Effectiveness of Different Policies Aimed to Reduce Traffic Deaths

Data Exploration:

First, we organized and tried to comprehend the data which is based on 336 observations (N) from 48 States (Entities) through 7 time periods of years 1982-1988 (T).

We wanted to study what policies effectively reduce mraidall (alcohol-involved VFR), which is referenced as Vehicle Fatality Rate X 10,000 (VFR) from this point on. The policies we focused on while studying this data were: beertax (tax on case of beer in dollars), jaild (mandatory jail sentence), comserd (mandatory community service) and mlda (minimum legal drinking age).

Table 1.1 shows variables that we initially thought could be significant in our model with some transformed into logarithmic form for better readability and interpretation.

We began with the following control variables:

- State unemployment rate (%): unrate
- Log per capita personal income (\$): Inperinc
- GSP rate of change: gspch
- % of drivers aged 15-24: yngdrv
- % residing in dry counties: dry
- Log Population: Inpop
- Log ave. mile per driver: Invmiles
- Log population of 15-17 year olds: Inpop1517
- Log population of 18-20 year olds: Inpop1820
- Log population of 21-24 year olds: Inpop2124
- Per capita pure alcohol consumption (annual, gallons): spircons
- % Southern Baptist: sobapt
- % Mormon: mormon

Image 1.1 shows evidence that our panel data is balanced.

Table 1.2 displays the summary for all the variables mentioned above and we found that the mean VFR is **0.6593** and mean beertax was \$**0.5132** per case of beer. On average, ~**28%** of the of the 48 continuous states had mandatory jail sentences and ~**18.5%** of the states had mandatory community service.

Next, we used graphical representations to interpret the policies and some relevant variables for insight on the data.

Graph 1.1 displays the mean mraidall (VFR) with respect to each state. The states with noticeable changes included *Mississippi, Montana, New Hampshire, Texas, Wyoming,* and *South Carolina*. The VFR in Mississippi experienced a sharp decline in the first 2 years followed by a sharp increase before it catches a constant rate. Montana had a bumpy decreasing trend as well as New Hampshire and Wyoming. Texas had a smooth decreasing trend from 1982 to 1988. South Carolina though had an increasing trend for four years before decreasing in the end.

Graphs 1.2- 1.5 imply that during the period where unemployment rate decreased, the VFR also decreased. When the logarithmic values of personal income increased, the VFR decreased. We expected that with the increase on beer tax, VFR would go down; however, this was not the case. VFR decreased even when beer tax decreased, suggesting that beer tax is not an effective policy.

Graphs 1.6 – 1.7 imply that mandatory jail sentences and mandatory community service helped reduce the VFR. However, when VFR peaks in 1986, so did mandatory jail time and community service, which implicates that these two variables may not be the most effective policies.

Graph 1.8-1.10 shows that if the beer tax is above the mean, then VFR was higher on average and had a fluctuating trend. If the beer tax is below the mean, then VFR was lower overall. If the minimum legal drinking age is 18, VFR had an upward trend over the years. At 19, VFR decreased before spiking up in 1987. For age 20, VFR decreased before bouncing up in 1984 and then increasing sharply in 1986 onwards. For age 21, it was an overall decrease throughout the years with a more stable pattern compared to the others.

Regression Analysis:

We ran a **pooled OLS model** with Cluster Robust standard errors that included all variables we thought would affect our dependent variable VFR. According to the results, we found that none of the variables were significant at the 5% level except Inperinc, spircons and mormon.

According to pooled model when other factors are kept constant, if per capita personal income increases by 1%, we expect VFR to decrease by approximately 0.00844 and a 1-gallon annual increase in the per capita consumption of pure alcohol is expected to increase the VFR by 0.062. A 1% increase in Mormon population is expected to decrease the VFR by 0.005.

This model though is not applicable to our data since there is an endogeneity problem.

We used the **fixed effects model** to control for unobserved heterogeneity with the same variables from the pooled model. The following are findings from the results compared to the pooled OLS:

- Magnitude for beertax has increased but is still insignificant even at the 10% significance level.
- Magnitude for jaild increased by more than twice its value from the pooled model. The
 coefficient for comserd increased by almost five times. These variables have now become
 statistically significant at the 5% level.
- If all factors are kept constant, a mandatory jail sentence is expected to increase VFR by 0.213 compared to if there was no jail time and mandatory community service is expected to decrease VFR by 0.2 compared to if there was no mandatory community service.
- Minimum legal drinking age is still insignificant.
- Spircons is even more significant, with its coefficient increasing by ~4 times. A 1-gallon annual increase in the per capita consumption of pure alcohol is expected to increase the VFR by 0.264.
- The magnitude for unrate is almost the same; however, it is now significant at the 10% level.
- Inperinc now has decreased by almost half and is not statistically significant anymore.
- The rest of the variables remain insignificant.

Next, we did an **entity and time fixed effects model** since omitted variables like the development and presence of safer cars might vary over time but not across economic entities. The results showed that jaild, spircons and comserd are significant at the 5% level but the rest are not. Even though beertax and mlda are not significant, we kept them in the model since they are the policies we are monitoring.

States with mandatory jail sentences are expected to have a higher VFR by 0.233 compared to states without and states with mandatory community service are expected to have a 0.22 lower VFR compared to those without, given all other variables are constant. A 1-gallon annual increase in the per capita consumption of pure alcohol is expected to increase the VFR by 0.311.

Then, we tested the significance of our time effects to see if they are jointly statistically significant. According to the test, we have a p-value of 0.0021 signifying that at least one year influences the model, so we continued to use the time variables.

We regressed a time fixed effect models without these insignificant variables: gspch, dry, pop, and vmiles (restricted model 1). We saw that jaild, comserd, unrate and spircons are statistically significant. A mandatory jail sentence is expected to increase VFR by 0.24 more than if there was no jail time and mandatory community service is expected to decrease VFR by 0.21 more than if there was no mandatory community service, given all other variables are constant. A 1-gallon annual increase in the per capita consumption of pure alcohol is expected to increase the VFR by 0.299 and a 1% increase in unemployment rate is expected to decrease VFR by 0.03.

The coefficients for the different population ages and yngdrv are only insignificant at the 10% level so they were removed from the model and we proceeded with our new time fixed effect model (restricted model 2).

In this model, we have variables beertax, jaild, comserd, mlda, unrate and spircons. At the 5% level, jaild, comserd, spircons and unrate are still significant but beertax and mlda are not. The coefficients for this model have not changed much from restricted model 1. The time variables also show that each year compared to 1982 had a reduction in VFR that was statistically significant at the 5% level except 1986 at the 10% level.

Moving forward, we took restricted model 2 variables from a time fixed effects and fitted them into a random effects model to see which one is better for our data and which variables explain our dependent variable well.

In our **random effects model**, we finally saw beertax become significant but only at the 10% level. Jaild is significant at the 5% level but comserd and unrate are only significant at the 10% level while mlda is still insignificant.

Mandatory jail sentence is expected to increase VFR by 0.205 and mandatory community service is expected to decrease VFR by 0.15, given all other variables are constant. Under the same conditions, a 1% increase in unemployment rate is expected to decrease VFR by 0.0256.

In the last part of our regression analysis, we performed a **Hausman Test** to determine which model to choose – fixed (entity and time) or random – with the following explanatory variables: beertax, jaild, comserd, mlda, unrate, spircons and time variables. We rejected the null hypothesis that there is no endogeneity and selected the entity time fixed effects model.

Summary and Conclusion:

After analyzing the models taken to observe how different factors and policies affected the alcohol-involved vehicle fatality rate, we concluded that the entity time fixed effects model was the most suitable approach (restricted model 2). This model controls for omitted variable bias and observed/unobserved heterogeneity, and is not randomly sampled data; therefore, the estimators will be unbiased and consistent.

The controlling variables that significantly impacted the VFR were per capita pure alcohol consumption and the unemployment rate. As alcohol consumption in a state increased annually by 1-gallon, the VFR increased by 0.264. A 1% increase in the unemployment rate resulted in a 0.032 decrease in VFR. While these factors are not policies, they can influence how states make policies to reduce alcohol-involved VFR.

All time indicator variables were significant at the 5% level except 1986 which was still significant at the 10% level. We saw that the VFR decreased each year when compared to 1982.

The beertax and minimum legal drinking age policies did not show to have a significant impact on the alcohol-involved VFR on this data. The policies that did significantly impact the alcohol-involved VFR were mandatory jail sentence and mandatory community service. States with a jail sentence had higher VFR on average than states without by 0.236; therefore, implementing a mandatory jail sentence is not an effective policy to reduce the alcohol-induced VFR. Having a mandatory community service though reduced the VFR by 0.195, so more states should consider implementing this policy.

Appendix

Table 1.1

Display of organized data set

	state	year	VFR	beertax	jaild	comserd	mlda	unrate	lnperinc	gspch	yngdrv	dry	lnpop	lnpop1517	lnpop1820	lnpop2124	lnvmiles
1	AL	1982	.78498	1.539379	0	0	19	14.4	9.263327	0221248	.211572	25.0063	15.1872	12.25009	12.30842	12.57764	8.886532
2	AL	1983	.86322	1.788991	0	0	19	13.7	9.281059	.0465583	.210768	22.9942	15.19176	12.21602	12.2974	12.57764	8.966528
3	AL	1984	.76428	1.714286	0	0	19	11.1	9.315492	.0627978	.211484	24.0426	15.19905	12.19096	12.28638	12.57072	9.019542
4	AL	1985	.6882401	1.652542	0	0	19.67	8.9	9.335442	.02749	.21114	23.6339	15.20704	12.18075	12.27536	12.55673	9.074167
5	AL	1986	.89066	1.609907	0	0	21	9.8	9.364049	.0321429	.2134	23.4647	15.21423	12.22587	12.26434	12.47991	9.099728
6	AL	1987	.90233	1.56	0	0	21	7.8	9.387984	.0489764	.215527	23.7924	15.22234	12.23076	12.25008	12.46458	9.123289
7	AL	1988	.72726	1.501444	0	0	21	7.2	9.422918	.0353918	.218328	23.7924	15.22698	12.21106	12.17045	12.47991	9.177231
8	AZ	1982	.59948	.2147971	1	1	19	9.9	9.418092	0431819	.209012	0	14.87918	11.85651	11.96004	12.29225	8.82617
9	AZ	1983	.66137	.206422	1	1	19	9.1	9.44887	.0762055	.203855	0	14.90643	11.84223	11.96732	12.29683	8.792929
10	AZ	1984	.69128	.2967033	1	1	19	5	9.492954	.106214	.209127	0	14.93784	11.83501	11.9746	12.30138	8.81135
11	AZ	1985	.70858	.3813559	1	1	21	6.5	9.527098	.0781956	.188428	0	14.97459	11.8494	11.98188	12.30138	8.820443
12	AZ	1986	.74055	.371517	1	1	21	6.9	9.55445	.0677125	.171539	0	15.00305	11.90497	11.98916	12.25961	9.003194
13	AZ	1987	.71406	.36	1	1	21	6.2	9.56388	.0641113	.168724	0	15.03516	11.9117	11.99535	12.26434	9.145338
14	AZ	1988	.68281	.346487	1	1	21	6.3	9.575544	.0265678	.161005	0	15.06512	11.90497	11.96401	12.29225	9.191741
15	AR	1982	1.17668	.650358	0	0	21	9.8	9.23672	0347338	.204903	36.7128	14.65146	11.71178	11.70577	11.964	8.883017
16	AR	1983	1.06605	.6754587	0	0	21	10.1	9.252776	.0401444	.194169	36.4301	14.65923	11.67844	11.70105	11.97666	8.878486
17	AR	1984	.7788	.5989011	0	0	21	8.9	9.298029	.0835973	.18638	36.104	14.66822	11.65269	11.69632	11.99535	8.865709
18	AR	1985	.83999	.5773305	0	0	21	8.7	9.319138	.0046022	.189292	35.905	14.67375	11.63514	11.6916	11.98916	8.889297
19	AR	1986	1.00176	.5624355	0	0	21	8.7	9.341314	.0297692	.161957	39.5696	14.67882	11.65269	11.68688	11.88449	8.918516
20	AR	1987	.92925	.545	0	0	21	8.1	9.353314	.00193	.164132	39.2879	14.68597	11.66135	11.66994	11.86358	8.944529
21	AR	1988	.87201	.5245429	0	0	21	7.7	9.372489	.0337335	.167541	39.2879	14.6889	11.64395	11.60823	11.89136	8.990271
22	CA	1982	.55641	.1073986	0	0	21	9.9	9.667583	011686	.190196	0	17.02579	13.96134	14.0939	14.45367	8.83327
23	CA	1983	.49449	.103211	0	0	21	9.7	9.678479	.0530367	.183569	0	17.04675	13.93418	14.08543	14.44997	8.884096
24	CA	1984	.5512	.0989011	0	0	21	7.8	9.716562	.072461	.174131	0	17.06569	13.91536	14.07696	14.44359	8.938423
25	CA	1985	.47181	.095339	0	0	21	7.2	9.740096	.0483305	.167896	0	17.08755	13.91626	14.06849	14.43339	8.97133
26	CA	1986	.48513	.0928793	0	0	21	6.7	9.761696	.0466814	.164371	0	17.11139	13.97422	14.06002	14.38479	8.991551
27	CA	1987	.5175	.09	0	0	21	5.8	9.789535	.0697363	.160682	0	17.13561	13.96651	14.05296	14.37741	9.009525
28	CA	1988	.44032	.0866218			21	5.3	9.80085	.0490204	.148684	0	17.15887	13.93507	14.02089	14.38649	9.051578
29	CO	1982	.71535	.2147971	0	1	21	7.7	9.62128	.012043	.229148	.113151	14.93784	11.8706	12.0433	12.41309	8.954524
30	CO	1983	.69021	.206422	0	1	21	6.6	9.624559	.0291794	.207658	.090822	14.9626	11.8494	12.02977	12.40082	8.943254
31	co	1984	.63618	.1978022	0	1	21	5.6	9.647744	.0553472	.192155	.075862	14.97553	11.82774	12.01623	12.38422	8.949995

