Trees

Terminologies for trees

Binary Tree

A binary tree is a type of tree which contains at most two node as child

- 1) Tree is made up of nodes & edges!
- 2) n nodes => n-1 edges
- 3 Degree => no of direct children (for a node)
- (4) Degree of a tree is the highest degree of a node ramong all the nodes present in the tree.
- Binary Kee = Tree of degree = 2

 Nodes can have 0, 1 or 2 children

 Ham do Hamere Do 1 (20)

There are two types of Binary tree

Full or strict binary tree

Each node have either 0 or 2 child

Non full binary tree

Perfect binary tree

All internal node have exactly two children and all leaf nodes are on same level

Non perfect binary tree

Complete binary tree

- All levels are completely filled except possibly last level
- Last level if not filled then it must be left aligned nodes

Degenerate tree

- Every Parent node has exactly one child
- it contains two sub type trees which are left skews and right skews
- left skews trees move on left side which shown in figure below the left side bottom green tree
- right skews trees move on right side which shown in figure below the right side bottom green tree

Traversal in binary tree

- 1. PreOrder (**root** -> leftSubTree -> rightSubTree)
- 2. PostOrder (leftSubTree -> rightSubTree -> Root)
- 3. InOrder (leftSubTree -> **root** -> rightSubTree)

PreOrder Traversal

PostOrder Traversal

Pluck all the leftmost leaf nodes one by one.

Tips to find preOrder,postOrder and inOrder

Binary search tree

It is a type of binary tree

Properties of BST

- · All nodes of left sub tree are less than root node
- All nodes of right sub tree are greater than root node
- · Left and right sub trees are also binary search trees
- · There are no duplicate nodes