

Test report No. Page Issued date

FCC ID

: 11932168H-C-R1 : 1 of 139 : February 26, 2018

: February 26, 2018 : VPYLB1NX

RADIO TEST REPORT

Test Report No.: 11932168H-C-R1

Applicant : Murata Manufacturing Co., Ltd.

Type of Equipment : Communication Module

Model No. : Type1NX

FCC ID : VPYLB1NX

Test regulation : FCC Part 15 Subpart E: 2018

(Except for DFS test)

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

7. This report is a revised version of 11932168H-C. 11932168H-C is replaced with this report.

September 25 to November 17, 2017

Representative test engineer:

Date of test:

Takafumi Noguchi

Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 2 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

REVISION HISTORY

Original Test Report No.: 11932168H-C

Revision	Test report No. 11932168H-C	Date	Page revised	Contents
- (Original)		February 13, 2018	-	-
1	11932168H-C-R1	February 26, 2018 February 26,	P 63	Correction of Limit for U-NII-3 of 11n-40.
1	11932168H-C-R1	February 26, 2018	P 73	Correction of Limit for U-NII-3 of 11ac-40 and 11ac-80. Correction of duty factor for 11ac-80.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date FCC ID : 11932168H-C-R1 : 3 of 139 : February 26, 2018

: VPYLB1NX

CONTENTS		PAGE
SECTION 1:	Customer information	
SECTION 2:	Equipment under test (E.U.T.)	
SECTION 3:	Test specification, procedures & results	
SECTION 4:	Operation of E.U.T. during testing	
SECTION 5:	Conducted Emission	
SECTION 6:	Radiated Spurious Emission and Band Edge Compliance	
SECTION 7:	Antenna Terminal Conducted Tests	
	Test data	
	ed Emission	
	nission Bandwidth and 99 % Occupied Bandwidth	
6 dB Bar	•	
Maximur	m Conducted Output Power	
	Output Power	
	n Power Spectral Density	
	Spurious Emission	
	ed Spurious Emission	
	Test instruments	
	Photographs of test setup	
	ed Emission	
	Spurious Emission	

Worst Case Position 139

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 4 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Communication Module

Model No. : Type1NX

Serial No. : Refer to Section 4, Clause 4.2

Rating : VBAT: Min. 3.35 V / Typ. 3.6 V / Max. 4.8 V

*VIO: Min. 1.71 V / Typ. 1.8 V / Max. 1.89 V * VIO don't influence the RF characteristic.

Receipt Date of Sample : September 15, 2017
Country of Mass-production : China and Japan
Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: Type1NX (referred to as the EUT in this report) is a Communication Module.

General Specification

Clock frequency(ies) in the system : 37.4 MHz (X'tal)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 5 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radio Specification

Radio Type Transceiver

Power Supply (inner) DC 1.35 V, 1.2 V, 3.3 V, 2.5 V

Specification of Wireless LAN (IEEE802.11b/g/a/n-20/n-40/11ac-20/11ac-40/11ac-80)

Type of radio	IEEE802.11b	IEEE802.11g/n	IEEE802.11a/n/ac	IEEE802.11n/ac	IEEE802.11ac	
		(20 M band)	(20 M band) *1)	(40 M band) *1)	(80 M band) *1)	
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5180 MHz - 5240 MHz	5190 MHz - 5230 MHz	5210 MHz	
of operation			5260 MHz - 5320 MHz	5270 MHz - 5310 MHz	5290 MHz	
			5500 MHz - 5720 MHz	5510 MHz - 5710 MHz	5530 MHz - 5690 MHz	
			5745 MHz - 5825 MHz	5755 MHz - 5795 MHz	5775 MHz	
Type of modulation	DSSS	OFDM-CCK	OFDM			
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)	(64QAM, 16QAM, QPSK, BPSK, 256QAM(IEEE802.11ac only))			
Channel spacing	5 MHz		20 MHz	40 MHz	80 MHz	
Antenna type	Dipole antenna					
Antenna Gain	2.4 GHz: 0.2 dBi	_	_	_	_	
	5 GHz: 1.4dBi					

Bluetooth (Ver. 4.2 with EDR function)

	Bluetooth Ver.4.2 with EDR function
Frequency	2402 MHz - 2480 MHz
of operation	
Type of modulation	BT: FHSS (GFSK, π/4DQPSK, 8DPSK)
	LE: GFSK
Channel spacing	BT: 1 MHz
	LE: 2 MHz
Antenna type	Dipole antenna
Antenna Gain	2.4 GHz: 0.2 dBi

^{*1)} This test report applies to Wireless LAN (5GHz Band).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} WLAN and Bluetooth do not transmit simultaneously.

Test report No. : 11932168H-C-R1
Page : 6 of 139
Issued date : February 26, 2018

Issued date : February 26, 2 FCC ID : VPYLB1NX

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart E

FCC Part 15 final revised on February 2, 2018 and effective March 5, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart E

Unlicensed National Information Infrastructure Devices

Section 15.407 General technical requirements

* The revisions made after testing date do not affect the test specification applied to the EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

: 7 of 139 **Issued date** : February 26, 2018 FCC ID : VPYLB1NX

: 11932168H-C-R1

3.2 **Procedures and results**

Item	Test Procedure	Specification	Worst margin	Results	Remarks
	FCC: ANSI C63.10-2013	FCC: 15.407 (b) (6) / 15.207	QP 23.6 dB,		
Conducted Emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	0.15000 MHz, N AV 24.8 dB, 29.02984 MHz, N	Complied	-
26 dB Emission	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)		N/A	Conducted
Bandwidth	IC: -	IC: -		1,772	Conducted
Maximum	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)			Conducted
Maximum Conducted Output Power	IC: -	IC: RSS-247 6.2.1.1 6.2.2.1 6.2.3.1 6.2.4.1	See data	Complied	
	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)		Complied	Conducted
Maximum Power Spectral Density	IC: -	IC: RSS-247 6.2.1.1 6.2.2.1 6.2.3.1 6.2.4.1			
Spurious Emission	FCC: ANSI C63.10-2013 KDB Publication Number 789033	FCC: 15.407 (b), 15.205 and 15.209	0.2 dB		Conducted (< 30 MHz)
Spurious Emission Restricted Band Edge	IC: -	IC: RSS-247 6.2.1.2 6.2.2.2 6.2.3.2 6.2.4.2	0.2 dB 11650.000 MHz AV, Hori	Complied	Radiated (> 30 MHz) *1)
6 dB Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (e)	C 1-4-	C1;1	Conducted
Bandwidth	IC: -	IC: RSS-247 6.2.4.1	See data	Complied	

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage (DC 1.35 V, 1.2 V, 3.3 V, 2.5 V) through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} For DFS tests, please see the test report number 11932168H-D issued by UL Japan, Inc. *1) Radiated test was selected over 30 MHz based on section FCC 15.407 (b) and KDB 789033 D02 G.3.b).

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. Page

: 8 of 139 **Issued date** : February 26, 2018 : VPYLB1NX FCC ID

: 11932168H-C-R1

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Band Width	RSS-Gen 6.6	IC: -	N/A	N/A	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Antenna terminal test	Uncertainty (+/-)
RF output power	1.2 dB
Antenna terminal conducted emission / Power density / Burst power	3.1 dB
Adjacent channel power / Channel power	
Below 3 GHz	1.8 dB
3 GHz to 6 GHz	2.7 dB

Frequency range	Conducted emission using AMN(LISN) (+/-)
0.009 MHz - 0.15 MHz	3.1 dB
0.15 MHz - 30 MHz	2.5 dB

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.8 dB
10 m	3.6 dB

	Radiated emission (Below 1 GHz)				
Dolority	(3 m*) ((+/-)	(10 m*) (+/-)		
Polarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -	
		1000 MHz	200 MHz	1000 MHz	
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB	
Vertical	5.2 dB	6.3 dB	5.0 dB	5.0 dB	

Radiated emission (Above 1 GHz)						
(3 m*) (+/-) (1 m*) (+/-) (10 m*) (+/-)						
1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	1 GHz -		
6 GHz	18 GHz	26.5 GHz	40 GHz	18 GHz		
5.2 dB	5.5 dB	5.5 dB	5.4 dB	5.5 dB		

^{*}Measurement distance

 $\frac{Conducted\ Emission\ test}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 9 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 10 of 139
Issued date : February 26, 2018

FCC ID : VPYLB1NX

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals -" of TCB Council Workshop October 2009 and also was judged the necessity of 802.11ac mode by the pre-test.

Mode	Remarks*
IEEE 802.11a (11a)	48 Mbps, PN9
IEEE 802.11n 20MHz BW (11n-20)	MCS 4, PN9
IEEE 802.11ac 20MHz BW (11ac-20)	MCS 5, PN9
IEEE 802.11n 40MHz BW (11n-40)	MCS 2, PN9
IEEE 802.11ac 40MHz BW (11ac-40)	MCS 4, PN9
IEEE 802.11ac 80MHz BW (11ac-80)	MCS 0, PN9

^{*}The worst condition was determined based on the test result of Maximum Conducted Output Power.

*Power of the EUT was set by the software as follows;
Power settings: Refer to the following table
Software: WLAN: Tera term- 4.8.7
*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 11 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

[Power setting]

11a									
Data Rate	6	9	12	18	24	36	48	54	
Frequency			5180	to 5240	MHz (20N	IHz)			
Power Setting		10.5							
Frequency		5260 to 5320 MHz (20MHz)							
Power Setting		9.5							
Frequency			5500	to 5720	MHz (20N	IHz)			
Power Setting		14 13						13	
Frequency		5745 to 5825 MHz (20MHz)							
Power Setting				13				12	

			11n	/11ac 201	MHz				
Data Rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7%	MCS8※
Frequency		5180 to 5240 MHz (20MHz)							
Power Setting		10							
Frequency		5260 to 5320 MHz (20MHz)							
Power Setting					9				
Frequency				5500 to 5	720 MHz	(20MHz)			
Power Setting				1	2				11
Frequency		5745 to 5825 MHz (20MHz)							
Power Setting				12				11	10

*11n : MCS0 to 7, 11ac : MCS0 to 8

				11n/11a	c 40MHz					
Data Rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7%	MCS8	MCS9※
Frequency		5190 to 5230 MHz (40MHz)								
Power Setting		9.5								
Frequency		5270 to 5310 MHz (40MHz)								
Power Setting						9				
Frequency				5510	to 5710 l	MHz (40N	(Hz)			
Power Setting					8	.5				
Frequency		5755 to 5795 MHz (40MHz)								
Power Setting				12				11	10)

*11n: MCS0 to 7, 11ac: MCS0 to 9

				11ac 8	80MHz					
Data Rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
Frequency		5210 MHz (80MHz)								
Power Setting		9.5								
Frequency		5290 MHz (80MHz)								
Power Setting		9								
Frequency				553	0 to 5690 l	MHz (80M	IHz)			
Power Setting					7	.5				
Frequency		5775 MHz (80MHz)								
Power Setting		11 10								

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 12 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

*The details of Operation mode(s)

Test Item	Operating Mode	Tested Frequ	ency		
		Low	Middle	Additional	Upper
		Band	Band	Band	Band
Conducted emission,	11n-40 Tx,*1)	-	5755 MHz	-	-
Conducted Spurious Emission,					
Radiated Spurious Emission (Below 1GHz)					
26dB Emission Bandwidth	11a Tx,	-	5260 MHz	5500 MHz	-
	11n-20 Tx,		5280 MHz	5580 MHz	
	11ac-20 Tx		5300 MHz	5700 MHz	
			5320 MHz	5720 MHz	
	11n-40 Tx,] -	5270 MHz	5510 MHz] -
	11ac-40 Tx		5310 MHz	5550 MHz	
				5670 MHz	
				5710 MHz	
	11ac-80 Tx] -	5290 MHz	5530 MHz] -
				5610 MHz	
				5690 MHz	
99% Occupied Bandwidth,	11a Tx,	5180 MHz	5260 MHz	5500 MHz	5745 MHz
Maximum Conducted Output Power,	11n-20 Tx,	5220 MHz	5280 MHz	5580 MHz	5785 MHz
Maximum Power Spectral Density	11ac-20 Tx	5240 MHz	5300 MHz	5700 MHz	5825 MHz
•			5320 MHz	5720 MHz	
	11n-40 Tx,	5190 MHz	5270 MHz	5510 MHz	5755 MHz
	11ac-40 Tx	5230 MHz	5310 MHz	5550 MHz	5795 MHz
				5670 MHz	
				5710 MHz	
	11ac-80 Tx	5210 MHz	5290 MHz	5530 MHz	5775 MHz
				5610 MHz	
				5690 MHz	
Radiated Spurious Emission	11a Tx	5180 MHz	5280 MHz	5500 MHz	5745 MHz
(Above 1GHz)	11n-20 Tx *2)		5300 MHz	5580 MHz	5785 MHz
			5320 MHz	5700 MHz	5825 MHz
	11n-40 Tx *2)	5190 MHz	5270 MHz	5510 MHz	5755 MHz
			5310 MHz	5670 MHz	5795 MHz
	11ac-80 Tx	5210 MHz	5290 MHz	5530 MHz	5775 MHz
	11 ac 00 1x	3210 11112	32)0 WHIE	5610 MHz	3773 WHIE
6dB Bandwidth	11a Tx,	_	_	-	5745 MHz
VAL DAIM ITAMI	11n-20 Tx,				5785 MHz
	11ac-20 Tx				5825 MHz
	11n-40 Tx,			-	5755 MHz
	11ac-40 Tx				5795 MHz
	11ac-80 Tx			-	5775 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Since 11n-20 and 11ac-20, 11n-40 and 11ac-40, have the same modulation method and no differences in transmitting specification, test was performed on the representative mode that had the highest output power.

Test report No. : 11932168H-C-R1
Page : 13 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

4.2 Configuration and peripherals

For Conducted Emission

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Communication	Type1NX	17	Murata Manufacturing	EUT
Λ	Module			Co., Ltd.	
D	Jig Board	-	-	Murata Manufacturing	*1)
В				Co., Ltd.	
	Regulated DC Power	PW16-5ADP	171116437	TEXIO	-
C	Supply				

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Sh	Remarks	
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-
2	AC Cable	1.0	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 14 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

For Radiated Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Communication Module	Type1NX	17	Murata Manufacturing Co., Ltd.	EUT
В	Jig Board	-	-	Murata Manufacturing Co., Ltd.	*1)

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Sh	Remarks	
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 15 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

For Antenna Terminal Conducted test

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Module	Type1NX	9	Murata Manufacturing	EUT
В	Jig board 1	-	-	-	*1)
С	Jig board 2	-	-	-	-
D	Jig board 3	-	-	-	-
Е	BRIX	GB-BKi3HA-7100	SN1717630455	GIGABYTE	-
F	USB Memory	SDCZ33	BM170525475D	Sandisk	-
G	AC Adaptor	9NA0654719	H6141013436	FSP GROUP INC.	-
Н	Laptop PC	CF-N8HWCDPS	OBKSA07449	Panasonic	-
I	AC Adaptor	CF-AA6372B	637BM610701051E	Panasonic	-

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shie	Remarks	
			Cable	Connector	
1	DC Cable	0.55	Unshielded	Unshielded	-
2	Signal Cable	0.10	Unshielded	Unshielded	-
3	Signal Cable	0.30	Unshielded	Unshielded	-
4	DC Cable	1.50	Unshielded	Unshielded	-
5	AC Cable	0.60	Unshielded	Unshielded	-
6	LAN Cable	3.00	Unshielded	Unshielded	-
7	DC Cable	1.10	Unshielded	Unshielded	-
8	AC Cable	0.90	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11932168H-C-R1
Page : 16 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

1) For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR Average Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 17 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

SECTION 6: Radiated Spurious Emission and Band Edge Compliance

Test Procedure

< Below 1GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

< Above 1GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

< Below 1GHz >

The result also satisfied with the general limits specified in section 15.209 (a).

< Above 1GHz >

Inside of restricted bands (Section 15.205):

Apply to limit in the Section 15.209 (a).

Outside of the restricted bands:

Apply to limit 68.2 dBuV/m, 3 m (-27 dBm e.i.r.p.*) in the Section 15.407 (b) (1) (2) (3).

For W58 Bandedge

-27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge in the section 15.407(b)(4)(i).

Restricted band edge:

Apply to limit in the Section 15.209 (a).

Since this limit is severer than the limit of the inside of restricted bands.

*Electric field strength to e.i.r.p. conversion:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 (uV/m) : P is the e.i.r.p. (Watts)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 18 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	Below 1 GHz	Above 1 GHz	
Instrument used	Test Receiver	Spectrum Analyzer	
Detector	QP	Peak	Average
IF Bandwidth	BW: 120 kHz	RBW: 1 MHz	Method AD *1)
		VBW: 3 MHz	RBW: 1 MHz
			VBW: 3 MHz
			Detector: Power
			Averaging (RMS)
			Trace: ≥ 100 traces
			If duty cycle was less
			than 98%, a duty
			factor was added to
			the results.
Test Distance	3 m	3 m (below 1 GHz),	
		4.5 m*2) (1 GHz – 10	GHz),
		1 m*3) (10 GHz – 40	GHz)

- *1) The test method was also referred to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E".
- *2) Distance Factor: $20 \times \log (4.5 \text{ m/}3.0 \text{ m}) = 3.5 \text{ dB}$
- *3) Distance Factor: $20 \times \log (1.0 \text{ m/} 3.0 \text{ m}) = -9.5 \text{ dB}$
- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 40 GHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 19 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
26 dB Bandwidth	Enough to capture the emission	Close to 1 % of EBW	> RBW	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 % to 5 % of OBW	≥ 3 RBW	Auto	Peak	Max Hold	Spectrum Analyzer
6 dB Bandwidth	Enough to capture the emission	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Conducted Output Power	-	-	-	Auto	Average	-	Power Meter (Sensor: 80 MHz BW) (Method PM)
Maximum Power Spectral Density	Encompass the entire EBW	1 MHz *2)	≥3 RBW	Auto	RMS Power Averaging (200 times)	Clear Write	Spectrum Analyzer
Conducted Spurious	9 kHz – 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission*3)	150 kHz – 30 MHz	9.1 kHz	27 kHz	-1			

^{*} The test method was also referred to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E".

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz-150 kHz: RBW = 200 Hz, 150 kHz-30 MHz: RBW = 9.1 kHz)

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Peak hold was applied as Worst-case measurement.

^{*2)} KDB 789033 D02 says that RBW is set to be 500 kHz for 5.725 GHz-5.850 GHz, but it is not possible with spectrum analyzer, so RBW Correction Factor (10 log(500 kHz / 470 kHz)) was added to the test result.

^{*3)} In the frequency range below 30 MHz, RBW was narrowed to separate the noise contents.

Test report No. : 11932168H-C-R1
Page : 20 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

APPENDIX 1: Test data

Conducted Emission

Test place Ise EMC Lab. No.3 Measurement Room

Report No. 11932168H

Date October 29, 2017

Temperature / Humidity 21 deg. C / 59 % RH

Engineer Takafumi Noguchi

Mode Tx 11n-40 5755 MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

_	Reading	Level	Corr.	Resu	ılts	Lin	iit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	29. 2	3. 1	13. 2	42. 4	16.3	66.0	56.0	23.6	39. 7	N	
0. 16008	27. 3	2. 1	13. 2	40. 5	15.3	65.5	55. 5	25.0	40. 2	N	
0. 27852	13.0	-1. 1	13. 2	26. 2	12. 1	60.9	50.9	34. 7	38.8	N	
24. 88285	5. 2	2. 5	14. 5	19. 7	17.0	60.0	50.0	40.3	33.0	N	
27. 9931 2	12.0	10. 3	14. 6	26. 6	24. 9	60.0	50.0	33.4	25. 1	N	
29. 02984	12. 2	10.6	14. 6	26. 8	25. 2	60.0	50.0	33. 2	24. 8	N	
0. 15000	28. 8	2. 9	13. 2	42. 0	16. 1	66.0	56.0	24. 0	39. 9	L	
0. 16016	26. 9	1.9	13. 2	40. 1	15. 1	65.5	55. 5	25. 4	40.4	L	
0. 27890	12. 2	-1.0	13. 2	25. 4	12. 2	60.8	50.8	35.4	38. 6	L	
24. 88283	4. 1	0. 7	14. 5	18. 6	15. 2	60.0	50.0	41.4	34.8	L	
27. 99294		10. 1	14. 6	26. 5	24. 7	60.0	50.0	33.5	25. 3	L	
29. 02968	10. 4	8. 5	14. 6	25. 0	23. 1	60.0	50.0	35.0	26. 9	L	

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 21 of 139 Issued date : February 26, 2018 FCC ID : VPYLB1NX

26 dB Emission Bandwidth and 99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

October 23, 2017 Date October 17, 2017 October 19, 2017 Temperature / Humidity 21deg. C / 69 % RH 24 deg. C / 53 % RH 23deg. C / 61 % RH Takumi Shimada Ryota Yamanaka Ryota Yamanaka Engineer

Mode

Tx 11a

Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5180	-	17122.0	=
5220	-	17021.2	-
5240	-	17113.3	-
5260	20.799	17112.1	-
5280	20.727	17093.2	-
5300	20.883	17034.0	-
5320	20.925	17051.4	-
5500	21.790	17095.7	-
5580	21.312	17108.0	-
5700	21.009	17075.1	-
5720	21.214	17071.1	-
5745	-	17067.0	-
5785	-	17147.5	-
5825	-	17105.6	-

11n-20

Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5180	-	18172.1	-
5220	-	18168.8	-
5240	-	18167.3	-
5260	21.267	18051.6	-
5280	21.255	18091.6	-
5300	21.218	18107.7	-
5320	21.322	18142.6	-
5500	20.966	18149.2	-
5580	21.611	18187.8	-
5700	21.071	18188.3	-
5720	21.253	18143.8	-
5745	-	18240.0	-
5785	-	18269.9	-
5825	-	18258.4	-

11n-40

Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5190	-	36409.8	-
5230	-	36475.0	-
5270	39.654	36380.1	-
5310	39.214	36320.8	-
5510	39.552	36433.0	-
5550	39.580	36443.8	-
5670	39.597	36443.1	-
5710	39.280	36388.3	-
5755	-	36871.9	-
5795	-	36786.5	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 22 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11a

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 23 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11a

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 24 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 25 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017October 23, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RH23deg. C / 61 % RHEngineerRyota YamanakaRyota YamanakaTakumi Shimada

Mode Tx 11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 26 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 23, 2017

Temperature / Humidity 23deg. C / 61 % RH
Engineer Takumi Shimada

Mode Tx 11a

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 27 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 28 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 29 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 30 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017October 23, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RH23deg. C / 61 % RHEngineerRyota YamanakaRyota YamanakaTakumi Shimada

Mode Tx 11n-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 31 of 139 Issued date : February 26, 2018 FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date Temperature / Humidity

Engineer Mode

October 17, 2017 21deg. C / 69 % RH October 19, 2017 24 deg. C / 53 % RH

Ryota Yamanaka Tx 11n-20

October 23, 2017 23deg. C / 61 % RH Ryota Yamanaka Takumi Shimada

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 32 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 33 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11n-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 34 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 17, 2017 October 19, 2017
Temperature / Humidity 21deg. C / 69 % RH 24 deg. C / 53 % RH
Engineer Ryota Yamanaka Ryota Yamanaka

Mode Tx 11n-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 35 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth and 99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017October 23, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RH23deg. C / 61 % RHEngineerRyota YamanakaRyota YamanakaTakumi Shimada

Mode Tx

11ac-20

11ac-20			
Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5180	-	18086.7	-
5220	-	18126.9	-
5240	-	18130.7	-
5260	21.105	18089.2	-
5280	21.177	18106.7	-
5300	21.103	18059.9	-
5320	21.154	18116.7	-
5500	21.349	18101.5	-
5580	21.310	18048.8	-
5700	21.430	18142.0	-
5720	21.399	18144.5	1
5745	-	18301.4	-
5785	-	18281.4	-
5825	-	18180.2	-

11ac-40

Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5190	-	36522.5	-
5230	-	36564.3	-
5270	39.580	36491.1	-
5310	39.792	36484.3	-
5510	39.417	36445.2	-
5550	39.620	36505.1	-
5670	39.822	36464.5	-
5710	39.408	36470.5	-
5755	-	36932.9	-
5795	-	36803.7	-

11ac-80

Tested	26 dB Emission	99 % Occupied	Limit
Frequency	Bandwidth	Bandwidth	
[MHz]	[MHz]	[kHz]	[MHz]
5210	-	76161.5	-
5290	81.419	75795.9	-
5530	81.488	75854.2	-
5610	81.355	75947.7	-
5690	81.621	75790.6	-
5775	-	75973.6	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 36 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 37 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 38 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 39 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017October 23, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RH23deg. C / 61 % RHEngineerRyota YamanakaRyota YamanakaTakumi Shimada

Mode Tx 11ac-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 40 of 139 Issued date : February 26, 2018 FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date Temperature / Humidity

Engineer Mode

October 17, 2017 October 19, 2017 21deg. C / 69 % RH 24 deg. C / 53 % RH

Ryota Yamanaka Tx 11ac-20

October 23, 2017 23deg. C / 61 % RH Ryota Yamanaka Takumi Shimada

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 41 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 42 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 43 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota YamanakaModeTx 11ac-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 44 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

26 dB Emission Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RHEngineerRyota YamanakaRyota Yamanaka

Mode Tx 11ac-80

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 45 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 17, 2017 October 19, 2017
Temperature / Humidity 21deg. C / 69 % RH 24 deg. C / 53 % RH
Engineer Ryota Yamanaka Ryota Yamanaka

Mode Tx 11ac-80

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 46 of 139 **Issued date** : February 26, 2018 FCC ID : VPYLB1NX

October 23, 2017

Takumi Shimada

23deg. C / 61 % RH

6 dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date Temperature / Humidity

Engineer Mode

October 17, 2017 21deg. C / 69 % RH October 19, 2017 24 deg. C / 53 % RH Ryota Yamanaka Ryota Yamanaka

Tx

lla		
Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5745	16.433	> 500
5785	16.412	> 500
5825	16.382	> 500

11n-20

1111 20		
Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5745	17.621	> 500
5785	17.657	> 500
5825	17.655	> 500

11n-40

1111 40		
Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5755	36.110	> 500
5795	36.357	> 500

11ac-20

Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5745	17.679	> 500
5785	17.579	> 500
5825	17.666	> 500

11ac-40

Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5755	36.191	> 500
5795	36.504	> 500

11ac-80

Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[kHz]
5775	75.475	> 500

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 47 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

11n-20

6 dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H Date October 23, 2017 23deg. C / 61 % RH Temperature / Humidity Engineer Takumi Shimada

Mode

11a

5745 MHz 5745 MHz # Agilent Agilent Ref 10 dBm #Peak Log 10 Log 10 dB/ dB/ LgAv LgAv M1 S2 5.745 00 GHz Span 40 MHz 5.745 00 GHz Snan 40 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.84 ms (1201 pts) #Res BW 100 kHz Sweep 3.84 ms (1201 pts) Occupied Bandwidth Occ BW 2 Pwr 99 00 % Occupied Bandwidth Occ BW % Pwr 99.00 % 17.7184 MHz x dB -6 00 dB 16.4561 MHz Transmit Freq Error x dB Bandwidth -49.133 kHz 17.621 MHz Transmit Freq Error x dB Bandwidth -35.013 kHz 16.433 MHz 5785 MHz 5785 MHz # Agilent Ref 10 dBm #Atten 20 dE #Atten 20 dB Log 10 dB/ Log 10 dB/ LgAv M1 S2 M1 S2 Center 5.785 00 GHz #Res BW 100 kHz 5 785 AA GHz an 40 MHz

Span 40 MHz

99.00 %

-6.00 dB

Sweep 3.84 ms (1201 pts)

x dB

Occ BW % Pwr

#Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error x dB Bandwidth

17.6990 MHz

-41.661 kHz 17.657 MHz

*VBW 300 kHz

#VBW 300 kHz

Sweep 3.84 ms (1201 pts)

x dB

99 00 %

-6.00 dB

Occ BW % Pwr

Transmit Freq Error x dB Bandwidth -42.505 kHz 17.655 MHz

UL Japan, Inc. Ise EMC Lab.

Transmit Freq Error x dB Bandwidth

Occupied Bandwidth

Transmit Freq Error x dB Bandwidth

16.4719 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

-39.172 kHz 16.382 MHz

Test report No. : 11932168H-C-R1
Page : 48 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

6 dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 17, 2017October 19, 2017October 23, 2017Temperature / Humidity21deg. C / 69 % RH24 deg. C / 53 % RH23deg. C / 61 % RHEngineerRyota YamanakaRyota YamanakaTakumi Shimada

Mode Tx

11ac-20 11n-40 5755 MHz 5745 MHz R T R T Agilen Agilent Ref 10 dBm #Peak Ref 10 dBm #Atten 20 dB #Atten 20 dB Log 10 dB/ LaAv LaAv M1 S2 Center 5.755 00 GHz #Res BW 100 kHz Center 5.745 00 *Res BW 100 kHz #VBW 300 kHz Sweep 7.68 ms (1201 pts) *VBW 300 kHz Sweep 3.84 ms (1201 pts) Occ BW % Pwr Occ BW % Pwr 99.00 % Occupied Bandwidth Occupied Bandwidth 36.2864 MHz x dB -6.00 dB 17.6663 MHz x dB -6.00 dB -53.163 kHz 17.679 MHz -24.726 kHz 36.110 MHz Transmit Freq Error Transmit Freq Error x dB Bandwidth 5795 MHz 5785 MHz # Agilent Agilent Ref 10 dBm #Peak #Atten 20 dB Ref 10 dBm #Atten 20 dB LaAv LgAv M1 S2 Center 5.795 00 GHz #Res BW 100 kHz Center 5.785 00 #Res BW 100 kHz #VBW 300 kHz Sweep 7.68 ms (1201 pts) #VBW 300 kHz Sweep 3.84 ms (1201 pts) Occ BW % Pwr Occupied Bandwidth 99.00 % Occupied Bandwidth Occ BW % Pwr 99.00 % 36.3043 MHz x dB -6 00 dB 17.6838 MHz x dB -6.00 dB Transmit Freq Error -45.670 kHz 36.357 MHz -43.155 kHz Transmit Freq Error x dB Bandwidth 5825 MHz Agilent #Atten 20 dE LgAv #Res BW 100 kHz #VBW 300 kHz Sweep 3.84 ms (1201 pts) Occ BW % Pwr 99.00 % Occupied Bandwidth x dB -6.00 dB 17.6710 MHz Transmit Freq Error x dB Bandwidth -39.037 kHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 49 of 139 Issued date : February 26, 2018 FCC ID : VPYLB1NX

6 dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room Report No.

11932168H

October 17, 2017 Date October 19, 2017 Temperature / Humidity 21deg. C / 69 % RH 24 deg. C / 53 % RH Ryota Yamanaka Ryota Yamanaka Engineer Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 50 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Conducted Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateNovember 7, 2017November 16, 2017Temperature / Humidity24 deg. C / 40 % RH22 deg. C / 41 % RHEngineerTakafumi NoguchiTomoki Matsui

Mode Tx

11a 48Mbps

Applied limit: 15.407, mobile and portable client device

11a 48Mbp	Tested Power Cable Atten. Duty Antenna 26 dB 99% Conducted Power e.i.r.p														ent device
Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power					
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	M argin	Res	sult	Limit	M argin
	Reading					(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5180	0.08	0.80	10.08	1.71	1.4	-	17.122	12.67	18.49	23.97	11.30	14.07	25.53	29.97	15.90
5220	0.14	0.80	10.08	1.71	1.4	-	17.021	12.73	18.75	23.97	11.24	14.13	25.88	29.97	15.84
5240	0.08	0.80	10.08	1.71	1.4	-	17.113	12.67	18.49	23.97	11.30	14.07	25.53	29.97	15.90
5260	-0.75	0.80	10.08	1.71	1.4	20.799	17.112	11.84	15.28	23.97	12.13	13.24	21.09	29.97	16.73
5280	-0.76	0.80	10.08	1.71	1.4	20.727	17.093	11.83	15.24	23.97	12.14	13.23	21.04	29.97	16.74
5300	-0.76	0.80	10.08	1.71	1.4	20.883	17.034	11.83	15.24	23.97	12.14	13.23	21.04	29.97	16.74
5320	-0.80	0.80	10.08	1.71	1.4	20.925	17.051	11.79	15.10	23.97	12.18	13.19	20.84	29.97	16.78
5500	2.34	0.80	10.07	1.71	1.4	21.790	17.096	14.92	31.05	23.97	9.05	16.32	42.85	29.97	13.65
5580	2.32	0.80	10.08	1.71	1.4	21.312	17.108	14.91	30.97	23.97	9.06	16.31	42.76	29.97	13.66
5700	2.13	0.80	10.10	1.71	1.4	21.009	17.075	14.74	29.79	23.97	9.23	16.14	41.11	29.97	13.83
5720	2.01	0.80	10.10	1.71	1.4	21.214	17.071	14.62	28.97	23.97	9.35	16.02	39.99	29.97	13.95
5745	1.57	0.80	10.11	1.71	1.4	-	-	14.19	26.24	30.00	15.81	15.59	36.22	36.00	20.41
5785	1.45	0.80	10.11	1.71	1.4	-	-	14.07	25.53	30.00	15.93	15.47	35.24	36.00	20.53
5825	1.32	0.80	10.12	1.71	1.4	-	-	13.95	24.83	30.00	16.05	15.35	34.28	36.00	20.65

Sample Calculation:

 $Conducted\ Power\ Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss + Duty\ Factor\ e.i.r.p.\ Result = Conducted\ Power\ Result + Antenna\ Gain$

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

11n-20 MCS 4

Applied limit: 15.407, mobile and portable client device

THE-20 INC. 12.407, movie and portable client device																
Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power			e.i.i	r.p.		
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Result Limit Margin		Result Limit Margin Result Li		Limit	M argin			
	Reading					(B for FCC)	(B for IC)									
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
5180	0.02	0.80	10.08	1.37	1.4	-	18.172	12.27	16.87	23.97	11.70	13.67	23.28	29.97	16.30	
5220	0.03	0.80	10.08	1.37	1.4	-	18.169	12.28	16.90	23.97	11.69	13.68	23.33	29.97	16.29	
5240	0.07	0.80	10.08	1.37	1.4	-	18.167	12.32	17.06	23.97	11.65	13.72	23.55	29.97	16.25	
5260	-0.95	0.80	10.08	1.37	1.4	21.267	18.052	11.30	13.49	23.97	12.67	12.70	18.62	29.97	17.27	
5280	-0.94	0.80	10.08	1.37	1.4	21.255	18.092	11.31	13.52	23.97	12.66	12.71	18.66	29.97	17.26	
5300	-0.98	0.80	10.08	1.37	1.4	21.218	18.108	11.27	13.40	23.97	12.70	12.67	18.49	29.97	17.30	
5320	-1.02	0.80	10.08	1.37	1.4	21.322	18.143	11.23	13.27	23.97	12.74	12.63	18.32	29.97	17.34	
5500	1.10	0.80	10.07	1.37	1.4	20.966	18.149	13.34	21.58	23.97	10.63	14.74	29.79	29.97	15.23	
5580	1.11	0.80	10.08	1.37	1.4	21.611	18.188	13.36	21.68	23.97	10.61	14.76	29.92	29.97	15.21	
5700	1.01	0.80	10.10	1.37	1.4	21.071	18.188	13.28	21.28	23.97	10.69	14.68	29.38	29.97	15.29	
5720	0.90	0.80	10.10	1.37	1.4	21.253	18.144	13.17	20.75	23.97	10.80	14.57	28.64	29.97	15.40	
5745	0.87	0.80	10.11	1.37	1.4	-	-	13.15	20.65	30.00	16.85	14.55	28.51	36.00	21.45	
5785	0.72	0.80	10.11	1.37	1.4	-	-	13.00	19.95	30.00	17.00	14.40	27.54	36.00	21.60	
5825	0.59	0.80	10.12	1.37	1.4	-	-	12.88	19.41	30.00	17.12	14.28	26.79	36.00	21.72	
0 1 0 1	1				•	•										

