We need to define substitutions of effects on effects, effects on types, effects on terms, terms on terms.

0.1 Effect Substitutions

Define a substitution, σ as

$$\sigma ::= \diamond \mid \sigma, \alpha := \epsilon \tag{1}$$

Define the free-effect Variables of σ :

$$fev(\diamond) = \emptyset$$

$$fev(\sigma, \alpha := \epsilon) = fev(\sigma) \cup fev(\epsilon)$$

We define the property:

$$\alpha \# \sigma \Leftrightarrow \alpha \notin (\mathsf{dom}(\sigma) \cup fev(\sigma)) \tag{2}$$

0.1.1 Action of Effect Substitution on Effects

Define the action of applying an effect substitution to an effect symbol:

$$\sigma(\epsilon)$$
 (3)

$$\sigma(e) = e \tag{4}$$

$$\sigma(\epsilon_1 \cdot \epsilon_2) = (\sigma(\epsilon_1)) \cdot (\sigma(\epsilon_2)) \tag{5}$$

$$\diamond(\alpha) = \alpha \tag{6}$$

$$(\sigma, \beta := \epsilon)(\alpha) = \sigma(\alpha) \tag{7}$$

$$(\sigma, \alpha := \epsilon)(\alpha) = \epsilon \tag{8}$$

0.1.2 Action of Effect Substitution on Types

Define the action of applying an effect substitution, σ to a type τ as:

$$\tau \left[\sigma \right]$$

Defined as so

$$\gamma \left[\sigma \right] = \gamma \tag{9}$$

$$(A \to \mathsf{M}_{\epsilon}B)[\sigma] = (A[\sigma]) \to \mathsf{M}_{\sigma(\epsilon)}(B[\sigma]) \tag{10}$$

$$(\mathbf{M}_{\epsilon}A)[\sigma] = \mathbf{M}_{\sigma(\epsilon)}(A[\sigma]) \tag{11}$$

$$(\forall \alpha. A) [\sigma] = \forall \alpha. (A [\sigma]) \quad \text{If } \alpha \# \sigma \tag{12}$$

0.1.3 Action of Effect-Substitution on Type Environments

Define the action of effect substitution on type environments:

$$\Gamma[\sigma]$$

Defined as so:

$$\diamond \left[\sigma\right] = \diamond$$

$$(\Gamma, x : A) \left[\sigma\right] = (\Gamma \left[\sigma\right], x : (A \left[\sigma\right]))$$

0.1.4 Action of Effect Substitution on Terms

Define the action of effect-substitution on terms:

$$x\left[\sigma\right] = x\tag{13}$$

$$C^{A}\left[\sigma\right] = C^{(A[\sigma])} \tag{14}$$

$$(\lambda x : A.C) [\sigma] = \lambda x : (A [\sigma]).(C [\sigma])$$
(15)

$$(if_{\epsilon,A} \ v \text{ then } C_1 \text{ else } C_2)[\sigma] = if_{\sigma(\epsilon),(A[\sigma])} \ v[\sigma] \text{ then } C_1[\sigma] \text{ else } C_2[\sigma]$$

$$(16)$$

$$(v_1 \ v_2) [\sigma] = (v_1 [\sigma]) \ v_2 [\sigma] \tag{17}$$

$$(\operatorname{do} x \leftarrow C_1 \operatorname{in} C_2) = \operatorname{do} x \leftarrow (C_1 [\sigma]) \operatorname{in} (C_2 [\sigma])$$

$$(18)$$

$$(\Lambda \alpha. v) [\sigma] = \Lambda \alpha. (v [\sigma]) \quad \text{If } \alpha \# \sigma \tag{19}$$

$$(v \epsilon) [\sigma] = (v [\sigma]) \sigma(\epsilon) \tag{20}$$

(21)

0.1.5 Well-Formed-ness

For any two effect-environments, and a substitution, define the well-formed-ness relation:

$$\Phi' \vdash \sigma : \Phi \tag{22}$$

- $(Nil) \frac{\Phi'0k}{\Phi'\vdash \diamond \diamond \diamond}$
- (Extend) $\frac{\Phi' \vdash \sigma : \Phi \quad \Phi' \vdash \epsilon \quad \alpha \not\in \Phi}{\Phi' \vdash \sigma, \alpha := \epsilon : (\Phi, \alpha)}$

0.1.6 Property 1

If $\Phi' \vdash \sigma : \Phi$ then $\Phi' Ok$ (By the Nil case) and ΦOk Since each use of the extend case preserves Ok.

