## High precision study for rho-meson resonance from Lattice QCD

Dehua Guo, Andrei Alexandru, Raquel Molina and Michael Döring

GWU Nuclear Seminar

March 1, 2016

#### Introduction

### Why we study resonance from Lattice QCD?

- Lattice QCD offers us a way to study the resonances in terms of quark and gluon dynamics. It serves as a test of QCD for well determined resonance parameters.
- The techniques can be used to investigate systems where the experimental situation is less clear.
- Validate effective models used to describe hadron scattering.

#### How?

- We start from meson resonance because they have better signal-to-noise ratio.
- $\rho(770)$  resonance in I=1, J=1  $\pi$ - $\pi$  scattering channel.

2 / 28

### Symmetries on the lattice

On the lattice, the energy eigenstates  $|n\rangle$  of the system are computed in a given irrep of the lattice symmetry group.

$$\psi_n(R^{-1}x) = \psi_n(R^{-1}(x+\mathbf{n}L)); \qquad \left\langle \hat{O}_2(t)\hat{O}_1^{\dagger}(0) \right\rangle = \sum_n \left\langle 0|\hat{O}_2|n \right\rangle \left\langle n|\hat{O}_1|0 \right\rangle e^{-tE_n} \tag{1}$$

Isospin, color and flavor symmetries are similar to the continuum.

Table: Irreducible representation in SO(3), O and  $D_4$ 

|            | <i>SO</i> (3)            | cubic box $(O_h)$       | elongated box $(D_{4h})$ |
|------------|--------------------------|-------------------------|--------------------------|
| irep label | $Y_{lm}$ ; $l=0,1\infty$ | $A_1, A_2, E, F_1, F_2$ | $A_1, A_2, E, B_1, B_2$  |
| dim        | $1, 3,, 2I + 1, \infty$  | 1, 1, 2, 3, 3           | 1, 1, 2, 2, 2            |

Table: Angular momentum mixing among the irreducible representations of the lattice group

| $O_h$                        |            | $D_{4h}$                     |          |  |
|------------------------------|------------|------------------------------|----------|--|
| irreducible representation / |            | irreducible representation / |          |  |
| $A_1$                        | 0,4,6,     | $A_1$                        | 0,2,3,   |  |
| $A_2$                        | 3,6,       | $A_2$                        | 1,3,4,   |  |
| $F_1$                        | 1,3,4,5,6, | $B_1$                        | 2,3,4,   |  |
| $F_2$                        | 2,3,4,5,6, | $B_2$                        | 2,3,4,   |  |
| E                            | 2,4,5,6,   | Ē                            | 1,2,3,4, |  |

## Symmetries of the elongated box

 $\rho$  resonance is in  $I=1,J^{\rho}=1^-$  channel for pion-pion scattering. Elongated box method tunes the momentum of the scattering particles on the lattice  $\mathbf{p} \propto (\frac{2\pi}{nL})$ .

$$\pi \to \bigoplus_{\vdash} \leftarrow \pi F_1^- \qquad \qquad \pi \to \bigoplus_{\vdash} \leftarrow \pi A_2$$

The SO(3) symmetry group reduce to discrete subgroup  $O_h$  or  $D_{4h}$ 

| J | $O_h$                                        | $D_{4h}$                                                    |
|---|----------------------------------------------|-------------------------------------------------------------|
| 0 | $A_1^+$                                      | $A_1^+$                                                     |
| 1 | $F_1^-$                                      | ${\sf A_2^-} \oplus {\sf E^-}$                              |
| 2 | ${\it E}^{+}\oplus {\it F}_{2}^{+}$          | $A_1^+\oplus B_1^+\oplus B_2^+\oplus E^+$                   |
| 3 | $A_2^-\oplus F_1^-\oplus F_2^-$              | $A_2^- \oplus B_1^- \oplus B_2^- \oplus 2E^-$               |
| 4 | $A_1^+ \oplus E^+ \oplus F_1^+ \oplus F_2^+$ | $2A_1^+ \oplus A_2^+ \oplus B_1^+ \oplus B_2^+ \oplus 2E^+$ |

For the p-wave(l=1) scattering channel, we only need to construct the interpolating fields in  $F_1^-$  in the  $O_h$  group,  $A_2^-$  representations in  $D_{4h}$  group because the energy contribution from angular momenta  $l \geq 3$  is negligible.

