

SECI1113: COMPUTATIONAL MATHEMATICS

CHAPTER 9

Numerical Differentiation

Numerical Differentiation

- Numerical differentiation requires us to find estimates for the derivative or slope of a function by using the function values at only a set of discrete points.
- Numerical differentiation is used because some functions are unknown or difficult (or impossible) to differentiate exactly.
- One must be very careful when using numerical techniques to estimate the rate of change of measured data, since small errors are exaggerated by differentiation.

Taylor Polynomials

 There are several formulas for approximating a first and second derivatives and these formulas can be found with the use of Taylor polynomials.

• Taylor polynomials, f(x) at x_0 is,

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \dots$$

• Let,

$$x = x_0 + h$$
$$h = x - x_0$$

$$f(x_0 + h) \approx f(x_0) + f'(x_0)h + f''(x_0)\frac{h^2}{2!} + f'''(x_0)\frac{h^3}{3!} + \dots$$

First Derivatives

- 2 point formulas
 - Forward difference formula
 - Backward difference formula
- 3 point formulas
 - Forward difference formula
 - Backward difference formula
 - Central difference formula
- 5 point formulas
 - Forward difference formula
 - Central difference formula

Two-point formulas

• 2-points Forward difference formula

$$f(x_i + h) = f(x_i) + f'(x_i)h + f''(x_i)\frac{h^2}{2!} + f'''(x_i)\frac{h^3}{3!} + \dots$$

$$f(x_i + h) \approx f(x_i) + f'(x_i)h$$

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f(x_i + h) - f(x_i)}{h}$$

• 2-points Backward difference formula

$$f(x_i - h) = f(x_i) - f'(x_i)h + f''(x_i)\frac{h^2}{2!} - f'''(x_i)\frac{h^3}{3!} + \dots$$

$$f(x_i - h) \approx f(x_i) - f'(x_i)h$$

$$f'(x_i) \approx \frac{f(x_i) - f(x_i - h)}{h}$$

Example

Given the following data:

```
    x
    1.00
    1.05
    1.10
    1.15
    1.20

    f(x)
    1.00000
    1.02470
    1.04881
    1.07238
    1.09545
```

• Use forward and backward two-point formulas to estimate f'(1.05).

Solution

2-points Forward difference formula:

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f(x_i + h) - f(x_i)}{h}$$

$$f'(1.05) \approx \frac{f(1.05 + 0.05) - f(1.05)}{0.05}$$
$$f'(1.05) \approx \frac{f(1.10) - f(1.05)}{0.05}$$

$$f'(1.05) \approx \frac{1.04881 - 1.02470}{0.05} = 0.4822$$

Solution (cont.)

Backward difference formula

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = \frac{f(x_i) - f(x_i - h)}{h}$$

$$f'(1.05) \approx \frac{f(1.05) - f(1.05 - 0.05)}{0.05}$$
$$f'(1.05) \approx \frac{f(1.05) - f(1.00)}{0.05}$$

$$f'(1.05) \approx \frac{1.02470 - 1.00000}{0.05} = 0.494$$

Three-point formulas

• 3-points Forward difference formula

$$f(x_i + h) = f(x_i) + hf'(x_i) + \frac{h^2}{2!}f''(x_i) + \dots$$

$$f(x_i + 2h) = f(x_i) + 2hf'(x_i) + \frac{(2h)^2}{2!}f''(x_i) + \dots$$

$$4f(x_i + h) - f(x_i + 2h) = 3f(x_i) + 2hf'(x_i) - \dots$$

$$\approx 3f(x_i) + 2hf'(x_i)$$

$$f'(x_i) \approx \frac{1}{2h} [-3f(x_i) + 4f(x_i + h) - f(x_i + 2h)]$$

• 3-points Backward difference formula

$$f(x_i - h) = f(x_i) - hf'(x_i) + \frac{h^2}{2!}f''(x_i) - \dots$$

$$f(x_i - 2h) = f(x_i) - 2hf'(x_i) + \frac{(2h)^2}{2!}f''(x_i) - \dots$$

$$4f(x_i - h) - f(x_i - 2h) = 3f(x_i) - 2hf'(x_i) + \dots$$

$$\approx 3f(x_i) - 2hf'(x_i)$$

$$f'(x_i) \approx \frac{1}{2h} [f(x_i - 2h) - 4f(x_i - h) + 3f(x_i)]$$

• 3-points Central difference formula

$$f(x_i + h) = f(x_i) + f'(x_i)h + f''(x_i)\frac{h^2}{2!} + f'''(x_i)\frac{h^3}{3!} + \dots$$

