

LOUDS++

Finn Stutzenstein, Levin Nemesch, Joshua Sangmeister November 21, 2020

Algorithm Engineering - Übung 2

Überblick

- LOUDS: Level-Order Unary Degree Sequence
- succinct data structure: 2n + o(n) Bits Speicherbedarf
- Geordneter Baum
- Unterstützt folgende Operationen in $\mathcal{O}(1)$:
 - parent(x)
 - first-child(x)/last-child(x)
 - prev-sibling(x)/next-sibling(x)
 - degree(x): Anzahl der Kinder von x
 - childrank(x): Rang von x unter seinen Geschwistern
 - child(x, i): i-tes Kind von x
- Quelle: "Engineering the LOUDS Succinct Tree Representation" von O'Neil Delpratt, Naila Rahman, and Rajeev Raman (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.4250&rep=rep1&type=pdf)

Bitvektor

- Bitfeld von *n* Bits
- $rank_b(x)$ ($b \in \{0,1\}$): Anzahl der Vorkommnisse von b bis x
- $select_b(x)$ $(b \in \{0,1\})$: Position des x-ten Vorkommens von b
- ullet Z.B. von Kim Et Al.: Speicher n+o(n) Bits und Laufzeiten in $\mathcal{O}(1)$

Bitvektor

- Bitfeld von *n* Bits
- $rank_b(x)$ ($b \in \{0,1\}$): Anzahl der Vorkommnisse von b bis x
- $\operatorname{select}_b(x)$ $(b \in \{0,1\})$: Position des x-ten Vorkommens von b
- ullet Z.B. von Kim Et Al.: Speicher n+o(n) Bits und Laufzeiten in $\mathcal{O}(1)$
- Beispiel: 0011011100
 - $rank_1(7) = 4$
 - $rank_0(7) = 3$
 - $select_1(3) = 6$
 - $select_0(5) = 10$

LOUDS bit string (LBS)

- Speichert unär Baumstruktur
- ullet Jeder Knoten repräsentiert durch 1^d0 Bitstring, d entspricht Anzahl Kinder
- Nummerierung der Knoten ebenenweise (entspricht Breitensuche)
- Beginn markiert durch 10

LOUDS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 0	19
1	0	1	1	1	1	0	0	1	1	0	0	1	0	0	1	0	0	0
										b)					•			

Vertex	a	b	c	d	e	f	g	h	i	
BFS	1	2	3	4	5	6	7	8	9	
1-based	1	3	4	5	6	9	10	13	16	
0-based	7	8	11	12	14	15	17	18	19	
(c)										

Vertex		a	b	c	d	e	f	g	h	i
R0	1	0	1	0	1	0	1	0	0	1
R1		1	0	0	0	1	0	1	1	1
			(d)	ń					

Eigenschaften LBS

- Besteht aus n + 1 0-en und n 1-en
- *i*-ter Knoten:
- Ones-based numbering
 - i-te 1 in Kodierung des Elternknotens
 - Knoten i wird Zahl $x = \mathtt{select}_1(i) = \{0, \dots, 2n+1\}$ zugewiesen
 - Knoten mit Zahl x: $i = rank_1(x) \in \{1, ..., n\}$
- Zero-based numbering: i + 1-te 0: Ende der Kodierung des i-ten Knotens
 - *i* + 1-te 0: Ende der Kodierung des *i*-ten Knotens
 - Mit select₀ und rank₀ kann analog zum Ones-based numbering eine Zahl zugeordnet werden

Beispiel: Operation parent(x)

- - Vertex
 a
 b
 c
 d
 e
 f
 g
 h
 i

 BFS
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1-based
 7
 8
 1
 1
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

- Ones-based numbering:
 x = select₁(rank₀(x))
- Zero-based numbering: select₀(rank₀(select₁(rank₀(x) - 1) + 1))

Beispiel parent(g) (Ones-based): Knoten g (BFS 7) \rightarrow select₁(7) = 10 rank₀(10) = 3

 $rank_0(10) = 3$ $select_1(3) = 4$

 $select_1(3) = 4$

 $\mathtt{rank}_1(4) = 3 o \mathsf{Knoten}\ \mathsf{c}\ (\mathsf{BFS}\ 3)$

Beispiel: Operation parent(x)

- Ones-based numbering:
 x = select₁(rank₀(x))
- Zero-based numbering: select₀(rank₀(select₁(rank₀(x) - 1) + 1))

Double-Numbering

- $y = select_0(x) \implies rank_0(y) = x \wedge rank_1(y) = y x$
- analog für select₁
- Punkte können somit als Paar $\{x, y\}$ gespeichert werden
- Aufrufe der Form rank(select(...)) können durch einfache selects ersetzt werden
- Beispiel für parent:

```
parent({x, y}):
    rzerox = y - x
    newy = select_1(rzerox)
    newx = newy - rzerox
    return {newx, newy}
```

Partitioned Representation

- R_0 : Nullfolgen (mit Längen $\ell_1,\ell_2\dots\ell_z$) kombinieren zu $R_0=0^{\ell_1}10^{\ell_2}1\dots0^{\ell_z}1$
- R_1 : Einsfolgen (mit Längen $\ell_1,\ell_2\dots\ell_z$) kombinieren zu $R_1=1^{\ell_1}01^{\ell_2}0\dots1^{\ell_z}0$
- ullet Alle select Operationen auf LBS durchführbar durch select $_1$ und ${\tt rank}_1$ auf R_0 oder R_1
- LOUDS++ nutzt R_0 und R_1

Ergebnisse

