Desarrollo de una herramienta software para la simulación de sistemas fotovoltaicos con R

Trabajo de Fin de Grado

Francisco Delgado López

Universidad Politécnica de Madrid

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

- 1 Introducción Objetivos
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

Objetivo principal

Desarrollo de un paquete en R

library(solaR2)

Objetivos secundarios

GNU Emacs

Paquetes de R

- ► solaR
- zoo
 data.table
- data. tabic
- microbenchmark
- profvis
- lattice

LATEX

Energía Solar Fotovoltaica

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

- Introducción
- 2 Estado del arte Sitación actual de la generación fotovoltaica Soluciones actuales
- Marco teórico
- 4 Desarrollo del código
- 5 Ejemplo práctico de aplicación
- Conclusiones

- Introducción
- 2 Estado del arte Sitación actual de la generación fotovoltaica Soluciones actuales
- Marco teórico
- 4 Desarrollo del código
- 5 Ejemplo práctico de aplicación
- 6 Conclusiones

Soluciones actuales

System Advisor Model

solaR

Funcionamiento

- Geometría solar
- Datos meteorológicos
- ► Radiación en el plano horizontal
- Radiación en el plano del generador
- Simulación de SFCR
- Simulación de SFB
- Optimización de distancias
- Métodos de visualización

solaR

Carencias

- Modularidad
- ► Eficiencia y rendimiento
- Escalibilidad
- ► Manipulación de datos

- Introducción
- Estado del arte
- 3 Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

Procedimiento de cálculo

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

- Introducción
- 2 Estado del arte
- Marco teórico

Algorítmo de cálculo calcSol Meteo calcGO calcGef

prodGCPV

4 Desarrollo del código

5 Ejemplo práctico de aplicación

Algorítmo de cálculo

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código

Algorítmo de cálculo calcSol

Meteo

calcG0

calcGef

prodGCPV
prodPVPS

5 Ejemplo práctico de aplicación

calcSol

- Introducción
- 2 Estado del arte
- Marco teórico

4 Desarrollo del código

Algorítmo de cálculo calcsol

Meteo

calcG0

calcGef

prodGCPV

5 Ejemplo práctico de aplicación

Meteo

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
 - Algorítmo de cálculo
 - Meteo
 - calcG0
 - calcGef
 - prodGCPV
- **5** Ejemplo práctico de aplicación

calcG0

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
 - Algorítmo de cálculo
 - Meteo
 - calcGO
 - calcGef
 - prodGCPV
- 5 Ejemplo práctico de aplicación

calcGef

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
 - Algorítmo de cálculo
 - Meteo
 - calcG0
 - calcGef
 - prodGCPV
- **5** Ejemplo práctico de aplicación

${\tt prodGCPV}$

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
 - Algorítmo de cálculo
 - Meteo
 - calcG0
 - calcGef
 - prodGCPV
 - prodPVPS
- 5 Ejemplo práctico de aplicación

prodPVPS

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- **5** Ejemplo práctico de aplicación
- **6** Conclusiones

- Introducción
- 2 Estado del arte
- Marco teórico
- 4 Desarrollo del código
- 5 Ejemplo práctico de aplicación
- **6** Conclusiones Aportaciones

Blame

Blame

Insights