GENERAL TOPOLOGY — THE MONADIC CASE, EXAMPLES, APPLICATIONS

W. GÄHLER (Berlin)

Dedicated to Professor Ákos Császár on the occasion of his 75th birthday

Abstract. The paper deals with monadic as well as monadic-free topological notions. For defining these monadic-free notions the notion of basic triple Φ is introduced. A lot of monadic-free topological notions are presented, for instance that of Φ -convergence structure, Φ -hull operator and Φ -uniform structure. By means of a generalized metric, e.g. a probabilistic metric, and the general notion of Φ -zero approach introduced in this paper, a Φ -uniform structure is generated. In case of a fuzzy metric the related Φ -uniform structure defines in a canonic way a fuzzy topology which is used for developing a fuzzy analysis and fuzzy calculus.

1. The basic triples $\Phi = (\varphi, \leq, \eta)$

In our theory we are interested in partially ordered sets (X, \leq) in which all non-empty suprema exist. They are called *almost complete semilattices*. Let acSLAT denote the category of almost complete semilattices where the morphisms are the mappings between almost complete semilattices which preserve non-empty suprema.

For each acSLAT-morphism $f:(X, \leq) \to (Y, \leq)$ a type of inverse, called the *sup-inverse* of f, can be introduced. We mean the acSLAT-morphism $g:(D, \leq) \to (X, \leq)$ with $D=\{y\in Y\,|\,\exists x\in X\,f(x)\leq y\}$ such that for each $y\in D, g(y)$ is the greatest element x of X with $f(x)\leq y$. Here D is equipped with the induced partial ordering of (Y, \leq) . In case of D=Y, g preserves also all infima, as far as these infima exist. If f is surjective, then D=Y.

An important notion in general topology is that of a basic triple, that is of a triple $\Phi = (\varphi, \leq, \eta)$ with the following properties:

- (A) Φ consists of a covariant functor $(\varphi, \leq) : \mathsf{SET} \to \mathsf{acSLAT}, X \mapsto (\varphi X, \leq)$ with $\varphi : \mathsf{SET} \to \mathsf{SET}$ the underlying set functor, and of a natural transformation $\eta = (\eta_X)_{X \in \mathsf{ObSET}}$ of mappings $\eta_X : X \to \varphi X$.
 - (B) If X is the empty set, then φX is empty.
- (C) For each set X and all $x, y \in X$ the infimum $\eta_X(x) \wedge \eta_X(y)$ exists only in case of x = y.

For each set X the elements of φX are called φ -objects on X. For each non-empty subset M of a set X, we write $\eta_X[M]$ instead of $\bigvee_{x \in M} \eta_X(x)$. A

 φ -object \mathcal{M} of a set X is said to be *stratified* [9] provided that $\mathcal{M} \subseteq \eta_X[X]$ holds.

For each mapping $f: X \to Y$, the sup-inverse of φf will be written as $\varphi^- f$. $\mathcal{D} = \{ \mathcal{N} \in \varphi Y \mid \exists \mathcal{M} \in \varphi X \ \varphi f(\mathcal{M}) \leq \mathcal{N} \}$ is the domain of $\varphi^- f$. If f is surjective, then $\mathcal{D} = \varphi Y$.

 $\Phi = (\mathsf{P}_0 \circ \mathsf{id}^n, \leq, \eta)$ is an example of a basic triple. Here φ is the composition of the n-th power id^n of the identity set functor with the proper powerset functor P_0 , where n is any positive cardinal. Hence, for each set X, $\varphi X = \{M \subseteq X^n \mid M \neq \emptyset\}$. As partial ordering on each set φX we take the inclusion. For each set X and each $x \in X$ let $\eta_X(x) = \{c_x\}$ with $c_x : n \to X$ the constant mapping with value x.

In classical topology, (F, \leq, η) is taken as basic triple where F is the filter functor, which assigns to each set X the set $\mathsf{F}X$ of all (proper) filters on X. As partial ordering \leq of each set $\mathsf{F}X$ we choose the finer relation of filters, that is, the inversion of the inclusion. For each element x of a set X, $\eta_X(x)$ means the filter $\{M \subseteq X \mid x \in M\}$.

In the fuzzy filter case we mean as Φ the basic triple $(\mathcal{F}_L, \leq, \eta)$, defined as follows: L is a fixed non-degenerate frame, that is, an infinitely distributive complete lattice with different smallest element 0 and largest element 1. If no misinterpretation seems possible, for each set X and any $\alpha \in L$ we denote by $\bar{\alpha}$ the constant mapping of X into L with value α .

For each set X, $\mathcal{F}_L X$ consists of all L-fuzzy filters on X, that is of all mappings $\mathcal{M}: L^X \to L$ such that

- (F1) $\mathcal{M}(\bar{0}) = 0$ and $\mathcal{M}(\bar{1}) = 1$,
- (F2) $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$.

We define $\mathcal{M} \subseteq \mathcal{N} \iff \mathcal{M}(f) \supseteq \mathcal{N}(f)$ for all $f \in L^X$. For each mapping $g: X \to Y$, each $\mathcal{M} \in \mathcal{F}_L X$ and each $h \in L^Y$ let $\mathcal{F}_L g(\mathcal{M})(h) = \mathcal{M}(h \circ g)$. Moreover, for each $x \in X$ and $f \in L^X$ let $\eta_X(x)(f) = f(x)$.

The notion of fuzzy filter, defined as above, was proposed first by U. Höhle [12]. There are also interesting more restricted notions of fuzzy filters. Two of them were proposed first in [2, 6]. In these cases the fuzzy filters \mathcal{M} are homogeneous and bounded, that is, they have the property that for each $\alpha \in L$, $\mathcal{M}(\bar{\alpha}) = \alpha$ and $\mathcal{M}(\bar{\alpha}) \leq \alpha$, respectively. Homogeneous fuzzy filters are called tight in [13]. Stratified fuzzy filters \mathcal{M} are those for which $\mathcal{M}(\bar{\alpha}) \geq \alpha$ holds for all $\alpha \in L$. All these special types of fuzzy filters define basic triples. For more details on these fuzzy filters we refer to [9].

2. Φ-convergence structures

Let $\Phi = (\varphi, \leq, \eta)$ be a basic triple. A Φ -convergence structure on a set X is a subset T of $\varphi X \times X$ such that, writing $\mathcal{M} \to x$ instead of (\mathcal{M}, x)

 $\in T$, we have: (1) $\eta_X(x) \to x$ for all $x \in X$, (2) $\mathcal{M} \to x$ and $\mathcal{N} \subseteq \mathcal{M}$ imply $\mathcal{N} \to x$, and (3) $\mathcal{M} \to x$ implies $\mathcal{M} \vee \eta_X(x) \to x$.

For $\mathcal{M} \to x$ we say that \mathcal{M} converges to x. In the filter case a Φ -convergence structure is a convergence structure in sense of D. C. Kent, introduced first in [14].

A Φ -pretopology is a mapping $p: X \to \varphi X$ such that $\eta_X \leq p$ holds. Each Φ -pretopology p will be identified with the Φ -convergence structure $T = \{ (\mathcal{M}, x) \mid \mathcal{M} \leq p(x) \}$. In the fuzzy filter case the values of p are bounded fuzzy filters.

For each Φ -convergence structure T the mapping $p: X \to \varphi X$ with $p(x) = \bigvee_{\mathcal{M} \to x} \mathcal{M}$ for all $x \in X$ is the finest Φ -pretopology which is coarser than T, called the associated Φ -pretopology.

Clearly, a set X equipped with a Φ -convergence structure T on X is called a Φ -convergence space. Analogously Φ -pretopological spaces are defined.

A mapping $f:(X,T)\to (Y,T')$ between Φ -convergence spaces is said to be *continuous* provided $(\mathcal{M},x)\in T$ implies $(\varphi f(\mathcal{M}),f(x))\in T'$. A mapping $f:(X,p)\to (Y,p')$ between Φ -pretopological spaces is continuous if and only if $\varphi f\circ p\leq p'\circ f$ holds.

Let Φ CON denote the concrete category of Φ -convergence spaces with the continuous mappings between these spaces as morphisms. Φ CON and the concrete subcategory of all Φ -pretopologies are topological categories.

3. Φ-hull operators

Let $\Phi = (\varphi, \leq, \eta)$ be a basic triple. For each set X an acSLAT-morphism op : $(\varphi X, \leq) \to (\varphi X, \leq)$, for which op \circ op = op and $1_{\varphi X} \leq$ op holds, will be called a Φ -hull operator on X. In some sense Φ -hull operators are generalized monadic-free topologies.

According to the following proposition each Φ -hull operator on X can be identified with a subset \mathcal{O} of φX which fulfils the following condition:

(O) \mathcal{O} is closed with respect to all non-empty suprema and all infima, as far as these infima exist.

PROPOSITION 1. There is a one-to-one correspondence between the Φ -hull operators op on X and the subsets $\mathcal O$ of φX which fulfill condition (O). This correspondence can be realized by taking $\mathcal O = \{\mathcal M \in \varphi X \mid \mathsf{op}\mathcal M = \mathcal M\}$ on one hand and $\mathsf{op}\mathcal M = \bigwedge_{\mathcal M \subseteq \mathcal N \in \mathcal O} \mathcal N$ for all $\mathcal M \in \varphi X$ on the other hand.

