一、单项选择题(每小题 3 分,共 15 分) 1、设 A,B 为互斥事件,且 $P(A) > 0, P(B) > 0$,下面四个结论中,正确的是().
2、设随机变量 X 是服从参数为 $\frac{1}{5}$ 的指数分布,则 $P(X \ge 3 X \ge 1) = ($). A
A、 e^{-10} ; B、1; C、 $1-e^{-15}$; D、 e^{-15} 3、设一个袋子里放有 2 个白球,3 个蓝球以及 5 个红球。现有 10 位同学依次从中抽取 1 只球(不放回),则第 5 位同学抽到蓝球的概率是(). A
A, $\frac{3}{10}$; B, $\frac{1}{2}$; C, $\frac{1}{4}$; D, $\frac{3}{5}$
4、下列函数中,可以作为某个随机变量的分布函数是(). B
A, $F(x) = x$, $0 < x < 1$; B, $F(x) = \begin{cases} 0, & x < 0; \\ \sin x, & 0 \le x < \frac{\pi}{2}; \\ 1, & x \ge \frac{\pi}{2}. \end{cases}$
$C_{x} F(x) = \begin{cases} 0, & x < 0; \\ \tan x, & 0 \le x < \frac{\pi}{2}; \\ 1, & x \ge \frac{\pi}{2}. \end{cases}$ $D_{x} F(x) = \begin{cases} 0, & x < 0; \\ 2x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$
5、下列说法正确的是(). D
A、若 $P(A)=0$,则 A 为不可能事件;
B、若 A 与 B 互不相容,则 $P(AB) = P(A)P(B)$;
C 、 \overline{ABC} 表示事件 A 、 B 、 C 都不发生;
D、若X ~ U(0,1), 则P{X = 0.5} = 0. 二、填空题(每小题 3 分,共 15 分)
6、设 A 与 B 是两个相互独立随机事件,且 $P(A) = 0.5$, $P(B) = 0.4$,则 $P(A A \cup B) =$ 5/7
7、一射手对一目标独立地进行四次射击,若至少命中一次的概率为 <mark>255</mark> ,则该射手的命中率为 3/4
8、设随机变量 $X \sim N(-8, \sigma^2)$,且 $P(X > 0) = 0.3$,则 $P(X > -16) =$. 0.7
9、设随机变量 X 服从参数为 λ 的泊松分布,且 $P(X=1)=P(X=2)$,则 $P(X=3)=$ 4 $e^{-2}/3$

10、设随机变量 $X \sim U[-1,1]$ 且 $Y = X^2$,则 $P\left(Y > \frac{1}{9}\right) = _____$.

三、计算题(共70分)

11、(12分)某同学不慎将校园卡丢失,假定他将校园卡丢在宿舍、食堂及图书馆的概率分别为 0. 2, 0. 7, 0. 1, 而丢在宿舍、食堂及图书馆将被找到的概率分别为 1, 0. 8, 0. 5.

- (1) 求找到校园卡的概率;
- (2) 已知校园卡被找到,问校园卡被丢在食堂的概率是多少?

解:设 B_1 表示某同学将校园卡丢在宿舍, B_2 表示某同学将校园卡丢在食堂, B_3 表示某同学将校园卡丢在图书馆,A表示某同学找到校园卡.

则

$$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + P(B_3)P(A \mid B_3)$$

$$=0.2\times1+0.7\times0.8+0.1\times0.5$$

=0.81

$$P(B_2 \mid A) = \frac{P(B_2)P(A \mid B_2)}{P(A)} = \frac{56}{81} \approx 0.691$$

引进记号的错误: 1、记丢在食堂的事件为B。注意: "丢在食堂"就是事件! 它的事件是什么?

- 2、记丢在食堂的概率为B。把事件与其概率混为一谈了。
- 3、记丢在食堂的事件为 P (B)。把事件与其概率混为一谈了。
- 4、记丢在食堂的概率为 P(B)。注意:不同事件可能有一样的概率。这样的语言不能够定义什么是 B。
- 5、记丢在食堂为事件 B。这句话说的意思是事件"丢在食堂"与事件 B 相等。所以,它不能够定义什么是 B!

错误类型: 1、不定义记号或定义错误, 2、公式写错, 3、没有公式只有数字, 4、把条件概率与非条件概率混为一谈, 5、加减法计算错误, 6、文字表达错误。7、把 P(A)写成 PA。8、乱用"独立性"。

错误解注: 设 A₁表示某同学将校园卡丢在宿舍,A₂表示某同学将校园卡丢在食堂, A₃表示某同学将校园卡丢在图书馆, 设 B₁表示丢在宿舍找到校园卡, B₂表示在食堂找到校园卡, B₃表示在图书馆找到校园卡。A表示某同学找到校园卡.

则
$$P(A) = P(B_1)P(A_1) + P(B_2)P(A_2) + P(B_3)P(A_3) \dots$$

但是, 等式 $P(A) = P(A_1)P(B_1 | A_1) + P(A_2)P(B_2 | A_2) + P(A_3)P(B_3 | A_3)$ 是对的。

错误解法二: 设 B₁ 表示某同学将校园卡丢在宿舍, B₂ 表示某同学将校园卡丢在食堂, B₃ 表示某同学将校园卡丢在图书馆, A 表示某同学找到校园卡.

