Extended Hildebrand Gait Formula – Stability Heat map

(from quadruped to hexapod, octopod...)

Russell Xing, Baxi

Before

Hildebrand Gait Formula

Quadruped

D: duty factor for each leg

% of stride each foot is on the ground

The heat map result is similar to the qualitative analysis by biologist that region 1 and 3 (from last slide) are more stable.

Region labeled in shadow satisfy the strict stability constrain

Region labeled in blue shadow is more statically stable Region labeled in red shadow is less statically stable

Region labeled in green shadow satisfy the loose stability constrain

Region labeled in blue shadow is more stable Region labeled in red shadow is less stable

Hildebrand Gait Formula

Iteratively Stability Percentage Calculation

- 1. Set Lleg/L_body_link ≈ 1/2,
- 2. When D(duty factor) = 1/100, L(leg phase shift) = $1/100 * 2\pi$,
- 3. Every Δt (= $2\pi/300$), check whether the center of mass is in the polygon which is built by the robot's legs on the ground,
- 4. Calculate the percentage of stable configuration(the CoM is in the polygon) over the total cycle:

of stable configuration / 300

- 5. Repeat step 2 and 3 for duty factor = 0:100:1 and leg phase shift = $0:100:2\pi$,
- 6. Repeat step 1 to 5 for Lleg/L_body_link ≈ 1/8, 1/4.

Lleg / L_body_link = 1/4

Lleg / L_body_link = 1/8

Hildebrand Gait Formula

Octopod

D: duty factor for each leg

More to explore:

The dark red regions with percentage = 1
What is the mathematical explanation?

% of stride that each foot is on the ground

