令和3年度

卒業論文

題目

ひずみセンサを用いた

揚抗力同時測定法の性能に関する一考察

学籍番号	18123026	
提 出 者	来代 勝胤	
指導教員	村田 滋 教授	
指導教員	田中 洋介 准教授	

京都工芸繊維大学 工芸科学部 機械システム工学課程

概要

目次

1.	序論	4
2.	実験装置	5
2.1	作用力測定装置	5
2.2	校正実験装置	5
3.	校正理論	6
3.1	作用力測定装置と校正実験装置の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.2	出力電圧勾配	7
3.3	座標系の回転における補正理論	7
3.4	座標系のオフセットにおける補正理論	16
3.5	複合状態における補正理論....................................	23
3.6	推定理論	27
4.	作用力測定装置の評価実験とその考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
4.1	実験方法	28
4.2	実験条件	28
4.3	試行回数と測定角度	28
4.4	実験結果	29
4.5	データ処理手法	34
5.	校正理論の適用とその結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
5.1	考察	34
6.	結言	35
謝辞		36
付纽		36

記号表

(x,y): 水流に対する座標系,正規座標系

(x',y') : 作用力測定装置の座標系 , 座標系 [1] (x'',y'') : 校正実験装置の座標系 , 座標系 [2]

 V_d : 作用力測定実験から得た抗力方向における出力電圧 [V] V_l : 作用力測定実験から得た揚力方向における出力電圧 [V] F_x : 正規座標系 (x,y) について抗力方向における荷重 [N] F_y : 正規座標系 (x,y) について揚力方向における荷重 [N]

 θ_x : 正規座標系 x 軸と座標系 [1] x'軸の角度 $[\deg]$ θ_y : 正規座標系 y 軸と座標系 [1] y'軸の角度 $[\deg]$

 Δx : 正規座標系 x 軸と座標系 [2] x''軸の y 方向の距離 [mm] Δy : 正規座標系 y 軸と座標系 [2] y''軸の x 方向の距離 [mm]

 v_d : 基礎実験結果から得た抗力方向における出力電圧勾配 $[{
m V/V}]$ v_l : 基礎実験結果から得た揚力方向における出力電圧勾配 $[{
m V/V}]$

 $v_{d'}$: 軸のオフセットについて補正を適用した抗力方向における出力電圧勾配 $[{
m V}/{
m V}]$ $v_{l'}$: 軸のオフセットについて補正を適用した揚力方向における出力電圧勾配 $[{
m V}/{
m V}]$

 v_x : 正規座標系 (x,y) について抗力方向における出力電圧勾配 $[\mathrm{V}/\mathrm{V}]$ v_y : 正規座標系 (x,y) について揚力方向における出力電圧勾配 $[\mathrm{V}/\mathrm{V}]$

3.x 抗力・揚力における出力電圧勾配の理論式

 $v_{x\ Theory}$: 理論上の抗力方向における出力電圧勾配 $v_{y\ Theory}$: 理論上の揚力方向における出力電圧勾配

 ω : 角度

3.2 座標系の回転における補正理論

 F_1 : 作用力

 θ_{x1} : 正規座標系 x 軸と座標系 [1] x'軸の角度 θ_{y1} : 正規座標系 y 軸と座標系 [1] y'軸の角度

 F_{1x} : x 軸方向作用力 F_{1y} : y 軸方向作用力 $F_{1x'}$: x' 軸方向作用力 $F_{1y'}$: y' 軸方向作用力

1. 序論

2. 実験装置

2.1 作用力測定装置

本研究において使用した実験装置の概略図および写真を以下の Fig, , Fig. に示す.

- 2.1.1 測定理論
- 2.1.2 作用力測定実験における問題点

2.2 校正実験装置

本研究において製作・使用した実験装置の概略図および写真を以下の Fig., Fig. に示す.校正装置は,作用力測定装置に取り付けられた 2 組のひずみセンサについて,作用力の角度による出力電圧の関係性を調べる目的がある.また,人為的な操作を可能な限り減らし自動化することで,不本意なノイズの削減や実験回数を多くすることを実現することができた.主に,自動一軸ステージ,自動回転ステージ,ロードセル,それらを接続するジョイントから構成される.また,作用力測定装置と構成実験装置を固定するため,フレームを製作し作用力測定装置を取り付ける.校正実験装置はアルミ板を介してフレームに取り付けることができるようになっている.設置の際には,作用力測定装置をフレーム上に設置し,作用力測定装置の回転軸と自動回転ステージの回転軸をできるだけ一致させるように調整をしながら設置することが好ましい.

Fig. 1

また,作用力測定装置のひずみセンサ,校正実験装置に取り付けられたロードセルからの出力電圧はストレインアンプを通して,ロガーへと送られ,ロガーに接続された PC へと保存される.

3. 校正理論

作用力測定装置から得た抗力方向および揚力方向における出力電圧 V_D , V_L を正規座標系の x軸方向および y 軸方向の荷重 F_x , F_y に換算する際に , 出力電圧 V_D , V_L と F_x , F_y の関係性を明らかにするための校正実験を行う必要がある.校正実験によって得られた結果を用いて関係性を明らかにするための校正理論について述べる.

3.1 作用力測定装置と校正実験装置の関係

はじめに,作用力測定装置と校正実験装置の関係について説明する.

作用力測定装置と校正実験装置の設置位置によって校正実験結果は大きく変動するため,その 影響を考慮し,補正処理を行う必要がある.このとき以下のような要因が,校正実験結果への影響を与えていると考えられる.

- (1) 作用力測定装置にひずみセンサが正確に取り付けることが難しい
- (2) 作用力測定装置が回流水槽に正確に設置することが難しい
- (3) 作用力測定装置と校正装置の回転軸を一致させることが難しい

ここで ,水流に対する座標系を正規座標系 (x,y) ,作用力測定装置の座標系を座標系 (1)(x',y') ,校正装置の座標系を座標系 (2)(x,''y'') とする .

このとき,(1) 作用力測定装置にひずみセンサを正確に取り付けることが難しいこと,(2) 作用力測定装置が回流水槽に正確に設置することが難しいことから,座標系 [1] は正規座標系に対してx' 軸は x 軸から θ_x ,y' 軸は y 軸から θ_y だけ回転している.また,座標系 [2] は正規座標系に対して x'' 軸は x 軸から y 方向に x'' 軸は x 軸から y 方向に x'' 軸は x 軸から x 方向に x0 だけオフセットを持つ状態となる.

Fig. 2

3.2 出力電圧勾配

作用力測定装置の評価にあたり,作用力測定装置に取り付けられた 2 組のひずみセンサおよび校正実験の際に作用力を与えるロードセルの出力電圧の対応関係を調べることで評価を行う.ここで,作用力測定装置において抗力方向のひずみセンサの出力電圧を V_d ,揚力方向を V_l ,ロードセルの出力電圧を V とするとき,抗力方向の出力電圧勾配を v_d ,揚力方向の出力電圧勾配を v_l とすると以下のように表すことができる.

$$v_d = V_d/V \tag{1}$$

$$v_l = V_l/V \tag{2}$$

3.3 座標系の回転における補正理論

正規座標系と座標系 [1] の回転における補正理論を説明する.ここでは,座標系のオフセットはない $(\Delta x=0$, $\Delta y=0)$ として考える.上述の通り正規座標系と座標系 [1] について,以下の Fig. のように回転角 θ_x , θ_y を持つ.ここで,作用力 F を与えるとそれぞれの方向に作用力 F_x , F_y , $F_{x'}$, $F_{y'}$ が加わる.このとき,作用力測定装置から得られる電圧 $V_{x'}$, $V_{y'}$ は作用力 $F_{x'}$, $F_{y'}$ に起因するものである.また,得られた出力電圧 $V_{x'}$, $V_{y'}$ から,ロードセルの出力電圧 V_1 を用いて出力電圧勾配 $v_{x'}$, $v_{y'}$ を求めることができる.したがって,正規座標系と座標系 [1] の関係について, v_x と $v_{x'}$ および v_y と $v_{y'}$ の関係を明らかにすれば良い,

Fig. 3

3.3.1 回転角 θ_x , θ_y の算出

はじめに,回転角 θ_x , θ_y を算出する.理論式における v_x theory 及び v_y theory は正弦波とその位相差で表すことができる.したがって,校正実験結果の各角度の出力電圧勾配においても同様の正弦波とその位相差で表すことが可能であると予想することができる.このとき,離散フーリエ変換を適用し,波数 1 の成分について,実部を Re,虚部を Im として位相角 ϕ を求めることができる.

$$\phi = \arctan\left(\frac{Im}{Re}\right) \cdot \frac{180}{\pi} \tag{3}$$

抗力方向の結果から得られた位相角を ϕ_1 , 揚力方向から得られた位相角を ϕ_2 とするとき , 抗力方向の出力電圧勾配 v_d と正規座標系における x 軸方向の出力電圧勾配の理論値 v_x theory との位相差 θ_1 , 揚力方向の出力電圧勾配 v_l と正規座標系における y 軸方向の出力電圧勾配の理論値 v_y theory との位相差 θ_2 を以下のように表される .

$$\theta_1 = \pi - \phi_1 \tag{4}$$

$$\theta_2 = \frac{\pi}{2} - \phi_2 \tag{5}$$

したがって,x' 軸,y' 軸は左回りを正方向として,それぞれ θ_1 , θ_2 だけ回転していることとなる.また,作用力測定装置に取り付けられた抗力・揚力方向のひずみセンサの取付角 ϕ_s は位相角 ϕ_1 , ϕ_2 より求めることができる.

$$\phi_s = |\phi_1 - \phi_2| \tag{6}$$

3.3.2 出力電圧勾配の座標変換

位相角 θ_1 , θ_2 が求められたことから , それらを用いて出力電圧勾配の座標変換を行う.ここで , 座標系 [1] の x' 軸 , y' 軸をそれぞれ $f_x(x)$, $f_y(x)$ として , 正規座標軸の x を用いた式で表す.

