Einführung in Visual Computing

Freeform Surfaces

Werner Purgathofer

Lehrveranstaltungsbewertung

Studierende werden ersucht, besuchte Lehrveranstaltungen zu bewerten (in TISS).

ich wurde gebeten meine Studierenden daran zu erinnern, sich aktiv an der Lehrveranstaltungsbewertung zu beteiligen.

Danke!

Freeform Surfaces in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing ("vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates viewport transformation rasterization pixel stage shading ("fragment shader") raster image in pixel coordinates

Curved Lines and Surfaces

defined by

- mathematical functions (implicit, explicit, parametrically)
- set of data points (surface fitting)

tesselation to get polygon mesh approximation

- triangles
- quadrilaterals ... (planar?!)

Polygon Meshes

efficient data structures for tiled surfaces

triangle strip

■ n – 2 triangles for n vertices

quadrilateral mesh

 $(n-1)^{x}(m-1)$ quadrilaterals

Nonparametric ↔ Parametric

$$y = f(x)$$

axis dependent

$$x = f(u)$$

$$y = g(u)$$

axis independent

example:
$$y = \sqrt{1-x^2}$$

$$x = \cos(u)$$
 $y = \sin(u)$

Quadric Surfaces

defined by second degree equations (quadrics)

- sphere
- ellipsoid
- torus
- paraboloid
- hyperboloid
- . . .

Quadric Surfaces: Sphere

implicit:

$$x^2 + y^2 + z^2 = r^2$$

parametric:

$$x = r \cos \phi \cos \theta, \quad -\pi/2 \le \phi \le \pi/2$$

 $y = r \cos \phi \sin \theta, \quad -\pi \le \theta \le \pi$
 $z = r \sin \phi$

parametric coordinate position (r, θ, ϕ) on the surface of a sphere with radius r

Quadric Surfaces: Ellipsoid

implicit:

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 = 1$$

$$x = r_x \cos \phi \cos \theta, \quad -\pi/2 \le \phi \le \pi/2$$

 $y = r_y \cos \phi \sin \theta, \quad -\pi \le \theta \le \pi$
 $z = r_z \sin \phi$

Quadric Surfaces: Torus

implicit:

$$(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$$

parametric:

$$x = (R + r \cos \phi) \cos \theta, \qquad -\pi \le \phi \le \pi$$

 $y = (R + r \cos \phi) \sin \theta, \qquad -\pi \le \theta \le \pi$
 $z = r \sin \phi$

Properties of Curves

- possible curve forms
- interpolating or approximating control points?
- global or local influence of control points?
- multiple points possible? (for closed curves and corners)
- degree of continuity at concatenations (C,G)?
- oscillatory behavior compact or overshooting?
- axis (in)dependence? (does the curve change when the coordinate system is rotated?)

Spline Representations

spline curve

- composite curve
- polynomial sections, piecewise continuous
- continuity conditions

spline surface

two sets of orthogonal spline curves

Spline Curves

spline specification with control points

interpolating splines

approximating splines

Splines: Control Polygon

(also called "Characteristic Polygon")

polygon defining the curve

Spline Properties

operations on splines

- move, insert control points
- spline transformation by transforming all control points

convex hull property

Spline: Continuity Conditions (1)

parametric continuity conditions (Cⁿ)

derivations at section joints are equal

$$x = x(u)$$
 $y = y(u)$ $z = z(u)$

$$y = y(u)$$

$$z = z(u)$$

$$u_1 \leq u \leq u_2$$

C⁰ continuity

C¹ continuity

C² continuity

Spline: Continuity Conditions (2)

geometric continuity conditions (Gn)

- derivations at joints have different magnitudes
- \mathbf{G}^{0} (= \mathbf{C}^{0}) continuity
- G¹ continuity (tangent vectors are collinear)
- G² continuity ...
- weaker than Cⁿ

tangent vector of f_3 at p_1 has a greater magnitude than the tangent vector of f_1 at p_1

