Zusammenfassung Wahrscheinlichkeit und Statistik

Autor:

André Gasser, gassera@student.ethz.ch

Datum:

Januar 2013

1 Kombinatorik

1.1 Permutation

n unterschiedlichen Kugeln:

$$P(n) = n!$$

n unterschiedliche Kugeln mit $n_1, n_2, ..., n_k$ gleichen Kugeln:

$$P(n, n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

Bemerkungen:

• Ermitteln der Anzahl Anordnungen.

1.2 Kombination

Mit Zurücklegen:

$$C_w(n,k) = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$$

Ohne Zurücklegen:

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Bemerkungen:

• Reihenfolge spielt keine Rolle.

1.3 Variation

Mit Zurücklegen:

$$V_w(n,k) = n^k$$

Ohne Zurücklegen:

$$V(n,k) = \frac{n!}{(n-k)!}$$

Bemerkungen:

• Reihenfolge ist wesentlich.

2 Wahrscheinlichkeit

2.1 Allgemeine Rechenregeln

$$\begin{array}{rcl} P\left[A^C\right] &=& 1-P[A] \\ P\left[\Omega\right] &=& P[A]+P\left[A^C\right]=1 \\ P\left[\emptyset\right] &=& 0 \\ P\left[B^C|A\right] &=& 1-P[B|A] \\ A\subseteq B\Rightarrow P[A] &\leq& P[B] \end{array}$$

2.2 DeMorgan'sche Gesetze

$$\frac{\overline{A \cap B}}{\overline{A \cup B}} = \frac{\overline{A} \cup \overline{B}}{\overline{A} \cap \overline{B}}$$

2.3 Additionssatz

Zur Berechnung der Wahrscheinlichkeit, dass Ereignis A oder B eintritt.

Allgemein:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

A,B disjunkt:

$$P[A \cup B] = P[A] + P[B]$$

Bemerkungen:

• Wenn die Ereignisse nicht offensichtlich disjunkt sind, die erste Formel verwenden!

2.4 Multiplikationssatz

Zur Berechnung der Wahrscheinlichkeit, dass die Ereignisse A und B eintreten.

$$P[A \cap B] = P[A] \cdot P[B|A]$$

Bemerkungen

 $\bullet \ P[A,B] = P[A \cap B].$

2.5 Bedingte Wahrscheinlichkeit

Die bedingte Wahrscheinlichkeit von B gegeben A entspricht der Wahrscheinlichkeit, dass B eintritt, wenn man schon weiss, dass A eingetreten ist. Es gilt:

$$P[B|A] = \frac{P[A \cap B]}{P[A]}$$

$$P[A \cap B] = P[A] \cdot P[B|A] = P[B] \cdot P[A|B]$$

Bemerkungen:

• Die **Pfadregel**, nach der Wahrscheinlichkeiten in einem **Wahrscheinlichkeitsbaum** multipliziert werden, um die Wahrscheinlichkeit eines Blattes zu erhalten, entspricht einer Verkettung bedingter Wahrscheinlichkeiten.

2.5.1 Satz der totalen Wahrscheinlichkeit

$$P[B] = \sum_{i=1}^{n} P[A_i] \cdot P[B|A_i]$$

2.5.2 Satz von Bayes

Zur Berechnung einer bestimmten Zwischenstation A_k in einem Ereignisbaum, wobei mehrere Ereignisse A_i zu Ereignis B führen.

$$P[A_k|B] = \frac{P[A_k] \cdot P[B|A_k]}{\sum_{i=1}^{n} P[A_i] \cdot P[B|A_i]}$$

2.6 Eigenschaften von Ereignissen

2.6.1 Unabhängigkeit

Wenn zwischen zwei Ereignissen A und B kein kausaler Zusammenhang besteht (d.h. es gibt keine gemeinsamen Ursachen oder Ausschliessungen), dann sind sie un- $abh\ddot{a}ngiq$ voneinander. In diesem Fall gilt:

$$P[A \cap B] = P[A] \cdot P[B]$$

3 Zufallsvariablen

3.1 Diskrete Zufallsvariablen

3.1.1 Gewichtsfunktion

Die Summe aller Gewichte ist immer 1 und die Werte immer im Intervall [0,1]:

$$\sum_{i=1}^{\infty} f(x) = 1$$

3.1.2 Verteilungsfunktion

3.2 Stetige Zufallsvariablen

3.2.1 Dichtefunktion

Die Fläche unter der Dichtefunktion ist immer 1 und die Werte immer im Intervall [0,1]:

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Bemerkungen

• Durch Integrieren der Dichtefunktion erhält man die Verteilungsfunktion.

3.2.2 Verteilungsfunktion

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(u)du$$

Bemerkungen

• Durch Ableiten der Verteilungsfunktion erhält man die Dichtefunktion.

