Chapter - 3: Ring Theory

Definition .41 A ring is an ordered pair (R,+,*) where R is a non-empty set, and + and * are two binary operations on R satisfying the following axioms:

A1 $a+b \in R$ for all $a,b \in R$ (closure).

A2 (a+b)+c=a+(b+c) for all $a,b,c \in R$ (associativity).

A3 There exists $0 \in R$ such that a + 0 = a = 0 + a for all $a \in R$ (identity).

A4 For every $a \in R$, there exists $b \in R$ such that a + b = 0 = b + a (additive inverse).

A5 a+b=b+a for all $a,b \in R$ (commutativity).

 $M1 \ ab \in R \ for \ all \ a,b \in R \ (closure).$

M2 (ab)c = a(bc) for all $a,b,c \in R$ (associativity).

M3 1. $a \cdot (b+c) = a \cdot b + a \cdot c$ (left distributive law).

2. $(a+b) \cdot c = a \cdot c + b \cdot c$ (right distributive law).

(R,+,*) is called a commutative ring if for all $a,b \in R$, ab = ba; otherwise, it is non-commutative. R is called a ring with unity if there exists $1 \in R$ such that $1 \cdot a = a = a \cdot 1$ for all $a \in R$, where 1 is referred to as the unity of R; otherwise, R is a ring without unity.

Example 1.10.6 1. The rings \mathbb{Z} and \mathbb{Q} have unity, but $2\mathbb{Z}$ does not.

- 2. Consider the set M of all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a,b,c,d \in \mathbb{Z}$. This set forms a ring under matrix addition and multiplication. M is a non-commutative ring with unity, where $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ serves as the unity element.
- 3. The set F of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ is an infinite ring with unity.
- 4. The set of integers modulo 6, denoted \mathbb{Z}_6 , forms a ring under addition modulo 6 and multiplication modulo 6.
- 5. The set of integers modulo n, denoted \mathbb{Z}_n , is a ring.
- 6. For a non-empty set X, the set P(X) of subsets of X is a ring under the following operations:
 - (a) $A + B = (A \setminus B) \cup (B \setminus A)$ for all $A, B \in P(X)$.
 - (b) $AB = A \cap B$ for all $A, B \in P(X)$.

P(X) is a commutative ring with unity, where the unity is the set X itself.

- 7. Given two rings R_1 and R_2 , the set $R_1 \times R_2 = \{(a,b) : a \in R_1, b \in R_2\}$, with operations defined as follows:
 - (a) (a+b)+(c+d)=(a+c,b+d)
 - (b) $(a,b)\cdot(c,d)=(a\cdot c,b\cdot d)$

This is called the direct product of R_1 and R_2 . The product $R_1 \times R_2$ is commutative if and only if both R_1 and R_2 are commutative. Similarly, $R_1 \times R_2$ has unity if and only if both R_1 and R_2 have unity.

1.11. Integral Domain

Definition .42 Let (R,+,*) be a ring. An element $a \in R$ is called a left zero divisor if there exists $b \neq 0 \in R$ such that ab = 0

Similarly, we define a right zero divisor. If ab = 0 = ba, then a is simply a zero divisor. If a is a zero divisor, then b is also. If $a \neq 0$, then it is a proper zero divisor.

Proposition .20 R has no zero divisors if and only if the left/right cancellation law holds.

Hint(s): $ab = ac \Rightarrow a(b-c) = 0$. If $a \neq 0$ and $b-c \neq 0$, no cancellation law is possible.

Definition .43 A commutative ring R is said to be an integral domain if it has no zero divisors.

We include, in the definition of an integral domain, that R has unity (for convenience).

Example 1.11.1 1. \mathbb{Z} is an integral domain.

2. \mathbb{Z}_6 is not an integral domain since 2 is a zero divisor in \mathbb{Z}_6 .

Exercise 34 \mathbb{Z}_n is an integral domain if and only if n is prime.

Hint(s): Assume n is prime. Let $[a]_n$ and $[b]_n$ be nonzero residue classes in \mathbb{Z}_n . If $[a]_n \cdot [b]_n = [0]_n$, then $ab \equiv 0 \pmod n$, implying n divides ab. Since n is prime, this implies n divides a or n divides b, which contradicts their being nonzero residue classes. Hence, \mathbb{Z}_n has no zero divisors, making it an integral domain.

(If \mathbb{Z}_n is an integral domain, then n is prime):

Assume \mathbb{Z}_n is an integral domain. Suppose n is composite, so n = ab for 1 < a, b < n. Then, $[a]_n \cdot [b]_n = [ab]_n = [0]_n$, showing that \mathbb{Z}_n has zero divisors, which is a contradiction. Therefore, \mathbb{Z}_n being an integral domain implies n is prime.

Note 20 Invertible elements of R are called units.

Definition .44 (Skew Field or Division Ring) A ring R is called a division ring if every non-zero element of R has an inverse (i.e., is a unit).

Proposition .21 If R is a division ring, then all non-zero elements of R form a group under multiplication.

Proof:

Theorem .29 If R is a ring with 1, then all units of R form a group (under multiplication).

Proof: Define $U = \{a \in R \mid \exists x \text{ such that } ax = 1 = xa\}$. Let $a, b \in U$, i.e., $\exists x, y \in U \text{ such that } ax = 1 = xa$, and by = 1 = yb. Consider

$$(ab)(yx) = a(by)x = a(1)x = ax = 1$$

 $(yx)(ab) = y(xa)b = y(1)b = yb = 1$

Thus, ab is a unit. Also, for all $a \in U$, there exists $x \in R$ such that ax = 1 = xa. Now, $a^{-1}x^{-1} = (xa)^{-1} = 1^{-1} = 1$ since $x^{-1}a^{-1} = 1$.

Note 21 A commutative division ring is a field.

Example 1.11.2 $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ are fields.

Proposition .22 Every field is an integral domain.

Proof: Let F be a field, i.e., for every $x \neq 0$ in F, there exists $y = x^{-1}$ such that xy = 1 = yx. Suppose, for contradiction, that there exists $a \in F$ such that $b \neq 0$ and ab = 0, but also a^{-1} exists in F. Multiplying both sides by a^{-1} , we get $a^{-1}(ab) = a^{-1}(0) \Rightarrow b = 0$, leading to a contradiction. Thus, F has no zero divisors and is an integral domain.

Remark 3 The converse of the above proposition is not true in general. \mathbb{Z} is an integral domain but not a field.

Theorem .30 Every finite integral domain is a field.

Proof: Let R be a finite integral domain. Consider $R = \{a_1, a_2, \ldots, a_n\}$ for $0 \neq a \in R$. Define $aR = \{aa_1, aa_2, \ldots, aa_n\}$. Since $1 \in R$, there exists $aa_i \in aR$ such that $1 = aa_i$ for some i. This implies that every nonzero element in R has a multiplicative inverse. Therefore, all elements of R are units, making R a field.

Exercise 35 Prove that \mathbb{Z}_n is a field if and only if n is prime.

Definition .45 (Characteristic) Let R be a ring. The smallest positive integer n such that na = 0 for all $a \in R$ is called the characteristic of R.

