IE University

Computer Science and Artificial Intelligence

Two 2-bit number adder

Discrete Mathematics 2023-2024

Caterina Barbero, Javier Domínguez, Blanca Valdés Juan Alonso-Allende and George Vashakidze

Contents

C	ontents	T
1	Truth table for the logical circuit	2
2	Disjunctive normal form using Boolean Algebra notation	2
3	Karnaugh maps for each output	3
4	Minimal logical expression for each output	3
5	Image of the circuit	4
6	Truth table generated by Logisim	5
7	Karnaugh maps generated by logism	6
Bi	bliography	7

1 Truth table for the logical circuit	1	Truth	table	for	the	logical	circui	it
---------------------------------------	---	-------	-------	-----	-----	---------	--------	----

X_1	X_2	Y_1	Y_2	C	S_1	S_2
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Based on the problem provided, we have four inputs that represent two two-bit numbers. Named consequently X1, X2, Y1, and Y2, where X1 and X2 represent the first two-bit number, and Y1 and Y2 the second two-bit number. The maximum possible output is 110 (because the maximum two two-bit number is 11, and 11+11 in a two-bit system is 110.) This is why we are using three two-bit numbers to describe the outcomes of the circuit. We have named C the first number of the three two-bit numbers. The remaining outputs are S1 and S2, which represent the two remaining two-bit numbers.

2 Disjunctive normal form using Boolean Algebra notation

$$C: X_{1}X_{2}Y_{1}Y_{2} + X_{1}X_{2}Y_{1}\bar{Y}_{2} + X_{1}X_{2}\bar{Y}_{1}Y_{2} + X_{1}\bar{X}_{2}Y_{1}Y_{2} + X_{1}\bar{X}_{2}Y_{1}\bar{Y}_{2} + \bar{X}_{1}X_{2}Y_{1}Y_{2}$$

$$S_{1}: \bar{X}_{1}\bar{X}_{2}Y_{1}\bar{Y}_{2} + \bar{X}_{1}\bar{X}_{2}Y_{1}Y_{2} + \bar{X}_{1}X_{2}\bar{Y}_{1}Y_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2} + X_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2} + X_{1}\bar{X}_{2}\bar{Y}_{1}Y_{2} + X_{1}\bar{X}_{2}\bar{Y}_{1}Y_{2} + X_{1}\bar{X}_{2}\bar{Y}_{1}Y_{2} + X_{1}\bar{X}_{2}\bar{Y}_{1}Y_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}Y_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2} + \bar{X}_{1}\bar{X}_{2}\bar{Y}_{1}\bar{Y}_{2}$$

3 Karnaugh maps for each output

Figure 1: Output 1: Carry out (C)

Figure 2: Output 2: Sum 1 (S_1)

Figure 3: Output 3: Sum 2 (S_2)

4 Minimal logical expression for each output

$$C: X_1X_2Y_2 + X_2Y_1Y_2 + X_1Y_1$$

$$S_1: X_1\bar{Y_1}\bar{Y_2} + X_1\bar{X_2}\bar{Y_1} + \bar{X_1}\bar{X_2}Y_1 + \bar{X_1}Y_1\bar{Y_2} + \bar{X_1}X_2\bar{Y_1}\bar{Y_2} + X_1X_2Y_1Y_2$$

$$S_2: X_2\bar{Y_2} + \bar{X_2}Y_2$$

5 Image of the circuit

6 Truth table generated by Logisim

$\mathbf{X}1$	X2	Yl	Y2	С	S1	S2
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

7 Karnaugh maps generated by logism

Figure 4: Output 1: Carry out (C)

Figure 5: Output 2: Sum 1 (S_1)

Figure 6: Output 3: Sum 2 (S_2)

Bibliography

- [G] González, J. Introduction to Karnaugh maps (2019). The Organic Chemistry Tutor. [Video] YouTube. https://www.youtube.com/watch?v=R05alU6PpSU
- [R] Rosen, K. (2012) Discrete mathematics and its applications. New Delhi: McGraw-Hill. **pp**. 866-872.