## Lüscher's formula for elongated box [1]

Phase shift for l = 1, rest frame (P = 0):

$$A_2^- : \cot \delta_1(k) = \mathcal{W}_{00} + \frac{2}{\sqrt{5}} \mathcal{W}_{20}$$
 (2)

$$\mathcal{W}_{lm}(1,q^2,\eta) = \frac{\mathcal{Z}_{lm}(1,q^2,\eta)}{n\pi^{\frac{3}{2}}q^{l+1}}; \quad q = \frac{kL}{2\pi}; \quad \eta = \frac{N_{el}}{N} : \text{elongation factor}$$
 (4)

Zeta function

$$\mathcal{Z}_{lm}(s;q^2,\eta) = \sum_{\tilde{\mathbf{n}}} \mathcal{Y}_{lm}(\tilde{\mathbf{n}})(\mathbf{n}^2 - q^2)^{-s}; \ \mathbf{n} \in \mathbf{m}$$
 (5)

Total energy

$$E = 2\sqrt{m^2 + k^2}; \quad k = \sqrt{\left(\frac{E}{2}\right)^2 - m^2}$$
 (6)

[1] X. Feng, X. Li, and C. Liu, Phys.Rev. D70 (2004) 014505

(3)

### Lüscher's formula for boost frame

In order to obtain new kinematic region, we boost the resonance along the elongated direction.



$${f P} 
ightarrow$$

$$A_2^-: \cot \delta_1(k) = \mathcal{W}_{00} + \frac{2}{\sqrt{5}} \mathcal{W}_{20}$$
 (7)

(8)

6 / 28

$$\mathcal{W}_{lm}(1,q^2,\eta) = \frac{\mathcal{Z}_{lm}^{\mathbf{P}}(1,q^2,\eta)}{\gamma \eta \pi^{\frac{3}{2}} q^{l+1}}; \quad \eta = \frac{N_{el}}{N} : \text{elongation factor}; \quad \gamma : \text{boost factor}; \quad (9)$$

$$\mathcal{Z}_{lm}^{\hat{\mathbf{p}}}(s;q^2,\eta) = \sum_{\mathbf{n}} \mathcal{Y}_{lm}(\tilde{\mathbf{n}})(\tilde{\mathbf{n}}^2 - q^2)^{-s}; \mathbf{n} \in \frac{1}{\gamma}(\mathbf{m} + \frac{\hat{\mathbf{p}}}{2}); \tag{10}$$

## Interpolating field construction for $\rho$ resonance

Four  $q\bar{q}$  operators and two scattering operators  $\pi\pi$  in  $A_2^-$  sector.

$$\rho^{J}(t_{f}) = \bar{u}(t_{f})\Gamma_{t_{f}}A_{t_{f}}(\mathbf{p})d(t_{f}); \quad \rho^{J\dagger}(t_{i}) = \bar{d}(t_{i})\Gamma_{t_{i}}^{\dagger}A_{t_{i}}^{\dagger}(\mathbf{p})u(t_{i})$$
(11)

