Programming Concepts

Comparing algorithms

Topics

Code reuse

Example problem:

Analyse two arrays to see which has the largest element

Code reuse

Example problem:

Analyse two arrays to see which has the largest element

Algorithmic solution:

- (1) find maximum in first array
- (2) find maximum in second array
- (3) compare the two maxima
- (4) output name of appropriate array

Pseudo-code

```
Input: Arrays A[1 \dots n], B[1 \dots m]
    Output: name of array with largest item
    PTR \leftarrow 1
2 AMAX \leftarrow A[PTR]
3 while PTR \neq n do
4 PTR \leftarrow PTR + 1
5 If A[PTR] > AMAX then AMAX \leftarrow A[PTR]
6 PTR \leftarrow 1
 7 BMAX \leftarrow B[PTR]
8 while PTR \neq m do
9 PTR \leftarrow PTR + 1
10 if B[PTR] > BMAX then BMAX \leftarrow B[PTR]
if AMAX > BMAX then return A else return B
```

4

Pseudo-code

Duplication of code in lines 1-5, and 6-10

```
Input: Arrays A[1 \dots n], B[1 \dots m]
    Output: name of array with largest item
1 PTR \leftarrow 1
2 AMAX \leftarrow A[PTR]
3 while PTR \neq n do
4 PTR \leftarrow PTR + 1
5 If A[PTR] > AMAX then AMAX \leftarrow A[PTR]
6 PTR \leftarrow 1
7 BMAX \leftarrow B[PTR]
8 while PTR \neq m do
9 PTR \leftarrow PTR + 1
10 If B[PTR] > BMAX then BMAX \leftarrow B[PTR]
```

1 if AMAX > BMAX then return A else return B

Pseudo-code with code reuse

Input: Arrays $A[1 \dots n]$, $B[1 \dots m]$

Output: name of array with largest item

 $AMAX \leftarrow Max(A,1,n)$

 $BMAX \leftarrow Max(B,1,m)$

if AMAX > BMAX then return A else return B

Pseudo-code with code reuse

Input: Arrays $A[1 \dots n]$, $B[1 \dots m]$

Output: name of array with largest item

 $AMAX \leftarrow Max(A,1,n)$

 $BMAX \leftarrow Max(B,1,m)$

if AMAX > BMAX then return A else return B

Max(A, s, f) means a call to a procedure

- named Max
- with input parameters A, s, f
- which calculates largest item in A between s and f

An example procedure

```
Procedure: Max(A, s, f)
Input: array A, indices s < f
Output: largest item in sub-array A[s \dots f]
PTR \leftarrow s
CURRENTMAX \leftarrow A[PTR]
while PTR \neq f do
   PTR \leftarrow PTR + 1
   if A[PTR] > CURRENTMAX then
    CURRENTMAX \leftarrow A[PTR]
return CURRENTMAX
```

Code re-use

In programming languages:

- procedures
- subroutines
- methods
- ...

Code re-use

In programming languages:

- procedures
- subroutines
- methods
- ...

Programming issues

- · How is input passed to procedures?
- · How are results returned from procedures?

Code re-use

In programming languages:

- procedures
- subroutines
- · methods
- ...

Programming issues

- · How is input passed to procedures?
- How are results returned from procedures?

See Dowek

How do we proceduralise an algorithm?

An example

An algorithm

```
Name: Sequential search
Input: Array A[1 \dots n], item M
Output: true, if M in A, false otherwise
FOUND \leftarrow false
PTR \leftarrow 1
while not FOUND and PTR \leq n do
    if A[PTR] = M then
     FOUND \leftarrow true
    PTR \leftarrow PTR + 1
return FOUND
```

Corresponding procedure

```
Procedure: seqSearch (A, s,f, M)
Input: array A, indices s,f, item M
Output: true if M in A[s...f], false otherwise
FOUND \leftarrow false
PTR \leftarrow S
while not FOUND and PTR \leq f do
   if A[PTR] = M then
    I FOUND ← true
   PTR \leftarrow PTR + 1
return FOUND
```

Corresponding procedure

```
Procedure: seqSearch (A, s,f, M)
Input: array A, indices s,f, item M
Output: true if M in A[s...f], false otherwise
FOUND \leftarrow false
PTR \leftarrow S
while not FOUND and PTR \leq f do
   if A[PTR] = M then
    FOUND \leftarrow true
   PTR \leftarrow PTR + 1
return FOUND
Call seqSearch(A, 1, n, M) to search entire array A[1 \dots n]
for M.
```

Putting procedures to work

Improving performance of searching

Searching sorted arrays

```
Procedure: | seqSearch (A, s,f, M) |
Input: sorted array A, indices s, f, item M
Output: true if M in A[s ... f], false otherwise
PTR \leftarrow S
while PTR \leq f and A[PTR] < M do
PTR \leftarrow PTR + 1
if PTR > f then
return false
else
  return (A[PTR] = M)
```

