(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-225316

(43)公開日 平成8年(1996)9月3日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ						技術表示箇所
C01B	33/26			C 0 1	В	33/26				
COIF	7/02			C 0 1	F	7/02			Z	
	11/46					11/46			Α	
C08K	3/00	KAA		C 0 8	K	3/00		KAA		
	7/18	KCL				7/18		KCL		
			家査請求	未請求	蘭求	項の数3	FD	(全 7	頁)	最終頁に続く
(21)出願番号	— }	特顯平7-58089		(71)	人類出	000000	918			
						花王株	式会社			
(22)出願日		平成7年(1995)2月	月21日			東京都	中央区	日本福茅	場町	1丁目14番10号
	,			(72) §	初者	多路沢	正幸			
	٠					和歌山	市松が	丘3丁目	2-	18
				(72) \$	神君	阪本	惠美			
						和歌山	市西河	岸町73		
				(72) \$	神神		美喜夫	-		
								1128-34	ι	
				(72) \$	多明老	女田				
				(12/)	C 7 1 E			1.450 #	王水:	軒社宅447号
				(74) #	l est 4	、 弁理士			ب درسد	+(HL-DHI) ·J
				(14)1	心 至人	、 开摇工	. 160 (20	ישור ביל.		

(54) 【発明の名称】 球状無機粉体

(57)【要約】

【構成】屈折率が1.5~2.0、体積平均粒子径が0.1~4μmであり、かつ次の条件で測定される透過光散乱率が70%以上、全透過率が80%以上である球状無機粉体。

②屈折率1.4~1.5の分散媒中に濃度20重量%で 試料を均一分散させ、

②厚さ15 µmの薄膜を形成し、

③ヘイズメーターにより薄膜の平行光線透過率(Tp) と散乱光透過率(Td)を測定し、{Td/(Tp+Td))×100で与えられる値を透過光散乱率とし、(Tp+Td)で与えられる値を全透過率として算出する。

【効果】本発明の球状無機粉体は、透明性を維持しつつ、高い光拡散性を有するため、化粧料等に配合した場合に、白浮きを防止しつつシワなどを目立ちにくくすることができる。従って、特に化粧料等に好適に用いることができる。

1

【特許請求の範囲】

【請求項1】 屈折率が1.5~2.0、体積平均粒子 径が0.1~4μmであり、かつ次の条件で測定される 透過光散乱率が70%以上、全透過率が80%以上であ る球状無機粉体。

◎屈折率1.4~1.5の分散媒中に濃度20重量%で 試料を均一分散させ、

②厚さ15 µmの薄膜を形成し、

③ヘイズメーターにより薄膜の平行光線透過率(Tp) d))×100で与えられる値を透過光散乱率とし、 (Tp+Td)で与えられる値を全透過率として算出す

【請求項2】 組成が、BaSO、、Al, O, ·nH , O (但し、n=0~3)、及びaAl, O, ·bSi O, \cdot nH, O(但し、a/b=0.1~100, n/ (a+b)=0~10)よりなる群から選ばれる1種以 上である請求項1記載の球状無機粉体。

((粒子投影像における最大粒径相当の 【請求項3】 円の面積)/(粒子投影面積) >×100で与えられる 20 試料を均一分散させ、 球形度が、100~120である請求項1又は2記載の 球状無機粉体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、化粧料、塗料、ゴム、 プラスチックの配合成分として、基材の色むら及び表面 凹凸を見え難くするために有用な、あるいは艶消し剤と して有用な光拡散性の球状無機粉体に関する。

[0002]

より、化粧料、塗料等には基材の色むらや表面凹凸によ る輝度の差を隠すために、酸化亜鉛や酸化チタンといっ た白色顔料が隠蔽剤として使用されている。一般に、化 粧料や塗料で使われるオイルやビヒクルあるいはプラス チックなどのポリマーは屈折率が1.4~1.5の範囲 にあり、これよりも大きな屈折率を有する粒子が混在す ると、光は粒子とビヒクルとの界面で散乱現象を起こす ととが知られており、上記の白色顔料による散乱現象が 基材の色むら等を隠すのに有効だからである。しかし、 これら白色顔料はその屈折率により光散乱性が高すぎ、 透明性に劣るため、例えば化粧料に配合した場合、白浮 きや、厚化粧に見える原因となってしまう。

