A8-Assignment-CH5.1

Problem 11 - Obtain an upper bound on the absolute error when we compute $\int_0^6 \sin(x^2), dx$ by means of the composite trapezoid rule using 101 equally spaced points.

- 1. Number of subintervals and step size:
 - 101 points
 - Gives us 100 subintervals (n = 100).
 - So, our step size will be
 - Step size $h = \frac{6-0}{100}$
 - = 0.06.
- 2. Error formula for composite trapezoid rule:
 - Absolute error bound: $|E| \leq \frac{1}{12}(b-a)h^2 \max_{\xi \in [a,b]} |f''(\xi)|$.
- 3. Second derivative of $f(x) = \sin(x^2)$:
 - $f''(x) = 2\cos(x^2) 4x^2\sin(x^2)$.
 - Max of |f''(x)| on [0, 6]:
 - Approximate $\max |f''(x)| \le 2 + 4(6)^2 = 146$.
- 4. Compute the error bound:
 - $|E| \le \frac{1}{12} \times 6 \times (0.06)^2 \times 146 = 0.2628$.

Aaand the answer is 0.2628

Problem 17 - Compute two approximate values for $\int_1^2 \frac{dx}{x^2}$ using $h=\frac{1}{2}$ with the composite trapezoid rule.

- 1. First, lets get the step size and subintervals:
 - $h = \frac{1}{2}$
 - partition points will be: 1, 1.5, 2.
- 2. Composite trapezoid rule formula:
 - $T = \frac{h}{2}[f(1) + 2f(1.5) + f(2)].$
- Lets evaluate $f(x) = \frac{1}{x^2}$ at partition points (using scientific calculator):
 - f(1) = 1
 - $f(1.5) = \frac{4}{9}$
 - $f(2) = \frac{1}{4}$
- Compute the approximation:
 - $T = \frac{1/2}{2} \left[1 + 2 \left(\frac{4}{9} \right) + \frac{1}{4} \right]$
 - $=\frac{77}{144}\approx 0.5347.$

Problem 18 - Consider $\int_1^2 \frac{dx}{x^3}$. What is the result of using the composite trapezoid rule with the partition points - 1, $\frac{3}{2}$, and 2?

1. Partition points:

- Subintervals: $[1, \frac{3}{2}]$ and $[\frac{3}{2}, 2]$.
- 2. Composite trapezoid rule formula:

$$ullet$$
 $T=rac{h}{2}igl[f(1)+2figl(rac{3}{2}igr)+f(2)igr]$, where $h=rac{1}{2}.$

- 3. **Evaluate $f(x) = \frac{1}{x^3}$ at partition points:
- 4. Still using the scientific calculator since it makes it faster**
 - f(1) = 1
 - $f(\frac{3}{2}) = \frac{8}{27}$
 - $f(2) = \frac{1}{8}$
- 5. Compute the approximation:
 - $T = \frac{1/2}{2} \left[1 + 2 \left(\frac{8}{27} \right) + \frac{1}{8} \right]$
 - $=\frac{371}{864}\approx 0.4294$.