

Bike Sharing Time Series Analysis

Group Members:

Abby(Jingyi) Liu

Qianying Diao

Qiang Wang

Xinrong Chen

Jamie(Xiaojie) Pan

TF Model with regressors

Univariate Models

Multivariate Models

Vector Model

Introduction and Overview

Part

Introduction & Overview

Introduction

Background Overview

- Bike Sharing System is an innovation of traditional vehicles rental services.
- Daily counts of rental bikes from 2011.1.1 to 2012.12.31 in Capital Bikeshare System in Washington D.C..
- Also includes daily weather, humility, wind speed, precipitation.

Variable Description

Dependent Variable

 cnt: Count of total rental bikes trips including both casual and registered

Independent Variables

- atemp: Normalized feeling temperature in Celsius.
- hum: Normalized humidity.
- windspeed: Normalized wind speed.
- prcp: historical daily precipitation observations.
- start_holiday: dummies variable, 1 for previous day is working day current day is holiday.
- end_holiday: dummies variable, 1 for previous day is holiday current day is work day.

Introduction

Features:

- Nonstationary series
 - Need first difference
- Increasing change in the variability of the series over time
 - o a log transformation can be applied
- Clear seasonality

Part 2

Univariate Models

Univariate Models - Seasonal dummies

- Create two dummies for peak and bottom months
- 'JAN_FEB' dummies distinguish Jan. and Feb with other months
- 'JUNE_JULY_AUG_SEP' dummies distinguish June, July, August, and September with other months.

- Weekdays: No significant changes --- No model should be built
- Months: Peak: June to September. Bottom: January and February -- Create dummies

Univariate Models - Seasonal dummies

Model Prediction

The model generally grasp most of the ups and downs.

Parameter Estimate

All parameters are significant

Parameter Estimates							
	CNT						
.og JAN_FEB +	· JUNE_JULY_A	UG_SEP + Li	near Trend				
Estimate	Std. Error	Т	Prob> T				
7.75107	0.0311	249.4030	<.0001				
-0.43567	0.0376	-11.5796	< .0001				
0.22996	0.0307	7.4814	< .0001				
0.00159	0.000079	20.2492	< .0001				
0.11403							
	Estimate 7.75107 -0.43567 0.22996 0.00159	CNT .og JAN_FEB + JUNE_JULY_A Estimate	Estimate Std. Error T 7.75107 0.0311 249.4030 -0.43567 0.0376 -11.5796 0.22996 0.0307 7.4814 0.00159 0.000079 20.2492				

Univariate Models - Cyclical

1	Obs 🔻	FREQ -	PERIOD -	P_01 →
2	3	0.01719	365.5	816186123
3	5	0.03438	182.75	58007683.1
4	6	0.04298	146.2	25420661.9
5	7	0.05157	121.833	20569437.7
6	25	0.20629	30.458	15529566
7	110	0.93689	6.706	15052975.3
8	29	0.24067	26.107	14403743.3
9	106	0.90251	6.962	14288650.9
10	13	0.10314	60.917	13474732.8
11	39	0.32662	19.237	12266775.6

Periodogram

Highest 10 amplitudes

- Non-stationary
- Not White Noise
- RMSE = 2615.7

Univariate Models - Cyclical + First Difference

Take First Difference

- Stationary
- Not WN
- RMSE = 1310.7

- ACF decays quickly
- PACF decays quickly
- ARMA(1,1) for Error Model

Univariate Models - Cyclical + First Difference + Error Model

Statistic of Fit

Statistic of Fit	Value
Mean Square Error	1556499.9
Root Mean Square Error	1247.6
Mean Absolute Percent Error	245.70072
Mean Absolute Error	992.69333
R-Square	0.595

Model Parameter	Estimate	Std. Error	T	Prob> T
Intercept	0.00188	0.000512	3.6719	0.0004
Moving Average, Lag 1	0.96732	0.0113	85.3323	< .0001
Autoregressive, Lag 1	0.24225	0.0415	5.8306	< .0001
SIN38	0.03204	0.0194	1.6549	0.1020
COS38	-0.00183	0.0194	-0.0946	0.9249
SIN12	0.00992	0.0208	0.4777	0.6342
COS12	-0.02415	0.0208	-1.1625	0.2486
SIN105	0.02663	0.0172	1.5482	0.1257
COS105	-0.00443	0.0172	-0.2575	0.7975
SIN28	0.01024	0.0198	0.5179	0.6060
COS28	0.02786	0.0197	1.4126	0.1618
S1N109	0.03947	0.0171	2.3142	0.0233
COS109	0.02318	0.0171	1.3597	0.1779
SIN24	0.03396	0.0199	1.7088	0.0915
COS24	-0.02746	0.0199	-1.3816	0.1711
SING	0.03006	0.0251	1.1974	0.2348
COS6	-0.01871	0.0251	-0.7447	0.4587
SIN5	0.02608	0.0277	0.9434	0.3484
SIN4	-0.02891	0.0321	-0.9011	0.3703
C0S5	0.05556	0.0270	2.0605	0.0427
COS4	-0.08702	0.0290	-2.9966	0.0037
SIN2	0.02967	0.0480	0.6177	0.5386
COS2	-0.40753	0.0483	-8.4422	< .0001
Model Variance (sigma squared)	0.07276			

