Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Algoritmi paraleli și distribuiți Sortare paralelă

Mitică Craus

Universitatea Tehnică "Gheorghe Asachi" din Iași

ntroducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Cuprins

Introducere

Algoritmul Muller-Preparata

Descriere

Pseudocod

Exemplu de execuție Corectitudinea

Complexitatea Comentarii

Algoritmul Impar-Par (Odd-Even Sort)

Descriere

Pseudocod pentru algoritmul secvențial

Exemplu de execuție

Pseudocod pentru un lanţ de unităţi de procesare Complexitatea

Complexitatea

Sortare bitonică

Descriere

Pseudocod

Exemplu de sortare a unei secvențe bitone

Corectitudinea Implementare

Complexitatea Comentarii

Sortare rapidă pe hipercub

Descriere

Pseudocod Exemplu de execuție

Complexitatea Comentarii

Comentarii bibliografice

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		

Introducere

- Există o vastă literatură de specialitate având ca subiect sortarea.
- Aceasta se explică prin faptul că sortarea apare ca substask în soluțiile algoritmice ale multor probleme.
- Problema poate fi enunțată astfel: Date fiind n elemente $a_0, a_1, \ldots, a_{n-1}$, dintr-o mulțime U peste care este definită o relație de ordine totală " < ", se dorește renumerotarea lor astfel încât $a_i < a_j, \ i,j \in \{0,1,\ldots,n-1\}, \ i < j.$
- Se presupune, pentru simplitate, că $a_i \neq a_j$, dacă $i \neq j$.

Algoritmul Muller-Preparata - descriere

- Autori: David E. Muller și Franco P. Preparata. Anul publicării: 1975
- Algoritmul este compus din trei faze:
- 1. Determinarea pozițiilor relative pentru fiecare pereche $\{a_i, a_j\}, i, j = 0, 1, \dots, n-1$:
 - Notaţii: pozitie_relativa_{aj}(a_i) şi pozitie_relativa_{ai}(a_j) desemnează poziţia lui a_i, respectiv a_j în secvenţa (a_i, a_j) sortată crescător.
 - Dacă $a_i < a_j$, atunci pozitie_relativa $_{a_j}(a_i) = 0$ și pozitie_relativa $_{a_i}(a_j) = 1$.
 - Dacă $a_i > a_j$, atunci pozitie_relativa $_{a_i}(a_i) = 1$ și pozitie_relativa $_{a_i}(a_j) = 0$.
- 2. Calcularea pozitiilor finale ale elementelor a_i , i = 0, 1, ..., n-1.
- 3. Plasarea elementelor a_j pe pozitiile finale.

Algoritmul Muller-Preparata - pseudocod

Notatii:

- A[0..n-1] și P[0..n-1] sunt două tablouri, fiecare de dimensiune n.
- R[0..2n-2,0..n-1] este un tablou bidimensional de mărime (2n-1)xn; R[j] desemnează coloana j.

Premise:

- Datele de intrare sunt memorate în tabloul A[0..n−1].
- Pozițiile relative vor fi memorate în tabloul R, în liniile $n-1, n, \ldots, 2n-2$.
- Pozitiile finale vor fi retinute în tabloul P.

```
SORTARE_PARALELA_MULLER_PREPARATA(A, R, n)
     for all i, i : 0 \le i, i \le n-1
     do in parallel/* calcularea pozitiilor relative */
        if A[i] < A[i]
          then R[i+n-1,j] \leftarrow 1
          else R[i+n-1,j] \leftarrow 0
     for all j: 0 < j < n-1
     do in parallel/* calcularea pozițiilor finale */
        /* Se calculează numărul elementelor care se află în fața elementului a_i */
         Comprim_Iterativ(R[j], +)
10
         P[j] = R[0,j]
     for all i: 0 < i < n-1
12
     do in parallel/* plasarea pe pozițiile finale */
        A[P[i]] = A[i]
13
```


Exemplu de execuție a algoritmului Muller-Preparata

Figura 1 : Exemplu de execuție a algoritmului de sortare paralelă Muller-Preparata pentru secvența 2,6,3,8

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	•	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Corectitudinea

Lema (1)

 $\textit{Pozițiile finale ale elementelor secvenței } a_0, a_1, \dots, a_{n-1} \textit{ respectă relația de ordine } " < ".$

Demonstrație.

