Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 03

- 1 Seja a linguagem descrita pela expressão regular $(ab)^* \cup a^*$. Pede-se:
 - a. Apresente um NFA- λ que reconhece a linguagem acima.
 - b. Usando o algoritmo de determinização (Algoritmo 5.6.3 do livro do Sudkamp), apresente um DFA equivalente ao NFA- λ do item anterior.
- a. Segue abaixo o NFA- λ que reconhece a expressão regular pedida.

b. Tabela que indica o fecho- $\!\lambda$ do NFA do item anterior.

Tabela que indica a função de transição da entrada $t.\,$

Autômato determinístico obtido do algoritmo.

2 Seja M o NFA cujo diagrama de estados é dado abaixo. Pede-se:

- a. Utilizando a notação $[q_i, w]$, que define a configuração de um autômato em cada passo de computação, descreva as quatro sequências de execução distintas de M para a entrada abb. Essa $string\ abb$ pertence a L(M)? Justifique.
- b. Apresente uma expressão regular para L(M).
- a. As quatro sequências de execução possíveis são:
 - 1. $[q_0, abb] \vdash [q_0, bb]$. Trava em q_0 .
 - 2. $[q_0, abb] \vdash [q_1, bb] \vdash [q_1, b] \vdash [q_1, \lambda]$. Trava em q_1 após consumir a entrada toda.
 - 3. $[q_0,abb] \vdash [q_1,bb] \vdash [q_1,b] \vdash [q_2,\lambda]$. Para em q_2 após consumir a entrada toda. Aceita.
 - 4. $[q_0,abb] \vdash [q_1,bb] \vdash [q_2,b]$. Trava em q_2 sem consumir a entrada toda.

Por conta da sequência de execução 3, temos que $abb \in L(M)$.

b.
$$L(M) = (a^+b^+)^+$$
.

3 Seja M o PDA definido como abaixo.

$$\begin{aligned} \mathsf{Q} &= \{q_0, q_1, q_2\} \\ \Sigma &= \{a, b\} \\ \Gamma &= \{A\} \end{aligned} \qquad \begin{aligned} \delta(q_0, a, \lambda) &= \{[q_0, A]\} \\ \delta(q_0, \lambda, \lambda) &= \{[q_1, \lambda]\} \\ \delta(q_0, b, A) &= \{[q_2, \lambda]\} \\ \delta(q_1, \lambda, A) &= \{[q_1, \lambda]\} \\ \delta(q_2, b, A) &= \{[q_2, \lambda]\} \end{aligned}$$

$$\delta(q_2, \lambda, A) = \{[q_2, \lambda]\}$$

- a. Descreva a linguagem aceita por M.
- b. Apresente o diagrama de estados de M.
- c. Mostre que $aabb, aaab \in L(M)$.
- a. O PDA M aceita a linguagem $\mathsf{L}(\mathsf{M}) = \{a^i b^j \mid 0 \le j \le i\}$. O processamento de um a empilha A na pilha. Strings da forma a^i são aceitas no estado q_1 . As transições em q_1 esvaziam a pilha quando a entrada já tiver sido consumida. Uma computação com entrada $a^i b^j$ entra no estado q_2 após ler o primeiro b. Para que toda a entrada seja lida, a pilha deve conter pelo menos j A's. Caso a entrada termine, a pilha é esvaziada em q_2 para satisfazer a condição de aceite de um PDA: ler toda a entrada e pilha vazia.

A computação para uma entrada que possui menos a's do que b's, ou que possui um a sucedendo um b, fica parada no estado q_2 . Mas, como a entrada não foi totalmente processada, a condição de aceite de PDAs não foi satisfeita e a entrada é rejeitada.

b. O diagrama de estados de M é apresentado abaixo.

c. Para mostrar que as *strings aabb* e *aaab* pertencem a L(M), basta mostrar o *trace* da computação de M que aceita essas entradas.

S	State	String	Stack
q	0	aabb	λ
q	0	abb	A
q	0	bb	AA
q	2	b	A
q	2	λ	λ
S	State	String	Stack
q	0	aaab	λ
q	0	aab	A
q	0	ab	AA
q	0	b	AAA
q	2	λ	AA
q	2	λ	A
q	2	λ	λ

- 4 Construa PDAs que aceitem as linguagens abaixo.
 - a. $\{a^ib^{2i} \mid i \ge 0\}$.
 - b. $\{a^i b^j \mid 0 \le i \le j \le 2i\}$.
- a. O PDA definido pelo diagrama abaixo aceita a linguagem $\{a^ib^{2i} \mid i \geq 0\}$.

b. A linguagem $L = \{a^i b^j \mid 0 \le i \le j \le 2i\}$ pode ser gerada pela gramática livre de contexto abaixo.

$$\begin{array}{ccc} S \rightarrow aSB \ | \ \lambda \\ B \rightarrow bb \ | \ b \end{array}$$

A regra B gera um ou dois b's para cada a. Um PDA M que aceita L usa os a's para registrar um número aceitável de b's correspondentes na pilha. Ao processar um a, a computação de M empilha de forma não-determinística um ou dois A's na pilha. (Lembre-se que um PDA é uma máquina não-determinística.) O diagrama de M é mostrado abaixo.

