IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF GEORGIA ROME DIVISION

FILED IN CLERK'S OFFICE

OCT - 6 2003

IN RE: TRI-STATE CREMATORY LITIGATION

DOCKET NUMBER: 1467

Deputy Clark

PLAINTIFFS' RULE 26(a)(b) EXPERT DISCLOSURE OF AI ENVIRONMENTAL CONSULTING SERVICES

-1-

Plaintiffs disclose Luis Llorens, Bruno Ferraro and Douglas W. Bauman as testifying expert witnesses. The names and addresses of these witnesses is contained in a report attached hereto marked Exhibit A and made a part hereof. The Curriculum Vitae of each of said witness is attached hereto marked Exhibit B1, B2 and B3 respectfully. A representative client list of disclosed witnesses is attached as Exhibit C.

-2-

The basis of the opinions of the expert witnesses is fully stated in the report attached as Exhibit A and represents the Plaintiffs' entire substantive communication from the witnesses.

-3-

Plaintiffs' have retained the firm of AI Environmental Consulting Services, 1401 Devon Road, Winter Park, Florida 32789, specifically Louis Llorens, Bruno A. Ferraro, and Douglas Bauman, each Curriculum Vitae is attached. These individuals have conducted an analysis of the following: (1) propane gas purchases made by Defendant Tri-State Crematory and/or the Marsh Defendants from Blossman Gas, P. O. Box 216, Highway 27 North, Lafayette, Georgia 30728; (2) the technical/mechanical/chemical capabilities of the Tri-State

Crematory retort, Econo-Pac Mode #43, located at Tri State Crematory and manufactured by IEE (now known as Matthews Cremation Group, P. O. Box 547796, Orlando, Florida); and (3) the number of bodies sent to Tri State Crematory as evidenced by calculations made jointly by Funeral Home Directors and Plaintiffs.

Messrs. Llorens, Ferraro, and Bauman have made accurate but not final determinations based on gas purchases and the ability/inability to properly cremate bodies based on actual gas purchases using a retort with a known consumption capacity, and known BTU to properly cremate a body together with numbers of bodies currently known. Plaintiffs expect the opinions of these experts to become more favorable to Plaintiffs as additional Defendant controlled information is available (bodies sent and gas purchase records for missing years). The analysis is currently accurate with current body counts and the methodology is accurate, and applicable to changing body counts by simple mathematic calculation.

-4-

Based upon the studies performed and outlined in the report, Plaintiffs expect these witness to opine that the Defendants purchased insufficient quantities of gas to properly cremate the numbers of bodies delivered to Tri-State Crematory during the time periods identified in the report.

Plaintiffs provided the above information to the Defendant on September 5, 2003 and herein provide Defendants with the report and Affidavit of Mr. Llorens, pursuant to file Rule 26(a)(b) to complete the record.

LIEFF, CABRASER, HEIMANN & BERNSTEIN, LLP

Elizabeth J. Cabraser Lead Counsel for Plaintiffs

Embarcadero Center West 275 Battery Street, 30th Floor San Francisco, CA 94111-3339 Telephone: (415) 956-1000 Facsimile: (415) 956-1008

Kathryn E. Barnett 3319 West End Avenue, Suite 600 Nashville, Tennessee 37203 Telephone: (615) 313-9000 Facsimile: (615) 313-9965

Plaintiffs' Steering Committee

BARRETT LAW OFFICE John W. "Don" Barrett P.O. Box 987 Lexington, Mississippi 39095 Telephone: (662) 834-2376 Facsimile: (662) 834-2628

Charles Barrett 3319 West End Avenue, 6th Floor Nashville, Tennessee 37203 Telephone: (615) 386-8391 Facsimile: (615) 386-8392

SHUMAKER, WITT, GAITHER & WHITAKER
William G. Colvin
Christy Sell
Suite 500, First Tennessee Building
701 Market Street
Chattanooga, Tennessee 37402
Telephone: (423) 265-2214
Facsimile: (423) 266-1842

Respectfully submitted,

Robert H. Smalley, III
Plaintiffs' Liaison Counsel
McCAMY, PHILLIPS, TUGGLE &
FORDHAM, LLP
P.O. Box 1105
Dalton, Georgia
Telephone: (706) 278-4499

Prepared and Signed by:

Facsimile: (706) 278-5002

Wanten M. Coppedge, Jr. Joseph T. Leman

Coppedge & Leman, P.C. 508 South Thornton Avenue Dalton, Georgia 30720 Telephone: (706) 226-0040 Facsimile: (706) 226-0050

DOFFERMYRE, SHIELDS, CANFIELD, KNOWLES & DEVINE Ken Canfield Ralph I Knowles, Jr. David Hagy Suite 1600, 1355 Peachtree Street Atlanta, Georgia 30309 Telephone: (404) 881-8900 Facsimile: (404) 881-3007 David Randolph Smith & Associates 1910 Acklen Ave.

Nashville, Tennessee 37212 Telephone: (615) 742-1775

Charles Graddick Todd Strohmeyer SIMS, GRADDICK & DODSON, P.C. 205 St. Emanuel Street Mobile, Alabama 36602 The Fleissner Firm
Phillip A. Fleissner
600 Georgia Avenue
Chattanooga, Tennessee 37402
Telephone: (423)756-3591

Robert M. Darroch MABRY & MCCLELLAND, LLP Tenth Floor, 2200 Century Parkway, N.E. Atlanta, Georgia 30345

CERTIFICATE OF SERVICE

Pleadings Served:

1. Plaintiff' Rule 26(a)(b) Expert Disclosure of Al Environmental Consulting Services

I hereby certify that I have this 30 day of September, 2003, served those listed below by postage prepaid United States ail.

Warter N. Coppedge, Jr.

J. Anderson Davis, Esquire Brinson, Askew, Berry, Seigler, Richardson & Davis, LLP P. O. Box 5513 Rome, GA 30162

Frank Jenkins, III, Esquire Jenkins & Olson, P.C. 15 South Public Square Cartersville, GA 30120 McCracken K. Poston, Jr., Esquire Attorney at Law P.O. Box 1130 62 Nance Lane Ringgold, Georgia 30736

Steve Cotter, Esquire Swift, Currie, McGhee & Hiers, LLP Atlanta, Georgia 30309-3238

EXHIBIT ATTACHMENT

(To be scanned in place of tab)

Tri-State Crematory Fuel Consumption Analysis

Prepared for:

Coppedge & Leman, P.C. 508 South Thornton Avenue Dalton, Georgia 30720

SEPTEMBER, 2003

Prepared by:

&

Friday, September 05, 2003

Joseph T. Leman Coppedge & Leman, P.C. 508 South Thornton Avenue Dalton, GA 30720

Re: Tri-State Crematory - Draft Report

Dear Mr. Leman:

Enclosed is one copy of the above referenced report. The purpose of this report was to assess the available fuel purchase data and reported human remains delivered to Tri-Sate crematory in Rock Spring, Georgia and perform a comparison between actual fuel purchases and required fuel usage based on the available deceased data.

As the data provided are incomplete, updates of Tables 1 through 3 should be made to once the data are available. The preliminary data demonstrates that the fuel purchase data does not agree with the theoretical fuel calculations at three different firing rates. The results are summarized as follows:

Year	Number	Gas Purchased	Required LPG	Required LPG	Required LPG
	of Bodies	Gallons LPG	1 MMBtu/hr	1.2 MMBtu/hr	1.38 MMBtu/hr
1990	71	542	1961.38	2353.65	2706.70
1991	88	511	2431.00	2917.20	3354.78
1992	83	Not Available	2292.88	2751.45	3164.17
1993	109	Not Available	3011.13	3613.35	4155.35
1994	113	1250	3121.63	3745.95	4307.84
1995	95	2300	2624.38	3149.25	3621.64
1996	65	: 775	1795.63	2154.75	2477.96
1997	85	400	2348.13	2817.75	3240.41
1998	63	1571	1740.38	2088.45	2401.72
1999	59	1435	1629.88	1955.85	2249.23
2000	83	1965	2292.88	2751.45	3164.17
2001	79	1955	2182.38	2618.85	3011.68
2002	14	Not Available	386.75	464.10	533.72

The above results provide a limited snapshot on the usage of the retort at Tri-State Crematory.

If you have any questions, regarding the "draft" report, please call me at (407) 629-1561.

Respectfully,

AI ENVIRONMENTAL CONSULTING SERVICES, INC.

Luis Llorens

President

Douglas Bauman, P.E.

Florida Registration No. 50807

GROVE SCIENTIFIC & ENGINEERING COMPANY

Bruno Ferraro, CEP, OEP

President

Table of Contents

	Table of Contentsi List of Tablesii List of Attachmentsii
Section 1	.0
Introducti	on1-1
1.1	Purpose1-1
1.2	Limitations 1-1
Section 2	.0
Available D	ata2-1
2.1	Gas Data
2.2	Data on Deceased Count2-1
2.3	Equipment Data 2-1
2.4	Video Review 2-2
Section 3	.0
Analysis	3-1
3.1	Equipment Description
3.2	Process Description3-1
3.3	Approach to our Calculations3-2
3.4	Data from Similar Equipment3-2
3.5	Sample Calculation3-3
Section 4	.0
Summary .	4-1
4.1	Conclusion

List Of Tables

Table 1	MMBTU/hr Firing Rate	3-4
Table 2		
Table 3	MMBTU/hr Firing Rate	3-6
Table 4	Results Summary	4-1

List of Attachments

Attachment 1	Gas Usage data
Attachment 2	Deceased Summary Table
Attachment 3	Similar Equipment Data

Section 1.0

<u>Introduction</u>

1.1 Purpose

The purpose of this report was to assess the available fuel purchase data and reported human remains delivered to Tri-Sate crematory in Rock Spring, Georgia. To run a correlation analysis between fuel purchases, the number of human remains delivered to the facility and the calculated fuel required to cremate the reported number of human bodies.

1.2 Limitations

This document was prepared for the sole use of Coppedge & Leman, P.C., and their affiliates. Our professional judgment to assess the retort fuel usage is based on the data provided by Coppedge & Leman. No warranty is given or implied by this report as the raw data used in this report was provided to us and not collected by Al Environmental Consulting or it associates. Additionally, for this scope of work, no site visit was performed, only the review of the videotape provided by the client, Coppedge & Leman, P.C.

Section 2.0

Available Data

2.1 Gas Data

Coppedge and Leman, P.C. provided the fuel usage data for the years 1990 through 2001. No data were available for the years 1992 and 1993 or years prior to 1990. Presently, Coppedge and Leman, P.C. is attempting to acquire the missing fuel usage and body count data. In Attachment 1 we have included copies of the gas usage data provided.

2.2 Data on Deceased Count

Coppedge and Leman, P.C. provided the data for the total bodies delivered to Tri-State Crematory. These data were separated by state and included data from Georgia, Tennessee, Alabama and Florida. It is our understanding that data from Tennessee, Alabama and Florida are not complete. However, the data from Georgia was considered complete. When the data from these States are made available, the report will be updated. In Attachment 2 we have included the summary table of the deceased.

2.3 Equipment Data

Coppedge and Leman, P.C. provided the data for the retort and the archive files from Grove Scientific & Engineering Company (GSE). All of the data provided by GSE and used in this analysis were submitted at one time or another to the Florida Department of Environmental Protection (FDEP) for permitting or compliance purposes. Once the data are submitted to the Department, they are considered public record under the State of Florida Sunshine Law.

The data were acquired from equipment that was similar to the retort at Tri-State Crematory. Specifically, equipment constructed during the 1980's, with the same model number, IE-43 and, the same type of application (human cremation) and fuel (propane, LPG, natural gas).

The data collected were fuel usage and burner capacity from air pollution annual operation reports and applications for air pollution permits. We have included these data collected from other sources in Attachment 3.

2.4 Video Review

In reviewing of the video, the front panel of the retort is open. We observed two burner controllers only. These burner controllers were without their covers. Based on the year the crematory was constructed, the burner controllers are most likely Honeywell or equivalent. The North American Manufacturing Company typically constructed the burners. Mr. Chuck Crawford, a consultant, stated in the video that the diagram of the crematory states that the IE-43 had a total burner capacity of 1.6 MMBTU/hr, but we have not verified this. This is a reasonable maximum firing rate for the year, make and model crematory. Actual firing rate is likely to be lower due to the year the retort was constructed.

Section 3.0

<u>Analysis</u>

3.1 Equipment Description

The Industrial Equipment and Engineering Company, Inc. Model IE-43 is a multichamber cremation unit with a rated capacity of approximately 100 pounds per hour with a two-hour cremation cycle time, which may vary depending on body weight and conditions. The primary chamber has one burner with an estimated capacity of 0.6 MMBTU per hour. The secondary chamber has one burner, usually rated from 0.8 MMBTU to 1 MMBTU per hour. The interior of the retort is made of a combination of refractory brick and castable refractory that can withstand temperatures of up to 3000°F. Combustion gases are vented to the atmosphere via a stack located in the back of the unit.

3.2 Process Description

The body is loaded into the primary chamber via loading table. The door of the retort is closed and latched. The equipment is started by turning three dials; one for the primary burner, one for the secondary burner and the master timer. The toggle switch for the each burner must be in the on position. The remains are typically cremated in a cardboard container or, in some cases, a cremation casket. Ignition of the remains releases a variety of hydrocarbons, particulates and other combustion products in the form of gases and smoke that pass from the primary chamber into the secondary combustion chamber. As the products of combustion pass through the throat, additional combustion air is provided through the throat airline. The secondary burner is located just after this passage so as to maximize (approximately 1400°F to 1850°F) ignition temperatures (dependent on State environmental requirements). The combustion products pass into the secondary combustion chamber where near-complete combustion of organics to carbon dioxide and water vapor takes place. The secondary combustion chamber is sized to obtain a retention time necessary for near-complete combustion of the smoke and odor caused by the cremation process, after which time the hot gases pass out the stack to the atmosphere.

The more the crematory is used the higher the efficiency of the equipment, in other words, if only one body is cremated at a given day, the fuel consumed per cremation is higher. If multiple cremations are performed, the fuel usage is reduced as the refractory retains heat.

i

The equipment at Tri-State crematory, at its best year, averages 2.2 cremations per week (1994). This usage-rate is considered low and will result in minimal heat retention in the refractory.

3.3 Approach to our Calculations

Based on the fact that the Tri-Sate Crematory was constructed in 1982, we believe that the crematory was probably set to burn from 1 MMBTU to 1.4 MMBTU per hour (total burner capacity).

We consulted with a crematory-manufacturing expert, Mr. James P. Crawford, who has constructed similar units for over 30 years, and used to work for Industrial Equipment back in the 70's. According to Mr. Crawford, the total burner firing rates are reasonable for the age of the equipment. When these earlier model 43 units were constructed, the burners were set to fire at a fixed rate, were not modulated and had no thermo-couples measuring chamber temperature. Based on other IE43 crematories permitted in the State of Florida, the firing rates are within the range stated above for a crematory in the 80's. Mr. Crawford stated that the crematory is an IE43-Power-Pack and not an Econo-Pack as stated in the sales receipt. In the photograph of the equipment, the control panel also stated Power Pack.

Also, based on the Rhames Lashea Marsh deposition of December 4, 2002, it seems that the Tri-State operated the retort without bypassing the secondary burner. In line 10 of the deposition she states that "I just know that you turn the knobs and then you would flip the switches up". Implying that both burners were used during cremation.

3.4 Data from Similar Equipment

According to the EPA's ICCR database on incinerators, Curlew Hills Memory Gardens had an IE-43 crematory originally constructed in 1982. The permit for this facility states; "The incinerator consists of primary and secondary (afterburner) chambers each fired on propane gas with a maximum total heat input rate of 1.2 MMBTU/hr".

The second crematory that data were acquired from was an IE-43 crematory installed at Scobee Ireland Potter Funeral Home during the 1980's. The air pollution permit for this crematory reported a firing rate of 0.6 MMBTU in the primary chamber and 0.8 MMBTU in the secondary chamber for a total firing rate of 1.3 MMBTU per hour. A later revision of the permit indicated a total firing rate of 1.5 MMBTU per hour when regulatory rules required an increase in secondary chamber temperature.

We also acquired fuel-usage data from Aycock Funeral Home. This funeral home owned an IE-43 (from the 80's) and reported 849 cremations with 23,000 gallons of LPG in their annual operating report submitted to the State of Florida. In a subsequent year, the facility reported 861 cremations with 23,678 gallons of LPG. At this hi-usage, the average fuel usage is 27 gallons per case. This average figure is considered on the low side of fuel usage since they were able to take advantage of thermal storage by the refractory.

