Economics 6400: Econometrics

Lecture 9: Final exam revision

CSU, East Bay

November 28, 2017

The following table contains the sales prices and assessed values for three houses (both in thousands of dollars):

i	$price(y_i)$	assess (x_i)
1	300	320
2	200	190
3	260	250

2 Show that the relationship between *price* and *assess* is:

$$\widehat{price} = 59.8425 + 0.7638$$
 assess

i	Уi	Xi	$y_i - \overline{x}$	$x_i - \overline{x}$	$(y_i - \overline{y})(x_i - \overline{x})$	$(x_i - \overline{x})^2$
1	300	320				
2	200	190				
3	260	250				

- 3 Suppose you are interested in testing whether the assessed housing price is a rational valuation. Test whether the slope parameter is equal to 1 at the 5% level against a two-sided alternative.
- 4 What is the adjusted R^2 ?
- Graph/plot the sample regression function you derived in part (a). Be sure to label any intercept(s).
- Suppose you added the variable, square footage (sqrft) to model. The model becomes:

$$price = \beta_0 + \beta_1 assess + \beta_2 sqrft + u.$$

Derive an expression that relates the coefficient on assess from the first model, $\tilde{\beta}_1$, to the coefficient on assess from this new model, $\hat{\beta}_1$. Show your workings. What is necessary for $\tilde{\beta}_1$ to be unbiased estimate of β_1 ?

■ The model to be estimated is:

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + u.$$

where

- wage is hourly wage
- educ is education in years
- exper is experience in years
- **Interpret** the coefficient on *educ*. Be specific.
- **Formally** test the null hypothesis that the coefficient on *educ* is equal to 0 against a two-sided alternative at the 10% level.
- 3 Suppose you wish to test whether the returns to an extra year of education and an extra year of experience are the same against a two-sided alternative. Using the Stata output, what is the estimate of $\theta = \beta_1 \beta_2$? State the null and two-sided alternative hypotheses in terms of θ .

- 4 Derive an equation that you can use to estimate θ and its standard error.
- 5 Using the Stata output, can you reject the null hypothesis from part (c) at the 5% level? Explain.

Now consider an alternative model in which we add exper²:

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + u.$$

- 6 Conduct a test for the overall significance of the regression.
- **Formally** test the null hypothesis that log(wage) is linearly related to exper against the alternative that the relationship is quadratic at the 10% level.

- Using the Stata output, at what level does additional experience actually lower predicted log(wage)? Indicate when this would be a concern.
- What is your prediction of log(wage) for someone with 12 years of education and 17 years of experience? Compute this by hand and indicate that it is (approximately) equal to the appropriate figure in the attached Stata output. What is the 90% confidence for this prediction? Use the second model for this.

Question 2 Stata output

	(1)	(2)	(3)	(4)	(5)
	log(wage)	log(wage)	log(wage)	log(wage)	log(wage)
educ	0.0979**	0.0876**		0.0904**	
	(0.0076)	(0.0073)		(0.0075)	
exper	0.0103**		-0.0876**	0.0410**	
	(0.0016)		(0.0073)	(0.0052)	
educ + exper		0.0103**	0.0979**		
		(0.0016)	(0.0076)		
exper ²				-0.0007**	
				(0.0001)	
educ-12					0.0904**
					(0.0075)
exper - 17					0.0410**
					(0.0052)
<i>exper</i> ² – 289					-0.0007**
					(0.0001)
Constant	0.2169*	0.2169*	0.2169*	0.1280	1.7033**
	(0.1086)	(0.1086)	(0.1086)	(0.1059)	(0.0296)
Observations	526	526	526	526	526
R^2	0.2493	0.2493	0.2493	0.3003	0.3003

Standard errors in parentheses.

The model to be estimated is:

$$wage = \beta_0 + \beta_1 female + \beta_2 exper + u$$

where

- wage is hourly wage in dollars
- ullet female = 1 if the person is female, and 0 if the person is male
- exper = years of experience
- Using the Stata output, interpret the coefficient on female, $\widehat{\beta}_1$. Be specific.
- 2 What percentage of the variation in wage is explained by variation in experience and gender? Compute the adjusted R^2 for this regression (it has been blanked out from the regression output). Why is it so close to the regular (unadjusted) R^2 ?

Now consider adding the interaction $female \cdot exper$ to the model:

$$wage = \beta_0 + \beta_1 female + \beta_2 exper + \beta_3 female \cdot exper + u$$

- Interpret the new coefficient on female, $\widehat{\beta}_1$. Be specific.
- 4 Using the Stata output, graph the estimated returns to experience for females and males (i.e. two separate lines).
- 5 What is the return to one extra year of experience for men? What is the return to one extra year of experience for women? How do these answers relate to your graph in part (d)?
- 6 Formally test the hypothesis that the return to experience is the same for men and women at the 5% level.
- **T**est for equality of the parameters of the above equation for men and women using a Chow test at the 5% level.

- 9 Suppose you replaced *female* \cdot *exper* with *female* \cdot (*exper* 10). What would your interpretation of $\hat{\beta}_1$ be now?
- Explain two approaches for conducting a test for the presence of heteroskedasticity in the first model?

. reg wage female exper

Source	SS	df		MS		Number of obs		526
Model Residual	898.161983 6262.25231	2 523		080991 737138		F(2, 523) Prob > F R-squared Adj R-squared	= =	37.51 0.0000 0.1254 0.1221
Total	7160.41429	525	13.63	888844		Root MSE	=	3.4603
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
female exper _cons	-2.48142 .0269163 6.626882	.3022 .0111 .2862	.369	-8.21 2.42 23.15	0.000 0.016 0.000	-3.07525 .0050379 6.064546		.887589 0487948 .189218

- . gen female_x_exper=female*exper
- . reg wage female exper female_x_exper

Source	SS	df	MS
Model Residual	971.286312 6189.12798		323.762104 11.856567
Total	7160.41429	525	13.6388844

Number of obs = 526 F(3, 522) = 27.31 Prob > F = 0.0000 R-squared = 0.1356 Adj R-squared = 0.1307 Root MSE = 3.4433

wage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
female	-1.546547	.4818603	-3.21	0.001	-2.49317	5999231
exper	.0536048	.0154372	3.47	0.001	.0232782	.0839314
female_x_exper	0550699	.022175	-2.48	0.013	098633	0115068
_cons	6.158275	.3416741	18.02	0.000	5.48705	6.829501

. reg wage exper if female==0

Source	SS	df		MS		Number of obs		274
Model Residual	142.965414 4583.4113	1 272		065414 007769		F(1, 272) Prob > F R-squared Adj R-squared	=	8.48 0.0039 0.0302 0.0267
Total	4726.37672	273	17.31	27352		Root MSE	=	4.105
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
exper _cons	.0536048 6.158275	.0184 .4073		2.91 15.12	0.004 0.000	.0173736 5.356362		. 089836 . 960189

. reg wage exper if female==1

Source	SS	df	MS		Number of obs	
Model Residual	.100430445 1605.71668	1 250	.100430445 6.4228667		F(1, 250) Prob > F R-squared Adj R-squared	= 0.9006 = 0.0001
Total	1605.81711	251	6.39767771			= 2.5343
wage	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
exper _cons	0014651 4.611729	.01171 .25007		0.901 0.000	0245413 4.119197	.021611 5.10426

. reg wage exper

Source	SS	df		MS		Number of obs	
Model Residual	91.2751351 7069.13916	1 524	91.27 13.49			R-squared	= 0.0096 = 0.0127
Total	7160.41429	525	13.63	88844		Adj R-squared Root MSE	= 0.0109 = 3.673
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
exper _cons	.0307219 5.373305	.0118 .2569		2.60 20.91	0.010 0.000	.007519 4.868444	.0539247 5.878166

t table

Critical Values of the t Distribution

		Significance Level								
	Tailed:	.10 .20	.05 .10	.025 .05	.01 .02	.005 .01				
	1	3.078	6.314	12.706	31.821	63.657				
	2 3	1.886	2.920	4.303	6.965	9.925				
		1.638	2.353	3.182	4.541	5.841				
	4	1.533	2.132	2.776	3.747	4.604				
	5	1.476	2.015	2.571	3.365	4.032				
	6	1.440	1.943	2.447	3.143	3.707				
	7	1.415	1.895	2.365	2.998	3.499				
D	8	1.397	1.860	2.306	2.896	3.355				
e	9	1.383	1.833	2.262	2.821	3.250				
g	10	1.372	1.812	2.228	2.764	3.169				
r	11	1.363	1.796	2.201	2.718	3.106				
e	12	1.356	1.782	2.179	2.681	3.055				
e	13	1.350	1.771	2.160	2.650	3.012				
s	14	1.345	1.761	2.145	2.624	2.977				
	15	1.341	1.753	2.131	2.602	2.947				
o f	16	1,337	1.746	2.120	2,583	2,921				
1	17	1.333	1.740	2.110	2.567	2.898				
F	18	1.330	1.734	2.101	2.552	2.878				
_	19	1.328	1.729	2.093	2.539	2.861				
r e	20	1.325	1.725	2.086	2.528	2.845				

Next week

■ Final exam...good luck!