xLR(k): deterministic bottom-up parsing ISCL-BA-06

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

* Start from the input symbols, try to reduce the input to the start symbol Unlike top-down parsing where productions drive the parsing, in bottom-up

parsing reduction is the main operation · Reduction matches RHS of a grammar rule, and replaces it with its LHS

A typical bottom-up parser has two basic operations reduce replace one more more symbols in the sentential form with their LHS non-terminal

shift move the next unprocessed symbol from the input to the sentential form

Bottom-up (shift-reduce) parsing: an example

SENT. FORM	Input	Action
	dnvan	shift

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \rightarrow n$

Sent. Form	INPUT	Action
dn	van	r. AN → n
dn	van	shift

shift/reduce conflict

Bottom-up (shift-reduce) parsing: an example

Sini. PORM	INPUT	ACTION
dn	van	r. AN → n
dnva	n	shift

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$

Sent. Form	Input	Action
dn	van	r. AN → n
dnva AN		r: AN → a AN
dnva AN		r. NP -> AN

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \rightarrow n$

SENT. FORM	INPUT	Action
dn	van	r. AN → n
dnv AN		r. AN → a AN

Bottom-up (shift-reduce) parsing: an example

d

SENT. FORM	INPUT	ACTION	
1	nvan	shift	
MIT December of Tableson		Water Sensoler 2020 2	27

Bottom-up (shift-reduce) parsing: an example

 $\rightarrow NP \, VP \quad NP \rightarrow d \, AN \quad NP \rightarrow AN$ $VP \rightarrow v \ NP$ $AN \rightarrow a \ AN$ $AN \rightarrow n$

NT. FORM	Input	Action
1	van	r: AN → n
W	an	shift

Bottom-up (shift-reduce) parsing: an example

SENT. FORM	Input	Action
dn	van	r: AN → n
dnvan		r: AN -> n

Bottom-up (shift-reduce) parsing: an example

INDUT ACTION

dn	van	r: AN → n
dnva AN		r: AN → a AN
dnya NP		reject

Bottom-up (shift-reduce) parsing: an example

Si

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
--	--

INT. FORM	Input	Action
n	van	r: AN → n
ne: AN		e NP + AN

Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ SENT. FO Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow VNP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ $VP \rightarrow v NP$ INDIT ACTION INPUT ACTION SENT FORM SENT FORM Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ INPUT ACTION INPUT ACTION reduce/reduce conflic Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$ ENT. FORM

Bottom-up (shift-reduce) parsing: an example

Issuer Across

Bottom-up (shift-reduce) parsing: an example

ENT. FORM

Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$ Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ T Acre Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN $\rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN$ $VP \rightarrow v NP$ $AN \to a \; AN \quad AN \to n$ $VP \rightarrow v NP$ $AN \rightarrow a \ AN \quad AN \rightarrow n$ INDIT ACTION INDUT ACTION SENT FORM SENT FORM NP va AN Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $\rightarrow NP \; VP \quad NP \rightarrow d \; AN \quad NP \rightarrow AN$ $\rightarrow NP \, VP \quad NP \rightarrow d \, AN \quad NP \rightarrow AN$ $VP \rightarrow v NP$ $AN \to a \; AN \quad AN \to n$ $VP \rightarrow v NP$ $AN \rightarrow a \ AN \quad AN \rightarrow n$ INDIT ACTION INDUT ACTION Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $\rightarrow NP \; VP \quad NP \rightarrow d \; AN \quad NP \rightarrow AN$ \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ $VP \rightarrow v NP$ $AN \rightarrow a AN \quad AN \rightarrow n$ Two issues with a backtracking shift-reduce parser Table driven bottom-up parsing * The extra work done by a backtracking shift-reduce parser can be elimin for a large class of grammars The general idea is the same with LL(k) grammars: preprocess the grammar to construct a table * Obvious one: reduce/reduce and shift/reduce conflicts mean * The class of LR(k) (scanning from Left-to-right, producing a Rright) Not-so-obvious one: recognizing 'handles':
 The rule that we locate at the right edge of the active sentential form is called a derivation) grammars can be parsed deterministically using k lookahead - 100 core task we have the formula of the formula symbols * k=1 is most common, LR(0) parser are also useful in some cases, larger kapplies (if any) allows expressive grammars . In a efficient parser we want to avoid both LL(k) grammars are a subset of LR(k) grammars Most practical programming language compilers are LR(1) parsers
 LR(k) parsers are difficult to build manually, but tools that take a CF ar and construct and LR(1) parser are in con non user (e.g., yacc)

Dotted rules, or 'items', (again) and augmented grammars

- An LR parser keeps a set of states (actually a finite-state automaton) to represent the current parser state during parsing
 An LR parser's states are sets of 'dotted rules' similar to Early or chart parsers we discussed earlier

- $-A \rightarrow \bullet \alpha$ $-A \rightarrow \alpha \bullet \beta$ $-A \rightarrow \alpha \bullet$
- + We also introduce a new start symbol, with a single production $S^\prime\,\rightarrow\, S$
- This rule helps parser to determine when to stop: the parser accepts the input only when reducing S to S'

Shift-reduce parsing with LR(0) automaton

 The simplest version of the LR parsers uses LR(0) automaton to guide the parsing decisions
 Use a stack to keep track of active states
 Start with state 0
 If there is an outgoing edge labeled with the current input, shift: push the target state to the stack
 Otherwise reduce based on contents of the current state. For example, if the current state contains 3 → NP VP•,
 pop two symbols (for NP and VP) from the stack
 push the state reachable through S from the state on the top of the stack.