Sample Calculation:

 $Conducted\ Power\ Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss + Duty\ Factor\ e.i.r.p.\ Result = Conducted\ Power\ Result + Antenna\ Gain$

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 51 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Maximum Conducted Output Power

Ise EMC Lab. No.6 Measurement Room Test place

Report No. 11932168H

Date November 7, 2017 November 16, 2017 24 deg. C / 40 % RH Temperature / Humidity 22 deg. C / 41 % RH Engineer Takafumi Noguchi Tomoki Matsui

TxMode

11n-40 MCS 2

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power		e.i.r.p.					
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	Result Limit N		Result		M argin	Result		Limit	M argin
	Reading					(B for FCC)	(B for IC)										
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]		
5190	-0.61	0.80	10.08	1.41	1.4	-	36.410	11.68	14.72	23.97	12.29	13.08	20.32	29.97	16.89		
5230	-0.56	0.80	10.08	1.41	1.4	-	36.475	11.73	14.89	23.97	12.24	13.13	20.56	29.97	16.84		
5270	-1.12	0.80	10.08	1.41	1.4	39.654	36.380	11.17	13.09	23.97	12.80	12.57	18.07	29.97	17.40		
5310	-1.15	0.80	10.08	1.41	1.4	39.214	36.321	11.14	13.00	23.97	12.83	12.54	17.95	29.97	17.43		
5510	-1.80	0.80	10.07	1.41	1.4	39.552	36.433	10.48	11.17	23.97	13.49	11.88	15.42	29.97	18.09		
5550	-1.79	0.80	10.08	1.41	1.4	39.580	36.444	10.50	11.22	23.97	13.47	11.90	15.49	29.97	18.07		
5670	-1.88	0.80	10.10	1.41	1.4	39.597	36.443	10.43	11.04	23.97	13.54	11.83	15.24	29.97	18.14		
5710	-1.92	0.80	10.10	1.41	1.4	39.280	36.388	10.39	10.94	23.97	13.58	11.79	15.10	29.97	18.18		
5755	0.88	0.80	10.11	1.41	1.4	-	-	13.20	20.89	30.00	16.80	14.60	28.84	36.00	21.40		
5795	0.81	0.80	10.11	1.41	1.4	-	-	13.13	20.56	30.00	16.87	14.53	28.38	36.00	21.47		

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

11ac-20 MCS 5

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%						e.i.r.p.			
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	M argin	Res	sult	Limit	M argin	
	Reading					(B for FCC)	(B for IC)									
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
5180	-0.37	0.80	10.08	1.66	1.4	-	18.087	12.17	16.48	23.97	11.80	13.57	22.75	29.97	16.40	
5220	-0.33	0.80	10.08	1.66	1.4	-	18.127	12.21	16.63	23.97	11.76	13.61	22.96	29.97	16.36	
5240	-0.34	0.80	10.08	1.66	1.4	-	18.131	12.20	16.60	23.97	11.77	13.60	22.91	29.97	16.37	
5260	-1.34	0.80	10.08	1.66	1.4	21.105	18.089	11.20	13.18	23.97	12.77	12.60	18.20	29.97	17.37	
5280	-1.43	0.80	10.08	1.66	1.4	21.177	18.107	11.11	12.91	23.97	12.86	12.51	17.82	29.97	17.46	
5300	-1.42	0.80	10.08	1.66	1.4	21.103	18.060	11.12	12.94	23.97	12.85	12.52	17.86	29.97	17.45	
5320	-1.46	0.80	10.08	1.66	1.4	21.154	18.117	11.08	12.82	23.97	12.89	12.48	17.70	29.97	17.49	
5500	0.70	0.80	10.07	1.66	1.4	21.349	18.102	13.23	21.04	23.97	10.74	14.63	29.04	29.97	15.34	
5580	0.71	0.80	10.08	1.66	1.4	21.310	18.049	13.25	21.13	23.97	10.72	14.65	29.17	29.97	15.32	
5700	0.51	0.80	10.10	1.66	1.4	21.430	18.142	13.07	20.28	23.97	10.90	14.47	27.99	29.97	15.50	
5720	0.54	0.80	10.10	1.66	1.4	21.399	18.145	13.10	20.42	23.97	10.87	14.50	28.18	29.97	15.47	
5745	0.57	0.80	10.11	1.66	1.4	-	-	13.14	20.61	30.00	16.86	14.54	28.44	36.00	21.46	
5785	0.42	0.80	10.11	1.66	1.4	-	-	12.99	19.91	30.00	17.01	14.39	27.48	36.00	21.61	
5825	0.24	0.80	10.12	1.66	1.4	-	-	12.82	19.14	30.00	17.18	14.22	26.42	36.00	21.78	
Sample Calc	ulation:															

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 52 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Conducted Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateNovember 7, 2017November 16, 2017Temperature / Humidity24 deg. C / 40 % RH22 deg. C / 41 % RHEngineerTakafumi NoguchiTomoki Matsui

Mode Tx

11ac-40 MCS4

Applied limit: 15.407, mobile and portable client device

1140 40 1110	The Total Pics T														are de l'ice	
Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conduct	ed Power			e.i.i	.p.		
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	esult Limit		M argin	Result		Limit	M argin	
	Reading					(B for FCC)	(B for IC)									
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
5190	-1.35	0.80	10.08	2.14	1.4	-	36.523	11.67	14.69	23.97	12.30	13.07	20.28	29.97	16.90	
5230	-1.30	0.80	10.08	2.14	1.4	-	36.564	11.72	14.86	23.97	12.25	13.12	20.51	29.97	16.85	
5270	-1.88	0.80	10.08	2.14	1.4	39.580	36.491	11.14	13.00	23.97	12.83	12.54	17.95	29.97	17.43	
5310	-1.90	0.80	10.08	2.14	1.4	39.792	36.484	11.12	12.94	23.97	12.85	12.52	17.86	29.97	17.45	
5510	-2.53	0.80	10.07	2.14	1.4	39.417	36.445	10.48	11.17	23.97	13.49	11.88	15.42	29.97	18.09	
5550	-2.52	0.80	10.08	2.14	1.4	39.620	36.505	10.50	11.22	23.97	13.47	11.90	15.49	29.97	18.07	
5670	-2.61	0.80	10.10	2.14	1.4	39.822	36.465	10.43	11.04	23.97	13.54	11.83	15.24	29.97	18.14	
5710	-2.65	0.80	10.10	2.14	1.4	39.408	36.471	10.39	10.94	23.97	13.58	11.79	15.10	29.97	18.18	
5755	0.11	0.80	10.11	2.14	1.4	-	-	13.16	20.70	30.00	16.84	14.56	28.58	36.00	21.44	
5795	0.02	0.80	10.11	2.14	1.4	-	-	13.07	20.28	30.00	16.93	14.47	27.99	36.00	21.53	

Sample Calculation:

 $Conducted\ Power\ Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supp\ lied) + Atten.\ Loss + Duty\ Factor\ e.i.r.p.\ Result = Conducted\ Power\ Result + Antenna\ Gain$

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

11ac-80 MCS 0

Applied limit: 15.407, mobile and portable client device

Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power							
Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	esult Limit		Result		M argin	Res	sult	Limit	M argin
Reading					(B for FCC)	(B for IC)										
[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]		
-0.71	0.80	10.08	1.09	1.4	-	76.162	11.26	13.37	23.97	12.71	12.66	18.45	29.97	17.31		
-1.22	0.80	10.08	1.09	1.4	81.419	75.796	10.75	11.89	23.97	13.22	12.15	16.41	29.97	17.82		
-2.65	0.80	10.08	1.09	1.4	81.488	75.854	9.32	8.55	23.97	14.65	10.72	11.80	29.97	19.25		
-2.64	0.80	10.09	1.09	1.4	81.355	75.948	9.34	8.59	23.97	14.63	10.74	11.86	29.97	19.23		
-2.72	0.80	10.10	1.09	1.4	81.621	75.791	9.27	8.45	23.97	14.70	10.67	11.67	29.97	19.30		
-0.14	0.80	10.11	1.09	1.4	-	-	11.86	15.35	30.00	18.14	13.26	21.18	36.00	22.74		
	Meter Reading [dBm] -0.71 -1.22 -2.65 -2.64 -2.72	Meter Reading [dBm] [dB] -0.71 0.80 -1.22 0.80 -2.65 0.80 -2.64 0.80 -2.72 0.80 -0.14 0.80	Meter Reading [dBm] Loss [dB] Loss [dB] -0.71 0.80 10.08 -1.22 0.80 10.08 -2.65 0.80 10.08 -2.64 0.80 10.09 -2.72 0.80 10.10 -0.14 0.80 10.11	Meter Reading [dBm] Loss [dB] Factor [dB] -0.71 0.80 10.08 1.09 -1.22 0.80 10.08 1.09 -2.65 0.80 10.08 1.09 -2.64 0.80 10.09 1.09 -2.72 0.80 10.10 1.09 -0.14 0.80 10.11 1.09	Meter Reading [dBm] Loss [dB] Factor [dB] Gain [dB] -0.71 0.80 10.08 1.09 1.4 -1.22 0.80 10.08 1.09 1.4 -2.65 0.80 10.08 1.09 1.4 -2.64 0.80 10.09 1.09 1.4 -2.72 0.80 10.10 1.09 1.4 -0.14 0.80 10.11 1.09 1.4	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW (B for FCC) [dBm] -0.71 0.80 10.08 1.09 1.4 - -1.22 0.80 10.08 1.09 1.4 81.419 -2.65 0.80 10.08 1.09 1.4 81.488 -2.64 0.80 10.09 1.09 1.4 81.355 -2.72 0.80 10.10 1.09 1.4 81.621 -0.14 0.80 10.11 1.09 1.4 -	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dB or PCC] OBW [dB or PCC] -0.71 0.80 10.08 1.09 1.4 - 76.162 -1.22 0.80 10.08 1.09 1.4 81.419 75.796 -2.65 0.80 10.08 1.09 1.4 81.488 75.854 -2.64 0.80 10.09 1.09 1.4 81.355 75.948 -2.72 0.80 10.10 1.09 1.4 81.621 75.791 -0.14 0.80 10.11 1.09 1.4 81.621 75.791	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dB for FCC] OBW [dB for IC] Res [dBm] -0.71 0.80 10.08 1.09 1.4 - 76.162 11.26 -1.22 0.80 10.08 1.09 1.4 81.419 75.796 10.75 -2.65 0.80 10.08 1.09 1.4 81.488 75.854 9.32 -2.64 0.80 10.09 1.09 1.4 81.355 75.948 9.34 -2.72 0.80 10.10 1.09 1.4 81.621 75.791 9.27 -0.14 0.80 10.11 1.09 1.4 - - - 11.86	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW (B for FCC) (B for IC) OBW (B for IC) Result -0.71 0.80 10.08 1.09 1.4 - 76.162 11.26 13.37 -1.22 0.80 10.08 1.09 1.4 81.419 75.796 10.75 11.89 -2.65 0.80 10.08 1.09 1.4 81.488 75.854 9.32 8.55 -2.64 0.80 10.09 1.09 1.4 81.355 75.948 9.34 8.59 -2.72 0.80 10.10 1.09 1.4 81.621 75.791 9.27 8.45 -0.14 0.80 10.11 1.09 1.4 - - 11.86 15.35	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [gb or FCC] [dB or IC] OBW [dB or IC] Result [dBm] [dBm] [dBm] [dBm] [dBm] [mu] [dBm] [dBm] [dBm] [dBm] [dBm] [mu] [dBm] [Meter Reading Reading 1 Loss Factor Factor Reading 1 Gain Reading 1 EBW Reading 1 OBW Results 1 Results 1 Limit Rargin Rarging 1 Margin Reading 1 [dBm] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dBfor FCC] (Bfor FCC) (Bfor FCC)	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dB or FCC) [dB or IC) [dB or IC) [dBm] [mW] -0.71 0.80 10.08 1.09 1.4 - 76.162 11.26 13.37 23.97 12.71 12.66 18.45 -1.22 0.80 10.08 1.09 1.4 81.419 75.796 10.75 11.89 23.97 13.22 12.15 16.41 -2.65 0.80 10.08 1.09 1.4 81.488 75.854 9.32 8.55 23.97 14.65 10.72 11.80 -2.64 0.80 10.09 1.04 81.355 75.948 9.34 8.59 23.97 14.63 10.74 11.86 -2.72 0.80 10.10 1.09 1.4 81.621 75.791 9.27 <t< td=""><td>Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dB or FCC] OBW [dB or FCC] Result [dBm] Limit [dBm] Margin [dBm] Result [dBm] Image [dBm] Image [dBm] Margin [dBm] Result [dBm] Image [dBm]<!--</td--></td></t<>	Meter Reading [dBm] Loss [dBm] Factor [dBm] Gain [dBm] EBW [dB or FCC] OBW [dB or FCC] Result [dBm] Limit [dBm] Margin [dBm] Result [dBm] Image [dBm] Image [dBm] Margin [dBm] Result [dBm] Image [dBm] </td		

Sample Calculation:

 $Conducted\ Power\ Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supp\ lied) + Atten.\ Loss\ + \ Duty\ Factor\ e.i.r.p.\ Result = Conducted\ Power\ Result\ + Antenna\ Gain$

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 53 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Conducted Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H
Date November 7, 2017
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takafumi Noguchi

Mode Tx

5180 MHz

CIOUNILLE			
M ode	Rate	Reading	Remarks
	Mbps	[dBm]	
11a	6	1.77	
	9	1.72	
	12	1.75	
	18	1.77	
	24	1.62	
	36	1.60	
	48	1.78	*
	54	1.63	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

5180 MHz

Mode	MCS Number	Reading	Remarks
		[dBm]	
11n-20	0	1.21	
	1	1.21	
	2	1.22	
	3	1.22	
	4	1.41	*
	5	1.35	
	6	1.17	
	7	1.21	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

5190 MHz

Mode	MCS Number	Reading	Remarks
		[dBm]	
11n-40	0	0.79	
	1	0.78	
	2	0.87	*
	3	0.75	
	4	0.76	
	5	0.76	
	6	0.79	
di YYY	7	0.70	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 54 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Conducted Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H
Date November 7, 2017
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takafumi Noguchi

Mode Tx

5745 MHz

Mode	MCS Number	Reading	Remarks
		[dBm]	
11ac-20	0	1.29	
	1	1.23	
	2	1.21	
	3	1.27	
	4	1.18	
	5	1.30	*
	6	1.24	
	7	1.19	
	8	1.21	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

5190 MHz

Mode	MCS Number	Reading	Remarks
		[dBm]	
11ac-40	0	0.71	
	1	0.58	
	2	0.57	
	3	0.51	
	4	0.79	*
	5	0.70	
	6	0.68	
	7	0.65	
	8	0.49	
	9	0.59	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

5210 MHz

M ode	MCS Number	Reading	Remarks
		[dBm]	
11ac-80	0	0.37	*
	1	0.33	
	2	0.25	
	3	0.09	
	4	0.12	
	5	0.14	
	6	0.13	
	7	0.31	
	8	0.29	
	9	0.23	

^{*} Worst rate

Difference between worst rate check data and formal test result is due to the different test condition.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 55 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateNovember 7, 2017November 16, 2017Temperature / Humidity24 deg. C / 40 % RH22 deg. C / 41 % RHEngineerTakafumi NoguchiTomoki Matsui

Mode

11a 6Mbps

TTU ONTOPS	1a uvups								
Tested	Power	Cable	Atten.	Res	sult	Duty	Re	sult	
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst pow	er average)	
	Reading								
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
5180	1.50	0.80	10.08	12.38	17.30	0.28	12.66	18.45	
5220	1.54	0.80	10.08	12.42	17.46	0.28	12.70	18.62	
5240	1.50	0.80	10.08	12.38	17.30	0.28	12.66	18.45	
5260	0.64	0.80	10.08	11.52	14.19	0.28	11.80	15.14	
5280	0.66	0.80	10.08	11.54	14.26	0.28	11.82	15.21	
5300	0.67	0.80	10.08	11.55	14.29	0.28	11.83	15.24	
5320	0.62	0.80	10.08	11.50	14.13	0.28	11.78	15.07	
5500	3.72	0.80	10.07	14.59	28.77	0.28	14.87	30.69	
5580	3.66	0.80	10.08	14.54	28.44	0.28	14.82	30.34	
5700	3.54	0.80	10.10	14.44	27.80	0.28	14.72	29.65	
5720	3.41	0.80	10.10	14.31	26.98	0.28	14.59	28.77	
5745	2.95	0.80	10.11	13.86	24.32	0.28	14.14	25.94	
5785	2.87	0.80	10.11	13.78	23.88	0.28	14.06	25.47	
5825	2.75	0.80	10.12	13.67	23.28	0.28	13.95	24.83	

Sample Calculation:

 $Result \ (Timed \ average) = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supp \ lied) + Atten. \ Loss \ Result \ (Burst \ power \ average) = Time \ average + Duty \ factor$

11n-20 MCS 0

Tested	Power	Cable	Atten.	Result		Duty	Result	
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst pow	rer average)
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5180	1.08	0.80	10.08	11.96	15.70	0.30	12.26	16.83
5220	1.06	0.80	10.08	11.94	15.63	0.30	12.24	16.75
5240	1.10	0.80	10.08	11.98	15.78	0.30	12.28	16.90
5260	0.01	0.80	10.08	10.89	12.27	0.30	11.19	13.15
5280	0.03	0.80	10.08	10.91	12.33	0.30	11.21	13.21
5300	0.00	0.80	10.08	10.88	12.25	0.30	11.18	13.12
5320	0.02	0.80	10.08	10.90	12.30	0.30	11.20	13.18
5500	2.04	0.80	10.07	12.91	19.54	0.30	13.21	20.94
5580	2.05	0.80	10.08	12.93	19.63	0.30	13.23	21.04
5700	1.98	0.80	10.10	12.88	19.41	0.30	13.18	20.80
5720	1.93	0.80	10.10	12.83	19.19	0.30	13.13	20.56
5745	1.90	0.80	10.11	12.81	19.10	0.30	13.11	20.46
5785	1.76	0.80	10.11	12.67	18.49	0.30	12.97	19.82
5825	1.57	0.80	10.12	12.49	17.74	0.30	12.79	19.01

