高等数学期中试题(A 券)

	局等数字期中试题(A 卷)									
班级			学号							
(本试卷共 4 页, 七个大题)										
	题号		二	三	四	五.	六	七	总分	
	得分									
	14 24 112		PE . //	U. 00 ()				,		
	. 填空题					$\vec{\tau}$ π	ज्ञां → रं			
1.	1. 已知 $ \vec{a} = 1$, $ \vec{b} = 2$, 向量 \vec{a} 与 \vec{b} 的夹角 $(\vec{a}, \vec{b}) = \frac{\pi}{3}$, 则 $\vec{a} \cdot \vec{b} =$, $ 2\vec{a} - 3\vec{b} =$.									
	$ 2\vec{a}-3\vec{b} $	$ \vec{b} = $		·•						
2.	2. 点 $P(2,3,4)$ 到直线 $\frac{x-1}{2} = \frac{y-2}{5} = \frac{z-3}{6}$ 的距离 $d = \underline{\qquad}$									
3.	3. 设 $u = x^2y + xy^2z$,在点(2,1,0)处沿方向									
u 的变化率为									,	
4	4. 曲线 $x = 2\cos\theta$, $y = 2\sin\theta$, $z = 5\theta$ 是什么曲线:, 此曲线上 $\theta = \frac{\pi}{2}$ 的									
••										
处的切向量 $\vec{s} = \underline{\hspace{1cm}}$.										
5. 函数 $f(x, y) = e^x \ln(1 + y)$ 的二阶麦克劳林公式(带佩亚诺余项)为									1	
	$f(x,y) = \underline{\hspace{1cm}}.$									
6.										
7.	. 设 $z = f(x^2 + y^2, e^{x+y})$,其中 f 有二阶连续偏导数,则 $\frac{\partial z}{\partial x} = $									
	$\frac{\partial^2 z}{\partial x \partial y} = 1$									
	$\partial x \partial y$									
8.	函数 f(函数 $f(x,y) = x^2 + 2y^2 - 5$ 在区域 $D: x^2 + y^2 \le 1$ 上的最大值 $M = $,最小值								
	<i>m</i> =	·								

二. (10 分)设
$$x^2 + y^2 + z^2 = f(xy, z - 2x)$$
, 其中 f 有连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

三. (12 分) 证明直线
$$L_1$$
: $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{2}$ 与 L_2 : $\begin{cases} x+2y=1 \\ y+z=2 \end{cases}$ 共面,并求过直线 L_1 与 L_2 的平面方程.

四. (12 分) 计算二重积分
$$\iint_{D} \frac{|y-x|}{x^2+y^2} dx dy$$
, 其中 D 是由直线 $y=x$, $y=2$, 与圆 $x^2+(y-1)^2=1$ 所围成的阴影部分区域(如图).

五. (11 分) 在曲面 $3x^2 + y^2 + z^2 = 16$ 上求一点,使曲面在此点的切平面与直线 $L_1: \frac{x-3}{4} = \frac{y-6}{5} = \frac{z+1}{8}$ 和 $L_2: x = y = z$ 都平行.

六. (11 分) 计算三重积分
$$I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} e^{\frac{y}{1-x-z}} dz$$
.

七. (12 分) 设 M 是椭圆 $\begin{cases} 2x^2 - y^2 + z^2 = 5 \\ x + y = 0 \end{cases}$ 上的点, $\frac{\partial f}{\partial \vec{e}}$ 是函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在 点 M 处沿方向 {1,-1,1} 的方向导数,求使 $\frac{\partial f}{\partial \vec{e}}$ 取得最大值和最小值的点 M 及 $\frac{\partial f}{\partial \vec{e}}$ 的最大值和最小值.