

单车预测 神经网络

张江

北京师范大学系统科学学院 集智学园、集智俱乐部

今日内容

- 神经网络预测器1
 - 神经元细胞
 - 神经网络
 - 神经网络的工作原理
- 神经网络预测器2
 - 数据预处理
 - 利用pytorch构建神经网络
 - 预测结果及其分析
- 对神经网络的解剖

共享单车热遍全国

摩拜的苦恼

• 问题引出:

- 究竟什么时间派送工人去 搬运
- 应该从哪里搬运到哪里?
- 应该搬运多少辆单车?

摩拜的苦恼

问题引出:

- 究竟什么时间派送工人去
- 应该从哪里搬运到哪里?
- 应该搬运多少辆单车?

单车预测问题

• 预测未来的曲线?

http://capitalbikeshare.com/system-data http://www.freemeteo.com

简单神经网络预测器

简单神经网络预测器

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma(wx) = \frac{1}{1 + \exp(-wx)}$$

w控制着曲线的弯曲程度

b控制着曲线的竖直位置

w'控制着曲线的高矮

b控制着曲线的竖直位置

$$y = \frac{1}{1 + \exp(-(x+1))} + \frac{1}{1 + \exp(-x)}$$

b控制着曲线的竖直位置

b控制着曲线的竖直位置

 $y = \frac{1}{1 + \exp(-x)} + \frac{-1}{1 + \exp(-x + 1)}$

b控制着曲线的竖直位置

 $y = \frac{1}{1 + \exp(-x)} + \frac{-1}{1 + \exp(-x + 1)}$

我们至少需要多少隐含层神经元?

第一个单隐含层神经网络

Y = 12,30,...,10

$$X = 1, 2, ..., 50$$

导入需要的库

In [1]:

#导入需要使用的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch

#让输出的图形直接在Notebook中显示

%matplotlib inline

导入、处理csv文件的库

有关Tensor操作的torch库 用于autograd自动求导变量的库

导入数据

In [2]:

#读取数据到内存中,rides为一个dataframe对象data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) #看看数据长什么样子rides.head()

导入、处理csv文件的库

显示前几条记录

Out[2]:

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

初始化神经网络权重等变量

```
In [3]:

counts = rides['cnt'][:50]

x = torch.tensor(np.arange(len(counts)), dtype=torch.double, requires_grad = True)

y = torch.tensor(np.array(counts), dtype=torch.double, requires_grad = True)

sz = 10

#初始化所有神经网络的权重(weights)和阈值(biases)

weights = torch.randn((1, sz), dtype = torch.double, requires_grad = True)

biases = torch.randn(sz, dtype = torch.double, requires_grad = True)

weights2 = torch.randn((sz, 1), dtype = torch.double, requires grad = True)
```

提取数据库的cnt字段前50 条记录 50行1列 50行1列

1行10列 10个元素的列向量 10行1列

神经网络梯度下降迭代

```
learning rate = 0.0001 #设置学习率
In [4]:
         losses = []
         #将x转换为(50,1)的维度,以便与维度为(1,10)的weights矩阵相乘
         x = x.unsqueeze(1)
         #将y转换为(50,1)的维度
         y = y.unsqueeze(1)
         for i in range(1000000):
           #从输入层到隐含层的计算
           hidden = x * weights+ biases
           #将sigmoid函数作用在隐含层的每一个神经元上
           hidden = torch.sigmoid(hidden)
           #隐含层输出到输出层,计算得到最终预测
           predictions = hidden.mm(weights2)
           #通过与标签数据y比较,计算误差
           loss = torch.mean((predictions - y) ** 2)
           if i % 10000 == 0:
             print('loss:', loss)
           loss.backward() #对损失函数进行梯度反传
           #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
           weights.data.add_(- learning_rate * weights.grad.data)
           biases.data.add (- learning rate * biases.grad.data)
           weights2.data.add_(- learning rate * weights2.grad.data)
           #梯度清空
           weights.grad.data.zero ()
           biases.grad.data.zero ()
           weights2.grad.data.zero ()
```

