

اسم المادة : مبادئ التحليل العددي

تجمع طلبة كلية التكنولوجيا والعلوم التطبيقية - جامعة القدس المفتوحة acadeclub.com

ؤجد هذا الموقع لتسهيل تعلمنا نحن طلبة كلية التكنولوجيا والعلوم التطبيقية وغيرها من خلال توفير وتجميع كتب وملخصات وأسئلة سنوات سابقة للمواد الخاصة بالكلية, بالإضافة لمجموعات خاصة بتواصل الطلاب لكافة المواد:

للوصول للموقع مباشرة اضغط فنا

وفقكم الله في دراستكم وأعانكم عليها ولا تنسوا فلسطين من الدعاء

اسم الطالب: رقم الطالب تاريخ الامتحان:

يسم الله الرحمن الرحيم

سم المقرر : مبادئ التحليل العددي قم المقرر: 1281

دة الامتحان: ساعة و تصف

دد الأسئلة : 6 اسئلة

_ تظری__

(4xx 20)

جامعة القنس المقتوحة الامتمان النهائي للقصل الاول "1171" 2018/2017

 عبىء كافة المحاومات المطاوية عناد في دفار الاجابة وعلى ورقة ا رزى الطالب: (ان وجدت) على الجدول المقصص في دائر الاجابة

إلى ضبع رقم السنوال للاستثلة المقائبية واجب عشي دقتر الاجابية

ضع كلمة (نعم) لكل عبارة صالبة و كلمة (لا) لكل عبارة خاطنة من العبارات التالية في الجدول رقم (1) في دفتر الإجابة :

1) المجموعة D تسمى محدية اذا كانت قطعة المستقيم الواصل بين أي نقطتين منها تقع تماما في (1)

 $||f - g||_{\infty} = \max_{g \in g(x)} |f(x) - g(x)|$ (2)

[0,00] الاقتران $= e^{-\pi}$ هو اقتران وزن على الفترة (0,00)

4) تعتبر حدوديات تشبى شيف من الحدوديات المتعامدة

 $C_{L} = \frac{1}{2} + \frac{1}{2} \times 1$ (5) المستقيم المواتم للاقتران (1 + 2x + 2 + 2x + 2) باستخدام حدوديات تشبيي شيف هو $C_{L} = \frac{1}{2} + \frac{1}{2} \times 1$

 من مشكلات خوارزمية ايتكن لحدوديات الاستكمال انها تتطلب اعادة الحسابات كاملة في كل مرة نضيف فيها للجنول زوجا جديدا من القيم .

7) الاستكمال هو ريط بحدودية من درجة ما أزواجا مرتبة حتى تمر الحدودية بهذه الأزواج.

8) قاعدة منتصف الفترة هي احدى القواعد المستخدمة في التكامل العددي حيث يستخدم نقطتين في الفترة المراد ايجاد التكامل عليها و هما نقطة بداية الفترة و نقطة نهاية الفترة.

9) التكاملات العديبة أحد الاساليب الفعالة في حساب التكاملات و يعتمد في ذلك تقريب الاقتراب بوساطة حدودية (P(x) و من ثم تجزئة الفترة.

10) خطأ قاعدة شبه المنحرف هو (ع) الراحة

(and 30) المعوال الثاتي :

يتكون هذا السؤال من 15 فقرة لكل واحدة أربع إجابات محتملة واحدة فقط صحيحة ، اختر الإجابة الصحيحة و ضع رمزها في الجدول رقم (2) في دفتر الاجلية

- المنطقة D في القضاء ٣٣ حيث ٢ ع ٢٠ تسمى مغلقة اذا كان :
- ا) لأي قطعة مستقيمة تصل بين أي نقطتين في D تقع كلها في D
- ب) لأي قطعة مستقيمة تصل بين أي نقطتين في D جزء من القطعة يقع خارج D .
 - ج) لأي قطعة مستقيمة تصل بين أي نقطتين في D تقع كلها خارج D .
 - D (د) (X_n) د) لأي متتالية (X_n) تقع في (X_n)