Improving performance of searching

Searching sorted arrays

```
Procedure: | seqSearch (A, s,f, M) |
Input: sorted array A, indices s, f, item M
Output: true if M in A[s...f], false otherwise
PTR \leftarrow S
while PTR \leq f and A[PTR] < M do
PTR \leftarrow PTR + 1
if PTR > f then
return false
else
   return (A[PTR] = M)
```

Scan through array only as far as expected slot for M

Improving performance of searching

Searching sorted arrays

```
Procedure: | seqSearch (A, s,f, M) |
Input: sorted array A, indices s, f, item M
Output: true if M in A[s...f], false otherwise
PTR \leftarrow S
while PTR \leq f and A[PTR] < M do
PTR \leftarrow PTR + 1
if PTR > f then
return false
else
   return (A[PTR] = M)
```

Scan through array only as far as expected slot for *M*May still have to search entire array

More efficient searching

Binary search of a sorted array $A[1 \dots n]$ for M:

- If array is empty, item is not found
- Calculate middle of list, m
- Compare M to A[m]
- · If equal, item is found
- If less, search sub-array A[1...(m-1)]
- If greater, search sub-array A[(m+1)...n]

More efficient searching

Binary search of a sorted array $A[1 \dots n]$ for M:

- If array is empty, item is not found
- Calculate middle of list, m
- Compare M to A[m]
- If equal, item is found
- If less, search sub-array A[1...(m-1)]
- If greater, search sub-array A[(m+1)...n]

Division:

Problem instance of size n

• decomposed in problem instance of size n/2

Alice

Bob

Carol

David

Elaine

Fred George

Harry

Irene

John

Kelly

Larry

Mary

Nancy

Ollie

Alice	Alice
Bob	Bob
Carol	Carol
David	David
Elaine	Elaine
Fred	Fred
George	George
Harry	Harry
Irene	Irene
John	John
Kelly	Kelly
Larry	Larry
Mary	Mary
Nancy	Nancy
Ollie	Ollie

A I! - -

Alice	Alice	
Bob	Bob	
Carol	Carol	
David	David	
Elaine	Elaine	
Fred	Fred	
George	George	
Harry	Harry	
Irene	Irene	Irene
John	John	John
Kelly	Kelly	Kelly
Larry	Larry	Larry
Mary	Mary	Mary
Nancy	Nancy	Nancy
Ollie	Ollie	Ollie

Alice	Alice		
Bob	Bob		
Carol	Carol		
David	David		
Elaine	Elaine		
Fred	Fred		
George	George		
Harry	Harry		
Irene	Irene	Irene	
John	John	John	
Kelly	Kelly	Kelly	
Larry	Larry	Larry	
Mary	Mary	Mary	Mary
Nancy	Nancy	Nancy	Nancy
Ollie	Ollie	Ollie	Ollie

More efficient searching

Binary search of a sorted array $A[1 \dots n]$ for M:

- If array is empty, item is not found
- Calculate middle of list, m
- Compare M to A[m]
- If equal, item is found
- If less, search sub-array A[1...(m-1)]
- If greater, search sub-array $A[(m+1) \dots n]$

More efficient searching

Binary search of a sorted array $A[1 \dots n]$ for M:

- If array is empty, item is not found
- Calculate middle of list, m
- Compare M to A[m]
- If equal, item is found
- If less, search sub-array $A[1 \dots (m-1)]$
- If greater, search sub-array A[(m+1)...n]

Can we write this in pseudocode?

Procedure: binarySearch(A, s,f, M)

Input: sorted array A, indices s, f, item M **Output**: true if M in $A[s \dots f]$, false otherwise

Binary search

```
Procedure: binarySearch(A, s,f, M)
Input: sorted array A, indices s, f, item M
Output: true if M in A[s \dots f], false otherwise
FOUND \leftarrow false
if s < f then
   m \leftarrow (s+f) \operatorname{div} 2 // \operatorname{middle} of array
   if A[m] = M then
    FOUND \leftarrow true
   else
       if M < A[m] then
        FOUND \leftarrow binarySearch (A,s,(m-1),M)
       else
            FOUND \leftarrow binarySearch (A,(m+1),f,M)
```

return FOUND

How much faster is binary search?

Remember:

Sequential search: worst case *n* steps

Binary search: halves every time

Chopping arrays in half:

How many times can you chop an array of size n in half?

Chopping arrays in half:

How many times can you chop an array of size n in half?

Size	log
15	4
100	7
1000	10
1 million	20
1 billion	30
a billion billion	60

Chopping arrays in half:

How many times can you chop an array of size n in half?

