Πώς αξιολογούμε αλγορίθμους

Ο συμβολισμός big-O, O()

Απόλυτος Τρόπος Σύγκρισης

- Οι υπολογιστές εξελίσσονται, χρειαζόμαστε «μέτρα και σταθμά» για να μετρήσουμε αλγορίθμους, όχι με απόλυτους χρόνους.
- Κάποιος δοκιμάζει ένα πρόγραμμα σε ένα υπολογιστή και κάποιος άλλος σε άλλον και παίρνουν διαφορετικούς χρόνους.
- Ποιος έχει δίκιο; (μπορεί και οι δύο η κανένας)
- Σύγκριση ανεξάρτητη από Σύστημα (H/W, O/S, Compiler)

Τα Μέτρα μας

- Εμπειρικά αποτελέσματα απλά συγκρίνουν μέγεθος με χρόνο σε κάποιο μηχάνημα. Χρειαζόμαστε κάτι γενικότερο.
- Το πλήθος των δεδομένων. Όσο πιο πολλά δεδομένα τόσο περισσότερος ΧΡΟΝΟΣ και ΧΩΡΟΣ απαιτείται.
- Κριτήριο Χρόνου. Ποια πράξη είναι αυτή που γίνεται πιο συχνά (κυριαρχεί).
 - Απόδοση τιμής,
 - σύγκριση,
 - Πρόσθεση, πολλαπλασιασμός

Παράδειγμα.

Τρέχουμε ένα απλό αλγόριθμο ταξινόμησης (έστω SelectionSort) σε δύο μηχανές για διάφορα μεγέθη (n):

Array Size = n	Home Computer	Desktop Computer		
125	12.5	2.8		
250	49.3	11.0		
500	195.8	43.4		
1000	780.3	172.4		
2000	3114.9	690.5		

Σημεία μετρήσεων

υπολογίζουμε εξισώσεις-τάσεις

Ο συμβολισμός big-O O()

Έχουμε δύο περιπτώσεις

$$F_1(n) = 0.0008 n^2 + 0.0032 n + 0.0627$$

$$F_2(n) = 0.0002 n^2 + 0.0005 n + 0.0784$$

το n² μεγαλώνει πιο γρήγορα από το n, δεν περιμένουμε οι συναρτήσεις να μεγαλώνουν πολύ χειρότερα από 0.0008 n² and 0.0002 n², αντίστοιχα. Μπορούμε να βρούμε σταθερές

$$C_1 > 0.0008 \text{ kai } C_2 > 0.0002$$

ώστε

$$F_1(n) <= C_1 n^2$$
 και $F_2(n) <= C_2 n^2$ για "μεγάλα" n.

$O(n^2)$

Λέμε ότι $F_1(n) = O(n^2)$, και επίσης $F_2(n) = O(n^2)$.

Το νόημα του συμβολισμού είναι ότι υπάρχουν σταθερές $\mathbf{C_1}$ και $\mathbf{C_2}$, καθώς και θετικοί ακέραιοι $\mathbf{N_1}$ and $\mathbf{N_2}$ ώστε

$$F_1(n) <= C_1 n^2$$
 για ὁλα τα $n >= N_1$

Kai

$$F_2(n) <= C_2 n^2$$
 για όλα τα $n >= N_2$.

Δεν διαφοροποιούμε την απόδοση της F1 και F2. Μας ενδιαφέρει η συμπεριφορά του αλγόριθμου και όχι ο ακριβής χρόνος τρεξίματος σε κάποια μηχανή.

Σταθερές c και Ν

1, logn, \sqrt{n} , n, nlogn, n^2 , 2^n , n!

Μερικές Συγκρίσεις: F(n)

n	$\log_{10}(n)$	n ^{1/2}	$n \log_{10}(n)$	n^2	n^3	2 ⁿ	n ⁿ
1	0	1	0	1	1	2	1
10	1	$10^{0.5}$	10	10^{2}	10^{3}	1024	10^{10}
10^{2}	2	10	$2*10^2$	10^{4}	10^{6}	$\approx 10^{30}$	10^{200}
10^{3}	3	$10^{1.5}$	$3*10^3$	10^{6}	10^{9}	$\approx 10^{300}$	
10^{4}	4	10^{2}	$4*10^4$	10^{8}	10^{12}		
10^{5}	5	$10^{2.5}$	$5*10^5$	10^{10}	10^{15}		
10^{6}	6	10^{3}	$6*10^6$	10^{12}	10^{18}		
10^{7}	7	$10^{3.5}$	$7*10^7$	10^{14}	10^{21}		
10^{8}	8	10^{4}	$8*10^{8}$	10^{16}	10^{24}		
10^{9}	9	$10^{4.5}$	9*10 ⁹	10^{18}	10^{27}		
10^{10}	10	10^{5}	$10*10^{10}$	10^{20}	10^{30}		

Παρατήρηση: 3.15*10¹³ microseconds σε ένα έτος.

Ο() χρήσιμος για πρόβλεψη χρόνου που απαιτείται και καθορίζει στρατηγικές σχεδιασμού αλγορίθμων.

Αντικείμενο μελλοντικού μαθήματος (Σχεδιασμός Αλγορίθμων)