Image 1.1

Panel Data Set up

. xtset state year

Panel variable: state (strongly balanced)

Time variable: year, 1982 to 1988

Delta: 1 unit

Table 1.2

. xtsum

Variable	Mean Std				Observat	ions
state overall			1		N =	336
between	15. 44883	1	56	n =	48	
within	0	30. 1875	30. 1875	T =	7	
1						
year overall	1985 2.0	002983	1982	1988	N =	336
between	0	1985	1985	n =	48	
within	2. 002983	1982	1988	T =	7	
1						
VFR overall	. 6592957 . 25	196777 .	. 23372 1.	77202	N =	336
between	. 2286467	. 2606729	1.420347	n =	48	
within	. 1268445	2769114	1.134474	T =	7	
1						
beertax overall	. 513256 . 47	78442 . 04	433109 2.7	20764	N =	336
between	. 4789513	. 0481679	2.440507	n =	48	
within	. 0552203	. 1415352	. 7935126	T =	7	
1						
jaild overall	. 280597 . 4	49963	0	1	N =	335
between	. 4280223	0	1	n =	48	

within	. 1491349	5765458 . 7091	684 T =	6.97917	
comserd overall	. 1850746 . 3889	939 0	1	N =	335
between	. 3691987	0	1 n =	48	
within	. 1308 6	6720682 . 61364	61 T =	6. 97917	
mlda overall	20. 45563 . 89902	255 18	21	N =	336
between	. 674607 18	3. 78571	21 n =	48	
within	. 6010849 18	3. 74134 22. 6699	91 T =	7	
unrate overall	7. 346726 2. 5334	2. 4	18	N =	336
between	1. 953377	4. 1 13.	.2 n =	48	
within	1. 634257 4.	046726 12. 146	73 T =	7	
Inperinc overall	9. 525574 . 158	9.160495	10.00755	N =	336
between	. 1500003 9.	204648 9.87539	91 n =	48	
within	. 054043 9.	367712 9.66933	38 T =	7	
gspch overall	. 0253135 . 04317	732 1236415	.1423609	N =	336
between	.02971380	0652201 . 07877	35 n =	48	
within	. 0315725 0	0801624 . 104	19 T =	7	
yngdrv overall	. 1859299 . 02487	. 073137	. 281625	N =	336
between	.017161 .1	. 22269	99 n =	48	
within	.0181513 .1	215223 . 25137	53 T =	7	
dry overall	4. 267074 9. 5009	901 0	45. 7921	N =	336

– Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

between	9. 563572	0	42. 21479	n =	48	
within	. 6658347	1. 155888	7.844387	T =	7	
1						
lnpop overall	14.96255 .97	72593 13.	07946 17.1	5887	N =	336
between	. 9858179	13. 12888	17. 09024	n =	48	
within	. 0245966	14. 87011	15.06737	T =	7	
lnp~1517 overall	11.90349 .98	346742 9.9	952279 13.9	7422	N =	336
between	. 9928369	10.0112	13. 94328	n =	48	
within	. 0388974	11. 77784	12.00098	T =	7	
lnp~1820 overal1	11.98732 .97	13251 9.9	952276 14.	0939	N =	336
between	. 9789808	10. 08469	14. 06552	n =	48	
within	. 0472697	11. 82639	12. 08473	T =	7	
lnp~2124 overall	12. 28173 . 97	['] 28019 10.	30896 14.4	5367	N =	336
between	. 9797092	10. 47877	14. 41847	n =	48	
within	. 0608647	12. 11193	12. 40561	T =	7	
Invmiles overall	8. 960302 . 15	662787 8.4	128656 10.1	7154	N =	336
between	. 1275165	8. 539781	9. 266268	n =	48	
within	. 0919447	8. 71565	10.00649	T =	7	
spircons overall	1.75369 .68	335745	. 79	4.9	N =	336
between	. 6734649	. 8614286	4.388572	n =	48	
within	. 147792	1. 255119	2. 265119	T =	7	

