

# SIM8200EA-M2 Hardware Design

**5G Module** 

#### SIMCom Wireless Solutions Limited.

Building B, SIM Technology Building, No.633, Jinzhong Road
Changning District, Shanghai P.R.China
Tel: 86-21-31575100
support@SIMcom.com
www.SIMcom.com



| Document Title: | SIM8200EA-M2 Hardware Design |  |
|-----------------|------------------------------|--|
| Version:        | V1.03                        |  |
| Date:           | 2020-06-05                   |  |
| Status:         | Released                     |  |

#### **GENERAL NOTES**

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS TO SUPPORT THE APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED ON THE REQUIREMENTS SPECIFICALLY FROM THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, THE SYSTEM VALIDATION OF THE PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE.

#### COPYRIGHT

THIS DOCUMENT CONTAINS THE PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM LIMITED, COPYING OF THIS DOCUMENT, GIVING IT TO OTHERS, THE USING OR COMMUNICATION OF THE CONTENTS THEREOF ARE FORBIDDEN WITHOUT THE OFFICIAL AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF THE DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF GRANT OF A PATENT OR THE REGISTRATION OF A UTILITY MODEL OR DESIGN. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE.

#### **SIMCom Wireless Solutions Limited**

Building B, SIM Technology Building, No.633 Jinzhong Road, Changning District, Shanghai P.R.China

Tel: +86 21 31575100

Email: SIMcom@SIMcom.com

#### For more information, please visit:

https://www.SIMcom.com/download/list-863-en.html

#### For technical support, or to report documentation errors, please visit:

https://www.SIMcom.com/ask/ or email to: support@SIMcom.com

Copyright © 2020 SIMCom Wireless Solutions Limited All Rights Reserved.

www.simcom.com 2 / 71



## **Version History**

| Data       | Version | Description of change                    | Author                                   |
|------------|---------|------------------------------------------|------------------------------------------|
| 2019-06-27 | 1.00    | original version                         | Olivier.wu<br>Xutao.jiang<br>Cunbao.feng |
| 2019-09-25 | 1.01    | Modify the error                         | Olivier.wu                               |
| 2019-12-19 | 1.02    | Antenna interfaces update Modify table 3 | Yibo.zhong                               |
| 2020-06-05 | 1.03    | Modify the error Modify the format       | Yao.chen                                 |



www.simcom.com 3/71



### **Contents**

| Contents                               | 4  |
|----------------------------------------|----|
| Table Index                            | 6  |
| Figure Index                           | 8  |
| 1. Introduction                        | 9  |
| 1.1 Product Outline                    | 9  |
| 1.2 Hardware Block Diagram             | 10 |
| 1.3 Feature Overview                   | 11 |
| 2. Package Information                 | 13 |
| 2.1 Pin Assignment Overview            | 13 |
| 2.2 Pin Description                    | 14 |
| 2.3 Mechanical Dimensions              |    |
| 3. Interface Application               | 19 |
| 3.1 Power Supply                       | 19 |
| 3.1.1 Power Supply Design Guide        |    |
| 3.1.2 Recommended Power Supply Circuit |    |
| 3.1.3 Voltage Monitor                  | 22 |
| 3.2 Power On and Off Module            |    |
| 3.2.1 Power On                         | 23 |
| 3.2.2 Power Off                        |    |
| 3.3 Reset Function                     | 25 |
| 3.4 I2C Interface                      | 27 |
| 3.5 WoWWAN# <sup>*</sup>               | 28 |
| 3.6 USB Interface                      | 29 |
| 3.7 PCIe Interface                     | 31 |
| 3.8 (U)SIM Interface                   | 33 |
| 3.9 I2S Interface                      | 35 |
| 3.9.1 I2S Timing                       | 36 |
| 3.9.2 I2S Reference Circuit            | 37 |
| 3.10 DPR*                              | 39 |
| 3.11 CONFIG Pins                       | 40 |
| 3.12 LED1#*                            | 40 |
| 3.13 W_DISABLE1#                       | 41 |
| 3.14 W_DISABLE2# <sup>*</sup>          | 43 |
| 3.15 Antenna Control Interface*        | 44 |
| 4. Antenna Interfaces                  | 45 |
| 4.1 Antenna Definitions                |    |
| 4.1.1 3G/4G/5G Operating Frequency     | 47 |



| 4.1.2 GNSS Frequency                                 | 48 |
|------------------------------------------------------|----|
| 4.2 Antenna Installation                             | 48 |
| 4.2.1 Antenna Requirements                           | 48 |
| 4.2.2 RF Plug Recommendation                         | 50 |
| 5. Electrical Specifications                         | 52 |
| 5.1 Absolute Maximum Ratings                         | 52 |
| 5.2 Operating Conditions                             | 52 |
| 5.3 Operating Mode                                   | 53 |
| 5.3.1 Operating Mode Definition                      | 53 |
| 5.3.2 Sleep Mode                                     | 54 |
| 5.3.3 Minimum Functionality Mode and Flight Mode     | 54 |
| 5.4 Current Consumption                              |    |
| 5.5 RF Output Power                                  | 57 |
| 5.6 Conducted Receive Sensitivity                    | 58 |
| 5.7 Thermal Design                                   | 60 |
| 5.8 ESD                                              |    |
| 6. Appearance                                        | 62 |
| 6.1 Top and Bottom View of SIM8200EA-M2              |    |
| 6.2 Label Description Information                    |    |
| 7. Packaging                                         | 64 |
| 8. Appendix                                          | 66 |
| 8.1 Coding Schemes and Maximum Net Data Rates over A |    |
| 8.2 Related Documents                                |    |
| 8.3 Terms and Abbreviations                          | 69 |
| 8.4 Safety Caution                                   | 71 |



### **Table Index**

| Table 1: SIM8200EA-M2 frequency bands                                      | 9  |
|----------------------------------------------------------------------------|----|
| Table 2: Key features                                                      | 11 |
| Table 3: IO parameters definition                                          | 14 |
| Table 4: DC parameters definition                                          |    |
| Table 5: Pin description                                                   | 15 |
| Table 6: VBAT pins electrical characteristics                              | 19 |
| Table 7: Definition of VBAT and GND pins                                   |    |
| Table 8: Recommended D1 and D2 list                                        | 21 |
| Table 9: Definition of FULL_CARD_POWER_OFF# pin                            | 23 |
| Table 10: Power on timing and electrical characteristics                   | 24 |
| Table 11: Power off timing and electrical characteristics                  | 25 |
| Table 12: Definition of RESET# pin                                         |    |
| Table 13: RESET# pin electrical characteristics                            |    |
| Table 14: Definition of I2C interface                                      |    |
| Table 15: Definition of WoWWAN# pin                                        | 28 |
| Table 16: Definition of USB interface                                      | 30 |
| Table 17: USB interface recommended TVS diode list                         | 30 |
| Table 18: Definition of PCIe interface                                     |    |
| Table 19: PCIe interface recommended TVS diode list                        | 32 |
| Table 20: (U)SIM electrical characteristics in 1.8V mode ((U)SIM_PWR=1.8V) | 33 |
| Table 21: (U)SIM electrical characteristics in 3.0V mode ((U)SIM_PWR=3.0V) | 33 |
| Table 22: Definition of (U)SIM interface                                   | 34 |
| Table 23: Recommended TVS and (U)SIM socket list                           | 35 |
| Table 24: I2S format                                                       | 35 |
| Table 25: I2S timing parameters                                            | 36 |
| Table 26: Definition of I2S interface                                      | 37 |
| Table 27: The PCM interface is multiplexing with I2S interface             | 37 |
| Table 28: Definition of WoWWAN# pin                                        | 39 |
| Table 29: CONFIG pins state of the module                                  |    |
| Table 30: CONFIG interface definition                                      | 40 |
| Table 31: Definition of LED1# pin                                          | 41 |
| Table 32: LED1# pin status                                                 | 41 |
| Table 33: Definition of W_DISABLE1# pin                                    | 42 |
| Table 34: W_DISABLE1# pin status                                           | 42 |
| Table 35: Definition of W_DISABLE2# pin                                    | 43 |
| Table 36: W_DISABLE2# pin status                                           | 43 |
| Table 37: Definition of antenna control interface through GPIOs            | 44 |
| Table 38: Antenna port definitions                                         | 45 |
| Table 39: SIM8200EA-M2 frequency band and antenna ports mapping            |    |
| Table 40: The module operating frequency                                   | 47 |



| Table 41: GNSS frequency                                                          | 48 |
|-----------------------------------------------------------------------------------|----|
| Table 42: 3G/4G/5G/GNSS antennas                                                  |    |
| Table 43: GNSS antenna (for dedicated GNSS antenna only)*                         | 49 |
| Table 44: Electrical Specifications of MM4829-2702B/RA4/RB0                       | 50 |
| Table 45: Absolute maximum ratings                                                | 52 |
| Table 46: VBAT recommended operating ratings                                      | 52 |
| Table 47: 1.8V Digital I/O characteristics                                        |    |
| Table 48: Operating temperature                                                   | 53 |
| Table 49: Operating mode definition                                               | 53 |
| Table 50: Current consumption on VBAT pins (VBAT=3.8V)                            | 55 |
| Table 51: Conducted output power                                                  | 57 |
| Table 52: Conducted RF receiving sensitivity                                      | 58 |
| Table 53: The ESD performance measurement table (Temperature: 25℃, Humidity: 45%) | 61 |
| Table 54: Label description of the module information                             | 63 |
| Table 55: Tray size                                                               | 64 |
| Table 56: Small carton size                                                       | 65 |
| Table 57: Big carton size                                                         | 65 |
| Table 58: Coding schemes and maximum net data rates over air interface            | 66 |
| Table 59: Related documents                                                       |    |
| Table 60: Terms and abbreviations                                                 | 69 |
| Table 61: Safety caution                                                          | 71 |



### Figure Index

| Figure 1: Block diagram                                             | 10 |
|---------------------------------------------------------------------|----|
| Figure 2: Pin assignment                                            | 13 |
| Figure 3: Dimensions of the module (unit: mm)                       | 18 |
| Figure 4: VBAT voltage drop at the maximum power radio transmission | 19 |
| Figure 5: Power supply application circuit                          | 20 |
| Figure 6: Linear regulator reference circuit                        | 21 |
| Figure 7: Switching mode power supply reference circuit             | 22 |
| Figure 8: Reference power on/off circuit                            | 23 |
| Figure 9: Power on sequence                                         | 23 |
| Figure 10: Power off sequence                                       | 24 |
| Figure 11: Reference reset circuit                                  | 25 |
| Figure 12: The reset timing sequence of the module                  | 26 |
| Figure 13: I2C reference circuit                                    | 27 |
| Figure 14: WoWWAN# signal level at SMS and URC report               | 28 |
| Figure 15: WoWWAN# reference circuit                                | 28 |
| Figure 16: USB reference circuit                                    | 29 |
| Figure 17: PCIe interface reference circuit (EP Mode)               | 31 |
| Figure 18: (U)SIM interface reference circuit                       | 34 |
| Figure 19: I2S timing                                               | 36 |
| Figure 20: Audio codec reference circuit                            | 37 |
| Figure 21: LED1# reference circuit                                  | 40 |
| Figure 22: W_DISABLE1# pin reference circuit                        | 42 |
| Figure 23: W_DISABLE2# pin reference circuit                        | 43 |
| Figure 24: Antenna interfaces                                       | 45 |
| Figure 25: 3D view of MM4829-2702B/ RA4/ RBO                        | 50 |
| Figure 26: 3D view of MXHJD3HJ1000                                  | 51 |
| Figure 27: Thermal dissipation area on bottom side of the module    | 60 |
| Figure 28: Top and bottom view of the module                        | 62 |
| Figure 29: Label description of the module                          | 63 |
| Figure 30: Packaging procedures                                     | 64 |
| Figure 31: Tray view of the module                                  | 64 |
| Figure 32: Small carton view                                        | 65 |
| Figure 33: Big carton view                                          | 65 |



### 1. Introduction

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and test results of the SIM8200EA-M2 module. With the help of this document, customers can quickly understand SIM8200EA-M2 module.

Associated with other software application notes and user guides, customers can use SIM8200EA-M2 to design and develop mobile and laptop applications easily.

#### 1.1 Product Outline

SIM8200EA-M2 is a wireless communication module focusing on 5G market; it supports multi-air access technology including 5G NR (NSA/SA), LTE-FDD, LTE-TDD, and WCDMA, can meet the 3GPP R15 NR specification, and also integrates GNSS system including dual bands GPS, GLONASS, Beidou, Galileo and QZSS.

The module's supported radio frequency bands are shown in the following table.

Table 1: SIM8200EA-M2 frequency bands

| Standard          | Frequency Bands                                                                      |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| 5G NR             | n1/n2/n3/n5/n7/n8/n12/n20/n25/n28/n40/n41/n66/n71/n77/n78/n79 <sup>1</sup>           |  |  |  |  |
| LTE-FDD           | B1/B2/B3/B4/B5/B7/B8/B12/B13/B14/B17/B18/B19/B20/B25/B26/B28/B29/B30/<br>B32/B66/B71 |  |  |  |  |
| LTE-TDD           | B34/B38/B39/B40/B41/B42/B48                                                          |  |  |  |  |
| WCDMA             | B1/B2/B3/B4/B5/B8                                                                    |  |  |  |  |
| GNSS <sup>2</sup> | GPS L1+L5 dual bands/GLONASS/BeiDou/Galileo/QZSS                                     |  |  |  |  |

#### NOTE

- 1. Default design can support 5G n77/n78, n79 support need another hardware variant.
- 2. GNSS is optional.

www.simcom.com 9 / 71



With a physical dimension of 30.0mm\*52.0mm\*2.3mm, SIM8200EA-M2 can meet PCI Express M.2 specifications, and can meet almost any space requirement in users' applications.

