MATH602 : Correction de la 2^e session 2017/2018

Exercice 1.

- 1. Voir cours.
- 2. On a bien sûr $\nu(\emptyset) = 0$. Soit $(A_n)_{n \geq 1} \subset \mathcal{A}$ deux à deux disjointes. Puisque $\mathbf{1}_{\cup A_n} = \sum \mathbf{1}_{A_n}$ et f est positive, le corollaire pour les séries du théorème de convergence monotone donne immédiatement

$$\nu(\cup A_n) = \int_E \sum_{n \geq 1} f(x) \mathbf{1}_{A_n}(x) \, \mu(dx) = \sum_{n \geq 1} \int_E f(x) \mathbf{1}_{A_n}(x) \, \mu(dx) = \sum_{n \geq 1} \nu(A_n),$$

ce qui montre que ν est une mesure positive. Si $\mu(A)=0$, d'après le théorème de convergence monotone,

$$0 \le \nu(A) = \int_A f(x) \, \mu(dx) = \sup_{n \ge 1} \int_A \min(f(x), n) \, \mu(dx) \le \sup_{n \ge 1} (n\mu(A)) = 0.$$

3. La matrice $\begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$ étant inversible, $(u,v)=\psi(x,y)=(2x+y,x-3y)$ est un \mathcal{C}^1 -difféormorphisme de \mathbf{R}^2 . Par ailleurs, $J_{\psi}(x,y)=-7$. D'après la formule du changement de variable,

$$I = \int_{\mathbf{R}^2} f(u, v) \, du dv = \int_{\mathbf{R}^2} f(\psi(x, y)) \, |J_{\psi}(x, y)| \, dx dy = 7J.$$

Exercice 2. Vérifions les trois points de la définition.

- 1. $\emptyset \in \mathcal{F}$ puisque $\emptyset \in \mathcal{A}$ (\mathcal{A} tribu) et $\mu(\emptyset) = 0$;
- 2. Soit $A \in \mathcal{F}$. Alors $A \in \mathcal{A}$ et $\mu(A)(1 \mu(A)) = 0$. \mathcal{A} étant une tribu, $A^c \in \mathcal{A}$ et d'autre part $\mu(A^c)(1 \mu(A^c)) = (1 \mu(A))\mu(A) = 0$ ce qui montre que $A^c \in \mathcal{F}$.
- 3. Soit $(A_n)_{n\geq 0}\subset \mathcal{F}\subset \mathcal{A}$. \mathcal{A} étant une tribu, $\cup A_n\in \mathcal{A}$. Deux cas de figure se présentent :
 - (a) Il existe $p \in \mathbf{N}$ tel que $\mu(A_p) = 1$. Dans ce cas, $1 = \mu(A_p) \le \mu(\cup A_n) \le 1$.
 - (b) Pour tout $n \in \mathbb{N}$, $\mu(A_n) = 0$. Dans ce cas, $0 \le \mu(\cup A_n) \le \sum \mu(A_n) = 0$.

Par conséquent, $\cup A_n \in \mathcal{F}$

Donc \mathcal{F} est une tribu sur E.

Exercice 3. 1. Soit $n \ge 1$. Puisque $|\sin x| \le \min(1, |x|)$, on a

$$\int_{\mathbf{R}_{+}^{*}} |f_{n}(x)| \, \lambda(dx) \le \int_{]0,1[} \frac{1}{x^{1-\frac{1}{n}}} \, \lambda(dx) + \int_{[1,+\infty[} \frac{1}{x^{2}} \, \lambda(dx) < +\infty$$

d'après le critère de Riemann, en 0 pour la 1^{re} intégrale, en l'infini pour la 2^e.

2. (a) Pour tout x > 0, $\lim_{n \to +\infty} f_n(x) = \frac{\sin x}{2x^2}$. Par ailleurs, pour tout $x \ge 1$, $\sup_{n \ge 1} |f_n(x)| \le x^{-2}$. Comme $x \longmapsto x^{-2}$ est intégrable sur $[1, +\infty[$, on obtient, d'après le théorème de convergence dominée de Lebesgue,

$$\lim_{n \to +\infty} \int_{[1,+\infty[} f_n(x) \,\lambda(dx) = \int_{[1,+\infty[} \lim_{n \to +\infty} f_n(x) \,\lambda(dx) = \frac{1}{2} \int_1^{+\infty} \frac{\sin x}{x^2} \,dx \in \mathbf{R}.$$

