GigaDevice Semiconductor Inc.

GD32F103xx Arm® Cortex®-M3 32-bit MCU

Datasheet

Revision 3.0

(Jul. 2024)

Table of Contents

Ta	ble of	Contents	
Li	st of Fi	igures	4
Li	st of Ta	ables	5
1.	Gene	eral description	7
2.		ce overview	
		vice information	
		ock diagram	
		outs and pin assignment	
i	2.4. Me	mory map	18
:	2.5. Clo	ock tree	22
:	2.6. Pin	definitions	23
	2.6.1.	GD32F103Zx LQFP144 pin definitions	23
	2.6.2.	GD32F103Vx LQFP100 pin definitions	32
	2.6.3.	GD32F103Rx LQFP64 pin definitions	39
	2.6.4.	GD32F103Cx LQFP48 pin definitions	
	2.6.5.	GD32F103Tx QFN36 pin definitions	46
3.	Func	ctional description	48
;	3.1. Arn	n® Cortex®-M3 core	48
;	3.2. On-	-chip memory	48
;	3.3. Clo	ock, reset and supply management	49
		ot modes	
		wer saving modes	
		alog to digital converter (ADC)	
		ital to analog converter (DAC)	
,	3.9. Gei	neral-purpose inputs/outputs (GPIOs)	52
,	3.10.	Timers and PWM generation	53
,	3.11.	Real time clock (RTC)	54
;	3.12.	Inter-integrated circuit (I2C)	54
	3.13.	Serial peripheral interface (SPI)	55

GigaDevice

	3.14.	Universal synchronous asynchronous receiver transmitter (USART)	55
	3.15.	Inter-IC sound (I2S)	
	3.16.	Secure digital input and output card interface (SDIO)	
	3.17.	Universal serial bus full-speed device (USBD)	
	3.18.	Controller area network (CAN)	
	3.19.	External memory controller (EXMC)	
	3.20.	Debug mode	
	3.21.	Package and operation temperature	
1		rical characteristics	
_		solute maximum ratings	
		erating conditions characteristics	
		ver consumption	
		C characteristics	
		ver supply supervisor characteristics	
		ctrical sensitivity	
		ernal clock characteristics	
		ernal clock characteristics	
		characteristics	
	4.10.	Memory characteristics	
	4.11.	NRST pin characteristics	77
	4.12.	GPIO characteristics	77
	4.13.	ADC characteristics	81
	4.14.	Temperature sensor characteristics	83
	4.15.	DAC characteristics	83
	4.16.	I2C characteristics	84
	4.17.	SPI characteristics	85
	4.18.	I2S characteristics	87
	4.19.	USART characteristics	89
	4.20.	SDIO characteristics	89
	4.21.	CAN characteristics	89
	4.22.	USBD characteristics	90

digupevi	.e	GD32F103XX Datasneet
4.23.	EXMC characteristics	91
4.24.	TIMER characteristics	93
4.25.	WDGT characteristics	93
4.26.	Parameter conditions	94
5. Pack	age information	95
5.1 LQ	FP144 package outline dimensions	95
5.2 LQ	FP100 package outline dimensions	97
5.3 LQ	FP64 package outline dimensions	99
5.4 LQ	FP48 package outline dimensions	101
5.5 QF	N36 package outline dimensions	103
5.6 Th	ermal characteristics	105
6. Orde	ering Information	107
7. Revi	sion History	109

List of Figures

Figure 2-1. GD32F103x4/6/8/B block diagram	12
Figure 2-2. GD32F103xC/D/E/F/G/I/K block diagram	13
Figure 2-3. GD32F103Zx LQFP144 pinouts	14
Figure 2-4. GD32F103Vx LQFP100 pinouts	15
Figure 2-5. GD32F103Rx LQFP64 pinouts	16
Figure 2-6. GD32F103Cx LQFP48 pinouts	16
Figure 2-7. GD32F103Tx QFN36 pinouts	17
Figure 2-8. GD32F103xx clock tree	22
Figure 4-1. Recommended power supply decoupling capacitors ^{(1) (2)}	59
Figure 4-2. Typical supply current consumption in Run mode (For GD32F103x4/6/8/B devices)	67
Figure 4-3. Typical supply current consumption in Run mode (For GD32F103xC/D/E/F/G/I/K	
devices)	67
Figure 4-4. Typical supply current consumption in Sleep mode (For GD32F103x4/6/8/B devices)	67
Figure 4-5. Typical supply current consumption in Sleep mode (For GD32F103xC/D/E/F/G/I/K	
devices)	68
Figure 4-6. Recommended external NRST pin circuit ⁽¹⁾	77
Figure 4-7. I2C bus timing diagram	85
Figure 4-8. SPI timing diagram - master mode	86
Figure 4-9. SPI timing diagram - slave mode	86
Figure 4-10. I2S timing diagram - master mode	88
Figure 4-11. I2S timing diagram - slave mode	88
Figure 4-12. USBD timings: definition of data signal rise and fall time	91
Figure 5-1. LQFP144 package outline	95
Figure 5-2. LQFP144 recommended footprint	96
Figure 5-3. LQFP100 package outline	97
Figure 5-4. LQFP100 recommended footprint	98
Figure 5-5. LQFP64 package outline	99
Figure 5-6. LQFP64 recommended footprint	. 100
Figure 5-7. LQFP48 package outline	. 101
Figure 5-8. LQFP48 recommended footprint	. 102
Figure 5-9. QFN36 package outline	. 103
Figure 5-10. QFN36 recommended footprint	104

List of Tables

Table 2-1. GD32F103xx devices features and peripheral list	8
Table 2-2. GD32F103xx devices features and peripheral list (continued)	g
Table 2-3. GD32F103xx devices features and peripheral list (continued)	11
Table 2-4. GD32F103xx memory map	18
Table 2-5. GD32F103Zx LQFP144 pin definitions	23
Table 2-6. GD32F103Vx LQFP100 pin definitions	32
Table 2-7. GD32F103Rx LQFP64 pin definitions	39
Table 2-8. GD32F103Cx LQFP48 pin definitions	43
Table 2-9. GD32F103Tx QFN36 pin definitions	46
Table 4-1. Absolute maximum ratings (1)(4)	58
Table 4-2. DC operating conditions	58
Table 4-3. Clock frequency ⁽¹⁾	59
Table 4-4. Operating conditions at Power up/ Power down (1)	59
Table 4-5. Start-up timings of Operating conditions (For GD32F103x4/6/8/B devices)(1)(2)(3)	59
Table 4-6. Start-up timings of Operating conditions (For GD32F103xC/D/E/F/G/I/K devices)(1)(2)(³⁾ 60
Table 4-7. Power saving mode wakeup timings characteristics (for GD32F103x4/6/8/B devices) ⁽¹⁾⁽²⁾
	60
Table 4-8. Power saving mode wakeup timings characteristics (for GD32F103xC/D/E/F/G/I/K	
devices) ⁽¹⁾⁽²⁾	
Table 4-9. Power consumption characteristics (for GD32F103x4/6/8/B devices)(2)(3)(4)(5)	60
Table 4-10. Power consumption characteristics (for GD32F103xC/D/E/F/G/I/K devices) ⁽²⁾⁽³⁾⁽⁴⁾⁽⁵⁾	64
Table 4-11. EMS characteristics ⁽¹⁾	
Table 4-12. Power supply supervisor characteristics (For GD32F103x4/6/8/B devices)	69
Table 4-13. Power supply supervisor characteristics (For GD32F103xC/D/E/F/G/I/K devices)	
Table 4-14. ESD characteristics ⁽¹⁾	
Table 4-15. Static latch-up characteristics (1)	71
Table 4-16. High speed external clock (HXTAL) generated from a crystal/ceramic	
characteristics(For GD32F103x4/6/8/B devices)	71
Table 4-17. High speed external clock (HXTAL) generated from a crystal/ceramic	
characteristics(For GD32F103xC/D/E/F/G/I/K devices)	
Table 4-18. High speed external clock characteristics (HXTAL in bypass mode)	72
Table 4-19. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristic	-
GD32F103x4/6/8/B devices)	
Table 4-20. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristic	s(For
GD32F103xC/D/E/F/G/I/K devices)	
Table 4-21. Low speed external user clock characteristics (LXTAL in bypass mode)	
Table 4-22. High speed internal clock (IRC8M) characteristics (For GD32F103x4/6/8/B devices)	73
Table 4-23. High speed internal clock (IRC8M) characteristics (For GD32F103 xC/D/E/F/G/I/K	
devices)	
Table 4-24. Low speed internal clock (IRC40K) characteristics (For GD32F103x4/6/8/B devices) 74

Table 4-25. Low speed internal clock (IRC40K) characteristics(For GD32F103 xC/D/E/F/G/I/K	
devices)	75
Table 4-26. PLL characteristics	75
Table 4-27. Flash memory characteristics (For GD32F103x4/6/8/B devices)	76
Table 4-28. Flash memory characteristics (For GD32F103xC/D/E/F/G/I/K devices)	76
Table 4-29. NRST pin characteristics	
Table 4-30. I/O port DC characteristics(For GD32F103x4/6/8/B devices)(1) (3)	77
Table 4-31. I/O port DC characteristics(For GD32F103xC/D/E/F/G/I/K devices)(1) (3)	
Table 4-32. I/O port AC characteristics(For GD32F103x4/6/8/B devices) (1)(2)(4)	
Table 4-33. I/O port AC characteristics(For GD32F103xC/D/E/F/G/I/K devices) (1)(2)(4)	81
Table 4-34. ADC characteristics(For GD32F103x4/6/8/B devices)	
Table 4-35. ADC characteristics(For GD32F103xC/D/E/F/G/I/K devices)	82
Table 4-36. ADC R _{AIN max} for f _{ADC} = 14 MHz (For GD32F103x4/6/8/B devices)	
Table 4-37. ADC R _{AIN max} for f _{ADC} = 14 MHz (For GD32F103xC/D/E/F/G/I/K devices)	82
Table 4-38. Temperature sensor characteristics (1)	83
Table 4-39. DAC characteristics(For GD32F103xC/D/E/F/G/I/K devices)	83
Table 4-40. I2C characteristics ⁽¹⁾ (2)	84
Table 4-41. Standard SPI characteristics ⁽¹⁾	85
Table 4-42. I2S characteristics (For GD32F103xC/D/E/F/G/I/K devices) (1) (2)	87
Table 4-43. USART characteristics ⁽¹⁾	89
Table 4-44. SDIO characteristics (For GD32F103xC/D/E/F/G/I/K devices) ⁽¹⁾⁽²⁾	89
Table 4-45. USBD start up time (For GD32F103x4/6/8/B devices)	90
Table 4-46. USBD start up time (For GD32F103xC/D/E/F/G/I/K devices)	90
Table 4-47. USBD DC electrical characteristics (For GD32F103x4/6/8/B devices)	90
Table 4-48. USBD DC electrical characteristics (For GD32F103xC/D/E/F/G/I/K devices)	90
Table 4-49. USBD full speed-electrical characteristics (For GD32F103x4/6/8/B devices) (1)	
Table 4-50. USBD full speed-electrical characteristics (For GD32F103xC/D/E/F/G/I/K devices) ⁽¹⁾	90
Table 4-51. Synchronous multiplexed PSRAM/NOR read timings ⁽¹⁾⁽²⁾⁽³⁾	91
Table 4-52. Synchronous multiplexed PSRAM write timings ⁽¹⁾⁽²⁾⁽³⁾	91
Table 4-53. Synchronous non-multiplexed PSRAM/NOR read timings ⁽¹⁾⁽²⁾⁽³⁾	92
Table 4-54. Synchronous non-multiplexed PSRAM write timings ⁽¹⁾⁽²⁾⁽³⁾	92
Table 4-55. TIMER characteristics ⁽¹⁾	93
Table 4-56. FWDGT min/max timeout period at 40 kHz (IRC40K) ⁽¹⁾	93
Table 4-57. WWDGT min-max timeout value at 54 MHz (f _{PCLK1}) ⁽¹⁾	93
Table 5-1. LQFP144 package dimensions	95
Table 5-2. LQFP100 package dimensions	97
Table 5-3. LQFP64 package dimensions	99
Table 5-4. LQFP48 package dimensions	101
Table 5-5. QFN36 package dimensions	103
Table 5-6. Package thermal characteristics ⁽¹⁾	105
Table 6-1. Part ordering code for GD32F103xx devices	107
Table 7-1. Revision history	109

1. General description

The GD32F103xx device is a 32-bit general-purpose microcontroller based on the Arm[®] Cortex[®]-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex[®]-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.

The GD32F103xx device incorporates the Arm® Cortex®-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3 MB on-chip Flash memory and up to 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit ADCs, up to two 12-bit DACs, up to ten general 16-bit timers, two basic timers plus two PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, an USBD, a CAN and a SDIO.

The device operates from a 2.6 to 3.6 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32F103xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, video intercom, PC peripherals and so on.

2. Device overview

2.1. Device information

Table 2-1. GD32F103xx devices features and peripheral list

Part Number					es iea				F103x						
Pa	art Number	T4	T6	Т8	ТВ	C4	C6	C8	СВ	R4	R6	R8	RB	V8	VB
	Code Area (KB)	16	32	64	128	16	32	64	128	16	32	64	128	64	128
Flash	Data Area (KB)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total (KB)	16	32	64	128	16	32	64	128	16	32	64	128	64	128
S	SRAM (KB)	6	10	20	20	6	10	20	20	6	10	20	20	20	20
	General timer(16-bit)	2	2	3	3	2	2	3	3	2	2	3	3	3	3
ers	Advanced timer(16-bit)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Timers	SysTick	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Watchdog	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	USART	2	2	2	2	2	2	3	3	2	2	3	3	3	3
tivity	I2C	1	1 (0)	1	1	1	1	2	2	1	1	2	2	2	2
Connectivity	SPI	1	1 (0)	1	1	(0)	1	2	2	1 (0)	1	(0-1)	2	2	2 (0-1)
	CAN	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	USBD	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	GPIO	26	26	26	26	37	37	37	37	51	51	51	51	80	80
	EXMC	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	EXTI	16	16	16	16	16	16	16	16	16	16	16	16	16	16
ADC	Units	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ΑĽ	Channels	10	10	10	10	10	10	10	10	16	16	16	16	16	16
	Package		QF	N36			LQF	P48			LQF	-P64		LQF	P100

Table 2-2. GD32F103xx devices features and peripheral list (continued)

		32F103xx devices features and peripheral list (continued) GD32F103xx													
Pa	art Number	RC	RD	RE	RF	RG	RI	RK	VC	VD	VE	VF	VG	VI	VK
	Code Area (KB)	256	256	256	256	256	256	256	256	256	256	256	256	256	256
Flash	Data Area (KB)	0	128	256	512	768	1792	2816	0	128	256	512	768	1792	2816
	Total (KB)	256	384	512	768	1024	2048	3072	256	384	512	768	1024	2048	3072
S	RAM (KB)	48	64	64	96	96	96	96	48	64	64	96	96	96	96
	General timer(16- bit)	4 (1-4)	4 (1-4)	4 (1-4)	10	10	10	10	4 (1-4)	4 (1-4)	4 (1-4)	10	10	10	10
s	Advanced timer(16-bit)	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Timers	SysTick	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Basic timer(16- bit)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)	2 (5-6)
•	Watchdog	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	USART	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	UART	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	I2C	2	2	2	2	2	2	2	2	2	2	2	2	2	2
tivity	SPI	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Connect	CAN	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ၓ	USBD	1	1	1	1	1	1	1	1	1	1	1	1	1	1
•	I2S	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ŀ	SDIO	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	GPIO	51	51	51	51	51	51	51	80	80	80	80	80	80	80
	EXMC	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	EXTI	16	16	16	16	16	16	16	16	16	16	16	16	16	16
ADC	Units	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ΑĽ	Channels	16	16	16	16	16	16	16	16	16	16	16	16	16	16

GD32F103xx Datasheet

5. (1)						(GD32	F103x	x					
Part Number	RC	RD	RE	RF	RG	RI	RK	vc	VD	VE	VF	VG	VI	VK
DAC	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Package			L	.QFP6	4			LQFP100						

Table 2-3. GD32F103xx devices features and peripheral list (continued)

	e 2-3. GD32F10				D32F103	<u> </u>		,
F	Part Number	ZC	ZD	ZE	ZF	ZG	ZI	ZK
	Code Area (KB)	256	256	256	256	256	256	256
Flash	Data Area (KB)	0	128	256	512	768	1792	2816
_	Total (KB)	256	384	512	768	1024	2048	3072
	SRAM (KB)	48	64	64	96	96	96	96
	General	4	4	4	10	10	10	10
	timer(16-bit)	(1-4)	(1-4)	(1-4)	(1-4,8-13)	(1-4,8-13)	(1-4,8-13)	(1-4,8-13)
	Advanced	2	2	2	2	2	2	2
	timer(16-bit)	(0,7)	(0,7)	(0,7)	(0,7)	(0,7)	(0,7)	(0,7)
Timers	SysTick	1	1	1	1	1	1	1
F	Basic timer(16-	2	2	2	2	2	2	2
	bit)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)
	Watchdog	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1
	USART	3	3	3	3	3	3	3
	UART	2	2	2	2	2	2	2
	I2C	2	2	2	2	2	2	2
<u>₹</u>	SPI	3	3	3	3	3	3	3
ctiv	0.1	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)
Connectivity	CAN	1	1	1	1	1	1	1
O	USBD	1	1	1	1	1	1	1
	I2S	2	2	2	2	2	2	2
	120	(1-2)	(1-2)	(1-2)	(1-2)	(1-2)	(1-2)	(1-2)
	SDIO	1	1	1	1	1	1	1
	GPIO	112	112	112	112	112	112	112
	EXMC	1	1	1	1	1	1	1
	EXTI	16	16	16	16	16	16	16
ADC	Units	3	3	3	3	3	3	3
AĽ	Channels	21	21	21	21	21	21	21
	DAC	2	2	2	2	2	2	2
	Package				LQFP144			

USART1 USART2

12C0

12C1

USBD

FWDGT

RTC

2.2. Block diagram

TPIU SW/JTAG POR/PDR Flash ARM Cortex-M3 Memory PLL Fmax: 108MHz Memory Processor Fmax: 108MHz DCode Controller LDO CRC RCU FMC 1.2V NVIC AHB Peripherals IRC 8MHz SRAM DMA0 7chs SRAM Controller HXTAL 4-16MHz AHB to APB AHB to APB EXMC Bridge 1 LVD Interrput request CAN0 USART0 WWDGT SPI0 TIMER1 ADC0 12-bit SAR ADC TIMER2 ADC1 Powered By VDDA TIMER3 ĞPIOA SPI1 ĞPIOB

