多广告位融合训练详细设计

目前不同广告位的学习任务是独立进行的,为了在不同广告位的数据间共享信息,考虑用多任务学习的思想将多个广告位的学习任务按层次结构统一成一个大的学习问题。

为了优化新的目标函数,考虑采用ADMM的框架将训练数据按广告位拆分成多个子任务,每个子任务用FTRL训练,这样可以保证在第一次迭代的时候模型等价于目前的分广告位训练[2]。

1 Multi-task Learning

我们仍然采用LR模型,但是假设模型参数 w_t 可以做如下分解:

$$w_t = w_0 + v_t$$

同时假设 w_0 和 v_t 都服从0均值的高斯分布:

$$w_0 \sim \mathcal{N}(0, \lambda_w I)$$

 $v_t \sim \mathcal{N}(0, \lambda_v I)$

假设任务t的训练样本为 $\{(x_1^t,y_1^t),\cdots,(x_{n_t}^t,y_{n_t}^t)\}$,联合学习任务的优化目标为:

$$\sum_{t=1}^{T} \sum_{i=1}^{n_t} \mathcal{L}((w_0 + v_t)^T x_i^t) + \lambda_w ||w_0||_1 + \lambda_v ||v_t||_1$$

新的损失函数里 w_0 起到了连接不同子任务的作用, λ_w 控制了连接的强度, λ_w 越大连接强度越强,当 $\lambda_w=0$ 时模型等价于分广告位训练。

2 ADMM

我们把问题改写成ADMM[1]的形式:

$$\min_{\substack{w_0...w_t, v_1...v_t \\ s.t.}} \sum_{t=1}^{T} \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L}((w_0 + v_t)^T x_i^t) + \lambda_w \|w_0\|_1 + \lambda_v \sum_{t=1}^{T} \|v_t\|_1$$

增广拉格朗日函数为:

$$\sum_{t=1}^{T} \frac{1}{n_t} \mathcal{L}(\boldsymbol{y}_t, X_t(w_t + v_t)) + \lambda_w \|w_0\|_1 + \lambda_v \sum_{t=1}^{T} \|v_t\|_1 + \sum_{t=1}^{T} \alpha_t^T(w_t - w_0) + \frac{\rho}{2} \sum_{t=1}^{T} \|w_t - w_0\|_2^2$$

迭代步骤为:

1.
$$v_t^{k+1} = \operatorname{argmin} \frac{1}{n_t} \mathcal{L}(\boldsymbol{y}_t, X_t(w_t^k + v_t)) + \lambda_v ||v_t||_1$$

2.
$$w_t^{k+1} = \operatorname{argmin} \frac{1}{n_t} \mathcal{L}(\boldsymbol{y}_t, X_t(w_t + v_t^{k+1})) + (\alpha_t^k)^T w_t + \frac{\rho}{2} \|w_t - w_0^k\|_2^2$$

$$= \frac{1}{n_t} \mathcal{L}(\boldsymbol{y}_t, X_t(w_t + v_t^{k+1})) + \frac{\rho}{2} \|w_t - w_0^k + \frac{1}{\rho} \alpha_t^k\|_2^2$$

3.
$$w_0^{k+1} = \operatorname{argmin} \lambda_w \|w_0\|_1 - \sum_{t=1}^T (\alpha_t^k)^T w_0 + \frac{\rho}{2} \sum_{t=1}^T \|w_t^{k+1} - w_0\|_2^2$$

$$= \begin{cases} \frac{1}{T} \left(\sum_{t} \left(w_{t}^{k+1} + \alpha_{t}^{k}/\rho\right) - \lambda_{w}/\rho\right) \text{if} \sum_{t} \left(w_{t}^{k+1} + \alpha_{t}^{k}/\rho\right) > \lambda_{w}/\rho \\ \frac{1}{T} \left(\sum_{t} \left(w_{t}^{k+1} + \alpha_{t}^{k}/\rho\right) + \lambda_{w}/\rho\right) \text{if} \sum_{t} \left(w_{t}^{k+1} + \alpha_{t}^{k}/\rho\right) < -\lambda_{w}/\rho \\ 0 \text{ else} \end{cases}$$

