

ประกาศกรมควบคุมมลพิษ

เรื่อง คุณลักษณะเบื้องต้นที่เหมาะสมสำหรับเชื้อเพลิงขยะจากขยะมูลฝอยชุมชน

โดยที่เป็นการสมควรกำหนดคุณลักษณะเบื้องต้นที่เหมาะสมสำหรับเชื้อเพลิงขยะจากขยะมูลฝอย ชุมชน เพื่อให้องค์กรปกครองส่วนท้องถิ่นและหน่วยงานต่าง ๆ ที่เกี่ยวข้อง ใช้เป็นแนวทางในการผลิตหรือ แปรรูปเชื้อเพลิงขยะจากขยะมูลฝอยชุมชนให้มีคุณสมบัติที่เหมาะสม สามารถนำไปประโยชน์โดยก่อให้เกิด ผลกระทบต่อสิ่งแวดล้อมให้น้อยที่สุด

ดังนั้น เพื่อให้สอดคล้องกับกฎกระทรวงแบ่งส่วนราชการกรมควบคุมมลพิษ กระทรวง ทรัพยากรธรรมชาติและสิ่งแวดล้อม พ.ศ. ๒๕๖๑ ซึ่งกำหนดให้กรมควบคุมมลพิษมีอำนาจหน้าที่ในการพัฒนา องค์ความรู้ เทคโนโลยี และกฎหมายเพื่อนำมาประยุกต์ใช้ในการจัดการกากของเสีย สารอันตราย คุณภาพน้ำ อากาศ ระดับเสียง และความสั่นสะเทือน และให้ความช่วยเหลือและคำปรึกษาแนะนำเกี่ยวกับการจัดการ มลพิษ อธิบดีกรมควบคุมมลพิษจึงอาศัยอำนาจตามความในมาตรา ๓๒ แห่งพระราชบัญญัติระเบียบบริหาร ราชการแผ่นดิน พ.ศ. ๒๕๓๔ และที่แก้ไขเพิ่มเติม ออกประกาศคุณลักษณะเบื้องต้นที่เหมาะสมสำหรับ เชื้อเพลิงขยะจากขยะมูลฝอยชุมชนไว้ ดังต่อไปนี้

ข้อ ๑ ในประกาศนี้

"ขยะมูลฝอยชุมชน" หมายความว่า มูลฝอยตามกฎหมายว่าด้วยการสาธารณสุข โดยไม่รวมถึงมูลฝอยติดเชื้อ มูลฝอยที่เป็นพิษหรืออันตรายจากชุมชน ของเสียอันตรายจากชุมชน และของเสีย จากโรงงานอุตสาหกรรม

"เชื้อเพลิงขยะ (Refuse Derived Fuel – RDF)" หมายความว่า ขยะมูลฝอยชุมชนที่ผ่าน กระบวนการทางกายภาพ อาทิ การคัดแยก ร่อน การลดขนาด และการลดความชื้น เป็นต้น เพื่อให้ได้วัสดุ ที่สามารถเผาไหม่ได้ที่มีขนาดและคุณสมบัติที่เหมาะสมสำหรับใช้เป็นเชื้อเพลิงในภาคอุตสาหกรรมหรือชุมชน หรือ เชื้อเพลิงในเตาเผาขยะมูลฝอยชุมชน หรือโรงผลิตไฟฟ้าจากขยะมูลฝอยชุมชน

"ล็อต (Lot)" หมายความว่า ปริมาณเชื้อเพลิงขยะทั้งหมดในหน่วยน้ำหนักหรือปริมาตรที่ ผู้ผลิตหรือผู้จัดส่งเชื้อเพลิงขยะและผู้ใช้เชื้อเพลิงขยะได้ตกลงในการส่งมอบและรับมอบโดยพิจารณาคุณสมบัติ ของเชื้อเพลิงขยะที่เป็นค่าเฉลี่ยขณะรับมอบ "ซับ-ล็อต (Sub-Lot)" หมายความว่า น้ำหนักหรือปริมาตรของเชื้อเพลิงขยะที่ผลิตได้ใน แต่ละครั้งของกำลังการผลิต โดยหนึ่งล็อตของการผลิตหรือการส่งมอบและรับมอบอาจมีหลายซับ-ล็อต ขึ้นอยู่กับ ระยะเวลาหรือข้อตกลงระหว่างผู้ผลิตหรือผู้จัดส่งเชื้อเพลิงขยะและผู้ใช้เชื้อเพลิงขยะ

"ตัวอย่างเชื้อเพลิงขยะที่ใช้ในการวิเคราะห์คุณลักษณะเบื้องต้น" หมายความว่า ตัวอย่าง เชื้อเพลิงขยะที่สุ่มมาจากในแต่ละชับ-ล็อตเพื่อใช้ในการวิเคราะห์คุณลักษณะเชื้อเพลิงขยะ ซึ่งในแต่ละชับ-ล็อต อาจมีหลายตัวอย่างได้ ทั้งนี้ขึ้นอยู่กับข้อตกลงระหว่างผู้ผลิตหรือผู้จัดส่งเชื้อเพลิงขยะและผู้ใช้เชื้อเพลิงขยะ

ข้อ ๒ ให้กำหนดคุณลักษณะเบื้องต้นของเชื้อเพลิงขยะ ไว้ดังต่อไปนี้

จำแนกตามคุณลักษณะ	หน่วย	ค่า/ปริมาณ
คุณลักษณะทางกายภาพ		
๑. ปริมาณความร้อนสุทธิ	เมกะจูล/กิโลกรัม (ค่าเฉลี่ยของปริมาณเชื้อเพลิง	ไม่น้อยกว่า ๖.๕
(Net Calorific Value)	ขยะรวมขณะส่งมอบและรับมอบ)	
๒. ค่าความชื้น	(ค่าเฉลี่ยของปริมาณเชื้อเพลิงขยะรวมขณะส่ง	ไม่เกินร้อยละ ๔๐
(Moisture Content)	มอบและรับมอบ)	โดยน้ำหนัก
๓. ความหนาแน่นรวม	กิโลกรัม/ลูกบาศก์เมตร (ค่าเฉลี่ยของปริมาณ	ไม่น้อยกว่า ๑๐๐
(Bulk Density)	เชื้อเพลิงขยะรวมขณะส่งมอบและรับมอบ)	
คุณลักษณะทางด้านเคมี		
๔. ปริมาณคลอรีน (Cl ₂)	(ค่าเฉลี่ยของปริมาณเชื้อเพลิงขยะรวมขณะส่ง	ไม่เกินร้อยละ ๐.๘
	มอบและรับมอบ)	โดยน้ำหนักแห้ง
๕. ปริมาณเถ้า (Ash)	(ค่าเฉลี่ยของปริมาณเชื้อเพลิงขยะรวมขณะส่ง	ไม่เกินร้อยละ ๕๐
	มอบและรับมอบ)	โดยน้ำหนักแห้ง
๖. ความเข้มข้น/ปริมาณของ	มิลลิกรัม/เมกะจูล (ค่ามัธยฐาน)	ไม่เกิน 0.05
ปรอท (Hg)	มิลลิกรัม/เมกะจูล (ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐)	ไม่เกิน ๐.๑๒
๗. ความเข้มข้น/ปริมาณของ	มิลลิกรัม/เมกะจูล (ค่ามัธยฐาน)	ไม่เกิน ๗.๕
แคดเมียม (Cd)	มิลลิกรัม/เมกะจูล (ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐)	ไม่เกิน ๑๕
๘. ความเข้มข้น/ปริมาณของ	มิลลิกรัม/เมกะจูล (ค่ามัธยฐาน)	ไม่เกิน ๑๙๐
โลหะหนัก (Heavy Metals) อื่น ๆ	มิลลิกรัม/เมกะจูล (ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐)	ไม่เกิน ๓๘๐
รวม (พลวง (Sb) สารหนู (As)		
ตะกั่ว (Pb) โครเมียม (Cr)		ÿ.
โคบอลต์ (Co) ทองแดง (Cu)		
แมงกานีส (Mn) นิเกิล (Ni) และ	-	
วาเนเดียม (V))		

ข้อ ๓ รายละเอียดของคุณลักษณะเบื้องต้น วิธีการสุ่มเก็บตัวอย่าง การวิเคราะห์ ทดสอบ คุณสมบัติทางกายภาพและทางเคมี และการขนส่งเชื้อเพลิงขยะ ให้เป็นไปตามที่กำหนดไว้ในภาคผนวกท้าย ประกาศนี้

ประกาศ ณ วันที่ ๒๖ กันยายน ๒๕๖๑

(นางสุณี ปิยะพันธุ์พงศ์) อธิบดีกรมควบคุมมลพิษ

ภาคผนวก

ท้ายประกาศกรมควบคุมมลพิษ เรื่อง คุณลักษณะเบื้องต้นที่เหมาะสมสำหรับเชื้อเพลิงขยะจากขยะมูลฝอยชุมชน

ข้อ ๑ หลักการและเหตุผล

หลักเกณฑ์ทางวิชาการเกี่ยวกับคุณลักษณะเบื้องต้นที่เหมาะสมสำหรับเชื้อเพลิงขยะ ที่ผลิตหรือแปรรูปจากขยะมูลฝอยชุมชน (Refuse Derived Fuel – RDF) กำหนดเพื่อให้องค์กรปกครองส่วน ท้องถิ่นและหน่วยงานต่าง ๆ ที่เกี่ยวข้อง พิจารณาจำแนกความแตกต่างระหว่างขยะมูลฝอยกับเชื้อเพลิงขยะ และเพื่อให้เชื้อเพลิงขยะที่ผลิตได้มีคุณสมบัติที่เหมาะสมสามารถนำไปประโยชน์ในรูปแบบต่าง ๆ อาทิ เชื้อเพลิงในภาคอุตสาหกรรม หรือใช้เป็นเชื้อเพลิงในเตาเผาขยะมูลฝอยชุมชน และโรงผลิตไฟฟ้าจากขยะ มูลฝอยชุมชน โดยลดปัญหามลพิษที่อาจจะเกิดขึ้นระหว่างกระบวนการนำไปใช้ประโยชน์หรือกำจัดด้วย ความร้อนและยังเป็นการลดภาระในการบำบัดของระบบบำบัดมลพิษทางอากาศและค่าใช้จ่ายในการ ดำเนินการ นอกจากนี้ เชื้อเพลิงขยะที่ผลิตได้มีคุณภาพเป็นที่ยอมรับของทุกภาคส่วนและลดข้อขัดแย้งในการ สุ่มตัวอย่างและวิเคราะห์คุณสมบัติของเชื้อเพลิงขยะจากขยะมูลฝอยชุมชน รวมทั้งเป็นแนวทางให้องค์กร ปกครองส่วนท้องถิ่นหรือหน่วยงานต่าง ๆ ที่เกี่ยวข้อง ทราบถึงคุณสมบัติที่เหมาะสมเบื้องต้นของเชื้อเพลิงขยะ เพื่อใช้ประกอบในการพิจารณาตัดสินใจเลือกเทคโนโลยีหรือรูปแบบการผลิตเชื้อเพลิงขยะที่เหมาะสม

ข้อ ๒ การกำหนดคุณลักษณะเบื้องต้นของเชื้อเพลิงขยะ พิจารณาจากคุณลักษณะทางกายภาพ และทางเคมี ดังนี้

๒.๑ คุณลักษณะทางกายภาพ เป็นคุณลักษณะที่อาจส่งผลกระทบต่อค่าใช้จ่ายในการ ดำเนินงานและสิ่งแวดล้อมเมื่อมีการใช้ประโยชน์เชื้อเพลิงขยะ ได้แก่ ค่าความร้อนสุทธิ ค่าความชื้น และค่า ความหนาแน่นรวม

๒.๑.๑ ค่าความร้อนสุทธิ (Net Calorific Value)

ค่าความร้อนเป็นหน่วยวัดค่าความร้อนของเชื้อเพลิงประเภทต่าง ๆ ที่แสดงถึง พลังงานหรือค่าความร้อนที่เกิดขึ้นจากการเผาใหม้อย่างสมบูรณ์ ซึ่งโดยทั่วไปค่าความร้อนจะแสดงในรูปแบบ ของค่าความร้อนทั้งหมดที่ได้จากการเผาใหม้อย่างสมบูรณ์ (Gross Calorific Value) และค่าความร้อนสุทธิ (Net Calorific Value) โดยค่าความร้อนสุทธิสามารถคำนวณได้โดยการนำค่าความร้อนทั้งหมดที่เกิดจากการ เผาใหม้ลบด้วยค่าความร้อนที่สูญเสียไปจากการระเหยของน้ำจากค่าความชื้น (Moisture Content) ที่มีอยู่ในเชื้อเพลิง ซึ่งค่าความร้อนของเชื้อเพลิงขยะนิยมวัดเป็นค่าความร้อนสุทธิเฉลี่ยที่มีหน่วยเป็น เมกะจูล (MJ) ต่อน้ำหนัก เชื้อเพลิงขยะเป็นกิโลกรัม (Kg) ในขณะที่ตรวจวัดในแต่ละล็อต

๒.๑.๒ ค่าความชื้น (Moisture Content)

ค่าความชื้นเป็นค่าที่บอกถึงปริมาณน้ำที่มีอยู่ในเชื้อเพลิงขยะและเป็นคุณสมบัติ ทางกายภาพที่สำคัญ เนื่องจากส่งผลกระทบโดยตรงต่อค่าความร้อนสุทธิ โดยค่าความร้อนสุทธิจะมีค่าลดลง เมื่อค่าความชื้นที่เพิ่มมากขึ้น ในขณะเดียวกันค่าความชื้นยังส่งผลกระทบโดยตรงต่อประสิทธิภาพการเผาไหม้ ถ้าเชื้อเพลิงขยะมีค่าความชื้นสูงจะส่งผลให้เกิดปริมาณก๊าซไอเสียเพิ่มมากขึ้นซึ่งมีผลทำให้ระบบบำบัดมลพิษทาง อากาศรับภาระมากยิ่งขึ้นและยังส่งผลให้หม้อต้มไอน้ำมีขนาดใหญ่มากขึ้น ในกรณีที่มีการนำความร้อนมาผลิตเป็น พลังงาน นอกจากนี้ความชื้นยังส่งผลให้อุณหภูมิในห้องเผาไหม้ลดลง ทำให้เกิดการเผาไหม้ที่ไม่สมบูรณ์และต้องใช้ เชื้อเพลิงมากยิ่งขึ้น รวมทั้งเพิ่มปริมาณมลพิษทางอากาศที่ระบายสู่สิ่งแวดล้อม

๒.๑.๓ ค่าความหนาแน่นรวม (Bulk Density)

