

Transcriptomics

## What is transcriptome?

All RNA being transcribed

at a certain stage in development

in a certain type of cells

in response to certain stimuli

. . .



Tyler Gable siRNA, miRNA, ceRNA, piRNA, piRNA-like RNA, pesRNA, many viral RNAs ALL DISAGREE.

Like · Reply · 4d

Image from: https://www.facebook.com/trust.biologist/

# How have researchers been studying transcriptomes?



### What RNA-seq sequences represent



## Common usage of RNA-seq data

#### Gene expression study

e.g. differential expression, time course profile

#### **Profiling total RNA** (e.g. miRNA and mRNA)

e.g. in exosomes and other secretory products

#### **Splice isoform**

only useful for organism with polished reference genomes

#### **SNP** calling

use transcriptome as a reduced subset of genomic variation study

#### Profiling genes in an organism

e.g. for gene annotation, refining gene model

## Terms you might come across

number of reads

strand-specific

single-end/pair-end



## Terms you might come across

number of reads

strand-specific

single-end/pair-end

- More reliable quantification of genes on opposite strand
- Allow discovery of anti-sense transcription





Image from: https://www.ecseq.com/support/ngs/how-do-strand-specific-sequencing-protocols-work

## Real data example



## Terms you might come across

splice-aware mapper



## Terms you might come across

number of reads

strand-specific

single-end/pair-end

#### Single-end

Read fragment from only one end

Can be good enough for gene expression study, if there is a good reference genome

#### Pair-end

Read from both ends of the fragment

Provide more information which can help with mapping

Highly recommend for organism with only draft reference genome, or wihtout a genome



### From sequencing data to read count



RNA-seq reads mapped to genome location (alignment)



which genome location is what gene (.GTF or .GFF file)



| Gene  | Count in sample A |   | Count in sample C |
|-------|-------------------|---|-------------------|
| gene1 | 4                 | 8 | 20                |
| gene2 | 6                 | 3 | 16                |
| gene3 | 5                 | 5 | 15                |

## Schistosoma mansoni



#### Transcriptome of the parasitic flatworm Schistosoma mansoni during intra-mammalian development

Arporn Wangwiwatsin <sup>1,2</sup>, Anna V. Protasio <sup>1,3</sup>, Shona Wilson <sup>3</sup>, Christian Owusu <sup>1</sup>, Nancy E. Holroyd <sup>1</sup>, Mandy J. Sanders <sup>1</sup>, Jacqueline Keane <sup>1</sup>, Mike J. Doenhoff <sup>4</sup>, Gabriel Rinaldi <sup>1</sup>, Matthew Berriman <sup>1</sup>\*

1 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom, 2 Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand, 3 Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, United Kingdom, 4 School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom

| <b>Day 0</b><br>Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Day 6 | Day 13 | Day 17 | Day 21 | Day 28 | Day 35 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|--------|--------|
| cercariae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000  | 2000   | 500    | 500    | 350    | 300    |
| The state of the s | 9     |        |        |        |        |        |
| 8 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |
| 8 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |
| 8 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |
| 6 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |
| 4 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |
| 4 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |        |        |        |

### Module practice data

FASTQ files (sequences from RNA-seq)

Transcriptomics/RNAseqData

ERR506076\_sub\_1.fastq ERR506076\_sub\_2.fastq SRR3223443\_sub.fastq

## Principal Component Analysis



## MA plot



## Tricky question ...

Res\_1 <- results(dds, lfcThreshold = 0, alpha = 0.01)</pre>

Is there any difference?

P-values are calculated assuming the null hypothesis is LFC = 0, so you're still testing for any difference in expression, no matter how small.

Res 2 <- results(dds, lfcThreshold = 1, alpha=0.01)

Is the difference larger / smaller than one?

P-values are calculated assuming the null hypothesis is LFC > 1 or LFC < 1

<FULL\_PATH>

replace this with

/home/manager/Transcriptomics/

#### **Data visualisation**

Big result tables are hard/scary to look at

Sometimes we want to compare between datasets

Nice plots are your friends

- MA plots
- Volcano plots
- Gene expression plot
  - single gene
  - multiple genes (e.g. using heatmap)



## **Functional analysis**

- Rather than going through the list of differentially expressed genes to find genes that you expect to see changes
  - Do functional analysis
  - Let data guide the way

Possibly the most common = GO enrichment

#### **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms). GO terms describe functions of a gene, and can be derived from sequence similarity, experiment, homology etc.

**GO term enrichment**: "Are there any GO terms present in my data more frequently than expected by chance alone?"



#### **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms).



#### **GO** term enrichment

Genes often have associated GO terms (Gene Ontology terms). GO terms describe functions of a gene, and can be derived from

sequence similarity, experiment, homology etc.



### Making use of existing transcriptome data

#### **Databases of transcriptomics data**

- Gene expression omnibus (<u>https://www.ncbi.nlm.nih.gov/geo/</u>)
- ArrayExpress (<a href="https://www.ebi.ac.uk/arrayexpress/">https://www.ebi.ac.uk/arrayexpress/</a>)
- Expression Atlas (<a href="https://www.ebi.ac.uk/gxa/home">https://www.ebi.ac.uk/gxa/home</a>)

#### **Example of RNA-seq data reuse:**

- This paper looked at data from published RNA-seq experiments and revealed that some of the cells were contaminated with Mycoplasma (PMID: 25712092).
- This paper used existing RNA-seq data with some new data to study specific gene expression on Z and W chromosome of schistosomes (PMID: 30044216).

# Finding data on the web ENA - European Nucleotide Archive

https://www.ebi.ac.uk/ena







nttp://www.illumina.com/Documents/products/techspotlights/techspotlight\_sequencing.pdf

## QC your RNA

- Sharpness and intensity of bands on RNA gel and RIN number are indicator of RNA integrity
- Note: depending on your organism, RIN is not always a good indicator for RNA integrity



# Extra: Functional analysis pathway enrichment





