

Ensamblaje y anotación de genomas

www.castrolab.org www.cbib.cl Eduardo Castro, PhD Universidad Andrés Bello 25 de septiembre de 2018

¿Por qué necesitamos ensamblar un genoma?

- ¿Qué es lo que tenemos que ensamblar?
- ¿Podemos obtener un genoma completo sin necesidad de ensamblar algo?

¿Cómo secuenciamos los genomas?

- Reacción similar al PCR
- Se usan polimerasas modificadas. Principio biológico es la replicación
- Por terminación de cadena naciente, por síntesis, etc.

Etc..

- 1958 estructura de proteínas, especialmente insulina
- 1980 determinación de secuencia de bases en ácidos nucleicos

Imagen real de un gel de secuenciamiento

...Transformada a un cromatograma

Requisitos del método de Sanger

- DNA tiene que tener un primer; 1000 bp a la vez
- Lento y laborioso —> clonar en BACs, YACs
- Dos estrategias —> Directo o clon por clon y aleatorio o shotgun

Características Sanger

First generation (Sanger) sequencing

throughput	50-100kb, 96 sequences per run	
read length	0.5-1.1kbp	
accuracy	high quality bases - 99%: ~900bp very high quality bases - 99.9%: ~600bp 99.999%: 400-500bp	
price per raw base	~400k€/Gb	

Secuenciamiento por clones o basado en mapas

5 Assemble subclones

sequence.

to create the genome

- Crear mapa físico
- Seleccionar clones con trayectoria minima
- Dividir en subclones
- Secuenciar subclones
- Ensamblar

Limitaciones

- Súper laborioso
- Toma mucho tiempo, recursos y personal especializado
- Caro —> \$3 mil millones USD proyecto genoma humano NIH

Whole-genome shotgun: la primera revolución

- Más fácil que clone-by-clone
- Creada por J Craig Venter
- Se transforma en la estrategia dominante
- Pone por primera vez la "carga" en el análisis postsecuenciación
- Armar el puzzle después de que el experimento ha concluido
- Menos caro: \$300,000,000
 USD

High-throughput sequencing: la segunda revolución

- . Sequencing by synthesis
- Amplified templates generated in vitro
- High accuracy outside homopolymers but short read lengths

For example, 454 GS FLX+ (Roche)

Illumina sequencing

- Sequencing by synthesis
- · Amplified templates generated in vitro
- High accuracy but short read lengths

For example, MiSeq (Illumina)

- 2005
- No hay terminación temprana de la cadena naciente
- Secuenciamiento por síntesis
- Alto rendimiento —> 1 M a 400 M de fragmentos o "reads"
- Mayor tasa de error que Sanger pero no importa

Tercera revolución? Singlemolecule sequencing

(Oxford Nanopore)

- 2009
- PacBio SMRT —> Secuenciamiento por síntesis
- Produce fragmentos largos de hasta 200 kbp
- Mayor tasa de error que Illumina o 454
- No hay amplificación
- Puede capturar señales epigenéticas

Tipos de "reads" o lecturas

Inserto y secuencia útil

Single-end

- Solo un partidor para secuenciar
- Rápido, más barato
- Descontinuado

Paired-end

- Se secuencia el mismo inserto dos veces
- Es posible "alargar" el tamaño de la read
- Captura información estructural
- Toma el doble de tiempo, más caro

Mate-pairs

- Información estructural
- Finalizar genomas, genomas de alta calidad
- Resolver genes multicopia, regiones repetitivas

