

MU Test Plan — Test 5 (β-Sweep Phase Transition)

Goal

To pinpoint the threshold where the slow path transitions from **microscopic survival** ($\sim 10^{-20}$ range) to **macroscopic survival** ($\sim 10^{0}$ scale). We'll sweep β values between 6 and 9 to see exactly where Truth (T) overtakes the action cost and makes the slow path visible.

Parameters

• gamma: 1.0

• hbar: 0.1

• beta (T influence): 6.0, 7.0, 8.0, 9.0 (sweep)

• **velocities tested:** v = 0.050 (slow), v = 0.500 (fast)

• selector form: $T(r) = \frac{1}{1 + |r - r_c|}, r_c = 0.25$

• integration window: 1.0

Predictions

1. **β=6.0:**

- Slow weight still suppressed but larger than $\beta=5$ (~10⁻¹⁸ range).
- Fast weight remains 0.

2. β =7.0 → 8.0:

- Slow weight should rise dramatically (10⁻¹² → 10⁻⁶ range).
- · Approaching visible survival.

3. **β=9.0:**

- Slow weight should approach ~10⁻² → 10⁻¹.
- Very close to the β =10 case (~0.3).

4. Phase-transition signature:

- Expect a **steep**, **exponential rise** in slow's weight as β crosses ~8–9.
- Fast remains annihilated throughout.

Why This Matters

- Locating the β-threshold is critical: it's the first quantitative prediction of MU.
- This gives us a **phase-like curve** (weight vs β), showing the selector's control and confirming slow's survival is not accidental.
- If the exponential rise happens as predicted, we'll have the first robust **testable law of MU selection**: *Truth amplifies survival beyond a critical threshold*.