2014 All-Russian Grade 10 #6

Tristan Shin

13 Jan 2016

Let M be the midpoint of the side AC of $\triangle ABC$. Let $P \in AM$ and $Q \in CM$ be such that $PQ = \frac{AC}{2}$. Let (ABQ) intersect with BC at $X \neq B$ and (BCP) intersect with BA at $Y \neq B$. Prove that the quadrilateral BXMY is cyclic.

By Power of a Point, $AY \cdot AB = AP \cdot AC$ and $CX \cdot CB = CQ \cdot CA$. Let AC = b and AP = w. By the condition, $CQ = \frac{b}{2} - w$. Thus, $AY \cdot AB = wb$ and $CX \cdot CB = \left(\frac{b}{2} - w\right)b$. Now, let the circumcircle of BXY intersect AC at J and K (possibly complex). By Power of a Point, $AY \cdot AB = AJ \cdot AK$ and $CX \cdot CB = CJ \cdot CK$. Note that CJ = b - AJ and CK = b - AK, so $CX \cdot CB = (b - AJ)(b - AK)$. Substituting in what we know, $AJ \cdot AK = wb$ and $(b - AJ)(b - AK) = \left(\frac{b}{2} - w\right)b$. There is a unique monic quadratic P(x) with roots AJ and AK. We would have P(0) = wb and $P(b) = \left(\frac{b}{2} - w\right)b$. But notice $P(x) = \left(x - \frac{b}{2}\right)(x - 2w)$ satisfies these same conditions, so this is P(x). But $\frac{b}{2}$ is a root of P(x), so either AJ or AK is $\frac{b}{2}$, meaning either J or K is M and thus M lies on the circumcircle of BXY and BXMY is cyclic.