- · First, is this problem a convex program like #1 and #2 were? No. Look at $g_1(x) \leq D \rightarrow 4-x_1-x_2^2 \leq 0$. Is $g_1(x)$ convex? No. $\nabla_x g_1 = \begin{bmatrix} -1 \\ -2x_2 \end{bmatrix}$ and $\nabla_{x}^{2}g_{1} = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \Rightarrow \nabla_{x}^{2}g_{1}$ is not PSD (since ends $\{0, -2\} \neq 0$).
- · Since not all inequality constraints are convex, we won't have the strong guarantee of any optimality-condition-satisfying points being global minimizers.
- $L(x) = \lambda_0 x_1^2 + \lambda_0 x_2^2 + \lambda_1 (4 x_1 x_2^2) + \lambda_2 (-x_1 + 3x_2) + \lambda_3 (-x_1 3x_2)$

$$\partial L/\partial x_1 = 2\lambda_0 x_1 - \lambda_1 - \lambda_2 - \lambda_3 \stackrel{\text{set}}{=} 0 \stackrel{\text{eq} 1}{=}$$

$$\partial L/\partial x_2 = 2\lambda_0 x_2 - 2\lambda_1 x_2 + 3\lambda_2 - 3\lambda_3 \stackrel{\text{set}}{=} 0$$
 [eq2]

- Complimentarity: $\lambda_1 (4-x_1-x_2^2) = 0$ [comp1], $\lambda_2 (-x_1+3x_2)$ [comp2], $\lambda_3 (-x_1-3x_2)$ [comp3]
- CASE 1: $\lambda_0 = 0$:
- This yields eqt: $-\lambda_1 \lambda_2 \lambda_3 = 0 \implies \lambda_1 + \lambda_2 + \lambda_3 = 0$. Since $\lambda \ge 0 \ \forall \lambda_i \implies \lambda_1 + \lambda_2 + \lambda_3 = 0$ only holds if $\lambda_1 = \lambda_2 = \lambda_3 = 0$. But we can't have this, since it gives $\lambda_0 = 0$, $\lambda = 0$ which violates the non-trivality condition.
- · Therefore, if I a solution it must be "normal", i.e. $\lambda_0 = 1$.
- When $\lambda_0=1$: we have eq1: $\chi_1=\frac{\lambda_1+\lambda_2+\lambda_3}{2}$, eq2: $\chi_2=\frac{3}{2}\left(\frac{-\lambda_2+\lambda_3}{1-\lambda_1}\right)$
 - · We will have numerous cases to check, generated by [compil conditions. We can Start by checking $\lambda_1=0$, $\lambda_2=0$, $\lambda_3=0$, also checking when the other terms in the comp i) conditions are = 0, allowing λ_1 , λ_2 , λ_3 to be some value > 0.
- · Since to must = 1, we now must check all combos of $\lambda_1, \lambda_2, \lambda_3$ being = 0.
- · CASE 2: \(\lambda_0 = 1, \text{ while } \lambda_1 = \lambda z = \lambda_3 = 0
 - · Leaves eq1: $x_1 = \frac{(0+0+0)}{2} \longrightarrow x_1 = 0$, eq2: $x_2 = \frac{3}{2} \left(\frac{0}{1} \right) = 0$, but is $(x_1 = x_2 = 0)$ feasible? No: see $g_1(x) \neq 0 \rightarrow g_1([0,0]) = 4-0-0=4 \neq 0 \Rightarrow \lambda \neq 0$

• CASE 3: $\lambda_0 = 1$, while $\lambda_2 = \lambda_3 = 0$ and $(4-x_1-x_2^2) = 0$

• Eqt is now: $2x_1 - \lambda_1 - 0 - 0 = 0 \Rightarrow x_1 = \frac{\lambda_2}{2}$

 $2x_1 - 2\lambda_1 x_2 + 0 - 0 = 0 \Rightarrow x_2(2 - 2\lambda_1) = 0 \Rightarrow x_2 = 0 \text{ or } \lambda_1 = 1$ · Eg2 73 now:

• If $x_2=0$, [comp1] is $(4-x_1-0^2)=0 \Rightarrow x_1=4 \Rightarrow \lambda_1=8$. Is $(x_1=4, x_2=0)$ feasible?

(i) $g_1(x) = 4 - 4 - 0 = 0 \le 0$

(ii) $g_2(x) = 3(0) - 4 = -4 = 0$

(iii) $g_3(x) = -3(0) - 4 = -4 = 0$

So $(x_1 = 4, x_2 = 0)$ with $\lambda_0 = 1, \lambda_1 = [\lambda_1 = 8, \lambda_2 = \lambda_3 = 0]$

is feasible & satisfies optimality conditions.

(Not necessarily a local or global min though.)

. What if $\lambda_1=1$? Eq.1 is: $2x_1-1=0 \rightarrow x_1=1/2$. Then, to satisfy [comp1] we need $(4-x_1-x_2^2)=0 \rightarrow (\frac{8}{2}-\frac{1}{2}=x_2^2) \Rightarrow x_2=\pm \left[\frac{7}{2}\right]$. Is $\left(x_1=\frac{1}{2}, x_2=\pm \left[\frac{7}{2}\right]\right)$ feasible?

No for both points. It obviously satisfies gi(x) €0 by construction, but we can't satisfy $g_2(x)=0$ and $g_3(x)\leq 0$.

 $g_2([x_1=2,x_2=\sqrt{2}])=3(\sqrt{2})-\frac{1}{2}=5.11\neq0\Rightarrow(x_1=2,x_2=\sqrt{2})$ isn't feasible.

 $93([x_1=\frac{1}{2}, x_2=-\frac{7}{2}])=++3([\frac{7}{2})-\frac{1}{2}=5.11 \pm 0 \Rightarrow (x_1=\frac{1}{2}, x_2=-\frac{7}{2})$ is n't feasible.

• CASE 4: $\lambda_0=1$, while $\lambda_1=\lambda_2=0$ and $(-\chi_1-3\chi_2=0)$

• Eq1 is now: $2x_1 - \lambda_3 = 0 \rightarrow x_1 = \frac{\lambda_3}{2}$, Eq2 is now: $2x_2 - 3\lambda_3 \rightarrow x_2 = \frac{3}{2}\lambda_3$

. Sub in to |comp3| cond: $\left(-\frac{\lambda_3}{2} = 3\left(\frac{3}{2}\lambda_3\right)\right) \rightarrow -\lambda_3 = 9\lambda_3 \rightarrow iH$ $\lambda_3 = 0 \Rightarrow x_1 = x_2 = 0$

· But $x_1 = x_2 = 0$ violates $g_1(x) = 0 \rightarrow 4 - 0 - 0^2 = 4 \neq 0 \Rightarrow$ this is infeasible.

• CASE 5: $\lambda_0 = 1$, while $\lambda_1 = \lambda_3 = 0$ and $(-x_1 + 3x_2 = 0)$

• Eq1 is now: $2x_1 - \lambda_2 = 0$ and Eq2 is now: $2x_2 + 3\lambda_2 = 0 \rightarrow x_1 = \frac{\lambda_2}{2}$, $x_2 = \frac{-3\lambda_2}{2}$

· Plugging in to comp2 condition gives: $\lambda_2 = 3(-3\lambda_2) \rightarrow \lambda_2 = -9\lambda_2 \rightarrow iff \lambda_2 = 0$ \Rightarrow $x_1 = x_2 = 0$, which again violates $g_1(x) \leq 0 \Rightarrow 4-0-0^2 = 4 \neq 0$. Thus, this route is infeasible.

- CASE 6: $\lambda_0 = 1$, $\lambda_1 = 0$, $(-x_1 + 3x_2 = 0)$, $(-x_1 3x_2 = 0)$
- We can see that $(-x_1+3x_2 \text{ must} = -x_1-3x_2) \rightarrow -x_1+x_1 = 3x_2++3x_2$ $\rightarrow 6x_2=0 \rightarrow \text{iff } x_2=0 \Rightarrow x_1=0 \text{, but we know } x_1=x_2=0 \text{ violates } g_1(x)=0,$ since $4-0-0^2=4\neq 0$. Thus, this solution can't work.
- CASE 7: $\lambda_0 = 1$, $\lambda_2 = 0$, $(4 x_1 x_2^2 = 0)$, $(-x_1 3x_2) = 0$
 - · Using the last equation in the CASE, $\Rightarrow x_1 = -3x_2$. Plugging in to the other CASE equation gives: $(4++3x_2-x_2^2=0) \equiv x_2^2-3x_2-4=0 \Rightarrow (x_2^2+1)(x_2^2+1)=0$

This gives $x_2 = 4$ and $x_2 = -1$ $(x_1 = 3, x_2 = -1), (x_1 = -12, x_2 = 4)$. Feasible?

• $(x_1=3, x_2=-1)$: this is a feasible point. Looking at eq1: $-2-\lambda_1-\lambda_3=0$ and

eq2: $-2+2\lambda_1-3\lambda_3=0$. Gives $\lambda_1=-2-\lambda_3$ \longrightarrow into eq2: $-2-4-2\lambda_3-3\lambda_3=0$

- $\rightarrow -5\lambda_3 = 6 \rightarrow \lambda_3 = -6/5$ which violates $\lambda_i \ge 0$ $\forall i \in \{1,7,3\}$, so this solution won't work. In short, $(X_1=3, X_2=1)$ is feasible, but doesn't sortisfy FJ conditions here.
- $(x_1 = -12, x_2 = 4)$: this is a feasible point. However, it has a much greater objective value than the candidate from CASE 3, so it's not worth finding λ , d λ 3.
- CASE 8: $\lambda_6 = 1$, $\lambda_3 = 0$, $(4 x_1 x_2^2 = 0)$, $(-x_1 + 3x_2 = 0)$
- Using the equations in the case: $x_1 = 3x_2 \rightarrow [4-3x_2-x_2^2=0] = [x_2^2+3x_2-4=0]$ $= [(x_2+4)(x_2-1)=0] \implies \text{ either } (x_2=1, x_1=3) \text{ or } (x_2=-4, x_1=-12).$
- · (X1=-12, X2=-4): doesn't matter, much larger objective value than case 3 candidate.
- $(\chi_1=3, \chi_2=1)$: feasible point. Our new eq1: $(e-\lambda_1-\lambda_2=0)$, and our new eq2: $(e-\lambda_1-\lambda_2=0)$, and our new eq2: $(e-\lambda_1-\lambda_2=0)$, $(e-\lambda_1-\lambda_2=0)$, $(e-\lambda_1-\lambda_2=0)$, $(e-\lambda_1-\lambda_2=0)$, $(e-\lambda_1-\lambda_2=0)$, and our new eq2: $(e-\lambda_1-\lambda_2=0)$, and $(e-\lambda_1-\lambda_$

Thus, $(x_1=3, x_2=1)$ with $\lambda_0=1$, $\lambda^{T}=[\lambda_1=4, \lambda_2=2, \lambda_3=0]$ is

our best candidate with $f(x) = 3^2 + 1^2 = 10$. We can't guarantee it to be a global max, but it is the best solution using the FJ conditions. $(x_1=3, x_2=-1)$ also achieves $f(x_1=10)$, but diesn't satisfy FJ conditions (although it Is a feasible point).