

Numerical Methods

Dr. Komang Setemen, S.Si., M.T.

Error Analysis

Outline

- Error Analysis
- Sources of Error in Numerical Computations
- Absolute and Relative Errors
- Roundoff and Truncation Errors
- Numbers Representation in Computer
- Floating-Point Numbers

Error Analysis

- Occurrence of error is unavoidable in the field of scientific computing.
- Instead, numerical analysts try to investigate the possible and best ways to minimize the error.
- The study of the error and how to estimate and minimize it are the fundamental issues in error analysis.

Error Analysis

- In numerical analysis we approximate the exact solution of the problem by using numerical method and consequently an error is committed.
- The numerical error is the difference between the exact solution and the approximate solution.

Error Analysis

Definition (Numerical Error)

Let \mathbf{x} be the exact solution of the underlying problem and \mathbf{x}^* its approximate solution, then the error (denoted by \mathbf{e}) in solving this problem is

$$e = x - x^*$$

Sources of Error in Numerical Computations

- Blunders (Gross Errors) These errors also called humans errors, and are caused by humans mistakes and oversight and can be minimized by taking care during scientific investigations.
- These errors will add to the total error of the underlying problem and can significantly affect the accuracy of solution.
- Modelling Errors These errors arise during the modelling process when scientists ignore effecting factors in the model to simplify the problem. Also, these errors known as formulation errors

Ilmu Komputer

Sources of Error in Numerical Computations

- Data Uncertainty. These errors are due to the uncertainty of the physical problem data and also known as data errors.
- **Discretization Errors.** Computers represent a function of continuous variable by a number of discrete values. Also, scientists approximate and replace complex continuous problems by discrete ones and this results in discretization errors.

Ilmu Komputer Universitas Pendidikan Ganesha

Absolute and Relative Errors

• **Absolute Error**. The absolute error \hat{e} of the error \mathbf{e} is defined as the absolute value of the error \mathbf{e}

$$\hat{e} = |x - x^*|$$

• **Relative Error**. The relative error \tilde{e} of the error e is defined as the ratio between the absolute error \hat{e} and the absolute value of the exact solution \mathbf{x}

$$\tilde{e} = \frac{\hat{e}}{|x|} = \frac{|x - x^*|}{|x|}, x \neq 0$$

Absolute and Relative Errors

- Example 2. Let x = 3.141592653589793 is the value of the constant ratio π correct to 15 decimal places and x* = 3.14159265 be an approximation of x.
- Compute the following quantities: a. The error, b. The absolute error, c. The relative error.

a.
$$e = x - x^* = 3.141592653589793 - 3.14159265 = 3.589792907376932 x 10^{-9}
= $3.589792907376932 \times 10^{-9} = 0.000000003589792907376932$$$

b. Absolute error:

$$\hat{e} = |x - x^*| = |3.141592653589793 - 3.14159265| = 3.589792907376932 \times 10^{-9}$$

Absolute and Relative Errors

c. Relative Error:

$$\tilde{e} = \frac{\hat{e}}{|x|} = \frac{|x - x^*|}{|x|} = \frac{3.141592653589793 - 3.14159265}{3.141592653589793}$$

$$= \frac{3.589792907376932 \times 10^{-9}}{3.141592653589793} = 1.142666571770530 \times 10^{-9}$$

Roundoff and Truncation Errors

- Computers represent numbers in finite number of digits and hence some quantities cannot be represented exactly. The error caused by replacing a number a by its closest machine number is called the roundoff error and the process is called correct rounding.
- Truncation errors also sometimes called chopping errors are occurred when chopping an infinite number and replaced it by a finite number or by truncated a series after finite number of terms.

Roundoff and Truncation Errors

- Example 3. Approximate the following decimal numbers to three digits by using rounding and chopping (truncation) rules:
- 1. x1 = 1.34579. Rounding=1.35, Chopping=1.34
- 2. x2 = 1.34679. Rounding=1.35, Chopping=1.34
- 3. x3 = 1.34479. Rounding=1.34, Chopping=1.34
- 4. x4 = 3.34379. Rounding=1.34, Chopping=1.34
- 5. x5 = 2.34579. Rounding=1.35, Chopping=1.34

Numbers Representation in Computer

- Human beings do arithmetic in their daily life using the decimal (base 10) number system.
- Nowadays, most computers use binary (base 2) number system.
- We enter the information to computers using the decimal system but computers transform them to the binary system by using the machine language.

Numbers Representation in Computer

 Scientific Notation. Let k be a real number, then k can be written in the following form

$$k = m \times 10^n$$

where m is any real number and the exponent **n** is an integer.

 This notation is called the scientific notation or scientific form and sometimes referred to as standard form.

Numbers Representation in Computer

- Example 1. Write the following numbers in scientific notation
- $1.0.00000834 = 8.34 \times 10^{-6}$
- $2.25.45879 = 2.545879 \times 10^{1}$
- $3.3400000 = 3.4 \times 10^6$
- $4.33 = 3.3 \times 10^{1}$
- $5.2.3 \times 10^9$

Floating-Point Numbers

 In the decimal system any real number a≠0 can be written in the decimal normalised floating-point form in the following way

$$a = \pm 0.d_1d_2d_3\cdots d_kd_{k+1}d_{k+2}\cdots \times 10^n, \ 1 \le d_1 \le 9, \ 0 \le d_i \le 9,$$

for each $i = 2, \dots$, and n is an integer called the exponent (n can be positive, negative or zero). In computers we use a finite number of digits in representing the numbers and we obtain the following form

$$b = \pm 0.d_1d_2d_3\cdots d_k \times 10^n, \ 1 \le d_1 \le 9, \ 0 \le d_i \le 9,$$

for each $i = 2, \dots, k$. These numbers are called **k-digit decimal machine numbers**

Floating-Point Numbers

 Also, the normalized floating-point decimal representation of the number a≠0 can be written in other way as

$$a = \pm r \times 10^n$$
, $(\frac{1}{10} \le r < 1)$,

the number r is called the normalized mantissa

