

Fondements en électronique analogique

Alain SYLVESTRE

Professeur

Université Grenoble Alpes, Polytech Grenoble
(Septembre 2020)

alain.sylvestre@univ-grenoble-alpes.fr

Le cours est constitué de 4 parties :

Partie 1 : Lois sur les circuits électriques linéaires

Partie 2 : Signal – Dipôles – Diagramme de Bode

Partie 3: Les filtres passifs et actifs du 1^{er} ordre

Partie 4 : Les montages de base avec des amplificateurs opérationnels

Partie 1 : Lois sur les circuits électriques linéaires

RESISTANCE - RESISTIVITE

i est un courant qui traverse un tube conducteur

Quelle est la résistance R du tube conducteur?

RESISTANCE - RESISTIVITE

i est un courant qui traverse un tube conducteur

 $R = résistance (en \Omega)$

 ρ = résistivité (en Ω .m)

L = longueur du conducteur (en m)

S = Surface traversée par le courant (en m²)

m= mètre ; Ω = Ohm

CONDUCTIVITE ELECTRIQUE RESISTIVITE ELECTRIQUE

- Conductivité σ : $\sigma = 1/\rho$ (unité: S/m)
- Résistivité ρ : elle s'exprime en Ω .m
- La conductivité est la "facilité à conduire le courant"
- La conductivité s'étale sur plus de 27 ordres de grandeur !

Conductivité et résistivité électrique des métaux à 295K

Li 1.07 9.32	Be 3.08 3.25	Electrical conductivity x $10^7/\Omega$ m Electrical resistivity x $10^{-8}\Omega$ m							B 	C	N 	O 	F 	N e 			
Na 2.11 4.75	Mg 2.33 4.30								Al 3.65 2.74	Si 	P 	S 	Cl 	Ar 			
K 1.39 7.19	Ca 2.78 3.6	Sc 0.21 46.8	Ti 0.23 43.1	V 0.50 19.9	Cr 0.78 12.9	Mn 0.072 139	Fe 1.02 9.8	Co 1.72 5.8	Ni 1.43 7.0	Cu 5.88 1.70	Zn 1.69 5.92	Ga 0.67 14.85	Ge 	As	Se 	Br 	Kr
Rb 0.80 12.5	Sr 0.47 21.5	Y 0.17 58.5	Zr 0.24 42.4	Nb 0.69 14.5	Mo 1.89 5.3	Tc .7 14	Ru 1.35 7.4	Rh 2.08 4.8	Pd 0.95 10.5	Ag 6.21 1.61	Cd 1.38 7.27	In 1.14 8.75	Sn 0.91 11.0	Sb 0.24 41.3	Te 	I 	Х е
Cs .50 20.0	Ba 0.26 39.	La 0.13 79.	Hf 0.33 30.6	Ta 0.76 13.1	W 1.89 5.3	Re 0.54 18.6	Os 1.10 9.1	Ir 1.96 5.1	Pt 0.96 10.4	Au 4.55 2.20	Hg* 0.10 95.9	Tl 0.61 16.4	Pb 0.48 21.0	Bi 0.086 116.	Po 0.22 46.	At 	R n : :
Fr 	Ra 	Ac 								•••							
			Ce 0.12 81.	Pr 0.15 67.	Nd 0.17 59.	Pm 	Sm 0.10 99.	Eu 0.11 89	Gd 0.070 134	Tb 0.090 111.	Dy 0.11 90.0	Ho 0.13 77.7	Er 0.12 81.	Tm 0.16 62.	Yb 0.38 26.4	Lu 0.19 53.	
			Th 0.66 15.2	Pa 	U 0.39 25.7	Np 0.085 118.	Pu 0.070 143.	Am 	Cm 	Bk 	Cf 	Es	Fm 	Md 	No 	Lr 	

REPRESENTATION ET VALEUR D'UNE RESISTANCE

Représentation :

R

ou

	1° anneau gauche	2° anneau gauche		Dernier anneau gauche	Anneau droite
	1° chiffre	2° chiffre	·	Multiplicateur	Tolérance
noir	0	0		1	-
marron	1	1		10	1%
rouge	2	2		10^2	2 %
orange	3	3		10^3	-
	4	4		10^4	-
vert	5	5		10^5	0.5 %
bleu	6	6		10^6	0.25%
violet	7	7		10^7	0.1 %
gris	8	8		10^8	0.005%
	9	9		10^9	-
or	-			0.1	5 %
argent	-	-		0.01	10 %

Exercice: Quelle est la valeur de la résistance du dessin?

LOI D'OHM

i = courant qui traverse la résistance

U = différence de potentiel entre le point A et le point B = U_{AB}

i s'exprime en ampère (A) U s'exprime en volt (V)

Exercice

On fixe U = 5V

- a/ Calculer la valeur du courant si R = 10 k Ω
- b/ Calculer la valeur du courant si $R = \infty$. Conclusion.
- c/ Calculer la valeur du courant si R = 0 Ω . Quel est le problème?

ASSOCIATION DE RESISTANCES

Résistances en série

Résistances en parallèle

Exercice

Calculer la résistance équivalente dans chaque cas

- (c) On reprend la *figure 1* mais on remplace la résistance de 200 Ω par une résistance de 1 Ω . Calculer la nouvelle résistance équivalente. Conclusion.
- (d) On reprend la *figure 2* mais on remplace la résistance de 15 k Ω par une résistance de 100 M Ω . Calculer la nouvelle résistance équivalente. Conclusion.