Size	log
15	4
100	7
1000	10
1 million	20
1 billion	30
a billion billion	60
sequential search	binary search

Chopping arrays in half:

How many times can you chop an array of size n in half?

Size	log
15	4
100	7
1000	10
1 million	20
1 billion	30
a billion billion	60
sequential search	binary search

A worst case analysis

Divide and Conquer

Algorithm design technique:

- Decompose problem instance into smaller subinstances
- Solve subinstances successively and independently
- Combine subsolutions to obtain solution to original problem instance

Divide and Conquer

Algorithm design technique:

- Decompose problem instance into smaller subinstances
- Solve subinstances successively and independently
- Combine subsolutions to obtain solution to original problem instance

Most successful:

when problem instance of size n is decomposed into subinstances of size n/2

Divide and conquer in action

Divide and conquer for sorting → binary search Divide and conquer for searching → merge sort

Divide and Conquer: Sorting

Mergesort:

Basic algorithm:

- Input array A to be sorted
- If size of A less than 2 it is sorted
- Otherwise
 - Divide A into two subarrays L and R
 - Sort L
 - Sort R
 - Merge sorted L and sorted R into a new, sorted array

Divide and Conquer: Sorting

Mergesort:

Basic algorithm:

- Input array A to be sorted
- If size of A less than 2 it is sorted
- Otherwise
 - Divide A into two subarrays L and R
 - Sort L
 - Sort R
 - Merge sorted L and sorted R into a new, sorted array

Based on fact that merging sorted arrays is a simple operation

3	7	10	14	17	
\uparrow					
5	6	12	15		_
\uparrow					_

3	7	10	14	17	
	\uparrow				
5	6	12	15		_
\uparrow					_

3	7	10	14	17	
	\uparrow				
5	6	12	15		_
	\uparrow				_

3	7	10	14	17	
	\uparrow				
5	6	12	15		_
		\uparrow			_

3	7	10	14	17	
		\uparrow			
5	6	12	15		_
		\uparrow			_

3	7	10	14	17	
			\uparrow		
5	6	12	15		_
		\uparrow			_

3	7	10	14	17	
			\uparrow		
5	6	12	15		_
		\uparrow			

Merged array:

Needs only one scan through arrays

Merge sort

Mergesort: the idea

- 1. Input array A to be sorted
- 2. If size of A less than 2 it is sorted
- 3. Otherwise
 - 3.1 Divide A into two subarrays L and R
 - 3.2 Sort L
 - 3.3 Sort R
 - 3.4 Merge sorted *L* and sorted *R* into a new, sorted array

Can we write this as pseudocode?

Merge sort

```
Procedure: mergeSort (A)
Input: array A[1 \dots n]
Result: array A[1 \dots n] sorted
if n < 1 then
   return A
else
   M \leftarrow n \operatorname{div} 2
   copy A[1...M] to B[1...M]
   copy A[(M + 1)...n] to C[1...(n - M)]
   mergeSort (B)
   mergeSort (C)
   merge (B,C,A)
    return A
```

Merge sort in operation

Merging the sub-arrays

Efficiency of Merge sort

Divide and Conquer:

Problem of size *n* decomposed into

- two sub-problems of size n/2
- plus a merge of size about n

Efficiency of Merge sort

Divide and Conquer:

Problem of size *n* decomposed into

- two sub-problems of size n/2
- plus a merge of size about n

Merge sort:

Much more efficient than

- · Bubble sort
- Insertion sort
- Selection sort

Efficiency: what we couold ask

Given a problem ...

- · Does there exist an algorithm for solving it?
- Does there exist an efficient algorithm?
- Can I improve on a published algorithm for the problem?

Given an algorithm ...

- · How efficient is it?
- Does a more efficient algorithm exist for the same problem?
- Which algorithm for a given problem is the best?

Two algorithms for summing numbers

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive
          numbers
SUM \leftarrow 0
ITER \leftarrow 1
while ITER < n \, do
    SUM \leftarrow SUM + ITER
    ITER \leftarrow ITER + 1
return SUM
```

Two algorithms for summing numbers

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive
          numbers
SUM \leftarrow 0
ITER \leftarrow 1
while ITER < n \, do
    sum \leftarrow Sum + iter
    ITER \leftarrow ITER + 1
return SUM
```