Sample Calculation:

 $Result \; (Timed \; average) = Reading + Cable \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) + Atten$

Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 56 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateNovember 7, 2017November 16, 2017Temperature / Humidity24 deg. C / 40 % RH22 deg. C / 41 % RHEngineerTakafumi NoguchiTomoki Matsui

Mode Tx

11n-40 MCS 0

Tested	Power	Cable	Atten.	Res	sult	Duty	Res	sult
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst pow	ver average)
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5190	0.20	0.80	10.08	11.08	12.82	0.59	11.67	14.69
5230	0.22	0.80	10.08	11.10	12.88	0.59	11.69	14.76
5270	-0.40	0.80	10.08	10.48	11.17	0.59	11.07	12.79
5310	-0.40	0.80	10.08	10.48	11.17	0.59	11.07	12.79
5510	-1.03	0.80	10.07	9.84	9.64	0.59	10.43	11.04
5550	-1.00	0.80	10.08	9.88	9.73	0.59	10.47	11.14
5670	-1.09	0.80	10.10	9.81	9.57	0.59	10.40	10.96
5710	-1.17	0.80	10.10	9.73	9.40	0.59	10.32	10.76
5755	1.66	0.80	10.11	12.57	18.07	0.59	13.16	20.70
5795	1.52	0.80	10.11	12.43	17.50	0.59	13.02	20.04

Sample Calculation:

Result (Timed average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

Result (Burst power average) = Time average + Duty factor

11ac-20 MCS 0

Tested	Power	Cable	Atten.	Res	sult	Duty	Res	sult
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst pow	er average)
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5180	0.99	0.80	10.08	11.87	15.38	0.30	12.17	16.48
5220	1.03	0.80	10.08	11.91	15.52	0.30	12.21	16.63
5240	1.01	0.80	10.08	11.89	15.45	0.30	12.19	16.56
5260	-0.03	0.80	10.08	10.85	12.16	0.30	11.15	13.03
5280	-0.07	0.80	10.08	10.81	12.05	0.30	11.11	12.91
5300	-0.07	0.80	10.08	10.81	12.05	0.30	11.11	12.91
5320	-0.10	0.80	10.08	10.78	11.97	0.30	11.08	12.82
5500	2.03	0.80	10.07	12.90	19.50	0.30	13.20	20.89
5580	2.05	0.80	10.08	12.93	19.63	0.30	13.23	21.04
5700	1.87	0.80	10.10	12.77	18.92	0.30	13.07	20.28
5720	1.88	0.80	10.10	12.78	18.97	0.30	13.08	20.32
5745	1.85	0.80	10.11	12.76	18.88	0.30	13.06	20.23
5785	1.74	0.80	10.11	12.65	18.41	0.30	12.95	19.72
5825	1.56	0.80	10.12	12.48	17.70	0.30	12.78	18.97

Sample Calculation:

 $Result \; (Timed \; average) = Reading + \; Cable \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the \; cable(s) \; customer \; supplied) \; + \; Atten. \; Loss \; (including \; the$

Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 57 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateNovember 7, 2017November 16, 2017Temperature / Humidity24 deg. C / 40 % RH22 deg. C / 41 % RHEngineerTakafumi NoguchiTomoki Matsui

Mode Tx

11ac-40 MCS0

Tested	Power	Cable	Atten.	Res	sult	Duty	Res	sult
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst pow	ver average)
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5190	0.20	0.80	10.08	11.08	12.82	0.58	11.66	14.66
5230	0.22	0.80	10.08	11.10	12.88	0.58	11.68	14.72
5270	-0.39	0.80	10.08	10.49	11.19	0.58	11.07	12.79
5310	-0.39	0.80	10.08	10.49	11.19	0.58	11.07	12.79
5510	-1.03	0.80	10.07	9.84	9.64	0.58	10.42	11.02
5550	-0.99	0.80	10.08	9.89	9.75	0.58	10.47	11.14
5670	-1.08	0.80	10.10	9.82	9.59	0.58	10.40	10.96
5710	-1.16	0.80	10.10	9.74	9.42	0.58	10.32	10.76
5755	1.63	0.80	10.11	12.54	17.95	0.58	13.12	20.51
5795	1.56	0.80	10.11	12.47	17.66	0.58	13.05	20.18

Sample Calculation:

 $Result \ (Timed \ average) = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. \ Loss$

Result (Burst power average) = Time average + Duty factor

11ac-80 MCS 0

Tested	Power	Cable	Atten.	Result		Duty	Res	sult
Frequency	Meter	Loss	Loss	(Timed	average)	factor	(Burst power average)	
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5210	-0.71	0.80	10.08	10.17	10.40	1.09	11.26	13.37
5290	-1.22	0.80	10.08	9.66	9.25	1.09	10.75	11.89
5530	-2.65	0.80	10.08	8.23	6.65	1.09	9.32	8.55
5610	-2.64	0.80	10.09	8.25	6.68	1.09	9.34	8.59
5690	-2.72	0.80	10.10	8.18	6.58	1.09	9.27	8.45
5775	-0.14	0.80	10.11	10.77	11.94	1.09	11.86	15.35

Sample Calculation:

Result (Timed average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 58 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Burst rate confirmation

Test place Ise EMC Lab. No.7 Measurement Room

Report No. 11932168H Date September 25, 2017 Temperature / Humidity 26 deg. C / 60 % RH Engineer Takumi Shimada

Mode Tx

11a 48Mbps

11n-20 MCS4

11n-40 MCS2

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 59 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Burst rate confirmation

Test place Ise EMC Lab. No.7 Measurement Room

Report No. 11932168H

Date September 25, 2017

Temperature / Humidity 26 deg. C / 60 % RH

Engineer Takumi Shimada

Mode Tx

11ac-20 MCS5

11ac-40 MCS4

11ac-80 MCS0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 60 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Burst rate confirmation

Test place Ise EMC Lab. No.7 Measurement Room

Report No. 11932168H Date September 25, 2017 Temperature / Humidity 26 deg. C / 60 % RH Engineer Takumi Shimada

Mode Tx

11a 6Mbps

11n-20 MCS0

11n-40 MCS0

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 61 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Burst rate confirmation

Test place Ise EMC Lab. No.7 Measurement Room

Report No. 11932168H

Date September 25, 2017

Temperature / Humidity 26 deg. C / 60 % RH

Engineer Takumi Shimada

Mode Tx

11ac-20 MCS0

11ac-40 MCS0

11ac-80 MCS0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 62 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

DateNovember 8, 2017November 17, 2017Temperature / Humidity25deg. C / 47 % RH20deg. C / 49 % RHEngineerKen FujitaTakafumi Noguchi

Mode Tx

11a Applied limit: 15.407, mobile and portable client device

Typhed mint. 15.407, mobile and portable elicit devices											citt device	
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	O (Conduc	ted)	P	SD (e.i.r.p	.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5180	-9.93	0.80	9.84	1.71	1.4	0.00	2.42	11.00	8.58	3.82	17.00	13.18
5220	-9.67	0.80	9.84	1.71	1.4	0.00	2.68	11.00	8.32	4.08	17.00	12.92
5240	-9.76	0.80	9.84	1.71	1.4	0.00	2.59	11.00	8.41	3.99	17.00	13.01
5260	-10.94	0.80	9.84	1.71	1.4	0.00	1.41	11.00	9.59	2.81	17.00	14.19
5280	-10.93	0.80	9.85	1.71	1.4	0.00	1.43	11.00	9.57	2.83	17.00	14.17
5300	-10.87	0.80	9.85	1.71	1.4	0.00	1.49	11.00	9.51	2.89	17.00	14.11
5320	-10.92	0.80	9.85	1.71	1.4	0.00	1.44	11.00	9.56	2.84	17.00	14.16
5500	-8.46	0.80	10.07	1.71	1.4	0.00	4.12	11.00	6.88	5.52	17.00	11.48
5580	-8.61	0.80	10.08	1.71	1.4	0.00	3.98	11.00	7.02	5.38	17.00	11.62
5700	-8.65	0.80	10.10	1.71	1.4	0.00	3.96	11.00	7.04	5.36	17.00	11.64
5720	-8.62	0.80	10.10	1.71	1.4	0.00	3.99	11.00	7.01	5.39	17.00	11.61
5745	-11.52	0.80	9.86	1.71	1.4	0.27	1.12	30.00	28.88	2.52	36.00	33.48
5785	-11.80	0.80	9.86	1.71	1.4	0.27	0.84	30.00	29.16	2.24	36.00	33.76
5825	-11.69	0.80	9.86	1.71	1.4	0.27	0.95	30.00	29.05	2.35	36.00	33.65

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 63 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

DateNovember 8, 2017November 17, 2017Temperature / Humidity25deg. C / 47 % RH20deg. C / 49 % RHEngineerKen FujitaTakafumi Noguchi

Mode Tx

11n-20 Applied limit: 15.407, mobile and portable client device

TIII-20 Applied minit: 15.467, mobile and portable elicit device												
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	O (Conduc	ted)	PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5180	-10.33	0.80	9.84	1.37	1.4	0.00	1.68	11.00	9.32	3.08	17.00	13.92
5220	-9.92	0.80	9.84	1.37	1.4	0.00	2.10	11.00	8.91	3.50	17.00	13.51
5240	-10.22	0.80	9.84	1.37	1.4	0.00	1.79	11.00	9.21	3.19	17.00	13.81
5260	-11.39	0.80	9.84	1.37	1.4	0.00	0.62	11.00	10.38	2.02	17.00	14.98
5280	-11.38	0.80	9.85	1.37	1.4	0.00	0.64	11.00	10.36	2.04	17.00	14.96
5300	-11.36	0.80	9.85	1.37	1.4	0.00	0.66	11.00	10.34	2.06	17.00	14.94
5320	-11.34	0.80	9.85	1.37	1.4	0.00	0.68	11.00	10.32	2.08	17.00	14.92
5500	-9.63	0.80	9.86	1.37	1.4	0.00	2.40	11.00	8.60	3.80	17.00	13.20
5580	-9.74	0.80	9.86	1.37	1.4	0.00	2.29	11.00	8.71	3.69	17.00	13.31
5700	-9.47	0.80	9.86	1.37	1.4	0.00	2.56	11.00	8.44	3.96	17.00	13.04
5720	-9.87	0.80	9.86	1.37	1.4	0.00	2.16	11.00	8.84	3.56	17.00	13.44
5745	-13.59	0.80	10.11	1.37	1.4	0.27	-1.04	30.00	31.04	0.36	36.00	35.64
5785	-13.88	0.80	10.11	1.37	1.4	0.27	-1.33	30.00	31.33	0.07	36.00	35.93
5825	-13.50	0.80	10.12	1.37	1.4	0.27	-0.94	30.00	30.94	0.46	36.00	35.54

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

 $PSD\ Result\ (Conducted) = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss$

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

11n-40	Applied limit: 15.407, mobile and portable client device
--------	--

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI) (Conduc	ted)	PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5190	-14.37	0.80	9.84	1.41	1.4	0.00	-2.32	11.00	13.32	-0.92	17.00	17.92
5230	-14.07	0.80	9.84	1.41	1.4	0.00	-2.02	11.00	13.02	-0.62	17.00	17.62
5270	-14.55	0.80	9.85	1.41	1.4	0.00	-2.49	11.00	13.49	-1.09	17.00	18.09
5310	-14.56	0.80	9.85	1.41	1.4	0.00	-2.50	11.00	13.50	-1.10	17.00	18.10
5510	-15.91	0.80	9.86	1.41	1.4	0.00	-3.84	11.00	14.84	-2.44	17.00	19.44
5550	-15.45	0.80	9.86	1.41	1.4	0.00	-3.38	11.00	14.38	-1.98	17.00	18.98
5670	-15.32	0.80	9.86	1.41	1.4	0.00	-3.25	11.00	14.25	-1.85	17.00	18.85
5710	-15.83	0.80	9.86	1.41	1.4	0.00	-3.76	11.00	14.76	-2.36	17.00	19.36
5755	-16.57	0.80	10.11	1.41	1.4	0.27	-3.98	30.00	33.98	-2.58	17.00	19.58
5795	-16.32	0.80	10.11	1.41	1.4	0.27	-3.73	30.00	33.73	-2.33	17.00	19.33

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 64 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017

Temperature / Humidity 25deg. C / 47 % RH

Engineer Ken Fujita Mode Tx 11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 65 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH
Engineer Ken Fujita Takafumi Noguchi

Mode Tx 11a

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 66 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH
Engineer Ken Fujita Takafumi Noguchi

Mode Tx 11a

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 67 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017

Temperature / Humidity 25deg. C / 47 % RH

Engineer Ken Engita

Engineer Ken Fujita Mode Tx 11n-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 68 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH
Engineer Ken Fujita Takafumi Noguchi

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 69 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH
Engineer Ken Fujita Takafumi Noguchi

Mode Tx 11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 70 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H
Date November 8, 2017
Temperature / Humidity 25deg. C / 47 % RH

Engineer Ken Fujita Mode Tx 11n-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 71 of 139 Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017 Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH Engineer Ken Fujita Takafumi Noguchi

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 72 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

DateNovember 8, 2017November 17, 2017Temperature / Humidity25deg. C / 47 % RH20deg. C / 49 % RHEngineerKen FujitaTakafumi Noguchi

Mode Tx

11ac-20 Applied limit: 15.407, mobile and portable client device

Applied mint. 13.407, mobile and portable chefit device											ent device		
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	O (Conduc	ted)	P	PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin	
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm		
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]	
5180	-10.44	0.80	9.84	1.66	1.4	0.00	1.86	11.00	9.14	3.26	17.00	13.74	
5220	-10.63	0.80	9.84	1.66	1.4	0.00	1.67	11.00	9.33	3.07	17.00	13.93	
5240	-10.48	0.80	9.84	1.66	1.4	0.00	1.82	11.00	9.18	3.22	17.00	13.78	
5260	-11.53	0.80	9.84	1.66	1.4	0.00	0.77	11.00	10.23	2.17	17.00	14.83	
5280	-11.77	0.80	9.85	1.66	1.4	0.00	0.54	11.00	10.46	1.94	17.00	15.06	
5300	-11.55	0.80	9.85	1.66	1.4	0.00	0.76	11.00	10.24	2.16	17.00	14.84	
5320	-11.64	0.80	9.85	1.66	1.4	0.00	0.67	11.00	10.33	2.07	17.00	14.93	
5500	-9.98	0.80	9.86	1.66	1.4	0.00	2.34	11.00	8.66	3.74	17.00	13.26	
5580	-9.66	0.80	9.86	1.66	1.4	0.00	2.66	11.00	8.34	4.06	17.00	12.94	
5700	-9.46	0.80	9.86	1.66	1.4	0.00	2.86	11.00	8.14	4.26	17.00	12.74	
5720	-9.60	0.80	9.86	1.66	1.4	0.00	2.72	11.00	8.28	4.12	17.00	12.88	
5745	-13.18	0.80	10.11	1.66	1.4	0.27	-0.34	30.00	30.34	1.06	36.00	34.94	
5785	-13.75	0.80	10.11	1.66	1.4	0.27	-0.91	30.00	30.91	0.49	36.00	35.51	
5825	-13.79	0.80	10.12	1.66	1.4	0.27	-0.94	30.00	30.94	0.46	36.00	35.54	

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 73 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

DateNovember 8, 2017November 17, 2017Temperature / Humidity25deg. C / 47 % RH20deg. C / 49 % RHEngineerKen FujitaTakafumi Noguchi

Mode Tx

11ac-40 Applied limit: 15.407, mobile and portable client device

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	Conduc (Conduc	ted)	P	SD (e.i.r.p	.)	
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin	
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm		
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]	
5190	-14.58	0.80	9.84	2.14	1.4	0.00	-1.80	11.00	12.80	-0.40	17.00	17.40	
5230	-14.28	0.80	9.84	2.14	1.4	0.00	-1.50	11.00	12.50	-0.10	17.00	17.10	
5270	-15.26	0.80	9.85	2.14	1.4	0.00	-2.47	11.00	13.47	-1.07	17.00	18.07	
5310	-15.21	0.80	9.85	2.14	1.4	0.00	-2.42	11.00	13.42	-1.02	17.00	18.02	
5510	-16.24	0.80	9.86	2.14	1.4	0.00	-3.44	11.00	14.44	-2.04	17.00	19.04	
5550	-16.13	0.80	9.86	2.14	1.4	0.00	-3.33	11.00	14.33	-1.93	17.00	18.93	
5670	-16.28	0.80	9.86	2.14	1.4	0.00	-3.48	11.00	14.48	-2.08	17.00	19.08	
5710	-16.33	0.80	9.86	2.14	1.4	0.00	-3.53	11.00	14.53	-2.13	17.00	19.13	
5755	-16.89	0.80	10.11	2.14	1.4	0.27	-3.57	30.00	33.57	-2.17	17.00	19.17	
5795	-17.10	0.80	10.11	2.14	1.4	0.27	-3.78	30.00	33.78	-2.38	17.00	19.38	