Fig. 4

算出した位相角 $heta_1$, $heta_2$ より , $f_x\left(x
ight)$, $f_y\left(x
ight)$ は以下のように表される .

$$f_x(x) = \tan \theta_1 \ x \tag{7}$$

$$f_y(x) = -\frac{1}{\tan \theta_2} x \tag{8}$$

このとき,作用力 F は,Fig. に示す点 F の座標を表すベクトルと考えることができる.また,その座標は Fig. より, $f_x\left(x\right)$, $f_y\left(x\right)$ の法線で,点 $v_{x'}$, $v_{y'}$ を通る直線, $f_{x2}\left(x\right)$, $f_{y2}\left(x\right)$ の交点であることがわかる.

ここで,ひずみゲージから得ることのできる出力電圧の傾きから, $v_{x'}$, $v_{y'}$ のベクトルの大きさ $|v_{x'}|$, $|v_{y'}|$ を得ることができる.角度 θ_1 , θ_2 が求められていることから,点 $v_{x'}$, $v_{y'}$ の座標を以下のように求めることができる.

$$v_{x'}(x,y) = (|\mathbf{v}_{x'}|\cos\theta_1, |\mathbf{v}_{x'}|\sin\theta_2) \tag{9}$$

$$v_{\mathbf{y}'}(x,y) = (-|\mathbf{v}_{\mathbf{y}'}|\sin\theta_1, |\mathbf{v}_{\mathbf{y}'}|\cos\theta_2)$$
(10)

次に,直線 $f_{x2}\left(x\right)$, $f_{y2}\left(x\right)$ を求める. $f_{x}\left(x\right)$, $f_{y}\left(x\right)$,点 $v_{x'}$, $v_{y'}$ の座標からそれぞれ以下のように算出される.

$$f_{x2}(x) = -\frac{1}{\tan \theta_1} x + \frac{|v_{x'}|}{\sin \theta_1}$$
 (11)

$$f_{y2}(x) = \tan \theta_2 \ x + \frac{|v_{y'}|}{\cos \theta_2}$$
 (12)

以上の $f_{x2}\left(x
ight)$, $f_{y2}\left(x
ight)$ から , 交点の座標 $F\left(x,y
ight)$ を求めると以下に示す .

$$x = \frac{v_{x'}\cos\theta_2 - v_{y'}\sin\theta_1}{\sin\theta_1\sin\theta_2 + \cos\theta_1\cos\theta_2}$$
 (13)

$$y = -\frac{1}{\tan \theta_1} \left(\frac{v_{x'} \cos \theta_2 - v_{y'} \sin \theta_1}{\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2} \right) + \frac{|v_{x'}|}{\sin \theta_1}$$

$$= \tan \theta_2 \left(\frac{v_{x'} \cos \theta_2 - v_{y'} \sin \theta_1}{\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2} \right) + \frac{|v_{y'}|}{\cos \theta_2}$$

$$(14)$$

したがって,正規座標系における x 軸方向の出力電圧勾配 v_x および揚力方向の v_y は,以下の ように表される.

$$v_x = \frac{v_{x'}\cos\theta_2 - v_{y'}\sin\theta_1}{\sin\theta_1\sin\theta_2 + \cos\theta_1\cos\theta_2} \tag{15}$$

$$v_{x} = \frac{v_{x'} \cos \theta_{2} - v_{y'} \sin \theta_{1}}{\sin \theta_{1} \sin \theta_{2} + \cos \theta_{1} \cos \theta_{2}}$$

$$v_{y} = -\frac{1}{\tan \theta_{1}} \left(\frac{v_{x'} \cos \theta_{2} - v_{y'} \sin \theta_{1}}{\sin \theta_{1} \sin \theta_{2} + \cos \theta_{1} \cos \theta_{2}} \right) + \frac{|v_{x'}|}{\sin \theta_{1}}$$

$$= \tan \theta_{2} \left(\frac{v_{x'} \cos \theta_{2} - v_{y'} \sin \theta_{1}}{\sin \theta_{1} \sin \theta_{2} + \cos \theta_{1} \cos \theta_{2}} \right) + \frac{|v_{y'}|}{\cos \theta_{2}}$$
(15)

以上の過程より,座標系[1]から正規座標系への変換が可能である.

3.3.3 補正理論のテストデータへの適用 (1)

上記の座標系の回転における補正理論の有用性を確かめるために,以下の式から,任意の回転角 $\theta_{1 ext{ test}}$, $\theta_{2 ext{ test}}$ を与えて座標系 [1] の出力電圧勾配について,x' 軸方向を $v_{x' ext{ test}}$,y' 軸方向を $v_{y' ext{ test}}$ としてテストデータを作成した.

$$v_{x' \text{ test}}(i) = \cos\left(\frac{\pi}{24} i + \pi - \theta_{1 \text{ test}}\right)$$
(17)

$$v_{y' \text{ test}}(i) = \cos\left(\frac{\pi}{24} i + \frac{1}{2}\pi - \theta_{2 \text{ test}}\right) (i = 1, 2, 3, \cdots)$$
 (18)

また,今回は以下の Table のようなパラメータを用いた.

 $\theta_{1 \text{ test}}$ [deg]
 $\theta_{2 \text{ test}}$ [deg]

 Case 1
 15
 20

 Case 2
 -15
 -20

 Case 3
 90
 -90

Table 1 Test data conditions

ここで, ${\it Case}~1$ に対する座標系の回転おける補正理論の適用過程について説明する.はじめに,作成したテストデータを以下の ${\it Fig.}$ に示す.

