Pondichéry 2015. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

1) Pour tout réel x, $1 + e^{-2x} > 1$. En particulier, pour tout réel x, $1 + e^{-2x} \neq 0$. Par suite, la fonction f est dérivable sur $\mathbb R$ en tant qu'inverse d'une fonction dérivable sur $\mathbb R$ dont le dénominateur ne s'annule pas sur $\mathbb R$. De plus, pour tout réel x,

$$f'(x) = 3 \times -\frac{\left(1 + e^{-2x}\right)'}{\left(1 + e^{-2x}\right)^2} = -3 \times \frac{(-2x)'e^{-2x}}{\left(1 + e^{-2x}\right)^2} = -3 \times \frac{-2e^{-2x}}{\left(1 + e^{-2x}\right)^2} = \frac{6e^{-2x}}{\left(1 + e^{-2x}\right)^2}.$$

Pour tout réel x, $\frac{6e^{-2x}}{(1+e^{-2x})^2} > 0$. Ainsi, la fonction f' est strictement positive sur $\mathbb R$ et donc la fonction f est strictement croissante sur $\mathbb R$.

- 2) $\lim_{x\to +\infty} e^{-2x} = \lim_{X\to -\infty} e^X = 0$. Par suite, $\lim_{x\to +\infty} f(x) = \frac{3}{1+0} = 3$. On en déduit que la droite Δ est asymptote à la courbe $\mathscr C$ en $+\infty$.
- 3) Soit $x \in \mathbb{R}$.

$$f(x) = 2,999 \Leftrightarrow \frac{3}{1 + e^{-2x}} = 2,999 \Leftrightarrow 1 + e^{-2x} = \frac{3}{2,999} \Leftrightarrow e^{-2x} = \frac{3}{2,999} - 1$$
$$\Leftrightarrow e^{-2x} = \frac{0,001}{2,999} \Leftrightarrow -2x = \ln\left(\frac{0,001}{2,999}\right) \Leftrightarrow x = -\frac{1}{2}\ln\left(\frac{0,001}{2,999}\right)$$
$$\Leftrightarrow x = \frac{1}{2}\ln\left(\frac{2,999}{0,001}\right) \Leftrightarrow x = \frac{1}{2}\ln(2999).$$

Donc, l'équation f(x) = 2,999 admet une unique solution dans \mathbb{R} à savoir $\alpha = \frac{1}{2} \ln(2999)$. La calculatrice fournit $\alpha = 4,00301\ldots$ et en particulier

$$4 < \alpha < 4,01.$$

Partie B

- 1) D'après la partie A, la fonction f est strictement croissante sur \mathbb{R} et $\lim_{x \to +\infty} f(x) = 3$. Par suite, pour tout réel x, f(x) < 3 ou encore, pour tout réel x, h(x) > 0.
- 2) Puisque pour tout réel x, $1+e^{-2x}>0$, la fonction H est dérivable sur $\mathbb R$ et pour tout réel x,

$$H'(x) = -\frac{3}{2} \times \frac{\left(1 + e^{-2x}\right)'}{1 + e^{-2x}} = -\frac{3}{2} \times \frac{-2e^{-2x}}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}}.$$

D'autre part, pour tout réel x,

$$h(x) = 3 - \frac{3}{1 + e^{-2x}} = \frac{3 + 3e^{-2x} - 3}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}} = H'(x).$$

Ceci montre que la fonction H est une primitive de la fonction h sur \mathbb{R} .

- 3) Soit a un réel strictement positif.
- a) La fonction f est continue sur le segment [0, a] et pour tout réel x de [0, a], $f(x) \le 3$. Par suite, $\int_0^a h(x) dx = \int_0^a (3 f(x)) dx$ est égale à l'aire, exprimée en unités d'aire, du domaine du plan compris entre la courbe $\mathscr C$ et la droite Δ d'une part, les droites d'équations respectives x = 0 et x = a d'autre part.

$$\mathbf{b})\,\int_0^\alpha h(x)\,\,dx = \left[H(x)\right]_0^\alpha = \left(-\frac{3}{2}\ln\left(1+e^{-2\alpha}\right)\right) - \left(-\frac{3}{2}\ln\left(1+e^0\right)\right) = \frac{3}{2}\left(\ln(2) - \ln\left(1+e^{-2\alpha}\right)\right) = \frac{3}{2}\ln\left(\frac{2}{1+e^{-2\alpha}}\right).$$

c) L'aire demandée est $\lim_{\alpha \to +\infty} \int_0^\alpha h(x) \ dx$. Or, $\lim_{\alpha \to +\infty} e^{-2\alpha} = 0$ et donc

$$\lim_{\alpha \to +\infty} \int_0^\alpha h(x) \ dx = \frac{3}{2} \ln \left(\frac{2}{1+0} \right) = \frac{3 \ln(2)}{2}.$$

L'aire, exprimée en unités d'aire, du domaine \mathscr{D} est égale à $\frac{3\ln(2)}{2}$.

EXERCICE 2

Partie A

1) Soit n un entier naturel.

$$\begin{split} \nu_{n+1} &= u_{n+1} - \frac{b}{1-a} = au_n + b - \frac{b}{1-a} = au_n + \frac{b(1-a)-b}{1-a} = au_n + \frac{b-ab-b}{1-a} \\ &= au_n - \frac{ab}{1-a} = a\left(u_n - \frac{b}{1-a}\right) \\ &= av_n. \end{split}$$

Donc la suite $(\nu_n)_{n\in\mathbb{N}}$ est géométrique de raison $\mathfrak{a}.$

$$\textbf{2)} \text{ Si } \textbf{a} \in]-1, \textbf{1}[, \text{ on sait que } \lim_{n \to +\infty} \nu_n = \textbf{0}. \text{ On en d\'eduit que } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{b}{1-a} + \nu_n\right) = \frac{b}{1-a}.$$

Partie B

1) Quand Max rentre chez lui, il enlève à la plante le quart de sa hauteur. La plante ne mesure plus que $80 - \frac{1}{4} \times 80 = 60$ cm. Entre mars 2016 et mars 2016, la plante pousse de 30 cm. En mars 2016, la plante mesure donc 60 + 30 = 90 cm.

2) a) En mars de l'année 2015+n, la plante a une hauteur de h_n cm. Max enlève alors à la plante le quart de sa hauteur. Celle-ci ne mesure plus que $h_n - \frac{h_n}{4} = \frac{3h_n}{4} = 0,75h_n$. Puis, entre mars de l'année 2015+n et mars de l'année 2015+n+1, la plante pousse de 30 cm. En mars 2015+n+1, sa hauteur en cm est donc

$$h_{n+1} = 0,75h_n + 30.$$

b) La calculatrice fournit $h_0=80,\ h_1=90,\ h_2=97,5,\ h_3=103,125.$ Il semblerait que la suite $(h_n)_{n\in\mathbb{N}}$ soit strictement croissante.

Montrons par récurrence que pour tout entier naturel n, $h_{n+1} - h_n > 0$.

- \bullet $h_1-h_0=10>0.$ L'inégalité à démontrer est donc vraie quand $\pi=0.$
- Soit $n \ge 0$. Supposons que $h_{n+1} h_n > 0$ et montrons que $h_{n+2} h_{n+1} > 0$.

$$h_{n+2} - h_{n+1} = (0,75h_{n+1} + 30) - (0,75h_n + 30) = 0,75h_{n+1} - 0,75h_n$$

= 0,75 (h_{n+1} - h_n) > 0 (par hypothèse de récurrence).

On a montré par récurrence que pour tout entier naturel n, $h_{n+1} - h_n > 0$ ou encore que pour tout entier naturel n, $h_{n+1} > h_n$. La suite $(h_n)_{n \in \mathbb{N}}$ est strictement croissante.

c) On applique la partie A avec a=0,75 et b=30. $a\in]-1,1[$ et donc la suite $(h_n)_{n\in \mathbb{N}}$ converge et

$$\lim_{n \to +\infty} h_n = \frac{30}{1 - 0.75} = 120.$$

$$\lim_{n\to+\infty}h_n=120.$$

EXERCICE 3

Partie A

1) a) Puisque $\frac{64+104}{2}=84=\mu$, les deux nombres 64 et 104 sont symétriques par rapport à μ . On en déduit que

$$P(64 \leqslant X \leqslant 104) = 1 - P(X \leqslant 64) - P(X \geqslant 104) = 1 - 2P(X \leqslant 64) = 1 - 2 \times 0, 16 = 0, 68.$$

$$P(64 \leqslant X \leqslant 104) = 0,68.$$

b) D'après le cours, $P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,68$. On peut donc proposer $\sigma = \mu - 64 = 20$.

$$\sigma = 20$$
 à 1 près.

2) a) On sait que la variable aléatoire Z suit la loi normale centrée réduite c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.

b) $X \leqslant 64 \Leftrightarrow X - 84 \leqslant -20 \Leftrightarrow \frac{X - 84}{\sigma} \leqslant -\frac{20}{\sigma} \Leftrightarrow Z \leqslant -\frac{20}{\sigma}$. Les événements $X \leqslant 64$ et $Z \leqslant -\frac{20}{\sigma}$ se produisent simultanément. Donc

$$P(X \leqslant 64) = P\left(Z \leqslant -\frac{20}{\sigma}\right).$$

c) La calculatrice fournit

$$P(X \le 64) = 0, 16 \Leftrightarrow P\left(Z \le -\frac{20}{\sigma}\right) = 0, 16 \Leftrightarrow -\frac{20}{\sigma} = -0,9944... \Leftrightarrow \sigma = \frac{20}{0,9944...}$$
$$\Leftrightarrow \sigma = 20,1114...$$

$$\sigma=20,111~\mathrm{arrondi}$$
 à 10^{-3} .

3) a) La probabilité demandée est $P(24 \le X \le 60)$. La calculatrice fournit

$$P(24 \leqslant X \leqslant 60) = 0,115 \text{ arrondi à } 10^{-3}.$$

b) La probabilité demandée est $P(X \ge 120)$ ou encore $1 - P(X \le 120)$. La calculatrice fournit

$$P(X \le 120) = 0,037 \text{ arrondi à } 10^{-3}.$$

Partie B

- 1) a) Notons Y la variable aléatoire égale au nombre de clients faisant jouer l'extension de garantie. La variable Y suit une loi binomiale. En effet,
 - 12 expériences identiques et indépendantes sont effectuées;
 - chaque expérience a deux éventualités à savoir « le client fait jouer l'extension de garantie » avec une probabilité p = 0, 115 et « le client ne fait pas jouer l'extension de garantie » avec une probabilité 1 p = 0, 885.

La variable Y suit donc une loi binomiale de paramètres n = 12 et p = 0, 115.

La probabilité demandée est P(Y=3). La calculatrice fournit

$$P(Y = 3) = {12 \choose 3} \times 0,115^3 \times 0,885^9 = 0,111 \text{ arrondi à } 10^{-3}.$$

b) La probabilité demandée est $P(Y \ge 6)$. La calculatrice fournit

$$P(Y \ge 6) = 1 - P(Y \le 5) = 0,001 \text{ arrondi à } 10^{-3}.$$

2) Dans cette question, Y désigne la variable aléatoire égale au gain algébrique en euros réalisé sur ce client par l'entreprise.

a) La variable Y prend deux valeurs : 65 euros si la panne est réparable et 65-399=-334 euros si la panne est irréparable. La loi de probabilité de Y est

$$P(Y = -334) = 0,115$$
 et $P(Y = 65) = 0,885$.

b) L'espérance de la variable Y est

$$E(Y) = 0,115 \times (-334) + 0,885 \times 65 = 19,115.$$

L'entreprise gagne donc en moyenne 19,115 euros par client ayant pris l'extension de garantie. Puisque cette espérance est strictement positive, cette offre d'extension de garantie est financièrement avantageuse pour l'entreprise.

EXERCICE 4.

1) Figure.