unsqueeze

ภ์ [4]:

```
learning rate = 0.0001 #设置学习率
losses = []
#将 x 转换为(50,1)的维度,以便与维度为(1,10)的weights矩阵相乘
x = x.unsqueeze(1)
                           x.size(): (50)
#将y转换为(50,1)的维度
y = y.unsqueeze(1)
                           x.unsqueeze(1).size(): (50,1)
for i in range(1000000):
                           x.unsqueeze(0).size(): (1,50)
 #从输入层到隐含层的计算
 hidden = x * weights+ biases
 #将sigmoid函数作用在隐含层的每一个神经元上
 hidden = torch.sigmoid(hidden)
 #隐含层输出到输出层,计算得到最终预测
 predictions = hidden.mm(weights2)
 #通过与标签数据y比较,计算误差
 loss = torch.mean((predictions - y) ** 2)
 if i % 10000 == 0:
   print('loss:', loss)
 loss.backward() #对损失函数进行梯度反传
 #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
 weights.data.add (- learning rate * weights.grad.data)
 biases.data.add (- learning rate * biases.grad.data)
 weights2.data.add (- learning rate * weights2.grad.data)
 #梯度清空
 weights.grad.data.zero ()
 biases.grad.data.zero ()
 weights2.grad.data.zero ()
```

向量矩阵乘法

```
In [4]:
           learning_rate = 0.0001 #设置学习率
           losses = []
          for i in range(1000000):
             #从输入层到隐含层的计算
             hidden = x * weights + biases
             hidden = torch.sigmoid(hidden)
             predictions = hidden.mm(weights2) + biases2.expand_as(y)
             # 通过 \begin{pmatrix} 0.1 \\ 0.2 \end{pmatrix} 据y比其(2.0,1.1,0.2,...,0.1) n(*predictions - y) ** 2)
                                                                    /0.2 0.11...0.01
                                                                     0.4 0.22 ··· 0.02

: : ··· :
             losses.
             if i % 1
               print('loss:', loss)
             loss.backward() #对损失函数进行梯度反传
             weights.data.add (- learning_rate * weights.grad.data)
             biases.data.add_(- learning_rate * biases.grad.data)
             weights2.data.add (- learning rate * weights2.grad.data)
             biases2.data.add (- learning rate * biases2.grad.data)
```

向量矩阵乘法

```
learning_rate = 0.0001 #设置学习率
In [4]:
          losses = []
          for i in range(1000000):
            #从输入层到隐含层的计算
            hidden = x * weights + biases
            hidden = torch.sigmoid(hidden)
            predictions = hidden.mm(weights2) + biases2.expand_as(y)
           \begin{pmatrix} 0.1 \\ 0.2 \end{pmatrix}
                                                                        /0.3 0.21...0.11
                                                                       0.6 0.42 ... 0.22
            losses.append(lo
            if i % 10000 == 0:
              print('loss:', loss)
            loss.backward() #对损失函数进行梯度反传
            weights.data.add (- learning_rate * weights.grad.data)
            biases.data.add_(- learning_rate * biases.grad.data)
            weights2.data.add (- learning rate * weights2.grad.data)
            biases2.data.add (- learning rate * biases2.grad.data)
```

张量维度

```
learning rate = 0.0001 #设置学习率
        losses = []
In [4]
        for i in range(1000000):
         #从输入层到隐含层的计算
         hidden = x * weights+ biases
         #将sigmoid函数作用在隐含层的每一个神经元上
         hidden = torch.sigmoid(hidden) hidden.size()=(50, 10)
         #隐含层输出到输出层,计算得到最终预测
         predictions = hidden.mm(weights2)
         #通过与标签数据y比较,计算误差
          loss = torch.mean((predictions - y) ** 2)
         if i % 10000 == 0:
            print('loss:', loss)
          loss.backward() #对损失函数进行梯度反传
         #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
         weights.data.add (- learning rate * weights.grad.data)
          biases.data.add_(- learning_rate * biases.grad.data)
         weights2.data.add (- learning rate * weights2.grad.data)
         #梯度清空
         weights.grad.data.zero ()
          biases.grad.data.zero ()
         weights2.grad.data.zero ()
```

神经网络梯度下降迭代

```
learning_rate = 0.0001 #设置学习率
In [4]:
          losses = []
          for i in range(1000000):
            hidden = torch.t(x.expand(sz, len(x))) * weights.expand(len(x), sz) + biases.expand(len(x), sz)
            hidden = torch.sigmoid(hidden)
            # 隐含层输出到输出层, 计算得到最终预测
            predictions = hidden.mm(weights2)
            loss = torch.mean((predictions - y) ** 2)
            losses.append(loss.data.numpy())
                       if i % 100 /
            hidden:
                                                           mm
            loss.back
                       1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0
                                                                                  0.11
            weights.data.add_(- learning_rate * weights.grad.data)
            biases.data.add_(- learning_rate * biases.grad.data)
            weights2.data.add (- learning rate * weights2.grad.data)
            biases2.data.add (- learning rate * biases2.grad.data)
```

张量维度

```
learning rate = 0.0001 #设置学习率
losses = []
for i in range(1000000):
 #从输入层到隐含层的计算
 hidden = x* weights + biases
 #将sigmoid函数作用在隐含层的每一个神经元上
 hidden = torch.sigmoid(hidden)
 #隐含层输出到输出层,计算得到最终预测
 predictions = hidden.mm(weights2)
                                     predictions.size()=(50, 1)
 #通过与标签数据y比较,计算误差
 loss = torch.mean((predictions - y) ** 2)
                                     loss.size()=()
 if i % 10000 == 0:
   print('loss:', loss)
 loss.backward() #对损失函数进行梯度反传
 #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
 weights.data.add (- learning rate * weights.grad.data)
 biases.data.add_(- learning_rate * biases.grad.data)
 weights2.data.add (- learning rate * weights2.grad.data)
 #梯度清空
 weights.grad.data.zero ()
 biases.grad.data.zero_()
 weights2.grad.data.zero ()
```

拟合结果

预测代码

```
counts_predict = rides['cnt'][50:100]#读取待预测的接下来的50个数据点
In [5]:
      #首先对接下来的50个数据点进行选取,注意x应该取51,52,.....,100,然后再归一化
      x = torch.tensor((np.arange(len(counts predict), dtype = float) + len(counts))/len(counts predict)
              , requires grad = True)
      #读取下50个点的y数值
      y = torch.tensor(np.array(counts_predict, dtype = float), requires_grad = True)
      x = x.unsqueeze(1)
      y = y.unsqueeze(1)
      #从输入层到隐含层的计算
      hidden = x * weights + biases
      #将sigmoid函数作用在隐含层的每一个神经元上
      hidden = torch.sigmoid(hidden)
      # 隐含层输出到输出层, 计算得到最终预测
      predictions = hidden.mm(weights2)
      # 计算预测数据上的损失函数
      loss = torch.mean((predictions - y) ** 2)
      print(loss)
```

预测结果

Loss: 6710.35

存在问题

- 存在着严重的过拟合现象
- 采用单一属性 (编号) 预测未来单车数量效果太差
 - 事实上, 单车使用数量和下标之间根本就没有关系!!!
- 运行速度缓慢
- 需要考虑其它可获得信息: 是否工作日、天气情况: 风速湿度等

接下来, 你将会学到

- 如何设计一个多输入的神经网络
- 如何对数据进行预处理
- · 如何以及为什么对数据分撮 (Batch)
- 如何用pytorch简化神经网络构建流程

再来看看数据

http://capitalbikeshare.com/system-data http://www.freemeteo.com

编号

季节

月 是否假期

是否工作日

温度

湿度

出行数量

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	cnt
0	1	2011/1/1	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	16
1	2	2011/1/1	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	40
2	3	2011/1/1	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	32
3	4	2011/1/1	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	13
4	5	2011/1/1	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	1

日期

年

小时

星期几

天气,1

晴, 2

雾....

体表 温度 风速

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

数据预处理: 类型变量

• 类型数据的处理

• Weekday: 1, 2, 3, 4, 5, 6, 0

星期	类型变量	类型编码
星期日	0	100000
星期一	1	0100000
星期二	2	0010000
星期三	3	0001000
星期四	4	0000100
星期五	5	000010
星期六	6	000001

数据预处理: 类型变量

h	oliday	weekday	y	workingday	weathersit	temp	atemp	
1	0	6		0	2	0.344167	0. 363625	
1	0		0	0	2	0.363478	0. 353739	
1	0		1	1	1	0. 196364	0. 189405	
1	0	0 2	1	1	0.2	0. 212122		
1	0		3	1	1	0. 226957	0. 22927	
1	0		4	1	1	0. 204348	0. 233209	
		y_						

hr_23	weekday_0	weekday_1	weekday_2	weekday_3	weekday_4	weekday_5	weekday_6
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1

One-hot编码

将一个变量扩展为n个变量,n为类型数目

数据预处理: 数值类型变量归一化

temp	atemp	hum
0.24	0.2879	0.81
0.22	0.2727	0.80
0.22	0.2727	0.80
0.24	0.2879	0.75
0.24	0.2879	0.75

	yr	holiday	temp	hum	windspeed	casual	registered	cnt	season_1	season_2	•••	hr_21	hr_22	hr_23	weekday_0	weekday_1	weekday_2	weekday_
0	0	0	0.24	0.81	0.0	3	13	16	1	0		0	0	0	0	0	0	
1	0	0	0.22	0.80	0.0	8	32	40	1	0		0	0	0	0	0	0	
2	0	0	0.22	0.80	0.0	5	27	32	1	0		0	0	0	0	0	0	
3	0	0	0.24	0.75	0.0	3	10	13	1	0		0	0	0	0	0	0	
4	0	0	0.24	0.75	0.0	0	1	1	1	0		0	0	0	0	0	0	

