# Inference for High Dimensional Robust Regression

Peter Bickel, Noureddine El Karoui, Lihua Lei

Department of Statistics UC Berkeley

Stanford-Berkeley Joint Colloquium, 2015



#### Table of Contents

Background

2 Main Results

OLS: A Motivating Example

#### Table of Contents

Background

2 Main Results

OLS: A Motivating Example

Consider a linear regression model:

$$Y_i = X_i^T \beta_0 + \epsilon_i, \quad i = 1, 2, \dots, n.$$

Here  $Y_i \in \mathbb{R}$ ,  $X_i \in \mathbb{R}^p$ ,  $\beta_0 \in \mathbb{R}^p$  and  $\epsilon_i \in \mathbb{R}$ .

OLS Estimator (p < n):</li>

$$\hat{\beta}^{OLS} = \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \beta)^2;$$

M Estimator (p < n):</li>

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(y_i - x_i^T \beta).$$



ullet The limiting behavior for  $\hat{eta}$  when p is fixed

$$\mathcal{L}(\hat{\beta}) \approx N\left(\beta_0, (X^T X)^{-1} \frac{\mathbb{E}(\psi^2(\epsilon))}{[\mathbb{E}\psi'(\epsilon)]^2}\right);$$

ullet The limiting behavior for  $\hat{eta}$  when p is fixed

$$\mathcal{L}(\hat{\beta}) \approx N\left(\beta_0, (X^T X)^{-1} \frac{\mathbb{E}(\psi^2(\epsilon))}{[\mathbb{E}\psi'(\epsilon)]^2}\right);$$

• Huber (1973) raised the question of understanding the behavior of  $\hat{\beta}$  when  $p \to \infty$ ;

ullet The limiting behavior for  $\hat{eta}$  when p is fixed

$$\mathcal{L}(\hat{\beta}) \approx N\left(\beta_0, (X^T X)^{-1} \frac{\mathbb{E}(\psi^2(\epsilon))}{[\mathbb{E}\psi'(\epsilon)]^2}\right);$$

- Huber (1973) raised the question of understanding the behavior of  $\hat{\beta}$  when  $p \to \infty$ ;
- Huber (1973) proved that  $\hat{\beta}^{OLS}$  is jointly asymptotically normal iff

$$\kappa = \max_{i} (X(X^TX)^{-1}X^T)_{i,i} \to 0$$

which requires

$$\frac{p}{n} \to 0$$
.



• Portnoy (1984, 1985, 1986, 1987) proved the **joint** asymptotic normality of  $\hat{\beta}$  in the case

$$\frac{(p\log n)^{\frac{3}{2}}}{n}\to 0;$$

• Portnoy (1984, 1985, 1986, 1987) proved the **joint** asymptotic normality of  $\hat{\beta}$  in the case

$$\frac{(p\log n)^{\frac{3}{2}}}{n}\to 0;$$

• Mammen (1989) provided an expansion for  $\hat{\beta}$  (which leads to joint asymptotic normality) by assuming

$$\kappa n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}\to 0.$$

• Portnoy (1984, 1985, 1986, 1987) proved the **joint** asymptotic normality of  $\hat{\beta}$  in the case

$$\frac{(p\log n)^{\frac{3}{2}}}{n}\to 0;$$

• Mammen (1989) provided an expansion for  $\hat{\beta}$  (which leads to joint asymptotic normality) by assuming

$$\kappa n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}\to 0.$$

All works are based on fixed designs but requires

$$\frac{p}{n} \to 0$$
.



• El Karoui et al. (2011, 2013), Bean et al. (2013) established the **joint asymptotic normality** of  $\hat{\beta}$  in the regime

$$\frac{p}{n} \to \kappa \in (0,1),$$

by assuming a **random design** X, which has i.i.d. Gaussian entries;

• El Karoui et al. (2011, 2013), Bean et al. (2013) established the **joint asymptotic normality** of  $\hat{\beta}$  in the regime

$$\frac{p}{n} \to \kappa \in (0,1),$$

by assuming a **random design** X, which has i.i.d. Gaussian entries;

• Zhang and Zhang (2014), Van de Geer et al. (2014) proved the **partial asymptotic normality** of LASSO estimator by assuming a **fixed design** and imposing a **sparsity** condition on  $\beta_0$ :

$$\frac{||\beta_0||_0\log p}{\sqrt{n}}\to 0.$$



#### Main Research Question and Our Contributions

Suppose  $\frac{p}{n} \to \kappa \in (0,1)$  and the design matrix X is fixed, can we make inference on the coordinate (or lower dimensional linear contrast) of  $\hat{\beta}$ ?

#### Main Research Question and Our Contributions

Suppose  $\frac{p}{n} \to \kappa \in (0,1)$  and the design matrix X is fixed, can we make inference on the coordinate (or lower dimensional linear contrast) of  $\hat{\beta}$ ?

#### YES! In this work, we prove

- ullet the coordinatewise asymptotic normality of  $\hat{eta}$
- ullet in the regime  $rac{\mathbf{p}}{\mathbf{n}} 
  ightarrow \kappa \in (\mathbf{0},\mathbf{1})$
- for fixed designs;
- show that the conditions for fixed design matrix is satisfied by a broad class of random designs.

#### Table of Contents

1 Background

2 Main Results

OLS: A Motivating Example

# Ridge-Regularized M Estimator

Consider the ridge-regularized M estimator

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(y_i - x_i^T \beta) + \frac{\tau}{2} ||\beta||^2.$$

Assume that  $\rho \in \mathcal{C}^2$  is a convex function with  $\psi = \rho'$  and  $\beta_0 = 0$ , then the first order condition implies that

$$\sum_{i=1}^{n} x_i \psi(\epsilon_i - x_i^T \hat{\beta}) = n \tau \hat{\beta}.$$

In most cases, there is no closed form solution and  $\hat{\beta}$  is an implicit function of  $\epsilon$ .

#### **Final Conclusions**

#### Theorem 1.

Under Assumptions A1-A4,  $\hat{\beta}$  is coordinatewise asymptotically normal in the sense that

$$\max_{j} d_{TV} \left( rac{\hat{eta}_{j} - \mathbb{E}_{\epsilon} \hat{eta}_{j}}{\sqrt{Var_{\epsilon}(\hat{eta}_{j})}}, N(0, 1) 
ight) = O\left( rac{PolyLog(n)}{\sqrt{n}} 
ight).$$

### Assumptions: Loss Function

Assumption **A**1: Let  $\psi = \rho'$ , for any x,

- $0 < D_0 \le \psi'(x) \le D_1(|x| \lor 1)^{m_1}$ ;
- $|\psi''(x)| \leq D_2(|x| \vee 1)^{m_2}$ ;
- $|\psi'''(x)| \leq D_3(|x| \vee 1)^{m_3}$ ;
- $\max\{D_0^{-1}, D_1, D_2, D_3\} = O(PolyLog(n));$
- $\max\{m_1, m_2, m_3\} = O(1)$ .

#### Assumptions: Error Distribution

Assumption A2:  $\epsilon$  are transformations of i.i.d. Gaussian random variables, i.e.  $\epsilon_i = u_i(\nu_i)$ , where

- $\nu_i \stackrel{i.i.d.}{\sim} N(0,1)$ ;
- $||u_i'||_{\infty} \le c_1, ||u_i''||_{\infty} \le c_2;$
- $\max\{c_1, c_2\} = O(PolyLog(n)).$

# Assumptions: Design Matrix

Assumption A3: for design matrix X,

- $\max_{i,j} |X_{ij}| = O(PolyLog(n));$
- $\lambda_{max}\left(\frac{X^TX}{n}\right) = O(PolyLog(n));$
- $\left\|\frac{1}{n}\sum_{i=1}^{n}x_{i}\right\|=O(PolyLog(n))$ , where  $x_{i}$  is the i-th row.

### Assumptions: Linear Concentration Property

#### Assumption A4:

Let  $x_i$  be the *i*-th row of X and  $X_j$  be the *j*-th column of X.

$$\{\alpha_{k,i} \in \mathbb{R}^p : k = 1, \dots, N_n^{(1)}; i = 1, \dots, n\}$$
 and  $\{\gamma_{r,j} \in \mathbb{R}^n : r = 1, \dots, N_n^{(2)}; j = 1, \dots, p\}$  are two sequences of **unit vectors** (with explicit forms but omitted here for concision)

- $\max\{N_n^{(1)}, N_n^{(2)}\} = O(n^2).$
- $\alpha_{k,i}$  only relies on  $\epsilon$  and  $x_{i'}$  for  $i' \neq i$ ;
- $\gamma_{r,j}$  only relies on  $\epsilon$  and  $X_{j'}$  for  $j' \neq j$ ;
- $\mathbb{E}_{\epsilon} \max_{k,i} |\alpha_{k,i}^T x_i| = O(PolyLog(n));$
- $\mathbb{E}_{\epsilon} \max_{r,j} |\gamma_{r,i}^T X_j| = O(PolyLog(n));$



#### Illustration of Assumptions A4

Consider i.i.d. standard gaussian designs

$$X_{ij} \stackrel{i.i.d.}{\sim} N(0,1), \quad X \perp \epsilon.$$

For given k and i,  $\alpha_{k,i} \perp x_i$  and

$$\alpha_{k,i}^T x_i \sim N(0,1).$$

Then  $\mathbb{E}_{\epsilon,X} \max_{k,i} |\alpha_{k,i}^T x_i|$  is the expectation of  $N_n^{(1)}$  standard gaussian random variables and hence

$$\mathbb{E}_{\epsilon,X} \max_{k,i} |\alpha_{k,i}^T x_i| \leq \sqrt{\log n N_n^{(1)}} = O(PolyLog(n)).$$

By Markov Inequality,

$$\mathbb{E}_{\epsilon} \max_{k,i} |\alpha_{k,i}^T x_i| = O_p\left(\mathbb{E}_{\epsilon,X} \max_{k,i} |\alpha_{k,i}^T x_i|\right) = O_p(PolyLog(n)).$$

### Table of Contents

Background

2 Main Results

OLS: A Motivating Example

# Lindeberg-Feller Condition

Assume that  $p/n \to \kappa \in (0,1)$ , p < n and  $\beta_0 = 0$ , denote

$$\hat{\beta}_p^{OLS} = \underset{\beta \in \mathbb{R}^p}{\arg\min} \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \beta)^2 = (X^T X)^{-1} X^T \epsilon;$$

then each coordinate is a **linear constrast** of  $\hat{\beta}$ .

#### Proposition 1 (Lindeberg-Feller Condition).

Suppose  $\epsilon_n=(\epsilon_1,\ldots,\epsilon_n)^T$  has i.i.d. zero mean components with variance  $\sigma^2$ . If  $||c_n||_{\infty}/||c_n||_2 \to 0$  where  $c_n=(c_{n,1},\ldots,c_{n,k_n})$ , then

$$\frac{c_n^T \epsilon_n}{||c_n||_2} \stackrel{d}{\to} N(0, \sigma^2).$$



# Lindeberg-Feller Condition

Note that

$$\hat{\beta}_{p,j_p}^{OLS} = e_{j_p}^T (X^T X)^{-1} X^T \epsilon \triangleq c_{p,j_p}^T \epsilon.$$

For given matrix  $X \in \mathbb{R}^{n \times p}$ , define

$$H(X) \triangleq \max_{j=1,...,p} \frac{||e_j^T(X^TX)^{-1}X^T||_{\infty}}{||e_j^T(X^TX)^{-1}X^T||_2},$$

then for any  $j_p \in \{1, \dots, p\}$ ,

$$\frac{||c_{p,j_p}^{\mathsf{T}}||_{\infty}}{||c_{p,j_p}^{\mathsf{T}}||_{2}} \leq H(X_p)$$

and this leads to

#### Theorem 2.

 $\hat{\beta}_p^{OLS}$  is c.a.s.n. if  $H(X_p) \to 0$ .



# Random Designs

We prove that  $H(X_p) \to 0$  for a broad class of random designs.

#### Theorem 3.

Let  $X \in \mathbb{R}^{n \times p}$  be a random matrix with independent zero mean entries, such that  $\sup_{i,j} ||X_{ij}||_{8+\delta} \leq M$  for some constant M and  $\delta > 0$ . Assume that X has full column rank almost surely and  $Var(X_{ij}) > \tau^2$  for some  $\tau > 0$ . Then

$$H(X) = O_p(n^{-\frac{1}{4}})$$

provided  $\limsup p/n < 1$ .

#### **Future Works**

- Extend to heavy-tailed errors, e.g.  $\epsilon_i \sim Cauchy$ ;
- Explore more general random designs that satisfy A3 and A4;
- Calculate the bias  $\mathbb{E}_{\epsilon}\hat{\beta}_{j}$  and variance  $Var_{\epsilon}(\hat{\beta}_{j})$ ;
- Prove the result for unregularized M estimator, i.e.  $\tau = 0$ ;
- Extend to low dimensional linear contrasts of  $\hat{\beta}$ , i.e.  $\alpha^T \hat{\beta}$  with  $||\alpha||_0 = o(n)$ .

# Thank You!