

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2000年 3月30日

出願番号
Application Number: 特願2000-095021

出願人
Applicant(s): 株式会社デンソー

2000年12月 8日

特許庁長官
Commissioner,
Patent Office

及川耕造

出証番号 出証特2000-3101981

【書類名】 特許願
【整理番号】 PN055934
【提出日】 平成12年 3月30日
【あて先】 特許庁長官 殿
【国際特許分類】 B60H 1/00
【発明者】
【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内
【氏名】 青木 新治
【発明者】
【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内
【氏名】 義則 豊
【発明者】
【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内
【氏名】 梶野 祐一
【特許出願人】
【識別番号】 000004260
【氏名又は名称】 株式会社デンソー
【代理人】
【識別番号】 100096998
【弁理士】
【氏名又は名称】 雄永 裕彦
【電話番号】 0566-25-5988
【選任した代理人】
【識別番号】 100106149
【弁理士】
【氏名又は名称】 矢作 和行
【電話番号】 0566-25-5989
【手数料の表示】
【予納台帳番号】 010331

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9912770

【包括委任状番号】 9912772

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 車両用空調装置

【特許請求の範囲】

【請求項1】 温度調節された空調風を車室内に吹き出す空調ユニット(21)と、

乗員の座るシートへ空調風を吹き出すシート空調ユニット(4)と、
車両の熱負荷の検出値(T_r 、 T_{am} 、 T_s)に応じて前記空調ユニット(21)および前記シート空調ユニット(4)を制御する制御装置(37)とを備え、

前記制御装置(37)は、車両の熱負荷の前記検出値(T_r 、 T_{am} 、 T_s)および乗員の設定する設定温度(53)に基づいて車室内への目標吹出温度(TAO)を求める目標吹出温度演算手段(130)と前記目標吹出温度(TAO)に基づいて求めた第1の制御量に応じて前記空調ユニット(21)を制御する空調制御手段と、前記目標吹出温度(TAO)に基づいて求めた第2の制御量に応じて前記シート空調ユニット(4)を制御するシート空調制御手段とを有し、かつ、前記シート空調制御手段は、車室内空調が安定状態にあるときに前記第2の制御量を決める第1のシート空調制御手段(154)と、車室内空調が過渡状態にあるときに前記第2の制御量を決める第2のシート空調制御手段(151)とを有することを特徴とする車両用空調装置。

【請求項2】 前記第1のシート空調制御手段(154)の前記第2の制御量は、前記目標吹出温度(TAO)が第1の所定値以下および前記目標吹出温度(TAO)が第2の所定値以上のときに風量を増加させる制御量である前記空調制御手段の前記第1の制御量に対して、風量を減少させる制御量であることを特徴とする請求項1に記載の車両用空調装置。

【請求項3】 前記シート空調ユニット(4)は、前記空調ユニット(21)からの空調風と車室内からの空気を取り入れこの両者の混合割合を調整する切替制御手段(43)を有し、かつ前記制御装置(37)は、前記切替制御手段(43)を制御して前記空調ユニット(21)からの空調風と車室内からの空気とを混合させる室内風切替制御手段(155)を有していることを特徴とする請

求項1に記載の車両用空調装置。

【請求項4】 溫度調節された空調風を車室内に吹き出す空調ユニット（21）と、

乗員の座るシートへ空調風を吹き出すシート空調ユニット（4）と、

車両の熱負荷の検出値（ T_r 、 T_{am} 、 T_s ）に基づいて求めた第1の制御量および第2の制御量に応じて前記空調ユニット（21）および前記シート空調ユニット（4）を各々制御する制御装置（37）とを備え、

前記制御装置（37）は、車両の熱負荷の前記検出値（ T_r 、 T_{am} 、 T_s ）に基づいて車室内への目標吹出温度（TAO）を求め、前記空調ユニット（21）を制御する前記第1の制御量を決める目標吹出温度演算手段（130）と、前記検出値（ T_r 、 T_{am} 、 T_s ）に基づいてシートへの目標シート吹出温度（ $T_{AO seat}$ ）を求め、前記シート空調ユニット（4）を制御する前記第2の制御量を決める目標シート演算手段（140）とを有し、かつ、前記目標シート演算手段（140）は、車室内空調が安定状態にあるときに前記第2の制御量を決める第1の目標シート演算手段（154）と、車室内空調が過渡状態にあるときに前記第2の制御量を決める第2の目標シート演算手段（151）とを有することを特徴とする車両用空調装置。

【請求項5】 前記制御装置（37）は、車室内空調が安定状態または過渡状態のいずれかを判定する空調状態判定手段（150）を有し、この空調状態判定手段（150）は、前記目標吹出温度（TAO）を求める設定温度（ T_{set} ）と車室内温度（ T_r ）との偏差に基づいて前記両状態を判定することを特徴とする請求項1ないし請求項4のいずれか一つに記載の車両用空調装置。

【請求項6】 前記制御装置（37）は、車室内空調が過渡状態から安定状態に切り替わった直後のときに、過渡状態に応じた制御量から安定状態に応じた制御量に徐々に可変する第1の空調切替制御手段（153）を有していることを特徴とする請求項1ないし請求項5のいずれか一つに記載の車両用空調装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、温度調節された空調風を車室内に吹き出す空調ユニットに加え、シート空調装置を設けた車両用空調装置に関するものである。

【0002】

【従来の技術】

従来、この種の車両用空調装置として、例えば、特開平10-297243号公報に記載されたものがあり、この公報記載の従来技術では、シート空調装置と車両の空調装置とを設け、シート温度またはシート空調装置の運転状態もしくは設定情報に基づいて、空調装置の運転状態もしくは設定情報を修正する制御ユニットを備えて、この制御ユニットはシート空調装置の設定温度を空調装置の設定温度として空調運転できるように構成されている。

【0003】

また、逆に空調装置の運転状態もしくは設定情報に基づいて、シート空調装置の運転状態もしくは設定情報を修正する制御ユニットを備えて、この制御ユニットは、空調装置の設定温度をシート空調装置の設定温度として空調運転できるように構成されている。具体的には、両装置の一方の設定情報（例えば、設定温度）に基づいて、両装置が同一運転状態で空調運転を行うものであり、両装置の他の一方の設定情報（例えば、設定温度）を変更すると先の設定情報が変更して空調運転を行うものである。

【0004】

【発明が解決しようとする課題】

しかしながら、車両空調の空調負荷が大きくて車両空調能力が高いときに空調装置の設定温度に基づいて、シート空調装置を大能力で運転させると安定状態において過剰の空調能力が与えられ、夏季は過冷房、冬季は過暖房となり乗員の所望するシートの温熱状態から外れ不快感を与える問題がある。