GPIOC

ĞPIOD

ĞPI0E

TIMER0

EXTI

Figure 2-1. GD32F103x4/6/8/B block diagram

Figure 2-2. GD32F103xC/D/E/F/G/I/K block diagram

: Blocks are available in GD32F103xF/G/I/K devices

DAC1
FWDGT

2.3. Pinouts and pin assignment

Figure 2-3. GD32F103Zx LQFP144 pinouts

Figure 2-4. GD32F103Vx LQFP100 pinouts

Figure 2-5. GD32F103Rx LQFP64 pinouts

Figure 2-6. GD32F103Cx LQFP48 pinouts

Figure 2-7. GD32F103Tx QFN36 pinouts

2.4. Memory map

Table 2-4. GD32F103xx memory map

Pre-defined			
Regions	Bus	Address	Peripherals
External device		0xA000 0000 - 0xA000 0FFF	EXMC - SWREG
		0x9000 0000 - 0x9FFF FFFF	EXMC - PC CARD
	AHB	0x7000 0000 - 0x8FFF FFFF	EXMC - NAND
External RAM		0x6000 0000 - 0x6FFF FFFF	EXMC - NOR/PSRAM/SRA M
		0x5000 0000 - 0x5003 FFFF	Reserved
		0x4008 0000 - 0x4FFF FFFF	Reserved
		0x4004 0000 - 0x4007 FFFF	Reserved
		0x4002 BC00 - 0x4003 FFFF	Reserved
		0x4002 B000 - 0x4002 BBFF	Reserved
		0x4002 A000 - 0x4002 AFFF	Reserved
		0x4002 8000 - 0x4002 9FFF	Reserved
		0x4002 6800 - 0x4002 7FFF	Reserved
		0x4002 6400 - 0x4002 67FF	Reserved
0x4002 6400 - 0x 0x4002 6000 - 0x 0x4002 5000 - 0x	0x4002 6000 - 0x4002 63FF	Reserved	
		0x4002 5000 - 0x4002 5FFF	Reserved Reserved Reserved Reserved Reserved Reserved
		0x4002 4000 - 0x4002 4FFF	Reserved
0x 0x	0x4002 3C00 - 0x4002 3FFF	Reserved	
		0x4002 3800 - 0x4002 3BFF	Reserved
Peripheral	AHB	0x4002 3400 - 0x4002 37FF	Reserved
		0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2C00 - 0x4002 2FFF	Reserved
		0x4002 2800 - 0x4002 2BFF	Reserved
		0x4002 2400 - 0x4002 27FF	Reserved
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1C00 - 0x4002 1FFF	Reserved
		0x4002 1800 - 0x4002 1BFF	Reserved
		0x4002 1400 - 0x4002 17FF	Reserved
		0x4002 1000 - 0x4002 13FF	RCU
		0x4002 0C00 - 0x4002 0FFF	Reserved
		0x4002 0800 - 0x4002 0BFF	Reserved
		0x4002 0400 - 0x4002 07FF	DMA1
		0x4002 0000 - 0x4002 03FF	DMA0
		0x4001 8400 - 0x4001 FFFF	Reserved

Pre-defined	Derr		Pavinhavala
Regions	Bus	Address	Peripherals
		0x4001 8000 - 0x4001 83FF	SDIO
		0x4001 7C00 - 0x4001 7FFF	Reserved
		0x4001 7800 - 0x4001 7BFF	Reserved
		0x4001 7400 - 0x4001 77FF	Reserved
		0x4001 7000 - 0x4001 73FF	Reserved
		0x4001 6C00 - 0x4001 6FFF	Reserved
		0x4001 6800 - 0x4001 6BFF	Reserved
		0x4001 5C00 - 0x4001 67FF	Reserved
		0x4001 5800 - 0x4001 5BFF	Reserved
		0x4001 5400 - 0x4001 57FF	TIMER10
		0x4001 5000 - 0x4001 53FF	TIMER9
		0x4001 4C00 - 0x4001 4FFF	TIMER8
		0x4001 4800 - 0x4001 4BFF	Reserved
		0x4001 4400 - 0x4001 47FF	Reserved
		0x4001 4000 - 0x4001 43FF	Reserved
	ADDO	0x4001 3C00 - 0x4001 3FFF	ADC2
	APB2	0x4001 3800 - 0x4001 3BFF	USART0
		0x4001 3400 - 0x4001 37FF	TIMER7
		0x4001 3000 - 0x4001 33FF	SPI0
		0x4001 2C00 - 0x4001 2FFF	TIMER0
		0x4001 2800 - 0x4001 2BFF	ADC1
		0x4001 2400 - 0x4001 27FF	ADC0
		0x4001 2000 - 0x4001 23FF	GPIOG
		0x4001 1C00 - 0x4001 1FFF	GPIOF
		0x4001 1800 - 0x4001 1BFF	GPIOE
		0x4001 1400 - 0x4001 17FF	GPIOD
		0x4001 1000 - 0x4001 13FF	GPIOC
		0x4001 0C00 - 0x4001 0FFF	GPIOB
		0x4001 0800 - 0x4001 0BFF	GPIOA
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	AFIO
		0x4000 CC00 - 0x4000 FFFF	Reserved
		0x4000 C800 - 0x4000 CBFF	Reserved
		0x4000 C400 - 0x4000 C7FF	Reserved
		0x4000 C000 - 0x4000 C3FF	Reserved
	APB1	0x4000 8000 - 0x4000 BFFF	Reserved
		0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	Reserved
		0x4000 7400 - 0x4000 77FF	DAC
		0x4000 7000 - 0x4000 73FF	PMU

Pre-defined	Bus	Address	Peripherals
Regions	bus	Address	reliplierals
		0x4000 6C00 - 0x4000 6FFF	BKP
		0x4000 6800 - 0x4000 6BFF	Reserved
		0x4000 6400 - 0x4000 67FF	CAN0
		0x4000 6000 - 0x4000 63FF	Shared USBD/CAN SRAM 512 bytes
		0x4000 5C00 - 0x4000 5FFF	USBD
		0x4000 5800 - 0x4000 5BFF	I2C1
		0x4000 5400 - 0x4000 57FF	I2C0
		0x4000 5000 - 0x4000 53FF	UART4
		0x4000 4C00 - 0x4000 4FFF	UART3
		0x4000 4800 - 0x4000 4BFF	USART2
		0x4000 4400 - 0x4000 47FF	USART1
		0x4000 4000 - 0x4000 43FF	Reserved
		0x4000 3C00 - 0x4000 3FFF	SPI2/I2S2
		0x4000 3800 - 0x4000 3BFF	SPI1/I2S1
		0x4000 3400 - 0x4000 37FF	Reserved
		0x4000 3000 - 0x4000 33FF	FWDGT
		0x4000 2C00 - 0x4000 2FFF	WWDGT
		0x4000 2800 - 0x4000 2BFF	RTC
		0x4000 2400 - 0x4000 27FF	Reserved
		0x4000 2000 - 0x4000 23FF	TIMER13
		0x4000 1C00 - 0x4000 1FFF	TIMER12
		0x4000 1800 - 0x4000 1BFF	TIMER11
		0x4000 1400 - 0x4000 17FF	TIMER6
		0x4000 1000 - 0x4000 13FF	TIMER5
		0x4000 0C00 - 0x4000 0FFF	TIMER4
		0x4000 0800 - 0x4000 0BFF	TIMER3
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	TIMER1
		0x2007 0000 - 0x3FFF FFFF	Reserved
		0x2006 0000 - 0x2006 FFFF	Reserved
		0x2003 0000 - 0x2005 FFFF	Reserved
SRAM	AHB	0x2002 0000 - 0x2002 FFFF	Reserved
		0x2001 C000 - 0x2001 FFFF	Reserved
		0x2001 8000 - 0x2001 BFFF	Reserved
		0x2000 0000 - 0x2001 7FFF	SRAM
		0x1FFF F810 - 0x1FFF FFFF	Reserved
04-1-	ALID	0x1FFF F800 - 0x1FFF F80F	Option Bytes
Code	AHB	0x1FFF B000 - 0x1FFF F7FF	Boot loader
		0x1FFF 7A10 - 0x1FFF AFFF	Reserved

GD32F103xx Datasheet

Pre-defined Regions	Bus	Address	Peripherals
		0x1FFF 7800 - 0x1FFF 7A0F	Reserved
		0x1FFF 0000 - 0x1FFF 77FF	Reserved
		0x1FFE C010 - 0x1FFE FFFF	Reserved
		0x1FFE C000 - 0x1FFE C00F	Reserved
		0x1001 0000 - 0x1FFE BFFF	Reserved
		0x1000 0000 - 0x1000 FFFF	Reserved
		0x083C 0000 - 0x0FFF FFFF	Reserved
		0x0830 0000 - 0x083B FFFF	Reserved
		0x0800 0000 - 0x082F FFFF	Main Flash
		0x0030 0000 - 0x07FF FFFF	Reserved
		0x0000 0000 - 0x002F FFFF	Aliased to Main
		0x0000 0000 - 0x002F FFFF	Flash or Boot loader

2.5. Clock tree

Figure 2-8. GD32F103xx clock tree

Legend:

HXTAL: High speed external clock LXTAL: Low speed external clock IRC8M: High speed internal clock IRC40K: Low speed internal clock

2.6. Pin definitions

2.6.1. GD32F103Zx LQFP144 pin definitions

Table 2-5. GD32F103Zx LQFP144 pin definitions

				pin definitions GD32F103Zx LQFP144
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PE2	1	I/O	5VT	Default: PE2 Alternate: TRACECK, EXMC_A23
PE3	2	I/O	5VT	Default: PE3 Alternate: TRACED0, EXMC_A19
PE4	3	I/O	5VT	Default: PE4 Alternate:TRACED1, EXMC_A20
PE5	4	I/O	5VT	Default: PE5 Alternate:TRACED2, EXMC_A21 Remap: TIMER8_CH0 ⁽³⁾
PE6	5	I/O	5VT	Default: PE6 Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1 ⁽³⁾
VBAT	6	Р		Default: VBAT
PC13- TAMPER- RTC	7	I/O		Default: PC13 Alternate: TAMPER-RTC
PC14- OSC32IN	8	I/O		Default: PC14 Alternate: OSC32IN
PC15- OSC32OUT	9	I/O		Default: PC15 Alternate: OSC32OUT
PF0	10	I/O	5VT	Default: PF0 Alternate: EXMC_A0
PF1	11	I/O	5VT	Default: PF1 Alternate: EXMC_A1
PF2	12	I/O	5VT	Default: PF2 Alternate: EXMC_A2
PF3	13	I/O	5VT	Default: PF3 Alternate: EXMC_A3
PF4	14	I/O	5VT	Default: PF4 Alternate: EXMC_A4
PF5	15	I/O	5VT	Default: PF5 Alternate: EXMC_A5
VSS_5	16	Р		Default: VSS_5

	GD32F103Zx LQFP144						
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
VDD_5	17	Р		Default: VDD_5			
PF6	18	I/O		Default: PF6 Alternate: ADC2_IN4, EXMC_NIORD Remap: TIMER9_CH0 ⁽³⁾			
PF7	19	I/O		Default: PF7 Alternate: ADC2_IN5, EXMC_NREG Remap: TIMER10_CH0 ⁽³⁾			
PF8	20	I/O		Default: PF8 Alternate: ADC2_IN6, EXMC_NIOWR Remap: TIMER12_CH0 ⁽³⁾			
PF9	21	I/O		Default: PF9 Alternate: ADC2_IN7, EXMC_CD Remap: TIMER13_CH0 ⁽³⁾			
PF10	22	I/O		Default: PF10 Alternate: ADC2_IN8, EXMC_INTR			
OSCIN-PD0	23	I		Default: OSCIN Remap: PD0			
OSCOUT- PD1	24	0		Default: OSCOUT Remap: PD1			
NRST	25	I/O		Default: NRST			
PC0	26	I/O		Default: PC0 Alternate: ADC012_IN10			
PC1	27	I/O		Default: PC1 Alternate: ADC012_IN11			
PC2	28	I/O		Default: PC2 Alternate: ADC012_IN12			
PC3	29	I/O		Default: PC3 Alternate: ADC012_IN13			
VSSA	30	Р		Default: VSSA			
VREFN	31	Р		Default: VREFN			
VREFP	32	Р		Default: VREFP			
VDDA	33	Р		Default: VDDA			
PA0-WKUP	34	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI			
PA1	35	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1, TIMER4_CH1			
PA2	36	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2,			

			G	5D32F103Zx LQFP144
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				TIMER4_CH2, TIMER8_CH0 ⁽³⁾
PA3	37	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3, TIMER4_CH3, TIMER8_CH1 ⁽³⁾
VSS_4	38	Р		Default: VSS_4
VDD_4	39	Р		Default: VDD_4
PA4	40	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 Remap:SPI2_NSS, I2S2_WS
PA5	41	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1
PA6	42	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN, TIMER12_CH0 ⁽³⁾ Remap: TIMER0_BRKIN
PA7	43	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON, TIMER13_CH0 ⁽³⁾ Remap: TIMER0_CH0_ON
PC4	44	I/O		Default: PC4 Alternate: ADC01_IN14
PC5	45	I/O		Default: PC5 Alternate: ADC01_IN15
PB0	46	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON Remap: TIMER0_CH1_ON
PB1	47	I/O		Default: PB1 Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON Remap: TIMER0_CH2_ON
PB2	48	I/O	5VT	Default: PB2, BOOT1
PF11	49	I/O	5VT	Default: PF11 Alternate: EXMC_NIOS16
PF12	50	I/O	5VT	Default: PF12 Alternate: EXMC_A6
VSS_6	51	Р		Default: VSS_6
VDD_6	52	Р		Default: VDD_6
PF13	53	I/O	5VT	Default: PF13 Alternate: EXMC_A7
PF14	54	I/O	5VT	Default: PF14

			G	GD32F103Zx LQFP144		
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description		
				Alternate: EXMC_A8		
DE45		1/0	C)/T	Default: PF15		
PF15	55	I/O	5VT	Alternate: EXMC_A9		
PG0	56	I/O	5VT	Default: PG0		
		., 0		Alternate: EXMC_A10		
PG1	57	I/O	5VT	Default: PG1		
				Alternate: EXMC_A11 Default: PE7		
PE7	58	I/O	5VT	Alternate: EXMC_D4		
PE/	36	1/0	301	Remap: TIMER0_ETI		
				Default: PE8		
PE8	59 I/O	I/O	5VT	Alternate: EXMC_D5		
			1/0		Remap: TIMER0_CH0_ON	
				Default: PE9		
PE9	60 I/O	5VT	Alternate: EXMC_D6			
				Remap: TIMER0_CH0		
VSS_7	61	Р		Default: VSS_7		
VDD_7	62	Р		Default: VDD_7		
				Default: PE10		
PE10	63	I/O	5VT	Alternate: EXMC_D7		
				Remap: TIMER0_CH1_ON		
				Default: PE11		
PE11	64	I/O	5VT	Alternate: EXMC_D8		
				Remap: TIMER0_CH1		
PE12	65	1/0	E\	Default: PE12 Alternate: EXMC_D9		
PEIZ	65	I/O	I/O	I/O		Remap: TIMER0_CH2_ON
				Default: PE13		
PE13	66	I/O	5VT	Alternate: EXMC_D10		
				Remap: TIMER0_CH2		
				Default: PE14		
PE14	67	I/O	5VT	Alternate: EXMC_D11		
				Remap: TIMER0_CH3		
				Default: PE15		
PE15	68	I/O	5VT	Alternate: EXMC_D12		
				Remap: TIMER0_BRKIN		
DD40	00		E\	Default: PB10		
PB10	69	I/O	5VT	Alternate: I2C1_SCL, USART2_TX		
				Remap: TIMER1_CH2 Default: PB11		
PB11	70	I/O	5VT	Alternate: I2C1_SDA, USART2_RX		

	GD32F103Zx LQFP144							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
				Remap: TIMER1_CH3				
VSS_1	71	Р		Default: VSS_1				
VDD_1	72	Р		Default: VDD_1				
				Default: PB12				
PB12	73	I/O	5VT	Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS				
PB13	74	I/O	5VT	Default: PB13 Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK				
PB14	75	I/O	5VT	Default: PB14 Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0 ⁽³⁾				
PB15	76	I/O	5VT	Default: PB15 Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1 ⁽³⁾				
PD8	77	I/O	5VT	Default: PD8 Alternate: EXMC_D13 Remap: USART2_TX				
PD9	78	I/O	5VT	Default: PD9 Alternate: EXMC_D14 Remap: USART2_RX				
PD10	79	I/O	5VT	Default: PD10 Alternate: EXMC_D15 Remap: USART2_CK				
PD11	80	I/O	5VT	Default: PD11 Alternate: EXMC_A16/EXMC_CLE Remap: USART2_CTS				
PD12	81	I/O	5VT	Default: PD12 Alternate: EXMC_A17/EXMC_ALE Remap: TIMER3_CH0, USART2_RTS				
PD13	82	I/O	5VT	Default: PD13 Alternate: EXMC_A18 Remap: TIMER3_CH1				
VSS_8	83	Р		Default: VSS_8				
VDD_8	84	Р		Default: VDD_8				
PD14	85	I/O	5VT	Default: PD14 Alternate: EXMC_D0 Remap: TIMER3_CH2				
PD15	86	I/O	5VT	Default: PD15 Alternate: EXMC_D1 Remap: TIMER3_CH3				

	GD32F103Zx LQFP144							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PG2	87	I/O	5VT	Default: PG2 Alternate: EXMC_A12				
PG3	88	I/O	5VT	Default: PG3 Alternate: EXMC_A13				
PG4	89	I/O	5VT	Default: PG4 Alternate: EXMC_A14				
PG5	90	I/O	5VT	Default: PG5 Alternate: EXMC_A15				
PG6	91	I/O	5VT	Default: PG6 Alternate: EXMC_INT1				
PG7	92	I/O	5VT	Default: PG7 Alternate: EXMC_INT2				
PG8	93	I/O	5VT	Default: PG8				
VSS_9	94	Р		Default: VSS_9				
VDD_9	95	Р		Default: VDD_9				
PC6	96	I/O	5VT	Default: PC6 Alternate: I2S1_MCK, TIMER7_CH0, SDIO_D6 Remap: TIMER2_CH0				
PC7	97	I/O	5VT	Default: PC7 Alternate: I2S2_MCK, TIMER7_CH1, SDIO_D7 Remap: TIMER2_CH1				
PC8	98	I/O	5VT	Default: PC8 Alternate: TIMER7_CH2, SDIO_D0 Remap: TIMER2_CH2				
PC9	99	I/O	5VT	Default: PC9 Alternate: TIMER7_CH3, SDIO_D1 Remap: TIMER2_CH3				
PA8	100	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0				
PA9	101	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1				
PA10	102	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2				
PA11	103	I/O	5VT	Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3				
PA12	104	I/O	5VT	Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP				
PA13	105	I/O	5VT	Default: JTMS, SWDIO Remap: PA13				

