Selected Problems from Electrostatics

11. Three point charges are arranged as shown in Figure M P23.11. Find (a) the magnitude and (b) the direction of the electric force on the particle at the origin.

Figure P23.11 Problems 11 and 35.

12. Three point charges lie along a straight line as shown in Figure P23.12, where $q_1 = 6.00 \ \mu\text{C}$, $q_2 = 1.50 \ \mu\text{C}$, and $q_3 = -2.00 \ \mu\text{C}$. The separation distances are $d_1 = 3.00 \ \text{cm}$ and $d_2 = 2.00 \ \text{cm}$. Calculate the magnitude and direction of the net electric force on (a) q_1 , (b) q_2 , and (c) q_3 .

Figure P23.12

16. Two small metallic spheres, each of mass m = 0.200 g, are suspended as pendulums by light strings of length L as shown in Figure P23.16. The spheres are given the same electric charge of 7.2 nC, and they come to equilibrium when each string is at an angle of $\theta = 5.00^{\circ}$ with the vertical. How long are the strings?

Figure P23.16

- 21. Two identical conducting small spheres are placed with their centers 0.300 m apart. One is given a charge of 12.0 nC and the other a charge of -18.0 nC. (a) Find the electric force exerted by one sphere on the other. (b) What If? The spheres are connected by a conducting wire. Find the electric force each exerts on the other after they have come to equilibrium.
- 29. In Figure P23.29, determine the point (other than infinity) at which the electric field is zero.

25. Four charged particles are at the corners of a square of side *a* as shown in Figure P23.25. Determine (a) the electric field at the location of charge *q* and (b) the total electric force exerted on *q*.

33. A small, 2.00-g plastic ball is suspended by a 20.0-cm-AMI long string in a uniform electric field as shown in Figure P23.33. If the ball is in equilibrium when the string makes a 15.0° angle with the vertical, what is the net charge on the ball?

Figure P23.33

- 37. A rod 14.0 cm long is uniformly charged and has a total who charge of -22.0 μC. Determine (a) the magnitude and (b) the direction of the electric field along the axis of the rod at a point 36.0 cm from its center.
- 38. A uniformly charged disk of radius 35.0 cm carries charge with a density of 7.90 × 10⁻³ C/m². Calculate the electric field on the axis of the disk at (a) 5.00 cm, (b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the center of the disk.
- 72. The inner conductor of a coaxial cable has a radius of 0.800 mm, and the outer conductor's inside radius is 3.00 mm. The space between the conductors is filled with polyethylene, which has a dielectric constant of 2.30 and a dielectric strength of 18.0 × 10⁶ V/m. What is the maximum potential difference this cable can withstand?

M direction. It enters a uniform vertical electric field with a magnitude of 9.60 × 10³ N/C. Ignoring any gravitational effects, find (a) the time interval required for the proton to travel 5.00 cm horizontally, (b) its vertical displacement during the time interval in which it travels 5.00 cm horizontally, and (c) the horizontal and vertical components of its velocity after it has traveled 5.00 cm horizontally.

M mass 1.00 g is suspended on a light string in the presence of a uniform electric field as shown in Figure P23.67. When **E** = (3.00**î** + 5.00**ĵ**) × 10⁵ N/C, the ball is in equilibrium at θ = 37.0°. Find (a) the charge on the ball and (b) the tension in the string.

Figure P23.67 Problems 67 and 68.

68. A charged cork ball of mass m is suspended on a light string in the presence of a uniform electric field as shown in Figure P23.67. When E = Aî + Bĵ, where A and B are positive quantities, the ball is in equilibrium at the angle θ. Find (a) the charge on the ball and (b) the tension in the string.

72. Four identical charged particles (q = +10.0 μC) are located on the corners of a rectangle as shown in Figure P23.72. The dimensions of the rectangle are L = 60.0 cm and W = 15.0 cm. Calculate (a) the magnitude and (b) the direction of the total electric force exerted on the charge at the lower left corner by the other three charges.

Figure P23.72

- 73. Two small spheres hang in equilibrium at the bottom ends of threads, 40.0 cm long, that have their top ends tied to the same fixed point. One sphere has mass 2.40 g and charge +300 nC. The other sphere has the same mass and charge +200 nC. Find the distance between the centers of the spheres.
- **74.** Consider two long, parallel, and oppositely charged wires of radius *r* with their centers separated by a distance *D* that is much larger than *r*. Assuming the charge is distributed uniformly on the surface of each wire, show that the capacitance per unit length of this pair of wires is

$$\frac{C}{\ell} = \frac{\pi \epsilon_0}{\ln \left(D/r \right)}$$

- 13. In the air over a particular region at an altitude of 500 m above the ground, the electric field is 120 N/C directed downward. At 600 m above the ground, the electric field is 100 N/C downward. What is the average volume charge density in the layer of air between these two elevations? Is it positive or negative?
- 14. A particle with charge of 12.0 μC is placed at the center of a spherical shell of radius 22.0 cm. What is the total electric flux through (a) the surface of the shell and (b) any hemispherical surface of the shell? (c) Do the results depend on the radius? Explain.
- 15. (a) Find the net electric flux through the cube shown in Figure P24.15.
 (b) Can you use Gauss's law to find the electric field on the surface of this cube? Explain.

- A long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of λ , and the cylinder has a net charge per unit length of 2λ . From this information, use Gauss's law to find (a) the charge per unit length on the inner surface of the cylinder, (b) the charge per unit length on the outer surface of the cylinder, and (c) the electric field outside the cylinder a distance r from the axis.
- 47. A solid conducting sphere of radius 2.00 cm has a M charge of 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.