【0005】

特に、空調装置の空調風を取り入れてシートに温風または冷風をあてるシート空調装置においては、上述した不具合が顕著であり、空調装置の温感レベルが安定状態でもシート側の温感レベルは冷え過ぎまたは暖めすぎとなり易く不快感を与える。この結果、夏季の冷房運転では冷やし過ぎによる腰痛、疲労感の要因と

なり、冬季の暖房運転においては、温風による顔の火照り等が発生する。これは、シート空調装置がシートに着席した乗員との接触面空調であるために発生する問題である。

【0006】

また、上記従来技術では、シート空調装置側からシート空調の設定情報を変更すると空調装置側の設定情報も変更できるようになっている。これにより、シート空調装置が取付けられていない座席に着席した他の乗員には、空調装置が所望の空調状態とならないため不快感が発生する問題がある。

【0007】

従って、本発明の目的は、上記点に鑑みてなされたもので、季節に係わらず乗員の温感に合った快適な車室内空調およびシート空調を可能にできる車両用空調装置を提供することにある。

【0008】

【課題を解決するための手段】

上記目的を達成するため、請求項1～6記載の技術的手段を採用する。

【0009】

すなわち、請求項1の発明では、温度調節された空調風を車室内に吹き出す空調ユニット(21)と、乗員の座るシートへ空調風を吹き出すシート空調ユニット(4)と、車両の熱負荷の検出値(T_r 、 T_{am} 、 T_s)に応じて空調ユニット(21)およびシート空調ユニット(4)を制御する制御装置(37)とを備え、この制御装置(37)は、車両の熱負荷の検出値(T_r 、 T_{am} 、 T_s)および乗員の設定する設定温度(53)に基づいて車室内への目標吹出温度(TAO)を求める目標吹出温度演算手段(130)と目標吹出温度(TAO)に基づいて求めた第1の制御量に応じて空調ユニット(21)を制御する空調制御手段と、目標吹出温度(TAO)に基づいて求めた第2の制御量に応じてシート空調ユニット(4)を制御するシート空調制御手段とを有し、かつ、シート空調制御手段は、車室内空調が安定状態にあるときに第2の制御量を決める第1のシート空調制御手段(154)と、車室内空調が過渡状態にあるときに第2の制御量を決める第2のシート空調制御手段(151)とを有することを特徴としている。

【0010】

請求項1の発明によれば、空調ユニット（21）およびシート空調ユニット（4）を制御する制御装置（37）に、空調ユニット（21）を第1の制御量で制御する空調制御手段と、シート空調ユニット（4）を第2の制御量で制御するシート空調制御手段とを有し、かつ、車室内空調が安定状態にあるときに第2の制御量で決める第1のシート空調制御手段（154）と、車室内空調が過渡状態にあるときに第2の制御量で決める第2のシート空調制御手段（151）とを有することにより、車室内空調の空調ユニット（21）の制御を行うとともに、接触面空調であるシート空調ユニット（4）を制御することが可能となる。

【0011】

例えば、車室内空調が安定状態に達しても日射が強く炎天下などの車両の熱負荷が大きいときには、空調ユニット（21）の空調制御手段は、空調風の吹出温度を低くして風量を増加させるなどの第1の制御量による制御が行われるが、このようなときにシート空調ユニット（4）ではむしろ過冷房による不快感を乗員に与える。

【0012】

また、暖房時の車両の熱負荷が大きいときにも同じように空調ユニット（21）の空調制御手段は、空調風の吹出温度が高くして風量を増加させるなどの第1の制御量による制御が行われるが、このようなときにシート空調ユニット（4）では過暖房による不快感を乗員に与える。そこで、シートに吹き出す空気の吹出温度および風量を乗員の温感レベルによる評価で求めた第2の制御量を用いた第1のシート空調制御手段（154）で別の制御を行うことで従来の過冷房および過暖房を防止できる。この結果により、車室内空調とシート空調の快適性の向上が図れる。

【0013】

また、炎天下に暫く駐車させた後に乗車するときなど、シートの表面温度が高く急速な冷房を必要とするような車室内空調が過渡状態のときには、吹出温度および風量を最大限の空調能力を發揮させて吹出温度を低くさせ最大風量の第2の制御量を用いた第2のシート空調制御手段（151）で制御することで急速な冷

房が可能となる。この第2のシート空調制御手段（151）は、空調ユニット（21）の空調制御手段でも同じような制御を行うことにより、車室内空調とシート空調の即効性の向上が図れる。

【0014】

また、制御装置（37）に、シート空調制御手段の第2の制御量を求めるのに、空調ユニット（21）と共に用いる車両の熱負荷の検出値（Tr、T_{a m}、T_s）、設定温度（53）、目標吹出温度演算手段（130）および目標吹出温度（TAO）を用いることにより、空調ユニット（21）の構成部品と共に別体の部品等を設けずに精度の良好なシート空調ユニット（4）の制御が可能となる。この結果、シート空調ユニット（4）の製品コストの低減が図れる。

【0015】

請求項2の発明では、第1のシート空調制御手段（154）の第2の制御量は、目標吹出温度（TAO）が第1の所定値以下および目標吹出温度（TAO）が第2の所定値以上のときに風量を増加させる制御量である空調制御手段の第1の制御量に対して、風量を減少させる制御量であることを特徴としている。

【0016】

請求項2の発明によれば、空調ユニット（21）の第1の制御量は、例えば目標吹出温度（TAO）が第1の所定値以下のとき、すなわち、冷房運転において、設定温度（T_{s e t}）と隔たりがある場合には、吹出温度が低いほど風量を多くする制御を行っているが、第1のシート空調制御手段（154）の第2の制御量は、低い吹出温度で高風量の風量制御をすると冷え過ぎによる腰痛、疲労感の要因となり、これを解消するために吹出温度に対応した風量を温感レベルによる評価を実験で求め、その結果より、具体的には低い吹出温度ほど低風量の制御量で制御を行うことで乗員の不快感を解消させることにより快適性の向上が図れる。

【0017】

また、目標吹出温度（TAO）が第2の所定値以上のとき、すなわち、暖房運転において、設定温度（T_{s e t}）と隔たりがある場合には、吹出温度が高いほど風量を多くする制御を行っているが、第1のシート空調制御手段（154）の

第2の制御量は、高い吹出温度で高風量の風量制御をすると暖め過ぎによる顔の火照りや低い吹出温度で低風量による膝寒さなどの要因となり、これを解消するために吹出温度に対応した風量を温感レベルおよび快適感などによる評価を実験で求め、その結果より、具体的には高い吹出温度ほど低風量の制御量で制御を行うことで乗員の不快感を解消させることにより快適性の向上が図れる。

