Efficient Proof of Reserves for Cryptocurrency Exchanges Dual Degree Project - Phase I

Suyash Bagad

Guide: Prof. Saravanan Vijayakumaran

Department of Electrical Engineering, Indian Institute of Technology, Bombay

21st October 2019

Pedersen Commitment Scheme

Figure: Digital equivalent of a sealed box

- Given a group $\mathbb G$ of prime order q and $g,h \xleftarrow{\$} \mathbb G$, define $\mathsf{pk} = (g,h)$
- A commitment to a message m, with $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, is defined as

$$\mathsf{Com}_{\mathsf{pk}}(m) = g^r \cdot h^m$$

- Secret (m,r) forms an opening to the above Pedersen commitment
- Perfectly Hiding: Given a Pedersen commitment P, no adversary can determine (m,r)
- Computationally Binding: Assuming the discrete-log problem is hard, it is infeasible to output two correct openings (m, r), (m', r') with $m \neq m'$ to P

Zero Knowledge Proofs of Knowledge

 $Courtesy: \verb|https://en.wikipedia.org/wiki/Zero-knowledge_proof| \\$

- Proofs that yield nothing beyond the validity of an assertion
- An interactive proof system is a ZKPoK if it satisfies:
 - Completeness: Honest prover convinces honest verifier
 - Zero-Knowledge: Malicious verifiers learn nothing more than statement validity
 - Soundness: Dishonest prover cannot convince a verifier

Crypto Exchanges

Figure: A crypto exchange is like a virtual bank for cryptocurrencies in exchange with fiat currencies

- ✓ Enable anyone to own cryptocurrencies without mining them
- ✓ Free the customer from storing secret information (private keys)
- ✓ Provide custodial wallets and trading services to customers
- ✗ Loss of customer money in cases of hack (MtGox, '14)
- X Exit scam or internal fraud by exchange owners (QuadrigaCX, '18)

Can we design a cryptographic system to avoid or predict occurence of such undesirable cases?

Proof of Solvency

- ✓ Proves that crypto reserves of an exchange exceed its liabilities
- ✓ Prevents exchanges from hiding loss of funds due to cyberattacks
- ✓ Disallows them to sell crypto assets without actually owning them
- × Not a fool-proof method to counter hacks and exit scams
- An exchange generates two Pedersen commitments:

$$C_{\text{res}} = g^{r_{\text{res}}} h^{a_{\text{res}}}$$

$$C_{\text{liab}} = g^{r_{\text{liab}}} h^{a_{\text{liab}}}$$

To the total reserves amount a_{res} To the total liability amount a_{liab}

- An exchange is solvent if it proves that $C_{\rm res}C_{\rm liab}^{-1}$ is a commitment to a non-negative amount

We focus on the design of proof of reserves.

Our contribution

- We present Revelio+ , an efficient and privacy-preserving proof of reserves for Mimblewimble-based cryptocurrencies. ¹
- We alleviate the drawbacks of Revelio, the first proof of reserves for Mimblewimble cryptocurrencies

	Revelio+	Revelio
Proof size	$\mathcal{O}(\log(sn) + s)$	$\mathcal{O}(n)$
Scalability	✓	X
Blockchain state	✓	X
Output privacy	✓	✓
Non-collusion	✓	✓
Inflation resistance	✓	✓

Mimblewimble

- MimbleWimble is a blockchain-based ledger with strong privacy and confidentiality guarantees
- Transactions are scriptless and consist only of *inputs*, *outputs* and *excess* ⇒ Scalability!
- A MimbleWimble output is a Pedersen commitment of the form $C = g^r h^a$ where $r, a \in \mathbb{Z}_q$ are blinding factor and amount resp.
- Knowledge of r, a implies ownership of output $C = g^r h^a$
- Grin blockchain consists of all unspent outputs

$$C_1$$
, C_2 , C_3 , C_4 , C_5 ..., C_{n-3} , C_{n-2} , C_{n-1} , C_n

- Let UTXO set be $\mathcal{C}_{unspent},$ set of exchange-owned outputs be \mathcal{C}_{own}
- Exchange reveals anonymity set $\mathcal{C}_{anon} = \{C_1, C_2, \dots, C_n\}$ so that

$$\mathcal{C}_{\mathrm{own}} \subset \mathcal{C}_{\mathrm{anon}} \subset \mathcal{C}_{\mathrm{unspent}}$$

