Proprietà dei Valori Attesi

Lorenzo Vaccarecci

5 Aprile 2024

1 Funzione di variabili casuali

Il valore atteso di g(X,Y), nel caso **discreto**, può essere calcolato come

$$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)p(x,y)$$

Se
$$g(X,Y) = X + Y$$

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

1.1 Valore atteso di una variabile casuale binomiale

Bernoulli con $\mathbb{E}[X_i] = p$ per tutti gli i

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = np$$

2 Media e varianza campionaria

Se le X_i per $i=1,\ldots,n$ sono variabili casuali identicamente e indipendentemente distribuite con valore atteso μ e varianza σ^2 definiamo la **media campionaria** come

$$m = \frac{1}{n} \cdot \sum_{i} X_{i}$$

$$\mathbb{E}[m] = \frac{1}{n} \cdot \sum_{i} \mathbb{E}[X_i] = \mu$$

3 Covarianza

Se X e Y sono indipendenti

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

La covarianza di due variabili casuali X eY è definita come

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Se X e Y sono indipendenti allora

$$Cov(X,Y) = 0$$