数据准备

数据集

数据准备

将数据分撮处理

- 如何训练?
 - 将训练切割成小的撮(batch)
 - 对每一个小撮进行误差计算、反向传播,调整权重

建立神经网络

数据库预处理后的特征列数量

input_size = features.shape[1]

output size = 1

weights1 = torch.randn([input_size, hidden_size], requires_grad = True)

biases = torch.randn([hidden_size], requires_grad = True)

weights2 = torch.randn([hidden_size, output_size], requires_grad = True)

- 定义一个input_size*hidden_size的 第一层权重矩阵
- 定义一个hidden_size尺度的向量 biases
- 定义一个hidden_size*1的第二层 权重矩阵

建立神经网络

```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```


- 建立一个多步操作的神经网络模型
- 第一步从输入层到隐含层节点为一个线性 运算,输入维度input_size,隐含维度 hidden size
- 第二步为Sigmoid,作用到每一个隐含层神 经元上
- 第三步又是一个线性元算,从隐含到输出,神经元个数分别为hidden_size和 output_size
- 所有神经网络的参数都存储在 neu.parameters()里面了

建立损失函数和优化器

```
cost = torch.nn.MSELoss()
optimizer = torch.optim.SGD(neu.parameters(), lr = 0.01)
```

- torch.nn.MSELoss() 等价于函数torch.mean((x-y)^2)
- torch.optim.SGD随机梯度下降算法
 - neu.parameters()返回神经网络neu的所有权重、偏置参数

```
#神经网络训练循环
for i in range(2000):
 batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
 for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)
   xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
   yy = torch.tensor(Y[start:end], dtype = torch.float, requires grad = True)
   predict = neu(xx) # 模型预测
   loss = cost(predict, yy) # 计算损失函数(均方误差)
   optimizer.zero_grad() # 将优化器存储的那些参数的梯度设置为0
   loss.backward() # 开始反向传播, 计算所有梯度值
   optimizer.step() # 优化器开始运行一步,更新所有的参数
   batch loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
 if i % 100==0:
   losses.append(np.mean(batch loss))
   print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)
   xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
   yy = torch.tensor(Y[start:end], dtype = torch.float, requires_grad = True)
    predict = neu(xx) # 模型 hidden = x* weights+ biases
    loss = cost(predict, yy) # hidden = torch.sigmoid(hidden)
   optimizer.zero_grad() # > predictions = hidden.mm(weights2)
    loss.backward() # 开始反问传播, 计算所有梯度值
   optimizer.step() # 优化器开始运行一步,更新所有的参数
    batch_loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
    end = start + batch_size if start + batch_size < len(X) else len(X)
    xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
    yy = torch.tensor(Y[start:end], dtype = torch.float, requires grad = True)
    predict = neu(xx) # 模型预测
   loss = cost(predict, yy) # 计算 weights.grad.data.zero_()
   optimizer.zero_grad() # 将优 biases.grad.data.zero_()
   loss.backward() # 开始反向作 weights2.grad.data.zero_()
    optimizer.step()#优化器开始运行。少,
    batch_loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
    end = start + batch_size if start + batch_size < len(X) else len(X)
    xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
    yy = torch.tensor(Y[start:end], dtype = torch.float, requires_grad = True)
    predict = neu(xx) # 模型预测
    loss = cost(predict, yy) # 计算损失函数(均方误差)
    optimizer.zero_grad() # 将优化器存储的那些参数的梯度设置为0
   optimizer.step() # 优化 weights.data.add_(- learning_rate * weights.grad.data)
                         biases.data.add_(- learning_rate * biases.grad.data)
    batch_loss.append(loss
 #每隔100步输出一下损 weights2.data.add_(- learning_rate * weights2.grad.data)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch_loss))
```