perinc overall	13880. 18 2253	3.046 951	3. 762 22193.	46	N =	336
between	2122.712	9950.87	19515.82	n =	48	
within	806. 8547	11432.6	16557.82	T =	7	
1						
sobapt overall	7. 156925 9. 76	62621	0 30.35	557	N =	336
between	9. 849453	0	30. 28947	n =	48	
within	. 185949	6. 354682	7. 974181	T =	7	
mormon overall	2.801933 9.66	65279	.1 65.91	.65	N =	336
between	9.750385	.1	63.768	n =	48	
within	. 2244279	. 6929348	4. 950431	T =	7	
vmiles overall	7890.754 147	5. 659 457	6. 346 26148.	27	N =	336
between	1018.511	5129. 503	10592.69	n =	48	
within	1076.468	4722. 285	23678.73	T =	7	
1						
allmort overall	928. 6637 934.	. 0515	79 55	504	N =	336
between	937. 6918	107. 8571	5045	n =	48	
within	94. 52131	456. 6637	1449. 235	T =	7	
1						
mrall overall	.000204 .00	00057 .00	00821 .00042	218	N =	336
between	. 0000546	. 000111	.0003653	n =	48	
within	. 0000179	.0001456	.0002963	T =	7	
1						
allnite overall	182. 5833 188.	4311	13 10)49	N =	336
between	188. 4657	19. 71429	914. 8571	n =	48	
within	24. 96232	29. 29762	390. 2976	T =	7	

– Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

mralln overall	.0000388 .000011 .0	0000172 .0000944	N = 336
between	9.19e-06 .0000227	.0000681 n =	48
within	6.08e-06 .0000123	.00007 T =	7
allsvn overall	109. 9494 108. 5397	8 603	N = 336
between	108. 4998 12. 71429	9 525.7143 n =	48
within	14. 8158 18. 23512	2 219. 2351 T =	7
al517 overall	62. 61012 55. 72909	3 318	N = 336
between	55. 26257	7 272. 5714 n =	48
within	10. 31876 22. 03869	9 108.0387 T =	7
mra1517 overall	.0003034 .0000937 .0	0001163 .0006735	N = 336
between	.0000739 .0001566	.0004865 n =	48
within	.0000585 .0000682	.0004945 T =	7
al517n overall	12. 2619 12. 25341	0 76	N = 336
between	11. 64903 1. 285714	57.71429 n =	48
within	4. 108133 -6. 452381	30. 54762 T =	7
mra1517n overall	.0000598 .000033	0 .0002571	N = 336
between	.0000192 .0000297	7 .000131 n =	48
within	. 0000269 0000172	2 .0001859 T =	7
a1820 overall	106. 6607 104. 2236	7 601	N = 336
between	104. 2461	3 567. 5714 n =	48

within	13. 78232 5	2. 08929 197. 089	93 T =	7	
a1820n overall	33. 52679 33. 238	34 0	196	N =	336
between	32. 5065 3.	714286 150. 5714	1 n =	48	
within	8. 187827 3.	955357 79. 09821	T =	7	
mra1820 overall	.0004728 .00015	22 .0001855 .	0010952	N =	336
between	.0001308 .0	002679 . 0009358	3 n =	48	
within	.0000798 .0	001392 .0008032	2 T =	7	
mra1820n overall	.0001436 .0000	613 0	.0005238	N =	336
between	. 0000418	. 0000933 . 00031	.21 n =	48	
within	.0000452 -	. 0000865 . 00035	554 T =	7	
a2124 overall	126. 872 131. 78	86 12	770	N =	336
between	131. 8842 17	. 42857 738. 2857	7 n =	48	
within	16. 92104 30.	15774 230. 1577	7 T =	7	
mra2124 overall	.0004091 .00012	. 0002 .	0008922	N =	336
between	.0001044 .00	002323 . 0007501	n =	48	
within	. 0000656	000158 .0006783	3 T =	7	
a2124n overall	41. 37798 42. 930	31 1	249	N =	336
between	42. 38749 5.	714286 211	n =	48	
within	8. 859577 -3.	907738 88. 09226	S T =	7	
			1		
mra2124n overall	.0001284 .0000	422 .0000222	.0003143	N =	336

between	.0000263 .0000545 .0001916 n =	48	
within	.0000333 .0000114 .0002773 T =	7	
aidall overall	293. 3332 303. 5807 24. 6 2094. 9	N =	336
between	298. 4363 34. 49 1525. 471 n =	48	
within	68. 49986 -197. 6582 862. 7617 T =	7	
mraidall overall	.0000659 .000026 .0000234 .0001772	N =	336
between	.0000229 .0000261 .000142 n =	48	
within	.00001270000277 .0001134 T =	7	
pop overall	4930272 5073704 478999.7 2.83e+07	N =	336
between	5114958 503428.5 2.65e+07 n =	48	
within	219679.6 3254075 6782127 T =	7	
pop1517 overall	230815.5 229896.3 21000.02 1172000	N =	336
between	231628.1 22285.71 1136572 n =	48	
within	12713.51 140673.2 305675.2 T =	7	
pop1820 overall	249090.4 249345.6 20999.96 1321004	N =	336
between	251240.7 24020.29 1284364 n =	48	
within	13486.92 174202.9 293807.6 T =	7	
pop2124 overall	336389.9 345304.4 30000.16 1892998	N =	336
between	347721.3 35714.24 1828428 n =	48	
within	22148. 45 238532. 4 400959. 9 T =	7	

- Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

miles	overall	37101.49	37454. 3	37	3993	241575		N =	336
betwe	een	37455.	95 46	670. 143	205945	5	n =	48	
withi	in	5000.8	848 11	155. 489	72731.	5	T =	7	

Graph 1.1 Graph 1.2 – 1.5 Graphs 1.6 – 1.10

Pooled OLS Cluster Robust model

Fixed Effects Model

Entity and Time Fixed Effects Model

. xtreg VFR beertax jaild comserd mlda unrate lnperinc gspch yngdrv dry lnpop lnpop1517 lnpop1820 lnpop2124 lnvmil

> es spircons mormon sobapt i.year, fe vce(cluster state)

Fixed-effects (within) regression Group variable: state	Number of obs Number of groups		335 48
R-sq:	Obs per group:		
within $= 0.2518$	mir	1 =	6
between = 0.1310	avę	g =	7.0
overall = 0.0817	max	<u> </u>	7
	F(22, 47)	=	
$corr(u_i, Xb) = -0.9473$	Prob > F	=	

(Std. Err. adjusted for 48 clusters in state)

 VFR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
beertax	2566403	. 2404	-1 . 07	0. 291	- . 7402626	. 2269821
jaild	. 2336855	. 0197134	11.85	0.000	. 1940272	. 2733438
comserd	2204709	. 0847925	-2.60	0.012	- . 3910514	0498905
mlda	0024559	. 0203543	-0.12	0.904	0434035	. 0384917
unrate	0240344	. 0146982	-1.64	0.109	0536034	. 0055346
1nperinc	0066958	. 3564415	-0.02	0.985	 7237637	.7103721
gspch	. 5722916	. 388845	1.47	0.148	- . 2099637	1.354547
yngdrv	. 3380146	. 6142037	0.55	0.585	8976038	1.573633
dry	. 0010948	. 0204524	0.05	0.958	0400501	. 0422397

– Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

1npop	. 1462484	1. 055865	0.14	0.890	-1.977878	2. 270375				
1npop1517	2688584	. 3523672	-0.76	0.449	9777299	. 440013				
1npop1820	. 4020457	. 6672841	0.60	0.550	9403567	1.744448				
1npop2124	. 1065147	. 4156998	0.26	0.799	- . 7297654	. 9427947				
1nvmiles	0235105	. 0892354	-0.26	0.793	203029	. 156008				
spircons	. 311773	. 0999927	3. 12	<mark>0. 003</mark>	. 1106136	. 5129323				
mormon	0330543	. 0339257	-0.97	0.335	1013041	. 0351955				
sobapt	0081206	. 0743452	-0.11	0.913	1576839	. 1414426				
year										
1983	0944925	. 0323231	-2 . 92	<mark>0. 005</mark>	1595182	0294668				
1984	 1533695	. 0613539	-2 . 50	<mark>0. 016</mark>	2767976	0299414				
1985	 1587423	. 0886892	-1.79	0.080	3371619	. 0196773				
1986	0748311	. 1314172	-0.57	0.572	3392085	. 1895462				
1987	1049265	. 1708138	-0.61	0.542	4485595	. 2387064				
1988	1031417	. 21632	-0.48	0.636	 5383214	. 332038				
_cons	-4 . 223813	8. 298766	-0.51	0.613	-20. 91878	12. 47115				
sigma u	. 70574478									
sigma_e	. 1235399									
rho	. 97026888	(fraction	of variar	nce due t	o u i)					
1110		(fraction of variance due to u_i)								

