In the Claims

1. (currently amended): A solid of formula BiOI (BiOX); (BiOL)k wherein

X is Cl, Br, F or a mixture $(Br)_m(Cl)_n(F)_o \times \frac{1}{m+n+o}$,

L is CN, NC, NCO, NCS, O-Z, S-Z or a mixture of different moieties selected from CN, NC, NCO, NCS, O-Z and for S-Z,

Z is COR₁, COOR₁, CONR₁R₂, CN, CSR₁, COSR₁, CSOR₁, SO₂R₁, SO₃R₁, R_1 , or C₆-C₂₄aryl or C₂-C₂₄heteroaryl each <u>C₆-C₂₄aryl or C₂-C₂₄heteroaryl</u> unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃R₄, NR₃R₄R₅⁺, NR₅COR₃, NR₅CONR₃R₄, R₃, OR₃, SR₃, CHO, CR₅OR₃OR₄, COR₃, SO₂R₃, SO₃⁻, SO₃R₃, SO₂NR₃R₄, COO⁻, COOR₃, CONR₃R₄, PO₃⁻, PO(OR₃)(OR₄), SiR₅R₆R₇, OSiR₅R₆R₇ and/er by SiOR₅OR₆OR₇;

j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3, preferably from 0.05 to 2, especially from 0.1 to 1; m, n and o are each a number from 0 to 10⁶, but m, n and o are not all simultaneously 0; preferably, m is 10⁶ and n and o are from 0 to 10⁵; especially, n is from 0 to 10⁴ and o is from 0 to 10²;

 R_1 <u>is being-</u> C_3 - C_{24} alkyl, C_3 - C_{24} alkenyl, C_3 - C_{24} alkynyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkyl or C_2 - C_{12} heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, NO_2 , CN, NR_3R_4 , $NR_3R_4R_5^+$, NR_5COR_3 , $NR_5CONR_3R_4$, OR_3 , SR_3 , OBiO, SBiO, COO^- , COOH, $COOR_3$, CHO, $CR_5OR_3OR_4$, COR_3 , SO_2R_3 , SO_3^- , SO_3H , SO_3R_3 and/or by $OSiR_5R_6R_7$ or R_1 is being C_6 - C_{24} aryl, C_7 - C_{24} aralkyl, C_8 - C_{24} aralkenyl or C_2 - C_{24} heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO_2 , CN, NR_3R_4 , $NR_3R_4R_5^+$, NR_5COR_3 , $NR_5CONR_3R_4$, R_3 , OR_3 , SR_3 , CHO, $CR_5OR_3OR_4$, COR_3 , SO_2R_3 , SO_3^- , SO_3R_3 , $SO_2NR_3R_4$, COO^- , $COOR_3$, $CONR_3R_4$, PO_3^- , $PO(OR_3)(OR_4)$, $SiR_5R_6R_7$, $OSiR_5R_6R_7$ and/or by $SiOR_5OR_6OR_7$;

 R_2 , independently of R_1 , being is hydrogen or R_1 , it being possible, if desired, for wherein R_1 and R_2 to may be linked to one another by means of a direct bond or a bridge $-O_-$, $-S_-$ or $-NC_1-C_8$ alkyl— so that altogether a five- or six-membered ring is formed;

 R_3 and R_4 being-are each independently of the other hydrogen, CN, OR₅, COO⁻, COOH, COOR₅, CONR₅R₆, COR₅, SO₂R₅, SO₃⁻, SO₃H, SO₃R₅ or OSiR₅R₆R₇; or C₁-C₂₄alkyl, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₃-C₂₄cycloalkyl, C₃-C₂₄cycloalkenyl or C₂-C₁₂heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₅R₆, NR₅R₆R₇⁺, NR₅COR₇, NR₅CONR₆R₇, OR₅, SR₅, COO⁻, COOH, COOR₅, CHO, CR₅OR₆OR₇, COR₅, SO₂R₅, SO₃⁻, SO₃H, SO₃R₅ and/or by OSiR₅R₆R₇; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₂-C₁₃heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₅R₆, NR₅R₆R₇⁺, NR₅COR₆, NR₅CONR₆R₇, R₅, OR₅, SR₅, CHO, CR₅OR₆OR₇, COR₅, SO₂R₅, SO₃⁻, SO₂NR₅R₆, COO⁻, COOR₇, CONR₅R₆, PO₃⁻, PO(OR₅)(OR₆), SiR₅R₆R₇, OSiR₅R₆R₇ and/or by SiOR₅OR₆OR₇,

or NR₃R₄ <u>is_being-a</u> five- or six-membered heterocycle which may optionally contain a further nitrogen or oxygen atom and which may be mono- or poly-substituted by C₁-C₈alkyl; and

 R_5 , R_6 and R_7 <u>are being</u> each independently of the others hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_2 - C_{13} heteroaryl, it being possible, if desired, for wherein R_5 and R_6 and/or R_6 and R_7 to <u>may</u> be linked to one another by means of a direct bond or a bridge --O-, -S- or -NC₁- C_8 alkyl- so that altogether a five- or six-membered ring is formed.

