# **Diffusion Model**

Machine Learning pour Physicien - Projet

Clément, Grégoire, Nathan January 16, 2025

Modèle de diffusion

## Présentation générale

Les modèles de diffusion permettent de générer des images distribuées de la même manière qu'un dataset donnée.



Figure 1: Source: Denoising Diffusion Probabilistic Models, Ho. and Al.

## Application en physique

Eliot si tu peux rajouter quelques trucs ici, genre des exemples avec des images

**Denoising Diffusion Probabilistic** 

Models, théorie

Consider the set of hand-written digits D. Can you give a probability distribution q such that  $x \sim q(x)$ ?



Figure 2: Source: ludwig.ai













Consider the set of hand-written digits D. It is hard to find q such that  $x \sim q(x)$ , we need a clever way to sample hand-written digits. Consider the following process:



Formally:  $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1 - \beta_t} x_t, \beta_t I)$  for some schedule  $(\beta_t)_t$ . Can we learn to reverse this process ?

#### What we want to learn

Given a noisy image  $x_t$ , we train a model to predict  $x_{t-1}$ .



#### What we want to learn

Given a noisy image  $x_t$ , we train a model to predict  $x_{t-1}$ .



• Given a data image  $x_0$ , we sample  $(x_t)_{1:T}$  according to  $q(x_{1:T} \mid x_0) := \prod_{t=1}^T q(x_t \mid x_{t-1})$ ,

#### What we want to learn

Given a noisy image  $x_t$ , we train a model to predict  $x_{t-1}$ .



- Given a data image  $x_0$ , we sample  $(x_t)_{1:T}$  according to  $q(x_{1:T} \mid x_0) := \prod_{t=1}^T q(x_t \mid x_{t-1})$ ,
- Given a noisy image  $x_t$  and t, we sample according to  $p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)).$

Remember that 
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ .

Remember that 
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ . 
$$x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

Remember that 
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ . 
$$x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1} = \sqrt{\alpha_t}\sqrt{\alpha_{t-1}}x_{t-2} + \sqrt{\alpha_t}\sqrt{1-\alpha_t}\epsilon_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

Given a data image  $x_0$ , compute  $x_t$  takes t sampling on q. But a simple trick, allows to do only one.

Remember that  $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$ . Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ .

$$\begin{aligned} x_t &= \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t} \sqrt{1 - \alpha_t} \epsilon_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \end{aligned}$$

Let  $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$ ,  $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$ , the sum of them gives  $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$ .

Given a data image  $x_0$ , compute  $x_t$  takes t sampling on q. But a simple trick, allows to do only one.

Remember that  $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$ . Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ .

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t}} \epsilon_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{\alpha_{t}} (1 - \alpha_{t-1}) + 1 - \alpha_{t}} \bar{\epsilon_{t}}$$
(1)

Let  $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$ ,  $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$ , the sum of them gives  $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$ .

Given a data image  $x_0$ , compute  $x_t$  takes t sampling on q. But a simple trick, allows to do only one.

Remember that  $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$ . Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ .

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t}} \epsilon_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{\alpha_{t}} (1 - \alpha_{t-1}) + 1 - \alpha_{t}} \bar{\epsilon_{t}}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1}} \bar{\epsilon_{t}}$$

$$(1)$$

Let  $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$ ,  $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$ , the sum of them gives  $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$ .

Remember that 
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$ .

We have 
$$x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$$
.

For now, our model is learning  $\mu$  and  $\Sigma$ , i.e. we sample according to

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

They've found that fixing  $\Sigma_{\theta}$  to a constant gives the same result. So,

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate  $x_0$  is  $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$ .

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate  $x_0$  is  $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$ . Using negative log likelihood, approximations and computations, we want to minimize:

$$E_q\left[\frac{1}{2\sigma_t^2}\|\tilde{\mu}_t(x_t,x_0)-\mu_{\theta}(x_t,t)\|^2\right]$$

where  $\tilde{\mu}$  is the optimal mean that depends on  $x_0$  which we don't know.

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate  $x_0$  is  $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$ . Using negative log likelihood, approximations and computations, we want to minimize:

$$E_q\left[\frac{1}{2\sigma_t^2}\|\tilde{\mu}_t(x_t,x_0)-\mu_{\theta}(x_t,t)\|^2\right]$$

where  $\tilde{\mu}$  is the optimal mean that depends on  $x_0$ . Using  $x_t(x_0,\epsilon)=\sqrt{\bar{\alpha}_t}x_0+\sqrt{1-\bar{\alpha}_t}\epsilon$  we have a loss we can train on.

#### Our results - Gaussian

We have started with Gaussian generation:



#### Our results - Gaussian

We have started with Gaussian generation and got satisfying results:



## Our results - Deux gaussiennes

A ajouter

### Our results - Spirale

Then we moved to a more complicated dataset, Spirale generation:



#### **Our results - Spirale**

Then we moved to a more complicated dataset, Spirale generation and also got satisfying results:

