INTEGRATED CIRCUITS

DATA SHEET

OM6213 48×84 pixels matrix LCD driver

Product specification
File under Integrated Circuits, IC17

2001 Nov 07

48×84 pixels matrix LCD driver

OM6213

CONTENTS		11.2.1	PD
1	FEATURES	11.2.2 11.2.3	V H
2	APPLICATIONS	11.3	Display Control
3	GENERAL DESCRIPTION	11.3.1	D, E
4	ORDERING INFORMATION	11.4	Set Y address of RAM
-		11.5	Set X address of RAM
5	BLOCK DIAGRAM	11.6 11.7	Temperature Control Bias value:
6	PINNING	11.8	V _{LCD} generator
7	PIN FUNCTIONS	12	TEMPERATURE COMPENSATION
7.1	ROW 0 to ROW 47 row driver outputs	13	
7.2	COL 0 to COL 83 column driver outputs		LIMITING VALUES
7.3	V _{SS1} and V _{SS2} : negative power supply rails	14	HANDLING
7.4 7.5	V _{DD1} to V _{DD3} : positive power supply rails V _{LCDOUT} , V _{LCDIN} and V _{LCDSENSE} : LCD power	15	DC CHARACTERISTICS
7.5	supplies	16	AC CHARACTERISTICS
7.6	V _{OS0} to V _{OS4}	17	SERIAL INTERFACE
7.7	T1 to T7: test pads	18	RESET
7.8	SDIN: serial data line	19	APPLICATION INFORMATION
7.9	SCLK: serial clock line	20	MODULE MAKER PROGRAMMING
7.10 7.11	D/C: mode select		
7.11	SCE: chip enable OSC: oscillator	20.1 20.2	V _{LCD} calibration Charge pump multiplication factor
7.12	RES: reset	20.2	Bias system selected when BS[2:0] = 100
8	BLOCK DIAGRAM FUNCTIONS	20.4	V _{LCD} temperature coefficient selected when
8.1	Oscillator	20.5	TC[1:0] = 01 (TC1) Seal bit
8.2	Address counter (AC)	20.6	Module Maker parameter programming
8.3	Display Data RAM (DDRAM)	20.7	Example of V _{LCD} calibration flow
8.4 8.5	Timing generator Display address counter	21	CHIP INFORMATION
8.6	LCD row and column drivers	22	BONDING PAD LOCATIONS
8.7	V _{LCD} generator	23	DEVICE PROTECTION DIAGRAM
9	INITIALIZATION		
10	ADDRESSING	24	TRAY INFORMATION
		25	DEFINITIONS
10.1	Data structure	26	LIFE SUPPORT APPLICATIONS
11	INSTRUCTIONS		
11.1 11.2	Reset function Function set		

48 × 84 pixels matrix LCD driver

OM6213

1 FEATURES

- Single-chip LCD controller/driver
- 48 row, 84 column outputs
- Display data RAM 48 × 84 bits
- · On-chip:
 - Generation of LCD supply voltage (external supply also possible)
 - Generation of intermediate LCD bias voltages
 - Oscillator requires no external components (external clock also possible).
- External reset (RES) input pin
- Serial interface maximum 4.0 Mbit/s
- · CMOS compatible inputs
- Mux rate: 1:48
- \bullet Logic supply voltage range V_{DD1} to $V_{SS}\!\!:$ 2.5 to 3.3 V
- Supply voltage range for high voltage part V_{DD2} to V_{SS}: 2.5 to 3.3 V
- Display supply voltage range V_{LCD} to V_{SS}: 4.5 to 9.0 V
- Low power consumption (typically 120 μA), suitable for battery operated systems
- Temperature compensation of V_{LCD}
- Temperature range: T_{amb} = −40 to +85 °C
- 5 Module Maker programmable parameters.

2 APPLICATIONS

• Telecommunications equipment.

3 GENERAL DESCRIPTION

The OM6213 is a low power CMOS LCD controller driver, designed to drive a graphic display of 48 rows and 84 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The OM6213 interfaces to microcontrollers via a serial bus interface.

4 ORDERING INFORMATION

TYPE NUMBER		PACKAGE				
TIFE NOWBER	NAME	DESCRIPTION	VERSION			
OM6213U	TRAY	chip with bumps in tray	_			

48×84 pixels matrix LCD driver

OM6213

5 BLOCK DIAGRAM

48 × 84 pixels matrix LCD driver

OM6213

6 PINNING

SYMBOL	PAD	DESCRIPTION
V _{OS4}	3	V _{LCD} offset pad 0 input
V _{OS3}	4	V _{LCD} offset pad 1 input
V _{OS2}	5	V _{LCD} offset pad 2 input
V _{OS1}	6	V _{LCD} offset pad 3 input
V _{OS0}	7	V _{LCD} offset pad 4 input
V_{DD1}	13 to 18	supply voltage 1
V_{DD3}	19 to 22	supply voltage 3
V_{DD2}	23 to 30	supply voltage 2
SCLK	31	serial clock input
T7	32 to 35	test 7 alternative HV-gen
		programming input
SDIN	36 to 39	serial data input and HV-gen
		programming input
D/C	40	data/command input
SCE	41	chip enable input (active
		LOW)
OSC	42	oscillator input
V_{SS2}	43 to 50	ground 2
T4	51	test 4 input
T5	52	test 5 input
T6	53	test 6 output
V _{SS1}	54 to 61	ground 1

SYMBOL	PAD	DESCRIPTION
T1	62	test 1 output
T2	63	test 2 output
T3	64	test 3 output
V _{LCDIN}	65 to 70	V _{LCD} supply voltage input and HV-gen programming input
V _{LCDOUT}	71 to 77	V _{LCD} generator output
V _{LCDSENSE}	78	V _{LCD} generator regulation input
RES	79	reset input (active LOW)
ROW 11 to ROW 0	89 to 100	LCD row driver outputs
ROW 12 to ROW 23	101 to 112	LCD row driver outputs
COL 0 to COL 83	113 to 196	LCD column driver outputs
ROW 47 to ROW 36	197 to 208	LCD row driver outputs
ROW 24 to ROW 35	209 to 220	LCD row driver outputs
	1, 8 to 12, 81 to 88, 221 and 222	dummy pads

7 PIN FUNCTIONS

7.1 ROW 0 to ROW 47 row driver outputs

These pads output the row signals.

7.2 COL 0 to COL 83 column driver outputs

These pads output the column signals.

7.3 V_{SS1} and V_{SS2}: negative power supply rails

 V_{SS1} and V_{SS2} must be connected together, jointly referred to as V_{SS} . When a pin has to be connected externally to V_{SS} , V_{SS1} should be used.

7.4 V_{DD1} to V_{DD3}: positive power supply rails

 $\rm V_{DD1}$ provides the logic supply. $\rm V_{DD2}$ and $\rm V_{DD3}$ provide the analog supply; jointly referred to as $\rm V_{DD2}$. $\rm V_{DD2}$ and $\rm V_{DD3}$ must be connected together.

7.5 V_{LCDOUT}, V_{LCDIN} and V_{LCDSENSE}: LCD power supplies

If the internal V_{LCD} generator is used, then all 3 pins must be connected together. If not (the internal V_{LCD} generator is disabled and an external voltage is supplied at pin V_{LCDIN}), V_{LCDOUT} must be left open-circuit and $V_{LCDSENSE}$ must be connected to V_{LCDIN} . V_{PR} must be set to logic 0 to switch-off the charge pump if an external V_{LCD} generator is used. V_{LCDIN} is also used for HV-gen programming.

7.6 V_{OS0} to V_{OS4}

Five input pins for on-glass V_{LCD} offset. Each pin must be connected to V_{SS1} , which corresponds to logic 0, or to V_{DD1} , which corresponds to logic 1. All five pins define a 5-bit two's complement number ranging from -16 to +15 decimal (from 10000 to 01111). The default value, with all pins connected to V_{SS1} , is 0 decimal (00000). The register is refreshed by each set bias system command or when exiting the Power-down mode.

48 × 84 pixels matrix LCD driver

OM6213

7.7 T1 to T7: test pads

In the application, T4, T5 and T7 must be connected to V_{SS} . T1, T2, T3 and T6 must be left open-circuit.

7.8 SDIN: serial data line

Data line and HV-gen programming input.

7.9 SCLK: serial clock line

Input for the clock signal. 0 to 4.0 Mbits/s.

7.10 D/C: mode select

Input to select either command/address or data input.

7.11 SCE: chip enable

The enable pin allows data to be clocked in; this signal is active LOW.

7.12 OSC: oscillator

If the on-chip oscillator is used, this input must be connected to V_{DD1} . If an external clock is used, it must be connected to pin OSC. If pin OSC is left at V_{SS1} , the internal clock is disabled, the device is not clocked and the display may be left in a DC state. To avoid this, it is advisable to enter the Power-down mode before stopping the clock.

7.13 RES: reset

This signal will reset the device and must be applied to properly initialize the chip; this signal is active LOW.

8 BLOCK DIAGRAM FUNCTIONS

8.1 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to V_{DD1} . If an external clock signal is used, it must be connected to pin OSC.

8.2 Address counter (AC)

The address counter assigns addresses to the display data RAM for writing. The X address X[6:0] and the Y address Y[2:0] are set separately. After a write operation the address counter is automatically incremented by 1 according to the V flag.

8.3 Display Data RAM (DDRAM)

The OM6213 contains a 48 \times 84 bit static RAM which stores the display data. The RAM is divided into 6 banks of 84 bytes (6 \times 8 \times 84 bits). During RAM access, data is transferred to the RAM via the serial interface. There is a direct correspondence between the X address and the column output number.

8.4 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data bus.

8.5 Display address counter

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs.

The display status (all dots on/off and normal/inverse video) is set by bits D and E in the command 'Display control' (see Table 2).

8.6 LCD row and column drivers

The OM6213 contains 48 rows and 84 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. Figure 2 shows typical waveforms. Unused outputs should be left unconnected.

8.7 V_{LCD} generator

The voltage multiplier (i.e. charge pump) generates the V_{LCD} voltage. The multiplication factor is Module Maker programmable (default value 4).

48×84 pixels matrix LCD driver

OM6213

48 × 84 pixels matrix LCD driver

OM6213

48 × 84 pixels matrix LCD driver

OM6213

9 INITIALIZATION

Immediately following power-on, all internal registers and the RAM content are undefined. A reset (RES) pulse must be applied. It should be noted that the device may be damaged if not properly reset.

Reset is accomplished by applying an external \overline{RES} pulse (active LOW) at pad \overline{RES} . When reset occurs within the specified time, all internal registers are reset, however the RAM is still undefined. The state after reset is described in Section "Reset function".

RES input must be \leq 0.3V_{DD1} after V_{DD1} reaches V_{DD(min)} (or higher) according to t_{VHRL} timing (see Fig.16).

10 ADDRESSING

Data is downloaded in bytes into the RAM matrix of the OM6213 as indicated in Figs.3, 4, 5 and 6. The display RAM has a matrix of 48×84 bits. The columns are addressed by the address pointer.

The address ranges are: X = 0 to 83 (1010011) and Y = 0 to 5 (101). Addresses outside these ranges are not allowed.

In vertical addressing mode (V = 1) the Y address increments after each byte (see Fig.5). After the last Y address (Y = 5) Y wraps around to 0 and X increments to address the next column.

In horizontal addressing mode (V = 0) the X address increments after each byte; see Fig.6. After the last X address (X = 83) X wraps around to 0 and Y increments to address the next row.

After the very last address (X = 83 and Y = 5) the address pointers wrap around to address (X = 0 and Y = 0).

10.1 Data structure

48×84 pixels matrix LCD driver

OM6213

48 × 84 pixels matrix LCD driver

OM6213

11 INSTRUCTIONS

The instruction format is divided into two modes. If D/\overline{C} (mode select) is set LOW the current byte is interpreted as command byte (see Table 1). If D/\overline{C} is set HIGH the following bytes are stored in the DDRAM. After every data byte the address counter is incremented automatically.

The level of the D/\overline{C} signal is read during the last bit of the data byte.

Instructions can be sent in any order to the OM6213 (the exception being that the temperature control command must be followed by at least one byte of data or command). The MSB is transmitted first (see Fig.7). Figure 8 shows an example of a command stream, used to set-up the LCD driver.

The serial interface is initialized when SCE is HIGH. In this state SCLK clock pulses have no effect and no power is consumed by the serial interface. A negative edge on SCE enables the serial interface and indicates the start of a data transmission.

Figures 9 and 10 show the serial bus protocol.

- When SCE is HIGH, SCLK clocks are ignored. During the HIGH time of SCE the serial interface is initialized (see Fig.11).
- · SDIN is sampled at the positive edge of SCLK
- D/C indicates whether the byte is a command (D/C = 0) or RAM data (D/C = 1). It is read with the eighth SCLK pulse.
- If SCE stays LOW after the last bit of a command/data byte, the serial interface expects bit DB7 of the next byte at the next rising edge of SCLK (see Fig.11)
- A reset pulse with RES interrupts the transmission. The data being written into the RAM may be corrupted. The registers are cleared. If SCE is LOW after the rising edge of RES, the serial interface is ready to receive the D/C bit of a command/data byte (see Fig.12).
- Instructions (except the temperature control command) are executed on the SCLK positive edge which latches DB0 and D/C
- The temperature control command is executed on the SCLK positive edge which latches DB0 and D/C of the next command or the next write to the DDRAM (whichever occurs first). This command requires 2 bytes to be executed.

2001 Nov 07

48×84 pixels matrix LCD driver

OM6213

48×84 pixels matrix LCD driver

OM6213

Table 1 Instruction set; see note 1 and Table 2 Instructions not expressly defined in Table 1 and reserved instructions must not be used in the application.

INSTRUCTION	D/C	COMMAND BYTE						DESCRIPTION		
INSTRUCTION	DIC	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION
(H = 0 or 1)	(H = 0 or 1)									
NOP	0	0	0	0	0	0	0	0	0	no operation
Function set	0	0	0	1	0	0	PD	V	Н	Power-down control; entry mode; extended instruction set control (H)
Write data	1	D ₇	D ₆	D ₅	D_4	D_3	D ₂	D ₁	D ₀	writes data to display RAM.
(H = 0)										
Reserved	0	0	0	0	0	0	0	1	Х	reserved
Reserved	0	0	0	0	0	0	1	Χ	Χ	reserved
Display control	0	0	0	0	0	1	D	0	Е	sets display configuration
Reserved	0	0	0	0	1	Х	Х	Х	Х	reserved
Set Y address of RAM	0	0	1	0	0	0	Y ₂	Y ₁	Y ₀	sets Y address of RAM; 0 ≤ Y ≤ 5
Set X address of RAM.	0	1	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	Sets X address part of RAM; $0 \le Y \le 5$
(H = 1)	•	•	•	•	•	•	•			
Reserved	0	0	0	0	0	0	0	1	Χ	reserved
Temperature control	0	0	0	0	0	0	1	TC ₁	TC ₀	set temperature coefficient (TCx)
Reserved	0	0	0	0	0	1	Х	Х	Х	reserved
Bias system	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	set bias system (BSx)
Reserved	0	0	1	Х	Х	Х	Х	Х	Х	reserved
Set V _{PR}	0	1	V_{PR6}	V_{PR5}	V_{PR4}	V_{PR3}	V_{PR2}	V_{PR1}	V_{PR0}	write V _{PR} to register

Note

1. X = don't care.

48 × 84 pixels matrix LCD driver

OM6213

Table 2 Explanations for symbols in Table 1

	BIT	LOGIC 0	LOGIC 1
PD		chip is active	chip is in Power-down mode
V		horizontal addressing	vertical addressing
Н		use basic instruction set	use extended instruction set
D, E	00	display blank	
	10	normal mode	
	01	all display segments on	
11		inverse video mode	
TC1 and TC0	00 (TC0)	V _{LCD} temperature coefficient TCA	
	01 (TC1)	Module Maker defined;	
	01 (101)	V _{LCD} temperature coefficient	
	10 (TC2)	V _{LCD} temperature coefficient TCC	
	11 (TC3)	V _{LCD} temperature coefficient TCD	

11.1 Reset function

After reset the LCD driver has the following state:

- Power-down mode (PD = 1)
- Horizontal addressing (V = 0) normal instruction set (H = 0)
- Display blank (E = D = 0)
- Address counter X[6:0] = 0, Y[2:0] = 0
- Temperature control mode (TC[1:0] = 0, TC0, TCA)
- Bias system (BS[2:0] = 0)
- V_{LCD} is equal to 0, the HV-generator is switched off (V_{PR}[6:0] = 0)
- · After power-on, RAM data is undefined
- · Oscillator off (external clock operation is possible).

11.2 Function set

11.2.1 PD

- All LCD outputs at V_{SS1} (display off)
- Bias generator and V_{LCD} generator off, V_{LCD} can be disconnected
- Oscillator off
- · Serial bus, command, etc. function
- RAM contents not cleared; RAM data can be written.

11.2.2 V

When V=0, horizontal addressing is selected. The data is written into the DDRAM as shown in Fig.6. When V=1, vertical addressing is selected. The data is written into the DDRAM as shown in Fig.5.

11.2.3 H

When H = 0 the commands 'display control', 'set Y address' and 'set X address' can be performed, when H = 1 the others can be executed. The commands 'write data' and 'function set' can be executed in both cases.

11.3 Display Control

11.3.1 D, E

The bits D and E select the display mode (see Table 2).

11.4 Set Y address of RAM

Y2 to Y0 defines the Y address vector address of the display RAM; see Table 3.

Table 3 Yaddress range

Y2	Y1	Y0	CONTENT
0	0	0	bank 0
0	0	1	bank 1
0	1	0	bank 2
0	1	1	bank 3
1	0	0	bank 4
1	0	1	bank 5

11.5 Set X address of RAM

The X address points to the columns. The range of X is 0 to 83 (53H).

11.6 Temperature Control

The temperature coefficient of V_{LCD} is selected by the two bits TC1 and TC0.

48×84 pixels matrix LCD driver

OM6213

11.7 Bias value

The bias voltage levels are set in the ratio of R - R - nR - R giving a $\frac{1}{(n+4)}$ bias system. Different multiplex rates require different factors of 'n' (see Table 4). This is programmed by BS[2:0]. For Mux 1 : 48 the optimum bias value 'n' is given by $n = \sqrt{48} - 3 = 3.928 = 4$ resulting in $\frac{1}{8}$ bias.

Table 4 Programming the required bias system

BS2	BS1	BS0	n	BIAS SYSTEM	RECOMMENDED MUX RATE
0	0	0	7	1/11	1 : 100
0	0	1	6	1/10	1 : 80
0	1	0	5	1/9	1 : 65
0	1	1	4	1/8	1 : 48
1	0	0	_	Module Maker programmable (see Table 11)	-
1	0	1	2	1/6	1 : 24
1	1	0	1	1/5	1 : 18/1 : 16
1	1	1	0	1/4	1 : 10/1 : 9/1 : 8

Table 5 LCD bias voltage

SYMBOL	BIAS VOLTAGE FOR 1/8 BIAS SYSTEM
V1	V _{LCD}
V2	$^{7}/_{8} \times V_{LCD}$
V3	6%×V _{LCD}
V4	² / ₈ × V _{LCD}
V5	¹⁄ ₈ × V _{LCD}
V6	V _{SS}

48 × 84 pixels matrix LCD driver

OM6213

11.8 V_{LCD} generator

The binary number V_{OP} representing the operating voltage can be set by the serial interface command and can be adjusted (calibrated) by 5 input pins according to the following formulae:

$$V_{OP} = V_{OS} + V_{CAL} + (2 \times V_{PR}) \tag{1}$$

where:

- V_{OP} is an 8-bit unsigned number used internally for generation of the LCD supply voltage V_{LCD}
- V_{OS} is a 5-bit two's complement number set by the 5 input pins V_{OS}[4:0]; see Table 6
- V_{CAL} is a 5-bit two's complement number set by the Module Maker; see Table 7
- V_{PR} is a 7-bit unsigned number set by the serial interface command.

To avoid numerical overflow the allowed values of V_{PR} should be limited to the range $V_{PR(min)}$ to $V_{PR(max)}$ (decimal).

The corresponding voltage at the reference temperature, T_{CUT} , can be calculated as:

$$V_{LCD(Tcut)} = (a + V_{OP} \times b)$$
 (2)

The generated voltage at V_{LCD} is dependent on the temperature, programmed temperature coefficient (TC) and the programmed voltage at the reference temperature (T_{CUT}) .

$$V_{LCD} = (a + V_{OP} \times b) \times [1 + TC \times (T - T_{CUT})]$$
 (3)

 T_{CUT} , a and b for each temperature coefficient are given in Table 6. The maximum voltage that can be generated is dependent on the voltage of V_{DD2} and the display load current.

As the programming range for the internally generated V_{LCD} allows values above the maximum allowed V_{LCD} , the user has to ensure while setting the V_{PR} register and selecting the Temperature Compensation (TC), that under all conditions and including all tolerances the V_{LCD} limit of maximum 9 V will never be exceeded.

For a particular liquid, the optimum V_{LCD} can be calculated for a given multiplex rate. For a mux rate of 1 : 48, the optimum operating voltage of the liquid can be calculated as follows:

$$V_{LCD} = \frac{1 + \sqrt{48}}{\sqrt{2 \cdot \left(1 - \frac{1}{\sqrt{48}}\right)}} \cdot V_{th} = 6.06 \cdot V_{th}$$
 (4)

where V_{th} is the threshold voltage of the liquid crystal used.

Table 6 Typical values for parameters of the HV generator programming

SYMBOL	TCA	тсв	TCC	TCD	UNIT
а	3.06	3.84	3.62	3.37	V
b	30.3	24.3	26.1	28.0	mV
T _{CUT}	27	27	27	27	°C
TC	0	-0.87	-0.58	-0.29	10 ⁻³ /°C
V _{PR(min)}	49	20	30	39	decimal
V _{PR(max)}	127	101	110	120	decimal
V _{LCD(min)}	6.04	4.81	5.18	5.56	V
V _{LCD(max)}	10.77	8.74	9.35	10.11	V

V_{LCD(min)} values are the values corresponding to V_{PR(min)}.

 $V_{LCD(max)}$ values are the theoretical values corresponding to $V_{PR(max)}$. Under all conditions and including all tolerances V_{LCD} must never exceed 9 V.

Example: V_{PR} is set to 63 (decimal) and TCB is selected. At temperature T_{CUT} the measured V_{LCD} is 6.9 V. The user wants to decrease V_{LCD} by 100 mV in order to set V_{LCD} to 6.8 V. The best value for V_{OS} is then –4 decimal (11100 binary in the two's complement notation).

If V_{PR}[6:0] is set to zero, the charge pump is turned off.

48×84 pixels matrix LCD driver

OM6213

Table 7 V_{OS} and V_{CAL} values in two's complement notation

DECIMAL	BINARY
0	00000
1	00001
2	00010
3	00011
4	00100
5	00101
6	00110
7	00111
8	01000
9	01001
10	01010
11	01011
12	01100
13	01101
14	01110
15	01111

DECIMAL	BINARY
-1	11111
-2	11110
-3	11101
-4	11100
-5	11011
-6	11010
-7	11001
-8	11000
-9	10111
-10	10110
-11	10101
-12	10100
-13	10011
-14	10010
-15	10001
-16	10000

48×84 pixels matrix LCD driver

OM6213

12 TEMPERATURE COMPENSATION

Due to the temperature dependency of the liquid crystal viscosity, the LCD controlling voltage V_{LCD} must be increased with lower temperature to maintain optimum contrast. Figure 14. shows V_{LCD} for high multiplex rates. In the OM6213 the temperature coefficient of V_{LCD} can be selected from 4 values (see Table 2) by setting bits TC[1:0].

13 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); see notes 1 and 2.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD1}	logic supply voltage	-0.5	+6.5	V
V _{DD2,3}	high supply voltage	-0.5	+6.5	V
V _{LCD}	LCD supply voltage	-0.5	+10	V
Vi	all input voltages	-0.5	V _{DD1} + 0.5	V
I _{SS}	ground supply current	-50	+50	mA
I _I , I _O	DC input or output current	-10	+10	mA
P _{tot}	total power dissipation	_	100	mW
P _{out}	power dissipation per output	_	10	mW
T _{amb}	ambient temperature	-40	+85	C
T _{jun}	junction temperature	-65	+150	°C
T _{stg}	storage temperature	-65	+150	°C

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are referenced to V_{SS1} unless otherwise noted.

14 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

48×84 pixels matrix LCD driver

OM6213

15 DC CHARACTERISTICS

 $V_{DD1} = V_{DD2} = 2.5$ to 3.3 V; $V_{SS} = 0$ V; $V_{LCD} = 4.5$ to 9.0 V; $T_{amb} = -40$ to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD1}	logic supply voltage		2.5	_	3.3	V
V _{DD2,3}	high supply voltage		2.5	_	3.3	V
V _{LCD}	LCD supply voltage	note 1	4.5	_	9.0	V
I _{DD1}	total (V _{DD1} + V _{DD2} + V _{DD3}) supply current 1	normal mode; $V_{DD1} = V_{DD2} = V_{DD3} = 2.85 \text{ V;}$ $V_{LCD} = 6.9 \text{ V (4 booster device);}$ $f_{SCLK} = 0; T_{amb} = 25 \text{ °C;}$ $display \ load = 10 \mu A; \ inputs \ at \ V_{DD1} \ or$ $V_{SS}, \ bias \ system \ ^{1}\!\!/_{7}; \ note \ 2$	-	120	_	μА
I _{DD2}	supply current 2	Power-down mode; with internal or external LCD supply voltage; inputs at V _{DD1} or V _{SS} ; note 3	_	3	_	μΑ
I _{DD3}	supply current external V _{LCD}	$\begin{split} V_{DD1} &= V_{DD2} = V_{DD3} = 2.85 \text{ V;} \\ V_{LCD} &= 6.9 \text{ V; } f_{SCLK} = 0; T_{amb} = 25 \text{ °C;} \\ display load &= 10 \ \mu\text{A; inputs at } V_{DD1} \text{ or} \\ V_{SS}; bias system \frac{1}{7}; notes 2 \text{ and } 5 \end{split}$	_	20	_	μΑ
I _{LCDIN}	supply current from external V _{LCD}	$\begin{split} V_{DD1} &= V_{DD2} = V_{DD3} = 2.85 \text{ V;} \\ V_{LCD} &= 6.9 \text{ V; } f_{SCLK} = 0; T_{amb} = 25 \text{ °C;} \\ display load &= 10 \text{ μA; inputs at V_{DD1} or} \\ V_{SS}; bias system \frac{1}{7}; notes 2, 4 and 5 \end{split}$	_	25	_	μА
Logic						
V _{IL}	LOW-level input voltage		V _{SS}	_	0.3V _{DD1}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD1}	_	V _{DD1}	V
ILI	input leakage current	$V_i = V_{DD1}$ or V_{SS}	-1	_	+1	μΑ
Column a	nd row outputs					
R _{o(col)}	column output resistance COL0 to COL83	note 6	-	4	20	kΩ
R _{o(row)}	row output resistance ROW0 to ROW47	note 6	-	4	20	kΩ
V _{bias(col)}	bias tolerance COL0 to COL83		-100	0	+100	mV
V _{bias(row)}	bias tolerance ROW0 to ROW47		-100	0	+100	mV
LCD supp	ly voltage generator		•	•	•	•
V _{LCD(tol)}	V _{LCD} tolerance internally generated	note 7	-70	_	+70	mV

48 × 84 pixels matrix LCD driver

OM6213

Notes to the DC characteristics

1. The maximum possible V_{LCD} voltage that may be generated is dependent on voltage, temperature and (display) load.

- Internal clock.
- 3. Power-down mode: during Power-down all static currents are switched off.
- 4. If external V_{LCD} , the display load current is not transmitted to I_{DD} .
- V_{LCD} external voltage applied to V_{LCDIN} and V_{LCDSENSE} inputs; V_{LCDOUT} disconnected. V_{PR} must be set to 0 to switch-off the charge pump.
- 6. Load current 10 μ A, outputs tested one at a time.
- 7. Valid for values of temperature, V_{OP} and TC used at the calibration.

16 AC CHARACTERISTICS

 $V_{DD1} = V_{DD2} = 2.5 \text{ V}$ to 3.3 V; $V_{SS} = 0 \text{ V}$; $V_{LCD} = 4.5 \text{ to } 9.0 \text{ V}$; $V_{amb} = -40 \text{ to } +85 ^{\circ}\text{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{clk(ext)}	external clock frequency		30.9	34.3	37.7	kHz
f _{frame}	frame frequency	internal oscillator; note 1	63	70	77	Hz
t _{VHRL}	reset LOW pulse set-up time after power-on	notes 2 and 3; see Fig.16	0	_	30	μs
t _{RW}	reset LOW pulse width	see Fig.16	100	_	_	ns
t _{R(op)}	end of reset pulse to interface being operational		_	_	1000	ns
Serial bus	timing characteristics			•		
f _{SCLK}	clock frequency	bock frequency $V_{DD1} = 3.0 \text{ V} \pm 10\%; \text{ all signal timing is based on } 20\% \text{ to } 80\% \text{ of } V_{DD} \text{ and a maximum rise and fall time of } 10 \text{ ns}$		_	4.00	MHz
T _{cy(SCLK)}	clock cycle time SCLK		250	_	_	ns
t _{PWH1}	SCLK pulse width HIGH		100	_	_	ns
t _{PWL1}	SCLK pulse width LOW		100	_	_	ns
t _{S2}	SCE set-up time		60	_	_	ns
t _{H2}	SCE hold time		100	_	_	ns
t _{PWH2}	SCE minimum HIGH time		100	_	_	ns
t _{H5}	SCE start hold time	note 4	100	_	_	ns
t _{S3}	D/C set-up time		100	_	_	ns
t _{H3}	D/C hold time		100	_	_	ns
t _{S4}	SDIN set-up time		100	_	_	ns
t _{H4}	SDIN hold time		100	_	_	ns

Notes

- 1. $t_{frame} = f_{clk(ext)}/490$.
- 2. RES may be LOW before V_{DD} goes HIGH (see Fig.16). This is recommended.
- 3. Decoupling capacitor $V_{LCD}/V_{SS1} = 100 \text{ nF}$ (higher capacitor size increases t_{VHRL} or higher $V_{DD1,2,3}$ reduces t_{VHRL}).
- 4. t_{H5} is the time from the previous SCLK positive edge (irrespective of the state of SCE) to the negative edge of SCE (see Fig.15).

48×84 pixels matrix LCD driver

OM6213

17 SERIAL INTERFACE

18 RESET

48×84 pixels matrix LCD driver

OM6213

19 APPLICATION INFORMATION

Table 8 Example of OM6213 operation

0750				SERIA	L BUS	BYTE	<u> </u>			DIODI AV	ODED ATION
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
1	Start										SCE is going LOW
2	0	0	0	1	0	0	0	0	1		function set; PD = 0, V = 0, select extended instruction set (H = 1 mode)
3	0	1	0	0	1	0	0	0	0		set V _{PR} ; V _{PR} is set to 16
4	0	0	0	1	0	0	0	0	0		function set; PD = 0, V = 0, select normal instruction set (H = 0 mode)
5	0	0	0	0	0	1	1	0	0		display control; set normal mode (D = 1, E = 0)
6	1	0	0	0	1	1	1	1	1	MGS405	data write; Y and X are initialized to 0 by default, so they are not set here
7	1	0	0	0	0	0	1	0	1	MGS406	data write
8	1	0	0	0	0	0	1	1	1	MGS407	data write
9	1	0	0	0	0	0	0	0	0	MGS407	data write
10	1	0	0	0	1	1	1	1	1	MGS408	data write
11	1	0	0	0	0	0	1	0	0	MGS409	data write
12	1	0	0	0	1	1	1	1	1	MGS410	data write

48×84 pixels matrix LCD driver

OM6213

STEP			,	SERIA	L BUS	BYTE	•		DISPLAY	OPERATION	
SIEF	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAT	OPERATION
13	0	0	0	0	0	1	1	0	1	MGS412	display control; set inverse video mode (D = 1, E = 1)
14	0	1	0	0	0	0	0	0	0	MGS412	set X address of RAM; set address to 0000000
15	1	0	0	0	0	0	0	0	0	MGS414	data write

The pinning of the OM6213 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 48×84 pixels.

The required minimum value for the external capacitors in an application with the OM6213 are:

 C_{ext} = 100 nF (min.) for $V_{LCD1,2}/V_{SS1,2},~C_{ext}$ = 1.0 μF (min.) for $V_{LCD1,2,3}/V_{SS1,2}$

Higher capacitor values are recommended for ripple reduction.

48 × 84 pixels matrix LCD driver

OM6213

20 Module Maker programming

The OM6213 features five Module Maker programmable parameters:

- 1. V_{LCD} calibration
- 2. Charge pump multiplication factor
- 3. Bias system selected when BS[2:0] = 100
- 4. V_{LCD} temperature coefficient selected when TC[1:0] = 01 (TC1)
- Seal bit. Used to select the use of the default parameters or the Module Maker programmable parameters. Once set:
 - a) The seal bit cannot be reset
 - b) The Module Maker programmable parameters cannot be changed
 - The Module Maker programmable parameters are selected and the default parameters are deselected.

20.1 V_{LCD} calibration

The first parameter calibrates the V_{LCD} voltage.

A 5-bit code ($V_{CAL}[4:0]$) is used for this parameter. The code is implemented in two's complement notation giving rise to a positive or negative offset to the V_{PR} register. V_{LCD} calibration may be used together with V_{LCD} offset (performed by connecting the $V_{OS}[4:0]$ pads to either V_{SS1} or to V_{DD1}).

 $\ensuremath{V_{PR}}$ values must always be within the ranges specified in Table 6.

$$V_{OP} = V_{OS} + V_{CAI} + (2 \times V_{PR})$$
 (5)

$$V_{LCD} = a + V_{OP} \times b \text{ at } T_{nom}$$
 (6)

 V_{LCD} can be calculated from equations (5) and (6): a and b are parameters defined in Table 6. An example of the correspondence between the V_{CAL} code and the relative V_{LCD} calibration is shown in Table 9, where b is assumed to be 24.3 mV (TCB, temperature coefficient B) and V_{OS} is assumed to be 0.

48×84 pixels matrix LCD driver

OM6213

Table 9 V_{CAL} codes and associated nominal calibration voltage (TCB, $V_{OS} = 0$)

V _{CAL} [4:0]	V _{CAL}	V _{LCD} CALIBRATION (mV) (TCB, V _{OS} = 0)				
00000	0	0 mV (default)				
00001	1	+24.3				
00010	2	+48.6				
00011	3	+72.9				
00100	4	+97.2				
00101	5	+121.5				
00110	6	+145.8				
00111	7	+170.1				
01000	8	+194.4				
01001	9	+218.7				
01010	10	+243				
01011	11	+267.3				
01100	12	+291.6				
01101	13	+315.9				
01110	14	+340.2				
01111	15	+364.5				
11111	-1	-24.3				
11110	-2	-48.6				
11101	-3	−72.9				
11100	-4	-97.2				
11011	-5	-121.5				
11010	-6	-145.8				
11001	-7	-170.1				
11000	-8	-194.4				
10111	-9	-218.7				
10110	-10	-243				
10101	-11	-267.3				
10100	-12	-291.6				
10011	-13	-315.9				
10010	-14	-340.2				
10001	-15	-364.5				
10000	-16	-388.8				

20.2 Charge pump multiplication factor

The second parameter defines the charge pump multiplication factor.

