Recitation Seven: 7/21/2015

Alexis Cuellar Ashley G Simon Audrey B Ricks Carissa R Gadson Hector J Vazquez Mael J Le Scouezac Mario Contreras Michael A Castillo

Paul A Herold Thomas Varner Clarissa Sorrells

Objectives:

- 1. Polar Coordinates
- 2. Polar Graphs
- 3. Parametric Equations
- 4. A Little Something Fun (Calculus & Instructional)

Polar Coordinates:

$$x^2 + y^2 = \underline{\qquad} \qquad r = \sqrt{x^2 + y^2}$$

$$\cos(\theta) = \frac{x}{r}$$

$$\sin(\theta) = \frac{y}{r}$$

$$\theta = \arctan(\frac{y}{x})$$

Example One:

Write the given rectangular equation in polar form.

$$xy = 1$$

Example Two:

Write the given polar equation in rectangular form $r=1+\cos(\theta)$ *Start by multiply both sides by r

Polar Graphs:

-Circles -Limacons (Please don't say LIMA-CONE ⊗)

-Cardiods -Rose Curves

Circles:

 $r = asin(\theta)$ * Circle will be centered along the _____ axis. $r = acos(\theta)$ *Circle will be centered along the _____ axis.

r=a *Circle will be centered along the ______. (a must be positive)

LIMACONS! OUR FAVORITE! (3) (According to Matt at least)

Graphing made easy! [⊕] WE BREAK IT DOWN! [⊕]

$$r = a \pm bcos(\theta)$$

$$r = a \pm bsin(\theta)$$

Ratio	$\left rac{a}{b} ight < 1$	$\left rac{a}{b} ight = 1$	$1 < \left \frac{a}{b}\right < 2$	$\left rac{a}{b} ight \geq \ 2$
Shape (Name)				
Diagram (General Look)				

Graphing Procedure:

*Note Following tables uses looking at the formula to determine features of the graph

$cos(\theta) \ or \ sin(\theta)$	Determines:	X axis or Y axis Respectively
Ratio $\left \frac{a}{b} \right $	Determines:	
Value of		
a + b	Determines:	
Value of		
а	Determines:	
Value of		
a-b	Determines:	

Example Three:

Graph the following Equation in the X/Y plane

 $r = 3 + 4\sin(\theta)$

r = 3 + 13 Im(0)

Cos/Sin	
Ratio: a/b	
a + b	
а	
a - b	

Example Four:

Graph the following equation in the X/Y plane (BUT MATTTTT... ISN'T This the $\frac{r}{\theta}$ plane? – No) – Show an example if desired by students.

 $r = 2 - \cos(\theta)$

Cos/Sin	
Ratio: a/b	
a + b	
а	
a - b	

Notes: Extra Problems Will be Posted on the Back

Petal Curves:

$$r = asin(n\theta)$$

$$r = acos(n\theta)$$

"a"	determines:	length of Petals
# of petals:	<u> </u>	
- If ni	is odd	-
- If ni	is even	-
To find who	ere the first petal starts	
	ere other petals start rotate	
by the folio	owing angle	

Example Five:

Graph the following Equation on the X/Y Axis

 $r = 4sin(2\theta)$

а	
n	
# of petals	
1 st Petal	
Begins	
Rotate ?	
Degrees for next petals	
next petais	

Area of Polar Graphs

-One important equation
$$A = \frac{1}{2} \int_a^b r^2 d\theta$$

Area of Polar Graphs Continued:

- -Difficult part about these problems is finding the bounds of integration [a,b]
- -Will do examples in order to show methodology

Example Six:

Find the area bounded by rose petal graph with the equation $r=4\sin(2\theta)$ #This is the equation from example Five

$$Area = \frac{1}{2} \int_{a}^{b} r^2 d\theta$$

Steps:

- -Rose petal graph: Solve for the area of one rose petal
- -Multiply Answer by # of Rose Petals
- -To find the bounds integration set r = 0 & solve for $\boldsymbol{\theta}$

Example Seven: GOOFY GOOBER!!!

I'm a goofy goober!

What is a goofy goober! I am! Wow that's great! GOOFY GOOBER!!

Do you know what goofy goobers like best?

- -Not doing calculus problems?
- -HAHA No.
- -They LOVE DOING CALCULUS PROBLEMS!

Specifically Area of Inner Loop Limacon!

Find the area of the each loop!

 $r = 1 + 2\cos(\theta)$

Steps:

- -Graph
- -Look at Symmetry
- -Set up equations (One for big hoop & One for Small)
- -To find bounds of integration
 - -first graph equation
 - -then look at pts that would make symmetry
 - Easy. Find θ there
 - -Find heta there

Cos/Sin	
Ratio: a/b	
a + b	
А	
a – b	

Parametric Curves:

A Parameteric Curve in the plan is a pair of functions

______ *(Two Dimensions)

that give x & y as continuous function of the real number, t, (the parameter)

Position:

$$r(t) = (x(t), y(t)) = \underbrace{ \\ r(b) = [x(a) + \int_{t=a}^{t=b} x'(t)dt, \quad y(a) + \int_{t=a}^{t=b} y'(t)dt] }$$

Velocity:

$$v(t) = (x'(t), y'(t)) = \underbrace{v(t) = [x'(a) + \int_{t=a}^{t=b} x''(t)dt, \quad y'(a) + \int_{t=a}^{t=b} y''(t)dt]}$$

Acceleration:

$$a(t) = (x''(t), y''(t)) =$$

Speed: (Magnitude of Velocity)

$$|v(t)| = \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2}$$

Displacement: (How Far you are from start)

Displacement =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance: (How far you have traveled)

$$D = \int_{t=a}^{t=b} |v(t)| dt = \underline{\qquad}$$

Derivative of Parametric Equations (IMPORTANT!)

1. First Derivative

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \text{ or } \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} \quad \text{*Chain rule it yo! To make sense of it!}$$

2. Second Derivative

$$\frac{d^2y}{dx^2} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)} \qquad \text{or} \quad \frac{d^2y}{dx^2} = \frac{\left(\frac{dy'}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)}$$

PRACTICE!!

Example Eight:

Find
$$\frac{dy}{dx} & \frac{d^2y}{dx^2}$$
 $r = 1 + 3\cos(\theta)$

Steps:

- 1. Find $x(\theta) \& y(\theta)$
- 2. Find Derivatives

Example Nine:

A. Find the position of the particle at time t = 5

B. Find the distance the particle moves from t = 1 to t = 5

$$v(t) = < t^2 + 1$$
 , $t >$

$$given r(0) = (1,2)$$