mm-Wave Radar: Through-Wall Imaging

Akshata Patil, Jesica Gonzalez, Yiting Wu, Lilian Chan June 06, 2023

Overview

- Motivation
- Problem Statement
- Experiment
- Results
- Conclusion
- Future Work

Hardware Exploration

$$d_{max} = \frac{c}{2S} F_S$$

$$d_{res} = \frac{c}{2B}$$

$$S = \frac{B}{T_C}$$

$$v_{max} = \frac{1}{4T_c} \cdot \frac{c}{f_{RF}}$$

$$v_{res} = \frac{1}{2N_c T_c} \cdot \frac{c}{f_{RF}}$$

- Altering Slope
- Altering Sampling Frequency
- Altering Number Of Chirps

Limitations

Environment and Target

- Too many other objects in the environment causes much cluttering
- Imperfect target reflectivity causes waves to scatter
- Does not work for stationary targets

Sensor

- Limited bandwidth of the sensor limits the range resolution
- Limited Nc of the sensor limits the velocity resolution
- Lowering sampling rate results in trade-off between better resolution vs.
 undesired aliasing

Data Collection

Imperfect environmental conditions

Algorithms

- Data Pre-processing
 - Different Filtering Masks
 - Convolution

Clustering

- K-Means clustering + Elbow method
- FindPeaks + Euclidean distances
- Find connected components

Pre-Range Shrink

One Person

Three People

Two People

Post Range Shrink

One Person

|

Three People

Post Filtering [Filter = (Min + Max)/2]

One Person

Two People

Three People

Post Convolution (3x3 ones)

One Person

Two People

Three People

K-Means Clustering + Elbow Methods

Explore: Varying Cut Offs For K means Clustering

- Experimental: Different cutoff value for K-means clustering
- Preprocessing: conv 3x3 + conv 3x3 + filter (med+max)/2

Cut Off Value	Single Target Detection Accuracy	Two Targets Detection Accuracy	Three targets Detection Accuracy
0.8	0.5	0.2	0
0.88	0	0.8	0.89
0.9	0	0.6	0.88
0.95	0	0	1

Explore: Preprocessing method

- Experimental: Different preprocessing methods
- K-means cutoff: 0.88

Preprod	Preprocessing Single Target Two Targets Detection Accuracy Detection Accuracy		Three targets Detection Accuracy	
Conv 3x3	Filter	0	0.8	0.89
Conv 2x2	Filter	0	0.4	0.22
Filter	Conv 3x3	0	0.8	0.1
Filter	Conv 2x2	VERY BAD		

FindPeaks + Euclidean Distances

FindPeaks and Euclidean Distances

Step 1: Find Peaks

We find all the peaks in the graph that are within a certain threshold of the max peak (Max Peak Cutoff)

Step 2: Find Euclidean Distances

We calculate the distance between each of the peaks and if a group of peaks are within a certain threshold of each other (Euclidean Distance Cutoff), we remove all but one

Results - Different Max Peak and Euclidean Cutoffs

No of People	Filename	Results (Average Over All Frames)	Results (Rounded)	Error	Peak Cutoff	Euclidean Distance Cutoff
	0529_5	1.7	2	0.7	0.95	0.3
1		2.29	2	1.29	0.95	0.15
1		4.04	4	3.04	0.85	0.3
		6.79	7	5.79	0.85	0.15
	0529_9	2.33	2	0.33	0.95	0.3
2		2.88	3	0.88	0.95	0.15
2		5.08	5	3.08	0.85	0.3
		9.14	9	7.14	0.85	0.15
3	0603_9	2.14	2	0.86	0.95	0.3
		2.27	2	0.73	0.95	0.15
		2.58	3	0.42	0.85	0.3
		3.54	4	0.54	0.85	0.15

Results - Different Max Peak and Euclidean Cutoffs

Euclidean distance threshold	Find Peaks Threshold	Single Target Detection Accuracy	Two Targets Detection Accuracy	Three targets Detection Accuracy
0.3	0.95	0	1	0
0.4	0.92	1	1	0.22
0.3	0.9	0	0.5	0

Find Connected Components

Explore: Varying Filters

- Filter 1: (med + max) / 2
- Filter 2: (med*5 + max*7) / 2
- Filter 3: (avg + med) / 2

Prepro	cessing	Single Target Detection Accuracy	Two Targets Detection Accuracy	Three targets Detection Accuracy
Filter 1	Conv 2x2	0.5	0.6	0.56
Filter 2	Conv 2x2	1	1	0.44
Filter 1 + Conv 2x2	Filter 3 range + Conv 2x2	0.5	0.8	0.22

Conclusion

- The Find Connected Components Algorithm works best for 1-2 people.
- The FindPeak and Euclidean Algorithm works best for 1-2 people, but not for 3 people.
- The K-means Algorithm works best for 3 people.

Future Work

- Apply better noise filtering techniques so that background noise doesn't affect the data as much
- Apply additional machine learning techniques to cluster the data
 - Support Vector Machine (SVM)
 - Convolutional Neural Networks (CNN)
- Experiment with walls of different materials

