Dijkstra's Algorithm on Example Graph

Graph Description: Nodes: A, B, C, D, E, F Edges:

- $A \rightarrow B(1)$
- $A \rightarrow C(4)$
- $B \rightarrow D(2)$
- $B \rightarrow E(7)$
- $C \rightarrow D(5)$
- $D \rightarrow F(6)$
- $F \rightarrow E(3)$

Initialization:

$$\begin{split} d[A] &= 0 \\ d[B] &= \infty \\ d[C] &= \infty \\ d[D] &= \infty \\ d[E] &= \infty \\ d[F] &= \infty \\ Q &= \{A, B, C, D, E, F\} \end{split}$$

Iterations of the given psuedo code:

the algorithm given doesn't save the shortest path. After the some modification to the algorith, the shortest path would be

 $A \longrightarrow B \longrightarrow D \longrightarrow F$. THe Q and d are updated as follows:

- 1. $Q = \{B,C,D,E,F\}$ and $d = \{0,1,4,\infty,\infty,\infty\}$
- 2. $Q = \{ C,D,E,F \}$ and $d = \{0,1,4,3,8,\infty \}$
- 3. $Q = \{ D,E,F \}$ and $d = \{0,1,4,3,8,9 \}$
- 4. $Q = \{ E,F \} \text{ and } d = \{0,1,4,3,8,9\}$
- 5. $Q = \{ F \} \text{ and } d = \{0,1,4,3,8,9\}$
- 6. $Q = \{\}$ and $d = \{0,1,4,3,8,9\}$ and the loop will break since the Q is empty. d is the shortest distances between the start to all other nodes.

Shortest Paths and Costs:

$$A \rightarrow B:1$$

$$A \rightarrow C:4$$

$$A \rightarrow D:3$$

$$A \rightarrow E:8$$

$$A \rightarrow F:9$$

4. A* Algorithm on Example Graph

Heuristic Values:

$$h(A) = 10, h(B) = 8, h(C) = 6, h(D) = 4, h(E) = 2, h(F) = 0$$

Initialization:

$$\begin{split} d[A] &= 0 \\ d[B] &= \infty \\ d[C] &= \infty \\ d[D] &= \infty \\ d[E] &= \infty \\ d[F] &= \infty \\ Q &= \{A, B, C, D, E, F\} \end{split}$$

Iterations of the given psuedo code for A^* Algorithm:

- 1. $Q = \{ B,C,D,E,F \} \text{ and } d = \{0,1,4,\infty,\infty,\infty \}$
- 2. $Q = \{ C,D,E,F \} \text{ and } d = \{0,1,4,3,8,\infty \}$
- 3. $Q = \{ C,E,F \} \text{ and } d = \{0,1,4,3,8,9\}$
- 4. $Q = \{ C,E \}$ and $d = \{0,1,4,3,8,9 \}$ and the loop will break since the target node has been reached. Every item we popped in the loop is the shortest path.

Shortest Path:

$$A \to B \to D \to F$$

Cost: 9

5. Graphs Where A* Isn't Helpful

Graph 1: Highly Connected Graphs.

A* may explore multiple alternative paths due to the abundance of connections, especially when edge weights are nearly equal. This increases the number of nodes explored unnecessarily.

Misleading Heuristic:

In highly connected graphs, even a reasonable heuristic can mislead A^* into exploring unnecessary nodes. Below is a dense graph where A^* fails to prioritize the shortest path efficiently.

A heuristic misaligned with the graph's geometry can guide A* in the wrong direction, causing it to explore irrelevant paths.

Heuristic Values

The heuristic for the nodes is:

$$h(A) = 10, h(B) = 8, h(C) = 1, h(D) = 8, h(E) = 1, h(F) = 5, h(G) = 0$$

Problem

- The heuristic overestimates costs in B and D, guiding A^* toward the path $C \to E \to F \to G$, even though the shortest path is $A \to B \to D \to F \to G$. - The algorithm explores C and E, wasting time on an unnecessary detour.

To improve efficiency:

- Use bidirectional A* to reduce the number of explored nodes. Start one search from the start and another from the goal, meeting in the middle.
- Ensure the heuristic is admissible (never overestimates the cost) and consistent (satisfies the triangle inequality). In cases like grids, use Manhattan or Euclidean distances to reflect actual geometry.