3.3 Gemeinsame Verteilungen

3.4 Funktionen diskreter Zufallsvariablen

3.4.1 Summe von Zufallsvariablen

3.4.2 Produkte von Zufallsvariablen

3.5 Funktionen stetiger Zufallsvariablen

$$\begin{array}{rcl} Y = aX + b & = & F_Y(t) = P[Y \leq t] = P[aX + b \leq t] \\ & = & P[X \leq \frac{t - b}{a}] = F_X(\frac{t - b}{a}) \\ Y = X^2 & = & F_Y(t) = P[Y \leq t] = P[X^2 \leq t] \\ & = & P[-\sqrt{t} \leq t \leq \sqrt{t}] = F_X(\sqrt{t}) - F_X(-\sqrt{t}) \\ Y = \frac{1}{X} & = & F_Y(t) = P[Y \leq t] = P[\frac{1}{X} \leq t] \\ & = & P[X \geq \frac{1}{t}] = 1 - P[X \leq \frac{1}{t}] = 1 - F_X(\frac{1}{t}) \end{array}$$

3.6 Chebyshev-Ungleichung

Die Chebyshev-Ungleichung liefert eine Abschätzung von Wahrscheinlichkeiten, auch wenn die genaue Verteilungsfunktion nicht bekannt ist. Es muss nur der Erwartungswert E[X] und die Varianz $Var[X] < \infty$ einer Zufallsvariablen X bekannt sein, dann gilt für jedes k>0:

$$P\left[|X - E[X]| \ge k\right] \le \frac{Var[X]}{k^2}$$

3.7 Eigenschaften von Zufallsvariablen

3.7.1 Unabhängigkeit

Zwei Zufallsvariablen X und Y heissen unabhängig, wenn stets gilt

$$F(x,y) = F_X(x) \cdot F_Y(y)$$

 $f(x,y) = f_X(x) \cdot F_Y(y)$

wobei $F_X(x), F_X(y)$ die Verteilungsfunktionen und $f_X(x), f_Y(y)$ die Gewichts- bzw. Dichtefunktionen von X und Y sind.

3.7.2 Unkorreliert

Zwei Zufallsvariablen X und Y heissen unkorreliert, falls gilt Cov(X,Y)=0.

Eine Menge von Zufallsvariablen $X_1, X_2, ..., X_n$ heissen paarweise unkorreliert, wenn alle Paare X_i, X_j mit $i \neq j$ unkorreliert sind.

3.8 Erwartungswert

Der Erwartungswert ist das langfristige Durchschnittsergebnis bei einem Zufallsexperiment mit vielen Wiederholungen.

Diskrete Verteilung:

$$E[X] = \sum_{i} x_i \cdot f(x_i)$$

Stetige Verteilung:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

3.8.1 Additionssatz für Erwartungswerte

Der Erwartungswert einer aus n (diskreten oder stetigen) Zufallsvariablen $X_1, X_2, ..., X_n$ gebildeten Summe

$$Z = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

ist gleich der Summe der Erwartungswerte der einzelnen Zufallsvariablen:

$$E[Z] = a_1 E[X_1] + a_2 E[X_2] + \dots + a_n E[X_n]$$

3.8.2 Multiplikationssatz für Erwartungswerte

Der Erwartungswert eines aus n stochastisch unabhängigen (diskreten oder stetigen) Zufallsvariablen $X_1, X_2, ..., X_n$ gebildeten Produkts

$$Z = X_1 \cdot X_2 \cdot \dots \cdot X_n$$

ist gleich dem Produkt der Erwartungswerte der einzelnen Zufallsvariablen:

$$E[Z] = E[X_1 \cdot X_2 \cdot \ldots \cdot X_n] = E[X_1] \cdot E[X_2] \cdot \ldots \cdot E[X_n]$$

3.8.3 Formeln für 2. Moment

Dieses wird z.B. für die Momenten-Methode und zur Berechnung der Varianz benötigt.

Diskrete Verteilung:

$$E[X^2] = \sum_{i} x_i^2 \cdot f(x_i)$$

Stetige Verteilung:

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx$$

3.8.4 Weitere Rechenregeln

$$E[a] = a(\text{für a = const.})$$

$$E[aX] = a \cdot E[X](\text{für a = const.})$$

$$E[aX + b] = a \cdot E[X] + b$$

$$E[E[X]] = E[X]$$

3.9 Varianz

Die Varianz ist ein Streuungsmass, also ein Mass für die Abweichung einer Zufallsvariable von ihrem Erwartungswert.