With M.2 Type 3052, SIM8200EA-M2 owns rich interfaces, includes USB3.1, PCle3.0, (U)SIM card, digital audio(I2S or PCM), I2C, GPIOs, six antennas for 3G/4G/5G and GNSS.

With all the interfaces, SIM8200EA-M2 can also be utilized in the handheld terminal, machine-to-machine laptop application and especially the router.

#### 1.2 Hardware Block Diagram

The block diagram of SIM8200EA-M2 is shown in the following figure.



Figure 1: Block diagram

www.simcom.com



### 1.3 Feature Overview

Table 2: Key features

| Power supply  VBAT: 3.135~4.4V Typical: 3.8V  Power consumption <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power consumption  Transmit power  Data transmission throughput  Antenna |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Transmit power  Power Class 3 for WCDMA/LTE/5G NR Power Class 2 for n41/n78/n79  4Gbps (DL)/500Mbps(UL) for NR 2Gbps (DL)/200Mbps (UL) for LTE 42Mbps(DL)/5.76Mbps(UL) for HSPA+  Antenna  Six antennas for 3G/4G/5G and GNSS  GNSS engine: GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS  SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby Support SAT class 3 | Transmit power  Data transmission throughput  Antenna                    |  |
| Transmit power  Power Class 2 for n41/n78/n79  4Gbps (DL)/500Mbps(UL) for NR  2Gbps (DL)/200Mbps (UL) for LTE  42Mbps(DL)/5.76Mbps(UL) for HSPA+  Antenna  Six antennas for 3G/4G/5G and GNSS  GNSS engine: GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS  Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS storage: (U)SIM card or ME(default)  Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V  Include USIM1 and USIM2 interfaces  Support dual SIM single standby  Support SAT class 3                                 | Data transmission throughput  Antenna                                    |  |
| Data transmission throughput  4Gbps (DL)/500Mbps(UL) for NR 2Gbps (DL)/200Mbps (UL) for LTE 42Mbps(DL)/5.76Mbps(UL) for HSPA+  Antenna  Six antennas for 3G/4G/5G and GNSS  GNSS engine: GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby  Support SAT class 3                                                        | Data transmission throughput  Antenna                                    |  |
| Data transmission throughput  2Gbps (DL)/200Mbps (UL) for LTE 42Mbps(DL)/5.76Mbps(UL) for HSPA+  Antenna  Six antennas for 3G/4G/5G and GNSS  GNSS engine : GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby  Support SAT class 3                                                                                     | throughput Antenna                                                       |  |
| throughput  2Gbps (DL)/200Mbps (UL) for LTE 42Mbps(DL)/5.76Mbps(UL) for HSPA+  Six antennas for 3G/4G/5G and GNSS  GNSS engine : GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby  Support SAT class 3                                                                                                            | throughput Antenna                                                       |  |
| Antenna Six antennas for 3G/4G/5G and GNSS  GNSS engine: GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby Support SAT class 3                                                                                                                                                                                         | Antenna                                                                  |  |
| GNSS engine : GPS L1+L5/GLONASS/BeiDou/Galileo/QZSS Protocol: NMEA  MT, MO, CB, Text and PDU mode SMS storage: (U)SIM card or ME(default) Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby Support SAT class 3                                                                                                                                                                                                                                     |                                                                          |  |
| SMS  Protocol: NMEA  MT, MO, CB, Text and PDU mode  SMS storage: (U)SIM card or ME(default)  Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V  Include USIM1 and USIM2 interfaces  Support dual SIM single standby  Support SAT class 3                                                                                                                                                                                                                                                                               | GNSS                                                                     |  |
| SMS storage: (U)SIM card or ME(default)  Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V  Include USIM1 and USIM2 interfaces Support dual SIM single standby  Support SAT class 3                                                                                                                                                                                                                                                                                                                                    |                                                                          |  |
| Transmission of SMS alternatively over CS or PS  Support (U)SIM card:1.8V/3.0V  Include USIM1 and USIM2 interfaces Support dual SIM single standby  Support SAT class 3                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |  |
| Support (U)SIM card:1.8V/3.0V Include USIM1 and USIM2 interfaces Support dual SIM single standby Support SAT class 3                                                                                                                                                                                                                                                                                                                                                                                                                                | SMS                                                                      |  |
| (U)SIM interface Include USIM1 and USIM2 interfaces Support dual SIM single standby Support SAT class 3                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |  |
| Support dual SIM single standby Support SAT class 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |  |
| Support SAT class 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (U)SIM interface                                                         |  |
| Cupport O/Tr class o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |  |
| (U)SIM application toolkit Support USAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (U)SIM application toolkit                                               |  |
| Phonebook management Support phonebook types: DC,MC,RC,SM,ME,FD,ON,LD,EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phonehook management                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Honobook management                                                    |  |
| One I2S interface with dedicated main-clock for primary digital audio, the I2S also can be configured as PCM                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |  |
| MCLK frequency: 12.288MHz (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |  |
| Digital audio interface    WCDMA AMR-NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Digital audio interface                                                  |  |
| Volte AMR-WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Digital addio interiace                                                  |  |
| Echo Cancellation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |  |
| Noise Suppression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |  |
| One lane PCIe interface, support Gen 3 (Gen 1/2 compatible)  PCIe interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCIe interface                                                           |  |
| High communication data rate which up to 8Gbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |  |
| Meet I2C specification, version 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100: 4 (                                                                 |  |
| Data rate up to 400Kbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I2C interface                                                            |  |
| Support USB 3.1 Gen2 or USB 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |  |
| USB3.1: super speed, with data rate which up to 10Gbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | USB                                                                      |  |
| USB2.0: high speed interface, support USB operations at low-speed ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                                                      |  |
| full-speed, which refer to USB1.0 and USB1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |  |
| Firmware upgrade over USB interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Firmware upgrade                                                         |  |
| Physical characteristics Size: 30mm*52mm*2.3mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dhysical sharesteristics                                                 |  |

www.simcom.com 11/71



|                   | Weight: 8.30g                                               |
|-------------------|-------------------------------------------------------------|
|                   | Normal operation temperature: -30°C to +70°C 3GPP compliant |
| Temperature range | Extended operation temperature: -40°C to +85°C <sup>2</sup> |
|                   | Storage temperature: -40°C to +90°C                         |

#### NOTE

- 1. "\*" means under development.
- 2. The module is able to establish and maintain voice, data transmission, SMS and emergency call, etc. The performance may deviate slightly from the 3GPP specifications and will meet 3GPP specifications again when the temperature returns to normal operating temperature levels.

www.simcom.com 12 / 71



### 2. Package Information

#### 2.1 Pin Assignment Overview

SIM8200EA-M2 has 75 pins, including 8 notch pins. Customer design should match pins functions. The following figure is the pin assignment of the module.



Figure 2: Pin assignment

13 / 71 www.simcom.com



### 2.2 Pin Description

Table 3: IO parameters definition

| Pin Type | Description                         |
|----------|-------------------------------------|
| PI       | Power Input                         |
| PO       | Power Output                        |
| Al       | Analog Input                        |
| AIO      | Analog Input/Output                 |
| DIO      | Bidirectional Digital Input /Output |
| DI       | Digital Input                       |
| DO       | Digital Output                      |
| DOH      | Digital Output with High level      |
| DOL      | Digital Output with Low level       |
| PU       | Pull Up                             |
| PD       | Pull Down                           |
| OD       | Open Drain                          |
| OC       | Open Collector                      |

**Table 4: DC parameters definition** 

| Voltage<br>Domain | Paramete       | er                    | Min     | Тур  | Max      |
|-------------------|----------------|-----------------------|---------|------|----------|
|                   | VDD_P3=        | 1.8V                  |         |      |          |
| P3                | Vон            | High level output     | 1.35V   | -    | 1.8V     |
|                   | Vol            | Low level output      | OV      | -    | 0.45V    |
|                   | VIH            | High level input      | 1.26V   | 1.8V | 2.1V     |
|                   | VIL            | Low level input       | 0V      | -    | 0.54V    |
|                   | Rp             | Pull up/down resistor | 20K ohm | -    | 60K ohm  |
|                   | VDD_P4/P       | 25=1.8V               |         |      |          |
|                   | Vон            | High level output     | 1.44V   | -    | 1.8V     |
|                   | Vol            | Low level output      | 0V      | -    | 0.4V     |
|                   | VIH            | High level input      | 1.26V   | -    | 1.95V    |
|                   | VIL            | Low level input       | 0V      | -    | 0.36V    |
| P4/P5             | Rp             | Pull up/down resistor | 10K ohm | -    | 100K ohm |
|                   | VDD_P4/P5=3.0V |                       |         |      |          |
|                   | Vон            | High level output     | 2.4V    | -    | 3.0V     |
|                   | Vol            | Low level output      | 0V      | -    | 0.4V     |
|                   | VIH            | High level input      | 2.1V    | -    | 3.05V    |
|                   | VIL            | Low level input       | 0V      | -    | 0.6V     |
|                   | Rp             | Pull up/down          | 10K ohm |      | 100K ohm |

www.simcom.com 14/71



**Table 5: Pin description** 

| Pin Name                 | Pin<br>No.                                 | Electrical Description |       | Description                                                     | Comment                                                                |
|--------------------------|--------------------------------------------|------------------------|-------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| Power Supply             |                                            |                        |       |                                                                 |                                                                        |
| VBAT                     | 2,4,70,7<br>2,74                           |                        | PI    | Power supply Range: 3.135~4.4V Typical: 3.8V                    | These pins should be connected together to withstand sufficent current |
| GND                      | 3,5,11,2<br>7,33,39,<br>45,51,5<br>7,71,73 |                        |       | Ground                                                          |                                                                        |
| System Control           |                                            |                        | ı     |                                                                 |                                                                        |
| FULL_CARD_PO<br>WER_OFF# | 6                                          |                        | DI,PD | High level: the module power on Low level: the module power off | It's 3.3V tolerant but can<br>be driven by either 1.8V<br>or 3.3V GPIO |
| RESET#                   | 67                                         | P3                     | DI,PU | System reset control input Active low                           | RESET# has been pulled up to 1.8V internally                           |
| W_DISABLE1#              | 8                                          |                        | DI    | WWAN RF disable<br>Active low                                   | 3.3V tolerant but can be driven by either 1.8V or 3.3V GPIO            |
| W_DISABLE2# <sup>*</sup> | 26                                         |                        | DI    | GNSS disable<br>Active low                                      | 3.3V tolerant but can be driven by either 1.8V or 3.3V GPIO            |
| WoWWAN#                  | 23                                         |                        | OD    | Wake on the host<br>Active low                                  |                                                                        |
| Configuration Pin        | S                                          |                        |       |                                                                 |                                                                        |
| CONFIG_0                 | 21                                         |                        | GND   | Connected to ground internally                                  | The module is                                                          |
| CONFIG_1                 | 69                                         |                        | GND   | Connected to ground internally                                  | configured as the                                                      |
| CONFIG_2                 | 75                                         |                        | GND   | Connected to ground internally                                  | WWAN USB3.1 interface type                                             |
| CONFIG_3                 | 1                                          |                        | NC    | Not connected                                                   |                                                                        |
| USB2.0/USB3.1            |                                            |                        |       |                                                                 |                                                                        |
| USB_D+                   | 7                                          |                        | AIO   | Differential USB bi-directional data positive                   | Main communication interface                                           |
| USB_D-                   | 9                                          |                        | AIO   | Differential USB bi-directional data negative                   | USB3.1 data rate up to                                                 |
| USB3.1_Tx-               | 29                                         |                        | AO    | USB3.1 transmit data negative                                   | 10Gbps USB2.0 data rate up to                                          |
| USB3.1_Tx+               | 31                                         |                        | AO    | USB3.1 transmit data positive                                   | 480Mbps                                                                |
| USB3.1_Rx-               | 35                                         |                        | Al    | USB3.1 receive data negative                                    |                                                                        |
| USB3.1_Rx+               | 37                                         |                        | Al    | USB3.1 receive data positive                                    |                                                                        |
| PCIe Interface           |                                            |                        |       |                                                                 |                                                                        |
| PETn0                    | 41                                         |                        | AO    | PCIe transmit data                                              | Support PCIe Gen 3.0,                                                  |