- For each $C_i = g^{r_i} h^{a_i} \in \mathcal{C}_{\text{anon}}$, exchange defines key-images I_i

$$I_i = \begin{cases} (g')^{x_i} h^{a_i} & \text{if } C_i \in \mathcal{C}_{\text{own}} \\ (g')^{y_i} & \text{if } C_i \notin \mathcal{C}_{\text{own}} \end{cases}$$

where $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and $y_i = \mathcal{H}(k_{\text{exch}}, C_i)$

- For each $C_i \in C_{\text{anon}}$, exchange gives ZKPoK of the form

$$\sigma_i = \text{PoK}\{(\alpha, \beta, \gamma, \delta) \mid (C_i = g^{\alpha}h^{\beta} \wedge I_i = (g')^{\delta}h^{\beta}) \vee (I_i = (g')^{\gamma})\}$$

- Setting $C_{\text{res}} = \prod_{i=1}^{n} I_i$, a Revelio proof is of the form

$$\Pi_{\text{Rev}} = \{\mathcal{C}_{\text{anon}}, I_1, \dots, I_n, \sigma_1, \dots, \sigma_n\}$$

- Let UTXO set be $C_{unspent}$, set of exchange-owned outputs be C_{own}
- Exchange reveals anonymity set $C_{\text{anon}} = \{C_1, C_2, \dots, C_n\}$ so that

$$\mathcal{C}_{\mathrm{own}} \subset \mathcal{C}_{\mathrm{anon}} \subset \mathcal{C}_{\mathrm{unspent}}$$

- For each $C_i = g^{r_i} h^{a_i} \in \mathcal{C}_{anon}$, exchange defines key-images I_i

$$I_{i} = \begin{cases} (g')^{x_{i}} h^{a_{i}} & \text{if } C_{i} \in \mathcal{C}_{\text{own}} \\ (g')^{y_{i}} & \text{if } C_{i} \notin \mathcal{C}_{\text{own}} \end{cases}$$

where $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and $y_i = \mathcal{H}(k_{\text{exch}}, C_i)$

- For each $C_i \in C_{\text{anon}}$, exchange gives ZKPoK of the form

$$\sigma_i = \operatorname{PoK}\{(\alpha, \beta, \gamma, \delta) \mid (C_i = g^{\alpha}h^{\beta} \wedge I_i = (g')^{\delta}h^{\beta}) \vee (I_i = (g')^{\gamma})\}$$

- Setting $C_{\text{res}} = \prod_{i=1}^{n} I_i$, a Revelio proof is of the form

$$\Pi_{\text{Rev}} = \{ \mathcal{C}_{\text{anon}}, I_1, \dots, I_n, \sigma_1, \dots, \sigma_n \}$$

- Let UTXO set be $C_{unspent}$, set of exchange-owned outputs be C_{own}
- Exchange reveals anonymity set $C_{anon} = \{C_1, C_2, \dots, C_n\}$ so that

$$\mathcal{C}_{\mathrm{own}} \subset \mathcal{C}_{\mathrm{anon}} \subset \mathcal{C}_{\mathrm{unspent}}$$

- For each $C_i = g^{r_i} h^{a_i} \in \mathcal{C}_{anon}$, exchange defines key-images I_i

$$I_i = \begin{cases} (g')^{x_i} h^{a_i} & \text{if } C_i \in \mathcal{C}_{\text{own}} \\ (g')^{y_i} & \text{if } C_i \notin \mathcal{C}_{\text{own}} \end{cases}$$

where $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and $y_i = \mathcal{H}(k_{\text{exch}}, C_i)$

- For each $C_i \in C_{\text{anon}}$, exchange gives ZKPoK of the form

$$\sigma_i = \text{PoK}\{(\alpha, \beta, \gamma, \delta) \mid (C_i = g^{\alpha}h^{\beta} \wedge I_i = (g')^{\delta}h^{\beta}) \vee (I_i = (g')^{\gamma})\}$$