Diskrete Verteilung:

$$Var[X] = \sum_{i} (x_i - E[X])^2 \cdot f(x_i)$$

Stetige Verteilung:

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 \cdot f(x) dx$$

Vereinfachte Berechnung:

$$Var[X] = E[X^2] - E[X]^2$$

3.9.1 Additionssatz für Varianzen

Die Varianz einer aus n stochastisch unabhängigen (diskreten oder stetigen) Zufallsvariablen $X_1, X_2, ..., X_n$ gebildeten Summe

$$Z = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

ist gleich der Summe der Varianzen der einzelnen Zufallsvariablen:

$$Var[Z] = a_1^2 Var[X_1] + a_2^2 Var[X_2] + \dots + a_n^2 Var[X_n]$$

3.9.2 Weitere Rechenregeln

$$\begin{array}{rcl} Var[aX+b] & = & a^2 \cdot Var[X] \\ Var[aX+bY] & = & a^2 \cdot Var[X] + b^2 \cdot Var[Y] + \\ & & 2ab \cdot Cov[X,Y] \end{array}$$

3.10 Kovarianz

Die Kovarianz ist ein Mass für den Zusammenhang zwischen zwei Zufallsvariablen X und Y bzw. der Streuung zwischen ihnen.

$$\begin{array}{rcl} Cov[X,Y] & = & E[(X-E[X])(Y-E[Y])] \\ Cov[X,Y] & = & E[XY]-E[X]\cdot E[Y] \\ Cov[X,Y] & = & \frac{1}{2}\cdot (Var[X+Y]-Var[X]-Var[Y]) \\ Cov[X,Y] & = & Cov[Y,X] \\ Cov[X,X] & = & Var[X] \\ Cov[aX+b,Y] & = & a\cdot Cov[X,Y] \\ Cov[X+Y,Z] & = & Cov[X,Z]+Cov[Y,Z] \\ \forall a \in \mathbb{R}: Cov[X,a] & = & 0 \\ \forall b \in \mathbb{R}: Cov[X,bY] & = & b\cdot Cov[X,Y] \end{array}$$

3.11 Standardabweichung

$$sd[X] = \sqrt{Var[X]}$$

4 Diskrete Verteilungen

4.1 Bernoulli-Verteilung

Verteilung eines Experiments mit zwei Ausgängen (Erfolg, Misserfolg) mit Erfolgsparameter p.

Notation:

$$X \sim Be(p)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = p^x \cdot (1 - p)^{1 - x}$$

Erwartungswert:

$$E[X] = p$$

Varianz:

$$Var[X] = p(1-p)$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{np(1-p)}$$

4.2 Binomial-Verteilung

Beschreibt die Anzahl der Erfolge in einer Serie von gleichartigen und unabhängigen Versuchen, die jeweils genau zwei mögliche Ergebnisse haben ("Erfolg" oder "Misserfolg"). n ist die Anzahl der Versuche bzw. Wiederholungen, p ist die Wahrscheinlichkeit für einen Ërfolg".

Notation:

$$X \sim Bin(n, p)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = \binom{n}{x} p^x (1-p)^{n-x}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \sum_{k=0}^{x} \binom{n}{k} p^{k} (1-p)^{n-k}$$

Erwartungswert:

$$E[X] = np$$

Varianz:

$$Var[X] = np(1-p)$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{np(1-p)}$$

Bemerkungen:

• Die Binomialverteilung Bin(n,p) darf für grosse n und kleine p näherungsweise durch die Poisson-Verteilung mit Parameter $\lambda = np$ ersetzt werden (Faustregel: np < 10 und n > 1500p).

4.3 Geometrische Verteilung

Wartezeit auf ersten Erfolg bei einer Folge von 0-1-Experimenten mit Erfolgsparameter $p.\ X$ ist die Nummer des ersten erfolgreichen Experiments.

Notation:

$$X \sim Geom(p)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = p(1-p)^{x-1}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = 1 - (1 - p)^x$$

Erwartungswert:

$$E[X] = \frac{1}{p}$$

Varianz:

$$Var[X] = \frac{1-p}{n^2}$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\frac{1-p}{p^2}}$$

4.4 Poisson-Verteilung

Ereignet sich in einem Intervall (z.B. in einer gewissen Zeit, auf einer gewissen Fläche, in einem gewissen Volumen, usw.) ein völlig zufällig auftretendes Ereignis im Schnitt μ mal (Erwartungswert), dann ist die Zufallsgrösse, welche die Häufigkeit des Ereignisses in diesem Intervall angibt, poissonverteilt mit Parameter $\lambda = \mu$.

Notation:

$$X \sim P(\lambda), X \sim Pois(\lambda)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = e^{-\lambda} \frac{\lambda^x}{x!}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = e^{-\lambda} \sum_{k=0}^{x} \frac{\lambda^k}{k!}$$

Erwartungswert:

$$E[X] = \lambda$$

Varianz:

$$Var[X] = \lambda$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\lambda}$$

Bemerkungen

• Falls Z = X + Y und $X \sim Pois(\lambda)$, $Y \sim Pois(\mu)$ dann gilt $Z \sim Pois(\lambda + \mu)$.

4.5 Negativbinomiale Verteilung

Wartezeit auf den r-ten Erfolg bei einer Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p. Notation:

$$X \sim NB(r, p)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = {\begin{pmatrix} x - 1 \\ r - 1 \end{pmatrix}} p^r (1 - p)^{x - r}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \sum_{i=r}^{x} {i-1 \choose r-1} p^{r} (1-p)^{i-r}$$

Erwartungswert:

$$E[X] = \frac{r}{p}$$

Varianz:

$$Var[X] = \frac{r(1-p)}{n^2}$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\frac{r(1-p)}{p^2}}$$

4.6 Hypergeometrische Verteilung

Notation:

$$X \sim HypGeom(n, m, r)$$

Gewichtsfunktion:

$$f(x) = P[X = x] = \frac{\binom{r}{x} \binom{n-r}{m-x}}{\binom{n}{m}}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \sum_{k=max(0,m-n)}^{x} \frac{\binom{r}{k} \binom{n}{m-k}}{\binom{r+n}{m}}$$

Erwartungswert:

$$E[X] = \frac{mr}{n}$$

Varianz:

$$Var[X] = \frac{mr}{n^2(n-1)}(n-r)(n-m)$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\frac{mr}{n^2(n-1)}(n-r)(n-m)}$$

5 Stetige Verteilungen

5.1 Gleichverteilung

Alle Ereignisse zwischen a und b sind gleich wahrscheinlich.

Notation:

$$X \sim U(a,b)$$

Dichtefunktion:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b \\ 0 & \text{sonst} \end{cases}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } x > b \end{cases}$$

Erwartungswert:

$$E[X] = \frac{b+a}{2}$$

Varianz:

$$Var[X] = \frac{(b-a)^2}{12}$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\frac{(b-a)^2}{12}}$$

5.2 Exponential verteilung

Die Exponentialverteilung ist ein Modell für Wartezeiten und Lebensdauern. Beispielanwendungen sind die Berechnung der Lebensdauer von Bauteilen und Zugverspätungen.

Notation:

$$X \sim Exp(\lambda)$$

Dichtefunktion:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x \ge 0\\ 0 & \text{für } x < 0 \end{cases}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \ge 0 \\ 0 & \text{für } x < 0 \end{cases}$$

Erwartungswert:

$$E[X] = \frac{1}{\lambda}$$

Varianz:

$$Var[X] = \frac{1}{\lambda^2}$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\frac{1}{\lambda^2}}$$

Bemerkungen:

- Sind $X_1 \sim Exp(\lambda_1), ..., X_n \sim Exp(\lambda_n)$ stochastisch unabhängig, so ist $min(X_1, ..., X_n) \sim Exp(\lambda_1 + ... + \lambda_n)$.
- Die Summe von n exponentialverteilten Zufallsvariablen mit gleichem Parameter λ ist gammaverteilt mit $\Gamma(n,\lambda)$.
- Erwartungswert und Standardabweichung sind gleich (E[X] = sd[X]).

5.3 Normalverteilung

Die besondere Bedeutung der Normalverteilung beruht unter anderem auf dem zentralen Grenzwertsatz, der besagt, dass eine Summe von n unabhängigen, identisch verteilten Zufallsvariablen mit endlicher Varianz im Grenzwert $n \to \infty$ normalverteilt ist.

Notation:

$$X \sim N(\mu, \sigma^2)$$

Dichtefunktion:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Verteilungsfunktion:

$$F(x) = P[X \le x] = \frac{1}{\sigma\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}} dt$$

Erwartungswert:

$$E[X] = \mu$$

Varianz:

$$Var[X] = \sigma^2$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{\sigma^2}$$

Transformation einer normalverteilten Zufallsvariable X in eine standardnormalverteilte Zufallsvariable Z:

$$Z = \frac{X - \mu}{\sigma}$$

5.4 Standardnormalverteilung

Notation:

$$X \sim N(0, 1)$$

Dichtefunktion:

$$\phi(u) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{u^2}{2}}$$

Verteilungsfunktion:

$$\Phi(u) = P[X \le u] = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{u} e^{-\frac{t^2}{2}} dt$$

Erwartungswert:

$$E[X] = 0$$

Varianz:

$$Var[X] = 1$$

Standardabweichung:

$$sd[X] = \sqrt{Var[X]} = \sqrt{1}$$

Bemerkungen:

• Die Standardnormalverteilung entspricht einer Normalverteilung mit den Parametern $\mu=0$ und $\sigma=1$.

5.4.1 Tabelle ablesen

 $\Phi(x)$ bedeutet, dass man zu einem Wert x die Wahrscheinlichkeit in der Tabelle auslesen will. $\Phi^{-1}(x)$ bedeutet, dass für eine Wahrscheinlichkeit der Tabellenwert ermittelt werden soll.

Positive Werte: $\Phi(x)$ $\varphi(x)$ $\Phi(x)$ xBsp: $\Phi(1.25) = 0.8944$

Negative Werte: $\Phi(-x) = 1 - \Phi(x)$

Für nicht tabellierte Werte:

$$\Phi^{-1}(0.03) = -\Phi^{-1}(0.97) = -1.88$$

Regeln zum Auslesen der Werte:

- Ist ein gesuchter Wert c nicht tabelliert, so wird derjenige Wert a oder b genommen, der näher bei c liegt.
- Sind zwei Werte a und b gleich weit vom gesuchten Wert c entfernt, so wird der Mittelwert von a und b verwendet.