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive numbers
return n(n+1)/2
```

Two algorithms for summing numbers

Name: Summing numbers **Input**: positive integer *n* **Output**: sum of first *n* positive numbers $SUM \leftarrow 0$ ITER \leftarrow 1 while ITER $< n \, do$ $SUM \leftarrow SUM + ITER$ $ITER \leftarrow ITER + 1$ return SUM

Name: Summing numbers
Input: positive integer nOutput: sum of first n positive numbers
return n(n+1)/2

Which is more efficient?

 Cost of running an algorithm depends on size of input (usually)

- Cost of running an algorithm depends on size of input (usually)
- Efficiency of an algorithm is expressed as a cost function on the size of input
- Comparison between algorithms difficult to see when size of inputs are small

- Cost of running an algorithm depends on size of input (usually)
- Efficiency of an algorithm is expressed as a cost function on the size of input
- Comparison between algorithms difficult to see when size of inputs are small
- Differences in efficiency become apparent as size of input get very large

We need

- 1. a measure on the size of inputs
- 2. a measure of cost of running an algorithm

We need

- a measure on the size of inputs
- 2. a measure of cost of running an algorithm

Size of inputs:

Dependent on type of data

- · arrays: number of items
- · lists: number of items
- numbers: ? often size of binary representation

We need

- 1. a measure on the size of inputs
- 2. a measure of cost of running an algorithm

Size of inputs:

Dependent on type of data

- · arrays: number of items
- · lists: number of items
- numbers: ? often size of binary representation

Cost of running algorithm:

- · time taken
- space required –less important these days
- energy consumed –becoming important

We need

- 1. a measure on the size of inputs
- 2. a measure of cost of running an algorithm

Size of inputs:

Dependent on type of data

- · arrays: number of items
- · lists: number of items
- numbers: ? often size of binary representation

Cost of running algorithm:

- time taken we concentrate on this
- space required
- energy consumed

• Difficult to use a stop watch

- Difficult to use a stop watch
- Should not be influenced by speed of computer

- Difficult to use a stop watch
- Should not be influenced by speed of computer
- Should not be influenced by choice of programming language

- Difficult to use a stop watch
- Should not be influenced by speed of computer
- Should not be influenced by choice of programming language
- Should not be influenced by ability of programmer

- Difficult to use a stop watch
- Should not be influenced by speed of computer
- Should not be influenced by choice of programming language
- Should not be influenced by ability of programmer
- We count the number of significant actions

- Difficult to use a stop watch
- Should not be influenced by speed of computer
- Should not be influenced by choice of programming language
- Should not be influenced by ability of programmer
- We count the number of significant actions

Significant actions:

Depends on problem area:

- sorting: count comparisons between items
- searching: count comparisons between items
- summing: count arithmetic operations

Sometimes difficult to decide

Here we only care about the worst case complexity

Counting the cost

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive
          numbers
SUM \leftarrow 0
ITER \leftarrow 1
while ITER < n \, do
    SUM \leftarrow SUM + ITER
    ITER \leftarrow ITER + 1
return SUM
```

Name: Summing numbers Input: positive integer n return n(n+1)/2

Counting the cost

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive
          numbers
SUM \leftarrow 0
ITER \leftarrow 1
while ITER < n \, do
    SUM \leftarrow SUM + ITER
    ITER \leftarrow ITER + 1
return SUM
```

```
Name: Summing numbers Input: positive integer n return n(n+1)/2
```

Number of operations:

??

3

Counting the cost

```
Name: Summing numbers
Input: positive integer n
Output: sum of first n positive
          numbers
SUM \leftarrow 0
ITER \leftarrow 1
while ITER < n \, do
    SUM \leftarrow SUM + ITER
    ITER \leftarrow ITER + 1
return SUM
```

