Inferência Bayesiana Lista 1 de Exercícios

Prof. Bruno Santos

- 1. Suponha que os eventos A e B sejam condicionalmente independentes dado C, que é definido como $A \perp B \mid C$. Mostre que isso implica $A \perp B^C \mid C$, $A^C \perp B \mid C$, $A^C \perp B \mid C$, em que A^C indica o evento complementar de A. Encontre um exemplo em que $A \perp B \mid C$ é verdade, porém $A \perp B \mid C^C$ não é.
- 2. Considere o modelo amostral

$$\mathcal{F} = \{ f(x_1, x_2 | \theta_1, \theta_2) = \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{1 - x_1 - x_2} \}$$

com $x_1, x_2 = 0, 1, 0 \leqslant x_1 + x_2 \leqslant 1$, e o espaço paramétrico dado por

$$\Theta = \{(\theta_1, \theta_2) \in (0, 1) \times (0, 1) : 0 \le \theta_1 + \theta_2 \le 1\},\$$

na qual está definida a densidade a priori $h(\theta_1, \theta_2) = 2$.

- a) Calcule a probabilidade a priori de $\theta_1 < \theta_2$.
- b) Recalcule a probabilidade de $\theta_1 < \theta_2$ mediante a informação de que se obteve a informação ($x_1 = 1, x_2 = 0$).
- 3. Sejam X_1 e X_2 duas variáveis aleatórias independentes com distribuição exponencial de média 1 e considere o acontecimento $A = \{X_1 = X_2\}$. Mostre que a distribuição de X_1 condicional em A depende de como A é expresso, sendo
 - i) Ga(1,2) se $A = \{Z = 0\}, Z = X_1 X_2$.
 - ii) Ga(2,2) se $A = \{Z = 1\}, Z = X_2/X_1$.
- 4. No contexto da inferência sobre um parâmetro θ , mostre que a distribuição a posteriori de θ só depende dos dados observados, X_1, \ldots, X_n a partir de estatísticas suficientes.
- 5. Considere o modelo amostral

$$\mathcal{F} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\},\$$

com ambos parâmetros desconhecidos. Encontre a distribuição a posteriori de $\theta=(\mu,\sigma^2)$ quando consideramos a família de distribuições a priori conjugada Normal-Gama Inversa para θ .

6. Considere a perda linear por partes:

$$L(\theta,d) = \alpha(\theta-d)I_{(d,\infty)} + b(d-\theta)I_{(-\infty,d)}$$

Verifique que o estimador de Bayes de θ é o quantil de ordem a/(a+b) da distribuição a posteriori. Verifique também que no caso particular em que a=b o estimador de Bayes coincide com a mediana a posteriori.

1

7. Seja X_1, \ldots, X_n a.a. da $N(\theta, 1)$. Assuma priori N(a, b) com a e b conhecidos para θ . Considere a perda Linex

$$L(\Delta) = b \{ e^{a\Delta} - a\Delta - 1 \}$$

com $\Delta = d - \theta$, $\alpha \neq 0$ e b > 0. (Zellner, JASA, 1986)

- a) Encontre o estimador de Bayes e o risco de Bayes com relação à perda acima.
- b) Encontre os riscos de \bar{X} e do estimador de Bayes com respeito à perda acima.
- 8. Suponha que vamos amostrar 100 individuos de uma população (de tamanho muito maior que 100) e perguntar para cada pessoa amostrada se ela é a favor ou não da política pública Z. Seja $Y_i = 1$ se a i-ésima pessoa na amostra é a favor, $Y_i = 0$ caso contrário.
 - a) Assuma que Y_1, \ldots, Y_{100} são, condicional em θ , variáveis aleatórias i.i.d. com esperança θ . Escreva a distribuição conjunta dessas variáveis, $P(Y_1 = y_1, \ldots, Y_{100} = y_{100}|\theta)$. Escreva também a distribuição de $P(\sum_{i=1}^n Y_i = y|\theta)$.
 - b) Por um instante, suponha que você acredita que $\theta \in \{0.0, 0.1, \dots, 0.9, 1.0\}$. Dado que os resultados da amostra foram dados por $\sum_{i=1}^{100} Y_i = 57$, calcule $P(\sum_{i=1}^{100} Y_i = 57|\theta)$ para esses 11 valores de θ e faça um gráfico com essas probabilidades como função de θ .
 - c) Agora suponha a princípio que você não tem nenhuma informação a priori para acreditar em um valor de θ mais do que em outro, logo

$$P(\theta = 0.0) = P(\theta = 0.1) = \cdots P(\theta = 0.9) = P(\theta = 1.0).$$

Use o Teorema de Bayes para calcular $P(\theta | \sum_{i=1}^{100} Y_i = 57)$ para cada valor θ . Faça um gráfico dessa distribuição a posteriori como função de θ .

