

Random Forest

Ensembled Learning

- Random Forest is an ensembled learning approach
- In ensembled learning approach, multiple predictive models are developed and results are aggregated to improve the precision

Random Forest

- In this algorithm, the observations as well as variables are sampled to create multiple decision trees
- Each observation is classified by each decision tree.
- The outcome is considered as per the majority in different trees

Algorithm (Considering N observations & M variables)

- 1. Sample out of N cases with replacement from the training set, many samples. Consider each sample as root node for the decision trees to be constructed.
- 2. Choose some m < M number of variable by sampling at each node created in step 1.
- 3. Grow each tree without pruning with minimum node size as 1
- Classify the validation / test set observations by traversing them through all the grown trees.
- 5. Classify each outcome by a majority vote of the trees.

OOB

- Each tree is constructed using a different bootstrap sample from the original data.
- About one-third of the cases are left out of the bootstrap sample and not used in the construction of the kth tree.
- Put each case left out in the construction of the kth tree, traverse the kth tree to get a classification.
- In this way, a test set classification is obtained for each case in about one-third of the trees. At the end of the run, take j to be the class that got most of the votes every time case n was oob.
- The proportion of times that j is not equal to the true class of n averaged over all cases is the oob error estimate. This has proven to be unbiased in many tests.
- This is done internally with the training set

Variable Importance

 The importance gives the list of variables along with the measure of their importance in terms of the purity gained by them.