A set X, equipped with a Φ -hull operator on X, will be called a Φ -hull space. A mapping $f:(X,\mathsf{op})\to (Y,\mathsf{op}')$ between Φ -hull spaces is said to be a Φ -hull morphism provided that $\varphi f\circ\mathsf{op}\leqq\mathsf{op}'\circ\varphi f$ holds.

PROPOSITION 2. Let $f:(X,op) \to (Y,op')$ be a mapping between Φ -hull spaces. Moreover, let $\mathcal O$ be the subset of φX defined by op as in Proposition 1 and let $\mathcal O'$ be the subset of φY defined analogously by op'. Then f is a Φ -hull morphism if and only if for each $\mathcal N \in \mathcal O'$, for which the preimage $\varphi^-f(\mathcal N)$ exists, we have $\varphi^-f(\mathcal N) \in \mathcal O$.

The concrete category ΦOP of Φ -hull spaces with the Φ -hull morphisms between these spaces as morphisms, is a topological category.

For each Φ -hull operator op on a set X the composition $p = op \circ \eta_X$ is a Φ -pretopology, called the *associated* Φ -pretopology of op. Convergence in a Φ -hull space (X, op) means the convergence with respect to the associated Φ -pretopology.

PROPOSITION 3. Each Φ -hull morphism $f:(X,op) \to (Y,op')$ is continuous as a mapping of (X,p) into (Y,p'), where p and p' are the associated Φ -pretopologies of op and op', respectively.

4. The notion of partially ordered monad

By means of partially ordered monads generalized topologies in a proper sense can be defined. By a partially ordered monad (cf. [4, 9]) we mean a quadrupel $(\varphi, \leq, \eta, \mu)$ such that (φ, \leq, η) is a basic triple and the following conditions are fulfilled:

- (D) $\mu = (\mu_X)_{X \in \text{ObSET}}$ is a natural transformation consisting of mappings $\mu_X : \varphi \varphi X \to \varphi X$ such that (φ, η, μ) is a monad over SET.
- (E) For all mappings $f, g: Y \to \varphi X$, $f \leq g$ implies $\mu_X \circ \varphi f \leq \mu_X \circ \varphi g$, where \leq is defined argumentwise with respect to the partial ordering of φX .
- (F) For each set X, $\mu_X: (\varphi \varphi X, \leq) \to (\varphi X, \leq)$ preserves non-empty suprema.

A non-extendable basic triple. For any cardinal n > 1 the triple $\Phi = (\mathsf{P}_0 \circ \mathsf{id}^n, \leq, \eta)$ cannot be extended to a partially ordered monad (cf. [2] for n = 2). Clearly, in all these cases of n there is no problem to work with Φ -convergence structures, Φ -pretopologies and Φ -hull operators.

5. Examples of partially ordered monads

The partially ordered proper powerset monad. For n=1 the triple $(P_0 \circ id^n, \leq, \eta)$, that is (P_0, \leq, η) , is extendable. The extension is unique, as is shown in [2]. As extension we obtain the partially ordered proper power-

set monad (P_0, \leq, η, μ) where for each set X and each $\mathcal{L} \in P_0P_0X$, $\mu_X(\mathcal{L}) = \bigcup_{A \in \mathcal{L}} A$.

In this case, topological interpretations in graph theory are of interest, noting that each (P_0, \leq, η) -pretopology p can be identified with the binary relation $R = \{(x, y) | y \in p(x)\}$.

The partially ordered filter monad. Many classical topological structures can be described by means of the partially ordered filter monad $(\mathsf{F}, \leq, \eta, \mu)$. (F, \leq, η) is the basic triple in the filter case and μ is the natural transformation consisting of all mappings $\mu_X : \mathsf{FF}X \to \mathsf{F}X$, where for each filter $\mathcal L$ on $\mathsf{F}X$, $\mu_X(\mathcal L) = \bigcup_{A \in \mathcal L} \bigcap_{M \in A} \mathcal M$.

The partially ordered fuzzy filter monad. The partially ordered fuzzy filter monad $(\mathcal{F}_L, \leq, \eta, \mu)$ with L a fixed non-degenerate frame is important in general fuzzy topology. $(\mathcal{F}_L, \leq, \eta)$ is the basic triple in the fuzzy filter case and μ is the natural transformation of $\mathcal{F}_L \circ \mathcal{F}_L$ to \mathcal{F}_L defined for each $\mathcal{L} \in \mathcal{F}_L \mathcal{F}_L X$ and $f \in L^X$ by $\mu_X(\mathcal{L})(f) = \mathcal{L}(e^f)$, where $e^f : \mathcal{F}_L X \to L$ is the mapping $\mathcal{M} \mapsto \mathcal{M}(f)$. For the homogeneous, the bounded and the stratified fuzzy filters analogously defined partially ordered submonads exist.

6. Monadic-free topological notions

A lot of topological notions in general topology depend only on a fixed basic triple $\Phi = (\varphi, \leq, \eta)$, that is, they do not depend on an extension of this triple to a partially ordered monad, which, as we already noticed, even may not exist.

Some examples of monadic-free topological notions related to a Φ -convergence space are the following:

- (1) Compactness of a φ -object \mathcal{M} . It means that for each $\mathcal{L} \subseteq \mathcal{M}$ there are $\mathcal{N} \subseteq L$ and x with $\mathcal{N} \to x$ and $\eta_X(x) \subseteq \mathcal{M}$. Compactness of a subset M means compactness of $\eta_X[M]$, and compactness of the space means compactness of the underlying set of this space.
- (2) Local compactness of a Φ -convergence space. It means that for any converging φ -object \mathcal{M} there exists a compact subset M of X with $\mathcal{M} \subseteq \eta_X[M]$.
- (3) Adherence point x of a φ -object \mathcal{M} : x is an element of X such that $\mathcal{M} \wedge \mathcal{N}$ exists for some $\mathcal{N} \to x$.
- (4) Projective closedness of a φ -object \mathcal{M} . It means that for each adherence point x of \mathcal{M} we have $\eta_X(x) \leq \mathcal{M}$.
- (5) The separation axioms T_0 , T_1 and T_2 . They mean that (a) $\eta_X(x) \to y$ and $\eta_X(y) \to x$ imply x = y, that (b) $\eta_X(x) \to y$ implies x = y, and that (c) $\mathcal{M} \to x$ and $\mathcal{M} \to y$ imply x = y, respectively.

On these notions a lot of results are given, for instance, a generalized Tychonoff Theorem (cf. e.g. [5, 7]). A further monadic-free topological notion is that of a Φ -Cauchy structure (cf. [1]).

7. The monadic notions of neighborhood and closure operators

Let $(\varphi, \leq, \eta, \mu)$ be a partially ordered monad and T a (φ, \leq, η) -convergence structure on a set X. As neighborhood operator of T ([4, 9]) we mean the composition $\mathsf{nb} = \mu_X \circ \varphi p$, where p is the associated (φ, \leq, η) -pretopology of T. $\mathsf{nb} : (\varphi X, \leq) \to (\varphi X, \leq)$ is an acSLAT-morphism and a hull operator. Since $\mathsf{nb} \circ \eta_X = p$ holds, there is a one-to-one correspondence between the neighborhood operators and the related (φ, \leq, η) -pretopologies.

Classical case: For each filter \mathcal{M} on a usual topological space, $\mathsf{nb}\mathcal{M}$ has the set of all open sets $M \in \mathcal{M}$ as a base.

A φ -object \mathcal{M} on X is called *open* provided that $\mathcal{M} = \mathsf{nb}\mathcal{M}$. Since nb is an acSLAT-morphism which is a hull-operator, the set \mathcal{O} of all open φ -objects fulfils the condition (O), introduced in Section 4. For the related Φ -hull operator op we have $\mathsf{nb} \leq \mathsf{op}$.

In the following let t_1 and t_2 denote the first and the second projections $(\mathcal{M}, x) \mapsto \mathcal{M}$ and $(\mathcal{M}, x) \mapsto x$ of T into φX and X, respectively.

PROPOSITION 4 [9]. The sup-inverse φ^-t_2 of φt_2 has φX as domain and $\mathsf{nb} = \mu_X \circ \varphi t_1 \circ \varphi^-t_2$.

By a similar procedure, a monadic notion of closure can be defined. We have that the sup-inverse of $\mu_X \circ \varphi t_1$, denoted in the following by $\varphi_{\mu}^- t_1$, has φX as domain. The composition $\operatorname{cl} = \varphi t_2 \circ \varphi_{\mu}^- t_1$ is called the *closure operator* of T [4].

PROPOSITION 5 (cf. [4, 9]). cl : $(\varphi X, \leq) \to (\varphi X, \leq)$ is an acSLAT-morphism and $1_{\varphi X} \leq$ cl holds.

Classical case: For each filter \mathcal{M} on a usual topological space, $cl\mathcal{M}$ is the filter which has the set of all closures of the sets $M \in \mathcal{M}$ as a base.

A φ -object \mathcal{M} is said to be *closed* provided that $\mathcal{M} = \mathsf{cl}\mathcal{M}$.

By means of the operators nb and cl the following monadic separation axioms can be introduced: (1) The separation axiom T_1^+ . It means that $\eta_X(x)$ is closed for all $x \in X$. (2) The regularity. It means that $\mathcal{M} \to x$ implies $cl \mathcal{M} \to x$. (3) The normality. It means that $cl(nb \mathcal{M}) \leq nb(cl \mathcal{M})$ holds for all $\mathcal{M} \in \varphi X$.

PROPOSITION 6 [9]. For topological spaces we have the following: Both axioms T_1^+ and T_1 coincide with the usual first separation axiom and separatedness, regularity and normality coincide with the corresponding classical notions.

In general, T_1^+ implies T_1 and for a (φ, \leq, η) -pretopological space regularity and T_1 imply T_2 and normality and T_1^+ imply regularity.

8. Monadic topologies

Let $\Phi = (\varphi, \leq, \eta, \mu)$ be a partially ordered monad. By a Φ -topology, also called a *monadic topology*, we mean a (φ, \leq, η) -pretopology p such that $\mu_X \circ \varphi p \circ p = p$. The property of p being a monadic topology can be written as $\mathsf{nb} \circ p = p$ and is equivalent to $\mathsf{nb} \circ \mathsf{nb} = \mathsf{nb}$ [4].

Monadic topologies can be characterized as follows.

PROPOSITION 7. A (φ, \leq, η) -hull operator op is, up to an identification, a monadic topology p if and only if it coincides with the neighborhood operator nb of p, that is, if and only if $\mathsf{nb}\mathcal{M} = \bigwedge_{\mathcal{N} \in \mathcal{O}, \mathcal{M} \leq \mathcal{N}} \mathcal{N}$ for all $\mathcal{M} \in \varphi X$,

where O is the subset of φX identified with op.

Thus, a monadic topology is on one hand a special (φ, \leq, η) -pretopology and on the other hand a special (φ, \leq, η) -hull operator. The following result says that the morphisms between monadic topological spaces have the analogous property.

PROPOSITION 8. A mapping $f:(X,p)\to (Y,p')$ between Φ -topological spaces is continuous if and only if $f:(X,\mathsf{nb})\to (Y,\mathsf{nb}')$ is a Φ -hull morphism.

9. Generalized uniform structures

Let $\Phi = (\varphi, \leq, \eta)$ be a basic triple and X a set. By π_{12} , π_{23} and π_{13} we mean the mappings of X^3 into X^2 which assign to each triple $(x, y, z) \in X^3$ the pair (x, y), (y, z) and (x, z), respectively.

PROPOSITION 9. Let \mathcal{U} and \mathcal{V} be φ -objects on X^2 and let x, y and z be elements of X such that $\eta_{X^2}(x,y) \leq \mathcal{U}$ and $\eta_{X^2}(y,z) \leq \mathcal{V}$ hold. Then the infimum $\varphi^-\pi_{12}(\mathcal{U}) \wedge \varphi^-\pi_{23}(\mathcal{V})$ exists. For $\mathcal{V} \circ \mathcal{U} = \varphi \pi_{13} \left(\varphi^-\pi_{12}(\mathcal{U}) \wedge \varphi^-\pi_{23}(\mathcal{V}) \right)$, called the relational product of \mathcal{U} and \mathcal{V} , we have $\eta_{X^2}(x,z) \leq \mathcal{V} \circ \mathcal{U}$.

For each φ -object \mathcal{U} on X^2 , $\mathcal{U}^{-1} = \varphi s(\mathcal{U})$ with $s: X^2 \to X^2$ the mapping $(x,y) \mapsto (y,x)$, is called the *inverse* of \mathcal{U} .

PROPOSITION 10. If \mathcal{U} and \mathcal{V} are φ -objects on X^2 and there are $x, y, z \in X$ such that $\eta_{X^2}(x, y) \leq \mathcal{U}$ and $\eta_{X^2}(y, z) \leq \mathcal{V}$ hold, then $(\mathcal{V} \circ \mathcal{U})^{-1} = \mathcal{U}^{-1} \circ \mathcal{V}^{-1}$.

Let Δ denote the diagonal $\{(x,x) | x \in X\}$ of X^2 .

PROPOSITION 11. For each stratified φ -object \mathcal{M} on X we have $\varphi d(\mathcal{M}) \leq \eta_{X^2}[\Delta] \wedge \varphi^- \pi_1(\mathcal{M})$, where π_1 is the first projection of X^2 and $d: X \to X^2$ is the mapping $x \mapsto (x, x)$.

By means of this proposition we obtain the following.

PROPOSITION 12. Let \mathcal{M} be a stratified φ -object on X and \mathcal{U} a φ -object on X^2 for which $\eta_{X^2}[\Delta] \leq \mathcal{U}$ holds. Then the infimum $\mathcal{U} \wedge \varphi^- \pi_1(\mathcal{M})$ exists, its image $\mathcal{U}[\mathcal{M}] = \varphi \pi_2 \big(\mathcal{U} \wedge \varphi^- \pi_1(\mathcal{M}) \big)$ is also stratified and we have $\mathcal{M} \leq \mathcal{U}[\mathcal{M}]$.

PROPOSITION 13. Let \mathcal{U} and \mathcal{V} be φ -objects on X^2 such that $\eta_{X^2}[\Delta] \leq \mathcal{U}$ and $\eta_{X^2}[\Delta] \leq \mathcal{V}$ hold. Moreover, let \mathcal{M} be a stratified φ -object on X. Then we have $\left[\mathcal{V}[\mathcal{U}[\mathcal{M}]] \leq (\mathcal{V} \circ \mathcal{U})[\mathcal{M}]\right]$.

In the fuzzy filter case, relational φ -objects, that is, φ -objects on squares X^2 of sets, were investigated in detail in the joint paper [10] with F. Bayoumi et al.

By a Φ -uniform structure on X we mean a φ -object \mathcal{U} on X^2 such that (1) $\eta_{X^2}[\Delta] \leq \mathcal{U}$, (2) $\mathcal{U}^{-1} = \mathcal{U}$, and (3) $\mathcal{U} \circ \mathcal{U} \leq \mathcal{U}$ hold.

In the following let a Φ -uniform structure \mathcal{U} on X be fixed. A stratified Φ -object \mathcal{M} on X is called *uniformly open* provided that $\mathcal{U}[\mathcal{M}] = \mathcal{M}$. For each stratified Φ -object \mathcal{M} , $\mathcal{U}[\mathcal{M}]$ is uniformly open.

We define a Φ -pretopology p on X by taking $p(x) = \mathcal{U}[\eta_X(x)]$ for all $x \in X$. The φ -objects p(x) are uniformly open. p is called the associated Φ -pretopology of \mathcal{U} .

Clearly, a set X equipped with a Φ -uniform structure on X is called a Φ -uniform space.

A mapping $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ between Φ -uniform spaces is called *uniformly continuous* provided that $\varphi(f\times f)(\mathcal{U}) \leq \mathcal{V}$ holds.

PROPOSITION 14. Each uniformly continuous mapping $f:(X,\mathcal{U}) \to (Y,\mathcal{V})$ between Φ -uniform spaces is continuous as a mapping between the associated Φ -pretopological spaces.

10. Monadic uniform structures and the associated monadic topologies

In the following let a partially ordered monad $(\varphi, \leq, \eta, \mu)$ be fixed and let $\Phi = (\varphi, \leq, \eta)$. Let \mathcal{U} be a Φ -uniform structure on a set X, p be the associated Φ -pretopology of \mathcal{U} and $\mathsf{nb} = \mu_X \circ \varphi p$. \mathcal{U} will be called a *monadic uniform* structure if for each stratified φ -object \mathcal{M} on X we have $\mathsf{nb}\mathcal{M} \leq \mathcal{U}[\mathcal{M}]$.

PROPOSITION 15. For each monadic uniform structure \mathcal{U} the associated Φ -pretopology p is a monadic topology (that is, $\mathsf{nb} \circ p = p$).

Fuzzy filter case: In this case monadic uniform structures were treated first in the joint paper [10] with F. Bayoumi et al.

11. Φ -uniform structures generated by D-metrics and Φ -zero approaches

Let $\mathbf{D} = (D, \leq, 0, +)$ be a partially ordered commutative monoid, that is, \mathbf{D} is a commutative monoid (D, 0, +) equipped with a partial ordering \leq such that 0 is the smallest element of D and for all $a, b, c, d \in D$ from $a \leq b$ and $c \leq d$ it follows $a + c \leq b + d$.

By a D-metric on a set X we mean a mapping $\rho: X^2 \to D$ such that for all $x, y, z \in X$ we have: (1) $\rho(x, y) = 0$ if and only if x = y, (2) $\rho(x, y) = \rho(y, x)$, and (3) $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$. This notion appeared already in Trillas [15].

