DOMANDE ORALE PROBABILITÀ

- Che cos'è una probabilità.
 - o Misura.
 - o Dominio e codominio.
 - o algebra/sigma algebra contenuta in parti dello spazio campionario.
 - o Proprietà:
 - $P(\Omega) = 1$
 - Monotonia.
 - Complementarietà
 - Eventi disgiunti.
- Definizione:
 - Variabile aleatoria.
 - Variabile aleatoria continua.
 - Variabile aleatoria assolutamente continua.
- P è unica? No, ci sono infinite funzioni che soddisfano le props. Ad esempio la probabilità condizionata.
- Probabilità condizionata:
 - Definizione.
 - Perché $P_A(B) \in [0,1]$?
 - o Interpretazione grafica della probabilità condizionata.
- Indipendenza variabili aleatorie.
- Se X, Y sono indipendente allora mostrare a quanto equivale

$$P(X + Y \leq 1)$$

- Definizione e proprietà media.
- Momenti:
 - Media per una variabile aleatoria discreta.
 - Media per una variabile aleatoria continua.
 - Varianza per una variabile aleatoria discreta.
 - Varianza per una variabile aleatoria continua.
 - o Covarianza.
 - o Media di E(X) e E(g(X)) con X discreta.
 - o Come si calcolano i momenti k-esimi di una variabile aleatoria?
 - $X^k = m$, per k pari ci possano essere "sovrapposizioni", $E(X^k)$ =sommatoria.
 - Distinguere la parte positiva da quella negativa, evidenziare come almeno una delle due debba essere finita, in particolare distinguere k pari e dispari.
- Successione di variabili aleatorie X_i ; S_n/n a cosa converge? (chiedere X_i iid e poi LGN)
- Media della variabile somma (X, Y indip e non. se non si usa la forma integrale)
- media e varianza di $S_n = \sum (X_i) \, \operatorname{con} X_i \, i.i.d.e \, di \, \frac{S_n}{n}$
- Dimostrare LGN dal punto precedente e $E(X_i)$ tende a μ , analogamente le varianze i-esime tendono a sigma (usare Chebychev e poi risolvere il limite (le σ_i tendono a σ , quindi la sommatoria delle σ_i^2 è approssimabile a somma dei sigma quadro, quindi cresce come n*sigma e dato che al denominatore ho n^2 il limite tende a 0)
- Leggi gaussiane $N(\mu, \sigma^2)$:
 - o Distribuzione gaussiana
 - o Mostrare che mu è la media.
 - Mostrare che σ^2 è la varianza.
 - Cosa succede se prendo una gaussiana X e faccio aX + b? È ancora una gaussiana: come si dimostra?
 - Matrice di covarianza di un vettore aleatorio: come è definita e proprietà (simmetrica e definita positiva)

- Poisson:
 - o Cos'è una distribuzione di Poisson?

$$P(X = k) = e^{-\lambda} * \frac{\lambda^k}{k!}$$

- Perché la somma dei P(X=k) vale 1?
- o Media della variabile di Poisson
- o In una Poisson, probabilità che X = 2 dato che $X \le 2$?
- o Approssimazione di una binomiale ad una Poisson.
- probabilità che lanciando 300 volte un d6 equilibrato ottenga meno di 1000 (approssimo S_n^* con una gaussiana)
- Funzione generatrice dei momenti
 - Definizione
 - o Proprietà.
 - Quanto vale la funzione generatrice dei momenti di N(0, 1)? E in generale di una qualsiasi gaussiana.
- Funzione di ripartizione
 - o Definizione.
 - o Proprietà.
- Teorema:
 - o centrale del limite.
 - o Grandi numeri
 - Bayes
- formula delle probabilità totali
- Entropia:
 - Definizione.
- posso prendere una distrib uniforme sui naturali? (no, se ogni elemento ha p=0 allora la somma delle prob è 0. se p=epsilon>0 allora la somma delle prob è infinito)

