Cognitive Robotics 07. Mapping with Known Poses

AbdElMoniem Bayoumi, PhD

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz

Why Mapping?

- Learning maps is one of the fundamental problems in mobile robotics
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc.

The General Problem of Mapping

What does the environment look like?

The General Problem of Mapping

Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \cdots, u_t, z_t\}$$

to calculate the most likely map

$$m^* = \operatorname{argmax}_m P(m|d)$$

The General Problem of Mapping

 Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \cdots, u_t, z_t\}$$

to calculate the most likely map

$$m^* = \operatorname{argmax}_m P(m|d)$$

 Today we describe how to calculate a map given the robot's pose

Mapping as a Chicken and Egg Problem

- So far we learned how to estimate the pose of the vehicle given the data and the map
- Mapping, however, involves to simultaneously estimate the pose of the vehicle and the map
- The general problem is therefore denoted as the simultaneous localization and mapping problem (SLAM)
- Throughout this section we will describe how to calculate a map given we know the pose of the vehicle

Features vs. Volumetric Maps

Grid Maps

- Discretize the world into cells
- Grid structure is rigid
- Each cell is assumed to be occupied or free space
- Non-parametric model
- Large maps require substantial memory resources
- Do not rely on a feature detector

Example

Assumption 1

 The area that corresponds to a cell is either completely free or occupied

Representation

 Each cell is a binary random variable that models the occupancy

Occupancy Probability

- Each cell is a binary random variable that models the occupancy
- Cell is occupied: $p(m_i) = 1$
- Cell is not occupied: $p(m_i) = 0$
- No knowledge: $p(m_i) = 0.5$

Occupancy Probability Example

 Each cell is a binary random variable that models the occupancy

$$P(M_i = occ) = p(m_i) = 1$$

$$P(M_i = free) = p(\neg m_i) = 1 - p(m_i) = 0$$

$$P(M_i = occ) = p(m_i) = 0$$

$$P(M_i = free) = p(\neg m_i) = 1 - p(m_i) = 1$$

$$P(M_i = occ) = p(m_i) = 0.75$$

$$P(M_i = free) = p(\neg m_i) = 0.25$$

Assumption 2

 The world is static (most mapping systems make this assumption)

Assumption 3

 The cells (the random variables) are independent of each other

no dependency between the cells

Joint Distribution

Representation

 The probability distribution of the map is given by the product over the cells

Example A

$$p(m) = \prod_{i} p(m_i)$$

$$p(M =) = p(M_1 =) p(M_2 =)$$

$$p(M_3 =) p(M_4 =)$$

M vs. m to distinguish a configuration and the random variable for the map

Example B

$$p(M = \square) = p(M_1 = \square)p(M_2 = \square)$$

$$p(M_3 = \square)p(M_4 = \square)$$

$$= p(M_1 = \square)(1 - p(M_2 = \square))$$

$$(1 - p(M_3 = \square))p(M_4 = \square)$$

M vs. m to distinguish a configuration and the random variable for the map

Estimating a Map From Data

• Given sensor data $z_{1:t}$ and the poses $x_{1:t}$ of the sensor, estimate the map

$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$

binary random variable

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$p(z_{t} \mid m_{i}, x_{t}) \stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) \ p(z_{t} \mid x_{t})}{p(m_{i} \mid x_{t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) \ p(z_{t} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) \ p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{indep.}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i}) p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{indep.}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i}) p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

Do exactly the same for the opposite event:

$$p(\neg m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{the same}}{=} \frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$$

By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{\frac{p(m_i \mid z_t, x_t) p(z_t \mid x_t) p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i) p(z_t \mid z_{1:t-1}, x_{1:t})}}{\frac{p(\neg m_i \mid z_{1:t}, x_{1:t}) p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) p(z_t \mid z_{1:t-1}, x_{1:t})}}$$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} \\
= \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} \\
= \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)} \frac{1 - p(m_i)}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \underbrace{\frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}}_{\text{uses } z_t} = \underbrace{\frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$