-Fift (3 3 1 1 (7 9 1 (4 -311 /11 (

(3) اذا كان f(x) = 2x, $-1 \le x \le 1$, w(x) = 1 فان f(x) = 1 بداوي

3,577 (3 4 (5 1.633 (4 0 0

> 1.01 1.02 4) للجدول y 2.03 2.05

ستخدما حدودية الاستكمال الخطية فإن (p(1.09) تماوي

4 (2 6.23 (2.19 (4 2.91 (

- April O	الكلا ميث تعلى صيغة اللكاه	(c) ax a = (f(xo) + 4 f((5)
د) ریمان		ب) منتصف الفترة	
	: 4[-1,0]	ه من [1 , 1 -] الى الفترة	
2N-1		*** (***	
اشيه المتحرف تساوي	فان قيمة التكامل باستخدام قاعدة	$x \in [0,3] \xrightarrow{c} f(x) = c^*$	7) إذا كان لديك الاقتران ا
90 (a		85.97 (₩	
		لمجموع الأنثى للمريعات للموج	
د) الاقتران الأسي		ب) اخطاط البيانات	
ن تساري	للتكامل باستخدام قاعدة سميسون		
8 (4		16 (~	
	طريقة :	- (20 مثل الخطأ عند استخدام	10) المقدار (c) (a) المقدار (d)
¿ د) سيسون المتراكبة	ج) شبه المنحرف المتراكم		ا) منتصف الفترة
	3	دية من الدرجة الأولى يسمى	
د) غير ذلك	ح) اخطاط البيانات	بيه) المتجنى الموائم	
			12) في حدودية تشبي شرف
1-x2 (2	$4\kappa^2 - 1$ (5	2x2 - 1 (4)	x2 - 1 (1
	لعددي بالاعتماد على :	يط في قاعدة سميسون للتكامل ال	13) يتم تقريب التكامل البس
د) اربع نقاط.	ت) ثلاث شلا	بيه) نقطتين	ا) نقطة واحدة
			$\int_{1}^{2} \frac{1}{x} dx (14)$
1($-\frac{1}{2}(z)$	ln 2 (↔	1/2 (1
روق المتقدمة (١٥) المستخدم لايجاد P	. 10.3 و ير فان قرمة معامل الف	0.4 ، 0.5 ، 0.6 ميث و 0.4 ، 0.5 و 0.6	 الديك الاقتران x 200 =
			(0.44) يساري :
1.6 (3	0.016 (₹	1.4 (0.144 (
(ملامة)			السؤال الثالث :
	X	دم طريقة نيوتن لإيجاد (١)	جد حل نظام المعادلات التالية استخ
	x + 2y =		
	$2x^2 + y^2$		
			ران = (1.5, 1) T حيث
THE RESERVE		Α.	(10,1)
d No. 15)	C. Co. Marine		المنوال الرابع :
(Lose 15) 2		-2 JUST 42 JU 1215	جد حدودية لاجر انج للاستكمال اا
THE PARTY OF THE P		Anna madin Guara	6-34, 4-34

-1

X

السوال القامس :

أ) جد المتحلى الأسى الموالم للتقاط التالية في الجدول

X	3	4	5	6
Y	3	.5	7	9

(10 akato)

ب) استخدم قاعدة سميسون المتراكبة لحسنب $dx = \int_0^1 Sx^a dx$.

(Thake 10)

(aux 20)

السؤال الساس :

أ) استخدم حدودية الغروق المفسومة الإيجاد (x = 1) لجدول البيالات الثالية ;

X	-1	0	2	3
f(x)	4	1	0	2

(10 علامات)

(10 علامات)

ب) اوجد ١٤٥٤ من أو مستخدما قاعدة شبه المنحرف المتراكبة لفترات فرعية عددها 4.

3

اثتهت الأسللة

المغرر: مبدئ التحيل الحدي م المغرر: 1281 مة الاستعان: ساعة و نصف عد الاستان: 6 استة

بسم الله الرحمن الرحيم جامعة القس المقتوحة اجلبة الاستحان النابش القصل الاول "1171" 2018/2017

نظري

اسم الطالب:

رقم الطالب:

تاريخ الامتحان: __

ملاحظة

يرجى قراءة الاجلية الناه وتتقيقها وفي حال وجود الخطاء فيها يرجى ارسال التحيلات والاستفساراتالخ التي ترون الها يحلجة الى تعيل خلال 24 ساعة كعد اقصى من عقد الامتحان الى عمادة القبول والتسجيل والامتحادات على التموذج الخاص بالاستفسارات ليتسنى لنا تعميمها على اعضاء هيئة التدريس فيل تصحيح الامتحان.

