Georgia Tech Gesture Toolkit:

Supporting Experiment in Gesture Recognition

Kent Lyons
Helene Brashear
Tracy Westeyn
Jung Soo Kim
Thad Starner

Contextual Computing Group College of Computing Georgia Institute of Technology Atlanta, GA USA

Motivation

- Gesture is becoming more common for interfaces
- Building gesture recognition systems is very difficult

gt²k is...

- A user interface toolkit designed to enable the development of gesturebased applications.
- Written in Java for cross-platform use and easy integration into graphical user interface development tools.

When to use gt²k

- Applications using symbolic/iconic gesture
 - Sign language
 - handwriting
- Applicable to research in many fields
 - Human-Computer Interaction
 - Assistive Technologies
 - Robotics
 - Brain Research
 - etc.

Outline

- Example applications
 - WritingPad
 - Accelerometer
 - Camera
- gt²k architecture
 - Overview
 - Sensor
 - Library
 - Machine Learning
 - Recognition Process
 - Data collection
 - Training
 - Recognition
- In-depth sample example
 - How to make your own application

Application: WritingPad

Sensor : mouse sensor

Allows a user to draw a gesture with a mouse

Application: Accelerometer

- Sensor : Accelerometer
- Collects information about users' physical movement

Application: Vision Tracker

- Sensor : Image Sensor
- Tracks the movement of objects

Architecture overview

Sensor

- Interfaces with the hardware and collect data.
- Provides parsing or post-processing of the data.
- Designed around an event-based architecture.

Allows for both synchronous as a supplication

reading of sensors.

Library

- Responsible for storing and organizing data.
- Composed of a collection of samples.

```
<?xml version="1.0" encoding="UTF-8"?>
library name="WritingPadLib">
  <samples>
   <sample id="1">
     <tag end="144" label="star" start="0"/>
     <fvectors>
       < v > 0.0 0.0 < /v >
       <v>-0.32175055 3.1622777</v>
     <v>-1.815775 4.1231055</v>
   </fvectors>
  </sample>
 </samples>
</library>
```


Machine Learning

- Provides the toolkit's abstraction for the machine learning algorithms.
- Used for modeling data samples (training) and recognizing gesture samples.
- Utilizes Cambridge University's Hidden Markov Model Toolkit (CU-HTK).

Gesture Recognition Process

Segment&label data Store data as feature vector Training Training Training Recognition Recognition Recognition Recognition Recognition Train model with collected data Train model value and trained model

Data Collection

Training

Recognition

Considerations:

- What kind of sensor will you use?
 - Is it already in the gt²k package or should I build new sensor?
- How are you going to segment data?
 - Mouse Sensor segments data by clicking (start) and releasing (stop) mouse button
- How big is my feature vector?
 - Vector size of mouse sensor : 2 (X and Y)
 - Vector size of accelerometer: 3 (X, Y and Z)
 - What if I have two accelerometer sensors?

- Create a new set of options :
 - GT2kOptions myOpts = GT2kOptions();
 myOpts.setVectorSize(2);
- Create or load a library object :

```
- try { library=Library.load("MyLibrary.xml");
     } catch (Exception e) {
     library=new Library("MyLibrary");
     }
```

- Initializes the machine learning component :
 - HTK htk = new HTK(myOpts);
- Create a new sensor:
 - MouseDragVectorSensor mySensor = new MouseDragVectorSensor();

For data collection

- Connect the sensor to the library so it can save the samples
 - mySensor.addSensorSampleListener(library);

For recognition

- Connect the sensor to the HTK object
 - mySensor.addSensorSampleListener(htk);
- Connect HTK object to application to get a result
 - htk.addResultListener(myApplication);

WritingPad application structure

How to make your own sensor?

- Considerations:
 - Make sensor Runnable?
 - Mouse sensor implements mouse listeners
 - Accelerometer sensor implements Runnable
 - Start or stop from application
 - Drivers and Java library for your sensor
 - May not work under Windows but Linux

How to make your own sensor?

- Things to do/write
 - Communication with physical sensor
 - Parses output (float type)
 - Connects to the gt²k sensor infrastructure

How to make your own sensor?

Structure

Questions?

For more information visit:

```
http://ccg.cc.gt.atl.ga.us/bliki/prj:gt2k:gt2kmanualemail:
```

Kent Lyons: kent@cc.gatech.edu

Helene Brashear: brashear@cc.gatech.edu

Tracy Westeyn: turtle@cc.gatech.edu

Jung Soo Kim: jszzang@cc.gatech.edu