#### 필수유형 (01) 함수의 뜻

두 집합  $X = \{-1, 0, 1\}, Y = \{-1, 0, 1, 2\}$ 에 대하여 다음 대응 중 X에서 Y로의 함수인 것 을 찾아라.

$$(1) x \longrightarrow 2|x|$$

$$(2) x \longrightarrow 2x+1$$

(3) 
$$x \longrightarrow x^2 + 1$$

### 풍쌤 POINT

X에서 Y로의 함수  $\Rightarrow$  X의 각 원소에 Y의 원소가 오직 하나씩 대응한다는 뜻이야.

풀이 • ● (1) STEP1 대응을 그림으로 나타내기



STEP 2 대응이 함수인지 확인하기

집합 X의 각 원소에 집합 Y의 원소가 오직 하나씩 대응하므 로 함수이다.

**1** x = -1일 때,

 $2|x|=2\times |-1|=2$ 

x=0일 때,

 $2|x| = 2 \times |0| = 0$ 

x=1일 때,

 $2|x| = 2 \times |1| = 2$ 

(2) STEP1 대응을 그림으로 나타내기



STEP 2 대응이 함수인지 확인하기

집합 X의 원소 1에 대응하는 집합 Y의 원소가 없으므로 함 수가 아니다.

**②** *x*=−1일 때,

 $2x+1=2\times(-1)+1=-1$ 

x=0일 때,

 $2x+1=2\times0+1=1$ 

x=1일 때.

 $2x+1=2\times1+1=3$ 

(3) STEP1 대응을 그림으로 나타내기



STEP 2 대응이 함수인지 확인하기

집합 X의 각 원소에 집합 Y의 원소가 오직 하나씩 대응하므 로 함수이다.

**③** x = -1일 때.

 $x^2+1=(-1)^2+1=2$ x=0일 때.

 $x^2+1=0^2+1=1$ 

x=1일 때.

 $x^2+1=1^2+1=2$ 

따라서 X에서 Y로의 함수인 것은 (1), (3)이다.

**(1)** (3)

## 풍쌤 강의 NOTE



## 01-1 인유사

집합  $X = \{-1, 0, 1\}$ 에 대하여 다음 대응 중 X에서 X로의 함수인 것을 찾아라.

- (1)  $x \longrightarrow 2x$
- (2)  $x \longrightarrow x-1$
- (3)  $x \longrightarrow |x|-1$

## 01-2 (유사)

두 집합  $X = \{-1, 0, 1\}, Y = \{1, 2, 3\}$ 에 대하여 다 음 대응 중 X에서 Y로의 함수인 것을 모두 찾아라.

- (1)  $x \longrightarrow x^2$
- (2)  $x \longrightarrow |x| + 2$
- $(3) x \longrightarrow x^3 + 2$

## 01-3 ﴿ 변형〉

집합  $X = \{-2, 0, 2\}$ 에 대하여 다음 중 X에서 X로 의 함수가 아닌 것은?

- ① f(x) = -x ② f(x) = |x|
- (3) f(x) = -|x|  $(4) f(x) = x^2$
- $(5) f(x) = x^2 2$

## 01-4 € 변형

다음 대응 중 X에서 Y로의 함수인 것은?











## 01-5 (변형)

두 집합  $X = \{0, 1, 2\}, Y = \{-2, -1, 0, 1, 2\}$ 에 대하여 다음 |보기| 중 X에서 Y로의 함수인 것을 모 두 골라라.

⊣보기⊢

$$\neg f(x) = x$$

$$\bot . f(x) = -x$$

$$\vdash f(x) = x^2 - 2$$

$$\exists f(x) = x^2 - 2$$
  $\exists f(x) = \frac{x^2 - 1}{x - 1}$ 

#### 필수유형 (02) 한숫값과 치역

함수 f(x) = ax + b에 대하여 다음 물음에 답하여라.

