Course Outcomes:

After the completion of the laboratory course the students will be able

- To generate different types of signals, and use different operations on the signals for conditioning them.
- To transform the continuous and discrete signals from time domain into frequency domain
- 3. To sample different types of signals in conformity with sampling theorem.
- To apply base band modulation methods and line coding schemes to suit particular communication scheme.
- To understand the process of serial and socket communication

List of Experiments:

Experiment 1:

- 1. Consider generating sinusoidal wave
 - X(n)-A sin(2x(f/f,)n+O); O-x/2; N-64; A-1; f-1 KHz; f-8 KHz.
- 2. Generate exponential function signal from t=0 to 4 msec in steps of 0:01 msse.
 - (a) $x(t) = e^{-0.00t}$
 - (b) $x(t)=5e^{-0.2t}$
- 3. Consider generating discrete 64 samples of the simusoidal wave

$$X[n] = A \sin(2\pi(f)f_n)n + \pi/4) \; ; \; \emptyset = 0 \; ; \; N = 64 \; ; \; A = 1 \; ; \; f = 1 \; \text{KHz} \; ; \; f_n = 8 \; \text{KHz} \; .$$

- 4. Generate signal for interval [-100,100]
 - Unit impulse, δ(n)=1 (n=0);

δ(n)~0(elsewhere)

b. Step signal, $\delta(n)=1$ ($n\geq 0$):

N(n)-O(clsewhere)

Experiment 2:

- 1. Multiply and add the following signal and plot original as well as transformed:
 - (a) $X_1(t) = 5.3\cos(2\pi(f_0/f_s)n + \pi/4)$
 - $X_2(t) = 4\cos(2\pi(f_0/f_s)n)$ take values of f_0, f_s , nconvienently.
 - (b) $X_1(t) = e^{-0.1t} \sin(0.6t)$
 - $X_2(t)=1$ (t ≥ 0); $X_2(n)=0$ (t< 0) $\{-100 \le t \le 100\}$
- 2. Perform the operation O(t)=f(2t-6) i.e. delayed by 6 and compress by 2.
 - (a) Continuous: $X(t)=e^{-2t}\cos(2\pi f_0t+\pi/3)$
 - (b) Discrete: $X[n] = cos(2\pi n/s)$
- 3. Perform the scaling operation $\emptyset(t)$ =f(at). Take value of a=2, 1/2, 1/4
 - $(a)X_1(t) = 2 e^{\beta n}$
 - (b) $X_2(t) = 2 \cos(2\pi n)$. Plot original as well as scaled signal.

Experiment 3:

- 1. Perform sampling on the signal $x(t) = A \sin(2\pi ft)$, taking the following sampling frequencies:
 - (a) $f_s=1.2f$
 - (b) $f_s = 2f$
 - (c) f_s=4f. Take the values conveniently and show the implications of undersampling, oversampling.

Experiment 4:

- 1. Integrate and plot the signal (in frequency domain)
 - (a) $e^{-2\pi ft}$
 - (b) $e^{-i2\pi ft}$
- 2. Find the real and imaginary part of the signals
 - (a) $sin(2\pi ft)$
 - (b) $\cos(2\pi ft)$. e^{-2it}

Experiment 5:

- 1. Compute the fourier transform of the signal . use $-800 \le f \le 800$
 - (a) $X(t) = cos(2\pi 100t) + cos(2\pi 500t)$
 - (b) $X(t) = \sin(2\pi 200t)$
- 2. Generate a sinusoidal signal and plot its spectrogram using "spectrogram" in matlab.

Experiment 6:

- 1. Implement Laplace transform of the function $f(t) = -1.25 + 3.5te^{-2t} + 1.25e^{-2t}$
- 2. Find the Inverse Laplace transform of the function

$$F(s) = \frac{s-5}{s(s+2)^2}$$

- 3. Find the z-transform of the function $x(n) = \frac{1}{4\pi}u(n)$
- 4. Find the Inverse Z-transform of the function $X(z) = \frac{2z}{2z-1}$

$$X(z) = \frac{2z}{2z - 1}$$

5. Express the following Z-transform in factored form, plot its poles & zeros.

$$H(Z) = \frac{2+1}{\left(z-\frac{1}{2}\right)(z+\frac{1}{2})}$$

Experiment 7:

- 1. Generate signals according to convenience and perform the following operations:
 - (a). Frequency Modulation.
 - (b). Amplitude Modulation.
 - (c). Phase Modulation with the following signals:

$$e_m(t) = E_m \sin(\omega_m t)$$
 $e_c(t) = E_c \sin(\omega_c t)$
 $e(t) = E_c \sin(\omega_c t + m \sin(\omega_m t))$
Reference Equations

Experiment 8:

- Generate a square wave of frequency f₁ and perform Amplitude Shift Keying with the carrier wave X=A Sin(2π f₂t), take the values conveniently.
- 2. Generate a square wave of frequency f₁ and perform Phase Shift Keying with the carrier wave

 $X=A \sin(2\pi f_2 t)$, take the values conveniently.

Experiment 9:

- Perform the following encoding schemes for the digital data: 011000111000111011
 - (a) Unipolar, Bipolar
 - (b) NRZ-L,NRZ-I
 - (c) Manchester Scheme, Differential Manchester Scheme
 - (e) Pseudo ternary Scheme

Experiment 10:

- Implement Serial communication with matlab.
- Implement Socket communication with matlab.

Mapping of COs and POs:

COs	a	b	c
1	1	1	
2	1	V	
3	1	1	1
4	1	1	1
5		1	J

Evaluation Scheme: