

Examen Final de Álgebra (LSI)

Ejercicio	1	2	3	4	5
Puntaje	20	20	20	20	20

- a) Función proposicional. Definición. Explicar de qué manera puede obtenerse una proposición a partir de ella.
 - b) Dada la siguiente función proposicional con dominio en R^2 : $P(x, y): y x^2 + 1 = 0$
 - i) Obtener si es posible, una proposición verdadera y otra falsa, utilizando cuantificadores. Luego, expresarlas en lenguaje coloquial.
 - ii) Hallar la negación de cada proposición obtenida en a), sin hacer uso del signo ¬.
- 2) a) Números complejos. Definición. Opuesto, conjugado e inverso de un número complejo. Módulo y argumento de un número complejo. Definición.
 - b) Dado el número complejo: z = (-2,3)

Expresarlo en forma binómica y trigonométrica.

- c) Probar que: $\forall z = (a,b) \in C : (a,b).(a,-b) = (a^2 + b^2,0)$
- 3) a) Combinaciones lineales. Definición. Dependencia e independencia lineal. Definición. Propiedades.

Escribir una matriz $A \in R^{3x2}$ tal que la primera fila sea combinación lineal de la segunda y la tercera.

- b) Rango de una matriz. Definición. Matriz escalonada. Definición. Escribir una matriz $B \in R^{3x3}$ tal que r(B) = 2 y B no tiene ninguna fila nula.
- 4) a) Sistemas de m ecuaciones lineales con n incógnitas. Definición. Clasificación según el conjunto solución. Sistema de ecuaciones lineales homogéneos. Clasificación.
 - b) Resolver el siguiente sistema de ecuaciones, si es compatible indeterminado hallar al menos dos soluciones.

$$\begin{cases} 2x - z = -3y - w \\ x - 2y = -3z + 3w \\ 8y - 5z + 5w = -3x \end{cases}$$

- 5) Dada la siguiente ecuación de una cónica: $y^2 2y + 8x + 25 = 0$
 - a) Hallar la ecuación canónica de la misma.
 - b) Representar gráficamente identificando sus elementos.
 - c) Definirla.

Solución:
$$y^2 - 2y + 8x + 25 = 0$$

 $y^2 - 2y + 1 + 8x + 24 = 0$
 $y^2 - 2y + 1 = -8x - 24$
 $(y-1)^2 = -8(x+3)$
 $(y-1)^2 = -4.2.(x+3)$

Escribir una matriz B ∈ R ^{3x}	^{k3} tal que r (B) = 2 y B no tiene ninguna fila nula.
(1	2 1
Gemplo: B= 3	$\begin{pmatrix} 2 & 1 \\ 3 & 1 & -1 \end{pmatrix}$ $\mathbf{r}(\mathbf{B}) = 2$ (probar) y no tiene ninguna fila nula.
	5 2 2/3×3
4)	
 b) Resolver el siguiente sister menos dos soluciones. 	ma de ecuaciones, si es compatible indeterminado hallar al
	$\begin{cases} x - 2y = -3z + 3w \\ 8y - 5z + 5w = -3x \end{cases}$
(2x-Z=-34	$-\omega$ $\left(2x + 3y - Z + y = 0\right)$
$\begin{array}{c} \times -23 = -32 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(8y - 52+5w)	$= -3 \times $
2 3 -1 1 (0 2 3 -1 1 0 2 3 -1 1 0
1 -2 3 -3 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 8 -5 51 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	-3/0 F1+F2 - F2
Sistema de e	cuaciones equivalente: $\begin{cases} 2x + 3y - z + w = 0 \\ -\frac{7}{2}y + \frac{7}{2}z - \frac{7}{2}w = 0 \end{cases}$
	(- t/2y + 7/2 = 0
$-\frac{7}{2}y + \frac{7}{2}z$	$z^2 - \frac{1}{2}w = 0 \Leftrightarrow -\frac{1}{2}y = \frac{1}{2}w - \frac{1}{2}z \Leftrightarrow y = \frac{\frac{1}{2}w - \frac{1}{2}z}{-\frac{1}{2}} = -w + z = z - w$
	° , y = z - w
924 1 2	
• 2 X + 3 Y -	$-2+\omega=0 \iff 2x+3.(z-\omega)-z+\omega=0 \iff 2x+3z-3\omega-z+\omega=0 \iff$
	$\Leftrightarrow 2x + 2z - 2w = 0 \Leftrightarrow 2x = 2w - 2z \Leftrightarrow x = \frac{2w - 2z}{2} = w - z$
	. , X = w - z
duego: S=	$\left\{ \left(\omega - z ; z - \omega ; \overline{z} ; \omega \right) \right\}$
. Sean Z=	$1, \ \omega = 1 \implies S_1 = \{(0, 0, 1, 1)\}$
· Slan Z.	$= 0 \ \omega = 1 \Rightarrow 52 = \{(1, -1, 0, 1)\}$