

Maschinelles Lernen mit LEGO® Steinen

Viacheslav Sydora

Kursinhalt

Teilgebiet der künstlichen Intelligenz

- Teilgebiet der künstlichen Intelligenz
- Lernen der Zusammenhänge anhand von Beispielen

kein maschinelles Lernen

- Teilgebiet der künstlichen Intelligenz
- Lernen der Zusammenhänge anhand von Beispielen

kein maschinelles Lernen

- Teilgebiet der künstlichen Intelligenz
- Lernen der Zusammenhänge anhand von Beispielen

kein maschinelles Lernen

- Teilgebiet der künstlichen Intelligenz
- Lernen der Zusammenhänge anhand von Beispielen

Warum maschinelles Lernen?

- automatisch
- kann Menschen übertreffen

Was noch kann maschinelles Lernen?

Wie kann ich dir helfen?

Ouelle: freeCodeCam

Daten, Features & Labels

• Maschinelles Lernen ist Lernen anhand von Beispielen

Daten, Features & Labels

- **Daten** Beobachtungen, Messungen, ...
- Features woraus vorhersagen (Eingabe)
- Labels was vorhersagen (Ausgabe)

Automatische Obsterkennung – Konzept

Features: ?

Label: ?

Automatische Obsterkennung – Konzept

Features: Länge und Farbe des Obsts

Label: Name des Obsts (Banane/Apfel)

Automatische Obsterkennung – Bauen

Experimentseite öffnen

Hub verbinden und Programm starten

1

Schaltet den Hub mit Drücken der großen Taste für etwa 3 Sekunden ein.

2

Klickt auf den Bluetooth-Button und wartet, bis der Hub piept.

3

Klickt auf "Hub verbinden", sucht euren Hub im Fenster, wählt ihn aus und klickt auf "Koppeln".

4

Klickt auf 'Programm starten' und wartet, bis eine Benachrichtigung auf der Webseite erscheint.

Programm starten

Automatische Obsterkennung – Datensammlung

1

Wählt die Frucht aus, für die Daten gesammelt werden.

3

Platziert die Frucht in den Messschieber, schließt den Greifer, entfernt die Frucht und drückt auf die linke Taste am Hub, um die Länge zu messen.

2

Scannt die Farbe. Haltet das Obst am Farbsensor und drückt gleichzeitig die rechte Taste auf dem Hub.

4

Der Datenpunkt wird nun auf der Website angezeigt! Wiederholt die Schritte auch für andere Früchte!

Wie kann man eine neue Frucht vorhersagen?

K-Nächste Nachbarn – Vorgehensweise

Automatische Obsterkennung – Vorhersage

Training Vorhersage

Schaltet das Gerät in den Vorhersagemodus.

Klick

Schaltet das Gerät in den Vorhersagemodus.

Klick

Scannt die Farbe und messt die Länge des Obstes wie während der Datensammlung.

Die Vorhersage und die nächsten Nachbarn werden jetzt auf der Webseite angezeigt!

Phasen der Entwicklung eines Modells

• Was passiert, wenn wir versuchen, eine unbekannte Frucht vorherzusagen?

Einfluss von schlechten Daten

1

Schaltet das Gerät in den Vorhersagemodus und blendet die Entscheidungsgrenze ein.

2

Manipuliert die Daten. Ändert einen Teil der Labels und beobachtet, wie sich die Entscheidungsgrenze ändert.

3

Versucht, die Anzahl der abstimmenden Nachbarn K zu ändern, um die Genauigkeit wiederherzustellen.

Klassifizierung und Regression

Klassifizierung

• kategorische Variablen

Regression

• kontinuierliche Variablen

Pingponger – Konzept

Features: ?

Label: ?

Pingponger – Konzept

Features: Distanz zum Ziel

Label: Geschwindigkeit der Motoren

Pingponger – Bauen

Experimentseite öffnen

Hub verbinden und Programm starten

1

Schaltet den Hub mit Drücken der großen Taste für etwa 3 Sekunden ein.

2

Klickt auf den Bluetooth-Button und wartet, bis der Hub piept.

3

Klickt auf "Hub verbinden", sucht euren Hub im Fenster, wählt ihn aus und klickt auf "Koppeln".

4

Klickt auf 'Programm starten' und wartet, bis eine Benachrichtigung auf der Webseite erscheint.

Programm starten

Pingponger – Datensammlung

1

Stellt den Pingponger in die schraffierte Fläche auf der Matte.

2

Legt den Ball in den Halter und platziert den Schläger über dem Ball. Klickt auf die linke Taste, um den Ball zu werfen.

3

Haltet den Karton an der Stelle, an der der Ball gelandet ist und drückt die rechte Taste, um die Länge zu messen.

4

Wiederholt die Messung für andere Geschwindigkeiten.

Pingponger – Datenanalyse

Pingponger – Datenanalyse

Wie gut passt die Gerade?

