Roll.No				

AGNEL INSTITUTE OF TECHNOLOGY AND DESIGN ASSAGAO, GOA-403 507

INTERNAL TEST - I

Sem –I PHYSICS Max. Marks: 25

Date: 14/12/2020 Duration: 1 hour

Answer all Questions

Planck's constant= $6.626x10^{-34}$ J-s, Velocity of light= $3x10^{8}$ m/s

Boltzmann's constant=1.38x10 -23 J/K, Electronic charge=1.6x10 -19 C

1.	Derive an expression for numerical aperture of an optical fibre.	(5) (CO2)
2.	With neat diagrams explain construction and working of a He-Ne laser.	(5) (CO2)
3.	Write a short note on structure of an optical fibre.	(5) (CO2)
4.	An optical fibre has core R. I= 1.50 and cladding R. I=1.488 find i) Critical Angle ii) Acceptance angle iii) Numerical Aperture iv) Fractional index change.	(5) (CO4)
5.	If the mode of separation of He-Ne laser operating at 6328A° is 1000 MHz, what must be the length of laser cavity to ensure that only one longitudinal mode oscillates.	(5) (CO4)