www.simcom.com 15 / 71



|                                       |                       |    |             | negative                                                                                           | data rate up to 8Gbps.                                       |
|---------------------------------------|-----------------------|----|-------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| PETp0                                 | 43                    |    | AO          | PCIe transmit data positive                                                                        | If unused, please keep                                       |
| PERn0                                 | 47                    |    | Al          | PCIe receive data negative                                                                         | open                                                         |
| PERp0                                 | 49                    |    | Al          | PCIe receive data positive                                                                         |                                                              |
| REFCLKN                               | 53                    |    | AIO         | PCIe reference clock                                                                               |                                                              |
| INLI OLINIV                           | 33                    |    |             | negative PCIe reference clock                                                                      |                                                              |
| REFCLKP                               | 55                    |    | AIO         | positive                                                                                           |                                                              |
| PCIe Assistant In                     | terface               |    |             |                                                                                                    |                                                              |
| PERSTR#                               | 50                    |    | DI          | PCIe reset signal Active low PCIe reference clock                                                  | 3.3V voltage domain,<br>CLKREQ# and<br>PEWAKE# required pull |
| CLKREQ#                               | 52                    |    | DIO         | request signal Active low                                                                          | up external, Default as EP mode,                             |
| PEWAKE#                               | 54                    |    | DIO         | PCIe wake up control<br>Active low                                                                 | If unused, please keep open                                  |
| (U)SIM Interface                      |                       | i  |             |                                                                                                    |                                                              |
| (U)SIM1_PWR                           | 36                    |    | РО          | Power supply for (U)SIM1 card                                                                      |                                                              |
| (U)SIM1_DATA                          | 34                    | P4 | DIO         | (U)SIM1 card data, which<br>has been pulled up to<br>(U)SIM1_VDD via a 20KR<br>resistor internally | : 0                                                          |
| (U)SIM1_CLK                           | 32                    | P4 | DO          | (U)SIM1 clock signal                                                                               |                                                              |
| (U)SIM1_RESET                         | 30                    | P4 | DO          | (U)SIM1 reset control                                                                              | 1.8/3.0V voltage                                             |
| (U)SIM1_DET                           | 66                    | P3 | DI          | (U)SIM1 card detect, which has been pulled up to VDD_P3 via a 470KR resistor internally            | domain, (U)SIM interfaces should be protected                |
| (U)SIM2_PWR                           | 48                    |    | РО          | Power supply for (U)SIM2 card                                                                      | against ESD ,                                                |
| (U)SIM2_DATA                          | 42                    | P5 | DIO         | (U)SIM2 card data, which<br>has been pulled up to<br>(U)SIM2_VDD via a 20KR<br>resistor internally | If unused, please keep open                                  |
| (U)SIM2_CLK                           | 44                    | P5 | DO          | (U)SIM2 clock signal                                                                               |                                                              |
| (U)SIM2_RESET                         | 46                    | P5 | DO          | (U)SIM2 reset control                                                                              |                                                              |
| (U)SIM2_DET                           | 40                    | P3 | DI          | (U)SIM2 card detect, which has been pulled up to VDD_P3 via a 470KR resistor internally            |                                                              |
| Antenna Control I                     | nterface <sup>2</sup> |    | 1           |                                                                                                    |                                                              |
| ANTCTL0                               | 59                    | P3 | DO          | Antenna tuner control0                                                                             |                                                              |
| ANTCTL1                               | 61                    | P3 | DO          | Antenna tuner control1                                                                             | 1.8V voltage domain. If                                      |
| ANTCTL 2<br>(RFFE_SDATA) <sup>3</sup> | 58                    | P3 | DO<br>(DIO) | Antenna tuner control2<br>(Antenna tuner MIPI<br>DATA) <sup>3</sup>                                | unused, please keep open                                     |
| ANTCTL3<br>(RFFE_SCLK) <sup>3</sup>   | 56                    | P3 | DO          | Antenna tuner control3 (Antenna tuner MIPI CLK) <sup>3</sup>                                       |                                                              |
| I2S Interface                         |                       |    |             |                                                                                                    |                                                              |
| I2S_CLK                               | 20                    | P3 | DO          | I2S clock output                                                                                   | 1.8V voltage domain,                                         |

www.simcom.com 16 / 71



| I2S_RX                      | 22                                      | P3 | DI  | I2S data input                                                                                                            | also can be used as                                           |
|-----------------------------|-----------------------------------------|----|-----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| I2S_TX                      | 24                                      | P3 | DO  | I2S data output                                                                                                           | PCM interface, If unused, please keep                         |
| I2S_WA                      | 28                                      | P3 | DO  | I2S word alignment select (L/R)                                                                                           | open                                                          |
| I2S_MCLK                    | 60                                      | P3 | DO  | I2S master clock                                                                                                          |                                                               |
| I2C Interface               |                                         |    |     |                                                                                                                           |                                                               |
| I2C_SDA                     | 68                                      | P3 | DIO | I2C data signal                                                                                                           | 1.8V voltage domain,                                          |
| I2C_SCL                     | 38                                      | P3 | DO  | I2C clock signal                                                                                                          | Internal pulled up to<br>1.8V. If unused, please<br>keep open |
| Coex Interface <sup>2</sup> |                                         |    |     |                                                                                                                           |                                                               |
| COEX1<br>(COEX_RX*)         | 64                                      | P3 | DI  | Wireless coexistence of<br>WWAN and WiFi/BT,<br>based on BT-sig<br>coexistence protocol                                   | If unused, please keep                                        |
| COEX2<br>(COEX_TX*)         | 62                                      | P3 | DO  | Wireless coexistence of<br>WWAN and WiFi/BT,<br>based on BT-sig<br>coexistence protocol                                   | open                                                          |
| WL_TX_EN                    | 65                                      | P3 | DI  | WiFi 5G TX indicator                                                                                                      | If unused, please keep open                                   |
| LAA_TX_EN                   | 63                                      | P3 | DO  | n79 TX indicator                                                                                                          | If unused, please keep open                                   |
| Other Pins                  |                                         |    |     |                                                                                                                           |                                                               |
| LED1# <sup>*</sup>          | 10                                      | P3 | OD  | The module status indicator via LED devices Active low                                                                    |                                                               |
| DPR*                        | 25                                      | P3 | DI  | Dynamic power reduction H: Max transmitting power will not be reduced (default) L: Max transmitting power will be reduced |                                                               |
| Notch                       |                                         |    |     |                                                                                                                           |                                                               |
| Notch                       | 12, 13,<br>14, 15,<br>16, 17,<br>18, 19 |    |     | Notch                                                                                                                     |                                                               |

#### **NOTE**

- 1. "\*" means under development.
- 2. Please confirm with SIMCom for the detail design about antenna control and coex interface.
- 3. The RFFE signals are multiplexed with ANTCTL2 and ANTCTL3.

www.simcom.com 17/71



#### 2.3 Mechanical Dimensions

The following figure shows the mechanical dimensions of SIM8200EA-M2.



Figure 3: Dimensions of the module (unit: mm)

www.simcom.com



### 3. Interface Application

#### 3.1 Power Supply

The recommended power supply of SIM8200EA-M2 is 3.8V and the voltage ranges from 3.135 V to 4.4 V. Please make sure that the input voltage will never drop below 3.135V, otherwise the module will be powered off automatically. The module has 5 power pins and 11 ground pins. To ensure the module works properly, all pins should be connected.

Table 6: VBAT pins electrical characteristics

| Symbol             | Description                 | Min.  | Тур. | Max. | Unit |
|--------------------|-----------------------------|-------|------|------|------|
| VBAT               | Module power supply voltage | 3.135 | 3.8  | 4.4  | V    |
| I <sub>peak</sub>  | Peak current                | -     |      | 2.7  | А    |
| I <sub>sleep</sub> | Current in sleep mode       | -     | TBD  | 7    | mA   |
| leakage            | Current in power off mode   | -     | 80   | -    | uA   |

#### 3.1.1 Power Supply Design Guide

When the module transmits at the maximum power, the peak current can reach 2.7A, which results in voltage dropping on VBAT. To ensure that the voltage is no less than required 3.135V, the capacity of external power supply cannot be less than 3A. The following figure shows the maximum voltage drop during the maximum power radio transmission.



Figure 4: VBAT voltage drop at the maximum power radio transmission

To decrease the voltage dropping, make sure the VBAT voltage no less than 3.135V. The following figure shows the reference circuit of power supply for the VBAT.

www.simcom.com





Figure 5: Power supply application circuit

Table 7: Definition of VBAT and GND pins

| Pin Name | Pin No.                                | Electrical<br>Description | Description                                  | Comment                                                                |
|----------|----------------------------------------|---------------------------|----------------------------------------------|------------------------------------------------------------------------|
| VABT     | 2,4,70,72,<br>74                       | PI                        | Power supply Range: 3.135~4.4V Typical: 3.8V | These pins should be connected together to withstand sufficent current |
| GND      | 3,5,11,27,<br>33,39,45,51<br>,57,71,73 | 41                        | Ground                                       |                                                                        |

In this reference circuit, some multi-layer ceramic chip (MLCC) capacitors (0.1/1uF) with low ESR in high frequency band can be used for EMI suppression.

These capacitors should be put as close as possible to VBAT pins. Also, users should keep VBAT trace on circuit board wider than 3.0 mm to minimize PCB trace impedance.

#### NOTE

- 1. C5 is 220  $\mu$ F tantalum capacitor, ESR=0.7 $\Omega$ .
- 2. C1 and C2 are multi-layer ceramic chip (MLCC) capacitors from 0.1uF to 1uF with low ESR in high frequency band, which can be used for EMC performance.
- 3. D2 is used for ESD protection and D1 is used for surge protection.

www.simcom.com 20 / 71



Table 8: Recommended D1 and D2 list

| No. | Manufacturer | Part Number | VRWM | Package    | Ref. Designator |
|-----|--------------|-------------|------|------------|-----------------|
| 1   | JCET         | ESDBW5V0A1  | 5V   | DFN1006-2L | D2              |
| 2   | WAYON        | WS05DPF-B   | 5V   | DFN1006-2L |                 |
| 3   | LRC          | LEDZ5.1BT1G | 5.1V | SOD-523    | D1              |
| 4   | Prisemi      | PZ5D4V2H    | 5.1V | SOD-523    |                 |

Power supply layout guidelines:

- Both VBAT and return trace should be as short and wide as possible to minimize the voltage drop.
- The width of VBAT trace cannot be less than 3.0mm.
- These capacitors should be placed as closely as possible with VBAT pins.
- The VBAT trace should pass through TVS diode, zener diode and capacitors, and then VBAT pins. The capacitor of the small value should be placed close to VBAT pins.
- The PCB design must have a solid ground plane as the primary reference plane for most signals.

#### 3.1.2 Recommended Power Supply Circuit

It is recommended to use a switching mode power supply or a linear regulator power supply. Make sure it can provide the current up to 3A at least.

Figure6 shows the linear regulator reference circuit with 5V input and 3.8V output.

Figure 7 shows the switching mode power supply reference circuit with 5~12V input and 3.8V output.



Figure 6: Linear regulator reference circuit

#### **NOTE**

An extra minimum load of R3 is required, to ensure it work properly under light load in sleep mode and power off mode. For the details about minimum load, please refer to specification of MIC29502WU.

www.simcom.com 21 / 71





Figure 7: Switching mode power supply reference circuit

#### **NOTE**

- 1. In order to avoid damaging the module, please do not switch off the power supply when module works normally. Only after the module is shut down by FULL\_CARD\_POWER\_OFF# or AT command, then the power supply can be cut off.
- 2. It is suggested that customer's design should have the ability to switch off the power supply for module in abnormal state, and then switch on the power to restart the module.

#### 3.1.3 Voltage Monitor

To monitor the VBAT voltage, the AT command "AT+CBC" can be used.

#### **NOTE**

For the details about voltage monitor commands, please refer to <u>Document [1]</u> in the appendix.

#### 3.2 Power On and Off Module

Driving the FULL\_CARD\_POWER\_OFF# pin to a high level, SIM8200EA-M2 will be powered on. It can be driven by either 1.8V or 3.3V GPIO. The following figure shows the power on/off circuit.

www.simcom.com 22 / 71





Figure 8: Reference power on/off circuit

Table 9: Definition of FULL\_CARD\_POWER\_OFF# pin

| Pin Name                 | Pin No. | Electrical Description | Description                                                       | Comment                                                                   |
|--------------------------|---------|------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| FULL_CARD_<br>POWER_OFF# | 6       | DI,PD                  | High level: the module powers on Low level: the module powers off | It's 3.3V tolerant but<br>can be driven by<br>either 1.8V or 3.3V<br>GPIO |

#### 3.2.1 Power On

The power on sequence is shown in the following figure.



Figure 9: Power on sequence

www.simcom.com 23 / 71



Table 10: Power on timing and electrical characteristics

| Symbol          | Parameter                                                       | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------------------------------------------------|------|------|------|------|
| $T_{wait}$      | The waiting time from power supply available to power-on action | 100  | -    | -    | ms   |
| $T_{on(usb)}$   | The time from power-on action to USB port ready                 | -    | TBD  | -    | S    |
| V <sub>IH</sub> | Input high level voltage on FULL_CARD_POWER_OFF# pin            | 1.2  | 1.8  | 4.4  | V    |
| V <sub>IL</sub> | Input low level voltage on FULL_CARD_POWER_OFF# pin             | 0    | -    | 0.2  | V    |

#### 3.2.2 Power Off

The following methods can be used to power off the module.

- Method 1: Power off the module by holding the FULL\_CARD\_POWER\_OFF# pin to low level.
- Method 2: Power off module by AT command "AT+CPOF".

#### **NOTE**

If the temperature is outside the range of  $-30^{\circ}\text{C} \sim +70^{\circ}\text{C}$ , some warning will be reported via AT port. If the temperature is outside the range of  $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ , module will be powered off automatically. For the details about "AT+CPOF", please refer to <u>Document [1]</u> in the appendix.

Above normal power-off action will make the module disconnect from the network, allow the software to enter a safe state, and save key data before the module is powered off completely.

The power off sequence is shown in the following figure.



Figure 10: Power off sequence

www.simcom.com 24 / 71



Table 11: Power off timing and electrical characteristics

| Symbol         | Parameter                                                                                       | Tin  | Unit |      |       |
|----------------|-------------------------------------------------------------------------------------------------|------|------|------|-------|
| Syllibol       | Parameter                                                                                       | Min. | Тур. | Max. | Offic |
| $T_{Off(USB)}$ | The time from power-off action to USB port off                                                  | -    | TBD  | -    | S     |
| Т              | The time holding the FULL_CARD_POWER_OFF# pin to low level for the module into power off status |      | _    | _    | c     |
| Power off      |                                                                                                 |      |      |      | 3     |

#### 3.3 Reset Function

SIM8200EA-M2 can be reset by driving the RESET# pin down to a low level.

The RESET# signal has been internally pulled up to 1.8V, so it does not need pull up externally. Please refer to the following figure for the recommended reference circuit.



Figure 11: Reference reset circuit

Table 12: Definition of RESET# pin

| Pin Name | Pin No. | Electrical<br>Description | Description                              | Comment                                     |
|----------|---------|---------------------------|------------------------------------------|---------------------------------------------|
| RESET#   | 67      | DI,PU                     | System reset control input<br>Active low | RESET# has been pulled up to1.8V internally |

The reset timing sequence of the module is shown in the following figure.

www.simcom.com 25 / 71





Figure 12: The reset timing sequence of the module

Table 13: RESET# pin electrical characteristics

| Symbol             | Description                       | Min. | Тур. | Max. | Unit |
|--------------------|-----------------------------------|------|------|------|------|
| T <sub>reset</sub> | Low level hold time on RESET# pin | 200  | -    | 600  | ms   |
| V <sub>IH</sub>    | Input high level voltage          | 1.2  | -    | 1.9  | V    |
| V <sub>IL</sub>    | Input low level voltage           | 0    | -    | 0.4  | V    |

#### NOTE

Please ensure that there is no capacitance on RESET# pin.

www.simcom.com 26 / 71



#### 3.4 I2C Interface

SIM8200EA-M2 supports an I2C interface meet I2C specification version 5.0, with data rate up to 400kbps.

The following figure shows the I2C interface reference circuit.



Figure 13: I2C reference circuit

**Table 14: Definition of I2C interface** 

| Pin Name | Pin No. | Electrical Description | Description      | Comment                                                         |
|----------|---------|------------------------|------------------|-----------------------------------------------------------------|
| I2C_SDA  | 68      | DIO                    | I2C data signal  | 1.8V voltage                                                    |
| I2C_SCL  | 38      | DO                     | I2C clock signal | domain, Internal pulled up to 1.8V. If unused, please keep open |

www.simcom.com 27 / 71



#### 3.5 WoWWAN#<sup>\*</sup>

The WoWWAN# pin is a system wake-on signal which can be used as an interrupt signal for the host. Normally it keeps high level. And it will change to low level when certain conditions occur, such as receiving SMS, voice call (CSD, video) or URC reporting, the low level pulse time is 1 second.



Figure 14: WoWWAN# signal level at SMS and URC report

WoWWAN# recommended reference circuit is shown in the following figure.



Figure 15: WoWWAN# reference circuit

Table 15: Definition of WoWWAN# pin

| Pin Name | Pin No. | Electrical Description | Description                    | Comment |
|----------|---------|------------------------|--------------------------------|---------|
| WoWWAN#  | 23      | OD                     | Wake on the host<br>Active low |         |

#### **NOTE**

"\*" means under development.

www.simcom.com 28 / 71



#### 3.6 USB Interface

SIM8200EA-M2 supports one USB interface which complies with the USB3.1 and 2.0 specifications. Customers can choose USB3.1 or USB2.0 for their needs. USB 3.1 data rate up to 10Gbps.

The USB interface is used for AT command communication, data transmission, GNSS NMEA output, firmware upgrade and software debugging.

The module supports USB suspend and resume mechanism which can save power consumption. If there is no data transmission on the USB bus, the module will enter suspend mode automatically.

The following figure is the USB reference circuit.



Figure 16: USB reference circuit

www.simcom.com 29 / 71



Table 16: Definition of USB interface

| Pin Name   | Pin No. | Electrical Description | Description                                   | Comment                                                               |
|------------|---------|------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| USB_D+     | 7       | AIO                    | Differential USB bi-directional data positive |                                                                       |
| USB_D-     | 9       | AIO                    | Differential USB bi-directional data negative | USB3.1 data rate up<br>to 10Gbps<br>USB2.0 data rate up<br>to 480Mbps |
| USB3.1_Tx- | 29      | AO                     | USB3.1 transmit data negative                 |                                                                       |
| USB3.1_Tx+ | 31      | AO                     | USB3.1 transmit data positive                 |                                                                       |
| USB3.1_Rx- | 35      | AI                     | USB3.1 receive data negative                  |                                                                       |
| USB3.1_Rx+ | 37      | AI                     | USB3.1 receive data positive                  |                                                                       |

Table 17: USB interface recommended TVS diode list

| No. | Manufacturer | Part Number   | Package    |
|-----|--------------|---------------|------------|
| 1   | WILL         | ESD5302N-3/TR | DFN1006-3L |

#### USB HS D+/D- layout guidelines:

- Require differential trace impedance is  $90\pm10\% \Omega$ .
- The intra-lane length mismatch of the differential signal lanes is less than 1mm.
- Gap from other signals keeps 3xline width.
- External components should be placed near the USB connector.
- Trace routes away from other sensitive signals.
- The TVS diode should be placed close to the USB pins of M.2 connector.

#### USB SS TX/RX layout guidelines:

- Require differential trace impedance is  $90\pm10\% \Omega$ .
- The intra-lane length mismatch of the differential signal lanes is less than 700um (5ps).
- Gap from other signals keeps 4xline width.
- Gap between Rx-to-Tx keeps 4xline width.
- External components should be placed near the USB connector.
- Trace routes away from other sensitive signals.
- The TVS diode should be placed close to the USB pins of M.2 connector.

www.simcom.com 30 / 71



#### 3.7 PCIe Interface

SIM8200EA-M2 supports PCIe Gen3 one lane interfaces, which data rate up to 8Gbps, and can be used as EP or RC\* mode. CLKREQ# and PEWAKE# needs pull up to 3.3V by 100K resesitor in customers' design. The following figure is the PCIe reference circuit.



Figure 17: PCIe interface reference circuit (EP Mode)

#### NOTE

- 1. "\*" means under development.
- 2. The AC capacitors of AP\_PETn0 and AP\_PETp0 should be closed to AP.
- 3. The voltage domain of PCIe assistant signals is 3.3V.

www.simcom.com 31 / 71



**Table 18: Definition of PCIe interface** 

| Pin Name | Pin<br>No. | Electrical<br>Description | Functional Description                                        | Comment                                                |
|----------|------------|---------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| PETn0    | 41         | AO                        | PCIe transmit data negative                                   |                                                        |
| PETp0    | 43         | AO                        | PCIe transmit data positive                                   |                                                        |
| PERn0    | 47         | Al                        | PCIe receive data negative                                    |                                                        |
| PERp0    | 49         | AI                        | PCIe receive data positive                                    |                                                        |
| REFCLKN  | 53         | AIO                       | PCIe reference clock negative                                 |                                                        |
| REFCLKP  | 55         | AIO                       | PCIe reference clock positive                                 |                                                        |
| PERSTR#  | 50         | DI                        | PERSTR# is a functional reset to the Add-In module active low | 3.3V voltage<br>domain,<br>CLKREQ# and                 |
| CLKREQ#  | 52         | DIO                       | PCIe reference clock request signal active low                | PEWAKE# required pull up external, Default as EP mode. |
| PEWAKE#  | 54         | DIO                       | PCIe wake up signal active low                                | If unused, please keep open                            |

Table 19: PCle interface recommended TVS diode list

| No. | Manufacturer | Part Number   | Package    |
|-----|--------------|---------------|------------|
| 1   | WILL         | ESD5302N-3/TR | DFN1006-3L |

#### PCIe interface layout guidelines:

- Require differential trace impedance is 90±10% Ω.
- The intra-lane length mismatch of the differential signal lanes is less than 700um (5ps).
- Gap from other signals keeps 4xline width.
- Gap between Rx-to-Tx keeps 4xline width.
- Should be routed away from sensitive signals.
- The TVS diode should be placed close to the PCIe pins of M.2 connector.

www.simcom.com 32 / 71



### 3.8 (U)SIM Interface

SIM8200EA-M2 supports two (U)SIM cards but single standby. The (U)SIM2 can use e-(U)SIM\* card in the module or external (U)SIM card, the size is 2mm\*2mm\*1mm of the e-(U)SIM. Both (U)SIM1 and (U)SIM2 are dual-voltage 1.8V or 3.0V.

#### **NOTE**

- 1. "\*" means under development.
- 2. Customer choose the e-(U)SIM product in accordance with above size, SIMCom will provide the e-(U)SIM assemble into the module.

Table 20: (U)SIM electrical characteristics in 1.8V mode ((U)SIM\_PWR=1.8V)

| Symbol          | Parameter                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------|------|------|------|------|
| (U)SIM_PWR      | Power supply for (U)SIM card | 1.65 | 1.8  | 1.95 | V    |
| V <sub>IH</sub> | High-level input voltage     | 1.26 | -    | 1.95 | V    |
| V <sub>IL</sub> | Low-level input voltage      | 0    | -    | 0.36 | V    |
| V <sub>OH</sub> | High-level output voltage    | 1.44 | -    | 1.8  | V    |
| V <sub>OL</sub> | Low-level output voltage     | 0    | -    | 0.4  | V    |

Table 21: (U)SIM electrical characteristics in 3.0V mode ((U)SIM\_PWR=3.0V)

| Symbol          | Parameter                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------|------|------|------|------|
| (U)SIM_PWR      | Power supply for (U)SIM card | 2.7  | 3.0  | 3.05 | V    |
| V <sub>IH</sub> | High-level input voltage     | 2.1  | -    | 3.05 | V    |
| V <sub>IL</sub> | Low-level input voltage      | 0    | 0    | 0.6  | V    |
| V <sub>OH</sub> | High-level output voltage    | 2.4  | -    | 3.0  | V    |
| V <sub>OL</sub> | Low-level output voltage     | 0    | 0    | 0.4  | V    |

The module supports (U)SIM card hot-swap by the (U)SIM\_DET pin, which is a level trigger pin. The (U)SIM\_DET pin pulled up internally.

The following figure shows (U)SIM card reference circuit.

www.simcom.com 33 / 71



Figure 18: (U)SIM interface reference circuit

When the (U)SIM card is inserted, the (U)SIM\_DET will change from high to low level. The falling edge will indicate insertion of the (U)SIM card. When the (U)SIM card is removed, the (U)SIM\_DET will change from low to high level. This rising edge will indicate unplug the (U)SIM card.

The SIM card hot swap function needs to be enabled by AT. Please refer to the SIM8200 Series\_AT Command Manual for the setting of the detection level of (U)SIM\_DET pin.

Table 22: Definition of (U)SIM interface

| Pin Name               | Pin No.                                  | Electrical Description | Description                                                                                     | Comment                                       |
|------------------------|------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|
| (U)SIM1_PWR            | 36                                       | PO                     | Power supply for (U)SIM1 card                                                                   |                                               |
| (U)SIM 1_DATA          | 34                                       | DIO                    | (U)SIM1 card data, which has<br>been pulled up to (U)SIM1_VDD<br>via a 20KR resistor internally |                                               |
| (U)SIM 1_CLK           | 32                                       | DO                     | (U)SIM1 clock signal                                                                            |                                               |
| (U)SIM1_RESET          | 30                                       | DO                     | (U)SIM1 Reset control                                                                           | 1.8/3.0V voltage                              |
| (U)SIM 1_DET           | 66                                       | DI                     | (U)SIM1 card detect, which has<br>been pulled up to VDD_P3 via a<br>470KR resistor internally   | domain, all<br>(U)SIM interfaces<br>should be |
| (U)SIM2_PWR            | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                        | protected against                                                                               |                                               |
| (U)SIM2_DATA           | 42                                       | DIO                    | (U)SIM2 card data, which has<br>been pulled up to (U)SIM2_VDD<br>via a 20KR resistor internally | ESD. If unused, please keep open              |
| (U)SIM2_CLK 44 DO (U)S |                                          | (U)SIM2 clock signal   |                                                                                                 |                                               |
| (U)SIM2_RESET          | 46                                       | DO                     | (U)SIM2 Reset control                                                                           |                                               |
| (U)SIM2_DET            | 40                                       | DI                     | (U)SIM2 card detect, which has<br>been pulled up to VDD_P3 via a<br>470KR resistor internally   |                                               |

The following table shows recommended TVS of ESD protect and (U)SIM socket.

www.simcom.com 34 / 71



Table 23: Recommended TVS and (U)SIM socket list

| Name          | Manufacturer | Part Number     |
|---------------|--------------|-----------------|
| TVS           | ST           | ESDA6V1-5W6     |
| (U)SIM socket | Suntech      | XNT-0211BAAG06A |

If the (U)SIM card hot-swap function is not used, customers can keep the (U)SIM\_DET pin open.

The (U)SIM card layout guidelines:

- Make sure that the (U)SIM card holder should be far away from the antenna while in PCB layout.
- (U)SIM traces should keep away from RF lines, VBAT and high-speed signal lines.
- The traces should be as short as possible.
- Keep (U)SIM holder's GND connect to main ground directly.
- Shielding the (U)SIM card signal by ground.
- Recommended to place a 33pF ~ 1uF capacitor on (U)SIM\_PWR line and keep close to the holder.
- The rise/fall time of (U)SIM\_CLK should not be more than 40ns.
- The parasitic capacitance of TVS should not exceed 60pF and the TVS should be placed close to the (U)SIM socket.

#### 3.9 I2S Interface

SIM8200EA-M2 supports one I2S interface for external codec, which follows the requirements in the Phillips I2S bus specification.

