数理逻辑

郑为杰

e-mail: zhengweijie@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机学院

推理部分

公理集合:

- $(1) \quad A_1: A \to (B \to A)$
- (2) $A_2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- (3) $A_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

推理规则或分离规则(Modus Ponens):

若有A和A → B成立,则必有结论B成立,可形式化表示为:

$$r_{mp}: \frac{A, A \to B}{B}$$

证明

证明: 称下列公式序列为公式A在PC中的一个证明:

$$A_1, A_2, \cdots, A_m (= A)$$

如果对任意的 $i \in \{1,2,\dots,m\}$, A_i 是PC中的公理,或是 $A_j(j < i)$

,或是 $A_i, A_k(j, k < i)$ 用分离规则导出的。其中 A_m 就是公式A。

A_i 只能是以下三种中的其一:

- (1) PC中的公理或已知定理
- (2) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中的某一个
- (3) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中某两个用分离规则导出的

基本定理

定理1: $\vdash_{PC} A \rightarrow A$

定理2: 如果 $\vdash_{PC} A \to (B \to C)$, 那么 $\vdash_{PC} B \to (A \to C)$ (前件互换定理)

定理3: $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$ 定理(2)的另一种形式

定理4: $\vdash (B \to C) \to ((A \to B) \to (A \to C))$ (加前件定理)

定理5: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (加后件定理)

定理6: $\vdash \neg A \rightarrow (A \rightarrow B)$

定理7: $\vdash A \rightarrow (\neg A \rightarrow B)$

定理8: 如果 \vdash $(A \rightarrow B)$, \vdash $(B \rightarrow C)$, 那么 \vdash $(A \rightarrow C)$ (三段论定理)

定理9. $\vdash (\neg A \rightarrow A) \rightarrow A$ (反证法)

定理10. ⊢ ¬¬*A* → *A*

定理11. $\vdash (A \rightarrow \neg A) \rightarrow \neg A$ (反证法)

定理12. ⊢ *A* → ¬¬*A*

定理 1: $\vdash_{PC} A \rightarrow A$

证明思路:要证A \rightarrow A是PC中的一个定理,即证A \rightarrow A在PC中有一个证明,即

有一个序列 A_1 , A_2 , …, A_m (= A \rightarrow A)。因此只要找到这样的一个序列即可

。 2元 미디

(1)
$$A \to ((B \to A) \to A)$$
 公理1

$$(2) (A \to ((B \to A) \to A)) \to ((A \to (B \to A)) \to (A \to A)) \xrightarrow{\text{\triangle}} 2$$

(3)
$$(A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)$$
 (1) 和 (2) 用rmp分离规则

$$(4) A \rightarrow (B \rightarrow A)$$
 公理1

定理2: 如果 $\vdash_{PC} A \rightarrow (B \rightarrow C)$, 那么 $\vdash_{PC} B \rightarrow (A \rightarrow C)$ (前件互换定理)

证明思路:由于 $\vdash_{PC} A \to (B \to C)$,那么必有一个证明序列

 $(1) A_1$

 $(2) A_2$

:

 $(m) A_m = A \to (B \to C)$

要证 $B \to (A \to C)$ 是PC中的一个定理,只需在此证明序列的基础上,继续推导

,找到一个证明序列 A_1 , A_2 , \cdots , $A_m A_{m+1}$, \cdots , $A_n (= B \rightarrow (A \rightarrow C)$ 即可。

