

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДИАФРАГМЫ ИЛЛЮМИНАТОРОВ ПЕТАТЕЛЬНЫХ АППАРАТОВ

методы расчета геометрических параметров ГОСТ 23645—79

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДИАФРАГМЫ ИЛЛЮМИНАТОРОВ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Методы расчета геометрических параметров

ГОСТ 23645—79

Illuminator diaphragms of fluing vehicles.

Methods of computing dimensions

Постановлением Государственного комитета СССР по стандартам от 24 мая 1979 г. № 1842 срок введения установлен с 01.01, 1980 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на диафрагмы иллюминаторов летательных аппаратов (кроме самолетов и вертолетов) бесколлекторного типа и с воздушным коллектором для обдува линзы иллюминатора потоком воздуха.

Стандарт устанавливает аналитический и графический методы расчета геометрических параметров диафрагм иллюминаторов, регулирующих световой поток от максимального до нулевого.

Все параметры диафрапмы определяются в зависимости от

наибольшего диаметра светового сечения иллюминатора.

Устройство диафрагмы описано в справочном приложении.

1. АНАЛИТИЧЕСКИЙ РАСЧЕТ

1.1. Теоретическая схема диафрагмы с основными геометрическими параметрами.

1 — лепесток; 2 — поводок; 3 — верхнее кольцо
 Черт. 1

1.2. Радиус внутреннего обвода лепестка (r) в миллиметрах вычисляют по формуле

$$r = \frac{D_{\text{max}}}{2} + \frac{d}{2} + c, \tag{1}$$

где D_{\max} — наибольщий диаметр светового иллюминатора, мм; d — диаметр штифта лепесткового поводка, мм;

d=3-8 — устанавливается конструктором;

c — величина перемычки, $\tilde{c} = (\hat{1} - 2)d$ — устанавливается конструктором.

 Π римечание. При построении геометрии диафрагмы точка A по окружености радуса r выбирается произвольно.

1.3. Радиус расположения осей поворота лепестков (R) в миллиметрах вычисляют по формуле

$$R = \frac{1}{3} (\sqrt{7} + 1) \cdot r. \tag{2}$$

1.4. Радиус наружного обвода лепестка (R_1) в миллиметрах вычисляют по формуле

 $R_1 = R + \delta, \tag{3}$

где δ:

$$\delta = \frac{d}{2} + c.$$

1.5. Центральный опорный угол (β°) вычисляют по формуле

$$\beta^{\circ} = \arccos\left[\frac{1}{2} - \frac{R_1}{r} \left(\frac{R_1}{2r} - \cos\Delta^{\circ}\right)\right], \qquad (4)$$

где
$$\Delta^{\circ} = \frac{1}{2} \arccos(1 - \frac{R_1^2}{2r^2}) - 30^{\circ};$$

 $\beta^{\circ} = 2\Delta^{\circ}.$

1.6. Минимальное число лепестков (n_{\min}) из условия необходимого перекрытия двух смежных лепестков вычисляют по формуле

$$n_{\min} = \frac{360^{\circ}}{6^{\circ}} . \tag{5}$$

1.7. Диаметр пяты поводка (d_1) в миллиметрах устанавливается конструктором

 $d_1 = (2,5-3,0) \cdot d$.

Толщина пяты поводка (t) в миллиметрах t=0.5.

1.8. Радиус скругления концов лепестка (R_2) в миллиметрах вычисляют по формуле

$$R_2 = \frac{R_1 - r}{2} . \tag{6}$$

 $1.9.\$ Длину паза (l_1) для штифта поводка в миллиметрах вычисляют по формуле

 $t_1 = 2R - t + d, \tag{7}$

где 1 — длина опорной хорды.

$$l=2\sqrt{R^2-\frac{r^2}{4}}$$
 (8)

Примечание. Для обеспечения легкой кинематики движения $l \gg r + R$.

1.10. Опорный угол (s°) вычисляют по формуле

$$e^{\circ}=2 \arccos \frac{1}{R} \sqrt{R^2 - \frac{r^2}{4}}. \qquad (9)$$

Угол между осями поводков (γ°) вычисляют по формуле

$$\gamma^{\circ} = 2 \arcsin \frac{R+r}{2R} . \tag{10}$$

 $1.11.\$ Диаметр шариков (d_2) в миллиметрах устанавливается конструктором.

 $d_2 = 4 - 8$.

Число шариков (z) назначается конструктором и должно быть кратно 4.

