FLDM-VTON: Faithful Latent Diffusion Model for Virtual Try-On

IJCAI(2024), Fudan University, 0 citation

- Task: Image-based VITON
 - Requirements: while maintaining the pose, body shape, and identity of the person,
 the clothing product must seamlessly deform to the desired clothing area
 - To meet the requirements, utilize various conditions: clothing, dense pose, etc.

- Previous works: GANs
 - It consists of two stages

Step 1. geometric matching

 Due to the model collapse issue, GAN failed to synthesis photo-realistic images and capture detail of clothing

Step 2. refine the image

Reference Image I

Perceptual

Target Clothing cWarped Clothing c'TPS

Transformation

Composition Mask α Refined Result \hat{I} Composition Mask MShape Context

TPS Warp

- Current works: LDMs
 - Still lack faithfulness of clothing: style, pattern, and text
 - The cause of the problem:
 - (1) stochastic property of diffusion model, (2) latent supervision

Figure 1: Comparison between state-of-the-art baselines and our FLDM-VTON on the VITON-HD dataset.

- Basic generation process for LDMs performing VITON
 - Input clothing condition utilizing cross-attention
 - Concatenate various condition to noisy input
 - Model (U-Net) generates more clear image by predicting noise

Definition of problem

- stochastic property of diffusion model
- latent supervision

- Similar components with other papers: image encoder, U-Net, resized mask
- Notable components: clothes faithful prior, clothes-consistent faithful supervision

- Clothes faithful priors: reduce stochastic property in diffusion process
 - Takes either *main starting point* or *prior starting point* as input
 - Encourage usage of prior local condition

- Clothes-consistent faithful supervision
 - Preserve fine detail of clothing
 - Extract warped clothing in generated image, then generates original clothing

- Clothes flattening network
 - Take-off step: extract warped clothing
 - Flatten-out step: generate original clothing

- Loss
 - L_{diff} : existing loss for noise prediction
 - L_{cons} : L_1 loss between generated clothing and real clothing

- Train flattening network
 - L_1 : pixel-level
 - Perceptual loss: feature-level
 - Total variation loss: pixel-level, for smoothness
 - Second-order smooth loss: for smoothness

- Setting
 - Dataset: VITON-HD (11,647/2,032)
 - ✓ frontal-view woman and top clothing image pairs
 - Paired setting: there's an image of a person wearing clothes
 - ✓ SSIM ↑, LPIPS ↓: similarity between the two images
 - Unpaired setting
 - ✓ KID \downarrow , FID \downarrow : measure the statistical similarity real and generated images

More precise generation for text, style, etc.

• I: CNN-based

• II: GAN-based

• III: Diffusion-based

Methods		Paired		Unpa	Unpaired	
Methous		LPIPS↓	SSIM↑	$\mathbf{FID} \!\!\downarrow$	KID↓	
CP-VTON	I	0.160	0.831	31.34	2.37	
CP-VTON+		0.131	0.847	22.79	1.55	
VITON-HD	II	0.116	0.862	12.12	0.32	
HR-VITON		0.104	0.878	11.27	0.27	
GP-VTON		0.081	0.884	9.19	0.09	
PAINT-BY-EXAMPLE	III	0.143	0.803	11.94	0.39	
LADI-VTON		0.096	0.863	9.47	0.19	
DCI-VTON		0.081	0.880	8.76	0.11	
FLDM-VTON (ours)		0.080	0.886	<u>8.81</u>	0.13	

• Results on real-world data

• Clothes-consistent results

