Lecture 10: Sufficiency and the Rao-Blackwell Theorem

MATH 667-01 Statistical Inference University of Louisville

October 12, 2017

Introduction

- We discuss sufficiency as discussed in Sections 6.1 and 6.2 of Casella and Berger (2002)¹.
- We discuss and prove the Rao-Blackwell Theorem as discussed in Section 7.3.
- The proof of the Rao-Blackwell Theorem uses iterated expectation formulas from Section 4.4.

¹Casella, G. and Berger, R. (2002). *Statistical Inference, Second Edition*. Duxbury Press, Belmont, CA.

- Now we examine data summarization and data reduction when making inferences about a fixed but unknown parameter θ based on a sample X_1, \ldots, X_n .
- When the sample size n is large, simply being given a list of the observed sample values x_1, \ldots, x_n is not very useful.
- Instead, it is useful to provide a statistic $T(X_1, \ldots, X_n)$ and use the observed value $T(x_1, \ldots, x_n)$ to summarize the information about θ in the observed sample.
- Let $\mathcal X$ denote the sample space of X_1,\ldots,X_n . Then $\mathcal T=\{t:t=T(x) \text{ for some } x\in\mathcal X\}$ is the image of $\mathcal X$ under T.
- So T(x) partitions \mathcal{X} into sets $A_t = \{x : T(x) = t\}$ for $t \in \mathcal{T}$.

- The goal of the *sufficiency principle* is to summarize data while not losing information about θ .
- Definition L10.1 (Def 6.2.1 on p.272): A statistic $T(\boldsymbol{X})$ is a sufficient statistic for θ if the conditional distribution of the sample $\boldsymbol{X} = (X_1, \dots, X_n)$ given the value of $T(\boldsymbol{X})$ does not depend on θ .
- That is, T(X) is sufficient for θ if the pdf/pmf $f_{X|T(X)=T(x)}(x|\theta)$ is the same for all θ .

- Theorem L10.1 (Thm 6.2.2 on p.274): If $p(\boldsymbol{x}|\theta)$ is the joint pdf/pmf of \boldsymbol{X} , and $q(t|\theta)$ is the pdf/pmf of $T(\boldsymbol{X})$, then $T(\boldsymbol{X})$ is a sufficient statistic for θ if, and only if, for every \boldsymbol{x} in the sample space the ratio $p(\boldsymbol{x}|\theta)/q(T(\boldsymbol{x})|\theta)$ is constant as a function of θ .
- Proof of Theorem L10.1:

$$\begin{split} P_{\theta}(\boldsymbol{X} = \boldsymbol{x} | T(\boldsymbol{X}) = T(\boldsymbol{x})) &= \frac{P_{\theta}\left(\boldsymbol{X} = \boldsymbol{x} \text{ and } T(\boldsymbol{X}) = T(\boldsymbol{x})\right)}{P_{\theta}\left(T(\boldsymbol{X}) = T(\boldsymbol{x})\right)} \\ &= \frac{P_{\theta}\left(\boldsymbol{X} = \boldsymbol{x}\right)}{P_{\theta}\left(T(\boldsymbol{X}) = T(\boldsymbol{x})\right)} \\ &= \frac{p(\boldsymbol{x} | \theta)}{q(T(\boldsymbol{x}) | \theta)}. \end{split}$$

So, T(X) is sufficient if and only if the probability above is constant as a function of θ .

- Example L10.1: Let X_1, \ldots, X_n be iid Poisson (λ) random variables. Show that $\sum_{i=1}^n X_i$ is sufficient for λ .
- Answer to Example L10.1:

$$P\left((X_{1}, \dots, X_{n}) = (x_{1}, \dots, x_{n}) \middle| \sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} x_{i}\right) = \frac{P\left((X_{1}, \dots, X_{n}) = (x_{1}, \dots, x_{n})\right)}{P\left(\sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} x_{i}\right)} = \frac{\lambda^{\sum_{i=1}^{n} x_{i}} e^{-n\lambda} / (\prod_{i=1}^{n} x_{i}!)}{(n\lambda)^{\sum_{i=1}^{n} x_{i}} e^{-n\lambda} / (\sum_{i=1}^{n} x_{i})!}$$

since $\sum_{i=1} X_i \sim \operatorname{Poisson}(n\lambda)$. Simplifying this expression, we obtain $n^{-\sum_{i=1}^n x_i} (\sum_{i=1}^n x_i)! / (\prod_{i=1}^n x_i!)$ which does not depend on λ .

