Solutions to Homework #1

Jose Luis Rodriguez

January 18, 2017

1 (HW1). Rank the following functions by the order of growth. That is, make a list of the functions such that if f(n) is on a higher line that g(n), then f(n) is $\Omega(g(n))$. If f(n) is $\Theta(g(n))$, then f(n) and g(n) should be listed on the same line.

Solution. We can use L'Hopital's rule to find what function growths faster, then rank them by order of growth.

1	1	and	9
Ι.	- 1	and	

7.
$$n = 2^{lgn}$$

12.
$$2^n$$

8.
$$nlq(n)$$

3.
$$\sqrt{lgn}$$

9.
$$n^2 = 4^{lgn}$$

14.
$$(n+1)!$$

4.
$$ln(n)$$
 and lgn

10.
$$n^3$$

15.
$$2^{2^n}$$

5.
$$lg^{2}(n)$$
6. $\sqrt{2^{lgn}}$

11.
$$\left(\frac{3}{2}\right)^n$$

16.
$$2^{2^{n+1}}$$

2 (HW1). Express the solution to each of the following recurrences using Θ -notation. Show your reasoning.

- We can solve the recurrences below using the Master Theorem, given that: $T(n) = aT(n/b) + f(n), \ a \ge 1, b > 1$. Following three cases:

1. If
$$\exists \epsilon > 0$$
 such that $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$, then $T(n) = (n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a} l g^k n)$$
, with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} l g^{k+1} n)$.

3. If
$$\exists \epsilon > 0$$
 such that $f(n) = \Omega(n^{\log_b(a+\epsilon)})$, then $T(n) = \Theta(f(n))$.

(a)
$$T(n) = 2T(n/2) + nlg^2n$$
.

Solution. Following a more general form of the masters theorem where $T(n) = aT(n/b) + \Theta(n^k log^{\phi}(n)), \ a \ge 1, \ b > 1, \ \text{and} \ \phi \in \mathbb{R}$. We have that a = 2, b = 2, k = 1 and $f(n) = n^{log_2 2} lg^2 n$. For this case if $a = b^k$ and $\phi > -1$ then the solution to the recurrence follows case#2 of the general form, such that: $T(n) = \Theta(n^{log_b a} lg^{\phi+1} n) = \Theta(n^1 lg^3 n)$.

(b)
$$T(n) = 9T(n/2) + n^3$$
.

Solution. Given that a=9, b=2, $f(n)=n^3$. Since n^{log_29} is polynomially larger than $f(n)=n^3$ this recurrence follows case# 1 of the masters theorem. Such that $f(n)=\mathcal{O}(n^{log_b(a-\epsilon)})$. Therefore the solution to the recurrence is given by: $T(n)=\Theta(n^{lg_9})$.

(c)
$$T(n) = 8T(\lceil n/4 \rceil) + n^2$$
.

Solution. When solving recurrances usually we can disregard floor/ceil as we are interested in the growth of the recurrance (running time). In this case we have that $a=8,\ b=4,\ f(n)=n^2$ and $n^{log_48}=n^{\frac{3}{2}}$. Since $n^{log_48}\leq n^2$ the recurrance follows case# 3 of the master theorem. Such that $f(n)=\Omega(n^{log_b(a+\epsilon)})=\Omega(n^2)$