0.1.7 Property 2

If $\Phi' \vdash \sigma : \Phi$ then $\omega : \Phi' \triangleright \Phi' \implies \Phi'' \vdash \sigma : \Phi$ since $\Phi' \vdash \epsilon \implies \Phi'' \vdash \epsilon$ and $\Phi' \circ k \implies \Phi'' \circ k$

0.1.8 Property 3

If $\Phi' \vdash \sigma : \Phi$ then

$$\alpha \notin \Phi \land \alpha \notin \Phi' \implies (\Phi', \alpha) \vdash (\sigma, \alpha := \alpha) : (\Phi, \alpha)$$
 (23)

Since $\iota \pi : \Phi', \alpha \triangleright \Phi'$ so $\Phi', \alpha \vdash \sigma : \Phi$ and $\Phi', \alpha \vdash \alpha$

0.2 Substitution Preserves the Well-formed-ness of Effects

I.e.

$$\Phi \vdash \epsilon \land \Phi' \vdash \iota : \Phi \implies \Phi' \vdash \sigma(\epsilon) \tag{24}$$

Proof:

Case Ground: $\sigma(e) = e$, so $\Phi' \vdash \sigma(\epsilon)$ holds.

Case Multiply: By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$ so $\Phi' \vdash \sigma(\epsilon_1)$ and $\Phi' \vdash \sigma(\epsilon_2)$ by induction and hence $\Phi' \vdash \sigma(\epsilon_1 \cdot \epsilon_2)$

Case Var: By inversion, $\Phi = \Phi'', \alpha$ and $\Phi'', \alpha Ok$. Hence by case splitting on ι , we see that $\sigma = \sigma', \alpha := \epsilon$.

So by inversion, $\sigma \vdash \epsilon$ so $\Phi' \vdash \sigma(\alpha) = \epsilon$

Case Weaken: By inversion $\Phi = \Phi'', \beta$ and $\Phi'' \vdash \alpha$, so $\sigma = \sigma'\beta := \epsilon$.

So $\Phi' \vdash \sigma' : \Phi''$.

hence by induction, $\Phi' \vdash \sigma'(a)$, so $\Phi' \vdash \sigma(\alpha)$ since $\alpha \neq \beta$)

0.2.1 Effect Substitution preserves the sub-effect relation

If $\Phi' \vdash \sigma : \Phi$ and $\epsilon_1 \leq_{\Phi} \epsilon_2$, then $\epsilon_1 [\sigma] \leq_{\Phi'} \epsilon_2 [\sigma]$.

Proof: For any ground substitution σ' of Φ' , then $\sigma\sigma'$ (the substitution σ' applied after σ) is also a ground substitution.

So $\epsilon_1 [\sigma] [\sigma'] \le \epsilon_2 [\sigma] [\sigma']$. So $\epsilon_1 [\sigma] \le_{\Phi'} \epsilon_2 [\sigma]$.

0.2.2 Substitution preserves well-formed-ness of Types

$$\Phi' \vdash \sigma : \Phi \land \Phi \vdash A \implies \Phi' \vdash A[\sigma] \tag{25}$$

Proof:

Case Ground: Φ' 0k so $\Phi' \vdash \gamma$ and $\gamma[\sigma] = \gamma$. Hence $\Phi' \vdash \gamma[\sigma]$.

Case Lambda: By inversion $\Phi \vdash A$ and $\Phi \vdash B$.

So by induction, $\Phi' \vdash A[\sigma]$ and $\Phi' \vdash B[\sigma]$.

So

$$\Phi' \vdash (A[\sigma]) \to (B[\sigma]) \tag{26}$$

So

$$\Phi' \vdash (A \to B) [\sigma] \tag{27}$$

Case Computation: By inversion, $\Phi \vdash \epsilon$ and $\Phi \vdash A$ so by induction and substitution of effect preserving effect-well-formed-ness,

$$\Phi' \vdash \sigma(\epsilon)$$
 and $\Phi' \vdash A[\sigma]$ so $\Phi \vdash M_{\sigma(\epsilon)}A[\sigma]$ so $\Phi' \vdash (M_{\epsilon}A)[\sigma]$

Case For All: By inversion, $\Phi, \alpha \vdash A$. So by picking $\alpha \notin \Phi \land \alpha \notin \Phi'$ using α -equivalence, we have $(\Phi', \alpha) \vdash (\sigma \alpha := \alpha) : (\Phi, \alpha)$.

So by induction $(\Phi, \alpha) \vdash A [\sigma, \alpha := \alpha]$

So $(\Phi', \alpha) \vdash A[\sigma]$

So $\Phi' \vdash (\forall \alpha.A) [\sigma]$

0.2.3 Substitution of effects preserves Sub-Typing Relation

If $\Phi' \vdash \sigma : \Phi$ and $A \leq :_{\Phi} B$ then $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Proof: By induction on the sub-typing relation

Case Ground: By inversion, $A \leq :_{\gamma} B$, so A, B are ground types. Hence $A[\sigma] = A$ and $B[\sigma] = B$. So $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Case Fn: By inversion, $A' \leq :_{\Phi} A$ and $B \leq :_{\Phi} B'$.

So by induction, $A'[\sigma] \leq :_{\Phi'} A[\sigma]$ and $B[\sigma] \leq :_{\Phi'} B'[\sigma]$.

So
$$(A[\sigma]) \to (B[\sigma]) \leq :_{\Phi'} (A'[\sigma]) \to (B'[\sigma])$$

So
$$(A \to B) [\sigma] \leq :_{\Phi'} (A' \to B') [\sigma]$$

Case Computation: By inversion, $A \leq :_{\Phi} B$, $\epsilon_1 \leq_{\Phi} \epsilon_2$.

So by induction and substitution preserving the sub-effect relation,

$$A[\sigma] \leq :_{\Phi'} B[\sigma] \text{ and } \sigma(\epsilon_1) \leq_{\Phi'} \sigma(\epsilon_2)$$

So
$$M_{\sigma(\epsilon_1)}(A[\sigma]) \leq :_{\Phi'} M_{\sigma(\epsilon_2)}(B[\sigma])$$

So
$$(\mathsf{M}_{\epsilon_1} A) [\sigma] \leq :_{\Phi'} (\mathsf{M}_{\epsilon_2} B) [\sigma]$$

0.2.4 Substitution preserves well-formed-ness of Type Environments

If $\Phi \vdash \Gamma Ok$ and $\Phi' \vdash \sigma : \Phi$ then $\Phi' \vdash \Gamma [\sigma] Ok$

Proof:

Case Nil: $\Phi Ok \implies \Phi' Ok \text{ so } \Phi' \vdash \Diamond Ok \text{ and } \Diamond [\sigma] = \Diamond$

Case Var: By inversion, $\Phi \vdash \Gamma Ok$ and $\Phi \vdash A$.

By induction and substitution preserving well-formed-ness of types, $\Phi' \vdash \Gamma'[\sigma]$ 0k and $\Phi' \vdash A[\sigma]$.

So $\Phi' \vdash (\Gamma' [\sigma], x : A [\sigma])$ 0k.

Hence $\Phi' \vdash \Gamma, x : A[\sigma]$ Ok.

0.2.5 Effect-Polymorphism Preserves the Typing Relation

If $\Phi' \vdash \sigma : \Phi$ and $\Phi \mid \Gamma \vdash v : A$, then $\Phi' \mid \Gamma [\sigma] \vdash v [\sigma] : A [\sigma]$

Proof:

Case Const: By inversion, $\Phi \vdash \Gamma Ok$.

So
$$\Phi' \vdash \Gamma O k$$

So
$$\Phi' \mid \Gamma [\sigma] \vdash C^{A[\sigma]} : A [\sigma]$$

Case True, False, Unit: The logic is the same for each of these cases, so we look at the case true only.

By inversion, $\Phi \vdash \Gamma \mathsf{Ok}$.

So $\Phi' \vdash \Gamma Ok$

So $\Phi' \mid \Gamma[\sigma] \vdash \mathsf{true} : \mathsf{Bool}$

Since true $[\sigma]$ = true and Bool $[\sigma]$ = Bool.

Case Var: By inversion $\Gamma = \Gamma', x : A$ and $\Phi \vdash \Gamma', x : A0k$.

So since substitution preserves well-formed-ness of type environments, $\Phi' \vdash \Gamma'[\sigma], x : A[\sigma]$ 0k

So
$$\Phi' \mid \Gamma[\sigma] \vdash x : A[\sigma]$$

Since $x[\sigma] = x$

Case Weaken: By inversion $\Gamma = \Gamma', y : B, \Phi \vdash B, \text{ and } \Phi \mid \Gamma' \vdash x : A. \ x \neq y$

By induction and the theorem that effect-substitution preserves type well-formed-ness, we have: $\Phi' \mid \Gamma' [\sigma] \vdash x : A [\sigma]$ and $\Phi' \vdash B [\sigma]$

So
$$\Phi' \mid \Gamma[\sigma] \vdash x[\sigma] : A[\sigma]$$

Since
$$x[\sigma] = x$$
, $\Gamma[\sigma] = (\Gamma'[\sigma], y : B[\sigma])$

Case Lambda: By inversion $\Phi \mid \Gamma, x : A \vdash v : B$.