- We can use *Theorem L10.1* to verify that a statistic is sufficient for θ , but it is better to have a way of finding sufficient statistics without having a candidate in mind.
- This can be done with the following result known as the Factorization Theorem.
- Theorem L10.2 (Thm 6.2.6 on p.276): Let $f(x|\theta)$ denote the joint pdf/pmf of a sample X. A statistic T(X) is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and h(x) such that, for all sample points x and all parameter points θ , $f(x|\theta) = g(T(x)|\theta)h(x)$.

- Sketch of proof of Theorem L10.2 for the discrete case:
- ullet Suppose T(X) is a sufficient statistic. Then

$$\begin{split} f(\boldsymbol{x}|\boldsymbol{\theta}) &= P_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}) \\ &= P_{\boldsymbol{\theta}}\left(\boldsymbol{X} = \boldsymbol{x} \text{ and } T(\boldsymbol{X}) = T(\boldsymbol{x})\right) \\ &= P_{\boldsymbol{\theta}}\left(T(\boldsymbol{X}) = T(\boldsymbol{x})\right) P_{\boldsymbol{\theta}}\left(\boldsymbol{X} = \boldsymbol{x}|T(\boldsymbol{X}) = T(\boldsymbol{x})\right) \\ &= g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x}). \end{split}$$

• Suppose that $f(x|\theta) = g(T(x)|\theta)h(x)$. Then

$$\begin{split} \frac{f(\boldsymbol{x}|\boldsymbol{\theta})}{q(T(\boldsymbol{x})|\boldsymbol{\theta})} &= \frac{g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x})}{q(T(\boldsymbol{x})|\boldsymbol{\theta})} \\ &= \frac{g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x})}{\sum_{\boldsymbol{y}\in A_{T(\boldsymbol{x})}}g(T(\boldsymbol{y})|\boldsymbol{\theta})h(\boldsymbol{y})} \\ &= \frac{g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x})}{g(T(\boldsymbol{x})|\boldsymbol{\theta})\sum_{\boldsymbol{y}\in A_{T(\boldsymbol{x})}}h(\boldsymbol{y})} = \frac{h(\boldsymbol{x})}{\sum_{\boldsymbol{y}\in A_{T(\boldsymbol{x})}}h(\boldsymbol{y})} \end{split}$$

does not depend on θ .

- Example L10.2: Let X_1, \ldots, X_n be iid random variables from a Normal $(\mu, 1)$ distribution. Find a sufficient estimator for μ .
- Answer to Example L10.2: Let $x = (x_1, ..., x_n)$. The joint pdf of $X_1, ..., X_n$ is

$$f(\boldsymbol{x}|\mu) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

$$= (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} x_i^2\right) \exp\left(n\bar{x}\mu - \frac{n}{2}\mu^2\right)$$

$$= (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right) e^{-\frac{n}{2}(\bar{x} - \mu)^2}$$

$$= h(\boldsymbol{x}) g(\bar{x}|\mu)$$

where $h(\boldsymbol{x})=(2\pi)^{-n/2}\exp\left(-\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2\right)$ does not depend on μ and $g(t|\mu)=e^{-\frac{n}{2}(t-\mu)^2}$. Thus, \bar{X} is sufficient for μ .

- Example L10.3: Let X_1, \ldots, X_n be iid random variables from a Uniform $\{1, \ldots, \theta\}$ distribution. Show that $X_{(n)}$ is sufficient for θ .
- Answer to Example L10.3: Let $x=(x_1,\ldots,x_n)$, $\mathcal{N}_{\theta}=\{1,2,\ldots,\theta\}$, and \mathcal{N} is the set of positive integers. The joint pmf of X_1,\ldots,X_n is

$$f(\boldsymbol{x}|\theta) = \frac{1}{\theta^n} \prod_{i=1}^n I_{\mathcal{N}_{\theta}}(x_i)$$

$$= \frac{1}{\theta^n} \prod_{i=1}^n I_{\mathcal{N}}(x_i) I_{\mathcal{N}_{\theta}} (x_{(n)})$$

$$= \frac{1}{\theta^n} I_{\mathcal{N}_{\theta}} (x_{(n)}) \prod_{i=1}^n I_{\mathcal{N}}(x_i)$$

$$= g(x_{(n)}|\theta) h(\boldsymbol{x})$$

where $g(t|\theta) = \frac{1}{\theta^n} I_{\mathcal{N}_{\theta}}(t)$ and $h(\boldsymbol{x}) = \prod_{i=1}^n I_{\mathcal{N}}(x_i)$ does not depend on θ . Thus, $X_{(n)}$ is sufficient for θ .

- Sometimes, the information about the parameter cannot be summarized with a single number. The sufficient statistic might be a vector and the parameter itself might be vector-valued.
- Theorem L10.3 (Thm 6.2.10 on p.279): Let X_1, \ldots, X_n be iid observations from a pdf or pmf, $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right),$$

where
$$\pmb{\theta}=(\theta_1,\theta_2,\ldots,\theta_d),\ d\leq k.$$
 Then
$$T(\pmb{X})=\left(\sum_{j=1}^n t_1(X_j),\ldots,\sum_{j=1}^n t_k(X_j)\right) \text{ is a sufficient statistic}$$
 for $\pmb{\theta}.$

- Example L10.4: Suppose that X_1, \ldots, X_n is a random sample from a Normal distribution with unknown mean μ and unknown variance σ^2 . Find a sufficient statistic for (μ, σ^2) .
- Answer to Example L10.4: Recall from Example L6.5 that the normal family of densities with mean μ and variance σ^2 can be expressed as

$$f(x|\boldsymbol{\eta}) = h(x)c(\boldsymbol{\eta})e^{\eta_1 t_1(x) + \eta_2 t_2(x)}$$

where
$$h(x)=\frac{1}{\sqrt{2\pi}}$$
, $c^*(\eta)=\sqrt{\eta_1}\exp\left(-\frac{\eta_2^2}{2\eta_1}\right)$, $t_1(x)=-\frac{x^2}{2}$, and $t_2(x)=x$ with $\eta_1=1/\sigma^2$ and $\eta_2=\mu/\sigma^2$.

Thus,
$$\left(-\frac{1}{2}\sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i\right)$$
 is sufficient for (μ, σ^2) .

- Any one-to-one function of a sufficient statistic is also a sufficient statistic, as shown below.
- Suppose $T(\boldsymbol{X})$ is a sufficient statistic for $\boldsymbol{\theta}$, and suppose r is a one-to-one function (with inverse r^{-1}) such that $T^*(\boldsymbol{x}) = r(T(\boldsymbol{x}))$ for all \boldsymbol{x} .
- By the Factorization Theorem (Theorem L10.2), there exist g
 and h such that

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x}) = g(r^{-1}(T^*(\boldsymbol{x}))|\boldsymbol{\theta}))h(\boldsymbol{x}).$$

Letting $g^*(t|\boldsymbol{\theta}) = g(r^{-1}(t)|\boldsymbol{\theta})$, we have

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = g^*(T^*(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x})$$

so that $T^*(X)$ is sufficient for θ .