$$f(x_i - h) = f(x_i) - f'(x_i)h + f''(x_i)\frac{h^2}{2!} - f'''(x_i)\frac{h^3}{3!} + \dots$$

$$f(x_i + h) - f(x_i - h) = 2hf'(x_i) + 2\frac{h^3}{3!}f'''(x_i) + \dots$$

$$f(x_i + h) - f(x_i - h) \approx 2hf'(x_i)$$

$$f'(x_i) \approx \frac{f(x_i + h) - f(x_i - h)}{2h}$$

Example

Given the following data:

```
    x
    1.00
    1.05
    1.10
    1.15
    1.20

    f(x)
    1.00000
    1.02470
    1.04881
    1.07238
    1.09545
```

• Use forward, backward and central threepoint formulas to estimate f'(1.10).

Solution

• 3-points Forward difference formula

$$f'(x_i) \approx \frac{1}{2h} [-3f(x_i) + 4f(x_i + h) - f(x_i + 2h)]$$

$$f'(1.10) \approx \frac{1}{2(0.05)} [-3f(1.10) + 4f(1.10 + 0.05) - f(1.10 + 2(0.05))]$$

$$f'(1.10) \approx \frac{1}{0.1} [-3f(1.10) + 4f(1.15) - f(1.20)]$$
$$\approx \frac{1}{0.1} [-3(1.04881) + 4(1.07238) - 1.09545]$$
$$\approx 0.4764$$

Solution (cont.)

• 3-points Backward difference formula

$$f'(x_i) \approx \frac{1}{2h} [f(x_i - 2h) - 4f(x_i - h) + 3f(x_i)]$$

$$f'(1.10) \approx \frac{1}{2(0.05)} [f(1.10 - 2(0.05)) - 4f(1.10 - 0.05) + 3f(1.10)]$$

$$f'(1.10) \approx \frac{1}{0.1} [f(1.00) - 4f(1.05) + 3f(1.10)]$$

$$\approx \frac{1}{0.1} [1.00000 - 4(1.02470) + 3(1.04881)]$$

$$\approx 0.4763$$

Solution (cont.)

• 3-points Central difference formula

$$f'(x_i) \approx \frac{f(x_i + h) - f(x_i - h)}{2h}$$

$$f'(1.10) \approx \frac{f(1.10 + 0.05) - f(1.10 - 0.05)}{2(0.05)}$$

$$\approx \frac{f(1.15) - f(1.05)}{0.1} = \frac{1.07238 - 1.02470}{0.1}$$

$$\approx 0.4768$$

Five-point Formulas

• 5-points Central difference formula

$$f'(x) \approx \frac{1}{12h} \left[f(x_i - 2h) - 8f(x_i - h) + 8f(x_i + h) - f(x_i + 2h) \right]$$

• 5-points Forward difference formula

$$f'(x_i) \approx \frac{1}{12h} [-25f(x_i) + 48f(x_i + h) - 36f(x_i + 2h) + 16f(x_i + 3h) - 3f(x_i + 4h)]$$

Example

Given the following data:

• Use forward and central five-point formulas to estimate f'(1.10).

Solution

• 5-points Central difference formula

$$f'(1.10) \approx \frac{1}{12(0.05)} [f(1.10 - 2(0.05)) - 8f(1.10 - 0.05) + 8f(1.10 + 0.05) - f(1.10 + 2(0.05))]$$

$$= \frac{1}{12(0.05)} [f(1.00) - 8f(1.05) + 8f(1.15) - f(1.20)]$$

$$= \frac{1}{0.6} [1.00000 - 8(1.02470) + 8(1.07238) - 1.09545]$$

$$= 0.47665$$

Solution (cont.)

