

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Mid Semester Examination

October 2022

Max. Marks: 20

Class: T.E. Course Code: EC/ET303

Name of the Course: Digital Signal Processing

Duration: 60 min Semester: V

Branch: EXTC/ETRX

Instructions:

(1) All Questions are Compulsory and must be solved in the order. Solving randomly may result in penalty. No marks will be given to answer without question number.

(2) Draw neat and clear diagrams. Units must be mentioned wherever necessary.

(3) Use your own UCID number as data wherever asked in the questions.

Question No.		Max. Marks	CO	BL
Q1	If $x(n) = 0$ for $n < 0$, derive an expression for $x(n)$ in terms of	04	COI	L2
ζ.	its even part, $x_e(n)$, and using this expression, find $x(n)$ when			
	$x_e(n) = (0.9)^{ n } u(n).$			
Q2	Evaluate 8-point DFT X(k) using DIF-FFT for the following	08	CO2	L4
	discrete signal sequence $x(n) = \{1, 1, 1, 1, 0, 1, 1, 1\}.$			
	a) Identify the DFT property and not otherwise find DFT			
	$X_1(k)$ for $X_1(n) = \{1, 1, 1, 1, 1, 1, 1, 0\}$			
	b) Perform circular cross correlation y(n) of the			
	following sequence $x(n)$ and $x_1(n)$.			
Q3	Illustrate Linear Filtering of the following sequences	08	CO2	L3
	$x(n) = \{2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$ and $h(n) = \{3, 2, 1\}$			
	using overlap - save method. Use only 8-point DIT-FFT			
	circular convolution approach.			