Let $\Phi = (\varphi, \leq, \eta)$ be a basic triple. It is important to notice that for generating a Φ -uniform structure by using a \mathbf{D} -metric, an additional structure on \mathbf{D} is needed, called a Φ -zero approach on \mathbf{D} . By this we mean a φ -object \mathcal{E} on D such that the following conditions are fulfilled:

- (1) $\eta_D(0) \leq \mathcal{E}$.
- (2) For all mappings f, g, h of a set M into D, for which $h \leq f + g$ holds and there is an element e of M with f(e) = g(e) = h(e) = 0, we have $\varphi^- f(\mathcal{E}) \wedge \varphi^- g(\mathcal{E}) \leq \varphi^- (h)(\mathcal{E})$.

Clearly, the partial ordering and the addition appearing in the inequality $h \leq f + g$ are defined argumentwise by means of the partial ordering and the addition on D. Notice that the preimages and the infimum in (2) always exist.

In the following let a **D**-metric ρ on a set X and a Φ -zero approach $\mathcal E$ on **D** be fixed. Because of property (1) of $\mathcal E$ the preimage $\mathcal U = \varphi^- \rho(\mathcal E)$ exists. Applying property (2) of $\mathcal E$ on the triangle inequality of ρ , which can be written as $\rho \circ \pi_{13} \leq \rho \circ \pi_{12} + \rho \circ \pi_{23}$, shows that $\varphi^- \pi_{12}(\mathcal U) \wedge \varphi^- \pi_{23}(\mathcal U) \leq \varphi^- \pi_{13}(\mathcal U)$ holds. We even have the following.

PROPOSITION 16. \mathcal{U} is a Φ -uniform structure on X.

12. A standard example of a Φ -zero approach

Let L be a non-degenerate frame with smallest element 0 and largest element 1, and let $(K, \leq, 0_K, \oplus)$ be a partially ordered commutative monoid such that K (with respect to \leq) is a non-degenerate frame. The largest element of K will be denoted by 1_K .

We introduce a partially ordered commutative monoid $\mathbf{D} = (D, \leq, O, +)$ as follows:

D is the set of all isotone mappings $x:K\to L$ such that for each $\alpha\in L$ there exists the greatest element ξ of K with $x(\xi) \leq \alpha$ and we have $x(1_K) = 1$. For each $x\in D$, $x(0_K) = 0$ holds. Each $x\in D$ and its sup-inverse $x^-:L\to K$, given by $x^-(\alpha) = \bigvee_{x(\xi)\leq \alpha} \xi$ for all $\alpha\in L$, define a Galois-connection,

that is, for all $\xi \in K$ and $\alpha \in L$ we have $x(\xi) \leq \alpha \Leftrightarrow \xi \leq x^{-}(\alpha)$. Clearly, $x(\xi) = \bigwedge_{\xi \leq x^{-}(\alpha)} \alpha$ for all $\xi \leq K$.

The partial ordering on D is given by $x \leq y \Leftrightarrow x(\xi) \geq y(\xi)$ for all $\xi \in K$. Hence, $x \leq y$ holds if and only if we have $x^-(\alpha) \leq y^-(\alpha)$ for all $\alpha \in L$.

The addition on D is given by $(x+y)^-(\alpha)=x^-(\alpha)\oplus y^-(\alpha)$ for all $\alpha\in L$ and the zero-element O on D by $\mathrm{O}(\xi)=1$ for all $\xi>0_K$ and $\mathrm{O}(0_K)=0$ or equivalently by $\mathrm{O}^-(\alpha)=0_K$ for all $\alpha<1$ and $\mathrm{O}^-(1)=1_K$.

Let $\mathcal{E}:L^D\to L$ be the mapping defined by $\mathcal{E}(f)=\bigvee_{s^\varepsilon\wedge\bar{\alpha}\leqq f,\,\varepsilon>0_K} \alpha$ for

all $f \in L^D$, where for each $\varepsilon \in K$ with $\varepsilon > 0_K$, $s^{\varepsilon} : D \to L$ is the mapping $x \mapsto x(\varepsilon)$ and for each $\alpha \in L$, $\bar{\alpha} : D \to L$ is the constant mapping $x \mapsto \alpha$.

PROPOSITION 17. \mathcal{E} is an $(\mathcal{F}_L, \leq, \eta)$ -zero approach. Hence, for each **D**-metric ρ on a set X, $\mathcal{U} = \mathcal{F}_L^-\rho(\mathcal{E})$ is an $(\mathcal{F}_L, \leq, \eta)$ -uniform structure on X.

Proposition 17 remains true if we additionally assume the elements x of D to have the *finite property:* $\alpha < 1$ implies $x^{-}(\alpha) < 1_{K}$, or even to have the boundedness property: $\bigvee_{\alpha < 1} x^{-}(\alpha) < 1_{K}$ holds.