În urma calculării numărului elementelor care se află în fața unui element a_i (COMPRIM_ITERATIV (R[j],+)), se obține poziția finală a acestuia, în concordanta cu relația de ordine " < ".

Teorema (1)

Algoritmul Muller-Preparata sortează corect o secvență de elemente $a_0, a_1, \ldots, a_{n-1}$ dintr-o mulțime U peste care este definită o relație de ordine totală " < " .

Demonstrație.

Consecintă imediată a lemei 1.

Complexitatea

Teorema (2)

Complexitatea timp a algoritmului de sortare paralelă Muller-Preparata, implementat pe o masina CREW-PRAM cu $O(\frac{n^2}{\log n})$ unități de procesare, este $O(\log n)$.

Demonstrație.

- 1. Determinarea pozițiilor relative pentru fiecare pereche $\{a_i,a_j\},i,j=0,1,\ldots,n-1$: dacă mașina CREW-PRAM este compusă din n^2 unități de procesare, timpul paralel este O(1); dacă numărul unităților de procesare este $\lceil \frac{n^2}{\log n} \rceil$, timpul paralel este $O(\log n)$ (tehnica este aceeași cu cea de la comprimare).
- 2. Calcularea pozitiilor finale ale elementelor $a_i, i=0,1,\ldots,n-1$: pentru fiecare i, sunt necesare cel puțin $\left\lceil \frac{n}{\log n} \right\rceil$ unități de procesare, pentru a calcula poziția finală a elementului a_i în timpul paralel $O(\log n)$ (vezi complexitatea algoritmului paralel de comprimare). Rezultă un necesar de $n \left\lceil \frac{n}{\log n} \right\rceil$ unități de procesare pentru a calcula toate pozițiile finale în timpul paralel $O(\log n)$.
- 3. Plasarea elementelor a_j pe pozitiile corecte: cu n unități de procesare pentru se obține timpul paralel O(1).

Comentarii

- Relativ la algoritmul secvențial, bazat pe metoda enumerării, care necesita $O(n^2)$ timp, eficiența algoritmului este $E = \frac{O(n^2)}{O(\frac{n^2}{\log n})\log n} = O(1)$.
- Totusi, algoritmul nu este optimal, deoarece cel mai rapid algoritm secvential are timpul de executie de $O(n \log n)$.

Algoritmul Impar-Par (Odd-Even Sort) - descriere

- Este o versiune a algoritmului Bubble.
- Se desfășoară în faze.
 - În fazele impare sunt sortate perechile $\{a_i,a_{i+1}\}$ cu i par.
 - În fazele pare sunt sortate perechile $\{a_i, a_{i+1}\}$ cu i impar.
- Este paralelizabil.

Algoritmul Impar-Par secvențial - pseudocod

- Notații: A[0..n-1] este un tablouri de dimensiune n.
- Premise: Datele de intrare sunt memorate în tabloul A[0..n-1].

```
SORTARE_SECVENTIALA_IMPAR_PAR(A,n)

1 for faza \leftarrow 1 to n

2 do if faza este impara

3 then for i \leftarrow 0 to 2\lfloor \frac{n}{2} \rfloor - 2 step 2

4 do COMPARA_SI_INTERSCHIMBA(i,i+1)

5 if faza este para

6 then for i \leftarrow 1 to 2\lfloor \frac{n-1}{2} \rfloor - 1 step 2

7 do COMPARA_SI_INTERSCHIMBA(i,i+1)

5 do COMPARA_SI_INTERSCHIMBA(i,i+1)

5 do COMPARA_SI_INTERSCHIMBA(i,i+1)
```