| N | $\Gamma_{t_f}$      | $A_{t_f}$                         | $\Gamma_{t_i}^{\dagger}$ | $A_{t_i}^{\dagger}$                                      |
|---|---------------------|-----------------------------------|--------------------------|----------------------------------------------------------|
| 1 | $\gamma_i$          | $e^{i\mathbf{p}}$                 | $-\gamma_i$              | $e^{-i\mathbf{p}}$                                       |
| 2 | $\gamma_4 \gamma_i$ | $e^{i\mathbf{p}}$                 | $\gamma_4 \gamma_i$      | $e^{-i\mathbf{p}}$                                       |
| 3 | $\gamma_i$          | $ abla_j e^{i\mathbf{p}}  abla_j$ | $\gamma_i$               | $\nabla_i^{\dagger} e^{-i\mathbf{p}} \nabla_i^{\dagger}$ |
| 4 | $\frac{1}{2}$       | $\{e^{i\mathbf{p}}, \nabla_i\}$   | $-\frac{1}{2}$           | $\{e^{-i\mathbf{p}}, \nabla_i\}$                         |

$$(\pi\pi)_{\mathbf{P},\Lambda,\mu} = \sum_{\mathbf{p}_1^*,\mathbf{p}_2^*} C(\mathbf{P},\Lambda,\mu;\mathbf{p}_1;\mathbf{p}_2)\pi(\mathbf{p}_1)\pi(\mathbf{p}_2), \tag{12}$$





$$\pi\pi_{100}(\mathbf{p_1}, \mathbf{p_2}, t) = \frac{1}{\sqrt{2}} [\pi^+(\mathbf{p_1})\pi^-(\mathbf{p_2}) - \pi^+(\mathbf{p_2})\pi^-(\mathbf{p_1})]; \quad \mathbf{p_1} = (1, 0, 0) \quad \mathbf{p_2} = (-1, 0, 0)$$
$$\pi\pi_{110} = \frac{1}{2} (\pi\pi(110) + \pi\pi(101) + \pi\pi(1 - 10) + \pi\pi(10 - 1))$$

#### 6 × 6 correlation matrix

$$C = \begin{pmatrix} C_{\rho^{J} \leftarrow \rho^{J'}} & C_{\rho^{J} \leftarrow \pi\pi_{100}} & C_{\rho^{J} \leftarrow \pi\pi_{110}} \\ C_{\pi\pi_{100} \leftarrow \rho^{J'}} & C_{\pi\pi_{100} \leftarrow \pi\pi_{100}} & C_{\pi\pi_{100} \leftarrow \pi\pi_{110}} \\ C_{\pi\pi_{110} \leftarrow \rho^{J'}} & C_{\pi\pi_{110} \leftarrow \pi\pi_{100}} & C_{\pi\pi_{110} \leftarrow \pi\pi_{110}} \end{pmatrix}.$$
(13)

The correlation functions:  $\bar{u}(t)$ 

ns: 
$$\bar{u}(t_i) \longrightarrow u(t_f)$$

$$\Gamma_{t_f}^J, (\mathbf{p}, t_f)$$

$$C_{\rho_i \leftarrow \rho_j} = -\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle = -\left\langle \text{Tr}[M^{-1}(t_i, t_f) \Gamma_{t_f}^J e^{i\mathbf{p}} M^{-1}(t_f, t_i) \Gamma_{t_i}^{J'\dagger} e^{-i\mathbf{p}}] \right\rangle. \tag{14}$$

$$C_{\rho_{i}\leftarrow\pi\pi} = \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle = 0 \ 2 \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle . \tag{15}$$

$$C_{\pi\pi\leftarrow\pi\pi} = -\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle + \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle . \tag{16}$$

$$P \stackrel{= 0}{=} \left\langle 2 \right| \qquad + \left\langle 2 \right| \qquad (17)$$

# Laplacian Heaviside smearing [2]

To estimate all-to-all propagators: Laplacian operator



$$\tilde{\Delta}^{ab}(x, y; U) = \sum_{k=1}^{3} \left\{ \tilde{U}_{k}^{ab}(x)\delta(y, x + \hat{k}) + \tilde{U}_{k}^{ba}(y)^{*}\delta(y, x - \hat{k}) - 2\delta(x, y)\delta^{ab} \right\}.$$
 (18)

$$S_{\Lambda}(t) = \sum_{\lambda(t)}^{\Lambda} |\lambda(t)\rangle \langle \lambda(t)|; \quad \tilde{u}(t) = S(t)u(t) = \sum_{\lambda_t} |\lambda_t\rangle \langle \lambda_t| u(t). \tag{19}$$





