

EFFICIENT STRATEGIES TO COMPUTE INVARIANTS, BOUNDS AND STABLE PLACES OF PETRI NETS

Yann Thierry-Mieg LIP6, Sorbonne Université, CNRS

PNSE'23: Petri Nets and Software Engineering 2023, June 2023, Lisbon

CONTEXT

The Model Checking Contest

- Annual event since 2011, comparing verification tools
- Large benchmark: 1678 instances from 132 families
- Several examinations
 - State Space : metrics on the size of the state space
 - Upper Bounds : compute upper bound of place markings
 - Reachability, CTL, LTL
- Since 2020, « Global Properties » category
 - One Safe : all places are bounded by one
 - Stable Marking: there exists a (stable) place with a constant (stable) marking
 - Reachability of a Deadlock, Quasi-Liveness, Liveness
- In this presentation state of the art strategies for :
 - Computing Invariants (preliminary)
 - Computing Upper Bounds
 - Computing One Safe and Stable Marking global property in the paper

EXHAUSTIVE STATE SPACE EXPLORATION

- Full state space generation possible for ~70% of model instances with advanced strategies
 - 73% for Best "Virtual" tool
 - 69% for Gold medalist Tedd
- Most competitors use more diverse strategies
 - One Safe : BVT 100%, Gold ITS-Tools 99.88%
 - Stable Marking: BVT 96.6%, Gold ITS-Tools 94.3%
 - Upper Bounds: BVT 94.91%, Gold ITS-Tools 93.59%

PETRI NETS

A model with strong structural/analytic results

- Places, transitions, arcs, initial marking
- Flow matrices

Pre	tO	t1	t2
p0	0	2	1
p1	0	1	0
p2	0	0	0

Post	tO	t1	t2
p0	1	2	0
p1	0	0	0
p2	0	1	0

• Transition effects : Post -Pre

Post-Pre	t0	t1	t2
p0	1	0	-1
p1	0	-1	0
p2	0	1	0

PETRI NETS

A model with strong structural/analytic results

- Places, transitions, arcs, initial marking
- Flow matrices
- Transition effects: Post –Pre

Post-Pre	t0	t1	t2
p0	1	0	-1
p1	0	-1	0
p2	0	1	0

An over approximation that can still yield

- Invariants : p1 + p2 = 1
- The state equation
 - p0 = |t0| |t2|
 - p1 = 1 |t1|
 - p2 = |t1|

MCC MODELS CAN BE VERY LARGE

- Models can have up to
 - ~10^5 places
 - ~10^6 transitions
 - ~10^7 arcs
 - But they are mostly **sparse**
- Colored models are small
 - < 100 places, transitions, < 500 arcs
 - But their « unfolding » is huge, larger than most native PT
 - Use the **skeleton** overapproximation when possible

SPARSE REPRESENTATIONS

- Dense Array N elements
 - Memory O(N)
 - Count of non zero elements, Test Emptiness O(N)
 - Iterate non empty elements O(N)
 - Random access by index O(1)

	_	_				
Λ	Λ	Λ	_1)	Λ	Λ
U	U	U	_T	4	U	U

- Sparse Array with K non zero elements
 - Memory O(2K)
 - Count of non zero elements, Test Emptiness O(1)
 - Iterate non empty elements O(K)
 - Random access by index O(log2(K))

SZ	2	
keys	3	4
values	-1	2

Post-Pre	t0	t1	t2
p0	1	0	-1
p1	0	-1	0
p2	0	1	0

- Sparse Matrix representation
 - Dense Array of Sparse Arrays : column based storage
 - Iterate non zero by column index => very fast

	t0	t1		t2
SZ	1	2		1
keys	0	1	2	0
values	1	-1	1	-1

- Clear a column O(1)
- Iterate (non zero) based on row, e.g. clear a row => bad complexity
- But fast and memory efficient transpose available

	t0	t1	t2	t3	t4
p0	-1				
p1	-1	1	2		
p2	1	-1	-2		
р3				-2	1
p4				2	-1
p2 p3 p4 p5 p6					1
р6					2

• Step 1 : normalize columns

• Divide by gcd

• Eliminate duplicates

• Transpose

	t0	t1	t2	t3	t4
p0	-1				
p1	-1	1	1		
p0 p1 p2 p3 p4 p5 p6	1	-1	-1		
р3				-1	1
p4				1	-1
p 5					1
p6					2

	p0	p1	p2	р3	p4	p5	p6
tO	-1	-1	1				
t1		1	-1				
t3				-1	1		
t4				1	-1	1	2

	p0	p1	p2	р3	p4	р5	р6
p0	1						
p1		1					
p2			1				
р3				1			
p4					1		
p5						1	
p6							1

• Step 2:

- Initialize Identity matrix
- Initialize pm index per row
 - (list positive indexes)(list negative indexes)

p5

								to 💻
	р0	p1	p2	р3	p4	p5	p6	pm
t0	-1	-1	1					(2)(0,1)
t1		1	-1					(1)(2)
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	p5	p6
р0	1						
p1		1					
p2			1				
р3				1			
p4					1		
p1 p2 p3 p4 p5 p6						1	
р6							1

- Find a row « r » with single positive or negative entry « k »
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
- *Clear* column k (sparse)

p1=p1+p2

								t0
	p0	p1	p2	р3	p4	р5	p6	pm
t0	-1		1					(2) <mark>(1)</mark>
t1			-1					<mark>()</mark> (2)
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	p5	p6
р0	1						
p1		1					
p2		1	1				
р3				1			
p4 p5 p6					1		
p5						1	
р6							1

Step 3:

- Find a row « r » with single positive or negative entry « k »
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
- *Clear* column k (sparse)

	p	0=p0+	-p2					
								t0
	p0	p1	p2	рЗ	p4	р5	р6	pm
tO			1					(2) <mark>()</mark>
t1	-1		-1					()(0,2)
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	р5	р6
р0	1						
p1		1					
p2	1	1	1				
р3				1			
p4					1		
p4 p5 p6						1	
р6							1

- Find a row « r » with single positive or negative entry « k »
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
- *Clear* column k (sparse)

								τυ 💻
	р0	p1	p2	р3	p4	р5	p6	pm
t0								()()
t1	-1							() <mark>(0)</mark>
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	р5	р6
р0	1						
р1		1					
	1	1					
р3				1			
p4					1		
p2 p3 p4 p5 p6						1	
р6							1

- Find a row « r » with single positive or negative entry « k »
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
- *Clear* column k (sparse)

								t0
	p0	p1	p2	р3	p4	р5	p6	pm
t0								()()
t1	-1							()(0)
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	р5	p6
р0	1						
p1		1					
p2	1	1					
р3				1			
p4					1		
p2 p3 p4 p5 p6						1	
р6							1

- Step 3 :
 - Find a row « r » with single positive or negative entry « k »
 - For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
 - *Clear* column k (sparse)

								t0
	p0	p1	p2	р3	p4	р5	p6	pm
tO								()()
t1								()()
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

	р0	p1	p2	р3	p4	р5	р6
р0							
p1		1					
p2		1					
р3				1			
p4					1		
p2 p3 p4 p5 p6						1	
р6							1

- Step 3:
 - Find a row « r » with single positive or negative entry « k »
 - For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
 - *Clear* column k (sparse)

								t0
	р0	p1	p2	р3	p4	р5	p6	pm \
t0								()()
t1								()()
t3				-1	1			(4)(3)
t4				1	-1	1	2	(3,5,6)(4)

p4 = p4 + p3

	р0	p1	p2	р3	p4	р5	p6
р0							
p1		1					
p2		1					
р3				1			
p4					1		
p2 p3 p4 p5 p6						1	
р6							1

- Step 3 :
 - Find a row « r » with single positive or negative entry « k »
 - For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
 - *Clear* column k (sparse)

				p4=	p4+p3			
					•			t0
	р0	p1	p2	р3	p4	р5	p6	pm
t0								()()
t1								()()
t3								()()
t4						1	2	(5 <i>,</i> 6)()

	р0	p1	p2	р3	p4	р5	p6
р0							
р1		1					
p2		1					
р3					1		
p4					1		
p2 p3 p4 p5 p6						1	
р6							1