13. The real fuzzy case

Let L be a non-degenerate frame equipped with an order-reversing involution ' and let K be the closed interval $[0,\infty]$ equipped with the usual ordering and the usual addition of the non-negative real numbers extended by ∞ . We restrict D, defined as in the preceding section, to the mappings which additionally have the boundedness property. Instead of the mappings $x \in D$ we can take the mappings $x': K \to L, \xi \mapsto x(\xi)'$, which can be interpreted as the non-negative fuzzy numbers with value 1 at 0 ([3]). The addition on D is then given by the addition of the level sets. In our case, each D-metric ρ is, up to an identification, a fuzzy metric in sense of [3], the related $(\mathcal{F}_L, \leq, \eta)$ -zero approach appear already in [3]. The associated $(\mathcal{F}_L, \leq, \eta)$ -uniform structure is monadic, hence the associated $(\mathcal{F}_L, \leq, \eta)$ -pretopology is a monadic topology, called the canonic fuzzy topology of ρ ([3]). Using this fuzzy topology, in [8, 11] basic results on fuzzy analysis and on fuzzy calculus are given.

14. The probabilistic case

In the following let $L = [0, \infty]$ and let $(K, \leq, 0, \oplus)$ be a partially ordered commutative monoid with K = [0, 1] and \leq the usual ordering of [0, 1]. \oplus is called a triangle conorm [16]. By means of L and $(K, \leq, 0, \oplus)$ let $\mathbf{D} = (D, \leq, 0, +)$ be defined as in Section 12. Instead of each $x \in D$ we can take its sup-inverse x^- . The addition of these sup-inverses is the argumentwise defined addition with respect to \oplus . The \mathbf{D} -metrics are up to identifications the probabilistic metrics in sense of Schweitzer and Sklar [16]. Such identifications can be obtained by taking instead of each sup-inverse $x^-: L \to K$ the mapping $x^*: L \to K$, $\alpha \mapsto 1 - x^-(\alpha^{-1})$ and by changing from \oplus to the triangular norm \otimes given by $1 - (\xi \otimes \nu) = (1 - \xi) \oplus (1 - \nu)$.

The $(\mathcal{F}_L, \leq, \eta)$ -uniform structure defined as in Section 12 by a **D**-metric ρ from above can be considered as a *probabilistic uniform structure* with respect to ρ .

References

- P. Eklund and W. Gähler, Generalized Cauchy spaces, Math. Nachr., 147 (1990), 219-233.
- [2] P. Eklund and W. Gähler, Fuzzy filter functors and convergence, in: Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers (Dordrecht, 1992), pp. 109-136.
- [3] S. Gähler and W. Gähler, Fuzzy real numbers, Fuzzy Sets and Systems, 66 (1994), 137-158.
- [4] W. Gähler, Monadic topology a new concept of generalized topology, in: Recent Developments of General Topology and its Applications, International Conference in Memory of Felix Hausdorff (1868-1942), Math. Research 67, Akademie Verlag (Berlin, 1992), pp. 118-123.
- [5] W. Gähler, Convergence, Fuzzy Sets and Systems, 73 (1995), 97-129.
- [6] W. Gähler, The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and Systems, 76 (1995), 205-224.
- [7] W. Gähler, The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets and Systems, 76 (1995), 225-246.
- [8] W. Gähler, On fuzzy analysis and fuzzy calculus, J. Egypt. Math. Soc., 7 (1999), 1-16.
- W. Gähler, Monadic convergence structures, in: Seminarberichte aus dem Fachbereich Mathematik, Fernuniversität Hagen, 67 (1999), pp. 111-130.
- [10] W. Gähler, F. Bayoumi, A. Kandil and A. Nouh, The theory of global fuzzy neighbor-hood structures, Part III, Fuzzy uniform structures, Fuzzy Sets and Systems, 98 (1998), 175-199.
- [11] W. Gähler and S. Gähler, Contributions to fuzzy analysis, Fuzzy Sets and Systems, 105 (1999), 201-224.
- [12] U. Höhle, Locales and L-topologies, Mathematik-Arbeitspapiere 48. Univ. Bremen (1997), 223-250.
- [13] U. Höhle and A. Šostak, Axiomatics of fixed-basis fuzzy topologies, in: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publishers (Dordrecht, Boston, 1999), pp. 123-273.

- [14] D. C. Kent, On convergence groups and convergence uniformities, Fund. Math., 60 (1967), 213-222.
- [15] E. Trillas, Sobre distancias aleatorias, Actas R.A.M.E. (C.S.I.C), Santiago de Compostela (1967).
- [16] B. Schweitzer and A. Sklar, Probabilistic Metric Spaces, North Holland (1983).

(Received July 29, 1999; revised November 29, 1999)

SCHEIBENBERGSTR. 37 12685 BERLIN GERMANY