Computer Vision - 3D reconstruction from cameras

Artur Wilkowski

9 January 2022

Structure From Motion

Structure from Motion

Structure from Motion - estimation of 3D scene structure from a sequence of 2D camera images. Structure from Motion is a *photogrammetrical* method.

source: Rob Fergus

Structure from Motion

If we operate on points, the problem thus can be reformulated:

- Having given m images of n fixed 3D points...
- ullet establish camera projection matrices P_i for each view...
- ullet and establish 3D point coordinates X_j from a maximum of mn image correspondences x_{ij}

after: Rob Fergus

Structure from Motion

Our assumptions

- We are able to establish correspondences between points in images (by feature matching) - we won't discuss it
- Our camera is calibrated, intrinsic parameters are known, so we establish only $\mathbf{R_i}, \mathbf{t_i}$ not the whole projection matrix P_i

Inherent scale ambiguity

 We cannot establish a true scale of the scene from any number of images (unless we measure sth. in the image and in physical world). Scene reconstruction from 2 views

Scene reconstruction from two views

- If we knew camera positions we could establish point coordinates by triangulation (stereovision problem)
- How to obtain relative camera positions from point correspondences?

Scene reconstruction from two views

Attention: Scene reconstruction from two views may be non-unique for some point configurations!

Source: Segvic et al. Performance evaluation of the five-point relative pose...

Essential matrix revisited

Epipolar geometry:

- 3D point normalized image coordinates are given as $p=(x,y,1)^T$ in the first camera and as $p'=(x',y',1)^T$ in the second camera.
- ullet The coordinates p and p' are related by the essential matrix

$$(p')^T E p = 0$$

• Let us rewrite them using scalar values

$$(x', y', 1) \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

After expanding the equation we obtain

$$x'e_{11}x + x'e_{12}y + x'e_{13} + y'e_{21}x + y'e_{22}y + y'e_{23} + e_{31}x + e_{32}y + e_{33} = 0$$

- By stacking at least 8 such equations we obtain a homogenous system of linear equations with 9 variables
- For this system we can solve the *Homogenous Least Squares Problem* to estimate the essential matrix E (the matrix is defined up to a scaling)
- However, the parameters of the essential matrix have only 5 degrees of freedom . . .
- ullet ...so in noisy case, the estimated matrix E will not satisfy the internal constraints of the essential matrix

$$\det E = 0, \ 2EE^TE - \operatorname{tr}(EE^T)E = 0$$

In order to normalize the matrix

 $\bullet \ \, {\sf Compute} \,\, {\sf SVD} \,\, {\sf of} \,\, E \\$

$$E = USV^T$$

with U and V being orthogonal matrices and S - diagonal matrix with singular values

• Assuming that values in the diagonal of S are ordered decreasingly - set s_{33} to 0 and remaining ones to 1

$$S_{corr} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet Use S_{corr} with U and V to recover the essential matrix

$$E_{corr} = US_{corr}V^T$$

8 point algorithm properties

- Simple formulation and implementation (+)
- Requires 8-points to compute E (but remember E has 5 degrees of freedom) (-)
- ullet Usually requires normalization of E recovering of internal constraints. (-)
- 8-point algorithm fails in some critical point configuration e.g. planar points

Configuration	6-point algorithm	7-point algorithm	8-point algorithm
all points on surface of type (1) or (2)	$\sigma_9 = 0$	$\sigma_3 = 0$	$s_8 = 0$
all points but one on surface of type (1) or (2)	OK	OK	ок
all points on cylinder	$\sigma_8 = 0$	$\sigma_2 = 0$	s ₈ = 0
all points but one on cylinder	OK	OK	OK
all points on plane	$\sigma_5 = 0$	$s_7 = 0$	$s_7 = 0$
all points but one on plane	ОК	OK	s ₈ = 0
all points but two on plane	ОК	ОК	ОК

Source: Johan Phillip. Critical configurations of the 5-,6-,7-, and 8-point algorithms . . .

- The system of homogenous equations is prepared as in the case of 8-point algorithm
- ② The null-space of the above equation system is computed (using QR decomposition but SVD is also possible)
- ullet Four vectors X,Y,Z,W corresponding to the 4 smallest eigenvalues are selected, and the essential matrix is represented as a linear combination of these vectors

$$E = xX + yY + zZ + W$$

where x, y, z are unknown coefficients

- The above equation is substituted into internal essential matrix constraint equations
- After some processing a 10th degree (!!) polynomial is obtained
- Different solutions of this polynomial lead to different hypotheses for the essential matrix

Estimation of the essential matrix - cheirality check

- Cheirality check is performed to reduce the number of hypotheses
 - Cheirality check test physical feasibility of the solution check if all recovered points are in front of both cameras
- 5 points are not enough to resolve most ambiguities (for random scenes 2.74 solutions are valid) so...
- The cheirality check should be performed on more (all available) points . . .
- However, some degenerate cases will still remain for 2 views....

5 point algorithm properties

- Complex formulation and very complex implementation (-)
- Requires 5-points to compute E (which is the minimum) (+)
- Produces many outputs instead of failing in critical point configurations (+)
- "The only critical configuration when 5-point algorithm fails is for 4 or 5 points on the same line" (J.Phillip) (+)

Recovery of R and t from the essential matrix

Procedure to recover rotation and translation from the essential matrix ${\cal E}$

Decompose the essential matrix using SVD

$$E = USV^T$$
 with $\det(U) > 0$ and $\det(V) > 0$

ullet Define an auxiliary matrix D

$$D = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Compute two possible rotation matrices

$$R_a = UDV^T$$
 and $R_b = UD^TV^T$

- Compute a candidate translation vector $t = [u_{13}, u_{23}, u_{33}]^T$
- Compute four possible projection matrices for the second camera

$$P_A = [R_a|t_u], P_B = [R_a, -t_u], P_C = [R_b|t_u], P_D = [R_b|-t_u]$$

Apply cheirality check to disambiguate solutions

3D reconstruction from 2 views

Assumption - both images were obtained from the same calibrated camera

- Establish point correspondences in 2 images by feature (e.g. SIFT or SURF) detection and description or feature tracking
- Compute the essential matrix (matrices) E relating corresponding points using 5-point algorithm, use RanSaC procedure to ingore outlier correspondences
- **3** Extract the relative camera rotation(s) (R) and translation (t) from the essential matrix (matrices)
- $\begin{tabular}{ll} \hline \bullet & Perform \ cheirality \ check \ on \ all \ inliers \ to \ select \ a \ single \ solution \ for \ R \ and \ t \end{tabular}$
- Operform triangulation to recover the 3D structure of the scene

3D reconstruction from 2 views

Note:

- The scale of translation t cannot be uniquely recovered
- ② The whole rigid transformation may not be uniquely recovered (degenerate cases)

Scene reconstruction from multiple views

Scene reconstruction from a sequence of views

- We are given a sequence of images I_j , j=1...N from a single moving calibrated camera.
- We want to obtain a sequence of camera poses R_i , \mathbf{t}_i together with a reconstruction of a scene observed by the camera.

Scene reconstruction from multiple views - approach 1

Source: Maciej Stefanczyk

- Fix the global transformation for the first view to $[R_1^G|\mathbf{t}_1^G]=[I|0]$
- ② For each subsequent image pair I_j and I_{j+1} and $j=1\dots N-1$ do:
 - Using procedure '3D reconstruction from 2 views', obtain a relative transformation $R_{j+1,j}$ and $\mathbf{t_{j+1,j}}$ from the local camera frame I_{j+1} to I_{j} .
 - Obtain a cloud $C_{j,j+1}$ by recovering a structure from triangulation of views I_j and I_{j+1}
 - ullet Compute a global transformation for a view I_{j+1} :

$$[R_{j+1}^G|\mathbf{t}_{\mathbf{j}+1}^\mathbf{G}] = [R_j^G R_{j+1,j} | R_j^G \mathbf{t}_{\mathbf{j}+1,\mathbf{j}} + \mathbf{t}_{\mathbf{j}}^\mathbf{G}]$$

• Transform points $C_{j,j+1}$ to the global frame (obtaining $C_{j,j+1}^G$ by applying $[R_i^G|\mathbf{t}_i^G]$

Are there any flaws in this approach?

