CCP PSI 2006

Notations.

Pour $z \in \mathbb{C}$, on note |z| son module.

Pour tout entier nature n, on note:

- n! la factorielle de n avec la convention 0! = 1,
- [|0, n|] l'ensemble des entiers naturels k vérifiant $0 \le k \le n$,
- $\binom{n}{k}$ le nombre de parties ayant k élément d'un ensemble de n éléments, pour $k \in [|0, n|]$. On rappelle:
- la valeur de $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour $k \in [|0, n|]$, la formule du binôme : si z_1 et z_2 sont des nombres complexes et n un entier naturel, alors

$$(z_1+z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}$$

Enfin, si n est un entier naturel non nul, on note σ_n la somme $\sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ et on pose $\sigma_0 = 0$.

Objectifs.

Dans les parties I et II, on étudie un procédé de sommation, la partie III est consacrée à l'étude de diverses fonctions et en particulier à une fonction ϕ à laquelle on applique ledit procédé de sommation.

Etude d'un procédé de sommation

Dans les parties I et II les notations utilisées sont les suivantes.

Toute application de $\mathbb N$ dans $\mathbb C$ étant une suite complexe, si a est une telle suite, on utilise la notation usuelle $a(n) = a_n$. A toute suite complexe a, on associe la suite a^* définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

L'objet des parties I et II est de comparer les propriétés de la série $\sum_{n=0}^{\infty} a_n^*$ aux propriétés de la série $\sum_{n=0}^{\infty} a_n$.

Partie I: deux exemples.

I.1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$; on suppose que la suite a est définie par $\forall n \in \mathbb{N}$, $a_n = \alpha$.

- I.1.1. Expliciter $\sum_{k=0}^{n} {n \choose k}$ pour $n \in \mathbb{N}$.
- I.1.2. Expliciter a_n^* pour $n \in \mathbb{N}$.
- I.1.3. La série $\sum_{n>0} a_n$ (resp. $\sum_{n>0} a_n^*$) est-elle convergente?

I.2. Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : $\forall n \in \mathbb{N}$, $a_n = z^n$.

- I.2.1. Exprimer a_n^* en fonction de z et n.
- I.2.2. On suppose que |z| < 1.
 - 1.2.2.1. Justifier la convergence de la série $\sum_{n=0}^{\infty} a_n$ et expliciter sa somme $A(z) = \sum_{n=0}^{\infty} a_n$.
 - 1.2.2.2. Justifier la convergence de la série $\sum_{n\geq 0} a_n^*$ et expliciter sa somme $\sum_{n=0}^{\infty} a_n^*$ en fonction de A(z).

I.2.3. On suppose que $|z| \ge 1$.

- I.2.3.1. Quelle est la nature (convergente ou divergente) de la série $\sum a_n$?
- I.2.3.2. Quelle est la nature de $\sum_{n=0}^{\infty} a_n^*$ si z = -2?
- I.2.3.3. On suppose $z = e^{i\theta}$, avec θ réel tel que $0 < |\theta| < \pi$.

Montrer que la série $\sum_{n=0}^{\infty} a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de la somme $\sum_{n=0}^{\infty} a_n^*$.

Partie II: étude du procédé de sommation.

Dans cette partie, et pour simplifier, on suppose que a est à valeurs réelles.

II.1. Comparaison des convergences des deux suites.

- II.1.1. Soit $n \in \mathbb{N}^*$, on considère une entier k fixé, $k \in [0, n]$.
 - II.1.1.1. Préciser un équivalent de $\binom{n}{k}$ lorsque n tend vers $+\infty$.
 - II.1.1.2. En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.
- II.1.2. Soit a une suite réelle et q un entier naturel <u>fixé</u>.

On considère pour n > q la somme $S_q(n, a) = \sum_{k=0}^{q} \binom{n}{k} \frac{a_k}{2^n}$. Quelle est la limite de $S_q(n, a)$ lorsque l'entier n tend vers $+\infty$?

- II.1.3. On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- II.1.4. On suppose que a_n tend vers l (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- II.1.5. La convergence de la suite (a_n) est-elle équivalente à la convergence de la suite (a_n^*) ?
- II.2. Comparaison des convergences des séries $\sum (a_n)$ et $\sum (a_n^*)$.

