Отчёт по лабораторной работе Часть 1. Случайные графы

Долгих Д. Д.

1 Постановка задачи

Исследуются два типа случайных графов:

- КNN-графы.
- DIST-графы.

Гипотезы:

$$H_0: X_i \sim \operatorname{Exp}(\lambda_0), \lambda_0 = 1 \tag{1}$$

$$H_1: X_i \sim \Gamma\left(\frac{1}{2}, \lambda_1\right), \lambda_1 = \sqrt{0.5}$$
 (2)

Характеристики:

- KNN-граф: число треугольников.
- DIST-граф: хроматическое число.

2 Методика

Для каждой гипотезы было сгенерировано нами по 300 графов. Пороговое значение мы выбрали следующее: 95-й процентиль T при H_0 . Множество A:

$$A = \{T : T > \text{Threshold}\}\tag{3}$$

Мощность оценивалась как доля случаев, когда T >Threshold при H_1 .

3 Анализ параметров распределений при фиксированных параметрах графа

3.1 KNN-граф (n=1000, k=60)

- При $\lambda_0=0.3,\,\lambda_1=0.3-1.0$: AUC ROC и мощность близки к 1.0.
- При $\lambda_1 \ge 1.5$: снижение мощности и AUC.
- При больших λ_0 (1.5-3.0): критерий теряет чувствительность.

3.2 DIST-граф (n=1000, d=0.5)

- При $\lambda_0 \le 0.5, \, \lambda_1 \le 1.0$: высокая эффективность критерия.
- При $\lambda_1 \ge 1.5$: резкое падение мощности и AUC.
- При $\lambda_0 \ge 1.5$: критерий полностью теряет чувствительность.

4 Анализ зависимости от параметров графа при фиксированных распределениях

4.1 KNN-rpa ϕ ($\lambda_0 = 1, \lambda_1 = \sqrt{0.5}$)

- При малом k и n (100–200): низкая мощность и AUC.
- При n = 1000, k = 50 100: AUC и мощность близки к 1.0.

4.2 DIST-rpa ϕ ($\lambda_0 = 1, \lambda_1 = \sqrt{0.5}$)

- При d = 0.05 0.1 и малом n: высокая эффективность.
- При d = 1.0 и выше: снижение мощности и AUC.
- При $d \ge 1.5$: критерий теряет различимость.

5 Вывод

- 1. При малых значениях $\lambda_0 = 0.3$ и $\lambda_1 = 0.3-1.0$:
 - AUC ROC близок к 1.0.
 - Мощность критерия почти 1.0.
 - Критерий уверенно отличает H_0 и H_1 .
 - Ошибка первого рода стабильно около 0.05 (контроль α соблюдается).
- 2. При увеличении λ_1 до 1.5 и выше (при фиксированном $\lambda_0 = 0.3$):
 - Мощность заметно снижается.
 - При $\lambda_1 = 1.5$ мощность падает до 0.533.
 - При $\lambda_1 \ge 2.0$ мощность становится 0.0, критерий теряет чувствительность.
 - AUC резко падает.
- 3. При больших λ_0 (1.5–3.0) независимо от λ_1 :
 - AUC падает до 0.0-0.2.
 - Мощность стремится к 0.0.
 - Критерий полностью теряет способность отличать H_0 и H_1 .