

Exploratory Data Analysis (EDA)

Week 3 – Part 1 – Motivation for EDA

CS 457 - L1 Data Science

Zeehasham Rasheed

Data Trend

Moore's Law

"The number of transistors in a dense integrated circuit (IC) doubles* about every two* years."

Economist.com

Life of Data

Generation

Who creates data? Who colle

- 1. Nature
- 2. People
- 3. Machines

Acquisition

Who collects data?

- 1. Individuals
- 2. Organizations

Analysis

Who crunches data?

- 1. Analysts
- 2. (Data) Scientists
- 3. Business Consultants
- 4. Bankers
- 5. Doctors
- 6. Whoever you find on LinkedIn with the word "data" in their job title.

Consumption

Who consumes analysis?

Everyone!

What Data Means in This Course

- 1. A **dataset** is a table containing measurements of objects of the same type.
- 2. Every row is an object.
- 3. Every column is one attribute of an object.
- 4. Every cell is the measurement of the corresponding object and attribute.

Sample Data

Attributes of each flower

Samples of iris flowers

sepal_length	sepal_width	petal_length	petal_width	species
5.8	4	1.2	0.2	setosa
5.6	2.8	4.9	2	virginica
6.2	2.2	4.5	1.5	versicolor
6.3	3.4	5.6	2.4	virginica
6.3	2.5	5	1.9	virginica
5	3	1.6	0.2	setosa
4.7	3.2	1.3	0.2	setosa
5.8	2.7	5.1	1.9	virginica
4.9	2.5	4.5	1.7	virginica
6.1	3	4.6	1.4	versicolor

https://en.wikipedia.org/wiki/Iris_flower_data_set

Data Storytelling - Critical Skill

Storytelling has a 30X Return on Investment

Rob Walker and Joshua Glenn <u>auctioned</u> common items like mugs, golf balls, toys, etc. The item descriptions were **stories** purpose-written by 200+ contributing writers.

Items that were bought for \$250 sold for over \$8,000 – a return of over 3,000% for storytelling!

- Stories are memorable and viral
- People remember stories.
 They'll act on them.
- People share stories. That enables collective action.

Motivation for EDA

But analysts present their work, not their message

Data scientists present their analysis – what they did, and what they found. That's not what the audience needs.

Audiences need a message that tells them what to do, and why. Told in an engaging way. As a story.

Share your data & analysis as data stories

Whenever you share inferences from data – whether it's as a presentation, or an email or document with your analysis, or as a dashboard – craft it as a story.

Variety of Dashboards

 With the growth of self-service BI, most companies have lost track of how many dashboards they generated

3 Important Things that Matter

End of Part 1

Exploratory Data Analysis (EDA)

Week 3 – Part 2 – Types of Statistical Analysis

CS 457 - L1 Data Science

Zeehasham Rasheed

NOIR Summary

- Nominal (Categorical)
 - categories: qualitative, no implied order or size, discrete
 - color, gender, State, Country, ...

- Ordinal (can contains categories)
 - rank order: discrete
 - 1: dislike < 2: neutral < 3: like
 - Only relational operators

- Numerical (Continuous) contains numbers
- Interval
 - distance/difference measures have no meaning; continuous, integer, floating point
 - contains zero point on origin. However, the origin does not imply a true absence
 - 0° Celsius does not mean absence of temperature
 - Date

Ratio

- Size comparisons have meaning; continuous, integer, floating point
 - $80kg = 2 \times 40kg$
 - can be 0, differences, ratios provides meaning. For example length, mass etc.

NOIR Facts

• IMPORTANT:

 Data type determines what computations and statistical tests are appropriate or inappropriate!

• e.g., can't calculate mean or average Country or Gender

Types of Variables

A variable, feature or dimension is a column in the dataset.

A **numerical** or **continuous** variable contains numbers that have a meaning.

Numerical variables support arithmetic operations (+, -, *, /)

Poll: Q: Which are the numerical variables in this dataset?

