Tutorial Questions

Exercise 1 Let R, S be rings and V, W be R- and S-modules respectively.

- (i) Suppose that R is commutative. Show that the right R-action defined by $v*r:=r\cdot v$ defines a right R-module.
- (ii) Verify that the regular (left) module ${}_RR$ is an R-module.
- (iii) Let $\alpha: R \to S$ be a ring homomorphism. Prove that $r*w := \alpha(r) \cdot w$ defines an R-module.
- (iv) Let $\pi: R \to S$ be a surjective ring homomorphism and

$$Ann(V) = \{ r \in R : r \cdot v = 0 \text{ for all } v \in V \}$$

be the annihilator of V. Prove that ${\sf Ann}(V)$ is an ideal of R. Suppose further that ${\sf Ann}(V)$ contains $\ker \pi$. Prove that $s*v:=r\cdot v$ defines an S-module where $\pi(r)=s$.

(v) Let G be an abelian group. Prove that G is an \mathbb{Z} -module with the action

$$n \cdot x = \begin{cases} \underbrace{x + x + \dots + x}_{\substack{n \text{ times} \\ (-x) + (-x) + \dots + (-x) \\ -n \text{ times}}} & \text{if } n \ge 0, \\ \underbrace{(-x) + (-x) + \dots + (-x)}_{\substack{n \text{ times} \\ (-x) + (-x) + \dots + (-x) \\ (-x) + (-x) + \dots + (-x)}}_{\substack{n \text{ times} \\ (-x) + (-x) + \dots + (-x) \\ (-x) + (-x) + \dots + (-x)}} & \text{if } n \ge 0, \\ \underbrace{(-x) + (-x) + \dots + (-x)}_{\substack{n \text{ times} \\ (-x) + (-x) + \dots + (-x) \\ (-x) + (-x) + \dots + (-x)}}_{\substack{n \text{ times} \\ (-x) + (-x) + \dots + (-x) \\ (-x) + (-x) + \dots + (-x)}} & \text{if } n \ge 0.$$

Exercise 2 Let F be a field. Prove that every vector space V over F is an F-module and subspaces of V are submodules.

Exercise 3 Let V be an R-module. Show that $0 \cdot v = 0$ and $(-1) \cdot v = -v$ for all $v \in V$.

Exercise 4 Let *V* be an *R*-module.

- (i) Show that the sum of two submodules of V is a submodule (the sum U+W is defined as $\{u+w:u\in U,\ w\in W\}$).
- (ii) Show that the intersection of any non-empty collection of submodules of V is a submodule.

Exercise 5 Consider the abelian group $G := C_6 \times C_{10}$ as \mathbb{Z} -module. Find the annihilator of G.

Exercise 6 Let $\{V_i\}_{i\in I}$ be a collection of R-modules.

- (i) The direct product $\prod_{i \in I} V_i$ is the set consisting of all sequences $(v_i)_{i \in I}$ where $v_i \in V_i$ for each $i \in I$ and addition of two sequences is defined componentwise. Define an R-action by $r*(v_i)_{i \in I} = (r \cdot v_i)_{i \in I}$. Prove that $\prod_{i \in I} V_i$ is an R-module.
- (ii) The (external) direct sum $\bigoplus_{i \in I} V_i$ is the subset of $\prod_{i \in I} V_i$ consisting of sequences $(v_i)_{i \in I}$ such that almost all v_i 's are zero. Prove that $\bigoplus_{i \in I} V_i$ is a submodule of $\prod_{i \in I} V_i$.

In the case when I is finite, say $I = \{1, ..., n\}$, the notions $V_1 \times \cdots \times V_n$ and $V_1 \oplus \cdots \oplus V_n$ are the same.

Exercise 7 Let I be a left ideal of a ring R and V be an R-module. Prove that

$$IV := \{ a_1 \cdot v_1 + \dots + a_m \cdot v_m : a_1, \dots, a_m \in I, \ v_1, \dots, v_m \in V, \ m \in \mathbb{N} \}$$

is a submodule of V.

