где
$$C_i$$
 — произвольные постоянные. Общее решение неоднородного уравнения тогда имеет вид

 $y = \sum_{i=1}^{n} (\varphi_{i}(x) + \widetilde{C}_{i}) y_{i}.$ (15.6)

15.2. Линейные неоднородные уравнения п-го порядка с постоянными коэффициентами и правой частью специального вида

Раскроем скобки в (15.6) и сгруппируем слагаемые следующим образом:

$$y = \sum_{i=1}^{n} (\varphi_i(x) + \widetilde{C}_i) y_i = \sum_{i=1}^{n} \widetilde{C}_i y_i + \sum_{i=1}^{n} \varphi_i(x) y_i.$$

Заметим, что первая получившаяся сумма — общее решение соответствующего однородного уравнения, вторая — частное решение неоднородного уравнения (получается из общего решения при $\widetilde{C}_i = 0$). Более того, оказалось, что в общем случае справедлива следующая теорема.

TEOPEMA 15.1 (О структуре общего решения линейного неоднородного уравнения). Общее решение линейного неоднородного уравнения n-го порядка равно сумме общего решения $C_1y_1(x) + C_2y_2(x) + ... + C_ny_n(x)$ соответствующего ему однородного уравнения и любого частного решения \widetilde{y} неоднородного уравнения, m. e. uмеет вид

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x) + \widetilde{y}(x).$$
 (15.7)

ДОКАЗАТЕЛЬСТВО. Требуется доказать, что

- 1) функция (15.7) является решением линейного неоднородного уравнения n-го порядка при любых значениях констант $C_1, ..., C_n$;
- 2) любое решение $\hat{y}(x)$ линейного неоднородного уравнения n-го порядка может быть получено из (15.7) при некоторых значениях констант C_1, \ldots, C_n .

Чтобы убедиться в справедливости первого утверждения, достаточно подставить (15.7) в линейное неоднородное уравнение:

$$\left[\sum_{i=1}^{n} C_{i} y_{i}(x) + \widetilde{y}(x) \right]^{(n)} + a_{1}(x) \left[\sum_{i=1}^{n} C_{i} y_{i}(x) + \widetilde{y}(x) \right]^{(n-1)} + \dots + a_{n}(x) \left[\sum_{i=1}^{n} C_{i} y_{i}(x) + \widetilde{y}(x) \right] =$$

$$= \sum_{i=1}^{n} C_{i} \left[y_{i}^{(n)}(x) + a_{1}(x) \cdot y_{i}^{(n-1)}(x) + \dots + a_{n}(x) \cdot y_{i}(x) \right] +$$

$$(\text{т.к. } y_{i} - \text{решение однородного уравнения})$$

$$+ \left[\widetilde{y}^{(n)}(x) + a_{1}(x) \cdot \widetilde{y}^{(n-1)}(x) + \dots + a_{n}(x) \cdot \widetilde{y}(x) \right] =$$

$$(\text{т.к. } \widetilde{y} - \text{решение неоднородного уравнения})$$

$$= 0 + f(x) = f(x) .$$

Докажем второе утверждение. Рассмотрим разность $\hat{y}(x) - \tilde{y}(x)$. Эта функция будет являться решением однородного уравнения. Действительно,

$$\begin{split} \big[\hat{y}(x) - \widetilde{y}(x)\big]^{(n)} + a_1(x) \big[\hat{y}(x) - \widetilde{y}(x)\big]^{(n-1)} + \dots + a_n(x) \big[\hat{y}(x) - \widetilde{y}(x)\big] = \\ &= \big[\hat{y}^{(n)}(x) + a_1(x) \cdot \hat{y}^{(n-1)}(x) + \dots + a_n(x) \cdot \hat{y}(x)\big] - \\ &- \big[\widetilde{y}^{(n)}(x) + a_1(x) \cdot \widetilde{y}^{(n-1)}(x) + \dots + a_n(x) \cdot \widetilde{y}(x)\big] = \\ &= f(x) - f(x) = 0 \end{split}$$

Но если $\hat{y}(x) - \tilde{y}(x)$ является решением линейного однородного уравнения, то она является линейной комбинацией фундаментальной системы решений этого однородного уравнения. Т. е. существуют такие значения $\hat{C}_1, \dots, \hat{C}_n$, что

$$\begin{split} \hat{y}(x) - \widetilde{y}(x) &= \hat{C}_1 y_1(x) + \hat{C}_2 y_2(x) + \ldots + \hat{C}_n y_n(x), \\ \Rightarrow \hat{y}(x) &= \hat{C}_1 y_1(x) + \hat{C}_2 y_2(x) + \ldots + \hat{C}_n y_n(x) + \widetilde{y}(x). \end{split}$$

Таким образом, интегрирование линейного неоднородного дифференциального уравнения можно свести к интегрированию соответствующего однородного уравнения и нахождению какого-либо частного решения неоднородного уравнения. Однако обычно нахождение частного решения неоднородного уравнения представляет собой достаточно трудную задачу. Исключение составляют дифференциальные уравнения с постоянными коэффициентами и правой частью вида

$$f(x) = e^{\alpha x} [P_s(x)\cos\beta x + P_k(x)\sin\beta x], \qquad (15.8)$$

где $P_s(x)$, $P_k(x)$ — многочлены степени s и k соответственно, α и β — некоторые числа. Функцию (15.8) принято называть функцией специального вида. Для таких уравнений удалось выяснить структуру частного решения. А именно, была доказана следующая теорема.

TEOPEMA 15.2 (о структуре общего решения линейного неоднородного уравнения с постоянными коэффициентами и правой часть специального вида). Если правая часть f(x) линейного неоднородного уравнения с постоянными коэффициентами имеет специальный вид (15.8), то частное решение такого уравнения может быть найдено в виде

$$\widetilde{y} = x^{\ell} e^{\alpha x} [R_m(x) \cos \beta x + T_m(x) \sin \beta x], \qquad (15.9)$$

где $R_m(x)$ и $T_m(x)$ — некоторые многочлены степени m (где m — большая из степеней многочленов $P_s(x), P_k(x)$ в правой части f(x)), ℓ — кратность характеристического корня $\alpha \pm \beta i$ ($\ell = 0$, если число $\alpha \pm \beta i$ не является характеристическим корнем).

ПРИМЕРЫ.

- 1. Если линейное неоднородное уравнение с постоянными коэффициентами имеет правую часть $f(x) = P_s(x)$, то частное решение такого уравнения имеет вид:
 - а) $\widetilde{y} = R_s(x)$, если число $\lambda = 0$ не является корнем характеристического уравнения;
 - б) $\widetilde{y} = x^{\ell} \cdot R_s(x)$, если число $\lambda = 0$ является корнем кратности ℓ характеристического уравнения.
- 2. Если $f(x) = P_s(x)e^{\alpha x}$, то частное решение имеет вид:
 - а) $\widetilde{y} = R_s(x)e^{\alpha x}$, если число α не является корнем характеристического уравнения;
 - б) $\widetilde{y} = x^{\ell} R_s(x) e^{\alpha x}$, если число α является корнем кратности ℓ характеристического уравнения.
- 3. Если $f(x) = P_s(x)\cos \beta x + P_k(x)\sin \beta x$, (где один из многочленов $P_s(x)$ или $P_k(x)$ может быть равен нулю), то частное решение имеет вид:
 - а) $\widetilde{y} = R_m(x)\cos\beta x + T_m(x)\sin\beta x$, если число $\pm\beta i$ не является характеристическим корнем уравнения;
 - б) $\widetilde{y} = x^{\ell} [R_m(x) \cos \beta x + T_m(x) \sin \beta x]$, если число $\pm \beta i$ является корнем кратности ℓ характеристического уравнения.

Находя частное решение по теореме 15.2, многочлены $R_m(x)$ u $T_m(x)$ записывают с неопределенными коэффициентами, а затем определяют их, подставляя решение в дифференциальное уравнение.

ПРИМЕР 15.2. Найти общее решение уравнения

$$v'' - 2v' + v = 8e^{3x}$$
.

РЕШЕНИЕ. Сначала рассмотрим соответствующее однородное уравнение $y^{\prime\prime}-2y^{\prime}+y=0$.

Так как его характеристическое уравнение $\lambda^2-2\lambda+1=0$ имеет корни $\lambda_{1,2}=1$, то общее решение однородного уравнения будет иметь вид

$$y = C_1 e^x + C_2 x e^x.$$

Теперь найдем частное решение неоднородного уравнения. Правая часть является произведением числа и показательной функции e^{3x} :

$$f(x) = 8e^{3x}$$
 $\Rightarrow \alpha = 3, \beta = 0, s = 0.$

При этом число $\alpha \pm \beta i = 3$ не является корнем характеристического уравнения. Поэтому частное решение \widetilde{y} неоднородного уравнения надо искать

в виде
$$\widetilde{y} = Ae^{3x}$$
,

где A — неизвестный коэффициент.

Имеем:
$$\widetilde{y}' = 3Ae^{3x}$$
, $\widetilde{y}'' = 9Ae^{3x}$.

Подставим \widetilde{y} , \widetilde{y}' , \widetilde{y}'' в неоднородное уравнение и получим

$$9Ae^{3x} - 2 \cdot 3Ae^{3x} + Ae^{3x} = 8e^{3x},$$

 $\Rightarrow 4Ae^{3x} = 8e^{3x},$
 $\Rightarrow 4A = 8$ или $A = 2$.

Таким образом, $\widetilde{y} = 2e^{3x}$ – частное решение неоднородного уравнения, а его общее решение имеет вид

$$y = (C_1 e^x + C_2 x e^x) + 2e^{3x}.$$

ПРИМЕР 15.3. Найти общее решение уравнения

$$y'' - 3y' + 2y = e^x(3 - 4x).$$

РЕШЕНИЕ. Сначала рассмотрим соответствующее однородное уравнение y'' - 3y' + 2y = 0.

Так как его характеристическое уравнение $\lambda^2 - 3\lambda + 2 = 0$ имеет корни $\lambda_1 = 1$, $\lambda_2 = 2$, то общее решение однородного уравнения будет иметь вид

$$y = C_1 e^x + C_2 e^{2x}$$

Теперь найдем частное решение неоднородного уравнения. Правая часть уравнения является произведением многочлена первой степени и показательной функции e^x :

$$f(x) = e^{x}(3-4x) \implies \alpha = 1, \ \beta = 0, \ s = 1.$$

При этом число $\alpha \pm \beta i = 1$ является корнем характеристического уравнения кратности 1. Поэтому частное решение \widetilde{y} неоднородного уравнения надо искать в виде

$$\widetilde{y} = xe^x(Ax + B) = e^x(Ax^2 + Bx),$$

где A и B — неизвестные коэффициенты.

Имеем:
$$\widetilde{y}' = e^x [Ax^2 + (B+2A)x + B)],$$
 $\widetilde{y}'' = e^x [Ax^2 + (B+4A)x + (2A+2B)].$

Подставим \widetilde{y} , \widetilde{y}' , \widetilde{y}'' в неоднородное уравнение и получим

$$e^{x}[Ax^{2}+(B+4A)x+(2A+2B)]-3e^{x}[Ax^{2}+(B+2A)x+B]+2e^{x}[Ax^{2}+Bx]=e^{x}(3-4x),$$

$$\Rightarrow e^{x} [(A-3A+2A)x^{2} + (4A+B-6A-3B+2B)x + (2A+2B-3B)] = e^{x} (3-4x),$$

$$\Rightarrow -2A \cdot x + (2A-B) = 3-4x,$$

$$\Rightarrow \begin{cases} -2A = -4, \\ 2A-B = 3; \end{cases}$$

$$\Rightarrow A = 2, B = 1.$$

Таким образом, $\tilde{y} = e^x \cdot x(2x+1)$ — частное решение неоднородного уравнения, а его общее решение имеет вид

$$y = (C_1 e^x + C_2 e^{2x}) + xe^x (2x+1). \diamond$$

ПРИМЕР 15.4. Найти общее решение уравнения $y'' + 2y' + 5y = 4\cos 2x + \sin 2x$.

РЕШЕНИЕ. Рассмотрим соответствующее однородное уравнение v'' + 2v' + 5v = 0.

Характеристическое уравнение $\lambda^2 + 2\lambda + 5 = 0$ имеет корни $\lambda_{1,2} = -1 \pm 2i$. Поэтому общее решение этого однородного уравнения имеет вид

$$y = C_1 e^{-x} \cos 2x + C_2 e^{-x} \sin 2x$$
.

Правая часть уравнения $f(x) = 4\cos 2x + \sin 2x$, т. е. $\alpha = 0$, $\beta = 2$, степени многочленов при синусе и косинусе s = k = 0. Так как число $\alpha \pm \beta i = \pm 2i$ не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде

$$\widetilde{y} = A\cos 2x + B\sin 2x$$
.

Имеем

$$\widetilde{y}' = 2B\cos 2x - 2A\sin 2x$$
, $\widetilde{y}'' = -4A\cos 2x - 4B\sin 2x$.

Подставим \widetilde{y} , \widetilde{y}' , \widetilde{y}'' в неоднородное уравнение и получим

$$(-4A\cos 2x - 4B\sin 2x) + 2(2B\cos 2x - 2A\sin 2x) + 5(A\cos 2x + B\sin 2x) =$$

$$= 4\cos 2x + \sin 2x.$$

$$\Rightarrow (-4A + 4B + 5A) \cdot \cos 2x + (-4B - 4A + 5B) \cdot \sin 2x = 4\cos 2x + \sin 2x,$$

$$\Rightarrow (A + 4B) \cdot \cos 2x + (-4A + B) \cdot \sin 2x = 4\cos 2x + \sin 2x,$$

$$\Rightarrow \begin{cases} A + 4B = 4, \\ -4A + B = 1; \end{cases}$$

$$\Rightarrow A=0$$
, $B=1$.

Таким образом $\tilde{y} = \sin 2x - \text{частное}$ решение неоднородного уравнения, а его общее решение имеет вид

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x) + \sin 2x.$$

ПРИМЕР 15.5. Найти общее решение уравнения

$$y'' - y = \cos x$$
.

РЕШЕНИЕ. Рассмотрим соответствующее однородное уравнение

$$y'' - y = 0.$$

Так как его характеристическое уравнение $\lambda^2 - 1 = 0$ имеет корни $\lambda_{1,2} = \pm 1$, то общее решение однородного уравнения будет иметь вид

$$y = C_1 e^x + C_2 e^{-x}$$
.

Теперь найдем частное решение неоднородного уравнения. Правая часть уравнения является произведением многочлена нулевой степени (число 1) и тригонометрической функции $\cos x$:

$$f(x) = \cos x \quad \Rightarrow \quad \alpha = 0, \ \beta = 1, \ s = 0.$$

При этом число $\alpha \pm \beta i = \pm i$ не является корнем характеристического уравнения. Поэтому частное решение \tilde{y} неоднородного уравнения надо искать в виде

$$\widetilde{y} = A\cos x + B\sin x$$
,

где A и B — неизвестные коэффициенты.

Имеем:

$$\widetilde{y}' = -A\sin x + B\cos x,$$

 $\widetilde{v}'' = -A\cos x - B\sin x$.

Подставим \widetilde{y} , \widetilde{y}' , \widetilde{y}'' в неоднородное уравнение и получим:

$$[-A\cos x + B\sin x] - [A\cos x + B\sin x] = \cos x,$$

$$\Rightarrow -2A\cos x - 2B\sin x = \cos x,$$

$$\Rightarrow \begin{cases} -2A = 1, \\ 2B = 0; \end{cases} \Rightarrow A = -\frac{1}{2}, B = 0.$$

Таким образом, $\tilde{y} = -\frac{1}{2}\cos x$ — частное решение неоднородного уравнения, а его общее решение имеет вид

$$y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} \cos x. \diamond$$

ПРИМЕР 15.6. Найти общее решение уравнения $y'' + y = \cos x$.

$$y'' + y = \cos x$$

РЕШЕНИЕ. Рассмотрим соответствующее однородное уравнение

$$y'' + y = 0.$$

Так как его характеристическое уравнение $\lambda^2 + 1 = 0$ имеет корни $\lambda_{1,2} = \pm i$, то общее решение однородного уравнения будет иметь вид

$$y = C_1 \cos x + C_2 \sin x.$$

Теперь найдем частное решение неоднородного уравнения. Правая часть уравнения является произведением многочлена нулевой степени (число 1) и тригонометрической функции $\cos x$:

$$f(x) = \cos x \implies \alpha = 0, \beta = 1, s = 0.$$

При этом число $\alpha \pm \beta i = \pm i$ является корнем характеристического уравнения кратности 1. Поэтому частное решение \widetilde{y} неоднородного уравнения надо искать в виде

$$\widetilde{y} = x(A\cos x + B\sin x),$$

где A и B – неизвестные коэффициенты.