Duration (in seconds)

Duration (in seconds)	Age	Gender	Country
510	22-24	Male	France
423	40-44	Male	India
83	55-59	Female	Germany
391	40-44	Male	Australia
392	22-24	Male	India
470	50-54	Male	France
529	22-24	Male	India
624	22-24	Female	United States of America
214	22-24	Male	United States of America

Types of Variables (2)

- Elements of an ordinal variable can be ordered.
- Ordinal variables support order
 comparisons (>, <, ==, <=, >=)
- Numerical variables are also ordinal variables. Not vice versa.
- Poll: Q: Which are the ordinal variables in this dataset?
 - Age

Duration (in seconds)	Age	Gender	Country
510	22-24	Male	France
423	40-44	Male	India
83	55-59	Female	Germany
391	40-44	Male	Australia
392	22-24	Male	India
470	50-54	Male	France
529	22-24	Male	India
624	22-24	Female	United States of America
214	22-24	Male	United States of America

./25/2022

Types of Variables: Numerical, Ordinal & Categorical

- Elements of a categorical or nominal variable are independent categories or classes.
 - AKA discrete variables
- Categorical variables only support equality and inequality (==, !=)
- They can only be counted or grouped
- Poll: Q: Which are the categorical variables in this dataset?
 - Gender, Country

Duration (in seconds)	Age	Gender	Country
510	22-24	Male	France
423	40-44	Male	India
83	55-59	Female	Germany
391	40-44	Male	Australia
392	22-24	Male	India
470	50-54	Male	France
529	22-24	Male	India
624	22-24	Female	United States of America
214	22-24	Male	United States of America

Statistics Types

 Univariate, Bivariate & Multivariate Statistics

- Univariate Statistics
 - Types of Variables: numerical, ordinal, ratio & categorical
 - Descriptive / Summary Statistics
 - Histograms & Bar Charts
 - Probability Distributions
- Bivariate Statistics
 - Correlation & Covariance
 - Groups & Aggregations
- Multivariate Statistics
 - Covariance Matrices
 - Regression
 - Principal Component Analysis (PCA)

End of Part 2

Exploratory Data Analysis (EDA)

Week 3 – Part 3 – Univariate Statistics

CS 457 - L1 Data Science

Zeehasham Rasheed

Descriptive Statistics

- Capture general properties of a given dataset or sample.
 - Central tendency measures describe the "center" of the distribution
 - o Includes **mean (arithmetic**, geometric, harmonic, etc.), **median, mode**
 - Variation or variability measures describe data spread
 - How far the measurements lie from the "center".
 - Includes range, quartiles, variance, standard deviation

Fundamental Idea:

learn and use stats appropriate for data types

Descriptive Statistics (2)

- Three most common measures
 - Mean, Median and Mode

measures of central tendency

A measure of central tendency describes a set of data by identifying the central position in the data set as a single value.

The three most common measures are called mean, median and mode.

In different situations some measures become more appropriate to use than others.

mean

The most commonly used measure.

Useful for a data set that doesn't have outliers (values way different to the rest of the set).

sum of values number of values 3, 4, 5, 5, 5, 6, 6, 7, 8, 8, 9 sum of values = 66 number of values = 11 66 ÷ 11 = 6

median

The median is the middle value in an ordered data set.
Useful for data sets containing outliers.

How to determine the median in a data set.

Order the values from least to greatest.

Locate the middle value.

3, 4, 5, 5, 5, 6, 6, 7, 8, 8, 99

If the number of values is even, the median is the average of the two middle values.

mode

The value that occurs most often in a data set.
Useful for data sets containing outliers.
If there's no mode in the data set, it's of no use.
Not as popular as mean or median.

How to determine the mode in a data set.

Order the values from least to greatest. Locate the value that occurs the most.

 $3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 99 \mod = 6$

3, 4, 5, 5, 5, 6, 6, 6, 8, 8, 99 modes = 5 and 6

1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 no mode

one mode ~ unimodal, two modes ~ bimodal, more ~ multimodal

© Jenny Eather 2015

Central Tendency Example

Detecting Outliers

 Detecting Outliers/Noise using Descriptive Statistics

- 475 and 710 can be considered as outliers.
- Mean was unable to control outliers
- Median was successfully able to detect outliers

End of Part 3

Exploratory Data Analysis (EDA)

Week 3 – Part 4 – Define and Aggregating Errors CS 457 - L1 Data Science

Zeehasham Rasheed

Summarizing Information

Scenario:

- 1. You are stranded on a planet, waiting to be rescued.
- 2. A rescue mission is being arranged, but:
 - 1. What is the length of the day?
 - 2. How is the weather cloudy, hot or cold?
 - 3. What is your heart rate?

Your transmitter has a limited bandwidth of sending only one row – and you can use it only once a week.

- How do you proceed?
- Which information would you transmit?

Day	Weather	Day Length	Heartbeats/ min
Day 1	Hot	9	85
Day 2	Cloudy	9	93
Day 3	Cold	9	84
Day 4	Cloudy	11	71
Day 5	Hot	11	73
Day 6	Hot	9	97
Day 7	Cold	10	79
Day 8	Hot	10	68

How to Summarize?

Day	Weather	Day Length	Heartbeats/ min
Day 1	Hot	9	85
Day 2	Cloudy	9	93
Day 3	Cold	9	84
Day 4	Cloudy	11	71
Day 5	Hot	11	73
Day 6	Hot	9	97
Day 7	Cold	10	79
Day 8	Hot	10	68

- How do you summarize this data so that you are least wrong?
- How to measure error?
- How to minimise that error?

- Every column is summarized (using mean, median or mode) as a single number, S_i
- ' S_i ' is a good summary if the discrepancy between ' S_i ' and **each value** of the ith column is **small**.
- Errors and their aggregation.

Defining & Aggregating Errors

Each column i is summarised by s_i

- Each value in column i is x_{ij}
- Each x_{ij} creates its own error with s_i .

Intuitively:

- This error is small if $x_{ij} \approx s_i$ and
- Large if $x_{ij} >> s_i$ or $x_{ij} << s_i$

Important Question: Which descriptive statistics (mean, median, mode) is applied to which column?

Weather	Day Length	Heartbeats/ min
Hot	9	85
Cloudy	9	93
Cold	9	84
Cloudy	11	71
Hot	11	73
Hot	9	97
Cold	10	79
Hot	10	68

Appropriate Descriptors

Some useful information:

- Weather is a categorical variable.
 - Mode
- Day length is numerical, but changes slowly.
 - Mean
- Heartbeat is also numerical, but may change very drastically.
 - Median

Weather	Day Length	Heartbeats/ min
Hot	9	85
Cloudy	9	93
Cold	9	84
Cloudy	11	71
Hot	11	73
Hot	9	97
Cold	10	79
Hot	10	68

Mathematical Notation

$$E_i^0 = \sum_j |x_{ij} - s_i|^0$$

Mode

$$s_i^0 = \arg\min_{s_i} E_i^0$$

$$E_i^1 = \sum_i |x_{ij} - s_i|^1$$

Median

$$s_i^1 = \arg\min_{s_i} E_i^1$$

$$E_i^2 = \sum_j |x_{ij} - s_i|^2$$

Mean (μ)

$$s_i^2 = \arg\min_{s_i} E_i^2$$

End of Part 4

Exploratory Data Analysis (EDA)

Week 3 – Part 5 – Advance Statistics

CS 457 - L1 Data Science

Zeehasham Rasheed

More Descriptive Statistics

- Variance
- Standard Deviation
- Frequency and Counts
- Probability Distributions

Variance

• Variance: How do we quantify the spread of the data?

$$v_{i} = \frac{1}{N} \sum_{j=1}^{N} (x_{ij} - \mu_{i})^{2}$$

Length of day in hours with sunlight

 Standard Deviation (STD) measures deviation of data from a mean

$$v_i = \frac{1}{N} \sum_{j=1}^{N} (x_{ij} - \mu_i)^2$$

$$\sigma_i = \sqrt{v_i}$$

- STD has the same units as the data.
- STD corresponds to risk in business problems

Histograms & Bar Charts

Histograms & Bar Charts (2)

Poll: Which is the histogram and which is the bar chart?

