Project AC-Lab

Author

Marcantonio Gagliardi

(mgagliardi1@sheffield.ac.uk)

Created Feb 2020 – Last Updated Dec 2021 Developed on MATLAB R2020b

What AC-Lab is About

AC-Lab stands for **Attachment-Caregiving Lab** and implements a **Dimensional Attachment Model** (DAM) about the interactions between attacher and caregiver in a room (the lab).

The description of the DAM can be found in the manuscript *Human Attachment as a Multi-Dimensional Control System: A computational Implementation*, currently submitted to *Frontiers in Psychology*. Reference theory can be found in *How Our Caregivers Shape Who We Are: The Seven Dimensions of Attachment at the Core of Personality*.

In the current version, the DAM represents a mother as a white dot and a child as a black dot. They interact according to one of three possible attachment dimensions:

- 1. Avoidance (av) (corresponding to caregiver's insensitivity) (associated color: yellow);
- Ambivalence (am) (corresponding to caregiver's unresponsiveness) (associated color: red);
- 3. Phobicity (ph) (corresponding to caregiver's hyper-protection) (associated color: green).

Nine dimensional levels are considered for simulation: 0.1, 0.2, ..., 0.9. During interaction characterized by a given dimension, when the mother feels the need to give care, she becomes a colored star, while, when the child feels the need to receive care, they become a colored dot.

Quick start

Here, some directions on how to run the program are provided. In particular, the instructions to generate the diagrams included in the DAM-Manuscript are provided. The program can perform numerous operations, of which more details can be found in the comments to the code.

First, set the folder 'AC_Lab_1.0' in the MATLAB path (with all subfolders). Launch commands from this directory in order to get files saved in folder 'OUTPUT PLOTS CURRENT'.

To plot 'The agents in the lab'

(standard mode, 100 iterations, every iteration displayed, no file saved):

for Avoidance 0.1: run 'aclab_go('av01',0,100,1,0,0,0,false);'
 for Avoidance 0.5: run 'aclab_go('av05',0,100,1,0,0,0,false);'
 for Avoidance 0.9: run 'aclab_go('av09',0,100,1,0,0,0,false);'

```
    for Ambivalence 0.1: run 'aclab_go('am01',0,100,1,0,0,0,false);'
    for Ambivalence 0.4: run 'aclab_go('am04',0,100,1,0,0,0,false);'
    for Ambivalence 0.9: run 'aclab_go('am09',0,100,1,0,0,0,false);'
    for Phobicity 0.1: run 'aclab_go('ph01',0,100,1,0,0,0,false);'
    for Phobicity 0.5: run 'aclab_go('ph05',0,100,1,0,0,0,false);'
    for Phobicity 0.9: run 'aclab_go('ph09',0,100,1,0,0,0,false);'
```

Parameters:

- 1. Parameter 1 is the dimension and level.
- 2. <u>Parameter 2</u> controls random numbers: 0 (default) to take numbers from saved mat file; 1 to take new generated numbers.
- 3. Parameter 3 is the number of iterations.
- 4. <u>Parameter 4</u> is the output print/plot step (if 1, output is generated at each iteration; if x, output is generated each x iterations).
- 5. <u>Parameters 5</u> is the output print/plot start iteration.
- 6. <u>Parameters 6</u> is the output print/plot end iteration.
- 7. Parameter 7 controls standard plotting: 1 (default) to plot below 'Behavioral patterns'; 0 to plot the lab; -1 not to plot.
- 8. <u>Parameter 8</u> to true makes each iteration to be saved in a jpg file (folder 'OUTPUT_PLOTS_CURRENT', starting from the AC_Lab_1.0 directory).

Given the dimension 'dimXX', to plot/see each of 100 iterations and save the files from 90 to 100, run 'aclab_go('dimXX',0,100,1,90,100,0,true);' (e.g. 'aclab_go('av09',0,100,1,90,100,0,true);').

To plot 'Behavioral patterns'

(standard mode, 1000 iterations):

```
for Avoidance 0.1:
                           run 'aclab_go('av01',0,1000);'
                           run 'aclab go('av05',0,1000);'

    for Avoidance 0.5:

 for Avoidance 0.9:

                           run 'aclab_go('av09',0,1000);'
• for Ambivalence 0.1:
                           run 'aclab go('am01',0,1000);'
• for Ambivalence 0.4:
                           run 'aclab_go('am04',0,1000);'
   for Ambivalence 0.9:
                           run 'aclab go('am09',0,1000);'
                           run 'aclab go('ph01',0,1000);'
• for Phobicity 0.1:
                           run 'aclab go('ph05',0,1000);'
• for Phobicity 0.5:
• for Phobicity 0.9:
                           run 'aclab go('ph09',0,1000);'
```

To plot 'Mean values and trends':

for Avoidance: run 'plot_reports(1,0,0)'
 for Ambivalence: run 'plot_reports(0,1,0)'
 for Phobicity: run 'plot_reports(0,0,1)'

To plot 'Simulated vs expected dynamics':

for Avoidance: run 'plot_DYNAMICS_targets(1,0,0)'
 for Ambivalence: run 'plot_DYNAMICS_targets(0,1,0)'
 for Phobicity: run 'plot_DYNAMICS_targets(0,0,1)'

Program Structure

Files are divided into folders as follows:

- 1. MAIN FILES: main function
 - a. aclab_go.mat: Main function, containing primary loop.
 - b. aclab_go_set.mat: Setting of all main parameters.
 - c. aclab_play_agents.mat: Main functions for the action of the agents.
 - d. set stats.mat: Setting of all global variables for keeping track of simulations.
 - e. plot_stats.mat: Main plotting function (containing the screen printout and lab plotting).
- 2. **@caregiver**: Class for the caregiver agent.
- 3. @child: Class for the child agent.
- 4. @iwm: Class for the Internal Working Model (IWM). It models properties and methods for the stored attachment dimensions and caregiving features.
- 5. @lab: Class for the lab (environmental properties and methods).
- 6. **m-files**: auxiliary files, made to modularize code and simplify organization.
- 7. **plot_reports**: Additional files for plotting results.
- **8. OUTPUT_PLOTS_CURRENT**: Contains files created in each simulation.
- **9. OUTPUT_PLOTS_stored**: Contains stored files and movies for the most avoidant, ambivalent, and phobic cases. It includes a copy of the DAM-Manuscript plots.