

Methods 2 - 2

Chris Mathys

BSc Programme in Cognitive Science
Spring 2023

Weighted averages

Stratum, j	Label	Population, N_j	Average age, \bar{y}_j
1	United States	310 million	36.8
2	Mexico	112 million	26.7
3	Canada	34 million	40.7

Figure 3.1 Populations and average ages of countries in North America. (Data from CIA World Factbook 2010.) The average age of all North Americans is a weighted average of the average ages within each country.

Weighted averages

average age =
$$\frac{310\,000\,000 * 36.8 + 112\,000\,000 * 26.7 + 34\,000\,000 * 40.7}{310\,000\,000 + 112\,000\,000 + 34\,000\,000}$$
$$= 34.6.$$

average age =
$$\frac{310\,000\,000}{456\,000\,000} * 36.8 + \frac{112\,000\,000}{456\,000\,000} * 26.7 + \frac{34\,000\,000}{456\,000\,000} * 40.7$$

= $0.6798 * 36.8 + 0.2456 * 26.7 + 0.0746 * 40.7$
= 34.6 .

weighted average =
$$\frac{\sum_{j} N_{j} \bar{y}_{j}}{\sum_{j} N_{j}}$$

Vectors and matrices

$$\hat{y} = 46.3 + 3.0x$$
,

$$\hat{y} = \hat{a} + \hat{b}x.$$

The expressions \hat{a} and \hat{b} denote estimates—the coefficients 46.3 and 3.0 were obtained by fitting a line to past data—and \hat{y} denotes a predicted value. In this case, we would use y to represent an actual election result, and \hat{y} is the prediction from the model. Here we are focusing on the linear prediction, and so we work with \hat{y} .

We can define x as the vector that comprises these three cases, that is x = (-1, 0, 3). We can put these three predictions together:

$$\hat{y}_1 = 43.3 = 46.3 + 3.0 * (-1),$$

$$\hat{y}_2 = 46.3 = 46.3 + 3.0 * 0$$

$$\hat{y}_3 = 55.3 = 46.3 + 3.0 * 3,$$

Vectors and matrices

We can put these three predictions together:

$$\hat{y}_1 = 43.3 = 46.3 + 3.0 * (-1),$$

 $\hat{y}_2 = 46.3 = 46.3 + 3.0 * 0,$
 $\hat{y}_3 = 55.3 = 46.3 + 3.0 * 3,$

which can be written as vectors:

$$\hat{y} = \begin{pmatrix} 43.3 \\ 46.3 \\ 55.3 \end{pmatrix} = \begin{pmatrix} 46.3 + 3.0 * (-1) \\ 46.3 + 3.0 * 0 \\ 46.3 + 3.0 * 3 \end{pmatrix},$$

or, in matrix form,

$$\hat{y} = \begin{pmatrix} 43.3 \\ 46.3 \\ 55.3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 46.3 \\ 3.0 \end{pmatrix},$$

or, more abstractly,

$$\hat{y} = X\hat{\beta}.$$

Vectors and matrices (this and more: video 2a)

At the simplest level:

• *Vector:* list of numbers

• *Matrix:* rectangular array of numbers

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{array}\right)$$

Multiplying a vector by a matrix

$$\hat{y} = X\hat{\beta}$$

$$\hat{y} = \begin{pmatrix} 43.3 \\ 46.3 \\ 55.3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 46.3 \\ 3.0 \end{pmatrix}$$

Graphing a line

 Invent your own example (2 points in a plane) and calculate the corresponding equation!

Exponential and power-law relations

```
The formula \log y = a + bx represents exponential growth (if b > 0) or decline (if b < 0): y = Ae^{bx}, where A = e^a.
```

```
The formula \log y = a + b \log x represents
power-law growth (if b > 0)
or decline (if b < 0):
y = Ax^b, where A = e^a.
```

Exponential and power-law relations

Figure 3.4 Log metabolic rate vs. log body mass of animals, from Schmidt-Nielsen (1984). These data illustrate the log-log transformation. The fitted line has a slope of 0.74. See also Figure 3.5.

 Invent your own examples for exponential and power law relations and calculate the corresponding equation!

Probability distributions

Probability distributions represent the unmodeled aspects of reality—the *error term* ϵ in the expression $y = a + bx + \epsilon$ —and it is randomness that greases the wheels of inference.

A probability distribution corresponds to an urn with a potentially infinite number of balls inside. When a ball is drawn at random, the "random variable" is what is written on this ball.

A probability distribution of a random variable z takes on some range of values (the numbers written on the balls in the urn). The *mean* of this distribution is the average of all these numbers or, equivalently, the value that would be obtained on average from a random sample from the distribution. The mean is also called the expectation or expected value and is written as E(z) or μ_z .

The *variance* of the distribution of z is $E((z - \mu_z)^2)$

The *standard deviation* is the square root of the variance.

Probability distributions

Figure 3.6 (a) Heights of women, which approximately follow a normal distribution, as predicted from the Central Limit Theorem. The distribution has mean 63.7 and standard deviation 2.7, so about 68% of women have heights in the range 63.7 ± 2.7 . (b) Heights of men, approximately following a normal distribution with mean 69.1 and standard deviation 2.9. (c) Heights of all adults in the United States, which have the form of a mixture of two normal distributions, one for each sex.

The Gaussian ("normal") distribution

Figure 3.7 Approximately 50% of the mass of the normal distribution falls within 0.67 standard deviations from the mean, 68% of the mass falls within 1 standard deviation from the mean, 95% within 2 standard deviations of the mean, and 99.7% within 3 standard deviations.

Correlation

If two random variables u and v have mean μ_u, μ_v and standard deviations σ_u, σ_v , then their correlation is defined as $\rho_{uv} = \mathrm{E}((u - \mu_u)(v - \mu_v))/(\sigma_u\sigma_v)$. It can be shown mathematically that the correlation must be in the range [-1, 1], attaining the extremes only when u and v are linear functions of each other.

Knowing the correlation gives information about linear combinations of u and v. Their sum u+v has mean $\mu_u + \mu_v$ and standard deviation $\sqrt{\sigma_u^2 + \sigma_v^2 + 2\rho\sigma_u\sigma_v}$. More generally, the weighted sum au + bv has mean $a\mu_u + b\mu_v$, and its standard deviation is $\sqrt{a^2\sigma_u^2 + b^2\sigma_v^2 + 2ab\rho\sigma_u\sigma_v}$. From this we can derive, for example, that u-v has mean $\mu_u - \mu_v$ and standard deviation $\sqrt{\sigma_u^2 + \sigma_v^2 - 2\rho\sigma_u\sigma_v}$.

The log-Gaussian distribution

Figure 3.8 Weights of men (which approximately follow a lognormal distribution, as predicted from the Central Limit Theorem from combining many small multiplicative factors), plotted on the logarithmic and original scales.

Potential outcomes of a treatment

Figure 3.9 Distributions of potential outcomes for patients given placebo or heart stents, using a normal approximation and assuming a treatment effect in which stents improve exercise time by 20 seconds, a shift which corresponds to taking a patient from the 50th to the 54th percentile of the distribution under the placebo.