Acne and External Environment

# 여드름과 외부환경의 상관관계 분석과 예측

파이썬과 R을 활용한 빅데이터 머신러닝 전문가 양성과정 11반 김예찬

### **CONTENTS**

01

프로젝트 소개

02

데이터 소개

03

분석및예측

04

결과

05

결론 및 발전방향

### 프로젝트 목표

### '외부환경에서 발생 가능성이 있는지 확인 및 예측하고 활용방안에 대해서 고민해보자'





- 건강보험심사평가원(심평원) 제공
- 질병코드등다양한코드
- 질병 종류별 많은 코드 존재
- 복잡한 데이터 구조 및 명칭



- 기상청 오픈 API 활용
- 2016년~2020년 2월 데이터
- 평균기온, 강수량, 자외선, 미세먼지
- 네이버, 검색 트렌드 및 지식in API
- 제한적인 데이터 수집

### " WHY 여드름?"



### " 공공의 적 "

### 여드름이란?



### 여드름(Acne)

- 주로 상체에 발생하는 염증성 피부질환
- 남성호르몬이 발생 요인
- 피지와 Acne균이 만나서 발생
- 다양한증상존재
- 재발 가능성이 매우 높은 질환

## " 공공의 적 "



청소년의 상징? 사랑하면 생긴다? 젊다는 증거?

" 공공의 적 "

육체적인 문제

정신적인 문제

## " 공공의 적 "

육체적인 문제

흉터

모공 확대

붉은 기

고통

" 공공의 적 "

정신적인 문제

외모 자신감 하락

스트레스

신체이형 장애

비싼 치료비

## "청소년의 상징?"



건강보험심사평기원, 여드름 관련 질병코드 종합

## "청소년의 상징?"





건강보험심사평가원, 여드름 관련 질병코드 종합

### "성별의 차이?"

2016년 1월~2020년 2월



건강보험심사평기원, 여드름 관련 질병코드 종합

## " 공공의 적 "



## " 공공의 적 "



네이버뉴스기사 1000개 대상 명사 추출 네이버 API 활용



상위빈도수18개추출

### " 공공의 적 "



네이버지식in1000개 글대상 명사추출 네이버API활용



상위 빈도수 18개추출

### "데이터 소개"



- temp:월평균기온데이터
- pm2.5:월 평균 미세먼지 데이터
- rain: 월 평균 강수량 데이터
- uv:월 평균 자외선 데이터



- 월별 환자수 데이터
- 성별, 연령별 개별 데이터

### "데이터 소개"

### - 종속변수



보건의료빅데이터개방시스템: https://opendata.hira.or.kr/home.do

### "데이터 소개"

### - 독립변수



기상자료개방포털: https://data.kma.go.kr/cmmn/main.do

### "데이터 소개"

### - 독립변수



공공데이터포털: https://www.data.go.kr/index.do

## " 분석 방법 "



### "상관관계 분석"

### - 피어슨, 스피어맨 상관관계 분석

1에기까울수록강한양의상관관계 -1에기까울수록강한음의상관관계 0에기까우면선형적인상관관계없음을 의미

#### 1.피어슨

corr = data.corr(method='pearson')
corr

#### 2.스피어맨

corr = data.corr(method='spearman')
corr

#### 1.피어슨결과

|       | total     | temp      | pm2_5     | rain      | uv        |
|-------|-----------|-----------|-----------|-----------|-----------|
| total | 1.000000  | 0.230657  | -0.375881 | 0.243334  | 0.085707  |
| temp  | 0.230657  | 1.000000  | -0.710151 | 0.645603  | 0.904398  |
| pm2_5 | -0.375881 | -0.710151 | 1.000000  | -0.554194 | -0.580772 |
| rain  | 0.243334  | 0.645603  | -0.554194 | 1.000000  | 0.551017  |
| uv    | 0.085707  | 0.904398  | -0.580772 | 0.551017  | 1.000000  |

