

Academic – Graduate Studies and Research Division SECOND SEMESTER 2023-2024 (COURSE HANDOUT PART II)

Date: 28.12.2023

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **CS G524**

Course Title : Advanced Computer Architecture

Instructor-in-Charge : Dr. Aritra Mukherjee

Course Description: Basics of Parallelism, Instruction Level Parallelism, Simultaneous Multithreading, Design and Optimization Techniques for Cache and DRAM; Pipelining and Superscalar Techniques, Multiprocessor and Multi-core architecture, Shared Memory and Cache Coherence Issues; Multi-vector and SIMD computers, Performance evaluation methods, Interconnect Design Techniques.

1. Scope and Objectives of the Course:

The scope of the course includes advanced concepts in SISD environment, designing and using high performance SIMD and MIMD computers, system resources such as memory technology and I/O subsystem performance, case studies on multiprocessor and multicore architectures, Hands-on exposure to multi-core programming and TLP.

The main objective of this course is to give the students exposure...

- To understand instruction level parallelism
- To understand data level parallelism and its applications in vector processors
- To understand and implement thread level parallelism
- To measure and optimize performance from memory hierarchy perspective
- To understand the basics of multicore programming

2.Textbooks:

T1: Computer Architecture: A Quantitative Approach, J.L Hennessy & D.A.Patterson, Morgan Kaufmann, 6th Edition, 2017.

3.Reference books

R1: Computer Organization and Architecture: Designing for Performance, William Stallings, 10th Edition, Pearson, 2016.

R2: Parallel Computer Architecture: A Hardware / Software Approach, David E Culler & Jaswinder Pal Singh., Morgan Kauffmann, 2011.

R3: Advanced Computer Architecture, Kai Hwang, Tata McGraw Hill, 2008.

R4: Computer Architecture & Parallel Processing, Hwang & Briggs, McGraw Hill, 2012.

4. Course Plan:

Lecture No.	Learning Objectives	Topics To be covered	Chapter in the Text Book
1	To understand about the importance of	Fundamentals of Quantitative Design and Analysis – Introduction	Ch.1
2-3	quantitative aspects of computer design	Dependability, Quantitative principles of Computer Design	Ch.1
4-5	To learn about ILP, practical challenges of	Instruction Level Parallelism and its exploitation – concepts and challenges	Ch.3, Appendix A, Appendix C
6-7	implementing ILP	Basic compiler techniques for exposing ILP, reducing branch costs with advanced branch prediction	Ch.3
8		Overcoming branch hazards with dynamic scheduling	Ch.3
9-11		Dynamic scheduling, examples and algorithm, hardware-based speculation	Ch.3
12-13		Exploiting ILP using Multiple issue and static scheduling, advanced techniques for instruction delivery and speculation	Ch.3, Appendix H(online)
14	To understand data level	Data Level Parallelism -introduction	Ch.4
15-17	parallelism, GPUs	Vector Architecture, SIMD Instruction Set Extensions for Multimedia	Ch.4
18-19		Graphics Processing Units, detecting and enhancing loop level parallelism	Ch.4
20-23	To explore and understand TLP	Thread Level Parallelism – centralized shared memory architectures, symmetric shared memory architectures	Ch.5
24-26		Distributed shared memory and directory based coherence, synchronization	Ch.5
27 – 29		Models of memory consistency, multiprocessors and their performance	Ch.5, Appendix I(online)
30	To know about the organization of memory	Memory Hierarchy Design - Introduction	Ch.2, Appendix B
31 – 33	hierarchy and learn various optimization	Memory Organization – advanced optimizations of cache performance	Ch.2
34 – 35	techniques at each level	Virtual Memory and virtual machines	Ch.2
36-37	To study the performance aspects of storage systems	Storage Systems- Introduction, Reliability, Availability & RAID	Appendix D (online appendix)
38-42	To get an insight into the latest architectures	Introduction to neuromorphic architecture	Latest reference material, Recent research publications

5.Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date & Time	Nature of Component
No.	Component		(%)		_
1	Mid Sem Test	90 min	20	TBA	Open Book
2	Term paper (10%	Take	20	TBA	Open Book
	before Mid Sem)	Home			
3	Lab assignment	In the lab	20	TBA	Open Book
	(10% before Mid				
	Sem)				
4	Comprehensive	180 min	40	13/05 FN	Closed Book

6. Consultation Hour: To be announced in the class

7. Notices: Notices regarding the course will be put up on Google Classroom.

8. **Makeup Policy:** No makeup exam allowed without prior permission.

9. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS G524

