DBV-Projekt:

Strukturanalyse von Halbleiterelementen mit der Hough-Transformation

André Betz

Inhalt:

- Problemstellung
- Hough-Transformation
 - Geraden
 - Kreise
- Beurteilung

Problemstellung:

Erkennen von
 unterbrochenen Rechtecken
 und Kreisen

unterschiedliche
 Lichtverhältnisse

- Entfernung von Schlieren

Generierung von Binärbildern: Sobelfilter

$$g_y(x, y) = a_y * I(x, y)$$
$$g_x(x, y) = a_x * I(x, y)$$
$$S = \sqrt{g_x^2 + g_y^2}$$

$$a_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad a_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$a_{x} = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{vmatrix}$$

Faltungsoperator in x-Richtung

Hough-Transformation:

- alle Randpunkte, die zur Struktur (Objekt) gehören, werden im Transformationsraum abgebildet
- Transformationsraum (Hough-Raum) wird durch ein Akkumulatorarray repräsentiert
- je mehr Punkte zu einer Struktur gehören, desto deutlicher wird dies im Akkumulator sichtbar
- Maximum in den Akkumulatorzellen enthält die Parameter des gesuchten Objektes

André Betz 22 5 2001

Hough-Transformation: Geradengleichung

Geradengleichung 1:

$$y(x): y = m \cdot x + t$$

 $\Leftrightarrow t(m): t = y - m \cdot x$

Geradengleichung 2:

André Betz, 22.5.2001

$$t(\alpha): t = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

Hessche Normalform

Seite 6

Hough-Transformation: Transformation Gerade 1

$$t(m) = y - m \cdot x$$

$$t_1(m) = 7 - m \cdot 3$$
$$t_2(m) = 6 - m \cdot 1$$

$$t_3(m) = 5 - m \cdot 2$$

$$t_{\Delta}(m) = 1 - m \cdot 0$$

m	-2	-1	0	1	2
t1	13	10	7	4	1
t2	8	7	6	5	4
t3	9	7	5	3	1
t4	1	1	1	1	1

$$y(x) = 2 \cdot x + 1$$

4	Parameterraum						
7	0	2	1	0	0		
6	0	0	1	0	0		
5	0	0	1	1	0		
4	0	0	0	1	1		
3	0	0	0	1	0		
2	0	0	0	0	0		
1	1	1	1	1	3		
0	0	0	0	0	0		
-1	0	0	0	0	0		
	-2	-1	0	1	2		

Hough-Transformation: Transformation Gerade 2

Hough-Transformation: Transformation Gerade 2

Hough-Transformation: Endpunkte der Geraden

Hough-Transformation: Kreise

Kreis in kartesischen Koordinaten

$$R^{2}(x,y) = (x-x_{0})^{2} + (y-y_{0})^{2}$$

$$\Leftrightarrow x_{0}(R,y_{0}) = x - \sqrt{R^{2} - (y-y_{0})^{2}}$$

Kreis in Parameterdarstellung

$$x = x_0 + R\cos(\alpha)$$
$$y = y_0 + R\sin(\alpha)$$

Hough-Transformation: Kreise

Hough-Transformation: intelligentes Suchen

Auflösung der Parameter wird im Maximum schrittweise erhöht

Hough-Transformation: Kreise (optimiert)

Hough-Transformation: Beurteilung

- + Robust gegenüber Helligkeitsschwankungen
- + Erkennung von unterbrochenen Kanten eines Objektes

- trotz einfacher Formeln recht komplex in der Handhabung
- hoher Rechenaufwand