CS 221: Artificial Intelligence

Lecture 8: MDPs

Sebastian Thrun and Peter Norvig

Slide credit: Dan Klein, Stuart Russell

Rhino Museum Tourguide

Minerva Robot

Pearl Robot

Nursebot Pearl

Cocktail Hour at the Longwood Independent Living Facility

Mine Mapping Robot Groundhog

Mine Mapping Robot Groundhog

Planning Uncertainty

Planning: Classical Situation

MDP-Style Planning

[Sondik 72] [Littman/Cassandra/Kaelbling 97]

A Quiz

# states	sensors	actions	size belief space?
3	perfect	deterministic	$3: s_1, s_2, s_3$
3	perfect	stochastic	3: S_1 , S_2 , S_3
3	abstract states	deterministic	2^3 -1: s_1 , s_2 , s_3 , s_{12} , s_{13} , s_{23} , s_{123}
3	stochastic	deterministic	2-dim continuous: $p(S=s_1)$, $p(S=s_2)$
3	none	etochaetic	2-dim continuous: $p(S=s_1)$, $p(S=s_2)$
1-dim continuous	s stochastic	deterministic	∞-dim continuous
1-dim continuous	stochastic	stochastic	∞-dim continuous
∞-dim continuous	stochastic	stochastic	aargh!

MPD Planning

- Solution for Planning problem
 - Noisy controls
 - Perfect perception
 - Generates "universal plan" (=policy)

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

Grid Futures

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example Optimal Policies

R(s) = -0.01

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

MDP Search Trees

Each MDP state gives a search tree

Why Not Search Trees?

- Why not solve with conventional planning?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)

Utilities

- Utility = sum of future reward
- Problem: infinite state sequences have infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
 - Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

- Fundamental operation: compute the values (optimal expect-max utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s:
 V*(s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):
 Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy: $\pi^*(s) = \text{optimal action from state } s$

3	0.812	0.868	0.912	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4

The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

28

Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Solving MDPs

- We want to find the optimal policy π^*
- Proposal 1: modified expect-max search, starting from each state s:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_a Q^*(s, a)$$

Value Iteration

Idea:

- Start with $V_0^*(s) = 0$
- Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

Example: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q?

$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration
- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often
- In fact, we can update the policy as seldom or often as we like, and we will still converge
- Idea: Update states whose value we expect to change: If $|V_{i+1}(s)-V_i(s)|$ is large then update predecessors of s

Value Iteration: Example

Another Example

Value Function and Plan

Мар

Another Example

Мар

Value Function and Plan

Value Iteration in Belief space: POMDPs

- Partially Observable Markov Decision Process
 - Known model (learning even harder!)
 - Observation uncertainty
 - Usually also: transition uncertainty
 - Planning in belief space = space of all probability distributions

 Value function: Piecewise linear, convex function over the belief space

Introduction to POMDPs (1 of 3)

Introduction to POMDPs (2 of 3)

[Sondik 72, Littman, Kaelbling, Cassandra '97]

Introduction to POMDPs (3 of 3)

[Sondik 72, Littman, Kaelbling, Cassandra '97]

POMDP Algorithm

- Belief space = Space of all probability distribution (continuous)
- Value function: Max of set of linear functions in belief space
- Backup: Create new linear functions

Number of linear functions can grow fast!

Why is This So Complex?

Belief Space Structure

The controller may be globally uncertain...

but not usually.

Augmented MDPs:

Path Planning with Augmented MDPs

Conventional planner