则
$$P(A) = P(A | B_1) + P(A | B_2) + P(A | B_3) \dots$$

错误解法三:不引进记号,不写公式。

错误解法四:

错误解法五: A. 校园卡丢在宿舍, B. 校园卡丢在食堂, C. 校园卡丢在图书馆。

P=PLA)+PLB)+P(c)=0.2+1+0.7x08+0.1x05

错误解法六:不管求什么事件的概率都写 p=.....

12、(15分)某电子元件的寿命X (单位:天)具有如下的密度函数

$$f(x) = \begin{cases} \frac{2}{(x+1)^3}, & x > 0\\ 0, & x \le 0. \end{cases}$$

- (1) 求该元件的寿命大于10天的概率;
- (2) 现有一大批该类电子元件,从中取出三件。已知这三件元件独立使用了 5 天后仍完好,求这 3 件中寿命大于 10 天的件数的概率分布律。

(1)
$$P(X > 10) = \int_{10}^{+\infty} \frac{2}{(x+1)^3} dx = \frac{1}{121}$$

(2)
$$P(X > 10 \mid X > 5) = \frac{P(X > 10)}{P(X > 5)} = \frac{\int_{10}^{+\infty} \frac{2}{(x+1)^3} dx}{\int_{5}^{+\infty} \frac{2}{(x+1)^3} dx} = \frac{36}{121}$$

设独立使用了 5 天后仍完好的 3 件元件中寿命大于 10 天的件数为 Y,则 36.

$$Y \sim b(3, \frac{36}{121})$$

13、(15分)设二维随机变量的(X,Y)的联合分布律为

XY	-2	0	1	2
-1	0.3	0.2	0	0.1
2	0.1	0.1	0.2	0

- (1) 试求X,Y的边缘分布律.
- (2) 试求 Y的分布函数.
- (3) 试求Z = |Y| 1的分布律.

解: (1)

X	-1	2
p	0.6	0.4

Y	-2	0	1	2	
p	0.4	0.3	0.2	0.1	

(2)
$$F(y) = \begin{cases} 0, & y < -2, \\ 0.4, & -2 \le y < 0, \\ 0.7, & 0 \le y < 1, \\ 0.9, & 1 \le y < 2, \\ 1, & y \ge 2. \end{cases}$$

(3)

Z	-1	0	1
p	0.3	0.2	0.5

14、(15分)设随机变量X的概率密度函数为

$$f(x) = \begin{cases} x, & 0 < x < 1, \\ a - x, & 1 \le x < 2, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

其中 α 为参数. (1) 试求 α 的值; (2) 试求 $Y = \ln X$ 的概率密度函数.

解: (1) 由
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
 得 $a = 2$

(2)
$$F_Y(y) = P\{Y \le y\} = P\{\ln X \le y\} = P\{X \le e^y\} = F_X(e^y), y \in R.$$
 (10 $\%$)

$$f_{Y}(y) = f(e^{y})e^{y} = \begin{cases} e^{2y}, & y < 0, \\ (2 - e^{y})e^{y}, & 0 \le y < \ln 2, \\ 0, & else. \end{cases}$$

15、(5分) 某地区 28 岁青年的薪水(单位以千元计) 服从分布 $N(8,2^2)$,在该地区任选一位 28 岁青年,调查他的薪水X,试求概率 $P(5 < X \le 10)$

解: 由题意 $\frac{X-8}{2} \sim N(0,1)$,

则
$$P(5 < X \le 10) = P(-\frac{3}{2} < \frac{X-8}{2} \le 1) = \Phi(1) - \Phi(-\frac{3}{2})$$

= $\Phi(1) + \Phi(\frac{3}{2}) - 1 = 0.7745$

16、(8分)设随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, & 0 < y < 2(1-x), \\ 0, & \text{ \(\) $\notin{\text{$x$}} \notin{\text{$x$}} \notin$$

试求它们的边缘概率密度函数.

解: 当 $x \le 0$ 或 $x \ge 1$ 时, f(x, y) = 0,则 $f_x(x) = 0$;

当
$$0 < x < 1$$
时, $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{-2x+2} 1 dy = -2x + 2$

$$\therefore f_X(x) = \begin{cases} -2x+2, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

当 $y \le 0$ 或 $y \ge 2$ 时,f(x, y) = 0,则 $f_y(y) = 0$;

当
$$0 < y < 2$$
时, $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{0}^{1-\frac{y}{2}} 1 dx = 1 - \frac{y}{2}$

$$\therefore f_{Y}(y) = \begin{cases} 1 - \frac{y}{2}, & 0 < y < 2, \\ 0, & 其他. \end{cases}$$

附表

X	0.5	0.75	1	1.25	1.5	1.75	2
Ф(х)	0.6915	0.7734	0.8413	0.8944	0.9332	0.9599	0.9772