ECON 712 - PS 6

Alex von Hafften*

10/15/2020

(Non-) Commitment in a black-box example with discrete choice set

Let there be a continuum of identical households in the economy, taking actions $\xi \in X$.¹ Let the economy wide average (the aggregate) of these actions be x. The benevolent government takes action $y \in Y$. The payoff to households is $u(\xi, x, y)$. Let the optimal choice of households, as a function of aggregates, be $f(x, y) := \arg \max_{\xi \in X} u(\xi, x, y)$.

In a competitive equilibrium, household action is consistent with the aggregate, i.e. x = f(x, y). Now for each y, let x = h(y) be such that h(y) = f(h(y), y). That is, (x = h(y), y) is a competitive equilibrium.

Let $X = \{x_H, x_l\}, Y = \{y_H, y_L\}$. For the one-period economy, with $\xi_i = x_i$, the payoffs $u(x_i, x_i, y_j)$ is given by the following table of one-period payoffs:

	x_L	x_H	
y_L	$x_L \\ 12^*$	25	
y_H	0	24*	

Here the values $u(\xi_k, x_i, y_j)$ not reported are such that the outcomes with * are competitive equilibria. For example, $u(\xi_k, x_i, y_j) = -1$ for $k \neq i$ and i = j, and $u(\xi_k, x_i, y_j) = 30$ for $k \neq i$ and $i \neq j$. You should convince yourself that this is the case.

- 1. Find the Ramsey outcome, that is when the government has commitment/moves first. Find the outcome when the government cannot commit/moves second (in pure strategies). We will refer to this case as the Nash equilibrium in pure strategies (NE).
- 2. Suppose the economy is repeated 5 times. Can the Ramsey outcome be supported in any period?

Now consider the expanded version of the previous economy. The payoffs $u(x_i, x_i, y_j)$ is given by the following the following table of one-period payoffs:

	$x_L L$	x_L	x_H
$y_L L$	$x_L L \\ 2^*$	6	10
y_L	1	12*	25
y_H	-1	0	24*

3. What are the NEs? Suppose the economy is repeated 3 times, with agents discounting future utilities by $\beta = 0.9$. Can the Ramsey outcome be supported in any period?

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹These problems draw extensively from Ljungqvist and Sargent's Recursive Macroeconomic Theory.

Static taxation

Let there be a unit measure of households with preferences over leisure, (private) consumption, and public goods (l, c, g), defined by the utility

$$u(l, c, g) = \ln l \ln(\alpha + c) + \ln(\alpha + g), \alpha \in (0, 0.5)$$

Each household is endowed with 1 unit of time, which can be spent on leisure or labor. Production is linear in labor, i.e. the economy resource constraint is $\bar{l} + g + \bar{c} = 1$ where \bar{l}, \bar{c} are aggregate leisure and consumption. To provide the public good, the government can levy a flat proportional tax τ on labor. That is $g = \tau(1 - l)$.

- 1. Set up and solve the Planner's problem.
- 2. Set up and solve for the Ramsey outcome.
- 3. Set up and solve for the NE outcome.
- 4. Comment on the differences between the above 3 outcomes, and the reason as to why they are different.
- 5. Suppose the economy is repeated for infinite periods, with discount factor $\beta < 1$. For high enough β , can the Ramsey outcome be sustained?