```
#神经网络训练循环
for i in range(2000):
 batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
 for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)</pre>
                                                                 xx.size()=(128,56)
   xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
   yy = torch.tensor(Y[start:end], dtype = torch.float, requires grad = True)
                                                                 yy.size()=(128,1)
   predict = neu(xx) # 模型预测
   loss = cost(predict, yy) # 计算损失函数(均方误差)
   optimizer.zero_grad() # 将优化器存储的那些参数的梯度设置为0
   loss.backward() # 开始反向传播, 计算所有梯度值
   optimizer.step()#优化器开始运行一步,更新所有的参数
   batch loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
 if i % 100==0:
   losses.append(np.mean(batch loss))
   print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
 batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
 for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)</pre>
   xx = torch.tensor(X[start:end], dtype = torch.float, requires grad = True)
   yy = torch.tensor(Y[start:end], dtype = torch.float, requires grad = True)
   predict = neu(xx) # 模型预测
                                                            predict.size()=(128,1)
   loss = cost(predict, yy) # 计算损失函数(均方误差)
   optimizer.zero_grad() # 将优化器存储的那些参数的梯度设置为0
   loss.backward() # 开始反向传播, 计算所有梯度值
   optimizer.step()#优化器开始运行一步,更新所有的参数
   batch loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
 if i % 100==0:
   losses.append(np.mean(batch loss))
   print(i, np.mean(batch loss))
```


0.4	1.9	-0.1	0.2	1.1	3.2	0.3
-0.9	0.5	2.1	-0.9	-1.0	1.1	0.1
-0.9	0.5	2.1	-0.9	-1.0	1.1	0.1
0.4	1.9	-0.1	0.2	1.1	3.2	0.3

```
neu= torch.nn.Sequential(
    torch.nn.Linear(input_size, hidden_size),
    torch.nn.Sigmoid(),
    torch.nn.Linear(hidden_size, output_size),
)
```

predict=neu(x)

batch_size * input_size

0.4	1.9	-0.1	0.2	1.1	3.2	0.3				
-0.9	0.5	2.1			1.1	0.1				
-0.9	o bat	ch_si	ze* h	nidde	n_size	20.1				
0.4	1.9	-0.1	0.2	1.1	3.2	0.3				

```
neu= torch.nn.Sequential(
    torch.nn.Linear(input_size, hidden_size),
    torch.nn.Sigmoid(),
    torch.nn.Linear(hidden_size, output_size),
)
```

```
predict=neu(x)
```

0.4	1.9	-0.1	0.2	1.1	3.2	0.3
-0.9	0.5	2.1			1.1	0.1
-0.9	o bat	ch_si	ze* h	nidde	n_size	20.1
0.4	1.9	-0.1	0.2	1.1	3.2	0.3
		0		0,0	· C	
	,,,		•••			
7 7		•••		•••		* *

```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```

```
predict=neu(x)
```

0.4	1.9	-0.1	0.2	1.1	3.2	0.3		
-0.9						0.1		
-0.9	batch_size * output_size 1							
0.4	1.9	-0.1	0.2	1.1	3.2	0.3		


```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```

```
predict=neu(x)
```

0.4	1.9	-0.1	0.2	1.1	3.2	0.3			
-0.9			-0.9			0.1			
-0.9	<pre>batch_size * output_size 1</pre>								
0.4	1.9	-0.1	0.2	1.1	3.2	0.3			


```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```

```
predict=neu(x)
```



```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```

loss.backward()

注意:每一个批次,都进行一次梯度反传并更新所有Linear里面的权重和biases

为什么可以分批次梯度下降?

$$L = \sum_{i=1}^{N} L_i = \sum_{i \in B_1} L_i + \sum_{i \in B_2} L_i + \dots + \sum_{i \in B_M} L_i$$

$$\partial L/\partial X = \partial \sum_{i=1}^{N} L_i/\partial X = \partial \sum_{i \in B_1} L_i/\partial X + \partial \sum_{i \in B_2} L_i/\partial X + \dots + \partial \sum_{i \in B_M} L_i/\partial X$$

只要Loss函数是线性可分的,都可以分批次梯度下降

运行结果

解剖神经网

对Neu进行诊断

X = torch.tensor(X, dtype = torch.float, requires_grad = False)

dic = dict(net.named_parameters())

weights = dic['0.weight']

h = torch.sigmoid(X.mm(weights.t()) + biases.expand([len(X), len(biases)])

对Neu进行诊断

结论

- 预测不准是因为圣诞节假期的反常模式
- 在24号预测值偏高是因为对节假日抑制单元的抑制不够
- 由于圣诞节的缘故, 22、23这两天的午 高峰出行较少, 甚至比一般节假日还少
- 解决:特殊日期的训练需要提供更多数据,或者手工调整权重

今日回顾

- 人工神经网络的工作原理
- 如何用人工神经网络来做预测
- 数据处理方法: 类型变量、归一化、分批次训练
- 如何分析一个训练好的人工神经网络
- 运用神经网络进行分类的基本原理
- PyTorch中构建序列化神经网络的方法

练习与作业

- 练习 (不需要上交):
 - 实现一个三分类网络,对自行车预测数据进行高、中、低这三个类别的划分