Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет)

Кафедра «Прикладная математика»

Домашняя работа

по дисциплине «Методы численного решения стационарных задач науки и техники»

Метод установления

Bыполнила студентка группы Φ H2-31М Mатихина $\mathcal{A}.\mathcal{U}.$

Преподаватель Таюрский А.А.

1. Решение задачи

Рассматриваем одномерную задачу

$$\frac{d^2u}{dx^2} = -49\sin(7x), \quad x \in [0, \pi],$$

с граничными условиями

$$u(0) = u(\pi) = 0.$$

Аналитическое решение задачи имеет вид

$$u(x) = \sin(7x).$$

Искать приближенное решение будем методом установления. Формулируем следующую нестационарную задачу

$$\frac{du}{dt} = \frac{d^2u}{dx^2} + 49\sin(7x),$$

$$u(t,0) = u(t,\pi) = 0, \quad u(0,x) = \Psi(x) = x(\pi - x),$$

где $\Psi(x)$ – начальное условие.

Будем строить разностную схему, вводим сетку $\omega_h \times \omega_t$:

$$\omega_h = \left\{ x_i = ih, i = \overline{0, N}, h = \frac{\pi}{N} \right\},$$

$$\omega_\tau = \left\{ t_j = j\tau, j = \overline{0, m} \right\}.$$

Строим явную разностную схему

$$\frac{y_{i,j+1} - y_{i,j}}{\tau} = \frac{y_{i+1,j} - 2y_{i,j} + y_{i-1,j}}{h^2} + 49sin(7x_i),$$

отсюда

$$y_{i,j+1} = \frac{\tau}{h^2} (y_{i+1,j} - 2y_{i,j} + y_{i-1,j}) + \tau 49sin(7x_i) + y_{i,j}.$$

Из условия положительности коэффициентов получаем условие устойчивости разностной схемы

$$\tau < \frac{h^2}{2}.$$

Получаем результаты для N = 100, m = 100000. На графиках красным цветом – аналитическое решение, зеленым – начальное условие, синим – установившееся решение ($m = m_2 = 10^5$), фиолетовым – промежуточное решение ($m = m_1 = 10^4$).

Рис. 1. Результаты работы программы при $\tau = 0.05 h^2$

Рис. 2. Результаты работы программы при $\tau = 0.45 h^2$

2. Листинг кода

```
clear all;
N = 100;
h = pi/N;
k = 7;
tau = 0.9*h^2/2;
m1 = 1e4;
m2 = 1e5; %количество временных шагов
x = 0:h:pi;
u0 = x.*(pi-x); %начальное условие
u=zeros(2, length(x));
u(1, :) = u0; %решение на текущем временном шаге
u(2, :) = u0; %решение на следующем временном шаге
cour = tau/h^2; %число Куранта
if tau >= h^2/2
disp('Не выполнено условие устойчивости!');
for j = 1:m2
for i = 2:length(x)-1
u(2,i) = cour*(u(1,i+1)-2*u(1,i)+u(1,i-1)) + u(1,i) +49*tau*sin(7*x(i));
u(1,:) = u(2,:); %обновляем начальное условие
if j == m1
u_{med} = u(2,:);
end
end
plot(x, sin(k*x), 'r', x, u0, 'g', x, u(2,:), 'b*', x, u_med, 'm', 'LineWidth', 1.2)
xlabel('x','FontSize', 14)
ylabel('U','FontSize', 14)
xlim([0 pi])
legend('Аналитическое', 'Начальное',...
'Установившееся', 'Промежуточное', 'FontSize',9)
```