SOME VC-DENSITY COMPUTATIONS IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

ABSTRACT. We investigate vc-density in Shelah-Spencer graphs. We provide an upper bound on formula-by-formula basis and show that there isn't a uniform lower bound forcing the vc-function to be infinite.

VC-density was studied in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko as a natural notion of dimension for NIP theories. In a complete NIP theory T we can define the vc-function

$$vc^T = vc : \mathbb{N} \longrightarrow \mathbb{R} \cup \{\infty\}$$

where vc(n) measures the worst-case complexity of families of definable sets in an n-fold Cartesian power of the underlying set of a model of T (see 1.13 below for a precise definition of vc^T). The simplest possible behavior is vc(n) = n for all n. Theories with the property that vc(1) = 1 are known to be dp-minimal, i.e., having the smallest possible dp-rank. It is not known whether there can be a dp-minimal theory which doesn't satisfy vc(n) = n (see [1], diagram on pg. 41).

In this paper, we investigate vc-density of definable sets in Shelah-Spencer graphs. In our description of Shelah-Spencer graphs we follow closely the treatment in [2]. A Shelah-Spencer graph is a limit of random structures $G(n, n^{-\alpha})$ for an irrational $\alpha \in (0, 1)$. $G(n, n^{-\alpha})$ is a random graph on n vertices with edge probability $n^{-\alpha}$.

Our first result is that in Shelah-Spencer graphs

$$vc(n) = \infty$$

which implies that they are not dp-minimal. Our second result is providing an upper bound on a vc-density for a formula ϕ

$$\operatorname{vc}(\phi) \le K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$$

where $K(\phi), Y(\phi), \epsilon(\phi)$ are paramters easily computable from the quantifier free form of ϕ .

Chapter 1 introduces basic facts about VC-dimension and vc-density. More can be found in [1]. Chapter 2 summarizes notation and basic facts concerning Shelah-Spencer graphs. We direct the reader to [2] for a more in-depth treatment. In chapter 3 we introduce some measure of dimension for quantifier free formulas as well as proving some elementary facts about it. Chapter 4 computes a lower bound for vc-density to demonstrate that $vc(n) = \infty$. Chapter 5 computes an upper bound for vc-density on a formula-by-formula basis.

1. VC-dimension and vc-density

Throughout this section we work with a collection \mathcal{F} of subsets of a set X. We call the pair (X, \mathcal{F}) a set system.

Definition 1.1.

- Given a subset A of X, we define the set system $(A, A \cap \mathcal{F})$ where $A \cap \mathcal{F} = \{A \cap F \mid F \in \mathcal{F}\}.$
- For $A \subset X$ we say that \mathcal{F} shatters A if $A \cap \mathcal{F} = \mathcal{P}(A)$ (the power set of A).

Definition 1.2. We say (X, \mathcal{F}) has <u>VC-dimension</u> n if the largest subset of X shattered by \mathcal{F} is of size n. If \mathcal{F} shatters arbitrarily large subsets of X, we say that (X, \mathcal{F}) has infinite VC-dimension. We denote the VC-dimension of (X, \mathcal{F}) by $VC(X, \mathcal{F})$.

Note 1.3. We may drop X from the notation $VC(X, \mathcal{F})$, as the VC-dimension doesn't depend on the base set and is determined by $(\bigcup \mathcal{F}, \mathcal{F})$.

Set systems of finite VC-dimension tend to have good combinatorial properties, and we consider set systems with infinite VC-dimension to be poorly behaved.

Another natural combinatorial notion is that of a dual system:

Definition 1.4. For $a \in X$ define $X_a = \{F \in \mathcal{F} \mid a \in F\}$. Let $\mathcal{F}^* = \{X_a \mid a \in X\}$. We call $(\mathcal{F}, \mathcal{F}^*)$ the <u>dual system</u> of (X, \mathcal{F}) . The VC-dimension of the dual system of (X, \mathcal{F}) is referred to as the <u>dual VC-dimension</u> of (X, \mathcal{F}) and denoted by VC* (\mathcal{F}) . (As before, this notion doesn't depend on X.)

Lemma 1.5 (see 2.13b in [?]). A set system (X, \mathcal{F}) has finite VC-dimension if and only if its dual system has finite VC-dimension. More precisely

$$VC^*(\mathcal{F}) \le 2^{1+VC(\mathcal{F})}$$
.

For a more refined notion of complexity of (X, \mathcal{F}) we look at the traces of our family on finite sets:

Definition 1.6. Define the <u>shatter function</u> $\pi_{\mathcal{F}} \colon \mathbb{N} \longrightarrow \mathbb{N}$ of \mathcal{F} and the <u>dual shatter function</u> $\pi_{\mathcal{F}}^* \colon \mathbb{N} \longrightarrow \mathbb{N}$ of \mathcal{F} by

$$\pi_{\mathcal{F}}(n) = \max\{|A \cap \mathcal{F}| \mid A \subset X \text{ and } |A| = n\}$$

$$\pi_{\mathcal{F}}^*(n) = \max\{\text{atoms}(B) \mid B \subset \mathcal{F}, |B| = n\}$$

where atoms(B) = number of atoms in the boolean algebra of sets generated by B. Note that the dual shatter function is precisely the shatter function of the dual system: $\pi_{\mathcal{F}}^* = \pi_{\mathcal{F}^*}$.

A simple upper bound is $\pi_{\mathcal{F}}(n) \leq 2^n$ (same for the dual). If the VC-dimension of \mathcal{F} is infinite then clearly $\pi_{\mathcal{F}}(n) = 2^n$ for all n. Conversely we have the following remarkable fact:

Theorem 1.7 (Sauer-Shelah '72, see [?], [?]). If the set system (X, \mathcal{F}) has finite VC-dimension d then $\pi_{\mathcal{F}}(n) \leq \binom{n}{\leq d}$ for all n, where $\binom{n}{\leq d} = \binom{n}{d} + \binom{n}{d-1} + \ldots + \binom{n}{1}$.

Thus the systems with a finite VC-dimension are precisely the systems where the shatter function grows polynomially. Define the vc-density of \mathcal{F} to quantify the growth of the shatter function of \mathcal{F} :

Definition 1.8. Define the vc-density and dual vc-density of \mathcal{F} as

$$\operatorname{vc}(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\},$$
$$\operatorname{vc}^*(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}^*(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\}.$$

Generally speaking a shatter function that is bounded by a polynomial doesn't itself have to be a polynomial. Proposition 4.12 in [1] gives an example of a shatter function that grows like $n \log n$ (so it has vc-density 1).

So far the notions that we have defined are purely combinatorial. We now adapt VC-dimension and vc-density to the model theoretic context.

Definition 1.9. Work in a first-order structure M. Fix a finite collection of formulas $\Phi(x, y)$.

• For $\phi(x,y) \in \mathcal{L}(M)$ and $b \in M^{|y|}$ let

$$\phi(M^{|x|},b) = \{a \in M^{|x|} \mid \phi(a,b)\} \subseteq M^{|x|}.$$

- Let $\Phi(M^{|x|}, M^{|y|}) = \{\phi(M^{|x|}, b) \mid \phi_i \in \Phi, b \in M^{|y|}\} \subseteq \mathcal{P}(M^{|x|}).$
- Let $\mathcal{F}_{\Phi} = \Phi(M^{|x|}, M^{|y|})$, giving rise to a set system $(M^{|x|}, \mathcal{F}_{\Phi})$.
- Define the VC-dimension VC(Φ) of Φ , to be the VC-dimension of $(M^{|x|}, \mathcal{F}_{\Phi})$, similarly for the dual.
- Define the vc-density $\operatorname{vc}(\Phi)$ of Φ , to be the vc-density of $(M^{|x|}, \mathcal{F}_{\Phi})$, similarly for the dual.