- Example L10.5: Suppose that X_1, \ldots, X_n is a random sample from a Normal distribution with unknown mean μ and unknown variance σ^2 . Show that (\bar{X}, S^2) is sufficient for (μ, σ^2) .
- Answer to Example L10.5: It was shown in Example L10.4 that $\left(-\frac{1}{2}\sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i\right)$ is sufficient for (μ, σ^2) . Let

$$r(t_1, t_2) = \left(\frac{t_2}{n}, \frac{-2nt_1 - t_2^2}{n(n-1)}\right).$$

Since r is one-to-one, $r\left(-\frac{1}{2}\sum_{i=1}^nX_i^2,\sum_{i=1}^nX_i\right)=\left(\bar{X},S^2\right)$ is sufficient for (μ,σ^2) .

- Definition L10.2 (Def 6.2.11 on p.280): A sufficient statistic $T(\boldsymbol{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\boldsymbol{X})$, $T(\boldsymbol{x})$ is a function of $T'(\boldsymbol{x})$.
- Theorem L10.4 (Thm 6.2.13 on p.281): Let $f(x|\theta)$ be a pmf/pdf of a sample X. Suppose there exists a function T(x) such that, for every two sample points x and y, the ratio $f(x|\theta)/f(y|\theta)$ is constant as a function of θ if and only if T(x) = T(y). Then T(X) is a minimal sufficient statistic for θ .

- Example L10.6: Let X_1, \ldots, X_n be iid Normal (μ, σ^2) , with μ and σ^2 unknown. Show that (\bar{X}, S^2) is a minimal sufficient statistic for (μ, σ^2) .
- Answer to Example L10.6: From Example L10.5, this statistic is sufficient. Let (\bar{x},s_x^2) and (\bar{y},s_y^2) denote the sample means and sample variances corresponding to the observed samples \boldsymbol{x} and \boldsymbol{y} , respectively. It can be shown that

$$\begin{split} \frac{f(\boldsymbol{x}|\mu,\sigma^2)}{f(\boldsymbol{y}|\mu,\sigma^2)} & = & \frac{\left(2\pi\sigma^2\right)^{-n/2}\exp\left\{-\left[n(\bar{x}-\mu)^2+(n-1)s_x^2\right]/(2\sigma^2)\right\}}{\left(2\pi\sigma^2\right)^{-n/2}\exp\left\{-\left[n(\bar{y}-\mu)^2+(n-1)s_y^2\right]/(2\sigma^2)\right\}} \\ & = & \exp\left\{-\left[n(\bar{x}^2-\bar{y}^2)+2n\mu(\bar{x}-\bar{y})-(n-1)(s_x^2-s_y^2)\right]/(2\sigma^2)\right\}, \end{split}$$

which is constant if and only if $\bar{x} = \bar{y}$ and $s_x^2 = s_y^2$.

Thus, (\bar{X},S^2) is a minimal sufficient statistic for (μ,σ^2) .

- Sufficient statistics are related to unbiased estimators through a well-known result known as the Rao-Blackwell Theorem.
- Theorem L10.5 (Thm 7.3.17 on p.342): Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathsf{E}(W|T)$. Then
 - (1) $\mathsf{E}_{\theta}\phi(T) = \tau(\theta)$ and
 - (2) $\operatorname{Var}_{\theta} \phi(T) \leq \operatorname{Var}_{\theta} W$ for all θ ;

that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

 Consequently, conditioning any unbiased estimator on a sufficient statistic will uniformly "improve" the estimator, so the Rao-Blackwell Theorem shows that we only need to consider statistics which are functions of sufficient statistics when searching for a UMVUE.

Review: Iterated expectation formulas

• Theorem L10.6 (Thm 4.4.3 on p.164): If X and Y are any two random variables, then

$$\mathsf{E}[X] = \mathsf{E}[\mathsf{E}[X|Y]],$$

provided that the expectations exist.

• Theorem L10.7 (Thm 4.4.7 on p.167): For any two random variables X and Y,

$$\mathsf{Var}[X] = \mathsf{E}[\mathsf{Var}[X|Y]] + \mathsf{Var}[\mathsf{E}[X|Y]]$$

provided that the expectations exist.

