

MOST Project _4 Unclassified COMPUTERIZED DETECTION AND CLASSIFICATION MA068876 USING ARTIFICIAL INTELLIGENCE AND ESTIMATION . August 10. 1070 E.A. Patrick L./Shen R. /Agnew Purdue University, Lafayette, Indiana DEPARTMENT OF THE NAVY Naval Ship Systems Command MAY 23 1979 Contract N00024 -70-C-124 Project Serial No. ひつとる This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may mand, Coe 00 103. Copy No. 1 DISTRIBUTION STATEMEN Approved for public release;

Distribution Unlimited

291 650

COMPUTERIZED DETECTION AND CLASSIFICATION

USING

ARTIFICIAL INTELLIGENCE

AND

ESTIMATION

ABSTRACT:

Automatic Detection and Classification cannot be had by estimation alone but it can be had by estimation plus artificial intelligence where the latter reflects problem knowledge.

100000100 to	
64.0 64.0 64.0 64.0 64.0 64.0	
	HY. ON EIL
BloL	ATAIL OL/ TENAL

[first]

Approved for public release;
Distribution Unlimited

Part I

FORWARD

A carefully developed body of knowledge concerning estimation in sonar detection and classification has been developed and made available to Naval Ships Systems Command in previous reports. In section I we summarize definitions of measurement space, feature space, decision space, and the decision rule, and we comment on the generalized k nearest neighbor decision rule, nonparametric feature selection, cluster mapping, and the Bayes solution. Then, in Chapter II, we introduce the new approach to pattern recognition which provides for inserting problem knowledge into the decision making process. This approach, although not so new in "idea" is very new in "action". We discuss nonlinear mappings we have discovered which can be used to insert a priori problem knowledge. We show how features can be designed first for submarine targets and then for specific kinds of nonsubmarine targets. By using a priori problem knowledge, pattern recognition can take place with no training samples; the training samples then add ice cream to the pie.

Section IV provides an <u>introduction</u> to performance results after processing Rogers data.

I Theoretical Foundation

A. Introduction

Appropriate definitions, notation, and operations have been fairly well established for computerized detection and classification. In this section we provide a tutorial and indicate where improvements can be made.

Measurement or Observation Space

Measurements of a sonar echo or sequence of sonar echoes provide components of a vector $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L \end{bmatrix}$ called the observation vector. These measurements are made on the audio waveform, video scan waveform, along with associated

measurements of target range R, true bearing 0, and target track aspect v.

Feature Space

The process of obtaining features from the observation vector x involves inserting problem knowledge. Features important for detecting a submarine are different from features important for detecting a nonsubmarine. For example, a nonsubmarine target may consist of multiple targets in range, bearing scan, or both; features which measure these properties are thus important for detecting nonsubmarines. On the other hand, an estimate target length is an important feature for detecting submarine targets. It is important to provide that features useful in detecting one type of target are not a nusicance in detecting another type of target.

Decision Space

Simply, the decision space consists of M classes with corresponding a priori probabilities P_i , i=1,2,...,M. We may consider the decision space one dimensional with M points.

The Unique Decision Rule

Loosely speaking, the unique decision rule is a Bayes, minimum conditional risk rule where the density f(x|i) and a priori class probability P_i are calculated for all M classes. It is necessary to learn f(x|i) using both problem knowledge and training vectors x_1^i , x_2^i ,..., x_n^i for this i^{th} class. The density f(x|i) is characterized by a set of parameters b_i where b_i is related to the features for the i^{th} class.

B. The New Pragmatic Approach to Pattern Recognition

We at Purdue University have made several contributions to pattern recognition including:

The Generalized K-Nearest Neighbor Decision Rule, published in Information and Control

Non-Parametric Feature Selection, published in IEEE Transactions on Information
Theory

Cluster Mapping with Experimental Computer Graphics, published in IEEE transactions on Computers.

Bayes Solutions to Pattern Recognition, published in IEEE transactions on Information Theory.

Now, however, we are working on a more advanced approach to pattern recognition which provides for inserting problem knowledge along with training samples into the automation process. Subsequent sections will describe the proceedure.

II The New Proceedure

The approach is to use problem knowledge to transform observation vectors $\mathbf{x}^{\mathbf{i}}$ from class i to a lower dimensional space where the features are uncorrelated. A nonlinear transformation must be constructed for each class; this nonlinear transformation may be thought of as resulting ultimately in a nonlinear matched filter which can be updated using training samples. The proceedure is best described in terms of the following operations used to construct the nonlinear transformations.