From Ratio to Probability

We can easily turn the ration into the probability

$$\frac{p(x)}{1 - p(x)} = Y$$

$$p(x) = Y - Y p(x)$$

$$p(x) (1 + Y) = Y$$

$$p(x) = \frac{Y}{1 + Y}$$

$$p(x) = \frac{1}{1 + \frac{1}{V}}$$

From Ratio to Probability

• Using $p(x) = [1 + Y^{-1}]^{-1}$ directly leads to

$$p(m_i \mid z_{1:t}, x_{1:t}) = \left[1 + \frac{1 - p(m_i \mid z_t, x_t)}{p(m_i \mid z_t, x_t)} \frac{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid z_t, x_t)} \frac{p(m_i)}{1 - p(m_i)} \right]^{-1}$$

For reasons of efficiency, one performs the calculations in the log odds notation

Log Odds Notation

 The log odds notation computes the logarithm of the ratio of probabilities

$$= \underbrace{\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{t}, x_t)}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$

Log Odds Notation

Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• and with the ability to retrieve p(x)

$$p(x) = 1 - \frac{1}{1 + \exp l(x)}$$

Occupancy Mapping in Log Odds Form

The product turns into a sum

$$l(m_i \mid z_{1:t}, x_{1:t})$$

$$= \underbrace{l(m_i \mid z_t, x_t)}_{\text{inverse sensor model}} + \underbrace{l(m_i \mid z_{1:t-1}, x_{1:t-1})}_{\text{recursive term}} - \underbrace{l(m_i)}_{\text{prior}}$$

or in short

$$l_{t,i} = \text{inv_sensor_model}(m_i, x_t, z_t) + l_{t-1,i} - l_0$$

Occupancy Mapping Algorithm

```
occupancy_grid_mapping(\{l_{t-1,i}\}, x_t, z_t):
         for all cells m_i do
1:
2:
              if m_i in perceptual field of z_t then
                  l_{t,i} = l_{t-1,i} + \text{inv\_sensor\_model}(m_i, x_t, z_t) - l_0
3:
4:
             else
5:
                  l_{t,i} = l_{t-1,i}
              endif
6:
7:
         endfor
         return \{l_{t,i}\}
8:
```

highly efficient, we only have to compute sums

Occupancy Grid Mapping

- Moravec and Elfes proposed occupancy grid mapping in the mid 80'ies
- Developed for noisy sonar sensors

Inverse Sensor Model for Sonar Range Sensors

In the following, consider the cells along the optical axis (red line)

Example: Incremental Updating of Occupancy Grids

Resulting Map Obtained with 24 Sonar Range Sensors

Resulting Occupancy and Maximum Likelihood Map

The maximum likelihood map is obtained by rounding the probability for each cell to 0 or 1

Inverse Sensor Model for Laser Range Finders

Occupancy Grids From Laser Scans to Maps

Example: MIT CSAIL 3rd Floor

Uni Freiburg Building 106

Summary: Occupancy Grid Maps

- Occupancy grid maps discretize the space into independent cells
- Each cell is a binary random variable estimating if the cell is occupied
- Static state binary Bayes filter per cell
- Mapping with known poses is easy
- Log odds model is fast to compute
- No need for predefined features

Alternative: Counting Model / Reflection Probability Maps

- For every cell count
 - hits(x,y): number of cases where a beam ended at <x,y>
 - misses(x,y): number of cases where a beam passed through <x,y>

$$Bel(m^{[xy]}) = \frac{hits(x,y)}{hits(x,y) + misses(x,y)}$$

Value of interest: P(reflects(x,y))

The Measurement Model

- Pose at time t: x_t
- Beam n of scan at time t: $z_{t,n}$
- Maximum range reading: $\zeta_{t,n}=1$
- Beam reflected by an object: $\zeta_{t,n}=0$

$$m_{f(x_t,n,z_{t,n})}$$

measured dist. in #cells

The Measurement Model

- Pose at time t: x_t
- Beam n of scan at time t: $z_{t,n}$
- Maximum range reading: $\zeta_{t,n}=1$
- Beam reflected by an object: $\zeta_{t,n}=0$

 $m_{f(x_t,n,z_{t,n})}$

max range: "first $z_{t,n}$ -1 cells covered by the beam must be free"

max range: "first
$$z_{t,n}$$
-1 cells covered by the beam must be
$$p(z_{t,n}|x_t,m) = \begin{cases} &\prod_{k=0}^{z_{t,n}-1} (1-m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 1 \\ & \end{cases}$$

The Measurement Model

- Pose at time t: x_t
- Beam n of scan at time t: $z_{t,n}$
- Maximum range reading: $\zeta_{t,n}=1$
- Beam reflected by an object: $\zeta_{t,n}=0$

