Course code	Course Name	L-T-P- Credits	Year of Introduction
AO208	AIRCRAFT MATERIALS AND PROCESSES	3-0-0-3	2016

Prerequisite: Nil

Course Objectives:

 To study types of materials and mechanical behavior of materials for aircraft applications

Syllabus

Structure of solid materials - mechanical properties -Ferrous, non-ferrous, aluminium, titanium, copper and magnesium alloys - Non-Metallic Materials -Composite materials -Metal working process-heat treatment -corrosion – high temperature materials – super alloys.

Expected Outcome

The students will be able to

- i. Understand role of corrosion and heat treatment processes of aircraft materials
- ii. Know the usage of composite materials in aircraft component design.
- iii. Know the use of high temperature materials in space applications
- iv. Familiarize the different types of metal working processes.

Text Books:

- 1. Titterton.G., "Aircraft Materials and Processes", V Edition, Pitman Publishing Co., 1995.
- 2. Advanced Composites –Cindy Forema

References:

- 1. Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications (London) Ltd., 1987.
- 2. Van Vlack.L.H., "Materials Science for Engineers", Addison Wesley, 1985.
- 3. Airframe and Power plant Mechanics-General Hand Book-FAA Himalayan Book House, New Delhi.

Course Plan

Module	Contents	Hours	Sem. Exam Marks
I	Structure of solid materials – Atomic structure of materials – crystal structure	2	15%
	miller indices – density – packing factor – space lattices	1	
	x-ray diffraction – imperfection in crystals	2	
	Mechanical properties of materials - physical metallurgy - general requirements of materials for aerospace applications	2	
	Structural Metals – Ferrous aircraft metals and alloys	2	
	Non-Ferrous Aircraft metals and Alloys	2	

II	Aluminum and Aluminum alloys, Titanium and Titanium Alloys	2	15%	
	Copper and Copper Alloys Magnesium and Magnesium alloys.	2		
	FIRST INTERNAL EXAM			
Ш	Non-Metallic Materials - Wood, Fabrics ,Plastics , Transparent materials Rubber and Synthetic rubber	1	15%	
	Composite materials - Introduction	2		
	Reinforcing Fibers, Matrix materials	2		
	Core materials& manufacturing of composites.	2		
IV	Metal working process	1	15%	
	Cold working and Hot working	1		
	Heat Treatment-Hardening, Tempering, Annealing, Normalizing, Case hardening	2		
	Machining Process-Turning, Taper Turning, Milling, Shaping, Grinding. Thread Cutting . Sheet Metal Rolling	1		
	SECOND INTERNAL EXAM			
	Types of corrosion	1	20%	
V	Effect of corrosion on Mechanical properties, Stress corrosion	2		
	Factors affecting corrosion	2		
	Corrosion resistant materials used in for space vehicles.	2		
VI	Classification, production and characteristics of high temperature materials – methods and testing	2		
	determination of mechanical and thermal properties of materials at elevated temperatures	2	20%	
	application of these materials in thermal protection systems of aerospace vehicles	1		
	super alloys – high temperature material characterization.	2		
	END SEMESTER EXAM			

Question Paper Pattern

Maximum marks: 100 Exam duration: 3 hours

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks) **Note**: In all parts, each question can have a maximum of four sub questions, if needed.