Exercise 8 (Group Algebra) Let G be a group and R be a commutative ring. Define RG as the set consisting of formal sum of the form $\sum_{g \in G} r_g g$ where $r_g \in R$ and such that r_g 's are almost all zero (finite support). The element $r_g \in R$ is called the coefficient of $g \in G$. Define addition and multiplication on RG as

$$\sum_{g \in G} r_g g + \sum_{g \in G} s_g g = \sum_{g \in G} (r_g + s_g) g,$$

$$\left(\sum_{g \in G} r_g g\right) \left(\sum_{g \in G} s_g g\right) = \sum_{g \in G} \left(\sum_{h \in G} r_{gh} s_{h^{-1}}\right) g$$

Show that RG is an R-algebra with the map $\phi: R \to RG$ defined as $\phi(r) = re_G$, that is, $\phi(r)$ is mapped into the formal sum where the coefficients of $g \in G$ are zero if $g \neq e_G$ and r if $g = e_G$.

Exercise 9

- (i) Let A be an R-algebra. Prove that, as R-module, we have $r \cdot (ab) = (r \cdot a)b = a(r \cdot b)$ for all $r \in R$ and $a, b \in A$.
- (ii) Conversely, suppose that A is a ring and an R-module satisfying $r \cdot (ab) = (r \cdot a)b = a(r \cdot b)$ for all $r \in R$ and $a, b \in A$. Prove that A is an R-algebra with the map $f : R \to A$ defined by $f(r) = r \cdot 1_A$.

Exercise 10 Let $\phi:V\to W$ be an R-module homomorphism. Prove that $\ker\phi$ and $\dim\phi$ are submodules of V and W respectively.

Exercise 11 Let $\phi: V \to W$ be an R-module homomorphism. Prove that $\ker \phi = \{0\}$ if and only if ϕ is injective.

Exercise 12 Consider the group algebra RG. Define the RG-action on R by, for each $x \in R$,

$$\left(\sum_{g \in G} r_g g\right) * x = \sum_{g \in G} r_g x.$$

Prove that R is an RG-module. The module is called the trivial RG-module (for the group algebra RG).

Exercise 13 Let V,W be R-modules. Prove that the hom-set $\operatorname{Hom}_R(V,W)$ is an abelian group with the binary operation $(\phi + \psi)(v) := \phi(v) + \psi(v)$.

Exercise 14 Let X, Y, V be R-modules and $\beta: X \to Y$ be an R-module homomorphism.

(i) Prove that we have a group homomorphism

$$\beta_*: \operatorname{Hom}_R(V,X) \to \operatorname{Hom}_R(V,Y)$$

where $\beta_*(f) = \beta \circ f$.

(ii) Prove that we have a group homomorphism

$$\beta^*: \operatorname{Hom}_R(Y,V) \to \operatorname{Hom}_R(X,V)$$

where $\beta^*(f) = f \circ \beta$.

Exercise 15 Let F be a field. Show that F-module homomorphisms are linear transformations over F.

Homological Algebra

Exercise 16 Show that \mathbb{Z} -module homomorphisms are abelian group homomorphisms.

Exercise 17 Let V be an R-module. Suppose that $r \in Z(R)$. Define $\lambda_r : V \to V$ by $\lambda_r(v) = r \cdot v$. Prove that λ_r is an R-module homomorphism. Show that the conclusion is false without the assumption that $r \in Z(R)$.

Exercise 18 Consider the \mathbb{Z} -module $V = \mathbb{Z}/2\mathbb{Z}$. Compute $\operatorname{End}_{\mathbb{Z}}(V)$. More generally, prove that

$$\operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/\gcd(m,n)\mathbb{Z}.$$

Exercise 19 Let R be a commutative ring.

- (i) Let V be an R-module. Prove that $\operatorname{Hom}_R(R,V)\cong V$ as R-modules where the map is given by $\alpha\mapsto\alpha(1)$.
- (ii) Prove that $\operatorname{End}_R(R) \cong R$ as rings.

