CS3231 Tutorial 11–12

- 1. Suppose L_1, L_2 are recursively enumerable sets.
 - (a) Is $L_1 \cap L_2$ recursively enumerable?
 - (b) Is $L_1 L_2$ recursively enumerable?
- 2. The state entry problem for Turing Machines can be described as follows. Suppose a Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, a state $q \in Q$, and input $w \in \Sigma^*$ is given. Does M ever enter the state q when input is string w?

Show that above problem is undecidable using appropriate reduction from the Halting problem.

- 3. Recall that W_i denotes the language accepted by the Turing Machine with code i. That is, $W_i = L(M_i)$.
 - (a) Show that $L_{inf} = \{1^i \mid W_i \text{ is infinite }\}$ is not RE.
 - (b) Show that $L_{fin} = \{1^i \mid W_i \text{ is finite }\}$ is not RE.
 - (c) Show that $\{w_i \mid a \in W_i \text{ or } b \notin W_i\}$ is not RE, where $a \neq b$.
 - (d) Show that $L_a = \{w_i \mid a \notin W_i\}$ is not RE.

Note that Rice's theorem cannot be used to show a language over machines is not RE. So you would need to use some of the techniques used in class.

- 4. Which of the following problems are decidable and why?
 - (a) Given two DFA's M_1 and M_2 , is $L(M_1) \cap L(M_2) = \emptyset$?
 - (b) Given a CFG G, and a DFA M, is $L(G) \cap L(M) = \emptyset$?
 - (c) Given a TM M', and a DFA M, is $L(M') \cap L(M) = \emptyset$?
- 5. Show that the following languages are undecidable, using Rice's theorem.
 - (a) $\{M \mid \text{number of elements in } L(M) \leq 20\}.$
 - (b) $\{M \mid a \in L(M)\}.$
 - (c) $\{M \mid a \in L(M) \text{ and } b \notin L(M)\}.$
 - (d) $\{M \mid a \in L(M) \text{ or } b \notin L(M)\}.$
- 6. Prove or disprove:

If L^* is recursive. Then L is recursive.

- 7. Show that the following problems are undecidable:
 - (a) Given two CFG, G_1 and G_2 , is $L(G_1) = L(G_2)$?
 - (b) Given two CFG, G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

- 8. Give unrestricted grammar for
 - (a) $\{a^ib^jc^k \mid i \le j \le k\}.$
 - (b) $\{w \mid w \in \{a,b,c\}^* \text{ and } w \text{ contains equal number of } a\text{'s, } b\text{'s and } c\text{'s}\}.$
 - (c) $\{ww \mid w \in \{a, b\}^*\}.$
- 9. Show that every RE language can be generated by an unrestricted grammar.