AD-A094 313

GEORGE WASHINGTON UNIV WASHINGTON D C PROGRAM IN LOG--ETC F/G 12/1
ON THE AMPLE SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
VN00014-75-C-0729
NL

LOT 1
ANGEL SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

END
PALM SERVICE
PALM SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

END
PALM SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

END
PALM SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

END
PALM SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

END
PALM SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY --ETC(U)
OCT 80 D GROSS
NO0014-75-C-0729
NL

THE GEORGE WASHINGTON UNIVERSITY

STUDENTS FACULTY STUDY R ESEARCH DEVELOPMENT FUT URF CARFFR CRFATI ENGINEERING APP **GEORGE WASHIN**

 \mathbf{O}

002

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

81 1

The George Washington University School of Engineering and Applied Science Institute for Management Science and Engineering

Accession For
NTIS GRA&I
DTIG TAB
Unannounced []
Justification
1 By
Distribution/
Availability Cases
Avail course
Dist Special
INI

Program in Logistics
Contract N60014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.

405334

D

TECOR TY CLASSIFICATION OF THIS PAGE (WITH DATA ENTERED)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 NI PORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
1-433 / AD-H099 S	123
4 TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
ON THE AMPLE SERVICE ASSUMPTION OF PALM'S	SCIENTIFIC
THEOREM IN INVENTORY MODELING	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	T-433 B. CONTRACT OR GRANT NUMBER(*)
	S. SONTRACT ON GRANT ROMBER(S)
DONALD GROSS	N00014-75-C-0729
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
THE GEORGE WASHINGTON UNIVERSITY	
PROGRAM IN LOGISTICS WASHINGTON, DC 20052	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
OFFICE OF NAVAL RESEARCH, CODE 434	3 OCTOBER 1980
DEPARTMENT OF THE NAVY	13. NUMBER OF PAGES 40
ARLINGTON, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	}
	NONE 15. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION	ON UNLIMITED.
17. DISTRIBUTION STATEMENT (of the ebetract entered in Black 20, if different fro	m Report)
	' .
18. SUPPLEMENTARY NOTES	
	X.
9 KEY WORDS (Continue on reverse side if necessary and identify by block number)	
LOGISTICS	
INVENTORY	
QUEUEING	
APPLIED PROBABILITY	
O ABSTRACT (Continue on reverse side if necessary and identify by block number)	
A key assumption of much of the continuous rev work is that orders placed do not queue up, so th crossing and hence order lead times are strictly This paper investigates the effects of this assum	at there is complete order

THE GEORGE WASHINGTON UNIVERSITY School of Engineering and Applied Science Institute for Management Science and Engineering

Program in Logistics

Abstract of Serial T-433 3 October 1980

ON THE AMPLE SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY MODELING

bу

Donald Gross

A key assumption of much of the continuous review inventory modeling work is that orders placed do not queue up, so that there is complete order crossing and hence order lead times are strictly independent random variables. This paper investigates the effects of this assumption (which is almost never true).

Research Supported by Contract NO0014-75-C-0729 Project NR 347 020 Office of Naval Research

· E-

THE GEORGE WASHINGTON UNIVERSITY School of Engineering and Applied Science Institute for Management Science and Engineering

Program in Logistics

ON THE AMPLE SERVICE ASSUMPTION OF PALM'S THEOREM IN INVENTORY MODELING

by

Donald Gross

1. Introduction

An appropriate inventory policy in many situations is a one-forone ordering policy (continuous review (s,S) policy where s = S-1]. That is, when a demand for an item arises, an order is immediately placed for a replacement. It is desired to find, then, the optimal value of the safety stock needed to support such a policy so that there is a control on both stockout probability and inventory investment.

Such a policy is most often used for items which are expensive and important, so that inventory investment and shortages are significant factors. Also, most repairable item inventory models fall into the one-for-one ordering category, as failed items are usually dispatched immediately to a repair facility upon failure. The METRIC class of models [see Muckstadt (1973)], one of the most useful multi-echelon models currently available, uses such a policy.

A key factor in these types of models is often the "ample server assumption;" that is, orders to be filled or items to be repaired never queue up but go into "service" immediately. Statistically, this means that successive order replenishment times (or repair times if we are

talking about repairable items) are independent. This assumption acloss one to take advantage of Palm's Theorem from queueing theory, which states that if demand is Poisson [or compound Poisson—see Feeney and Sherbrooke (1966)], and there are ample "servers," then regardless of the distribution of order replenishment times, the state probabilities depend on the replenishment time [see Hadley and Whiton (1963), pp. 209 ff., for example]. In fact, letting N represent the steady state number of orders outstanding, λ the mean demand rate assuming the Poisson distribution, and T the mean replenishment lead time,

$$Pr(N=n) = \frac{(\lambda \tau)^n e^{-\lambda \tau}}{n!}.$$
 (1)

If we denote the steady state on-hand inventory by Z and assume complete backgrdering, then we have Z = S-N and

$$Pr(Z=z) = p(z) = \pi(S-z)$$
. (2)

Using this relationship, it is easy to set up cost equations in terms of the decision variable S to be minimized. Since a shortage cost in many cases may be hard to assess, a service level constraint is often used instead. Fill rate (the percentage of requests filled immediately from on-shelf inventory) is one such constraint in wide use. Denoting the fill rate by F, we have

$$F = \frac{\lambda - \Pr(Z \le 0)}{\lambda} \times 100$$

$$= [1 - \Pr(Z \le 0)] \times 100$$

$$= \left[1 - \sum_{n=S}^{\infty} \pi(n)\right] \times 100$$

$$= \left[\frac{S-1}{N} \pi(n)\right] \times 100$$
(3)

Now suppose there is not ample service in the order filling (or repair) process. The question we seek to answer is, "What effect does this have on the calculation of S and on the actual F to be realized?"

After all, one might argue from the inventory manager's point of view

after being placed, what difference does it make if it spends part of its time waiting in a queue to be processed or if it goes into processing immediately? The answer lies in the fact that if queueing occurs, successive replenishment times are correlated and the distribution of a(n) can be radically changed.

2. Ample Servers versus Single Server Cases

To see the effect of introducing correlation in successive order replemishment times, let us suppose that instead of a potentially infinitely number of "order pickers" (or repair channels), there is only one. Further, let us assume that order filling times are exponentially distributed with mean water μ . Equation (1) still suffices for the ample server case (with $\tau = 1/\mu$), and in terms of queueing notation we call this the M/M/m model with mean arrival rate $|\lambda|$ and mean service rate $|\mu| = 1/\mu$).

For the single server case, we have an M/M/1 model, still with mean arrival rate $|\lambda|$, but with a mean service rate of $|\mu| \neq 1/\tau$. Here, is equal to the total expected waiting plus service time to process an order (which is usually denoted as |W| in standard queueing notation). Further, from M/M/1 queueing theory,

$$\tau = W = \frac{1}{\mu - \lambda} , \qquad (4)$$

so that the α to make the M/M/1 "equivalent" in terms of mean lead time to the M/M/ α is then [rewriting Equation (4)]

$$\mu = \frac{1 + \lambda \tau}{\tau} . ag{5}$$

Now the difference between the two systems can be clearly seen. Denoting the steady state probabilities for the ample server case by $\pi_1(n)$ [Equation (1)] and the single server case by $\pi_1(n)$, it can readily be shown [see, for example, Hillier and Lieberman (1980), p. 418] that

$$s_1(n) = \left(1 - \frac{\lambda \tau}{1 + \lambda \tau}\right) \left(\frac{\lambda \tau}{1 + \lambda \tau}\right)^n = \left(\frac{1}{1 + \lambda \tau}\right) \left(\frac{\lambda \tau}{1 + \lambda \tau}\right)^n$$
 (6)

Note that in the ample server case, the steady state probabilities that in orders are outstanding are Poisson, while for the single server case the steady state probabilities are geometric, even though the mean number of orders outstanding is the same, namely, $\lambda_{\rm c}$, the mean teadtime demand. As we shall see later, in certain cases (certain varues of $\lambda_{\rm c}$), sizable discrepancies in S and F can result from assuming an ample server situation when in reality there is only a single server, even though the mean replenishment times are the same.

3. Ample Servers versus Multiple Server Case

The M/M/ ∞ and M/M/1 cases are the extremes. We consider now "equivalent" M/M/c systems for comparison to M/M/ ∞ . The time in system (waiting plus service) for an M/M/c queue is given as

$$T = W = \frac{1}{\mu} + \frac{\mu(\lambda/\mu)^{c} / (c-1)! (c\mu-\lambda)^{2}}{\frac{c-1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} + \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{c\mu}{c\mu-\lambda}\right)}.$$
 (7)

It is now necessary to employ numerical solution techniques to find the desired μ which will enable the calculation of the $\pi_{_C}(n)$. We know that

$$\frac{1}{\tau} < \mu < \frac{1+\lambda\tau}{\tau} ; \qquad (8)$$

that is, the resulting u will be somewhere between the M/M/ $^{\omega}$ and M/M/I cases. A Newton-Raphson procedure was easily employed to calculate μ , and once having done so, we have from queueing theory

$$\pi_{c}(n) = \begin{cases} \frac{\lambda^{n}}{n! \ \mu^{n}} \pi_{c}(0) &, n < c \\ \frac{\lambda^{n}}{c^{n-c}c! \ \mu^{n}} \pi_{c}(0) &, n < c \end{cases}$$
(9)

where

$$\mathbb{E}_{\mathbf{c}}(0) = \left[\frac{c-1}{\nu} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^{n} + \frac{1}{c!} \left(\frac{\lambda}{\mu} \right)^{c} \left(\frac{c_{\mu}}{c_{\mu} - \lambda} \right) \right]^{-1}.$$

Thus the resulting fill rate becomes

$$F = \begin{bmatrix} S-1 \\ \sum_{n=0}^{\infty} \pi_{c}(n) \end{bmatrix} \times 100 .$$
 (10)

We can now compare the θ 's and θ 's obtained when as in an ampre server assumption in a situation where service is not erall ample; that is, for part of the replenishment leadtime items may wait in a queue.

