4-5 주차. 데이터 전처리

과목명: 데이터사이언스

AI융합학부 박건우

Contents

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Why Preprocess the Data?

- In many cases, data quality is too low to be used for being mined
- We aim to improve data quality through preprocessing steps
- A multidimensional view for data quality
 - Accuracy (정확도): correct or wrong, accurate or not
 - Completeness (완전성): not recorded, unavailable, ···
 - Consistency (일관성): some modified but some not, dangling, ...
 - Timeliness (시가적절성): timely update?
 - Believability (신뢰성): how trustable the data are correct?
 - Interpretability (해석가능성): how easily the data can be understood?
- Data quality depends on the intended use of the data!

Major Tasks in Data Preprocessing

- Data cleaning (데이터 정제): Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration (데이터 통합): Integration of multiple databases or files
- **Data reduction (데이터 축소)**: Dimensionality reduction, Numerosity reduction
- Data transformation (데이터 변환) and discretization (이산화)

Contents

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning (데이터 정제)

- Data in the Real World Is Dirty: Lots of potentially incorrect data
 - <u>incomplete (불완전)</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data. e.g., Occupation="" (missing data)
 - <u>noisy (잡음 있는)</u>: containing noise, errors, or outliers. e.g., Salary="—10" (an error)
 - <u>inconsistent (일관성 없는)</u>: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - <u>intentional (의도적인)</u> (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data - 결측치

- Data is not always available. e.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - data not entered due to misunderstanding
- In some cases, a missing value may not imply an error in the data!
 - Driver's license number for a credit card application
 - Some applicants may not have a license number
- Missing data may need to be inferred for further analysis

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant: e.g., "unknown" or -∞
 - the attribute mean
 - the attribute mean for all samples belonging to the same class
 - the most probable value: by regression, Bayesian methods or decision tree induction

Noisy Data

- Noise (잡음): a random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries,
- will be covered later in the slides

Regression

smooth by fitting the data into regression functions

Clustering

- detect and remove outliers
- Combined computer and human inspection (human-in-the-loop)
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- How can we proceed with discrepancy detection? There is no single answer.
- As a starting point, use knowledge about data (metadata: data about data).
 e.g., domain, range, dependency, distribution
 - What are the data type and domain of each attribute? What are the acceptable values for each attribute?
 - Are the data skewed or symmetric? Do all values fall within the expected range?
- You may write your own scripts to find noise, outliers, unusual values that need investigation.

Contents

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration (데이터 통합)

- Combines data from multiple sources into a coherent store
- The same attribute or object may have different names in different databases
- e.g., How can a data scientist be sure that customer_id in database A and cust_number in database B are the same?
- Redundancy detection (중복성 탐지)
 - *Derivable data*: One attribute may be a "derived" attribute in another table,
 - e.g., annual revenue, monthly revenue on average
 - Redundancy can be detected by <u>correlation analysis</u> and <u>covariance analysis</u>

χ^2 (Chi-square) Test for Nominal Data

Step 1. Contingency table (분할표) 구성

Sex:	Democrats	Republicans 31		
Male	23			
Female	28	22		

Step 2. Chi-square statistic 계산

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- o_{ij} : the observed frequency (실제 수치) of the join event (A_i, B_j)
- e_{ij} : the expected frequency of (A_i, B_j) , computed as $\frac{count(A=a_i) \times count(B=b_j)}{n}$
- n: the number of data tuples, r: number of rows, c: number of columns

Interpretation

- The larger the χ^2 value, the more likely the variables are related
- The χ^2 statistic tests the hypothesis that A and B are independent, based on a significance level with $(r-1)\times(c-1)$ degrees of freedom

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

Dogwood of	Chi-Square (χ^2) Distribution Area to the Right of Critical Value							
Degrees of - Freedom	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01
1	_	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086

• χ^2 (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

Correlation Coefficient for Numeric Data

Correlation coefficient (also called Pearson's correlation coefficient)

$$r_{X,Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n [(x_i - \mu_X)(y_i - \mu_Y)/n]}{\sigma_X \sigma_Y}$$

where X and Y are the respective random variables for two attributes and n is the number of tuples in a dataset.

- If $0 < r_{X,Y} < 1$, X and Y are positively correlated (X's values increase as Y's). The higher, the stronger correlation.
- $r_{X,Y} = 0$; independent; $-1 < r_{X,Y} < 0$: negatively correlated

Visually Evaluating Correlation Coefficient

Using scatter plots

Scatter plots showing the similarity from -1 to 1.

Covariance (공분산) for Numeric Data

Covariance is similar to correlation

$$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum_{i=1}^{n}[(x_i - \mu_X)(y_i - \mu_Y)]}{N}$$

$$r_{X,Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^{n}[(x_i - \mu_X)(y_i - \mu_Y)/N]}{\sigma_X \sigma_Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- Positive covariance (Cov(X, Y) > 0): X and Y both tend to be larger than their expected values.
- Negative covariance (Cov(X,Y) < 0): If X is larger than its expected value, Y is likely to be smaller than its expected value.
- Independence: Cov(X,Y) = 0 but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent.
 - Only under some additional assumptions (e.g., the data follow multivariate normal distributions), a covariance of 0 imply independence

Covariance: An Example

$$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum_{i=1}^{n} [(x_i - \mu_X)(y_i - \mu_Y)]}{N}$$

It can be simplified in computation as

$$Cov(X,Y) = \mathbb{E}[X \cdot Y] - \mu_X \mu_Y$$

- Suppose two stocks A and B have the following values in one week:
 (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question:

If the stocks are affected by the same industry trends, will their prices rise or fall together?

- E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
- E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6
- $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Correlation does not imply causality

Be cautious in arguing causality.

In your analysis, a correlation without causation could be more plausible than the above.

20 Source: statology