ECE255 – Introduction to Digital Logic Design Homework Assignment 5 Due November 13

Name:	

- 1. Show how to use a **T FF** to implement a **D FF**.
 - (a) First fill in the truth table below for next state Q^{t+1} for the D FF, then fill in the table for input T^t such that the T FF yields the correct next state (Q^{t+1}) for each row in the table.

D^t	Q^t	Q^{t+1}	T^t
0	0		
0	1		
1	0		
1	1		

(b) T' in the table you just completed is a function of D' (the input) and Q' (present state). This is a small state machine. Write the MSOP form for T'. You may minimize to MSOP format any way you see fit.

MSOP
$$T(D^t, Q^t) =$$

(c) Sketch a schematic for this state machine showing the combinational logic for T and also the T FF with Q output. Draw by hand or use Logisim to sketch your circuit schematic.

- 2. Show how to use a **JK FF** to *implement* a **T FF**.
 - (a) First fill in the truth table below for next state Q^{t+1} for the JK FF, then fill in the table for inputs J^t and K^t such that the JK FF yields the correct next state (Q^{t+1}) for each row in the table.

T^t	Q^t	Q^{t+1}	J^t	K^t
0	0			
0	1			
1	0			
1	1			

(b) J^t and K^t in the table you just completed are functions of T^t (the input) and Q^t (present state). This is a small state machine. Write the MSOP forms for J^t and K^t . You may minimize to MSOP format any way you see fit.

MSOP
$$J(T^t, Q^t) =$$

MSOP
$$K(T^t, Q^t) =$$

(c) Sketch a schematic for this state machine showing the combinational logic for inputs J^t , K^t and also the JK FF with Q output. Draw by hand or use Logisim to sketch your circuit schematic.

3. You are provided the following state table (assume 1-bit output z; state assignments in parentheses):

	x		
	0	1	
A (00)	D/1	<i>B</i> /0	
B (01)	D/1	<i>C</i> /0	
C(10)	D/1	A/0	
D(11)	<i>B</i> /1	<i>C</i> /0	

(a) Construct a state diagram for the state table shown.

(b) What is the Boolean logic equation for the output variable *z*?