Fig. 5 Simulated data [Case 1]

Fig. をみると,理論値の曲線とプロットされたテストデータに位相差があることがわかる.こ

のとき,テストデータに離散フーリ変換を適用すると波数 1 の成分について以下の Table のような値を得ることができる.また,そのときのスペクトルを以下の Fig. に示す.

Table 2 DFT result value [Case 1]

	Re	Im
Drag	-11.591	3.106
Lift	4.104	11.276

DFT (lift)

150

150

0

1 2 3 4 5 6 7 8 9 10 11 12

Number of waves [-]

Fig. 6 DFT result (Drag) [Case 1]

Fig. 7 DFT result (Lift) [Case 1]

Fig. , Fig. より , 波数 1 についてピークがあることがわかり , データの特徴を正しく捉えられているといえる . ここで , Table について , 式 () より位相角 $\phi_{1 \text{ test}}$, $\phi_{2 \text{ test}}$ をそれぞれ算出する .

$$\phi_{1 \text{ test}} = \arctan\left(\frac{3.106}{-11.591}\right) \cdot \frac{180}{\pi} = 165.000 \text{ [deg]}$$
 (19)

$$\phi_{2 \text{ test}} = \arctan\left(\frac{11.276}{4.101}\right) \cdot \frac{180}{\pi} = 70.000 \text{ [deg]}$$
 (20)

式 () , 式 () より算出した位相角を用いて位相差 $heta_{1 ext{ test}}$, $heta_{2 ext{ test}}$ を求める .

$$\theta_{1 \text{ test}} = \pi \cdot \frac{180}{\pi} - 165.000 = 15.000 \text{ [deg]}$$
 (21)

$$\theta_{2 \text{ test}} = \frac{\pi}{2} \cdot \frac{180}{\pi} - 70.000 = 20.000 \text{ [deg]}$$
 (22)

また,位相差 $heta_{1 ext{ test}}$, $heta_{2 ext{ test}}$ より, ひずみセンサの取付角 $\phi_{s ext{ test}}$ が式 () よりわかる.

$$\phi_{s \text{ test}} = |15.000 - 20.000| = 5 \text{ [deg]}$$
 (23)

次に,位相差位相差 $\theta_{1 \text{ test}}$, $\theta_{2 \text{ test}}$,テストデータから得られる $v_{x' \text{ test}}$, $v_{xy \text{ test}}$ より,正規座標系における出力電圧勾配 v_x , v_y を式 () を用いて算出する.それぞれの角度についての算出結果を以下の Table ,Fig. ,Fig. に示す.

Table 3 Corected result of test data [Case 1]

Angle [deg]	$v_{x' \text{ test }} [V/V]$	$v_{xy \text{ test}} [V/V]$	v_x [V/V]	v_y [V/V]
0	-0.966	0.342	-1.000	0.000
15	-1.000	0.087	-0.966	-0.259
30	-0.966	-0.174	-0.866	-0.500
45	-0.866	-0.423	-0.707	-0.707
60	-0.707	-0.643	-0.500	-0.866
75	-0.500	-0.819	-0.259	-0.966
90	-0.259	-0.940	0.000	-1.000
105	0.000	-0.996	0.259	-0.966
120	0.259	-0.985	0.500	-0.866
135	0.500	-0.906	0.707	-0.707
150	0.707	-0.766	0.866	-0.500
165	0.866	-0.574	0.966	-0.259
180	0.966	-0.342	1.000	-0.000
195	1.000	-0.087	0.966	0.259
210	0.966	0.174	0.866	0.500
225	0.866	0.423	0.707	0.707
240	0.707	0.643	0.500	0.866
255	0.500	0.819	0.259	0.966
270	0.259	0.940	-0.000	1.000
285	-0.000	0.996	-0.259	0.966
300	-0.259	0.985	-0.500	0.866
315	-0.500	0.906	-0.707	0.707
330	-0.707	0.766	-0.866	0.500
345	-0.866	0.574	-0.966	0.259

Fig. 8 Corrected data (Drag) [Case 1]

Fig. 9 Corrected data (Lift) [Case 1]

Fig., Fig. をみると算出された補正値すなわち正規座標系における出力電圧勾配は,理論曲線状に位置していることが確認でき,正しく算出されていることがわかる.

また,以下の ${
m Fig.}\sim {
m Fig.}$ に, ${
m Case 2}$ および ${
m Case 3}$ におけるテストデータとその補正結果について示す.

3.3.4 テストデータ: Case 2

$\theta_{1\text{test}} = -15 \text{ [deg]}, \ \theta_{2\text{test}} = -20 \text{ [deg]}$

Fig. 10 Simulated data [Case 2]

Fig. 11 Corrected data (Drag) [Case 2]

Fig. 12 Corrected data (Lift) [Case 2]

3.3.5 テストデータ: Case 3

$$\theta_{1\text{test}} = 90 \text{ [deg]}, \, \theta_{2\text{test}} = -90 \text{ [deg]}$$

Fig. 13 Simulated data [Case 3]

Fig. 14 Corrected data (Drag) [Case 3]

Fig. 15 Corrected data (Lift) [Case 3]

ここで, Fig. ~ Fig. をみると回転角度が負の値の場合, その値が非常に大きい場合であっても問題なく補正処理が可能であることがわかる. したがって, 座標系の回転における補正理論はテストデータについて正しく機能しており正規座標系と座標系[1]の回転角および作用力測定装置のひずみセンサの取付角,正規座標系における出力電圧勾配を調べることができる.

3.4 座標系のオフセットにおける補正理論

次に,正規座標系と座標系 [2] のオフセットの補正理論を説明する.ここでは,回転角はない $(\theta_1=0$, $\theta_2=0)$ として考える.正規座標系と座標系 [2] の中心との位置関係にオフセット Δx , Δy を持つ.ここで,作用力 F を与えるとき,その作用線はオフセット Δx , Δy によって正規座標系の中心 o を通ることはなく,座標系 [2] の中心 o" を通る.このとき,作用点と点 o" を通る直線 (青点線) と x" 軸の角度を θ ,作用点と点 o を通る直線 (赤点線) と x 軸の角度を φ とする.また,作用点と点 o を通る直線 (青点線) と作用点と点 o を通る直線 (赤点線) の角度を α とする.角度 θ は校正実験時に記録される角度となる.

Fig. 16

3.4.1 角度 α の算出

供試体の半径を r とするとき,作用点 F(x,y) の座標は角度 φ を用いて以下のように表すことができる.

$$x = r\cos\varphi \tag{24}$$

$$y = r\sin\varphi \tag{25}$$

また,座標系 [2] において,作用点 F(x'',y'') の座標はオフセット Δx , Δy を用いて以下のように表される.

$$x'' = r\cos\varphi - \Delta x \tag{26}$$

$$y'' = r\sin\varphi - \Delta y \tag{27}$$

以上より,角度 θ を用いて角度 φ を求めることができる.

$$\tan \theta = \frac{y''}{x''} = \frac{r \sin \varphi - \Delta y}{r \cos \varphi - \Delta x} \tag{28}$$

$$\varphi = \theta - \sin^{-1} \left(\frac{\Delta x \sin \theta - \Delta y \cos \theta}{r} \right) \tag{29}$$

したがって,角度 α を以下のように求めることができる.

$$\alpha = \theta - \varphi = \sin^{-1}\left(\frac{\Delta x \sin\theta - \Delta y \cos\theta}{r}\right) \tag{30}$$

3.4.2 作用力 F の分解

供試体に加わる作用力 F は供試体表面の接線方向の力 F_{φ} , またその法線方向の力 F_{r} に分けて考えることができる.ロードセルから与える作用力の角度 θ , 算出した φ を用いると , それぞれ以下のように求められる .

$$F_{\varphi} = F \sin \alpha \tag{31}$$

$$F_r = F \cos \alpha \tag{32}$$

供試体への作用力について抗力方向を F_x , 揚力方向を F_y とすると角度 φ を用いて以下のように求められる .

$$F_x = -F_r \cos \varphi \tag{33}$$

$$F_{y} = -F_{r}\sin\varphi \tag{34}$$

また,接線方向成分 F_{arphi} について,供試体に対してトルクTとして作用することとなる.

$$T = F_{\varphi} \cdot r = F \sin \alpha \cdot r \tag{35}$$

ここで,このトルク T について,作用力測定装置に対する影響は十分に小さいと考えられることから無視できる.

3.4.3 出力電圧勾配の座標系変換 (2)

正規座標系に対して,オフセットを持つ座標系 [2] を基準にロードセルから与えられる作用力 F はすべて供試体に伝わることはなく,接線方向の力 F_r ,その法線方向の力 F_θ に分解される.すなわち,測定時にはロードセルから作用力 F を与えた際の出力電圧,ひずみセンサから作用力 F_r を与えた際の出力電圧を得ているということになる.したがって,ひずみセンサの出力電圧の傾きを一様に評価することは不可能であり,実際の作用力 F_r の角度 α を算出し補正を加える必要がある.

ここで,ひずみセンサの出力電圧 $V_{x''2}$, $V_{y''2}$ はそれぞれ F_r/F 倍されていると考えられることから,正規座標系における出力電圧勾配 v_x , v_y と座標系 [2] における出力電圧勾配 $v_{x''2}$, $v_{y''2}$ は角度 α を用いて以下のような関係が成立する.

$$v_x = \frac{F}{F_r} v_{x''2} = \frac{1}{\cos \alpha} v_{x''2} \tag{36}$$

$$v_y = \frac{F}{F_r} v_{y''2} = \frac{1}{\cos \alpha} v_{y''2} \tag{37}$$

3.4.4 補正理論のテストデータへの適用 (2)

以上の補正理論より,オフセットを考慮したテストデータを作成する.任意のオフセット Δx_{test} , Δy_{test} を与えて座標系 [2] の出力電圧勾配について,x'' 軸方向を $v_{x''}$ test ,y'' 軸方向を $v_{y''}$ test とするとき,以下のように表される.

$$\theta = \frac{\pi}{180} \ i \ (i = 0, 1, 2, 3, \cdots) \tag{38}$$

$$\alpha = \sin^{-1} \left(\frac{\Delta x_{\text{test}} \sin \theta - \Delta y_{\text{test}} \cos \theta}{r} \right)$$
 (39)

$$\varphi = \theta - \sin^{-1} \left(\frac{\Delta x_{\text{test}} \sin \theta - \Delta y_{\text{test}} \cos \theta}{r} \right)$$
 (40)

$$v_{x'' \text{ test}} = -\cos\alpha\cos\varphi \tag{41}$$

$$v_{y'' \text{ test}} = -\cos\alpha\sin\varphi \tag{42}$$

また,今回を以下の Table のようなパラメータを用いた.

Table 4 Test data conditions (2)

	$\Delta x_{\mathrm{test}} [\mathrm{mm}]$	$\Delta y_{\mathrm{test}} \; [\mathrm{mm}]$
Case 4	5.0	0.0
Case 5	5.0	-5.0
Case 6	10.0	-5.0

ここで, Case 4 に対する座標系の回転おける補正理論の適用過程について説明する. はじめに, 作成したテストデータを以下に示す.

Fig. 17 Simulated data [Case 4]

Fig. をみると,プロットされたテストデータは理論値の曲線とは異なる値を示している.また,波形は少し不規則な形状となっていることがわかる.

ここで, θ , Δx_{test} , Δy_{test} は既知の変数であるため式()より, α および φ を求めることができる.したがって,式()を適用した結果を以下の Table に示す.ここで, φ は正規座標系において供試体へ作用力が加えられている角度を示していることになる.

Table 5 Corected result of test data [Case 4]

Angle [deg]	$v_{x'' \text{ test }} [V/V]$	$v_{y'' \text{ test }} [V/V]$	$v_x [V/V]$	v_y [V/V]	φ [deg]
0	-0.960	0.196	-0.980	0.200	-11.5
15	-0.979	-0.066	-0.998	-0.067	3.9
30	-0.925	-0.337	-0.940	-0.342	20.0
45	-0.792	-0.594	-0.800	-0.600	36.9
60	-0.581	-0.808	-0.584	-0.812	54.3
75	-0.308	-0.950	-0.308	-0.951	72.0
90	-0.000	-1.000	-0.000	-1.000	90.0
105	0.308	-0.950	0.308	-0.951	108.0
120	0.581	-0.808	0.584	-0.812	125.7
135	0.792	-0.594	0.800	-0.600	143.1
150	0.925	-0.337	0.940	-0.342	160.0
165	0.979	-0.066	0.998	-0.067	176.1
180	0.960	0.196	0.980	0.200	191.5
195	0.881	0.432	0.898	0.441	206.1
210	0.755	0.632	0.766	0.642	220.0
225	0.594	0.792	0.600	0.800	233.1
240	0.409	0.907	0.411	0.912	245.7
255	0.208	0.977	0.208	0.978	258.0
270	0.000	1.000	0.000	1.000	270.0
285	-0.208	0.977	-0.208	0.978	282.0
300	-0.409	0.907	-0.411	0.912	294.3
315	-0.594	0.792	-0.600	0.800	306.9
330	-0.755	0.633	-0.766	0.642	320.0
345	-0.881	0.432	-0.898	0.441	333.9

Fig. 18 Corrected data (Drag) [Case 4]

Fig. 19 Corrected data (Lift) [Case 4]

 ${
m Fig.}$, ${
m Fig.}$ をみると算出された補正値は理論曲線上に位置していることがわかる.しかし,プロットされているデータの角度は φ となるため,不等間隔となってしまう.

また,以下の Fig. ~ Fig. に, Case 5 および Case 6 におけるテストデータとその補正結果について示す.

3.4.5 テストデータ: Case 5

$\Delta x_{\mathrm{test}} = 5.0 \; [\mathrm{mm}]$, $\Delta x_{\mathrm{test}} = -5.0 \; [\mathrm{mm}]$

Fig. 20 Simulated data [Case 5]

Fig. 21 Corrected data (Drag) [Case 5]

Fig. 22 Corrected data (Lift) [Case 5]

3.4.6 テストデータ: Case 6

$$\Delta x_{\mathrm{test}} = 10.0 \; [\mathrm{mm}]$$
 , $\Delta x_{\mathrm{test}} = -5.0 \; [\mathrm{mm}]$

Fig. 23 Simulated data [Case 6]

Fig. 24 Corrected data (Drag) [Case 6]

Fig. 25 Corrected data (Lift) [Case 6]

3.5 複合状態における補正理論

実際に校正実験を行う際には,座標系の回転,オフセットは同時に発生する.したがって,上記の2つの補正理論を組み合わせて補正処理を行う必要がある.

3.5.1 補正理論の適用順序

作成した補正理論について,座標系の回転角 θ_1 , θ_2 の特定の際に離散フーリエ変換を適用することから,座標系のオフセットにおける補正理論を先に適用する必要がある.また,上述のようにオフセットを考慮した場合,データ間隔が不等間隔となるため回転角を特定するための離散フーリエ変換が適用できない.したがって,ラグランジュ補間を用いて二次近似を行い,等間隔のデータを補完することとした.

3.5.2 ラグランジュ補間

ラグランジュ補間とは,一般的に以下のように表される.