Time Effects Hypothesis test

 H_0 : all time effects = 0; H_1 : at least for one year the effect is $\neq 0$

- . do "C:\Users\JMA200 1 \AppData\Local\Temp\340\STD53c8_000000.tmp"
- . testparm i.year
- (1) 1983. year = 0
- (2) 1984. year = 0
- (3) 1985. year = 0
- (4) 1986. year = 0
- (5) 1987. year = 0
- (6) 1988. year = 0

$$F(6, 47) = 4.12$$

 $Prob > F = 0.0021$

– Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

Restricted Model 1

. xtreg VFR beertax jaild comserd mlda unrate spircons yngdrv lnpop1517 lnpop1820 lnpop2124 i.year, fe vce(cluster state)

Fixed-effects (within) regression	Number of obs	=	335
Group variable: state	Number of grou	ps =	48
R-sq:	Obs per group:		
within $= 0.2433$		min =	6
between = 0.2174		avg =	7.0
overall = 0.1359		max =	7
	F (15, 47)	=	•
$corr(u_i, Xb) = -0.9295$	Prob > F	=	•

(Std. Err. adjusted for 48 clusters in state)

VFR	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
beertax	+ 2143359	. 2247175	-0 . 95	0. 345	6664091	. 2377374
jaild	. 2415373	. 0148719	16. 24	<mark>0.000</mark>	. 2116189	. 2714556
comserd	2104885	. 0820478	-2.57	0.014	- . 3755474	0454296
mlda	001835	.0179294	-0.10	0.919	0379042	. 0342343
unrate	0303483	. 0117827	-2 . 58	<mark>0. 013</mark>	054052	0066445
spircons	. 2989838	. 0981135	3.05	<mark>0. 004</mark>	. 101605	. 4963627
yngdrv	. 1689624	. 5457198	0.31	0.758	9288842	1.266809
1npop1517	- . 147086	. 2636389	-0.56	0.580	6774591	. 3832871
1npop1820	. 5982292	. 4998909	1.20	0.237	4074215	1.60388
1npop2124	. 0206503	. 2987582	0.07	0.945	 5803738	. 6216743
year						
1983	0608398	. 0268285	-2.27	0.028	1148117	0068678
1984	1100715	. 0534971	-2.06	0.045	- . 2176939	0024492
1985	- . 1353928	. 0595096	-2.28	0.028	2551108	0156749
1986	0610965	. 0703016	-0.87	0.389	- . 2025251	. 080332
1987	 0914463	. 0879144	-1.04	0.304	 2683072	. 0854146
1988	0711227	. 1141009	-0.62	0.536	3006641	. 1584186
_cons	 -5. 149056	5. 787988	-0.89	0.378	-16. 79299	6. 494873

– Milena Agudelo, Muhammad A. Dojki, Adreanna A. Thai, Luomeng Wei

sigma_u | .59068366 sigma_e | .12262474

rho | .95868368 (fraction of variance due to u_i)

Restricted model 2

. xtreg VFR beertax jaild comserd mlda unrate spircons i.year, fe vce(cluster state)

Fixed-effects (within) regression	Number of obs	=	335
Group variable: state	Number of groups	=	48
R-sq:	Obs per group:		
within = 0.2354	min	=	6
between = 0.0771	avg	=	7.0
overal1 = 0.0315	max	=	7
	F(11, 47)	=	•
$corr(u_i, Xb) = -0.7947$	Prob > F	=	

(Std. Err. adjusted for 48 clusters in state)

