Lista de Exercícios de Circuitos Combinacionais 3

Prof. Anselmo Frizera Neto

- 1. Projete um sistema digital para implementar o Jogo da Pedra, Papel e Tesoura. O número de participantes será de 2 jogadores. A cada partida, cada jogador escolherá secretamente pedra, papel ou tesoura como sua opção. O vencedor é definido segundo a seguinte regra:
 - Pedra vence tesoura, pois amassa a tesoura.
 - Tesoura vence papel, pois corta o papel.
 - Papel vence pedra, pois embrulha a pedra.
 - Toda vez que os dois jogadores optarem pelo mesmo objeto, ocorre um empate.
 A saída deverá ser composta por 2 sinais que indicarão:

Saída	Resultado			
00	Empate			
01	Jogador 1 vence			
10	Jogador 2 vence			
11	Entrada Inválida			

Tabela 01

Implemente usando portas lógicas AND, OR e NOT e desenhe o diagrama lógico.

- 2. Considere um robô cuja plataforma possui um sistema de pára-choques com 4 sensores distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional que gere um código para os motores a fim de que o robô se desvie toda vez que se chocar com um obstáculo. Considere que este código é enviado aos motores durante o tempo de um segundo e depois o movimento original é restabelecido. O controle deverá obedecer às seguintes regras:
 - Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
 - Se apenas F e D forem pressionados, giro para a esquerda;
 - Se apenas F e E forem pressionados, giro para a direita;
 - Se apenas D ou E for pressionado, giro para o lado oposto ao lado do choque;
 - Se apenas A for pressionado, movimento para frente;
 - Se apenas A for pressionado, movimento para frente;

Especifique um código para os motores, construa a tabela verdade e encontre as expressões booleanas para o circuito combinacinal do seu projeto. Não se esqueça de montar o diagrama de portas lógicas correspondente.

3. Implemente em hardware o seguinte trecho de programação:

Se
$$A + B > C$$
 então $Z = B$
Senão $Z = Complemento de 2 (A)$

Considere que os números A, B, C e Z são de 3 bits e você tem a sua disposição módulos de somadores completos, meio-somadores, subtratores, multiplicadores e comparadores, todos para números de 3 bits, além de portas lógicas, multiplexadores e decodificadores. Use os componentes e módulos que você precisar indicando o esquema de ligação entre eles. **Não é preciso implementar o circuito interno dos módulos aritméticos disponíveis!!!**

- 4. Projete um Deslocador de 3 bits que realize as seguintes funções (em ordem de prioridade decrescente):
- (a) Deslocamento para a direita de 1 bit (entrada SHR_1 = 1).
- (b) Deslocamento circular para a direita de 1 bit (entrada SHR 1C = 1).
- (c) Deslocamento para a esquerda de 1 bit (entrada SHL 1 = 1).
- (d) Manter o valor atual.
- 5. Multiplexadores.
- (a) Demonstre que um MUX 2x1 é um Conjunto Universal.
- (b) Utilize um MUX 8x1 para implementar o circuito digital da tabela-verdade abaixo.
- (c) Implemente o mesmo circuito digital utilizando um MUX 4x1.
- (dica: considere que todas as entradas estão disponíveis em sua forma normal e complementada).

Х3	X2	X1	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- 6. Projete um Somador de 2 palavras de 3 bits (A=a2a1a0 e B=b2b1b0) capaz de fornecer a resposta correta da soma binária (S=s2s1s0 e Cout) em no máximo 23 ns. Para isso, assuma que:
 - (i) O atraso de propagação de qualquer porta lógica seja de 5 ns.
 - (ii) O sinal de vem_1 (carry in) inicial é sempre 0 (zero).

Desenhe completamente sua solução ou apresente as equações lógicas completas.