Topic 2: DIMENSIONALITY REDUCTION

CMSC 35400/STAT 37710 Machine Learning Risi Kondor, The University of Chicago

In ML data points are often represented as high dimensional real valued vectors

$$\mathbf{x} = (x_1, x_1, x_3, \dots, x_d)^{\top} \in \mathbb{R}^d.$$

The individual dimensions are called **features** (attributes).

Example: Pixels of an image, a music file, etc.

But is the problem intrinsically high dimensional??? Often we can convert high dimensional problems to lower dimensional ones without losing too much information.

- Real world data often lie on or near lower dimensional structures (manifolds). (Really?)
 - Variables (features) may be correlated or dependent.
 - Physical systems have a small number of degrees of freedom (e.g., pose and lighting in Vision).
- IDEA: find the manifold and restrict learning algorithm to it.

Advantages:

- Visualization: humans can only imagine things in 2D or 3D.
- Computational efficiency: learning algorithms work faster in low dimensions.
- Better performance: the projection might eliminate noise.
- **Interpretability:** the vectors spanning the subspace might have interesting interpretations.

Dimensionality reduction is a typical unsupervised learning task. Two types:

- Linear:
 - Principal Component Analysis (PCA)
- Nonlinear ("manifold learning"):
 - Multidimensional scaling
 - Locally linear embedding
 - Isomap
 - Laplacian Eigenmaps
 - Stochastic neighbor embedding
 - o etc.

Fact 1

If a matrix $A \in \mathbb{R}^{d \times d}$ is symmetric, then its (normalized) eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$ form an orthonormal basis for \mathbb{R}^d .

Note: If the eigenvalues are not distinct, then the eigenvectors are not unique. However, there is always some choice of eigenvectors which forms an orthonormal basis.

Fact 2 (Rayleigh quotient)

Let $\mathbf{v}_1,\dots,\mathbf{v}_d$ be the normalized eigenvectors of a symmetric matrix $A\in\mathbb{R}^{d\times d}$ and let $\lambda_1<\lambda_2<\dots<\lambda_d$ be the corresponding eigenvalues. Then

$$\underset{\mathbf{w} \in \mathbb{R}^d \setminus \{0\}}{\operatorname{argmin}} \ \frac{\mathbf{w}^\top A \mathbf{w}}{\|\mathbf{w}\|^2} = \mathbf{v}_1.$$

Similarly,

$$\underset{\mathbf{w} \in \mathbb{R}^d \setminus \{0\}}{\operatorname{argmax}} \ \frac{\mathbf{w}^\top A \, \mathbf{w}}{\|\mathbf{w}\|^2} = \mathbf{v}_d.$$

Principal Component Analysis

The principal directions in data

Finding the principal subspace

How can we find the most relevant subspace for the data? By finding a basis for it. The individual basis vectors are called the **principal components**.

The first principal component

Given a data set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of n vectors in \mathbb{R}^d , what is the direction that is most informative for this data?

- 1. First center the data: $\mathbf{x}_i \leftarrow \mathbf{x}_i \boldsymbol{\mu}$ where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$.
- 2. Find the unit vector p_1 that is the solution to

$$\boldsymbol{p}_1 = \arg\max_{\|\mathbf{v}\|=1} \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \cdot \mathbf{v})^2. \tag{1}$$

This vector is called the first **principal component** of the data.

Finding the first principal component

Theorem. The first principal component, $m{p}_1,$ is the eigenvector $f{v}_d$ of the sample covariance matrix

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$$

with largest eigenvalue.

Proof.

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{v})^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^\top \mathbf{x}_i) (\mathbf{x}_i^\top \mathbf{v}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}^\top (\mathbf{x}_i \mathbf{x}_i^\top) \mathbf{v} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}^\top (\mathbf{v}^\top) \mathbf{v} = \frac{1}{n} \sum_{i$$

Since $\|\mathbf{v}\|=1$, (1) is equivalent to the Rayleigh quotient optimization problem

$$\boldsymbol{p}_1 = \argmax_{\mathbf{v} \in \mathbb{R}^d \setminus \{0\}} \frac{\mathbf{v}^\top \widehat{\boldsymbol{\Sigma}} \, \mathbf{v}}{\|\mathbf{v}\|},$$

so p_1 is indeed the eigenvector \mathbf{v}_d of A with largest eigenvalue.

