

Lecture 3: Model-free Prediction

8th 15th Mar. 2022

Recap

- Last lecture:
 - MDP
 - policy evaluation
 - policy iteration and value iteration for solving a known MDP
- The following two lectures:
 - Model-free prediction: Estimate value function of an unknown MDP
 - Model-free control: Optimize value function of an unknown MDP

RL with knowing how the world works

■ Both of the policy iteration and value iteration assume the direct access to the dynamics and rewards of the environment

- ☐ In a lot of real-world problems, MDP model is either unknown or known by too big or too complex to use
 - ☐ Atari Game, Game of Go, Helicopter, Portfolio management, etc

Model-free RL: Learning by interaction

■ Model-free RL can solve the problems through interaction with the environment

- No more direct access to the known transition dynamics and reward function
- ☐ Trajectories/episodes are collected by the agent's interaction with the environment
- \square Each trajectory/episode contains $\{S_1, A_1, R_1, S_2, A_2, R_2, ..., S_T, A_T, R_T\}$

Model-free RL: Learning by interaction

■ Model-free RL can solve the problems through interaction with the environment

- No more direct access to the known transition dynamics and reward function
- ☐ Trajectories/episodes are collected by the agent's interaction with the environment
- \square Each trajectory/episode contains $\{S_1, A_1, R_1, S_2, A_2, R_2, ..., S_T, A_T, R_T\}$

Model-free prediction

- Model-free prediction: policy evaluation without the access to the model
- Estimating the expected return of a particular policy if we don't have access to the MDP models
 - Monte Carlo policy evaluation
 - ☐ Temporal Difference (TD) learning

Monte-Carlo Policy Evaluation

- □ Return: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...$
- $\square v^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$ thus expectation over trajectories τ generated by following π
- MC simulation: we can simply sample a lot of trajectories, compute the actual returns for all the trajectories, then average them
- MC policy evaluation uses empirical mean return instead of expected return
- ☐ MC does not require MDP dynamics/rewards, no bootstrapping, and does not assume state is Markov.
- ☐ Only applied to episodic MDPs (each episode terminates)

Monte-Carlo Policy Evaluation

- \square To evaluate state v(s)
 - Every time-step t that state s is visited in an episode,
 - 2 Increment counter $N(s) \leftarrow N(s) + 1$
 - **3** Increment total return $S(s) \leftarrow S(s) + G_t$
 - 4 Value is estimated by mean return v(s) = S(s)/N(s)
- By law of large numbers, $v(s) \rightarrow v^{\pi}(s)$ as $N(s) \rightarrow \infty$

Incremental MC Updates

 \blacksquare Mean from the average of samples $x_1, x_2,...$

- \square Collect one episode $(S_1, A_1, R_1, ..., S_t)$
- \square For each state s_t with computed return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

 $v(S_t) \leftarrow v(S_t) + \frac{1}{N(S_t)}(G_t - v(S_t))$

$$\mu_{t} = \frac{1}{t} \sum_{j=1}^{t} x_{j}$$

$$= \frac{1}{t} \left(x_{t} + \sum_{j=1}^{t-1} x_{j} \right)$$

$$= \frac{1}{t} (x_{t} + (t-1)\mu_{t-1})$$

$$= \mu_{t-1} + \frac{1}{t} (x_{t} - \mu_{t-1})$$

☐ Or use a running mean (old episodes are forgotten). Good for non-stationary problems.

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$

Difference between DP and MC

- Dynamic Programming (DP) computes v_i by bootstrapping the rest of the expected return by the value estimate v_{i-1}
- ☐ Iteration on Bellman expectation backup:

$$v_i(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \Big(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) v_{i-1}(s') \Big)$$

■ MC updates the empirical mean return with one sampled episode

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$

= Expectation
T = Terminal state

= Expectation

= Terminal state

Advantages of MC over DP

- ☐ MC works when the environment is unknown
- Working with sample episodes has a huge advantage, even when one has complete knowledge of the environment's dynamics, for example, transition probability is complex to compute
- ☐ Cost of estimating a single state's value is independent of the total number of states. So you can sample episodes starting from the states of interest then average returns