- Lowest RMSE = 1247.6
- Low MAPE = 245.7
- Pass WN test
- Significant p-values
 - COS 2 1 year
 - COS 4 1/2 year
 - COS 109 1 week

ARMA(1,1) fits well!

Univariate Models - ARIMA

Original series (CNT) is nonstationary

Take first difference

CNT(1) is stationary

Univariate Models - ARIMA

- Out-out samples 100 obs
 - Log Transformation
 - Without intercept
 - No obvious seasonality

ARIMA(1,1,1)

Statistic of Fit	Value
Mean Square Error	1736875.0
Root Mean Square Error	1317.9
Mean Absolute Percent Error	302.29158
Mean Absolute Error	940.46107
R-Square	0.548

ARIMA(0,1,2)

Statistic of Fit	Value
Mean Square Error	1756347.5
Root Mean Square Error	1325.3
Mean Absolute Percent Error	302.30539
Mean Absolute Error	953.34912
R-Square	0.543

ARIMA(1,1,1) is better!

Model	Model Model Variance		Root Mean Square Error	Mean Absolute Percent Error						
Seasonal Dum	my	0.11403	2651.9	388.38455						
Cyclical + ARIMA	A(1,1,1)	0.07276	1247.6	245.70072						
ARIMA(0,1,	2)	0.07633	1325.3	302.30539						
ARIMA(1,1,	1)	0.07666	1317.9	302.29158						
*All models here take	*All models here take the log-transformation.									

Part 3

Multivariate Models

Multivariate Models - Preview Inputs

Average Temperature

Humidity

Nonstationary

Stationary, NOT White Noise

Multivariate Models - Preview Inputs

Windspeed

Stationary, NOT White Noise

Precipitation

Stationary, NOT White Noise

Input Variables	Prewhitening Process			
ATEMP	ARIMA(1,1,2)			
HUM	ARIMA(1,0,1)(0,0,1)s			
WINDSPEED	Factor Model, Q = (1,16)			
PRCP	Factor Model, Q = (1,11)			

Average Temperature

Humidity

Windspeed

Precipitation

Multivariate Models - Estimate TF model

Prewhitened Variables	(b, r, s)
ATEMP	b = 0, r = 0, s = 1
HUM	b = 0, r = 0, s = 2
WINDSPEED	b = 0, r = 0, s = 1
PRCP	A significant negative lag

Exclude from TF model

Multivariate Models - Check for adequacy(univariate)

To Lag	Chi-Square	DF	Pr > ChiSq	Crosscorrelations					
5	1.27	5	0.9377	-0.005	-0.011	0.000	-0.008	-0.029	-0.026
11	3.08	11	0.9896	0.019	-0.002	0.035	-0.024	-0.012	-0.012
17	4.38	17	0.9991	0.020	0.000	0.020	0.013	0.002	0.028
23	10.45	23	0.9881	-0.008	0.003	-0.014	-0.011	0.089	-0.008
29	20.26	29	0.8846	-0.024	-0.020	0.047	-0.091	0.044	-0.006
35	33.03	35	0.5634	0.001	-0.066	0.100	-0.019	-0.053	0.012
41	36.76	41	0.6595	0.011	-0.038	0.023	0.042	-0.033	-0.016
47	40.29	47	0.7448	-0.001	0.038	0.029	-0.032	0.031	-0.022

To Lag	Chi-Square	DF	Pr > ChiSq		C	rosscor	relation	IS	
5	9.34 5	5	0.0963	0.000	-0.026	0.101	0.010	0.043	-0.002
11	12.81	11	0.3059	0.005	0.008	-0.028	0.005	0.043	-0.045
17	22.63	17	0.1616	-0.000	0.047	-0.049	-0.004	0.073	-0.059
23	29.60	23	0.1612	0.016	0.064	-0.050	0.049	-0.009	-0.010
29	38.64	29	0.1088	-0.031	0.100	-0.027	-0.008	0.019	0.018
35	41.37	35	0.2123	0.007	0.050	-0.018	-0.004	-0.025	-0.014
41	44.09	41	0.3424	0.037	0.013	-0.022	0.009	-0.000	-0.041
47	47.40	47	0.4563	0.015	0.045	-0.038	0.025	0.006	0.014