 VFR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Intorvoll
VI'IX	coer.	Stu. EII.	ι 	Γ/ t 	[95% COIII.	Intervar]
beertax	 2191313	. 2199808	-1.00	0. 324	- . 6616755	. 223413
jaild	. 2362551	. 0130923	18.05	<mark>0.000</mark>	. 2099168	. 2625934
comserd	 1953402	. 0800332	-2 . 44	<mark>0.018</mark>	 3563462	0343342
mlda	0011711	. 017152	-0.07	0.946	0356764	. 0333342
unrate	 0317377	. 0119645	-2 . 65	0.011	- . 0558071	0076683
spircons	. 2644314	. 0816639	3.24	0.002	. 1001449	. 4287179
year						
1983	 0670637	. 0239062	-2 . 81	<mark>0.007</mark>	- . 1151568	0189705
1984	- . 1258915	. 0459793	-2.74	<mark>0.009</mark>	- . 21839	- . 033393
1985	 1607316	. 0494188	-3 . 25	<mark>0.002</mark>	- . 2601495	0613137
1986	 1070452	. 0622678	-1.72	0.092	- . 2323119	. 0182216
1987	 1528763	. 0735304	-2.08	<mark>0. 043</mark>	 3008003	0049522
1988	- . 1698523	. 0805474	-2 . 11	<mark>0.040</mark>	- . 3318928	0078118
_cons	. 6478674	. 4134844	1.57	0.124	1839559	1. 479691

sigma_u	. 38257984	
sigma_e	. 12236879	
rho	. 90718987	(fraction of variance due to u_i)

Random Effects Model

. xtreg VFR beertax jaild comserd mlda unrate spircons i.year, re cluster(state)

Random-effects GLS regression Group variable: state	Number of obs Number of groups		335 48
R-squared:	Obs per group:		
Within $= 0.1851$	mir	1 =	6
Between = 0.0349	avę	g =	7.0
Overall = 0.0606	max	ζ =	7
	Wald chi2(12)	=	64. 52
$corr(u_i, X) = 0$ (assumed)	Prob > chi2	=	0.0000

(Std. err. adjusted for 48 clusters in state)

VFR	 Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
beertax	. 0995879	. 0536098	1.86	0.063	0054855	. 2046612
jaild	. 2045665	. 053014	3.86	<mark>0.000</mark>	. 100661	. 308472
comserd	1475858	. 077544	-1.90	0.057	 2995693	. 0043977
mlda	0064307	. 016378	-0.39	0.695	0385309	. 0256695
unrate	0258585	.0132601	-1.95	0.051	0518478	.0001309
spircons	. 0056232	. 0380779	0.15	0.883	0690081	. 0802544
year						
1983	0794518	. 0234151	-3.39	0.001	- . 1253446	033559
1984	- . 136258	. 04781	-2.85	<mark>0. 004</mark>	- . 2299639	0425522
1985	1804119	. 0516694	-3.49	<mark>0.000</mark>	- . 2816821	0791418
1986	- . 1537528	. 063143	-2.43	<mark>0. 015</mark>	- . 2775108	0299948
1987	2003318	. 0745963	-2.69	0.007	- . 3465379	0541258
1988	2185893	. 0832496	-2 . 63	0.009	3817556	0554231
_cons	1. 02838	. 3828008	2.69	0.007	. 2781044	1.778656

sigma_u | .20074109 sigma_e | .12236879 rho | .72907869 (fraction of variance due to u_i)

Hausman Test 1

 H_0 : both FE and RE estimators are converging to β_k (no endogeneity), $b_{k,FE}-b_{k,RE}=0$; H_1 : FE and RE estimators are not converging to β_k (endogeneity), $b_{k,FE}-b_{k,RE}\neq 0$. hausman fixed1 random1

	Coeffi			
	(b)	(B)	(p-B)	sqrt(diag(V_b-V_B))
	fixed1	randoml	Difference	S. E.
+				
beertax	2191313	. 0995879	- . 3187191	. 1159886
jaild	. 2362551	. 2045665	. 0316886	. 0710853
comserd	 1953402	1475858	0477543	. 0810085
mlda	0011711	0064307	. 0052596	. 0017058
unrate	0317377	0258585	0058792	. 0024735
spircons	. 2644314	. 0056232	. 2588082	. 083734
year				
1983	0670637	0794518	. 0123882	
1984	- . 1258915	 136258	. 0103666	. 0075842
1985	1607316	1804119	. 0196803	. 0136739
1986	 1070452	1537528	. 0467076	. 0246531
1987	- . 1528763	2003318	. 0474556	. 0292318
1988	- . 1698523	2185893	. 048737	. 0345069

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(12) =
$$(b-B)$$
' [(V_b-V_B) ^(-1)] $(b-B)$
= -50.07

Warning: chi2 < 0 ==> model fitted on these data fails to meet the asymptotic assumptions of the Hausman test; see suest for a generalized test.

* Prob > chi2 = 0.0000