PEAS - Performance Measure - Environment - Actuators (output) - Sensors (input) Environment - fully / partially observable - deterministic / stochastic strategic if det except other agents - episodic / sequential - static / dynamic semidynamic if perf score changes but not env - discrete / continuous - single / multi-agent	Exploitation vs Exploration Agents Simple Reflex – just go Model-based – check pass Goal-based – check if goal Utility-based - numbers Learning agent – any of the above			Time complexity: number of nodes expanded Space complexity: maximum number of nodes in memory Completeness: return a solution if it exists? (If no solution does it terminate) Optimality: always find the least-cost solution? NB: assume no depth-limiters				Local Search • States (state space) • Initial state • Goal test • Successor function		def minimax(state): v = max_value(state) return action in successors(state) with value v def max_value(state): if is_terminal(state): return utility(state) v = -∞	
				Hill Climbing			Simulated Annealing		Minimax Complete if	for action, next_state in successors(state): v = max(v, min_value(next_state)) return v def min_value(state): if is_terminal(state): return utility(state) v = ∞ for action, next_state in successors(state): v = min(v, max_value(next_state)) return v def minimax_with_cutoff(state): v = max_value(state)	
	Problem Formulation States (state space) Initial state Goal states/test Actions Transition model Action cost function			<pre>current = initial state loop: neighbor = a highest value successor of current if value(neighbor) <= value(current): return current current = neighbor</pre>			current = initial state for t = 1 ∞ : T = schedule(t) if T = 0: return current next = a randomly selected succ if value(next) > value(current) c current = next		finite Time: b ^m Space: bm with dfs Optimal against optimal		
Search strategy depends on Number of goal states Distribution of goal states in search tree Finite/infinite branching factor/depth Repeated states Need for optimality? Need to know if there is no solution?	Search	Time	Space	Complete	Optimal	Notes	Prob(next, current, T) = $e^{\frac{value(next)-value(current)}{T}}$ Allow "bad moves" from time to time			return action in successors(state) with value v	
	BFS	b^d	b^d	If finite	If uniform	Store all nodes Queue	def max_value(state): Theorem: if T decreases slowly enough, simulated annealing will find a global optimum with high probability def max_value(state): if is_cutoff(state): return eval(state) v = -∞ for action, next_state in successors(state): v = max(v, min_value(next_state)) return v				
	DFS	b^m	bm	No if infinite or loops	No	Stack; Space = frontier size					
	UCS	b ^{C∗/∈}	$b^{C*/\epsilon}$	Yes, if step cost $\geq \epsilon$	Yes	PQ on path cost; Dijkstra; C is cost of optimal	Beam Search Perform k hill-climbing in parallel Variants: def min_value(state): if is_cutoff(state): return eval(state) v = ∞ for action, next_state in successors(state):				
Iterative Deepening A* (IDA*) • Use iterative deepening search • Cutoff using f-cost [f(n) = g(n) + h(n)] instead of depth Simplified Memory-bounded A* (SMA*) • Drop the nodes with worst f-cost if memory is full					solution		Local beam search Choose k successors determined to the successors of the successor of			for action, next_state in successors(state): v = min(v, max_value(next_state))	
	DLS	b^l	bl	No	No		Stochastic beam search Choose k successors probabil	listically		return v def max_value(state, α, β):	
	IDS	b^d	bd	If finite	if uniform	0N	Substitute (senctives ρεε white def max_valu			
	Greedy Best- first	b^m	bm	No esp if bad heuristic	No	f(n)=h(n)				v = -∞ for action, next_state in successors(state): v = max(v, min_value(next_state, α, β))	
	A*	b^m	b^m	Yes	Yes*	f(n)=g(n) + h(n)		$v = max(v, min_value(ne))$ if $v \ge s$: return v			
Heuristic Admissible: conservative estimate. Heuristic to relaxed problem is admissible Theorem: if h(n) is admissible, A* using tree search is optimal Consistent: every successor n' of n generated by any action a, h(n) \leq c(n,a,n') + h(n') Consistent -> Admissible Dominance: if $h2 n \geq h1(n)$. Regardless of admissibility Admissible + A* tree search is optimal Consistent + A* graph search is optimal			For b=10, d=5, • N _{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111 • N _{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456 Overhead = (123,456 - 111,111)/111,111 = 11%				Sear Solu Prob Solu not actu mini	necessarily solv	rge, too long mportant l optimal lem configuration is vable, and what we onfiguration that	α = max(α, v) return v def alpha_beta_search(state): v = max_value(state, □, □, □) return action in successors(state) with value v def min_value(state, □, □, □): if is_terminal(state): return utility(state) v = ∞ for action, next_state in successors(state): v = min(v, max_value(next_state)) if v <= α: return v β = min(β, v) return v	

If h(n) is admissible but inconsistent, solution is nonoptimal. Shows graph search is not necessarily better than tree search for A^* , so heuristic must always be chosen carefully.

Adversarial search is only optimal when against optimal opponent. So when dealing with humans, there are much more considerations needed to achieve "optimality".

Making good A* heuristics is an art in which practice helps.

Multiple ways to handle inconsistent data:

- i. Pruning: Min-sample and Max-depth.
- ii. Pre-processing of data to remove outliers that create noise.
- iii. Select only relevant features, so less relevant features that could create inconsistencies are not part of the decision tree.
- iv. More data