5 PLUS LOIN, PLUS FORT

- **Exercice 40** (Continuité des fonctions puissances). Cet exercice s'inscrit dans la continuité de l'exercice 30 sur les fonctions lipschitziennes.
 - 1. Montrer que pour tout $n \in \mathbb{N}$ et pour tous $a, b \in \mathbb{R}$ tels que a < b, la fonction puissance n-ième est k-lipschitzienne sur [a, b], avec $k := n \max(|a|, |b|)^{n-1}$.
 - 2. En déduire que pour tout $n \in \mathbb{N}$, la fonction puissance n-ième est continue sur \mathbb{R} .
- **Exercice 41.** Le but de cet exercice est de démontrer l'affirmation du cours (corollaire 55) selon laquelle l'image d'un intervalle par une fonction continue est un intervalle.
 - 1. Soit I une partie non vide de \mathbb{R} telle que pour tous $x,y\in I$ tels que x< y on ait $[x,y]\in I$. Montrer que I est un intervalle. Indication : on distinguera plusieurs cas selon que I est minorée

Indication : on distinguera plusieurs cas selon que I est minoree (resp. majorée) ou non, et le cas échéant selon que I contient ou non sa borne inférieure (resp. supérieure).

- 2. Démontrer que si I est un intervalle de $\mathbb R$ et si f est continue sur I, alors f(I) est un intervalle.
- 3. L'image d'un intervalle ouvert par une fonction continue est-elle nécessairement un intervalle ouvert ?

La propriété topologique démontrée dans la question 1 peut être reformulée en disant que les intervalles sont les seules parties de \mathbb{R} connexes par arcs (c'està-dire, pour simplifier, « en un seul morceau »). Les possibilités sont plus riches dans des espaces de dimension supérieure comme \mathbb{R}^2 ou \mathbb{R}^3 , dans lesquels des ensembles connexes ne sont pas nécessairement des cubes!

Exercice 42. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue vérifiant

$$\forall x \in \mathbb{R}, \quad f(x) = f(\sin(x)).$$

- 1. Rappeler la démonstration de l'inégalité $|\sin(x)| \leq |x|$ valable pour tout $x \in \mathbb{R}$, puis résoudre l'équation $\sin(x) = x$ d'inconnue $x \in \mathbb{R}$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in[-1,1]$ et par $u_{n+1}=\sin(u_n)$ pour tout $n\in\mathbb{N}$.
 - (a) Montrer que la suite $(f(u_n))_{n\in\mathbb{N}}$ est constante.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est monotone.
 - (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 3. Montrer que f est constante.

Exercice 43 (Point fixe des fonctions contractantes). Cet exercice s'inscrit dans la continuité de l'exercice 30.

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. On suppose que I est stable par f (c'est-à-dire que $f(x) \in I$ pour tout $x \in I$), et on définit la suite récurrente $(u_n)_{n \in \mathbb{N}}$ par

$$u_0 \in I$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

On suppose que f est contractante, c'est-à-dire qu'il existe $k \in [0,1[$ tel que f soit k-lipschitzienne.

- 1. Commenter l'emploi du terme « contractante ».
- 2. Montrer que f est continue.
- 3. Montrer que f admet au plus un point fixe sur I. Ce point fixe existe-t-il nécessairement?
- 4. Montrer que si f admet un point fixe $\ell \in I$, alors on a

$$\forall n \in \mathbb{N}, \quad |u_n - \ell| \leqslant k^n |u_0 - \ell|,$$

et en déduire qu'alors $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Attention, la question qui suit ne peut être traitée qu'à l'aide de la notion de suites de Cauchy abordée dans l'exercice 54 du chapitre 6.

- 5. On cherche à montrer que f admet un point fixe dès lors que I est fermé (rappelons que les intervalles de la forme $]-\infty, a], [a, +\infty[$ et $\mathbb R$ sont considérés fermés).
 - (a) Montrer que $|u_i u_{i+1}| \le k^i |u_0 u_1|$ pour tout $i \in \mathbb{N}$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

D'après l'exercice 54 du chapitre 6, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite que l'on note c, et qui appartient à I puisque I est fermé.

(c) Montrer que c est un point fixe de f.

L'exercice explique pour quoi le caractère contractant de la fonction f implique, in dépendamment du choix de $u_0 \in I$, la convergence de u_n vers ℓ à un rythme au moins géométrique, qui apparaît clairement sur la figure ci-contre.

Exercice 44 (Théorème des bornes atteintes). Le but de cet exercice est de démontrer le théorème des bornes atteintes. Il utilise le théorème de Bolzano-Weierstrass (hors programme) démontré dans les exercices accompagnant le chapitre « Suites réelles », qui stipule que de toute suite réelle à valeurs dans un intervalle [a,b] de $\mathbb R$ on peut extraire une sous-suite qui converge vers une limite $\ell \in \mathbb R$.

Soient $a, b \in \mathbb{R}$ tels que a < b et soit f une fonction continue sur [a, b]. On va montrer que f est bornée sur [a, b] et y atteint sa borne supérieure, qui est donc un maximum; il suffira alors d'appliquer le résultat à -f pour voir que f atteint aussi sa borne inférieure, qui est donc un minimum.

1. Montrer que si f est non majorée, pour tout $n \in \mathbb{N}$ il existe $x_n \in [a, b]$ tel que $f(x_n) \ge n$, puis utiliser le théorème de Bolzano-Weierstrass pour arriver à une contradiction.

La fonction f est donc majorée, si bien que la quantité $M:=\sup_{[a,b]}f$ existe.

- 2. Montrer que pour tout $n \in \mathbb{N}$ il existe $y_n \in [a,b]$ tel que $M \frac{1}{n} \leqslant f(y_n) \leqslant M$, puis utiliser le théorème de Bolzano-Weierstrass pour conclure.
- **Exercice 45** (Convergence uniforme). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur un intervalle I, et soit f une fonction définie sur I.
 - 1. On suppose tout d'abord que pour tout $n \in \mathbb{N}$ la quantité sup $|f_n f|$ existe, et que

$$\sup_{x \in I} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

On dit alors que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f. Montrer que f est continue.

2. Montrer que cette propriété n'est pas nécessairement vraie si l'on suppose seulement que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f, au sens où $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ pour tout $x \in I$.

Mathematics is not a careful march down a well-cleared highway, but a journey into a strange wilderness, where the explorers often get lost. Rigour should be a signal to the historians that the maps have been made, and the real explorers have gone elsewhere.

— W.S. Anglin