RNN language model: speed up by factorization

Student: Shi Libin

Tutor: Rong wenge

Context

- 1. Introduction
- 2. Related work
- 3. lightRNN
- 4. Some Ideas
- 5. Experiment
- 6. Conclusion

Neural Language Model

Task: learn the pattern in human language, compute the probability of a sequence of words, $P(w_1, w_2, ..., w_T)$

Statistic language model,

$$P(w_1, w_2, \dots, w_T)$$

$$= \prod_{i=1}^T P(w_i | w_1, \dots, w_{i-1})$$

$$\approx \prod_{i=1}^T P(w_i | w_{i-(n-1),\dots,w_{i-1}})$$
Markov chain

Problem: the curse of dimension because the number of possible combinations of n words (n-gram) from a dictionary (e.g. 50,000 words) is immensely.

Neural Language Model

Recurrent Neural network

$$h_t = \sigma(Uh_{t-1} + Wx_t + b)$$

$$y_t = softmax(Vh_t + c)$$

Good Performance!

Fit the situation of LM

$$y_t = x_{t+1}$$

 $p(x_{t+1}|x_{\leq t}) = g_{\theta}(h_t)$
 $h_t = \phi_{\theta}(x_t, h_{t-1})$

• Reduce the size of model $O(V) \ll O(V!)$

Neural Language Model

Long Short-Term Memory (LSTM)

$$i_{t} = \sigma(U^{i}h_{t-1} + W^{i}x_{t} + b^{i})$$

$$f_{t} = \sigma(U^{f}h_{t-1} + W^{f}x_{t} + b^{f})$$

$$g_{t} = tanh(U^{g}h_{t-1} + W^{g}x_{t} + b^{g})$$

$$c_{t} = c_{t-1} \cdot f_{t} + g_{t} \cdot i_{t}$$

$$o_{t} = \sigma(U^{o}h_{t-1} + W^{o}x_{t} + b^{o})$$

$$h_{t} = o_{t} \cdot \tanh(c_{t})$$

Metrics

Perplexity:

$$PPL(w_1 ... w_T)$$

$$= 2^{-\frac{1}{T}\log_2 p(w_1 ... w_T)}$$

$$= \sqrt[T]{\frac{1}{p(w_1 ... w_T)}}$$

$$= \exp\left(-\frac{1}{T}\ln(p(w_1 ... w_T))\right)$$

$$= \exp(loss)$$

Others: Word Error Rate, Model size, Runtime

Problem of normal RNNLM: time consuming to calculate softmax

$$y_t = softmax(Wh_t + c)$$

$$y_{t,j} = P(x_{t+1} = v_j | x_t, ..., x_1) = \frac{\exp(W_j h_t + c)}{\sum_{k=1}^{|V|} \exp(W_k h_t + c)}$$

$$\frac{\partial}{\partial \theta} \log P_{\theta}^{x_{\leq t}}(x_{t+1}) = \frac{\partial}{\partial \theta} s_{\theta}(x_{t+1}, x_{\leq t}) - \sum_{x'} P_{\theta}^{x_{\leq t}}(x') \frac{\partial}{\partial \theta} s_{\theta}(x', x_{\leq t})$$

Sampling based models: Importance sampling (Bengio et al., 2003), NCE (Mnih & Teh, 2012), Blackout (Ji et al., 2015)

Class level based models: two-level classed based softmax (Goodman, 2001), RNN with factorized output layer (Mikolov et al., 2011), hierarchical softmax (Morin & Bengio, 2005; Mnih & Hinton, 2009)

Sampling based models

Important sampling (IS)

$$\frac{\partial}{\partial \theta} \log P_{\theta}^{x_{\leq t}}(x_{t+1})$$

$$= \frac{\partial}{\partial \theta} s_{\theta}(x_{t+1}, x_{\leq t}) - \sum_{x'} P_{\theta}^{x_{\leq t}}(x') \frac{\partial}{\partial \theta} s_{\theta}(x', x_{\leq t})$$

$$\approx \frac{\partial}{\partial \theta} s_{\theta}(x_{t+1}, x_{\leq t}) - \frac{1}{R} \sum_{j=1}^{m} r(x_{j}) \frac{\partial}{\partial \theta} s_{\theta}(x_{j}, x_{\leq t})$$

Where
$$r(x) = \frac{\exp(s_{\theta}(x,contex))}{Q(w=x)}$$
 and $R = \sum_{j=1}^{m} r(x_{j})$
Q is unigram distribution of training set.

