```
ObjectiveFunction = @simple_fitness;
nvars = 2;
             % Number of variables
LB = [0 \ 0]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple_constraint;
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ...
    ConstraintFunction)
options = optimoptions(@ga,'MutationFcn',@mutationadaptfeasible);
% Next we run the GA solver.
[x,fval] = qa(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ...
    ConstraintFunction,options)
options = optimoptions(options,'PlotFcn',{@gaplotbestf,@gaplotmaxconstr}, ...
    'Display','iter');
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ...
    ConstraintFunction, options)
Optimization terminated: average change in the fitness value less than
 options.FunctionTolerance
 and constraint violation is less than options. Constraint Tolerance.
x =
    0.8123
             12.3103
fval =
   1.3574e+04
Optimization terminated: average change in the fitness value less than
 options.FunctionTolerance
 and constraint violation is less than options. Constraint Tolerance.
x =
    0.8123 12.3103
fval =
   1.3574e+04
Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)
Options:
                   @gacreationuniform
CreationFcn:
```

CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

		Best	Max	Stall
Generation	Func-count	f(x)	Constraint	Generations
1	2524	13579.8	2.099e-07	0
2	4986	13578.2	1.74e-05	0
3	7965	14026.4	0	0
4	17430	13586.3	1.72e-09	0

Optimization terminated: average change in the fitness value less than options. Function Tolerance

and constraint violation is less than options. Constraint Tolerance.

x =

0.8123 12.3158

fval =

1.3586e+04

Published with MATLAB® R2021b