

300mA, Ultra-low noise, Small Package **Ultra-Fast CMOS LDO Regulator**

General Description

The LP3992 is designed for portable RF and wireless applications with demanding performance and space requirements. The LP3992 performance is optimized for battery-powered systems to deliver ultra low noise and low guiescent current. The LP3992 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The LP3992 consumes less than 0.01µA in shutdown mode and has fast turn-on time less than 50µs. The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. It is available in the 5-lead of SOT23-5 and TSOT23-5 packages.

Order Information

Features

- Ultra-Low-Noise for RF Application
- 2.5V- 5.5V Input Voltage Range
- Low Dropout: 220mV @ 300mA
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V and 5V Fixed
- 300mA Output Current
- High PSSR:-76dB at 1KHz
- < 0.01uA Standby Current When Shutdown
- Available in SOT23-5 and TSOT23-5 Package
- TTL-Logic-Controlled Shutdown Input
- Ultra-Fast Response in Line/Load transient
- Current Limiting and Thermal Shutdown Protection
- Quick start-up (typically 50uS)

Applications

- Portable Media Players/MP3 players
- Cellular and Smart mobile phone
- LCD
- **DSC Sensor**
- Wireless Card

Typical Application Circuit

LP3992-05

Marking Information

Device	Marking	Package	Shipping	
LP3992-12B5F	LPS	SOT23-3	3K/REEL	
	1BYWX	SOT23-5		
		TSOT23-5		
LP3992-15B5F	LPS	SOT23-3	3K/REEL	
	1NYWX	SOT23-5		
		TSOT23-5		
LP3992-18B5F	LPS	SOT23-3	3K/REEL	
	1CYWX	SOT23-5		
		TSOT23-5		
LP3992-25B5F	LPS	SOT23-3	3K/REEL	
	1DYWX	SOT23-5		
		TSOT23-5		

Device	Marking	Package	Shipping	
LP3992-28B5F	LPS	SOT23-3	3K/REEL	
	1HYWX	SOT23-5		
		TSOT23-5		
LP3992-30B5F	LPS	SOT23-3	3K/REEL	
	1GYWX	SOT23-5		
		TSOT23-5		
LP3992-33B5F	LPS	SOT23-3	3K/REEL	
	1EYWX	SOT23-5		
		TSOT23-5		
Y: Y is year code. W: W is week code. X: X is series number.				

Functional Pin Description

Pin Description

Р	in	Nomo	Description
SOT23-5	SOT23-3	Name	Description
1	3	VIN	Power Input Voltage.
2	1	GND	Ground.
3		EN	Chip Enable (Active High).
4		NC	No Connection.
5	2	VOUT	Output Voltage.

LP3992-05 May.-2017 Email: <u>marketing@lowpowersemi.com</u> <u>www.lowpowersemi.com</u> Page 2 of 9

Function Diagram

Absolute Maximum Ratings

\diamond	Supply Input Voltage	6.5V
\diamondsuit	Other Pin Voltage	
P	Other Pin Voltage ower Dissipation, PD @ TA = 25°C	
	T/SOT23-5	500mW
\diamondsuit	SOT23-3	500mW
Pa	ackage Thermal Resistance	
	Thermal Resistance(SOT23-5/SOT23) (JA)	195°C/W
\diamondsuit	Thermal Resistance(SOT23-5/SOT23) (JC)	60°C/W
\diamondsuit	Maximum Junction Temperature	150°C
\diamondsuit	Maximum Soldering Temperature (at leads, 10 sec)	260°C
\diamondsuit	Storage Temperature Range	−65°C to 165°C
E	SD Susceptibility	
\diamondsuit	HBM (Human Body Mode)	2kV
\diamondsuit	MM(Machine-Mode)	200V
R	ecommended Operating Conditions	
	Supply Input Voltage	2.5V to 5.5V
	EN Input Voltage	0V toVin+0.3V
	Operation Junction Temperature Range	−40°C to 125°C
\diamondsuit	Operation Ambient Temperature Range	−40°C to 85°C

LP3992-05

May.-2017

Email: marketing@lowpowersemi.com

Electrical Characteristics

(LP3992-33B5F,VIN = VOUT + 1V, CIN = COUT = 1μ F, TA = 25° C, unless otherwise specified)

Para	ımeter	Symbol	Test Conditions		Тур.	Max	Units	
Output Voltage Accuracy ΔV0		ΔVOUT	IOUT = 1mA	-3		+3	%	
Output	Voltage	VOUT	IOUT = 1mA		3.33		V	
Output Loa	ding Current	ILOAD	VEN=VIN,VIN>2.5V	300			mA	
Curre	nt Limit	ILIM	RLOAD = 1Ω	420	450		mA	
Quiesce	nt Current	IQ	VEN ≥ 1.2V, IOUT = 0mA		75	130	μΑ	
D	4. V - I4	VDDOD	IOUT = 200mA, VOUT > 2.8V		130	200		
Dropou	t Voltage	VDROP	IOUT = 300mA, VOUT > 2.8V		220	300	mV	
Line De	agulation	A\/ INIE	VIN = (VOUT + 1V) to 5.5V,			0.2	%/V	
Line Re	egulation	ΔVLINE	IOUT = 50mA			0.2	76/ V	
Load R	egulation	ΔLOAD	1mA < IOUT < 300mA			2	%/A	
Standb	y Current	ISTBY	VEN = GND, Shutdown		0.01	1	μΑ	
EN Input E	Bias Current	IIBSD	VEN = 3V		1.5	3.5	μΑ	
	Logic-Low	VIL	VIN = 3V to 5.5V, Shutdown			0.4		
EN Threshold	Voltage	VIL	VIIV = 3V to 3.3V, Shutuowii			0.4	V	
LIVITILESHOLU	Logic-High	VIH	VIN = 3V to 5.5V, Start-Up	1.4		VIN+	V	
	Voltage	owDow	VIIV = 5V to 5.5V, Start-Op	4 道首	丹曲	0.3		
Output Noise Voltage		UWLUW	10Hz to 100kHz, IOUT =	73	300		uVRMS	
		200mA, COUT = 1μF			300		UVINIO	
Power Supply	y f = 1kHz		COUT = 1µF,		-76		dB	
Rejection Rat	e f = 10kHz		IOUT = 100mA		-65		ub	
Thermal Shutdown Temperature		TSD			150		°C	

LP3992-05 May.-2017

Typical Operating Characteristics

Output Voltage Vs. Temperature

Dropout Voltage Vs. Load Current

LP3992-05

May.-2017

Email: marketing@lowpowersemi.com

Applications Information

Like any low-dropout regulator, the external capacitors used with the LP3992 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1µF on the LP3992 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The LP3992 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least $1\mu F$ with ESR is > $25m\Omega$ on the LP3992 output ensures stability. The LP3992 still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the LP3992 and returned to a clean analog ground.

Start-up Function Enable Function

The LP3992 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on, the EN turn on control level must be greater than 1.4 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protecting the system, the LP3992 have a quick-discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

Thermal Considerations

Thermal protection limits power dissipation in LP3992. When the operation junction temperature exceeds 150°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 25°C. For continue operation, do not exceed absolute maximum operation junction temperature 125°C.

The power dissipation definition in device is:

$$PD = (VIN-VOUT) \times IOUT + VIN \times IQ$$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.

The maximum power dissipation can be calculated by following formula:

$$PD(MAX) = (TJ(MAX) - TA)/\theta JA$$

Where TJ(MAX) is the maximum operation junction temperature 125°C, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. For recommended operating conditions specification of LP3992, where TJ(MAX) is the maximum junction temperature of the die (125°C) and TA is the maximum ambient temperature. The junction to ambient thermal resistance (θJA is layout dependent) for SOT23-5 package is 195°C/W.

$$PD(MAX) = (125^{\circ}C-25^{\circ}C) / 195 = 500 mW$$

The maximum power dissipation depends on operating ambient temperature for fixed TJ(MAX) and thermal resistance θJA.

LP3992-05 N

May.-2017

7 Email: marketing@lowpowersemi.com

Packaging Information

Cumbal	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5 Surface Mount Package

TSOT23-5

SYMBOLS	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	
A	-	1.00	-	0.039	
A1	0.00	0.15	0.000	0.006	
D	2.90		0.114		
E1	1.60		0.063		
E	2.60	3.00	0.102	0.118	
L	0.30	0.60	0.012	0.024	
ь	0.30	0.50	0.012	0.020	
e	0.95		0.037		

SOT23-3

Symbol	MIN(mm)	MAX ()	Symbol	MIN (mm)	MAX (ma)	
A	2. 82	3. 02	D1	0.40	0. 50	
A1	0.90	1.00	D2	0. 254TYP		
A2	0.35	0. 45	D3	0.60	0. 70	
В	1. 52	1.72	0	9° TYP4		
B1	2.80	3. 00	0 1	10° TYP4		
B2	0. 119	0. 135	0 2	0° ~ 8°		
С	1.05	1. 15	0 3	6° TYP		
C1	0.03	0. 13	R	<0.	2TYP4	
C2	0.60	0.70	R1	0. 08TYP		
D	0. 03	0. 13	R2	0. 08	BTYP	