Within Subset

This operation selects measurements x_s , x_s , x_s from the sth sonar ping to which nonlinear operations are applied. These measurements are in the sth vector x_s .

Between Subset

This operation selects measurements from each of a sequence of v pings x_1, x_2, \dots, x_v to which nonlinear operations are applied. One such nonlinear operation is the "Starlight" type operation.

Pegion

This operation selections a region of the observation space V_L . Any points in this region are processed with a sequence of operations specialized to samples restricted to this region.

Correlation Inserter

A linear or nonlinear function of measurements selected by operations
"within subset" or "between subset" gives rise to a new feature. The following
is a list of nonlinear functions which may or may not be directly used in
sonar problems:

ratio

sum

weighted sum

blanking

quadratic

ring

product

subgroup

More specialized nonlinear relationships have been found from sonar problem knowledge and are described next.

A. Designing Monlinear Filters for Detecting Subs

Measurement vectors x_1, x_2, \dots, x_v are taken for v successive pings with

$$\mathbf{x}_{r} = [\hat{\ell}_{r}, \hat{E}_{r}, \hat{NP}_{r}, \hat{\psi}_{r}, \hat{R}_{r}, \hat{\theta}_{r}, \hat{N}_{r}], r = 1, 2, ..., v$$
 (1)

where $\hat{\ell}_r$ is an estimate of target length, \hat{E}_r of target echo energy, \hat{NP}_r of noise energy, $\hat{\psi}_r$ of aspect angle, \hat{R}_r of target range, $\hat{\theta}_r$ of target bearing, and \hat{N}_r of number of target highlights. When the same class of target is active for all v echos, the sequence vector of measurements

$$\dot{\mathbf{x}}_{\mathbf{v}} = [\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{\mathbf{v}}] \tag{2}$$

is constructed. If there are L entries in x_r then there are Lv entries in \dot{x}_v and they can't be uncorrelated. We know that target length ℓ is a fixed parameter and it is reasonable to use the sum operation,

$$\hat{i} = \frac{1}{v} \sum_{r=1}^{v} \alpha_r \hat{i}_r \tag{3}$$

where $\sigma_{\mathbf{r}} = \hat{\mathbf{E}}_{\mathbf{r}} | \hat{\mathbf{NP}}_{\mathbf{r}}$ is an estimate of signal/noise ratio for the \mathbf{r}^{th} echo.

The target reflectively is a reasonable feature characterizing submarine targets. An estimator for target reflectivity σ is signal/noise ratio normalized for range,

$$\hat{\sigma} = \left(\frac{\text{signal}}{\text{noise}}\right) \left(\hat{R}\right)^{\frac{3}{2}} = \frac{\sum_{r=1}^{\hat{E}_r}}{\sum_{r=1}^{\hat{V}} \hat{N}_r^P}$$

$$(4)$$

where

$$\hat{\mathbf{R}} = \frac{1}{\mathbf{v}} \sum_{\mathbf{r}=1}^{\mathbf{v}} \hat{\mathbf{R}}_{\mathbf{r}}$$
 (5)

The number of highlights is another reasonable feature characterizing submarine targets. Since the number of highlights in a submarine echo depends on the submarine aspect angle, an estimator for the number of highlights is

$$\hat{N} = \frac{1}{v} \sum_{r=1}^{v} \hat{N}_{r} \cos \hat{v}_{r} \tag{6}$$

where \hat{N}_r is a measurement of the number of peaks in the r^{th} echo and $\hat{\psi}_r$ is an estimate of target aspect angle on the r^{th} echo.

Because sub-targets can have certain range rates and rate of change of aspect angle, two other reasonable features are

$${\binom{\Delta R}{\Delta t}} = \frac{1}{(v-1)} \sum_{r=1}^{v-1} \frac{R_{r+1} - R_{r}}{t_{1}+1} - t_{r}$$
(7)

and

$$\begin{pmatrix} \hat{\Delta}_{\pm}^{\pm} \end{pmatrix} = \frac{1}{(v-1)} \sum_{r=1}^{v-1} \frac{\hat{\psi}_{r+1} - \hat{\psi}_{r}}{\hat{t}_{r+1} - \hat{t}_{r}}$$
(8)

where trtl- tr is the time between pings.

