Tutorial 10

Groups

Q.1 Group or Not?

Is each of the following cases a group? If so, is it an Abelian group?

- a) Even numbers under addition
- b) Odd numbers under addition
- c) Multiples of 7 under addition
- d) 2×2 real matrices under addition
- e) 2×2 real matrices under multiplication

Q.2 Unit Circle on Complex Plane

□ Consider the set of complex numbers on the unit circle:

$$H = \{ z \in \mathbb{C} \colon |z| = 1 \}.$$

 \square Denote multiplication by \times .

• e.g.
$$(1+2i)(3-i)$$

= $(3+2)+(6-1)i$
= $5+5i$.

- a) Show that $\langle H, \times \rangle$ forms a group.
- b) Find the cube roots of unity, or roots satisfying the equation: $z^3 = 1$, where $z \in \mathbb{C}$. Do the roots form a subgroup of H?

Q.3 Binary Linear Code

- \square Recall that a binary linear code C is a subset of \mathbb{B}^n .
- □ It is defined by the encoding function $f: \mathbb{B}^k \to \mathbb{B}^n$, where f(u) = uG and G is the generator matrix.
- \square It can be checked that \mathbb{B}^n with binary addition is a group.
- \square Is C a subgroup of \mathbb{B}^n ?