Exemplu de execuție a algoritmului Impar-Par

Figura 2 : Exemplu de execuție a algoritmului de sortare Impar-Par pentru n=8

Algoritmul Impar-Par paralel - pseudocod pentru un lanț de unități de procesare

• Premise: Inițial, o unitate de procesare p_i memorează elementul a_i în registrul r.

```
SORTARE_PARALELA_IMPAR_PAR(p_i, r, n)
      for faza \leftarrow 1 to n
      do if faza este impara si 0 \le i \le 2 \left| \frac{n}{2} \right| - 1
  3
             then if i este par
                      then trimite lui p_{i+1} valoarea memorata in registrul r
  5
                             primeste de la p_{i+1} o valoare v
  6
                             r \leftarrow \min(r, v)
  7
                      else trimite lui p_{i-1} valoarea memorata in registrul r
  8
                             primeste de la p_{i-1} o valoare v
  9
                             r \leftarrow \max(r, v)
          if faza este para si 1 \le i \le 2 \left| \frac{n-1}{2} \right|
 10
 11
             then if i este impar
 12
                      then trimite lui p_{i+1} valoarea memorata in registrul r
 13
                             primeste de la p_{i+1} o valoare v
 14
                             r \leftarrow \min(r, v)
 15
                      else trimite lui p_{i-1} valoarea memorata in registrul r
 16
                             primeste de la p_{i-1} o valoare v
 17
                             r \leftarrow \max(r, v)
```

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	•	000000	0	
	0	0	000		
			0		

Complexitatea

Teorema (3)

Complexitatea timp a algoritmului de sortare paralelă Impar-Par, implementat pe un lanț de n unități de procesare, este O(n).

Demonstrație.

Timpul paralel pentru fiecare fază este O(1). După n faze algoritmul se termină.

ntroducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	•	000		
			0		

Comentarii

- Algoritmul de sortare paralelă Impar-Par este optimal pentru architectură: Fiecare unitate de procesare este solicitată O(n) timp
- Costul nu este optimal: (Numarul de unități de procesare) x (timpul paralel) = $n \times n = O(n^2)$. Timpul pentru cel mai rapid algoritm secvențial este $O(n \log n)$.
- Algoritmul poate fi implementat şi pe o maşină CREW-PRAM.
 Exerciţiu: Scrieţi un pseudocod pentru sortarea Impar-Par pe o astfel de maşină.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	•0	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		

Algoritmul lui Batcher de sortare bitonică - descriere

- Autor: Batcher; Anul publicării: 1968.
- Operația de bază este sortarea unei secvențe bitone.
- Esența problemei sortării unei secvențe bitone este transformarea sortării unei secvențe de bitone lungime n în sortarea a doua secvențe bitone de dimensiune $\frac{n}{2}$.
- Pentru a sorta o secvență de n elemente, prin tehnica sortării unei secvențe bitone, trebuie să dispunem de o secvență bitonă formată din n elemente.
- Observaţii:
 - Două elemente formează o secventă bitonă.
 - Orice secvență nesortată este o concatenare de secvențe bitone de lungime 2.
- Ideea transformării unei secvențe oarecare în una bitonă: combinarea a două secvențe bitone de lungime $\frac{n}{2}$ pentru a obține o secvență bitonă de lungime n.
- Algoritmul este paralelizabil.

Secvențe bitone

- Secvența bitonă este o secvență de elemente $[a_0, a_1, \dots, a_{n-1}]$ pentru care
 - există i astfel încât $[a_0,a_1,\ldots,a_i]$ este monoton crescătoare și $[a_{i+1},\ldots,a_{n-1}]$ este monoton descrescătoare sau
 - există o permutare circulară astfel încât să fie satisfacută condiția anterioară.
- Exemple:
 - [1, 2, 4, 7, 6, 0]; întâi crește și apoi descrește; i = 3.
 - [8, 9, 2, 1, 0, 4]: după o permutare circulară la stânga cu 4 poziții rezultă [0, 4, 8, 9, 2, 1]; i = 3.
- Fie $S = [a_0, a_1, \dots, a_{n-1}]$ o secventă bitonă,
 - $S_1 = [\min\{a_0, a_{\frac{n}{2}}\}, \min\{a_1, a_{\frac{n}{2}+1}\}, \dots \min\{a_{\frac{n}{2}-1}, a_{n-1}\}]$ și
 - $S_2 = [\max\{a_0, a_{\frac{n}{2}}\}, \max\{a_1, a_{\frac{n}{2}+1}\}, \dots \max\{a_{\frac{n}{2}-1}, a_{n-1}\}]$
- Secvențele S_1 si S_2 au proprietățile următoare:
 - Sunt bitone.
 - Fiecare element din S_1 este mai mic decit fiecare element din S_2 .

