

015936-2.2010-01-15.SEQ LIST.ST25
SEQUENCE LISTING

<110> SAHIN, ERINC
TARALP, ALPAY
SAYERS, SEHRA

<120> CIRCULAR RECOMBINANT PLASMID DNA CONSTRUCTS AND THEIR PROTEIN PRODUCTS, METHODS OF PREPARATION AND IMMOBILISATION OF PROTEINS ON SUPPORT

<130> U015936-2

<140> 10/550226

<141> 2005-09-20

<150> PCT/TR2003/000019

<151> 2003-03-20

<160> 13

<170> PatentIn version 3.3

<210> 1

<211> 733

<212> DNA

<213> Aequorea victoria

<220>

<221> gene

<222> (17)..(733)

<223> GFP gene

<400> 1

ggtaccggta gaaaaaatga gtaaaggaga agaactttc actggagttg tcccaattct 60

tgttgaatta gatggtgatg ttaatggc acaaatttct gtcagtggag agggtaagg 120

tgatgcaaca tacggaaaac ttaccctaa atttattgc actactggaa aactacctgt 180

tccatggcca acacttgtca ctacttctc ttatgggtt caatgcttt cccgttatcc 240

ggatcatatg aaacggcatg acttttcaa gagtgccatg cccgaagggt atgtacagga 300

acgcactata tcattcaaag atgacggaa ctacaagacg cgtgctgaag tcaagttga 360

aggtgatacc ctgttaatc gtatcgaggaaa 420
cattctcgga cacaaactcg agtacaacta taactcacac aatgtataca tcacggcaga 480
caaacaaaag aatggaatca aagctaactt caaaattcgc cacaacattg aagatggatc 540
cgttcaacta gcagaccatt atcaacaaaa tactccaatt ggcgatggcc ctgtccttt 600
accagacaac cattacctgt cgacacaatc tgcccttcg aaagatccca acgaaaagcg 660
tgaccacatg gtccttcgt agtttgtaac tgctgctggg attacacatg gcatggatga 720
gctctacaaa taa 733

<210> 2
<211> 6029
<212> DNA
<213> Artificial sequence

<220>
<223> Empty PETM-11 plasmid

<220>
<221> misc_feature
<222> (1)..(6029)
<223> Empty PETM-11 plasmid

<400> 2
atccggatat agttccctt ttcagcaaaa aacccctcaa gaccggtta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa cttagctcc ttccggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgccggcc gcaagcttgt 180
cgacggagct cgaattcgga tccggatcca ctatgttagag accaagacac gccttgtac 240
tgtcctgcag ctttattctc ttgatgctgg tgctggaata gccctcatca ctgccgaggc 300
tctgcatgtc gccccgctcg tcagagtgc tcacactgct gctgctccag tccagatcac 360
ctgtgagata gtccgtgctc tccacgtcaa cgtcgatttc ttccctgtcg gagtcggagc 420

015936-2.2010-01-15.SEQ LIST.ST25

gctccgagga gacggtggag ccgatgttgt ccatccggat cctctcaatg cccagttct 480
ccagctgcct cttcagggtgt cgctgctctc gctgaagctg gtcgatttg tgaacggctt 540
ttctgtcaca atcttcaagt ttctttatgt gcaatttggc ttttgttaat aaactcaacg 600
tagtgtgtcg acttgattcg ggtcccagtgc accaggcccc cttcaacttc tccaggcaca 660
agcgaagatg agcccgctta ttcttctcca tttcattgtg agttgatctg ctactgctgt 720
tattctttt ggatttgttc ctccgtttta aggcatctct gtcccttgtt ttgtatggta 780
acatggaggc ataaccatgt tcagcttctc tctccggccg ctccagatag tcggccgcct 840
ccagcagcat ctggatgttc atccgaaccg ccggcccat ggcgcctga aaataaagat 900
tctcagtagt gggatgtcg taatcgctca tggggtgatg gtgatggta tgtttcatgg 960
tatatatcttctt tcttaaagtt aaatcaaataat tatttctaga gggaaatgt tatccgctca 1020
caatccccct atagtgagtc gtatataattt cgccggatcg agatctcgat cctctacgcc 1080
ggacgcacatcg tggccggcat cacccggcc acaggtgcgg ttgctggcgc ctatatcgcc 1140
gacatcacccg atggggaaga tcgggctcgc cacttcgggc tcatgagcgc ttgttccgc 1200
gtgggtatgg tggcaggcccc cgtggccggg ggactgttgg ggcgcacatctc ctgcatgca 1260
ccattcccttgcggccggat gctcaacggc ctcaacctac tactggctg cttcctaattg 1320
caggagtcgc ataagggaga gcgtcgagat cccggacacc atcgaatggc gcaaaacctt 1380
tcgcggatgt gcatgatagc gccccggaa gagtcaattc agggtggtga atgtgaaacc 1440
agtaacgtta tacgatgtcg cagagtatgc cggtgtcttct tatcagaccc ttcccgctgt 1500
ggtaaccag gccagccacg ttctgcgaa aacgcgggaa aaagtggaaag cggcgatggc 1560
ggagctgaat tacattccca acccggtggc acaacaactg gcgggcaaac agtcgttgct 1620
gattggcggtt gccacccctca gtctggccct gcacgcggccg tcgcaaatttgc tgcggcgat 1680
taaatctcgc gccgatcaac tgggtgccag cgtggtggtg tcgatggtag aacgaagcgg 1740
cgtcgaagcc tgtaaagcgg cgggcacaa tcttctcgcg caacgcgtca gtggctgat 1800