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

11ac-80 Applied limit: 15.407, mobile and portable client device

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI) (Conduc	ted)	P	SD (e.i.r.p	.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	M argin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5210	-17.23	0.80	9.84	1.09	1.4	0.00	-5.50	11.00	16.50	-4.10	17.00	21.10
5290	-17.53	0.80	9.85	1.09	1.4	0.00	-5.79	11.00	16.79	-4.39	17.00	21.39
5530	-19.36	0.80	9.86	1.09	1.4	0.00	-7.61	11.00	18.61	-6.21	17.00	23.21
5610	-19.46	0.80	9.86	1.09	1.4	0.00	-7.71	11.00	18.71	-6.31	17.00	23.31
5690	-19.33	0.80	9.86	1.09	1.4	0.00	-7.58	11.00	18.58	-6.18	17.00	23.18
5775	-20.26	0.80	10.11	1.09	1.4	0.27	-7.99	30.00	37.99	-6.59	17.00	23.59

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

 $PSD \ Result \ (Conducted) = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. \ Loss$

+ Duty Factor + RBW Correction Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 74 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H
Date November 8, 2017
Temperature / Humidity 25deg. C / 47 % RH
Engineer Ken Fujita
Mode Tx 11ac-20

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 75 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH
Engineer Ken Fujita Takafumi Noguchi

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 76 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH
Engineer Ken Fujita Takafumi Noguchi

Mode Tx 11ac-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 77 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017

Temperature / Humidity 25deg. C / 47 % RH

Engineer Von Engite

Engineer Ken Fujita Mode Tx 11ac-40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 78 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

Date November 8, 2017 November 17, 2017
Temperature / Humidity 25deg. C / 47 % RH 20deg. C / 49 % RH
Engineer Ken Fujita Takafumi Noguchi

Mode Tx 11ac-40

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 79 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Maximum Power Spectral Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11932168H

DateNovember 8, 2017November 17, 2017Temperature / Humidity25deg. C / 47 % RH20deg. C / 49 % RHEngineerKen FujitaTakafumi Noguchi

Mode Tx 11ac-80

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 80 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5180 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	55.8	32.2	7.4	31.3	-	64.1	73.9	9.8	
Hori	10360.000	PK	52.3	39.5	-1.5	33.2	-	57.1	73.9	16.8	
Hori	15540.000	PK	45.4	39.0	0.1	32.6	-	51.9	73.9	22.0	
Hori	20720.000	PK	44.0	36.4	-1.2	32.6	-	46.6	73.9	27.3	Floor noise
Hori	5150.000	AV	43.2	32.2	7.4	31.3	1.7	53.2	53.9	0.7	*1),*2)
Hori	10360.000	AV	42.6	39.5	-1.5	33.2	1.7	49.1	53.9	4.8	
Hori	15540.000	AV	37.3	39.0	0.1	32.6	1.7	45.5	53.9	8.4	
Hori	20720.000	AV	35.4	36.4	-1.2	32.6	-	38.0	53.9	15.9	Floor noise
Vert	5150.000	PK	54.4	32.2	7.4	31.3	-	62.7	73.9	11.2	
Vert	10360.000	PK	51.1	39.5	-1.5	33.2	-	55.9	73.9	18.0	
Vert	15540.000	PK	46.8	39.0	0.1	32.6	-	53.3	73.9	20.6	
Vert	20720.000	PK	44.0	36.4	-1.2	32.6	-	46.6	73.9	27.3	Floor noise
Vert	5150.000	AV	41.9	32.2	7.4	31.3	1.7	51.9	53.9	2.0	*1),*2)
Vert	10360.000	AV	41.1	39.5	-1.5	33.2	1.7	47.6	53.9	6.3	
Vert	15540.000	AV	38.0	39.0	0.1	32.6	1.7	46.2	53.9	7.7	
Vert	20720.000	AV	35.4	36.4	-1.2	32.6	-	38.0	53.9	15.9	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $\,$ 20log (4.5 m / 3.0 m) = 3.53 dB $\,$ 10 GHz - 40 GHz $\,$ 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 81 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 16, 2017
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Takafumi Noguchi
(1 GHz - 10 GHz)

Mode Tx 11a 5180 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 82 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 54 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5280 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	10560.000	PK	50.5	39.8	-1.5	33.2	-	55.6	73.9	18.3	
Hori	15840.000	PK	46.5	38.2	0.3	32.6	-	52.4	73.9	21.5	
Hori	21120.000	PK	44.0	36.7	-1.1	32.6	-	47.0	73.9	26.9	Floor noise
Hori	10560.000	AV	40.3	39.8	-1.5	33.2	1.7	47.1	53.9	6.8	
Hori	15840.000	AV	37.1	38.2	0.3	32.6	1.7	44.7	53.9	9.2	
Hori	21120.000	AV	35.7	36.7	-1.1	32.6	-	38.7	53.9	15.2	Floor noise
Vert	10560.000	PK	49.1	39.8	-1.5	33.2	-	54.2	73.9	19.7	
Vert	15840.000	PK	47.1	38.2	0.3	32.6	-	53.0	73.9	20.9	
Vert	21120.000	PK	44.0	36.7	-1.1	32.6	-	47.0	73.9	26.9	Floor noise
Vert	10560.000	AV	39.3	39.8	-1.5	33.2	1.7	46.1	53.9	7.8	
Vert	15840.000	AV	37.6	38.2	0.3	32.6	1.7	45.2	53.9	8.7	
Vert	21120.000	AV	35.7	36.7	-1.1	32.6	-	38.7	53.9	15.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1 Page : 83 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 54 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5320 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	54.2	32.1	7.5	31.3	-	62.5	73.9	11.4	
Hori	10640.000	PK	50.3	39.9	-1.5	33.2	-	55.5	73.9	18.4	
Hori	15960.000	PK	48.0	37.8	0.3	32.6	-	53.5	73.9	20.4	
Hori	21280.000	PK	44.7	36.8	-1.1	32.6	-	47.8	73.9	26.1	Floor noise
Hori	5350.000	AV	39.1	32.1	7.5	31.3	1.7	49.1	53.9	4.8	*1),*2)
Hori	10640.000	AV	40.0	39.9	-1.5	33.2	1.7	46.9	53.9	7.0	
Hori	15960.000	AV	38.2	37.8	0.3	32.6	1.7	45.4	53.9	8.5	
Hori	21280.000	AV	36.0	36.8	-1.1	32.6	-	39.1	53.9	14.8	Floor noise
Vert	5350.000	PK	52.5	32.1	7.5	31.3	-	60.8	73.9	13.1	
Vert	10640.000	PK	49.4	39.9	-1.5	33.2	-	54.6	73.9	19.3	
Vert	15960.000	PK	48.2	37.8	0.3	32.6	-	53.7	73.9	20.2	
Vert	21280.000	PK	44.7	36.8	-1.1	32.6	-	47.8	73.9	26.1	Floor noise
Vert	5350.000	AV	37.2	32.1	7.5	31.3	1.7	47.2	53.9	6.7	*1),*2)
Vert	10640.000	AV	39.2	39.9	-1.5	33.2	1.7	46.1	53.9	7.8	
Vert	15960.000	AV	38.3	37.8	0.3	32.6	1.7	45.5	53.9	8.4	
Vert	21280.000	AV	36.0	36.8	-1.1	32.6	-	39.1	53.9	14.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 84 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Takafumi Noguchi
Mode Tx 11a 5320 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 85 of 139

Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

October 18, 2017 October 20, 2017 October 28, 2017 21 deg. C / 59 % RH 22deg. C / 64 % RH 23 deg. C / 58 % RH Temperature / Humidity Takafumi Noguchi Takafumi Noguchi Engineer Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz)

Mode Tx 11a 5500 MHz

Polarity	Frequency	Datastor	Reading	Ant Foo	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Totality	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]	[dB]	Kenark
Hori	. ,	OP	22.7	15.8	7.2	32.2	[dD]	13.5	40.0	26.5	
Hori	50.000	`	22.9	10.8	7.5	32.2	_	9.0	40.0	31.0	
Hori	100.000	`	22.7	10.0	8.2	32.2		8.7	43.5	34.8	
Hori	240.000	`	22.7	11.7	9.5	32.0		11.4	46.0	34.6	
Hori	610.000	`	22.0	19.1	12.0	32.0	_	21.1	46.0	24.9	
Hori		OP	21.0	22.3	13.8	30.7	_	26.4	46.0	19.6	
Hori	5460.000	`	50.5	32.0	7.6	31.3	-	58.8	73.9	15.1	
Hori	5470.000		55.4	32.0	7.6	31.3	_	63.7	68.2	4.5	
Hori	11000.000	PK	55.4	40.5	-1.4	33.3	_	61.2	73.9	12.7	
Hori	16500.000	PK	54.9	39.3	0.3	32.6	-	61.9	73.9	12.0	
Hori	22000.000	PK	44.3	37.3	-0.9	32.5	-	48.2	73.9	25.7	Floor noise
Hori	5460.000	AV	41.0	32.0	7.6	31.3	1.7	51.0	53.9	2.9	*1)
Hori	11000.000	AV	46.1	40.5	-1.4	33.3	1.7	53.6	53.9	0.3	
Hori	16500.000	AV	44.6	39.3	0.3	32.6	1.7	53.3	53.9	0.6	
Hori	22000.000	AV	36.0	37.3	-0.9	32.5	-	39.9	53.9	14.0	Floor noise
Vert	35.000	QP	22.7	15.8	7.2	32.2		13.5	40.0	26.5	
Vert	50.000	QP	22.9	10.8	7.5	32.2	-	9.0	40.0	31.0	
Vert	100.000	QP	22.7	10.0	8.2	32.2	-	8.7	43.5	34.8	
Vert	240.000	QP	22.2	11.7	9.5	32.0	-	11.4	46.0	34.6	
Vert	610.000	QP	22.0	19.1	12.0	32.0	-	21.1	46.0	24.9	
Vert	960.000	QP	21.0	22.3	13.8	30.7	-	26.4	46.0	19.6	
Vert	5460.000	PK	46.6	32.0	7.6	31.3	-	54.9	73.9	19.0	
Vert	5470.000	PK	49.2	32.0	7.6	31.3	-	57.5	68.2	10.7	
Vert	11000.000	PK	54.1	40.5	-1.4	33.3	-	59.9	73.9	14.0	
Vert	16500.000	PK	51.5	39.3	0.3	32.6	-	58.5	73.9	15.4	
Vert	22000.000		44.1	37.3	-0.9	32.5	-	48.0	73.9	25.9	Floor noise
Vert	5460.000		36.5	32.0	7.6	31.3	1.7	46.5	53.9	7.4	*1)
Vert	11000.000		44.8	40.5	-1.4	33.3	1.7	52.3	53.9	1.6	
Vert	16500.000		41.2	39.3	0.3	32.6	1.7	49.9	53.9	4.0	
Vert	22000.000	AV	36.0	37.3	-0.9	32.5	-	39.9	53.9	14.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB Distance factor:

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

: 11932168H-C-R1 Test report No. Page : 86 of 139 **Issued date** : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

October 18, 2017 Temperature / Humidity 22deg. C / 64 % RH Engineer Yuta Moriya Mode Tx 11a 5500 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 87 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5580 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11160.000	PK	54.2	40.4	-1.4	33.3	-	59.9	73.9	14.0	
Hori	16740.000	PK	53.4	40.0	0.3	32.6	-	61.1	73.9	12.8	
Hori	22320.000	PK	44.4	37.6	-0.8	32.3	-	48.9	73.9	25.0	Floor noise
Hori	11160.000	AV	44.7	40.4	-1.4	33.3	1.7	52.1	53.9	1.8	
Hori	16740.000	AV	43.8	40.0	0.3	32.6	1.7	53.2	53.9	0.7	
Hori	22320.000	AV	35.9	37.6	-0.8	32.3	-	40.4	53.9	13.5	Floor noise
Vert	11160.000	PK	52.9	40.4	-1.4	33.3	-	58.6	73.9	15.3	
Vert	16740.000	PK	48.3	40.0	0.3	32.6	-	56.0	73.9	17.9	
Vert	22320.000	PK	44.3	37.6	-0.8	32.3	-	48.8	73.9	25.1	Floor noise
Vert	11160.000	AV	43.0	40.4	-1.4	33.3	1.7	50.4	53.9	3.5	
Vert	16740.000	AV	39.3	40.0	0.3	32.6	1.7	48.7	53.9	5.2	
Vert	22320.000	AV	35.8	37.6	-0.8	32.3	-	40.3	53.9	13.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 88 of 139

Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

October 18, 2017 October 20, 2017 October 28, 2017 21 deg. C / 59 % RH 22deg. C / 64 % RH 23 deg. C / 58 % RH Temperature / Humidity Takafumi Noguchi Takafumi Noguchi Engineer Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz)

Mode Tx 11a 5700 MHz

Polarity	Frequency	Datastan	Reading	Ant Egg	Logo	Gain	Duty Factor	Result	Limit	Margin	Remark
Рогапцу		Detector	-		Loss		,			_	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[aBu v/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	59.1	32.3	7.7	31.4	-	67.7	68.2	0.5	
Hori	11400.000	PK	54.7	40.1	-1.3	33.3	-	60.2	73.9	13.7	
Hori	17100.000	PK	51.2	41.4	0.3	32.5	-	60.4	73.9	13.5	
Hori	22800.000	PK	44.5	37.9	-0.7	32.1	-	49.6	73.9	24.3	Floor noise
Hori	11400.000	AV	45.0	40.1	-1.3	33.3	1.7	52.2	53.9	1.7	
Hori	17100.000	AV	40.7	41.4	0.3	32.5	1.7	51.6	53.9	2.3	
Hori	22800.000	AV	36.0	37.9	-0.7	32.1	-	41.1	53.9	12.8	Floor noise
Vert	5725.000	PK	51.2	32.3	7.7	31.4	-	59.8	68.2	8.4	
Vert	11400.000	PK	53.1	40.1	-1.3	33.3	-	58.6	73.9	15.3	
Vert	17100.000	PK	45.9	41.4	0.3	32.5	-	55.1	73.9	18.8	
Vert	22800.000	PK	44.5	37.9	-0.7	32.1	-	49.6	73.9	24.3	Floor noise
Vert	11400.000	AV	43.3	40.1	-1.3	33.3	1.7	50.5	53.9	3.4	
Vert	17100.000	AV	37.8	41.4	0.3	32.5	1.7	48.7	53.9	5.2	
Vert	22800.000	AV	36.0	37.9	-0.7	32.1	-	41.1	53.9	12.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB Distance factor:

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

: 11932168H-C-R1 Test report No. Page : 89 of 139 **Issued date** : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

October 18, 2017 Temperature / Humidity 22deg. C / 64 % RH Engineer Yuta Moriya Mode Tx 11a 5700 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 90 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5745 MHz

	_	-	- "			~ !					
Polarity	Frequency	Detector	Reading		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	r	[dBuV/m]	[dB]	
Hori	5650.000	PK	41.7	32.2	7.7	31.4	-	50.2	68.2	18.0	
Hori	5700.000	PK	49.1	32.3	7.7	31.4	-	57.7	105.2	47.5	
Hori	5715.000	PK	58.3	32.3	7.7	31.4	-	66.9	109.4	42.5	
Hori	5720.000	PK	61.3	32.3	7.7	31.4	-	69.9	110.8	40.9	
Hori	5725.000	PK	64.4	32.3	7.7	31.4	-	73.0	122.2	49.2	
Hori	11490.000	PK	55.0	40.1	-1.2	33.3	-	60.6	73.9	13.3	
Hori	17235.000	PK	47.6	42.2	0.2	32.5	-	57.5	73.9	16.4	
Hori	22980.000	PK	44.4	38.1	-0.7	32.0	-	49.8	73.9	24.1	Floor noise
Hori	11490.000	AV	45.0	40.1	-1.2	33.3	1.7	52.3	53.9	1.6	
Hori	17235.000	AV	37.9	42.2	0.2	32.5	1.7	49.5	53.9	4.4	
Hori	22980.000	AV	36.4	38.1	-0.7	32.0	-	41.8	53.9	12.1	Floor noise
Vert	5650.000	PK	41.4	32.2	7.7	31.4	-	49.9	68.2	18.3	
Vert	5700.000	PK	44.2	32.3	7.7	31.4	-	52.8	105.2	52.4	
Vert	5715.000	PK	52.5	32.3	7.7	31.4	-	61.1	109.4	48.3	
Vert	5720.000	PK	54.7	32.3	7.7	31.4	-	63.3	110.8	47.5	
Vert	5725.000	PK	57.7	32.3	7.7	31.4	-	66.3	122.2	55.9	
Vert	11490.000	PK	53.4	40.1	-1.2	33.3	-	59.0	73.9	14.9	
Vert	17235.000	PK	44.5	42.2	0.2	32.5	-	54.4	73.9	19.5	
Vert	22980.000	PK	44.4	38.1	-0.7	32.0	-	49.8	73.9	24.1	Floor noise
Vert	11490.000	AV	43.1	40.1	-1.2	33.3	1.7	50.4	53.9	3.5	
Vert	17235.000	AV	36.2	42.2	0.2	32.5	1.7	47.8	53.9	6.1	
Vert	22980.000	AV	36.4	38.1	-0.7	32.0	-	41.8	53.9	12.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

 $10~GHz - 40~GHz \quad 20log~(1.0~m \, / \, 3.0~m) = ~-9.5~dB$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

: 11932168H-C-R1 Test report No. Page : 91 of 139 **Issued date** : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

October 18, 2017 Temperature / Humidity 22deg. C / 64 % RH Engineer Yuta Moriya Mode Tx 11a 5745 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 92 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5785 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11570.000	PK	55.9	40.0	-1.1	33.3	-	61.5	73.9	12.4	
Hori	17355.000	PK	46.9	42.9	0.3	32.5	-	57.6	73.9	16.3	
Hori	23140.000	PK	44.8	38.1	-0.6	32.0	-	50.3	73.9	23.6	Floor noise
Hori	11570.000	AV	45.8	40.0	-1.1	33.3	1.7	53.1	53.9	0.8	
Hori	17355.000	AV	37.7	42.9	0.3	32.5	1.7	50.1	53.9	3.8	
Hori	23140.000	AV	37.0	38.1	-0.6	32.0	-	42.5	53.9	11.4	Floor noise
Vert	11570.000	PK	54.4	40.0	-1.1	33.3	-	60.0	73.9	13.9	
Vert	17355.000	PK	44.9	42.9	0.3	32.5	-	55.6	73.9	18.3	
Vert	23140.000	PK	44.9	38.1	-0.6	32.0	-	50.4	73.9	23.5	Floor noise
Vert	11570.000	AV	44.4	40.0	-1.1	33.3	1.7	51.7	53.9	2.2	
Vert	17355.000	AV	36.1	42.9	0.3	32.5	1.7	48.5	53.9	5.4	
Vert	23140.000	AV	37.0	38.1	-0.6	32.0	-	42.5	53.9	11.4	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-C-R1 Page : 93 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5825 MHz

Polarity	F	Detector	Reading	Ant.Fac.	T	Gain	Duty Factor	Result	Limit	Manain	Remark
Polanty	Frequency [MHz]	Detector	[dBuV]	[dB/m]	Loss [dB]	[dB]	[dB]		[dBuV/m]	Margin [dB]	Remark
	,		,	,	,	. ,	լսոյ	. ,	,	,	
Hori	5850.000	PK	59.0	32.5	7.7	31.4	-	67.8	122.2	54.4	
Hori	5855.000	PK	57.6	32.5	7.7	31.4	-	66.4	110.8	44.4	
Hori	5860.000	PK	54.4	32.5	7.7	31.4	-	63.2	109.4	46.2	
Hori	5875.000	PK	45.1	32.5	7.7	31.4	-	53.9	105.2	51.3	
Hori	5925.000	PK	40.9	32.6	7.8	31.4	-	49.9	68.2	18.3	
Hori	11650.000	PK	57.9	39.9	-1.1	33.3	-	63.4	73.9	10.5	
Hori	17475.000	PK	44.8	43.6	0.3	32.5	-	56.2	73.9	17.7	
Hori	23300.000	PK	44.4	38.2	-0.6	31.9	-	50.1	73.9	23.8	Floor noise
Hori	11650.000	AV	46.5	39.9	-1.1	33.3	1.7	53.7	53.9	0.2	
Hori	17475.000	AV	36.2	43.6	0.3	32.5	1.7	49.3	53.9	4.6	
Hori	23300.000	AV	36.4	38.2	-0.6	31.9	-	42.1	53.9	11.8	Floor noise
Vert	5850.000	PK	58.5	32.5	7.7	31.4	-	67.3	122.2	54.9	
Vert	5855.000	PK	57.0	32.5	7.7	31.4	-	65.8	110.8	45.0	
Vert	5860.000	PK	53.4	32.5	7.7	31.4	-	62.2	109.4	47.2	
Vert	5875.000	PK	45.4	32.5	7.7	31.4	-	54.2	105.2	51.0	
Vert	5925.000	PK	40.7	32.6	7.8	31.4	-	49.7	68.2	18.5	
Vert	11650.000	PK	55.9	39.9	-1.1	33.3	-	61.4	73.9	12.5	
Vert	17475.000	PK	44.7	43.6	0.3	32.5	-	56.1	73.9	17.8	
Vert	23300.000	PK	44.4	38.2	-0.6	31.9	-	50.1	73.9	23.8	Floor noise
Vert	11650.000	AV	44.5	39.9	-1.1	33.3	1.7	51.7	53.9	2.2	
Vert	17475.000	AV	36.1	43.6	0.3	32.5	1.7	49.2	53.9	4.7	
Vert	23300.000	AV	36.4	38.2	-0.6	31.9	-	42.1	53.9	11.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (4.5 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 94 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11a 5825 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 95 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5180 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	-	
Hori	5150.000	PK	60.0	32.2	7.4	31.3	-	68.3	73.9	5.6	
Hori	10360.000	PK	53.0	39.5	-1.5	33.2	-	57.8	73.9	16.1	
Hori	15540.000	PK	46.5	39.0	0.1	32.6	-	53.0	73.9	20.9	
Hori	20720.000	PK	44.1	36.4	-1.2	32.6	-	46.7	73.9	27.2	Floor noise
Hori	5150.000	AV	43.4	32.2	7.4	31.3	1.4	53.1	53.9	0.8	*1),*2)
Hori	10360.000	AV	42.8	39.5	-1.5	33.2	1.4	49.0	53.9	4.9	
Hori	15540.000	AV	37.8	39.0	0.1	32.6	1.4	45.7	53.9	8.2	
Hori	20720.000	AV	35.5	36.4	-1.2	32.6	-	38.1	53.9	15.8	Floor noise
Vert	5150.000	PK	58.1	32.2	7.4	31.3	-	66.4	73.9	7.5	
Vert	10360.000	PK	51.9	39.5	-1.5	33.2	-	56.7	73.9	17.2	
Vert	15540.000	PK	46.0	39.0	0.1	32.6	-	52.5	73.9	21.4	
Vert	20720.000	PK	44.0	36.4	-1.2	32.6	-	46.6	73.9	27.3	Floor noise
Vert	5150.000	AV	41.7	32.2	7.4	31.3	1.4	51.4	53.9	2.5	*1),*2)
Vert	10360.000	AV	41.6	39.5	-1.5	33.2	1.4	47.8	53.9	6.1	
Vert	15540.000	AV	37.0	39.0	0.1	32.6	1.4	44.9	53.9	9.0	
Vert	20720.000	AV	35.5	36.4	-1.2	32.6	-	38.1	53.9	15.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 96 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 16, 2017
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Takafumi Noguchi
(1 GHz - 10 GHz)

Mode Tx 11n-20 5180 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1 Page : 97 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 54 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5280 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	10560.000	PK	48.2	39.8	-1.5	33.2	-	53.3	73.9	20.6	
Hori	15840.000	PK	48.6	38.2	0.3	32.6	-	54.5	73.9	19.4	
Hori	21120.000	PK	44.0	36.7	-1.1	32.6	-	47.0	73.9	26.9	Floor noise
Hori	10560.000	AV	38.9	39.8	-1.5	33.2	1.4	45.4	53.9	8.5	
Hori	15840.000	AV	37.9	38.2	0.3	32.6	1.4	45.2	53.9	8.7	
Hori	21120.000	AV	35.8	36.7	-1.1	32.6	-	38.8	53.9	15.1	Floor noise
Vert	10560.000	PK	47.2	39.8	-1.5	33.2	-	52.3	73.9	21.6	
Vert	15840.000	PK	46.9	38.2	0.3	32.6	-	52.8	73.9	21.1	
Vert	21120.000	PK	44.0	36.7	-1.1	32.6	-	47.0	73.9	26.9	Floor noise
Vert	10560.000	AV	37.7	39.8	-1.5	33.2	1.4	44.2	53.9	9.7	
Vert	15840.000	AV	37.5	38.2	0.3	32.6	1.4	44.8	53.9	9.1	
Vert	21120.000	AV	35.8	36.7	-1.1	32.6	-	38.8	53.9	15.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1 Page : 98 of 139

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 54 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5320 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
,	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	55.4	32.1	7.5	31.3	-	63.7	73.9	10.2	
Hori	10640.000	PK	49.3	39.9	-1.5	33.2	-	54.5	73.9	19.4	
Hori	15960.000	PK	46.5	37.8	0.3	32.6	-	52.0	73.9	21.9	
Hori	21280.000	PK	44.5	36.8	-1.1	32.6	-	47.6	73.9	26.3	Floor noise
Hori	5350.000	AV	40.7	32.1	7.5	31.3	1.4	50.4	53.9	3.5	*1),*2)
Hori	10640.000	AV	39.5	39.9	-1.5	33.2	1.4	46.1	53.9	7.8	
Hori	15960.000	AV	37.6	37.8	0.3	32.6	1.4	44.5	53.9	9.4	
Hori	21280.000	AV	35.9	36.8	-1.1	32.6	-	39.0	53.9	14.9	Floor noise
Vert	5350.000	PK	53.5	32.1	7.5	31.3	-	61.8	73.9	12.1	
Vert	10640.000	PK	47.9	39.9	-1.5	33.2	-	53.1	73.9	20.8	
Vert	15960.000	PK	45.8	37.8	0.3	32.6	-	51.3	73.9	22.6	
Vert	21280.000	PK	44.5	36.8	-1.1	32.6	-	47.6	73.9	26.3	Floor noise
Vert	5350.000	AV	38.8	32.1	7.5	31.3	1.4	48.5	53.9	5.4	*1),*2)
Vert	10640.000	AV	38.2	39.9	-1.5	33.2	1.4	44.8	53.9	9.1	
Vert	15960.000	AV	36.7	37.8	0.3	32.6	1.4	43.6	53.9	10.3	
Vert	21280.000	AV	35.9	36.8	-1.1	32.6	-	39.0	53.9	14.9	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 99 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Takafumi Noguchi
Mode Tx 11n-20 5320 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 100 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5500 MHz

		I		r r		~ .					
Polarity	Frequency	Detector	_		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5460.000	PK	47.7	32.0	7.6	31.3	-	56.0	73.9	17.9	
Hori	5470.000	PK	53.1	32.0	7.6	31.3	-	61.4	68.2	6.8	
Hori	11000.000	PK	51.2	40.5	-1.4	33.3	-	57.0	73.9	16.9	
Hori	16500.000	PK	48.5	39.3	0.3	32.6	-	55.5	73.9	18.4	
Hori	22000.000	PK	44.4	37.3	-0.9	32.5	-	48.3	73.9	25.6	Floor noise
Hori	5460.000	AV	34.4	32.0	7.6	31.3	1.4	44.1	53.9	9.8	*1)
Hori	11000.000	AV	41.9	40.5	-1.4	33.3	1.4	49.1	53.9	4.8	
Hori	16500.000	AV	39.3	39.3	0.3	32.6	1.4	47.7	53.9	6.2	
Hori	22000.000	AV	36.1	37.3	-0.9	32.5	-	40.0	53.9	13.9	Floor noise
Vert	5460.000	PK	43.3	32.0	7.6	31.3	-	51.6	73.9	22.3	
Vert	5470.000	PK	47.8	32.0	7.6	31.3	-	56.1	68.2	12.1	
Vert	11000.000	PK	49.5	40.5	-1.4	33.3	-	55.3	73.9	18.6	
Vert	16500.000	PK	47.9	39.3	0.3	32.6	-	54.9	73.9	19.0	
Vert	22000.000	PK	44.3	37.3	-0.9	32.5	-	48.2	73.9	25.7	Floor noise
Vert	5460.000	AV	34.5	32.0	7.6	31.3	1.4	44.2	53.9	9.7	*1)
Vert	11000.000	AV	40.1	40.5	-1.4	33.3	1.4	47.3	53.9	6.6	
Vert	16500.000	AV	38.5	39.3	0.3	32.6	1.4	46.9	53.9	7.0	
Vert	22000.000	AV	36.1	37.3	-0.9	32.5	-	40.0	53.9	13.9	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m/3.0 m) = 3.53 dB

 $10~GHz - 40~GHz \quad 20log~(1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-C-R1
Page : 101 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-20 5500 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 102 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5580 MHz

Polarity	Frequency	Detector	Reading	Ant Fac	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
,	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	_	
Hori	11160.000	PK	50.3	40.4	-1.4	33.3	-	56.0	73.9	17.9	
Hori	16740.000	PK	49.3	40.0	0.3	32.6	-	57.0	73.9	16.9	
Hori	22320.000	PK	44.4	37.6	-0.8	32.3	-	48.9	73.9	25.0	Floor noise
Hori	11160.000	AV	40.9	40.4	-1.4	33.3	1.4	48.0	53.9	5.9	
Hori	16740.000	AV	39.2	40.0	0.3	32.6	1.4	48.3	53.9	5.6	
Hori	22320.000	AV	35.9	37.6	-0.8	32.3	-	40.4	53.9	13.5	Floor noise
Vert	11160.000	PK	48.5	40.4	-1.4	33.3	-	54.2	73.9	19.7	
Vert	16740.000	PK	44.0	40.0	0.3	32.6	-	51.7	73.9	22.2	
Vert	22320.000	PK	44.4	37.6	-0.8	32.3	-	48.9	73.9	25.0	Floor noise
Vert	11160.000	AV	39.2	40.4	-1.4	33.3	1.4	46.3	53.9	7.6	
Vert	16740.000	AV	35.9	40.0	0.3	32.6	1.4	45.0	53.9	8.9	
Vert	22320.000	AV	35.9	37.6	-0.8	32.3	-	40.4	53.9	13.5	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-C-R1
Page : 103 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5700 MHz

Polarity	Frequency	Detector	Reading	Ant Foo	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Totality	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]	-	Remark
Hori	5725.000	PK	55.8	32.3	7.7	31.4	-	64.4	68.2	3.8	
Hori	11400.000		52.6	40.1	-1.3	33.3	-	58.1	73.9	15.8	
Hori	17100.000	PK	46.3	41.4	0.3	32.5	-	55.5	73.9	18.4	
Hori	22800.000	PK	44.5	37.9	-0.7	32.1	-	49.6	73.9	24.3	Floor noise
Hori	11400.000	AV	43.0	40.1	-1.3	33.3	1.4	49.9	53.9	4.0	
Hori	17100.000	AV	37.5	41.4	0.3	32.5	1.4	48.1	53.9	5.8	
Hori	22800.000	AV	36.1	37.9	-0.7	32.1	-	41.2	53.9	12.7	Floor noise
Vert	5725.000	PK	56.1	32.3	7.7	31.4	-	64.7	68.2	3.5	
Vert	11400.000	PK	51.1	40.1	-1.3	33.3	-	56.6	73.9	17.3	
Vert	17100.000	PK	45.4	41.4	0.3	32.5	-	54.6	73.9	19.3	
Vert	22800.000	PK	44.5	37.9	-0.7	32.1	-	49.6	73.9	24.3	Floor noise
Vert	11400.000	AV	42.0	40.1	-1.3	33.3	1.4	48.9	53.9	5.0	
Vert	17100.000		36.5	41.4	0.3	32.5	1.4	47.1	53.9	6.8	
Vert	22800.000	AV	36.0	37.9	-0.7	32.1	-	41.1	53.9	12.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-C-R1
Page : 104 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-20 5700 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 105 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5745 MHz

		-	- "								
Polarity	Frequency	Detector	Reading		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5650.000	PK	40.1	32.2	7.7	31.4	-	48.6	68.2	19.6	
Hori	5700.000	PK	50.2	32.3	7.7	31.4	-	58.8	105.2	46.4	
Hori	5715.000	PK	59.9	32.3	7.7	31.4	-	68.5	109.4	40.9	
Hori	5720.000	PK	62.8	32.3	7.7	31.4	-	71.4	110.8	39.4	
Hori	5725.000	PK	69.9	32.3	7.7	31.4	-	78.5	122.2	43.7	
Hori	11490.000	PK	54.6	40.1	-1.2	33.3	-	60.2	73.9	13.7	
Hori	17235.000	PK	48.0	42.2	0.2	32.5	-	57.9	73.9	16.0	
Hori	22980.000	PK	44.2	38.1	-0.7	32.0	-	49.6	73.9	24.3	Floor noise
Hori	11490.000	AV	44.6	40.1	-1.2	33.3	1.4	51.6	53.9	2.3	
Hori	17235.000	AV	38.7	42.2	0.2	32.5	1.4	50.0	53.9	3.9	
Hori	22980.000	AV	36.3	38.1	-0.7	32.0	-	41.7	53.9	12.2	Floor noise
Vert	5650.000	PK	40.8	32.2	7.7	31.4	-	49.3	68.2	18.9	
Vert	5700.000	PK	49.3	32.3	7.7	31.4	-	57.9	105.2	47.3	
Vert	5715.000	PK	57.3	32.3	7.7	31.4	-	65.9	109.4	43.5	
Vert	5720.000	PK	60.8	32.3	7.7	31.4	-	69.4	110.8	41.4	
Vert	5725.000	PK	68.2	32.3	7.7	31.4	-	76.8	122.2	45.4	
Vert	11490.000	PK	53.4	40.1	-1.2	33.3	-	59.0	73.9	14.9	
Vert	17235.000	PK	45.4	42.2	0.2	32.5	-	55.3	73.9	18.6	
Vert	22980.000	PK	44.3	38.1	-0.7	32.0	-	49.7	73.9	24.2	Floor noise
Vert	11490.000	AV	43.2	40.1	-1.2	33.3	1.4	50.2	53.9	3.7	
Vert	17235.000	AV	36.2	42.2	0.2	32.5	1.4	47.5	53.9	6.4	
Vert	22980.000	AV	36.4	38.1	-0.7	32.0	-	41.8	53.9	12.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

Distance factor:

: 11932168H-C-R1 Test report No. Page : 106 of 139 **Issued date** : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

October 18, 2017 Temperature / Humidity 22deg. C / 64 % RH Engineer Yuta Moriya Mode Tx 11n-20 5745 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 107 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5785 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11570.000	PK	55.7	40.0	-1.1	33.3	-	61.3	73.9	12.6	
Hori	17355.000	PK	45.2	42.9	0.3	32.5	-	55.9	73.9	18.0	
Hori	23140.000	PK	44.9	38.1	-0.6	32.0	-	50.4	73.9	23.5	Floor noise
Hori	11570.000	AV	45.3	40.0	-1.1	33.3	1.4	52.3	53.9	1.6	
Hori	17355.000	AV	36.5	42.9	0.3	32.5	1.4	48.6	53.9	5.3	
Hori	23140.000	AV	36.8	38.1	-0.6	32.0	-	42.3	53.9	11.6	Floor noise
Vert	11570.000	PK	53.9	40.0	-1.1	33.3	-	59.5	73.9	14.4	
Vert	17355.000	PK	44.6	42.9	0.3	32.5	-	55.3	73.9	18.6	
Vert	23140.000	PK	44.9	38.1	-0.6	32.0	-	50.4	73.9	23.5	Floor noise
Vert	11570.000	AV	43.6	40.0	-1.1	33.3	1.4	50.6	53.9	3.3	
Vert	17355.000	AV	36.2	42.9	0.3	32.5	1.4	48.3	53.9	5.6	
Vert	23140.000	AV	36.8	38.1	-0.6	32.0	-	42.3	53.9	11.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 108 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-20 5825 MHz

