Interferenza prodotta da sorgenti multiple

N sorgenti coerenti uguali emettono onde sferiche con lunghezza d'onda λ e sono poste a una distanza d l'una dall'altra, allineate lungo l'asse y. Determinare:

- (a) che relazione si deve avere tra d e λ per ottenere che la figura di interferenza abbia gli unici massimi principali a $\theta = 0$ e $\theta = \pi$ nell'ipotesi che le sorgenti emettano in fase;
- (b) che sfasamento si dovrebbe avere tra le sorgenti per far sì che tutti i massimi principali cadano sull'asse y nell'ipotesi $d = \frac{1}{2}\lambda$;
- (c) il numero e la posizione angolare dei massimi principali e dei nodi per 3 sorgenti con distanza $d=2\,\lambda$ che emettono in fase. Disegnare il diagramma polare dell'intensità.

Guida alla soluzione

Si veda Mazzoldi (terza Ed.) pag. 546 (il libro considera sorgenti di onde cilindriche, in questo esercizio consideriamo onde sferiche nel piano equatoriale delle sorgenti: il risultato è identico).

Se I_1 è l'intensità dell'onda prodotta da una singola sorgente, l'intensità dell'onda risultante dalla sovrapposizione delle N sorgenti, in funzione dell'angolo θ , è data da

$$I_N(\theta) = I_1 \left(\frac{\sin \frac{N\delta}{2}}{\sin \frac{\delta}{2}} \right)^2$$

dove δ è la differenza di fase, misurata nel punto di osservazione, tra le onde emesse da due sorgenti adiacenti.

I massimi principali si hanno in corrispondenza dei valori di θ che annullano il denominatore. In tali punti si annulla anche il numeratore, per cui si ha una forma indeterminata $\frac{0}{0}$ (discontinuità eliminabile) e l'intensità totale risulta $I_N = NI_1$.

I nodi si hanno in corrispondenza dei valori di θ che annullano solo il numeratore (non il denominatore).

Tra due nodi **non separati da un massimo principale** si trova un massimo secondario. La posizione esatta si ricava calcolando la derivata $\frac{dI_N}{d\theta}$ e studiandone gli zeri.

In pratica la posizione **approssimativa** dei massimi secondari si trova cercando i valori di θ per cui $|\sin N\delta/2| = 1$, negli intervalli tra due nodi non separati da un massimo principale.

(a) Se le sorgenti emettono in fase tra loro, δ è semplicemente dato dalla differenza di cammino

geometrico:

$$\delta = kd\sin\theta = 2\pi \frac{d}{\lambda}\sin\theta$$

La figura mostra, come esempio, il diagramma polare corrispondente a 3 sorgenti in fase a distanza $d=\lambda/2.$

(b)

Se tra ogni sorgente e la successiva c'è uno sfasamento ϕ si ha

$$\delta = kd\sin\theta + \phi = 2\pi\frac{d}{\lambda}\sin\theta + \phi$$

(c) Il diagramma polare è mostrato in figura.

