LIF measurements of concentration in a coaxial jet mixer

Fig. 1: Schematic view of the object of investigation

LIF measurements: repetition rate 10 Hz, spatial resolution 0.05 m/162 (about 300μ)

1) Geometrical properties and parameters of the coaxial jet mixer

Fig. 2: Schematic view of

2d section of pipe

quantity	unit	value		
inner diameter of the nozzle	d/mm	10		
inner diameter of pipe	D/mm	50		
Length of the pipe	L/mm	400		

2) Experimental Boundary conditions for the R-Mode case (recirculation zone) with water:

Quantity	Symbol/Unit	Value					
Properties based on nozzle							
Flow rate	$Q_d/(1/h)$	337					
Temperature of the fluid	$T_d/(^{\circ}C)$	13,2					
Kinematic viscosity	$v/(m^2/s)$	1,193E-6					
Bulk velocity	U _d /(m/s)	1,192					
Reynolds number	Re _d	9989					
Properties based on Coflow							
Flow rate	$Q_C/(1/h)$	430					
Temperature of the fluid	$T_{\text{C}}/(^{\circ}\text{C})$	13,8					
Kinematic viscosity	<i>v</i> /(m²/s)	1,175E-6					
Bulk velocity	U _C /(m/s)	0,0634					
Reynolds number	Re _C	2588,37					

3) Experimental Boundary conditions for the J-Mode case with water:

Quantity	Symbol/Unit	Value					
Properties based on nozzle							
Flow rate	$Q_d/(1/h)$	322					
Temperature of the fluid	$T_d/(^{\circ}C)$	15					
Kinematic viscosity	$v/(m^2/s)$	(see in handbooks)					
Bulk velocity	U _d /(m/s)	1,14					
Reynolds number	Re _d	10000					
Properties based on Coflow							
Flow rate	$Q_{C}/(1/h)$	1607					
Temperature of the fluid	$T_{\text{C}}/(^{\circ}\text{C})$	15					
Kinematic viscosity	$v/(m^2/s)$	See in handbooks					
Bulk velocity	U _C /(m/s)	0,228					
Reynolds number	Re_{C}						

4) Content of files with experimental data:

4.1) Files xD*.*.dat

. denotes a distance measured from the first measurement section (x/D=0) and referred to the pipe diameter D=50 mm.

The first measurement section was located at the distance 5 mm downstream of the nozzle. For instance, x/D=1.5 means the test section located at 1.5*0.05+0.005=0.08 m from the nozzle.

Number of point	R/D	R, m	Mixture fraction f	RMS of the Mixture Fraction $f^{/2}$	Mixture fraction smoothed	RMS of the light intensity	RMS of noise for the mixture fraction	Coefficient of calibration used to calculate the noise	f/f_max	$f^{/2}$ /f_max
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)

Here R is the vertical coordinate from the lower wall to the upper wall of the enclosing pipe, f max is the maximum mixture fraction in the section. The results presented here were not smoothed. That is why the columns (4) and (6) are identical.

For comparisons please use the columns 2, 4, 5, 10 and 11. The columns 7-9 contain auxiliary data necessary only for our internal purposes.

4.2) Files xD*.*les.dat

Number of point	R/D	R, m	Filtered Mixture fraction g	RMS of the filtered Mixture Fraction $g^{/2}$	$\overline{g^{/2}}$ /f_max
(1)	(2)	(3)	(4)	(5)	(6)

These data were calculated for LES validations. We used a simple rule for the filtration in the vertical direction:

$$g_i = \frac{1}{5}(f_{i-2} + f_{i-1} + f_i + f_{i+1} + f_{i+2}); i=12,170$$

Due to lack of data the filtration has been done only in the vertical direction. For this case 5 points in the LIF measurements correspond to one cell in LES calculations with 32 control volumes across the pipe.