[2] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, et al., Phys.Rev. D83 (2011) 114505

### $\rho$ energy spectrum

We implement the calculation in 3 ensembles ( $\eta=1.0,1.25,2.0$ ) at  $m_\pi\approx 310\,\text{MeV}$  and 3 ensembles ( $\eta=1.0,1.17,1.33$ ) at  $m_\pi\approx 227\,\text{MeV}$  with nHYP-smeared clover fermions and two mass-degenerated quark flavor.



Figure : The lowest three energy states with their error bars for  $\eta=1.0, m_\pi=310\, {
m MeV}$  ensemble

We extract energy E by using double exponential  $f(t) = we^{-Et} + (1 - w)e^{-E't}$  to do the  $\chi^2$  fitting for each eigenvalues.

## **Energy spectrum**



| $\overline{\mathcal{O}_i}$ | 1        | 2        | 3        | 4         | 5              | 6              |
|----------------------------|----------|----------|----------|-----------|----------------|----------------|
|                            | $\rho_1$ | $\rho_2$ | $\rho_3$ | $ ho_{4}$ | $\pi\pi_{100}$ | $\pi\pi_{110}$ |

(20)

## Expectation for energy states



Figure : The lowest 3 energy states prediction from unitary  $\chi$ PT. When  $\eta=2.0$  the 3rd state is from operator  $\pi\pi_{200}$  instead of  $\pi\pi_{110}$ 

## Phase shifts and resonance parameters

Figure: Phaseshift data from three ensembles fitted with Breit Wigner form (left) and only fit 5 data points in the resonance region .



$$\cot(\delta_1(E)) = \frac{M_R^2 - E^2}{E\Gamma_r(E)} \text{where} \quad \Gamma_r(E) \equiv \frac{g_{R12}^2}{6\pi} \frac{p^3}{E^2}. \tag{21}$$

$$\delta_1(E) = \operatorname{arccot} \frac{6\pi (M_R^2 - E^2)E}{g^2 p^3}$$
 (22)

## Centrifugal barrier term [3]

Based on the idea that resonance has finite spatial size,  $\Gamma_r$  is expected to damped faster than Breit Wigner form above the resonance region. Modify BW with a centrifugal barrier term.

$$\Gamma_r(E) = \frac{g^2}{6\pi} \frac{p^3}{E^2} \frac{1 + (p_R R)^2}{1 + (pR)^2}.$$
 (23)



Figure: (left)Current study with LapH smearing vs (right) fitting only the resonance region

[3] F. Von Hippel and C. Quigg, Phys.Rev. D5 (1972) 624-638.

## Fit in $m_{\rho} \pm 2\Gamma$ with BW



### Fit with other models



Figure : Two pion mass lattice data fitted with U $\chi$ PT model in  $m_{\rho} \pm 2\Gamma$  region.

|              | $m_{\pi}$ | $m_{ ho}$  | $\Gamma_{ ho}$ | g        | $\chi^2/dof$ |
|--------------|-----------|------------|----------------|----------|--------------|
| Breit Wigner | 315       | 794.6(6)   | 37.0(2)        | 5.57(11) | 2.16         |
| $U\chiPT$    |           | 795.2(3)   | 36.1(1)        |          | 1.26         |
| Breit Wigner | 227       | 748.4(1.6) | 71.0(8)        | 5.70(12) | 1.46         |
| $U\chiPT$    |           | 748.2(7)   | 77.0(5)        | . ,      | 1.53         |

## $m_{ ho}$ and $g_{ ho\pi\pi}$ comparison



Figure :  $m_\pi^2$  extrapolation to physical pion mass

The extrapolation value of  $m_{\rho}$  at physical pion mass is 715(7) MeV  $< m_{\rho} = 775$  MeV.