- (1) 정의역이  $\{x \mid -4 \le x \le 4\}$ , 치역이  $\{y \mid -7 \le y \le 17\}$ 이 되도록 실수 a, b의 값을 정 할 때, a+b의 값을 구하여라. (단, a>0)
- (2) 정의역이  $\{x \mid -6 \le x \le -2\}$ , 치역이  $\{y \mid 2 \le y \le 10\}$ 이 되도록 실수 a, b의 값을 정 할 때, a+b의 값을 구하여라. (단, a<0)

풍쌤 POINT



풀이 • • (1) STEP1 f(-4), f(4)의 값 구하기

함수 f(x) = ax + b에서 a > 0이므로 x의 값이 증가할 때.

y의 값도 증가한다.

$$f(-4) = -7, f(4) = 17^{2}$$

STEP **2** *a*, *b*의 값 구하기

$$f(-4) = -7$$
에서  $-4a+b=-7$ 

f(4) = 17에서 4a + b = 17

①+ⓒ을 하면 2*b*=10 ∴ *b*=5

b=5를  $\bigcirc$ 에 대입하면 -4a+5=-7  $\therefore a=3$ 

STEP3 a+b의 값 구하기

a+b=3+5=8

(2) STEP1 f(-6), f(-2)의 값 구하기

함수 f(x) = ax + b에서 a < 0이므로 x의 값이 증가할 때.

y의 값은 감소한다. <sup>❸</sup>

$$f(-6)=10, f(-2)=2$$

STEP 2 *a*, *b*의 값 구하기

$$f(-6)=10$$
에서  $-6a+b=10$ 

$$f(-2)=2$$
에서  $-2a+b=2$ 

①- ①을 하면 4a=-8  $\therefore a=-2$ 

a=-2를  $\bigcirc$ 에 대입하면 4+b=2  $\therefore b=-2$ 

STEP3 a+b의 값 구하기

$$\therefore a+b=-2+(-2)=-4$$

① 함수 y=ax+b에서 a>0이 면 x의 값이 증가할 때 y의 값 도 증가한다.

 $\dots$   $\bigcirc$  ② x의 값이 증가할 때 y의 값도 증가하므로 x의 값이 최소일 때 y의 값도 최소이고, x의 값이 최대일 때 y의 값도 최대이다.

.... (L)

····· (¬)

.... (L)

③ 함수 y=ax+b에서 a<0이 면 x의 값이 증가할 때 y의 값 은 감소한다.

**₽**(1)8 (2) −4



일차함수나 이차함수에서 치역을 구하는 문제는 정의역에서 함수의 최댓값과 최솟값을 구하는 것과 같다.

## 02-1 인유사

정의역이  $\{x \mid 0 \le x \le 3\}$ 인 함수 y = ax + b의 치역이  $\{y \mid -5 \le y \le 1\}$ 이 되도록 실수 a, b의 값을 정할 때, a + b의 값을 구하여라. (단. a < 0)

#### 02-2 인유사

정의역이  $\{x \mid -2 \le x \le 2\}$ 인 함수  $y = ax^2 + 2ax + b$ 의 치역이  $\{y \mid -3 \le y \le 6\}$ 이 되도록 실수 a, b의 값을 정할 때, a-b의 값을 구하여라. (단, a > 0)

# 02-3 ●변형

두 집합  $X = \{1, 2, 3\}, Y = \{4, 5, 6\}$ 에 대하여 함수  $f: X \longrightarrow Y$ 가 다음 그림과 같을 때, 함수 f의 치역의 모든 원소의 합을 구하여라.



## 02-4 (변형)

두 집합  $X=\{1,\ 2,\ 3\},\ Y=\{12,\ 22,\ 32\}$ 에 대하여 f(x)=ax+2가 X에서 Y로의 함수가 되도록 하는 상수 a의 값을 구하여라. (단, a>0)

## **02-5** ●변형

실수 전체의 집합에서 함수 f를

$$f(x) = \begin{cases} \sqrt{x} & (x 는 \text{ 유리수}) \\ x^2 & (x 는 \text{ 무리수}) \end{cases}$$

으로 정의할 때,  $f\left(\frac{9}{4}\right)+f\left(\frac{1}{\sqrt{2}}\right)$ 의 값을 구하여라.

## 02-6 인 실력

기출

자연수 전체의 집합에서 정의된 함수 f가  $f(x) = (x \ \mbox{O} \mbox{o} \ \mbox{$ 

일 때, f(8) + f(20)의 값을 구하여라.

#### 띨수유형 (03) 서로 같은 함수

#### 다음 물음에 답하여라.

- (1) 집합  $X = \{1, 2\}$ 를 정의역으로 하는 두 함수 f(x) = ax + b,  $g(x) = 2x^3 1$ 이 서로 같을 때, 상수 a, b에 대하여 a-b의 값을 구하여라.
- (2) 집합  $X = \{-1, a\}$ 를 정의역으로 하는 두 함수  $f(x) = x^2 + x + 1$ , g(x) = x + b가 서 로 같을 때, 상수 a, b에 대하여 a+b의 값을 구하여라. (단, n(X)=2)

## 풍쌤 POINT

두 함수 f, g가 모두 집합 X를 정의역으로 하고 있으므로 두 함수가 서로 같으려면 정의역의 각 원 소에 대한 함숫값이 서로 같은지만 확인하면 돼.