【0018】

請求項3の発明では、シート空調ユニット(4)は、空調ユニット(21)からの空調風と車室内からの空気を取り入れこの両者の混合割合を調整する切替制御手段(43)を有し、かつ、制御装置(37)は、切替制御手段(43)を制御して空調風と車室内からの空気とを混合させる室内風切替制御手段(155)を有していることを特徴としている。

【0019】

請求項3の発明によれば、空調ユニット(21)の空調制御手段では、上述した熱負荷の大きいときにシート空調ユニット(4)では過冷房および過暖房になり易く乗員に不快感を与えやすい。これを防止するために第1のシート空調制御手段(154)で対応したが吹出温度がさらに低下または上昇するときには、切替制御手段(43)により車室内の空気を取り入れて混合調節させることにより、過冷房および過暖房を防止させて快適性の向上が図れる。

【0020】

請求項4の発明では、温度調節された空調風を車室内に吹き出す空調ユニット(21)と、乗員の座るシートへ空調風を吹き出すシート空調ユニット(4)と、車両の熱負荷の検出値(T_r 、 T_{am} 、 T_s)に基づいて求めた第1の制御量および第2の制御量に応じて空調ユニット(21)およびシート空調ユニット(4)を各々制御する制御装置(37)とを備え、制御装置(37)は、車両の熱負荷の検出値(T_r 、 T_{am} 、 T_s)に基づいて車室内への目標吹出温度(TA_O)を求め、空調ユニット(21)を制御する第1の制御量を決める目標吹出温度演算手段(130)と、検出値(T_r 、 T_{am} 、 T_s)に基づいてシートへの目標シート吹出温度($TA_O seat$)を求め、シート空調ユニット(4)を制御する第2の制御量を決める目標シート演算手段(140)とを有し、かつ、目

標シート演算手段（140）は、車室内空調が安定状態にあるときに第2の制御量を決める第1の目標シート演算手段（154）と、車室内空調が過渡状態にあるときに第2の制御量を決める第2の目標シート演算手段（151）とを有することを特徴としている。

【0021】

請求項4の発明によれば、請求項1に記載の制御装置（37）では、第1の制御量で制御する空調ユニット（21）の空調制御手段と第2の制御量で制御するシート空調ユニット（4）のシート空調制御手段とは、空調ユニット（21）の構成部品である熱負荷の検出値（Tr、T_{a m}、Ts）および設定温度（53）の入力情報から目標吹出温度演算手段（130）と目標吹出温度（TAO）に基づいて求めたが、これに限らず、第1の制御量で制御する空調ユニット（21）は、請求項1と同じ目標吹出温度演算手段（130）と、第2の制御量で制御するシート空調ユニット（4）は、熱負荷の検出値（Tr、T_{a m}、Ts）の入力情報からシートへの目標シート吹出温度（TAO_{seat}）を求める目標シート演算手段とを有し、かつ、安定状態にあるときに第1の目標シート演算手段（154）と、過渡状態にあるときに第2の目標シート演算手段（151）とを有することにより、車室内空調の空調ユニット（21）の制御を行うとともに、接触面空調であるシート空調ユニット（4）を制御することが可能となる。

【0022】

請求項5の発明では、制御装置（37）は、車室内空調が安定状態または過渡状態のいずれかを判定する空調状態判定手段（150）を有し、この空調状態判定手段（150）は、目標吹出温度（TAO）を求める設定温度（T_{set}）と車室内温度（Tr）との偏差に基づいて前記両状態を判定することを特徴としている。

【0023】

請求項5の発明によれば、空調状態判定手段（150）を、目標吹出温度（TAO）を求める設定温度（T_{set}）と車室内温度（Tr）との偏差に基づいて判定することにより、車室内空調を容易に過渡状態または安定状態の判定ができ精度が良い。

【0024】

請求項6の発明では、制御装置(37)は、車室内空調が過渡状態から安定状態に切り替わった直後のときに、過渡状態に応じた制御量から安定状態に応じた制御量に徐々に可変する第1の空調切替制御手段(153)を有していることを特徴としている。

【0025】

請求項6の発明によれば、第1のシート空調制御手段(154)あるいは第1の目標シート演算手段(154)と、第2のシート空調制御手段(151)あるいは第2の目標シート演算手段(151)とが異なる制御量に対して、例えば、上述では吹出温度と風量の制御量がそれぞれ異なる制御を行うため、吹出温度に対応する風量が過渡状態から安定状態に切り替わった直後は、例えばある周期ごとに風量を所定レベルに1レベルごと段階的に切り替える制御量で制御を行う第1の空調切替制御手段(153)を用いることで第1のシート空調制御手段(154)あるいは第1の目標シート演算手段(154)に移行させることにより、違和感なき制御量の変更ができ乗員への不快感を与えない。

【0026】

なお、上記各手段の括弧内符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。

【0027】

【発明の実施の形態】

以下、本発明を図に示す実施形態について説明する。図1～11は本発明を車両用空調装置に適用した場合の一実施形態を示す。まず、図1に基づいて空調ユニット21の構成を説明する。送風ダクト22の上流側には、車室外の空気(外気)を吸入する外気吸入口23a、23bと車室内の空気(内気)を吸入する内気吸入口24a、24bとが設けられ、これら各吸入口23a、23b、24a、24bから吸入する内外気の混合割合が内外気ドア25a、25bによって切り替えるようになっている。

【0028】

上記送風ダクト22内には、送風機26が設けられ、この送風機26の下流側

に、冷凍サイクル（図示せず）を構成する蒸発器28、エアミックスドア29およびエンジン冷却水が循環するヒータコア30が設けられている。上記エアミックスドア29の開度を調節することによって、ヒータコア30を通過する空気と通過しない空気の混合割合を調節して、空調風の温度を調整するようになっている。

【0029】

そして、送風ダクト22の下流側には、車両の前面ガラスに向けて空調風を吹き出すデフロスタ吹出口（図示せず）にダクトを介して接続されるデフロスタ開口部31と、乗員の上半身に向けて空調風を吹き出すフェイス吹出口（図示せず）にダクトを介して接続されるフェイス開口部32と、乗員の足元に向け空調風を吹き出すフット吹出口（図示せず）にダクトを介して接続されるフット開口部33とが設けられ、これら各開口部31、32、33の上流側に、それぞれ制御ドア34、35、36が設けられている。

【0030】

以上のように構成された空調ユニット21は、電子制御ユニット（以下ECUと呼ぶ）37によって制御される。このECU37には、車両の熱負荷を検出するため内気温度センサ38、外気温度センサ39、日射量を検出する日射センサ40から検出した検出信号Tr、T_{a m}、Tsが入力される。さらに、このECU37には、インストルメントパネルの中央部に設けられたエアコン操作パネル44から操作信号が入力される。

