

CFD for Turbomachinery

Joshua Keep
School of Mechanical and Mining Engineering

CFD for turbomachinery applications – the marketed view

 There is a big divide between what is marketed and what is time efficient / readily achievable / trustworthy.

Full stage compressor simulation, with automated map generation (ANSYS)

CFD for turbomachinery applications – reality

- Validation and verification
- Calibrated workflow
 - i.e. discrepancies are know, may be accounted for
 - Component / functional segregation with appropriate boundary conditions.

Required boundary conditions are different

Utility of CFD for turbomachinery applications

- Easy to conduct parametric studies
- Direct visualisation of variables
- Can focus on components not readily accessible in experiment (i.e results are available from areas where instruments cannot access / survive)

Loss breakdown comparison for two turbine designs

Visualisation of Mach number for a single Stator / rotor passage

Solver pre-requisites

- Cylindrical coordinates
- Frame change
 - Many simulations will involve both stationary and rotating domains
- Compressible flow
 - Mach number is almost always above 0.3
- Component level simulations
 - Steady / Unsteady RANS formulations
 - Wall functions / implicit time stepping
- In-built capability for parametrization / optimization
- Other local users!

Functional segregation of machine

- Eliminate low loss regions (inlet and outlet)
 - Inlet is momentum dominated good correlations for perofmance.
 - Diffuser is complicated to simulated due to separation performance impact can be accounted for
- Reduction of domain through symmetry (periodic)
 - Appropriate interfaces are required (to account for different pitch).
 - Reduction in domain is at the price of fidelity may be minor, but should be quantified.

Example CFD application – design of bladed components

- Analytical techniques generally not possible for passage design
- Geometry definition is indirect

 i.e. may be interested in passage area vs. radius, however this is a function of shroud / hub curves and angle distribution.

Lends to optimization (manual or automated)

Radial inflow turbine passage definition (ANSYS BladeGen)

Steady / unsteady

- Increasing simulation fidelity generally increases accuracy
- Relative error in lower order simulations depends on type of turbomachine – discrepancies should be quantified

Interface	Stator / rotor passages	Solver type	# cells
Mixing Plane	1/1	RANS	2x10 ⁶
Frozen rotor	1/1	RANS	2x10 ⁶
Unsteady phase transform	1/1	URANS	2x10 ⁶
None	5/4	URANS	8.5x10 ⁶
None	19/16 (360 ⁰)	URANS	3.5x10 ⁷

Plot of entropy along a stator / rotor passage (Denton, 2010)

Visualisation of entropy contours in stator / rotor; Unsteady vs. Mixing plane (Denton, 2010)

Geometry representation and meshing

A good mesh is a pre-requisite to a trustworthy solution

- Geometry representation
 - The influence of boundary conditions needs to be appropriately accounted for (e.g. domain extension, placement of interfaces)
 - Trailing edge wakes are <u>intrinsically unsteady</u> this can impact simulation convergence / blade loading predictions. Can be addressed through "cutting off" blade trailing edges / coarsening
 - Reproduction

Example – 10 kw ORC turbine

Geometry representation and meshing

- A good mesh is a pre-requisite to a trustworthy solution
- Structured grids are almost always favorable
 - May be time intensive to generate initial geometries
 - Consistent for comparative studies, grid comparison, and optimization

<u>Example – Structurally</u> <u>optimised inlet</u>

CRICOS code 00025B

Geometry representation and meshing

- A good mesh is a pre-requisite to a trustworthy solution
- Different geometries require different topologies
 - Topologies may have other un-intentional consequences / constraints

Example – Rotor blade inlet

Cut-off blade

rounded blade

When is my simulation done?

- .. Depends on what you need from it
 - Momentum and energy balances have different requirements
- Not usually indicated by residuals
 - Many commercial solvers have internal ramps (Pressure / shaft speed)
- Mass flow rate, or mass imbalance is usually a more reliable indicator *
 - Additionally provides an indicator of solution steadiness
- Appropriate performance parameters are also appropriate (e.g. power output / efficiency / rothalpy)

^{1.0}x 03 — 1.0x 0

RMS residuals

Example – restarted solution
with change in
numerical
schemes – RANS
(courtesy G.
Yagenegi)

^{*} When starting from scratch

Why wont my simulation converge?

Potential problems

- Grid
 - Poor geometric representation
 - Poor geometry
 - Poor meshing
- Solver settings
- Flow may be intrinsically unsteady

Solutions

- Check solution against geometry
- Solver settings against known case
 - Is it rotating the correct way?
- Plot performance parameters vs time
- Try solving unsteady

<u>Example – plot of residuals on</u> <u>grid</u> (courtesy G. Yagenegi)

Post processing – qualitative

Example – Inlet delivery system

Streamline coloured by entropy gradient

Static pressure contour and vector plots

Post processing – quantitative

Example – Inlet delivery system

Flow angle variation with azimuthal angle (baseline vs refined)

1		
Parameter	Volute	Plenum
$h_{1,total}$ (kJ kg ⁻¹)	8385.11	8385.11
$\Delta s (\mathrm{Jkg^{-1}K^{-1}})$	8.06	0.49
P_1 (MPa)	17.15	19.72
$\Delta P_{1,total}$ (MPa)	0.83	0.05
\dot{m} (kg s ⁻¹)	1.11	1.11
$\eta_{isentropic}$	73 %	80 %

Solver comparison - 100kw turbine stage

Inlet and outlet **Mach numbers**

Stator blade loading

Postprocessing - summary

- Be quantitative
 - Utilise appropriate figures of merit
 - Extract trends
- Use qualitative post processing as a diagnostic tool
- Save templates! (.cst for qualitative / external scripts for quantitative)

CFD for turbomachinery - summary

- Invest the time in a good quality mesh
- Know the limitations of your model
 - Know the theory
 - Find the limits of your model
 - Experimentally validated if you can
- Use qualitative and quantitative post to their respective strengths
- Good results take time