4. Numerica: Results

The calculations for S are performed by setting a desired fill rate level, say \hat{F} , and solving for the S such that

$$\begin{array}{ccc}
S-1 & \text{just} \\
100 & \sum_{n=0}^{S-1} \pi(n) & > & \hat{F}
\end{array} .$$
(11)

For the ample server case, $\pi_{\infty}(n)$ [from Equation (1)] is used in Equation (11), while for the "equivalent" c server case, $\pi_{c}(n)$ [from Equation (9)] is utilized. The respective S's obtained we denote by S. and S.

If in reality, we truly had an M/M/c system, but were using the ample service assumption to calculate S, that is we stock S_α , then the true fill rate $F(S_\alpha, \pi_c)$ [call F_α] is

$$S_{\infty}-1$$

$$F_{\infty} = \sum_{n=0}^{\infty} \pi_{c}(n)$$

and may be less than F , since $S_{cc} \leq S_{cc}$ for all reasonable values of T . It is this type of "error" which is of interest.

Another "error" of interest involves the expected average backorder level (which is sometimes used instead of fill rate as a service level constraint). For a safety stock level of S units, the expected average backorder level is

$$\overline{B} = \sum_{n=S}^{\infty} (n-S)\pi(n)$$

$$= L - S - \sum_{n=0}^{S-1} (n-S)\pi(n) ,$$
(12)

where L is the expected number of orders outstanding, that is,

$$L = \sum_{n=0}^{\infty} n\pi(n)$$

$$= \begin{cases} \lambda^{T}, & \text{ample service}, \\ \frac{\lambda}{\mu} + \left[\frac{(\lambda/\mu)^{c} \lambda \mu}{(c-1)! (c\mu-\lambda)^{2}} \right] \left[\sum_{n=0}^{c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^{n} + \frac{1}{c!} \left(\frac{\lambda}{\mu} \right)^{c} \left(\frac{c\mu}{c\mu-\lambda} \right) \right]^{-1}, \\ c \text{ servers}. \end{cases}$$

Thus if we provision based on ample servers, that is, stock according to S_{ω} , our expected average backorder level $\overline{B}(S_{\omega},\pi_{_{_{\bf C}}})$ [call \overline{B}_{ω}] is

$$\overline{B}_{\infty} = L_{c} - S_{\infty} - \sum_{n=0}^{S_{\infty}-1} (n-S_{\infty}) \pi_{c}(n) ,$$

whereas had we used the "correct" modeling assumptions, accounting for the fact that only c servers are available, our expected average back-order level would have been $\overline{B}(S_c,\pi_c)$ [call \overline{B}_c], namely,

$$\overline{B}_{c} = L_{c} - S_{c} - \sum_{n=0}^{S_{c}-1} (n-S_{c})\pi_{c}(n)$$
.

If in reality we had ample service, the expected average backorder level would have been $\overline{B}(S_m, \pi_m)$ [denote by \overline{B}^*], specifically,

$$\overline{B}^* = L_{\infty} - S_{\infty} - \sum_{n=0}^{S_{\infty}-1} (n-S_{\infty}) \pi_{\infty}(n)$$

Table 1 shows the input and output quantities used for the numerical analyses. We calculate several possible "error" measures on fill rate and backorder level as defined in the table. For fill rate, we look at three quantities. First we compute the percent difference between the actual fill rate attained (F_{∞}) assuming ample service and using S_{∞} and the fill rate we should have gotten $(F_{\rm c})$ by stocking $S_{\rm c}$ had we correctly accounted for the fact that only conservers were available. This we call $D_{F_{\infty}}$. Next we compute $D_{\widehat{F}}$, the percent that the actual fill rate, F_{∞} , is below our goal \widehat{F} . For the cases where $S_{\infty}=S_{\rm c}$, there is no error and we set $D_{\widehat{F}}$ to zero, since for these cases we always either achieve or exceed the goal \widehat{F} . The final measure on fill rate we compute is D_{F^*} , the percent difference between what we think we are achieving by assuming ample service (F^*) and what we are really achieving (F_{∞}) .

For expected average backorder level, we compute two measures, namely, $D_{\overline{B}_\infty}$, the percent difference in \overline{B} for a c server system if we stock under ample service conditions—that is, using S_∞ instead of the correct S_c —and $D_{\overline{B}\star}$, the percent difference in the perceived (believing we have ample service) and actual (with c servers) \overline{B} 's.

Figures 1, 2, and 3 show the output of the cases considered, namely, for \hat{F} of 80% (Figure 1), 90% (Figure 2), and 95% (Figure 3), we have computed the error measures for combinations of $\lambda\tau$ = .25, .50, 1, 5, 10, 15, ..., 50, and c = 1,3,5,10,15,20,25 . It appears that the larger errors occur for the larger values of $\lambda\tau$ and smaller values of c , as we would expect. Also, the three fill rate measures seem to track quite closely with each other. Note that the magnitude of the percent error for the backorder measures is much higher than that for the fill rate measures, with $D_{\overline{B}\star}$ being an order of magnitude higher than $D_{\overline{B}\star}$, which itself is almost an order of magnitude higher than the $D_{\overline{B}\star}$ measures.

TABLE 1 FACTORS IN THE NUMERICAL ANALYSES

Symbol	Definition	Formula
	INPUT	
Ê	Desired fill rate	Input
λί	Mean demand over a replenishment lead-time	Input
С	Number of servers (order "pickers" or repair channels)	Input
	OUTPUT	
S _∞	Safety stock required to achieve \widehat{F} if ample servers available	$S_{\infty}^{-1} = 0 \text{just} \text{for } \hat{f}$ $\sum_{n=0}^{T_{\infty}(n)} \hat{f}$
S _c	Safety stock required to achieve \hat{F} under c servers $(S_c \ge S_{\infty})$	$ \begin{array}{ccc} S_c - 1 & & \text{just} \\ \sum_{n=0}^{\infty} T_c(n) & \geq & \hat{F} \end{array} $
F*	Actual fill rate achieved using ${\rm S}_{\infty}^{}$ if the true state of affairs is ample service	$F * = \sum_{n=0}^{S_{\infty}-1} \pi_{\infty}(n)$
F _c	True fill rate for c servers stocking with S_c $(F_c \ge \hat{F})$	$F_{c} = \sum_{n=0}^{S_{c}-1} \pi_{c}(n)$
F_{∞}	Actual fill rate achieved for c servers stocking under the assumption of ample service; i.e., using S_o , $(F_o \le F_c)$	$F_{\infty} = \sum_{n=0}^{S_{\infty}-1} \pi_{c}(n)$
$D_{F_{\infty}}$	Percent difference actual fill rate is below correct fill rate when stocking for a c-server system but using the ample service assumptions	$D_{F_{\infty}} = \frac{F_{c}^{-F_{\infty}}}{F_{c}} \times 100$
$^{D}\widehat{f}$	Percent actual fill rate is below fill rate goal when stocking for a c-server system but using the ample service assumption	$D_{\hat{F}} = \max \left[0, \frac{\hat{F} - F_{\infty}}{\hat{F}} \times 100 \right]$

TABLE 1--continued

Symbol	Definition	Formula
^D F*	Percent actual fill rate is <i>velow</i> assumed fill rate when stocking for a caserver system but using the ample service assumptions	$D_{F*} = \frac{F*-F_{\infty}}{F*} \times 100$
$D_{\overline{B}_{\infty}}$	Percent increase in expected average backorder level when stocking for a c-server system but using ample service assumptions	$D_{\overline{B}_{\infty}} = \frac{\overline{B}_{\infty} - \overline{B}_{c}}{\overline{B}_{c}} \times 100$
D _B ∗	Percent actual expected average backorder level is above assumed expected average backorder level when stocking for a c-server system but using ample service assumptions	$D_{\overline{B}*} = \frac{\overline{B}_{\infty} - \overline{B}_{*}}{\overline{B}*} \times 100$

All values for the error measures in Figures 1, 2, and 3 are given in percents so that, for example from Figure 2, for $\hat{F}=90\%$, $\lambda\tau=20$, c=5, D_{F_∞} shows a 17.93% error, $D_{\hat{F}}$ a 17.47% error, and D_{F^*} a 19.45% error, while $D_{\overline{B}_\infty}$ shows a 170.67% error and $D_{\overline{B}^*}$ a 3,113.81% error! Of course, $D_{\overline{B}^*}$ shows such large errors because if we think we have ample service, we expect a very low average backorder level (namely, 0.14 units) while in reality we have a level of 4.52 units, which is a large percentage change from 0.14. Had we correctly used the stocking criteria for five servers ($S_c=45$), then our expected average backorder level would have been 1.67 units. Perhaps in terms of backorder measures, one should also keep in mind the absolute error as the percentage error is distorted by the small "base" upon which it is calculated.

While errors are larger for larger values of $\lambda \tau$ and smaller values of c, there is not always strict monotonicity which, we believe, is due to the discrete process required in calculating S to satisfy the inequality constraint on fill rate goal \hat{F} . For example, from

	α 5°
	r
	α
	II
	11
(Ŀ
`	_
	۲
	f_{0}
	ų.
	÷
	=
	1
	Ξ
	01111111
	ī
	i
	•
	_
	ionre
	=
	7
	ĭ
	r.

						•	• • • • • • • • • • • • • • • • • • • •							
LAMPTAU	<u>ر</u>	Š	SIN	FC	FINE	FSTAR	OFINE	DFHAT	DFSTAR	BBARC	8881NF	BBRSTR	DBR INF	DBRSTR
30	-	•	·	000	00	36 10	•	6	-	6	00.0	000	c	234 43
300	• •	,	y (70.00	20.00	71.33	•	•	¥ 0 0			6200.0		27.46
	1	٠,	y 1	21.33	71.32	71.33	• •	•	0 0	3		6700.0) ·	7.
6.43		~	~	97.35	97.35	97.35	•	9	-000	-005	0.0023	0-0023	0.0	0.12
0.45		~	~	97.35	97.35	97.35	0.0	0.0	-0-00	- 005	0.0023	0.0023	0.0	0.17
0.25		~	~	97.35	97.35	97.35	0.0	0.0	00.00	٠	0.0023	0.0023	0.0	0.17
0-25	20	~	~	97.35	97.35	97.35	0.0	0.0	-0.00	. 002	0.0023	0.0023	0.0	0.17
0.25		~	~	97.35	91.35	97.35	•	0.0	-0.00	- 002	0.0023	0.0023	0.0	
0.50		~	~	28.88	88.89	90.06	0.0	0	2.30	055	0.0556	0.0163	0.0	240-28
0-20	~	7	7	91.00	00-16	90.98	0.0	0.0	-0-02	0.0179	0.0179	0.0163	ر د • د	2.41
0.5 0	S	~	7	96-06	R6 .06	66.08	0.0	0.0	00.00	0.0163	0.0163	0.0163	0.0	0.09
0.50		~	7	90.98	×6.09	SO. 38	0-0	0.0	60.44	0.0163	0.0163	0.0163	0.0	0.02
0-50	15	~	• ~	40 - US	00.05	80.00	0.0	0 0	-0-00	0.0164	0.0163	0-0163	0-0	0.02
05.0		, ,	٠,	700	200					2910	2410	2000		0
		۰,	,			70.70	•	•			60100	60100	•	
3		٠,	۰,	06.00	D	20.00	•	•	\$.	5077	6070.0	20100	•	֚֚֚֚֚֚֓֞֝֝֝֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֓֓֓֡֓֡֓֡֡֡֡֡֓֡֓֡֡֡֡֡
	4 /	•	n 1	20.00	96.30	74.97) ·	•	о.	0-1-50	0000	0.0233	•	10.00
00.1	-) :	٠,	٠,	21-12	91.75	16.16)))))	0.63	8960-0	0.0389	0.0233	•	00-00
200	n	~	M	16-16	26-15	91.97	0	0	-0.00	0.0239	0.0239	0.0233	0.0	2.28
7-00	9	~	~	16-16	26.16	91.97	0.0	0.0	-0.00	0.0233	0.0233	0.0233	0.0	0.01
90 -1	15	•	~	16-16	26.16	26.16	0.0	0.0	-0.00	0.0233	0.0233	0.0233	0.0	0.01
7.00	20	~	•	16.16	16-16	16.16	90	0.0	-0-00	0.0233	0.0233	0.0233	0.0	0.01
1.00	52	~	~	16.16	91.97	91.97	•	0.0	-0.00	0.0233	0.0233	0.0233	0.0	0.01
3.00	~	~	•	86.65	62.20	91.61	5,13	3.29	10.27	0-4005	0.5339	0.0507	33,33	953.06
3-00	m	•	•	45.69	65.69	91.61	0.0	0.0	9.49	0.3009	0.3009	0.0507	0-0	
3-00	· v	•	ۍ د	89.83	89-83	01.61	0.0	0.0	70-1	0-1765	0-1765	0-0507	0.0	
3-00	9	•	•	14.10	74.15	19:10			00.01	0.0510	0.0510	7050-0		
3-00	· -	•	•	19-10	19 10	19.16			00,01	0.0507	0.0507	0.0507		0.03
3-00	202	•	•	19716	19-16	19-16		0-0	00.00	0-0507	0.0507	0.0507	0-0	0-03
3-00	25	•	· «	19.10	14.19	19.10		0.0	-0-00	0.0507	0.0507	0.0507	0.0	0.03
5.00	<u>-</u>	`~	• •	86.54	76-76	86.66	11.32	9-71	11.45	0-6729	1.1628	0.1221	72.80	852.29
200.5	4 (4		a	86.36	78. 22	86.66	B. Ac	7 30	0.17	0-5668	0.8535	0-1221	50-95	98.0
60.4	, v	9	•	86-41	A1.68	86.66	7.4.5	00.5	5.75	0.3913	0.5273	0.1221	7	41.7
200	٠.	• •	a	86.65	86.65	86.66	0	0.0	0.0	0-1386	0-1386	0.1221	0.0	13.53
5.00	· ·	• œ	*	86.66	86-66	86.66	0	0.0	-0.00	0-1222	0.1222	0.1221	0.0	90-0
200	, ,	•	a	86.66	86-66					0-1221	0-1221	0.1221		
200	, ,	•	, a	96.00	44	86.56	, c			1221	0.1221	0.1221		
	} -	9 0	9 4	900	73 67	94.46	7 7 7	7 .	1 4 5	1 4844	2.6237	0 1869	77.	12 3021
	4 19	3 -		40.00	74.01	00°	12.01	12.00	27.7	1 2 2 2 2	2 2752	0.1.0	01.04	7 7 7
	•	3	1 1	65 22	75.85	44 48	200	10 75	10.05	1 1 2 2 2 2	8604	1960	77. 24	86.000
10-00	٠ -	2 4	: :	82.52	90	94.46		77 7	4.23	5385	0.8171	0.1860	51.73	337.10
	· ·	2 4	7	86.17	84-17	86.45			25.0	0.2628	0.2628	1.0		40.57
1000	20			86.45	86.45	86.45	0		00.00	0-1890	0-1840	0.1869	0	
10-00	52	*	3	86.45	86.45	6.4	0-0	0.0	9	0.1870	0-1870	0-1869	0.0	0.02
15-00	-	30	70	85.57	72.49	~	15.29	14.71		2-1638	4-1259	0.2123	90.67	1843.46
15.00	•	67	50	85.56	73.04	87.52	14.63	14.07	16.54	2.0117	3.7546	0.2123	86.64	·o
15.00	^	58	70	62.19	73.83	÷	13.95	13.15	15.65	1.7912	3-2951	0.2123	84.19	1454-03
15.00	07	52	70	86.29	76.76	÷	11.05	9-10	5	1.2310	2.0872	0.2123	69.54	883.15
15.00	15	77	70	86-83	1.5	87.52	6-11	6.10	8	0.7142	1.0020	0.2173	40.29	371.97
15.00	70	9	70	ċ	ż	÷	0.0	0.0	0	0.3632	0.3632	0.2123	0.0	11.09
12.00	25	70	20	3	7.5	÷	o•0	0.0	٩.	0.2218	0.2218	0.2123	ċ	4.46
70-00	4	36	92	5.0	1.8	å	15.52	•	٩	2.9830	5.6250	0.2186	œ	8
20.00	'n	38	5 6	0	?	68-89	45.03	14.98	•	2.8278	5-2465	0.2186	\$	2299.16
20.00	•	37	5 6	5.2	7	8.₹	14.55	•	•	5.6015	4.7806	0.2186	•	2086.65
20.00	9	34	97	85.52	_	88.78	12.62	12.08	15.83	2.0088	3-5056	0.2186		1503.45
Z	<u>.</u>	7	97	٠,	1-1	8	5. 5	٠	*	1.86.1	2.2320	0.2186	•	920.92
0000) ;	9 :	9 ?	99.40	£1.29	94.18	07.6	•	•	0.440	1-1362	0.2186	, c	66.71
	()	07	97	•	h7*/0	0 - 00	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	9917.0	•	B • • • • • • • • • • • • • • • • • • •

70.35		65.51 65.51 65.51 65.51 65.51 65.51 65.51 65.51 65.51 65.51	331 85.05 1 2 4 4 2 2 85.27 1 2 85.2
	70.62 86.33 71.00 86.33 72.24 86.33 74.01 86.33 76.65 86.33 80.54 86.33 70.56 98.04 70.56 98.04 70.61 88.04	85.36 70.62 86.33 85.09 72.2 86.33 85.09 72.2 86.33 85.09 72.2 86.33 85.07 70.28 88.04 85.07 70.28 88.04 85.17 70.61 88.04 85.37 70.61 88.04 85.21 73.72 88.04	31 85.36 70.62 86.33 1 31 85.09 72.23 86.33 1 31 85.09 72.23 86.33 1 31 85.09 72.23 86.33 1 31 85.09 72.23 86.33 1 31 85.00 70.28 88.04 1 37 85.07 70.28 88.04 1 37 85.17 70.61 88.04 1 37 85.21 70.61 88.04 1 42 85.21 72.72 88.04 1 42 85.27 69.37 86.31 1 42 85.27 69.37 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 42 85.27 72.76 86.31 1 43 85.46 72.76 86.31 1 44 85.85 77 86.31 1 45 85.27 72.76 86.31 1 46 85.85 77 86.31 1 47 85.85 77 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1 48 85.85 77 72.76 86.31 1
62 86.33 1	21.00 86.33 72.23 86.33 74.01 86.33 76.65 86.33 80.54 86.03 70.28 88.04 70.50 88.04 70.61 88.04	85.51 71.00 86.33 85.09 72.23 86.33 85.53 74.01 86.33 85.20 76.65 86.33 85.07 70.28 88.04 85.17 70.61 88.04 85.13 70.50 88.04 85.13 73.72 88.04 85.21 72.72 88.04	31 85.51 71.00 86.33 31 85.09 72.23 86.33 31 86.20 76.65 86.33 31 85.00 80.65 86.33 37 85.07 70.28 88.04 37 85.07 70.28 88.04 37 85.07 70.56 88.04 37 85.27 70.61 88.04 42 85.27 89.37 86.31 42 85.27 89.57 86.31 42 85.27 85.54 86.31 42 85.27 70.56 86.31 42 85.27 70.56 86.31 42 85.27 70.56 86.31 42 85.27 70.56 86.31 42 85.27 70.56 86.31 42 85.27 70.56 86.31
.00 86.33	72.23 86.33 74.01 86.33 76.05 86.33 80.54 86.33 70.28 88.04 70.50 88.04 70.51 88.04	85.09 72.23 86.33 85.53 74.01 86.33 85.00 80.65 86.33 85.01 70.28 88.04 85.05 70.50 88.04 85.17 70.61 88.04 85.13 71.78 88.04 85.64 75.05 88.04 85.64 75.05 88.04	31 85.09 72.23 86.33 31 85.53 74.01 86.33 31 85.00 86.55 86.33 31 85.00 86.56 86.03 37 85.07 70.58 86.04 37 85.17 70.61 88.04 37 85.17 70.61 88.04 37 85.21 73.13 88.04 42 85.21 69.37 86.31 42 85.27 69.37 86.31 42 85.27 85.54 86.31 42 85.27 70.58 86.31 42 85.27 70.58 86.31 42 85.27 70.58 86.31 42 85.27 70.58 86.31
86.33	74.01 86.33 76.65 86.33 80.54 86.33 70.28 88.04 70.50 88.04 70.61 88.04	85.53 74.01 86.33 86.20 76.65 86.33 85.01 70.28 88.04 85.07 70.28 88.04 85.17 70.61 88.04 85.13 71.78 88.04 85.64 75.05 88.04 85.21 77.72 88.04	31 85.53 74.01 86.33 31 86.20 76.65 86.33 31 85.01 70.56 86.33 31 85.05 70.56 88.04 31 85.05 70.56 88.04 31 85.39 71.78 88.04 31 85.51 70.61 88.04 31 85.54 71.78 88.04 42 85.27 69.37 86.31 42 85.27 69.77 86.31 42 85.27 72.78 86.31 42 85.27 72.78 86.31 42 85.27 72.78 86.31 42 85.27 72.78 86.31
86.33	76.65 86.33 80.56 86.33 70.28 88.04 70.50 88.04 70.61 88.04	86.20 76.65 86.33 85.00 80.54 86.33 85.07 70.28 88.04 85.05 70.56 88.04 85.13 70.61 88.04 85.64 75.05 88.04 85.21 73.13 88.04	31 86.20 76.65 86.33 31 85.00 80.54 86.33 37 85.07 70.50 88.04 37 85.37 70.61 88.04 37 85.39 71.78 88.04 37 85.64 73.13 88.04 37 85.21 70.61 88.04 42 85.27 69.37 86.31 42 85.27 69.77 86.31 42 85.27 75.56 86.31 42 85.27 75.56 86.31 42 85.27 75.56 86.31 42 85.27 75.56 86.31 42 85.27 75.56 86.31
86•33	80.54 86.33 70.28 88.04 70.55 88.04 70.61 88.04	85.00 80.54 86.33 85.07 70.28 88.04 85.05 70.55 88.04 85.13 70.61 88.04 85.13 73.13 88.04 85.64 75.05 88.04 85.27 69.33 86.04	31 85.00 80.54 86.33 37 85.07 70.28 88.04 38 85.07 70.56 88.04 37 85.17 70.61 88.04 37 85.13 71.78 88.04 37 85.21 77.05 88.04 42 85.21 87.72 88.04 42 85.27 65.37 86.31 42 85.27 65.37 86.31 42 85.27 65.37 86.31 42 85.27 72.56 86.31 42 85.27 72.56 86.31 42 85.27 72.56 86.31
86.33	70.28 88.04 70.50 88.04 70.61 88.04 71.78 88.04	85-U7 70-28 88.04 85-17 70-61 88.04 85-39 71-78 88.04 85-64 75-05 88.04 85-21 77-72 88.04 85-27 65-37 86.31	37 85.07 70.28 88.04 37 85.05 70.50 88.04 37 85.17 70.61 88.04 37 85.39 71.78 88.04 37 85.64 75.05 88.04 42 85.21 77.72 88.04 42 85.27 65.37 86.31 42 85.44 71.45 86.31 42 85.27 72.46 86.31 42 85.27 72.46 86.31 42 85.27 72.46 86.31 42 85.27 72.76 86.31
88.04	70.5C 88.04 70.61 88.04 71.78 88.04	85.05 70.5C 98.04 85.17 70.61 88.04 85.13 71.78 88.04 85.64 75.05 88.04 85.21 77.72 88.04 85.27 65.31	37 85.05 70.5C 98.04 37 85.17 70.61 88.04 37 85.13 73.13 88.04 37 85.21 77.72 88.04 42 85.27 69.37 86.31 42 85.27 69.37 86.31 42 85.27 69.78 86.31 42 85.27 78.58 86.31
88.04	70-61 88-04 71-78 88-04	85-17 70-61 88.04 85-39 71-78 88.04 85-13 73-13 88.04 85-64 75-05 88.04 85-21 77-72 88.04 85-27 69-37 86-31	37 85.17 70.61 88.04 37 85.39 71.78 88.04 37 85.64 73.13 88.04 37 85.21 87.72 88.04 42 85.27 69.37 86.31 42 85.44 70.59 86.31 42 85.27 72.54 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31
88.04	71.78 88.04	85.13 73.13 88.04 85.13 73.13 88.04 85.64 75.05 88.04 85.21 77.72 88.04 85.27 65.37 86.31	37 85.39 71.78 88.04 37 85.13 73.13 88.04 37 85.64 77.05 88.04 42 85.27 69.37 86.31 42 85.27 69.37 86.31 42 85.27 69.78 86.31 42 85.44 70.59 86.31 42 85.27 72.86.31 42 85.27 72.86.31 42 85.27 72.76 86.31 42 85.27 72.76 86.31
86.04		85.13 73.13 88.04 85.64 75.05 88.04 85.21 77.72 88.04 85.27 66.33 86.31	37 85.13 73.13 88.04 37 85.68 75.05 88.04 42 85.21 87.72 88.04 42 85.27 65.37 86.31 42 85.38 69.77 86.31 42 85.41 70.50 86.31 42 85.44 71.45 86.31 42 85.46 71.45 86.31 42 85.46 71.45 86.31
88.04	13.13 88.04	85.64 75.05 88.04 85.21 77.72 88.04 85.27 65.31 86.31	37 85.68 75.05 88.04 42 85.21 77.72 88.04 42 85.27 69.37 86.31 42 85.38 69.77 86.31 42 85.44 71.45 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31
88.04	75.05 88.04	85.21 77.72 88.04 85.27 69.37 86.31	37 85.21 77.72 88.04 42 85.27 69.37 86.31 42 85.38 69.77 86.31 42 85.11 70.50 86.31 42 85.27 72.45 86.31 42 85.27 72.74 42 85.27 72.74 86.31 42 85.27 72.74 86.31
88.04	77.72 88.04	85.27 69.37 86.31	42 85.27 69.37 86.31 42 85.27 65.54 86.31 42 85.34 69.77 86.31 42 85.44 71.45 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31 42 85.27 72.74 86.31
86.31	69.37 86.31	10 75 75 75 31	42 85.27 65.54 86.31 42 85.38 69.77 86.31 42 85.41 70.50 86.31 42 85.44 71.45 86.31 42 85.27 72.74 86.31 42 85.85 74.50 86.31
86.31	65.54 86.31	82.21 63.24 80.31	42 85-38 69-77 86-31 42 85-41 70-50 86-31 42 85-44 71-45 86-31 42 85-27 72-74 86-31 42 85-65 74-50 86-31 48 85-04 60-42
86.31	69.77 86.31	85.38 69.77 86.31	42 85-41 70-50 86-31 42 85-44 71-45 86-31 42 85-27 72-74 86-31 42 85-65 74-50 86-31 48 85-04 40-42 90-04
86.31	70.50 86.31	85.41 70.50 86.31	42 85.44 71.45 86.31 42 85.27 72.74 86.31 42 85.85 74.50 86.31 48 67 64 60.43 80 04
86.31	71.45 86.31	85.44 71.45 86.31	42 85.27 72.74 86.31 42 85.85 74.50 86.31 48 85 04 40.43 88.04
86.31	12.74 86.31	85.27 72.74 86.31	42 85-85 74-50 86-31 48 85 04 40-43 88-04
86.31	14-50 86-31	85.85 74.50 86.31	48 85 04 40 41 88 04
88.04	69-43 88-04	85.06 69.43 88.04	10 00 C1 00 00 01 01 00 01
88-04	69.59 88.04 1	85.06 69.59 88.04 1	48 85.06 69.59 88.04 1
88.04	69-79 88-04 1	85.15 69.79 88.04 1	48 85-15 69-79 88-04 1
88.04	70.40 88.04	85.31 70.40 88.04 1	48 85.31 70.40 88.04 1
8-04	88.04	85-17 71-24 88-04 1	48 85-17 71-24 88-04 1
88.04	12.27 88.04	85.55 72.27 88.04	48 85.55 12.27 88.04 I
40.88	73.64 68.04	85.45 73.64 88.04	48 85.45 73.64 88.04 1
86.72	68-80 86-72	65.22 68.80 86.72	53 65.22 68.80 86.72
86.72	68.94 86.72	85.23 68.94 86.72 I	53 85.23 68.94 86.72
•	7/*08 80*60	27.08 80.40 82.68	23 85.29 69.08 86.72 I
	71-08 80-60 60-60	1 21 08 80 00 KD 00 00 00 00 00 00 00 00 00 00 00 00 00	23 85-UV 04-38 80-12
77-98 07-	10.20 86.12	45.35 10.20 86.12 1	23 82.35 10.20 85.12 1
.00 86.72 1	5.27 71.00 86.72 1	85.27 71.00 86.72 1	53 85.27 71.00 86.72 1
86.72	12.02 86.12 1	85.17 72.02 86.72 1	53 85.17 72.02 86.72 1
-29 85-51 1	5.06 68.29 85.51 1	85.06 68.29 85.51 1	58 65.06 68.29 85.51 1
8.40 85.51 1	5.06 68.40 85.51	85.06 68.40 85.51	58 85.06 68.40 85.51
85.51	5.11 68.51 85.51 1	85.11 68.51 85.51 1	58 85.11 68.51 85.51 1
15.5	5.24 6.8.52 H5.51	25.24 68.62 E5.51	58 85.26 68.62 NS.51
1000	7/1/0 7/100 071/	7/1/0 7/1/0 071/0	1/1/0 3/100 071/0 0/100
70000	30 10 00 10 00 00 00 00 00 00 00 00 00 00	03-10 03-14 03-17 10 10 10 10 10 10 10 10 10 10 10 10 10	TO CO TO CO TO CO
7.21	2.02 (0.02 62.21	65.05 (0.05 65.51	76 67.07 (0.07 87.74
85.51	70.82 85.51	85.41 70.82 85.51	58 85.41 70.82 85.51

						Ŧ	FHAT= 90.							
AMP I AU	J	3	×15	F	FINE	FSTAR	DFINE	DFHAT	DF STAR	BBARC	BBRINF	BBRSTR	DBR INF	DBRSTR
0.25	-	~	~	9.0	9	7.3	0.0	0.0		0.0100	_		0.0	334.42
0-25	~	~	?	7.3	1.3	7.3	0.0	0.0		0.0024	\sim	0.0023	0.0	4.72
0.25		7	~	7.3	1.3	7.3	0-0	0.0	-0.00	0.0023	\sim		0.0	0-12
0.45	01	~ ~	~ ~	97.35	97.35	97.35	0	0.0		0.0023	0.0023	0.0023	0.0	0.17
2 2		4 0	4 ^		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡	? .	3 0	.	;	6700.0	~ ^		9	-
0.25		٠ ~	٠ ~					9 6		0.0023	•	0-0023		7.0
0-50		, ~	~	6.3	8	6	69.2	1.23	;	0-0185		0.0163	100.08	240-28
0.50	•	~	~	1.0	1.0	6.0	0.0	0.0	6	0.0179	_	0.0163	0.0	9.47
0.50	•	7	7	0	6.0	9-0	0.0	0	6	0.0163	6970-0	0.0163	0.0	0.09
0.50		7	~	S	6-0	5.0	0. .0	0,0		0.0163	0.0165	0.0163	0-0	0.02
0.50		~	~	J	6-0	6.0	0.0	0.0	•	0.0163	2.0163		0.0	0.02
200	2	V 1	٧,	86.09	5	٠, د د	0	0,0	00.00	0.0163	0.0163	0.0163	0.0	0.02
00		٠.	, ~	~ ~	7.7	ס ת		2,2	000	0.0625	0-0103	0.0163	0	20.0
00.1		• 🦳	· ~	• ~	1.1	1.9	0		0.23	0-0389	0.0389	0.0233	0	66.55
1.00	S	m	•	3	1.9	: :	0.0	0.0		0.0239	0.0239	0.0233	0.0	2.28
7.00	20	٣	~	9	1.5	1.9	0.0	0.0	-0-00	0.0233	0.0233	0.0233	0.0	0.01
1.00	5 7	~	6	9	1.9	6-1	0•0	0.0	ċ	0.0233	0.0233	0.0233	0.0	0.01
3:	70 1	~	m ·	O	5-1	6 - 7	0.0	0.0	ċ	0-0233	0-0233	0.0233	0.0	0.01
00.1	۲,	۹ (~ .	or .	9	٠,	o :	ز د	00.0	0.0233	0.0233	0.0233	0.0	0.01
	٠,	» ×	۰ ،	* *	07.78	9 -	71.12	9-00	3,	0.223	4556	10000	137.04	453.00
	ח ער	. ~	0 4	96-36	00.00	9-1	71-6	200	10.40	0.020	0-3009	0.00	AC-14	140-48
3,00		• •	•	91.61	19-15	19-16	0-0	0.0	; 0	0-0510	0-0510	0.0507		85.0
3.00		۵	•	91-61	91-61	91.61	0.0	0	000	0.0507	1050-0	0-0507	0	0.03
3.00		٥	•	19.16	19-16	19-16	0.0	0.0	ċ	0.0507	0.0507	0.0507	0.0	0.03
3.00		•	•	91-61	. 19-16	19-16	0-0	ο.	o.	0-0507	0.0507	0.0507	0.0	0.0
9 6		13	o	90.65	80-62	93-19	17-07	10-42	13.49	0.4673	0.9690	0.0540	107.36	•
200	n u	:	> 0	97-16	96-28	93.19	50.4	799	ځخ	0.3503	0-6832	0.0240	10.04	87.4911
90		; •	• 0	93.02	53.02	63-69	0	0-0	0-18	0-0688	0.0688	0.0540	0.0	27.45
2.00	15	•	•	93.19	53-19	93.19	0.0	0.0	0.00	0-0541	0.0541	0.0540	0.0	0.14
2• 00	70	о ъ	•	67.66	93.19	93-19	0-0	0.0	j	0.0540	0.0540	0.0540	0.0	10.0
2.00	52	o ,	<u>۰</u>	93, 19	53.19	93.19	0.0	9	ġ,	0-0540	0-0540	0.0540	0.0	
00.00	⊸ №	٠ د	<u>.</u>	90.7	76-06	20.00	16.21	15.49	17.01	0.5.30	2.3939	0.1035	15.4.31	2213.64
10.00	'n	: ~	2 2	90.95	78.55	91.65	13.53		; ;	0.6931	1.6359	0.1635	136.04	
10.00		8 7	15	11.16	84.62	91.65	1.19			0.3549	0.6633	0.1035	86.91	•
10.00		57	15		50.94	91.65	0-0	0.0	•	0.1722	0.1722	0.1035	0.0	66.39
999	200	2 :	<u> </u>	91.65	91.65	59-16	000	•	•	0.1055	0.1055	0.1035	9 0	1000
15.00		36			24-21	91.70	17.73	, -	;	1-4691	3-8680	0.1793	163.29	
15.00	•	35		20.47	74.85	91.70	17.27	16.83		1.3271	3.5031	0-1293	163.98	2608.61
15.00		33			15.15	91.70	16.11	4.1	Ľ	1.2228	3.0566	0.1293	148.97	
15.00		78		90-01	19.09	91.70	12.14	· N	÷,	0.8968	1-8780	0.1793	109.41	
00.41		*;		ø.	04.48	91.70	9 •	6.23		0.2000	0.8459	0.1293	99	9.5
15,00	2 5	;		90.10	91.00	01-10		9 0		0.1384	0.1384	0.1293	•	7.02
20.00		9		•	73.21	92-21	00-61	18.65	6	1-9229	5.3571	0.1407	1 78.60	706.2
20.00	•	40		-	73.66	92.21	18.45	-		1-8728	4.9832	0-1407	166.08	440.5
70.00		45	23	\$0°48	7.	12.26	17.93	17.47	19.45	1.6712	4.5233	0.1407	170.67	3113.61
20.00	07	9	77	•	16-43	92.21	15.51	0	7.7	1.3230		0.1407	1-25	223.
00.00		Ç	7	•		17-76	76-11		. .		•	2071-0	9	
00.07		?	;		1 T	97.71			۳,	0.4652		0-1-0		: .
 		ı	F	•) 	; ; ;))) •	•	3	;		•	

Figure 2.--Output for \hat{F} = 90% .

	DBRSTA	4671.29	407.	077.	ř	262-	389.4	649.	4083.41	3896.75	3661.84	3023.57	2354.25	1686.74	1065.04	5102.44	4903.80	4653.29	3966.61	3250.78	2525.66	1818.92	4627.56	4469.10	4277.50	3745.21	3174.84	2604-19	2033.01	5707.03	5533.36	5329.49	4741-90	121.	3486.23	850.	•		4965.0A	4482.71	3965.97	3445.95	2918-66
	DBRINF	•	178.48	•	•		101.60	14.49		186.95	191.45	179.95	167-97	137.18	109.09	•	~	_	178.88	169-23	157.75	128.00	03.79	191-92	201-12	194.53	119-19	171-19	161.24	200.10	201.60	197.97	191.61	186.15	180.57	163.95	209-17	•		202.73	•	187.48	174.08
	BBRSTR	7	0.1436	7	₹	∹	7	7	.206	-206	0.2063	206	~	0.2063	0.2063	0.1948	0.1948	0.1948	0.1948	0.1948	0.1948	0.1948	0.2523	0.2523	0.2523	0.2523	0.2523	0.2523	0-2523	0.2314	0.2314	0.2314	3.21.4	0.2314	0.2314	0.2314	0.2835	0.2835	0.2835	0.2835	0.2835	0.2835	0.2835
	881 NF	6.8523 0	6.4734	1666.5	4. 7087	3.3935	2.1390	1.0765	8.6297	8-2446	.760	.443	.062	å	2.4033	٠	•	9.2584	٠,	6.5266	5.1142	3.7376	11.9286	11.5287	11.0453	9.1022	8.2631	6-8232	5.3820	13.4348	13.0330	12-5613	11.2019	9-7670	٦.	•	~	•	•	12.9938	S	•	559
	BBARC	2.4715	324	2.2121	1-8534	1.4562	1.0610	3.6390	2.9246	2.8732	2.6625	2-3017	1.8893	1.5540	1.1494	3.4740	3.3250	3.2095	2.8402	2-4241	1.9842	1.6393	3.9266	3.8697	3.6608	3.2941	2.9596	2.5160	7.0601	•		4.2157	3.8414	7	.95	3	-92	4-8714	4.6674	4.2921	3.9508	3.4973	3-1529
	DF STAR	21.82	21-46	20.94	19.26	16.88	13.41	8.45	21.80	21.53	21.15	19.96	18-30	15.97	12-76	22.85	25.62	22.30	21.32	20.05	18.33	16-02	22.67	22.47	22.24	21.48	20.41	19.22	17.56	23-62	23-45	23.26	22.59	21-16	20.71	19.39	23-41	23-27	23-11	22.56	21-86	21.05	70.07
	DFHAT	19.34	16-81	18-44	16.70	14.24	10.66	5.55	20.85	20.57	20.19	16.98	17.31	14.95	11.70	21-06	20-83	20.50	19-50	18.19	16.44	10-91	22-05	21.83	21.59	20.83	19-61	18.54	16.87	22.06	21.88	21.69	21.01	20-11	66-61	11.74	22.15	22.61	22-45	21-90	21-19	20.37	19.33
FHAT= 90.	DF ENF	19.45	19.22	19.61	16.84	14.41	10.94	69.0	<1.01	20.63	20.48	19.27	17.72	15.05	11.88	21.12	21.00	20-02	19.61	18.38	16.79	16-13	22-18	21.87	21.80	21.04	19.83	18.69	17.20	22-11	22.02	21-11	51-09	20.31	19.37	17.89	22-88	22.64	22.61	97-77	21-22	50.49	19.13
ī,	FSTAR	92.85	95.85	92.85	95.85	94.85	95.85	12.85	91.13	21.10	91.10	91.10	01.19	91.10	91-10	92.09	65.09	92.09	92.09	60.26	92-09	\$2.09	90.75	90.75	90.75	90.75	90- 75	90.75	90.75	91.84	91.84		20	30	Ð	91.84	50.17	90.11	•	21.08	90-11	90.17	40.11
	FINE	12.55	17.93	13.41	16-41	17.18	bC-41	85.CO	11.23	11.4B	11.83	18-21	14-42	70.55	14.61	11.05	11.26	11.55	12.45	13.62	15.20	17.34	10-18	10.36	10.57	11.26	12.11	13-31	74-82	10-14	10-30	10.48	11.09	11.65	12.82	14.03	65.52	69-69	69-80	42.06	16-93	71.67	12.60
	7.	90-11	87-06	90.19	90.15	90.24	90.2 B	21.10	90.25	30.04	90.33	90.32	90.45	11-06	90.18	20.06	61.06	90-14	90.12	90.20	80-38	90-06	90-18	90.05	50-5	90.24	80.03	90-16	y0.36	90.05	40.15	80°08	90.08	90-16	90.31	90-15	77-06	40.06	90.18	61.05	40°06	41.06	90-06
	72 75	13	33	33	33	43	33	33	38	33	38	36	36	36	38	4	ï	*	4	*	*	;	?	5	6	6.4	64	7	64	52	55	55	52	2	55	55	9	9	9	0	9	9	7
	3,	55	2 6	\$	21	?	7	37	7.	69	68	63	28	25	7	3	8	6/	*	69	*	28	*	35	16	98	9	22	2	105	104	701	7	3	~	3	111	115	114	631	103	36	3
	J	~	m	•	7	7	9	52	~	~	Ţ	70	15	70	52		m	S	0	2	20	52	~	~	S	3	15) V	~ 2	~	m i	S	7	2	97	52	~	~	S	3	7	70	52
	LAM. TAU	25.00	25.00	25.00	75.00	72.00	75.00	52.00	30.00	30.00	30.00	30-00	30.00	30.00	30.00	35.00	35.00	35.00	35-00	35.00	35.00	35.00	*0.00	40.00	40-00	40.00	40-00	90-04	40-00	45.00	45.00	45.00		45.00	45.00	45.00	50.00	50-00	50.00	20-05	20.00	50.00	20.00

Figure 2.--continued.

						Ξ	FHAIL YS.							
LANeTAU	J	3	*15	7.	FINE	FSTAR	DFINE	DF HAT	OF STAR	BBANC	BBK 1NF	BBRSTA	DBR INF	8
0.25	~	~	~	86.00	96.00	97.35	0.0	0.0	1.39	0.0100	0. 1100	0.0023	0.0	334.
0.25	~	~	~	97.35	41.35	91.35	0.0	0.0	00.00	0.0024	0.0024	0.0023	0-0	÷
0.25	S	~	~	97.35	97.35	97.35	0.0	0-0	-0.00	0.0023	0.0023	0.0023	0.0	ŏ
0.25	2	~ ′	~	67-35	97-35	27.35	o •	0.0	00-0-	0.0023	0.0023	0.0023	0.0	o ·
7.0	7	٠,	۰,	97.35	97.35	97.35	0.0	9.0	00.0	0.0023	0-0053	0.0023	0.0	o (
\$ 7 T) Y	V 1	٠,٠	51.35	91.35	97.35	3	9 0	3 6	0.0023	0.0023	0.0023	0 0	o c
95	`	۰,	y ~	94. 40	96.33	77.37	•	•		0.0023	0-0023	6700.0		3
05.0	· ~	۰ م	۰ ۳	98.50	28.50	98-56	9	9	90.0	0.0030	0.00.0	6100-0		
0.50	'n	· ~	٦,	98.26	98.54	98-56	0	0	000	9-0050	0-0020	0.0014	0-0	0
0- 50	2	4	~	98.56	48.56	98.56	0	0.0	-0.00	6 100 0	0.0019	6100.0	0	ö
9.0	15	~	•	98-56	97.25	38.56	0.0	0.0	00-0-	0.0019	6100-0	6100-0	0.0	ó
0.50	70	rħ	~	94.56	94.56	98-86	0-0	0.0	-0.00	0.0019	0-0019	0.0019	0.0	Ö
6. 50	52	m	m	48.56	58-56	98-86	o. 0	0.0	-0.00	0.0019	0.0019	0.0019	0-0	ö
7.00	-	so ·	•	96-88	93.75	07.96	3.23	1.32	****	0.0313	0.0625	0-0043	1 00-00	1337.
9	٠,	•	• .	91.36	57-36	01-85	o (0	9. 0	0-0125	0.0125	0-0043	0-0	981
3	^ =	• •	• •			07-86	ာ ရ ဂ	3		0.00	8400-0	6 000 0	•	•
00) r	• •	• 4	01-05		200		9 6		1	1100	100		Š
00-1	07	•	•	94-10	01-85	04-40	9 0	9	00-0-	0.0044	9400	000	•	s c
1.00	52	•	•	94-10	94-10	98-10	0	•	-00	0.004	0.0044	0.0043	0	à
3.00	-	11	~	95.78	86.65	96-65	9.53	6.19	10-34	0.1267	0.4005	0.0172	216.05	2228.
3-00	7	•	~	95.55	94-30	96.65	5.49	4.95		0-0936	0.2039	0.0172	117.77	1085
3.00	S	30	~	96.48	94.36	96-65	2.59	0.67		0.0389	0.0701	0-0172	80.37	307.
3.6	3 :	~ 1	~ 1	96-65	96-65	30-05	0.0	0.0		0.0175	0.0175	0.0172	0.0	٠ نــ
	67	•	•	96.65	46.65	96.65	0.0	.		0.0172	0.0172	0-0172	0.0	o (
) ·		~	70.07	90.07	70.07	•			2710.0	27.00	0.0172	•	j c
8	} -	77	• 0	65-69	83-85	96.82	12.19	***		0-2254	0-8075	0-0222		3530
2.00	m	12	2	95.52	86.36	96-82	9.59	60.6	10.80	9621-0	0-5468	0-0222	204.39	2364
2.00	•	13	70	95.48	16-68	96.82	6.22	5.36		0.1187	0.2904	0.0222		1209
2-00	07	2	07	96.53	96.53	96.82	0.0	0.0		0.0342	0.0342	0.0222	0.0	\$
	57	0	9	96-82	96-82	96-82	0.0	o ;		0.0223	0.0223	0.0222	0.0	Ö
3 6	07:	2 :	3 :	79-96	96-82	96-82	0.0	9 0		0.0222	0.0222	0.0222	0.0	o (
00.00	ç -	2 2	2 -	20.00	70-05 78-26	70° 87	2 2	7.65		0.4735	2770-0	0.0547	0.0	ָרְי [ָ]
10.00	•	9	97	95.33	19.42	95.13	16.67	16.40	16.51	0.4174	1.8406	0.0547	340.93	3263
10-00	'n	23	91	95.10	81.11	95.13	14.71	14.62	14.73	6.275.0	1-4470	0.0547	285.59	•
10-00	2	77	97	09.56	87.52	95-13	8.45	7.88	8:	0-1899	0.5385	0.0547	183.60	663
90.0	67	71	9 :	11-96	90.46	95.13	7. 13		1-12	0.0739	0.1128	0.0547	52.61	ģ'
00-01	25	9	9	95.13	E1-56	95-13	•	9 0	000-0-	0.0548	0.0368	0.0547	9 0	ň c
15.00	~	14	?	95.18	17.34	96.73	18.75	18.59	20.05	0.7223	3.3996	0.0435	370.66	7720
15.00	•	45	73	95-24	11-92	96.73	17.99	17.78	19.25	0.6634	3-0495	0.0435	359.71	4169
00-57	•	7	77	95-12	19-18	96.13	16.75	16.65	16.14	0.6194	2-6238	0.0435	326.59	5635
15.00	2 ·	? ?	5 5	45-23	20.00	20.00	17.71	14.30	71-17	0.4283	0.6040	0.435	255-05	3397.
12.00	202	*	32	96.18	94.78	96-73	1.45	0.23	2.01	0.1042	0-1424	0.0435	36.64	227
15.00	52	23	53	40.04	90.64	96.13	0.0	0.0	0.09	0.0511	0.0511	0.0435	0.0	=
2C-00	~	3	5.6	95-14	15.70	96.57	20.43	20.31	21.60	0.9711	4.8591	0.0539	400.38	8910
20.00	₹,	3	67	82-18	10.24	96.57	16.61	19.75	21.05	5076-0	4.4954	0.0539	393.73	8236
20.00	n :	7	67	95-11	76-97	96.57	10.01	18.98	20-30	0.8604	4.0496	0.0539	370.68	7409.
20.00) ·	3 3	\$ 3 *	92-24	54.4	96.51	10.54	16.32	3:	0.6596	2.8450	0.0539	331.31	5175
70,00	10	; 5	۲,	77.40	03°C7	C. 5.7	7.05	6-51	1.3.4 A. 34	0.3041	0-7306	0.0539	140.23	105
20-00	25	\ 0 T	5 7	95-32	10.45	96.57	7.0	100	2.65	0.1623	0.2088	0.0539	28.67	287
: : :	İ	; }	İ	1 1 7 6	1	· •	<u> </u>	! !		: 1 1		· · · · · · · · · · · · · · · · · · ·	,	•

