Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет Системы управления и робототехники

Отчет по лабораторной работе №2 «2D-преобразования»

Преподаватель:

Выполнила:

Перегудин А. А.,

студентка гр. R3235

Ассистент фак. СУиР

Нгуен Кхань Нгок

ТЕОРИЯ

І. Преобразавания в двумерном пространстве

Двумерное преобразование преобразует точку М на плоскости в точку с новыми координатами Q по определенному правилу. По сути, точечное преобразование — это карта T, определенная:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $M(x, y) \to Q(x', y')$

Другими словами, Т является функцией двух переменных х и у.

$$\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$$

1. Симметрия в двумерном пространстве

Рассмотрим случай симметрии посредством прямой d, проходящей через начало координат и образующей угол θ с Ox, как на графике. Обозначим преобразование как R_{ed}

Мы можем выполнить описанную выше симметрию, применив последовательные преобразования в следующем порядке:

Шаг 1: Примените вращение $R(-\theta)$, чтобы привести линию d в положение оси ox.

Шаг 2: Примените симметрию S_{ox} через ось ох.

Шаг 3: Примените вращение $R(\theta)$, чтобы вернуть линию d в исходное положение.

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = R_{ed}. M = R(\theta). S_{ox}. R(-\theta). M = \begin{bmatrix} \cos 2\theta & \cos 2\theta \\ \sin 2\theta & -\sin 2\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2. Ротации (Поворот с углом θ) в двумерном пространстве

Вращение меняет ориентацию объекта. Для вращения необходим центр вращения и угол вращения. Положительные углы поворота часто условно называют против часовой стрелки и наоборот.

У нас уравнения преобразования:

$$\begin{cases} x' = r cos(\varphi + \theta) \\ y' = r sin(\varphi + \theta) \end{cases} \leftrightarrow \begin{cases} x' = r cos \varphi cos \theta - r sin \varphi sin \theta \\ y' = r sin \varphi cos \theta + r cos \varphi sin \theta \end{cases}$$
 Из графика видно, что $\begin{cases} x = r cos \varphi \\ y = r sin \varphi \end{cases}$

Подставив в два приведенных выше уравнения, получим:

$$\begin{cases} x' = x \cos\theta - y \sin\theta \\ y' = x \sin\theta + y \cos\theta \end{cases}$$

Поэтому ротации описывается уравнением:

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = R. M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 при вращении против часовой стрелки $M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = R. M = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ при вращении по часовой стрелки

3. Пропорциональность

Преобразование масштаба изменяет размер объекта. Чтобы сжать или расширить координаты точки M(x,y) вдоль горизонтальной и вертикальной осей, соответственно Sx и Sy (так называемые коэффициенты масштабирования), мы умножаем Sx и Sy, чтобы получить координаты M соответственно.

У нас уравнения преобразования: $\begin{cases} x' = s_x.x \\ y' = s_y.y \end{cases}$

где s_x , s_y — коэффициенты масштабирования по осям x и y

Уравнение пропорционального преобразования можно описать следующим образом:

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = S. M = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Когда $(s_x, s_y) \neq (1, 1)$ пропорциональное преобразование изменит форму объекта.

Особый случай: когда $s_x = 1$ и $s_y = -1$, масштабирование становится симметричным относительно оси Ox.

Аналогично, если $s_x = -1$ и $s_y = 1$, масштабирование становится симметричным относительно оси Оу.

В этой лабораторной мы будем воспринимать любую матрицу 2×2 как линейное отображение, преобразующее точки плоскости по закону

$$\begin{bmatrix} x_{new} \\ y_{new} \end{bmatrix} = \begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} x_{old} \\ y_{old} \end{bmatrix}$$
$$a = 2, b = -4, c = 3, d = 9$$

Задание 1. Придумайте матрицы 2 × 2, которые задают:

1. Отражение (симметрию) плоскости относительно прямой у = 2х.

$$cos\theta = \frac{oB}{oA} = \frac{2}{\sqrt{2^2 + 4^2}} = \frac{1}{\sqrt{5}} \rightarrow cos \ 2\theta = -\frac{3}{5}$$
$$sin\theta = \frac{AB}{OA} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} \rightarrow sin2\theta = \frac{4}{5}$$

