Складирование природных ресурсов

В приложении большое внимание уделено не только заготовке природных ресурсов, но и их складированию. Рассмотрим складирование дров и возникающие при этом задачи.

Геометрическая форма дров приблизительно соответствует цилиндрам. Цилиндры размещены в соответствии с законами физики: не пересекаются, не висят в воздухе, центры тяжести и точки опор расположены так, что достигается устойчивое равновесие.

При инициализации хранилища создается вертикальная плоскость, параллельная торцам цилиндров, и на этой плоскости создается двумерная система координат (см. изображение справа).

Есть функции перевода точек в эту систему координат и обратно.

Далее задачи формулируются и решаются в этой двумерной системе координат.

Размещение круга сверху двух кругов

В хранилище находятся круги C_1 и C_2 , и сверху необходимо положить круг C_3 . Даны:

- C_1 : координаты центра x_1 , y_1 , радиус r_1 ;
- C_2 : координаты центра x_2 , y_2 , радиус r_2 ;
- C_3 : радиус равен r_3 .

Найти координаты центра C_3 либо сделать вывод, что такое размещение невозможно.

Задачу необходимо решить в общем виде для дальнейшего написания программного обеспечения. То есть нужна последовательность действий (шагов),

такая, что задается 7 величин $(x_1, y_1, r_1, x_2, y_2, r_2, r_3)$, в результате получается либо 2 величины (x, y), либо вывод о невозможности удовлетворительного размещения.

Для проверки приводим таблицу – несколько наборов исходных значений и какой должен получиться результат.

	\mathbf{x}_1	y_1	r_1	X ₂	y_2	$ \mathbf{r}_2 $	r_3	X	y
1	2	1	1	5.5	1.5	1.5	0.55	3.450524	1.546334
2	2	1	1	5.5	1.5	1.5	0.5	-	-
3	1.5	1.5	0.25	1.5	4	1	1	-	-
4	4.5	1.5	0.5	2.5	1.5	0.25	1	3.328125	2.436327
5	4.5	1.5	0.5	2.5	1.5	0.25	8	-	-
6	1.5	-0.3	0.5	-2.5	0.8	0.2	2	-0.3717501	1.357272

Совершенствование способов складирования

Рассмотренный выше способ складирования не вполне удобен для последующей работы: транспортирование с места заготовки на склад, потребителю и т.д., в том числе с применением механизированных средств.

Направление дальнейшей разработки приложения - использование контейнеров с вертикальными боковыми стенками.

При размещении очередного цилиндра в контейнере он может быть размещен между уже находящимся в контейнере цилиндром и боковой стенкой (см. справа).

В будущем нельзя исключить появление контейнеров с невертикальными боковыми стенками, негоризонтальным дном, а также неплоскими стенками или дном.

Приложение А. Алгебраическое решение задачи

Создается новая система координат с осями u, v, такая, чтобы центр круга C_1 находился в начале координат:

$$u = x - x_1$$

$$v = y - y_1$$
(1)

В эту систему координат переводится центр С2:

$$u_2 = x_2 - x_1 v_2 = y_2 - y_1$$
 (2)

Без преобразования координат количество записей и выполняемых арифметических действий существенно увеличится.

Обозначим центр круга C_3 - u, v.

Запишем уравнения расстояний между центрами C_3 и C_1 , и центрами C_3 и C_2 :

$$\begin{cases} u^2 + v^2 = (r_3 + r_1)^2 \\ (u - u_2)^2 + (v - v_2)^2 = (r_3 + r_2)^2 \end{cases}$$
 (3)

Получается система из 2 уравнений с 2 неизвестными. Раскроем скобки, содержащие неизвестные:

$$\begin{cases} u^2 + v^2 = (r_3 + r_1)^2 \\ u^2 - 2uu_2 + u_2^2 + v^2 - 2vv_2 + v_2^2 = (r_3 + r_2)^2 \end{cases}$$
(4)

Обе неизвестные u, v есть как в 1-й степени, так и в квадрате. Если квадраты неизвестных не сокращаются, решить уравнения будет трудно (получится алгебраическое уравнение 4-й степени). В данном случае у квадратов неизвестных в обоих уравнениях одинаковые коэффициенты и есть возможность их сократить.

Вычтем из второго уравнение первое:

$$-2uu_2 + u_2^2 - 2vv_2 + v_2^2 = (r_3 + r_2)^2 - (r_3 + r_1)^2$$
(5)

Далее мы хотим выразить одну переменную через другую и подставить в 1-е уравнение системы (4).

Выразим u как зависимость от v. Для этого сначала перенесем все слагаемые, содержащие u, в левую часть, а все остальные в правую:

$$-2uu_2 = (r_3 + r_2)^2 - (r_3 + r_1)^2 - u_2^2 + 2vv_2 - v_2^2$$
 (6)

Далее разделим обе части на $-2u_2$:

$$u = \frac{(r_3 + r_2)^2 - (r_3 + r_1)^2 - u_2^2 + 2vv_2 - v_2^2}{-2u_2}, \quad u_2 \neq 0.$$
 (7)

Рассмотрим случай u_2 = 0. По уравнению (2) это происходит в случае x_1 = x_2 (центры C_1 и C_2 находятся на одной вертикальной линии). Этот случай - на изображении слева.

Расположение кругов таково, что удовлетворительное размещение C_3 невозможно.

Y

Что будет, если выразить v как зависимость от u. Получится выражение, содержащее v_2 в знаменателе. Случай v_2 =0 соответствует y_1 = y_2 . При таком расположении кругов удовлетворительное размещение C_3 вполне возможно.

Поэтому выражаем u через v. Для упрощения создадим переменную t, в которую соберем все слагаемые, не содержащие v, из числителя уравнения (7):

$$t = (r_3 + r_2)^2 - (r_3 + r_1)^2 - u_2^2 - v_2^2.$$
 (8)

Итого

$$u = \frac{t + 2vv_2}{-2u_2}, \quad u_2 \neq 0. \tag{9}$$

$$\left(\frac{t + 2vv_2}{-2u_2}\right)^2 + v^2 = (r_3 + r_1)^2.$$
 (10)

Выполняем ряд алгебраических преобразований с целью в результате получить уравнение, сгруппированное по степеням v и нулем в правой части:

$$v^{2}\left(\frac{v_{2}^{2}}{u_{2}^{2}}+1\right)+v\frac{tv_{2}}{u_{2}^{2}}+\frac{t^{2}}{4u_{2}^{2}}-(r_{3}+r_{1})^{2}=0.$$
 (11)

Это алгебраическое уравнение 2-й степени, решение которого широко изучается.

Если уравнение имеет 2 решения, необходимо выбрать решение, соответствующее требованиям устойчивого равновесия. Это решение с наибольшим v.

Коэффициент при v^2 всегда больше нуля, поэтому уже на этапе разработки понятно, какое из 2 решений (с "+" или "-" у квадратного корня) будет больше.

Также нужно сформулировать критерии устойчивого равновесия.

 $y_1 = y_2$.

Уравнение не имеет решений.

Уравнение имеет 2 решения.

Итого алгоритм:

- 1. По формуле (2) вычислить u_2 и v_2 , при u_2 = 0 решений нет;
- 2. По формуле (8) вычислить t;
- 3. Решить уравнение (11), получить v;
- 4. По формуле (9) вычислить u;
- 5. Проверить критерии устойчивого равновесия;
- 6. Исходя из формулы (1) получить х и у.

Нет устойчивого равновесия.