Resultado de la secuenciación

Resultado de la secuenciación

```
000
39).693×291:1061).4:(2:1/63×4/35).:06:146AF96A.
@M01447;49:0000000000-49789;1:1101:11026:1469-1:N:0:4.
ACTIOA DOCTO STITIGADA SAA SAA DOCDA SOA DOAAAC DITTOGISOGISCTITICITO GAT SAATITIGIGISTITICAT GAT GITOGISOGIAA GAT STITIGIGISOGIACTITICI GISOGIACTITICIA COSTITICIA COSTITICA COSTITICIA COSTITICIA COSTITICIA COSTITICIA COSTITICIA COSTITICA COSTITICIA COSTITICA COSTITICIA COSTITICA COSTITICIA COSTI
-SAC SCAATIGATIST CTIC SGC SGC SG CAT SCATIGATIGTICC SAG SCCACTICGTICT SGA SCCAGTICAAGG SGATICTTIG SC
+M01447:49:000000000-49789:1:1101:11006:1400 1:N:0:4
ACCCCGCGCGCGCCCCFFCGCCCCKFE8KEFCGCCEECCGCCGCCGCCCCEEAAAFR899ECGCDGCGCG9FE9FKFGDCF;EEG7KK8BFFCCCCC7XFF8.ECCCFF+6GFFKCFFXF8
+-+67/>0/04/-550+676/678+6505/648+7;960-766-668+74-0479:5-9--664--679*07/65509-4
MM01447:48:060020600 49709:1:1161:20842:1478 1:4:0:4
CONTON SANTASTORES CON ASATONS NACES TONO NO INSCREMA CLACE ALSO CAACOON AGOES NO CLACE ALSO CALLADE CONTON SANTACAS ASATON A NACES NO CALLADE CONTON SANTACAS ASATON SANTA
100 FOR A DO ASSIGNADO SON CAMBRO AGRICOLOGICA SAGRICOLOGICA DE LOS CONTRADOS ASSIGNADOS ASSIGNADA ASSIGNADA ASSIGNADOS ASSIGNADOS ASSIGNADOS ASSIGNADOS ASSIGNADA
• MG14:75:49:683626636; 49709:1:1181:33842:1:78; 1:N:3:4.
BCCGGGGGTEGEGGGGEEGDEEGDEEGETCED>EEGCEEEGG.@EEEG@ECRCEEGE77CCGGGGEE>ECE7E+>EEREGG7:EC-C->EGGC49C:t>><t--<E.7>>> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7 -> .7
4:FEKC@KKJE+K:E-?JGCJGERC?-KE-Å+K$@FØ-KKR9*K+KKKRKZ*FRGCERGGJCE
SICT SACTISTIG SIC DIC 14A 16C 1C DIGAGAAAGTAAT C SIC 14GT C DICAGGTIG GT TTAACAGG 16C 14GDAAGA 16G 1AAGCTTT 14CTGATG DIC 16A 16T 1TTACTTG 16C 1GAGG I
ATT GOGAAACAAC DAG COOCCATG GAGACGTICAT GAADAAAGA CGAAG COTTTAT OO CO DACTIGT COG CG CAACCTAA CCAAAT COCATA CAGC
+M01447;49:0600000000-49789;1:1161;21118:1478 1:N:0:4
+Cek,: ,,>Cl /Cu361366C10×80Ec 1 c35Be1/8;AC6eC,CcLE/>5E+E8C1 cec00k 4c+9k3D0D)$)/719906;*(36-1>-10+24×
MMC 447 (4930000020000 769709) 1:1101:19737:1448 1:310:44
CONCAGOTTAACOGTOGACGACGATTCAOGCTTAATGGAOCAAGCACCCGAGTOAACCAACCAACGAAGCTCACAGTTCCATCTGCGCACATTTGCGACGOAGATGAOCTCGCCAACAG
TEGTERSGTEGGTEGGTAG
BF261661<(7794<(84)
MM01447:49:063030630-49789:1:1161:18372:1462 1:4:8:4
IS TANCOGNATIONACCITATION MANAGETAS II ECOMA CANAGMINCACARMA TITOM TITOM CA CANAGARICATOCRATAMARCHA SE TECCNICASRANCARAT
• MOC444 (48 c0000020000 A9709 (1) 110 1 (10 377) 1487 [1:310 (4]
.,%%x3-176-EE70@E75GDE8E3GCEC::*>10>10>BB:*-YBCEE,-CY8CY:*?--*-3*:Y*726GDCCCECEEE373>:00%>B:%F?%-
TOC BOCATICAC BRADATICISADA BOTAC BAGBEGTO BOTIGODEST BATICOA BOCIGA BOADCAGGETGTG BOTAAT BTO BODDGTOG BRAAGT BAGCOTGGAAAT TATT BTO BACBG BRAA
 ETG 500 04T 0TTT FIDOT 00A 00TTG 5TC 04C 00G 0G 00T 50TA TTAC 20T 20G 04T 04ATG 5TC 04GT4G 0C 5TA 00AA00 04A20GT0A 0TT
:CCUGCGCGCGGCGCC>-GGCHECG-FFC/gEGF-GE>F,CFCGDCFECFEFFC.C-FEYCCFGSFCEG9C4/CFCCG-GGSGGED--G--G--G--G-CGC8+,.,-E-EE/EC:-G-G-G-YC+
こかは 52565666666661 1660ELL イバCEL5:LE*U: 5CG5CFSL やA GF6=EU=6444、70608)か44 CG5L5C36*8754 8974:B4
@M01447:49:000020000 49709:1:1101:22583:1495 1:4:0:4
1650615 + 1108 + 286166369 + 266366 + 150165666 + 16816666 + 168166 + 168668 + 168666 + 168666 + 158666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 164666 + 166
TCAGGECCATEACRETROCAATEACCGECCECCTETETTEATECTERGCEAGECAATACACCGECCTTGATCACCTROCGECGTCCGEAGTCCCCAGTCCCGGGTCCCA
Fourandos-MBP-2:1970 Fd$ |
```

Estrategias para armar el rompecabezas

Terminología

- Coverage
- Reads, contigs, scaffolds
- Profundidad (depth)
- Puntaje de calidad (quality score)

De novo

- Utilizar las reads por sí solas para reconstruir el genoma
- Dos estrategias: Overlay-layout-consensus y De Bruijn graphs

Overlay-layout-consensus

 Sobreponer reads por identidad de secuencia, unir reads sobrepuestas y encontrar un camino, formar un consenso

De Bruijn graphs

 Fragmentar reads en pedazos de longitud K (llamados kmers), generar un gráfico sobrelapando kmers. Finalmente se forma una secuencia al trazar un camino donde cada kmer se visita una vez

De Bruijn graphs

Más de una solución para el mismo gráfico

Consideraciones con ensamblaje de novo

- DBG valor de k, repeticiones más largas que k o que reads.
 Muchos errores con repeticiones
- DBG mejor con reads cortas, aunque reads cada vez más largas
- DBG requieren mucha memoria RAM, e.g., 140 GB a 2 TB
- OLC lento, semanas en supercomputadora
- OLC requiere calcular todas las combinaciones de reads
- OLC errores cuando datos tienen mucha profundidad

Consideraciones con ensamblaje de novo

Figure 2. Differences between an overlap graph and a de Bruijn graph for assembly. Based on the set of 10 8-bp reads (A), we can build an overlap graph (B) in which each read is a node, and overlaps >5 bp are indicated by directed edges. Transitive overlaps, which are implied by other longer overlaps, are shown as dotted edges. In a de Bruin graph (C), a node is created for every k-mer in all the reads; here the k-mer size is 3. Edges are drawn between every pair of successive k-mers in a read, where the k-mers overlap by k-1 bases. In both approaches, repeat sequences create a fork in the graph. Note here we have only considered the forward orientation of each sequence to simplify the figure.

Assembly of large genomes using second-generation sequencing

Michael C. Schatz, Arthur L. Delcher and Steven L. Salzberg

Consideraciones con ensamblaje de novo

- Mientras más largas las reads mejor es el ensamblaje, menos ambigüedad
- Se necesita mucho coverage
- El resultado está fragmentado
- Evaluar la calidad —> N50, mediana, media
- N50 = después de ordenar contigs, se divide la distribución de bases por la mitad, la longitud del contig donde esto ocurre es el N50

Por referencias o *read* mapping

- Útil para estudios de resecuenciamiento, e.g., UK10K, GenomeTrakr
- Se usa un genoma ensamblado para "mapear" reads
- Computacionalmente más fácil que de novo
- Reads cortas pueden mapear en varias partes en la referencia
- Limita conocer la estructura de genomas nuevos, restringe reads a la referencia

¿Qué obtenemos al final del ensamblaje?

- Contigs o scaffolds
- Difícilmente se recupera el genoma completo, i.e., cromosomas lineales o circulares
- 100 contigs para bacterias es común
- "Finalizar" o "cerrar" es más caro y laborioso

Predicción de genes

Estructura de genes

 ADN eucarionte envuelto en historias, resulta en patrones repetitivos.
 Promotores están cerca de estos sitios

- Procaryotes no tienen intrones y regiones promotoras y codones de inicio están conservados
- Ambos difieren en uso de codones

Predicción de genes

- Uso de codones es especie específico
- Regiones funcionales como promotores, sitios de splicing, inicio de la traducción varian por especie

Dos metodologias clásicas

- Ab initio o intrínsecos —> solo a partir de la secuencia de DNA, busca señales inequívocas de la presencia de un gen o región de interés, e.g., codones de inicio/término, sitios de unión de factores de transcripción
- Extrínsecos o por homología/evidencia —>
 búsquedas en bases de datos curadas de
 proteínas, mRNAs o transcriptomas.

Ab initio

- Procariontes —> más estudiados, se sabe qué buscar y genomas presentan cierta regularidad
 - ORF largos flanqueados por codones de inicio y término. Virtualmente no hay secuencias intergénicas
- Eucariontes —> sabemos menos, altamente variables.
 Sitios de unión para colas de poliA, islas CpG. Intrones y secuencias intergénicas + splicing alternativo lo hacen más complicado
 - Ventaja = intrones son más ricos en A/T que en exones

Predicción de genes

- Modelos génicos
- Coordenadas de inicio y término de elementos genéticos
- En eucariontes, no hay exones sobrelapantes, exones deben estar en el mismo marco de lectura, al juntar dos exones no se debe formar un codon de término

¿Qué tan bien funciona?

- Procariontes —> 50-70% por homología, resto ab initio. Difícil en genes que se superponen
- Eucariontes —> 40% por homología, resto ab initio. Refinación con RNASeq.
- Actualmente siempre se usa una combinación de distintos métodos y bases de datos para lograr mejores modelos génicos

Predicción de genes parte de "anotación genómica"

- Una secuencia por si sola no tiene mucho valor
- Es necesario asignar límites dentro de una secuencia para definir donde yacen elementos funcionales del genoma, e.g., genes, rRNAs, tRNAs, IncRNAs, promotores, sitios de unión de proteínas, etc.

Dónde, qué y cómo

Where? Nucleotide-level annotation What? Protein-level annotation How? Process-level annotation

Nature Reviews Genetics 2, 493-503 (July 2001) | doi:10.1038/35080529

Genome annotation: from sequence to biology

En resumen...

- Un genoma ensamblado y anotado es un modelo
- Genomas no son estáticos, siempre se pueden mejorar
- Regiones UTR y genes no codificantes son difíciles de predecir
- Genoma humano tiene muchas versiones y parches

Human Genome Assembly Data

Metrics for the current genome assembly

Statistics for the current assembly are available below. Information on tiling path files (TPFs) for the human assembly is available at TPF Overview.

romosome Lengths Total Lengths Ungapped Lengths N50s Gaps Counts romosome lengths are calculated by summing the length of the placed scaffolds and Primary Assembly				
chr	total length	GenBank Accession	RefSeq /	GRCh37.p13 GRCh37.p12
1	248,956,422	CM000663.2	NC_000001.11	GRCh37.p11 GRCh37.p10
2	242,193,529	CM000664.2	NC_000002.12	GRCh37.p8 GRCh37.p8
3	198,295,559	CM000665.2	NC_000003.12	GRCh37.p7 GRCh37.p6
4	190,214,555	CM000666.2	NC_000004.12	GRCh37.p5 GRCh37.p4
5	181,538,259	CM000667.2	NC_000005.10	GRCh37.p3 GRCh37.p2
6	170,805,979	CM000668.2	NC_000006.12	GRCh37.p1 GRCh37
7	159,345,973	CM000669.2	NC_000007.14	NCBI36 NCBI35
8	145,138,636	CM000670.2	NC_000008.11	
9	138,394,717	CM000671.2	NC_000009.12	
10	133,797,422	CM000672.2	NC_000010.11	
11	135,086,622	CM000673.2	NC_000011.10	

Global stats for GRCh38.p6				
General Info				
Assembly Type	haploid with alt loci			
Release Type	patch			
Number of Assembly Units	38			
Total Bases in Assembly	3,231,297,122			
Total Non-N Bases in Assembly	3,069,928,971			
Primary Assembly N50	67,794,873			
Region Information				
Total number of defined regions	238			
Number of Regions with Alternate Loci	178			
Number of Regions with Fix Patches	40			
Number of Regions with Novel Patches	21			
Number of Regions as PAR	4			

Identifying bacterial genes and endosymbiont DNA with Glimmer

Arthur L. Delcher^{1,*}, Kirsten A. Bratke², Edwin C. Powers³ and Steven L. Salzberg¹

+ Author Affiliations

*To whom correspondence should be addressed.

Received August 3, 2006. Revision received December 15, 2006. Accepted January 14, 2007.

Research

Genome Biology August 2006, 7:S11

First online: 07 August 2006

Open Access

AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome

Mario Stanke Mario

BUSC V3

Assessing genome assembly and annotation completeness with Benchmarking Universal Single-Copy Orthologs

About BUSCO

BUSCO v3 provides quantitative measures for the assessment of genome assembly, gene set, and transcriptome completeness, based on evolutionarilyinformed expectations of gene content from near-universal single-copy orthologs selected from OrthoDB v9.

BUSCO assessments are implemented in open-source software, with a large selection of lineage-specific sets of Benchmarking Universal Single-Copy Orthologs. These conserved orthologs are ideal candidates for large-scale phylogenomics studies, and the annotated BUSCO gene models built during genome assessments provide a comprehensive gene predictor training set for use as part of genome annotation pipelines.