This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(51) B 01 J 3/06; C 04 B 41/50

ОПИС ДО ПАТЕНТУ

НА ВИНАХІД

бва проведення експертизи по суті на підставі Постанови Верховної Ради України Nº 3769-XII BLA 23.XII. 1993 D.

Nybrikystuce в редакції завеника

(54) СПОСІБ ОДЕРЖАННЯ ПОКРИТТЯ З ВУГЛЕЦЮ НА ВИРОБАХ З КАРБІДУ КРЕМНІЮ

1

(21) 94041927

(22) 13.04.94

(24) 25, 12,96

(46) 25.12.96. Бюл. № 4

(66) J.X. Li, Y. Matsup, S. Kimura, Improvement of Thermal stability of SIC fiber by CVD-C. SIC coating. J. Ceram. Soc. Jap., 1991. v. 99, N. 2, p. 127 - 1211,

(72) Гогоці Юрій Гворгійович

(73) Гогоці Юрій Георгійович (UA)

2

(57) Способ получения углеродного покрытия на изделиях из карбида кремния, включающий обработку карбида кремния при повышенной температуре, отличающийс я тем, что изделия из карбида кремния обрабатывают водяным паром при температуре 300 - 800°C, давлении равном или выше 5 МПв и соотношении карбида кремния и воды 1 : (0,5 - 50).

Изобретение относится к способам получения неорганических покрытий на изделиях из карбида кремния и может быть использовано для получения углеродных покрытий, в частности графито и алмазоподобных на карбидокремниевых подложках любой конфигурации.

Нанесение слоя графитоподобного углерода на поверхность карбида кремния позволяет получить антифрикционные и электропроводные покрытия, которые используются в качестве теплоотводящих покрытий и широкозонных полупроводников в электронике, защитных покрытий в оптике и металлообработке, а также в качестве абразивных покрытий.

Наиболее близким к изобретению является спосов получения углеродного покрытия, включающий обработку изделий из карбида кремния при повышенной температуре, при этом обработку изделий проводят в газовой среде при температуре 1200 -1300°С и повышенном давлении [1].

Известным способом можно получить графитоподобные покрытия на изделиях простой формы и невозможно получить алмазные и алмазоподобные покрытия, а также графитоподобные, алмазные и алмазоподобные покрытия на изделиях сложной формы.

Задача, решаемая изобретением, заключается в усовершенствовании способа получения углеродного покрытия на изделиях из карбида кремния, в котором условия нанесения покрытия (температура и давление) и соотношение карбида кремния и воды позволяют получить необходимую структуру покрытия (алмаз, графит или аморфный углерод) на изделиях любой формы.

Поставленная задача решается том, что в способе получения углеродного покрытия на изделиях из карбида кремния, включающем обработку карбида кремния при повышенной температуре, согласно изобретению изделия из карбида кремния обрабатывают водяным паром при температуре 300 – 800 С, давлении, равном или выше 5 МПа и соотношении карбида кремния и воды 1:0,5 – 1:50.

Заявляемый гидротермальный способ получения углеродных покрытий позволяет наносить покрытия на изделия из карбида кремния сложной формы, такие как порошки, волокна, нитевидные кристаллы, пласти- 10 ны, так как все они равномерно омываются водой (перегретым паром), и осуществлявтся при болев низких температурах, чем известные способы. Он позволяет получить как графитовые покрытия с низкой прочно- 15 стью и коэффициентом трения, необходимые для композитов, так и алмазные и алмазоподобные покрытия на карбиде кремния, которые отличаются высокой тверпостью и износостойкостью. Заявляемый 20 способ позволяет получать алмаз неизвестным раков методом без применения плазмы. или сверхвысоких давлений.

Процесс получения углеродного покрытия на повержности карбида кремния проте- 25 кает по следующей реакции:

SIC + 2H2O → SIO2 + C + 2H2

Полученный углерод на поверхности карбида крамния образует покрытие в виде графита или тонкого алмазного слоя в завы- 30 симости от режимов ведения процесса, а образоващийся диоксид кремния (SIO₂) полностью растворяется в воде и удаляется в процессе синтеза и последующей промывки.