	GD32F103Zx LQFP144							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
NC	106			-				
VSS_2	107	Р		Default: VSS_2				
VDD_2	108	Р		Default: VDD_2				
PA14	109	I/O	5VT	Default: JTCK, SWCLK Remap: PA14				
PA15	110	I/O	5VT	Default: JTDI Alternate: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS				
PC10	111	I/O	5VT	Default: PC10 Alternate: UART3_TX, SDIO_D2 Remap: USART2_TX, SPI2_SCK, I2S2_CK				
PC11	112	I/O	5VT	Default: PC11 Alternate: UART3_RX, SDIO_D3 Remap: USART2_RX, SPI2_MISO				
PC12	113	I/O	5VT	Default: PC12 Alternate: UART4_TX, SDIO_CK Remap: USART2_CK, SPI2_MOSI, I2S2_SD				
PD0	114	I/O	5VT	Default: PD0 Alternate: EXMC_D2 Remap: CAN0_RX				
PD1	115	I/O	5VT	Default: PD1 Alternate: EXMC_D3 Remap: CAN0_TX				
PD2	116	I/O	5VT	Default: PD2 Alternate: TIMER2_ETI, SDIO_CMD, UART4_RX				
PD3	117	I/O	5VT	Default: PD3 Alternate: EXMC_CLK Remap: USART1_CTS				
PD4	118	I/O	5VT	Default: PD4 Alternate: EXMC_NOE Remap: USART1_RTS				
PD5	119	I/O	5VT	Default: PD5 Alternate: EXMC_NWE Remap: USART1_TX				
VSS_10	120			Default: VSS_10				
VDD_10 PD6	121	I/O	5VT	Default: VDD_10 Default: PD6 Alternate: EXMC_NWAIT Remap: USART1_RX				
PD7	123	I/O	5VT	Default: PD7 Alternate: EXMC_NE0, EXMC_NCE1				

	GD32F103Zx LQFP144							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
				Remap: USART1_CK				
PG9	124	I/O	5VT	Default: PG9 Alternate: EXMC_NE1, EXMC_NCE2				
PG10	125	I/O	5VT	Default: PG10 Alternate: EXMC_NCE3_0, EXMC_NE2				
PG11	126	I/O	5VT	Default: PG11 Alternate: EXMC_NCE3_1				
PG12	127	I/O	5VT	Default: PG12 Alternate: EXMC_NE3				
PG13	128	I/O	5VT	Default: PG13 Alternate: EXMC_A24				
PG14	129	I/O	5VT	Default: PG14 Alternate: EXMC_A25				
VSS_11	130	Р		Default: VSS_11				
VDD_11	131	Р		Default: VDD_11				
PG15	132	I/O	5VT	Default: PG15				
PB3	133	I/O	5VT	Default: JTDO Alternate:SPI2_SCK, I2S2_CK Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK				
PB4	134	I/O	5VT	Default: NJTRST Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO				
PB5	135	I/O		Default: PB5 Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI				
PB6	136	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX				
PB7	137	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, TIMER3_CH1, EXMC_NADV Remap: USART0_RX				
воото	138	I		Default: BOOT0				
PB8	139	I/O	5VT	Default: PB8 Alternate: TIMER3_CH2, SDIO_D4, TIMER9_CH0 ⁽³⁾ Remap: I2C0_SCL, CAN0_RX				
PB9	140	I/O	5VT	Default: PB9 Alternate: TIMER3_CH3, SDIO_D5, TIMER10_CH0 ⁽³⁾ Remap: I2C0_SDA, CAN0_TX				
PE0	141	I/O	5VT	Default: PE0 Alternate: TIMER3_ETI, EXMC_NBL0				

	GD32F103Zx LQFP144							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PE1	142	I/O	5VT	Default: PE1 Alternate: EXMC_NBL1				
VSS_3	143	Р		Default: VSS_3				
VDD_3	144	Р		Default: VDD_3				

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32F103ZF/G/I/K devices.

2.6.2. GD32F103Vx LQFP100 pin definitions

Table 2-6. GD32F103Vx LQFP100 pin definitions

GD32F103VX LQFP100 pin definitions					
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description	
PE2	1	I/O	5VT	Default: PE2 Alternate: TRACECK ⁽⁴⁾ , EXMC_A23	
PE3	2	I/O	5VT	Default: PE3 Alternate: TRACED0 ⁽⁴⁾ , EXMC_A19	
PE4	3	I/O	5VT	Default: PE4 Alternate:TRACED1 ⁽⁴⁾ , EXMC_A20	
PE5	4	I/O	5VT	Default: PE5 Alternate:TRACED2 ⁽⁴⁾ , EXMC_A21 Remap: TIMER8_CH0 ⁽³⁾	
PE6	5	I/O	5VT	Default: PE6 Alternate:TRACED3 ⁽⁴⁾ , EXMC_A22 Remap: TIMER8_CH1 ⁽³⁾	
VBAT	6	Р		Default: VBAT	
PC13- TAMPER- RTC	7	I/O		Default: PC13 Alternate: TAMPER-RTC	
PC14- OSC32IN	8	I/O		Default: PC14 Alternate: OSC32IN	
PC15- OSC32OUT	9	I/O		Default: PC15 Alternate: OSC32OUT	
VSS_5	10	Р		Default: VSS_5	
VDD_5	11	Р		Default: VDD_5	
OSCIN-PD0	12	I		Default: OSCIN Remap: PD0	
OSCOUT- PD1	13	0		Default: OSCOUT Remap: PD1	
NRST	14	I/O		Default: NRST	
PC0	15	I/O		Default: PC0 Alternate: ADC012_IN10 ⁽⁵⁾	
PC1	16	I/O		Default: PC1 Alternate: ADC012_IN11 ⁽⁵⁾	
PC2	17	I/O		Default: PC2 Alternate: ADC012_IN12 ⁽⁵⁾	
PC3	18	I/O		Default: PC3 Alternate: ADC012_IN13 ⁽⁵⁾	
VSSA	19	Р		Default: VSSA	

GD32F103Vx LQFP100				
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VREFN	20	Р		Default: VREFN
VREFP	21	Р		Default: VREFP
VDDA	22	Р		Default: VDDA
PA0-WKUP	23	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0 ⁽⁵⁾ , TIMER1_CH0, TIMER1_ETI, TIMER4_CH0 ⁽⁴⁾ , TIMER7_ETI ⁽⁴⁾
PA1	24	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1 ⁽⁵⁾ , TIMER1_CH1, TIMER4_CH1 ⁽⁴⁾
PA2	25	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2 ⁽⁵⁾ , TIMER1_CH2, TIMER4_CH2 ⁽⁴⁾ , TIMER8_CH0 ⁽³⁾
PA3	26	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3 ⁽⁵⁾ , TIMER1_CH3, TIMER4_CH3 ⁽⁴⁾ , TIMER8_CH1 ⁽³⁾
VSS_4	27	Р		Default: VSS_4
VDD_4	28	Р		Default: VDD_4
PA4	29	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 ⁽⁴⁾ Remap:SPI2_NSS ⁽⁴⁾ , I2S2_WS ⁽⁴⁾
PA5	30	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1(4)
PA6	31	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN ⁽⁴⁾ , TIMER12_CH0 ⁽³⁾ Remap: TIMER0_BRKIN
PA7	32	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON ⁽⁴⁾ , TIMER13_CH0 ⁽³⁾ Remap: TIMER0_CH0_ON
PC4	33	I/O		Default: PC4 Alternate: ADC01_IN14
PC5	34	I/O		Default: PC5 Alternate: ADC01_IN15
PB0	35	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON ⁽⁴⁾ Remap: TIMER0_CH1_ON
PB1	36	I/O		Default: PB1

CD22E402Vy LOEP400					
GD32F103Vx LQFP100					
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description	
				Alternate: ADC01_IN9, TIMER2_CH3,	
				TIMER7_CH2_ON ⁽⁴⁾	
				Remap: TIMER0_CH2_ON	
PB2	37	I/O	5VT	Default: PB2, BOOT1	
				Default: PE7	
PE7	38	I/O	5VT	Alternate: EXMC_D4	
				Remap: TIMER0_ETI	
				Default: PE8	
PE8	39	I/O	5VT	Alternate: EXMC_D5	
				Remap: TIMER0_CH0_ON	
DE0	40	1/0		Default: PE9	
PE9	40	I/O	5VT	Alternate: EXMC_D6	
				Remap: TIMER0_CH0 Default: PE10	
PE10	11	1/0	5VT	Alternate: EXMC_D7	
PE10	41	I/O	501	Remap: TIMER0_CH1_ON	
				Default: PE11	
PE11	42	I/O	5VT	Alternate: EXMC_D8	
'	74	","		Remap: TIMER0_CH1	
				Default: PE12	
PE12	43	I/O	5VT	Alternate: EXMC_D9	
				Remap: TIMER0_CH2_ON	
				Default: PE13	
PE13	44	I/O	5VT	Alternate: EXMC_D10	
				Remap: TIMER0_CH2	
				Default: PE14	
PE14	45	I/O	5VT	Alternate: EXMC_D11	
				Remap: TIMER0_CH3	
				Default: PE15	
PE15	46	I/O	5VT	Alternate: EXMC_D12	
				Remap: TIMER0_BRKIN	
		I/O	5VT	Default: PB10	
PB10	47			Alternate: I2C1_SCL, USART2_TX	
				Remap: TIMER1_CH2	
PB11	48	I/O	5VT	Default: PB11	
				Alternate: I2C1_SDA, USART2_RX	
V/CC 4	40	D		Remap: TIMER1_CH3	
VSS_1	49	Р		Default: VSS_1	
VDD_1	50	Р		Default: VDD_1	
PB12	51	I/O	5VT	Default: PB12	
				Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK,	

GD32F103Vx LQFP100				
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				TIMER0_BRKIN, I2S1_WS ⁽⁴⁾
				Default: PB13
PB13	52	I/O	5VT	Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON,
				I2S1_CK ⁽⁴⁾
				Default: PB14
PB14	53	I/O	5VT	Alternate: SPI1_MISO, USART2_RTS,
				TIMER0_CH1_ON, TIMER11_CH0 ⁽³⁾
				Default: PB15
PB15	54	I/O	5VT	Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD ⁽⁴⁾ ,
				TIMER11_CH1 ⁽³⁾
DD0		1/0	5) /T	Default: PD8
PD8	55	I/O	5VT	Alternate: EXMC_D13
				Remap: USART2_TX Default: PD9
PD9	56	I/O	5VT	Alternate: EXMC_D14
PD9	56	1/0	501	Remap: USART2_RX
				Default: PD10
PD10	57	I/O	5VT	Alternate: EXMC_D15
סוטק	31	",0	3 1	Remap: USART2_CK
				Default: PD11
PD11	58	I/O	5VT	Alternate: EXMC_A16/EXMC_CLE
				Remap: USART2_CTS
				Default: PD12
PD12	59	I/O	5VT	Alternate: EXMC_A17/EXMC_ALE
				Remap: TIMER3_CH0, USART2_RTS
				Default: PD13
PD13	60	I/O	5VT	Alternate: EXMC_A18
				Remap: TIMER3_CH1
				Default: PD14
PD14	61	I/O	5VT	Alternate: EXMC_D0
				Remap: TIMER3_CH2
				Default: PD15
PD15	62	I/O	5VT	Alternate: EXMC_D1
				Remap: TIMER3_CH3
PC6	63	I/O	5VT	Default: PC6
				Alternate: I2S1_MCK ⁽⁴⁾ , TIMER7_CH0 ⁽⁴⁾ , SDIO_D6 ⁽⁴⁾
				Remap: TIMER2_CH0
PC7	64	I/O	5VT	Default: PC7 Alternate: I2S2_MCK ⁽⁴⁾ , TIMER7_CH1 ⁽⁴⁾ , SDIO_D7 ⁽⁴⁾
				Remap: TIMER2_CH1
PC8	65	I/O	5VT	Default: PC8
1 00	00	1/0	2 1	Doladii. 1 00

	GD32F103Vx LQFP100							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
				Alternate: TIMER7_CH2 ⁽⁴⁾ , SDIO_D0 ⁽⁴⁾				
				Remap: TIMER2_CH2				
PC9	66	I/O	5VT	Default: PC9 Alternate: TIMER7_CH3 ⁽⁴⁾ , SDIO_D1 ⁽⁴⁾ Remap: TIMER2_CH3				
PA8	67	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0				
PA9	68	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1				
PA10	69	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2				
PA11	70	I/O	5VT	Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3				
PA12	71	I/O	5VT	Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP				
PA13	72	I/O	5VT	Default: JTMS, SWDIO Remap: PA13				
NC	73			-				
VSS_2	74	Р		Default: VSS_2				
VDD_2	75	Р		Default: VDD_2				
PA14	76	I/O	5VT	Default: JTCK, SWCLK Remap: PA14				
PA15	77	I/O	5VT	Default: JTDI Alternate: SPI2_NSS ⁽⁴⁾ , I2S2_WS ⁽⁴⁾ Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS				
PC10	78	I/O	5VT	Default: PC10 Alternate: UART3_TX ⁽⁴⁾ , SDIO_D2 ⁽⁴⁾ Remap: USART2_TX, SPI2_SCK ⁽⁴⁾ , I2S2_CK ⁽⁴⁾				
PC11	79	I/O	5VT	Default: PC11 Alternate: UART3_RX ⁽⁴⁾ , SDIO_D3 ⁽⁴⁾ Remap: USART2_RX, SPI2_MISO ⁽⁴⁾				
PC12	80	I/O	5VT	Default: PC12 Alternate: UART4_TX ⁽⁴⁾ , SDIO_CK ⁽⁴⁾ Remap: USART2_CK, SPI2_MOSI ⁽⁴⁾ , I2S2_SD ⁽⁴⁾				
PD0	81	I/O	5VT	Default: PD0 Alternate: EXMC_D2 Remap: CAN0_RX				
PD1	82	I/O	5VT	Default: PD1 Alternate: EXMC_D3				

	GD32F103Vx LQFP100							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
				Remap: CAN0_TX				
PD2	83	I/O	5VT	Default: PD2 Alternate: TIMER2_ETI, SDIO_CMD ⁽⁴⁾ , UART4_RX ⁽⁴⁾				
				Default: PD3				
PD3	84	I/O	5VT	Alternate: EXMC_CLK				
				Remap: USART1_CTS				
				Default: PD4				
PD4	85	I/O	5VT	Alternate: EXMC_NOE				
				Remap: USART1_RTS				
				Default: PD5				
PD5	86	I/O	5VT	Alternate: EXMC_NWE				
				Remap: USART1_TX				
				Default: PD6				
PD6	87	I/O	5VT	Alternate: EXMC_NWAIT				
				Remap: USART1_RX				
				Default: PD7				
PD7	88	I/O	5VT	Alternate: EXMC_NE0, EXMC_NCE1				
				Remap: USART1_CK				
				Default: JTDO				
PB3	89	I/O	5VT	Alternate:SPI2_SCK ⁽⁴⁾ , I2S2_CK ⁽⁴⁾				
				Remap: PB3, TRACESWO ⁽⁴⁾ , TIMER1_CH1, SPI0_SCK				
		.,,		Default: NJTRST				
PB4	90	I/O	5VT	Alternate: SPI2_MISO ⁽⁴⁾				
				Remap: TIMER2_CH0, PB4, SPI0_MISO				
555		.,,		Default: PB5				
PB5	91	I/O		Alternate: I2C0_SMBA, SPI2_MOSI ⁽⁴⁾ , I2S2_SD ⁽⁴⁾				
				Remap: TIMER2_CH1, SPI0_MOSI				
DDC	00	1/0	5\ /T	Default: PB6				
PB6	92	I/O	5VT	Alternate: I2C0_SCL, TIMER3_CH0				
				Remap: USARTO_TX				
DDZ	02	1/0	5\ /T	Default: PB7				
PB7	93	I/O	5VT	Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV				
POOTO	0.4	,		Remap: USARTO_RX				
BOOT0	94	I		Default: BD070				
DDO	O.F	1/0	E\ /T	Default: PB8 Alternate: TIMER3_CH2, SDIO_D4 ⁽⁴⁾ , TIMER9_CH0 ⁽³⁾				
PB8	95	I/O	5VT					
				Remap: I2C0_SCL, CAN0_RX Default: PB9				
DDO	96	I/O	5VT	Alternate: TIMER3_CH3, SDIO_D5 ⁽⁴⁾ , TIMER10_CH0 ⁽³⁾				
PB9	90	1/0	371	Remap: I2C0_SDA, CAN0_TX				
DEC	07	1/0	<i>C</i>) / T	-				
PE0	97	I/O	5VT	Default: PE0				

	GD32F103Vx LQFP100							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
				Alternate: TIMER3_ETI, EXMC_NBL0				
PE1	98	I/O	5VT	Default: PE1 Alternate: EXMC_NBL1				
VSS_3	99	Р		Default: VSS_3				
VDD_3	100	Р		Default: VDD_3				

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32F103VF/G/I/K devices.
- (4) Functions are available in GD32F103VC/D/E/F/G/I/K devices.
- (5) ADC2 functions are available in GD32F103VC/D/E/F/G/I/K devices.

