TUGAS RANCANG BUSINESS INTELLIGENCE COVID-19 WORLD VACCINATION PROGRESS MENGGUNAKAN

REGRESSION LINEAR

Dosen: Ramos Somya, S.Kom., M.Cs.

Diusulkan oleh:

Andrew C. Handoko (672019250)

Arya Damar Pratama (672019227)

Deffa Ferdian Alif Utama (672019163)

Elifas Gavra Harnanda (672019223)

Zefanya Ardika (672019225)

UNIVERSITAS KRISTEN SATYA WACANA FAKULTAS TEKNOLOGI INFORMASI TEKNIK INFORMATIKA

2022

DAFTAR ISI

DAFTAR ISI	
ABSTRAK	2
BAB I PENDAHULUAN	3
1.1 Latar belakang	
1.2 Tujuan	3
1.3 Manfaat	3
BAB II PERANCANGAN	4
2.1 Pemodelan Data Warehouse	4
2.2 Aplikasi	5
BAB III PEMBAHASAN	6
3.1 Proses ETL	6
3.1.1 Extract	6
3.1.2 Transform	7
3.1.3 Loading	9
3.2 OLAP	
3.2.1 Slicing & Dicing	
3.2.2 Roll up & Drill down	17
3.2.3 Pivot	
3.2.4 Filtering	20
3.3 Hasil Aplikasi	21
3.3.1 Perhitungan Aplikasi	25
3.3.2 Perhitungan Manual	26
3.3.3 Rules	27
BAB IV PENUTUP	28
4.1 Simpulan	28

ABSTRAK

Seiring berkembangnya virus Covid-19 yang terjadi di Wuhan dan berkembang di seluruh dunia, Pencegahan penyebaran virus Covid-19 salah satunya dilakukan dengan vaksinasi yang dilakukan hampir di seluruh negara. vaksin mempunyai macam-macam jenis yang berbeda oleh karena itu negara bebas dalam menentukan jenis vaksin yang ingin digunakan. Oleh sebab itu melalui proses vaksinasi yang dilakukan setiap negara membuat bertambah banyaknya data yang belum dikelompokkan yang sebenarnya data tersebut dapat dianalisis dan dijadikan sebuah informasi dalam menentukan sebuah kebijakan oleh karena itu pembuatan tugas ini bertujuan untuk menghasilkan sebuah sistem data *warehouse* yang dapat digunakan untuk pengambilan dan analisa data yang cepat agar dapat mengakses dan menanyakan data yang relevan untuk menginformasikan mengenai rekam jejak vaksinasi setiap negara. Dan bertujuan untuk mencari hubungan antar rasio vaksinasi dan angka kematian menggunakan regresi liner.

Kata Kunci: SARS-CoV-2, Analisis Data, Data Warehousing, Vaksinasi, Regresi linear

ABSTRACT

Along with the development of the Covid-19 virus that occurred in Wuhan and developed throughout the world, one of the ways to prevent the spread of the Covid-19 virus is through vaccinations that are carried out in almost all countries. There are various types of vaccines, therefore countries are free to determine the type of vaccine they want to use. Therefore, through the vaccination process carried out by each country, there is an increase in the number of data that has not been grouped, which actually can be analyzed and used as information in determining a policy. Therefore, making this task aims to produce a data warehouse system that can be used for retrieval and rapid data analysis in order to access and query relevant data to inform each country's vaccination track record. And aims to find the relationship between vaccination ratio and mortality rate using linear regression

Keywords: SARS-CoV-2, Data Analysis, Data Warehousing, Vaccination, Linear regression

BABI

PENDAHULUAN

1.1 Latar Belakang

Virus Covid-19 yang saat ini sedang mewabah dengan perkembangan yang sangat cepat di seluruh dunia, menyebabkan terjadinya pandemi dimana-mana. Banyak cara pencegahan telah dilakukan, dimana salah satunya adalah dengan vaksinasi. Vaksin merupakan suatu cara khusus yang digunakan untuk meningkatkan kekebalan tubuh seseorang terhadap suatu penyakit, dengan cara memasukkan cairan vaksin khusus ke dalam tubuh. Vaksinasi Covid-19 sendiri bertujuan untuk membangun sebuah kekebalan tubuh (*herd immunity*) agar masyarakat dapat menjalani kesehariannya dengan normal dan produktif kembali.

Vaksin Covid-19 sendiri mempunyai beberapa jenis, dimana beberapa jenis vaksin tersebut seperti Sinovac, AstraZeneca, Sinopharm, Moderna dan lain sebagainya. Dengan banyaknya jenis vaksin dan tiap negara tentu menggunakan jenis vaksin dan jumlah yang berbeda. Serta jumlah masyarakat yang harus mendapatkan vaksin di tiap negara juga berbeda. Maka dari itu suatu tempat untuk menampung tiap data agar bisa dianalisis diperlukan. Sehingga data-data tersebut harus dibuatkan sebuah *warehouse* untuk dapat melihat informasi secara mendalam. Hal ini diperlukan agar pengelola maupun instansi yang bersangkutan dapat mengelola, menganalisis dan mendapat gambaran kondisi dari informasi mengenai vaksinasi.

Dalam pengerjaan ini, kelompok kami menggunakan data yang diambil dari website *Kaggle*. Dengan dataset yang berjudul "*Covid-19 World Vaccination Progress*". Data yang kami peroleh ini masih perlu dilakukan normalisasi menjadi beberapa tabel yang kemudian dapat diolah.

