Automated Malaria Detection Using Convolutional Neural Networks

HERMELA SHIMELIS

Background

- Malaria is caused by Plasmodium parasites
- In 2020, malaria accounted for 627,000 deaths worldwide
- Early detection reduces morbidity and mortality

There is an increasing demand for diagnostic tests

Problem summary

- Malaria diagnosis bottlenecks
 - Shortage of trained personnel
 - Labor intensive
 - Variability in test accuracy
 - Limited availability of testing sites
 - Increase in demand
 - The low-cost rapid test is not very accurate

Solution: Automation of malaria detection

Blood smear slides imaging

Malaria detection using Image classification

Quantification of parasitized cells

Diagnosis

Convolutional Neural Network (CNN) models for malaria detection

- Tested 5 models
 - Model 1: Base model
 - Model 2: Tunned convolutional layers
 - Model 3: Image augmentation
 - Model 4: HSV color space
 - Model 5: Pre-trained VGG16 model
- 25,000 train and 2,600 test images

Model Comparison

	Model 1	Model 2	Model 3	Model 4	Model 5
Sensitivity (%)	97.4	99.2	97.8	98.8	94.0
Specificity (%)	99.0	98.3	99.3	97.7	95.9
Accuracy (%)	98.2	98.7	98.5	98.3	95.0

Model 2 outperformed all models, with 99.2% sensitivity, 98.3% specificity, and about 98.7% accuracy

Model insights

1,058,736 trainable parameters

- 97.4% sensitivity
- 99.0% specificity

Model insights

• 272,394 trainable parameters

Convolutional and pooling layers

Fully connected layers

- 99.2% sensitivity
- 98.3% specificity

Model Insights

Model 3: Image augmentation

- 97.8% sensitivity
- 99.3% specificity

Model 4: HSV color space

- 98.8% sensitivity
- 99% specificity

Model Insights

Model 5: Pre-trained VGG16 model

- 94.0% sensitivity
- 95.9% specificity

Recommendations for implementation of malaria detection automation

Benefits

- Quick and accurate diagnosis
- Scalable
- Overcome challenges with expert personnel

Challenges

- Partial automation
- Image quality variability
- Model accuracy on parasites of different stages

Actionable

- Test model with crossclinic images
- Standardize sample prepared and imaging
- Deploy model as a software