CS243: Introduction to Algorithmic Game Theory

Week 3.1, VCG (Dengji ZHAO)

SIST, ShanghaiTech University, China

Recap: Game Theory

Recap: The General Setting of Mechanism Design

- A set of n participants/players, denoted by N.
- A mechanism needs to choose some alternative from A
 (allocation space), and to decide a payment for each
 player.
- Each player i ∈ N has a private valuation function
 v_i : A → ℝ, let V_i denote all possible valuation functions for i.
- Let $v = (v_1, \dots, v_n), v_{-i} = (v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n).$
- Let $V = V_1 \times \cdots \times V_n$, $V_{-i} = V_1 \times \cdots V_{i-1} \times V_{i+1} \times \cdots \times V_n$.

Recap: A Definition of a Mechanism (with Money)

Definition

A (direct revelation) mechanism is a social choice function $f: V_1 \times \cdots \times V_n \to A$ and a vector of payment functions p_1, \ldots, p_n , where $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$ is the amount that player i pays.

• direct revelation: the mechanism requires each player to report her valuation function to the mechanism.

Definition

Given a mechanism (f, p_1, \ldots, p_n) , and players' valuation report profile $v' = (v'_1, \cdots, v'_i, v'_n)$, player i's utility is defined by $v_i(f(v')) - p_i(v')$, where v_i is i's true valuation function.

Recap: Properties of a Mechanism

- Truthfulness A mechanism $(f, p1, ..., p_n)$ is called truthful (incentive compatible) if for every player i, every $v_1 \in V_1, ..., v_n \in V_n$ and every $v_i' \in V_i$, if we denote $a = f(v_i, v_{-i})$ and $a' = f(v_i', v_{-i})$, then $v_i(a) p_i(v_i, v_{-i}) \ge v_i(a') p_i(v_i', v_{-i})$.
 - Efficiency We say a social choice function f is efficient if it maximises social welfare for all valuation reports. That is, for all $v \in V$, $f \in \arg\max_{f' \in F} \sum_{i \in N} v_i(f'(v))$ where F is the set of all feasible social choice functions.
- Individual Rationality We say a mechanism $(f, p_1, ..., p_n)$ is individually rational if for every player i, every $v \in V$, we have $u_i(f, p_1, ..., p_n, v, v_i) \geq 0$.

Vickrey-Clarke-Groves Mechanisms

Definition 9.16 A mechanism $(f, p_1, ..., p_n)$ is called a Vickrey–Clarke–Groves (VCG) mechanism if

- $f(v_1, \ldots, v_n) \in \operatorname{argmax}_{a \in A} \sum_i v_i(a)$; that is, f maximizes the social welfare, and
- for some functions h_1, \ldots, h_n , where $h_i: V_{-i} \to \Re$ (i.e., h_i does not depend on v_i), we have that for all $v_1 \in V_1, \ldots, v_n \in V_n$: $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$. $\downarrow l_i \left(f(l_i, \ldots, l_n) \right) = \sum_{i \neq i} l_i \left(l_i \right)$

Vickrey-Clarke-Groves Mechanisms

Definition 9.16 A mechanism $(f, p_1, ..., p_n)$ is called a Vickrey-Clarke-Groves (VCG) mechanism if

- $f(v_1, \ldots, v_n) \in \operatorname{argmax}_{a \in A} \sum_i v_i(a)$; that is, f maximizes the social welfare, and
- for some functions h_1, \ldots, h_n , where $h_i: V_{-i} \to \Re$ (i.e., h_i does not depend on v_i), we have that for all $v_1 \in V_1, \ldots, v_n \in V_n$: $p_i(v_1, \ldots, v_n) = h_i$

- $h_{-i}(v_{-i}) = \sum_{j \in N \setminus \{i\}} v_j(f(v_{-i}))$, the maximum social welfare without i's participation.

Examples of Applying VCG

A seller sells *m* (heterogeneous) items:

- A set of *m* items to be allocated (denoted by *M*)
- A set of n players (denoted by N)
- Each player *i* has a valuation function $v_i : 2^M \to \mathbb{R}$

Question

What is size of the allocation space?

Properties of VCG

Is VCG truthful, efficient and individually rational?

How to verify a mechanism is truthful or not?