2) Le vecteur \overrightarrow{MN} a pour coordonnées $\left(-1, -\frac{1}{2}, \frac{1}{4}\right)$ et le vecteur \overrightarrow{MP} a pour coordonnées (0, -1, -2).

S'il existe un réel k tel que $\overrightarrow{MN} = k\overrightarrow{MP}$, en analysant la première coordonnée, on a $-1 = 0 \times k$ ce qui est impossible.

Donc, les vecteurs \overrightarrow{MN} et \overrightarrow{MP} ne sont pas colinéaires ou encore les points M, N et P ne sont pas alignés.

3) a) d prend la valeur -1, e prend la valeur $-\frac{1}{2}$, f prend la valeur $\frac{1}{4}$, g prend la valeur 0, h prend la valeur -1 et i prend la valeur -2.

$$k \text{ prend la valeur } (-1)\times 0 + \left(-\frac{1}{2}\right)\times (-1) + \frac{1}{4}\times (-2) = \frac{1}{2} - \frac{1}{2} = 0.$$

L'algorithme affiche 0.

b) L'algorithme affiche le produit scalaire des vecteurs \overrightarrow{MN} et \overrightarrow{MP} . Ici, ce produit scalaire est nul et donc le triangle MNP est rectangle en M.

4) Algorithme complété.

5) a) Le plan (MNP) est le plan passant par $M\left(1,1,\frac{3}{4}\right)$ et de vecteur normal $\overrightarrow{\pi}(5,-8,4)$. Une équation cartésienne du plan (MNP) est

$$5 \times (x-1) - 8 \times (y-1) + 4 \times \left(z - \frac{3}{4}\right) = 0,$$

ou encore

une équation cartésienne du plan (MNP) est 5x - 8y + 4z = 0.

b) Δ est la droite passant par F(1,0,1) et de vecteur directeur $\overrightarrow{\pi}(5,-8,4)$. Une représentation paramétrique de la droite Δ est donc

$$\begin{cases} x = 1 + 5t \\ y = -8t \\ z = 1 + 4t \end{cases} \quad t \in \mathbb{R}.$$

6) a) Soit Q(1+5t, -8t, 1+4t), $t \in \mathbb{R}$, un point de Δ .

$$Q \in (MNP) \Leftrightarrow 5(1+5t) - 8(-8t) + 4(1+4t) = 0 \Leftrightarrow 105t + 9 = 0 \Leftrightarrow t = -\frac{9}{105} \Leftrightarrow t = -\frac{3}{35}.$$

 $\mathrm{Quand}\ t = -\frac{3}{35}, \ \mathrm{on\ obtient\ les\ coordonn\acute{e}es\ du\ point\ K\ \grave{a}\ savoir\ \left(\frac{20}{35},\frac{24}{35},\frac{23}{35}\right)\ \mathrm{ou\ encore}\ \left(\frac{4}{7},\frac{24}{35},\frac{23}{35}\right).$

b) [FK] est la hauteur du tétraèdre MNPF issue de F. D'autre part, puisque le triangle MNP est rectangle en M, l'aire de ce triangle est $\mathcal{A} = \frac{MN \times MP}{2}$.

$$MN = \sqrt{(-1)^2 + \left(-\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2} = \sqrt{\frac{21}{16}} = \frac{\sqrt{21}}{4}$$

et

$$MP = \sqrt{0^2 + (-1)^2 + (-2)^2} = \sqrt{5}.$$

Le volume du tétraèdre MNPF est donc

$$\mathscr{V} = \frac{1}{3} \times \mathscr{A} \times \mathsf{FK} = \frac{1}{3} \times \frac{\frac{\sqrt{21}}{4} \times \sqrt{5}}{2} \times \sqrt{\frac{27}{35}} = \frac{1}{2 \times 3 \times 4} \sqrt{\frac{3 \times 7 \times 5 \times 3 \times 9}{5 \times 7}} = \frac{3 \times 3}{2 \times 3 \times 4} = \frac{3}{8}.$$

Le volume \mathscr{V} du tétraèdre MNPF est $\mathscr{V} = \frac{3}{8}$.