```
Name: Summing numbers Input: positive integer n return n(n+1)/2
```

Number of operations:

more than *n*

3

Constants don't count:

Function	F	G	G larger than F after
	100 <i>n</i> ²	2 <i>n</i> ³	<i>n</i> > 50
	1000 <i>n</i> ²	3 <i>n</i> ³	n > 350
	1000 <i>n</i> ³	n^4	<i>n</i> > 1000

Constants don't count:

Function	F	G	G larger than F after
	100 <i>n</i> ²	2 <i>n</i> ³	<i>n</i> > 50
	1000 <i>n</i> ²	3 <i>n</i> ³	<i>n</i> > 350
	1000 <i>n</i> ³	n^4	<i>n</i> > 1000

The tyranny of large numbers

Small terms get swamped:

<i>n</i> > 10
<i>n</i> > 10
<i>n</i> > 500

Small terms get swamped:

Function	Insignificant after
$2n^2 + 10n + 6$	<i>n</i> > 10
$n^4 + 100n^2 + 5n$	<i>n</i> > 10
$2n^5 + 1000n^4$	<i>n</i> > 500

The tyranny of large numbers

Approximating growth functions

Big Theta notation:

 $\Theta(f(n))$: all functions which *grow* at the same rate as f(n)

Approximating growth functions

Big Theta notation:

 $\Theta(f(n))$: all functions which *grow* at the same rate as f(n)

g(n) is in $\Theta(f(n))$ if

- there is a constant K_g such that g(n) ≤ K_g * f(n), once n gets sufficiently large
- there is a constant K_f such that f(n) ≤ K_f * g(n), once n gets sufficiently large

Approximating growth functions

Big Theta notation:

 $\Theta(f(n))$: all functions which *grow* at the same rate as f(n)

g(n) is in $\Theta(f(n))$ if

- there is a constant K_g such that g(n) ≤ K_g * f(n), once n gets sufficiently large
- there is a constant K_f such that f(n) ≤ K_f * g(n), once n gets sufficiently large

which means: once n gets big enough

- $k_1 * f(n) \le g(n) \le k_2 * f(n)$
- (and vice-versa)

Important complexity classes

constant	⊖(1)
logarithmic	$\Theta(\log n)$
linear	⊖(<i>n</i>)
n-log-n	$\Theta(n \log n)$
quadratic	$\Theta(n^2)$
cubic	$\Theta(n^3)$
polynomial	$\Theta(n^k)$, for some $k \geq 1$

exponential $\Theta(2^n)$

- 2 * n + 6 is in $\Theta(n)$
- $4 * n^2 + 10 * n + 6$ is NOT in $\Theta(n)$

- 2 * n + 6 is in $\Theta(n)$
- $4 * n^2 + 10 * n + 6$ is NOT in $\Theta(n)$

- $234 * n^2 + 658 * n + 200$ is in $\Theta(n^2)$
- $234 * n^2 + 658 * n + 200$ is NOT in $\Theta(n^3)$

- 2 * n + 6 is in $\Theta(n)$
- $4 * n^2 + 10 * n + 6$ is NOT in $\Theta(n)$

- $234 * n^2 + 658 * n + 200$ is in $\Theta(n^2)$
- $234 * n^2 + 658 * n + 200$ is NOT in $\Theta(n^3)$
- $78 * 10^n + 34 * n^{27}$ is in $\Theta(2^n)$

- 2 * n + 6 is in $\Theta(n)$
- $4 * n^2 + 10 * n + 6$ is NOT in $\Theta(n)$

- $234 * n^2 + 658 * n + 200$ is in $\Theta(n^2)$
- $234 * n^2 + 658 * n + 200$ is NOT in $\Theta(n^3)$

• $78 * 10^n + 34 * n^{27}$ is in $\Theta(2^n)$

Dominant exponent always wins out in the end

Orders of Growth

n	log n	n	n log n	n^2	n ³	2 ⁿ
10	3.3	10	33	100	1,000	1,000
100	6.6	100	660	10 ⁴	10 ⁶	$1.3 \cdot 10^{30}$
1,000	10	1,000	10,000	10 ⁶	10 ⁹	
10,000	13	10,000	130,000	10 ⁸	10 ¹²	
100,000	17	100,000	1.7 million	10 ¹⁰	10 ¹⁵	
1 million	20	1,000,000	20 million	10 ¹²	10 ¹⁸	

Orders of Growth

n	log n	n	n log n	n^2	n^3	2 ⁿ
10	3.3	10	33	100	1,000	1,000
100	6.6	100	660	10 ⁴	10 ⁶	$1.3 \cdot 10^{30}$
1,000	10	1,000	10,000	10 ⁶	10 ⁹	
10,000	13	10,000	130,000	10 ⁸	10 ¹²	
100,000	17	100,000	1.7 million	10 ¹⁰	10 ¹⁵	
1 million	20	1,000,000	20 million	10 ¹²	10 ¹⁸	

Estimated age of the universe: 10¹⁴ seconds

Running an exponential algorithm

Current computer: 10,000 instructions per second

problem size	time
10	0.1 sec
20	2 mins approx.
30	> 24 hours
38	> one year

Running an exponential algorithm

New computer: 100 times faster

problem size	time
10	0.1 sec
20	1 minute approx
37	> 24 hours
45	> one year

Running an exponential algorithm

New computer: 100 times faster

problem size	time
10	0.1 sec
20	1 minute approx
37	> 24 hours
45	> one year

Only minimal increase in effectiveness:

time T	problem size
old computer	n
new computer	n+7

Running an exponential algorithm

New computer: 100 times faster

problem size	time
10	0.1 sec
20	1 minute approx
37	> 24 hours
45	> one year

Only minimal increase in effectiveness:

time T	problem size
old computer	n
new computer	n+7

Algorithms v. fast computers

More efficient algorithms better than faster computers

Setup A:

- slow sorting algorithm: $\Theta(n^2)$
- · crafty programmer: constant factor 2
- · fast machine: 1 billion instructions per second

Setup B:

- fast sorting algorithm: $\Theta(n \log(n))$
- · rubbish programmer: constant factor 50
- slow machine: 10 million instructions per second (100 times slower)

Algorithms v. fast computers

More efficient algorithms better than faster computers

Setup A:

- slow sorting algorithm: $\Theta(n^2)$
- · crafty programmer: constant factor 2
- · fast machine: 1 billion instructions per second

Setup B:

- fast sorting algorithm: $\Theta(n \log(n))$
- · rubbish programmer: constant factor 50
- slow machine: 10 million instructions per second (100 times slower)

setup	1 million numbers	10 million numbers
Α	> 30 mins	> 2 days
В	< 2 mins	< 20 mins

Comparing complexity classes

Double size of input	Extra time required
Θ(1)	none
$\Theta(\log n)$	marginal increase
⊖(<i>n</i>)	double
$\Theta(n \log n)$	double + tiny
$\Theta(n^2)$	four times longer
$\Theta(n^3)$	eight times longer
$\Theta(2^n)$	square of time

Examples: how to compute complexity

Remember we only care about the worse case

