

Relatório Resumo

Carga e Descarga de um condensador

Autores:

Vasco Sousa, 1221700 Rafael Araújo, 1201804 João Pinto, 1221694 José Sá, 1220612

Turma: 2DI Grupo: D

Data: 07/11/2023

Docente: Lijian Meng

Procedimento experimental

Em primeiro lugar começamos por montar o circuito da seguinte forma:

Figura 5 – Circuito a implementar para carga do condensador, C.

Com o multímetro na função de voltímetro, começamos por medir a tensão da fonte de alimentação para tensões contínuas. Em seguida, medimos a resistência R1 e medimos o condensador com o multímetro na função de medição de capacidades.

A atividade laboratorial seguinte começou com a medição da carga do condensador. Para isso, fizemos a ligação elétrica entre os pontos A e B do circuito e medimos a tensão nos terminais do condensador por cinco segundos, até que o valor estivesse estabilizado, ou seja, $V_c = V_{max}$.

Finalmente, iniciamos a análise da descarga do condensador. Para isso, montamos o circuito da seguinte maneira:

Figura 6 – Circuito a implementar para a descarga do condensador, C.

Após conectar os pontos A e B até que o voltímetro estabilizasse (V_{max}), desconectamos a conexão elétrica entre A e B. Em seguida, lemos os valores VC (t=o). Anotamos então a tensão de cinco em cinco segundos até que o condensador descarregasse totalmente.

No final, modificamos o circuito de descarga do condensador para R1 = 5 M Ω , utilizando duas resistências de 10 M Ω .

TRATAMENTO DE DADOS

Após efetuarmos todos os passos, os resultados que obtivemos foram os seguintes:

Ex6	
Tempo (s)	Tensão Vc (V) medida com o voltímetro
0	0,003
5	0.667
10	1.077
15	1.474
20	1.699
25	1.978
30	2.150
35	2.280
40	2.400
45	2.490
50	2.550
55	2.610
60	2.650
65	2.690
70	2.720
75	2.740
80	2.760
85	2.770
90	2.780
95	2.790
100	2.800
105	2.810
110	2.810
115	2.820
120	2.820

Ex10		
Tempo (s)	medida com o voltímetro	
0	5,9	
5	5.150	
10	4.080	
15	3.320	
20	2.570	
25	2.040	
30	1.628	
35	1.349	
40	1.068	
45	0.857	
50	0.697	
55	0.561	
60	0.457	
65	0.368	
70	0.300	
75	0.239	
80	0.198	
85	0.167	
90	0.151	
95	0.136	
100	0.121	
105	0.109	
110	0.099	
115	0.091	
120	0.082	
125	0.074	

Ex. 11		
	- N 14 (14)	
Tempo (s)	Tensão Vc (V) medida com o voltímetro	
0	5.900	
5	4.720	
10	3.420	
15	2.470	
20	1.420	
25	1.210	
30	0.882	
35	0.659	
40	0.483	
45	0.349	
50	0.252	
55	0.179	
60	0.144	
65	0.117	
70	0.097	
75	0.079	

Resultados e representação gráfica

Na carga do condensador

<u>12 – Qual o valor previsível (ou teórico) de queda de tensão nos terminais do condensador após a carga?</u>

R: Devido ao facto de que, quando o condensador está totalmente carregado, ele não deixa passar nenhuma carga, o que significa que a tensão da fonte é zero, o valor teórico de queda de tensão nos terminais do condensador seria de 6V.

13 – Represente graficamente os dados experimentais de Vc em função do tempo, obtidos no ponto 6, com R1=10 MΩ. Faça o ajuste aos dados representados, e apresente a equação da curva que melhor se ajuste aos valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Carga foi o seguinte:

De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear positiva.

14 – Da equação obtida determine a constante de tempo, e através de leitura no gráfico, qual a constante de tempo na carga do condensador, tal como pode observar na figura 2?

De forma a obtermos a constante de tempo na carga do condensador, calculamos utilizando a equação polinomial que obtivemos no Excel, da seguinte forma:

$$-0,0003x^{2} + 0,0558x + 0,531 = 0,632 * [(-0,0003(5x)^{2} + 0,0558(5x) + 0,531]$$

$$\iff -0,0003x^{2} + 0,0558x + 0,531 = 0,632 * [-0,0075 + 0,279x + 0,531]$$

$$\iff -0,0003x^{2} + 0,0558x + 0,0558x + 0,531 = -0,00474x^{2} + 0,176328x + 0,335592 + 0,00444x^{2}$$

$$\iff 0,00444x^{2} + (-0,120528)x + 0,195408 = 0$$

$$\iff 0,00444x^{2} - 0,120528x + 0,195408 = 0$$

$$\iff x = 25,4144$$

15 – Qual é a duração previsível da carga do condensador?

R: Durante a carga do condensador, este vai aumentado a sua tensão até que atinge o valor máximo. Como resultado, "teoricamente" espera-se que o valor da carga do condensador dure para $t=\infty$.

Na descarga do condensador

16 – Represente graficamente os dados experimentais obtidos no ponto 10, de Vc em função do tempo, dos dados para R1 = 10 MΩ. Faça o ajuste aos dados representados, e apresente a equação da curva que melhor se ajuste aos valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Descarga, quando $R_1 = 10 \text{ M}\Omega$, foi o seguinte:

De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear negativa.

17 – Da equação obtida determine a constante de tempo para este circuito.

Cálculo através da equação exponencial:

$$5,0719*e^{-0,038x} = (5,0719*e^{-0,038*0})*0,368$$

$$\iff 5,0719*e^{-0,038x} = 5,0719*0,368$$

$$\iff e^{-0,038x} = 0,368$$

$$\iff -0,038x = ln(0,368) \iff x = \frac{ln(0,368)}{-0,038} \iff x = 26,31$$

Cálculo através do declive da equação da reta de ajuste:

Equação da reta de ajuste :	y = -0,0376x + 1,6237
declive = -1/tau	-0,0376
constante de tempo =	26,60

<u>18 – Estime a constante de tempo na descarga do condensador, obtida pela representação</u> gráfica anterior (no ponto 16), como se pode observar na figura 4.

R: De acordo com a visualização da Figura 2, através da definição da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor τ = 28,5 segundos.

19 – Junte ao gráfico criado no ponto 16, os dados obtidos no ponto 11, quando $R_1 = 5 M\Omega$. Faça o ajuste aos dados representados desta nova curva e apresente a equação da curva que melhor se ajuste a estes valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Descarga, quando $R_1 = 10 \text{ M}\Omega$, foi o seguinte:

De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear negativa.

<u>20 – Da equação obtida nesta nova representação gráfica, determine a constante de tempo de descarga para este circuito.</u>

Cálculo através da equação exponencial:

$$5,5808 * e^{-0,06x} = (5,5808 * e^{-0,06*0}) * 0,368$$

$$\iff 5,5808 * e^{-0,06xx} = 5,5808 * 0,368$$

$$\iff e^{-0,006x} = 0,368$$

$$\iff -0,06x = ln(0,368) \iff x = \frac{ln(0,368)}{-0,06} \iff x = 16,66$$

Cálculo através do declive da equação da reta de ajuste:

Equação da reta de ajuste :	y = -0,0647x + 3,8245
declive = -1/tau	-0,0647
constante de tempo =	15,46

<u>21 – Estime a constante de tempo de descarga do condensador, nesta nova representação gráfica, como se pode observar na figura 4.</u>

R: De acordo com a visualização da Figura 3, através da definição da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor τ = 18,5 segundos.

Questões

1 – Qual o valor previsível de queda de tensão nos terminais do condensador no início da descarga? De notar que a resistência de descarga não é apenas R1, mas o paralelo de R1 com Ri, considerando-se assim o efeito de carga do voltímetro.

$$egin{aligned} Vt(condensador) &= (rac{(R_1 + R_i)}{(R_1 + R_i) + 10*10^3}*6 = \ &= rac{(5*10^6)}{5*10^6 + 10*10^3}*6 = 5,988V \end{aligned}$$

R: A tensão esperada é de 6,oV sabendo que a descarga do condensador começa no momento t = os e que a resistência equivalente é de $5M\Omega$, a resistência interna do voltímetro é de $10M\Omega$. Se repararmos o condensador no início da descarga, ele está totalmente carregado, o que significa que não permite passar nenhuma corrente, o circuito é como um circuito aberto. Através da lei das malhas, sabemos que a soma das tensões em cada resistência é igual à soma das f.e.m., então podemos provar que o condensador tem, aproximadamente, 6,oV.

2 – Compare os valores das constantes de tempo obtidas na descarga do condensador nas duas situações experimentais quando R_1 = 10 $M\Omega$ e R_1 = 5 $M\Omega$, obtidas pelas equações das representações e através da leitura nos gráficos construídos. E compare com a situação ideal calculada (os valores teóricos). Comente as diferenças obtidas entre as constantes de tempo das diferentes situações.

Para $R_1 = 10M\Omega$

$$Req = (\frac{1}{5*10^6})^{-1} + 10*10^3$$

$$t3 = Req * C = 5.01*10^6 * 4.7*10^{-6}$$

$$t1 = 26,31s \; (ex17)$$

 $t2 = 28,50s \; (ex18)$
 $t3 = 23,55s$

$$\begin{split} e_{\%1} &= \frac{|T1 - T2|}{T2} * 100 = 7,68\% \\ e_{\%2} &= \frac{|T1 - T3|}{T3} * 100 = 11,72\% \\ e_{\%3} &= \frac{|T2 - T3|}{T3} * 100 = 21,02\% \end{split}$$

Para $R_1 = 5M\Omega$

$$Req = (\frac{1}{3,3*10^6})^{-1} + 10*10^3$$

$$t3 = Req * C = 3,31*10^6*4,7*10^{-6}$$

$$t1 = 16,66s (ex20)$$

 $t2 = 18,5s (ex21)$
 $t3 = 15,56s$

$$\begin{split} e_{\%1} &= \frac{|T1 - T2|}{T2} * 100 = 9,95\% \\ e_{\%2} &= \frac{|T1 - T3|}{T3} * 100 = 7,07\% \\ e_{\%3} &= \frac{|T2 - T3|}{T3} * 100 = 18,90\% \end{split}$$

R: Após a realização dos cálculos é possível concluir que tanto para $R_1 = 10M\Omega$, como para $R_1 = 5M\Omega$, os valores experimentais/calculados são parecidos entre si, no entanto quando se trata da comparação dos mesmos com o valor teórico, já se nota uma maior discrepância nos valores. Isto deve-se ao facto de existirem diferentes fatores que fazem com que o valor teórico varie tanto, como é o caso do multímetro que faz com que ao ler a queda de tensão em paralelo com o circuito, este afete o valor do τ .

No entanto, vale a pena ressaltar que a resistência interna do multímetro não é a única razão para as diferenças entre os valores teóricos e os experimentais. Outros fatores, como variações nos componentes e imprecisões nas medições, também podem contribuir para as diferenças observadas. Portanto, ao fazer medidas de circuitos RC, é importante considerar e compensar a resistência interna do multímetro e minimizar outras fontes de erro.

Observações

- Nos pontos 14, 18 e 21, devido à ausência de funcionalidades no Excel para realizar cálculos de tangente no ponto x= 0, foi necessário recorrer à construção manual da reta tangente nesse ponto. No entanto, essa abordagem manual pode acarretar imprecisões que afetam a determinação das constantes de tempo do nosso estudo.
- Devido à constante flutuação dos valores de tensão, é relevante considerar que as alíneas 6, 10 e 11 podem conter uma margem de erro. Essa margem de erro é uma consequência da dificuldade em observar com precisão esses valores em intervalos de 5 segundos, uma vez que a tensão está sujeita a variações contínuas.