Example

state	ACTION					Gσ	TO		
		a	ď	n	v	S	NP	VP	AN
0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	reduce NP → AN								
3	shift	e	e	e	7	e		4	
4	$reduce S \rightarrow NP VP$								
5	shift	5	e	9	e				6
6	reduce AN → a AN								
7	shift	5	8	9	e		10		2
8	shift	- 5	e	9	e				11
9	reduce AN → n								
10	reduce VP → v NP								
11	reduce NP → d AN								

Example

Parsing w rith LR(0) automaton 3

		a	d	n	v	S	NP	VP	AN
- 0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	reduce NP → AN								
3	shift	e	e	e	7	e		4	
4	reduce $S \rightarrow NPVP$								
5	shift	5	e	9	e				6
6	reduce AN → a AN								
7	shift	5	8	9	e		10		2
8	shift	5	e	9	e				11
9	reduce AN → n								
10	reduce $VP \rightarrow v NP$								
11	reduce NP \rightarrow d AN								

Example

state	ACTN	ON					CO	Ю		
			a	d	n	v	S	NP	VP	6 2 11
- 0	shift		5	8	9	e	1	3	e	2
1	reduc	e S′ → S								
2	reduc	$e NP \rightarrow AN$								
3	shift		e	e	e	7	e		4	
4	reduc	$eS \rightarrow NPVP$								
5	shift		5	e	9	e				6
6		e AN → a AN								
7	shift		5	8	9	e		10		2
8	shift		5	e	9	e				11
9		e AN → n								
10		$e VP \rightarrow v NP$								
11	reduc	$e NP \rightarrow d AN$								
Stack		Sent Form					ľsa	UT A	CTION	
0.3		1.77	=		=	=				

TACK	SENT. FORM	INPUT	Action
3	NP	an\$	dish

Example

0) automaton 7 state ACTION

0375		NP v a					n	\$ sh	ift	
SEACK		Sent Form					ba	ut A	CTION	
- 11	reduc	$e NP \rightarrow d AN$								
10	reduc	$e VP \rightarrow v NP$								
9		e AN → n								
8	shift		5	ė	9	ė				11
7	shift		5	8	9	e		10		2
6	reduc	$e AN \rightarrow a AN$								
5	shift		5	e	9	e				6
4	reduc	$eS \rightarrow NPVP$								
3	shift		e	e	e	7	e		4	
		$e NP \rightarrow AN$								
1		eS → S								

LR(0) automaton

	_
--	---

state	ACTION		GOTO								
		a	d	n	v	S	NP	VP	AN		
_			_	_		_					

 $\begin{array}{ll} 0 & shift \\ 1 & reduce \ S' \rightarrow S \\ 2 & reduce \ NP \rightarrow AN \\ 3 & shift \\ 4 & reduce \ S \rightarrow NP \ VP \end{array}$ 5 shift 6 reduce AN → a AN 7 shift 9 reduce AN → n 10 reduce VP → v NP 11 reduce NP → d AN

Exan Parsing

state	ACTION					GOT	Ю		
		a	đ	n	v	S	NP	VP	AN
0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	reduce NP → AN								
3	shift	e	e	e	7	e		4	
4	$reduce S \rightarrow NP VP$								
5	shift	5	e	9	e				6
6	reduce AN → a AN								
7	shift	5	8	9	e		10		2
8	shift reduce AN → n	5		9	e				11

Example

Parsing with Li

state	ACTION					GU:	10		
		a	d	n	v	S	NP	VP	AN
0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	$reduce NP \rightarrow AN$								
3	shift	e			7			4	
4	reduce S → NP VP								
5	shift	5		9					6
6	reduce AN → a AN								
7	shift	5	8	9			10		2
8	shift	5	e		ě				11
8	reduce AN → n								
10	reduce $VP \rightarrow v NP$								
11	reduce NP - 4 AN								

Parsing with LR(0) automaton 6

		- 2	d	n	\mathbf{v}	S	NP	VP	AN			
0 shift		5	8	9	e	1	3	e	2			
1 reduce S	' → S											
2 reduce?	$dP \rightarrow AN$											
3 shift		e	e	e	7	e		4				
4 reduce S	\rightarrow NP VP											
5 shift		5		9					6			
6 reduce A	$N \rightarrow aAN$											
7 shift		5	8	9			10		2			
8 shift		5		9	ė				11			

037		NP v					an\$	shift	
STACK		SENT. FORM					INPUT	Action	
7 8 9 10 11	reduce	$AN \rightarrow n$ $VP \rightarrow v NP$ $NP \rightarrow d AN$	5	8	9	e	1		11

