Many-Electron Atoms

Michael Brodskiy

Professor: Q. Yan

April 3, 2023

Contents

1 The Pauli Exclusion Principle

3

1 The Pauli Exclusion Principle

- An important rule proposed by Wolfgang Pauli (1925):
 - No two electrons in a single atom can have the same set of quantum numbers (n, l, m_l, m_s)
 - It applies to all "spin 1/2" particles (fermions)
- Examples:
 - Hydrogen: $1e^-$ in ground state: $(1,0,0,\pm\frac{1}{2})$
 - Helium: $2e^-$: $(1,0,0,-\frac{1}{2})$ and $(1,0,0,\frac{1}{2})$
 - Lithium: $(1,0,0,-\frac{1}{2})$, $(1,0,0,\frac{1}{2})$, and $(2,l,m_l,m_s)$
 - * If the electron has spin 1, this may be different:
 - * Lithium: (1,0,0,1), $(1,0,0,\pm 1/0)$, and $(1,0,0,\pm 1/0)$
- Electron states in many-electron atoms
 - "Filling rule": e^{-} 's occupy the lowest levels first
 - Orbitals with the same n lie at about the same distance from the nucleus \Longrightarrow $r_n = n^2 a_o$ (an atomic shell)

- According to the Pauli Exclusion Principle, the maximum amount of electrons in each subshell is 2(2l+1)
- Equivalent levels of d are much higher in energy levels because of the "electron screening effect"