Solutions to Assignment 10

Given a sorted array and x, return i, such that $arr[i] \le x \le arr[i+1]$. If $x \le arr[0]$, return -1. If $x \ge arr[n-1]$, return n-1.

int binarySearch(int[] arr, x):
 n ← arr.length
 if x < arr [0] then return -1
 else if x >= arr [n-1] then return n-1
 else return binarySearch (arr, 0, n-1, x)

```
// Pre: arr[left] <= x < arr[right]
binarySearch ( arr, left, right, x ):
    n ← right – left + 1
    if n = 2 then
        return left
    else
        mid ← ( left+right ) / 2
        if x < arr [ mid ] then
            return binarySearch ( arr, left, mid, x)
        else /* arr[mid] <= x */
        return binarySearch ( arr, mid, right, x)</pre>
```

Solutions to Assignment 11

Prim's algorithm on the given example. Edges added to PQ in each step is shown in blue. Note that in some steps, a different edge with the same weight could have been removed from PQ and the path to the solution changes.

S	PQ
S = {7}	(7,6):3 (7,4):9 (7,5):3
Add (7,6) to mst: S={7,6}. wmst: 3	(7,4):9 (7,5):3 (6,3):4 (6,4):1
Add (6,4) to mst: S={7,6,4}. wmst: 4	(7,4):9 (7,5):3 (6,3):4 (4,3):2 (4,1):5 (4,2):4 (4,5):2
Add (4,3) to mst: S={7,6,4,3}. wmst: 6	(7,4):9 (7,5):3 (6,3):4 (4,1):5 (4,2):4 (4,5):2 (3,1):6
Add (4,5) to mst: S={7,6,4,3,5}. wmst: 8	(7,4):9 (7,5):3 (6,3):4 (4,1):5 (4,2):4 (3,1):6 (5,2):3
Discard (7,5), Add (5,2) to mst: S={7,6,4,3,5,2}. wmst: 11	(7,4):9 (6,3):4 (4,1):5 (4,2):4 (3,1):6 (2,1):4
Discard (6,3), (4,2), Add (2,1) to mst: S={7,6,4,3,5,2,1}. wmst: 15	(7,4):9 (4,1):5 (3,1):6
Discard (4,1), (3,1), (7,4).	q is empty - done

Kruskal's algorithm on the given example: After makeSet: 6) parent rank find(4)=4, find(6)=6, add (4,6) to mst, wmst: 1, union(4,6): parent rank find(3)=3, find(4)=4, add (3,4) to mst, wmst: 3, union(3,4): parent rank (1)find(4)=4, find(5)=5, add (4,5) to mst, wmst: 5, union(4,5): parent rank find(5)=4, find(2)=2, add (5,2) to mst, wmst: 8, union(4,2): parent rank find(6)=4, find(7)=7, add (6,7) to mst, wmst: 11, union(4,7): parent rank find(5)=4, find(7)=4, discard (5,7). find(1)=1, find(2)=4,add (1,2) to mst, wmst: 15, union(1,4): parent rank

Remaining edges are discarded.

MST