Parsing with Li	k(0) auto	maton 8					
	state	ACTION				GO	Ю
			 4	n	v	5	NE

			a	đ	n	v	S	NP	VP	AN	
	0	shift	5	8	9	e	1	3	e	2	
	1	reduce S → S									
	2	reduce NP → AN									
	3	shift	e			7			4		
	4	reduce S → NP VP									
	5	shift	5		9					6	
	6	reduce AN → a AN									
	7	shift	5	8	9	e		10		2	
	8	shift	5	e	9	e				11	
	9	reduce AN → n									
	10	$reduce VP \rightarrow v NP$									
	11	reduce NP → d AN									
STACK		Sent. Form		INPUT ACTION							

Example → S → AN seure reduce S → NP VF shift reduce AN → a AN

→ S → AN seure reduce S → NP VP shift $\begin{array}{c} \text{shift} \\ \text{reduce AN} \, \rightarrow \, a \, \text{AN} \end{array}$

state	ACTION GOTO						Ю			
		a	d	n	v	S	NP	VP	AN	
- 0	shift	5	8	9	e	1	3	e	2	
1	reduce S → S									
2	reduce NP → AN									
3	shift reduce S - NP VP	e	e	e	7	e		4		
4	reduce S → NP VP shift	5		9						
6	reduce AN → a AN	3	e	7	e					
7	shift	5	8	9	e		10		2	
8	shift	5	e	9	ě				11	
9	reduce AN → n									
10	reduce VP → v NP									
11	reduce NP → d AN									

R(0) auto state	ACTION		GOTO							
		a	d	n	v	S	NP	VP	AN	
- 0	shift	5	8	9	e	1	3	e	2	
1	$reduce S' \rightarrow S$									
2	$reduce NP \rightarrow AN$				_					
3	shift reduce S → NP VP	e	e	e	7	e		-		
5	chift	5	e						6	
6	reduce AN → a AN		•	-	•				U	
7	shift	5	8	9	e		10		2	
8	shift	5	e	9	e				11	
9	reduce AN -> n									
10	reduce $VP \rightarrow v NP$									
11	reduce NP → d AN									

8 9 e

Example

state	ACTION		GOTO									
		a	ď	n	v	S	NP	VP	AN			
- 0	shift	5	8	9	e	1	3	e	2			
1	reduce $S' \rightarrow S$											
2	reduce NP → AN											
3	shift		e	e	7	e		4				
4	reduce S → NP VP											
5	shift	5	e	9	e				6			
6	reduce AN → a A?											
7	shift	5	8	9	e		10		2			
8	shift	5	e	9	e				11			
9	reduce AN → n											
10	reduce VP → v NP											
11	reduce NP → d AN	ě										
СK	Sent Form					Iva	ut A					
	S				_		\$ S	→ N	(P VP			

Limitations of LR(0)

- me we have an additional rule: $VP \rightarrow v$. This would lead to a LR(0) automaton entry
- VP → V+ NP VP → V+ NP NP → + ± MI NP → + ± MI AN → + ± ANI AN → + ± We have a shift/reduce conflict
- * A simple solution (SLR): shift if possible, otherwise reduce
- In general LR(0) parsers/gran mars are limited, for most purposes we need
- more powerful parsers

LR parsers with lookahead

Example

- LR(k): pa . Lookahead allows LR(k) parser to parse a larger class of grammars
- The disadvantage is m

oeS → NP VP ce AN → a AN

- . Another option is the LALR(k) parsers which use a smaller automator
- * LALR(1) parsers and parser generators are commonly used in practice

Why use xLR(k) parsers?

- LR(k) parsers gen eral, efficient (non-backtracking) shift-re LR(k) parsers can be constructed for (almost) any formal/programming
- language constructs
- In general LR(k) grammars are more expressive. LL(k) is a subset of LR(k)
 LR(k) parsers can detect syntax errors as soon as it is possible to detect them

LR grammars and ambiguity

- . LR(k) parsers cannot handle ambiguity . If a grammar is ambiguous we cannot construct an LR(k) parse table for it
- . In general, determining whether a grammar is ambiguous is intractable
- This is sometimes used for a test for ambiguity:
 If we can build a LR(k) parser for a grammar, then it is not ambiguous
 If we cannot, it is inconclusive

 xLR(k) parsers are powerful bottom-up deterministic parsers . LR grammars are more general than LL grammars

natural language parsers to reduce the non-determinism Understanding the concepts here is useful for building parser generators and understanding the related natural language parsers Reading suggestion: Grune and Jacobs (2007, ch.9), Aho et al. (2007, Section 4.5–4.7)

· These parsers are difficult to build manually, but automatic parser generators

What about natural language parsing

· Natural languages are inherently ambigu

- · As a result, we cannot use these parsers for parsing natural languages · Nevertheless, the techniques are useful

 - We can use LR-like parsers to reduce the non-determinism: GLR parsers (also known as Tomita passer)
 Instead of a table-driven parser, we can predict the action with a machine learning method: transition-based dependency parsers do that

Summary

• Alth