【0031】

このエアコン操作パネル44には、図2に示すように、空調運転をオン／オフするA／Cスイッチ48と、運転モードを自動／手動に切り替えるオートスイッチ49と、吹出口の切替えをフェイス、バイレベル、フット、フットデフロスタ、デフロスタのいずれかを手動で切り替える5つの吹出モード切替スイッチ50と、吸気モードを外気吸入／内気循環に手動で切り替える吸気モード切替スイッチ51と、送風量を手動で切り替える送風切替スイッチ52と、空調制御の目標値となる設定温度を手動設定する温度設定スイッチ53とが設けられている。なお、オートスイッチ49は、吹出モード切替スイッチ50、吸気モード切替スイ

ツチ51、送風切替スイッチ52の運転モードの切り替えを自動制御させる操作スイッチである。

【0032】

一方、車両のシート3には、着座部3bならびに背当て部3cのそれぞれに複数の空気吹出口3aを備えている。そして、シート空調ユニット4は、空気吹出口3aに温風、冷風、または送風を供給する。各空気吹出口3aは着座部3bの内部に形成された通風路3dならびに背当て部3cの内部に形成された通風路3eにそれぞれ連通している。各通風路3d、3eは、空気供給ダクト8を介してシート空調ユニット4の吐出口4aを介して連通されている。なお、図1では、シート3の下部から空気供給ダクト8を引き出す構造を示したがシート3の側部から空気供給ダクト8を引き出すようにしても良い。また、シート空調ユニット4を着座部3bの下部に配設しても良い。

【0033】

次に、シート空調ユニット4には、吐出口4aの上流側に車室内空気（内気）を吸入する内気吸入口4bと冷風取入口4cと温風取入口4dとが形成されている。冷風取入口4cは、フェイス開口部32から分岐された冷風ダクト32aと連通させ、温風取入口4dは、フット吹出口33から分岐された温風ダクト33aとが連通されている。

【0034】

そして、これらの取入口4c、4dの下流側に冷風または温風および送風を制御する冷温風制御ドア42と、車室内に連通する内気吸入口4bと、この内気を取り入れ、開度調節可能な室内気制御ドア43と、シート3へ圧送する送風機41とが設けられている。また、吐出口4aの近傍にシート3への吹出空気温度T_oを検出するシート吹出温度センサ47を設けている。なお、これらの制御ドア42、43は、サーボモータ（図示せず）などのアクチュエータにて駆動されるようになっている。

【0035】

このシート空調ユニット4は、前席の左右2つのシートと後席のシートの左右両側にそれぞれ埋設され、各席の乗員が自席のシート空調ユニット4の動作レベ

ルを任意に調整できるように、例えば、前席のドアの内側部と後席のシートの中央部にシート空調操作パネル54が合計4個設けられている。

【0036】

各席のシート空調操作パネル54には、図3に示すように、シート空調ユニット4の設定温度を手動設定するためのシート温感設定スイッチ55と、設定された設定温感Ssetを表示するシート温感表示部56と、シート空調ユニット4をオン／オフするシート運転スイッチ57と、上述した室内気制御ドア43を駆動させて内気吸込口4bを全開する室内気スイッチ58とが設けられている。

【0037】

このシート温感設定スイッチ55は、シーソー式のプッシュスイッチにより構成され、涼しめキー55aと暖かめキー55bとを備えている。そして、シート温感表示部56は、11段階のシート設定温感Ssetに対応して11個の発光素子56aを縦一列に配列して構成され、涼しめキー55aと暖かめキー55bにより入力された設定温感Ssetを表示するものである。

【0038】

この設定温感Ssetは、平均的な温度25℃を基準にしてどの程度涼しくするか又は暖かくするかを示す指標であり【図4（a）参照】、各キー55a, 55bを操作する前の状態では、シート温感表示部56の中央の発光素子56nを点灯させ、涼しめキー55aを1回押すごとに、設定温感Ssetを1ランクずつ低下させて点灯位置を1つずつ下側にずらし、暖かめキー55bを1回押すごとに、設定温感Ssetを1ランクずつ上昇させて点灯位置を1つずつ上側にずらすようになっている。

【0039】

また、設定温感Ssetは、図4（b）に示すように、乗員の感じる温感レベルを例えば11段階にランク付けしたものであり、例えば、乗員が「寒い」と感じる場合には、設定温感Ssetを「2」に設定し、「暖かい」と感じる場合には、設定温感Ssetを「-4」に設定することになる。

【0040】

なお、本実施形態では、複数のシート温感設定スイッチ55がECU37と接

続されているが、最初にシート空調ユニット4のシート運転スイッチ57をオンしたシート空調操作パネル54の入力信号によって、空調ユニット21の動作がシート空調ユニット4の動作と関連付けて制御されるようになっている。従って、他の座席のシート空調ユニット4は、最初にオンされたシート空調ユニット4と同じ動作をするため、シート温感設定スイッチ55の設定変更を受け入れないようになっている。また、室内気スイッチ58は、シート空調ユニット4に車室内空気を取り入れシート3へ吹き出すときに作動させるスイッチである。この室内気スイッチ58をONさせると内気吸込口4bを全開させるように室内気制御ドア43を回動させて車室内空気を取り入れるものである。

【0041】

次に、前述したECU37は、マイクロコンピュータを主体として構成され、内蔵のROM（図示せず）には、図5に示す制御プログラムが記憶されている。このECU37は、図5の制御プログラムを実行することにより、車両の空調ユニット21の吹出温度制御を行うとともに、乗員が設定した設定温感Ssetに適合するようにシート空調ユニット4の吹出温度および風量を制御するものである。

【0042】

以下、このECU37による空調制御内容を図5のフローチャートに従って説明する。まず、エアコン操作パネル44のA/Cスイッチ48およびシート空調操作パネル54のシート運転スイッチ57を作動させると、ステップ100で、以降の演算処理に使用するカウンタやフラグを初期設定する初期化処置を実行した後、ステップ110に移行して、乗員が設定した温度設定スイッチ53およびシート温感設定スイッチ55の操作により、入力された設定温度T₁setおよび設定温感Ssetとを読み込むとともに、内気温度センサ38、外気温度センサ39、日射センサ40およびシート吹出温度センサ47より検出された内気温度Tr、外気温度T_am、日射量Tsおよびシート吹出温度Toの各データを読み込む。