015936-2.2010-01-15.SEQ LIST.ST25

cattaactat ccgctggatg accaggatgc cattgctgtg gaagctgcct gcactaatgt 1860
tccggcgitta ttcttgatg tctctgacca gacaccatc aacagtatta tttctccca 1920
tgaagacggt acgcaactgg gcgtggagca tctggtcga ttgggtcacc agcaaatcgc 1980
gctgttagcg ggcccattaa gttctgtctc ggccgcgtctg cgtctggctg gctggcataa 2040
atatctcaact cgcaatcaa ttcagccgat agcggAACGG gaaggcgact ggagtgccat 2100
gtccggttt caacaaacca tgcaaatgct gaatgagggc atcggttcca ctgcgtatgc 2160
ggttgccaac gatcagatgg cgctggcgcc aatgcgcgcc attaccgagt ccgggctgcg 2220
cgttggtgcg gatatctcg tagtggata cgacgatacc gaagacagct catgttatat 2280
ccggccgtta accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg 2340
cttgctgcaa ctctctcagg gccaggcggt gaaggcaat cagctgtgc ccgtctcaact 2400
ggtaaaaaga aaaaccaccc tggcgcccaa tacgcaaacc gcctctcccc gcgcgtggc 2460
cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgc 2520
acgcaattaa tgtaagttag ctcactcatt aggcaccggg atctcgaccg atgcccgttga 2580
gagccttcaa cccagtcage tcctccgggt gggcgcccccatgactatc gtcgcccac 2640
ttatgactgt cttctttatc atgcaactcg taggacaggt gccggcagcg ctctgggtca 2700
tttcggcga ggaccgcgtt cgctggagcg cgacgatgat cggcctgtcg cttcggtat 2760
tcggaatctt gcacgcctc gctcaagcct tcgtcaactgg tcccgcacc aaacgttgc 2820
gcgagaagca ggccattatc gccggcatgg cggccccacg ggtgcgcacg atcgtgctcc 2880
tgtcggttag gacccggcta ggctggcggt gttgccttac tggtagcag aatgaatcac 2940
cgatacgcga gcaaacgtga agcgactgct gctgcaaaac gtctgcgacc tgagcaacaa 3000
catgaatggt cttcggttgc cgtgttcgt aaagtctgga aacgcggaaag tcagcgcct 3060
gcaccattat gttccggatc tgcatcgacg gatgctgctg gctaccctgt ggaacaccta 3120

015936-2.2010-01-15.SEQ LIST.ST25

catctgtatt aacgaagcgc tggcattgac cctgagtat tttctctgg tcccgccgca 3180
tccataccgc cagttgtta ccctcacaac gttccagtaa ccgggcatgt tcatcatcag 3240
taaccgtat cgtgagcatc ctctctcggt tcatcggtat cattacccc atgaacagaa 3300
atccccctta cacggaggca tcagtgacca aacagggaaa aaccggccctt aacatggccc 3360
gctttatcag aagccagaca ttaacgcttc tggagaaaact caacgagctg gacgcccgt 3420
aacaggcaga catctgtcaa tcgcttcacg accacgctga tgagctttac cgccagctgcc 3480
tcgcgcgtt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 3540
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 3600
ttggcgggtg tcggggcgca gccatgaccc agtcacgtag cgatagcggta gtgtatactg 3660
gcttaactat gccgcacatcag agcagattgt actgagagtg caccatatat gccgtgtcaa 3720
ataccgcaca gatgcgtaaag gagaaaatac cgccatcaggc gcttccgc ttccctcgctc 3780
actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg 3840
gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg agcaaaaggc 3900
cagcaaaagg ccaggaacctg taaaaaggcc gcgttgctgg cggtttcca taggctccgc 3960
ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga 4020
ctataaagat accaggcggtt tccccctgga agctccctcg tgcgctctcc tgtccgacc 4080
ctgcccgtta ccggataacct gtccgccttt ctccctcgg gaagcgtggc gctttctcat 4140
agetcacgct gtaggtatct cagttcgggtg taggtcggtc gctccaagct gggctgttg 4200
cacgaacccc ccgttcagcc cgaccgctgc gccttatcgg gtaactatcg tcttgagtcc 4260
aaccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 4320
gcgaggtatg taggcgggtgc tacagagttc ttgaagtgggt ggcctaacta cggctacact 4380
agaaggacag tatttggat ctgcgctctg ctgaagccag ttacctcgg aaaaagagtt 4440
ggtagcttt gatccggcaa acaaaccacc gctggtagcg gtggtttt tgttgcaag 4500

