Homework 7 Solutions

Due Dec 15th, 2020 11:59 pm

Problem 1. Solution:

$$E = \sum_{i=1}^{n} ||X_i||^2$$

$$E = \sum_{i=1}^{n} \sigma_j^2 = 385$$

We want to find a compression algorithm that retains at least 50% of the energy. Thus, the sum of the singular values must add up to at least $\frac{385}{2} = 192.5$.

If we select the first 3 components:

$$E = 10^2 + 9^2 + 8^2 = 245$$

Since 245 > 192.5 the minimum value of the dimension is 3.

Problem 2. Solution:

1. For $c = \{1, 2\}$:

$$\mathcal{H}_c = \{(0,0), (0,1), (1,1), (1,0)\}$$

For $c = \{1, 2, 3\}$:

$$\mathcal{H}_c = \{(0,0,0), (1,0,0), (1,1,0), (1,1,1), (0,0,1), (0,1,1), (0,1,0)\}$$

(1,0,1) is not possible.

2. Let
$$C_1 = \{1, 2\}$$
. $|\mathcal{H}_c| = 4$.
Let $C_2 = \{1, 2, 3\}$. $|\mathcal{H}_c| = 7 < 8$,

3. For
$$|C| = 2$$
, $\mathcal{H}_{\mathcal{C}}$ shatters C since $|\mathcal{H}_{\mathcal{C}}| = 4 = 2^{|C|}$.
For $|C| = 3$, $\mathcal{H}_{\mathcal{C}}$ does not shatter C since $|\mathcal{H}_{\mathcal{C}}| < 2^{|C|}$.

4. $VCdim(\mathcal{H}) = 2$

Problem 3. Solution:

- (a) If a hypothesis class \mathcal{H} is PAC learnable then it means there is a hypothesis h that yields a true error lower than ϵ with probability 1δ .
- (b) $VCdim(\mathcal{H}) = \infty$.
- (c) We show that $VCdim(\mathcal{H}) \leq \log_2 m$ as follows:

Let
$$VCdim(\mathcal{H}) = c$$
.

We know that
$$|\mathcal{H}| = m \ge |\mathcal{H}_{\mathcal{C}}|$$
 and that $|\mathcal{H}_{\mathcal{C}}| = 2^c$.

Thus:

$$m \ge |\mathcal{H}_{\mathcal{C}}|$$
$$m \ge 2^{c}$$
$$m \ge 2^{VCdim(\mathcal{H})}$$

And after taking log of both sides:

$$\log_2 m \ge VCdim(\mathcal{H})$$