Algoritmul lui Batcher de sortare bitonică - pseudocod

- Notaţii:
 - A[0..n-1] este un tablou unidimensional de dimensiune n.
 - (A, i, d) defineste segmentul A[i...i+d-1] = A[i],...,A[i+d-1].
 - s este un parametru binar care specifică ordinea crescătoare (s=0) sau descrescătoare (s=1) a cheilor de sortare.
 - COMPARA_SI_SCHIMBA(x,y,s) desemnează sortarea a două elemente x si y ordinea indicată de parametrul s.
- Premise: Inițial, A[0..n-1] conține secvența de sortat.
- Apel: SORTARE_BATCHER(A,0,n,0) sau SORTARE_BATCHER(A,0,n,1).

```
SORTARE_BATCHER(A, i, d, s)

1 if d = 2

2 then (A[i], A[i+1]) \leftarrow \text{Compara_Sl\_Schimba}(A[i], A[i+1], s)

3 else /* sortare crescătoare a unei secvențe S de lungime \frac{d}{2}*/

4 SORTARE_BATCHER(A, i, \frac{d}{2}, 0)

5 /* sortare descrescătoare a secvenței S', care urmează lui S, de lungime \frac{d}{2}*/

6 SORTARE_BATCHER(A, i + \frac{d}{2}, \frac{d}{2}, 1)

7 /* sortarea secvenței bitone SS', de lungime d*/

8 SORTARE_SECVENTA_BITONA(A, i, d, s)
```

Sortarea unei secvențe bitone - pseudocod

• Premise: Inițial, segmentul A[i..i+d-1] conține o secventă bitonă de lungime d;

```
SORTARE_SECVENTA_BITONA(A, i, d, s)

1 if d = 2

2 then (A[i], A[i+1]) \leftarrow \text{Compara_SI_SCHIMBA}(A[i], A[i+1], s)

3 else /* Construirea secvențelor bitone S_1 și S_2, de lungime \frac{d}{2}*/

4 for all \ j: \ 0 \le j < \frac{d}{2}

5 do in parallel

6 (A[i+j], A[i+j+\frac{d}{2}]) \leftarrow \text{Compara_SI_SCHIMBA}(A[i+j], A[i+j+\frac{d}{2}], s)

7 /* sortarea secvenței bitone S_1, de lungime \frac{d}{2}*/

8 Sortare_Secventa_Bitona(A, i, \frac{d}{2}, s)

9 /* sortarea secvenței bitone S_2, de lungime \frac{d}{2}*/

10 Sortare_Secventa_Bitona(A, i + \frac{d}{2}, \frac{d}{2}, s)
```


Exemplu de sortare a unei secvențe bitone

Original																
sequence	3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
1st Split	3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
2nd Split	3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3rd Split																
4th Split	0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Copyright ©1994 Benjamin/Cummings Publishing Co.

Figura 3 : Exemplu de sortare a unei secvențe bitone

Corectitudinea

Lema (2)

Dacă algoritmul lui Batcher sortează orice secvență de chei de sortare binare, atunci sortează orice secventă de chei de sortare numere reale oarecare.

Demonstratie.

Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție monotonă. Astfel, $f(a_i) \leq f(a_j)$ dacă și numai dacă $a_i \leq a_j$. Evident, dacă algoritmul lui Batcher transformă secvența $[a_1,a_2,\ldots,a_n]$ în secvența $[b_1,b_2,\ldots,b_n]$, atunci va transforma secvența $[f(a_1),f(a_2),\ldots,f(a_n)]$ în secvența $[f(b_1),f(b_2),\ldots,f(b_n)]$. Astfel, dacă în secvența $[b_1,b_2,\ldots,b_n]$ există un indice i pentru care $b_i>b_{i+1}$, atunci în secvența $[f(b_1),f(b_2),\ldots,f(b_n)]$ vom avea $f(b_i)>f(b_{i+1})$.

Fie acum
$$f$$
 o funcție monotonă definită astfel: $f(b_j) = \begin{cases} 0 & \text{, dacă } b_j < b_i \\ 1 & \text{, dacă } b_j \ge b_i \end{cases}$

În aceste condiții, secvența $[f(b_1), f(b_2), \dots, f(b_n)]$ va fi o secventă binară nesortată deoarece $f(b_i) = 1$ și $f(b_{i+1}) = 0$. Rezultă că algoritmul lui Batcher eșuează în sortarea secvenței binare $[f(a_1), f(a_2), \dots, f(a_n)]$. Deci, dacă algoritmul lui Batcher eșuează în sortarea unei secvențe de chei de sortare numere reale oarecare, atunci există o secvența binară care nu va fi sortată în urma aplicăriii algoritmului lui Batcher.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Corectitudinea -continuare

Teorema (4)

Algoritmul lui Batcher sorteaza cele n elemente ale secvenței memorate în tabloul A[0..n-1], în ordinea crescătoare (s=0) respectiv descrescătoare (s=1) a cheilor de sortare.

Demonstrație.

Este suficient să demonstrăm corectitudinea procedurii $SORTARE_SECVENTA_BITONA$ pentru cazul binar (Lema 2). Procedăm prin inducție după lungimea d a secvențelor procesate.

Dacă d=2, evident procedura SORTARE. SECVENTA. BITONA transformă secvența inițială $S_{init}=A[i..i+d-1]$ într-o secvență sortată S_{fin} .

Vom demonstra că procedura SORTARE_SECVENTA_BITONA transformă o secvență binară S_{init} de tipul $0^r1^t0^v$ sau $1^r0^t1^v(r+t+v=d)$ într-o secvență S_{fin} sortată în ordinea indicată de valoarea lui $s,(\forall)d\geq 2$

Pasul paralel 6 transformă secvența S_{init} într-o secvență S_{temp} conform figurilor 2 și 3

Se observă că în toate cazurile, secvența rezultată S_{temp} , este formată din două sub-secvențe bitone S_{temp}^1 și S_{temp}^2 , fiecare de lungime $\frac{d}{2}$. O secvență este de tipul S_{init} iar cealaltă secvență conține numai cifre 0 sau numai cifre 1. Dacă s=0, cheia maximă din S_{temp}^2 este mai mică sau egală cu cheia minimă din S_{temp}^2 . Dacă s=1, cheia minimă din S_{temp}^1 este mai mare sau egală cu cheia maximă din S_{temp}^2 .

Conform ipotezei de inducție, procedura SORTARE.SECVENTA.BITONA transformă secvențele S^1_{temp} și S^2_{temp} în două secvențel S^1_{fin} , și S^2_{fin} , sortate crescător (d=0) sau descrescător (s=1). Dacă s=0, cheia maximă din S^1_{fin} este mai mică sau egală cu cheia minimă din S^2_{fin} deci secvența $S^1_{fin}S^2_{fin}$ este crescătoare. Daca s=1, cheia minimă din S^1_{fin} este mai mare sau egală cu cheia maximă din S^2_{fin} deci secvența $S^1_{fin}S^2_{fin}$ este descrescătoare.

Corectitudinea -continuare

s	$p+q(p,q\leq \frac{d}{2})$	Secvența inițială	Secvența rezultată
0	$\leq \frac{d}{2}$	$0^{\frac{d}{2}-p}1^{p}1^{q}0^{\frac{d}{2}-q}$	$0^{\frac{d}{2}}1^{q}0^{\frac{d}{2}-(p+q)}1^{p}$
0	$\leq \frac{d}{2}$	$0^{\frac{d}{2}}0^k1^{p+q}0^m$	$0^{\frac{d}{2}}0^k1^{p+q}0^m$
0	$\leq \frac{d}{2}$	$0^k 1^{p+q} 0^m 0^{\frac{d}{2}}$	$0^{\frac{d}{2}}0^k1^{p+q}0^m$
0	$\leq \frac{d}{2}$	$1^{p}0^{\frac{d}{2}-p}0^{\frac{d}{2}-q}1^{q}$	$0^{\frac{d}{2}} 1^{p} 0^{\frac{d}{2} - (p+q)} 1^{q}$
0	$\leq \frac{d}{2}$	$1^{\frac{d}{2}} 1^p 0^{\frac{d}{2} - (p+q)} 1^q$	$1^{p_0}\frac{d}{2}^{-(p+q)}1^{q_1}\frac{d}{2}$
0	$\leq \frac{d}{2}$	$1^{p}0^{\frac{d}{2}-(p+q)}1^{q}1^{\frac{d}{2}}$	$1^{p_0}\frac{d}{2}^{-(p+q)}1^{q_1}\frac{d}{2}$
0	> <u>d</u>	$0^{\frac{d}{2}-p}1^{p}1^{q}0^{\frac{d}{2}-q}$	$0^{\frac{d}{2}-p}1^{(p+q)-\frac{d}{2}}0^{\frac{d}{2}-q}1^{\frac{d}{2}}$
0	> <u>d</u>	$1^{p}0^{\frac{d}{2}-p}0^{\frac{d}{2}-q}1^{q}$	$0^{\frac{d}{2}-q}1^{(p+q)-\frac{d}{2}}0^{\frac{d}{2}-p}1^{\frac{d}{2}}$
1	$\leq \frac{d}{2}$	$0^{\frac{d}{2}-p}1^{p}1^{q}0^{\frac{d}{2}-q}$	$1^{q}0^{\frac{d}{2}-(p+q)}1^{p}0^{\frac{d}{2}}$
1	$\leq \frac{d}{2}$	$0^{\frac{d}{2}}0^k1^{p+q}0^m$	$0^k 1^{p+q} 0^m 0^{\frac{d}{2}}$
1	$\leq \frac{d}{2}$	$0^k 1^{p+q} 0^m 0^{\frac{d}{2}}$	$0^k 1^{p+q} 0^m 0^{\frac{d}{2}}$
1	$\leq \frac{d}{2}$	$1^{p}0^{\frac{d}{2}-p}0^{\frac{d}{2}-q}1^{q}$	$1^{p_0^{\frac{d}{2}-(p+q)}}1^{q_0^{\frac{d}{2}}}$
1	$\leq \frac{d}{2}$	$1^{\frac{d}{2}}1^{p}0^{\frac{d}{2}-(p+q)}1^{q}$	$1^{\frac{d}{2}} 1^{p} 0^{\frac{d}{2} - (p+q)} 1^{q}$
1	$\leq \frac{d}{2}$	$1^{p}0^{\frac{d}{2}-(p+q)}1^{q}1^{\frac{d}{2}}$	$1^{\frac{d}{2}}1^{p}0^{\frac{d}{2}-(p+q)}1^{q}$
1	> <u>d</u>	$0^{\frac{d}{2}-p}1^{p}1^{q}0^{\frac{d}{2}-q}$	$1^{\frac{d}{2}} 0^{\frac{d}{2}-p} 1^{(p+q)-\frac{d}{2}} 0^{\frac{d}{2}-q}$
1	> d/2	$1^{p}0^{\frac{d}{2}-p}0^{\frac{d}{2}-q}1^{q}$	$1^{\frac{d}{2}} 0^{\frac{d}{2}-q} 1^{(p+q)-\frac{d}{2}} 0^{\frac{d}{2}-p}$

Figura 4: Corectitudinea

Corectitudinea -continuare

Figura 5: Corectitudinea

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	•00000	0	
	0	0	000		
			O		

Implementarea algoritmului lui Batcher pe rețele de sortare

- Dacă se derecursivează algoritmul lui Batcher, se constată că sortarea unei secvențe de $n=2^m$ elemente constă în m faze de sortare a unei secvențe bitone: $SSB_0, SSB_1, \ldots, SSB_{m-1}$
- În faza SSB_k , $k \in \{0,1,\ldots,m-1\}$, se realizează sortarea secvențelor bitone S_i^{2d} formate din perechile de secvențe consecutive $S_i^d S_i^{'d}$ de lungime $d=2^k$, S_i^d fiind sortată crescător și $S_i^{'d}$ descrescator.
- Secvențele S_i^{2d} cu numărul de ordine i par sunt sortate crescător. Cele cu i impar sunt sortate descrescător.

