1 Overview

- tuple: an ordered and named collection of values Ex: ('Mehta, Dinesh', 'CSCI 406', 'ALGORITHMS')
- attributes: formally, the attributes are a set Ex: ('instructor', 'course-id', 'title')
- domain: each attribute has associated domain from which values come
- relation schema:
 - A relation schema R is denoted as $R(A_1, A_2, \ldots, A_n)$.
 - Has degree n
 - Attributes A_i
 - Each attribute has associated domain: $Dom(A_i)$
- relation or relation state:
 - A relation is a set of tuples r(R) conforming to the relation schema: for any tuple $t \in r$

$$t = (v_1, v_2, \dots, v_n) : v_i \in Dom(A_i)$$

- In other words: $r(R) \subseteq (dom(A_1) \times dom(A_2) \times \cdots \times dom(A_n))$
- In actuality real RDBMS
 - * tables may contain duplicates
 - * no ordering of tuples
- NULL

A "value" that can exist in a relational database representing

- a value is unknown
- value is irrelevant
- value is missing

problems with NULL

NULL values cannot be compared

$$a = b, a \text{ is } NULL, b \text{ is } NULL \rightarrow false$$

instead we have ISNULL operator

- constraints
 - on the relation schema
 - between relation schemas
- superkey A superkey of R is a subset of R's attributes such that no relation r(R) may contain tuples with exactly the same values for attributes in the superkey.
 - any superset of a superkey is also a superkey
 - every relation (in theory) has at least one superkey the set of all attributes of the schema
- **Key** A superkey s.t. no attribute can be removed from the key without destroying the superkey property: a *minimal* superkey
- Candidate Keys All the keys of a schema are called candidate keys
- **Primary Key** By convention, we choose one candidate key as the *primary key*
 - we tend to prefer "smaller" keys (e.g. crn)
 - in practice in SQL DB:
 - * primary keys impose uniqueness constraint on data
 - * other candidate keys \rightarrow impose uniqueness constraint
- Referential Integrity/Foreign Key Constraint Constraint on the relationship between relations. A *foreign key* is a subset of attributes of a relation schema with the property that its values are either NULL or existing in the specified attributes of a referenced table.

2 Relational Theory

- each relation is a **set** of tuples
- tuple = set of values associated with named attributes
- Relational Algebra
 - useful operations that can be applied to relations
 - resulting algebra

3 Unary Operations -2+1

3.1 Selection

- Chooses subsets of tuples from a relation according to some condition (WHERE)
- Letting R represent some relation: $\sigma_{\text{condition}}(R)$
- E.g. $\sigma_{\text{course_id}} = {}^{\circ}_{\text{CSCI }403}, (\text{mines_courses})$
- Can use AND, OR, NOT, etc.
- Properties of σ
 - degree of relation (# of attributes) is the same as the original
 - the number of tuples in the result $\leq \#$ tuples in original
 - commutative $\sigma_a(\sigma_b(R)) = \sigma_b(\sigma_a(R))$
 - any sequence of σ operations can be replaced with a single σ (using AND)

3.2 Projection

- chooses attributes from set of attributes in a relation
- parallel operation in SQL: SELECT
- Notated:

$$\pi_{attr_1,attr_2,...}(R)$$

• Example:

 $\pi_{instructor.course\ id}(mines_courses)$

- Properties of π
 - # of tuples is always \leq # tuples in original
 - not commutative: rather

$$\pi_{list_1}(\pi_{list_2}(R)) = \pi_{list_1}(R)$$

if $list_1 \subset list_2$ else, ill formed

3.3 Renaming - ρ

- parallel operation in SQL: AS
- Notation:

$$\rho_{S(B_1,B_2,\dots)}(R)$$

• Example: Let table X have attributes (a, b, c).

$$\rho_{Y(d,e,f)}(X)$$

SELECT a AS d, b AS e, c AS f FROM X as Y;

3.4 Sequences of Operations

3.4.1 Representations

1. nesting: example

 $\rho_{(name,courseid)}(\pi_{instructor,courseid}(\sigma_{department='CS'}(mines_courseid)))$

```
SELECT instructor AS name
course_id
FROM mines_courses
WHERE department = 'CS';
```

2. sequence of named relations

```
R_{1} = \sigma_{department='CS'}(mines\_courses)
R_{2} = \pi_{instructor,course\_id}(R_{1})
R_{3} = \rho_{(name,course\_id)}(R_{2})
```

4 Binary Operations

4.1 Set Operators

- $A \cup B$ union
- $A \cap B$ intersection
- A B difference

4.1.1 Properties of Set Operators

- Union, intersection are commutative and associative
- Set difference is not commutative or associative

4.2 Cartesian Product and Joins

- $A \times B$ pairs every tuple from A with every tuple from B
- If A has m attributes, B has n, $A \times B$ has m+n attributes $|A \times B| = |A| \times |B|$.
- Typical Usage:

$$\sigma_{condition}(A \times B) \equiv A \bowtie_{condition} B$$

• Example: $mines_courses \bowtie_{instructor=name} mines_eecs_faculty$

4.3 Theta Joins

- When:
 - we have $A \bowtie_{cond} B$
 - condition is of general form $cond_1ANDcond_2AND...$
 - each $cond_n A_i\Theta B_i, A_i \in A, B_i \in B$

Then we call $A \bowtie_{cond} a$ theta join: $A \bowtie_{\Theta} B$

- Further, when Θ is =, then $A \bowtie_{\Theta} B$ is called and *equijoin* which implies that there is some duplicate data column.
- If $A \bowtie_{cond} B$ is an equijoin and condition equates attributes of A with attributes of B of the **same name**, then the join is a *natural join*.

A * B - books notation

 $A \bowtie B$ - other people's notation

Example: both mines_courses and mines_courses_meetings have crn field. Then mines_courses*mines_courses_meetings. (Note, this automatically projects away duplicate column(s).)

5 Completeness

You can demonstrate that: $\sigma, \pi, \cup, -, \times$ is a complete set of operators for relational algebra.

6 Odds and Ends

- Division: \div ~inverse of \times (no mirror in SQL)
- Aggregates and grouping: not part of basic algebra