

								34	KFN 03-2-12
гост Дин		Durchmesse bereich in man	C/B KF/MH	d's KT/MM²	8%	8 %	KFICH	16	da
				HE M	ence - n	nindestens		•	
10त	50 / 2							. 14	- 1
M64-47	2012	40 100	75	40	14	35	-	4241	3 3,9
		100 -300	73	38	73	33	l -		
AMH 1667	CAAM AN	300-500	70	36	12	30	L -	i i	
AMI NO!	40 Mn 4	18 - 40	80-95	55	12	-		< 217	
		40 -100	70 -65	45	13	-	-	geglüht	l
AMI 1667	32 Am 5)	100 -250	65 -80	vergute.	74		l	<2:7	l
2. Хромис	THE CTAI	И						-	
rect	ts x	40 60	62	36	ts	45	6,0	>179	645
/DCT	ZOX	AO 50	65	40	73	+0	70	> 187	6 5,0
									,,,,
APH1 1886	5 Cr3	A0 60	50-75	shärfet +0	12	-	-	geglühl < 107	=
mer .	30 x	40 400	10.0						
	30 %	A0 100	73	50	14	45	5,0	>212	4 4,15
441 1667	3404	100 -300	70	45	13	40	45		

. S

Be- ne-lun;		Amvärme- temperatur *C		• • • •	ee	He don	NI	•	Si	Mn	c
23	72	- 1	20	19	76	17	16	15	- 14	- 13	_
	Вода Вода-Маско	840-860 550 -570	3 · 01111.	Q <i>075</i>	Q0+0	9040	4 0,30	dao-tro	Q17-Q37		330-040
				-	0,040	0,040	-	49-1,20	Q15 -Q35	Q50 -Q80	Q3 -Q37
	Macao Baga-Macao	830 -850 540 -580	orn.	0,075	0,04	404	40,30	Q5 - 1,1	0,17 -0,37	Q50 - 0,80	135-Q+5
EN.				•	0,040	0,040	-	49-1,20	0,15 - 0,35	0,60 - 0,80	0,38 -0,44
H2 HFN 3403.2	MACAO Repo-Micao	820-840 660-650	3 010.	<i>q0</i> 75	904	0,04	€ 0,30	Q8-1,1	Q 17 -Q37	q50-Q80	Q40 -Q50
Siebe An markang				•	9040	0,040	-	Q9 - 120	415-435	Q60 - Q80	338-944
KFN MED-13	Macao Bogo-Macae	380	3 07 A. 3	Q015	0,04	9,04	403			0,35 - 9.65	
	8 BEYM im Ofen		OT#	-	9040	9040	-	49-1,2	0,15-435	0,60 - 0,60	35-044
	Bago-Nacas		3	-	4035	0030	0,30	0.00-100	0.10 - 034	94 -970	022-020
				-	9040			49-1,2		0,50 - 0,00	

										(FN 3.2 - 13
ГОСТ Дин	Werkstoff- bezeichnung			MT / MM -	NI/MM2	8%	8%	KF/ CM2	Ha	d _b
Дип	Detailouting	Pereic	A TO LIMI		He M	eHee - m	indestens			-8
						7	8	1 3	50	11
roct	35 X		100	75 · 72	55 50	13 12	43 40	4,5	>217	44,10
ДИН 1667	34 Cr 4		100		55 ergulat	11	-	-	gag217	_
roet	40X	40	100	78	56	12	40	4,0	>200	4 +,0
ДИН 1606	410-4			85-90	61-65	11	-	-	290	-
					vergütet			1	1	
<i>TOCT</i>	45 X	40	60	85	65	10	45	5,0	>241	4 3,9
ДИН 1666	41 Cr 4			85-90	61-65 ergütet	11	-	 -	250	_
FOCT	55 X	A0	100	84	65	9	35	-	> 248	4 3,65
100 12-1		100-	300	80	55	7	30		≥ 229	4 4.0
JUH 1665	41 Gr 4			đ5-90	61-65 vergutet	17	-	_	250	_
			_					-	_	
ro <i>ct</i>	OX	40	40	95 - 115	es - 90	10-12	48	7,0	269 -293	-
дин 1667	420-Mo4	07 % -	-40	100 -120	80 vergute	10	-		320	

