

Analýza bezpečnostního protokolu

$$\operatorname{Woo} \lim_{\text{projekt č. 1}} \Pi^f$$

10. května 2016

Autor: Pavel Frýz, xfryzp00@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

1 Popis protokolu

Protokol vytvořil profesor Texaské univerzity v Austinu Simon S. Lam a jeho bývalý student Thomas Y. C. Woo. Protokol Π^f byl představen v [3]. Protokol provádí pouze jednosměrnou autentizaci, autentizuje účastníka A vůči B. Autentizace probíhá na důvěryhodném serveru(S), který sdílí klíč s každým účastníkem, protokol používá symetrickou kryptografii. Komunikici zahujeje subjekt A, subjekt B poté vygeneruje nonce a pošle ho A. A zašifruje nonce, společně s identifikátory subjektů a vše pošle zpět B, který k tomu přidá téže informace a vše zašifruje. Poté autentizační server ověří obě zašifrované zprávy a provede překlad klíčů, zprávu zašifrovanou A dešifruje a znovu ji zašifruje klíčem sdíleným z B. Toto pak pošle B, který ověří nonce. Pokud B dokončí provádění protokolu, tak iniciátor spojení je subjekt A deklarovaný v první zprávě. Z protokolu Π^f jsou postupným zjednodušováním odvozeny protokoly Π^1 , Π^2 , Π^3 a Π , ale zatímco protokol Π^f je korektní, jeho zjednodušené verze jsou nachýlné proti podvržení identity [1].

Textová reprezentace [2]:

A,B,S: Subjekty K_{AS},K_{BS} : Sdílené klíče N_B : Nonce

1. $A \rightarrow B : A$

2. $B \rightarrow A : N_B$

3. $A \rightarrow B : \{A, B, N_B\}_{K_{AS}}$

4. $B \to S: \{A, B, N_B, \{A, B, N_B\}_{K_{AS}}\}_{K_{BS}}$

5. $S \rightarrow B: \{A, B, N_B\}_{K_{BG}}$

Grafická reprezentace:

2 Analýza protokolu

Počáteční, zakázané a cílové znalosti a předpokladý jsou uvedeny v tabulce 2. Znalost subjektu A je označena A:, následované listem znalostí. Předpoklady subjektu A o znalostech B jsou označeny A:B:. Znalosti a předpoklady po jedtlivích krocích jsou uvedeny v tabulce 2. Nové znalosti a přepoklady jsou označeny *takto*.

Krok	Znalosti	Předpoklady	
Počáteční podmínky	A: A, B, S, K _{AS} B: B, S, N _B , K _{BS} S: A, B, S, K _{AS} , K _{BS}	A:B: A:S: K _{AS} B:A: B:S: K _{BS} S:A: K _{AS} S:B: K _{BS}	
Cílové podmínky	A: N _B	B:A: N _B B:S: N _B S:A: N _B S:B: N _B	
Zakázané cílové podmínky	A: K _{BS} B: K _{AS}		

Tabulka 1: Počáteční, zakázané a cílové znalosti a předpoklady

	\mathbf{A} : A, B, S, $\mathbf{K}_{\mathbf{AS}}$	$\mathbf{A:B:}\ \boldsymbol{A}\ \mathbf{A:S:}\ \mathrm{K}_{\mathrm{AS}}$
1	\mathbf{B} : \mathbf{A} , \mathbf{B} , \mathbf{S} , $\mathbf{N}_{\mathbf{B}}$, $\mathbf{K}_{\mathbf{BS}}$	B:A: <i>A</i> B:S: K _{BS}
	$S: A, B, S, K_{AS}, K_{BS}$	S:A: K _{AS} S:B: K _{BS}
	\mathbf{A} : A, B, S, $N_{\mathbf{B}}$, K_{AS}	$A:B: A, N_B A:S: K_{AS}$
2	\mathbf{B} : A, B, S, $\mathbf{N}_{\mathbf{B}}$, $\mathbf{K}_{\mathbf{BS}}$	$\mathbf{B:A:}\ \mathbf{A},\ N_{B}\ \mathbf{B:S:}\ \mathbf{K}_{\mathrm{BS}}$
	$S: A, B, S, K_{AS}, K_{BS}$	S:A: K _{AS} S:B: K _{BS}
	\mathbf{A} : A, B, S, $\mathbf{N}_{\mathbf{B}}$, $\mathbf{K}_{\mathbf{AS}}$	$A:B: A, N_B, \{A, B, N_B\}_{K_{AS}} A:S: K_{AS}$
3	B: A, B, S, N_B , K_{BS} , $\{A, B, N_B\}_{K_{AS}}$	$\mathbf{B}:\mathbf{A}: \mathbf{A}, \mathbf{N}_{\mathrm{B}}, \{A, B, N_{B}\}_{K_{AS}} \mathbf{B}:\mathbf{S}: \mathbf{K}_{\mathrm{BS}}$
	$S: A, B, S, K_{AS}, K_{BS}$	S:A: K _{AS} S:B: K _{BS}
	$A: A, B, S, N_B, K_{AS}$	$A:B: A, N_B, \{A, B, N_B\}_{K_{AS}} A:S: K_{AS}$
4		$B:A: A, N_B, \{A, B, N_B\}_{K_{AS}}$
	B: A, B, S, N_B , K_{BS} , $\{A, B, N_B\}_{K_{AS}}$	$\mid \mathbf{B:S:} \ A, \ B, \ N_B, \ \mathbf{K_{BS}}, \ \{A, \ B, \ N_B\}_{K_{AS}} \mid$
	2 110	$S:A: A, B, N_B, K_{AS}$
	S: A, B, S, N_B , K_{AS} , K_{BS}	S:B: $A, B, N_B, K_{BS}, \{A, B, N_B\}_{K_{AS}}$
	$A: A, B, S, N_B, K_{AS}$	$A:B: A, N_B, \{A, B, N_B\}_{K_{AS}} A:S: K_{AS}$
5		$B:A: A, N_B, \{A, B, N_B\}_{K_{AS}}$
	B: A, B, S, N_B , K_{BS} , $\{A, B, N_B\}_{K_{AS}}$	B:S: A, B, N_B , K_{BS} , $\{A, B, N_B\}_{K_{AS}}$
		S:A: A, B, N _B , K _{AS}
	$S: A, B, S, N_B, K_{AS}, K_{BS}$	$S:B: A, B, N_B, K_{BS}, \{A, B, N_B\}_{K_{AS}}$

Tabulka 2: Znalosti a předpoklady po vykonání jednotlivých kroků

Po provedení všech kroků byly splněny cílové podmínky a předpoklady.

3 Komunikace z pohledu subjektů

3.1 Z pohledu A

- 1. $A \rightarrow : A$ -posílá zprávu
- 2. $\rightarrow A \colon N_B$ -přijímá zprávu
- 3. $F(A,B,N_B,K_{AS})=\{A,B,N_B\}_{K_{AS}}$ -šifruje zprávu
- 4. $A \rightarrow : \{A, B, N_B\}_{K_{AS}}$ -posílá zprávu

3.2 Z pohledu B

- 1. $\rightarrow B \colon A$ -přijímá zprávu
- 2. $B\to :N_B$ -posílá zprávu
- 3. $\rightarrow B \colon \{A,B,N_B\}_{K_{AS}}$ -přijímá zprávu
- 4. $F(A,B,N_B,\{A,B,N_B\}_{K_{AS}},K_{BS})=\{A,B,N_B,\{A,B,N_B\}_{K_{AB}}\}_{K_{BS}}$ -šifruje zprávu
- 5. $B \rightarrow : \{A, B, N_B, \{A, B, N_B\}_{K_{AB}}\}_{K_{BS}}$ -posílá zprávu
- 6. $\rightarrow B \colon \{A,B,N_B\}_{K_{BS}}$ -přijímá zprávu
- 7. $decrypt(\{A,B,N_B\}_{K_{BS}},K_{BS})$ -dešifruje
- 8. $proves(fresh(N_B))$ -ověřuje nonce

3.3 Z pohledu S

```
1. \rightarrow S \colon \{A, B, N_B, \{A, B, N_B\}_{K_{AB}}\}_{K_{BS}}-přijímá zprávu
```

2.
$$decrypt(\{A, B, N_B, \{A, B, N_B\}_{K_{AB}}\}_{K_{BS}}, K_{BS})$$
-dešifruje

- 3. $decrypt(\{A, B, N_B\}_{K_{AB}}, K_{AS})$ -dešifruje
- 4. $controls(N_B)$ -kontroluje shodu nonců
- 5. $translate(\{A,B,N_B\}_{K_{AS}},K_{AS},K_{BS})=\{A,B,N_B\}_{K_{BS}}$ -překládá zprávu
- 6. $S \rightarrow : \{A, B, N_B\}_{K_{BS}}$ -posílá zprávu

4 Analýza pomocí nástroje SPAN

Protokol byl implementován v nástroji span. Na začátku je deklarován protokol s jeho názvem.

```
protocol WooLamPiF;
```

Poté jsou deklarování jednotlivý účastníci, nonce a sdílené klíče.

```
2 identifiers
3 A,B,S : user;
4 Nb : number;
5 Kas,Kbs : symmetric_key;
```

Dále jsou definovány jednotlivé zprávy, které si subjekty vyměňují a jejich pořadí.

```
6 messages
7 1. A -> B : A
8 2. B -> A : Nb
9 3. A -> B : {A, B, Nb}Kas
10 4. B -> S : {A, B, Nb, {A, B, Nb}Kas}Kbs
11 5. S -> B : {A, B, Nb}Kbs
```

V další části jsou definovány počáteční znalosti jednotlivých subjektů.

```
    knowledge
    A: A,B,S,Kas;
    B: B,S,Kbs;
    S: S,A,B,Kas,Kbs;
```

Přiřazení konkrétních hodnot jednotlivým účastníkům

```
session_instances
[A:alice,B:bob,S:server,Kas:key1,Kbs:key2];
```

Specifikace cíle protokolu, tedy autentizace ucastnika A vuci B.

```
_{18} goal _{19} A authenticates B on Nb;
```

Poté byly spuštěny jednotlivé testy, výsledky jsou uvedeny v přílohách. Všechny metody označily protokol za bezpečný, vyjma metody TA4SP, která nemohla výsledek rozhodnout.

5 Závěr

Na protokol nebyl nalezen žádný známý útok, útok nebyl nalezen ani pomocí automatického ověření pomocí nástroje Span. Výdledky automatického ověřování i analytické metody tedy ukazují, že protokol Woo Lam Π^f měl být bezpečný.

Použité zdroje

- [1] CLARK, J. a JACOB, J. A Survey of Authentication Protocol Literature. November 1997. Dostupné na: http://www.cs.york.ac.uk/~jac/PublishedPapers/reviewV1_1997.pdf>.
- [2] JACQUEMARD, F. Woo and Lam Pi f [online]. Last modified 2001-10-27 [cit. 2012-5-1]. Dostupné na: http://www.lsv.ens-cachan.fr/Software/spore/wooLamPif.html.
- [3] WOO, T. Y. C. a LAM, S. S. A lesson on authentication protocol design. SIGOPS Oper. Syst. Rev. červenec 1994, roč. 28, č. 3. S. 24–37. ISSN 0163-5980.

A Výsledek metody ATSE

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS TYPED MODEL

PROTOCOL

WooLamPiF.if

GOAL

As Specified

BACKEND

CL-AtSe

STATISTICS

Analysed : 26 states Reachable : 12 states Translation : 0.01 seconds Computation : 0.00 seconds

B Výsledek metody OFMC

% OFMC

% Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED NUMBER OF SESSIONS

PROTOCOL

WooLamPiF.if

GOAL

as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime : 0.00s searchTime : 0.02s visitedNodes : 9 nodes depth : 6 plies

C Výsledek metody SATMC

SUMMARY

SAFE

DETAILS

STRONGLY_TYPED_MODEL
BOUNDED_NUMBER_OF_SESSIONS
BOUNDED_MESSAGE_DEPTH

PROTOCOL

WooLamPiF.if

GOAL

%% see the HLPSL specification..

BACKEND

SATMC

COMMENTS

STATISTICS

attackFound	false	boolean
stopConditionReached	true	boolean
fixed point Reached	6	steps
stepsNumber	6	steps
atomsNumber	0	atoms
clausesNumber	0	clauses
encodingTime	0.02	seconds
solvingTime	0	seconds
if2sateCompilationTime	0.11	seconds

ATTACK TRACE

%% no attacks have been found..

D Výsledek metody TA4SP

SUMMARY

INCONCLUSIVE

DETAILS:

NOT SUPPORTED

PROTOCOL:

WooLamPiF.if

GOAL:

SECRECY

BACKEND:

TA4SP

COMMENTS:

For technical reasons about non-left-linearity in term rewriting with tree automaton, this protocol cannot be checked.

Sorry.

STATISTICS:

Translation: 0.00 seconds