Foundation Calculus and Mathematical Techniques (CELEN037)

Answers to Worksheet #1

1.

(i) 2x

(ii) 2x + 2

(iii) $-\frac{2}{x^3}$

(iv) $\frac{1}{2\sqrt{x}}$

(v) $\frac{1}{2\sqrt{x+1}}$

(vi) $-\frac{1}{2\sqrt{x^3}}$

(vii) $a^x \ln a$

(viii) $-e^{1-x}$

(ix) $-\sin x$

(x) $\sec^2 x$

(xi) $-\sin(x+1)$

(xii) $2\cos 2x$

(xiii) $\sin 2x$

(xiv) $2x \cos x^2$

(xv) nx^{n-1}

2.

(i) $5x^4 + 1$

(ii) -8x + 2

(iii) 6x + 14

(iv) $3x^2 - 12x + 12$

(v) $4x^3 + \frac{1}{r^2}$

(vi) $2 - \frac{1}{x^2} + \frac{6}{x^3}$

(vii) $2x + \frac{8}{3\sqrt[3]{r^5}}$

(viii) $1 - \frac{6}{x^2}$

(ix) $\frac{2}{x^2}$

(x) $1 - \frac{6}{r^2}$

(xi) $-\frac{1}{2\sqrt{x^3}} - e^x + 1$

(xii) $\frac{1}{x} - 3x^2 - \frac{1}{x^2}$

(xiii) $\tan x \sec x + \cot x \csc x$

(xiv) $-\csc x(\csc x + \cot x)$

(xv) $-\frac{3}{x^4} + 2\sec^2 x$

(xvi) $\tan x \sec x - \sin x$

(xvii) $\sec x (\tan x + \sec x)$

(xviii) $-\frac{2}{x^3} + 4\cos x + \frac{2}{3\sqrt[3]{x}} + \csc^2 x$

(xix) $-\frac{5}{3}x^{-\frac{4}{3}} + 3\sin x$

(xx)
$$\frac{3}{4}x^{-\frac{1}{4}} + 2\sec^2 x$$

(xxi) $\frac{1}{x-5} - \frac{1}{x+1}$

(xxii)
$$\frac{1}{2\sqrt{x}} + 2^x \ln 2 + \csc^2 x + \frac{1}{x^2}$$

3.

(i)
$$2x\cos x - x^2\sin x$$

(ii)
$$x^2(3 \ln x + 1)$$

(iii)
$$\frac{\cos x}{x} - \sin x \ln x$$

(iv)
$$\sec x \left(\frac{1}{x} + \tan x \ln x\right)$$

(v)
$$\sec x \left(\frac{\tan x}{x} - \frac{1}{x^2} \right)$$

(vi)
$$\frac{\cos x}{x} - \frac{\sin x}{x^2}$$

(vii)
$$\frac{1 - \ln x}{x^2}$$

(viii)
$$2\cos 2x$$

(ix)
$$\sec x \left(\tan x + \tan^2 x + \sec^2 x\right)$$

(x)
$$e^x \sec x (1 + \tan x)$$

4.

(i)
$$e^x \left(\sin x \ln x + \cos x \ln x + \frac{\sin x}{x} \right)$$

(ii)
$$xe^x(x \sec^2 x + 2 \tan x + x \tan x)$$

(iii)
$$x^2 e^x (3 \ln x + x \ln x + 1)$$

(iv)
$$\sin x \left(\tan x + x + x \sec^2 x\right)$$

5.

(i)
$$\sec^2 x$$

(ii)
$$\frac{\sin x - x \cos x}{\sin^2 x}$$

(iii)
$$\frac{\sec x(\tan x - 1)}{e^x}$$

(iv)
$$\cos x - \sin x$$

$$(v) \qquad \frac{\ln x - 1}{(\ln x)^2}$$

(vi)
$$\frac{2x\tan x - x^2\sec^2 x}{\tan^2 x}$$

(vii)
$$\frac{\cos x - \sin x}{e^x}$$

$$\text{(viii)} \quad \frac{xe^x - 3e^x}{x^4}$$

(ix)
$$-e^{-x}$$

(x)
$$\frac{1-x}{e^x}$$

(xi)
$$\frac{2}{(1-x)^2}$$

(xii)
$$\frac{-4x}{(1+x^2)^2}$$

Solution to Problem 1(xiv).

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h)^2 - \sin x^2}{h}$$

$$= \lim_{h \to 0} \frac{2\cos\left(\frac{(x+h)^2 + x^2}{2}\right)\sin\left(\frac{(x+h)^2 - x^2}{2}\right)}{h} = 2\lim_{h \to 0} \cos\left(\frac{(x+h)^2 + x^2}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(h\left(x + \frac{h}{2}\right)\right)}{h}$$

$$= 2\cos x^2 \cdot \lim_{h \to 0} \left(\frac{\sin\left(h\left(x + \frac{h}{2}\right)\right)}{h} \cdot \frac{x + \frac{h}{2}}{x + \frac{h}{2}}\right) = 2\cos x^2 \cdot \lim_{h \to 0} \frac{\sin\left(h\left(x + \frac{h}{2}\right)\right)}{h\left(x + \frac{h}{2}\right)} \cdot \lim_{h \to 0} \left(x + \frac{h}{2}\right)$$

$$= 2\cos x^2 \cdot 1 \cdot x = 2x\cos x^2$$