So, by induction $\Phi' \mid (\Gamma, x : A) [\sigma] \vdash v [\sigma] : B [\sigma]$.

So, $\Phi \mid \Gamma[\sigma], x : A[\sigma] \vdash v[\sigma] : B[\sigma]$.

Hence by the lambda type rule,

 $\Phi' \mid \Gamma\left[\sigma\right] \vdash \lambda x : A\left[\sigma\right] . v\left[\sigma\right] : (A\left[\sigma\right]) \to (B\left[\sigma\right])$

So

 $\Phi' \mid \Gamma[\sigma] \vdash (\lambda x : A.v)[\sigma] : (A \rightarrow B)[\sigma])$

Case Apply: By inversion, $\Phi \mid \Gamma \vdash v_1: A \to B$, $\Phi \mid \Gamma \vdash V_2: A$.

So by induction, $\Phi' \mid \Gamma[\sigma] \vdash v_1[\sigma] : (A[\sigma]) \to (B[\sigma])$.

So $\Phi' \mid \Gamma[\sigma] \vdash (v_1[\sigma]) (v_2[\sigma]) : B[\sigma]$.

So $\Phi' \mid \Gamma[\sigma] \vdash (v_1 \ v_2) [\sigma] : (A \to B) [\sigma]$

Case Subtype: By inversion, $\Phi \mid \Gamma \vdash v : A \text{ and } \Phi \vdash A \leq : B$

So by induction and effect-substitution preserving sub-typing, $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]$ and $\Phi' \vdash A[\sigma] \leq : B[\sigma]$

So $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : B[\sigma]$

Case Return: By inversion, $\Phi \mid \Gamma \vdash v : A$

So by induction, $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]$

So $\Phi' \mid \Gamma[\sigma] \vdash \mathtt{return}(v[\sigma]) : M_1(A[\sigma])$

Hence $\Phi' \mid \Gamma[\sigma] \vdash (\mathtt{return}v)[\sigma] : (\mathsf{M}_1A)[\sigma]$

Case Bind: By inversion, $\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A$ and $\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B$.

So by induction: $\Phi' \mid \Gamma[\sigma] \vdash v_1[\sigma] : M_{\sigma(\epsilon_1)}(A[\sigma])$, and $\Phi' \mid \Gamma[\sigma], x : A[\sigma] \vdash v_2 : M_{\sigma(\epsilon_2)}(B[\sigma])$.

And so $\Phi' \mid \Gamma[\sigma] \vdash \text{do } x \leftarrow (v_1[\sigma]) \text{ in } (v_2[\sigma]) : M_{\sigma(\epsilon_1) \cdot (\epsilon_2[\sigma])} B[\sigma]$

Case If: By inversion, $\Phi \mid \Gamma \vdash v$: Bool, $\Phi \mid \Gamma \vdash v_1$: A, and $\Phi \mid \Gamma \vdash v_2$: A

So by induction $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma]$: Bool, $\Phi' \mid \Gamma[\sigma] \vdash v_1$: $A[\sigma]$, and $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma]$: Bool, $\Phi' \mid \Gamma[\sigma] \vdash v_2$: $A[\sigma]$. (Since Bool $[\sigma] = Bool$)

Hence:

 $\Phi' \mid \Gamma\left[\sigma\right] \vdash \mathtt{if}_{A\left[\sigma\right]} \; v\left[\sigma\right] \; \mathtt{then} \; v_1\left[\sigma\right] \; \mathtt{else} \; v_2\left[\sigma\right] \colon A\left[\sigma\right]$

So $\Phi' \mid \Gamma[\sigma] \vdash (\text{if}_A \ v \text{ then } v_1 \text{ else } v_2)[\sigma] : A[\sigma]$

Case Effect-lambda: By inversion, Φ , $\alpha \mid \Gamma \vdash v : A$.

So by the substitution property 3 (**TODO:** Is this correct/reference correctly), pick $\alpha \notin \Phi' \land \alpha \notin \Phi$ so we have:

$$(\Phi', \alpha) \vdash (\sigma, \alpha := \alpha) : (\Phi, \alpha)$$

So by induction, Φ' , $\alpha \mid \Gamma [\sigma, \alpha := \alpha] \vdash v [\sigma, \alpha := \alpha] : A [\sigma, \alpha := \alpha]$

So Φ' , $\alpha \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]$ since $\alpha \notin \Phi' \land \alpha \notin \Phi$.