2.6.3. GD32F103Rx LQFP64 pin definitions

Table 2-7. GD32F103Rx LQFP64 pin definitions

			(GD32F103Rx LQFP64
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VBAT	1	Р		Default: VBAT
PC13- TAMPER- RTC	2	I/O		Default: PC13 Alternate: TAMPER-RTC
PC14- OSC32IN	3	I/O		Default: PC14 Alternate: OSC32IN
PC15- OSC32OUT	4	I/O		Default: PC15 Alternate: OSC32OUT
OSCIN	5	I		Default: OSCIN
OSCOUT	6	0		Default: OSCOUT
NRST	7	I/O		Default: NRST
PC0	8	I/O		Default: PC0 Alternate: ADC012_IN10 ⁽⁵⁾
PC1	9	I/O		Default: PC1 Alternate: ADC012_IN11 ⁽⁵⁾
PC2	10	I/O		Default: PC2 Alternate: ADC012_IN12 ⁽⁵⁾
PC3	11	I/O		Default: PC3 Alternate: ADC012_IN13 ⁽⁵⁾
VSSA	12	Р		Default: VSSA
VDDA	13	Р		Default: VDDA
PA0-WKUP	14	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0 ⁽⁵⁾ , TIMER1_CH0, TIMER1_ETI, TIMER4_CH0 ⁽⁴⁾ , TIMER7_ETI ⁽⁴⁾
PA1	15	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1 ⁽⁵⁾ , TIMER1_CH1, TIMER4_CH1 ⁽⁴⁾
PA2	16	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2 ⁽⁵⁾ , TIMER1_CH2, TIMER4_CH2 ⁽⁴⁾ , TIMER8_CH0 ⁽³⁾
PA3	17	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3 ⁽⁵⁾ , TIMER1_CH3, TIMER4_CH3 ⁽⁴⁾ , TIMER8_CH1 ⁽³⁾
VSS_4	18	Р		Default: VSS_4
VDD_4	19	Р		Default: VDD_4

	GD32F103Rx LQFP64							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PA4	20	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 ⁽⁴⁾ Remap:SPI2_NSS ⁽⁴⁾ , I2S2_WS ⁽⁴⁾				
PA5	21	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 ⁽⁴⁾				
PA6	22	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN ⁽⁴⁾ , TIMER12_CH0 ⁽³⁾ Remap: TIMER0_BRKIN				
PA7	23	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON ⁽⁴⁾ , TIMER13_CH0 ⁽³⁾ Remap: TIMER0_CH0_ON				
PC4	24	I/O		Default: PC4 Alternate: ADC01_IN14				
PC5	25	I/O		Default: PC5 Alternate: ADC01_IN15				
PB0	26	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON ⁽⁴⁾ Remap: TIMER0_CH1_ON				
PB1	27	I/O		Default: PB1 Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON ⁽⁴⁾ Remap: TIMER0_CH2_ON				
PB2	28	I/O	5VT	Default: PB2, BOOT1				
PB10	29	I/O	5VT	Default: PB10 Alternate: I2C1_SCL ⁽⁶⁾ , USART2_TX ⁽⁶⁾ Remap: TIMER1_CH2				
PB11	30	I/O	5VT	Default: PB11 Alternate: I2C1_SDA ⁽⁶⁾ , USART2_RX ⁽⁶⁾ Remap: TIMER1_CH3				
VSS_1	31	Р		Default: VSS_1				
VDD_1	32	Р		Default: VDD_1				
PB12	33	I/O	5VT	Default: PB12 Alternate: SPI1_NSS ⁽⁶⁾ , I2C1_SMBA ⁽⁶⁾ , USART2_CK ⁽⁶⁾ , TIMER0_BRKIN, I2S1_WS ⁽⁴⁾				
PB13	34	I/O	5VT	Default: PB13 Alternate: SPI1_SCK ⁽⁶⁾ , USART2_CTS ⁽⁶⁾ , TIMER0_CH0_ON, I2S1_CK ⁽⁴⁾				
PB14	35	I/O	5VT	Default: PB14 Alternate: SPI1_MISO ⁽⁶⁾ , USART2_RTS ⁽⁶⁾ ,				

GD32F103Rx LQFP64							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
				TIMER0_CH1_ON, TIMER11_CH0 ⁽³⁾			
PB15	36	I/O	5VT	Default: PB15 Alternate: SPI1_MOSI ⁽⁶⁾ , TIMER0_CH2_ON, I2S1_SD ⁽⁴⁾ , TIMER11_CH1 ⁽³⁾			
PC6	37	I/O	5VT	Default: PC6 Alternate: I2S1_MCK ⁽⁴⁾ , TIMER7_CH0 ⁽⁴⁾ , SDIO_D6 ⁽⁴⁾ Remap: TIMER2_CH0			
PC7	38	I/O	5VT	Default: PC7 Alternate: I2S2_MCK ⁽⁴⁾ , TIMER7_CH1 ⁽⁴⁾ , SDIO_D7 ⁽⁴⁾ Remap: TIMER2_CH1			
PC8	39	I/O	5VT	Default: PC8 Alternate: TIMER7_CH2 ⁽⁴⁾ , SDIO_D0 ⁽⁴⁾ Remap: TIMER2_CH2			
PC9	40	I/O	5VT	Default: PC9 Alternate: TIMER7_CH3 ⁽⁴⁾ , SDIO_D1 ⁽⁴⁾ Remap: TIMER2_CH3			
PA8	41	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0			
PA9	42	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1			
PA10	43	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2			
PA11	44	I/O	5VT	Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3			
PA12	45	I/O	5VT	Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP			
PA13	46	I/O	5VT	Default: JTMS, SWDIO Remap: PA13			
VSS_2	47	Р		Default: VSS_2			
VDD_2	48	Р		Default: VDD_2			
PA14	49	I/O	5VT	Default: JTCK, SWCLK Remap: PA14			
PA15	50	I/O	5VT	Default: JTDI Alternate: SPI2_NSS ⁽⁴⁾ , I2S2_WS ⁽⁴⁾ Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS			
PC10	51	I/O	5VT	Default: PC10 Alternate: UART3_TX ⁽⁴⁾ , SDIO_D2 ⁽⁴⁾ Remap: USART2_TX ⁽⁶⁾ , SPI2_SCK ⁽⁴⁾ , I2S2_CK ⁽⁴⁾			
PC11	52	I/O	5VT	Default: PC11			

	GD32F103Rx LQFP64						
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
				Alternate: UART3_RX ⁽⁴⁾ , SDIO_D3 ⁽⁴⁾ Remap: USART2_RX ⁽⁶⁾ , SPI2_MISO ⁽⁴⁾			
PC12	53	I/O	5VT	Default: PC12 Alternate: UART4_TX ⁽⁴⁾ , SDIO_CK ⁽⁴⁾ Remap: USART2_CK ⁽⁶⁾ , SPI2_MOSI ⁽⁴⁾ , I2S2_SD ⁽⁴⁾			
PD2	54	I/O	5VT	Default: PD2 Alternate: TIMER2_ETI, SDIO_CMD ⁽⁴⁾ , UART4_RX ⁽⁴⁾			
PB3	55	I/O	5VT	Default: JTDO Alternate:SPI2_SCK ⁽⁴⁾ , I2S2_CK ⁽⁴⁾ Remap: PB3, TRACESWO ⁽⁴⁾ , TIMER1_CH1, SPI0_SCK			
PB4	56	I/O	5VT	Default: NJTRST Alternate: SPI2_MISO ⁽⁴⁾ Remap: TIMER2_CH0, PB4, SPI0_MISO			
PB5	57	I/O		Default: PB5 Alternate: I2C0_SMBA, SPI2_MOSI ⁽⁴⁾ , I2S2_SD ⁽⁴⁾ Remap: TIMER2_CH1, SPI0_MOSI			
PB6	58	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 ⁽⁶⁾ Remap: USART0_TX			
PB7	59	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, TIMER3_CH1 ⁽⁶⁾ Remap: USART0_RX			
воото	60	I		Default: BOOT0			
PB8	61	I/O	5VT	Default: PB8 Alternate: TIMER3_CH2 ⁽⁶⁾ , SDIO_D4 ⁽⁴⁾ , TIMER9_CH0 ⁽³⁾ Remap: I2C0_SCL, CAN0_RX			
PB9	62	I/O	5VT	Default: PB9 Alternate: TIMER3_CH3 ⁽⁶⁾ , SDIO_D5 ⁽⁴⁾ , TIMER10_CH0 ⁽³⁾ Remap: I2C0_SDA, CAN0_TX			
VSS_3	63	Р		Default: VSS_3			
VDD_3	64	Р		Default: VDD_3			

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32F103RF/G/I/K devices.
- (4) Functions are available in GD32F103RC/D/E/F/G/I/K devices.
- (5) ADC2 functions are available in GD32F103RC/D/E/F/G/I/K devices.
- (6) Functions are available in GD32F103R8/B/C/D/E/F/G/I/K devices.

2.6.4. GD32F103Cx LQFP48 pin definitions

Table 2-8. GD32F103Cx LQFP48 pin definitions

				GD32F103Cx LQFP48
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VBAT	1	Р		Default: VBAT
PC13- TAMPER- RTC	2	I/O		Default: PC13 Alternate: TAMPER-RTC
PC14- OSC32IN	3	I/O		Default: PC14 Alternate: OSC32IN
PC15- OSC32OUT	4	I/O		Default: PC15 Alternate: OSC32OUT
OSCIN	5	I		Default: OSCIN
OSCOUT	6	0		Default: OSCOUT
NRST	7	I/O		Default: NRST
VSSA	8	Р		Default: VSSA
VDDA	9	Р		Default: VDDA
PA0-WKUP	10	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0 ⁽³⁾ , TIMER1_CH0, TIMER1_ETI
PA1	11	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1(3), TIMER1_CH1
PA2	12	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2 ⁽³⁾ , TIMER1_CH2
PA3	13	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3 ⁽³⁾ , TIMER1_CH3
PA4	14	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4
PA5	15	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5
PA6	16	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN
PA7	17	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON
PB0	18	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON
PB1	19	I/O		Default: PB1

GD32F103Cx LQFP48							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
				Alternate: ADC01_IN9, TIMER2_CH3			
DDO		1/0	5) (T	Remap: TIMER0_CH2_ON			
PB2	20	I/O	5VT	Default: PB2, BOOT1			
PB10	21	I/O	5VT	Default: PB10 Alternate: I2C1_SCL ⁽⁴⁾ , USART2_TX ⁽⁴⁾ Remap: TIMER1_CH2			
PB11	22	I/O	5VT	Default: PB11 Alternate: I2C1_SDA ⁽⁴⁾ , USART2_RX ⁽⁴⁾ Remap: TIMER1_CH3			
VSS_1	23	Р		Default: VSS_1			
VDD_1	24	Р		Default: VDD_1			
PB12	25	I/O	5VT	Default: PB12 Alternate: SPI1_NSS ⁽⁴⁾ , I2C1_SMBA ⁽⁴⁾ , USART2_CK ⁽⁴⁾ , TIMER0_BRKIN			
PB13	26	I/O	5VT	Default: PB13 Alternate: SPI1_SCK ⁽⁴⁾ , USART2_CTS ⁽⁴⁾ , TIMER0_CH0_ON			
PB14	27	I/O	5VT	Default: PB14 Alternate: SPI1_MISO ⁽⁴⁾ , USART2_RTS ⁽⁴⁾ , TIMER0_CH1_ON			
PB15	28	I/O	5VT	Default: PB15 Alternate: SPI1_MOSI ⁽⁴⁾ , TIMER0_CH2_ON			
PA8	29	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0			
PA9	30	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1			
PA10	31	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2			
PA11	32	I/O	5VT	Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3			
PA12	33	I/O	5VT	Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP			
PA13	34	I/O	5VT	Default: JTMS, SWDIO Remap: PA13			
VSS_2	35	Р		Default: VSS_2			
VDD_2	36	Р		Default: VDD_2			
PA14	37	I/O	5VT	Default: JTCK, SWCLK Remap: PA14			

	GD32F103Cx LQFP48							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PA15	38	I/O	5VT	Default: JTDI Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS				
PB3	39	I/O	5VT	Default: JTDO Remap: PB3, TIMER1_CH1, SPI0_SCK				
PB4	40	I/O	5VT	Default: NJTRST Remap: TIMER2_CH0, PB4, SPI0_MISO				
PB5	41	I/O		Default: PB5 Alternate: I2C0_SMBA Remap: TIMER2_CH1, SPI0_MOSI				
PB6	42	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 ⁽⁴⁾ Remap: USART0_TX				
PB7	43	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, TIMER3_CH1 ⁽⁴⁾ Remap: USART0_RX				
воото	44	I		Default: BOOT0				
PB8	45	I/O	5VT	Default: PB8 Alternate: TIMER3_CH2 ⁽⁴⁾ Remap: I2C0_SCL, CAN0_RX				
PB9	46	I/O	5VT	Default: PB9 Alternate: TIMER3_CH3 ⁽⁴⁾ Remap: I2C0_SDA, CAN0_TX				
VSS_3	47	Р		Default: VSS_3				
VDD_3	48	Р		Default: VDD_3				

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) ADC2 functions are not available in GD32F103C4/6/8/B devices.
- (4) Functions are available in GD32F103C8/B devices.

2.6.5. GD32F103Tx QFN36 pin definitions

Table 2-9. GD32F103Tx QFN36 pin definitions

	GD32F1031X QFN36 pin definitions GD32F1031X QFN36							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
VDD_3	1	Р		Default: VDD_3				
OSCIN	2	I		Default: OSCIN				
OSCOUT	3	0		Default: OSCOUT				
NRST	4	I/O		Default: NRST				
VSSA	5	Р		Default: VSSA				
VDDA	6	Р		Default: VDDA				
PA0-WKUP	7	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0 ⁽³⁾ , TIMER1_CH0, TIMER1_ETI				
PA1	8	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1 ⁽³⁾ , TIMER1_CH1				
PA2	9	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2 ⁽³⁾ , TIMER1_CH2				
PA3	10	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3 ⁽³⁾ , TIMER1_CH3				
PA4	11	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4				
PA5	12	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5				
PA6	13	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN				
PA7	14	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON				
PB0	15	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON				
PB1	16	I/O		Default: PB1 Alternate: ADC01_IN9, TIMER2_CH3 Remap: TIMER0_CH2_ON				
PB2	17	I/O	5VT	Default: PB2, BOOT1				
VSS_1	18	Р		Default: VSS_1				
VDD_1	19	Р		Default: VDD_1				
PA8	20	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0				

	GD32F103Tx QFN36							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PA9	21	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1				
PA10	22	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2				
PA11	23	I/O	5VT	Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3				
PA12	24	I/O	5VT	Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP				
PA13	25	I/O	5VT	Default: JTMS, SWDIO Remap: PA13				
VSS_2	26	Р		Default: VSS_2				
VDD_2	27	Р		Default: VDD_2				
PA14	28	I/O	5VT	Default: JTCK, SWCLK Remap: PA14				
PA15	29	I/O	5VT	Default: JTDI Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS				
PB3	30	I/O	5VT	Default: JTDO Remap: PB3, TIMER1_CH1, SPI0_SCK				
PB4	31	I/O	5VT	Default: NJTRST Remap: TIMER2_CH0, PB4, SPI0_MISO				
PB5	32	I/O		Default: PB5 Alternate: I2C0_SMBA Remap: TIMER2_CH1, SPI0_MOSI				
PB6	33	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 ⁽⁴⁾ Remap: USART0_TX				
PB7	34	I/O	5VT	Default: PB7 Alternate: I2C0_SDA , TIMER3_CH1 ⁽⁴⁾ Remap: USART0_RX				
воото	35	I		Default: BOOT0				
VSS_3	36	Р		Default: VSS_3				

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) ADC2 functions are not available in GD32F103T4/6/8/B devices.
- (4) Functions are available in GD32F103T8/B devices.

3. Functional description

3.1. Arm® Cortex®-M3 core

The Cortex®-M3 processor is the latest generation of Arm® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

- 32-bit Arm® Cortex®-M3 processor core
- Up to 108 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M3:

- Internal Bus Matrix connected with I-Code bus, D-Code bus, System bus, Private Peripheral Bus (PPB) and debug accesses.
- Nested Vectored Interrupt Controller (NVIC).
- Flash Patch and Breakpoint (FPB).
- Data Watchpoint and Trace (DWT).
- Instrumentation Trace Macrocell (ITM).
- Embedded Trace Macrocell (ETM).
- Serial Wire JTAG Debug Port (SWJ-DP).
- Trace Port Interface Unit (TPIU).
- Memory Protection Unit (MPU).

3.2. On-chip memory

- Up to 3072 Kbytes of Flash memory
- The region of the MCU executing instructions without waiting time is up to 256K bytes (in case that Flash size less than or equal to 256K, all memory is no waiting time). A long delay when CPU fetches the instructions out of the range.
- Up to 96 Kbytes of SRAM

The Arm® Cortex®-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner Flash at most, which includes code Flash and data Flash, is available for storing programs and data, and there is no waiting time within code Flash area when CPU executes instructions. The <u>Table 2-4.</u> <u>GD32F103xx memory map</u> shows the memory map of the GD32F103xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3. Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 16 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control unit provides a range of frequencies and clock functions. These include an Internal 8M RC oscillator (IRC8M), a High Speed crystal oscillator (HXTAL), a Low Speed Internal 40K RC oscillator (IRC40K), a Low Speed crystal oscillator (LXTAL), a Phase Lock Loop (PLL), a HXTAL clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The frequency of AHB, APB2 and the APB1 domains can be configured by each prescaler. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/108 MHz/54 MHz. See *Figure 2-8. GD32F103xx clock tree* for details.

GD32F10x Reset Control includes the control of three kinds of reset: power reset, system reset and backup domain reset. The system reset resets the processor core and peripheral IP components except for the SW-DP controller and the Backup domain. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4. Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), if devices are GD32F103xF/G/I/K, USART1 (PA2 and PA3) is also available for boot functions. It also can

be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of Flash memory is selected. It also supports to boot from bank 1 of Flash memory by setting a bit in option bytes.

3.5. Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

Sleep mode

In sleep mode, only clock of Cortex®-M3 is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, USB Wakeup and Ethernet Wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

3.6. Analog to digital converter (ADC)

- 12-bit SAR ADC
- Up to 1 MSPS for 12-bit resolution
- Analog input signal voltage range: V_{SSA} to V_{DDA} (2.6 to 3.6 V)
- Temperature sensor

Up to three 12-bit multi-channel ADCs are integrated in the device. Each has a total of up to 21 multiplexed external channels. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode.

The ADCs can be triggered from the events generated by the general level 0 timers (TIMERx) or the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor generates a voltage that varies linearly with temperature. The analog supply voltage V_{DDA} can vary from 2.6 V to 3.6 V. The output voltage of temperature sensor is internally connected to the ADC_IN16 input channel.

To ensure a high accuracy on ADC and DAC, the ADC/DAC independent external reference voltage should be connected to V_{REF+}/V_{REF-} pins. According to the different packages, V_{REF+}

pin can be connected to V_{DDA} pin, or external reference voltage, V_{REF-} pin must be connected to VSSA pin. The V_{REF+} pin is only available on no less than 100-pin packages. On less than 100-pin packages, the V_{REF+} pin is not available and it is internally connected to V_{DDA} . The V_{REF-} pin is internally connected to V_{SSA} .

3.7. Digital to analog converter (DAC)

- Two 12-bit DACs with independent output channels
- 8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is $V_{\text{REF+}}$.

3.8. DMA

- 7 channel DMA0 controller and 5 channel DMA1 controller
- Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S and SDIO

The direct memory access (DMA) controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.9. General-purpose inputs/outputs (GPIOs)

- Up to 112 fast GPIOs, all mappable on 16 external interrupt lines
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO), named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15 and PG0 ~ PG15 for the device to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the Interrupt/event Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. Each

of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Each GPIO pin can be configured as pull-up, pull-down or no pull-up/pull-down. All GPIOs are high-current capable except for analog mode.

