Algorithmische Graphentheorie

Julian Schubert

30. April 2021

Inhaltsverzeichnis

1	Wichtige Begriffe	2
2	Eulerkreise 2.1 Eulerkreis finden	2
3	Hamiltonkreise	2
4	Handlungsreisen (TSP)	3
5	Lineare Programmierung	3

1 Wichtige Begriffe

Definition 1

Ein gerichteter Graph G ist **schwach** zusammenhängend wenn der darunterliegende ungerichtete Graph zusammenhängend ist

Ein gerichteter Graph G ist **stark** zusammenhängend wenn es für jedes Knotenpaar (u, v) einen gerichteten Weg von u nach v gibt

2 Eulerkreise

Definition 2: Eulerkreis

Sei G ein (un-)gerichteter Grpah.

Ein Eulerkreis (-weg) in G ist ein Kreis (Weg), der jede **Kante** genau einmal durchläuft.

Ein Graph heißt eulersch, falls er einen Eulerkreis enthält

Ein Graph der nur einen Eulerweg aber keinen Eulerkreis enthält, ist nicht eulersch!

Eigenschaft 1: Satz von Euler

Sei G ein ungerichteter und zsh. Graph.

Dann gilt: G eulersch \Leftrightarrow alle Knoten haben geraden Grad

Bei gerichteten Graphen: indeg(v) = outdeg(v)

2.1 Eulerkreis finden

Man kann in O(E) testen on G eulersch ist (Knotengrade zählen)

Eulerkreis finden:

Verwalte in jedem Knoten v eien zeiger $\operatorname{curr}[v],$ der auf den ersten unbenutzten Nachbarn w zeigt

3 Hamiltonkreise

Definition 3: Hamiltonkreis NP-schwer

Sei G ein (un-)gerichteter Graph. Ein Hamiltonkreis (-weg) in G ist ein Kreis (Weg), der jeden **Knoten** genau einmal durchläuft.

Eigenschaft 2: Satz von Bondy und Chvátal

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$ Seien u und v nicht-adjazente Knoen von G mit $\deg(u) + \deg(v) \ge n := |V|$. Dann gilt:

G hamiltons \Leftrightarrow G + uv hamiltonsch

Eigenschaft 3: Satz von Dirac

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$. Falls jeder Knoten von G Grad $\ge |V|$ / 2 hat, so ist G hamiltonsch

TODO: Beweisen

4 Handlungsreisen (TSP)

Lösbar mit Algorithmmus von Bellman & Held-Karp

5 Lineare Programmierung

Definition 4: Knotenüberdeckung

Gegeben: Graph G = (V, E)

Gesucht: Knotenüberdeckung, d.h. $V' \subseteq V$, so dass jede Kante minde-

stens einen Endpunkt in V' hat.

Ziel: |V'| minimal

Definition 5: Clique

Gegeben: ungerichteter, ungewichteter Graph G = (V, E)

Gesucht: Clique in G

d.h. $V' \subseteq V$, so dass der von V' induzierte Graph G[V'] vollständig ist (also jeder Knoten eine Verbindung zu jedem anderen Knoten hat)

Mit anderen Worten: $V' \subseteq V$, so dass für alle $\{u',v'\} \in \binom{V'}{2}$ gilt $u'v' \in E$

Definition 6: Fluss

Sei G=(V,E) ein gerichteter Graph mit $s,t\in V.$ Eine funktion $f:E\to$

 $\mathbb{R}_{\geq 0}$ heißt s-t-Fluss (Fluss), wenn für jeden Knoten $v \in V \backslash \{s,t\}$ gilt:

$$\sum_{u \in V \mid uv \in E} f(uv) - \sum_{w \in Vvw \in E} f(vw) = 0$$

Zufluss zum knoten $\mathbf{V}=\mathbf{A}\mathbf{b}$ fluss vom Knoten v
, also der Nettozufluss muss gleich Null sein.

Definition 7

Sei G = (V, E) ein gerichteter Graph mit $s, t \in V$.

Seien durch $c:E\to\mathbb{R}_{\geq 0}$ Kantenkapazitäten gegeben. Ein Fluss f
 ist zulässig, wenn für jede Kante $e\in E$ gilt:

$$0 \le f(e) \le c(e)$$

Der Wert |f| eines Flusses f ist der Nettozufluss zum Knoten t.