Université de Saint Etienne L1 MISPIC

Arithmétique Année 2024/2025

TD 4 : Arithmétique des polynômes

Exercise 1 (F) Calculer $P = (-X^2 + 4X + 1)(X^2 - 2) + (X - 1)^2$ dans $\mathbb{R}[X]$.

Est-ce que 0 est une racine de P?

Est-ce que 1 est une racine de P?

Exercice 2 (*) Calculer $(X^2 + X + 1)(X^2 + X + 2) + (X + 1)^2$ dans $\mathbb{k}[X]$ avec $\mathbb{k} = \mathbb{Z}/3\mathbb{Z}$. Déterminer ses racines.

Exercice 3 (F) Calculer le degré des polynômes suivants :

$$X^{5}+3X$$
, $(X^{3}+1)(X^{4}-3X^{2})$ $(X^{3}+1)(X^{4}-3X^{2})+X$, $(X^{3}+1)(X^{4}-3X^{2})-X^{7}$

Exercice 4 (F) Effectuer la division euclidienne de

- a) $X^7 \ par \ X^2 + 1$,
- b) $X^7 par X^2 + 2X + 3$,
- c) $180X \ par \ 3X^2$,
- d) $4X^4 + 2X^3 + 3 \ par \ 3X + 1$.

Exercice 5 (F) Déterminer le pgcd et écrire une relation de Bézout pour les couples suivants dans $\mathbb{R}[X]$:

- 1. $X^5 + 2X^3 + X^2 + 2X$ et $X^3 + X + 1$,
- 2. $2X^5 + 4X^4 3X^3 + 3X^2 4X 2$ et $X^3 X^2 + X 1$,
- 3. $X^5 2X^4 + X^2 X 2$ et $X^3 X^2 X 2$.

Exercice 6 (*) Déterminer le pgcd et écrire une relation de Bézout pour les couples suivants dans $\mathbb{Z}/3\mathbb{Z}[X]$:

- 1. $X^5 + 2X^3 + X^2 + 2X$ et $X^3 + X + 1$,
- 2. $2X^5 + 4X^4 3X^3 + 3X^2 4X 2$ et $X^3 X^2 + X 1$,
- 3. $X^5 2X^4 + X^2 X 2$ et $X^3 X^2 X 2$.

Exercice 7 (F) Soit $P(X) = X^4 - 5X^3 + 13X^2 - 19X + 10 \in R[X]$. Calculer P(1) et P(2). En déduire une factorisation de P(X) dans $\mathbb{R}[X]$.

Exercice 8 (*) Montrer que $X^2 + 1$ est irréductible dans $\mathbb{R}[X]$.

En déduire une décomposition en facteurs irréductibles de $X^3 - X^2 + X - 1$.

Déterminer ses racines.

Est-il scindé?

Exercice 9 (*) Soit $P(X) = X^4 + X^3 - X^2 + 6 \in \mathbb{R}[X]$. Calculer P(1+i). En déduire une factorisation de P dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 10 (F) Soient $P, Q \in \mathbb{k}[X]$.

Parmi les affirmations suivantes, lesquelles sont vraies :

- 1. Si P|Q et Q est scindé alors P est scindé.
- 2. Si P|Q et P est scindé alors Q est scindé.
- 3. Si P|Q et α est une racine simple de Q alors α est une racine simple de P.
- 4. Si P|Q et α est une racine simple de P alors α est une racine simple de Q.
- 5. Si P est scindé à racines simple, alors PGCD(P,Q) est scindé à racines simples.

Exercice 11 (*) Soit $P \in \mathbb{R}[X]$, a et b deux réels distincts. Exprimer le reste de la division euclidienne de P par (X - a), (respectivement par (X - a)(X - b), puis par $(X - a)^2$) en fonction de P(a), P(b) et P'(a).

Exercice 12 (*) Montrer que $a \in \mathbb{k}$ est une racine double d'un polynome P si et seulement si P(a) = P'(a) = 0. Généraliser ce résultat pour les racines n-ièmes

Exercice 13 (*) Montrer que le polynome $P(X) = 2X^3 - 3X^2 + 1$ admet une racine double. En déduire la décomposition en produit de polynomes irréductibles dans $\mathbb{R}[X]$ Meme question pour $P(X) = X^4 + 2X^2 - 8X + 5$

Exercice 14 (*) a et b étant des nombres réels, déterminer tous les polynomes de $\mathbb{R}[X]$ de la forme $P(X) = 3X^5 - 10X^3 + ax + b$ ayant un zéro d'ordre de multiplicité équl à 3.

Exercice 15 ()** Soit $(k,n) \in \mathbb{N}^* \times \mathbb{N}^*$ et $a \in \mathbb{R}^*$. Soit q (resp. r) le quotient (resp. le reste) de la division euclidienne de n par k (c'est-à-dire que n = qk + r avec $0 \le r < k$). Montrer que le reste de la division euclidienne de

- 1. X^n par $X^k a$ est $a^q X^r$,
- 2. $X^n a^n \ par \ X^k a^k \ est \ a^{kq}(X^r a^r)$.

Exercice 16 (**) Soient $n, p \in \mathbb{N}^*$. Montrer que $pgcd(X^n - 1, X^p - 1) = X^{pgcd(n,p)} - 1$

Exercice 17 ()** Existe-t-il un polynôme $P \in \mathbb{R}[X]$ de degré 7 tel que $(X-1)^4$ divise P+1 et $(X+1)^4$ divise P-1?

Exercice 18 (***) Soit $P \in \mathbb{R}[X]$ un polynôme de degré n.

- 1. Montrer que $a \in \mathbb{R}$ est une racine double de P si et seulement si P(a) = 0 et P'(a) = 0
- 2. Montrer que pour tout $a \in \mathbb{R}$

$$P(X) = \sum_{k=0}^{n} \frac{1}{k!} P^{(k)}(a) (X - a)^{k}$$

3. En déduire que a est racine de P de multiplicité $m \ge 1$ si et seulement si $\forall i \in [1, m-1]$, $P^{(i)}(a) = 0$ et $P^{(m)}(a) \ne 0$