If there is no nonzero n such that na = 0, then Char(R) = 0.

Theorem .31 The characteristic of an integral domain is either prime or zero.

Proof: Let Char(R) = n for an integral domain R. Suppose n is not prime, i.e., n = ab where 1 < a, b < n. Since nx = 0 for all $x \in R$, it implies (ab)x = 0 for all $x \in R$. But R being an integral domain contradicts this, as either $a \cdot 1 = 0$ or $b \cdot 1 = 0$, which cannot hold due to the minimality of n for which nx = 0. Thus, n must be prime. If n = 0, the result is trivially true.

Definition .46 (Gaussian Integers Ring) Let $\mathbb{Z}[i] = \{a+ib \mid a,b \in \mathbb{Z}, i = \sqrt{-1}\}$. Then, $\mathbb{Z}[i]$ is called the ring of Gaussian integers.

Proposition .23 $\mathbb{Z}[i]$ is an integral domain under the operations:

$$(a+ib)+(c+id) = (a+c)+i(b+d)$$
$$(a+ib)\cdot(c+id) = (ac-bd)+i(ac+bd)$$

Proof: Assume xy = 0 for all $0 \neq x, 0 \neq y \in \mathbb{Z}[i]$, where x = a + ib and y = c + id. This implies ac - bd = 0 and ad + bc = 0, leading to $bd^2 + bc^2 = 0$. This implies $d^2 + c^2 = 0$ or b = 0. This means either a = 0 or c = 0, which is a contradiction. Hence, $\mathbb{Z}[i]$ has no zero divisors, and therefore, it is an integral domain.

Exercise 36 Prove that $\mathbb{Z}[i]$ is a ring with unity.

Example 1.11.3 Units of $\mathbb{Z}[i]$.

Proof: Let a+ib and c+id be arbitrary elements in $\mathbb{Z}[i]$. Consider the equation (a+ib)(c+id) = 1, which implies (a-ib)(c-id) = 1.

Multiplying these expressions, we get $(a^2 + b^2)(c^2 + d^2) = 1$. This equation has only one possibility: $a^2 + b^2 = d^2 + c^2 = 1$.

In the first case, $a^2 + b^2 = 1$ implies $a = \pm 1$ and b = 0, and similarly, $c^2 + d^2 = 1$ implies $c = \pm 1$ and d = 0. In the second case, $b = \pm 1$ and a = 0 from $a^2 + b^2 = 1$, and similarly, $d = \pm 1$ and c = 0 from $d^2 + c^2 = 1$.

Therefore, the only units of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Example 1.11.4 Find the roots of $x^2 + 3x - 4$ in \mathbb{Z}_6 .

Solution: Since (x-1)(x+4) = 0 in \mathbb{Z}_6 , the possibilities are:

- 1. $x-1 \equiv 0 \Rightarrow x \equiv 1$ (possible).
- 2. $x-1 \equiv 2$ and $x+4 \equiv 3 \Rightarrow x \equiv 3$ and $x \equiv 5$ (impossible).
- 3. $x-1 \equiv 3$ and $x+4 \equiv 2 \Rightarrow x \equiv 4$ and $x \equiv 4$ (possible).
- 4. $x+4 \equiv 0 \Rightarrow x \equiv 2$ (possible).
- 5. $x-1 \equiv 1$ and $x+4 \equiv 6 \Rightarrow x \equiv 2$ and $x \equiv 2$ (possible).
- 6. $x-1 \equiv 6$ and $x+4 \equiv 2 \Rightarrow x \equiv 1$ and $x \equiv 3$ (impossible).
- 7. $x-1 \equiv 4$ and $x+4 \equiv 3 \Rightarrow x \equiv 5$ and $x \equiv 5$ (possible).
- 8. $x-1 \equiv 3$ and $x+4 \equiv 4 \Rightarrow x \equiv 4$ and $x \equiv 0$ (impossible).

From this analysis, we conclude that the possible solutions in \mathbb{Z}_6 are $x \equiv 1,2,4$ (more than two \odot).

Exercise 37 Consider a ring R with more than one element. Given that for every $a \in R$, there exists a unique $b \in R$ such that aba = a. Then prove that:

- 1. bab = b.
- 2. R is a division ring.

Proposition .24 Any finite field F must have a prime power order.

Hint(s): If there exist distinct primes p and q (p < q) such that p,q||F|, then F will have zero divisors. Suppose O(a) = p and O(b) = q (additive orders). Then, a(pb) = (ap)b = 0. b = 0, but $a \neq 0$ and $pb \neq 0$.

Exercise 38 Does there exist an integral domain with 6 elements?

Exercise 39 1. If in R, $x^2 = x$ for all $x \in R$, then R is a commutative ring with characteristic = 2.

2. If $x^3 = x$ for all $x \in R$, then R is a commutative ring.

1.12. Subrings and Ideals

Definition .47 (Subring) A non-empty subset S of (R,+,*) is called a subring of R if and only if (S,+,*) is itself a ring.

Theorem .32 Let $S \subseteq R$, where R is a ring. Then, S is a subring if and only if $\forall a, b \in S$:

- 1. $a-b \in S$
- 2. $ab \in S$

Example 1.12.1 1. \mathbb{Z} is a subring of \mathbb{Q}

- 2. $n\mathbb{Z}$ is a subring of \mathbb{Z} .
- 3. $R_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{R} \right\}$ is a subring of $R_2 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\}$.
- 4. $\mathbb{Z} \times \{0\} = \{(a,0) : a \in \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$.

Remark 4 In the above four examples, it is worth noting that:

- 1. A ring and its subring share the same identity (unity).
- 2. A ring has a unity, but a subring does not.
- 3. A ring has no identity, but a subring has $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- 4. A ring and its subring both have an identity, but they are different; the identity of the ring is (1,1) and the identity of the subring is (1,0).

Exercise 40 The arbitrary intersection of subrings is again a subring of the given ring R.

Exercise 41 The union of subrings may not be a subring.

Hint(s): $2\mathbb{Z}$ and $3\mathbb{Z}$ are subrings of \mathbb{Z} , but $2\mathbb{Z} \cup 3\mathbb{Z}$ is not a subring of \mathbb{Z} as $2 \in \mathbb{Z}$, $3 \in \mathbb{Z}$, but $2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

Proposition .25 The sum of two subrings of a ring R need not be a subring of R.

Hint(s): Try with
$$R_1 = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in \mathbb{Z} \right\}$$
 and $R_2 = \left\{ \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} : b \in \mathbb{Z} \right\}$. Their sum is not closed under multiplication.

Definition .48 (Center of a Ring) The center of a ring $C(R) = \{a \in R : xa = ax \ \forall \ x \in R\}$ is a subring of R.

Exercise 42 R is commutative if and only if C(R) = R.

Exercise 43 *Prove that the center* C(R) *of a division ring* R *is a field.*

1.13. Ideals

Definition .49 Let R be a ring and I be a subring of R.

- 1. If $\forall r \in R$ and $a \in I$, then $ra \in I$. I is called a left ideal of R ($rI \subseteq I$).
- 2. If $\forall r \in R$ and $a \in I$, then $ar \in I$. I is called a right ideal of R ($Ir \subseteq I$).

If I is a two-sided ideal, we simply say it is an ideal. In a commutative ring, all ideals are two-sided.

Exercise 44 Is \mathbb{Z} an ideal of \mathbb{Q} ? (It is already known that it is a subring.)

Remark 5 In general, an ideal \Rightarrow subring, but subring \Rightarrow ideal.

Example 1.13.1 Show that $n\mathbb{Z}$ is an ideal of \mathbb{Z} for all $n \in \mathbb{N}$.

Solution: Let $a \in n\mathbb{Z}$ and $r \in \mathbb{Z}$. Here a = nx, $x \in \mathbb{Z}$. Therefore, $ar = (nx)r = n(xr) = nx' \in n\mathbb{Z}$. Also, for all $a, b \in n\mathbb{Z}$, $a - b = nx - ny = n(x - y) \in n\mathbb{Z}$. Hence, $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Exercise 45 The intersection of a family of left (right) ideals is also a left (right) ideal.

Definition .50 Let S be any subset of a ring R, then the ideal I is said to be generated by S if

- *1. S* ⊆ *I*
- 2. For any ideal J of S such that $S \subseteq J$, $I \subseteq J$; in other words, I is the smallest.

I is the smallest ideal of *R* containing *S*, denoted as $I = \langle S \rangle$.

$$I = \bigcap \{J : S \subseteq R \text{ and } J \text{ is an ideal} \}$$

1.14. Principal Ideal

Definition .51 An ideal generated by a single element is called a principal ideal of the ring.

Example 1.14.1 1. $n\mathbb{Z}$ is an ideal of \mathbb{Z} , which is a principal ideal, i.e., $n\mathbb{Z} = \langle n \rangle$.

2. Let R be a commutative ring with unity. Then $\forall a \in R$, $aR = \{ar : r \in R\} = \langle a \rangle$ is a principal ideal.

Definition .52 Let I and J be two ideals of a ring R, then the sum $I+J=\{a+b: a \in I, b \in J\}$ and the product $IJ=\{\sum_{i=1}^n a_ib_i: a_i \in I, b_i \in J, n \in \mathbb{N}\}.$

Exercise 46 1. Prove that I + J is an ideal given by $I + J = \langle I \cup J \rangle$, which is the smallest ideal of R containing $I \cup J$.

2. Prove that IJ is also an ideal and $IJ \subseteq I \cap J$.

Hint(s): 1. Let I and J be ideals of a ring R. **Step 1:** I+J is an ideal: - Closure under addition and multiplication by elements of R follows from I and J being ideals. **Step 2:** $I+J \subseteq \langle I \cup J \rangle$: - For any $x \in I+J$, x = a+b with $a \in I$ and $b \in J$. Since $I \subseteq \langle I \cup J \rangle$ and $J \subseteq \langle I \cup J \rangle$, $x \in \langle I \cup J \rangle$. **Step 3:** $\langle I \cup J \rangle$ is an ideal: - Follows from properties of generated ideals. **Step 4:** $\langle I \cup J \rangle \subseteq I+J$: - Since $\langle I \cup J \rangle$ contains elements from I and J, it also contains their sums, which are in I+J.

2. Let I and J be ideals of a ring R. Step 1: IJ is an ideal: - Closure under addition and multiplication by elements of R follows from the properties of I and J. Step 2: $IJ \subseteq I \cap J$: - Take any $x \in IJ$, then $x = \sum_{i=1}^{n} a_i b_i$ for $a_i \in I$ and $b_i \in J$. - Since $a_i \in I$ and $b_i \in J$, $x \in I \cap J$. Thus, IJ is an ideal and $IJ \subseteq I \cap J$.

Exercise 47 If $I = \langle a \rangle$, $J = \langle b \rangle$, then find I + J, IJ, and $I \cap J$, where $a, b \in \mathbb{Z}^+$.

Answers: I + J = U, where $U = \langle d \rangle$ with $d = \gcd\{a,b\}$. $I \cap J = V$, where $V = \langle c \rangle$ with $c = lcm\{a,b\}$. IJ = W, where $W = \langle ab \rangle$.

Solution: Given $I = \langle a \rangle$, $J = \langle b \rangle$, we have:

- 1. d = gcd(a,b), i.e., d|a, d|b, which means $a = n_1d$, $b = n_2d$. Thus, $a \in \langle d \rangle$, $b \in \langle d \rangle$, implying $\langle a \rangle \subseteq \langle d \rangle$, $\langle b \rangle \subseteq \langle d \rangle$. Hence, $\langle a \rangle + \langle b \rangle \subseteq \langle d \rangle$. Also, there exist integers x and y such that d = ax + by. This implies $\langle d \rangle \subseteq \langle a \rangle + \langle b \rangle$. Thus, $\langle d \rangle = \langle a \rangle + \langle b \rangle$.
- 2. Let c = lcm(a,b), i.e., a|c, b|c. This means $\langle c \rangle \subseteq \langle a \rangle$, $\langle c \rangle \subseteq \langle b \rangle$, hence $\langle c \rangle \subseteq \langle a \rangle \cap \langle b \rangle$. Also, if $x \in \langle a \rangle \cap \langle b \rangle$, then a|x, b|x. Consequently, lcm(a,b)|x, i.e., c|x, which leads to $x \in \langle c \rangle$. Therefore, $\langle a \rangle \cap \langle b \rangle = \langle c \rangle$.
- 3. $a \in \langle a \rangle$, $b \in \langle b \rangle$, so $ab \in \langle a \rangle \langle b \rangle$, i.e., $\langle ab \rangle \subseteq \langle a \rangle \langle b \rangle$. Let $x \in \langle a \rangle \langle b \rangle$. Then $x = \sum_{\text{finite sum}} a_i b_i$, where $a_i \in \langle a \rangle$ and $b_i \in \langle b \rangle$. Observe that $a_i b_i = (ak_i)(bk_i') = (k_i k_i')(ab)$, implying $a_i b_i \in \langle ab \rangle$. Hence, $x \in \langle ab \rangle$. Therefore, $\langle ab \rangle = \langle a \rangle \langle b \rangle$.

Definition .53 (Maximal Ideal) A non-zero ideal $S \neq R$ of a ring R is called a maximal ideal of R if there exists no proper ideal of R containing S.

Exercise 48 Prove that $J = \langle 4 \rangle$ is a maximal ideal of $E = \langle 2 \rangle$.

Solution: Since $2 \notin \langle 4 \rangle$, we have $J \neq E$. Let K be any ideal such that $J \subseteq K$, where $J \neq K$ and $K \subseteq E$. Therefore, there exists some $x \in K$ such that $x \notin J$, implying x is not a multiple of A. Write x = 4m + r, where r = 1, 2, 3. Analyze cases for r to deduce that $2 \notin K$, leading to K = E. Thus, $J = \langle 4 \rangle$ is a maximal ideal of $E = \langle 2 \rangle$.

