Permit Numbers 5064 and N001

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Source	Air Contaminant	Emission R	Rates *
Name (2)	Name (3)	lb/hr	TPY**
Carbon Adsorption Unit	VOC	67.11	23.50
Carbon Adsorption Unit	VOC	9.92	1.40
Carbon Adsorption Unit	VOC	26.92	3.80
Incinerator Train I (4)	NO _x CO 13.60 SO ₂ PM ₁₀ HCI 4.00 Cl ₂ 0.25 As/Be/Cr Ag 0.05 Ba 2.80 Cd/Pb 4.44 E-2 Hg 2.41 E-2 Ni 0.03 Sb 2.80 Tl 0.50 Vinyl Chloride Total Organics Total Dioxin/Furans Total PCB NH ₃ 1.38	134.00 54.70 6.40 6.29 17.52 1.01 1.80 E-2 0.22 12.09 0.19 0.11 0.12 12.09 2.02 0.45 7.41 E-8 2.35 E-3 6.04	130.90 (5) 25.80 27.55 7.88 E-2 1.81 0.85 3.25 E-7 9.47 E-3
Incinerator Train II (4)	NO_x $CO = 20.40$ SO_2 PM_{10} 4.00	134.00 82.10 9.60 6.29 17.52	130.90 (5) 38.70 27.55
	Name (2) Carbon Adsorption Unit Carbon Adsorption Unit Carbon Adsorption Unit Incinerator Train I (4)	Name (2) Name (3) Carbon Adsorption Unit VOC Carbon Adsorption Unit VOC Incinerator Train I (4) NOx CO 13.60 SO2 PM10 HCI 4.00 CI2 0.25 As/Be/Cr Ag 0.05 Ba 2.80 Cd/Pb 4.44 E-2 Hg 2.41 E-2 Ni 0.03 Sb 2.80 TI 0.50 Vinyl Chloride Total Organics Total Dioxin/Furans Total PCB NH3 1.38 Incinerator Train II (4) NOx CO 20.40 SO2 PM10	Name (2) Name (3) Ib/hr Carbon Adsorption Unit VOC 9.92 Carbon Adsorption Unit VOC 26.92 Incinerator Train I (4) NO _x 134.00 CO 13.60 54.70 SO ₂ 6.40 PM ₁₀ 6.29 HCI 4.00 17.52 Cl ₂ 0.25 1.01 As/Be/Cr 1.80 E-2 Ag 0.05 0.22 Ba 2.80 12.09 Cd/Pb 4.44 E-2 0.19 Hg 2.41 E-2 0.11 Ni 0.03 0.12 Sb 2.80 12.09 TI 0.50 2.02 Vinyl Chloride 0.45 Total Organics Total Dioxin/Furans 7.41 E-8 Total PCB 2.35 E-3 NH ₃ 1.38 6.04 Incinerator Train II (4) NO _x 134.00 CO 20.40 82.10 SO ₂ 9.60 PM ₁₀ 6.29

Emission	Source	Air	^r Contaminant	Emission Rate	<u>es *</u>
Point No. (1)	Name (2)		Name (3)	lb <u>/hr</u>	TPY**
		Hg Ni Sb Tl Vinyl Total	0.05 2.80 b 4.44 E-2 2.41 E-2 0.05 2.80 0.50 Chloride Organics Dioxin/Furans PCB	0.44 1.80 E-2 0.22 12.09 0.19 0.11 0.20 12.09 2.02 0.67 - 7.41 E-8 2.35 E-3 6.04	7.88 E-2 2.70 2.29 3.25 E-7 9.47 E-3
BCO-1	Blasting/Coating	РМ	VOC 20.40	5.94 17.99	6.32
E-5	PCB Shredder		VOC	0.01	0.01
E-6	South Landfill Leachate Collection VOC System		n VOC	0.01	0.01
E-7	Carbon Adsorption Unit		VOC	0.04	0.02
F-2	North Landfill VOC (Active Area)		VOC	2.14	9.38
F-3	North Landfill (Exposed Area)		VOC PM ₃₀	4.76 0.40	6.19 0.52
F-4	Paved Roads		PM ₃₀	5.44	8.50
F-5 F-7	Unpaved Roads East Landfill		PM ₃₀ PM ₃₀	4.37 1.24	6.55 1.46

