AN HISTORICAL SUMMARY AND PROSPECTS FOR THE FUTURE OF SAINBALT BATTERIES

adf

G. HALPERT
ADVANCED TECHNOLOGY PROGRAMS OFFICE
S. SURAMPUDI
S. SURAMPUDI
DEVICE RESEARCH AND APPLICATIONS SECTION

NASA BATTERY WORKSHOP HUNTSVILLE, ALABAMA NOVEMBER 18, 1997

59978

OUTLINE

HISTORICAL EVOLUTION OF BATTERIES IN SPACE EVOLUTION AND STATUS OF NI-CD AND NI-H₂ PRESENT APPLICATIONS FUTURE APPLICATIONS ADVANCED BATTERIES FOR FUTURE MISSIONS

HISTORY OF BATTERIES IN SPACE

	10/4/57	SPUTNIK 1 W FOR 3 WEI	
	12/6/57	VANGUARD	Zn/HgO
	2/1/58	EXPLORER 1 VAN ALLEN RA	
1960	8/7/59	EXPLORER 6 FIRST EARTH F	
	'61-64	RANGERS MOON PHOTOS	Pris Ni/Cd
	4/26/62	ARIEL I First LEO MISSIO	Pris Ni/Cd ON
	6/23/63	SYNCOM-2 First GEO	Cyl Ni/Cd
1965	5/20/65	APOLLO CM LTD CYCLE LIFE	Ag/Zn

324	
×	
394	
*	
**	
201	
3	•
3	
88	L
38	
201	-
***	4
23	
201	
283	
387	7
₩	
881	
381	
283	
553	
331	-
2007	
864	
331	
32 4	
201	-
#1	
334	
	10
83	U.
***	•
223	_
33	
971	

324	
*1	
84	-
224	-
84	A
84	7
323	
23	UJ
2 4	
24	
83	
33	10
	u
84	
23	
83	·
83	
88	
8	
8	
23	
8	\
8	
8	
81	5 - E
8	
8	
831	
23	\rightarrow
8	
3	4.0
	rn
3	U,
	4.0
	-
8	
8	
3	()
8	\
3	
3	10
1	U)
1	

1970	3/13/71	IMP 1 Ag/Cd NON-MAGNETIC
	6/23/77	NTS-2 Ni/H ₂ 12 HOUR POLAR
	9/23/77	AF Ni/H ₂ LEO
1980	2/14/80	SOLAR MAX Ni/Cd STANDARD BATTERY
	5/19/83	INTELSAT V Ni/H ₂ GEO
	4/4/83	STS-3 Li-BCX ASTRONAUT EQUIPMENT
	4/7/84	LDEF LITHIUM & OTHERS EXPOSURE TO SPACE
	10/18/89	GALILEO HOURS Li/SO _{2/} WITH THERMAL BATTERY FOR JUPITER PROBE
1990		TOR OUT TIER TROOP

1990	4/25/90	HST NASA LEO	Ni/H ₂
	6/10/90	LEASAT Super NI/Cd	GEO
	1/25/94	CLEMENTINE LUNAR MAPPIN	
	1/25/94	TUBSAT-B STORE MESSA	
1995	5/1995	CENTAUR 28V, 250AH LAI	~
	5/5/97	IRIDIUM-1 LEO 34 TO DATI	50Ah SPV E
	NOV 97	FLIGHT EXP WAKESHIELD	Na/S

2000

EVOLUTION OF NI-CD BATTERIES IN SPACE

NI-CD SPACE BATTERY EVOLUTION

	1958-69	1970-79	1980-89	1990-97
Technology	3-6 Ah Cells Pellon GTM Seals	5-20 Ah Cells Teflonation Ceramic Seals NASA Std Cells	NASA 50 Ah E-I Process Lt Wt Designs Passivation	Super Ni-Cds Pellon 2536
Performance	2-5% DOD < 1000 cycles Leaks Const. I Charge	10-20% DOD NASA VT	>10 Years GEO 40K Cycles LEO	'MATURE'
Manufacturers	Gould Gulton Saft Sonotone	EPI G.E Gulton Saft	EPI G.E/Gates Saft Sanyo	EPI Hughes Saft Sanyo Acme

EVOLUTION OF NI-H₂ BATTERIES IN SPACE

NI-H₂ SPACE BATTERY EVOLUTION

	1958-69	1970-79	1980-89	1990-97
Technology		35-50 Ah IPV E-I Aq. Process Back to Back(C) Recirculating(AF)	E-I Alc. Process 100 Ah	CPV & SPV 120 Ah 26% KOH
Performance		LEO 25% DOD 2000 Cycles Polar 40% DOD 5 years	40K Cycles LEO 10 YEARS GEO	50-100K LEO CYCLES
Manufacturers		EPI Yardney ERC SAFT GE	EPI Hughes JCI Saft Gates	EPI Hughes JCI Saft

KEY EVENTS IN SPACE BATTERY HISTORY

	1958-69	1970-79	1980-89	1990-97
NI-CD	'59 EXPLORER-6 (CYLINDRICAL) '62 ARIEL-1 LEO (PRISMATIC) '63 SYNCOM2 GEO		'80 SOLAR MAX NASA 20 AH STD '82 LANDSAT -D STD 50 Ah	'90 LEASAT GEO SUPER NI-CD
NI-H ₂		'77 NTS-2 & AF FIRST IPV USE	INTELSAT 5 IPV GEO	'90 HUBBLE IPV '94 CLEMENTINE SPV '94 TUBSAT CPV
LITHIUM			'83 STS- LI-BCX '89 GALILEO Li-SO ₂	'95 CENTAUR '96 PATHFINDER

SNOISSIM ASAN YAGOT

NEAR TERM NASA MISSIONS - GSFC

LAUNCH DATE	MISSIO NAME		NO. <u>BATS</u>	NO CELLS/BAT	CELL CAPACITY	CELL TYPE
11/97	TRMM	LEO	2	22	50Ah	EPI-SUPER NI-CD
12/97	TRACE/SMEX	LEO/SS	1	22	9Ah	EPI- SUPER NI-CD
?/97	ACE	LIBATION	1	18	12Ah	NI-CD
5/98	LANDSAT-7	LEO	2	17	50Ah	EPI - AXIAL Ni-H ₂
6/98	EOS-AM	LEO	2	54		EPI-RE Ni-H ₂
7/98	GOES-L	GEO	2	28		GATES / SAFT NI-CD
9/98	WIRE/SMEX	LEO	1	22	9Ah	EPI-SUPER NI-CD
?/99	IMAGE	LEO	1	22	21Ah	CS SUPER NI-CD
?/00	MAP	FULL SUN	1	11/2CELL	23Ah	CPV EPI-J RE NI-H ₂

Filescon.

NEAR TERM NASA MISSIONS - JPL

; :	LAUNCH <u>DATE</u>	M NAME	ISSION TYPE E	NO. BATS	NO CELLS/BAT	CELL CAPACITY	CELL TYPE
•	1996	MGS	MARS OR	3 2	11/2CELL	23Ah	CPV EPI-J RE NI-H ₂
	1996	MPF	LANDER	1	18	40Ah	AG/ZN RECHARGE
	1996	MPF	ROVER	3	3	12Ah	LI-SOCL ₂ 'D'
`	1997	CASSIN	II PROBE	3	13	8Ah	LI-SO ₂
	1998	NEW MI	L DS-1	1	11/2CELL	12Ah	SAME AS MSTI-3
	1998	NEW MI	L DS-2	2	4	2Ah	LI-SOCL ₂ FLAT PLATE
	1998	MARS S	SURVEYOR/	98 2	11/2CELL	16Ah	NI-H ₂
	1999	STARDU	JST	2	11/2CELL	16Ah	NI-H ₂
	1999	STARDU	ST SAMP. RE	T 3	13	8AH	LI-SO ₂

NEAR TERM NASA MISSIONS - MSFC

LAUNCH	· <u></u>	ISSION	NO.	NO	CELL	CELL
DATE		TYPE	<u>BATS</u>	<u>CELLS/BAT</u>	<u>CAPACITY</u>	TYPE
1998	AXAF	LEO	3	22 CELLS	40 Ah	EPI IPV NI-H ₂

BATTERIES IN SPACE **THE FUTURE OF**

POTENTIAL NASA SPACE MISSIONS / APPLICATIONS

NASA MISSIONS

JPL

MARS LANDER AND ROVER -2001
MARS LANDER AND ROVER -2003
MARS SAMPLE RETURN MISSION - 2005
CHAMPOLION MISSION - 2003
SOLAR PROBE - 2005

