DATA, R INTRO, AND EXERCISES

The course material, including this file, is found on https://multi-state-book.github.io/barcelona2024/

R packages

We will be working with the following packages:

- survival: Main package for survival analysis
- mets: Analysis of Multivariate Event Times
- pseudo: Computes Pseudo-Observations for Modeling
- geepack: Generalized Estimating Equation Package
- (ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics)

survival

https://CRAN.R-project.org/package=survival

We will use the following functions:

Function	Description
Surv()	Creates a survival object, to be used as a response variable in a model formula
survfit()	Computes Nelson-Aalen (NA), Kaplan-Meier (KM) and Aalen-Johansen (AJ) estimators
<pre>survdiff()</pre>	Calculates logrank test
summary()	Summary of a survival curve. If argument times $= x$ is added only this time-point x is listed
print()	Prints a short summary of a survival curve. Restricted mean survival time (RMST) and expected number of years lost (YL) until x can be calculated using rmean = x
plot()	Plots NA (fun="cumhaz"), KM, and AJ estimators
coxph()	Fits Cox models and Fine-Gray models
<pre>finegray()</pre>	Prepares competing risks data (Fine-Gray model) to used before coxph() for competing risks data

Kaplan-Meier estimator:

summary(km <- survfit(Surv(days, status!=0)~tment, data=pbc3))</pre>

Cox model:

```
summary(coxph(Surv(days, status!=0)~tment, data=pbc3))
```

Fine-Gray model:

```
pbc3$fstatus <- factor(pbc3$status, 0:2, labels=c("cens", "trans", "death"))
pdata <- finegray(Surv(days,fstatus) ~ .,data=pbc3, etype="trans")
summary(coxph(Surv(fgstart,fgstop,fgstatus)~tment, weight=fgwt, data=pdata))</pre>
```

mets

https://cran.r-project.org/package=mets

We will only use a few functions from the package for recurrent events analysis. Illustrations will be giving during the lectures.

Function	Description
recurrentMarginal()	Cook-Lawless estimator
recreg()`	Ghosh-Lin model

pseudo

https://cran.r-project.org/package=pseudo

The package consists of four functions for computing pseudo observations (POs) from different non-parametric estimators.

Function	Description
pseudosurv()	based on Kaplan-Meier estimator
<pre>pseudomean()</pre>	RMST based on the Kaplan-Meier estimator
pseudoci()	based on Aalen-Johansen estimator
<pre>pseudoy1()</pre>	years lost (YL) based on the Aalen-Johansen estimator

All functions need a time variable, a status variable, and a time scalar or time vector.

For pseudosurv and pseudomean, the status variable should be binary (0,1) with 0 meaning censoring and 1 an event.

For pseudoci and pseudoy1, the status variable should be categorical (0, 1, 2, ...) and ordered such that 0 again means censoring (no event) and 1, 2, ... the different event types. NB: it should *NOT* be a factor variable.

When the POs have been created and merged with the original data and potentially reshaped as long format (in case with multiple time points), the function geese() (see next section) from package 'geepack' is used to fit the PO models.

```
Calculate POs at single time point (year 2) and add to data
pbc3$followup <- pbc3$days/365.25
pbc3$fail
               <- as.numeric(with(pbc3, status>0))
po2 <- pseudosurv(pbc3$followup, pbc3$fail,tmax = 2)</pre>
pbc3$po2<-as.vector(po2$pseudo)</pre>
Calculate POs at multiple time points (year 1, 2, and 3) and reshape data to long format
potsurv <- pseudosurv(pbc3$followup, pbc3$fail,tmax = 1:3)</pre>
longpbc3 <- NULL</pre>
for(it in 1:length(potsurv$time)){
  longpbc3 <- rbind(longpbc3,</pre>
                      cbind(pbc3,
                             pseudo = 1-potsurv$pseudo[,it],
                             tpseudo = potsurv$time[it],
                                      = 1:nrow(pbc3)))
longpbc3 <- longpbc3[order(longpbc3$id),]</pre>
```

geepack

https://cran.r-project.org/package=geepack

From this package we use the generalized estimating equation (GEE) function geese() to fit models for pseudo observations.

The following link functions are supported: identit, logit, probit, cloglog, log, and inverse.

NB: Defining two summary functions for summarizing a geese fit (one without exp(est) one that does)

```
posumm<-function(pofit,d=6){
    round(cbind(
    Est = pofit$beta,
    SD = sqrt(diag(pofit$vbeta)),
    lo.ci = pofit$beta-1.96*sqrt(diag(pofit$vbeta)),
    up.ci = pofit$beta+1.96*sqrt(diag(pofit$vbeta)),
    Wald = (pofit$beta/sqrt(diag(pofit$vbeta)))^2,
    PVal = 2-2*pnorm(abs(pofit$beta/sqrt(diag(pofit$vbeta))))),d)
}

posummExp<-function(pofit,d=6){</pre>
```

```
round(cbind(
    est = pofit$beta,
    SD = sqrt(diag(pofit$vbeta)),
    exp.est = exp(pofit$beta),
    exp.lo.ci = exp(pofit$beta-1.96*sqrt(diag(pofit$vbeta))),
    exp.up.ci = exp(pofit$beta+1.96*sqrt(diag(pofit$vbeta))),
    PVal = 2-2*pnorm(abs(pofit$beta/sqrt(diag(pofit$vbeta)))),d)
}
```

Data descriptions

pbc3.csv

The PBC3 trial in liver cirrhosis

Variable	Description
id	patient id
unit	hospital
days	follow-up time in days (time since randomisation)
status	0 = censoring, $1 = transplantation$, $2 = death$ without transplantation
tment	0 = placebo, 1 = CyA
sex	0 = female, 1 = male
age	age (years)
bili	bilirubin (micromoles/L)
alb	albumin (g/L)
stage	disease stage: 2 = I-II, 3 = III, 4 = IV

cphholter.csv

The Copenhagen Holter study

Variable name	Description
id	patient id
timedeath	follow-up time (days)
death	0 = alive, 1 = dead
timeafib	time to atrial fibrillation (days); missing if afib = 0
afib	0 = no atrial fibrillation, $1 = atrial$ fibrillation
timestroke	time to stroke (days); missing if stroke = 0
stroke	0 = no stroke, 1 = stroke
sex	0 = female, 1 = male
age	age (years)
smoker	current smoker: 0 = no, 1 = yes
esvea	excessive supra-ventricular ectopic activity: $0 = no$, $1 = yes$
chol	cholesterol (mmol/L)
diabet	diabets mellitus: 0 = no, 1 = yes
bmi	body mass index (kg/m²)
aspirin	aspirin use: 0 = no, 1 = yes
probnp	NT-proBNP (pmol/L)
sbp	systolic blood pressure (mmHg)

affective.csv

Recurrent episodes in affective disorders

NB: All patients start in state 1 (in hospital).

Variable name	Description
id	patient id
episode	number of affective episodes
state	Status at time start:
	0 = no current affective episode, 1 = current affective episode
start	start time in state (months)
stop	last time seen in state (months)
status	status at time stop:
	0 = transition to state 0
	1 = transition to state 1
	2 = transition to death
	3 = censoring
prev	'start' of time to next transition to state 1, even if in state 1
bip	0 = unipolar, 1 = bipolar
sex	0 = female, 1 = male
age	age (years)
year	year of initial episode

Ex 1

Consider the Copenhagen Holter study and estimate non-parametrically the cumulative hazards for stroke-free survival for subjects with and without ESVEA. Compare the two using the logrank test.

```
# Note that the time variables, timestroke and timedeath, are
# measured in days. We will first convert them to years for easier
# interpretations.
chs_data <- read.csv("cphholter.csv")</pre>
chs data$timestroke <- chs data$timestroke/365.25
chs_data$timedeath <- chs_data$timedeath/365.25</pre>
# Create composite end-point of stroke or death
chs data$timestrokeordeath <- ifelse(chs data$stroke == 1,</pre>
                                       chs data$timestroke,
                                       chs data$timedeath)
chs_data$strokeordeath <- ifelse(chs_data$stroke == 1,</pre>
                                   chs_data$death)
# Cumulative hazards with or without ESVEA:
# Nelson-Aalen estimator
library(survival)
sfit <- survfit(Surv(timestrokeordeath,strokeordeath)~esvea,data=chs_data)</pre>
plot(sfit, fun="cumhaz")
```



```
# Logrank test
survdiff(Surv(timestrokeordeath, strokeordeath) ~ esvea, data = chs_data)
Call:
survdiff(formula = Surv(timestrokeordeath, strokeordeath) ~ esvea,
    data = chs_data)
          N Observed Expected (O-E)^2/E (O-E)^2/V
                        253.4
                 230
                                   2.17
                                             18.6
esvea=0 579
                  57
                                  16.37
esvea=1 99
                         33.6
                                             18.6
Chisq= 18.6 on 1 degrees of freedom, p= 2e-05
```

Ex 2

Repeat the previous exercise, now looking instead at the competing end-points stroke and death without stroke.

```
xlab="Follow-up time (years)",
  ylab="Cumulative hazard")
legend(0, .3, c("esvea=1", "esvea=0"), lty=c(2,1), bty='n')
```

Stroke


```
# Logrank test
survdiff(Surv(timestrokeordeath, stroke) ~ esvea, data = chs_data)
Call:
survdiff(formula = Surv(timestrokeordeath, stroke) ~ esvea, data = chs_data)
          N Observed Expected (0-E)^2/E (0-E)^2/V
esvea=0 579
                  52
                        64.19
                                    2.32
                                              19.2
esvea=1 99
                  21
                         8.81
                                   16.87
                                              19.2
Chisq= 19.2 on 1 degrees of freedom, p= 1e-05
# Death without stroke: need to create indicator which censors at stroke
# but we can use the define time variable timestrokeordeath
chs_data$death_wo_stroke <- ifelse(chs_data$stroke == 1, 0, chs_data$death)</pre>
naa dws <- survfit(Surv(timestrokeordeath, death wo stroke) ~ esvea, data =</pre>
chs_data)
plot(naa_dws,fun="cumhaz", main="Death wo stroke",
     lty=c(1,2), col=c(2,2),
     xlab="Follow-up time (years)",
```

```
ylab="Cumulative hazard")
legend(0, .3, c("esvea=1", "esvea=0"), lty=c(2,1), col=c(2,2), bty='n')
```

Death wo stroke


```
# Logrank test
survdiff(Surv(timestrokeordeath, death_wo_stroke) ~ esvea, data = chs_data)
Call:
survdiff(formula = Surv(timestrokeordeath, death_wo_stroke) ~
    esvea, data = chs_data)
          N Observed Expected (0-E)^2/E (0-E)^2/V
esvea=0 579
                 178
                        189.3
                                  0.669
                                               5.8
                  36
esvea=1 99
                         24.7
                                  5.115
                                               5.8
Chisq= 5.8 on 1 degrees of freedom, p= 0.02
```

Ex 3

Estimate non-parametrically the probabilities of stroke-free survival for subjects with and without ESVEA.

```
# Kaplan-Meier estimate of the survival functions
# We already have the fit from ex 1.1!
plot(sfit)
```



```
# or failure
plot(sfit,fun="event")
```


library(survminer)

Loading required package: ggpubr

Attaching package: 'survminer'

The following object is masked from 'package:survival':

myeloma

ggsurvplot(sfit)

ggsurvplot(sfit,risk.table = TRUE)

Ex 4

Estimate non-parametrically the cumulative incidences of stroke and death without stroke for subjects with and without ESVEA.

```
# Creating event variable, 0 = censored, 1 = stroke, 2 = death w/o stroke
chs data$event <- with(chs data,</pre>
                        ifelse(death wo stroke == 0,
                               stroke,
                               death_wo_stroke*2)
                        )
# Survfit creates both competing risks
crfit <- survfit(Surv(timestrokeordeath, factor(event)) ~ esvea, data=chs_data)</pre>
plot(crfit,
     main="Cumulative incidences: Aalen-Johansens estimator",
     lty=c(1,2,1,2), col=c(1,1,2,2),
     xlab="Follow-up time (years)",
     ylab="Probability in state")
legend(0, .4,
       c("death wo stroke:esvea=1", "death wo stroke:esvea=0",
         "stroke:esvea=1", "stroke:esvea=0"),
       lty=c(2,1,2,1), col=c(2,2,1,1),
       lwd=2, bty='n')
```

Cumulative incidences: Aalen-Johansens estimate

Cumulative hazards: Nelson-Aalen estimator


```
# Stacked plot
library(survminer)
ggcompetingrisks(crfit)
```

Cumulative incidence functions

Estimate also the 10-year restricted mean stroke-free survival times and the expected number of years lost due to stroke or death without stroke for subjects with and without ESVEA.

```
print(sfit,rmean=10)
Call: survfit(formula = Surv(timestrokeordeath, strokeordeath) ~ esvea,
    data = chs_data)
          n events rmean* se(rmean) median 0.95LCL 0.95UCL
               230
                     8.97
                             0.0949
esvea=0 579
                                         NA
                                                 NA
                                                         NA
                57
                     7.71
esvea=1 99
                             0.3051
                                         11
                                               8.93
                                                         NA
    * restricted mean with upper limit = 10
print(crfit,rmean=10)
Call: survfit(formula = Surv(timestrokeordeath, factor(event)) ~ esvea,
    data = chs_data)
                             rmean se(rmean)*
                n nevent
                       0 8.9691353 0.09488854
esvea=0, (s0) 579
esvea=1, (s0) 99
                       0 7.7107419 0.30513218
esvea=0, 1
              579
                      52 0.2888054 0.05384486
esvea=1, 1
               99
                      21 0.9491078 0.22774760
esvea=0, 2
                     178 0.7420592 0.08273372
              579
```

esvea=1, 2 99 36 1.3401503 0.25872072 *restricted mean time in state (max time = 10)

Ex 1

Consider the data from the Copenhagen Holter study and the composite end-point stroke-free survival. Fit a Cox model and estimate the hazard ratio between subjects with or without ESVEA.

Ex 2

Fit a Cox model as before, now also adjusting for sex, age, and systolic blood pressure.

Any changes in conclusion regarding effect of treatment?

Ex 3

Consider the data from the Copenhagen Holter study and fit Cox models for the **cause-specific hazards** for the two outcomes (1) stroke and (2) death without stroke including ESVEA, sex, age, and systolic blood pressure. Compare to previous exercise.

Ex 4

Reproduce the results in Table 2.14 (as many as time allows).

Ex 1

Fit Fine-Gray models for the cumulative incidences of stroke and death without stroke adjusting for ESVEA, sex, age, and systolic blood pressure. Are the (adjusted) associations between ESVEA and the cumulative incidences statistically significant?

Ex 2

Consider the data on recurrent episodes in affective disorder. Estimate non-parametrically the mean number of episodes, $\mu(t)$, in [0,t] for unipolar and bipolar patients, taking the mortality into account. Estimate, incorrectly, the same mean curves by treating death as censoring and compare with the correct curves.

Ex 3

Continuing the previous exercise, fit Ghosh-Lin models for the expected number of episodes, $\mu(t)$, in [0,t] taking the mortality into account and adjusting for initial diagnosis (bipolar vs. unipolar) and calendar year of diagnosis. Fit, incorrectly, LWYY models for the same expectations by treating death as censoring and compare with the correct analysis.

Ex 1

Calculate the pseudo observations (POs) based on Kaplan-Meier at year 2 and year 3 (separately), and add these to the PBC3 data.

Ex 2

Estimate, separately for year 2 and 3, the risk difference between the two treatments using POs and the 'identity' link function.

Ex 3

Same as 2. while adjusting for alb and log2(bili).

Ex 4

Repeat 2. and 3. using the 'log' link function, i.e., targeting the risk ratio.

Ex 5

Repeat 2. and 3. using the 'cloglog' link function, i.e., targeting the hazard ratio.

Ex 6

Calculate the POs at year 1, 2, 3, and 4 in 'one go' and create a data set of long format and estimate a joint model using the 'cloglog' link function and tment as the only covariate.

Ex 7

Repeat 6 but now adjusted for alb and log2(bili).

Ex 1

Estimate, separately for year 3 and 4, the RMST difference between the two treatments using POs and the 'identity' link function.

Ex 2

Same, while adjusting for 'alb' and 'log2(bili)'.

Ex 3

Calculate the POs based on Aalen-Johansen for both event types at year 2 and year 3 (separately) and add to the PBC3 data.

Ex 4

Estimate, separately for year 2 and 3, the risk difference between the two treatments using POs for transplantation. Use the 'identity' link function.

Ex 5

Same as 4. now adjusting for 'alb' and 'log2(bili)'.

Ex 6

Repeat 4. and 5. using the 'cloglog' link function.

Ex 7

Calculate the POs at year 1, 2, 3, and 4. Create a data set with long format and estimate a joint model using the 'cloglog' link function and 'tment' as the only covariate.

Ex 8

Same as 7. now adjusting for 'alb' and 'log2(bili)'.

Ex 9

Estimate the difference between treatments of years lost due to transplantation before year 3 and 4 (separately) using POs and the 'identity' link function.

Ex 10

Same adjusted for 'alb' and 'log2(bili)'.