Emission	Source	Air Contaminant	Emission I	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		PM ₁₀ PM _{2.5} VOC	0.61 0.09 0.01	0.72 0.09 0.01
5	Lime Storage Silo	PM ₃₀	0.24	0.06
D-1	1,215-HP Diesel Generator	VOC NO_x SO_2 PM_{10} CO	0.86 29.16 0.49 0.20 6.69	0.03 0.73 0.02 0.01 0.17
D-2	1,215-HP Diesel Generator	VOC NO_x SO_2 PM_{10} CO	0.86 29.16 0.49 0.20 6.69	0.03 0.73 0.02 0.01 0.17
D-3	1,215-HP Diesel Generator	VOC NO_x SO_2 PM_{10} CO	0.86 29.16 0.49 0.20 6.69	0.03 0.73 0.02 0.01 0.17
D-4	1,215-HP Diesel Generator	VOC NO_x SO_2 PM_{10} CO	0.86 29.16 0.49 0.20 6.69	0.03 0.73 0.02 0.01 0.17
G-1	North Fire Water Pump	VOC NO _x	0.76 9.30	0.02 0.24

Emission	Source	Air Contaminant <u>Emission Rates *</u>		Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		SO_2 PM_{10} CO	0.62 0.66 2.01	0.02 0.02 0.05
G-2	South Fire Water Pump	VOC NO_x SO_2 PM_{10} CO	0.72 8.84 0.59 0.63 1.91	0.02 0.23 0.02 0.02 0.05
FU-1	Fugitive Equipment Leaks (6)	VOC NH₃	0.54 0.01	2.38 0.06
FU-2	Carbon Adsorption Units for Groundwater Treatment	VOC	0.01	0.01
T-150	Wastewater Tank	VOC	2.76	3.72
SE-1	S and E Baghouse Vents	PM ₁₀	7.20	4.32
SE-2	S and E Silo Vent V-1205	PM ₁₀	0.05	0.01
SE-3	S and E Silo Vent V-1206	PM_{10}	0.05	0.01
SE-4	S and E Silo Vent V-1207	PM_{10}	0.05	0.01
SE-5	S and E Silo Vent V-1208	PM_{10}	0.05	0.01
RRR-1	Rotary Reagent BIN F-611	PM_{10}	0.51	0.02

RRR-2	Rotary Reagent BIN F-612		PM ₁₀	0.51	0.03
RRR-3	Rotary Reagent BIN F-613		PM ₁₀	0.51	0.01
RRR-4	Rotary Reagent BIN F-622		PM ₁₀	0.51	0.01
RRR-5	Rotary Reagent BIN F-623		PM ₁₀	0.51	0.03
RRR-6	Rotary Reagent BIN F-624		PM ₁₀	0.51	0.02
B-1	Boiler	NO _x SO ₂ PM ₁₀ CO	VOC 0.42 0.06 0.03 0.35	0.02 1.84 0.26 0.13 1.53	0.09
B-2	Boiler	NO_x SO_2 PM_{10} CO	VOC 0.42 0.06 0.03 0.35	0.02 1.84 0.26 0.13 1.53	0.09

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from a plot plan.

⁽²⁾ Specific point source names. For fugitive sources use area name or fugitive source name.

⁽³⁾ VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code \$101.1 NO $_x$ - total oxides of nitrogen

CO - carbon monoxide SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀

PM₁₀ - particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter.

HCI - hydrogen chloride

 Cl_2 chlorine As arsenic silver Αq Ba barium Be beryllium Cd cadmium Cr chromium Ha mercury Ni nickel NH_3 ammonia lead

Pb - lead Sb - antimony Tl - thallium

PCB - polychlorinated biphenyls

PM₃₀ - particulate matter equal to or less than 30 microns in diameter

- (4) No later than September 30, 2004, a wet electrostatic precipitator system shall be operational on each of the incinerator trains and no later than March 31, 2007, a Selective Catalytic Reduction De-NO_x system shall be operational on each of the incinerator trains resulting in these allowables. In addition, each of the two incinerator trains will have a separate stack.
- (5) Clean Harbors Deer Park, L.P., is also subject to the Mass Emissions Cap and Trade Program as outlined in Title 30 Texas Administrative Code § 101.351. The Mass Cap and Trade Program limits annual NO_x emissions to a prescribed schedule of allowances, which are lower than the existing permit allowables.
- (6) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
 - * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

• Engines at <u>50</u> hours per year total.

Permit Numbers 5064 and N001 Page 7

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

•	Pumps	at <u>50</u>	hours	per	year	each.
---	-------	--------------	-------	-----	------	-------

- All emission rates are based on continuous operation.
- ** Compliance with annual emission limits is based on a rolling 12-month period. The annual emission limits for EPNs E-4-I and E-4-II are based on the calendar year. Emissions of air contaminants from EPNs E-4-I and E-4-II are permitted under NA and State.

Dated	Mav 21. 2007