So $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : (\forall \alpha.A)[\sigma]$

Case Effect-Apply: By inversion, $\Phi \mid \Gamma \vdash v : \forall \alpha.A, \Phi \vdash \epsilon$.

So by induction and effect-substitution preserving well-formed-ness of effects: $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : (\forall \alpha.A) [\sigma]$ and $\Phi' \vdash \sigma(\epsilon)$

So $\Phi' \mid \Gamma[\sigma] \vdash (v[\sigma]) (\sigma(\epsilon)) : A[\sigma] [\sigma(\epsilon)/\alpha].$

Since $\alpha \# \sigma$, we can commute the applications of substitution. TODO: Do I need to prove this?

So, $\Phi' \mid \Gamma[\sigma] \vdash (v \epsilon) [\sigma] : A[\epsilon/\alpha] [\sigma]$

0.3 The Identity Substitution on Effect Environments

For each type environment Φ , define the identity substitution I_{Φ} as so:

- $I_{\diamond} = \diamond$
- $I_{(\Phi,\alpha} = (I_{\Phi}, \alpha := \alpha)$

0.3.1 Properties of the Identity Substitution

Property 1 If Φ Ok then $\Phi \vdash I_{\Phi} : \Phi$, proved trivially by induction over the Ok relation.

Property 2 TODO: The denotational property of id-substitution

0.4 Single Substitution on Effect Environments

If $\Phi \vdash \epsilon$, let the single substitution $\Phi \vdash [\epsilon/\alpha] : \Phi, \alpha$, be defined as:

$$[x/\alpha] = (I_{\Phi}, \alpha := \epsilon) \tag{28}$$

0.5 Term-Term Substitutions

0.5.1 Substitutions as SNOC lists

$$\sigma ::= \diamond \mid \sigma, x := v \tag{29}$$

0.5.2 Trivial Properties of substitutions

 $fv(\sigma)$

$$fv(\diamond) = \emptyset \tag{30}$$

$$fv(\sigma, x := v) = fv(\sigma) \cup fv(v)$$
(31)

 $dom(\sigma)$

$$dom(\diamond) = \emptyset \tag{32}$$

$$dom(\sigma, x := v) = dom(\sigma) \cup \{x\}$$
(33)

 $x\#\sigma$

$$x\#\sigma \Leftrightarrow x \notin (\mathtt{fv}(\sigma) \cup \mathtt{dom}(\sigma')) \tag{34}$$

0.5.3 Action of substitutions

We define the action of applying a substitution σ as

 $t [\sigma]$

$$x \left[\diamond \right] = x \tag{35}$$

$$x\left[\sigma, x := v\right] = v \tag{36}$$

$$x \left[\sigma, x' := v' \right] = x \left[\sigma \right] \quad \text{If } x \neq x' \tag{37}$$

$$C^{A}\left[\sigma\right] = C^{A} \tag{38}$$

$$(\lambda x : A.C) [\sigma] = \lambda x : A.(C [\sigma]) \quad \text{If } x \# \sigma \tag{39}$$

$$(if_{\epsilon,A} \ v \text{ then } C_1 \text{ else } C_2) [\sigma] = if_{\epsilon,A} \ v [\sigma] \text{ then } C_1 [\sigma] \text{ else } C_2 [\sigma]$$

$$(40)$$

$$(v_1 \ v_2) \left[\sigma\right] = (v_1 \left[\sigma\right]) \ v_2 \left[\sigma\right] \tag{41}$$

$$(\operatorname{do} x \leftarrow C_1 \operatorname{in} C_2) = \operatorname{do} x \leftarrow (C_1 [\sigma]) \operatorname{in} (C_2 [\sigma]) \quad \text{If } x \# \sigma \tag{42}$$

$$(\Lambda \alpha. v) [\sigma] = \Lambda \alpha. (v [\sigma]) \tag{43}$$

$$(v \epsilon) [\sigma] = (v [\sigma]) \epsilon \tag{44}$$

(45)

0.5.4 Well-Formed-ness

Define the relation

$$\Phi \mid \Gamma' \vdash \sigma : \Gamma$$

by:

- $(Nil) \frac{\Phi \vdash \Gamma' \mathbf{0} \mathbf{k}}{\Phi \mid \Gamma' \vdash \diamond : \diamond}$
- $\bullet \ (\text{Extend}) \tfrac{\Phi | \Gamma' \vdash \sigma : \Gamma \ x \not\in \texttt{dom}(\Gamma) \ \Phi | \Gamma' \vdash v : A}{\Phi | \Gamma' \vdash (\sigma, x := v) : (\Gamma, x : A)}$

0.5.5 Simple Properties Of Substitution

If $\Phi \mid \Gamma' \vdash \sigma$: Γ then: **TODO: Number these**

Property 1: $\Phi \vdash \Gamma Ok$ and $\Phi \vdash \Gamma' Ok$ Since $\Phi \vdash \Gamma' Ok$ holds by the Nil-axiom. $\Phi \vdash \Gamma Ok$ holds by induction on the well-formed-ness relation.

Property 2: $\omega : \Gamma'' \triangleright \Gamma'$ implies $\Phi \mid \Gamma'' \vdash \sigma : \Gamma$. By induction over well-formed-ness relation. For each x := v in σ , $\Phi \mid \Gamma'' \vdash v : A$ holds if $\Phi \mid \Gamma' \vdash v : A$ holds.

Property 3: $x \notin (\text{dom}(\Gamma) \cup \text{dom}(\Gamma''))$ implies $\Phi \mid (\Gamma', x : A) \vdash (\sigma, x := x) : (\Gamma, x : A)$ Since $\iota \pi : \Gamma', x : A \triangleright \Gamma'$, so by (Property 2) **TODO: Better referencing here**,

$$\Phi \mid \Gamma', x : A \vdash \sigma : \Gamma$$

In addition, $\Phi \mid \Gamma', x : A \vdash x : A$ trivially, so by the rule **Extend**, well-formed-ness holds for

$$\Phi \mid (\Gamma', x : A) \vdash (\sigma, x := v) : (\Gamma, x : A) \tag{46}$$

0.5.6 Substitution Preserves Typing

We have the following non-trivial property of substitution:

$$(\Phi \mid \Gamma \vdash v: A) \land (\Phi \mid \Gamma' \vdash \sigma: \Gamma) \Rightarrow (\Phi \mid \Gamma' \vdash v [\sigma]: A)$$

$$(47)$$

Assuming $\Phi \mid \Gamma' \vdash \sigma: \Gamma$, we induct over the typing relation, proving $\Phi \mid \Gamma \vdash v: A \implies \Phi \mid \Gamma' \vdash v: A$

Proof:

Case Var: By inversion $\Gamma = (\Gamma'', x : A)$ So

$$\Phi \mid \Gamma'', x : A \vdash x : A \tag{48}$$

So by inversion, since $\Phi \mid \Gamma' \vdash \sigma : \Gamma'', x : A$,

$$\sigma = (\sigma', x := v) \land \Phi \mid \Gamma' \vdash v : A \tag{49}$$

By the definition of the effect of substitutions, $x [\sigma] = v$, So

$$\Phi \mid \Gamma' \vdash x \left[\sigma \right] : A \tag{50}$$

holds.

Case Weaken: By inversion, $\Gamma = \Gamma'', y : B, x \neq y$, and there exists Δ such that

$$(\text{Weaken}) \frac{\left(\right) \frac{\Delta}{\Phi \mid \Gamma'' \vdash x : A}}{\Phi \mid \Gamma'', y : B \vdash x : A}$$

$$(51)$$

By inversion, $\sigma = \sigma', y := v$ and:

$$\Phi \mid \Gamma' \vdash \sigma' \colon \Gamma'' \tag{52}$$

So by induction,

$$\Phi \mid \Gamma' \vdash x \left[\sigma' \right] : A \tag{53}$$

And so by definition of the effect of σ , $x[\sigma] = x[\sigma']$

$$\Phi \mid \Gamma' \vdash x \left[\sigma \right] : A \tag{54}$$

Case Lambda: By inversion, there exists Δ such that:

$$(\operatorname{Fn}) \frac{\left(\right) \frac{\Delta}{\Phi \mid \Gamma, x: A \vdash v: B}}{\Phi \mid \Gamma \vdash \lambda x: A.v: A \to B}$$

$$(55)$$

Using alpha equivalence, we pick $x \notin (dom(\Gamma) \cup dom(\Gamma'))$ Hence, by property 3, we have

$$\Phi \mid (\Gamma', x : A) \vdash (\sigma, x := x) : \Gamma, x : A \tag{56}$$

So by induction using $\sigma, x := x$, we have Δ' such that:

$$(\operatorname{Fn}) \frac{(\bigcap_{\overline{\Phi} \mid \Gamma', x : A \vdash v[\sigma, x : = v] : B}^{\underline{\Delta'}}}{\Phi \mid \Gamma \vdash \lambda x : A . v[\sigma, x : = x] : A \to B}$$

$$(57)$$

Since $\lambda x: A.(v\left[\sigma,x:=x\right]) = \lambda x: A.(v\left[\sigma\right]) = (\lambda x:A.v)\left[\sigma\right]$, we have a typing derivation for $\Phi \mid \Gamma' \vdash (\lambda x:A.v)\left[\sigma\right]: A \rightarrow B$.

Case Constants: We use the same logic for all constants, (), true, false, C^A : $\Phi \mid \Gamma \vdash \sigma \colon \Gamma \Rightarrow \Phi \vdash \Gamma' \mathsf{Ok}$ and:

$$\mathbf{C}^A \left[\sigma \right] = \mathbf{C}^A \tag{58}$$

So

$$(\text{Const}) \frac{\Phi \vdash \Gamma' \mathsf{0k}}{\Phi \mid \Gamma' \vdash \mathsf{C}^A : A} \tag{59}$$

0.5.7 Computation Terms

Case Return: By inversion, we have Δ_1 such that:

$$(\text{Return}) \frac{() \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \text{return} v : M_1 A}$$

$$(60)$$

By induction, we have Δ'_1 such that

$$(\text{Return}) \frac{() \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v[\sigma] : A}}{\Phi \mid \Gamma' \vdash \text{return}(v \mid \sigma]) : M_{1} A}$$

$$(61)$$

Since $(\mathtt{return}v)[\sigma] = \mathtt{return}(v[\sigma])$, the type derivation above holds for $\Phi \mid \Gamma' \vdash (\mathtt{return}v)[\sigma] : M_1A$.

Case Apply: By inversion, we have Δ_1 , Δ_2 such that:

$$(\text{Apply}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \right) \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}}{\Phi \mid \Gamma \vdash v_1 \ v_2 : B}$$

$$(62)$$

By induction on Δ_1, Δ_2 , we have Δ'_1, Δ'_2 such that

$$(\text{Apply}) \frac{\left(\frac{\Delta_1'}{\Phi \mid \Gamma' \vdash \nu_1[\sigma] : A \to B}\right) \left(\frac{\Delta_2'}{\Phi \mid \Gamma' \vdash \nu_2[\sigma] : A}\right)}{\Phi \mid \Gamma' \vdash (\nu_1[\sigma]) (\nu_2[\sigma]) : B}$$

$$(63)$$

Since $(v_1 \ v_2)[\sigma] = (v_1 [\sigma])(v_2 [\sigma])$, we the above derivation holds for $\Phi \mid \Gamma' \vdash (v_1 \ v_2)[\sigma] : B$

Case If: By inversion, we have $\Delta_1, \Delta_2, \Delta_3$ such that:

By induction on $\Delta_1, \Delta_2, \Delta_3$, we derive $\Delta_1', \Delta_2', \Delta_3'$ such that:

$$(\mathrm{If}) \frac{()\frac{\Delta_{1}^{\prime}}{\Phi \mid \Gamma^{\prime} \vdash \nu[\sigma] : \mathsf{Bool}} \ ()\frac{\Delta_{2}^{\prime}}{\Phi \mid \Gamma^{\prime} \vdash \nu_{1}[\sigma] : A} \ ()\frac{\Delta_{3}^{\prime}}{\Phi \mid \Gamma^{\prime} \vdash \nu_{2}[\sigma] : A}}{\Phi \mid \Gamma^{\prime} \vdash \mathsf{if}_{A} \ (v \mid \sigma]) \ \mathsf{then} \ (v_{1} \mid \sigma]) \ \mathsf{else} \ (v_{2} \mid \sigma]) : A} \tag{65}$$

Since $(if_A \ v \text{ then } v_1 \text{ else } v_2)[\sigma] = if_A \ (v[\sigma]) \text{ then } (v_1[\sigma]) \text{ else } (v_2[\sigma]) \text{ The derivation above holds for } \Phi \mid \Gamma' \vdash (if_A \ v \text{ then } v_1 \text{ else } v_2)[\sigma] : A$

Case Bind: By inversion, there exist Δ_1, Δ_2 such that

$$(\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A} \left(\right) \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(66)$$

