Shivani Sabhlok Homework 3

500237896

1. Given:

N = 256, C= 64K, |Element| = 8, B = 128, S=1, LRU eviction Number of cache lines = $2^{16}/2^7 = 2^9 = 512$ Number of elements in each cache line = $2^7/2^3 = 2^4 = 16$ Inner loop analysis => analysis for the loop k

Array	Miss Rate	Access Stride
Α	1/16	1
В	1	N (=256)
С	0	0 (temporal locality)
	= 1.0625	

2. Given:

N = 256, C= 64K, |Element| = 8, B = 64, E = 4, LRU eviction Number of sets = $2^{16}/2^6.2^2 = 2^8 = 256$ Number of elements in each cache line = $2^6/2^3 = 2^3 = 8$ Inner loop analysis => analysis for the loop k

Array	Miss Rate	Access Stride
А	1/8	1
В	1	N (=256)
С	0	0 (temporal locality)
	= 1.125	

3. Given:

N = 256, C= 64K, |Element| = 8, B = 32, E = 2, LRU eviction Number of sets = $2^{16}/2^5.2^1 = 2^{10} = 1024$ Number of elements in each cache line = $2^5/2^3 = 2^2 = 4$ Inner loop analysis => analysis for the loop k

Array	Miss Rate	Access Stride
Α	1/4	1
В	1	N (=256)
С	0	0 (temporal locality)
	= 1.25	

4.

	A	В	C
	N	N	N
K	N/B	N	N
J	1	N/B	N/B
	N ² /B	N³/B	N³/B

5.

	A	В	C
K	N	N	N
	N	N	N
J	1	N/B	N/B
	N ²	N³/B	N³/B

6.

	A	В	C
J	N	N	N
K	N	N	N
I	N	1	N
	N ³	N ²	N ³

7.

	A	В	С
K	N	N	N
J	N	N/B	N
	N	1	N
	N³	N ² /B	N ³

8. Given:

@a[1024] = AAAA0000

@b[1024] = AAAA8000

@c[1024] = AAAB0000

for i = 0 to 1023 for j = 0 to 1023 for k = 0 to 1023 sum_prod += a[i] * b[j] + c[k] $C = 2^{11}, E = 2, B = 2^4$ $\Rightarrow S = 2^{11}/2.2^4 = 2^6 = 64$

a. Access Stride for each loop

	A	В	C
	1	1	1
J	0	1	1
K	0	0	1

Shivani Sabhlok

500237896

Homework 3

b. The overall hit rate will be ¾ or 75%. The block size is 16 whereas the element size is 4. Thus, each block will hold 4 elements. First will be a cold miss and subsequent 3 will be hits. The same holds for all the tree arrays. So hit rate is:

A:75% B:75% C:75%

c. Initially A[0..3] and B[0..3] will be in SO. C will start filling from set1.

After 251 iterations, C[0 .. 251] will be from set 0 to set 63.

There will be thrashing in set 0 for the next 4 iterations.

And C[256 .. 507] will occupy set 1 to set 63.

And so on.

In the last iteration A[1023], B[1023] and elements from C will be in cache.

Final cache contents:

Set #	Cache line 1	Cache line 2
S0	C[1020 1023]	C[764 767]
S1	C[512 515]	C[768 771]
S2	C[516 519]	C[772 775]
:		
:		
:		
S62	C[756 759]	C[1012 1015]
S63	A[1020 1023]	B[1020 1023]

9. Where N = 512, B = 4

a. This is one of the optimal ordering.

	A	В	C
	N	N	N
J	N	N	N/B
K	N/B	N	1
	N³/B	N ³	N ² /B

b. Showing miss analysis to justify above answer.

	A	В	C
	N	N	N
K	N	N	N
J	N	1	N/B
	N^3	N^2	N³/B

	A	В	C
K	N	N	N
J	N	N	N
	1	N/B	N
	N^2	N³/B	N^3

500237896

	A	В	C
K	N	N	N
	N	N/B	N
J	N	1	N/B
	N^3	N ² /B	N³/B

	A	В	C
J	N	N	N
l l	N	N	N
K	N/B	N	1
	N³/B	N ³	N ²

	A	В	C
J	N	N	N
K	N/B	Ν	N
ı	1	N/B	N
	N ² /B	N³/B	N^3