3TS: ML Engineering II MACHINE LEARNING APPLIED TO FORECASTING

Objetivos

- Generación Energía Eléctrica en España
- Solucionar problemas de Forecasing con modelos de Machine Learning en lugar de con modelos estadísticos:
 - ARIMA
 - GARCH
 - **VAR**

Objetivos

- Debatir, discutir y compartir experiencias y prácticas.
- Preguntarnos por qué

REPO: https://github.com/manualrg/DSLAB_Python/ML_Engineering

Índice de la sesión

- Introducción
- ► EDA (Exploratory Data Analysis) de series temporales
- Métodos de Feature Engineering específicos para problemas de forecasting
- Predicción de la demanda energética en España con modelos de Machine Learning

- Sistema Eléctrico:
 - Generadores
 - Mercado mayorista (bilateral, pool)
 - ▶ Transportista
 - Distribuidoras
 - Comercializadoras
 - Consumidores
 - Mercado minorista (PVPC, libre)

- REE (Red Eléctrica de España)
 - Operador del sistema Eléctrico
 - Transportista
- OMIE (Operador del Mercado Ibérico de Electricidad)
 - Pool: Subasta diaria marginalista

► Fuente: https://www.esios.ree.es/es

- ▶ Datos:
 - Demanda de electricidad semanal: 2015-01-11 al 2018-08-26
- Predicción de 4 periodos

t	y(t)
31-12-18	90
07-01-19	130
14-01-19	120
21-01-19	100
28-01-19	105

t	y_lag1	y_lag2	y_t
31-12-18	80	75	90
07-01-19	90	80	130
14-01-19	130	90	120

► Forecasting > Regresión multi-periodo

t	y(t)
31-12-18	90
07-01-19	130
14-01-19	120
21-01-19	100
28-01-19	105

t	y_lag1	y_lag2	y_t	y_t1
31-12-18	80	75	90	130
07-01-19	90	80	130	120
14-01-19	130	90	120	100

sklearn.multioutput.MultiOutputRegressor

class sklearn.multioutput. MultiOutputRegressor (estimator, n_jobs=None)

[source]

Multi target regression

This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that do not natively support multi-target regression.

- Análisis de la señal
- ▶ Patrones estacionales
- **Tendencia**

- Análisis de la señal
 - Normalidad y outliers

- Análisis de la señal
 - Volatilidad (heterocedasticidad)
 - La desviación típica cambia con t
 - ▶¿Existen patrones o causas en la volatidad?

▶ Patrones estacionales

- ▶ Tendencia
 - Lineal, amortiguada, exponencial
 - Cambios bruscos

Feature Engineering in Forecasting

- Automático y sin asunciones estadísticas
- Lags
- Estadísticas de ventana móvil
- Avanzados:
 - RSI (Relative Strength Index)
 - ▶ Momentum
 - Mean Reversion
 - ► Sequence mining

```
100

RSI = 100 - ------
1 + RS

RS = Average Gain / Average Loss
```

Feature Engineering in Forecasting

- Regresión lineal
 - Existe relación lineal entre los predictores y la señal

▶ Inconvenientes?

- Árboles y Ensembles de árboles
 - Modelar cualquier relación
 - Herramientas de regularización

▶ Inconvenientes?

- Entrenamiento y ajuste de hiperparámetros
 - ▶ Train (2-4 ciclos estacionales)
 - ▶ Validation: Ajuste hiperparámetros
 - ▶ Test: Evaluación y análisis residual

- ▶ Evaluación: Problema de regresión: RMSE, MAPE...
- Análisis residual (para cada modelo)
 - Distribución de los residuos
 - ▶ Forecasted vs actual
 - Residuals over time

More ideas

► Hiperparameter tunning with Time CV

► AR-MLP

More ideas

- ▶ Real problems:
 - +250k SKUs
 - ▶interrupted data
 - new products
 - Hierarchical forecasting

GRACIAS !!!

- ▶ BIBLIOGRAFÍA:
- Forecasting: Principles and Practice (R)
 - https://otexts.com/fpp2/
- Practical Time Series Analysis (Python)
 - https://www.packtpub.com/big-data-and-business-intelligence/practical-timeseries-analysis