1.2 Tujuan

Tujuan dari pembuatan tugas ini adalah untuk membangun data *warehouse* penyebaran vaksinasi di dunia. Yang bertujuan untuk menyampaikan informasi vaksinasi setiap negara berupa nama negara, kode negara, tanggal ,total vaksinasi, jumlah orang yang telah di vaksin, vaksin yang digunakan dan vaksin yang telah dilakukan perhari yang sebelumnya terlebih dahulu diolah menggunakan cara *slicing*, *dicing*, *roll up* dan *drill down* yang merupakan cara pengolahan dari teknik OLAP.

1.3 Manfaat

Dalam perancangan ini diharapkan dapat memetakan persebaran vaksinasi yang sudah terjadi di seluruh belahan dunia ini, terlebih pada setiap negara yang sudah melakukan vaksinasi, yang dimana dapat diketahui sudah seberapa masif dan meratanya penyebaran vaksinasi pada setiap bagian negara.

BAB II

PERANCANGAN

2.1 Pemodelan Data Warehouse

Untuk pemodelan Data Warehouse menggunakan pendekatan dengan skema *Star*, dimana Tabel fakta akan menyimpan data-data utama sementara tabel dimensi mendeskripsikan setiap nilai dari suatu dimensi dan dapat direlasikan ke tabel fakta jika diperlukan dan terdapat satu tabel fakta (fact table) di pusat bintang dengan beberapa tabel dimensi (dimensional tables) yang mengelilinginya diantaranya *Vaccines, Country, Implementation, Data_Source, Case, Population.*

Gambar 2.1.1 *Entity Relationship DIagram (ERD)*

Gambar 2.1.2 Entity Relationship Model (ERM)

2.2 Aplikasi

Untuk aplikasinya disini kami menggunakan Google Collaboratory untuk mengolah data yang ada menggunakan algoritma linear regression dengan tujuan mendapatkan data yang valid antara hubungan Vaccination rate dengan kasus angka kematian (new deaths) dengan akurat dan mengurangi human error.

Berikut tutorial pengolahan data menggunakan Google Collaboratory:

Gambar 2.2.1 Tutorial pengolahan data menggunakan Google Colaboratory

Pertama kali kita akan menganalisa sebuah permasalahan yaitu Wabah COVID-19 telah membuat seluruh negara bertekuk lutut. Lebih dari 4,5 juta orang telah meninggal berdasarkan dataset yang ada, dan satu-satunya jalan keluar yang dapat dilakukan dari bencana ini adalah dengan memvaksinasi semua bagian masyarakat. Terlepas dari kenyataan bahwa manfaat vaksinasi telah terbukti di seluruh negara, meskipun ada kelompok anti-vaksin bermunculan di berbagai negara.setelah itu kumpulkan data-data yang dibutuhkan diantaranya data vaksinasi, data populasi manusia di seluruh negara dan data angka kematian yang disebabkan oleh COVID-19, setelah datanya telah dikumpulkan maka setelah itu data-data tersebut digabungkan berdasarkan tiap-tiap negaranya, setelah itu dilakukan proses modelling menggunakan algoritma regresi linear yaitu dengan mengambil 2 variabel X yaitu Vaccination rate dan Y yaitu new deaths dan tahap terakhir yaitu melakukan evaluasi yaitu untuk mengukur seberapa besar akurasi dari model yang dibuat dengan mengambil salah satu contoh negara.

BAB III

PEMBAHASAN

3.1 Proses ETL

ETL merupakan singkatan dari *Extract Transform Loading* yaitu dimulai dari *extract data* yang merupakan pengambilan data mentah dari sumber data yang telah diambil lalu *transform* data adalah merubah data sesuai dengan kebutuhan seperti merubah data ke numerik dengan proses perhitungan lalu langkah terakhir *loading* data guna menampung sistem data ke data *warehouse*. Ke-3 hal tersebut merupakan pondasi awal data *analytics* dan *machine learning* yang bertujuan untuk menganalisis dan mengorganisir data.

3.1.1 *Extract*

Awal langkah proses ETL yaitu ekstraksi . Data harus diekstrak terlebih dahulu dari sumbernya sebelum dipindahkan ke tempat yang lain. Pada langkah pertama proses ETL ini, data terstruktur dan tidak terstruktur diimpor dan dikonsolidasikan ke dalam satu wadah penyimpanan.

A	В	C	D	E	F	G	Н		J	
country	iso code	Date ID	date	total vaccinated	people fully vaccinated	daily vaccinations	vaccines_id	vaccines-name	source name	source website
Afghanistan	AFG		1 2/22/2021)			1 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		2 2/23/2021			136	7	2 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		3 2/24/2021			136		3 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		4 2/25/2021			136	7	4 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		5 2/26/2021			136	7	 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing 	World Health Organization	https://covid19.who.in
Afghanistan	AFG		6 2/27/2021			136	7	6 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		7 2/28/2021	8200)	136	7	7 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		8 3/1/2021			158)	8 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		9 3/2/2021			179	ı	9 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		10 3/3/2021			200	3	10 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.in
Afghanistan	AFG		11 3/4/2021			222	1	11 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		12 3/5/2021			243	5	12 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		13 3/6/2021			264	9	13 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beiging	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		14 3/7/2021			286	2	14 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		15 3/8/2021			286	2	15 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beising	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		16 3/9/2021			286	2	16 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	3	17 3/10/2021			286	2	17 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://cavid19.who.ir
Afghanistan	AFG		18 3/11/2021			286	2	18 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		19 3/12/2021			286	2	19 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	20 3/13/2021			286	2	20 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	21 3/14/2021			286	2	21 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	22 3/15/2021			286	2	22 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 5	23 3/16/2021	54000)	286	2	23 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	24 3/17/2021			288	2	24 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	25 3/18/2021			290	2	25 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 1	26 3/19/2021			292		26 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	27 3/20/2021			294		27 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	28 3/21/2021			296	1	28 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG	- 2	29 3/22/2021			298		29 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://cavid19.who.ir
Afghanistan	AFG	3	30 3/23/2021			300		30 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		31 3/24/2021			300		31 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		32 3/25/2021			300		32 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		33 3/26/2021			300		33 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		34 3/27/2021			300		34 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		35 3/28/2021			300		35 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir
Afghanistan	AFG		36 3/29/2021			300		36 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing	World Health Organization	https://covid19.who.ir

