Extensiones de politopos abstractos altamente simétricos

Antonio Montero

Centro de Ciencias Matemáticas UNAM

Encuentro Nacional de Estudiantes de Posgrado en Matemáticas Cuernavaca, Mor. Agosto 2016

Problema

Dado un polígono regular $\mathcal K$ jexiste un poliedro regular $\mathcal P$ tal que todas las caras de $\mathcal P$ son isomorfas a $\mathcal K$?

ero (CCM-UNAM) Extensiones ENaEPosMat 2016 4/24

¿Qué está pasando?

* Las restricciones que se nos ocurren son de carácter geométrico.

¿Qué está pasando?

- * Las restricciones que se nos ocurren son de carácter geométrico.
- * Puede ser que el mundo en el que estamos buscando respuestas es muy pequeño.

¿Qué está pasando?

- * Las restricciones que se nos ocurren son de carácter geométrico.
- * Puede ser que el mundo en el que estamos buscando respuestas es muy pequeño.
- * La simetría de K limita la simetría de P.

Un politopo abstracto de rango n es un $Co. P. O. (\mathcal{P}, \leqslant)$ que satisface:

* Tiene máximo y mínimo.

Un politopo abstracto de rango n es un Co. P. O. (\mathcal{P},\leqslant) que satisface:

* Tiene máximo y mínimo.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.

- * Tiene máximo y mínimo.
- * Todas las Banderas n+2 elementos.
- * P satisface la propiedad del diamante.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.

- * Tiene máximo y mínimo.
- * Todas las Banderas n+2 elementos.
- * P satisface la propiedad del diamante.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.
- * P es fuertemente conexo.

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.
- * P es fuertemente conexo.
- * Las facetas de P...

- * Tiene máximo y mínimo.
- * Todas las Banderas tienen n+2 elementos.
- * P satisface la propiedad del diamante.
- * P es fuertemente conexo.
- * Las facetas de P...

* n=2: Polígonos combinatorios.

Politopos abstractos Ejemplos

- * n = 2: Polígonos combinatorios.
- * n=3: Mapas en superficies, teselaciones de \mathbb{E}^2 y \mathbb{H}^2 .

- * n = 2: Polígonos combinatorios.
- * n=3: Mapas en superficies, teselaciones de \mathbb{E}^2 y \mathbb{H}^2 .
- * Teselaciones de \mathbb{S}^n , \mathbb{E}^n y \mathbb{H}^n .

- * n=2: Polígonos combinatorios.
- * n=3: Mapas en superficies, teselaciones de \mathbb{E}^2 y \mathbb{H}^2 .
- * Teselaciones de \mathbb{S}^n , \mathbb{E}^n y \mathbb{H}^n .
- * Teselaciones de variedades.

- * n=2: Polígonos combinatorios.
- * n=3: Mapas en superficies, teselaciones de \mathbb{E}^2 y \mathbb{H}^2 .
- * Teselaciones de \mathbb{S}^n , \mathbb{E}^n y \mathbb{H}^n .
- * Teselaciones de variedades.
- * Otros...

Tipo se Schläfli

El tipo de Schläfli de un politopo ${\mathcal P}$ se define recursivamente como sique:

Tipo se Schläfli

El tipo de Schläfli de un politopo $\mathcal P$ se define recursivamente como sigue:

* Un polígono con p vértices tiene tipo se Schläfli $\{p\}$.

Tipo se Schläfli

El tipo de Schläfli de un politopo ${\mathcal P}$ se define recursivamente como sique:

- * Un polígono con p vértices tiene tipo se Schläfli $\{p\}$.
- * Si todas las facetas de $\mathcal P$ tienen tipo de Schläfli $\{p_1,p_2,\ldots,p_{n-2}\}$ y alrededor de cada (n-3)-cara de $\mathcal P$ hay p_{n-1} facetas, entonces $\mathcal P$ tiene tipo de Schläfli

$$\{p_1, p_2, \dots p_{n-2}, p_{n-1}\}$$

Grupo de Automorfismos

Si $\mathcal P$ es un politopo abstracto, el grupo de automorfismos de $\mathcal P$, $\Gamma(\mathcal P)$ es el grupo de Biyecciones de $\mathcal P$ que preservan el orden.

Grupo de Automorfismos

Si $\mathcal P$ es un politopo abstracto, el grupo de automorfismos de $\mathcal P$, $\Gamma(\mathcal P)$ es el grupo de Biyecciones de $\mathcal P$ que preservan el orden.

* $\Gamma(\mathcal{P})$ actúa de manera natural en las Banderas de \mathcal{P} .

Grupo de Automorfismos

Si $\mathcal P$ es un politopo abstracto, el grupo de automorfismos de $\mathcal P$, $\Gamma(\mathcal P)$ es el grupo de biyecciones de $\mathcal P$ que preservan el orden.