## $K\bar{K}$ channel contribution



Figure :  $m_\pi=315\,\mathrm{MeV}$  data fitted with Unitary  $\chi\mathrm{PT}$  model and their  $K\bar{K}$  channel corrections

## $K\bar{K}$ channel contribution



Figure :  $m_\pi = 227\,\text{MeV}$  data fitted with Unitary  $\chi\text{PT}$  model and their  $K\bar{K}$  channel corrections

## $K\bar{K}$ channel contribution



Figure : The  $K\bar{K}$  channel correction vs pion mass from a global fit for two pion mass.

| $m_{\pi}$ | $m_{ ho}$   | Γρ         | $m_{ ho}'$ | $\Gamma'_{ ho}$ | $\chi^2/dof$ |
|-----------|-------------|------------|------------|-----------------|--------------|
| 315       | 795.5(9)    | 36.5(3)    | 830.6(9)   | 51.4(3)         | 1.26         |
| 227       | 747.5(9)    | 77.4(6)    | 780.2(5)   | 97.8(3)         |              |
| 138       | 719.7(Ì.6́) | 120.4(1.0) | 754.6(Ò.Ś) | 150.7(3)        |              |

Global fit with  $U_{\chi}PT$  for both pion mass. The definition of  $m_0$  is the value energy when the phase shift has  $\pi/2$ . The PDG value of  $\rho$  meson resonance parameter are  $m_{\rho}=775.49\,\mathrm{MeV}$  and  $\Gamma_o = 149.1 \, \text{MeV}.$ 



Figure : Result with  $K\bar{K}$  channel

#### Conclusions

- We complete a precision study of  $\rho$  resonance with LapH smearing method and obtain the resonance parameters at  $m_\pi \approx 310\,\mathrm{MeV}$  and  $m_\pi \approx 227\,\mathrm{MeV}$ .
- For precise energy results, the Breit Wigner form only works in the resonance region.
   Modification to the BW is needed when applied to a wider energy region.
- The extrapolation of  $m_{\rho}$  to physical pion mass is smaller than  $m_{\rho}^{\rm phy}=775\,{\rm MeV}$  in a  $N_f=2$  situation, we believe that this comes from the absence of strange quark and the  $K\bar{K}$  channel which is supported by the unitary  $\chi{\rm PT}$  study.

- X. Feng, X. Li, and C. Liu, *Two particle states in an asymmetric box and the elastic scattering phases, Phys.Rev.* **D70** (2004) 014505, [hep-lat/0404001].
- C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, et al., *Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD*, *Phys.Rev.* **D83** (2011) 114505, [arXiv:1104.3870].
- F. Von Hippel and C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys.Rev. **D5** (1972) 624–638.
  - M. Luscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl.Phys. **B339** (1990) 222–252.
    - P. Estabrooks and A. D. Martin, *pi pi Phase Shift Analysis Below the K anti-K Threshold, Nucl. Phys.* **B79** (1974) 301.

## Symmetries on the lattice

The SO(3) symmetry group reduce to discrete subgroup  $O_h$  or  $D_{4h}$ 

Table : Resolution of 2J+1 spherical harmonics into the irreducible representations of  $\mathcal{O}_h$  and  $\mathcal{D}_{4h}$ 

| J | $O_h$                                        | $D_{4h}$                                                                       |
|---|----------------------------------------------|--------------------------------------------------------------------------------|
| 0 | $A_1^+$                                      | $A_1^+$                                                                        |
| 1 | $F_1^-$                                      | ${\it A}_{2}^{-}\oplus {\it E}^{-}$                                            |
| 2 | ${\it E}^+\oplus {\it F}_2^+$                | $\mathcal{A}_1^+\oplus\mathcal{B}_1^+\oplus\mathcal{B}_2^+\oplus\mathcal{E}^+$ |
| 3 | $A_2^-\oplus F_1^-\oplus F_2^-$              | $A_2^-\oplus B_1^-\oplus B_2^-\oplus 2E^-$                                     |
| 4 | $A_1^+ \oplus E^+ \oplus F_1^+ \oplus F_2^+$ | $2A_1^+ \oplus A_2^+ \oplus B_1^+ \oplus B_2^+ \oplus 2E^+$                    |

Assume that the energy contribution from angular momenta  $l \geq 3$  is negligible. For example, if we study the p-wave(l=1) scattering channel, we should construct the interpolating field in  $F_1^-$  in the  $O_h$  group,  $A_2^-$  and  $E^-$  representations in  $D_{4h}$  group.

# Variational method [4]

Variational method is used to extract energy of the excited states.

Construct correlation matrix in the interpolator basis

$$C(t)_{ij} = \langle \mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0) \rangle; i, j = 1, 2, ..., \text{number of operators}$$
 (24)

The eigenvalues of the correlation matrix are

$$\lambda^{(n)}(t,t_0) \propto e^{-E_n t} (1 + \mathcal{O}(e^{-\Delta E_n t})), n = 1,2,..., \text{number of operators} \tag{25}$$

where  $\Delta E_n = E_{\text{Number of operators} + 1} - E_n$ .



Larger energy gap makes the high lying energy decay faster and effective mass plateau appear in an earlier time slice.

## Appendix-B: LapH smearing

### Benefit from LapH smearing:

- Keep low frequency mode up to  $\Lambda$  cutoff to compute the all to all propagators, u(x)  $\longrightarrow$  u(y). The number of propagators  $M^{-1}(t_f, t_i)$  need to be computed reduce from  $6.34 \times 10^{13}$  in position space to  $3.7 \times 10^8$  in momentum space for the  $24^348$  ensemble.
- The effective mass reach a plateau in an earlier time slice.



Figure: pion effective mass with (red) and without LapH smearing (blue)

## Appendix-C: Fitting phase-shift



Figure:  $\chi^2$  fitting for the phase shift data to Breit Wigner form

$$\chi^2 = \Delta^T COV^{-1} \Delta \tag{26}$$

where

$$\Delta_i = \sqrt{s_i^{\text{curve}}} - \sqrt{s_i^{\text{data}}}$$
 (27)

# Appendix-D: Experiment data [5]



$$\Gamma_{BW}(E) = \frac{g^2}{6\pi} \frac{p^3}{E^2}$$

$$\Gamma_{CF}(E) = \frac{g^2}{6\pi} \frac{p^3}{E^2} \frac{1 + (p_R R)^2}{1 + (pR)^2}$$

$$\Gamma_{GA}(E) = \frac{g^2}{6\pi} \frac{p^3}{E^2} \frac{e^{-p^2/6\beta^2}}{e^{-p_R^2/6\beta^2}}$$

Figure :  $\pi\pi$  phase shift below  $K\bar{K}$  threshold in experiment

[5] Estabrooks, P. and Martin, Alan D. Nucl. Phys. B79 (1974) 301

### K-matrix method

$$T^{-1} = V^{-1} - G = \frac{-3(f^2 - 8I_1m_\pi^2 + 4I_2W^2)}{2p^2} - \text{Re}G(W) + \frac{ip}{8\pi W}$$
 (28)

For K-matrix method the ReG(W) = 0.

$$T = \frac{-8\pi W}{\rho \cot \delta \rho - i\rho} \tag{29}$$

$$I_1 = \frac{1}{8\pi^2} \left( -\frac{1}{2} \frac{m_\rho^2}{g_{\rho\pi\pi}^2} + f^2 \right) \tag{30}$$

$$l_2 = -\frac{1}{8g_{\alpha\pi\pi}^2} \tag{31}$$