

NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage
- For SMBT3904S:

Two (galvanic) internal isolated transistors with good matching in one package

- Complementary types: SMBT3906... MMBT3906
- SMBT3904S: For orientation in reel see package information below
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Туре	Marking	ng Pin Configuration					Package	
SMBT3904/MMBT3904	s1A	1=B	2=E	3=C	-	-	-	SOT23
SMBT3904S	s1A	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363

Maximum Ratings

maximum realings						
Parameter	Symbol	Value	Unit			
Collector-emitter voltage	V _{CEO}	40	V			
Collector-base voltage	V_{CBO}	60				
Emitter-base voltage	V _{EBO}	6				
Collector current	I _C	200	mA			
Total power dissipation-	P _{tot}		mV			
<i>T</i> _S ≤ 71°C, SOT23, SMBT3904		330				
$T_{\text{S}} \leq 115^{\circ}\text{C}$, SOT363, SMBT3904S		250				
Junction temperature	T _i	150	°C			
Storage temperature	T _{sta}	-65 150				

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}		K/W
SMBT3904/MMBT3904		≤ 240	
SMBT3904S		≤ 140	

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Unit		
		min.	typ.	max.	
DC Characteristics				i	
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	-	-	V
$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0					
Collector-base breakdown voltage	V _{(BR)CBO}	60	-	-	
$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$					
Emitter-base breakdown voltage	V _{(BR)EBO}	6	-	-	
$I_{\rm E}$ = 10 μ A, $I_{\rm C}$ = 0	, ,				
Collector-base cutoff current	I _{CBO}	-		50	nA
$V_{\text{CB}} = 30 \text{ V}, I_{\text{E}} = 0$					
DC current gain ¹⁾	h _{FE}				-
$I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 1 V		40	-	-	
$I_{\rm C}$ = 1 mA, $V_{\rm CE}$ = 1 V		70	-	-	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 1 V		100	-	300	
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 1 V		60	-	-	
$I_{\rm C}$ = 100 mA, $V_{\rm CE}$ = 1 V		30	-	-	
Collector-emitter saturation voltage ¹⁾	V _{CEsat}				V
$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1 mA		-	_	0.2	
$I_{\rm C}$ = 50 mA, $I_{\rm B}$ = 5 mA		-	-	0.3	
Base emitter saturation voltage ¹⁾	V _{BEsat}				
$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1 mA		0.65	_	0.85	
$I_{\rm C}$ = 50 mA, $I_{\rm B}$ = 5 mA		-	_	0.95	

¹Pulse test: t < 300μs; D < 2%

SMBT3904...MMBT3904

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Unit			
		min.	typ.	max.	1	
AC Characteristics						
Transition frequency	f_{T}	300	-	_	MHz	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 20 V, f = 100 MHz						
Collector-base capacitance	C_{cb}	-	-	3.5	pF	
$V_{CB} = 5 \text{ V}, f = 1 \text{ MHz}$						
Emitter-base capacitance	C _{eb}	-	-	8		
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}$						
Delay time	t_{d}	-	_	35	ns	
$V_{\rm CC}$ = 3 V, $I_{\rm C}$ = 10 mA, $I_{\rm B1}$ = 1 mA,						
$V_{BE(off)} = 0.5 V$						
Rise time	t_{r}	-	-	35		
$V_{\rm CC}$ = 3 V, $I_{\rm C}$ = 10 mA, $I_{\rm B1}$ = 1 mA,						
$V_{BE(off)} = 0.5 V$						
Storage time	$t_{ m stg}$	-	-	200		
$V_{\rm CC}$ = 3 V, $I_{\rm C}$ = 10 mA, $I_{\rm B1}$ = $I_{\rm B2}$ = 1 mA						
Fall time	t_{f}	-	_	50		
$V_{\rm CC}$ = 3 V, $I_{\rm C}$ = 10 mA, $I_{\rm B1}$ = $I_{\rm B2}$ = 1 mA						
Noise figure	F	-	-	5	dB	
$I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 5 V, f = 1 kHz,						
$\Delta f = 200 \text{ Hz}, R_{\text{S}} = 1 \text{ k}\Omega$						

Test circuits

Delay and rise time

Storage and fall time

DC current gain $h_{FE} = f(I_C)$ $V_{CE} = 1 \text{ V, normalized}$

Collector-base capacitance $C_{CD} = f(V_{CB})$ Emitter-base capacitance $C_{eb} = f(V_{EB})$

Saturation voltage $I_{C} = f(V_{BEsat}; V_{CEsat})$ $h_{FE} = 10$

Total power dissipation $P_{tot} = f(T_S)$ SMBT3904/MMBT3904

Total power dissipation $P_{tot} = f(T_S)$ SMBT3904S

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ SMBT3904/MMBT3904

Permissible Pulse Load $R_{thJS} = f(t_p)$ SMBT3904/ MMBT3904

Permissible Puls Load $R_{thJS} = f(t_p)$ SMBT3904S

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ SMBT3904S

Storage time $t_{stg} = f(I_C)$

Delay time $t_d = f(I_C)$

Fall time $t_f = f(I_C)$

Rise time $t_r = f(I_C)$

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of Date code, Type code and Manufacture are possible.

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

For symmetric types no defined Pin 1 orientation in reel.

10 2012-08-21

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.