• 5-points Forward difference formula

$$f'(1.10) \approx \frac{1}{12(0.05)} [-25f(1.10) + 48f(1.15) - 36f(1.20) + 16f(1.25) - 3f(1.30)]$$

$$= \frac{1}{0.6} [-25(1.04881) + 48(1.07238) - 36(1.09545) + 16(1.11803) - 3(1.14018)]$$

$$= 0.4762$$

• In general, using more evaluation points with small values of *h* produces greater accuracy.

Second Derivatives

- 3 point formulas
 - Central difference formula

- 5 point formulas
 - Central difference formula

Three-point formulas

Central difference formula

$$f(x_i + h) = f(x_i) + f'(x_i)h + f''(x_i)\frac{h^2}{2!} + f'''(x_i)\frac{h^3}{3!} + \dots$$

$$f(x_i - h) = f(x_i) - f'(x_i)h + f''(x_i)\frac{h^2}{2!} - f'''(x_i)\frac{h^3}{3!} + \dots$$

$$h^3$$

$$f(x_i + h) + f(x_i - h) = 2f(x_i) + 2\frac{h^3}{2!}f''(x_i) + \dots$$

$$f(x_i + h) + f(x_i - h) \approx 2f(x_i) + h^2 f''(x_i)$$

 3-points Central difference formula (second derivative):

$$f''(x_i) \approx \frac{f(x_i - h) - 2f(x_i) + f(x_i + h)}{h^2}$$

Example

Given the following data:

$$x$$
 1.00
 1.05
 1.10
 1.15
 1.20

 $f(x)$
 1.00000
 1.02470
 1.04881
 1.07238
 1.09545

• Use central three-point formulas to estimate f''(1.10) with h = 0.05

Solution

Central three-point difference formula

$$f''(x_i) \approx \frac{f(x_i - h) - 2f(x_i) + f(x_i + h)}{h^2}$$

$$f''(1.10) \approx \frac{1.02470 - 2(1.04881) + (1.07238)}{0.05^2}$$

$$f''(1.10) \approx -0.212$$

Five-point Formulas

• **5-points Central** difference formula (second derivative):

$$f''(x_i) \approx \frac{1}{12h^2} [-f(x_i - 2h) + 16f(x_i - h) -30f(x_i) + 16f(x_i + h) - f(x_i + 2h)]$$

Example

Given the following data:

• Use central five-point formulas to estimate f''(1.10).

Solution

Central difference formula

$$f'(x_i) \approx \frac{1}{12h^2} \left[-f(x_i - 2h) + 16f(x_i - h) - 30f(x_i) + 16f(x_i + h) - f(x_i + 2h) \right]$$

$$f''(x_i) \approx \frac{1}{12(0.05)^2} [-f(1.10 - 2(0.05)) + 16f(1.10 - 0.05) - 30f(1.10) + 16f(1.10 + 0.05) - f(1.10 + 2(0.05))]$$

Solution (cont.)

$$f''(x_i) \approx \frac{1}{0.03} [-f(1.00) + 16f(1.05)$$

$$-30f(1.10) + 16f(1.15) - f(1.20))]$$

$$\approx \frac{1}{0.03} [-1.00000 + 16(1.02470)$$

$$-30(1.04881) + 16(1.07238) - 1.09545)]$$

$$\approx -0.21567$$

Exercise #1

- i) Estimate f'(1.2) using
- a) Forward and backward two-point formulas
- b) Forward, backward, and central threepoint formulas
- c) Forward and central five-point formulas

with h=0.1 and h=0.001.

ii) Find the exact value of f'(1.2) and calculate the error for each estimation.

Х	f(x) = cos(x)
1.000	0.54030
1.100	0.45360
1.198	0.36422
1.199	0.36329
1.200	0.36236
1.201	0.36143
1.202	0.36049
1.300	0.26750
1.400	0.16997

Exercise # 2

- i) Estimate f''(1.2) using
- a) Central three-point formulas
- b) Central five-point formulas

with h = 0.1 and h = 0.001.

ii) Find the exact value of f''(1.2) and calculate the error for each estimation.

X	f(x) = cos(x)
1.000	0.54030
1.100	0.45360
1.198	0.36422
1.199	0.36329
1.200	0.36236
1.201	0.36143
1.202	0.36049
1.300	0.26750
1.400	0.16997