

Exercícios Complementares

Retificadores Controlados - Monofásico

Ex. 01) O circuito é alimentado por uma fonte senoidal de 60Hz e tensão eficaz de 220V. O transformador possui em seu enrolamento primário N1=100 espiras, enquanto que em N2= N3= 50 espiras. Todo o circuito alimenta uma carga do tipo RL, que possui $R=100\Omega$ e L= 600mH. Desta forma, determine:

- a) Ângulo de extinção da corrente α = 100°, informe o modo de condução;
- b) Tensão e corrente media aplicada à carga, α = 100° ;
- c) Representação da tensão e corrente aplicada à carga, α = 100°;

02) Um retificador totalmente controlado alimenta uma carga RL, onde L é bem expressivo o que torna a corrente na carga constante e de valor de 10A. O retificador é alimentado através de um transformador com N1= 110 espiras e N2= 190 espiras. A entrada do transformador é ligado a uma rede de tensão senoidal de tensão eficaz de 220V e freqüência 60Hz. Desta forma, determine:

a) Determine a tensão média na carga para $\alpha = 45^{\circ}$

b) Potência aparente na entrada;

c) Fator de deslocamento;

d) Fator de potência, do ponto de vista da entrada da rede;

e) Corrente eficaz na entrada (I_{IN});

 f) Análise qualitativa, indicando qual(is) dispositivos estão em condução e represente a sequência dos disparos para cada tiristor;

g) Represente as formas de ondas da tensão de saída e corrente na entrada, com os seus respectivos valores máximos.

3) Para o circuito abaixo determine o que se pede:

Considerando a chave na posição "aberta" e ângulo de disparo de T_1 com α =40°:

- a) Determine o ângulo de extinção β(°).
- b) Represente a tensão e corrente na carga no espaço abaixo.
- c) Determine o valor da tensão e corrente média na carga
- d) Determine o valor da corrente RMS na carga.

Considerando a chave na posição "fechada" T_1 com α =40° e T_{RI} com α =0° (dois semiciclos)

- a) Represente a tensão e corrente na carga no espaço abaixo.
- b) Determine o ângulo de extinção β(°)