풀이 • ● (1) STEP1 서로 같은 함수임을 이용하여 관계식 찾기

두 함수 f(x). g(x)가 서로 같으므로  $\mathfrak{g}$  정의역의 원소인  $\mathfrak{g}$  1,  $\mathfrak{g}$   $\mathfrak{g}$  가서로 같으면 에 대하여

(i) 정의역과 공역이 각각 같다. (ii) 정의역에 속하는 모든 원소

x에 대하여 f(x) = g(x)

$$f(1)=g(1), f(2)=g(2)$$

STEP2 a. b에 대한 식 세우기

f(1)=g(1)에서  $a+b=2\times 1^3-1$   $\therefore a+b=1$  ·····  $\bigcirc$ 

f(2) = g(2) 에서  $2a + b = 2 \times 2^3 - 1$   $\therefore 2a + b = 15 \cdots$ 

STEP3 a-b의 값 구하기

①-¬을 하면 *a*=14

a=14를  $\bigcirc$ 에 대입하여 정리하면 b=-13

$$a-b=14-(-13)=27$$

(2) STEP1 서로 같은 함수임을 이용하여 관계식 찾기

두 함수 f(x), g(x)가 서로 같으므로 정의역의 원소인 -1, a에 대하여

$$f(-1) = g(-1), f(a) = g(a)^{2}$$

STEP 2 a, b의 값 구하기

$$f(-1)=g(-1)$$
에서  $(-1)^2+(-1)+1=-1+b$ 

 $\therefore b=2$ 

.....

$$f(a) = g(a)$$
 에서  $a^2 + a + 1 = a + b$ 

..... (L)

 $\bigcirc$ 을  $\bigcirc$ 에 대입하면  $a^2+a+1=a+2$ 

$$a^2-1=0$$
,  $(a+1)(a-1)=0$   $\therefore a=-1 = 1$ 

이때 집합 X의 원소가 2개 $^{lacktree}$ 이어야 하므로 a=1

③ n(X) = 2에서  $a \neq -1$ 

② 정의역에 미지수가 있더라도 풀이 방법은 (1)과 마찬가지로

두 함숫값이 같음을 이용한다.

STEP3 a+b의 값 구하기

$$a+b=1+2=3$$

**(1)** 27 (2) 3



정의역이 같은 두 함수가 서로 같다는 것은 두 함수의 함수식이 같다는 것이 아니라. 정의역에 속하 는 모든 원소에 대하여 두 함수의 함숫값이 같다는 뜻이다.

## 03-1 (유사)

집합  $X = \{-1, 1\}$ 을 정의역으로 하는 두 함수

$$f(x)=x+a$$
,  $g(x)=\frac{b}{x+2}$ 

가 서로 같을 때, 상수 a, b에 대하여 a+b의 값을 구 하여라.

## 03-2 (유사)

집합  $X = \{-2, a\}$ 를 정의역으로 하는 두 함수

$$f(x) = x^3 + bx^2$$
,  $g(x) = 4x - 8$ 

로 정의하자. 두 함수 f와 g가 서로 같도록 하는 상수 a, b에 대하여 a+b의 값을 구하여라. (단,  $a \neq -2$ )

## 03-3 (변형)

정의역이 집합  $X = \{-1, 0, 1\}$ 인 함수 f(x) = |x|에 대하여 함수 f와 서로 같은 함수인 것만을 |보기|에서 모두 골라라.

(단, 세 함수 g, h, k의 정의역은 집합 X이다.)

$$\neg g(x) = x-1$$

$$L. h(x) = x^2$$

$$\vdash k(x) = \sqrt{x^2}$$

## 03-4 ( 변형

두 실수를 원소로 하는 집합 X에서 정의된 두 함수

$$f(x) = -x^2 + 8x$$
,  $g(x) = x^2 + 6$ 

이 서로 같을 때, 집합 X의 모든 원소의 합을 구하여 라.

## 03-5 (변형)

공집합이 아닌 집합 X를 정의역으로 하는 두 함수

$$f(x) = x^2 - 1$$
,  $g(x) = 4x + 20$ 

에 대하여 f=g가 되도록 하는 집합 X를 |보기|에서모두 골라라.

