Charakterystyki statyczne pomieszczenia z grzejnikiem.

Jan Bronicki 249011 Marcin Gruchała 248982

1 Cel ćwiczenia.

Stworzenie charakterystyki statycznej, dla pomieszczenia z grzejnikiem.

2 Wstęp.

Opisujemy model pomiesczenia z grzejnikiem. Model jest uproszczonym matematycznym opisem jakiegoś obiektu. Przy opisie pomieszczenia naszym modelem będzie bilans ciepła, dla tego pomieszczenia, ponieważ naszym celem jest wyznaczenie współczynników strat ciepła oraz stworzenie charkterystyk statycznych opisujących temperature w pomieszczeniu. Poniższy rysunek przedstawia model opisujący nasz badany obiekt.

Gdzie:

 T_{zew} – temperatura na zewnątrz pomieszczenia

 T_{wew} – temperatura wewnątrz pomieszczenia

 T_p — temperatura na poddaszu

 Q_q – grzejnik

 K_{cw} – współczynnik strat ciepła przez ściany

 K_{cwp} – współczynnik strat ciepła przez sufit

 K_{cp} – współczynnik strat ciepła przez dach

Poniższy układ równań przedstawia bilans ciepła, dla pomieszczenia.

$$\begin{cases} 0 = Q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

Dla powyższych równań znamy:

$$\begin{split} Q_g &= 1000W \\ T_{zew} &= -20^{\circ}C \\ T_{wew} &= 20^{\circ}C \\ T_p &= 10^{\circ}C \\ \alpha &= 0, 25 \\ K_{cwp} &= \alpha K_{cw} \implies K_{cwp} = 0, 25 K_{cw} \end{split}$$

3 Rozwiązanie układów rwónań ze względu na K_{cp}, K_{cwp}, K_{cw} oraz $T_{wew}, T_p(\mathbf{tradycyjnie})$.

$$\begin{cases} 0 = Q_g - K_{cw}(T_{wew} - T_{zew}) - K_{cwp}(T_{wew} - T_p) \\ 0 = K_{cwp}(T_{wew} - T_p) - K_{cp}(T_p - T_{zew}) \end{cases}$$

$$\begin{aligned} Q_g &= 1000W \\ T_{zew} &= -20^{\circ}C \\ T_{wew} &= 20^{\circ}C \\ T_p &= 10^{\circ}C \\ \alpha &= 0, 25 \\ K_{cwp} &= \alpha K_{cw} \implies K_{cwp} = 0, 25K_{cw} \end{cases}$$

Ze względu na K_{cp}, K_{cwp}, K_{cw} :

$$\begin{cases} K_{cw}T_{wew} - K_{cw}T_{zew} + 0,25K_{cw}T_{zew} - 0,25K_{cw}T_p = Q_g \\ 0,25K_{cw}T_{wew} - 0,25K_{cw}T_p - K_{cp}T_p + K_{cp}T_{zew} = 0 \end{cases}$$

$$\begin{cases} K_{cw}(1,25T_{wew} - 0,25T_p - T_{zew}) = Q_q \\ K_{cp}(T_p - T_{zew}) - 0,25K_{cw}(T_{wew} - T_p) = 0 \end{cases}$$

$$K_{cp} = \frac{0,25K_{cw}(T_{wew} - T_p)}{T_p - T_{zew}}$$

$$K_{cw} = \frac{Q_g}{0,75T_{wew} - T_{zew} - 0,25T_p}$$

$$K_{cw} = \frac{1000}{25 - 2,5 + 20} \approx 23,53$$

$$K_{cp} = \frac{0,25 \cdot 23,53(20 - 10)}{10 - (-20)} \approx 1,96$$

$$K_{cwp} = 0,25K_{cw} \approx 5,98$$

Ze względu na T_{wew}, T_p :

$$T_{wew} = \frac{Q_g + K_{cw} T_{zew} + 0.25 T_p K_{cw}}{1.25 K_{cw}} \\ T_p = \frac{0.2 Q_g + 0.2 T_{zew} K_{cw} + T_{zew} K_{cw}}{0.2 K_{cw} + K_{cp}} \\ T_{wew} = \frac{Q_g + K_{cw} T_{zew} + 0.25 K_{cw}}{0.2 K_{cw} + K_{cp}} \\ T_{wew} = \frac{0.2 Q_g + 0.2 T_{zew} K_{cw} + T_{zew} K_{cw}}{0.2 K_{cw} + K_{cp}} \\ T_p = \frac{0.2 Q_g + 0.2 T_{zew} K_{cw} + T_{zew} K_{cw}}{0.2 K_{cw} + K_{cp}} \\ T_{wew} = \frac{1000 + 23.53 \cdot (-20) + 0.25 \cdot 23.53}{0.2 \cdot 23.53 + 1.96} \approx 20 \\ T_p = \frac{0.2 \cdot 1000 + 0.2 \cdot (-20) \cdot 23.53 + (-20) \cdot 1.96}{0.2 \cdot 23.53 + 1.96} \approx 10$$