【0043】

次いで、ステップ120に移行して乗員が設定した設定温度T₁set、外気

温度 T_{am} および日射量 T_s から設定温度 T_{set} を次の（1）式より算出する。

【0044】

$$\begin{aligned} T_{set} &= f(T_{1set}, T_{am}, T_s) \\ &= T_{1set} + \Delta T_{am} + \Delta T_s \quad \dots \dots (1) \end{aligned}$$

ここで、 $\Delta T_{am} = (10 - T_{am}) / 20$ 図6(a) 参照

$$\Delta T_s = -T_s / 1000 \quad \dots \dots \text{図6(b) 参照}$$

以上のようにして、設定温度 T_{set} を算出した後、ステップ130（目標吹出温度演算手段）に移行して車室内を設定温度 T_{set} に維持するための必要な目標吹出温度 TAO を次の（2）式により算出する。

【0045】

$$\begin{aligned} TAO &= K_1 \times T_{set} - K_2 \times Tr - K_3 \times T_{am} - K_4 \times T_s + C \dots \dots \\ (2) \end{aligned}$$

ここで、 K_1, K_2, K_3, K_4 は係数、 C は定数である。

【0046】

これにより、空調ユニット21から車室内に吹き出す空調風の運転モード、吹出温度、風量などの空調制御方法が確定されるものである。

【0047】

これにより、ステップ131において、空調ユニット21の空調制御が行われる。空調ユニット21では、算出された目標吹出温度 TAO に基づいて、制御ドア34、35、36を切り替え吹出モードおよび内外気吸入口の吸込モードを自動設定するとともに、エアミックスドア29の目標開度を求め空調風の温度制御が行われる。また、送風機26を図7に示すような目標吹出温度 TAO と送風量の風量制御（第1の制御量）により、車室内に吹き出す空調風を設定温度 T_{set} に到達するように空調制御を行うものである。運転直後の大きな冷暖房能力が必要なときに大風量で送風しできるだけ速く快適領域になるように空調制御を行い、内気温度 Tr が設定温度 T_{set} に近づき能力が要らなくなってきたら送風量を少なくなるように風量制御して車室内の空調制御を行うものである。

【0048】

また、冬季の始動時などでエンジン冷却水の暖まり具合に対応して送風量をゼロから徐々に増加させていくことにより、冷風の吹き出しによる不快感をなくすウォームアップ制御と、夏季の始動時などでは、蒸発器28が十分に冷えてから送風を開始することにより温風吹き出しによる不快感をなくす遅延制御（クールダウン制御）とを優先に行われた後上述した空調制御を行うものである。

【0049】

一方の、シート空調ユニット4側は、ステップ140に移行して、上記(2)式により算出した目標吹出温度TAOをベースとして、シート空調ユニット4の目標シート吹出温度TAOsheatを推定する。これは、ステップ110で読み込んだ設定温感Sset、シート吹出温度Trおよび内気温度Trなどをもとにシート3の熱負荷を算出して温度上昇もしくは温度降下を見込んだ目標シート吹出温度TAOsheatを算出するものである。これにより、車室内に対する空調ユニット21の空調動作（目標吹出温度TAO）に関連づけて、シート3より吹き出す空調風のシート吹出温度を推定するものである。

【0050】

そして、ステップ150（空調状態判定手段）に移行し、その時点の車室内空調が安定状態であるか過渡状態であるかを次のようにして判定する。ECU37で求めた設定温度Tsetと内気温度Trとの偏差（ $\Sigma = T_{set} - T_r$ ）の所定時間の偏差値で判定するものである。例えば、4秒周期に設定温度Tsetと内気温度Trとの偏差を4秒毎に累積し（ $\Sigma = T_{set} - T_r$ ）、2分間の偏差値により求め、所定値δと比較し、 $\Sigma > \delta$ ならば過渡状態、 $\Sigma \leq \delta$ ならば安定状態と判断するものである。そして、車室内空調が過渡状態と判定されたときには、ステップ151（第2のシート空調制御手段）に移行する。

【0051】

ここで、シート空調ユニット4の第2の空調制御が行われる。具体的には、図8に示すように、目標吹出温度TAOに基づいて算出された目標シート吹出温度TAOsheatに対応する送風機41の風量制御（第2の制御量）であり、シート3への吹出温度の空調制御を行うものである。この空調制御は、車室内空調によって過渡状態と安定状態では異なる風量制御を行うように設定している。

破線で示されている制御特性イが過渡状態における目標吹出温度 T A O s e a t に対応する送風量であり、シート 3 に吹き出す空調風を設定温感 S s e t に到達するように空調制御を行うものである。運転直後の大きな冷暖房能力が必要なときに大風量で送風しできるだけ速く快適領域になるように空調制御を行い、シート吹出温度 T o が設定温感 S s e t に近づき能力が要らなくなってきたら送風量を少なくなるように風量制御して車室内の空調制御を行うものである。

【0052】

これは、上述した空調ユニット 2 1 の風量制御（第1の制御量）と近似している。一方の実線で示した制御特性口が後で述べる安定状態における送風機 4 1 の風量制御を示し目標シート吹出温度 T A O s e a t が低いほどおよび逆に高いほど送風量を低下させた風量制御を行うものである。ここでは、前者の過渡状態の制御特性イを用いて風量制御を行い、冷暖房能力が必要なときに大風量で送風しできるだけ速く快適領域になるように空調制御を行うものである。

【0053】

次に、車室内の内気温度 T r が設定温度 T s e t に近づいてくると上述した偏差値が所定値以下となり車室内空調が過渡状態から安定状態になったときにはステップ 152 に移行する。ここでは、過度状態から安定状態に切り替わった直後かどうかを判定するものであり、安定状態に切り替わった直後であればステップ 153（第1の空調切替制御手段）に移行する。

【0054】

ステップ 153（第1の空調切替制御手段）は、図 8 の実線で示した安定状態の制御特性口における送風機 4 1 の風量制御を行う第1の空調制御であるが、上述したように今までの過渡状態の送風量とは異なった送風量に切り替えるため、ここでは、送風量の切り替えを段階的に所定の送風量に切り替えるように第1の空調切替制御を行う。具体的には、4秒周期ごとに1レベルごとに変化させて所定の送風量になるように徐々に切り替えるものである。そして、所定の送風量に切り替われば、ステップ 154（第1のシート空調制御手段）にて、図 8 の実線で示した安定状態の制御特性口における第1の空調制御を継続させ、シート吹出温度 T o が設定温感 S s e t に達するようにシート空調装置の制御を行うもので

ある。

【0055】

ここで、本発明の要部となるシート空調ユニット4の風量制御について詳しく説明する。図8に示すように、目標シート吹出温度TA_{Seat}に対応する送風量の風量制御（第2の制御量）を実験結果より求めたので以下説明する。図9は、冷房運転において空調ユニット21の目標吹出温度TAOによる温度制御された空調風を車室内に吹き出すとともに、シート空調ユニット4では、図8に示す過渡状態の制御特性イを用いた第1の空調制御を行い、シート3に着席した乗員の皮膚温と血流値および温感レベルS_{seat}との関係を測定した結果である。

【0056】

これによると、冷房をしつづけて20分後のデータであるが車両の熱負荷が大きくてシート3への吹出温度T_oが低いほど皮膚温が低下して血流値が低下してくる。皮膚温33.4℃以下で温感レベルS_{seat}が-1（やや涼しい）以下となると寒すぎによる疲労感、腰痛などの問題が生じることになる。これは、シート空調では皮膚へ直接風を与える接触面空調であるため、車両の熱負荷が大きくて吹出温度が低いほど車室内が温調制御される前にシート3側が冷え過ぎとなり乗員に不快感を招いていた。

【0057】

そこで、このシート3への空調風をシート吹出温度に対応する送風量の関係を温感レベルS_{seat}を用いることで風量制御が可能となったので以下説明をする。図10(a)に示すのがシート吹出温度に対応する吹出風速および温感レベルS_{seat}との関係を実験で評価した結果を示すものである。これによると、シート吹出温度を同じとすると吹出風速を低下させることで温感レベルS_{seat}を向上させるものである。これにより、シート吹出温度に対応する温感レベルS_{seat}が-1（やや涼しい）以上となる吹出風速を基に送風量に置き換えて送風量との関係を求めたのが図10(b)のグラフであり、冷房運転の安定状態時には、このグラフに基いた第2の空調制御を行うものである。

【0058】

なお、この第2の空調制御は、空調ユニット21の風量制御である図7とは異なるものである。空調ユニット21側では目標吹出温度TAOが所定値以下では風量を多くするモードであるが、シート空調ユニット4側では逆に送風量を低下させることで温感レベルSeatを向上させ快適性を確保するものである。

【0059】

次に、暖房運転の場合には、空調ユニット21の目標吹出温度TAOによる温度制御された空調風を車室内に吹き出すとともに、シート空調ユニット4では、図8に示す過渡状態の制御特性イを用いた第1の空調制御を行い、シート吹出温度と吹出風速、温感レベルSeatおよび快適感との関係を実験した結果が図11(a)に示すものである。これによると、シート吹出温度が低く低風速であると、温感レベルSeatが-1(やや涼しい)のときに快適感がやや不快で膝さむの要因となるとともに、シート吹出温度が高く高風速であると顔の火照りを生じ不快を感じる結果を得た。

【0060】

のことより、シート吹出温度に対応する快適感1(やや快適)以上の吹出風速を基に送風量に置き換えて送風量との関係を求めたのが図11(b)のグラフであり、暖房運転の安定状態時にはこのグラフに基いた第2の空調制御を行うものである。

【0061】

なお、この第2の空調制御は、空調ユニット21の風量制御である図7とは異なるものである。空調ユニット21側では目標吹出温度TAOが所定値以上では風量を多くするモードであるが、シート空調ユニット4側では逆に送風量を低下させることで暖め過ぎを防止し快適性を確保するものである。

【0062】

以上の結果より、即効性を狙う過渡状態のときには、第2の空調制御を行い、安定状態では、温感レベルSeatで送風量を決めた第1の空調制御を行うようにした。

【0063】

次に、ステップ155(室内風切替制御手段)について説明する。夏季の炎天

下など日射が強く外気温度が高いときには、空調ユニット21は、ECU37で算出した設定温度T_{set}が低く設定されて大能力の目標吹出温度TAOで運転される。このようなときにシート空調ユニット4側では、過冷房になり易いのでシート吹出温度T_oが目標シート吹出温度TAOs_{eat}よりも低いときには、室内気制御ドア43の開度調節により内気吸込口4bからの車室内空気と空調ユニット21からの冷風とを混合させた室内風切替制御を行い所定の吹出温度制御を行うものである。

【0064】

なお、冬季の暖房運転においても空調ユニット21が大能力で運転されシート吹出温度T_oが目標シート吹出温度TAOs_{eat}よりも高いときも同じように室内気制御ドア43の開度調節により内気吸込口4bからの車室内空気と空調ユニット21からの温風とを混合させた室内風切替制御を行い所定の吹出温度制御を行うものである。

【0065】

以上の空調制御内容を行うシート空調ユニット4の冷房モード、暖房モード、中間モードにおけるその他の作動について説明する。

【0066】

まず、空調ユニット21が冷房モードのときには、すなわち、目標吹出温度TAOが内気温度Trより低い値なので冷房モードと判定され、フェイス開口部32が開口されて車両側のフェイス吹出口から冷風が吹出されるとともに、冷風ダクト32aにも冷風が分岐されて送り込まれる。ここで、シート空調ユニット4側では、設定温感S_{set}とシート吹出温度T_oと目標吹出温度TAOより求めた目標シート吹出温度TAOs_{eat}にて運転される。目標シート吹出温度TAOs_{eat}がシート吹出温度T_oより低い値なので冷房モードと判定して冷温風制御ドア42を冷風側に開口されるとともに、室内気制御ドア43は内気吸込口4bを全閉させて、上述した過渡状態の制御特性イを用いた第1の空調制御または安定状態の制御特性ロを用いた第2の空調制御で送風機41を作動させてシート3へ冷風を吹き出しシート空調の吹出温度制御を行うものである。

【0067】

そして、シート3に着席している乗員がシート温感設定スイッチ55を作動させて設定温感Ssetの設定を変更したときには、例えば、設定温感Sset「0」から冷側に1ランク変更させた場合には、目標シート吹出温度TAOsheatを1ランク変更値を低下させて吹出温度制御と風量制御で対応させるものである。逆に設定温感Sset「0」から暖側に1ランク変更させた場合には、目標シート吹出温度TAOsheatを1ランク変更値を上昇させて吹出温度制御と風量制御で対応させるものである。

【0068】

次に、空調ユニット21が暖房モード、すなわち、目標吹出温度TAOが内気温度Trより高い値なので暖房モードと判定され、フット開口部33が開口されて車両側のフット吹出口から温風が吹出されるとともに、温風ダクト33aにも温風が分岐されて送り込まれる。ここで、シート空調ユニット4側では、設定温感Ssetとシート吹出温度Toと目標吹出温度TAOより求めた目標シート吹出温度TAOsheatにて運転される。目標シート吹出温度TAOsheatがシート吹出温度Toより高い値なので暖房モードと判定して冷温風制御ドア42を温風側に開口されるとともに、室内気制御ドア43は内気吸込口4bを全閉させ送風機41を作動させてシート3へ温風を吹き出し上述した第2の空調制御または第1の空調制御で吹出温度制御を行うものである。