```
Name: Sequential search
Input: Array A[1 \dots n], item
       M
Output: true, if M in A, false
         otherwise
FOUND ← false
PTR \leftarrow 1
while not FOUND and
PTR < n do
   if A[PTR] = M then
    I FOUND ← true
   PTR \leftarrow PTR + 1
return FOUND
```

```
Name: Sequential search
Input: Array A[1 \dots n], item
       M
Output: true, if M in A, false
         otherwise
FOUND ← false
PTR \leftarrow 1
while not FOUND and
PTR < n do
   if A[PTR] = M then
    FOUND ← true
   PTR \leftarrow PTR + 1
return FOUND
```

Running time:

 dependent on size of input

```
Name: Sequential search
Input: Array A[1 \dots n], item
       M
Output: true, if M in A, false
         otherwise
FOUND ← false
PTR \leftarrow 1
while not found and
PTR < n do
   if A[PTR] = M then
      FOUND \leftarrow true
   PTR \leftarrow PTR + 1
return FOUND
```

Running time:

- dependent on size of input
- dependent on actual input

```
Name: Sequential search
Input: Array A[1 \dots n], item
       M
Output: true, if M in A, false
         otherwise
FOUND ← false
PTR \leftarrow 1
while not found and
PTR \le n \, do
   if A[PTR] = M then
      FOUND \leftarrow true
   PTR \leftarrow PTR + 1
return FOUND
```

Running time:

- dependent on size of input
- dependent on actual input

No. of comparisons:

- best possible: 1
- worst possible: n
- average: difficult to understand

```
Name: Sequential search
Input: Array A[1 \dots n], item
       M
Output: true, if M in A, false
         otherwise
FOUND ← false
PTR \leftarrow 1
while not found and
PTR \le n \, do
   if A[PTR] = M then
      FOUND \leftarrow true
   PTR \leftarrow PTR + 1
return FOUND
```

Running time:

- dependent on size of input
- dependent on actual input

No. of comparisons:

- best possible: 1
- worst possible: n
- average: difficult to understand

Improved searching?

First sort the list:

- Not necessary to scan all the array
- stop when an item greater than or equal to M is encountered

Improved searching?

First sort the list:

- · Not necessary to scan all the array
- stop when an item *greater than or equal to M* is encountered

Procedure:

```
seqSearch (A, s, f, M)

PTR \leftarrow s

while PTR \leq f and A[PTR] < M

do

| PTR \leftarrow PTR + 1

if PTR > f then return false

else

| return (A[PTR] = M)
```

Improved searching?

First sort the list:

- · Not necessary to scan all the array
- stop when an item *greater than or equal to M* is encountered

Procedure:

$$\mathtt{PTR} \leftarrow \boldsymbol{s}$$

while PTR $\leq f$ and A[PTR] < M do

$$I$$
 PTR \leftarrow PTR $+$ 1

if PTR > f then return false else

| return
$$(A[PTR] = M)$$

No. of comparisons:

- best possible: 1
- worst possible: n
- average: probably an improvement

Analysis of binary search

```
Procedure: binarySearch (A, s,f, M)
FOUND \leftarrow false
if s \le f then m \leftarrow (s+f) \operatorname{div} 2 // \operatorname{middle} of array
if A[m] = M then FOUND \leftarrow true else
   if M < A[m] then
     FOUND \leftarrow binarySearch (A,s,(m-1),M)
   else
        FOUND \leftarrow binarySearch (A,(m+1),f,M)
return FOUND
```

Analysis of binary search

```
Procedure: binarySearch (A, s, f, M)
FOUND ← false
if s \le f then m \leftarrow (s+f) div 2 // middle of array
if A[m] = M then FOUND \leftarrow true else
   if M < A[m] then
    FOUND \leftarrow binarySearch (A,s,(m-1),M)
   else
       FOUND \leftarrow binarySearch (A,(m+1),f,M)
return FOUND
```

Worst case:

- procedure called log n times
- · each call gives 1 comparison

Analysis of binary search

