# Rechnernetze und Verteilte Systeme

# Introduction to Communication Networks and Distributed Systems



Unit 10: Physical and Data Link Layer



Prof. Dr.-Ing. Adam Wolisz

## Physical and Data Link Layer

## Physical layer

- Encoding
- Duplexing

## Data link layer

- Error detection, correction
- Sharing a broadcast channel: multiple access
- Addressing
- Reliable data transfer, flow control

# Physical Layer (Layer 1)

- Tasks for the physical layer
  - Transmits raw bits over a physical link connecting nodes
  - Creates frames around the code words and symbols
  - Provides an electrical, mechanical, and procedural interface to the transmission medium
- Receiver creates a bit stream and delivers to the layer above for further processing
- Properties
  - No guarantees for reliable transmission
  - Auto negotiation = procedure for choosing common transmission parameters such as
    - Speed
    - Duplex mode
    - Flow control between participating network devices

# Basic service of physical layer: transport bits

- Physical layer should enable the transport of bits between two locations A and B
- Abstraction: Bit sequence correct, in order delivery



## A bit to signal conversion rule

- A simple conversion rule
  - For a "1" bit, apply voltage to the pair of wires
  - For a "0" bit, no voltage



## Example: Transmit bit pattern for character "b"

- Character "b" needs a representation as sequence of bits
- Option 1: Use the ASCII code of "b", 98, as a binary number 01100010
- Resulting voltage put on the wire



Note: Abstract data is represented by physical signals – changes of a physical quantity in time or space!

### **Problems**

- Differentiation between no activity and tramsmitted zero needed
  - ⇒Change the coding to 5V for 1 and -5V for 0
- How many bits are transmitted in a row
  - ⇒Timer needed that is perfectly syncronized between sender and receiver (initial synchronization and regular "correction of deviation"
  - ⇒Expensive solution
- ⇒Next idea to avoid timers
  - Count the transition from low to high and vice versa



## Manchester encoding

- Idea: At each bit, provide indication to receiver that this is where a bit {starts/stops/has its middle}
  - Example: Manchester encoding
  - For a 0 bit, have the signal change in the middle of a symbol (=bit)
     from low to high
  - For a 1 bit, have the signal change in the middle of a symbol (=bit)
     from high to low



- Ensures sufficient number of signal transitions
  - Independent of what data is transmitted!
  - Used in Ethernet signal coding

## Duplexing

- Direction of data transfer
  - One-way (simplex) or
  - Two-way (duplex)
- Simplex operation: trivial
- Half duplex
  - Two pairs of cables, one for each direction wasteful
  - Use one cable intelligently participants alternatively transmit, wait their time until it is their turn
    - Both sending at the same time would not work, signals interfere
  - Problem: How can one node decide that the other is done sending?



## How to realize duplexing?

## Full duplex

- Two pairs of cables would work, but still overhead (installation, maintenance, ...) does it work with one cable also?
- Exploit some properties of the physical medium
  - Here: transmissions in different frequencies do not interfere
  - Idea: use different frequencies for transmission in different directions



## How to realize duplexing?

- Full duplex by time division duplexing?
  - Sounds like a contradiction: both A and B always have data to send, but have to take turns?
  - "Having data to send" corresponds to a certain data rate bits per second
  - How about intermediately storing data when the other station is currently sending? Then quickly send all stored & new data



Time division duplexing can realize full duplex if transmission over medium is at least twice as fast as data is to be transmitted

## Lessons learned from duplexing

- It is useful to distinguish between
  - Requirements on what should be possible
  - Rules and methods how to implement such requirements
  - Example: Implement a "full duplex" requirement using TDD

- Buffering is an important means to decouple different dynamics in time
  - Questions of buffer overflow have to be considered

# Physical Layer (Layer 1)- summary.

- Tasks for the physical layer
  - Transmits raw bits over a physical link connecting nodes
  - Creates frames around the code words and symbols
  - Provides an electrical, mechanical, and procedural interface to the transmission medium
- Receiver creates a bit stream and delivers to the layer above for further processing
- Properties
  - No guarantees for reliable transmission
  - Auto negotiation = procedure for choosing common transmission parameters such as
    - Speed
    - Duplex mode
    - Flow control between participating network devices

## 7.2 Data link layer (Layer 2): Introduction

- Terminology
  - Hosts and routers = nodes
  - Communication channels that connect adjacent nodes along communication path are links
    - wired links
    - wireless links
    - LANs
- Layer-2 packet is a frame, encapsulates datagram

data-link layer has at least the responsibility of transferring datagrams from one node to adjacent node over a link



## The link layer's service

- Link layer sits on top of the physical layer
  - Can use a bit stream transmission service
  - But: this service might have incorrect bits
- Expectations of the higher layer (networking layer)
  - Wants to use either a packet service or, sometimes, a bit stream service (rather unusual)
  - Does not really want to be bothered by errors
  - Does not really want to care about issues at the other end



## Options for link layer service

- Reliable (dependable) service yes/no
  - Reliability has many facets
    - A delivered packet should have the same content as the transmitted packet
    - All packets have to be delivered
    - Eventually, packets have to be delivered in order
  - Error control may be required
    - Forward error control, acknowledgements
- Connection-oriented yes/no
  - Should a context be setup to/with the peer entity?
- Packet or bit stream abstraction
  - Usually in computer networks: packets
  - What about a maximal packet length?

## Datagrams: Packets in conectionless transmission!

#### **Definition**

- Datagram = basic transfer unit associated with a packet-switched network
- No guarantees regarding delivery, arrival time, and order of arrival
- Datagram analogous to post packet
  - Header = all information needed to deliver the packet (no other knowledge required) or to return the packet to the sender
  - Payload = content of the packet
- Typical Frame Format (Datagram)
  - Here the Ethernet format ...(see later..)



Start Frame

DA (6) Target addr. (MAC)

SA (6) Source address (MAC) *Type (2)* Protocol e.g. IP

Payload (1 – 1500 Bytes) e.g. IP-Datagram Sum (4) check sum

# Basic link layer functions – Framing

- How to turn a physical layer's bit stream abstraction into individual, well demarcated frames?
  - Usually necessary to provide error control not obvious how to do that over a bit stream abstraction
  - Frames and datagrams are really the same thing, only a convention to talk about "frames" in the link layer context
- In addition: Fragmentation & reassembly if network layer packets are longer than link layer packets



# Basic link layer functions – Error control

- Error control if desired by the network layer usually is
- Error detection are there incorrect bits?
- Error correction repair any mistakes that have happened
  - Forward error correction invest effort before error happened;
     try to hide it from higher layers
  - Backward error correction invest effort after error happened;
     try to repair it



# Checksumming: Cyclic Redundancy Check

- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
  - -<D,R> exactly divisible by G (modulo 2)
  - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
  - ⇒can detect all burst errors less than r+1 bits
- Widely used in practice (Ethernet, 802.11 WiFi, ATM)



## **CRC** Example

- Want
  - $-D*2^r XOR R = nG$
- Equivalently
  - $-D*2^r = nG XOR R$
- Equivalently
  - if we divide D\*2<sup>r</sup> by G, want remainder R

$$R = remainder \left[ \frac{D \cdot 2^r}{G} \right]$$



## Basic link layer functions – Connection setup

- Connection: Shared state at sender and receiver
- Connections useful for many purposes
  - Application context
  - Error control several error control schemes rely on a common context between sender and receiver
- Control of the Medium Access
  - Which station is allowed to use the connection at given time?
- Separating the data into frames for the transport
  - Modem: PPP (point to point protocol), SLIP (serial line IP protocol)
  - LAN: LLC (Logical Link Control) uses 802.X protocols
- The frames used in connection oriented mode usually have additional CONTROL FIELD…

## Basic link layer functions – Flow control

- What happens with a fast sender and a slow receiver?
  - Sender will overrun buffers faster than the receiver can process the packets in that buffer
  - Lots of transmission effort is wasted in this case



 Necessary to control the amount of frames a link layer sends per unit time, adapt to receiver's capabilities

# Possibly - Repairing errors: Repeat packet

- What happens if a packet is lost on the way?
- Idea 1: Have the receiver tell the sender that the packet was lost
  - But how would the receiver know that a packet was on the way in the first place?
  - ! Doesn't work!
- Idea 2: Turn idea 1 upside down receiver tells sender when a packet has arrived
  - An acknowledgement
  - When packet lost, acknowledgement will not arrive
  - Sender can wait for acknowledgment, when it not arrives at expected time, resend the packet
  - A timeout is used, forming an Automated Repeat Request (ARQ) protocol







## Problem: How can different error situations be distinguished?

How to tell apart:





- Looks the same for the sender, but receiver will get different sequences
- Receiver needs to know whether a packet is a new one or one that is repeated
- Introduce sequence numbers to identify packets
- Requires state \_ possible only in connection —oriented style…

## Multiple Access Links and Protocols

- Two types of "links"
  - Point-to-point for dial-up access and as link between Ethernet switch and host
  - Broadcast (shared wire or medium)
    - old-fashioned Ethernet
    - 802.11 wireless LAN





shared wire (e.g., cabled Ethernet)



shared RF (e.g., 802.11 WiFi)



shared RF (satellite)



humans at a cocktail party (shared air, acoustical)

## Multiple access protocols

- Single shared broadcast channel
  - Two or more simultaneous transmissions by nodes with possible interference
  - ⇒Collision if node receives two or more signals at the same time

- Multiple access protocol
  - Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
  - –Communication about channel sharing must use channel itself!
  - ⇒no out-of-band channel for coordination

## Ideal Multiple Access Protocol

- Broadcast channel of rate R bps
  - -when one node wants to transmit, it can send at rate R.
  - when M nodes want to transmit, each can send at average rate R/M
  - -fully decentralized
    - no special node to coordinate transmissions
    - no synchronization of clocks, slots
  - -simple

## Taxonomy of MAC Protocols

#### Three broad classes

## 1. Channel Partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- allocate piece to node for exclusive use

#### 2. Random Access

- channel not divided, allow collisions
- "recover" from collisions

## 3. "Taking turns"

 nodes take turns, but nodes with more to send can take longer turns

## Channel Partitioning MAC protocols: TDMA

- TDMA: time division multiple access
  - access to channel in "rounds"
  - each station gets fixed length slot (length = pkt trans time) in each round
  - unused slots go idle
  - Example:
    - 6-station LAN
    - 1,3,4 have packets
    - slots 2,5,6 idle



# Assumptions for dynamic channel allocation

## Dynamic medium allocation

- Assign channel/link/resource to that source that currently has data to send
- No fixed assignments

#### Variations

- Station model (or terminal model)
  - N independent stations want to share a given resource
  - Only a single channel for all stations
  - No possibility to communicate/signal anything via other means
- Collision assumption
  - Only a single frame can be successfully transmitted at a time
  - Two (or more) frames overlapping in time will collide and are both destroyed
  - No station can receive either frame







# Assumptions for dynamic channel allocation

#### Time model

- Continuous time: Transmissions can begin at any time; no central clock
- Slotted time: Time is divided in slots;
   transmissions can only start at a slot
   boundary. Slot can be idle, a successful
   transmission, or a collision



## Carrier Sensing

- Stations can/cannot detect whether the channel is currently used by some other station
- There might be imperfections involved in this detection (e.g., incorrectly missing an ongoing detection)



## Figures of merit

- How to judge the efficiency of a dynamic channel allocation system?
  - Intuition: transmit as many packets as quickly as possible
- At high load (many transmission attempts per unit time):
   Throughput is crucial ensure that many packets get through

- At low load (few attempts per time):
   Delay is crucial ensure that a packet does not have to wait for a long time
- Fairness: Is every station treated equally? Or justifiable inequality?

# CSMA (Carrier Sense Multiple Access)

- CSMA = listen before transmit
  - If channel sensed idle, transmit entire frame
  - If channel sensed busy, defer transmission
- Human analogy: don't interrupt others!

## **CSMA** collisions

#### Collisions can still occur

 propagation delay means two nodes may not hear each other's transmission

#### Collision

entire packet transmission time wasted

#### Note

 Role of distance & propagation delay in determining collision probability

#### spatial layout of nodes



# CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
  - collisions detected within short time
  - colliding transmissions aborted, reducing channel wastage

#### Collision detection

- easy in wired LANs: measure signal strengths, compare transmitted, received signals
- difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

### CSMA/CD collision detection



Implementation in Ethernet: few slides later

### MAC Layer Addressing

- Hardware address for unique identification of every device (network card, switch, router, ....) in the network
- Example: MAC address for Ethernet
  - 48 bits, hexadecimal notation, e. g. 08-00-20-ae-fd-7e
    - First 24 bits = Vendor identification defined by IEEE (e.g. 00-50-8b-xx-xx-xx for Compaq)
    - Second 24 bits = defined by the vendor for each network interface
  - World-wide unique address ⇒ Application for automatic device configuration, e.g. with DHCP

#### MAC vs. IP address

- Analogy
  - MAC address: like Social Security Number
  - IP address: like postal address
- MAC flat address → portability
  - Can move LAN card from one LAN to another
- IP hierarchical address NOT portable
  - Address depends on IP subnet to which node is attached

#### MAC Addresses and ARP

- 32-bit IP address
  - Network-layer address
  - Used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address
  - Function: get frame from one interface to another physicallyconnected interface (same network)
  - 48 bit MAC address (for most LANs)
    - burned in NIC ROM, also sometimes software settable
- Internet protocols use dynamic assignment for MAC addresses to Internet addresses with ARP (Address Resolution Protocol)

#### LAN Addresses and ARP

Each adapter on LAN has unique MAC address (also called LAN address)



#### **ARP: Address Resolution Protocol**

Question: how to determine MAC address of B knowing B's IP address?



 Each IP node (host, router) on LAN has ARP table

#### ARP table

- IP/MAC address mappings for some LAN nodes
- -< IP address; MAC
  address; TTL>
- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

## ARP protocol: Same LAN (network)

- A wants to send datagram to B, and B's MAC address not in A's ARP table
- A broadcasts ARP query packet, containing B's IP address
  - dest MAC address =
    FF-FF-FF-FF
  - All machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
  - frame sent to A's MAC address (unicast)

- 4. A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
  - Soft state: information that times out (goes away) unless refreshed

- ARP is "plug-and-play":
  - Nodes create their ARP tables without intervention from net administrator

#### Ethernet

- Dominant wired LAN technology
  - cheap
  - first widely used LAN technology
  - simpler, cheaper than token LANs and ATM
  - Kept up with speed race: 10 Mbps 10 Gbps



Metcalfe's Ethernet sketch

### Star topology

- Bus topology popular through mid 90s
  - all nodes in same collision domain (can collide with each other)
- Today: star topology prevails
  - active switch in center
  - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)



star

#### **Ethernet Frame Structure**

- Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame
- Preamble
  - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011, used to synchronize receiver, sender clock rates
- Addresses: 6 bytes
  - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
  - otherwise, adapter discards frame
- Type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: checked at receiver, if error is detected, frame dropped

| Preamble  | SF (1) | DA (6)       | SA (6)        | Type (2) | Payload          | Sum (4) |
|-----------|--------|--------------|---------------|----------|------------------|---------|
| (7 Bytes) | Start  | Target addr. | Source        | Protocol | (1 – 1500 Bytes) | check   |
| Sync.     | Frame  | (MAC)        | address (MAC) | e.g. IP  | e.g. IP-Datagram | sum     |

### Ethernet: Unreliable, connectionless

- Connectionless: No handshaking between sending and receiving NICs
- Unreliable: receiving NIC doesn't send acks or nacks to sending NIC
  - stream of datagrams passed to network layer can have gaps (missing datagrams)
  - gaps will be filled if app is using TCP
  - otherwise, app will see gaps
- Ethernet's MAC protocol: unslotted CSMA/CD

## Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- If NIC detects another transmission while transmitting, aborts and sends jam signal

- 2. If NIC senses
  - channel idle
    - ⇒ starts frame transmission
  - channel busy
    - ⇒ waits until channel idle, then transmits
- If NIC transmits entire frame without detecting another transmission
  - ⇒NIC is done with frame!

- 5. After aborting, NIC enters exponential back-off:
  - after collision nr. X , NIC chooses K at random from {0,1,2,...,2X-1}.
  - NIC waits K·512 bit times
  - NIC returns to Step 2

## Ethernet's CSMA/CD (more)

- Jam Signal
  - make sure all other transmitters are aware of collision
- 48 bits time
  - .1 microsec for 10 Mbps Ethernet
  - For K=1023, wait time is about 50 msec

- Exponential Back-off
  - Goal: adapt retransmission attempts to estimated current load
  - heavy load: random wait will be longer
- First collision
  - choose K from {0,1};
  - delay is K<sup>-</sup> 512 bit transmission times
- After second collision
  - choose K from {0,1,2,3}…
- After ten collisions
  - choose K from {0,1,2,3,4,...,1023}

## CSMA/CD efficiency

- tprop = max propagation delay between 2 nodes in LAN
- ttrans = time to transmit max-size frame

efficiency = 
$$\frac{1}{1 + 5t_{prop} / t_{trans}}$$

- Efficiency goes to 1
  - as tprop goes to 0
  - as ttrans goes to infinity

## 802.3 Ethernet Standards: Link & Physical Layers

- Many different Ethernet standards
  - common MAC protocol and frame format
  - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10Gbps
  - different physical layer media: fiber, cable



## Ethernet cabling

| Name     | Cable        | Max. seg. | Nodes/seg. | Advantages                   |
|----------|--------------|-----------|------------|------------------------------|
| 10Base5  | Thick coax   | 500 m     | 100        | Original cable; now obsolete |
| 10Base2  | Thin coax    | 185 m     | 30         | No hub needed                |
| 10Base-T | Twisted pair | 100 m     | 1024       | Cheapest system              |
| 10Base-F | Fiber optics | 2000 m    | 1024       | Best between buildings       |



# Where is the link layer implemented?

 In every host there is a network interface card (NIC) as "adaptor"

- Ethernet card
- PCMCI card
- -802.11 card

#### NIC

- Implements link, physical layer
- Attaches into host's system buses
- Combination of
  - Hardware
  - Software
  - Firmware



# **Connecting Elements**

Connecting elements on different layers

| Application layer | Application gateway |  |
|-------------------|---------------------|--|
| Transport layer   | Transport gateway   |  |
| Network layer     | Router              |  |
| Data link layer   | Bridge, switch      |  |
| Physical layer    | Repeater, hub       |  |

### Repeaters

- Simplest option: Repeater
  - Physical layer device
  - Connected to two cables
  - Amplifies signal arriving on either one, puts on the other cable
  - Essentially an analog amplifier to extend physical reach of a cable
  - Combats attenuation
  - Neither understands nor cares about content (bits) of packets



### Hubs

- Physical-layer ("dumb") repeaters
  - Bits coming in one link go out all other links at same rate
  - All nodes connected to hub can collide with one another
  - No frame buffering
  - No CSMA/CD at hub: host NICs detect collisions





#### A switch...

- How to exchange packets between different Inputs?
  - Switch contains buffers to intermediately store incoming packets before forwarding them towards their destination
  - Different buffer structures possible: one per incoming link, one per group of links,...
    - Cost issue, mainly



## Switch: allows multiple simultaneous transmissions

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
  - ⇒each link is its own collision domain
- Switching
  - A-to-A' and B-to-B' simultaneously, without collisions
  - Not possible with dumb hub



switch with six interfaces (1,2,3,4,5,6)

## Physical layer solutions not satisfactory

- Physical layer devices repeater, hub do not solve the more interesting problems
  - E.g., how to handle load
- Some knowledge of the data link layer structure is necessary
  - To be able to inspect the content of the packets/frames and do something with that knowledge
- Link-layer solutions
  - Bridge & switch
  - Historic distinction
    - Switch: An interconnecting device supporting packet switching.
    - Bridge: Interconnect several networks (Link Layer)
    - Router: A switch in NETWORK LAYER (will be discussed later)
  - Take care: Occasionally Bridges are referred to as switches @

## Bridge

- Link-layer device: smarter than hubs, take active role
  - Store and forward frames
  - Examine incoming frame's MAC address
    - selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment
    - uses CSMA/CD to access segment
- Transparent
  - hosts are unaware of presence of bridges
- Plug-and-play, self-learning
  - Bridges do not need to be configured

## Bridge: self-learning

- Bridge learns which hosts can be reached through which interfaces
  - When frame received it "learns" location of sender: incoming LAN segment
  - Records sender/location
  - Pair in table

| MAC addr | interface | TTL |
|----------|-----------|-----|
| Α        | 1         | 60  |
|          |           |     |
|          |           |     |



## Bridges

- Switches are limited in that they connect simple terminals
- Sometimes, entire networks have to be connected: Bridges
- Bridge also inspects incoming packet and forwards only towards destination
- How to learn here where destination is? Does simple "backward" learning suffice?
- Each network connected to a bridge is a separate collision domain
  - Not possible on physical layer only



### Bridges vs. Routers

- Both store-and-forward devices (switches)
  - Routers: network layer devices (examine network layer headers)
  - Bridges are link layer devices
- Routers maintain routing tables, implement routing algorithms
- Bridges maintain switch tables, implement filtering, learning algorithms



### How do loss and delay occur?

- Packets queue in buffers
- Packet arrival rate to link exceeds output link capacity
- Packets queue, wait for turn



## Four sources of packet delay

### 1. Nodal processing

- check bit errors
- determine output link

#### 2. Queuing

- time waiting at output link for transmission
- depends on congestion level of router



## Delay in packet-switched networks [Kurose-Ross]

### 3. Transmission delay

- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

### 4. Propagation delay

- -d = length of physical link
- -s = propagation speed in medium (~2x108 m/sec)
- propagation delay = d/s

Note: s and R are very different quantities!



#### Packet Loss?

- Damaged bits
  - Error in transmission
  - Error in bit synchonization
  - ⇒ detect and skip (e.g. CRC codes)
- Collisions....
  - Lost if no collision detection
  - Retransmission in case of collision detection
- Switch buffer overflow....

#### Packet loss

- Queue (aka buffer) preceding link in buffer has finite capacity
- Packet arriving to full queue dropped (aka lost)
- Lost packet may be retransmitted by previous node, by source end system, or not at all



### Institutional network



### Addressing: routing to another LAN

- Walkthrough
  - send datagram from A to B via R assume A knows B's IP address
  - Two ARP tables in router R, one for each IP network (LAN)



### Example

- A creates IP datagram with source A, destination B
- A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as destination, frame contains A-to-B IP datagram
- A's NIC sends frame, R's NIC receives frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