We will also refer to the vc-density and VC-dimension of a single formula ϕ viewing it as a one element collection $\Phi = {\phi}$.

Counting atoms of a boolean algebra in a model theoretic setting corresponds to counting types, so it is instructive to rewrite the shatter function in terms of types.

Definition 1.10.

$$\pi_{\Phi}^*(n) = \max \{ \text{number of } \Phi \text{-types over } B \mid B \subset M, |B| = n \}$$

Here a Φ -type over B is a maximal consistent collection of formulas of the form $\phi(x,b)$ or $\neg \phi(x,b)$ where $\phi \in \Phi$ and $b \in B$.

Functions π_{Φ}^* and $\pi_{\mathcal{F}_{\Phi}}^*$ are not equal, as one fixes the size of boolean algebra and another fixes the size of the parameter set. However, as the following lemma demonstrates, they both give the same asymptotic definition of dual vc-density.

Lemma 1.11.

$$\operatorname{vc}^*(\Phi) = degree \ of \ polynomial \ growth \ of \ \pi_{\Phi}^*(n) = \limsup_{n \to \infty} \frac{\log \pi_{\Phi}^*(n)}{\log n}$$

Proof. With parameter set of size n, we get $|\Phi|n$ elements in the boolean algebra. We check that asymptotically it doesn't matter whether we look at growth of boolean algebra of size n or size $|\Phi|n$.

$$\begin{split} &\pi_{\mathcal{F}_{\Phi}}^*\left(n\right) \leq \pi_{\Phi}^*(n) \leq \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right) \\ &\operatorname{vc}^*(\Phi) \leq \limsup_{n \to \infty} \frac{\log \pi_{\Phi}^*(n)}{\log n} \leq \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log n} = \\ &= \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log |\Phi|n} \frac{\log |\Phi|n}{\log n} = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log |\Phi|n} \leq \\ &\leq \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(n\right)}{\log n} = \operatorname{vc}^*(\Phi) \end{split}$$

One can check that the shatter function and hence VC-dimension and vc-density of a formula are elementary notions, so they only depend on the first-order theory of the structure M.

NIP theories are a natural context for studying vc-density. In fact we can take the following as the definition of NIP:

Definition 1.12. Define ϕ to be NIP if it has finite VC-dimension in a theory T. A theory T is NIP if all the formulas in T are NIP.

In a general combinatorial context for arbitrary set systems, vc-density can be any real number in $0 \cup [1, \infty)$ (see [?]). Less is known if we restrict our attention to NIP theories. Proposition 4.6 in [1] gives examples of formulas that have non-integer rational vc-density in an NIP theory, however it is open whether one can get an irrational vc-density in this model-theoretic setting.

Instead of working with a theory formula by formula, we can look for a uniform bound for all formulas:

Definition 1.13. For a given NIP structure M, define the vc-function

$$\operatorname{vc}^{M}(n) = \sup \{ \operatorname{vc}^{*}(\phi(x, y)) \mid \phi \in \mathcal{L}(M), |x| = n \}$$
$$= \sup \{ \operatorname{vc}(\phi(x, y)) \mid \phi \in \mathcal{L}(M), |y| = n \} \in \mathbb{R}^{\geq 0} \cup \{ +\infty \}$$

As before this definition is elementary, so it only depends on the theory of M. We omit the superscript M if it is understood from the context. One can easily check the following bounds:

Lemma 1.14 (Lemma 3.22 in [1]). We have
$$vc(1) \ge 1$$
 and $vc(n) \ge n vc(1)$.

However, it is not known whether the second inequality can be strict or even whether $vc(1) < \infty$ implies $vc(n) < \infty$.

2. Graph Combinatorics

We denote graph by A, set of its vertices by A.

Definition 2.1. Fix $\alpha \in (0,1)$, irrational.

• For a finite graph \mathcal{A} let

$$\delta(\mathcal{A}) = |A| - \alpha e(\mathcal{A})$$

where e(A) is the number of edges in A.

- For finite \mathcal{A}, \mathcal{B} with $\mathcal{A} \subseteq \mathcal{B}$ define $\delta(\mathcal{B}/\mathcal{A}) = \delta(\mathcal{B}) \delta(\mathcal{A})$.
- We say that $A \leq B$ if $A \subseteq B$ and $\delta(A'/B) > 0$ for all $A \subseteq A' \subsetneq B$.
- We say that finite \mathcal{A} is positive if for all $\mathcal{A}' \subseteq \mathcal{A}$ we have $\delta(\mathcal{A}') \geq 0$.
- We work in theory S_{α} axiomatized by
 - Every finite substructure is positive.
 - For a model \mathcal{M} given $\mathcal{A} \leq \mathcal{B}$ every embedding $f: \mathcal{A} \longrightarrow \mathcal{M}$ extends to $g: \mathcal{B} \longrightarrow \mathcal{M}$.
- For \mathcal{A}, \mathcal{B} positive, $(\mathcal{A}, \mathcal{B})$ is called a minimal pair if $\mathcal{A} \subseteq \mathcal{B}$, $\delta(\mathcal{B}/\mathcal{A}) < 0$ but $\delta(\mathcal{A}'/\mathcal{A}) \geq 0$ for all proper $\mathcal{A} \subseteq \mathcal{A}' \subsetneq \mathcal{B}$.
- $\langle \mathcal{A}_i \rangle_{i \leq m}$ is called a <u>minimal chain</u> if $(\mathcal{A}_i, \mathcal{A}_i + 1)$ is a minimal pair (for all i < m).
- For a positive \mathcal{A} let $\delta_{\mathcal{A}}(\bar{x})$ be the atomic diagram of \mathcal{A} . For positive $\mathcal{A} \subset \mathcal{B}$ let

$$\Psi_{\mathcal{A},\mathcal{B}}(\bar{x}) = \delta_{\mathcal{A}}(\bar{x}) \wedge \exists \bar{y} \ \delta_{\mathcal{B}}(\bar{x},\bar{y}).$$

Such formula is called a <u>chain-minimal extension formula</u> if in addition we have that there is a minimal chain starting at \mathcal{A} and ending in \mathcal{B} . Denote such formulas as $\Psi_{\langle \mathcal{M}_i \rangle}$.

Theorem 2.2 (5.6 in [2]). S_{α} admits quantifier elimination down to boolean combination of chain-minimal extension formulas.

3. Basic Definitions and Lemmas

Fix tuples $x = (x_1, \dots, x_n), y = (y_1, \dots, y_m)$. We refer to chain-minimal extension formulas as basic formulas. Let $\phi_{\langle \mathcal{M}_i \rangle}(x, y)$ be a basic formula.

Definition 3.1. Define \mathcal{X} to be the graph on vertices $\{x_i\}$ with edges as defined by $\phi_{\langle \mathcal{M}_i \rangle}$. Similarly define \mathcal{Y} . We define those abstractly, i.e. on a new set of vertices disjoint from \mathcal{M} .

Note that \mathcal{X} , \mathcal{Y} are positive as they are subgraphs of \mathcal{M}_0 . As usual X, Y will refer to vertices of those graphs.

We restrict our attention to formulas that define no edges between X and Y.

Note 3.2. We can handle edges between x and y as separate elements of the minimal chain extension.

Definition 3.3. For a basic formula $\phi = \phi_{\langle \mathcal{M}_i \rangle_{i \leq k}}(x, y)$ let

- $\epsilon_i(\phi) = -\dim(M_i/M_{i-1}).$
- $\epsilon_L(\phi) = \sum_{[1..k]} \epsilon_i(\phi)$.
- $\epsilon_U(\phi) = \min_{[1..k]} \epsilon_i(\phi)$.
- Let \mathcal{Y}' be a subgraph of \mathcal{Y} induced by vertices of \mathcal{Y} that are connected to $M_k (X \cup Y)$.
- Let $Y(\phi) = \dim(\mathcal{Y}')$. In particular if $\mathcal{Y} = \mathcal{Y}'$ and \mathcal{Y} is disconnected then $Y(\phi)$ is just the arity of the tuple y.

We conclude this section by stating a couple of technical lemmas that will be useful in our proofs later.

Lemma 3.4. Suppose we have a set B and a minimal pair (M,A) with $A \subset B$ and $\dim(M/A) = -\epsilon$. Then either $M \subseteq B$ or $\dim((M \cup B)/B) < -\epsilon$.

Proof. By diamond construction

$$\dim((M \cup B)/B) \le \dim(M/(M \cap B))$$

and

$$\dim(M/(M\cap B)) = \dim(M/A) - \dim(M/(M\cap B))$$

$$\dim(M/A) = -\epsilon$$

$$\dim(M/(M\cap B)) > 0$$

Lemma 3.5. Suppose we have a set B and a minimal chain M_n with $M_0 \subset B$ and dimensions $-\epsilon_i$. Let ϵ be the minimal of ϵ_i . Then either $M_n \subseteq B$ or $\dim((M_n \cup B)/B) < -\epsilon$.

Proof. Let $\bar{M}_i = M_i \cup B$

$$\dim(\bar{M}_n/B) = \dim(\bar{M}_n/\bar{M}_{n-1}) + \ldots + \dim(\bar{M}_2/\bar{M}_1) + \dim(\bar{M}_1/B)$$

Either $M_n \subseteq B$ or one of the summands above is nonzero. Apply previous lemma.

Lemma 3.6. Suppose we have a minimal chain M_n with dimensions $-\epsilon_i$. Let ϵ be the sum of all ϵ_i . Suppose we have some B with $B \subseteq M_n$. Then $\dim B/(M_0 \cap B) \ge -\epsilon$.

Proof. Let
$$B_i = B \cap M_i$$
. We have $\dim B_{i+1}/B_i \ge \dim M_{i+1}/M_i$ by minimality. $\dim B/(M_0 \cap B) = \dim B_n/B_0 = \sum \dim B_{i+1}/B_i \ge -\epsilon$.

4. Lower bound

As a simplification for our lower bound computation we assume that all the basic formulas involved we have $\mathcal{Y}' = \mathcal{Y}$ (see Definition 3.3).

We work with formulas that are boolean combinations of basic formulas written in disjunctive-conjunctive form. First, we extend our definition of ϵ .

Definition 4.1 (Negation). If ϕ is a basic formula, then define

$$\epsilon_L(\neg \phi) = \epsilon_L(\phi)$$

Definition 4.2 (Conjunction). Take a collection of formulas $\phi_i(x, y)$ where each ϕ_i is positive or negative basic formula. If both positive and negative formulas are present then $\epsilon_L(\phi) = \infty$. We don't have a lower bound for that case. If different formulas define \mathcal{X} or \mathcal{Y} differently then $\epsilon_L(\phi) = \infty$. In that case of the conflicting

definitions would make the formula have no realizations. Otherwise

$$\epsilon_L(\bigwedge \phi_i) = \sum \epsilon_L(\phi_i)$$

Definition 4.3 (Disjunction). Take a collection of formulas ψ_i where each instance is a conjunction of positive and negative instances of basic formulas that agree on \mathcal{X} and \mathcal{Y} .

$$\epsilon_L(\bigvee \psi_i) = \min \epsilon_L(\psi_i).$$

Theorem 4.4. For a formula ϕ as above

$$\operatorname{vc} \phi \ge \left| \frac{Y(\phi)}{\epsilon_L(\phi)} \right|$$

where $Y(\phi)$ is $Y(\psi)$ for ψ one the basic components of ϕ (all basic components agree on \mathcal{Y}).

Proof. First work with a formula that is a conjunction of positive basic formulas

$$\psi = \bigwedge_{j < J} \phi_j.$$

Then as we defined above

$$\epsilon_L(\psi) = \sum \epsilon_L(\phi_j)$$

Let ϕ be one of the basic formulas in ψ with a chain $\langle M_i \rangle_{i \leq k}$. Let $K_{\phi} = |M_k|$ i.e. the size of the extension. Let K be the largest such size among all ϕ_i .

Let n be the integer such that $n\epsilon_L(\psi) < Y$ and $(n+1)\epsilon_L(\psi) > Y$.

Label \mathcal{Y} by an tuple b.

Pick parameter set $A \subset \mathcal{M}$ such that

$$A = \bigcup_{i < N} b_i$$

a disjoint union where each b_i is an ordered tuple of size |x| connected according to ψ . We also require A to be $N \cdot I \cdot K$ -strong.

Fix n arbitrary elements out of A, label them a_i .

For each ϕ_i , a_j pick an abstract realization M_{ij} of ϕ_i over (a_j, b) (abstract meaning disjoint from \mathcal{M}).

Let \overline{M} be an abstract disjoint union of all those realizations.

Claim 4.5. $(A \cap \bar{M}) \leq \bar{M}$.

Proof. Consider some $(A \cap \bar{M}) \subseteq B \subseteq \bar{M}$. Let $B_{ij} = B \cap M_{ij} \subseteq M_{ij}$. Then B_{ij} 's are disjoint over $\bar{A} = A \cup b$. In particular $\dim B/(\bar{A} \cap B) = \sum \dim B_{ij}/(\bar{A} \cap B_{ij})$. dim $B_{ij}/\bar{A} \ge -\epsilon_L(\phi_i)$ by Lemma 3.6. Thus dim $B/(\bar{A} \cap B) \ge -n\epsilon(\psi)$. Thus dim $B/(A \cap B) \ge \dim(B) - n\epsilon(\psi)$. By construction we have $Y - n\epsilon_L(\psi) > 0$ as needed.

 $|\bar{M}| \leq N \cdot I \cdot K$ and A is $\leq N \cdot I \cdot K$ -strong. Thus a copy of \bar{M} can be embedded over A into our ambient model \mathcal{M} . Our choice of b_i 's was arbitrary, so we get $\binom{N}{n}$ choices out of N|x| many elements. Thus we have $O(|A|^n)$ many traces.

Lemma 4.6. There are arbitrarily large sets with properties of A.

Proof. A is positive, as each of its disjoint components is positive. Thus $0 \le A$. We apply proposition 4.4 in Laskoswki paper, embedding A into our structure \mathcal{M} while avoiding all nonpositive extensions of size at most $N \cdot I \cdot K$.

This shows

$$\operatorname{vc} \psi \ge n = \left| \frac{Y}{\epsilon_L} \right|$$

Now consider the formula which is a conjunction consists of negative basic formulas

$$\psi = \bigwedge \neg \phi_i$$

12

Let

$$\bar{\psi} = \bigwedge \phi_i$$

Do the construction above for $\bar{\psi}$ and suppose its trace is $X \subset A$ for some b. Then over b the same construction gives trace (A-X) for ψ . Thus we get as many traces.

Finally consider a formula which is a disjunction of formulas considered above. Choose the one with the smallest ϵ_L , this yields the lower bound for the entire formula.

Claim 4.7 (4.1 in [2]). We can find a minimal extension M with arbitrarily small dimension.

Corollary 4.8. This shows that the vc-function is infinite in Shelah-Spencer random graphs.

$$vc(n) = \infty$$

In particular, this implies that Shelah-Spencer graphs are not dp-minimal.

5. Upper bound

We bound the number of types of some finite collection of formulas $\Psi(\vec{x}, \vec{y}) =$ $\{\phi_i(\vec{x}, \vec{y})\}_{i \in I}$ over a parameter set B of size N, where ϕ_i is a basic formula.

Fix a formula ϕ from our collection. Suppose it defines a minimal chain extension over $\{x,y\}$. Record the size of that extension as $K(\phi)$ and its total dimension $\epsilon(\phi) = \epsilon_U(\phi)$. Define dimension of that formula $D(\phi) = |\vec{y}| \frac{K(\phi)}{\epsilon(\phi)}$ Define dimension of the entire collection as $D(\Psi) = \max_{i \in I} D(\phi_i)$

In general we have parameter set $B \subset \mathcal{M}^{|y|}$, however without loss of generality we may work with a parameter set $B^{|y|}$, with $B \subset \mathcal{M}$.

Let
$$S = \lfloor D(\Psi) \rfloor$$
.

For our proof to work we also need B to be S-strong. We can achieve this by taking (the unique) S-strong closure of B. If size of B is N then the size of its closure is O(N). So without loss of generality we can assume that B is S-strong.

Definition 5.1. A <u>witness</u> of a is a union of realizations of the existential formulas $\phi_i(a,b)$ for all i,b so that the formula holds.

Definition 5.2. For sets C, B define the boundary of C over B

$$\partial(C,B) = \{b \in B \mid \text{there is an edge between } b \text{ and element of } C - B\}$$

Definition 5.3. For each a pick some \bar{M}_a to be its witness. Define two quantities

- ∂_a is the boundary $\partial(\bar{M}_a, B \cup a)$
- Suppose G₁, G₂ are some subgraphs of our model and a₁ ⊂ G₁, a₂ ⊂ G₂ finite tuples of vertices. Call f: (G₁, a₁) → (G₂, a₂) a ∂-isomorphism if it is a graph isomorphism, f and f⁻¹ are constant on B, and f(a₁) = a₂.
- Define \mathscr{I}_a as the ∂ -isomorphism class of (\bar{M}_a, a) .

Lemma 5.4. If $\mathscr{I}_{a_1} = \mathscr{I}_{a_2}$ then a_1, a_2 have the same Ψ -type over B.

Proof. Fix a ∂ -isomorphism $f: (\bar{M}_{a_1}, a_1) \longrightarrow (\bar{M}_{a_1}, a_2)$. Suppose we have $\phi(a_1, b)$ for some $b \in B$. Pick witness of this existential formula $M_1 \subset \bar{M}_{a_1}$. Then $f(M_1)$ is a witness for $\phi(a_2, b)$.

Thus to bound the number of traces it is sufficient to bound the number of possibilities for \mathcal{I}_a .

Theorem 5.5.

$$|\partial_a| \leq D(\Psi)$$

$$|\bar{M}_b - \bar{A}| \le D(\Psi)$$

Corollary 5.6.

$$\operatorname{vc}(\phi) \le K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$$

Proof. We count possible ∂ -isomorphism classes \mathscr{I}_b . Let $W = K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$. If the parameter set A is of size N then there are $\binom{N}{W}$ choices for boundary ∂_b . On top of the boundary there are at most W extra vertices and $(2W)^2$ extra edges. Thus there are at most

$$W \cdot 2^{(2W)^2}$$

configurations up to a graph isomorphism. In total this gives us

$$\binom{N}{W} \cdot W \cdot 2^{(2W)^2} = O(N^W)$$

options for ∂ -isomorphism classes. By Lemma 5.4 there are at most $O(N^W)$ many traces, giving the required bound.

Proof. (of Theorem 5.5) Fix some b-trace A_b . Enumerate $A_b = \{a_1, \dots, a_I\}$. Let $M_i/\{a_i, b\}$ be a witness of $\phi(a_i, b)$ for each $i \leq I$. Let $\bar{M}_i = \bigcup_{j < i} M_j$. Let $\bar{M} = \bigcup M_i$, a witness of A_b

Claim 5.7.

$$\left| \partial(M_i M, \bar{A}) - \partial(M, \bar{A}) \right| \le |M_i| = K(\phi)$$
$$\dim(M_i M \bar{A}/M \bar{A}) > -\epsilon(\phi)$$

Definition 5.8. (j-1,j) is called a jump if some of the following conditions happen

• New vertices are added outside of \bar{A} i.e.

$$\bar{M}_j - \bar{A} \neq \bar{M}_{j-1} - \bar{A}$$

• New vertices are added to the boundary, i.e.

$$\partial(\bar{M}_i, \bar{A}) \neq \partial(\bar{M}_{i-1}, \bar{A})$$

Definition 5.9. We now let m_i count all jumps below i

$$m_i = |\{j < i \mid (j - 1, j) \text{ is a jump}\}|$$

Lemma 5.10.

$$\dim(\bar{M}_i/\bar{A}) \le -m_i \cdot \epsilon(\phi)$$
$$|\partial(\bar{M}_i, \bar{A})| \le m_i \cdot K(\phi)$$
$$|\bar{M}_j - \bar{A}| \le m_i \cdot K(\phi)$$

Proof. (of Lemma 5.10) Proceed by induction. Second and third propositions are clear. For the first proposition base case is clear.

Induction step. Suppose $\bar{M}_j \cap (A \cup b) = \bar{M}_{j+1}$ and $\partial(\bar{M}_j, A) = \partial(\bar{M}_{j+1}, A)$. Then $m_i = m_{i+1}$ and the quantities don't change. Thus assume at least one of these equalities fails.

Apply Lemma 3.5 to $\bar{M}_j \cup (A \cup b)$ and $(M_{j+1}, a_{j+1}b)$. There are two options

- $\dim(\bar{M}_{i+1} \cup (A \cup b)/\bar{M}_i \cup (A \cup b)) \leq -\epsilon_U$. This implies the proposition.
- $M_{j+1} \subset \bar{M}_j \cup (A \cup b)$. Then by our assumption it has to be $\partial(\bar{M}_j, A) \neq \partial(\bar{M}_{j+1}, A)$. There are edges between $M_{j+1} \cap (\partial(\bar{M}_{j+1}, A) \partial(\bar{M}_j, A))$ so they contribute some negative dimension $\leq \epsilon_U$.

This ends the proof for Lemma 5.10.

(Proof of Theorem 5.5 continued) First part of lemma 5.10 implies that we have $\dim(\bar{M}/\bar{A}) \leq -m_I \cdot \epsilon(\phi)$. The requirement of A to be S-strong forces

$$m_I \cdot \epsilon(\phi) < Y(\phi)$$

$$m_I < \frac{Y(\phi)}{\epsilon(\phi)}$$

Applying the rest of 5.10 gives us

$$|\partial(\bar{M}, A)| \le m_I \cdot K(\phi) \le \frac{K(\phi)Y(\phi)}{\epsilon(\phi)}$$
$$|\bar{M} \cap A| \le m_I \cdot K(\phi) \le \frac{K(\phi)Y(\phi)}{\epsilon(\phi)}$$

as needed. This ends the proof for Theorem 5.5.

So far we have computed an upper bound for a single basic formula ϕ .

To bound an arbitrary formula, write it as a boolean combination of basic formulas ϕ_i (via quantifier elimination) It suffices to bound vc-density for collection of formulas $\{\phi_i\}$ to obtain a bound for the original formula.

In general work with a collection of basic formulas $\{\phi_i\}_{i\in I}$. The proof generalizes in a straightforward manner. Instead of $A^{|x|}$ we now work with $A^{|x|} \times I$ separating traces of different formulas. Formula with the largest quantity $Y(\phi)\frac{K(\phi)}{\epsilon(\phi)}$ contributes the most to the vc-density. Thus we have

$$\Phi = \{\phi_i\}_{i \in I}$$
$$vc(\Phi) \le \max_{i \in I} Y(\phi_i) \frac{K(\phi_i)}{\epsilon_{\phi_i}}$$

References

- M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949
- [2] Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157186. MR MR2350161

E-mail address: bobkov@math.ucla.edu