	Cross	corre	lation Check	of Res	iduals v	vith Inp	ut hum		
To Lag	Chi-Square	DF	Pr > ChiSq	iSq Crosscorrelations					
5	2.28	4	0.6852	-0.009	0.007	-0.001	0.018	-0.050	0.013
11	9.82	10	0.4562	-0.026	0.072	-0.057	0.016	-0.012	0.028
17	12.76	16	0.6903	-0.035	0.046	0.003	-0.006	0.016	0.020
23	18.42	22	0.6810	-0.044	-0.003	-0.004	-0.065	0.035	0.019
29	21.70	28	0.7948	-0.056	0.013	0.002	0.001	0.021	-0.027
35	26.92	34	0.8008	0.004	-0.003	0.027	-0.062	0.047	0.019
41	37.83	40	0.5684	-0.028	-0.019	0.036	-0.049	0.082	-0.059
47	41.98	46	0.6414	0.003	0.005	0.030	0.010	0.020	-0.065

P-value are larger than 0.05

Our target and input series are not cross-correlated

TF model is appropriate

Multivariate Models - Check for adequacy(multivariate)

	T			0 1.0									
To Lag	Chi-Square	DF	Pr > ChiSq	Crosscorrelations									
5	1.35	5	0.9301	-0.011	-0.008	-0.025	0.000	-0.026	-0.019				
11	4.89	11	0.9363	0.038	0.040	-0.001	-0.010	-0.041	-0.002				
17	7.82	17	0.9703	0.027	-0.015	0.039	0.011	0.034	0.016				
23	15.10	23	0.8910	-0.026	0.011	-0.032	0.025	0.084	0.024				
29	30.17	29	0.4054	-0.070	-0.011	0.053	-0.093	0.059	-0.028				
35	37.96	35	0.3358	0.015	-0.054	0.076	-0.011	-0.037	0.018				
41	39.55	41	0.5352	-0.011	-0.018	0.029	0.018	-0.023	0.000				
47	42.54	47	0.6575	-0.007	0.045	0.022	-0.012	0.032	-0.021				

	LOCAL PROPERTY OF	7.811.5	ion Check of		Water Park Total			even.					
To Lag	Chi-Square	DF	Pr > ChiSq	Crosscorrelations									
5	20.76	5	0.0009	0.010	-0.047	0.146	-0.003	0.069	0.014				
11	24.26	11	0.0117	0.000	0.004	-0.027	0.031	0.029	-0.048				
17	28.89	17	0.0355	0.045	0.021	-0.031	0.004	0.047	-0.028				
23	33.41	23	0.0743	0.028	0.054	-0.032	0.038	-0.004	-0.005				
29	45.45	29	0.0266	-0.039	0.110	-0.031	-0.007	-0.020	0.040				
35	50.63	35	0.0424	-0.012	0.070	-0.006	-0.011	0.005	-0.043				
41	55.11	41	0.0694	0.023	0.041	-0.032	0.010	0.010	-0.052				
47	59.33	47	0.1070	0.040	0.017	-0.036	0.034	-0.000	0.038				

	Cross	corre	lation Check	of Res	iduals v	vith Inp	ut hum		
To Lag	Chi-Square	DF	OF Pr > ChiSq Crosscorrelation						
5	3.13	4	0.5360	-0.011	0.007	0.003	0.019	-0.060	-0.013
11	13.68	10	0.1880	-0.036	0.092	-0.057	0.029	-0.020	0.019
17	16.55	16	0.4150	-0.051	0.021	-0.001	0.004	-0.011	0.027
23	22.04	22	0.4577	-0.052	-0.010	0.003	-0.053	0.044	-0.001
29	25.09	28	0.6228	-0.047	0.017	-0.022	0.016	0.010	-0.029
35	32.75	34	0.5286	0.018	-0.021	0.034	-0.080	0.045	0.012
41	48.83	40	0.1596	-0.057	-0.010	0.047	-0.066	0.078	-0.078
47	51.79	46	0.2582	0.032	0.020	0.008	-0.031	0.013	-0.037

P-value are larger than 0.05

Our target and input series are not cross-correlated

TF model is appropriate

Multivariate Models - TF model

Not WN,

Try different error models

TF + ARIMA(0,1,1)

TF + ARIMA(1,1,1)