4.
$$\alpha_t^{k+1} = \alpha_t^k + \rho(w_t^{k+1} - w_0^{k+1})$$

其中:

- 1. 如果我们将 w_t 的初值设为0,第1步就是一个 L_1 正则的逻辑回归,如果用FTRL训练就得到了目前分广告位训练的模型:
- 2. 第2步是 L_2 正则的逻辑回归,第1步和第2步可以多个广告位并行训练;
- 3. 第3步是Soft-thresholding;
- 4. 第4步是对偶变量α的梯度上升;

3 ADMM模块

ADMM算法作为一种分布式算法,计算节点分为worker和master两种节点,其中worker节点用于分广告位子任务的训练,主要更新子任务的 v_t 、 w_t 和拉格朗日系数 α_t ,master节点只有一个,用于更新全局权重向量 w_0 。

ADMM计算步骤如下:

算法 ADMM

- 1. 初始化各子任务对应的 v_t 、 w_t 和 α_t ,步长 ρ ,全局权重向量 w_0 , λ_w 和 λ_v
- 2. For each iteration
 - 3. 每个worker更新 v_t
 - 4. 每个worker更新 w_t
 - 5. Allreduce:所有 v_t 和 w_t reduce到 mater
 - 6. master更新 w_0
 - 7. Broadcast :分发 w_0 到每个worker
 - 8. 每个worker更新 α_t

每个worker需要对 v_t 、 w_t 和 α_t 这三个参数做更新计算。

$$v_t$$
更新
$$v_t \leftarrow \underset{v}{\operatorname{argmin}} \frac{1}{n_t} \mathcal{L}(\boldsymbol{y}_t, X_t(w_t + v)) + \lambda_v \|v\|_1$$
 输入: 子任务t的训练样本集 $(X_t, \boldsymbol{y}_t) := \{(x_1^t, y_1^t), \dots, (x_{n_t}^t, y_{n_t}^t)\}, 以及 w_t 输出: $v_t$$

$$\alpha_t$$
更新 $\alpha_t \leftarrow \alpha_t + \rho(w_t - w_0)$ 输入: w_0, α_t 以及 w_t 输出: α_t

master需要对 w_0 进行更新

$$w_0$$
更新
$$w_0 \leftarrow \begin{cases} \frac{1}{\mathrm{T}} (\sum_{\mathbf{t}} (\mathbf{w}_{\mathbf{t}} + \alpha_{\mathbf{t}}/\rho) - \lambda_{\mathbf{w}}/\rho) & \text{if } \sum_{\mathbf{t}} (\mathbf{w}_{\mathbf{t}} + \alpha_{\mathbf{t}}/\rho) > \lambda_{\mathbf{w}}/\rho \\ \frac{1}{\mathrm{T}} (\sum_{\mathbf{t}} (\mathbf{w}_{\mathbf{t}} + \alpha_{\mathbf{t}}/\rho) + \lambda_{\mathbf{w}}/\rho) & \text{if } \sum_{\mathbf{t}} (\mathbf{w}_{\mathbf{t}} + \alpha_{\mathbf{t}}/\rho) < -\lambda_{\mathbf{w}}/\rho \\ 0 & \text{else} \end{cases}$$
 $\hat{\mathbf{m}} \lambda \colon \rho, \lambda_w, \{w_t\} \pi \{\alpha_t\}$ $\hat{\mathbf{m}} \, \mathbf{t} \colon w_0$

4 ADMM实现接口

AdmmConfig类

用于保存admm各参数配置的类,包含训练步长以及全局权重向量等参数

AdmmConfig类的公有成员变量:

step_size 浮点类型,步长 ρ global_var 浮点类型,参数 λ_w bias_var 浮点类型,参数 λ_v

global_weights vector类型,全局权重向量 w_0 dim 整型, 权重向量的维数

FtrlConfig类

用于保存FTRL各参数配置的类,包含训练步长以及全局权重向量等参数

FtrlConfig类的公有成员变量:

 l_1 浮点类型,L1正则系数 λ_1

1_2 浮点类型, L2正则系数 λ_2

alpha 浮点类型,参数 α beta 浮点类型,参数 $oldsymbol{\beta}$

dim 整型, 权重向量的维数

构造函数和初始化函数:

FtrlConfig(const AdmmConfig& admm_params);

FTRL配置参数初始化

输入: AdmmConfig配置参数

Worker 类

用于实现worker节点所做的子任务训练步骤,主要包括对子任务t的 v_t 、 w_t 和拉格朗日系数 α_t 更新函数,Worker类设有成员变量保存子任务t的 v_t 、 w_t 和拉格朗日系数 α_t 以及子任务的ID。

Worker类的成员变量:

base_vec_ vector类型,参数 w_t bias_vec_ vector类型,参数v langr_vec_ vector类型,参数 α_t

psid_string类型, psid广告位idnum_part_int类型, 加载数据的分块数partid_int 类型, 当前数据块的序号

Worker类的成员函数:

- - 输入:训练集 train_set,验证集test set,以及配置参数admm_params
- - 输入:训练集 sample_set, 验证集test set,以及配置参数admm_params
- 3. void LangrangeUpdate(const AdmmConfig& admm_params);

拉格朗日系数 α_t 的更新函数

输入: 样本参数 sample_set, 以及配置参数admm_params

4. std::vector<real_t> GetWeights(AdmmConfig& admm_params,std::vector<real_t>& ptr) const; 返回最终求解的 $w_t + \alpha_t/\rho$ 向量,结果保存在ptr数组中

Master 类

用于实现 \max er节点所做的全局权重向量 w_0 计算,仅包含一个对 w_0 更新的成员函数。

Master类的成员函数:

输入: 参数workers保存了所有worker节点的 $\{w_t + \alpha_t/\rho\}$,以及配置参数admm_params,wokers的数量num_worker 其中workers的每个元素表示一个worker节点提交的 $w_t + \alpha_t/\rho$ 向量

注:

每个worker节点都需向master提交其对应的 $w_t + \alpha_t/\rho$ 向量,此外因为admm_params的各成员变量在worker训练阶段保持不变,所以只需其中一个worker节点向master提交一次admm_params。

master向各worker节点广播admm_params参数。

FtrlSolver 类

用于实现FTRL算法求解带条件约束的LR模型。 Worker类的成员函数BaseUpdate和BiasUpdate都是通过调用FtrlSolver的对象来实现参数 w_t 和 v_t 的求解:通过类AdmmConfig的对象间接初始化类FtrlSolver对象,并设置截距向量,然后为FtrlSolver的Run成员函数传入样本集和截距向量完成模型训练得到解向量。

FtrlSolver类提供的初始化和调用接口函数:

- void Init(FtrlConfig ¶ms);
 FtrlSolver的初始化函数
 - 输入: ftrl配置参数params
- void Run(SampleSet& train_set, SampleSet& test_set, const std::vector<real_t>& offset,const std::vector<real_t>& reg_offset); 运行FTRL训练样本集
 - 输入: 训练集train set, 测试集test set, 目标函数的截距向量offset, L2正则项的截距向量reg offset

Metric 类

实现了 AUC和LogLoss的计算模块

Metric类提供的AUC和LogLoss函数接口:

1. real_t Auc(SampleSet& sample_set,std::vector<std::vector<real_t>>& weights,bool T); auc计算模块,返回auc值

输入: 样本集 sample_set, 权重向量组weights, 布尔变量T用于控制输出样本信息(训练集/验证集)

2. real_t LogLoss(SampleSet& sample_set,std::vector<std::vector<real_t>>& weights, bool T); logloss计算模块, 返回样本集上的 logloss值 输入: 样本集 sample_set, 权重向量组weights, 布尔变量T用于控制输出样本信息(训练集/验证集)

参考文献

- [1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1--122, 2011.
- [2] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi--task learning. In *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 109–117. ACM, 2004.