# What Incentives Increase Form Responses

Team 4: Shamika, Jaya, Maro, Weilin, Bruce, and Selma

# **Research Question**

"What motivates students to open their emails and fill out a survey?"

# **Specific Hypothesis Tested**

**Null Hypothesis (H0)** = Treatment will not result in change in the Response Rate (ATE = 0)

**Alternative Hypothesis (H1)** = Treatment Response Rate is not equal to Control Response Rate (ATE  $\neq$  0)

# **Prior Work Related to the Hypothesis**

- Ryu, E. (2006) proposes that monetary incentives are helpful for increasing the survey response rates.
- Furse, D. H., & Stewart, D. W. (1982) indicates that charity will not improve response rates while Robertson, D. H., & Bellenger, D. N. (1978) shows different results
- *Petrovčič, A. et al., (2016)* points out that sense of community does not significantly change the response rates

#### **Treatment and Randomization**



- Sample Audience:
   Graduates of Questrom
   (except MSBA)
- Randomized MSMFT 1st, 2nd year equally across the control and treatment arms (143 students)

#### **Data Collection**



qualtrics

#### **Metrics collected**

- Number of Opens
- Number of Clicks on the Survey Link
- Number of Responses

# **Data Analysis**

#### **Control Group:**

2nd highest number among the students who have completed the survey

**Treatment arm1:** (Monetary Incentive)

This treatment arm has the highest number of completed surveys

#### Treatment arm2:

Among students who have clicked on the link, only one student hasn't completed the survey

#### Treatment arm3:

Highest number of students who opened the email, but nobody responded



# **Results and Interpretation**

- Average Treatment Effect (ATE)
- Conditional Average Treatment Effect (CATE) Clicks & Opens
- Heterogeneous Treatment Effect Gender
- Complier Average Causal Effect (CACE)
- Treatment Arms

#### **ATE**

```
this_reg <- feols(response ~ treatment, data = full_data, se='white')
etable(this_reg)</pre>
```

Description:  $df[,1][9 \times 1]$ 

|                 | this_reg<br><chr></chr> |  |
|-----------------|-------------------------|--|
| Dependent Var.: | response                |  |
| (Intercept)     | 0.0571 (0.0395)         |  |
| treatment       | 0.0169 (0.0470)         |  |
|                 |                         |  |
| S.E. type       | Heteroskerob.           |  |
| Observations    | 143                     |  |
| R2              | 0.00081                 |  |
| Adj. R2         | -0.00627                |  |
|                 |                         |  |

9 rows

#### feols(response ~ treatment)

- ATE = **0.0169**
- Std.Error = 0.047
- Not Statistically Significant

#### **CATE - Clicks and Opens**

#### Conditional - Clicks

- CATE = **-0.2**
- Std.error = 0.1386

#### Conditional - Opens

- CATE = **0.0174**
- Std.error = 0.0751

```
#conditional ate, conditional on who opened it
conditional_clicked_ate<- full_data[Clicks>=1,]
                                                                                                           conditional opened ate <-full data[Opens>=1, ]
conditional_clicked_reg <- feols(response ~ treatment, data = conditional_clicked_ate, se='white')
                                                                                                            conditional opens reg <- feols(response ~ treatment, data = conditional opened ate , se='white')
etable(conditional clicked reg)
                                                                                                            etable(conditional opens reg)
  Description: df[,1] [9 x 1]
                                                                                                              Description: df[,1] [9 x 1]
                               conditional_clicke..
                                                                                                                                              conditional_op..
   Dependent Var.:
                               response
                                                                                                              Dependent Var.:
                                                                                                                                              response
   (Intercept)
                               1.000*** (1.38e-15)
                                                                                                                                              0.0952 (0.0648)
                                                                                                              (Intercept)
   treatment
                               -0.2000 (0.1386)
                                                                                                              treatment
                                                                                                                                              0.0174 (0.0751)
                               Heteroskedast -rob
   S.E. type
                                                                                                                                              Heteroske.-rob.
                                                                                                              S.E. type
   Observations
                               12
                                                                                                              Observations
                               0.04000
                                                                                                                                              0.00055
  Adj. R2
                               -0.05600
                                                                                                              Adj. R2
                                                                                                                                              -0 01055
  9 rows
                                                                                                              9 rows
```