Exercise 20 Fix a positive integer n. For each $1 \le i \le n$, let U_i be a submodule of an R-module V_i . Prove that we have the following isomorphism of R-modules:

$$(V_1 \times \cdots \times V_n)/(U_1 \times \cdots \times U_n) \cong (V_1/U_1) \times \cdots \times (V_n/U_n).$$

Exercise 21 Let I be a left ideal of a ring R and consider the free R-module R^n of rank n. Prove that we have the following isomorphism of R-modules:

$$R^n/IR^n \cong \underbrace{(R/IR) \times \cdots \times (R/IR)}_{n \text{ times}}$$

where IR^n has been defined in Exercise 7.

Exercise 22 Let V be an R-module and A be a subset of V. Let

$$RA := \{r_1 a_1 + \dots + r_m a_m : r_1, \dots, r_m \in R, a_1, \dots, a_m \in A, m \in \mathbb{N}\}.$$

Recall that $R\emptyset = \{0\}.$

- (i) Prove that RA is a submodule of V.
- (ii) Prove that RA contains the subset A.
- (iii) Prove that RA is the intersection of the collection of submodules U of V such that $A \subseteq V$. As such, RA is the smallest submodule of V containing A.

Exercise 23 Let N be a submodule of M. Prove that M is finitely generated if both N and M/N are finitely generated.

Exercise 24 Let R be a commutative ring. Show that $R^m \cong R^n$ if and only if m = n. (Hint: Let I be a maximal ideal of R. Use Exercise 21.)

Exercise 25 Let M be the free \mathbb{Z} -module $\mathbb{Z} \times \mathbb{Z} \times \cdots$ and let $R = \operatorname{End}_{\mathbb{Z}}(M)$.

- (i) Let $\phi(a_1,a_2,\ldots)=(0,a_1,a_2,\ldots)$ and $\psi(a_1,a_2,\ldots)=(a_2,a_3,\ldots)$. Show that $\psi\phi=1$ but $\phi\psi\neq 1$. Conclude that R is not commutative.
- (ii) Let

$$\alpha_1(a_1, a_2, a_3, \ldots) = (a_1, a_3, a_5, \ldots),$$

 $\alpha_2(a_1, a_2, a_3, \ldots) = (a_2, a_4, a_6, \ldots).$

Prove that $\{\alpha_1, \alpha_2\}$ is a free basis for the regular R-module R.

(Hint: Let $\beta_1(a_1, a_2, \ldots) = (a_1, 0, a_2, 0, \ldots)$ and $\beta_2(a_1, a_2, \ldots) = (0, a_1, 0, a_2, \ldots)$. Show that $\alpha_i \beta_i = 1$, $\alpha_1 \beta_2 = 0 = \alpha_2 \beta_1$ and $\beta_1 \alpha_1 + \beta_2 \alpha_2 = 1$.)

(iii) Prove that $R \cong R^2$ as R-modules.

Exercise 26 Verify that the module F(A) defined in the Universal Property of Free Modules is an R-module and the map $\Phi: F(A) \to M$ is a well-defined R-module homomorphism.

Exercise 27 Let A and B be sets of the same cardinality. Prove that the free modules F(A), F(B) constructed in Universal Property of Free Modules are isomorphic.

Exercise 28 An R-module M is called a torsion module if, for every $m \in M$, there exists a nonzero element $r \in R$ such that $r \cdot m = 0$. Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example showing the converse of the previous statement is incorrect.

Exercise 29 An R-module M is called irreducible (or simple) if $M \neq 0$ and the only submodules of M are 0 and M. Suppose that M is irreducible and let $0 \neq m \in M$. Prove that $M \cong Rm$.

Exercise 30 Find all irreducible \mathbb{Z} -modules.

Exercise 31 An element $e \in R$ is called an idempotent if $e^2 = e$. The idempotent is called a central idempotent if it belongs in the center of R, i.e., re = er for all $r \in R$. Let e be a central idempotent and M is an R-module. Prove that M is equal to the direct sum of the submodules eM and (1-e)M where

$$eM = \{em : m \in M\},\$$

 $(1 - e)M = \{(1 - e)m : m \in M\}.$

Exercise 32 Let M,N be right and left R-modules respectively and L be an abelian group. Suppose that $\beta: M \times N \to L$ is an R-balanced map. Show that the group homomorphism $\xi: F(M \times N) \to L$ obtained via the universal property

$$M \times N \xrightarrow{\iota} F(M \times N)$$

$$\downarrow^{\beta} \qquad \downarrow^{\xi}$$

$$L$$

Homological Algebra

of the free \mathbb{Z} -module maps the subgroup H of $F(M \times N)$ generated by

$$(m+m',n) - (m,n) - (m',n),$$

 $(m,n+n') - (m,n) - (m,n'),$
 $(mr,n) - (m,rn)$

belongs in the kernel of ξ and hence induce a group homomorphism $\Phi: F(M \times N)/H \to L$.