证明: 由 $\vdash_{PC} A \to (B \to C)$, 那么有一个序列

- $(1) A_1$
- $(2) A_2$

 $(m) A_m = A \to (B \to C)$

$$(m)$$
 $A_{m} = A \rightarrow (B \rightarrow C)$ $(m+1)$ $(A \rightarrow (B \rightarrow C))$ \rightarrow $((A \rightarrow B))$ \rightarrow $(A \rightarrow C))$ 公理2 $(m+2)$ $(A \rightarrow B)$ \rightarrow $(A \rightarrow C)$ (m) 和 $(m+1)$ rmp分离规则 $(m+3)$ $((A \rightarrow B) \rightarrow (A \rightarrow C))$ \rightarrow $(B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$ 公理1 $(m+4)$ $B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ $(m+2)$ 和 $(m+3)$ rmp分离规则 $(m+5)$ $(B \rightarrow ((A \rightarrow B)) \rightarrow (A \rightarrow C)))$ \rightarrow $((B \rightarrow (A \rightarrow B)))$ \rightarrow $(B \rightarrow (A \rightarrow C)))$ \rightarrow $((B \rightarrow (A \rightarrow B)))$ \rightarrow $(B \rightarrow (A \rightarrow B)))$ \rightarrow $(B \rightarrow (A \rightarrow B))$ \rightarrow $(B \rightarrow (A \rightarrow B))$ 公理1 $(m+8)$ $B \rightarrow (A \rightarrow C)$ $(m+7)$ 和 $(m+6)$ rmp分离规则

这个定理叫前件互换定理,很重要!!!

证明序列中的Ai也可以是已知定理

证明: 称下列公式序列为公式A在PC中的一个证明:

$$A_1, A_2, \cdots, A_m (= A)$$

如果对任意的 $i \in \{1,2,\dots,m\}$, A_i 是PC中的公理,或是 $A_j(j < i)$

,或是 $A_j, A_k(j, k < i)$ 用分离规则导出的。其中 A_m 就是公式A。

A_i 只能是以下三种中的其一:

- (1) PC中的公理或已知定理
- (2) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中的某一个
- (3) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中某两个用分离规则导出的

证明序列中的Ai也可以是已知定理

因为 $P_{PC}A$,那么有一个公式序列

$$A_1, A_2, \cdots, A_i, \cdots, A_m (= A)$$

如果 A_i 是PC中的定理,那么 A_i 同样有一个公式序列:

$$B_1$$
, B_2 , \cdots , B_i , \cdots , B_n (= A_i)

那么

$$A_1, A_2, \dots, B_1, B_2, \dots B_i, \dots, B_n (= A_i), \dots, A_m (= A)$$

因此,证明序列中的 A_i 是PC中的已知定理也可以。

定理2证明的简化形式

定理2: 如果 $\vdash_{PC} A \to (B \to C)$, 那么 $\vdash_{PC} B \to (A \to C)$ (前件互换定理)

(1)
$$A_m = A \to (B \to C)$$
 已知定理
(2) $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ 公理2
(3) $(A \to B) \to (A \to C)$ (1) 和 (2) rmp分离规则
(4) $((A \to B) \to (A \to C)) \to (B \to ((A \to B) \to (A \to C)))$ 公理1
(5) $B \to ((A \to B) \to (A \to C))$ (3) 和 (4) rmp分离规则
(6) $(B \to ((A \to B) \to (A \to C))) \to ((B \to (A \to B)) \to (B \to (A \to C)))$ 公理2
(7) $(B \to (A \to B)) \to (B \to (A \to C))$ (5) 和 (6) rmp分离规则
(8) $B \to (A \to B)$ 公理1

(9) $B \to (A \to C)$ (8) 和 (7) rmp分离规则

定理3: $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$ (定理(2)的另一种形式)

(1)
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
 公理2

(2)
$$(A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$$
 对 (1) 式用前件互换定理2

$$(3) \quad ((A \to B) \to ((A \to (B \to C)) \to (A \to C)))$$

$$\rightarrow (B \rightarrow ((A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))))$$
 公理1

$$(4)$$
 $B \rightarrow ((A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C)))$ (2) 和 (3) 用rmp分离规则

$$(5) (B \rightarrow ((A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))))$$

$$\rightarrow$$
 (($B \rightarrow (A \rightarrow B)$) \rightarrow ($B \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$)) 公理2

(6)
$$(B \to (A \to B)) \to (B \to ((A \to (B \to C)) \to (A \to C)))$$
 (4) 和 (5) 用rmp分离规则

(7)
$$B \rightarrow (A \rightarrow B)$$
 公理1

(8)
$$B \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$$
 (7) 和 (6) 用rmp分离规则

(9)
$$(A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$$
 对 (8) 用前件互换定理2

定理4: $\vdash (B \to C) \to ((A \to B) \to (A \to C))$ (加前件定理)