In a compliance test report on an IE-43 Power-Oak II, performed by Industrial Equipment on March 24, 1992, the average fuel consumption rate was measured at 1.38 MMBTU/hr. This was a later model crematory with a higher firing-rate that the unit at Tri-State Crematory. As a conservative approach we shall consider this usage rate as our high fuel usage rate for an IE-43. See Attachment 3 for the data referenced in this section (Section 3.2).

3.5 Sample Calculation

For our sample calculation, we have selected data from the year 1990. In this year, the facility records indicate that 71 remains were delivered to Tri-State Crematory. According to Blossman Gas, Inc., 542 gallons of propane were sold to Tri-Sate. Therefore, if the crematory was set to a firing rate of 1.0 MMBTU/hr and a total of 2.5 hours between pre-heat and actual cremation are required, the projected fuel usage is as follows:

- (1.0 MMBTU/hr)(11.05 gallon LPG/1 MMBTU) = 11.05 Gallons LPG/hr
- (11.05 Gallons LPG/hr)(2.5 hours/cremation) = 27.63 gallons/cremation
- (27.63 gallons/cremation)(71 cremations/year) = 1962 gallons LPG/yr

Blossman Gas reported 542 gallons of LPG were purchased during the year of this analysis.

Based on our analysis, we have calculated the fuel usage at a low rate of 1.0 MMBTU/hr, a medium rate of 1.2 MMBTU/hr and a high rate of 1.38 MMBTU/hr. Our results are summarized in Tables 1 through 3.

Table 1

MMBTU/hr Firing Rate

Year	Number of Bodies	Burner(s)	Gallons LPG	Hours to Cremate	Required Fuel	Reported
	Reported	Firing Rate	Per Hour		Usage per Year	
		MMBtw/hr			Gallons LPG	allons LPG
1980	1	1	11.05	2.5	27.63	
1981	1	1	11.05	2.5	27.63	
1982	11	1	11.05	2.5	303.88	
1983	26	1	11.05	2.5	718.25	
1984	37	1 .	11.05	2.5	1022.13	
1985	42	1	11.05	2.5	1160.25	
1986	34	1	11.05	2.5	939.25	
1987	48	1	11.05	2.5	1326,00	
1988	52	1	11.05	2.5	1438.50	
1989	60	1	11.05	2.5	1657,50	
1990	71	1	11.05	2.5	1961.38	542
1991	88	1	11.05	2.5	2431.00	511
1992	83	1	11.05	2.5	2292.88	
1993	109	1	11.05	2.5	3011.13	
1994	113	1	11.05	2.5	3121.63	1250
1995	95	1	11.05	2.5	2624.38	2300
1996	65	1	11.05	2.5	1795.63	775
1997	85	1	11.05	2.5	2348.13	400
1998	63	1	11.05	2.5	1740.38	1571
1999	59	1	11.05	2.5	1629.88	1435
2000	83	1	11.05	2.5	2292.88	1965
2001	79	1	11.05	2.5	2182.38	1955
2002	14	1	11.05	2.5	386.75	.500

Table 2

MMBTU/hr Firing Rate

<u>Year</u>	Number of Bodies	Burner(s)	Gallons LPG	Hours to Cremate	Required Fuel	Reported
	Reported	Firing Rate	Per Hour		Usage per Year	Fuel Usage
		MMBtwhr			Galions LPG	allons LPG
1980	1	1.2	13.26	2.5	33.15	
1981	1	1.2	13.26	2,5	33.15	
1982	11	1.2	13.26	2.5	364.65	
1983	26	1.2	13.26	2.5	861.90	
1984	37	1.2	13.26	2.5	1226.55	
1985	42	1.2	13.26	2.5	1392.30	
1986	34	1.2	13.26	2.5	1127.10	
1987	48	1.2	13.26	25	1591.20	
1988	52	1.2	13.26	2.5	1723.80	
1989	60	1.2	13.26	2.5	1989.00	
1990	71	1.2	13.26	2.5	2353.65	542
1991	88	1.2	13.26	2.5	2917.20	511
1992	83	1.2	13.26	2.5	2751.45	
1993	109	1.2	13.26	2.5	3613.35	
1994	113	1.2	13.26	2.5	3745.95	1250
1995	95	1.2	13.26	2.5	3149.25	2300
1996	65	1.2	13.26	2.5	2154.75	775
1997	85	1.2	13.26	2.5	2817.75	400
1998	63	1.2	13.26	2.5	2088.45	1571
1999	59	1.2	13.26	2.5	1955.85	1435
2000	83	1.2	13.26	2.5	2751.45	1965
2001	79	1.2	13.26	2.5	2618.85	1955
2002	14	1.2	13.26	2.5	464.10	

Table 3

MMBTU/hr Firing Rate

Year	Number of Bodies	Burner(s)	Gallons LPG	Hours to Cremate	Required Fuel	Reported
	Reported	Firing Rate	Per Hour		Usage per Year	Fuel Usage
		MMBtu/hr			Gallons LPG	Gallons LPG
1980	1	1.38	15.249	2.5	38.12	
1981	1	1.38	15,249	2.5	38.12	
1982	11	1.38	15.249	2.5	419.35	
1983	26	1.38	15.249	2.5	991.19	
1984	37	1.38	15.249	2.5	1410.53	
1985	42	1.38	15,249	2.5	1601.15	
1986	34	1.38	15.249	2.5	1296.17	
1987	48	1.38	15.249	2.5	1829.88	
1988	52	1.38	15.249	2.5	1982.37	
1989	60	1.38	15,249	2.5	2287.35	
1990	71	1.38	15.249	2.5	2706.70	542
1991	88	1.38	15,249	2.5	3354.78	511
1992	83	1.38	15,249	2.5	3164.17	
1993	109	1.38	15.249	2.5	4155.35	
1994	113	1.38	15.249	2.5	4307.84	1250
1995	95	1.38	15,249	2.5	3621.64	2300
1996	65	1.38	15.249	2.5	2477.96	775
1997	85	1.38	15,249	2.5	3240.41	400
1998	63	1.38	15,249	2.5	2401.72	1571
1999	59	1.38	15.249	2.5	2249.23	1435
2000	83	1.38	15.249	2.5	3164.17	1965
2001	79	1.38	15.249	2.5	3011,68	1955
2002	14	1.38	15,249	2.5	533.72	

Section 4.0

Summary

4.1 Conclusion

The data collected reflects a discrepancy between gas purchases and remains delivered to Tri-State Crematory. Even with a low firing rate of 1 MMBTU and assuming the equipment was operated at its highest efficiency, 1990, 1991, 1994, 1996 and 1997 are years were fuel purchases and calculated fuel required indicate that are the years that the largest discrepancies are observed.

In Table 4 our results are summarized for the years 1990 through 2002 (most complete data) and are follows:

Table 4
Results Summary

Year	Number	Gas Purchased	Required LPG	Required LPG	Required LPG
	of Bodies	Gallons LPG	1 MMBtu/hr	1.2 MMBtu/hr	1.38 MMBtu/hr
1990	71	542	1961.38	2353.65	2706.70
1991	88	511	2431.00	2917.20	3354.78
1992	83	Not Available	2292.88	2751.45	3164.17
1993	109	Not Available	3011.13	3613.35	4155.35
1994	113	1250	3121.63	3745.95	4307.84
1995	95	2300	2624.38	3149.25	3621.64
1996	65	775	1795.63	2154.75	2477.96
1997	85	400	2348.13	2817.75	3240.41
1998	63	1571	1740.38	2088.45	2401.72
1999	59	1435	1629.88	1955.85	2249.23
2000	83	1965	2292.88	2751.45	3164.17
2001	79	1955	2182.38	2618.85	3011.68
2002	14	Not Available	386.75	464.10	533.72

The deceased data from Tennessee, Alabama and Florida are not complete. The fuel data provided was not complete. When the data from these States are made available, and the fuel data from the years 1980 through 1989 are available, the report will be updated.

Attachment 1

Gas Usage data

Tri-State Crematory Propane Consumption/Usage Analysis

Bodies Bodies Bodies Bodies Bodies Delivera 46 25 0 0 71 13 //71 57 31 0 0 88 12 //88 74 38 1 0 113 30 //113 53 42 0 0 95 55 //95 30 35 0 0 65 18 //65 36 48 1 0 65 10 //85 17 45 1 0 63 37 //63 18 41 0 63 34 //59 40 43 0 0 83 47 //79 28 50 0 1 79 47 //79 399 398 3 1 801 302 //801
31 0 0 88 38 1 0 113 42 0 0 95 35 0 0 65 48 1 0 65 45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
38 1 0 113 42 0 0 95 35 0 0 65 48 1 0 85 45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
42 0 0 95 35 0 0 65 48 1 0 85 45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
35 0 0 65 48 1 0 85 45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
48 1 0 85 45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
45 1 0 63 41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
41 0 0 59 43 0 0 83 50 0 1 79 398 3 1 801
43 0 0 83 50 0 1 79 398 3 1 801
50 0 1 79 398 3 1 801
398 3 1 801

Attachment 2 Deceased Summary Table

GEORG	GIA																	
County	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	2	1991	1992	1993	196	1996	1996	1997
Floyd	0	0	8	8	ო	6 0	ო	7	4	7	- -	8	-	9	ო	9	,	-
Bartow	0	0	0	0	-	0	0	Ψ.	-	_	ന	9	ø	2	4	0	-	0
Gordon	0	0	-	4	N	0	0	~	ო	-	-	ო	φ	ю	7	0	-	0
Fulton	0	0	0	0	0	-	-	τ-	0	0	0		0	-	7	ĸ	4	-
Cherokee	0	0	0	0	0	0	0	0	Q	0	ო	2	8	•	_	0	8	0
Gilmer	۵	0	0	0	0	٥	0	-	0	o	0	0	0	٥	- -	0	0	0
Pickens	0	0	0	-	ო	-	8	ო	8	N	ιΩ	₩.	-	6	N	ત	0	0
Fannin	٥	o	a	0	0	0	0	٥	0	- -	- -	0	~	7	- -	٥	0	0
Whitfleid	0	0	8	4	0	03	7	60	ď	9	\$	4	18	20	23	17	0	18
Harlson	0	0	0	0	0	0	٠-	0	0	0	0	0	0	0	o	0	0	0
Pok	0	٥	0	٥	0	٥	0	0	-	'n	0	7	-	-	-	7	0	0
Catoosa	ø	o	ო	ĸ	5	9	9	80	14	40	φ	15	œ	4	15	۲-	φ	4
Paulding	0	0	0	0	0	0	0	0	0	0	ო	0	0	0	0	0	0	0
Walker	0	0	0	7	-	ųD	0	ന	0	α	0	e٦	7	œ	ť	ø	ო	S
Chattooga	0	0	ო	-	-	-	4	8	ഹ	-	~	N	8	-	N)	4	0	ო
Митву	0	-	0	0	-	-	0	-	8	N	8	4	-	c,	9	-	က	9
Dade	0	0	0	-	-	-	0	0	-	0	0	-	-	0	0	0	0	0
Dekalb	o	0	0	0	o	0	0	0	0	0	0	+-	0	0	0	0	0	0
Warren	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Copp	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	٥	0
TOTAL	9	-	Ŧ	20	33	37	77	17	5	2	44	25	Š	63	77	2	9	36

		7	395	7	121	€	7	-	~ -	22	7	7	566
	2002	0	œ	0	0	0	-	0	0	-	0	0	2
	2001	0	4	ന	7	0	0	0	0	4	0	0	22
	2000	7	37	0	4	0	0	0	0	0	0	0	43
	1999	0	37	0	4	0	0	0	0	0	0	0	4
	1998	0	99	0	ભ	0	0	0	0	60	0	0	45
	1997	0	45	0	τ-	0	0	0	0	8	0	0	48
	1996	0	8	0	Φ	-	7	0	0	(1	0		35
	1995	0	5 6	0	14	-	0	0	0	-	0	0	42
	1994	0	50	-	13	-	-	0	0	7	0	0	38
	1993	0	23	0	9	0	-	0	0	~	0	-	42
	1992	0	16	-	9	-	-	0	0	7	-	0	32
	1991	0	18	0	12	0	0	-	0	0	0	0	33
	1990	0	G	8	7	0	-	0	0	7	0	0	25
	1989	0	11	0	7	0	0	0	-	ď	0	0	3
	1988	0	10	0	4	-	0	0	0	0	-	0	16
	1987	0	ဖ	0	4	-	0	0	0	0	0	0	7
	1986	0	æ	0	7	0	0	0	0	0	0	0	5
	1985	0	4	0	γ-	0	0	0	0	0	0	0	9
ete)	1984	0	ა	0	0	0	0	0	0	0	0	0	ß
ğ	1983	0	ထ	0	0	0	0	0	0	0	0	0	ø
l CO I	1982	0	0	0	o	0	0	0	0	0	0	0	٥
三三	1981	0	0	0	0	0	0	0	0	0	0	0	0
SSE	1980	0	0	0	0	0	0	0	0	0	0	0	0
TENNE	County	Rutherford	Hamilton	Franklin	Bradley	Bledsoe	Sequatchie	Van Buren	Cumberland	Marion	Davidson	Etowah	TOTAL

ALABAMA (Incomplete)	¥	(Inc	E O	Jete	<u>~</u>																			
County	1980	1981	1982	1983	2	1986	1986																2002	
Jackson	0	0	0	0	0	0	0																0	-
Marshall	٥	0	0	0	٥	0	0	٥	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Jenkins	0	0	0	0	0	0	0																0	-
Mobile	τ-	0	0	0	0		0																0	-
Richmond	0	0	0	0	0	0	0																0	-
TOTAL	-	0	0	0	0	•	0																٥	40
FLORIDA (Incomplete)) A (I	nco	du	ete)		;																		
County	1980	1981	1982	1983	1984	1985																	200	
Alachua	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-
St. Lucie	0	0	0	0	0	0																	0	-
TOAL	0	0	0	0	0	0																	0	7
TOTAL BODIES	30 1980 1980	記 28 18 18	ODIES 1980 1981 1982 1983 1984	1983		1986	1986	1987	1988	1989 1	1990 1	1991 1	1992 1	1993 1	1994 1	1995 1	1996 1	1997 1	1998 1	1999 2	2000 20	2001 2	2002	
	_	_	_	9																				7

Curlew Hill Memory Gardens

Department of Environmental Protection

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

PERMITTEE:

Curlew Hills Memory Gardens, Inc. 1750 Curlew Road Palm Harbor, Florida 34683

PERMIT/PROJECT:

Permit No: A052-233610A

County: Pinellas

Original Issuance: 02/10/93 Amendment Issued: 01/12/95 Expiration Date: 02/16/98 Project: Human Crematory

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Chapters 62-200 through 297, and Chapter 62-4. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans and other documents, attached hereto or on file with the department and made a part hereof and specifically described as follows:

For the operation of a Industrial Equipment & Engineering Model IE43 Power Pak crematory incinerator. The unit is designed to incinerate human remains and associated container material at an average rate of 150 pounds per hour (the average rate is the total weight loaded into the unit divided by the duration of the burn). The incinerator consists of primary and secondary (afterburner) chambers each fired on propane gas with a maximum total heat input rate of 1.2 MMBtu/hr.

Emissions are controlled by the afterburner which maintains a minimum secondary chamber combustion zone temperature of 1,400°F prior to and during combustion of material in the primary chamber. The secondary (afterburner) chamber volume provides at least a one (1) second residence time at a gas temperature of 1,600°F. The unit is equipped with continuous temperature monitoring system to measure and record the secondary chamber operating temperature.

Location: 1750 Curlew Road, Palm Harbor

UTM: 17-360.0 E 3105.4 N NEDS No: 0096 Point ID No: 01

APIS ID: 40-PNL-52-0096-01

Replaces Permit No.: A052-142294 and previously (February 10, 1993) issued version of A052-233610

Page 1 of 11

Attachment 3

Similar Equipment Data

- -

- a

0 -

_ _

0 0

s Angeles Calhoun

		ののは、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大			AND THE PROPERTY OF THE PROPERTY OF		V 100000000	41 60	7
Œ	121030098	CURLEW HILL'S MEMORY GARDENS	9.5	PALM HARBOR	Industrial Equipment & Engineering	POWER PAK IL-43	TOO TOO	3 6	
NCINERATO FL	12106W177	₹.	91 9			AC 53-224756	3 8	5,6	:
INCINERATO FL	121110042	ST LUCIE COUNTY INTL AIRPORT	919	•	Simonda Mig. Corp.	910/	5.6	8 8	
NCINERATO FL	121110042	ST LUCIE COUNTY INTL AIRPORT	5		₹.	alc/	5 6	8 8	2:0
NCINERATO FL	121110042	ST LUCIE COUNTY INTL AIRPORT	8	-	Simonds Mfg. Corp.	7518	5	8 8	2 g
INCINERATO IFL	121110042	IST LUCIE COUNTY INTL AIRPORT	81.		Simonde Mig. Corp.	7578	3.0	8	2.9
NCINERATO FL	121110050	HAISLEY-HOBBS FUNERAL HOME	9-19	FT PIERCE			3	 	2 5
	12121W123	FL DEPT OF AGRICULTURE - LIVE OAK DIV.	9-130		Moree Boulger Corp.	(228 39 B	ē	3	r
1	12121W123	FL DEPT OF AGRICULTURE - LIVE OAK DIV.	919		Morse Boulger Corp.	228 39 B	ē	3	≥:
	12121W123	FL DEPT OF AGRICULTURE - LIVE OAK DIV.	610		Morne Boulger Corp.	228 39 B	8	8	σ.
	13279W350	BETHANY HOME NURSING	100-250	Vidella	National Incinemetor, Inc.	250	ē	Ξ.	2
	13279W350	BETHANY HOME NURSING	100-250	Vidalia	National Incinerator, Inc.	P50	8	8	ر ا
	180010038	MOUNTAIN VIEW FUNDERAL HOME &	9100	BOISE	Engline	POWER-PAK 1E-43	ē	: ::	£ (
	180010039	CLOVERDALE FUNERAL HOME	919	BOISE	Industrial Equipment & Engineering	ECON-O-PAK IE40		2	£
NCINERATO ID	160010039	CLOVERDALE FUNERAL HOME	9100	BOSE	Figure	ECON-O-PAK IE40	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2	9
	160010100	IMOUNTAIN VIEW ANIMAL CLINIC	001-0	MERIDIAN	Crawford Equipment & Engineering	C-500P	- 6850 - 6850	2. 28	ď,
	160010100	MOUNTAIN VIEW ANIMAL CLINIC	819	MERIDIAN	Crawford Equipment & Engineering	7-1000F	C1000 H	 	YY.
	160050022	ALPINE ANIMAL HOSPITAL	918	POCATELLO			8		<u>ن</u>
:	1160110018	GROVE CITY CREMATORY	91-9 81-18	BLACKFOOT	Crawford Equipment & Engineering	<u>7</u>	8	2	<u> </u>
NCINERATO ID	180110018	GROVE CITY CREMATORY	919	BLACKFOOT	Crawford Equipment & Engineering	7180 91	ê	3	0
NCINERATO	160110021	HILL-SANDBERG FUNERAL HOME	0-100	BLACKFOOT	CRANFORD	D1280	8	26	
	160550028	CD'A MEMORIAL GARDEN	9.48	COEUR D'ALENE	Industrial Equipment & Engineering	ECONOPAK	ફ	8	:
₹-	160660027	YATES FUNERAL HOME	81.9	COEUR D'ALENE	All Crematory Corp.	1701	752506	2	: د
NCINERATO ID	160550028	ENGLISH FUNERAL CHAP	6190	COEUR D'ALENE	Crawford Equipment & Engineering	0-1000	8	8	
NCINERATO ID	160690016	SOUTHWAY ANIMAL CLINIC	9. 8.	LEWISTON	Shanandoah Mfg.	P4.20	8		.(
INCINERATO IIL	170190130	₹!	8	URBANA	Shenandoeh Mig.	Le ZGN	5	8:8	· 9
NCINERATO IL	170190130	CROSSROADS VETERINARY CLINIC & HOSPITAL	9.10	URBANA	Shenandoah Mfg.	P-2GN	8	8 8	2 3
NCINERATO IL	17025E123	BUEHLER FOODS, INC.	8	FLORA	National Inchement Inc.	3		2 6	£ 3
INCINERATO IL	17025E123	BUEHLER FOODS, INC.	9 8	FLORA	National Incinerator, Inc.	C780	1000	3 6	2 ,
NCINERATO IL	170290058	SARAH BUSH LINCOLN HEALTH CENTER	751-1 000	MATIOON	Kelley Co., Inc.		3.0	2 6	y : 5
NCINERATO IL	170290056	SARAH BUSH LINCOLN HEALTH CENTER	751-1,000	MATTOON	Kelley Co., Inc.		3.8	2:2	2 2
INCINERATO IL	170290056	SARAH BUSH UNCOLN HEALTH CENTER	751-1,000	MA 100	Kelley Co., Inc.		3.8	= : e'g	· o
NCINERATO IL	17029E128	PEG ANNA BLUE	2	MATTOON	Whenendoen Mig.		3.6	Ba	5 3
NCINERATO IL	170310092	STAR MOULDING & TRIM CO.	9	BEDFORD PARK	C B C Mail Inc.		3 8	8 8	9
NCWERATO IL	170310415	WOODLAWN CEMETERY OF CHICAGO, INC.	9	FOREST PARK	Industrial Equipment & Engineering	12.00	0002	2 6	: - -
INCINERATO IL	170310710	CATHOLIC BISHOP OF CHICAGO, THE	9 8	NES	Joseph Goder, Inc.	N 00	25010700	3.6	<u>.</u>
NCINERATO IL	170310710	CATHOLIC BISHOP OF CHICAGO, THE	9 8	NLES	Joseph Goder, Inc.	400 IN	32616/000	3,	2
INCINERATO IIL	170310857	CREMATION SERVICES INC.	218	ROSEMONT	Besic Engineering Inc.			8	
NCINERATO IL	170311060	REGINA DOMINICAN HIGH SCHOOL	8	WILWETTE	Joseph Goder, Inc.	NI-COM	500	8 8	⊋
INCINERATO IL	170311415	MAJOR ARWATURE CO.	9	CHICAGO	Bayco Overs	68 -150	D31600BSR	¥.	,
INCINERATO IL	170311731	PREVUE PET PRODUCTS INC.	100-250	CHICAGO	Netional Incinemator, Inc.		8	 : :	
NCINERATO IL	170311732	PREVUE PET PRODUCTS, INC.	8	CHICA 80	National Incherator, Inc.	1010	3		
CTAGGNICA	1470311842	INV OF U. CHICAGO - BIO RES LAB	910	CHICAGO	Crawford Equipment & Engineering	7100s	60	3	

Page 11

Scobee Ireland Potter Funeral Home

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03 Page 34 of 84

Caission	. Stack Ge	ometry and	Flow Cha	racteri	stic	a (broa	ide data for	each stack):
: Height	:			ft.	Sta	ick Diam	eter:	ft.
flow Rat	e:	ACFH		_OSCFM	Gas	Exit T	emperature: _	°F.
. Vapor	Content:			*	V e l	ocity:		FPS
		SECT	ION IV:	INCINER	RATOR	INFORM	ATION	
ge of	Type O Plastics)	Type I (Rubbish)	Type II (Refuse)	Type (Garbe	III	Type I' (Patholi ical	og- (Liq.& G	Type VI as (Solid By-prod.)
-ual hr 'ner-						150		
on- clied a/hr)						0.6		
∀eight -ximate	Incinera Number of		r) <u>1</u> Operation	50 per da	у	Design (Capacity (15	s/hr) 150 wks/yr. 52
Constru	cted	1967		Mod	lel N	o	IE-42	
		Valume (ft) ³	Heat R (51U		1	Ура	uel BTU/hr	Temperature (°F)
iry Cha	mber	63	750,0	00	Nat	t. gas	600,000	1000 Average
ndary C	hamber	65	900,0	00	Nai	. gas	900,000	1600 Average
Height	20	ft. :	Stack Ois	mter: _		1.67	Stack	Темр. <u>900⁰ </u> F.
-low Rat	e: <u>200</u>	00	ACFH	725		DSCFI	M* Velocity:	15FPS
) or ac	re tons p act dry g	er day des as correct	ign capac ed to 50%	ity, su excess	bmit air	the em	issions rate	in grains per stan-
af poll	ution con	tral devic	e: []C	yclane	[]	Wat Sc	rubber [X]	Afterburner
			[] o	ther (s	peci	fy)		

grm 17-1.202(1) .live November 30, 1982 Page 6 of 12

emissions testing of the INDUSTRIAL EQUIPMENT & ENGINEERING CO. Crematory Incinerator

POWER-PAK II - IE43-PPII

SES Reference No. 92S22

Project Participants

Byron E. Nelson Kenneth M. Roberts Charles R. Wilson William T. Bunch

TABLE 1. EMISSIONS TEST SUMMARY

Company: INDUSTRIAL EQUIPMENT & ENGINEERING CO., INC.

Source: Power-Pak II Crematory - Yodel IE43-PPII

	Run 1	Run 2	Run 3
Date of Run Process Rate (lb./hr.) Start Time (24-hr. clock) End Time (24-hr. clock) Vol. Dry Gas Sampled Meter Cond. (DCF) Gas Meter Calibration Factor Barometric Pressure at Barom. (in. Hg.) Elev. Diff. Manom. to Earom. (ft.) Vol. Gas Sampled Std. Cond. (DSCF) Vol. Liquid Collected Std. Cond. (SCF) Moisture in Stack Gas (% Vol.) Molecular Weight Dry Stack Gas Molecular Weight Wet Stack Gas Stack Gas Static Press. (in. H2O gauge) Stack Gas Static Press. (in. Hg. abs.) Average Square Root Velocity Head Average Orifice Differential (in. H2O) Average Gas Meter Temperature (°F) Pitot Tube Coefficient Stack Gas Vel. Stack Cond. (ft./sec.) Effective Stack Area (sq. ft.) Stack Gas Flow Rate Std. Cond. (DSCFM) Stack Gas Flow Rate Stack Cond. (ACFM) Net Time of Run (min.) Nozzle Diameter (in.) Percent Isokinetic Propane Gas Usage (MMBTU/hr.)	3/24/92 215 1010 1113 32.337 0.979 30.11 0 31.438 4.536 12.6 29.61 28.15 -0.03 30.11 0.198 1.016 76.4 926.8 0.84 18.17 2.18 796 2,379 0.500 105.3	3/24/92 166 1257 1359 43.827 0.979 30.13 0 42.320 6.554 13.4 29.59 28.04 -0.03 30.13 0.201 1.942 81.6 1181.0 0.84 20.13 2.18 739 2,635 60 0.620	3/24/92 142 1529 1631 43.274 0.979 30.07 0.1761 5.385 11.4 29.60 28.28 -0.03 30.07 0.199 1.903 80.3 1188.1 0.84 19.66 2.18 741 2,599 0.620 97.8
Particulate Collected (mg.) Particulate Emissions (lb./hr.)	38.6 0.13	24.0 0.06	
Particulate Emissions (gr./DSCF) Particulate Emissions (gr./DSCF @ 7% O ₂) Avg. Particulate Emissions (gr./DSCF @ 7% O ₂) Allowable Part. Emissions (gr./DSCF @ 7% O ₂)	0.026	0.009 0.012 0.018 0.100	
CO Emissions (ppm) CO Emissions (ppm @ 7% O ₂) Avg. CO Emissions (ppm @ 7% O ₂) Allowable CO Emissions (ppm @ 7% O ₂)	2.8 3.8	0.5 0.7 1.8 100	0.7

Note: Standard conditions 68°F, 29.92 in. Hg

Page 4

4.3 Sampling Trains

The particulate sampling train consisted of a Nutech Corporation 3' water-cooled probe, utilizing a heated stainless steel liner, heated glass fiber filter, and four impingers arranged as shown in Figure 3. Flexible tubing was used between the heated filter and the impingers. The first two impingers were each charged with 100 milliliters of water, the third served as a dry trap, and the fourth was charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Nutech Corporation control console was used to monitor the gas flow rates and stack conditions during sampling.

The carbon monoxide sampling train consisted of a stainless steel probe, teston sample line, condenser, silica gel and ascarite tubes, and a Thermo Environmental Instruments, Inc. Model 48 Gas Filter Correlation CO Analyzer.

The oxygen sampling train consisted of a probe, sample line, tedlar bag in a rigid container, valve, vacuum pump and flow meter.

4.4 Sample Collection

Prior to particulate sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the particulate sampling train was conducted by sealing the nozzle and applying a 15" Hg. vacuum. A leak rate of less than 0.02 cubic feet per minute was considered acceptable. Particulate sample was collected isokinetically for two and one half minutes at each of the points sampled.

The carbon monoxide analyzer was calibrated immediately before the beginning and after the end of the test by introducing known gases into the instrument through the sampling train. Zero and a calibration gas were also introduced after each run.

The tedlar bag used for obtaining an integrated oxygen sample was leak checked prior to the test by pressurizing it to 2 to 4 in. H_2 O and allowing it to stand overnight. A deflated bag indicated a leak. A one hour integrated sample was obtained at a rate of 0.5 liters per minute for each run.

Carbon monoxide and oxygen sampling were conducted simultaneously with particulate sampling.

4.5 Sample Recovery

A post test leak check of the particulate sampling train was performed at the completion of each run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample period. A leak rate of less than 0.02 CFM or 4% of the average sampling rate (whichever was less) was considered acceptable. The nozzle and probe were brushed and rinsed with reagent grade acetone and the washings were placed in clean polyethylene containers and sealed. The glass fiber filter was removed from the holder with forceps and placed in a covered petri dish for return to the laboratory. The front half of the filter holder was rinsed with acetone and the washings were added to the nozzle and probe wash. The contents of the first three impingers were measured volumetrically and the silica gel in the fourth impinger was weighed to the nearest 0.1 gram for determination of moisture content.

Two calculations of the moisture content of the stack gas were made for each run, one from the impinger analysis and one from the assumption of saturated conditions based upon the average stack gas temperature and a psychrometric chart as described in EPA Method 4 - Determination of Moisture Content in Stack Gases, 40 CFR 60, Appendix A. The lower of the two values of moisture content was considered to be correct.

INDUSTRIAL EQUIPMENT & ENGINEERING CO. Crematory Incinerator Orlando, Florida

March 24, 1992

PROJECT PARTICIPANTS AND CERTIFICATION

Project Participants:

- Byron E. Nelson Charles R. Wilson William T. Bunch Conducted the field testing.

Byron E. Nelson

Performed visible emissions

evaluation.

Paul Rahill (IEE)

Provided process rates.

Kenneth M. Roberts

Peformed laboratory analyses.

Kenneth M. Roberts

Prepared the final test report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

Byton E. Nelson

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03 Page 41 of 84 PROCESS WEIGHT STATEMENT

DATE	3/24/92	SAMPLING TIME:	FROM	10:00 A.M. TO	4:30 P.M

STATEMENT OF PROCESS WEIGHT:		
COMPANY NAMEIndustrial Equipment &	Engine	ering Co.
MAILING ADDRESS P.O. Box 547795, Orland	do, Flor	rida 32854
SOURCE IDENTIFICATION Crematory I	ncinerat	tor
SOURCE LOCATION 2501 John Young Pkg	y., Orla	ando, Florida 32804
DATA ON OPERATING CYCLE TIME: START OF OPERATION, TIMEN/A		
END OF OPERATION, TIME		
IDLE TIME DURING CYCLE		
DESIGN PROCESS RATING: PROCESS WEIGHT	RATE (I	
DATA ON ACTUAL PROCESS RATE DURING OPER (Include Specifications on Fossil F		
MATERIAL Human remains and wooden box	RATE*	215 lbs/hr.
MATERIAL Human remains and wooden box	RATE*	166 lbs/hr.
MATERIAL Human remains and wooden box	RATE*	142 lbs/hr.
TOTAL PROCESS WEIGHT	RATE*	
PRODUCT	RATE	
PRODUCT	RATE	·
PRODUCT	RATE	
I certify that the above statemen knowledge and belief.	t is t	rue to the best of my
Sign.	ature .	PROS
•	Title	V. PRESIDEUT

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03 Page 42 of 84

Southern _avironmental Science_, Inc.

MOISTURE COLLECTED

Plar	THOUSTRIAL EQUIPMENT +	Eng., Inc				
Unit Date Run	3/24/92					Weighed
	Impinger Number	1	2	3 .	4	by:
	Final Weight (grams):	188.0	102.0	_0:	272.4	Clw
	Initial Weight (grams):	0.001	100.0	_0_	266.2	CRW
	Difference (grams):	88.0	2.0	_0_	6.2	
	Total Condensate (grams);				96.2	
Unit Date Run	3124192					
	Impinger Number	j	2	3	4	Weighed by:
	Final Weight (grams):	224.0	106.0		278.0	<u>Cen</u>
	Initial Weight (grams):	100.0	100.0		<u> 269.0</u>	CKEN
	Difference (grams):	124.0	60	0	9.0	
	Total Condensate (grams):				139,0	
Unit Date Run	3/24/92					Modeland
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):	204.0	102.0	0	274.2	cew
	Initial Weight (grams):	0,001	0.001	O	266.0	cew
	Difference (grams):	104.0	2.0		8,2	
	Total Condensate (grams):			•	114,2	

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03 Page 43 of 84—Southern _nvironmental Science_, Inc.

FIELD DATA SHEET

Company Tubustain Equipment Eugl Fusion Eugl				FIEL:	D DA	TA S	HEET	<u> </u>	•		
Duct Disensions:	Com	pany <u>Tyl</u>	SUSTRIAL 1	EQUIPMENT	t Eng., In	ic.		Run			
Duct Dimensions: (# 20 Filter Not(s) 354 2105 Stack Static Press (***, 0) 7.03 Meter Box No. 20.44 361 361 362 361 362 3	Sc perato	$r(s) = \frac{CR}{C}$	LMATORY Wilson +	T. BINC	<u> </u>		24 l	ır Time at	. 	(124)52 1757	
Stack Static Press. (*Pk.0)	•		/				24			1359	~ ~
Reter Box No. 1961	Đu	ct Dimens					1		et No	= 10 1 210	25
Reter Correction Factor 0.919	Stac			1:0))3					0.13	
Pitt Cp				ΔHΘ 1.9	61_		Amorene (emperaco.	e ([) —	7-1-	
Nozzle Dia. (Inches) 620 Final 0.00 CFH & 5 Me Final File Tube (-) V (+) V V V V V V V V V	M	eter Corr				erstiens: distate 13					
No. Probe Length/Liner 34 W/C Steel H7.53 Final Pitot Tube (-) V (+) V Steel H7.53 Final Pitot Tube (-) V (+) V V Steel H7.53 Final Pitot Tube (-) V (+) V V V V V V V V V			Kozzie	10 班	3 161	er terp. <u>35</u>	Final	0,002	CFH @	"Hg,	
Point Tire, 9 Neter Velocity Orifice Stack Temp. Temp.		Nozzle Probe	Dia. (incl Length/Li	nes) <u>.62</u> iner 364 %	<u> </u>	1.055	3 Final	Pitot Tub	se (-) 🗸	(+) V	
Point Time; Voi.,		11000	2011501172	5	TEEL		, , , , ,		· · · <u> </u>	· · <u></u>	
No.	Point	Sample	Meter		Orifice						
2 7.5 447.34 04 1.90 1216 76 2.51 56 2.5 5 5.0 449.11 0.5 2.38 1224 77 2.52 54 2.5 4 7.5 451.12 0.4 1.90 1222 77 2.50 54 2.5 5 10.0 452.91 0.4 1.90 1222 77 2.50 58 2.5 6 12.5 454.74 0.4 1.90 124 17 2.56 58 2.5 7 15.0 456.55 0.3 1.43 1138 79 260 60 2.5 9 20.0 459.92 0.4 1.90 1159 79 261 60 2.5 9 20.0 459.92 0.4 1.90 1159 79 261 60 2.5 9 20.0 459.92 0.4 1.90 1160 81 258 60 3.0 10 22.5 461.73 0.4 1.90 1160 82 257 60 3.0 11 25.0 463.54 0.4 1.90 1160 82 257 60 3.0 12 27.5 465.35 0.4 1.90 1106 83 2.56 60 3.0 13 30.0 467.13 0.5 1.38 1222 83 2.52 65 3.5 14 2 32.5 469.28 0.5 2.38 1729 83 2.50 60 3.5 15 3 35.0 471.18 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 37.5 473.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 5 4 77 2.21 0.5 2.38 1729 83 2.50 60 3.5 15 4 5 5 4 77 2.21 0.5 2.38 1729 83 2.50 60 3.5 15 6 4 2.5 471.41 0.5 2.38 1728 85 2.61 62 3.0 20 8 47.5 481.14 0.4 1.90 1172 85 2.59 62 3.0 21 9 50.0 48294 0.4 1.90 1160 85 2.56 62 3.0			(ft ² /m ²)	("H: 0)	ΟΣΤΤ., ΔΗ ("H ₌ O)	(°F)	(°F)	(°F)	(°F)		
3 5.0 449.11 .05 2.38 1224 77 252 54 2.5	1 1	0.0	445.947	.02	1.95	11139	76	252	65	2.0]
1	1 2	2.5	447,34	.04	11.90	1216	76	251	56	12.5	
5 10.0 452.91 ,04 1.90 12.22 77 252 56 2.5 6 17.5 454.74 ,04 1.90 12.14 17 256 58 7.5 7 15.0 456.55 ,03 1.43 1138 79 760 60 2.5 8 17.5 458.21 ,04 1.90 1159 79 261 60 2.5 9 20.0 459.92 ,04 1.90 1141 80 260 60 3.0 10 22.5 461.73 ,04 1.90 1160 81 258 60 3.0 11 25.0 463.54 .04 1.90 1106 83 256 60 3.0 12 27.5 465.35 .04 1.90 1106 93 252 65 3.5 13.1 30.0 467.13 .05 2.38 1729 83 250 60 3.5 142 37.5 473.21 .05 2.38 1729 <td>3</td> <td>5,0</td> <td>1449.11</td> <td>,05</td> <td>2,38</td> <td>1224</td> <td>77</td> <td>252</td> <td>54</td> <td>2.5</td> <td></td>	3	5,0	1449.11	,05	2,38	1224	77	252	54	2.5	
6 12.5 454.74 .04 1.90 1214 17 256 58 7.5 7 15.0 456.55 .03 1.43 1138 79 260 60 2.5 6 17.5 458.21 .04 1.90 1159 79 26.1 60 2.5 9 20.0 459.91 .04 1.90 1160 81 258 60 3.0 10 27.5 461.73 .04 1.90 1160 81 258 60 3.0 11 25.0 463.54 .04 1.90 1106 93 256 60 3.0 12 27.5 465.35 .04 1.90 1106 93 256 60 3.0 13 30.0 467.13 .05 2.38 1222 83 252 65 3.5 142 32.5 469.28 .05 2.38 1729 83 250 60 3.5 153 35.0 471.18 .05 2.38 1729 83 250 60 3.5 154 37.5 473.21 .05 2.38 1735 83 250 60 3.5 156 42.5 473.21 .05 2.38 126 84 253 60 3.5 166 42.5 471.41 .05 2.38 1208 85 263 62 3.5 197 45.0 478.42 .04 1.90 1199 85 261 62 3.0 208 47.5 481.14 .04 1.90 1172 85 259 62 3.0 219 50.0 482.94 .04 1.90 1172 85 256 62 3.0	14	7,5	1451.12		11.90	1222	77	250	54	25	
7 15.0 45.55 ,03 1.43 1138 79 260 60 2.5 8 17.5 458.21 ,04 1.90 1159 79 261 60 2.5 9 20.0 459.91 ,04 1.90 1141 80 260 60 3.0 10 22;5 461.73 ,04 1.90 1160 81 258 60 3.0 11 25.0 463.54 .04 1.90 1106 83 256 60 3.0 12 27.5 465.35 .04 1.90 1106 83 256 60 3.0 13, 30.0 467.13 .05 2.38 1222 83 252 65 3.5 142 32.5 469.28 .05 2.38 1222 83 250 60 3.5 153 35.0 471.18 .05 2.38 1236 84 253 60 3.5 164 37.5 473.21 .05 2.38 1216 <td>1 5</td> <td>10.0</td> <td>452.9</td> <td>,04</td> <td>11.90</td> <td>1222</td> <td>77</td> <td>252</td> <td>56</td> <td>2,5</td> <td></td>	1 5	10.0	452.9	,04	11.90	1222	77	252	56	2,5	
5 17.5 458.2 ,04 1.90 1159 79 261 60 2.5 9 20.0 459.91 ,04 1.90 1141 80 260 60 3.0 10 22;5 461.13 ,04 1.90 1160 81 258 60 3.0 11 25.0 463.54 ,04 1.90 1106 83 256 60 3.0 12 27.5 465.35 ,04 1.90 1106 83 256 60 3.0 13. 30.0 467.13 ,05 2.38 1222 83 252 65 3.5 14. 32.5 469.28 .05 2.38 1229 83 250 60 3.5 15. 35.0 471.18 ,05 2.38 1235 83 250 60 3.5 16. 37.5 473.21 .05 2.38 1236 84 253 60 3.5 16. 42.5 471.41 .05 2.38 1216 84 258 62 3.5 16. 42.5 471.41 .05 2.38 1208 85 263 62 3.5 16. 47.5 481.14 .04 1.90 1199 85 261 62 3.0 20. 47.5 481.14 .04 1.90 1160 85 2.56 62 3.0 21. 50.0 482.94 .04 1.90 1160 85 2.56 62 3.0 22. 52.5 484.74 .03 143 1166 86 2.52 62 3.0	<u> </u> 6	12.5	454,74		11.90	1214	177	256	58	12,5	
\$ 20.0 4\$9.91 .04 190 1141 80 260 60 30 10 27.5 461.73 .04 1.90 1160 81 258 60 3.0 11 25.0 463.54 .04 1.90 1106 83 256 60 3.0 12 27.5 465.35 .04 1.90 1106 83 256 60 3.0 13, 30.0 467.13 .05 12.38 1222 83 252 65 3.5 14, 32.5 459.28 .05 2.38 1229 83 250 60 3.5 15, 35.0 471.18 .05 2.38 1230 84 253 60 3.5 15, 40.0 476.29 .05 2.38 1216 84 258 62 3.5 15, 45.0 479.41 .05 12.38 1216 84 258 62 3.5 15, 45.0 479.42 .04 1.90 1199 85 261 62 3.5 15, 45.0 479.42 .04 1.90 1199 85 261 62 3.0 20, 47.5 481.14 .04 1.90 1172 85 259 62 3.0 21, 50.0 482.94 .04 1.90 1160 85 256 62 3.0 22, 52, 5 484.74 .03 1.43 1166 86 252 62 3.0	17	,	1456.55	1,03	143	1138	79	260		125	
10 22:5 461.73 .04 1.90 1160 81 258 60 3.0 11 25:0 463.54 .04 1.90 1130 82 257 60 3.0 12 27:5 465.35 .04 1.90 1106 83 256 60 3.0 13. 30.0 467.13 .05 2.38 1222 83 252 65 3.5 14. 32.5 469.28 .06 2.38 1229 83 250 60 3.5 15. 35.0 471.18 .05 2.38 1235 83 250 60 3.5 15. 37.5 473.21 .05 2.38 1235 84 253 60 3.5 15. 40.0 475.29 .05 2.38 1216 84 258 62 3.5 15. 45.0 479.42 .04 1.90 1199 85 263 62 3.5 15. 45.0 479.42 .04 1.90 1172 85 259 62 3.0 20. 47.5 481.14 .04 1.90 1172 85 259 62 3.0 21. 50.0 482.94 .04 1.90 1160 85 256 62 3.0 22. 52.5 484.74 .03 143 1166 86 252 62 3.0 22. 52.5 484.74 .03 143 1166 86 252 62 3.0	 -		1458.21		1.90	1159	19	26		12.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		101/12		1190	11141	1 30	460			}
12 27.5 465.35 .04 190 1106 83 256 60 3.0 13. 30.0 467.13 .05 12.38 1222 83 252 65 3.5 14. 32.5 459.28 .05 12.38 1229 83 250 60 3.5 15. 35.0 471.18 .05 12.38 1235 83 250 60 3.5 16. 37.5 473.21 .05 12.38 1236 84 253 60 3.5 175 40.0 475.29 .05 12.38 1216 84 258 62 3.5 16. 42.5 417.41 .05 12.38 1208 85 263 62 3.5 19. 45.0 479.47 .04 1.90 1199 85 261 62 3.0 20. 47.5 481.14 .04 1.90 1172 85 259 62 3.0 21. 50.0 482.94 .04 1.90 1160 85 256 62 3.0	1				11.90		81	258		13.0	-
13, 30.0 467.13 .05 2.38 1222 83 252 65 3.5 142 37.5 469.28 .05 2.38 1229 83 250 60 3.5 153 35.0 471.18 .05 2.38 1235 83 250 60 3.5 164 37.5 473.21 .05 2.38 1230 84 253 60 3.5 175 40.0 475.29 .05 2.38 1216 84 258 62 3.5 186 42.5 417.41 .05 2.38 1208 85 263 62 3.5 187 45.0 479.47 .04 1.90 1199 85 261 62 3.0 208 47.5 481.14 .04 1.90 1172 85 259 62 3.0 21 50.0 482.94 .04 1.90 1160 85 256 62 3.0 2210 52.5 484.74 .03 143 1166 86 252 62 3.0						1130_	8/	151			-
186 42.5 417.41 ,05 2.38 1208 85 263 62 3.5 187 45.0 479.42 ,04 1.90 1199 85 261 62 3.0 208 47.5 481.14 ,04 1.90 1172 85 259 62 3.0 21.0 50.0 48294 ,04 1.90 1160 85 2.56 62 3.0 2210 52.5 484.74 ,03 1.43 1166 86 252 62 3.0					1190	1	33	1250	90	13.0	
186 42.5 417.41 ,05 2.38 1208 85 263 62 3.5 187 45.0 479.42 ,04 1.90 1199 85 261 62 3.0 208 47.5 481.14 ,04 1.90 1172 85 259 62 3.0 21.0 50.0 48294 ,04 1.90 1160 85 2.56 62 3.0 2210 52.5 484.74 ,03 1.43 1166 86 252 62 3.0	·			· · · · · ·	17,38	1 la la la		256	95	13,5	1
186 42.5 417.41 ,05 2.38 1208 85 263 62 3.5 187 45.0 479.42 ,04 1.90 1199 85 261 62 3.0 208 47.5 481.14 ,04 1.90 1172 85 259 62 3.0 21.0 50.0 48294 ,04 1.90 1160 85 2.56 62 3.0 2210 52.5 484.74 ,03 1.43 1166 86 252 62 3.0							03	200	77	13,5	}
186 42.5 417.41 ,05 2.38 1208 85 263 62 3.5 187 45.0 479.42 ,04 1.90 1199 85 261 62 3.0 208 47.5 481.14 ,04 1.90 1172 85 259 62 3.0 21.0 50.0 48294 ,04 1.90 1160 85 2.56 62 3.0 2210 52.5 484.74 ,03 1.43 1166 86 252 62 3.0							011	<u> </u>		12,5	1
186 42.5 417.41 ,05 2.38 1208 85 263 62 3.5 187 45.0 479.42 ,04 1.90 1199 85 261 62 3.0 208 47.5 481.14 ,04 1.90 1172 85 259 62 3.0 21.0 50.0 48294 ,04 1.90 1160 85 2.56 62 3.0 2210 52.5 484.74 ,03 1.43 1166 86 252 62 3.0	154	37.5			12.30		07			13,5	1
20 g 47.5 481.14 .04 1.90 1172 85 259 62 30 21 g 50.0 48294 .04 1.90 1160 85 256 62 3.0 22 g 52.5 484.74 .03 143 1166 86 252 62 13.0					1 2,20	1210	95	7/-2	62	122	1
20 g 47.5 481.14 .04 1.90 1172 85 259 62 30 21 g 50.0 48294 .04 1.90 1160 85 256 62 3.0 22 g 52.5 484.74 .03 143 1166 86 252 62 13.0		i —	+	T			XZ		67	130	1
21 o 50.0 48294 .04 190 1160 85 2.56 62 3.0 22 o 52.5 484.74 .03 143 1166 86 252 62 13.0						1177				130	†
1 2210 52.5 484.74 ,03 143 1166 86 252 62 13.0	1				1 6 6	1160	45	25/	62		1
2311 55.6 496 35 03 143 1123 86 248 67 30					1147	1 . 1 ((36	7.57		<u>130</u>	1
	23 ₁₁				143	11123				130	1

60.0 489,774

0	м		2		RUN	_
	_					
			- ;	B, Ned son		OPERATOR
				AMBIENT, TEMPERATURE 740C	AMBIENT, TEMPERATURE	AMBIENT, TE
		ָ ר	2	ORSAT	L METHOD	AHALYTICA
		(bag	Intropulte	SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) INTEGRATED, CONTINUOUS)	PE (BAG, INTEC	SAMPLE TYF
				SAMPLING LOCATION STOSK	OCATION	SAMPLING L
-			3 hrs	SAMPLING TIME (24th CLOCK) 1910 - 1113	IME (24-hr CLO)	SAMPLING T
		١		TE ST NO	16/12/5	DATE
	COMMENTS	なられてい	Cramater	PLANT Ind. Egot. & Eng. Co. Cramatarin CommENTS.	nd. Eap	PLANT I

SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) Integraphy bas	RATEO, CONTIN	(snons)	Intro) V 4 'U	600					Case
AMBIENT, TEMPERATURE OPERATOR	P. N. J. Sa.									4:02-cv
RUN				2		3	AVERAGE		MOLECULAR WEIGHT OF	v-000
GAS	ACTUAL . READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY DASIS) M _d .	41-HLN
002	۲.۲	7.5	۲.۲	7.7	7'7	۲,۲	7.4 %	44/100	3,256	<u>/ Doc</u>
02 (HET IS ACTUAL OZ READING MINUS ACTUAL COZ READING)	18.2	19,8	18.1	(,01	18:1	F.01	د/ ۱۵۰۱	32,100	3,424	cument 53
CO(NET IS ACTUAL CO READING MINUS ACTUAL O2 READING)							\$ 81.9 %	28/100	756,22	0 Fil <u>ed 10</u>
M2 (MET IS 100 MINUS ACTUAL CO READING)								28 / 100		/06 <u>/03</u>
								TOTAL	29.612	Page 44 (
							•			of 84

รวมเกิษการิกาทเบกเทียกเลเ จัดเยาตะร, เกิด.

GAS ANALYSIS DATA FORM

Crainsering Co. COMMENTS: SAMPLE TYPE (DAG, INTEGRATED, CONTINUOUS) PLANT Inghastrain of Eguipmant しゅん orset SAMPLING TIME (24-hr CLOCK) AMBIENT, TEMPERATURE, ANALYTICAL METHOD__ SAMPLING LOCATION_ OPERATOR_

RUN				2			AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET	MULTIPLIER	STACK GAS (DRY BASIS) M _d .
202	2,7 5,13	5,۲	1,7	7,7	5، ۲	7.3.	5.7.5%	44/100	3.212
02 (HET IS ACTUAL 02 READING MINUS ACTUAL CO2 READING)	1.81 8.01 1.81	8.01	1.8.1	10.q	10.9 18.1	10,8	10.8%	32,100	3.456
COMET IS ACTUAL CO READING MINUS ACTUAL O2 READING)							7,6:16}	28/100	22.937
N2 (NET IS 100 MIRUS ACTUAL CO READING)								28,100	2-4-600
								TOTAL	29.600

-						-			_		_	\	• •			. ~	٦.		^	٠.		1.		I . N	. 1	. 1	D .			~ .	.	. + F		_	L	مان	<u>ا</u> م		0	- 10	12	_		~ ~		c	~ t	0	,					
	1	П	Ц	Ц	1	11		11	Ц	H	+	44	şψ	14	ا.ا	4	14	Υ-	yι	טע	44	나	П	Цľ	VII	+	ľ	ĮΨ	Ψ	THE	en	IL I) (쀼	-	le	UI 4	L <mark>O</mark> /	U	<u> </u>	3	11	a	JE	14	DJ (빞	Ħ	41	#	#	#	11	۲
۱!	1	Ц		11	1	!!	1		#	 	+	11		4	4		₩	1	+		+	+	<u> </u>	+	Н	+	₽	H	\mathbb{H}		Н	+-	H	₩	╫	H	-	- -	<u> </u>	$^+$	-	$H_{\frac{1}{2}}$	+¦	+	╫	₩	∺	H	#	₩	₩	₩.	H	¢
1	4	Н	11	H	Ц	#	1	11	H	╂╁	+	H	∺	븬	4	H	11	+	÷	! 	╣	+	11	ᅷ	H	-	H	Н	⊹	+	∺	}	∺	₩	₩	÷			╁	₩	┼		╀	+	╁┼	┼	┼	뷰	╬	₩	┼┼	쓔	₩	إ
1,4	4	H	H	╫	+	╀	\pm	Н	₩	H	╬	╁	╫	╫	+	+	H	+	+	+	Н	÷	 	t	11	۲	H	H	+	+	H	╁┼	\forall	╁	н	1		+ (+	+	-		╫	#	╁	₩	╁	卄	₩	╁┼	₩	₩	Н	Ĭ
4	÷	<u> </u>	-	۲	<u>.</u>	11	+	1	1	1;	+	<u> </u>	H	+	<u>:</u>		11	+	i	+	+	<u>+</u>	<u> </u>	+	!	•	: i	i i	$\dot{\top}$	i	İ	i . I i		11	;	Η.			÷	: 	Ϊ́	: ; ;	ti	+	11	Ť	 	\forall	++		 	<u> </u>	H	(
. 1	-	-		1	÷	┪┑	1-	÷	÷	╁┼	Ť	ΤĖ	†-	†	+-	+	<u>.</u>	+	÷	<u></u>	†	+	Τİ	i	Ħ	†	+	1	Ť	Ť	1	!	┪	İΤ	i i	÷	\top	17	Ť	Ħ	忊		ti	+	Ħ.	1	•	Ť	_	, i		ή	H	Ċ
1	_			1		7	Ť		,	٢	;	1.1	Ì				1	Ť	:	1	•	:	; ;	•	1	-	; ·		1	ì] }	T	1		!	:		1	11	1	1	T	ĪŦ	T	T	1 :	$\overline{}$	_	$\overline{}$	亡			إ
			•	1		7	1:				i		1	٠,		-		: 1	- : -	;	• • •	:-	•	:	1	:	_;		<u> </u>	:	Ţ -	<u> </u>		<u> </u>	!				ī	: [1	. : :	1	Ť	-	<u> </u>					1		1	1
İ	_			Ī	7	įΙ	L			E	1			!	I		- 7						_		L.		1	Ļį	!		H	1!	1	<u>! !</u> .	<u>i_</u> .	<u> </u>	<u>. :</u> .	∐.∐	_;_	<u> </u>	<u> </u>	1			<u>; </u>	1	1!		·	11	<u> </u>	: i		ς.
. }	•	•]		-	1		_	L		·	<u> </u>		_					٠,			-		<u> </u>	_	:	Ľ	<u>.</u>	:	1	<u>.</u>	إ	 २१४	• :	-		<u>: :</u>	<u>:</u> ,	<u>.</u>	<u> </u>			_	<i>i</i> :	<u></u>			_		<u>_</u>		<u> 그</u>	ا ح
] [٠.	!_			8 ·	:				:	 		- }			į				۱.			<u>ţ</u> .	. <u></u>		.:		ì	•				- 3				- : :	2:	: 1	٠.:	:.	<u>:</u> ±	-:-	·::		<u> </u>		-\	
!	_	_	_	<u>`</u>	_		Ļ	_		Ĭ			Ļ										_		<u>!</u>	_		!_	_	_	1	<u> </u>	+	_	_	<u> </u>		+			<u>1 </u>		Ţ	-	٠,	<u>-</u>			_		╧			,
-	:	.	_	; }		<u>!</u> :	┦≟	·	. <u>-</u>	٠.	· - ·	. . .	-					٠		. <u>-</u>		_	. –	÷	¦			 					-	<u>. </u>		 - -	·	-	<u>.</u>	: - -		<u>:</u> .	-	:-:		Ą.	ڊ ر <u>ڊ</u>	ا آ	<u>م</u>	==	╪═	=	_{-	ļ (
4				H		-	÷			+	_		!		<u>.</u>	_	_	-		-	_	_			i			+				<u>, </u>			_	-		-			 		+		_			_ [_		÷	<u>-</u> -	╬	
}	•-			١.			-		. .	١.	٠		۱.	٠.		٠		• '		٠.	- }			•	Ì -	•	-		•			• •	-	٠:	• .		•	- -		٠	1	• • •	1	- -	•	ļ -		•	٠.		j			`
į	_			t		-	┼-			t	_		╁╴	_	_	H	:					_	_	÷	i	_		Ť		_	İ	_	Ť		_			Ť			 	: •	Ť			i		ᅥ	_	_	!	_	7	- [
- {	-	. •	•	•	-	·	-		•	٠.		: :	ĺ	: -		-	: ;	. 1			- 1				-		•	(:		-	1-	:	١.	: :	•	į · ·		-	- :		"	:- ;			; -	ļ	: -	۱:۱	7.7		╣.	•—•		7 (
ì	_	_		Ì:	-	•	Ì			,			Ī			·	:			·									!			: -		T	•					•			Ī			Ī	_				$\overline{1}$. :	7	
j		_		1-			1.						1		-					-			_]		_	<u> </u>		-	1		<u> </u>		_						1		1	_		$\underline{\mathbb{L}}$	_				\prod	· :) - C
	_			Ī		<u></u>	1_			Ľ			١.			 			٠						١			١.			ļ.,	- .	. }					.] .].	· .						.]			ļ	<u>-</u>	\prod	5
Ì	_	_		<u> </u> :	_	· 	Ļ		_	Ļ			<u>{</u>			L	٠	_			_[_			<u> </u>		_	<u>!</u>			<u> </u>		4			<u>:</u>					<u>!</u>	-	\downarrow			Ļ	_				<u>:</u>		4	٠, د
İ				ļ_	_ -	{ ·		. .	{-	·-				_						_	ļ. —			-			ļ	-	⇃		· · •			. .			١.		∦.		٠.	ļ	<u>.</u> .	-			·			\$
				<u> </u>	_		<u> </u>			H			! –			_					_		_		<u> </u>			╀	_		<u>!</u>					<u>!</u>		+	_	_	 		+	_		÷		\dashv			뉴			Volument C
. !				-			-	-		١.			۱.			-		-	•	:	-]		٠.	•	ļ			-	•		ļ.				٠	1		1	٠.	•] . ;	-	+		- · ·			\cdot		-			51	3 (
1	<u> </u>	_	-	į –	_	:	+	_		Ž-	_		<u>. </u>	-	:	-		_		-	- 4			_	 -	_	_	Ş-	_	<u> </u>	╁	.	-6		_	, .		-7-	_		<u>-</u>		-9-	-		十	-	<u>9</u>	=	==	╪	=	-1	(
İ		٠ -	-	۱.	•	: •	-	•		١.	•	• •			:	-	: .	•	•	•		7	• •	• •		•	· - •	:	(2)	5	şt ∽		- ‡	ب	s ;		• •	٠ ٠	•	• •	į ·		1	٠;	: :		; :	۱:	٠:	; -	1 -	: :	ان	1
1	_			-	_		t			İ.			i	:	_		•				ī				İ			T			<u> </u>	٦ ،	7			Ī		1			Ī		1	_		Ť		寸	_		Ť	$\vec{\cdot}$	İ	1 1
		•		1			1	-	• • •	1	•÷		1	: .	•	•	•	7		•	_ [2 -	2	٠. د	٦	 <u>e </u>		ا م		7	ļ:- <u>-</u>	_ :	1	•	• •	<u> </u>			· · :	•					<u>. </u>	Ľ	_				1		}	1 (
-				ī		· .	j.			L			<u>.</u>	٠.	÷	Ī.,			_				3,	/=-	1	12				_ :_	1_		_			l		₫.,	_		Ī	- -]					丁	_	Ī	
į		_		<u>į</u>		i .	1		<u>:</u>	Ŀ	·		[]				117	•	<u>. </u>	7	ا :	•		٠	ļ -	_	•	1		_	<u> </u>		- 1	::		<u> </u>	, ,	_!_	<u></u>	. :	<u>!</u>	•	<u> </u>	Ė	=	╧	=	ᆣ	<u> </u>	=	ᆂ	=	<u>-1</u>	1)
ĺ	٠.		_			: .				Ė			L		_	-				٠			_		<u>!</u> _		_	ļ.,		-	<u>!</u>	<u> </u>	- 1	٩.	96	c~ .	44	<u>-</u> -}	.					. :	<u></u> .		.	. }				٠.		`
ļ				<u> </u>	<u> </u>	- 1	5	٠ ٢	Pin	<u>! </u>	2	_₹	_	_	_			_			_		_		<u>i </u>	_	_	 	•		 	_	-			! ! •••		+	_		 		- -		_	÷	=	-=-	,		느	=	ᆜ	(
1			-	١.			1.			۱.			-	, :	-	١.	::	-		•	. }				Ì			١.	-			٠.	- }	•	:	ì		.	. :	· •			.] =	۷.	- ;	1-	<u></u> :		<u></u>	<u></u>	╣.			
. ‡		÷	_	<u> </u>	_		1			 	:		├	-	_		:			_		_			<u> </u>			!		-	<u>'</u>	-	+ 		_,	-		╁			 -		+	-		+	—	ᅱ	<u></u>		十	—	<u> </u>]
i	: -		-	<u> </u>	7		[-			ļ ·	:	•	ļ ·	. :	:			:	•	:			٠.	٠		•		.				1	-		•	١.	•	-	•	•	Ì		1	•	• :	1.	•		٠		-{ ··		į	1
į				┶	-		Ė		_				İΤ		:		, I		: :		٠i				<u> </u>	_		İ		13	₹₹	1	-			1			÷		i		Ť	•	: :	Ť					Ť	_	1	
1	• •		-	١.	- :	•	İ				٠			:							- 1				L	-			:	:	<u> </u>		_		·	<u> </u>			_		!					1_					1			
1			: 2	1			1	_	•	5 .	: .			: :		,	11		- : :	. .	Ì		i .	;	Ī :	<u>.</u>		<u>}</u> :	_:	1	1	: -	Ŧ			_		3			1.	. .	. 2	; ;		1	:		 	- 	1_	_ !	-	i j
	ء نــــ	Ċ		<u>, </u>			Ŀ			I								_	<u>.</u>	_	1	' 			_					<u>:</u>		·	_Ĭ			<u></u>		<u> Ĺ</u>			<u> </u>	•	ĩ	: 1	<u>. </u>	<u>!</u>			İ		<u> </u>		- }] \
																																											•											
					•																																																	
																																•									:													
																																							-															
																																											,											

20,6

0

18,0

5.3 ব

Southern Environmental Sciences, Inc.

Nozzle 10	Eun no.	(1p.)		(in.)	Δ ⁶	f., (1 n.)
#32	ONE	105,	35, 002.	,500	<u>8</u>	, 500
#33	2+3	. 620	129, 029, 029. 8+2	1791	029' doos'	029'

SAMPLE POINT LOCATIONS	Company: Industric Equit Englishers Source: Cranchers Date: 3/24/92 Duct bla.: 20"	3" Added Fac part langth	Point Distance from	no. Duct wall tin.,	3,5	2 4,2.	h'S 9	\chi_{\text{9}}	
÷ ∫∫2, }	2 X X X	4,654	→ — —	<u></u>					
				ت ا	Cin.		500		,
<u>10</u> N				۷	1 1 1		8		***
BRA T	ilson			تي ا			500 5m 500	}	•
CALIBRATI	C. Wilson			<u>:</u>	7, 01)		200	3	•
기	•••			├		;		÷	-

8652V

æ
و
measured
diameter
elzzon
ıt
S
Ď,
Į,

different diameter dn.).

Tolerance ≈ 6.001 in.

= maximum difference in any two Tolerance = 0.004 in. measurements (in.)

٥

= average of Di, Di, and Di J

POSTTEST DRY GAS METER CALIBRATION FORM

4 Meter Box Number:

Dry Gas Meter 1:656687

Date:4/2/92

Pretest Y: 0.979

Barometric Pressure, Pb: 29.94

=======================================					Temperature	(:=====: 	=======================================
Manometer	Wet Test	:IDry Gas		1	Dry Gas Meter		1	i
(Delta Ĥ) in. H20	{ (∀∀)	(Vâ) ft.^3	l (Tw) l Deg F	Inlet (Tdi)	Outlet Avera (Tdo) { {Td Deg F Deg	ige Time i} {Theta;	Setting	1
1.50	1 10.030	1 10.125	1 63.75		1 64.	.00 15.33	1 10.00	0.987
1.50	10.020	1 10.244	1 65.25	l	67.	.25 15.32	1 10.00	1 0.978
1.50	10.014	10.059	1 66.30	1	1 1 70.	.00 15.27	10.00	0.998
	Vi =		Vw Pb (tả	÷ 460)		-	= 0.988 =-0.009	

Vd (Pb + Delta H/13.8) (Tw + 460)

where

Vw = Gas Volume passing through the wet test meter, ft.^3

Vd = Gas Volume passing through the dry gas meter, ft^3

Tw = Temperature of the gas in the wet test meter, deg F.

Tdi = Temperature of the inlet gas of the dry gas meter, Deg F.

Tdo = Temperature of the outlet gas of the dry gas meter, Deg F.

Td = Average temperature of the gas in the dry gas meter, Deg F.

Delta H = Pressure differential across orifice, in. H2O.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y +/- 0.65Y.

Pb = Barometric pressure, in. Hg.

Theta = Time of calibration run, min.

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

EMISSIONS TEST CALCULATIONS

Unit: Run Ko:						Data In	ıput Ey:	<u> </u>	m Yal	wis _
%I =(.094	========= 50)(Ts,~R)(V	/æ(std)		======			:=====	::::::::	::::::	======
	Vs)(An)(Samp 0.0945	le Tia	e)(1-3vs 1641.0	*	42.320					
	30.13	t	20.13	t	0.002096	ŧ	60	±	0.865	
:	59.4									
As = (Stac	ck Diam., ft	:.)^2 ±	3.14159		=	(1.6666)^2 * 3	3.14159		
••••	4			-			4			
=	2.18									
As.eff = 1	As(total No.	pts	No. neg.	pts.)	=	2.1816	* (24	} - {	0)
	(T	otal K	o. pts.)		-		(24	1	
=	2.18			•						
Q = 60(As	eff)(Vs)	60	İ	2.18	t	20.13				
=	2634.7									
Qstd = (Q)	(Tstd)(Ps)(1-2vs)		2634.69	*	528	*	30.127	t	8.8659
· •	(Ts, TR)(Pst				1640.958	ŧ	29.92			,
=	739.2		•							
Cs = (.015	543)(mn, mg)	=	0.01543	t	24.0400	=	0.009			
	/m(std)			42.3204		_			;	
PMR = (Cs)	(Qstd)(60	=	0.069	*	739.1655	± 60	=	0.0555		
	7000			700	0		-			

Emissions calculations in emissions test summary may differ slightly from example calculations due to rounding of some numbers in example

THERMOMETER CALIBRATIONS
Calibrated By CHARLES R. WISON

` - -. -

												,					—,	 -	بحر				
	% or	Diff.	40	6	3	5	9 E	01.					H 0	o \$1	20			·					
OIL		Temp.	398	396	394	५)म	398	380					C17	404	70.17				-		} } 		
TOII	STD	Therm /	402	394	396	61 h	395	351					416	8047	408								
ER	% or	Diff.	1 6	i.	ત્ડ	ه لا		" ·(;					م کن	3	30	، ۲	٠,	رم	ؠ۠ڒ				
NG WATER	-5	Temp.	016	308	232	てって	210	SID					30 E	308	302	Job	HOE	30E	207				
BOILING	STD	Therm	211	206	018	214	みしみ	なった					210	110	210	HOE	202	016	205				
WIER INTER	% or	Diff.	0	7		ئر,	3,	7,	3	0,	3,6	3	,	می م	2,	2.	7,	3°	· —				
		Temp.	€8	34	4%	23	82	8.5	61	76.	36	8.5	7-8	8-0	8-0	0.8	08	77	35				
TEPID	STD	Therm	83	82	84	84	85	22	76	16	08	88	82	83	83	18	78	0.8	h8				
71	% or	Diff.	0.	20	3	0.	3,	٠, ۲	ي .	0,	°	o O	2	<i>a</i> }	, l	7,	3.	0,	,0				
E BATH		Temp.	110	42	40	39	3B	36	36	38	137	36	3 4	36	36	52	32	3,7	38				
IC	STD	Դրշու	0/1	40	オス	39	140	3'8	34	38	36	36	36	3.5	37			Ó	38				
787	<u>'</u>	Range	O. g	0.5	D ; q	0, 1	0:4	0.5	arr-0	1018-0). O.,	C	0	0.4	0.9	0-220	0-220	0-100	7).8	}		}	
	_	Type	PT	7	PT	ρŢ	D T	PT	B T	BT	BT	B T	PT	PT	PT	BT	B T	BT	P.T				
	ID	No.	TP.3	TP.2	T P.115	TP-65	TP-3	, -	1557 E	87 110	3T 55300	5.53 01	1.7.	7	T 3	ス ゴ	I	计计	405 F OFM				
	_	Date	16/0//2	1. 4 T 12/4/4	15/01/11	4/12/11 TP-65	11./~1/11	11/01/11	16/01/1.	16/01/11	16/01/11	16/~1/11	16/01/1	11.1<1/11	16/41/1.	16/01/4	16/01/4	13/0/41	14/81/5				

Liquid in Glass Thermometers (L/G)-2%, Bimetalic Thermometers (Bm)-5°F, Pyrometers/Thermocouples (PT)-5°F Quality Control Limits:

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03 Page 51 of 84

Southern Environmental Sciences, Inc. 1204 North Wheeler Street Plant City, Florida 33566-2354 (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS (Continued)

$^{\mathrm{T}}$ std	= Standard absolute temperature, 528 °R
ν _a	= Volume of sample aliquot titrated, ml
V _{1c}	= Liquid collected in impingers and silica gel, grams
v _m	= Sample volume at meter conditions, DCF
V _{m(std)}	= Sample volume at standard conditions, DSCF
V _s	= Stack gas velocity, ft/sec
V _{soln}	= Total volume of solution, ml
v _t	= Volume of barium perchlorate titrant used for the sample, ml
V _{tb}	<pre>= Volume of barium perchlorate titrant used for the blank, ml</pre>
V _{W(std)}	<pre>= Volume of water vapor in sample corrected to standard conditions, SCF</pre>
Y	= Dry gas meter calibration factor
13.6	= Specific gravity of mercury

Aycock Funeral Home

Florida Department of Environmental Regulacion

Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

DER Form_	17-210.900(4)
Form Title	Annual Operating Report
Effective Dat	e March I, 1993
DER Applica	tion No
	(Filled in by DER)

DIVISION OF AIR RESOURCES MANAGEMENT

ANNUAL OPERATING REPORT FOR AIR POLLUTION EMITTING FACILITY

See Instructions for Form 17-210.900(4). (Note: Shaded fields on form are for DER use; please leave blank.)

1. Year of Report	2. Date Report Received	3. Number of Sources in Report
1993		1
ACILITY INFORMATION (AIR	020)	
1. Facility APIS ID	2. Facility Status	3. Date of Permanent Facility
	A	Shutdown
4. Facility Owner/Company Nam	e	
Aycock Funeral Home		
5. Facility Name/Street Address	or Location Description	
505 South Federal Highwa	ау	·
6. Facility City		County
Stuart	•	Martin
7. Facility Compliance Tracking Codes	그렇게 하는 사람들은 사람들이 가는 사람들이 되었다면 하는 것이 없는 것이 없었다.	VOC
8. Facility Comment (60 Characte		
ACILITY HISTORY INFORMAT		
Change in Facility Name During Year?	Previous Name	Date of Change

DER Form 17-210.900(4) - Page A Effective:

Date:_____

OWNER/CONTACT INFORMATION			
 Individual Owner or Authorized F Name 			
Mr. Ronald L. Shaw, Genera	al Manager		
Organization/Firm			
Aycock Funeral Home			
Street Address or P.O. Box			
505 South Federal Highway			
City	State	Zip	
Stuart	Florida	34994	
Telephone		i	 -
(407) 287-1717			
(407) 287-1717 2. Facility Contact for Air Regulator			
Facility Contact for Air Regulator Name			
 Facility Contact for Air Regulator Name Mr. Ronald J. Swift 			
 Facility Contact for Air Regulator Name Mr. Ronald J. Swift 			
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above			
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box	y Matters		
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm		Zip	
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box City	y Matters	Zip	
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box	y Matters	Zip	
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box City Telephone ()	y Matters	Zip	
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box City Felephone ()	y Matters State	Zip	
2. Facility Contact for Air Regulator Name Mr. Ronald J. Swift Organization/Firm Same as above Street Address or P.O. Box City Telephone	State		

DER Form 17-210.900(4) - Page B Effective:

Date: _____

District	Office	County	Facility	Source	
APIS ID					INPUT
SOURCE OPERATIO	ON REPORT - PAGE	1 & 2 (SOURCE RI	EPORT 1 OF	1_)	
FACILITY NAME: _	Aycock Funeral Hom	e			
OURCE INFORMA		· · · · · · · · · · · · · · · · · · ·			_ _ -
1. Source Description	DI				
Industrial E	quipment and Engine	ering Model IE43-	PPPII Crematory		
2. DER Permit or P	PS Number	3. Source APIS II	0	4. Source Statu	s
AO43-226856				A	
5. Source Startup Di N/A	ate (MM/DD/YY)		6. Source Shutd N/A	own Date (MM/DD	(YY)
OURCE EMISSION	S POINT/CONTROL	INFORMATION (A	AIR033)		
1. Source Emission			· · · · · · · · · · · · · · · · · · ·		
1 (Stack)					
2a. Description of C	Control Equipment 'a'		-		
Secondary Co	ombustion Chamber	(Integrated)			
	Control Equipment 'b'		 .		
F					
					_ -
OURCE OPERATIN	IG SCHEDULE				·
 Operated During Year? 	2. Average Operation	hour/day	day/week	3. Total Operation (hour/year)	on During Year
Y	During Year	6	7		3 ^a
4. Percent Hour of 6 by Season	Operation	DJF	MAM	JJA	SON
haded ares are for D	ER use.	<u> </u>	1	1 .	<u> </u>
1) 061 4 4 1 6			167 h		

(1) = 861 Actual Cremations/year X 2.5 hrs/cremation = 2,153 hours/year

DER Form 17-210.900(4) - Page 1 Effective:

District Of	fice County	Facility Source
APIS ID		INPUT

SOURCE PROCESS/FUEL IN		
la. SCC 'a'	2a. Description of Process or	Type of Fuel
	Propane	<u>.</u>
3a. Annual Process of Fuel U	sage Rate (SCC Units)	
23.7 X 10 ³ gal		
4a. Fuel Average % Sulfur	5a. Fuel Average % Ash	60 First West Control (Pt. 1900 W.)
_	Ja. 1 del Avelage & Asi	6a. Fuel Heat Content (mmBtu/SCC Units)
Neg	Neg	91.0 mmBtu/10³ gal
1b. SCC 'b'	21 75 67	
16. SCC 1	2b. Description of Process or	Type of Fuel
	Type IV Waste	
3b. Annual Process or Fuel U	sage Rate (SCC Units)	
(861 cremations	/year) X (150 lbs/c	remation avg.) $\left(\frac{1 \text{ ton}}{2000 \text{ lb}}\right) = 65 \text{ TPY}$
	•	(2000 15)
4b. Fuel Average % Sulfur	5b. Fuel Average % Ash	6. Fuel Heat Content (mmBtu/SCC Units)
Neg .	2% avg (bones and	
, eve	bottom ash)	2.0 mmBtu/ton
1b. SCC /c	2c. Description of Process or	Type of Fuel
3c. Annual Process or Fuel Us	sage Rate (SCC Units)	
4c. Fuel Average % Sulfur	5c. Fuel Average % Ash	6c. Fuel Heat Content (mmBtu/SCC Units)
ld. SCC 'd'	2d. Description of Process or	Type of Fuel
3d. Annual Process or Fuel Us	sage Rate (SCC Units)	
4d. Fuel Average % Sulfur	5d. Fuel Average % Ash	6d. Fuel Heat Content (mmBtu/SCC Units)
haded areas are for DER use.		

DER Form 17-210.900(4) - Page 2 Effective:

Date:____

District Office	County Facility	Source
APIS ID		INPUT
SOURCE OPERATION REPORT -	PAGE 3 & 4 (SOURCE REPORT 1	OF <u>1</u>)
SOURCE DESCRIPTION: Incineral	tor Stack	
SOURCE EMISSIONS INFORMAT	ION (AIR051)	
la. Pollutant 'a' ID PM	2a. Annual Emissions (ton/year) 0.09 TPY	3a. Emissions Method Code Results from 3/24/92 Stack Test on identical unit
4a. Emissions Calculation		
(0.087 <i>lb</i>)	PM/hr) (2153 hrs/yr) $\left(\frac{1}{2000}\right)$	$\left(\frac{\partial n}{\partial b}\right) = 0.09 \ TPY$
NOTE: Emission Rate based on	Identical As In Construction Applicatio	n
lb. Pollutant 'b' ID NO _x	2b. Annual Emissions (ton/year) 0.17 TPY	3b. Emissions Method Code AP-42, Table 1.5-1
4b. Emissions Calculation		
(23.7 <i>X</i> 10 ³ <i>g</i>	$(al/yr) (14 lb/10^3 gal) \left(\frac{1}{200}\right)$	$\left(\frac{ton}{0\ lb}\right) = 0.17\ TPY$
1c. Pollutant 'c' ID CO	2c. Annual Emissions (ton/year) 0.02 TPY	3c. Emissions Method Code AP-42, Table 1.5-1
4c. Emissions Calculation		·
$(23.7 \ X \ 10^3 \ ga$	$(1.9 \ lb/10^3 \ gal) \left(\frac{1}{20}\right)$	$\frac{ton}{00 \ lb} = 0.02TPY$
		; ,
ld. Pollutant 'd' ID Total Organic Compounds	2d. Annual Emissions (ton/year) 0.01 TPY	3d. Emissions Method Code AP-42, Table 1.5-1
4d. Emissions Calculation		
(23.7 X 10 ³ ga.	$l/yr) (0.5 lb/10^3 gal) \left(\frac{1}{200}\right)$	$\frac{ton}{0 \ lb}$ = 0.01 TPY
haded areas are for DER use.		

DER Form 17-210.900(4) - Page 3 Effective:

Date:

District Office	County Facility	Source
APIS ID		INPUT
OURCE EMISSIONS INFORMATION	N (Continued)	
le. Pollutant 'e' ID	2e. Annual Emissions (ton/year)	3e. Emissions Method Code
	(**************************************	See Emissions Wethod Code
le. Emissions Calculation		
		·
f. Pollutant 'f' ID	2f. Annual Emissions (ton/year)	3f. Emissions Method Code
		The second second second
f. Emissions Calculation		
		:
		
· · · · · · · · · · · · · · · · · · ·		
g Pollutent 'a' ID	<u> </u>	
g. Pollutant 'g' ID	2g. Annual Emissions (ton/year)	3g. Emissions Method Code
· · · · · · · · · · · · · · · · · · ·	2g. Annual Emissions (ton/year)	3g. Emissions Method Code
g. Pollutant 'g' ID g. Emissions Calculation	2g. Annual Emissions (ton/year)	3g. Emissions Method Code
· · · · · · · · · · · · · · · · · · ·	2g. Annual Emissions (ton/year)	3g. Emissions Method Code
· · · · · · · · · · · · · · · · · · ·	2g. Annual Emissions (ton/year)	3g. Emissions Method Code
g. Emissions Calculation		
. Emissions Calculation	2g. Annual Emissions (ton/year) 2h. Annual Emissions (ton/year)	3g. Emissions Method Code 3h. Emissions Method Code
g. Emissions Calculation 1. Pollutant 'h' ID		
g. Emissions Calculation 1. Pollutant 'h' ID		
p. Emissions Calculation a. Pollutant 'h' ID a. Emissions Calculation		
. Emissions Calculation . Pollutant 'h' ID . Emissions Calculation		
g. Emissions Calculation 1. Pollutant 'h' ID 1. Emissions Calculation		
g. Emissions Calculation 1. Pollutant 'h' ID 1. Emissions Calculation	2h. Annual Emissions (ton/year)	
. Emissions Calculation . Poilutant 'h' ID . Emissions Calculation	2h. Annual Emissions (ton/year)	
. Emissions Calculation . Poilutant 'h' ID . Emissions Calculation	2h. Annual Emissions (ton/year)	

DER Form 17-210.900(4) - Page 4 Effective:

District	Office	County	Facility	Source		
APIS ID					INPUT	
SOURCE OZONE-SIP RE	PORT - PAGE	5 & 6 (SOURCE	REPORT OF	<u> </u>		
SOURCE DESCRIPTION:			OF _			
		-				
SOURCE OZONE-SIP PR 1. Existing 12/31/90?		Operation (
, and a second of the second o	for Ozor	e Season u August)	hour/day		day/week	
3a. SCC 'a'	4	a. Description of l	Process or Type of	Fuel		
5a. Daily Ozone Season F	rocess or Fuel	Usage Rate (SCC)	Units)			
6a. Emission Factor (lbs/SCC Unit)		vo	С		NO _x	\dashv
7a. Comments						\dashv
				· · · · · · · · · · · · · · · · · · ·	·	
3a. SCC 'b'	41	o. Description of P	rocess or Type of I	Fuel		7
5b. Daily Ozone Season P		Usage Rate (SCC I	Jnits)			-
· ;						
6b. Emission Factor (lbs/SCC Unit)		VOC			NO _x	
7b. Comments		 		·		-
haded areas are for DED				·	<u></u>	1

DER Form 17-210-900(4) - Page 5 Effective:

Date:____

		INPUT
URCE OZONE SIP EMISSIONS IN	FORMATION (AIR053)	
a. Pollutant VOC	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
b. Emissions Calculation		<u> </u>
-		•
· ·		
		<u> </u>
A. Pollutant NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO. Emissions Calculation	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,	2b. Ozone Season Emissions (lb/day)	3b. Emissions Method Code
NO,		3b. Emissions Method Code
NO. Emissions Calculation		3b. Emissions Method Code

DER Form 17-210.900(4) - Page 6 Effective:

Date: _____

Attachment 1

Production Data Documentation

M AYCOCK FUNERAL HOMES

January 13, 1994

Attached is the signed proposal authorizing you to complete our AOR. The following information is provided to assist you:

Number of cremations for 1993: 861
Fuel usage for 1993: 23,678 gallons for LP fuel
Hours of operation: approximately 6 hours day, 7 days a week
The unit operated each month of 1993.

If I can be of further assistance, please call me at (407) 287-1717.

Sincerely,

Ronald J. Swift Crematory Manager

RECEIVED

1AN 1 9 1994

GROVE SCIENTIFIC COMPANY

Attachment 2

Particulate Emissions Data

Case 4:02-cy-00041-HLM Document 530 Filed 10/06/03 Page 64 of 84 T 'LE 1. EMISSIONS TEST SUM RY

Company: Source:

INDUSTRIAL EQUIPMENT & ENGINEERING CO., INC. Power-Pak II Crematory - Model IE43-PPII

	Run 1	Run 2	Rup 3
Date of Run Process Rate (lb./hr.) Start Time (24-hr. clock) End Time (24-hr. clock) Vol. Dry Gas Sampled Meter Cond. (DCF) Gas Meter Calibration Factor Barometric Pressure at Barom. (in. Hg.) Elev. Diff. Manom. to Earom. (ft.) Vol. Gas Sampled Std. Cond. (DSCF) Vol. Liquid Collected Std. Cond. (SCF) Moisture in Stack Gas (% Vol.) Molecular Weight Dry Stack Gas Nolecular Weight Wet Stack Gas Stack Gas Static Press. (in. H2O gauge) Stack Gas Static Press. (in. Hg. abs.) Average Square Root Velocity Head Average Orifice Differential (in. H2O) Average Gas Meter Temperature (°F) Pitot Tube Coefficient Stack Gas Vel. Stack Cond. (ft./sec.) Effective Stack Area (sq. ft.) Stack Gas Flow Rate Std. Cond. (DSCFM) Stack Gas Flow Rate Stack Cond. (ACFM) Net Time of Run (min.) Nozzle Diameter (in.)	3/24/92 215 1010 1113	3/24/92 166 1257 1359 43.827 0.979 30.13 0.201 13.4 29.59 28.04 -0.03 30.13 0.201 1.942 81.6 1181.0 0.84 20.13 2.18 739 2,635 60 0.620	3/24/92 142 1529 1631 43.274 0.979 30.07 0.1761 5.385 11.4 29.60 28.28 -0.03 30.07 0.199 1.503 80.3 1188.1 0.84 19.66 2.18 741 2,599 0.620
Percent Isokinetic Propane Gas Usage (MMBTU/hr.) Particulate Collected (mg.) Particulate Emissions (lb./hr.)	1.38 38.6 0.13	1.26	97.8 1.44 28.6. 0.07
Particulate Emissions (gr./DSCF) Particulate Emissions (gr./DSCF @ 7% O ₂) Avg. Particulate Emissions (gr./DSCF @ 7% O ₂) Allowable Part. Emissions (gr./DSCF @ 7% O ₂)	0.019 0.026	0.009 0.012 0.018 0.100	0.011 0.015
CO Emissions (ppm) CO Emissions (ppm @ 7% O ₂) Avg. CO Emissions (ppm @ 7% O ₂) Allowable CO Emissions (ppm @ 7% O ₂)	2.8 3.8	0.5 0.7 1.8 100	0.7

Note: Standard conditions 68°F, 29.92 in. Hg

Attachment 3

AP- 42 Table 1.5-1

1.5 LIQUIFIED PETROLEUM GAS COMBUSTION

1.5.1 General¹

Liquified petroleum gas (LPG) consists of butane, propane, or a mixture of the two, and of trace amounts of propylene and burylene. This gas, obtained from oil or gas wells as a gasoline refining byproduct, is sold as a liquid in metal cylinders under pressure and, therefore, is often called bottled gas. Liquified petroleum gas is graded according to maximum vapor pressure, with Grade A being mostly butane, Grade F mostly propane, and Grades B through E being varying mixtures of butane and propane. The heating value of LPG ranges from 6,480 kcal/liter (102,000 Btu/gallon) for Grade A to 6,030 kcal/liter (91,000 Btu/gallon) for Grade F. The largest market for LPG is the domestic/commercial market, followed by the chemical industry and internal combustion engines.

1.5.2 Emissions and Controls 1-4

Liquified petroleum gas is considered a "clean" fuel because it does not produce visible emissions. However, gaseous pollutants such as carbon monoxide (CO), organic compounds, and nitrogen oxides (NO_X) do occur. The most significant factors affecting these emissions are burner design, burner adjustment, and flue gas venting. Improper design, blocking and clogging of the flue vent, and insufficient combustion air result in improper combustion and the emissions of aldehydes, CO, hydrocarbons, and other organics. Nitrogen oxide emissions are a function of a number of variables, including temperature, excess air, fuel/air mixing, and residence time in the combustion zone. The amount of sulfur dioxide (SO₂) emitted is directly proportional to the amount of sulfur in the fuel. Emission factors for LPG combustion are presented in Tables 1.5-1 and 1.5-2.

Nitrogen oxides are the only pollutant for which emission controls have been developed. Propane and butane are being used in Southern California as backup fuel to natural gas, replacing distillate oil in this role pursuant to the phaseout of fuel oil in that region. Emission control for NO_X have been developed for firetube and watertube boilers firing propane or butane. Vendors are now warranting retrofit systems to levels as low as 30 to 40 ppm (based on 3 percent oxygen). These low-NO_X systems use a combination of low NO_X burners and flue gas recirculation. Some burner vendors use water or steam injection into the flame zone for NO_X reduction. This is a trimming technique which may be necessary during backup fuel periods because LPG typically has a higher NO_X-forming potential than natural gas; conventional natural gas emission control systems may not be sufficient to reduce LPG emissions to mandated levels. Also, LPG burners are more prone to sooting under the modified combustion conditions required for low NO_X emissions. The extent of allowable combustion modifications for LPG may be more limited than for natural gas.

One NO_x control system that has been demonstrated on small commercial boilers is flue gas recirculation (FGR). Nitrogen oxide emissions from propane combustion can be reduced by as much as 50 percent by recirculating 16 percent of the flue gas. Nitrogen oxide emission reductions of over 60 percent have been achieved with FGR and low NO_x burners used in combination.

TABLE 1.5-1. (ENGLISH UNITS) EMISSION FACTORS FOR LPG COMBUSTION^{2,b} (Emission Factor Rating: E)

Pollutant	1	mission Factor 1000 gal		Emission Factor 1000 gal
	Industrial Boilers ^C	Commercial Boilers ^d	Industrial Boilers ^C	Commercial Boilers ^d
Filterable particulate matter	0.6	0.5	0.6	0.4
Sulfur oxides ^f	0.09s	0.09s	0.10s	0.10s
Nitrogen oxides ^g	21 .	15	19 .	14
Carbon dioxide	14,700	14,700	12,500	12,500
Carbon monoxide	3.6	2.1	3.2	1.9
Total organic compounds	0.6	0.6	0.5	0.5

- a. Assumes emissions (except SO_X and NO_X) are the same, on a heat input basis, as for natural gas combustion. The NO_X emission factors have been multiplied by a correction factor of 1.5 which is the approximate ratio of propane/butane NO_X emissions to natural gas NO_X emissions.
- b. SCC Codes 102101001, and 10301001 for industrial and commercial/institutional butane combustion. SCC Codes 10201002, and 10301002 for industrial and commercial/institutional propane combustion. SCC Codes 10500110, and 10500210 for industrial and commercial/institutional LPG combustion.
- c. Heat input capacities generally between 10 and 100 million Btu/hour.
- d. Heat input capacities generally between 0.3 and 10 million But/hour.
- e. Filterable particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train.
- f. Expressed as SO₂. S equals the sulfur content expressed on gr/100 ft³ gas vapor. For example, if the butane sulfur content is 0.18 gr/100 ft³ emission factor would be (0.09 x 0.18=) 0.016 lb of SO₂/1000 gal butane burned.
- g. Expressed as NO₂.

Case 4:02-cv-00041-HLM Document 530 Filed 10/06/03

Florida Departi nt of Environmental Regulation

Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Page 68	of 84	•
DER Form_	17-210.90	0(4)
Form Title	Annual Oper	rating Report
Effective Date	March 1	1993
DER Applica	lion No	
	(Fil	led in by DER)

DIVISION OF AIR RESOURCES MANAGEMENT

ANNUAL OPERATING REPORT FOR AIR POLLUTION EMITTING FACILITY

See Instructions for Form 17-210.900(4). (Note: Shaded fields on form are for DER use; please leave blank.)

REPORT INFORMATION		
1. Year of Report	2. Date Report Received	3. Number of Sources in Repor
1992		1
FACILITY INFORMATION (A	JR020)	
1. Facility APIS ID	2. Facility Status	3. Date of Permanent Facility
	A	Shutdown
4. Facility Owner/Company N	ame	
Aycock Funeral Home		
5. Facility Name/Street Address	ss or Location Description	
505 South Federal High	way	
6. Facility City		County
Stuart .		Martin -
7. Facility Compliance Trackin Codes		VOC
8, Facility Comment (60 Chara		
FACILITY HISTORY INFORM	IATION (AIR022)	
Change in Facility Name During Year? No	Previous Name	Date of Change
haded areas are for DER use		

DER Form 17-210.900(4) - Page A Effective:

Date:____

District Office APIS ID	County Facility		INPUT
OWNER/CONTACT INFORMATION ((AIR021)		
Individual Owner or Authorized Rep Name Mr. Ronald L. Shaw, General M.			
Organization/Firm		·	
Aycock Funeral Home			
Street Address or P.O. Box			
505 South Federal Highway			
City	State	Zip	
Stuart	Florida	34994	
Telephone			
(407) 287-1717			
Facility Contact for Air Regulatory Name Mr. Ronald J. Swift	Matters		-
Organization/Firm Same as above	_		
Street Address or P.O. Box			
City	State	Zip	-
Telephone ()	-		
CERTIFICATION			
Statement by Owner or Authorized Rep	presentative		
I hereby certify that the information given	ven in this report is correct to th	e best of my knowledge.	
Signature	Date Date	1/53	

Shaded areas are for DER use.

DER Form 17-210.900(4) - Page B Effective:

Date:

District APIS ID	Office	County	Facility	Söurce] INPUT [
SOURCE OPERATION FACILITY NAME: <u>A</u>			PORT 1 OF _	1_)	
SOURCE INFORMAT	ION (AIR030)				
1. Source Description					
Crematory					
2. DER Permit or PP	S Number	3. Source APIS II)	4. Source Status	5
AC43-219869				A	
5. Source Startup Date 12/23/92	e (MM/DD/YY)		6. Source Shutde	own Date (MM/DD/	YY)
1. Source Emission F 1. (Stack) 2a. Description of Consecution Secondary Com-	Point Type	·	IR033)		
2b. Description of Co	ntrol Equipment 'b'				
SOURCE OPERATING	·	<u> </u>			
 Operated During Year? 	2. Average Operation	hour/day	day/week	3. Total Operatio (hour/year)	_
Y	During Year	6	7	38	·
Percent Hour of Operation by Season Shaded ares are for DE		DJF	MAM	JJA	SON *

* Cremator only operated during December 1992.

DER Form 17-210.900(4) - Page 1 Effective:

Date:____

District Off	fice County	Facility Source
APIS ID		INPUT
SOURCE PROCESS/FUEL IN	FORMATION (AIR050)	
la. SCC 'a'	2a. Description of Process or	Type of Fuel
	Propane	
32. Annual Process of Fuel U	sage Rate (SCC Units)	
0.475 x 10 ³ gal		
4a. Fuel Average % Sulfur	5a. Fuel Average % Ash	6a. Fuel Heat Content (mmBtu/SCC Units)
Neg	⁻ Neg	91.0 mmBtu/10 ³ gal
Ib. SCC.'b'	2b. Description of Process or	Type of Fuel
	Type IV Waste	
3b. Annual Process or Fuel U	sage Rate (SCC Units)	
1.66 ton		
4b. Fuel Average % Sulfur	5b. Fuel Average % Ash	6. Fuel Heat Content (mmBtu/SCC Units)
Neg	2% avg (bones and bottom ash)	2.0 mmBtu/ton
1b. SCC 'è'	2c. Description of Process or T	Type of Fuel
3c. Annual Process or Fuel U	sage Rate (SCC Units)	
4c. Fuel Average % Sulfur	5c. Fuel Average % Ash	6c. Fuel Heat Content (mmBtu/SCC Units)
Id. SCC.'d'	21 D	
.lu. scc u	2d. Description of Process or 1	Type of Fuel
3d. Annual Process or Fuel U	sage Rate (SCC Units)	
4d. Fuel Average % Sulfur	5d. Fuel Average % Ash	6d. Fuel Heat Content (mmBtu/SCC Units)
Shaded areas are for DEP use		<u></u>

DER Form 17-210.900(4) - Page 2 Effective:

Date:______;

OURCE OPERATION RE	EPORT - PAG	JE 3 & 4 (SOURCE REPORT 1	OF1_)
URCE DESCRIPTION:	Incinerator S	tack	
URCE EMISSIONS IN	FORMATION	(AIR051)	
a, Pollutant 'a' ID PM		2a. Annual Emissions (ton/year) 0.002 TPY	3a. Emissions Method Code Results from 3/24/92 Stack Test on identical unit
a. Emissions Calculation			· · · · · · · · · · · · · · · · · · ·
NOTE: Emission Pata la		b $PM/hr(38hr/yr)\left(\frac{1}{2000}\right) = 0$ ical As In Construction Application	0.002 <i>TPY</i>
NOTE. Emission Rate of	ased off Idelic	- Constitution Application	
b. Pollutant 'b' ID NOX		2b. Annual Emissions (ton/year) 0.002 TPY	3b. Emissions Method Code AP-42, Table 2.1-1
NOX		0.002 TPY	AP-42, Table 2.1-1
NOX			AP-42, Table 2.1-1
NOX b. Emissions Calculation		0.002 TPY	AP-42, Table 2.1-1
b. Emissions Calculation	3 <i>1b/</i>	0.002 TPY $ton(1.66 TPY) \left(\frac{1}{2000}\right) = 0.0$ $2c. \text{ Annual Emissions (ton/year)}$	AP-42, Table 2.1-1 02 TPY 3c. Emissions Method Code AP-42, Table 1.5-1
NOX b. Emissions Calculation c. Pollutant 'c' ID CO c. Emissions Calculation	3 1b/	0.002 TPY $ton(1.66 TPY) \left(\frac{1}{2000}\right) = 0.0$ $2c. \text{ Annual Emissions (ton/year)}$	AP-42, Table 2.1-1 02 TPY 3c. Emissions Method Code AP-42, Table 1.5-1 Domestic/Commercial
NOX b. Emissions Calculation c. Pollutant 'c' ID CO c. Emissions Calculation	3 1b/	$(ton(1.66 TPY) \left(\frac{1}{2000}\right) = 0.0$ $(2c. Annual Emissions (ton/year))$ $(3c. Annual Emissions (ton/year))$ $(3c. Annual Emissions (ton/year))$ $(3c. Annual Emissions (ton/year))$ $(3c. Annual Emissions (ton/year))$ $(3c. Annual Emissions (ton/year))$	AP-42, Table 2.1-1 02 TPY 3c. Emissions Method Code AP-42, Table 1.5-1 Domestic/Commercial = 0.0004 TPY
b. Emissions Calculation c. Pollutant 'c' ID CO c. Emissions Calculation	3 lb/	$(1.66 TPY) \left(\frac{1}{2000}\right) = 0.0$ 2c. Annual Emissions (ton/year)	AP-42, Table 2.1-1 02 TPY 3c. Emissions Method Code AP-42, Table 1.5-1 Domestic/Commercial
NOX b. Emissions Calculation c. Pollutant 'c' ID CO c. Emissions Calculation 1 d. Pollutant 'd' ID	3 lb/ .8 lb/10 ³	$(1.66 \text{ TPY}) \left(\frac{1}{2000}\right) = 0.0$ $2c. \text{ Annual Emissions (ton/year)}$ Reg $gal (.475x10^3 gal) \left(\frac{1}{2000}\right)$ $2d. \text{ Annual Emissions (ton/year)}$	AP-42, Table 2.1-1 3c. Emissions Method Code AP-42, Table 1.5-1 Domestic/Commercial 3d. Emissions Method Code AP-42, Table 1.5-1

DER Form 17-210.900(4) - Page 3

Effective:

Date:

Ronald J. Swift

Attached is the Authorization to Proceed, for the new unit. Application for Operating Permit submitted received from DER, and copies of the the original 1992 Annual Operation Report

Additional information:

Number of cremations in 1992 - 849

Approximate gas usage - 23,000 gal

Amount of operation - approximately 5 hours week. per day, 6 days per

RECEIVED

GROVE SCIENTIFIC COMPANY MAR - 4 1993

EXHIBIT) ATTACHMENT

(To be scanned in place of tab)

Luis Llorens

President - AI Environmental Consulting Services, Inc. Affiliated Engineer - GSC

Education

University of Detroit B.S. Chemical Engineering, August, 1989

Certifications

Hazardous Waste Management
Environmental Auditor
Certified Visible Emissions Observer
Certified Incinerator Operator Instructor
HAZWOPER 40-Hour Certified; RCRA

Professional Affiliations

Air & Waste Management Association - National
Air & Waste Management Association - Central Florida, Current recruiting Chair
American Institute of Chemical Engineers
National Funeral Director of North America
Cremation Association of North America
National Funeral Directors Association

Responsible for the creation and operation of the solid waste division which specialized in MSW, hospital, hazardous and radioactive waste. Responsible for the conceptual design and sizing calculations of proposed equipment. Also responsible for coordinating the environmental permitting of these projects. In addition, the generation of new markets in foreign countries and the recruiting of sales personnel. Also, the re-introduction of the products targeted to the death care industry in the United States.

Responsible for solid waste projects in the Bahamas, Brazil, Chile, United Kingdom, Mexico, United States and, Venezuela.

AI Environmental Consulting and GSC Company - Project Manager/Chemical Engineer

Prepared air operation and construction permits (including Title V), and performed emissions inventories for several industrial facilities including boat manufacturers, printing presses, asphalt batch plants, coaters, circuit board manufacturers; performed environmental audits on stationary sources for all types of environmental media including air, hazardous waste consulting, NPDES storm water permitting, and EPCRA reporting; familiar with OSHA support and H&S requirements; coordinated and managed compliance testing; managed permit tracking; marketing to clients.

Experience:

- Air Pollution Permitting (Title V)
- Hazardous Waste Consulting RCRA
- Extensive Background in Chemical Engineering
- Air Toxics Modeling and Permitting
- Emergency response consulting (CERCLA)
- Environmental Audits
- Due Diligence Audits
- Soil Remediation Projects

- EPCRA Consulting
- SWPPP
- MSDS Preparation
- Ambient Monitoring
- Stack Testing

Publications

Ferraro, B.A., , Llorens L, "Grease Laden Air & Baking Ovens" for the National Fire protection Agency

BRUNO A FERRARO, C.E.P., Q.E.P. PRESIDENT - GSC

Education:

Florida Institute of Technology B.S., Biological Sciences

Certifications:

- Certified environmental professional (C.E.P.)
- Qualified environmental professional (Q.E.P.)
- NIOSH-582
- Visible emission evaluator
- Certified incinerator operator instructor

Publications:

- Rampenthal, Scott W., Ferraro, Bruno A., 1987. Water Quality in Central Florida's Phosphate Mineralized Region
- Florida Environments columnist
- Florida Woods and Water columnist

Experience:

- Environmental consultant in Florida since 1979
- Broad base of experience in the field of environmental sciences and engineering
- Air pollution permitting and source testing
- Expert witness for water quality, air pollution and indoor environmental quality projects
- Former President of the Florida Society of Environmental Analysts
- · Extensive professional experience in indoor air quality and industrial hygiene
- · Ambient air testing, modeling and consulting

DOUGLAS W. BAUMAN, P.E., MSE

Expertise:

Environmental Engineering, Air Pollution, Air Pollution Control Design, Indoor Air Quality, Environmental Regulatory Compliance and Auditing, Contamination Assessment and Remediation.

Experience:

Mr. Bauman has over 12 years of experience in the field of Environmental Engineering, a Master of Science in Engineering, and is a Florida licensed Professional Engineer. His experience was obtained as a Consulting Engineer and complimented while serving 4.5 years as Corporate Environmental Engineer for a large, heavy regulated manufacturing company based in the southeastern United States with distribution and sales centers nationwide. Mr. Bauman's environmental engineering experience is multi-media in nature. The majority of his experience is centered around air permitting and compliance at all levels, including design and troubleshooting of major air pollution control systems, regulatory compliance for industry, indoor air quality and industrial hygiene, contamination assessment, and stormwater permitting. Mr. Bauman continues to design emission inventory spreadsheets, and regulatory compliance database applications. Mr. Bauman is very active with the Florida Air and Waste Management Association.

Related Projects/ Experience:

Mr. Bauman is currently performing air permitting and air compliance planning for two major aircraft refurbishing and modification companies located in Florida. Mr. Bauman has several well-known clients, many of whom are Major Sources of air pollution, throughout Florida, which he provides Professional Engineering services on an ongoing basis. Much of his

- . Mr. Bauman is the Registered Engineer for the Greater Orlando Aviation Authority (GOAA), managing air permitting and air quality compliance projects at both the Orlando International Airport and the Orlando Executive Airport, including an.
- Greater Orlando Aviation Authority (GOAA), Orlando, FL: Mr. Bauman has served as the Registered Professional Engineer and Industrial Hygienist managing air permitting, air compliance and indoor air quality matters for GOAA at Orlando International Airport (OIA) and Orlando Executive Airport. His responsibilities at these facilities included, but were not limited to the following:
 - Airport wide air compliance audit at both airports in 1998
 - Air pollution source permitting at OIA in 1998 and 1999,
 - Indoor air quality evaluations for numerous air port buildings and facilities, 1998and 1999,
 - Indoor Air Quality Emergency Response at OlA's main terminal in 19989; and,
 - Opacity testing (EPA Method 9) for United States Department of Agriculture's incinerator at GOAA. 1998;
- Flightstar Aircraft Services, FL: Mr. Bauman is currently performing air permitting and air compliance planning, including the development of air emissions tracking spreadsheet.
- Stillwater Technologies, Inc., Orlando, FL: Mr. Bauman has assisted this
 civil and environmental engineering firm/client, as the engineer of record
 on several air permitting and modeling projects, including:
 - Air construction permitting, Hanson Pipe & Products new concrete pipe and products plant in Apollo Beach, Florida,
 - EPA SCREEN 3 modeling, Takoradi Thermal Power Station, Takoradi, Ghana, Africa

- Rockwell Collins, Inc., Title V Air Permit modifications and Title V renewal permitting, Melbourne, FL.
- Air pollution source permitting at OIA in 1998 and 1999,
- <u>Crestview Aerospace Corporation, FL:</u> Mr. Bauman is currently performing air permitting and air compliance planning, including the development of air emissions tracking spreadsheet.
- <u>Citrus World, Aubumdale, FL</u>: Mr. Bauman developed computer a computer application in Microsoft[®] Access[®] for client to tract toxic materials usage throughout the plant and perform calculations to assist in SARA Form R reporting. Citrus World is the largest orange processing plant in Florida.
- Regulatory Compliance: Mr. Bauman managed regulatory compliance and/or enforcement issues in Florida, California, Georgia, and Kentucky pertaining to stormwater permit compliance, California-Proposition 65, air permitting, 40 CFR - New Source Performance Standards, Subpart OOO and UUU, OSHA.
- Florida Tile Industries, Shannon, GA: Mr. Bauman performed an air permit regulatory (40 CFR-NSPS, Subpart OOO and UUU) compliance audit for a nonmetallic mineral processing plant, containing over 30 affected facilities. He mediated with the Georgia Department of Natural Resource's (DNR) Air Branch pertaining to enforcement due to noncompliance. He designed a plan, approved by Georgia DNR, to bring the manufacturing plant into compliance with the permitting regulations. Mr. Bauman managed the performance of the compliance plan's air pollution stack testing.
- Florida Tile Industries, Shannon, GA; Lakeland, Florida; Lawrenceburg, KY: Mr. Bauman completed major source (Title V) air operating permit applications for all three manufacturing plants burning over 50 million BTUs of natural gas and processing over 16 tons/hr of nonmetallic minerals.

Florida Tile Industries, Lawrenceburg, KY: Mr. Bauman managed emergency response and clean-up activities of a reportable release/discovery of approximately 4 pounds of liquid mercury near the edge of an uncovered parking area. Factors effecting emergency response included vapor concentrations, soil contamination, stormy weather, gradients, and relatively large contaminated area.

Mr. Bauman wrote and stamped spill prevention control and countermeasures (SPCC) plans for all three manufacturing plants to reduce risk of oil contamination to navigatable water of the State and to enhance emergency response in the event of an oil release.

He completed superfund amendments and reauthorization act (SARA) Form R reports, air annual operating reports, Title V fee forms, and many other forms/reports driven by environmental regulatory compliance.

Mr. Bauman served on an engineering design team responsible for the implementation of a 2.5 year, 28 million dollar manufacturing plant modernization project. He reviewed all nonmetallic minerals material handling and air pollution control system designs. He completed all applications for construction permits for new air pollution sources related to modernization and expansion project.

Mr. Bauman managed the restoration project for a 45,000-gallon per day industrial wastewater treatment system. The restoration project included the design of a temporary industrial wastewater treatment (batch process) system to allow 20% of the plant to continue to operate. The project was completed in a five-day window.

Mr. Bauman conducted an indoor air quality and air pollution control system efficiency study for the large manufacturing plant. The study included

personal monitoring of workers in 5 areas of the facility, confined space entry. The study included prioritized recommendations for improving the air quality within the plant and for reducing operating a maintenance cost for the air pollution control systems.

Mr. Bauman designed a 4,890 cfm dust collection system to control wet particulate matter emissions from glaze spraying applications.

Florida Tile Industries, Lakeland, FL: Mr. Bauman designed a 34,000 cfm dust collection system for a nonmetallic minerals processing facility. Dust collection system included the design of more than 25 pick-up hoods.

Mr. Bauman conducted an indoor air quality study for a Deco Room (450 square foot room where specialty tile is decaled or painted with high VOC containing paint). Study included personal monitoring and ambient air sampling.

- HITECH, Orlando, FL: Mr. Bauman performed a Phase II Environmental Assessment of a warehouse facility in Orlando Business Park. The subject site is located near well-known Ashland Chemical Plume and previously contained fuel underground storage tanks.
- <u>ECC. Orlando.</u> FL: Mr. Bauman conducted an emergency response at this facility after a chemical had spilled out from a trash trailer during unloading. Chemical migrated to stormwater sewer prior to first respondents' arrival at spill. Down gradient stormwater pipe was blocked, chemical was pumped to VAC truck, stormwater pipe was flushed, flush water collected and tested as non-hazardous.
- Florida Hospital, Orlando, FL: Mr. Bauman collected composite samples from medical waste incinerators for hazardous waste characterization. He completed air pollution construction permitting for facility.
- Hareldson's Auto Salvage, Kissimmee, FL: Mr. Bauman performed a Phase II Environmental Assessment of a 60-year-old salvage yard. Primary contaminant source identified as a historic portable auto crusher.
- Confidential Client, Fort Lauderdale, FL: Mr. Bauman performed indoor air quality and stack test sampling at a metal finishing facility. Additionally, he performed a building ventilation study. He developed and published emission factor equation for formaldehyde emissions from electroless copper plating operations.
- <u>Trilectron, Clearwater, FL</u>: He wrote NPDES stormwater pollution prevention plan (PPP) for new airport ground equipment support manufacturing facility.

Academic

Background: Master of Science, Environmental Engineering, University of Central Florida,

1994

Bachelor of Science, Environmental Engineering, University of Central Florida,

1992

Registrations: Professional Engineer, State of Florida #PE 0050807

Visible Emissions Evaluator, State of Florida #249272

Certifications: Asbestos Accreditation under TSCA Title II/AHERA (Abatement: Project Design;

Management Planning; Facility Survey and Building Systems)

OSHA 40 Hour HAZWOPER Training

Professional

Affiliations: Florida Air and Waste Management Association

National Society of Professional Engineers

Florida Engineering Society

American Society of Civil Engineers

Publications: Co-author of "Atmospheric Releases of Formaldehyde From Electroless Copper

Plating Operations", University of Central Florida Department of Civil and

Environmental Engineering, 1993.

Co-author of "Atmospheric Releases of Hexavalent Chromium From Hard Chromium Plating Operations", University of Central Florida Department of Civil

and Environmental Engineering, 1992.

ENVIRONMENTAL ASSESSMENT CLIENT LIST

- Crawford Equipment & Engineering
- Baron Real Estate Services
- Post, Buckley, Schuh & Jerningan
- Mid-County Utilities
- Brunswick Defense Division
- Prudential Florida Realty
- Florida Department of Agriculture
- Spiralkote, Inc.
- City of Kissimmee
- Sonoco Products
- Florida Hospital
- Philips Circuit Assembly
- Waste Management Inc.
- Frito Lay Company
- PB&S Chemical
- Wolverine Gasket Co.
- Ringhaver Corporation
- Dunes Management Company
- Forklift World
- City of Rockledge
- D. Franklin Properties
- Westinghouse Electric
- Pillar-Bryton Partners
- Hillsborough County

- R&M Brakes Inc.
- Real Estate One Orlando
- Lee Chemical Company
- Transfer One
- Realandco
- City of South Daytona
- ITT Defense Communications
- Superbrand Roods, Inc.
- Domino's Pizza, Camp LeJeune, N. C.
- Mercy Hospital: Laredo, Texas
- Pineloch Management Corporation
- City of Vero Beach
- U.S. Army Corps of Engineers
- Hunter Marine, Inc.
- Florida Iron Works
- First Union Bank
- Brainstorms Advertizing, Inc.
- Church of Christ
- Midland Industries
- Newspaper Printing Company
- American Asphalt Company
- Dial Septic Tank
- H & H Printing Company

AI Environmental Consulting and GSC Company currently assists over 200 companies and corporations with their environmental assessment needs. A more complete list of references can be provided upon request.

INDUSTRIAL HYGIENE / INDOOR ENVIRONMENTAL QUALITY CLIENT LIST

- Mason Homes
- General Services Administration
 - (Federal Government)
- Orlando Utility Commission
- Seminole Community College
- Florida Hospital
- International Mining Corporation
- Orange County Landfill
- Flowers Chemical Laboratory
- City of Winter Springs
- Hunter Marine
- Lowndes, Drosdick, P.A.
- Maryland Casualty\Wicker Smith
- Baker and Hostettler
- The Hartford Insurance
- WCPX Channel 6 TV
- Waste Management
- City of Orlando
- o Domino's Pizza
- Michael N. Bryant Contractors
- Inrecon
- Grey, Harris, and Robinson, P.A.

- Home Insurance Company
- American Automobile Association (AAA)
- WFTV Channel 9 TV
- Mechanical Services, Incorporated
- Peninsula Engineering, Inc.
- Orange County Library System
- Kendall Risk Management
- Marriott's Orlando World Center
- Martin Marietta
- Greater Construction
- Trilectron Industries, Inc.
- Grover Bryan, Inc.
- Cape Canaveral Hospital
- Land Company
- Walgreens Orlando Distributor
- Maguire, Voorhies, P.A.
- Landmarks Group
- o Travelers Insurance
- United States Postal Service
- Greater Orlando Aviation Authority

Al Environmental Consulting and GSC Company currently assists over 100 companies and corporations with their indoor environmental quality needs. A more complete list of references can be provided upon request.

AIR POLLUTION CLIENT LIST

- Florida Hospital Orlando
- West Volusia Memorial Hospital
- P,B, & S Chemical Company
- Quaker Oats Company
- ITT Defense Communications
- AMI Medical Center
- Central Florida Aircraft Refinishers
- Central Florida Press
- Frito Lay
- Page Avjet
- Hillsborough County Animal Control
- Sun N' Fun Printing
- Educational Computer Corp. (ECC)
- Hunter Marine
- Luhrs Corporation
- Halifax Paving
- Pensacola Naval Air Station
- McDonnell Douglas Astronautics Co.
- Group Technologies, Incorporated
- DeSoto County Landfill
- Wolverine Gasket Company
- Spiralkote
- Reedy Creek Improvement District -Power Plant
- Florida Dept. of Agriculture Dade City

- Brunswick Defense
- Avanti Press
- Technetics Corporation
- Sea World
- University of Florida
- Medical College of Georgia
- AT&T Technologies
- Ciba-Geigy
- Florida Dept. of Agriculture -
 - Kissimmee
- Newspaper Printing Company
- Noven Pharmaceuticals
- Vance IDS
- Sun Graphics
- Owens Corning Auburndale
- Cooper Coil Coating
- Bertram Yacht
- The Alpha Corporation
- Mubbard Construction
- Sonoco Products
- Continental Circuits, Inc.
- American Asphalt, Inc.
- International Coating and
 - Laminating Corp.

AI Environmental Consulting and GSC Company currently services over 100 air pollution sources throughout Florida , the United States, Chile, Brazil and, Venezuela . We have successfully permitted over 450 sources of air pollution.