3.10. Timers and PWM generation

- Up to two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers, and two 16-bit basic timer (TIMER5 & TIMER6)
- Up to 4 independent channels of PWM, output compare or input capture for each and external trigger input
- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 6 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge-aligned or center-aligned counting modes)
- Single pulse mode output

If configured as a general 16-bit timer, it can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer, known as TIMER1 ~ TIMER4, TIMER8 ~ TIMER10, TIMER11 ~ TIMER13 can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.

The GD32F103xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer consists of an 8-stage prescaler and a 12-bit down-counter, it is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application

timeout management.

The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.11. Real time clock (RTC)

- 32-bit up-counter with a programmable 20-bit prescaler
- Alarm function
- Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

3.12. Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.13. Serial peripheral interface (SPI)

- Up to three SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

3.14. Universal synchronous asynchronous receiver transmitter (USART)

- Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4.

3.15. Inter-IC sound (I2S)

- Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F103xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

3.16. Secure digital input and output card interface (SDIO)

■ Support SD2.0/SDIO2.0/MMC4.2 host interface

The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1.

3.17. Universal serial bus full-speed device (USBD)

- One full-speed USB Interface with frequency up to 12 Mbit/s
- Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between one or more devices. Full-speed peripheral is compliant with the USB 2.0 specification. The device controller enables 12 Mbit/s data exchange with a USB Host controller. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

3.18. Controller area network (CAN)

- One CAN2.0B interface with communication frequency up to 1 Mbit/s
- Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

3.19. External memory controller (EXMC)

- Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and CF card
- Up to 16-bit data bus
- Support interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and CF card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

3.20. Debug mode

Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.21. Package and operation temperature

- LQFP144 (GD32F103Zx), LQFP100 (GD32F103Vx), LQFP64 (GD32F103Rx), LQFP48 (GD32F103Cx) and QFN36 (GD32F103Tx)
- Operation temperature range: -40°C to +85°C (industrial level)

4. Electrical characteristics

4.1. Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly beyond the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings (1)(4)

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range ⁽²⁾	V _{SS} - 0.3	V _{SS} + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V _{BAT}	External battery supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
Vin	Input voltage on 5V tolerant pin ⁽³⁾	V _{SS} - 0.3	$V_{DD} + 3.6$	V
VIN	Input voltage on other I/O	Vss - 0.3	3.6	V
$ \Delta V_{DDX} $	Variations between different VDD power pins	ı	50	mV
V _{SSX} -V _{SS}	-Vss Variations between different ground pins		50	mV
lio	Maximum current for GPIO pins	ı	±25	mA
TA	Operating temperature range	-40	+85	°C
	Power dissipation at T _A = 85°C of LQFP144	ı	820	
	Power dissipation at T _A = 85°C of LQFP100	_	697	
P _D	Power dissipation at T _A = 85°C of LQFP64	_	647	mW
	Power dissipation at T _A = 85°C of LQFP48	_	621	
	Power dissipation at T _A = 85°C of QFN36	_	926	
T _{STG}	Storage temperature range	-65	+150	°C
ΤJ	Maximum junction temperature	_	125	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.2. Operating conditions characteristics

Table 4-2. DC operating conditions

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DD}	Supply voltage	_	2.6	3.3	3.6	٧
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.6	3.3	3.6	V
V _{BAT}	Battery supply voltage	_	1.8(2)	_	3.6	V

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ V_{IN} maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that V_{DD} and V_{DDA} are powered by the same source. The maximum difference between V_{DD} and V_{DDA} does not exceed 300 mV during power-up and operation.

⁽²⁾ In the application which V_{BAT} supply the backup domains, if the V_{BAT} voltage drops below the minimum value,

when V_{DD} is powered on again, it is necessary to refresh the registers of backup domains and enable LXTAL again.

Figure 4-1. Recommended power supply decoupling capacitors(1)(2)

- (1) The VREFP and VREFN pins are only available on no less than 100-pin packages, or else the VREFP and VREFN pins are not available and internally connected to VDDA and VSSA pins. More details refer to AN076 GD32F10x Hardware Development Guide.
- (2) All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	AHB clock frequency	_	_	108	MHz
f _{APB1}	APB1 clock frequency	_	_	54	MHz
f _{APB2}	APB2 clock frequency	_	_	108	MHz

(1) Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down (1)

Symbol	Parameter	Conditions	Min	Max	Unit
	V _{DD} rise time rate		0	8	us/V
t∨DD	V _{DD} fall time rate	_	20	8	μ5/ V

(1) Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions (For GD32F103x4/6/8/B devices)(1)(2)(3)

Symbol	Parameter	Conditions	Тур	Unit
t _{start-up}	Start up time	Clock source from HXTAL	60	m 0
	Start-up time	Clock source from IRC8M	60	ms

- (1) Based on characterization, not tested in production.
- (2) After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
- (3) PLL is off.

Table 4-6. Start-up timings of Operating conditions (For GD32F103xC/D/E/F/G/I/K devices)(1)(2)(3)

Symbol	Parameter	Conditions	Тур	Unit
	Start-up time	Clock source from HXTAL	132	mo
Lstart-up	Start-up time	Clock source from IRC8M	132	ms

- (1) Based on characterization, not tested in production.
- (2) After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
- (3) PLL is off.

Table 4-7. Power saving mode wakeup timings characteristics (for GD32F103x4/6/8/B devices)⁽¹⁾⁽²⁾

Symbol	Parameter		Unit
t _{Sleep}	Wakeup from Sleep mode	4.5	
+	Wakeup from Deep-sleep mode(LDO On)	6.5	μs
I Deep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	6.5	
t _{Standby}	Wakeup from Standby mode	60	ms

- (1) Based on characterization, not tested in production.
- (2) The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8 MHz.

Table 4-8. Power saving mode wakeup timings characteristics (for GD32F103xC/D/E/F/G/I/K devices)⁽¹⁾⁽²⁾

Symbol	nbol Parameter		Unit
t _{Sleep}	Wakeup from Sleep mode	4.5	
4_	Wakeup from Deep-sleep mode (LDO On)	6	μs
I Deep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	6	
tStandby	Wakeup from Standby mode	119	ms

- (1) Based on characterization, not tested in production.
- The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8 MHz.

4.3. Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-9. Power consumption characteristics (for GD32F103x4/6/8/B devices)(2)(3)(4)(5)(6)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
IDD+IDDA	Supply current	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 108 MHz, All peripherals enabled	ı	45.6	ı	mA
IDDTIDDA	(Run mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 108 MHz, All peripherals disabled	_	33.4	_	mA

_							
	Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 96 MHz, All peripherals enabled	_	40.7	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 96 MHz, All peripherals disabled	_	29.9		mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals enabled	_	31	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals disabled	_	22.9	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled	_	21.3	_	mA
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 48 MHz, All peripherals disabled	_	15.8	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals enabled	_	16.4	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals disabled	_	12.3	_	mA
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 24 MHz, All peripherals enabled	_	11.5	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals disabled	_	8.7	_	mA
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 16 MHz, All peripherals enabled	_	8.3	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals disabled	_	6.4	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals enabled	_	5.1	_	mA
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 8 MHz, All peripherals disabled	_	4.1	_	mA

		ODJZI	100/		itao	100
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz,}$				
		System Clock = 108 MHz, CPU clock off,	_	19.6	_	mΑ
		All peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 108 MHz, CPU clock off,	_	6.2	_	mA
		All peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 96 MHz, CPU clock off, All	_	17.6	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 96 MHz, CPU clock off, All	_	5.6	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 72 MHz, CPU clock off, All	_	13.7	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 72 MHz, CPU clock off, All	_	4.7	_	mΑ
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 48 MHz, CPU clock off, All	_	9.7	_	mA
	Supply current	peripherals enabled				
	(Sleep mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 48 MHz, CPU clock off, All	_	3.7	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 36 MHz, CPU clock off, All	_	7.7	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 36 MHz, CPU clock off, All	_	3.2	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
		System Clock = 24 MHz, CPU clock off, All	_	5.7	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 24 MHz, CPU clock off, All	_	2.7	_	mΑ
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 16 MHz, CPU clock off, All	_	4.4	_	mΑ
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 8 \text{ MHz},$				
		System Clock = 16 MHz, CPU clock off, All	_	2.4	_	mA
		peripherals disabled				

		ODUZI	1007	<u> </u>	icao	1100
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System Clock = 8 MHz, CPU clock off, All peripherals enabled	_	3.1	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System Clock = 8 MHz, CPU clock off, All peripherals disabled	_	2.1	_	mA
	Supply current	$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in normal power mode, IRC40K off, RTC off, All GPIOs analog mode	_	259	ı	μΑ
	(Deep-Sleep mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in low power mode, IRC40K off, RTC off, All GPIOs analog mode	_	247		μA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K on,}$ RTC on	_	7.8		μΑ
	Supply current (Standby mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K on,}$ RTC off	_	7.3	_	μΑ
		$V_{\text{DD}} = V_{\text{DDA}} = 3.3 \text{ V, LXTAL off, IRC40K off,}$ RTC off	_	6.1	l	μΑ
		V _{DD} off, V _{DDA} off, V _{BAT} = 3.6 V, LXTAL on with external crystal, RTC on	_	17.00		μΑ
love	Battery supply	V _{DD} off, V _{DDA} off, V _{BAT} = 3.3 V, LXTAL on with external crystal, RTC on	_	12.65	_	μΑ
IBAT current (Backup mode)	V _{DD} off, V _{DDA} off, V _{BAT} = 2.6 V, LXTAL on with external crystal, RTC on	_	5.95	_	μΑ	
		V _{DD} off, V _{DDA} off, V _{BAT} = 1.8 V, LXTAL on with external crystal, RTC on	_	2.02	_	μΑ

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all values given for $T_A = 25$ °C and test result is mean value.
- (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.
- (4) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.
- (5) When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.
- (6) All GPIOs are configured as analog mode except standby mode.

Table 4-10. Power consumption characteristics (for GD32F103xC/D/E/F/G/I/K devices)(2)(3)(4)(5)(6)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals enabled	_	59.4	—	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals disabled	_	37.5	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System clock = 96 MHz, All peripherals enabled	_	53.1	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals disabled	_	33.7	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System clock = 72 MHz, All peripherals enabled	/, HXTAL = 25 MHz, MHz, All peripherals — 40.3	40.3	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals disabled		25.7		mA
I _{DD} +I _{DDA}	Supply current (Run mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals enabled	_	27.5	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 2 \text{ MHz},$ System clock = 48 MHz, All peripherals disabled	_	17.9	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals enabled	_	21.1	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System clock = 36 MHz, All peripherals disabled		13.9	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals enabled	_	14.8	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals disabled	_	10	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System clock = 16 MHz, All peripherals enabled	_	10.6	_	mA

-			5 – 5 – 1				
	Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
			$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System clock = 16 MHz, All peripherals disabled	_	7.4	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals enabled	_	6.5	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals disabled	_	4.9	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals enabled	_	33.3	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals disabled	_	8.1	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals enabled	_	29.8	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals disabled	_	7.4	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals enabled	_	22.9	_	mA
		Supply current (Sleep mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals disabled	_	6.1	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals enabled	-	16		mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals disabled	_	4.7	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals enabled	_	12.6	_	mA	
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals disabled	_	4.1	_	mA
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals enabled	_	9.1	_	mA

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$ System Clock = 24 MHz, CPU clock off, All peripherals disabled	_	3.4		mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals enabled	_	6.8	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals disabled	_	3	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals enabled	_	4.4		mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals disabled	_	2.3		mA
	Supply current	$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in normal power mode, IRC40K off, RTC off, All GPIOs analog mode	_	585		μΑ
	(Deep-Sleep mode)	V _{DD} = V _{DDA} = 3.3 V, LDO in low power mode, IRC40K off, RTC off, All GPIOs analog mode	_	573	_	μA
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K on, RTC on	_	7.8	ı	μΑ
	Supply current (Standby mode)	$V_{\text{DD}} = V_{\text{DDA}} = 3.3 \text{ V, LXTAL off, IRC40K on,}$ RTC off	_	7.4		μΑ
		$V_{\text{DD}} = V_{\text{DDA}} = 3.3 \text{ V, LXTAL off, IRC40K off,}$ RTC off	_	6.2	l	μΑ
		V _{DD} off, V _{DDA} off, V _{BAT} = 3.6 V, LXTAL on with external crystal, RTC on	_	16.6		μΑ
la	Battery supply	V_{DD} off, V_{DDA} off, $V_{BAT} = 3.3$ V, LXTAL on with external crystal, RTC on	_	12.6	_	μΑ
I _{BAT}	current (Backup mode)	V _{DD} off, V _{DDA} off, V _{BAT} = 2.6 V, LXTAL on with external crystal, RTC on	_	5.9	_	μΑ
		V_{DD} off, V_{DDA} off, $V_{BAT} = 1.8$ V, LXTAL on with external crystal, RTC on	_	2	_	μA

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all values given for T_A = 25 $^{\circ}C$ and test result is mean value.
- (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLI
- (4) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.
- (5) When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.

(6) All GPIOs are configured as analog mode except standby mode.

Figure 4-2. Typical supply current consumption in Run mode (For GD32F103x4/6/8/B devices)

Figure 4-3. Typical supply current consumption in Run mode (For GD32F103xC/D/E/F/G/I/K devices)

Figure 4-4. Typical supply current consumption in Sleep mode (For GD32F103x4/6/8/B

Figure 4-5. Typical supply current consumption in Sleep mode (For GD32F103xC/D/E/F/G/I/K devices)

4.4. EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the <u>Table 4-11. EMS characteristics</u> (1), based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 4-11. EMS characteristics (1)

Symbol	Parameter	Conditions	Level/Class
V _{ESD}	Voltage applied to all device pins to	V _{DD} = 3.3 V, T _A = + 25 °C	3B

Symbol	Parameter	Conditions	Level/Class
	induce a functional disturbance	LQFP144, f _{HCLK} = 108 MHz	
		conforms to IEC 61000-4-2	
	Fast transient voltage burst applied to	V _{DD} = 3.3 V, T _A = +25 °C	
V _{FTB}	induce a functional disturbance through	LQFP144, f _{HCLK} = 108 MHz	4A
	100 pF on VDD and VSS pins	conforms to IEC 61000-4-4	

⁽¹⁾ Based on characterization, not tested in production.

4.5. Power supply supervisor characteristics

Table 4-12. Power supply supervisor characteristics (For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
 - -		LVDT<2:0> = 100(rising edge)		2.55		
		LVDT<2:0> = 100(falling edge)	_	2.48	_	
		LVDT<2:0> = 101(rising edge)	_	2.66	_	
	LVDT<2:0> = 101(falling edge)	_	2.58	_	V	
VLVD('')	Detector level selection	LVDT<2:0> = 110(rising edge)	_	2.75	_	V
		LVDT<2:0> = 110(falling edge)	_	2.69	_	
		LVDT<2:0> = 111(rising edge)	_	2.86	_	
		LVDT<2:0> = 111(falling edge)	_	2.78	_	
V _{LVDhyst} ⁽²⁾	LVD hystersis	_	_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	2.40	_	V
V _{PDR} ⁽¹⁾	Power down reset threshold	_	_	2.35		V
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	50	_	mV
trsttempo(2)	Reset temporization			2	_	ms

⁽¹⁾ Based on characterization, not tested in production.

Table 4-13. Power supply supervisor characteristics (For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _{LVD} ⁽¹⁾ Low voltage Detector level selection	LVDT<2:0> = 000(rising edge)	_	2.19		
V (1)		LVDT<2:0> = 000(falling edge)	_	2.08	_	V
VLVD(')		LVDT<2:0> = 001(rising edge)	_	2.29	_	V
		LVDT<2:0> = 001(falling edge)	_	2.19	_	

⁽²⁾ Guaranteed by design, not tested in production.

		ODUZ	i Tookk Datas		11001	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT<2:0> = 010(rising edge)	_	2.39	_	
		LVDT<2:0> = 010(falling edge)	_	2.29	_	
		LVDT<2:0> = 011(rising edge)	_	2.5	_	
		LVDT<2:0> = 011(falling edge)	_	2.39	_	
		LVDT<2:0> = 100(rising edge)	_	2.6	_	
		LVDT<2:0> = 100(falling edge)	ı	2.48	_	
		LVDT<2:0> = 101(rising edge)	_	2.68	_	
		LVDT<2:0> = 101(falling edge)	ı	2.58	_	
		LVDT<2:0> = 110(rising edge)		2.79	_	
		LVDT<2:0> = 110(falling edge)		2.68	_	
		LVDT<2:0> = 111(rising edge)	I	2.89	_	
		LVDT<2:0> = 111(falling edge)	I	2.78	_	
V _{LVDhyst} ⁽²⁾	LVD hystersis	_	ı	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	2.40	_	٧
V _{PDR} ⁽¹⁾	Power down reset threshold	_	_	1.85		V
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	550	_	mV
trsttempo ⁽²⁾	Reset temporization			2	_	ms

⁽¹⁾ Based on characterization, not tested in production.

4.6. Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-14. ESD characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Electrostatic discharge	$T_A = 25 ^{\circ}C;$			3000	V
VESD(HBM)	voltage (human body model)	JS-001-2014	_			V
V	Electrostatic discharge	T _A = 25 °C;			500	\/
VESD(CDM)	voltage (charge device model)	JS-002-2014				V

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Table 4-15. Static latch-up characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	I-test	T 25 °C: IESD70	_	_	±100	mA
LU	V _{supply} over voltage	T _A = 25 °C; JESD78	_	_	5.4	٧

⁽¹⁾ Based on characterization, not tested in production.

4.7. External clock characteristics

Table 4-16. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics(For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} (1)	Crystal or ceramic frequency	$2.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	4	8	16	MHz
R _F ⁽²⁾	Feedback resistor	$V_{DD} = 3.3 \text{ V}$	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT				30 70 —	
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	50	70	%
g _m (2)	Oscillator transconductance	Startup	_	35	_	mA/V
I _{DDHXTAL} (1)	Crystal or ceramic operating	$V_{DD} = 3.3 V$,		1.3		A
IDDHXTAL***	current	T _A = 25 °C		1.3		mA
tsuhxtal ⁽¹⁾	Crystal or ceramic startup time	$V_{DD} = 3.3 V$,		3.9		m0
ISUHXIAL	Crystal of Ceraillic Startup time	T _A = 25 °C		3.9		ms

⁽¹⁾ Based on characterization, not tested in production.