LA CONDUCTANCE G

$$G = \frac{1}{R}$$

G s'exprime en S (Siemens)

SCHEMA ELECTRIQUES *

Réseau électrique: Ensemble d'éléments électriques reliés entre eux et susceptibles d'être parcourus par des courants électriques.

Dipôle: Tout ensemble d'éléments électriques situés entre deux nœuds.

Branche: Ensemble de dipôles placés en série entre deux nœuds.

Maille: Ensemble de branches constituant une boucle fermée.

GENERATEUR DE TENSION PARFAIT

Générateur de tension parfait = la résistance interne du générateur est nulle

U_{PN} correspond à une différence de potentiel entre le point P et le point N

GENERATEUR DE COURANT PARFAIT

Générateur de courant parfait = la résistance interne du générateur est infinie

GENERATEUR DE TENSION REEL

Dans une source de tension réelle, la résistance du générateur n'est pas nulle

GENERATEUR DE COURANT REEL

Dans une source de courant réelle, la résistance du générateur n'est pas infinie

CONVENTION SUR LE SENS DU COURANT PAR RAPPORT AU SENS DE LA TENSION

Convention générateur : la tension et le courant sont dans le même sens

<u>Convention récepteur</u>: la tension et le courant sont dans le sens contraire

N.B.: Pour les calculs, on prendra le sens que l'on veut pour le courant. A la fin du calcul, si le courant a une valeur négative cela veut dire que le sens réel est opposé à celui qu'on a choisi.

1ère loi de Kirchhoff : loi des nœuds

<u>Définition</u>: Les courants qui entrent dans un nœud sont égaux aux courants qui sortent de ce nœud.

Exemples:

2^{ème} loi de Kirchhoff : loi des mailles

a/ On choisit un sens du courant pour chaque maille

b/ On applique la règle $\sum RI - \sum I$

$$\Sigma RI - (\Sigma U) = 0$$

Si on sort par un pôle +, alors U est égal à U Si on sort par un pôle -, alors on dit que U est égal à -U

Explication à partir d'un exemple

Maille 1 (ABEFA): $R_1I_1 - (-U_3) + R_3I_3 - U_1 = 0$

Maille 2 (BCDEB) : $R_2I_2 - R_3I_3 - U_3 - (-U_2) = 0$

Autre exemple

a/ Donner la relation entre E, U₁ et U₂

b/ On appelle R₁ la résistance de l'ampoule 1.
 On appelle R₂ la résistance de l'ampoule 2
 Donner la relation entre le courant / et la tension E en fonction des résistances

CALCUL DE TENSIONS ET COURANTS DANS DES CIRCUITS SIMPLES : LE DIVISEUR DE TENSION

$$U_1 = U \frac{R_1}{R_1 + R_2}$$

ATTENTION! Cette relation est vraie si le même courant traverse les 2 résistances

Cette méthode est intéressante pour simplifier un circuit électrique entre 2 points.

Pour cela, on va déterminer deux choses entre ces 2 points :

- La résistance équivalente qu'on appelle résistance de Thévenin : R_{Th}
- La force électromotrice (fem) équivalente : E_{Th}

Exemple: simplifier le schéma électrique qu'on voit entre les points A et B

<u>1ère étape</u>: On calcule la tension entre les points A et B en mettant en circuit-ouvert la zone entre A et B qu'on ne veut pas simplifier

2ème étape : On calcule la résistance équivalente entre les points A et B en considérant que le générateur est en court-circuit.

Le circuit simplifié devient donc :

THEOREME DE NORTON

On peut remplacer le <u>générateur de tension</u> de Thévenin par un <u>générateur de courant</u> de Norton

I_N = Source de courant de NortonG_N = Conductance de Norton

Avec:
$$R_{Th} = \frac{1}{G_N}$$
 et $E_{Th} = \frac{I_N}{G_N}$

THEOREME DE MILLMAN

alors:
$$V_{m} = \frac{\left(\frac{E_{1}}{R_{1}} + \frac{E_{2}}{R_{2}} + \frac{E_{3}}{R_{3}} + \dots + \frac{E_{N}}{R_{N}}\right)}{\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \frac{1}{R_{N}}\right)}$$

Ce théorème s'applique aux branches en parallèle comportant un dipôle passif et un générateur parfait.

Remarque : Si dans une branche, il y a une résistance mais pas de générateur, on peut appliquer la formule en prenant une tension E=0 pour cette branche.

Partie 2 : Signal – Dipôles – Diagrammes de Bode

SIGNAL CONTINU – SIGNAL ALTERNATIF SINUSOIDAL

<u>Signal continu (= DC en anglais pour *Direct current*)</u>

U = constante (avec le temps)

I = constante (avec le temps)

s = secondes

Signal alternatif sinusoïdal (= AC en anglais pour alternating current)

f(t) est un signal qui est fonction du temps

$$f(t) = A \cos(\omega t + \theta)$$

A = Amplitude du signal

 ω = Pulsation du signal

 θ = angle de phase du signal

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = \text{période du signal}$$

Une sinusoïde pure a une valeur moyenne égale à zéro. Le signal mesuré sur un oscilloscope est :

Si on superpose maintenant une tension continue positive +V au signal sinusoïdal, alors le signal mesuré sur un oscilloscope est :

DIPOLE PASSIF: IMPEDANCE

passif	Symbole	Impédance Z (en Ω)	
Résistance :		Z = R	The state of the s
Condensateur :	- -	$Z = \frac{1}{jC \omega}$ avec : $C = \text{capacité (en Fara}$ $\omega = \text{pulsation du sig}$	Condensateurs non polarisés Condensateurs polarisés fréquence du signal ad : F) gnal alternatif = $2 \pi f$

Bobine (self) :
$$Z = jL \omega$$
 avec : L= self (en Henry : H)

Dinâla

IMPEDANCE, RESISTANCE, REACTANCE

$$\mathbf{Z}=\mathbf{R}+\mathbf{j}~\mathbf{X}$$
Impédance (Ω)
Résistance (Ω)
Réactance (Ω)

Module de l'impédance :
$$|Z| = \sqrt{R^2 + X^2}$$

Réactance d'un condensateur :

$$X_c = \frac{1}{2 \pi f C}$$

(Remarque : Xc a été défini comme <u>positif</u> mais normalement ici ce devrait être – Xc)

Réactance d'une bobine :

$$X_L = 2 \pi f L$$

DIPOLE PASSIF: COMPORTEMENT EN FREQUENCE

<u>Définition d'un dipôle passif :</u>

- Un dipôle passif consomme de la puissance électrique.
- Un dipôle passif ne peut pas fournir de la puissance électrique au circuit.

Exemple de comportement en fréquence de la mise en série d'un condensateur, d'une bobine et d'une résistance

DIPOLE PASSIF: COMPORTEMENT EN FREQUENCE

$$Si \omega \rightarrow 0$$
 (régime continu)

Si
$$\omega \rightarrow \infty$$

Condensateur

$$- | - Z = \frac{1}{j C \omega}$$

Un condensateur se comporte comme un circuit-ouvert : il bloque le signal continu

$$|\mathbf{Z}| = \mathbf{0}$$

Un condensateur se comporte comme un court-circuit : il laisse passer tout le signal

$$|\mathbf{Z}| = \mathbf{0}$$

Une bobine se comporte comme un court-circuit : elle laisse passer tout le signal

Une bobine se comporte comme un circuit-ouvert : elle bloque le signal

MISE EN SERIE ET EN PARALLELE DE CONDENSATEURS

Capacités en série

Capacités en parallèle

UTILISATION DU PAPIER SEMI-LOGARITHMIQUE

DIAGRAMME DE BODE : EXEMPLE D'UTILISATION

DIAGRAMME DE BODE : EXEMPLE D'UTILISATION

Intérêt du décibel (dB).

Il s'agit d'une unité permettant de convertir en général des valeurs assez petites dans des unités plus grandes. Comme ça, c'est plus facile de travailler avec les valeurs numériques.

Partie 3 : Filtres - Filtrage

<u>Intérêt d'un filtre</u> : Il permet de faire passer que certaines fréquences

Exemple de signal filtré

Fonctions réalisées par les filtres

Filtre passe-bas

Filtre passe-haut

Filtre passe-bande

Filtre coupe-bande (réjecteur)

$$\omega = 2\pi f = \text{pulsation (rad/s)}$$

Bande passante (BP) = bande utile

Il existe différents types de filtres.

- Filtres passifs : constitués uniquement de composants passifs

- **Filtres actifs** : ils comportent au moins un composant actif (Généralement un amplificateur opérationnel)

FONCTION DE TRANSFERT

On peut représenter de nombreux circuits par des quadripôles (Q).

Souvent, la réponse en fréquence des quadripôles n'est pas constante.

Si V_{in} est un signal sinusoïdal alors il y a <u>une fonction de transfert</u> complexe $H^*(j\omega)$ à travers le quadripôle telle que :

$$H^*(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)}$$

Note : Pour les filtres, on utilise également indifféremment le terme transmittance $T(j\omega)$ en lieu et place de $H^*(j\omega)$

Ordre d'un filtre (1er ordre, 2nd ordre...)

Coupure franche = coupure <u>théorique</u>

NB: L'ordre du filtre est donné par le degré du polynôme du dénominateur de la fonction de transfert.

Premier ordre

Second ordre

Filtres <u>passifs</u> du 1^{er} ordre Etude en régime harmonique (= régime sinusoïdal)

Utilisation du signal en régime alternatif

Filtres passe-bas.

Filtre passe-bas RC

Filtre passe-bas LR

V_{in}= signal alternatif

Exemple de réponse (filtre RC)

Utilisation du signal en régime alternatif

Filtres passe-haut.

Utilisation du signal en régime alternatif

Filtres passe-bas RC: Fonction de transfert

Filtre passe-bas RC

V_{in}= signal alternatif

Fonction de transfert

$$H^*(j\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + jRC\omega}$$

(utilisation de la formule du pont diviseur pour le calcul)

$$H^*(j\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\left(\frac{\omega}{\omega_C}\right)} = \frac{1}{1 + jx}$$

avec
$$\omega_C = \frac{1}{RC}$$
 et $x = \frac{\omega}{\omega_C}$

Utilisation du signal en régime alternatif

Filtres passe-bas RC : Gain en tension — Fréquence de coupure

Gain en tension
$$A_V: A_V = |H^*(j\omega)| = \left|\frac{V_{out}}{V_{in}}\right| = \frac{1}{\sqrt{1+x^2}}$$

Fréquence de coupure : c'est la fréquence pour la quelle le gain maximal en tension est divisé par $\sqrt{2}$

A la fréquence de coupure ω_{c} , on aura donc : $A_{V}(\omega_{C})=rac{A_{V}MAX}{\sqrt{2}}$

$$c:A_V(\boldsymbol{\omega_C})=rac{A_{V'MAX}}{\sqrt{2}}$$

Remarque

Démontré dans la diapositive suivante

En dB, cela donne : $(20)\log(A_V(\omega_C)) = 20\log(\frac{A_{V'MAX}}{\sqrt{2}}) = A_{VMAX,dB} - 3 dB$

Donc, la fréquence de coupure correspond à la fréquence à laquelle il y a une diminution de 3dB du gain maximal

Remarque: Gain en puissance et en tension en décibel (dB)

Par définition, le passage en dB de la puissance d'un signal s'écrit :

$$10\log(Puissance_{lin\'eaire}) = Puissance_{dB}$$

On prend maintenant un quadripôle : Pentrée

Le gain en puissance d'un quadripôle va s'écrire : $G_p = 10\log\left(\frac{P_{sortie}}{P_{entrée}}\right)_{linéaire} = \left(\frac{P_{sortie}}{P_{entrée}}\right)_{dB}$

On a aussi $P_{entr\'ee}$ = $V_{entr\'ee}$. $I_{entr\'ee}$ et P_{sortie} = V_{sortie} . I_{sortie}

Comme $V_{entr\'ee} = R_{entr\'ee} I_{entr\'ee}$ et $V_{sortie} = R_{sortie} I_{sortie}$ alors :

$$10\log\left(\frac{P_{sortie}}{P_{entrée}}\right)_{\text{linéaire}} = 10\log\left(\frac{\frac{Vsortie^2}{Rsortie}}{\frac{Ventrée^2}{Rentrée}}\right)$$

Si R_{entrée} = R_{sortie} alors G_P = 10 log
$$\left(\frac{Vsortie^2}{Ventrée^2}\right)$$
 = 10log $\left(\frac{V_{sortie}}{V_{entrée}}\right)^2$

$$10log\left(\frac{V_{sortie}}{V_{entrée}}\right)^{2} = 20log\left(\frac{V_{sortie}}{V_{entrée}}\right) = 20log(A_{V,linéaire}) = A_{V,dB}$$

Utilisation du signal en régime alternatif

Filtres passe-bas RC: Gain en tension

Utilisation du signal en régime alternatif

Filtres passe-bas RC : Déphasage

$$H^*(j\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = A_V(\omega) e^{j\varphi(\omega)}$$

Rappel mathématique:

 $z=r+jx=r(\cos\varphi+j\sin\varphi)=|r|e^{j\varphi}=|r|e^{j\cdot\alpha rg(z)}$

Gain en tension

Déphasage du signal entre le signal de sortie et le signal d'entrée

Rappel: Déphasage d'un signal

$$\varphi$$
= $2\pi \frac{t}{T}$

Signal de référence

Signal en retard de phase par rapport au signal de référence

Signal en avance de phase par rapport au signal de référence

ETUDE DE FILTRES PASSIFS DU 1^{er} ORDRE

Utilisation du signal en régime alternatif

Filtres passe-bas RC : Déphasage

$$H^*(j\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = A_V(\omega) e^{j\varphi(\omega)}$$

$$\varphi(\omega) = arg(V_{out}) - arg(Vin)$$

Comme
$$H^*(j\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\left(\frac{\omega}{\omega_C}\right)} = \frac{1}{1 + jx}$$

Rappel mathématique :

$$arg(z) = arctg \frac{partie imaginaire(z)}{partie réelle(z)}$$

$$\varphi$$
= - arctg(x) avec x = $\frac{\omega}{\omega_c}$

avec
$$x = \frac{\omega}{\omega_0}$$

Rappel

Remarque : calcul de la phase : On prend -90° ou +270°

Rappel:

$$arg(az) = arg(z) si a>0$$

$$arg(az)=a rg(z) + \pi si a<0$$

Utilisation du signal en régime alternatif

Filtres passe-bas RC : Déphasage

$$\varphi$$
= - arctg(x)

- A basse fréquence, $x \rightarrow 0$ donc $\phi = 0^{\circ}$
- Pour $\omega = \omega_c$, -arctg(x) = -arctg(1) donc φ = -45°
- A haute fréquence, $x \rightarrow \infty$ donc $\phi = -90^{\circ}$

Filtres passe-bas RC : Diagramme de Bode complet

Gain

Utilisation du signal en régime alternatif

Filtres passe-haut RL: Fonction de transfert

Filtre passe-haut RL

V_{in}= signal alternatif

Fonction de transfert

$$H^*(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega \frac{L}{R}}{1 + j\omega \frac{L}{R}}$$