- * $\Gamma(\mathcal{P})$ actúa de manera natural en las Banderas de \mathcal{P} .
- * Esta acción es libre, es decir los estabilizadores son triviales.

Grupo de Automorfismos

Si $\mathcal P$ es un politopo abstracto, el grupo de automorfismos de $\mathcal P$, $\Gamma(\mathcal P)$ es el grupo de biyecciones de $\mathcal P$ que preservan el orden.

- * $\Gamma(\mathcal{P})$ actúa de manera natural en las Banderas de \mathcal{P} .
- * Esta acción es libre, es decir los estabilizadores son triviales.
- * Un automorfismo está determinado por la imagen de una Bandera.

* Un politopo $\mathcal P$ es regular si $\Gamma(\mathcal P)$ actúa transitivamente en las Banderas.

- * Un politopo $\mathcal P$ es regular si $\varGamma(\mathcal P)$ actúa transitivamente en las Banderas.
- * Si $\mathcal P$ es regular y Φ es una Bandera de $\mathcal P$, existen automorfismos ρ_i tal que

$$\Phi \rho_i = \Phi^i$$
.

- * Un politopo $\mathcal P$ es regular si $\Gamma(\mathcal P)$ actúa transitivamente en las Banderas.
- * Si $\mathcal P$ es regular y Φ es una Bandera de $\mathcal P$, existen automorfismos ρ_i tal que

$$\Phi \rho_i = \Phi^i$$
.

* De hecho...

$$\Gamma(\mathcal{P}) = \langle \rho_0, \rho_1, \dots, \rho_{n-1} \rangle.$$

Generadores distinguidos

Además, los automorfimos $\rho_0, \rho_1, \ldots, \rho_{n-1}$ satisfacen

$$\rho_i^2 = \varepsilon$$

Generadores distinguidos

Además, los automorfimos $\rho_0, \rho_1, \ldots, \rho_{n-1}$ satisfacen

$$ho_i^2 = arepsilon \ (
ho_i
ho_j)^2 = arepsilon$$
 si $|i-j| \geqslant 2$

Generadores distinguidos

Además, los automorfimos $\rho_0, \rho_1, \ldots, \rho_{n-1}$ satisfacen

$$ho_i^2 = arepsilon \ (
ho_i
ho_j)^2 = arepsilon \, \, |i-j| \geqslant 2 \ (
ho_{i-1}
ho_i)^{oldsymbol{p}_i} = arepsilon \ (1)$$

Generadores distinguidos

Además, los automorfimos $\rho_0, \rho_1, \ldots, \rho_{n-1}$ satisfacen

$$ho_i^2 = arepsilon \ (
ho_i
ho_j)^2 = arepsilon$$
 si $|i-j| \geqslant 2$ (1) $(
ho_{i-1}
ho_i)^{
ho_i} = arepsilon$

Además, cumplen la propiedad de la intersección:

$$\langle \rho_i : i \in I \rangle \cap \langle \rho_j : j \in J \rangle = \langle \rho_k : k \in I \cap J \rangle \ \forall \ I, J \subseteq \{0, \dots n-1\}.$$
 (2)

Generadores distinguidos

Además, los automorfimos $ho_0,
ho_1,\ldots,
ho_{n-1}$ satisfacen

$$ho_i^2 = arepsilon \ (
ho_i
ho_j)^2 = arepsilon$$
 si $|i-j| \geqslant 2$ $(
ho_{i-1}
ho_i)^{
ho_i} = arepsilon$

Además, cumplen la propiedad de la intersección:

$$\langle \rho_i : i \in I \rangle \cap \langle \rho_j : j \in J \rangle = \langle \rho_k : k \in I \cap J \rangle \ \forall \ I, J \subseteq \{0, \dots n-1\}.$$
 (2)

Un grupo $\Gamma=\langle \rho_0,\rho_1,\ldots,\rho_{n-1}\rangle$ que satisface (1) y (2) es un C-grupo de linea.

C-grupos de línea

Teorema (E. Schulte, 1982)

Si $\Gamma=\langle \rho_0,\rho_1,\ldots,\rho_{n-1}\rangle$ es un C-grupo de linea, entonces existe un único politopo regular $\mathcal{P}(\Gamma)$ tal que $\Gamma(\mathcal{P}(\Gamma))=\Gamma$.

C-grupos de línea

Teorema (E. Schulte, 1982)

Si $\Gamma=\langle \rho_0,\rho_1,\ldots,\rho_{n-1}\rangle$ es un C-grupo de linea, entonces existe un único politopo regular $\mathcal{P}(\Gamma)$ tal que $\Gamma(\mathcal{P}(\Gamma))=\Gamma$.

