André Zaccarin

Département de génie électrique et de génie informatique Université Laval

GEL-3003 – Signaux et systèmes discrets Examen final

Mardi le 17 décembre 2013

Durée: 15h30-17h20

Question 1. (5 pts)

Donnez la réponse à l'impulsion du système défini par $y(n) = \sum_{i=-2}^{3} b_i x(n-i)$

Question 2. (5 pts)

Donnez l'équation aux différences du système $H(z) = \frac{1-z^{-1}}{1-0.8z^{-1}+0.64z^{-2}}$

Question 3. (5 pts)

Soit x(n), $0 \le n \le 699$, l'entrée à un système linéaire et invariant dont la réponse à l'impulsion est h(n), $-20 \le n \le 20$. Expliquez comment calculer la sortie du système en utilisant uniquement des TFD et TFD inverse (FFT et FFT inverse).

Question 4. (10 pts)

La fonction de transfert d'un système discret est $H(z) = (1-z^{-2})/(1-0.9\ z^{-1})$. Calculez la sortie pour l'entrée $x(n) = \cos(0.25\pi\ n)$.

Question 5. (10 pts)

Donnez la réponse à l'impulsion d'un filtre passe-haut de gain 1, obtenu par fenêtrage avec la fenêtre de Hamming, avec $\omega_{stop} = 0.75\pi$ et $\omega_{stop}^{0.05} = 0.85\pi$. Vous pouvez utiliser $w_H(n,L)$ pour faire référence à une fenêtre de Hamming de L points.

Question 6. (5 pts)

Donnez la fonction de transfert d'un filtre, à réponse impulsionnelle finie et réelle, qui coupe les fréquences à $f_1 = 60 \text{ Hz}$ et $f_2 = 120 \text{ Hz}$ d'un signal échantillonné à 360 Hz.

Question 7.

- a) (10 pts) Soit le signal $x(n) = \cos(\omega_o n)$, $0 \le n \le 999$, $\omega_o = 0.5\pi$. Tracez $|X(\omega)|$, le module de la transformée de Fourier de x(n), pour $-2\pi \le \omega \le 2\pi$.
- b) (5 pts) Si x(n) contient une 2ème composante sinusoïdale, de même amplitude que la première, à la fréquence $\omega_o + \Delta \omega$, quelle est la valeur minimale de $\Delta \omega$ pour que la fréquence de cette deuxième composante puisse être déterminée avec la transformée de Fourier de x(n)?

Question 8.

Le signal x(t) est limité en fréquence à la bande [-50 Hz, +50 Hz]. La bande de fréquence d'intérêt du signal est [-5 Hz, +5 Hz]. Note : a) b) et c) sont des questions indépendantes.

- a) (5 pts) Quelle est la valeur minimale de la fréquence d'échantillonnage pour qu'il n'y ait pas de recouvrement spectral dans la bande d'intérêt du signal?
- b) (15 pts) La fréquence d'échantillonnage est f_s = 30 Hz. Le recouvrement spectral dans la bande d'intérêt du signal doit être atténué au minimum de 40 dB. Donnez les paramètres (fréquence de coupure, ordre) du filtre Butterworth anti-recouvrement que vous utiliseriez.
- c) (10 pts) La fréquence d'échantillonnage est f_s = 120 Hz. Il n'y a pas de filtre antirecouvrement. Le signal échantillonné est décimé pour que la fréquence d'échantillonnage soit réduite à 30 Hz. Donnez les paramètres du décimateur (facteur de sous-échantillonnage, paramètres f_{pass} et f_{stop} du filtre) pour que la bande d'intérêt du signal soit préservée. Spécifiez clairement dans quel ordre les opérations de sous-échantillonnage et filtrage sont faites.

Question 9.

Le signal x(n) est limité à la bande de fréquence $[-0.3\pi, +0.3\pi]$ et $|X(\omega)| = 1$ dans cette bande. La conversion numérique/analogique de x(n) est faite avec un filtre d'interpolation d'ordre 0. Le signal obtenu est y(t).

- a) (5 pts) Tracez |Y(f)|, le module de la transformée de Fourier de y(t).
- b) (5 pts) Décrivez comment y(t) diffère, dans le domaine du temps, du signal qui aurait été obtenu avec un convertisseur numérique/analogique idéal.
- c) (5 pts) Peut-on traiter le signal y(t) pour réduire les effets de la reconstruction imparfaite? Si oui, comment?

$$x(n)*h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$r_{xy}(n) = x(n)*y(-n)$$

Transf. de Fourier de x(t) échantillonné à $f_s: \frac{1}{T} \sum_{s=0}^{\infty} X(f - mf_s)$

Extension périodique sur N points de x(n): $x_N(n) = \sum_{k=-\infty}^{\infty} x(n+kN)$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 $X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$

$$x(n-n_o) \stackrel{Z}{\Longleftrightarrow} z^{-n_o} X(z)$$
 $x(-n) \stackrel{Z}{\Longleftrightarrow} X(z^{-1})$ $e^{j\omega_o n} x(n) \leftrightarrow X(\omega-\omega_o);$

Filtre passe-bas idéal: $h[n] = \frac{\omega_C}{\pi} \operatorname{sinc}\left(\frac{\omega_C}{\pi}n\right)$

$$x[n] = \begin{cases} 1, & -M \le n \le M \\ 0, & \text{ailleurs} \end{cases} \iff X(\omega) = \frac{\sin(0.5(2M+1)\omega)}{\sin(0.5\omega)}$$

$$X \begin{bmatrix} k \end{bmatrix} = \sum_{n=0}^{L-1} x \begin{bmatrix} n \end{bmatrix} e^{-j\frac{2\pi}{N}kn}, \ 0 \le k \le N-1 \qquad x \begin{bmatrix} n \end{bmatrix} = \frac{1}{N} \sum_{k=0}^{N-1} X \begin{bmatrix} k \end{bmatrix} e^{j\frac{2\pi}{N}kn}, \ 0 \le n \le N-1$$

$$P_N = \frac{Q^2}{12}$$
, $Q = \frac{R}{2^B}$, R: plage dynamique, B: nombre de bits

Filtre de Butterworth ordre N:
$$\left|H\left(f\right)\right|^2 = \left(1 + \left(\frac{f}{f_c}\right)^{2N}\right)^{-1}$$

$$h(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{ailleurs} \end{cases} \text{ (interpolateur d'ordre zéro)} \leftrightarrow \left| H(f) \right| = \left| T \operatorname{sinc} \left(\frac{f}{f_s} \right) \right|$$

Paramètres de fenêtres: R = niveau des lobes secondaires p/r lobe principal; ½ largeur du lobe principal: $\Delta\omega=c~2\pi/(L-1)$;

Paramètres d'un filtre passe-bas obtenu par $\label{eq:fine_pass} \text{fenêtrage; } f_{stop} - f_{pass} = D \; f_s \, / \, (L-1)$

Rectangulaire	R = -13 dB	c = 1
Hamming	R = - 40 dB	c = 2
Kaiser	R variable	C = 6(R+12)/155

Rectangulaire	A _{stop} = -20 dB	D = 0.92
Hamming	A _{stop} = -54 dB	D = 3.21
Kaiser	A _{stop} variable	D = (A-7.95)/14.36