

Project 1—Reminder

- Instructions and code available on the website
 - Here: https://rpm-lab.github.io/CSCI5980-F24-DeepRob/projects/project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is available!
- Due Today, Sept 30th 11:59 PM CT

Project 2—Updates

Will be released tonight!

Implement two-layer neural network and generalize to

FCN

Due Monday, October 14 11:59 PM CT

DR

Recap: Components of Convolutional Network

Fully-Connected Layers

Activation Functions

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Consider a single layer y = Wx

The following could lead to tough optimization:

- Inputs x are not centered around zero (need large bias)
- Inputs x have different scaling per-element (entries in W will need to vary a lot)

Idea: force inputs to be "nicely scaled" at each layer!

Idea: "Normalize" the inputs of a layer so they have zero mean and unit variance

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Per-channel mean, shape is ${\cal D}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Problem: What if zero-mean, unit variance is too hard of a constraint?

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is ${\cal D}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Problem: Estimates depend on minibatch; can't do this at test-time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

$$\hat{x}_{i,j} = \frac{x_{i,j} + \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is ${\cal D}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{(Running)}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is ${\cal D}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

Per-channel mean, shape is D

$$\mu_i^{test} = 0$$

For each training iteration:

$$\mu_{j} = \frac{i = 1}{N} x_{i,j}$$

$$\mu_{i}^{test} = 0.99 \mu_{i}^{test} + 0.01 \mu_{j}$$

(Similar for σ)

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function (in expection)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{(Running)}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is ${\cal D}$

Per-channel std, shape is D

Normalized x, shape is $N \times D$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters: $\gamma, \beta \in \mathbb{R}^D$

During testing batchnorm becomes a linear operator!
Can be fused with the previous fully-connected or conv layer

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{(Running)}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Per-channel mean, shape is
$${\cal D}$$

Per-channel std, shape is
$$D$$

Normalized
$$x$$
, shape is $N \times D$

Output, shape is
$$N \times D$$

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

$$x: N \times D$$
Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$\mu, \sigma: 1 \times C \times H \times W$$

$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training.
- Zero overhead at test-time: can be fused with conv!

ImageNet accuracy

Training iterations

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training.
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is very common source of bugs!

Layer Normalization

Batch Normalization for **fully-connected** networks

$$x: N \times D$$

Normalize
 $\mu, \sigma: 1 \times D$
 $\gamma, \beta: 1 \times D$
 $(x - \mu)$

Layer Normalization for **fully- connected** networks
Same behavior at train and test!
Used in RNNs, Transformers

$$x: N \times D$$

Normalize
$$\mu, \sigma: N \times 1$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \mu$$

Instance Normalization

Batch Normalization for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Instance Normalization for **convolutional** networks
Same behavior at train / test!

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: N \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Comparison of Normalization Layers

Group Normalization

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Question: How should we put them together?

ImageNet Classification Challenge

ImageNet Classification Challenge

- 227 x 227 inputs
- 5 Convolutional Layers
- Max pooling
- 3 Fully-connected Layers
- ReLU nonlinearities

- Used "Local response normalization";
 Not used anymore
- Trained on two GTX 580 GPUs only 3GB of memory each! Model split over two GPUs.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet citations per year (as of 09/30/2024)

Total citations Cited by 162909

Total citations: >160,000

Citation Counts:

- Darwin, "On the origin of species," 1859: 60,117
- Shannon, "A mathematical theory of communication," 1948: **156,791**
- Watson and Crick, "Molecular Structure of Nucleic Acids," 1953: 19,416

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	C H/W	
Conv1	3	227	64	11	4	2		?

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W
Conv1	3	227	64	11 4		2	64	?

Recall: Output channels = number of filters

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W
Conv1	3	227	64	11	4	2	64	56

Recall: W' =
$$(W - K + 2P) / S + 1$$

= $(227 - 11 + 2 \times 2) / 4 + 1$
= $220 / 4 + 1 = 56$

	Input	size		Layer		Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)
Conv1	3	227	64	11	4	2	64	56	?

	Input	t size		Layer		Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)
Conv1	3	227	64	11	4	2	64	56	784

Number of output elements = $C \times H' \times W'$ = $64 \times 56 \times 56 = 200,704$

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) x (bytes per elem) /1024

 $= 200704 \times 4 / 1024$

= 784

	Inpu	ıt size	Layer				Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)
Conv1	3	227	64	11	4	2	64	56	784	?