Cubic Spline Interpolation

... has n+1 control points $\mathbf{p_i} = (x_i, y_i, z_i)$ i = 0, 1, 2, ..., n

cubic polynomial $\mathbf{p}_k(\mathbf{u})$ between pair $(\mathbf{p}_k, \mathbf{p}_{k+1})$ of control points

$$\mathbf{p_k}(\mathbf{u}) = \mathbf{a_k}\mathbf{u}^3 + \mathbf{b_k}\mathbf{u}^2 + \mathbf{c_k}\mathbf{u} + \mathbf{d_k}$$

 $\mathbf{k} = 0, 1, 2, ..., n-1, \quad 0 \le \mathbf{u} \le 1$

Natural Cubic Splines

- adjacent curve segments: same 1st & 2nd derivative (C² continuity)
- solving an equation system with 4n variables
- two extra conditions required (e.g., $\mathbf{p_0}''(0) = 0$, $\mathbf{p_{n-1}}''(1) = 0$)
- global influence of control points

Hermite Interpolation (1)

tangent \mathbf{Dp}_{k+1} specified at each control point

→ local influence of control points

$$\mathbf{p}_{k}(0) = \mathbf{p}_{k}$$

$$\mathbf{p}_{k}(1) = \mathbf{p}_{k+1}$$

$$\mathbf{p}'_{k}(0) = \mathbf{D}\mathbf{p}_{k}$$

$$\mathbf{p}'_{k}(1) = \mathbf{D}\mathbf{p}_{k+1}$$

$$k = 0, ..., n-1$$

Hermite Interpolation (2)

$$\mathbf{p}_{\mathbf{k}}(\mathbf{u}) = \mathbf{a}_{\mathbf{k}}\mathbf{u}^3 + \mathbf{b}_{\mathbf{k}}\mathbf{u}^2 + \mathbf{c}_{\mathbf{k}}\mathbf{u} + \mathbf{d}_{\mathbf{k}}$$

$$0 \le u \le 1$$

$$\mathbf{p}_{k}(0) = \mathbf{p}_{k}$$

$$\mathbf{p}_{k}(1) = \mathbf{p}_{k+1}$$

$$\mathbf{p}'_{k}(0) = \mathbf{D}\mathbf{p}_{k}$$

$$\mathbf{p}'_{k}(1) = \mathbf{D}\mathbf{p}_{k+1}$$

$$\mathbf{p}_{k}(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} & \mathbf{u}^{2} & \mathbf{u} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a}_{k} \\ \mathbf{b}_{k} \\ \mathbf{c}_{k} \\ \mathbf{d}_{k} \end{bmatrix} \qquad \mathbf{p}_{k}'(\mathbf{u}) = \begin{bmatrix} 3\mathbf{u}^{2} & 2\mathbf{u} & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a}_{k} \\ \mathbf{b}_{k} \\ \mathbf{c}_{k} \\ \mathbf{d}_{k} \end{bmatrix}$$

$$\mathbf{p}_{k}'(\mathbf{u}) = \begin{bmatrix} 3\mathbf{u}^{2} & 2\mathbf{u} & 1 & 0 \end{bmatrix} \cdot \begin{vmatrix} \mathbf{b}_{k} \\ \mathbf{c}_{k} \\ \mathbf{d}_{k} \end{vmatrix}$$

$$\begin{bmatrix} \mathbf{p_k} \\ \mathbf{p_{k+1}} \\ \mathbf{Dp_k} \\ \mathbf{Dp_{k+1}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a_k} \\ \mathbf{b_k} \\ \mathbf{c_k} \\ \mathbf{d_k} \end{bmatrix}$$

Hermite Interpolation (3)

$$\begin{bmatrix} \mathbf{a}_k \\ \mathbf{b}_k \\ \mathbf{c}_k \\ \mathbf{d}_k \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_k \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix} = \begin{bmatrix} 2-2 & 1 & 1 \\ -3 & 3-2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_k \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix}$$

$$\begin{bmatrix} a_k \\ b_k \\ c_k \\ d_k \end{bmatrix} = \mathbf{M}_H \cdot \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix}$$
 "Hermite matrix"