- d) Agora suponha que θ possa assumir qualquer valor no intervalo [0,1]. Usando uma distribuição a priori uniforme para θ , tal que $p(\theta) = 1$ faça um gráfico da densidade $p(\theta) \times P(\sum_{i=1}^{n} Y_i = 57|\theta)$ como função de θ .
- e) Conforme discutido em sala de aula, a distribuição a posteriori de θ de θ é uma distribuição Beta(1+57, 1+100-57). Faça um gráfico da densidade a posteriori como função de θ . Discuta a relação entre todos os gráficos feitos nesse exercício.
- 9. Um laboratório de câncer está estudando a taxa de surgimentos de novos tumores em duas estirpes de ratos, A e B. Eles tem dados de contagem de tumores para 10 ratos da estirpe A e 13 da estirpe B. O tipo A de ratos já são bem estudados e informações de outros laboratórios sugerem que o tipo A tem contagem de tumores que são aproximadamente distribuídos pela Poisson com média igual a 12. Taxas de contagem de tumores para os ratos B são desconhecidas, mas o tipo B de ratos são relacionados ao tipo A. O número de contagem de tumores para as duas amostras são

$$y_A = \{12, 9, 12, 14, 13, 13, 15, 8, 15, 6\};$$

 $y_B = \{11, 11, 10, 9, 9, 8, 7, 10, 6, 8, 8, 9, 7\};$

a) Encontre as distribuições a posteriori, médias e variâncias e intervalos de credibilidade baseado em quantis com 95% de cobertura para θ_A e θ_B , assumindo uma distribuição amostral Poisson para cada grupo e as seguintes distribuições a priori

$$\theta_A \sim \text{Gama}(120, 10), \quad \theta_B \sim \text{Gama}(12, 10), \quad p(\theta_A, \theta_B) = p(\theta_A)p(\theta_B).$$

- b) Calcule e faça um gráfico da esperança a posteriori de θ_B sob distribuição a priori $\theta_B \sim \text{Gama}(12 \times n_0, n_0)$ para cada valor de $n_0 \in \{1, 2, \dots, 50\}$. Explique quais tipos de crenças a priori sobre θ_B seriam necessárias para que os valores esperados a posteriori de θ_B se aproximassem dos valores esperados a posteriori de θ_A .
- c) O conhecimento sobre a população de ratos do tipo A deveria nos dizer alguma coisa sobre a população de ratos do tipo B? Discuta se faz sentido ou não ter $p(\theta_A, \theta_B) = p(\theta_A)p(\theta_B)$.
- 10. Estime a probabilidade de reincidência (θ) de crime entre adolescentes baseado em um estudo, em que n=43 individuos foram liberados do encarceramento e y=15 foram presos novamente dentro de 36 meses.
 - a) Usando uma distribuição Beta(2, 8) a priori para θ , faça um gráfico de $p(\theta)$, $p(y|\theta)$ e $p(\theta|y)$ como funções de θ . Encontre a média a posteriori, a moda e o desvio padrão de θ . Encontre um intervalo de credibilidade baseado em quantis com 95% de cobertura.
 - b) Repita a), mas usando uma distribuição Beta(8, 2) a priori para θ .
 - c) Considere a seguinte distribuição a priori para θ :

$$p(\theta) = \frac{1}{4} \frac{\Gamma(10)}{\Gamma(2)\Gamma(8)} \left[3\theta(1-\theta)^7 + \theta^7(1-\theta) \right],$$

que é uma distribuição mistura 75% - 25% de uma Beta(2, 8) e uma Beta(8, 2) a priori. Faça o gráfico dessa distribuição a priori e compare com as distribuições a priori em a) e b). Explique que tipo de crença a priori essa distribuição poderia representar.

- d) Para a distribuição a priori em c):
 - i) Calcule $p(\theta)p(y|\theta)$ e simplifique o quanto for possível.
 - ii) A distribuição a posteriori é uma mistura de duas distribuições. Identifique essas duas distribuições.
 - iii) No computador, calcule e faça um gráfico de $p(\theta) \times p(y|\theta)$ para alguns valores de θ . Encontre também (aproximadamente) a moda a posteriori e discuta a sua relação com as modas obtidas nos itens a) e b).
- e) Encontre uma fórmula geral para os pesos da distribuição mistura obtida em d)ii e obtenha uma interpretação dos seus valores.
- 11. Uma quantidade desconhecida Y tem distribuição Galenshore (a,θ) , se sua densidade de probabilidade pode ser escrita como

$$p(y|\alpha,\theta) = \frac{2}{\Gamma(\alpha)}\theta^{2\alpha}y^{2\alpha-1}e^{-\theta^2y^2},$$

para y > 0, $\theta > 0$ e $\alpha > 0$. Para essa densidade,

$$E(Y) = \frac{\Gamma(\alpha + 1/2)}{\theta \Gamma(\alpha)}, E(Y^2) = \frac{\alpha}{\theta^2}$$

Assuma que a é conhecido.

- a) Identifique a classe de densidades a priori conjugadas para θ . Faça o gráfico de alguns membros dessa classe.
- b) Seja $Y_1, \ldots, Y_n \sim \text{i.i.d.}$ Galenshore (α, θ) . Encontre a distribuição a posteriori de θ usando uma distribuição a priori de sua classe conjugada.
- c) Escreva a razão $p(\theta_a|y_1,\ldots,y_n)/p(\theta_b|y_1,\ldots,y_n)$, simplificando-a. Identifique uma estatística suficiente.
- d) Determine $E[\theta|y_1,\ldots,y_n]$.
- e) Determine a forma da densidade preditiva a posteriori, $p(\tilde{y}|y_1,\ldots,y_n)$