```
Procedure: binarySearch (A, s, f, M)
FOUND ← false
if s \le f then m \leftarrow (s+f) \operatorname{div} 2 // \operatorname{middle} of array
if A[m] = M then FOUND \leftarrow true else
   if M < A[m] then
     FOUND \leftarrow binarySearch (A,s,(m-1),M)
    else
       FOUND \leftarrow binarySearch (A,(m+1),f,M)
return FOUND
```

Worst case:

- procedure called log n times
- · each call gives 1 comparison

Sequential v. binary search

Array size	sequential search	binary search
15	15	4
100	100	7
1000	1000	10
1 million	1 million	20
1 billion	1 billion	30
1 billion billion	1 billion billion	60

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do

| D \leftarrow diff(A[i], A[j])
| if CSPREAD \leftarrow D
```

return CSPREAD

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
D \leftarrow diff(A[i], A[j])
if CSPREAD \leftarrow D
```

return CSPREAD

Input: Array
$$A[1 ... n]$$
Output: The spread of A
CSPREAD $\leftarrow 0$
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
C

return CSPREAD

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do

| D \leftarrow diff(A[i], A[j])
| if CSPREAD \leftarrow D
```

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
C
```

return CSPREAD

return CSPREAD

- inner loop executed *n* times
- each time C is executed: some constant no. of actions
- outer loop executed n times

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do

| D \leftarrow diff(A[i], A[j])
| if CSPREAD \leftarrow D
```

```
Input: Array A[1 ... n]
Output: The spread of A
CSPREAD \leftarrow 0
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
C
```

return CSPREAD

return CSPREAD

- inner loop executed *n* times
- each time C is executed: some constant no. of actions
- outer loop executed n times

```
CSPREAD \leftarrow 0

for i \leftarrow 1 to n do

for j \leftarrow (i + 1) to n do

D \leftarrow diff(A[i], A[j])

if CSPREAD \leftarrow D then

CSPREAD \leftarrow D
```

return CSPREAD

CSPREAD
$$\leftarrow$$
 0

for $i \leftarrow 1$ to n do

for $j \leftarrow (i + 1)$ to n do

D \leftarrow diff(A[i], A[j])

if CSPREAD \leftarrow D then

CSPREAD \leftarrow D

return CSPREAD

CSPREAD
$$\leftarrow$$
 0 for $i \leftarrow 1$ to n do for $j \leftarrow (i + 1)$ to n do $\mid C$

return CSPREAD

CSPREAD
$$\leftarrow$$
 0 for $i \leftarrow 1$ to n do for $j \leftarrow (i + 1)$ to n do $\mid C$

return CSPREAD

return CSPREAD

- · inner loop executed
 - first (n-1) times, then (n-2) times, then (n-3) times, ...
- each time C is executed: some constant no. of actions
- outer loop executed n times

$$continuous continuous continuo$$

CSPREAD
$$\leftarrow$$
 0 for $i \leftarrow 1$ to n do for $j \leftarrow (i + 1)$ to n do $\mid C$

return CSPREAD

return CSPREAD

- · inner loop executed
 - first (n-1) times, then (n-2) times, then (n-3) times, ...
- each time *C* is executed: some *constant* no. of actions
- outer loop executed n times

No. times *C* executed:
$$(n-1) + (n-2) + ... + 1 + 0$$

$$colored CSPREAD \leftarrow 0
for $i \leftarrow 1$ to n do
for $j \leftarrow (i + 1)$ to n do

$$colored D \leftarrow diff(A[i], A[j])
if colored CSPREAD < D then
| colored CSPREAD \leftarrow D$$$$

CSPREAD
$$\leftarrow$$
 0 for $i \leftarrow 1$ to n do for $j \leftarrow (i + 1)$ to n do $\mid C$

return CSPREAD

return CSPREAD

Worst case:

- · inner loop executed
 - first (n-1) times, then (n-2) times, then (n-3) times, ...
- each time C is executed: some constant no. of actions
- outer loop executed n times

Worst-case analysis: $\Theta(n^2)$

```
CMAX \leftarrow A[1]
CMIN \leftarrow A[1]
for i \leftarrow 2 to n do

| if A[i] < CMIN then
| CMIN \leftarrow A[i]
else
| if A[i] > CMAX then
| CMAX \leftarrow A[i]
```

 $CSPREAD \leftarrow diff(CMAX, CMIN)$ **return** CSPREAD

$$CSPREAD \leftarrow diff(CMAX, CMIN)$$
return $CSPREAD$

```
\begin{array}{lll} \operatorname{CMAX} \leftarrow A[1] & & & & & & & \\ \operatorname{CMIN} \leftarrow A[1] & & & & & & \\ \operatorname{for} i \leftarrow 2 \text{ to } n \text{ do} & & & & & \\ \operatorname{for} i \leftarrow 2 \text{ to } n \text{ do} & & & & & \\ & | & \operatorname{if} A[i] < \operatorname{CMIN} \text{ then} & & & & \\ & | & \operatorname{CMIN} \leftarrow A[i] & & & & & \\ & | & \operatorname{else} & & & & \\ & | & | & \operatorname{CMAX} \leftarrow A[i] & & & & \\ & | & | & \operatorname{CMAX} \leftarrow A[i] & & & & \\ \end{array}
```

