实验方案设计

四位二进制可逆计数器

参考74193的功能表:

CLR	\overline{LD}	DCBA	CP_U	CP_D	$Q_DQ_CQ_BQ_A$
1	d	dddd	d	d	0000
0	0	$x_3x_2x_1x_0$	d	d	$x_3x_2x_1x_0$
0	1	dddd	↑	1	累加计数
0	1	dddd	1	↑	累减计数

可以做出计数器部分的次态真值表:

现态	输入		次态
$Q_D^n Q_C^n Q_B^n Q_A^n$	CPU	CPD	$Q_D^{n+1}Q_C^{n+1}Q_B^{n+1}Q_A^{n+1}\\$
0000	↑	1	0001
0001	†	1	0010
0010	↑	1	0011
0011	↑	1	0100
0100	↑	1	0101
0101	↑	1	0110
0110	↑	1	0111
0111	↑	1	1000
1000	↑	1	1001
1001	†	1	1010

现态	输入		次态
1010	†	1	1011
1011	†	1	1100
1100	†	1	1101
1101	†	1	1110
1110	<u></u>	1	1111
1111	↑	1	0000
1111	1	†	1110
1110	1	†	1101
1101	1	†	1100
1100	1	†	1011
1011	1	†	1010
1010	1	†	1001
1001	1	†	1000
1000	1	†	0111
0111	1	†	0110
0110	1	†	0101
0101	1	†	0100
0100	1	↑	0011
0011	1	↑	0010
0010	1	↑	0001
0001	1	†	0000
0000	1	†	1111

观察次态真值表。对于加法计数, Q_A 在每次脉冲上升沿都会发生翻转, Q_B 在 Q_A = 1时每次脉冲上升沿发生翻转, Q_C 在 Q_BQ_A = 11时每次脉冲上升沿发生翻转, Q_D 在 $Q_CQ_BQ_C$ = 111时每次脉冲上升沿发生翻转。对于减法计数, Q_A 在每次脉冲上升沿都会发生翻转, Q_B 在 Q_A = 0时每次脉冲上升沿发生翻转, Q_C 在 Q_BQ_A = 00时每次脉冲上升沿发生翻转, Q_D 在 $Q_CQ_BQ_C$ = 000时每次脉冲上升沿发生翻转。

根据电路特性,使用四个下降沿D触发器,记为 FF_i , $i \in \{A, B, C, D\}$ 。

考虑置零端CLR和置位端 \overline{LD} ,则 $\forall i \in \{A, B, C, D\}$, FF_i 应满足以下逻辑函数表达式:

$$egin{aligned} D_i &= \overline{Q_i} \ CP_0 &= \overline{CP_U} + \overline{CP_D} \ CP_i &= \overline{CP_U}Q_{i-1}\dots Q_A + \overline{CP_D}Q_{i-1} \dots \overline{Q_A} \ (i
eq A) \ S_i &= \overline{LD} \, \overline{CLR} \, \overline{i} \ R_i &= \overline{LD} \overline{S_i} + CLR \end{aligned}$$

使用Logisim作出电路图:

封装后的电路如下图:

测试电路, 功能符合预期:

二进制转8421BCD码电路

根据其功能, 做出真值表如下:

输入				输出				输出			
Q_D	Q_C	Q_B	Q_A	H_3	H_2	H_1	H_0	L_3	L_2	L_1	L_0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	1	0
0	0	1	1	0	0	0	0	0	0	1	1
0	1	0	0	0	0	0	0	0	1	0	0
0	1	0	1	0	0	0	0	0	1	0	1
0	1	1	0	0	0	0	0	0	1	1	0
0	1	1	1	0	0	0	0	0	1	1	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	1
1	1	0	0	0	0	0	1	0	0	1	0
1	1	0	1	0	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	1	0	0
1	1	1	1	0	0	0	1	0	1	0	1

本电路使用一个异步进位四位加法器。当 $Q_3Q_2Q_1Q_0\geq 1010$ 时,高位 $H_3H_2H_1H_0=1$,低位 $L_3L_2L_1L_0=Q_3Q_2Q_1Q_0-1010=Q_3Q_2Q_1Q_0+0110$ 。故电路逻辑函数表达式为:

$$H_3 = H_2 = H_1 = 0 \ H_0 = (Q_B + Q_C)Q_D \ L_3L_2L_1L_0 = Q_3Q_2Q_1Q_0 + H_0 \cdot 0110$$

使用Logisim作出电路图:

封装后的电路如下图:

测试电路, 功能符合预期:

显示电路

根据七段显示管的功能和引脚:

0	1	2	3	4	5	6	7
_ _	1		=	<u>-</u>			-
8	9	10	11	12	13	14	15
		匚	コ	1_1	I II		

可以写出逻辑函数:

$$F_a(D,C,B,A) = \sum m(0,2,3,5,7,8,9,13)$$

$$F_b(D,C,B,A) = \sum m(0,1,2,3,4,7,8,9,12)$$

$$F_c(D,C,B,A) = \sum m(0,1,3,4,5,6,7,8,9,11)$$

$$F_d(D,C,B,A) = \sum m(0,2,3,5,6,8,10,11,13,14)$$

$$F_e(D,C,B,A) = \sum m(0,2,6,8,10,14)$$

$$F_f(D,C,B,A) = \sum m(0,4,5,6,8,9,12,13,14)$$

$$F_g(D,C,B,A) = \sum m(2,3,4,5,6,8,9,10,11,12,13,14)$$

考虑到每位数字对应的BCD码最高只到 1001, 上述逻辑函数可以简化为:

$$\begin{split} F_a(D,C,B,A) &= \sum m(0,2,3,5,7,8,9) \\ F_b(D,C,B,A) &= \sum m(0,1,2,3,4,7,8,9) \\ F_c(D,C,B,A) &= \sum m(0,1,3,4,5,6,7,8,9) \\ F_d(D,C,B,A) &= \sum m(0,2,3,5,6,8) \\ F_e(D,C,B,A) &= \sum m(0,2,6,8) \\ F_f(D,C,B,A) &= \sum m(0,4,5,6,8,9) \\ F_g(D,C,B,A) &= \sum m(2,3,4,5,6,8,9) \end{split}$$

作卡诺图化简得到:

$$\begin{split} F_a &= \bar{A}\bar{C}\bar{D} + AC + AB + D \\ F_b &= \bar{A}\bar{B} + AB + C \\ F_c &= A + \bar{B} + C + D \\ F_d &= \bar{A}\bar{B}\bar{C} + A\bar{B}C + B\bar{C} + \bar{A}B \\ F_e &= \bar{A}\bar{B}\bar{C} + \bar{A}B \\ F_f &= \bar{A}\bar{B} + \bar{B}C + D + \bar{A}C \\ F_g &= \bar{B}C + D + B\bar{C} + \bar{A}B \end{split}$$

使用Logisim作出电路图:

封装后的电路如下图:

测试电路, 功能符合预期:

报警电路

设表示实验室满人 $F = Q_D Q_C Q_B Q_A$, 实验室有人 $H = Q_D + Q_C + Q_B + Q_A$ 。

记脉冲信号为 CP'_U 和 CP'_D ,则 $CP_U = \overline{F} \cdot CP'_U$, $CP_D = M \cdot CP'_D$ 。

报警信号 $WARN = F \cdot CP'_{U^{\circ}}$

考虑到四位可逆计数器要求 CP_U 和 CP_D ,其中一个为脉冲信号时,另一个要求为1。为保证F=1与 M=0时依然符合该条件,由于对 CP_U 和 CP_D 取反。故 $CP_U=\overline{\bar{F}\cdot CP_U'}$, $\overline{CP_D=M\cdot CP_D'}$ 。

使用Logisim作出电路图:

封装后的电路如下图:

小型实验室门禁系统电路的封装

将四位可逆二进制计数器的输出端接入二进制转8421码电路的输入端,其高低位输出段分别接入7段译码器显示电路。

使用Logisim作出门禁系统电路图:

封装后的电路如下图:

与7位显示管和其他元件进行组合,得到最终的小型实验室门禁系统电路:

