

- Какими приближенными параметрами (диаметр золотника D_S, размеры перепускного окна а, жесткость пружины к) должен обладать редукционный клапан для поддержания P_{RED} = 10 атм?
- 2. Каково будет минимальное давление входе в клапан P_{IN мIN}, при котором система будет работать?
- 3. Промоделировать поведение редукционного клапана при ступенчатом воздействии по давлению $P_{IN} = 2 \ P_{IN \, MIN}$. В начальный момент времени клапан полностью закрыт. Массу золотника предположить из полученным размеров, материал конструкционная сталь. Модель представить в виде кода C/C++.

Модель редукционного клапана основана на следующих допущениях:

- если избыточное давление на входе $P_{IN} = 0$ атм, золотник опирается на буртик, при этом с помощью регулировочного винта пружина с жёсткостью k придавливает золотник к буртику с силой F_{INIT} ;
- объём редукционной камеры и каналов течения жидкости не учитывается;
- задача рассматривается в изотермической постановке;
- эффекты от дополнительного всасывания или выталкивания жидкости при движении золотника не учитываются;
- размер каналов течения жидкости в редукционной камере равен размеру перепускного окна а;
- каналы течения жидкости в редукционной камере соединены с выходным нерегулируемым дросселем посредством соединительной арматуры стандартного диаметра (ГОСТ 11881 76), при этом дроссель находится в непосредственной близости к каналам течения жидкости в редукционной камере, дополнительного падения давления в соединительной арматуре не происходит;
- при повышении редуцированного давления P_{RED} происходит постепенное поднятие золотника, который перекрывает перепускное окно, при этом при некотором минимальном значении входного давления $P_{\text{IN MIN}}$ давление в редукционной камере стабилизируется и становится равным P_{RED} ;
- динамика движения золотника определяется жёсткостью пружины k, для имитации реалистичного движения золотника дополнительно введён коэффициент демпфирования b;
- зазор между золотником и корпусом пренебрежимо мал, истечение жидкости через зазор отсутствует;
- размеры золотника приняты следующими: длина золотника принята равной 4а, высота головки золотника равна размеру перепускного окна, диаметр золотника D_S подбирается в процессе решения задачи;

Определение текущего значения редуцированного давления производится из соображений равенства расхода через перепускное окно и через нерегулируемый дроссель. Перепускное окно можно условно представить в виде диафрагмы переменной площади истечения, а нерегулируемый дроссель - в виде диафрагмы постоянного диаметра:

$$Q_{o1} = Q_{o2} \rightarrow C_d A_{o1} \sqrt{\frac{2\Delta P_1}{\rho(1-\beta_{o1}^4)}} = C_d A_{o2} \sqrt{\frac{2\Delta P_2}{\rho(1-\beta_{o2}^4)}},$$

где индекс o1 соответствует перепускному окну, o2 — нерегулируемому дросселю; ρ — плотность жидкости (кг/м³); β — отношение диаметра диафрагмы к диаметру трубы (в случае перепускного окна расчитывается эквивалентный диаметр для круглого сечения равной площади), $\Delta P_1 = P_{IN} - P_{RED}$ (Па), $\Delta P_2 = P_{RED} - P_{OUT}$ (Па); C_d — коэффициент истечения; A — площадь диафрагмы, для нерегулирумого дросселя является постоянной величиной, для перепускного окна определяется как $A_{o1} = l(a-x_1)$ (м²), где l — длина перепускного окна по окружности головки золотника - $l = \frac{D_S}{2}\alpha$ (м), $\alpha = 2\sin^{-1}\frac{a}{D_S}$ (рад) — угловой размер перепускного окна.

Тогда:

$$P_{RED}=rac{\gamma_1 P_{IN}+\gamma_2 P_{OUT}}{\gamma_1+\gamma_2}$$
, где $\gamma_1=A_{o1}^2(1-eta_{o2}^4)$, $\gamma_2=A_{o2}^2(1-eta_{o1}^4)$,

Сила, эквивалентная давлению в редукционной камере, на головку золотника:

$$F_{RED} = P_{RED} \frac{\pi D_S^2}{4}.$$

Тогда динамика золотника может быть описана следующим образом:

$$m_S\ddot{x} + b\dot{x} + kx + F_{INIT} + mg - F_{RED} = 0$$
,

где $m_{\scriptscriptstyle S}$ – масса золотника.