2. (currently amended): A solid according to claim 1, wherein Z is CN, COR₁, SO₃R₁, R_1 or unsubstituted or substituted C₆-C₂₄aryl, especially COR₄ or SO₃R₄; R₁ is unsubstituted or substituted C₃-C₂₄alkyl, C₃-C₂₄alkenyl, C₆-C₂₄aryl or C₈-C₂₄aralkenyl; R₃ and R₄ are each independently of the other hydrogen, CN, OR₅, COOR₅, CONR₅R₆ or COR₅, or unsubstituted or substituted C₁-C₂₄alkyl, C₇-C₁₈aralkyl or C₆-C₁₄aryl; or NR₃R₄ is a five- or six-membered heterocycle which may optionally contain a further nitrogen or oxygen atom and which may be mono- or poly-substituted by C₁-C₈alkyl; R₅, R₆ and R₇ are each independently of the others hydrogen, C₁-C₂₀alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl or C₇-C₁₈aralkyl, it being possible, if desired for wherein R₅ and R₆ and/or R₆ and R₇ te may be linked to one another by means of a direct bond or a bridge $-O_-$, $-S_-$ or $-NC_1$ -C₈alkyl- so that altogether a five- or six-membered ring is formed; and R₅, R₆ and R₇ themselves may, if desired, be substituted.

- 3. (original): A solid according to claim 2, wherein R_1 is C_6 - C_{24} aryl or C_8 - C_{24} aralkenyl each substituted by one, two or three radicals selected from the group consisting of OR_3 , NR_3R_4 and NO_2 .
- **4.** (currently amended): A solid according to claim 1_, 2 or 3, which is mainly or exclusively in the crystal lattice of bismuth halide.
- **5.** (currently amended): A solid according to claim 1, 2, 3 or 4, wherein the sum j+k is from 0.1 to 3, preferably from 0.2 to 1.5 and the ratio m:n is from 3:2 to 5:1.
- **6. (currently amended):** A process for the preparation of a bismuth oxyhalide by combining I and, optionally, X with a solution of BiO⁺ or Bi³⁺ ions in a solvent under conditions such that a solid which is insoluble in the solvent precipitates out, in which process L or LH is present in the solvent during precipitation of the solid, and the solid precipitating out is of formula BiOI·(BiOX)_j·(BiOL)_k, wherein j is a number from 0 to 4_, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3_, preferably from 0.05 to 2, especially from 0.1 to 1.
- **7.** (original): A process according to claim 6, wherein the precipitation is carried out at a pH of from 1 to 9.
- **8.** (currently amended): Platelets having a length of from 2 μm to 5 mm, a width of from 2 μm to 2 mm and a thickness of from 50 nm to 1.5 μm, the ratio of length to height being at least 5:1, the ratio of width to height being at least 3:1, and the ratio of length to width being at most 5:1, which platelets are coated with a solid of formula BiOI·(BiOX)_j·(BiOL)_k, wherein j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3., preferably from 0.05 to 2, especially from 0.1 to 1.
- **9.** (currently amended): Platelets according to claim 8, coated with from 1 to 1000 % by weight, preferably from 5 to 500 % by weight, especially from 10 to 200 % by weight, based on the uncoated platelets, of solid of formula BiOI·(BiOX)_i·(BiOL)_k.
- **10.** (currently amended): A process for the coating of particles with bismuth oxyhalide by combining I and, optionally, X with a solution of BiO^+ or Bi^{3+} ions in a solvent under conditions such that a solid which is insoluble in the solvent precipitates out, in which process L or LH is present in the solvent during precipitation of the solid, and the particles are coated with a solid of formula

BiOI·(BiOX)_j·(BiOL)_k, wherein j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3., preferably from 0.05 to 2, especially from 0.1 to 1.

- **11.** (original): A process according to claim 10, wherein the particles are in suspension in the solvent during precipitation of the solid.
- **12.** (original): A process according to claim 11, wherein the coating is carried out subsequently to preparation of the particles without intermediate isolation.
- **13.** (currently amended): A substance composition comprising a solid according to claim 1, 2, 3, 4 or 5 or platelets according to claim 8 or 9 and also at least one further white, black, coloured or effect pigment.
- **14.** (currently amended): A substance composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, preferably from 0.1 to 30 % by weight, based on the high molecular weight organic material, of a solid according to claim 1., 2, 3, 4 or 5 or platelets according to claim 8 or 9.
- **15.** (new): A solid according to claim 1, wherein j is a number from 0.5 to 1.2, and k is a number from from 0.05 to 2.
- 16. (new): A solid according to claim 1, wherein n is from 0 to 10⁴ and o is from 0 to 10²;
- **17. (new):** A process according to claim 6, wherein j is a number from 0.5 to 1.2 and k is a number from 0.05 to 2.
- **18.** (new): platelets according to claim 8, wherein j is a number from 0.5 to 1.2, and k is a number from 0.05 to 2.
- **19.** (new): A substance composition comprising platelets according to claim 8 and also at least one further white, black, coloured or effect pigment.

20. (new): A substance composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, based on the high molecular weight organic material, of platelets according to claim 8.