(ラグランジュの補間公式の説明)

$$P(x) = \sum_{i=1}^{n+1} y_i \frac{f_i(x)}{f_i(x_i)}$$
 (43)

$$f_i(x) = \prod_{k \neq i} (x - x_k) \tag{44}$$

ここで,2次補間を行う場合,使用する3点を適切に選択する必要があるがアルゴリズムを用いて処理を行いたい.そこで,以下のような手順でラグランジュ補間を行った.

3.5.3 使用するデータの選択

校正実験では,15 度ずつ測定しているため,計 24 点のデータを得ることができる.座標系のオフセットにおける補正理論を用いた補正処理では,正規座標系における作用力とその角度が算出される.しかし,離散フーリエ変換を適用するとき,等間隔のデータが必要となるため 15 度ごとの補間値を算出しなければならない.ここで,必要な補間値の角度を θ とするとき,実際の作用力の角度 φ との差 $\delta\theta$ を絶対値で評価することで,その値 $|\delta\theta|$ が最も小さくなる角度 φ とその前後のデータを使用することで, θ に最も近い θ 点を選択することができる.

$$\delta\theta = |\theta - \varphi| \tag{45}$$

3.5.4 テストデータへの適用(3)

上述の補正理論より座標系の回転・オフセットを考慮したテストデータを作成する.任意の回転角 $\theta_{1 \text{ test}}$, $\theta_{2 \text{ test}}$,任意のオフセット Δx_{test} , Δy_{test} を与え,複合状態における出力電圧勾配について,x'' 軸方向を $v_{x'' \text{ test}}$,y'' 軸方向を $v_{y'' \text{ test}}$ とするとき,以下のように表される.

$$\theta = \frac{\pi}{180} \ i \ (i = 0, 1, 2, 3, \cdots) \tag{46}$$

$$\alpha = \sin^{-1} \left(\frac{\Delta x_{\text{test}} \sin \theta - \Delta y_{\text{test}} \cos \theta}{r} \right) \tag{47}$$

$$\varphi = \theta - \sin^{-1} \left(\frac{\Delta x_{\text{test}} \sin \theta - \Delta y_{\text{test}} \cos \theta}{r} \right)$$
 (48)

$$v_{x'' \text{ test}} = -\cos\alpha\cos\left(\varphi - \theta_{1 \text{ test}}\right) \tag{49}$$

$$v_{v'' \text{ test}} = -\cos\alpha\sin\left(\varphi - \theta_{2 \text{ test}}\right) \tag{50}$$

また,今回を以下の Table のようなパラメータを用いた.

Table 6 Test data conditions (3)

	$\theta_{1 \text{ test}} \text{ [deg]}$	$\theta_{2 \text{ test}} \text{ [deg]}$	$\Delta x_{\mathrm{test}} [\mathrm{mm}]$	$\Delta y_{\mathrm{test}} \; [\mathrm{mm}]$
Case 7	10.0	-5.0	5.00	-2.50

Case 7 に対する座標系の回転おける補正理論の適用過程について説明する.はじめに,作成したテストデータを以下に示す.

ここで,座標系のオフセットにおける補正理論を適用した結果を以下の Fig., Fig. に示す.

Fig. 27 Offset corrected value (Drag) [Case 7]

Fig. 28 Offset corrected value (lift) [Case 7]

理論曲線と比較して,波形の再現はされているが,位相差があるようにみえる.また,プロットされたデータ間隔は異なることもわかる.このとき,ラグランジュ補間を用いて,等間隔のデー

Fig. 26 Simulated data [Case 7]

タを得るための処理を行う.なお,データの採用点については上述の処理によって行うこととする.ラグランジュ補間を行った結果を以下の ${
m Fig.}$, ${
m Fig.}$ に示す.

Fig. 29 Offset corrected value (Drag) [Case 7]

Fig. 30 Offset corrected value (lift) [Case 7]

上記の Fig., Fig. と比較すると等間隔のデータを得られていることがわかる.次に,フーリエ 変換を適用する.このときの結果を以下の Fig., Fig. に示す.また,波数 1 の成分についての算 出値を以下の Table に示す.

Table 7 DFT result value [Case 7]

	Re	Im
Drag	-11.835	2.083
Lift	-1.081	11.978

DFT (lift)

150

150

50

0

1 2 3 4 5 6 7 8 9 10 11 12

Number of waves [-]

Fig. 31 DFT result (Drag) [Case 7]

Fig. 32 DFT result (lift) [Case 7]

Fig. , Fig. より , 波数 1 についてピークがあることがわかり , 座標軸の回転における補正理論の適用結果と同様にデータの特徴を正しく捉えられているといえる.ここで , Table について , 式 () , 式 () より回転角 θ_1 , θ_2 をそれぞれ算出する.

Table 8 Specified rotation angle [Case 7]

	$\theta_1 \; [\mathrm{deg}]$	$\theta_2 \; [\mathrm{deg}]$
Case 7	10.018	-5.158

結果より,算出された回転角 $\theta_{1 \text{ test}}$, $\theta_{2 \text{ test}}$ は Table の Case 7 で設定したパラメータと比較すると,異なっていることがわかる.これは,ラグランジュ補間公式を用いた 2 次近似による誤差が生じているためと考えられる.ここで,誤差を算出すると,

(誤差の算出と評価)

したがって,誤差は非常に小さいため無視できると考えられる.

また,算出した回転角 $heta_{1 ext{ test}}$, $heta_{2 ext{ test}}$ を用いて座標系の回転における補正理論を適用した結果を以下の $ext{Fig.}$,に示す.

Fig. 33 Corrected data (Drag) [Case 7]

Fig. 34 Corrected data (Lift) [Case 7]

3.6 推定理論

4. 作用力測定装置の評価実験とその考察

製作した校正実験装置を用いて行った作用力測定装置の性能評価実験について説明する.

4.1 実験方法

作用力測定装置の性能を調べるために,可能な限り多くの方向からのデータを使用した結果を得る必要があり,結果の再現性,一般性を担保するためには評価実験を複数回繰り返さなければならない.ここで,大量のデータを一度にプログラムで処理できるようにするため,測定手順を以下のように定めた.

4.2 実験条件

4.3 試行回数と測定角度

本研究で行った実験についての測定角度および試行回数を以下の Table に示す.

Condition number remarks

Angle 24 Mesurement every 15 [deg]

Number of trials 7

Table 9 Experiment conditions

4.3.1 測定条件

- (1) サンプリング周期は 5[Hz] とする
- (2) ロードセルをマイクロステージを用いて $0.03~[\mathrm{mm}]$ ずつ移動させ,ひずみセンサ,ロードセルの出力電圧を測定する
- (3) 基準を $0~\mathrm{[mm]}$ として , $0.03~\mathrm{[mm]}$, $0.06~\mathrm{[mm]}$, $0.09~\mathrm{[mm]}$, $0.12~\mathrm{[mm]}$ の計 $4~\mathrm{回移動}$ させる

4.3.2 測定準備

- (1) 自動回転ステージを用いてロードセルを測定する角度に固定する
- (2) 自動一軸ステージを用いてロードセルが供試体に接触する位置を $0.01[\mathrm{mm}]$ 単位で特定する
- (3) 接触する前の位置を基準に測定を開始する

4.3.3 測定手順

- (1) 測定開始から 60 秒間待機する
- (2) 40 秒間の出力電圧の測定

- (3) 60 秒間の自動ステージ動作時間 (自動ステージ動作後,電圧の安定を図るため)
- (4) (2) , (3) の作業を 5 回繰り返す (100 秒周期) (5 回目はロードセル , 供試体を非接触状態にする)

4.4 実験結果

上述の手順にしたがって,各角度ごとに行った測定結果を以下の ${
m Fig.}\sim {
m Fig.}$ に示す.なお,この結果は1回目の測定結果である.

Fig. 35 Output voltage: 0 [deg]

Fig. 36 Output voltage: 15 [deg]

Fig. 37 Output voltage: 30 [deg]

Fig. 38 Output voltage: 45 [deg]

Fig. 39 Output voltage: 60 [deg]

Fig. 40 Output voltage: 75 [deg]

Fig. 41 Output voltage: 90 [deg]

Fig. 42 Output voltage: 105 [deg]

Fig. 43 Output voltage: 120 [deg]

Fig. 44 Output voltage: 135 [deg]

loadcell Drag Lift 2.5 2 Output voltage [V] 1.5 0.5 0 -0.5 -1 -1.5 0 100 200 300 400 500 600 Time [s]

195.0 [deg]

Fig. 45 Output voltage: 150 [deg]

Fig. 48 Output voltage: 195 [deg]

Fig. 46 Output voltage: 165 [deg]

Fig. 49 Output voltage: 210 [deg]

Fig. 47 Output voltage: 180 [deg]

Fig. 50 Output voltage: 225 [deg]

285.0 [deg] loadcell Drag Lift 2.5 2 Output voltage [V] 1.5 1 0.5 0 -0.5 -1 -1.5 0 100 200 300 400 500 600 Time [s]

Fig. 51 Output voltage: 240 [deg]

Fig. 54 Output voltage: 285 [deg]

Fig. 52 Output voltage: 255 [deg]

Fig. 55 Output voltage: 300 [deg]

Fig. 53 Output voltage: 270 [deg]

Fig. 56 Output voltage: 315 [deg]

Fig. 57 Output voltage: 330 [deg]

Fig. 58 Output voltage: 345 [deg]

4.5 データ処理手法

実験結果から,式()の出力電圧勾配を算出する.そのために以下の手順でデータ処理を行った.

- (1) ドリフト補正
- (2) 各距離における平均値の算出
- (3) 出力電圧勾配の算出

4.5.1 ドリフト補正

性能評価実験は各角度に対して約 10 分間の測定を行うが,ストレインアンプは時間経過に対して基準の電圧が変動する場合がある.この現象をドリフトと呼ぶ.そのため,実験結果を出力電圧勾配の算出に用いる前処理として,ドリフトを考慮したデータへと変換する必要がある.

ここで , 例として 1 回目の性能評価実験 , 0 $[\deg]$ におけるロードセルの出力電圧の図 $(\mathrm{Fig.})$ を用いて説明する .

Fig. 59 Loadcell output voltage: 0 [deg]

- 4.5.2 押込距離における平均値の算出
- 4.5.3 出力電圧勾配の算出
- 5. 校正理論の適用とその結果

5.1 考察

6. 結言

今後の展望

謝辞

謝辞を述べる

付録