蒙特卡罗法进行无形资产投资决策实例

韩良智

(北京科技大学管理学院, 北京 100083)

摘 要:结合实例介绍了在Excel上应用蒙特卡罗法进行无形资产投资决策分析的具体做法。

关键词:无形资产;投资风险分析;蒙特卡罗法

文章编号: 1006-253X (2004) 06-0032-03

中图分类号: F403.5

文献标识码:B

蒙特卡罗法是指通过大量模拟运算来描述投资 方案评价指标的分布情况的方法。利用此方法进行 分析时,首先,根据影响投资方案的各项不确定因 素的概率分布,分配相应的随机数,再根据每次模 拟时随机数数值确定每项因素的取值。在此基础上 计算投资方案的评价指标。

由于无形资产投资所取得的收益存在着很大的不确定性,故在决策中必须对其不确定性风险进行分析,常用的方法是概率分析,一般采用联合概率法。但在无形资产投资后各年的不确定性较大时(如各年的净现金流量变化范围较大,从而发生的概率点较多),就必须进行大量的组合计算,工作量很大。例如,假设某一无形资产投资在5年内有效,第1、2、3、4、5年的净现金流量发生的概率点分别为3、4、5、5、6个,则利用联合概率法分析时,需要计算3×4×5×5×6=1800个,显然利用手工计算是非常麻烦和困难的。如果在Excel上进行无形资产投资决策分析,效果非常理想。

在Excel表格上进行投资项目不确定性分析,主要是利用Excel的随机函数RANDBETWEEN来产生随机数,并利用查找函数VLOOKUP来查找对应随机数的变量数值。当进行足够的模拟计算次数后,即可得到净现值的期望值、标准差以及概率分布。

1 实例简况

某企业拟投资开发一项专有技术,其初始投资为12万元,该项目预计在3年内有效,3年内每年给企业带来的现金流量是不确定的,其有关资料已整理在Excel上,如表1所示。该企业的资本成本为15%,试对该项投资的可行性进行评价。

2 投资风险分析

首先设计计算分析表格,如表2所示。利用

Excel进行投资风险分析的具体步骤如下:

- (1) 在单元格A22中输入第1年的随机数计算公式: "=RANDBETWEEN (1, 100)", 在单元格B22中输入第1年的净现金流量计算公式: "=VLOOKUP (A22, \$C\$4:\$D\$17,2)", 然后选中单元格A22和B22, 向下一直复制到单元格A6021和B6021, 共6 000行, 即进行6 000次随机模拟计算;
- (2) 在单元格C22中输入第2年的随机数计算公式: "=RANDBETWEEN (1, 100)",在单元格D22中输入第2年的净现金流量计算公式;

"IF (B22=\$D\$4,VLOOKUP (C22, \$G\$4:\$H\$9, 2),VLOOKUP (C22, \$G\$10:\$H\$17, 2))", 选中单元格C22和D22,向下一直复制到单元格C6021和D6021;

(3) 在单元格E22中输入第3年的随机数计算公式: "=RANDBETWEEN (1, 100)", 然后在单元格F22中输入第3年的净现金流量计算公式:

"=IF (AND (B22=\$D\$4, D22=\$H\$4), VLOOKUP (E22, \$K\$4:\$L\$6, 2), IF (AND (B22=\$D\$4, D22=\$H\$7), VLOOKUP (E22, \$K\$7:\$L\$9, 2), IF (AND (B22=\$D\$10, D22=\$H\$10), VLOOKUP (E22, \$K\$10:\$L\$12, 2) IF (AND (B22=\$D\$10, D22=\$H\$13), VLOOKUP (E22, \$K\$13:\$L\$14, 2), IF (AND (B22=\$D\$10, D22=\$H\$13), VLOOKUP (E22, \$K\$13:\$L\$14, 2), IF (AND (B22=\$D\$10, D22=\$H\$15), VLOOKUP (E22, \$K\$15:\$L\$17, 2)))))", 然后选中单元格E22和F22, 向下一直 复制到单元格E6021和F6021;

说明, 当利用VLOOKUP函数寻找符合某一概

收稿日期: 2003-08-26

作者简介:韩良智 (1963-),女,辽宁省人,副教授,从事财务管理的研究工作。

	表1 某专有技术投资的有关资料Excel报表 万元									万元		
	A	В	С	D	E	F	G	Н	I	J	K	L
1	项目	初始投资	12	贴现率	15%	项目寿命	3					
2			第1年				第2年				第3年	
3	概率	累计概率	对应的随机数	现金流量	概率	累计概率	对应的随机数	现金流量	概率	累计概率	对应的随机数	现金流量
4									0.6	0.6	1	14
5					0.7	0.7	1	10	0.3	0.9	61	11
6									0.1	1	91	7.5
7	0.6	0.6	1	7.5					0.4	0.4	1	9
8					0.3	1	71	6	0.4	0.8	41	7
9									0.2	1	81	4
10									0.3	0.3	1	10
11					0.2	0.2	1	8	0.4	0.7	31	9
12									0.3	1	71	8
13	0.4	•	(1	4	0.4	0.6	01	-	0.7	0.7	1	9
14	0.4	1	61	4	0.4	0.6	21	7	0.3	1	71	5
15									0.1	0.1	1	7.5
16					0.4	1	61	5	0.3	0.4	11	5
17									0.6	1	41	2.5

率的净现金流量时,必须先对概率及净现金流量进行分区。以第1年为例,净现金流量为7.5万元时对应的随机数为1,表示当随机数在1~60范围内时,净现金流量为7.5万元;净现金流量为4万元时对应的随机数为61,表示当随机数在61~100范围内时,净现金流量为4万元。其它各年以此类推。

- (4) 在单元格G22中输入净现值计算公式 "= NPV (\$E\$1, B22, D22, F22)-\$C\$1", 然后向下一直复制到单元格G6021;
 - (5) 最终模拟计算结果存放在单元格I19:K24

中, 计算公式分别为: 净现值期望值(单元格K19) "=AVERAGE(G22:G6021)"; 净现值标准差(单元格K20) "=STDEV(G22:G6021)"; 变 异系数(单元格K21) "=K20/K19"; 净现值最大值(单元格K22) "=MAX(G22:G6021)"; 净现值最小值(单元格K23) "=MIN(G22:G6021)"; 净现值为负的概率(单元格K24) "=COUNTIF(G22:G6021, "<0")/6000";

表2给出了前3次模拟计算过程及最终模拟计算结果。

表2 模拟计算过程及计算结果

	A	В	С	D	E	F	G	Н	I	J	K
18			株也江海	· + # 4 10 A	· 法县MOD				计算结果		
19	模拟计算过程净现金流量NCF								净现值期望值=		5.21
20	第1年		第2年		第3年		净现值NPV		净现值标准差=		4.83
21	随机数	NCF	随机数	NCF	随机数	NCF			变异系数=		0.927
22	76	4	55	7	90	5	0.06		净现值最大值=		11.29
23	96	4	89	5	30	-3.1	-1.45		净现值最小值=		-3.10
24	31	7.5	29	10	20	14	11.29		净现值为负的概	[率=	0.139 3

(6)得到模拟计算结果后,可以利用Excel的 FREQUENCY函数及绘图工具绘制净现值概率分布图,具体步骤如下:首先对净现值进行分组,以便进行统计分析,分组结果存放在单元格I30:I36中;设计图表上净现值的分布区间存放在单元格J30:J36中;再选取单元格区域K30:K36,输入净现值概率分布计算公式"=FREQUENCY(G22:

G6021, I30:I36) /6000", 注意为数组输入,需要同时按Shift+Ctrl+Enter键,即可得到净现值概率分布结果如表3所示。然后插入直方图,做法是:选择单元格J29:K36,在图表导向中选柱形图,再依据有关说明输入有关资料。净现值概率分布如图1所示。

(下转第36页)

数学变形,不能由此得到再投资隐含假设的结论。 因此,内部收益率同净现值一样是可以独立的作 为评价指标,为决策提供判断依据的。

3 净现值与内部收益率的选择

在对单个方案评价时,NPV和IRR的结论一致,即二者绝对经济效果评价结论相同。但多方案评价中二者结论可能会互相矛盾,对于互斥方案来说,净现值可以给出正确的排序,而IRR的排序却有可能是错误的。原因在于IRR的计算过程远比净现值复杂,由于项目寿命期的影响,求解IRR的方程一般是高次方程,有时会出现IRR多根的情况,会使IRR的计算和分析复杂化。所以多方案比选时,一般采用净现值法和增量内部收益率法。如果确保IRR计算无误,IRR也可以正确的

进行互斥项目或受预算约束条件投资项目的排序。 总之,净现值和IRR并不矛盾,二者从不同的方面反映了项目的信息,大多数投资者都有多个投资目标,同时由于投资者受约束的条件和关注的主要目标不同,他们会从不同的角度考察项目。 合理选择和利用净现值和IRR以及其他经济指标,有助于从不同角度获得项目的有益信息,增加投资决策的正确性。

参考文献:

- [1] 吴添祖、技术经济学概论 [M]、北京:高等教育出版社,2002、39~46,51~55、
- [2] T. F. 托里斯. 净现值与内部收益率的比较分析 [J]. 国外金属矿山, 1999 (1): 4~9.
- [3] 孙续元. 关于内部收益率隐含假设的辨析 [J].武汉 大学学报, 2000 (1): 66~67.

Comparison and Analysis of NPV and IRR

WANG Mian, HUANG Ying

(Jianghan Petroleum University, Hubei Jingzhou City 434023, China)

Abstract: Two commonly-used indexes of project assessment, NPV and IRR, reflecting different meaning of project, are compared and analyzed in this paper. It indecate that the right dicison-making depend on rational used of NPV and IRR.

Keywords: economic assistment; *NPV* (Net Present Value); *IRR* (Inter Return Rate)

(上接第33页)

表3 净现值概率分布统计

	Ĭ	Ī	K					
28	净现值概率分布分析							
29	系统分组	分布区间	概率					
30	-10	~10以下	0.000					
31	-5	-10~-5	0.000					
32	0	-5~0	0.139					
33	5	0~5	0.442					
34	10	5~10	0.173					
35	15	10~15	0.246					
36	20	15以上	0.000					

3 结果

可见,该项目的净现值主要分布在-5~15万元之间,其中在0~15万元之间的概率为86%左右,净现值为负的概率为14%左右,且主要分布在(-3.10~0)万元之间,因此,该项目的获利能力较高且风险不大,项目是可行的。

为了更为详细地了解净现值的概率分布,我

图1 净现值概率分布

们可以将表3的分布区间分得更细一些,限于篇幅,本文不再讨论。

4 结论

利用蒙特卡罗方法在Excel上进行无形资产投资的风险分析,具有简单、迅速、实用的优点,再加上图形分析,可以全面地了解投资项目的获利能力及风险大小,从而进行正确的投资决策。

Rationing Method for Intangible Assets Investment

HAN Liang-zhi

(Management School, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: In this paper risk analyses of intangible assets investment by Monte Carlo method and its application in EXCEL are made with example.

Keywords: intangible assets; investment risk; Monte Carlo