#### ⊣보기⊢

$$\neg. \{-3\}$$

## 03-6 € 실력

공집합이 아닌 집합 X를 정의역으로 하는 두 함수

$$f(x) = x^3 + 4$$
,  $g(x) = 4x^2 + x$ 

가 서로 같도록 하는 집합 X의 개수를 구하여라.

#### 필수유형 (04) 함수의 그래프

다음 |보기| 중 함수의 그래프인 것을 모두 골라라.

⊣보기⊢





ㄹ.



풍쌤 POINT

함수의 그래프는 y축에 평행한 직선을 그었을 때, 그래프와 직선의 교점이 오직 하나뿐인 그래프야.

풀이  $\bullet$  STEP1 그래프에 y축에 평행한 직선 그어 보기

주어진 그래프에 y축에 평행한 직선을 그어 보면 다음과 같다.  $\bullet$  입의의 직선을 긋되. 그래프와

직선의 교점이 두 개 이상인 경 우를 찾아본다.

0



Ю  $1 2 \tilde{x}$ 



STEP2 함수의 그래프 찾기

함수의 그래프이면 y축에 평행한 직선과 그래프의 교점이 오직 하나뿐이어야 한다. ◎

따라서 이를 만족시키는 것은 ㄱ, ㄹ이다.

② 한 곳에서 교점이 하나인 것이 아니라, 모든 x에 대하여 y축 에 평행한 직선과 교점이 하나 뿐이어야 한다.

립 ㄱ, ㄹ

풍쌤 강의 NOTE

함수의 그래프인지 아닌지를 판단하려면 정의역의 각 원소 a에 대하여 y축에 평행한 직선 x=a를 그어 보면 된다. 이때 교점이 1개이면 함수의 그래프이고, 교점이 없거나 2개 이상이면 함수의 그래 프가 아니다.

## 04-1 인유사)

다음 |보기| 중 함수의 그래프인 것을 모두 골라라.



## 04-3 (변형)

다음 |보기| 중 실수 전체의 집합에서 정의된 함수의 그래프인 것을 모두 골라라.



## 04-2 인유사

다음 |보기| 중 함수의 그래프인 것을 모두 골라라.



# 04-4 ●변형

두 집합  $X = \{-1, 0, 1\}, Y = \{1, 2, 3, 4, 5\}$ 에 대하 여  $|보기|에서 함수 <math>f: X \longrightarrow Y$ 의 그래프가 될 수 있 는 것을 골라라.

# 필수유형 (15) 일대일함수와 일대일대응

#### 다음 물음에 답하여라.

(1) 두 집합  $X = \{x | 1 \le x \le 2\}$ ,  $Y = \{y | 4 \le y \le 7\}$ 에 대하여 집합 X에서 집합 Y로의 함수 f(x) = ax + b가 일대일대응이다. 이때 상수 a, b에 대하여 ab의 값을 구하여라.

(단, a>0)

(2) 실수 전체의 집합에서 정의된 함수  $f(x) = \begin{cases} ax & (x \ge 0) \\ (3-a)x & (x < 0) \end{cases}$ 가 일대일대응이 되도록 하는 정수 a의 개수를 구하여라.

## 풍쌤 POINT

함수 f가 일대일대응이 되려면 f가 일대일함수이고 (치역)=(공역)이어야 해.

#### 풀이 • ● (1) STEP1 일대일대응이 되는 조건 찾기

함수 f가 일대일대응 이고 a>0이므로 y=f(x)의 그래프는 오른쪽 그림과 같아야한다. 이때 치역과 공역이 같아야하므로 그래프가 두 점 (1,4),(2,7)을 지나야한다.

$$f(1) = 4, f(2) = 7$$

STEP2 a, b에 대한 식 세우기

$$f(1) = 4$$
에서  $a+b=4$ 

$$f(2) = 7$$
에서  $2a + b = 7$ 

STEP3 ab의 값 구하기

 $\bigcirc$ ,  $\bigcirc$ 을 연립하여 풀면 a=3, b=1  $\therefore ab=3\times 1=3$ 



두 직선 y=ax, y=(3-a)x는 모두 원점을 지나므로 치역과 공역이 같다. 이때 함수 f가 일대일대응 이 되려면 x의 값이 증가할 때, f(x)의 값은 증가하거나 감소해야 한다.