- Setting $C_{\text{res}} = \prod_{i=1}^{n} I_i$, a Revelio proof is of the form

$$\Pi_{\text{Rev}} = \{\mathcal{C}_{\text{anon}}, I_1, \dots, I_n, \sigma_1, \dots, \sigma_n\}$$

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- X Collusion can be detected *only* if all the exchanges generate proofs from same blockchain state (i.e same $C_{unspent}$)
- Proof sizes are linear in anonymity set size
- × An adversary succeeds in guessing an exchange-owned output is

$$\frac{|\mathcal{C}_{\mathrm{own}}|}{|\mathcal{C}_{\mathrm{anon}}|}$$

For maximum privacy of the outputs, exchanges would want to enlarge the set \mathcal{C}_{anon} to $\mathcal{C}_{unspent}$. But the linearly growing proof sizes make it impractical.

- Let the set of unspent outputs at block height t be

$$\{C_1, \underbrace{C_2}_{i_1}, \underbrace{C_3}_{i_2}, C_4, \dots, \underbrace{C_{n-2}}_{i_{s-1}}, C_{n-1}, \underbrace{C_n}_{i_s}\}$$

- Let the set of unspent outputs at block height t be

$$\{C_1, \underbrace{C_2}_{i_1}, \underbrace{C_3}_{i_2}, C_4, \dots, \underbrace{C_{n-2}}_{i_{s-1}}, C_{n-1}, \underbrace{C_n}_{i_s}\}$$

- Let the exchange-owned outputs be $(C_{i_1}, \ldots, C_{i_s})$ such that $C_{i_j} = g^{r_j} h^{a_j}$ for all $j \in [s]$

- Let the set of unspent outputs at block height t be

$$\{C_1, \underbrace{C_2}_{i_1}, \underbrace{C_3}_{i_2}, C_4, \dots, \underbrace{C_{n-2}}_{i_{s-1}}, C_{n-1}, \underbrace{C_n}_{i_s}\}$$

- Let the exchange-owned outputs be $(C_{i_1}, \ldots, C_{i_s})$ such that $C_{i_j} = g^{r_j} h^{a_j}$ for all $j \in [s]$
- The corresponding key-images be defined as

$$I_j = g_t^{r_j} h^{a_j}$$

- Let the set of unspent outputs at block height t be

$$\{C_1, \underbrace{C_2}_{i_1}, \underbrace{C_3}_{i_2}, C_4, \dots, \underbrace{C_{n-2}}_{i_{s-1}}, C_{n-1}, \underbrace{C_n}_{i_s}\}$$

- Let the exchange-owned outputs be $(C_{i_1}, \ldots, C_{i_s})$ such that $C_{i_j} = g^{r_j} h^{a_j}$ for all $j \in [s]$
- The corresponding key-images be defined as

$$I_j = g_t^{r_j} h^{a_j}$$

- We wish to design a ZKPoK of the form

$$\operatorname{PoK}\{(i_1, \dots, i_s, \mathbf{r}, \mathbf{a}) \mid C_{i_j} = g^{r_j} h^{a_j} \wedge I_j = g_t^{r_j} h^{a_j} \ \forall j \in [s]\}$$
where $\mathbf{r} = (r_1, \dots, r_s)$ and $\mathbf{a} = (a_1, \dots, a_s)$

- Let the set of unspent outputs at block height t be

$$\{C_1, \underbrace{C_2}_{i_1}, \underbrace{C_3}_{i_2}, C_4, \dots, \underbrace{C_{n-2}}_{i_{s-1}}, C_{n-1}, \underbrace{C_n}_{i_s}\}$$

- Let the exchange-owned outputs be $(C_{i_1}, \ldots, C_{i_s})$ such that $C_{i_j} = g^{r_j} h^{a_j}$ for all $j \in [s]$
- The corresponding key-images be defined as

$$I_j = g_t^{r_j} h^{a_j}$$

- We wish to design a ZKPoK of the form

$$PoK\{(i_1, ..., i_s, \mathbf{r}, \mathbf{a}) \mid C_{i_j} = g^{r_j} h^{a_j} \wedge I_j = g_t^{r_j} h^{a_j} \ \forall j \in [s]\}$$

where
$$\mathbf{r} = (r_1, ..., r_s)$$
 and $\mathbf{a} = (a_1, ..., a_s)$

- We need a protocol which aggregates proofs of discrete-log based statements!

