中南大学考试答案

2020 -- 2021 学年 一 学期 时间 100 分钟 2020 年 1月 5日

运筹学 课程 32 学时 2 学分 考试形式: _ 开 卷

专业年级: 自动化、测控19级 总分100分,占总评成绩60%

注:此页不作答题纸,请将答案写在答题纸上

一、简答题(本题30分,每小题6分)

1、将右边的线性规划问题化为标准形式。

【解】

$$\Rightarrow x_1 = x_1' - x_1'', \quad x_2 = -x_2', \quad Z' = -Z$$

$$\max Z' = -Z = x_1'' - x_1' - 2x_2' - 3x_3$$

$$\text{s.t.} \begin{cases} 5(x_1'' - x_1') - x_2' - 3x_3 - x_4 = 4 \\ x_1'' - x_1' + 3x_2' + x_3 + x_5 = 6 \\ 3(x_1'' - x_1') - x_2' + 4x_3 = 5 \\ x_1', x_1'', x_2', x_3, x_4, x_5 \ge 0 \end{cases}$$

 $\min Z = x_1 - 2x_2 + 3x_3$ s.t. $\begin{cases} 5x_1 - x_2 + 3x_3 \le -4 \\ x_1 + 3x_2 - x_3 \ge -6 \\ 3x_1 - x_2 - 4x_3 = -5 \\ x_2 \le 0, x_3 \ge 0, x_1$ 无约束

- 2、试谈线性规划对偶问题的经济解释。
- 【解】如果原规划模型属于在一定资源约束条件下,按一定的单位消耗分配资源生产一组产品并寻求利润最大化问题,那么其对偶模型属于对该问题中每一种资源进行估价,以便得出与最优生产计划相一致的最低总价值,该对偶模型中资源的估价表现为相应资源的影子价格。当所有资源以最优方式分配时,第 i 种资源的影子价格 yi 给出了第 i 种资源单位追加量的边际利润。
 - 3、试述分枝定界法求解线性整数规划问题的主要思想。

考虑目标函数为求极大值的线性整数规划问题,分枝定界法主要由"分枝"和"定界"两部分组成。其基本思路如下:

第一步,求解 IP 的松弛问题 LP: 若松弛问题没有可行解,则原问题也没有可行解;若松弛问题的最优解恰好全取整数,则该最优解也是其对应的子问题的最优解;否则记 LP问题的最优解为 $X^{(0)}$,最优值为 $Z^{(0)}$,并进一步求解;

第二步,定界:设 IP 的最优值为 Z^* ,以 $Z^{(0)}$ 作为 Z^* 的上界,记为 $Z^{\perp} = Z^{(0)}$,再在 IP 中找一个可行解 X^* ,以其目标值 Z^* 作为下界,记为 $Z_{\perp} = Z^*$,则有 $Z_{\perp} \leq Z^* \leq Z^{\perp}$;

第三步,分枝: 在 LP 最优解 $X^{(0)}$ 中任选一个不符合整数条件的变量(如 $x_r = b^*_r$), $[b^*_r]$ 用表示不超过 b^*_r 的最大整数。构造 2 个约束条件 $x_r \leq [b^*_r]$ 和 $x_r \geq [b^*_r]$ +1,并分别加入 IP 问题,形成 IP1 和 IP2 两个子问题,再解这 2 个子问题的松驰问题 LP1 和 LP2;

第四步,修改上、下界:原则包括

- (1) 在各分枝问题中,找出目标函数值最大者作为新上界;
- (2) 从符合整数条件分枝中,找出目标函数值最大者作新下界;

第五步,比较与剪枝: 各分枝目标值中,小于 Z_{τ} 的分枝剪掉,不再分枝;否则还要继续分枝,如此反复进行,直至 $Z_{\tau}=Z^*=Z^*$,表示得到整数最优解 X^* 。

- 4、 $x_1 + \frac{7}{4}x_2 + \frac{3}{5}x_4 \frac{1}{6}x_5 = \frac{11}{7}$ 为某整数规划问题的约束条件,请写出其割平面方程。
- 【解】其隔平面方程为: $\frac{4}{7} \frac{3}{4}x_2 \frac{3}{5}x_4 \frac{5}{6}x_5 \le 0$
- 5、建立动态规划模型时,应定义状态变量,请说明状态变量的特点。
- 【解】(1)满足无后效性——指系统从某个阶段往后的发展,完全由本阶段所处的状态 及其往后的决策决定,与系统以前的状态和决策无关。即过程过去的历史只能通过当前的状态去影响未来的发展,当前状态是未来过程的初始状态。
 - (2) 可知性一各阶段状态变量的值直接或间接均为已知。
- 二、建模题(本题16分,每题8分)
- 1、某厂生产 A_1 , A_2 , A_3 三种产品,需要消耗 B_1 、 B_2 两种原材料,每件产品对原材料的消耗、每件产品的成本(单位:元)材料的现有存量如下,要求制定生产计划,依次满足下列目标:
- P₁: A₁、A₂、A₃的产量需求如右表,并依单位成本确定权系数;
- P_2 : 原材料 B_1 的现有量可以超过;
- P3: 原材料 B2 的现有量不得超过;
- P4: 总成本限制在 7000 元以下。

(写出数学模型即可,无需求解)

【解】

设生产 A_1 , A_2 , A_3 三种产品的数量分别为 x_1 , x_2 , x_3 , 依题意建立目标规划模型如下: min $Z=P_1(7d_1+5d_2^++6d_3^-)+P_2$ $d_4+P_3d_5^++P_4$ d_6^+

s.t.	$x_1+d_1^d_1^+=100$
	$x_2+d_2-d_2^+=80$
	$x_3+d_3-d_3+=120$
	$7x_1+4x_2+9x_3+d_4-d_4+=1800$
	$8x_1+5x_2+3x_3+d_5$ $-d_5$ $+=1500$

 $35x_1+25x_2+30x_3+d_6-d_6^+=7000$ $x_1,x_2,x_3\geq 0, d_i-d_i^+\geq 0 (i=1,2,3,4,5,6)$

消耗 原料	\mathbf{B}_1	B_2	单位	需要量
产品			成本	
A_1	7	8	35	≥100
A_2	4	5	25	€80
A_3	9	3	30	≥120
现有量	1800	1500		

2、某学生正在备考政治、数学、英语、专业课 4 门功课,还剩两周时间,每门功课至少复习 2 天。若他已估计出各门功课的复习天数与能提高的分数之间的关系如下,他应怎样安排复习时间可使总的分数提高最多,试给出该问题的动态规划模型描述形式。

	备	考课程复习え	天数 (天) x					
	政治	政治 数学 英语						
提高分数y	$y = e^x$	y = x	$y = 1/(1+e^{-x})$	y = 2x				

【解】

令阶段k = 1, 2, 3, 4 依次表示确定政治数学、英语和专业课 4 门课需要复习几天的过程;

状态 s_k 表示在第 k 阶段初还剩有多少天可以复习, $1 \le s_k \le 14$, $s_1 = 14$;

决策 x_k 表示第k阶段分配复习天数, $2 \le x_k \le s_k$;

状态转移方程为: $s_{k+1} = s_k - x_k$;

阶段效益有:
$$v_1 = e^{x_1}$$
, $v_2 = x_2$, $v_3 = 1/(1 + e^{-x_3})$, $v_4 = 2x_4$;

目标函数:
$$Z = \sum_{i=1}^4 v_i(x_i)$$
;

动态规划问题的基本方程:
$$\begin{cases} f_k = \max_{x_k} \left\{ v_k + f_{k+1} \right\} \\ f_5 = 0, k = 4, 3, 2, 1 \end{cases}$$

三、计算题(本题12分)

已知线性规划问题

max
$$Z = 4x_1 + 2x_2 + 3x_3$$

s.t.
$$x_1+2x_2+3x_3 \le b_1$$

 x_1 -5 x_2 -6 x_3 ≤ b_2

 $x_1, x_2, x_3 \ge 0$

对于给定的非负常数 b₁ 和 b₂,最优单纯形表如下:

	С						
C_B	X_{B}	b	x_1	x_2	<i>x</i> ₃	χ_4	<i>X</i> ₅
	x_1	20 10		•	•	1	•
	<i>x</i> ₅	10				-1	

- (1) 完成上述最优单纯形表,并求 b_1 和 b_2 ; (6 分)
- (2) 写出该问题的对偶问题; (3分)
- (3) 给出原问题和对偶问题的最优解和最优值。(3分)

【解】 初始单纯形表

70/17/10							
	С		4	2	3	0	0
Св	X _B	b	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5
0	<i>X</i> 4	b_1	1	2	3	1	0
0	<i>X</i> ₅	b_2	1	-5	-6	0	1
	Z	0	4	2	3	0	0

$$B\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad B\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 20 \\ 10 \end{bmatrix}, \quad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$$

$$B\begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 1 & -5 & -6 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 0 & -7 & -9 & -1 & 1 \end{bmatrix}$$

于是最优单纯形表如下

	С		4	2	3	0	0
C _B	X_{B}	b	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅
4	x_1	20	1	2	3	1	0
0	<i>x</i> ₅	10	0	-7	-9	-1	1
		-80	0	-6	-9	-4	0

对偶问题如下

min
$$W = 20y_1 + 30y_2$$

s.t.
$$y_1 + y_2 \ge 4$$

$$2y_1-5y_2 \ge 2$$

$$3y_1$$
- $6y_2 \ge 3$

$$y_1, y_2 \ge 0$$

原问题的最优解为 $x^* = [20,0,0]^T$, $Z^* = 80$ 。 $y^* = [4,0]^T$, $W^* = 80$ 。

四、计算题(本题18分)

已知运输问题的产销平衡表与单位运价表如下,试用最小元素法确定初始调运方案(5分);并给出相应的总运价(3分);用闭回路法计算 x_4 的检验数(4分);根据 x_4 的检验数判断是否需要调整调运方案,若需要,针对 x_4 确定新的调运方案并给出总运价(6分)。

销地产地	В1		В	2	В	3	В	4	产量
A1		9		5		6		10	9
A2		1		3		4		6	10
A3		8		2		5		7	4
销量	3		(5	8	}	6	5	

解: 最小元素法确定初始方案 (5分):

 $c_{21} = 1$ 最小,确定 $x_{21} = 3$,划去第1列。

销地产地		В1	B2	ВЗ	B4	产量
A1		19	5	6	10	9
A2	1	(3)	3	4	6	7
A3		8	2	5	7	4
销量		0	6	8	6	

 $c_{32} = 2$ 最小,确定 $x_{32} = 4$,划去第 3 行。

销地产地	B1	B2	ВЗ	B4	产量
A1	9	5	6	10	9
A2	1 (3)	3	4	6	7
A3	8 —	2 (4)	5	7	0
销量	0	2	8	6	

 $c_{22} = 3$ 最小,确定 $x_{22} = 2$,划去第2列。

销地产地	B1	B2	В3	B4	产量
A1	9	5	6	10	9
A2	1 (3)	3 (2)	4	6	5
А3	8 -	2 (4)	5	7	0
销量	0	0	8	6	

 $c_{23}=4$ 最小,确定 $x_{23}=5$,划去第 2 行,剩余基变量自然确定 $x_{13}=3$, $x_{14}=6$ 。

销地产地	B1	B2	В3	В4	产量
A1	9	5	6 (3)	10 (6)	9
A2	1 (3)	3 (2)	4 (5)	6	0
А3	8 –	2 (4)	5	7	0
销量	0	0	3	6	

则最小元素法确定初始调运方案为 $x_{13}=3, x_{14}=6, x_{21}=3, x_{22}=2, x_{23}=5, x_{32}=4$ 。

相应总运价费为 (3 分): $6 \times 3 + 10 \times 6 + 1 \times 3 + 3 \times 2 + 4 \times 5 + 2 \times 4 = 115$ 。 闭回路法计算 x_2 4 的检验数 (4 分):

销地 产地	B1	B2	В3	В4	产量
A1	9	5	6 (3)	10 (6)	9
A2	1 (3)	3 (2)	4 (5)	6	0
А3	8	2 (4)	5	7	0
销量	0	0	3	6	

闭回路为 $\{x_{24}, x_{14}, x_{13}, x_{23}\}$, 则检验数为:

$$\sigma_{24} = (c_{24} + c_{13}) - (c_{14} + c_{23}) = (6+6) - (10+4) = -2$$

由于 ※4的检验数小于 0, 因此需要针对 ※4调整调运方案。(6分)

$$\theta = \min\{x_{14}, x_{23}\} = \min\{6, 5\} = 5$$

$$\sup \begin{cases} x_{24} = 0 + \theta = 5; \\ x_{14} = 6 - \theta = 1; \\ x_{13} = 3 + \theta = 8; \\ x_{23} = 5 - \theta = 0 \end{cases}$$

则新的调运方案为:

销地 产地	B1	B2	В3	В4	产量
A1	9	5	6 (8)	10 (1)	9
A2	1 (3)	3 (2)	4 (0)	6 (5)	0
А3	8	2 (4)	5	7	0
销量	0	0	3	6	

(新调运方案的总运费为: $6 \times 8 + 10 \times 1 + 1 \times 3 + 3 \times 2 + 6 \times 5 + 2 \times 4 = 105$)

五、计算题(本题 12 分)

某部门需要派四位选手参加比赛,四位选手的综合考评得分如下表所示,每位选手只需要完成一个项目,每个项目只需要一位选手完成,请确定出使总得分最大的项目分工方案。

	项目	A	В	С	D
选	手				
	甲	93	94	95	93
	Z	89	92	91	95
	丙	95	92	92	93
	丁	89	95	94	97

- (1) 写出原始效益矩阵,将最大化指派问题转化为最小化指派问题。(3分)
- (2) 试用匈牙利法在总得分最大的条件下确定各员工的工作分配方案。(6分)
- (3) 写出工作分配方案, 计算出总得分。(3分)

【解】

问题(1)

$$C = \begin{bmatrix} 93 & 94 & 95 & 93 \\ 89 & 92 & 91 & 95 \\ 95 & 92 & 92 & 93 \\ 89 & 95 & 94 & 97 \end{bmatrix}$$

 \Leftrightarrow M=97, $C'=97-c_{ii}$

$$C' = \begin{bmatrix} 4 & 3 & 2 & 4 \\ 8 & 5 & 6 & 2 \\ 2 & 5 & 5 & 4 \\ 8 & 2 & 3 & 0 \end{bmatrix}$$

问题(2)

1) 变换系数矩阵,增加0元素

$$(c'_{ij}) = \begin{bmatrix} 4 & 3 & 2 & 4 \\ 8 & 5 & 6 & 2 \\ 2 & 5 & 5 & 4 \\ 8 & 2 & 3 & 0 \end{bmatrix} \stackrel{-2}{-2} \longrightarrow \begin{bmatrix} 2 & 1 & 0 & 2 \\ 6 & 3 & 4 & 0 \\ 0 & 3 & 3 & 2 \\ 8 & 2 & 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 & 0 & 2 \\ 6 & 2 & 4 & 0 \\ 0 & 2 & 3 & 2 \\ 8 & 1 & 3 & 0 \end{bmatrix}$$

2) 试指派

$$\begin{bmatrix} 2 & \times & \Delta & 2 \\ 6 & 2 & 4 & \Delta \\ \Delta & 2 & 3 & 2 \\ 8 & 1 & 3 & \times \end{bmatrix}$$

3) 作最少的直线覆盖所有0元素

$$\begin{bmatrix} 2 & \times & \Delta & 2 \\ 6 & 2 & 4 & \Delta \\ \Delta & 2 & 3 & 2 \\ 8 & 1 & 3 & \times \end{bmatrix} \checkmark \longrightarrow \begin{bmatrix} 2 & \times & \Delta & 2 \\ 6 & 2 & 4 & \Delta \\ \Delta & 2 & 3 & 2 \\ 8 & 1 & 3 & \times \end{bmatrix} \checkmark$$

4) 没有被直线通过的元素中选择最小值为 1,变换系数矩阵,将没有被直线通过的所有元素减去这个最小元素;直线交点处的元素加上这个最小值,得到新的矩阵。

$$\begin{bmatrix} 2 & 0 & 0 & 3 \\ 5 & 1 & 3 & 0 \\ 0 & 2 & 3 & 3 \\ 7 & 0 & 2 & 0 \end{bmatrix}$$

5) 得出最优解

$$\begin{bmatrix} 2 & \times & \Delta & 3 \\ 5 & 1 & 3 & \Delta \\ \Delta & 2 & 3 & 3 \\ 7 & \Delta & 2 & \times \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

问题(3)

安排甲做 C 工作, 乙做 D 工作, 丙做 A 工作, 丁做 B 工作, 最大得分为 95+95+95+95=380

六、计算题(本题12分)

已知救护车需要将疑似新冠肺炎感染病人从小区 A 运到医院 E,他有如下多条路径可以选择,请帮救护车选择一条捷径(8 分),并给出需要行驶的最短距离是多少(假定距离单位为 km)(2 分)。

【解】

最短路径: AB₂C₁D₁E, 最短距离: 11km