 $CSPREAD \leftarrow diff(CMAX, CMIN)$ **return** CSPREAD

- loop executed (n − 1) times
- each C_i : constant no. of actions

$$CMAX \leftarrow A[1]$$
 C_1
 $CMIN \leftarrow A[1]$ for $i \leftarrow 2$ to n do

for $i \leftarrow 2$ to n do

 C_2

if $A[i] < CMIN$ then

 C_3
else

if $A[i] > CMAX$ then

 C_3
 C_4
 C_5
 C_6
 C_7
 C_8
 C_8
 C_8
 C_8
 C_9
 C

worst case analysis: $\Theta(n)$

```
Name: Selection sort
Input: Array A[1 . . . n]
Output: Array A sorted
for i \leftarrow 1 to (n-1) do
    // maintains A[1...i] sorted
    MINPTR \leftarrow i
    for j \leftarrow (i+1) to n do
    // finds smallest item in A[i \dots n] if A[j] < A[\text{MINPTR}] then | MINPTR \leftarrow j
    A[i] \leftrightarrow A[MINPTR] // swap items
```

return A

```
Name: Selection sort
Input: Array A[1 ... n]
Output: Array A sorted
for i \leftarrow 1 to (n-1) do
\begin{array}{c|c} C_1 \\ \text{for } j \leftarrow (i+1) \text{ to } n \text{ do} \\ | C_2 \\ | C_3 \end{array}
```

```
Name: Selection sort
Input: Array A[1 ... n]
Output: Array A sorted
for i \leftarrow 1 to (n-1) do
C_1
for j \leftarrow (i+1) to n do
C_2
```

- · inner loop
 - first executed (n-1) times, then (n-2) times, . . .
 - each time C₂ is executed
 - each C₃: constant no. of comparisons

```
Name: Selection sort
Input: Array A[1 ... n]
Output: Array A sorted
for i \leftarrow 1 to (n-1) do
C_1
for j \leftarrow (i+1) to n do
C_2
C_3
```

- · inner loop
 - first executed (n-1) times, then (n-2) times, . . .
 - each time C₂ is executed
 - each C_3 : constant no. of comparisons

```
Procedure: mergeSort (A)
Input: array A[1 \dots n]
Result: array A[1 \dots n] sorted
if n > 1 then
   M \leftarrow n \operatorname{div} 2
   copy A[1 \dots M] to B[1 \dots M]
   copy A[(M + 1)...n] to C[1...(n - M)]
   mergeSort (B)
   mergeSort (C)
   merge(B,C,A)
```

Procedure: mergeSort (A)

 $M \leftarrow n \operatorname{div} 2$

mergeSort (*left half of A*)

 $\texttt{mergeSort}\;(\textit{\textit{right half of A}})$

merge (*halves into whole*)

```
Procedure: mergeSort (A)

M ← n div 2

mergeSort (left half of A)

mergeSort (right half of A)

merge (halves into whole)
```

Each call to mergeSort leads to

- · two sub-calls to mergeSort
- one call to merge

Each new call halves the array to be treated

Procedure: mergeSort (A)

M ← n div 2
mergeSort (left half of A)
mergeSort (right half of A)
merge (halves into whole)

Each call to mergeSort leads to

- two sub-calls to mergeSort
- · one call to merge

Each new call halves the array to be treated

- in total around $2 \log n$ calls
- each call uses one merge
- · each merge uses around n comparisons

```
Procedure: mergeSort(A)

M \leftarrow n \text{ div } 2
```

mergeSort (*left half of A*)
mergeSort (*right half of A*)
merge (*halves into whole*)

Each call to mergeSort leads to

- · two sub-calls to mergeSort
- · one call to merge

Each new call halves the array to be treated

worst case analysis: $\Theta(n \log n)$

Summary

Class	Name	Characteristics
Θ(1)	constant	few interesting algorithms
$\Theta(\log n)$	logarithmic	result of cutting problem size in half each
		time round a loop
$\Theta(n)$	linear	Algorithms which scan an array/list
$\Theta(n \log n)$	n-log-n	Many divide-and-conquer algorithms
$\Theta(n^2)$	quadratic	Algorithms with two embedded loops
$\Theta(n^3)$	cubic	Algorithms with three embedded loops
$\Theta(2^n)$	exponential	Many important problems