

1. Basic question

Data: $\{x^{(1)}, \dots, x^{(n)}\} \sim P_{\theta^*}$, where P_{θ^*} represents the unknown distribution with parameters θ^* .

Question: Can we come up with an estimate $\hat{\theta}$ that gets close to θ^* ?

2. Gaussian mean estimation

Goal: to estimate mean of a Gassian distribution.

Suppose $\{\chi^{(1)}, \dots, \chi^{(n)}\} \sim N(0^*, \sigma^2 I)$ i.i.d., where $\sigma^2 I$ is known.

Define $\hat{\theta} = \frac{1}{n} \sum \chi^{(i)}$, we now study $\hat{\theta} - \hat{\theta}^*$.

[Lemma 1] $\hat{\theta} - \theta^* \sim N(0, \frac{\sigma^2 I}{n})$

Pf: $\chi^{(i)} - \theta^* \sim N(0, \sigma^2 I)$, then we have $S_n := \sum_{i=1}^n (\chi^{(i)} - \theta^*) \sim N(0, n\sigma^2 I)$ Since $\chi^{(i)} - \theta^*$ is independent with $\chi^{(j)} - \theta^*$ if $i \neq j$. $\Rightarrow \hat{\theta} - \theta^* = S_n/n \sim N(0, \frac{\sigma^2 I}{n})$

[Lemma 2]
$$\|\hat{\theta} - \theta^*\|_2^2 \sim \frac{\sigma^2}{\hbar} \chi_d^2$$

 $E[\|\hat{\theta} - \theta^*\|_2^2] = \frac{d\sigma^2}{\hbar}$

Pf: By Lemma 1, we have $\mathcal{V} := (\hat{\theta} - \theta^*) \sqrt{\frac{n}{\sigma^2}} \sim N(0, I)$ $\frac{n}{\sigma^2} || \hat{\theta} - \theta^* ||_2^2 = \sum_{j=1}^d \mathcal{V}_j^2 \sim \chi_d^2$ $\Rightarrow || \hat{\theta} - \theta^* ||_2^2 \sim \frac{\sigma^2}{n} \chi_d^2 , \text{ which proves the first statement.}$

المنا منت الما الما متمعهمهما الما المتعادم المت

3. Multinomial estimation

Suppose we have an unknown multinomial distribution over d choises: $0^* \in \Delta d$ ($\theta = [\theta_1, ..., \theta_d]$, $\theta_j > 0$ and $\Delta \theta_j = 1$). Suppose $\{\chi^{(i)}, ..., \chi^{(n)}\} \sim Multinomial (<math>\theta^*$), i.i.d., where $\chi^{(i)} \in \{e_1, ..., e_d\}$ and $e_j \in \{0,1\}^d$ is one-hot vector.

 \Box

Consider the empirical distribution: $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$

Strategy: to study the asymptotic behavior of ô.

First, by Central limit Theorem, we have $\sqrt{n}(\hat{\theta}-\theta^*) \xrightarrow{d} N(0,V)$

where $V := diag(\theta^*) - \theta^*(\theta^*)^T$, $V_{jk} = \int_{-\theta^*}^{\theta^*} (1 - \theta_j^*) , \text{ if } j = k$ $1 - \theta^*_{j} \theta^*_{k} , \text{ if } j \neq k.$

(Since $E[x_j] = E[x_j^2] = \theta_j^*$, $E[x_j x_k] = 0$ for $j \neq k$) x_j can only be 0 or 1. At most one of them be 1.

Next, by the Continuous Mapping Theorem on $\|\cdot\|_2^2$: $\|\cdot\|_2^2 \to \text{tr}(W(V,1))$ (*)

where W(V,k) is the Wishart distribution with mean matrix V and k degrees of freedom.

Since $3 \sim N(0, V)$, then $33^{T} \sim W(V, I)$, $||3||_{2}^{2} = tr(33^{T})$.

Taking expectations of both sides of
$$(*)$$
, and dividing by n:

$$E[||\hat{\theta}-\theta^*||_2^2] \rightarrow \left(\frac{2}{j+1}\theta_j^*(1-\theta_j^*)\right)\frac{1}{n} + o(\frac{1}{n})$$

$$\leq \frac{1}{n} + o(\frac{1}{n})$$

Note: $Y_n \xrightarrow{d} Y$, if we want $E[Y_n] \rightarrow E[Y]$, Y_n should be uniformly integrable. Since $\chi^{(i)}$ is bounded, this is obvious.

4. Exponential families

[Definition 1] exponential family:

Let \mathcal{X} be a discrete set. Let $\phi: \mathcal{X} \to IR^d$ be a function. Define a family of distributions P:

$$P:= \{P_{\theta}: \theta \in | R^{d} \}, \quad P_{\theta}(x):= \exp\{O \cdot \Phi(x) - A(\theta)\}$$
 where the log-partition function $A(\theta):= \log \sum_{x \in X} \exp\{O \cdot \Phi(x)\}$ ensures the distribution is normalized. (i.e., $\sum P_{\theta} = 1$)

[Property of exponential family]

1. Gradient and mean:

$$\nabla A(\theta) = E_{\theta} [\phi(x)] := \sum_{\mathcal{R}} P_{\theta}(x) \phi(x)$$
 (easy to check)

2. Covariance and Hessian matrix:

$$\nabla^{2}A(\theta) = C_{0}V_{\theta} [\phi(x)] := E_{\theta}[(\phi(x) - E_{\theta}[\phi(x)])(\phi(x) - E_{\theta}[\phi(x)])^{T}]$$

$$= \nabla \left(\sum_{i=1}^{n} P_{\theta}(x) \phi(x) \right)$$

$$= \nabla \left(\sum_{i=1}^{n} P_{\theta}(x) \phi(x) \right)$$

$$= \sum_{x} \nabla P_{\theta}(x) (\phi(x))^{T}$$

=
$$\sum_{x} P_{\theta}(x) (\phi(x) - E_{\theta} \phi(x)) (\phi(x))^{T}$$

$$= \underset{\leftarrow}{\mathbb{Z}} P_{\theta}(x) (\varphi(x) - E_{\theta}[\varphi(x)]) (\varphi(x) - E_{\theta}[\varphi(x)])^{T} = (\sigma V_{\theta}[\varphi(x)])^{T}$$

$$= (\underset{\leftarrow}{\mathbb{Z}} P_{\theta} \varphi(x) - E_{\theta}[\varphi(x)]) (E_{\theta}[\varphi(x)])^{T}$$

$$= 0$$

Note: (i) since $\nabla^2 A(\theta)$ is a covariance matrix, it is necessarily positive semidefinite, which means that A is convex.

(ii) If $\nabla^2 A(\theta) > 0$, then A is strongly convex and ∇A is invertible. In this case, P is said to be minimal.

(iii) If P is minimal, there is a one-to-one mapping;
$$\theta = (\nabla A)^{-1}(\mu)$$
, $\mu = \nabla A(\theta)$

For parameter estimation:

assume $\{\chi^{(1)}, \dots, \chi^{(m)}\}$ ~ P_{θ^*} , i.i.d., the classic way to estimate the distribution is Maximum Likelihood:

$$\hat{p} = P_{\hat{\theta}}, \quad \hat{\theta} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} \stackrel{\sum}{\underset{i=1}{\overset{n}{\geq}}} \log P_{\theta}(\chi^{(i)})$$
i.e.
$$\hat{\theta} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} \stackrel{\text{$\widehat{\gamma}$ index}}{\underset{\theta \in \mathbb{R}^d}{\overset{n}{\geq}}} \stackrel{\text{$\widehat{\gamma}$ index}}{\underset{\theta \in \mathbb{R}^d}{\overset{n}{\geq}}} \frac{1}{n} \stackrel{\text{$\widehat{\gamma}$ index}}{\underset{i=1}{\overset{n}{\geq}}} \Phi(\chi^{(i)})$$

We try to get a close form expression for $\hat{\theta}$ as a function of $\hat{\mu}$. $\nabla_{\theta}(\hat{\mu}\cdot\theta-A(\theta))=\hat{\mu}-\nabla A(\theta)$, since $\hat{\theta}$ is maximal,

$$\Rightarrow \hat{\mu} \sim \nabla K(\hat{\theta}) = 0$$

$$\Rightarrow \hat{\theta} = (\nabla A)^{T}(\hat{\mu})$$

Asymptotic analysis:

$$\sqrt{n} (\hat{\mu} - \mu^*) \xrightarrow{d} N(0, \text{Gov}_{\theta}[\phi(x)])$$
where $\mu^* = \text{E}[\phi(x)]$.

where he - - Ari. ...

Define
$$f = (\nabla A)^{-1}$$
, we have $\sqrt{n}(\hat{\theta} - \theta^*) = \sqrt{n}(f(\hat{\mu}) - f(\mu^*))$

By delta method:

$$\sqrt{n} (f(\hat{\mu}) - f(\mu^*)) \xrightarrow{d} \mathcal{N}(0, \nabla f(\mu^*)^T Cov_{\theta} L \phi cos) \nabla f(\mu^*))$$

Since
$$\nabla f(\mu) = \nabla^2 A(\mu)^{-1} = \text{Cov}_{\theta} [\phi(x)]^{-1}$$
, We have $\sqrt{n} (\hat{\theta} - \theta^*) \xrightarrow{d} \mathcal{N}(0, Cov_{\theta} [\phi(x)]^{-1})$

Note: If features vary more, we can estimate ô better.