#### 2.스피어맨결과

|       | total     | temp      | pm2_5     | rain      | uv        |
|-------|-----------|-----------|-----------|-----------|-----------|
| total | 1.000000  | 0.220622  | -0.386648 | 0.134790  | 0.111210  |
| temp  | 0.220622  | 1.000000  | -0.730235 | 0.644907  | 0.881629  |
| pm2_5 | -0.386648 | -0.730235 | 1.000000  | -0.546422 | -0.628217 |
| rain  | 0.134790  | 0.644907  | -0.546422 | 1.000000  | 0.528825  |
| uv    | 0.111210  | 0.881629  | -0.628217 | 0.528825  | 1.000000  |

### "상관관계 분석"

- 종속변수와 독립변수의 상관관계 분석을 위한 산점표



### "상관관계 분석"

- 종속변수와 상관관계 분석을 위해 총합, 성별(남, 녀), 20대 분류



### "회귀분석"

#### 1) 회귀 분석 in R

```
# 독립변수 : temp, pm2.5, rain, uv
# 종속변수 : total
fit \langle -lm(total \sim temp + pm2_5 + rain + uv, data= ad)
summary(fit)
# 독립변수 : temp, pm2.5, rain, uv
# 종소변수 : man
fit1 \langle -lm(man \sim temp + pm2_5 + rain + uv, data = ad1)
summary(fit1)
# 독립변수 : temp, pm2.5, rain, uv
# 종속변수 : woman
fit2 <- lm(woman ~ temp + pm2 5 + rain + uv, data= ad2)
summary(fit2)
# 독립변수 : temp, pm2.5, rain, uv
# 종속변수 : 10대
fit3 \langle -lm(X10s \sim temp + pm2.5 + rain + uv, data= ad3)
summary(fit3)
# 독립변수 : temp, pm2.5, rain, uv
# 종속변수 : 20대
fit4 \langle - lm(X20s \sim temp + pm2_5 + rain + uv, data= ad4)
summary(fit4)
# 독립변수 : temp, pm2.5, rain, uv
# 종속변수 : 30대
fit5 \langle -lm(X30s \sim temp + pm2_5 + rain + uv, data= ad5)
summary(fit5)
```

#### Call:

 $lm(formula = total \sim temp + pm2_5 + rain + uv, data = ad)$ 

#### Residuals:

Min 1Q Median 3Q Max -1970.3 -796.1 42.2 706.0 2567.3

#### Coefficients:

#### 값이작을수록 의미가있다.



Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.'

Residual standard error: 1203 on 45 degrees of freedom
Multiple R-squared: 0.2005, Adjusted R-squared: 0.1295

F-statistic: 2.822 on 4 and 5 DF, p-value: 0.03583

값이 클수록 의미가 있다.



값이 작을수록 의미가 있다.

### " REGRESSION 결과 "

### 1) 단순회귀 결과 분석 및 의미 해석

|        | 기온           | 미세먼지 | 강수량          | 자외선          |
|--------|--------------|------|--------------|--------------|
| 총 환자 수 | <del>無</del> | 有    | <del>無</del> | <del>無</del> |
| 남성     | 無            | 有    | 無            | 無            |
| 여성     | 有            | 有    | 無            | <del>無</del> |
| 20대    | 有            | 有    | 有            | 有            |
| 30대    | 有            | 有    | 有            | 有            |

※ 결정계수 확인 → 모형의 적합도 확인 → 회귀계수 확인 → t값의 유의확률 확인

### "DECISION TREE"

#### 1) DECISION TREE

```
# 의사결정 나무
from sklearn.metrics import accuracy_score
from sklearn.tree import export graphviz
from IPython.core.display import Image
X = acne_df3_total.iloc[:,1:]
v = acne df3 total.iloc[:,0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
from collections import Counter
Counter(y train)
Counter(y_test)
                                                        max depth = 2
acne model = DecisionTreeClassifier(criterion='entropy',
acne_model.fit(X_train, y_train)
acne_pred = acne_model.predict(X_test)
acne_model.score(X_train, y_train)
#정확도 계산
acne_model.score(X_test, y_test)
accuracy_score(y_test, acne_pred)
acne_model.feature_importances_
# 중요도 확인
pd.DataFrame({'feature' : acne_df3_total.iloc[:,1:],
              'importance' : acne_model.feature_importances_}
acne model classes
acne_model.predict([[15234,23,12, 6.8, 4.4]])
```