	_	_									·
Polarity	Frequency	Detector	Reading		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5850.000	PK	61.5	32.5	7.7	31.4	-	70.3	122.2	51.9	
Hori	5855.000	PK	57.2	32.5	7.7	31.4	-	66.0	110.8	44.8	
Hori	5860.000	PK	54.7	32.5	7.7	31.4	-	63.5	109.4	45.9	
Hori	5875.000	PK	46.2	32.5	7.7	31.4	-	55.0	105.2	50.2	
Hori	5925.000	PK	40.7	32.6	7.8	31.4	-	49.7	68.2	18.5	
Hori	11650.000	PK	57.6	39.9	-1.1	33.3	-	63.1	73.9	10.8	
Hori	17475.000	PK	46.6	43.6	0.3	32.5	-	58.0	73.9	15.9	
Hori	23300.000	PK	44.4	38.2	-0.6	31.9	-	50.1	73.9	23.8	Floor noise
Hori	11650.000	AV	46.7	39.9	-1.1	33.3	1.4	53.6	53.9	0.3	
Hori	17475.000	AV	37.0	43.6	0.3	32.5	1.4	49.8	53.9	4.1	
Hori	23300.000	AV	36.3	38.2	-0.6	31.9	-	42.0	53.9	11.9	Floor noise
Vert	5850.000	PK	61.1	32.5	7.7	31.4	-	69.9	122.2	52.3	
Vert	5855.000	PK	57.4	32.5	7.7	31.4	-	66.2	110.8	44.6	
Vert	5860.000	PK	54.9	32.5	7.7	31.4	-	63.7	109.4	45.7	
Vert	5875.000	PK	47.3	32.5	7.7	31.4	-	56.1	105.2	49.1	
Vert	5925.000	PK	41.4	32.6	7.8	31.4	-	50.4	68.2	17.8	
Vert	11650.000	PK	55.3	39.9	-1.1	33.3	-	60.8	73.9	13.1	
Vert	17475.000	PK	44.8	43.6	0.3	32.5	-	56.2	73.9	17.7	
Vert	23300.000	PK	44.4	38.2	-0.6	31.9	-	50.1	73.9	23.8	Floor noise
Vert	11650.000	AV	44.8	39.9	-1.1	33.3	1.4	51.7	53.9	2.2	
Vert	17475.000	AV	35.5	43.6	0.3	32.5	1.4	48.3	53.9	5.6	
Vert	23300.000	AV	36.3	38.2	-0.6	31.9	-	42.0	53.9	11.9	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz 20log (4.5 m/ 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 109 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-20 5825 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 110 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-40 5190 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	-	
Hori	5150.000	PK	59.7	32.2	7.4	31.3	-	68.0	73.9	5.9	
Hori	10380.000	PK	49.2	39.5	-1.5	33.2	-	54.0	73.9	19.9	
Hori	15570.000	PK	42.4	38.9	0.1	32.6	-	48.8	73.9	25.1	Floor noise
Hori	20760.000	PK	44.2	36.4	-1.2	32.6	-	46.8	73.9	27.1	Floor noise
Hori	5150.000	AV	43.3	32.2	7.4	31.3	1.4	53.0	53.9	0.9	*1),*2)
Hori	10380.000	AV	39.7	39.5	-1.5	33.2	1.4	45.9	53.9	8.0	
Hori	15570.000	AV	34.0	38.9	0.1	32.6	-	40.4	53.9	13.5	Floor noise
Hori	20760.000	AV	35.7	36.4	-1.2	32.6	-	38.3	53.9	15.6	Floor noise
Vert	5150.000	PK	57.4	32.2	7.4	31.3	-	65.7	73.9	8.2	
Vert	10380.000	PK	47.8	39.5	-1.5	33.2	-	52.6	73.9	21.3	
Vert	15570.000	PK	42.4	38.9	0.1	32.6	-	48.8	73.9	25.1	Floor noise
Vert	20760.000	PK	44.1	36.4	-1.2	32.6	•	46.7	73.9	27.2	Floor noise
Vert	5150.000	AV	41.6	32.2	7.4	31.3	1.4	51.3	53.9	2.6	*1),*2)
Vert	10380.000	AV	38.4	39.5	-1.5	33.2	1.4	44.6	53.9	9.3	
Vert	15570.000	AV	34.0	38.9	0.1	32.6	-	40.4	53.9	13.5	Floor noise
Vert	20760.000	AV	35.7	36.4	-1.2	32.6	-	38.3	53.9	15.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 111 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 16, 2017
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Takafumi Noguchi
(1 GHz - 10 GHz)

Mode Tx 11n-40 5190 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 112 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

October 16, 2017 October 20, 2017 October 28, 2017 21 deg. C / 59 % RH 23 deg. C / 58 % RH Temperature / Humidity 23 deg. C / 65 % RH Takafumi Noguchi Takafumi Noguchi Engineer Takafumi Noguchi (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz)

Mode Tx 11n-40 5270 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	10540.000	PK	45.4	39.8	-1.5	33.2	-	50.5	73.9	23.4	
Hori	15810.000	PK	42.0	38.3	0.3	32.6	-	48.0	73.9	25.9	Floor noise
Hori	21080.000	PK	44.2	36.7	-1.1	32.6	-	47.2	73.9	26.7	Floor noise
Hori	10540.000	AV	36.6	39.8	-1.5	33.2	1.4	43.1	53.9	10.8	
Hori	15810.000	AV	34.2	38.3	0.3	32.6	-	40.2	53.9	13.7	Floor noise
Hori	21080.000	AV	35.9	36.7	-1.1	32.6	-	38.9	53.9	15.0	Floor noise
Vert	10540.000	PK	45.2	39.8	-1.5	33.2	-	50.3	73.9	23.6	
Vert	15810.000	PK	42.0	38.3	0.3	32.6	-	48.0	73.9	25.9	Floor noise
Vert	21080.000	PK	44.1	36.7	-1.1	32.6	-	47.1	73.9	26.8	Floor noise
Vert	10540.000	AV	36.2	39.8	-1.5	33.2	1.4	42.7	53.9	11.2	
Vert	15810.000	AV	34.2	38.3	0.3	32.6	-	40.2	53.9	13.7	Floor noise
Vert	21080.000	AV	35.9	36.7	-1.1	32.6	-	38.9	53.9	15.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor:

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 113 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-40 5310 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	-	
Hori	5350.000	PK	59.6	32.1	7.5	31.3	-	67.9	73.9	6.0	
Hori	10620.000	PK	47.3	39.9	-1.5	33.2	-	52.5	73.9	21.4	
Hori	15930.000	PK	45.4	37.9	0.3	32.6	-	51.0	73.9	22.9	
Hori	21240.000	PK	44.5	36.8	-1.1	32.6	-	47.6	73.9	26.3	Floor noise
Hori	5350.000	AV	43.6	32.1	7.5	31.3	1.4	53.3	53.9	0.6	*1),*2)
Hori	10620.000	AV	37.3	39.9	-1.5	33.2	1.4	43.9	53.9	10.0	
Hori	15930.000	AV	36.3	37.9	0.3	32.6	1.4	43.3	53.9	10.6	
Hori	21240.000	AV	36.0	36.8	-1.1	32.6	-	39.1	53.9	14.8	Floor noise
Vert	5350.000	PK	57.7	32.1	7.5	31.3	-	66.0	73.9	7.9	
Vert	10620.000	PK	45.4	39.9	-1.5	33.2	-	50.6	73.9	23.3	
Vert	15930.000	PK	44.2	37.9	0.3	32.6	-	49.8	73.9	24.1	
Vert	21240.000	PK	44.4	36.8	-1.1	32.6	-	47.5	73.9	26.4	Floor noise
Vert	5350.000	AV	41.9	32.1	7.5	31.3	1.4	51.6	53.9	2.3	*1),*2)
Vert	10620.000	AV	36.7	39.9	-1.5	33.2	1.4	43.3	53.9	10.6	
Vert	15930.000	AV	35.5	37.9	0.3	32.6	1.4	42.5	53.9	11.4	
Vert	21240.000	AV	36.0	36.8	-1.1	32.6	-	39.1	53.9	14.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 114 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 16, 2017
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Takafumi Noguchi
Mode Tx 11n-40 5310 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 115 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-40 5510 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]	[dB]	
Hori	5460.000	PK	50.4	32.0	7.6	31.3	-	58.7	73.9	15.2	
Hori	5470.000	PK	57.4	32.0	7.6	31.3	-	65.7	68.2	2.5	
Hori	11020.000	PK	45.4	40.5	-1.5	33.3	-	51.1	73.9	22.8	
Hori	16530.000	PK	44.6	39.4	0.3	32.6	-	51.7	73.9	22.2	
Hori	22040.000	PK	43.5	37.3	-0.9	32.5	-	47.4	73.9	26.5	Floor noise
Hori	5460.000	AV	40.0	32.0	7.6	31.3	1.4	49.7	53.9	4.2	*1)
Hori	11020.000	AV	36.8	40.5	-1.5	33.3	1.4	43.9	53.9	10.0	
Hori	16530.000	AV	36.3	39.4	0.3	32.6	1.4	44.8	53.9	9.1	
Hori	22040.000	AV	35.4	37.3	-0.9	32.5	-	39.3	53.9	14.6	Floor noise
Vert	5460.000	PK	51.6	32.0	7.6	31.3	-	59.9	73.9	14.0	
Vert	5470.000	PK	56.4	32.0	7.6	31.3	-	64.7	68.2	3.5	
Vert	11020.000	PK	44.8	40.5	-1.5	33.3	-	50.5	73.9	23.4	
Vert	16530.000	PK	44.4	39.4	0.3	32.6	-	51.5	73.9	22.4	
Vert	22040.000	PK	43.5	37.3	-0.9	32.5	-	47.4	73.9	26.5	Floor noise
Vert	5460.000	AV	36.1	32.0	7.6	31.3	1.4	45.8	53.9	8.1	*1)
Vert	11020.000	AV	35.7	40.5	-1.5	33.3	1.4	42.8	53.9	11.1	
Vert	16530.000	AV	36.5	39.4	0.3	32.6	1.4	45.0	53.9	8.9	
Vert	22040.000	AV	35.4	37.3	-0.9	32.5	-	39.3	53.9	14.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m/3.0 m) = 3.53 dB

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-C-R1
Page : 116 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-40 5510 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 117 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

October 18, 2017 October 20, 2017 October 28, 2017 21 deg. C / 59 % RH 22deg. C / 64 % RH 23 deg. C / 58 % RH Temperature / Humidity Takafumi Noguchi Takafumi Noguchi Engineer Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz)

Mode Tx 11n-40 5550 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	11100.000	PK	45.8	40.4	-1.4	33.3	-	51.5	73.9	22.4	
Hori	16650.000	PK	42.4	39.8	0.3	32.6	-	49.9	73.9	24.0	Floor noise
Hori	22200.000	PK	44.0	37.5	-0.8	32.4	-	48.3	73.9	25.6	Floor noise
Hori	11100.000	AV	36.4	40.4	-1.4	33.3	1.4	43.5	53.9	10.4	
Hori	16650.000	AV	34.6	39.8	0.3	32.6	-	42.1	53.9	11.8	Floor noise
Hori	22200.000	AV	35.3	37.5	-0.8	32.4	-	39.6	53.9	14.3	Floor noise
Vert	11100.000	PK	44.1	40.4	-1.4	33.3	-	49.8	73.9	24.1	
Vert	16650.000	PK	42.3	39.8	0.3	32.6	-	49.8	73.9	24.1	Floor noise
Vert	22200.000	PK	44.0	37.5	-0.8	32.4	-	48.3	73.9	25.6	Floor noise
Vert	11100.000	AV	35.8	40.4	-1.4	33.3	1.4	42.9	53.9	11.0	
Vert	16650.000	AV	34.5	39.8	0.3	32.6	-	42.0	53.9	11.9	Floor noise
Vert	22200.000	AV	35.4	37.5	-0.8	32.4	-	39.7	53.9	14.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor:

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 118 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-40 5670 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5725.000	PK	45.8	32.3	7.7	31.4	-	54.4	68.2	13.8	
Hori	11340.000	PK	45.2	40.2	-1.3	33.3	-	50.8	73.9	23.1	
Hori	17010.000	PK	42.3	40.9	0.3	32.6	-	50.9	73.9	23.0	Floor noise
Hori	22680.000	PK	44.1	37.8	-0.7	32.2	-	49.0	73.9	24.9	Floor noise
Hori	11340.000	AV	36.2	40.2	-1.3	33.3	1.4	43.2	53.9	10.7	
Hori	17010.000	AV	34.1	40.9	0.3	32.6	-	42.7	53.9	11.2	Floor noise
Hori	22680.000	AV	35.5	37.8	-0.7	32.2	-	40.4	53.9	13.5	Floor noise
Vert	5725.000	PK	45.9	32.3	7.7	31.4	-	54.5	68.2	13.7	
Vert	11340.000	PK	44.2	40.2	-1.3	33.3	-	49.8	73.9	24.1	
Vert	17010.000	PK	42.3	40.9	0.3	32.6	-	50.9	73.9	23.0	Floor noise
Vert	22680.000	PK	44.2	37.8	-0.7	32.2	-	49.1	73.9	24.8	Floor noise
Vert	11340.000	AV	35.6	40.2	-1.3	33.3	1.4	42.6	53.9	11.3	
Vert	17010.000	AV	34.1	40.9	0.3	32.6	-	42.7	53.9	11.2	Floor noise
Vert	22680.000	AV	35.5	37.8	-0.7	32.2	-	40.4	53.9	13.5	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-C-R1
Page : 119 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-40 5670 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 120 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

DateOctober 18, 2017October 20, 2017October 28, 2017Temperature / Humidity22deg. C / 64 % RH23 deg. C / 58 % RH21 deg. C / 59 % RHEngineerYuta MoriyaTakafumi NoguchiTakafumi Noguchi

(1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz) (30 MHz - 1 GHz)

Mode Tx 11n-40 5755 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Folarity	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]		Kemark
Hori	5650.000	DV	41.1	32.2	7.7	31.4	[ub]	49.6	68.2	18.6	
							-				
Hori	5700.000		52.8	32.3	7.7	31.4	-	61.4	105.2	43.8	
Hori	5715.000		62.6	32.3	7.7	31.4	-	71.2	109.4	38.2	
Hori	5720.000	PK	66.6	32.3	7.7	31.4	-	75.2	110.8	35.6	
Hori	5725.000	PK	67.1	32.3	7.7	31.4	-	75.7	122.2	46.5	
Hori	11510.000	PK	54.0	40.0	-1.1	33.3	-	59.6	73.9	14.3	
Hori	17265.000	PK	47.0	42.4	0.2	32.5	-	57.1	73.9	16.8	
Hori	23020.000	PK	44.4	38.1	-0.7	32.0	-	49.8	73.9	24.1	Floor noise
Hori	11510.000	AV	45.1	40.0	-1.1	33.3	1.4	52.1	53.9	1.8	
Hori	17265.000	AV	38.1	42.4	0.2	32.5	1.4	49.6	53.9	4.3	
Hori	23020.000	AV	36.4	38.1	-0.7	32.0	-	41.8	53.9	12.1	Floor noise
Vert	5650.000	PK	41.2	32.2	7.7	31.4	-	49.7	68.2	18.5	
Vert	5700.000	PK	53.3	32.3	7.7	31.4	-	61.9	105.2	43.3	
Vert	5715.000	PK	64.0	32.3	7.7	31.4	-	72.6	109.4	36.8	
Vert	5720.000	PK	66.8	32.3	7.7	31.4	-	75.4	110.8	35.4	
Vert	5725.000	PK	67.0	32.3	7.7	31.4	-	75.6	122.2	46.6	
Vert	11510.000	PK	52.1	40.0	-1.1	33.3	-	57.7	73.9	16.2	
Vert	17265.000	PK	44.8	42.4	0.2	32.5	-	54.9	73.9	19.0	
Vert	23020.000	PK	44.3	38.1	-0.7	32.0	•	49.7	73.9	24.2	Floor noise
Vert	11510.000	AV	42.8	40.0	-1.1	33.3	1.4	49.8	53.9	4.1	
Vert	17265.000	AV	36.3	42.4	0.2	32.5	1.4	47.8	53.9	6.1	
Vert	23020.000	AV	36.3	38.1	-0.7	32.0	-	41.7	53.9	12.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 121 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-40 5755 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 122 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11n-40 5795 MHz

Polarity	F	Detector	D 4:	A 4 E	T	Gain	Duty Frates	D14	Limit	Manain	Remark
Polarity	Frequency [MHz]	Detector	Reading [dBuV]	Ant.Fac. [dB/m]	Loss [dB]	[dB]	Duty Factor [dB]	Result	[dBuV/m]	Margin [dB]	Kemark
	,		,	,	,	. ,	լսոյ	. ,	,	,	
Hori	5850.000	PK	55.9	32.5	7.7	31.4	-	64.7	122.2	57.5	
Hori	5855.000	PK	51.2	32.5	7.7	31.4	-	60.0	110.8	50.8	
Hori	5860.000	PK	51.0	32.5	7.7	31.4	-	59.8	109.4	49.6	
Hori	5875.000	PK	45.3	32.5	7.7	31.4	-	54.1	105.2	51.1	
Hori	5925.000	PK	41.0	32.6	7.8	31.4	-	50.0	68.2	18.2	
Hori	11590.000	PK	55.4	40.0	-1.1	33.3	-	61.0	73.9	12.9	
Hori	17385.000	PK	46.0	43.1	0.2	32.5	-	56.8	73.9	17.1	
Hori	23140.000	PK	44.7	38.1	-0.6	32.0	-	50.2	73.9	23.7	Floor noise
Hori	11590.000	AV	46.5	40.0	-1.1	33.3	1.4	53.5	53.9	0.4	
Hori	17385.000	AV	37.0	43.1	0.2	32.5	1.4	49.2	53.9	4.7	
Hori	23140.000	AV	36.8	38.1	-0.6	32.0	-	42.3	53.9	11.6	Floor noise
Vert	5850.000	PK	55.5	32.5	7.7	31.4	-	64.3	122.2	57.9	
Vert	5855.000	PK	54.1	32.5	7.7	31.4	-	62.9	110.8	47.9	
Vert	5860.000	PK	50.4	32.5	7.7	31.4	-	59.2	109.4	50.2	
Vert	5875.000	PK	46.4	32.5	7.7	31.4	-	55.2	105.2	50.0	
Vert	5925.000	PK	40.6	32.6	7.8	31.4	-	49.6	68.2	18.6	
Vert	11590.000	PK	54.0	40.0	-1.1	33.3	-	59.6	73.9	14.3	
Vert	17385.000	PK	45.0	43.1	0.2	32.5	-	55.8	73.9	18.1	
Vert	23140.000	PK	44.7	38.1	-0.6	32.0	-	50.2	73.9	23.7	Floor noise
Vert	11590.000	AV	44.5	40.0	-1.1	33.3	1.4	51.5	53.9	2.4	
Vert	17385.000	AV	36.0	43.1	0.2	32.5	1.4	48.2	53.9	5.7	
Vert	23140.000	AV	36.8	38.1	-0.6	32.0	-	42.3	53.9	11.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 123 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11n-40 5795 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 124 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11ac-80 5210 MHz