 $m_{f(x_t,n,z_{t,n})}$

max range: "first $z_{t,n}$ -1 cells covered by the beam must be free"

$$p(z_{t,n}|x_t,m) = \begin{cases} \prod_{k=0}^{z_{t,n}-1} (1 - m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 1\\ m_{f(x_t,n,z_{t,n})} \prod_{k=0}^{z_{t,n}-1} (1 - m_{f(x_t,n,k)}) & \zeta_{t,n} = 0 \end{cases}$$

otherwise: "last cell reflected beam, all others free"

Compute values for m that maximize

$$m^* = \operatorname{argmax}_m P(m|z_1, \dots, z_t, x_1, \dots, x_t)$$

 Assuming a uniform prior probability for P(m), this is equivalent to maximizing:

$$m^*$$
 = $\operatorname{argmax}_m P(z_1, \dots, z_t | m, x_1, \dots, x_t)$
= $\operatorname{argmax}_m \prod_{t=1}^T P(z_t | m, x_t) \stackrel{\text{since } z_t \text{ independent and only depend on } x_t$
= $\operatorname{argmax}_m \sum_{t=1}^T \ln P(z_t | m, x_t)$

$$m^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j} \right) + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j})$$

$$m^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \binom{\text{``beam } n \text{ ends in cell } j''}{I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j}} + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j})$$

$$\begin{split} m^{\star} &= & \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \binom{\text{"beam } n \text{ ends in cell } j''}{I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j}} \\ &+ \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \end{pmatrix} \\ &+ \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \end{pmatrix} \end{split}$$

$$\begin{split} m^{\star} &= & \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \binom{\text{``beam } n \text{ ends in cell } j''}{I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j}} \\ &+ \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \end{pmatrix} \\ &+ \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \end{pmatrix} \end{split}$$

Define

$$\alpha_j = \sum_{t=1}^{T} \sum_{n=1}^{N} I(f(x_t, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n})$$
$$\beta_j = \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j)$$

Meaning of α_j and β_j

$$\alpha_j = \sum_{t=1}^T \sum_{n=1}^N I(f(x_t, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n})$$

Corresponds to the number of times a beam that is not a maximum range beam ended in cell j (hits(j))

$$\beta_j = \sum_{t=1}^T \sum_{n=1}^N \sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j)$$

Corresponds to the number of times a beam traversed cell j without ending in it (misses(j))

Accordingly, we get

$$\mathbf{m}^* = \operatorname{argmax}_m \sum_{j=1}^{J} \left(\alpha_j \ln m_j + \beta_j \ln(1 - m_j) \right)$$

As the m_j 's are independent we can maximize this sum by maximizing it for every j

If we set

we obtain

$$\frac{\partial}{\partial m_j} = \frac{\alpha_j}{m_j} - \frac{\beta_j}{1 - m_j} = 0 \qquad m_j = \frac{\alpha_j}{\alpha_j + \beta_j}$$

Computing the most likely map reduces to counting how often a cell has reflected a measurement and how often the cell was traversed by a beam.

Difference between Occupancy Grid Maps and Counting

- The counting model determines how often a cell reflects a beam
- The occupancy model represents whether or not a cell is occupied by an object
- Although a cell might be occupied by an object, the reflection probability of this object might be very small

Example Occupancy Map

Example Reflection Map

Example

- Out of n beams only 60% are reflected from a cell and 40% traverse it without ending in it
- Accordingly, the reflection probability will be 0.6.
- Suppose p(occ | z) = 0.55 when a beam ends in a cell and p(occ | z) = 0.45 when a beam traverses a cell without ending in it
- Accordingly, after n measurements we will have

$$\frac{p(occ \mid z)}{p(\neg occ \mid z)} = \left(\frac{0.55}{0.45}\right)^{n*0.6} * \left(\frac{0.45}{0.55}\right)^{n*0.4} = \left(\frac{11}{9}\right)^{n*0.6} * \left(\frac{11}{9}\right)^{-n*0.4} = \left(\frac{11}{9}\right)^{n*0.2}$$

 Whereas the reflection map yields a value of 0.6, the occupancy grid value converges to 1 as n increases

Summary: Reflection

- Reflection probability maps are an alternative representation
- They store in each cell the probability that a beam is reflected by this cell
- Given the described sensor model, counting yields the maximum likelihood model

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz