

GEOMETRÍA Capítulo 13

2th
SECONDARY

CIRCUNFERENCIA I

MOTIVATING | STRATEGY

Al observar el borde de la Luna o el Sol, el hombre tuvo las primeras nociones de circunferencia, al cortar una naranja o un limón el contorno de la sección plana tiene forma de circunferencia y que equidista del centro, esto llevó a conocer las definiciones de la circunferencia.

CIRCUNFERENCIA

Es aquella línea curva cerrada, que está formada por el conjunto de puntos coplanares que equidistan de un punto fijo denominado centro.

- CENTRO: O
- RADIO: \overline{OA} ; \overline{OB} ; \overline{OC}
- CUERDA: FG ; HI
- DIÁMETRO: MN
- ARCO: AN ; ME
- RECTA SECANTE: L_1
- RECTA TANGENTE: $\overrightarrow{L_2}$
- PUNTO DE TANGENCIA: T

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

ÁNGULO CENTRAL:

ÁNGULO INSCRITO:

Ejemplo: Calcule el valor de x.

Teorema

Ejemplo: Calcule el valor de x.

Ejemplo: Calcule el valor de θ .

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

ÁNGULO INTERIOR:

$$\alpha = \frac{m+n}{2}$$

Ejemplo: Calcule el valor de y.

$$y = \frac{80^{\circ} + 70^{\circ}}{2}$$

$$y = 75^{\circ}$$

ÁNGULO EXTERIOR

$$x = \frac{\alpha - \beta}{2}$$

 $x + \beta = 180^{\circ}$

1. En la figura, halle el valor de β.

Resolución

• Piden: β

Ángulo inscrito

$$2\beta + 160^{\circ} + 140^{\circ} = 360^{\circ}$$

 $2\beta + 300^{\circ} = 360^{\circ}$

$$2\beta = 60^{\circ}$$

$$\beta = 30^{\circ}$$

2. Si O es centro de la circunferencia, halle el valor de α .

Resolución

- Piden: α
- Trazamos OQ

- OP y OQ: radios.
- ΔPOQ: isósceles.

$$4\alpha + 3\alpha + 3\alpha = 180^{\circ}$$

$$10\alpha = 180^{\circ}$$

$$\alpha = 18^{\circ}$$

3. En la figura, O es centro y BM = MO. Halle el valor de x.

Resolución

• Piden: x

△BOM: isósceles.

$$x = 70^{\circ} + 70^{\circ}$$

$$x = 140^{\circ}$$

4. Si A, P, B y Q son puntos de tangencia; m∢AMP = 42° y m∢BNQ = 54°. Calcule la m∢ATP.

5. Si B y C son puntos de tangencia, halle el valor de x.

HELICO | PRACTICE

6. Se construye una mesa de billar semicircular de diámetro AB, se choca una billa ubicada en el punto C que luego llega al punto D y finalmente al punto E. Si mÂC = 80° y m \widehat{EB} = 40° , halle la medida del ángulo que forman las direcciones CD y DE.

$$300^{\circ} / 2 = x$$

 $150^{\circ} = x$

HELICO | PRACTICE

7. Se muestra la estructura de la bicicleta estática de Haydée. Las barras deben ser soldadas de tal manera que Q sea punto de tangencia. Halle el valor de x.

• Piden: x

$$x = \frac{144^{\circ} - 96^{\circ}}{2}$$

$$x = \frac{48^{\circ}}{2}$$

