1 双闭环直流电机控制

1.1 电路分析

电路如图 1所示,主电路架构为 AC-DC-AC,由 H 桥和不控整流实现,控制回路可实现电机的正反转操控。

图 1: 主电路

1.2 器件分析

直流电源	+	提供直流电
MOSFET 开关管	g (控制信号从 g 口输入 控制开关管的导通, 通过 m 接口可测量流 过开关管的电流以及 加在两端的电压
Gain 增益	≪ -1 ¢	控制回路的信号通过 增益器件同比例放大 或缩小
Constant 常数信号	-1000	输出一个稳定的信号
Step 阶跃信号		输出一个阶跃信号, 阶跃时间、信号大小 都可调整
RLC Branch RLC 并联支路	-	为电路提供电阻、电 容、电感
Powergui	Continuous	电力系统仿真所必须的,可调整为连续或是离散,具有 FFT 等分析功能
MATLAB Function MATLAB 函数	饱和器1 ✓ y ✓ u ✓ u ✓	用户可自行编辑程序 实现某些器件功能, 在本电路中,它作为 饱和器件。
Subsystem 子系统	扰动信号1	为了让电路的更容易 理解,各个功能更加 分明,用户可自行对 某一复杂功能封装。 本电路中是对扰动信 号的发生进行了封 装。

From	《 [A]	与 Go to 器件一起使用,减少过多复杂的线路,让电路看的更清晰明了
Go to	[B] X	同上
Scope 示波器	>	可观察器件的电流、电压、转矩、转速等信号。
Sum 比较点	√ _+ X	用于控制回路,将两 回路的信号进行比较 后输出。
Switch1 开关	<-><	手动切换信号路径
Switch2 开关	> 0	根据>0 接口的正负 来自动判断信号路径
Universal bridge 通用桥	B + B	为用户提供 MOSEFT、IGBT、GTO、Diode 等全桥。本电路采用的是二极管不控整流桥
Voltage measurement 电压表	- V	示波器不能直接测量 强电回路的信号,需 要通过电压表转换成 可测量的信号

器件名称	图例	作用
直流电机	A+ dc A- F-	需要在 F+, F-接口加上励磁电源,从 TL接口输入转矩,在 A+, A-接口加上直流电源驱动电机运转。电机输出转速、电枢电流等通过m接口输出。
交流电源	□ →(≥)-□	提供交流电

1.3 波形分析

直流电机输出波形如图 2所示,当电机从 0 正转到设定转速 1000r/min 时,转速几乎无超调,稳定后的转速波动小于 1%; 在 2.4 秒时刻改变电机转动方向,电机从 1000r/min 变为-1000r/min 时,电机超调量小于 3%,稳定后的转速波动远小于 1%。

图 2: 输出转速

控制 H 桥开关管的 PWM 波形如图 3所示。其中 0-0.6 秒时刻为了使输出转速快速上升, PWM

恒为 1, 驱动 H 桥的 1, 3 开关管持续导通。

图 3: PWM 波形

二极管不控整流桥的输出如图 4所示, 电压不断趋近于 220V。

图 4: 不控整流桥输出电压

2 任务拓展

2.1 负载扰动分析

在正转稳定后,在 1 秒时刻加入一个持续 0.5 秒的 10Nm 的转矩波动,其输出转速仍很好的维持在 1000r/min,扰动引起的转速波动很小。

图 5: 负载扰动

2.2 负载突变(20%负载、50%负载、满载)

负载从 20% 负载突变到半载后再突变到满载的曲线如下图所示。发现负载有较大突变后,系统仍能快速稳定的维持在 1000r/min。

图 6: 负载突变

3 总结

该模型的快速性、准确性、稳定性, 抗干扰能力指标都很优异。能快速切换方向, 来满足不同的工艺需要。