<i>Name</i> :	• • • • • • •					
Roll No. :						
Invigilato	r's Si	gnature :				
		CS/B.TECH/ECE(NE	EW)/S	EM-5/EC-503/2012-13		
		2012)			
		CONTROL S	YST	ЕМ		
Time Allo	Time Allotted: 3 Hours			Full Marks: 70		
	The	e figures in the margin	indica	te full marks.		
Candido	ates d	are required to give thei	ir ansı	vers in their own words		
		as far as p	ractica	ıble.		
		GROUP -	- A			
		(Multiple Choice Ty	pe Qu	estions)		
1. Cho	ose tl	ne correct alternat ves	for an	y ten of the following:		
				$10 \times 1 = 10$		
i)	A sy	stem is stable				
	a)	if bounded inputs pro	oduce '	bounded outputs		
	b)	if bounded inputs pro	oduce '	unbounded outputs		
	c)	if bounded inputs pro	oduce '	unbounded outputs		
	d)	if all bounded inputs	produ	ce bounded outputs.		
ii)	The	characteristics of	a sec	cond order system is		
	S^2 +	-6s + 25 = 0, the system	m is			
	a)	Underdamped	b)	Overdamped		
	c)	Undamped	d)	Critically Damped.		
5206(N)				[Turn ove		

iii)	iii) In terms of Bode Plot, the system is stable if				
	a)	PM = GM			
	b)	PM & GM both are pos	sitive		
	c)	PM & GM both are neg	gative	:	
	d)	PM negative but GM positive.			
iv)	iv) The response of control system, having damp as unity will be				
	a)	Oscillatory	b)	Underdamped	
	c)	Critically damped	d)	none of these.	
v)	A se	A second order control system with $\xi = 0$ is always			
	a)	marginally stable	b)	stable	
	c)	unstable	d)	none of these.	
vi)	vi) The Routh Hurwitz criterion gives			es	
	a)	Rela ive stability	b)	Absolute stability	
	c)	Gain margin	d)	Phase margin.	
vii)	For a stable system				
	a) the gain crossover occurs before phase crossover				
	b)	b) the gain crossover occurs after phase crossover			
	c)	the gain crossover and phase crossover frequencies			
		are very close to each other			
	d)	the gain cross and phase crossover frequencies are same.			
5206(N)		2			

		CS/B.TECH/ECE	(NEW)/S	EM-5/EC-50	03/2012-13
viii)	The initial slope of the Bode Plot gives an indication of				cation of
	a)	type of the system			
	b)	nature of the system	n time re	esponse	
	c)	system stability			
	d)	gain margin.			
ix)		the root locus branches cross the imaginary axis, the stem becomes			
	a)	Overdamped	b)	Underdamp	ed
	c)	Oscillatory	d)	Sustained o	scillation.
x)	The	The transfer function of a system is defined as			
	a)	the ratio of Laplace transform of output to Laplace transform of input considering initial conditions as zero			
	b)	the ratio of output	to input		
	c)	both (a) and (b)			
	d)	none of these.			
5206(N)		3			[Turn over

- A system is represented by the differential equation $M \frac{d^2x}{dt^2} + F \frac{dx}{dt} + Kx = u(t)$. The transfer function relating X(s) and U(s) is
 - a)
- $\frac{M}{(Ms^2 + Fs + K)}$ b) $\frac{M}{(Fs^2 + Ms + K)}$
- $\frac{1}{(Ms^2 + Fs + K)} \qquad \qquad \text{d)} \qquad \frac{1}{(Fs^2 + Ms + K)}.$
- xii) Area under a unit impulse function is
 - a) infinity
- b) unity

c) zero d) none of these.

GROUP - B

(Short Answ r Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$

- What are 'Analogous system' ? Explain 'Force-Voltage 2. analogy' and 'Force-Current analogy' in brief. 1 + 4
- 3. Obtain the Transfer function of the given electrical system. The symbols have their usual meaning.

5206(N)

- 4. What do you mean by the term 'Transmittance'?

 Differentiate between 'Self Loop' and 'Closed Loop'. Write down 'Mason's gain' formula and explain the meaning of each and every team.

 1 + 2 + 2
- 5. What do you mean by 'Transient response' and 'Steady State response' of a system ? Obtain an expression for 'Unit impulse response' of first order system. 2 + 3
- 6. What is 'Damping ratio' ? Obtain an expression for Unit step response' of a second order system when the damping ratio is unity.

 1 + 4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Obtain the differential equation of the mechanical system.

b) Draw the Electrical analogous circuit based on 'force-current' analogy. $7\frac{1}{2} + 7\frac{1}{2}$

5206(N) 5 Turn over

- 8. a) Explain the different 'Signal Flow Graph' terminologies.
 - b) Compare between 'Block Diagram' and 'Signal Flow Graph' methods.
 - c) For the given signal flow graph find the C/R ratio.

- 9. a) Write down the advantages and disadvantages of state space techniques
 - b) Obtain s ate transition matrix $\varphi(t)$ from non-homogeneous state equation of a linear time invariant c ntrol system and list the properties of it.
 - c) Obtain the eigenvalues and eigenvectors for a system described by $\dot{X}=\begin{bmatrix}0&6&-5\\1&0&2\\3&2&4\end{bmatrix}X+\begin{bmatrix}1\\0\\1\end{bmatrix}U$ and $Y=\begin{bmatrix}1&0&0\end{bmatrix}X$

$$3 + 6 + 6$$

5206(N)

10.	Wr	3 × 5	
	a)	PID Controller	
	b)	Type and Order of a system	
	c)	Analogous system	
	d)	Polar Plot	
	e)	Transient Response and Steady state response.	

=========

5206(N) 7 [Turn over