A 1-bit code (MF) is used for this parameter.

Table 10 Charge pump multiplication factor definition

MF	MULTIPLICATION FACTOR				
0	4 (default)				
1	3				

20.3 Bias system selected when BS[2:0] = 100

The third parameter defines the bias system selected when BS[2:0] = 100.

A 1-bit code (BS100) is used for this parameter.

Table 11 Bias system selected when BS[2:0] = 100 definition

BS 00	BIAS SYSTEM
0	1/7 (default)
1	1/6

20.4 V_{LCD} temperature coefficient selected when TC[1:0] = 01 (TC1)

The fourth parameter defines the V_{LCD} temperature coefficient selected when TC[1:0] = 01 (TC1).

TC1 may be defined by using a two bit code (TCx[1:0]).

Table 12 V_{LCD} temperature coefficient

TC[1:0]	TC1[1:0]	V _{LCD} TEMPERATURE COEFFICIENT		
00 (TC0)		TCA		
01 (TC1)	00	TCB (default)		
	01	TCA		
	10	TCD		
	11	TCC		
10 (TC2)		TCC		
11 (TC3)		TCD		

48 × 84 pixels matrix LCD driver

OM6213

20.5 Seal bit

The seal bit selects between the default parameters and the Module Maker programmed parameters. The seal bit prevents further changes to the Module Maker programmable parameters. A 1-bit code (SB) is used for this parameter. The seal bit, once set to 1, cannot be reset to 0.

Table 13 Seal bit definition

SB	PARAMETERS	MODULE MAKER PROGRAMMABLE PARAMETERS
0	defaults	programming possible
1	Module Maker programmable	programming prevented

20.6 Module Maker parameter programming

Module Maker programmable parameters are stored in 10 non-volatile cells.

Table 14 Non-volatile cell list

CELL[9:0]	DESCRIPTION
9	V _{CAL} [4]
8	V _{CAL} [3]
7	V _{CAL} [2]
6	V _{CAL} [1]
5	V _{CAL} [0]
4	MF
3	BS100
2	TC1[1]
1	TC1[0]
0	SB

An unprogrammed cell contains 0. A programmed cell contains 1. OM6213 dice are shipped to the Module Maker with all cells unprogrammed (containing 0). An unprogrammed cell may be programmed by using the described procedure. A programmed cell cannot be unprogrammed to 0.

48×84 pixels matrix LCD driver

OM6213

Table 15 Module Maker parameters programming procedure

STEP	D/C	COMMAND BYTE							ACTION	
SIEP	DIC	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	ACTION
1			•							switch power on
2										reset the device (RES pulse)
3	0	0	0	1	0	0	0	0	0	exit Power-down and set H = 0 instruction set
4										wait 5 ms
5	0	0	0	1	0	0	1	0	0	enter Power-down
6	0	0	0	0	0	0	1	0	1	enter programming mode
7	0	1	0	0	0	0	0	0	CELL[9]	specify CELL[9] (V _{CAL} [4])
8	0	1	0	0	0	0	0	0	CELL[8]	specify CELL[8] (V _{CAL} [3])
9	0	1	0	0	0	0	0	0	CELL[7]	specify CELL[7] (V _{CAL} [2])
10	0	1	0	0	0	0	0	0	CELL[6]	specify CELL[6] (V _{CAL} [1])
11	0	1	0	0	0	0	0	0	CELL[5]	specify CELL[5] (V _{CAL} [0])
12	0	1	0	0	0	0	0	0	CELL[4]	specify CELL[4] (MF)
13	0	1	0	0	0	0	0	0	CELL[3]	specify CELL[3] (BS100)
14	0	1	0	0	0	0	0	0	CELL[2]	specify CELL[2] (TC1[1])
15	0	1	0	0	0	0	0	0	CELL[1]	specify CELL[1] (TC1[0])
16	0	1	0	0	0	0	0	0	CELL[0]	specify CELL[0] (SB)
17										apply programming waveforms
18										go back to step 7 if other cells need to be programmed (see note 5)
19	0	0	0	0	0	0	0	0	0	exit programming mode
20										switch power off

Notes

- 1. Programming voltages are applied via pins SDIN and VLCDIN.
- 2. It is possible to program only one cell at a time. When applying programming waveforms, all cells (except the one being programmed) should be 0; see also example in note 5.
- 3. The seal bit (SB) must be the last to be programmed, since no further programming is possible when SB = 1.
- 4. If the seal bit is unprogrammed (SB = 0) the defaults (and not the Module Maker programmed parameters) are taken into account.
- 5. Example: a device has to be programmed to use a charge pump with a multiplication factor equal to 3 (initial state is MF = SB = 0, final state is MF = SB = 1).
 - a) Execute steps 1 to 6.
 - b) Set CELL[9:0] to 0000010000 (steps 7 to 16).
 - c) Apply programming waveforms (step 17): MF cell is now programmed (MF = 1, SB = 0).
 - d) Go back to step 7.
 - e) Set CELL[9:0] to 0000000001 (steps 7 to 16).
 - f) Apply programming waveforms (step 17): SB cell is now programmed (MF = SB = 1).
 - g) Execute steps 18 to 20.
- 6. Programming waveforms MUST only be applied at step 17.

48 × 84 pixels matrix LCD driver

OM6213

Table 16 Programming parameters

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{SDIN}	voltage applied to pin SDIN relative	notes 1 and 3				
	to V _{SS1}	programming active	11	11.5	12	V
		programming inactive	0	_	V _{DD1}	V
V _{LCDIN}	voltage applied to pin V _{LCDIN}	notes 1 and 2				
	relative to V _{SS1}	programming active	9	9.5	10	V
		programming inactive	0	_	V _{DD2}	V
I _{LCDIN}	current drawn by V _{LCDIN} during programming	when programming a single bit to one	_	850	1000	μΑ
I _{SDIN}	current drawn by V _{SDIN} during programming		_	100	200	μΑ
T _{amb(prog)}	ambient temperature during programming		0	25	40	°C
t _{su;SCLK}	set-up of internal data after last clock		1	_	_	μs
t _{h;SCLK}	hold of internal data before next clock		1	_	_	μs
t _{su;SDIN}	set-up of V _{SDIN} prior to programming		1	_	10	ms
t _{h;SDIN}	hold of V _{SDIN} after programming		1	_	10	ms
t _W	pulse width of programming voltage		100	120	200	ms

Notes

- 1. The voltage drop across the ITO track and zebra connector must be taken into account to guarantee sufficient voltage at the chip pins.
- 2. The high voltage generator must be disabled ($V_{PR} = 0$) when the V_{LCDIN} pin is being driven.
- 3. Maximum voltage must never be exceeded (even for a short time). Care must be taken when applying the programming waveforms in order to avoid overshoots.

48×84 pixels matrix LCD driver

OM6213

20.7 Example of V_{LCD} calibration flow

The following tables are examples of the flow to calibrate V_{LCD} .

Table 17 V_{LCD} calibration flow 1

STEP	D/C	COMMAND BYTE							ACTION		
SIEF	DIC	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	ACTION	
1		•	•		•	•		•		switch power on	
2	reset the device (RES pulse)										
3	configure the device and fill in the DDRAN without switching the charge pump on										
4	0	0	0	1	0	0	0	0	1	exit Power-down and set H = 1 instruction set	
5			•	•			•			wait 5 ms	
6	0	1	V_{PR6}	V_{PR5}	V_{PR4}	V_{PR3}	V _{PR2}	V _{PR1}	V _{PR0}	set V _{PR} and switch charge pump on	
7										measure V _{LCD}	
8	0	1	0	0	0	0	0	0	0	switch charge pump off	
9	switch power off										
10	calculate V _{CAL} [4:0] with look-up tables										
11										store V _{CAL} [4:0] for programming later	

48×84 pixels matrix LCD driver

OM6213

Table 18 V_{LCD} calibration flow 2

STEP	D/C			(COMMAND BYTE					ACTION
SIEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	ACTION
1										switch power on
2										reset the device (RES pulse)
3					configure the device and fill in the DDRAM without switching the charge pump on					
4	0	0	0	1	0	0	0	0	0	exit Power-down and set H = 0 instruction set
5		-	-							wait 5 ms
6	0	0	0	0	0	0	1	0	1	enter programming mode
7	0	1	0	0	0	0	0	0	CELL[9]	specify CELL[9] (V _{CAL} [4])
8	0	1	0	0	0	0	0	0	CELL[8]	specify CELL[8] (V _{CAL} [3])
9	0	1	0	0	0	0	0	0	CELL[7]	specify CELL[7] (V _{CAL} [2])
10	0	1	0	0	0	0	0	0	CELL[6]	specify CELL[6] (V _{CAL} [1])
11	0	1	0	0	0	0	0	0	CELL[5]	specify CELL[5] (V _{CAL} [0])
12	0	1	0	0	0	0	0	0	CELL[4]	specify CELL[4] (MF)
13	0	1	0	0	0	0	0	0	CELL[3]	specify CELL[3] (BS100)
14	0	1	0	0	0	0	0	0	CELL[2]	specify CELL[2] (TC1[1])
15	0	1	0	0	0	0	0	0	CELL[1]	specify CELL[1] (TC1[0])
16	0	0	0	0	0	0	0	0	1	specify CELL[0] = 1 (SB = 1)
17	0	0	0	1	0	0	0	0	1	set H = 1 instruction set (exit programming mode)
18	0	1	V_{PR6}	V_{PR5}	V_{PR4}	V_{PR3}	V _{PR2}	V_{PR1}	V _{PR0}	set V _{PR} and switch charge pump on
19	measure V _{LCD}					measure V _{LCD}				
20	0	1	0	0	0	0	0	0	0	switch charge pump off
21							if V _{LCD} is not correct, go back to step 2 and try a different V _{CAL} [4:0]			
22										switch power off
23										store V _{CAL} [4:0] for programming later

48×84 pixels matrix LCD driver

OM6213

21 CHIP INFORMATION

The OM6213 is manufactured in n-well CMOS technology.

22 BONDING PAD INFORMATION

Table 19 Bonding pad information

NAME	ROW/COL SIDE	INTERFACE SIDE
Pad pitch	60 μm (min.)	70 μm (min.)
Pad size, aluminium	$50 \times 90 \ \mu m$ (min.)	60 × 100 μm (min.)
CBB opening	26 × 66 μm (min.)	$36 \times 76 \ \mu m$ (min.)
Bump dimensions	$40 \times 80 \times 17.5 \ \mu m \ (\pm 5) \ (min.)$	$50 \times 90 \times 17.5 \ \mu m \ (\pm 5) \ (min.)$
Wafer thickness (excluding bumps)	381 μm (±25)	

48×84 pixels matrix LCD driver

OM6213

23 BONDING PAD LOCATION

Table 20 Bonding pad location
All x and y co-ordinates are referenced to the centre of

CVMDOL	DAD	COORI	DINATES	
SYMBOL	PAD	х	у	
Dummy pad	1	-820	+4505	
Alignment	2	-810	+4385	
V _{OS4}	3	-820	+4240	
V _{OS3}	4	-820	+4030	
V _{OS2}	5	-820	+3680	
V _{OS1}	6	-820	+3470	
V _{OS0}	7	-820	+3120	
Dummy pad	8	-820	+2700	
Dummy pad	9	-820	+2420	
Dummy pad	10	-820	+2350	
Dummy pad	11	-820	+2280	
Dummy pad	12	-820	+2210	
V _{DD1} 13		-820	+2140	
V _{DD1}	14	-820	+2070	
V _{DD1}	15	-820	+2000	
V _{DD1}	16	-820	+1930	
V _{DD1}	17	-820	+1860	
V _{DD1}	18	-820	+1790	
V _{DD3}	19	-820	+1720	
V_{DD3}	20	-820	+1650	
V _{DD3}	21	-820	+1580	
V _{DD3}	22	-820	+1510	
V _{DD2}	23	-820	+1440	
V_{DD2}	24	-820	+1370	
V_{DD2}	25	-820	+1300	
V_{DD2}	26	-820	+1230	
V_{DD2}	27	-820	+1160	
V_{DD2}	28	-820	+1090	
V _{DD2}	29	-820	+1020	
V_{DD2}	30	-820	+950	
SCLK	31	-820	+880	
T7	32	-820	+670	
T7	33	-820	+600	
T7	34	-820	+530	
T7	35	-820 + 460		

OVINDOL		COORD	INATES
SYMBOL	PAD	X	у
SDIN	37	-820	+320
SDIN	38	-820	+250
SDIN	39	-820	+180
D/C	40	-820	+110
SCE	41	-820	-100
osc	42	-820	-310
V _{SS2}	43	-820	-520
V _{SS2}	44	-820	-590
V _{SS2}	45	-820	-660
V _{SS2}	46	-820	-730
V _{SS2}	47	-820	-800
V _{SS2}	48	-820	-870
V _{SS2}	49	-820	-940
V _{SS2}	50	-820	-1010
T4	51	-820	-1080
T5	52	-820	-1290
T6	53	-820	-1500
V _{SS1}	54	-820	-1710
V _{SS1}	55	-820	-1780
V _{SS1}	56	-820	-1850
V _{SS1}	57	-820	-1920
V _{SS1}	58	-820	-1990
V _{SS1}	59	-820	-2060
V _{SS1}	60	-820	-2130
V _{SS1}	61	-820	-2200
T1	62	-820	-2410
T2	63	-820	-2620
T3	64	-820	-2830
V _{LCDIN}	65	-820	-3180
V _{LCDIN}	66	-820	-3250
V _{LCDIN}	67	-820	-3320
V _{LCDIN}	68	-820	-3390
V _{LCDIN}	69	-820	-3460
V _{LCDIN}	70	-820	-3530
V _{LCDOUT}	71	-820	-3600
V _{LCDOUT}	72	-820	-3670
V _{LCDOUT}	73	-820	-3740
V _{LCDOUT}	74	-820	-3810
V _{LCDOUT}	75	-820	-3880

2001 Nov 07 32

-820

+390

36

SDIN

48×84 pixels matrix LCD driver

OM6213

CVMDOL	DAD	COORDINATES		
SYMBOL	PAD	х	у	
V _{LCDOUT}	76	-820	-3950	
V _{LCDOUT}	77	-820	-4020	
VLCDSEN	78	-820	-4090	
RES	79	-820	-4160	
Alignment	80	-810	-4400	
Dummy pad	81	-820	-4505	
Dummy pad	82	+825	-4495	
Dummy pad	83	+825	-4435	
Dummy pad	84	+825	-4375	
Dummy pad	85	+825	-4315	
Dummy pad	86	+825	-4255	
Dummy pad	87	+825	-4195	
Dummy pad	88	+825	-4135	
ROW 11	89	+825	-3955	
ROW 10	90	+825	-3895	
ROW 9	91	+825	-3835	
ROW 8	92	+825	-3775	
ROW 7	93	+825	-3715	
ROW 6	94	+825	-3655	
ROW 5	95	+825	-3595	
ROW 4	96	+825	-3535	
ROW 3	97	+825	-3475	
ROW 2	98	+825	-3415	
ROW 1	99	+825	-3355	
ROW 0	100	+825	-3295	
ROW 12	101	+825	-3235	
ROW 13	102	+825	-3175	
ROW 14	103	+825	-3115	
ROW 15	104	+825	-3055	
ROW 16	105	+825	-2995	
ROW 17	106	+825	-2935	
ROW 18	107	+825	-2875	
ROW 19	108	+825	-2815	
ROW 20	109	+825	-2755	
ROW 21	110	+825	-2695	
ROW 22	111	+825	-2635	
ROW 23	112	+825	-2575	
COL 0	113	+825	-2395	
COL 1	114	+825	-2335	

0/4501		COORD	INATES
SYMBOL	PAD	х	у
COL 2	115	+825	-2275
COL 3	116	+825	-2215
COL 4	117	+825	-2155
COL 5	118	+825	-2095
COL 6	119	+825	-2035
COL 7	120	+825	-1975
COL 8	121	+825	-1915
COL 9	122	+825	-1855
COL 10	123	+825	-1795
COL 11	124	+825	-1735
COL 12	125	+825	-1675
COL 13	126	+825	-1615
COL 14	127	+825	-1555
COL 15	128	+825	-1495
COL 16	129	+825	-1435
COL 17	130	+825	-1375
COL 18	131	+825	-1315
COL 19	132	+825	-1255
COL 20	133	+825	-1195
COL 21	134	+825	-1135
COL 22	135	+825	-1075
COL 23	136	+825	-1015
COL 24	137	+825	-955
COL 25	138	+825	-895
COL 26	139	+825	-835
COL 27	140	+825	-775
COL 28	141	+825	-595
COL 29	142	+825	-535
COL 30	143	+825	-475
COL 31	144	+825	-415
COL 32	145	+825	-355
COL 33	146	+825	-295
COL 34	147	+825	-235
COL 35	148	+825	-175
COL 36	149	+825	-115
COL 37	150	+825	-55
COL 38	151	+825	+5
COL 39	152	+825	+65
COL 40	153	+825	+125

48×84 pixels matrix LCD driver

OM6213

CVMDOL	DAD	COORDINATES		
SYMBOL	PAD	х	у	
COL 41	154	+825	+185	
COL 42	155	+825	+245	
COL 43	156	+825	+305	
COL 44	157	+825	+365	
COL 45	158	+825	+425	
COL 46	159	+825	+485	
COL 47	160	+825	+545	
COL 48	161	+825	+605	
COL 49	162	+825	+665	
COL 50	163	+825	+725	
COL 51	164	+825	+785	
COL 52	165	+825	+845	
COL 53	166	+825	+905	
COL 54	167	+825	+965	
COL 55	168	+825	+1025	
COL 56	169	+825	+1205	
COL 57	170	+825	+1265	
COL 58	171	+825	+1325	
COL 59	172	+825	+1385	
COL 60	173	+825	+1445	
COL 61	174	+825	+1505	
COL 62	175	+825	+1565	
COL 63	176	+825	+1625	
COL 64	177	+825	+1685	
COL 65	178	+825	+1745	
COL 66	179	+825	+1805	
COL 67	180	+825	+1865	
COL 68	181	+825	+1925	
COL 69	182	+825	+1985	
COL 70	183	+825	+2045	
COL 71	184	+825	+2105	
COL 72	185	+825	+2165	
COL 73	186	+825	+2225	
COL 74	187	+825	+2285	
COL 75	188	+825	+2345	

OVMDOL	BAB	COORI	DINATES
SYMBOL	PAD	х	у
COL 76	189	+825	+2405
COL 77	190	+825	+2465
COL 78	191	+825	+2525
COL 79	192	+825	+2585
COL 80	193	+825	+2645
COL 81	194	+825	+2705
COL 82	195	+825	+2765
COL 83	196	+825	+2825
ROW 47	197	+825	+3005
ROW 46	198	+825	+3065
ROW 45	199	+825	+3125
ROW 44	200	+825	+3185
ROW 43	201	+825	+3245
ROW 42	202	+825	+3305
ROW 41	203	+825	+3365
ROW 40	204	+825	+3425
ROW 39	205	+825	+3485
ROW 38	206	+825	+3545
ROW 37	207	+825	+3605
ROW 36	208	+825	+3665
ROW 24	209	+825	+3725
ROW 25	210	+825	+3785
ROW 26	211	+825	+3845
ROW 27	212	+825	+3905
ROW 28	213	+825	+3965
ROW 29	214	+825	+4025
ROW 30	215	+825	+4085
ROW 31	216	+825	+4145
ROW 32	217	+825	+4205
ROW 33	218	+825	+4265
ROW 34	219	+825	+4325
ROW 35	220	+825	+4385
Dummy pad	221	+825	+4445
Dummy pad	222	+825	+4505

48×84 pixels matrix LCD driver

OM6213

48×84 pixels matrix LCD driver

OM6213

24 DEVICE PROTECTION DIAGRAM

48×84 pixels matrix LCD driver

OM6213

25 TRAY INFORMATION

Table 21 Tray dimensions

DIMENSION	DESCRIPTION	VALUE
А	pocket pitch, x direction	14.45 mm
В	pocket pitch, y direction	3.76 mm
С	pocket width, x direction	9.31 mm
D	pocket width, y direction	1.98 mm
E	tray width, x direction	50.8 mm
F	tray width, y direction	50.8 mm
G	distance from cut corner to pocket (1 and 1) centre	10.95 mm
Н	distance from cut corner to pocket (1 and 1) centre	4.72 mm
J	tray thickness	3.96 mm
K	tray cross section	1.78 mm
L	tray cross section	2.44 mm
M	pocket depth	0.89 mm
х	number of pockets in x direction	3
У	number of pockets in y direction	12

48 × 84 pixels matrix LCD driver

OM6213

26 DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

27 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

28 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

48×84 pixels matrix LCD driver

OM6213

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2001

SCA73

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

403506/01/pp40

Date of release: 2001 Nov 07 $\,$

Document order number: 9397 750 07745

Let's make things better.

Philips Semiconductors