(utilisation de la formule du pont diviseur pour le calcul)

$$H^*(j\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j\omega\frac{L}{R}}{1+j\omega\frac{L}{R}} = \frac{j\left(\frac{\omega}{\omega_C}\right)}{1+j\left(\frac{\omega}{\omega_C}\right)} = \frac{jx}{1+jx}$$

avec
$$\omega_{\rm C} = \frac{\rm R}{\rm L}$$
 et $x = \frac{\omega}{\omega_{\rm C}}$

Filtres passe-haut RL: gain

Utilisation du signal en régime alternatif

Filtres passe-haut RL : Déphasage

$$\varphi = \frac{\pi}{2} - \operatorname{arctg}(x)$$

- A basse fréquence, φ = 90°
- Pour $\omega = \omega_c$, $\varphi = 45^{\circ}$
- A haute fréquence, $\varphi = 0^{\circ}$

Construction du diagramme de Bode d'une fonction de transfert constituée de plusieurs fonctions connues

Exemple: Tracer la fonction:

$$\frac{j\left(\frac{\omega}{\omega_{C}}\right)}{+j\left(\frac{\omega}{\omega_{C}}\right)} \qquad \qquad \frac{1}{1+j\frac{\omega}{\omega}}$$

Filtres <u>actifs</u> du 1^{er} ordre Etude en régime harmonique (= régime sinusoïdal)

Utilisation des <u>amplificateurs opérationnels</u> pour réaliser des filtres

Constitution d'un amplificateur opérationnel

Un amplificateur opérationnel (**AOP**) est un composant qui a 2 entrées principales et 1 sortie.

Son rôle est d'amplifier la différence de potentiel entre 2 tensions d'entrée.

Si **e** est la différence de potentiel entre les 2 entrées alors :

$$e = V_{e+} - V_{e-}$$

Attention!

- Ve+ et Ve- sont des tensions alternatives. Ce sont elles qui servent à l'amplification.
- V+ et V- sont des tensions continues qui sont nécessaires au fonctionnement de l'AOP

- 1 : Réglage Offset
- 2 : Entrée inverseuse 3 : Entrée non inverseuse
- 4 : Alimentation (-)
- 5 : Réglage Offset
- 6 : Sortie
- 7 : Alimentation (+)
- 8 : Non Connecté

Première approche dans la lecture d'une documentation technique (datasheet)

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
INVERTING INPUT	2	ı	Inverting signal input	
NC	8	N/A	No Connect, should be left floating	
NONINVERTING INPUT	3	ı	Noninverting signal input	
OFFSET NULL	4.5	ı	Office to all pictures of the effect of the	
OFFSET NULL	1, 5		Offset null pin used to eliminate the offset voltage and balance the input voltages.	
OUTPUT	6	0	Amplified signal output	
V+	7	ı	Positive supply voltage	
V-	4	I	Negative supply voltage	

		MIN	MAX	UNIT
Cumply voltage	LM741, LM741A		±22	2
Supply voltage	LM741C		±18	V
Power dissipation (4)			500	mW
Differential input voltage			±30	V
Input voltage (5)			±15	V
Output short circuit duration		Conti	nuous	
0	LM741, LM741A	-50	–50 125 °C	
Operating temperature	LM741C	0	70	
lunction tonoconture	LM741, LM741A		150	
Junction temperature	LM741C		100	°C
	PDIP package (10 seconds)		260	°C
Soldering information	CDIP or TO-99 package (10 seconds)		300	°C
Storage temperature, T _{sto}	'	-65	150	°C

Diagramme fonctionnel de l'AOP 741

Schéma d'un amplificateur opérationnel réel

R_E = Résistance d'entrée de l'AOP

 A_0 = Gain en boucle ouverte de l'AOP

R_s = Résistance de sortie de l'AOP

Exercice : Donner l'équation des mailles à l'entrée et à la sortie de l'AOP

A l'entrée, on a :

$$e + R_e I_e = 0$$

Donc :
$$I_e = (-e)/R_e$$

En sortie, on a:

$$A_0 \cdot e - R_s I_s - V_s = 0$$

Donc
$$V_s = A_0.e - R_s I_s$$

Schéma d'un amplificateur opérationnel idéal

 $I_{e+} = I_{e-} = 0$ $R_{E} = \infty$ Pour un AOP idéal, on a : $R_{S} = 0$ $\Lambda = \infty$

En réalité, pour le LM741

	MINI	TYPIQUE	MAXI
Re	200 ΚΩ		2 ΜΩ
Rs		200 Ω	
Ao	15000		200000

Filtre passe-bas actif du 1er ordre

$$H^*(j\omega) = \frac{V_{s1}}{V_e} = -\frac{R_2}{R_1} \frac{\frac{1}{R_2C}}{j\omega + \frac{1}{R_2C}} = -\frac{R_2}{R_1} \frac{1}{1 + j\frac{\omega}{\omega_C}}$$

Filtre passe-haut actif du 1er ordre

$$H^*(j\omega) = \frac{V_{s1}}{V_e} = -\frac{R_2}{R_1} \frac{j\omega}{j\omega + \frac{1}{R_1C}} = -\frac{R_2}{R_1} \frac{j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}} \qquad \text{f}_C = \frac{1}{2\pi R_1C}$$

Maille d'entrée :
$$-V_e + \left(R_1 + \frac{1}{jC\omega}\right)$$
i=0 (1)

Maille de sortie :
$$-V_S - R_2 i = 0 \rightarrow i = \frac{-V_S}{R_2}$$
 (2)

On injecte (2) dans (1):
$$\left(R_1 + \frac{1}{jC\omega}\right) \left(\frac{-V_s}{R_2}\right) = V_e$$

$$\begin{array}{l} \underline{\text{Développement du calcul :}} \\ \text{Maille d'entrée : $-V_e$+$} \Big(R_1 + \frac{1}{jC\omega}\Big) \mathbf{i} = \mathbf{0} \\ \text{Maille de sortie : $-V_s$-$} R_2 \mathbf{i} = \mathbf{0} \\ \text{On injecte (2) dans (1):} \\ \Big(R_1 + \frac{1}{jC\omega}\Big) \Big(\frac{-V_s}{R_2}\Big) = V_e \\ \end{array}$$

$$\frac{V_s}{V_e} = -\frac{R_2}{R_1} \frac{jR_1C\omega}{1 + jR_1C\omega} \longrightarrow \frac{V_s}{V_e} = -\frac{R_2}{R_1} \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega}} \text{ avec } \omega_c = \frac{1}{R_1C}$$

Filtre passe-bande actif du 1er ordre

On cascade un filtre passe bas avec un filtre passe haut

Filtre coupe-bande actif du 1er ordre

$$H^*(j\omega) = \frac{V_{s1}}{V_e} = A \frac{\left(1 + j\frac{\omega}{\omega_1}\right) \left(1 + j\frac{\omega}{\omega_2}\right)}{\left(1 + j\frac{\omega}{\omega_3}\right) \left(1 + j\frac{\omega}{\omega_4}\right)}$$

$$A = -\frac{R_3 + R_4}{R_1 + R_2}$$

$$\omega_1 = \frac{R_3 + R_4}{R_3 \cdot R_4 \cdot C_2}$$

$$\omega_2 = \frac{1}{R_2 \cdot C_1}$$

$$\omega_3 = \frac{1}{R_4 \cdot C_2}$$

$$\omega_4 = \frac{R_1 + R_2}{R_1 \cdot R_2 \cdot C_1}$$

Facteur de qualité

$$Q = \frac{f_0}{B}$$
 = facteur de qualité

Le facteur de qualité représente la sélectivité du filtre passe bande .

Plus le rapport est grand, plus le filtre est sélectif.

 f_0 : fréquence à laquelle le gain est maximal,

B: bande passante du filtre à -3dB (c'est-à-dire quand la puissance de sortie est réduite d'un facteur $\sqrt{2}$ par rapport au gain maximal).

Gabarit d'un filtre

Un filtre est défini par son gabarit. Cela représente les fréquences que le filtre va laisser passer et les fréquences qu'il va atténuer.

-Le gabarit est caractérisé par 2 points (f₀, a) et (f₁, b).

Autres spécifications possibles d'un gabarit

- Ondulation dans la bande passante
- Largeur de la bande de transition

Plus l'atténuation est forte, plus le filtre est sélectif.

Plus un filtre est sélectif, plus sa conception est compliquée et plus le coût est élevé.

Filtre passif? Filtre actif?

<u>Inconvénient des filtres passifs</u> : pertes d'insertion.

<u>Inconvénient des filtres actifs</u>: apport d'une polarisation continue aux transistors.

<u>Avantage des filtres actifs</u>: meilleure adaptation d'impédance (i.e.: moins de puissance réfléchie) et possibilité d'amplification du signal.

Exemple d'utilisation du filtrage : filtrage audio

(Bande audible : 20 Hz - 20 kHz)

Mise en évidence du problème des pertes d'insertion

FILTRAGE PASSIF 3 VOIES

Exemple d'utilisation du filtrage: filtrage audio

(Bande audible : 20 Hz - 20 kHz)

Remarque : Impossibilité d'utiliser des filtres actifs car ils satureraient en sortie de l'amplificateur de puissance mais problème d'adaptation

Exemple d'utilisation du filtrage : filtrage audio

Ça marche mais il faut plusieurs amplificateurs

Le problème des pertes d'insertion lorsqu'on charge un filtre passif

On ajoute une résistance de charge à un filtre passif

Rappel: Fonction de transfert **sans** la charge:

$$H^*(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega \frac{L}{R}}{1 + j\omega \frac{L}{R}}$$

$$V_{RL}$$
 $Z_{eq} = R_L // L = \frac{j R_L L \omega}{R_L + j L \omega}$

Fonction de transfert <u>avec</u> la charge

$$\frac{v_{out}}{v_{in}} = \frac{Z_{eq}}{R + Z_{eq}} \longrightarrow \frac{v_{out}}{v_{in}} = \frac{j R_L L \omega}{RR_L + jL\omega(R + R_L)} \longrightarrow \frac{v_{out}}{v_{in}} = \frac{L}{R} \frac{j\omega}{1 + jL\omega(\frac{R + RL}{RR_L})}$$