### **Heterogeneous Treatment Effect**

```
heterogenuous reg <- feols(response ~ treatment * gender, data = full data, se = 'white')
etable(heterogenuous reg)
  Description: df[,1][11 \times 1]
                                     heterogenuous_..
  Dependent Var.:
                                     response
  (Intercept)
                                     0.0714 (0.0698)
                                     -0.0260 (0.0767)
  treatment
                                     -0.0238 (0.0842)
  gender
  treatment x gender
                                     0.0721 (0.0973)
                                     Heterosked -rob
  S.E. type
  Observations
                                     143
  R2
                                     0.00787
  1-10 of 11 rows
```

Gender: 1 = Male, 0 = Female

Randomization check of Gender:

- Mean of x (treatment) = 0.5925926
- Mean of y (control) = 0.60000

feols(response ~ treatment \* gender)

- CATE(treatment = 1, Gender = 0) - (-0.0238 + 0.0714) - 0.0714 = -0.0238

CATE(treatment = 1, Gender = 1) - (-0.026 + 0.0721) = **0.0461** 

- Treatment x gender = 0.0721
  - Indicate the male student had
     0.0721 higher treatment effect to response than the female student

#### **CACE**

```
'``{r}
cace_reg <- feols(response| ~ 1 | 0 | Opens ~ treatment, data = full_data, se='white')
etable(cace_reg)
'``</pre>
```

Description: df[,1] [9 x 1]

|                 | cace_reg<br><chr></chr> |  |
|-----------------|-------------------------|--|
| Dependent Var.: | response                |  |
| (Intercept)     | 0.0070 (0.1559)         |  |
| Opens           | 0.0373 (0.0941)         |  |
| S.E. type       | Heteroske -rob.         |  |
| Observations    | 143                     |  |
| R2              | 0.07716                 |  |
| Adj. R2         | 0.07061                 |  |

9 rows

feols(response ~ 1 | 0 | Opens ~ treatment)

- CACE = 0.0373
- Std.error = 0.0941

#### **ATE on different Treatment Arms**

```
reg_treatment1 <- feols(response ~ treatment, data=full_data[(treatment_arms==1 | treatment==0)])
reg_treatment2 <- feols(response ~ treatment, data=full_data[treatment_arms==2 | treatment==0])
reg_treatment3 <- feols(response ~ treatment, data=full_data[treatment_arms==3 | treatment==0])
etable(reg_treatment1, reg_treatment2, reg_treatment3)
```

Description:  $df[,3][9 \times 3]$ 

|                 | reg_treatment1   | reg_treatment2   | reg_treatment3   |
|-----------------|------------------|------------------|------------------|
| Dependent Var.: | response         | response         | response         |
| (Intercept)     | 0.0571 (0.0556)  | 0.0571 (0.0347)  | 0.0571* (0.0279) |
| treatment       | 0.1320. (0.0775) | -0.0286 (0.0490) | -0.0571 (0.0392) |
|                 |                  |                  |                  |
| S.E. type       | Standard         | Standard         | Standard         |
| Observations    | 72               | 70               | 71               |
| R2              | 0.03982          | 0.00498          | 0.02981          |
| Adj. R2         | 0.02611          | -0.00966         | 0.01575          |

9 rows

# **Result Summary**

- The overall treatment has positive effect on survey response
- Male students are more likely to response than female students
- Only the treatment arms 1(Raffle: Amazon gift card) has positive effect on survey response

- Important notice: All the results are not statistically significant

#### Limitations

- Randomization check was limited to gender only
- Sample → sample size was small (hence lacked precision),
   non-representative → potential selection bias
- Could not calculate fixed effects due to lack of data
- Covariates were limited to only one (gender), also due to lack of data

# Thank you so much for your time

**Any Questions?**