Note que si $\mathcal P$ es un politopo regular con $\Gamma(\mathcal P)=\langle \rho_0,\rho_1,\dots,\rho_{n-1}\rangle$ y $\mathcal K$ es una faceta de $\mathcal P$, entonces

$$\Gamma(\mathcal{K}) \cong \mathsf{Stab}_{\Gamma(\mathcal{P})}(\mathcal{K}) = \langle \rho_0, \rho_1, \dots, \rho_{n-2} \rangle.$$

Una extensión de un politopo $\mathcal K$ es un politopo $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión de un politopo $\mathcal K$ es un politopo $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Teorema (E. Schulte, 1985)

Si $\mathcal K$ es un politopo regular de rango n entonces existe una extensión regular de $\mathcal K$ si y solo si existe un encaje $\eta:\Gamma(\mathcal K)\to\Gamma$ para cierto C-grupo de linea $\Gamma=\langle r_0,\dots,r_n\rangle$ tal que

$$\eta: \rho_i \mapsto r_i.$$

Una extensión de un politopo $\mathcal K$ es un politopo $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Teorema (E. Schulte, 1985)

Si $\mathcal K$ es un politopo regular de rango n entonces existe una extensión regular de $\mathcal K$ si y solo si existe un encaje $\eta:\Gamma(\mathcal K)\to\Gamma$ para cierto C-grupo de linea $\Gamma=\langle r_0,\dots,r_n\rangle$ tal que

$$\eta: \rho_i \mapsto r_i$$
.

Nota: El tipo de Schläfli de una extensión regular está casi determinado por \mathcal{K} .

* Folklore: Única extensión con dos facetas, tipo de Schläfli $\{\mathcal{K},2\}$ y grupo $C_2 \times \Gamma(\mathcal{K})$.

- * Folklore: Única extensión con dos facetas, tipo de Schläfli $\{\mathcal{K},2\}$ y Grupo $C_2 imes \Gamma(\mathcal{K})$.
- * E. Schulte, 1985: Extensión universal con una infinidad de facetas y tipo de Schläfli $\{\mathcal{K},\infty\}$.

- * Folklore: Única extensión con dos facetas, tipo de Schläfli $\{\mathcal{K},2\}$ y Grupo $C_2 imes \Gamma(\mathcal{K})$.
- * E. Schulte, 1985: Extensión universal con una infinidad de facetas y tipo de Schläfli $\{\mathcal{K}, \infty\}$.
- * E. Schulte, 1985: Extensión con (m+1)! facetas, tipo de Schläfli $\{\mathcal{K}, 6\}$ y Grupo $S_{m+1} \times \Gamma(\mathcal{K})$.

- * Folklore: Única extensión con dos facetas, tipo de Schläfli $\{\mathcal{K},2\}$ y grupo $C_2 \times \Gamma(\mathcal{K})$.
- * E. Schulte, 1985: Extensión universal con una infinidad de facetas y tipo de Schläfli $\{\mathcal{K}, \infty\}$.
- * E. Schulte, 1985: Extensión con (m+1)! facetas, tipo de Schläfli $\{\mathcal{K}, 6\}$ y grupo $S_{m+1} \times \Gamma(\mathcal{K})$.
- * L. Danzer E. Schulte, 1984-1985: Politopo 2th, extensión con 2^m facetas, tipo de Schläfli $\{\mathcal{K},4\}$ y grupo $C_2 \wr \Gamma(\mathcal{K})$.

- * Folklore: Única extensión con dos facetas, tipo de Schläfli $\{\mathcal{K},2\}$ y Grupo $C_2 imes \Gamma(\mathcal{K})$.
- * E. Schulte, 1985: Extensión universal con una infinidad de facetas y tipo de Schläfli $\{\mathcal{K},\infty\}$.
- * E. Schulte, 1985: Extensión con (m+1)! facetas, tipo de Schläfli $\{\mathcal{K}, 6\}$ y Grupo $S_{m+1} \times \Gamma(\mathcal{K})$.
- * L. Danzer E. Schulte, 1984-1985: Politopo $2^{\mathcal{K}}$, extensión con 2^m facetas, tipo de Schläfli $\{\mathcal{K},4\}$ y grupo $C_2 \wr \Gamma(\mathcal{K})$.
- * D. Pellicer, 2009: Politopo $2s^{\mathcal{K}-1}$, extensión con $2s^{m-1}$ facetas, tipo de Schläfli $\{\mathcal{K},2s\}$ y Grupo $(\mathcal{C}_2\rtimes\mathcal{C}_s^{m-1})\rtimes\varGamma(\mathcal{K})$.

* No existen politopos quirales convexos.