Copyright © 1994 Benjamin/Cummings Publishing Co.

Figura 6 : Comparatori pentru sortarea a două elemente

Rețea de comparatori care transformă o secvență oarecare în una bitonă Fazele $0,1,\ldots,m-2$

• Intrare: o secvență oarecare; leșire: o secvență bitonă.

Copyright ©1994 Benjamin/Cummings Publishing Co.

Figura 7 : Rețea de comparatori care transformă o secvență oarecare în una bitonă (R_1) ; n=16

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		

Rețea de sortare a unei secvențe bitone - Faza m-1

• Intrare: o secvență bitonă; leșire: o secvență sortată.

Copyright © 1994 Benjamin/Cummings Publishing Co.

Figura 8 : Rețea de sortare a unei secvențe bitone (R_2) ; n = 16

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		

Implementarea algoritmului lui Batcher pe hipercub

- Cubul binar multidimensional este o arhitectură ideală pentru implementarea algoritmului lui Batcher.
- Reamintim:
 - Dacă se derecursivează algoritmul lui Batcher, se constată că sortarea unei secvențe de n = 2^m elemente constă în m faze de sortare a unei secvențe bitone: SSB₀, SSB₁,..., SSB_{m-1}
 - În faza SSB_k , $k \in \{0,1,\ldots,m-1\}$, se realizează sortarea secvențelor bitone S_i^{2d} formate din perechile de secvențe consecutive $S_i^dS_i'^d$ de lungime $d=2^k$, S_i^d fiind sortată crescător și $S_i'^d$ descrescator.
 - Secvențele S_i^{2d} cu numărul de ordine i par sunt sortate crescător. Cele cu i impar sunt sortate descrescător.
- Execuția fazei SSB_k pe hipercub necesită utilizarea succesivă a dimensiunilor $D_k, D_{k-1}, \ldots, D_1, D_0$.
- Planificarea utilizării dimensiunilor pentru o sortare completă poate fi reprezentată astfel:
 - SSB₀: D₀
 SSB₁: D₁, D₀
 SSB₂: D₂, D₁, D₀
 - $SSB_{m-1}: D_{m-1}, D_{m-2}, \dots, D_0$

Planificarea dimensiunilor = Fazele sortării prin rețele de sortare Batcher

Figura 9 : (a) Planificarea dimensiunilor (b)Fazele sortării prin rețele de sortare Batcher

Comunicarea pe hipercub în timpul ultimei faze a algoritmului lui Batcher

Fiecare linie continuă reprezintă o operație de interschimbare.

Copyright ©1994 Benjamin/Cummings Publishing Co.

Figura 10 : Comunicarea în timpul ultimei faze a algoritmului lui Batcher

Complexitatea implementării pe o mașină CREW-PRAM

Teorema (4)

Complexitatea timp a algoritmului lui Batcher de sortare paralelă, implementat pe mașină CREW-PRAM cu O(n) unități de procesare este $O(\log^2 n)$. Eficiența algoritmului este $O(\frac{1}{\log n})$.

Demonstrație.

Timpul paralel pentru sortarea unei secvențe bitone de lungime d < n este $O(\log d)$. După $\log n$ faze algoritmul se termină. Eficiența este $\frac{O(n\log n)}{nO(\log^2 n)} = O(\frac{1}{\log n})$.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Complexitatea implementării pe rețele de sortare

Teorema (5)

Complexitatea timp a algoritmului lui Batcher de sortare paralelă, implementat pe o rețea de sortare cu O(n) intrări si ieșiri, este $O(\log^2 n)$.

Demonstrație.

Rețeaua (R_1,R_2) implementează algoritmul lui Batcher. Numărul de faze este $\log n$. Fazele sunt compuse din $\log d < \log n$ pași

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Complexitatea implementării pe hipercub

Teorema (6)

Complexitatea timp a algoritmului lui Batcher de sortare paralelă, implementat pe un hipercub cu O(n) unități de procesare este $O(\log^2 n)$.

Demonstrație.

Sortarea Batcher pe hipercub este congruentă cu sortarea Batcher pe rețele de sortare

Comentarii

- Algoritmul lui Batcher de sortare paralelă este din clasa timp $O(\log^2 n)$. Numărul de unități de procesare este din clasa O(n). Comparativ cu algoritmii Muller-Preparata și Impar-Par are un cost mai bun.
- Totuși, costul nu este optimal: (Numarul de unități de procesare) \times (timpul paralel) = $n \log^2 n = O(n \log^2 n)$. Timpul pentru cel mai rapid algoritm secvențial este $O(n \log n)$.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	•	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Sortare rapidă pe hipercub - descriere

- Să ne amintim că un hipercub cu m dimensiuni este format din două hipercuburi cu m-1 dimensiuni.
- Numărul unităților de procesare, p, este mai mic decât numărul elementelor secvenței de sortat, n.
- Ideea este de a partiţiona secvenţa de sortat pe subcuburi şi apoi de a repeta repeta recursiv această operaţie.
- Selectarea pivotului este problema cheie.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	•	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Sortare rapidă pe hipercub - pseudocod

- Notații:
 - A[0..n-1] este un tablou de dimensiune $n=2^m$.
- Premise:
 - Datele de intrare sunt partitionate între unitătile de procesare.
 - Fiecare unitate de proceare(nod al hipercubului) memorează o parte A_i din secventa de sortat, memorată inițial în tabloul A[0..n-1].

```
SORTARE_ RAPIDA_ PE_HIPERCUB(A_i, m, p_i, pivot)
    i ← eticheta unitatii de procesare
      for k \leftarrow m-1 downto 0
      do /* */
          x \leftarrow pivot
          partitioneaza A_i in A_{i_1} si A_{i_2} astfel incat A_{i_1} \leq x \leq A_{i_2}
          if al - k - lea bit este 0
             then trimite A<sub>i</sub>, unitatii de procesare vecina pe dimensiunea k
  8
                   B_i \leftarrow subsecventa primita de la vecinul de pe dimensiunea k
  9
                   A_i \leftarrow A_i \cup B_i
             else trimite A_{i_1} unitatii de procesare vecina pe dimensiunea k
 10
 11
                   B_{i_2} \leftarrow subsecventa primita de la vecinul de pe dimensiunea k
 12
                   A_i \leftarrow A_{i_2} \cup B_{i_2}
      Aplica lui Ai sortarea rapida secventiala
 13
```

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	•00	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		

Exemplu de execuție a algoritmului de sortare rapidă pe hipercub (m=3)

Copyright ©1994 Benjamin/Cummings Publishing Co.

 $\mbox{Figura } 11: \mbox{ Partiționarea secvenței de sortat în două blocuri. Se utilizează dimensiunea a treia ($m\!-\!1$)}.$

Exemplu de execuție a algoritmului de sortare rapidă pe hipercub - continuare

Copyright © 1994 Benjamin/Cummings Publishing Co.

Figura 12 : Partiționarea fiecărui bloc în două sub-blocuri. Se utilizează dimensiunea a doua (m-2=1).

Exemplu de execuție a algoritmului de sortare rapidă pe hipercub - continuare

Copyright © 1994 Benjamin/Cummings Publishing Co.

Figura 13: Partiționarea sub-blocurilor. Se utilizează prima dimensiune (m-3=0).

Complexitatea

Teorema (7)

Dacă pivotul este ales astfel încât să partiționeze secvența în două subsecvențe de dimensiuni aproximativ egale, atunci

$$T_p = O(\frac{n}{p}\log\frac{n}{p}) + O(\frac{n}{p}\log p) + O(\log^2 p)$$

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	•	
	0	0	000		
			0		

Comentarii

• Selectarea unui pivot care să partiționeze secvența în două subsecvențe de dimensiuni aproximativ egale este dificilă.

Introducere	Algoritmul Muller-Preparata	Algoritmul Impar-Par (Odd-Even Sort)	Sortare bitonică	Sortare rapidă pe hipercub	Comentarii bibliografice
	0	0	00	0	
	0	0	00	0	
	0	0	0	000	
	0	0	0000	0	
	0	0	000000	0	
	0	0	000		
			0		

Comentarii bibliografice

- Capitolul sortare are la bază cartea
 V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Addison Wesley, 2003 si editia mai veche
 - V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin-Cummings, 1994