Bivariate Random Variables: FSK

Sampath Govardhan

January 4, 2023

Contents

0.1Two Dimensions

1

0.1 Two Dimensions

Let

$$\mathbf{y} = A\mathbf{x} + \mathbf{n},\tag{0.1.0.1}$$

where

$$x \in (\mathbf{s}_0, \mathbf{s}_1), \mathbf{s}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (0.1.0.2)

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, n_1, n_2 \sim \mathcal{N}(0, 1). \tag{0.1.0.3}$$

0.1.1 Plot

$$\mathbf{y}|\mathbf{s}_0 \text{ and } \mathbf{y}|\mathbf{s}_1$$
 (0.1.1.1)

on the same graph using a scatter plot.

Solution: The scatter plot in Fig. 0.1.1.1 is generated using the below code,

codes/ch5_scatter.py

Figure 0.1.1.1: Scatter plot of $\mathbf{y}|\mathbf{s}_0$ and $\mathbf{y}|\mathbf{s}_1$

0.1.2 For the above problem, find a decision rule for detecting the symbols \mathbf{s}_0 and \mathbf{s}_1 .

Solution: Let $\mathbf{y} = \begin{pmatrix} y_1 & y_2 \end{pmatrix}^T$. Then the decision rule is

$$y_1 \underset{1}{\overset{0}{\gtrless}} y_2$$
 (0.1.2.1)

 $\mathbf{y}|\mathbf{s}_i$ is a random vector with each of its components normally distributed. The PDF of $\mathbf{y}|\mathbf{s}_i$ is given by,

$$p_{\mathbf{y}|\mathbf{s}_{i}}(\mathbf{y}) = \frac{1}{2\pi\sqrt{|\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{s}_{i})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{s}_{i})\right)$$
(0.1.2.2)

Where Σ is the covariance matrix. Substituting $\Sigma = \sigma \mathbf{I}$,

$$p_{\mathbf{y}|\mathbf{s}_{i}}(\mathbf{y}) = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2\sigma} (\mathbf{y} - \mathbf{s}_{i})^{\top} \mathbf{I} (\mathbf{y} - \mathbf{s}_{i})\right)$$

$$= \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2\sigma} (\mathbf{y} - \mathbf{s}_{i})^{\top} (\mathbf{y} - \mathbf{s}_{i})\right)$$

$$(0.1.2.4)$$

Assuming equiprobable symbols, use MAP rule in (??) to find optimum decision. Since there are only two possible symbols \mathbf{s}_0 and \mathbf{s}_1 , the optimal decision criterion is found by equating $p_{\mathbf{y}|\mathbf{s}_0}$ and $p_{\mathbf{y}|\mathbf{s}_1}$.

$$p_{\mathbf{y}|\mathbf{s}_0} = p_{\mathbf{y}|\mathbf{s}_1}$$

$$\implies \exp\left(-\frac{1}{2\sigma}\left(\mathbf{y} - \mathbf{s}_0\right)^{\top}\left(\mathbf{y} - \mathbf{s}_0\right)\right) = \\ \exp\left(-\frac{1}{2\sigma}\left(\mathbf{y} - \mathbf{s}_1\right)^{\top}\left(\mathbf{y} - \mathbf{s}_1\right)\right)$$

$$\Rightarrow (\mathbf{y} - \mathbf{s}_0)^{\top} (\mathbf{y} - \mathbf{s}_0) = (\mathbf{y} - \mathbf{s}_1)^{\top} (\mathbf{y} - \mathbf{s}_1)$$

$$\Rightarrow \mathbf{y}^{\top} \mathbf{y} - 2\mathbf{s}_0^{\top} \mathbf{y} + \mathbf{s}_0^{T} \mathbf{s}_0 = \mathbf{y}^{\top} \mathbf{y} - 2\mathbf{s}_1^{\top} \mathbf{y} + \mathbf{s}_1^{T} \mathbf{s}_1$$