TF model

Comparison of TF-noise model

Multivariate Models - TF-noise model

		_Parameter Es	stimates		
		CNT			
Log atemp[Dif(1	I) N(1)] + w	indspeed[N(1))] + hum[N(2)] + ARIMA	1(1,1,1) NOIN
Model Parameter	Estimate	Std. Error	Т	Prob> T	
Moving Average, Lag 1	0.84890	0.0275	30.8383	<.0001	
Autoregressive, Lag 1	0.20554	0.0505	4.0682	0.0001	
ATEMP[Dif(1) N(1)]	1.08876	0.1513	7.1942	<.0001	
ATEMP[Dif(1) N(1)] Num1	-0.39755	0.1473	-2.6984	0.0083	
WINDSPEED[N(1)]	-0.86002	0.1338	-6.4267	<.0001	
WINDSPEED[N(1)] Num1	0.49965	0.1425	3.5053	0.0007	
HUM[N(2)]	-1.00334	0.0794	-12.6372	<.0001	
HUM[N(2)] Num1	-0.18655	0.0783	-2.3819	0.0193	
HUM[N(2)] Num2	-0.11360	0.0765	-1.4854	0.1409	
Model Variance (sigma squared)	0.05477				

- Stationary
- Not WN
- RMSE = 1114.8
- MAPE = 202.25135

Model has been improved

Part 4

TF Model with Regressors

TF Model with regressors - Regressors Detection

Feedback Relationships with PRCP

Significant Regressors: PRCP, PRCP of Tomorrow(k = -1)

• Interpretation:

People can check tomorrow's weather. The decision today will depend on precipitation volumes of yesterday, today and tomorrow.

Before the inclement weather, the level of bike trips count is high.

Holiday Effect

Holiday	2011		2012			
Martin Luther King Jr. Day	Jan. 15th	Jan. 18th	Jan. 14th	Jan. 17th		
Valentine's Day		Feb. 14th		Feb. 14th		
Presidents' Day	Feb. 19th	Feb. 22th	Feb. 18th	Feb. 21th		
Labor Day	Sep. 3rd	Sep. 6th	Sep. 1st	Sep. 4th		
Thanksgiving Day	Nov. 24th	Nov. 25th	Nov. 22th	Nov. 23th		
Black Friday		Nov. 26th		Nov. 23th		
Christmas Eve	Dec. 24th		Dec. 24th			

Outliers:

Notable deviation substantially higher or lower than predicted values in former ARIMA or TF models

Dummy Variables:

Break start days (Significantly Negative)
The first working day (Not Significant)

TF Model with regressors - Count of Bike Trips during Holiday

TF Model with regressors - Model Identification and Comparison

	TF Model	TF Model with regressor
Root Mean Square Error	1114.8	891.87
Mean Absolute Percent Error	202.25	68.99

Part 5

Vector Model

Vector Model

Cross Correlations

Partial Autoregression

Variable/Lag	1	2	3	4	5	6	7	8	9	10	11	12
cnt_delta_std	-+	-+		-+	-+	. +						
PRCP1	-+	-+				-+					.+	

VMA(2) Parameter Estimates

	Mo	del Param	eter Estima	ates		
Equation	Parameter	Estimate	Standard Error	t Value	Pr > t	Variable
cnt_delta_std	MA1_1_1	0.55096	0.03353	16.43	0.0001	e1(t-1)
	MA1_1_2	-0.05861	0.03596	-1.63	0.1036	e2(t-1)
	MA2_1_1	0.25936	0.03202	8.10	0.0001	e1(t-2)
	MA2_1_2	-0.00144	0.03470	-0.04	0.9669	e2(t-2)
PRCP1	MA1_2_1	0.55967	0.03711	15.08	0.0001	e1(t-1)
	MA1_2_2	-0.09792	0.03719	-2.63	0.0086	e2(t-1)
	MA2_2_1	0.06901	0.04136	1.67	0.0957	e1(t-2)
	MA2_2_2	-0.03966	0.04289	-0.92	0.3555	e2(t-2)

Vector Model

Matrix Function

$${\begin{bmatrix} \Delta CNT_STD \\ PRCP_STD \end{bmatrix}} = {\begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix}} - {\begin{bmatrix} 0.55096 & -0.05861 \\ 0.55967 & -0.09792 \end{bmatrix}} \times {\begin{bmatrix} e_{1t-1} \\ e_{2t-1} \end{bmatrix}} - {\begin{bmatrix} 0.25936 & -0.00144 \\ 0.06901 & -0.03966 \end{bmatrix}} \times {\begin{bmatrix} e_{1t-2} \\ e_{2t-2} \end{bmatrix}}$$

Correlations of Residuals

Variable/Lag	0	1	2	3	4	5	6	7	8	9	10	11	12
cnt_delta_std PRCP1	+.	٠.					+.						
PRCP1	.+	٠.					.+					.+	

Thank you for listening!