

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 8

TER ON *P-PADC <08:18:59 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM)

TER ON *P-PADC <08:18:59 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM)

FIG. 10A

) CH1 * 0.1V/div*ZS OFF*FILTER ON *P-P*DC <08:27:39 *08 DE

CH2 * 2mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 10B

Y 95 800 000 Y 95 800 000

C 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER ON

CH2 * 2mV/div*ZS OFF*FILTER ON

FIG. 10C

卷之三

*P-P*DC <08:36:20 *08 DEC 95 *SPD: 25 MM/M SEC/MM CH1

FIG. 10D

F G 3 3 3 3 3 3 3 3 3

* 0.1V/div*ZS OFF*FILTER ON *P-P*DC <08:45:00 *08 DEC 95 *

* 2mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 10E

FIG. 10F

SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER ON *P-P*

0 0 0 0 0 0 0 0 0 0

DC <08:53:41 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1

DC

CH2

FIG. 10G

0.1V/div*ZS OFF*FILTER ON *P-P*DC <09:02:22 *08 DEC 95 *SPD: 2

2mV/div*ZS OFF*FILTER ON *P-P*DC

110d

FIG. 10H

5 MM/M (2.400 SEC/MM) CH1 • 0.1V/div*ZS OFF*FILTER ON *P-P*DC

FIG. 101

<09:11:02 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V /

FIG. 10J

div#ZS OFF*FILTER ON *P-P*DC <09:19:43 *08 DEC 95 *SPD: 25 MM/M

div#ZS OFF*FILTER ON *P-P*DC

FIG. 10K

Fig. 10L

(2.400 SEC/MM) CH1 • 0.1V/div•ZS OFF•FILTER ON •P-P•DC <0

CH2 • 2mV/div•ZS OFF•FILTER ON •P-P•DC

FIG. 10L

9:28:24 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS

9:28:24 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS

CH2 * 2mV/div*ZS

FIG. 10M

OFF*FILTER ON *P-P*DC <09:37:04 *08 DEC 95 *SPD: 25 MM/M (2.40

OFF*FILTER ON *P-P*DC

FIG. 10N

FIGURE 100

0 SEC/MM) CH1 • 0.1V/div•ZS OFF•FILTER ON •P-P•DC <09:45:4

CH2 • 2mV/div•ZS OFF•FILTER ON •P-P•DC

FIG. 100

Y. O. G. 2.0

5 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*P

CH2 * 2 mV/div*ZS OFF*P

FIG. 10P

DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER

110f CH2 * 2mV/div*ZS OFF*FILTER

FIG. 10Q

CHART NO. T-1000000000

ON *P-P*DC <10:11:47 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) C

ON *P-P*DC

C

1
1
1
1
1

FIG. 10R

1988-03-10 10:20:27

H1 * 0.1V/div*ZS OFF*FILTER ON *P-P*DC <10:20:27 *08 DEC 95

H2 * 2mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 10S

FIG. 10T

TELEGRAM FROM GESDO

P*DC <10:29:08 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1

P*DC CH2

FIG. 10U

* 0.1V/div*ZS OFF*FILTER ON *P-P*DC <10:37:48 *08 DEC 95 *SPD:

FIG. 10V

Page 20 of Test Report

25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER ON *P-P*DC

CH2 * 2mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 10W

Y. O. G. E. S. S. D. M. P. G. G. M. P. H. G. G. G. G.

<10:46:29 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1

FIG. 10X

V/div*ZS OFF*FILTER ON *P-P*DC <10:55:10 *08 DEC 95 *SPD: 25 MM

V/div*ZS OFF*FILTER ON *P-P*DC

FIG. 10Y

FIG. 10Z

Y Dgg 280 " TEE Filter

FIG. 11A

: 25 MM/M (2.400 SEC/MM) CH1 * 5mV/div*ZS OFF*FILTER OFF*P-P*DC

CH2 * 20mV/div*ZS OFF*FILTER OFF*P-P*DC

FIG. 11B

Y 03 16:49 *10 DEC 01 *SPD: 25 MM/M (2.400 SEC/MM) CH1 *

FIG. 11C

Y 3320 PEEPEE

5mV/div*ZS OFF*FILTER OFF*P-P*DC <03:25:30 *10 DEC 01 *SPD: 25

FIG. 11D

FIG. 11E

EEG 2000-10-03 03:34:11

<03:34:11 *10 DEC 01 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 5mV/

CH2 * 20mV /

FIG. 11F

FIG. 12A

P-P*DC <09:01:06 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1

Y32388 * P627460

* 0.1V/div*ZS OFF*FILTER ON *P-P*DC <09:09:47 *08 DEC 95 *SP

126a
* 2mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 12B

<09:35:49 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 • 0.1V/di

128 CH2 * smV/di

FIG. 12C

v*ZS OFF*FILTER ON *P-P*DC <09:44:29 *08 DEC 95 *SPD: 25 MM/M

v*ZS OFF*FILTER ON *P-P*DC

124d

FIG. 12D

58 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1*0.1V/div*ZS OFF*

CH2 * 2mV/div*ZS OFF*

126b

FIG. 12E

F 03 03 03 03 03 03

FILTER ON *P-P*DC <11:54:39 *08 DIC 95 *SPD: 25 MM/M (2.400 SEC

FILTER ON *P-P*DC

FIG. 12F

400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER ON *P-P*DC <11:21

FIG. 12G

:12 *08 DEC 95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF

FIG. 12H

FIGURE 12 |

CH1 * 0.1V/div*2S OFF*FILTER ON *P-P*DC

<11:55:54 *08 DEC

CH2 * 2mV/div*2S OFF*FILTER ON *P-P*DC

FIG. 12 |

95 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 0.1V/div*ZS OFF*FILTER ON *

FIG. 12J

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 20

FIG. 21

FIG. 22

FIG. 23

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOV 97 *SPD: 25MM/M (2.400 SEC/MM) CH1*2mV/div*ZS OFF*FILTER

CH2*10mV/div*ZS OFF*FILTER

FIG. 24A

ON *P-P*DC <18:34:12 *11 NOV 97 *SPD: 25MM/M (2.400 SEC/MM)

ON *P-P*DC

FIG. 24B

Code 2204 P-Sub-Fig C

CH1 • 2mV/div*ZS OFF*FILTER ON *P-P*DC <18:42:52 *11 NOV

CH2 • 10mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 24C

FIG. 24D

ON *P-P*DC <18:51:33 *11 NOV 97 *SPD: 25MM/M (2.400 SEC/MM)

000000000000000000000000

ON *P-P*DC

FIG. 24E

CH1 2mV/div•ZS OFF•FILTER ON •P-P•DC <19:00:14 *11 NOV

FIG. 24F

97 *SPD: 25 MM/M (2.400 SEC/MM) CH1 * 2mV/div*ZS OFF*FILTER

FIG. 24G

T 0 0 0 0 0 0 0 0 0 0 0 0

ON *P-P*DC <19:08:54 *11 NOV 97 *SPD: 25 MM/M (2.400 SEC/MM)

ON *P-P*DC

FIG. 24H

F 03 23 03 " F G T H S 0

CH1 * 2mV/div*ZS OFF*FILTER ON *P-P*DC <19:17:35 *11 NOV

CH2 * 10mV/div*ZS OFF*FILTER ON *P-P*DC

FIG. 241

97 * SPD: 25 MM/M (2.400 SEC/MM) CH1 • 2mV/div*ZS OFF*FILTER

CH2 • 10mV/div*ZS OFF*FILTER

FIG. 24J

FIGURE 24K

ON *P-P*DC <19:26:16 *11 NOV 97 *SPD: 25MM/M (2.400 SEC/MM)

ON *P-P*DC

FIG. 24K

FIG. 25A

Y G E S G D " P E G G F H G G O

div*ZSOFF*FIL<17:36:20*21JAN98*SPD:10 MM/M (6.000 SEC/MM)<17:47

div*ZS OFF*FIL

FIG. 25B

05 *21 JAN 98 *SPD10 MM/M (6.000 SEC/MM)CH1*50mV/div*ZS OFF

CH2 *20mV/div*ZS OFF

FIG. 25C

1988-03-18 18:00:00

*FILTER OFF-P-DC <18:08:47 <18:11:31 *21 JA<18:16:16 *21 JAN

*FILTER OFF-P-DC

FIG. 25D

98 *spd: 10MM/M (6.000 SEC/MM) CH1*50mV/div*ZS OFF*FILTER OFF

CH2 *20mV/div*ZS OFF*FILTER OFF

FIG. 25E

P-P*DC <18:37:58 *21 JAN 98 *SPD: 10MM/M (6.000 SEC/MM) CH1

FIG. 25F

*50mV/div*ZS OFF*FILTER OFF*P-P*DC <18:59:39 *21 JAN 98 *

Y. D. G. 1998

FIG. 25G

FIG. 26

FIG. 27

Y. B. G. 29999999999999999999

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34A
All numbers are in units of Hertz.

FIG. 34B
All numbers are in units of Hertz.

FIG. 34C
All numbers are in units of Hertz.

FIG. 34D

FIG 34E

The Earth as a Homopolar generator

FIG. 35

freq = $\sin(x)^y \times 14.998$
where x = latitude degrees,
freq = ranging frequency and
y follows graph defined in table

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG 40

FIG. 41

FIG. 42

FIG. 43