07	9a	In the shaded region in the diagram is
		bounded by the curve $y = x^2 + 1$, the
		x-axis, and the lines $x = 0$ and $x = 1$.
		Find the volume of the solid of revolution
		formed when the shaded region is rotated
		about the x-axis.

$$y = x^{2} + 1$$

$$y^{2} = (x^{2} + 1)^{2}$$

$$= x^{4} + 2x^{2} + 1$$

$$Volume = \pi \int y^{2} dx$$

$$= \pi \int_{0}^{1} x^{4} + 2x^{2} + 1 dx$$

$$= \pi \left[\frac{x^{5}}{5} + \frac{2x^{3}}{3} + x \right]_{0}^{1}$$

$$= \pi \left[\frac{1}{5} + \frac{2}{3} + 1 - 0 \right]$$

$$= \frac{28\pi}{15}$$

 \therefore volume of $\frac{28\pi}{15}$ unit³

Board of Studies: Notes from the Marking Centre

Most candidates knew the formula $V = \pi \int_{a}^{b} y^2 dx$. The expansion of $(x^2 + 1)^2$ was not well

done. The most common error was $x^4 + 1$. Though the question clearly stated rotation about the x-axis, quite a few candidates rotated about the y-axis.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies