1. Set up an integral to compute the flux of $\underline{F} = yz\underline{i} + xy\underline{j} + xy\underline{k}$ through S where S is oriented upward and is the part of the surface $z = \cos x + \sin 2y$ above the triangle in the xy-plane with vertices (0,0), (0,5), (5,0).

Do not integrate.

2. Find the flux of $\underline{F} = e^{y^2z^2}\underline{i} + (\tan(0.001x^2z^2) + y^2)\underline{j} + (\ln(1+x^2y^2) + z^2)\underline{k}$ out the surface of the closed box $0 \le x \le 5, 0 \le y \le 4, 0 \le z \le 3$.

3. Consider a solid region W between a sphere, S_1 , of radius 2 and a sphere, S_2 , of radius 5. (This region is shaped like the flesh of a cantaloupe or a peach, and excludes the seed part in the center). Let S_1 and S_2 both be oriented inward.

Provide an equation that relates $\int_{S_1} \underline{F} \cdot d\underline{S}, \int_{S_2} \underline{F} \cdot d\underline{S}, \int_W \nabla \cdot \underline{F} \ dV$.