Features \hat{i} , $\hat{\sigma}$, \hat{N} , $\begin{pmatrix} \hat{\Delta}R \\ \hat{\Delta}t \end{pmatrix}$, and $\begin{pmatrix} \hat{\Delta}R \\ \hat{\Delta}t \end{pmatrix}$ are significant features for detecting submarine targets. To achieve a spherical density, we will need the following estimates of variances of these features for sub-targets:

$$\hat{s}_{\ell}$$
 = variance ($\hat{\ell}$) for sub-targets

 \hat{s}_{σ} = variance ($\hat{\sigma}$) for sub-targets

 \hat{s}_{N} = variance (\hat{N}) for sub-targets

 $\hat{s}_{(\frac{\Lambda R}{\Lambda t})}$ = variance ($\frac{\Lambda R}{\Lambda t}$) for sub-targets

 $\hat{s}_{(\frac{\Lambda R}{\Lambda t})}$ = variance ($\frac{\Lambda R}{\Lambda t}$) for sub-targets

B. Designing Non-linear Filters for Detecting Nonsubs

Because the number of highlights is not any particular fixed value for many types of nonsubs, a reasonable additional feature for nonsubs is the average change in number of highlights,

$$(\hat{\Delta N}) = \frac{1}{(v-1)} \sum_{r=1}^{v-1} (\hat{N}_{r+1} - \hat{N}_{r})$$
 (10)

Some nonsubs produce multiple targets in range. Therefore a reasonable feature is the number of detected targets in range, TR, an estimate for which is,

$$(\widehat{TR}) = \frac{1}{v} \sum_{r=1}^{v} (\widehat{TR})_{r}$$
(11)

with (TR), the number of targets in range on the rth echo return.

In like manner, the number of targets in bearing T0, is a reasonable feature for certain kinds of nonsubs where a reasonable estimate is

$$(\widehat{T\theta}) = \frac{1}{v} \sum_{r=1}^{v} (\widehat{T\theta})_{r}$$
 (12)

with (TR), the number of targets in bearing on the rth echo return.

For certain nensubs, the echo length may change such that a reasonable feature is

$$\hat{\Delta e} = \frac{1}{v-1} \sum_{r=1}^{v-1} |\hat{e}_{r+1} - \hat{c}_r|$$
 (13)

where er is the estimated echo length for the rth echo.

The features specifically selected for nonsubs thus are (ΔN) , (TR), $(T\theta)$, and (Δe) .

C. Combined Set of Features

The vector of combined features for subs and nonsubs is thus

$$\mathbf{y} = [\hat{\mathbf{a}}, \hat{\sigma}, \hat{\mathbf{N}}, (\hat{\Delta}^{R}), (\hat{\Delta}^{L}), (\hat{\Delta}^{N}), (\hat{T}^{R}), (\hat{T}^{\theta}), \hat{\Delta}^{\theta}]$$
 (14)

where the ones in the first segment of the partition are the sub-features (denoted χ_s) and those in the second segment are the nonsub features (denoted χ_{rs}). This new feature vector χ has features (in χ_{ns}) specially designed for detecting non-submarine targets. Because there undoubtly are correlations between χ_s and χ_{ns} , it is not wise to use χ as the feature vector unless a priori knowledge about these correlations is introduced. Put differently, χ_{ns} would contribute nuiscance features when trying to detect a submarine. In the following section it is shown how a very elementary form of correlation can be inserted by using conditional density functions.

D. Second Level of Correlation

The features in χ (15) may not have spherical statistics. First of all, \hat{l} and $\hat{\sigma}$ are correlated for nonsubs. We know that for nonsubs, both \hat{l} and $\hat{\sigma}$ can be larger than values for subs or both can be smaller than values for subs. This suggests using the new feature

$$\sqrt{(\hat{\mathbf{z}})^2 + (\hat{\mathbf{\sigma}})^2}$$

for nonsubs. This feature might also be satisfactory for subs. Too large or too small values would signify a sub.

The features (TR) and (Te) can be used to "adapt" the construction of certain new features as follows:

If
$$(TR) > 1$$
or , then observe the change in $(\hat{\sigma})$ among the several
$$(T\hat{\theta}) > 1$$
 targets. A significant change indicates a nonsubmarine target.

If
$$(\widehat{TR}) > 1$$
, then observe the pair $(\widehat{L}, \widehat{\sigma})$ pair for change. Significant difference of this pair from sub-values indicates a non-submarine target. Also, the average value of \widehat{L} over these targets can be used.

Another new feature for nonsubs is

because, for nonsubs, we expect (ΔN) to be increased if the target length estimator \hat{l} increases.

