ディリクレ級数 (Dirichlet series)

複素数列 $\{a_n\}_{n\in\mathbb{N}}$ と $s\in\mathbb{C}$ に対して、次で表される級数のことをディリクレ級数 (Dirichlet series) という。

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s} \tag{1}$$

収束軸

ディリクレ級数の s の実部 $\mathrm{Re}(s)$ に対し、 $\mathrm{Re}(s) > \sigma$ の範囲で収束し、 $\mathrm{Re}(s) < \sigma$ の範囲で発散する時、 σ を収束軸という。

ディリクレ級数が常に収束する時は収束軸は $-\infty$ 、常に発散するときは ∞ とする。

収束軸の計算

s_n が発散する場合

$$\limsup_{n \to \infty} \frac{\log |s_n|}{\log n} \tag{2}$$

• s_n が収束する場合

$$\limsup_{n \to \infty} \frac{\log \left| \sum_{i=n}^{\infty} a_i \right|}{\log n} \tag{3}$$

Abel の級数変形法

複素数列 $\{a_n\}_{n\in\mathbb{N}}$ はその部分和 $s_n=\sum_{k=1}^n a_k$ のなす数列 $\{s_n\}_{n\in\mathbb{N}}$ が有界であるとする。すなわち、 $\forall N\in\mathbb{N}$ に対して $|s_N|=\left|\sum_{n=1}^N a_n\right|\leq M$ なる $M\in\mathbb{R}$ が存在する。また、実数列 $\{\varepsilon_n\}_{n\in\mathbb{N}}$ は正項かつ単調減少 $(\varepsilon_1\geq \varepsilon_2\geq \cdots \geq \varepsilon_n\geq \cdots \geq 0)$ であるとする。

このとき、級数 $S = \sum_{n=1}^{\infty} a_n \varepsilon_n$ について次が成り立つ。

- 1. $\lim_{n \to \infty} \varepsilon_n = 0$ の時、級数 $S = \sum_{n=1}^\infty a_n \varepsilon_n$ は収束し、かつ $|S| \le M \varepsilon_1$ である。
- 2. 級数 $\sum_{n=1}^{\infty}a_n$ が収束する時、級数 $S=\sum_{n=1}^{\infty}a_n\varepsilon_n$ は収束し、かつ $|S|\leq M\varepsilon_1$ である。

複素数 $\omega\in\mathbb{C}$ を $\omega^n=1$ となる最小の自然数が n=6 であるものとする。この時、 $a_n=\omega^n$ として定まる Dirichlet 級数 $\sum_{n=1}^\infty \frac{a_n}{n^s}=\sum_{n=1}^\infty \frac{\omega^n}{n^s}$ の収束軸を求めよ。

 $\omega=1,\exp(\frac{\pi}{3}i),\exp(\frac{2\pi}{3}i),\exp(\pi i),\exp(\frac{4\pi}{3}i),\exp(\frac{5\pi}{3}i)$ は $\omega^6=1$ を満たす。

 $\omega^n=1$ となる最小の自然数が 6 であるので、 $1^1=1$ 、 $\exp(\pi i)^2=1$ 、 $\exp(\frac{2\pi}{3}i)^3=\exp(\frac{4\pi}{3}i)^3=1$ は ω ではない。

つまり、 $\omega = \exp(\frac{\pi}{3}i), \exp(\frac{5\pi}{3}i)$ である。

$$\sum_{n=1}^{1} \omega^{n} = \omega, \ \sum_{n=1}^{2} \omega^{n} = \omega + \omega^{2}, \ \sum_{n=1}^{3} \omega^{n} = \omega + \omega^{2} + \omega^{3} = \omega + \omega^{2} - 1$$
 (4)

$$\sum_{n=1}^{4} \omega^n = \omega^2 + \omega^3 = \omega^2 - 1, \ \sum_{n=1}^{5} \omega^n = \omega^3 = -1, \ \sum_{n=1}^{6} \omega^n = 0$$
 (5)

である。 $\omega^6 = 1$ よりこの 6 種類が繰り返し現れる。

 $s_n = \sum_{k=1}^n \omega^k$ として数列 $\{s_n\}_{n\in\mathbb{N}}$ を考えると、上記の数列が繰り返し現れる数列になる。

$${s_n}_{n\in\mathbb{N}} = {\omega, \ \omega + \omega^2, \ \omega + \omega^2 - 1, \ \omega^2 - 1, \ -1, \ 0, \ \dots}$$
 (6)

これより数列 $\{|s_n|\}_{n\in\mathbb{N}}$ は次のようになる。

$$\{|s_n|\}_{n\in\mathbb{N}} = \{1, \sqrt{3}, 2, \sqrt{3}, 1, 0, \dots\}$$
 (7)

よって、 $\forall N \in \mathbb{N}$ に対して $|s_N| \leq 2$ である。

また、 $s = \sigma + it (\sigma, t \in \mathbb{R}, i = \sqrt{-1})$ とすれば、

$$n^{s} = n^{\sigma + it} = \exp((\log n)(\sigma + it)) = \exp(\sigma \log n) \exp(it \log n) = n^{\sigma} \exp(i \log n^{t})$$
 (8)

$$|n^s| = n^{\sigma} \tag{9}$$

である。

そこで、実数列 $\{n^{-\sigma}\}_{n\in\mathbb{N}}$ について考える。 $\forall n\in\mathbb{N}$ に対して $n^{-\sigma}>0$ であり、 $\sigma>0$ において単調減少な数列である。極限を取ってみると次のようになる。

$$\lim_{n \to \infty} n^{-\sigma} = \begin{cases} 0 & (\sigma > 0) \\ 1 & (\sigma = 0) \\ \infty & (\sigma < 0) \end{cases}$$
 (10)

Abel の級数変形法より数列 $S=\sum_{n=1}^\infty \omega^n n^{-\sigma}$ は $\sigma>0$ において収束し、 $|S|\leq 2\cdot 1^{-\sigma}=2$ である。

 $\sigma<0$ においては $\lim_{n\to\infty}n^{-\sigma}=\infty$ より S は発散する。

つまり、級数 $\sum_{n=1}^{\infty} rac{\omega^n}{n^{\sigma}} = \sum_{n=1}^{\infty} rac{\omega^n}{|n^s|}$ は $\sigma>0$ で収束、 $\sigma<0$ で発散する。

よって、 $\sum_{n=1}^{\infty}\frac{\omega^n}{n^s}$ においても $\sigma>0$ で収束、 $\sigma<0$ で発散する為、収束軸は $\sigma=0$ である。