1.12. Толщина лепестка (δ_1) в миллиметрах

$$\delta_1 = 0, 1 - 1, 0.$$

Суммарную теоретическую толщину лепестков (T) в миллиметрах по оси диафрагмы вычисляют по формуле

$$T = \frac{\delta_1 n_{\min} v^{\circ}}{360^{\circ}} . \tag{11}$$

Если задана величина T, то

$$\delta_1 = \frac{360^{\circ}T}{n_{\min}\gamma^{\circ}} . \tag{12}$$

1.13. Диаметр остаточного очка (d_0) в миллиметрах вычисляют по формуле

$$d_0 = n_{\min} \cdot d_1. \tag{13}$$

1.14. Диаметр и толщина стенки трубы воздушного коллектора (d_T) в миллиметрах (черт. 2 приложения).

$$d_{\rm T}=6\times1-12\times1$$
.

Число патрубков воздушного коллектора (z_1) кратно 4.

$$z_1 = z$$
.

Число штуцеров воздушного коллектора (z_2) устанавливается конструктором

 $z_2 = 2 - 4$

1.15. Величину зазора между верхним и нижним кольцами для размещения лепестков диафрагмы в миллиметрах вычисляют по формулам:

для иллюминатора без воздушного коллектора величина зазо-

ра (h_2) (см. приложение, черт. 3)

$$h_{2} = \left(\frac{n_{\min}}{2} - 1\right) \cdot \delta_{1} + 2; \tag{14}$$

для иллюминатора с воздушным коллектором величина зазора $(h_{2\kappa})$ (см. приложение, черт. 2).

$$h_{\rm ak} = \left(\frac{n_{\rm min}}{2} - 1\right) \cdot \delta_1 + d_{\rm T} + 2. \tag{15}$$

1.16. Диаметральный зазор между верхним и нижним кольцами (h_3) (см. приложение, черт. 3) устанавливается конструктором $h_3 = 0.5^{+0.1} - 1.0^{+0.2}$.

1.17. Высоту нижнего кольца в миллиметрах вычисляют по

формулам:

для иллюминатора без воздушного коллектора высота нижнего кольца (h) (см. приложение, черт. 3)

$$h = b + d_2 + h_2 + 5. (16)$$

где b — толщина основания нижнего кольца, мм;

b = (1,5-3,0) устанавливается конструктором;

для иллюминатора с воздушным коллектором высота нижнего кольца $(h_{\mathbf{k}})$ (см. приложение, черт. 2)

 $h_{K} = b + d_{T} + d_{2} + h_{2} + 5. {17}$

1.18. Диаметр нижнего кольца в свету $(D_{\rm c})$ в миллиметрах (ом. приложение, черт. 3) вычисляют по формуле

 $D_{\rm c} = D_{\rm max} + 10.$ (18)

1.19. Ширину верхнего кольца (K) в миллиметрах вычисляют по формуле

 $K = R_1 - \frac{D_{\text{max}}}{2} . \tag{19}$

1.20. Высоту верхнего кольца (h_1) в миллиметрах вычисляют по формуле

 $h_1 = d_2 + 8.$ (20)

1.21. Высоту штифта поводка (h_4) в миллиметрах вычисляют по формуле

 $h_4 = b + h_2 - 3\delta_1 - 1. \tag{21}$

1.22. Высоту выреза на лепестке (h_5) в миллиметрах (см. приложение, черт. 4) вычисляют по формуле

$$h_5 = \frac{d_0}{2} + 1. (22)$$

1.23. Радиус выреза на лепестке (R_3) в миллиметрах (см. приложение, черт. 4) вычисляют по формуле

$$R_3 = \frac{1}{3}$$
 (23)

1.24. Угол обзора через иллюминатор (α°) с учетом высоты диафрагмы вычисляют по формуле

$$\alpha^{\circ} = 2 \operatorname{arctg} \frac{D_{\max}}{2(L+H)}$$
, (24)

где L — расстояние до рассматриваемого объекта, мм; H — общая строительная высота диафрагмы, мм.

1.25. Размеры диафрапмы, не указанные в расчете, задаются конструктивно.

2. ГРАФИЧЕСКИЙ РАСЧЕТ

2.1. Графические зависимости основных геометрических параметров диафрагмы приведены на черт. 2—16.

Зависимость радиуса внутреннего обвода лепестка диафрагмы r от диаметра светового сечения иллюминатора D_{\max} при $c\!=\!d$ и различных диаметрах поводка

Зависимость диаметра штифта d лепесткового поводка и величины перемычки c от диаметра светового сечения иллюминатора D $_{\max}$

Прямая c=2a предпочтительна для диаметров $D_{\max}>300$. Черт. 3

350 400 450 D_{max}, MM Зависимость радиуса R_1 наружного обвода лепестка от диаметра $D_{\rm max}$ светового сечения иллюминатора при $c{=}d$ и различных днаметрах поводка .g-p 300 d=5 Черт. 5 250 *q=q* 200 d=3 150 001 20 240 9 RI, MM 120 80 . 280 200 160 320 450 Dmox,MM сечения иллюминатора при $c{=}d$ и различных диаметрах Зависимость радиуса Я расположения осей поворота лепестков от наибольшего диаметра D_{max} светового 004 350 g-p 300 g=pповодка 250 Tepr. 4 9:5 002 *p=p* 150 d=3 100 20 : R,MM 091 120 80 04 200 . 280 240

 n_{min}

22

18

9

0

20

9

/4 Черт. 6

Зависимость опорных углов $\beta^\circ, \Delta^\circ$ от числа лепестков n_{\min} диафрагмы

β,Δ.

20

B

04

30

от диаметра $D_{\rm max}$ светового сечения илиюминатора

Зависимость числа лепестков папр днафрагмы

сечения

Зависимость длины опорной хорды 1 и опорного иллюминатора при c=d и различных диаметрах угла (в°) от днаметра D_{тах} светового иллюминатора при c=d и различных диаметрах поводка от днаметра D_{\max} светового сечения Зависимость длины паза 11 для штифта

Dmax, MM

450

g=p

350

00

8-p

٠.

*0*92

300

20

100

150

20g

dz,mM Зависимость диаметра шариков d_2 и их числа z от диаметра D_{\max} 10 dz, MM 30 22 52 светового сечения иллюминатора 21 18 Черт. 11 2 200 004 300 100 500 Dinax, MM 8 Зависимость центрального опорного угла β° от диаметра $D_{\rm max}$ светового сечения иллюминатора при $c\!=\!d$ 04 33 g-p g = pd=3 q = 5**h**= **p** Черт. 10 B 91 Dmax,MM 300 004 150 200 100 20 350 150 450

Зависимость ширины лепестка a от диаметра D_{\max} светового сечения иллюминатора при c=d и различных диаметрах поводка

Dmax, MM

450

d=3

004

350

Зависимость толщины лепестка о от диаметра

g-p

250

300

8-p

200

150

001

 δ_{1n} —толщина лепестка из пластических материалов; δ_{1m} — то же, из металлических материалов Черт. 13

d,MM

99

20

0

20

Зависимость диаметра остаточного очка d_0 от числа депестков n_{\min} при различной толщине лепестков

Зависимость цирины верхнего кольца K от диаметра D_{max} светового сецения

Зависимость радиуса выреза на лепестке R_3 от радиуса внутреннего обвода r лепестка

2.2. Геометрические параметры диафрапмы, не указанные в графиках, определяются аналитически или задаются конструктивно.

ПРИЛОЖЕНИЕ Справочное

УСТРОЙСТВО ДИАФРАГМЫ

Диафрагма иллюминатора — механическое устройство с подвижной непрозрачной стенкой, изменяющее световой поток, проходящий сквозь линзы иллюминатора летательного аппарата.

Диафрагма состоит из нижнего подвижного кольца и верхнего поворотного кольца, между которыми размещены лепестки. Нижнее кольцо крепится к иллюминатору. Верхнее кольцо вращается относительно нижнего на шариках.

Концы лепестков диафрагмы поводками связаны с верхним и нижним кольцами. Вращением верхнего кольца за рукоятку сводят или раскрывают лепестки, уменьшая или увеличивая световое сечение диафрагмы, которое в начальном положении равно световому сечению иллюминатора.

Верхнее кольцо имеет стопорный винт для фиксации необходимого свето-

вого сечения диафрагмы.

При необходимости предусматривается установка на верхнем кольце смен-

ного светофильтра.

Для обдува линзы иллюминатора воздухом с целью предотвращения запотевания и обмерзания ее поверхности предусмотрен коллектор с патрубкамиштуцерами.

Пример установки диафрагмы на иллюминаторе, элементы ее конструкции

приведены на черт. 1-3.

Типовая конструкция лепестка диафрагмы приведена на черт. 4.

Пример установки диафрагмы на иллюминаторе

A - A повернуто

1 — диафрагма; 2 — воздушный коллектор; 3 — иллюминатор,
 Черт. 2

 ${\cal B} - {\cal B}$ повернуто (вариант диафрагмы без коллектора)

Черт. 3

Типовая конструкция лепестка

Редактор T. B. Cмыка Технический редактор Γ . A. Mакарова Корректор Γ . M. Φ ролова

Сдано в набор 25.06.79 Подп. в печ. 13.09.79 1,25 п. л. 0,81 уч.-изд. л. Доп. тираж 7000 Цена 5 коп.

Ордена «Знак Почета» Издательство стандартов. Москва, Д-557, Новопресненский пер., 3 Калужская типография стандартов, ул. Московская 256. Зак. 1800