Exercise 33 Verify the following bimodule structures.

- (i) Let I be an ideal of R. Prove that R/I is an (R/I,R)-bimodule.
- (ii) Let M be a left R-module and $S\subseteq Z(R)$. Prove that M is an (R,S)-bimodule where m*s:=sm.

Exercise 34 Let R,S be rings, Y an (R,S)-bimodule and Z a right S-module. Prove that $\operatorname{Hom}_S(Y,Z)$ is a right R-module with the action given by $(\phi*r)(y)=\phi(ry)$ for all $r\in R$ and $y\in Y$.

Exercise 35

- (i) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as \mathbb{Q} -modules.
- (ii) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as \mathbb{C} -modules.

Exercise 36 Let D be a right \mathbb{Z} -module and $m \in \mathbb{Z}$. We aim to prove that

$$D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \cong D/mD$$

where $mD = \{md : d \in D\}$.

- (i) Define a map $\beta: D \times (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ by $\beta(d, \overline{a}) = ad + mD$. Prove that β is well-defined and \mathbb{Z} -balanced.
- (ii) By the Universal Property of the Tensor Product, we have a group homomorphism $\Phi: D\otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ such that $\Phi(d\otimes \overline{a}) = ad + mD$. Prove that Φ is an isomorphism.

Exercise 37 Complete/Read the proof of the Associativity of the Tensor Product.

Exercise 38 Let R be a commutative ring and M,N be R-modules. Prove that $M\otimes_R N\cong N\otimes_R M$ as R-modules.

Exercise 39 Let I be an indexing set. Let M and N_i , one for each $i \in I$, be right and left R-modules respectively. Prove that

$$M \otimes_R \bigoplus_{i \in I} N_i \cong \bigoplus_{i \in I} (M \otimes_R N_i).$$

Exercise 40 *The conclusion of Exercise 39 is however not true if we replace direct sum with direct product. Let $S = \mathbb{Q}$, $R = \mathbb{Z}$ and $N_i = \mathbb{Z}/(2^i\mathbb{Z})$.

Exercise 41 Let N be an \mathbb{Z} -module. Let \mathbb{Z}^{\times} be the set of nonzero integers. Define the relation \sim on $\mathbb{Z}^{\times} \times N$ by $(m,x) \sim (n,y)$ if and only if my = nx.

- (i) Prove that \sim is an equivalence relation and let $\mathbb{Z}^{-1}N$ be the set of equivalence classes.
- (ii) Prove that $\mathbb{Z}^{-1}N$ is a \mathbb{Z} -module (abelian group) with addition given by

$$[(m,x)] + [(n,y)] = [(mn, my + nx)].$$

(iii) Show that the map $\beta:\mathbb{Q}\times N\to\mathbb{Z}^{-1}N$ defined by

$$\beta(\frac{a}{b}, x) = [(b, ax)]$$

is an \mathbb{Z} -balanced map and hence it induces a \mathbb{Z} -module homomorphism $f: \mathbb{Q} \otimes_{\mathbb{Z}} N \to \mathbb{Z}^{-1} N$ such that $f(\frac{a}{b} \otimes x) = [(b, ax)]$. (You need to check that the map β is well-defined.)

- (iv) Define $g: \mathbb{Z}^{-1}N \to \mathbb{Q} \otimes_{\mathbb{Z}} N$ by $g([(m,x)]) = \frac{1}{m} \otimes x$. Prove that g is the inverse of f in part (iii) and hence we have an isomorphism $\mathbb{Q} \otimes_{\mathbb{Z}} N \cong \mathbb{Z}^{-1}N$.
- (v) Conclude that, $\frac{1}{m} \otimes x = 0$ in $\mathbb{Q} \otimes_{\mathbb{Z}} N$ if and only if x = 0.

(For this exercise, you may replace \mathbb{Z} with any integral domain and \mathbb{Q} with its field of fractions.)

Exercise 42 Prove Corollary 10.16 and Proposition 10.21.

Exercise 43 Let (α, β, γ) and $(\alpha', \beta', \gamma')$ be homomorphisms of short exact sequences (SES) of R-modules

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow X' \longrightarrow Y' \longrightarrow Z' \longrightarrow 0$$

$$\downarrow^{\alpha'} \qquad \downarrow^{\beta'} \qquad \downarrow^{\gamma'}$$

$$0 \longrightarrow X'' \longrightarrow Y'' \longrightarrow Z'' \longrightarrow 0$$

- (i) Prove that $(\alpha'\alpha, \beta'\beta, \gamma'\gamma)$ is a homomorphism of short exact sequence.
- (ii) Suppose that (α, β, γ) is an isomorphism (respectively, equivalence) of SES. Prove that $(\alpha^{-1}, \beta^{-1}, \gamma^{-1})$ is an isomorphism (respectively, equivalence) of SES.

Exercise 44 Prove the second statement of the five lemma: Suppose that the rows are exact, f_1 is surjective and both f_2 , f_4 are injective. Prove that f_3 is injective.

Exercise 45 Consider the short exact sequence of groups

$$1 \to A_n \xrightarrow{\iota} S_n \xrightarrow{\operatorname{sgn}} \{\pm 1\} \to 1.$$

- (i) Show that there exists a group homomorphism $\gamma: \{\pm 1\} \to S_n$ such that $\operatorname{sgn} \gamma = \operatorname{id}_{\{\pm 1\}}$.
- (ii) Show that, however, whenever $n \geq 3$, there is no group homomorphism $\delta: S_n \to A_n$ such that $\delta\iota = \mathrm{id}_{A_n}$.

This example shows that the existence of retraction of ι and section of sgn for (non-abelian groups) are not equivalent.

Exercise 46 Consider the exact sequence $\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \to 0$ and let $V = \mathbb{Z}/2\mathbb{Z}$. Verify that $\operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z})$ is the trivial group and hence the map $\pi^* : \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) \to \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ is not surjective.

Exercise 47 Let $\{F_i : i \in I\}$ be a collection of free R-modules.

- (i) Prove that the direct sum $\bigoplus_{i \in I} F_i$ is a free module.
- (ii) For each $i \in I$, let P_i be a direct summand of F_i . Assume that $F_i = P_i \oplus Q_i$ for some submodule Q_i of F_i . Prove that $\bigoplus_{i \in I} F_i = (\bigoplus_{i \in I} P_i) \oplus (\bigoplus_{i \in I} Q_i)$.
- (iii) Conclude that the direct sum of projective modules is projective.

Exercise 48 Let R-mod consist of the objects (left) R-modules and the class of morphisms of two objects X,Y is $\operatorname{Hom}_R(X,Y)$. The binary operation of morphisms is given by composition of functions. Prove that R-mod is a category. Conclude that \mathbb{Z} -modcat is the category of abelian groups which is denoted by Ab.

Exercise 49 Let V be an R-module.

- (i) Prove that $\operatorname{Hom}_R(V, -) : R\operatorname{-mod} \to \operatorname{Ab}$ is a covariant functor.
- (ii) Prove that $\operatorname{Hom}_R(-,V): R\operatorname{-mod} \to \operatorname{Ab}$ is a contravariant functor.

Exercise 50 Suppose that we begin with a category $\mathscr C$ and an object X in $\mathscr C$. What are the important ingredients so that $\mathscr F:=\operatorname{Mor}(X,-):\mathscr C\to\operatorname{Ab}$ is a covariant functor?

Exercise 51 Let R be an integral domain. An R-module M is divisible if, for every $0 \neq r \in R$, we have rM = M.

- (i) Suppose that Q is a nonzero divisible \mathbb{Z} -module. Prove that Q is not projective.
- (ii) Deduce that $\mathbb Q$ is divisible and hence not a projective $\mathbb Z$ -module.

Exercise 52 Prove Proposition 10.34, that is, let I be an R-module, prove that the following are equivalent statements:

- (i) For any R-modules X,Y,Z, if $0 \to X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to 0$ is exact, then $0 \to \operatorname{Hom}_R(Z,I) \xrightarrow{\beta^*} \operatorname{Hom}_R(X,I) \to 0$ is exact.
- (ii) For any R-modules X,Y, if $0 \to X \xrightarrow{\alpha} Y$ is exact, then, for any R-module homomorphism $g:X \to I$, there exists an R-module homomorphism $f:Y \to I$ such that $f \circ \alpha = g$.
- (iii) If I is isomorphic to a submodule of an R-module Y, then $I \mid Y$.

(Hint: For (iii) \Rightarrow (i), use the fact that every R-module is contained in an injective R-module.)

Exercise 53 Complete the proof of Baer's criterion by verifying that the set

$$\Omega = \{(f', Y') : \operatorname{im} \alpha \subseteq Y' \subseteq Y \text{ and } f' : Y' \to Q \text{ such that } f'\alpha = g\},$$

with the partial order $(f',Y') \leq (f'',Y'')$ if and only if $Y' \subseteq Y''$ and $f''|_{Y'} = f'$, satisfies Zorn's lemma.

Exercise 54 Let $\{Q_i: i \in I\}$ be injective R-modules. Prove that $\prod_{i \in I} Q_i$ is injective.

Exercise 55 (Projective Cover) Let M be an R-module. A projective cover P of M is a 'smallest' projective R-module such that P projects onto M. More precisely, a projective R-module P is a projective cover of M if there exists a surjective R-module homomorphism $f: P \to M$ such that, for any projective R-module Q and R-module homomorphism $g:Q\to P$ such that fg is surjective, the map q is surjective. In the literature, f is called an essential map.

- (i) If P, P' are projective covers of M, prove that $P \cong P'$.
- (ii) Show that the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$ has no projective cover.

(However, every R-module has injective hull by the Eckmann–Schopf Theorem. Let M be an R-module. An injective hull Q of M is a 'smallest' injective R-module such that M injects into Q. More precisely, an injective R-module Q is an injective hull of M if there exists an injective R-module homomorphism $f: M \to Q$ such that, for any injective R-module Q' and R-module homomorphism $q:Q\to Q'$ such that qf is injective, the map q is injective. Injective hulls of a module is unique up to isomorphism.)

Exercise 56 Let V, W be R-modules.

- (i) Prove that $V \oplus W$ is projective if and only if both V, W are projective.
- (ii) Prove that $V \oplus W$ is injective if and only if both V, W are injective.
- (iii) Prove that $V \oplus W$ is flat if and only if both V, W are flat right R-modules.

Exercise 57 Prove the following isomorphisms.

- (i) $\operatorname{Hom}_R(\bigoplus_{i\in I}V_i,W)\cong\prod_{i\in I}\operatorname{Hom}_R(V_i,W)$ (ii) $\operatorname{Hom}_R(V,\prod_{i\in J}W_i)\cong\prod_{i\in J}\operatorname{Hom}_R(V,W_i)$

Exercise 58 Let G be a finite group and H be a subgroup of G. Let k be a field. Consider the group algebras kG and kH.

(i) Consider kG as right kH-module in the natural way. Let $\{x_1,\ldots,x_m\}$ be a complete set of left coset representatives of H in G. Prove that

$$kG = \bigoplus_{i=1}^m \operatorname{span}_k \{x_i h : h \in H\} \cong \bigoplus_{i=1}^m kH$$

as right kH-modules.

(ii) Conclude that kG is a free right kH-module.

For any left kH-module V, the kG-module $\operatorname{Ind}_H^G V := kG \otimes_{kH} V$ is called the induction of V from H to G.

(iii) For any exact sequence $0 \to X \to Y \to Z \to 0$ of kH-modules, prove that we have an exact sequence of induced modules

$$0 \to \operatorname{Ind}_H^G X \to \operatorname{Ind}_H^G Y \to \operatorname{Ind}_H^G Z \to 0.$$

(iv) Conclude that we have an exact covariant functor $\operatorname{Ind}_H^G:kH\operatorname{-mod} o kG\operatorname{-mod}$.

Exercise 59 Let Q be an injective R-module. Recall that the contravariant functor $\mathsf{Hom}_R(-,Q): R$ -mod \to Ab is exact on short exact sequence, i.e., for any exact sequence $0 \to U \to V \to W \to 0$ of R-modules, we have an exact sequence $0 \to \mathsf{Hom}_R(W,Q) \to \mathsf{Hom}_R(V,Q) \to \mathsf{Hom}_R(U,Q) \to 0$ of abelian groups. Prove that, if we have an exact chain complex

$$\cdots \to V_{n+1} \xrightarrow{d_{n+1}} V_n \xrightarrow{d_n} V_{n-1} \to \cdots$$

of R-modules, then we have an exact cochain complex

$$\cdots \to \operatorname{Hom}_R(V_{n-1},Q) \xrightarrow{d_n^*} \operatorname{Hom}_R(V_n,Q) \xrightarrow{d_{n+1}^*} \operatorname{Hom}_R(V_{n+1},Q) \to \cdots.$$

Exercise 60 Let D be a flat right R-module, i.e., the functor $D \otimes_R -$ is exact (on SES). Prove that, if we have an exact chain complex

$$\cdots \to V_{n+1} \xrightarrow{d_{n+1}} V_n \xrightarrow{d_n} V_{n-1} \to \cdots$$

of left R-modules, then we have an exact chain complex

$$\cdots \to D \otimes_R V_{n+1} \xrightarrow{1 \otimes d_{n+1}} D \otimes_R V_n \xrightarrow{1 \otimes d_n} D \otimes_R V_{n-1} \to \cdots$$

Exercise 61 This exercise defines the connecting homomorphism δ_n in Theorem 17.2 (The Long Exact Sequence in Cohomology). Let $0 \to X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to 0$ be a a short exact sequence of cochain complexes. Let $a \in \mathsf{H}^n(Z)$ and $a = z + \operatorname{im} d_n$ where $z \in \ker d_{n+1} : Z^n \to Z^{n+1}$.

- (i) Show that there exist $y \in Y^n$ such that $\beta_n(y) = z$ and a unique $x \in \ker d_{n+2} \subseteq X^{n+1}$ such that $\alpha(x) = d(y)$.
- (ii) Let $z+\operatorname{im} d_n=z'+\operatorname{im} d_n$ and y,y',x,x' such that $\beta(y)=z,\ \beta(y')=z',\ \alpha(x)=d(y)$ and $\alpha(x')=d(y').$ Show that $x+\operatorname{im} d_{n+1}=x'+\operatorname{im} d_{n+1}.$
- (iii) Conclude that we have a map $\delta_n: \mathsf{H}^n(Z) \to \mathsf{H}^{n+1}(X)$ defined by $\delta_n(z+\operatorname{im} d_n) = x+\operatorname{im} d_{n+1}$.
- (iv) Prove that the connecting homomorphism δ_n is a group homomorphism.

Exercise 62 (Snake Lemma) The cokernel coker f of an R-module homomorphism $f: V \to W$ is defined as $W/\inf f$. Suppose that we have a commutative diagram below with exact rows:

$$0 \longrightarrow X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow X' \xrightarrow{\alpha'} Y' \xrightarrow{\beta'} Z' \longrightarrow 0$$

Use the Long Exact Sequence in Cohomology to prove that we have an exact sequence

$$0 \to \ker f \xrightarrow{\alpha} \ker g \xrightarrow{\beta} \ker h \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{\alpha'} \operatorname{coker} g \xrightarrow{\beta'} \operatorname{coker} h \to 0.$$

(The Snake Lemma has a slightly more general version where α is not necessarily injective nor β' is surjective. In this case, we do not have exactness at ker f nor coker h.)

Exercise 63 Prove Horseshoe Lemma. (You will need the Snake Lemma.)

Homological Algebra

Exercise 64 Let $f:V\to V'$ be an R-module homomorphism and let W be another R-module. Show that, for each $n\geq 0$, we have an induced group homomorphism $\mathscr{F}(f)_n:\operatorname{Ext}_R^n(V',W)\to\operatorname{Ext}_R^n(V,W)$. Furthermore, if $g:V'\to V''$ is another R-module homomorphism and $\mathscr{F}(g)_n:\operatorname{Ext}_R^n(V'',W)\to\operatorname{Ext}_R^n(V',W)$ is the induced group homomorphism, then

$$\mathscr{F}(g \circ f)_n = \mathscr{F}(f)_n \circ \mathscr{F}(g)_n.$$

Exercise 65 Prove Proposition 17.11. That is, given an R-module P, prove that the following statements are equivalent.

- (i) P is projective
- (ii) $\operatorname{Ext}_{R}^{1}(P,B)=0$ for all R-modules B
- (iii) $\operatorname{Ext}_{R}^{n}(P,B)=0$ for all R-modules B and all $n\geq 1$

Exercise 66 We have proved that the direct sum of projective modules is projective (in Exercise 47) and direct product of injective is injective (in Exercise 54).

(i) For each $j \in J$, let $(P(j))_{\bullet} \twoheadrightarrow V_j$ be a projective resolution of V_j . Prove that the direct sum of the projective resolutions is a projective resolution of $\bigoplus_{i \in J} V_j$. Use this to show that

$$\operatorname{Ext}_R^n(\bigoplus_{j\in J}V_i,W)\cong\prod_{j\in J}\operatorname{Ext}_R^n(V_j,W).$$

(ii) For each $j \in J$, let $W_j \hookrightarrow (Q(j))_{\bullet}$ be an injective resolution of W_j . Prove that the direct product of the injective resolutions is a injective resolution of $\prod_{j \in J} W_j$. Use this to show that

$$\operatorname{Ext}_R^n(V, \prod_{j \in J} W_i) \cong \prod_{j \in J} \operatorname{Ext}_R^n(V, W_j).$$

(iii) Prove that $\operatorname{Tor}_n^R(V,\bigoplus_{i\in J}W_i)\cong\bigoplus_{j\in J}\operatorname{Tor}_n^R(V,W_j)$

Exercise 67 (The mapping cone) Let $f: X \to Y$ be a map of chain complexes X, Y of R-modules. The mapping cone cone(f) is the chain complex with degree n part is $X_{n-1} \oplus Y_n$ and the differential is given by

$$\partial_n(x,y) = (-d_{n-1}(x), d_n(y) - f_{n-1}(x)) = (-d_X(x), d_Y(y) - f(x))$$

for every $x \in X_{n-1}$ and $y \in Y_n$, i.e., the differential ∂_n can be viewed as the following (2×2) -matrix:

$$\partial_n = \begin{bmatrix} -d_X & 0 \\ -f & d_Y \end{bmatrix} : \begin{array}{c} X_{n-1} & X_n \\ \oplus & \to & \oplus \\ Y_n & Y_{n+1} \end{array}$$

where the action of the differential is interpreted as matrix multiplication, that is,

$$\partial_n(x,y) = \begin{bmatrix} -d_X & 0 \\ -f & d_Y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -d_X(x) \\ d_Y(y) - f(x) \end{bmatrix}.$$

Let X[-1] be the chain complex obtained from X by shifting indices where $X[-1]_n = X_{n-1}$ and differential $d[-1]_n : X[-1]_n \to X[-1]_{n+1}$ is given by $d[-1]_n = -(d_X)_n$, that is, the differential for X[-1] is $-d_X$.

(i) Prove that the mapping cone cone(f) is really a chain complex.

(ii) Prove that we have an short exact sequence of chain complexes

$$0 \to Y \xrightarrow{\gamma} \mathsf{cone}(f) \xrightarrow{\delta} X[-1] \to 0$$

where
$$\gamma(y) = (0, y)$$
 and $\delta(x, y) = -x$.

Exercise 68 Let D, B be right and left R-modules respectively. Prove that $\operatorname{Tor}_0^R(D, B) \cong D \otimes_R B$.

Exercise 69 Prove that the homology groups $\operatorname{Tor}_n^R(D,B)$ is independent of the choice of projective resolution of B.