Флавоноиды

Материал из Википедии — свободной энциклопедии

Флавоноиды — крупнейший класс растительных полифенолов. С химической точки зрения, флавоноиды представляют собой гидроксипроизводные флавона (собственно флавоноиды), 2,3-дигидрофлавона (флаваноны) изофлавона (изофлавоноиды), 4-фенилкумарина (неофлавоноиды). Также флавоны с восстановленной карбонильной группой (флаванолы) 3 ачастую к флавоноидам относят и другие соединения C_6 - C_3 - C_6 ряда, в которых имеются два бензольных ядра, соединённых друг с другом трёхуглеродным фрагментом — халконы, дигидрохалконы и ауроны [2].

Содержание

История

Классификация

Флавоноиды в природе

Пищевые источники растительных флавоноидов

Зелёный чай

Биодоступность

Биологическая функция

Применение

См. также

Примечания

Литература

Ссылки

История

Флавоноиды известны как растительные пигменты более столетия. Однако первая работа, посвящённая возможной биологической роли флавоноидов для человека, была опубликована лауреатом Нобелевской премии по физиологии или медицине Альбертом де Сент-Дьёрди в 1936 году. Он сообщил, что флавоноид, выделенный из венгерского красного перца, вероятно, способствует укреплению ломких стенок кровеносных сосудов. Он предположил, что это соединение относится к витаминам, и предложил для него название «витамин Р», которое в дальнейшем не прижилось [3].

Новая волна интереса к флавоноидам началась в 1990-х годах. Она связана с открытием антиоксидантных свойств флавоноидов и их способности нейтрализовать свободные радикалы $^{[4]}$.

Классификация

Флавон

Изофлавон

4-Фенилкумарин

Аурон

Среди флавоноидов есть как водорастворимые, так и <u>липофильные</u> соединения, окрашенные преимущественно в <u>жёлтый</u>, <u>оранжевый и красный цвета</u>. Некоторые классы флавоноидов — антоцианины и ауроны — являются растительными <u>пигментами</u>, обуславливающими окраску <u>цветов</u> и <u>плодов</u> растений. Известно более 6500 флавоноидов. Общепринятая классификация флавоноидов предусматривает их деление на 10 основных классов, исходя из степени окисленности трехуглеродного фрагмента:

- катехины (флаван-3-олы, производные флавана катехины, лейкоантоцианы)
- лейкоантоцианидины (флаван-3,4-диолы)
- флаваноны (производные флавона флаваноны, флаванонолы, флавоны, флавонолы)
- дигидрохалконы
- халконы
- антоцианы и антоцианидины
- флавононолы
- флавоны и изофлавоны
- флавонолы
- ауроны

Флавоноиды в природе

Флавоноиды играют важную роль в растительном метаболизме и очень широко распространены в высших растениях. Многие флавоноиды — пигменты, придающие разнообразную окраску растительным тканям. Так, антоцианы определяют красную, синюю, фиолетовую окраску цветов, а флавоны, флавонолы, ауроны, халконы — жёлтую и оранжевую.

Флавоноиды объединены общностью путей биосинтеза в растениях.

- **Кольцо В** (см. рисунок) и примыкающий к нему трёхуглеродный фрагмент (атомы C-2, C-3 и C-4) синтезируются из <u>шикимовой</u> кислоты и фосфоенолпировиноградной кислоты с промежуточным образованием через фенилаланин коричной кислоты.
- Кольцо А синтезируется из трёх активированных молекул малоновой кислоты.

Они принимают участие в фотосинтезе, образовании <u>лигнина</u> и <u>суберина</u>, в качестве защитных агентов в <u>патогенезе</u> растений, вовлечены в регуляцию процессов прорастания семян, а также пролиферации и отмирания (путём <u>апоптоза</u>) клеток удлиняющихся растущих частей растений. Их многообразие объясняется тем, что в растениях большинство из них присутствует в виде соединений с сахарами — <u>гликозидов</u>. Сахарные остатки могут быть представлены моносахаридами — глюкозой, галактозой, ксилозой и др., а также различными <u>ди-, три-</u> и тетрасахаридами. К сахарным остаткам нередко присоединены молекулы оксикоричных и оксибензойных кислот.