- A ZKPoK to prove that a committed value lies in a given interval

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} - \mathbf{1}^n$

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} \mathbf{1}^n$
- Pedersen vector commitment to \mathbf{a}, \mathbf{b} as $A = g^{\alpha} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} \mathbf{1}^n$
- Pedersen vector commitment to \mathbf{a}, \mathbf{b} as $A = g^{\alpha} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$
- Proving $\mathbf{a} \circ \mathbf{b} = \mathbf{0}^n$, $\mathbf{a} \mathbf{b} = \mathbf{1}^n$, $\langle \mathbf{a}, \mathbf{2}^n \rangle = a$ would suffice

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} \mathbf{1}^n$
- Pedersen vector commitment to \mathbf{a}, \mathbf{b} as $A = g^{\alpha} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$
- Proving $\mathbf{a} \circ \mathbf{b} = \mathbf{0}^n$, $\mathbf{a} \mathbf{b} = \mathbf{1}^n$, $\langle \mathbf{a}, \mathbf{2}^n \rangle = a$ would suffice
- To do so, form an inner-product relation given $y, z \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$\langle \mathbf{a}, \mathbf{2}^n \rangle = a \wedge \langle \mathbf{a}, \mathbf{b} \circ \mathbf{y}^n \rangle = 0 \wedge \langle \mathbf{a} - \mathbf{b} - \mathbf{1}^n, \mathbf{y}^n \rangle = 0$$

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} \mathbf{1}^n$
- Pedersen vector commitment to \mathbf{a}, \mathbf{b} as $A = g^{\alpha} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$
- Proving $\mathbf{a} \circ \mathbf{b} = \mathbf{0}^n$, $\mathbf{a} \mathbf{b} = \mathbf{1}^n$, $\langle \mathbf{a}, \mathbf{2}^n \rangle = a$ would suffice
- To do so, form an inner-product relation given $y, z \xleftarrow{\$} \mathbb{Z}_q$

$$\langle \mathbf{a}, \mathbf{2}^n \rangle = a \wedge \langle \mathbf{a}, \mathbf{b} \circ \mathbf{y}^n \rangle = 0 \wedge \langle \mathbf{a} - \mathbf{b} - \mathbf{1}^n, \mathbf{y}^n \rangle = 0$$

- Proof size is $\mathcal{O}(\log(n))$

- A ZKPoK to prove that a committed value lies in a given interval
- BP uses improved inner-product argument, statement of which is

$$PoK\{(\mathbf{a}, \mathbf{b}) \mid A = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} \wedge c = \langle \mathbf{a}, \mathbf{b} \rangle \}$$

- Encodes an integer $a \in [0, 2^n)$ in binary form as \mathbf{a} , set $\mathbf{b} = \mathbf{a} \mathbf{1}^n$
- Pedersen vector commitment to \mathbf{a}, \mathbf{b} as $A = g^{\alpha} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$
- Proving $\mathbf{a} \circ \mathbf{b} = \mathbf{0}^n$, $\mathbf{a} \mathbf{b} = \mathbf{1}^n$, $\langle \mathbf{a}, \mathbf{2}^n \rangle = a$ would suffice
- To do so, form an inner-product relation given $y, z \xleftarrow{\$} \mathbb{Z}_q$

$$\langle \mathbf{a}, \mathbf{2}^n \rangle = a \wedge \langle \mathbf{a}, \mathbf{b} \circ \mathbf{y}^n \rangle = 0 \wedge \langle \mathbf{a} - \mathbf{b} - \mathbf{1}^n, \mathbf{y}^n \rangle = 0$$

- Proof size is $\mathcal{O}(\log(n))$
- Extractability of bulletproofs depends on the assumption that discrete-log relation between $(g, \mathbf{g}, \mathbf{h})$ is unknown to the prover

- Consider the problem of proving knowledge of a single private key (say, for instance, $R_i=g^{x_i}$) from a given set of public keys

$$\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n)$$

- Let \mathbf{e}_i be unit vector with 1 in *i*th position, we can now write

$$1 = g^{-x_i} \mathbf{R}^{\mathbf{e}_i} = (g, \mathbf{R})^{(-x_i, \mathbf{e}_i)}$$

- With secrets $\mathbf{a} = (-x_i, \mathbf{e}_i)$, $\mathbf{b} = (x_i^{-1}, \mathbf{e}_i - \mathbf{1}^n)$, base vectors $\mathbf{g} = (g, \mathbf{R})$, $\mathbf{h} \stackrel{\$}{\leftarrow} \mathbb{G}^{n+1}$, we form the Pedersen vector commitment

$$P = (g')^{\alpha} \mathbf{g^a h^b}$$

- Forming an appropriate inner-product relation between **a**, **b**, we can design a Bulletproofs-like protocol!

- Consider the problem of proving knowledge of a *single* private key (say, for instance, $R_i = g^{x_i}$) from a given set of public keys

$$\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n)$$

- Let \mathbf{e}_i be unit vector with 1 in *i*th position, we can now write

$$1 = g^{-x_i} \mathbf{R}^{\mathbf{e}_i} = (g, \mathbf{R})^{(-x_i, \mathbf{e}_i)}$$

- With secrets $\mathbf{a} = (-x_i, \mathbf{e}_i)$, $\mathbf{b} = (x_i^{-1}, \mathbf{e}_i - \mathbf{1}^n)$, base vectors $\mathbf{g} = (g, \mathbf{R})$, $\mathbf{h} \stackrel{\$}{\leftarrow} \mathbb{G}^{n+1}$, we form the Pedersen vector commitment

$$P = (g')^{\alpha} \mathbf{g^a h^b}$$

- Forming an appropriate inner-product relation between **a**, **b**, we can design a Bulletproofs-like protocol!

- Consider the problem of proving knowledge of a *single* private key (say, for instance, $R_i = g^{x_i}$) from a given set of public keys

$$\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n)$$

- Let \mathbf{e}_i be unit vector with 1 in *i*th position, we can now write

$$1 = g^{-x_i} \mathbf{R}^{\mathbf{e}_i} = (g, \mathbf{R})^{(-x_i, \mathbf{e}_i)}$$

- With secrets $\mathbf{a} = (-x_i, \mathbf{e}_i)$, $\mathbf{b} = (x_i^{-1}, \mathbf{e}_i - \mathbf{1}^n)$, base vectors $\mathbf{g} = (g, \mathbf{R})$, $\mathbf{h} \stackrel{\$}{\leftarrow} \mathbb{G}^{n+1}$, we form the Pedersen vector commitment

$$P = g^{\alpha} \mathbf{g^a} \mathbf{h^b}$$

- Forming an appropriate inner-product relation between **a**, **b**, we can design a Bulletproofs-like protocol!
- Extractability of Bulletproofs!

- Lai et al fixed this by defining a new generator, $w \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \mathbf{p} \stackrel{\$}{\leftarrow} \mathbb{G}^{n+1}$

$$\mathbf{g}_w \coloneqq (g, \mathbf{R})^{\circ w} \circ \mathbf{p}$$

- Further, $\mathbf{g}_w^{\mathbf{a}} = \mathbf{g}_{w'}^{\mathbf{a}}$ for any $w' \in \mathbb{Z}_q$
- Run BP-like protocol twice with bases $(g', \mathbf{g}_w, \mathbf{h})$ and $(g', \mathbf{g}_{w'}, \mathbf{h})$
- Extract secret vector $(\alpha, \mathbf{a}, \mathbf{b})$ if both runs were successful!
- Using w = 0 and $w' \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, just one run suffices

$$\mathbf{C} = \{C_1 \quad \boxed{C_2} \quad \boxed{C_3} \quad C_4 \quad C_5 \quad \dots \quad C_{n-2} \quad C_{n-1} \quad \boxed{C_n} \}$$

- We are to design a ZKPoK Π_+ for the statement

$$\operatorname{PoK}\left\{\left(\mathbf{a},\mathbf{r},\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_s}\right)\mid\mathbf{C}^{\mathbf{e}_{i_j}}=g^{r_j}h^{a_j}\ \land\ I_j=g_t^{r_j}h^{a_j}\ \forall j\in[s]\right\}$$

