fdasrsf Documentation

Release 2.4.1

J. Derek Tucker

CONTENTS

1	User Guide	3			
	1.1 Elastic Functional Alignment	3			
	1.2 Elastic Functional Principal Component Analysis	7			
	1.2.2 Horizontal fPCA	8			
	1.2.3 Joint fPCA	8			
	1.3 Elastic Curve Alignment	10			
	1.3.1 Shape PCA	12			
2	Functional Alignment 1				
3	Functional Principal Component Analysis				
4	4 Elastic Functional Boxplots				
5	5 Functional Principal Least Squares				
6	6 Elastic Regression				
7	7 Elastic Principal Component Regression				
8	B Elastic GLM Regression				
9	Elastic Functional Tolerance Bounds				
10	10 Elastic Functional Clustering				
11	11 Elastic Image Warping				
12	12 Curve Registration				
13	13 SRVF Geodesic Computation				
14	Utility Functions	39			
15	Curve Functions	41			
16	UMAP EFDA Metrics	43			
17	References	45			
18	Indices and tables	47			

A python package for functional data analysis using the square root slope framework and curves using the square root velocity framework which performs pair-wise and group-wise alignment as well as modeling using functional component analysis and regression.

CONTENTS 1

2 CONTENTS

ONE

USER GUIDE

Contents:

1.1 Elastic Functional Alignment

Otherwise known as time warping in the literature is at the center of elastic functional data analysis. Here our goal is to separate out the horizontal and vertical variability of the functional data

```
[1]: import fdasrsf as fs import numpy as np
```

Load in our example data

```
[2]: data = np.load('../../bin/simu_data.npz')
  time = data['arr_1']
  f = data['arr_0']
```

We will then construct the fdawarp object

```
[3]: obj = fs.fdawarp(f,time)
```

Next we will align the functions using the elastic framework

```
[4]: obj.srsf_align(parallel=True)

Initializing...
Compute Karcher Mean of 21 function in SRSF space...
updating step: r=1
updating step: r=2
```

Display plots demonstrating the alignment

1.2 Elastic Functional Principal Component Analysis

After we have aligned our data we can compute functional principal component analysis (fPCA) on the aligned data, warping functions, and jointly

```
[1]: import fdasrsf as fs import numpy as np
```

We will load in our example data again and compute the alignment

```
[2]: data = np.load('../../bin/simu_data.npz')
   time = data['arr_1']
   f = data['arr_0']
   obj = fs.fdawarp(f,time)
   obj.srsf_align(parallel=True)

Initializing...
Compute Karcher Mean of 21 function in SRSF space...
   updating step: r=1
   updating step: r=2
```

1.2.1 Vertical fPCA

We will first compute fPCA on the aligned functions, by constructing the object and computing the PCA for the number of components, default=3)

[3]: vpca = fs.fdavpca(obj)
vpca.calc_fpca(no=3)

We then can plot the principal directions

1.2.2 Horizontal fPCA

We can then compute PCA on the set of warping functions

[5]: hpca = fs.fdahpca(obj)
hpca.calc_fpca(no=3)

We then can plot the principal directions

1.2.3 Joint fPCA

We can also compute the fPCA on jointly on the phase/amplitude space if we feel there is correlation between the variabilities

[7]: jpca = fs.fdajpca(obj)
 jpca.calc_fpca(no=3)

We then can plot the principal directions

[8]: jpca.plot()

1.3 Elastic Curve Alignment

Otherwise known as time warping in the literature is at the center of elastic functional data analysis. Here our goal is to separate out the horizontal and vertical variability of the open/closed curves

```
[1]: import fdasrsf as fs import numpy as np
```

Load in our example data

```
[2]: data = np.load('../../bin/MPEG7.npz',allow_pickle=True)
   Xdata = data['Xdata']
   curve = Xdata[0,1]
   n,M = curve.shape
   K = Xdata.shape[1]

beta = np.zeros((n,M,K))
   for i in range(0,K):
        beta[:,:,i] = Xdata[0,i]
```

We will then construct the fdacurve object

```
[3]: obj = fs.fdacurve(beta, N=M)
```

We then will compute karcher mean of the curves

```
[4]: obj.karcher_mean()

Computing Karcher Mean of 20 curves in SRVF space..

updating step: 1
```

updating step: 2 updating step: 3 updating step: 4 updating step: 5 updating step: 6 updating step: 7

We then can align the curves to the karcher mean

[5]: obj.srvf_align(rotation=False)

Plot the results

10

[6]: obj.plot()

1.3.1 Shape PCA

We then can compute the Karcher covariance and compute the shape pca

[7]: obj.karcher_cov() obj.shape_pca()

Plot the principal directions

TWO

FUNCTIONAL ALIGNMENT

THREE

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

FOUR

ELASTIC FUNCTIONAL BOXPLOTS

FIVE

FUNCTIONAL PRINCIPAL LEAST SQUARES

SIX

ELASTIC REGRESSION

SEVEN

ELASTIC PRINCIPAL COMPONENT REGRESSION

EIGHT

ELASTIC GLM REGRESSION

NINE

ELASTIC FUNCTIONAL TOLERANCE BOUNDS

TEN

ELASTIC FUNCTIONAL CLUSTERING

ELEVEN

ELASTIC IMAGE WARPING

TWELVE

CURVE REGISTRATION

THIRTEEN

SRVF GEODESIC COMPUTATION

FOURTEEN

UTILITY FUNCTIONS

FIFTEEN

CURVE FUNCTIONS

CHAPTER	
SIXTEEN	

UMAP EFDA METRICS

SEVENTEEN

REFERENCES

Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2 [math.ST].

Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

- J. D. Tucker, W. Wu, and A. Srivastava, "Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric," Electronic Journal of Statistics, Vol 8, no. 2. pp 1724-1733, 2014.
- J. D. Tucker, W. Wu, and A. Srivastava, "Analysis of signals under compositional noise With applications to SONAR data," IEEE Journal of Oceanic Engineering, Vol 29, no. 2. pp 318-330, Apr 2014.

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS), 2011.

Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. "Riemannian Optimization for Elastic Shape Analysis", Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475.

W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization of variability in functional data, Journal of American Statistical Association 112 (2017), pp. 979-993.

Lu, Y., R. Herbei, and S. Kurtek, 2017: Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, no. 4, 894–904.

Lee, S. and S. Jung, 2017: Combined analysis of amplitude and phase variations in functional data. arXiv:1603.01775 [stat.ME], 1–21.

- J. D. Tucker, J. R. Lewis, and A. Srivastava, "Elastic Functional Principal Component Regression," Statistical Analysis and Data Mining, vol. 12, no. 2, pp. 101-115, 2019.
- J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, "A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data," Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.

- T. Harris, J. D. Tucker, B. Li, and L. Shand, "Elastic depths for detecting shape anomalies in functional data," Technometrics, 10.1080/00401706.2020.1811156, 2020.
- M. K. Ahn, J. D. Tucker, W. Wu, and A. Srivastava. "Regression Models Using Shapes of Functions as Predictors" Computational Statistics and Data Analysis, 10.1016/j.csda.2020.107017, 2020.
- J. D. Tucker, L. Shand, and K. Chowdhary. "Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo", Computational Statistics and Data Analysis, accepted, 2021.
- X. Zhang, S. Kurtek, O. Chkrebtii, and J. D. Tucker, "Elastic k-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics", arXiv:2011.12397 [stat.ME], 2020.
 - Q. Xie, S. Kurtek, E. Klassen, G. E. Christensen and A. Srivastava. Metric-based pairwise and multiple image registration. IEEE European Conference on Computer Vision (ECCV), September, 2014

EIGHTEEN

INDICES AND TABLES

- genindex
- modindex
- search