ความหนาแน่นรวม คือ น้ำหนักของเชื้อเพลิงขยะต่อปริมาตรซึ่งเป็น คุณลักษณะทางกายภาพที่สำคัญที่ส่งผลทั้งค่าใช้จ่ายในการดำเนินงานและทางด้านเทคนิค เนื่องจาก เป็นตัวกำหนดเทคนิคหรือวิธีการในการผลิตเชื้อเพลิงขยะที่มีรูปแบบวิธีการที่แตกต่างกัน อาทิ การคัดแยก การบำบัดทางชีวภาพ การบด การตัด การแยก การร่อน การทำให้แห้ง และการอัดแน่น เป็นต้น ความหนาแน่นรวม ที่มีค่าต่ำมักส่งผลให้เชื้อเพลิงขยะมีค่าความร้อนต่ำซึ่งทำให้การควบคุมกระบวนการผลิตเชื้อเพลิงขยะเป็นไป ด้วยความยากลำบาก และใช้พื้นที่ในการจัดเก็บมากส่งผลกระทบต่อค่าใช้จ่ายในการขนส่ง อย่างไรก็ตาม การใช้ประโยชน์เชื้อเพลิงขยะบางประเภทมีความต้องการเชื้อเพลิงขยะที่มีความหนาแน่นรวมต่ำ เนื่องจาก ต้องป้อนเข้าสู่ระบบด้วยการเป่าด้วยอากาศซึ่งจำเป็นต้องมีน้ำหนักเบา เป็นต้น ทั้งนี้ การกำหนดคุณลักษณะ ความหนาแน่นรวมต้องอยู่บนพื้นฐานของข้อมูลที่รวบรวมได้ ซึ่งมีหน่วยการวัดเป็นกิโลกรัมต่อลูกบาศก์เมตร

๒.๒ คุณลักษณะทางด้านเคมี เป็นคุณลักษณะที่สำคัญที่ใช้กำหนดคุณภาพหรือข้อจำกัด ในการใช้ประโยชน์ของเชื้อเพลิงขยะ ได้แก่ ปริมาณคลอรีน ปริมาณเถ้า และปริมาณโลหะหนัก

๒.๒.๑ ปริมาณคลอรีน (Cl)

การเผาเชื้อเพลิงขยะที่มีปริมาณคลอรีนสูงส่งผลให้เกิดการกัดกร่อนผนังเตา อันเกิดจากกรดไฮโดรคลอริก (HCl) ซึ่งเกิดจากปฏิกิริยาการรวมตัวของไอน้ำและก๊าซไฮโดรเจนคลอไรด์และ ยังเป็นการเพิ่มปริมาณก๊าซคลอรีนที่ระบายสู่บรรยากาศ นอกจากนี้ปริมาณคลอรีนยังเป็นสาเหตุที่ก่อให้เกิด สารประกอบประเภทไดออกซินและฟูราน ซึ่งประเภทของขยะมูลฝอยชุมชนที่เป็นแหล่งกำเนิดของคลอรีนที่สำคัญ อาทิ ขยะอินทรีย์ ถุงพลาสติกที่มีส่วนผสมของคลอไรด์ พลาสติกประเภทพีวีซี กระดาษหรือไม้ที่ผ่าน กระบวนการฟอกขาว ตัวทำละลายในอุตสาหกรรม เป็นต้น ดังนั้น เชื้อเพลิงขยะที่มีส่วนประกอบหลักของ ขยะมูลฝอยประเภทดังกล่าวข้างต้น ย่อมคาดการณ์ได้ว่ามีปริมาณคลอรีนที่สูง

๒.๒.๒ ปริมาณเถ้า (Ash)

ปริมาณเถ้าและส่วนที่เผาไหม้ไม่ได้ คือสิ่งที่เหลือตกค้างจากกระบวนการเผา ไหม้ ซึ่งในเถ้าส่วนใหญ่จะประกอบด้วยธาตุ ซิลิกอน (Si) อะลูมิเนียม (Al) เหล็ก (Fe) แคลเซียม (Ca) แมกนีเซียม (Mg) โพแตสเซียม (K) ซัลเฟอร์ (S) และ ฟอสฟอรัส (P) สำหรับความเข้มข้นของธาตุแต่ละชนิด จะมีความแตกต่างกัน ขึ้นอยู่กับองค์ประกอบของขยะมูลฝอย ปริมาณเถ้าเป็นปัจจัยทางด้านเทคนิคที่สำคัญ เนื่องจากหากมีปริมาณเถ้ามากย่อมจำเป็นต้องออกแบบระบบที่มีประสิทธิภาพในการนำเถ้าออกจากเตาเผา และหากมีปริมาณเถ้ามากย่อมส่งผลให้มีอนุภาคฝุ่นละอองรวมมากปะปนไปกับอากาศเสียที่ระบาย สู่สิ่งแวดล้อม นอกจากนี้ปริมาณเถ้าที่มีค่าสูงยังส่งผลให้ค่าความร้อนของเชื้อเพลิงขยะลดลงด้วย รวมทั้ง ยังส่งผลกระทบต่ออุณหภูมิในการหลอมและอุณหภูมิของการเผาไหม้

