

1 Условие задания

Исходные данные для варианта 132:

V/V	e 1	e2	e3	e4	e5	e6	e7	e8	e 9	e10	e11	e12
e1	0	2	1	1	5	3	4	1	1			5
e2	2	0		4	2							3
e3	1		0	2	5				5		5	2
e4	1	4	2	0			4	4	4		2	2
e 5	5	2	5		0	3	1		2		4	
e6	3				3	0			5			5
e7	4			4	1		0	5	2	4		3
e8	1			4			5	0	1			
e9	1		5	4	2	5	2	1	0	1		
e10							4		1	0		
e11			5	2	4						0	
e12	5	3	2	2		5	3					0

2 Планаризация графа

Сделаем граф невзвешенным, уберём все веса:

V/V	e 1	e2	e3	e4	e5	e6	e 7	e8	e 9	e10	e11	e12
e1	0	1	1	1	1	1	1	1	1			1
e2	1	0		1	1							1
e3	1		0	1	1				1		1	1
e4	1	1	1	0			1	1	1		1	1
e 5	1	1	1		0	1	1		1		1	
e6	1				1	0			1			1
e7	1			1	1		0	1	1	1		1
e8	1			1			1	0	1			
e 9	1		1	1	1	1	1	1	0	1		
e10							1		1	0		
e11			1	1	1						0	
e12	1	1	1	1		1	1					0

2.1 Нахождение гамильтонова цикла

- 1. Включаем в S вершину e_1 . $S = \{e_1\}$ Будем последовательно включать возможные вершины в S
- 2. Возможная вершина e_2 . $S = \{e_1, e_2\}$
- 3. Возможная вершина e_3 . $S = \{e_1, e_2, e_3\}$
- 4. Возможная вершина e_4 . $S = \{e_1, e_2, e_3, e_4\}$
- 5. Возможная вершина e_5 . $S = \{e_1, e_2, e_3, e_4, e_5\}$
- 6. Возможная вершина e_6 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6\}$
- 7. Возможная вершина e_9 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9\}$
- 8. Возможная вершина e_7 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7\}$
- 9. Возможная вершина e_8 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7, e_8\}$
- 10. У e_8 больше нет возможных вершин, поэтому ее необходимо удалить и вернуться в предыдущей, к e_7 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7\}$

- 11. Возможная вершина e_{10} . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7, e_{10}\}$
- 12. У e_{10} больше нет возможных вершин, поэтому ее необходимо удалить и вернуться в предыдущей, к e_7 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7\}$
- 13. Возможная вершина e_{12} . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7, e_{12}\}$
- 14. У e_{12} больше нет возможных вершин, поэтому ее необходимо удалить и вернуться в предыдущей, к e_7 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9, e_7\}$
- 15. У e_7 больше нет возможных вершин, поэтому удаляем ее и возвращается в предыдущей, к e_9 . $S = \{e_1, e_2, e_3, e_4, e_5, e_6, e_9\}$
- 16. Далее заново начинаем подбирать вершины и смотреть, подходят ли нам они. Таким образом продолжаем до тех пор, пока не найдем гамильтонов путь.

Получаем гамильтонов цикл. Он выглядит следующим образом: $S = \{e_1, e_2, e_4, e_3, e_{11}, e_5, e_6, e_{12}, e_7, e_{10}, e_9, e_8\}$

2.2 Перенумерование вершин

Теперь перенумеруем вершины согласно полученнуму циклу.

