2020-GATE-PH-27-39

1

EE24BTECH11029- JANAGANI SHRETHAN REDDY

1) Let
$$|e_1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, |e_2\rangle = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, |e_3\rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Let $S = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$. Let \mathbf{R}^3 denote the three

dimensional real vector space. Which one of the following is correct?

- a) S is an orthonormal set
- b) S is a linearly dependent set
- c) S is a basis for \mathbb{R}^3

d)
$$\sum_{i=1}^{3} = |e_i\rangle\langle e_i| = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 2) S_x denotes the spin operator defined as $S_x = \frac{h}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Which one of the following is correct?
 - a) The eigenstates spin operator S_x are $|\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|\downarrow\rangle_x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - b) The eigenstates spin operator S_x are $|\uparrow\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \end{pmatrix}$ and $|\downarrow\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 - c) In the spin state $\frac{1}{2} \left\{ \frac{1}{\sqrt{3}} \right\}$, upon the measurement of S_x , the probability for obtaining $|\uparrow\rangle_x$ is $\frac{2+\sqrt{3}}{4}$
 - d) In the spin state $\frac{1}{2} \left\{ \frac{1}{\sqrt{3}} \right\}$, upon the measurement of S_x , the probability for obtaining $|\uparrow\rangle_x$ is $\frac{1}{4}$
- 3) The input voltage (\mathbf{V}_{in}) to the circuit shown in the figure is $2\cos{(100t)} V$. The output voltage (\mathbf{V}_{out}) is $2\cos{\left(100t \frac{\pi}{2}\right)} V$. If value of $C(in\mu F)$ is

- a) 0.1
- b) 1
- c) 10
- d) 100

4) Consider a 4-bit counter constructed out of four flip-flops. It is formed by connecting the J and K inputs to logic high and feeding the O output to the clock input of the following flip-flop. The input signal to the counter is a series of square pulses and the change of state is triggered by the falling edge. At time $t = t_0$ the outputs are in logic low state $(Q_0 = Q_1 = Q_2 = Q_3 = 0)$. Then at $t = t_1$, the logic state of the outputs is

1 (logic high)

- a) $Q_0 = 1, Q_1 = 0, Q_2 = 0, Q_3 = 0$
- b) $Q_0 = 0$, $Q_1 = 0$, $Q_2 = 0$, $Q_3 = 1$
- c) $Q_0 = 1, Q_1 = 0, Q_2 = 1, Q_3 = 0$
- d) $Q_0 = 0, Q_1 = 1, Q_2 = 1, Q_3 = 1$
- 5) Consider the Lagrangian $L = a \left(\frac{dx}{dy}\right)^2 + b \left(\frac{dy}{dt}\right)^2 + cxy$, where a, b and c are constants. If P_x and P_y are the momenta conjugate to the coordinates x and y respectively, then the Hamiltonian is
- 6) Which one of the following matrices does NOT represent a proper rotation in a plane?
 - a) $\begin{pmatrix} -\cos\theta & -\sin\theta \end{pmatrix}$ b) $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ c) $\begin{pmatrix} \sin\theta & \cos\theta \end{pmatrix}$

d)
$$\begin{pmatrix} -\sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix}$$

7) A uniform magnetic field $\mathbf{B} = B_0 \mathbf{y}$ exits in a inertial frame K. A perfect conducting sphere moves with a constant velocity $\mathbf{v} = v_0 \mathbf{x}$ with respect to this inertial fame. The rest frame of the sphere is K'. The electrical and magnetic fields in k and k' are related as

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}, \begin{cases} \mathbf{E}_{\parallel}' = \mathbf{E}_{\parallel} & \mathbf{E}_{\perp}' = \gamma(\mathbf{E}_{\perp}) + \mathbf{v} \times \mathbf{B} \\ \mathbf{B}_{\parallel}' = \mathbf{B}_{\parallel} & \mathbf{B}_{\perp}' = \gamma(\mathbf{B}_{\perp}) + \mathbf{v} \times \mathbf{E} \end{cases}$$
The induced surface charge density on the sphere in the fame K' is

- a) maximum along Z'
- b) maximum along y'
- c) maximum along x'
- d) uniform over the sphere
- 8) A charge q moving with uniform speed enters a cylinder region in free space at t = 0 and exits the region at $t = \tau$. Which one of the following options best describe the time dependence of the total electric flux $\phi(t)$, through the entire surface of the cylinder?

- 9) Consider a one-dimensional non-magnetic crystal with one atom per unit cell. Assume that the valence electrons (i) do not interact weakly with the ions. If n is number of valence electrons per unit cell, then at 0K,
 - a) the crystal is metallic for any value of n
 - b) the crystal is non-metallic for any value of n
 - c) the crystal is metallic for even value of n
 - d) the crystal is metallic for odd value of n
- 10) According to the Fermi gas model of the nucleus, the nucleons move in a spherical volume of radius $R = R_0 A^{\frac{1}{3}}$, where A is the mass number and R_0 is an empirical constant with the dimensions of length. The Fermi energy of the nucleaus E_F is proportional to
 - a) R_0^2
 - b) $\frac{1}{R_0}$
 - c) $\frac{1}{R_0^2}$
 - d) $\frac{1}{R_0^3}$
- 11) Consider a two dimensional crystal with 3 atoms in the basis. The number of allowed

in optical branches (n) and acoustic branches (m) due to the lattice vibrations are

- a) (n, m) = (2, 4)
- b) (n, m) = (3, 3)
- c) (n, m) = (4, 2)
- d) (n, m) = (1, 5)
- 12) The internal energy U of a system is given by $U(S,V) = \lambda V^{-\frac{2}{3}}S^2$, where λ is a constant of appropriate dimensions; V and S denote the volume and entropy respectively. Which one of the following gives the correct equation of state of the system?

 - a) $\frac{PV^{\frac{1}{3}}}{T^{2}}$ =constant b) $\frac{PV}{T^{\frac{1}{3}}}$ =constant c) $\frac{PV}{T^{\frac{1}{3}}}$ =constant
 - d) $\frac{PV^{\frac{2}{3}}}{T}$ =constant
- 13) The potential energy of a particle of mass m is given by

$$U(x) = a \sin(k^2 x - \frac{\pi}{2}), \quad a > 0, k^2 > 0.$$

The angular frequency of small oscillations of the particle about x = 0 is

- a) $k^2 \sqrt{\frac{2a}{m}}$
- b) $k^2 \sqrt{\frac{a}{m}}$ c) $k^2 \sqrt{\frac{a}{2m}}$ d) $2k^2 \sqrt{\frac{a}{m}}$