CLAIMS

What is claimed is:

1. A process for preparing a compound of the formula:

$$R_3$$
 R_2 R_4 R_6 R_6 R_6

wherein:

10

15

20

 R_1 is C_1 - C_6 alkoxy or OH;

 R_2 and R_3 are independently H, phenyl, or C_1 - C_4 alkyl; or R_2 and R_3 and the carbons to which they are attached form a benzo ring, which is optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or dialkylamino; and

 R_6 is C_1 - C_6 alkoxy or NR_4R_5 ; wherein

 \mbox{R}_4 and \mbox{R}_5 are independently $\mbox{C}_1\mbox{-}\mbox{C}_6$ alkyl; comprising:

forming a reaction mixture comprising a compound of formula I:

$$R_6$$
 R_1
 R_1

wherein X is Br, I, OTf, or OMs;

a compound of formula II:

II,

a catalyst and at least one solvent.

25 2. A process according to claim 1, wherein the catalyst is a transition metal catalyst.

- 3. A process according to claim 2 wherein the transition metal catalyst is $Pd(PPh_3)_4$, $PdCl_2(PPh_3)_2$, $PdCl_2$, $PdCl_2$ and PPh_3 , or $Pd(OCOCH_3)_2$.
- 4. A process according to claim 3, wherein the catalyst is $Pd(PPh_3)_4$.
- A process according to claim 1 wherein the method is
 conducted in the presence of at one additional polar, aprotic solvent.
 - 6. A process according to claim 5, wherein the polar, aprotic solvent is tetrahydrofuran,
- 15 tetramethyltetrahydrofuran, glyme, methyl t-butyl ether, or a mixture thereof.
 - 7. A process according to claim 6, wherein the polar, aprotic solvent is tetrahydrofuran.
 - 8. A process according to claim 1, wherein the reaction is performed at a temperature of from about 25°C to about the refluxing temperature of the solvent used.
- 9. A process according to claim 8 wherein the temperature is about 30°C to about 75°C.
 - 10. A process according to claim 9, wherein the temperature is about 40°C to about 60°C.
 - 11. A process according to claim 10, wherein the reaction mixture is formed by combining I, II and the catalyst, and any additional optional additives, at once or within a short time of each other.

30

MBHB 02-398-B PHA 01062.US1 ELN 00427-US-NEW

10

- 12. A process according to claim 10, wherein the reaction mixture is formed over a period of about 0.5 hours to about 4 hours.
- 5 13. A process according to claim 12, wherein the time is about 1 hour to about 3 hours.
 - 14. A process according to claim 13, wherein the time is about 1.5 hours to about 2.5 hours.
- 15. A process according to claim 1 wherein the transition metal catalyst is present in 0.01 to 20 mole percent, based on the amount of the compound of formula I.
- 16. A process according to claim 15, wherein the transition metal catalyst is present in 0.1 to 10 mole percent, based on the amount of the compound of formula I.
- 17. A process according to claim 16, wherein the
 20 transition metal catalyst is present in 1 to 7 mole percent,
 based on the amount of the compound of formula I.
 - 18. A process according to claim 17, wherein the reaction mixture is heated for about 24 hours.
 - 19. A process according to claim 18, wherein the reaction mixture is heated for about 0.5 to about 8 hours.
- 20. A process according to claim 19, wherein the reaction mixture is heated for about 0.5 to about 4 hours.
 - 21. A process according to claim 20, wherein the reaction mixture is heated for about 0.5 to about 2.25 hours.

MBHB 02-398-B PHA 01062.US1 ELN 00427-US-NEW

- 22. A process according to claim 1, wherein the compound of formula II is used in an excess from 1.001 to 10 equivalents, based on the compound of formula I.
- 5 23. A process according to claim 22, wherein the compound of formula II is used in an excess from 1.01 to 5 equivalents, based on the compound of formula I.
- 24. A process according to claim 23, wherein the compound of formula II is used in an excess of 3 equivalents, based on the compound of formula I.
 - 25. A process according to claim 1, wherein ${\tt X}$ is ${\tt Br};$
- 15 R_2 and R_3 are independently H, methyl or ethyl; R_6 is NR_4R_5 ; wherein

 R_4 and R_5 are both C_3 alkyl; and R_1 is $C_1\hbox{-} C_4$ alkyl.

26. A compound of the formula:

wherein:

20

 R_1 is is OH, imidazolyl, halogen, -OC(O)CH₃, -OC(O)CF₃;

$$\begin{array}{c|c}
R_3 & R_2 \\
N & O \\
R_5 & N & O
\end{array}$$

25 R_2 and R_3 are independently H or $C_1\text{-}C_4$ alkyl; and R_4 and R_5 are independently $C_1\text{-}C_6$ alkyl.

- 27. A compound according to claim 26, wherein R_2 and R_3 are independently H or methyl.
- 5 28. A compound according to claim 27, wherein R_4 and R_5 are both C_3 alkyl.
 - 29. A compound according to claim 28, wherein $\ensuremath{R_1}$ is OH.

30. A compound according to claim 28, wherein R_1 is $C_1\text{-}C_4$ alkoxy.

- 31. A compound according to claim 28, wherein $\ensuremath{\text{R}}_1$ is chloro.
 - 32. A compound according to claim 28, wherein

$$\begin{matrix} R_3 & R_2 \\ N & O \\ R_1 \text{ is } O & O \end{matrix}$$

20 33. A process for preparing compounds of the formula:

wherein

 R_{10} is -(CH2) $_{1\text{--}2}\text{--}S\,(O)\,_{0\text{--}2}\text{--}\,(C_1\text{--}C_6\text{ alkyl})\,,$ or

 C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C=N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or

10

15

20

25

- dialkylamino, -N(R)C(O)R'-, -OC(=O)-amino and -OC(=O)-mono- or dialkylamino, or
- C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, and mono- or dialkylamino, or
- aryl, heteroaryl, heterocyclyl, $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, $-C\equiv N$, $-NR_{105}R'_{105}$, $-CO_2R$, -N(R)COR', or $-N(R)SO_2R'$, $-C(=O)-(C_1-C_4)$ alkyl, $-SO_2-$ amino, $-SO_2-$ mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, $-SO_2-(C_1-C_4)$ alkyl, or $-C_1-C_6$ alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or
 - C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, - C_1 - C_6 alkyl and mono- or dialkylamino, or
 - C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C \equiv N, -CF $_3$, -C $_1$ -C $_3$ alkoxy, amino, monoor dialkylamino and -C $_1$ -C $_3$ alkyl, or
 - C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, C_1 - C_6 alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo;
 - R and R' independently are hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkylaryl or C_1 - C_{10} alkylheteroaryl;

 R_{20} is selected from the group consisting of H; C_1 - C_6 alkyl, optionally substituted with 1, 2, or 3 substituents that are independently selected from the group consisting of C_1 - C_3 alkyl, halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$; -(CH $_2$) $_{0-4}$ -aryl; -(CH $_2$) $_{0-4}$ -heteroaryl; C_2 - C_6 alkenyl; C_2 - C_6 alkynyl; -CONR $_{N-2}$ R $_{N-3}$; -SO $_2$ NR $_{N-2}$ R $_{N-3}$; -CO $_2$ H; and -CO $_2$ -(C_1 - C_4 alkyl); wherein

 R_{1-a} and R_{1-b} are independently -H or C_1 - C_6 alkyl;

R₃₀ is selected from the group consisting of H; C₁-C₆ alkyl, optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of C₁-C₃ alkyl, halogen, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b}; -(CH₂)₀₋₄-aryl; -(CH₂)₀₋₄-heteroaryl; C₂-C₆ alkenyl; C₂-C₆ alkynyl; -CO-NR_{N-2}R_{N-3}; -SO₂-NR_{N-2}R_{N-3}; -CO₂H; and -CO-O-(C₁-C₄ alkyl);

or

20

25

35

5

 R_{20} , R_{30} and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from-O-, -S-, -SO₂-, or -NR_{N-2}-;

 R_{N-2} and R_{N-3} at each occurrence are independently selected from the group consisting of $-C_1-C_8$ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, $-NH_2$, phenyl and halogen; $-C_3-C_8$ cycloalkyl; $-(C_1-C_2$ alkyl)- $(C_3-C_8$ cycloalkyl); $-(C_1-C_6$ alkyl)- $O-(C_1-C_3$ alkyl); $-C_2-C_6$ alkenyl; $-C_2-C_6$ alkynyl; $-C_1-C_6$ alkyl chain with one double bond and one triple bond; aryl; heteroaryl; heterocycloalkyl;

30 or

 R_{N-2} , R_{N-3} and the nitrogen to which they are attached form a 5, 6, or 7 membered heterocycloalkyl or heteroaryl group, wherein said heterocycloalkyl or heteroaryl group is optionally fused to a benzene, pyridine, or pyrimidine ring, and said groups are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that at

```
alkoxy, halogen, halo C<sub>1</sub>-C<sub>6</sub> alkyl, halo C<sub>1</sub>-C<sub>6</sub> alkoxy,
                  -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, NH(C_1-C_6 alkyl), N(C_1-C_6 alkyl)(C_1-C_6
                  alkyl), -OH, -C(O)NH_2, -C(O)NH(C_1-C_6 alkyl),
5
                  -C(0)N(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl}), C_1-C_6 \text{ alkoxy } C_1-C_6
                  alkyl, C_1-C_6 thioalkoxy, and C_1-C_6 thioalkoxy C_1-C_6
                  alkyl;
     R_{C} is hydrogen, -(CR_{245}R_{250})_{0-4}-aryl, -(CR_{245}R_{250})_{0-4}-heteroaryl, -
            (CR_{245}R_{250})_{0-4}-heterocyclyl, -(CR_{245}R_{250})_{0-4}-aryl-heteroaryl, -
10
            (CR_{245}R_{250})_{0-4}-aryl-heterocyclyl,
                                                        -(CR_{245}R_{250})_{0-4}-aryl-aryl,
           - (CR_{245}R_{250})_{0-4}-heteroaryl-aryl,
                                                      -(CR_{245}R_{250})_{0-4}-heteroaryl-
           heterocyclyl,
                                  - (CR_{245}R_{250})_{0-4}-heteroaryl-heteroaryl,
           (CR_{245}R_{250})_{0-4}-heterocyclyl-heteroaryl,
                                                                      -(CR_{245}R_{250})_{0-4}-
           heterocyclyl-heterocyclyl,
                                                     - (CR_{245}R_{250})_{0-4}-heterocyclyl-
15
           aryl,
                           -[C(R_{255})(R_{260})]_{1-3}-CO-N-(R_{255})_{2}
                                                                         -CH(aryl)_{2}
           -CH(heteroaryl)<sub>2</sub>,
                                                               -CH(heterocyclyl)<sub>2</sub>,
           -CH(aryl)(heteroaryl),
                                            -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-
           aryl, -(CH_2)_{0-1}-CH((CH<sub>2</sub>)<sub>0-6</sub>-OH-(CH<sub>2</sub>)<sub>0-1</sub>-heteroaryl, -CH(-aryl
                 -heteroaryl)-CO-O(C_1-C_4 alkyl), -CH(-CH<sub>2</sub>-OH)-CH(OH)-
20
           phenyl-NO<sub>2</sub>, (C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH; -CH<sub>2</sub>-NH-CH<sub>2</sub>-
           CH(-O-CH_2-CH_3)_2, -(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240}), or
           C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups
                  independently selected from the group consisting of
                           -OC = ONR_{235}R_{240}
                                               -S(=0)_{0-2}(C_1-C_6)
                                                                    alkyl),
                  R_{205},
25
                  -NR_{235}C = ONR_{235}R_{240}, -C = ONR_{235}R_{240}, and -S(=O)_2NR_{235}R_{240}, or
           -(CH_2)_{0-3}-(C_3-C_8)
                                 cycloalkyl wherein the cycloalkyl
                  optionally substituted with 1, 2, or 3 groups
                  independently selected from the group consisting of
                  R_{205}, -CO_2H, and -CO_2-(C_1-C_4 \text{ alkyl}), or
           cyclopentyl, cyclohexyl, or cycloheptyl ring fused to
30
                  aryl, heteroaryl, or heterocyclyl wherein one,
                  or three carbons of the cyclopentyl, cyclohexyl, or
                  cycloheptyl is optionally replaced with a heteroatom
                  independently selected from NH, NR_{215}, O, or S(=0)_{0-2},
35
                         wherein
                                       the
                                              cyclopentyl,
                                                                  cyclohexyl,
                  cycloheptyl group can be optionally substituted with
```

each occurrence are independently C₁-C₆ alkyl, C₁-C₆

one or two groups that are independently R_{205} , =0, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl), or

- $C_2\text{-}C_{10}$ alkenyl or $C_2\text{-}C_{10}$ alkynyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups, wherein
- each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R_{200} , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 R_{210} ;
- R_{200} at each occurrence is independently selected from -OH, 10 $-NO_2$, halogen, $-CO_2H$, $C \equiv N$, $-(CH_2)_{0-4} - CO - NR_{220}R_{225}$, $-(CH_2)_{0-4} - CO - NR_{220}R_{225}$ $CO-(C_1-C_{12} \text{ alkyl}), -(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkenyl}), -(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkenyl})$ $CO-(C_2-C_{12} \quad alkynyl)$, $-(CH_2)_{0-4}-CO-(C_3-C_7 \quad cycloalkyl)$, - $(CH_2)_{0-4}$ -CO-aryl, $-(CH_2)_{0-4}$ -CO-heteroaryl, - (CH₂)₀₋₄-COheterocycly1, $-(CH_2)_{0-4}-CO-O-R_{215}$, $-(CH_2)_{0-4}-SO_2-NR_{220}R_{225}$, -15 $(CH_2)_{0-4}-SO-(C_1-C_8 \quad alkyl), \quad -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \quad alkyl), \quad (CH_2)_{0-4}-SO_2-(C_3-C_7)$ cycloalkyl), $-(CH_2)_{0-4}-N(H)$ or R_{215})-CO-O- R_{215} , $-(CH_2)_{0-4}-N(H)$ or R_{215}) $-CO-N(R_{215})_2$, $-(CH_2)_{0-4}-N-CS N(R_{215})_2$, $-(CH_2)_{0-4}-N(-H \text{ or } R_{215})-CO-R_{220}$, $-(CH_2)_{0-4}-NR_{220}R_{225}$, $-(CH_2)_{0-4}-O-CO-(C_1-C_6)$ alkyl), -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂,20 $-(CH_2)_{0-4}-O-CO-N(R_{215})_2$, $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$, $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$ (R_{215}) , $-(CH_2)_{0-4}$ - $-(R_{215})$ - COOH , $-(CH_2)_{0-4}$ - $-(R_{215})$, $-(CH_2)_{0-4}$ $O-(C_1-C_6$ alkyl optionally substituted with 1, 2, 3, or 5 -F), C_3-C_7 cycloalkyl, $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$, $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$ 4- C₃-C₇ cycloalkyl, or
- C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 R_{205} groups, or
 - $C_2\text{-}C_{10}$ alkenyl or $C_2\text{-}C_{10}$ alkynyl, each of which is optionally substituted with 1 or 2 R_{205} groups, wherein
- 30 the aryl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 groups that are independently $R_{205},\ R_{210},$ or
 - $C_1\text{-}C_6$ alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein

10

- the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;
- R_{205} at each occurrence is independently selected from C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, NH $_2$, NH(C_1 - C_6 alkyl) or N-(C_1 - C_6 alkyl);
- R_{210} at each occurrence is independently selected from halogen, $C_1\text{-}C_6 \text{ alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } -NR_{220}R_{225}, \text{ OH, } C\equiv N, \text{-}CO\text{-}(C_1\text{-}C_4 \text{ alkyl}), \\ -SO_2\text{-}NR_{235}R_{240}, \text{-}CO\text{-}NR_{235}R_{240}, \text{-}SO_2\text{-}(C_1\text{-}C_4 \text{ alkyl}), \\ = O, \text{ or }$
 - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups;
- 15 R_{215} at each occurrence is independently selected from C_1 - C_6 alkyl, -(C_{12})₀₋₂-(aryl), C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, and -(C_{12})₀₋₂-(heteroaryl), -(C_{12})₀₋₂-(heterocyclyl), wherein
 - the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein
 - the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 R_{210} ;
- R₂₂₀ and R₂₂₅ at each occurrence are independently selected from -H, $-C_3-C_7$ cycloalkyl, $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$, $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, $-C_2-C_6 \text{ alkenyl}$, $-C_2-C_6 \text{ alkynyl}$, $-C_1-C_6 \text{ alkyl}$ chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocyclyl, or $-C_1-C_{10}$ alkyl optionally substituted with -OH, $-\text{NH}_2$ or halogen, wherein
 - the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 $R_{\rm 270} \; groups$
- R_{235} and R_{240} at each occurrence are independently H, or $C_1\text{-}C_6$ alkyl;

15

- R_{245} and R_{250} at each occurrence are independently selected from $_{\rm -H},$ $C_{1}\text{-}C_{4}$ alkyl, $C_{1}\text{-}C_{4}$ alkylaryl, $C_{1}\text{-}C_{4}$ alkylheteroaryl, $C_{1}\text{-}C_{4}$ hydroxyalkyl, $C_{1}\text{-}C_{4}$ alkoxy, $C_{1}\text{-}C_{4}$ haloalkoxy, $_{\rm -}(CH_{2})_{\,0\text{-}4}\text{-}C_{3}\text{-}C_{7}$ cycloalkyl, $C_{2}\text{-}C_{6}$ alkenyl, $C_{2}\text{-}C_{6}$ alkynyl, and phenyl; or
- R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO₂-, and -NR₂₂₀-;
- R₂₅₅ and R₂₆₀ at each occurrence are independently selected from -H, $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$, $-(C_1-C_4 \text{ alkyl})-\text{aryl}$, $-(C_1-C_4 \text{ alkyl})-\text{heteroaryl}$, $-(C_1-C_4 \text{ alkyl})-\text{heterocyclyl}$, -aryl, -heteroaryl, -heterocyclyl, $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{aryl}$, $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{heterocyclyl}$, or
 - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or -(CH_2) $_{0-4}$ - C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups, wherein
- each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently $R_{205},\ R_{210},$ or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or $R_{210},$ and wherein
- each heterocyclyl is optionally substituted with 1, 2, 3, or 4 R_{210} ;
 - R_{265} at each occurrence is independently -O-, -S- or -N(C1-C6 alkyl)-;
 - - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or -(CH_2) $_{0-4}$ - C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups;
- 35 comprising

$$R_3$$
 R_2 N O R_6 O O

5 wherein

$$R_3$$
 R_2 N O R_6 O O

R₁ is OH, imidazolyl, halogen or

 R_2 and R_3 are independently H, phenyl, or $C_1\text{-}C_4$ alkyl; or R_2 and R_3 and the carbons to which they are attached form a benzene ring; and

10 R_6 is C_1 - C_6 alkoxy or NR_4R_5 ; wherein R_4 and R_5 are independently C_1 - C_6 alkyl; and a compound of formula VIII

$$\begin{array}{c} OH \\ H_2N \\ \vdots \\ R_{10} \\ R_{20} \\ R_{30} \\ \end{array}$$

$$VIII$$

in a solvent.

- 34. A process according to claim 33, wherein the solvent is selected from THF, DMF, CH_2Cl_2 , and $CHCl_3$.
- 35. A process according to claim 35 wherein the reaction mixture comprises a base which is pyridine, collidine, ditertiarybutyl pyridine, triethylamine, diisopropylethylamine, dimethylamino pyridine, or lutidine.

MBHB 02-398-B PHA 01062.US1 ELN 00427-US-NEW

36. A process according to claim 35, wherein the reaction mixture further comprises an additive which is 1, 2, or 3 of the following:

EDCI, HOBT, benzotriazole, HOAT, HATU, or DCC.