015936-2.2010-01-15.SEQ LIST.ST25

cagcagatta cgccgcagaaa aaaaggatct caagaagatc ctttgatct ttctacgggg 4560
tctgacgctc agtggAACGA aaactcacgt taagggattt tggcatgaa caataaaaact 4620
gtctgcttac ataaacagta atacaagggg tggtatgagc catattcaac gggAAACGTC 4680
ttgctctagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatggc 4740
tcgcgataat gtcggcaat caggcgac aatctatcgta ttgtatggga agccccatgc 4800
gccagagttg ttctgaaac atggcaaagg tagcggtgcc aatgatgtt cagatgagat 4860
ggtcagacta aactggctga cggaaatttgc ctctttccg accatcaagc attttatccg 4920
tactcctgat gatgcattgt tactcaccac tgcgtatcccc gggAAAACAG cattccaggt 4980
attagaagaa tatcctgatt caggtaaaaa tatttgtat gcgcgtggcag tgccctgcg 5040
ccggttgcat tcgattccctg ttgttaatttgc tccttttaac agcgatcgatc tatttcgtct 5100
cgctcaggcg caatcacgaa tgaataacgg tttgggtatgc gcgagtgtt ttgtatgacga 5160
gcgtaatggc tgccctgtt aacaagtctg gaaagaaaatg cataaactttgc tgccattctc 5220
accggattca gtcgtcactc atggtgattt ctcaattgtatc aaccttatttgc acggagg 5280
gaaattaataa ggttgtatttgc atgtggacg agtcggaaatc gcagaccatc accaggatct 5340
tgccatccata tggaactgcc tcggtgat ttctccctca ttacagaaac ggcttttca 5400
aaaatatgtt attgataatc ctgatatgaa taaattgcag tttcaattgtatgc tgctcgatgc 5460
gtttttctaa gaattaatttgc atgagccggat acatattttgc atgtatgtttag aaaaataaaac 5520
aaatagggggt tccgcgcaca ttccccggaa aagtgcacc tgaaattgtatgc aacgttaata 5580
tttgtttaaa attcgcgttta aatttttgtttaaaatcgttca attttttaac caataggccg 5640
aaatcggcaa aatccctttaaaatcgttca aatcaaaaag aatagaccga gatagggttgc agtgggttc 5700
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaaa 5760
ccgtctatca gggcgatggc ccactacgtt aaccatcacc ctaatcaagt tttttgggtt 5820

015936-2.2010-01-15.SEQ LIST.ST25

cgaggtgccg taaaggacta aatcggaacc ctaaaggagccccgattt agagcttgac 5880

ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 5940

gggcgctggc aagtgttagcg gtcacgctgc gcgttaaccac cacacccgccc gcgttaatg 6000

cggcgctaca gggcgctcc cattcgcca 6029

<210> 3

<211> 5369

<212> DNA

<213> Artificial sequence

<220>

<223> Intermediate pETM-adp plasmid, on way to pETM-GFP-Imm construct

<400> 3

catcaccatc accatcaccc catgagcgat tacgacatcc ccactactga gaatctttat 60

tttcagggcg ccatgggagg cacgggtacgg gatccgaatt cgagctccgt cgacaagctt 120

gcggccgcac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagccgaa 180

aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc cttggggcc 240

tctaaacggg tcttgaggggg tttttgctg aaaggaggaa ctatatccgg attggcgaat 300

gggacgccc ctgtacgcgcgc gcattaagcg cggcggtgt ggtggttacg cgcagcgtga 360

ccgctacact tgccagcgcc ctagcgcccg ctcccttcgc ttcttccct tcctttctcg 420

ccacgttcgc cggcttccc cgtcaagctc taaatcgggg gctccctta gggttccgat 480

ttagtgctt acggcacctc gacccaaaaa aacttgatta gggtgatggt tcacgtatg 540

ggccatcgcc ctgatagacg gttttcgcc cttgacgtt ggagtccacg ttctttaata 600

gtggactctt gttccaaact ggaacaacac tcaaccatat ctcggctat tctttgatt 660

tataaggat ttgcccatt tcggcctatt ggtaaaaaaaaa tgagctgatt taacaaaaat 720

ttaacgcgaa tttaacaaa atattaacgt ttacaatttc aggtggcact ttccgggaa 780

atgtgcgcgg aacccttatt tgtttatttt tctaaataca ttcaaataatg tatccgctca 840

015936-2.2010-01-15.SEQ LIST.ST25

tgaattaatt cttagaaaaa ctcatcgagc atcaaatgaa actgcaattt attcatatca 900
ggattatcaa taccatattt ttgaaaaagc cgttctgta atgaaggaga aaactcaccc 960
aggcagttcc ataggatggc aagatcctgg tatcggtctg cgattccgac tcgtccaaca 1020
tcaatacaac ctattaattt cccctcgta aaaataaggt tatcaagtga gaaatcacca 1080
tgagtgacga ctgaatccgg tgagaatggc aaaagttat gcatttctt ccagacttgt 1140
tcaacagggcc agccattacg ctgcgtcatca aaatcactcg catcaaccaa accgttattc 1200
attcgtgatt ggcgcctgagc gagacgaaat acgcgcgtcg tggtaaaaagg acaattacaa 1260
acaggaatcg aatgcaaccc ggcgcaggaac actgccagcg catcaacaat atttcacct 1320
gaatcaggat attcttctaa tacctggaat gctgtttcc cggggatcgc agtggtgagt 1380
aaccatgcat catcaggagt acggataaaa tgcttgatgg tcggaagagg cataaattcc 1440
gtcagccagt ttagtctgac catctcatct gtaacatcat tggcaacgct acctttgcca 1500
tgtttcagaa acaactctgg cgccatgggc ttcccataca atcgatagat tgtcgcacct 1560
gattgcccgaa cattatcgcg agcccatTTTA taccatata aatcagcatc catgtggaa 1620
tttaatcgcg gccttagagca agacgtttcc cgttgaatat ggctcataac accccttgc 1680
ttactgttta tgtaaggcaga cagttttatt gttcatgacc aaaatccctt aacgtgagtt 1740
ttcggttccac tgagcgtcag accccgtaga aaagatcaa ggatcttctt gagatccctt 1800
ttttctgcgc gtaatctgct gcttgcacac aaaaaaaacca ccgcgtaccag cgggtggttg 1860
tttgcggat caagagctac caactcttt tccgaaggta actggcttca gcagagcgca 1920
gataccaaat actgtccctc tagttagcc gtagttaggc caccacttca agaactctgt 1980
agcaccggct acatacctcg ctctgctaattt cctgttacca gtggctgctg ccagtggcg 2040
taagtctgtt cttaccgggt tggactcaag acgatagttt ccggataagg cgcagcggc 2100
gggctgaacg ggggggttcgt gcacacagcc cagctggag cgaacgacct acaccgaact 2160