Предварительно были определены начальные значения искомых параметров геометрии золотника в соответствии с соотношениями для проектного расчёта простого редукционного клапана при коэффициенте пропускной способности Kv = 0.92, при котором при падении давления на клапане в 10 атм расход будет равен $0.9 \cdot 10^{-3} \text{ м}^3/\text{с}$. Тогда средняя скорость потока v_{MEAN} :

$$v_{MEAN} = \sqrt{\frac{2}{\rho} \ 0.02 ... 0.05 \ P_{IN}} = 9.24 \ \text{m/c},$$

где ρ – плотность жидкости, по заданию – керосин при температуре 20 °C = 819 кг/м³

Тогда площадь клапана Ао1:

$$A_{o1} = \frac{Q}{v_{MEAN}} = 9.74 \cdot 10^{-3} \text{ m}^2,$$

Тогда размер перепускного окна а = 0.0099 м.

Предварительное нагружение золотника было выбрано из расчёта $F_{INIT} = c P_{DES} \frac{\pi D_S^2}{4}$, где коэффициент с принят равным 1, впоследствии при оптимизации подобран равным 0.98.

Коэффициент жёсктости k был выбран произвольно равным 1 кН/м, коэффициент демпфирования был включён в расчёт, чтобы исключить высокочастотные колебания золотника, которые в реальности не возникают в виду диссипации энерги на преодоление силы трения между золотником и корпусом, а также, вероятно, вязкостных сил, возникающих при движении золотника в работающем клапане.

Расчётные параметры были использованы при моделировании системы для их оптимизации с целью подбора такой комбинации искомых параметров, чтобы, начиная с некоторой величины входного давления Р_{IN MIN}, давление в редукционной камере было постоянным и равным 10 атм. Задача оптимизации решалась с использованием Matlab, аргументами оптимизационной задачи выбраны диаметр головки золотника, размер перепускного окна и жётскость пружины, а также коэффициент с. Таким образом были определены параметры, при которых в редукционной камере достигается постоянное давление в 10 бар:

- диаметр золотника 0.0257 м,
- размер перепускного окна 0.005 м,
- жёсткость пружины 2.23 кH/м.

Для проверки работы модели системы разработан сценарий изменения входного давления P_{IN}, который имитирует постепенное линейное увеличение избыточного давления от 0 до 1.5 Мпа:

давления

Система также ведёт себя устойчиво, редуцированное давление держится на требуемом уровне при колебаниях входного давления:

При номинальном режиме работы, когда $P_{IN} = P_{IN \, MIN}$ ступенчатое воздействии $P_{IN} = 2 \, P_{IN \, MIN}$ приводит к тому, что отклик системы имеет большую начальную амплитуду, что связано, вероятно, с низким коэффициентом демпфирования. Несмотря на это, редуцированное давление по истечению короткого переходного процесса стабилизируется:

Модель реализована в среде Simulink:

Её выходом является массив значений редуцированного давления — отклик системы на ступенчатое воздействие. Ступенчатое воздействие смоделировано следующим образом:

$$P_{IN} = \begin{cases} P_{IN \ MIN}, \ t < 0.1 \text{ c} \\ 2 \cdot P_{IN \ MIN}, \ t \ge 0.1 \text{ c}' \end{cases} t \in [0, 0.5] \text{ c},$$

В начальный момент времени клапан полностью закрыт, что соответствует положению золотника x_1 = а, при этом в редукционной камере нулевое избыточное давление. Так как ступенчатое воздействие смоделировано не в начальный момент времени, золотник начинает опускаться, а редуцированное давление повышается до тех пор, пока система не придёт в равновесие, в котором золотник принимает некое устойчивое положение, а давление в редукционной камере равно требуемому.

Модель экспортирована в виде кода на С, при этом проект включает в себя необходимые файлы, непосредственно описывающие работу модели, а также ряд необходимых стандартных библиотек Matlab:

pressureRegulator скомпилированный файл папке также содержится исполняемый pressure_regulator_step_response.exe, файла запуск которого приводит генерации pressure_regulator_step_response.mat. Файл содержит в себе массив rt_reduced_pressure числовых значений в формате float, который является массивом значений редуцированного давления – отклик системы на смоделированное ступенчатое воздействие.