5 Seja G uma gramática sensível ao contexto definida pelas regras abaixo.

$$S \rightarrow SBA \mid a$$

$$BA \rightarrow AB$$

$$aA \rightarrow aaB$$

$$B \rightarrow b$$

- a. Apresente uma derivação de aabb.
- b. Qual é L(G)?
- a. A derivação pedida é mostrada abaixo.

$$S \Rightarrow SBA \\ \Rightarrow aBA \\ \Rightarrow aAB \\ \Rightarrow aaBB \\ \Rightarrow aabB \\ \Rightarrow aabb$$

b.
$$L(G) = \{a^{i+1}b^{2i} \mid i \ge 0\}.$$

6 Projete um LBA M que aceita a linguagem $L = \{a^i b^{2i} a^i \mid i > 0\}.$

Devemos lembrar que a única diferença entre um LBA e uma TM é que a fita de um LBA é limitada pelo tamanho da entrada. Assim, a entrada do LBA M é $\langle w \rangle$, onde $w \in \{a,b\}^*$. Os símbolos \langle e \rangle servem para sinalizar os limites da fita.

O funcionamento de M é muito similar às TM já estudadas para reconhecimento de linguagens. A máquina utiliza um símbolo especial X para marcar a entrada já analisada. Assim, começando da posição 0, a máquina busca um a do prefixo (sequência inicial de a's) para marcar. A seguir, M caminha para a direita até encontrar e marcar dois b's. Depois, M continua para a direita até marcar um a do sufixo (sequência final de a's). Se a qualquer momento desta busca para a direita M encontra o fim da fita, indicado por \rangle , a máquina para e rejeita a entrada. Caso contrário, a cabeça é rebobinada até \langle e o loop se repete para o próximo a do prefixo. Só devemos tomar cuidado para garantir que o prefixo e o sufixo têm o mesmo número de a's. É necessário um caso especial para rejeitar as strings que possuem um prefixo menor que o sufixo (veja a resolução do Exercício 1a da Lista 02).

7 Seja T uma árvore binária completa (isto é, todos os nós internos sempre possuem dois filhos). Um caminho por T é uma sequência de movimentos pelos nós que passa: pelo filho da esquerda (L), pelo filho da direita (R) ou pelo pai (U). Portanto, caminhos podem ser descritos como strings sobre o alfabeto $\Sigma = \{L, R, U\}$. Considere a linguagem $L = \{w \in \Sigma^* \mid w \text{ descreve um caminho que começa na raiz e retorna à raiz}\}$. Por exemplo, λ , LU, $LRUULU \in L$, e U, $LRU \notin L$. Determine a localização de L na Hierarquia de Chomsky (isto é, determine o tipo de L: 0, 1, 2, ou 3). Considere que a altura h da árvore T pode variar de 0 a um valor fixo $n \in \mathbb{N}$, isto é, $0 \le h \le n$.

Vamos começar com o caso mais simples, quando a altura da árvore T é zero. Se h=0, então a linguagem é formada somente pela *string* nula, isto é, $L_0=\{\lambda\}$. Podemos ver imediatamente que L_0 é regular.

Se a árvore tem altura 1, a linguagem L_1 correspondente é dada pela expressão regular $(LU \cup RU)^*$. Essa expressão é fácil de ser compreendida pois qualquer passo para baixo na árvore (L ou R) deve necessariamente ser seguido por um passo para cima, pois a árvore tem altura 1. Esse processo pode ser repetido quantas vezes quisermos, o que explica o fecho de Kleene (*).

De forma geral, uma string é aceita se ela satisfaz as duas condições abaixo.

- 1. O número de passos para baixo na árvore (L ou R) é igual ao número de passos para cima (U).
- 2. Os passos não indicam um movimento para baixo de uma folha ou para cima da raiz.

Para uma árvore de altura h, um DFA com 2h+2 estados pode ser construído para aceitar a linguagem. O estado q_0 é o estado de aceite e representa uma string que satisfaz a condição 1 acima. Os estados q_i , $i=1,\ldots,h$, são usados para registrar que a string lida até o momento tem i U's a mais que L's ou R's. Já os estados q_j , $j=h+1,\ldots,2h$, representam o contrário, quando a string lida até o momento tem j L's ou R's a mais do que U's. Se a string representa um caminho que sairia da árvore (viola a condição 2 acima), o DFA entra em um estado de erro q_e e rejeita a entrada.

Pelo exposto acima, para qualquer valor de h, temos que L_h é regular, pois ela é aceita por um autômato finito. (O limite superior n para h garante que o DFA sempre terá uma quantidade finita de estados.) Finalmente, temos que

$$\mathsf{L} = \bigcup_{h=0}^n L_h$$

e como as linguagens regulares são fechadas sob a operação de união, concluímos que L também é regular, e, portanto, do tipo 3 na Hierarquia de Chomsky.

8 Considere a linguagem $L = \{a^i b^i c^j d^j \mid i, j > 0\}$ definida sobre o alfabeto $\Sigma = \{a, b, c, d\}$. Qual é o tipo de L segundo a Hierarquia de Chomsky (HC)? Justifique sua resposta projetando uma máquina abstrata

M que reconhece L, aonde M deve possuir o mínimo poder de computação necessário para reconhecer a linguagem. (Isto é, M deve estar no mesmo nível/linha que L na HC.)

A linguagem L é do tipo 2, isto é, uma linguagem livre de contexto. É fácil perceber que não é possível construir um autômato finito para reconhecer L pois os valores de i e j são arbitrários e, portanto, o reconhecimento exige algum tipo de memória para contagem. Vamos então construir um PDA que é a máquina associada às linguagens do tipo 2.

O PDA M tem como alfabeto de entrada $\Sigma = \{a, b, c, d\}$ e alfabeto da pilha $\Gamma = \{A, C\}$, aonde A e C são utilizados respectivamente para indicar o número de a's e c's já lidos. O diagrama de M é apresentado abaixo.

