

PRERPARETERS VS. HYPERPARETERS

Parameters are learned through the training procedure. For example, the weights of a neural network.

Hyperparameters are set before training starts, can be tuned through grid search or related methods.

ChrisAlbon

Hyperparameter tuning vs. model training

	Data Source	Hyperparameter1		Hyperparameter2		NDCG	Precision	Recall	F1
		Mode	Value	Mode	Value		recision	recuir	••
1	IR	topn	500	topn	50	0.7882	0.7173	0.8953	0.7956
2	All	topn	50	topn	20	0.8004	0.7111	0.9020	0.7947
3	Official website	topn	50	topn	20	0.7725	0.7117	0.8921	0.7912
4	Official website	thr.	0.4	topn	20	0.7812	0.7134	0.8871	0.7903
5	IR	topn	500	hitxt	9.0	0.8009	0.7029	0.9156	0.7897
6	Official website	thr.	0.3	topn	50	0.8019	0.6952	0.9138	0.7882
7	IR	topn	50	topn	20	0.7896	0.7095	0.8877	0.7873
8	IR	thr.	0.3	topn	50	0.7859	0.6979	0.9052	0.7864
9	All	thr.	0.4	topn	20	0.7822	0.7112	0.8795	0.7861
10	All	thr.	0.3	topn	50	0.8001	0.6980	0.9020	0.7857
11	Official website	topn	200	topn	50	0.8011	0.6941	0.9088	0.7856
12	IR	topn	200	hitxt	7.0	0.7928	0.7067	0.8931	0.7853
13	All	topn	200	topn	50	0.8037	0.6963	0.9046	0.7851
14	IR	topn	500	hitxt	8.0	0.7956	0.7020	0.9031	0.7851
15	IR	topn	500	hitxt	13.0	0.7981	0.6861	0.9331	0.7842
16	IR	topn	500	hitxt	10.0	0.8163	0.6891	0.9256	0.7841
17	Official website	thr.	0.4	hitxt	6.0	0.7944	0.7069	0.8855	0.7840
18	IR	topn	1000	topn	50	0.7749	0.7257	0.8553	0.7837
19	IR	topn	2000	hitxt	8.0	0.7770	0.6986	0.9057	0.7825
20	IR	topn	500	hitxt	11.0	0.8051	0.6870	0.9256	0.7824

Advantages of manual hyperparameter optimization:

- Tuning hyperparameters manually means more control over the process.
- If you're researching or studying tuning and how it affects the network weights then doing it manually would
 make sense.

Disadvantages of manual hyperparameter optimization:

- Manual tuning is a tedious process since there can be many trials and keeping track can prove costly and time-consuming.
- This isn't a very practical approach when there are a lot of hyperparameters to consider.

Automated hyperparameter tuning utilizes already existing algorithms to automate the process. The steps you follow are:

- First, specify a set of hyperparameters and limits to those hyperparameters' values (note: every algorithm
 requires this set to be a specific data structure, e.g. dictionaries are common while working with algorithms).
- Then the algorithm does the heavy lifting for you. It runs those trials and fetches you the best set of hyperparameters that will give optimal results.

- Grid Search
- Keras Tuner

GRID SEARCH

hyperparameter-1

GRID SEARCH

	C=0.001	C=0.01	•••	C=10	
gamma=0.001	SVC(C=0.001, gamma=0.001)	SVC(C=0.01, gamma=0.001)	•••	SVC(C=10, gamma=0.001)	
gamma=0.01	SVC(C=0.001, gamma=0.01)	SVC(C=0.01, gamma=0.01)	•••	SVC(C=10, gamma=0.01)	
		•••	•••	•••	
gamma=100	SVC(C=0.001, gamma=100)	SVC(C=0.01, gamma=100)	•••	SVC(C=10, gamma=100)	

KERAS TUNER

KerasTuner API

The **Hyperparameters** class is used to specify a set of hyperparameters and their values, to be used in the model building function.

The **Tuner** subclasses corresponding to different tuning algorithms are called directly by the user to start the search or to get the best models.

The **Oracle** subclasses are the core search algorithms, receiving model evaluation results from the Tuner and providing new hyperparameter values.

The **HyperModel** subclasses are predefined search spaces for certain model families like ResNet and XceptionNet.

HYPERPARAMETERS CLASS

HyperParameters

- HyperParameters class
- Boolean method
- Choice method
- Fixed method
- Float method
- Int method
- conditional_scope method
- get method

TUNER CLASS

Tuners

- The base Tuner class
- RandomSearch Tuner
- BayesianOptimization Tuner
- Hyperband Tuner
- Sklearn Tuner

KERAS TUNER

https://keras.io/api/keras_tuner/

WORKFLOW

HANDS ON