E. Introducing Correlation Using Conditional Density Functions

Let s index the sub-class and ns index the nonsub class. The class conditional densities of y can be written,

$$p(y|s) = p(y_s, y_{ns}|s) = p(y_s|s, y_{ns}) p(y_{ns}|s)$$

$$p(y|ns) = p(y_s, y_{ns}|ns) = p(y_s|y_{ns},ns) p(y_{ns}|ns)$$
(15)

Let $d(y_s) = i$ mean that the decision rule using feature vector y_s decides class i and similarly for $d(y_{ns})$. Then the Bayes framework for dimensionality reduction suggests the following approximations:

$$p(y|s) = \begin{cases} p(y_s|s, d(y_{ns}) = s), d(y_{ns}) = s \\ p(y_s|s, d(y_{ns}) = ns), d(y_{ns}) = ns \end{cases}$$
(16a)

$$p(y|ns) = \begin{cases} p(y_{ns}|ns,d(y_{s}) = ns), & d(y_{ns}) = ns \\ p(y_{ns}|ns,d(y_{s}) = s), & d(y_{s}) = s \end{cases}$$
(16b)

We see from (16a) how the non-sub features y_{ns} contribute in a simple way to detecting a submarine. Eq.'s (16) suggest the Block diagram shown in Figure 1 where all the nonlinear a priori knowledge has been used to construct the decision rule.

Because nonlinear functions have been used to design y_s and y_{ns} we suspect that the statistics of the class conditional densities on the right handside (16) are spherical and unimodal. Thus we represent these densities with Gaussian functions. Define the mean vectors,

$$\mathfrak{L}_{sss} = \mathbb{E}[\chi_{s}|s, d(\chi_{ns}) = s]$$

$$\mathfrak{L}_{ss,ns} = \mathbb{E}[\chi_{s}|s, d(\chi_{ns}) = ns]$$

$$\mathfrak{L}_{ns,ns,ns} = \mathbb{E}[\chi_{ns}|ns, d(\chi_{s}) = ns]$$

$$\mathfrak{L}_{ns,ns,ns} = \mathbb{E}[\chi_{ns}|ns, d(\chi_{s}) = ns]$$

$$\mathfrak{L}_{ns,ns,s} = \mathbb{E}[\chi_{ns}|ns, d(\chi_{s}) = ns]$$

Likewise, define the corresponding diagonal covariance matrices \sum_{sss} , $\sum_{ss,ns}$, $\sum_{ns,ns,ns}$, and $\sum_{ns,ns,s}$. Then, for example,

$$p(y_{s}|s, d(y_{s}) = s) = \frac{1}{5} \exp\left[-\frac{1}{2}(y_{s} - m_{sss})\sum_{sss}^{-1}(y_{s} - m_{sss})\right]$$
(18)

where 5 is the dimensionality of y_s and estimated mean vectors and covariance matrices are indicated.

This new approach to pattern recognition is quite viable because we are learning more about sonar every day. We propose to continue its development with the objective of improving performance.

III. Data Base

The data lase currently being used is from the Rogers Data Base obtained from ARL, Austin, Texas, 6/21/1970. This data is recorded in Figure 2. The PME Reel inclusion corresponds to the corresponding tape at Purdue. Some of the measurements, speed, class, aspect, and number of pings, are included in this table.

After using this Rogers data, we expect to process Sarsfeld data where ranges are between 2,000 yards and 10,000 yards with some as far as 40,000 yards (subsonly). For nonsubs, the maximum range is 7,000 yards. All the Sarsfeld data is 2 m.s., RDT, c.w; tracks are mostly straight line but some are circling.

Another source of data is Witek data involving ranges out of 20,000 yards.

This data involves very large sequencies for the same target (200-300 pings), for both submarines and nonsubmarines. The Witek data consists of close to 45 reels of good data - more than for Sarsfeld.

IV. Performance Using Rogers Data

We have been working with the Rogers data base extracting features from subs and features for nonsubs. Much of the work involves finding peaks and flat places in the sonar return. Also, the target's travel is fitted with a polynomial to get an estimate of track aspect. Features extracted for subs are NF = number of peaks NF = number of flat places, e = echo effective length, ER^{3/2} = (echo energy) (Range) 3/2, and minimum distance between the largest peak and its nearest peak. A computer print out of these features for sub echoes and nonsub echoes are shown in Figures 3a and 3b. In Figure 3c, track aspect angles for the sub targets are shown. In figure 4a and Figure 4b is shown the actual computer output display of the first two sub echoes with peaks on the echo marked and with the above mentioned features displayed. In Figures 4c and 4d we see computer output displays for the first two nonsub echoes. Figure 4e shows the tracking ships track and the target track, while Figure 4f is a blow-up of the target track.

