LAB-7

01) - when x : [0 1 3 4 8]

P(x) = -0.2607x4 +3.58x3 - 13.95x2 +14.628x + 8

g: [812 20]

p(x1) = 0.457x3 -4.828x2 +8.371x +8

Who x. [0 1 8]

p(x): -0.714x2 +4.714x+8

When x, [0 e]

P(X), - 7 + 8

- for two points berobtain a linear line on including more points, was obtain more higher degree krome. The method followed is Lagrange's Interpolation.
- on increacing the norg points, we obtain a better approximation to the existing polynomial function. Here we can also expect lower points

· All graphs are altached at the end.

02) · Via Lagrangis Method:

P(X) = -0.00024210 + 0.002329 - 6.012218 + 0.0481x7 0.155 x6 + 0.426 x5 - 0.971 x4 + 1.767 x3 $2.413x^2 + 3.197x - 1$

· Via Menton's Interpolation:

p(x) , 293x + 549

-1+2.97x-1.945x(x-0.1)+1,27x(x-0.1)(1-0.2)* -0.6308×(x-0,1)(x-0,2)(x-0,3) + 0.248×(x--)-4.(x-0,4) -0.818(2). (x-0.5) +0.23 x--(x1-0.6) -0.0056 fell -)(x-0.7) + 0.0012x.. (x-0.8) -0,00024 (x) -- O1-0.9)

On expanding, both the polynomial turn out to be the Samo

This can be seen from the Greagh or well

- · On using Bisection Method for 30 itorations, wer obtaine loot 1 = 0.408
- · Another interesting observation is that, all 3 graphs almost coincide. This can be attailbuled to the jack that and we have Il points between 0 to 1 (relatively high here we have a greater accuracy while approximating (Al-though the abole Ject is not always necessary - Runge Phronum Stop of acted at the land.

. Graph attached at the end.

Runge Phonominos is the problem of oscillation at the edges who veing polynomial interpolation with polynomials of the clearly seen from the graphs.

Oper sugtions:

A) Esson Plots:

increase significantly, but the error at the edge points to a considerable extent. Hence Acceptage need not always increase who manber of nodes are increased.

This can be charty seen from the error plots.

B) Polynomials.

The interpolated polynomials (via Newton's Methods), also display a similal property like the error plots. Higher in polynomials oscillate willy at the edges, but have a better estimation in the mid part.

In contract lower or values, have low error at the edges, but have a pool estimation to the midpoints. This can also be seen from the polynomial plot.

For n=5 ten: 15, the interpolated to actual polynomial are technically apposed to meet at ax 200, and have only one intersection point but due to Matiable a accuracy Aprecicion limitation, the interpolated polynomial graph shift slightly down and it now intersects with the actual graph at 20-00 to 1 = +00, leading to an extra intersection point (which should leahnically not be there).

Q1)

Q2)a)
Lagrange's form of Interpolating Polynomial

Newton's form of Interpolating Polynomial

Q3) error plot for n=5

error plot for n=10

error plot for n=15

Combined Error Plot

Polynomial plots

N=5

N=10

N=15

Combined Plot

