(Shelf) Bin Packing 2D - 2SBP Modelagem no CPLEX

Diego Ramon diego.ramon@eng.ci.ufpb.br

Universidade Federal da Paraíba Pós-Graduação em Informática Pesquisa Operacional

14 de Junho de 2019

Agenda

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- Implementação
- 4 Resultados
- Seferências

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- Implementação
- 4 Resultados
- Referências

Informações do Artigo

- Título: Algoritmo GRASP/VND para o problema clássico de empacotamento tridimensional e bidimensional
- Autores: Anderson Zudio et al.
- Publicado em: Simpósio Brasileiro de Pesquisa Operacional (SBPO)
- Ano: 2017

Introdução

- O problema clássico bidimensional de empacotamento (2BP) consiste em empacotar ortogonalmente um conjunto de n itens retangulares caracterizados por sua largura w_i , altura h_i , $i \in S = 1, \ldots, n$, no menor número possível de caixas homogêneas de largura W e altura H.
- Porém, esse problema é tratável via programação linear inteira, pois requer uma grande quantidade de variáveis binárias (não polinomial). Literatura predominante de soluções baseadas em meta-heurísticas.

Introdução

 No entanto, esse problema se torna tratável via programação linear inteira com o uso de restrições de "prateleira". Pois permite obter um número polinomial de variáveis.

Introdução

Figura: Representação gráfica do problema.

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- 3 Implementação
- Resultados
- 5 Referências

Hipóteses

- O primeiro item (mais à esquerda) embalado em cada prateleira é o item mais alto em si;
- A primeira prateleira (inferior), embalada em cada caixa / faixa, é a prateleira mais alta na caixa / faixa.
- **3** Os itens são ordenados, então $h_1 \geq h_2 \geq \cdots \geq h_n$

Variáveis

$$y_i = egin{cases} 1 & ext{se prateleira } i ext{ inicializa bin } i, \ 0 & ext{caso contrário} \end{cases}$$
 $(i = 1, \dots, n)$

$$q_k = egin{cases} 1 & ext{se item } k ext{ inicializa prateleira } k, \ 0 & ext{caso contrário} \end{cases} (k = 1, \dots, n)$$

$$x_{ij} = egin{cases} 1 & ext{se item } j ext{ \'e empacotado na prateleira } i, \ 0 & ext{case contr\'ario} \end{cases} (i = 1, \ldots, n-1; j > i)$$

$$q_{ki} = \begin{cases} 1 & \text{se prateleira } i \text{ \'e alocado para bin } k, \\ 0 & \text{caso contr\'ario} \end{cases} (k = 1, ..., n - 1; i > k)$$

A Equação (0) modelo a função objetivo que minimiza o número de bins usados.

$$\min \quad \sum_{q=1}^{n} q_k \tag{0}$$

A Equação (1) impõem que cada item seja empacotado exatamente uma vez, seja inicializando uma prateleira ou numa prateleira inicializada por um item anterior (mais alto).

$$\sum_{i=1}^{j-1} x_{ij} + y_j = 1 \qquad (j = 1, \dots, n)$$
 (1)

A Equação (2) impõem que cada prateleira seja usada seja alocada exatamente uma vez, seja inicializando uma bin ou em um bin inicializado por uma prateleira anterior (mais alta).

$$\sum_{k=1}^{i-1} z_{ki} + q_i = y_i \qquad (i = 1, ..., n)$$
 (2)

A Equação (3) impõem a restrição de largura a cada prateleira usada.

$$\sum_{j=i+1}^{n} w_{j} x_{ij} \leq (W - w_{i}) y_{i}$$
 (i = 1,..., n-1) (3)

A Equação (4) impõem a restrição de altura a cada prateleira usada.

$$\sum_{i=k+1}^{n} h_i z_{ki} \le (H - h_k) q_k \qquad (k = 1, \dots, n-1)$$
 (4)

$$\min \quad \sum_{q=1}^{n} q_k \tag{1}$$

sujeito a
$$\sum_{i=1}^{j-1} x_{ij} + y_j = 1$$
 $(j = 1, ..., n)$ (2)

$$\sum_{k=1}^{i-1} z_{ki} + q_i = y_i \qquad (i = 1, \dots, n)$$
 (3)

$$\sum_{j=i+1}^{n} w_j x_{ij} \leq (W - w_i) y_i \qquad (i = 1, ..., n-1)$$
 (4)

$$\sum_{i=1}^{n} h_{i} z_{ki} \leq (H - h_{k}) q_{k} \qquad (k = 1, ..., n - 1)$$
 (5)

$$x_{ij}, y_i, q_k, z_{ki} \in \{0, 1\}$$
 (6)

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- Implementação
- Resultados
- Referências

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- 3 Implementação
- Resultados
- Referências

Classe	n	LB	Z	ILP
1	20	7,1	7,1	6,8
	40	13,4	13,4	12,5
	60	19,7	20,0	19,1
	80	27,4	27,5	26,1
	100	31,7	31,8	29,8
2	20	1,0	1,0	1,0
	40	1,9	1,9	1,0
	60	2,5	2,5	1,4
	80	3,1	3,1	1,8
	100	3,9	3,9	1,9
3	20	5,1	5,1	4,7
	40	9,2	9,5	8,5
	60	13,6	14,0	12,8
	80	18,7	19,0	17,5
	100	22,1	22,3	20,4
4	20	1,0	1,0	1,0
	40	1,9	1,9	1,0
	60	2,3	2,5	1,2
	80	3,0	3,2	1,6
	100	3,7	3,8	1,8
5	20	6,5	6,5	5,9
	40	11,9	11,9	11,1
	60	17,9	18,1	16,9
	80	24,1	24,7	23,3
	100	27,9	28,2	26,6

Tabela: Resultados computacionais com Cplex

- Introdução
 - Informações do Artigo
 - Definição do Problema
- 2 Modelagem
 - Hipóteses
 - Variáveis
 - Modelo
- 3 Implementação
- 4 Resultados
- 6 Referências

Referências

- ZUDIO, Anderson, et al. Algoritmo GRASP/VND para o problema clássico de empacotamento tridimensional e bidimensional.
- Lodi, Andrea. (2019). Algorithms for Two-Dimensional Bin Packing and Assignment Problems.