Structure of the port-Hamiltonian system dlc

The $PyPHS^*$ development $team^1$

 $^1\mathrm{Project\text{-}team}$ S
3 †, STMS, IRCAM-CNRS-UPMC (UMR 9912), 1 Place Igor-Stravinsky, 75004 Paris, France

November 17, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
$\overline{\ell_1}$	in	electronics.source	('ref', 'n1')	{ type voltage
ℓ_2	D	electronics.diodepn	('n1', 'n2')	<pre>v0 ('v0', 0.026) mu ('mu', 1.7) Is ('Is', 2e-09) R ('Rd', 0.5)</pre>
ℓ_3	L	electronics.inductor	('n2', 'n3')	{ L ('L', 0.05)
ℓ_4	C	electronics.capacitor	('n3', 'ref')	{ C ('C', 2e-06)

 $[\]dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$ $\dim(\mathbf{w}) = n_{\mathbf{w}} = 1;$ $\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$ $\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$

^{*}https://github.com/A-Falaize/pyphs

[†]http://s3.ircam.fr

Figure 1: Graph of system dlc.

2 System variables

```
State variable \mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{pmatrix};
Dissipation variable \mathbf{w} = (w_{\mathrm{D}});
Input \mathbf{u} = (u_{\mathrm{in}});
Output \mathbf{y} = (y_{\mathrm{in}});
```

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \, \mathtt{H}(\mathbf{x}) = \frac{0.5}{\mathrm{L}} \cdot x_{\mathrm{L}}^2 + \frac{0.5}{\mathrm{C}} \cdot x_{\mathrm{C}}^2; \\ & \text{Hamiltonian gradient } \, \nabla \mathtt{H}(\mathbf{x}) = \left(\begin{array}{c} \frac{1.0}{\mathrm{L}} \cdot x_{\mathrm{L}} \\ \frac{1.0}{\mathrm{C}} \cdot x_{\mathrm{C}} \end{array} \right); \\ & \text{Dissipation function } \, \mathbf{z}(\mathbf{w}) = \left(\begin{array}{c} \mathrm{Is} \cdot \left(e^{\frac{w_{\mathrm{D}}}{\mathrm{mu} \cdot v0}} - 1 \right) + 1.0 \cdot 10^{-12} \cdot w_{\mathrm{D}} \end{array} \right); \\ & \text{Jacobian of dissipation function } \, \mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \left(\begin{array}{c} \frac{\mathrm{Is} \cdot e^{\frac{w_{\mathrm{D}}}{\mathrm{mu} \cdot v0}}}{\mathrm{mu} \cdot v0} + 1.0 \cdot 10^{-12} \end{array} \right); \end{split}$$

4 System parameters

4.1 Constant

	1 (CT)
parameter	value (SI)
mu:	1.7
C:	2e-06
L:	0.05
v0:	0.026
gmin:	1e-12
Is:	2e-09
Rd:	0.5

5 System structure

$$\begin{split} \mathbf{M} &= \left(\begin{array}{cccc} -1.0 \cdot Rd - \frac{1.0}{gmin} & -1.0 & \frac{1.0}{gmin} & -1.0 \\ 1.0 & 0 & 0 & 0 \\ \frac{1.0}{gmin} & 0 & -\frac{1.0}{gmin} & 0 \\ 1.0 & 0 & 0 & 0 & 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{x}\mathbf{x}} &= \left(\begin{array}{c} -1.0 \cdot Rd - \frac{1.0}{gmin} & -1.0 \\ 1.0 & 0 & 0 & 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{x}\mathbf{w}} &= \left(\begin{array}{c} \frac{1.0}{gmin} \\ 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{x}\mathbf{y}} &= \left(\begin{array}{c} -1.0 \\ 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{w}\mathbf{x}} &= \left(\begin{array}{c} \frac{1.0}{gmin} & 0 \\ 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{w}\mathbf{w}} &= \left(\begin{array}{c} -1.0 \\ \frac{1.0}{gmin} & 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{w}\mathbf{w}} &= \left(\begin{array}{c} -\frac{1.0}{gmin} & 0 \end{array} \right); \\ \mathbf{M}_{\mathbf{w}\mathbf{w}} &= \left(\begin{array}{c} -\frac{1.0}{gmin} & 0 \\ \end{array} \right); \end{split}$$

$$\begin{split} \mathbf{M_{yx}} &= \left(\begin{array}{c} 1.0 & 0 \end{array}\right); \\ \mathbf{M_{yx}} &= \left(\begin{array}{c} 1.0 & 0 \end{array}\right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 \end{array}\right); \\ \mathbf{J} &= \left(\begin{array}{c} 0 & -1.0 & 0 & -1.0 \\ 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right); \\ \mathbf{J_{xx}} &= \left(\begin{array}{c} 0 & -1.0 \\ 1.0 & 0 \end{array}\right); \\ \mathbf{J_{xy}} &= \left(\begin{array}{c} 0 \\ 0 \end{array}\right); \\ \mathbf{J_{xy}} &= \left(\begin{array}{c} 0 \\ 0 \end{array}\right); \\ \mathbf{J_{yy}} &= \left(\begin{array}{c} 0 \end{array}\right); \\ \mathbf{J_{yy}} &= \left(\begin{array}{c} 0 \end{array}\right); \\ \mathbf{R} &= \left(\begin{array}{c} 1.0 \cdot \mathrm{Rd} + \frac{1.0}{\mathrm{gmin}} & 0 & -\frac{1.0}{\mathrm{gmin}} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -\frac{1.0}{\mathrm{gmin}} & 0 & \frac{1.0}{\mathrm{gmin}} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right); \\ \mathbf{R_{xx}} &= \left(\begin{array}{c} 1.0 \cdot \mathrm{Rd} + \frac{1.0}{\mathrm{gmin}} & 0 \\ 0 & 0 & 0 \end{array}\right); \\ \mathbf{R_{xy}} &= \left(\begin{array}{c} 0 \\ 0 \end{array}\right); \\ \mathbf{R_{xw}} &= \left(\begin{array}{c} -\frac{1.0}{\mathrm{gmin}} \\ 0 \end{array}\right); \\ \mathbf{R_{wy}} &= \left(\begin{array}{c} 0 \\ 0 \end{array}\right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 \end{array}\right); \\ \mathbf{R_{yy}} &= \left(\begin{array}$$