Table 24: I2S format

| Characteristics       | Specification       |
|-----------------------|---------------------|
| Line interface format | Linear(Fixed)       |
| Data length           | 16bits(Fixed)       |
| I2S clock/sync source | Master mode(Fixed)  |
| I2S clock frequency   | 1.536MHz (Default)  |
| I2S MCLK frequency    | 12.288MHz (Default) |
| Data ordering         | MSB                 |

#### **NOTE**

For the details about I2S AT commands, please refer to document [1]. in the appendix.

www.simcom.com 35 / 71



#### **3.9.1 I2S Timing**

The module supports I2S sampling rate of 48 KHz and 32 bit coding signal (16 bit length), the timing sequence is shown in the following figure.



Figure 19: I2S timing

Table 25: I2S timing parameters

| Signal   | Parameter | Description                      | Min.   | Тур.   | Max.   | Unit |
|----------|-----------|----------------------------------|--------|--------|--------|------|
| 100 MOUL | Frequency | Working Frequency                | _      | 12.288 | 12.288 | MHz  |
|          | T         | Clock period                     | 81.380 | 81.380 | -      | ns   |
| I2S_MCLK | t(HC)     | Clock high                       | 0.45T  | -\\    | 0.55T  | ns   |
|          | t(LC)     | Clock low                        | 0.45T  | -      | 0.55T  | ns   |
|          | Frequency | Working Frequency                | 8      | 48     | 48     | KHz  |
| 100 0114 | Т         | Clock period                     | 20.83  | 20.83  | 125    | us   |
| I2S_CLK  | t(HC)     | Clock high                       | 0.45T  | _      | 0.55T  | ns   |
|          | t(LC)     | Clock low                        | 0.45T  | _      | 0.55T  | ns   |
| I2S_WA   | t(sr)     | DIN/DOUT and WA input setup time | 16.276 | _      | _      | ns   |
|          | t(hr)     | DIN/DOUT and WA input hold time  | 0      | _      | _      | ns   |
|          | t(dtr)    | DIN/DOUT and WA output delay     | _      | _      | 65.10  | ns   |
|          | t(htr)    | DIN/DOUT and WA output hold time | 0      | _      | _      | ns   |

www.simcom.com 36 / 71



#### 3.9.2 I2S Reference Circuit

The following figure is the external codec reference design circuit.



Figure 20: Audio codec reference circuit

Table 26: Definition of I2S interface

| Pin Name | Pin No. | Electrical Description | Description                     | Comment                     |
|----------|---------|------------------------|---------------------------------|-----------------------------|
| I2S_CLK  | 20      | DO                     | I2S clock output                | 1.8V voltage                |
| I2S_RX   | 22      | DI                     | I2S data input                  | domain, also can be used as |
| I2S_TX   | 24      | DO                     | I2S data output                 | PCM interface, If           |
| I2S_WA   | 28      | DO                     | I2S word alignment select (L/R) | unused, please<br>keep open |
| I2S_MCLK | 60      | DO                     | I2S master clock                | Roop open                   |

The PCM interface is multiplexing with I2S interface. The default audio interface of the module is I2S.

Table 27: The PCM interface is multiplexing with I2S interface

| Pin Name | PCM Interface |
|----------|---------------|
| I2S_RX   | PCM_DIN       |
| I2S_TX   | PCM_OUT       |
| I2S_WA   | PCM_SYNC      |
| I2S_CLK  | PCM_CLK       |
| I2S_MCLK | -             |

www.simcom.com 37 / 71



### Audio layout guidelines:

#### Analog input

- 0.2mm trace widths; 0.2mm spacing between other signals trace.
- Pseudo differential route for MIC.
- Isolate from noise sources, such as antenna, RF signals, SMPS, clocks, and other high speed signals.

### Analog output

- Isolate from noise sources such as antenna, RF signals, SMPS, clocks, and other high speed signals.
- Speaker output signal route as differential pair with 0.5mm trace widths.



www.simcom.com 38 / 71



## 3.10 DPR\*

DPR (Dynamic Power Reduction) signal is used for SAR (Specific Absorption Rate) requirements. The RF output power would reduce if this signal is triggered by sensor under some certain conditions, such as SAR sensor triggered, defined by customers.

User can activate this function with AT command.

Table 28: Definition of WoWWAN# pin

| Pin No. | Pin Name | Pin Status | Function                                             |
|---------|----------|------------|------------------------------------------------------|
|         |          | Low        | Max transmitting power will be reduced               |
| 25      | DPR      | High       | Max transmitting power will not be reduced (default) |
|         |          | Floating   | Max transmitting power will not be reduced           |

#### **NOTE**

"\*" means under development.

www.simcom.com 39 / 71



## 3.11 CONFIG Pins

These signals are provided to indicate its specific configuration that is WWAN-USB3.1 of SIM8200EA-M2.

Table 29: CONFIG pins state of the module

| Pin No. | Pin Name | Description                    |
|---------|----------|--------------------------------|
| 21      | CONFIG_0 | Connected to ground internally |
| 69      | CONFIG_1 | Connected to ground internally |
| 75      | CONFIG_2 | Connected to ground internally |
| 1       | CONFIG_3 | Not connected                  |

In the M.2 specifications, the CONFIG pins are defined as below.

Table 30: CONFIG interface definition

| CONFIG_0 | CONFIG _1 | CONFIG _2 | CONFIG _3 | Module Type and     | Comments       |
|----------|-----------|-----------|-----------|---------------------|----------------|
| (Pin 21) | (Pin 69)  | (Pin 75)  | (Pin 1)   | Main Host Interface | Comments       |
| GND      | GND       | GND       | NC        | WWAN – USB 3.1      | Vender defined |

### 3.12 LED1#\*

LED1# is open drain output and is used to allow SIM8200EA-M2 to provide network status via LED which will be provided by the host.



Figure 21: LED1# reference circuit

www.simcom.com 40 / 71



Table 31: Definition of LED1# pin

| Pin Name | Pin No. | Electrical<br>Description | Description                                            | Comments |
|----------|---------|---------------------------|--------------------------------------------------------|----------|
| LED1#    | 10      | OD                        | The module status indicator via LED devices Active low |          |

#### NOTE

- 1. "\*" means under development.
- 2. The value of the resistor R1 depends on the LED characteristics.

The timing parameters are shown in the following table.

Table 32: LED1# pin status

| LED1# Pin Status    | Module Status                                          |
|---------------------|--------------------------------------------------------|
| Always On           | Searching network; call connection(including 5G,VOLTE) |
| 100ms ON, 100ms OFF | Data transmit; 5G registered network                   |
| 200ms ON, 200ms OFF | Data transmit; 4G registered network                   |
| 800ms ON, 800ms OFF | Data transmit; 3G registered network                   |
| OFF                 | Power off ;Sleep mode                                  |

## 3.13 **W\_DISABLE1#**

The W\_DISABLE1# pin controls SIM8200EA-M2 to enter the flight mode. When the W\_DISABLE1# signal is pulled to low level, RF function would be disabled. On the otherwise the RF function would be active. Recommended reference circuit is shown in the following figure.

www.simcom.com 41 / 71





Figure 22: W\_DISABLE1# pin reference circuit

Table 33: Definition of W\_DISABLE1# pin

| Pin Name    | Pin No. | Electrical Description | Description                   | Comments                                                             |
|-------------|---------|------------------------|-------------------------------|----------------------------------------------------------------------|
| W_DISABLE1# | 8       | DI                     | WWAN RF disable<br>Active low | 3.3V tolerant but<br>can be driven by<br>either 1.8V or 3.3V<br>GPIO |

Table 34: W\_DISABLE1# pin status

| W_DISABLE1# Pin Status | Module Operation                                          |
|------------------------|-----------------------------------------------------------|
| Input low level        | Flight mode: RF is disabled                               |
| Input high level       | AT+CFUN=4: Flight mode AT+CFUN=1: RF is enabled (Default) |

www.simcom.com 42 / 71



## 3.14 W\_DISABLE2#\*

The W\_DISABLE2# pin controls SIM8200EA-M2 to disable the GNSS function. When the W\_DISABLE2# signal is pulled to low level, the GNSS function would be disabled.

Recommended reference circuit is shown in the following figure.



Figure 23: W\_DISABLE2# pin reference circuit

Table 35: Definition of W\_DISABLE2# pin

| Pin Name    | Pin No. | Electrical Description | Description                | Comments                                                    |
|-------------|---------|------------------------|----------------------------|-------------------------------------------------------------|
| W_DISABLE2# | 26      | DI                     | GNSS disable<br>Active low | 3.3V tolerant but can be driven by either 1.8V or 3.3V GPIO |

Table 36: W\_DISABLE2# pin status

| W_DISABLE2# Pin Status | Module Operation                     |
|------------------------|--------------------------------------|
| Input Low Level        | GNSS function is disabled            |
| lancit Hala Lacial     | AT+CGPS=0: GNSS function is disabled |
| Input High Level       | AT+CGPS=1: GNSS function is enabled  |

#### **NOTE**

"\*" means under development.

www.simcom.com 43 / 71



## 3.15 Antenna Control Interface\*

ANTCTL[0:3] and RFFE signals are used for tunable antenna control and should be routed to anappropriate antenna control circuitry.

The following table are the definitions for antenn control interfaces.

Table 37: Definition of antenna control interface through GPIOs

| Pin Name                              | Pin No. | Electrical<br>Description | Description                                                   | Comments                        |
|---------------------------------------|---------|---------------------------|---------------------------------------------------------------|---------------------------------|
| ANTCTL0                               | 59      | DO                        | Antenna tuner control0                                        |                                 |
| ANTCTL1                               | 61      | DO                        | Antenna tuner control1                                        | 1.8V voltage domain. If unused, |
| ANTCTL 2<br>(RFFE_SDATA) <sup>2</sup> | 58      | DO<br>(DIO)               | Antenna tuner control2 (Antenna tuner MIPI DATA) <sup>2</sup> | please keep open                |
| ANTCTL3<br>(RFFE_SCLK) <sup>2</sup>   | 56      | DO                        | Antenna tuner control3 (Antenna tuner MIPI CLK) <sup>2</sup>  |                                 |

### NOTE

- 1. "\*" means under development, for details please contact SIMCom support teams.
- 2. The RFFE signals are multiplexed with ANTCTL2 and ANTCTL3.

www.simcom.com 44 / 71



# 4. Antenna Interfaces

SIM8200EA-M2 provides six antenna interfaces, and all of them should be  $50\Omega$  impedance controlled for RF signal.

### 4.1 Antenna Definitions

Antenna interfaces are shown in the following figure.



Figure 24: Antenna interfaces

Table 38: Antenna port definitions

| Item   | ANT Function                        | Frequency Range     | Function Description                 |
|--------|-------------------------------------|---------------------|--------------------------------------|
| ANT0   | 3G/4G/5G LB/MHB TRX                 | 617MHz~960MHz       | 3G/4G/5G signal send and receive     |
| 711110 | 5G n41 UL/DL-MIMO1                  | 1710MHz~2690MHz     | oo, 40,000 digital borid and recoive |
| ANT1   | 4G UHB TRX                          | 1710MHz~2690MHz     | 4G/5G signal send and receive        |
| AINTI  | 5G n41/n77/n78/n79 <sup>1</sup> TRX | 3300MHz~5000MHz     | 40/30 signal send and receive        |
| ANT2   | 3G/4G/5G LB/MHB DIV                 | 617MHz~960MHz       | 3G/4G/5G signal receive              |
| ANIZ   | 5G n41 DL-MIMO2                     | 1710MHz~2690MHz     | 30/40/30 signal receive              |
|        | 3G/4G/5G MHB DL-MIMO1               | 1710MHz~2690MHz     |                                      |
| ANT3   | 4G UHB DIV                          | 3300MHz~5000MHz     | 3G/4G/5G signal receive              |
|        | 5G n41/n77/n78/n79 <sup>1</sup> DIV | 3300IVITZ~3000IVITZ |                                      |

www.simcom.com 45 / 71



| ANT4 | 3G/4G/5G MHB DL-MIMO2<br>4G UHB DL-MIMO1<br>5G n77/n78/n79 <sup>1</sup> DL-MIMO1 | 1710MHz~2690MHz<br>3300MHz~5000MHz | 3G/4G/5G signal receive   |
|------|----------------------------------------------------------------------------------|------------------------------------|---------------------------|
| ANT5 | 4G UHB DL-MIMO2<br>5G n77/n78/n79 <sup>1</sup> DL-MIMO2<br>GNSS                  | 3300MHz~5000MHz<br>1166MHz~1610MHz | 4G/5G/GNSS signal receive |

Table 39: SIM8200EA-M2 frequency band and antenna ports mapping

| FUNCTIONS |                              |                  |      | ANTE | NNAS |      |      |      |
|-----------|------------------------------|------------------|------|------|------|------|------|------|
| FUNCTIO   | No                           |                  | ANT0 | ANT1 | ANT2 | ANT3 | ANT4 | ANT5 |
| 3G/4G/5G  | LB/MHB                       | TRX <sup>2</sup> | ./   |      |      |      |      |      |
| 5G        | n41                          | UL/DL-MIMO1      | Y    |      |      |      |      |      |
| 4G        | UHB                          | TRX <sup>2</sup> |      | ./   |      |      |      |      |
| 5G        | n41/n77/n78/n79 <sup>1</sup> | TRX <sup>2</sup> |      | Y    |      |      |      |      |
| 3G/4G/5G  | LB/MHB                       | DIV              |      |      | -/   |      |      | 1    |
| 5G        | n41                          | DL-MIMO2         |      |      | Y    |      |      |      |
| 3G/4G/5G  | MHB                          | DL-MIMO1         |      |      |      |      |      |      |
| 4G        | UHB                          | DIV              |      |      |      | 1    |      |      |
| 5G        | n41/n77/n78/n79 <sup>1</sup> | DIV              |      |      |      |      |      |      |
| 3G/4G/5G  | MHB                          | DL-MIMO2         |      |      |      |      |      |      |
| 4G        | UHB                          | DL-MIMO1         |      |      |      |      | ✓    |      |
| 5G        | n77/n78/n79 <sup>1</sup>     | DL-MIMO1         |      |      |      |      |      |      |
| 4G        | UHB                          | DL-MIMO2         |      |      |      |      |      |      |
| 5G        | n77/n78/n79 <sup>1</sup>     | DL-MIMO2         |      |      |      |      |      | ✓    |
| GNSS      |                              |                  |      |      |      |      |      |      |