جنول رقم (1)

اجلية السؤال رقم (الأول) من نوع (أجب يتعم أو لا) أو (ال أو ×) (20 علامة)(علامتان لكل فرع)

10	9	8	7	6	5	4	3	2	1	الفرع
نعر	نعر	Y	تعم	¥	¥	تعم	تع	نعم	تم	الصحيدة
417	432	432	403	357	312	301	295	274	262	رقم الصفدة

جول رقم (2)

الجالية السؤال رقم (الثاني) من نوع (الفتيار من متعد) (30 علامة) (علامتان لكل فرع)

15	14	13	12	11	10	9	8	3	6	5	4	3	2	1	القرع
Ų	ų	ε	14	1	2	ε	ε	¥	1	ε	÷	÷	ε	2	تصحيمه
373	416													232	
															لمنعة

(inte 15)

السوال الثالث :

(238)

جد على نظام المعدلات الثالية استخدم طريقة نبوتن لإبجاد (X(1)

x + 2y = 3 $2x^2 + y^2 = 5$

 $X^{(0)} = (1.5, 1)^T \Rightarrow$

الاحقة

$$f_{1}(x, y) = x + 2y - 3 = 0$$

$$f_{2}(x, y) = 2x^{2} + y^{2} - 5 = 0$$

$$X^{(0)} = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix}$$

$$X^{(0)} = X^{(0)} + Z^{(0)}$$

$$Z^{(0)} = -J^{-1}(X^{(0)})F(X^{(0)})$$

$$F(X^{(0)}) = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$J(X^{(0)}) = \begin{bmatrix} 1 & 2 \\ 4x_{n} & 2y_{n} \end{bmatrix} \Rightarrow J(X^{(0)}) = \begin{bmatrix} 1 & 2 \\ 6 & 2 \end{bmatrix}$$

$$J^{-1}(X^{(0)}) = \frac{-1}{10} \begin{bmatrix} 2 & -2 \\ -6 & 1 \end{bmatrix}$$

$$Z^{(0)} = \frac{1}{10} \begin{bmatrix} 2 & -2 \\ -6 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.25 \end{bmatrix}$$

$$X^{(0)} = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -0.25 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.75 \end{bmatrix}$$

(15 akus)

لسؤال الرابع:

جد حدودية لاجرانج للاستكمال الداخلي للبيانات التالية:

X	-1	0	1	2
Y	5	2	1	6

الاجابة : (صفحة 347) (ثلاث علامات لكل خطوة)

$$L_{0}(x) = \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} = -\frac{x(x-1)(x-2)}{6}$$

$$L_{1}(x) = \frac{(x-1)(x-1)(x-2)}{(0--1)(0-1)(0-2)} = +\frac{(x+1)(x-1)(x-2)}{2}$$

$$L_{2} = \frac{(x-1)(x-0)(x-2)}{(1--1)(1-0)(1-2)} = -\frac{x(x+1)(x-2)}{2}$$

$$L_3(x) = \frac{(x-1)(x-0)(x-1)}{(2--1)(2-0)(2-1)} = +\frac{x(x+1)(x-1)}{6}$$

$$P(x) = \sum_{i=0}^{3} y_i L_i(x) = 5L_0(x) + 2L_1(x) + L_2(x) + 6L_3(x)$$

$$P(x) = \sum_{i=0}^{3} y_i L_i(x) = 5(-\frac{x(x-1)(x-2)}{6}) + 2\left(\frac{(x+1)(x-1)(x-2)}{2}\right) + \left(-\frac{x(x+1)(x-2)}{2}\right) + 6\left(\frac{x(x+1)(x-1)}{6}\right)$$

(axe 20)

السؤال الخامس :

أ) جد المنحنى الأمنى المواتم للتقاط الثالية في الجدول

X	3	4	5	6
Y	3	5	7	9

(Tie 10)