6 Grenzwertsätze

In vielen Situationen taucht die Summe von vielen gleichartigen Zufallsvariablen auf. Wir möchten wissen, wie sich diese Summe etwa verhält, und untersuchen deshalb ihre Asymptotik, wenn die Anzahl der Summanden gegen unendlich geht.

Für die folgenden Sätze definieren wir einige Grössen:

$$S_n = \sum_{i=1}^n X_i$$
 und $\overline{X}_n = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$

6.1 Schwaches Gesetz der grossen Zahlen

Seien $X_1, X_2, ..., X_n$ unabhängige oder paarweise unkorrelierte Zufallsvariablen mit gleichem Erwartungswert $E[X_i] = \mu$ und gleicher Varianz $Var[X_i] = \sigma^2$. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Dann gilt:

$$\forall \epsilon > 0 : \lim_{n \to \infty} P\left[|\overline{X}_n - \mu| > \epsilon\right] = 0$$

Bemerkungen:

- Für hinreichend grosse n konvergiert der Mittelwert \overline{X}_n gegen den Erwartungswert μ .
- Der Satz funktioniert nicht, falls der Erwartungswert oder die Varianz nicht definiert sind.

6.2 Starkes Gesetz der grossen Zahlen

Seien $X_1, ..., X_n$ unabhängige Zufallsvariablen mit gleicher Verteilung (i.i.d) und Erwartungswert $E[X_i] = \mu$. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Dann gilt:

$$P\left[\lim_{n\to\infty} \overline{X}_n = \mu\right] = 1$$

Bemerkungen:

• Für hinreichend grosse n konvergiert der Mittelwert \overline{X}_n gegen den Erwartungswert μ .

6.3 Zentraler Grenzwertsatz

 $X_1,X_2,X_3,...,X_n,...$ seien stochastisch unabhängige Zufallsvariablen, die alle der gleichen Verteilungsfunktion mit Erwartungswert μ und Varianz σ^2 genügen. Dann konvergiert die Verteilungsfunktion $F_Z(u)$ der standardisierten Zufallsvariablen

$$Z_n = \frac{(X_1 + X_2 + \dots + X_n) - n\mu}{\sqrt{n}\sigma}$$

im Grenzfall $n \to \infty$ gegen die Verteilungsfunktion $\Phi(t)$ der Standardnormalverteilung:

$$\lim_{n \to \infty} F_Z(u) = \Phi(u) = \frac{1}{\sqrt{2\pi}} \cdot \int_0^u e^{-\frac{t^2}{2}} dt$$

Bemerkungen:

• Für ein hinreichend grosses n ist $Z_n = X_1 + X_2 + ... + X_n$ annähernd normalverteilt mit Erwartungswert $E[Z_n] = n\mu$ und Varianz $Var[Z_n] = n\sigma^2$.

7 Statistik

7.1 Schätzer

Schätzer sind Funktionen von Zufallsvariablen und somit selbst wieder Zufallsvariablen. Sie verfügen deshalb über einen Erwartungswert und eine Varianz.

7.1.1 Erwartungstreuer Schätzer

Ein Schätzer T ist erwartungstreu wenn der Erwartungswert des Schätzers gleich dem zu schätzenden Parameter ϑ ist:

$$E[T] = \vartheta$$

7.1.2 Konsistenter Schätzer

Ein Schätzer T ist konsistent wenn er mit zunehmendem Stichprobenumfang n gegen den gesuchten Parameter ϑ konvergiert:

$$\lim_{n \to \infty} P_{\vartheta} \left[|T^{(n)} - \vartheta| > \epsilon \right] = 0 \text{ (für jedes } \epsilon > 0)$$

7.1.3 Momenten-Methode

Sei $X_1, X_2, ..., X_n$ eine Stichprobe vom Umfang n mit gegebener Verteilung t. Die Parameter von t seien unbekannt. Mit der Momenten-Methode können diese geschätzt werden. Der Momentenschätzer ist i.d.R. nicht erwartungstreu.

Vorgehen:

- 1. 1. Moment berechnen: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. 2. Moment berechnen: $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})^2$
- 3. Nimm die Formel für den Erwartungswert der geg. Verteilung t und setze sie gleich \overline{x}
- 4. Nimm die Formel für die Varianz der geg. Verteilung t und setze sie gleich s^2
- 5. Löse das Gleichungssystem auf. Du erhälst die gesuchten Parameter.

7.1.4 Maximum-Likelihood-Methode

Methode zur systematischen Gewinnung von Schätzfunktionen.

Vorgehen:

- 1. Likelihood-Funktion $L(x_1,...,x_n,\vartheta) = \prod_{i=1}^n f(x_i,\vartheta)$ aufstellen
- 2. Log-Likelihood-Funktion $\log L(x_1, ..., x_n, \vartheta)$ aufstellen (logarithmieren von L)
- 3. $\log L$ mit Hilfe elementarer Logarithmenregeln möglichst vereinfachen
- 4. $\log L$ nach jedem unbekannten Parameter partiell ableiten
- 5. Partielle Ableitungen = 0 setzen
- 6. Gleichungssystem nach Parametern auflösen

7.2 Tests

7.2.1 Wichtige Begriffe

- Nullhypothese H_0 : Die zu prüfende Annahme.
- Alternative Annahme, falls H_0 verworfen werden muss.
- **Signifikanzniveau** α: Ist die Wahrscheinlichkeit, dass die Nullhypothese verworfen werden muss (auch Wahrscheinlichkeit für Fehler 1. Art).
- Teststatistik T: Test- oder Prüfwert.
- P-Wert: Das kleinste Niveau, auf dem der Test die Nullhypothese noch verwirft.
- Fehler 1. Art: H₀ wird verworfen, obwohl sie richtig wäre.
- Fehler 2. Art: H_0 wird beibehalten, obwohl H_A stimmt.

7.2.2 Allgemeines Vorgehen

- 1. Wahl des Modells
- 2. Formulieren von H_0 und H_A .
- 3. Signifikanzniveau α festlegen.
- 4. Teststatistik T T festlegen.
- 5. Bestimmen der kritischen Grenzen.
- 6. Konkreter Wert für Teststatistik T berechnen.
- 7. Testentscheidung: H_0 beibehalten oder verwerfen?

7.2.3 z-Test

Der z-Test ist ein Test für den Erwartungswert bei bekannter Varianz σ^2 . Es seien also $X_1, X_2, ..., X_n \sim N(\vartheta, \sigma^2)i.i.d.$. Wir wollen die Nullhypothese $\vartheta = \vartheta_0$ testen.

Mittelwert
$$\overline{X}$$
: $\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$
Teststatistik T : $T = \frac{\overline{X} - \vartheta_0}{\sigma / \sqrt{n}} \sim N(0, 1)$

Kritischer Bereich:

Den kritischen Bereich bestimmt man abhängig von der Alternativhypothese H_A :

•
$$\vartheta_A>\vartheta_0$$
 einseitig: $K=(c_>,\infty)$ mit
$$c_>=(1-\alpha)\text{-Quantil}=\Phi^{-1}(1-\alpha)$$

•
$$\vartheta_A<\vartheta_0$$
 einseitig: $K=(-\infty,c_<)$ mit
$$c_<=\alpha\text{-Quantil}=\Phi^{-1}(\alpha)$$

•
$$\vartheta_A \neq \vartheta_0$$
 zweiseitig: $K = (-\infty, c_{\neq}) \cup (c_{\neq}, \infty)$ mit

$$c_{\neq} = \left(1 - \frac{\alpha}{2}\right)$$
-Quantil = $\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$

7.2.4 t-Test

Der t-Test ist ein Test für den Erwartungswert bei unbekannter Varianz σ^2 . Es seien also $X_1, X_2, ..., X_n \sim N(\vartheta, \sigma^2)i.i.d.$. Wir wollen die Nullhypothese $\vartheta = \vartheta_0$ testen.

$$\begin{array}{ll} \text{Mittelwert } \overline{X} \colon & \overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} \\ \text{Schätzfunktion für } S^2 \colon & S^2 = \frac{1}{n-1} \cdot \sum\limits_{i=0}^n (X_i - \overline{X})^2 \\ \text{Teststatistik } T \colon & T = \frac{\overline{X} - \vartheta_0}{S/\sqrt{n}} \sim t_{n-1} \end{array}$$

Die Teststatistik T ist **t-verteilt** mit n-1 Freiheitsgraden. Der kritische Bereich lässt sich analog zum z-Test mit den Quantilen der t_{n-1} -Verteilung bestimmen.

7.2.5 Ungepaarter Zweistichproben-z-Test

Seien $X_1,X_2,...,X_n \sim N(\mu_X,\sigma^2)$ und $Y_1,Y_2,...,Y_n \sim N(\mu_Y,\sigma^2)$ zwei Stichproben mit m=n oder $m\neq n$. Die Erwartungswerte μ_X und μ_Y seien unbekannt, die Varianz σ^2 sei bekannt. Der Test kann wie ein normaler z-Test durchgeführt werden, als Teststatistik T wird jedoch folgende Formel verwendet:

$$T = \frac{\left(\overline{X}_n - \overline{Y}_m\right) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1)$$

7.2.6 Ungepaarter Zweichstichproben-t-Test

Seien $X_1, X_2, ..., X_n \sim N(\mu_X, \sigma^2)$ und $Y_1, Y_2, ..., Y_n \sim N(\mu_Y, \sigma^2)$ zwei Stichproben mit m = n oder $m \neq n$. Die Erwartungswerte μ_X und μ_Y seien unbekannt, die Varianz

 σ^2 sei ebenfalls *unbekannt*. Der Test kann wie ein normaler t-Test durchgeführt werden, als Teststatistik T wird jedoch folgende Formel verwendet:

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_Y^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

$$S^2 = \frac{1}{m+n-2} ((n-1)S_X^2 + (m-1)S_Y^2)$$

$$T = \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

7.3 Konfidenzbereiche

Ein Konfidenzbereich gibt ein Intervall an, in dem sich ein gesuchter Parameter mit sehr hoher Wahrscheinlichkeit befindet.

