Question: Given an infnite collection A_n , n=1,2,3,... of intervals of the real line, their

intersection is defined to be
$$\bigcap_{n=1}^{\infty} A_n = \{x | (\forall n \in \mathbb{N})[x \in A_n]\}.$$

Give an example of a family of intervals A_n , n = 1, 2, ..., such that $A_{n+1} \subset A_n$ for all n and

$$\bigcap_{n=1}^{\infty} A_n = \{\}$$

(Idea:) Define a family of intervals A such that $A_n = [n, \infty)$

Answer:

Let A be family of sets, such that $A_n = \{x \in \mathbb{R} | n \le x\}$ where $n \ge 1$

Statement 1:
$$(\forall n \ge 1)[A_{n+1} \subset A_n]$$

proof:

for any positive integer n and real number m, it is obvious that if $n+1 \le m$ then $n \le m$ From the definition of family A, we can rephrase above statement as

$$(\forall m, n \in \mathbb{N})[m \in A_{n+1} \Rightarrow m \in A_n]$$
 which is equivalent to saying that $A_{n+1} \subseteq A_n$

:. Every set is a superset of it's succesor.

Statement 2:
$$\bigcap_{n=1}^{\infty} A_n = \{\}$$
 proof (by contradiction):

Negation statement: there exists real number p>0 such that for any natural number $n, p \in A_n$. [Note: I am not checking any negative reals since my selected sets only contain reals above one]

Let $m \in \mathbb{N}$ such that p < m.

$$p < m$$
 $\neg (m \le p)$
 $p \notin A_m$: definition of family A

- \therefore There is no real number that is common to all sets in family A
- \therefore Intersection of all sets in family A is an empty set.

扞