Давление, при котором протекает процесс, должно быть не ниже 5 МПа, т.к. при более низких температурах и давлении покрытие не образуется. Верхнее значение используемых давлений ограничивается 40 только технической возможностью или экономической целесообразностью.

Изобретение иллюстрируется графическими материалами, представленными на фиг. 1 и 2:

На фиг. 1 представлен Рамановский спектр алмазоподобного покрытия, полученного на карбидокремниевом волокие.

Пик при 1336 см⁻¹ соответствует алмазу с сильно разупорядоченной структурой. Ус- 50 ловия получения такого покрытия приведены в таблице 1, № 13.

На фиг. 2 представлена растровая электронная микрофотография, показывающая образованив кристаллического элмазного 55 покрытия на поверхности кристалла, Условия получения такого покрытия приведены в таблице 1, № 10.

Способ осуществляют следующим образом.

Карбидокремниевое изделие (усы, порошки, волокна, пластины) помещают в автоклав с водой при соотношении SIC: $H_2O = 1:0,5-1:50$, нагревают до $300-800^{\circ}$ С, при давлении не менее 5 МПа выдерживают 0.5-100 часов. Время определяют в зависимости от желаемой толщины покрытия. Автоклав охлаждают до комнатной температуры, изделия промывают дистиллированной водой и сушат.

Полученные изделия с нанесенными покрытиями анализировали для определения состава, характера и толщины покрытия,

Появление и структуру графитоподобного и аморфного углерода регистрировали с помощью Рамвновской спектроскопии. Толщину углеродного покрытия измеряли с помощью трехмерного анализа методом Ожезлектронной спектроскопии или путем растровой электронной микроскопии поперечного сечения карбидокремниевого изделия. По данным Рамановской спектроскопии и просвечивающей электронной микроскопии образующийся слой представляет собой микрокристаллический графит.

Образование алмазоподобного углерода или алмазов регистрировали с помощью микро-Рамановской спектроскопии при длине волны лазера 488 нм и инфракрасной спектроскопии. В последнем случае для получения спектров образвц смешивали с бромидом калия (КВг), првссовали таблетки из полученной смеси и регистрировали спектры с помощью инфракрасного Фурье-спектрометра. Рамановские спектры получали непосредственно с кристаллов алмаза или выбранных участков поверхности покрытия под оптическим микроскопом при размере пучка ~ 1 мкм.

Морфологию и размер кристаллов определяли с помощью электронной микроскопии.

Толщина и структура полученных покрытий в зависимости от параметров способа приведены в таблице.

По предлагаемому способу получали покрытия на волокнах, порошках и монокристаллах из карбида кромния (таблица 1).

Волокна карбида кремния состоят из нанокристаллов β -SIC, соединенных прослойками аморфного оксикарбида кремния SIC_xO_y (состав, мас. % SI – 56, C – 32,0–12).

В процессе получения покрытий кислород вымывается перегретым паром в виде SIO2 пН2О и не оказывает влияние на ход процесса. Остальные использованные карбидокремниевые материалы (порошок и криствллы) содержали очень малые количества кислорода адсорбированного на повер-

хности и показали такие же по составу покрытия, как и волокна.

Пример 1 (табл. 1, № 5). Волокна карбида кремния помещали в автоклав с водой в соотношении 1:10, нагревали до тем- 5 пературы 300°C и при давлении 5 МПа. выдерживали 2.5 часа. Полученное равномарное покрытие представляло собой аморфный углерод толщиной 0,05 мкм.

карбида кремния помещали в автоклав с водой в соотношении 1: 10, нагревали до температуры 800°С и при давлении 100 МПа выдерживали 1 час, охлаждали, промывали и сушили. Покрытие из графита толщиной 15 0.2 мкм было равномерным.

-Пример 3 (табл. 1. № 10). Монокристаллы карбида кремния помещали в автоклав с водой при соотношении 1 : 5. 20 нагревали до 600°С и при давлении 100 МПа выдерживали 25 часов. Получали равномерное алмазное покрытие толщиной 2 мкм.

