C17 Power Analysis and Optimization

Submitted by:

Rajnish Tailor

110006068

Guidance of:

Dr. Chunhong Chen (Professor)

Low Power CMOS Design (ELEC-8410, Summer 2020) Faculty of Engineering University of Windsor, Canada

Inter-Summer 2020 Semester

Problem description:

We have a C17 Benchmark circuit and we have to perform its power optimization

Given Input Parameters:

Following are the parameters already provided to us for the designing:

- Vdd = 3V
- Kp = 20u
- Vto = +/- 0.5V
- W = 1.3u & 1.1u (both)
- L=0.13u (both)
- Probability=0.5
- Cl= 1pF

- Input Supplies:
 - Tr=Tf=10ns
 - Period= 50ns => f= 200MHz
 - Pulse Width = 25ns
- 1. Input assumed 00101

Part-A: Before Optimization

1. Dynamic Power

Transition Probabilities for NAND: PAPB x (1 -PAPB)

Gate 1 = 0.1875 = Pd = 337.5uW

Gate4=0.085=> Pd=153.0uW

Gate2= 0.1875=> Pd=337.5uW

Gate5=0.0072=> Pd=12.96uW

Gate3=0.085=> Pd=153.0uW

Gate6=0.0407=> Pd=73.26uW

Total Dynamic Power=1.06722mW

As per Simulation:

Gate1 =75uW

Gate4=336.960uW

Gate2 = -

Gate5= 12.96uW

Gate3=336.960uW

Gate6=73.26uW

In simulation, found the highest and lowest peak of current and power through each gate separately

Main parameter: Current through load capacitance

Gate	Highest Peak Current (A)	Lowest Peak Current(A)	Highest Peak Power (W)	Lowest Peak Power (W)
1	1.2500m	-312.500u	3750u	-937.5u
2	30.923p	-29.104p	92.769p	-87.312p
3	1.8750m	-937.500u	5.625m	-2812.5u
4	625.000u	-312.500u	1875u	-937.5u

5	583.949u	-281.266u	1751.847u	-843.798u
6	5.4570p	-5.4570p	16.371p	-16.371p

2. Static Power

- 3. Here, I will increase the transition timing to for proper evaluation to 5ns each
- 4. Main Parameter: current through upper NMOS current through load cap

Gate	Highest Peak Current (A)	Lowest Peak Current(A)	Highest Peak Power (W)	Lowest Peak Power (W)
1	625.041u	-993.776u	1875.123u	-2981.33u
2	312.792u	-110.408p	938.376u	-331.224p
3	625.041u	-612.759u	1875.123u	-1838.28u
4	625.041u	-612.759u	1875.123u	-1838.28u
5	562.531u	-582.491u	1687.593uu	-1747.47
6	312.729u	1.5100p	938.187u	4.53p

5.

6. Leakage Power: 36.150pW

7. Delay at Output1

Instead of calculating for all gate individually, we can directly check the output, the voltage swing will be a cumulative delay

Gate	Rise time	Fall time
5	8.4084n	8.7945n

8. Part-B: After Optimization

Optimization: I have used 'Gate Sizing' and change W to 1.1microns

1. Dynamic Power

Main Parameter: current through load capacitance

Gate	Highest Peak	Lowest Peak	Highest Peak	Lowest Peak
	Current (A)	Current(A)	Power (W)	Power (W)
1	1.0577m	-264.423u	3.1731m	-793.269u
2	3.2596n	-116.415p	9.7788n	-349.245p
3	528.847u	-264.423u	1586.541u	-793.269u
4	528.846u	-264.423u	1586.538u	-793.269u
5	491.140u	-238.004u	1473.42u	-714.012u
6	698.492p	-465.661p	2095.476p	-1396.98p

2. Static Power

Here, I will increase the transition timing to for proper evaluation to 5ns each Main Parameter: current through upper NMOS – current through load cap

Gate	Highest Peak	Lowest Peak	Highest Peak	Lowest Peak
	Current (A)	Current(A)	Power (W)	Power (W)
1	528.881u	-912.940u	1586.643u	-2738.82u
2	264.670u	-57.670p	794.01u	-173.01p
3	528.881u	-524.691u	1586.643u	-1574.07u
4	528.881u	-524.691u	1586.643u	-1574.07u
5	475.831u	-491.691u	1427.493u	-1475.07u
6	264.652u	1.5100p	793.956u	4.53p

- 3. Leakage Power: 36.150pW (No significant diff)
- 4. Delay at Output1
 Instead of calculating for all gate individually, we can directly check the output, the voltage swing will be a cumulative delay

Gate	Rise time	Fall time
5	9.790n	10.195n

Comparison

Dynamic

Gate	Highest Peak			Lowest Peak		
	W=1.3u	W=1.1u	%diff	W=1.3u	W=1.1u	%diff
1	3750u	3.1731m	15.384	-937.5u	-793.269u	15.38464
2	92.769p	9.7788n	-5.41021	-87.312p	-349.245p	-299.997
3	5.625m	1586.541u	71.79483	-2812.5u	-793.269u	71.79488
4	1875u	1586.538u	91.53846	-937.5u	-793.269u	15.38464
5	1751.847u	1473.42u	15.89334	-843.798u	-714.012u	15.38117
6	16.371p	2095.476p	-12699.9	-937.5u	-1396.98p	0.490112

Short circuit

Gate	Highest Peak			Lowest Peak		
	W=1.3u	W=1.1u	%diff	W=1.3u	W=1.1u	%diff
1	1875.123u	1875.123u	0	-2981.33u	-2738.82u	18.134289

2	938.376u	-2738.82u	-191.868	-331.224p	-173.01p	14.776647
3	1875.123u	-173.01p	9.077341	-1838.28u	-1574.07u	14.37267
4	1875.123u	-1574.07u	16.05511	-1838.28u	-1574.07u	14.37267
5	1687.593uu	-1574.07u	6.726918	-1747.47	-1475.07u	15.58825
6	938.187u	-1475.07u	15.572256	4.53p	4.53p	0

DELAY

Gate	TpLH			TpHL		
	W=1.3u	W=1.1u	%diff	W=1.3u	W=1.1u	%diff
5	8.4084n	9.790n	13.816	8.7945n	10.195n	14.005

CONCLUSION;

- Staying in the timing limit of 1.5 times, the power was reduced
 Reduction of 15% in W leads to 15% reduction in power

 $Fig-2-Delay\ after\ Optimmization$