【0003】これに対し、適度に光を透過させるが粒子 内で光を複雑に屈折させ、散乱させる体質顔料として、 薄片状多孔質シリカ(特開昭63-166819号公 報)及び特定の板状形状を有する硫酸バリウム(特開平 3-252016号公報) などが知られている。しか し、これら板状の粉体では、例えば化粧料に配合した場 合、肌へのつきはよく、シミなどの色むらや毛穴などの

拡散性が不十分であるため、より大きなシワなどは有効 に隠すことができなかった。

【0004】本発明の目的は、透明性を維持しつつ、高 い光拡散性を有するため、化粧料等に配合した場合に、 白浮きを防止しつつシワなどを目立ちにくくすることが できる球状無機粉体を提供することにある。

[0005]

【課題を解決するための手段】本発明者らは、粒子形状 を板状でなく適度な曲率を持った球状粒子とすることに 出すと共に、適度な屈折率と粒径に制御することによ り、高い光拡散性と透明性を得ることができることを見 出し、本発明を完成するに到った。

【0006】即ち、本発明の要旨は、

(1) 屈折率が1.5~2.0、体積平均粒子径が 0.1~4μmであり、かつ次の条件で測定される透過 光散乱率が70%以上、全透過率が80%以上である球 状無機粉体、

●屈折率1.4~1.5の分散媒中に濃度20重量%で

②厚さ15 μmの薄膜を形成し、

③ヘイズメーターにより薄膜の平行光線透過率 (Tp) と散乱光透過率(Td)を測定し、{Td/(Tp+T d) }×100で与えられる値を透過光散乱率とし、 (Tp+Td)で与えられる値を全透過率として算出す

(2) 組成が、BaSO、、Al, O, ·nH, O (但し、n=0~3)、及びaAl, O, ·bSiO, ·nH₂ O (但し、a/b=0. $1\sim100$, n/(a【従来の技術および発明が解決しようとする課題】従来 30 + b) = 0 ~ 10) よりなる群から遺ばれる 1種以上で ある上記(1)記載の球状無機粉体、並びに

> (3) {(粒子投影像における最大粒径相当の円の面 積)/(粒子投影面積) × 100で与えられる球形度 が、100~120である上記(1)又は(2)記載の 球状無機粉体、に関する。

【0007】本発明において、球状無機粉体の「球状」 とは、真球状から楕円状に至るものまでを広く指し、具 体的には{(粒子投影像における最大粒径相当の円の面 積)/(粒子投影面積) >×100で与えられる球形度 40 が100~120のものをいう。但し、光拡散性の点か ら、球形度が100~115のものがより好ましい。と こで、球形度は粒子の電子顕微鏡写真を画像解析して得 られた球状指数であり、具体的には、粉体の電子顕微鏡 写真から100個以上の粒子画像をニレコ製ルーゼック スIII 型画像解析装置に取り込み、その装置の形状指数 計算プログラムによって計算された平均値である。

【0008】本発明の球状無機粉体は、屈折率が1.5 ~2. 0であり、透明性の点から、好ましくは屈折率が 1.5~1.8である。

比較的小さな凹凸を目立たなくするととはできるが、光 50 【0009】との範囲の屈折率をもつ球状粒子の材質と

しては、例えば、硫酸バリウム(屈折率1.64)、硫 酸ストロンチウム(屈折率1.63)、アルミナ(屈折 率は結晶形によって異なり、コランダムでは1.77、 ベーマイトでは1.65、ダイアスポアでは1.70、 ジプサイトでは1.57)、アルミナーシリカ複合酸化 物(例えばムライトでは1.64、シリマナイトでは 1.66、その他アルミナとシリカの組成比により1. 5~1. 77まで変化)が挙げられる。これらのうち、 組成が、BaSO、、Al, O, ·nH, O(但し、n (但し、a/b=0. $1\sim100$, n/(a+b)=0~10)よりなる群から選ばれる1種以上であるもの が、粉体の凝集の抑制および粒径制御の容易さの点から

【0010】以上の材質よりなる球状粉体は、いずれも 光拡散性が高いため、色むらや表面凹凸をほかす効果お よび艶消し効果に優れている。

【0011】また、屈折率が2.0を越える材質のもの でも、低屈折率の球状シリカや球状アルミナ母体中に複 合させて見かけの屈折率を1.5~2.0にできれば、 上記と同様に高い光拡散性と透明性を得ることができ る。従って、本発明における屈折率は、このような複合 後の見かけの屈折率を含むものである。屈折率が2.0 を越える材質としては、例えば、酸化亜鉛(屈折率2. 0)、酸化ジルコニウム(屈折率2.2)、チタン酸バ リウム(屈折率2.40)、チタン酸ストロンチウム (屈折率2、49)、チタン酸カルシウム(屈折率2. 35)、ジルコン酸カルシウム(屈折率2.14)、酸 化チタン(アナターゼでは屈折率2.52、ルチルでは 2. 76)等が挙げられる。 これらは通常 O. 1 μ m 以 30 上の粒子では反射がかなり大きくなり、透明性も得られ ないものであるが、上記のような複合化により、それを 改善することができる。

【0012】本発明の球状無機粉体は、体積平均粒子径 が $0.1 \sim 4 \mu m$ であり、好ましくは $0.3 \sim 3.5 \mu$ mである。0. 1μm未満又は4μmを超えると、光拡 散性が劣り本発明の効果が得られない。

【0013】本発明の球状無機粉体は、下記の条件で測 定される透過光散乱率が70%以上であり、好ましくは と、高い光拡散性により、化粧料等に配合した場合に、 シワや色むらなどを目立ちにくくすることができる傾向

【0014】また、下記の条件で測定される全透過率が 80%以上であり、好ましくは85~99%である。全 透過率が80%以上であると、高い透明性により、化粧 料等に配合した場合に、白浮き等を防止できる傾向があ

【0015】かかる透過光散乱率及び全透過率は次の条 件で測定される。

○屈折率1.4~1.5の分散媒中に濃度20重量%で 試料を均一分散させ、

②厚さ15μmの薄膜を形成し、

③ヘイズメーターにより薄膜の平行光線透過率 (Tp) と散乱光透過率(Td)を測定し、{Td/(Tp+T d))×100で与えられる値を透過光散乱率とし、 (Tp+Td)で与えられる値を全透過率として算出す

具体的には、試料粉体を濃度20重量%でシリコーンオ = 0~3)、及びa A l, O, · b S i O, · n H, O 10 イル (アミノ変性シリコーン: トーレシリコーン製SF 8417, 屈折率1.41) 中に均一に分散させ、これ をアプリケーターによりガラス板状に15μmの薄膜を 形成させ、ヘイズメーター(村上色彩技術研究所製HR - 100型) により測定される。

> 【0016】以上のような本発明の球状粉体の合成法 は、特に限定されるものではないが、例えば次のような 合成法によって得られる。球状硫酸バリウムや球状硫酸 ストロンチウムは、それぞれ、バリウムイオンおよびス トロンチウムイオンと水溶液中で錯形成する錯形成剤 20 (例えば、クエン酸などのヒドロキシカルボン酸やエチ レンジアミン四酢酸(EDTA)など)共存下、pHを 中性以上で、水溶性バリウム塩(例えば塩化バリウム、 硝酸バリウムなど)と水溶性硫酸塩(例えば硫酸ナトリ ウム、硫酸カリウムなど)との反応で、真球状、単分散 粒子が得られる。粒径の制御は、錯形成剤濃度、反応温 度、反応濃度、種晶添加量などでコントロール可能であ る。また、予め0. 1μm以下の微粒子硫酸バリウムを 合成しておき、この分散液を噴霧乾燥することによって も得られる。

