

Проверка связи

Отправьте «+», если меня видно и слышно

Если у вас нет звука или изображения:

- перезагрузите страницу
- попробуйте зайти заново
- откройте трансляцию в другом браузере (используйте Google Chrome или Microsoft Edge)
- с осторожностью используйте VPN, при подключении через VPN видеопотоки могут тормозить

Цели занятия

- 1. Познакомиться с оптимизаторами Adagrad, RMSProp, Adam
- 2. Обсудить шедулеры для изменения скорости обучения
- 3. Изучить способы борьбы с переобучением в нейросетях
- 4. Посмотреть на аугментации

План занятия

- 1. Оптимизаторы Adagrad, RMSProp, Adam
- 2. Шедулеры LinearLR, CyclicLR
- 3. Регуляризация в нейросетях Dropout, BatchNorm
- 4. Аугментации данных
- 5. Итоги занятия

Оптимизаторы

Оптимизаторы

В НС при оптимизации функции потерь существует две основные проблемы:

- седловые точки
- разные масштабы данных

Mini Batch GD

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Momentum

Правило обновления весов w с градиентом g, когда импульс == 0:

$$w^k = w^{k-1} - \eta * \nabla Q(w^{k-1}, X)$$

Правило обновления весов w с градиентом g, когда импульс > 0:

$$velocity = momentum * velocity - \eta * \nabla Q(w^{k-1}, X)$$

 $w^k = w^{k-1} + velocity$

Momentum

Засчет добавления импульса получается сглаживание оптимизации.

$$\gamma = 0.5$$

$$v_1 = g_1$$

 $v_2 = \gamma * v_1 + g_2 = 0.5 * g_1 + g_2$

$$v_3 = \gamma * v_2 + g_3 = \gamma (\gamma * v_1 + g_2) + g_3 = \gamma^2 * g_1 + \gamma * g_2 + g_3 = 0.25 * g_1 + 0.5 * g_2 + g_3$$

Adagrad

В Adagrad используются разные скорости обучения в зависимости от итерации:

$$w^k = w^{k-1} - \eta_k
abla Q(w^{k-1}, X)$$

$$\eta_k = rac{\eta}{\sqrt{lpha_k + \epsilon}}$$

где ϵ - маленькое число, чтобы не было деления на ноль.

$$lpha_k = \sum_{i=0}^k
abla Q(w^{k-1}, X)^2$$

Обновление весов:

$$w^k = w^{k-1} - \eta_k \nabla Q(w^{k-1}, X)$$

Получается, что когда α становится большим числом, то η_k становится меньше, то есть с увеличением итерации - уменьшается скорость обучения, а значит и уменьшается скорость изменения весов.

Но есть одна очень большая проблема - чем больше итераций, тем α больше, скорость обучения меньше, это приведет к тому, что изменение весов может стать совсем незаметным. Но это решаемо с помощью RMSProp.

RMSProp

Этот оптимизатор исправляет проблему с неизменяемыми весами в Adagrad засчет введения ограничения на градиенты весов.

$$\eta_k = rac{\eta}{\sqrt{W_{avg_k} + \epsilon}}$$

где ϵ - маленькое число, чтобы не было деления на ноль.

$$W_{avg_0}=0$$

$$W_{avg_k} =
ho * W_{avg_{k-1}} + (1-
ho)
abla Q(w^{k-1}, X)^2$$

Обновление весов:

$$w^k = w^{k-1} - \eta_k
abla Q(w^{k-1}, X)$$

Adam

Здесь соединились два плюса предыдущих оптимизаторов:

- 1. Импульс (дает сглаживание оптимизации)
- 2. Постепенное уменьшение скорости обучения

$$V_k = \beta_1 * V_{k-1} + g_k$$

$$W_{avg_k} = eta_2 * W_{avg_{k-1}} + (1-eta_2)
abla Q(w^{k-1}, X)^2$$

Обновление весов:

$$w^k = w^{k-1} - rac{\eta * V_k}{\sqrt{W_{avg_k} + \epsilon}}$$

Скорость обучения

LR Schedulers

CycleLR

Регуляризация в NN

(a) Standard Neural Net

(b) After applying dropout.

BatchNorm

$$z_k^i = rac{v_k^i - m_v}{\sqrt{\sigma_v^2 + \epsilon}}$$

 $y_i^k = \gamma z_i^k + eta$, где γ и eta - это настраиваемые параметры, которые нужны для дополнительного масштабирования и смещения.

Аугментации

<u>МФТИ</u> .

Практика

Ваши вопросы?

Итоги занятия

Итоги занятия

- 1. Познакомились с оптимизаторами Adagrad, RMSProp, Adam
- 2. Обсудили шедулеры для изменения скорости обучения
- 3. Изучили способы борьбы с переобучением в нейросетях
- 4. Посмотрели на аугментации

Дополнительные материалы

- 1. Оптимизаторы и шедулеры https://pytorch.org/docs/stable/optim.html
- 2. Аугментации в модуле transforms https://pytorch.org/vision/stable/transforms.html
- 3. Порядок слоев BatchNorm c Dropout https://www.reddit.com/r/MachineLearning/comments/67gong/d_batch_n ormalization_before_or_after_relu/

Пожалуйста, оставьте свой отзыв о семинаре

До встречи!