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j\omega\left(\frac{L}{R}\right)}{1 + j\omega\left(\frac{L}{R_{\text{eq}}}\right)} \text{ avec } R_{\text{eq}} = \frac{RR_{L}}{R + RL} \qquad \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j\left(\frac{\omega}{\omega_{1}}\right)}{1 + j\left(\frac{\omega}{\omega_{2}}\right)} \text{ avec } \omega_{1} = \frac{R}{L} \text{ et } \omega_{2} = \frac{R_{\text{eq}}}{L}$$

Remarque : $R_{\rm eq}$ < R donc ω_2 < ω_1

Exemple en prenant f_1 =10 f_2

Intérêt d'insérer un amplificateur opérationnel entre la sortie du filtre passif et la charge

Exemple du montage suiveur

Intérêt du suiveur : Réduire les pertes d'insertion des filtres passifs

Grâce au suiveur :
$$H^*(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega\frac{L}{R}}{1+j\omega\frac{L}{R}}$$

Il n'y a plus de chute d'insertion lorsque le filtre est chargé

Les amplificateurs opérationnels (AOP) :

- Fonctionnement réel et fonctionnement idéal
- Boucle ouverte et boucle fermée
- Autres montages

Schéma d'un amplificateur opérationnel idéal

Pour un AOP idéal, on a :

$$I_{e+} = I_{e-} = 0$$

 $R_F = \infty$

 $R_s = 0$

 $A_0 = \infty$

En réalité, pour le LM741

	MINI	TYPIQUE	MAXI
Re	200 ΚΩ		2 ΜΩ
Rs		200 Ω	
Ao	15000		200000

Fonctionnement en boucle ouverte du LM741

Intérêt de travailler en boucle fermée

Reprenons pour cela l'exemple du LM741

$$V_{cc} = \pm 15V$$
 et $A_0 = 200000$

Pour la plus grande valeur de Vs (c'est à dire 15V), on aura $e=75 \mu V$

valeur très petite! Il sera donc très difficile de contrôler l'amplificateur. Pour éviter ce problème, on va utiliser l'amplificateur en boucle fermée.

Pour cela, on réalise une contre-réaction. Ca veut dire qu'on connecte la sortie sur l'entrée pour renvoyer de la puissance de sortie vers l'entrée. Cela permet de <u>stabiliser</u> l'AOP.

Montage inverseur

Exemple

AOP idéal \rightarrow $I_{e+} = I_{e-} = 0$ et e=0. On a donc $V_{e+} = V_{e-} = V_A = 0$

Maille d'entrée (en bleu) :

$$-V_e + R_1 I_1 + V_A = 0$$

D'où
$$V_e = R_1 I_1$$

Maille de sortie (en vert):

$$-V_{s} - R_{2}I_{2} + V_{\Delta} = 0$$

D'où
$$V_S = -R_2 I_2$$

On a aussi $I_1 = I_2 \text{ car } I_{e+} = I_{e-} = 0$

D'où
$$A_v = \frac{V_S}{V_e} = -\frac{R_2}{R_1}$$

Dans l'exemple ci-dessus, le gain est donc égal à 10 avec un déphasage de π entre l'entrée et la sortie.

Montage non inverseur

AOP idéal
$$\rightarrow$$
 $I_{e+} = I_{e-} = 0$ et e=0
Donc $i_1 = I$
Comme $I_{e+} = 0$ alors $V_e = V_A$

Maille d'entrée (en rouge) : Maille de sortie (en vert) :
$$R_1I-V_e=0$$
 d'où $I=V_e/R_1$ (1) $-V_s+R_2I+V_e=0$ D'où $V_s=R_2I+V_e$ (2)

En remplaçant (1) dans (2), on obtient : $V_s = R_2(V_e/R_1) + V_e d'où V_s = V_e(1+R_2/R_1)$

Et pour finir
$$A_v = \frac{V_s}{V_e} = 1 + \frac{R_2}{R_1}$$

Cas particulier du montage non inverseur : le suiveur

REMARQUE: Dans le montage précédent, si $R_2=0$, alors $V_s=V_e$.

L'intérêt d'un tel montage est de faire de <u>l'adaptation d'impédance</u>.

Le sommateur

On pose :
$$I_S = (V_S - V_A)/R_0$$

 $I_1 = (V_1 - V_A)/R_1$ $I_2 = (V_2 - V_A)/R_2$
Or : $\Sigma I_A = 0$ et $V_A = 0$
 $V_S/R_0 = -(V_1/R_1 + V_2/R_2)$
 $V_S = -R_0 \cdot \left(\frac{V_1}{R_1} + \frac{V_2}{R_2}\right)$

Remarque : Si $R_1 = R_2 = R_0$ alors $V_s = -(V_1 + V_2)$

Exemple d'application du soustracteur : Utilisation du théorème de superposition

Exercice du TD n°3 $V_e=V_2-V_1$ et on a pris $V_1=0V$

Soustracteur = amplificateur différentiel

Théorème de superposition

Montage amplificateur non inverseur

$$\frac{V'_S}{V^+} = 1 + \frac{R2}{R1}$$

avec V+ =
$$\frac{R4}{R3 + R4} V_1$$

Montage amplificateur inverseur

$$\frac{V''_{S}}{V_{2}} = -\frac{R2}{R1}$$

<u>Remarque</u>: V_s est proportionnel à (V_1-V_2) si $R_1R_4=R_2R_3$. On a alors $V_s=\frac{R2}{R1}(V_2-V_1)$