8 Differential rechnung

8.1 Faktorregel

Ein konstanter Faktor bleibt beim Differenzieren erhalten:

$$y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$$

8.2 Summenregel

Bei einer endlichen Summe von Funktionen darf gliedweise differenziert werden:

$$y = f_1(x) + f_2(x) + \dots + f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + \dots + f_n'(x)$$

8.3 Produktregel

Die Ableitung einer in Produktform $y=u(x)\cdot v(x)$ darstellbaren Funktion erhält man nach folgender Produktregel:

$$y' = u'(x) \cdot v(x) + u(x) \cdot v'(x) = u'v + uv'$$

8.4 Quotientenregel

Die Ableitung einer Funktion, die als Quotient zweier Funktionen u(x) und v(x)in der Form $y = \frac{u(x)}{v(x)}$ darstellbar ist, erhält man nach der Quotientenregel:

$$y' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$$

8.5 Kettenregel

Die Ableitung einer zusammengesetzten (verketteten) Funktion y = F(u(x)) = f(x) erhält man als Produkt aus äusserer und innerer Ableitung:

$$y' = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

8.6 Partielle Differentiation

Summanden, die keine Variable beinhalten nach der abgeleitet wird, fallen WEG!

8.7 Wichtige elementare Ableitungen

$$f(x) = c \qquad \rightarrow \qquad f'(x) = 0$$

$$f(x) = x^n \qquad \rightarrow \qquad f'(x) = n \cdot x^{n-1}$$

$$f(x) = \sqrt{x} \qquad \rightarrow \qquad f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(x) = e^x \qquad \rightarrow \qquad f'(x) = e^x$$

$$f(x) = a^x \qquad \rightarrow \qquad f'(x) = (\ln a) \cdot a^x$$

$$f(x) = \ln x \qquad \rightarrow \qquad f'(x) = \frac{1}{x}$$

$$f(x) = \log_a x \qquad \rightarrow \qquad f'(x) = \frac{1}{(\ln a) \cdot x}$$

9 Integralrechnung

9.1 Faktorregel

Ein konstanter Faktor darf vor das Integral gezogen werden:

$$\int_{a}^{b} C \cdot f(x) dx = C \cdot \int_{a}^{b} f(x) dx$$

9.2 Summenregel

Eine endliche Summe von Funktionen darf giedweise integriert werden:

$$\int_{a}^{b} (f_1(x) + f_2(x) + \dots + f_n(x)) dx =$$

$$\int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_1(x) dx + \dots + \int_{a}^{b} f_1(x) dx$$

9.3 Vertauschungsregel

Vertauschen der beiden Integrationsgrenzen bewirk einen Vorzeichenwechsel des Integrals:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

9.4 Gleiche Integrationsgrenzen

Fallen die Integrationsgrenzen zusammen (a = b), so ist der Integralwert gleich Null:

$$\int_{a}^{b} f(x)dx = 0$$

9.5 Partielle Integration

$$\int f(x)dx = \int u(x) \cdot v'(x)dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x)dx$$

Vorgehen:

1. Integrand in u(x) und v'(x) zerlegen.

- 2. u(x) ableiten, v'(x) integrieren.
- 3. Formel aufschreiben und lösen.

9.6 Wichtige Stammintegrale

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$
$$\int \frac{1}{x} dx = \ln|x| + C \qquad \int e^x dx = e^x + C$$

9.7 Weitere Integrale

$$\int a \, dx = ax
\int x^a \, dx = \frac{1}{a+1} x^{a+1}, \qquad a \neq -1
\int (ax+b)^c \, dx = \frac{1}{a(c+1)} (ax+b)^{c+1}, \qquad c \neq -1
\int \frac{1}{a} \, dx = \log|x|, \qquad x \neq 0
\int \frac{1}{ax+b} \, dx = \frac{1}{a} \log|ax+b|
\int \frac{1}{x^2+a^2} \, dx = \frac{1}{a} \arctan \frac{x}{a}
\int e^{ax} \, dx = \frac{1}{a} e^{ax}
\int x e^{ax} \, dx = \frac{e^{ax}}{a^2} (ax-1)
\int x^2 e^{ax} \, dx = e^{ax} \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)
\int \log|x| \, dx = x(\log|x|-1)
\int \log_a |x| \, dx = x(\log_a |x| - \log_a e)
\int x^a \log x \, dx = \frac{x^{a+1}}{a+1} \left(\log x - \frac{1}{a+1}\right), \quad a \neq -1, x > 0
\int \frac{1}{x} \log x \, dx = \frac{1}{2} \log^2 x, \qquad x > 0$$