Gambar 3.1.1.1 Data Extracting data vaksinasi

Δ	Α	В	C	D	E	F	G	Н	
	Date_reported	Country_code	Country	WHO_region	New_cases	Cumulative_cases	New_deaths	Cumulative_deaths	
	1/3/2020	AF	Afghanistan	EMRO	0	0	0	0	
3	1/4/2020	AF	Afghanistan	EMRO	0	0	0	0	
١	1/5/2020	AF	Afghanistan	EMRO	0	0	0	0	
	1/6/2020	AF	Afghanistan	EMRO	0	0	0	0	
	1/7/2020	AF	Afghanistan	EMRO	0	0	0	0	
	1/8/2020	AF	Afghanistan	EMRO	0	0	0	0	
	1/9/2020	AF	Afghanistan	EMRO	0	0	0	0	
	1/10/2020	AF	Afghanistan	EMRO	0	0	0	0	
)	1/11/2020	AF	Afghanistan	EMRO	0	0	0	0	
1	1/12/2020	AF	Afghanistan	EMRO	0	0	0	0	
2	1/13/2020	AF	Afghanistan	EMRO	0	0	0	0	
3	1/14/2020	AF	Afghanistan	EMRO	0	0	0	0	
4	1/15/2020	AF	Afghanistan	EMRO	0	0	0	0	
5	1/16/2020	AF	Afghanistan	EMRO	0	0	0	0	
5	1/17/2020	AF	Afghanistan	EMRO	0	0	0	0	
7	1/18/2020	AF	Afghanistan	EMRO	0	0	0	0	
3	1/19/2020	AF	Afghanistan	EMRO	0	0	0	0	
9	1/20/2020	AF	Afghanistan	EMRO	0	0	0	0	
)	1/21/2020	AF	Afghanistan	EMRO	0	0	0	0	
Ī	1/22/2020	AF	Afghanistan	EMRO	0	0	0	0	
2	1/23/2020	AF	Afghanistan	EMRO	0	0	0	0	
3	1/24/2020	AF	Afghanistan	EMRO	0	0	0	0	
ı	1/25/2020	AF	Afghanistan	EMRO	0	0	0	0	
,	1/26/2020	AF	Afghanistan	EMRO	0	0	0	0	
5	1/27/2020	AF	Afghanistan	EMRO	0	0	0	0	
,	1/28/2020	AF	Afghanistan	EMRO	0	0	0	0	
3	1/29/2020	AF	Afghanistan	EMRO	0	0	0	0	
9	1/30/2020	AF	Afghanistan	FMRO	0	0	0	0	

Gambar 3.1.1.2 Data Extracting data WHO-Covid-19

1	Α	В	С	D	E	F	G	Н	1	J	K	l
1	iso_code	country	2021_last_updated	2020_population	area	density_sq_km	growth_rate	world_%	rank			
2	CHN	China	1,447,065,329	1,439,323,776	9,706,961 sq_km	149/sq_km	0.34%	18.34%	1			
3	IND	India	1,401,310,563	1,380,004,385	3,287,590 sq_km	424/sq_km	0.97%	17.69%	2			
4	USA	United States	334,058,426	331,002,651	9,372,610 sq_km	36/sq_km	0.58%	4.23%	3			
5	IDN	Indonesia	278,037,263	273,523,615	1,904,569 sq_km	145/sq_km	1.04%	3.51%	4			
6	PAK	Pakistan	227,724,796	220,892,340	881,912 sq_km	255/sq_km	1.95%	2.86%	5			
7	BRA	Brazil	214,832,901	212,559,417	8,515,767 sq_km	25/sq_km	0.67%	2.72%	6			
8	NGA	Nigeria	214,507,696	206,139,589	923,768 sq_km	229/sq_km	2.55%	2.68%	7			
9	BGD	Bangladesh	167,247,491	164,689,383	147,570 sq_km	1,127/sq_km	0.98%	2.11%	8			
10	RUS	Russia	145,899,956	145,934,462	17,098,242 sq_km	9/sq_km	-0.02%	1.85%	9			
11	MEX	Mexico	131,046,075	128,932,753	1,964,375 sq_km	66/sq_km	1.03%	1.65%	10			
12	JPN	Japan	125,802,521	126,476,461	377,930 sq_km	334/sq_km	-0.34%	1.60%	11			_
13	ETH	Ethiopia	119,590,501	114,963,588	1,104,300 sq_km	107/sq_km	2.53%	1.50%	12			
14	PHL	Philippines	111,913,102	109,581,078	342,353 sq_km	324/sq_km	1.34%	1.41%	13			
15	EGY	Egypt	105,390,688	102,334,404	1,002,450 sq_km	104/sq_km	1.88%	1.32%	14			
16	VNM	Vietnam	98,655,916	97,338,579	331,212 sq_km	296/sq_km	0.85%	1.25%	15			
17	TUR	Turkey	85,484,777	84,339,067	783,562 sq_km	109/sq_km	0.83%	1.08%	17			
18	IRN	Iran	85,627,052	83,992,949	1,648,195 sq_km	52/sq_km	1.23%	1.08%	18			
19	DEU	Germany	83,975,691	83,783,942	357,114 sq_km	235/sq_km	0.14%	1.07%	19			
20	THA	Thailand	70,039,646	69,799,978	513,120 sq_km	136/sq_km	0.22%	0.89%	20			
21	GBR	United Kingdom	68,401,087	67,886,011	242,900 sq_km	281/sq_km	0.47%	0.87%	21			
22	FRA	France	65,520,147	65,273,511	551,695 sq_km	119/sq_km	0.23%	0.83%	22			
23	TZA	Tanzania	62,539,416	59,734,218	945,087 sq_km	65/sq_km	2.95%	0.78%	23			
24	ITA	Italy	60,320,493	60,461,826	301,336 sq_km	200/sq_km	-0.16%	0.77%	24			
25	ZAF	South Africa	60,474,550	59,308,690	1,221,037 sq_km	49/sq_km	1.24%	0.76%	25			
26	KEN	Kenya	55,703,607	53,771,296	580,367 sq_km	95/sq_km	2.26%	0.70%	26			
27	MMR	Myanmar	55,037,700	54,409,800	676,578 sq_km	81/sq_km	0.73%	0.70%	27			