### NOTE

- 1. Default design can support 5G n77/n78, n79 support need another hardware variant.
- 2. For basic function, only the antennas responding to TRX are needed.

www.simcom.com 46 / 71



## 4.1.1 3G/4G/5G Operating Frequency

Table 40: The module operating frequency

| Frequency            | Uplink (UL)    | Downlink (DL) | Duplex      |
|----------------------|----------------|---------------|-------------|
| Bands<br>WCDMA B1    | 1920 ~1980MHz  | 2110 ~2170MHz | Mode<br>FDD |
|                      |                |               | FDD         |
| WCDMA B2             | 1850~1910MHz   | 1930~1990MHz  | FDD         |
| WCDMA B4             | 1710 ~1785MHz  | 1805 ~1880MHz | FDD         |
| WCDMA B5             | 1710 ~1755MHz  | 2110~ 2155MHz | FDD         |
| WCDMA B5             | 824~849MHz     | 869~894MHz    | FDD         |
| WCDMA B8             | 880 ~915MHz    | 925 ~960MHz   |             |
| LTE B1               | 1920 ~1980MHz  | 2110 ~2170MHz | FDD         |
| LTE B2               | 1850~1910MHz   | 1930~1990MHz  | FDD         |
| LTE B3               | 1710 ~1785 MHz | 1805 ~1880MHz | FDD         |
| LTE B4               | 1710~1755MHz   | 2110~2155MHz  | FDD         |
| LTE B5               | 824~849 MHz    | 869~894MHz    | FDD         |
| LTE B7               | 2500~2570MHz   | 2620~2690MHz  | FDD         |
| LTE B8               | 880 ~915MHz    | 925 ~960MHz   | FDD         |
| LTE B12              | 699~716MHz     | 729~746MHz    | FDD         |
| LTE B13              | 777~787MHz     | 746~756MHz    | FDD         |
| LTE B14              | 788~798MHz     | 758~768MHz    | FDD         |
| LTE B17              | 704~716MHz     | 734~746MHz    | FDD         |
| LTE B18              | 815~830MHz     | 860~875MHz    | FDD         |
| LTE B19              | 830~845MHz     | 875~890MHz    | FDD         |
| LTE B20              | 832~862MHz     | 791~ 821MHz   | FDD         |
| LTE B25              | 1850~1915MHz   | 1930~1995MHz  | FDD         |
| LTE B26              | 814~849MHz     | 859~894MHz    | FDD         |
| LTE B28              | 703~748MHz     | 758~803MHz    | FDD         |
| LTE B29 <sup>1</sup> | 1              | 717~728MHz    | SDL         |
| LTE B30              | 2305~2315MHz   | 2350~2360MHz  | FDD         |
| LTE B34              | 2010~2025MHz   | 2010~2025MHz  | TDD         |
| LTE B38              | 2570 ~2620MHz  | 2570 ~2620MHz | TDD         |
| LTE B39              | 1880~1920MHz   | 1880~1920MHz  | TDD         |
| LTE B40              | 2300 ~2400MHz  | 2300 ~2400MHz | TDD         |
| LTE B41              | 2496 ~2690MHz  | 2496 ~2690MHz | TDD         |
| LTE B42              | 3400~3600MHz   | 3400~3600MHz  | TDD         |
| LTE B48              | 3550~3700MHz   | 3550~3700MHz  | TDD         |
| LTE B66              | 1710~1780MHz   | 2110~2180MHz  | FDD         |
| LTE B71              | 663~698MHz     | 617~652MHz    | FDD         |
| 5G n1                | 1920 ~1980MHz  | 2110 ~2170MHz | FDD         |
| 5G n2                | 1850~1910MHz   | 1930~1990MHz  | FDD         |

www.simcom.com 47 / 71



| 5G n3               | 1710 ~1785MHz | 1805 ~1880MHz | FDD |
|---------------------|---------------|---------------|-----|
| 5G n5               | 824~849MHz    | 869~894MHz    | FDD |
| 5G n7               | 2500~2570MHz  | 2620~2690MHz  | FDD |
| 5G n8               | 880 ~915MHz   | 925 ~960MHz   | FDD |
| 5G n12              | 699~716MHz    | 729~746MHz    | FDD |
| 5G n20              | 832~862MHz    | 791~ 821MHz   | FDD |
| 5G n25              | 1850~1915MHz  | 1930~1995MHz  | FDD |
| 5G n28              | 703~748MHz    | 758~803MHz    | FDD |
| 5G n40              | 2300 ~2400MHz | 2300 ~2400MHz | TDD |
| 5G n41              | 2496 ~2690MHz | 2496 ~2690MHz | TDD |
| 5G n66              | 1710~1780MHz  | 2110~2180MHz  | FDD |
| 5G n77              | 3300~4200MHz  | 3300~4200MHz  | TDD |
| 5G n78              | 3300~3800MHz  | 3300~3800MHz  | TDD |
| 5G n79 <sup>2</sup> | 4400~5000MHz  | 4400~5000MHz  | TDD |

#### NOTE

- 1. LTE-FDD B29 supports Rx only for secondary component carrier.
- 2. Default design can support 5G n77/n78, n79 support need another hardware variant.

## 4.1.2 GNSS Frequency

The following table shows frequency specifications of GNSS antenna interface.

**Table 41: GNSS frequency** 

| Туре                | Frequency         |
|---------------------|-------------------|
| GPS L1/Galileo/QZSS | 1575.42±1.023MHz  |
| GPS L5              | 1176.45±10.23MHz  |
| GLONASS             | 1597.5~1605.8MHz  |
| BeiDou/Compass      | 1561.098±2.046MHz |

## 4.2 Antenna Installation

## 4.2.1 Antenna Requirements

The following table shows the requirements on 3G/4G/5G antennas and GNSS antenna.

www.simcom.com 48 / 71



Table 42: 3G/4G/5G/GNSS antennas

| Parameter                          | Requirement                   |
|------------------------------------|-------------------------------|
| Operating Frequency                | See Table 38 for each antenna |
| Direction                          | Omni Directional              |
| Gain                               | > -3dBi (Avg)                 |
| Impedance                          | 50 Ω                          |
| Efficiency                         | > 50 %                        |
| Max. Input Power                   | 50W                           |
| VSWR                               | < 2                           |
| Isolation                          | 20dB is preferred             |
| Cable Insertion Loss <1GHz         | <1dB                          |
| Cable Insertion Loss 1GHz~2.2GHz   | <1.5dB                        |
| Cable Insertion Loss 2.3GHz~2.7GHz | <2dB                          |
| Cable Insertion Loss 3.3GHz~6GHz   | <2.5dB                        |

Table 43: GNSS antenna (for dedicated GNSS antenna only)\*

| Parameter                       | Requirement                          |
|---------------------------------|--------------------------------------|
| Operating Frequency             | L1: 1559~1609MHZ<br>L5: 1166~1187MHz |
| Direction                       | Hemisphere, face to sky              |
| Antenna Gain                    | > 2 dB <sub>ic</sub>                 |
| Impedance                       | 50 Ω                                 |
| Efficiency                      | > 50 %                               |
| Max. Input Power                | 50W                                  |
| VSWR                            | < 2                                  |
| Polarization                    | RHCP or Linear                       |
| Noise Figure for Active Antenna | < 1.5                                |
| Total Gain for Active Antenna   | < 17 dB                              |
| Cable Insertion Loss            | <1.5dB                               |

## NOTE

www.simcom.com 49 / 71

<sup>\*:</sup> These recommendations are for dedicated GNSS antenna which the application need best of class GNSS tracking performance.



### 4.2.2 RF Plug Recommendation

SIM8200EA-M2 is mounted with Murata's receptacle RF connectors MM4829-2702B/RA4/RB0, which size is 2.0mm\*2.0mm\*0.6mm. The connector dimensions are shown as below.



Figure 25: 3D view of MM4829-2702B/ RA4/ RBO

The following table shows the RF connector's electrical specifications.

Table 44: Electrical Specifications of MM4829-2702B/RA4/RB0

| Item                                   | Specification             |
|----------------------------------------|---------------------------|
| Voltage Rating                         | 250V r.m.s. maximum       |
| Nominal Frequency Range                | DC to 6GHz                |
| Nominal Impedance                      | 50Ω                       |
| Temperature Rating                     | -40°C to +85°C            |
| Insulation Resistance                  | 500 MΩ minimum            |
| Withstanding Voltage                   | No evidence of breakdown  |
| Initial Contact Resistance             | Center contact 20.0mΩmax. |
| (without conductor resistance)         | Outer contact 20.0mΩmax.  |
|                                        | Meet the requirements of  |
| Voltage Standing Wave Ratio (V.S.W.R.) | 1.3max.(DC~3GHz)          |
|                                        | 1.45max.(3GHz~6GHz)       |

To get best RF performance, the RF plug connector should be designed to match the receptacle MM4829-2702B/RA4/RB0, and the parts come from Murata is the recommended.

The following is the mechanical information of the Murata's RF coaxial cable MXHJD3HJ1000 for reference.

www.simcom.com 50 / 71



For further technical support, the customer could visit the Murata's website (www.murata.com) or contact the local sales team.



Figure 26: 3D view of MXHJD3HJ1000

www.simcom.com 51 / 71



# 5. Electrical Specifications

## **5.1 Absolute Maximum Ratings**

Absolute maximum rating for digital and analog pins of module are listed in the following table.

Table 45: Absolute maximum ratings

| Parameter                                    | Min. | Тур. | Max. | Unit |
|----------------------------------------------|------|------|------|------|
| Voltage at VBAT pins                         | -    | -    | 4.8  | V    |
| Voltage at digital pins (GPIO,I2C,UART, I2S) | -    |      | 2.1  | V    |
| Voltage at digital pins ((U)SIM)             | -    | -    | 3.05 | V    |
| Voltage at FULL_CARD_POWER_OFF#              | -    | -    | 4.4  | V    |
| Voltage at RESET#                            | -    | -    | 1.9  | V    |

## 5.2 Operating Conditions

Table 46: VBAT recommended operating ratings

| Parameter       | Min.  | Тур. | Max. | Unit |
|-----------------|-------|------|------|------|
| Voltage at VBAT | 3.135 | 3.8  | 4.4  | V    |

Table 47: 1.8V Digital I/O characteristics

| Parameter        | Description                                                   | Min. | Тур. | Max. | Unit |
|------------------|---------------------------------------------------------------|------|------|------|------|
| V <sub>IH</sub>  | High-level input voltage                                      | 1.17 | -    | 2.1  | V    |
| V <sub>IL</sub>  | Low-level input voltage                                       | 0    | -    | 0.63 | V    |
| V <sub>OH</sub>  | High-level output voltage                                     | 1.35 | -    | 1.8  | V    |
| V <sub>OL</sub>  | Low-level output voltage                                      | 0    | -    | 0.45 | V    |
| Гоzн             | High-level, tri-state leakage current (no pull down resistor) | -    | -    | 1    | uA   |
| l <sub>OZL</sub> | Low-level, tri-state leakage current (no pull up resistor)    | -1   | -    | -    | uA   |

www.simcom.com 52 / 71



| I <sub>IH</sub> | Input high leakage current (no pull down resistor) | -  | - | 1 | uA |
|-----------------|----------------------------------------------------|----|---|---|----|
| I <sub>IL</sub> | Input low leakage current(no pull up resistor)     | -1 | - | - | uA |

**Table 48: Operating temperature** 

| Parameter                                    | Min. | Тур. | Max. | Unit                 |
|----------------------------------------------|------|------|------|----------------------|
| Normal operation temperature(3GPP compliant) | -30  | -    | 70   | $^{\circ}\mathbb{C}$ |
| Extended operation temperature*              | -40  | -    | 85   | $^{\circ}\mathbb{C}$ |
| Storage temperature                          | -40  | -    | 90   | $^{\circ}\mathbb{C}$ |

## **5.3 Operating Mode**

## **5.3.1 Operating Mode Definition**

The table below summarizes the various operating modes of SIM8200EA-M2.

