2020 RI H2 Mathematics Prelim Paper 1 Solutions

$$16x^2 + 9y^2 = 144$$

When
$$x = \sqrt{5}$$
: $y = \pm \sqrt{\frac{144 - 16(5)}{9}} = \pm \frac{8}{3}$

Differentiate equation with respect to *x*:

$$32x + 18y\left(\frac{dy}{dx}\right) = 0 \Rightarrow \frac{dy}{dx} = \frac{-32x}{18y} = -\frac{16x}{9y}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{9y}{16x} \times 2 = -\frac{9y}{8x}$$

For $\frac{dx}{dt} > 0$, x and y have different parity, and so the particle increases with respect to x

at
$$(\sqrt{5}, -\frac{8}{3})$$
.

[Alternative 1: for position of particle : Since $\frac{dy}{dt}$, x > 0, particle moves in anti-

clockwise direction. Hence for $\frac{dx}{dt} > 0$, y should be negative.]

[Alternative 2: for position of particle : differentiate w.r.t t and get

$$32x\frac{dx}{dt} + 18y\frac{dy}{dt} = 0$$
. Since $\frac{dx}{dt}, \frac{dy}{dt}, x > 0$, y should be negative.]

At
$$\left(\sqrt{5}, -\frac{8}{3}\right)$$
, $\frac{dx}{dt} = -\frac{9}{8} \times \frac{-8}{3\sqrt{5}} = \frac{3}{\sqrt{5}}$ cms⁻¹

At
$$\left(\sqrt{5}, -\frac{8}{3}\right)$$
, its rate of increase is $\frac{3}{\sqrt{5}}$ cms⁻¹

[Alternative for $\frac{dx}{dt}$,

$$32x\frac{\mathrm{d}x}{\mathrm{d}t} + 18y\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Rightarrow 32\sqrt{5}\frac{\mathrm{d}x}{\mathrm{d}t} + 18\left(\frac{-8}{3}\right)(2) = 0 \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{\sqrt{5}}$$

2 [4]

Let x, y and z be the amounts he invested into the 2%, 3% and 5% accounts respectively.

$$x + y + z = 30000$$
 ----- (1)

$$0.02x + (1.03^2 - 1)y + 0.05z = 1423.50$$
 ----- (2)

$$x - z = 1000$$
 ----- (3)

From GC, solving the 3 equations, x = 8000, y = 15000, z = 7000

3
(i)
$$y = ux \Rightarrow \frac{dy}{dx} = x \frac{du}{dx} + u$$

$$(y - x) \left(\frac{dy}{dx} - \frac{y}{x} \right) = y^2 + 2x^2$$

$$\Rightarrow (ux - x) \left(\left(x \frac{du}{dx} + u \right) - u \right) = u^2 x^2 + 2x^2$$

$$\Rightarrow (ux - x) \left(x \frac{du}{dx} \right) = u^2 x^2 + 2x^2$$

$$\Rightarrow (u - 1) \left(\frac{du}{dx} \right) = u^2 + 2 \qquad \because x > 0$$

$$\Rightarrow \left(\frac{u - 1}{u^2 + 2} \right) \left(\frac{du}{dx} \right) = 1$$

$$\Rightarrow \left(\frac{u}{u^2 + 2} - \frac{1}{u^2 + 2} \right) \left(\frac{du}{dx} \right) = 1$$
(ii)
$$\left(\frac{u}{u^2 + 2} - \frac{1}{u^2 + 2} \right) \left(\frac{du}{dx} \right) = 1$$

$$\Rightarrow \int \frac{u}{u^2 + 2} - \frac{1}{u^2 + 2} du = \int 1 dx$$

$$\Rightarrow x = \frac{1}{2} \ln(u^2 + 2) - \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{u}{\sqrt{2}} \right) + C$$

$$x = \frac{1}{2} \ln \left(\left(\frac{y}{x} \right)^2 + 2 \right) - \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{y}{\sqrt{2}x} \right) + C$$

4
$$x^2 + y^2 - 6x = 7$$

(i) $(x-3)^2 + y^2 - 9 = 7$
 $(x-3)^2 + y^2 = 4^2$
(ii) $x = 3 \Rightarrow 9 + y^2 - 6(3) = 7 \Rightarrow y^2 = 16 \Rightarrow y = \pm 4$
[4] $x^2 + y^2 - 6x = 7 \Rightarrow (x-3)^2 + y^2 = 4^2 \Rightarrow x = 3 \pm \sqrt{4^2 - y^2}$
Since $x \ge 3$, $x = 3 + \sqrt{4^2 - y^2}$.
Volume of solid generated $= \pi \int_{-4}^{4} x^2 dy - \pi (3)^2 (2(4))$
 $= \pi \int_{-4}^{4} (3 + \sqrt{4^2 - y^2})^2 dy - 72\pi$
 $= \pi \int_{-4}^{4} (9 + 6\sqrt{4^2 - y^2} + 16 - y^2) dy - 72\pi$
 $= \pi \left[25y - \frac{y^3}{3} \right]_{-4}^{4} + (6\pi)(2) \left[\frac{\pi}{4} (4^2) \right] - 72\pi$

$$= \pi \left(200 - \frac{128}{3}\right) + 48\pi^2 - 72\pi$$
$$= \frac{256}{3}\pi + 48\pi^2$$

$$\begin{cases} f(r+2)-f(r) = \frac{2^{r/2}}{r} - \frac{2^r}{r-2} \\ = \frac{2^{r/2}(r-2)-2^r r}{r(r-2)} \\ = \frac{4r.2^r - 8.2^r - r.2^r}{r(r-2)} \\ = \frac{4r.2^r - 8.2^r - r.2^r}{r(r-2)} \\ = \frac{3r - 8)2^r}{r(r-2)} \text{ (shown)}$$

$$\begin{cases} (i) \\ [4] \end{cases} \sum_{r=3}^n \frac{(3r-8)2^r}{r(r-2)} = \sum_{r=3}^n \left(f(r+2) - f(r) \right) \\ = \int_{r=3}^{18(5)-f(3)} \frac{1}{r(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(5)} \frac{1}{r(5)} \frac{1}{r(5)} \\ + \frac{1}{18(5)} \frac{1}{r(5)} \frac{1}{r(7)} \frac{1}{r(7)}$$

[3] Let
$$z = x + iy$$
, $x, y \in \mathbb{R}$. Then
$$z^2 = 4i - 3 \qquad \Rightarrow (x + iy)^2 = (x^2 - y^2) + 2ixy = 4i - 3$$

$$\Rightarrow \begin{cases} x^2 - y^2 = -3 \\ 2xy = 4 \end{cases}$$

$$\Rightarrow x^2 - \frac{4}{x^2} = -3$$

$$\Rightarrow x^4 + 3x^2 - 4 = (x^2 + 4)(x^2 - 1) = 0$$

$$\Rightarrow x = \pm 1$$
When $x = 1, y = 2$. When $x = -1, y = -2$
Thus the roots are $1 + 2i$ and $-1 - 2i$.

(a)
$$(z^2 + 3)^2 + 16 = 0$$

$$z^2 + 3 = \pm 4i$$

$$z^2 = 4i - 3 \quad \text{or} \quad -4i - 3 \qquad = -3 \pm \frac{8i}{2} = -3 \pm 4i$$
For $z^2 = 4i - 3$, $z = 1 + 2i$, $-1 - 2i$
Since (1) is an equation with real coefficients, the roots occur in conjugate pairs. Thus the roots of the equation $z^4 + 6z^2 + 25 = 0$ are $z = 1 \pm 2i$, $-1 \pm 2i$.

(b)
$$14$$

$$w = \frac{8 - 2i}{5 + 3i} = \frac{8 - 2i}{5 + 3i} \times \frac{5 - 3i}{5 - 3i}$$

$$= \frac{40 - 10i - 24i + 6i^2}{5^2 + 3^2}$$

$$= \frac{34 - 34i}{34} = 1 - i$$
Thus $|w| = \sqrt{1^2 + 1^2} = \sqrt{2}$ and arg $w = -\frac{\pi}{4}$
For w^n to be real, $w^n = (\sqrt{2})^n \left[\cos\left(-\frac{n\pi}{4}\right) + i\sin\left(-\frac{n\pi}{4}\right)\right]$ is real.

Hence $\sin\left(-\frac{n\pi}{4}\right) = 0 \Rightarrow \frac{n\pi}{4} = k\pi, k \in \mathbb{Z}$, and so

 $n = 4k, k \in \mathbb{Z}^+$ (since n > 0)

 $x = t \ln t \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = t \left(\frac{1}{t}\right) + \ln t = 1 + \ln t,$

 $y = \frac{4}{e^t} + e^t \Rightarrow \frac{dy}{dt} = -4e^{-t} + e^t = \frac{e^{2t} - 4}{e^t},$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{2t} - 4}{\mathrm{e}^t (1 + \ln t)}$$

Now, $x = 0 \Rightarrow t \ln t = 0 \Rightarrow t = 1 \ (\because t > 0)$

$$\Rightarrow y = \frac{4}{e} + e = \frac{4 + e^2}{e}$$
 and $\frac{dy}{dx} = \frac{e^2 - 4}{e}$

Equation of normal at $P(0, \frac{4+e^2}{e})$:

$$y - \frac{4 + e^2}{e} = -\frac{e}{e^2 - 4}x \implies y = \frac{e}{4 - e^2}x + \frac{4 + e^2}{e}$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{2t} - 4}{\mathrm{e}^{t} (1 + \ln t)} = 0 \Longrightarrow \mathrm{e}^{2t} - 4 = 0 \Longrightarrow t = \ln 2$

Min occurs at $x = \ln 2(\ln(\ln 2))$, $y = \frac{4}{e^{\ln 2}} + e^{\ln 2} = 4$

(iii)

$$= \int_{0.5\ln 0.5}^{0} \left(\frac{e}{4 - e^2} x + \frac{4 + e^2}{e} \right) - y \, dx$$

$$= \int_{0.5\ln 0.5}^{0} \left(\frac{e}{4 - e^2} x + \frac{4 + e^2}{e} \right) dx - \int_{\frac{1}{2}}^{1} \left(\frac{4}{e^t} + e^t \right) (1 + \ln t) \, dt$$