【0069】

そして、シート3に着席している乗員がシート温感設定スイッチ55を作動させて設定温感Ssetの設定を変更したときには、例えば、設定温感Sset「0」から冷側に1ランク変更させた場合には、目標シート吹出温度TAOsheatを1ランク変更値を低下させて吹出温度制御と風量制御で対応させるものである。逆に設定温感Sset「0」から暖側に1ランク変更させた場合には、目標シート吹出温度TAOsheatを1ランク変更値を上昇させて吹出温度制御と風量制御で対応させるものである。

【0070】

次に、空調ユニット21が中間モードの場合には、フェイス開口部32とフット開口部33とが開口されて車両側のフェイス吹出口から冷風がフット吹出口か

ら温風が吹出されるとともに、冷風ダクト32aに冷風が温風ダクト33aに温風が分岐されて送り込まれる。この場合には、シート空調ユニット4の設定温感Setの設定が中間の「0」または冷側に設定されたときには、冷温風制御ドア42を冷風側に開口させて冷風を送り込みシート吹出温度Toが低下したときに、室内空気と冷風と混合させる吹出温度制御を行うとともに、上述した第2の空調制御または第1の空調制御で吹出温度制御を行うものである。

【0071】

逆に、設定温感Setの設定が暖側に設定されたときには、冷温風制御ドア42を温風側に開口させて温風を送り込みシート吹出温度Toが上昇したときに、室内空気と温風を混合させる吹出温度制御を行うとともに、上述した第2の空調制御または第1の空調制御で吹出温度制御を行うものである。なお、これらの冷風と温風の混合を冷温風制御ドア42で冷風と温風の混合割合を調整することにより、吹出温度制御を行うことでも良い。

【0072】

以上の構成による実施形態によれば、空調ユニット21を制御する制御装置37に、シート空調ユニット4のシート空調制御を、車室内空調が安定状態のときに第1の空調制御と、車室内空調が過渡状態のときに第2の空調制御で異なった制御を有することにより、車室内空調の空調ユニット21の制御を行うとともに、接触面空調であるシート空調ユニット4を制御することが可能となる。

【0073】

例えば、車室内空調が安定状態に達しても日射が強く炎天下などの車両の熱負荷が大きいときには、空調ユニット21の空調制御は、空調風の吹出温度を低くして風量を増加させるなどの制御が行われるが、このようなときにシート空調ユニット4ではむしろ過冷房による不快感を乗員に与える。また、暖房時の車両の熱負荷が大きいときにも同じように空調ユニット21の空調制御は、空調風の吹出温度を高くして風量を増加させるなどの制御が行われるが、このようなときにシート空調ユニット4では過暖房による不快感を乗員に与える。

【0074】

そこで、シート3に吹き出す空調風の吹出温度および風量を乗員の温感レベル

による評価で求めた第1の空調制御で別の制御を行うことで従来の過冷房および過暖房を防止できる。この結果により、車室内空調とシート空調の快適性の向上が図れる。

【0075】

また、炎天下に暫く駐車させた後に乗車するときなど、シートの表面温度が高く急速な冷房を必要とするような車室内空調が過渡状態のときには、吹出温度および風量を最大限の空調能力を發揮させて吹出温度を低くさせた第2の空調制御で制御することで急速な冷房が可能となる。この第2の空調制御は、空調ユニット21の空調制御と同じような制御を行うことにより、車室内空調とシート空調の即効性の向上が図れる。

【0076】

また、空調ユニット21を制御する制御装置37に、上述の第2の空調制御および第1の空調制御を、空調ユニット21と共に用いた熱負荷検出値Tr、T_{am}、T_s、温度設定スイッチ53、および目標吹出温度TAOを用いることにより、空調ユニット21の構成部品と共にでき別体の部品等を設けずに精度の良好なシート空調ユニット4の制御が可能となる。この結果、シート空調ユニット4の製品コストの低減が図れる。

【0077】

さらに、空調ユニット21の空調制御は、例えば、冷房運転で設定温度T_{set}と隔たりがある場合には吹出温度が低いほど風量を多くする制御を行っているが、上述した第1の空調制御は、低い吹出温度で高風量の風量制御をすると冷え過ぎによる腰痛、疲労感の要因となり、これを解消するために吹出温度に対応した風量を温感レベルによる評価を実験で求め、その結果より、具体的には低い吹出温度ほど低風量の送風量で制御を行うことで乗員の不快感を解消させることにより快適性の向上が図れる。

【0078】

また、同じように、暖房運転で設定温度T_{set}と隔たりがある場合には、吹出温度が高いほど風量を多くする制御を行っているが、上述した第1の空調制御は、高い吹出温度で高風量の風量制御をすると暖め過ぎによる顔の火照りや低い

吹出温度で低風量による膝寒さなどの要因となり、これを解消するために吹出温度に対応した風量を温感レベルおよび快適感などによる評価を実験で求め、その結果より、具体的には高い吹出温度ほど低風量の制御量で制御を行うことで乗員の不快感を解消させることにより快適性の向上が図れる。

【0079】

また、第1の空調制御は、第2の空調制御に対して、上述したように吹出温度と風量が異なる制御を行うため、吹出温度に対応する風量が車室内空調が過渡状態から安定状態に切り替わった直後は、ある周期ごとに風量を所定レベルに1レベルごと段階的に切り替える制御を行う第1の空調切替制御を用いることで第1の空調制御に移行させることにより、違和感なき制御量の変更ができ乗員への不快感を与えない。

【0080】

また、空調ユニット21の空調制御では、上述した熱負荷の大きいときに、過冷房および過暖房になり易いこれを防止するために第1の空調制御で対応したが吹出温度がさらに低下または上昇するときには、室内気制御ドア43により車室内空気を取り入れて混合調節させる室内風切替制御を行うことにより、過冷房および過暖房を防止させて快適性の向上が図れる。

【0081】

また、車室内の空調状態の判定を、目標吹出温度TAOを求める設定温度T_{s e t}と内気温度Trとの偏差に基づいて判定することにより、車室内空調を容易に過渡状態または安定状態の判定ができ精度が良い。

【0082】

(他の実施形態)

以上の実施形態では、シート吹出温度センサ47を用いてシート3への吹出空気温度Toと目標シート吹出温度TAOsseatとの比較で空調制御を説明したが、シート吹出温度センサ47を設けず、内気温度Trなど空調ユニット21の検出センサの温度データをもとにシート吹出温度Toを推定させてこのデータとの比較で空調制御することも良い。これにより、空調ユニット21の構成品と共用ができ、別体の検出部品などを設けずにシート3への空調制御が可能となる。

