

Dynamic Frequency Selection (DFS) Test Report

Product Name : UHD651-L

Trade Name : Vestel

Model No. : UHD651-L

FCC ID. : XU6-UHD651-L IC ID. : 8691A-UHD651-L

Applicant: VESTEL TRADE CO.

Address: Organize Sanayi Bölgesi (45030) Manisa/Türkiye

Date of Receipt : Feb. 18, 2017

Issued Date : Apr. 17, 2017

Report No. : 1720411R-RFUSP49V00-A

Report Version : V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

DFS Test Report

Issued Date: Apr. 17, 2017

Report No.: 1720411R-RFUSP49V00-A

Product Name : UHD651-L

Applicant : VESTEL TRADE CO.

Address : Organize Sanayi Bölgesi (45030) Manisa/Türkiye

Manufacturer : VESTEL TRADE CO.

Model No. : UHD651-L

FCC ID. : XU6-UHD651-L

IC ID. : 8691A-UHD651-L

EUT Rated Voltage : AC 100-240V, 50/60Hz

EUT Test Voltage : AC 120V/60Hz

Trade Name : Vestel

Applicable Standard : FCC CFR Title 47 Part 15 Subpart E 15.407 (h): 2015

KDB 905462 D02 UNII DFS Compliance Procedures

KDB 905462 D03 UNII Clients Without Radar Detection

RSS-247 Issue 2 (2017-02)

Test Result : Complied

Documented By	:	Lyla Yang
		(Lyla Yang / Engineering Adm. Assistant)
Tested By	:	CarterHsu
		(Carter Hsu / Senior Engineer)
Approved By	:	Roy Wang

(Roy Wang / Director)

TABLE OF CONTENTS

	Description	Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Standard Requirement	6
1.3.	UNII Device Description	6
1.4.	Test Equipment	7
1.5.	Test Setup	8
1.6.	DFS Requirements Prior to Use of a Channel	8
1.7.	DFS requirements during normal operation	8
1.8.	DFS Detection Thresholds	9
1.9.	Radar Test Waveforms	10
1.10.	Radar Waveform Calibration	14
1.11.	Radar Waveform Calibration Result	15
1.12.	Slave Data Traffic Plot Result	16
2.	In-Service Monitoring for Channel Move Time and Channel Closing Transmiss	sion Time
and l	Non-Occupancy Period	17
2.1.	Test Procedure	17
2.2.	Test Requirement	17
2.3.	Uncertainty	17
2.4.	Test Result of Channel Move Time and Channel Closing Transmission Time and	
Non-	Occupancy Period	18
3.	DFS Test Setup Photo	20

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	UHD651-L			
Trade Name	Vestel			
Model No.	UHD651-L			
Product Type	WLAN (2TX, 2RX)			
Frequency Range/	IEEE 802.11a/	5180~5240MHz / 4 Channels		
Channel Number	IEEE 802.11n	5260~5320MHz / 4 Channels		
	(20MHz)	5500~5700MHz / 11 Channels		
	IEEE 802.11n (40MHz)	5190~5230MHz / 2 Channels		
		5270~5310MHz / 2 Channels		
		5510~5630MHz / 5 Channels		
	Canada not be capable of	transmitting in the band 5600-5650MHz		
Type of Modulation	IEEE 802.11b	Direct Sequence Spread Spectrum (DSSS)		
	IEEE 802.11g/n/a	Orthogonal Frequency Division Multiplexing (OFDM)		
Data Speed	IEEE 802.11b	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
	IEEE 802.11g	6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48 Mbps,54Mbps		
	IEEE 802.11a	6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,4 Mbps,54Mbps		
	IEEE 802.11n	Support a subset of the combination of GI, MCS		
		0~MCS 15 and bandwidth defined in 802.11n		
DFS Function	☐ Master	⊠ Slave (Without Radar Detection)		
TPC Function		$\square \ \ge \ 500$ mW employ a TPC		
Communication Mode		☐ Frame Based System ☐ Other System		

Antenna Informatio	n
Antenna Type	PIFA Antenna
Antenna Gain	2G Antenna 0: 3.75 dBi
	2G Antenna 1: 4.5 dBi
	5 G low band-Antenna 0: 6.75 dBi
	5 G low band-Antenna 1: 6.50 dBi
	5 G medium band-Antenna 0: 7.00 dBi
	5 G medium band-Antenna 1: 7.50 dBi

IEEE 802.11a & IEEE 802.11n (20MHz) -5G

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz
52	5260 MHz	56	5280 MHz	60	5300 MHz	64	5320 MHz
100	5500 MHz	104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz		

IEEE 802.11n (40MHz)-5G

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz						

Test Mode

1.2. Standard Requirement

FCC Part 15.407:

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500mW.

U-NII devices operating in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

1.3. UNII Device Description

- (1) The EUT operates in the following DFS band:
 - 1. 5250-5350 MHz
 - 2. 5470-5725 MHz
- (2) Below are the available 50 ohm antenna assemblies and their corresponding gains.

 OdBi gain was used to set the -63 dBm threshold level (-64dBm +1 dB) during calibration of the test setup.

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Broadcom	BCM43236B	1 11 / 1/ 111011110	2G Antenna 0: 3.75 dBi
				2G Antenna 1: 4.5 dBi
				5 G low band-Antenna 0: 6.75 dBi
				5 G low band-Antenna 1: 6.50 dBi
				5 G medium band-Antenna 0: 7.00 dBi
				5 G medium band-Antenna 1: 7.50 dBi

(3) DFS operation description:

WLAN traffic is generated by streaming the video file "ipef.exe" from the Master device to the Slave device in full motion video mode using the media player with the V2.61 Codec package.