Table 49: Operating mode definition

| Mode                       |                                     | Function                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | UMTS/LTE/5G<br>Sleep                | AT command "AT+CSCLK=1" can be used to set the module to a sleep mode. In this case, the current consumption of module will be reduced to a very low level and the module can still receive paging message and SMS.                                                                                                                            |
|                            | UMTS/LTE/5G<br>Idle                 | Software is active. Module is registered to the network, and ready to communicate.                                                                                                                                                                                                                                                             |
| Normal operation           | UMTS/LTE/5G<br>Talk                 | Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, and antennas.                                                                                                                                                             |
|                            | UMTS/LTE/5G<br>Standby              | Module is ready for data transmission, but no data is currently sent or received. In this case, power consumption depends on network settings.                                                                                                                                                                                                 |
|                            | UMTS/LTE/5G<br>Data<br>transmission | There is data transmission in progress. In this case, power consumption is related to network settings (e.g. power control level); uplink/downlink data rates, etc.                                                                                                                                                                            |
| Minimum functionality mode |                                     | AT command "AT+CFUN=0" can be used to set the module to a minimum functionality mode without removing the power supply. In this mode, the RF part of the module will not work and the (U)SIM card will not be accessible, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode. |
| Flight mode                |                                     | AT command "AT+CFUN=4" or pulling down the W_disable1# pin can                                                                                                                                                                                                                                                                                 |

www.simcom.com 53 / 71



|           | be used to set the module to flight mode without removing the power supply. In this case, the RF part of the module will not work, but the serial port and USB are still available. The power consumption is lower than normal mode.                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power off | Normally module will go into power off mode by sending the AT command "AT+CPOF" or pull down the FULL_CARD_POWER_OFF# pin. In this mode the power management unit shuts down the power supply, and software is not active. The serial port and USB are not available. |

#### 5.3.2 Sleep Mode

In sleep mode, the current consumption of the module will be reduced to a very low level.

Several hardware and software conditions must be satisfied in order to let module enter into sleep mode:

- 1. UART condition
- 2. USB condition
- 3. Software condition

#### **NOTE**

Before designing, pay attention to how to realize sleeping/waking function.

## 5.3.3 Minimum Functionality Mode and Flight Mode

Minimum functionality mode ceases a majority of functions of the module, in order to minimize the power consumption. This mode is set by the AT command which provides a choice of 3 different functionality levels.

- AT+CFUN=0: Minimum functionality
- AT+CFUN=1: Full functionality (Default)
- AT+CFUN=4: Flight mode

If module has been set to minimum functionality mode, the RF (U)SIM card functions will be closed while the serial port and USB are still available.

If module has been set to flight mode, the RF function will be closed while the (U)SIM card, the serial port and USB are still available.

When module is in minimum functionality or flight mode, it can return to full functionality by the AT command "AT+CFUN=1".

www.simcom.com 54 / 71



# **5.4 Current Consumption**

The current consumptions are listed in the table below.

Table 50: Current consumption on VBAT pins (VBAT=3.8V)

| GNSS                               |                                                        |  |  |
|------------------------------------|--------------------------------------------------------|--|--|
| GNSS supply current                | @ -140dBm,Tracking Typical:60mA                        |  |  |
| (AT+CFUN=0,with USB connection)    | e 140dBiii, Hadkiiig Typidai.com/t                     |  |  |
| UMTS Sleep/Idle Mode               |                                                        |  |  |
| WCDMA supply current               | Sleep mode @DRX=9 Typical: TBD                         |  |  |
| (GNSS off, without USB connection) | Idle mode @DRX=9 Typical: 34mA                         |  |  |
| LTE Sleep/Idle Mode                |                                                        |  |  |
| LTE FDD supply current             | Sleep mode Typical: TBD                                |  |  |
| (GNSS off, without USB connection) | Idle mode Typical: 38mA                                |  |  |
| LTE TDD supply current             | Sleep mode Typical: TBD                                |  |  |
| (GNSS off, without USB connection) | Idle mode Typical: 36mA                                |  |  |
| UMTS Talk                          |                                                        |  |  |
| WCDMA B1                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B2                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B3                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B4                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B5                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B8 @Power 23dBm Typical: TBD |                                                        |  |  |
| HSDPA Data                         |                                                        |  |  |
| WCDMA B1                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B2                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B3                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B4                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B5                           | @Power 23dBm Typical: TBD                              |  |  |
| WCDMA B8                           | @Power 23dBm Typical: TBD                              |  |  |
| LTE Data                           |                                                        |  |  |
|                                    | @5MHz 23dBm Typical :TBD                               |  |  |
| LTE-FDD B1                         | @10MHz 23dBm Typical :TBD                              |  |  |
|                                    | @20MHz 23dBm Typical :TBD  @5MHz 23dBm Typical :TBD    |  |  |
| LTE-FDD B2                         | @10MHz 23dBm Typical :TBD                              |  |  |
|                                    | @20MHz 23dBm Typical :TBD                              |  |  |
| LTE-FDD B3                         | @5MHz 23dBm Typical :TBD<br>@10MHz 23dBm Typical :TBD  |  |  |
| -                                  | @20MHz 23dBm Typical :TBD                              |  |  |
| LTE EDD D4                         | @5MHz 23dBm Typical :TBD                               |  |  |
| LTE-FDD B4                         | @10MHz 23dBm Typical :TBD<br>@20MHz 23dBm Typical :TBD |  |  |
| LTE-FDD B5                         | @5MHz 23dBm Typical :TBD                               |  |  |
| 2.2.0000                           | @10MHz 23dBm Typical :TBD                              |  |  |

www.simcom.com 55 / 71



|             | @5MHz                          | 23dBm          | Typical :TBD                 |
|-------------|--------------------------------|----------------|------------------------------|
| LTE-FDD B7  | @10MHz                         | 23dBm          | Typical :TBD                 |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
| LTE-FDD B8  | @5MHz                          | 23dBm          | Typical :TBD                 |
|             | @10MHz                         | 23dBm          | Typical :TBD                 |
| LTE-FDD B12 | @5MHz                          | 23dBm          | Typical :TBD                 |
|             | @10MHz                         | 23dBm          | Typical :TBD                 |
| LTE-FDD B13 | @5MHz                          | 23dBm          | Typical :TBD                 |
|             | @10MHz<br>@5MHz                | 23dBm<br>23dBm | Typical :TBD Typical :TBD    |
| LTE-FDD B14 | @10MHz                         |                | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical:TBD                  |
| LTE-FDD B17 | @10MHz                         |                | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-FDD B18 | @10MHz                         |                | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-FDD B19 | @10MHz                         |                | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-FDD B20 | @10MHz                         |                | Typical :TBD                 |
|             |                                | 23dBm          | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-FDD B25 | @10MHz                         | 23dBm          | Typical :TBD                 |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
| LTE-FDD B26 | @5MHz                          | 23dBm          | Typical :TBD                 |
| LIE-PUD B20 | @10MHz                         | 23dBm          | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-FDD B28 | @10MHz                         |                | Typical :TBD                 |
|             | @20MHz                         |                | Typical :TBD                 |
| LTE-FDD B30 | @5MHz                          | 23dBm          | Typical :TBD                 |
| 212122200   | @10MHz                         |                | Typical :TBD                 |
| LTE-TDD B34 | @5MHz                          | 23dBm          | Typical :TBD                 |
|             | @10MHz                         | 23dBm          | Typical :TBD                 |
| LTE TDD DOO | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-TDD B38 | @10MHz                         | 23dBm          | Typical :TBD                 |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
| LTE TDD B20 | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-TDD B39 | @10MHz<br>@20MHz               | 23dBm<br>23dBm | Typical :TBD<br>Typical :TBD |
|             | @5MHz                          | 23dBm          | Typical:TBD                  |
| LTE-TDD B40 | @10MHz                         | 23dBm          | Typical:TBD                  |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-TDD B41 | @10MHz                         |                | Typical :TBD                 |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-TDD B42 | @10MHz                         |                | Typical :TBD                 |
|             | @20MHz                         |                | Typical :TBD                 |
|             | @5MHz                          | 23dBm          | Typical :TBD                 |
| LTE-TDD B48 | @10MHz                         | 23dBm          | Typical :TBD                 |
|             | @20MHz                         | 23dBm          | Typical :TBD                 |
| NR Data     |                                |                |                              |
| 5G n1       | @Power 23dBm Typical: TBD      |                |                              |
|             |                                |                |                              |
| 5G n2       | G n2 @Power 23dBm Typical: TBD |                | oical: TBD                   |
| 5G n3       | @Power 23dBm Typical: TBD      |                |                              |
| 5G n5       | * .                            |                |                              |
|             | @Power 23dBm Typical: TBD      |                |                              |
| 5G n7       | @Power 23dBm Typical: TBD      |                |                              |
|             |                                |                |                              |

www.simcom.com 56 / 71



| 5G n8               | @Power 23dBm Typical: TBD |
|---------------------|---------------------------|
| 5G n12              | @Power 23dBm Typical: TBD |
| 5G n20              | @Power 23dBm Typical: TBD |
| 5G n25              | @Power 23dBm Typical: TBD |
| 5G n28              | @Power 23dBm Typical: TBD |
| 5G n40              | @Power 23dBm Typical: TBD |
| 5G n41              | @Power 23dBm Typical: TBD |
| 5G n66              | @Power 23dBm Typical: TBD |
| 5G n71              | @Power 23dBm Typical: TBD |
| 5G n77              | @Power 23dBm Typical: TBD |
| 5G n78              | @Power 23dBm Typical: TBD |
| 5G n79 <sup>1</sup> | @Power 23dBm Typical: TBD |
|                     |                           |

## NOTE

1. Default design can support 5G n77/n78, n79 support need another hardware variant.

## 5.5 RF Output Power

The RF output power is shown in the following table.

Table 51: Conducted output power

| Bands          | Max            | Min      |
|----------------|----------------|----------|
| WCDMA Bands    | 23dBm + 1/-3dB | < -50dBm |
| LTE-FDD Bands  | 23dBm + 2/-2dB | < -40dBm |
| LTE-TDD Bands  | 23dBm + 2/-2dB | < -40dBm |
| 5G Sub-6 Bands | 23dBm + 2/-2dB | < -40dBm |

www.simcom.com 57 / 71



# 5.6 Conducted Receive Sensitivity

The conducted RF receiving sensitivity is shown in the following table.

Table 52: Conducted RF receiving sensitivity

| Frequency | Primary<br>(Typ.) | Diversity<br>(Typ.) | SIMO1(Typ.) | SIMO2(Worst<br>Case) |
|-----------|-------------------|---------------------|-------------|----------------------|
| WCDMA B1  | TBD               | TBD                 | TBD         | -106.7dBm            |
| WCDMA B2  | TBD               | TBD                 | TBD         | -103.7dBm            |
| WCDMA B3  | TBD               | TBD                 | TBD         | -104.7dBm            |
| WCDMA B4  | TBD               | TBD                 | TBD         | -103.7dBm            |
| WCDMA B5  | TBD               | TBD                 | TBD         | -96.3dBm             |
| WCDMA B8  | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B1    | TBD               | TBD                 | TBD         | -94.3dBm             |
| LTE B2    | TBD               | TBD                 | TBD         | -94.3dBm             |
| LTE B3    | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B4    | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B5    | TBD               | TBD                 | TBD         | -94.8dBm             |
| LTE B7    | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B8    | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B12   | TBD               | TBD                 | TBD         | -94.3dBm             |
| LTE B13   | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B14   | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B17   | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B18   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B19   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B20   | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B25   | TBD               | TBD                 | TBD         | -92.8dBm             |
| LTE B26   | TBD               | TBD                 | TBD         | -93.8dBm             |
| LTE B28   | TBD               | TBD                 | TBD         | -94.8dBm             |
| LTE B29   | TBD               | TBD                 | TBD         | -93.3dBm             |
| LTE B30   | TBD               | TBD                 | TBD         | -95.3dBm             |
| LTE B34   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B38   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B39   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B40   | TBD               | TBD                 | TBD         | -96.3dBm             |
| LTE B41   | TBD               | TBD                 | TBD         | -94.3dBm             |
| LTE B42   | TBD               | TBD                 | TBD         | -95.0dBm             |
| LTE B48   | TBD               | TBD                 | TBD         | TBD                  |
| 5G n1     | TBD               | TBD                 | TBD         | -97.1dBm             |

www.simcom.com 58 / 71



| 5G n2               | TBD | TBD | TBD | -95.1dBm |
|---------------------|-----|-----|-----|----------|
| 5G n3               | TBD | TBD | TBD | -94.1dBm |
| 5G n5               | TBD | TBD | TBD | -95.1dBm |
| 5G n7               | TBD | TBD | TBD | -95.1dBm |
| 5G n8               | TBD | TBD | TBD | -94.1dBm |
| 5G n12              | TBD | TBD | TBD | -94.1dBm |
| 5G n20              | TBD | TBD | TBD | -94.1dBm |
| 5G n25              | TBD | TBD | TBD | -93.6dBm |
| 5G n28              | TBD | TBD | TBD | -95.6dBm |
| 5G n40              | TBD | TBD | TBD | -97.1dBm |
| 5G n41              | TBD | TBD | TBD | -95.1dBm |
| 5G n66              | TBD | TBD | TBD | -96.6dBm |
| 5G n71              | TBD | TBD | TBD | -94.3dBm |
| 5G n77              | TBD | TBD | TBD | -94.1dBm |
| 5G n78              | TBD | TBD | TBD | -94.1dBm |
| 5G n79 <sup>1</sup> | TBD | TBD | TBD | TBD      |

## **NOTE**

1. Default design can support 5G n77/n78, n79 support need another hardware variant.

www.simcom.com 59 / 71



## 5.7 Thermal Design

Make sure that the SIM8200EA-M2 can reach maximum work performance under extended temperature or extreme conditions for a long time, thermal dissipation design is very important.

It is strongly recommended to add a thermal pad or other thermally conductive material between the module and the main PCB. The thermal dissipation area on bottom side of the module and the dimensions is shown in the following figure. The dimensions are measured in mm.