4 Rozwiązanie układów rwónań ze względu na K_{cp}, K_{cwp}, K_{cw} oraz T_{wew}, T_p (macierzowo).

Ze względu na $K_{cp}.K_{cwp},K_{cw}$:

$$\begin{bmatrix} 0 & 1,25T_{wew} - 0,25T_p - T_{zew} \\ T_p - T_{zew} & -0,25(T_{wew} - T_p) \end{bmatrix} \begin{bmatrix} K_{cp} \\ K_{cw} \end{bmatrix} = \begin{bmatrix} Q_q \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 & 1,25T_{wew} - 0,25T_p - T_{zew} \\ T_p - T_{zew} & -0,25(T_{wew} - T_p) \end{bmatrix}$$

$$K = \begin{bmatrix} K_{cp} \\ K_{cw} \end{bmatrix}$$

$$Y = \begin{bmatrix} Q_q \\ 0 \end{bmatrix}$$

$$WK = Y$$

$$K = W^{-1}Y = \begin{bmatrix} 1,960784313725490 \\ 23,529411764705880 \end{bmatrix} \approx \begin{bmatrix} 1,96 \\ 23,53 \end{bmatrix}$$

Ze względu na T_{wew}, T_p :

$$\begin{bmatrix} (K_{cw} + 0, 25K_{cw}) & -(0, 25K_{cw}) \\ 0, 25K_{cw} & (0, 25K_{cw} - K_{cp}) \end{bmatrix} \begin{bmatrix} T_{wew} \\ T_p \end{bmatrix} = \begin{bmatrix} Q_q + K_{cw}T_{zew} \\ -K_{cp}T_{zew} \end{bmatrix}$$

$$O = \begin{bmatrix} (K_{cw} + 0, 25K_{cw}) & -(0, 25K_{cw}) \\ 0, 25K_{cw} & (0, 25K_{cw} - K_{cp}) \end{bmatrix}$$

$$T = \begin{bmatrix} T_{wew} \\ T_p \end{bmatrix}$$

$$P = \begin{bmatrix} Q_q + K_{cw}T_{zew} \\ -K_{cp}T_{zew} \end{bmatrix}$$

$$OT = P$$

$$T = O^{-1}P = \begin{bmatrix} 20 \\ 10 \end{bmatrix}$$

Macierze obliczyliśmy w programie Matlab.

5 Wykresy.

Wykresy wygenerowaliśmy w programie Matlab, znajdują się na następnej stronie sprawozdania.

6 Wnioski.

Jak widać tworzenie modeli oraz charakterystyk statycznych bywa bardzo pomocnę ponieważ pozwala lepiej zrozumieć i przewidzieć zmiany zachodzące w badanym obiekcie. W czytelny sposób przedstawia zachowanie się obiektu w zależności od różnych parametrów.


```
clear all;
       %Dane:
3 -
       Qg=1000;
       Tzew=-20;
       Twew=20;
       Tp=10;
8
       %Macierzowe wyliczenie Kcp, Kcw, Kcwp
9 -
       Y = [Qg; 0];
10 -
       W=[0,1.25*Twew-0.25*Tp-Tzew;Tp-Tzew,-0.25*(Twew-Tp)];
11 -
       K=inv(W)*Y;
12 -
       Kcp=K(1,1);
13 -
       Kcw=K(2,1);
14 -
       Kcwp=0.25*Kcw;
15
       %Macierzowe wyliczenie Twew(tWew), Tp(tP)
16 -
       P=[Qg+Kcw*Tzew; (-1) *Kcp*Tzew];
17 -
       O=[Kcw+0.25*Kcw,-0.25*Kcw;0.25*Kcw,-(0.25*Kcw+Kcp)];
18 -
       T=inv(0)*P;
19 -
       tWew=T(1,1);
20 -
       tP=T(2,1);
21
22
       %WYKRESY
23
       %obliczenia do wykresów 1 i 2
24 -
       Qg=1:1:2000;
```

```
25 - for i=1:1:length(Qg)
26 -
       P=[Qg(i)+Kcw*Tzew;(-1)*Kcp*Tzew];
27 -
        O=[Kcw+0.25*Kcw,-0.25*Kcw;0.25*Kcw,-(0.25*Kcw+Kcp)];
28 -
       T=inv(0)*P;
29 -
       Twew(i) = T(1,1);
       Tp(i)=T(2,1);
30 -
31 -
     ∟ end
32
       %wvkres 1
33 -
       subplot (221);
34 -
       plot(Qg, Twew, 'm');
35 -
       grid on;
36 -
       xlabel('Qg[w]');
37 -
       ylabel('Twew[\circC]');
38
       %wvkres 2
39 -
       subplot (222);
40 -
       plot(Qg,Tp,'b');
41 -
       grid on;
42 -
       xlabel('Qg[w]');
43 -
       ylabel('Tp[\circC]');
        %obliczenia do wykresó 3 i 4
44
45 -
       Qg=1000;
46 -
       Tzew=-40:1:40;
47 -
       Twew=0;
48 -
       Tp=0;
49 - for i=1:1:length(Tzew)
50 -
        P=[Qg+Kcw*Tzew(i); (-1)*Kcp*Tzew(i)];
51 -
       O=[Kcw+0.25*Kcw,-0.25*Kcw;0.25*Kcw,-(0.25*Kcw+Kcp)];
52 -
       T=inv(0)*P;
53 -
       Twew(i) =T(1,1);
54 -
       Tp(i) = T(2,1);
55 -
     ∟end
56
       %wvkres 3
57 -
       subplot (223);
58 -
       plot(Tzew, Twew, 'r');
59 -
       grid on;
60 -
       xlabel('Tzew[\circC]');
61 -
       ylabel('Twew[\circC]');
62
       %wykres 4
63 -
       subplot (224);
64 -
       plot(Tzew, Tp, 'g');
65 -
       grid on;
66 -
       xlabel('Tzew[\circC]');
67 -
       ylabel('Tp[\circC]');
```