5° CAPÍTULO

Pré-Processamento de Imagem

Prof. Arnaldo Abrantes

Necessidade de pré-processamento

Transformação de níveis de cinzento

• Correcção gama
$$\longrightarrow f(x) = O_{\min} + \frac{O_{\max} - O_{\min}}{(I_{\max} - I_{\min})^{\gamma}} (x - I_{\min})^{\gamma}$$

Equalização de histograma

Remover pequenas regiões

— Remoção de ruído salt & pepper

$$\Rightarrow \begin{array}{c|c} 0 & 0 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \end{array}$$

Remoção de componentes conexos cuja área é pequena

Necessidade de operação de suavização

Suavização de imagem

- Suavização (filtragem passa-baixo) de imagem
 - filtro de média (box filter)

$$O(r,c) = \left(\sum_{i=-N}^{N} \sum_{j=-N}^{N} I(r+i,c+j)\right) / (2N+1)^{2}$$

filtro gaussiano

$$O(r,c) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} g(i,j) I(r+i,c+j)$$

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{d^2}{2\sigma^2}}$$

$$d = \sqrt{(x - x_c)^2 + (y - y_c)^2}$$

- Seja $\mathbf{A}[i]_{i=0,\dots,n-1}$ uma lista ordenada de números reais. A *mediana* do conjunto \mathbf{A} é o valor $\mathbf{A}[(n-1)/2]$
 - Exemplos

Filtragem temporal com filtro de mediana

Filtragem de Mediana da Sequência


```
Compute output image pixel G[r,c] from neighbors of input image pixel F[r,c].
\mathbf{F}[\mathbf{r}, \mathbf{c}] is an input image of MaxRow rows and MaxCol columns;
F is unchanged by the algorithm.
G[r, c] is the output image of MaxRow rows and MaxCol columns.
The border of G are all those pixels whose neighborhoods
are not wholly contained in G.
w and h are the width and height, in pixels, defining a neighborhood.
      procedure enhance_image(F.G.w.h):
      for r := 0 to MaxRow - 1
        for c := 0 to MaxCol - 1
          if [r,c] is a border pixel then G[r,c] := F[r,c];
          else G[r,c] := compute\_using\_neighbors (F, r, c, w, h);
      procedure compute_using_neighbors ( IN, r, c, w, h )
      using all pixels within w/2 and h/2 of pixel IN[r,c],
      compute a value to return to represent IN[r,c]
```

Detecção de transições (edges)

• Operadores diferenciais de sinais 1D

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Máscara 1D centrada

mask M = [-1, 0, 1]

S_1			12	12	12	12	12	24	24	24	24	24
S_1	\otimes	M	0	0	0	0	12	12	0	0	0	0

(a) S_1 is an upward step edge

S_2			24	24	24	24	24	12	12	12	12	12
S_2	\otimes	M	0	0	0	0	-12	-12	0	0	0	0

(b) S_2 is a downward step edge

S_3			12	12	12	12	15	18	21	24	24	24
S_3	8	M	0	0	0	3	6	6	6	3	0	0

(c) S_3 is an upward ramp

S_4			12	12	12	12	24	12	12	12	12	12
S_4	\otimes	M	0	0	0	12	0	-12	0	0	0	0

(d) S_4 is a bright impulse or "line"

Máscaras 1D

${\rm mask}\; M\; =\; [-1,2,-1]$

S_1			12	12	12	12	12	24	24	24	24	24
S_1	\otimes	M	0	0	0	0	-12	12	0	0	0	0

(a) S_1 is an upward step edge

S_2			24	24	24	24	24	12	12	12	12	12
S_2	\otimes	M	0	0	0	0	12	-12	0	0	0	0

(b) S_2 is a downward step edge

S_3			12	12	12	12	15	18	21	24	24	24
S_3	\otimes	M	0	0	0	-3	0	0	0	3	0	0

(c) S_3 is an upward ramp

S_4			12	12	12	12	24	12	12	12	12	12
S_4	8	M	0	0	0	-12	24	-12	0	0	0	0

(d) S_4 is a bright impulse or "line"

box smoothing mask M = [1/3, 1/3, 1/3]

S_1			12	12	12	12	12	24	24	24	24	24
S_1	\otimes	M	12	12	12	12	16	20	24	24	24	24

(a) S_1 is an upward step edge

S_4			12	12	12	12	24	12	12	12	12	12
S_4	\otimes	M	12	12	12	16	16	16	12	12	12	12

(d) S_4 is a bright impulse or "line"

