THE AUSTRALIAN NATIONAL UNIVERSITY

Second Semester 2015

COMP3600/COMP6466 (Algorithms)

Writing Period: 2.5 hours duration

Study Period: 15 minutes duration

Permitted Materials: None

Answer ALL Questions

All your answers must be written in the boxes provided in this booklet. You may be provided with scrap paper for working, but it must **not** be used to write final answers.

There is additional space at the end of the booklet in case the boxes provided are insufficient. Label such overflow boxes with the question number. Note that the full mark is 100.

Do not remove this booklet from the examination room.

Student Number:

Official use o	Q2 (20)	Q3 (25)	Q4 (25)	Total (100)

QUESTION 1 [30 marks]

	the names of these thre	e probing techniques.	
QU	ESTION 1(a)(i)		[2 marks
(ii) Whi	ch probing techniques a	among the three listed pro	obing techniques in Part (i) cau
	ESTION 1(a)(ii)		[2 marks

nash table. QUESTION 1(a)(iii)	[2 mark

(iii) Design a hash function for the open addressing schema such that no primary and

QUESTION	J 1(b)(i)						[4 mar
List the key	sequence ob	tained by	in-order	traversal	on the b	inary se	earch tre
Part (i).							
QUESTION	V 1(b)(ii)						[1 ma

(b) [4+1=5 marks]

QUESTION 1(c)	[4 marks

[4+2=0	6 marks] Consider an array whose elements are 2, 11, 5, 17, 3,	15, 10 in that ord
(i) D	Draw the final MIN-HEAP after heapifying the array.	
(QUESTION 1(d)(i)	[4 marks
(ii) If	If the element with key value 11 in the MIN-HEAP of Part (i) inco 13, draw the resulting MIN-HEAP after performing this update	creases its key va
(QUESTION 1(d)(ii)	[2 marks

is no greater than $2\log(N+1)$. Hint: use mathematic node in the tree. QUESTION 1(e)	[3 ma

(f)	on di	8=6 marks] To implement operations like make_set, union, and findisjoint sets, two data structures: <i>linked lists and directed forests</i> , have been introperesenting the disjoint sets.	d_set oduced
	(i)	In the linked list representation, let x_1, x_2, \ldots, x_n be n objects, assume that are n make_set (x_i) operations with $1 \le i \le n$ and then $n-1$ union (x_i) operations with $1 \le i < n$. Show that the total time complexity of implementations is $O(n \log n)$ if the weighted-union heuristic is applied.	$,x_{i+1})$
		QUESTION 1(f)(i) [3 m	arks]

(ii)	Make use of the directed forest data structure to represent the disjoint sets, ar use the two introduced heuristics: path compression and union by rank to find a connected components in a graph with 9 vertices, with edges 1-4, 2-5, 1-8, 5-7, 4 provided in this order. Use diagrams to illustrate the forest of directed trees and the ranks of tree roots at each major step.	111
	QUESTION 1(f)(ii) [3 marks]	1

QUESTION 2 [20 marks]

(a) [3+5+2+2=12 marks] Perform a Depth-First Search on the following directed acyclic graph (DAG), starting at node 1 and exploring neighbouring nodes in order of their labels.

Give your answer as follows.

(i) The visiting order of the nodes:

QUESTION 2(a)(i)	[3 marks]

(ii) The discovery and finish times d(v) and f(v) of each node $v \in V$.

QUES'	TION 2(a)(ii)	[5 marks]

QUESTION 2(a)(iii)	[2 ma
List the nodes in increasing order of their topol	
List the nodes in increasing order of their topol QUESTION 2(a)(iv)	ogical ranking. [2 ma

	$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right)$	
(i) Draw a diagram of T .		
QUESTION 2(b)(i)		[3 marks]

(11)	What is the maximum possible number of edges	
	QUESTION 2(b)(ii)	[2 marks]
Suppof ev	G = (V, E) be an edge-weighted, connected, unless that the weight of each edge in E is an odd very spanning tree in G is even, where the cost of G in the tree.	positive integer. Prove that the cost
	ESTION 2(c)	[3 marks]

QUESTION 3 [25 marks]

(a) [2+15=17 marks] Given the graph G=(V,E) below, there are two well-known algorithms for finding minimum spanning trees (MSTs) introduced in the course.

(i) What are the names of these two well-known algorithms? Nominate one of them for finding an MST in G.

[2 marks]

(ii) Show the order in which the tree edges are selected and the final tree.

QUESTION 3(a)(ii)	[15 marks]

QUESTION 3(a)(ii)	[15 marks]

the maximum weight. Prove that if all the not be contained in any minimum spannin	G g tree in G .
QUESTION 3(b)	[4 marks]
Show with a counterexample that the following the counterexample that the counterexample that the counterexample that the counterexample the counterexample that the counterexample the counterexample that the counterexample the counterexample the counterexample that the counterexample that the counterexample the counterexample that the counterexample the counterexample the counterexample that the counterexample that the counterexample the counterexample that the counterexample tha	_
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then,
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .
Let C be a cycle in an edge-weighted, cedge of C whose weight is strictly less that has a minimum spanning tree which includes	onnected, undirected graph G , and let e be an the weight of every other edge of C . Then, des e .

QUESTION 4 [25 marks]

(a) [3+12=15 marks] Two single-source shortest path algorithms, the Dijkstra algorithm and the Bellman-Ford algorithm, have been introduced in the course. In the following graph G(V, E),

(i) To find a single-source shortest path from s to every other vertex in G, which of the two mentioned algorithms should be applied, and why?

(ii) Apply the algorithm you selected in Part (a) (i). Give the major intermediate results (i.e., the result after each iteration that clearly indicates the d and π values of each vertex) and the final result.

QUESTION 4(a)(ii)	[12 marks]

QUESTION 4(a)(ii)	[12 marks]

(1) De ins	scribe an efficient method to determine wheth ide another. (3 marks for COMP3600 and 1 m	her or not one d -dimensional box fit mark for COMP6466/Honours)
Q	UESTION 4(b)(i)	[3 marks]

(ii)	Suppose that you are given a set of n d —dimensional boxes $\{B_1, B_2, \ldots, B_n\}$. It scribe an efficient algorithm to determine the longest sequence $\langle B_{i_1}, B_{i_2}, \ldots, B_{i_k} \rangle$ boxes such that B_{i_j} fits inside $B_{i_{j+1}}$ for $j=1,2,\ldots,k-1$ and $1 \leq i_j \leq n$. Expression Expression 1. Expression 1. Expression 2. Expression 2. The sequence $\{B_1, B_2, \ldots, B_n\}$ and 3. The sequence $\{B_1, B_2, \ldots, B_n\}$ and 5 marks for COMP6466/Honours)		
	QUESTION 4(b)(ii) (more room on next page)	[7 marks]	

QUESTION 4(b)(ii)	[7 marks]

Given a directed weighted graph $G=(V,E)$ with positive weights in all edges, assume that the shortest path between any two vertices in V contains no more than k edges. Devise an $O(k E)$ time algorithm to find a shortest path between a given pair of vertices $u \in V$ and $v \in V$.		
QUESTION 4(c) (more room on next page)	[4 marks]	
QOZBITOT ((C) (More room on none page)	[

(c) [4 marks] This question is only for COMP6466/Honours students.

QUESTION 4(c)	[4 marks]

Additional answers. Clearly indicate the corresponding question and part.		

Additional answers. Clearly indicate the corresponding question and part.		

Additional answers. Clearly indicate the corresponding question and part.		
L		