- * No existen politopos quirales convexos.
- * Solo existen mapas (3-politopos) quirales en el toro y en superficies de Género $\geqslant 7$.

- * No existen politopos quirales convexos.
- * Solo existen mapas (3-politopos) quirales en el toro y en superficies de Género $\geqslant 7$.
- * No existen teselaciones quirales de n-variedades euclidianas si $n \ge 2$.

- * No existen politopos quirales convexos.
- * Solo existen mapas (3-politopos) quirales en el toro y en superficies de Género $\geqslant 7$.
- * No existen teselaciones quirales de n-variedades euclidianas si $n \ge 2$.
- * De hecho, no es obvio que existen politopos quirales de rango n para toda n.

- * No existen politopos quirales convexos.
- * Solo existen mapas (3-politopos) quirales en el toro y en superficies de Género $\geqslant 7$.
- * No existen teselaciones quirales de n-variedades euclidianas si $n \ge 2$.
- * De hecho, no es obvio que existen politopos quirales de rango n para toda n.
- * En general, las técnicas "clásicas" no funcionan.

Teorema (E. Schulte, A. Weiss, 1991)

Si Γ es un grupo que satisface algunas propiedades técnicas, entonces Γ es el grupo de automorfismos de un politopo quiral o el grupo de rotaciones de un politopo regular.

* Construcción de politopos quirales a partir de grupos conocidos.

- * Construcción de politopos quirales a partir de grupos conocidos.
- * Construcción de estructuras geométricas quirales.

- * Construcción de politopos quirales a partir de grupos conocidos.
- * Construcción de estructuras geométricas quirales.
- * Extensiones quirales de politopos.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

Una extensión quiral de un politopo $\mathcal K$ es un politopo quiral $\mathcal P$ tal que todas las facetas de $\mathcal P$ son isomorfas a $\mathcal K$.

- * Si \mathcal{P} es quiral, entonces sus facetas son regulares o quirales de facetas regulares.
- * Si \mathcal{P} es extensión quiral de \mathcal{K} , entonces \mathcal{K} es regular o quiral con facetas regulares.

* E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.

- * E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.
- * Es imposible "extender" de manera recursiva un politopo quiral.

- * E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.
- * Es imposible "extender" de manera recursiva un politopo quiral.
- * D. Pellicer, 2010: Construcción de extensiones recursivas.

- * E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.
- * Es imposible "extender" de manera recursiva un politopo quiral.
- * D. Pellicer, 2010: Construcción de extensiones recursivas.
 - Existen politopos quirales de todos los rangos.

- * E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.
- * Es imposible "extender" de manera recursiva un politopo quiral.
- * D. Pellicer, 2010: Construcción de extensiones recursivas.
 - Existen politopos quirales de todos los rangos.
 - Muy restrictiva y rebuscada.

- * E. Schulte, A. Weiss, 1995: Extensiones quirales universales de politopos quirales.
- * Es imposible "extender" de manera recursiva un politopo quiral.
- * D. Pellicer, 2010: Construcción de extensiones recursivas.
 - Existen politopos quirales de todos los rangos.
 - Muy restrictiva y rebuscada.
- * G. Cunningham, D. Pellicer, 2014: Extensiones quirales de politopos quirales.

Problemas a atacar

* ¿Todo politopo regular (finito) admite una extensión quiral (finita)?

- * ¿Todo politopo regular (finito) admite una extensión quiral (finita)?
- * ¿Todo politopo regular admite una extensión quiral universal?

- * ¿Todo politopo regular (finito) admite una extensión quiral (finita)?
- * ¿Todo politopo regular admite una extensión quiral universal?
- * ¿Todo politopo regular/Q.f.r (finito) admite una extensión quiral (finita) con última entrada del símbolo de Schläfli preasignada?

- * ¿Todo politopo regular (finito) admite una extensión quiral (finita)?
- * ¿Todo politopo regular admite una extensión quiral universal?
- * ¿Todo politopo regular/Q.f.r (finito) admite una extensión quiral (finita) con última entrada del símbolo de Schläfli preasignada?
- * Dado un politopo regular/Q.f.r, ¿cuáles son las posibilidades para la última entrada del símbolo de Schläfli de una extensión quiral?

- * ¿Todo politopo regular (finito) admite una extensión quiral (finita)?
- * ¿Todo politopo regular admite una extensión quiral universal?
- * ¿Todo politopo regular/Q.f.r (finito) admite una extensión quiral (finita) con última entrada del símbolo de Schläfli preasignada?
- * Dado un politopo regular/Q.f.r, ¿cuáles son las posibilidades para la última entrada del símbolo de Schläfli de una extensión quiral?
- * Dado un politopo $\mathcal K$ ¿cuántas extensiones quirales no isomorfas admite $\mathcal K$?

¡Gracias!