	Input	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	
Conv1	3	227	64	11	4	2	64	56	784	23	

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= $64 \times 3 \times 11 \times 11$

Bias shape
$$= C_{out} = 64$$

Number of weights =
$$64 \times 3 \times 11 \times 11 + 64$$

= **23,296**

	Inpu	t size	ze Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	?

	Input	t size		Layer				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73

Number of floating point operations (multiply + add)

- = (number of output elements) * (ops per output elem)
- $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 * 56 * 56) * (3 * 11 * 11)
- = 200,704 * 363
- = 72,855,552

	Input	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0		?			

	Input	t size		Layer				ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27			

For pooling layer:

#output channels = #input channels = 64

W' =
$$floor((W-K)/S+1)$$

= $floor(53/2 + 1) = floor(27.5) = 27$

	Input	t size		Layer				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	?	

 $#output elms = C_{out} x H' x W'$

Bytes per elem = 4

 $KB = C_{out} \times H' \times W' \times 4 / 1024$

= 64 * 27 * 27 * 4 / 1024

= 182.25

	Input	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0

Pooling layers have no learnable parameters!

	Input	t size		Layer				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0

Floating-point ops for pooling layer

= (numer of output positions) * (flops per output position)

 $= (C_{out} \times H' \times W') \times (K \times K)$

= (64 * 27 * 27) * (3 * 3)

= 419,904

= 0.4 MFLOP

	Input	t size		Layer	r Output size						
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0
Conv2	64	27	192	5	1	2	192	27	547	307	224
Pool2	192	27		3	2	0	192	13	127	0	0
Conv3	192	13	384	3	1	1	384	13	254	664	112
Conv4	384	13	256	3	1	1	256	13	169	885	145
Conv5	256	13	256	3	1	1	256	13	169	590	100
Pool5	256	13		3	2	0	256	6	36	0	0
Flatten	256	6					9216		36	0	0

Flatten output size = $C_{in} \times H \times W$ = 256 * 6 * 6

= 9216

	Input	t size		Layer				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0
Conv2	64	27	192	5	1	2	192	27	547	307	224
Pool2	192	27		3	2	0	192	13	127	0	0
Conv3	192	13	384	3	1	1	384	13	254	664	112
Conv4	384	13	256	3	1	1	256	13	169	885	145
Conv5	256	13	256	3	1	1	256	13	169	590	100
Pool5	256	13		3	2	0	256	6	36	0	0
Flatten	256	6					9216		36	0	0
FC6	9216		4096				4096		16	37726	38

FC params = $C_{in} * C_{out} + C_{out}$

= 9216 * 4096 + 4096

= 37,725,832

 $FC flops = C_{in} * C_{out}$

= 9216 * 4096

 $= 37,748,736_{43}$

	Inpu	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0
Conv2	64	27	192	5	1	2	192	27	547	307	224
Pool2	192	27		3	2	0	192	13	127	0	0
Conv3	192	13	384	3	1	1	384	13	254	664	112
Conv4	384	13	256	3	1	1	256	13	169	885	145
Conv5	256	13	256	3	1	1	256	13	169	590	100
Pool5	256	13		3	2	0	256	6	36	0	0
Flatten	256	6					9216		36	0	0
FC6	9216		4096				4096		16	37726	38
FC7	4096		4096				4096		16	16777	17
FC8	4096		1000				1000		4	4096	4

How to choose this? Trial and error :(

	Inpu	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0
Conv2	64	27	192	5	1	2	192	27	547	307	224
Pool2	192	27		3	2	0	192	13	127	0	0
Conv3	192	13	384	3	1	1	384	13	254	664	112
Conv4	384	13	256	3	1	1	256	13	169	885	145
Conv5	256	13	256	3	1	1	256	13	169	590	100
Pool5	256	13		3	2	0	256	6	36	0	0
Flatten	256	6					9216		36	0	0
FC6	9216		4096				4096		16	37726	38
FC7	4096		4096				4096		16	16777	17
FC8	4096		1000				1000		4	4096	4

	Inpu	t size		Layer			Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0
Conv2	64	27	192	5	1	2	192	27	547	307	224
Pool2	192	27		3	2	0	192	13	127	0	0
Conv3	192	13	384	3	1	1	384	13	254	664	112
Conv4	384	13	256	3	1	1	256	13	169	885	145
Conv5	256	13	256	3	1	1	256	13	169	590	100
Pool5	256	13		3	2	0	256	6	36	0	0
Flatten	256	6					9216		36	0	0
FC6	9216		4096				4096		16	37726	38
FC7	4096		4096				4096		16	16777	17
FC8	4096		1000				1000		4	4096	4

Interesting trends here!

Most of the memory usage in the early convolution layers

Nearly all **parameters** are in the fully-connected layers

Most floating-point ops occur in the convolution layers

ImageNet Classification Challenge

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

ImageNet top 5 error: 16.4% -> 11.7%

AlexNet but:

Conv1: change from (11x11 stride 4) to (7x7 stride 2)

Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error:(

ImageNet Classification Challenge

ImageNet Classification Challenge

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

VGG16

VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolution stages:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

1 8 1000	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 256	
3x3 conv, 256	
Pool	
3x3 conv, 128	
3x3 conv, 128	
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	

FC 1000

Softmax

FC 1000

FC 4096

AlexNet

VGG16

VGG19

Input

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Option 1:

Conv(5x5, C->C)

AlexNet

VGG16

Softmax

FC 1000

VGG19

Softmax

FC 1000

FC 4096

FC 4096

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2 After pool, double #channels

Option 1:

Conv(5x5, C->C)

Params: 25C²

FLOPs: 25C²HW

Oomnax	1 0 4090
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
8x3 conv, 512	Pool
Pool	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
Pool	Pool
x3 conv, 256	3x3 conv, 256
x3 conv, 256	3x3 conv, 256
Pool	Pool
x3 conv, 128	3x3 conv, 128
x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

FC 1000

FC 4096

VGG16

VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2 After pool, double #channels

Option 1:

Conv(5x5, C->C)

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 25C²

FLOPs: 25C²HW

Softmax

FC 1000

VGG16

VGG19

Softmax

FC 1000

FC 4096

FC 4096

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2 After pool, double #channels

Option 1:

Conv(5x5, C->C)

Conv(3x3, C->C)

Option 2:

Conv(3x3, C->C)

Params: 25C²

FLOPs: 25C²HW

Params: 18C²

FLOPs: 18C²HW

P00I
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

FC 1000

FC 4096

Softmax

AlexNet

VGG16

VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Option 1:

Conv(5x5, C->C)

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 25C²

FLOPs: 25C²HW

Params: 18C²

FLOPs: 18C²HW

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool 3x3 conv. 512 Pool 3x3 conv, 512 3x3 conv, 512 Pool Pool 3x3 conv. 128 Pool 3x3 conv. 64 Input

Softmax

FC 1000

FC 4096

FC 4096

AlexNet

VGG16

Softmax

FC 1000

FC 4096

3x3 conv. 512

Pool

3x3 conv, 512

Pool

3x3 conv. 128

Pool

3x3 conv, 64

VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Softmax

FC 1000

VGG16 VGG19

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

Pool

3x3 conv. 128

Pool

3x3 conv. 64

Input

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Input: 2C x H x W

<u>Layer:</u> Conv(3x3, 2C->2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²

Softmax

FC 1000

VGG16

VGG19

Softmax

FC 1000

FC 4096

FC 4096

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Input: 2C x H x W

<u>Layer:</u> Conv(3x3, 2C->2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²

Softmax

FC 1000

VGG16

VGG19

Softmax

FC 1000

FC 4096

FC 4096

DR

AlexNet vs VGG-16: Much bigger network!

AlexNet total: 1.9MB

VGG-16 total: 48.6MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

ImageNet Classification Challenge

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Input size		Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Input size		Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x)

MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores

(Recall VGG-16: Most parameters were in the FC layers!)

	Inp	ut size	Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores

(Recall VGG-16: Most parameters were in the FC layers!)

	Inp	ut size	Layer			Output size					
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

Compare with VGG-16:

	Inpu	ut size	Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
Flatten	512	7					25088		98		
FC6	25088			4096			4096		16	102760	103
FC7	4096			4096			4096		16	16777	17
FC8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no longer need to use this trick

ImageNet Classification Challenge

ImageNet Classification Challenge

Next Time: Training Neural Networks

Form your final project teams

- Read the individual brainstorming documents from other students in the google-folder.
- Talk to your fellow classmates.
 - Discuss your project idea with them.
 - Start working toward more concrete project as a team.
 - Adapt/Modify/Narrow down your ideas a team.
 - Talk to Karthik during his OH to see the feasibility.
 - Pick a few lecture topics from the list (provided here).
 - Pick 3 papers to read.
 - To reimplement as your project.
 - To help your project.
- Form a team of 2-3 students by 10/02 EOD using the google-sheet.
 - You do not have to finalize your project by this date.
 - You should finalize your group.

