REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD)

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

Prepared for:

Longfellow Drilling, Inc.

RR 1 Box 123

Clearfield, IA 50840

Attention:

Mr. Mike Kemery

PROJECT NUMBER: LT-8756-2, August 13, 2002

 Head Office:
 Telephone:
 Fax:

 2631-D NW 41st Street Gainesville FL 32606
 352-378-3717
 352-378-3934

 Regional Offices:
 800-368-1138

 785 The Kingsway, Peterborough, Ontario, Canada K9 J 6W7
 705-749-0076
 705-743-6854

 5740 Executive Drive Suite 108 Baltimore MD 21228
 410-788-4180
 410-788-4182

 800-436-2355
 800-436-2355

E-mail: Info@loadtest.com Internet: www.loadtest.com

DEEP FOUNDATION TESTING, EQUIPMENT & SERVICES ◆ SPECIALIZING IN OSTERBERG CELL (O-cell™) TECHNOLOGY

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

August 13, 2002

Longfellow Drilling, Inc. RR 1 Box 123 Clearfield, IA 50840

Attention: Mr. Mike Kemery

Load Test Report: Test Shaft #2 - I-235 / 28th Street Overpass

Location: Des Moines, IA (LT-8756-2)

Dear Mr. Mike Kemery,

The enclosed report contains the data and analysis summary for the O-cell™ test performed on Test Shaft #2 - I-235 / 28th Street Overpass, on August 7, 2002. For your convenience, we have included an executive summary of the test results in addition to our standard detailed data report.

We would like to express our gratitude for the on-site and off-site assistance provided by your team and we look forward to working with you on future projects.

We trust that the information contained herein will suit your current project needs. If you have any questions or require further technical assistance, please do not hesitate to contact us at 800-368-1138.

Best Regards,

William G. Ryan

Midwest Regional Manager / LOADTEST, Inc.

EXECUTIVE SUMMARY

On August 7, 2002, we tested a 1219-mm (48-inch) production shaft constructed by Longfellow Drilling, Inc. Mr. M. D. Ahrens and Mr. J. A. Graman of LOADTEST, Inc. carried out the test. Longfellow Drilling, Inc. excavated the 20.42-m (67.0-ft) deep shaft socketed in shale under polymer slurry on August 2, 2002. Sub-surface conditions at the test shaft location consist primarily of stiff to firm silty glacial clay underlain by clay shale bedrock. Representatives of IDOT and FHWA observed construction and testing of the shaft.

The maximum bi-directional load applied to the shaft was 6.57 MN (1,476 kips). At the maximum load, the displacements above and below the O-cell were 14.83 mm (0.584 inches) and 4.68 mm (0.184 inches), respectively. Average unit shear data calculated from strain gages included a maximum calculated net unit side shear of 339 kPa (7.1 ksf), occurring between the strain gage levels 1 and 2. The maximum calculated unit end bearing is 5462 kPa (114.1 ksf). These unit values occurred at the above noted displacements.

Using the procedures described in the report text and in <u>Appendix C</u>, we constructed an equivalent top load curve for the test shaft. For a top loading of 7.3 MN (1,643 kips), the adjusted test data indicate this shaft would settle approximately 6.4 mm (0.25 inches) of which 4.1 mm (0.16 inches) is estimated elastic compression.

LIMITATIONS OF EXECUTIVE SUMMARY

We include this executive summary to provide a very brief presentation of some of the key elements of this O-cell™ test. It is by no means intended to be a comprehensive or stand-alone representation of the test results. The full text of the report and the attached appendices contain important information which the engineer can use to come to more informed conclusions about the data presented herein.

TABLE OF CONTENTS

Site Conditions And Shaft Construction	
Site Sub-surface Conditions Test Shaft Construction	.1
Osterberg Cell Testing	1
Shaft Instrumentation Test Arrangement Data Acquisition Testing Procedures	つ
Test Results and Analyses	3
General Side Shear Resistance Base Resistance Creep Limit Equivalent Top Load	3445
Shaft Compression Comparison	.5
Post-test O-cell™ Grouting	6
Limitations and Standard of Care.	6

- Average Net Unit Side Shear Values, Table A.
- Summary of Dimensions, Elevations & Shaft Properties, <u>Table B</u>
- Schematic Section of Test Shaft, Figure A.
- Osterberg Cell Load-Movement Curves, Figure 1.
- Equivalent Top Load Curve, Figure 2
- Strain Gage Load Distribution Curves, Figure 3
- Base Creep Limit, <u>Figure 4</u>.
- Side Shear Creep Limit, Figure 5
- Field Data & Data Reduction, Appendix A
- O-cell™ and Instrumentation Calibration Sheets, <u>Appendix B.</u>
- Construction of the Equivalent Top-Loaded Load-Settlement Curve, <u>Appendix C</u>
- O-cell™ Method for Determining Creep Limit Loading, <u>Appendix D</u>
- Soil Boring Logs, <u>Appendix E</u>
- Reference Beam Monitoring, <u>Appendix F</u>
- Net Unit Shear Curves and Unit End Bearing Curve, Appendix G
- Hyperbolic Curve Fitting, Appendix H.
- Shaft Stiffness Estimation, Appendix I.
- Post Test Grouting Procedure, Appendix J

SITE CONDITIONS AND SHAFT CONSTRUCTION

Site Sub-surface Conditions: The sub-surface stratigraphy at the general location of the test shaft is reported to consist of stiff to firm silty glacial clay underlain by clay shale bedrock. The generalized subsurface profile is included in <u>Figure A</u> and boring logs indicating conditions near the shaft are presented in <u>Appendix E</u>. More detailed geologic information can be obtained from Iowa DOT and FHWA

Test Shaft Construction: Longfellow Drilling, Inc. excavated the production test shaft and performed the final cleanout and concreting on August 2, 2002. We understand that the 1,219-mm (48-inch) test shaft was constructed to a tip elevation of 251.30 m (824.5 ft), under polymer slurry. The shaft was started with a 1372-mm (54-inch) O.D. surface casing. An auger and a core barrel were used for drilling the shaft. The sides of the shaft were cleaned with a sweep bucket and then grooved with a modified auger. The bottom of the shaft was then cleaned with a bucket and airlifted. After cleaning the base, the reinforcing cage with attached O-cell™ assembly was inserted into the excavation and suspended approximately 460 mm (18 inches) above the tip of shaft. Concrete was then delivered by pump through a 125-mm (5-inch) O.D. pipe into the base of the shaft until the cage began to float. The cage was then allowed to settle until the base of the O-cell™ was 0.22 meters (0.7 feet) above the tip of shaft. The pumpline was then raised above the O-cell™ and concreting resumed until the concrete reached an elevation of +271.28 meters (+890.0 feet) The contractor removed the 1372-mm (54-inch) O.D. casing immediately after concrete placement. No unusual problems occurred during construction of the shaft. Representatives of the IDOT and FHWA observed construction of the shaft.

OSTERBERG CELL TESTING

Shaft Instrumentation: Test shaft instrumentation and assembly was carried out under the direction of Mr. William G. Ryan of LOADTEST, Inc. on July 31, 2002. The loading assembly consisted of a 670-mm O-cell™, located 0.22 meters (0.7 feet) above the tip of shaft. The Osterberg cell was calibrated to 13.7 MN (3,080 kips) and then welded closed prior to shipping by American Equipment and Fabricating Corporation. Calibrations of O-cell™ and instrumentation used for this test are included in Appendix B

Standard O-cell™ testing instrumentation included three Linear Vibrating Wire Displacement Transducers (LVWDTs) – (Geokon Model 4450 series) positioned between the lower and upper plates of the O-cell™ assembly to measure expansion (Appendix A, Page 2) Two telltale casings were attached to the reinforcing cage, diametrically opposed, extending between the top of the O-cell™ assembly and the top of concrete

Strain gages were used to assess the side shear load transfer of the shaft. Five levels of two sister bar vibrating wire strain gages (Geokon Model 4911 Series) were installed diametrically opposed in the shaft above the Osterberg cell assembly. Details concerning the strain gage placement appear in <u>Table B</u> and <u>Figure A</u>. The strain gages were positioned as directed by the FHWA.

Two lengths of steel pipe were also installed, extending from the top of the shaft to the top of the bottom plate, to vent the break in the shaft formed by the expansion of the O-cellTM The pipes were filled with water prior to the start of the test. The pipes also provide access for post-test grouting of the annular void surrounding the O-cellTM assembly as described in <u>Appendix</u> J

Test Arrangement: Throughout the load test, key elements of shaft response were monitored using the equipment and instruments described herein. Shaft compression was measured using telltales (described under Shaft Instrumentation) monitored by Linear Voltage Displacement Transducers (LVDTs) (RDP Series). Two LVDTs attached to a reference system were used to monitor the top of shaft movement (Appendix A, Page 1)

The reference system consisted of a 7.6-meter (25-foot) steel wide flange section supported on large wooden spools. The supports were located approximately three shaft diameters from the center of the test shaft. An automated digital survey level (Leica NA 3003) was used to monitor the reference beam for movement during testing from a distance of approximately 12 meters (40 feet) (Appendix F). The maximum downward movement measured was -0.63 mm (0.025 inches). The top of shaft movements have been corrected for movement of the reference system (Appendix A, Page 1).

Both a Bourdon pressure gauge and a vibrating wire pressure transducer were used to measure the pressure applied to the O-cell™ at each load interval. We used the Bourdon pressure gage for setting and maintaining loads and for data analysis. The transducer readings were used for real time plotting and as a check on the Bourdon gage. There was close agreement between the Bourdon gage and the pressure transducer.

Data Acquisition: All instrumentation were connected through a data logger (Campbell Scientific CR-10), to a laptop computer, allowing data to be recorded and stored automatically at 30 second intervals and displayed in real time. A separate laptop computer synchronized to the data logging system was used to acquire the Leica NA3003 data

Testing Procedures: As with all of our tests, we begin by pressurizing the O-cell™ in order to break the tack welds that hold it closed (for handling and for placement in the shaft) and to form the fracture plane in the concrete surrounding the base of the O-cell™. After the break occurs, we immediately release the pressure and then

Test Shaft #2 - 1-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

begin the loading procedure. Zero readings for all instrumentation are taken prior to the preliminary weld-breaking load-unload cycle, which in this case involved a maximum applied pressure of 8.27 MPa (1,200 psi) to the O-cellTM.

The Osterberg cell load test was conducted as follows: We pressurized the 670-mm (26-inch) diameter O-cell™, with its base located 0.22 meters (0.7 feet) above the base of shaft to assess the combined end bearing and lower side shear below the O-cell™ and the upper side shear above. We pressurized the O-cell™ in eight loading increments to 27.58 MPa (4,000 psi) resulting in a bi-directional gross O-cell™ load of 6.57 MN (1,476 kips). The loading was halted after load interval 1L-8 because the side shear was approaching ultimate capacity. The O-cell™ was then depressurized in four decrements. The O-cell™ was then repressurized in three loading increments to a bi-directional gross O-cell™ load of 4.94 MN (1,110 kips) at 2L-3. The O-cell™ was then unloaded in three decrements and the test was concluded

We applied the load increments using the Quick Load Test Method for Individual Piles (ASTM D1143 Standard Test Method for Piles Under Static Axial Load), holding each successive load increment constant for four minutes by manually adjusting the O-cell™ pressure. We typically used 30 to 60 seconds to move between increments. The data logger automatically recorded the instrument readings every 30 seconds, but herein we report only the 1, 2 and 4-minute readings during each increment of maintained load.

→

TEST RESULTS AND ANALYSES

General: The loads applied by the O-cell™ act in two opposing directions, resisted by the capacity of the shaft above and below. Theoretically, the O-cell™ does not impose an additional upward load until its expansion force exceeds the buoyant weight of the shaft above the O-cell™ Therefore, net load, which is defined as gross O-cell™ load minus the buoyant weight of the shaft above, is used to determine side shear resistance above the O-cell™ and to construct the equivalent top-loaded load-settlement curve. For this test we calculated a buoyant weight of shaft of 0.58 MN (131 kips) above the O-cell™.

Side Shear Resistance: The maximum upward applied *net load* to the upper side shear was 5.98 MN (1,345 kips) which occurred at load interval 1L-8 (<u>Appendix A, Page 1, Figure 1</u>). At this loading, the upward movement of the O-cell™ top was 14.83 mm (0.584 inches). Net unit shear curves are presented in <u>Appendix G.</u>

In order to assess the side shear resistance of the test shaft, loads are calculated based on the strain gage data (<u>Appendix A, Pages 4 and 5</u>) and estimates of shaft stiffness (AE), which are presented below and in Appendix I. We used the ACI

formula (E_c =57000 \sqrt{f} c) to calculate an elastic modulus for the concrete, where f_c was reported to be 26.20 MPa (3,800 psi) on the day of the test. This, combined with the area of reinforcing steel and nominal shaft diameter, provided an average shaft stiffness (AE) of 39,000 MN (8,767,986 kips) in the 1372 mm (54-inch) diameter temporarily cased shaft section and 31,500 MN (7,081,835 kips) in the nominal 1219 mm (48-inch) diameter shaft section above the O-cellTM. Alternately, we performed a tangent stiffness analysis to obtain the stiffness directly from the strain gage data (<u>Appendix I</u>). This method shows close agreement with the ACI stiffness estimate. Net unit shear values for loading increment 1L-8 follow in <u>Table</u> A:

TABLE A: Average Net Unit Side Shear Values for 1L-8

Load Transfer Zone	Load Direction	Net Unit Side Shear *
Top of Concrete to Strain Gage Level 5	<u> </u>	16 kPa (0.3 ksf)
Strain Gage Level 5 to Strain Gage Level 4	<u>↑</u>	18 kPa (0.4 ksf)
Strain Gage Level 4 to Strain Gage Level 3	↑	24 kPa (0.5 ksf)
Strain Gage Level 3 to Strain Gage Level 2	↑	69 kPa (1.4 ksf)
Strain Gage Level 2 to Strain Gage Level 1	1	335 kPa (7.0 ksf)
Strain Gage Level 1 to O-cell™	↑	243 kPa (5.1 ksf)

^{*} For upward-loaded shear, the buoyant weight of shaft in each zone has been subtracted from the load shed in the respective zone above the O-cellTM

NOTE: Net unit shear values derived from the strain gages above the O-cell™ assembly may not be ultimate values. See <u>Appendix G</u> for net unit shear vs. upward O-cell™ displacement plots.

Combined End Bearing and Lower Side Shear Resistance: The maximum Ocell™ load applied to the combined end bearing and lower side shear was 6.57 MN (1,476 kips) which occurred at load interval 1L-8 (Appendix A, Page 3, Figure 1). At this loading, the average downward movement of the O-cell™ base was 4.68 mm (0.184 inches). The load taken in shear by the 0.22 meters (0.7 feet) shaft section below the O-cell™ is calculated to be 0.19 MN (43 kips) assuming an estimated unit side shear value of 225 kPa (4.7 ksf) and a nominal 1,219-mm (48-inch) diameter shaft. The applied load to end bearing is then 6.38 MN (1,434 kips) and the unit end bearing at the base of the shaft is calculated to be 5462 kPa (114 1 ksf) at the above noted displacement. A unit end bearing curve is presented in Appendix G.

Creep Limit: See Appendix D for our O-cell™ method for determining creep limit. The base creep data (Appendix A, Page 3) indicate that no apparent creep limit was reached at a maximum movement of 4.7 mm (0.18 inches) (Figure 4). The side shear creep data (Appendix A, Page 3) indicate that a creep limit of 4.4 MN (989 kips) was reached at a movement of 5.0 mm (0.20 inches) (Figure 5). A top-loaded shaft will not begin significant creep until both components begin creep movement. This will occur at the maximum of the movements required to reach the creep limit for each component. We believe that significant creep for this shaft will not begin until a top loading exceeds 10.8 MN (2,438 kips) by some unknown amount.

Equivalent Top Load: Figure 2 presents the equivalent top-loaded load-settlement curves. The lighter curve, described in Procedure Part I of Appendix C, was generated by using the measured upward top of O-cell™ and downward base of O-cell™ data. The curve is extended out to a settlement of 14.8 mm (0.58 inches) by extrapolating the base of O-cell™ data (Appendix H). Because it is often an important component of the settlements involved, the equivalent top load curve requires an adjustment for the additional elastic compression that would occur in a top-load test. The darker curve as described in Procedure Part II of Appendix C includes this adjustment.

The test shaft was loaded to a combined side shear and end-bearing load of 12.5 MN (2,821 kips) For a top loading of 7.3 MN (1,643 kips), the adjusted test data indicate this shaft would settle approximately 6.4 mm (0.25 inches) of which 4.1 mm (0.16 inches) is estimated elastic compression. For a top loading of 16.9 MN (3,798 kips) the adjusted test data indicate this shaft would settle approximately 23.5 mm (0.92 inches) of which 9.5 mm (0.37 inches) is estimated elastic compression.

Note that, as explained previously, the equivalent top load curve applies to incremental loading durations of four minutes. Creep effects will reduce the ultimate resistance of both components and increase shaft top movement for a given loading over longer times. The Engineer can estimate such additional creep effects by suitable extrapolation of time effects using the creep data presented herein. However, our experience suggests that such corrections are small and perhaps negligible for top loadings below the creep limit indicated in Figure 2.

Shaft Compression Comparison: The measured maximum shaft compression, averaged from two telltales, is 0.93 mm (0.037 inches) at 1L-8 (Appendix A, Page 1). Using an average shaft stiffness of 32,300 MN (7,280,000 kips) and the load distribution in Figure 3 at 1L-8, we calculated an elastic compression of 0.90 mm (0.035 inches) over the length of the compression telltales. We believe this excellent agreement provides good evidence that the values of the estimated shaft stiffness are reasonable and that the O-cell™ loaded the shaft in accord with its calibration.

POST-TEST O-CELL™ GROUTING

Since the test shaft is intended to carry structural loading (a "production shaft"), the contractor needs to fill the annular void in the shaft created outside the cell as a result of the expansion of the cell. The O-cell™ itself should also be filled. The shaft includes the piping to permit filling the O-cell™ and void with grout. If not already grouted, we recommend that this be done as soon as possible according to the procedures in Appendix J.

LIMITATIONS AND STANDARD OF CARE

The instrumentation, testing services and data analysis provided by LOADTEST, Inc., outlined in this report, were performed in accordance with the accepted standards of care recognized by professionals in the drilled shaft and foundation engineering industry

Please note that some of the information contained in this report is based on data (i.e. shaft diameter, elevations and concrete strength) provided by others. The engineer, therefore, should come to his or her own conclusions with regard to the analyses as they depend on this information. Imparticular, LOADTEST, Inc. typically does not observe and record drilled shaft construction details to the level of precision that the project engineer may require. In many cases, we may not be present for the entire duration of shaft construction. Since construction technique can play a significant role in determining the load bearing capacity of a drilled shaft, the engineer should pay close attention to the drilled shaft construction details that were recorded elsewhere.

We trust that this information will meet your current project needs. If you have any questions, please do not hesitate to contact us at 800-368-1138.

Prepared for LOADTEST, Inc. by

Michael D. Ahrens, P.E.

Geotechnical Engineer / LOADTEST, Inc.

Reviewed by

David J. Jakstis, B.S.C.E.

LOADTEST, Inc.

Denton A. Kort, P. E. LOADTEST, Inc.

William G. Ryan

Midwest Regional Manager / LOADTEST, Inc.