证明:

$$(1) (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

公理2

(2)
$$((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$$

 $\rightarrow ((B \rightarrow C) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))))$

$$(3) \ (B \rightarrow C) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$$

(1) 和(2) 用rmp分离规则

$$(4) \quad ((B \to C) \to ((A \to (B \to C)) \to ((A \to B) \to (A \to C))))$$

$$\to \quad (((B \to C) \to (A \to (B \to C))) \to ((B \to C) \to ((A \to B) \to (A \to C))))$$

$$(5) ((B \to C) \to (A \to (B \to C))) \to ((B \to C) \to ((A \to B) \to (A \to C)))$$

公理2 (3) 和 (4) 用rmp分离规则

(6)
$$(B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$$

公理1

(7)
$$(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

(6) 和 (5) 用rmp分离规则

定理 5: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (加后件定理)

证明:对定理4,利用前件互换定理2得出。

(1)
$$(B \to C) \to ((A \to B) \to (A \to C))$$
 加前件定理4

(2)
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$
 对 (1) 用前件互换定理2

定理6. $\vdash_{PC} \neg A \rightarrow (A \rightarrow B)$

- (1) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$ 公理3
- (3) $\neg A \rightarrow ((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$ (1) 和 (2) 用rmp分离规则
- (4) $(\neg A \rightarrow ((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)))$
 公理2 $\rightarrow ((\neg A \rightarrow (\neg B \rightarrow \neg A)) \rightarrow (\neg A \rightarrow (A \rightarrow B)))$
- (5) $((\neg A \rightarrow (\neg B \rightarrow \neg A)) \rightarrow (\neg A \rightarrow (A \rightarrow B)))$ (3) 和 (4) 用rmp分离规则
- (7) $\neg A \rightarrow (A \rightarrow B)$ (1) 和 (6) 用rmp分离规则

定理7. $\vdash_{PC}A \rightarrow (\neg A \rightarrow B)$

- (1) $\neg A \rightarrow (A \rightarrow B)$ 定理6
- (2) $A \rightarrow (\neg A \rightarrow B)$ 对 (1) 使用前件互换定理2

定理8. 如果 $\vdash (A \rightarrow B), \vdash (B \rightarrow C), 那A \vdash (A \rightarrow C)$ (三段论定理)

思路: $\operatorname{d} A \to B \operatorname{Al} B \to C$, 要证 $A \to C$, 要想办法出现 $A \to C$ 。

- (1) $A \rightarrow B$ 已知定理
- (2) $B \rightarrow C$ 已知定理
- (3) $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ 加后件定理5
- (4) $(B \rightarrow C) \rightarrow (A \rightarrow C)(1)$ 和 (3) 用rmp分离规则
- (5) $A \rightarrow C$ (2) 和 (4) 用rmp分离规则

定理8. 如果 $\vdash (A \rightarrow B), \vdash (B \rightarrow C), 那么 \vdash (A \rightarrow C)$ (三段论定理)

思路:要出现 $A \rightarrow C$,不仅有刚才用加后件定理5,还可以用加

前件定理4

- (1) $A \rightarrow B$ 已知定理
- (2) $B \rightarrow C$ 已知定理
- (3) $(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ 加前件定理4
- (4) $(A \to B) \to (A \to C)$ (2) 和 (3) 用rmp分离规则
- (5) $A \rightarrow C$ (1) 和 (4) 用rmp分离规则

