K-Means Clustering: Selecting *K*.

W. Wang¹

¹ Department of Mathematics University of Houston

MATH 4323

Cluster Validation. Selecting *K* in *K*-Means.

Having introduced one approach for clustering - *K*-means algorithm - we are yet to discuss the following critical topics:

- How do we select the best value K (the # of clusters)?
- Given that there's no target variable and no obvious model validation approach (such as validation set or cross-validation), how do we evaluate the quality of our clustering solution?

Choosing *K* in *K*-Means: Data Segmentation Task.

A choice for the number of clusters K depends on the **goal** of the **application**.

In data segmentation tasks, K is usually supplied as part of the problem.

Example (data segmentation). Company may employ 10 sales people, and the goal is to partition a customer database into **10 segments**, one for each sales person, such that the customers assigned to each one are **as similar as possible**.

If we were to use K-means clustering, then K = 10 is clearly warranted here.

Choosing *K* for *K*-Means: Data-based methods.

Often, however, cluster analysis is used to provide a data description via **natural** distinct groupings of observations. Here the number of such groups K^* is **unknown** and one requires that it, as well as the groupings themselves, be estimated **from the data**.

Data-based methods for estimating K^* typically examine the **within-cluster** variation W_K as a function of the **number of clusters** K:

- 1. A separate clustering solution is obtained for $K = 1, 2, \dots, K_{max}$.
- 2. Calculate the corresponding values $\{W_1, \ldots, W_{K_{max}}\}$ of withincluster variations.

Example: Human Tumor Microarray Data.

Example. For the human tumor microarray data NCI60 from previous slides, we apply K-means clustering with

- K running from 1 to 10,
- using 50 random initializations each time.

Then we computed the total within-sum of squares for each clustering.

Example: Human Tumor Microarray Data.

Example (cont'd). Plot of WSS for resulting K = 1, ..., 10-cluster solutions is on the right.

$$W_1 > W_2 > \cdots > W_{K_{max}}$$

Values $\{W_1, \dots, W_{K_{max}}\}$ generally decrease as $K \uparrow$, as the more clusters created \Rightarrow the higher the density of each cluster (just

imagine the case of K = n, with each observation being its own cluster). Thus **cross-validation** techniques, so useful for model selection in supervised learning, cannot be utilized in this context.

Choosing *K* for *K*-Means: Data-based methods.

Intuition. If there were truly K^* distinct groupings of the observations:

- Performing K-means with $K < K^*$, some clusters will contain representatives of ≥ 2 distinct groupings, which leads to them being **heterogeneous** (having **high** within-cluster variation W_K),
- With each successive increase in K, up until $K \equiv K^*$, the value W_K should decrease **substantially** $\Leftrightarrow W_K >> W_{K+1}, K < K^*$, due to the natural groups of observations being successively assigned to separate clusters.
- Splitting a natural group, within which the observations are all quite close to each other, reduces the criterion less than partitioning the union of two well-separated groups into their proper constituents.

Example. Let's generate a simulated data example in 2D space with K = 3 clear, well-separated, clusters of observations.

Example (cont'd). Below one can see three clusters of observaions: top-left, bottom-left and bottom-right parts of 2D predictor space.

Example (cont'd). We will fit K-means for K = 1, 2, 3 & 4, compare the resulting clusters and within-cluster sums of squares.

Library factoextra presents a set of functions

- to obtain clustering solutions (function eclust()),
- select a K for K-means, if needed,
- visualize the clustering solutions (function fviz_cluster())

To obtain a K-means solution for K = 2, along with visualization:

Example (cont'd). For **K=1**, we have **WSS=118**, plot not needed. For **K=2**, we have **WSS=50.5**, and resulting plot:

See how heterogeneous the blue cluster is, albeit a big drop in WSS.

Example (cont'd). For **K=3**, we have **WSS=10.2**, and resulting plot:

All three clusters are well-separated and dense, big drop in WSS.

Example (cont'd). For **K=4**, we have **WSS=9.1**, and resulting plot:

Red and orange clusters are not well-separated, small drop in WSS.

Example. To give a better idea of WSS value progression as $K \uparrow$, let's fit K-means for K = 1, ..., 10 and plot the WSS values:

One sees large drops in WSS for $K = 1 \Rightarrow K = 2 \Rightarrow K = 3$, followed by small drops for $K \ge 4$. Given that our simulated data has K = 3 natural groupings, it re-affirms the intuition from slide 7.

Data-based methods: "Elbow" method, "Gap" statistic.

So, more formally, we need to find the smallest K^* (the "elbow") value such that

$$\{W_K - W_{K+1} \mid K < K^*\} >> \{W_K - W_{K+1} \mid K \ge K^*\}$$

or, in plain English,

"The drops in within-cluster variation are the highest up until K^* clusters."

A couple of methods exists for solving this task.

- "Elbow" method.
- "Gap" statistic.

Data-based methods: "Elbow" method.

"Elbow" method. Draw a line connecting points $(1, WSS_1)$ and $(K^{max}, WSS_{K^{max}})$. The point (K^*, WSS_{K^*}) which has the largest perpendicular distance from that line is called the "elbow" $\Rightarrow K^*$ is the optimal # of clusters.

Example (cont'd). Applying this to our simulated example yields $K^* = 3$, due to point (K = 3, WSS = 10.2) being furthest from the line.

Total Within-Cluster Sum of Squares, for K=1,...,10

"Gap" statistic (a more formal method) compares

- the curve of $\log(WSS_K)$ for your original data **x**, to
- the curve of log(WSS_K^{Uniform}) obtained from data x ^{Uniform}, uniformly distributed over a rectangle containing the original data x (representing the situation of "no natural groupings of observations").

It estimates the optimal number K^* of clusters to be the place where the **gap** between the two curves is **largest**. Intuitively, that means we have K^* natural groupings (because we are **far** from the "no natural groupings" situation).

Example (cont'd). For our simulated example of 60 data points, let's generate 60 data points uniformly distributed over the range of those original 60 points, meaning:

```
 \bullet \  \, \boldsymbol{x}_1^{\textit{Uniform}} \sim \textit{Uniform}(\textit{min}(\boldsymbol{x}_1), \textit{max}(\boldsymbol{x}_1)),
```

```
 \bullet \  \, \boldsymbol{x}_2^{\textit{Uniform}} \sim \textit{Uniform}(\textit{min}(\boldsymbol{x}_2), \textit{max}(\boldsymbol{x}_2)), \\
```

This is produced by the code below:

Example (cont'd). The plots of original and uniform data:

One sees how uniform data plot represents situation of **no** natural groupings - points are just uniformly scattered across the box (box is of the same size as for original data).

Example (cont'd). Fitting K-means clustering solutions to both original and uniform data scenarios for K = 1, ..., 10, below is the plot of log(WSS) progressions:

log(WSS) for Original and Uniform data, K=1,...,10

Intuition: Large gap between our clustering solution (curve 1) and the uniformly distributed data scenario (curve 2)

1

Our clustering is far from the "no natural grouping" scenario

1

Our clustering is **close** to representing natural groupings of observations.

 \Downarrow

To find optimal # of clusters K^* , we look for the K with **largest** gap bwetween two curves.

Example (cont'd). Depicting the gaps at various values of K:

log(WSS) for Original and Uniform data, K=1,...,10

Question: Why is it called gap "statistic", and not a gap "method"?

Answer: Because we don't stop at just generating **one** uniformly distributed data set and calculating gaps for it. We repeat the process of

- 1. Randomly generating uniform data;
- 2. Calculating the gaps for each value of K;

multiple B times, and then, for each K, **average** the gap values across those B replicates, eventually giving us a gap **statistic**.

Moreover, we also have access to **standard deviation** of each gap statistic, which allows to judge the **level of uncertainty** around that particular gap value.

Gap statistic in *R*: *fviz_nbclust*() function.

Function *fviz_nbclust()* of library *factoextra* calculates gap statistic, allows to specify the # of uniform data generations (via option *nboot*):

Gap statistic in *R*: *eclust*() function.

Another way to access gap statistic calculations in R is by running eclust() function for K-Means without specifying K:

```
> ec.obj <- eclust(data.frame(x),</pre>
                 FUNcluster = "kmeans",
                 nstart=50,
                 nboot=50.
                 graph=0)
Clustering k = 1, 2, \ldots, K.max (= 10): \ldots done
Bootstrapping, b = 1, 2, ..., B (= 50) [one "." per sample]:
        > ec.obj$gap_stat
--> Number of clusters (method 'firstSEmax', SE.factor=1): 3
         logW E.logW gap
                                    SE.sim
 [1, 1 3.248612 3.285550 0.03693747 0.05253545
 [2.] 2.718404 2.904052 0.18564860 0.04370008
 [3,1 2.021056 2.688716 0.66766003 0.04184520
 . . .
```