Имеем: $\widetilde{y}' = [A\cos x + B\sin x] + x \cdot [-A\sin x + B\cos x],$ $\widetilde{y}'' = 2 \cdot [-A\sin x + B\cos x)] + x \cdot [-A\cos x - B\sin x].$

Подставим \widetilde{y} , \widetilde{y}' , \widetilde{y}'' в неоднородное уравнение и получим:

$$2 \cdot [-A\sin x + B\cos x)] + x \cdot [-A\cos x - B\sin x] + x \cdot [A\cos x + B\sin x] = \cos x,$$

$$\Rightarrow 2 \cdot [-A\sin x + B\cos x)] = \cos x,$$

$$\Rightarrow \begin{cases} -2A = 0, \\ 2B = 1; \end{cases} \Rightarrow A = 0, B = \frac{1}{2}.$$

Таким образом, $\tilde{y} = \frac{x}{2} \sin x$ — частное решение неоднородного уравнения, а его общее решение имеет вид

$$y = C_1 \cos x + C_2 \sin x + \frac{x}{2} \sin x. \diamond$$

При нахождении частных решений линейного неоднородного уравнения часто оказывается полезной следующая теорема.

ТЕОРЕМА 15.3 (о наложении решений). *Если* $\tilde{y}_1(x)$ и $\tilde{y}_2(x)$ – частные решения уравнений

$$y^{(n)} + a_1(x)y^{(n-1)} + a_2(x)y^{(n-2)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_1(x),$$

$$y^{(n)} + a_1(x)y^{(n-1)} + a_2(x)y^{(n-2)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_2(x)$$

соответственно, то функция $\widetilde{y}(x) = \widetilde{y}_1(x) + \widetilde{y}_2(x)$ будет являться решением уравнения

$$y^{(n)} + a_1(x)y^{(n-1)} + a_2(x)y^{(n-2)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_1(x) + f_2(x). \quad (15.10)$$

ДОКАЗАТЕЛЬСТВО. Чтобы убедится в справедливости теоремы, достаточно подставить функцию $\tilde{y}(x) = \tilde{y}_1(x) + \tilde{y}_2(x)$ в уравнение (15.10):

$$\left[\widetilde{y}_1 + \widetilde{y}_2\right]^{(n)} + a_1(x)\left[\widetilde{y}_1 + \widetilde{y}_2\right]^{(n-1)} + \ldots + a_{n-1}(x)\left[\widetilde{y}_1 + \widetilde{y}_2\right]' + a_n(x)\left[\widetilde{y}_1 + \widetilde{y}_2\right] = 0$$

$$= \left[\widetilde{y}_{1}^{(n)} + a_{1}(x) \cdot \widetilde{y}_{1}^{(n-1)} + \dots + a_{n-1}(x) \cdot \widetilde{y}_{1}' + a_{n}(x) \cdot \widetilde{y}_{1} \right] +$$

$$+ \left[\widetilde{y}_{2}^{(n)} + a_{1}(x) \cdot \widetilde{y}_{2}^{(n-1)} + \dots + a_{n-1}(x) \cdot \widetilde{y}_{2}' + a_{n}(x) \cdot \widetilde{y}_{2} \right] =$$

$$= f_{1}(x) + f_{2}(x). \blacksquare$$

ПРИМЕР 15.7. Найти общее решение уравнения

$$y''' - 2y'' + 4y' - 8y = e^{2x} \sin 2x + 2x^2$$

РЕШЕНИЕ. Характеристическое уравнение $\lambda^3 - 2\lambda^2 + 4\lambda - 8 = 0$ имеет корни $\lambda_1 = 2$ и $\lambda_{2,3} = \pm 2i$. Поэтому общее решение соответствующего однородного уравнения имеет вид

$$y = C_1 e^{2x} + C_2 \cos 2x + C_3 \sin 2x$$
.

Правая часть f(x) не имеет специального вида, но она состоит из двух слагаемых, каждое из которых имеет специальный вид. Обозначим $f_1(x) = e^{2x} \sin 2x$, $f_2(x) = 2x^2$ и найдем частные решения $\widetilde{y}_1, \widetilde{y}_2$ неоднородных уравнений

$$y''' - 2y'' + 4y' - 8y = f_1(x)$$
 и $y''' - 2y'' + 4y' - 8y = f_2(x)$.

Тогда частное решение \tilde{y} исходного уравнения будет равно сумме этих частных решений, т. е.

$$\widetilde{y} = \widetilde{y}_1 + \widetilde{y}_2$$
.

1) $f_1(x) = e^{2x} \sin 2x$, т. е. s = 0, $\alpha = 2$, $\beta = 2$, $\alpha \pm \beta i = 2 \pm 2i$. Так как число $\alpha \pm \beta i = 2 \pm 2i$ не является корнем характеристического уравнения, то частное решение неоднородного уравнения с правой частью $f_1(x)$ следует искать в виде

$$\widetilde{y}_1 = e^{2x} (A\cos 2x + B\sin 2x).$$
 Имеем:
$$\widetilde{y}_1' = 2e^{2x} \big[(A+B)\cos 2x + (B-A)\sin 2x \big],$$

$$\widetilde{y}_1'' = 8e^{2x} \big[B\cos 2x - A\sin 2x \big],$$

$$\widetilde{y}_1''' = 16e^{2x} \big[(B-A)\cos 2x + (-A-B)\sin 2x \big].$$

Подставим \widetilde{y}_1 , \widetilde{y}_1' , \widetilde{y}_1'' , \widetilde{y}_1''' в уравнение, и после приведения подобных слагаемых, получим

$$e^{2x} \cdot \left[(8B - 16A)\cos 2x + (-8A - 16B)\sin 2x \right] = e^{2x}\sin 2x,$$

$$\Rightarrow (8B - 16A)\cos 2x + (-8A - 16B)\sin 2x = 0 \cdot \cos 2x + \sin 2x,$$

$$\Rightarrow \begin{cases} 8B - 16A = 0, \\ -16B - 8A = 1; \end{cases} \Rightarrow B = -\frac{1}{20}, \quad A = -\frac{1}{40},$$

$$\Rightarrow \widetilde{y}_1 = e^{2x} \left(-\frac{1}{40}\cos 2x - \frac{1}{20}\sin 2x \right) = -\frac{1}{40}e^{2x} \left(\cos 2x + 2\sin 2x \right).$$

2)
$$f_2(x) = 2x^2$$
, т. е. правая часть представляет собой многочлен степени $s=2$, $\alpha=\beta=0$. Так как число $\alpha\pm\beta i=0$ не является корнем характеристического уравнения, то частное решение неоднородного уравнения с правой частью $f_2(x)$ следует искать в виде

уравнения с правой частью $f_2(x)$ следует искать в виде $\widetilde{y}_2 = Ax^2 + Bx + C$.

 $\widetilde{y}_2' = 2Ax + B$, $\widetilde{y}_2'' = 2A$, $\widetilde{y}_2''' = 0$. Имеем Подставим \widetilde{y}_2 , \widetilde{y}_2' , \widetilde{y}_2'' , \widetilde{y}_2''' в неоднородное уравнение, и после приведения подобных слагаемых, получим:

$$-8Ax^{2} + 8(A - B)x - 4(A - B + 2C) = 2x^{2},$$

$$\Rightarrow \begin{cases}
-8A = 2, \\
A - B = 0, \\
A - B + 2C = 0;
\end{cases} \Rightarrow A = -\frac{1}{4}, B = -\frac{1}{4}, C = 0.$$

$$\Rightarrow \widetilde{y}_{2} = -\frac{1}{4}(x^{2} + x).$$

Итак, частное решение исходного неоднородного уравнения имеет вид $\widetilde{y} = \widetilde{y}_1 + \widetilde{y}_2 = -\frac{1}{40}e^{2x}(\cos 2x + 2\sin 2x) - \frac{1}{4}(x^2 + x),$

а его общее решение

$$y = (C_1 e^{2x} + C_2 \cos 2x + C_3 \sin 2x) - \frac{1}{40} e^{2x} (\cos 2x + 2\sin 2x) - \frac{1}{4} (x^2 + x) . \diamond$$