定理9. $\vdash_{PC}(\neg A \rightarrow A) \rightarrow A$

思路: 匹配相近的公理或已知定理,作为切入点进行证明。这里我们尝试从定

理 $6 \vdash_{PC} \neg A \rightarrow (A \rightarrow B)$ 出发证明。

- (1) $\neg A \rightarrow (A \rightarrow \neg(\neg A \rightarrow A))$ 定理6
- $(2) (\neg A \rightarrow (A \rightarrow \neg(\neg A \rightarrow A))) \rightarrow ((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg(\neg A \rightarrow A))) \underline{\wedge} \underline{22}$
- (3) $(\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow A))$ (1) 和 (2) 用rmp分离规则
- (4) $(\neg A \rightarrow \neg (\neg A \rightarrow A)) \rightarrow ((\neg A \rightarrow A) \rightarrow A))$ 公理3
- (5) $(\neg A \to A) \to ((\neg A \to A) \to A)$) (3) 和 (4) 用三段论定理8
- (6) $((\neg A \to A) \to ((\neg A \to A) \to A))) \to$ $(((\neg A \to A) \to (\neg A \to A)) \to ((\neg A \to A) \to A))$ 公理2
- (7) $((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow A)) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$ (5) 和 (6) 用rmp分离规则
- (8) $(\neg A \rightarrow A) \rightarrow (\neg A \rightarrow A)$ 定理1
- (9) $(\neg A \rightarrow A) \rightarrow A$ (8) 和 (7) 用rmp分离规则

定理10. ⊢ ¬¬*A* → *A*

(1)
$$\neg \neg A \rightarrow (\neg A \rightarrow A)$$
 定理6

- (2) $(\neg A \rightarrow A) \rightarrow A$ 定理9
- (3) $\neg \neg A \rightarrow A$ (1) 和 (2) 用三段论定理8

定理11. \vdash ($A \rightarrow \neg A$) $\rightarrow \neg A$

- (1) ¬¬A → A 定理10
- (2) $(\neg \neg A \rightarrow A) \rightarrow ((A \rightarrow \neg A) \rightarrow (\neg \neg A \rightarrow \neg A))$ 加后件定理5
- (3) $(A \rightarrow \neg A) \rightarrow (\neg \neg A \rightarrow \neg A)$ (1) 和 (2) 用rmp分离规则
- $(4) \quad ((A \rightarrow \neg A) \rightarrow (\neg \neg A \rightarrow \neg A)) \rightarrow$

$$(((\neg \neg A \to \neg A) \to \neg A) \to ((A \to \neg A) \to \neg A))$$
 加后件定理5

- (5) $((\neg \neg A \rightarrow \neg A) \rightarrow \neg A) \rightarrow ((A \rightarrow \neg A) \rightarrow \neg A)$ (3) 和 (4) 用rmp分离规则
- (6) $(\neg \neg A \rightarrow \neg A) \rightarrow \neg A$ 定理9
- (7) $(A \rightarrow \neg A) \rightarrow \neg A$ (5) 和 (6) 用rmp分离规则

定理12. ⊢ *A* → ¬¬*A*

思路:对比定理 $11 \vdash (A \rightarrow \neg A) \rightarrow \neg A$ 和要证明的 $\vdash A \rightarrow \neg \neg A$

证明:

 $(1) (\neg A \rightarrow \neg \neg A) \rightarrow \neg \neg A$ 定理11

(2) $A \rightarrow (\neg A \rightarrow \neg \neg A)$ 定理7

(3) *A* → ¬¬*A* (2) 和 (1) 用三段论定理8

基本定理

定理1: $\vdash_{PC} A \rightarrow A$ ✓

定理2: 如果 $\vdash_{PC} A \to (B \to C)$, 那么 $\vdash_{PC} B \to (A \to C)$ (前件互换定理) ✓

定理3: $\vdash (A \to (B \to C)) \to (B \to (A \to C))$ 定理 (2) 的另一种形式 √

定理4: $\vdash (B \to C) \to ((A \to B) \to (A \to C))$ (加前件定理) ✓

定理5: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (加后件定理) ✓

定理6: $\vdash \neg A \rightarrow (A \rightarrow B) \checkmark$

定理7: $\vdash A \rightarrow (\neg A \rightarrow B)$ ✓

定理8: 如果 \vdash ($A \rightarrow B$), \vdash ($B \rightarrow C$), 那么 \vdash ($A \rightarrow C$) (三段论定理) ✓

定理9. $\vdash (\neg A \rightarrow A) \rightarrow A$ (反证法) ✓

定理10. ⊢ ¬¬*A* → *A* **√**

定理11. \vdash ($A \rightarrow \neg A$) $\rightarrow \neg A$ (反证法) \checkmark

定理12. ⊢ *A* → ¬¬*A* **√**