【0017】球状アルミナは数通りの方法で合成でき る。1つは市販アルミナゾルを噴霧乾燥することによ り、容易に球状アルミナ粒子が得られる。乾燥温度によ り、または噴霧乾燥後焼成を施すことでベーマイトをァ -アルミナまたはコランダムに変えることができる。2 つ目の方法は、アルミニウムアルコキシドの加水分解反 応を利用する。例えば、オクタノール/アセトニトリル 中でアルミニウムsec-ブトキシドを加水分解すると とにより球状アルミナ水和物が得られる。3つ目の方法 は尿素により硫酸アルミニウムを中和する均一沈殿法で 75~99%である。透過光散乱率が70%以上である 40 ある。2、3番目の方法では沈殿反応によりアルミナ水 和物が得られ、これを焼成することにより無水物に変え られる。4つ目の方法は粒状アルミナ粒子の高温溶射法 または金属アルミニウム粉の髙温炎中での酸化がある。 この方法では高温のため、得られるアルミナ結晶形はほ とんどコランダムとなる。粒径の制御は、噴霧方式や噴 霧条件、反応原料の濃度、反応系溶媒、原料粉の粒径な どでコントロール可能である。

> 【0018】球状アルミナーシリカ複合酸化物は、例え ばアルミナ原料液およびシリカ原料液の任意の混合液を 50 噴霧焼成させることにより合成される(化学工業(19

92) 586、粉体工学会誌Vol. 30, No. 9 (1993) 614)。あるいは各アルコキシトの複合 体の湿式加水分解反応により、任意の組成のものを合成 できる。粒径の制御は、噴霧方式(超音波噴霧、ノズル 噴霧など) や各種噴霧条件などでコントロール可能であ

【0019】以上の方法では高温溶射法を除いて、合成 の際、基本的に0.1~100mmの超微粒子の集合体 として球状形態が形成される。従って、多孔質粉体であ るが、湿式反応条件および焼成条件により、比表面積を 10 均値を計算した。 低下させることができる。

【0020】球状硫酸バリウムの詳細な検討では、球状 粒子の粒径だけでなく、比表面積も光拡散性にとって重 要なファクターであり、0.5~4μm程度の球状硫酸 バリウムではBET比表面積が150m²/gを越える と光拡散性が著しく低下する。従って、BET比表面積 が100m゚/g以下のものが好ましい。

[0021]球状アルミナや球状アルミナーシリカ複合 酸化物でも、その光拡散性は球状粒子の粒径だけでな く、比表面積の影響を受けるが、これらの酸化物ではB20与えられる値を全透過率として算出した。 ET比表面積が150m²/gを越えても光拡散性の良 好なものがある。従って、最適な比表面積値は組成によ って異なるため、一概には決定できない。

【0022】本発明の球状粉体は、化粧料に配合される 場合、通常使用される体質顔料や着色顔料と同様に、シ リコン処理、脂肪酸石鹸処理、あるいはアルキルリン酸 エステル等による表面撥水処理、あるいはフッ素化合物 による撥水・撥油処理を行ってもよい。本発明の球状粉 体はこれらの処理によって光拡散性が損なわれるもので である。

[0023]

【実施例】以下、実施例、比較例により本発明をさらに 詳しく説明するが、本発明はこれらの実施例等によりな んら限定されるものではない。尚、表中に示す値は次の ようにして測定した。

【0024】(1)体積平均粒子径

体積平均粒子径は、乾燥粉体をポリアクリル酸ナトリウ ム (花王製、ポイズ350)の0. 1重量%水溶液に分 散させ、粒度分布測定装置(堀場製作所製、LA-70 0型)により、体積平均粒子径を求めた。

(2)球形度

球形度は、粉体の電子顕微鏡写真から100個以上の粒 子画像をニレコ製ルーゼックスIII 型画像解析装置に取 り込み、その装置の形状指数計算プログラムによって平

(3)透過光散乱率と全透過率

試料粉体を濃度20重量%でシリコーンオイル(アミノ 変性シリコーン:トーレシリコーン製SF8417,屈 折率1.41)中に均一に分散させ、これをアプリケー ターによりガラス板状に15μπの薄膜を形成させ、へ イズメーター(村上色彩技術研究所製HR-100型) により、薄膜の平行光線透過率(Tp)と散乱光透過率 (Td)を測定し、 (Td/(Tp+Td)) × 100 で与えられる値を透過光散乱率とし、(Tp+Td)で

【0025】実施例1(球状硫酸パリウム) 2 L セパラブルフラスコ中で、クエン酸ナトリウムと塩 化バリウムの混合水溶液を攪拌しておき、これに塩化バ リウムと等モルの硫酸ナトリウム水溶液を10秒以内で 投入した。この反応液総濃度はそれぞれ0.008mo 1/L、0.007mol/L、および0.007mo 1/Lであった。硫酸ナトリウム水溶液投入後数秒~数 10秒の誘導期間の後に反応液が白濁した。1時間攪拌 後、濾過、洗浄し、100℃で乾燥した。また、種々の はなく、化粧料用体質顔料として有効に利用できるもの 30 粒径の球状硫酸バリウムを得るため、クエン酸ナトリウ ム濃度を変化させ、および反応前に予め球状硫酸バリウ ムの種晶を添加して合成した。実験条件および得られた 球状硫酸バリウムの物性を表1にまとめて示す。

[0026]

【表】】

実施例		体積平均 粒子径 (μm)	球形度	BET 比表面数	透過光 散乱率 (%)	全透過率 (%)
1	34	1.7	107	49.5	80.7	88. 3
屈折率 (1.64)	球状硫酸パ	2. 3	106	31.0	76. 4	87. 9
(1.04)	蔵	3. 0	112	21.2	72.5	90. 2
	ハリウム	0.8	120	57. 1	70.0	86. 8
	L	0. 9	115	43. 3	78. 0	88.2
		2. 0	114	25. 7	80.2	89. 4
		1.0	114	29. 6	77.1	88.8
		1.2	117	39. 9	75. 4	89. 3
		8. 5	108	19. 8	70.3	90. 1
2 屈折率 (1.69)	球状アッ	1. 3	105	190	83. 1	85. 9
3 屈折率 (1.65)	ルミナ	0.8	110	187	70. 1	90. 2

【0027】表1からわかるように、球状硫酸バリウム の粒径については、0.9~2.3 μmの範囲が最も光 拡散性が高かった。

【0028】また、得られた粒子の典型的な電子顕微鏡 写真を図1に示す。図1からわかるように、この方法で 得られる球状硫酸バリウムは、真球状に近く、単分散で 凝集の無い粉体であった。

【0029】実施例2 (球状アルミナ)

オン交換水で希釈し1重量%ゾルとし、これをN、4L /min気流下、乾燥温度600℃で超音波噴霧乾燥を 行った。得られた球状アルミナの物性を表1に、その電 子顕微鏡写真を図2に示す。なお、得られた粉末のX線 回折および熱分析から、結晶相はィーA1、〇、を主体 とし、組成はAl, O, ·O. 2H, Oであった。

【0030】実施例3(球状アルミナ)

2 Lセパラブルフラスコ中で硫酸アルミニウムと尿素の*

*混合水溶液を撹拌した。それぞれの濃度は0.001m o 1/Lおよび0.075mo1/Lであった。との容 液を100℃で2時間加温し、濾過、水洗後、100℃ で乾燥した。得られた球状アルミナの物性を表1に示 す。なお、得られた粉末の組成はA1,O,・1.7H **, Oであった。**

【0031】実施例4(球状アルミナーシリカ複合酸化 物の合成)

日産化学アルミナゾルー520(20重量%ゾル)をイ 30 アルミナゾル(日産化学製、アルミナゾルー520)お よびシリカゾル(日産化学製、スノーテックス〇)のそ れぞれの希釈液を任意の割合で混合し、超音波噴霧乾燥 を行った。乾燥および乾燥後の焼成は適宜温度を変えて 行い、種々の球状粒子を合成した。その物性を表2に示

[0032]

【表2】

球状アルミナーシリカ複合酸化物

ファル製造版化例									
実施例	粗 成*		屈折率	体體平均 粒子径	球形度	透過光	全透過率		
例	a/b	n/(a+b)		粒子佳 (μm)		透過光 飲乱率 (%)	(%)		
4	0.3	0.1	1.52	0.8	109	70. 1	88. 5		
	1.0	1.2	1.58	2. 1	118	70.5	87. 4		
	3. 0	2.5	1.61	1. 3	117	73. 4	87. 0		
	10	2. 1	1.63	1.7	110	80. 3	84. 8		
	100	0.3	1.70	2. 9	109	84. 5	85. 2		

*:組成式 aAl₂O₃・bSiO₂・nH₂Oとしたときの係数の比

【0033】比較例1~5

50 比較例1として板状硫酸バリウムを、比較例2として粒

径の大きい球状硫酸バリウムを、比較例3として粒径の 大きい球状アルミナを、比較例4として屈折率の大きい 球状酸化チタンを、比較例5として屈折率の小さい球状 シリカを、それぞれ、透過光散乱率と全透過率の値と共米

* に表3に示す。 [0034] 【表3】

比較例		体積平均 粒子径 (μm)	透過光 散乱率 (%)	全透過率 (%)
1	板状硫酸バリウム 屈折率 (1.64)	3. 3	47.7	88. 6
2	球状硫酸パリウム 屈折率 (1.64)	4. 3	60. 8	89. 2
3	球状アルミナ 屈折率 (1.77)	4. 5	62. 1	90. 3
4	球状酸化チタン 屈折率 (2.52)	0.6	78.5	49. 2
5	球状シリカ 屈折率(1.44)	2. 9	43. 1	94. 0

Ж

【0035】表1~表2の結果より、本発明の球状無機 粉体は、いずれも高い透過光散乱率と全透過率が得られ の硫酸バリウム(比較例1)、粒径の大きい球状硫酸バ リウム(比較例2)、粒径の大きい球状アルミナ(比較 例3)、屈折率の小さい球状シリカ(比較例5)では、 いずれも十分な透過光散乱率が得られないことがわかっ た。また、屈折率の大きい球状酸化チタン(比較例5) では、全透過率が極端に低かった。

[0036]

※【発明の効果】本発明の球状無機粉体は、透明性を維持 しつつ、高い光拡散性を有するため、化粧料等に配合し るととがわかった。これに対し、表3の結果より、板状 20 た場合に、白浮きを防止しつつシワなどを目立ちにくく することができる。従って、特に化粧料等に好適に用い ることができる。

【図面の簡単な説明】

【図1】図1は、実施例1で得られた球状硫酸バリウム の粒子構造を示す写真である。

【図2】図2は、実施例2で得られた球状アルミナの粒 子構造を示す写真である。

14

【図1】

薬

[図2]

四萬代用写真

フロントページの続き

(51)Int.Cl. 識別記号 庁内整理番号 FΙ 技術表示箇所 A 6 1 K 7/00 // A 6 1 K 7/00 В L

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08225316 A

(43) Date of publication of application: 03.09.96

(51) Int. CI

C01B 33/26

C01F 7/02

C01F 11/46

C08K 3/00 C08K 7/18

// A61K 7/00

(21) Application number: 07058089

(22) Date of filing: 21.02.95

(71) Applicant

KAO CORP

(72) Inventor.

YUZAWA MASAYUKI SAKAMOTO EMI SAKAGUCHI MIKIO

YODA KOJI

(54) SPHERICAL INORGANIC POWDER

(57) Abstract:

PURPOSE: To provide the subject powder having transparency and high light- scattering property and, accordingly, useful as an additive for cosmetics, etc., effective for masking the wrinkles while preventing the white appearance.

CONSTITUTION: This spherical inorganic powder has a having a thickness of 15µm. refractive index of 1.5-2.0, a volume-average particle diameter of 0.1-4 µm and a transmitted light scattering COPYRIGHT: (C)1996, JPO

ratio of \$70\% and a total transmittance of \$80\%. The transmitted light scattering ratio and the total transmittance are defined by the formulas, {Td/(Tp+ Td) $_{x}$ 100 and (Tp+Td), respectively, wherein Tp is a parallel light transmittance and Td is a scattered light transmittance measured by a haze meter on a thin film produced by uniformly dispersing a specimen in a dispersion medium having a refractive index of 1.4-1.5 at a concentration of 20wt.% and forming a thin film