Xindi (Cindy) Wu

+1 (412)-726-0470 | xindiw@princeton.edu | Website | Scholar | Github | Linkedin

Education

Princeton University Princeton, NJ

Ph.D. student, Computer Science Department, School of Engineering and Applied Science

Aug. 2022 - Now

Pittsburgh, PA

Advisor: Olga Russakovsky Carnegie Mellon University

Master of Science in Computer Vision, Robotics Institute, School of Computer Science

Aug. 2020 - Dec. 2021

Advisor: Deva Ramanan Xi'an Jiaotong University

Xi'an, China

Bachelor of Science in Computer Science, Honors Youth Program

Sept. 2016- July 2020

Advisors: Jinjun Wang & Pengju Ren

Publications & Preprints

[15] Corgi: Compositional Memory-Guided Video Generation

X. Wu, U. Singer, Z. Lin, A. Madotto, PA. Crook, YE. Xu, XL. Dong, O. Russakovsky, S. Moon

In submission, 2023

[14] Vision-Language Dataset Distillation

X. Wu, B. Zhang, Z. Deng, O. Russakovsky

In submission, Arxiv 2023

[13] Pix2Map: Cross-modal Retrieval for Inferring Street Maps from Images

 $\mathbf{X.}\ \mathbf{Wu},\,\mathrm{K.}\ \mathrm{Lau},\,\mathrm{F.}\ \mathrm{Ferroni},\,\mathrm{A.}\ \mathrm{Osep},\,\mathrm{D.}\ \mathrm{Ramanan}$

CVPR 2023

[12] Ego4D: Around the World in 3,000 Hours of Egocentric Video

K. Grauman,..., X. Wu,..., Jitendra Malik

CVPR 2022

[11] Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation

H. Wang, Z. Huang, X. Wu and EP. Xing

KDD 2022

[10] CryoETGAN: Cryo-electron Tomography Image Synthesis Using Unpaired Image Translation

X. Wu, C. Li, H. Wei, H. Deng, J. Zhang and M. Xu Frontiers in Physiology Computational Physiology and Medicine, 2022

[9] Squared 12 Norm as Consistency Loss for Leveraging Augmented Data to Learn Robust and Invariant Representations

H. Wang, Z. Huang, X. Wu and EP. Xing

Arxiv 2021

Preprint 2021

[8] Marrying Motion Forecasting and Offline Model-Based Reinforcement Learning for Self-Driving Cars

S. Pande and X. Wu

[7] High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks.

H. Wang, X. Wu, Z. Huang, EP. Xing

CVPR 2020

[6] Transferable Adversarial Attacks on Deep Reinforcement Learning

X. Pan, Y. Cao, X. Wu, E. Zelikman, C. Xiao, Y. Sui, R. Chakraborty, RS. Fearing Workshop on Adversarial ML at CVPR 2020

[5] Reducing Exploitation of Data Idiosyncrasy Helps Robustify Trained Models

X. Wu, H. Wang, E. Zelikman, M. Xu and EP. Xing

Preprint 2020

[4] Regularized Adversarial Training (RAT) for Robust Cellular Electron Cryo Tomograms Classification

X. Wu, Y. Mao, H. Wang, X. Zeng, X. Gao, EP. Xing, M. Xu

BIBM 2019

[3] Template-based and Template-free Approaches in Cellular Cryo-electron Tomography Structural Pattern Mining.

X. Wu, X. Zeng, Z. Zhu, X. Gao and M. Xu

Computational Biology, Codon Publications, Brisbane, Australia, 2019

[2] Deep Self-Paced Learning for Semi-supervised Person Re-identification Using Multi-View Self-Paced Clustering

X. Xin, X. Wu, Y. Wang, J. Wang

ICIP 2019

[1] Multitask Learning With Enhanced Modules

Z. Zheng, Y. Wei, Z. Zhao, X. Wu, Z. Li and P. Ren

DSP 2018

Research Experience

Princeton University

Princeton, NJ

Ph.D. student advised by Prof. Olga Russakovsky

Sept. 2022 - now

• We propose a vision-language dataset distillation method for distilling a large-scale dataset consisting of (image, text) pairs into a smaller dataset, while maintaining much of the original dataset's information relevant to training vision-language models [14].

Meta Reality Lab

Redmond V

Research Scientist Intern w/ Dr. Shane Moon

May. 2023 - Aug. 2023

• We introduce compositional video generation, a new paradigm for multi-scene T2V generation guided by subject finetuning. Arxiv coming soon [15].

Robotics Institute - CMU Argo AI Center for Autonomous Vehicle Research

Pittsburgh, PA

CMU Sponsered Capstone | Research Assistant w/ Prof. Deva Ramanan

Jan. 2021 - Jan. 2022

• Proposed a contrastive cross-modal approach to dynamic street map construction from camera data. Trained the graph encoder and image encoder with a shared latent space building on recent advances in multimodal representation learning [13].

• Defined a new task and benchmark for map maintenance, evaluating both fidelity and generalization. Demonstrated that this

approach has the ability to generalize both to novel observations within a city as well as to unseen cities.