Definition .54 (Simple Ring) If I. $\exists a,b \in R$ such that $ab \neq 0$ 2. R has no proper ideal. (or) R is with unity and has no proper ideal.

Example 1.14.2 Every field is a simple ring. The ideals of a field F are F and $\{0\}$ only.

Exercise 49 Show that $(\{0,1,2,3,4\},+_5,*_5)$ has no proper ideal.

Note 22 $I^2 = \{ \sum_{finite \ sum} a_i b_i : a_i, b_i \in I \}$

Definition .55 (Nilpotent Ideal) An ideal I of R is called a nilpotent ideal if for some positive integer n, $I^n = \{0\}$.

Definition .56 (Nil Ideal) An ideal I of a ring R is said to be a nil ideal if each element of I is nilpotent, i.e., $\forall a \in I, \exists n \text{ such that } a^n = 0.$

Proposition .26 Every nilpotent ideal is a nil ideal.

The converse of the above proposition may not be true (out of scope).

1.15. Factor/Quotient Ring

Definition .57 (Factor/Quotient Ring) Let I be an ideal of a ring R. Define R/I as the set $\{a+I: a \in R\}$, with the operations

$$(a+I) + (b+I) = (a+b)+I$$
$$(a+I)(b+I) = ab+I$$

Under this structure, R/I forms a ring.

Exercise 50 *Consider the ideal* $I = \{6n : n \in \mathbb{Z}\}$ *of the ring* \mathbb{Z} . *Write the multiplication table for* \mathbb{Z}/I *and determine if* \mathbb{Z}/I *is an integral domain.*

Theorem .33 If R is a commutative ring with unity, then R/M is a field if and only if M is a maximal ideal of R.

Proof: Let M be a maximal ideal of R. Since R is commutative and has unity, R/M inherits these properties. To prove that every non-zero element in R/M is a unit, let $\bar{x} \in R/M$, represented as $\bar{x} = x + M$ with $x \in R$. Consider the ideal $xR = \{xr : r \in R\}$; it is a subset of R. Since M is a proper subset of xR (due to $0 \neq x$), by the maximality of M, we have $M \neq M + xR = R$. Thus, there exists an $xr \in xR$ such that $xr \in M$ but $xr \notin M$ ($M \subsetneq xR$). This implies that 1 = xr + m for some $m \in M$, leading to $\bar{1} = \bar{x}\bar{r}$, making \bar{x} a unit in R/M.

Conversely, assume R/M is a field. We need to show that M is maximal. Since $1 \notin M$ (otherwise M = R), consider the assumption that there exists an ideal I with $M \subset I \subseteq R$. This implies there exists an $a \in I$ such that $a \notin M$, and thus $\bar{a} \neq \bar{0}$. Since R/M is a field, there exists $a \bar{b}$ such that $\bar{a}\bar{b} = \bar{1}$, which leads to ab + M = 1 + M and $(1-ab) \in M \subseteq I$. As $a \in I$ and $b \in R$, we get $ab \in I$, so $1 \in I$, which ultimately means I = R. Therefore, M is a maximal ideal.

Exercise 51 1. Prove that in \mathbb{Z} , $n\mathbb{Z}$ is maximal if and only if n is prime.

2. Verify that $M = \{0,3,6,9\}$ is a maximal ideal of \mathbb{Z}_{12} . **Hint(s):** Order of $\frac{\mathbb{Z}_{12}}{M}$ is $|\frac{\mathbb{Z}_{12}}{M}| = \frac{12}{4} = 3$, and $\frac{\mathbb{Z}_{12}}{M} = \{\bar{0},\bar{1},\bar{2}\}$ is an integral domain and so a field. Since $\frac{\mathbb{Z}_{12}}{M}$ is a field, M is a maximal ideal of \mathbb{Z}_{12} .

Definition .58 (Prime Ideal) Let R be a commutative ring. An ideal P of R is called a prime ideal if for all $a, b \in R$, whenever $ab \in P$, it follows that either $a \in P$ or $b \in P$.

Example 1.15.1 1. If R is an integral domain, then < 0 > is a prime ideal of R because $ab \in < 0 >$ implies ab = 0, which leads to either a = 0 or b = 0. Hence, either $a \in < 0 >$ or $b \in < 0 >$.

2. In \mathbb{Z} , $I = \langle 3 \rangle$ is a prime ideal. If $ab \in I$, then $ab = 3n \Rightarrow 3|ab \Rightarrow 3|a$ or $3|b \Rightarrow a = 3m_1$ or $b = 3m_2 \Rightarrow a \in \langle 3 \rangle$ or $b \in \langle 3 \rangle \Rightarrow I$ is a prime ideal.

Proposition .27 The quotient ring R/M is an integral domain if and only if M is a prime ideal, where R is a commutative ring with unity.

Proof: Assume R/M is an integral domain. If $ab \in M$, then $\bar{a}\bar{b} = \bar{0}$ in R/M. Since R/M is an integral domain, $\bar{a} = \bar{0}$ or $\bar{b} = \bar{0}$. This implies $a \in M$ or $b \in M$.

Conversely, suppose M is a prime ideal. If $\bar{a}.\bar{b} = \bar{0}$ in R/M, then $ab \in M$, leading to $a \in M$ or $b \in M$. This implies $\bar{a} = \bar{0}$ or $\bar{b} = \bar{0}$ in R/M, confirming that R/M is an integral domain.

Note 23 If R is a commutative ring with unity, then R/M is also a commutative ring with unity.

Corollary .34 Every maximal ideal is a prime ideal.

Proof: A maximal ideal M corresponds to a field R/M. Since a field is an integral domain, M is a prime ideal.

Remark 6 The converse of the above result is not always true. For example, <0> is a prime ideal but not maximal in \mathbb{Z} , as < 2 > is an ideal with <0> <<2> \mathbb{Z} .

Example 1.15.2 Consider $R = \mathbb{Z} \times \mathbb{Z}$, which is a ring where a prime ideal is not necessarily maximal.

Solution: Let $R = \mathbb{Z} \times \mathbb{Z}$ and $I = \langle (1,0) \rangle$. Now, I is a prime ideal. Let $X = (a_1,b_1)$ and $Y = (a_2,b_2)$ for $x,y \in \mathbb{R}$, and note that $XY = (a_1a_2,b_1b_2) \in I$. As \mathbb{Z} is an integral domain, $b_1b_2 = 0$, implying $b_1 = 0$ or $b_2 = 0$. This leads to $X = (a_1,0) \in I$ or $Y = (a_2,0) \in I$. However, there exists $J = \{(a,2b) : a,b \in \mathbb{Z}\} = \langle (1,0),(0,2) \rangle$ such that $I \subset J \subset R$. Thus, I is not maximal, but it is prime.

Example 1.15.3 Consider $R = 2\mathbb{Z}$. The ideal < 4 > is a maximal ideal but not prime, as $2 \cdot 6 \in 4 > but \ 2 \notin 4 > and \ 6 \notin 4 >$. (Why? Since R is without unity).

Proposition .28 If R is a finite ring, then every prime ideal is also a maximal ideal.

