LISTA DE EXERCÍCIOS - Tese de Church, Computabilidade e Complexidade

1. Seja $M = (K, \Sigma, \delta, s)$, em que $K = \{q_0, q_1\}$, $\Sigma = \{a, \#\}$, $s = q_0$, e δ é fornecido pela tabela abaixo:

q	σ	$\delta(q,\sigma)$
q_0	a	$(q_1, \#)$
q_0	#	(h, #)
q_1	a	(q_0, a)
q_1	#	(q_0, R)

- a) Construa uma gramática para realizar a mesma computação que esta máquina de Turing.
- b) Exiba uma configuração de parada desta máquina partindo de $(q_0, \underline{a}a)$, e a correspondente derivação usando a gramática construída na parte a).
- c) Idem anterior, com a configuração $(q_0, \#a\underline{a})$.
- 2. Seja M = ($\{q_1, q_2\}$, $\{\#, I\}$, δ , q_2), em que $a_1 = \#$, $a_2 = I$, e δ é fornecido pela tabela abaixo:

q	σ	$\delta(q, \sigma)$
$\overline{q_1}$	#	(q_1, L)
q_1	I	$(q_2, \#)$
q_2	#	(q_2, L)
q_2	I	(h, I)

- a) Calcule $\rho(M)$
- b) Idem para $\rho(\text{#II#})$.
- 3. Prove que a classe de linguagens Turing-aceitáveis é fechada sobre união e interseção (foi demonstrado que não é fechada sobre complementação através da linguagem \overline{K}_1).
- 4. Prove que todo conjunto finito é Turing-decidível.
- 5. Uma máquina de Turing M é dita "em um ciclo" se há alguma configuração C tal que (s, #w#) $\bigsqcup_M ^* C \bigsqcup_M ^+ C$ (onde $\bigsqcup_M ^+$ indica pelo menos um passo de computação). Mostre que se $L \subseteq \Sigma^*$ é Turing-aceitável, então L é aceita por uma máquina de Turing que não entra em um ciclo com qualquer entrada $w \in \Sigma^*$.
- 6. Mostre que f:{I, c}*→ {I, c}*, onde f(w)=ε se w≠ ρ(M) para alguma máquina de Turing M, ou f(w)= ρ(M') se w= ρ(M) para alguma máquina de Turing M, e M' é alguma máquina de Turing que pára nas mesmas entradas de M e que o número de estados de M' é o menor possível. (Logo, não existe um algoritmo para minimizar o número de estados de uma máquina de Turing).
- 7. Mostre que se L é livre de contexto então L $\in \mathscr{D}$.
- 8. Mostre que a linguagem L= $\{\rho(M) \ \rho(w): a \text{ máquina de Turing determinística } M \text{ pára com a entrada w após no máximo } | w^2 | \text{ passos} \} \in \mathscr{P}$.