Association Analysis

Data Mining (2018, Fall Semester)

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\{ \text{Diaper} \} \rightarrow \{ \text{Beer} \},$ $\{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \},$ $\{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \},$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

• Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- Association Rule
 - An implication expression of the form X →
 Y, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\begin{cases} \text{Milk,Diaper} & \rightarrow \{\text{Beer}\} \ (\text{s=0.4, c=0.67}) \\ \text{Milk,Beer} & \rightarrow \{\text{Diaper}\} \ (\text{s=0.4, c=1.0}) \\ \text{Diaper,Beer} & \rightarrow \{\text{Milk}\} \ (\text{s=0.4, c=0.67}) \\ \text{Beer} & \rightarrow \{\text{Milk,Diaper}\} \ (\text{s=0.4, c=0.67}) \\ \text{Diaper} & \rightarrow \{\text{Milk,Beer}\} \ (\text{s=0.4, c=0.5}) \\ \text{Milk} & \rightarrow \{\text{Diaper,Beer}\} \ (\text{s=0.4, c=0.5}) \end{cases}$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation • Brute-force approach:

- - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity • Given d unique items:

- - Total number of itemsets = 2d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Apriori Principle • If an itemset is frequent, then all of its subsets must also be frequent If an itemset is infrequenty; then all of its supersets must be infrequent too null $(\neg Y \rightarrow \neg X)$ frequent (c) frequent CE (CD) АВ AC BC (BD BE DE АВС (ABD) ABE ACD ACE (ADE) (BCD) BCE (BDE) CDE infrequent ACDE (ABDE) BCDE (ABCD) ABCE 13 ABCDE

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Step 2: Generate strong association rules from the frequent itemsets

Example
A database has five
transactions. Let the min sup
= 50% and min con f = 80%.

Database

TID	Items	
100	ACD	
200	BCE	
300	ABCE	
400	BE	

Rules	Support (X Y)	Support(X)	Confidence
{A} -> {C}	2	2	100
{B} -> {C}	2	3	66.66666667
{B} -> {E}	3	3	100
{C} -> {E}	2	3	66.6666667
{B} -> {C E}	2	3	66.66666667
{C} -> {B E}	2	3	66.66666667
{E} -> {B C}	2	3	66.6666667
{C} -> {A}	2	3	66.66666667
{C} -> {B}	2	3	66.66666667
{E} -> {B}	3	3	100
{E} -> {C}	2	3	66.66666667
{C E} -> {B}	2	2	100
{B E} -> {C}	2	3	66.66666667
{B C} -> {E}	2	2	100