n	0
11	11 1
~ ()	5. 1

					5	P	e.p	1	Anwärme+ temperatur	Kühl* mittet	Be-
6	Mn	Si	Cr	Ni	HE GOA		3+1	nung	•C		merlunç
- 6	- 12	14	75		7	. 1		20	71		
3. Nickelst q25 - q.35		917-93 7	4430	49 -120	90+	q <i>0</i> +	-	#	850 -870	Bosayy	e present
q35-0 ,4 5	0,5 - Q#	Q17 -Q37	4 430	49-12	904	0,04	-	H norma lisieran	840-860	BOXAYN '	Midf.we- niger ols 1004 nich verwande
		9.0						DOM:	550-600	Mac/lo Boss-Mac/lo Wasser-Ol	
425-432	Q4 -0,8	< 0,35	95 ¥ 42	15 2 9.25	0,035	0,035	<i>-0,06</i>		Erhöhung der Qualität		
A Koblen	stoffwerkz	n matichia	-								
0,60 - 0,74			£0,2	40,28	9,04	0,00		1			
0,75 - 0,85	40,40	< 0,35	60,2	40,28	0,04	0,04					
0,75 -0,85	925 - 935	0,30	642	4 9,25	903	0,03					<u> </u>
≈ 0.85	40,35	40,25	-	-	9035	0,035	1	1		1.	

								34	KFN 03.2-1
FOCT AUH		Durchmesser- bereich in nun	KI/NM2		8°/₀	8%	KI/CH2	Ha	ds
				HE M	eHee - m	indestens			ľ
э. Никеле	вые стали							10	Ħ
/DET	30 H	100 - 300 300 - 500 500 - 750	52 50 48	26 25 24	23 20 19	45 42 37	6,0 5,5 5,0	<i>> 149</i>	6 4,9
rect	40H	100 - 300 300 - 500 500 - 750	58 56 52	29 28 27	18 17 16	38 36 32	5,0 4,5 4,0	≥ 170	4 4,6
		100 - 300 300 - 500 500 - 750	65 63 60	34 33 30	17 16 15	40 35 30	6,0 5,0 4,0	192	£ 4,32
A MH 1662	(28 N C8) VCN 15 W		65 - 75	42 -49 ergület		-	-	< 205 geglühl	-
4. Инструм	CHTARMINE	VEREDORME	THE CTA	nu .		_		3-3	
/DCT 8-1416-42	1 1	Неиспыт			oht aepri	ift			0 ОДИНГО 4 187
10 <i>ct</i> 8-1436-42	ye	Неиспыть							#.07 mail
18CT 8-1435-42	Y8 A	Неиспыты	BLETCH						1019UT
ДИН	CESW2								each Glübe

41

,	Mo	si	G	· Ni	S HE OD	P	5+P	zeich•	Anværme- temperaker	Kūhi- millai	Be-
		-		-	hōchs	tens	-	nung	- 11	- 1	
	-51										
5. Federal 0.55 - 0.65	a 60-490	150-200	430	0,50	9,045	40+5	-			. 1	AM CYCHI
06 - 07	05 -09	14 -19	-	-	4.05	0,05	-				AD 25M Für Oun
		l (vergüh	+)								duit i
435 -Q+5	950- 48 0	917-937	250-	125-125 211-221	Q0 + 0	0,040		om.		MICAO Bogi Hicao	25mm
			255202	25 2 425	9035	4036	<0,06	3		Ŏ.	Ι.
0,32 - 0,40	4 -48	4435	, 4c			i					
7.0	- Mahyhali	neahle (verni	itet)	_		_	<u></u>	 	l	1
7. Chrom	- Molybdo	instähle (vergu 29 - 12	(et)	0,030	9035	45°0	4.2	<u> </u>	Bags-Macg	4
7. Chrom	- Molybdo		vergu 29 - 12	(et)	0030 0033	0035 0035	406 4 006	3		Bago-Miscap Miscapo Ol	2
7. Chrom q30 - 038 q38 - Q45	- Molybdo 0+0 -070 0,50 -0,80	onstähle (0,10 -0,35 < 0,35	vergu q9 -1,2 q9 -1,2	(0,30 45-02 Mo	4033	0035 0035	05-04 ≈ 0.08	3			
7. Chrom 030 - 038 038 - 045	440 - 070 0,50 - 0,80	instähle (0.18 -0.35 < 0,35 Malybdön	vergü 09 - 1,2 09 - 1,2 stähle	(verq	ütet)		F-3				
930 - 938 938 - 945 8. Chrom 932 - 940	- Molybdk Q+0 -Q70 Q50 -Q80 - Nickel - Q4 -Q7	onstähle (0,10 -0,35 < 0,35	vergu q9 -1,2 q9 -1,2 stähle	(verg	ütet) 40%	400	405 Q	3,3			

