IMDB: A Low-Cost In-Module Disturbance Barrier for Mitigating Write Disturbance Errors in Phase-Change Memory

Hyokeun Lee¹, Seungyong Lee¹, Moonsoo Kim¹, Hyun Kim², and Hyuk-Jae Lee¹

¹Seoul National University, Seoul, Republic of Korea ²Seoul National University of Science and Technology, Seoul, Republic of Korea

About the presenter

- Pursuing MSc and PhD in Dept. of ECE, Seoul National University, Seoul, Republic of Korea (2016-)
- Computer Architecture and Parallel Processing Lab.
- Area of Interests
 - Computer architecture
 - Memory controller design
 - Reliability issues on phase-change memories
- Contacts: harrylee365@gmail.com/hklee@capp.snu.ac.kr

Problem: Write Disturbance Error (WDE) in Phase-change memory (PCM)

- About PCM: Identify RESET and SET with the resistance of cell phase (amorphous & crystalline)
- Cells are crystallized under high temperature environment for a long time
 - Cells on idle amorphous state are vulnerable!
 - Appears as 0→1 flip-errors logically
- Acute phenomenon (X), Chronic phenomenon (O)
 - WDE is NOT a RANDOM problem
 - WDE occurs with gradual crystallization
 - Russo et al. declare WDE occurs under a number of RESETs → called "WDE limitation number"
- Manufacturers specify that number as 10K in recent works → Guarantee no WDE before 10K of RESET on neighbors!

under 470K

Motivations

- Treats WDE as "encoding" problem
 - Converts WDE-vulnerable pattern → "less" vulnerable patterns
 - WDE rate variates with workloads + relying on ECC
- Requires significant overhead when "deferring" correction
 - Extra device to temporally "record" error position
 - Relying on a high-overhead verify-n-correction (VnC)
- Extra supercapacitors are required to flush volatile data if "write cache" is adopted
- Knowledge of WDE limitation number is NOT leveraged yet

Idea of In-Module Disturbance Barrier (IMDB)

- Rewrite vulnerable data "on-demand"
- Record the number of 1-to-0 flips in a data word
 - Data are NOT recorded basically → NO burden on supercapacitors
 - Need counter on each address? → Hold WDE-vulnerable addresses in a table
- No modifications on the processor: modification only in PCM module

→ Desirable solution to both vendors of processor & memory

Deeper view of IMDB

- Main table: SRAM-based table hold WDE-vulnerable addresses
 - ZeroFlipCntr: Counts the number of 1→0 flips in a WRITE CMD data
 - Generate REWRITE CMD before ZeroFlipCntr reaches threshold
 - threshold=WDE limitation #/2 (two wordlines disturbs a cell)
- "Sparsely" gets WRITE CMD
 - Newly insert WRITE CMD with the probability of 1/64
- 512 entries assumed in the paper

Main table of IMDB

Deeper view of IMDB

- Replacement policy
 - Replace the entry with MIN(ZeroFlipCntr[MaxZFCldx])
 - MaxZFldx: index of MAX(ZeroFlipCntr)
 - Get MIN(RewriteCntr) if more than two MIN(ZeroFlipCntr)
- A large amount of read ports and comparators on the SRAM
 - Approximate Lowest number Estimator (AppLE)
 - Few entries as a "group"
 - → 1 group 1 read port on the SRAM
 - Each read port is fed by a randomizer

Energy, area, latency vs. # of read ports on SRAM

Deeper view of IMDB

- Barrier buffer: an SRAM holding extremely WDE-vulnerable addresses along with data
 - Adopt practical address detector (PAD) from the work of Qureshi et al.
- Once REWRITE is generated, entry is promoted to the barrier buffer
- Barrier buffer is full → swap entries between two tables
- 16 entries as previous work does
 - 2% of total flush time constraint (100us in Optane devices)

Migration between the main table and the barrier buffer

Experimental Results

- WDE
 - 81.3× lower than ADAM-noVnC
 - 18.4 × lower than SIWC
- Speed & energy: both are 3% lower than the baseline

→ VnC fully eliminates WDE but with high overheads of speed and energy

Conclusion & Future Works

Conclusion

- A table-based mitigating WDE with on-demand way is firstly proposed
- Effectively reduces the number of read ports on SRAM incurred by the replacement policy
- Significantly reduces WDEs with negligible speed degradation and energy overhead as compared with previous works

Future works

- Sensitivity analysis on the entries numbers of main table and barrier buffers
- Comparison with other state-of-art replacement policy (i.e., LRU)
- Sensitivity analysis on the number of groups in AppLE

Questions

