SMOOTH RATIONAL SURFACES IN \mathbb{P}^4

FRANK-OLAF SCHREYER

1. Introduction

2. KNOWN EXAMPLES

2.1. **Degenerate surfaces.** The plane \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$ and the cubic surfaces $\mathbb{P}^2(3;1^6)$ are the smooth surfaces which do not span \mathbb{P}^4 . They have degree 1, 2 and 3 respectively.

2.2. Non-degenerate surfaces of degree ≤ 7 .

- (1) The cubic scroll $X \cong \mathbb{P}^2(2;1) = \{ \operatorname{rank} \begin{pmatrix} x_0 & x_1 & x_3 \\ x_1 & x_2 & x_4 \end{pmatrix} < 2 \}$
- (2) The del Pezzo surface of degree 4, i.e. $\mathbb{P}^2(3; 1^5) = Q_1 \cap Q_2$, a complete intersection of two quadrics.
- (3) The projected Veronese surface of degree 4
- (4) The Castelnuovo surface $X \to \mathbb{P}^1$ of degree 5, a conic bundle over \mathbb{P}^1
- (5) The Bordiga surface $\mathbb{P}^2(4;1^{10})$ of degree 6
- (6) The Ionescu-Okonek surface of $\mathbb{P}^2(6; 2^6, 5^1)$ degree 7 with with Betti table

(7) The non-special Alexander surface $\mathbb{P}^2(7; 2^{10}, 1)$ of degree 8 and sectional genus $\pi = 5$ with Betti table

		0	1	2	3	4		
():	1						
	1:							
4	2:							
•	3:		5	4				
4	4:		4	10	8	2		
1								

(8)	The Okonek surface \mathbb{P}^2 $\pi = 7$ with Betti table	2(6;	2^{4} ,	1^{12}) o	of degree 8 and sectional genus
		•	1 4			
			4	5	1	
(9)	The non-special Alexar tional genus $\pi = 6$ with					$\mathbb{P}^2(13;4^{10})$ of degree 9 and sec-
	1					
		•	•			
		15 1				
(10)		xan	der	su	rfa	ce $\mathbb{P}^2(9; 3^6, 2^3, 1^6)$ of degree 9
	1					
		•				
		3	1		•	•
		6	14	4 !	9	2
(11)	The Ranestad surface \mathbb{P} genus $\pi = 8$ and Betti ta			$5,4^9$	9,2	$(1,1^2)$ of degree 10 and sectional
	1					
		•	•		•	•
		10	13	3	4	
	•	4	1:	1	10	3
(12)	The Decker-Ein-Schrey sectional genus π = 9 w					$(9; 3^4, 2^7, 1^7)$ of degree 10 and le
	1		•			
	•	•	•		•	•
	•	1				•
			18			

(13) The Ranestad surface $\mathbb{P}^2(8; 2^{12}, 1^6)$ of degree 10 and sectional genus $\pi = 9$ and Betti table

(14) ≥ 3 families of Schreyer surfaces of degree 11 and sectional genus $\pi=10$ with Betti table

0 1 2 3 4
0: 1
1:
2:
3:
4: . 5 . . .
5: . 7 26 20 5

of type $\mathbb{P}^2(18;6^5,5^5,2,1^4)$, $\mathbb{P}^2(15;5^5,4^4,3^2,2,1^3)$. The third family has as last adjoint surface the intersection of $Y=(\mathbb{P}^1\times\mathbb{P}^2)\cap Q\subset \mathbb{P}^5$ with a quadric Q and $X=Y(H+4R;4^3,2^2,1^3)$ where R denotes the ruling of $\mathbb{P}^1\times\mathbb{P}^2$. The conic fibration $Y\to\mathbb{P}^1$ has 6 singular fibers.

(15) ≥ 3 families of Schreyer surfaces of degree 11 and sectional genus $\pi = 10$ with Betti table

0 1 2 3 4
0: 1
1:
2:
3:
4: . 5 1 . .
5: . 8 26 20 5

of type $\mathbb{P}^2(13; 4^7, 3^4, 2^2, 1^2)$, $\mathbb{P}^1 \times \mathbb{P}^1((9, 9); 4^8, 3, 2^3, 1^2)$ and $\mathbb{P}^2(15; 5^6, 4^2, 3^2, 2^3, 1^2)$.

(16) ≥ 1 families of Schreyer surfaces of degree 11 and sectional genus $\pi = 10$ with Betti table

0 1 2 3 4
total: 1 14 28 20 5
0: 1
1:
2:
3:
4: . 5 2 . .
5: . 9 26 20 5

The adjunction leads to a quadric bundle of class Y = 2H - R in a scroll of type S(2,1,1). The surface X is the blow-up of Y in $3^4, 2^4, 1$ points. $X = Y(2H + 2R; 3^4, 2^4, 1)$.

(17) One family of Schreyer surfaces $\mathbb{P}^2(12; 4^4, 3^5, 2^6)$ of degree 11 and sectional genus $\pi = 10$ with Betti table

0 1 2 3 4
total: 1 15 29 20 5
0: 1
1:
2:
3:
4: . 5 3 . .
5: . 10 26 20 5

(18) The Popsecu surface $\mathbb{P}^2(9;3^4,2^7,1^7)$ of degree 11 and sectional genus $\pi=11$ with Betti table

(19) The Popsecu surface of degree 11 and sectional genus π = 11 with Betti table

 (20) The Popsecu surface of degree 11 and sectional genus π = 11 with Betti table and Tate resolution

```
0
      1
             3 4
                     -4:
                           1
1:
                     -3: 107 64 32
                                     11
2: .
                     -2:
                                          3 1
                     -1:
                                                1
      10
         14
            6 1
                                               10 38 91
                      0:
5: .
      2
          5
             4 1
```

respectively.

(21) The vBothmer-Erdenberger-Ludwig surface $\mathbb{P}^2(9;3,2^{14},1^5)$ of degree 11 and sectional genus $\pi=11$ with Betti table and Tate resolution

```
0 \ 1 \ 2
0: 1
                   -4:
                         1
                   -3: 107 64
                                 32
                                    11
2:
3: .
      1
                                           2
                   -1:
                                              2
      5
                                           1 10 38 91
                    0:
      2 9
5:
```

respectively.

(22) Six families of Abo-Ranestad surfaces of degree 12 and sectional genus π = 13 with Betti table

```
0 1 2 3 4
0: 1 . . . . .
1: . . . . . .
2: . . . . . .
4: . 5 . . .
5: . 4 18 13 3
```

of type $\mathbb{P}^2(12; 4^5, 2^{12}, 1^4)$, $\mathbb{P}^2(12; 4^4, 3^3, 2^9, 1^5)$, $\mathbb{P}^2(12, 4^3, 3^6, 2^6, 1^6)$ and $\mathbb{P}^2(12; 4^2, 3^9, 2^3, 1^7)$. Further families: The fifth case has as last adjoint surface a quadric bundle of degree 8 which is a divisor Y of class 2H-2R on a scroll of degree 5 (and type S(2,2,1)?) and $X=Y(H+3R; 3^5, 2^4, 7^1)$. Finally, the sixth case has as last adjoint surface a quadric bundle of degree 9 which is a is a divisor Y of class 2H-3R on a scroll of degree 6 (perhaps of type S(2,2,2)) and $X=Y(H+3R; 3^8,2,8^1)$.

(23) One family of Abo-Ranestad surfaces $\mathbb{P}^2(12; 4^5, 2^{12}, 1^4)$ of degree 12 and sectional genus $\pi = 13$ with Betti table

	0	1	2	3	4
total:	1	10	19	13	3
0:	1				
1:					
2:					
3:					
4:		5	1		
5:		5	18	13	3

This family could be in the closure of the first family of ??.

So at the moment there are at least 22 + 2 + 2 + 5 = 31 components of the Hilbert scheme of surfaces in \mathbb{P}^4 whose general elements correspond to non-degenerate smooth rational surfaces.

Caveat: Check that all are extendible to characteristic 0 and check whether family ?? lies in the closure of the first family of ??.

Fachbereich Mathematik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany

Email address: schreyer@math.uni-sb.de