Machine Learning

Bank Customer Churn Analysis

Introduction

Presenter Profile	Rommel Labastida - Data analyst
Organization	YouSave Bank
Target audience	Marketing teams
Business case	How to keep current customers from churning

Problem Statement

Predict bank customer churn to save potential active customersfrom churning

Objectives

Identify which factors contribute the most to customer churn

 Build multiple prediction models to make sure the best model that can classify customer churn will not be missed

Exploratory Data Analysis

Exploratory Data Analysis: Data profiles

14 features with no missing values

	Column	Data Type	Unique Values	Null Values
0	RowNumber	int64	10000	0
1	CustomerId	int64	10000	0
2	Surname	object	2932	0
3	CreditScore	int64	460	0
4	Geography	object	3	0
5	Gender	object	2	0
6	Age	int64	70	0
7	Tenure	int64	11	0
8	Balance	float64	6382	0
9	NumOfProducts	int64	4	0
10	HasCrCard	int64	2	0
11	IsActiveMember	int64	2	0
12	EstimatedSalary	float64	9999	0
13	Exited	int64	2	0

10,000 records

1	df.shape
(100	00, 14)

Irrelevant features

RowNumber	Cus	tome	erld	Sur	nam	е
1		1563	4602	Ha	argra	ve
2	:	1564 ⁻	7311		H	lill
3		15619	9304		Or	nio
4		1570	1354		Вс	ni
5		1573 ⁻	7888	Ν	1itch	ell

Sample rows of data

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
1		Hargrave			Female	42	2	0	1	1	1	101348.88	
1	13034002	Haigiave	019	France	гептате	42	2	U	1	1	1	101340.00	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.57	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.1	0

Exploratory Data Analysis: Balance and correlation

Customer churn ratio

Correlation of features

Exploratory Data Analysis: Relationship of features

Categorical Features

Geography Gender Exited Exited 4000 2000 1000 Female Male France Spain Germany Gender Geography Exited Exited 4000 2000 1000 1000 No IsActiveMember HasCrCard HasCrCard IsActiveMember

Continuous Features

Churned: 500 Not Churned: 3117

Model Fit / Train / Test

Data Preparation and Model Fitting

Features encoding

	credit Score	Age 1	Tenure	Balance			IsActive Member	EstimatedSalary	Exited	Geography_ France	Geography _Germany		Gender_ Female	
0	619	42	2	0	1	. 1	1	101,348.88	1	. 1	L -1	l -1	1	-1
1	608	41	1	83,807.86	1	1	1	112,542.58	0) -1	L -1	1 1	1	-1
2	502	42	8	15,9660.8	3	1	-1	113,931.57	1	. 1	L -1	l -1	1	-1
3	699	39	1	0	2	-1	-1	93,826.63	0) 1	L -1	1 -1	1	-1
4	850	43	2	125,510.82	. 1	. 1	1	7,9084.1	0) -1	L -1	1 1	1	-1

Using 30% test size

```
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)

(7000, 13) (7000,)
(3000, 13) (3000,)
```

Models Scores: Default parameters

Cross Validation Scores: Baseline for 5-folds

	Mean Score	Standard Deviation
SVM	0.7054	0.0150
Random Forest	0.7401	0.0159
Logistic Regression		0.0140

Random Forest: Best Estimator

Best estimator	RandomForestClassifier criterion='entropy', max_depth=25, min_samples_split=5, n_estimators=200
Best parameters	criterion: 'entropy', max_depth: 25, min_samples_split: 5, n_estimators: 200
Best score	0.7443

Hyperparameter Tuning: Random Forest

	precision	recall	f1-score	support
Not Churned (0)	0.88	0.96	0.92	2379
Churned (1)	0.78	0.50	0.61	621
accuracy			0.87	3000
macro avg	0.83	0.73	0.77	3000
weighted avg	0.86	0.87	0.86	3000

Random Forest: Importance of features

Random Forest model solidly confirms Age and NumOfProducts from the correlation heatmap earlier as contributing factors of customer churn

ROC Curve

Using default parameters

Using hyperparameters

Though there's not much gain in ROC curve using hyperparameter tuning, the ROC curves further confirms that Random Forest model gives a better balance between the precision (0.78) and recall (0.50) on 1's (exited)

Conclusions

Though the Random Forest model scores accurately high at 87% and its precision in predicting who will churn in the test data is encouraging, the model was only able to catch 50% of those that eventually exited the bank.

Age is the clear determining factor to predict customer churn in the current data

Customers with exactly 2 bank products have very low tendency to churn compared to customers with 1 or more than 2

Recommendation

The Random Forest model can be further improved by adding new features and more data as it currently suffers from imbalance target data at 20%

With the current data, the bank could meantime focus more on existing older customers to prevent them from churning (at least 50 % of them)

Give extra attention to bank customers with 1 bank product or more than 2 bank products as they have higher chance of churning

Thank you