								34	<u>ूर्त</u>)3.2-1
TOET AUH	Werkstoff-	Durchmesser bereich in ene	KI / MM	NT/MM	8%	8%	KILCH	Ha	,
				Hen	енее - т	indestens	1117 677	- 1 ''' I	do
				1.6	1 7	The same of	1	10	11
5. пружин	іная и ресі І	сорная ст В	ans I						
DET 4155	60 C,		130	120	6	25	- 1	2 OT MUTA 302	3, 10
Дин 1669	65 5 7	_	135	715	6		- -	305 -445	3, 10
		100 - 300	50	60	10	40	6,0	≥255	38
	(35 NC 10) VOV 25 h	300 - 500 500 - 700	75 70 80 - 95	58 56 54 56 - 67	9 8 8 16 - 10	38 38 35	5,0 45 50	< ZZO geglüll	-
7. Хромоно	VON ISh	300 - 500 500 - 700 	75 70 80 - 95	56 54 56 - 67	8	38	4.5		-
7. Хромоно Гост	VON IS N MICHAEHOS OXM	300 - 500 500 - 700	75 70 80 - 95 / YAYYUUC 92	56 54 56-67	8 8 16 - 10	38	\$5 \$0 -	geglüld 241 - 286	-
ЛЬСТ ДИН 1663	VON 25 h ANGLACHOE OXM VC Mb 140	300 - 500 500 - 700 ESF CTENTS	75 70 80 - 95 / YAYYUWE 92 95 - 110	56 54 56-67 HM48 / 70 71-82	8 8 16 - 10	38	\$5 \$0 -	gegkiH	-
7. Xponono Fact AUH 1663	VON 25 h ANGLACHOE OXM VC Mb 140	300 - 500 500 - 700 ESF CTENTS	75 70 80 - 95 / YAYYUWE 92 95 - 110	56 54 56-67 HM48 / 70 71-82	8 8 16 - 10	38	\$5 \$0 -	247 - 286 < 217	-
7. Хромоно Гъст ДИН 1683 В.Хромоні Гъст	VON IS N MICHAEHOS OXM	300 - 500 500 - 700 - 20 - 50 40 - 50 40 - 50 20 - 50	75 70 80 - 95 7 YAYYUUC 92 95 - 110 CTAAb	56 54 56-67 HM48 / 70 71-82	8 8 16 - 10	38	\$5 \$0 -	247 - 286 < 217	4.2

42

C	Mn	si	cr	M	He do.		S+P		Anwarmer temperatur	Kühl • mittel	Be •
		- 74		16	-17			20	21	- 12	
9. Wärme	-und hitze	beståndig	e Stäl	nle							
030 - 040	940-970	230 -290	140-200	20-210	903	0,03	-	3	1000	BOAR	AU ANNA
	Q40 - Q60					-	-	3			Gurk Such August year Gurk
10. Legie	rte Werkz	euastähle							-		
	9.50 - 9.80	-		14-18	Q03	903	-	-	-		MAHHAIR
35 - 96	-	-	06-08	1,5-1,0		0.1-00	-	-	_		GwK
	stähle für			1				1			ilondibia ENJMS CIIDOB
q 95 - 1, 10	92 - 94	Q15 -Q35	7,05-J40	4 9.20	<i>q020</i>	0,027	-	30711.	-	-	3HUMC BLANKE
19 - 1,1	0,3	0,28	£3 -47	-	-	-	-	3	-	-	Ow A
100-110	92-94	0,15 - 935	130-16	€ 0,20	0,020	0,027	-	30TH.	-		SHIMME
טו, ויי פבעו						0,025					

erkung. Die mechanischen Eigenschaften von 41 Cr 4 als Austausch - Werkstoff für 40 x,45 x,55 sind durch Werks-Versuche festgestellt und unbedingt einzuhalten. Sie sind für die Abnahme nur bei Austausch bindend

						./			KEN 13.2 - 13
POET		Durchmesser- bereich in nam		NI/MME	8%	8 %	KI/ CM	140	ds
	-	CETEROT INT THE		He N	ence - n	indesten		1 "	-8
			5	6			1 9	10	. 11
S. HERROYCT	HERMAN	М ароустой	чвая ст	asib					
regr	35CXH-A	<u></u>	65	30	30	45	8	> 737	4 5 10
	Plate PAZ 2520		ಪ	30	30	45	-	137	_
FOCT HOSE - 20	6XHM	и легиров. Неиспыть	BACTCA			l	1	321-418	-
	NCH 1	-	140	-	-		-	370 -400	-
11. Шарико Г ост	,	кав ы кром. Неиспыты			eprüft			Rc 59 -63	
	Regulateld		62 - 60		14-21	_		AC 63 2 3	
001 -47	WX - 15	Неиспыть	Bietca		2			×ε 59-63	_
WALL	lax - Hulle			_					

фимечание: Механические своиства стали марки +1 Ст +, заменителя марок +0-,+5-,55x установлены вомощью заводских испытаний и должны быть выдержаны безусловно для выенки они абрательны комно в случе замены одной из выжука закных марок.

