Barème sur 15 points

Durée: 1 heure 45 minutes

Contrôle de géométrie analytique $N^{\circ}2$

NOM:	Groupe
PRENOM:	- Groupe

- 1. Dans l'espace muni d'un repère orthonormé direct, on donne
 - les points A(5; 8; 3) et B(1; 0; -5),
 - la droite g passant par le point G(3; -3; 3) et dirigée par le vecteur
 - le plan α d'équation 2x 2y + z 15 = 0.
 - a) Déterminer l'équation cartésienne de γ , plan médiateur du segment AB.
 - b) Déterminer les équations paramétriques de la droite d'intersection des plans α et γ .
 - c) Déterminer les coordonnées du point C sachant que
 - ABC est un triangle isocèle de base AB,
 - le point C appartient au plan α ,
 - le côté AC est parallèle au premier plan projetant de la droite g.

6 pts

- 2. Dans l'espace muni d'une origine O, on donne
 - un plan α défini par un point A et une droite d passant par O et de direction d,
 - un point M $(M \notin \alpha)$.
 - a) On note K la projection orthogonale de M sur le plan α et L la projection orthogonale de M sur la droite d.

Déterminer, en fonction de \overrightarrow{OA} , \overrightarrow{OM} et \overrightarrow{d} , les vecteurs \overrightarrow{OK} et \overrightarrow{OL} .

b) On pose
$$A(-1; 0; 1)$$
, $M(4; -7; 0)$ et $\vec{d} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
Déterminer les coordonnées du point K défini sous a).

3 pts

- 3. Dans le plan muni d'une origine O, on donne
 - une droite d passant par O et dirigée par le vecteur \vec{u} unitaire ($\|\vec{u}\| = 1$),
 - un point $B \notin d$ et $\overrightarrow{OB} \cdot \overrightarrow{u} \neq 0$.

A l'aide du calcul vectoriel uniquement

- a) déterminer, en fonction de \vec{u} et $\overrightarrow{OB} = \vec{b}$, le vecteur \overrightarrow{OC} où le point C est le symétrique de B par rapport à d.
- b) On considère le quadrilatère OABC tel que le côté AB est parallèle à la droite d et ses diagonales sont perpendiculaires. Déterminer le vecteur \overrightarrow{OA} en fonction de \overrightarrow{u} et \overrightarrow{b} .

On pose $\|\vec{b}\| = b$ et on note φ l'angle entre les vecteurs \vec{u} et \vec{b} .

Déterminer la norme du vecteur \overrightarrow{AB} en fonction de b et φ .

6 pts