Drzewa decyzyjne

Kamil Michalak

Czym są drzewa decyzyjne?

- Decyzja/klasyfikacja na podstawie atrybutów.
- Testy/pytania w węzłach, odpowiedzi w liściach
- Jak dotrzeć na uczelnię?

Przykład (AI: A Modern Approach)

Czy zaczekać na stolik w restauracji?

- Alternate: czy jest inna restauracja w pobliżu.
- Bar: czy restauracja ma bar, w którym można zaczekać.
- Fri/Sat: czy jest piątek lub sobota.
- Hungry: czy jesteśmy bardzo głodni.
- Patrons: ile osób jest w restauracji (None/Some/Full).
- Price: przedział cenowy (\$, \$\$, \$\$\$).
- Raining: czy pada.
- Reservation: czy mamy rezerwację.
- Type: rodzaj restauracji (French/Italian/Thai/burger).
- WaitEstimate: czas oczekiwania oszacowany przez właściciela (0–10 minut, 10–30, 30–60, lub >60)

Przykład (Al: A Modern Approach)

Utworzenie drzewa decyzyjnego

```
function Decision-Tree-Learning(examples, attributes, parent_examples) returns
a tree
  if examples is empty then return PLURALITY-VALUE(parent_examples)
  else if all examples have the same classification then return the classification
  else if attributes is empty then return PLURALITY-VALUE(examples)
  else
      A \leftarrow \operatorname{argmax}_{a \in attributes} \text{IMPORTANCE}(a, examples)
      tree \leftarrow a new decision tree with root test A
      for each value v_k of A do
          exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}
          subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)
          add a branch to tree with label (A = v_k) and subtree subtree
      return tree
```

Zbiór danych

Example	Input Attributes										Goal
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = Na$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Ye$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Ye$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = N_6$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Y_e$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = N_0$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Ye$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = N_0$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = N$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = N$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Y_6$

Figure 18.3 Examples for the restaurant domain.

Wynikowe drzewo

Wybór cechy do testowania

- Sposób 1: maksymalizowanie spadku entropii
- Entropia niepewność wystąpienia danego zdarzenia w danej chwili, jeśli zdarzenie jest pewne to entropia wynosi 0.
- Wzór na entropię zmiennej losowej V o zbiorze wartości {v₁, ..., v_n}

$$H(V) = -\sum_{k=1}^{n} P(v_k) \cdot \log_2(P(v_k))$$

Wybór cechy do testowania

Sposób 2: "Gini impurity"

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease	
No	No	No	No	
Yes	Yes	Yes	Yes	
Yes	Yes	No	No	
Yes	No	???	Yes	
etc	etc	etc	etc	

Wybór cechy do testowania

Sposób 2: "Gini impurity"

- $G(L) = 1 P("Yes")^2 P("No")^2 = 0.395$
- G(R) = 0.336
- G("Chest Pain") = średnia ważona z L i R
- Wybieramy cechę z najmniejszą wartością G

G("Chest Pain") = 0.29

G(wezel) = 0.2

Zastosowania drzew decyzyjnych

- Medycyna diagnozowanie pacjentów na podstawie reguł znalezionych w bazie danych
- Ocena inwestycji
- Udzielanie kredytów

Problem

 "overfitting" - drzewo działa dobrze dla zbioru uczącego, ale nie dla dowolnych danych

Las losowy (Random forest)

Las losowy (Random forest)

- Tworzymy n drzew
- Dokonujemy klasyfikacji obiektu na każdym drzewie
- Ostateczna klasyfikacja taka jak na większości drzew.

Tworzenie lasu losowego

- Krok 1: Tworzymy "bootstrapped dataset"
 Dla oryginalnego k-elementowego zbioru danych losujemy k-elementów z powtórzeniami.
- Krok 2: Tworzymy n drzew decyzyjnych.
 W każdym kroku tworzenia drzewa wybieramy najlepszą cechę jedynie z podzbioru wszystkich cech.

Testowanie lasu losowego

- Bierzemy dane, które nie znalazły się w "bootstrapped dataset" ("out-of-bag")
- Dla każdego rekordu sprawdzamy czy jest dobrze klasyfikowany przez las
- Miarą skuteczności lasu jest % poprawnie sklasyfikowanych danych "out-of-bag".

Testowanie lasu losowego

- Teraz możemy sprawdzić jak liczne podzbiory cech przy generowaniu lasu dają najlepszą skuteczność.
- Zwykle ~ $\sqrt{liczbacech}$

Dziękuję za uwagę