STEP2 a에 대한 부등식 세우기

두 직선의 기울기의 부호가 같아야 하므로 a(3-a) > 0

STEP3 정수 a의 개수 구하기

$$a(a-3) < 0$$
 :  $0 < a < 3$ 

따라서 정수 *a*는 1, 2의 2개이다.



- (i) x의 값이 증가할 때 f(x)의 값은 증가하거나 감소해 야 한다.
- (ii) 정의역의 양 끝 값에서의 함숫값이 공역에서의 양 끝 값과 같아야 한다.



.....

....(L)

**(**1) 3 (2) 2

## 풍쌤 강의 NOTE

일대일대응이면 일대일함수이지만 일대일함수라고 해서 반드시 일대일대응인 것은 아니다. 따라서 일대일대응인지 판별할 때에는 일대일함수의 그래프인지 알아본 후 치역과 공역이 같은지를 확인한다.

## 05-1 인유사

두 집합  $X = \{x \mid -3 \le x \le 3\}, Y = \{y \mid -2 \le y \le 10\}$ 에 대하여 집합 X에서 집합 Y로의 함수

f(x) = ax + b가 일대일대응이다. 이때 상수 a, b에 대하여 a+b의 값을 구하여라. (단, a<0)

## 05-2 (유사)

실수 전체의 집합에서 정의된 함수

$$f(x) = \begin{cases} x+3 & (x \ge 0) \\ (4-a)x+3 & (x < 0) \end{cases}$$

가 일대일대응이 되도록 하는 자연수 a의 개수를 구하 여라.

## 05-3 《변형》

두 집합  $X = \{1, 2, 3, 4\}, Y = \{5, 6, 7, 8\}$ 에 대하여 함수 f는 집합 X에서 집합 Y로의 일대일대응이다. f(1)=7, f(2)-f(3)=3일 때, f(3)+f(4)의 값 은?

- ① 11
- ② 12
- ③ 13

- (4) 14
- (5) 15

## 05-4 ( 변형

다음 실수 전체의 집합에서 정의된 |보기|의 함수의 그래프 중 일대일대응의 그래프인 것을 모두 골라라.



# 05-5 인텔릭)

기출

실수 전체의 집합에서 정의된 함수 f(x) = a|x-2|+2x-10| 일대일대응이 되도록 하 는 정수 a의 최댓값을 구하여라.

#### 필수유형 (06) 항등함수와 상수함수

실수 전체의 집합에서 정의된 두 함수 f, g에 대하여 f(x)는 항등함수이고, g(x)는 상수함수이 다. 다음을 구하여라.

$$(1) f(1) = g(1) = 1$$
일 때,  $f(2) + g(3)$ 의 값

$$(2) f(2) = g(2)$$
일 때,  $f(4) + g(5)$ 의 값

$$(3) f(8) = g(5)$$
일 때,  $f(10) + g(10)$ 의 값

## 풍쌤 POINT

- 항등함수는 f(x) = x와 같아. → f(1) = 1, f(2) = 2, f(3) = 3, ···
- 상수함수는 g(x)=c (c는 상수)와 같아.  $\Rightarrow g(1)=g(2)=g(3)=\cdots=c$

풀이 • ● (1) STEP1 f(2)의 값 구하기

$$f(x)$$
가 항등함수이므로 $f(x)=x^{\bullet \bullet}$   $\therefore f(2)=2$ 

STEP2 g(3)의 값 구하기

$$g(x)$$
가 상수함수이고,  $g(1)=1$ 이므로  $g(x)=1$ 

$$g(3)=1$$

STEP3 f(2) + g(3)의 값 구하기

$$f(2)+g(3)=2+1=3$$

(2) STEP1 f(4)의 값 구하기

$$f(x)$$
가 항등함수이므로  $f(x)=x$   $\therefore f(4)=4$ 

STEP2 g(5)의 값 구하기

$$g(x)$$
가 상수함수이고,  $f(2)=2=g(2)$ 이므로  $g(x)=2^{2}$ 

$$\therefore g(5)=2$$

STEP3 f(4)+g(5)의 값 구하기

$$f(4)+g(5)=4+2=6$$

(3) STEP1 f(10)의 값 구하기

$$f(x)$$
가 항등함수이므로  $f(x)=x$   $\therefore f(10)=10$ 

STEP2 g(10)의 값 구하기

$$g(x)$$
가 상수함수이고,  $f(8)=8=g(5)$ 이므로  $g(x)=8$ 

$$g(10)=8$$

STEP3 f(10)+g(10)의 값 구하기

$$f(10)+g(10)=10+8=18$$

② g(x)는 상수함수이므로

g(2) = 2에서 g(5) = 5로 착

각하지 않도록 주의한다.

항등함수이면 함수식은 반드시 f(x) = x로 나타난다.

**(1)** 3 (2) 6 (3) 18





### 06-1 인유사)

실수 전체의 집합에서 정의된 두 함수 f, g에 대하여 f(x)는 항등함수이고, g(x)는 상수함수이다.

f(6) = g(6)일 때, f(11) + g(7)의 값을 구하여라.

## 06-2 ● 변형

기출

집합  $X = \{-3, 1\}$ 에 대하여 집합 X에서 집합 X로 의 함수

$$f(x) = \begin{cases} 2x + a & (x < 0) \\ x^2 - 2x + b & (x \ge 0) \end{cases}$$

이 항등함수일 때, ab의 값은? (단, a, b는 상수이다.)

- 1 4
- ② 6
- ③ 8
- (4) 10
- (5) 12

## 06-3 (현형)

실수 전체의 집합에서 정의된 |보기|의 함수 중에서 다음 함수를 모두 골라라.

⊣보기├─

 $\neg.y=1$ 

 $\vdash . y = x$ 

 $\vdash y = |x|$ 

=.y = -3

(1) 항등함수

(2) 상수함수

## 06-4 (현형)

|보기|에서 다음 함수를 모두 골라라.



(1) 항등함수

(2) 상수함수

## 06-5 인 실력

집합  $X = \{1, 2, 4\}$ 에서 정의된 세 함수  $f_1, f_2, f_3$ 에 대하여  $f_1$ 은 항등함수,  $f_2$ 는 일대일대응,  $f_3$ 은 상수함수  $0|\Gamma_{1}, f_{1}(2) = f_{2}(4) = f_{3}(2), f_{2}(4) = f_{2}(2) - 2f_{2}(1)$ 일 때,  $f_1(1)+f_2(1)+f_3(1)$ 의 값을 구하여라.

#### 필수유형 (07) 학수의 개수

두 집합  $X = \{1, 2, 3\}, Y = \{a, b, c\}$ 에 대하여 집합 X에서 집합 Y로의 함수 중 다음을 구하 여라.

(1) 함수의 개수

(2) 일대일대응의 개수

(3) 항등함수의 개수

(4) 상수함수의 개수

## 풍쌤 POINT

두 집합 X, Y에 대하여 함수  $f: X \longrightarrow Y$ 의 개수는 정의역 X의 각 원소의 함숫값을 정하는 방법 의 수를 생각하면 돼.

풀이 • ● (1) STEP1 정의역의 각 원소의 함숫값이 될 수 있는 원소 구하기

1의 함숫값이 될 수 있는 것은 a, b, c의 3개

2의 함숫값이 될 수 있는 것도 a, b, c의 3개

3의 함숫값이 될 수 있는 것도 a, b, c의 3개

STEP2 함수의 개수 구하기

따라서 함수의 개수는

 $3\times3\times3=27^{\bullet}$ 

- (2) STEP1 정의역의 각 원소의 함숫값이 될 수 있는 원소 구하기 1의 함숫값이 될 수 있는 것은 a, b, c의 3개 2의 함숫값이 될 수 있는 것은 1의 함숫값을 제외한 2개 3의 함숫값이 될 수 있는 것은 1, 2의 함숫값을 제외한 1개 STEP 2 일대일대응의 개수 구하기 따라서 일대일대응의 개수는
- 각각의 함숫값이 될 수 있는 경 우는 동시에 일어나므로 곱의 법칙을 이용한다.

 $3\times2\times1=6$ (3) 1, 2, 3 각각의 함숫값 1, 2, 3이 공역 Y의 원소가 아니므로 항

등함수는 없다

따라서 항등함수의 개수는 0이다.

- (4) 1, 2, 3 모두의 함숫값이 될 수 있는 것은 a, b, c의 3개<sup>®</sup>이다. ◎ 상수함수의 개수는 공역의 원 따라서 상수함수의 개수는 3이다.
- ② 항등함수는 f(x)=x이어야 하 므로 집합 X의 원소가 집합 Y에도 있어야 한다.
  - 소의 개수와 같다.

**(**1) 27 (2) 6 (3) 0 (4) 3

## 풍쌤 강의 NOTE

함수  $f: X \longrightarrow Y$ 에서 두 집합 X, Y의 원소의 개수가 각각 m, n일 때,

① 함수의 개수:  $n \times n \times n \times \cdots \times n = n^m$ 

m7 $\parallel$ 

- ② 일대일함수의 개수:  $n \times (n-1) \times (n-2) \times \cdots \times \{n-(m-1)\}$  (단.  $n \ge m$ )
- ③ 일대일대응의 개수:  $n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ (단, n=m)
- ④ 상수함수의 개수: n

### 07-1 인유사)

두 집합  $X = \{-1, 0, 1\}, Y = \{-2, -1, 0, 1, 2\}$ 에 대하여 집합 X에서 집합 Y로의 함수 중 다음을 구하 여라.

- (1) 함수의 개수
- (2) 일대일함수의 개수
- (3) 항등함수의 개수
- (4) 상수함수의 개수

## 07-2 (유사)

집합  $X = \{a, b, c, d\}$ 에 대하여 집합 X에서 집합 X로의 함수 중 다음을 구하여라.

- (1) 함수의 개수
- (2) 일대일대응의 개수
- (3) 항등함수의 개수
- (4) 상수함수의 개수

## 07-3 ◎ 변형)

세 집합  $X=\{1, 2, 3\}, Y=\{1, 2\}, Z=\{4, 5, 6\}$ 에 대하여 집합 X에서 집합 Y로의 함수의 개수를 a. 집 합 X에서 집합 Z로의 일대일대응의 개수를 b, 집합 Z에서 집합 Y로의 상수함수의 개수를 c라 할 때. a+b+c의 값을 구하여라.

## 07-4 ( 변형 )

집합  $X = \{1, 2, 3\}$ 에 대하여 함수  $f: X \longrightarrow X$ 가  $\{f(1)-1\}\{f(2)-2\}\neq 0$ ,  $\{f(1)-1\}\{f(3)-3\}=0$ 

을 만족시킬 때, 함수 f의 개수를 구하여라.

## 07-5 € 실력

두 집합  $X = \{1, 2, 3, 4\}, Y = \{a, b, c, d\}$ 에 대하여 함수  $f: X \longrightarrow Y$ 가 일대일대응이고  $f(2) \neq a$ 일 때. 함수 f의 개수를 구하여라.

## 07-6 € 절력



집합  $A = \{-2, -1, 0, 1, 2\}$ 에 대하여 다음 두 조건 을 모두 만족시키는 함수 f의 개수를 구하여라.

- (가) 함수 *f*는 *A*에서 *A*로의 함수이다.
- (나) A의 모든 원소 x에 대하여 f(-x) = -f(x)이다.

## · · · · 풍산자 <mark>유형</mark> 특깅

y=|f(x)|에서  $({\rm i})f(x)\!\ge\!00$ 면  $y\!=\!f(x)$   $({\rm ii})f(x)\!<\!00$ 면  $y\!=\!-f(x)$ 

y=f(|x|)에서 (i)  $x \ge 0$ 이면 y=f(x)(ii) x < 0이면 y=f(-x)

 $y=|x|^{2}-2|x|-3$   $=|x^{2}|-2|x|-3$   $=x^{2}-2|x|-3$ 

#### 절댓값 기호를 포함한 함수의 그래프

절댓값 기호를 포함한 함수의 그래프를 그리는 방법에 대해 배우고, 그 특징을 알아보자.

#### ▶ 함수 y=|f(x)| 꼴의 그래프를 그리는 방법

- ① 함수 y=f(x)의 그래프를 그린다.
- $2 f(x) \ge 0$ 인 구간에서는 그래프를 그대로 둔다.
- 3f(x) < 0인 구간에서는 그래프를 x축에 대하여 대칭이동한다.

## 예시 1 함수 y=|f(x)| 꼴의 그래프

함수  $y = |x^2 - 2x - 3|$ 의 그래프를 그려라.

함수  $f(x) = x^2 - 2x - 3$ 이라 하면

$$f(x) = x^2 - 2x - 3 = (x - 1)^2 - 4$$

- $(i) f(x) \ge 0$ 인 구간의 그래프는 그대로 둔다.
- (ii) f(x) < 0인 구간의 그래프를 x축에 대하여 대칭이동

한다.  $\Rightarrow f(x) < 0$ 인 구간에서는  $y = -x^2 + 2x + 3 = -(x-1)^2 + 4$ 의 그래프와 같다.



