TCP Congestion Control Mechanisms

Kameswari Chebrolu

Seminal Paper: Congestion Avoidance and Control by Van Jacobson and Michael J. Karels

Exponential Damping

- From control theory: An unstable system can be stabilized by adding exponential damping
- "A network subject to random load shocks and prone to congestive collapse can be stabilized by adding exponential damping to its primary excitation (Traffic sources)"

Adapting to Path

- Estimating process can over or underestimate W; need to correct this
- Available bandwidth also changes over time;
 need to adapt to this
- Need a feedback mechanism from the network that the estimate is wrong

Overestimation

- Overestimation leads to congestion
- Feedback: If losses are due to congestion and timers are working correctly → Timeout indicates congestion ✓
 - How to change the congestion window?
 - Additive decrease or multiplicative decrease?
 - Multiplicative decrease yields better stability

•
$$W_i = dW_{i-1}$$
 (d<1, typically 0.5)

Underestimation

$$\omega = 5^{\sim} \longrightarrow 15$$

• Underestimation leads to lower utilization

- Additive increase or multiplicative increase?
 - Exponential increase leads to instability; overestimation is inevitable
 - Additive increase
 - $W_i = W_{i-1} + u$ (u << W_{max} ; typical u is 1)
 - Increase window by 1 segment every RTT

Congestion Avoidance

- Additive Increase, Multiplicative Decrease
- On detecting congestion, set cwnd to half the window size (multiplicative decrease)
- On each ack of new data, increase cwnd by 1/cwnd (additive increase)

RTT- Cound by 1 segment ~

Time \rightarrow

Summary

- Congestion control is a difficult task
 - Prevent underutilization; ensure no congestion; ensure fairness
- TCP relies on a variety of techniques to achieve this
 - Slow start, RTT estimation, Congestion avoidance (AIMD)
- Ahead: Putting it all together in TCP versions