Snap Inc. Perception Team

Research Intern w/Dr. Alireza Zareian and Dr. Chen Wang

New York, NY May 2021 - Aug. 2021

- Developed a sample-efficient method to generate self-supervised vision and language representations incorporating ideas from CLIP, supporting a variety of downstream zero-shot tasks including classification, object detection, and segmentation.
- Achieved a 24% relative improvement on top-1 ImageNet accuracy over CLIP trained with the Conceptual Captions 3M dataset.

Facebook AI Research & Carnegie Mellon University, Robotics Institute

Pittsburgh, PA

Research Assistant w/ Prof. Kris Kitani

Sept. 2020 - Dec. 2020

• Developed de-identification tool based on object tracking to efficiently de-identify arbitrary objects including faces, license plates, etc., in egocentric video at near real time, allowing 3x faster de-identification than other SOTA methods [12].

Megvii Research (Face++)

Beijing, China

Computer Vision Research Intern w/ Banghuai Li

June 2020 - Sept. 2020

- $\bullet \ {\rm Researched} \ \& \ {\rm designed} \ {\rm few} \ {\rm shot} \ {\rm learning} \ {\rm models} \ {\rm built} \ {\rm on} \ {\rm Detectron2} \ {\rm with} \ {\rm metric} \ {\rm learning} \ {\rm based} \ {\rm methods} \ {\rm for} \ {\rm object} \ {\rm detection}.$
- Implemented mixup data augmentation and contrastive loss to improve the post-Region Proposal Network relation graph.

Carnegie Mellon University, Language Technology Institute

Pittsburgh, PA

Research Intern w/ Haohan Wang

Apr. 2019 - June 2020

- Demonstrated a relationship between the frequency spectrum of image data and generalization behavior of CNNs [5, 7, 9, 11].
- Designed a regularization scheme that penalizes large differences between adjacent components within kernels. Link

Carnegie Mellon University, Computational Biology Department

Pittsburgh, PA

Research Assistant w/ Prof. Min Xu

Mar. 2019 - June 2020

- Proposed Regularized Adversarial Training to push the decision boundary away from training data while maximizing accuracy on unperturbed examples to improved the robustness of subtomogram SoTA classification models [3, 4].
- Designed a model to achieve unsupervised image-to-image translation for Cryo-ET images which is stable to train and capable of generating plausibly diverse image samples [10].

Xi'an Jiaotong University, Institute of Artificial Intelligence and Robotics

Xi'an, China

Research Assistant w/ Prof. Jinjun Wang & Prof. Pengju Ren

Dec. 2017 - Feb.2019

- Introduced a self-paced regularizer to select reliable samples for fine-tuning each CNNs and implemented self-paced clustering.
- Designed an inverse adversarial learning regime which take classifiers to supervise each generator extract discriminate features and take discriminators for regularizing generators to learn complementary features [1, 2].

Other Projects

Transferable Adversarial Attacks on Deep Reinforcement Learning

Jan. 2020 - March 2020

- Implemented the attacks to minimize the rewards of substitute target policies against DRL.
- Outperforms the existing attacks when the system dynamics or the action space changes in both HalfCheetah and Walker2d.

Robustifying Trained Models by Reducing Exploitation of Data Idiosyncrasy Link

March 2019 - May 2019

- ullet Developed a mathematical framework to put bounds on previously-identified trade-off between robustness & accuracy.
- Implemented three lightweight methods to increase model robustness to verify the framework's implications.

Multitask Learning With Enhanced Modules

Jan. 2018 - May 2018

• Used 5.23x fewer generations to achieve 99% accuracy on a source-to-target MNIST classification task compared with DeepMind's PathNet. Increased the accuracy of CIFAR- SVHN transfer task by x1.9. Achieved 70.75% accuracy on miniImageNet

Smooth Kernels Improve Adversarial Robustness

Aug. 2019 - Oct. 2019

- Designed a regularization scheme that penalizes large differences between adjacent components within kernels
- Achieved numerically the best adversarially robustness across most settings, suggesting the effective of smooth regularization

Talks and Poster Presentations

• Corgi: Compositional Memory-Guided Video Generation

Cornell Tech, New York, 2023 Nov.

 \bullet Pix2Map: Cross-modal Retrieval for Inferring Street Maps from Images

CVPR, Vancouver, 2023 June

• Regularized Adversarial Training for Robust Cellular Electron Cryo Tomograms Classification BIBM, San Diego, 2019 Nov.

Professional Service

- Reviewer ICLR 24', ICRA 24', Neurips 23', CVPR 23'/22', ICCV 23', ECCV 22', Neurips Interpolate workshop 22', BMVC 20', IJCAI 20'
- Committee Member Diversity, Equity and Inclusion Committee in Robotics Institute, CMU
- Conference Chair SIGBOVIK 2021
- Volunteer vGHC(Grace Hopper Celebration of Women in Computing) 2021 Volunteer
- Panelist Robotics Institute MS Student Panel, 2021, Robotics Institute Summer Scholars (RISS) program 2021
- Co-Host Weekly RI Meets! 2021
- Mentor CMU Society of Women Engineers (SWE) mentoring program 2021

Skills

Languages: Python, C/C++/C#, Matlab, R, SQL, Bash, HTML/CSS

Development Tools: Spark, Hadoop, RabbitMQ, Celery, Docker

Deep Learning Tools: PyTorch, TensorFlow, Keras, Caffe, OpenCV, MuJoCo, OpenAI Gym