Problem 1

Изврат \mathbb{N} 1. Уравнения и линеаризации те же. В приблизительном решении менее настойчиво толкают лианеризацию, выкинут один из графиков в виду ненадобности.

Задача № 1

Условие: Миномет установлен у основания некоторой горы под углом $\alpha = 1,5$ радиана к горизонту. Минометный расчет ведет записи о том, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

v_0 , м/с	10	14	18	22	26	30	34	38	42	46
<i>l</i> , м	0,710576	1,611942	2,85057	4,45474	6,48101	8,9838	12,0195	15,6393	19,879	24,7493
$v_0, { m m/c}$	50	54	58	62	66	70	74	78	82	
<i>l</i> , м	30,2305	36,2765	42,8294	49,8405	57,2941	65,2363	73,8201	83,4179	95,0382	

Решение: Сопротивлением воздуха при решении задачи пренебрегаем. Введем систему координат, как на рис. 1.1. Рассмотрим движение снаряда, выпущенного из начала координат со скоростью v_0 под углом α к горизонту. Его координаты при таком движении зависят от времени по законам $x(t) = v_0 t \cos \alpha$ и $y(t) = v_0 t \sin \alpha - gt^2/2$ соответственно. Выразив tиз первого уравнения и подставив во второе, получим уравнение траектории:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (1)

вертикальна. Миномет расположен в начале координат.

Далее приведем два способа решения: приближенный в общем виде и точный численный.

1. Приближенное решение.

Решим задачу приближенно, не основываясь на численных методах. Перейдем к полярным координатам (l,φ) . Координаты точек падения снаряда $x=l\cos\varphi$ и $y=l\sin\varphi$. Подставим их в уравнение (1) и разделим обе его части на x:

$$\operatorname{tg}\varphi = \operatorname{tg}\alpha - \frac{gl\cos\varphi}{2v_0^2\cos^2\alpha},$$

откуда, с использованием тождества $\lg x - \lg y = \frac{\sin(x-y)}{\cos x \cos y}$ получим

$$\sin(\alpha - \varphi) = \frac{gl\cos^2\varphi}{2v_0^2\cos\alpha}.$$
 (2)

Такое уравнение невозможно решить стандартными способами, оно приводится к уравнению четвертой степени, которое решать безнадежно.

Попробуем тогда найти приближенное решение. Элементарными преобразованиями уравнение (2) приводится к виду

$$\frac{\sin(\alpha - \varphi)}{\cos^2 \varphi} = \frac{gl}{2v_0^2 \cos \alpha}.$$

График зависимости левой части от переменной изображен на рис. 1.3. Так как во всех 19 случаях величина $\varepsilon = gl/2v_0^2\cos\alpha$ меньше 1 (убедитесь сами), то уравнение имеет единственный корень, близкий к $\pi/2$ (он соответствует пересечению изображенного графика с прямой $y=\varepsilon$). Так

как и угол α близок к $\pi/2$, то будем считать углы α и φ близкими между собой. А именно, применим приближения $\sin(\alpha-\varphi)\approx\alpha-\varphi$ и $\cos\varphi=\sin(\pi/2-\varphi)\approx\pi/2-\varphi$. Уравнение (2) примет вид

$$\alpha - \varphi = \frac{gl}{2v_0^2 \cos \alpha} \left(\frac{\pi}{2} - \varphi\right)^2,$$

которое легко привести к виду

$$q\varphi^2-\varphi\left(q\pi-1\right)+\left(\frac{q\pi^2}{4}-\alpha\right)=0,\quad q=\frac{gl}{2v_0^2\cos\alpha}.$$

Получили квадратное уравнение, корни которого

$$\varphi_{1,2} = \frac{1}{2q} \left(q\pi - 1 \pm \sqrt{(q\pi - 1)^2 - q\pi^2 + 4\alpha} \right).$$

Рис. 1.3. График $y(\varphi) = \sin(\alpha - \varphi)/\cos^2 \varphi$, где $\alpha = 1,5$ рад.

Во всех случаях искомый корень — с плюсом перед

радикалом (второй корень не подходит, так как он не соответствует примененным приближениям). В таблице представлены решения этого уравнения для всех случаев, представленных в условии, в порядке их перечисления. Как далее выяснится, ошибка по сравнению с точным решением $\Delta \varphi = 0.001^{\circ}$.

$\varphi, ^{\circ}$	85,7915	85,7645	85,7517	85,7419	85,7326	85,7229	85,7126	85,7018	85,6907
85,6797	85,6695	85,6604	85,6528	85,6466	85,6416	85,6373	85,6328	85,6266	85,6151

Рис. 1.4. График поверхности горы по точкам (не в масштабе). Зеленым изображена поверхность горы, другими цветами изображены траектории снарядов. Справа приведен график в масштабе.

По полученным данным был построен график¹, см. рис. 1.4. Траектории снарядов кажутся настолько прижатыми к поверхности из-за малой разности углов α и φ .

По полученным данным полярные углы φ всех точек близки, то есть форма горы близка к линейной. Однако в пределах погрешности можно утверждать, что гора выпукла вверх. Наилучшая величина для угла наклона горы — среднее этих величин²: $\overline{\varphi}=85,69^\circ$. Отличие этого ответа от полученного точным способом вызвано не ошибкой приближения, а различными методами усреднения. Высота горы $H=l_{19}\sin\varphi_{19}=94,7601$ м.

2. Точное решение.

Пусть снаряд упал в точке (x,y). Тогда эта пара точек удовлетворяет уравнению (1). Также, из теоремы Пифагора следует уравнение:

$$x^2 + y^2 = l^2. (3)$$

Подставив y из (1) в (3), получим:

$$x^{2} \left(1 + \left[\operatorname{tg} \alpha - \frac{gx}{2v_{0}^{2} \cos^{2} \alpha} \right]^{2} \right) = l^{2}$$
 (4)

Получили уравнение четвертой степени. Ввиду технических сложностей точного решения его решили численно при помощи программы $Mathematica^3$. Каждому значению x найдено соответствующее значение координаты y в соответствии с уравнением (3). По полученным данным была составлена таблица (ее элементы перечислены в порядке их предоставления в таблице из условия):

x, M	0,0521	0,1196	0,2111	0,3307	0,4822	0,6699	0,8985	1,1720	1,4936	1,8642
<i>y</i> , м	0,7086	1,6150	2,8427	4,4425	6,4631	8,9588	11,9859	15,5953	19,8228	24,6790
x, M	2,2824	2,7445	3,2460	3,7827	4,3534	4,9617	5,6203	6,3601	7,2650	
<i>y</i> , м	30,1442	36,1725	42,7062	49,6967	57,1285	65,0473	73,6058	83,1751	94,7601	

За высоту горы примем высоту наивысшей точки, в которую попал снаряд: $H=94{,}7601~\mathrm{m}.$

Предполагая линейную зависимость y(x), найдем наклон этой горы и оценим его погрешность. Погрешность исходных величин по условию не задана, поэтому их считаем определенными с достаточной точностью. Воспользуемся методом наименьших квадратов. Пусть уравнение поверхности горы имеет вид y=kx. Будем минимизировать сумму⁴

$$S = \sum (y_i - kx_i)^2,$$

где суммирование ведется по всем i от 1 до n=19 — количество измерений. Так как единственным параметром является k, то необходимо выполнение условия dS/dk=0. Продифференцировав, получим:

$$\sum 2x_i \left(y_i - kx_i \right) = 0,$$

откуда

$$k = \frac{\sum x_i y_i}{\sum x_i^2}. (5)$$

 $^{^{1}}$ На самом деле он построен по данным точного решения. Впрочем, невооруженным глазом это различие не заметно.

²На самом деле правильно усреднять не углы, а их тангенсы, как во втором случае.

 $^{^3}$ Имеется в виду программа компании Wolfram Research, Inc., см. www.wolfram.com/mathematica

 $^{^4}$ Метод подробно описан в книге Squires, G.L. *Practical physics*. $4^{\rm th}$ ed. Cambridge University Press, 2001, см. формулы (4.34) и (4.35)

Погрешность оцениваем по формуле

$$\Delta k \approx \sqrt{\frac{1}{n-1} \frac{\sum (y_i - mx_i)^2}{\sum x_i^2}} = \sqrt{\frac{1}{n-1} \frac{\sum x_i^2 \sum y_i^2 - (\sum x_i y_i)^2}{(\sum x_i^2)^2}}.$$
 (6)

По формулам (5) и (6) получаем $k=13,10\pm0,01$. Угол наклона горы $\overline{\varphi}=\arctan k=(85,636\pm0,004)^\circ$. Погрешность оцениваем по формуле

$$\Delta \overline{\varphi} = \Delta k \frac{d\overline{\varphi}}{dk} = \frac{\Delta k}{1 + k^2}.$$

Такое резкое уменьшение относительной погрешности связано с тем, что функция арктангенса растет очень медленно при аргументах, близких к $\pi/2$. В ответе приведем значения, полученные точным методом.

Ответ: Высота H=94,7601 м, форма близка к наклонной плоскости (с небольшой выпуклостью вверх), образующей угол $\overline{\varphi}=(85,636\pm0,004)^\circ$ с горизонтом.