SPA: Assignment-2

Q1: Markov Chain Simulation

The first question considered a finite state Markov chain, representing the stages of writing a paper: read(r), write(w), e-mail(e), and surf(s). The transition probability matrix provided was utilized to simulate the evolution of the Markov chain and to compute various probabilities. This was the matrix:

```
( r w e s
r 0.5, 0.3, 0, 0.2,
w 0.2, 0.5, 0.1, 0.2,
e 0.1, 0.3, 0.3, 0.3,
s 0, 0.2, 0.3, 0.5
```

Part (a):

The Markov chain's evolution after 20 minutes was simulated as,

[,1] [,2] [,3] [,4]

[1,] 0.1707318 0.3360434 0.1815717 0.3116531

[2,] 0.1707318 0.3360434 0.1815718 0.3116531

[3,] 0.1707317 0.3360434 0.1815718 0.3116531

[4,] 0.1707316 0.3360433 0.1815719 0.3116532

and the probability $P(X_{20}=s | X_0=r) = 0.311653065258266$.

Part (b):

Similarly, the Markov chain was simulated to evolve for 25 minutes as,

[,1] [,2] [,3] [,4]

[1,] 0.18329 0.33794 0.17257 0.30620

[2,] 0.17693 0.33760 0.17692 0.30855

[3,] 0.16788 0.33559 0.18363 0.31290

[4,] 0.15883 0.33359 0.19032 0.31726

and the probability $P(X_{25} = s | X_{20} = s) = 0.31726$.

Part (c):

The stationary distribution exists and it was $(0.1707317\ 0.3360434\ 0.1815718\ 0.3116531)$.

Part (d):

The limiting distribution also exists and it is the same as the stationary distribution.

Q2: 1-D Random Walk Simulation

The second question addressed the simulation of a 1-D random walk under different step-forward probabilities.

Part (a):

A random walk starting from state \pm with p=0.5 was simulated over 500 steps. The simulated probability of stepping right was approximately 0.446.

Histogram of Random Walk with p=0.5

Part (b): The process was repeated with p=0.8. The final position and the simulated probability (approximately 0.822) indicated a significant drift.

Histogram of Random Walk with p=0.8

Comparison of Part(a) and Part(b) demonstrates the time-dependent evolution of the MC.

Part (c): The simulation was done 1000 times. The histogram showed a narrow distribution around the mean final position.

Histogram of Final Positions for 1000 Simulations

In comparison with Part (b), the expected drift was seen through multiple simulations.

Histogram of Random Walk with p=0.8 Histogram of Final Positions for 1000 Simulati

