

^{*} Slides adopted from Prof. Manos Antonakakis

Logistics

- HW1 due next Monday midnight
- For those doing the project, start forming teams + brainstorming ideas (feel free to run initial ideas by me in OHs, Piazza, etc.)

Continuing with hashes/message digests

Message Authentication Code (MAC)

- Designed to provide both authentication and integrity.
- How can we use hash functions to compute a MAC?
 - ▶ *H* is a hash function
 - ▶ m is a message
 - K is a secret key.
- Let's talk about different constructions
 - Secret Prefix Construction => H(K II m)
 - Secret Suffix Construction => H(m II K)
 - ► HMAC => H((K⊕opad) II H((K⊕ipad) II m))

Secret Prefix Construction

$$MAC = H(K \parallel m)$$

H = cryptographic hash functionK = secret keym = message to send

Uh oh! Length Extension Attack!

- Because most hash functions are iterated hash functions
 - Attacker knows the message m and H(K II m)
 - They could append something to m to get m' = m II a, and use H(K II m) to initialize the computation of H(K II m')

Secret Suffix Construction

$$MAC = H(m | I | K)$$

H = cryptographic hash functionK = secret keym = message to send

Secret Suffix Construction

- Better! But subject to weakness in the hash function.
 - ▶ Say the attacker can find a hash collision with the original message m, so an m' where H(m') = H(m).
 - ▶ If H is an iterated hash function, MAC(m') = MAC(m)
 - Even w/o the secret key, attacker can find MAC collisions.

HMACs

$HMAC = H(K \parallel H (K \parallel m))$

H = cryptographic hash functionK = secret keym = message to send

HMAC

$$HMAC = H(K \parallel H (K \parallel m))$$

- Inner + outer layers of hashing is much stronger!
- Resistant to length extension attack
- Technically can use same key, but in practice, slightly alters the keys

```
HMAC = H( (K \oplus opad) II
H ( (K \oplus ipad) II m))
```

where *ipad* and *opad* are standardized values

Public Key Cryptography

Public Key Cryptography

Symmetric Key Crypto

- Requires sender and receiver know shared secret key
- What's the challenge?
 - Key distribution is hard and fraught with peril!

Public Key Cryptography

- Radically different approach [Diffie-Hellman76, RSA78]
- Sender and receiver do not share secret key
 - Receiver has a public encryption key known to all
 - Receiver has a private decryption it keeps secret

Public Key Cryptography

Computational Hardness

- Why do we care about computational hardness?
 - Hard computational problems are cornerstone of modern cryptography.
 - Computational hardness will be the basis of the security for the two public key algorithms we discuss.

The Discrete Logarithm Problem (DLP)

Given x where $x \equiv g^y \mod p$, find y. g is a number within group Z_D^* , for prime p.

• What is Z_p^* ?

- Z_p^* is the multiplicative group of integers modulo prime p.
 - It contains the set of all integers from 1 to p-1, so {1, 2,..., p-1}.
 - Only operation permitted is multiplying group members mod p.
- Group axioms (required properties) include closure, associativity, identity existence, and inverse existence

▶ Is DLP NP-Complete?

This problem is NP and seems difficult but probably not NP-complete.

Diffie-Hellman (DH) Key Exchange

First developed public key cryptosystem

Useful to perform key exchange when communication channel is not private

How does it work?

- 1. Two prime numbers **g** and **p** are publicly known (e.g., standard values).
- Alice picks a secret number \mathbf{a} , computes $\mathbf{g}^{\mathbf{a}} \mod \mathbf{p} = \mathbf{A}$, and sends \mathbf{A} to Bob.
- Bob picks a secret number **b**, computes $g^b \mod p = B$, and sends **B** to Alice.
- Alice takes her secret number **a**, and the **B** received from Bob, and computes the shared secret key as: **B**^a mod **p** = **g**^{ab} mod **p**.
- Bob takes his secret number **b**, and the **A** received from Alice, and computes the shared secret key as: $A^b \mod p = g^{ab} \mod p$.

```
(g^a \mod p)^b \mod p = g^{ab} \mod p

(g^b \mod p)^a \mod p = g^{ba} \mod p
```

Diffie-Hellman (DH) Key Exchange

First developed public key cryptosystem

Useful to perform key exchange when communication channel is not private

How does it work?

- 1. Two prime numbers **g** and **p** are publicly known (e.g., standard values).
- Alice picks a secret number \mathbf{a} , computes $\mathbf{g}^{\mathbf{a}} \mod \mathbf{p} = \mathbf{A}$, and sends \mathbf{A} to Bob.
- Bob picks a secret number **b**, computes $g^b \mod p = B$, and sends **B** to Alice.
- 4. Alice takes her secret number **a**, and the **B** received from Bob, and computes the shared secret key as: **B**^a mod **p** = **g**^{ab} mod **p**.
- Bob takes his secret number **b**, and the **A** received from Alice, and computes the shared secret key as: $A^b \mod p = g^{ab} \mod p$.
- Both parties how have the same secret key, and note that the secret key itself was not directly sent (i.e., **g**^{ab} mod **p** was never directly sent)
- Figuring out **a** from $A=g^a \mod p$ would require solving DLP (same for **b**).

DH: Man-in-the-Middle Attack

Alice-Eve Shared Key gae mod p

Bob-Eve Shared Key geb mod p

DH: Man-in-the-Middle Attack

Need some way to verify that the public key Bob receives is truly from Alice (and vise versa). How to solve? (End of today's lecture)

The Factoring Problem

Given a large number $N = p \times q$, find the prime factors p and q

- Factoring Large Numbers in Practice
 - The fastest factoring algorithm for large numbers is the general number field sieve (GNFS).
 - ► GNFS complexity is (roughly) = $\exp(1.92x(\ln n)^{1/3}(\ln \ln n)^{2/3})$
- Is Factoring NP-Complete?
 - ▶ Factoring is NP and "seems hard to solve" (i.e., we don't know how to do so efficiently).
 - However, probably not NP-complete, but no proof for that.

RSA Overview

- A message is a bit pattern.
- A bit pattern can be uniquely represented by an integer number.
- Thus encrypting a message is equivalent to encrypting a number.

Example

- ▶ m = 10010001 = 145
 - This message is uniquely represented by the decimal number 145.
 - To encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating Public/Private Key Pair

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e<n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1).
- 5. Public key is (n,e). Private key is (n,d).

RSA: Encryption and Decryption

public private

- O. Given (n,e) and (n,d) as computed above
- To encrypt message m (<n), compute
 c = m^e mod n
- 2. To decrypt received bit pattern, c, compute $m = c^{d} \mod n$

Magic happens!
$$m = (m^e \mod n)^d \mod n$$

RSA: Example

```
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).

d=29 (so ed-1 exactly divisible by z)

ed = 145 \equiv 1 \mod z (b/c 144/24=6)
```

Encrypting 8-bit messages.

encrypt:
$$\frac{\text{bit pattern}}{00001000} \frac{\text{m}}{12} \frac{\text{m}^e}{24832} \frac{\text{c = m}^e \text{mod n}}{17}$$

decrypt:
$$\frac{c}{17}$$
 $\frac{c}{481968572106750915091411825223071697}$ $\frac{m = c^d \mod n}{12}$

RSA

Why is this secure?

Suppose you know Bob's public key (n,e). It's really hard to determine d without knowing the factors of n (factoring is hard!)

How to handle large messages?

- Combine RSA with symmetric crypto.
- Use RSA to securely transmit a symmetric key, then use symmetric cipher to encrypt message.
- RSA is slow anyways, AES is fast

Digital Signature

Simple digital signature for message m:

▶ Bob signs m by encrypting with his private key K_B , creating "signed" message, K_B (m). (Could use RSA)

Digital Signature with Hash

Bob sends digitally signed message:

Alice verifies signature and integrity of digitally signed message:

Digital Signatures Summary

What are the general steps?

- Sender signs a message with private key.
- 2. Receiver verifies message with public key.

What does this get us?

- 1. Verifiability
 - ➡ Receiver can verify sender signed message (m).
 - No one else could have signed message (m).
- 2. Non-repudiation:
 - Sender cannot claim to have signed m' and not m.

Back to Diffie-Hellman: Man-in-the-Middle Defense

The authenticated Diffie-Hellman protocol

Back to Diffie-Hellman: Man-in-the-Middle Defense

The authenticated Diffie-Hellman protocol

Let's say Eve recorded all traffic b/w Alice and Bob. After Alice and Bob finish communicating, they "forget" a and b (they are ephermeral/short-lived keys). **Perfect Forward Secrecy:** Even if Alice or Bob's private key is leaked, Eve still can't decrypt the recorded traffic (w/o solving the DLP).

Putting it all together

Use public-key crypto to establish symmetric keys:

- RSA encryption to secretly agree on symmetric key
- Diffie-Hellman key-exchange with RSA <u>signatures</u> to prevent MITM attack, provides perfect forward secrecy

With the symmetric key:

- Encrypt/decrypt messages using AES in some secure block cipher mode (e.g., CBC, CTR)
- Use HMAC (which relies on a secret key) to achieve integrity + authentication

General recommendation: use different keys for different algorithms

- different RSA key pair for signing and for encrypting
- different secret keys for AES and HMACs