42			F	eders	tahl					34632-134
С	Mn	Si	Cr	Ni	S He do		Be - zeich- nung	An- wärme- lemperakur	Abschreck mittel	Bemerkung
0,6-0,7	qs - 0,8	Q17-Q37	493	eQ,3	0,0+5		3#0	620°C	Mácuo	1-ра отпус на 300 °
965-975	Q5 - Q8	0,17-0,37	443	-43	Q0 + 5	Q045	3#0	820°C	масло	I-ы опуска зво*с
Q7 - Q8	0,45 -0,75	0,15 -0,30	443	< 0,5	0,050	0,050	3#0	810°C	масло	Г∙ра атпусна зво°с
080-090	0,45 - 0,75	Q15-030	-43	:45	0,050	0,050	340	810°C	масло	Тэн отпусма зво • с
	1,5 - 2,0	<0,4	-	=	0,040	0,040	Marine Ma Marine Marine Marine Marine Marine Marine Marine Marine Marine Ma Marine Marine Marine Marine Ma Ma Ma Ma Marine Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	780 - 810	ÒI	Anlahtemp. 470-54 Abhühlen in Luft
	470 - 1,00	-	(0.3	<0.5		0000			Luft BOJQY#	oder w. Wasser
Q50-Q50	960-090	950-980	443	-0,5	0,05	0,05	Н	830°C	воздух	

		Пружинн	aa u ped	сорнал	сталь .		3403.2 - 13		
FOCT DIN	Werkstoff- bezeichnung	KE/MM2	KE/MM2	€5 %0	ປິ ₁₀ %	%	H _B	d,	
			HE M	енес - mir	destens		KE /MM 2		
FOCT 8- 1051 - 41	65 *	100	80		9,0	35	4 255	> 3,8	
FOCT B - 1051 - 41	70 •	105	85		8,0	30	€ 269	3 ,7	
TOCT 8 - 2052 - 43 -	75 °	110	90	_	7,0	30	≤ 285	» 3,6	
FOCT 8- 2052 - 43	85	115	100	_	6,0	30	« 302	2 3 5	
ANN 1800	50 H 7 H	120	105	7,0	-	-	340 -400	_	
TOCT B- 1051 - 41	65/*	70	38	_	8,0	35	< 269	> 3,7	
roct 8 - 2052 - 43	50 CF • 50 FC 55 FC	65	35	_	10,0	35	≪ 285	> 36	

7:0

KEN 24612-196											
С	Mn	s/	cr	Ni	S Ne ou Nodus	siee	Be- peich- nung	An• wärme temperatur	Abachreck - millel	Aparovanure -	
90-060	q.60-q90	1,5 -2,0	433	<05		9.05	3#0	880°	M3CB0	1-10 анусы «a»-sif	
	0,60 - 0,90		<0,3	40,5	0,05	405	3#0	860°	MACAO	7-pe cerpcia 480-510	
240-455 250-460	Q5 -Q75	15 - 1,8 14 - 1,9 1,4 - 1,9	-	1 -	005 005 005	0,05 0,05 0,05	und und	820 -850° 830 -860° 830 -860°	lä .	Anlaßleng. 470-548 Abbühlen in Luft oder w.V./asser	
		Q15-C30	(20-1/2 0	445		4050	3 # 0	850*	MRCAD	I-ре отщем +90°	
	0,80-1,00		1	1		900	1		Macao	I-pu orașciu 490°	
	46-0,9	4.040	19-120 19-120	=	0035	0.035	Payler	810-840 840-870		Antablemp. 470 SAC MACIbles in Luft exist w. Winner	

In den Spalten für σ_{θ} , σ_{S} , δ und Ψ sind die mechanischen Eigenschaften für GOST-Nomen für vergüteten Stahl angegeben, für DIN für gehärteten Stahl. In den Spalten Hij und die ist die Härte für GOST-Sorten im Lieferzustand des Stahles durch das Hütlenwerk angegeben (ungeglührer warmgewalzter Stahl). Für DIN-Sorten ist die Härte für gehärteten Stahl angegeben.

