Problem Set 1

- 1. Which of the following are FO definable? Which are not FO-definable (without a proof), but regular?
 - (a) The set of words over $\{a,b\}$ which has equal number of occurrences of ab and ba. For example, aba is in the language, while abab is not.
 - (b) The set of words over $\{a, b, \#\}$ with a single occurrence of #, and every symbol before the # is an a, and all symbols after the # are b's.
 - (c) The set of strings over $\{a,b\}$ which does not contain any occurrence of ba.
 - (d) The set of strings over $\{0,1\}$ such that the second symbol from both ends is 0.
 - (e) Let $\Sigma=\{\binom{a}{b}\mid a,b\in\{0,1\}\}$. A string over Σ gives two rows of 0's and 1's. Treat each row as a binary number. The set of words

 $\{w \in \Sigma^* \mid \text{ the top row is larger than the bottom row } \}$

- 2. Consider the following FO formulae. In each case,
 - (a) what is $L(\varphi)$? (b) what is $\overline{L(\varphi)}$? (c) Is $L(\varphi)$ regular? (d) Is $\overline{L(\varphi)}$ regular?
 - (1) $\forall x (x \neq x)$
 - (2) $\exists x \exists y [x < y \land Q_b(x) \land Q_a(y) \land \forall x [(x < z < y) \rightarrow Q_a(z)]]$
 - (3) $\exists x[Q_a(x) \land \exists y[S(x,y) \land \forall z[z \leq y]]]$
 - (4) $\exists x \forall y [x \leq y \land Q_a(x)] \land \exists x \forall y [y \leq x \land Q_b(x)] \land \forall x \forall y [Q_a(x) \land S(x,y) \rightarrow Q_b(y)] \land \forall x \forall y [Q_b(x) \land S(x,y) \rightarrow Q_a(y)]$
- 3. Consider the following automaton. What is the language L accepted? Can you write an FO formula φ such that $L = L(\varphi)$?

