

Question 13.22:

For the β^+ (positron) emission from a nucleus, there is another competing process known as electron capture (electron from an inner orbit, say, the K-shell, is captured by the nucleus and a neutrino is emitted).

$$e^+ + {}^A_Z X \rightarrow^A_{Z-1} Y + v$$

Show that if β^+ emission is energetically allowed, electron capture is necessarily allowed but not vice-versa

Answer

Let the amount of energy released during the electron capture process be \mathcal{Q}_1 . The nuclear reaction can be written as:

$$e^+ + {}_{z}^{A}X \rightarrow_{z-1}^{A}Y + v + Q_1$$
 ... (1

Let the amount of energy released during the positron capture process be Q_2 . The nuclear reaction can be written as:

$$_{z}^{A}X \rightarrow _{z-1}^{A}Y + e^{+} + v + Q,$$
 ... (2

$$m_N \left({{}_{Z}^{A}X} \right)$$
 = Nuclear mass of ${}_{Z}^{A}X$

$$m_N \left({}_{Z-1}^A Y \right) = \text{Nuclear mass of } \sum_{Z=1}^A Y$$

$$m\binom{A}{z}X$$
 = Atomic mass of $\binom{A}{z}X$

$$m\binom{A}{Z-1}Y$$
 = Atomic mass of $\binom{A}{Z-1}Y$

 m_e = Mass of an electron

c =Speed of light

Q-value of the electron capture reaction is given as:

$$Q_1 = \left[m_N \begin{pmatrix} {}^{A}_{Z} X \end{pmatrix} + m_e - m_N \begin{pmatrix} {}^{A}_{Z-1} Y \end{pmatrix} \right] c^2$$

$$= \left[m \left({}_{Z}^{A} X \right) - Z m_{e} + m_{e} - m \left({}_{Z-1}^{A} Y \right) + \left(Z - 1 \right) m_{e} \right] c^{2}$$

$$= \left[m \binom{A}{Z} X \right) - m \binom{A}{Z-1} Y \right] c^2 \qquad \dots (3)$$

Q-value of the positron capture reaction is given as:

$$Q_2 = \left[m_{\scriptscriptstyle N} \left({}^{\scriptscriptstyle A}_{\scriptscriptstyle Z} X \right) - m_{\scriptscriptstyle N} \left({}^{\scriptscriptstyle A}_{\scriptscriptstyle Z-1} Y \right) - m_{\scriptscriptstyle e} \right] c^2$$

$$= \left[m \left({}_Z^A X \right) - Z m_e - m \left({}_{Z-1}^A Y \right) + \left(Z - 1 \right) m_e - m_e \right] c^2$$

$$= \left[m \left({}_{z}^{A} X \right) - m \left({}_{z}^{A} Y \right) - 2 m_{e} \right] c^{2} \qquad \dots (4)$$

It can be inferred that if $Q_2 > 0$, then $Q_1 > 0$; Also, if $Q_1 > 0$, it does not necessarily mean that $Q_2 > 0$.

Question 13.24:

The neutron separation energy is defined as the energy required to remove a neutron

from the nucleus. Obtain the neutron separation energies of the nuclei $^{41}_{20}\mathrm{Ca}$ and

 $^{^{27}}_{^{13}}\mathrm{Al}_{\mathrm{from}}$ from the following data:

$$m\binom{40}{20}\text{Ca} = 39.962591 \text{ u}$$

$$m\binom{41}{20}\text{Ca}$$
) = 40.962278 u

$$m\binom{26}{13}\text{Al}$$
 = 25.986895 u

$$m\binom{27}{13}\text{Al}_{)} = 26.981541 \text{ u}$$

Answer

For ⁴¹Ca: Separation energy = 8.363007 MeV

For 13 Al: Separation energy = 13.059 MeV

A neutron $\sqrt{n^n}$ is removed from a $\sqrt[2n]{Ca}$ nucleus. The corresponding nuclear reaction can be written as: $^{41}_{20}$ Ca $\longrightarrow ^{40}_{20}$ Ca $+ ^{1}_{0}$ n It is given that: Mass $m\binom{40}{20}$ Ca = 39.962591 u $m^{41}_{20}Ca) = 40.962278 u$ Mass $m(_0n^1) = 1.008665 \text{ u}$ The mass defect of this reaction is given as: $\Delta m = m \left(\frac{40}{20} \text{Ca} \right) + \left(\frac{1}{0} \text{n} \right) - m \left(\frac{41}{20} \text{Ca} \right)$ = 39.962591 + 1.008665 - 40.962278 = 0.008978 u But 1 u = $931.5 \text{ MeV}/c^2$ $\Delta m = 0.008978 \times 931.5 \text{ MeV/}c^2$ Hence, the energy required for neutron removal is calculated as: = 0.008978 × 931.5 = 8.363007 MeV For $^{\frac{27}{13}Al}$, the neutron removal reaction can be written as: $^{27}_{13}Al \longrightarrow ^{26}_{13}Al + ^{1}_{0}n$ It is given that: Mass $m\binom{27}{13}AI$ = 26.981541 u Mass $m\binom{26}{13}\text{Al} = 25.986895 \text{ u}$ The mass defect of this reaction is given as: $\Delta m = m \binom{26}{13} \text{Al} + m \binom{1}{0} \text{n} - m \binom{27}{13} \text{Al}$ =25.986895 + 1.008665 - 26.981541= 0.014019 u $= 0.014019 \times 931.5 \text{ MeV/}c^2$ Hence, the energy required for neutron removal is calculated as: $E = \Delta mc^2$ = 0.014019 × 931.5 = 13.059 M eV Question 13.25: A source contains two phosphorous radio nuclides $^{32}_{15}P$ ($T_{1/2} = 14.3d$) and $^{33}_{15}P$ ($T_{1/2} = 14.3d$) 25.3d). Initially, 10% of the decays come from ^{33}P . How long one must wait until 90% do so? Answer Half life of ^{32}P , $T_{1/2} = 14.3$ days Half life of ^{33}P , $T'_{1/2} = 25.3$ days $_{15}^{33}P$ nucleus decay is 10% of the total amount of decay. The source has initially 10% of $^{33}_{15}P$ nucleus and 90% of $^{32}_{15}P$ nucleus. Suppose after t days, the source has 10% of $^{32}_{15}P$ nucleus and 90% of $^{33}_{15}P$ nucleus. Number of $^{33}_{15}P$ nucleus = N Number of $^{32}_{15}P$ nucleus = 9 N Number of $^{33}_{15}P$ nucleus = 9 N' Number of $^{32}_{15}P$ nucleus = N' For $^{^{12}P}_{^{15}P}$ nucleus, we can write the number ratio as: $N' = 9N(2)^{\frac{-t}{14.3}}$... (1)

For $^{13}_{15}P$, we can write the number ratio as:

$$\frac{9N'}{N} = \left(\frac{1}{2}\right)^{\frac{l}{T_{1/2}'}}$$

On dividing equation (1) by equation (2), we get:

$$\frac{1}{9} = 9 \times 2^{\left(\frac{t}{25.3} - \frac{t}{14.3}\right)}$$
$$\frac{1}{81} = 2^{-\left(\frac{11t}{25.3 \times 14.3}\right)}$$

$$\log 1 - \log 81 = \frac{-11t}{25.3 \times 14.3} \log 2$$

$$\frac{-11t}{25.3 \times 14.3} = \frac{0 - 1.908}{0.301}$$

$$t = \frac{25.3 \times 14.3 \times 1.908}{11 \times 0.301} \approx 208.5 \text{ days}$$

Hence, it will take about 208.5 days for 90% decay of $^{\rm 15}p^{\rm 33}$.

Question 13.26:

Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

$$^{223}_{88}$$
Ra $\longrightarrow ^{209}_{82}$ Pb $+ ^{14}_{6}$ C

$$^{223}_{88}$$
Ra $\longrightarrow ^{219}_{86}$ Rn + $^{4}_{5}$ He

Calculate the ${\it Q}$ -values for these decays and determine that both are energetically allowed.

Answer

Take a ${}^{14}_{6}{}^{\rm C}$ emission nuclear reaction:

$$^{223}_{88}$$
Ra $\longrightarrow ^{209}_{82}$ Pb + $^{14}_{6}$ C

We know that:

Mass of
$$^{223}_{88}$$
 Ra, $m_1 = 223.01850$ u

Mass of
$$^{209}_{82}$$
 Pb, $m_2 = 208.98107$ u

Mass of
$${}^{6}C$$
, $m_3 = 14.00324 \text{ u}$

Hence, the Q-value of the reaction is given as:

$$Q = (m_1 - m_2 - m_3) c^2$$

$$= (223.01850 - 208.98107 - 14.00324) c^2$$

$$= (0.03419 c^2) u$$

But 1 u = $931.5 \text{ MeV}/c^2$

$$\therefore Q = 0.03419 \times 931.5$$

Hence, the Q-value of the nuclear reaction is 31.848 MeV. Since the value is positive, the reaction is energetically allowed.

Now take a ⁴₂He emission nuclear reaction:

$$^{223}_{88}$$
Ra \longrightarrow $^{229}_{86}$ Rn + $^{4}_{2}$ He

We know that:

Mass of
$$^{223}_{88}$$
 Ra, $m_1 = 223.01850$

Mass of
$$^{219}_{82}$$
Rn, $m_2 = 219.00948$

Mass of
$${}^{4}_{2}$$
He , $m_{3} = 4.00260$

********* END *******