Theorem

A mechanism is truthful if and only if it satisfies the following conditions for every i and every v_{-i} :

- **1** The payment p_i does not depend on v_i , but only on the alternative chosen $f(v_i, v_{-i})$. That is, for every v_{-i} , there exist prices $p_a \in \mathbb{R}$, for every $a \in A$, such that for all v_i with $f(v_i, v_{-i}) = a$ we have that $p(v_i, v_{-i}) = p_a$.
- **The mechanism optimizes for each player.** That is, for every v_i , we have that $f(v_i, v_{-i}) \in \arg\max_a(v_i(a) p_a)$, where the quantification is over all alternatives in the range of $f(\cdot, v_{-i})$.

However exist
$$U_{i}$$
 $f(U_{i}, U_{-i}) = \alpha', \underline{M_{i}} > \underline{M_{i}}$
 $l_{i} = U_{i}(\alpha \star) - (h_{i}U_{-i}) - \sum_{j \neq i} U_{j}(\alpha \star)) = \sum_{i} U_{i}(\alpha \star)$
 $l_{i} = U_{i}(\alpha') - (h_{i}U_{-i}) - \sum_{j \neq i} U_{j}(\alpha')) = \sum_{i} U_{i}(\alpha')$
 $f(U) \in \text{argmax} \quad \text{Soliton}$
 $\alpha \star \Rightarrow \sum_{i} U_{i}(\alpha \star) \Rightarrow \sum_{i} U_{i}(\alpha')$
 $\lambda_{i} = V_{i}(\alpha \star) - (h_{i}(U_{-i}) - \sum_{j \neq i} V_{j}(\alpha \star))$
 $\lambda_{i} = V_{i}(\alpha \star) - (h_{i}(U_{-i}) - \sum_{j \neq i} V_{j}(\alpha \star))$
 $\lambda_{i} = \sum_{i} U_{i}(\alpha \star) - h_{i}(U_{-i}) \Rightarrow 0$
 $\lambda_{i} = \sum_{i} U_{i}(\alpha \star) - \lambda_{i} = \sum_{i} U_{i}(\alpha \star)$
 $\lambda_{i} = \sum_{i} U_{i}(\alpha \star) - \lambda_{i} = \sum_{i} U_{i}(\alpha \star)$

Those 1 Phone 20 (100
$$h_1$$
)

 $V_1 = 200 \quad 1000 \quad 1000 \quad h_1$
 $V_2 = 2500 \quad 12500 \quad 500 \quad 12500 = 200$
 $V_3 = 100 \quad 500 \quad 550$
 $V_4 = 1000 \quad 1200 \quad 1200 \quad 1200 \quad 1200 \quad 1200$
 $V_{244} = 1000 \quad 1200 \quad 1200 \quad 1240 = 1000$

1+20

Advanced Reading

- Introduction to Mechanism Design [AGT Chapter 9]
- Vickrey-Clarke-Groves mechanisms [AGT Chapter 9.3]

Ut
$$\in$$
 [0,1] Uniform Random

Whist (ase: Rev = 0)

Rev = V_2 Rest Pase: Rev = 1

Arg. (ase: $\frac{1}{2}$?

P[V_2] / P[V_3] = 1 \times P[V_4] = 1-(1-x)?

P[V_2] / P[V_3] = 1 \times P[V_4] = 1-(1-x)?

P[V_2] / P[V_3] = (1-x)?

P[V_3] = (1-x)?

P[V_4] = V_4 = V_4

$$P = Q(P) = \frac{1}{2}$$

$$P = W(S)$$

$$V = V(S)$$

$$0.8 \Rightarrow 0.8 - \frac{1-0.16}{1.6} = 0.(7)$$

$$0.4 \Rightarrow P' = 0 \Rightarrow P = 6'(0)$$

$$0.7$$

$$0.7 + (U_i), f(U_i)$$

$$0.8 \Rightarrow P' = 0 \Rightarrow P = 6'(0)$$

$$0.7$$

$$0.7 + (U_i), f(U_i)$$

$$0.7 + (U_i) = 0$$

$$0.8 \Rightarrow P' = 0 \Rightarrow P = 6'(0)$$

$$0.7 + (U_i) = 0$$