TABLE B: SUMMARY OF DIMENSIONS, ELEVATIONS & SHAFT PROPERTIES

Shaft:		•	
Nominal shaft diameter (EL +271 28 m to +269 59 m)	=	1372 mm	54 in
Nominal shaft diameter (EL +269 59 m to +251 45 m)	=	1219 mm	48 in
O-ceil [™] : 1024-16	=	670 mm	26 in
Bouyant weight of pile above base of O-cell™	=	0 58 MN	131 kips
Estimated shaft stiffness AE (EL +271 28 m to +269.59 m)	=	39,000 MN	8,800,000 kips
Estimated shaft stiffness, AE (EL +269 59 m to +251 45 m)	=	31 500 MN	7,100,000 kips
Elevation of ground surface	=	+271 72 m	+891 5 ft
Elevation of top of shaft concrete	=	+271 28 m	+890 0 ft
Elevation of base of O-cell TM (The break between upward and downward movement)	=	+251 45 m	+825.0 ft
Elevation of shaft tip	=	+251 23 m	+824.2 ft
Elevation of water table	=		ot Encountered
Casings:			
Elevation of top of inner temporary casing (1372 mm O.D.)	=	+272 03 m	+892 5 ft
Elevation of bottom of inner temporary casing (1372 mm O.D.)	=	+269.59 m	+884 5 ft
Compression Sections:		÷	
Elevation of top of telltale used for shaft compression	=	+271 28 m	+890.0 ft
Elevation of bottom of telltale used for shaft compression	· =	+251.80 m	+826 1 ft
Strain Gages:			
Elevation of strain gage Level 5	=	+264.60 m	+868.1 ft
Elevation of strain gage Level 4	F	+261.40 m	+857 6 ft
Elevation of strain gage Level 3	=	+259 80 m	+852.4 ft
Elevation of strain gage Level 2	=	+254.90 m	+836.3 ft
Elevation of strain gage Level 1	=	+252.90 m	+829 7 ft
Miscellaneous:		4	
Top plate diameter (50 mm thickness)	=	959 mm	37 8 in
Bottom plate diameter (50 mm thickness)	=	1035 mm	40 8 in
ReBar size (18 No)	=	M 36	# 11
Spiral size (305 mm spacing)	=	M 13	# 4
ReBar cage diameter	=	1067 mm	42 in
Unconfined compressive concrete strength	=	26.2 MPa	3800 psi
O-cell™ LVWDTs @ 0° 180° and 270° with radius	=	502 mm	19 8 in

LOADTEST, Inc. Project No LT-8756-2

1

2

LOADTEST, Inc. Project No. LT-8756-2

Equivalent Top Load Load-Movement Curve

No. of Lot

1

Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

LOADTEST, Inc. Project No. LT-8756-2

Strain Gage Load Distribution Curves

13.5E

Figure 3 of 5

LOADTEST, Inc. Project No. LT-8756-2

1

jų.

Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

Figure 4 of 5

LOADTEST, Inc. Project No. LT-8756-2

1

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX A

FIELD DATA & DATA REDUCTION

Upward Top of Shaft Movement and Shaft Compression Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

	11-14 1		Olluit #		J , 20th	Sueer				-,	Telltales	
Load	Hold	Time		O-cell™	Land	Ref		op of Shaf	Average	A	B	Average
Test	Time	a		Pressure	Load	Beam *	A (****)	8				
Increment		(h:m:s)	(psi)	(MPa)	(MN)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
1L-0	;	10:36:00	0	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
1L-1	1	10;56:30	500	3.45	0.86	-0 23	0 29	0 27	0 05	0.05	0 09	0.07
1 L-1	2	10:57:30	500	3 45	0.86	-0 20	0 29	0 33	0 10	0.05	0 08	0 06
1L-1	4	10:59:30	500	3.45	0,86	-0,21	0.26	0.27	0,06	0.05	0.08	0.06
1 L - 2	1	11:01:00	1 000	6 89	1.68	-0 18	0 37	0 40	0.20	0.09	0 13	0 11
1L-2	2	11:02:00	1 000	6 89	1.68		0.39	0 40	0 20	0.09	0.13	0 11
1 L - 2	4	11:04:00	1,000	6,89	1,68	-0.14	0.42	0.48	0,31	80,0	0.13	0.10
1L-3	1	11:05:30	1 500	10 34	2.49	-0.13	0.58	0.61	0 47	0 17	0 26	0 21
1L-3	2	11:06:30	1 500	10.34	2.49		0.66	0 66	0 53	0 19	0.30	0.25
1L-3	4	11:08:30	1,500	10.34	2.49	-0.17	0.76	0.82	0.62	0.24	0.35	0,29
1L-4	1	11:10:00	2.000	13.79	3.31	-0 16	1 31	1 34	1 16	0.39	0 52	0.45
1L-4	2	11:11:00	2 000	13.79	3.31	-0.20	1 39	1 47	1 23	0.39	0.53	0.46
1L-4	4	11:13:00	2,000	13.79	3.31	-0.20	1,50	1.58	1.33	0.41	0.54	0,47
1L-5	1	11:17:00	2.500	17.24	4 12	-0.08	2 39	2.52	2 37	0.52	0 69	0.61
11.5	2	11:18:00	2 500	17.24	4 12	-0.07	2 49	2.62	2 48	0.51	0 70	0.61
1L-5	4	11:20:00	2,500	17.24	4.12	-0.09	2.62	2.78	2.61	0.51	0.69	0.60
1L-6	1	11:23:00	3 000	20.68	4 94	-0 12	3.88	4.05	3.85	0 61	0 83	0.72
1 L 6	2	11:24:00	3 000	20.68	4 94	4 1	4.04	4.18	3.98	0 61	0 83	0 72
1L-6	4	11:26:00	3,000	20.68	4.94	-0.17	4.20	4.37	4.12	0.60	0.82	0.71
11.7	1	11:28:00	3 500	24 13	5.75	-0.09	6.06	6 27	6.08	0.68	0.95	0 82
14-7	2	11:29:00	3 500	24 13	5.75		6.32	6.53	6.29	0.68	0.93	0 81
1L-7	4	11:31:00	3,500	24,13	5.75	-0.08	6.90	7,11	6.93	0.68	0.95	0.82
1L-8	1	11:33:30	4 000	27.58	6.57	-0.02	12 13	12 27	12 18	0.82	1,09	0.95
1 L - 8	2	11:34:30	4,000	27.58	6.57		12 91		12 96	0 80	1 07	0.94
1 L - 8	4	11:36:30	4,000	27.58	6.57	-0.12	13.94	14.10	13.89	0.80	1.06	0,93
10-1	1	11:38:00	3,000	20.68	4 94	-0 12	14 04	14.12	13.97	0 70	0 99	0.84
10-1	2	11:39:00	3.000	20.68	4 94		14.04	14 20	14.02	0 70	0.98	. 0.84
10-1	4	11:41:00	3,000	20,68	4.94	-0.09	14.09	14.25	14.08	0.70	0.97	0.83
10-2	1	11:42:30	2 000	13.79	3 31	-0 17	13.81	13 96	13 71	0 54	0.81	0 68
10-2	2	11:43:30	2 000	13.79	3.31		13.78	13.96		0.53	0.80	0 67
1U-2	4	11:45:30	2,000	13.79	3,31	-0.27	13,70	13.89	13.52	0.53	0.80	0.67
10-3	1	11:47:00	1 000	6 89	1 68	-0 29	13.15	13 26	12 91	0.34	0 59	0 46
10.3	2	11:48:00	1 000	6 89	1 68		13 12		12 88	0 33	0 58	0 46
10-3	4	11:50:00	1,000	6,89	1,68		13.10		12.75	0.34	0.57	0.45
10-4	1	11:52:00	0	0.00	0.00		11 36		10 97	0 05	0.22	0.13
10-4	2	11:53:00	0	0.00			11 28		10.84	0.05	0.20	
10-4	4	11:55:00	0	0.00	0.00		11.23		10.84	0.05	0.20	0.12
2L-0	1	11:56:00	0	0.00	0.00		11,21		10.85	0.04	0.20	
2 L - 1	1	11:58:00	1 000	6 89	1 68		11.52		11 20	0.21	0 40	0 31
2 L - 1	2	11:59:00		6 89	1 68		11.57			0.21	0.40	
2L-1	4	12:01:00	1,000	6.89	1.68		11.57	11.70		0.21	0.41	0.31
2 L - 2	1	12:03:00		13.79	3 31		12.49			0 43	0 66	
2L-2	2	12:04:00		13.79	3 31		12.57			0 43	0 67	0 55
2 L - 2	4	12:06:00		13.79	3.31	-0.35	12,65			0.44 0.65	0.67	
2 L - 3	1	12:08:00	3 000	20 68	4 94		13.80		1	,	0 90	0 78 0 77
2L-3	2	12:09:00		20 68	4 94		1	1	I .	0 64 0.64	L	L
2 L - 3	4	12:11:00		20.68	4.94						0.89 0.80	
2 U - 1	1	12:12:30	2 000	13,79								
20-1	2	12:13:30				,				0.53	l .	1
2U-1	4	12:15:30		13.79	3.31							
20-2	1	12:17:00		6 89	1.68	t .	13 12	ľ		0 33	l .	4
2 U - 2	2	12:18:00			1 68		•	1				l l
20-2	4	12:20:00			1.68	 						
2U-3	1	12:21:30	0:	1	0 00	1	11.67	1	1	Ŀ	F .	l l
20-3	2	12:22:30			0 00	1	1		1			
20.3	4	12:24:30			0 00			1	1			
20.3	8	12:28:30	0	0.00	0,00	-0.50	11,49	11.53	11.01	0,03	0.20	0.12

[&]quot; Positive values indicate upward reference beam movement.

LOADTEST Inc Project No LT-8756-2

Appendix A, Page 1 of 5

O-ceII™ Expansion Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

Test Time Pressure Load LowOT 2089 LowOT 2089	Load	Hold	Time	O-ce			O-cell™ 8	xpansion	
			11,110			LVWOT 20689			Average
11-0 - 10.36:00 0.00 0.00 0.00 0.00 0.00 0.00 1.1-1 1 10.56:30 3.45 0.86 0.48 0.34 0.84 1.1-1 2 10:57:30 3.45 0.86 0.48 0.34 0.84 1.1-1 2 10:57:30 3.45 0.86 0.46 0.35 0.85 0.85 1.1-2 1 11:01:00 6.89 1.68 0.64 0.51 1.22 1.1-2 1 11:01:00 6.89 1.68 0.67 0.53 1.25 1.1-2 1 11:01:00 6.89 1.68 0.67 0.53 1.25 1.1-2 1.1	(1		(h:m:s)			i I	1		
1						0.00	0.00	0.00	0.00
1		1			0.86	0 47	0 33	0.81	0.40
1 L - 1				3 45	0 86	0.48	0 34	0.84	0 41
1 -2	11.1		10:59:30	3.45	0,86	0.46	0.35	0.85	0.40
1 L - 2 4 11:04:00 6.89 1.68 0.70 0.555 1.28 1 L - 3 1 11:06:30 10:34 2.49 15:00 14:0 2.45 1 L - 3 4 11:06:30 10:34 2.49 15:00 14:0 2.45 1 L - 4 1 11:10:00 13:79 3:31 3:18 2.92 4:31 1 L - 4 2 11:11:00 13:79 3:31 3:38 3:31 4:76 1 L - 5 1 11:17:00 17:24 4:12 5:24 4:91 6:61 1 L - 5 1 11:17:00 17:24 4:12 5:47 5:49 6:81 1 L - 5 2 11:18:00 17:24 4:12 5:67 5:32 7:08 1 L - 6 1 11:23:00 20:68 4:94 7:65 7:18 9:26 1 L - 6 1 11:23:00 20:68 4:94 7:85 7:18 9:52 1 L - 7				6 89	1 68	0 64	0 51	1.22	0.57
1	16-2	2	11:02:00	6 89	1 68	0 67	0.53	1 25	0.60
1 L - 3 2 11,06:30 10.34 2.49 1.50 1.40 2.45 1 L - 4 1 11:10:00 13.79 3.31 3.18 2.92 4.31 1 L - 4 2 11:11:00 13.79 3.31 3.38 3.99 4.50 1 L - 4 4 11:13:00 13.79 3.31 3.58 3.31 4.76 1 L - 5 1 11:18:00 17.24 4.12 5.24 4.91 6.61 1 L - 5 2 11:18:00 17.24 4.12 5.67 5.32 7.08 1 L - 6 1 11:20:00 17:24 4.12 5.67 5.32 7.08 1 L - 6 2 11:24:00 20.68 4.94 7.65 7.18 9.26 1 L - 6 4 11:26:00 20.68 4.94 8.18 7.67 9.83 1 L - 7 1 17:28:00 24.13 5.75 10.99 10.49 12.93 1 1	1L-2	4	11:04:00			0.70	0.55	1,28	0,63
1L-3	11.3	1	11:05:30	10 34	2.49	1 42	1.21	2 16	1 32
Table Tabl	1L-3	2		10.34					1.45
1 L - 4 2 11:11:00 13 79 3 31 3 33 3 09 4 50 1 L - 5 1 11:17:00 17 24 4 12 5 24 4 91 6 61 1 L - 5 2 11:18:00 17 24 4 12 5 24 4 91 6 61 1 L - 5 4 11:20:00 17:24 4 12 5 44 5 06 6 81 1 L - 6 1 11:20:00 20:68 4 94 7 83 7 42 9 52 1 L - 6 2 11:24:00 20:68 4 94 7 83 7 42 9 52 1 L - 6 4 11:26:00 20:68 4 94 7 83 7 42 9 52 1 L - 7 1 11:28:00 24:13 5.75 10.76 10.17 12:59 1 1 L - 7 2 11:29:00 24:13 5.75 11.09 10:49 12:93 1 1 L - 8 1 11:30:30 27:58 657 18:82 18:01 20:28	1L-3	4	11:08:30						1.86
1L-4	1L-4	1	11:10:00						3.05
1 L - 5 1 11:17:00 17 24 4 12 5 24 4 91 6 61 1 L - 5 2 11:18:00 17 24 4 12 5 44 5 06 6 81 1 L - 6 1 11:20:00 20 68 4 94 7 65 7 18 9 26 1 L - 6 2 11:24:00 20 68 4 94 7 65 7 18 9 26 1 L - 6 4 11:26:00 20.68 4.94 7 65 7 18 9 52 1 L - 7 1 11:28:00 24 13 5 75 10 76 10 17 12 59 1 1 L - 7 2 11:29:00 24 13 5 75 11 09 10 49 12 93 1 1 L - 8 1 11:33:30 27 58 6 57 18 82 18 13 19 93 1 1 L - 8 2 11:34:30 27 58 6 57 19 93 19.08 21 92 1 1 L - 8 4 11:36:30 27 58 6 57 18 82 <	11.4	2	11:11:00						3 21
1 L - 5 2 11:18:00 17:24 4 12 5.44 5.66 6.81 1 L - 6 1 11:20:00 17:24 4.12 5.67 5.32 7.08 1 L - 6 1 11:23:00 20:68 4.94 7.65 7.18 9.26 1 L - 6 2 11:26:00 20:68 4.94 7.83 7.42 9.52 1 L - 6 4 11:26:00 20:68 4.94 7.83 7.42 9.52 1 L - 7 1 11:28:00 24:13 5.75 10.76 10.77 12:59 1 1 L - 7 2 11:28:00 24:13 5.75 11.09 10.49 12:93 1 1 L - 8 1 11:33:30 27:58 6.57 19.31 11.85 11:27 13.70 1 1 L - 8 4 11:36:30 27:58 6.57 19.93 19.08 21.92 1 1 L - 8 4 11:36:30 27:58 6.57 <									3.45
1 L - 5 4 11:20:00 17.24 4.12 5.67 5.32 7.08 1 L - 6 1 11:23:00 20:68 4.94 7:65 7:18 9:26 1 L - 6 2 11:24:00 20:68 4.94 7:83 7:42 9:52 1 L - 7 1 11:26:00 20:88 4.94 8.18 7:67 9:83 1 L - 7 1 11:29:00 24:13 5:75 10:76 10:17 12:59 1 L - 7 2 11:29:00 24:13 5:75 11:09 10:49 12:93 1 1 L - 8 1 11:33:00 24:13 5:75 11:85 11:27 13:70 1 1 L - 8 2 11:34:30 27:58 6:57 17:92 17:18 19:93 19:08 21:92 1 1 L - 8 4 11:33:30 27:58 6:57 19:93 19:08 21:92 1 1 U - 1 1 11:33:00 20:68									5 08
1 L - 6 1 11:23:00 20 68 4 94 7 65 7 18 9 26 1 L - 6 2 11:26:00 20 68 4 94 7 88 7 42 9 52 1 L - 7 1 11:26:00 24 13 5 75 10 76 10 17 12 59 1 1 L - 7 2 11:29:00 24 13 5 75 11 09 10 49 12 59 1 1 L - 7 4 11:31:00 24 13 5 75 11 09 10 49 12 93 1 1 L - 8 1 11:33:30 27 58 6 57 17 92 17 18 19 93 1 1 L - 8 4 11:38:00 20 88 4 94 19 70 18 86 21 71 1 1 U - 1 1 11:38:00 20 68 4 94 19 70 18 86 21 71 1 1 1U - 1 4 11:41:40 20.68 4 94 19 69 18 86 21 71 1 1 1U - 1 4 11:41:40 20.68 4 94									5 25
1 L - 6 2 11:24:00 20.68 4.94 7.88 7.42 9.52 1 L - 6 4 11:26:00 20.68 4.94 8.18 7.67 9.83 1 L - 7 1 11:28:00 24.13 5.75 10.76 10.17 12:59 1 1 L - 7 2 11:29:00 24.13 5.75 11.09 10.49 12.93 1 1 L - 8 1 11:30:30 27.58 6.57 11.85 11.27 13.70 1 1 L - 8 1 11:34:30 27.58 6.57 18.82 18.01 20.82 1 1 L - 8 4 11:38:00 20.68 4.94 19.93 19.08 21.71 1 1 U - 1 1 11:38:00 20.68 4.94 19.68 18.86 21.71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									5.49
1 L - 6 4 11:26:00 20:68 4.94 8.18 7.67 9.83 1 L - 7 1 11:29:00 24:13 5.75 10:76 10:17 12:59 1 1 L - 7 2 11:29:00 24:13 5.75 11:09 10:49 12:93 1 1 L - 8 1 11:39:00 24:13 5.75 11:85 11:27 13:70 1 1 L - 8 1 11:33:30 27:58 6:57 17:92 17:18 19:93 1 1 L - 8 4 11:34:30 27:58 6:57 19:93 19:08 21:92 1 1 L - 8 4 11:38:00 20:68 4:94 19:70 18:86 21:71 1 1 U - 1 1 11:38:00 20:68 4:94 19:70 18:86 21:71 1 1 U - 2 1 11:48:00 20:68 4:94 19:69 18:86 21:71 1 1 U - 2 1 11:									7 42
1L-7 1 11:28:00 24:13 5:75 10:76 10:17 12:59 1 1L-7 2 11:29:00 24:13 5:75 11:09 10:49 12:93 1 1L-7 4 11:31:00 24:13 5:75 11:09 10:49 13:70 1 1L-8 1 11:33:30 27:58 6:57 17:92 17:18 19:93 1 1L-8 2 11:34:30 27:58 6:57 18:82 18:01 20:82 1 1L-8 4 11:36:30 20:68 4:94 19:70 18:86 21:71 1 1U-1 1 11:38:00 20:68 4:94 19:69 18:86 21:71 1 1U-1 2 11:41:00 20:68 4:94 19:69 18:86 21:70 1 1U-2 1 11:42:30 13:79 3:31 18:75 17:93 20:68 1 1U-2 1 11:42:30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.65</td>									7.65
1 L - 7 2 11:29:00 24:13 5.75 11 09 10:49 12:93 1 1 L - 7 4 11:31:00 24:13 5.75 11:85 11:27 13:70 1 1 L - 8 1 11:33:30 27:58 6:57 17:92 17:18 19:93 1 1 L - 8 2 11:34:30 27:58 6:57 19:93 19:08 21:92 1 1 L - 8 4 11:38:00 20:68 4:94 19:70 18:86 21:71 1 1 U - 1 2 11:38:00 20:68 4:94 19:69 18:86 21:71 1 1 U - 1 4 11:41:00 20:68 4:94 19:68 18:86 21:70 1 1 U - 2 1 11:42:30 13:79 3:31 18:76 17:93 20:68 1 1 U - 2 4 11:45:30 13:79 3:31 18:64 17:84 20:57 1 1 U - 2									7.93
1 L - 7 4 11:31:00 24.13 5.75 11.85 11.27 13.70 1 1 L - 8 1 11:33:30 27 58 6 57 17 92 17 18 19.93 1 1 L - 8 2 11:34:30 27 58 6 57 18.82 18 01 20.82 1 1 L - 8 4 11:36:30 27 58 6 57 19.93 19.08 21.92 1 1 U - 1 1 11:38:00 20 68 4.94 19 70 18 86 21 71 1 1 U - 1 2 11:39:00 20 68 4.94 19 69 18 86 21 71 1 1 U - 1 4 11:41:20 20.68 4.94 19 68 18.86 21.70 1 1 U - 2 1 11:42:30 13 79 3.31 18 75 17 93 20 68 1 1 U - 2 2 11:43:30 13 79 3.31 18 64 17 84 20 57 1 1 U - 2							ì		10.47 10.79
1 L - 8 1 11:33:30 27:58 6:57 17:92 17:18 19:93 1 1 L - 8 2 11:34:30 27:58 6:57 19:93 19:08 27:92 1 1 U - 1 1 11:36:30 20:68 4:94 19:70 18:86 21:71 1 1 U - 1 2 11:39:00 20:68 4:94 19:69 18:86 21:71 1 1 U - 1 4 11:41:00 20:68 4:94 19:69 18:86 21:70 1 1 U - 2 1 11:42:30 13:79 3:31 18:75 17:93 20:68 1 1 U - 2 2 11:43:30 13:79 3:31 18:60 17:82 20:53 1 1 U - 3 1 11:47:00 6:89 1:68 17:10 10:35 18:86 1 1 U - 3 2 11:48:00 6:89 1:68 16:99 16:26 18:75 1 1 U - 3 4<									11.56
1 L - 8 2 11:34:30 27:58 6:57 18:82 18:01 20:82 1 1 L - 8 4 11:36:30 27:58 6:57 19:93 19:08 21:92 1 1 U - 1 1 11:38:00 20:68 4:94 19:70 18:86 21:71 1 1 U - 1 2 11:39:00 20:68 4:94 19:69 18:86 21:70 1 1 U - 1 4 11:41:00 20:68 4:94 19:68 18:86 21:70 1 1 U - 2 1 11:42:30 13:79 3:31 18:75 17:93 20:68 1 1 U - 2 2 11:43:30 13:79 3:31 18:60 17:82 20:53 1 1 U - 2 4 11:45:30 13:79 3:31 18:60 17:82 20:53 1 1 U - 3 1 11:45:00 6:89 1:68 16:99 16:26 18:75 1 1 U - 3 1									17.55
1 L - 8 4 11:36:30 27.58 6.57 19.93 19.08 21.92 1 1 U - 1 1 11:38:00 20 68 4 94 19 70 18 86 21 71 1 1 U - 1 2 11:39:00 20 68 4 94 19 69 18 86 21 71 1 1 U - 1 4 11:41:00 20.68 4.94 19.68 18.86 21.70 1 1 U - 2 1 11:42:30 13 79 3.31 18 75 17.93 20.68 1 1 U - 2 2 11:43:30 13 79 3.31 18 64 17 84 20.57 1 1 U - 2 4 11:45:30 13.79 3.31 18 60 17.62 20.53 1 1 U - 3 1 11:45:30 6.89 1.68 17 10 16:35 18 86 1 1 U - 3 4 11:50:00 6.89 1.68 16:99 16:26 18 75 1 1 U - 3 4<	1							1 .	18 41
1 U - 1 1 11:38:00 20 68 4 94 19 70 18 86 21 71 1 1 U - 1 2 11:39:00 20 68 4 94 19 69 18 86 21 71 1 1 U - 2 1 11:42:30 13 79 3 31 18 75 17 93 20 68 1 1 U - 2 2 11:43:30 13 79 3 31 18 64 17 84 20 57 1 1 U - 2 4 11:45:30 13.79 3.31 18 64 17 84 20 57 1 1 U - 2 4 11:45:30 13.79 3.31 18 60 17.62 20.53 1 1 U - 3 1 11:47:00 6 89 1 68 16 99 16 25 18 75 1 1 U - 3 1 11:50:00 6 89 1 68 16 99 16 26 18 75 1 1 U - 3 4 11:50:00 0 00 0 00 13 16 12 45 14 434 1 1 U - 4 1<	1 1								19.51
1 U-1 2 11:39:00 20:68 4 94 19:69 18:86 21:71 1 1 U-1 4 11:41:00 20:68 4.94 19:68 18:86 21:70 1 1 U-2 1 11:42:30 13:79 3:31 18:75 17:93 20:68 1 1 U-2 2 11:43:30 13:79 3:31 18:64 17:84 20:57 1 1 U-2 4 11:45:30 13:79 3:31 18:60 17:82 20:53 1 1 U-3 1 11:48:00 6:89 1:68 17:10 16:35 18:86 1 1 U-3 2 11:48:00 6:89 1:68 16:91 16:18 18:67 1 1 U-3 4 11:50:00 0:00 0:00 13:16 12:45 14:34 1 1 U-4 1 11:50:00 0:00 0:00 13:00 12:32 14:18 1 1 U-4 4 11:55									19.28
1 U - 1 4 11:41:00 20:68 4.94 19:68 18:86 21:70 1 1 U - 2 1 11:42:30 13:79 3:31 18:75 17:93 20:68 1 1 U - 2 2 11:43:30 13:79 3:31 18:64 17:84 20:57 1 1 U - 2 4 11:45:30 13:79 3:31 18:60 17:82 20:53 1 1 U - 3 1 11:47:00 6:89 1:68 16:99 16:26 18:75 1 1 U - 3 2 11:48:00 6:89 1:68 16:91 16:18 18:67 1 1 U - 3 4 11:50:00 0:00 0:00 13:16 12:45 14:34 1 1 U - 4 1 11:50:00 0:00 0:00 13:00 12:32 14:18 1 1 U - 4 4 11:55:00 0:00 0:00 12:79 12:08 13:393 1 2 L - 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19 28</td>									19 28
1 U - 2 1 11:42:30 13 79 3.31 18 75 17 93 20 68 1 1 U - 2 2 11:43:30 13 79 3.31 18 64 17 84 20 57 1 1 U - 2 4 11:45:30 13 79 3.31 18 64 17 84 20 53 1 1 U - 3 1 11:47:00 6 89 1 68 17 10 16 35 18 86 1 1 U - 3 2 11:48:00 6 89 1 68 16 99 16 26 18 75 1 1 U - 3 4 11:50:00 6 89 1 68 16 99 16 26 18 75 1 1 U - 4 1 11:50:00 0 00 0 00 13 16 12 45 14 434 1 1 U - 4 4 11:55:00 0 00 0 00 12 79 12 08 13 99 1 2 L - 0 1 11:55:00 0 00 0 00 12 79 12 08 13 99 1 2 L - 1 2 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19,27</td>	1								19,27
1 U - 2 2 11:43:30 13 79 3.31 18 64 17 84 20 57 1 1 U - 2 4 11:45:30 13.79 3.31 18.60 17.82 20.533 1 1 U - 3 1 11:47:00 6.89 1.68 17 10 16.35 18 86 1 1 U - 3 2 11:48:00 6.89 1.68 16.99 16.26 18 75 1 1 U - 3 4 11:50:00 0.00 0.00 13.16 12.45 14.34 1 1 U - 4 1 11:53:00 0.00 0.00 13.00 12.32 14.18 1 1 U - 4 4 11:55:00 0.00 0.00 12.79 12.08 13.99 1 2 L - 0 1 11:55:00 0.00 0.00 12.79 12.08 13.99 1 2 L - 1 1 11:55:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 2									18.34
1 U - 2 4 11:45:30 13.79 3.31 18.60 17.82 20.53 1 1 U - 3 1 11:47:00 6.89 1.68 16.99 16.26 18.75 1 1 U - 3 2 11:48:00 6.89 1.68 16.99 16.26 18.75 1 1 U - 4 1 11:50:00 0.00 0.00 13.16 12.45 14.34 1 1 U - 4 1 11:53:00 0.00 0.00 13.00 12.32 14.18 1 1 U - 4 4 11:55:00 0.00 0.00 12.83 12.14 13.99 1 2 L - 0 1 11:56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11:58:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 4 12:01:00 6.89 1.68 14.52 13.75 15.91 1 2 L - 2 1							1		18 24
1 U - 3 1 11:47:00 6.89 1.68 17:10 16.35 18.86 1 1 U - 3 2 11:48:00 6.89 1.68 16.99 16.26 18.75 1 1 U - 3 4 11:50:00 6.89 1.68 16.91 16.18 18.67 1 1 U - 4 1 11:52:00 0.00 0.00 13.16 12.45 14.34 1 1 U - 4 2 11:53:00 0.00 0.00 13.00 12.32 14.18 1 1 U - 4 4 11:55:00 0.00 0.00 12.83 12.14 13.99 1 2 L - 0 1 11:56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11:59:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1					3.31	18,60	17.82	20,53	18.21
1 U - 3 4 11:50:00 6.89 1.68 16.91 16.18 18.67 1 1 U - 4 1 11:52:00 0.00 0.00 13 16 12.45 14 34 1 1 U - 4 2 11:53:00 0.00 0.00 13 00 12 32 14 18 1 1 U - 4 4 11:55:00 0.00 0.00 12.83 12.14 13.99 1 2 L - 0 1 11:56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11:58:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 2 11:59:00 6.89 1.68 14.52 13.75 15.92 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 2				6.89	1.68	17 10	<i>™</i> √ 16.35	18 86	16 72
1 U - 4 1 11;52;00 0 00 0 00 13 16 12 45 14 34 1 1 U - 4 2 11;53;00 0 00 0 00 13 00 12 32 14 18 1 1 U - 4 4 11;55;00 0 00 0 00 12,83 12.14 13,99 1 2 L - 0 1 11;56;00 0 00 0 00 12,79 12,08 13,93 1 2 L - 1 1 11;58;00 6 89 1 68 14 51 13 75 15 92 1 2 L - 1 2 11;59;00 6 89 1 68 14 52 13 75 15 92 1 2 L - 1 4 12;01;00 6,89 1,68 14,54 13,77 15,94 1 2 L - 2 1 12;03;00 13 79 3 31 16 49 15 61 18 11 1 2 L - 2 4 12;06;00 13 79 3 31 16 58 15 79 18,29 1 2 L - 3 1	10-3	2	11:48:00	6.89		16.99	16 26	18 75	16 62
1 U - 4 2 11:53:00 0.00 0.00 13 00 12 32 14 18 1 1 U - 4 4 11:55:00 0.00 0.00 12.83 12.14 13.99 1 2 L - 0 1 11:56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11:58:00 6.89 1.68 14.51 13.75 16.92 1 2 L - 1 2 11:59:00 6.89 1.68 14.52 13.75 16.91 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 1 12:04:00 13.79 3.31 16.65 15.79 18.29 1 2 L - 3 1 12:08:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 1	10-3	4	11:50:00	6.89		16.91			16.55
1 U - 4 4 11;55:00 0.00 0.00 12.83 12.14 13.99 1 2 L - 0 1 11;56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11;58:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 2 11;59:00 6.89 1.68 14.52 13.75 15.91 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 2 12:04:00 13.79 3.31 16.65 15.79 18.21 1 2 L - 3 1 12:08:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 2 12:09:00 20.68 4.94 18.82 17.88 20.64 1 2 L - 3 4 <td>1U-4</td> <td>1</td> <td>11:52:00</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>12.80</td>	1U-4	1	11:52:00				1		12.80
2 L - 0 1 11:56:00 0.00 0.00 12.79 12.08 13.93 1 2 L - 1 1 11:58:00 6.89 1.68 14.51 13.75 15.92 1 2 L - 1 2 11:59:00 6.89 1.68 14.52 13.75 15.91 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 2 12:04:00 13.79 3.31 16.65 15.79 18.21 1 2 L - 3 1 12:08:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 2 12:09:00 20.68 4.94 18.82 17.88 20.64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 <td>1U-4</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12.66</td>	1U-4	2							12.66
2 L - 1 1 11:58:00 6 89 1 68 14 51 13 75 15 92 1 2 L - 1 2 11:59:00 6 89 1 68 14 52 13 75 15 91 1 2 L - 1 4 12:01:00 6.89 1.68 14,54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3 31 16 49 15 61 18 11 1 2 L - 2 2 12:04:00 13.79 3 31 16 58 15 70 18 21 1 2 L - 2 4 12:06:00 13.79 3 31 16 65 15.79 18 29 1 2 L - 3 1 12:08:00 20 68 4 94 18 72 17 79 20 53 1 2 L - 3 2 12:09:00 20 68 4 94 18 82 17 88 20 64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 </td <td>1U-4</td> <td>4</td> <td>11:55:00</td> <td>0,00</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>12.48</td>	1U-4	4	11:55:00	0,00	0.00				12.48
2 L - 1 2 11:59:00 6.89 1.68 14.52 13.75 15.91 1 2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 2 12:04:00 13.79 3.31 16.58 15.70 18.21 1 2 L - 2 4 12:06:00 13.79 3.31 16.58 15.79 18.29 1 2 L - 3 1 12:08:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 2 12:09:00 20.68 4.94 18.82 17.88 20.64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 12:12:30 13.79 3.31 18.43 17.52 20.27 1 2 U - 1 2<	2L-0			<u> </u>				· · · · · · · · · · · · · · · · · · ·	12.44
2 L - 1 4 12:01:00 6.89 1.68 14.54 13.77 15.94 1 2 L - 2 1 12:03:00 13.79 3.31 16.49 15.61 18.11 1 2 L - 2 2 12:04:00 13.79 3.31 16.58 15.79 18.21 1 2 L - 2 4 12:06:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 1 12:08:00 20.68 4.94 18.72 17.79 20.53 1 2 L - 3 2 12:09:00 20.68 4.94 18.82 17.88 20.64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 12:12:30 13.79 3.31 18.43 17.52 20.27 1 2 U - 1 2 12:13:30 13.79 3.31 18.43 17.50 20.26 1 2 U - 2 1				e l				1 1	14.13
2 L - 2 1 12:03:00 13:79 3:31 16:49 15:61 18:11 1 2 L - 2 2 12:04:00 13:79 3:31 16:58 15:70 18:21 1 2 L - 2 4 12:06:00 13:79 3:31 16:65 15:79 18:29 1 2 L - 3 1 12:08:00 20:68 4:94 18:72 17:79 20:53 1 2 L - 3 2 12:09:00 20:68 4:94 18:82 17:88 20:64 1 2 L - 3 4 12:11:00 20:68 4:94 18:97 18:05 20:81 1 2 U - 1 1 12:12:30 13:79 3:31 18:43 17:52 20:27 1 2 U - 1 2 12:13:30 13:79 3:31 18:43 17:50 20:26 1 2 U - 2 1 12:17:00 6:89 1:68 17:08 16:21 18:75 1 2 U - 2 2		•							14.13
2 L - 2 2 12:04:00 13 79 3 31 16 58 15 70 18 21 1 2 L - 2 4 12:06:00 13.79 3.31 16.65 15.79 18.29 1 2 L - 3 1 12:08:00 20 68 4 94 18 72 17 79 20 53 1 2 L - 3 2 12:09:00 20 68 4 94 18 82 17 88 20 64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 12:12:30 13 79 3 31 18 43 17 52 20 27 1 2 U - 1 2 12:13:30 13 79 3 31 18 43 17 50 20 26 1 2 U - 1 4 12:15:30 13.79 3 31 18 43 17 50 20 26 1 2 U - 2 1 12:15:30 13.79 3 31 18 43 17 49 20 25 1 2 U - 2									14.16
2 L - 2 4 12:06:00 13.79 3.31 16.65 15.79 18.29 1 2 L - 3 1 12:08:00 20 68 4 94 18 72 17 79 20 53 1 2 L - 3 2 12:09:00 20 68 4 94 18 82 17 88 20 64 1 2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 12:12:30 13 79 3 31 18 43 17 52 20 27 1 2 U - 1 2 12:13:30 13 79 3 31 18 43 17 50 20 26 1 2 U - 2 1 12:15:30 13.79 3 31 18 43 17.49 20.25 1 2 U - 2 1 12:17:00 6 89 1 68 17 08 16 21 18.75 1 2 U - 2 2 12:18:00 6 89 1 68 16 97 16 12 18 66 1 2 U - 2 4<									16 05
2 L - 3 1 12:08:00 20:68 4 94 18:72 17:79 20:53 1 2 L - 3 2 12:09:00 20:68 4 94 18:82 17:88 20:64 1 2 L - 3 4 12:11:00 20:68 4.94 18:97 18:05 20:81 1 2 U - 1 1 12:12:30 13:79 3:31 18:43 17:50 20:27 1 2 U - 1 2 12:13:30 13:79 3:31 18:43 17:49 20:25 1 2 U - 2 1 12:17:00 6:89 1:68 17:08 16:21 18:75 1 2 U - 2 2 12:18:00 6:89 1:68 16:97 16:12 18:66 1 2 U - 2 4 12:20:00 6:89 1:68 16:96 16:06 18:61 1 2 U - 3 1 12:21:30 0:00 0:00 13:49 12:74 14:67 1		•							16 14
2 L - 3 2 12:09:00 20:68 4 94 18:82 17:88 20:64 1 2 L - 3 4 12:11:00 20:68 4.94 18:97 18:05 20:81 1 2 U - 1 1 12:12:30 13:79 3:31 18:43 17:52 20:27 1 2 U - 1 2 12:13:30 13:79 3:31 18:43 17:50 20:26 1 2 U - 1 4 12:15:30 13:79 3:31 18:43 17:49 20:25 1 2 U - 2 1 12:17:00 6:89 1:68 17:08 16:21 18:75 1 2 U - 2 2 12:18:00 6:89 1:68 16:97 16:12 18:66 1 2 U - 2 4 12:20:00 6:89 1:68 16:96 16:06 18:61 1 2 U - 3 1 12:21:30 0:00 0:00 13:49 12:74 14:67 1									16.22 18 25
2 L - 3 4 12:11:00 20.68 4.94 18.97 18.05 20.81 1 2 U - 1 1 12:12:30 13.79 3.31 18.43 17.52 20.27 1 2 U - 1 2 12:13:30 13.79 3.31 18.43 17.50 20.26 1 2 U - 1 4 12:15:30 13.79 3.31 18.43 17.49 20.25 1 2 U - 2 1 12:17:00 6.89 1.68 17.08 16.21 18.75 1 2 U - 2 2 12:18:00 6.89 1.68 16.97 16.12 18.66 1 2 U - 2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2 U - 3 1 12:21:30 0.00 0.00 13.49 12.74 14.67 1		4							18 35
2 U - 1 1 12:12:30 13:79 3:31 18:43 17:52 20:27 1 2 U - 1 2 12:13:30 13:79 3:31 18:43 17:50 20:26 1 2 U - 1 4 12:15:30 13:79 3:31 18:43 17:49 20:25 1 2 U - 2 1 12:17:00 6:89 1:68 17:08 16:21 18:75 1 2 U - 2 2 12:18:00 6:89 1:68 16:97 16:12 18:66 1 2 U - 2 4 12:20:00 6:89 1:68 16:96 16:06 18:61 1 2 U - 3 1 12:21:30 0:00 0:00 13:49 12:74 14:67 1	4	1							18.51
2 U - 1 2 12:13:30 13.79 3.31 18.43 17.50 20.26 1 2 U - 1 4 12:15:30 13.79 3.31 18.43 17.49 20.25 1 2 U - 2 1 12:17:00 6.89 1.68 17.08 16.21 18.75 1 2 U - 2 2 12:18:00 6.89 1.68 16.97 16.12 18.66 1 2 U - 2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2 U - 3 1 12:21:30 0.00 0.00 13.49 12.74 14.67 1								20.01	17.98
2 U - 1 4 12:15:30 13.79 3.31 18.43 17.49 20.25 1 2 U - 2 1 12:17:00 6 89 1 58 17 08 16 21 18.75 1 2 U - 2 2 12:18:00 6 89 1 68 16 97 16 12 18 66 1 2 U - 2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2 U - 3 1 12:21:30 0 00 0.00 13 49 12 74 14 67 1									17.96
2 U - 2 1 12:17:00 6 89 1 58 17 08 16 21 18.75 1 2 U - 2 2 12:18:00 6 89 1 68 16 97 16 12 18 66 1 2 U - 2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2 U - 3 1 12:21:30 0 00 0.00 13 49 12 74 14 67 1									17.96
2 U - 2 2 12:18:00 6 89 1 68 16 97 16 12 18 66 1 2 U - 2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2 U - 3 1 12:21:30 0 00 0.00 13 49 12 74 14 67 1									16 64
2U-2 4 12:20:00 6.89 1.68 16.96 16.06 18.61 1 2U-3 1 12:21:30 0 00 0.00 13 49 12 74 14 67 1	,	1		1					16 54
2 U - 3 1 12:21:30 0 00 0 00 13 49 12 74 14 67 1		i	1	1		h	1		16.51
				*					13 11
1 / U = 3 1 / 1 17 / 7 501 U UUI U UUI 15 57 1 17 601 14 517 1	20-3	2	12:22:30	I .	t	L .		1	12 96
		1		ŀ	i	1			12 81
	1	4							12.67

[&]quot; LVWDT 20690 is not included in the average due to its orientation. LVWDTs 20689 and 20691 are oriented 180* opposed.

LOADTEST Inc Project No. LT-8756-2

Appendix A, Page 2 of 5

Upward and Downward O-cell™ Plate Movement and Creep (calculated)
Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

		Te	st Shaff	: #2 - I-2	35 / 28th	Street O		- Des Mo			
Load	Hold	Time	O-ce	אדן	Top of	Total	Top Plate	O-cell™	Bot Plate	Creep Up	Creep Dn
Test	Time	1	Pressure	Load	Shaft	Comp	Movement	Expansion	Movement	Per Hold	Per Hold
Increment	(minutes)	(h:m:s)	(MPa)	(MN)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
1 L - 0	-	10:36:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
11-1	1	10:56:30	3.45	0 86	0 05	0.07	0 12	0 40	-0 28	2.05	0.04
16-1	2	10:57:30	3 45	0.86	0 10	0.06	0.17	0 41	-0 24	0 05 -0.05	-0 04 0.04
11-1	4	10:59:30	3.45	0.86	0.06	0.06	0.12	0.40 0.57	-0.28	-0.05	0,04
1 L - 2	1	11:01:00	6 89	1 68	0 20	0 11	0 31 0 30	0 60	-0.26 -0.29	-0 01	0 03
1 L - 2	2	11:02:00	6 89	1 68	0 20	0.11	0.41	0.63	-0.22	0.11	-0.08
1L-2	4	11:04:00	6,89	1,68	0.31 0.47	0.10 0.21	0.41	1 32	-0.22	<u>~</u>	
1L-3	1	11:05:30	10 34	2 49	0 53	0.21	0 78	1 45	-0.67	0.09	0.04
1L-3	2	11:06:30	10 34 10.34	2.49	0.62	0.29	0.92	1.86	-0.94	0.14	0.27
1L-3	4	11:08:30 11:10:00	13 79	3 31	1 16	0.45	1 62	3.05	-1 43		
1L-4	2	11:11:00	13.79	3 3 1	1 23	0.46	1.69	3 21	-1.52	0.07	0 08
1L-4	4	11:13:00	13.79	3.31	1,33	0.47	1.81	3.45	-1.64	0.11	0.12
1L-5	1	11:17:00	17.24	4 12	2.37	0 61	2 97	5 08	-2 10		
1 L - 5	2	11:18:00	17.24	4.12	2 48	. 0 61	3.09	5 25	-2 16	0.12	0 06
1L-5	4	11:20:00	17,24	4.12	2.61	0.60	3.21	5.49	-2.28	0.12	0.12
1 L - 6	1	11:23:00	20 68	4 94	3 85	0 72	4 57	7 42	-2.85		
14-6	2	11:24:00		4 94	3 98	0 72	4 70		-2 95	0 13	0 10
1 L - 6	4	11:26:00	20.68	4.94	4.12	0,71	4.82	7.93	-3.10	0.12	0.15
1L-7	1	11:28:00	24.13	5.75	6 08	0.82	6.89	10 47	-3.58	0 20	0.12
1L-7	2	11:29:00	24 13	5 75	6.29	0.81	7 09	10 79	-3.70 -3.82	0.65	0.12
1L-7	4	11:31:00	24.13	5.75	6.93	0.82	7,74 13 14		-4 41	0.03	0.12
1 L - 8	1	11:33:30	27.58	6 57	12 18 12 96	0.95 0.94			-4.51	0 77	0 10
1 L - 8	2	11:34:30		6.57 6.57	13.89	0.93		l .	-4.68	0.93	0,17
1L-8	4	11:36:30 11:38:00		4 94	13.03	0.84	14 81	19.28	-4 47		
10-1	1 2	11:39:00		4.94	14 02	0.84	ł.	1	-4.42		
10-1	4	11:41:00		4.94	14.08	0,83	14.92		-4.35		
1U-2	1	11:42:30	13.79	3.31	13.71	0.68	14.39	18 34			
1U-2	2	11:43:30		3 31	13 68	0 67				1	
1U-2	4	11:45:30		3.31	13.52	0.67	14.19		-4.02	<u> </u>	ļ
1U-3	1	11:47:00		1.68	12 91	0.46	4 ×		-3 35	1	
10-3	. 2	11:48:00		1.68	12 88		4				1
1U-3	4	11:50:00		1.68	12.75	0.45					
10-4	1	11:52:00		0 00	10 97	0.13	E .		L		
1U-4	2	11:53:00		0.00	10.84 10.84	0 12 0.12		L	2		1
1U-4	4	11:55:00		0.00	10.85	0.12				-	
2 L - 0	1	11:56:00		1 68	11 20	0.12					
2L-1	1 2	11:58:00 11:59:00	1	1 68	11 27	L		1	-2 55		1
2 L - 1 2 L - 1	4	12:01:00		1,68	11.28				-2.57		
2 L - 2	1	12:03:00			12 18				-3 33		
2 L - 2	2	12:04:00		1 1	12 25	0.55					
2 L - 2	4	12:06:00	1		12.37	0.55					<u> </u>
2 L - 3	1	12:08:00			13.52	•				1	1
2 L - 3	2	12:09:00			13 52	1		7			1
2 L - 3	4	12:11:00									
2 U - 1	1	12:12:30			13 37						1
2 U - 1	2	12:13:30	1						1		1
2U-1	4	12:15:30			13.19						·
2 U - 2		12:17:00						4	1		1
2U-2		12:18:00						4			1
20-2		12:20:00									1
2U-3		12:21:30		l	t .				1		
2U-3 2U-3		12:24:30		1		1		4	1		1
20-3	8	12:24:30		1							1
20-3		14.40.30	1 0,00	0.50					· · · · · · · · · · · · · · · · · · ·		

LOADTEST Inc Project No LT-8756-2

Appendix A, Page 3 of 5

Strain Gage Readings and Loads at Levels 1, 2 and 3 Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

			631 3116			J14						112	
Load	Hold	Time	O-ce		222.12	Level 1		04070	Level 2			Level 3	
Test	Time	, ,	Pressure	Load	23046	23047	Av. Load	21376	21377	Av. Load	23050	23051	Av. Load
Increment	(minutes)	(h:m:s)	(MPa)	(MN)	(311)	(µE)	(MN)	(με)	(me)	(MN)	(με)	(με)	(MN)
1L-0		10:36:00	0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00
1L-1	1	10:56:30		0 86	17 2	11.2	0 45	6.4	5.2	0 18	2.0	19	0.06
1 L - 1	2	10:57:30		0.86	17 4	10.9	0.44	66	5.2	0 19	2.0	1.9	0.06
1L-1	44	10:59:30		0,86	17.6	10.5	0.44	6.6	5,1	0.18	2.0	2.2	0.07
1 L - 2	1	11:01:00		1 68	29 6	17 3	0.74	10.3	8 4	0 29	3.1	3.4	0 10
1L-2	2	11:02:00		1 68	30.0	17.4	0.75	10.5	8.2	0 29	3.2	3.2	0 10
1L-2	4	11:04:00	6,89	1.68	30.4	17.4	0.75	10.6	8,2	0.30	3.2	3,3	0.10
113	1	11:05:30	10 34	2.49	44 6	40.8	1.34	21.8	18 6	0 64	7.7	8.1	0 25
1L-3	2	11:06:30		2.49	47 4	45.8	1 47	24.2	21.6	0 72	91	9 2	0.29
1L-3	4	11:08:30	10.34	2.49	58.5	49.3	1.70	28.4	25,5	0.85	11.8	11.4	0.37
1L-4	1	11:10:00	13 79	3 31	82 2	67.2	2.35	42.8	38.1	1 27	19.2	19 1	0.60
11-4	2	11:11:00	13.79	3.31	82 5	69.3	2.39	43 4	39.0	1 30	19.8	19.5	0 62
1L-4	4	11:13:00	13.79	3.31	82,3	69.7	2,39	43.5	39.8	1,31	20.2	19.9	0.63
1 L - 5	1	11:17:00		4.12	104 6	87.0	3 02	55 0	50 7	1.66	26 2	25.3	0.81
1L-5	2	11:18:00		4 12	104 6	87.9	3 03	54 8	51.0		26.3	25 3	0.81
115	4	11:20:00		4.12	104.5	88.6	3.04	54,6	51.8	1.67	26.4	25.2	0.81
116	1	11:23:00		4.94	127 5	104.7	3.66	65 0	61.5	1 99	31 6	29.4	0 96
1L-6	2	11:24:00		4.94		104.9	3 66	64 6	61.4		31 5	29.1	0.95
1L-6	4	11:26:00		4.94	126.2	104.0	3.63	63.5	60,6	1,96	31.2	28.4	0.94
1L-7	1	11:28:00		5 75	147.8	122 1	4 25	73.4	70.9	2.27	35 6	31 7	1.06
1L-7	2	11:29:00	24 13	5 75	145 7	121 6	4 21	72.4	70.4	2 25	35 5	31,5	1.05
1L-7	4	11:31:00	24,13	5.75	148.8	125.8	4.33	73.1	72.3	2.29	35.8	31.5	1,06
1L-8	1	11:33:30	27.58	6.57	181 3	150 9	5 23	85.3	83 7	2 66	40.5	35 0	1 19
1L-8	2	11:34:30	27.58	6 57	181.4	150 2	5 22	84.1	82 4	2 62	40.0	34 0	1 17
1L-8	4	11:36:30	27.58	6.57	180.5	148.1	5.18	82.2	79.9	2.55	39.1	32,3	1.12
1 U - 1	1	11:38:00	20.68	4 94	164.6	131 2	4 66	75.6	73.0	2 34	36.4	29 6	1.04
10-1	2	11:39:00	20.68	4.94	163.6	130 9	4.64	74.9	72.3	2 32	36.1	29.4	1.03
10-1	4	11:41:00	20.68	4.94	161.8	129.6	4.59	74.1	71.7	2.30	35.8	29.0	1.02
1U-2	1	11:42:30	13 79	3.31	131.1	97.3	3.60	61.2	58.1	1 88	30.4	23 6	0 85
1U-2	2	11:43:30	13.79	3 31	128 8	95 0	3.52	60.2	57.2	1 85	30.2	23 1	0 84
10-2	4	11:45:30	13.79	3,31	128.9	96.0	3,54	60.4	57.5	1.86	30.2	23.2	0.84
1U-3	1	11:47:00	6.89	1 68	87.5	59 0	2 31	423	40.2	1.30	22 5	15 3	0 60
10-3	2	11:48:00	6 89	1 68	86 9	58.2	2.29	42 2	40.0	1.30	22.1	15 2	0 59
1U-3	4	11:50:00	6.89	1.68	86.3	57.9	2.27	41.6	39.8	1.28	21.8	15.1	0,58
1U-4	1	11:52:00	0 00	0 00	4 18.5	11.7	0 48	96	12.9		9.2	26	0 18
1U-4	2	11:53:00	0 00	0 00	48.2	11.3	0.46	93	12 7		90	2.2	0 18
10-4	4	11:55:00	0.00	0.00	17,8	10,4	0.44	9.2	12.5	0.34	8.6	2.4	0.17
2 L - 0	1	11:56:00	0.00	0.00	17.9	10.5	0.45	9.2	12.3	0.34	8.5	2.1	0.17
21-1	1	11:58:00	6 89	1 68	59.3	45 1	1.65	28 2	28 3	0.89	14 8	9.1	0 38
2L-1	2	11:59:00	6 89	1 68	58 8	44 7	1 63	27.8	27 9		14 7	88	0 37
2 L - 1	4	12:01:00	6,89	1.68	58.9	45.1	1.64	27.9	27.8	0.88	14.8	9.1	0.38
2L-2	1	12:03:00	13 79	3.31	103 0	83.0	2 93		46 8		23 3	18.0	0 65
21-2	2	12:04:00	13 79	3 31	104 4	84.2	2.97	50 6	47 3		23 7	18 6	0 67
2L-2	4	12:06:00	13.79	3.31	104.2	84.4	2,97	50.4	47.2	1.54	23.7	18,2	0.66
2L-3	1	12:08:00	20 68	4 94	146 3	121 1	4 21	69 5	65 4		32 4	27 1	0 94
2L-3	2	12:09:00	20 68	4.94	145 1	120.2	4 18	68.8	64.6	2 10	32.4	26.9	0 94
2L-3	4	12:11:00		4.94	145.8	121.3	4.21	68.9	64,9	2.11	32.7	27.1	0,94
2 U - 1	1	12:12:30	13 79	3.31	125 6	97.7	3 52	60.1	55 8	1 83	29.0	23.2	0 82
2 U - 1	2	12:13:30		3 31	125 9	97 8		60 0	55.7	1 82	29 3	23.1	0 83
20-1	4	12:15:30	13.79	3.31	125.4	97.6	3,51	60,1	55.7		29.3	23.0	0.82
2U-2	1	12:17:00		1.58	84 7	60.1	2 28	423	38 8	1 28	21.7	15 2	0 58
20-2	2	12:18:00		1 68		58 6			37.5		21 4	15 1	0 58
2 U - 2	4	12:20:00		1,68		59.1			37.8			15,1	0.57
2U-3	1	12:21:30		0.00	17 4	12 9	0 48	90	11 5		89	25	0 18
2U-3	2	12:22:30		0.00		12 2)					2.1	0 17
2U-3	4	12:24:30		0.00		11 2		1		1	• .	22	
20-3	8	12:28:30		0.00		10.5			10.9	1		1.8	0.16
	لـــــــــا		2.00				,,,,				· · · · · · · · · · · · · · · · · · ·		

LOADTEST Inc Project No LT-8756-2

Appendix A, Page 4 of 5

Strain Gage Readings and Loads at Levels 5 and 6 Test Shaft #2 - I-235 / 28th Street Overpass - Des Moines, IA