Hint(s): A ring is a field if the ring is a finite integral domain.

Exercise 52 *Determine all prime ideals and maximal ideals of* \mathbb{Z}_8 .

Exercise 53 Prove that $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$, but it is not maximal. Here, $\mathbb{Z}[x] = \{a_0 + a_1x + \cdots + a_nx^n : a_i \in \mathbb{Z}, n \in \mathbb{N}\}$ is the ring of polynomials.

Hint(s): If $f(x)g(x) \in \langle x \rangle$, then f(0)g(0) = 0. Both f(0) and g(0) are in \mathbb{Z} (which is an integral domain). This implies f(0) = 0 or g(0) = 0, leading to $f(x) \in \langle x \rangle$ or $g(x) \in \langle x \rangle$. Moreover, we have $\langle x \rangle \subseteq \langle x \rangle \subseteq \mathbb{Z}[x]$.

1.16. The Field of Quotients of an Integral Domain

Similar to how the ring of integers can be extended to include the set of rational numbers, we can perform a similar extension for any integral domain.

Definition .59 A ring R can be embedded in a ring R' if there exists an injective ring homomorphism from R to R'.

R' is called an extension of R if R can be embedded in R'.

Theorem .35 Every integral domain can be embedded in a field, which means we can extend an integral domain to a field.

Proof: Let D be an integral domain. Consider all quotients a/b where $a \in D$ and $b \neq 0$ in D. We denote a/b (which has no defined meaning in D) as (a,b). Define a relation \sim such that $(a,b) \sim (c,d)$ if and only if ad = bc. This relation is an equivalence relation, and we use the equivalence class containing (a,b) to denote the set [a,b]. We claim that F, defined as the set of all these equivalence classes, serves as our desired extension field.

Additionally, we define addition and multiplication on F as follows:

$$[a_1,b_1] + [a_2,b_2] = [a_1b_2 + b_1a_2,b_1b_2]$$

 $[a_1,b_1] \cdot [a_2,b_2] = [a_1a_2,b_1b_2]$

where $b_1b_2 \neq 0$.

Exercise 54 For the structure defined in the proof above, prove all the properties of a field.

Hint(s): [0,b] serves as the additive identity, [-a,b] is an additive inverse, $[c,d]^{-1} = [d,c]$ etc.

F is often referred to as the field of fractions, in the specific case where $D = \mathbb{Z}$, $F = \mathbb{Q}$.

1.17. Euclidean Rings

Definition .60 An integral domain R is termed a Euclidean ring if, for all $0 \neq a \in R$, there exists a non-negative integer d(a) satisfying the following conditions:

- 1. $d(a) \leq d(ab)$
- 2. For all $0 \neq a, 0 \neq b \in R$, there exist $t, r \in R$ such that a = tb + r, where r = 0 or d(r) < d(b).

There is no assigned value for d(0).

Example 1.17.1 The ring $R = \mathbb{Z}$ is a Euclidean ring, with d(a) = |a|, satisfying the following:

- 1. $|a| \le |ab|$ for all $a, b \in \mathbb{Z}$ where $a \ne 0$ and $b \ne 0$
- 2. For any $a, b \in \mathbb{Z}$ where $a \neq 0$ and $b \neq 0$, we have a = tb + r with r = 0 or |r| < |b|.

Definition .61 An integral domain R with unity is a principal ideal ring if every ideal of R is of the form < a > for some $a \in R$.

Theorem .36 Every Euclidean ring (domain) is a principal ideal ring (domain).

[Euclidean Domain \Rightarrow Principal Ideal Domain]

Proof: If $A = \{0\}$, then A = <0>, where A is an ideal of an Euclidean domain. Suppose $A \neq \{0\}$, and let $a_0 \in A$ such that $d(a_0)$ is minimal. Now, if $a \in A$, then there exist $t, r \in R$ such that $a = ta_0 + r$ with r = 0 or $d(r) < d(a_0)$. Also, since $a \in A$ and $a_0 \in A$, we have $ta_0 \in A$, which is an ideal. This implies $a - ta_0 \in A$, and therefore, $r \in A$ with

 $d(r) < d(a_0)$, leading to a contradiction. Hence, r = 0, which means $a = ta_0$, and thus $A = < a_0 >$, proving that it is a principal ideal.

Corollary .37 An Euclidean ring possesses unity.

Proof: Let R be an Euclidean ring. By the previous theorem, $R = \langle a_0 \rangle$ for some $a_0 \in R$, and $a_0 = a_0 c$ for some c. Consider any arbitrary $a \in R$. Then, $a = xa_0$, and hence $ac = xa_0c = xa_0 = a$, which implies ac = a. This means c serves as the unity.

Note 24 Why do we need this result? An integral domain already possesses a unity. This means that if you consider the definition of an integral domain without unity, a Euclidean ring will still automatically possess unity.

If $a \neq 0$ and b are elements of the ring R, then a is said to divide b if there exists $c \in R$ such that b = ac. We write a|b to represent that a divides b, and $a \nmid b$ indicates that a does not divide b.

Definition .62 (Greatest Common Divisor) If $a,b \in R$, then $d \in R$ is said to be the greatest common divisor of a and b if:

- 1. d|a and d|b
- 2. Whenever c|a and c|b, then c|d for any $c \in R$.

We denote d as (a,b), which is the gcd of a and b.

Theorem .38 Let R be an Euclidean ring. Then any two elements a and b in R have a gcd d. Moreover, $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.

Proof: Let $a,b \in R$. Define a set $A = \{ra + sb : r,s \in R\}$. It can be proven that A is an ideal of R, and R being an Euclidean ring is also a principal ideal domain. Thus, $A = \langle d \rangle$ for some $d \in R$, implying $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$. Furthermore, $1 \in R$, so $a = a \cdot 1 + b \cdot 0 \in A$ and $b = b \cdot 1 + a \cdot 0 \in A$, given that $a,b \in A = \langle d \rangle$. This yields $a = dc_1$ and $b = dc_2$ for some $c_1, c_2 \in R$, resulting in d|a and d|b. Moreover, if c|a and c|b, then $c|(\lambda a + \mu b) = d$, which establishes c|d. Hence, the result follows.

In an integral domain, if a|b and b|a, then $a = \mu b$ where μ is a unit.

Definition .63 (Associates) Two elements $a,b \in R$ are said to be associates if $a = \mu b$ for some $\mu \in R$.

Definition .64 (Irreducible element) Let R be a Euclidean ring. An element (non-unit) r is said to be irreducible if whenever r = ab for some $a, b \in R$, either a is a unit or b is a unit in R.

An element is reducible if it is not irreducible.

Theorem .39 Every reducible element in R (Euclidean ring) can be expressed as a product of irreducible elements in R.

Proof: Let $a \in R$ be reducible, i.e., a = bc where neither b nor c is a unit. We have d(b) < d(bc) = d(a) and d(c) < d(bc) = d(a). Using induction, $b = r_1 r_2 \cdots r_n$ and $c = r'_1 r'_2 \cdots r'_n$, so $a = r_1 r_2 \cdots r_n r'_1 r'_2 \cdots r'_n$. Thus, the theorem is proved.