Statistica

- Statistica in generale.
- Che cos'è uno stimatore (funzione del campione a cui attribuisco informazioni sul parametro).
- Stimatore di massima verosimiglianza.
- Definizione media e varianza campionaria
- Modo per ricondurre le variabili campionarie ad una χ^2 .
- Stimatore di massima verosimiglianza
- Rapporto del test di massima verosimiglianza.
- campionamento su una popolazione Poisson.
- MLE per:
 - o Lambda
 - o $f(x \mid \theta) = e^{-(x-\theta)} 1_{\{x \ge \theta\}}$ (in questo caso, si arriva alla fine e si nota come non ci sono punti di massimo. in particolare il prof fa osservare come L sia nulla per theta più grande del minimo degli x_i e crescente prima. questo e considerando il disegno a spanne L fanno dedurre che il MLE sia x_i)
 - o campione ottenuto da una popolazione con distribuzione esponenziale.
- Test di ipotesi per le gaussiane
- Errori di prima e seconda specie. quale errore è più gestibile per come abbiamo costruito i test.
- mostrare un intervallo di confidenza per lambda (NB qualsiasi)
- mostrare un intervallo di confidenza per lambda a significatività alpha
- Cosa vuol dire fare un test di ipotesi.
- Come decidiamo se accettiamo o no H₀
- Distribuzione esponenziale (densità)? media?
- $f(x \mid \theta) = e^{-(x-\theta)} 1_{\{x \ge \theta\}}$ stimatore col metodo dei momenti $(1 + \theta)$
- descrivere in due parole cosa vuol dire fare una regressione lineare.

• Come si stimano alpha e beta (metodo degli scarti quadratici).

Dimostrazioni

• Dimostrare la formula per $P(A \cup B)$ nel caso generico. e per $P(A \cup B \cup C)$

Esercizio

- Se A, B sono indipendenti quanto vale $P_A(B)$.
- Supponiamo di lanciare due monete, chiamo A l'evento "le due monete mostrano la stessa faccia" e B l'evento "la prima moneta esce testa". Se le due monete sono equilibrate, A e B sono indipendenti?
- $P(A) = \frac{7}{10}$; $P(B) = \frac{4}{10}$ min e max di $P(A \cap B)$ e argomentare le risposte.
- ho 4 chiavi. una di queste apre la porta.
 - 1. probabilità di aprirla al primo colpo.
 - 2. probabilità di aprirla al secondo tentativo noto di aver sbagliato al primo
- ho 3 urne:
 - 1. 1 bianca 3 nere
 - 2. 2 bianche 2 nere
 - 3. 2 bianche 0 nere
- prendo un'urna a caso e estraggo una pallina. quali sono P(N) e P(B)
- 2 urne, A: 1 rossa, 9 nere; B: 10 rosse, 90 nere. mi vengono date 2 palline estratte dalla stessa urna, devo fare un guess a seconda delle 2 palline su da quale urna provengano.
- lancio un dado. probabilità che esca 6? p(6) = 2 * p(1) allora p(6)=??? (risposta:si riferisce all'entropia massima)
- Urna, palline in numero A rosse e B nere. vinco €1 se esce R.
 - 1. è più probabile vincere alla prima o alla seconda estrazione, con e senza reimmissione (vincita media alla prima e alla seconda estrazione).
 - 2. X_1 e X_2 (prima e seconda estrazione) sono indipendenti (sempre nei casi con e senza reimmissione)?
- Federer vinceva con $P = \frac{2}{3}$. a Wimbledon si giocano 6 turni. Qual è la probabilità di vincere il torneo?
- il 20% dei partecipanti ad una battaglia ha perso un braccio, il 30% una gamba, il 40% un occhio e il 50% un orecchio. Quanti sono al massimo le persone rimaste sane? Quante sono, al massimo, le persone che hanno avuto almeno una ferita?
- 3 cassetti con dentro una moneta ciascuno. il primo doppio testa, il secondo testa croce il terzo doppio croce. apro un cassetto a caso e vedo testa. probabilità di aver aperto il secondo cassetto $\left(soluzione:\frac{1}{2}\right)$
- stimare media e stimare il massimo valore possibile (con MLE)
 - 1. Che modello uso se $f = g(x) * k(\theta) 1_{\{[0,\theta]\}}$?
 - 2. Perché c'è una parte che dipende solo da theta? (fattore di normalizzazione)
 - 3. quanto vale $k(\theta)$? (ponendo integrale di f =1)

Esempi

- v.a. con media +inf (esempio. X geom(½); Y=2^X ha media +inf)
- v.a. senza media (X come sopra, $Y = 2^{-X}$)