Mitigation of Diachronic Bias in Fake News

Detection Dataset

Taichi Murayama, Shoko Wakamiya, Eiji Aramaki (Nara Institute of Science and Technology)

Overview

- We call 'Diachronic Bias', which is a possibility to make incorrect judgments regardless of the veracity of the input sentence, when the lexical information of input articles differs greatly from the text the model was trained on.
- Examining word and label deviation in fake news datasets.
- Validate the proposed masking methods using Wikidata to mitigate bias.

Background

- Increasing the research on building fake news detection models
- Most datasets for training the model consist of fake news diffusion in the real world.
- Fake news on different topics spread at different times.

2013 : President Obama

2016: the US 2016 election

2020 : COVID-19

 A model trained on the corpus from a specific period has the possibility to make incorrect detection of the veracity of the input when the input includes a new word or knowledge.

Investigate multiple masking methods to mitigate diachronic bias and build a robust fake news detection model for out-of-domain data.

Dataset and the Deviation

Datasets

Four fake news detection datasets with two labels, real and fake.

- MultiFC[1]: Consists of news before 2015
- Horne17[2]: Consists of news in the US 2016 election
- Celebrity[3]: Consists of celebrity news in 2016, 2017
- Constraint[4]: Consists of COVID-19 news

Deviation of phrase

Investigating the correlation between phrase appearance and labels to examine bias in each fake news dataset

⇒ Using Local Mutual Information (LMI)

$$LMI(w, l) = p(w, l) \cdot \log \left(\frac{p(l|w)}{p(l)}\right)$$

w: phrase, l: label, p(l|w): conditional probability p(w, l): joint distribution between phrase and label

Top 10 phrases of the highest correlation

		\mathbf{N}	IultiFC		-2015	
Real			Fake			
Bigram	LMI	p(l w)	Bigram	LMI	p(l w)	
mitt romney	218	0.69	health care	631	0.64	
if you	217	0.70	barack obama	365	0.69	
rhode island	190	0.75	president barack	337	0.70	
new jersey	177	0.67	scott walker	258	0.81	
john mccain	167	0.73	says president	218	0.78	
no. 1	128	0.86	care law	185	0.80	
voted against	128	0.71	will be	162	0.63	
any other	125	0.61	hillary clinton	159	0.67	
does not	119	0.71	gov. scott	148	0.72	
this year	116	0.75	social security	144	0.68	

Horne17					2016	
Real			Fake			
Bigram	LMI	p(l w)	Bigram	LMI	p(l w)	
trump has	112	0.82	donald trump	605	0.42	
national security	106	0.88	hillary clinton	440	0.50	
would be	104	0.72	i think	292	0.68	
people who	92	0.89	united states	258	0.51	
transition team	88	1.0	have been	230	0.41	
mr. trump	80	0.94	bill clinton	208	0.70	
smug style	77	1.0	we are	206	0.56	
george w.	76	0.90	hillary clinton's	187	0.58	
republican party	76	0.91	president obama	171	0.55	
new york	70	0.77	ted cruz	149	0.80	

- In MultiFC, ex-president 'barack obama' has high correlation with fake label, while in Horne17, 'hillary clinton' and 'donald trump' have high correlation.
- In particular, real labels tend to be highly correlated with **general terms**, while fake labels tend to be highly correlated with **person names**.

Examination of Mitigation methods

Mitigation methods

Investigating multiple masking methods to mitigate diachronic bias and build robust models for out-of-domain data.

- NE Deletion: Remove the word tagged as Named Entity (NE)
- Basic NER: Replace the tagged word NE tag name
- WikiD: Replace the word tagged as PER tag, one of NE tags, public position or occupation tag id in Wikidata
 e.g. Obama = Trump = Q11696
- WikiD+Del: After applying WikiD rule, remove other tagged words
- WikiD+NER: After applying WikiD rule, replace other tagged words NE tag name

Lexicalized 18 states including US UK and Australia request PM Modi to head a task force to stop coronavirus

NE Deletion 18 states including and request PM to head a task force to stop coronavirus

Basic NER 18 states including LOC LOC and LOC request PM PER to head a task force to stop coronavirus

WikiD 18 states including US UK and Australia request PM Q22337580 to head a task force to stop coronavirus

VikiD+Del 18 states including and request PM Q22337580 to head a task force to stop coronavirus

WikiD+NER 18 states including LOC LOC and LOC request PM Q22337580 to head a task force to stop coronavirus

Experimental setting

Model: BERT_base
Data: train 80%, test 20%
Evaluation: Accuracy

In-domain results

- No mask achieves the highest score in almost dataset
- There is only a few points difference compared to other masking methods

	MultiFC	Horne17	Celebrity	Constraint
No Mask	0.681	0.746	0.760	0.960
NE Del	0.656	0.706	0.750	0.959
Basic NER	0.659	0.735	0.750	0.950
WikiD	0.675	0.725	0.730	0.967
WikiD+Del	0.660	0.706	0.700	0.959
WikiD+NER	0.660	0.640	0.730	0.957

Out-domain results

- Most masking methods achieve higher score in many out-of-domain dataset, than No mask.
- NE Deletion and Basic NER perform higher accuracy in 9 (out of 12) experimental settings and WikiD and WikiD+Del perform higher accuracy in 10 (out of 12) experimental settings, than No mask.

E.g.		MultiFC	Horne17	Celebrity	Constraint
MultiFC	No Mask	-	0.706	0.660	0.530
	NE Del	_	0.706	0.590	*0.664
	Basic NER	-	0.725	0.600	*0.680
	WikiD	_	0.746	0.590	*0.689
	WikiD+Del	-	0.725	0.660	*0.669
	WikiD+NER	-	0.632	0.520	*0.667

[1] Isabelle Augenstein, Christina Lioma, Dongsheng Wang, Lucas Chaves Lima, Casper Hansen, Christian Hansen, and Jakol Grue Simonsen. Multifc: A real-world multi-domain dataset for evidence-based fact checking of claims. In Proc. of EMNLP-

Benjamin Horne and Sibel Adali. This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, ore similar to satire than real news. In Proc. of ICWSM, Vol. 11, 2017.

[3] Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Automatic detection of fakenew InProc. of COLING, pp. 3391–3401, 2018.

[4] Parth Patwa, Shiyam Sharma, Sriniyas PYKL, Vineeth Guntha, Gitaniali Kumari, Md Shad Akhtar, Asif Ekhal, Ami-taya,

[4] Parth Patwa, Shivam Sharma, Srinivas PYKL, Vineeth Guptha, Gitanjali Kumari, Md Shad Akhtar, Asif Ekbal, Ami-tava Da Fighting an infodemic:Covid-19 fake news dataset.arXiv:2011.03327, 2020