Высокопроизводительные Параллельные Суперкомпьютерные...

Введение

Материалы по курсу

https://github.com/Valentin-Arkov/HPC

https://clck.ru/35ZPmt

Telegram: ChatGPT

https://t.me/GPT4Telegrambot

https://t.me/NeuralGPT4_bot

ChatGPT etc.

- https://www.perplexity.ai/
- https://beta.character.ai/
- YandexGPT
- Sber Giga Chat
- Deepl.com
- https://www.croxyproxy.com/

Проверка

Fact Checking

• Критическое мышление

• Галлюцинации

Adversarial attack

Высокопроизводительные вычисления

- High-Performance Computing
 - HPC
- Гораздо мощнее персонального компьютера
 - Быстрое выполнение сложных вычислений
 - Хранение и обработка больших объёмов информации
 - Оперативное обслуживание большого количества запросов

High...

- High-Performance
- High-Load
- High-Availability

Задание

- Что первоначально означало слово «компьютер»?
 - When was the word "computer" first used?

• https://www.computerhope.com/issues/ch000984.h

tm#computer

https://clck.ru/wfwuc

Значения терминов

- Computing
- To compute
 - -https://www.wiktionary.org/
 - -m-w.com

Высокопроизводительная ВТ

- Суперкомпьютер
 - Быстрая вычислительная машина

- ЦОД Дата-центр
 - Мощный сервер

Задание

• Википедия

- Суперкомпьютер
- Supercomputer

- Дата-центр
- Data center

Литература

- Эндрюс Основы многопоточного, параллельного и распределенного программирования
- Воеводин Параллельные вычисления
- Газизов Основы суперкомпьютерных технологий
- **Воеводин** Вычислительная математика и структура алгоритмов
- Гергель Высокопроизводительные вычисления для многопроцессорных многоядерных систем
- **Антонов** Технологии параллельного программирования MPI и OpenMP

Облачные сервисы

Freemium

- Google
- Amazon
- Yandex
- SberCloud

Задание

- Воеводин
- Параллельные вычисления для начинающих
 - http://parallel.ru/vvv/intro2hpc.html

ТВ Культура – Academia

- Academia. Воеводин. Суперкомпьютеры
- https://www.youtube.com/

Содержание курса

- Архитектура
- Алгоритмы
- Программирование
 - Параллельные потоки
 - Параллельные процессы
- Высокопроизводительные системы

Вопрос

- Процессор
- Ядро
- Процесс
- Поток

Демонстрация

- Диспетчер задач
 - Логические процессоры
 - Процессы
 - Потоки

«Ядро»

• Kernel – ядро ОС

• Core – ядро процессора

Термины

- Словари:
 - to process
 - processor

- Картинки Яндекса
 - food processor

OS

- Operating System ← to operate
- Операционная система

• Ложные друзья переводчика

«Процессор» 1С

Параметры – О программе

Характеристики устройства

Имя устройства	DESKTOP-29PSQQC
Процессор	Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 3.40 GHz
Оперативная память	16,0 ГБ (доступно: 15,9 ГБ)
Код устройства	B037BC34-F56E-4219-B8D6- AF3CE2A3E285
Код продукта	00331-10000-00001-AA191
Тип системы	64-разрядная операционная система, процессор x64

Диспетчер устройств

Task Manager – Performance

CPU Utilization – Logical Processors

Логические процессоры

Details - Select Columns

Число потоков

Processes Performance App histo	ry Startu	p Users De	tails Services			
Name	PID	Status	User name	CPU	Memory	Threads
AGMService.exe	4176	Running	CUCTEMA	00	544 K	4
AGSService.exe	4224	Running	CUCTEMA	00	496 K	Number of active thread
AppleMobileDeviceService.exe	4120	Running	СИСТЕМА	00	876 K	9
ApplicationFrameHost.exe	11192	Running	Valentin	00	5,652 K	7
armsvc.exe	4160	Running	СИСТЕМА	00	312 K	3
■ ASGT.exe	4228	Running	CUCTEMA	00	220 K	3
atmgr.exe	10284	Running	Valentin	00	3,408 K	27
audiodg.exe	3088	Running	LOCAL SER	00	4,756 K	6
avp.exe	4188	Running	СИСТЕМА	00	66,748 K	134
avpui.exe	4348	Running	Valentin	00	3,032 K	17
Calculator.exe	12552	Suspended	Valentin	00	0 K	26

Параметры окружения

- Командная строка
- SET
- NUMBER_OF_PROCESSORS

• Число логических процессоров

Число «процессоров»

Command Prompt

```
Microsoft Windows [Version 10.0.19042.804]
(c) 2020 Microsoft Corporation. All rights
C:\Users\Valentin>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Valentin\AppData\Roaming
```

NUMBER_OF_PROCESSORS=8

Материнские платы

- 1 процессор
- 2 процессора

- Картинки Яндекс
 - Серверные материнские платы
 - Количество сокетов

Windows NT

https://ru.wikipedia.org/wiki/Windows_NT

- Линейка ОС
 - Настольные
 - Серверные

• Win2k – объединение веток

Задание

• Число «процессоров»

- Task Manager
- CMD SET
- Device Manager
- Settings System

Многопоточность

HyperThreading

Последовательные вычисления

$$y = \sum_{i=1}^{8} x_i = x_1 + x_2 + \ldots + x_8$$

- Последовательное вычисление суммы
 - Одна команда сложение двух чисел

1 процессор

• Последовательные вычислени

- Предположение:
 - Одна операция
 - Одна машинная команда
 - Один такт

Ассемблер

- Один оператор сложения
- Только два слагаемых

• ADD A, D

• $A \leftarrow A + D$

Последовательная программа

•
$$y = x1 + x2$$

•
$$y = y + x3$$

- •
- y = y + x8

- Число шагов
- Время выполнения

Параллельная программа

• Ядро 1

•
$$y1 = x1 + x2$$

•
$$y 1 = y1 + x5$$

•

•
$$y2 = x3 + x4$$

•

Оценка производительности

Число	Время	Ускорение	Эффективность
«процессоров»	вычислений Т _р	Sp	E _p
1			
2			
3			
4			

Параллельные вычисления

$$y = \sum_{i=1}^{8} x_i = x_1 + x_2 + \ldots + x_8$$

- Параллельное вычисление суммы
 - Каждый процессор складывает два числа
 - Один такт
 - 2, 3, 4 процессора

2 ядра

4 ядра

Задача

- Определить показатели
 - Ускорение
 - Эффективность
- Примеры с 2, 3, 4 ядрами

Показатели эффективности

- Ускорение (Speedup)
 - T_1 время выполнения на 1 процессоре
 - T_p время выполнения на р «процессорах»

$$S_p = \frac{T_1}{T_p}$$

- Эффективность (Efficiency)
 - Фактическое ускорение (S) по сравнению с максимально возможным (p)
 - Средняя загруженность процессоров

$$E_p = \frac{S_p}{p}$$

Задание

• Построить графики

- Ускорение
- $S_p = f(p)$

- Эффективность
- $E_p = f(p)$