Peculiar Velocities & Red-shift Space Distortions

Atul Singh Arora

Indian Institute of Science Education and Research, Mohali

1st April 2016

Outline

- ▶ The problem
- ▶ Background
- Approach 5 steps
- Implications
- ▶ Conclusion

The Problem

- \bullet θ , ϕ and Z = HR/c
- Crude approximation: $\delta^S = \delta^S(\theta, \phi, R = cZ/H)$
- ▶ Let Z = HS/c, where S = R if we assume zero peculiar velocity.

Background - I

- ▶ Position: $\vec{R} = a\vec{r}$.
- Velocity: $\vec{V} = \dot{a}\vec{r} + a\vec{r}$;

$$\vec{V} = H\vec{R} + a\vec{u}. \tag{1}$$

(where
$$H = \dot{a}/a$$
, $\vec{u} = \vec{r}$)

- Redshift: $Z \approx V_{\text{los}}/c$.
- Mass Density & Density Contrast: $\rho(\vec{r}, t) = \overline{\rho}(t)(1 + \delta(\vec{r}, t)).$
- Fluid approach:

$$\frac{\partial \delta}{\partial t} + \vec{\nabla} \cdot [(1+\delta)\vec{u}] = 0,$$

$$\frac{\partial u}{\partial t} + \frac{2\dot{a}}{a}\vec{u} + (u \cdot \nabla)u = -\frac{1}{a^2}\vec{\nabla}\phi,$$

$$\nabla^2\phi = 4\pi G a^2 \overline{\rho}\delta.$$

• Linear Limit: $\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho \delta = 0$.

Background - II

- ▶ Linear Solutions: $D_{\pm}(t)$; D_{+} is the growing solution.
- ▶ Interesting result:

$$d \ln D_+/d \ln a = f(\Omega). \tag{2}$$

General Linear Solution:

$$\delta(\vec{r},t) = \delta_{+}(\vec{r}) \frac{D_{+}(t)}{D_{+}(t_{i})} + \delta_{-}(\vec{r}) \frac{D_{-}(t)}{D_{-}(t_{i})}.$$

For growing mode initial conditions,

$$\vec{v} = -\vec{\nabla}\psi,$$
 (3)

where $\vec{v} \equiv d\vec{r}/dD_{+}$ and $\psi \equiv 2a\phi/3H_{0}^{2}\Omega_{\rm nr}D_{+}$.

▶ Useful result:

$$abla^2 \psi = rac{\delta}{D_+}$$
 (4)

Approach

- 1. Relation between \vec{S} and \vec{R} , without neglecting peculiar velocities, but assuming linear theory.
- 2. Use conservation of mass in both coordinates.
- 3. Relation between δ^R and δ^S using the Jacobian
- 4. Use fourier space to eliminate ν (or ψ) dependence
- 5. Relation between power spectra

1. Relation b/w \vec{S} and \vec{R}

- $ightharpoonup Zpprox rac{ec{V}.\hat{r}}{c}$, $ec{S}\equiv Z\hat{r}cH^{-1}$
- $ightharpoonup \vec{S} = (R + aH^{-1}\vec{u}.\hat{r})\hat{r} \text{ (using equation (1))}$
- ▶ Rewrite

$$\vec{u} = \frac{d\vec{r}}{dt} = \frac{dr}{dD_{+}} \frac{dD_{+}}{da} \frac{da}{dt},$$

$$\implies \vec{S} = (R + (H^{-1}\dot{a})D_+\vec{v}f.\hat{r})\hat{r}$$

(using equation (2)).

▶ Present time, assume $D_+(t_0) = 1$, we have

$$\vec{S} = \vec{R} + f_0(v.\hat{r})\hat{r}$$

where $f_0 \equiv f(\Omega_{nr0}, \Lambda_0)$.