						#2 - I-235 / 28th Street Overpass - Des Moines, IA								
Incomend (minutes) (mms) (MPa) (MP) (MP) (MP) (MP) (MP) (MP) (MP) (MP	Load	Hold	Time	O-ce	II M		Level 4			Level 5		1		
11.0	Test	Time		Pressure	Load			Av. Load						
11-0	Increment	(minutes)	(h:m:s)	(MPa)	(MN)	(me)	(με)	(MN)	(ue)	(με)	(MN)			
1.			10:36:00		0,00	0.0	0.0	0.00	0.0	0.0	0.00			
11-1		1						0.05	1.2	1.1	0 04			
11-1											0.04			
1														
11-2												····		
11-2 4	1								l i	1				
113														
11-3														
11.3														
1					1								l	
11			-											
114	4	•			1									
1														
1 L - 5												· ·		
1	7													
11.6									17.4					
11														
1 1 6														
117										1				
1 L - 7 2 11:29:00 24:13 5.75 29:1 27:3 0.89 19:5 19:0 0.60 1 L - 8 1 11:33:00 27:58 6:57 31:1 31:8 0.99 18:4 23:1 0:65 1 L - 8 2 11:34:20 27:58 6:57 30:2 31:3 0.99 18:4 23:1 0:65 1 L - 8 4 11:36:20 27:58 6:57 30:2 31:3 0.97 17:5 23:0 0:64 1 L - 8 4 11:36:20 27:58 6:57 28:8 30:4 0:93 16:2 22:9 0:62 1 U - 1 2 11:39:00 20:68 4:94 26:6 27:9 0:86 14:6 21:3 0:56 1 U - 1 2 11:43:20 13:79 3:31 21:8 23:2 0:71 11:0 18:1 0:45 1 U - 2 1 11:43:20 13:79 3:31 21:4 22:8 0:														
1 L - 7 4 11:31:00 24:13 5.75 29:1 27:4 0.89 19:0 19:0 0.60 1 L - 8 1 11:34:30 27:58 6:57 31:1 31:8 0.99 18:4 23:1 0.65 1 L - 8 2 11:36:30 27:58 6:57 30:2 31:3 0.97 17:5 23:0 0.64 1 U - 1 1 11:38:00 20:68 6:57 28:8 30:4 0.93 16:2 22:9 0.62 1 U - 1 1 11:38:00 20:68 4.94 26:4 27.7 0.85 14:4 21:2 0.55 1 U - 1 4 11:41:100 20:68 4.94 26:4 27.7 0.85 14:4 21:2 0.55 1 U - 2 1 11:43:30 13:79 3:31 21:8 23:2 0:71 11:0 18:1 0:46 1 U - 3 1:0:4 4:11:45:30 13:79 3:31 21:8 23:2	11.7	1	11:28:00	24.13	5 75									
1 L - 8 1 11:33:30 27:58 6:57 31:1 31:8 0.99 18:4 23:1 0:65 1 L - 8 2 11:36:30 27:58 6:57 28:8 30.4 0.93 16:2 22:9 0.64 1 L - 1 1 11:36:30 27:58 6:57 28:8 30.4 0.93 16:2 22:9 0.62 1 U - 1 2 11:39:00 20:68 4.94 26:6 27:9 0.86 14:6 21:3 0.56 1 U - 1 4 11:41:00 20:68 4.94 26:1 27:2 0.84 14:4 21:0 0.55 1 U - 2 1 11:43:30 13:79 3.31 21:3 22:0 0.71 11:0 18:1 0.46 1 U - 2 1:14:45:30 13:79 3.31 21:3 22:8 0.70 10:8 18:0 0.45 1 U - 3 1:1:46:30 13:79 3.31 21:4 22:8 0.70 10:8	16-7	2	11:29:00	24 13		29.2				19 0				
1 L − 8 2 11:34:30 27.58 6.57 28.8 30.4 0.93 16.2 22.9 0.62 1 U − 1 1 11:38:00 20.68 4.94 26.6 27.9 0.86 14.6 21.3 0.56 1 U − 1 2 11:39:00 20.68 4.94 26.4 27.7 0.85 14.6 21.3 0.56 1 U − 1 4 11:41:00 20.68 4.94 26.1 27.2 0.84 14.1 20.9 0.55 1 U − 2 1 11:42:30 13.79 3.31 21.8 23.2 0.71 11.0 18.1 0.46 1 U − 2 2 11:43:30 13.79 3.31 21.8 22.8 0.70 10.7 18.1 0.45 1 U − 3 1 11:45:30 33.9 3.31 21.4 22.8 0.70 10.7 18.1 0.45 1 U − 3 1 11:45:30 0.39 16.8 14.7 16.4 0.4	1L-7	4	11:31:00	24.13	5.75	29.1	27.4	0.89	19.0	19.0				
1	1 L - 8	1	11:33:30	27 58	6 57	31.1	31.8	0.99		23 1	0 65			
118		2	11:34:30	27.58	6 57	30 2	313	0.97	175	23.0	0.64			
1		4	11:36:30	27,58	6.57	28.8	30.4	0,93	16.2	22.9				
1 U - 1 4 11:41:00 20.68 4.94 25.1 27.2 0.84 14.1 20.9 0.55 1 U - 2 1 11:42:30 13.79 3.31 21.8 23.2 0.70 10.7 18.1 0.45 1 U - 2 4 11:43:30 13.79 3.31 21.8 22.8 0.70 10.8 18.0 0.45 1 U - 3 1 11:47:00 6.89 168 14.7 16.4 0.49 6.0 14.4 0.32 1 U - 3 2 11:48:00 6.89 168 14.4 16.2 0.48 5.6 14.0 0.32 1 U - 3 2 11:48:00 6.89 1.68 14.3 16.1 0.48 5.6 14.0 0.31 1 U - 4 1 11:50:00 0.00 0.00 3.7 5.0 0.14 -1.4 6.8 0.08 1 U - 4 4 11:55:00 0.00 0.00 3.6 4.7 0.13		1	11:38:00	20.68	4.94	26.6	27.9	0.86	146	21.3	0.56			
1 U - 1 4 11:41:00 20.68 4.94 26.1 27.2 0.84 14.1 20.9 0.55 1 U - 2 1 11:42:30 13.79 3.31 21.8 23.2 0.70 10.7 18.1 0.45 1 U - 2 2 11:43:30 13.79 3.31 21.8 22.8 0.70 10.8 18.0 0.45 1 U - 3 1 11:45:00 6.89 1.68 14.7 16.4 0.49 6.0 14.4 0.32 1 U - 3 2 11:48:00 6.89 1.68 14.3 16.1 0.48 5.6 14.0 0.31 1 U - 3 4 11:50:00 0.00 0.00 3.7 5.0 0.14 -1.4 6.8 0.08 1 U - 4 1 11:55:00 0.00 0.00 3.6 4.7 0.13 -1.4 6.5 0.08 2 L - 1 2 11:56:00 0.00 0.00 3.5 4.6 0.13	10-1	2	11:39:00	20.68	4.94	26 4	27.7	0.85	14.4	21.2	0.56			
1 U − 2 1 11.42;30 13.79 3.31 21.8 23.2 0.71 11.0 18.1 0.46 1 U − 2 2 11:43;30 13.79 3.31 21.3 22.8 0.70 10.7 18.1 0.45 1 U − 3 1 11:47;00 6.89 1.68 14.7 16.4 0.49 0.70 10.8 18.0 0.45 1 U − 3 4 11:50;00 6.89 1.68 14.7 16.4 0.49 0.60 14.4 0.32 1 U − 4 1 11:50;00 6.89 1.68 14.3 16.1 0.48 5.6 14.0 0.31 1 U − 4 1 11:50;00 0.00 0.00 3.7 5.0 0.14 −1.3 6.8 0.08 1 U − 4 4 11:55;00 0.00 0.00 3.6 4.7 0.13 −1.4 6.5 0.08 2 L − 1 1 11:55;00 0.00 0.00 3.5 4.6 0.13 −1.4 6.5 0.08 2 L − 1 1 11:55;00			11:41:00	20.68	4.94	26.1	27.2	0.84	14.1	20.9	0.55			
1 U - 2 2 11:43:30 13 79 331 21.3 22.8 0 70 10.7 18 1 0 46 1 U - 3 1 11:43:30 13.79 3.31 21.4 22.8 0.70 10.7 18 1 0 46 1 U - 3 1 11:47:30 6.89 1 68 14 7 16 4 0 49 60 14 4 0 32 1 U - 3 2 11:48:00 6.89 1 68 14 4 16 2 0 48 5.8 14 3 0.32 1 U - 3 4 11:50:00 0 00 0 00 37 5 0 0 14 -1 4 6.8 0 08 1 U - 4 1 11:52:00 0 00 0 00 37 5 0 0 14 -1 4 6.8 0 08 1 U - 4 2 11:55:00 0 0.00 0 0.00 3.6 4.7 0 13 -1.4 6.3 0.08 2 L - 0 1 11:56:00 0 0.00 3.5 4.6 0.13 -1.4 6.5 0.08 2 L - 1 2 11:59:00 6.89 1.68 <								0 71		18 1	0.46			
10-2	1				3.31	21.3	228	0 70	10.7	18 1	0 45			
1 U - 3 1 11:47:00 6 89 1 68 1 4 7 1 6 4 0 49 6 0 1 4 4 0 32 1 U - 3 2 11:48:00 6 89 1 68 14 4 16 2 0 48 5.8 14 3 0.32 1 U - 4 1 11:50:00 0 00 0 00 3 7 5 0 0 14 -1 4 6 8 0 08 1 U - 4 1 11:52:00 0 00 0 00 3,8 5 0 0 14 -1 4 6 8 0 08 1 U - 4 4 11:55:00 0.00 0.00 3,6 4.7 0.13 -1,4 6.3 0.08 2 L - 0 1 11:56:00 0.00 0.00 3,5 4,6 0.13 -1,4 6.5 0.08 2 L - 1 1 11:56:00 6.89 1.68 8.4 10.3 0.29 2.3 9.7 0.19 2 L - 1 2 11:59:00 6.89 1.68 8.3 10.1 0.29 2.3										18.0	0.45		1	
1 U - 3 2 11:48:00 6 89 1 68 14.4 16 2 0 48 5.8 14.3 0.32 1 U - 3 4 11:50:00 6.89 1.68 14.3 16.1 0.48 5.6 14.0 0.31 1 U - 4 1 11:52:00 0 00 0 00 3.7 5 0 0 14 -1 4 6.8 0.08 1 U - 4 2 11:53:00 0 00 0.00 3.6 4.7 0.13 -1.4 6.3 0.08 2 L - 0 1 11:58:00 0.00 0.00 3.5 4.6 0.13 -1.4 6.3 0.08 2 L - 1 1 11:58:00 6.89 1.68 8.4 10.3 0.29 2.4 10.0 0.20 2 L - 1 2 11:59:00 6.89 1.68 8.3 10.1 0.29 2.4 10.0 0.20 2 L - 1 4 12:01:00 6.89 1.68 8.3 10.1 0.29 2.1<													1	
10-3														
1 U - 4 1 11:52:00 0 00]	
1U-4														
1 U - 4 4 11:55:00 0.00 0.00 3.6 4.7 0.13 -1.4 6.3 0.08 2 L - 0 1 11:56:00 0.00 0.00 3.5 4.6 0.13 -1.4 6.5 0.08 2 L - 1 1 11:58:00 6.89 1.68 8.4 10.3 0.29 2.3 9.7 0.19 2 L - 1 2 11:59:00 6.89 1.68 8.3 10.1 0.29 2.4 10.0 0.20 2 L - 1 4 12:01:00 6.89 1.68 8.3 10.1 0.29 2.1 9.8 0.19 2 L - 2 1 12:03:00 13.79 3.31 15.9 17.8 0.53 7.3 14.5 0.34 2 L - 2 2 12:04:00 13.79 3.31 15.8 18.1 0.54 7.4 14.7 0.35 2 L - 3 4 12:06:00 13.79 3.31 16.1 18.1 0.54 7				•			1	I .					ŀ	•
2 L - 0 1 11;56;00 0,00 0,00 3,5 4,6 0,13 -1,4 6,5 0,08 2 L - 1 1 11;58;00 6,89 1,68 8,4 10,3 0,29 2,3 9,7 0,19 2 L - 1 2 11;59;00 6,89 1,68 8,3 10,1 0,29 2,4 10,0 0,20 2 L - 1 4 12;01;00 6,89 1,68 8,3 10,1 0,29 2,4 10,0 0,20 2 L - 2 1 12;03;00 13,79 3,31 15,9 17,8 0,53 7,3 14,5 0,34 2 L - 2 1 12;03;00 13,79 3,31 15,8 18,1 0,53 7,3 14,8 0,35 2 L - 2 4 12;06;00 13,79 3,31 16,1 18,1 0,54 7,4 14,7 0,35 2 L - 3 1 12;08;00 20,68 4,94 23,5 25,4 0,77 <				I 1										
2 L - 1 1 11:58:00 6.89 1.68 8.4 10.3 0.29 2.3 9.7 0.19 2 L - 1 2 11:59:00 6.89 1.68 8.3 10.1 0.29 2.4 10.0 0.20 2 L - 1 4 12:01:00 6.89 1.68 8.3 10.1 0.29 2.1 9.8 0.19 2 L - 2 1 12:03:00 13.79 3.31 15.9 17.8 0.53 7.3 14.5 0.34 2 L - 2 2 12:04:00 13.79 3.31 15.8 18.1 0.53 7.3 14.8 0.35 2 L - 2 4 12:06:00 13.79 3.31 16.1 18.1 0.54 7.4 14.7 0.35 2 L - 3 1 12:08:00 20.68 4.94 23.5 25.4 0.77 12.6 19.6 0.51 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.2 0.76												 	<u> </u>	
2 L - 1 2 11;59:00 6 89 1 68 8 3 10 1 0 29 2 4 10.0 0 20 2 L - 1 4 12:01:00 6.89 1.68 8.3 10.1 0.29 2.1 9.8 0.19 2 L - 2 1 12:03:00 13 79 3 31 15.9 17 8 0.53 7 3 14 5 0 34 2 L - 2 2 12:04:00 13 79 3 31 15.8 18 1 0 53 7 3 14 8 0 35 2 L - 2 4 12:06:00 13 79 3 31 16.1 18.1 0.54 7.4 14.7 0.35 2 L - 3 1 12:08:00 20 68 4 94 23.5 25.4 0.77 12 6 19.6 0.51 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.2 0.76 12.5 19.4 0.50 2 U - 1 1 12:13:30 13 79 3 31 20.6 22.5 0.68												 	 	
2L-1 4 12:01:00 6.89 1.68 8.3 10.1 0.29 2.1 9.8 0.19 2L-2 1 12:03:00 13 79 3 31 15.9 17.8 0.53 7 3 14.5 0.34 2L-2 2 12:04:00 13 79 3 31 15.8 18.1 0.53 7 3 14.8 0.35 2L-2 4 12:06:00 13.79 3.31 16.1 18.1 0.54 7.4 14.7 0.35 2L-3 1 12:08:00 20.68 4.94 23.5 25.4 0.77 12.6 19.6 0.51 2L-3 4 12:09:00 20.68 4.94 23.3 25.2 0.76 12.5 19.1 0.50 2L-3 4 12:11:00 20.68 4.94 23.3 25.2 0.77 12.5 19.1 0.50 2U-1 1 12:13:30 13.79 3.31 20.6 22.5 0.68 10.7								,	1		ı	t .		
2 L - 2 1 12:03:00 13 79 3 31 15.9 17.8 0.53 7 3 14 5 0.34 2 L - 2 2 12:04:00 13 79 3 31 15.8 18.1 0.53 7 3 14 8 0.35 2 L - 2 4 12:06:00 13.79 3.31 16.1 18.1 0.54 7.4 14.7 0.35 2 L - 3 1 12:08:00 20 68 4.94 23.5 25.4 0.77 12.6 19.6 0.51 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.2 0.76 12.5 19.1 0.50 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.2 0.77 12.5 19.1 0.50 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.2 0.68 10.7 17.5 0.44 2 U - 1 1 12:13:30 13.79 3.31 20.6 22.5 0.68<		i .						1						
2 L - 2 2 12:04:00 13 79 3 31 15 8 18 1 0 53 7 3 14 8 0 35 2 L - 2 4 12:06:00 13.79 3.31 16.1 18.1 0.54 7.4 14.7 0.35 2 L - 3 1 12:08:00 20 68 4 94 23.5 25 4 0.77 12 6 19.6 0 51 2 L - 3 2 12:09:00 20.68 4.94 23.3 25 2 0 76 12.5 19.1 0 50 2 L - 3 4 12:11:00 20.68 4.94 23.3 25.4 0.77 12.5 19.1 0 50 2 L - 3 4 12:11:00 20.68 4.94 23.4 25.4 0.77 12.5 19.1 0 50 2 U - 1 1 12:11:200 13 79 3 31 20.6 22.5 0 68 10.7 17.5 0 44 2 U - 1 4 12:15:30 13.79 3.31 20.6 22.5 0.68 10.5 17.7 0.44 2 U - 2 1 12:18:00												 	 	
2 L - 2 4 12:06:00 13:79 3:31 16:1 18:1 0.54 7.4 14:7 0.35 2 L - 3 1 12:08:00 20:68 4:94 23:5 25:4 0.77 12:6 19:6 0.51 2 L - 3 2 12:09:00 20:68 4:94 23:3 25:2 0.76 12:5 19:1 0.50 2 L - 3 4 12:11:00 20:68 4.94 23:4 25:4 0.77 12:5 19:4 0.50 2 U - 1 1 12:12:30 13:79 3:31 20:6 22:5 0:68 10:7 17:5 0:44 2 U - 1 2 12:13:30 13:79 3:31 20:6 22:5 0:68 10:5 17:7 0:44 2 U - 1 4 12:15:30 13:79 3:31 20:5 22:5 0:68 10:4 17:7 0:44 2 U - 2 1 12:17:00 6:89 1:68 14:0 16:2 0:47												1		
2 L - 3 1 12:08:00 20 68 4 94 23.5 25.4 0.77 12.6 19.6 0.51 2 L - 3 2 12:09:00 20.68 4.94 23.3 25.2 0.76 12.5 19.1 0.50 2 L - 3 4 12:11:00 20.68 4.94 23.4 25.4 0.77 12.5 19.4 0.50 2 U - 1 1 12:12:30 13.79 3.31 20.6 22.5 0.68 10.7 17.5 0.44 2 U - 1 2 12:13:30 13.79 3.31 20.6 22.5 0.68 10.5 17.7 0.44 2 U - 1 4 12:15:30 13.79 3.31 20.5 22.5 0.68 10.4 17.7 0.44 2 U - 2 1 12:17:00 6.89 1.68 14.0 16.2 0.47 5.8 13.7 0.31 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47<								1	b.	1			1	
2 L - 3 2 12:09:00 20:68 4.94 23:3 25:2 0.76 12:5 19:1 0.50 2 L - 3 4 12:11:00 20:68 4.94 23:4 25:4 0.77 12:5 19:4 0.50 2 U - 1 1 12:12:30 13:79 3:31 20:6 22:5 0:68 10:7 17:5 0:44 2 U - 1 2 12:13:30 13:79 3:31 20:6 22:5 0:68 10:5 17:7 0:44 2 U - 1 4 12:15:30 13:79 3:31 20:5 22:5 0:68 10:5 17:7 0:44 2 U - 2 1 12:17:00 6:89 1:68 14:0 16:2 0:47 5:8 13:7 0:31 2 U - 2 2 12:18:00 6:89 1:68 13:7 15:9 0:47 5:5 13:5 0:30 2 U - 2 4 12:20:00 6:89 1:68 13:7 15:9 0:47 5:5 13:8 0:30 2 U - 3 1 12:21:30 0:00 0:00 3:8 4:9 0:14 -1:6 6:7 0:08 2 U - 3 4 12:24:30 0:00 0												 		
2 L - 3 4 12:11:00 20.68 4.94 23.4 25.4 0.77 12.5 19.4 0.50 2 U - 1 1 12:12:30 13 79 3 31 20 6 22.5 0 68 10 7 17 5 0.44 2 U - 1 2 12:13:30 13 79 3 31 20 6 22 5 0 68 10.5 17 7 0.44 2 U - 1 4 12:15:30 13.79 3.31 20.5 22.5 0.68 10.4 17.7 0.44 2 U - 2 1 12:17:00 6 89 1 68 14 0 16.2 0.47 5 8 13 7 0 31 2 U - 2 2 12:18:00 6 89 1 68 13 7 15.9 0.47 5 6 13 5 0 30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0 00 0 00 3 8 4 9 0 14 -1 6 6 7 0 08 2 U - 3 4 12:22:30 0 00 0 00 3 4 4 8 0 13 -1 8 6 5 0 07			4				1			1		1		
2 U - 1 1 12:12:30 13 79 3 31 20 6 22 5 0 68 10 7 17 5 0 44 2 U - 1 2 12:13:30 13 79 3 31 20 6 22 5 0 68 10.5 17 7 0 44 2 U - 1 4 12:15:30 13.79 3.31 20.5 22.5 0.68 10.4 17.7 0.44 2 U - 2 1 12:17:00 6 89 1 68 14 0 16.2 0.47 5 8 13 7 0 31 2 U - 2 2 12:18:00 6 89 1 68 13 7 15.9 0.47 5 6 13 5 0 30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0 00 0 00 3 8 4 9 0 14 -1 6 6 7 0 08 2 U - 3 4 12:24:30 0 00 0 00 3.3 4 8 0 13				1							1			
2 U - 1 2 12;13:30 13 79 3 31 20 6 22 5 0 68 10.5 17 7 0 44 2 U - 1 4 12;15:30 13.79 3.31 20.5 22.5 0.68 10.4 17.7 0.44 2 U - 2 1 12:17:00 6 89 1 68 14 0 16 2 0.47 5 8 13 7 0 31 2 U - 2 2 12:18:00 6 89 1 68 13 7 15 9 0.47 5 6 13 5 0 30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0 00 0 00 3 8 4 9 0 14 -1 6 6 7 0 08 2 U - 3 2 12:22:30 0 00 0 00 3 4 4 8 0 13 -1 8 6 7 0.08 2 U - 3 4 12:24:30 0 00 0 00 3 3 4 6 0 12 -1 8 6 5 0 07			, 										 	
2 U - 1 4 12:15:30 13.79 3.31 20.5 22.5 0.68 10.4 17.7 0.44 2 U - 2 1 12:17:00 6.89 1.68 14.0 16.2 0.47 5.8 13.7 0.31 2 U - 2 2 12:18:00 6.89 1.68 13.7 15.9 0.47 5.6 13.5 0.30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0.00 0.00 3.8 4.9 0.14 -1.6 6.7 0.08 2 U - 3 2 12:22:30 0.00 0.00 3.4 4.8 0.13 -1.8 6.7 0.08 2 U - 3 4 12:24:30 0.00 0.00 3.3 4.6 0.12 -1.8 6.5 0.07	1								1	1				
2 U - 2 1 12:17:00 6 89 1 68 14 0 16 2 0.47 5 8 13 7 0 31 2 U - 2 2 12:18:00 6 89 1 68 13 7 15 9 0.47 5 6 13 5 0 30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0 00 0 00 3 8 4 9 0 14 -1 6 6 7 0 08 2 U - 3 2 12:22:30 0 00 0 00 3 4 4 8 0 13 -1 8 6 7 0 08 2 U - 3 4 12:24:30 0 00 0 00 3 3 4 6 0 12 -1 8 6 5 0 07										1			1	
2 U - 2 2 12:18:00 6 89 1 68 13 7 15 9 0.47 5 6 13 5 0 30 2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0 00 0 00 3 8 4 9 0 14 -1 6 6 7 0 08 2 U - 3 2 12:22:30 0 00 0 00 3.4 4 8 0 13 -1.8 6 7 0.08 2 U - 3 4 12:24:30 0 00 0 00 3.3 4 6 0 12 -1 8 6 5 0 07													ļ	
2 U - 2 4 12:20:00 6.89 1.68 13.7 15.9 0.47 5.5 13.8 0.30 2 U - 3 1 12:21:30 0.00 0.00 3.8 4.9 0.14 -1.6 6.7 0.08 2 U - 3 2 12:22:30 0.00 0.00 3.4 4.8 0.13 -1.8 6.7 0.08 2 U - 3 4 12:24:30 0.00 0.00 3.3 4.6 0.12 -1.8 6.5 0.07		•				1		1					1	
2U-3 1 12:21:30 0 00 0 0 0 3 8 4 9 0 14 -1 6 6 7 0 08 2 U-3 2 12:22:30 0 00 0 00 3 4 4 8 0 13 -1 8 6 7 0 08 2 U-3 4 12:24:30 0 00 0 00 3 3 4 6 0 12 -1 8 6 5 0 07								1			1		1	
2 U - 3 2 12:22:30 0 00 0 00 3.4 4.8 0.13 -1.8 6.7 0.08 2 U - 3 4 12:24:30 0 00 0 00 3.3 4.6 0.12 -1.8 6.5 0.07	20-2	44											ļ	
2 U - 3 4 12:24:30 0 00 0 00 3.3 4.6 0.12 -1.8 6.5 0 0.7	2U-3	1		1			1	1	4	l	,	i .		
	20-3	2	12:22:30	0 00				1	9	l l	•	1		
2 U - 3 8 12:28:30 0.00 0.00 3.2 4.3 0.12 -1.9 6.0 0.06		4	12:24:30	0 00	0 00									
					0.00	3.2	4,3	0.12	-1.9	6.0	0.06	1	l	

LOADTEST Inc Project No LT-8756-2

Appendix A, Page 5 of 5

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

<u>APPENDIX B</u>

O-CELL™ AND INSTRUMENTATION CALIBRATION SHEETS

STROKE: 1 INCH 3 INCH 5 INCH

26" O-CELL, SERIAL # 1024-16

PRESSURE PSI	LOAD KIPS	LOAD KIPS	LOAD KIPS		
0	0	0	0		
600	220	223	220		
1200	446	448	446		
1800	667	670	671		
2400	895	892	888		
3000	1114	1112	1110		
3600	1335	1336	1331		
4200	1556	1552	1546 _.		
4800	1778	1773	1766 📞		
5400	1995	1992	1986		
6000	2212	2209	2198		
6600	2431	2427	2415		
7200	2652	2648	2636		
7800	2866	2858	2851		
8400	3080	3077	3064		

LOAD CONVERSION FORMULA LOAD = PRESSURE * 0.3664 + (10.7) (KIPS) (PSI)

Regression Qutput:	
Constant	10.715
X Coefficient	0 366
R Squared	1 000
No of Observations	42
Degrees of Freedom	40
Std Err of Y Est	11 707
Std Err of X Coef	0 001

CALIBRATION STANDARDS:

All data presented is derived from 6° dia. certified hydraulic pressure gauges and electronic load transducer, manufactured and calibrated by the University of Illinois at Champaign, Illinois. All calibrations and certifications are traceable through the Laboratory Master Deadweight Gauges directly to the National Institute of Standards and Technology. No Specific guidelines exist for calibration of load test jacks and equipment but procedures comply with similar guidelines for calibration of gauges. ANS1 specifications B40.1

*AE & FC CUSTOMER: LOADTEST INC "AE & FC JOB NO.: 2957

CUSTOMER P O NO : LT-8756

*CONTRACTOR: LONGFELLOW DRILLING
*JOB LOCATION: CLEARFIELD IA

*DATED: 03/04/02

SERVICE ENGINEER: Hall

DATE: 7 Mar 2002

担一は

48 Spencer St Lebanon N H 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

4450-3-6	_		Range:	6"
20689	_	•	Mfg Number:_	02-496
dtest Inc.	_		Temperature:	23.9 °C
n/a	_	Cal. Std. Con	itrol Numbers: 2	16, 124, 405, 524, 529
18442		Ca	libration Date:	February 20, 2002
	-	Technician	n: KOB	
· GK-	401 Reading Po	sition B		
	_		Change	% Linearity
	-	-		-0.25
		•	1255	0.11
				0 17
		7		0 13
				-0 01
8694	8693	8694	1224	-0.17
Calibratio	n Factor (C):_	0.0009733	_(Inches/ Digit	·)
Reg	ression Zero:_	2539		
Refer to manu	ıal for tempera	iture correcti	on information	"
Functic	on Test at Shipn	nent (GK-401	Reading)	
5529	_		Date:	March 15, 2002
	-		Temper	rature: 21.9
	Red and Black:	Gage	White:	and Green: Thermistor
	GK-4 Cycle 1 2525 3779 5016 6247 7470 8694 Calibration Regular Refer to manual	GK-401 Reading Po Cycle 1 Cycle 2 2525 2523 3779 3779 5016 5015 6247 6245 7470 7470 8694 8693 Calibration Factor (C): Regression Zero: Refer to manual for tempera Function Test at Shipm 5529	Cal Std Con 18442 Ca Technician	Addest Inc. Temperature:

This report shall not be reproduced except in full without written permission of Geokon Inc.

; =

48 Spencer St. Lebanon, N H 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

	_				
Model Number:	4450-3-6	on)		Range: _	6"
Serial Number:	20690	_		Mfg Number:	02-497
Customer: Loa	dtest Inc.			Temperature:	23.9 °C
Cust I.D. #:	n/a	-	Cal. Std. Con	· <u> </u>	16, 124, 405, 524, 529
Job Number:	18442	·			February 20, 2002
_		-	Techniciar	_	
Displacement		101 Reading Po			
(inches)	Cycle 1	Cycle 2	Average	Change	% Linearity
0.000	2498	2497	2498	u u	-0 21
1.200	3760	3760	3760	1263	0 14
2.400	5003	5002	5003્	1243	0 17
3.600	6226	6229	6228	1225	-0 09
4.800	7480	<i>3</i> 7483	7482	1254	0.12
6.000	8706	8705	8706	1224	-0 15
	Calibration	n Factor (C):_	0.0009671	_(Inches/ Digit)
	Regi	ression Zero:_	2510		
	Refer to manu	al for tempera	ture correcti	on information	
	Functio	n Test at Shipn	nent (GK-401	Reading)	
Position "B":	5556			Date:	March 15, 2002
OI"		-			
Position "F":		·		Temper	ature: 23.2

This report shall not be reproduced except in full without written permission of Geokon Inc.

48 Spencer St. Lebanon, N H. 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

Model Number:	4450-3-6			Range: _	6"
Serial Number:	20691	• .		Mfg Number:	02-498
Customer: Lo	adtest Inc.			Temperature:	23.9 °C
Cust ID #:	n/a		Cal Std Cor	ntrol Numbers: 2	216, 124, 405, 524, 529
Job Number:	18442		Ca	libration Date: _	February 20, 2002
			Technician	n KOB	
Displacement	GK-4	01 Reading Po	sition B		
(inches)	Cycle 1	Cycle 2	Average	Change	% Linearity
0 000	2570	2570	2570		-0.23
1.200	3825	3827	3826	1256	0 10
2 400	5066	5067	506न्	1241	0 18
3 600	6299	6300	6300	1233	0 13
4.800	7524	7 528	7526	1227	-0 01
6.000	8753	8752	8753	1227	-0 16
	Calibration	Factor (C):	0.0009712	_(Inches/ Digit	t)
	Regr	ession Zero:_	2584		
.,,	Refer to manua	al for tempera	iture correcti	on information	
	Function	n Test at Shipm	nent (GK-401	Reading)	
Position "B":	5546			Date: _	March 15, 2002
or Position "F":				Temper	rature: 21.9
Wiring Code:	D	ted and Black:	Gage	White	and Green: Thermistor

This report shall not be reproduced except in full without written permission of Geokon Inc.

Model Number: 4911-4

Calibration Date: August 27, 2001

Serial Number: 21376

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length:

80 ft.

Job Number: 17504

Factory Zero Reading: 6833

Cust ID #: n/a

Regression Zero: 6864

Prestress: 35,000

Technician: LLC

Temperature: 23.6

Applied Load: (pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6916	6909	⁷⁷ 6913		
1,500	7572	7562	7567	655	-0.04
3,000	8278	° & 267	8273	706	0.01
4,500	8985	8976	8981	708	0.14
6,000	9685	9674	9680	699	-0.04
100	6912				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor:

0.356 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 per cent The above instrument was found to be In Tolerance in all operating ranges The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc.

Model Number : 4911-4

Calibration Date: August 27, 2001

Serial Number: 21377

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 80 ft.

Job Number: 17504

Factory Zero Reading: 6872

Cust I.D. #: n/a

Regression Zero: 6889

Prestress: 35,000

Technician:

Temperature: 23.7

Applied Load: (pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6953	6949	**\6951		
1,500	7624	7619	7622	671	-0.34
3,000	8368	8363	8366	744	-030
4,500	9126	9120	9123	758	0.20
6,000	9865	9862	9864	741	0.13
100	6949			:	

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor:

0.343 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 per cent The above instrument was found to be In Tolerance in all operating ranges The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc

Model Number: 4911-4

Calibration Date: Febuary 5, 2002

Serial Number: 22915

1

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 50 ft.

Job Number: 18247

Factory Zero Reading: 7252

Regression Zero: 7255

Cust ID #: n/a

Prestress: 35,000

Technician: MCC

Temperature: 22.4

Applied Load:(pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7310	7307	₹*7309		
1,500	7983	7987	7985	677	-0.23
3,000	8727	. 8733	8730	745	0.05
4,500	9470	9470	9470	740	0.16
6,000	10203	10198	10201	731	-0.05
100	7308				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

0.344 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc

Model Number: 4911-4

Calibration Date: Febuary 5, 2002

Serial Number: 22916

Cal Std Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 50 ft.

Job Number: 18247

Factory Zero Reading: 6970

Cust I.D. #: n/a

Regression Zero: 6978

Prestress: 35,000 psi

Technician: MCC

Temperature: 22.2 °C

Applied Load:(pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7028	7026	7027	:	
1,500	7715	7713	7714	687	002
3,000	8448	°.8454	8451	737	008
4,500	9187	9186	9187	736	008
6,000	9919	9918	9919	732	-0.03
100	7030				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor:

0.345 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent
The above instrument was found to be In Tolerance in all operating ranges
The above named instrument has been calibrated by comparison with standards traceable to the NIST in compliance with ANSI Z540-1
This report shall not be reproduced except in full without written permission of Geokon Inc

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: 23046

Cal Std Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 90 ft.

Job Number: 18442

Factory Zero Reading: 6808

Cust. I D. #: _____n/a

Regression Zero: 6826

Prestress: 35,000 psi

Technician: KDB

Temperature: 23.3

	Linearity			
Cycle #1	Cycle #2	Average	Change	% Max.Load
6877	6875	6876		
7547	7551	7549	673	-0.16
8283	8290	8287	738	018
9015	9016	9016	729	0.23
9740	9724	9732	717	-0.15
6876				
	6877 7547 8283 9015 9740	Cycle #1 Cycle #2 6877 6875 7547 7551 8283 8290 9015 9016 9740 9724	6877 6875 6876 7547 7551 7549 8283 8290 8287 9015 9016 9016 9740 9724 9732	Cycle #1 Cycle #2 Average Change 6877 6875 6876 7547 7551 7549 673 8283 8290 8287 738 9015 9016 9016 729 9740 9724 9732 717

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

0.348 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: 23047

Cal. Std. Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 90 ft.

Job Number: 18442

Factory Zero Reading: 6791

Cust LD #: n/a

Regression Zero: 6805

Prestress: 35,000 psi

Technician:

Temperature: 23.5 °C

Applied Load:		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6857	6856	6857		
1,500	7544	7549	7547	690	-0.20
3,000	8306	³×8305	8306	759	0.18
4,500	9058	9053	9056	750	0.27
6,000	9791	9788	9790	734	-0.18
100	6857			1	

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

0.341 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc.

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: 23050

Cal. Std. Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 80 ft.

Job Number: 18442

Factory Zero Reading: 6955

Cust. I.D.. #: n/a

Regression Zero: 6985

Prestress: 35,000 psi

Temperature: 23.6

Applied Load:		Readings				
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load	
	-		146			
100	7040	7031	7036			
1,500	7739	7736	7738	702	-0.15	
3,000	8505	8498	8502	764	008	
4,500	9270	9268	9269	768	0.43	
6,000	10003	10005	10004	735	-0.29	
100	7032					
· · · · · · · · · · · · · · · · · · ·		10003	10004	7.55	-0.23	

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

Microstrain/Digit (GK-401 Pos. "B") 0.338

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traccable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc

Sister Bar Calibration Report

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: _____23051

Cal Std. Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 80 ft.

Job Number: 18442

Factory Zero Reading: 6978

Cust. I.D. #: n/a

Regression Zero: 7009

Prestress: 35,000 psi

Technician:

Temperature: 23.4

Applied Load:		Readin	gs		Linearity
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7065	7058	7062		
1,500	7750	7750	7750	689	-0.19
3,000	8509	\ 8 504	8507	757	0.13
4,500	9255	9259	9257	751	0.26
6,000	9996	9988	9992	735	-0.14
100	7058				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor:

Microstrain/Digit (GK-401 Pos "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-I

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: 23054

Cal Std Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 70 ft.

Job Number: 18442

Factory Zero Reading: 7146

Cust I.D. #: n/a

Regression Zero: 7153

Prestress: 35,000 psi

Technician: The

Temperature: 23.6

Applied Load:		Readin	gs		Linearity
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7206	7205	7206		
1,500	7893	7906	7900	694	-0.14
3,000	8648	8663	8656	756	003
4,500	9408	9409	9409	753	0.10
6,000	10155	10155	10155	747	-0.04
100	7209				
100	, 200				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

0.340 Microstrain/Digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1 This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number: 4911-4

Calibration Date: March 14, 2002

Serial Number: 23055

Cal. Std. Control Numbers: 85888-1, 25167

Customer: Loadtest Inc.

Cable Length: 70 ft.

Job Number: 18442

Factory Zero Reading: 7199

Cust I.D. #: n/a

Regression Zero: 7213

Prestress: 35,000 psi

Technician: TDB

Temperature: 23.6

Applied Load:		Reading	gs		Linearity
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7263	7263	7263		
1,500	7966	<u>;</u> 7959	7963	700	-0.16
3,000	8730	8724	8727	765	0.18
4,500	9485	9481	9483	756	0.23
6,000	10225	10223	10224	741	-0.21
100	7262				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor:

0.339 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX C

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE FROM THE RESULTS OF AN O-CELL™ TEST (August, 2000)

Introduction: Some engineers find it useful to see the results of an O-cell™ load test in the form of a curve showing the load versus settlement of a top-loaded driven or bored pile (drilled shaft). We believe that an O-cell™ test can provide a good estimate of this curve when using the method described herein

Assumptions: We make the following assumptions, which we consider both reasonable and usually conservative:

- 1. The end bearing load-movement curve in a top-loaded shaft has the same loads for a given movement as the net (subtract buoyant weight of pile above O-cell™) end bearing load-movement curve developed by the bottom of the O-cell™ when placed at or near the bottom of the shaft.
- 2. The side shear load-movement curve in a top-loaded shaft has the same net shear, multiplied by an adjustment factor 'F', for a given downward movement as occurred in the O-cell™ test for that same movement at the top of the cell in the upward direction. The same applies to the upward movement in a top-loaded tension test. Unless noted otherwise, we use the following adjustment factors:

 (a) F = 1.00 in all rock sockets and for primarily cohesive soils in compression

(b) F = 0.95 in primarily cohesionless soils

- (c) F = 0.80 for all soils in top load tension tests
- 3. We initially assume the pile behaves as a rigid body, but include the elastic compressions that are part of the movement data obtained from an O-cell™ test (OLT). Using this assumption, we construct an equivalent top-load test (TLT) movement curve by the method described below in Procedure Part I. We then use the following Procedure Part II to correct for the effects of the additional elastic compressions in a TLT.
- 4. Consider the case with the O-cell™, or the bottom O-cell™ of more than one level of cells, placed some distance above the bottom of the shaft. We assume the part of the shaft below the cell, now top-loaded, has the same load-movement behavior as when top-loading the entire shaft. For this case the subsequent "end bearing movement curve" refers to the movement of the entire length of shaft below the cell.

<u>Procedure Part I</u>: Please refer to the attached <u>Figure A</u> showing O-cell™ test results and to <u>Figure B</u>, the constructed equivalent top loaded settlement curve. Note that each of the curves shown has points numbered from 1 to 12 such that the same point number on each curve has the same magnitude of movement. For example, point 4 has an upward and downward movement of 0.40 inches in <u>Figure A</u> and the same 0.40 inches downward in <u>Figure B</u>

Note: This report shows the O-cell movement data in a Figure similar to Fig. A, but uses the gross loads as obtained in the field. Fig. A uses net loads to make it easier for the reader to convert Fig. A into Fig. B without the complication of first converting gross to net loads. For our conservative reconstruction of the top loaded settlement curve we first convert both of the O-cell components to net load.

Using the above assumptions, construct the equivalent curve as follows: Select an arbitrary movement such as the 0.40 inches to give point 4 on the shaft side shear load movement curve in Figure A and record the 2,090 ton load in shear at that movement. Because we have initially assumed a rigid pile, the top of pile moves downward the same as the bottom. Therefore, find point 4 with 0.40 inches of upward movement on the end bearing load movement curve and record the corresponding load of 1,060 tons. Adding these two loads will give the total load of 3,150 tons due to side shear plus end bearing at the same movement and thus gives point 4 on the Figure B load settlement curve for an equivalent top-loaded test.

One can use the above procedure to obtain all the points in <u>Figure B</u> up to the component that moved the least at the end of the test, in this case point 5 in side shear. To take advantage of the fact that the test produced end bearing movement data up to point 12, we need to make an extrapolation of the side shear curve. We usually use a convenient and suitable hyperbolic curve fitting technique for this extrapolation. Deciding on the maximum number of data points to provide a good fit (a high r^2 correlation coefficient) requires some judgment. In this case we omitted point 1 to give an $r^2 = 0.999$ (including point 1 gave an $r^2 = 0.966$) with the result shown as points 6 to 12 on the dotted extension of the measured side shear curve. Using the same movement matching procedure described earlier we can then extend the equivalent curve to points 6 to 12. The results, shown in <u>Figure B</u> as a dashed line, signify that this part of the equivalent curve depends partly on extrapolated data.

Sometimes, if the data warrants, we will use extrapolations of both side shear and end bearing to extend the equivalent curve to a greater movement than the maximum measured (point 12). An appendix in this report gives the details of the extrapolation(s) used with the present O-cell™ test and shows the fit with the actual data

Procedure Part II: The elastic compression in the equivalent top load test always exceeds that in the O-cellTM test. It not only produces more top movement, but also additional side shear movement, which then generates more side shear, which produces more compression, etc. An exact solution of this load transfer problem requires knowing the side shear vs. vertical movement (t-y) curves for a large number of pile length increments and solving the resulting set of simultaneous equations or using finite element or finite difference simulations to obtain an approximate solution for these equations. We usually do not have the data to obtain the many accurate t-y curves required. Fortunately, the approximate solution described below usually suffices.

The attached analysis p. 6 gives the equations for the elastic compressions that occur in the OLT with one or two levels of O-cells Analysis p. 7 gives the equations for the elastic compressions that occur in the equivalent TLT. Both sets of equations do not include the elastic compression below the O-cell because the same compression takes place in both the OLT and the TLT. This is equivalent to taking $l_3=0$. Subtracting the OLT from the TLT compression gives the desired additional elastic compression at the top of the TLT. We then add the additional elastic compression to the 'rigid' equivalent curve obtained from Part I to obtain the final, corrected equivalent load-settlement curve for the TLT on the same pile as the actual OLT.

Note that the above pp. 6 and 7 give equations for each of three assumed patterns of developed side shear stress along the pile. The pattern shown in the center of the three applies to any approximately determined side shear distribution. Experience has

shown the initial solution for the additional elastic compression, as described above, gives an adequate and slightly conservative (high) estimate of the additional compression versus more sophisticated load-transfer analyses as described in the first paragraph of this Part II.

The analysis p. 8 provides an example of calculated results in English units on a hypothetical 1-stage, single level OLT using the simplified method in Part II with the centroid of the side shear distribution 44.1% above the base of the O-cell Figure C compares the corrected with the rigid curve of Figure B. Page 9 contains an example equivalent to that above in SI units.

The final analysis p. 10 provides an example of calculated results in English units on a hypothetical 3-stage, multi level OLT using the simplified method in Part II with the centroid of the combined upper and middle side shear distribution 44.1% above the base of the bottom O-cell™. The individual centroids of the upper and middle side shear distributions lie 39.6% and 57.9% above and below the middle O-cell™, respectively Figure E compares the corrected with the rigid curve. Page 11 contains an example equivalent to that above in SI units.

Other Tests: The example illustrated in <u>Figure A</u> has the maximum component movement in end bearing. The procedures remain the same if the maximum test movement occurred in side shear. Then we would have extrapolated end bearing to produce the dashed-line part of the reconstructed top-load settlement curve.

The example illustrated also assumes a pile top-loaded in compression. For a pile top-loaded in tension we would, based on Assumptions 2, and 3,, use the upward side shear load curve in Figure A, multiplied by the F=0.80 noted in Assumption 2,, for the equivalent top-loaded displacement curve.

Expected Accuracy: We know of only five series of tests that provide the data needed to make a direct comparison between actual, full scale, top-loaded pile movement behavior and the equivalent behavior obtained from an O-cell™ test by the method described herein. These involve three sites in Japan and one in Singapore, in a variety of soils, with three compression tests on bored piles (drilled shafts), one compression test on a driven pile and one tension test on a bored pile. The largest bored pile had a 1.2 m diameter and a 37 m length. The driven pile had a 1-m increment modular construction and a 9 m length. The largest top loading = 28 MN (3,150 tons).

The following references detail the aforementioned Japanese tests and the results therefrom:

Kishida H. et al., 1992, 'Pile Loading Tests at Osaka Amenity Park Project, Paper by Mitsubishi Co., also briefly described in Schmertmann (1993, see bibliography) Compares one drilled shaft in tension and another in compression

Ogura, H. et al. 1995. 'Application of Pile Toe Load Test to Cast-in-place Concrete Pile and Precast Pile, special volume Tsuchi-to-Kiso on Pile Loading Test, Japanese Geotechnical Society Vol. 3, No. 5 Ser No. 448. Original in Japanese Translated by M. B. Karkee, GEOTOP Corporation. Compares one drilled shaft and one driven pile both in compression.

We compared the predicted equivalent and measured top load at three top movements in each of the above four Japanese comparisons. The top movements ranged from ½ inch (6 mm) to 40 mm, depending on the data available. The (equiv./meas.) ratios of the top load averaged 1.03 in the 15 comparisons with a coefficient of variation of less than 10%. We believe that these available comparisons help support the practical validity of the equivalent top load method described herein:

- L. S. Peng, A. M. Koon, R. Page and C. W. Lee report the results of a class-A prediction by others of the TLT curve from an Osterberg cell test on a 12 m diameter, 37.2 m long bored pile in Singapore, compared to an adjacent pile with the same dimensions actually top-loaded by kentledge. They report about a 4% difference in ultimate capacity and less than 8% difference in settlements over the 1.0 to 1.5 times working load range comparable to the accuracy noted above. Their paper has the litle "OSTERBERG CELL TESTING OF PILES", and was published in March 1999 in the Proceedings of the International Conference on Rail Transit, held in Singapore and published by the Association of Consulting Engineers Singapore.
- B. H. Fellenius has made several finite element method (FEM) studies of an OLT in which he adjusted the parameters to produce good load-deflection matches with the OLT up and down load-deflection curves. He then used the same parameters to predict the TLT deflection curve. We compared the FEM-predicted curve with the equivalent load-deflection predicted by the previously described Part I and II procedures, with the results again comparable to the accuracy noted above. The ASCE has published a paper by Fellenius et. al. titled "O-Cell Testing and FE Analysis of 28-m-Deep Barrette in Manila, Philippines" in the Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 7, July 1999, p 566. It details one of his comparison studies.

Limitations: The engineer using these results should judge the conservatism, or lack thereof, of the aforementioned assumptions and extrapolation(s) before utilizing the results for design purposes. For example, brittle failure behavior may produce movement curves with abrupt changes in curvature (not hyperbolic). However, we believe the hyperbolic fit method and our assumptions used usually produce reasonable equivalent top load settlement curves.

August, 2000

Theoretical Elastic Compression in O-cell™ Test Based on Pattern of Developed Side Shear Stress

1-Stage Single Level Test (Q $_{\rm A}$ only): $\delta_{\rm OLT} = \delta_{\uparrow(\iota_1+\iota_2)}$

$C_1 = \frac{1}{3}$	Centroid Factor = C ₁	$C_1 = \frac{1}{2}$
$\delta_{\uparrow(\ell_1+\ell_2)} = \frac{1}{3} \frac{Q^{\prime}_{\uparrow A}(\ell_1+\ell_2)}{AE}$	$\delta_{\tau_{(\ell_1+\ell_2)}} = C_1 \frac{Q_{\tau_A}(\ell_1+\ell_2)}{AE}$	$\delta_{\uparrow(\ell_1+\ell_2)} = \frac{1}{2} \frac{Q_{\uparrow_A}(\ell_1+\ell_2)}{AE}$

3-Stage Multi Level Test (Q'_A and Q'_B): $\delta_{\text{OLT}} = \delta_{\tau_{\ell_1}} + \delta_{t_{\ell_2}}$

$C_3 = \frac{1}{3}$	Centroid Factor = C ₃	$C_3 = \frac{1}{2}$
$\delta_{\uparrow \iota_i} = \frac{1}{3} \frac{\Omega_{\uparrow B} \ell_i}{AE}$	$\delta_{\uparrow \ell_1} = C_3 \frac{Q_{\uparrow 8} \ell_1}{AE}$	$\delta_{1i_1} = \frac{1}{3} \frac{\Omega_{1b} l_1}{AE}$
$C_2 = \frac{1}{3} \left(\frac{3\ell_1 + 2\ell_2}{2\ell_1 + \ell_2} \right)$	Centroid Factor = C₂	$C_2 = \frac{1}{2}$
$\delta_{1t_2} = \frac{1}{3} \left(\frac{3\ell_1 + 2\ell_2}{2\ell_1 + \ell_2} \right) \frac{Q'_{18}\ell_2}{AE}$	$\delta_{\downarrow \ell_2} = C_2 \frac{Q_{1B}^{\prime} \ell_2}{AE}$	$\delta_{\mathfrak{t}\ell_2} = \frac{1}{2} \frac{Q_{LB} \ell_2}{AE}$

Net Loads:

$$Q_{TA} = Q_{TA} - W_{\ell_0 + \ell_1 + \ell_2}$$

$$Q_{1B} = Q_{1B} - W_{10+11}$$

$$Q_{18} = Q_{18} + w_{t_2}$$

w = pile weight bouyant where below water table

Theoretical Elastic Compression in Top Loaded Test Based on Pattern of Developed Side Shear Stress

Top Loaded Test: $\delta_{\gamma \downarrow \gamma} = \delta_{\downarrow \ell_0} + \delta_{\downarrow \ell_1 + \ell_2}$

$\delta_{\text{Li}_0} = \frac{\text{Pl}_0}{\text{AE}}$	$\delta_{1\ell_0} = \frac{P\ell_0}{AE}$	$\delta_{\text{L}_0} = \frac{\text{P}\ell_0}{\text{AE}}$
$C_1 = \frac{1}{3}$	Centroid Factor = C,	$C_1 = \frac{1}{2}$
$\delta_{\downarrow \ell_1 + \ell_2} = \frac{(Q_{\downarrow A} + 2P)}{3} \frac{(\ell_2 + \ell_2)}{AE}$	$\delta_{\perp \ell_1 + \ell_2} = \left[(C_1)Q_{\perp A} + (1 - C_1)P \right] \frac{(\ell_1 + \ell_2)}{AE}$	$\delta_{1\ell_1+\ell_2} = \frac{(Q^{\circ}_{1A} + P)}{2} \frac{(\ell_1 + \ell_2)}{AE}$

Net and Equivalent Loads:

$$Q_{LA}^{\dagger} = Q_{LA}^{\dagger} - W_{\ell_0 + \ell_1 + \ell_2}^{\dagger}$$

$$P_{\text{single}} = Q'_{\downarrow A} + Q_{\uparrow A}$$

$$P_{\text{multi}} = Q_{1A} + Q_{1B} + Q_{1B}$$

Component loads Q selected at the same (\pm) Δ_{OLT}

32

Example Calcuation for the Additional Elastic Compression Correction for Single Level Test (English Units)

Given:

 $C_1 = 0.441$

AE = 3820000 kips (assumed constant throughout test)

 $4_0 = 5.9$ ft

4 = 48.2 ft (embedded length of shaft above O-cellTM)

 $t_2 = 0.0$ ft

= 00 ft

Shear reduction factor = 1 00 (cohesive soil)

Δ_{OLT} (in)	Q' _{IA} (kips)	Q' _{TA} (kips)	P (kips)	δ _{τιτ} (in)	δ _{OLT} (in)	Δ _δ (in)	$\Delta_{OLT} + \Delta_{\delta}$ (in)
0.000	0	Ö	o	0.000	0.000	0.000	0.000
0.100	352	706	1058	0.133	0.047	0.086	0.186
0.200	635	1445	2080	0.257	0.096	0.160	0.360
0.300	867	1858	2725	0.339	0.124	0.215	0.515
0.400	1061	2088	3149	0.396	0.139	0.256	0.656
0.600	1367	2382	3749	0.478	0.159	0.319	0.919
0.800	1597	2563	4160	0.536	0.171	0.365	1.165
1.000	1777	2685	4462	0.579	0.179	0.400	1,400
1.200	1921	2773	4694	0.613	0.185	0.427	1.627
1.500	2091	2867	4958	0.651	0.191	0.460	1,960
1.800	2221	2933	5155	0.680	0.196	0.484	2.284
2.100	2325	2983	5308	0.703	0.199	0.504	2.604
2.500	2434	3032 *	5466	0.726	0.202	0.524	3.024

Example Calcuation for the Additional Elastic Compression Correction for Single Level Test (SI Units)

Given: $C_1 =$

AE = 17000 MN (assumed constant throughout test)

 $L_0 = 180 \text{ m}$

0 441

 $\ell_1 = 14.69$ m (embedded length of shaft above O-cellTM)

 $\ell_2 = 0.00 \text{ r}$

 $\ell_3 = 0.00 \, \text{m}$

Shear reduction factor = 1.00 (cohesive soil)

∆ _{OLT} (mm)	Q' _{JA}	Q' _{TA} (MN)	P (MN)	δ _{τĿτ} (mm)	δ _{οιτ} (mm)	Δ _δ	$\Delta_{OLT} + \Delta_{\delta}$ (mm)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	3.14	4.71	3.37	1.20	2.17	4.71
5.08	2.82	6.43	9.25	6.52	2.45	4.07	9.15
7.62	3.86	8.27	12.12	8.61	3.15	5.46	13.08
10.16	4.72	9.29	14.01	10.05	3.54	6.51	16.67
15.24	6.08	10.60	16.68	12.14	4,04	8.10	23.34
20.32	7.11	11.40	18.50	13.60	4.34	9.26	29.58
25.40	7.90	11.94	19.85	14.70	4.55	10.15	35.55
30.48	8.55	12.33	20.88	15.55	4.70	10.85	41.33
38.10	9.30	12.75	22.05	16.53	4.86	11.67	49.77
45.72	9.88	13.05	22.93	17.27	4,97	12.29	58.01
53.34	10.34	13.27	- 23.61	17.84	5.06	12.79	66.13
63.50	10.83	13.48	24.31	18.44	5.14	13.30	76.80

Example Calcuation for the Additional Elastic Compression Correction for Multi Level Test (English Units)

Given:

 $C_1 = 0.441$

 $C_2 = 0.579$

 $C_3 = 0.396$

AE = 3820000 kips (assumed constant throughout test)

 $t_0 = 5.9$ ft

 $L_1 = 30.0$

ft (embedded length of shaft above mid-cell) ft (embedded length of shaft between O-cells™)

 $l_2 = 18.2$

 $\ell_3 = 0.0$ f

Shear reduction factor = 1 00 (cohesive soil)

Δ _{οιτ} (in)	Q' _{ţA} (kips)	Q' _{ls} (kips)	Q' _{↑B} (kips)	P (kips)	δ _{τιτ} (in)	δ _{OLT} (in)	Δ _δ (in)	$\Delta_{OLT} + \Delta_{\delta}$ (in)
0.000	0	0	ol	0	0.000	0.000	0.000	0.000
0.100	352	247	459	1058	0.133	0.025	0.107	
0.200	635	506	939	2080	0.257	0.052	0.205	0.207 0.405
0.300	867	650	1208	2725	0.339	0.052	0.272	
0.400	1061	731	1357	3149	0.396	0.075	0.321	0.572 0.721
0.600	1367	834	1548	3749	0.478	0.075	0.321	0.721
0.800	1597	897	1666	4160	0.536	0.092	0.444	1.244
1.000	1777	940	1745	4462	0.579	0.096	0.483	
1.200	1921	971	1802	4694	0.613	0.099	0.513	1.483 1.713
1.500	2091	1003	1864	4958		0.103	0.548	2.048
1.800	2221	1027	1907	5155	0.680	0.105	0.575	2.375
2.100	2325	1044	1939	5308	0.703	0.107	0.596	
2.500	2434	1061	1971	5466	0.726	0.107	0.598	2.696 3.118

Example Calcuation for the Additional Elastic Compression Correction for Multi Level Test (SI Units)

Given:

 $C_1 = 0.441$

 $C_2 = 0.579$

 $C_3 = 0.396$

AE = 17000 MN (assumed constant throughout test)

 $4_0 = 1.80 \text{ m}$

 $\ell_1 = 9.14$ m (embedded length of shaft above mid-cell)

(₂ = 5.55 m (embedded length of shaft between O-cells™)

 $\ell_3 = 0.00$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q' _{JA} (kips)	Q' _{Js} (kips)	Q' _{Te} (kips)	P (kips)	δ _{τιτ} (in)	δ _{OLT} (in)	Δ _δ (in)	$\Delta_{OLT} + \Delta_{\delta}$
0.00	0.00	0.00	0.00	0.00	0.00	0.00		(in)
2.54	1.57	1.10	2.04	4.71	3.37		0.00	0.00
5.08	2.82	2.25	4.18	9.25		0.64	2.73	5.27
7.62	3.86	2.89	5.37		6.52	1.31	5.21	10.29
10.16	4.72	3.25		12.12	8.61	1.69	6.92	14.54
15.24	6.08	···	6.04	14.01	10.05	1.90	8.15	18.31
20.32		3,71	6.89	16.68	12.14	2.17	9.97	25.21
	7.11	3.99	7.41	18.50	13.60	2.33	11.27	31.59
25.40	7.90	4.18	7.76	19.85	14.70	2.44	12.26	37.66
30.48	8.55	4.32	8.02	20.88	15.55	2.52	13.03	43.51
38.10	9.30	4.46	8.29	22.05 7	16.53	2.61	13.92	52.02
45.72	9.88	4.57	8.48	22.93	17.27	2.67	14.60	
53.34	10.34	4.64	8.62	23.61	17.84	2.71	15.13	60.32
63.50	10.83	4.72	*, 8.76	24.31	18.44	2.76	15.68	68.47 79.18

1

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX D

O-CELL™ METHOD FOR DETERMINING CREEP LIMIT LOADING

O-CELL METHOD FOR DETERMINING A CREEP LIMIT LOADING ON THE EQUIVALENT TOP-LOADED SHAFT

Background: O-cell testing provides a sometimes useful method for evaluating that load beyond which a top-loaded drilled shaft might experience significant unwanted creep behavior. We refer to this load as the "creep limit," also sometimes known as the "yield limit" or "yield load".

To our knowledge, Housel (1959) first proposed the method described below for determining the creep limit. Stoll (1961), Bourges and Levillian (1988), and Fellenius (1996) provide additional references. This method also follows from long experience with the pressuremeter test (PMT). Figure 8 and section 9.4 from ASTM D4719, reproduced below, show and describe the creep curve routinely determined from the PMT. The creep curve shows how the movement or strain obtained over a fixed time interval, 30 to 60 seconds, changes versus the applied pressure. One can often detect a distinct break in the curve at the pressure P_e in Figure 8. Plastic deformations become significant beyond this break loading and progressively more severe creep can occur.

<u>Definition</u>: Similarly with O-cell testing using the ASTM Quick Method, one can conveniently measure the additional movement occurring over the final time interval at each constant load step, typically 2 to 4 minutes. A break in the curve of load vs. movement (as at P_e with the PMT) indicates the creep limit.

We usually indicate such a creep limit in the O-cell test for either one, or both, of the side shear and end bearing components, and herein designate the corresponding movements as M_{CL1} and M_{CL2} . We then combine the creep limit data to predict a creep limit load for the equivalent top loaded shaft.

<u>Procedure if both M_{CL1} and M_{CL2} available:</u> Creep cannot begin until the shaft movement exceeds the M_{CL} values. A conservative approach would assume that creep begins when movements exceed the lesser of the M_{CL} values. However, creep can occur freely only when the shaft has moved the greater of the two M_{CL} values. Although less conservative, we believe the latter to match behavior better and therefore set the creep limit as that load on the equivalent top-loaded movement curve that matches the greater M_{CL} .

<u>Procedure if only M_{CL1} available:</u> If we cannot determine a creep limit in the second component before it reaches its maximum movement M_x , we treat M_x as M_{CL2} . From the above method one can say that the creep limit load exceeds, by some unknown amount, that obtained when using $M_{CL2} = M_x$.

<u>Procedure if no creep limit observed</u>: Then, according to the above, the creep limit for the equivalent top-loaded shaft will exceed, again by some unknown amount, that load on the equivalent curve that matches the movement of the component with the maximum movement.