Получаем:

До перенумерации	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
После перенумерации	e_1	e_2	e_4	e_3	e_{11}	e_5	e_6	e_{12}	e_7	e_{10}	e_9	e_8

V/V	e 1	e2	e3	e4	e 5	e6	e7	e 8	e9	e10	e11	e12
e1	0	1	1	1		1	1	1	1		1	1
e2	1	0	1			1		1				
e3	1	1	0	1	1			1	1		1	1
e4	1		1	0	1	1		1			1	
e5			1	1	0	1						
e6	1	1		1	1	0	1		1		1	
e7	1					1	0	1			1	
e8	1	1	1	1			1	0	1			
e 9	1		1			1		1	0	1	1	1
e10									1	0	1	
e11	1		1	1		1	1		1	1	0	1
e12	1		1						1		1	0

2.3 Построение графа пересечений G'

- 1. Определим p_{2-8} , для чего в матрице R выделим подматрицу R_{2-8} . Ребро (e_2e_8) пересекается с (e_1e_3) , (e_1e_4) , (e_1e_6) , (e_1e_7)
- 2. Определим p_{2-6} , для чего в матрице R выделим подматрицу R_{2-6} . Ребро (e_2e_6) пересекается с (e_1e_3) , (e_1e_4)
- 3. Определим p_{3-12} , для чего в матрице R выделим подматрицу R_{3-12} . Ребро (e_3e_{12}) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_7) , (e_1e_8) , (e_1e_9) , (e_1e_{11}) , (e_2e_6) , (e_2e_8)
- 4. Определим p_{3-11} , для чего в матрице R выделим подматрицу R_{3-11} . Ребро (e_3e_{11}) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_7) , (e_1e_8) , (e_1e_9) , (e_2e_6) , (e_2e_8)

- 5. Определим p_{3-9} , для чего в матрице R выделим подматрицу R_{3-9} . Ребро (e_3e_9) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_7) , (e_1e_8) , (e_2e_6) , (e_2e_8)
- 6. Определим p_{3-8} , для чего в матрице R выделим подматрицу R_{3-8} . Ребро (e_3e_8) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_7) , (e_2e_6)
- 7. Определим p_{3-5} , для чего в матрице R выделим подматрицу R_{3-5} . Ребро (e_3e_5) пересекается с (e_1e_4)
- 8. Определим p_{4-11} , для чего в матрице R выделим подматрицу R_{4-11} . Ребро (e_4e_{11}) пересекается с (e_1e_6) , (e_1e_7) , (e_1e_8) , (e_1e_9) , (e_2e_6) , (e_2e_8) , (e_3e_5) , (e_3e_8) , (e_3e_9)

Найдено 15 пересечений. Поиск заканчиваем. Получаем:

	p_{1-3}	p_{2-8}	p_{1-4}	p_{1-6}	p_{1-7}	p_{2-6}	p_{3-12}	p_{1-8}	p_{1-9}	p_{1-11}	p_{3-11}	p_{3-9}	p_{3-8}	p_{3-5}	p_{4-11}
p_{1-3}	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
p_{2-8}	1	1	1	1	1	0	1	0	0	0	1	1	0	0	1
p_{1-4}	0	1	1	0	0	1	1	0	0	0	1	1	1	1	0
p_{1-6}	0	1	0	1	0	0	1	0	0	0	1	1	1	0	1
p_{1-7}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1
p_{2-6}	1	0	1	0	0	1	1	0	0	0	1	1	1	0	1
p_{3-12}	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0
p_{1-8}	0	0	0	0	0	0	1	1	0	0	1	1	0	0	1
p_{1-9}	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1
p_{1-11}	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
p_{3-11}	0	1	1	1	1	1	0	1	1	0	1	0	0	0	0
p_{3-9}	0	1	1	1	1	1	0	1	0	0	0	1	0	0	1
p_{3-8}	0	0	1	1	1	1	0	0	0	0	0	0	1	0	1
p_{3-5}	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
p_{4-11}	0	1	0	1	1	1	0	1	1	0	0	1	1	1	1

