Meta Coding Competitions

Meta Hacker Cup
Round 2

2023

Home

Scoreboard

Ends in 2h 57m 38s

Score: 0 / 100 points **Rank:** 1st out of 6,192

P	R	0	B	L	E	N	1	S
---	---	---	---	---	---	---	---	---

A1: Ready, Go (Part 1)	8 pt

9 pt

A2: Ready, Go (Part 2)

B: Meta Game	18 pt

C: Wiki Race	24 pt
--------------	-------

D: Tower Rush 41 pt

FAQ

My Clarifications

Problem B: Meta Game

Validate Solution & Submit

18 points

Problem

My Submissions

Hacker Cup contest strategy often involves a metagame, where choosing which problems to work on might just be an important decision. On a Quest to become more Pro, you encounter an oracle promising to teach you the contest meta if you play her own Meta-game.

The oracle presents a peg board with 2N moving dots. The initial y-positions of the dots are given as two arrays $A_{1..N}$ and $B_{1..N}$. Each second, simultaneously, A_1 will move to the end of B, while B_1 will move to the end of A (with all elements shifting left accordingly).

You can connect the dots to form a *Meta-like logo* if all of the following are true:

- For the first half of both arrays, each dot in A is below the corresponding dot in B.
- ullet For the last half of both arrays, each dot in A is above the corresponding dot in B.
- A equals the reverse of B.

Formally:

- $A_i < B_i$ for every i < (N+1)/2
- $A_i > B_i$ for every i > (N+1)/2
- $A_i = B_{N-i+1}$ for every i=1..N

Note that if N is odd, the arrays' middle elements are not subject to the first two constraints.

The following is a visualization of a Meta-like logo (corresponding to the first sample case), with dots in

Meta Coding Competitions

2023

Home

Scoreboard

Ends in 2h 57m 38s

Score: 0 / 100 points **Rank:** 1st out of 6,192

A1: Ready, Go (Part 1) 8 pt

A2: Ready, Go (Part 2) 9 pt

B: Meta Game 18 pt

C: Wiki Race 24 pt

D: Tower Rush 41 pt

FAQ

My Clarifications

You must answer the oracle: how many seconds must pass before a Meta-like logo appears? If one never appears, output -1.

Constraints

$$1 \le T \le 400$$

$$2 \le N \le 2,000,000$$

$$0 < A_i, B_i < 1,000,000,000$$

The sum of N across all test cases is at most 9,000,000.

Input Format

Input begins with an integer T, the number of test cases. For each case, there is first a line containing a single integer N. Then, there is a line containing integers $A_1, ..., A_N$. Then, there is a line containing integers $B_1, ..., B_N$.

Output Format

For the ith test case, print "Case #i: " followed by a single integer, the number of seconds that must pass before a Meta-like logo appears, or -1 if that will never happen.

Sample Explanation

© 2022 Meta

Contact Us

Meta Coding Competitions

Meta Hacker Cup Round 2

2023

Home

Scoreboard

Ends in 2h 57m 38s

Score: 0 / 100 points **Rank:** 1st out of 6,192

PROBLEMS

A1: Ready, Go (Part 1) 8 pt

A2: Ready, Go (Part 2) 9 pt

B: Meta Game 18 pt

C: Wiki Race 24 pt

D: Tower Rush 41 pt

FAQ

My Clarifications

THE SECOND CASE IS NOT INITIALLY A MIETA-LIKE 1040, TO several reasons. One reason is that it is not symmetric. Specifically, the [3, 3, 2, 3, 5, 6] is not the reverse of [4,4,6,5,3,2]. After 1 second though, this case turns into the case above and is Meta-like.

The third and fourth cases will never turn into a Metalike logo, no matter how many seconds we wait.

In the fifth case, after 6 seconds we see the first Meta-like logo. In this case A = [1, 1, 2, 2] and B = [2, 2, 1, 1].

Sample Input

3 3 3 3 3 1 1 1 1 3

1 1 1 1 3 3 3 3 3 3

8 3 2 3 5 6 4 4 6 5 3 2 3 3 3 2 3 5 6 4 4 6 5 3 2 4 3 2 3 5 6 3 4 6 5 3 2 2 1 1

1 1 2 2 2 2 1 1 1 1 3 3 3 3 3 1 1 1 1 1

Sample Output

Case	#1:	0		
Case	#2:	1		
Case	#3:	-1		
Case	#4:	-1		
Case	#5:	6		
Case	#6:	-1		
Case	#7:	7		
Case	#8:	2		

Validate Solution & Submit

© 2022 Meta

Contact Us