Group Assignments

12.1 Group Assignment 1

- 1. Suppose that A and B are independent events. Show that A^c and B^c are independent.
- 2. The probability that a child has brown hair is 1/4. Assume independence between children and assume there are three children.
 - (a) If it is known that at least one child has brown hair, what is the probability that at least two children have brown hair?
 - (b) If it is known that the oldest child has brown hair, what is the probability that at least two children have brown hair?
- 3. Let (X,Y) be uniformly distributed on the unit disc, $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$. Set $R = \sqrt{X^2 + Y^2}$. What is the CDF and PDF of R?
- 4. A fair coin is tossed until a head appears. Let X be the number of tosses required. What is the expected value of X?
- 5. Let X_1, \ldots, X_n be i.i.d. from Bernoulli(p).
 - (a) Let $\alpha > 0$ be fixed and define

$$\epsilon_n = \sqrt{\frac{1}{2n} \log \frac{2}{\alpha}}.$$

Let $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and define the confidence interval $I_n = [\hat{p}_n - \epsilon_n, \hat{p}_n + \epsilon_n]$. Use Hoeffding's inequality to show that $P(p \in I_n) \ge 1 - \alpha$.

- (b) Let $\alpha = 0.05$ and p = 0.4. Conduct a simulation study to see how often the confidence interval I_n contains p (called coverage). Do this for n = 10, 100, 1000, 10000. Plot the coverage as a function of n.
- (c) Plot the length of the confidence interval as a function of n.
- (d) Say that X_1, \ldots, X_n represents if a person has a disease or not. Let us assume that unbeknownst to us the true proportion of people with the disease has changed from p = 0.4 to p = 0.5. We use

the confidence interval to make a decision, that is, when presented with evidence (samples) we calculate I_n and our decision is that the true proportion of people with the disease is in I_n . Conduct a simulation study to answer the following question: Given that the true proportion has changed, what is the probability that our decision is correct? Again using n = 10, 100, 1000, 10000.

12.2 Group Assignment 2

1. Consider a supervised learning problem where we assume that $Y \mid X$ is Poisson distributed. That is, the conditional density of $Y \mid X$ is given by

$$f_{Y|X}(y,x) = \frac{\lambda^y e^{-\lambda}}{y!}, \quad \lambda(x) = \exp(\alpha \cdot x + \beta).$$

Here α is a vector (slope) and β is a number (intercept). Follow the calculations from Section 4.2.1 to derive a loss that needs to be minimized with respect to α and β . Note: do we really need the factorial term?

- 2. Let X_1, \ldots, X_n be i.i.d. from Uniform $(0, \theta)$. Let $\hat{\theta} = \max(X_1, \ldots, X_n)$. First, find the distribution function of $\hat{\theta}$. Then compute the bias $(\hat{\theta})$, se $(\hat{\theta})$ and $MSE_n(\hat{\theta})$.
- 3. Consider the continuous distribution with density

$$p(x) = \frac{1}{2}\cos(x), \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

- (a) Find the distribution function F.
- (b) Find the inverse distribution function F^{-1} .
- (c) To sample using an Accept-Reject sampler, Algorithm 1, we need to find a density g such that $p(x) \leq Mg(x)$ for some M > 0. Find such a density g and find the value of M.
- 4. Let Y_1, Y_2, \ldots, Y_n be a sequence of i.i.d. discrete random variables, where $P(Y_i = 0) = 0.1$, $P(Y_i = 1) = 0.3$, $P(Y_i = 2) = 0.2$, and $P(Y_i = 3) = 0.4$. Let $X_n = \max\{Y_1, \ldots, Y_n\}$. Let $X_0 = 0$ and verify that X_0, X_1, \ldots, X_n is a Markov chain. Find the transition matrix P.

5. Let X_1, \ldots, X_n be i.i.d. from some distribution F that is unknown. Let \hat{F}_n be the empirical distribution function, use this to find an estimate of the p quantile of F (call it q). Use Theorem 5.28 to find a confidence interval for q.

12.3 Group Assignment 3

1. Consider a three-state (1, 2, 3) Markov chain with transition matrix

$$P = \begin{pmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 \end{pmatrix}.$$

- (a) Draw the transition diagram.
- (b) Find the stationary distribution π .
- (c) Given that the chain is in state 1 at time 1, what is the probability that the chain is in state 2 at time 4?
- (d) Given that the chain is in state 1 at time 1, what is the expected time until the chain is in state 3 for the first time?
- (e) What is the period of each state?
- 2. Assume that we are trying to classify a binary outcome Y, i.e., our data is of the form $(X,Y) \sim F_{X,Y}$, where $Y \in \{0,1\}$ and $X \in \mathbb{R}^d$. We have used data to train a classifier g(X). We can evaluate the performance of the classifier using i.i.d. testing data, $(X_1, Y_1), \ldots, (X_n, Y_n)$. We are interested in estimating the following quantities:

Precision :
$$P(Y = 1 | g(X) = 1)$$
,
Recall : $P(g(X) = 1 | Y = 1)$.

- (a) Write down the empirical version of the precision and recall.
- (b) Let us now think that the variable Y denotes if a battery's health has deteriorated or not, and let X denote a bunch of constructed health indicators about the battery. If the model g(X) predicts that the battery has deteriorated, you need to run a test to confirm this. The cost of running the test is c when the battery is not deteriorated. On the other hand, if the battery is in fact deteriorated and the test is not run, the battery will die during use

- and the cost of this is d. Define a random variable representing the cost of the decision g(X) and write down the formula for the expected cost in terms of the precision and recall.
- (c) Advanced question: Can you produce a confidence interval for the expected cost? What about the precision and recall?
- 3. Let X and Y be two d-dimensional zero mean, unit variance Gaussian random vectors. Show that X and Y are nearly orthogonal by calculating their dot product. Can you, for instance, also bound the probability that the dot product is larger than ϵ ?
- 4. Let u_1, \ldots, u_r be $n \times 1$ unit length vectors that are linearly independent, i.e.,

$$\sum_{i=1}^{r} \alpha_i u_i = 0 \implies \alpha_i = 0 \text{ for all } i.$$

- (a) Verify that the matrix $u_i u_i^T$ is a rank one matrix for all i. What is the null-space and range of $u_i u_i^T$?
- (b) Verify that the matrix $U = \sum_{i=1}^{r} u_i u_i^T$ is a rank r matrix.
- (c) i. If we perform SVD on U, are the vectors u_1, \ldots, u_r the same as the right singular vectors? If not, can you give an example?
 - ii. What if the vectors u_1, \ldots, u_r are all orthogonal? In this case, what are the singular values of U?
- 5. Let $X \sim \text{Uniform}(B_1)$ and define $Y = ||X||_2$ (the Euclidean norm).
 - (a) Find the distribution function of Y.
 - (b) What is the distribution of $\ln(1/Y)$?
 - (c) Calculate $E[\ln(1/Y)]$, first by using the distribution function of Y and then by using the distribution function of $\ln(1/Y)$.