Table 4-17. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics(For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency	$2.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	4	8	16	MHz
R _F ⁽²⁾	Feedback resistor	$V_{DD} = 3.3 \text{ V}$	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT				30 70 —	
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	50	70	%
g _m (2)	Oscillator transconductance	Startup	_	35	_	mA/V
I(1)	Crystal or ceramic operating	V _{DD} = 3.3 V,		1.6		A
IDDHXTAL ⁽¹⁾	current	T _A = 25 °C	_	1.6	1.6 —	mA
+ (1)	Crustal ar agramia startus tima	$V_{DD} = 3.3 V$,		0.60		
tsuhxtal ⁽¹⁾	Crystal or ceramic startup time	T _A = 25 °C		0.68	3 —	ms

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) $C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} C_S)$, For C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

Table 4-18. High speed external clock characteristics (HXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f (1)	External clock source or	2.6 V ≤ V _{DD} ≤ 3.6 V	1		50	MHz
f _{HXTAL_ext} (1)	oscillator frequency	2.0 V \(\text{VDD} \(\text{S} \) 0.0 V	ı	_	30	IVIITZ
V _{HXTALH} ⁽²⁾	OSCIN input pin high level		0.7 V _{DD}		V _{DD}	V
V HX TALH (= /	voltage	V _{DD} = 3.3 V	0.7 VDD		V DD	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level	V DD - 3.3 V	Vss		0.3 V _{DD}	V
V HX TALLY	voltage		VSS		0.3 000	V
t _{H/L(HXTAL)} (2)	OSCIN high or low time	_	5	_	_	ns
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time	_		_	10	ns
C _{IN} ⁽²⁾	OSCIN input capacitance	_	_	5	_	pF
Ducy _(HXTAL) (2)	Duty cycle	_	40	_	60	%

⁽¹⁾ Based on characterization, not tested in production.

Table 4-19. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics(For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} ⁽¹⁾	Crystal or ceramic frequency	V _{DD} = 3.3 V		32.768	_	kHz
C _{LXTAL} ^{(2) (3)}	Recommended matching capacitance on OSC32IN and OSC32OUT		_	10	_	pF
Ducy _(LXTAL) (2)	Crystal or ceramic duty cycle		30	_	70	%
g _m (2)	Oscillator transconductance	_		23	_	μA/V
IDDLXTAL	Crystal or ceramic operating current	_		12	_	μΑ
t _{SULXTAL} ⁽¹⁾ (4)	Crystal or ceramic startup time	_	_	0.28	_	S

⁽¹⁾ Based on characterization, not tested in production.

Table 4-20. Low speed external clock (LXTAL) generated from a crystal/ceramic

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

⁽⁴⁾ tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

characteristics(For GD32F103xC/D/E/F/G/I/K devices)

	•	•				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} (1)	Crystal or ceramic	V _{DD} = 3.3 V		32.768		kHz
	frequency Recommended matching					
C _{LXTAL} ^{(2) (3)}	capacitance on OSC32IN	_	_	10	_	pF
	and OSC32OUT					
Ducy _(LXTAL) ⁽²⁾	Crystal or ceramic duty	_	30	_	70	%
Daoy(EXTAL)	cycle					70
g _m (2)	Oscillator transconductance			23	-	μA/V
Innuvaru	Crystal or ceramic operating			11.6		μA
IDDLXTAL	current			11.0		μΑ
tsulxtal ^{(1) (4)}	Crystal or ceramic startup		_	0.39	_	s
ISULXTAL(17(4)	time		_	0.55		5

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.
- (4) tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

Table 4-21. Low speed external user clock characteristics (LXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
£ (1)	External clock source or oscillator			32.768	1000	kHz
f _{LXTAL_ext} ⁽¹⁾	frequency	frequency $V_{DD} = 3.3 \text{ V}$		32.700	1000	KHZ
V _{LXTALH} (2)	OSC32IN input pin high level		0.7 V _{DD}		V _{DD}	
VLXTALH(=)	voltage	_	U.7 VDD		VDD	V
V (2)	OSC32IN input pin low level		Vss		0.3 V _{DD}	V
V _{LXTALL} ⁽²⁾	voltage	voltage			U.S VDD	
t _{H/L(LXTAL)} (2)	OSC32IN high or low time		450			
t _{R/F(LXTAL)} (2)	OSC32IN rise or fall time		_		50	ns
C _{IN} ⁽²⁾	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(LXTAL) (2)	Duty cycle	_	30	50	70	%

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

4.8. Internal clock characteristics

Table 4-22. High speed internal clock (IRC8M) characteristics (For GD32F103x4/6/8/B

devices)

devices)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal					
f _{IRC8M}	Oscillator (IRC8M)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	8	_	MHz
	frequency					
ACC _{IRC8M}	IDCOMill-t	$V_{DD} = V_{DDA} = 3.3 \text{ V},$	2.5		. 2 5	0/
	IRC8M oscillator Frequency	T _A = -40 °C ~ +85 °C	-2.5	_	+2.5	%
	accuracy, Factory-trimmed	V _{DD} = V _{DDA} = 3.3 V, T _A = 25 °C	-1.0	_	+1.0	%
ACCIRC8M	IRC8M oscillator Frequency					
	accuracy, User trimming	_	_	0.5	_	%
	step ⁽¹⁾					
Ducy _{IRC8M} ⁽²⁾	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
I···(1)	IRC8M oscillator operating	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		87		
IDDAIRC8M ⁽¹⁾	current	T _A = 25 °C	_	07		μΑ
tsuirc8m ⁽¹⁾	IRC8M oscillator startup	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		2.5		
	time	T _A = 25 °C	_	2.5		μs

⁽¹⁾ Based on characterization, not tested in production.

Table 4-23. High speed internal clock (IRC8M) characteristics (For GD32F103 xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal					
f _{IRC8M}	Oscillator (IRC8M)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	8	_	MHz
	frequency					
	IDC9M appillator Fraguency	$V_{DD} = V_{DDA} = 3.3 \text{ V},$	-2.5		+2.5	%
accuracy, Factory-tri	IRC8M oscillator Frequency	$T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}^{(1)}$	-2.5		+2.5	70
	accuracy, r actory-trimined	$V_{DD} = V_{DDA} = 3.3 \text{ V, T}_{A} = 25 ^{\circ}\text{C}$	-1.0	_	+1.0	%
ACC _{IRC8M}	IRC8M oscillator Frequency					
	accuracy, User trimming	_	_	0.5	_	%
	step ⁽¹⁾					
Ducy _{IRC8M} ⁽²⁾	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
I(1)	IRC8M oscillator operating	$V_{DD} = V_{DDA} = 3.3 V$,		60		
IDDAIRC8M ⁽¹⁾	current	T _A = 25 °C	_	62	_	μΑ
tsuirc8m ⁽¹⁾	IRC8M oscillator startup $V_{DD} = V_{DDA} = 3.3 \text{ V},$	0.64				
ISUIRC8M\'''	time	T _A = 25 °C	_	0.04	_	μs

⁽¹⁾ Based on characterization, not tested in production.

Table 4-24. Low speed internal clock (IRC40K) characteristics (For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
£ (1)	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 V$		40		kHz
firc40k ⁽¹⁾	(IRC40K) frequency	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	40		KHZ

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDAIRC40K} ⁽²⁾	IRC40K oscillator operating	$V_{DD} = V_{DDA} = 3.3 V$,		1.3	_	
	current	T _A = 25 °C	_			μΑ
tsuirc40K ⁽²⁾	IRC40K oscillator startup	$V_{DD} = V_{DDA} = 3.3 V$		113		
	time	T _A = 25 °C	_	113	_	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-25. Low speed internal clock (IRC40K) characteristics(For GD32F103 xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC40K} ⁽¹⁾	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 V$		40		kHz
IIRC40K**/	(IRC40K) frequency	$T_A = -40^{\circ}C \sim +85^{\circ}C$		40	_	KHZ
I (2)	IRC40K oscillator operating	$V_{DD} = V_{DDA} = 3.3 V$,		1.0	_	
IDDAIRC40K ⁽²⁾	current	T _A = 25 °C	_	1.2		μA
t _{SUIRC40K} (2)	IRC40K oscillator startup	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		124		
	time	T _A = 25 °C	_	124		μs

⁽¹⁾ Guaranteed by design, not tested in production.

4.9. PLL characteristics

Table 4-26. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} ⁽¹⁾	PLL input clock frequency	_	1	_	25	MHz
f _{PLLOUT} ⁽²⁾	PLL output clock frequency	_	16	_	108	MHz
f (2)	PLL VCO output clock		20		246	N 41 1-
f _{VCO} ⁽²⁾	frequency	_	32	_	216	MHz
t _{LOCK} (2)	PLL lock time	_	_	_	300	μs

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

4.10. Memory characteristics

Table 4-27. Flash memory characteristics (For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽²⁾	Unit
PEcyc	Number of guaranteed program /erase cycles before failure (Endurance)	T _A = -40 °C ~ +85 °C	100		_	kcycle s
t _{RET}	Data retention time		_	20		years
tprog	Word programming time	T _A = -40°C ~ +85 °C	_	37.5	105	μs
t _{ERASE}	Page erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	50	400	ms
t _{MERASE(16K)}	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	0.3	3	s
t _{MERASE(32K)}	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	0.6	6	s
t _{MERASE(64K)}	Mass erase time	T _A = -40°C ~ +85 °C	_	1.2	12	s
t _{MERASE(128K)}	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$		2.4	24	s

⁽¹⁾ Based on characterization, not tested in production.

Table 4-28. Flash memory characteristics (For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽²⁾	Unit
	Number of guaranteed					
DE	program /erase cycles	T _A = -40 °C ~ +85 °C	100			kcycle
PEcyc	before failure	1A40 C ~ +65 C	100	_	_	s
	(Endurance)					
t _{RET}	Data retention time		_	20	_	years
tprog	Word programming time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	37.5	105/170 ⁽³⁾	μs
t _{ERASE}	Page erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	50	400/500 (4)	ms
tmerase(256K)	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	2.4	24	s
tmerase(512K)	Mass erase time	$T_A = -40^{\circ}C \sim +85^{\circ}C$	_	8	64	s
t _{MERASE(1024K)}	Mass erase time	T _A = -40°C ~ +85 °C	_	16	128	s
t _{MERASE(3072K)}	Mass erase time	T _A = -40°C ~ +85 °C	_	64	512	S

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Flash memory with 256K is 105 us and flash memory >256K is 170 us.

⁽⁴⁾ Flash memory with 256K is 400 ms and flash memory >256K is 500 ms.

4.11. NRST pin characteristics

Table 4-29. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.3	_	0.3 V _{DD}	.,
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$V_{DD} = V_{DDA} = 2.6 \text{ V}$	$0.7 V_{DD}$	_	$V_{DD} + 0.3$	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis		_	350		mV
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.3	_	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	$0.7 V_{DD}$	_	$V_{DD} + 0.3$	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis		_	360		mV
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.3		0.3 V _{DD}	.,
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.6 \text{ V}$	$0.7 V_{DD}$	_	$V_{DD} + 0.3$	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis		_	370		mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40		kΩ

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-6. Recommended external NRST pin circuit⁽¹⁾

(1) Unless the voltage on NRST pin go below V_{IL(NRST)} level, the device would not generate a reliable reset.

4.12. **GPIO** characteristics

Table 4-30. I/O port DC characteristics(For GD32F103x4/6/8/B devices)(1) (3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Standard IO Low level input	26 V < Vpp = Vpp4 < 36 V			0.3 V _{DD}	٧
VIL	voltage	2.0 V = VDD - VDDA = 5.0 V			0.5 V	V
VIL	5V-tolerant IO Low level	2.6 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V			0.3 V _{DD}	V
	input voltage	2.0 V = VDD - VDDA = 3.0 V	_		0.3 VDD	V
	Standard IO Low level input	$2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	0.7.\/			V
VIH	voltage	2.0 V = VDD - VDDA = 3.0 V	0.7 VDD		_	V
	5V-tolerant IO Low level	$2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	0.7 V _{DD}			V

⁽²⁾ Guaranteed by design, not tested in production.

	_			GD3ZF	IUSXX	Datas	SIIC
Symbol	Parar	meter	Conditions	Min	Тур	Max	Uni
	input v	oltage					
D (2)	Internal pull-	All pins	V _{IN} = V _{SS}	_	40		1.0
R _{PU} ⁽²⁾	up resistor	PA10	_	_	10		kΩ
D (2)	Internal pull-	All pins	$V_{IN} = V_{DD}$	_	40	_	1.0
$R_{PD}^{(2)}$	down resistor	PA10	_	_	10		kΩ
			IO_Speed=50MHz				
	Low level ou	utput voltage	V _{DD} = 2.6V	_	0.12	_	
	for an	IO Pin	V _{DD} = 3.3 V	_	0.1	_	
	(I _{IO} = +	+4 mA)	V _{DD} = 3.6V	_	0.1	_	
V_{OL}	I ow level or	utput voltage	V _{DD} = 2.6V	_	0.38	_	V
		IO Pin	V _{DD} = 3.3 V		0.32		
		12 mA)					-
	,		V _{DD} = 3.6V		0.3		
		utput voltage	V _{DD} = 2.6V	_	2.32		
		IO Pin	V _{DD} = 3.3 V		3.06	_	-
	· · · · · · · · · · · · · · · · · · ·	+8 mA)	V _{DD} = 3.6V		3.37	_	-
		utput voltage					
Vон		IO Pin	$V_{DD} = 2.6V$		2.03		V
	(I _{IO} = +15 mA)						
		utput voltage	$V_{DD} = 3.3 \text{ V}$	_	2.76	_	
		IO Pin	V _{DD} = 3.6V		3.09		
	(I _{IO} = +	18 mA)			3.09		
			IO_Speed=10MHz				1
	1	out voltage for	V _{DD} = 2.6V	_	0.29	_	
) Pin	V _{DD} = 3.3 V		0.26	_	
	(I _{IO} = +	+4 mA)	V _{DD} = 3.6V	_	0.25	_	
	Low level outp	out voltage for	V _{DD} = 2.6V	_	0.65	_	
V_{OL}	an IC) Pin	V _{DD} = 3.3 V	_	0.51	_	V
	(I _{IO} = +	+8 mA)			0.0.		
	Low level outp	out voltage for					
	an IC) Pin	$V_{DD} = 3.6V$	_	0.62	_	
	(I _{IO} = +	-10 mA)					
	High level or	utput voltage	V _{DD} = 2.6V	_	1.94	_	
	for an	IO Pin	$V_{DD} = 3.3 \text{ V}$	_	2.78	_	
	(I _{IO} = +8 mA)		V _{DD} = 3.6V	_	3.11	_	
	High level or	utput voltage					
V_{OH}	for an	IO Pin	$V_{DD} = 2.6V$	-	1.71	_	V
	(I _{IO} = +	+10mA)					
	12.1.1.1	itnut voltage	V _{DD} = 3.3 V	_	2.18		
	High level or	aipai voitage					
		IO Pin	V _{DD} = 3.6V		2.85		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Low level output voltage for	V _{DD} = 2.6V	_	0.59		
VoL	an IO Pin	V _{DD} = 3.3 V	_	0.54	_	V
	$(I_{10} = +4 \text{ mA})$	V _{DD} = 3.6V	_	0.51	_	
	High level output voltage					
	for an IO Pin	$V_{DD} = 2.6V$	_	2.14	_	
Vон	(I _{IO} = +2mA)					V
VOH	High level output voltage	$V_{DD} = 3.3 \text{ V}$		2.53		V
	for an IO Pin	V _{DD} = 3.6V		2.89		
	(I _{IO} = +4mA)	∙ טט – 3.0 ע		2.09		

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current (typical source capability:3 mA shared between these IOs, but sink capability is same as other IO), the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode (maximum load: 30 pF).

Table 4-31. I/O port DC characteristics(For GD32F103xC/D/E/F/G/I/K devices)(1)(3)

	31. I/O port DC characteristics(For GD32F103xC/D/E/F/G/I/K devices)(*/**						
Symbol	Parameter		Conditions	Min	Тур	Max	Unit
	Standard IO L	•	$2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$			0.3 V _{DD}	V
V _{IL}	voltage						
1.2	5V-tolerant I	O Low level	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq 3.6 \text{ V}$	_		0.3 V _{DD}	V
	input v	oltage	2.0 V = VDD - VDDA = 0.0 V			0.0 400	V
	Standard IO L	ow level input	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq 3.6 \text{ V}$	0.7.1/22			V
\/	volta	age	2.0 V \(\text{VDD} - \text{VDDA} \(\text{S} \) V	U.7 VDD		_	V
V _{IH}	5V-tolerant I	O Low level	26747 -77 4267	0.7.1/			V
	input v	oltage	$2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	U.7 VDD		_	V
R _{PU} ⁽²⁾	Internal pull-	All pins	V _{IN} = V _{SS}	_	40	_	kΩ
KPU ⁽⁻⁾	up resistor	PA10	_	_	10	_	K12
D (2)	Internal pull-	All pins	$V_{IN} = V_{DD}$	_	40	_	1.0
R _{PD} ⁽²⁾	down resistor	PA10	_		10	_	kΩ
			IO_Speed=50MHz				
	Low level outp	out voltage for	V _{DD} = 2.6V		0.27	_	
	an IC) Pin	V _{DD} = 3.3 V	_	0.23	_	
	(I _{IO} = +	·8 mA)	V _{DD} = 3.6V	_	0.22	_	
	Low level outp	out voltage for					
Vol	an IC) Pin	V _{DD} = 2.6V	_	0.43	_	V
	(I _{IO} = +	+12mA)					
	Low level outp	out voltage for	V _{DD} = 3.3 V	_	0.66	_	
	an IO Pin						
	(I _{IO} = +20 mA)		V _{DD} = 3.6V	_	0.61	_	
	High level output voltage		V _{DD} = 2.6V	_	2.3	_	
\/	for an	IO Pin	V _{DD} = 3.3 V	_	3.05	_	V
Vон	(I _{IO} = +	·8 mA)	V _{DD} = 3.6V	_	3.36	_	V
	High level ou	utput voltage	V _{DD} = 2.6V	_	2.21	_	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	for an IO Pin					
	$(I_{IO} = +10 \text{ mA})$					
	High level output voltage	V _{DD} = 3.3 V	_	2.59	_	
	for an IO Pin					
	(I _{IO} = +20 mA)	V _{DD} = 3.6V	_	2.95	_	
		IO_Speed=10MHz				
	Low level output voltage for	$V_{DD} = 2.6V$	-	0.43	_	
	an IO Pin	$V_{DD} = 3.3 \text{ V}$	I	0.36	_	
Vol	$(I_{10} = +8 \text{ mA})$	$V_{DD} = 3.6V$	_	0.34	_	V
VOL	Low level output voltage for	V _{DD} = 2.6V		_	_	V
	an IO Pin	$V_{DD} = 3.3 \text{ V}$	_	0.78	_	
	$(I_{IO} = +15 \text{ mA})$	V _{DD} = 3.6V	_	0.72	_	
	High level output voltage	V _{DD} = 2.6V	_	2.06	_	
	for an IO Pin	$V_{DD} = 3.3 \text{ V}$	_	2.87	_	
V	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 3.6V	_	3.2	_	V
Vон	High level output voltage	V _{DD} = 2.6V	_	_	_	V
	for an IO Pin	V _{DD} = 3.3 V	_	2.39	_	
	$(I_{IO} = +15mA)$	V _{DD} = 3.6V	_	2.77	_	
		IO_Speed=2MHz				
	Low level output voltage for	V _{DD} = 2.6V	_	0.44	_	
Vol	an IO Pin	V _{DD} = 3.3 V	_	0.36	_	V
	(I _{IO} = +4 mA)	V _{DD} = 3.6V	_	0.34	_	
	High level output voltage	V _{DD} = 2.6V	_	2.22	_	
Vон	for an IO Pin	V _{DD} = 3.3 V	_	2.99	_	V
	(I _{IO} = +4mA)	V _{DD} = 3.6V	_	3.31	_	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-32. I/O port AC characteristics(For GD32F103x4/6/8/B devices) (1)(2)(4)

GPIOx_MDy[1:0] bit value ⁽³⁾	Parameter	Conditions	Тур	Unit
ODIO OTI ND 14 01 40		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	48.6	
GPIOx_CTL->MDy[1:0]=10 (IO Speed = 2MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	59.4	ns
(10_Speed = 21/11 12)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	68.4	
CDIOv. CTL > MDv[1:0] = 01		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	16	
GPIOx_CTL->MDy[1:0] = 01 (IO Speed = 10MHz)	T_{Rise}/T_{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	19.4	ns
(10_Speed = Tolvil 12)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	25.2	
CDIOx CTL >MDv[1:0]_11		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	2.6	
GPIOx_CTL->MDy[1:0]=11 (IO_Speed = 50MHz)	T_{Rise}/T_{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	3.2	ns
(10_opeed = 3000112)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	4.2	

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current (typical source capability:3 mA shared between these IOs, but sink capability is same as other IO), the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for T_A = 25 °C.
- (3) The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits.
- (4) Only for reference, Depending on user's design.

Table 4-33. I/O port AC characteristics(For GD32F103xC/D/E/F/G/I/K devices) (1)(2)(4)

GPIOx_MDy[1:0] bit value ⁽³⁾	Parameter	Conditions	Тур	Unit											
CDIOV CTL - MDv[4:0] 40		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	49.2												
GPIOx_CTL->MDy[1:0]=10 (IO Speed = 2MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	60	ns											
(10_opeeu = 2ivii i2)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	70.4												
GPIOx CTL->MDv[1:0] = 01		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	23.4												
(IO_Speed = 10MHz)	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	T_{Rise}/T_{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	27	ns
(10_Speed = 10Wi112)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	32												
CDIOV CTL > MDv[1:0]=11		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	3.3												
GPIOx_CTL->MDy[1:0]=11 (IO Speed = 50MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	3.5	ns											
(10_Speed = 30lvii iz)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	3.6												

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for T_A = 25 °C.
- (3) The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits.
- (4) Only for reference, Depending on user's design.

4.13. ADC characteristics

Table 4-34. ADC characteristics(For GD32F103x4/6/8/B devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.6	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	16 external; 2 internal	0	_	V _{REFP}	V
V _{REFP} (2)	Positive Reference Voltage	_	2.6	_	V _{DDA}	V
V _{REFN} ⁽²⁾	Negative Reference Voltage	_		V _{SSA}	_	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.6	_	14	MHz
fs ⁽¹⁾	Sampling rate	12-bit	0.04	_	1	MSP S
Rain ⁽²⁾	External input impedance	See Equation 1	_	_	54.8	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_	_	_	0.2	kΩ
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included	_	_	32	pF
t _s (2)	Sampling time	$f_{ADC} = 14 \text{ MHz}$	0.11	_	17.11	μs
t _{CONV} (2)	Total conversion time(including sampling time)	12-bit	_	14	_	1/ f _{ADC}
t _{SU} (2)	Startup time			_	1	μS

⁽¹⁾ Based on characterization, not tested in production.

(2) Guaranteed by design, not tested in production.

Table 4-35. ADC characteristics(For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.6	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V _{REFP}	V
V _{REFP} (2)	Positive Reference Voltage	_	2.6	_	V _{DDA}	٧
V _{REFN} ⁽²⁾	Negative Reference Voltage	_	_	Vssa	_	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.6	_	14	MHz
f _S ⁽¹⁾	Sampling rate	12-bit	0.04	_	1	MSP S
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	219.8	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_	_	_	0.5	kΩ
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included	_		8	pF
t _{CAL} ⁽²⁾	Calibration time	$f_{ADC} = 14 \text{ MHz}$		7.28	_	μs
t _s (2)	Sampling time	$f_{ADC} = 14 \text{ MHz}$	0.11	_	17.11	μs
t _{CONV} ⁽²⁾	Total conversion time(including sampling time)	12-bit	_	14	_	1/ f _{ADC}
t _{SU} (2)	Startup time	-	_	_	1	μS

⁽¹⁾ Based on characterization, not tested in production.

Equation 1: Rain max formula
$$R_{AIN} < \frac{T_s}{f_{ADC}*C_{ADC}*ln(2^{N+2})} - R_{ADC}$$

The formula above ($\underline{Equation\ 1}$) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-36. ADC $R_{AIN max}$ for $f_{ADC} = 14$ MHz (For GD32F103x4/6/8/B devices)

T _s (cycles)	t _s (µs)	R _{AIN max} (kΩ)
1.5	0.11	0.1
7.5	0.54	1.5
13.5	0.96	2.9
28.5	2.04	6.3
41.5	2.96	9.3
55.5	3.96	12.5
71.5	5.11	16.2
239.5	17.11	54.8

Table 4-37. ADC $R_{AIN max}$ for $f_{ADC} = 14$ MHz (For GD32F103xC/D/E/F/G/I/K devices)

T _s (cycles)	t _s (μs)	R _{AIN max} (kΩ)
1.5	0.11	0.8

⁽²⁾ Guaranteed by design, not tested in production.

T _s (cycles)	t _s (µs)	R _{AIN max} (kΩ)
7.5	0.54	6.4
13.5	0.96	11.9
28.5	2.04	25.7
41.5	2.96	37.6
55.5	3.96	50.5
71.5	5.11	65.2
239.5	17.11	219.8

4.14. Temperature sensor characteristics

Table 4-38. Temperature sensor characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit
T∟	VSENSE linearity with temperature		±1.5		°C
Avg_Slope	Average slope	_	4.1	_	mV/°C
V ₂₅	Voltage at 25 °C	_	1.45	_	V
ts_temp (2)	ADC sampling time when reading the temperature	_	17.1	_	μs

⁽¹⁾ Based on characterization, not tested in production.

4.15. DAC characteristics

Table 4-39. DAC characteristics(For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{DDA}^{(1)}$	Operating voltage	_	2.6	3.3	3.6	V
V _{REFP} (2)	Positive Reference Voltage	_	2.6	_	V_{DDA}	V
V _{REFN} (2)	Negative Reference			V _{SSA}		V
V REFN' /	Voltage			VSSA		V
RLOAD ⁽²⁾	Load resistance	Resistive load with	5			kΩ
KLOAD 7	Load resistance	buffer ON	5		_	K12
Ro ⁽²⁾	Impedance output with				15	kΩ
100.7	buffer OFF				10	K22
C _{LOAD} (2)	Load capacitance	No pin/pad capacitance	-	_	50	pF
OLOAD	Load capacitance	included			50	Рι
DAC_OUT	Lower DAC_OUT voltage		0.2			V
min ⁽²⁾	with buffer ON		0.2			٧
DAC_OUT	Higher DAC_OUT voltage				V_{DDA} -	V
max ⁽²⁾	with buffer ON			_	0.2	V
DAC_OUT	Lower DAC_OUT voltage			0.5		mV
min ⁽²⁾	with buffer OFF	_		0.5		IIIV

⁽²⁾ Shortest sampling time can be determined in the application by multiple iterations.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	_	_	_	V _{DDA} -	V
I _{DDA} ⁽¹⁾	DAC current consumption	With no load, middle code(0x800) on the input, V _{REFP} = 3.6 V	_	550		μА
IDDA\ /	in quiescent mode	With no load, worst code(0xF1C) on the input, V _{REFP} = 3.6 V	_	600		μΑ
IDDVREFP ⁽¹⁾	DAC current consumption	With no load, middle code(0x800) on the input, V _{REFP} = 3.6 V	_	86		μΑ
IDDVREFP	in quiescent mode	With no load, worst code(0xF1C) on the input, V_{REFP} = 3.6 V	_	298		μΑ
T _{setting} ⁽¹⁾	Settling time	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	_	0.3	1	μs
T _{wakeup} (2)	Wakeup from off state	_	_	5	10	μs
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change from code i to i±1LSBs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	_	_	4	MS/s
PSRR ⁽²⁾	Power supply rejection ratio (to V _{DDA})	_	55	80	_	dB

⁽¹⁾ Based on characterization, not tested in production.

4.16. I2C characteristics

Table 4-40. I2C characteristics(1)(2)

Cumbal	Davameter	Conditions	Standar	rd mode	Fast mode		Unit
Symbol	Parameter		Min	Max	Min	Max	Unit
t _{SCL(H)}	SCL clock high time	_	4.0	_	0.6		μs
t _{SCL(L)}	SCL clock low time	_	4.7	_	1.3	_	μs
t _{SU(SDA)}	SDA setup time	_	250	_	100	_	ns
t _{H(SDA)}	SDA data hold time	_	0(3)	3450	0	900	ns
t _{R(SDA/SCL)}	SDA and SCL rise time	_	_	1000	_	300	ns
t _{F(SDA/SCL)}	SDA and SCL fall time	_	_	300	_	300	ns
t _{H(STA)}	Start condition hold time	_	4.0	_	0.6	_	μs
t _{SU(STA)}	Repeated Start condition setup time	_	4.7	_	0.6		μs
tsu(sto)	Stop condition setup time	_	4.0	_	0.6	_	μs

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Standar	d mode	Fast	mode	Unit	I
Зуппоп	Parameter	Conditions	Min	Max	Min	Max	Offic	l
tbuff	Stop to Start condition time (bus free)	_	4.7	_	1.3	_	μs	

- (1) Guaranteed by design, not tested in production.
- (2) To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz. To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz.
- (3) The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-7. I2C bus timing diagram

4.17. SPI characteristics

Table 4-41. Standard SPI characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	_	_	١	27	MHz
tsck(H)	SCK clock high time	Master mode, f _{PCLKx} = 108 MHz, presc = 4	35.13	37.13	39.13	ns
t _{SCK(L)}	SCK clock low time	Master mode, $f_{PCLKx} = 108 \text{ MHz}$, presc = 4	35.13	37.13	39.13	ns
	SPI master mode					
t _{V(MO)}	Data output valid time	_	_	_	8	ns
t _{SU(MI)}	Data input setup time	_	1			ns
t _{H(MI)}	Data input hold time	_	0	_		ns
		SPI slave mode				
t _{SU(NSS)}	NSS enable setup time	_	0	١	ı	ns
t _{H(NSS)}	NSS enable hold time	_	1	_		ns
t _{A(SO)}	Data output access time	_	_	9		ns
t _{DIS(SO)}	Data output disable time	_	_	11	_	ns
t _{V(SO)}	Data output valid time	_	_	11	_	ns
tsu(si)	Data input setup time	_	0	_	_	ns

Ī	t _{H(SI)}	Data input hold time	_	1	_	_	ns	ĺ

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-8. SPI timing diagram - master mode

Figure 4-9. SPI timing diagram - slave mode

4.18. I2S characteristics

Table 4-42. I2S characteristics (For GD32F103xC/D/E/F/G/I/K devices) (1) (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode (data: 32 bits,		6.25		
f _{CK}	Clock frequency	Audio frequency = 96 kHz)	_	0.23		MHz
		Slave mode	0	_	12.5	
t _H	Clock high time		_	80	_	ns
t∟	Clock low time	_	_	80	_	ns
t _{V(WS)}	WS valid time	Master mode	_	3	_	ns
t _{H(WS)}	WS hold time	Master mode	_	3	_	ns
t _{SU(WS)}	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)}	WS hold time	Slave mode	2	_	_	ns
Duni	I2S slave input clock duty	Clave made				0/
Ducy _(SCK)	cycle	Slave mode	 	50	_	%
tsu(sd_mr)	Data input setup time	Master mode	1	_	_	ns
tsu(sd_sr)	Data input setup time	Slave mode	0	_	_	ns
th(SD_MR)	D () () () ()	Master receiver	0	_	_	ns
t _{H(SD_SR)}	Data input hold time	Slave receiver	1	_	_	ns
	Data autout valid tiera	Slave transmitter			_	
tv(sd_st)	Data output valid time	(after enable edge)	_		5	ns
	Data autout hald time	Slave transmitter	C			
th(SD_ST)	Data output hold time	(after enable edge)	6	_	_	ns
4	Data output valid tire s	Master transmitter			E	20
tv(sd_mt)	Data output valid time	(after enable edge)	_		5	ns
t Data autout l	Data output hold time	Master transmitter	0			no
t _{H(SD_MT)}	Data output hold time	(after enable edge)	0		_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

Figure 4-10. I2S timing diagram - master mode

Figure 4-11. I2S timing diagram - slave mode

4.19. USART characteristics

Table 4-43. USART characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	f _{PCLKx} = 108 MHz	_	_	13.5	MHz
t _{SCK(H)}	SCK clock high time	f _{PCLKx} = 108 MHz	37.0	_	_	ns
t _{SCK(L)}	SCK clock low time	f _{PCLKx} = 108 MHz	37.0	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

4.20. SDIO characteristics

Table 4-44. SDIO characteristics (For GD32F103xC/D/E/F/G/I/K devices)(1)(2)

rable 4 441 objective (1 of object 1 toko/b/2/17 offit devices)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP} ⁽³⁾	Clock frequency in data transfer mode	_	0	_	48	MHz	
tw(CKL) (3)	Clock low time	f _{pp} = 48 MHz	10.5	11	_	ns	
t _{W(CKH)} (3)	Clock high time	$f_{pp} = 48 \text{ MHz}$	9.5	10	_	ns	
	CMD, D inputs (referenced to CK) in MMC and SD HS mode						
t _{ISU} (4)	Input setup time HS	$f_{pp} = 48 \text{ MHz}$	4	_	_	ns	
t _{IH} (4)	Input hold time HS	$f_{pp} = 48 \text{ MHz}$	3	_	_	ns	
	CMD, D outputs (referenced to 0	CK) in MMC and S	D HS mo	ode			
t _{OV} ⁽³⁾	Output valid time HS	f _{pp} = 48 MHz	_	_	13.8	ns	
t _{OH} ⁽³⁾	Output hold time HS	f _{pp} = 48 MHz	12	_	_	ns	
	CMD, D inputs (referenced t	o CK) in SD defau	ılt mode				
tisup ⁽⁴⁾	Input setup time SD	f _{pp} = 24 MHz	3	_	_	ns	
t _{IHD} (4)	Input hold time SD	f _{pp} = 24 MHz	3	_	_	ns	
	CMD, D outputs (referenced to CK) in SD default mode						
tovo(3)	Output valid default time SD	f _{pp} = 24 MHz	_	2.4	2.8	ns	
tohd(3)	Output hold default time SD	f _{pp} = 24 MHz	0.8	_	_	ns	

⁽¹⁾ CLK timing is measured at 50% of V_{DD} .

4.21. CAN characteristics

Refer to <u>Table 4-30. I/O port DC characteristics</u> for more details on the input/output alternate function characteristics (CANTX and CANRX).

⁽²⁾ Capacitive load C_L = 30 pF.

⁽³⁾ Based on characterization, not tested in production.

⁽⁴⁾ Guaranteed by design, not tested in production.

4.22. USBD characteristics

Table 4-45. USBD start up time (For GD32F103x4/6/8/B devices)

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	USBD startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-46. USBD start up time (For GD32F103xC/D/E/F/G/I/K devices)

Symbol	Parameter	Max	Unit
tstartup ⁽¹⁾	USBD startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-47. USBD DC electrical characteristics (For GD32F103x4/6/8/B devices)

Symbo	ol	Parameter	Conditions	Min	Тур	Max	Unit
	V_{DD}	USBD operating voltage		3	_	3.6	٧
Input	V_{DI}	Differential input sensitivity	I(USBDP, USBDM)	0.2	_		
levels ⁽¹⁾	V_{CM}	Differential common mode range	Includes V _{DI} range	0.8	_	2.5	V
	V _{SE}	Single ended receiver threshold		0.8	_	2.0	
Output	V_{OL}	Static output level low	R_L of 1.5 $k\Omega$ to 3.6 V	_	0.064	0.3	V
levels ⁽²⁾	Vон	Static output level high	$R_L of 15 k\Omega$ to V_{SS}	2.8	3.3	3.6	V

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-48. USBD DC electrical characteristics (For GD32F103xC/D/E/F/G/I/K devices)

Symbo	ol	Parameter	Conditions	Min	Тур	Max	Unit
	V_{DD}	USBD operating voltage		3	_	3.6	V
Input	V_{DI}	Differential input sensitivity	I(USBDP, USBDM)	0.2	_		
levels ⁽¹⁾	V _{CM}	Differential common mode range	Includes V _{DI} range	8.0	_	2.5	V
	VsE	Single ended receiver threshold	_	8.0	_	2.0	
Output	V_{OL}	Static output level low	R_L of 1.5 $k\Omega$ to 3.6 V	_	0.064	0.3	V
levels ⁽²⁾	Vон	Static output level high	$R_L of 15 k\Omega$ to V_{SS}	2.8	3.3	3.6	V

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-49. USBD full speed-electrical characteristics (For GD32F103x4/6/8/B devices)

(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Rise time	CL = 50 pF	4	_	20	ns
t _F	Fall time	CL = 50 pF	4	_	20	ns
trfm	Rise / fall time matching	t _R / t _F	90	_	110	%
VCRS	Output signal crossover voltage	_	1.3	_	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-50. USBD full speed-electrical characteristics (For GD32F103xC/D/E/F/G/I/K

⁽²⁾ Based on characterization, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

devices)(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Rise time	CL = 50 pF	4	_	20	ns
t _F	Fall time	CL = 50 pF	4	_	20	ns
trem	Rise / fall time matching	t _R / t _F	90	_	110	%
VCRS	Output signal crossover voltage	_	1.3	_	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 4-12. USBD timings: definition of data signal rise and fall time

4.23. EXMC characteristics

Table 4-51. Synchronous multiplexed PSRAM/NOR read timings(1)(2)(3)

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	EXMC_CLK period	36.8	_	ns
t _{d(CLKL-NExL)}	EXMC_CLK low to EXMC_NEx low	0	_	ns
t _{d(CLKH-NExH)}	EXMC_CLK high to EXMC_NEx high	18.4	1	ns
t _{d(CLKL-NADVL)}	EXMC_CLK low to EXMC_NADV low	0	1	ns
t _{d(CLKL-NADVH)}	OVH) EXMC_CLK low to EXMC_NADV high 0		1	ns
t _{d(CLKL-AV)}	EXMC_CLK low to EXMC_Ax valid	0	1	ns
t _{d(CLKH-AIV)}	EXMC_CLK high to EXMC_Ax invalid	18.4	1	ns
t _{d(CLKL-NOEL)}	EXMC_CLK low to EXMC_NOE low	0	1	ns
t _{d(CLKH-NOEH)}	EXMC_CLK high to EXMC_NOE high	18.4	1	ns
td(CLKL-ADV)	EXMC_CLK low to EXMC_AD valid 0 —			ns
t _{d(CLKL-ADIV)}	EXMC_CLK low to EXMC_AD invalid	0	_	ns

⁽¹⁾ $C_L = 30 pF$.