D 1 3	-	D	D 1	4 . F		o :	D . E .	n tı	Y 1 1,		D 1
Polarity	Frequency	Detector			Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5150.000	PK	58.2	32.2	7.4	31.3	-	66.5	73.9	7.4	
Hori	10420.000	PK	45.0	39.6	-1.5	33.2	-	49.9	73.9	24.0	
Hori	15630.000	PK	41.9	38.8	0.1	32.6	-	48.2	73.9	25.7	Floor noise
Hori	20840.000	PK	44.3	36.5	-1.2	32.6	•	47.0	73.9	26.9	Floor noise
Hori	5150.000	AV	43.0	32.2	7.4	31.3	1.1	52.4	53.9	1.5	*1),*2)
Hori	10420.000	AV	36.1	39.6	-1.5	33.2	1.1	42.1	53.9	11.8	
Hori	15630.000	AV	34.0	38.8	0.1	32.6	-	40.3	53.9	13.6	Floor noise
Hori	20840.000	AV	35.9	36.5	-1.2	32.6	-	38.6	53.9	15.3	Floor noise
Vert	5150.000	PK	56.1	32.2	7.4	31.3	-	64.4	73.9	9.5	
Vert	10420.000	PK	44.3	39.6	-1.5	33.2	-	49.2	73.9	24.7	
Vert	15630.000	PK	41.8	38.8	0.1	32.6	-	48.1	73.9	25.8	Floor noise
Vert	20840.000	PK	44.2	36.5	-1.2	32.6	-	46.9	73.9	27.0	Floor noise
Vert	5150.000	AV	41.1	32.2	7.4	31.3	1.1	50.5	53.9	3.4	*1),*2)
Vert	10420.000	AV	35.7	39.6	-1.5	33.2	1.1	41.7	53.9	12.2	
Vert	15630.000	AV	34.0	38.8	0.1	32.6	-	40.3	53.9	13.6	Floor noise
Vert	20840.000	AV	35.8	36.5	-1.2	32.6	-	38.5	53.9	15.4	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 $^{10 \}text{ GHz} - 40 \text{ GHz}$ $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 125 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 16, 2017
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Takafumi Noguchi
(1 GHz - 10 GHz)

Mode Tx 11ac-80 5210 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 126 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 16, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 65 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11ac-80 5290 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5350.000	PK	57.9	32.1	7.5	31.3	-	66.2	73.9	7.7	
Hori	10580.000	PK	44.2	39.8	-1.5	33.2	-	49.3	73.9	24.6	
Hori	15870.000	PK	41.7	38.1	0.3	32.6	-	47.5	73.9	26.4	Floor noise
Hori	21160.000	PK	44.2	36.8	-1.1	32.6	-	47.3	73.9	26.6	Floor noise
Hori	5350.000	AV	43.3	32.1	7.5	31.3	1.1	52.7	53.9	1.2	*1),*2)
Hori	10580.000	AV	35.4	39.8	-1.5	33.2	1.1	41.6	53.9	12.3	
Hori	15870.000	AV	33.7	38.1	0.3	32.6	-	39.5	53.9	14.4	Floor noise
Hori	21160.000	AV	35.8	36.8	-1.1	32.6	-	38.9	53.9	15.0	Floor noise
Vert	5350.000	PK	56.7	32.1	7.5	31.3	-	65.0	73.9	8.9	
Vert	10580.000	PK	43.6	39.8	-1.5	33.2	-	48.7	73.9	25.2	
Vert	15870.000	PK	41.8	38.1	0.3	32.6	-	47.6	73.9	26.3	Floor noise
Vert	21160.000	PK	44.2	36.8	-1.1	32.6	-	47.3	73.9	26.6	Floor noise
Vert	5350.000	AV	41.8	32.1	7.5	31.3	1.1	51.2	53.9	2.7	*1),*2)
Vert	10580.000	AV	35.1	39.8	-1.5	33.2	1.1	41.3	53.9	12.6	
Vert	15870.000	AV	33.8	38.1	0.3	32.6	-	39.6	53.9	14.3	Floor noise
Vert	21160.000	AV	35.8	36.8	-1.1	32.6	-	38.9	53.9	15.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method

Test report No. : 11932168H-C-R1
Page : 127 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

DateOctober 16, 2017Temperature / Humidity23 deg. C / 65 % RHEngineerTakafumi NoguchiModeTx 11ac-80 5290 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 128 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11ac-80 5530 MHz

- · ·	_	_									T
Polarity	Frequency	Detector	_		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5460.000	PK	57.5	32.0	7.6	31.3	-	65.8	73.9	8.1	
Hori	5470.000	PK	56.1	32.0	7.6	31.3	-	64.4	68.2	3.8	
Hori	11060.000	PK	44.3	40.5	-1.5	33.3	-	50.0	73.9	23.9	
Hori	16590.000	PK	41.4	39.6	0.3	32.6	-	48.7	73.9	25.2	Floor noise
Hori	22120.000	PK	44.3	37.4	-0.9	32.4	-	48.4	73.9	25.5	Floor noise
Hori	5460.000	AV	43.5	32.0	7.6	31.3	1.1	52.9	53.9	1.0	*1)
Hori	11060.000	AV	35.1	40.5	-1.5	33.3	1.1	41.9	53.9	12.0	
Hori	16590.000	AV	34.4	39.6	0.3	32.6	-	41.7	53.9	12.2	Floor noise
Hori	22120.000	AV	36.0	37.4	-0.9	32.4	-	40.1	53.9	13.8	Floor noise
Vert	5460.000	PK	54.4	32.0	7.6	31.3	-	62.7	73.9	11.2	
Vert	5470.000	PK	53.9	32.0	7.6	31.3	-	62.2	68.2	6.0	
Vert	11060.000	PK	44.0	40.5	-1.5	33.3	-	49.7	73.9	24.2	
Vert	16590.000	PK	41.5	39.6	0.3	32.6	-	48.8	73.9	25.1	Floor noise
Vert	22120.000	PK	44.3	37.4	-0.9	32.4	-	48.4	73.9	25.5	Floor noise
Vert	5460.000	AV	37.0	32.0	7.6	31.3	1.1	46.4	53.9	7.5	*1)
Vert	11060.000	AV	34.9	40.5	-1.5	33.3	1.1	41.7	53.9	12.2	
Vert	16590.000	AV	34.4	39.6	0.3	32.6	-	41.7	53.9	12.2	Floor noise
Vert	22120.000	AV	36.0	37.4	-0.9	32.4	•	40.1	53.9	13.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-C-R1
Page : 129 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11ac-80 5530 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-C-R1 Test report No. Page : 130 of 139 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

October 18, 2017 October 20, 2017 October 28, 2017 21 deg. C / 59 % RH 22deg. C / 64 % RH 23 deg. C / 58 % RH Temperature / Humidity Takafumi Noguchi Takafumi Noguchi Engineer Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 40 GHz)

Mode Tx 11ac-80 5610 MHz

Polarity	Frequency	Detector	Danding	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Totality	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]	_	Remark
Hori	5725.000	PK	43.1	32.3	7.7	31.4	-	51.7	68.2	16.5	
Hori	11220.000		43.8	40.3	-1.4	33.3	_	49.4	73.9	24.5	
Hori	16830.000	PK	42.2	40.3	0.4	32.6	_	50.3	73.9		Floor noise
Hori	22440.000	PK	43.7	37.7	-0.8	32.3	-	48.3	73.9	25.6	Floor noise
Hori	11220.000	AV	35.4	40.3	-1.4	33.3	1.1	42.1	53.9	11.8	
Hori	16830.000	AV	34.2	40.3	0.4	32.6	-	42.3	53.9	11.6	Floor noise
Hori	22440.000	AV	35.5	37.7	-0.8	32.3	-	40.1	53.9	13.8	Floor noise
Vert	5725.000	PK	42.9	32.3	7.7	31.4	-	51.5	68.2	16.7	
Vert	11220.000	PK	43.6	40.3	-1.4	33.3	-	49.2	73.9	24.7	
Vert	16830.000	PK	42.2	40.3	0.4	32.6	-	50.3	73.9	23.6	Floor noise
Vert	22440.000	PK	43.9	37.7	-0.8	32.3	-	48.5	73.9	25.4	Floor noise
Vert	11220.000	AV	35.2	40.3	-1.4	33.3	1.1	41.9	53.9	12.0	
Vert	16830.000	AV	34.2	40.3	0.4	32.6	-	42.3	53.9	11.6	Floor noise
Vert	22440.000	AV	35.5	37.7	-0.8	32.3	-	40.1	53.9	13.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor:

1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-C-R1
Page : 131 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11ac-80 5610 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 132 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11ac-80 5775 MHz

		-	- "								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	5650.000		42.1	32.2	7.7	31.4	-	50.6	68.2	17.6	
Hori	5700.000		52.2	32.3	7.7	31.4	-	60.8	105.2	44.4	
Hori	5715.000	l	55.6	32.3	7.7	31.4	-	64.2	109.4	45.2	
Hori	5720.000	l	56.6	32.3	7.7	31.4	-	65.2	110.8	45.6	
Hori	5725.000	l	59.4	32.3	7.7	31.4	-	68.0	122.2	54.2	
Hori	5850.000		55.5	32.5	7.7	31.4	-	64.3	122.2	57.9	
Hori	5855.000	PK	53.1	32.5	7.7	31.4	-	61.9	110.8	48.9	
Hori	5860.000	PK	52.3	32.5	7.7	31.4	-	61.1	109.4	48.3	
Hori	5875.000	PK	49.1	32.5	7.7	31.4	-	57.9	105.2	47.3	
Hori	5925.000	PK	40.6	32.6	7.8	31.4	-	49.6	68.2	18.6	
Hori	11550.000	PK	47.2	40.0	-1.1	33.3	-	52.8	73.9	21.1	
Hori	17325.000	PK	42.2	42.7	0.3	32.5	-	52.7	73.9	21.2	Floor noise
Hori	23100.000	PK	44.9	38.1	-0.6	32.0	-	50.4	73.9	23.5	Floor noise
Hori	11550.000	AV	38.0	40.0	-1.1	33.3	1.1	44.7	53.9	9.2	
Hori	17325.000	AV	34.3	42.7	0.3	32.5	-	44.8	53.9	9.1	Floor noise
Hori	23100.000	AV	36.8	38.1	-0.6	32.0	-	42.3	53.9	11.6	Floor noise
Vert	5650.000	PK	42.2	32.2	7.7	31.4	-	50.7	68.2	17.5	
Vert	5700.000	PK	52.3	32.3	7.7	31.4	-	60.9	105.2	44.3	
Vert	5715.000	PK	56.9	32.3	7.7	31.4	-	65.5	109.4	43.9	
Vert	5720.000	PK	57.0	32.3	7.7	31.4	-	65.6	110.8	45.2	
Vert	5725.000	PK	59.4	32.3	7.7	31.4	-	68.0	122.2	54.2	
Vert	5850.000	PK	56.4	32.5	7.7	31.4	-	65.2	122.2	57.0	
Vert	5855.000	PK	52.9	32.5	7.7	31.4	_	61.7	110.8	49.1	
Vert	5860.000	PK	51.6	32.5	7.7	31.4	_	60.4	109.4	49.0	
Vert	5875.000	l	47.1	32.5	7.7	31.4	_	55.9	105.2	49.3	
Vert	5925.000	l	40.1	32.6	7.8	31.4	_	49.1	68.2	19.1	
Vert	11550.000	l	46.7	40.0	-1.1	33.3	_	52.3	73.9	21.6	
Vert	17325.000	l	42.3	42.7	0.3	32.5	_	52.8	73.9		Floor noise
Vert	23100.000		44.9	38.1	-0.6	32.0	_	50.4	73.9		Floor noise
Vert	11550.000		37.5	40.0	-1.1	33.3	1.1	44.2	53.9	9.7	1 1001 110100
Vert		AV	34.3	42.7	0.3	32.5	1.1	44.8	53.9		Floor noise
Vert	23100.000		36.9	38.1	-0.6	32.0]	42.4	53.9		Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

 ${}^{*}\mathrm{Other}$ frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20\log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 40 GHz 20log (1.0 m/ 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 133 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 18, 2017
Temperature / Humidity 22deg. C / 64 % RH
Engineer Yuta Moriya
Mode Tx 11ac-80 5775 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 134 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

No.3

Radiated Spurious Emission (Plot data, Worst case)

Report No. 11932168H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

 Date
 October 18, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 22deg. C / 64 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Yuta Moriya
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 40 GHz)

Mode Tx 11a 5500 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-C-R1
Page : 135 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 19, 2017

Temperature / Humidity 24 deg. C / 53 % RH

Engineer Ryota Yamanaka

Mode Tx 11a 5500 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss		Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
14.29	-86.4	0.80	9.8	2.0	1	-73.8	300	6.0	-12.5	44.5	57.0	
150.00	-80.7	0.80	9.8	2.0	1	-68.0	300	6.0	-6.8	24.0	30.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading\left[dBm\right] + Cable \ loss\left[dB\right] + Attenuator \ Loss\left[dB\right] + Antenna \ gain\left[dBi\right] + 10 * log\left(N\right)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 789033 since antenna gain was less than 2.0 dBi.

Test report No. : 11932168H-C-R1
Page : 136 of 139
Issued date : February 26, 2018
FCC ID : VPYLB1NX

APPENDIX 2: Test instruments

Test equipment

est equipmen		Manufaaturar	Madal Na	Carial Ma	Tost Itom	Calibration Date	
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Interval(month)	
MAT-57	Attenuator(10dB)	Suhner	6810.19.A	-	AT	2016/12/15 * 12	
MPSE-18	Power sensor	Anritsu	MA2411B	0738174	AT	2016/11/02 * 12	
MPM-13	Power Meter	Anritsu	ML2495A	0824014	AT	2016/11/02 * 12	
MOS-14	Thermo-Hygrometer	Custom	CTH-201	1401	AT	2017/01/20 * 12	
MPM-16	Power Meter	Agilent	8990B	MY51000271	AT	2017/04/28 * 12	
MPSE-22	Power sensor	Agilent	N1923A	MY54070003	AT	2017/04/28 * 12	
MOS-34	Thermo-Hygrometer	Custom	CTH-201	3401	AT	2017/01/20 * 12	
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2016/11/28 * 12	
MAEC-03	Semi Anechoic	TDK	Semi Anechoic	DA-10005	RE / CE	2017/10/31 * 12	
	Chamber(NSA)	1511	Chamber 3m	211 10000	TLE, CE	2017/10/31 12	
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE / CE	2017/01/20 * 12	
MJM-16	Measure	KOMELON	KMC-36	-	RE / CE	-	
COTS-MEMI	EMI measurement program		TEPTO-DV	_	RE / CE		
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE RE	2017/08/22 * 12	
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2017/05/22 * 12	
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) /	RE	2017/05/29 * 12	
				1405S074(5m)			
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2017/03/21 * 12	
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2017/01/19 * 12	
MHF-22	High Pass Filter 7-20GHz	TOKIMEC	TF37NCCB	602	RE	2017/01/13 * 12	
MCC-177	Microwave Cable	Junkosha	MMX221-00500	1502S304	RE	2017/03/13 * 12	
			DMSDMS				
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2017/05/14 * 12	
MCC-54	Microwave Cable	Suhner	SUCOFLEX101	2873(1m) / 2876(5m)	RE	2017/03/02 * 12	
MPA-03	Microwave System Power Amplifier	Agilent	83050A	MY39500610	RE	2017/10/12 * 12	
MHA-29	Horn Antenna 26.5-40GHz	ETS LINDGREN	3160-10	00152399	RE	2017/09/15 * 12	
MPA-22	Pre Amplifier	MITEO, Inc		1871355	RE	2017/09/07 * 12	
22			0-33-8P / AMF-4F-260040 0-33-8P	/1871328			
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE/CE	2017/08/22 * 12	
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2016/11/23 * 12	
MLA-22	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2017/01/26 * 12	
MCC-51	Coaxial cable	UL Japan	-	_	RE	2017/07/12 * 12	
MAT-98	Attenuator	KEYSIGHT	8491A	MY52462349	RE	2016/12/05 * 12	
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2017/03/27 * 12	
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2017/07/24 * 12	
MCC-112	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W(10m)/SF M141(3m)/sucof orm141-PE(1m)/ 421-010(1.5m)/ RFM-E321(Swit cher)	-/00640	CE	2017/07/12 * 12	
MAT-66	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2016/12/24 * 12	
MAT-88	Attenuator	Weinschel Associates	WA56-10	56100304	AT	2017/06/12 * 12	

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission

RE: Radiated Emission

AT: Antenna Terminal Conducted test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN