谓词逻辑

综合推理方法

Lijie Wang

基本方法 演绎举例 推理难点 特殊演绎

综合推理方法

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

谓词的演绎推理

综合推理方法 Lijie Wang

基本方法 演绎举例 推理难点 特殊演绎 推理应用 假定推导过程都是在相同的个体域内进行的 (通常是全总个体域)。

☞ 综合推理方法

- 推导过程中可以引用命题演算中的规则 P 和规则 T;
- 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
- 若需消去量词,可以引用规则 US 和规则 ES;
- 当所求结论需定量时, 可引用规则 UG 和规则 EG 引入量词;
- 证明时可采用如命题演算中的直接证明方法和间接证明方法;
- 在推导过程中,对消去量词的公式或公式中不含量词的子公式,可以引用命题演算中的基本等价公式和基本蕴涵公式;
- 在推导过程中,对含有量词的公式可以引用谓词中的基本等价公式和基本蕴涵公式。

谓词演绎举例一、苏格拉底三段论

Lijie Wang

演绎举例

"所有的人都是要死的;苏格拉底是人。所以苏格拉底是要死的。

解:

例

设H(x):x 是人; M(x):x 是要死的; s: 苏格拉底.

则推理符号化成:

$$(\forall x)(H(x) \to M(x)), H(s) \Rightarrow M(s)$$

证明.

- (1) $(\forall x)(H(x) \rightarrow M(x))$
- (2)H((y))//////M((y)) $H(s) \rightarrow M(s)$ US, (1), I
- (3)H(s)
- (4)M(s)T, (2), (3), I

谓词演绎举例二:三步走策略

综合推理方法

Lijie Wang

*l⊞*il

基本方法 **演绎举例** 推理难点 特殊演绎

173

演绎法证明: $(\forall x)(P(x) \to Q(x)), (\exists x)P(x) \Rightarrow (\exists x)Q(x)$
证明.
$(1) (\forall x)(P(x) \rightarrow Q(x))$

(1)	$(\forall x)(P(x) \to Q(x))$		Ρ
(2)	P/\Y)/+/1/9(\Y)	$P(a) \rightarrow Q(a)$	US,(1),I
(3)	$(\exists x)P(x)$		Ρ
(4)	P(a)		ES, (3)
(5)	Q(a)		T, (2), (4), I
(6)	$(\exists x) Q(x)$		EG, (5)

谓词演绎举例二:三步走策略

综合推理方法 Lijie Wang

基本方法 **演绎举例**

住理难点

特殊演绎

住理应月

$$\{(\forall x)(P(x) \to Q(x)), (\exists x)P(x) \Rightarrow (\exists x)Q(x)\}$$

以上推理的正确推导应为:

证明.						
(1)	$(\exists x)P(x)$	Р				
(2)	P(a)	ES, (1), I				
(3)	$(\forall x)(P(x) \to Q(x))$	Р				
(4)	P(a) o Q(a)	<i>US</i> , (3)				
(5)	Q(a)	T, (2), (4), I				
(6)	$(\exists x) Q(x)$	EG, (5)				

谓词的推理难点

综合推理方法 Lijie Wang

基本方法 演绎举例 推理难点 特殊演绎 推理应用

☞ 难点总结

- 在推导过程中,如既要使用规则 US 又要使用规则 ES 消去量词,而且选用的个体是同一个符号,则必须先使用规则 ES,再使用规则 US。然后再使用命题演算中的推理规则,最后使用规则 UG 或规则 EG 引入量词,得到所求结论。
- 如一个变量是用规则 ES 消去量词,对该变量在添加量词时,则只能使用规则 EG;如使用规则 US 消去量词,对该变量在添加量词时,则可使用规则 EG 和规则 UG。
- 在用规则 US 和规则 ES 消去量词时,此量词必须位于整个公式的最前端,且辖域为其后的整个公式。
- 在添加量词 $(\forall x)$ 和 $(\exists x)$ 时,所选用的 x 不能在公式 G(y) 或 G(c) 中出现。

谓词演绎举例三: CP 规则证明法

综合推理方法 Lijie Wang

特殊演绎

_{本方法} 演绎法证明

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

证明.		
(1)	$\neg(\forall x)P(x)$	P(附加前提)
(2)	$(\exists x) \neg P(x)$	T, (1) , E
(3)	$\neg P(c)$	ES, (2)
(4)	$(\forall x)(P(x) \vee Q(x))$	Р
(5)	$P(c) \vee Q(c)$	US, (4)
(6)	Q(c)	T, (3), (5), I
(7)	$(\exists x) Q(x)$	EG, (6)
(8)	$\neg(\forall x)P(x)\to(\exists x)Q(x)$	CP, (1), (7)
(9)	$(\forall x) P(x) \vee (\exists x) Q(x)$	T, (8), E

谓词演绎举例四: 反证法

```
Lijie Wang
```

特殊演绎

```
演绎法证明: (\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)
                                                                      P(附加前提)
(1)
         \neg((\forall x)P(x) \lor (\exists x)Q(x))
(2)
         \neg(\forall x)P(x) \land \neg(\exists x)Q(x)
                                                                       T, (1), E
(3)
         \neg(\forall x)P(x)
                                                                       T, (2), I
(4)
         \neg(\exists x) Q(x)
                                                                       T, (2), I
(5)
         (\exists x) \neg P(x)
                                                                       T, (3), E
(6)
         \neg P(c)
                                                                      ES, (5)
         (\forall x) \neg Q(x)
                                                                       T, (4), E
(8)
         \neg Q(c)
                                                                      US, (7)
(9)
         \neg P(c) \land \neg Q(c)
                                                                       T, (6), (8), I
(10)
         \neg (P(c) \lor Q(c))
                                                                       T, (9), E
(11)
         (\forall x)(P(x) \lor Q(x))
(12)
        P(c) \vee Q(c)
                                                                      US, (11)
(13)
         (P(c) \vee Q(c)) \wedge (\neg (P(c) \vee Q(c)))
                                                                       T, (10), (12), I
```

谓词逻辑推理的应用

综合推理方法

Lijie Wang

基本方法 演绎举例 推理难点 特殊演绎 推理应用

例

证明下述论断的正确性: "所有的哺乳动物都是脊椎动物;并非所有的哺乳动物都是胎生动物;故有些脊椎动物不是胎生的。"

解

设 *P(x)*: *x*是哺乳动物;

Q(x): x是脊椎动物;

R(x): x是胎生动物.

则推理符号化成:

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

正确推导过程

综合推理方法

Lijie Wang

基本方法 寅绎举例 作理难点

特殊演绎 推理应用 $\left\{ (\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x)) \right.$

00000		
(1)	$\neg(\forall x)(P(x)\to R(x))$	P
(2)	$(\exists x) \neg (\neg P(x) \lor R(x))$	T,(1), E
(3)	$\neg(\neg P(c) \lor R(c))$	ES, (2)
(4)	$P(c) \wedge \neg R(c)$	T, (3), E
(5)	P(c)	T, (4), I
(6)	$\neg R(c)$	T, (4), I
(7)	$(\forall x)(P(x) \to Q(x))$	P
(8)	P(c) o Q(c)	US, (7)
(9)	Q(c)	T, (5), (8), I
(10)	$Q(c) \wedge \neg R(c)$	T, (6), (9), I
(11)	$(\exists x)(Q(x) \land \neg R(x))$	EG, (10)

综合推理方法

Lijie Wang

基本方法

推理难点

特殊演绎

推理应用

THE END, THANKS!