GSFC

SATELLITE SERVICING TOOLS
LIBATION POINT SPACRAFT
(MAP-2000,NGST 2007)
GEO SPACECRAFT(GOES)
LEO SPACECRAFT(EOS)

JSC

SHUTTLE APPLICATIONS

AIR FORCE MISSIONS

LEO

NPOESS -2007

Surveill. Platforms

SBIRS Low

GEO

Milsatcom - 2002

DSP

AIRCRAFT

AVIATION 2001

UAVs-2002

EVOLUTION OF FLIGHT BATTERIES

POTENTIAL NASA APPLICATIONS

Planetary Orbiters

Planetary Rover

Planetary Lander

Astronaut Equipment

GEO Spacecraft

LEO Spacecraft

TECHNOLOGY PROGRESSION

1996

1-20 Ah Cells 100 Wh/kg 500 cycles LONG LIFE
Cell Design
Battery Design
Manufacturing
Database
Charge Control

2003

28-270V 10-100 Ah 100 Wh/kg 2000 GEO & 30,000 LEO CYCLES

1992

100 mAh < 200 cycles Anode Mat.
Electrolyte
Cat. Mat.
Separator
Binder

CYCLE LIFE

-23-

A Aerospace Battery Workshop

` i

MARDORY NOI-IJ TA \ ASAN TO PROGRAM OBJECTIVES

- **APPLICATIONS** SMART BATTERIES FOR AEROSPACE AND DOD DEVELOP ADVANCED LITHIUM ION CELLS AND
- ESTABLISH U.S. PRODUCTION SOURCES
- DEMONSTRATE TECHNOLOGY READINESS FOR:
- SATELLITE SERVICING TOOLS BY 1999
- ROVERS AND LANDERS BY 2000
- LIBATION POINT MISSIONS BY 2000
- GEO WISSIONS BY 2001
- MILITARY TERRESTRIAL APPLICATIONS BY 2001
- **FEO WISSIONS BA 5003**

TECHNOLOGY CHOICES FOR FUTURE MISSIONS

NEAR TERM (>2000):

LI-ION LIQUID ORGANIC ELECTROLYTE CELLS

- 1-20Ah CELL SIZES
- >1000 CYCLES
- SUPERIOR LOW TEMPERATURE PERFORMANCE
- COMMERCIAL APPLICATIONS USE
- LEVERAGE OF FUNDS SEVERAL PROGRAMS

LONG TERM MISSIONS (>2007)

LI - ION POLYMER

- HIGHER SPECIFIC ENERGY
- ADAPTABILITY TO SEVERAL CONFIGURATIONS

TECHNOLOGY APPROACH TO NASA / AF LI-ION PROGRAM

DEVELOP ADVANCED ELECTRODE MATERIALS AND ELECTROLYTES TO ACHIEVE IMPROVED LOW TEMP. PERFORMANCE AND LONG CYCLE LIFE

OPTIMIZE CELL DESIGN TO IMPROVE SPEC. ENERGY, CYCLE LIFE AND SAFETY

ESTABLISH MANUFACTURING PROCESSES TO ENSURE PREDICTABLE PERFORMANCE

DEVELOP AEROSPACE LITHIUM ION CELLS IN 10, 20, 50, AND 200 AH SIZES

DEVELOP BATTERIES IN 28, 100 AND 270 V CONFIGURATIONS

DEVELOP ELECTRONICS FOR SMART BATTERY MANAGEMENT

DEVELOP A PERFORMANCE DATABASE FOR VARIOUS APPLICATIONS

DEMONSTRATE TECHNOLOGY READINESS FOR VARIOUS NASA AND AIR FORCE MISSIONS

SUMMARY

THIS PAPER INCLUDED:

A CHRONOLOGICAL HISTORY OF BATTERY FLIGHT FROM 1959 TO THE PRESENT

A LIST OF THE NEAR TERM FLIGHT MISSIONS FROM 1997-2000

A PLAN FOR AN INTERAGENCY (NASA / AF) PROGRAM TO DEVELOP LI-ION BATTERIES FOR PLANETARY, AVIATION, LEO AND GEO MISSIONS FROM 2000-2003