

차원배열

Chap01. 2차원배열

Chap01. 2차원배열

2차원 배열

- 1차원 배열 안에 다른 배열을 넣은 것, 바둑판이나 아파트 같은 저장공간이 생긴다고 생각하면 됨.
- ☞ 배열은 저장된 값마다 인덱스 번호 두 개로 설정되고 앞 번호는 행, 뒷 번호는 열이다.([0][0])

2차원 배열의 선언과 할당


```
자료형[][] 변수이름;
자료형 변수이름 [][];
자료형[][] 변수이름 = new 자료형[행크기][열크기];
예) int arr[][];
int[][] arr = new int[2][3];
```

2차원 배열의 값 기록1

- 인덱스를 이용한 값 기록

- 중복 for문을 이용 int[][] arr = new int[4][4]; int k = 0;for(int i = 0; i < arr.length; i++){ for(int j = 0; j < arr[i].length; j++){ arr[i][j] = k;k++;

2차원 배열 호출

배열에 저장된 값을 호출하려면 1차원 배열과 같은 방식 으로 인덱스를 이용

arr[인덱스번호][인덱스번호]

/	\
행	\

		열	
	[0][0]	[0][1]	[0][2]
	101	102	103
륭0	[1][0]	[1][1]	[1][2]
	106	105	- 104
	[2][0]	[2][1]	[2][2]
	107	108	109

arr[1][2]; 104 출력

2차원 배열 구조

int [][] arr=new int[2][4];

2차원 배열 초기화

- 선언과 동시에 사용자 초기화

1) 행의 길이가 15, 열의 길이가 11인 2차원 배열을 선언하세요. 1부터 165까지 인덱스 순서대로 값을 초기화하고, 그 값을 출력하는 코드를 작성하시오.

이차원배열의 크기를 1~10까지 입력 받아 랜덤으로 알파벳 소문자 넣기, 단, 범위를 벗어나면 "반드시 1~10 사이의 정수를 입력해야 합니다." 출력 후 정수를 다시 입력 받도록 작성하시오.

- 2차원배열을 만들어 각 자리에 랜덤값을 넣으면 됨.
 - * char형은 숫자를 더해서 문자를 표현할 수 있음 char형 97는 'a'이고 1을 더하면 'b'된다.

힌트: 난수 구하는 방법

- Math.random()을 이용한 방법
 (int)((Math.random * 최대값) 최소값)
- 2. Random클래스 이용 new Random.nextInt(개수)+시작값

```
가로행의 개수를 입력하세요(1~10) ==> 10
세로열의 개수를 입력하세요(1~10) ==> 10
m v z m y c a b o v
q z c f g m v x r x
r n l b c u e x w h
g v v g u t c l t r
v q i q g k i l a v
a o c k g q w d m i
y p j o d w w v q j
q s o j y k e a t h
c h q b e i n x q e
b j c w o o h t s v
```


1차원 배열에 12명의 학생들을 출석부 순으로 초기화 하고, 2열3행의 2차원배열 2개를 이용해서 분단으로 지정하세요. 1분단 왼쪽부터 오른쪽, 1행에서 아래 행으로 순으로 자리를 배치하는 프로그램을 작성하세요.

출석부

- 1. 홍길동 7. 장보고
- 2. 이순신 8. 이태백
- 3. 유관순 9. 김정희
- 4. 윤봉길 10. 대조영
- 5. 장영실 11. 김유신
- 6. 임꺽정 12. 이사부

실행결과

=== 1분단 ===

홍길동 이순신 유관순 윤봉길 장영실 임꺽정

=== 2분단 ===

장보고 이태백 김정희 대조영 김유신 이사부

3번 문제 자리배치 후 학생이름을 입력 받고, 몇 분단 몇 번째 중 오른쪽/왼쪽 자리인지 검색할 수 있는 프로그램을 작성하세요.

실행결과

```
=== 1분단 ===
```

홍길동 이순신

유관순 윤봉길

장영실 임꺽정

=== 2분단 ===

장보고 이태백

김정희 대조영

김유신 이사부

검색할 학생 이름을 입력하세요 : 장보고

검색하신 장보고 학생은 2분단 첫 번째 줄 왼쪽에 있습니다.

또는 검색한 학생이 없습니다.

성적표 출력하는 프로그램 만들기

 2차원 배열을 만들어 점수를 초기화 한 후 개인별 변수를 만들어 총합계, 합계, 평균을 계산하여 출력 것.

========= A반 성적표 =========						
이름	국어	영어	수학	합계	평균	
=====	=====	======	======	======	======	=
홍길동	80	90	77	247	82.3	
이순신	78	97	86	261	87.0	
유관순	71	68	88	227	5.7	
합계	247	261	227	735	81.7	

가변배열의 선언과 할당

2차원배열선언시 마지막 열크기를 지정하지 않고, 추후에 각기 다른 길이의 배열을 생성함으로써, 고정된 형태가 아닌 보다 유동적인 가변 배열을 구성할 수 있다.

자료형[][] 변수이름 = new 자료형[행크기][];

```
에) int[][] arr = new int[3][];
arr[0] = new int[3];
arr[1] = new int[2];
arr[2] = new int[5];
```

가변 배열 구조


```
int [][] arr=new int[2][4];
arr[0] = new int[3];
arr[1] = new int[2];
arr[2] = new int[5];
```


가변배열예제


```
Scanner sc = new Scanner(System.in);
         String[][] adjArr = new String[3][];
         adjArr[0] = new String[3];
         adiArr[1] = new String[2];
 5
         adjArr[2] = new String[4];
 6
         System.out.println("포유류 3가지를 입력하세요.");
 8
         adjArr[0][0] = sc.nextLine();
 9
         adiArr[0][1] = sc.nextLine();
         adiArr[0][2] = sc.nextLine();
10
         System.out.println("조류 2가지를 입력하세요.");
11
12
         adiArr[1][0] = sc.nextLine();
13
         adjArr[1][1] = sc.nextLine();
         System.out.println("어류 4가지를 입력하세요.");
14
                                                       실행결과
15
         adjArr[2][0] = sc.nextLine();
16
         adjArr[2][1] = sc.nextLine();
                                                     adjArr[0]=[개, 소, 말]
17
         adjArr[2][2] = sc.nextLine();
                                                     adjArr[1]=[닭, 참새]
         adiArr[2][3] = sc.nextLine();
18
                                                     adjArr[2]=[광어, 쏘가리, 연어, 병어]
19
20
         for (int i = 0; i < adjArr.length; i++) {
21
         System.out.print("adjArr["+i+"]=[");
22
            for (int j = 0; j < adjArr[i].length; j++) {
23
               System.out.print(adjArr[i][i]);
               if(j!=adjArr[i].length-1) System.out.print(", ");
24
25
26
            System.out.print("]\foralln");
27
```


사용자로부터 하루식단을 문자열로 입력받아서 크기가 3인 가변배열에 아침,점심,저녁으로 나누 대입하세요. 각 식단별 음식의 개수는 제한이 없지만, 입력하는 음식 사이에 공백을 구분자로 둡니다.

문자열을 특정구분자를 사용해 쪼개고(split) 이를 다시 문자열배열로 저장하는 메소드를 찾아서 사용하시오.

사용자로 부터 좋아하는 색깔 n개를 입력받습니다. 각 색깔별 실제하는 사물 m개를 입력받을 수 있도록 코드화 합니다.(가변 2차원배열사용)

그후에 사용자가 색깔을 선택하면, 해당사물을 출력하는 메소드를 정의하고 출력하세요.

```
좋아하는 색깔을 입력하세요.(단어사이는 공백으로 구분) => 노랑색 검정색 하늘색
노랑색 사물을 나열해보세요.(단어사이는 공백으로 구분) => 바나나 병아리
검정색 사물을 나열해보세요.(단어사이는 공백으로 구분) => 밤하늘 구두 지하실
하늘색 사물을 나열해보세요.(단어사이는 공백으로 구분) => 하늘 바다
```

당신이 좋아하는 색깔을 선택하세요. 1. 노랑색 2. 검정색 3. 하늘색

=> 1 바나나 병아리 당신이 좋아하는 색깔을 선택하세요. 1. 노랑색 2. 검정색 3. 하늘색 => 2 밤하늘 구두 지하실 당신이 좋아하는 색깔을 선택하세요. 1. 노랑색 2. 검정색 3. 하늘색 => 3

하늘 바다

가변인자를 받는 메소드

메소드 호출시 하나의 데이터타입인자를 개수의 제한없이 받을 수 있다. 순서상 반드시 마지막인자로 주어져야 한다.

예) public static void methodName(String... s){}
public static void methodName(String s, int[]... i) {}

가변인자 예제


```
public class VariableArgTest {
    public static void main(String[] args) {
        printVarArg("hello","world","1","2", "3");
        printVarArg("hello","world");
    }

public static void printVarArg(String...s){
    for (int i = 0; i < s.length; i++) {
        System.out.print(s[i] +" ");
    }
}</pre>
```

실행결과

hello world 1 2 3 hello world

프로그램실행시 사용자에게 매개변수 받기**1**

프로그램 실행하는 시점에 사용자에게 입력값을 받을 수 있다. 공백을 사이에 두고, 문자열을 n개 입력(갯수제한없음) 받으면, main메소드의 인자로 전달된다.

예) public static void main(String[] args) {}

프로그램실행시 사용자에게 매개변수 받기2

팝업창을 통해 사용자에게 입력값을 받아보자.

예) public static void main(String[] args) {}

Run Configuration -Arguments - Variables string_prompt선택

종합실습예제 1

클래스 생성: kh.java.dimentional.array.test.Sample.java

메소드명: public void exercise1()

- 1. 4행4열 2차원배열 선언 및 생성
- 2. 0행0열부터 2행2열까지 1부터 100사이의 임의의 정수값 기록해 넣음
- 3. 아래의 내용처럼 처리함

	0열	1열	2열	3열
0행	값	값	값	0행 값들의 합계
1행	값	값	값	1행 값들의 합계
2행	값	값	값	2행 값들의 합계

3행 0열합계1열합계2열합계가로+세로합계

종합실습예제 2

클래스: kh.java.dimentional.array.test.Sample.java

메소드명: public void exercise2()

- 1. 3행짜리 2차원배열 선언 및 생성
- 2. 각 행별 열갯수는 키보드로 입력받아 생성함
- 3. 1~100사이의 임의의 정수를 모든 방에 기록함
- 4. 각 행별 열의 합계가 5의 배수인 행열만 출력함. 없다면, "열의합계가 5의 배수인 행이 없습니다." 출력

종합실습예제 3

클래스: kh.java.multi.dimentional.array.TestCommandLine.java 메소드명: public void information()

- 1. 실행시 신상정보를 커맨드라인(사용자입력프롬프트)으로 입력하게 함
- 2. main() 이 전달받아, 각 자료형 변수에 기록함
- 3. 출력확인

<입력예>

홍길동 M 25 185.5 78.5

<출력예>

이름:홍길동 //String

성별: M //char

나이: 25 //int

키: 185.5 //double

몸무게: 78.5 //double