Катехины и лейкоантоцианы бесцветны. Они являются родоначальниками конденсированных дубильных веществ.

Пищевые источники растительных флавоноидов

Флавоноиды широко распространены в еде и напитках растительного происхождения, их много в цедре цитрусовых, луке, зелёном чае, красных винах, пиве тёмных сортов, облепихе, тунбергии и чёрном шоколаде (70 % какао и выше). Из флавонов и флавонолов чаще всего в пищевых продуктах встречается кверцетин, также распространены кемпферол, мирицетин, апигенин и лютеолин [4].

Содержание флавоноидов в растениях зависит от многих факторов, включая генетические особенности, условия произрастания, степень зрелости и способ хранения, что затрудняет определение норм пищевого потребления флавоноидов [4]. Кроме того, среди учёных нет согласия относительно правильного способа измерения концентрации флавоноидов в пищевых продуктах. Согласно двум исследованиям, проведённым в Дании и Нидерландах, дневное потребление флавонов и флавонолов в этих странах составляет около 23—28 миллиграммов.

Из отходов производства вин и соков (виноградные выжимки) получают дешёвые и эффективные биоконцентраты флавоноидов.

Зелёный чай

Полифенолы зелёного чая — мощный антиоксидант, и один из лучших, наряду с витамином C и E. По мере нарастания степени ферментации чая (жёлтый — красный — чёрный чай) растёт его аромат, но снижается антиоксидантная активность. Зелёный чай богат кверцетином и кемпферолом.

Биодоступность

Ранее господствовало убеждение, что биодоступность флавоноидов из растительной пищи крайне мала: считалось, что в кишечнике всасываются только флавоноиды в свободной форме (без остатка сахара), которые в природе встречаются относительно редко. Однако последующие исследования на примере отдельных флавоноидов показали, что их биодоступность зависит от источника и намного выше, чем предполагали ранее. Так, глюкозиды (из лука) и рутинозид (из чая) кверцетина абсорбируются в кишечнике намного лучше, чем чистый кверцетин (агликон). При сравнении красного вина, чёрного чая, лука и яблок было показано, что лук является наилучшим пищевым источником кверцетина [4].

Биологическая функция

- Естественные функции флавоноидов мало изучены. Предполагалось, что благодаря способности поглощать ультрафиолетовое излучение (330—350 нм) и часть видимого света (520—560 нм) они защищают растительные ткани от избыточной радиации.
- Окраска цветочных лепестков помогает насекомым находить нужные растения и тем самым способствовать опылению.
- Флавоноиды являются фактором устойчивости растений к поражению некоторыми патогенными грибами.

Животные не способны синтезировать соединения флавоноидной группы, а флавоны, присутствующие в крыльях некоторых бабочек, попадают в их организм с пищей. В настоящее время считается, что флавоноиды (наряду с другими растительными фенолами) являются незаменимыми компонентами пищи человека и других млекопитающих. В организме млекопитающих флавоноиды способны изменять активность многих ферментов обмена веществ 5.

Применение

Флавоноиды — природные <u>красители</u>, пищевые <u>антиоксиданты</u>, <u>дубильные вещества</u>. Ряд флавоноидов обладает антибактериальным (противомикробным) действием[6].

В качестве лекарственных средств применяются флавоноиды рутин и кверцетин, называемые <u>Рвитаминами</u>. Они обладают способностью, особенно выраженной в сочетании с аскорбиновой кислотой, уменьшать проницаемость и ломкость капилляров, тормозят свёртывание крови и повышают эластичность эритроцитов [7].

