МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по оптике

4.5.2. Интерференция лазерного излучения.

Выполнила студентка группы Б06-103: Фитэль Алена

1 Аннотация

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: гелий-неоновый лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф C1-76, поляроид, линейка.

2 Теоретическая часть

Лазер состоит из двух зеркал, составляющих лазерный резонатор, и расположенной между ними газообразной усиливающей среды, состоящей из гелия и неона. Характерное расстояние между зеркалами $-0.2 \div 1$. Излучение распространяется по резонатору в прямом и обратном направлениях. При этом максимальным усилением обладают волны, для которых набег фазы при полном обходе резонатора кратен 2π . Тогда можно сформулировать условие на разность частот излучения. Так как:

$$\frac{2\pi}{\lambda}2L = 2\pi m, \quad L = m\lambda, \quad \nu_m = \frac{mc}{2L},$$

тогда:

$$\Delta \nu_m = \nu_{m+1} - \nu_m = \frac{c}{2L},\tag{1}$$

где L – длина резонатора, m – целое число. Поэтому лазер генерирует отдельные типы колебаний, называемые модами, удовлетворяющие условию (1).

Спектральная ширина отдельной моды определяется добротностью резонатора лазера и мощностью излучения. В He-Ne лазере из-за малого усиления активной среды используются зеркала с высоким отражением. добротность резонатора большая и спектральная ширина моды может быть очень узкой, вплоть до единиц . Ввиду наличия тепловых флуктуаций длины резонатора типичная ширина моды составляет 10^5 . Количество генерируемых мод определяется шириной спектра усиления активной среды. Эта ширина складывается из естественной ширины линии излучения атомов неона и доплеровского уширения, вызванного тепловым движением атомов. При температуре 400 ширина по полувысоте спектра излучения газообразного неона равна $1.5 \cdot 10^9$.

Вследствие тепловых флуктуаций длина резонатора меняется, в результате чего моды "переползают"с одного края контура на другой, там исчезают, а на другом краю рождаются новые. Таким образом температура нестабильность приводит к медленным изменениям амплитуд колебаний в лазерных модах и числа самих мод.

Рисунок 1: Осциллограмма сигналов фотодиода

Видность интерференционной картины. Если в плоскости наблюдения две плоские волны с длиной волны λ_0 сходятся под малым углом α , то наблюдается интерференционная картина в виде последовательности темных и светлых полос с расстоянием между ними:

$$\Delta x = \frac{\lambda_0}{\alpha} \tag{2}$$

Для оценки чёткости интерференционной картины в окрестности некоторой точки используют параметр видимости:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности света интерференционной картины вблизи выбранной точки. Человеческий глаз может уверенно различать чередование светлых и темных полос при $V \ge 0, 1$.

Пусть интерферируют две волны с амплитудами A_m и B_m . Если в точке наблюдения разность фаз между волнами равна $k_m l$, где k_m – волновое число, l – разность хода, то интенсивность света в этой точке:

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos(k_m l) \tag{4}$$

В максимуме интенсивность $I_{max} = (A_m + B_m)^2$, в минимуме $I_{min} = (A_m - B_m)^2$. Отсюда видность:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = (B_m/A_m)^2$.

Рассмотрим влияние спекрального состава на видность интерференционной картины:

$$V_2(l) = \frac{\sum_{n=1}^{\infty} A_n^2 cos(\frac{2\pi\Delta\nu nl}{c})}{\sum_{n=1}^{\infty} A_n^2}.$$
 (6)

Введем также поправку к видности, связанную с углом между плоскостями поляризации падающих волн:

$$V_3 = \cos\beta,\tag{7}$$

где β — угол между плоскостями поляризации. Кроме того, по данным осциллограммы (рис.1) можно определить

$$\delta = \frac{h_1}{h_2} \tag{8}$$

$$V = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

где V — полная видимость. Если имеют место все три фактора уменьшения видимости: неравенство амплитуд, несовпадение поляризаций и разная оптическая задержка между интерферирующими пучками, то:

$$V = V_1 \cdot V_2 \cdot V_3. \tag{10}$$

3 Экспериментальная установка

Экспериментальная установка представляет собой интерферометр Майкельсона, смонтированный на вертикально стоящей плите. Источником света служит гелий-неоновый лазер ($\lambda_0=632,8$). Пучок лазерного излучения отражается от зеркала З и проходит через ромб Френеля(РФ).

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика,

Рисунок 2: Схема экспериментальной установки

выходит из интерферометра, попадая на зеркало 3_3 и фотодиод $\Phi Д$. При этом можно вращать Π_1 , изменяя плоскость поляризации.

Пучок 2 проходит линзу Π , поляроид Π_2 , отражается от зеркала \Im_2 , снова проходит Π_2 , линзу Π и делительный кубик, выходит из интерферометра, попадает на зеркало \Im_3 и далее на фотодиод Φ Д. Таким образом, от зеркала \Im_3 под небольшим углом друг к другу идут на фотодиод два пучка, проходящие через разные плечи интерферометра. Для питания усилителя сигнала фотодиода и управления пьезокерамикой используется блок питания Π .

4 Обработка результатов

4.1 Влияние поляризации.

Настроив поляроид на минимальную видимость и введя дополнительный поляроид, мы получаем интерференционную картину при его поворотах. Интенсивность излучения при вращении поляроида меняется, что говорит о его не хаотической поляризации. При вращении также изменяется интерференционная картина, что говорит о линейной или круговой поляризации.

4.2 Зависимость видности от угла β поворота поляроида.

β , град.	β , рад.	$\cos(\beta)$	h1, дел	h2, дел	h3, дел	h4, дел	V1	V	V3
90	1,57	0,00	0,1	2,3	1,8	3,1	0,40	0,27	0,66
80	1,40	0,17	0,2	2,3	1,6	3,2	0,54	0,33	0,61
70	1,22	0,34	0,2	2,3	1,6	3,8	0,54	0,41	0,75
60	1,05	0,50	0,3	2,4	1,2	4,2	0,63	0,56	0,88
50	0,87	0,64	0,4	2,4	1,0	4,8	0,70	0,66	0,94
40	0,70	0,77	0,6	2,4	0,8	5,2	0,80	0,73	0,92
30	0,52	0,87	1,2	2,3	0,6	6,5	0,95	0,83	0,88
20	0,35	0,94	1,5	2,2	0,8	7,0	0,98	0,79	0,81
10	0,17	0,98	2,0	2,3	1,2	7,6	1,00	0,73	0,73
0	0,00	1,00	2,1	2,3	1,6	7,4	1,00	0,65	0,65

Таблица 1: Измерения зависимости видности от угла

Рисунок 3: График зависимости $\nu(\cos^2\beta)$

Исследуем зависимость видности интерференционной картины от угла β поворота поляроида Π_1 при нулевой разности хода $(V_2=1)$. Для этого измерим величины h_1,h_2,h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу (1) и построим график $V_3(\beta) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1}$. Значения для δ, V, V_1 , получим из формул выше. Полученная зависимость имеет вид $\cos(\beta)^2$. Таким образом, выполняется закон Малюса, следовательно полярирация наших волн линейная.

4.3 Зависимость видности ν_2 от координаты x блока

Теперь установим β на максимальную видность и будем перемещать блок B_2 , тем самым изменяя дальность хода x. Аналогично предыдущему пункту измерим величины h_1,h_2,h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу (2) и построим график $V_2(x)=\frac{V}{V_1}=\frac{h_4-h_3}{h_4+h_3}\cdot\frac{h_2}{h_1}$. Значения для δ,V,V_1 получим из формул выше, $V_3=1(\beta=0)$.

По полученному графику определим примерный размер резонатора лазера: наблюдается 2 максимума по краям области измерения: $x_1 \approx (10 \pm 1)$ см и $x_2 \approx (79 \pm 1)$ см:

$$L = \frac{1}{2}(x_2 - x_1) = (35.0 \pm 1.4) \text{ cm}$$
 (11)

Тогда межмодовое расстояние:

$$\Delta \nu_m = \frac{c}{2L} = (4, 3 \pm 0, 2) \cdot 10^8 \, \Gamma_{\rm II}$$

Полуширина первого максимума:

$$l_{1/2} = (80 - 68) \text{ cm} = (12.0 \pm 1.4) \text{ cm}$$

Тогда диапазон частот, в котором происходит генерация продольных мод оценивается выражением:

$$\Delta F = \frac{0.6c}{l_{1/2}} = (15 \pm 2) \cdot 10^8 \ \Gamma$$
ц

h_1	h_2	h_3	h_4	L	V	δ	V_1	V_2
2,1	2,3	1,6	7,4	13	0,644	0,91	0,999	0,65
1,9	1,6	1,4	5,6	16	0,600	1,19	0,996	0,60
1,8	3,1	2,4	7,6	18	0,520	0,58	0,964	0,54
1,8	2	2,5	5,4	20	0,367	0,90	0,999	0,37
1,8	1,9	2,6	5	22	0,316	0,95	1,000	0,32
1,8	0,9	2,2	3,4	24,5	0,214	2,00	0,943	0,23
1,8	2	3,6	4,2	28	0,077	0,90	0,999	0,08
1,8	2	3,2	4,1	31	0,123	0,90	0,999	0,12
1,9	1,7	3,3	3,8	33	0,070	1,12	0,998	0,07
1,9	2,8	4,2	5,4	36	0,125	0,68	0,981	0,13
1,9	3,2	4,6	5,5	37	0,089	0,59	0,967	0,09
1,9	2,8	4,2	5,05	35	0,092	0,68	0,981	0,09
2	3,2	4,6	5,6	39	0,098	0,63	0,973	0,10
2	3,2	4,6	5,8	42	0,115	0,63	0,973	0,12
2	3	4	5,8	45	0,184	0,67	0,980	0,19
2	3,8	5,4	6,2	48	0,069	0,53	0,951	0,07
2	3,8	5,4	6,3	51	0,077	0,53	0,951	0,08
2	3,6	5,2	6,1	54	0,080	0,56	0,958	0,08
2	2	3,7	4,3	57	0,075	1,00	1,000	0,08
2	4,8	6,5	7,2	59	0,051	0,42	0,911	0,06
2	3,2	5	5,4	61	0,038	0,63	0,973	0,04
2	2,1	3,8	4,6	64	0,095	0,95	1,000	0,10
2	2,8	4	5,8	66	0,184	0,71	0,986	0,19
2	4,1	5	6,2	67	0,107	0,49	0,939	0,11
2	3	3,8	6	68	0,224	0,67	0,980	0,23
2	3,1	3,1	7	70	0,386	0,65	0,976	0,40
2	3,4	3	8	71,5	0,455	0,59	0,966	0,47
2	2,8	2,3	74	73	0,940	0,71	0,986	0,95
2	2,6	2	7,4	75	0,574	0,77	0,991	0,58
2	2,4	1,8	7,3	77	0,604	0,83	0,996	0,61
2	3,1	2	8,2	79	0,608	0,65	0,976	0,62
2	2,1	1,8	6,6	81	0,571	0,95	1,000	0,57
2	0,8	1,6	4,1	83	0,439	2,50	0,904	0,49
2	0,4	1,8	3,2	86	0,280	5,00	0,745	0,38

Таблица 2: Измерения зависимости видности от дальности хода

Оценим число генерируемых лазером продольных мод:

$$n \approx 1 + 1.2 \frac{L}{l_{1/2}} = 4.5 \pm 0.6$$

Рисунок 4: График зависимости $\nu_2(x)$

5 Вывод

- В первой части работы исследоалась поляризация волн, используемых в данной установке. Было установлено, что поляризация линейная или круговая.
- Была исследована зависимость видности интерференционной картины от угла поворота одного из поляроидов. Зависимость приближается функцией $\cos^2 \alpha$, что означает, что поляризация излучения линейная.
- В ходе исследования зависимости видности от разности хода интерферирующих лучей в интерферометре Майкельсона, было оценено расстояние L между зеркалами лазера, межмодовое расстояние: $L=(35.0\pm1.4)$ см, $\Delta\nu_m=(4,3\pm0,2)\cdot 10^8$ Гц.
- Была произведена оцененка задержки $l_{1/2}$. По этим данным был получен диапазон частот ΔF , в котором происходит генерация продольных мод, и приблизительное число мод: $l_{1/2} = (12.0 \pm 1.4) \text{ см}, \ \Delta F = (15 \pm 2) \cdot 10^8 \ \Gamma \text{ц}, \ n = 4.5 \pm 0.6.$