Figure 27: Thermal dissipation area on bottom side of the module

There are some design rules to enhance thermal dissipation performance:

- Keep the module away from other heat sources such as battery, power, AP, etc.
- Make sure that the module mounting holes connect to the main PCB ground fully.
- Add enough through via on the main PCB. Via material is very important solid copper and stacked via is better.
- Make sure maximize airflow around the module.
- Recommend use heat dissipation material connect to the customers' device on the top side of the module to enhance the heat dissipation. Large heat dissipation area is better.
- Chose a high effective heat dissipation material is better such as heat pipe, graphite sheets.

www.simcom.com 60 / 71



## 5.8 **ESD**

SIM8200EA-M2 is sensitive to ESD in the process of storage, transporting, and assembling. When module is mounted on the users' mother board, the ESD components should be placed beside the connectors which human body may touch, such as (U)SIM card holder, SD card holder, audio jacks, switches, USB interface, etc. The following table shows the module ESD test performance.

Table 53: The ESD performance measurement table (Temperature: 25℃, Humidity: 45%)

| Part                 | Contact Discharge | Air Discharge |
|----------------------|-------------------|---------------|
| VBAT,GND             | +/- 4KV           | +/- 10KV      |
| Antenna              | +/- 5KV           | +/- 10KV      |
| FULL_CARD_POWER_OFF# | +/- 4KV           | +/- 8KV       |
| USB                  | +/- 4KV           | +/- 8KV       |
| RESET#               | +/- 3KV           | +/- 6KV       |
| (U)SIM               | +/- 3KV           | +/- 6KV       |
| Other PAD            | +/- 3KV           | +/- 6KV       |

#### **NOTE**

Test conditions: the external of the module has surge protection diodes and ESD protection diodes

www.simcom.com 61 / 71



# 6. Appearance

## 6.1 Top and Bottom View of SIM8200EA-M2



Figure 28: Top and bottom view of the module

## **6.2 Label Description Information**

www.simcom.com 62 / 71





Figure 29: Label description of the module

Table 54: Label description of the module information

| No. | Description                             |
|-----|-----------------------------------------|
| A   | LOGO                                    |
| В   | Project name                            |
| С   | Product code                            |
| D   | QR code                                 |
| Е   | Serial number                           |
| F   | International mobile equipment identity |

www.simcom.com 63 / 71



# 7. Packaging

SIM8200EA-M2 supports tray packaging. The packaging procedures are shown in the following figure.



Figure 30: Packaging procedures



Figure 31: Tray view of the module

Table 55: Tray size

| Length (±3mm) | Width (±3mm) | Number |
|---------------|--------------|--------|
| 245.0         | 165.0        | 10     |

www.simcom.com 64 / 71



Figure 32: Small carton view

Table 56: Small carton size

| Length (±10mm) | Width (±10mm) | Height (±10mm) | Number    |
|----------------|---------------|----------------|-----------|
| 270            | 180           | 120            | 10*20=200 |



Figure 33: Big carton view

Table 57: Big carton size

| Length (±10mm) | Width (±10mm) | Height (±10mm) | Number    |
|----------------|---------------|----------------|-----------|
| 380            | 280           | 280            | 200*4=800 |

www.simcom.com 65 / 71



# 8. Appendix

# 8.1 Coding Schemes and Maximum Net Data Rates over Air Interface

Table 58: Coding schemes and maximum net data rates over air interface

| HSDPA Device Category | Max Data Rate (Peak) | Modulation Type |
|-----------------------|----------------------|-----------------|
| Category 1            | 1.2Mbps              | 16QAM,QPSK      |
| Category 2            | 1.2Mbps              | 16QAM,QPSK      |
| Category 3            | 1.8Mbps              | 16QAM,QPSK      |
| Category 4            | 1.8Mbps              | 16QAM,QPSK      |
| Category 5            | 3.6Mbps              | 16QAM,QPSK      |
| Category 6            | 3.6Mbps              | 16QAM,QPSK      |
| Category 7            | 7.2Mbps              | 16QAM,QPSK      |
| Category 8            | 7.2Mbps              | 16QAM,QPSK      |
| Category 9            | 10.2Mbps             | 16QAM,QPSK      |
| Category 10           | 14.4Mbps             | 16QAM,QPSK      |
| Category 11           | 0.9Mbps              | QPSK            |
| Category 12           | 1.8Mbps              | QPSK            |
| Category 13           | 17.6Mbps             | 64QAM           |
| Category 14           | 21.1Mbps             | 64QAM           |
| Category 15           | 23.4Mbps             | 16QAM           |
| Category 16           | 28Mbps               | 16QAM           |
| Category 17           | 23.4Mbps             | 64QAM           |
| Category 18           | 28Mbps               | 64QAM           |
| Category 19           | 35.5Mbps             | 64QAM           |
| Category 20           | 42Mbps               | 64QAM           |
| Category 21           | 23.4Mbps             | 16QAM           |
| Category 22           | 28Mbps               | 16QAM           |
| Category 23           | 35.5Mbps             | 64QAM           |
| Category 24           | 42.2Mbps             | 64QAM           |
| HSUPA Device Category | Max Data Rate (Peak) | Modulation Type |
| Category 1            | 0.96Mbps             | QPSK            |
| Category 2            | 1.92Mbps             | QPSK            |
| Category 3            | 1.92Mbps             | QPSK            |
| Category 4            | 3.84Mbps             | QPSK            |
| Category 5            | 3.84Mbps             | QPSK            |
|                       |                      |                 |

www.simcom.com 66 / 71



| Category 6                         | 5.76Mbps             | QPSK             |
|------------------------------------|----------------------|------------------|
| LTE-FDD Device Category (Downlink) | Max Rata Rate (Peak) | Modulation Type  |
| Category 1                         | 10Mbps               | QPSK/16QAM/64QAM |
| Category 2                         | 50Mbps               | QPSK/16QAM/64QAM |
| Category 3                         | 100Mbps              | QPSK/16QAM/64QAM |
| Category 4                         | 150Mbps              | QPSK/16QAM/64QAM |
| Category 5                         | 300Mbps              | QPSK/16QAM/64QAM |
| Category 6                         | 300Mbps              | QPSK/16QAM/64QAM |
| LTE-FDD Device Category (Uplink)   | Max Data Rate (Peak) | Modulation Type  |
| Category 1                         | 5Mbps                | QPSK/16QAM       |
| Category 2                         | 25Mbps               | QPSK/16QAM       |
| Category 3                         | 50Mbps               | QPSK/16QAM       |
| Category 4                         | 50Mbps               | QPSK/16QAM       |
| Category 5                         | 75Mbps               | QPSK/16QAM/64QAM |
| Category 6                         | 50Mbps               | QPSK/16QAM       |

www.simcom.com 67 / 71



## 8.2 Related Documents

**Table 59: Related documents** 

| No.  | Title                                                                      | Description                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1]  | SIM8200 Series_AT Command<br>Manual                                        | AT Command Manual                                                                                                                                                                                                                                                                                         |
| [2]  | ITU-T Draft new recommendationV.25ter                                      | Serial asynchronous automatic dialing and control                                                                                                                                                                                                                                                         |
| [3]  | 3GPP TS 51.010-1                                                           | Digital cellular telecommunications system (Release 5);<br>Mobile Station (MS) conformance specification                                                                                                                                                                                                  |
| [4]  | 3GPP TS 38.401                                                             | NG-RAN; Architecture description                                                                                                                                                                                                                                                                          |
| [5]  | 3GPP TS 34.124                                                             | Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.                                                                                                                                                                                                                         |
| [6]  | 3GPP TS 34.121                                                             | Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.                                                                                                                                                                                                                         |
| [7]  | 3GPP TS 34.123-1                                                           | Technical Specification Group Radio Access Network;<br>Terminal conformance specification; Radio transmission and<br>reception (FDD)                                                                                                                                                                      |
| [8]  | 3GPP TS 34.123-3                                                           | User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.                                                                                                                                                                                                                              |
| [9]  | EN 301 908-02 V2.2.1                                                       | Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive |
| [10] | EN 301 489-24 V1.2.1                                                       | Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment                             |
| [11] | IEC/EN60950-1(2001)                                                        | Safety of information technology equipment (2000)                                                                                                                                                                                                                                                         |
| [12] | 3GPP TS 51.010-1                                                           | Digital cellular telecommunications system (Release 5);<br>Mobile Station (MS) conformance specification                                                                                                                                                                                                  |
| [13] | GCF-CC V3.23.1                                                             | Global Certification Forum - Certification Criteria                                                                                                                                                                                                                                                       |
| [14] | 2002/95/EC                                                                 | Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)                                                                                                                    |
| [15] | SIM8200EA-M2 Series_UART_Application Note_V1.xx                            | This document describes how to use UART interface of SIMCom modules.                                                                                                                                                                                                                                      |
| [16] | SIM8200EA-M2<br>Series_GPS_Application<br>Note V1.xx                       | GPS Application Note                                                                                                                                                                                                                                                                                      |
| [17] | 3GPP TS 38.101                                                             | NR radio transmission and reception technical specification                                                                                                                                                                                                                                               |
| [18] | SIM8200EA-M2 Antenna<br>design guidelines for diversity<br>receiver system | Antenna design guidelines for diversity receiver system                                                                                                                                                                                                                                                   |

www.simcom.com 68 / 71



## 8.3 Terms and Abbreviations

Table 60: Terms and abbreviations

| Abbreviation | Description                                                     |
|--------------|-----------------------------------------------------------------|
| ADC          | Analog-To-Digital Converter                                     |
| ARP          | Antenna Reference Point                                         |
| BER          | Bit Error Rate                                                  |
| BTS          | Base Transceiver Station                                        |
| CS           | Coding Scheme                                                   |
| CSD          | Circuit Switched Data                                           |
| CTS          | Clear To Send                                                   |
| DAC          | Digital-To-Analog Converter                                     |
| DRX          | Discontinuous Reception                                         |
| DSP          | Digital Signal Processor                                        |
| DTE          | Data Terminal Equipment (typically computer, terminal, printer) |
| DTR          | Data Terminal Ready                                             |
| DTX          | Discontinuous Transmission                                      |
| DPR          | Dynamic Power Reduction                                         |
| DIV          | The Diversity Receive signal                                    |
| EFR          | Enhanced Full Rate                                              |
| EMC          | Electromagnetic Compatibility                                   |
| ESD          | Electrostatic Discharge                                         |
| ETS          | European Telecommunication Standard                             |
| EVDO         | Evolution Data Only                                             |
| FCC          | Federal Communications Commission (U.S.)                        |
| FD           | (U)SIM fix dialing phonebook                                    |
| FDD          | Frequency Division Dual                                         |
| FDMA         | Frequency Division Multiple Access                              |
| FR           | Full Rate                                                       |
| GMSK         | Gaussian Minimum Shift Keying                                   |
| GNSS         | Global Navigation Satellite System                              |
| GPS          | Global Positioning System                                       |
| HR           | Half Rate                                                       |
| HSPA         | High Speed Packet Access                                        |
| HSIC         | High-Speed Inter-Chip                                           |
| I2C          | Inter-Integrated Circuit                                        |
| I2S          | Inter-IC Sound                                                  |
| IMEI         | International Mobile Equipment Identity                         |
| LTE          | Long Term Evolution                                             |
| LB           | Low Frequency Band                                              |
| LAA          | Limited Access Authorization                                    |

www.simcom.com 69 / 71



| MO     | Mobile Originated                                          |
|--------|------------------------------------------------------------|
| MSB    | Most Significant Bit                                       |
| MHB    | Middle And High Frequency Band                             |
| MT     | Mobile Terminated                                          |
| MIMO   | Multiple Input Multiple Output                             |
| NMEA   | National Marine Electronics Association                    |
| PAP    | Password Authentication Protocol                           |
| PBCCH  | Packet Switched Broadcast Control Channel                  |
| PCB    | Printed Circuit Board                                      |
| PCIe   | Peripheral Component Interface Express                     |
| RF     | Radio Frequency                                            |
| RMS    | Root Mean Square (value)                                   |
| RTC    | Real Time Clock                                            |
| SIM    | Subscriber Identification Module                           |
| SMS    | Short Message Service                                      |
| SPI    | Serial Peripheral Interface                                |
| SMPS   | Switched-Mode Power Supply                                 |
| TDD    | Time Division Dual                                         |
| TDMA   | Time Division Multiple Access                              |
| TE     | Terminal Equipment(also referred to as DTE)                |
| TX     | Transmit Direction                                         |
| TRX    | The Diversity Receive signal                               |
| VSWR   | Voltage Standing Wave Ratio                                |
| SM     | (U)SIM Phonebook                                           |
| SGMII  | Serial Gigabit Media Independent Interface                 |
| NC     | Not connect                                                |
| HSDPA  | High Speed Downlink Packet Access                          |
| HSUPA  | High Speed Uplink Packet Access                            |
| ZIF    | Zero Intermediate Frequency                                |
| WCDMA  | Wideband Code Division Multiple Access                     |
| VCTCXO | Voltage Control Temperature-Compensated Crystal Oscillator |
| (U)SIM | Universal Subscriber Identity Module                       |
| UHB    | Ultra High Frequency Band                                  |
| UMTS   | Universal Mobile Telecommunications System                 |
| UART   | Universal Asynchronous Receiver Transmitter                |

www.simcom.com 70 / 71



# 8.4 Safety Caution

Table 61: Safety caution

| Marks | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ♥     | When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy interference.  Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X     | switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local legal action, or both.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| sos   | Mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid (U)SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.  Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.  Also, some networks require that a valid (U)SIM card be properly inserted in the |
|       | cellular terminal or mobile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

www.simcom.com 71 / 71