Definition

Given:

ightharpoonup a manifold \mathcal{M} ;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

Definition

Given:

- ightharpoonup a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}(f)$$

$$x \sim y \text{ if } f(x) = f(y) \text{ and they belong to the same connected component of } f^{-1}(f(x))$$

Definition

Given:

- ightharpoonup a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

The **segmentation map** is the quotient map

Desired algorithm

Input:

ightharpoonup a PL manifold ${\cal M}$

Desired algorithm

Input:

a PL manifold M
 → a triangulated mesh M;

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- ightharpoonup a non-degenerate PL scalar field f on ${\cal M}$

Desired algorithm

Input:

- ightharpoonup a PL manifold ${\cal M}$
 - \rightsquigarrow a triangulated mesh \mathcal{M} ;
- ightharpoonup a non-degenerate PL scalar field f on ${\cal M}$
 - \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .
 - pairwise different, in order to ensure non-degeneracy; this can be achieved by random perturbations

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- ▶ a non-degenerate PL scalar field f on \mathcal{M} \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

► graph + segmentation map

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- a non-degenerate PL scalar field f on M
 → a scalar value f(v) for each vertex v of M.

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

Time complexity:

 \triangleright $O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

#vertices + #edges + #triangles

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- a non-degenerate PL scalar field f on M
 → a scalar value f(v) for each vertex v of M.

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

Time complexity:

 $ightharpoonup O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

Parallel.

Geometry of critical points

There are three kinds of critical points:

Geometry of critical points

There are three kinds of critical points:

▶ (local) maxima

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ▶ (local) minima
- saddles

Geometry of critical points

There are three kinds of critical points:

► (local) maxima

► (local) minima

saddles

How to detect them on a PL manifold?

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
 ~> Link⁺ empty;
- ► (local) minima

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
 ~> Link⁺ empty;
- ► (local) minima ~> Link⁻ empty;
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
 ~> Link⁺ empty;

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$\mathsf{Link}^+(v) = \{ x \in \mathsf{Link}(v) : f(x) > f(v) \}$$

 $\mathsf{Link}^-(v) = \{ x \in \mathsf{Link}(v) : f(x) < f(v) \}$

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

► Maxima and minima \rightsquigarrow nodes of valence 1 (leaves).

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima

 → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .
 - ▶ Join saddles: multiple components below.
 - ► Split saddles: multiple components above.

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .
 - ▶ Join saddles: multiple components below.
 - ► Split saddles: multiple components above.

non-mutually exclusive in dimension ≥ 3

Informal description

ightharpoonup Process the vertices of the mesh by **increasing** value of f.

Informal description

- ightharpoonup Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.

Informal description

- ightharpoonup Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- ▶ While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;

Informal description

- Process the vertices of the mesh by increasing value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- ▶ While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;
 - ▶ the current **level set** $f^{-1}(r)$.

each connected component corresponds to an open arc of the partial Reeb graph

Informal description

- ightharpoonup Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;
 - ▶ the current **level set** $f^{-1}(r)$.
- When processing a vertex, update the level set and the Reeb graph accordingly.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

▶ nodes \leadsto edges of the mesh \mathcal{M} ;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

 \rightarrow a triangle connects its two sides intersecting $f^{-1}(r)$

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

▶ **Trigger**: update when processing a vertex v.

$$from r = f(v) - \epsilon to r = f(v) + \epsilon$$

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

Data structure: the following operations are required;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. v is the lower vertex of \mathcal{T} .

- Data structure: the following operations are required;
 - find the connected component of a node e;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

- Data structure: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new arc between nodes e_1 , e_2 ;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the upper vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. v is the lower vertex of \mathcal{T} .

- Data structure: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new arc between nodes e_1 , e_2 ;
 - delete the arc between nodes e1, e2;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. v is the middle vertex of T.
 - 3. v is the lower vertex of \mathcal{T} .

- Data structure: the following operations are required;
 - find the connected component of a node e;
 - insert a new arc between nodes e_1 , e_2 ;
 - delete the arc between nodes e1, e2;
 - → offline dynamic connectivity problem

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ arcs \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the upper vertex of T.
 - 2. v is the middle vertex of T.
 - 3. \mathbf{v} is the lower vertex of \mathcal{T} .

- ▶ Data structure: the following operations are required;
 - find the connected component of a node e;
 - insert a new arc between nodes e_1 , e_2 ;
 - ightharpoonup delete the arc between nodes e_1 , e_2 ;
 - → offline dynamic connectivity problem → ST-trees

support all the operations in $O(\log m)$

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Reeb graph constructed so far; -

The augmented Reeb graph has one open arc for each component of G_r

The partial augmented Reeb graph is represented by a pair $(\overline{\mathcal{R}}, \Phi)$.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

partial segmentation map; maps each vertex of the mesh to a node or an arc of ${\cal R}\,$

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$ lower components

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$ upper components

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \big\{ \mathit{G}_{\mathit{f}(v) + \epsilon}.\mathtt{find}([\mathit{vv'}]) : \mathit{v'} \in \mathsf{Link}^+(\mathit{v}) \big\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - $ightharpoonup \mathcal{R}$ is unchanged;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \big\{ \mathit{G}_{\mathit{f}(v) + \epsilon}.\mathtt{find}([\mathit{vv'}]) : \mathit{v'} \in \mathsf{Link}^+(\mathit{v}) \big\}.$
- 3. If |Lc| = |Uc| = 1 then:
 - \triangleright \mathcal{R} is unchanged;
 - $\Phi(\nu)$ = the open arc associated to the lower component.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \big\{ \mathit{G}_{\mathit{f}(v) + \epsilon}.\mathtt{find}([\mathit{vv'}]) : \mathit{v'} \in \mathsf{Link}^+(\mathit{v}) \big\}.$
- 3. **If** $|\mathbf{Lc}| = |\mathbf{Uc}| = 1$ **then**:
 - ▶ R is unchanged;
 - $\Phi(v)$ = the open arc associated to the lower component.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - ▶ R is unchanged;
 - $\Phi(v)$ = the open arc associated to the lower component.

- 4. Otherwise:
 - create a new node w in R;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \{ G_{f(v)+\epsilon}. \mathtt{find}([vv']) : v' \in \mathsf{Link}^+(v) \}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - ▶ R is unchanged;
 - $\Phi(v)$ = the open arc associated to the lower component.

4. Otherwise:

- ightharpoonup create a new node w in \mathcal{R} ;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \{ G_{f(v)+\epsilon}. \mathtt{find}([vv']) : v' \in \mathsf{Link}^+(v) \}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - \triangleright \mathcal{R} is unchanged;
 - $\Phi(v)$ = the open arc associated to the lower component.

- reate a new node w in \mathcal{R} ;
- all the open arcs associated to the lower components end at w;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \{ G_{f(v)+\epsilon}. \mathtt{find}([vv']) : v' \in \mathsf{Link}^+(v) \}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - \triangleright \mathcal{R} is unchanged;
 - $\Phi(v)$ = the open arc associated to the lower component.

4. Otherwise:

- create a new node w in R;
- $ightharpoonup \Phi(v) = w;$
- all the open arcs associated to the lower components end at w;
- open a new arc in R starting at w for each upper component.

Full implementation

```
input: a triangulated mesh \mathcal{M}
              a scalar field f on \mathcal{M}
   output: the augmented Reeb graph (\mathcal{R}, \Phi)
1 begin
       \mathcal{R}, \Phi \leftarrow \emptyset [graph], \emptyset [function]
 2
        G_r \leftarrow \emptyset [ST-tree]
 3
       sort the vertices of \mathcal{M} by increasing value of f
 4
       foreach v vertex of M do
 5
            Lc \leftarrow GetLowerComponents(v)
 6
            UpdatePreimageGraph()
 7
            Uc \leftarrow GetUpperComponents(v)
 8
            if |Lc| = |Uc| = 1 then update \Phi(v)
 9
            else UpdateReebGraph(v, Lc, Uc)
10
       end
11
       return (\mathcal{R}, \Phi)
12
13 end
```

Core ideas

▶ **Sequential**: single procedure sweeping all the vertices sequentially.

- ► **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - ightharpoonup Each local growth updates its own preimage graph G_r .

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - ► Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - ▶ Join saddles: wait until all the involved local growths have reached the saddle, then join them.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - ▶ Join saddles: wait until all the involved local growths have reached the saddle, then join them.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - Join saddles: wait until all the involved local growths have reached the saddle, then join them.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - ▶ Join saddles: wait until all the involved local growths have reached the saddle, then join them.
 - ▶ **Split saddles**: the new open edges in $\mathcal{R}(f)$ are handled by the same local growth.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - Join saddles: wait until all the involved local growths have reached the saddle, then join them.
 - ▶ **Split saddles**: the new open edges in $\mathcal{R}(f)$ are handled by the same local growth.

- **Sequential**: single procedure sweeping all the vertices sequentially.
- ▶ Parallel: multiple procedures (local growths) running simultaneously.
 - ► A local growth is started at every minimum.
 - Each local growth spreads independently with an ordered BFS.
 - **Each** local growth updates its own preimage graph G_r .
 - ▶ Join saddles: wait until all the involved local growths have reached the saddle, then join them.
 - **Split saddles**: the new open edges in $\mathcal{R}(f)$ are handled by the same local growth.

Local growths

Data structures

Each local growth keeps:

Local growths

Data structures

Each local growth keeps:

a Fibonacci heap θ to store candidates for the ordered BFS;

Local growths

Data structures

Each local growth keeps:

candidates are \checkmark sorted by f value

a Fibonacci heap θ to store candidates for the ordered BFS;

Local growths

Data structures

Each local growth keeps:

ightharpoonup a **Fibonacci heap** θ to store candidates for the ordered BFS;

 \rightarrow can be merged in O(1)

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ightharpoonup an **ST-tree** G_r to store the preimage graph.

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ightharpoonup an **ST-tree** G_r to store the preimage graph.

 \rightarrow can be merged in O(1)

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ▶ an **ST-tree** G_r to store the preimage graph.

Join saddles

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ▶ an **ST-tree** G_r to store the preimage graph.

Join saddles

What if a saddle joins components from different local growths?

Detection: before processing a vertex v, check whether all the vertices in Link $^-(v)$ have already been visited.

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ▶ an **ST-tree** G_r to store the preimage graph.

Join saddles

What if a saddle joins components from different local growths?

Detection: before processing a vertex v, check whether all the vertices in Link $^-(v)$ have already been visited.

```
concretely, update an atomic counter
visitedLower[v] and check whether
visitedLower[v] = | Link<sup>-</sup>(v)|
```

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ightharpoonup an **ST-tree** G_r to store the preimage graph.

Join saddles

- ▶ Detection: before processing a vertex v, check whether all the vertices in Link⁻(v) have already been visited.
- ➤ **Stopping**: if not, terminate this local growth.

Local growths

Data structures

Each local growth keeps:

- **a Fibonacci heap** θ to store candidates for the ordered BFS;
- ▶ an **ST-tree** G_r to store the preimage graph.

Join saddles

- **Detection**: before processing a vertex v, check whether all the vertices in Link $^-(v)$ have already been visited.
- **Stopping**: if not, terminate this local growth.
- Processing: otherwise, this local growth is in charge of proceeding;

Local growths

Data structures

Each local growth keeps:

- **Proof.** a **Fibonacci heap** θ to store candidates for the ordered BFS;
- ▶ an **ST-tree** G_r to store the preimage graph.

Join saddles

- **Detection**: before processing a vertex v, check whether all the vertices in Link $^-(v)$ have already been visited.
- **Stopping**: if not, terminate this local growth.
- Processing: otherwise, this local growth is in charge of proceeding;
 - join the priority queues (θ) and the preimage graphs (G_r) of all local growths terminated at v;

Local growths

Data structures

Each local growth keeps:

- **Proof.** a **Fibonacci heap** θ to store candidates for the ordered BFS;
- ightharpoonup an **ST-tree** G_r to store the preimage graph.

Join saddles

- **Detection**: before processing a vertex v, check whether all the vertices in Link $^-(v)$ have already been visited.
- **Stopping**: if not, terminate this local growth.
- Processing: otherwise, this local growth is in charge of proceeding;
 - ▶ join the priority queues (θ) and the preimage graphs (G_r) of all local growths terminated at v;
 - \triangleright process v as usual.

Local growth implementation

```
1 procedure LocalGrowth(v_0, \mathcal{R}, \Phi)
         \theta, G_r \leftarrow \{v_0\} [Fibonacci heap], \emptyset [ST-tree]
 2
        while \theta \neq \emptyset do \longrightarrow add |\{w \in Link^-(v) : w \text{ visited by this local growth}\}|
 3
              v \leftarrow \text{vertex/in } \theta \text{ with minimal } f \text{ value}
 4
             update visitedLower[v]
 5
             if visitedLower[v] < | Link^-(v)| then
 6
                  append (\theta, G_r) to pending [v]
                                                                      critical section
 7
                  terminate
 8
             end
 9
             foreach (\theta', G') \in \text{pending}[v] do
10
                  \theta.join(\theta'); G_r.join(G'_r)
11
              end
12
              process v, updating G_r, \mathcal{R} and \Phi
13
              add vertices in Link^+(v) to \theta
14
15
                just as in the sequential algorithm
16 end
```

Full implementation

```
input: a triangulated mesh \mathcal{M}
                 a scalar field f on \mathcal{M}
   output: the augmented Reeb graph (\mathcal{R}, \Phi)
1 begin
         \mathcal{R}, \Phi \leftarrow \emptyset [graph], \emptyset [function]
2
3
         V \leftarrow \mathtt{FindMinima}(\mathcal{M}, f) \longrightarrow \mathtt{easy} \ \mathtt{to} \ \mathtt{run} \ \mathtt{in} \ \mathtt{parallel}
         foreach v_0 \in V in parallel do
4
               start procedure LocalGrowth(v_0, \mathcal{R}, \Phi)
5
         end
6
         return (\mathcal{R}, \Phi)
7
8 end
```