Pour
$$n \in \mathbb{N}^*$$
, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- II.2.1. Pour $n \in [|0,3|]$, exprimer U_n comme combinaison linéaire des sommes S_k , c'est à dire sous la forme $U_n = \sum_{k=0}^n \lambda_{n,k} S_k.$
- II.2.2. On se propose de déterminer l'expression explicite de U_n comme combinaison linéaire des sommes S_k pour $k \in [|0, n|]$:

$$(\mathscr{E}) \ \mathbf{U}_n = \sum_{k=0}^n \lambda_{n,k} \mathbf{S}_k \ \text{pour } n \in \mathbb{N}$$

- II.2.2.1. A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte-tenu des résultats obtenus à la question II.2.1 ?
- II.2.2.2. Établir la formule (\mathcal{E}) par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in [|0, n|]$, $a_k = S_k S_{k-1}$ avec la convention $S_{-1} = 0$).
- II.2.3. On suppose que la série $\sum (a_n)$ est convergente. Montrer que la série $\sum (a_n^*)$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- II.2.4. La convergence de la série $\sum (a_n)$ est-elle équivalente à la convergence de la série $\sum (a_n^*)$?

Partie III: une étude de fonctions.

On rappelle que : $\sigma_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$ et $\sigma_0 = 0$.

Pour x réel, lorsque cela a du sens, on pose :

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!}; g(x) = \sum_{n=0}^{\infty} \frac{\sigma_n x^n}{n!}; \phi(x) = \sum_{n=0}^{\infty} \sigma_n x^n$$

III.1. Etude de f.

- III.1.1. Vérifier que f est définie et continue sur \mathbb{R} .
- III.1.2. Expliciter x f(x) pour tout x réel.
- III.1.3. Expliciter $e^{-x} f(x)$ pour tout x réel.

III.2. Etude de g.

- III.2.1. Montrer que g est définie et de classe \mathscr{C}^1 sur \mathbb{R} .
- III.2.2. On désigne par g' la dérivée de la fonction g. Exprimer g' g en fonction de f.
- III.2.3. Montrer que pour tout x réel :

$$g(x) = e^x \int_0^x e^{-t} f(t) dt$$

III.3. La fonction F.

On condidère la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x e^{-t} f(t) dt$$

- III.3.1. Montrer que la fonction F est développable en série entière sur $\mathbb R$ et expliciter son développement.
- III.3.2. Pour $n \in \mathbb{N}^*$, on note $\gamma_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k \, k! (n-k)!}$. Exprimer γ_n en fonction de n et σ_n .

$$\begin{array}{l} \text{III.4. } \mathbf{La} \, \mathbf{s\acute{e}rie} \, \sum \frac{(-1)^{k+1}}{k} \, \mathbf{.} \\ \text{Pour } n \in \mathbb{N}^* \text{, on note } \ln(n) \text{ le logarithme n\'{e}p\'erien de } n \, \mathbf{.} \\ \text{III.4.1. Soit } w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1} \text{ pour } k \in \mathbb{N}^* \, \mathbf{.} \end{array}$$

III.4.1. Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$.

- III.4.1.1. Montrer que la série $\sum_{k\geqslant 1} w_k$ est convergente.
- III.4.1.2. En déduire que la suite de terme général $\sigma_n \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.
- III.4.2. Pour $n \in \mathbb{N}^*$, on pose $\tau_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer τ_{2n} en fonction de σ_{2n} et σ_n .
- III.4.3. Montrer en utilisant III.4.1 et III.4.2 que la série $\sum_{k>1} \frac{(-1)^{k+1}}{k}$ est convergente et déterminer sa somme

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}.$$

III.5. Etude de la fonction ϕ .

- III.5.1. Déterminer le rayon de convergence R de la série entière $\sum_{n>1} \sigma_n x^n$.
- III.5.2. Préciser l'ensemble de définition Δ de la fonction ϕ , et étudier ses variations sur [0,R].
- III.5.3. Valeur de $\phi\left(\frac{1}{2}\right)$.

En utilisant les résultat de la partie II et de la question III.4.3 expliciter la valeur de $\phi\left(\frac{1}{2}\right)$.

III.5.4. Expliciter $\phi(x)$ pour $x \in \Delta$ et retrouver la valeur de $\phi\left(\frac{1}{2}\right)$.