Hermite Interpolation (4)

$$\mathbf{p}_{k}(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} & \mathbf{u}^{2} & \mathbf{u} & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a}_{k} \\ \mathbf{b}_{k} \\ \mathbf{c}_{k} \\ \mathbf{d}_{k} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_k \\ \mathbf{b}_k \\ \mathbf{c}_k \\ \mathbf{d}_k \end{bmatrix} = \mathbf{M}_H \cdot \begin{bmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_k \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix}$$

$$\mathbf{p}_{k}(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} & \mathbf{u}^{2} & \mathbf{u} & 1 \end{bmatrix} \cdot \mathbf{M}_{H} \cdot \begin{bmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_{k} \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix}$$

Hermite Interpolation (5)

$$p_{k}(u) = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_{k} \\ p_{k+1} \\ Dp_{k} \\ Dp_{k+1} \end{bmatrix}$$

$$\mathbf{p}_k(u) = \mathbf{p}_k(2u^3 - 3u^2 + 1) + \mathbf{p}_{k+1}(-2u^3 + 3u^2) + \mathbf{D}\mathbf{p}_k(u^3 - 2u^2 + u) + \mathbf{D}\mathbf{p}_{k+1}(u^3 - u^2)$$

Hermite Interpolation (6)

$$\mathbf{p}_{k}(u) = \mathbf{p}_{k}(2u^{3} - 3u^{2} + 1) + \mathbf{p}_{k+1}(-2u^{3} + 3u^{2}) + \mathbf{D}\mathbf{p}_{k}(u^{3} - 2u^{2} + u) + \mathbf{D}\mathbf{p}_{k+1}(u^{3} - u^{2})$$

$$\mathbf{p}_{k}(\mathbf{u}) = \mathbf{p}_{k}H_{0}(\mathbf{u}) + \mathbf{p}_{k+1}H_{1}(\mathbf{u}) + \mathbf{D}\mathbf{p}_{k}H_{2}(\mathbf{u}) + \mathbf{D}\mathbf{p}_{k+1}H_{3}(\mathbf{u})$$

$H_k(u)$ blending functions:

Bézier Curves and Surfaces

= spline approximation for points $\mathbf{p_i}$, i = 0, ..., n

$$\mathbf{p}(u) = \sum_{k=0}^{n} \mathbf{p}_k b_{k,n}(u) \qquad 0 \le u \le 1$$
 Bernstein polynomials
$$b_{k,n}(u) = \binom{n}{k} u^k (1-u)^{n-k}$$

Cubic Bézier Blending Functions

$$\mathbf{p}(\mathbf{u}) = (1-\mathbf{u})^3 \cdot \mathbf{p_0} + 3\mathbf{u}(1-\mathbf{u})^2 \cdot \mathbf{p_1} + 3\mathbf{u}^2(1-\mathbf{u}) \cdot \mathbf{p_2} + \mathbf{u}^3 \cdot \mathbf{p_3}$$

the 4 Bézier blending functions for cubic curves (n=3)

2-Dimensional Bézier Curves Examples

generated from 3, 4, and 5 control points

Bézier Curves Properties

- $\mathbf{p}(\mathbf{u})$ polynomial of degree n, global influence
- $\mathbf{p}(\mathbf{u})$ interpolates start and endpoint

$$\mathbf{p}(0) = \mathbf{p}_0, \ \mathbf{p}(1) = \mathbf{p}_n$$

tangents at start and endpoint

$$\mathbf{p'}(0) = -n\mathbf{p_0} + n\mathbf{p_1}$$

 $\mathbf{p'}(1) = -n\mathbf{p_{n-1}} + n\mathbf{p_n}$

convex hull property

$$\sum_{k=0}^{n} b_{k,n}(u) = 1$$

Bézier Curves Design Techniques (1)

a *closed Bézier curve* generated by setting: first = last control point

a Bézier curve can be made to pass closer to a given coordinate position by assigning *multiple* control points to that position

Bézier Curves Design Techniques (2)

piecewise approximation curve formed with 2 Bézier sections. 0-order and 1st-order continuity (C⁰, C¹ or G⁰, G¹) are attained by setting $\mathbf{q}_0 = \mathbf{p}_2$ and by making \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{q}_1 collinear.