ШАГ 1. Примените вращение $R(-\theta)$ линии d к положению оси ox.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

ШАГ 2. Примените симметрию Sox относительно оси Ox

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

ШАГ 3. Примените вращение $R(\theta)$, чтобы вернуть линию d в исходное положение.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos^2\theta - \sin^2\theta & 2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & \sin^2\theta - \cos^2\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\rightarrow$$
 Матрица отображения: $A = \begin{bmatrix} \cos{(2\theta)} & \sin{(2\theta)} \\ \sin{(2\theta)} & -\cos{(2\theta)} \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$

2. Отображение всей плоскости в прямую y = -4x.

$$\begin{cases} x' = s_x \cdot x \\ y' = s_y \cdot y \end{cases}$$
 $M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x' \\ -4x' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ \rightarrow Матрица отображения $A = \begin{bmatrix} 1 & -4 \\ 4 & -16 \end{bmatrix}$

3. Поворот плоскости на 10с градусов против часовой стрелки.

В двумерном пространстве мы рассматриваем вращение объекта вокруг центра вращения с углом поворота θ (θ >0, если направление вращения против часовой стрелки, и θ < 0, если направление вращения по часовой стрелке).

$$\theta = 10c = 10 * 3 = 30^{\circ}$$

Поскольку вращение происходит против часовой стрелки, угол $\theta > 0$.

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = R.M = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

4. Центральную симметрию плоскости относительно начала координат.

$$ightarrow$$
 Матрица отображения $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

5. Отображение, которое можно описать так: сначала отражение относительно прямой у = 2х, потом поворот на 90 градусов по часовой стрелке

Отображение поворот на
$$90^{\circ}$$
 по часовой стрелк $\rightarrow \theta = -90^{\circ}$ \rightarrow Матрица отображения $B = \begin{bmatrix} cos(90^{\circ}) & sin(90^{\circ}) \\ -sin(90^{\circ}) & cos(90^{\circ}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Матрица отображения включает в себя два вышеупомянутых отображения

$$ightarrow$$
 Матрица отображения: $M = B.A = = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix}$

Отображение, которое переводит прямую y = 0 в y = 2x и прямую x = 0 в y = -4x.

$$y = 0 \rightarrow y = 2$$

$$\rightarrow \cos \theta = \frac{2}{\sqrt{5}}$$

$$\rightarrow \sin \theta = \frac{1}{\sqrt{5}}$$

$$y = \mathbf{0} \to y = 2x$$

$$\to \cos \theta = \frac{2}{\sqrt{5}}$$

$$\to \sin \theta = \frac{1}{\sqrt{5}}$$

$$\to \sin \varphi = \frac{1}{\sqrt{17}}$$

 $y = 0 \rightarrow y = 2x$

Поскольку вращение происходит против часовой стрелки, угол $\theta > 0$

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ightarrow$$
 Матрица отображении $M_1=\left[egin{array}{cc} rac{2}{\sqrt{5}} & -rac{1}{\sqrt{5}} \ rac{1}{\sqrt{5}} & rac{2}{\sqrt{5}} \end{array}
ight]$

$$y = 0 \rightarrow y = -4x$$

Поскольку вращение происходит против часовой стрелки, угол $\theta > 0$

$$M_2 = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{4}{\sqrt{17}} & -\frac{1}{\sqrt{17}} \\ \frac{1}{\sqrt{17}} & -\frac{4}{\sqrt{17}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ightarrow$$
 Матрица отображении $M_2=\left[egin{array}{ccc} -rac{4}{\sqrt{17}} & -rac{1}{\sqrt{17}} \\ rac{1}{\sqrt{17}} & -rac{4}{\sqrt{17}} \end{array}
ight]$

$$\rightarrow MO \ \mathbf{A} = M_2 M_1 = \begin{bmatrix} -\frac{4}{\sqrt{17}} & -\frac{1}{\sqrt{17}} \\ \frac{1}{\sqrt{17}} & -\frac{4}{\sqrt{17}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{-9\sqrt{85}}{85} & \frac{2\sqrt{85}}{85} \\ \frac{-2\sqrt{85}}{85} & \frac{-9\sqrt{85}}{85} \end{bmatrix}$$

8. Отображение, которое переводит прямую y = 2x в y = 0 и прямую y = -4x в x = 0.

$$y = 2x \rightarrow y = 0$$

Поскольку вращение происходит по часовой стрелки, угол $\theta < 0$

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ightarrow$$
 Матрица отображении $M_1 = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$

$$y=-4x\to x=0$$

Поскольку вращение происходит по часовой стрелки, угол $\theta < 0$

$$M' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{4}{\sqrt{17}} & \frac{1}{\sqrt{17}} \\ -\frac{1}{\sqrt{17}} & -\frac{4}{\sqrt{17}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ightarrow$$
 Матрица отображении $M_2 = egin{bmatrix} -rac{4}{\sqrt{17}} & rac{1}{\sqrt{17}} \\ -rac{1}{\sqrt{17}} & -rac{4}{\sqrt{17}} \end{bmatrix}$

$$\rightarrow \text{ MO A} = M_2 M_1 = \begin{bmatrix} -\frac{4}{\sqrt{17}} & \frac{1}{\sqrt{17}} \\ -\frac{1}{\sqrt{17}} & -\frac{4}{\sqrt{17}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{-7\sqrt{85}}{85} & \frac{6\sqrt{85}}{85} \\ \frac{-6\sqrt{85}}{85} & \frac{-7\sqrt{85}}{85} \end{bmatrix}$$

9. Отображение, которое меняет местами прямые y = 2x и y = -4x.

$$y = -4x$$

$$\to \cos \theta = \frac{4}{\sqrt{17}} \to \sin \theta = \frac{1}{\sqrt{17}}$$

$$y = 2x$$

$$\Rightarrow \cos \varphi = \frac{2}{\sqrt{5}} \Rightarrow \sin \varphi = \frac{1}{\sqrt{5}}$$

$$y = -4x$$

$$\Rightarrow \cos \theta = \frac{4}{\sqrt{17}} \Rightarrow \sin \theta = \frac{1}{\sqrt{17}}$$

$$\Rightarrow \cos \varphi = \frac{2}{\sqrt{5}} \Rightarrow \sin \varphi = \frac{1}{\sqrt{5}}$$

$$\Rightarrow \cos(\varphi + \theta) = \cos\varphi \cos\theta - \sin\varphi \sin\theta = \frac{8}{\sqrt{85}} - \frac{1}{\sqrt{85}} = \frac{7}{\sqrt{85}}$$

$$\Rightarrow \sin(\varphi + \theta) = \sin\varphi \cos\theta + \cos\varphi \sin\theta = \frac{4}{\sqrt{85}} + \frac{2}{\sqrt{85}} = \frac{6}{\sqrt{85}}$$

$$ightarrow$$
 Матрица отображения $\mathbf{A} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{7}{\sqrt{85}} & -\frac{6}{\sqrt{85}} \\ \frac{6}{\sqrt{85}} & \frac{7}{\sqrt{85}} \end{bmatrix}$

10. Отображение, которое переводит круг единичной площади с центром в начале координат в круг площади 3.

- \cdot Круг единичной: r=1
- \cdot Круг площади 9: R=3

$$\rightarrow R = r\sqrt{3}$$

ightarrow Матрица отображения: $A = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{3} \end{bmatrix}$

11. Отображение, которое переводит круг единичной площади с центром в начале координат в некруг площади 9.

- · Круг единичной: r=1
- · Квадрать площади 9, a = 3
- Выбираем 4 точки показаны на рисунке

1	1 2	
Круг	Квадрат	прпорция
$A(-\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{2\pi}})$	$A'\left(-\frac{3}{2},\frac{3}{2}\right)$	$OA' = 3\sqrt{\frac{\pi}{2}} \cdot OA$
$B(\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}})$	$B'\left(\frac{3}{2},\frac{3}{2}\right)$	$OB' = 3\sqrt{\frac{\pi}{2}} \cdot OB$
$C(\frac{1}{\sqrt{2\pi}}, -\frac{1}{\sqrt{2\pi}})$	$C'\left(\frac{3}{2},-\frac{3}{2}\right)$	$OC' = 3\sqrt{\frac{\pi}{2}} \cdot OC$
$D(-\frac{1}{\sqrt{2\pi}},-\frac{1}{\sqrt{2\pi}})$	$D'(-\frac{3}{2},-\frac{3}{2})$	$OD' = 3\sqrt{\frac{\pi}{2}} \cdot OD$

Отсюда → принемаем отображение пропорции

$$\begin{cases} x' = s_x \cdot x \\ y' = s_y \cdot y \end{cases}$$

у нас
$$s_x = s_y = 3\sqrt{\frac{\pi}{2}}$$

$$ightarrow$$
 Матрица отображении $A=\begin{bmatrix}S_x&0\\0&S_y\end{bmatrix}=\begin{bmatrix}3\sqrt{\frac{\pi}{2}}&0\\0&3\sqrt{\frac{\pi}{2}}\end{bmatrix}$

12. Отображение, у которого собственные вектора перпендикулярны, и ни один из них не лежит на прямой y = 0 или y = x.

Матрица отображения: $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$

ightarrow Собственные вектора матрицы А: $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$

13. Отображение, у которого нет двух неколлинеарных собственных векторов.

Матрица отображения: $A = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$

ightarrow Собственные вектора матрицы A: $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

14. Отображение, у которого нет ни одного вещественного собственного вектора (но при этом само отображение задаётся вещественной матрицей).

$$A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

$$\to \det(A - \lambda E) = 0$$

$$\leftrightarrow \begin{vmatrix} x_1 - \lambda & x_2 \\ x_3 & x_4 - \lambda \end{vmatrix} = 0 \leftrightarrow \lambda^2 - (x_1 + x_4)\lambda - (x_2x_3 - x_1x_4) = \lambda^2 - x_1\lambda + x_4\lambda - x_2x_3 + x_1x_4 = 0$$

Чтобы матрица не имела вещественных собственных векторов, тогда уравнение имело комплекснуе корни

- ightarrow Матрица отображения $A=\begin{bmatrix}1&1\\2&-3\end{bmatrix}$
- 15. Отображение, для которого любой ненулевой вектор является собственным.

$$ightarrow$$
 Матрица отображения $A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$

- **16**. Пару отображений, последовательное применение которых даёт различные результаты в зависимости от порядка: $AB \neq BA$
- \cdot Первое отображение: Отображение (симетрию) плоскости относительно прямой y=2x

$$\rightarrow$$
 Матрица отображения $A = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$

Второе отображение: Отображение вращения с углом θ против часовой стрелки

$$\rightarrow cos\theta = \frac{3}{5}, sin\theta = \frac{4}{5}$$

$$ightarrow$$
 Матрица отображения $\mathbf{B} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$

Проверка:

$$AB = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} \frac{7}{25} & \frac{24}{25} \\ \frac{24}{25} & -\frac{7}{25} \end{bmatrix}$$

$$BA = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rightarrow AB \neq BA$$

$$ightarrow$$
 Матрица пары отображений $M=\mathrm{BA}=\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$

- 17. Пару отображений, последовательное применение которых даёт одинаковый результат независимо от порядка: AB = BA. Постарайтесь, чтобы матрицы A и B были максимально непохожими друг на друга.
- · <u>Первое отображение</u>: Отображение поворот на 90° по часовой стрелк

$$ightarrow$$
 Матрица отображения $A = \begin{bmatrix} cos(-90^\circ) & -sin(-90^\circ) \\ sin(-90^\circ) & cos(-90^\circ) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

- \cdot Второе отображение: Отображение (симетрию) плоскости относительно прямой y=2x
 - \rightarrow Матрица отображения $B = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$

Проверка:

$$AB = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

$$BA = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

$$\rightarrow \mathbf{AB} = \mathbf{BA}$$

$$ightarrow$$
 Матрица пары отображений $M = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$

Задание 2. Проанализируйте.

- 1. Найдите образ и ядро придуманных вами отображений из пунктов 1, 2, 13, 14.
- · <u>Пункт 1</u>

Матрица отображения:
$$A = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

→ Образ А:
$$\left\{ \begin{bmatrix} -\frac{3}{5} \\ \frac{4}{5} \end{bmatrix}, \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} \right\}$$

$$\rightarrow$$
 Ядро А: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

<u>Пункт 2</u>

Матрица отображения
$$A = \begin{bmatrix} 1 & \frac{1}{4} \\ 0 & 1 \end{bmatrix}$$

$$ightarrow$$
 Образ А: $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} rac{1}{4}\\1 \end{bmatrix} \right\}$

$$\rightarrow$$
 Ядро А: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

Пукнт 13

Матрица отображения $A = \begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix}$

$$\rightarrow$$
 Образ А: $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-3 \end{bmatrix} \right\}$

$$\rightarrow$$
 Ядро А: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

Пукнт 14

Матрица отображения $A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$

$$\rightarrow$$
 Образ А: $\left\{ \begin{bmatrix} 4\\0 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix} \right\}$

$$\rightarrow$$
 Ядро А: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

2. Найдите собственные числа и собственные вектора придуманных вами отображений из пунктов 1, 2, 3, 4, 8, 11, 12, 13, 14, 15, 16.

· <u>Пукнт 1</u>

Матрица отображения:
$$A = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$ightarrow$$
 собственные числа: $egin{bmatrix} \lambda_1 = & 1 \ \lambda_2 = & -1 \end{bmatrix}$

$$ightarrow$$
 собственные вектора: $\left\{ \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$

Пукнт 2

Матрица отображения $A = \begin{bmatrix} 1 & -4 \\ 4 & -16 \end{bmatrix}$

$$ightarrow$$
 собственные числа: $egin{bmatrix} \lambda_1 = 0 \ \lambda_2 = -15 \end{bmatrix}$

$$ightarrow$$
 собственные вектора: $\left\{ \begin{bmatrix} 4\\1 \end{bmatrix}, \begin{bmatrix} \frac{1}{4}\\1 \end{bmatrix} \right\}$

Пукнт 3

Матрица отображения:
$$A=\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

 \rightarrow собственные вектора: $\left\{ \begin{bmatrix} -i \\ 1 \end{bmatrix}, \begin{bmatrix} i \\ 1 \end{bmatrix} \right\}$

Π укнт 4

Матрица отображения: $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

- ightarrow собственные числа: $\lambda_{1,2}=\ -1$
- \rightarrow собственные вектора: $\left\{ \begin{bmatrix} -1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1 \end{bmatrix} \right\}$

Пукнт 8

Матрица отображения $A = \begin{bmatrix} \frac{7}{\sqrt{85}} & -\frac{6}{\sqrt{85}} \\ \frac{6}{\sqrt{95}} & \frac{7}{\sqrt{95}} \end{bmatrix}$

- ightarrow собственные числа: $\lambda_1 = \frac{(7-6i)\sqrt{85}}{85}$ $\lambda_2 = \frac{(7+6i)\sqrt{85}}{85}$
- \rightarrow собственные вектора: $\left\{ \begin{bmatrix} -i \\ 1 \end{bmatrix}, \begin{bmatrix} i \\ 1 \end{bmatrix} \right\}$

<u>Пукнт 11</u>

Матрица отображения: $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$

- \rightarrow собственные числа: $\begin{bmatrix} \lambda_1 = 2 \\ \lambda_2 = 5 \end{bmatrix}$
- \rightarrow собственные вектора: $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$

<u>Пукнт 12</u>

Матрица отображения: $A = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$ \rightarrow собственные числа: $\begin{bmatrix} \lambda_1 = -2 \\ \lambda_2 = 1 \end{bmatrix}$

- \rightarrow собственные вектора: $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

