4

4.1

We can find a state machine homomorphism (SMH) for M and M' which is neither monomorphic nor epimorphic and therefore not isomorphic. To prove this conjecture we will first show that there can not exist a epimorphic SMH. For a SMH f to be epimorphic it has to be surjective. This means that given $f = (\alpha, \beta)$:

$$\alpha: Q \to Q' \land \beta: \Sigma \to \Sigma' \tag{4.1}$$

the range of α and β have to be equal to Q' and Σ' respectively.

Let's suppose that α maps to Q' and β to Σ' . This means that we have to map the states of Q to the states of Q'. The state r_1 is isolated whilst the states r_2 and r_3 form a cyclic state machine with stern with stern length and cycle length of 1. Therefore, we would need to find a similar structure in Q to map the states to Q'. If we look for these structures in M we can find an isolated state q_4 when we disregard c. However, we can only find a cyclic state machine with stern if we either disregard a, c or b, c since the combination of b and c allows us to always move between the states of $q_i \mid i \in 3$. Thus, we can not find a mapping of β to Σ' , since, we need to omit either at least 2 out of 3 elements of Σ to be able to represent the structure of M, therefore, either α or β can not be surjective.

To prove that M and M' are not monomorphic we have to show there is no injective SMH. Since, M' has less states as well as a smaller alphabet and a homomorphism must be total, some states of M have to map to the same state in M' which contradicts injectivity.

Now we show that M and M' are morphic by providing (α, β) .

$$\alpha: q \mapsto r_1 \ \forall q \in Q$$
$$\beta: u \mapsto a' \ \forall u \in \Sigma$$

Since, we map all states to the same state in M' and all letters to the same letter in Σ' it does not matter if we either first compute in M and then transform into M' or first transform into M' and then compute there. We always end up in r_1 . This concludes that M and M' are morphic but not monomorphic, epimorphic or isomorphic.

As stated above, M_1 can only be monomorphic to M_2 if $|Q_1| \leq |Q_2|$ and there exists a one to one mapping with the homomorphism criteria. Same applies to Σ_1 and Σ_2 .

Moreover, M_1 can only be epimorphic to M_2 if $|Q_1| \ge |Q_2|$. Otherwise due right uniquness we can not map one state of M_1 to two or more states in M_2 and therefore can not hit the whole range of Q_2 . This also applies to the alphabets.

For an isomorphismus both conditions of a monomorphismus and epimorphismus must apply. Thus, we have $|Q_1| = |Q_2|$ and $|\Sigma_1| = |\Sigma_2|$.

4.2

For Exercise 2 we need to prove that $TS(M') = \overline{TS(M)}$ holds. The closure of a transformation semigroup A = (Q, S) is defined as

$$\overline{\mathbf{A}} = (Q, \langle S \cup \overline{\mathbf{Q}} \rangle \tag{4.2}$$

. For $TS(M') = \overline{TS(M)}$ to hold true, TS(M') has to include all possible transformations from S and Q. Since, there exists a δ_a for all $a \in \Sigma$ as well as the identity function for each state of q with $\delta'_a(q) = a$ for all $a \in Q$ there can not exist any other transformations in TS(M') that are not included in the closure of $TS(M) = \overline{TS(M)}$. Therefore, $TS(M') = \overline{TS(M)}$ holds true.

4.3

Given \mathbb{Z}_2 we obtain the transformation semigroup $(\mathbb{Z}_2, \mathbb{Z}_2)$ with right multiplication as an action (Lemma 3.28). Let $a, b \in \mathbb{Z}_2$ and notice $\mathbb{Z}_2 = \{[0], [1]\}$. We compute a + b by using the action and therefore adding its corresponding equivalence classes [a] + [b]. To obtain the equivalence classes we use the mudolo operator:

$$[a] + [b]$$

$$= a \operatorname{mod} 2 + b \operatorname{mod} 2$$

$$= a + b \operatorname{mod} 2$$

By definition of the mudolo operator $a \mod 2 + b \mod 2 = a + b \mod 2$ which is equal to $\delta(a,b)$.

4.4

To prove that every group acts on itself we need show compatibility and faithfulness for a function $f: G \times G \to G; (g, g') \mapsto g'g$ with G being a group. Compatibility follows due to groups being associative. Let $g_1, g_2 \in G$. Let $gg_1 = gg_2(0)$ for all $g \in G$ suppose $g_1 \neq g_2$. To fulfill the equation g has to be the inverse element of g_1 and g_2 . But because g is fixed it also has to be the same element. Furthermore the inverse element exists only for one other element in the group. Thus, g can not be the inverse of g_1 and g_2 at the same time. This contradicts $g_1 \neq g_2$. This concludes the proof.