Cubic Bézier Curve Matrix Notation

$$\mathbf{p}(\mathbf{u}) = (1-\mathbf{u})^3 \cdot \mathbf{p_0} + 3\mathbf{u}(1-\mathbf{u})^2 \cdot \mathbf{p_1} + 3\mathbf{u}^2(1-\mathbf{u}) \cdot \mathbf{p_2} + \mathbf{u}^3 \cdot \mathbf{p_3}$$

$$\mathbf{p}(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^3 & \mathbf{u}^2 & \mathbf{u} & 1 \end{bmatrix} \cdot \mathbf{M}_{Bez} \cdot \begin{bmatrix} \mathbf{p_0} \\ \mathbf{p_1} \\ \mathbf{p_2} \\ \mathbf{p_3} \end{bmatrix} \quad \text{with} \quad \mathbf{M}_{Bez} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Bézier Surfaces Definition

= Cartesian product of two Bézier curve bundles

$$\mathbf{p}(\mathbf{u}, \mathbf{v}) = \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{p}_{j,k} \mathbf{b}_{j,m} (\mathbf{v}) \mathbf{b}_{k,n} (\mathbf{u})$$

 $\mathbf{p_{j,k}}$: grid of (m+1)x(n+1) control points

Bézier Surfaces Properties

the same properties as Bézier curves:

global influence

interpolates corner points

tangents at corner points

convex hull property

1st-order continuity connections

B-Spline Curves and Surfaces

= spline approximation for points $\mathbf{p_i}$, i=0,...,n

$$\mathbf{p}(\mathbf{u}) = \sum_{k=0}^{n} \mathbf{p}_{k} \mathbf{B}_{k,d}(\mathbf{u}) \qquad \mathbf{u}_{\min} \le \mathbf{u} \le \mathbf{u}_{\max} \qquad 2 \le \mathbf{d} \le \mathbf{n} + 1$$

B-Spline blending functions from recursive Cox-deBoor formulas

B-Spline Basis Functions

$$B_{k,1}(u) = \begin{cases} 1 & \text{if } u_k \le u \le u_{k+1} \\ 0 & \text{otherwise} \end{cases}$$

$$B_{\mathbf{k},\mathbf{d}}(u) = \frac{(u - u_{\mathbf{k}}) \cdot B_{\mathbf{k},\mathbf{d} - \mathbf{1}}(u)}{u_{\mathbf{k} + \mathbf{d} - \mathbf{1}} - u_{\mathbf{k}}} + \frac{(u_{\mathbf{k} + \mathbf{d}} - u) \cdot B_{\mathbf{k} + \mathbf{1},\mathbf{d} - \mathbf{1}}(u)}{u_{\mathbf{k} + \mathbf{d}} - u_{\mathbf{k} + \mathbf{1}}} \quad \text{for } 0 \le u \le n - d + 2$$

$$u_{\textbf{k}}\!\!=\!\left\{\begin{array}{ll} 0 & \text{for} & k < d \\ k\!-\!d\!+\!1 & \text{for} & d \leq k \leq n \\ n\!-\!d\!+\!1 & \text{for} & k > n \end{array}\right\} \begin{array}{l} \text{global,} \\ \text{do not change} \end{array}$$

B-Spline Basis Functions for d=3

Important Property of the B_{k,d}

for all B-Spline basis functions the following property holds:

$$\sum_{k=0}^{n} B_{k,d}(u) = 1 \qquad \text{for all } u$$

⇒ every curve point is a weighted mean of the control points

2-Dimensional B-Spline Examples

Influence of d

d describes, how many control points influence every curve point

- d = 2 linear
- d = 3 quadratic
- d = 4 cubic
- • •

for d=n+1 you get Bézier curves!

Differences B-Spline ↔ Bézier

control points have local influence

effort is linearly dependent on n, therefore splitting of huge point sets not necessary

B-Spline Surfaces

= Cartesian product of 2 B-Spline curve bundles

$$\mathbf{p}(u, v) = \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{p}_{j,k} B_{j,d}(u) B_{k,d}(v)$$

 $\mathbf{p_{j,k}}$: grid of (m+1)x(n+1) control points

just like with Bezier surfaces!

NURBS

further extension:

NonUniform Rational B-Splines = "NURBS"

allow to combine freeform surfaces with regular surfaces