Temporal-Difference (TD) Learning

- ☐ TD methods learn directly from episodes of experience
- ☐ TD is model-free: no knowledge of MDP transitions/rewards
- ☐ TD learns from incomplete episodes, by bootstrapping
- \square Objective: learn v_{π} online from experience under policy π
- ☐ Simplest TD algorithm: TD(0)
 - **1** Update $v(S_t)$ toward estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v(S_t) \leftarrow v(S_t) + \alpha (R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$

$$\delta_t = R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \Longrightarrow TD \text{ error}$$
 TD target

- ☐ Comparison: Incremental Monte-Carlo
 - 1 Update $v(S_t)$ toward actual return G_t given an episode i

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$

Advantages of TD over MC

= Expectation

□ = Terminal state

Comparison of TD and MC

- ☐ TD can learn online after every step
- ☐ MC must wait until end of episode before return is known
- ☐ TD can learn from incomplete sequences
- ☐ MC can only learn from complete sequences
- □ TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments
- ☐ TD exploits Markov property, more efficient in Markov environments
- MC does not exploit Markov property, more effective in non-Markov environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on *one* random action, transition, reward

Comparison of TD and MC

- ☐ MC has high variance, zero bias
 - ☐ Good convergence properties
 - ☐ (even with function approximation)
 - Not very sensitive to initial value
 - ☐ Very simple to understand and use
- ☐ TD has low variance, some bias
 - ☐ Usually more efficient than MC
 - \square TD(0) converges to $V_{\pi}(s)$
 - ☐ (but not always with function approximation)
 - More sensitive to initial value

Batch MC and TD

- MC and TD converge: $V(s) o v_{\pi}(s)$ as experience $o \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$

$$\vdots$$

$$s_1^K, a_1^K, r_2^K, ..., s_{T_K}^K$$

- e.g. Repeatedly sample episode $k \in [1, K]$
- \blacksquare Apply MC or TD(0) to episode k

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_s^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

Bootstrapping and Sampling for DP, MC, and TD

- Bootstrapping: update involves an estimate
 - ☐ MC does not bootstrap
 - ☐ DP bootstraps
 - ☐ TD bootstraps
- ☐ Sampling: update samples an expectation
 - MC samples
 - ☐ DP does not sample
 - ☐ TD samples

Unified View

Dynamic Programming Backup

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$

Monte-Carlo Backup

$$TD(0): v(S_t) \leftarrow v(S_t) + \alpha(R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$

Temporal-Difference Backup

Unified View of RL

n-step TD

- □ n-step TD methods that generalize both one-step TD and MC.
- We can shift from one to the other smoothly as needed to meet the demands of a particular task.

n-step TD prediction

 \square Consider the following n-step returns for $n = 1,2,\infty$

$$n = 1(TD) \quad G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2})$$

$$\vdots$$

$$n = \infty(MC) \quad G_t^{\infty} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

☐ Thus the n-step return is defined as

$$G_t^n = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

■ n-step TD:
$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^n - v(S_t) \right)$$

$\lambda - reutrn$

Weight

 λ^{T-t-1}

- \square The λ return G_t^{λ} combines all n-step returns G_t^n
- \square Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1}G_t^{(n)}$$

 \square Forward-view TD(λ)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

Forward-view $TD(\lambda)$

- \square Update value function towards the $\lambda return$
- \square Forward-view looks into the future to compute G_t^{λ}
- ☐ Like MC, can only be computed from complete episodes

Backward-view $TD(\lambda)$

- ☐ Forward view provides theory
- Backward view provides mechanism
- ☐ Update online, every step, from incomplete sequences