Wie gut passt die Gerade?

• Verlust (Loss) beschreibt, wie gut die Modellvorhersagen sind.

Lineare Regression

• Lineare Regression – Bestimmen einer Geraden, die den Zusammenhang zwischen Variablen wiedergibt.

Pingponger – Parameter auswählen

Schaltet das Gerät in den Vorhersagemodus.

Klick

Versucht, Steigung und Achsenabschnitt zu ändern, um die Linie zu bewegen und damit Verlustfunktion zu minimieren.

Pingponger – Vorhersage

1

Legt den Ball in den Halter und platziert das Ziel vor dem Pingponger.

2

Messt die Entfernung zum Ziel. Stellt den LEGO Karton in die Mitte des Ziels und drückt die rechte Taste.

Schießt den Ball mit der linken Taste ins Ziel!

Überwachtes und unüberwachtes Lernen

Bestärkendes Lernen

• Bestärkendes Lernen (Reinforcement Learning) – Lernen durch Versuch und Irrtum

Ouelle: DeepMind

Bestärkendes Lernen

• Bestärkendes Lernen (Reinforcement Learning) – Lernen durch Versuch und Irrtum

Quelle: Giphy

Anwendungsbeispiele – Roboter

Anwendungsbeispiele – Bots in Computerspielen

Quelle: HuggingFace

Anwendungsbeispiele – Bots in Computerspielen

Quelle: <u>HuggingFace</u>

Wichtige Begriffe

Umgebung

Wichtige Begriffe

Wichtige Begriffe

Beispiel

Handlung: unter dem Kästchen mit "?" springen

Krabbler – Konzept

Krabbler – Konzept

Neuer Zustand: neue Position des Armes | Belohnung: gekrabbelte Entfernung

Handlung: Arm bewegen

Krabbler – Bauen

Experimentseite öffnen

Hub verbinden und Programm starten

1

Schaltet den Hub mit Drücken der großen Taste für etwa 3 Sekunden ein.

2

Klickt auf den Bluetooth-Button und wartet, bis der Hub piept.

3

Klickt auf "Hub verbinden", sucht euren Hub im Fenster, wählt ihn aus und klickt auf "Koppeln".

4

Klickt auf 'Programm starten' und wartet, bis eine Benachrichtigung auf der Webseite erscheint.

Programm starten

Krabbler – Trainieren

1

Setzt das Experiment zurück.

2

Stellt den Krabbler ca. 1 Ellenbogen vom Kasten entfernt mit dem Distanzsensor in Richtung der Box.

3

Klickt auf Fortsetzen, damit der Krabbler eine Bewegung macht.

4

Beobachtet wie die Tabelle ausgefüllt wird.

		Nächster Zustand				
	e ·	· .	8 5	•		
•	.	0	+3	0		
- Assigned	+1		+12	+11		
8 5	-9	-13		0		
	0	0	0			

Warum funktioniert es nicht?

Neues Ausprobieren?

Neues Ausprobieren?

Exploration-Exploitation-Dilemma

Exploration-Exploitation-Dilemma

Krabbler – Trainieren

1

Setzt das Experiment zurück und schaltet Exploration auf hoch um.

2

Stellt den Krabbler ca. 1
Ellenbogen vom Kasten
entfernt mit dem
Distanzsensor in Richtung
der Box.

3

Klickt auf Fortsetzen, damit der Krabbler eine Bewegung macht.

4

Beobachtet wie die Tabelle ausgefüllt wird. Reduziert die Exploration mit der Zeit.

		Nächster Zustand				
	· ·	BN.	8 5	•		
•	0	0	+3	0		
chaeller Zostand	-1		+12	+11		
Aktuelle O	-9	-13		0		
	0	0	0			

Die Zukunft berücksichtigen

Die Zukunft berücksichtigen

Die Zukunft berücksichtigen

Krabbler – Trainieren

1

Setzt das Experiment zurück, schaltet Exploration auf hoch um und "Zukunft berücksichtigen" ein.

2

Stellt den Krabbler ca. 1 Ellenbogen vom Kasten entfernt mit dem Distanzsensor in Richtung der Box.

3

Klickt auf Fortsetzen, damit der Krabbler eine Bewegung macht.

4

Beobachtet wie die Tabelle ausgefüllt wird. Reduziert die Exploration mit der Zeit.

		Nächster Zustand				
	0	الله	8 5	•		
•	e:	0	+3	0		
therine Zustand	-1		+12	+11		
Aktherite O S		-13		0		
-	0	0	0			

Anwendungsbeispiele

- Klick = +1
- 10 Minuten geschaut = +5
- Like = +10
- Video ignoriert = -10

Wie Empfehlungssysteme funktionieren

Handlung: Video empfehlen

Zusammenfassung

Maschinelles Lernen kann viel

Macht bringt Verantwortung