Finding further principal components

Recall that $\widehat{\Sigma}$ can be written as

$$\widehat{\Sigma} = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top}.$$

After we've found the first principal component $p_1 = \mathbf{v}_d$, project the data to $\mathrm{span}\,\{\mathbf{v}_1,\ldots,\mathbf{v}_{d-1}\}$. This just removes $\lambda_d\mathbf{v}_d\mathbf{v}_d^{\top}$ from the sum. So the second principal component is $p_2 = \mathbf{v}_{d-1}$, and so on.

DNA data

[Matthew Stephens, John Novembre]

 $^{14}/_{68}$

Eigenfaces

[Christopher de Coro]

Reconstruction from eigenfaces

Example: digits

These are the EVectors for the four largest EValues.

- Often the eigenvalues drop off rapidly (e.g., exponentially)
- Sometimes there is a sharp drop somewhere, called the spectral gap → natural place to put cut-off

[Source: Peter Orbanz]

Summary of PCA

Advantages:

- Finds best projection
- Rotationally invariant

Disadvantages:

- Full PCA is expensive to compute
- Components not sparse
- Sensitive to outliers
- Linear

NONLINEAR DIMENSIONALITY REDUCTION

- If the data lies close to a linear subspace of \mathbb{R}^d , PCA can find it.
- But what if the data lies on a nonlinear **manifold**? Data which at first looks very high dimensional often really has low dimensional structure.

General principle

Find a map $\phi\colon\mathbb{R}^d\to\mathbb{R}^p$ that maps the manifold to a lower dimensional Euclidean space in a way that preserves local distances as much as possible (some methods can only map individual data points not the whole of \mathbb{R}^d).

Question: Can this always be done? Depends on the topology.

Methods

- Multidimensional Scaling
- Isomap
- Locally Linear Embedding
- Laplacian Eigenmaps
- SNE, etc..

Multidimensional scaling (MDS)

Classical MDS

- Input: n data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.
- Output: n corresponding lower dimensional points $\mathbf{y}_1,\dots,\mathbf{y}_n\in\mathbb{R}^p$ (with $p\ll d$) that minimize the so-called *strain*

$$\mathcal{E}_{\text{CMDS}} = \|D - D^*\|_{\text{Frob}}^2 = \sum_{i,j} (D_{i,j} - D_{i,j}^*)^2,$$

where
$$D_{i,j} = \|\mathbf{x}_i - \mathbf{x}_j\|^2$$
 and $D_{i,j}^* = \|\mathbf{y}_i - \mathbf{y}_j\|^2$.

The Gram matrix

The **Gram matrix** of $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is the $n\times n$ positive semidefinite matrix

$$G_{i,j} = \mathbf{x}_i \cdot \mathbf{x}_j.$$

(Again, we assume that the data has been centered, i.e., $\sum_i \mathbf{x}_i = 0$.)

Jørgen Pedersen Gram 1850–1916

Exercise: Prove that if $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, then $\operatorname{rank}(G) \leq d$.

Classical MDS

Proposition 1. The CMDS problem can equivalently be written as minimizing

$$\mathcal{E} = \|G - G^*\|_{\text{Frob}}^2,$$

where G is the centered Gram matrix of $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and G^* is the Gram matrix of $\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$.

Approach:

- 1. Compute the centered Gram matrix G.
- 2. Solve $G^* = \operatorname{argmin}_{\tilde{G} \succ 0, \operatorname{rank}(\tilde{G}) \leq p} \|\tilde{G} G\|_{\operatorname{Frob}}^2$.
- 3. Find $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n \in \mathbb{R}^p$ with Gram matrix G^* .

Classical MDS

Proposition 2. Let $G=Q\Lambda Q^{\top}$ be the eigendecomposition of the Gram matrix with $\Lambda=\mathrm{diag}(\lambda_1,\ldots,\lambda_d)$ and $\lambda_1\geq\ldots\geq\lambda_d$. Then

$$\underset{\tilde{G}\succeq 0, \ \mathrm{rank}(\tilde{G})\leq p}{\operatorname{argmin}} \|\tilde{G} - G\|_{\operatorname{Frob}}^2 = Q\Lambda^*Q^\top,$$

where
$$\Lambda^* = \operatorname{diag}(\lambda_1, \dots, \lambda_p, 0, 0, \dots)$$
.

Exercise: Prove this proposition.

Gram \rightarrow Data

Proposition 3. Let $G \in \mathbb{R}^{n \times n}$ be a p.s.d. matrix of rank d with eigendecomposition

$$G = Q\Lambda Q^{\top}.$$

Let $\mathbf{x}_i = [Q\Lambda^{1/2}]_{i,*}^{\top}$. Then the Gram matrix of $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is G.

Notation:

- $M_{i,*}$ denotes the i 'th row of M .
- Given $D = \operatorname{diag}(d_1, \dots, d_m)$, $D^p := \operatorname{diag}(d_1^p, \dots, d_m^p)$.

Exercise: Prove this proposition.

Summary of Classical MDS

- 1. Compute the centered Gram matrix G (see homework for how).
- 2. Compute the eigendecomposition $Q\Lambda Q^{\top}$ of G.
- 3. Assuming $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ and $\lambda_1 \geq \dots \geq \lambda_d$, set $\Lambda^* = \operatorname{diag}(\lambda_1, \dots, \lambda_p, 0, 0, \dots)$ and $G^* = Q\Lambda^*Q^\top$.
- 4. Let $\mathbf{y}_i = [Q\Lambda^{1/2}]_{i,*}^{\top}$.

Isomap

Tenenbaum, de Silva & Langford, 2000

Isomap

- 1. Convert data into a graph (e.g., a symmetrized $\it k$ -nn graph).
- 2. Compute all pairs shortest path distances.
- 3. Use MDS to compute $\,\phi\colon\mathbb{R}^d\to\mathbb{R}^p\,$ that tries to preserve these distances.

Underlying assumptions:

- 1. Data lies on a manifold.
- Goedesic distance on manifold is approximated by distance in the graph.
- 3. The optimal embedding preserves these distances as much as possible.

Shortest path distances

Let $\mathcal G$ be a weighted graph with vertex set $\{1,2,\dots,n\}$, and a distance $(\delta_{i,j})_{i,j=1}^n$ on each edge. If i and j are not neighbors, then set $\delta_{i,j}=\infty$. If i=j, then set $\delta_{i,j}=0$.

The shortest path distance in $\mathcal G$ from i to j is

$$d(i,j) = \min_{(v_1,v_2,\dots,v_\ell) \in \mathcal{P}(i,j)} \sum_{k=1}^{\ell-1} \delta_{v_k,v_{k+1}},$$

where $\mathcal P$ is the set of paths that start at i and end at j (i.e., $v_1=i$ and $v_\ell=j$).

Shortest path distances

Proposition. The matrix D of all pairwise distances $(D_{i,j}=d(i,j))$ can be computed in $O(n^3)$ time.

Proposition. Let $D^{(k)}$ be the matrix of shortest path distances along the restricted set of paths where each intermediate vertex comes from $\{1,2,\ldots,k\}$. Then $D^{(k)}$ can be computed from $D^{(k-1)}$ in $O(n^2)$ time.

Floyd–Warshall algorithm

```
INPUT: matrix A with A_{i,j} = \delta_{i,j} as on previous slide; for k=1 to n { for i=1 to n { for j=1 to n { if (A_{i,j} > A_{i,k} + A_{k,j}) then A_{i,j} \leftarrow A_{i,k} + A_{k,j}; } } } OUTPUT: matrix A, in which A_{i,j} is shortest path distance from vertex i to j
```

Overall complexity: $O(n^3)$.

Isomap example

Isomap example

Top arch articulation

Isomap example

Properties of Isomap

- One of the first algorithms that can deal with manifolds.
- The topology must still be that of (a patch of) \mathbb{R}^p .
- Relatively efficient computation $O(n^3)$.
- Fragile: a single mistake in k-nn graph can mess up embedding.
- Not obvious how to set k.

Locally Linear Embedding (LLE)

Roweis & Saul, 2000

LLE

Again trying to find an embedding $\mathbb{R}^D \to \mathbb{R}^d$, mapping $\mathbf{x}_i \mapsto \mathbf{y}_i$. Again start with a k-nn graph based on distances in \mathbb{R}^D .

IDEA: Each point should be approximately reconstructable as a linear combination of its neighbors (locally linear property of manifolds):

$$\mathbf{x}_i \approx \sum_{j \in \text{knn}(i)} w_{i,j} \mathbf{x}_j,$$

where $(w_{i,j})_{i,j}$ is a matrix of weights. Also have constraints $\sum_j w_{i,j} = 1$.

Now find an embedding that preserves these weights, i.e., $\,n\,$ vectors ${\bf y}_1,\dots,{\bf y}_n\in\mathbb{R}^p$, such that

$$\mathbf{y}_i pprox \sum_j w_{i,j} \mathbf{y}_j$$

for the same matrix of weights.

Phase 1: find the weights

Do this separately for each $\,i$. Formulate it as minimizing

$$\Phi = \left\| \mathbf{x}_i - \sum_{j \in \text{knn}(i)} w_{i,j} \mathbf{x}_j \right\|^2 \quad \text{s.t.} \quad \sum_j w_{i,j} = 1.$$

Solution. Thanks to the constraint,

$$\Phi = \left\| \sum_{j \in \text{knn}(i)} w_{i,j} (\mathbf{x}_i - \mathbf{x}_j) \right\|^2 = \mathbf{w}^\top K^{(i)} \mathbf{w},$$

where $K^{(i)}$ is the local Gram matrix, $K^{(i)}_{j,j'}=(\mathbf{x}_i-\mathbf{x}_j)^{\top}(\mathbf{x}_i-\mathbf{x}_j)$, and $\mathbf{w}=(w_j)_{j\in \mathrm{knn}(i)}$.

Phase 1: find the weights

The local optimization problem is

minimize
$$\mathbf{w}^{\top} K^{(i)} \mathbf{w}$$
 s.t. $\mathbf{w}^{\top} \mathbf{1} = 1$.

Introduce the Lagrangian:

$$\mathcal{L}(\lambda) = \mathbf{w}^{\mathsf{T}} K^{(i)} \mathbf{w} - \lambda (\mathbf{w}^{\mathsf{T}} \mathbf{1} - 1)$$

and solve

$$\frac{\partial}{\partial w_i} \mathcal{L}(\mathbf{w}) = \left[2K^{(i)}\mathbf{w} - \lambda \mathbf{1} \right]_j = 0 \qquad j \in \text{knn}(i)$$

$$\mathbf{w} = \lambda (K^{(i)})^{-1} \mathbf{1}$$
 enforcing constraints: $\mathbf{w} = \frac{(K^{(i)})^{-1} \mathbf{1}}{\|(K^{(i)})^{-1} \mathbf{1}\|_{1}}$.

Phase 2: find the $oldsymbol{y}_i$'s

Now minimize (w.r.t. y_1, \dots, y_n)

$$\Psi = \sum_{i} \| \mathbf{y}_{i} - \sum_{i} w_{i,j} \mathbf{y}_{j} \|^{2} \quad s.t. \quad \sum_{i} \mathbf{y}_{i} = 0 \quad \frac{1}{n} \sum_{i} \mathbf{y}_{i} \mathbf{y}_{i}^{\top} = I.$$

Solution.

$$\Psi = \sum_{i,j} \mathbf{y}_i^\top M \mathbf{y}_j \dots$$

