Propagazione delle onde su una corda vibrante analisi dati

Ali Matteo, Broggi Diana, Cantarini Giulia

dati presi con bilancia e metro a nastro

Pesetti:

Massa pesetto da 200g (in g):

201.10	201.11	201.11	201.09	201.10
<u></u>		<u> </u>		<u> </u>
$(0.201102 \pm 0.000004) \text{ Kg}$				

Massa pesetti 300g+portapesi 50g (in g):

350.59	350.58	350.50	350.55	350.57

 $(0.350558 \pm 0.000018) \text{ Kg}$

Massa pesetti 450g+portapesi 50g (in g):

Massa pesetti 500g+portapesi 50g (in g):

550.50	550.51	550.50	550.50	550.51

 $(0.550504 \pm 0.000003) \text{ Kg}$

•

Corde:

Lunghezza corda viola (in metri):

1.745	1.740	1.743	1.745	1.740
-				
(1.7426 ± 0.0014) m				

Massa corda viola (in g):

 $(0.003828 \pm 0.000004) \rm Kg$

Lunghezza corda bianca (in metri):

$$\frac{1.600 \quad 1.605 \quad 1.602 \quad 1.599 \quad 1.600}{(1.6012 \pm 0.0014) \text{m}}$$

Massa corda bianca (in g):

Lunghezza corda rosa (in metri):

Massa corda rosa (in g):

dati presi con l'oscillatore elettromeccanico

.

Parte1: frequenze e numero di armonica

armonica	frequenza (Hz)
fondamentale	13.88 ± 0.01
seconda	27.89 ± 0.01
terza	42.13 ± 0.01
quarta	56.85 ± 0.01
quinta	71.87 ± 0.01

corda viola, L = 108 cm, massa pesetto=200g

Testiamo l'ipotesi che le misure siano correlate linearmente con il calcolo del coefficiente di correlazione lineare:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum x_i - \bar{x})^2 (\sum y_i - \bar{y})^2}} = 0.99989$$

Poichè la probabilità che 5 misure non correlate diano $|r| \ge 0.99996$ è $\ge 0\%$ (da valori tabulati) consideriamo accettabile l'ipotesi.

calcolo della velocità di propagazione

Abbiamo eseguito l'interpolazione dei dati raccolti per la parte 1 al fine di ricavare il valore del coefficiente angolare:

$$B = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{N \sum x_i^2 - (\sum x_i)^2} \pm \sqrt{\frac{N}{\Delta}} \sigma_i = 14.494 \pm 0.003 Hz$$

$$A = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum y_i x_i}{N \sum x_i^2 - (\sum x_i)^2} \pm \sqrt{\frac{\sum x_i^2}{\Delta}} \sigma_i = -0.958 \pm 0.01 Hz$$

considerando $\sigma_y=0.01 Hz$: l'incertezza dello strumento

poichè
$$v = \sqrt{\frac{\tau}{\mu}}$$

$$\begin{vmatrix} v = 2LB \\ \sigma_v = 2L\sigma_B \end{vmatrix} \Rightarrow v = 31.197 \pm 0.007 m/s$$

per ottenere una stima di σ_B più considerevole abbiamo stimato a posteriori σ_y :

$$\sigma_y = \sqrt{\frac{\sum (y_i - A - Bx_i)^2}{N - 2}} = 0.39Hz$$

così facendo abbiamo ottenuto $B=14.49\pm0.12$ attraverso le formule precedenti e calcolato nuovamente v:

$$v = B2L \pm 2L\sigma_B = 31.3 \pm 0.3m/s$$

da confrontare con il valore ricavato dai dati ottenuti con bilancia e metro a nastro di 29.967 \pm 0.0003 m/s: $\frac{|x_{osservato}-x_{atteso}|}{\sigma_x}=4$ — la probabilità che questa discrepanza sia dovuta solo ad errori casuali è < 0.3%.

Parte2: frequenze e tensione

tensione/ $(9.81m/s^2)$ (Kg)	frequenza (Hz)
0.201102 ± 0.000004	27.89 ± 0.01
0.350558 ± 0.000018	36.29 ± 0.01
0.450960 ± 0.000004	41.46 ± 0.01
0.550504 ± 0.000003	46.23 ± 0.01

corda viola, n=2, L=108 cm

Parte3: frequenze e lunghezze

lunghezza (m)	frequenza (Hz)
1.080 ± 0.001	69.90 ± 0.01
1.102 ± 0.001	68.68 ± 0.01
1.130 ± 0.001	66.60 ± 0.01
1.183 ± 0.001	63.60 ± 0.01
1.215 ± 0.001	61.96 ± 0.01

corda viola, n=3, massa pesetto = 550g

Parte4: frequenze e massa lineare

corda	$\mu \text{ (Kg/m)}$	frequenza (Hz)
bianca	0.000453 ± 0.000002	134.9 ± 0.01
viola	0.002197 ± 0.000003	61.96 ± 0.01
rosa	0.006350 ± 0.000006	39.26 ± 0.01

n= 3, L=121.5 cm, massa pesetto=550g