- Find a row « r » with single positive or negative entry « k »
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~g time column k to column j (so M[j,r]=0).
 NB: this is a sparse operation on two Sparse Array
 - Update pm sparsely.
- *Clear* column k (sparse)

								t0
	p0	p1	p2	р3	p4	p5	p6	pm
t0								()()
t1								()()
t3								()()
t4						1	2	(5,6)()

p6=p6-2*p5

	р0	p1	p2	р3	p4	p5	p6
р0							
p1		1					
p2		1					
р3					1		
p1 p2 p3 p4 p5 p6					1		
p5						1	
р6							1

• Step 4:

- If no row « r » with single positive or negative entry « k », choose an arbitrary non zero entry
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~(-g or g) times column k to column j to empty cell M[j,r]
 - Update pm (sparsely)
- Clear column k (sparse)

						p6=p6	5-2*p5	
	р0	p1	p2	р3	p4	р5	р6	
t0								
t1								
t3								
t4								

	р0	p1	p2	р3	p4	р5	p6
р0							
p1		1					
p2		1					
р3					1		
p4					1		
p2 p3 p4 p5 p6							-2
р6							1

• Step 4:

t0

pm

()()

()()

()()

()()

- If no row « r » with single positive or negative entry « k », choose an arbitrary non zero entry
- For every other column « j » which is non zero on this row
 - Compute coefficient : g=gcd(M[k,r],M[j,r])
 - Add ~(-g or g) times column k to column j to empty cell M[j,r]
 - Update pm (sparsely)
- Clear column k (sparse)

	р0	p1	p2	р3	p4	р5	p6
p0							
p1		1					
p2		1					
р3					1		
p4					1		
p5							-2
р6		_					1
		1					Ī
		p1+p2	2.		p3+p4		p6-2* ₁

• Step 5 :

- When matrix is empty, interpret « identity » matrix as invariants
- For P-invariants, deduce constant value from initial marking
- T-invariants can be computed in the same way, starting from a transposed matrix.

More details and heuristics for choosing a pivot in the paper.

INVARIANTS CONCLUSIONS

- A classical subject revisited
 - Based on PIPE algorithm, derived from d'Anna & Trigila '88 paper
 - Emphasis on **sparse** data structures and operations (<u>all of them</u>) to remain in both memory AND time complexity related to non zero entries
 - Implementation in plain Java, no libraries
 - Hacked version of google.android.SparseArray
 - Based on code from APT->PIPE
 - Refined/Profiled implementation (60+ commit on main file over 5 years)
 - Strong constraints, very cheap to compute, very cheap to use e.g. to feed a SMT/ILP solver.
- Very favorable performance comparison to Tina (« struct » component) even when it uses « 4ti2 » library as solver

COMPUTING UPPER BOUNDS

- Problem Statement :
 - Given a set of places, what is the maximum value of their marking in any reachable state?
- Strategy is based on : Min <= Bound <= Max
 - A Structural Upper Bound : Max
 - We guarantee this bound cannot be exceeded
 - Initialize with +infnity
 - A Reachable Lower Bound : Min
 - We guarantee the bound is not lower than this value
 - Initialize with value of expression in initial marking
- Iteratively try to:
 - Reduce Max
 - Increase Min
- When Min=Max, this is the bound we were looking for.

MIXING DIRECTED WALKS, SMT AND STRUCTURAL REDUCTIONS

PN2020: Structural Reductions Revisited

net and property Structural Reduction SMT overapproximation Random Walk Not found SAT+Failed guided walk Counter-example convergence **UNSAT FALSE TRUE** A simpler net and property Invariant does not hold Invariant holds

MIXING DIRECTED WALKS, SMT AND STRUCTURAL REDUCTIONS

Adapting « PN2020: Structural Reductions Revisited » to Bounds

net and expression « e » Set Max=+inf and Min=m0(e) Random Walk Structural Reduction Keep largest value SMT overapproximation met as new Min SAT+ Maximize Else =>guided Try to prove walk Min+1 unfeasible convergence UNSAT Max reached So Min=Max So Min=Max Conclude Conclude A simpler net and property Try exhaustive methods/other tools

ADDITIONAL ELEMENTS IN THE WORKFLOW

- For colored nets, use the skeleton first to approximate Max
- Use P-flows (invariants)
 - Positive P-semi-flows : p1 + 2*p2 = 3
 - Max(p1)=3, Max(p2)=1
 - Given some of these constraints use generalized invariants : p0 p2 = 1
 - We know Max(p2)=1, so Max(p0)=2
 - Provides a very rough Max on expressions, but is very fast and scales well
- Then iterate the modified invariants procedure
 - Random walk to increase Min
 - SMT contraints to test Max <= Min
 - If SAT additionally Maximize expression
 - Try to replay SAT model (using Parikh counts of the solution)
- Also try some exhaustive methods
 - Based on Hierarchical Set Decision Diagrams (SDD)
 - Based on LTSMin + POR

CONCLUSION UPPER BOUNDS

- An iterative refinement that uses:
 - An under approximation given by exploration
 - An over-approximation given by a mix of invariants and more complex SMT constraints
 - Leverage the « maximize » option of Z3 on SAT
 - Structural reductions to study much smaller nets

ONE SAFE, STABLE MARKING

- The paper also presents our strategies for deciding « One Safe » and « Stable Marking »
 - In both cases, prior to using the reachability engine we try to use very simple strategies first
 - Some property specific structural reductions are introduced (e.g. trivial token flow graph)
 - Split into many sub problems (one per place) but try to reduce the number of queries
 - SMT does not really scale up to 10⁶ elements, but for larger models we can still try
 - sparse invariant computation,
 - memoryless directed/pseudo-random reachability,
 - structural reductions
 - The process also builds simpler models we can submit to other tools (+red)
 - ITS-Tools won Gold in 2023 at MCC in these examinations
 - All the variants of other tools (+red) that use our engine as pre-treatment also did better than silver medalist Tapaal

ONE SAFE

STABLE MARKING

https://yanntm.github.io/MCC-analysis/global_properties_annual.html

CONCLUSION

- The strategies (informally) described in this paper are to the best of our knowledge state of the art solutions to these queries, so we hope this presentation is still useful
- Further directions include linear inequalities, infinite bounds
- All source code fully available as FOSS under GPL on https://github.com/ITSTools

SMT CONSTRAINTS

Highlights

•
$$P1 >= 0, P2 >= 0...$$

- Generalized flows
 - P1 + 2*P2 P3 = 1
- Trap constraints
 - P1 > 0 OR P2 > 0
 - Compute *useful constraints* as separate SMT problem
- State Equation
 - Add a positive variable for firing count of transitions
 - P1 = T1 T2 + 1
- Read => Feed
 - T1 reads P; m0(P)=0; T2 and T3 feed P
 - $T1 > 0 \Rightarrow T2 > 0 \text{ OR } T3 > 0$
- Causal constraints (*precedes* is a strict partial order)
 - T1 consumes from P; m0(P)=0; T2 and T3 feed P
 - $T1 > 0 \Rightarrow (T2>0 \text{ AND } T2 \text{ precedes } T1) \text{ OR } (T3>0 \text{ AND } T3 \text{ precedes } T1)$
 - Is inconsistent (UNSAT) if we also have « T1 precedes T2 » and « T1 precedes T3 »

Iterative refinement of the over approximation

- +Incremental constraints
- +Use Reals then Integers
- +UNSAT = invariant proved true
- +SAT = candidate state + firing count

READ => FEED

Constraining the transition firing count

- The state equation ignores read arcs
 - ⇒ spurious solutions, t1 and t2 are not correlated in the state equation constraints

Reason on first occurrence of each transition:

• If a transition has positive firing count and reads in place « p » initially empty, it must be the case that a transition feeding « p » also has positive firing count.

$$t1 > 0 => t2 > 0$$

CAUSAL CONSTRAINTS (UNSAT)

A partial order on first occurrence of each transition

The state equation can borrow non existing tokens

 \Rightarrow t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that:

- t1 > 0 => t2 > 0 and t2 precedes t1
- t2 > 0 => t1 > 0 and t1 precedes t2

Obtaining a contradiction (UNSAT) as soon as t1 or t2 positive in the solution

CAUSAL CONSTRAINTS (SAT)

A partial order on first occurrence of each transition

The state equation can borrow non existing tokens

 \Rightarrow t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that:

- t1 > 0 => t2 > 0 and t2 precedes t1
- $t2 > 0 \Rightarrow (t1 > 0 \text{ and } t1 \text{ precedes } t2) \text{ OR } (t3 > 0 \text{ and } t3 \text{ precedes } t2)$

Obtaining a solution (SAT): t3 precedes t2 precedes t1