LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas de masas m_1 y m_2 que cuelgan de una cuerda de longitud ℓ que pasa por sobre una polea de radio R_p y masa m_p .

- a) Resuelva el caso en que se considera m_p irrelevante.
- b) Resuelva ahora considerando m_p , y que la polea presenta una sección cilíndrica. El momento de inercia de tal cilindro de masa m ante rotaciones en torno a su eje de simetría longitudinal es $(m/2)R^2$.

2. Aro y polea

Una partícula de masa m pende del extremo de una cuerda de longitud ℓ que tiene una masa despreciable y está enrollada en torno a una polea de radio R_p , también de masa despreciable. El otro extremo se ata con un nudo de masa M > m a un aro de masa m_a , enrollándose parcialmente en torno a éste. El radio del aro es R y puede rotar libremente, lo que hace que éste y el nudo presenten momentos de inercia $m_a R^2$ y MR^2 respectivamente.

- a) Describa la ligadura contemplando el ángulo de rotación del aro.
- b) Obtenga la ecuación de Euler-Lagrange para la dinámica.

3. Péndulo de pesas engarzadas y acopladas

Dos partículas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 se mueve solo sobre el eje x y la de m_2 solo sobre el y.

- a) Despeje la aceleración en la ecuación de Euler-Lagrange para una única coordenada generalizada
 - 1) y = 2) θ

Tras resolver ambos casos, ¿cuál preferiría para trabajar?

b) (*) ¿Cuál es el período de movimiento de pequeñas oscilaciones para el caso $m_1 = m_2 = m$?

Mecánica Analítica Computacional

- 4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]
 - a) Escriba la posición de las tres pesas y de la polea inferior en función de las cuatro coordenadas generalizadas indicadas en la figura: y_i con i=1,2,3,p.
 - b) Modele las ligaduras que proveen las cuerdas en dos funciones.
 - c) Haciendo uso de estas últimas reemplace en las posiciones para expresarles en función de solo dos y_i .
 - d) Calcule energías potenciales y cinéticas contemplando los momentos de inercia de las poleas. Recuerde la relación entre el perímetro (circunferencia) de un círculo y su radio para escribir la velocidad angular en función del \dot{y}_i correspondiente.
 - e) Obtenga las dos ecuaciones de Euler-Lagrange.
 - f) Resuelva este sistema de ecuaciones para obtener las dos correspondientes aceleraciones generalizadas y con estas escribir las aceleraciones de los cuatro cuerpos en cuestión.

