Kevin Yuan

CSC332-Activity 4

Let N = 5 because there are 5 processes and M = 4 because there are 4 resources. As well as Work = Availability.

From using the banker's algorithm, we can solve if the state is safe or not by using Need = Max – Allocation. Thus,

 $T_0 = > 2431 - 0120 = 2311$

 $T_1 => 2424-0112=2312$

 $T_2 => 3651 - 1240 = 2411$

 $T_3 => 1262 - 3120 = 1858$

 $T_4 => 3112 - 1001 = 2111$

	Allocation Matrix	Max	Need	
	ABCD	ABCD	ABCD	
To	0120	2 4 3 1	2 3 1 1	
T ₁	0112	2424	2312	
T_2	1240	3651	2 4 1 1	
T_3	3 1 2 0	1262	1858	
T ₄	1001	3112	2 1 1 1	

A) Available = 2223

Now we check if Need <= Availability, then available = available + allocation.

We will start with $T_4 \rightarrow 2223 - 2111 = 0112$ remaining.

T4 will release all resources to $T_0 \rightarrow 3112 + 0112 = 3224$

Then, we will subtract T_0 to available -> 3224 - 2311 = 0913

Then, we add T_0 will release all resources -> 0913 + 2431 = 3344

Then, we subtract T_1 to the current available resources -> 3344 - 2312 = 1032

Then, T_1 will release all its resources -> 1032 + 2424 = 3456

Then, its T_2 time-> 3456 - 2411 = 1045

Now, we release $T_2 -> 1045 + 3651 = 4696$

Finally, its T_3 time -> 4696 - 1858 = 2838

And now we release $T_3 -> 2838 + 1262 = 4100$

So, we get a safe state and the order of execution is T_4, T_0, T_1, T_2, T_3

It is taking way too long to type everything, so I have decided to do the rest by handwriting the rest.

Keyin Yuan Activity 4 B) Authory : (4,4,1,1)

add allower of Ty to correct avallable

Availble = (44,1,1) + (1,40,1) = (54,1,2)

This satisfy the need of Ti so we can add the allocation of T, to current Available

(5,4,1,2)+(0,1,1,2)=(5,5,2,4)

This satisfy the need of to, so lets add the allocation of To to current available

(5,5,2,4)+(0,1,2,0)=(5,6,6,4)

because the above askithble, we law it as satisfy Tz and Tj so we can say we have a safe sequence, and the safe segunce is

Ty, T1, Tg, T2, T3

C) Available = (3,0,1,4)

we cannot satisfy the need of any thread so the state is unsafe.

d.) Available = (1,5,2,2)

add allocation accepted and of T3 to houldk resources

(1,5,2,2)+(3,1,2,0)=(4,6,4,2)

iris satisfy the need of ty to avaliable resucces, now we can add the allocation of Ty

(4,6,4,2)+(1,0,0,1) (5,6,4,3)

is in a safe stak. and so the sequence can be \$T3, T4, T6, T, T2