								(FM 3.2 - 135
roct	Werkstoff - bezeichnung	KL/WW ₅	KF/MM ²	d ₅ %	δ ₁₀ %	%	HB	da
			· HP		KE/MM2			
FOCT 8 - 2052 - 43 FOCT 8-	55 C2	130	120	-	6,0	30	e 285	≥ 3,6
2052 -+3	60 CZ	130	120	,	5,0	25	4.302	> 3.5
DAN 1900	48 5 7 T 55 5 7 H 65 5 7 H	130 130 135	110 110 115	6,0 6,0	=	=	370 - 430 370 - 430 385 - 445	Ξ
FOCT 8- 2052 -43 FOCT 8-	50 XF	130	110	-	5,0	35	4 302	» 15
2052 -43	SOXFA	130	120	_	6,0	35	4 302	» 3,5
MAN 7000	SOC4H SOCV4H	135 135	120 120	6,0 6,0	-	=	385 - 445 385 - 445	11

Мишинческие свойства в графах аля о_{в. Ф.} 6 н ^{в.} показаны для окомительно Термически обработанной стали. Динные Твердости в графах н_е и с_{в.} заданы для ГОСТ - марок аля состояния поставли стали местапурическим эводонгоряче - катанная неотокленая сталь. Для ДИН-марок Твердость задана в окончателью Термически обработанном.

· LE

Werkstoffnormen Vergleichstabellen

Approved For Release 2008/01/18 : CIA-RDP83-00418R007200050001-5

Gulsbronze und Weilsmetall Erikuferungen

3403.3-008

Hauptcharakteristik der Sorten

Nach der chemischen Zusammensetzung werden die Bronzen und Weißmetalle eingeteilt ins

- e) Bronzen ohne Zinngehalt der Sorten: Ep.A.X. 9-4, Ep.A.X.Mu-10-3-1.5, Ep.A.Mu-9-2 nech KFN 3403.3-010
- nech KFN 3403.5.010
 b) Rotguts und Bromzen mit Zinngehalt für Ausführung von Armeteren der Sorten:
 Bp.OLICH.3-7.5-1, Bp.OUC.3-11.5
 nach KFN 3403.3.011, für Lagerbronzen der Sorten:
 Bp.OLIC.6-6-3, Bp.OC.5-25
 nach KFN 3403.3.011
 Bp.OLIC.5-5-5, Bp.OLIC.4-4-17, O....-10-1
 nach KFN 3403.3-012

 Massian = 18 Kraft 1-1 (1997)
 Massian = 18 Kra
- neon net 3403-0-12 Messing mil Kupler- und Zinkgehelt der Sorten: 2MU-58-2, 2AXCMI-68-6-39, 2MIA-57-3-1 nech den KFN 3403.3-013 und 2MIIC-58-9-2 nech den KFN 3403.3-014
- d) Wellymetall mit Zinngehalt der Sorten: E 83, E 16 nech den KFN 3403.3-014.

nach den KPN 3403.3-014.

Die demischen und medenschen Eigenschaften der vorgenannten Sorten sind in den Tebellen KFN 3403.3-010 bis -14 angegeben.

Die medanischen Eigenschaften der für Sorten nach GOST-Normen angegebenen Erzeugnisse gelten für Formgely nach der Abkühlung, für gewellzte und gepratjte Teile in beiden Fällen ohne Warmbehandlung.

3403.3-009

- 1. Die mechantschen Eigenschaften
- a) Zerreilsfestigkeit σb in kg/mm²
- 85 in % oder 8 10 % b) Dehnung.....
- c) Brinellhärte
- 2. Chemische Analyse

Die diemische Zusemmensetung lauf Angabe in den Tabellen KFN 3403.3-010 bis -014 einschließlich der schädlichen Beimengungen.

Der Austausch der vorgenannten Sorten nach GOST-Normen durch Sorten nach DIN erfolgt:

- oer vorgenannen somen nach GUSI-Normen durch Sorten nach UIN erfeigt:

 a) für die Gruppe "Nicht beanspruchte Teile" entsprechend den Tabellen KFN 3403,3-010 bis .014 ohne zusähliche Forderungen.

 b) für die Gruppe "Beanspruchte Teile" entsprechend den genannten Tabellen bei unbedingter Einheltung der garantlanten Werte sowie zusählichen Präfungen entsprechend den Angaben und den Zeichnungen, Abordhungsbestellungen oder dem Verzeichnis der beanspruchten Teile KFN 3404.1-001, Blatt 1 bis 4e.

Alla Abweichungen von diesen Bedingungen müssen vom Besteller genehmigt werden.