^{*} Sub echoes are denoted IOF and nonsub echoes ION in these figures.

V. Reverberation Correlation Calculations

A. Introduction

Given N sequential waveforms $\{v_{i,j}(t)\}_{i=1}^N$, from M corresponding bandpass stochastic processes $\{v_j\}_{j=1}^M$ obtained from M respective channels, it is desired to compute the M² possible sample-ensemble-cross-covariance functions $\{\Sigma_{mn}(t_1,t_2)\}_{n=1}^M$ M defined as follows:

$$\Sigma_{mn}(t_1, t_2) = \frac{1}{N} \sum_{s=1}^{N} \left[v_{sm}(t_1) - \overline{v}_{m}(t_1) \right] v_{sn}(t_2) - \overline{v}_{n}(t_2)$$
 (1)

where $\overline{v}_m(t_k)$ denotes the sample mean for m^{th} channel:

$$\overline{v}_{m}(t_{k}) = \frac{1}{N} \sum_{s=1}^{N} v_{sm}(t_{k}); m = 1, 2, ..., M$$
(2)

In a digital approach a discretized representation of the waveform $v_{ij}(t_k)$, $k=1,2,\ldots,L$ will be available. If the stochastic sampling theorem is utilized, then the function $K_{mn}(t_1,t_2)$ is obtainable from signals $v_{ij}(t)$ sampled at a frequence N less than the Nyquest frequency, $f_s=2(f_0+\frac{W}{2})$; f_s is the sampling frequency, f_0 is the bandpass center frequency, and W is the low-pass bandwidth of the stochastic processes $\chi^{(1)}$, $\chi^{(2)}$ (containing waveforms $\chi^{(1)}_{ij}(t)$ and $\chi^{(2)}_{ij}(t)$ respectively) in the Rice representation of V_i , i.e.,

$$v_{sj}(t) = x_{sj}^{(1)}(t) \cos w_{o}t - x_{sj}^{(2)}(t) \sin w_{o}t$$

$$v_{sj} \in V_{j}, x_{sj}^{(1)} \in \chi_{j}^{(1)}, x_{sj}^{(2)} \in \chi_{j}^{(2)}$$
(3)

If $f_o \gg W$, it may be practically impossible to sample at the resulting frequency f_s . Moreover, one is often interested in computing only the envelope of $\Sigma_{mn}(t_1, t_2)$ in which case sampling at f_s may be inefficient. An alternate method for computing this envelope denoted $\mathcal{E}(\Sigma_{mn}(t_1, t_2))$ or more briefly $\mathcal{E}_{mn}(t_1, t_2)$.

There are M(m+1)/2 distinct cross-correlation functions.

is to quadrature sample the low pass functions $x_{ij}(t)$, $y_{ij}(t)$ at their Nyquist frequency of W/2 hz. One may then compute the $4M^2$ low-pass covariance functions $\sigma_{k\ell}^{mn}(t_i, t_i)$:

$$\sigma_{k\ell}^{mn}(t_{i}, t_{j}) = \frac{1}{N} \sum_{r=1}^{N} \left[x_{rm}^{k}(t_{i}) - x_{m}^{k}(t_{i}) \right] \left[x_{rn}^{\ell}(t_{j}) - x_{n}^{\ell}(t_{j}) \right]$$

$$k = 1, 2; \ \ell = 1, 2; \ n = 1, 2, ..., M; \ m = 1, 2, ..., M \tag{4}$$

It is well-known that for jointly stationary stochastic processes n, v_m , that $\varepsilon_{mn}(t_1, t_2)$ may be determined from the 4 low-pass functions $\sigma_{k\ell}^{mn}(t_1, t_2)$; k = 1, 2; $\ell = 1, 2$. Specifically:

$$\sigma_{k\ell}^{mn}(t_1, t_2) = \sigma_{k\ell}^{mn}(t_2 - t_1, 0) \quad \ell = 1, 2; K = 1, 2$$

$$\sigma_{11}^{mn}(t_2 - t_1, 0) = \sigma_{22}^{mn}(t_2 - t_1, 0); \quad \sigma_{12}^{mn}(t_2 - t_1, 0) = -\sigma_{21}^{mn}(t_2 - t_1, 0)$$

$$\boldsymbol{\varepsilon}_{mn}(t_1, t_2) = \sqrt{\left[\sigma_{11}^{mn}(t_2 - t_1, 0)\right]^2 + \left[\sigma_{12}^{mn}(t_2 - t_1, 0)\right]^2}$$
 (5)

Unfortunately, joint stationarity is a condition seldom met in many problems, e.g. Sonar.

B. Procedure

It is desired to sample a bandpass stochastic process at the lowest possible frequency which allows reconstruction, one such technique is Quadrature sampling. We may represent the sample bandpass function x(t), bandwith W as:

$$x(t) = x_i(t) \cos \omega_0 t - x_0(t) \sin \omega_0 t$$

where $x_i(t)$ and $x_0(t)$ are lowpass stochastic processes of which the highest frequency is W/2. Thus we may apply the stochastic sampling theorem to the lowpass processes and need sample $x_i(t)$ and $x_0(t)$ at W hz. each. The envelope of x(t) is given by:

$$\varepsilon(x(t)) = \sqrt{x_i^2(t) + x_o^2(t)}$$

The phase is given by $\phi(x(t)) = Tan^{-1} \left[\frac{x_0(t)}{x_1(t)} \right]$ By choosing the sampling frequency f_s to be a submultiple of $w_0 \ni f_s \ge W$, we may obtain the samples of $x_1(t)$ by simply sampling x(t) at frequency f_s . By taking another sample, exactly 90° after we take each sample of $x_1(t)$, we obtain the samples for $x_0(t)$. Thus we see that it is necessary to know w_0 and to generate one set of samples at $f_s = \frac{a_0}{2\pi N}$ hz and another set delayed by $\frac{w_0}{h}$ radius. Given a synchonization signal cos w_0 , it is desired to generate a set of sampling pulses at a frequency $f_s = \frac{a_0}{2\pi N}$, N is an integer and another set delayed by $f_d = \frac{w_0}{h}$ radius. In the case of interest $f_s = \frac{a_0}{h}$ hz and we may adequately sample a signal with a 1 KHz bandwidth. The delay between signals will be $f_s = \frac{a_0}{h}$ msec. $f_s = \frac{a_0}{h}$ msec.

In the original process, these samples were generated erroneously by sampling at 4 KHz and discarding the 3rd and 4th samples of every four thus obtained.

C. Description of Reverb Correlation Process

Four staves 1, 44, 47, 48 were quadrature sampled at 1 KHz, starting at 2 sec. after the zero time pulse to obtain 64 in phase and 64 quadrature samples for each stave. A total of 180 such sets of samples (4 x 180 = 720 in phase vectors and 720 quadrature vectors) we obtain and stored an IBM 1130 Magnetic Disk.

The correlation coefficient functions we computed for four different subsets of the 180 vectors (# 1-60, # 60-121, #121-180, and # 1-180) in order to examine the nonstationarity of the process. For each such ensemble, the 66 possible distinct correlation coefficients were computed as follows. For each pair of the four staves, there are two in phase and two quadrature vectors. For each of these four vectors, the means were computed and then subtracted out. The four 64 x 64 covariance matrices were then computed. These were then combined using the relation derived earlier to obtain the sampled envelope of the cross covariance function for that pair of staves $\sum_{i=0}^{m} (n_i)^{(n_i)}$. The correlation coefficient matrix p^{mn} was then computed using the relation:

$$p_{ij}^{mn} = \frac{\sigma_{ij}^{mn}}{\sqrt{\sigma_{ij}^{mn} \sigma_{jj}^{mm}}}$$

D. Experimental Stave Correlations

We were asked by Naval Ships System Command to investigate correlations among multistave data. The procedure for numbering staves is shown in Figure 5.

Echos or pings were from 3 different modes. The ping numbers and corresponding modes are shown below:

Ping #	Pulse Width (at 7½ ips)
1 - 48	60 m. sec. c.w.
49-100	Chatterbox (~pulses, each~10 m. sec.)
101-180	Mixed c w. (4 short followed by two 60 m sec.)

Signals for the various staves were recorded on 14 channel tape as illustrated in Figure 5. A general block diagram of the procedure is shown in Figure 7.

A sequence of pictures shown in Figure 8 show the reverberation correlations across staves for several configuration. A sequence of such pictures are in the procession of Navel Ships System Command.

