

Université Abdelmalek Essaâdi Ecole Normale Supérieure

Licence d'éducation

Spécialité: Maths Matière: Analyse

SERIE (3)

Année scolaire: 2023/2024

Semestre: 2

Prof: EL ALAMI LAAROUSSI Adil

Exercice 1

Les intégrales suivantes sont-elles convergentes:

$$I_{1} = \int_{1}^{e} \ln(t-1) dt, \quad I_{2} = \int_{0}^{+\infty} e^{-t^{2}+1} dt, \quad I_{3} = \int_{0}^{+\infty} t\cos(t)e^{-2t} dt, \quad I_{4} = \int_{0}^{+\infty} \ln(2t)e^{-2t} dt$$

$$I_{5} = \int_{0}^{+\infty} \frac{2}{e^{t}-1} dt, \quad I_{6} = \int_{0}^{+\infty} \frac{te^{-2t}}{t^{2}+1} dt, \quad I_{7} = \int_{0}^{1} \sin\left(\frac{1}{t}\right) dt \ et \ I_{8} = \int_{2}^{+\infty} \frac{5}{t(\ln(t))^{2}} dt.$$

Exercice 2

Etudier la convergence des intégrales suivantes selon la valeur du paramètre α .

$$I_1 = \int_0^{+\infty} \frac{1}{x^{\alpha}} dx$$
, $I_2 = \int_0^{+\infty} \frac{e^{-x} - 1}{x^{\alpha}} dx$ et $I_3 = \int_0^{+\infty} \frac{1 - \sin(x)}{x^{\alpha}} dx$

Exercice 3

Soit

$$I(\alpha) = \int_0^{+\infty} \frac{1}{(1+t^2)(1+t^{\alpha})} dt.$$

- 1) Montrer que $I(\alpha)$ converge pour tout réel α .
- 2) En utilisant le changement de variable $t = \frac{1}{x}$, calculer cette intégrale.

Exercice 4

Soit

$$I(n) = \int_{1}^{+\infty} \frac{\ln(t)}{t^{n}} dt$$

- 1) Etudier pour quelles valeurs de $n \in \mathbb{N}$ l'intégrale I(n) converge.
- 2) Calculer I(n) dans le cas où cette dernière est convergente.

Exercice 5

Soit f une fonction décroissante de $[a, +\infty]$ dans \mathbb{R}^+

- 1) Montrer que si $x \ge a$, l'inégalité: $xf(2x) \le \int_x^{2x} f(t) dt$.
- 2) En déduire que si l'intégrale $\int_0^{+\infty} f(t) dt$ converge, alors $\lim_{x\to +\infty} x f(x) = 0$.
- 3) Montrer par un contre-exemple que la réciproque est fausse.