• Proof of Theorem L10.5: Since T is sufficient, W|T does not depend on θ and thus $\phi(T)=\mathsf{E}[W|T]$ is only a function of the sample and thus an estimator. Using the iterated formulas, we have

$$\mathsf{E}[\phi(T)] = \mathsf{E}[\mathsf{E}[W|T]] = \mathsf{E}[W] = \tau(\theta)$$

and

$$\begin{aligned} \mathsf{Var}[W] &=& \mathsf{E}[\mathsf{Var}[W|T]] + \mathsf{Var}[\mathsf{E}[W|T]] \\ &=& \mathsf{E}[\mathsf{Var}[W|T]] + \mathsf{Var}[\phi(T)] \\ &\geq& \mathsf{Var}[\phi(T)] \end{aligned}$$

since $Var[W|T] \ge 0$, and thus, $E[Var[W|T]] \ge 0$.

- Example L10.7: Let X_1 and X_2 be independent identically distributed (iid) Poisson(θ) random variables.
 - (a) Find a sufficient statistic for θ .
 - (b) Show that $T(X_1) = \begin{cases} 1 & \text{if } X_1 = 0 \\ 0 & \text{otherwise} \end{cases}$
 - is an unbiased estimator of $\tau(\theta) = e^{-\theta}$. (c) Compute $\mathsf{E}[T(X_1)|X_1 + X_2 = y]$.
 - (d) For the estimator $T(X_1)$ in part (b), find a uniformly better unbiased estimator of $e^{-\theta}$.

• Answer to Example L10.7: (a) The joint pmf of X_1 and X_2 is

$$f(x_1, x_2 | \theta) = f(x_1 | \theta) f(x_2 | \theta) = \frac{\theta^{x_1} e^{-\theta}}{x_1!} \frac{\theta^{x_2} e^{-\theta}}{x_2!}$$
$$= \frac{\theta^{x_1 + x_2} e^{-2\theta}}{x_1! x_2!} = g(x_1 + x_2 | \theta) h(x_1, x_2)$$

where $g(t|\theta) = \theta^t e^{-2\theta}$ and $h(x) = \frac{1}{x_1!x_2!}$. So, $X_1 + X_2$ is sufficient for θ .

- (b) $E[T(X_1)] = P(T(X_1) = 1) = P(X_1 = 0) = \frac{\theta^0 e^{\theta}}{0!} = e^{-\theta}$
- (c) Since $X_1 + X_2 \sim \mathsf{Poisson}(2\theta)$, we have

$$\begin{split} \mathsf{E}[T(X_1)|X_1+X_2=y] &=& P(T(X_1)=1|X_1+X_2=y) \\ &=& P(X_1=0|X_1+X_2=y) \\ &=& \frac{P(X_1=0 \text{ and } X_1+X_2=y)}{P(X_1+X_2=y)} \\ &=& \frac{P(X_1=0 \text{ and } X_2=y)}{P(X_1+X_2=y)} \end{split}$$

• Answer to Example L10.7 continued:

$$\begin{split} \mathsf{E}[T(X_1)|X_1 + X_2 = y] &= \frac{P(X_1 = 0 \text{ and } X_2 = y)}{P(X_1 + X_2 = y)} \\ &= \frac{P(X_1 = 0)P(X_2 = y)}{P(X_1 + X_2 = y)} \\ &= \frac{e^{-\theta}(\theta^y e^{-\theta}/y!)}{(2\theta)^y e^{-2\theta}/y!} \\ &= \frac{\theta^y}{(2\theta)^y} = \left(\frac{1}{2}\right)^y. \end{split}$$

• (d) Since $T(X_1)$ is an unbiased estimator of $e^{-\theta}$ and $X_1 + X_2$ is sufficient for θ (and consequently $e^{-\theta}$), the Rao-Blackwell Theorem implies that

$$\phi(X_1+X_2) = \mathsf{E}[T(X_1)|X_1+X_2] = \left(\frac{1}{2}\right)^{X_1+X_2}$$

is a uniformly better unbiased estimator of $e^{-\theta}$.