Linear Algebra 4.5 Homework

Michael Brodskiy

Instructor: Prof. Knight

Problems 1-6, 10, 13, 15, 18, 22, 23, 25, 33, 37, 41, 45, 47, 67, 73, 78, 81

1. $\{(1,0,0,0,0,0),(0,1,0,0,0,0),(0,0,1,0,0,0),(0,0,0,1,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1)\}$

2.
$$\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$$

3.

$$\left\{
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \right\}$$

$$4. \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

- 5. $\{1, x, x^2, x^3, x^4\}$
- 6. $\{1, x, x^2\}$
- 10. The set does not span \mathbb{R}^2 so it is not a basis
- 13. It is not basis because it is linearly dependent and does not span \mathbb{R}^2
- 15. The set is linearly dependent, and does not span \mathbb{R}^3 , so it is not a basis for it
- 18. The set does not span \mathbb{R}^3

- 22. The set is linearly dependent
- 23. The set is linearly dependent
- 25. The set does not span P_2
- 33. The set is linearly independent
- 37. Not a basis because it is linearly dependent
- 41. It is a basis for \mathbb{R}^3
 - (a) S is linearly independent \checkmark
 - (b) S spans \mathbb{R}^3
- 45. It is a basis for \mathbb{R}^4
 - (a) S is linearly independent \checkmark
 - (b) S spans \mathbb{R}^4
- 47. It is a basis for P_3

(a)
$$\begin{vmatrix} 1 & -4 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{vmatrix} \neq 0 \text{ so it is linearly independent } \checkmark$$

- (b) S spans P_3 \checkmark
- 67. $\{(0,1),(1,0)\},\{(1,1),(0,1)\},\{(1,1),(1,0)\}$
- 73. (a) W forms a line
 - (b) There is only one term, so it is a basis of itself: $\{(2,1,-1)\}$
 - (c) One term, so dimension = 1
- 78. (a) Basis: $\{(1,0,1,2)\},\{(4,1,0,-1)\}$
 - (b) Two terms, so dimension = 2
- 81.

If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$, then there exists a solution to:

$$\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_n = 0$$

The same can be said for $S = \{c\mathbf{v}_1, c\mathbf{v}_2, \dots, c\mathbf{v}_n\}$

$$c\mathbf{v}_1 + c\mathbf{v}_2 + \dots + c\mathbf{v}_n = 0$$

Multiplying both sides by $\frac{1}{c}$ the following is obtained:

$$\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_n = 0$$

 \therefore both are basis for V