$$= 0.0943 \text{ (3s.f.)}$$

10 (i) (i) (i) (i) (ii) (iii) Shortest distance from B to π_1 (shown) $ \begin{array}{l} \mathbf{I} \cdot \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, \ \lambda \in \mathbb{R} \\ & Let C \text{ be a point on } I \text{ such that } \overline{OC} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}. \\ & \overline{AC} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \\ & \pi_1 : \mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 3 - 2 + 4 = 5 \Rightarrow \mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 5 \end{aligned} $ $ \begin{array}{l} \mathbf{Gi} \cdot Gi$		
$\overline{AC} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 3 \end{pmatrix}$ $\mathbf{n}_{\mathbf{i}} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $\pi_{1} : \mathbf{r}_{\mathbf{i}} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 3 - 2 + 4 = 5 \implies \mathbf{r}_{\mathbf{i}} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 5$ (\mathbf{ii}) $\overline{I3} = \overline{OF} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}, \text{ for some } \lambda \in \mathbb{R}$ $\overline{BF} = \overline{OF} - \overline{OB} = \begin{pmatrix} 6.5 + 2\lambda \\ -4 \\ -3\lambda \end{pmatrix}$ $\overline{BF} \cdot \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overline{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ (\mathbf{iii}) Shortest distance from B to π_{1} $= \text{length of projection of } \overline{BF} \text{ onto } \mathbf{n}_{1}$ $= \text{length of projection of } \overline{BF} \text{ onto } \mathbf{n}_{1}$ $= \overline{BF} \cdot \hat{\mathbf{n}}_{1} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $= \overline{BF} \cdot \hat{\mathbf{n}}_{1} = \frac{23}{\sqrt{17}} \text{ units}$	(2)	
$\overline{AC} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 3 \end{pmatrix}$ $\mathbf{n}_{\mathbf{i}} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $\pi_{1} : \mathbf{r}_{\mathbf{i}} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 3 - 2 + 4 = 5 \implies \mathbf{r}_{\mathbf{i}} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 5$ (\mathbf{ii}) $\overline{I3} = \overline{OF} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}, \text{ for some } \lambda \in \mathbb{R}$ $\overline{BF} = \overline{OF} - \overline{OB} = \begin{pmatrix} 6.5 + 2\lambda \\ -4 \\ -3\lambda \end{pmatrix}$ $\overline{BF} \cdot \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overline{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ (\mathbf{iii}) Shortest distance from B to π_{1} $= \text{length of projection of } \overline{BF} \text{ onto } \mathbf{n}_{1}$ $= \text{length of projection of } \overline{BF} \text{ onto } \mathbf{n}_{1}$ $= \overline{BF} \cdot \hat{\mathbf{n}}_{1} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $= \overline{BF} \cdot \hat{\mathbf{n}}_{1} = \frac{23}{\sqrt{17}} \text{ units}$		Let C be a point on l such that $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.
(ii) $\pi_{1} : \mathbf{r}. \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}. \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 3 - 2 + 4 = 5 \implies \mathbf{r}. \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 5$ (ii) $\overline{OF} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, \text{ for some } \lambda \in \mathbb{R}$ $\overline{BF} = \overline{OF} - \overline{OB} = \begin{pmatrix} 6.5 + 2\lambda \\ -4 \\ -3\lambda \end{pmatrix}$ $\overline{BF}. \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overline{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ (iii) Shortest distance from B to π_{1} $= \text{length of projection of } \overline{BF} \text{ onto } \mathbf{n}_{1}$ $= \overline{BF} \cdot \hat{\mathbf{n}}_{1} = \frac{\begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $= \frac{23}{2\sqrt{17}} \text{ units}$ (iv)		(1) (1) (0)
(ii) [3] $\overrightarrow{OF} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$, for some $\lambda \in \mathbb{R}$ $\overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = \begin{pmatrix} 6.5 + 2\lambda \\ -4 \\ -3\lambda \end{pmatrix}$ $\overrightarrow{BF} \cdot \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overrightarrow{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ (iii) Shortest distance from B to π_1 $= \text{length of projection of } \overrightarrow{BF} \text{ onto } \mathbf{n}_1$ $= \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $= \overrightarrow{BF} \cdot \mathbf{n}_1 = \frac{23}{\sqrt{17}} \text{ units}$ (iv)		
$\overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = \begin{pmatrix} 6.5 + 2\lambda \\ -4 \\ -3\lambda \end{pmatrix}$ $\overrightarrow{BF} = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overrightarrow{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ (iii) Shortest distance from B to π_1 $= \text{length of projection of } \overrightarrow{BF} \text{ onto } \mathbf{n}_1$ $= \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 = \frac{\begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}{\sqrt{17}} = \frac{23}{2\sqrt{17}} \text{ units}$ (iv)		$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$
$\overrightarrow{BF}. \begin{pmatrix} 2\\0\\-3 \end{pmatrix} = 0 \implies 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $\therefore \overrightarrow{BF} = \begin{pmatrix} 6.5 + 2(-1)\\-4\\-3(-1) \end{pmatrix} = \begin{pmatrix} 4.5\\-4\\3 \end{pmatrix} \text{ (shown)}$ (iii) Shortest distance from B to π_1 $= \text{length of projection of } \overrightarrow{BF} \text{ onto } \mathbf{n}_1$ $= \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 = \frac{\begin{pmatrix} 4.5\\-4\\3 \end{pmatrix} \cdot \begin{pmatrix} 3\\2\\2 \end{pmatrix}}{\sqrt{17}} = \frac{23}{2\sqrt{17}} \text{ units}$ (iv)	(ii) [3]	
$ \overrightarrow{BF} = 0 \Rightarrow 13 + 4\lambda + 9\lambda = 0$ $\lambda = -1$ $ \overrightarrow{BF} = \begin{pmatrix} 6.5 + 2(-1) \\ -4 \\ -3(-1) \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \text{ (shown)}$ $ \overrightarrow{a} = \text{length of projection of } \overrightarrow{BF} \text{ onto } \mathbf{n}_1$ $ \overrightarrow{BF} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$		
		$\begin{vmatrix} \overrightarrow{BF} \cdot \begin{pmatrix} 0 \\ -3 \end{pmatrix} = 0 \Rightarrow 13 + 4\lambda + 9\lambda = 0$
(iii) Shortest distance from B to π_1 $= \text{length of projection of } \overrightarrow{BF} \text{ onto } \mathbf{n}_1$ $= \left \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 \right = \frac{\begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}{\sqrt{17}} = \frac{23}{2\sqrt{17}} \text{ units}$ (iv)		
$= \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 = \frac{\begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \\ \sqrt{17}} = \frac{23}{2\sqrt{17}} \text{ units}$ (iv)	, ,	
(iv) 2\(\frac{1}{2}\)	[2]	= length of projection of \overrightarrow{BF} onto \mathbf{n}_1
(iv) 2\(\gamma\)17		$\begin{pmatrix} 4.5 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
		$ = \left \overrightarrow{BF} \cdot \hat{\mathbf{n}}_1 \right = \frac{\begin{pmatrix} -4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \end{pmatrix}}{\sqrt{17}} = \frac{23}{2\sqrt{17}} \text{ units} $
		Let θ be the acute angle between π_1 and π_2

$$\sin \theta = \frac{\frac{23}{2\sqrt{17}}}{\frac{BF}{BF}}$$

$$= \frac{23}{2\sqrt{17}} \div |\overrightarrow{BF}|$$

$$\theta = \sin^{-1} \frac{23}{2\sqrt{17}\sqrt{4.5^2 + 4^2 + 3^2}} = 24.5^{\circ} \text{ (1d.p)}$$

[Alternatively,
$$\mathbf{n}_2 = \overrightarrow{BF} \times \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 4.5 \\ -4 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 12 \\ 19.5 \\ 8 \end{pmatrix}$$

Let θ be the acute angle between π_1 and $\frac{23}{2\sqrt{17}}$

$$\theta = \cos^{-1} \frac{\binom{3}{2} \binom{12}{19.5}}{\sqrt{17}\sqrt{588.25}} = \cos^{-1} \frac{91}{\sqrt{17}\sqrt{588.25}} = 24.5^{\circ} \text{ (1d.p)}]$$

11 By trigo ratio,
$$EX = a \sin \theta$$
, $AX = a \cos \theta$

(i) [2]

$$V = a \left\{ 2 \left[\frac{1}{2} (a \cos \theta) (a \sin \theta) \right] + a(a \sin \theta) \right\}$$

$$= a^{3} \sin \theta (1 + \cos \theta)$$

$$X$$

[Alternatively, by area of trapezium $V = a \left\{ \frac{1}{2} (a \sin \theta) \left[a + (a + 2a \cos \theta) \right] \right\}$ $= a^3 \sin \theta (1 + \cos \theta)$

(ii)
$$\frac{dV}{d\theta} = a^3 \left[\cos\theta (1 + \cos\theta) + \sin\theta (-\sin\theta)\right]$$

[5]

$$= a^{3} \left[\cos \theta + \cos^{2} \theta - \sin^{2} \theta \right]$$

$$= a^{3} \left[\cos \theta + \cos 2\theta \right]$$

$$= 2a^{3} \cos \frac{3\theta}{2} \cos \frac{\theta}{2} \quad \text{(Factor Formulae)}$$

$$\frac{dV}{d\theta} = 0 \Rightarrow \cos \frac{3\theta}{2} = 0 \text{ or } \cos \frac{\theta}{2} = 0$$

$$\Rightarrow \frac{3\theta}{2} \text{ or } \frac{\theta}{2} = \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{3} \text{ or } \pi(\text{NA})$$

Alternatively:

$$\frac{dV}{d\theta} = a^{3} \left[\cos \theta (1 + \cos \theta) + \sin \theta (-\sin \theta) \right]$$

$$= a^{3} \left[\cos \theta + \cos^{2} \theta - \sin^{2} \theta \right]$$

$$= a^{3} \left[\cos \theta + \cos^{2} \theta - \left(1 - \cos^{2} \theta \right) \right]$$

$$= a^{3} \left[2\cos^{2} \theta + \cos \theta - 1 \right]$$

$$= a^{3} (2\cos \theta - 1)(\cos \theta + 1)$$

$$\frac{dV}{d\theta} = 0 \Rightarrow \cos \theta = \frac{1}{2} \text{ or } \cos \theta = -1$$

$$\Rightarrow \theta = \frac{\pi}{3} \text{ or } \pi (NA)$$

$$\frac{\mathrm{d}V}{\mathrm{d}\theta} = a^3 \left[\cos\theta + \cos 2\theta\right]$$

At
$$\theta = \frac{\pi}{3}$$
, $\frac{d^2V}{d\theta^2} = a^3 \left[-\sin \theta - 2\sin 2\theta \right]$
= $a^3 \left[-\frac{\sqrt{3}}{2} - \sqrt{3} \right] = -\frac{3\sqrt{3}}{2} a^3 < 0$

Hence $\theta = \frac{\pi}{3}$ gives maximum value of V and $\max V = a^3 \left(\frac{\sqrt{3}}{2}\right) \left(1 + \frac{1}{2}\right) = \frac{3\sqrt{3}}{4}a^3$ cm³

Half its height =
$$\frac{1}{2} \left(a \sin \frac{\pi}{3} \right) = \frac{\sqrt{3}a}{4}$$
.

$$\therefore \tan \frac{\pi}{3} = \frac{\frac{\sqrt{3}a}{4}}{x} \Rightarrow \sqrt{3} = \frac{\sqrt{3}a}{4x} \Rightarrow x = \frac{a}{4}$$

V(half its height)

$$= a \left[\left(\frac{\sqrt{3}a}{4} \right) a + \left(\frac{a}{4} \right) \left(\frac{\sqrt{3}a}{4} \right) \right] = \left(\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{16} \right) a^3 = \frac{5\sqrt{3}}{16} a^3 \text{ cm}^3$$

Cross-Sectional View

Note that we can consider face ABFE as a possible cross-sectional view in Figure 3.

Then
$$\angle ABF = \frac{2\pi}{3}$$
 and $AB = BF = a$, and so

Area of triangle
$$ABF = \frac{1}{2}a^2 \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{4}a^2$$
.

Hence the volume of water that the container can hold at this position is at most $\frac{\sqrt{3}}{4}a^3 < V(\text{half the height})$, and so water will definitely flow out of the container before it reaches this position. So no, it is not possible.

[Alternative explanation (for the case where θ may not be fixed): Note that area of triangle increases with θ and θ is acute. Hence

max volume
$$<\frac{a^3}{2}\sin\frac{\pi}{2} = \frac{a^3}{2} < \frac{5\sqrt{3}}{16}a^3$$
.]

12 (i)	$\frac{dL}{dt} = k(L_{\infty} - L)$, where k is the constant of proportionality.
[5]	$\frac{\mathrm{d}L}{\mathrm{d}t} = k(L_{\infty} - L)$
	$\frac{1}{L_{co} - L} \frac{\mathrm{d}L}{\mathrm{d}t} = k$
	~
	$\int \frac{1}{L_{\infty} - L} \mathrm{d}L = \int k \mathrm{d}t$
	$-\ln(L_{\infty} - L) = kt + c \qquad \qquad \therefore L_{\infty} - L > 0$
	$L_{\infty} - L = e^{-(kt+c)}$
	$L_{\infty} - L = Ae^{-kt}$, A is a positive constant
	$L = L_{\infty} - Ae^{-kt}$, A is a positive constant
[2]	Note that $L \neq L_{\infty}$ in this context. Also, $A > 0$.
[3]	Since $L_{\infty} = 419 \text{ mm}$, $L = 419 - Ae^{-kt}$ When $t = 1$, $L = 219$ and thus $219 = 419 - Ae^{-k} \Rightarrow Ae^{-k} = 200$ (1)
	Also, $t = 1$, $\frac{dL}{dt} = 55 \implies Ake^{-k} = 55$ (2)
	Sub (1) into (2), $k = \frac{55}{200} = \frac{11}{40}$ (or 0.275)
	(alternatively, using $\frac{dL}{dt} = k(L_{\infty} - L)$, $55 = k(419 - 219)$)
	Thus $A = 200(e^{\frac{11}{40}}) = 263.31 = 263$
	$L = 419 - 263e^{-\frac{11}{40}t}$
(ii) [2]	When $L = 300$, $300 = 419 - 263.31e^{-\frac{11}{40}t} \Rightarrow t = 2.89$ years
(iii)	L
[2]	↑
	419
	156
	\overline{O}