1.18. Unique Factorization Theorem

Theorem .40 An ideal $A = \langle a_0 \rangle$ is a maximal ideal in the Euclidean ring R if and only if a_0 is an irreducible element of R.

Proof: Suppose $a_0 = bc$, where neither b nor c is a unit. Let $B = \langle b \rangle \Rightarrow a_0 \in B \Rightarrow A \subseteq B$.

- 1. If B = R, then 1 = xb, which implies that b is a unit, leading to a contradiction.
- 2. If A = B, then $b \in A \Rightarrow b = xa_0$. Also, since $a_0 = bc$, we have $a_0 = xca_0 \Rightarrow 1 = xc$, which makes c a unit. Hence, a_0 is not an irreducible element, which contradicts the assumption. Therefore, if A is a maximal ideal, then a_0 must be irreducible.

Conversely, if there exists a set U such that $A \subset U \subset R$, let $A = \langle a_0 \rangle$ and $U = \langle d_0 \rangle$. Since R is a principal ideal domain (Euclidean domain \Rightarrow Principal ideal domain), we have $a_0 \in A \subset U \Rightarrow a_0 \in \langle d_0 \rangle$. This implies that $a_0 = d_0 x$,

but since a_0 is irreducible by assumption, either d_0 or x must be a unit.

- 1. If d_0 is a unit, then a unit is in U, which means U = R (since $1 \in U$).
- 2. If x is a unit, then $d_0 = x^{-1}a_0 \in A$ (ideal), where $x^{-1} \in R$, implying that $a_0 \in A$. This means $U \subset A$, and since $A \subset U$, we conclude that A = U, making A a maximal ideal.

Corollary .41 In a principal ideal domain, irreducible elements are also prime elements.

Hint(s): $maximal\ ideal \Rightarrow prime\ ideal.$

Theorem .42 Let R be a Euclidean ring. If $a \neq 0$ is a non-unit in R, and $a = r_1 r_2 \cdots r_n = r'_1 r'_2 \cdots r'_m$ where r'_i , r_i are irreducible elements in R, then n = m and r_i is associated with r'_i for some i, j.

Proof: Since $r_1|r_1'r_2'\cdots r_m' \Rightarrow r_1|r_i'$ for some i. Therefore, $r_i' = r_1u_1$, where u_1 is a unit in R, since r_1 and r_i' are irreducible elements. This implies $r_1r_2\cdots r_n = r_1'r_2'\cdots (r_1u_1)r_{i+1}'\cdots r_m' \Rightarrow r_2\cdots r_n = (r_2'\cdots r_m')u_1$. Repeat this process until we get $1 = (r_{n+1}'\cdots r_m')u_1u_2\cdots u_n$. Since r_i' are not units, we have $n \le m$. Without loss of generality, assume $m \le n$, yielding m = n. From the previous result, we can conclude that r_i is associated with some r_j' , where $1 \le i \le n$ and $1 \le j \le m$.

Definition .65 (Unique Factorization Domain) A ring R is a unique factorization domain if R is an integral domain and every non-zero element of R can be expressed uniquely as a product of a finite number of irreducible elements (up to associates).

Example 1.18.1 1. \mathbb{Z} is a unique factorization domain.

- 2. Every principal ideal domain is a unique factorization domain.
- 3. Every field is a unique factorization domain.
- 4. Every Euclidean domain is a unique factorization domain.

Exercise 55 Every principal ideal domain is a unique factorization domain.

Hint(s): Let $a \in D$ (principal ideal domain). Then $a = r_1 a_1$, where r_1 is irreducible and $(a_1) \supset (a)$. Similarly, $a_1 = r_2 a_2 \Rightarrow (a_2) \supset (a_1)$, and so on. This gives rise to a chain $(a) \subseteq (a_1) \subseteq (a_2) \subseteq \cdots \subseteq (a_n) \subseteq \cdots$. Since $I_n = \bigcup_{n=1}^{\infty} (a_n)$ is a principal ideal, we have $I_{\infty} = \langle b \rangle$, where $b \in \langle a_n \rangle$ for some n. In other words, $\langle b \rangle \subseteq \langle a_n \rangle$, which proves that the factorization is irreducible. Additionally, in a principal ideal domain, every irreducible element implies a prime element, making the factorization unique.

Proposition .29 $\mathbb{Z}[i]$ is a Euclidean ring.

Proof: Define a function

$$d: \mathbb{Z}[i] \to \mathbb{Z}^+ \cup \{0\}$$
$$d(x) = a + ib \mapsto a^2 + b^2 \text{ for all } x = a + ib \in \mathbb{Z}[i]$$

- 1. Clearly, $d(x) \ge 0$ for all $x \in \mathbb{Z}[i]$ and is a non-negative integer function. Furthermore, $d(y) \ge 1$ for all $y \in \mathbb{Z}[i]$.
- 2. $d(x) = d(x) \cdot 1 \le d(x) \cdot d(y) = d(xy)$ (since d(xy) = d(x)d(y) for all $x, y \in \mathbb{Z}[i]$).
- 3. For a specific case: Let x be a positive integer and $y \in \mathbb{Z}[i]$. Use the division algorithm: $\exists u, v \in \mathbb{Z}$ such that $a = un + u_1$ and $b = vn + v_1$, where $|u_1| \le \frac{1}{2}n$ and $|v_1| \le \frac{1}{2}n$ for all $n \in \mathbb{Z}$. Let t = u + iv and $r = u_1 + iv_1$. Then $y = tx + r_1$. Since $d(r) = d(u_1 + iv_1) = u_1^2 + v_1^2 \le \frac{1}{4}n^2 + \frac{1}{4}n^2 = \frac{n^2}{2} \le n^2 = d(n)$, we have y = tx + r with r = 0 or d(r) < d(n).

Note 25 $a \sim b \Leftrightarrow \langle a \rangle = \langle b \rangle$

Proposition .30 In an integral domain, a prime element implies an irreducible element.

Proof: Let p = ab, where p is prime. Then $I = \langle p \rangle$ is a prime ideal, which implies that $ab \in I \Rightarrow a \in I$ or $b \in I$. This means a = px or b = py. If a = px, then $p = pxb \Rightarrow 1 = xb$, making b a unit. Similarly, b = py implies a is a unit. Therefore, p is irreducible.

Exercise 56 In a unique factorization domain, every irreducible element is a prime element.

Hint(s): Assume p is an irreducible element in a UFD R. To show that p is prime, consider $a,b \in R$ such that p divides $a \cdot b$. Since p is irreducible, it cannot be further factored. Therefore, the factorization of $a \cdot b$ involves p.

Now, suppose p does not divide a. Since p is irreducible and it divides $a \cdot b$, it must divide b (otherwise the factorization of $a \cdot b$ wouldn't involve p). This implies that p divides b, making it a divisor of both a and b. Thus, p is shown to be a prime element in the UFD R.

Example 1.18.2 $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain, as $9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 - \sqrt{-5})$, where 3 is not an associate of $2 + \sqrt{-5}$ or $2 - \sqrt{-5}$.

Solution: Suppose for contradiction that 3 is an associate of $2+\sqrt{-5}$ or $2-\sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$. This implies there exists a unit u such that $3 = u \cdot (2+\sqrt{-5})$ or $3 = u \cdot (2-\sqrt{-5})$.

Now, take the norm of both sides of the equation. The norm is multiplicative, so $N(3) = N(u)N(2 + \sqrt{-5})$ or $N(3) = N(u)N(2 - \sqrt{-5})$. But the norm of 3 is 9, and the norms of $2 + \sqrt{-5}$ and $2 - \sqrt{-5}$ are also 9.

Hence, $9 = N(u) \cdot 9$. This implies that N(u) = 1. However, the only units in $\mathbb{Z}[\sqrt{-5}]$ with norm 1 are 1 and -1. Since u is a unit, this leads to a contradiction.

Proposition .31 In a unique factorization domain, every pair of elements has a highest common factor (HCF) and a lowest common multiple (LCM).

Proposition .32 If R is a ring with unity and the characteristic of R is n, then R contains a subring isomorphic to \mathbb{Z}_n . If the characteristic of R is 0, then R contains a subring isomorphic to \mathbb{Z} .

Hint(s): Define $\phi : \mathbb{Z} \to S = \{k \cdot 1 : k \in \mathbb{Z}\} \subseteq R$ as $\phi(k) = k \cdot 1$ for all $k \in \mathbb{Z}$. Then $\frac{\mathbb{Z}}{\ker \phi} \simeq S$ (ϕ is onto and a homomorphism). Here, $\ker \phi = \{x \in \mathbb{Z} : \phi(x) = 0\}$.

- 1. $\ker \phi = \mathbb{Z}_n \text{ if } char(R) = n$
- 2. $\ker \phi = \{0\} \text{ if } char(R) = 0$

Thus, $\mathbb{Z}_n \simeq S \subset R$ or $\mathbb{Z} \simeq S \subseteq R$.

Proposition .33 \mathbb{Z}_m is a homomorphic image of \mathbb{Z} .

Hint(s): Define $\phi : \mathbb{Z} \to \mathbb{Z}_m$ by $\phi(x) = x \pmod{m}$.

Proposition .34 A field F contains either \mathbb{Q} or \mathbb{Z}_p .

Hint(s):

- 1. If char(F) = p, then F contains a subfield isomorphic to \mathbb{Z}_p .
- 2. If char(F) = 0, then F contains a subfield isomorphic to \mathbb{Q} .

Example 1.18.3 Prove that 3 is an irreducible element in $\mathbb{Z}[\sqrt{-5}]$.

Solution: Assume that $3 = (a+b\sqrt{-5})(c+d\sqrt{-5}) \Rightarrow 9 = (a^2+5b^2)(c^2+5d^2)$.

- 1. $a^2 + 5b^2 = 1$ and $c^2 + 5d^2 = 9$. This has a solution if $a = \pm 1$ and b = 0.
- 2. $a^2 + 5b^2 = 3$ and $c^2 + 5d^2 = 3$. This has no solution.
- 3. $a^2 + 5b^2 = 9$ and $c^2 + 5d^2 = 1$. This has a solution if $c = \pm 1$ and d = 0.

 \Rightarrow $(a+\sqrt{-5}b)=\pm 1$ or $(c+\sqrt{-5}d)=\pm 1$ are units of $\mathbb{Z}[\sqrt{-5}]\Rightarrow 3$ is irreducible. However, $3|9=(2+\sqrt{-5})(2-\sqrt{-5})$, and 3 is not an associate of $2+\sqrt{-5}$ or $2-\sqrt{-5}$. Therefore, 3 is not a prime element.

Note 26 In general, prime numbers are not always prime elements.

Exercise 57 *Prove that* 1+i *is an irreducible element in* $\mathbb{Z}[i]$.

Hint(s): Assume, for contradiction, that 1+i is not irreducible in $\mathbb{Z}[i]$. This implies that it can be factored as 1+i=(a+bi)(c+di), where a+bi and c+di are non-unit elements in $\mathbb{Z}[i]$.

Expanding and simplifying, we get 1 + i = (ac - bd) + (ad + bc)i. Equating real and imaginary parts, we have ac - bd = 1 and ad + bc = 1.

Adding the squares of these equations, we get $(a^2 + b^2)(c^2 + d^2) = 2$, which is a contradiction since the left side is a non-negative integer. Hence, the assumption is false, and 1 + i is indeed irreducible in $\mathbb{Z}[i]$.

Example 1.18.4 In \mathbb{Z}_6 , $\bar{2}$ is prime but not irreducible.

Hint(s): $\bar{2}|\bar{a}\bar{b} \Rightarrow 2|ab \Rightarrow 2|a \text{ or } 2|\bar{b} \Rightarrow \bar{2}|\bar{a} \text{ or } \bar{2}|\bar{b}$. Here, $\bar{a}b = ab + 2k$, but $\bar{2} = \bar{2} \cdot \bar{4}$, and neither $\bar{2}$ nor $\bar{4}$ is a unit. Therefore, $\bar{2}$ is not an irreducible element. Thus, \mathbb{Z}_6 is not an integral domain.

Remark 7 In an integral domain, prime elements are also irreducible elements.

Example 1.18.5 1. Every field is a principal ideal domain.

2. \mathbb{Z} is a principal ideal domain.

Example 1.18.6 Consider \mathbb{Z}_{12} . The element $\bar{2}$ is the highest common factor (HCF) of $\bar{6}$ and $\bar{8}$. We claim that $\bar{10}$ is also an HCF (not unique).

Hint(s): $\bar{6} = \bar{3}\bar{2}$, $\bar{8} = \bar{4}\bar{2}$. If $\bar{x}|\bar{6}$ and $\bar{8}$, then $\bar{x}|(\bar{8}-\bar{6}) = \bar{2}$. Now, $\bar{6} = \bar{1}\bar{0}\bar{3}$ and $\bar{8} = \bar{1}\bar{0}\bar{2}$. If $\bar{y}|\bar{6}$ and $\bar{8}$, then $\bar{y}|(\bar{2}\bar{8}-\bar{6}) = \bar{1}\bar{0}$. It's clear that $\bar{2}|\bar{1}\bar{0}$ and $\bar{1}\bar{0}|\bar{2}$.

Moreover, the least common multiple (LCM) of $\bar{6}$ and $\bar{8}$ does not exist. If $\bar{6}|\bar{x}$ and $\bar{8}|\bar{x}$, then $\bar{x}=\bar{6}\bar{n}$ implies $\bar{x}=\bar{0},\bar{6}$, and $\bar{x}=\bar{8}\bar{m}$ implies $\bar{x}=\bar{0},\bar{4},\bar{8}$. Therefore, $\bar{x}=\bar{0}$ is the only common choice, which is impossible. Hence, the LCM does not exist.

Proposition .35 In a principal ideal domain, every non-zero pair a and b has the highest common factor (HCF) and the least common multiple (LCM).

Proposition .36 Two elements are coprime if their highest common factor (HCF) is a unit.

1.19. Polynomial Rings

Definition .66 Let R be a commutative ring. The set $R[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in R\}$ is called the ring of polynomials over R.

Exercise 58 *Prove that* R[x] *is a ring with the usual addition and multiplication of polynomials.*

Theorem .43 If R is an integral domain, then R[x] is also an integral domain.

Proof: R[x] is a ring and is clearly commutative if R is. The element f = 1 serves as the unit in R[x]. Now, let's assume $f(x) \cdot g(x) = 0$, where f_n and g_m are the leading coefficients of f and g. This implies $f_n g_m = 0$, but since $f_n \neq 0$ and $g_m \neq 0$ (as $f_n, g_m \in R$, which is an integral domain), this leads to a contradiction.

Theorem .44 If R is a field, then R[x] is a principal ideal domain.

Proof: Consider an ideal I of R[x] (since R is a field, R[x] is an integral domain). Suppose $I \neq 0$, let g(x) be a polynomial of minimum degree in I. Then $(g(x)) \subseteq I$. Let $f(x) \in I$. By the division algorithm, f(x) = q(x)g(x) + r(x) where r(x) = 0 or deg(r(x)) < deg(g(x)), implying $r(x) = f(x) - q(x)g(x) \in I$. If r(x) has a degree less than g(x), then r(x) = 0, meaning $f(x) \in (g(x))$, and so $I \subseteq (g(x))$. This implies I = (g(x)). Thus, R[x] is a principal ideal domain.

Definition .67 A polynomial p(x) in F[x] is said to be irreducible over F if, whenever p(x) = a(x)b(x), then one of a(x) or b(x) has degree 0, i.e., it is a constant polynomial.

Note 27 Irreducibility depends on the field F.

Example 1.19.1 While $x^2 + 1 = (x+i)(x-i) \in \mathbb{C}[x]$, the polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$.

Exercise 59 Prove that $A = \langle p(x) \rangle$ in F[x] is a maximal ideal if and only if p(x) is irreducible.

Definition .68 The polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ where a_i 's are integers is said to be primitive if the greatest common divisor of the a_i 's is 1.

Theorem .45 If f(x) and g(x) are primitive polynomials, then f(x)g(x) is also a primitive polynomial.

Proof: Let $f(x) = a_0 + a_1x + \dots + a_nx^n$ and $g(x) = b_0 + b_1x + \dots + b_mx^m$. Suppose f(x)g(x) is not primitive, i.e., there exists a prime p dividing all coefficients of f(x)g(x).

Let a_i be the first coefficient of f(x) such that $p \nmid a_i$ (since f(x) is primitive).

Similarly, let b_k be the first coefficient of g(x) such that $p \nmid b_k$. Consider the coefficient of x^{j+k} , denoted as c_{j+k} . This coefficient can be expressed as $c_{j+k} = a_j b_k + (\text{terms divisible by } p)$. Since p does not divide a_j and b_k , this leads to a contradiction, implying that f(x)g(x) is also primitive.

Definition .69 The greatest common divisor of all coefficients of f(x) (with integer coefficients) is called the content of f(x).

Theorem .46 (Gauss's Lemma) If a primitive polynomial f(x) can be factored as the product of two polynomials with rational coefficients, it can also be factored as the product of two polynomials with integer coefficients.

Proof: Assume f(x) = u(x)v(x), where u(x) and v(x) have rational coefficients. Write $f(x) = \frac{a}{b}\lambda(x)\mu(x)$, clearing the denominators, where a and b are integers. Since $\lambda(x)$ and $\mu(x)$ are primitive, $\lambda(x)\mu(x)$ is also primitive. Therefore, a must be equal to b, i.e., $\frac{a}{b} = 1$. Thus, $f(x) = \lambda(x)\mu(x)$, where $\lambda(x)$ and $\mu(x)$ have integer coefficients.

Definition .70 A polynomial is said to be an integer monic if all its coefficients are integers and its content is 1.

Theorem .47 (Eisenstein Criterion) Let $f(x) = a_0 + a_1x + \dots + a_nx^n$ be a polynomial with integer coefficients. Suppose that for some prime p, $p \mid a_0, a_1, \dots, a_{n-1}$ but $p \nmid a_n$ and $p^2 \nmid a_0$. Then f(x) is irreducible over the rationals.

Proof: Without loss of generality, let's assume that f(x) is primitive since taking out the greatest common divisor of its coefficients does not affect the hypothesis.

If f(x) factors as a product of two rational polynomials (due to Gauss's Lemma), then $f(x) = (b_0 + b_1x + \cdots + b_rx^r)(c_0 + c_1x + \cdots + c_sx^s)$ where b_i, c_i are integers and r, s are both greater than 0.

Considering $a_0 = b_0 c_0$, we observe that $p \mid a_0 \Rightarrow p \mid b_0 c_0 \Rightarrow p \mid b_0 \text{ or } p \mid c_0$.

The condition $p^2 + a_0$ ensures that p cannot divide both. Let's consider the case where $p \mid b_0$ and $p \nmid c_0$.

If all coefficients b_0, b_1, \dots, b_r were divisible by p, then all coefficients of f(x) would be divisible by p, which contradicts our hypothesis.

Therefore, let b_k be the first coefficient that is not divisible by p ($0 < k \le r \le n$). Now, considering $a_k = b_k c_0 + b_{k-1} c_1 + \dots + b_0 c_k$, we see that $p \mid a_k, p \mid b_0, p \mid b_1, \dots, p \mid b_{k-1} \Rightarrow p \mid b_k c_0$. Since $p \nmid c_0$, we deduce that $p \mid b_k$, which leads to a contradiction.

This shows that f is irreducible in $\mathbb{Z}[x]$. Let $f = df_1$, where $d \in \mathbb{Z}$ and f_1 is primitive in $\mathbb{Z}[x]$. Now, if f_1 is irreducible over $\mathbb{Z}[x]$, it is also irreducible over $\mathbb{Q}[x]$, where \mathbb{Q} is the field of quotients of \mathbb{Z} . Since $f_1 = \frac{1}{d}f$, we conclude that f is irreducible over $\mathbb{Q}[x]$.

Theorem .48 Let R be a unique factorization domain, and K be its field of quotients. An irreducible primitive polynomial in R[x] is also an irreducible polynomial in K[x].

Proof: Assume f = gk in K[x], where deg(g) > 0 and deg(k) > 0. Since K is the field of quotients of R, there exist d and d' in R such that (dg) and $(d'h) \in R[x]$, i.e., dd'f = (dg)(dh). Also, $dg = \alpha g_1$, and $dh = \beta h_1$ where g_1, h_1 are primitive in R[x], and $\alpha, \beta \in R$. Thus, $dd'f = (\alpha\beta)(g_1h_1) \Rightarrow udd' = \alpha\beta$, where f_1, g_1, h_1 are primitive in R[x], and u is a unit. This implies $f = \mu(g_1h_1)$. However, since f is irreducible over R[x], we conclude that $deg(\mu g_1) = deg(g_1) = 0$ or $deg(h_1) = 0$, leading to a contradiction.