L'intégrateur

$$i(t) = \frac{v_e(t)}{R}$$

Le courant dans le condensateur est $i(t) = -C \frac{\partial v_s(t)}{\partial t}$

$$i(t) = -C \frac{\partial v_s(t)}{\partial t}$$

D'où
$$\frac{\partial v_s(t)}{\partial t} = -\frac{1}{RC}v_e(t)$$
. Par intégration, on obtient alors : $v_s(t) = K - \frac{1}{RC}\int_0^t v_e(\theta)d\theta$

Remarque: Pour améliorer le fonctionnement du montage, on rajoute R₁. En effet, le faible courant d'entrée de l'AOP provoque une chute de tension dans R (qui sera intégrée aussi). Comme le condensateur est chargé on va alors atteindre la saturation de l'AOP. Pour favoriser la décharge , on met alors une résistance R_1 . En général, on prend R_1 =10R.

Le dérivateur

$$i(t) = \frac{\partial Q(t)}{\partial t} = C \frac{\partial v_e(t)}{\partial t}$$

On a aussi : $V_s(t) = -Ri(t)$

Donc:
$$V_s(t) = -RC \frac{\partial V_e(t)}{\partial t}$$

Conclusion : La tension de sortie est proportionnelle à la dérivée de la tension d'entrée.

Remarque : Ce montage oscille en général lorsqu'on va dans les hautes fréquences. Pour réduire cet effet, on ajoute la résistance R₁ qui limitera la puissance injectée dans le circuit.

On prend typiquement R₁< R/10

Problèmes liés à l'AOP réel

Il y a 4 problèmes principaux :

- La valeur finie du gain
- La tension d'offset
- Le courant des entrées
- La réponse en fréquence

Problèmes liés à l'AOP réel Rappel de l'AOP réel

R_E = Résistance d'entrée de l'AOP

 A_0 = Gain en boucle ouverte de l'AOP

R_s = Résistance de sortie de l'AOP

Exemple

	μΑ 741C	TL 081C
Gain en tension (boucle ouverte)	200000	200000
Courant d'entrée	80 nA	30 pA
Résistance d'entrée	$2.10^6\Omega$	$10^{12}\Omega$
Fréquence avec gain = 1	1 MHz	3 MHz
Vitesse de réponse (Slew rate)	0,5 V/μs	13 V/μs
Etage d'entrée	bipolaire	TEC à jonction

Problèmes liés à l'AOP réel: La valeur finie du gain

On reprend le montage inverseur mais cette fois, on considère l'AOP réel

$$V_s = \frac{A_0}{1 + A_0 B} (V_{e2} - Ve_1(1 - B))$$

(la démonstration sera faite en tutorial)

avec $B=R_1/(R_1+R_2)$

Remarque : Si A_0 est infini alors : $V_s = \frac{1}{B} (V_{e^2} - Ve_1(1-B))$

On introduit donc une erreur relative : $\frac{V'_s - Vs}{V_s} = \frac{1}{A_0 B}$

Exemple

 R_1 =10 k Ω et R_2 = 100 k Ω d'où B = 1/11

Si AOP idéal : Av = -10

Si A₀ = 1000, l'erreur sera de 1,1%

Problèmes liés à l'AOP réel La tension d'offset

Offset = décalage

A cause des imperfections des amplificateurs opérationnels, la tension de sortie n'est pas nulle quand les 2 entrées sont au même potentiel. On peut corriger ça en déséquilibrant l'amplificateur depuis une patte externe.

Problèmes liés à l'AOP réel Le courant des entrées

$$V_{s} = R_{2}I_{B1} - R_{3}I_{B2} \left(\frac{R_{1} + R_{2}}{R_{1}}\right)$$

(la démonstration sera faite en tutorial)

Remarque : on minimisera cette tension de fuite en prenant $R_3 = R_1 // R_2$

Problèmes liés à l'AOP réel La réponse en fréquence

Le gain est défini par la formule : $A_v(dB) = 20 \log |A_v| = 20 \log |V_s/V_e|$

La bande passante est définie par la fréquence pour laquelle le gain est réduit de 3 dB (c'est la fréquence de coupure f_c).

Dans un AOP, le produit : Gain x bande passante = constante.

Conclusion : Plus le gain est important, plus la fréquence de coupure sera basse.

Produit gain x bande pour le LM 741

Pour retrouver facilement la valeur du produit gain x bande de l'AOP 741, On peut regarder quelle est la fréquence de fonctionnement maximale pour le gain de 1. On voit que c'est 10⁶ Hz. Le produit gainxbande est donc égal à 1 MHz.

Par conséquent, on sait par exemple que si on veut concevoir un amplificateur de gain 10^2 avec l'AOP 741, on sait que sa fréquence maximale d'utilisation sera $10^6/10^2 = 10^4$ Hz. C'est bien ce que l'on voit sur le graphe ci-dessus.

Références bibliographiques ayant servi à ce cours

- Ressource en ligne *Baselecpro* sur le site Internet http://www.iutenligne.net/ Auteur : Michel Piou
- Site en ligne : http://www.learnabout-electronics.org/