Eligibility Traces

- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

accumulating eligibility trace

times of visits to a state

Backward-view $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$\delta_{t} = R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$V(s) \leftarrow V(s) + \alpha \delta_{t} E_{t}(s)$$

$$\vdots$$

$$e_{t}$$

$$s_{t-1}$$

$$f_{im_{\Theta}}$$

$$s_{t+1}$$

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(0)$

■ When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

■ This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$TD(\lambda)$ and MC

- \square When $\lambda = 1$, credit is deferred until end of episode
- ☐ Consider episodic environments with offline updates
- ☐ Over the course of an episode, total update for TD(1) is the same as total update for MC

Theorem

The sum of offline updates is identical for forward-view and backward-view $TD(\lambda)$

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t) \right) \mathbf{1}(S_t = s)$$

TD(1) and MC

- lacksquare Consider an episode where s is visited once at time-step k,
- TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ \gamma^{t-k} & \text{if } t \ge k \end{cases}$$

■ TD(1) updates accumulate error *online*

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha \left(G_k - V(S_k) \right)$$

By end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1}$$

Telescoping in TD(1)

When $\lambda = 1$, sum of TD errors telescopes into MC error,

$$\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-1-t} \delta_{T-1}$$

$$= R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$+ \gamma R_{t+2} + \gamma^{2} V(S_{t+2}) - \gamma V(S_{t+1})$$

$$+ \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3}) - \gamma^{2} V(S_{t+2})$$

$$\vdots$$

$$+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V(S_{T}) - \gamma^{T-1-t} V(S_{T-1})$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} \dots + \gamma^{T-1-t} R_{T} - V(S_{t})$$

$$= G_{t} - V(S_{t})$$

$\mathsf{TD}(1)$ and $\mathsf{TD}(\lambda)$

- □ TD(1) is roughly equivalent to every-visit Monte-Carlo
- ☐ Error is accumulated online, step-by-step
- ☐ If value function is only updated offline at end of episode Then total update is exactly the same as MC

Telescoping in $TD(\lambda)$

For general λ , TD errors also telescope to λ -error, $G_t^{\lambda} - V(S_t)$

$$G_{t}^{\lambda} - V(S_{t}) = -V(S_{t}) + (1 - \lambda)\lambda^{0} (R_{t+1} + \gamma V(S_{t+1})) + (1 - \lambda)\lambda^{1} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})) + (1 - \lambda)\lambda^{2} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3})) + ... = -V(S_{t}) + (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - \gamma \lambda V(S_{t+1})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - \gamma \lambda V(S_{t+2})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - \gamma \lambda V(S_{t+3})) + ... = (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - V(S_{t+1})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - V(S_{t+2})) + ... = $\delta_{t} + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + ...$$$

Forwards and Backwards $TD(\lambda)$

- Consider an episode where s is visited once at time-step k,
- TD(λ) eligibility trace discounts time since visit,

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ (\gamma \lambda)^{t-k} & \text{if } t \ge k \end{cases}$$

■ Backward $\mathsf{TD}(\lambda)$ updates accumulate error *online*

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha \left(G_k^{\lambda} - V(S_k) \right)$$

- **B**y end of episode it accumulates total error for λ -return
- For multiple visits to s, $E_t(s)$ accumulates many errors

Equivalence of Forward and Backward TD

☐ Offline updates ☐ Updates are accumulated within episode □ but applied in batch at the end of episode ☐ Online updates \square TD(λ) updates are applied online at each step within episode \square Forward and backward-view TD(λ) are slightly different \square NEW: Exact online TD(λ) achieves perfect equivalence ■ By using a slightly different form of eligibility trace ☐ Sutton and von Seijen, ICML 2014

Summary

Offline updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
Forward view	TD(0)	Forward $TD(\lambda)$	MC
Online updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
		#	#
Forward view	TD(0)	Forward $TD(\lambda)$	MC
		II	
Exact Online	TD(0)	Exact Online $TD(\lambda)$	Exact Online TD(1)

= here indicates equivalence in total update at end of episode.

Conclusion

- Model-free prediction
 - Evaluate the state value without knowing the MDP model, by only interacting with the environment
 - ☐ Main methods
 - Monte-Carlo Policy Evaluation
 - ☐ Temporal-Difference (TD) Learning