Сравнение свойств карбидокремниевых волокон после нанесения покрытия по заяв- 25

ляемому способу с прототипом (таблица 2) показало, что их предел прочности на растяжение несколько выше, несмотря на то, что покрытие, нанесенное по заявляемому способу толще, чем в прототипе (увеличение толщины покрытия обычно приводит к снижению прочности). Стойкость алмазоподобного углерода к окислению выше, чем стойкость графита. Толщина волокна после Пример 2 (табл. 1, № 8). Порошок 10 покрытия по заявляемому способу уменьшается по сравнению с исходной толщиной 12 мкм за счет превращения поверхностного слоя материала в углерод, а толщина волокна после нанесения покрытия по прототилу увеличивается. Увеличение толщины волокна приводит к увеличению размера дефектов и снижению прочности композитов, в которых применяются данные волокна. Уменьшение температуры обработки поверхности в 2 раза с 1200 до 600°C предотвращает рекристаллизацию волокна и повышает стабильность его свойств. Заявляемый способ может быть применен и в тех случаях. когда использование прототипа невозможно из-за сложной формы изделий.

_	
æ	
7	
S	
5	
9	
Œ	
_	

اک

	_			~				_			_		_									•		-
Примечание		Покрытие не образуется	. Покрытив не образуется	Покрытие не образуется,	на пов. осаждается 5102	Покрытие не образуется		покрытие равномерное		Покрытие равномернов	•		4	,) =[1 1	• • • • • • • • • • • • • • • • • • • •	- 1			į.	
Подложка ·		ониоиов	норошок	монокрис-	TANRH	монокристал-	Z	валокна		Воловно			норошок	парошок	, 4 <mark>1</mark>	монокристал-	- AB	· •	ВОЛОКНО	ВОЛОКНО			воложно	
Форма угле- рода		1	,	ı		ľ		MAHODOME	усперод	аморфный	yr.nepog+	графит	- - -	графит	-! -!	EBMI/B		اء	графит	andasono-	добный угле-	род	графит	графит
Толщина по- комтия, мкм		0	0	0		0	200	co o	_	- -		•	4	0.2	0,3			7.	2	0,5			1,5	0,3
Время, час	•	2,5	100	25		25	u c	C'7		2,5			w	-	2,5	52	·	2,5	-24	_		•	22	0,5
Temnepaty-		400	200	009	•	009	-	200		400			200	800	009	009		. 750	400	009			400	1200
Давление. МПа	,	0,1	100	. 100		100	Ų	ი		001		•	200	100	100	100		20	100	100			100	0,01
Соотноше-	SIC:H20	1:10	1:10	1:0,2		1:100		01:1		1:10			1:10	1:10	1:10	1.5 5:1		1:10	1:1	1:0.5	_		1:50	
2/2		-	8			4	L	n		g			7	æ	6	5		11	12	<u></u>			4	Прототип

Примечание: повышение давления свыше 200 МПаи температуры свыше 800°С не приводит к заметному улучшению качества по-крытия и ускорению процесса.

ž,

10

9

Таблица 2 Сравнение св йств карбидокремниевых волокон с покрытиями по заявляемому способу и прототипу

Способ по-	Рекристал-	Толщина	Форма угле-	Прочность	Температу-	Т лщина	
лучения по- крытия	лизация	покрытия (мкм)	рода	на растяже- ние (МПа)	ра начала окисления	в локнас покрыти м	
					<u> </u>	(MKM)	
По заявляв- мому (№ 13)	нет	0,5	алмазопо- добный	2450	600	11,5	
Прототип	есть	0.3	графит	2300	400	12,6	

фиг. І

Фиг. 2

Упорядник Ю, Гагочи

Тохрод М.Моргентал

Коректор М.Самборська

- BOOK CHARLES CHEEN THE SECOND CONTROL OF SECOND

Зэмовлення 4011

Тираж

Підписне

Державне патентне відомство України, 254655, ГСП. Київ-53. Львівська пл., 8