- We are to design a ZKPoK Π_+ for the statement

$$\operatorname{PoK}\left\{\left(\mathbf{a},\mathbf{r},\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_s}\right)\mid\mathbf{C}^{\mathbf{e}_{i_j}}=g^{r_j}h^{a_j} \wedge I_j=g_t^{r_j}h^{a_j} \ \forall j\in[s]\right\}$$

- For proving knowledge of only \mathbf{e}_{i_j} for some $j \in [s]$,

$$g^{-r_{j}}h^{-a_{j}}\mathbf{C}^{\mathbf{e}_{i_{j}}} = 1 \text{ and } g_{t}^{-r_{j}}h^{-a_{j}}I_{j} = 1$$

$$\left(g^{-r_{j}}h^{-a_{j}}\mathbf{C}^{\mathbf{e}_{i_{j}}}\right)^{v}\left(g_{t}^{-r_{j}}h^{-a_{j}}I_{j}\right)^{u} = g^{-vr_{j}}g_{t}^{-ur_{j}}h^{-(v+u)a_{j}}\mathbf{C}^{v\mathbf{e}_{i_{j}}}I_{j}^{u} = 1$$

$$\therefore \mathbf{g}'_{w} = \left((g\|g_{t}\|h\|\mathbf{C}\|I_{i}^{u})^{w} \circ \mathbf{p}\right) \text{ and } \mathbf{a}' := (\xi_{j}\|\xi'_{j}\|\eta_{j}\|\hat{\mathbf{e}}_{j}\|1)$$

Revelio+ proof of reserves is given as $\Pi_{\text{Rev}+} = (t, \mathbf{I}, \Pi_{+})$

✓ Exchange cannot inflate reserves

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- \checkmark Π_+ has perfect completeness and computational soundness

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- \checkmark Π_+ has perfect completeness and computational soundness
- ✓ Different exchanges can give proofs at same blockchain state

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- \checkmark Π_{+} has perfect completeness and computational soundness
- ✓ Different exchanges can give proofs at same blockchain state
- ✓ Proof sizes are logarithmic in UTXO set size

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- \checkmark Π_{+} has perfect completeness and computational soundness
- ✓ Different exchanges can give proofs at same blockchain state
- ✓ Proof sizes are logarithmic in UTXO set size
- X Revealing of own set size s

- ✓ Exchange cannot inflate reserves
- ✓ Multiple exchanges cannot collude by sharing UTXOs
- ✓ Output-privacy of an exchange is conserved
- \checkmark Π_{+} has perfect completeness and computational soundness
- ✓ Different exchanges can give proofs at same blockchain state
- ✓ Proof sizes are logarithmic in UTXO set size
- \times Revealing of own set size s
- Proof generation and verification times

Performance

Figure: Performance comparison between Revelio and Revelio+ for s=50

Performance

Figure: Performance comparison between Revelio and Revelio+ for s=50

Performance

Figure: Performance comparison between Revelio and Revelio+ for s=50

Performance - Generation Times

- Revelio+ protocol generation and verification times are linear in sn

		Revelio+	Revelio
n	s	$\mathcal{O}(sn)$	$\mathcal{O}(n)$
10^{5}	50	4.1	0.4
	10^{3}	82	0.4
	5×10^3	410	0.4
	10^{4}	810	0.4
10 ⁶	50	41	4
	10^{3}	820	4
	10^{4}	8200	4
	10^{5}	16000	4

Table: Comparison of generation times² (in hrs)

Performance - Generation Times

- Revelio+ protocol generation and verification times are linear in sn

		Revelio+	Revelio
n	s	$\mathcal{O}(sn)$	$\mathcal{O}(n)$
10^{5}	50	4.1	0.4
	10^{3}	82	0.4
	5×10^3	410	0.4
	10^{4}	810	0.4
10 ⁶	50	41	4
	10^{3}	820	4
	10^{4}	8200	4
	10^{5}	16000	4

Table: Comparison of generation times² (in hrs)

- Need specialized hardware! (multicore CPUs/FPGAs/ASICs?)