2. Mass Conservation, Jacobian and 3. the Relation

$$\blacktriangleright \left(1 + \delta^{S}(\vec{S})\right) d^{3}\vec{S} = \left(1 + \delta^{R}(\vec{R})\right) d^{3}\vec{R}$$

$$d^3 \vec{S} = \frac{\partial (S_x, S_y, S_z)}{\partial (R_x, R_y, R_z)} d^3 \vec{R}$$

- ▶ $S\hat{r} = R(1 + U/R)\hat{r}$, where $U = f_0(\vec{v}.\hat{r})$, \Longrightarrow in spherical coordinates, θ and ϕ remain unchanged.
- ▶ $d^3\vec{S} = S^2dS \sin\theta d\theta d\phi$ can be written as $(1 + U/R)^2(1 + dU/dR)R^2dR \sin\theta d\theta d\phi$
- ▶ Required relation:

$$1+\delta^R(ec{R})=\left(1+\delta^{\mathcal{S}}(ec{\mathcal{S}})
ight)\left(1+rac{U}{R}
ight)^2\left(1+rac{dU}{dR}
ight).$$

4. Fourier Transform; removing unknowns

- ► Single mode to simplify calculations and later sum the modes.
- $\vec{v} = \vec{v}_k e^{-i\vec{k}.\vec{R}}$, $\psi = \psi_k e^{-i\vec{k}.\vec{R}}$ and substitute in equation (3) to get $\vec{v}_k = i\vec{k}\psi_k$.
- $\delta = \delta_k e^{-i\vec{k}\cdot\vec{R}}$, using equation (4), we get $\vec{v}_k = -i\vec{k}\delta_k/k^2$.
- ▶ Substituting for \vec{v} in U,

$$U = f_0 \vec{v}_k \cdot \hat{r} e^{-i\vec{k} \cdot \vec{R}} = \frac{if_0 \delta_k \vec{k} \cdot \hat{r} e^{-i\vec{k} \cdot \vec{R}}}{k^2} = \frac{if_0 \delta_k \mu e^{-i\vec{k} \cdot \vec{R}}}{k}$$
$$\frac{dU}{dR} = f_0 \mu^2 \delta_k e^{-i\vec{k} \cdot \vec{R}} = f_0 \mu^2 \delta,$$

where $\mu = \hat{k}.\hat{r}$, the cosine of the angle between \vec{k} and line of site.

- ► Thus, $(1 + \delta^S) \approx (1 + \delta^R) \left(1 + f_0 \delta^R \mu^2\right)^{-1}$
- ▶ To first order in δ^R , $\delta^S \approx \hat{\delta^R}(1 f_0 \mu^2)$.
- Substituting $\delta^S = \delta^S_k e^{-i\vec{k}.\vec{R}}$ and $\delta^R = -\delta^R_k e^{-i\vec{k}.\vec{R}}$, we have ...

5. The final relation; between power spectra

'Fouriered', Redshift Space & Real Space:

$$\delta_k^S(\vec{k}) pprox \delta_k^R(\vec{k}) \left(1 + f_0 \mu^2\right)$$

Power spectrum = δ_k^2 ,

$$P^{S}(\vec{k}, \mu) \approx (1 + f_{0}\mu^{2})^{2} P^{R}(\vec{k})$$

$$= (1 + 2f_{0}\mu^{2} + f_{0}^{2}\mu^{4})P^{R}(\vec{k}).$$
 (5)

Implications | Polar Plot

Figure: Polar plot of $P^S(\vec{k}, \mu)$, for a given $|\vec{k}|$, and f = 0.3, 0.5, 0.8 and 1.0. LOS is along the x-axis.

Implications | Contours

Figure: Contour plots for f = 0.5, 0.8 and 1.0. LOS is along the y-axis.

Implications | Observed Contours

Figure: An observed contour plot of δ^S , with LOS along the y-axis.

Conclusions

- ► Corrected for the errors caused by neglecting the peculiar velocity, using linear theory.
- ▶ Way to estimate the value of cosmological parameters.

The End

Questions

References

- ► Clustering in real space & in redshift space, Nick Kaiser, Mon. Not. R. astr. Soc. (1987) 227, 1-21
- ► Redshift space distortions and The growth of cosmic structure, Martin White, Jordan Carlson and Beth Reid http://mwhite.berkeley.edu/Talks
- ► The Clustering of the SDSS Main Galaxy Sample II, Cullan Howlett et. al. http://arxiv.org/pdf/1409.3238v2.pdf
- ► Contour Plotting: http://www.phyast.pitt.edu/~zov1/gnuplot/html/contour.html
- Telescope Image: http://www.how-to-draw-funny-cartoons.com/ cartoon-telescope.html