Part II

FORWARD (Next 90 Days)

We are processing more of the Rogers data so as to report more performance results. We will derive features for the nonsubmarine target such as sea weed where there are multiple echoes in either range, bearing, or both range and bearing. We are inserting a priori knowledge concerning existence of two major peaks for subs and peak signal power/average noise. Sometime soon we must begin to give attention to "false targets" and video scan data to achieve a more accurate estimate of target bearing. This estimate of target bearing is important when estimating target spaced and target length.

Figure 1: Nonlinear Filters for Automatic Detection

Comments	Rng. & Bng to Lag. edge		No Good	Retake	No Good	Retake	No Good	Retake			Last Two may be FM					Very weak	Weak	Intermittent at max rng.	Good S/N	=	=	Very sublike	Very cublike	Good S/N
# of Pings	50	07		28	30	30	25	25	30	76	37	02	r 35	ᅜ	35	30	30	07	8	33	30	30	30	30
Aspect	Bow 015-320	Beam	Beam twd. Bow	Beam twd. Bow	Quarter & Beam	Quarter & Beam	Stern Quarter	Stern Quarter	Port Bow & Stbd Bow	Direct Bow	Brd . Bow-Beam	Beam-Bow	* Brd Bow- Dir. Bow	Stern Bow	240-210	Stern-Stbd Beam		Bow-Brd. Bow		¢.	c·	¢.	٠.	¢.
cls	တ	တ	တ	တ	တ	တ	S	တ	တ	S	တ	S	က	S	S	S	တ	S	Z	Z	Z	Z	Z	2
Spd	1.5	13.5	15	15	ដ	55	16	91	16	15	15	15	15	10	15	15.5	17	18	77	15	9	7	13.7	13.5
Ctr Stop	נננס	0201	0324	7570	9485	0623	6020	6680	1031	1132	1243	0271	1612	1957	2127	2363	2530	2743	0072	0145	0262	9880	0413	2670
Rotation Start	17/00	0129	4020	0330	0458	8870	1690	0712	6060	1036	1136	1255	1473	1617	1959	2135	311	2537	0000	2200	6770	9920	0340	8170
Purdue Reel #	ROG-1	ROC-1	ROC-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	ROG-1	FOG-1	ROG-2	ROG-2	ROG-2	ROG-2	ROG-2	ROG-2
Footage	1692	485	165	165	2500	2500	1566	1,566	1665	1262	0271	2180	1088	1187	1971	2512	6330	1904	1720	2446	1706	1991	5054	1668
PNE	1570	370	0	0	2320	2320	1452	1452	1557	1170	1375	2076	8560	0858	1325	2328	0770	1782	1645	2356	1546	1576	1965	1578
PME Re-1	6	Ħ	13	n	15	15	18	18	ন	ន	প্ত	8	53	28	847	97	8	4	9	Z Z	63	79	79	65
Run #	7	N	3	4	2	9	7	80	6	ន	Ħ	12	ដ	#	3	791	17	13	19	8	ন	22	8.	77

	Comments		Good S/N	=	med-weak inconsistent	weak to very weak
	# of Fines		30	30	20	20
The second secon	Spd Cl. Aspect			٠.	٠.	c.
-	ය		z	Z	z	Z
-	Spd		0569 13.5 N	0644 13.5 N	0785 13.5 N	1043 13.5 N
	Ctr		6950	17790	0785	1043
	Rotation Ctr Start Stop		2670	7250	8790	0788
-	Purdue Reel #	•	ROG-2	ROG-2	ROG-2	ROG-2
	Footage		1910	2374	0538	0315
	PME		1822	2224	0331	0228
	PME		29	1.9	92	8
	Run		25	56	27	28

(Class	Ping	l _e	NP	NF	Δ	ER	
	10F	1	222	9	6	13	0.43953418E	10
	10F	2	183	8	3	16	0.17846935E	10
	10F	3	185	10	2	14	0.24297031E	10
	10F	4	189	12	0	14	0.23733504E	10
	10F	5	177	8	2	13	0.37908367E	10
	10F	6	161	7	2	15	0.16971312E	10
	IOF	7	163	5	4	17	0.21764265E	10
	IOF	8	224	10	6	17	0.33720611E	10
	10F	9	209	13	2	13	0.24744596E	10
	IOF	10	153	5	6	16	0.16144578E	10
	10F	11	176	7	5	18	0.15854041E	10
	10F	12	189	8	1	11	0.39064043E	10
	10F	13	221	14	5	15	0.36873088E	10
	TOF	14	164	4	7	16	0.15878937E	10
	IOF	15	144	7	5	12	0.21061847E	10
	10F	16	166	9	0	14	0.20330437E	10
	TOF	17	103	5	1	21	0.20492848E	10
1	10F	18	156	7	1	16	0.28137395E	10
1	10F	19	142	5	2	14	0.19227906E	10
1	10F	20	213	10	4	12	0.64481341E	10
-	10F	21	203	11	6	13	0.51928535E	10
1	10F	22	169	8	4	16	0.30139898E	10
	10F	23	268	13	1	14	0.65371965E	10
	10F	24	217	12	0	14	0.50553641E	10
	10F	25	218	10	2	10	0.43095306E	10
	1CF	26	152	7	3	10	0.23599979E	10
	TOF	27	143	7	2	13	0.20427865E	10
	10F	28	189	7	5	15	0.25379491E	10
	10F	29	208	11	2	15	0.29854699E	10
	10F	30	177	6	6	22	0.26129017E	10
	10F	31	199	9	5	14	0.23576181E	10
	10F	32	201	12	0	13	0.43703255E	10
	IOF	33	174	9	3	15	0.24018805E	10
	IOF	34	213	9	6	14	0.46613770E	10
	10F	35	199	8	2	18	0.16345891E	10
	10F	36	192	7	5	16	0.26328268E	10
(10F	37	193	10	5	12	0.34851179E	10

3/2

Figure 3a Subs

/10F	38	326	11	17	13	0.44666491E	10
10N	1	450	25	10	8	0.19924640E	09
10N	2	263	4	16	28	0.93187635E	09
ION	3	146	4	4	16	0.90724403E	09
10N	4	182	4	10	14	0.94710118E	09
ION	5	351	8	25	14	0.95191552E	09
ION	6	341	8	20	15	0.87393958E	09
TON	7	230	8	12	12	0.91324620E	09
) ION	8	197	7	7	13	0.88783616E	09
100	9	243	8	11	16	0.99487104E	09
10N	10	213	8	5	17	0.10935014E	10
10N	11	283	10	9	15	0.10429190E	10
10N	12	253	11	2	12	0.11193592E	10
ION	13	348	11	16	23	0.91403609E	09
TON	14	435	16	14	12	0.99097190E	09

Figure 3b Subs

0		0
Ping Number	Aspect Ang	le (Track)
-1	115	5
2	114	•
3	113	3
4	113	2
5	113	2
6	110)
7	110)
8	110)
9	10	9
10	10	9
11	110	0
12	11	0
13	10	6
14	. 10	6
15	10	6
16	10	6
17	10	5
18	10	4
19	10	3
20	10	2
21	10	2
22	10	2
23	10	0
24	10	0
25	10	0
26	9	8
27	9	8
28	9	8
29	9	7
30	9	6
31	9	6
32	9	3
33	9	4
34	9	4
35	9	4
36	9	2
37	9	1
38	9	0

Figure 3c: Track Aspect for Subs

Figure 4a: Sub Echo, Features, and Marked Peaks

Figure 4b: Sub Echo

Figure 4c: Nonsub Echo

Figure 4d: Nonsub Echo

Figure 4e: Top shows Tracking Ship Track While Bottom Shows
Target Track

Figure 4f: Enlarged View of Target Track Shown in Figure 4e.

There are M(m+1)/2 distinct cross-correlation functions.

RELATIVE STAVE LOCATIONS

STAVE NUMBERS

Figure 5: STAVE LAYOUT FOR TAPE # RVB-1

Channel .	Method	Signal.
1	Direct	Stave #1
2	Direct	Stave #2
3	Direct	Stave #43
4	Direct	Stave #3
5	Direct	Stave #47
6	Direct	Stave #4
7	Direct	Stave #46
8	Direct	Stave #5
9	Direct	Stave #45
10	Direct	Stave #6
11	Direct	Stave #44
12	FM .	12.95 KHZ reference
13	Direct	Stave #43
14	FM	l sec pulse; starts when beam is dead ahead

Recorded @ 72 ips.

Set footage counter to zero @ first trace of audio on stave channels; then

It.	Pings	
0-438	1-48	Single ping CW, Long pulse (60 m.sec)
456-938	49-100	Chatterbox (10 closely spaced pings)
953-1505	101-178	13 burst of 4 long, two short CW

Figure 6: MULTI-STAVE REVERBERATION DATA