015936-2.2010-01-15.SEQ LIST.ST25

gagataccctt cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 2220
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg 2280
aaacgcctgg tatctttata gtcctgtcgg gtttcggcac ctctgacttg agcgtcgatt 2340
tttgtatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggcctttt 2400
acggttcctg gcctttgct ggcctttgc tcacatgttc ttccctgcgt tatcccctga 2460
ttctgtggat aaccgttatta ccgccttiga gttagctgat accgctcgcc gcagccgaac 2520
gaccgagcgc agcgagttag tgagcgagga agcggaagag cgccctgatgc ggtattttct 2580
ccttacgcattt ctgtgcggta tttcacacccg catatatggt gcactctcag tacaatctgc 2640
tctgatgccc catagttaaag ccagtataca ctccgctatc gctacgtgac tgggtcatgg 2700
ctgcgccccg acacccgcca acacccgctg acgcgcctg acgggcttgt ctgcctccgg 2760
catccgctta cagacaagct gtgaccgtct ccgggagctg catgtcag aggtttcac 2820
cgtcatcacc gaaacgcgcg aggcaactgc ggtaaagctc atcagcgtgg tcgtgaagcg 2880
attcacagat gtctgcctgt tcatccgcgt ccagctcggt gagtttctcc agaagcgta 2940
atgtctggct tctgataaaag cggggcatgt taagggcggt ttttccgtt ttggtcactg 3000
atgcctccgt gtaagggggta tttctgttca tgggggtaat gataccgatg aaacgagaga 3060
ggatgctcac gatacggtt actgatgatg aacatgcggc gttactggaa cgttgagg 3120
gtaaacaact ggcggatgg atgcggcggtt accagagaaa aatcaactcg ggtcaatgcc 3180
agcgcttcgt taatacagat gtaggtgttc cacaggtagt ccagcagcat cctgcgtatgc 3240
agatccggaa cataatggtg cagggcgctg acttccgcgt ttccagactt tacgaaacac 3300
ggaaaccgaa gaccattcat gttgttgcgtt aggtgcaga cgtttgcag cagcagtcgc 3360
ttcacgttcg ctgcgtatc ggtgattcat tctgctaacc agtaaggcaa ccccgccagc 3420
ctagccgggtt cctcaacgac aggagcacga tcatgcgcac ccgtggggcc gccatgcgg 3480
cgataatggc ctgcgttcg ccgaaacgtt tggtggcggtt accagtgcacg aaggcttgag 3540

cgagggcgtg caagattccg aataccgcaa gcgcacaggcc gatcatcgac gcgcctccaggc 3600
gaaagcggtc ctcgcccggaa atgacccaga gcgcgtccgg cacctgtcct acgagttgca 3660
tgataaaagaa gacagtcatc agtgcggcga cgatagtcgat gccccgcgc caccggaaagg 3720
agctgactgg gttgaaggct ctcaaggcga tcggcgaga tccccgtgcc taatgagtga 3780
gctaacttac attaattgcg ttgcgctcac tgcccgctt ccagtcggga aacctgtcgt 3840
gccagctgca ttaatgaatc gccaacgcg cggggagagg cggttgcgt attggcgcc 3900
agggtggttt ttctttcac cagttagacg ggcaacagct gattgccctt caccgcctgg 3960
ccctgagaga gttgcagcaa gcggtccacg ctggttgcc ccagcaggcg aaaatcctgt 4020
ttgatggtgg ttaacggcgg gatataacat gagctgtctt cggatcgac gtatcccact 4080
accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgccat tgcccccagc 4140
gccatctgat cgttggcaac cagcatcgca gtgggaacga tgccctcatt cagcattgc 4200
atggttgtt gaaaaccgga catggcactc cagtcgcctt cccgtccgc tatcggtcgt 4260
atttgattgc gagtgagata tttatgccag ccagccagac gcagacgcgc cgagacagaa 4320
cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg 4380
cccagtcgcg taccgtttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag 4440
acatcaagaa ataacgcgg aacattagtg caggcagctt ccacagcaat ggcattctgg 4500
tcatccagcg gatagttat gatcagccca ctgacgcgtt gcgcgagaag attgtgcacc 4560
gccgccttac aggcttcgac gccgcgttgcgt tctaccatcg acaccaccac gctggcaccc 4620
agttgatcg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga 4680
ctggagggtgg caacgcctt cagcaacgcac tgttgcggc ccagttgttg tgccacgcgg 4740
ttgggaatgt aattcagctc cgccatcgcc gcttccactt ttccgcgtt ttgcagaa 4800
acgtggctgg cctgggtcac cacgcggaa acggctgtat aagagacacc ggcatactct 4860

015936-2.2010-01-15.SEQ LIST.ST25

gcgacatgt ataacgttac tggttcaca ttaccaccc tgaattgact ctctccggg 4920
cgctatcatg ccatacccg 4980
ctctcccta tgcgactcct gcattagaa gcagcccagt agtaggttga ggccgttgag 5040
caccggcc gcaaggaatg gtgcattcaa ggagatggcg cccaacagtc ccccgccac 5100
ggggcctgcc accataccca cgccgaaaca agcgctcatg agcccgaaatg ggcgagcccg 5160
atcttccccca tcggtatgt cggcgatata ggcgccagca accgcacctg tggcgccggt 5220
gatgccggcc acgatgcgtc cggcgtagag gatcgagatc tcgatccgc gaaattaata 5280
cgactcacta tagggaaatt gtgagcggat aacaattccc ctctagaat aattttattt 5340
taacttaag aaggagatat accatgaaa 5369

<210> 4
<211> 3337
<212> DNA
<213> Artificial sequence

<220>
<221> CDS
<222> (286)..(1014)
<223> pGFPuv plasmid coding for GFP from Aequorea victoria

<400> 4
agcgcccaat acgcaaaccg cctctcccg cgcgtggcc gattcattaa tgcagctggc 60
acgacagggtt tcccgactgg aaagcgggca gtgagcgaa cgcaattaaat gtgagttac 120
tcactcattt ggcacccag gctttacact ttatgcttcc ggctcgatgt ttgtgtggaa 180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctg 240
catgcctgca ggtcgactct agaggatccc cgggtaccgg tagaa aaa atg agt aaa 297
Lys Met Ser Lys
1

gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat 345
Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp
5 10 15 20

ggt gat gtt aat ggg cac aaa ttt tct gtc agt gga gag ggt gaa ggt 393
 Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly
 25 30 35

gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act act gga 441
 Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly
 40 45 50

aaa cta cct gtt cca tgg cca aca ctt gtc act act ttc tct tat ggt 489
 Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly
 55 60 65

gtt caa tgc ttt tcc cgt tat ccg gat cat atg aaa cgg cat gac ttt 537
 Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg His Asp Phe
 70 75 80

ttc aag agt gcc atg ccc gaa ggt tat gta cag gaa cgc act ata tct 585
 Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Ser
 85 90 95 100

ttc aaa gat gac ggg aac tac aag acg cgt gct gaa gtc aag ttt gaa 633
 Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu
 105 110 115

ggt gat acc ctt gtt aat cgt atc gag tta aaa ggt att gat ttt aaa 681
 Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys
 120 125 130

gaa gat gga aac att ctc gga cac aaa ctc gag tac aac tat aac tca 729
 Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser
 135 140 145

cac aat gta tac atc acg gca gac aaa caa aag aat gga atc aaa gct 777
 His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala
 150 155 160

aac ttc aaa att cgc cac aac att gaa gat gga tcc gtt caa cta gca 825
 Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala
 165 170 175 180

gac cat tat caa caa aat act cca att ggc gat ggc cct gtc ctt tta 873
 Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu
 185 190 195

015936-2.2010-01-15.SEQ LIST.ST25

cca gac aac cat tac ctg tcg aca caa tct gcc ctt tcg aaa gat ccc 921
Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro
200 205 210

aac gaa aag cgt gac cac atg gtc ctt ctt gag ttt gta act gct gct 969
Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala
215 220 225

ggg att aca cat ggc atg gat gag ctc tac aaa taa tga att cca 1014
Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Ile Pro
230 235 240

actgagcgcc ggtcgctacc attaccaact tgtctggtgt caaaaataat aggctacta 1074

gtcggccgta cgggccctt cgtctcgcbc gttcgggtga tgacggtaaa aacctctgac 1134

acatgcagct cccggagacg gtcacagctt gtctgttaagc ggtatgccggg agcagacaag 1194

cccgtcaggc cgctcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 1254

cagagcagat tgtactgaga gtgcaccata tgcgggtgtga aataccgcac agatgcgtaa 1314

ggagaaaaata ccgcatcagg cggccctaag ggcctcgta tacgcattt tttataggtt 1374

aatgtcatga taataatggt ttcttagacg tcaggtggca ctttcgggg aaatgtgcgc 1434

ggaaccctta ttgtttatt ttctaaata cattcaaata tgtatccgct catgagacaa 1494

taaccctgat aaatgcctca ataatattga aaaaggaaga gtatgagtat tcaacattc 1554

cgtgtcgccc ttattccctt ttgcggca tttgccttc ctgttttgc tcacccagaa 1614

acgctggtaa aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1674

ctggatctca acagcgtaa gatccctgag agtttcgccc ccgaagaacg tttccatg 1734

atgagcactt tttaaagtct gctatgtggc gggatttat cccgtattga cgccgggcaa 1794

gagcaactcg gtcgccccat acactattct cagaatgact tgggtgagta ctcaccagtc 1854

acagaaaaac atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1914

atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1974

accgctttt tgcacaacat gggggatcat gtaactcgcc ttgatcggtt ggaaccggag 2034

ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtac aatggcaaca 2094
acgttgcgca aactattaac tggcgaacta cttactctag cttcccgca acaattaata 2154
gactggatgg aggccgataa agttgcagga ccacttctgc gctcgccct tccggctggc 2214
tggtttattg ctgataaaatc tggagccggt gagcgtgggt ctgcggat cattgcagca 2274
ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2334
actatggatg aacgaaatag acagatcgct gagataggtg cctcaactgat taagcattgg 2394
taactgtcag accaagtta ctcatatata ctttagattt attaaaaact tcattttaa 2454
tttaaaaagga tctaggtgaa gatcctttt gataatctca tgacaaaaat ccctaacgt 2514
gagtttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2574
ccttttttc tgcgcgtaat ctgctgctg caaacaaaaa aaccaccgct accagegggt 2634
gtttgtttgc cgatcaaga gctaccaact cttttccga aggttaactgg cttcagcaga 2694
gcgcagatac caaatactgt cctctagtg tagccgtatg taggccacca cttcaagaac 2754
tctgttagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2814
ggcgataagt cgtgtcttac cgggttggac tcaagacgt agttaccgga taaggcgcag 2874
cggtcgggct gaacgggggg ttcgtgcaca cagccccagct tggagcgaac gacctacacc 2934
gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttccga agggagaaag 2994
cgccgacaggt atccgtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3054
gggggaaacg cctggtatct ttatagtcct gtgggtttc gccacctctg acttgagcgt 3114
cgattttgt gatgctcgac agggggcggt agcctatgga aaaacgccag caacgcggcc 3174
tttttacggt tccctggccct ttgctggcct tttgctcaca tggctttcc tgcgttatcc 3234
cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgcccgcagc 3294
cgaacgacccg agcgcagcga gtcagtggc gaggaagcgg aag 3337

<210> 5
<211> 239
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic Construct

<400> 5

Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
1 5 10 15

Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
35 40 45

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr
50 55 60

Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys
65 70 75 80

Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu
85 90 95

Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu
100 105 110

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr
130 135 140

Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn
145 150 155 160

Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser
165 170 175

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
180 185 190

Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu
195 200 205

Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe
210 215 220

Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
225 230 235

<210> 6
<211> 6069
<212> DNA
<213> Artificial sequence

<220>
<221> CDS
<222> (1)..(876)
<223> pETM-GFP-Imm plasmid with Hisx6 tag and A. victoria GFP gene

<400> 6
atg aaa cat cac cat cac cat ccc atg agc gat tac gac atc ccc 48
Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro
1 5 10 15

act act gag aat ctt tat ttt cag ggc gcc atg gga ggc acg gta ccg 96
Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro
20 25 30

gta gaa aaa atg agt aaa gga gaa ctt ttc act gga gtt gtc cca 144
 Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro
 35 40 45

att ctt gtt gaa tta gat ggt gat gtt aat ggg cac aaa ttt tct gtc 192
 Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val
 50 55 60

agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa 240
 Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
 65 70 75 80

ttt att tgc act act gga aaa cta cct gtt cca tgg cca aca ctt gtc 288
 Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
 85 90 95

act act ttc tct tat ggt gtt caa tgc ttt tcc cgt tat ccg gat cat 336
 Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His
 100 105 110

atg aaa cgg cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta 384
 Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val
 115 120 125

cag gaa cgc act ata tct ttc aaa gat gac ggg aac tac aag acg cgt 432
 Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg
 130 135 140

gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat cgt atc gag tta 480
 Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu
 145 150 155 160

aaa ggt att gat ttt aaa gaa gat gga aac att ctc gga cac aaa ctc 528
 Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu
 165 170 175

gag tac aac tat aac tca cac aat gta tac atc acg gca gac aaa caa 576
 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln
 180 185 190

aag aat gga atc aaa gct aac ttc aaa att cgc cac aac att gaa gat 624
 Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp
 195 200 205

015936-2.2010-01-15.SEQ LIST.ST25

gga tcc gtt caa cta gca gac cat tat caa caa aat act cca att ggc 672
Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly
210 215 220

gat ggc cct gtc ctt tta cca gac aac cat tac ctg tcg aca caa tct 720
Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser
225 230 235 240

gcc ctt tcg aaa gat ccc aac gaa aag cgt gac cac atg gtc ctt ctt 768
Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu
245 250 255

gag ttt gta act gct gct ggg att aca cat ggc atg gat gag ctc cgt 816
Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg
260 265 270

cga caa gct tgc ggc cgc act cga gca cca cca cca cca cca ctg aga 864
Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg
275 280 285

tcc ggc tgc taa caaagccccga aaggaagctg agtggcgtgc tgccaccgct 916
Ser Gly Cys
290

gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg tttttgctg 976

aaaggaggaa ctatatccgg attggcgaat gggacgcgcc ctgtagcgcc gcattaagcg 1036

cgccgggtgt ggtgggtacg cgcatcgta ccgctacact tgccagcgcc ctagcgcccg 1096

ctccittcgc ttcttccct tccttctcg ccacgttcgc cggcttccc cgtcaagctc 1156

taaatcgggg gctccctta gggtccgat ttagtgcatt acggcacctc gacccaaaa 1216

aacttgatta gggtgatggc tcacgtatgc ggccatcgcc ctgatagacg gttttcgcc 1276

ctttgacgtt ggagtccacg ttctttaata gtggacttctt gttccaaact ggaacaacac 1336

tcaaccctat ctccgtctat tctttgatt tataagggat ttgccgatt tcggcctatt 1396

ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa tttaacaaa atattaacgt 1456

ttacaatttc aggtggcact ttccgggaa atgtgcgcgg aacccctatt tgtttatttt 1516

tctaaataca ttcaaataatg tatccgctca tgaattaatt cttagaaaaa ctcatcgagc 1576

atcaaatgaa actgcaattt attcatatca ggafftatcaa taccatattt ttgaaaaagc 1636
cgtttcgtta atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg 1696
tatcggctcg cgattccgac tcgtccaaca tcaatacaac ctattaattt cccctcgta 1756
aaaataaggt tatcaagtga gaaatcacca tgagtgacga ctgaatccgg tgagaatggc 1816
aaaagtttat gcatttctt ccagacttgt tcaacaggcc agccattacg ctcgtcatca 1876
aaatcactcg catcaaccaa accgttattc attcgtgatt ggcgcctgagc gagacgaaat 1936
acgcgatcgc tggtaaaagg acaattacaa acaggaatcg aatgcaaccg ggcgcaggaac 1996
actgccagcg catcaacaat atttcacct gaatcaggat attctctaa tacctggaat 2056
gctgtttcc cggggatcgc agtggtgagt aaccatgcat catcaggagt acggataaaa 2116
tgcttgatgg tcggaagagg cataaattcc gtcagccagt ttagtctgac catctcatct 2176
gtaacatcat tggcaacgct accttgcca tggtaatcgaa acaactctgg cgcacatcgccc 2236
ttcccataca atcgatagat tgcgcaccc tattggccga cattatcgcg agccattta 2296
tacccatata aatcagcatc catgtggaa ttatcgcg gcctagagca agacgttcc 2356
cgttgaatat ggctcataac acccccttgcata ttactgttta tgtaaggcaga cagttttatt 2416
gttcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga 2476
aaagatcaa ggatcttccctt gagatccctt tttctgcgc gtaatctgct gcttgcaaac 2536
aaaaaaaaacca ccgctaccag cgggtggtttgc tttgcggat caagagctac caactcttt 2596
tccgaaggta actggctca gcagagcgca gataccaaat actgtccctc tagttagcc 2656
gtagtttaggc caccactca agaactctgt agcaccgcct acataccctcg ctctgctaatt 2716
cctgttacca gtggctgctg ccagtggcgta taagtcgtgt cttaccgggt tggactcaag 2776
acgatagttt ccggataagg cgccagcggtc gggctgaacg ggggggttcgt gcacacagcc 2836
cagcttggag cgaacgacact acaccgaact gagataccctt cagcgtgagc tatgagaaag 2896

015936-2.2010-01-15.SEQ LIST.ST25

cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac 2956
aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatcttata gtcctgtcgg 3016
gttgcgccac ctctgacttg agcgtcgatt tttgtatgc tcgtcagggg ggcggagcct 3076
atggaaaaac gccagcaacg cgccctttt acggttcctg gcctttgct ggcctttgc 3136
tcacatgttc ttccctgcgt tatccccgttga ttctgtggat aaccgttata ccgccttga 3196
gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagttag tgagcgagga 3256
agcggaaagag cgcctgatgc ggtatcccctt cttacgcat ctgtcggta ttacacaccg 3316
catatatggt gcactctcag tacaatctgc tctgtatgcg catatgttgc ccagtataca 3376
ctccgctatc gctacgtgac tgggtcatgg ctgcgcggg acacccgcca acacccgctg 3436
acgcgcctg acgggcttgt ctgcctccgg catccgtta cagacaagct gtgaccgtct 3496
ccggggagctg catgtgttag aggtttcac cgtcatcacc gaaacgcgcg aggagctgc 3556
gttaaagctc atcagcgtgg tcgtgaagcg attcacagat gtctgcctgt tcatccgcgt 3616
ccagctcggtt gagtttctcc agaagcggtt atgtctggct tctgataaag cggccatgt 3676
taagggcggt ttttcctgt ttggtcactg atgcctccgt gtaagggggaa tttctgttca 3736
tgggggtaat gataccgatg aaacgagaga ggatgctcac gatacggtt actgatgatg 3796
aacatgcccc gttactggaa cgttgtgagg gtaaaacaact ggcggatgg atgcggcgaaa 3856
accagagaaa aatcactcag ggtcaatgcc agcgcttcgt taatacagat gtaggtgttc 3916
cacagggtag ccagcagcat cctgcgtatgc agatccggaa cataatggtg cagggcgctg 3976
acttccgcgt ttccagactt tacgaaacac ggaaaccgaa gaccattcat gttgttgctc 4036
aggtcgcaga cggtttgcag cagcagtcgc ttacacgttcg ctgcgtatc ggtgattcat 4096
tctgctaacc agtaaggcaa ccccgccagc ctagccgggt cctcaacgcg aggagcacga 4156
tcatgcgcac ccgtggggcc gccatgcggg cgataatggc ctgcttcgtt ccgaaacgtt 4216
tggtggcgaaa accagtgcg aaggcttgag cgagggcggtg caagattccg aataccgcaa 4276