Figure 3.--Output for $\hat{F} = 95\%$.

ntinued.
30n
9
i
•
\sim
a
ы
ъ
Fi
1

			١					:		;			,
C SC SINF FC FINF FSTAR L	SINF FC FINF FSTAR	FINF FSTAR	INF FSTAR	¥	-	DFINE	DFHAT	DF STAR	BBARC	BBRINE	BBRSTR	DBR INF	DBRSTA
11 34 95-12 13-64 95-02	34 95-12 73-64 95-02	2 13.64 95.02	95.02	75	7	22.58		22.50	1.2200	6.5888	993	440.06	
15 34 95.15 74.02 95.02	34 95.15 74.02 95.02	74-02 95-02	2 95.02		77	.21	57.09	22-10	1-1584	6-2136	933	436.38	
25 34 55.10 74.54 95.02	34 55.10 74.54 95.02	14-54 95-02	4 95.02		7	21.62		21.56	1-1050	5.7444	0.0938	419.84	6021.39
3 95.02	34 95.23 76.23 95.02	76.23 95.02	3 95.02		5	9.95	19.76	19.78	0.8975	4-4710	0.0938	398-19	4664.45
20.56 20.87 12.59 45 75	20.56 20.69 12.69 45	79.02 45.02	20.56 20.8	2 5		17.43	17-24	17.26	0-7118	3.1796	0.0938	9	
ZOUCH COUZE STUCK DE SE	20°CA C0°28 81°CA 96	20°CA C0°29 8	20°CA C0°2		7	2	13-63	13-65	0.5263	C5C5-1	0.0938	272.30	_
20 40 40-40 80-64 40-65	20°56 40°56 05°56 45°56		20.04 40.02		70 ;	, de	•	19-8	9359	6446-0	0.0938	183.79	900
15.50 00.61 U3.00 00.00	50 CA 00 13 07 07 07	13.00 93.35	3.00 95.56		7	6 4 5	23.09	23-90	0694-1	6190-9	0.0952	450-17	
50 40 72-13 73-36 95-37	40 75-13 75-36 95-37	13-30 95-31	95-37	3.	7	55-88	22.18	23-08	1.4068	7.1026	0-0952	447.54	
87 40 95-09 75-77 95-37	40 95-09 15-11 95-31	13.11 95.31	95.37	37	v	7.	22-35	22-65	1-3523	1.2259	0.0952	434-35	7492.72
80 40 93-19 73-06 93-31	15.50 50.51 V. 55.50	15-06 95-31	95.37		7	21.16	66-07	21.30	1-1429	5.9340	0.0952	419.20	6135.24
15 -64 95-61 16-85 95-31	75 25 10 82-31	16.82 95.31	95.37	7 (-	. 34	61.67	55.67	0.9410	4.5875	0.0952	384.09	4720.36
7 18 25 17 61 82 82 84 60	1 15°C6 17°C1 92°C8 04	1 15-06 17-61 9	95.37	7	9	7 A T	10.56	ċ	C. 741.3	3.2579	0.0952	339.50	3323.28
56 40 95.30 82.58 95.37	40 95.30 82.58 95.37	82.58 95.37	95.37		<u> </u>	3.30	13.08	13.42	. 549	2.0399	0.0952	271-03	2043.50
101 46 95.09 72.63 95.75	46 95.09 72.63 95.75	12-63 95.75	95.75		23.	79	23.54	24.14	. 111	9.5781	0.0938	457.591	91110
105 46 95-12 72-88 95-75	46 95-12 72-88 95-75	72-88 55-15	. 52.55	•	. 23	38	23.28	23.89	1.6550	9-1959	0-0936	455.63	
102 46 95.08 73.22 95.75	46 95.08 73.22 95.75	13.22 95.15	95.15		22.	66	22-93	23.53	1-5997	8-7145	0-0938	444.76	9190.95
94 46 95.01 74.27 95.75	46 95.01 74.27 95.75	14.27 95.75	1 95.75		21-	83	21.82	22.43	1.4335	7.3974	0.0938	416.02	
86 46 95.00 75.63 95.75	46 95.00 75.63 95.75	15.63 95.75	1 95.75	2	20.	39	20-39	21-01	1-2361	6-0294	0.0938	387.78	6328.25
18 46 95.04 77.44 95.75 1	46 95.04 77.44 95.75 1	17.44 95.15 1	95.15	12	18.	25	18.48	19.12	-	4-6522	0.0938	354.89	4859.91
10 46 95.10 79.85 95.75	46 95.10 79.85 95.75	79.85 95.75	95.75	2	97	6.03	15.94	16-60		3.3225	0.0938	310.75	3442-26
122 52 95.08 72.31 96.13	52 95.08 72.31 96.13	72.31 96.13	96-13		23.	23.95	23.89	24-78	_	11.0768	0.0906	463.20	12123-13
120 52 95.11 72.53 96.13	52 95.11 72.53 96.13	72.53 96.13	96.13		23	*.	23.65	24.55	1.9008	10.6833	0.0906	462-04	11688.82
117 52 95.08 72.81 96.13	52 95.08 72.81 96.13	72.81 96.13	96.13		23	.42	23.36	24-26	1-8411	10.2075	9060-0	455-44	452-4411163-81
109 52 95.01 73.67 96.13	52 95.01 73.67 96.13	13-67 96-13	96-13		~	2.4.2	22.46	23-36	-683	8.8886	0.0906	428-12	9708.43
101 52 95.03 74.81 96.13	52 95.03 74.81 96.13	74.81 96.13	96.13		7	21.28	21-26	22-18	1924-1	7.4815	9060-0	406-84	6155.77
93 52 95.07 76.21 96.13	52 95.07 76.21 96.13	76.21 96.13	96.13		-	. 83	19.78	20.12	1-2011	6.0813	9060-0	382.23	65.0199
85 52 95.15 78.04 96.13	52 95.15 78.04 96.13	78.04 96.13	96.13		=	16.	17.85	18.81	1.0376	4.6921	9060-0	352.21	5077.64
137 57 95.08 71.43 95.27	57 95.08 71.43 95.27	71-43 95-27	95-27		~	24.87	24.81	25.03	2.2157	12.8570	0.1215	480.271	10478.73
135 57 95-10 71-61 95-27	51 95-10 71-61 95-27	71.61 95.27	95.21		~	2	24.62	24-03	2-1490	12.4588	0.1215	419-751	10151.07
132 57 95.06 71.82 95.27	57 95.06 71.82 95.27	71.82 95.27	95.27		ž	24.45	24.40	24.62	2.0997	11-66-11	0.1215	471-10	
124 57 95.02 12.52 95.21	51 95.02 12.52 95.21	12.52 95.21	95.47		23	19.	23.66	÷	1-9304	10.6453	0.1215	451.46	8658.98
1.0 57 95.02 73.40 527	57 95.02 73.40 927	73.40 927	22.51	21	22	- 15	22.73	22.95	1.7257	9-2275	0-1215	434-72	7492-35
108 57 95.08 71.51 95.27	57 95.08 74.51 95.27	74-51 95-27	95.27	27	21	.63	21.57	21.79	1.5026	7.1789	0.1215	417.70	6300.47
100 57 95.16 75.90 95.27	57 95-16 75-90 95-27	b 75.90 95.27	0 95.27	27	2	-24	20-11	20.33	1.2726	6.3359	0.1215	397.86	5113.17
152 63 95-07 71.28 55.76	63 95-01 11.28 55.16	5-01 11.28 55.16	8 55.76	9	2	. 02	24.97		2.4646	14-3605	0.1133	482.681	12575.11
150 63 95.09 71.44 95.76	63 95.09 71.44 95.76	5.09 71.44 95.76	95.16	9	~	24.87	24.80	25.39	2.3977		0.1133	482.291	12223.15
147 63 95.06 71.62 95.76	63 95.06 71.62 95.76	6 71-62 95-76	95.76	9	~	4.65		5.2	2.3480	13.4922	0.1133	474-63	6311808.74
139 63 95.02 72.24 95.76 2	63 95.02 72.24 95.76 2	12.24 95.76 2	95.76	76 2	~	9	23.96		2-1782	12.1418	0-1133	457-411	10616.83
A31 63 95-04 73-02 95-76	63 95-04 73-02 95-76	13.02 95.76	92.46	9	~	23-17	23.16	23, 75	966	10.6987	0-1133	443.95	9343.07
123 63 95.08 75.93 95.76	63 95.08 73.93 95.76	73.93 95.76	95.76	92	7	7.24	22.17	22.79	745	9.2500	0-1133	429.BA	
114 63 95.00 75.07 95.76 2	63 95.00 75.07 95.76 2	75-07 95-76 2	7 95.76 2	76 2	~	0.98	20-98	23.60	1.5614	7-7871	0.1133	198.72	
						,				•			

Figure 2, $\lambda r = 25$, we see that the percentage error in $D_{\overline{B}_{\infty}}$ increases slightly when going from C=1 to C=3, although this is a rather rare situation and the general trend is decreasing. The "nonmonotonicity" is somewhat more common when fixing c and observing the errors as λt increases. Again, even in cases where there is not strict monotonicity, the violations are small and there still remains a general trend.