Gaussian smoothing mask M = [1/4, 1/2, 1/4]

S_1			12	12	12	12	12	24	24	24	24	24
S_1	\otimes	M	12	12	12	12	15	21	24	24	24	24

(a) S_1 is an upward step edge

S_4			12	12	12	12	24	12	12	12	12	12
S_4	\otimes	M	12	12	12	15	18	15	12	12	12	12

Operadores diferenciais

- as coordenadas das máscaras tem sinais opostos para que se obtenha uma resposta máxima quando existem transições de intensidade (contraste)
- A soma dos valores é zero para que a resposta seja zero quando a região é constante
- As máscaras de primeira derivada produzem valores absolutos elevados em pontos de grande contraste
- As máscaras de segunda derivada produzem cruzamentos por zero em pontos de grande contraste

Operadores de suavização

- os elementos da máscara são positivos e somam um, de modo a que a saída é igual à entrada em regiões de constante intensidade
- A quantidade de suavização e remoção de ruído é proporcional à dimensão da máscara
- Transições abruptas (step edges) são tanto mais espalhadas (blurred)
 quanto maior for a dimensão da máscara

Operadores diferenciais 2D

Gradiente duma função

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

$$|\nabla f| \approx \sqrt{f_x^2 + f_y^2}$$

 $\theta \approx \tan^{-1}(f_y/f_x)$

Exemplo:

x-1

x = x+1

$$f_{y} = ((38-12)/2 + (66-15)/2 + (65-42)/2) / 3$$

$$= (13+25+11)/3 = 16$$

$$f_{x} = ((65-38)/2 + (64-14)/2 + (42-12)/2)/3$$

$$= (13+25+15)/3 = 18$$

$$\theta = \tan^{-1}(16/18) = 0.727 \text{ rad}$$

$$= 42 \text{ degrees}$$

$$|\nabla f| = (16^{2} + 18^{2})^{1/2} = 24$$

Detectores de pontos de contorno

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Detector de contornos de Canny

Filtros gaussianos

Caso 1D:

$$g'(x) = \frac{-x}{\sigma^2}g(x)$$

$$g''(x) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x)$$

Caso 2D:

$$h(x, y) = g(r)$$

$$r = \sqrt{x^2 + y^2}$$

Detector de edges baseado na função Laplaciana – filtro LOG

0 0 0 -1 -1 -2 -1 -1 0 0 -2 -4 -8 -9 -8 -4	0	0
0 0 -2 -4 -8 -9 -8 -4		
	2 0	0
0 -2 -7 -15 -22 -23 -22 15	7 -2	0
-1 -4 -15 -24 -14 -1 -14 -24 -	5 -4	- 1
-1 -8 -22 -14 52 103 52 -14 -	2 -8	- 1
-2 -9 -23 -1 103 178 103 -1 -	3 -9	-2
-1 -8 -22 -14 52 103 52 -14 -	2 -8	- 1
-1 -4 -15 -24 -14 -1 -14 -24 -	5 -4	- 1
0 -2 -7 -15 -22 -23 -22 15	7 -2	0
0 0 -2 -4 -8 -9 -8 -4	2 0	0
0 0 0 -1 -1 -2 -1 -1	0	0

$$L(x,y) = \frac{\partial^2 g(x,y)}{\partial x^2} + \frac{\partial^2 g(x,y)}{\partial y^2}$$

-L(x, y) \longrightarrow Chapéu mexicano (sombrero)

 \leftarrow Máscara 11x11 (σ^2 =2)

Modelo neuronal e o efeito das bandas de Mach

Bandas de Mach

- Células da retina (nível 1) são sensíveis à intensidade luminosa
- Células de integração (nível 2) são sensíveis às transições de intensidade

Teoria de Marr-Hildreth

- Filtro LOG ajuda a explicar o SVH (baixo nível)
 - Objectivo primeiro é a construção do esboço fundamental (*primal sketch: lines, edges, blobs*)
- Análise multiresolução
 - filtragem LOG, com elevado σ, permite a detecção das estruturas principais existentes na imagem, enquanto que os detalhes se obtêm fazendo o processamento com σ pequeno.

original

smoothed $\sigma = 4$

smoothed $\sigma = 1$

Agrupamento perceptual - linhas virtuais