- Fix the global transformation for the first view to $[R_1^G|\mathbf{t}_1^G]=[I|0]$
- ② For each subsequent image pair I_j and I_{j+1} and $j=1\dots N-1$ do:
 - Using procedure '3D reconstruction from 2 views', obtain a relative transformation $R_{j+1,j}$ and $\mathbf{t_{j+1,j}}$ from the local camera frame I_{j+1} to I_{j} .
 - Obtain a cloud $C_{j,j+1}$ by recovering a structure from triangulation of views I_j and I_{j+1}
 - Compute a global transformation for a view I_{j+1} :

$$[R_{j+1}^G | \mathbf{t}_{\mathbf{j}+1}^G] = [R_j^G R_{j+1,j} | R_j^G \mathbf{t}_{\mathbf{j}+1,\mathbf{j}} + \mathbf{t}_{\mathbf{j}}^G]$$

• Transform points $C_{j,j+1}$ to the global frame (obtaining $C_{j,j+1}^G$) by applying $[R_j^G|\mathbf{t_j^G}]$

Scales of estimated translations $t_{j+1,j}$, $t_{j+1,j}$ are unrelated!

Approach 1 - corrected for scale

- Fix the global transformation for the first view to $[R_1^G|\mathbf{t}_1^G]=[I|0]$
- ② For each subsequent image pair I_j and I_{j+1} and $j=1\ldots N-1$ do:
 - Using procedure '3D reconstruction from 2 views', obtain a relative transformation $R_{j+1,j}$ and $\mathbf{t_{j+1,j}}$ from the local camera frame I_{j+1} to I_{j} .
 - Obtain a cloud $C_{j,j+1}$ by recovering a structure from triangulation from views I_j and I_{j+1}
 - For $j \geq 2$ find at least two corresponding point pairs in $C_{j,j+1}$ and $C_{j-1,j}$ adjust the scale of $\mathbf{t_{j+1,j}}$ according to distances between points in both clouds
 - ullet Compute a global transformation for a view I_{j+1} :

$$[R_{j+1}^G | \mathbf{t}_{\mathbf{j}+1}^G] = [R_j^G R_{j+1,j} | R_j^G \mathbf{t}_{\mathbf{j}+1,\mathbf{j}} + \mathbf{t}_{\mathbf{j}}^G]$$

• Transform points $C_{j,j+1}$ to the global frame (obtaining $C_{j,j+1}^G$) by applying $[R_j^G|\mathbf{t}_{\mathbf{i}}^G]$

Approach 1 properties:

- Two subsequent views must have at least 5 points in common (and more for robust estimation) - possible problems with marker-based approaches and sparse features (-)
- Two subsequent view pairs must share at least 2 points to determine scale (however we may want to estimate common scale on cycle close) (-)
- There is a significant chance of experiencing scene reconstruction from 2-views ambiguities (-)
- One obtains a graph of poses, with relative transformatin between views, which is suitable for loop closing (e.g. using g2o) algorithm (+)

Scene reconstruction from multiple views - approach 2

- Perspective n-point (PnP) algorithm is used to find camera orientation with respect to a known point cloud using n-camera-3D point correspondences
- This is a subproblem of camera calibration, but we assume that camera intrinsic parameters are already known
- The problem can be formulated as: Find R and t basing on correspondences $p_i \leftarrow P_i$ for $i=1\dots N$

$$s_i p_i = K[R|t]P_i$$
 for $i = 1 \dots n$

 Minimum 3 points are required to solve equations and 4 points to obtain a unique solution

Simple solutions:

- Use a DLT algorithm to solve 'calibration' problem
 - 6 points required
 - in effect a projection matrix P is obtained, which can be decomposed into R and t (and K_int if it is not known...)
 - ullet R and t can be further refined e.g. using non-linear optimization
 - the method fails for planar points
- Perform non-linear optimization to searching for the minimum-reprojection-error 'from scratch'

P3P algorithm [Gao]

$$\begin{cases} Y^2 + Z^2 - YZp - a'^2 &= 0 \\ Z^2 + X^2 - XZq - b'^2 &= 0 \\ X^2 + Y^2 - XYr - c'^2 &= 0 \end{cases}$$

- The algorithm uses 3 point correspondences to solve the following system of quadratic equations with unknowns X,Y,Z which is a straightforward application of the cosine theorem.
- $|PA| = X, |PB| = Y, |PC| = Z, \alpha = \angle BPC, \beta = \angle APC, \gamma = \angle APB, p = 2\cos\alpha, q = 2\cos\beta, r = 2\cos\gamma, |AB| = c', |BC| = a', |AC| = b'$
- cosines are computed from the normalized image coordinates (also using cosine theorem)

P3P algorithm [Gao] cont.

- The results need to be disambiguated using the 4th point correspondence
- The algorithm requires arbitrary selection of 3 points (no n-point optimization is performed)

EPnP algorithm

• For any $n \geq 4$ the points in the world coordinate frame (as well as in camera coordinate frame) are expressed as a weighed sum of just 4 control points (chosen arbitrarily)

$$P_i = \sum_{j=1}^4 \alpha_{ij} c_j^w, \text{ with } \sum_{j=1}^4 \alpha_{ij} = 1$$

- The algorithm reconstructs control points in camera frame.
- By projecting control points in the camera frame onto the image we obtain a set of homogenous equations, with the control points as variables. HLLSE is used to solve the system.
- Depending on the number of input points (and their configuration), the nullspace can have $N=1\dots 4$ dimensions and the solution can be given as

$$\mathbf{x} = \sum_{i=1}^{N} \beta_i \mathbf{v_i}$$

EPnP algorithm

- Thus our solution (parameters of control points in camera frame) is constrained to a linear combination of **at most** 4 known vectors (compare: 5-point algorithm...) e.g. for six or more point correspondence we have only a single β and only scale need to be adjusted
- Values of β_i are established taking into account distances between the estimated control points in camera frame and the control points in world frame (which must be identical)
- R and t are computed by 3D pose estimation from the computed control points in the camera and world coordinate frames
- β_i may be further refined using Gauss-Newton method.

EPnP algorithm properties

- Requires at least 4 points
- Is able to optimize using arbitrary number of correspondences
- Closed-form solution (does not require initalization)
- Works for planar and non-planar configurations
- Offers a very good accuracy of estimation

Practical considerations

- Points in 3D are typically estimated from 2D images . . .
- ... so the may have associated feature descriptors like SIFT or SURF
- The features may be matched to obtain image-3D correspondences
- RanSaC should be employed to remove outliers

- Fix the global transformation for the first view to $[R_1^G|\mathbf{t}_1^\mathbf{G}]=[I|0]$
- 2 Performed two view scene reconstruction from the first and the second view. Obtain the transformation R_2^G , \mathbf{t}_2^G and the point cloud C_2^G
- **3** For each subsequent view j:
 - align the j-th sensor pose by matching projected points with the current scene cloud C_{i-1}^G obtain sensor transformation R_j^G , $\mathbf{t_j^G}$ (via some verision PnP algorithm)
 - \bullet triangulate 3D points from all point correspondences in view j and all views $1\dots j-1$
 - \bullet merge triangulated points and the point cloud C_{i-1}^G into a new cloud C_i^G

Approach 2 properties:

- Only two first views must have at least 5 points in common (and more for robust estimation) (+)
- Any subsequent view must contain only 4 points common wht the set reconstructed so far (but the points could be reconstructed from different views!). (+)
- Scale is consistent with the first image pair used in reconstruction (+)
- The method is quite robust to different point configurations
 (+)
- One does not obtain directly a graph of poses, with relative transformation between views, loop closing is more challenging (-)

Bundle Adjustment

Bundle adjustment

- Most of points are visible in more than 2 views
- We can use overplus point correspondences to correct different types of errors:
 - Point detection innacuracies
 - View matching innacuracies
 - Scale, position and angle drift

source: Rob Fergus

Bundle adjustment

Procedure

- Input data (parameters): 2D point coordinates in views, let p_{ij} be the projection of 3D point j in a view i, intrinsic camera parameters
- Optimized variables: extrinsic parameters for all cameras T_i (with a fixed T_1), 3D points coordinates P_i
- Initial approximation extrinsic camera parameters and points positions obtained from the incremental structure from motion
- Minimized function: reprojection error for all views and all available 3D-2D point pairs

$$rErr = \sum_{(i,j)} w_{ij} \|proj(P_j, T_i) - p_{ij}\|^2$$

with proj being the perspective projection function for view i, w_{ij} - weight adjusted during optimization, (i,j) - available viewpoint pairs

Bundle adjustment

Properties

- Large BA problems may involve thousands of parameters (performed off-line)
- Point correspondence graph i sparse the sparsity of the Jacobian matrix may/must be utilized to speed-up computations
- Some minimum representation of rotations is convenient (e.g. axis-angle)
- Sophisticated weighing schemes can be used to accommodate outliers
- It is possible to treat intrinsic parameters as variables (so called autocalibration)