gcgacaggcc gatcatgtc gcgcctcagc gaaagcggtc ctgcggaaa atgaccaga 4336
gcgctgccc cacctgtcct acgagttgca tgataaagaaa gacagtctata agtgcggcga 4396
cgatagtcat gccccgcgcc caccggaaagg agctgactgg gttgaaggct ctcaaggcga 4456
tcggtcgaga tccccgtgcc taatgagtga gctaacttac attaattgcg ttgcgctcac 4516
tgcccgctt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc gccaacgcg 4576
cggggagagg cggttgcgt attggcgcc agggtggttt ttctttcac cagtgagacg 4636
ggcaacagct gattccctt caccgcctgg ccctgagaga gttgcagcaa gcggccacg 4696
ctggttgcc ccagcaggcg aaaatcctgt ttgatggtgg ttaacggcg gatataacat 4756
gagctgtctt cggtatgtc gtatcccact accgagatat ccgcaccaac gcgcagcccg 4816
gactcgtaa tggcgccat tgcgccagc gccatctgat cgttggcaac cagcatcgca 4876
gtgggaacga tgccctcatt cagcattgc atggttgtt gaaaaccgga catggcactc 4936
cagtcgcctt cccgttccgc tateggctga atttgtgc gagtgagata ttatgcac 4996
ccagccagac gcagacgcgc cgagacagaaa cttaatggc ccgctaacag cgcgattgc 5056
tggtgaccca atgcgaccag atgctccacg cccagtcgcg taccgtcttc atggagaaaa 5116
ataatactgt ttaggggtgt ctggtcagag acatcaagaa ataacgcgg aacattgt 5176
caggcagctt ccacagcaat ggcattctgg tcatccagcg gatagttat gatcagccca 5236
ctgacgcgtt gcgcgagaag attgtgcacc gccgcttac aggcttcgac gccgcttcgt 5296
tctaccatcg acaccaccac gctggcaccc agttgatcgg cgcgagattt aatgcgcgcg 5356
acaatttgcg acggcgctg cagggccaga ctggagggtgg caacgccaat cagcaacgcac 5416
tgtttgcccg ccagttgtt tgccacgcgg ttggaaatgt aattcagctc cgccatgcc 5476
gcttccactt ttcccgctt ttcgcagaa acgtggctgg cctggttcac cacgcggaa 5536
acggtctgat aagagacacc ggcatactct gcgcacatcgt ataacgttac tggtttcaca 5596

015936-2.2010-01-15.SEQ LIST.ST25

ttcaccaccc tgaattgact ctctccggg cgctatcatg ccataccgcg aaaggtttg 5656
cgccattcga tggtgtccgg gatctcgacg ctctcccta tgcgactcct gcattagaa 5716
gcagcccagt agtaggttga ggccgttgag caccgcccgc gcaaggaatg gtgcatacaa 5776
ggagatggcg cccaacagtc ccccgccac ggggcctgcc accataccca cgccgaaaca 5836
agcgctcatg agccccagaat ggcgagcccg atcttccca tcggtgatgt cggcgatata 5896
ggcgccagca accgcacctg tggcgccggt gatgccggcc acgatgcgtc cggcgtagag 5956
gatcgagatc tcgatcccgc gaaattaata cgactacta tagggaaatt gtgagcggat 6016
aacaattccc ctctagaat aattttgatt taacttaag aaggagatat acc 6069

<210> 7

<211> 291

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic Construct

<400> 7

Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro
1 5 10 15

Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro
20 25 30

Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro
35 40 45

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val
50 55 60

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
65 70 75 80

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
85 90 95

Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His
100 105 110

Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val
115 120 125

Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg
130 135 140

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu
145 150 155 160

Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu
165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln
180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp
195 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly
210 215 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser
225 230 235 240

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu
245 250 255

015936-2.2010-01-15.SEQ LIST.ST25

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg
260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg
275 280 285

Ser Gly Cys
290

<210> 8
<211> 17
<212> DNA
<213> Artificial sequence

<220>
<223> Frame adapter used for prevention of frameshift mutation as a result of plasmid modification

<400> 8
catgggaggc acggtagc 17

<210> 9
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Peptide design based on size and flexibility to act as a linker between the tag and GFP protein segments

<400> 9

Met Gly Gly Thr Val
1 5

<210> 10
<211> 6
<212> PRT

015936-2.2010-01-15.SEQ LIST.ST25

<213> Artificial sequence

<220>

<223> Peptide design based on charge and shape to bind the expressed protein to a suitably interactive surface

<400> 10

His His His His His His
1 5

<210> 11

<211> 238

<212> PRT

<213> Aequorea victora

<220>

<221> MISC_FEATURE

<223> Green fluorescent peptide coded by pGFPuv plasmid, permitting easy visualisation and quantification based on fluorescence properties

<400> 11

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val
1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
50 55 60

Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg
65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
85 90 95

Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
100 105 110

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly
145 150 155 160

Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
225 230 235

<210> 12
<211> 291
<212> PRT
<213> Artificial sequence

<220>

<223> Completed peptide based on Hisx6 tag, short physically flexible linker and green fluorescent protein coded by pETM-GFP-Imm to impart fluorescence properties, allowing easy immobilisation with retention of bioactivity, visualisation and quantification

<400> 12

Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro
1 5 10 15

Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro
20 25 30

Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro
35 40 45

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val
50 55 60

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
65 70 75 80

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
85 90 95

Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His
100 105 110

Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val
115 120 125

Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg
130 135 140

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu
145 150 155 160

Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu
165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln
180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp
195 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly
210 215 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser
225 230 235 240

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu
245 250 255

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg
260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg
275 280 285

Ser Gly Cys
290

<210> 13
<211> 29
<212> DNA
<213> Artificial sequence

<220>

<223> Frame adapter

<400> 13

gtacgccatg ggaggcacgg taccttgt

29