BlotMQ网络文档说明

针对版本V1.0.0

©成都基础平台架构

2017/11/21

BlotMQ 网络

BoltMQ-broker 修订记录

版本号	修订内容	作者	审核	修订日期
V1. 0. 0	初始版本	罗继	基础平台架构组	2017/11/22

BlotMQ 网络

目录

1	概	述	4
2	背	景	4
		· 业术语	
4	M	络实现原理	5
	4.1	设计与交互	5
	4.2	连接管理	6
	4.3	事件通知	6
	4.4	粘包	7
	4.5	通讯包结构	7
	4.5	5.1 RemotingCommand 结构	8
	4.6	报文压缩	8
	4.7	心跳处理	8
婇		- BoltMQ 开发者联系方式	9

1 概述

本章将从网络层面讲解 BoltMQ,它采用的 IO 模型 (epoll),如何实现的事情通知?粘包是怎么实现的?以及消息交互报文的协议,将一一进行说明。 BoltMQ 在网络层面使用 TCP 长连接作为通讯方式,RocketMQ 使用 Netty 库为基础网络开发库,netty 是事件驱动的网络编程框架和工具,它的强大毋庸置疑。而 Golang 目前还没有和 Netty 类似的实现库,所有需要构建一个性能优异的网络基础库。

2 背景

BoltMQ在网络层面使用TCP长连接作为通讯方式,RocketMQ使用Netty库为基础网络开发库,netty是事件驱动的网络编程框架和工具,它的强大毋庸置疑。而Golang目前还没有和Netty类似的实现库,所有需要构建一个性能优异的网络基础库。

IO模型

Netty是基于NIO(Non-blocking I/O)的实现,NIO的多路复用select/epoll默认使用epoll,可以在不同操作系统有不同选择。BoltMQ同样选择了epoll,Golang的net包标准库底层使用了epoll,在runtime层面,是用epoll/kqueue实现的非阻塞io,为性能提供了保障。不同的是开发者层面任然是阻塞的,配合Golang的线程模型CSP能达到高性能。

连接管理

BoltMQ的netm包提供的统一的连接管理功能,将所有连接统一管理,简化使用者维护连接。该功能讲会在之后去除,由事情通知功能代替,连接维护交由使用者维护。

事件通知

提供类似于Netty的事情通知功能,但目前只支持少数几类事情,提供代码的重用行。

粘包

这里的粘包是业务粘包,标准net包在底层提供了粘包保证了报文的正确性。业务报文是否完整,将进行粘包处理。

报文协议

BoltMQ中报文格式定义分为header和body,这两部分都定义了格式来进行通信。这部分将介绍具体的格式以及含义。

3 专业术语

4 网络实现原理

4.1 设计与交互

图中是整个网络层的设计以及报文的处理流程。分为client和server端,client负责创建连接,报文的封包和拆包。服务器除此之外还要维护客户端连接,保证连接能接收数据。缓存队列可以缓存突发流程的,保证程序的可靠性。

客户端首先创建连接,连接创建成功,发送消息并等待响应消息。发送消息前会将报文进行编码,接收到消息后也会将消息进行解码。

服务器端会启动端口监听,接收来自客户端的连接。当有连接连上的时候,服务端用一个新的 Goroutine接收客户端连接。当接收到一个客户端发送的消息时,会将消息发到队列中,然后会从队 列中取出消息进行粘包。最后将完整的报文交给业务进行处理并响应。这里说明一点的是,队列和粘 包都针对的单个连接,减少资源的竞争。

4.2 连接管理

当客户端创建连接或者服务端接收一个连接时,将会把连接放入到一个map中,连接地址作为key。 同时将新建Goroutine接收连接所接收到的信息。该功能会在之后删除,由事件通知替代。

4.3 事件通知

当连接状态发送变化时,将该事件通知给用户。支持事件:

- Active: 当接收到一个新创建的连接时,被动接收通常作为服务端。
- Connect: 当新创建一个新连接时,通常主动创建连接的客户端。
- Disconnet: 当连接时断开时,通常被动断开。

• Closed: 当连接时断开时,通常主动关闭。

• Error: 当连接使用中发生错误时。

4.4 粘包

粘包指的是业务粘包,标准net包在底层提供了粘包保证了报文的正确性。业务报文是否完整,将进行粘包处理。BoltMQ采用length-field的方式传输报文。length占用4个字节,存储之后的报文长度。粘包就是将接收的报文进行验证,先验证length域,在根据length域的值取得field域。如果length长度不够,会将报文进行缓存,等待下一个报文的到来。粘包必须是针对单个连接进行,保证传输报文的不乱序。

Length	Field
4byte	field byte

• length域: 报文的长度。

• field域: 报文内容。

4.5 通讯包结构

Length	Header Length	Header	Body
<	\leftarrow	>	
4byte	4byte	header byte	body byte

• length域: 报文的长度。

• header length域: 报文头部长度。

• header域: 报文头部。

• body域: 报文内容。

header和body域的数据解析后是RemotingCommand这个结构,通信时将RemotingCommand序列化成byte[]字节数组通信层进行传输。

4.5.1 RemotingCommand 结构

字段名	请求	响应
code	请求操作代码,请求接收方根据不同 的代码做不同操作	应答结果代码,0表示成功,非0表 示各种错误
Language	请求发起方实现语言	响应方实现语言
Version	请求方程序版本	响应方程序版本
Opaque	请求标识代码,多线程,连接复用使 用	应答方不做修改,直接返回
Flag	通信层的标志位	通信层的标志位
Remark	传输自定文本信息	错诨详细描述信息
ExtFields	请求自定义字段	响应自定义字段
CustomHeader	自定义结构,传输时将其转换为 extFields 型数据	自定义结构,传输时将其转换为 extFields 型数据
Body	请求 body	响应 body

4.6 报文压缩

报文达到一定长度后,提供报文压缩功能。压缩算法使用zip。RemotingCommand的SysFlag标识的第二位标识报文是否为压缩。

4.7 心跳处理

通信组件本身不处理心跳,由上层进行心跳处理。

附件一 BoltMQ 开发者联系方式

姓名	联系方式	更新日期
郜焱磊	gyl_adaihao@163.com	2017/11/21
田玉粮		2017/11/21
尹同强		2017/11/21
罗继	gunsluo@gmail.com	2017/11/21
周飞		
戎志宏		