УЕБ СИСТЕМА ЗА ИЗПЪЛНИМОСТ НА СВЪРЗАНАТА КОНТАКТНА ЛОГИКА

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА КАТЕДРА ПО МАТЕМАТИЧЕСКА ЛОГИКА И ПРИЛОЖЕНИЯТА Й

Антон Дудов

Научен ръководител: проф. Тинко Тинчев

- 💿 Контактна логика
 - Синтаксис
 - Семантика

Приложения:

• Доказване, че формула е тавтология

Приложения:

• Доказване, че формула е тавтология

$$\phi = \mathbf{x} \vee \neg \mathbf{x}$$

Приложения:

• Доказване, че формула е тавтология

$$\phi = x \vee \neg x$$

• Алгоритъм за търсене на модел

Приложения:

• Доказване, че формула е тавтология

$$\phi = x \vee \neg x$$

• Алгоритъм за търсене на модел

$$\psi = (x \wedge \neg x) \vee (\neg x \wedge y) \rightarrow x = F, \ y = T$$

Табло метод със знаци $\mathbb T$ и $\mathbb F$

- ullet ТX означава, че формулата X трябва да е true (в някой модел)
- ullet $\mathbb{F}X$ аналогично, X трябва да e false

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$\frac{\mathbb{T}X \wedge Y}{\mathbb{T}X}$$

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$rac{\mathbb{F} X \wedge Y}{\mathbb{F} X | \mathbb{F} Y}$$

•
$$\frac{\mathbb{T} \neg X}{\mathbb{F} X}$$

•
$$\frac{\mathbb{T}X \wedge Y}{\mathbb{T}X}$$

$$\bullet \ \frac{\mathbb{T}X \vee Y}{\mathbb{T}X|\mathbb{T}Y}$$

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$rac{\mathbb{F} X \wedge Y}{\mathbb{F} X | \mathbb{F} Y}$$

$$\frac{\mathbb{F}X \vee Y}{\mathbb{F}X}$$

$$\frac{\mathbb{F}X{\Rightarrow}Y}{\mathbb{T}X}_{\mathbb{F}Y}$$

$$\bullet \ \frac{\mathbb{T}X \Rightarrow Y}{\mathbb{F}X|\mathbb{T}Y}$$

$$\bullet \ \frac{\mathbb{T}X \Leftrightarrow Y}{\mathbb{T}X \mid \mathbb{F}X} \\ \mathbb{T}Y \mid \mathbb{F}Y$$

$$\frac{\mathbb{F}X \Rightarrow Y}{\mathbb{T}X} \\ \mathbb{F}Y$$

$$\frac{\mathbb{F}X \Leftrightarrow Y}{\mathbb{T}X \mid \mathbb{F}X} \\ \mathbb{F}Y \mid \mathbb{T}Y$$

Табло метод - строене

• Клон се нарича затворен, ако съдържа противоречие.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.
- Клон се нарича отворен, ако е приключен и не е затворен.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.
- Клон се нарича отворен, ако е приключен и не е затворен.
- Затворено табло е табло, на което всички клонове са затворени.

Табло метод - тавтология

Лема

Затворено табло за $\mathbb{F} X$ е табло доказателство за X, т.е. X е тавтология.

Пример

Контактна логика - синтаксис

- ullet Булеви променливи (изброимо множество ${\cal V}$)
- Булеви константи: 0 и 1
- Булеви операции:
 - ▶ □ Сечение

 - * Допълнение
- Булеви термове
- Логически връзки: \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow
- Логически константи: \top и \bot
- *Модални връзки*: ≤(част от) and ℂ(контакт)
- Формули

Контактна логика - термове

Терм - индуктивна дефиниция

- Булева променлива
- Булева константа
- Ако a е терм, то a^* също е терм
- ullet Ако a и b са термове, то и $a \sqcap b$ и $a \sqcup b$ са също термове

Контактна логика - формули

Атомарни формули са от вида $a \leq b$ and aCb, където a и b са термове.

Контактна логика - формули

Атомарни формули са от вида $a \leq b$ and aCb, където a и b са термове.

Формула - индуктивна дефиниция

- Логическа константа
- Атомарна формула
- ullet Ако ϕ е формула, то $\neg \phi$ съшо е формула
- Ако ϕ и ψ са формули, то $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ and $(\phi \Leftrightarrow \psi)$ са също формули

Контактна логика - семантика

$$\mathcal{F}=(\mathsf{W},\,\mathsf{R})$$
 е релационна система с $\mathsf{W}
eq\emptyset$ и $\mathsf{R}\subseteq W^2$

Контактна логика - семантика

 $\mathcal{F}=(\mathsf{W},\,\mathsf{R})$ е релационна система с $\mathsf{W}
eq\emptyset$ и $\mathsf{R}\subseteq W^2$

Дефиниция (Оценка)

Оценка на булеви променливи в \mathcal{F} е всяка функция $v: \mathcal{V} \to \mathcal{P}(W)$. Разширяваме v индуктивно за булевите термове:

- $v(0) = \emptyset$
- v(1) = W
- $v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Контактна логика - част от

Дефиниция (Част от)

$$a \le b \iff v(a) \subseteq v(b)$$

Където а и в са термове.

Контактна логика - контакт

Дефиниция (Контакт)

$$aCb \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$$

Където а и b са термове.

Контактна логика - модел

Дефиниция (Модел)

 $\mathcal{M} = (\mathcal{F}, v)$ се нарича **модел**.

Истиността на формула ϕ в \mathcal{M} ($\mathcal{M} \models \phi$) се разширява индуктивно за всички термове както следва:

- \bullet $\mathcal{M} \models \top$
- $\mathcal{M} \not\models \bot$
- $\mathcal{M} \models a \leq b \iff v(a) \subseteq v(b)$
- $\mathcal{M} \models aCb \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$

Контактна логика - модел

Дефиниция (Модел)

- $\mathcal{M} \models \neg \phi \iff \mathcal{M} \not\models \phi$
- $\mathcal{M} \models \phi \land \psi \iff \mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \lor \psi \iff \mathcal{M} \models \phi \text{ or } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Rightarrow \psi \iff \mathcal{M} \not\models \phi \text{ or } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Leftrightarrow \psi \iff (\mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi) \text{ or } (\mathcal{M} \not\models \phi \text{ and } \mathcal{M} \not\models \psi)$

