola málo

popísaná možnosť meniť adresu mimo komponentov. Túto vlastnosť by sme veľmi ocenili najmä kôli ideológii Redux-u, keďže tu by mal byť jediným zdojom pravdy práve stav aplikácie v stave. Po použití tejto knižnice máme "zdroje pravdyäspoň dva, jeden pre dáta aplikácie a druhý pre adresu url.

Trošku "krajšie" v zmysle redux-ovej logiky by bolo riešenie s použitím knižnice router-5, ktorá rieši celý routing na základe dát v stave, kam si aj ukladá informácie o aktuálnej adrese (aj predchádzajúcich).

[3, gettting started]

3.4 Porovnanie vzorov Flux a Redux

Popis spracovania udalostí v oboch vzoroch a ich vzájomné porovnanie. Vymenovanie a zhrnutie spoločných znakov a rozdielnych.

Historicky prvý bol Flux od Facebooku. Vznikol ako náhrada modelu MVC, kde vo Fluxe je snaha lineárne spracovávať všetky zmeny stavu, čím sa stáva aplikácia omnoho prehľadnejšou. Po vykonaní akcie sa všetky story dozvedia o akcii a príslušné z nich na ňu reagujú - kým v MVC toto zabezpečovalo veľa kontrolorov, vo fluxe idú všetky akcie iba cez jeden dispatcher.

Redux vznikol modifikáciou fluxu, teda mohli by sme povedať, že je to špeciálny typ fluxu. Kým flux hovorí o spracovaní akcie ako takej, Redux prichádza s myšlienkou, ako meniť stav a to použitím reduceru - čistej funkcie. Použitie reducera spôsobuje, že zmena predchádzajúceho stavu na nasledujúci je plne kontrolovaná dvoma vstupnými parametrami reducera (pôvodný stav a akcia) a pri rovnakom vstupe je výstup vždy rovnaký. Vďaka tomu sa ešte viac uľahčuje testovanie prechodov medzi stavmi.

View View časť je v oboch návrhoch rovnaká. V oboch je to sada komponentov, ktoré zobrazujú statické dáta a je im poskytnutá schopnosť vytvárať nové akcie. Počúvajú na zmenu dát a pri zmene sa prekreslia.

Akcie Akcie sú v oboch návrhoch rovnaké. Každá akcia je objektom, ktorý obsahuje typ a voliteľne prídavné informácie.

Dispatcher Vo Fluxe je objekt dispatcher, ktorý je jediný a cez neho idú všetky akcie. V Reduxe môže byť tento objekt vynechaný, pretože akcie sa pridávajú storu, ktorý je jediný a ten prevezme zodpovednosť za lineárne spracovanie akcií.

Store Vo Fluxe máme jeden alebo viacero storov, v ktorých sú každý zodpovedný za nejakú logickú podčasť dát. Každý store je upozornený o každej akcii, ktorá nastane. Na rozdiel od toho Redux obsahuje práve jeden store, ktorý je zodpovedný za celé data.

Reducer V Reduxe tvorí jednu z hlavných častí reducer. Je zodpovedný za zmenu dát. Vo Fluxe by sme ekvivalent našli v storoch, ktoré menia dáta na základe akcií. Rozdiel je, že od reducera vyžadujeme, aby bol čistá funkcia, teda aby nezávisel na žiadnych hodnotách iných ako sú vstupné parametre funkcie a nemal side efekty. Pri storoch sme toto nevyžadovali, keďže story potrebujú napríklad robiť dotazy na server. V Reduxe na side effects slúžia Middlewares.

Reducer sa pri väčších aplikáciách zvykne rozdeliť na viacero menších reducerov, kde každý z nich spravuje nejakú syntaktickú podčasť dát(napríklad ak máme dáta uložené v stromovej štruktúre, reducer môže pôsobiť na podstrome z týchto dát).

3.4.1 Simulovanie behu programu

V redux aplikácii celý stav závisí iba od úvodného stavu a všetkých akcií, ktoré sa vytvorili v danej aplikácii. Teda ak máme poradie akcií, vieme celý postup zrekonštruovať. Toto je veľmi príjemná vlastnosť pri odlaďovaní aplikácie ako aj pri hľadaní chýb.

3.5 Postrehy

V reduxe je funkcia reducer čistá funkcia. Preto vždy pri písaní funkcií sme sa sústredili na písanie takýchto funkcií, ktoré sa neskôr lepšie skladajú. Heslo jedna funkcia má robiť jednu vec sme preferovali pre lepšiu prehľadnosť a čitateľnosť kódu.

Pri mixinoch sme si spomínali, že tieto objekty sme premenili na čisté funkcie. Toto nám veľmi vyhovuje v prípade reduxového návrhu.

3.6 Návrhy migrácie Flux do Redux

Viaceré možné návrhy migrácie s referenciami na existujúce návrhy na internete.

3.7 Riešenie

Jedno vybrané riešenie z vyššie uvedených. Zdôvodnenie a návrh implementácie mnou zvoleného riešenia.

Záver

V závere mojej bakalárskej práce zhrniem, aké bolo zadanie, ako som postupovala a ako by sa dalo na moju prácu nadviazať.

Literatúra

- [1] Ecma International 2015. Dart Programming Language Specification, Version 1.11. 4th edition, 2015. [Citované 2016-12-4] Dostupné z http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-408.pdf.
- [2] 2016 Ecma International. ECMAScript 2016 language specification, 2016. [Citované 2016-12-5] Dostupné z http://www.ecma-international.org/ecma-262/7.0/#.
- [3] Dan Abramov. Getting started with Redux, 2016. [Citované 2016-12-4] Dostupné z https://egghead.io/courses/getting-started-with-redux.
- [4] Daniel Steigerwald and the community. Starter kit Este for universal full-fledged react apps., 2016. [Citované 2016-12-4] Dostupné z https://github.com/este/este.
- [5] Facebook Inc. Overview of Flux, 2015. [Citované 2016-12-4] Dostupné z https://facebook.github.io/flux/docs/overview.html#content.
- [6] David Flanagan. JavaScript: the definitive guide. O'Reilly Media, Inc., 2006.
- [7] Michael S Mikowski and Josh C Powell. Single page web applications. *B and W*, 2013. [Citované 2017-01-23] Dostupné z http://deals.manningpublications.com/spa.pdf.