#### 정확도

acne\_model.score(X\_test, y\_test)

0.2

#### 입력변수 별중요도

|   | feature  | importance |
|---|----------|------------|
| 0 | (total,) | 0.000000   |
| 1 | (temp,)  | 0.703093   |
| 2 | (pm2_5,) | 0.000000   |
| 3 | (rain,)  | 0.000000   |
| 4 | (uv,)    | 0.296907   |

#### 새로운 입력에 대한 예측값

acne\_model.predict([[15234,23,12

array([4], dtype=int64)

### DECISION TREE "



### "LINEAR REGRESSION"

#### 1) LINEAR REGRESSION

```
X = data.iloc[:,1:]
y = data.iloc[:,0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
linear = LinearRegression()
linear_fit(X_train,y_train)
linear_y_hat = linear.predict(X_test)
linear_MAE = mean_absolute_error(y_test,linear_y_hat)
linear_MSE = mean_squared_error(y_test,linear_y_hat)
linear_MAE = mean_absolute_error(y_test,linear_y_hat)
linear_MAE = mean_absolute_error(y_test,linear_y_hat)
print('MSE = Linear: %.2f' %(linear_MSE))
print('MSE = Linear: %.2f' %(linear_MSE))
print('MAE = Linear: %.2f' %(linear_MAE))
```

R2: 1.00 MSE: 931.96 MAE: 27.29



### " LASSO REGRESSION "

#### 1) LASSO REGRESSION



### RIDGE REGRESSION "

### 1) RIDGE REGRESSION

R2: 1.00 MSE: 932.52 MAE: 27.32



## " REGRESSION 비교 "





LASSO가 가장 적합한 분석기법이라는 것을 의미

## " REGRESSION 비교 "

| 항목                | R2 Score (결정계수)                 | MSE (손실함수)              | MAE (평균 에러 지표) |
|-------------------|---------------------------------|-------------------------|----------------|
| 설명                | 0에 가까우면 설명력 ↓<br>1에 가까울수록 설명력 ↑ | 오답일수록 큰 값<br>정답일수록 작은 값 | 값이 작을수록 좋음     |
| Linear Regression | 1.00                            | 931.96                  | 27.29          |
| Ridge Regression  | 1.00                            | 932.52                  | 27.32          |
| Lasso Regression  | 1.00                            | 931.25                  | 27.32          |

R2는 동일, MSE와 MAE로 선택하는 것이 좋음

### statsmodels 알고리즘

### - Python내에서 다양한 통계분석을 가능하게 하는 모듈

```
acne = files.upload()
                                                                                          pred = results.get prediction(start=pd.to datetime('2019-02-01'), dynamic=False) # 예측할 시작 날짜 입력
data = pd.read csv(io.BytesIO(acne['acne df3.csv']))
                                                                                          pred ci = pred.conf int() #추정된 계수의 신뢰구간 계산
data.head()
                                                                                          ax = v['2016':].plot(label='observed')
data['date'] = ['2016-01-01', '2016-02-01', '2016-03-01', '2016-04-01', '2016-05-01 pred.pred.predicted_mean.plot(ax=ax, label='0ne-step ahead Forecast', alpha=.7, figsize=(14, 7))
                      '2017-01-01', '2017-02-01', '2017-03-01', '2017-04-01', '2017-0 ax.fill_between(pred_ci.index,
                      '2018-01-01', '2018-02-01', '2018-03-01', '2018-04-01', '2018-0
                                                                                                       pred ci.iloc[:, 0],
                      '2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-0
                                                                                                       pred ci.iloc[:, 1], color='k', alpha=.2)
                                                                                          ax.set xlabel('Date')
                      ax.set_ylabel('Patients Count')
data['date'] = pd.to datetime(data['date'])
data.set index('date', inplace=True)
                                                                                          plt.legend()
                                                                                          plt.show()
y = data['total'].resample('MS').mean()
y.plot(figsize = (15.6))
                                                                                          y_forecasted = pred.predicted_mean
plt.show()
decomposition = sm.tsa.seasonal_decompose(y, model='additive') # tsa.seasonal_decom_y_truth = y['2019-02-01':]
                                                                                          mse = ((y_forecasted - y_truth) ** 2).mean()
fig = decomposition.plot()
                                                                                          print('The Mean Squared Error of our forecasts is {}'.format(round(mse. 2)))
plt.show()
                                                                                          print('The Root Mean Squared Error of our forecasts is {}'.format(round(np.sgrt(mse), 2)))
# ARIMA : ARIMA는 자기진행적 통합 이동 평균, ARIMA 모델은 표기법 ARIMA(p. d. a)로 3 pred_uc = results.get_forecast(steps=100)
                                                                                          pred ci = pred uc.conf int() #추정된 계수의 신뢰구간 계산
p = d = q = range(0, 2)
                                                                                          ax = y.plot(label='observed', figsize=(14, 7)) # observed : 관찰값
pda = list(itertools.product(p, d, a)) # itertools : 자신만의 반복자를 만드는 모듈
                                                                                          pred uc.predicted mean.plot(ax=ax, label='Forecast') # Forecast : 예측값
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]
                                                                                          ax.fill between(pred ci.index.
                                                                                                       pred ci.iloc[:, 0],
print('Examples of parameter combinations for Seasonal ARIMA...')
                                                                                                       pred ci.iloc[:, 1], color='k', alpha=.25)
print('SARIMAX: {} x {}'.format(pdg[1], seasonal pdg[1]))
                                                                                          ax.set xlabel('Date')
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2]))
                                                                                          ax.set ylabel('Patients Count')
print('SARIMAX: {} x {}'.format(pdg[2], seasonal pdg[3]))
                                                                                          plt.legend()
print('SARIMAX: {} x {}'.format(pdg[2], seasonal pdg[4]))
                                                                                          plt.show()
```

### statsmodels 알고리즘

- Python내에서 다양한 통계분석을 가능하게 하는 모듈



### statsmodels 알고리즘

- Python내에서 다양한 통계분석을 가능하게 하는 모듈



## "Prophet 알고리즘"

### - 페이스북에서 만든 시계열 알고리즘으로 압도적으로 쉽다는 장점

```
data['date'] = ['2016-01-01', '2016-02-01', '2016-03-01', '2016-04-01', '2016-05-01', '2016-06-01', '2016-07-01', '2016-08-01', '20
                    '2017-01-01', '2017-02-01', '2017-03-01', '2017-04-01', '2017-05-01', '2017-06-01', '2017-07-01', '2017-08-01',
                    '2018-01-01'. '2018-02-01'. '2018-03-01'. '2018-04-01'. '2018-05-01'. '2018-06-01'. '2018-07-01'. '2018-08-01'.
                    '2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
                    '2020-01-01', '2020-02-01'l
data['date'] = pd.to datetime(data['date'])
acne prophet = data[['date', 'total']]
acne prophet = acne prophet.rename(columns = {'date' : 'ds', 'total' : 'y'})
acne_prophet = acne_prophet[['ds', 'y']].reset_index(drop=True)
model = Prophet(growth='linear'.
                  interval_width=0.97, # 정확도 조정
                 seasonality mode='multiplicative'.
                  yearly_seasonality=True,
                  changepoint range=0.7, # 데이터의 70% 정도에서 changepoint
                 changepoint_prior_scale=0.3)
model.fit(acne prophet)
future = model.make_future_dataframe(periods=365)
forcast = model.predict(future)
forcast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
fig = model.plot(forcast)
a = add changepoints to plot(fig.gca(), model, forcast)
accne = model.plot(forcast)
sns.set(font scale=1.1)
fig1 = model.plot_components(forcast)
plt.tight layout()
```

> 15000

## "Prophet 알고리즘"

페이스북에서 만든 시계열 알고리즘으로 압도적으로 쉽다는 장점

ds



점선: 트렌드의 변화 실선: 트렌드

## "Prophet 알고리즘"

- 페이스북에서 만든 시계열 알고리즘으로 압도적으로 쉽다는 장점



### " 상관관계 분석과 예측 결과 "

#### 1) 상관관계 분석

1. 여드름은 기온〉강수량〉자외선 순으로 유의미한 관계가 있음 (단, 약한양의 상관관계로 큰 의미 X)

#### 2) 회귀분석

1. R2 결정 계수가 1로 높지만, MSE의 점수가 높아 데이터의 적합성에 의문 (단, 3가지의 회귀분석 기법의 눈에 띄는 차이는 없음)

#### 3) 예측 결과

1. 20년 2월 이후 환자 수가 줄어들 것으로 예측 (단, 코로나 19 변수에 적용 불가로 실제 20년 2월 이후 관측값과 차이가 있을 것)

### " 결론 및 발전방향 "

코로나 마스크로 지친 피부 달래주오~<mark>검색어 '마스크 트러블' 급증</mark>

○ 위클리포스트 | ○ 승인 2020.11.04 00:24 | ○ 댓글 0

📢 🖶 🟚 가

[2020년 11월 03일] - 초겨울을 앞두고 코로나19 마스크 착용에 환절기까지 겹치면서 피부 트러블로 화난 모공을 진정시키기 위한 '저자극 스킨케어템'을 찾는 이들이 늘고 있다. 마스크 속 고온다습한 환경에 피지 분비가 활성화되면서 피지와 땀, 노폐물이 엉켜 모공을 막는 데다, 지속적인 마찰로 피부가 예민해져 '마스크 트러블'이 생기는 것.

실제로 지난 2월부터 약 8개월간 네이버 검색량을 분석한 결과 키워드 '피부 트러블'은 18% 증가했지만, 코로나 연관 키워드인 '마스크 트러블' 네이버 검색량은 161%, 네이버 쇼핑 화장품-미용 분야 검색량은 3,233% 급증했다. 최근엔 마스크(mask)와 여드름 (acne)의 합성어인 '마스크네'(maskne)라는 말까지 등장하는 등 관심도가 많이 늘어나고 있다.



출처: 위클리포스트: http://www.weeklypost.kr/news/articleView.html?idxno=1598

### " 결론 및 발전방향"



트러블 케어 (anti-trouble)

방구석 셀프 뷰티족 (self beauty)

이너 뷰티 건강기능식품의 약진 (keep healthy)

장기간 마스크 착용으로 여드름 환자 증가 예측 분석 결과와 오차가 클 것으로 예상

## " 결론 및 발전방향"

성별 맞춤 서비스



연령별 맞춤서비스

상품 세<del>분</del>화 시기별 맞춤 마케팅

### " 결론 및 발전방향"

- 1) 시사점
- 1. 헬스케어 분야 데이터 습득과 정제, 분석의 어려움이 있다.
- 2. 추가적인 데이터 확장과 알고리즘 사용으로 발전 가능성이 있다.
- 3. 도메인 지식이 매우 중요하다.
- 4. 공공 데이터의 중요성을 다시 알게 되었다.

### " 결론 및 발전방향"

- 1) 한계점
- 1. 미래 관측 데이터와 실제 데이터의 차이가 있을 것으로 예측
- 2. 질병과 관련된 데이터가 매우 제한적이다. (2020년 자료無)
- 3. 외부환경에 대한 추가적인 데이터 수집이 제한적이다.
- 4. 환자 수와 외부환경의 유의미한 상관관계를 분석하지 못했다.
- 5. 실질적인 환자들의 데이터를 수집하지 못했다.

# THANK YOU

발표자 김 예 찬