有限元第二次编程作业

W Huang

日期: 2023年11月24日

1 编程第一题

1.1 求解设置

求解 PDE

$$\begin{cases}
-u'' = f, & \text{in } \Omega = (0, 1), \\
u(0) = u(1) = 0.
\end{cases}$$
(1)

取一右端项 $f \in L^2_{loc}(\Omega)$:

$$f(x) = \frac{1}{x}. (2)$$

显然 $f \neq 0$ 处不连续, 且 $f \notin L^2(\Omega)$ 。我们导出精确解:

$$u(x) = x \ln x. \tag{3}$$

注意到 $u \in H^1(\Omega) \cap C(\overline{\Omega})$ 。使用非均匀网格 $x_i = (i/N)^2$,取 \mathcal{P}_1 元。使用预优共轭梯度法 (Preconditioned CG) 求解,用超松弛迭代 (SSOR) 作为预优因子,超松弛系数取 $2 - \varepsilon$,其中 $\varepsilon = 10^{-12}$ 。右端项的数值积分由一阶高斯求积公式计算。注意:对于 $x_0 = 0$ 的节点基函数 Φ_0 ,我们知道 $\langle f, \Phi_0 \rangle$ 是发散的,但在 Dirichlet 边界条件下,我们不需要这一项。

1.2 编译说明

请安装 deal.ii 及其依赖库,见 https://www.dealii.org/developer/readme.html;安装完毕后,在本文档目录下打开终端,依次运行:

cd src-p1
mkdir build
cd build
cmake ..
make release
make

等待编译完成后,用以下命令执行测试:

./elliptic 10 u

上述测试采用 1.1 节所述的非均匀网格,规模为 $N=2^{10}$,如果需要改变网格规模,将 10 换成别的正整数即可。另外,如果想测试均匀网格,只需将上述命令中的 \mathfrak{u} 删去即可。

1.3 数值结果

图 1: $N = 2^{14}$ 时非均匀网格的数值解 u_h

图 2: $N = 2^{14}$ 时非均匀网格的误差 $u_h - u$

可以看到,误差集中在奇异点附近。

单元数量	2^{14}	阶数	2^{15}	阶数	2^{16}	阶数	2^{17}
$ u-u_h _{L_2}$	1.90e-09	1.92	5.02e-10	1.51	1.76e-10	2.16	3.95e-11
$ u-u_h _{L_{\infty}}$	2.91e-09	2.00	7.30e-10	1.59	2.42e-10	1.18	1.07e-10
$ u-u_h _{H_1}$	1.60e-04	0.96	8.24e-05	0.96	4.25e-05	0.96	2.19e-05
CG 迭代次数	14		16		17		19
装配耗时(s)	0.019		0.035		0.072		0.15
求解耗时(s)	0.0051		0.010		0.024		0.048

表 1: 预优共轭梯度法,预优因子: SSOR, 超松弛系数: $2 - \varepsilon$ ($\varepsilon = 10^{-12}$)。

由于网格尺寸太细,在机器精度的限制下, L_2 和 L_∞ 范数已经无法继续下降。另外可以看到,SSOR 作为预优因子效果非常好,随着网格加密,CG 迭代次数基本不会增加。换言之,当超松弛系数趋近于 2 时,在 SSOR 的作用下,迭代矩阵的条件数与网格尺寸几乎无关。

刚度矩阵条件数(二范数下)的数值结果如下,数值结果支持 $\kappa(A) \sim O(N^3)$:

单元数量	256	阶数	512	阶数	1024
$\kappa(A)$	1.93116e+06	2.99	1.53591e+07	3.00	1.22513e+08

表 2: 刚度矩阵的二范数条件数,即 $\kappa(A) = ||A||_2 \cdot ||A^{-1}||_2$ 。

为了测试刚度矩阵的条件数对求解性能的影响,我们不使用预优因子再进行一次测试。与 预优 CG 相比,朴素 CG 的求解性能大大降低,我们只好将网格规模减小以进行测试。

单元数量	2^{12}	增长率	2^{13}	增长率	2^{14}
CG 迭代次数	42996	2.86	122781	2.85	350164
装配耗时(s)	0.005		0.01		0.02
求解耗时(s)	0.49		2.35		12.7

表 3: 朴素共轭梯度法。

2 编程第二题

2.1 求解设置

求解 PDE

$$\begin{cases}
-u'' + u = f, & \text{in } \Omega = (0, 1), \\
u'(0) = u'(1) = 0.
\end{cases}$$
(4)

取精确解:

$$u(x) = \cos(\pi x). \tag{5}$$

导出右端项:

$$f(x) = (1 + \pi^2)\cos(\pi x). \tag{6}$$

其余设置与题目所述一致。

2.2 编译说明

由于 deal.ii 的多重网格与题目所述的 big Gauss-Seidel 有所不同,为了按题目要求来实现,在这题中我们不再使用 deal.ii,而是使用 matlab,所以无需编译,直接运行即可。