(b) Sur]0,1[, les fonctions f_n sont positives. Le lemme de Fatou donne, puisque $\sin x \sim x$ au voisinage de 0,

$$+\infty = \frac{1}{2} \int_{]0,1[} \frac{\sin(x)}{x^2} \, \lambda(dx) = \int_{]0,1[} \liminf f_n(x) \, \lambda(dx) \leq \liminf \int_{]0,1[} f_n(x) \, \lambda(dx).$$

Par conséquent, compte tenu de la question précédente,

$$\lim_{n \to \infty} \int_{]0,1[} f_n(x) \, \lambda(dx) = +\infty, \quad \text{et}, \quad \lim_{n \to \infty} \int_{\mathbf{R}_+^*} f_n(x) \, \lambda(dx) = +\infty.$$

Exercice 4. 1. Pour $t \ge 0$ et $x \in [0,1]$, posons $f(t,x) = \frac{e^{-t^2(1+x^2)}}{1+x^2}$. Nous avons :

— Pour tout $t \ge 0$. $x \longmapsto f(t-x)$ est berélienne for $t \ge 1$.

- Pour tout $t \geq 0$, $x \mapsto f(t,x)$ est borélienne sur [0,1] car continue.
- Pour tout $x \in [0,1], t \mapsto f(t,x)$ est de classe \mathcal{C}^1 sur \mathbf{R}_+ et

$$\forall x \in [0,1], \quad \forall t \ge 0, \qquad \frac{\partial f}{\partial t}(t,x) = -2te^{-t^2(1+x^2)}.$$

— La fonction $f(0,x) = \frac{1}{1+x^2}$ est intégrable [0,1] et, pour tout $x \in [0,1]$,

$$\sup_{t>0} \left| \frac{\partial f}{\partial t}(t,x) \right| \le \sup_{t>0} 2te^{-t^2} = \sqrt{2/e} \in L^1\left([0,1]\right).$$

D'après le théorème de régularité des intégrales à paramètre, F est définie et de classe \mathcal{C}^1 sur \mathbf{R}_+ et,

$$\forall t \ge 0, \qquad F'(t) = \int_0^1 \frac{\partial f}{\partial t}(t, x) \, dx = -2te^{-t^2} \int_0^1 e^{-t^2 x^2} \, dx.$$

2. Puisque $x \mapsto e^{-x^2}$ est continue sur \mathbf{R}_+ , G est de classe \mathcal{C}^1 sur \mathbf{R}_+ et, pour tout $t \geq 0$, via le changement de variable x = tu,

$$G'(t) = 2e^{-t^2} \int_0^t e^{-x^2} dx = 2te^{-t^2} \int_0^1 e^{-t^2u^2} du = -F'(t)$$
, soit $H'(t) = 0$.

3. (a) On a

$$H(0) = F(0) + G(0) = \int_0^1 \frac{dx}{1+x^2} + 0 = \arctan(1) - \arctan(0) = \frac{\pi}{4}.$$

Pour tout $t \geq 0, \ 0 \leq F(t) \leq e^{-t^2}$; par conséquent, $\lim_{t \to +\infty} F(t) = 0$. D'autre part, par convergence

$$\lim_{t \to +\infty} G(t) = \left(\int_0^{+\infty} e^{-x^2} \, dx \right)^2.$$

(b) D'après la question précédente, on a

$$\lim_{t \to +\infty} H(t) = \lim_{t \to +\infty} F(t) + \lim_{t \to +\infty} G(t) = \left(\int_0^{+\infty} e^{-x^2} dx \right)^2.$$

Or, d'après la question 2, H est constante sur \mathbf{R}_+ égale à $\frac{\pi}{4}$. Par conséquent,

$$\left(\int_{0}^{+\infty} e^{-x^2} dx\right)^2 = \frac{\pi}{4}, \quad \text{et}, \quad \int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

4. La matrice A étant inversible, $\psi(x) = Ax$ est un \mathcal{C}^1 -difféomorphisme de \mathbf{R}^d avec $J_{\psi}(x) = \det A$ et on a, via y = Ax, et le théorème de Tonelli

$$\int_{\mathbf{R}^d} e^{-\|Ax\|^2} \lambda_d(dx) = \frac{1}{|\det A|} \int_{\mathbf{R}^d} e^{-\|y\|^2} \lambda_d(y) = \frac{1}{|\det A|} \left(\int_{\mathbf{R}} e^{-u^2} du \right)^d = \frac{\pi^{d/2}}{|\det A|}.$$

Exercice 5. 1. Soient a > 0 et $t \in \mathbf{R}$. On a

$$\int_{\mathbf{R}} e^{itx} e^{-a|x|} \, \lambda(dx) = 2 \operatorname{Re} \left(\int_0^\infty e^{itx} e^{-ax} \, dx \right) = 2 \operatorname{Re} \left(\frac{1}{a-it} \right) = \frac{2a}{a^2 + t^2}.$$

2. Soient a > 0 et $t \in \mathbf{R}$. La fonction f définie par $f(x,y) = e^{i(y+t)x}e^{-a|x|}e^{-|y|}$ est continue sur \mathbf{R}^2 . Comme $|f(x,y)| \le e^{-a|x|}e^{-|y|}$, f est intégrable sur \mathbb{R}^2 par rapport à la mesure de Lebesque. On a alors, d'après le théorème de Fubini et la question précédente,

$$\begin{split} \int_{\mathbf{R}^2} f(x,y) \, \lambda_2(dx,dy) &= \int_{\mathbf{R}} \left(e^{itx} e^{-a|x|} \int_{\mathbf{R}} e^{iyx} e^{-|y|} \, \lambda(dy) \right) \lambda(dx) = \int_{\mathbf{R}} e^{itx} e^{-a|x|} \frac{2}{1+x^2} \, \lambda(dx), \\ &= \int_{\mathbf{R}} \left(e^{-|y|} \int_{\mathbf{R}} e^{i(y+t)x} e^{-a|x|} \, \lambda(dx) \right) \lambda(dy) = \int_{\mathbf{R}} e^{-|y|} \frac{2a}{a^2 + (y+t)^2} \, \lambda(dy). \end{split}$$

D'où le résultat.

3. (a) On a donc, via z = (y + t)/a, on a

$$\int_{\mathbf{R}} \frac{2a}{a^2 + (y+t)^2} e^{-|y|} dy = \int_{\mathbf{R}} \frac{2}{1+z^2} e^{-|az-t|} \lambda(dz).$$

(b) Par conséquent, pour a > 0 et $t \in \mathbf{R}$,

$$\int_{\mathbf{R}} e^{itx} e^{-a|x|} \frac{1}{1+x^2} \, \lambda(dx) = \int_{\mathbf{R}} \frac{1}{1+z^2} e^{-|az-t|} \, \lambda(dz).$$

Bien évidemment, pour tout $x \in \mathbf{R}$ et tout $z \in \mathbf{R}$,

$$\lim_{a \to 0^+} \frac{e^{itx}e^{-a|x|}}{1+x^2} = \frac{e^{itx}}{1+x^2}, \qquad \lim_{a \to 0^+} \frac{e^{-|az-t|}}{1+z^2} = \frac{e^{-|t|}}{1+z^2}.$$

Par ailleurs,

$$\sup_{a>0} \left| \frac{e^{itx}}{1+x^2} e^{-a|x|} \right| \leq \frac{1}{1+x^2} \in \mathrm{L}^1(\mathbf{R},\lambda), \qquad \sup_{a>0} \left| \frac{1}{1+z^2} e^{-|az-t|} \right| \leq \frac{1}{1+z^2} \in \mathrm{L}^1(\mathbf{R},\lambda).$$

On obtient alors, via théorème de convergence dominée,

$$\int_{\mathbf{R}} \frac{e^{itx}}{1+x^2} \, \lambda(dx) = \lim_{a \to 0^+} \int_{\mathbf{R}} e^{itx} e^{-a|x|} \frac{1}{1+x^2} \, \lambda(dx) = \lim_{a \to 0^+} \int_{\mathbf{R}} \frac{1}{1+z^2} e^{-|az-t|} \, \lambda(dz) = \int_{\mathbf{R}} \frac{e^{-|t|}}{1+z^2} \, \lambda(dz),$$

et finalement

$$\int_{\mathbf{R}} \frac{e^{itx}}{1+x^2} \, \lambda(dx) = \pi \, e^{-|t|}.$$