https://isis.tu-berlin.de/course/view.php?id=9589

Prof. Dr. Fredi Tröltzsch, Mathieu Rosière

Nichtlineare Optimierung – Hausaufgabe 3

Abgabe: 06.06.2017 - 08.06.2017 in den Übungen

In sämtlichen Aufgaben zur Konvergenz nehmen wir an, dass das entsprechende Verfahren nicht nach endlich vielen Schritten abbricht.

Aufgabe 3.1 (3 Punkte)

Es sei $f \colon \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar. Ferner seien $x \in \mathbb{R}^n$ und $d \in \mathbb{R}^n \setminus \{0\}$ gegeben. Zeige oder widerlege: Genau dann ist d eine Abstiegsrichtung im Punkt x, wenn es ein $\tilde{\sigma} > 0$ gibt mit

$$f(x + \sigma d) < f(x)$$

für alle $\sigma \in (0, \tilde{\sigma}]$.

Aufgabe 3.2 (6 Punkte)

Es sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar, streng konvex und koerzitiv. Im allgemeinen Abstiegsverfahren werde eine Abstiegsrichtungs-Strategie $x \mapsto d(x)$ gewählt, die der folgenden verallgemeinerten Winkelbedingung genügt: Es gibt Konstanten $c_1, c_2 > 0$ und p > -1 mit

$$\frac{|\langle \nabla f(x), d(x) \rangle|}{\|\nabla f(x)\| \|d(x)\|} \geqslant \min(c_1, c_2 \|\nabla f(x)\|^p)$$

für alle $x \in \mathbb{R}^n$. Zeige, dass dann bei Wahl effizienter Schrittweiten die durch das allgemeine Abstiegsverfahren erzeugte Folge $(x^k)_{k\in\mathbb{N}}$ für jeden Startwert $x^0 \in \mathbb{R}^n$ konvergent ist.

Hinweis: Zeige zuerst die Konvergenz von $(\nabla f(x^k))_{k\in\mathbb{N}}$ gegen null.

Aufgabe 3.3 (8 Punkte)

Gegeben seien eine stetig differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ und ein Startwert $x^0 \in \mathbb{R}^n$. Zeige oder widerlege jeweils die folgenden Aussagen:

- (i) Ist $(x^k)_{k\in\mathbb{N}}$ eine durch ein Abstiegsverfahren mit effizienten Schrittweiten erzeugte Folge und ist $(f(x^k))_{k\in\mathbb{N}}$ divergent, so besitzt f keinen Minimierer.
- (ii) Wenn $(x^k)_{k\in\mathbb{N}}$ durch ein Abstiegsverfahren mit effizienten Schrittweiten erzeugt wird und x ein Häufungspunkt von $(x^k)_{k\in\mathbb{N}}$ ist, so ist x kein lokaler Maximierer.
- (iii) Beim Gradientenverfahren ist die konstante Schrittweite $\sigma = 1$ stets effizient.
- (iv) Wird im Gradientenverfahren die konstante Schrittweite $\sigma = 1$ gewählt, so gilt

$$\|\nabla f(x^{k+1})\| \leqslant \|\nabla f(x^k)\|$$

für alle $k \in \mathbb{N}$, wobei $(x^k)_{k \in \mathbb{N}}$ die durch das Verfahren erzeugte Folge sei.

Aufgabe 3.4 (3 Punkte)

Es sei $A\colon\mathbb{R}^n\to\mathbb{R}^n$ linear und positiv definit. Ferner seien $b\in\mathbb{R}^n$ und $c\in\mathbb{R}$ gegeben. Wir betrachten

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c.$$

Berechne die exakte Schrittweite σ_E an einem Punkt xmit einer Richtung $d \neq 0.$

Achtung: Die Symmetrie von A wird nicht vorausgesetzt.

Gesamtpunktzahl: 20 Punkte