Gambar 3.1.1.3 Data Extracting data 2021_Population

3.1.2 Transform

Kemudian transform yaitu pembersihan dan mempersiapkan agregasi untuk analisis. Langkah ini sangat penting dalam proses ETL karena membantu memastikan data yang akan diolah sepenuhnya siap dan kompatibel.

Gambar 3.1.2.1 Data transform data vaksinasi menjadi tabel fakta_vaksinasi

Gambar 3.1.2.2 Data transform data vaksinasi menjadi tabel vaccines

Gambar 3.1.2.3 Data *transform* data vaksinasi menjadi tabel Implementations

Gambar 3.1.2.4 Data transform data vaksinasi menjadi tabel country

Gambar 3.1.2.5 Data transform data vaksinasi menjadi tabel data source

Gambar 3.1.2.6 Data transform data vaksinasi menjadi tabel case

4	Α	В	С	D	Е	F	G	Н
1	Population_ID	iso_code	country	2021_last_updated				
2	1	CHN	China	1,447,065,329				
3	2	IND	India	1,401,310,563				
4	3	USA	United States	334,058,426				
5	4	IDN	Indonesia	278,037,263				
6	5	PAK	Pakistan	227,724,796				
7	6	BRA	Brazil	214,832,901				
8	7	NGA	Nigeria	214,507,696				
9	8	BGD	Bangladesh	167,247,491				
10	9	RUS	Russia	145,899,956				
11	10	MEX	Mexico	131,046,075				
12	11	JPN	Japan	125,802,521				
13	12	ETH	Ethiopia	119,590,501				
14	13	PHL	Philippines	111,913,102				
15	14	EGY	Egypt	105,390,688				
16	15	VNM	Vietnam	98,655,916				
17	16	TUR	Turkey	85,484,777				
18	17	IRN	Iran	85,627,052				
19	18	DEU	Germany	83,975,691				
20	19	THA	Thailand	70,039,646				
21	20	GBR	United Kingdom	68,401,087				
22	21	FRA	France	65,520,147				
23	22	TZA	Tanzania	62,539,416				
24	23	ITA	Italy	60,320,493				
25	24	ZAF	South Africa	60,474,550				
26	25	KEN	Kenya	55,703,607				
27	26	MMR	Myanmar	55,037,700				
28	27	KOR	South Korea	51,331,264				
29	28	COL	Colombia	51.504.213				

Gambar 3.1.2.7 Data transform data 2021_population menjadi tabel Population

3.1.3 Loading

Terakhir adalah loading yaitu data yang sudah diubah kemudian dipindah dari area *staging* ke data *warehouse* target. Biasanya, langkah ini mencakup *loading* awal data keseluruhan, diikuti dengan *loading* berkala terhadap perubahan data hingga *refresh* data untuk menghapus atau mengganti data dalam *warehouse*.

Gambar 3.1.3.1 Proses extract data menjadi data berbentuk .csv

Gambar 3.1.3.2 Proses memasukkan extract data ke dalam data warehouse

Gambar 3.1.3.3 Hasil view tabel vaccines dalam data warehouse

Gambar 3.1.3.4 Hasil view tabel country dalam data warehouse

Gambar 3.1.3.15 Hasil view tabel data_source dalam data warehouse

Gambar 3.1.3.6 Hasil view tabel implementations dalam data warehouse

Gambar 3.1.3.7 Hasil view tabel data_fakta_vaksinasi dalam data warehouse

Gambar 3.1.3.9 Hasil view tabel population dalam data warehouse

3.2 OLAP

OLAP Data Cube adalah representasi data yang dapat dilihat dari berbagai dimensi. Bentuk kubus adalah representasi yang digunakan untuk view data yang dapat dilihat dari 3 dimensi yang berbeda. OLAP Data Cube memiliki beberapa operasi yang dapat dilakukan untuk merubah view data. Beberapa operasi tersebut antara lain :

3.2.1 Slicing & Dicing

Slice adalah operasi OLAP yang membentuk sub-cube dari sebuah OLAP data cube dengan memilih satu *dimension* yang spesifik. Sedangkan *Dice* adalah operasi OLAP yang membentuk sub-cube dari OLAP data cube dengan memilih lebih dari satu *dimension* yang spesifik.

SELECT tb_country.country.tb_implementation.date,tb_vaccines.vaccines FROM ((tb_country JOIN tb_implementation ON tb_country_id = tb_implementation.date_ID)JOIN tb_vaccines ON tb_country_id = tb_vaccines_vaccines_ID);

Gambar 15. Kueri 1 Slicing

+ Options		
country	date	vaccines
Afghanistan	2021-02-22	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-02-23	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-02-24	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-02-25	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-02-26	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-02-27	${\sf Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-02-28	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-01	${\sf Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-02	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-03	${\it Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-04	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-03-05	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-06	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-03-07	${\sf Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-08	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-09	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-10	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTe
Afghanistan	2021-03-11	${\it Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Afghanistan	2021-03-12	.lohnson&.lohnson Oxford/AstraZeneca Pfizer/BioNTe

Gambar 16. Hasil dari Kueri 1 Slicing

Pada proses Slicing, kami menggabungkan table country dengan table implementation dan vaccines untuk melakukan filter subset data dari sebuah OLAP cube. Pada percobaan Slicing kali ini penulis mengambil nama kota pada table country untuk mengidentifikasi atau untuk mengetahui negara-negara yang sedang melakukan vaksinasi dengan melihat tanggal yang diambil dari table implementation kolom date dan melihat jenis vaksin yang digunakan dengan mengambil data dari table vaccines.

SELECT country, total_vaccinated FROM tb_fakta_vaksinasi WHERE total_vaccinated IS NOT NULL AND total_vaccinated != 0;

Gambar 17. Kueri 2 Slicing

country	total_vaccinated
Afghanistan	8200
Afghanistan	54000
Afghanistan	120000
Afghanistan	240000
Afghanistan	448878
Afghanistan	470341
Afghanistan	476367
Afghanistan	479372
Afghanistan	479574
Afghanistan	480226
Afghanistan	481690
Afghanistan	481800
Afghanistan	482952

Gambar 18. Hasil dari Kueri 2 Slicing

Pada proses tersebut penulis ingin mengetahui nama negara yang memiliki nilai total_vaccinated bukan yang bernilai kosong maka dari itu perintah yang digunakan adalah SELECT kolom yang akan digunakan yaitu negara dan total_vaccinated FROM tabel fakta vaksinasi WHERE total_vaksinasi tidak bernilai NULL AND total_vaksinasi tidak sama dengan 0

Kemudian dicing. Berikut ini merupakan query sekaligus output dari proses Dicing.

SELECT tb_country.country,tb_implementation.date,tb_vaccines.vaccines FROM ((tb_country JOIN tb_implementation ON tb_country_id = tb_implementation.date_ID)JOIN tb_vaccines ON tb_country.country_id = tb_vaccines.vaccines_ID) WHERE tb_implementation.date = '2021-02-22';

Gambar 19. Kueri 2 Dicing

country	date	vaccines
Afghanistan	2021-02-22	${\tt Johnson\&Johnson,Oxford/AstraZeneca,Pfizer/BioNTe}$
Albania	2021-02-22	Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sput
Algeria	2021-02-22	Oxford/AstraZeneca, Sinopharm/Beijing, Sinovac, Sp
Andorra	2021-02-22	Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
Anguilla	2021-02-22	Oxford/AstraZeneca, Pfizer/BioNTech
Antigua and Barbuda	2021-02-22	Oxford/AstraZeneca, Pfizer/BioNTech, Sputnik V
Argentina	2021-02-22	CanSino, Moderna, Oxford/AstraZeneca, Pfizer/BioNT

Gambar 20. Hasil dari Kueri 1 Dicing

Pada proses Dicing, kami menggabungkan table country dengan table implementation dan vaccines untuk melakukan filter subset data dari sebuah OLAP cube. Pada percobaan Slicing kali ini kami mengambil nama kota pada table country untuk mengidentifikasi atau untuk mengetahui negara-negara yang sedang melakukan vaksinasi dengan melihat tanggal yang diambil dari table implementation kolom date dan melihat jenis vaksin yang digunakan dengan mengambil data dari table vaccines. Setelah itu data di ambil atau di kelompokkan berdasarkan tabel implementation dengan ketentuan tanggal yang diambil adalah 2021-02-22.

3.2.2 Roll up & Drill down

Roll-up adalah operasi OLAP yang dilakukan untuk meningkatkan informasi yang didapatkan dari data ke level yang lebih abstrak. Roll-up dapat dilakukan dengan mengurangi jumlah dimension atau meningkatkan hirarki data menjadi level yang lebih abstrak. Sedangkan Drill-down adalah operasi OLAP yang dilakukan untuk meningkatkan hirarki data menjadi level yang lebih detail.

DRILL DOWN

Pada fungsi ini kami mengambil dari tabel country dan tabel fakta, dimana akan diurutkan dari paling bawah dengan batas hanya 100 data.

SELECT DISTINCT tb_country.country AS 'kota', tb_fakta.total_vaccinations, tb_implementation.date AS 'tanggal' FROM ((tb_country JOIN tb_fakta ON tb_country.country_id = tb_fakta.country_ID)JOIN tb_implementation ON tb_country_id = tb_implementation.date_ID) GROUP BY tb_fakta.total_vaccinations ORDER BY tb_fakta.total_vaccinations DESC LIMIT 100;

Gambar 21. Kueri 1 Drill Down

kota	total_vaccinations 🔻 1	tanggal
Angola	17535411	2022-03-25
Angola	17262044	2022-03-17
Angola	16850195	2022-03-08
Angola	16633167	2022-03-02
Angola	16259606	2022-02-22
Angola	15902065	2022-02-15
Angola	15505389	2022-02-09
Angola	15039557	2022-02-02
Angola	14588435	2022-01-28
Angola	13944656	2022-01-23
Algeria	13704895	2022-03-09
Algeria	13631683	2022-02-20

Gambar 22. Hasil dari Kueri 1 Drill Down

ROLL UP

Pada fungsi ini kami mengambil dari tabel country dan tabel fakta, dimana akan diurutkan dari paling atas sesuai tanggal.

SELECT tb_country_id, tb_country.country, tb_implementation.date, tb_fakta.daily_vaccinations FROM ((tb_fakta JOIN tb_country ON tb_fakta.country_ID = tb_country.country_id) JOIN tb_implementation ON tb_country_country_id = tb_implementation.date_ID);

Gambar 21. Kueri 1 Roll Up

country_id	country	date	daily_vaccinations
1	Afghanistan	2021-02-22	0
2	Afghanistan	2021-02-23	1367
3	Afghanistan	2021-02-24	1367
4	Afghanistan	2021-02-25	1367
5	Afghanistan	2021-02-26	1367
6	Afghanistan	2021-02-27	1367
7	Afghanistan	2021-02-28	1367
8	Afghanistan	2021-03-01	1580
9	Afghanistan	2021-03-02	1794
10	Afghanistan	2021-03-03	2008

Gambar 23. Hasil dari Kueri 1 Roll Up

3.2.3 *Pivot*

Pivot adalah operasi OLAP yang merubah atau merotasi sumbu data untuk menghasilkan tampilan data yang berbeda.

Query 1

Pada kode dibawah ini, kami menggunakan fungsi COUNT untuk menghitung data sesuai nama dari vaksin yang digunakan di negara Afghanistan, dan mengubah nama tabel dengan nama vaksinnya.

SELECT tb_country_id, COUNT(IF(tb_vaccines.vaccines = 'Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech,
Sinopharm/Beijing',tb_vaccines.vaccines,NULL)) AS 'Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm/Beijing', COUNT(IF(tb_vaccines.vaccines
= 'Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sputnik V',tb_vaccines.vaccines,NULL)) AS 'Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sputnik V',
COUNT(IF(tb_vaccines.vaccines = 'Moderna, Oxford/AstraZeneca, Pfizer/BioNTech',tb_vaccines.vaccines,NULL)) AS 'Moderna, Oxford/AstraZeneca,
Pfizer/BioNTech' FROM tb_country, tb_vaccines;

Gambar 24. Kueri 1 Pivot

	Johnson&Johnson, Oxford/AstraZeneca, Pfizer/BioNTech,	Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac,	Moderna, Oxford/AstraZeneca,
country	Sinopharm/Beijing	Sputnik V	Pfizer/BioNTech
Afghanistar	1241494	1383289	1301363

Gambar 25. Hasil dari Kueri 1 Pivot

Query 2

Pada kode ini, menggunakan fungsi SUM untuk menghitung berapa hari vaksin yang sudah dilakukan di suatu negara. dimana per harinya akan mengeluarkan output 1, tetapi karena lebih dari 1 hari, maka outputnya ditotal dan dimasukkan ke dalam kolom baru.

3.2.4 Filtering

Filtering berguna untuk menampilkan data yang telah disaring sebelumnya untuk menampilkan hasil yang lebih spesifik sesuai dengan data yang ingin diketahui

```
SELECT country FROM tb_fakta_vaksinasi WHERE NOT source_website = "https://covid19.who.int/";

Gambar 26. Kueri 1 Filtering
```

Untuk mengetahui negara mana saja yang ingin diketahui namun dengan ketentuan tidak berasal dari salah sumber informasi tertentu maka digunakan perintah SELECT pilih kolom tabel yang ingin diketahui yaitu negara yang dipilih FROM tabel fakta vaksinasi WHERE NOT jika tidak berasal dari source website https://covid19.who.int/.

Gambar 27. Hasil dari Kueri 1 Filtering

```
SELECT * FROM tb_fakta_vaksinasi WHERE Date_ID =' 600' AND vaccines_id = '600';

Gambar 28. Kueri 2 Filtering
```

Untuk mengetahui data yang ingin diketahui dengan ketentuan date_id dan vaccines_id = 600 maka digunakan perintah SELECT seluruh kolom tabel dari tabel fakta vaksinasi WHERE date_id dan vaccines_id memiliki nilai 600.

Gambar 29. Hasil dari Kueri 2 Filtering

3.3 Hasil Aplikasi

3.3.1 Perhitungan Aplikasi

Langkah pertama adalah memasukkan dataset yang sudah kami buat sebelumnya dan ditambahkan dataset baru dari WHO terkait data kematian dan dataset dari kaggle terkait data populasi di tiap negara. Dengan metode ini kami ingin menghitung bagaimana keterkaitan dari rasio kematian di tiap negara dengan persentase total dari orang yang sudah di vaksinasi di tiap negara.

Langkah awal yaitu kami mengimpor library yang akan kami gunakan dan memasukkan data dari 3 dataset yang kami peroleh ke dalam collab, beserta hasilnya :

Gambar 30. library

Gambar 31. Data WHO

Gambar 32. Data Vaksin

Gambar 33. Data populasi

Setelah itu akan dilakukan data understanding dan preparation, dimana dari data populasi dan who akan di cek perbedaan nama negara yang ada. Lalu akan didapatkan mana nama negara yang tersedia, dan seterusnya akan dilakukan perubahan nama menyesuaikan data dari WHO, lalu perubahan tersebut juga akan diterapkan pada data vaksin.

Gambar 34. Cek nama negara

```
podit - ("Antigua And Barboda": 'Antigua and Barboda',
    "Bolivia": 'Bolivia": ("Burbattonal State of)',
    "Bonivia": 'Bolivia ("Durinational State of)',
    "Bonivia": Mornial devices and incregovina",
    "Bromet': Brownesslem',
    "Cope Weels':
    "Appublic of the Congo', 'Democratic Republic of Korea",
    "Republic of The Congo', 'Democratic Republic of the Congo',
    "Faikland Stalmads": "Falkland Stalmads (Malvinas)',
    "Golone Bissau": 'Golone-Bissau',
    "Island Stalmads": "Falkland Stalmads (Malvinas)',
    "Island Stalmads": "Bablota Falkland Stalmads (Malvinas)',
    "Island Stalmads": "Bablota of Man',
    "Island Stalmads (Republic of)',
    "Island Stalmads ("Republic of)',
    "Island Stalmads ("Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Borea': "Republic of Korean Marjana Islands (Commonwealth of the)',
    "South Stalmads": "South Republic of Marjana Marjana Islands (Commonwealth of the)',
    "South Stalmads": "South Stalmads of Marjana Marjana Islands',
    "Tanzanda": "United Republic of Tanzanda',
    "United States' ("United States of America',
    "Venezuela': "Venezuela (Bollwarian Republic of',
    "Vettura",
    "Publishin': "Occupied Salastinian territory, Iculaing east Jerusalem')
    population': "Occupied Salastinian territory, Iculaing east Jerusalem')
    population': "Occupied Salastinian territory, Iculaing east Jerusalem')
    population': Southern', "Pepilace(toedit)
    veccine, source("country") - population, source("country") - population', source("country") - population
```

Gambar 35. Ganti nama negara

Setelah itu kami menggabungkan beberapa kolom dari tabel di tiap dataset, untuk mendapatkan data akhir bernama df, data ini berupa contoh. Maka langkah selanjutnya adalah menggabungkan data dari who dan populasi menjadi sebuah data baru bernama who_population_merge. Dan juga kami menggabungkan data vaksin dengan data who_population_merge menjadi data df final. Lalu setelah itu dapat kita lihat kolom nama negara dari data akhir.

```
/ [27] who = who_source[["date", "country", "New_deaths"]]
population = population_source[["iso_code", "country", "population"]]
vaccine = vaccine_source[["country", "iso_code", "date", "total_vaccinations", "people_vaccinated", "people_fully_vaccinated"]]
# We drop rows with NaN value at this stage from vaccine data frame
vaccine = vaccine.dropna().reset_index(drop=True)
```

Gambar 36. Data df contoh

Gambar 37. who_population_merge

Gambar 38. Data df final

Gambar 39. Kolom negara

Setelah itu dari data yang ada akan kami hapus tanda koma, dan mengganti tipe datanya menjadi float. Lalu kita menghitung persentase dari vaksinasi di tiap negara, dan dimasukkan ke dalam kolom baru yaitu rasio. Maka selanjutkan akan kami lakukan ploting dari kolom persentase vaksinasi yang dibandingkan dengan kolom jumlah kematian baru dari kasus covid-19, dan yang coba kami plotting yaitu dari negara italia. Dan seperti yang bisa kita lihat, bahwa semakin tinggi vaksinasi yang terjadi di italia, maka akan semakin rendah rasio kematiannya.

Gambar 40. Ganti tipe data

```
[32] df = df.assign(ratio=[0]*len(df))
    def f_2(row):
        row.ratio = row.people_vaccinated / row.population * 100
        return row
    df=df.apply(f_2, axis=1)
```

Gambar 41. Rasio

Gambar 42. Plotting negara Italia

Lalu akan kami lakukan modelling dari data yang sudah kami siapkan tadi. Pertama akan kami cari nilai koefisien dan intercept nya. Dan setelah itu kami buat grafik yang menunjukan garis regresinya.

```
[34] from sklearn import linear_model
    regr = linear_model.LinearRegression()
    train_x = np.asanyarray(mydf[['ratio']])
    train_y = np.asanyarray(mydf[['New_deaths']])
    regr.fit (train_x, train_y)
    # The coefficients
    print ('Coefficients: ', regr.coef_)
    print ('Intercept: ',regr.intercept_)

Coefficients: [[-3.89068142]]
    Intercept: [376.10153497]
```

Gambar 43. Nilai koefisien dan konstanta(intercept)

Gambar 44. Garis regresi

Setelah model didapatkan, maka akan dilakukan evaluasi. Evaluasi ini digunakan untuk melihat seberapa baik model yang kita buat, disini kami mendapat nilai 0,50. Yang mana model yang kami buat sudah cukup baik. Lalu model yang kami buat ini, kami coba pada data negara portugal, dan hasil yang didapatkan yaitu kurang baik, karena nilainya 0,20. Tetapi dari grafik yang ada, bisa kita lihat juga bahwa semakin tinggi persentase vaksinasi yang terjadi, maka akan semakin berkurang rasio kematiannya juga.

```
from sklearn.metrics import r2_score

test_x = np.asanyarray(mydf[['ratio']])
test_y = np.asanyarray(mydf[['New_deaths']])
test_y = regr.predict(test_x)

print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test_y , test_y_))

Mean absolute error: 89.00
Residual sum of squares (MSE): 13971.64
R2-score: 0.50
```

Gambar 45. Hasil evaluasi

```
mydf = df[df.country == "Portugal"]
      regr = linear_model.LinearRegression()
      train_x = np.asanyarray(mydf[['ratio']])
train_y = np.asanyarray(mydf[['New_deaths']])
      regr.fit (train_x, train_y)
      print ('Coefficients: ', regr.coef_)
      print ('Intercept: ',regr.intercept_)
      plt.scatter(mydf.ratio, mydf.New_deaths, color='orange')
      plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], color='red')
      plt.xlabel("Vaccination rate (%) ")
plt.ylabel("New deaths")
      plt.show()
      test_x = np.asanyarray(mydf[['ratio']])
test_y = np.asanyarray(mydf[['New_deaths']])
test_y = regr.predict(test_x)
      print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test_y , test_y_) )
[ Coefficients: [[-0.8839472]]
    Intercept: [72.98156097]
          250
          200
          150
       N 100
           50
                                     Vaccination rate (%)
      Mean absolute error: 41.44
      Residual sum of squares (MSE): 3330.76 R2-score: 0.20
```

Gambar 46. Mencoba model pada negara Portugal

3.3.2 Perhitungan Manual

Perhitungan Konstanta A dan Koefisien B

Dengan mengambil beberapa contoh negara diketahui sebagai berikut :

No	Negara	Vaksin_rate(x)	new_death(y)	x2	y2	xy
1	afghanistan	10,26	5167	105,2676	26697889	53013,42
2	albania	39,77	2041	1581,6529	4165681	81170,57
3	algeria	15,66	3520	245,2356	12390400	55123,2
4	andorra	73,79	56	5444,9641	3136	4132,24
5	angola	22,23	1352	494,1729	1827904	30054,96
to	total		12136	7871,2931	45085010	223494,39

Dengan sudah diketahuinya x2, y2, dan xy maka dapat dicari untuk konstanta a dan koefisian b

menggunakan rumus:
$$a = (\underline{\Sigma}\underline{y}) (\underline{\Sigma}\underline{x}^2) - (\underline{\Sigma}\underline{x}) (\underline{\Sigma}\underline{x}\underline{y})$$
 dan $b = \underline{n}(\underline{\Sigma}\underline{x}\underline{y}) - (\underline{\Sigma}\underline{x}) (\underline{\Sigma}\underline{y})$
 $\vdots \qquad n(\underline{\Sigma}\underline{x}^2) - (\underline{\Sigma}\underline{x})^2$ $\vdots \qquad n(\underline{\Sigma}\underline{x}^2) - (\underline{\Sigma}\underline{x})^2$

Dengan menghasilkan hasil perhitungan sebagai berikut ini:

Konstanta
$$A = 4496,683332$$
 dan Koefisien $B = -63,98748786$

Setelah mendapatkan hasil konstanta a dan koefisien b, langkah selanjutnya ialah membuat model Regresi dengan rumus :

$$Y = a + bX$$

Dengan rumus tersebut dapat dihasilkan

Prediksikan Jumlah kematian jika rata2 vaksinasi rendah (Variabel X), contohnya: 42%

Selanjutnya kita akan menghitung nilai korelasi yang berguna untuk mengukur kuatnya hubungan antara dua variable atau lebih. Besarnya korelasi berkisar antara -1 0 dan 1. Besaran koefisien -1 dan 1 adalah hubungan sempurna, sedangkan nilai koefisien 0 atau mendekati 0 dianggap tidak berhubungan antara dua variabel yang diuji.

Menghitung korelasi itu sendiri dapat dilakukan dengan menggunakan rumus berikut :

$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{\{n\Sigma x^2 - (\Sigma x)^2\}\{n\Sigma y^2 - (\Sigma y)^2\}}}$$

Dengan hasil perhitungan r = -845040,61/1015862,809 yang menghasilkan r = -0,8318452086 Kemudian kita akan menghitung nilai koefisien determinasi (r^2):

$$r^2 = -0.8318452086^2 = 0.6919664511$$

Hal ini memberikan informasi bahwa kasus kematian yang terjadi 69% ditentukan oleh rasio vaksinasi

3.3.3 Rules

- 1. Menentukan tujuan dari melakukan analisis Regresi Linear yaitu mempelajari hubungan yang diperoleh dan dinyatakan dalam perasamaan matematika yang menyatakan hubungan antar variabel.
- 2. Mengidentifikasi Variabel Faktor Penyebab (X) dan Variabel Akibat (Y)
 - a. Varibel Faktor Penyebab (X): Vaccination rate
 - b. Variabel Faktor Akibat(Y): New deaths
- 3. Melakukan Pengumpulan Data

Data yang digunakan adalah data yang bersumber dari :

- https://www.kaggle.com/datasets/rsrishav/world-population
 Data yang diambil merupakan data populasi dari seluruh negara
- https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress
 Data yang diambil merupakan data proses vaksinasi yang di lakukan di seluruh negara
- https://covid19.who.int/data
 Data yang diambil merupakan data angka kematian di setiap negara
- 4. menghitung X2, Y2, XY
- 5. menghitung nilai dari kontanta (a) dan koefisien (b) berdasarkan persamaan yang sudah di tentukan
- 6. membuat model persamaan regresi linear sederhana
- 7. langkah yang terakhir dilakukan proses korelasi atau seberapa besar pengaruh variabel X dengan variabel Y

BAB IV

PENUTUP

4.1 Simpulan

Kesimpulan yang diperoleh dari tugas ini adalah dalam membangun data warehouse dibutuhkan tools untuk menunjang hal tersebut seperti PHPMYADMIN sebagai alat yang dapat menangani administrasi dari MySQL dengan melalui web yang penulis gunakan adalah XAMPP, sistem manajemen dengan basis data menggunakan MYSQL dan data yang akan digunakan.

Data warehouse yang telah dibangun yaitu data vaksinasi dunia maka diperlukan teknik menganalisisnya. Dalam hal ini penulis menggunakan teknik OLAP (Online Analytical Processing) untuk memudahkan dalam menganalisis, mengelola dan mengidentifikasi informasi yang dibutuhkan ada didalam data yang lebih efektif dan efisien seperti mengetahui informasi perkembangan data vaksinasi di seluruh negara sesuai dengan jumlah vaksin, orang yang telah divaksin, jenis vaksin dan lainnya.

Kemudian untuk mengetahui suatu informasi berupa hubungan pengaruh rata-rata vaksinasi dengan jumlah kematian setiap negara didalam data warehouse dilakukan dengan menggunakan algoritma regresi linier. Yang hasilnya berupa jumlah vaksinasi semakin banyak maka jumlah kematian akan berkurang begitu pula jika jumlah vaksinasi kurang maka jumlah kematian cukup tinggi dan ke-2 hal tersebut terjadi disetiap negara yang memiliki kondisi pandemi covid nya tersendiri.