上海交通大学 2015-2016 学年第一学期《矩阵理论》试卷 (A)

姓名	Z	学号	教师姓名	i成绩_	
	单项选择题 (每题 3 分, 共 15 分)			
示 $f(x)$ $U = \{f(x) \mid \mathbf{y} \in \mathbf{y}\}$ 以 的	$\in V$ 的 n 阶导数 $0 \in V \mid f^{(n)}(0) = 0$	文, $f^{(0)}(x) = f(x)$. 第 = 0, $n \le 1949$ }, $W =$ 竹维数 dim $(U+W)$	给定 V 的两个子空 $=\{g(x)\in V g(x)=0\}$	天线性空间.设 $n \ge 0, f^0$ 间 U, W 如下: $= x^{1896}(x-1)^{60}h(x), \forall h$ (D) 117	
` '		. ,	, ,	A 的列空间与零空间.	\\
LR 是 A R(A N(A	的一个满秩分 $A = R(L)$,	解. 考虑下述 8 个等 $R(A^*) = R(L^*),$ $N(A^*) = N(L^*),$	控制: $R(A) = R(R),$		MA —
(\mathbf{A})	0	(B) 2	(C) 4	(D) 6	
				$1)$ 与 $x^2(x-1)^2$,则矩阵	车
$\begin{pmatrix} 2A - \\ 2A - \end{pmatrix}$	$\left(egin{array}{cc} B & B-A \ B & 2B-A \end{array} ight)$	的 Jordan 标准形成	所含 Jordan 块的	个数为 ()	
		(B) 6		(D) 8	
(\mathbf{A})	$ A^2 _F = A $!矩阵, ● _F 是矩序 ² _F * Ax	(B) $ A^2 _F = A^* $	$A \parallel_F$	
(C)	$\ A\ _F = \sup_{x \neq 0} \frac{1}{x}$	$\frac{*Ax}{x^*x}$	(D) $ A _F^2 = \sup_{x \neq 0} A$	$\frac{x^*x}{x^*x}$	
			勺 Moore-Penrose	广义逆, A* 表示矩阵 A	的共轭
A*. 则上述等	$;$ 虑下述 4 个等 $;$ $AA^{\dagger}=A^{st};$ f式恒成立的个 $ $ 1	$A^{\dagger}AA^* = A^*$ 数为 ().	$(A^*A)^{\dagger}A^* = A^{\dagger}$ (C) 3	, ,	
	- 填空题 (每题			(-) -	
6. ֆ	` 设σ是ℝ²上的:	,	$(0,0)^T, e_2 = (0,1)^T$	$,\sigma(e_1) = e_1,\sigma(e_1+e_2)$	$= 2e_1,$
7. ì	몇 $e_1 = (1,0,0)^T$	$\vec{r}, e_2 = (0, 1, 0)^T, A =$	$= (e_1, e_1)$. $MAx =$	e_2 的最优解为 ()
8.	$\mathbf{\hat{z}} A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$,则 $\cos^2(At)$	$-\sin^2(At) = \mathbf{(}$).
9. i 为 (及 A 是秩为 2 的	J3阶投影矩阵,3 <i>B</i>).	$B = I - A, C = \sum_{n=1}^{\infty}$	$\sum_{i}B^{n},\;oldsymbol{eta}e^{Ct}$ 的 Jordan	标准形
•	$\forall \alpha \beta \in \mathbb{C}^n $ (a	,	計的2- 茄粉 /即颐	几里德范数), $\ \alpha\ _2=1$	$\ \beta\ _{2} =$
		$t \geq 2$), $\ \bullet \ _2$ 定闲量 $lpha eta^* + eta lpha^*$ 的 Moore).

三. 计算题与证明题 (11-14 题每题 15 分, 15 题 10 分, 共 70 分)

11. 设

 $U = \{(x, y, z, w)^T \in \mathbb{R}^4 \mid x + y + z + w = 0\}, \ W = \{(x, y, z, w)^T \in \mathbb{R}^4 \mid x - y + z - w = 0\}$ 是通常欧氏空间 \mathbb{R}^4 的两个子空间. 设 I 是 \mathbb{R}^4 上的恒等变换.

- (1) 求 $U 与 U \cap W$ 的正交补 $(U \cap W)^{\perp}$ 的各一组标准正交基;
- (2) 试求出 \mathbb{R}^4 上的所有正交变换 σ 使得线性变换 $I-\sigma$ 的核 $Ker(I-\sigma)=U$.

12. 设 $n \geq 2$, $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{C}^n$. 定义线性变换 $\sigma: \mathbb{C}^n \to \mathbb{C}^n$ 如下:

$$\sigma(x) = (x_2, x_3, ..., x_n, x_1)^T.$$

设 σ 在标准基 $e_1, e_2, ..., e_n$ 下的矩阵为A, 其中 $e_i (1 \le i \le n)$ 为n阶单位矩阵的第i列.

- (1) 求A;
- (2) 求 σ 的特征值与特征向量;
- (3) 求 A 的谱分解 (请写出乘法形式与加法形式).

13. 设
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$
.

- (1) 求 A 的 Jordan 标准形 J;
- (2) 计算 e^{At} ;
- (3) 设 $x(0) = (1,0,0)^T$. 求定解问题x'(t) = Ax(t)的解.

- 14. 已知 n 阶 Hermite 矩阵 A 的秩为 r, 其谱分解为 $A=UDU^*$, 其中 U 为酉矩阵, $D=\mathrm{diag}\left(a_1,\cdots,a_r,0,\cdots,0\right)$ 是对角矩阵. 记 I 为 n 阶单位矩阵.
- (1) 判断矩阵 $C = e^A$ 是否存在正交三角分解 (即 UR 分解)? 如果判断是,请求出 C 的一个正交三角分解; 如果判断不是,请说明理由;
 - (2) 求分块矩阵 $M = (A \sin A)$ 的奇异值分解.

- **15.** 设 *A* 为 *n* 阶复矩阵.
- (1) 证明: 存在酉矩阵 U 和半正定矩阵 P, 使得 A = UP. (此分解称为 A 的极分解.)
- (2) 给出U 与P唯一的充分必要条件.

2014-2015 学年度上学期《矩阵理论》期末试题

一. 选择题:

1. n(≥ 2	2)阶实奇异矩阵	车A 的特征多 ³	项式与最小	多项式相	等,则A的伴
随矩阵列	可空间的维数为	()			
A. 0	B. 1	C. n	D. 不能	能确定	
2. 设σ爿	是n维线性空间	上的线性变热	奂,适合下列	条件的与	其它三个不
同的是	()				
Α. σ是单	映射	В. с	$\dim(\operatorname{Im}(\sigma))$) = n	
C. σ是一	一对应	D. 6	σ适合条件σ	$\sigma^n = 0$	
3. 设A是	上实的反对称矩	阵,则下列命	题正确的是	± ()	
A. e ^A 是	实的反对称矩阵	车 B.	e ^A 是正交矩	阵	
C. cos A	是实的反对称第	矩阵 D.	sin A是实	的对称矩阵	车
4. 设方图	华A 幂收敛到方	阵B,则下列记	兑法		
① B =	= 0	②B	是幂等矩阵		
③ AB =	= BA = B	@r(.	$A) \ge r(B)$		
正确的有	頁()个				
A. 1	B. 2	C.	3	D. 4	
5. 设n维	崖向量 $x = \frac{1}{\sqrt{n}}(1$	1 ··· 1) ^T	$n, n \ge 2, B =$	$= I - xx^{T},$	其中I为单位
矩阵,则	下列选项正确	的是()			
A. B ₁	= 1 B. B	$\ _{\infty} = 1$ C	$ B _2 = 1$	D.	$\ B\ _F = 1$

二. 填空题:

1.设
$$e^A = \begin{pmatrix} e & e^2 - e \\ 0 & e^2 \end{pmatrix}$$
,则 $A = \underline{\hspace{1cm}}$

- 2.设n阶方阵A的最小多项式为 $\lambda^k(\lambda \lambda_1)$ … $(\lambda \lambda_{n-k})$, 其中 $n \ge k \ge 2, \lambda_1, \lambda_2, ..., \lambda_{n-k}$ 全不为 0,则 dim R(A^{k-1})=_____;
- 3. 设A = $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$,矩阵 sinA的 Jordan 标准形 $J_{sinA} =$ ______.
- 4. 矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, A的 Cholesky 分解 $A = LL^T$,下三角矩阵

5. 设给定矩阵 $A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$,矩阵空间 $R^{2\times 2}$ 上线性变换T为: T(X) = kX + AXB, $\forall X \in R^{2\times 2}$.T是可逆变换当且仅当参数k

满足条件 .

- 三. 设V是有限维欧氏空间, $u \in V$ 是一个单位向量, V上线性变换 σ 定义为: 对任意 $x \in V$, $\sigma(x) = x a(x, u)u$.
- (1) 试求非 0 实数 a,使得 σ 是V上正交变换.
- (2) 多项式空间 $R[x]_3$ 中的内积定义如下: 对任意 $f(x),g(x) \in R[x]_3$, $(f(x),g(x)) = \int_0^1 f(x)g(x)dx$. 试求 $R[x]_3$ 中向量 $\alpha = 1$ 和 $\beta = x$ 的长度; 并求正实数k和单位向量 $u \in R[x]_3$,使得上述正交变换 σ 将向量 α 变成 k β .

四. 设A =
$$\begin{pmatrix} 0 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 1 & 1 \\ -1 & 1 & 1 & -1 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}$$

- (1)求矩阵A的一个满秩分解LR,使得L的第一列为矩阵A的最后一列,并给出A的列空间R(A)的一组基;
 - (2)求A的左零化空间N(AT)的一组基;

(3)设
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, 求向量 b 在线性空间R(A)上的最佳近似.

(4)设 σ 是线性空间 R^4 上的正交投影变换,且满足 σ 的像空间 $Im(\sigma) = R(A)$,试求 σ 在标准基 e_1 , e_2 , e_3 , e_4 下的矩阵.

五. 设矩阵A =
$$\begin{pmatrix} -1 & -2 & 2 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
.

- (1)求矩阵A的 Jordan 标准形J;
- (2)试求一个可对角化矩阵D和一个幂零矩阵N,且DN = ND,使得 A = D + N.
 - (3)计算e^{At};

$$(4)$$
设 $x(0) = (1 2 3)^T$. 求定解问题 $x'(t) = Ax(t)$ 的解.

六. 设 σ 是由线性空间 R^m 到线性空间 R^n 上的线性变换, 其中 $m \le n$.

- (1)试证: 存在 R^m 到 R^m 上的幂等变换 τ ,及 R^m 到 R^n 上的单变换 φ ,使 得 $\sigma = \varphi \cdot \tau$
- (2)令m=2, n=4,线性变换 σ 为: $\sigma(x,y)^T=(x,y,2x,-y)^T$. 试求 R^2 上一组标准正交基,及 R^4 上一组标准正交基, 使得线性变换 σ 在这

两组基下的矩阵为对角线元素均非负的4×2矩阵.

七. 证明变换 $tr: X \to tr(X)$ 是线性空间 $M_n(R)$ 到R的满足性质: $\sigma(XY) = \sigma(YX)$ 及 $\sigma(I) = n$ 的唯一的线性变换.

上海交通大学 2013-2014 学年第一学期《矩阵理论》试卷

	姓名	学号	教师	节姓名	成绩
	一. 单项选择	¥题(每题 3 分, 共 1	5分)		
Ed. 1	$U = \{A =$	体 3 阶实矩阵构成的 $=(a_{ij})\in V a_{12}+a_{23}$		$W = \{ A \in V \mid A$	$\mathbf{I}^T - A = 0\}.$
则口	$\operatorname{im}(U \cap W) = \mathbf{(A)} 3$	•	$(\mathrm{C})5$	(D) 6	
则上	甲 $.(U+W)$ 丙 $.X+(U)$		(X+X); Z. $(X+X);$ T. $(X+X);$	$(U+W)\bigcap X=(0)$	$U \cap X) + (W \cap X);$ $X \cap U) + (X \cap W).$
	` ,	n ≥ 2) 维单位向量,	,	,	
则上	甲. A 存在三 丙. A 存在 Q 二述四个命题位	角分解 R 分解 亘成立的个数为(乙. A 存在谱分解 丁. A 存在奇异值分).	分解	
	(A) 1	` '	, ,	(D) 4	
	$(\mathbf{A}) \ A^2 \ _F =$	介正规矩阵, $\ \bullet \ _F$: $= \ A\ _F^2$: $\sup_{x \neq 0} \frac{x^*Ax}{x^*x}$	(B) $ A^2 _F =$, ,	
		$\mathbf{F} A$ 满足条件 $A^2 = \mathbf{F}$		$x^{\mu}x$	
			• • • • • • • • • • • • • • • • • • • •	(A) $(D) \frac{1}{2} [(a)$	$(e-e^{-1})I + (e+e^{-1})A$
	二. 填空题(每题 3 分, 共 15 分)			
随变	* * * - *	$(z)^T) = (x + 2y - z,$ 间 $Im(\sigma^*)$ 的一个标	- '	次氏空间 <i>R</i> ³ 上的	J线性变换, 则 σ 的伴).
为2	,	$egin{aligned} egin{aligned} egin{aligned} A &= B \ A &= B \end{aligned} \end{pmatrix} 的极小多$		$B^2 = I$. 如果 I	+ <i>B</i> 的零空间的维数).
果x		$(x_2,\cdots,x_n)^T,y=1$ [阵 xy^T 的三角分解		两个n维向量,	其中 $x_1=y_1=1$. 如))。
	9. 设 $A = \left(\begin{array}{c} \end{array} \right)$	$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $\cos($	At) = ().

).

Penrose 逆为(

10. 设 α, β 是两个正交的 $n (n \ge 2)$ 维向量, 且 $\alpha^* \alpha = \beta^* \beta = 4$, 则矩阵 $\alpha \beta^* + \beta \alpha^*$ 的 Moore-

- 三. 计算题与证明题 (11-14 题每题 15 分, 15题 10 分, 共 70 分)
- 11. 设 $U=\{(x,y,z,w)\,|\,x+y+z+w=0\},\;W=\{(x,y,z,w)\,|\,x-y+z-w=0\}$ 是通常欧氏空间 \mathbb{R}^4 的两个子空间.
 - (1) 求 $U \cap W$, U + W 的维数与各自的一组标准正交基;
 - (2) 求 U 的一个 2 维子空间 U_0 使得 其正交补空间 $U_0^{\perp} \subseteq W$;
 - (3) 设 σ 是 \mathbb{R}^4 上的正交投影变换使得 $Ker(\sigma) = U$, 求 σ 在标准基下的矩阵.

12. 设有 $n (n \ge 2)$ 阶实对称矩阵

$$A = \begin{pmatrix} 1 + a_n^2 & a_1 & 0 & \cdots & 0 & 0 & a_n \\ a_1 & 1 + a_1^2 & a_2 & \cdots & 0 & 0 & 0 \\ 0 & a_2 & 1 + a_2^2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-2} & 1 + a_{n-2}^2 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & a_{n-1} & 1 + a_{n-1}^2 \end{pmatrix}$$

其中 a_i ($1 \le i \le n$) 为实数. 记 $x = (x_1, x_2, \dots, x_n)^T$, $f(x) = f(x_1, x_2, \dots, x_n) = x^T A x$.

- (1) 判断集合 $U = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ 是否为 \mathbb{R}^n 的子空间; 如果是, 求其维数; 如果否, 求其生成的子空间的维数;
- (2) 设存在 \mathbb{R}^n 的内积 (\bullet, \bullet) 使得对任意 $x \in \mathbb{R}^n$ 有 (x, x) = f(x), 求 a_i $(1 \le i \le n)$ 的值; 并求向量 $\alpha = (1, 0, \cdots, 0)^T$ 与 $\beta = (1, 1, \cdots, 1)^T$ 在该内积下的长度与夹角.

13. 设
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$
.

- (1) 求 A 的 Jordan 标准形 J;
- (2) 计算 e^{At};
- (3) 设 $x(0) = (1, 1, 1)^T$. 求定解问题x'(t) = Ax(t)的解.

- 14. 设两个 n 阶 Hermite 矩阵 A,B 的谱分解分别为 $A=UDU^*,B=V\Lambda V^*$, 其中 U,V 均为酉矩阵, $D=\mathrm{diag}\,(a_1,\cdots,a_s,0,\cdots,0),\Lambda=\mathrm{diag}\,(b_1,\cdots,b_t,0,\cdots,0)$ 是对角矩阵, $a_i\neq 0,1\leq i\leq s,b_j\neq 0,1\leq j\leq t$. 记 I 是 n 阶单位矩阵.
 - (1) 求 $C = A e^{iB}$ 的奇异值分解;
 - (2) 求 分块矩阵 $M=\left(egin{array}{cc} 0 & A \ B & 0 \end{array}
 ight)$ 的奇异值分解;
 - (3) 求 分块矩阵 $N=\left(egin{array}{c}A\\I\end{array}
 ight)$ 的 Moore-Penrose 广义逆.

15. 设 $V=M_n(\mathbb{C})$ 是全体 n 阶复矩阵构成的复线性空间, $A,B\in V$. 对任意 $X\in V$,定义 $\sigma(X)=AX-XB$. 证明: A 与 B 没有公共特征值的充分必要条件是对任意 n 阶矩阵 $C\in V$,存在唯一的 n 阶矩阵 $X\in V$ 使得 $\sigma(X)=C$.