Duration (in				
seconds)	Age	Gender	Country	
510	22-24	Male	France	
423	40-44	Male	India	
83	55-59	Female	Germany	
391	40-44	Male	Australia	
392	22-24	Male	India	
470	50-54	Male	France	
529	22-24	Male	India	
			United States of	
624	22-24	Female	America	
			United States of	
214	22-24	Male	America	

Benefits

Use Histograms and Bar Charts to:

- See the shape of the variable
- Find the distributions
- See the outliers

Histograms for continuous variables

Bar charts for discrete variables

Why Probability Distribution

- Probability distributions help to model our world, enabling us to obtain estimates of the probability from our data that
 - a certain event may occur
 - or estimate the variability of occurrence for any event

- Some practical uses of probability distributions are:
 - Inferential Statistics to draws conclusions using estimates that cannot be derived from descriptive statistics
 - To describe, and possibly predict, the probability of an event (Machine Learning)

Common Probability Distributions

Normal / Gaussian Distribution:

- Continuous valued distribution.
- 2. Parameters: mean & standard deviation
- Defines the central tendency and spread of any naturally occurring quantity.

Binomial Distribution:

- Discrete valued distribution.
- 2. Parameters: p & n
- 3. Defines the *number of success/failures in a sequence of binary events.*

More Probability Distributions

Normal/Gaussian Distribution

Power Law Distribution

End of Part 5

Exploratory Data Analysis (EDA)

Week 3 – Part 6 – Bivariate Analysis

CS 457 - L1 Data Science

Zeehasham Rasheed

Bivariate Statistics

- Continuous vs Continuous
- Continuous vs Discrete
- Discrete vs Discrete

Scatter Plots Showing Relationship

Continuous vs Continuous

Plot 1 Plot 2

Covariance

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])],$$

Covariance is the measure of the **joint variability** between two random variables.

Covariance is a measure of how two variables change together, but its magnitude is unbounded, so it is difficult to interpret.

Correlation

Correlation or **statistical dependence** is any relationship between two random variables, or **bivariate** data.

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

By dividing covariance by the product of the two standard deviations, one can calculate the normalized version of the statistic. This is called the correlation coefficient.

Correlation coefficient converts relationship to a number from -1 to 1

Try this: http://guessthecorrelation.com/

Correlation Plot

- Vehicle Features correlation
 - Cylinders vs MPG
 - Horsepower vs Cylinders
 - Cylinders vs Weight

Grouping & Aggregation

Continuous vs Discrete

- Pick a discrete feature dimension
- Pick a continuous feature metric
- Filter the data by a unique value in dimension, find some aggregation of the metric:
 - Sum
 - Average/Mean
 - Min, Max, etc.

Multivariate Statistics

- Multivariate Analysis of Variance (M AN O VA or ANOVA)
 - Generalization of Bivariate Methods
- Multiple Regression
- Principal Component Analysis (PCA)
 - All will be discussed in upcoming weeks

End of Part 6

Exploratory Data Analysis (EDA)

Week 3 – Part 7 – Finding Insights

CS 457 - L1 Data Science

Zeehasham Rasheed

We Want to

- Create meaningful insights
- Present them effectively
- Make them easy to consume

Analysis ≠ Insights

What separates insights from analysis?

Patterns of Insights

Patterns of Insights

Almost all significant insights fall into one of these patterns

Knowing these patterns beforehand helps frame questions and look for answers

Unknown Results

- The national animal of Scotland is a unicorn.
- Revenue has increased by x% from the last quarter.
- Sales have decreased by y% in this financial year.