Using alpha-equivalence, we pick $x \notin (dom(\Gamma) \cup dom(\Gamma'))$. Hence by property 3,

$$\Phi \mid (\Gamma, x : A) \vdash (\sigma, x := x) : (\Gamma, x : A)$$

By induction on Δ_1, Δ_2 , we have Δ'_1, Δ'_2 such that:

$$(\text{Bind}) \frac{\left(\right) \frac{\Delta_{1}'}{\Phi \mid \Gamma' \vdash v_{1}[\sigma] : \mathsf{M}_{\epsilon_{1}} A} \left(\right) \frac{\Delta_{2}}{\Phi \mid \Gamma', x : A \vdash v_{2}[\sigma, x := x] : \mathsf{M}_{\epsilon_{2}} B}}{\Phi \mid \Gamma' \vdash \mathsf{do} \ x \leftarrow (v_{1}[\sigma]) \ \mathsf{in} \ (v_{2}[\sigma, x := x]) : \mathsf{M}_{\epsilon_{1} \cdot \epsilon_{2}} B}$$

$$(67)$$

Since $(\operatorname{do} x \leftarrow v_1 \operatorname{in} v_2)[\sigma] = \operatorname{do} x \leftarrow (v_1[\sigma]) \operatorname{in} (v_2[\sigma]) = \operatorname{do} x \leftarrow (v_1[\sigma]) \operatorname{in} (v_2[\sigma, x := x])$, the above derivation holds for $\Phi \mid \Gamma' \vdash (\operatorname{do} x \leftarrow v_1 \operatorname{in} v_2)[\sigma] : \operatorname{M}_{\epsilon_1 \cdot \epsilon_2} B$

Case Sub-type: By inversion, there exists Δ such that

$$(\text{sub-type}) \frac{\left(\right) \frac{\Delta}{\Phi \mid \Gamma \vdash v : A} \quad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v : B}$$

$$(68)$$

By induction on Δ we derive Δ' such that:

$$(\text{sub-type}) \frac{\left(\right) \frac{\Delta'}{\Phi \mid \Gamma' \vdash v[\sigma] : A} \quad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v[\sigma] : B}$$

$$(69)$$

Case Effect-Lambda: By inversion, there exists Δ such that

(Effect-abs)
$$\frac{\left(\right)\frac{\Delta}{\Phi,\alpha|\Gamma\vdash v:A}}{\Phi\mid\Gamma\vdash\Lambda\alpha.v:\forall\alpha.A}$$
 (70)

It is also the case that $\iota \pi : \Phi, \alpha \triangleright \Phi$.

So Φ , $\alpha \mid \Gamma' \vdash \sigma : \Gamma$

So by induction there exists Δ' ,

$$(\text{Effect-abs}) \frac{\left(\right) \frac{\Delta'}{\Phi, \alpha \mid \Gamma' \vdash \nu[\sigma] : A}}{\Phi \mid \Gamma' \vdash \Lambda \alpha. (v \left[\sigma\right]) : \forall \alpha. A}$$

$$(71)$$

Where $\Lambda \alpha.(v [\sigma]) = (\Lambda \alpha.v) [\sigma]$

Case Effect Application: By inversion $\Phi \vdash \epsilon$ and there exists Δ such that

$$(\text{Effect-App}) \frac{\left(\right) \frac{\Delta}{\Phi \mid \Gamma \vdash v : \forall \alpha. A}}{\Phi \mid \Gamma \vdash v \in A \left[\epsilon / \alpha\right]}$$

$$(72)$$

So by induction there exists Δ' such that:

$$(\text{Effect-App}) \frac{\left(\right) \frac{\Delta'}{\Phi \mid \Gamma' \vdash \nu[\sigma] : \forall \alpha. A}}{\Phi \mid \Gamma' \vdash \left(\nu[\sigma]\right) \epsilon : A\left[\epsilon/\alpha\right]} \tag{73}$$

Where $(v [\sigma]) \epsilon = (v \epsilon) [\sigma]$

0.6 The Identity Substitution on Type Environments

For each type environment Γ , define the identity substitution I_{Γ} as so:

- $I_{\diamond} = \diamond$
- $I_{(\Gamma,x:A} = (I_{\Gamma}, x := x)$

0.6.1 Properties of the Identity Substitution

Property 1 If $\Phi \vdash \Gamma Ok$ then $\Phi \mid \Gamma \vdash I_{\Gamma} : \Gamma$, proved trivially by induction over the well-formed-ness relation.

Property 2 TODO: The denotational property of id-substitution

0.7 Single Substitution on Type Environments

If $\Phi \mid \Gamma \vdash v: A$, let the single substitution $\Phi \mid \Gamma \vdash [v/x]: \Gamma, x: A$, be defined as:

$$[v/x] = (I_{\Gamma}, x := v) \tag{74}$$