Fundamentals of Solid State Physics

Electronic Devices

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

- Ashcroft & Mermin, Chapter 29
- PV Education online course, Chapter 3
 - https://www.pveducation.org/

Semiconductors - Applications

semiconductors are the basis of electronics and photonics

integrated circuits

key components: junctions

Junctions

- Semiconductor-Semiconductor
 - □ pn homojunction 同质结
 - heterojunction 异质结
- Metal-Metal
- Metal-Semiconductor
 - Ohmic contact
 - Schottky contact
- Metal-Oxide-Semiconductor
 - MOSFET 场效应晶体管

p-type and n-type semiconductor

p-Si

$$p_v = N_A$$

$$n_c = n_i^2 / p_v$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

n-Si

 E_{v}

$$|n_c = N_D|$$

$$p_v = n_i^2 / n_c$$

$$\left| n_c = N_c(T) e^{-(E_c - \mu)/k_B T} \right|$$

p-type and n-type semiconductor

p-Si n-Si

$$p_v = N_A$$

$$|p_v = N_A| \qquad |n_c = n_i^2 / p_v|$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

$$n_c = N_D$$

$$\left| n_c = N_D \right| \quad \left| p_v = n_i^2 / n_c \right|$$

$$\left|n_c = N_c(T)e^{-(E_c - \mu)/k_B T}\right|$$

depletion region 耗尽区

at thermal equilibrium, carrier diffusion is balanced by drift caused by the built-in field. Overall current = 0

p-type and n-type semiconductor

$$p_v = N_A$$

$$n_c = n_i^2 / p_v$$

$$|n_c = N_D|$$

$$p_v = n_i^2 / n_c$$

$$p_{\nu} = P_{\nu}(T)e^{-(\mu - E_{\nu})/k_B T}$$

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T}$$

V_{bi} - built-in potential 内建电势

$$V_{bi} = \frac{k_B T}{q} \cdot \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Example:

For a Si pn junction, if $N_A = 1e18 \text{ cm}^{-3}$, $N_D = 1e15 \text{ cm}^{-3}$, and $n_i = 1.5e10 \text{ cm}^{-3}$, T = 300 K

$$V_{bi} = 0.75 \text{ V}$$

$$|qV_{bi} = 0.75 \text{ eV}| < E_g = 1.12 \text{ eV}$$

$$W = x_p + x_n$$

Full-depletion Approximation

Assume abrupt transition

$$N_A x_p = N_D x_n$$

$$\frac{\partial E}{\partial x} = \frac{e}{\varepsilon_s} n(x)$$

$$\frac{\partial V}{\partial x} = -E(x)$$

Full-depletion Approximation

Assume abrupt transition

$$N_A x_p = N_D x_n$$

$$V_{bi} = \frac{k_B T}{q} \cdot \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

$$W = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_{bi}}$$

$$x_p = \frac{N_D}{N_A + N_D} W$$

$$x_n = \frac{N_A}{N_A + N_D} W$$

 $arepsilon_s$ - dielectric constant / permittivity (F/m) 介电常数 q - electron charge 1.6*10⁻¹⁹ C

at thermal equilibrium, carrier diffusion is balanced by drift caused by the built-in field. Overall current = 0

At Forward Bias (V > 0)

 V_{bi} decreases by V, W decreases much more diffusion current, the junction is conductive

At Reverse Bias (V < 0)

 V_{bi} increases by V, W increases little drift current, the junction is slightly conductive

Current-Voltage Relation

pn junction - diode 二极管

$$J = J_0 \left[\exp\left(\frac{qV}{nk_BT}\right) - 1 \right] \qquad \underline{\qquad} - J_0$$

 J_0 - dark/leakage/saturation current depend on bandgap, defects, temperature, ...

n - ideality factor (for ideal case, n = 1)

Current-Voltage Relation

pn junction - diode 二极管

$$J = J_0 \left[\exp\left(\frac{qV}{nk_BT}\right) - 1 \right] \qquad \underline{\qquad} - J_0$$

ideal diode model

L - diffusion length (m)

Current-Voltage Relation

Solar Cell / Photodetector

Light-Emitting Diode (LED)

Light-Emitting Diode (LED)

$$J = J_0 \left[\exp\left(\frac{qV}{nk_BT}\right) - 1 \right]$$

optical power = $J \cdot \eta$

 η - conversion efficiency η < 100%, because of nonradiative recombination (generating heat)

Light Emission Efficiency

- Little change in momentum is required for recombination
- Momentum is conserved by photon (light) emission

Direct bandgap semiconductors like GaAs, GaN are more suitable for LEDs and lasers, more radiative recombinations

- Large change in momentum is required for recombination
- Momentum is conserved by mainly phonon (vibration) emission + photon emission

Indirect bandgap semiconductors
like Si, Ge do not emit light efficiently
more non-radiative recombinations

Materials Choices for Light Emission

Case 1 p-Si q_{χ_1} electron affinity 电离能/亲和能 q_{χ_1}

n-GaAs

Case 1

Case 2 n-InGaAs

vacuum $q\chi_1$ E_{c1} E_{F1} E_{g1} E_{v1}

p-GaAs

Case 2 n-InGaAs p-GaAs vacuum vacuum $q\chi_2$ $q\chi_1$ ΔE_c E_{c2} E_{c1} E_{g2} E_{F1} E_{g1} E_{F2} E_{v2} E_{v1} ΔE_{v}

Case 2

Straddling Gap

Staggered Gap

Broken Gap

Semiconductor Heterostructures

GaAs/AlGaAs heterostructure:

Type I junction
electron and hole confinement
enhanced radiative recombination
for better LEDs and lasers

Z. I. Alferov

H. Kroemer

Optoelectronic Devices

Lattice matched GaAs/AlAs structure - perfect interface

Metal-Metal Junction

metal 2 becomes more positive

Metal-Metal Junction

Application:

thermal couple 热电偶

contact voltage changes with temperature

Metal-Metal Junction

Case 1

metal

semiconductor

Case 1

Schottky contact 肖特基接触

Case 2 metal

semiconductor

Case 2

Ohm contact 欧姆接触

Schottky contact 肖特基接触

Ohm contact 欧姆接触

insulator / capacitor

metal oxide semiconductor

metal oxide semiconductor

metal oxide semiconductor

MOSFET

CMOS Technology

Complementary Metal-Oxide-Semiconductor

CMOS Logics

CMOS INVERTER

CMOS NAND

CMOS NOR

CMOS Circuits

Integrated Circuits

Moore's law, Fairchild, 1965

Economist.com

Modern Electronics is a real Nanotechnology

Gordon Moore Intel i7 CPU, ~ 10⁹ transistors

CMOS Process

Thank you for your attention