Table 4-52. Synchronous multiplexed PSRAM write timings(1)(2)(3)

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	EXMC_CLK period 36.8 —		ı	ns
t _{d(CLKL-NExL)}	EXMC_CLK low to EXMC_NEx low	0	_	ns
t _{d(CLKH-NExH)}	EXMC_CLK high to EXMC_NEx high	18.4	_	ns
td(CLKL-NADVL)	EXMC_CLK low to EXMC_NADV low	0	_	ns

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Based on configure: f_{HCLK} = 108 MHz, BurstAccessMode = Enable; Memory Type = PSRAM; WriteBurst = Enable; CLKDivision = 3(EXMC_CLK is 4 divided by HCLK); Data Latency = 1.

Symbol	Parameter	Min	Max	Unit
t _{d(CLKL-NADVH)}	EXMC_CLK low to EXMC_NADV high	0	_	ns
t _{d(CLKL-AV)}	EXMC_CLK low to EXMC_Ax valid	0	_	ns
t _{d(CLKH-AIV)}	EXMC_CLK high to EXMC_Ax invalid	18.4	_	ns
t _{d(CLKL-NWEL)}	EXMC_CLK low to EXMC_NWE low	0	_	ns
t _{d(CLKH-NWEH)}	EXMC_CLK high to EXMC_NWE high	18.4	_	ns
t _{d(CLKL-ADIV)}	EXMC_CLK low to EXMC_AD invalid	0	_	ns
t _{d(CLKL-DATA)}	EXMC_A/D valid data after EXMC_CLK low	0	_	ns
t _{h(CLKL-NBLH)}	EXMC_CLK low to EXMC_NBL high	0		ns

⁽¹⁾ $C_L = 30 pF$.

Table 4-53. Synchronous non-multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	EXMC_CLK period	36.8	_	ns
t _{d(CLKL-NExL)}	EXMC_CLK low to EXMC_NEx low	0	_	ns
t _{d(CLKH-NExH)}	EXMC_CLK high to EXMC_NEx high	18.4	1	ns
t _d (CLKL-NADVL)	EXMC_CLK low to EXMC_NADV low	0	_	ns
t _{d(CLKL-NADVH)}	EXMC_CLK low to EXMC_NADV high	0	_	ns
t _{d(CLKL-AV)}	EXMC_CLK low to EXMC_Ax valid	0	_	ns
t _{d(CLKH-AIV)}	EXMC_CLK high to EXMC_Ax invalid	18.4	_	ns
t _{d(CLKL-NOEL)}	EXMC_CLK low to EXMC_NOE low 0 —		_	ns
t _{d(CLKH-NOEH)}	EXMC_CLK high to EXMC_NOE high	18.4	_	ns

⁽¹⁾ $C_L = 30 \text{ pF}.$

Table 4-54. Synchronous non-multiplexed PSRAM write timings(1)(2)(3)

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	EXMC_CLK period	36.8	1	ns
t _{d(CLKL-NExL)}	EXMC_CLK low to EXMC_NEx low	0	1	ns
t _{d(CLKH-NExH)}	EXMC_CLK high to EXMC_NEx high	18.4	1	ns
t _{d(CLKL-NADVL)}	EXMC_CLK low to EXMC_NADV low	0	1	ns
t _{d(CLKL-NADVH)}	EXMC_CLK low to EXMC_NADV high	0	1	ns
t _{d(CLKL-AV)}	EXMC_CLK low to EXMC_Ax valid	0	1	ns
t _{d(CLKH-AIV)}	EXMC_CLK high to EXMC_Ax invalid	18.4	1	ns
t _{d(CLKL-NWEL)}	EXMC_CLK low to EXMC_NWE low	0	1	ns
t _{d(CLKH-NWEH)}	EXMC_CLK high to EXMC_NWE high	18.4	_	ns
t _{d(CLKL-DATA)}	EXMC_A/D valid data after EXMC_CLK low	0		ns
th(CLKL-NBLH)	EXMC_CLK low to EXMC_NBL high	0	_	ns

⁽¹⁾ $C_L = 30 \text{ pF}.$

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Based on configure: f_{HCLK} = 108 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Based on configure: HCLK = 108 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1.

⁽²⁾ Guaranteed by design, not tested in production.

(3) Based on configure: HCLK = 108 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3(EXMC_CLK is 4 divided by HCLK); DataLatency = 1.

4.24. TIMER characteristics

Table 4-55. TIMER characteristics(1)

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res}	Timer resolution time	_	1	_	timerxclk
tres		ftimerxclk = 108 MHz	9.3	_	ns
f _{EXT}	Timer external clock frequency	_	0	f _{TIMERxCLK} /2	MHz
IEXT		ftimerxclk = 108 MHz	0	54	MHz
RES	Timer resolution	_	_	16	bit
t	16-bit counter clock period	_	1	65536	tTIMERXCLK
tcounter	when internal clock is selected	f _{TIMERxCLK} = 108 MHz	0.0093	607	μs
t	Maximum pagaible count	_	_	65536x65536	tTIMERXCLK
tmax_count	Maximum possible count	ftimerxclk = 108 MHz		39.8	s

⁽¹⁾ Guaranteed by design, not tested in production.

4.25. WDGT characteristics

Table 4-56. FWDGT min/max timeout period at 40 kHz (IRC40K)⁽¹⁾

Prescaler divider	PR[2:0] bits	Min timeout RLD[11:0] =	Max timeout RLD[11:0] = 0xFFF	Unit
		0x000	= UXFFF	
1/4	000	0.025	409.525	
1/8	001	0.025	819.025	
1/16	010	0.025	1638.025	
1/32	011	0.025	3276.025	ms
1/64	100	0.025	6552.025	
1/128	101	0.025	13104.025	
1/256	110 or 111	0.025	26208.025	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-57. WWDGT min-max timeout value at 54 MHz (f_{PCLK1})⁽¹⁾

Prescaler divider	PSC[2:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit
1/1	00	75.8		4.8	
1/2	01	151.7	ш	9.7	me
1/4	10	303.4	μs	19.4	ms
1/8	11	606.8		38.8	

⁽¹⁾ Guaranteed by design, not tested in production.

4.26. Parameter conditions

Unless otherwise specified, all values given for V_{DD} = V_{DDA} = 3.3 V, T_A = 25 $\,^{\circ}C$.

5. Package information

5.1 LQFP144 package outline dimensions

Prigure 3-1. EQFF144 package outline

Outline 3-1. EQFF144 package outline

F

Outline 3-1. EQFF144 package outline

Outline 3-1. EQFF144 package

Figure 5-1. LQFP144 package outline

Table 5-1. LQFP144 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	21.80	22.00	22.20
D1	19.90	20.00	20.10
E	21.80	22.00	22.20
E1	19.90	20.00	20.10
е	_	0.50	_
L	0.45		0.75
L1	_	1.00	_
θ	0°	_	7°

Figure 5-2. LQFP144 recommended footprint

5.2 LQFP100 package outline dimensions

Figure 5-3. LQFP100 package outline

Table 5-2. LQFP100 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	15.80	16.00	16.20
D1	13.90	14.00	14.10
E	15.80	16.00	16.20
E1	13.90	14.00	14.10
е	_	0.50	_
eB	15.05	_	15.35
L	0.45	_	0.75
L1	_	1.00	_
θ	0°	_	7°

Figure 5-4. LQFP100 recommended footprint

5.3 LQFP64 package outline dimensions

Figure 5-5. LQFP64 package outline

Table 5-3. LQFP64 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
е	_	0.50	
eB	11.25	_	11.45
L	0.45	_	0.75
L1	_	1.00	
θ	0°	_	7°

Figure 5-6. LQFP64 recommended footprint

5.4 LQFP48 package outline dimensions

Figure 5-7. LQFP48 package outline

Table 5-4. LQFP48 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.50	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1		1.00	_
θ	0°	_	7°

Figure 5-8. LQFP48 recommended footprint

5.5 QFN36 package outline dimensions

Figure 5-9. QFN36 package outline

Table 5-5. QFN36 package dimensions

Symbol	Min	Тур	Max
Α	0.80	0.85	0.90
A1	0	0.02	0.05
b	0.18	0.23	0.30
b1	_	0.16	_
С	0.18	0.20	0.23
D	5.90	6.00	6.10
D2	3.80	3.90	4.00
E	5.90	6.00	6.10
E2	3.80	3.90	4.00
е	_	0.50	
h	0.30	0.35	0.40
L	0.50	0.55	0.60
L1	_	0.10	
Nd	3.95	4.00	4.05
Ne	3.95	4.00	4.05

Figure 5-10. QFN36 recommended footprint

5.6 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter " θ ". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

 θ_{JB} : Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

Ψ_{JB}: Thermal characterization parameter, junction-to-board.

Ψ_{JT}: Thermal characterization parameter, junction-to-top center.

$$\theta_{JA} = (T_J - T_A)/P_D \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

 T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 θ_{JC} represents the thermal resistance between the chip surface and the package top case. θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-6. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
		LQFP144	48.76	
		LQFP100	57.42	
θја	Natural convection, 2S2P PCB	LQFP64	61.80	°C/W
		LQFP48	64.40	
		QFN36	43.20	
θјв	Cold plate, 2S2P PCB	LQFP144	35.00	°C/W

Symbol	Condition	Package	Value	Unit	
		LQFP100	31.68		
		LQFP64	42.83		
		LQFP48	42.32		
		QFN36	16.51		
		LQFP144	12.03		
		LQFP100	13.85		
θјс	Cold plate, 2S2P PCB	LQFP64	21.98	°C/W	
		LQFP48	22.47		
		QFN36	16.18		
		LQFP144	35.32		
		LQFP100	41.28		
Ψ_{JB}	Natural convection, 2S2P PCB	LQFP64	43.05	-	°C/W
		LQFP48	42.42		
		QFN36	16.64		
		LQFP144	1.86		
		LQFP100	0.75		
$\Psi_{ m JT}$	Natural convection, 2S2P PCB	LQFP64	1.58	°C/W	
		LQFP48	1.74		
		QFN36	1.07		

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

6. Ordering Information

Table 6-1. Part ordering code for GD32F103xx devices

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32F103ZKT6	3072	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZIT6	2048	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZGT6	1024	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZFT6	768	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZET6	512	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZDT6	384	LQFP144	Green	Industrial -40°C to +85°C
GD32F103ZCT6	256	LQFP144	Green	Industrial -40°C to +85°C
GD32F103VKT6	3072	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VIT6	2048	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VGT6	1024	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VFT6	768	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VET6	512	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VDT6	384	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VCT6	256	LQFP100	Green	Industrial -40°C to +85°C
GD32F103VBT6	128	LQFP100	Green	Industrial -40°C to +85°C
GD32F103V8T6	64	LQFP100	Green	Industrial -40°C to +85°C
GD32F103RKT6	3072	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RIT6	2048	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RGT6	1024	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RFT6	768	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RET6	512	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RDT6	384	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RCT6	256	LQFP64	Green	Industrial -40°C to +85°C
GD32F103RBT6	128	LQFP64	Green	Industrial -40°C to +85°C

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32F103R8T6	64	LQFP64	Green	Industrial -40°C to +85°C
GD32F103R6T6	32	LQFP64	Green	Industrial -40°C to +85°C
GD32F103R4T6	16	LQFP64	Green	Industrial -40°C to +85°C
GD32F103CBT6	128	LQFP48	Green	Industrial -40°C to +85°C
GD32F103C8T6	64	LQFP48	Green	Industrial -40°C to +85°C
GD32F103C6T6	32	LQFP48	Green	Industrial -40°C to +85°C
GD32F103C4T6	16	LQFP48	Green	Industrial -40°C to +85°C
GD32F103TBU6	128	QFN36	Green	Industrial -40°C to +85°C
GD32F103T8U6	64	QFN36	Green	Industrial -40°C to +85°C
GD32F103T6U6	32	QFN36	Green	Industrial -40°C to +85°C
GD32F103T4U6	16	QFN36	Green	Industrial -40°C to +85°C

7. Revision History

Table 7-1. Revision history

Revision No.		Description	Date
1.0		Initial Release	Mar.8, 2013
	1.	Characteristics values modified and package data	
2.2		updated, refers to <i>Electrical characteristics</i> and	Oct.10, 2013
		Package information.	
	1.	Maximum HXTAL frequency value corrected in <u>Table 4-</u>	
2.3		13. High speed external clock (HXTAL) generated from	Oct.20, 2014
		a crystal/ceramic characteristics.	
2.4	1.	Repair history accumulation error.	Jan.24, 2018
	1.	Add missing pin definitions for GD32F103Rx, 8 to 11,18	
2.5		and 19 pins in <i>Table 2-7. GD32F103Rx LQFP64 pin</i>	Dec.10, 2018
		<u>definitions</u> .	
2.6	1.	Delete EXMC_NADV in PB7 of <i>Table 2-7. GD32F103Rx</i>	July 22, 2019
2.0		LQFP64 pin definitions.	July 22, 2019
2.7	1.	Delete the PD0,PD1 remap to OSC pins information in	Feb.15, 2020
2.1		packages no less than100 pins, refers to <i>Pin definitions</i> .	
	1.	Integrate the boot loader address in chapter <u>Memory</u>	
		<u>map</u> together.	
2.8	2.	Add description of $V_{\text{REF+}}$ and $V_{\text{REF-}}$ connection in chapter	Sep.18, 2020
		Analog to digital converter (ADC).	
	3.	Arm® Cortex® written format modification.	
	1.	Table 4-3 update, refers to <u>Table 4-3. Power</u>	
2.9		consumption characteristics (for GD32F103x4/6/8/B	Apr.12, 2021
2.0		<u>devices)</u> and <u>Table 4-4. Power consumption</u>	, ip.: 12, 202 i
		<u>characteristics (for GD32F103xC/D/E/F/G/I/K devices)</u> .	
2.10	1.	Table 5-2 update, refers to <u>Package information</u> .	June 22, 2021
	1.	Delete PD0 / PD1 from OSCIN / OSCOUT remap	
		information in chapter 2.6.3 to 2.6.5, ETM related	
		functions modification in chapter 2.6.2 to 2.6.5, refers to	
		<u>Pin definitions</u> .	
	2.	Modify pinouts, refers to <u>Pinouts and pin assignment</u> .	
2.11	3.	Characteristics values modified, and add new tables,	May.23, 2022
2.11		refers to Electrical characteristics.	Way.20, 2022
	4.	Package information and Ordering information update,	
		refer to <u>Package information</u> and <u>Ordering information</u> .	
	5.	Modify Vesd (HBM) and Vesd (CDM) standards, refers to	
		Electrical characteristics.	
	6.	Modify SPI/I2S diagrams, refer to SPI characteristics	

		ODOZI 100AA	Datasiico
		and <u>I2S characteristics</u> .	
	7.	Modify I2C characteristics, refer to <u>I2C characteristics</u> .	
	8.	Power consumption characteristics update, refer to Power	
		consumption.	
	1.	Modify LQFP64 package information, refer to <u>LQFP64</u>	
		package outline dimensions.	
2.12	2.	Update NRST external pin circuit, refer to Figure 4-6.	Jun.30, 2022
		Recommended external NRST pin circuit(1).	
	3.	EXMC related pin update, refer to Pin definitions .	
	1.	Modify gm value in table Table 4-19. Low speed external	
		clock (LXTAL) generated from a crystal/ceramic	
0.40		characteristics(For GD32F103x4/6/8/B devices) and	0 40 0000
2.13		Table 4-20. Low speed external clock (LXTAL)	Sep.13, 2022
		generated from a crystal/ceramic characteristics(For	
		GD32F103xC/D/E/F/G/I/K devices).	
	1.	Format modification.	
	2.	Pin name modification in <i>Pin definitions</i> and <i>Pinouts</i>	
		and pin assignment.	
	3.	Add comments to Power consumption .	
2.14	4.	Modify <u>I2C characteristics</u> diagram <u>Figure 4-7. I2C bus</u>	Dec.6, 2022
		timing diagram.	
	5.	Modify <u>I2S characteristics</u> diagram <u>Figure 4-10. I2S</u>	
		timing diagram - master mode and Figure 4-11. I2S	
		timing diagram - slave mode.	
	1.	Format modification: VREFP / VREFN / VDD / VDDA /	
		VSS.	
	2.	Modify I2C characteristics diagram Figure 4-7. I2C bus	
		timing diagram.	
	3.	Add version number and date to cover.	
2.15	4.	Add chip type in pin definitions table <u>Table 2 5.</u>	Jun.20, 2023
		GD32F103Zx LQFP144 pin definitions / Table 2 6.	
		GD32F103Vx LQFP100 pin definitions / Table 2 7.	
		GD32F103Rx LQFP64 pin definitions / Table 2 8.	
		GD32F103Cx LQFP48 pin definitions / Table 2 9.	
		GD32F103Tx QFN36 pin definitions.	
3.0	1.	Add <u>typical source capability</u> information in <u>4.12. GPIO</u>	Jul 15 2024
3.0		<u>characteristics</u> .	Jul. 15, 2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.