См. также

- Антоцианы
- Лютеолин
- Рутин
- Гесперидин
- Дигидрокверцетин

Примечания

- 1. flavonoids (isoflavonoids and neoflavonoids) // IUPAC Gold Book (http://goldbook.iupac.org/F0 2424.html)
- 2. Флавоноиды // *Кнунянц И. Л. и др.* Химическая энциклопедия. М.: Советская энциклопедия, 1990
- 3. Rusznyak S. P., Szent-Gyorgyi A. Vitamin P: flavonols as vitamins // Nature. 1936. T. 138. C. 27.
- 4. Ross J. A, Kasum C. M. Dietary flavonoids: bioavailability, metabolic effects, and safety // Annu Rev Nutr. 2002. T. 22. C. 19—34. PMID 12055336.
- 5. Middleton E., Jr., Kandaswami C., Theoharides T.C. The Effects of Plant Flavonoids on Mammalian Cells:Implications for Inflammation, Heart Disease, and Cancer. Pharmacol. Rev. 2000. V.52, No.4. P.673-751 -> abstract: [1] (http://pharmrev.aspetjournals.org/cgi/content/abstract/52/4/673) & Full Text: [2] (http://pharmrev.aspetjournals.org/cgi/content/full/52/4/673).

- 6. Cowan M. M. Plant Products as Antimicrobial Agents (http://cmr.asm.org/cgi/content/full/12/4/56 4). *Clin. Microbiol. Rev.* 1999. V.12, No.4. P.564-582. (Abstract (http://cmr.asm.org/cgi/content/abstract/12/4/564)).
- 7. <u>Машковский М. Д.</u> Лекарственные средства. 15-е изд. <u>М.</u>: Новая Волна, 2005. C. 629—630. 1200 с. ISBN 5-7864-0203-7.

Литература

- *Запрометов М. Н.* Основы биохимии фенольных соединений, М., 1974.
- Биохимия фенольных соединений / Под ред. Дж. Харборна М.: Мир, 1968.
- Harborne J. B., Comparative biochemistry of the flavonoids, L. N. Y., 1967.
- The flavonoids, Eds Harborne J. B., Mabry T. J. and Mabry H., L., 1975.
- Balch, J. F., & Balch, P. A. (2000). Prescription for Nutritional Healing. New York: Avery, Penguin Putnam Inc.
- Murray, M. T. (1996). Encyclopedia of Nutritional Supplements. Roseville: Prima Publishing.
- Spedding, G., Ratty, A., Middleton, E. Jr. (1989). Inhibition of reverse transcriptases by flavonoids. Antiviral Res 12 (2), 99-110. PMID 2480745

Ссылки

- Flavonoids (chemistry) (http://www.friedli.com/herbs/phytochem/flavonoids.html)
- Cornell news on Cocoa (http://www.news.cornell.edu/releases/Nov03/HotCocoa-Lee.bpf.html)
- A Dark Chocolate a Day Keeps the Doctor Away (https://web.archive.org/web/2005102905023 7/http://my.webmd.com/content/article/88/99702.htm)
- Antioxident in Green Tea may fight Alzheimer's-EGCG (https://web.archive.org/web/200609231 73809/http://www.webmd.com/content/article/112/110306.html)
- Therapeutic potential of the NF-kB pathway in the treatment of inflammatory disorders (http://www.jci.org/cgi/content/full/107/2/135?ijkey=a1e09ce2dbca283cec170598f2410b15d5f4304f&keytype2=tf ipsecsha)
- Влияние биофлавоноидов на кровеносную систему (https://web.archive.org/web/20190131 201558/https://kardiotalk.ru/vlijanie-bioflavonoidov-na-krovenosnuju-sistemu/)

Источник — https://ru.wikipedia.org/w/index.php?title=Флавоноиды&oldid=113496974

Эта страница в последний раз была отредактирована 9 апреля 2021 в 13:21.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.