Surprising Comparison

- Revenue has doubled since the last quarter!
- Sales are only **half** as compared to our competitor. 😕

Surprising Extremes

- Men who skip breakfast get more coronary heart disease. American men 45 to 82 who skip breakfast showed a 27 percent higher risk of coronary heart disease over a 16-year period.
 (Harvard University medical researchers)
- Smart people like curly fries. Liking "Curly Fries" on Facebook is predictive of high intelligence.
 (Researchers at the University of Cambridge and Microsoft Research)

Significant Outliers

- Lahore is a hub of startup activity taking 68% of total funding and 46% of all startup activity
 - followed by Karachi and Islamabad at 13% and 2.5% of total funding.
- There are twice as many software engineers on Kaggle than data analysts.

Abnormal Distributions

Patterns of Insights

USE THESE TO **CATEGORIZE** YOUR ANALYSIS

Summary of Insights

Categorize your analysis

End of Part 7

Exploratory Data Analysis (EDA)

Week 3 – Part 8 – Framing Questions with Patterns of Insights

CS 457 - L1 Data Science

Zeehasham Rasheed

Unknown Results

Pattern	Question Template	Examples	
Unknown result	What is {{ metric }} of {{ value }}?		
		 What is the average rainfall in Uganda? 	
		What is the cheapest place to buy coffee in Karachi?	
		What is the income of the poorest person in the richest country?	

Surprising Comparison

Pattern	Question Template	Examples	
Surprising Comparison	Is the {{ metric }} of {{ value_X }} {{ greater or less than }} {{ same metric }} of {{ value_Y }}? If so, by how much? (In absolutes or percentage?)		
		 What % of urban population has access to PPE in the USA vs in Italy? Are richer countries happier than poorer 	
		countries? • Between demonetization and the Covid-19 lockdown, where did the informal sector of the economy suffer more losses?	

Surprising Extremes & Significant Outliers

Pattern	Question Template	Examples
Surprising Extremes	What is the {{ maximum / minimum }} of {{ value }}?	
		How tall is the tallest person in the room?
		Which is the most developed city? Is it also the richest?
		 Which batsman has the best strike rate? Does it match their batting average?
Significant Outliers	How much {{ greater or less than }} is the {{ highest or lowest }} value than the successor?	
		How taller is the tallest person in the room than the second tallest person?
		How much more developed is the most developed city than the second most developed city?

Abnormal Distributions

Pattern	Pattern Question Template	
Abnormal Distribution		 In Sholay, is Amitabh
	What is the expected distribution of a {{ value }}? Does	Bachchan's coin toss
	the data match that distribution?	really random?
		 Are dates of birth
		uniformly distributed
		across the calendar?
		Do 9 of 10 startups fail?

Insights must be BUS: Big Useful and Surprising

IS THE INSIGHT

The analysis must, of course, be statistically significant. But it should also be **numerically significant**. We want a result that substantially changes the outcome.

IS THE INSIGHT USEFUL

What should the audience do after hearing the insight? Can they take an **action** that improves their objective? Even if it's informational, what should they do next?

IS THE INSIGHT

SURPRISING

Is this something they didn't know? Is it non-obvious?

Does it overturn a domain-driven belief or a gut feel?

Or does it bring consensus to a group with divided opinion?

Marking each analysis as BUS (High, Medium, Low

Insights	Big	Useful	Surprising
Project managers get paid 5X as much as data analysts	High	Medium	Low
Business analysts get paid twice as much as data analysts	High	High	High
Office supplies sell the least in the South. Sales in South are only 50% of sales in East or West.	Medium	High	Low
A startup in Bengaluru has a 6X more chance to get private equity funding than any other place.	High	High	Low
About 50% of American small businesses do not have a website	High	Medium	Low
The recommendation system influences about 80% of content streamed on Netflix	Big	Low	Low

Summary

- 1. Analysis is NOT insights.
- 2. Five Patterns of Insights:
 - a. Unknown Results
 - b. Surprising Comparisons
 - c. Surprising Extremes
 - d. Significant Outliers
 - e. Abnormal Distributions
- 3. Insights have to be BUS (Big, Useful, Significant)

End of Part 8

