

Tecnologia LTE

Costanzo Alex Leone Damiano D'Aquino Simona

Progetti
Informatica Musicale 2019/20

Indice

- Introduzione
- Uso e applicazioni della tecnologia LTE
- Volte (Voice over LTE)
- Analisi di Fourier: Serie e trasformata
- Teorema del Campionamento di Nyquist-Shannon
- Definizione e applicazione dei filtri
- Analisi e filtraggio in tempo reale di un segnale LTE a 800-900 Mhz con un misuratore di campo

Introduzione

Long Term Evolution (LTE) è uno standard di comunicazione wireless per dispositivi mobili basato su tecnologia GSM e UMTS.

Uso e applicazioni della tecnologia LTE

Dallo streaming online ad una realtà sempre più cloudbased, l'LTE si presta perfettamente ad ogni tipo di esigenza garantendo maggiore sicurezza e un'ottima stabilità di servizio.

Altissime

VoLTE

Il Volte (Voice over LTE) è stata una delle novità introdotte con la tecnologia LTE, permette di effettuare chiamate vocali ad alta definizione e navigare contemporaneamente.

Analisi di Fourier: Definizione e

Serie

L'analisi di Fourier è uno strumento matematico che permette di descrivere un segnale complesso come somma di segnali elementari, in particolare onde sinusoidali e cosinusoidali.

Lo sviluppo in serie di Fourier rappresenta l'estensione dell'analisi impiegata nel caso di segnali periodici $x(t) = x(t + T_0)$, con T_0 periodo del segnale e inverso della frequenza.

$$x(t) = A_0 + 2\sum_{k=1}^{\infty} A_k \cos(2\pi k f_0 t + \vartheta_k)$$

Forma reale polare

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k f_0 t}$$

Forma complessa

Analisi di Fourier: Trasformata

La serie di Fourier si limita alla trattazione di segnali periodici, per quanto riguarda la tecnologia LTE ci rifacciamo alla trasformata di Fourier veloce FFT, che si può ottenere a partire dalla serie, e permette di analizzare qualsiasi tipo di segnale (periodico e non) nel dominio della frequenza

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Teorema del campionamento di Nyquist-Shannon

Dato un qualunque segnale x(t) avente banda limitata, x(t) è completamente noto se conosco i suoi valori in determinati istanti $t = nT_c$ dove T_c è il tempo di campionamento, purché questi campioni vengono presi per $T_c \le 1/(2Bmax)$, cioè con una frequenza di campionamento $f_c \ge 2Bmax$, dove Bmax è la banda massima del nostro segnale. In questo modo ottengo un segnale campionato $x(nT_c)$ avente però uno spettro periodicizzato rispetto quello di partenza, per cui attraverso l'utilizzo di appositi filtri è possibile troncare il segnale periodicizzato ottenendo così il nostro segnale di

Teorema del campionamento di Nyquist-Shannon

È molto importante la condizione di questo teorema $f_c \ge 2$ Bmax, perché se così non fosse otterremmo sempre un segnale periodicizzato che filtrando ci accorgeremmo non essere uguale a quello di partenza, in quanto il segnale si sovrappone con se stesso.

Esempio di campionamento con f_C ≥ 2Bmax

Esempio di campionamento con f_C ≤ 2Bmax

Filtri

I filtri sono dispositivi elettronici in grado di discriminare e selezione le frequenze dei segnali sinusoidali che ricevono in ingresso.

Ce ne sono di diversi tipi

- Passa-alto
- Passa-basso
- Passa-banda
- Elimina banda

Filtri nell'LTE

Le frequenze utilizzate dall'LTE sono: 800 Mhz, 1800 Mhz, 2600 Mhz e 2100 Mhz. In particolare, la frequenza a **800 Mhz** precedentemente veniva usata per trasmettere il digitale terrestre, e poiché molti impianti tv non sono stati adeguati ai nuovi standard sopraggiungevano problemi di **interferenze**.

Per eliminare queste ultime, si è ricorso a un **filtro elimina-banda** per lasciare passare le frequenze relative alle bande televisive e attenuare invece i segnali LTE, che causavano una saturazione per la loro potenza.

Analisi e filtraggio in tempo reale di un segnale LTE a 800-900 Mhz con un

misuratore di campo

Sfruttando un misuratore di campo digitale terrestre sarà possibile verificare il processo di filtraggio di un semplice segnale digitale utilizzando un comune ed economico filtro passa-banda.

Così facendo verrà attenuata l'interferenza dovuta alla sovrapposizione della banda di trasmissione dell'LTE sul segnale campione scelto per l'analisi.

SENZA FILTRO LTE

Conclusioni

E stato molto interessante studiare in dettaglio le caratteristiche di uno strumento che utilizziamo tutti i giorni come l'LTE, e i modi di adattare esso all'ambiente circostante. La nuova sfida nel campo della connessione della telefonia mobile sarà il 5G, ma ancora non si è nemmeno effettuata una completa transizione dalle tecnologie più vecchie (2G, 3G) all'LTE. Questo ci fa capire quanti passi farà lo sviluppo tecnologico nei prossimi anni.

GRAZIE PER L'ATTENZIONE!

Progetti

Informatica Musicale 2019/20