10 Verschiedenes

Binomialkoeffizient

Der Binomialkoeffizient

$$\begin{pmatrix} n \\ k \end{pmatrix}$$

gibt für $n, k \in \mathbb{N}$ an, wie viele Möglichkeiten es gibt, k Objekte aus n Objekten auszuwählen. Damit gibt der Binomialkoeffizient an, wie viele k-elementige Teilmengen aus einer n-elementigen Menge gebildet werden können (gesprochen: "k aus n" oder "k tief n").

Für k = 0 ist der Binomialkoeffizient 1:

$$\left(\begin{array}{c} n \\ 0 \end{array}\right) = 1$$

Für k = 1 ist der Binomialkoeffizient n:

$$\left(\begin{array}{c} n\\1 \end{array}\right) = n$$

Für k > n ist der Binomialkoeffizient stets 0.

Gammafunktion

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1}e^{-t}dt = (x-1)!$$

Diverse Summenformeln

$$\sum_{k=0}^{\infty} \frac{1}{k!} = e$$

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$$

$$\sum_{k=1}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda} - 1$$

$$\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = \frac{n(n-1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

$$\sum_{i=0}^{\infty} a \cdot p^i = \sum_{i=1}^{\infty} a \cdot p^{i-1} = \frac{a}{1-p}$$

Produkteformeln

$$\prod_{k=m}^{n} a \cdot x_i = a^{n-m+1} \cdot \prod_{k=m}^{n} x_i$$

Logarithmenregeln

$$\begin{array}{rcl} \log\left(uv\right) & = & \log\left(u\right) + \log\left(v\right) \\ \log\left(\frac{u}{v}\right) & = & \log\left(u\right) - \log\left(v\right) \\ \log_{b}\left(r\right) & = & \frac{\log_{a}\left(r\right)}{\log_{a}\left(b\right)} \\ \log_{a}\left(u^{k}\right) & = & k \cdot \log_{a}\left(u\right) \\ \log_{a}\left(\sqrt[n]{u}\right) & = & \log_{a}\left(u^{\frac{1}{n}}\right) = \frac{1}{n} \cdot \log_{a}\left(u\right) \\ \log_{a}\left(a^{b}\right) & = & b \\ \log_{a}\left(a\right) & = & 0 \\ \log_{a}\left(a\right) & = & 1 \\ \ln e & = & 1 \end{array}$$

11 Beispiele

11.1 t-Test

Ein Waschmittelhersteller bringt 5kg-Packungen in den Umlauf. Die Konsumentenschutzorganisation kauft 25 Packungen. Es ergibt sich ein Mittel von $\overline{X}=4.9kg$ und eine empirische Stichprobenvarianz $S^2=0.1kg^2$. Die einzelnen Gewichte seine durch unabhängige $N(\mu,\sigma^2)$ Zufallsvariablen beschrieben.

- 1. Wie lauten die Hypothesen H_0 und H_A ?
- 2. Wie ist $(\overline{X} 5)/(S/5)$ verteilt unter H_0 ?
- 3. Führen Sie den t-Test auf dem 5
- 4. Berechnen Sie das 95%-Vertrauensintervall für den in 3. beschriebenen Test.

Lösung:

- 1. $H_0: \mu = 5, H_1: \mu < 5$
- 2. Verteilung: $\sim t_{5^2-1} = t_{24}$
- 3. $T_1 = \frac{\overline{X} \mu_0}{S/\sqrt{n}} = -1.581$. Wir ermitteln das t-Quantil für n-1=24 Freiheitsgrade und $t^{-1}(\alpha)=t^{-1}(0.05)=t^{-1}(0.95)=1.711$. Somit erhalten wir eine kritische Grenze von c=-1.711. Weil $T_1=-1.581>c$ ist, wird die Nullhypothese nicht verworfen.
- 4. ???

11.2 Erwartungstreuer Schätzer

Wir prüfen, ob der Schätzer $T = \frac{1}{n} \sum_{i=1}^{n} X_i$ erwartungstreu ist.

$$E[T] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=0}^{n}E[X_{i}] = \frac{1}{n}\cdot n\cdot \mu = \mu$$

Der Schätzer T ist erwartungstreu.

11.3 Verteilung der Summe zweier normalerverteilter ZV

Seien $X \sim N(\mu_1, \sigma_1^2)$ und $Y \sim N(\mu_2, \sigma_2^2)$. Wie ist Z = 1 + aX + bY verteilt?

Lösung:

$$Z \sim N(1 + aE[X] + bE[Y], a^2Var[X] + b^2Var[Y])$$

 $\sim N(1 + a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$