<u>Пукнт 13</u>

Матрица отображения
$$A=\begin{bmatrix}1&1\\2&-3\end{bmatrix}$$
 \rightarrow собственные числа: $\begin{bmatrix}\lambda_1=-\sqrt{6}-1\\\lambda_2=&\sqrt{6}-1\end{bmatrix}$

$$ightarrow$$
 собственные вектора: $\left\{ \begin{bmatrix} -\sqrt{6}+2\\ 2\\ 1 \end{bmatrix}, \begin{bmatrix} \sqrt{6}+2\\ 2\\ 1 \end{bmatrix} \right\}$

· Пукнт 14

Матрица отображения $A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$

ightarrow собственные числа: $\lambda_{1,2} = 4$

ightarrow собственные вектора: $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

Пукнт 15

Матрица пары отображений $M = \begin{bmatrix} \frac{7}{25} & \frac{24}{25} \\ \frac{24}{25} & -\frac{7}{25} \end{bmatrix}$

ightarrow собственные числа: $egin{bmatrix} \lambda_1 = & 1 \\ \lambda_2 = & -1 \end{bmatrix}$

ightarrow собственные вектора: $\left\{\begin{bmatrix} \frac{4}{3} \\ 1 \end{bmatrix}, \begin{bmatrix} -\frac{3}{4} \\ 1 \end{bmatrix}\right\}$

· <u>Пукнт 16</u>

Матрица пары отображений $M = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix}$

ightarrow собственные числа: $egin{bmatrix} \lambda_1 = & 1 \\ \lambda_2 = & -1 \end{bmatrix}$

ightarrow собственные вектора: $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2}\\1 \end{bmatrix} \right\}$

3. Найдите определитель матриц из пунктов 1, 2, 3, 4, 5, 9, 10.

Пукнт 1

Матрица отображения: $A = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \rightarrow \det(A) = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = -1$

Пукнт 2

Матрица отображения $A = \begin{bmatrix} 1 & -4 \\ 4 & -16 \end{bmatrix} \rightarrow \det(A) = \begin{vmatrix} 1 & -4 \\ 4 & -16 \end{vmatrix} = 0$

· <u>Пукнт 3</u>

Матрица отображения: $A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \rightarrow \det(A) = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = 1$

· <u>Пукнт 4</u>

Матрица отображения: $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \det(A) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = 1$

Пукнт 5

Матрица отображения:
$$M = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & -\frac{4}{5} \end{bmatrix} \rightarrow \det(M) = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & -\frac{4}{5} \end{bmatrix} = -1$$

Пукнт 9

Матрица отображения:
$$A = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{3} \end{bmatrix} \rightarrow \det(A) = \begin{vmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{3} \end{vmatrix} = 3$$

· <u>Пукнт 10</u>

Матрица отображения:
$$A = \begin{bmatrix} 3\sqrt{\frac{\pi}{2}} & 0 \\ 0 & 3\sqrt{\frac{\pi}{2}} \end{bmatrix} \rightarrow \det(A) = \begin{bmatrix} 3\sqrt{\frac{\pi}{2}} & 0 \\ 0 & 3\sqrt{\frac{\pi}{2}} \end{bmatrix} = \frac{9\pi}{2}$$

4. В каких пунктах матрица обязательно получается симметричной?

В пунктах 1, 4, 9, 10, 16 матрица обязательно получается симметричной

Задание 3. Визуализируйте.

Отражение плоскости относительно прямой у = -4х.

Пункт 2

Пункт 5

Пункт 8

Отображение, которое переводит круг единичной площади с центром в начале координат в круг площади 3.

Пункт 10

Отооражение, у которого сооственные вектора перпендикулярны, и ни один из них не лежит на прямой y=0 или y=x

Пункт 11

Пункт 12

Отображение, у которого нет ни одного вещественного собственного вектора (но при этом само отображение задаётся вещественной матрицей).

Пункт 13

Пункт 14

Пункт 15

Пару отображений, последовательное применение которых даёт одинаковый результат независимо от порядка: AB = BA. Постарайтесь, чтобы матрицы A и B были максимально непохожими друг на друга.

Пункт 16

GITHUB link: https://github.com/Khanhngoc2020/Practise-Linear-Algebra.git