Figures 4 through 18 show graphs of the error ranges of the D_F and $D_{\overline{B}}$ measures on the $\lambda \tau$ versus c space. A definite pattern emerges even though in a few cases the nonmonotonicity shows up. The error band lines are purposely plotted as "fuzzy," since the grid is not fine enough to obtain precise boundaries.

These graphs do show clearly that for large $\lambda \tau$ and small c, the percentage error can be sizable. Also, errors for comparable cases (same $\lambda \tau$ and c) become larger as \hat{F} is increased. This can be seen by looking at comparable measures for the three \hat{F} situations; for example, by comparing Figures 4, 9, and 14, or Figures 7, 12, and 17, and so forth.

While the general direction of large errors (larger $\lambda \tau$, smaller c, larger \hat{F}) may not be surprising, the actual magnitude might be. Certainly, one should give careful thought prior to employing the ample service assumption.

Figures 19 through 24 give plots of $D_{\overline{B}_{\infty}}$ and $D_{\overline{B}_{\infty}}$ versus $\lambda \tau$ for various c values, and \hat{F} 's of 85%, 90%, and 95%, respectively. These sets of curves can be used to find the error (or approximate error if interpolation is necessary) in assuming ample service when in reality it is not. Keep in mind that these results assume exponential lead times in the nonample service model, and that the stockage criteria are based on fill rate control.

				FHAT #5. OFINE (IN PER	RCENT)			
50.	• t	t .	ŧ	E	£	E	E	
	• •							
		Ł.	£	E	E	E	£	
	•						./	
44.	• • •	د	Ė	E	£		D	
	•					1		
	É	£	E	E		G	٥	
	•						_	
30.	• • £	£	Ė	E /	a	• /	,	
	•			,		,'		
LAMBLACEAU	£	E	ŧ	£ ,'	D	0 //	6,7	
	• • •		,	'			 	
<∪•	• • E	£ /	0	0 /	· c		A	
	,	•		/				
			0			A	A	
	•		,					
10-	• D	ا			A	A	A	
	•		.* 					
		ر 	المرابع والماسية	A	A	A	A	
		Ā,			A			
u.	• ^ <u>A</u> • • • • • • • • • • • • • • • • • • •		A • *********** 5	4 ••••••••••• 10	A 10	A ++++++++++++++++++++++++++++++++++++	A •• 25	
C INUMBER OF REPAIR CHANNELS)								
	A B C	14 14 G. 14 5	- 0. 4 - 5. 8 - 10. 8	Figure	4D _{F_∞} fo	r f̂ = 85%.		
••	t	1 15	- 20. 4					

D_F (%)

ACKNOWLEDGMENT

The author wishes to thank Mr. Arturo Balana for his help in both the computer programming and data compilation efforts.

REFERENCES

- cy under compound Poisson demand. Management Sci., 12, 391-411.
- HADLEY, G. and T. M. WHITIN (1963). Analysis of Inventory Systems.

 Prentice-Hall, New Jersey.
- HILLIER, F. S. and G. J. LIEBERMAN (1980). Introduction to Operations

 Research, 3 Ed. Holden-Day, San Francisco.
- MUCKSTADT, J. A. (1973). A model for a multi-item, multi-echelon, multi-indenture inventory system. Management Sci., 20, 472-481.

THE GEORGE WASHINGTON UNIVERSITY Program in Logistics Distribution List for Technical Papers

The George Washington University Office of Sponsored Research Library Vice President H. F. Bright Dean Harold Liebowitz Dean Henry Solomon

ONR

Chief of Naval Research (Codes 200, 434) Resident Representative

OPNAV OP~40

DCNO, Logistics Navy Dept Library NAVDATA Automation Cmd OP-964

Naval Aviation Integrated Log Support

NARDAC Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station Louisville, Ky. Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Branch Office Boston Chicago New York Pasadena San Francisco

Naval Ship Eng Center Philadelphia, Pa. Washington, DC

Naval Ship Res & Dev Center

Naval Sea Systems Command PMS 30611 Tech Library Code 073

Naval Supply Systems Command Library Operations and Inventory Analysis

Naval War College Library Newport

BUPERS Tech Library

FMSO

Integrated Sea Lift Study

USN Ammo Depot Earle

USN Postgrad School Montercy Library Dr Jack R. Borsting Prof C. R. Jones

US Marine Corps Commandant Deputy Chief of Staff, R&D

Marine Corps School Quantico Landing Force Dev Ctr Logistics Officer Commanding Officer USS Francis Marion (LPA-249)

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library Carlisle Barracks

Army Cmd & Gen Staff College

Army Logistics Mgt Center Fort Lee

Commanding Officer, USALDSKA New Cumberland Army Depot

Army inventory Res Oic Philadelphia

Air Force Headquarters AFADS-1 LEXY SAF/ALC

Griffiss Air Force Base Reliability Analysis Center

Gunter Air Force Base AFLMC/XR

Maxwell Air Force Base Library

Wright-Patterson Air Force Base Log Command Research Sch Log AFALD/XR

Defense Documentation Center

National Academy of Sciences Maritime Transportation Res Board Library

National Bureau of Standards Dr B. H. Colvin Dr Joan Rosenblatt

National Science Foundation

National Security Agency

Weapon Systems Evaluation Group

British Navy Staff

National befense Hdqtrs, Ottawa Logistics, OR Analysis Establishment

American Power Jet Co George Chernowitz

General Dynamics, Pomona

General Research Corp Dr Hugh Cole Library

Logistics Management Institute Dr Murray A. Geisler

MATHTEC Dr Eliot Feldman

Rand Corporation Library

Carnegi.-Mellon University Dean H. A. Simon Prof G. Thompson

Case Western Reserve University Prof B. V. Dean Prof M. Mesarovic Prof S. Zacks

Cornell University
Prot K. f. Bechhofer
Prof R. W. Conway
Prof Andrew Schultz, Jr.

Cowles Foundation for Research in Economics Prof Herbert Scarf Prof Martin Shubik

Florida State University Prof. R. A. Bradley

Harvard Goversity
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson

Purdue University Prof S. S. Gupta Prof H. Rubin Prof Andrew Whinston

Stanford University
Prof T. W. Anderson
Prof G. B. Dantzig
Prof F. S. Hillier
Prof D. L. Iglehart
Prof Samuel Karlin
Prof G. J. Lieberman
Prof Herbert Solomon
Prof A. F. Veinomott, Jr.

University of California, Berkeley Prof R. E. Barlow Prof D. Gale Prof Jack Kiefer Prof Rosedith Sitgreaves

University of California, Los Angeles
Prof J. R. Jackson
Prof R. R. O'Neill

University of North Carolina Prof W. L. Smith Prof M. R. Leadbetter

University of Pennsylvania Prof Russell Ackoff Prof Thomas L. Saaty

University of Texas Prof A. Charnes

Yale University Prof F. J. Anscombe Prof I. R. Savage

Prof Z. W. Birnbaum University of Washington

Prof B. H. Bissinger
The Pennsylvania State University

Prof Seth Bonder University of Michigan

Prof G. E. P. Box University of Wisconsin

Dr Jerome Bracken Institute for Defense Analyses

Prof H. Chernoff
Mass. Institute of Technology

Prof Arthur Cohen Rutgers - The State University

Mr Wallace M. Cohen US General Accounting Office

Prof C. Derman Columbia University

Prof Masao Fukushima Kyoto University

Prof Saul 1. Cass University of Maryland

Dr Donald P. Caver Carmel, California

Prof Amrit L. Goel Syracuse University

Prof J. F. Hannan Michigan State University

Prof H. O. Hartley Texas A & M Foundation Mr Gerald F. Hein NASA, Lewis Research Center

Prof W. M. Hirsch Courant Institute

Dr Alan ¹. Hoffman IBM, Yorktown Heights

Prof John R. Isbell State University of New York, Amherst

Dr J. L. Jain University of Pelhi

Prof J. H. K. Kao
Polytech Institute of New York

Prof W. Kruskal University of Chicago

Mr S. Kumar University of Madras .

Prof C. E. Lemke Rensselser Polytech Institute

Prof Loynes
University of Sheffield, England

Prof Steven Nahmias University of Pittsburgh

Prof D. B. Owen
Southern Methodist University

Prof E. Parzen

Texas A & M University

Prof H. O. Posten
University of Connecticut

Prof R. Remage, Jr. University of Delaware

Prof Hans Riedwyl University of Bern

Dr Fred Rigby Texas Tech College

Mr David Rosenblatt Washington, D. C.

Prof M. Rosenblatt University of California, San Diego

Prof Alan J. Rowe University of Southern California

Prof A. H. Rubenstein Northwestern University

Dr M. E. Salveson West Los Angeles

Prof Edward A. Silver University of Waterloo, Canada

Prof M. J. Sobel Georgia Inst of Technology

Prof R. M. Thrall Rice University

Dr S. Vajda University of Sussex, England

Prof T. M. Whitin Wesleyan University

Prof Jacob Wolfowitz University of South Florida

Prof Max A. Woodbury Duke University

To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.

