Semantic Role Labeling

Team Name: Semantic Sentinels

Team Number: 55

- 1. D Priyanka 2023814003
- 2. S Monica 2023802005
- 3. CV Thirumala Kumar 2023702020

Introduction

Semantic Role Labeling (SRL) is the task of assigning roles to words/phrases in relation to the main verb, such as "agent", "patient", "instrument", etc.

Fig. Pictorial depiction of SRL

Core Semantic Role Labels

Table 1: Core Semantic role labels

Tags	Core Arguments	Description		
ArgA	AGENT	The volitional causer of an event		
ArgT	THEME	The participant most directly affected by an event		
ArgEx	EXPERIENCER	The experiencer of an event		
ArgB	BENEFICIARY	The beneficiary of an event		
ArgR	RECIPIANT	Receive something (whether good or bad) in an event		
ArgI	INSTRUMENT	An instrument used in an event		
ArgLOC	LOCATION	A locative or path prepositional phrase introduces an		
		underspecified location.		
ArgTOP	TOPIC	Conversation or message transfer is dealt with using		
		communication verbs		
ArgG	GOAL	Verb's destination or goal argument that indicates		
		the motion's endpoint.		
ArgS	SOURCE	arguments that can be thought of as a source or		
		beginning point for the verb's event		

Example

Figure 1: 'Ram gave a book to Kamala'

Existing approaches

Fig. Cascaded approach

Drawbacks:

- 1. Requires additional information such as PoS tags, dependency relation etc.
- 2. Not feasible for practical usage
- 3. Not feasible for multiple languages

Proposed approach

Challenges:

- Lack of data for Deep learning approach
- 2. Lack of Multi-lingual SRL data

Available Data:

1. Urdu SRL dataset

Data Augmentation Pipeline

Non-SRL Tags:

- 1. NAH (Not-A-Head)
- 2. NAA (Not-An-Argument)
- 3. Predicate

Experimental setup

Fine-tuning 2 bert based models for SRL as a token-classification task.

- 1. Indic-Bert (Al4Bharath) 24 Languages
- 2. Multilingual-Bert (Google) 104 Languages

Model Name	Base Model Description		
Indic-bert	Indic-bert	labelling only first subtoken of the word	
Indic-bert -lat	muic-bert	labelling all sub tokens of the word	
multilingual-bert	multilingual bort	labelling only first subtoken of the word	
multilingual-bert-lat	multilingual bert	labelling all sub tokens of the word	

Training Configuration:

- 1. Batch size 16 per 2 device (2 GPUs used)
- 2. Learning rate 0.00005
- 3. Training epochs 20 with Early Stopping with patience 5

Results

Baseline SVM vs Proposed approach

	Weighted F1		Macro F1	
Model	Argument Identification	Argument Classification	Argument Identification	Argument Classification
Indic-bert	0.60	0.54	0.59	0.21
Indic-bert -lat	0.64	0.60	0.628	0.22
multilingual-bert	0.71	0.68	0.70	0.34
multilingual-bert-lat	0.70	0.67	0.69	0.31
SVM	0.77	0.64	0.77	0.32

Observation: Proposed approach showed similar performance as baseline

Results

Language wise overall performance comparison

Observations:

- 1. Urdu and Hindi showed similar performance
- 2. Tamil and Telugu Showed similar performance

Possible reasons:

 Urdu-Hindi and Tamil-Telugu belongs to different language families

Conclusion

- 1. Multilingual End-to-End SRL method is proposed using multilingual data augmentation from a single language labelled data.
- 2. Proposed approach performing similar to the baseline without needing additional information such as PoS tags, dependency relations etc.
- 3. Language characteristic based trend is observed in the performance.
- Extending this approach for more languages, observing source language impact on target is the future scope of this project

Thank You