(4) This device does not exceed 27dBm eirp, so no transmit power control is implemented.

1.4. Test Equipment

Dynamic Frequency Selection (DFS) / CTR

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2017/08/08
ESG Vector Signal Generator	Agilent	E4438C	MY45095759	2017/04/14

Instrument	Manufacturer	Type No.	Serial No
Laptop PC	DELL	Vostro A860	CD8BMH1
Laptop PC	ASUS	K45VD	0343G3110M
ATT (Qty: 3)	Mini-Circuits	BW-S3W2 DC-18GHz	0025
RF Cable (Qty: 6)	Schaffner		25494/6
Laptop PC	DELL	Vostro A860	CD8BMH1
Laptop PC	ASUS	K45VD	0343G3110M

Software	Manufacturer	Function
Agilent DFS_TEST V6.9	Agilent	Radar Signal Generation Software

1.5. Test Setup

1.6. DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

1.7. DFS requirements during normal operation

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

1.8. DFS Detection Thresholds

(1) Interference Threshold value, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)	
≥200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz	-02 UBIII	
EIRP < 200 milliwatt that do not meet the	-64 dBm	
power spectral density requirement	-64 dBIII	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

(2) DFS Response requirement values

(2) Di G Responso i squii sinone values				
Parameter	Value			
Non-Occupancy Period	30 Minutes			
Channel Availability Check Time	60 Seconds			
Channel Maya Time	10 seconds			
Channel Move Time	See Note 1.			
	200 milliseconds + an aggregate of 60			
Channel Closing Transmission Time	milliseconds over remaining 10 second period.			
	See Notes 1 and 2.			
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission			
O-MI Detection Dandwidth	power bandwidth. See Note 3.			

- **Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- **Note 2:** The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

1.9. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

(1) Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 \$\mu\$ sec, with a minimum increment of 1 \$\mu\$ sec, excluding PRI values selected in	Roundup $ \begin{cases} \left(\frac{1}{360}\right). \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}}\right) \end{cases} $	60%	30
		Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types	1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is 905462 D02 UNII DFS Compliance Procedures v01 Page 10 generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

(2) Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses Per Burst	Pulse Width (usec)	Chirp Width (MHz)	PRI (usec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the long pulse radar test signal. If more than 30 waveforms are used for the long pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- 3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with radar frequency of 5310 MHz and a 20 MHz chirped signal, the chirp starts at 5300 MHz and ends at 5320 MHz.
- 6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3-5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical Representation of a Long Pulse radar Test Waveform

(3) Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Hopping	Pulses	Hopping	Minimum	Minimum
Waveform	Width	$(\mu \sec)$	Sequence	Per Hop	Rate	Percentage	Trials
	(µsec)		Length		(kHz)	of Successful	
			(msec)			Detection	
6	1	333	300	9	0.333	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

1.10. Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -64dBm due to the interference threshold level is not required.

Conducted Calibration Setup

1.11. Radar Waveform Calibration Result

Radar Type 0 Calibration Plot (5510MHz)

1.12. Slave Data Traffic Plot Result

Frequency Avg Type: Log-Pwr Trig: Free Run #Atten: 20 dB Ext Gain: 13.70 dB **Auto Tune** ΔMkr2 4.700 ms 5.32 dB Ref -10.00 dBm Center Freq 5.310000000 GHz 2Δ1 Start Freq 5.310000000 GHz Stop Freq 5.310000000 GHz

STATUS

RF 50Ω DC | Center Freq 5.310000000 GHz PNO: Fast → IFGain:Low 10 dB/div Log -20.0 -40.C -50.0 -60.0 -70.C -80.0 **CF Step** 1.000000 MHz -90.C Man <u>Auto</u> Center 5.310000000 GHz Res BW 1.0 MHz Span 0 Hz Freq Offset **#VBW 1.0 MHz** Sweep 100.0 ms (10001 pts) MKR MODE TRC SCL 1 N 1 t 2 Δ1 1 t (Δ) 26.01 ms 4.700 ms (Δ)

Plot of Slave Traffic at 5310MHz

2. In-Service Monitoring for Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

2.1. Test Procedure

These tests define how the following DFS parameters are verified during In-Service Monitoring;

Channel Closing Transmission Time, Channel Move Time, and Non-Occupancy Period.. The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Master Device will associate with the UUT (Client) at 5300 MHz and 5500MHz.

Stream the MPEG test file from the Client (TX) Device to the Master (RX) Device on the selected Channel for the entire period of the test.

At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at

-63dBm.

Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing

Transmission Time results to the limits defined in the DFS Response requirement values table.

Measure the UUT for more than 30 minutes following the channel close/move time to verify that the UUT does not resume any transmissions on this Channel.

2.2. Test Requirement

Parameter	Value
Channel Move Time	10 Seconds
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 seconds period
Non-Occupancy Period	Minimum 30 minutes

2.3. Uncertainty

± 1ms.

2.4. Test Result of Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

Product : UHD651-L

Test Item : Channel Move Time Test

Radar Type : Type 0

Test Mode : Mode 1: Transmit

Channel Move Time for Radar Test Type 0 at 5310MHz

Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.843	10
Channel Closing Transmission	0.0135	200 milliseconds + approx. 60 milliseconds
		over remaining 10 seconds period

The results showed that after radar signal injected the channel move time was less than 10 seconds.

Product : UHD651-L

Test Item : Non-Occupancy Period

Radar Type : Type 0

Test Mode : Mode 1: Transmit

Non-Occupancy Period at 5310 MHz

Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	≧30

No EUT transmissions were observed on the test channel during 30 minutes observation time.

3. DFS Test Setup Photo

Full DFS Test Setup Photo