๒.๒.๓ ปริมาณหรือความเข้มข้นของปรอท (Hg)

ปรอทเป็นโลหะหนักที่มีความเป็นพิษสูง เนื่องจากมีจุดเดือดต่ำและระเหยได้ง่าย ในกรณีที่มีการนำไปเผา โดยขยะมูลฝอยชุมชนที่เป็นแหล่งกำเนิดสำคัญของปรอท คือ ขยะอิเล็กทรอนิกส์ บางประเภท การกำหนดปริมาณความเป็นพิษของปรอท มีหน่วยน้ำหนักเป็นมิลลิกรัมของปรอทต่อค่าความร้อน โดยคิดเป็นค่ามัธยฐานหรือ ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐ ของปริมาณเชื้อเพลิงขยะรวมขณะรับมอบ

๒.๒.๔ ปริมาณหรือความเข้มข้นของแคดเมียม (Cd)

แคดเมียมถูกกำหนดเป็นพารามิเตอร์ในการควบคุมเนื่องจากความเป็นพิษ
และมักเกิดการสะสมอยู่ในผลิตภัณฑ์ทางการเกษตรซึ่งมีโอกาสที่จะก่อให้เกิดความเป็นพิษจากการระเหย
ในกระบวนการเผาใหม้หรือทำปฏิกิริยาในลักษณะเดียวกับคลอไรด์ โดยแหล่งกำเนิดแคดเมียมที่สำคัญของ
ขยะมูลฝอยชุมชน คือ สี แบตเตอรี่ ขยะอิเล็กทรอนิกส์บางประเภท และแผ่นโลหะชุบ สำหรับการกำหนด
ความเป็นพิษของแคดเมียมขึ้นอยู่กับปริมาณหรือความเข้มข้นมีหน่วยการวัดเป็นน้ำหนักมิลลิกรัม
ของแคดเมียมต่อค่าความร้อน โดยคิดเป็นค่ามัธยฐาน หรือ ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐ ของปริมาณ
เชื้อเพลิงขยะรวมขณะรับมอบ

๒.๒.๕ ปริมาณโลหะหนักอื่น ๆ รวม (Heavy Metals)

โลหะหนักประเภทอื่น ๆ ถูกนำมาใช้เป็นเกณฑ์ในการพิจารณาจำแนก ประเภทของเชื้อเพลิงขยะโดยเฉพาะโลหะหนักที่สามารถระเหยได้ง่ายเมื่อถูกทำลายหรือเผาไหม้ที่อุณหภูมิสูง เช่น พลวง (Sb) สารหนู (As) ตะกั่ว (Pb) โครเมียม (Cr) โคบอลต์ (Co) ทองแดง (Cu) แมงกานีส (Mn) นิเกิล (Ni) และวาเนเดียม (V) ซึ่งโลหะหนักที่ระเหยได้ง่ายบางส่วนจะถูกดักในระบบบำบัดมลพิษทางอากาศและอยู่ในรูปแบบของเถ้าลอยและบางส่วนอาจหลุดเล็ดลอดระบายไปกับอากาศเสียออกสู่สิ่งแวดล้อม สำหรับโลหะหนักบางประเภท ที่มีความสามารถระเหยได้ต่ำก็ปนอยู่ในรูปแบบของเถ้าหนัก สำหรับการกำหนดความเข้มข้นของโลหะหนัก อื่น ๆ รวม (Sum of heavy metals as received) มีหน่วยการวัดเป็นน้ำหนักมิลลิกรัมของโลหะหนักรวม ต่อค่าความร้อน โดยคิดเป็นค่ามัธยฐาน หรือ ค่าเปอร์เซ็นไทล์ ที่ร้อยละ ๘๐ ของปริมาณเชื้อเพลิงขยะรวม ขณะรับมอบ

ข้อ ๓ การสุ่มเก็บตัวอย่างจากเชื้อเพลิงขยะเพื่อวิเคราะห์คุณลักษณะเบื้องต้น ต้องคำนึงถึง หลักการที่สำคัญ ดังนี้

๓.๑ การสุ่มเก็บตัวอย่างเชื้อเพลิงขยะต้องสามารถเข้าถึงกองตัวอย่างเชื้อเพลิงขยะได้อย่าง ทั่วถึง

๓.๒ อุปกรณ์ที่ใช้ในการเก็บตัวอย่างจะต้องมีขนาดใหญ่เพียงพอที่จะสามารถรองรับขนาด ของตัวอย่างเชื้อเพลิงขยะในกองที่มีขนาดใหญ่ที่สุดได้

๓.๓ การสุ่มเก็บตัวอย่างเชื้อเพลิงขยะจากกองตัวอย่างจะต้องดำเนินการดึงตัวอย่างหลาย ๆ จุด ให้ครอบคลุมทั่วกองตัวอย่างและนำเชื้อเพลิงขยะที่สุ่มมาได้มารวมกันเพื่อให้เป็นตัวแทนของกองตัวอย่าง เชื้อเพลิงขยะ