$$\Rightarrow 2 (\mathbf{s}_1 - \mathbf{s}_0)^{\top} \mathbf{y} = \|\mathbf{s}_1\|^2 - \|\mathbf{s}_0\|^2$$

$$\Rightarrow (\mathbf{s}_1 - \mathbf{s}_0)^{\top} \mathbf{y} = 0$$

$$\Rightarrow \begin{pmatrix} -1 \\ 1 \end{pmatrix}^{\top} \mathbf{y} = 0$$

0.1.3 Plot

$$P_e = \Pr\left(\hat{\mathbf{x}} = \mathbf{s}_1 | \mathbf{x} = \mathbf{s}_0\right) \tag{0.1.3.1}$$

with respect to the SNR from 0 to 10 dB.

Solution: The blue dots in Fig. 0.1.4.1 are the P_e versus SNR plot. It is generated using the below code,

codes/ch5_snr.py

0.1.4 Obtain an expression for P_e . Verify this by comparing the theory and simulation plots on the same graph.

Solution: Using the decision rule from (0.1.2.1),

$$P_e = \Pr(\hat{\mathbf{x}} = \mathbf{s}_1 | \mathbf{x} = \mathbf{s}_0)$$

$$= \Pr(y_1 < y_2 | \mathbf{x} = \mathbf{s}_0)$$

$$= \Pr(A + n_1 < n_2)$$

$$= \Pr(n_1 - n_2 < -A)$$

$$(0.1.4.1)$$

Let $Z = n_1 - n_2$ where $n_1, n_2 \sim \mathcal{N}(0, \sigma^2)$. The PDF of X is given by,

$$p_{Z}(z) = p_{n_{1}}(n_{1}) * p_{-n_{2}}(n_{2})$$

$$= \frac{1}{2\pi\sigma^{2}} \int_{-\infty}^{\infty} e^{-\frac{t^{2}}{2\sigma^{2}}} e^{-\frac{(t-z)^{2}}{2\sigma^{2}}} dt$$

$$= \frac{1}{2\pi\sigma^{2}} \int_{-\infty}^{\infty} e^{-\frac{(z-t)^{2}+t^{2}}{2\sigma^{2}}} dt$$

$$= \frac{1}{2\pi\sigma^{2}} \int_{-\infty}^{\infty} e^{-\frac{(2t-z)^{2}+z^{2}}{2(\sqrt{2}\sigma)^{2}}} dt$$

$$= \frac{1}{2\pi\sigma^{2}} e^{-\frac{z^{2}}{2(\sqrt{2}\sigma)^{2}}} \int_{-\infty}^{\infty} e^{-\frac{(2t-z)^{2}}{2(\sqrt{2}\sigma)^{2}}} dt$$

$$= \frac{e^{-\frac{z^{2}}{2(\sqrt{2}\sigma)^{2}}}}{\sqrt{2\pi}\sqrt{2}\sigma} \frac{1}{\sqrt{2\pi}\sqrt{2}\sigma} \int_{-\infty}^{\infty} e^{-\frac{k^{2}}{2(\sqrt{2}\sigma)^{2}}} dk$$

$$= \frac{e^{-\frac{z^{2}}{2(\sqrt{2}\sigma)^{2}}}}{\sqrt{2\pi}\sqrt{2}\sigma}$$
(0.1.4.2)

From (0.1.4.2), $Z \sim \mathcal{N}(0, 2\sigma^2)$. Substituting $\sigma = 1$, $Z \sim \mathcal{N}(0, 2)$. (0.1.4.1) can be further simplified as,

$$\begin{aligned} P_e &= \Pr\left(Z < -A\right) \\ &= \Pr\left(Z > A\right) \\ &= Q\left(\frac{A}{\sqrt{2}}\right) \\ &= \frac{1}{\sqrt{2\pi}} \int_{\frac{A}{\sqrt{2}}}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx \end{aligned}$$

Fig. 0.1.4.1 compares the theoretical and simulation plots.

Figure 0.1.4.1: P_e versus SNR plot for FSK