الإجابة: (صفحة 284) (5 علامات المجاميع و 5 علامات الحل)

$$B = e^b$$
 $y = B e^{ax}$, $y = ax + b$

$$a\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i} \ln y_{i}$$
$$a\sum_{i=1}^{n} x_{i} + bn = \sum_{i=1}^{n} \ln y_{i}$$

Xx	Yk	X x 2	Ln(ya)	Xkln(yk)
3	3	9	1.0986	3.2958
4	5	16	1.6094	6.4376
5	7	25	1.9459	9.7295
6	9	36	2.1972	13.1832
18	24	86	6.8511	32,6461

$$86 a + 18 b = 32.6461$$

$$18 \, a + 4 \, b = 6.8511$$

; يحل المعادلتين ينتج ان $a = 0.3632$, $b = 0.07824$

$$B = e^b = e^{0.07824} = 1.0813$$

$$y = 1.0813 e^{0.3632}$$

. 4 ين استخدم قاعدة سميسون المتراكبة لحساب
$$\int_0^1 5x^4dx$$
 إذا كان عدد الغترات الجزئية

(10 علامات)

الإجابة (صفحة 429 : علامتان لكل خطوة)

$$2 \text{ m} = 4$$
 $= 2 \text{ m}$ $=$

Ser Ser

$$\int_{0}^{1} 5x^{4} dx = \frac{h}{3} \left(f(x_{0}) + 4 f(x_{1}) + 2 f(x_{2}) + 4 f(x_{3}) + f(x_{4}) \right)$$

$$\therefore \int_{0}^{1} 5x^{4} dx = \frac{1}{12} \left[0 + 4 \left(\frac{5}{256} \right) + 2 \left(\frac{80}{256} \right) + 4 \left(\frac{405}{256} \right) + 5 \right] = 1.0026$$

(axis 20)

السؤال السائس :

ا) استخدم حدودية الغروق المقسومة لإيجاد (p(x=1) لجدول البيانات الثالية : (10 علامات)

X	-1	0	2	3
f(x)	4	1	0	2

الاجابة : (صفحة 365 = 5 علامات الجدول + 5 علامات الحل)

Fa	$F[x_i,x_{i+1}]$	$F[x_{i,X_{i+1},X_{i+2}}]$	$F[x_i,x_{i+1},x_{i+2},x_{i+3}]$
4			
1	-3		
0	-1/2	5 /6	
2	2	5/6	0
	1 0	4 1 -3 0 -1/2	4 1 -3 0 -1/2 5/6

حدودية الاستكمال من الدرجة الثانية هي :

$$P_{2}(x) = 4 - 3(x+1) + \frac{5}{6}(x+1)(x-0)$$

$$= 4 - 3(x+1) + \frac{5}{6}x(x+1)$$

$$P(1) = -1/3$$

(10 علمات)

أ) اوجد x³dx أمستخدما قاعدة شبه المنحرف المتراكبة لفترات فرعية عدما 4.
 الإجابة: (صفحة 427 = علامتان لكل خطوة)

$$h = \frac{4-2}{4} = \frac{2}{4} = 0.5$$
 , $m = 4$

$$S_4 = \{2, 2.5, 3, 3.5, 4\} \Rightarrow h = 0.5$$

$$I(f) = \int_{1}^{4} x^{3} dx = \frac{h}{2} \left[f(2) + f(4) + 2 \sum_{i=1}^{m-1} f(x_{i}) \right]$$

$$= \frac{0.5}{2} [8 + 64 + 2(15.625 + 27 + 42.875)]$$

$$=\frac{243}{4}=60.75$$

التهت الاجابة

امم الطالب: رقم الطالب: تاريخ الامتحان

يسم الله الرحمن الرحيم

م المقرر: مبادئ التحليل العددي قم المقرر: 1281

مدة الامتحان: ساعة و تصف عد الأسللة : 6 أسئلة

-- **نظ**ری--

حامعة القدس المفتوحة الامتحان النهائي البديل (غيرالمكتمل) للفصل "1161" 4981 2017/2016

-	~~						
Ä	برف	الإجابة وعلى	ک آپ نامتر	المطلوبة عقا	فة المعلومات	1. عبىء ك	عزيزي الطالب:

ان وجدت) على الجدول المقصص في دفتر الإجابة

ضع رقم السؤال للاسئلة المقائية واجب على نفتر الاجابة.

(ack 20)

السؤال الاول:

ضع كلمة (نعم) لكل عبارة صالبة و كلمة (لا) لكل عبارة خاطئة من العبارات التالية في الجدول رقم (1) في دفتر الإجابة :

 $||f||_{\infty} = 4$ نان $f(x) = x^2$ ، $-3 \le x \le 2$ نان (1

 $\|f-g\|_{\infty}=\min_{ag_{\pi,q,b}}|f(x)-g(x)|$ المقياس الذي يستخدم لتحديد قرب اقترانين f , g من بعضهما هو (2

 $\sum_{i=0}^{n} L_i(x) = \pi$) في حدودية لاجرانج للاستكمال يكون (3

 $||f + g||_{2} \le ||f||_{2} + ||g||_{2}$ فان $||f||_{2} + ||f||_{2} \le ||f||_{2}$ (4)

 $(\phi_{\ell}(x), \phi_{\ell}(x)) = 1$ ، $\ell \Rightarrow \ell$ تكون الحدوديات $\phi_{\ell}(x)$ متعامدة اذا كان $\ell \Rightarrow \ell$

 6) قاعدة شبه المنحرف هي احدى القواعد المستخدمة في التكامل العددي حيث يستخدم نقطة واحدة و هي منتصف الفترة المراد ايجاد التكامل عليها.

7) المتساوية $\frac{1}{2} [\Sigma_{(q,q)}^{(q)}] = [\Sigma_{(q,q)}^{(q)}] [\Sigma_{(q,q)}^{(q)}]$ تسمى بمتساوية بارسفال.

y = 2x - 6 مي (2,2), (1,4) الزوجين الزوجين (1,4) هي (8 عنونية لإجرائج للاستكمال التي تستكمل الزوجين (1,4)

 $\int_1^2 f(x) dx \cong 4$ اذا كانت $x \leq 2$ اذا كانت $f(x) = x^2$ ، $f(x) = x^2$ ، $1 \leq x \leq 2$ اذا كانت (9)

10) قيمة التكامل على 2 من باستخدام طريقة سمبسون البسيطة تساوي 8

(LINE 30)

يتكون هذا السوال من 15 فقرة لكل واحدة أربع إجابات محتملة واحدة فقط صحيحة ، اختر الإجابة الصحيحة وضع رمزها في الجدول رقم (2) في دفتر الاجابة

1) الصورة العامة لحدودية تايلر حول النقطة ع تساوي :

 $\sum_{n=0}^{\infty} \frac{f_{(n)}^{(n)}}{n!} \left(: \sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0) \right) \left(: \sum_{n=0}^{\infty} \frac{x^n}{n!} \right) \left(: \sum_{$

2) المقدار ا(ع) و movesme بمثل قيمة المقياس :

If - 81 (2 If - 81 (€ If - 81 (+) If - gl, (

x+2y-4=0 لنظام المعادلات غير الخطية في متغيرين y=4-4 (3) معكوس مصفوفة الجاكوبيان y=4-4

22-+ 12-7-0

4) الحدودية (x) ع من حدوديات جرام - شمينت $1 \ge x \ge 1 - 1$ ، و اقتران الوزن 1 = (x)x هي :

x+1 (2 * (t) x (+) x (1

: hand the state of n=2 and n=2 and n=2 then n=2 for the state of n=2 and n=2 the state of nا) ثبه المنحرف ب) منتصف الفترة ج) ميسون

		2x-2(2x+2	بي انفتره (⁰ =)	1[-1,1	رة من [ي يحول القا	التمويل الذ	(6
				1=000	10		4		2-2 1	
	$y = \frac{r - r^{*}}{1}$	4 = x (2				- FE	-1	JUNEAU PROPERTY	The second second	
			15 10		(C 3'=	1 7	#(4	y = 1-1	+ = (
v	و الاقتران الأ-		W. 5	, Ac :	بعات لقيم جدول	لأننى للعر	المجموع ا	الذي يحقق	هو الملحلي	(8
	ر) الاقتران الأ- ،	سون تساوی	والمواحم		لل المناقبات	3121 /		11 10	-4 6 14	
	8 (=	- 00		امل پاستخدام	ء - بـــــــــــــــــــــــــــــــــــ	: , 0] القيا	الفترة [2	= (r) غ في	تقران مر	و) للا
				0.07 (5		10	5 (-		6.4 (
4.81.5				- 44	عند استخدام طر	على الخطأ	-10-0	12 5(4)(A 45.30	(10
12	د) سعيسون ال لاستلة من 11 -	اراكلية د -	نحرف العذ	ح) شبه العا		ميسون	- (+	الفترة	ا) منتصد	
13			in some	مه العروق الم	باستخدام تلزيا	الاستكمال	ام طريقه	تالم استخد	الحدم الال	err err
			X	-1	0 2	3				
		L	Y	4	1 0	2				2000
	-1						: 4	f [X	, X ₁]	à(11
	-1 2 (2									
تساوي	ون اقتامن او									
	4 (=		2	3 (2		2	(-)		1	()
		: 44 6	في فرع		ق العضومة ل					
$P_{a}(x)$	= 4 - 3(x + 1)	+1) + = 2	$c^2(x + 1)$	2) (-	P ₂ (x) =	4+3	(x+1)	$+\frac{5}{6}x(x)$	+2)	61
	P1()	0-4-	S(x + 1	() (°	P ₀ (x) =	4-3	(x+1)	$+\frac{5}{4}x(x)$	+1)	(5
X	0	2	-1	3]:	P(1) تساوي	ن قيمة	دودية ايتك	باستخدام ح	الجدول	14) في
7.	2	0	5	1						
				_						3
		-3 (2	3	(E		1 (-		1 1	d
ختم لايجاد ا	تدمة رين السنا	ل الفروق الم	قيمة معاما		3.04.05	0.63	42 960	= 003 x 0	- يك الاقترا	u (15
									.0) يساوي	
	1.6	(2		0.016 (₹		1.4	(4		0.144	
										ALE:
We 15	1985								:4	سوال الثال
								**	a parameter	
					3x - y	= 0	X	لإيجاد ١٠	يقة نيوتن	تخدم طر
					x2 - y3 -	1 = 0	2 34			
	0						X10	= (1	0)1.	خين

(15 علامة)

صوق الراق : مد معاللة المستقيم المواتم النيانات التالية:

x	10	20	30	40
у	0.11	0.12	0.31	0.41

اجب عن احد السؤالين التاليين

(20 علامة)

السوال الخامس:

باستخدام الجدول

х	0	1	2	3	4
f(x)	1	3	8	13	20

اوجد كثيرة حدود نيوتن للغروق المتقدمة للبيتات أعلاء

(20 علامة)

السوال السادس :

(15 عاضة)

ا) اوجد على الله المتحدما قاعدة شبه المتحرف المتراكبة لقرات فرعية عدما 4.

(5 علامات)

 $x_0 = 0$ عند $\sin x$ كتب مدودية تايلر من الدرجة الخاسة للاقتران $\sin x$ عند و

التهت الأسئلة

اسم الطالب: رقم الطالب: تاريخ الامتحان:السالسالسا

نفر: مبدى التحليل العددي 1281 الما المندل: ساعة و نصف عد الاسلة: 6 اسلة

-- نظری --

جامعة القدس المفتوحة اجابة الامتحان التهائي البديل (غير المكتمل) للفصل الأول"1161" 2016-2017

جدول رقم (1)

اجاية السؤال رقم (الأول) من نوع (أجب ينعم أو لا) أو (أد أو ×) (20 علاصة) علاصتان لكل فرع)

10	9	8	7	6	5	4	3	2	1	القرع
¥	Y	Y	نعم	Y	نعر	نعم	Y	y	Y	الصديدة
419	416	350	306	432	298	297	349	272	272	رقم الصفحة

جدول رقم (2)

) من نوع (اختيار من متعد) (30 علامة) (علامتان تكل فرع) اجابة السوال رقم (الثاني

15	14.	13	12	11	10	9	8	7	6	5	4	3	2	1	القرع
4	1	5	=	1	2	=	7.	440	1		1	-			
373	359	365	365	365	429	419	282	290	277	419	300	243	274	345	رقم
N= 1	F 3								-						الصفحة

السؤال الثالث : استخدم طريقة نبوتن لإيجاد (X(1) (صفحة 238)

$$3x - y = 0 x^2 - y^3 - 1 = 0$$

 $X^{(0)} = (1 \ 0)^T$ $\frac{1}{2}$

$$X_1 = X_0 - F^{-1}(X_0) f(X_0)$$

$$X_{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, F(X) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} \end{bmatrix}$$
$$F(X^{(0)}) = \begin{bmatrix} 3 & -1 \\ 2x^{(0)} & -3y^{2(0)} \end{bmatrix}$$
$$f(X^{(0)}) = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$F(X^{(0)}) = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \to F^{-1}(X^{(0)}) = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$$

$$X_1 = X_0 - F^{-1}(X_0) f(X_0)$$

$$X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

(inte 15)

السؤال الرابع:

جد معادلة المستقيم الموائم للبيانات التالية:

x	10	20	30	40	
y	0.11	0.12	0.31	0.41	

الاجابة (صنحة 279)

X	Y	X2	XY
10	0.11	100	1.1
20	0.12	400	2.4
30	0.31	900	9.3
40	0.41	1600	16.4
$S_1 = 100$	$T_0 = 0.95$	S ₂ = 3000	$T_1 = 29.2$

$$M = \frac{T_0 S_1 - S_0 T_1}{S_1^2 - S_0 S_2} = \frac{0.95 \times 100 - 4 \times 29.2}{100^2 - 4 \times 3000} = 0.0109$$

$$B = \frac{S_1 T_1 - T_0 S_2}{S_1^2 - S_0 S_2} = \frac{100 \times 29.2 - 0.95 \times 3000}{-2000} = -0.035$$

$$P(x) = Mx + B = 0.0109x - 0.035$$

اجب عن احد السؤالين التاليين

(aux 20)

السؤال الخامس: (صفحة 373)

باستخدام الجدول

x	0	1	2	3	4
f(x)	1	3	8	13	20

X_{k}	fi	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
0	1				
		2			
1	3		3		
		5		-3	
2	8		0		5
		5		2	
3	13		2		
		7			
4	20				

فتكون النتيجة على الصورة

$$h = 1 \Rightarrow \mu = \frac{x - x_0}{1} \Rightarrow \mu = x$$

$$P_4(x) = \sum_{k=0}^{4} {\mu \choose k} \Delta^k f_0$$

$$= {\mu \choose 0} \Delta^0 f_0 + {\mu \choose 1} \Delta^1 f_0 + {\mu \choose 2} \Delta^2 f_0 + {\mu \choose 3} \Delta^3 f_0 + {\mu \choose 4} \Delta^4 f_0$$

$$= f_0 + \frac{\mu}{1!} \Delta^1 f_0 + \frac{\mu(\mu - 1)}{2!} \Delta^2 f_0 + \frac{\mu(\mu - 1)(\mu - 2)}{3!} \Delta^3 f_0 + \frac{\mu(\mu - 1)(\mu - 2)(\mu - 3)}{4!} \Delta^4 f_0$$

$$= 1 + 2 \frac{x}{1!} + 3 \frac{x(x - 1)}{2!} - 3 \frac{x(x - 1)(x - 2)}{3!} + 5 \frac{x(x - 1)(x - 2)(x - 3)}{4!}$$

السوال السادس: (صفحة 427)

$$h = \frac{4-2}{4} = \frac{2}{4} = 0.5$$
 , $m = 4$

$$S_4 = \{2, 2.5, 3, 3.5, 4\} \Rightarrow h = 0.5$$

$$I(f) = \int_2^4 x^3 dx = \frac{h}{2} \left[f(2) + f(4) + 2 \sum_{i=1}^{m-1} f(x_i) \right]$$

$$= \frac{0.5}{2} \left[8 + 64 + 2 \left(15.625 + 27 + 42.875 \right) \right]$$

$$= \frac{243}{4} = 60.75$$

(5 علمات)

 $x_0 = 0$ عند $\sin x$ عند $\sin x$ اكتب حدودية تايلز من الدرجة الخامسة للاقتران الإجابة:

$$P_n(0) = \sum_{t=0}^n \frac{f^{(t)} x^t}{t!}$$