<u>Limitations</u>: The accuracy in estimating creep limits depends, in part, on the scatter of the data in the creep limit plots. The more scatter, the more difficult to define a limit. The user should make his or her own interpretation if he or she intends to make important use of the creep limit interpretations. Sometimes we obtain excessive scatter of the data and do not attempt an interpretation for a creep limit and will indicate this in the report.

Excerpts from ASTM D4719 "Standard Test Method for Pressuremeter Testing in Soils"

9.4 For Procedure A, plot the volume increase readings (V_{60}) between the 30 s and 60 s reading on a separate graph. Generally, a part of the same graph is used, see Fig. 8. For Procedure B, plot the pressure decrease reading between the 30 s and 60 s reading on a separate graph. The test curve shows an almost straight line section within the range of either low volume increase readings (V_{60}) for Procedure A or low pressure decrease for Procedure B. In this range, a constant soil deformation modulus can be measured. Past the so-called creep pressure, plastic deformations become prevalent.

FIG. 8 Pressuremeter Test Curves for Procedure A

References

Housel, W.S. (1959), "Dynamic & Static Resistance of Coshesive Soils" 1846-1959, <u>ASTM STP 254</u>, pp. 22-23 Stoll, M U.W. (1961, Discussion, Proc. 3rd ICSMFE, Paris, Vol. III, pp. 279-281

Bourges F. and Levillian J-P (1988) force portante des rideaux plans metalliques charges verticalmement Bull No. 158 Nov -Dec., des laboratoires des ponts et chaussees p 24

Fellenius Bengt H (1966). Basics of Foundation Design. BiTech Publishers Ltd. p.79

<u>APPENDIX E</u>

SOIL BORING LOGS

· ·	norma :	Santa vene Inc.	de estima de la	70.00		BORING I	_OG No. TB-:	3					· · · · · · · · · · · · · · · · · · ·
A Section		I, minimum o			ORING	20, 31, 21, 32,	ZAMO DATUM SIN	有力 对于特殊	DRILLER	- 100 A 21	Charles Str.	LOGGER	774
	TB-3			edian at 28		272.5m) I-235		DAH			MTI	
Tigan anî d	LEGAL AME	WA I	EKLEVE	L OBSERV	/ATIONS	II managani da anaka managan m	TYPE C	ESURFAC	E点数物源	05	al see	DRILLERI	Service Mark
YVH V		ND UF		24 HOUR	(SECTION)		3 1	Grass				P-57	
	ING S D		*CHARAI	TER DRIL	LING	27 K92H EHH	DRIEU	NG METHO	D. Selver	- A-46	SAME TO	TAL DEP	THERM
9.45		NA .					0m to 16.38m 83mm HSA	16.38m to	19,89m NQ	2 Core	· · · · · · · · · · · · · · · · · · ·	19,89m	100 - 100 Miles
游戏		AMPLE DA					DESCRIPTION				BORATOR		120-10-12
W.E.		DEN			2000年	COLOR MOISTUR	ECONSISTENCY AND SE		A	10-10-3	ORY:		
	NO &	30 CM	REC				N&OTHER REMARKS		CLASS	MC	DENS	kg/cm	
Service Service	Activities of the Activity	SE VILLE SUR	ONLY SECTIONS	* (* * * * * * * * * * * * * * * * * *	1 Dark brow	n and brown mixed	Dame to Moiet	5-53-60 CA-C	127 (S) 87 (S)	2000	kg/m3	* kg/cm	1 2 2
				1///	FIRM GLA	CIAL CLAY	Damp to Moist			1			T
		1		1///	1								i
	S-1	22			1								ļ
		-			1					17.2			-
2.2		1	F	Y///	Ì]	1		1
		_	1	Y///	1					1	İ		2.2
- 1	S-2	8	1	Y///	1					179			-
					1		•			l '' •			1
	ı				1							1.	
4,4		┨ _		Y///	1							1	1
-,	S-3	7		1///	1			:		24 0			4.4
l					Dark nrav	below 4.9m							
					gruy	weight 1,988						1	1
7	S-4	9					•						
ŀ	· · · · ·	1		1///					CL	25 7	1		1
6,6		1		1///									6.6
Į		[•								1 9.9
t	S-5	11									ł	}	
	·····	1				· ·	•			27.7			<u>L</u>
]		1	1	Y//		•]		
8.8				1///								•	
-3.3	S-6	14					•			26.9		į	8.8
Ţ]									•		
		ŀ	1				***		- 1				
		-	1				,,		. [
L	S-7	14	1	1///		٠.				22.2			1
11	•		1			Au.			- 1				11
		ŀ	1						- 1				
H	S-8	11							ľ				ĺ
	3-0	1 ''		KIKI	Dark gray,	Moist		11 9		38.3			
ŀ			ļ	IWIW	FIRM SILT	Y CLAY			- CI 141				1
13.2		[וואוו			•	j	CL-ML				1
	S-9	33		KILL	Dark see.	and fights again. N. C.		13 4					13.2
-	J-3	"		1///	CLAY SHA	and light gray, Moist LE BEDROCK		13.4		20.5			1
					VUN: SFIM	CC DEDITOOK			1	ĺ			
ĺ				K///				1	-				
<u>. </u>	S-10	40	-		Black and g	gray below 14.8m			ĺ	14.7	}		1
15.4		j		KXX				į		14.7	-		15.4
1			}	K//				ŀ	İ				
Ļ				KXX				1	}	į	}		1
——[·	\$-11 NO	50	39	K//X	NQ Core Ri	un 1 REC=39 RQD	=0 39]	21.7	2025	4 =:	
 			1	// /X		un 2 REC=100 RQ			}	0.6	2800	271.3]
17.6			1	1///					}				1
	NQ		100							12.7	1556	85 9	17.6
				N/V				İ		123	1946	16 2	1
			1		NQ Core Ru	un 3 REC=97 RQD	=0 7		1		1.5	4	}
	N/A			KXXXI					1	129	2044	4	
Ì	NQ		97	K/XX				1	1	129	2011	11 9	l
19.8			<u> </u>	\mathbb{K}/\mathbb{K}		BEDR	оск			1	-		19.8
					·····	Bottom of Bori		19 9					
}				ł				1	ļ				
—	1		1					1	į		1		L.
	.			l				1	Ì]	1		
<u>,,</u>							•	1					
22								1	- 1				22
		- 1	1				FOT: DOW OF 1	207 7 :					L
7			Pant.	.nh=i-	i	PROJ	ECT: 28th St - I-	235 Brid	ge				
		_	I-MILL	# 1 * 1 E FE S FE	-21								

LOCATION: 1-235 and 28th St, West Des Moines, IA

JOB NO.: 006079 DATE: 9/15/00

82.9 " X 9.0 " PRETENSIONED PRESTRESSED CONCRETE BEAM BRIDGE WITH 1.8 " STORE WALK STORE PROFILE PROFILE PROFILE PROFILE PROFILE POLK COUNTY

BY DEATHER THAN 2255, SCIENCE 225, SCIENCE 2 LAYER-HO MOVS THE PRETT IS INCLUDED TO SHEV SALLIS AND MITES SHOWN DESPMENT IN THESE PLANS SHALL BE USED FOR STRACTIBE CONSTRUCTION. 6.70 12.1 12.5 1946 2011 LOCATION
28th St. pvcx 1-235
17 H R ES V
17 H R ES V
VAVA TONSEP
PLX COMP.
18 FEC COMP. 12-11 FOR TH-11 16.1-16.45 150 12.7 12.7 13.8 ACCOUNTS 15 1 1 CONTROL OF THE PERSON CONTRO MOJET MINOR GOOMBYATER LEVE SACINETARY SACIONE 4435 POLK COUNTY F. STA 434-15 ESS WE WELLESSIN 1 28th ST. 4,63,83,0 NOTE SOUTH STATE OF THE SOUTH ST < The state of the s 34 H. 117 (131-11-) ST. CAY 38 ETAGO H. N. USTIG %;× 8 23 ŝ

Print III

1

The state of the s

1

% ≥ 4344 53. Om PAREK. NO. Z-235 FM-235-PROJECT CONTROL NO. 700 CONTROL SECTION Conc. 161K ₹ 9 ONIEF OF PARTY BRIDGE OVER: AT STATION DESIGN NO. TOWNSHIP **ELEVATION** ELEVATION SECTION PROJECT FILE NO. COUNTY. RANGE PAGE. 2111 PRICTION CAND No. BRIDGES & STRUCTURES TO BE CODEO 굺 5 5 5 MOTEL DUES CLAS WITH APOOR GUALITY OR RELIORIE SEAN CR 551179 612 1STATE WITH PCCI DCC HARD DESCRIPTION OF MATERIAL GOLLL WER DAD GA SILLIY SITTER ITO INTRO OGG BOULDERS! 106 OF HOLE ACTAL GLAY 6:806 SHALE WITH MARD SHALE lowa Department of Transportation 1/2 Š SISTALE ろってた STAFF EAMS ASTIFE SOFT TTOM Report of Bridge Soundings Office of Design (Solls) 8 TO Meters 1034 WATER Meters DEPTH 222,500 SURFACE Elevation E DROINATE TSIG 5 ವ ಷ್ಣ STATION LOCOLOTION STATE ă TEST KOLE Kumber P-1341 よれる -7 em 610010 7-94 METRIC

CARO NUMBER BY COMPUTER. RUN PROGRAM # 224012. TO BE CODED BY BRIDGES & STRUCTURES 20 CHGE, CODE 80-CONTROL CARD FOR SOILS PLOTTING ₹ 88 PHONE: DESIGN No.

TYPE AND SIZE OF BRIDGE: 82.Pm X 9.0m F 2-13-7 ROUTE NO. Z-235 0 T 10 25 S アバイ 4 いた 1.83

STREAM BED FTG.

1

ľ

7

I

T.

Ä

2

ó Form \$10010 7-94 METRIC

Report of Bridge Soundings Office of Design (Soils) Project Development

CARD **8**6 CHGE, CODE 80-PHONE: 101 DESIGN No. PROJECT CONTROL NO. CONTROL Section

BY COMPUTER. RUN PROGRAM # 224012. TO BE CODED BY BRIDGES & STRUCTURES

STRUCTURES

BRIDGES &

10 BE CODED ä CARD No.

5 5 5

BR SIZIT

8

CONTROL CARD FOR SOILS PLOTTING

1

COUNTY 28 14 TOWNSHIP 28 14 RANGE 25 W DEST RECTION 4 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 PROJECT IM-235-2(275)2-13-77 AT STATION IM-235-35-16-16-16-16-16-16-16-16-16-16-16-16-16-
--

CHIEF OF PARTY

90

PAGE.

1370 EPOOR GUALITY OR REMORKED Cメタゲ ド・ Sアスアバ C OCC HARA SEAM WATH OCC. COAK 820 BSTILE TO STRM GRI OR STRI 11/2005/11588 GR SIGNY GLAS GLACIAL CLAY 11111111 12600 FIRM SILTH BLACTAL CLASS DESCRIPTION OF MATERIAL LAS MIXED ALLA Fren tos of Role SHAKELLILL 1680FSHALE WITH HARD SHALK 4 GLACIAN lowa Department of Transportation KOPSTIES IN 120万 TO METERS WAYSHI WATER METERS DEPTH 272,500 SURFACE Eleyation G ORDINATE DIST ¤ ಶ ≒ 43,415,9 STATION DATE UPIZIOZIOZ چ -3414 IFRIN TEST KOLE Number

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX F

REFERENCE BEAM MONITORING

Appendix F

LOADTEST, Inc. Project No. LT-8756-2

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX G

NET UNIT SHEAR CURVES AND UNIT END BEARING CURVE

Appendix G

LOADTEST, Inc. Project No. LT-8756-2

20

1

Appendix G

LOADTEST, Inc. Project No. LT-8756-2

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX H

HYPERBOLIC CURVE FITTING

ä

The state of

LOADTEST, Inc. Project No. LT-8756-2

Table H-1: Hyperbolic Curve Fit of Downward Base of O-cell™ Movement

Gross Load	Down*	Y _d *	Y _{d calc}	Gross Load _{calc}
(MN)	(mm)	(mm/MN)	(mm/MN)	(MN)
0.00	0 00	-	÷	-
0.86	-0 28	-0.326	-0.462	0.61
1.68	-0.22	-0.129	-0.459	0.47
2.49	-0.94	-0.379	-0.500	1.89
3.31	-1 64	-0 497	-0 540	3 04
4.12	-2.28	-0 553	-0.576	3.96
4 94	-3.10	-0.628	-0 623	4.98
5.75	-3.82	-0.664	-0 664	5.75
6.57	4.68	-0.713	-0 713	6.57
	Control Charles Control Management of State Control Co	The free would not the first of		
		*		
	i .			
	·			
			•	
			31	
			; ;; ;	
1				!
1		n.		
	•			
	}		r.	
	ł			
	[1		
		}		
	•			
	ļ			
	•			
			"	

^{*} Values in bold are used in the curve fit.

Appendix H

SUMMARY OUTPUT

Regression Statistics								
Multiple R 1 R Square 1								
R Square	1							
Adjusted R S	65535							
Standard Erro	0							
Observations	2							

ANOVA

	df	SS	MS	F	Significance F		
Regression	1	0 001205833	0 001205833		0 #NUM!		
Residual	0	7 51883E-31	65535				
Total	1	0,001205833		_	·		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.44642573	0	65535	#NUM!	-0 44642573	-0 44642573	-0 44642573	-0 44642573
X Variable 1	0.056893549	0	65535	#NUM!	0.056893549	0.056893549	0.056893549	0.056893549

LOADTEST, Inc. Project No. LT-8756-2

Appendix H

Test Shaft #2 - I-235 / 28th Street Overpass Des Moines, IA (LT-8756-2)

APPENDIX I

SHAFT STIFFNESS ESTIMATION

Tangent Pile Stiffness Analysis

9

1

No street

r

		_		_							
	(MN)			1014359	306219	156158	180246	301288	766764	799245	
Δ u Strain	(H)			1.7	53	10.4	0) V	, u	5.0	
u Strain	(art)	000	-	1.7	6.4	12.1	15.4	17.5	9	19.5	
	(WW)			617594	208264	113222	127001	196346	972776	390011	
Δ μ Strain	(E			2.7	7.8	14.4	12.8	6	9	4.2	
u Strain	(3rd)	0.0	1.6	2.7	9.4	17.1	22.3	25.4	28.2	29.6	
AE.	(WW)			511955	171463	97178	114719	167356	207544	275504	
Δ μ Strain	(arc)			3.3	9.5	16.8	14.2	9.7	7.9	5.9	
n Strain	(ari)	0.0	2.1	3.3	11.6	50.0	25.8	29.8	33.7	35.7	. 74
AE.	(MN)			178049	77242	50599	62197	79700	83448	85849	- National Control of the Control of
Δ p. Strain	(art)			9.4	21.1	32.2	26.2	20.4	19.5	19.0	
μ Strain	(311)	0.0	5.9	9.4	27.0	41.6	53.2	62.1	72.7	81.1	
YE.	(MM)			70171	40951	31281	38185	41688	39991	33119	
Δ μ Strain	(arc)			23.9	39.8	52.1	42.7	39.1	40.8	49.2	
μ Strain	(ari)	0.0	14.1	53.9	53.9	76.0	996	115.1	137.3	164.3	
ρ Γoad	(WW)			1.7	9.	9.	9.1	9.	9,1	9.	
Load	(MN)	0.0	6.0	1.7	2.5	e. E.	1.1	4.9	5.8	9.9	
	δ Load μ Strain Δμ Strain AE μ Strain AE μ Strain AE μ Strain AE μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain	δ Load μ Strain Δ μ S	δ Load μ Strain Δ μ Strain AE* μ Strain AE* μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ ξ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	Δ Load μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	δ Load μ Strain Δ	λ Load μ Strain λ F (μs) (μs)	δ Load μ Strain Δ μ Strain </td <td>δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Δμ Strain AE* μ Strain Δμ Strain</td> <td>λ Load μ Strain λ F (μr) (μr) μ Strain λ μ Strain</td> <td>λ Load μ Strain AE* μ Strain AB* μ Strain μ Strain</td> <td>λ Load μ Strain AE* μ Strain AB* μ Strain AE* μ Strain AE* μ Strain AB* AB*</td>	δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Δμ Strain AE* μ Strain Δμ Strain	λ Load μ Strain λ F (μr) (μr) μ Strain λ μ Strain	λ Load μ Strain AE* μ Strain AB* μ Strain μ Strain	λ Load μ Strain AE* μ Strain AB* μ Strain AE* μ Strain AE* μ Strain AB*

* Tangent Shaff Stiffness Calculation; AE = Δ Load / $\Delta\mu$ Strain

APPENDIX J

POST TEST GROUTING PROCEDURE

POST-TEST GROUTING PROCEDURES FOR PRODUCTION DRILLED SHAFTS TESTED WITH AN OSTERBERG CELL

During the O-cell™ test, the shaft breaks on a horizontal plane separating the upper section above the O-cell™ (upper side-shear) from the lower section below (combined end bearing and lower side shear). This creates an annular space, the size of which depends on the shaft/O-cell™ geometry and the expansion of the O-cell™

When a production shaft has been tested, the engineer may want to include the end bearing component from the lower section in order to obtain sufficient capacity of the production shaft. In such cases the contractor will be required to grout the O-cellTM and the annular space around the O-cellTM in order to allow load transfer to the lower side shear and end bearing.

POST-TEST GROUTING OF OSTERBERG CELLS

- a) The grout shall consist of Portland cement and water only, <u>NO SAND</u> The grout shall be fluid and pumpable. An initial mix consisting of 4 to 6 gallons of water per 95-lb bag of cement is recommended. Adjust water to obtain desired consistency.
- b) The mixing shall be thorough to ensure that there are no lumps of dry cement. Pass the grout through a window screen mesh before pumping
- c) Connect the grout pump outlet to one hydraulic line of the O-cellTM. Open the other line and establish a flow of water through the system.
- d) Pump the grout through the O-cell™ hydraulic line while collecting the effluent from the bleed line. Monitor characteristics of effluent material and when it becomes equivalent to the grout being pumped, stop pumping
- e) Take three samples of the grout for compression testing @ 28 days, if required

Recommended pre-mixed amount of grout for grouting of O-cell™:										
O-cell Diameter (Inches)	13	21	26	34						
Grout Volume (Cubic Feet)	4	7	9	13						

POST-TEST GROUTING OF ANNULAR SPACE AROUND OSTERBERG CELLS

- a) Prepare a fluid grout mix consisting of Portland cement and water only, <u>NO SAND</u> The mixing procedures should be as outlined for grouting the O-cells[™] The quantity of grout should be at least three (3) times the theoretical volume required to fill the annular space and grout pipes
- b) Pump water and establish a flow through each of the grout pipes (two per shaft).
- c) Pump the fluid grout through one of the grout pipes until the grout is observed flowing from the second grout pipe or until 1.5 times the theoretical volume has been pumped.
- d) If no return of grout is observed from the second grout pipe, transfer the pump to the second pipe and pump grout through it until 1.5 times the theoretical volume has been pumped
- e) If higher strength grout is deemed necessary, immediately proceed with pumping the higher strength grout (which may be a sand mix). The pumping procedures for this grout will be the same as described above for the initial cement-water grout. The entire grouting operation must be completed before the set time for the initial grout has elapsed.
- f) Take three (3) samples of each type of grout for compression testing @ 28 days.

Recommended pre-mix amount of grout for grouting of annular space:											
Shaft Diameter (Feet)	2	3	4	5	6	7	8	9			
Grout Volume (Cubic Feet)	25	30	40	50	65	80	100	125			

