NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 3, Lecture 8

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Inductive definitions

Many arithmetic functions are naturally defined inductively

* Factorial

$$* n! = n \times (n-1)!$$

* Multiplication — repeated addition

$$* m x 1 = m$$

$$* m x n = m + (m x (n-1))$$

Inductive definitions ...

- * Define one or more base cases
- * Inductive step defines f(n) in terms of smaller arguments

Recursive computation

* Inductive definitions naturally give rise to recursive programs

Recursive computation

* Inductive definitions naturally give rise to recursive programs

Inductive definitions for lists

- * Lists can be decomposed as
 - * First (or last) element
 - * Remaining list with one less element
- * Define list functions inductively
 - * Base case: empty list or list of size 1
 - * Inductive step: f(l) in terms of smaller sublists of l

Inductive definitions for lists

```
* Length of a list

def length(l):
    if l == []:
       return(0)
    else:
       return(1 + length(l[1:])
```

Inductive definitions for lists

```
* Sum of a list of numbers

def sumlist(l):
    if l == []:
        return(0)
    else:
        return(l[0] + sumlist(l[1:])
```

Recursive insertion sort

- * Base case: if list has length 1 or 0, return the list
- * Inductive step:
 - * Inductively sort slice l[0:len(l)-1]
 - * Insert l[len(l)-1] into this sorted slice

Recursive insertion sort

```
def InsertionSort(seq):
  isort(seq, len(seq))
def isort(seq,k): # Sort slice seq[0:k]
  if k > 1:
    isort(seq,k-1)
    insert(seq, k-1)
def insert(seq,k): # Insert seq[k] into sorted seq[0:k-1]
  pos = k
  while pos > 0 and seq[pos] < seq[pos-1]:
    (seq[pos], seq[pos-1]) = (seq[pos-1], seq[pos])
    pos = pos-1
```

Recursion limit in Python

* Python sets a recursion limit of about 1000

```
>>> l = list(range(1000,0,-1))
>>> InsertionSort(l)
```

RecursionError: maximum recursion depth exceeded in comparison

* Can manually raise the limit

```
>>> import sys
>>> sys.setrecursionlimit(10000)
```

Recursive insertion sort

- * T(n), time to run insertion sort on length n
 - * Time T(n-1) to sort slice seq[0:n-1]
 - * n-1 steps to insert seq[n-1] in sorted slice
- * Recurrence
 - * T(n) = n-1 + T(n-1)T(1) = 1
 - * $T(n) = n-1 + T(n-1) = n-1 + ((n-2) + T(n-2)) = ... = (n-1) + (n-2) + ... + 1 = n(n-1)/2 = O(n^2)$

O(n²) sorting algorithms

- * Selection sort and insertion sort are both O(n²)
- * O(n²) sorting is infeasible for n over 5000
- * Among O(n²) sorts, insertion sort is usually better than selection sort
 - * What happens when we apply insertion sort to an already sorted list?
- * Next week, some more efficient sorting algorithms