2.4 Построение семейства ψG

- 1. Рассмотрим 1 строку матрицы. Найдём первый нулевой элемент.
- 2. Запишем дизъюнкцию $M_{1-3}=r_1\lor r_3=11000100000000\lor 011001100011110=111001100011110$
- 3. В строке M_{1-3} находим номера нулевых элементов: $J' = \{4, 5, 8, 9, 10, 15\}$
- 4. Запишем дизъюнкцию $M_{1-3-4}=M_{1-3} \lor r_4=111001100011110 \lor 010100100011101=010100100011101$
- 5. В строке M_{1-3-4} находим номера нулевых элементов: $J' = \{5, 8, 9, 10\}$
- 6. Запишем дизъюнкцию $M_{1-3-4-5}=M_{1-3-4}\vee r_5=111101100011111\vee 010010100011101=111111100011111$
- 7. В строке $M_{1-3-4-5}$ находим номера нулевых элементов: $J' = \{8, 9, 10\}$
- 8. Запишем дизъюнкцию $M_{1-3-4-5-8}=M_{1-3-4-5}\vee r_8=1111111000111111\vee 000000110011001=11111111100111111$
- 9. В строке $M_{1-3-4-5-8}$ находим номера нулевых элементов: $J' = \{9, 10\}$

- 11. В строке $M_{1-3-4-5-8-9}$ находим номера нулевых элементов: $J' = \{10\}$
- 13. В строке $M_{1-3-4-5-8-9-10}$ все единицы. Значит закончено построение ψ_1 . $\psi_1 = \{u_{1-3}, u_{1-4}, u_{1-6}, u_{1-7}, u_{1-8}, u_{1-9}, u_{1-11}\}$

Повторяем этот алгоритм для $\psi_2...\psi_{12}$. Получаем следующее:

```
\begin{split} &\psi_1 = \left\{u_{1-3}, u_{1-4}, u_{1-6}, u_{1-7}, u_{1-8}, u_{1-9}, u_{1-11}\right\} \\ &\psi_2 = \left\{u_{1-3}, u_{1-4}, u_{1-11}, u_{4-11}\right\} \\ &\psi_3 = \left\{u_{1-3}, u_{1-6}, u_{1-7}, u_{1-8}, u_{1-9}, u_{1-11}, u_{3-5}\right\} \\ &\psi_4 = \left\{u_{1-3}, u_{3-12}, u_{3-11}, u_{3-9}, u_{3-8}, u_{3-5}\right\} \\ &\psi_5 = \left\{u_{1-3}, u_{3-12}, u_{3-11}, u_{4-11}\right\} \\ &\psi_6 = \left\{u_{1-3}, u_{1-8}, u_{1-9}, u_{1-11}, u_{3-8}, u_{3-5}\right\} \\ &\psi_7 = \left\{u_{1-3}, u_{1-9}, u_{1-11}, u_{3-9}, u_{3-8}, u_{3-5}\right\} \\ &\psi_8 = \left\{u_{1-3}, u_{1-11}, u_{3-11}, u_{3-9}, u_{3-8}, u_{3-5}\right\} \\ &\psi_9 = \left\{u_{1-3}, u_{1-11}, u_{3-11}, u_{4-11}\right\} \\ &\psi_{10} = \left\{u_{2-8}, u_{2-6}, u_{1-8}, u_{1-9}, u_{1-11}, u_{3-5}\right\} \\ &\psi_{11} = \left\{u_{2-8}, u_{1-8}, u_{1-9}, u_{1-11}, u_{3-8}, u_{3-5}\right\} \\ &\psi_{12} = \left\{u_{1-6}, u_{1-7}, u_{2-6}, u_{1-8}, u_{1-9}, u_{1-11}, u_{3-5}\right\} \end{split}
```

2.5 Выделение из G' максимального двудольного подграфа H'

Будем пользоваться формулой: $\alpha_{\gamma\beta} = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|$ Считаем остальные значения:

$$\alpha_{1-2} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 7 + 4 - 3 = 8$$

$$\alpha_{1-3} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 7 + 7 - 6 = 8$$

$$\alpha_{1-4} = |\psi_1| + |\psi_4| - |\psi_1 \cap \psi_4| = 7 + 6 - 1 = 12$$

• • •

Аналогично считаем все остальные значения, а затем строим таблицу по полученным значениям:

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	8	8	12	10	9	10	11	9	10	10	9
2		0	9	9	6	8	8	8	5	9	9	10
3			0	11	10	8	9	10	9	9	9	8
4				0	7	9	8	7	8	11	10	12
5					0	9	9	8	5	10	10	11
6						0	7	8	8	8	7	9
7							0	7	8	9	8	10
8								0	7	10	9	11
9									0	9	9	10
10										0	7	8
11											0	9
12												0

$$\max(\alpha_{i-j}) = \alpha_{1-4} = \alpha_{4-12} = 12$$

Это значение дают следующие пары множеств: $(\psi_1; \psi_4)$ и $(\psi_4; \psi_{12})$

Возьмем множества:

```
\psi_1 = \{u_{1-3}, u_{1-4}, u_{1-6}, u_{1-7}, u_{1-8}, u_{1-9}, u_{1-11}\}
\psi_4 = \{u_{1-3}, u_{3-12}, u_{3-11}, u_{3-9}, u_{3-8}, u_{3-5}\}
```

В суграфе H, содержащем максимальное число непересекающихся ребер, проведем ребра из ψ_1 внутри, а из ψ_4 снаружи.

Удаляем из ψ_G ребра, которые вошли в ψ_1 и ψ_4 :

$$\begin{aligned} \psi_1 &= \{\} \\ \psi_2 &= \{u_{4-11}\} \\ \psi_3 &= \{\} \\ \psi_4 &= \{\} \\ \psi_5 &= \{u_{4-11}\} \\ \psi_6 &= \{\} \\ \psi_7 &= \{\} \\ \psi_8 &= \{\} \\ \psi_9 &= \{u_{4-11}\} \\ \psi_{10} &= \{u_{2-8}, u_{2-6}\} \\ \psi_{11} &= \{u_{2-8}\} \\ \psi_{12} &= \{u_{2-6}\} \end{aligned}$$

Теперь удаляем пустые множества, и объединяем одинаковые, получаем:

$$\psi_1 = \{u_{4-11}\}$$

$$\psi_2 = \{u_{2-8}\}$$

$$\psi_3 = \{u_{2-6}\}$$

$$\psi_4 = \{u_{2-8}, u_{2-6}\}$$

Вновь строим таблицу. Будем пользоваться формулой: $\alpha_{\gamma\beta} = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|$ Считаем остальные значения:

$$\alpha_{1-2} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 1 + 1 - 0 = 2$$

$$\alpha_{1-3} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 1 + 1 - 0 = 2$$

$$\alpha_{1-4} = |\psi_1| + |\psi_4| - |\psi_1 \cap \psi_4| = 1 + 2 - 0 = 3$$

$$\alpha_{2-3} = |\psi_2| + |\psi_3| - |\psi_2 \cap \psi_3| = 1 + 1 - 0 = 2$$

$$\alpha_{2-4} = |\psi_2| + |\psi_4| - |\psi_2 \cap \psi_4| = 1 + 2 - 1 = 2$$

$$\alpha_{3-4} = |\psi_3| + |\psi_4| - |\psi_3 \cap \psi_4| = 1 + 2 - 1 = 2$$

	1	2	3	4
1	0	2	2	3
2		0	2	2
3			0	2
4				0

$$\max(\alpha_{i-j}) = \alpha_{1-4} = 3$$

Лишь 2 множества подходят под условие:

$$\psi_1 = \{u_{4-11}\}\$$

$$\psi_4 = \{u_{2-8}, u_{2-6}\}\$$

В суграфе H, содержащем максимальное число непересекающихся ребер, проведем ребра из ψ_1 внутри, а из ψ_4 снаружи

Удаляем из ψ_G ребра, которые вошли в ψ_1 и ψ_4 : $\psi_1 = \{\}$

$$\psi_2 = \{\}$$

$$\psi_3 = \{\}$$

$$\psi_4 = \{$$

 $\begin{array}{l} \psi_2 = \{\} \\ \psi_3 = \{\} \\ \psi_4 = \{\} \\ \mathrm{B} \ \psi_G \ \mathrm{пусто, \ 3 Ha \ 4 u T \ \ граф \ планаризирован. \ Tолщина \ графа} \ m = 2 \end{array}$