Sinais e Sistemas 1 - Atividade P3

Prof. Igor Peretta

Entrega: 10/mai/2018

1 Recursos computacionais

O curso terá como base o software multi-plataforma wxMaxima:

http://andrejv.github.io/wxmaxima/

Um tutorial em português:

http://maxima.sourceforge.net/docs/tutorial/pt/max.pdf

Outros softwares poderão compor os recursos do curso, mas serão anunciados a seu tempo.

2 Instruções

2.1 Constantes

As constantes que serão utilizadas nessa etapa avaliativa $(M_1, M_2, M_3 e M_4)$ tem relação direta com a sua matrícula. Para encontrar seus valores, utilize o seguinte procedimento:

- \bullet Sua matrícula tem o formato 00000 EEE
000, onde θ é um dígito e E um caractere alfabético.
- A constante M_1 é igual ao número representado pelos 3 primeiros dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_2 é igual ao número representado pelos 2 últimos dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_3 depende do curso no qual você está matriculado, de acordo com a seguinte tabela:

Curso	M_3
EAU	1
ECP	5
EEL	10
ETE	15
Outros	20

• A constante M_4 é igual ao número representado pelos 3 últimos dígitos de sua matrícula.

Considere o exemplo de uma matrícula 11112 ECP029. Logo, para a matrícula exemplo, $M_1=111,\ M_2=12,\ M_3=5$ e $M_4=29.$

2.2 Entrega da atividade

A entrega da presente atividade avaliativa será feita através de envio pelo Moodle, em local indicado.

3 Calcule usando o wxMaxima:

3.1 Operações com convoluções

3.1.1 Questão 1

Para:

- $x[n] = \{M_1 \mod 13, M_3, (-1) \cdot M_4, M_2\}$, onde $a \mod b$ é o resto da divisão de a por b;
- $h[n] = \{M_2, M_4, M_3\}$

Calcule o resultado y[n] da convolução discreta y[n] = x[n] * h[n].

3.1.2 Questão 2

Considere um sistema cuja resposta ao impulso é igual a

$$h(t) = M_4 t \exp(-M_1 * t)$$

- a) Calcule a saída y(t) do sistema quando a entrada for igual ao sinal $x(t) = M_2 \exp(-M_1 t) \cos(2\pi M_1 t) u(t)$. Considere u(t) como a função degrau.
- b) Gere o gráfico de y(t) em conjunto com x(t) e h(t). Identifique cada gráfico.