【0083】

また、以上の実施形態では、空調ユニット21から冷風または温風をシート空調ユニット4に導き、シート3の空気吹出口3aから冷風または温風を吹き出すシート空調の空調制御を説明したが、これに限らず、シート空調ユニット4内にペルチェ素子を用いた加熱冷却装置を組み込んだシート空調の空調制御にも適用できる。図12に示すように、シート3の着座部3bおよび背当て部3cの通風路3d、3e内にペルチェ素子を用いた加熱冷却器60を組み込んで、これらの上流側に送風機61を組み込んでシート空調ユニット4の吐出口4aに接続されている。これにより、空調ユニット21から冷風または温風をシート空調ユニット4に導いた空気を、加熱冷却器60で加熱または冷却させたのちにシート3の空気吹出口3aより冷風または温風を吹き出すように構成されている。

【0084】

この構成においてもECU37は、空調ユニット21の内気温度Tr、外気温度T_{a m}、日射量Tsおよび温度設定スイッチT_{1 s e t}より目標吹出温度TAOを求め、この目標吹出温度TAOにより、シート3へ吹き出す空調風の目標シート吹出温度TAO_{s e a t}を算出して、この目標シート吹出温度TAO_{s e a t}に対応する送風機61の風量制御および加熱冷却器60の出力制御を過渡状態と安定状態に分けて空調制御を行うことができる。ECU37に加熱冷却器60の出力制御を付加することにより、空調ユニット21の目標吹出温度TAOが小能力で運転されたときには、加熱冷却器60で能力の増加が可能となる。この結果、シート空調の快適性をさらに向上できる。

【0085】

また、以上の実施形態の制御装置37は、目標吹出温度TAOと送風量の風量制御（第1の制御量）により制御する空調ユニット21の空調制御と、目標シート吹出温度TAO_{s e a t}と送風量の風量制御（第2の制御量）により制御するシート空調ユニット4のシート空調制御とは、ともに、空調ユニット21の構成部品である熱負荷の検出値Tr、T_{a m}、Tsおよび温度設定スイッチ53の入力情報から算出した目標吹出温度TAOに基づいて求めたが、これに限らず、シート空調ユニット4の空調制御を熱負荷の検出値Tr、T_{a m}、Tsの入力情報

からシートへの目標シート吹出温度 T A O s e a t に基づいて目標シート吹出温度 T A O s e a t と送風量の風量制御（第2の制御量）を求めるとともに、このシート空調ユニット4の空調制御（目標シート演算手段）を車両内空調が安定状態にあるときに第1の空調制御（第1の目標シート演算手段）と過渡状態にあるときに第2の空調制御（第2の目標シート演算手段）を有することでも良い。

【0086】

これにより、車室内空調の空調ユニット21の制御を行うとともに、接触面空調であるシート空調ユニット4を制御することが可能となる。

【0087】

また、以上の実施形態では、シート空調ユニット4の設定温度を手動設定するためにシート温感設定スイッチ55を用いた設定温感 S set による設定温度を説明したが、これに限らず、図13に示すように、設定温度を手動設定させる抵抗器を用いたダイヤル設定器62で設定温度をアナログ表示で乗員に操作させるシート空調操作パネル63でも良い。

【図面の簡単な説明】

【図1】

本発明の実施形態によるシート空調ユニットの構成を示す全体構成図である。

【図2】

本発明の実施形態による空調ユニットのエアコン操作パネルの構成を示す正面図である。

【図3】

本発明の実施形態によるシート空調ユニットのシート空調操作パネルの構成を示す正面図である。

【図4】

(a) は、シート温感設定スイッチの設定温感と設定温度との関係を示す図、(b) は、乗員の温感レベルと設定温感との関係を示す図である。

【図5】

本発明の実施形態によるシート空調ユニットの空調制御の流れを示すフローチャートである。

【図6】

(a) は外気温度 T_{am} と ΔT_{am} との関係を示す図、(b) は日射量 T_s と ΔT_s との関係を示す図である。

【図7】

空調ユニットの送風量と目標吹出温度との関係を示す図である。

【図8】

シート空調ユニットの送風量と目標シート吹出温度との関係を示す図である。

【図9】

皮膚温と血流値および温感レベルとの関係を示す図である。

【図10】

(a) は、温感レベルとシート吹出温度との関係を示す図、(b) は、送風量とシート吹出温度との関係を示す図である。

【図11】

(a) は、温感レベルおよび快適感と吹出風速およびシート吹出温度との関係を示す図、(b) は、送風量とシート吹出温度との関係を示す図である。

【図12】

他の実施形態による加熱冷却器を組み込んだシート空調を示す概略構成図である。

【図13】

他の実施形態によるシート空調操作パネルの構成を示す正面図である。

【符号の説明】

4 …シート空調ユニット

2 1 …空調ユニット

3 7 …ECU (制御装置)

4 3 …室内気制御ドア (切替制御手段)

5 3 …温度設定スイッチ (設定温度)

T_r …内気温度 (熱負荷の検出値、車室内温度)

T_{am} …外気温度 (熱負荷の検出値)

T_s …日射量 (熱負荷の検出値)

TAO…目標吹出温度

TAOs e a t …目標シート吹出温度

T s e t …設定温度

【書類名】

四面

【図1】

【図2】

【図3】

【図4】

(a)

【温感レベル】

(b)

【図5】

【図6】

(a)

(b)

【図7】

【図8】

【図9】

【図10】

(a)

(b)

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 季節に係わらず乗員の温感に合った快適な車室内空調およびシート空調を可能にした車両用空調装置を実現することにある。

【解決手段】 空調風を車室内に吹き出す空調ユニット21と、シートへ空調風を吹き出すシート空調ユニット4と、空調ユニット21を制御するECU37とを備え、この制御装置37は、熱負荷の検出値Tr、T_{a m}、T_sおよび設定温度T_{s e t}から目標吹出温度TAOを求め、この目標吹出温度TAOに基づいて求めた制御量で空調ユニット（21）を制御する空調制御およびシート空調ユニット4を制御するシート空調制御を有し、かつ、このシート空調制御は、車室内空調が安定状態にあるときに制御量を決める第1の空調制御（154）と過渡状態にあるときに制御量を決める第2の空調制御（151）とを有するように配設したことを特徴としている。

【選択図】 図5

出願人履歴情報

識別番号 [000004260]

1. 変更年月日 1996年10月 8日

[変更理由] 名称変更

住 所 愛知県刈谷市昭和町1丁目1番地

氏 名 株式会社デンソー