## ✓ 확인 1

정답과 풀이 81쪽

함수  $y=|x^2-4x|$ 의 그래프를 그려라.

#### ▶ 함수 y=f(|x|) 꼴의 그래프를 그리는 방법

- ① 함수 y=f(x)의 그래프를 그린다.
- **2**  $x \ge 0$ 인 구간에서는 그래프를 그대로 둔다.
- **③** x<0인 구간에서는 **②**의 그래프를 y축에 대하여 대칭이동한다.

## 예시 2 함수 y=f(|x|) 꼴의 그래프

함수  $y = |x|^2 - 2|x| - 3$ 의 그래프를 그려라.

함수 $f(x) = x^2 - 2x - 3$ 이라 하면

$$f(x)=x^2-2x-3=(x-1)^2-4$$

- (i)  $x \ge 0$ 인 구간의 그래프는 그대로 둔다.
- (ii) x<0인 구간에서는 (i)의 그래프를 y축에 대하여 대칭이동한다.→x<0인구간에서는</li>

 $y=x^2+2x-3=(x+1)^2-4$ 의 그래프와 같다.



#### ✓ 확인 2

정답과 풀이 81쪽

함수  $y = |x|^2 - 4|x|$ 의 그래프를 그려라.

### ▶ 함수 |y|=f(x) 꼴의 그래프를 그리는 방법

- **1** 함수 y=f(x)의 그래프를 그린다.
- **2**  $y \ge 0$ 인 구간에서는 그래프를 그대로 둔다.
- **③** y < 0인 구간에서는 **②**의 그래프를 x축에 대하여 대칭이동한다.

## 예시 3 함수 |y|=f(x) 꼴의 그래프

함수  $|y| = x^2 - 2x - 3$ 의 그래프를 그려라.

함수 $f(x)=x^2-2x-3$ 이라 하면  $f(x)=x^2-2x-3=(x-1)^2-4$ 

- (i)  $y \ge 0$ 인 구간의 그래프는 그대로 둔다.
- (ii) y < 0인 구간에서는 (i)의 그래프를 x축에 대하여 대 칭이동시킨다. ⇒ y < 0인 구간에서는 y = -x² + 2x + 3 = -(x-1)² + 4 의 그래프와 같다.



 $|y|=\pm y$ 이므로 y의 부호에 따라 구간을 나누어 생각한다.

## ✓ 확인 3

정답과 풀이 81쪽

함수  $|u| = x^2 - 4x$ 의 그래프를 그려라.

## ▶ 함수 |y|=f(|x|) 꼴의 그래프를 그리는 방법

- **1** 함수 y=f(x)의 그래프를 그린다.
- ②  $x \ge 0$ ,  $y \ge 0$ 인 구간에서는 그래프를 그대로 둔다.
- ③ x < 0,  $y \ge 0$ 인 구간에서는 ②의 그래프를 y축에 대하여 대칭이동한다.
- **4**  $x \ge 0$ , y < 0인 구간에서는 **2**의 그래프를 x축에 대하여 대칭이동한다.
- **5** x < 0, y < 0인 구간에서는 **2**의 그래프를 원점에 대하여 대칭이동한다.

### |y|=f(|x|)에서

- $(i) x \ge 0, y \ge 0$ 이면 y = f(x)
- (ii) x < 0,  $y \ge 0$ 이면 y = f(-x)
- (iii)  $x \ge 0$ , y < 0이면 -y = f(x)에서 y = -f(x)
- (iv) x < 0, y < 0이면 -y = f(-x)에서 y = -f(-x)

 $|x| = \pm x$ ,  $|y| = \pm y$ 이므로 구간을 나누어 생각한다.

#### 예시 4 함수 |y| = f(|x|) 꼴의 그래프

함수  $|y| = |x|^2 - 2|x| - 3$ 의 그래프를 그려라.

함수 $f(x)=x^2-2x-3$ 이라 하면  $f(x)=x^2-2x-3=(x-1)^2-4$ 

- $(\mathrm{i})\,x{\ge}0,\,y{\ge}0$ 인 구간의 그래프는 그대로 둔다.
- (ii) 그 외의 구간에서는 (i)의 그래프를 x축, y축, 원점에 대하여 각각 대칭이동한다.



## ✓ 확인 4

정답과 풀이 81쪽

함수  $|y| = |x|^2 - 4|x|$ 의 그래프를 그려라.