๓.๔ สำหรับปริมาณน้ำหนักของตัวอย่างเชื้อเพลิงขยะที่สุ่มเก็บต้องมีปริมาณที่เหมาะสม หรือเพียงพอต่อการวิเคราะห์คุณลักษณะตามมาตรฐานของการวิเคราะห์ตัวอย่างที่เป็นที่ยอมรับทั้งในระดับ สากล

ข้อ ๓ ขั้นตอนการสุ่มเก็บตัวอย่าง

ตัวอย่างเชื้อเพลิงขยะที่ใช้ในการวิเคราะห์คุณลักษณะเบื้องต้น ให้ดำเนินการสุ่มเก็บตัวอย่าง ในแต่ละชับล็อต (Sub-lot) ในปริมาณไม่น้อยกว่า ๑๐ กิโลกรัมหรือเพียงพอต่อการวิเคราะห์คุณลักษณะเบื้องต้น ของเชื้อเพลิงขยะได้ครอบคลุมทุกตัวแปร รวมทั้งการควบคุมคุณภาพและการรับประกันคุณภาพ (Quality Assurance/Quality Control; QA/QC) ทั้งนี้ ให้นำผลการวิเคราะห์คุณลักษณะเบื้องต้นในแต่ละซับ-ล็อต มา คำนวณหาคุณลักษณะเบื้องต้นที่เหมาะสมของแต่ละล็อตต่อไป

ข้อ ๔ วิธีการสุ่มเก็บตัวอย่างเชื้อเพลิงขยะที่ใช้ในการวิเคราะห์คุณลักษณะเบื้องต้น สามารถ ดำเนินการได้ ๓ แบบ ได้แก่ การเก็บตัวอย่างโดยตรงจากกองพักหรือที่เก็บกักเชื้อเพลิงขยะ การเก็บตัวอย่าง จากพาหนะที่บรรทกเชื้อเพลิงขยะ และการเก็บตัวอย่างจากสายพานลำเลี่ยงในกระบวนการผลิตเชื้อเพลิงขยะ

๔.๑ การเก็บตัวอย่างโดยตรงจากกองพักหรือที่เก็บกักเชื้อเพลิงขยะ

กำหนดจุดที่สุ่มเก็บตัวอย่างจากกองหรือที่พักหรือที่เก็บกักให้กระจายทั่วถึงโดยรอบกอง ไม่น้อยกว่า ๒๔ จุด และปริมาณตัวอย่างเชื้อเพลิงขยะที่เก็บในแต่ละจุดต้องเก็บตัวอย่างให้ได้ตลอดทุกระดับ ความลึกของกองเก็บและต้องมีปริมาณที่เท่า ๆ กัน อย่างน้อยประมาณ ๑ กิโลกรัมต่อจุด แล้วนำตัวอย่างที่เก็บได้ ทั้งหมดมาเทกองคลุกเคล้าให้เข้ากันแล้วแบ่งเป็นกองสี่ส่วนเท่า ๆ กัน และนำส่วนที่อยู่ตรงข้ามกันจำนวนสอง ส่วนมารวมกัน แล้วดำเนินการแบ่งเป็นสี่ส่วนอีกจนได้น้ำหนักตัวอย่างเพื่อวิเคราะห์ อย่างน้อย ๑๐ กิโลกรัม รายละเอียดดังภาพที่ ๑

ภาพที่ ๑ ตัวอย่างการสุ่มตัวอย่างเก็บเชื้อเพลิงขยะโดยตรงจากกองพักหรือที่เก็บกักเชื้อเพลิงขยะ

๔.๒ การเก็บตัวอย่างจากพาหนะที่บรรทุกเชื้อเพลิงขยะ

กำหนดจุดที่สุ่มเก็บตัวอย่างจากพาหนะที่บรรทุกเชื้อเพลิงขยะ ไม่น้อยกว่า ๕ จุด ในแนวทแยงมุม และปริมาณตัวอย่างเชื้อเพลิงขยะที่เก็บในแต่ละจุดต้องเก็บตัวอย่างให้ได้ตลอดทุกระดับความลึก ของกองเก็บและต้องมีปริมาณที่เท่า ๆ กัน อย่างน้อยประมาณ ๕ กิโลกรัมต่อจด แล้วนำตัวอย่างที่เก็บได้ทั้งหมดมา เทกองคลุกเคล้าให้เข้ากันแล้วแบ่งเป็นกองสี่ส่วนเท่า ๆ กัน และนำส่วนที่อยู่ตรงข้ามกันจำนวนสองส่วนมา รวมกัน แล้วดำเนินการแบ่งเป็นสี่ส่วนอีกจนได้น้ำหนักตัวอย่างเพื่อวิเคราะห์ อย่างน้อย ๑๐ กิโลกรัม รายละเอียดดังภาพที่ ๒

ภาพที่ ๒ ตัวอย่างการสุ่มตัวอย่างเก็บเชื้อเพลิงขยะจากพาหนะที่บรรทุกเชื้อเพลิงขยะ ที่มา: https://www.usea.org/sites/default/files/042014_Coal%20sampling%20and%20analysis%20standards_ccc235.pdf

๔.๓ การเก็บตัวอย่างจากสายพานลำเลี้ยงในกระบวนการผลิตเชื้อเพลิงขยะ

การเก็บตัวอย่างจากสายพานลำเลียงในกระบวนการผลิตเชื้อเพลิงขยะอาจ ดำเนินการได้ในขณะทำงาน (เคลื่อนที่) โดยตำแหน่งที่เก็บตัวอย่างจะเป็นบริเวณตำแหน่งสายพานลำเลียงหรือ จากปล่องลำเลียงของกระบวนการผลิตในขั้นสุดท้าย ซึ่งสามารถเก็บตัวอย่างได้ทั้งแบบใช้แรงงานคนหรือระบบ เครื่องจักรอัตโนมัติ โดยวิธีการเก็บตัวอย่างด้วยเครื่องจักรแบบอัตโนมัติจะใช้ใบมืดตัดขวางในการเก็บตัวอย่าง (cross-stream cutter) ซึ่งจะทำการเก็บตัวอย่างทั้งหน้าตัดขวาง บริเวณสายพานลำเลียงลงช่องรับตัวอย่าง เป็นช่วง ๆ และรวมกันเพื่อเป็นตัวอย่างของชับ-ล็อต (รายละเอียดดังภาพที่ ๓) สำหรับข้อควรพิจารณาในการ ใช้เครื่องจักรกลอัตโนมัติแบบใบมีดตัดขวางในการเก็บตัวอย่าง มีดังนี้

๔.๓.๑ เครื่องจักรกลอัตโนมัติแบบใบมีดตัดขวางจะต้องสามารถเก็บตัวอย่างทั้งหมด ได้ในทิศทางตัดขวางของสายพานลำเลียง

๔.๓.๒ อัตราเร็วของใบมืดตัดขวางจะต้องคงที่ และมีความเร็วอย่างต่ำมากกว่า ความเร็วของสายพาน ๑.๕ เท่า ทั้งนี้ความเร็วสูงสุดควรไม่เกิน ๐.๖ เมตรต่อวินาที

๔.๓.๓ ขนาดของใบมีดตัดขวางจะต้องมีอัตราส่วนไม่ต่ำกว่าขนาดใหญ่สุดของ เชื้อเพลิงขยะสามเท่าและขนาดของช่องเปิดสำหรับรองรับตัวอย่างต้องมีขนาดใหญ่เพียงพอที่ไม่ทำให้ช่องเปิด รองรับตัวอย่างอุดตัน

๔.๓.๔ ช่องเปิดของใบมืดตัดขวางควรจะมีขอบปลายที่ขนานกัน เพื่อให้สามารถ เก็บตัวอย่างได้โดยไม่มีการหกหล่นของตัวอย่างและต้องไม่ขวางทางของตัวอย่างขยะเชื้อเพลิงที่เก็บรวบรวมแล้ว

ภาพที่ ๓ ตัวอย่างการสุ่มเก็บตัวอย่างจากสายพานลำเลียงในกระบวนการผลิตเชื้อเพลิงขยะเครื่องจักรกลอัตโนมัติแบบใบมืดตัดขวาง ที่มา: https://www.usea.org/sites/default/files/042014_Coal%20sampling%20and%20analysis%20standards ccc235.pdf

การเก็บตัวอย่างจากกระบวนการผลิตเชื้อเพลิงขยะขณะหยุดการทำงาน (stationary stream) จากสายพานลำเลี้ยงที่หยุด หรือจากที่พักหรือที่เก็บกักขยะเชื้อเพลิง ซึ่งวิธีนี้จะส่งผล กระทบต่อการทำงาน เนื่องจากต้องหยุดระบบเพื่อจัดเก็บตัวอย่าง สำหรับเครื่องมือจัดเก็บตัวอย่างจะทำการ จัดเก็บตัวอย่างทั้งหน้าตัดขวางของสายพานซึ่งมีลักษณะคล้ายกับใบมีดตัดขวางในระบบอัตโนมัติ (รายละเอียด ดังภาพที่ ๔)

ภาพที่ ๔ ตัวอย่างการสุ่มเก็บตัวอย่างจากสายพานลำเลียงในกระบวนการผลิตเชื้อเพลิงขยะขณะหยุดการทำงาน ที่มา: https://www.usea.org/sites/default/files/042014 Coal%20sampling%20and%20analysis%20standards ccc235.pdf

สำหรับอุปกรณ์ที่ใช้สุ่มเก็บตัวอย่างจากกองสามารถดำเนินการได้โดยใช้สว่านเจาะ (auger) ที่สามารถเก็บตัวอย่างได้ตลอดทุกระดับความลึกของกองหรือ การใช้ภาชนะรองรับโดยตรงจากรถตัก หรือ ใช้อุปกรณ์ในการตักซึ่งอุปกรณ์/ภาชนะที่ใช้ตักจะต้องมีขนาดความกว้างของช่องเปิดที่สามารถรองรับ ขนาดของเชื้อเพลิงขยะเฉลี่ยที่ไม่น้อยกว่า ๓ เท่าของขนาดเฉลี่ยของเชื้อเพลิงขยะ โดยขนาดเชื้อเพลิงขยะ ขนาดเล็กที่สุดจะมีขนาดประมาณ ๓๐ มิลลิเมตร รวมทั้งจะต้องมีปริมาตรไม่น้อยกว่า ๒.๕ ลิตร หรือ มีปริมาตรที่มากพอที่สามารถรวบรวมน้ำหนักของเชื้อเพลิงขยะเพื่อวิเคราะห์ได้ โดยไม่ล้นหรือหกออกจาก ที่ตัก/เก็บ หรือภาชนะ (รายละเอียดดังภาพที่ ๕)

ภาพที่ ๕ ตัวอย่างอุปกรณ์ที่ใช้เก็บ/ตัก เชื้อเพลิงขยะ ซึ่งประยุกต์มาจาก ISO ๑๘๒๘๓:๒๐๐๖ ที่มา : https://www.usea.org/sites/default/files/042014_Coal%20sampling%20and%20analysis%20standards_ccc235.pdf

การเก็บตัวอย่างจากรถบรรทุกขนส่ง รถไฟ หรือเรือบรรทุกเชื้อเพลิงขยะ สามารถ ดำเนินการได้โดยใช้วิธีแบบเคลื่อนที่ และแบบหยุดการทำงาน สำหรับแบบการหยุดทำงานจะใช้สว่านเจาะ (auger) ในการเก็บตัวอย่างตลอดความลึกของกองเชื้อเพลิงขยะโดยที่ไม่สูญเสียตัวอย่างจากบรรทุกขนส่ง รถไฟ หรือ เรือบรรทุกเชื้อเพลิงขยะ โดยทั่วไปจะใช้เครื่องมือเก็บเรียกว่า full-depth mechanical sampler ในการสุ่มเก็บตัวอย่าง

ข้อ ๕ วิธีการวิเคราะห์ตัวอย่างและประมวลผล

วิธีการวิเคราะห์พารามิเตอร์ต่าง ๆ ให้เป็นไปตามวิธีการวิเคราะห์เชื้อเพลิงแข็งที่ผลิตจาก ของเสีย (Solid Recovery Fuel: SRF) ของกรมโรงงานอุตสาหกรรม หรือมาตรฐานอื่นที่เป็นที่ยอมรับใน ระดับสากล อาทิ CEN/TC343 หรือ ISO TC300 หรือ JIS Z7302 เป็นต้น

ข้อ ๖ การสุ่มเก็บตัวอย่างและการวิเคราะห์ ทดสอบคุณสมบัติทางกายภาพและทางเคมีของ เชื้อเพลิงขยะ ต้องดำเนินการอย่างน้อยปีละ ๑ ครั้ง หรือ ทุกครั้งที่มีการปรับปรุงกระบวนการผลิตหรือ ปรับเปลี่ยนเครื่องจักรที่ใช้ในการผลิตหรือแปรรูปเชื้อเพลิงขยะ หรือ ในกรณีที่มีการนำขยะมูลฝอยจากแหล่ง อื่นมาผลิตหรือแปรรูป

ข้อ ๗ การขนส่งเชื้อเพลิงขยะ

รถที่ใช้บรรทุกหรือขนส่ง รวมถึงผู้ขับขี่จะต้องมีคุณสมบัติหรือเป็นไปตามกฎหมายว่าด้วย การขนส่งทางบกและต้องมีมาตรการป้องกันการตกหล่นของขยะมูลฝอยและเชื้อเพลิงขยะ รวมถึงการรั่วซึม ของน้ำชะขยะมูลฝอยหรือวัสดุที่ไม่ใช้แล้วระหว่างการขนส่ง อาทิ มีการใช้ผ้าใบหรือวัสดุอื่นที่สามารถป้องการ การปลิวหรือแพร่กระจายของฝุ่นปกคลุมอย่างมิดชิด และพาหนะที่ใช้บรรทุกหรือขนส่งต้องมีระบบรวบรวมน้ำ ชะขยะมูลฝอยที่อาจเกิดขึ้นจากการกดทับหรืออัดแน่นของขยะมูลฝอยและเชื้อเพลิงขยะ เป็นต้น เพื่อป้องกัน เหตุเดือดร้อนรำคาญและผลกระทบต่อสุขภาพต่อผู้อยู่อาศัยในเส้นทางที่รถขนส่งบรรทุกผ่าน ทั้งนี้ การขนส่ง เชื้อเพลิงขยะให้ปฏิบัติตามกฎหมายของกระทรวงสาธารณสุข หรือ กฎหมายอื่นที่เกี่ยวข้อง