Simulation of CPU Scheduling Algorithms

Task: Generate the Arrival time and Burst Time and compare various process scheduling strategies

Process:

1. Calculate Arrival Time by generating inter-arrival time from exponential distribution Range: (0,20)

Distribution:

$$IAT \sim -(1/\lambda)ln(X); \quad X\sim U(exp(-10\lambda, 1))$$

 $BT \sim U(1, 20)$

- 2. Algorithm:
 - (i) Non-preemptive First Come First Serve (FCFS)
 - (ii) Non-preemptive Shortest Job First (NPSJF)
 - (iii) Preemptive Shortest Job First (PSJF)
 - (iv) Round Robin with time quantum $\delta = 2$ time units (RR)
 - (v) Highest response-ratio next (HRN)

Order: NPSJF <= PSJF <= HRN <= FCFS <= HRN (Based on experiments done)

Theoretical Lower Bound: Turn Around Time (TAT) = completion time - arrival time

The minimum possible turnaround time for any process = its CPU burst time

=> LB(Avg(TAT)) = Avg(CPU burst time) = (1+20)/2, (has been taken from uniform distr.)

$$=> LB(Avg(TAT)) = 10.5$$

Which is satisfied by our simulation, demonstrated through fig. 1

Fig-1: Line Plot for the average value of ATN (over 10 iteration) for all the Algorithm

Fig-2 Scatter Plot for all the iterations

Contributions:

- 1. Vedic Partap (16CS10053):
 - a. Data generation
 - b. FCFS
 - c. NPSJF
 - d. PSJF
 - e. Build Plots
- 2. Rahul Kumar (16CS10042)
 - a. Round Robin
 - b. HRN
 - c. Theoretical Lower Bound
 - d. Report