Problem: the fewer samples we use, the worse is this approximation; network's distribution P might diverge from Q during training.

Sampling based models

Noise Contrastive Estimation(NCE)

$$l_{\theta} = -\log P(D_{y_t} = 1 | x_t, x_{< t}) + \sum_{j=1}^{m} \log \left(P(D_{y_t} = 0 | \widetilde{x_t}^j, x_{< t}) \right)$$

$$P_{\theta}(D_{y_t} = 1 | x_t, x_{< t}) = \frac{\exp(h^T v_x')}{\exp(h^T v_x') + kQ(x)}$$

$$P_{\theta}(D_{y_t} = 0 | x_t, x_{< t}) = \frac{kQ(x)}{\exp(h^T v_x') + kQ(x)}$$

Advantage: stable and fast for training

Disadvantage: still time consuming at test time

Factored level based models

RNN with output factorized by class layer

According to (Goodman, 2001)

 $P(y_t|context)$ = $P(c_t|context)P(y_t|c_t)$ $O(|H|*|V|) \rightarrow O(|H|*|C|)$

In (Mikolov et al., 2011), $P(y_t|context)$ $= P(c_t|h_t)P(y_t|c_t,h_t)$

Advantage: reduce computational complexity, Disadvantage: huge size of embedding layer

Factored level based models

Tree Hierarchical Softmax

$$\begin{split} &P(w|x_{\leq t}) \\ &= \prod_{j=1}^{m} P\big(b_{j}(w)|b_{0}(w), \dots, b_{j-1}(w), x_{\leq t}\big) \end{split}$$

$$P(b_j = 1 | Node_j, x_{\leq t}) = \sigma(\theta_j^w h_t)$$

$$P(b_j = 0 | Node_j, x_{\leq t}) = 1 - \sigma(\theta_j^w h_t)$$

Advantage: $O(|H| * |V|) \rightarrow O(|H| * \log_2 |V|)$

Disadvantage: huge size of embedding layer

(Bengio, 2005), (Hinton, 2009)

Factored level based models

Problem: how much deeper of **Hierarchical Softmax**

"It is inefficient to matrix-multiplication when one of the dimensions is small. This observation suggests that hierarchical organizations of words with a low number of children per node, such as binary Huffman codes, are highly suboptimal"

[Efficient Softmax Approximation for GPUs] (Grave, 2016)

lightRNN

1. Shared embedding word table

1-D word list

Index	word
x_1	the
x_2	i
•••	
<i>x</i> ₁₀₀	weekend
<i>x</i> ₁₀₁	week

2-D word table

Index	word
(x_1^r, x_1^c)	the
(x_1^r, x_2^c)	i
(x_2^r, x_1^c)	weekend
(x_2^r, x_2^c)	week

Index	x_1^c	x_2^c	x_3^c
x_1^r	the	i	
x_2^r	weekend	week	•••
x_3^r	•••		•••

lightRNN

2. lightRNN model

lightRNN

2. lightRNN model

Theano code

```
def recurrence(x t, m r, m c, h tml r, h tml c):
  x er = self.Exr[x t[:, 0], :]
  x ec = self.Exc[x t[:, 1], :]
  concated_r = T.concatenate([x_er, h_tml_c], axis=-1)
  h t r = self.f(T.dot(concated r, self.W) + self.b)
  h t r = h t r * m r[:, None]
  concated c = T.concatenate([x ec, h t r], axis=-1)
  h t c = self.f(T.dot(concated c, self.W) + self.b)
  h t c = h t c * m c[:, None]
  return h t r, h t c
[h r, h c], update = theano.scan(fn=recurrence,
             sequences=[self.x, self.mask_r, self.mask_c], # x.shape() = (n_maxlen, n_batch, 2)
             outputs_info=[dict(initial=T.zeros((self.n_batch, self.n_hidden))),
                     dict(initial=T.zeros((self.n batch, self.n hidden)))],
             truncate gradient=-1)
```

3. MCMF for word re-allocation

$$NLL(w, r(w), c(w))$$

$$= \sum_{w \in S_w} -\log P(w) = \sum_{w \in S_w} -\log P_r(w) + \sum_{w \in S_w} -\log P_c(w)$$

Minimum cost maximum flow (MCMF) algorithm

Using google/or-tools (cost-scaling push-relabel algorithm)

Analysis of lightRNN

LightRNN can be classified as Factored level based models

```
P(w_t|w_{\leq t})
= P(w_t^r|w_{\leq t}^r, w_{\leq t}^c) * P(w_t^c|w_{\leq t}^r, w_{\leq t}^c)
= P(class|context) * P(index|class)
```

Karwan Narok Cocodrie Noja Anambra Alaska. Lantau Willmar Zululand Tianmen
281-211 3-6-0 17-of-44 21-for-27 100-64 1,173-767 10-to-2 7-and-5 15,350 of-15
103-run 12-way 23-hit 151-game 13-ball 105-meter 302-minute 189-yard 67-foot
totaled hunted rigged scored vetoed inflicted froze swam won dried raged smiled
plods riles hankers misbehaves contrives utilizes disbands computes propagates
www.angiotech.com www.huntsman.com media.floridarealtors.org 2010.census.gov
years. decade evening hours. weeks spring summer. day-and-a-half April-to-June
44kg 63pc 170mph 18cm 22C 12A 150bp 17st 656ft 2Mbps 680g 10x 13ph. 2M

Analysis of lightRNN

Speed up by factored layer

$$P(w_t|w_{\leq t})$$

$$= P(w_t^r|w_{\leq t}^r, w_{\leq t}^c) * P(w_t^c|w_{\leq t}^r, w_{\leq t}^c)$$

$$= P(class|context) * P(index|class)$$

If size of vocabulary is 10,000 and is placed into a 100*100 word table, $O(|V|) \rightarrow O(2\sqrt{|V|})$

Factorization both for input layer and output layer!

Analysis of lightRNN

Conclusion of lightRNN

Advantage:

- Speed up training process by a factor of 2
- Reduce the model size by a factor of around 50

Problem:

- Increase the recurrent steps of RNN by a factor of 2
- 2-D word table may be a limit

Some ideas

Utilize class information for re-allocation

Make use of unbalance of row and column and row index is seen as class information.

Only re-allocate on row index

Computational complexity of MCMF $O(K|V|^2) \rightarrow O(K|V|^{3/2})$

Some ideas

Factorized RNN (f-RNN)

Encoding factorial class information into input layer

- Class information is determined before inputting RNN
- Need a structure to recognize and focus factored information of input layer

Some ideas

Factorized RNN (f-RNN)

Encoding factorial class information into RNN layer

lightRNN

Experiments

	РТВ		WikiText-103		One Billion				
Dataset	train	valid	test	train	valid	test	train	valid	Test
Sentences	42,068	3,370	3,761	1,801,350	3,760	4,358	29,994,193	306,835	613,376
Vocabulary	y 10,000		267,735		788,996				
Best result (PPL)	114		130 (8 epoch)		123 (1 epoch)				

Experiments

MCMF on row index			
Algorithm	Algorithm PPL		Solve time
MCMF	114	836s	205s
row-MCMF	117	11s	2s

Experiments

Shi Libin

Algorithm	PPL	Runtime/epoch
rnnlm	114	620s
f-rnnlm	245	220s

Conclusion

To be continue

- Improve the implementation of lightRNN
- Study in detail factored RNN
- Implement f-RNN
- Evaluate each Initialize method

Thanks for your attention