# Batalha Naval Projeto - MC613

Felipe Pessina e Rafael Figueiredo Prudencio  $7~{\rm de~Maio~de~2018}$ 

# Conteúdo

| $\mathbf{D}$ | es | crição  | $\mathbf{F}$ | uno  | cion  | al |                       |    |    |      |  |  |  |  |  |      |  |  |  |  |
|--------------|----|---------|--------------|------|-------|----|-----------------------|----|----|------|--|--|--|--|--|------|--|--|--|--|
| 2.           | 1  | Interfa | ace          | es U | JAR'  | Γ  | е٦                    | US | В  |      |  |  |  |  |  |      |  |  |  |  |
| 2.           | 2  | File    |              |      |       |    |                       |    |    | <br> |  |  |  |  |  |      |  |  |  |  |
| 2.           | 3  | Memá    | ória         | a .  |       |    |                       |    |    | <br> |  |  |  |  |  |      |  |  |  |  |
| 2.           | 4  | Desen   | ha           | r N  | Iapa  |    |                       |    |    | <br> |  |  |  |  |  |      |  |  |  |  |
| 2.           | 5  | Input   | /O           | utp  | ut .  |    |                       |    |    | <br> |  |  |  |  |  |      |  |  |  |  |
|              |    | 2.5.1   | (            | Con  | trole | N  | Ιo                    | us | е. | <br> |  |  |  |  |  | <br> |  |  |  |  |
|              |    | 2.5.2   | (            | Con  | trole | V  | $^{\prime}\mathrm{G}$ | Α  |    | <br> |  |  |  |  |  | <br> |  |  |  |  |
| 2.           | 6  | Jogad   | lor          |      |       |    |                       |    |    | <br> |  |  |  |  |  | <br> |  |  |  |  |

# 1 Diagrama de Blocos



Figura 1: Diagrama de blocos de alto nível para uma implementação de batalha naval.



Figura 2: Máquina de estados para a entidade Player.

# 2 Descrição Funcional

### 2.1 Interfaces UART e USB

A FPGA1 realiza a transferência de dados para a FPGA2 através da interface USB e, por sua vez, a FPGA2 realiza a transferência de dados para a FPGA1 através da interface UART. A placa Cyclone V SoC da Altera possui uma porta USB-UART, em particular, um conector USB com uma ponte USB-UART para um terminal RS-232 [1]. O UART (Universal Asynchronous Receiver/Transmitter) e o USB (Universal Serial Bus) são duas interfaces de comunicação serial. A universalidade das duas interfaces advém do suporte a inúmeros protocolos seriais. A interface UART implica em no mínimo uma linha TX e RX, que envia uma stream de dados seriais e recebe uma stream de dados seriais, respectivamente [2]. Junto com o padrão RS-232 (Recommended Standard 232), que define os nomes dos sinais, propósito e níveis de voltagem entre

dois dispositivos, a interface UART permite enviar e receber dados. A interface USB é mais moderna e complexa, mas através de um adapatador permite a comunicação com a interface UART.

No diagrama da Figura 1, as linhas vermelhas são os clocks da placa usados como controle por meio de uma entidade que divide o clock na frequência necessária (e.g. clk\_div). Para realizar a comunicação entre as duas placas será necessário tomar um cuidado especial com a sincronia dos clocks de cada interface serial.

#### 2.2 File

O bloco File da Figura 1 representa um arquivo com a configuração inicial do mapa de cada jogador e que deve ser carregado na memória estaticamente, ou seja, em tempo de compilação.

#### 2.3 Memória

Para cada placa FPGA, há uma instância da entidade Memory da Figura 1. Cada entidade armazena os dois mapas do arquivo na memória e permite com que seja feita a leitura e a escrita na memória. Uma escrita na memória deve trigger um envio de dados para a outra placa, para que ambas tenham uma versão atualizada dos mapas. Na FPGA1 isso será feito através da interface USB, e na FPGA2 isso pode ser feito pela interface UART.

Serão mantidos dois mapas, um para cada jogador. Cada mapa é representado por uma matriz que terá as informações referentes ao estado de cada posição do mapa. Os estados possíveis são: navio, água, navio descoberto e água descoberta. Dessa forma, um jogador pode ler todos os estados do seu mapa e mantê-lo na memória com todas as posições que já foram atacadas pelo oponente. Além disso, cada jogador também deve ler do mapa do oponente os estados: navio descoberto e água descoberta para manter um mapa na memória do que ele já sabe a respeito do oponente. As duas placas podem solicitar uma leitura ou realizar uma escrita para atualizar o estado dos mapas na respectiva memória, ou enviar da sua memória o mapa do jogo para o arquivo.

#### 2.4 Desenhar Mapa

A entidade Draw Map da Figura 1 é responsável pela leitura do mapa do jogo e escrita dele na memória do monitor. São necessárias duas dessas entidades, uma para cada placa que deve atualizar o monitor de cada jogador. Esta entidade tem como entrada os mapas da memória e como saída os valores dos pixels com os endereços onde devem ser gravados na memória do monitor, comunicando-se diretamente com o controle de VGA. Os valores dos pixels serão determinados a partir do estado de cada posição nos mapas mantidos na memória. Um jogador tem acesso a todas os estados do seu mapa, mas apenas aos estados navio descoberto e água descoberta do mapa do seu oponente.

### 2.5 Input/Output

#### 2.5.1 Controle Mouse

Cada placa FPGA terá um mouse como dispositivo de entrada. A entidade Play receberá a posição do mouse sempre que houver um click através do bloco de controle do mouse. Para esta parte, iremos reaproveitar o código disponibilizado para o laboratório 7.

#### 2.5.2 Controle VGA

A escrita na memória do monitor é feita através do controlador de VGA, usando as mesmas entidades do laboratório 8. Cada jogador também precisa de um monitor que será atualizado através dessa entidade e manterá uma imagem do estado do jogo. A escrita na memória do monitor será feita pela entidade Draw Map.

## 2.6 Jogador

A entidade Player na Figura 1 é responsável pelo tratamento das jogadas. Um diagrama mais detalhado da entidade Player está indicado na Figura 2. Cada player tem acesso às informações do seu mouse. O turno de cada jogador será armazenado na memória das duas FPGAs. A entidade Player é uma máquina de estados que primeiro deve verificar se é sua vez para então esperar por clicks do jogador. Após um click, deve-se verificar se é uma jogada válida. Caso não seja, devemos continuar esperando por clicks. Caso seja, devemos atualizar o mapa na memória e verificar se acertamos um navio inimigo ou não. Em caso de acerto, podemos realizar uma nova jogada. Caso contrário, devemos escrever no mapa de memória que é o turno do jogador oponente e passarmos para o estado de esperar nosso turno.

### 3 Referências

- [1] Altera, "Cyclone v soc development board." https://www.altera.com/content/dam/altera-www/global/en\_US/pdfs/literature/manual/rm\_cv\_soc\_dev\_board.pdf, Dec 2017. Acessado em 2018-11-08.
- [2] A. Davis, "Difference between uart and rs-232?." https://electronics.stackexchange.com/questions/110478/difference-between-uart-and-rs-232, May 2014. Acessado em 2018-11-08.