71,722
19.15
4
=

F-12
4,42
14, 14 H

2/52	3/52
Fig.1(i)	Fig.1(ii)
4/52	5/52
Fig.1(iii)	Fig.1(iv)

1	TCG	GCCT	CC G	AAAC	Me		T CTG e Leu
50		GCC Ala					
98		ATG Met					
146		GAT Asp 45					
194		ATC Ile					
242		TGT Cys					
290		GAG Glu					
338	CGG Arg	ATC Ily		CCT Pro			

Fig.1(i)

l	Ser	GTG Val			49
 CAT His 20	Ala	TGG Trp			97
		GAA Glu			145
		ATC Ile 55		GTG Val	193
		TAC Tyr			241
		TGC Cys			289
		ACC Thr			337
		GAG Glu			 385

Fig.1(ii)

386					TGT Cys				
434					GGG Gly				
482					ACG Thr 160				
530					CAG Gln				
578			AGG Arg 190		TGAG	;CCGG	GC A	AGGAG	7
630	GAAC	CAGA	TC T	'CTCA	CCAG	iG			

Fig.1(iii)

	AAG Lys						CAA Gln	433
	CGG Arg							481
	TGC Cys 165							529
	GAA Glu							577
GAA	GG AG	GCTC	CCTC	C AGO	CGTTT	CGG		629
								649

Fig.1(iv)

6/52

7/52	8/52
Fig.2(i)	Fig.2(ii)
9/52	10/52
Fig 2(iii)	Fig 2(iv)
11/52	12/52
Fig 2(v)	Fig 2(vi)

SUBSTITUTE SHFFT (Rule 26)

1	CC	ATG Met 1	CCT Pro		
48				ı Ala	GTC Val
96		AGG Arg			
144		CCC Pro			
192		GCC Ala 65			
240		TGC Cys			
288		GTC Val			
336		GAG Glu			

Fig.2(i)

			u Ala				G CAG 1 Gln 15		47
TC(C CAG C Gli 2!	n Pro	F GAT Asp	GCC Ala	CCT Pro	GG(Gl _y 3(Č	95
	Va]		ACT Thr			Thr		14	3
TTG Leu	ACT Thr	GTG Val	GAG Glu	CTC Leu 60	ATG Met	GGC Gly	ACC Thr	19	1
TGC Cys	GTG Val	ACT Thr	GTG Val 75	CAG Gln	CGC Arg	TGT Cys	GGT Gly	239	9
GAG Glu	TGT Cys	GTG Val 90	CCC Pro	ACT Thr	GGG Gly	CAG Gln	CAC His 95	287	7
			CCG Pro				CTG Leu	335	j
			GAA Glu					383	

Fig. 2(ii)

384	AAG Lys			 -	
432	CCC Pro 145				
480	TCC Ser				
528	CAC His				
576	GCC Ala				

Fig. 2(iii)

	GCT Ala				431
	GAC Asp				479
	CCA Pro 170				527 -
	CTG Leu				575
	GTT Val			T	624

Fig.2(iv)

625	AGAGCTCAAC	CCAGACACCT	GCAGGTGCCG
685	GACTCAGCAG	GGTGACTTGC	CTCAGAGGCT
745	GĞTAAAAAAC	AGCCAAGCCC	CCAAGACCTC
805	GCCTCTCAGA	GGGCTCTTCT	GCCATCCCTT
865	GAGTTGGAAG	AGGAGACTGG	GAGGCAGCAA
825	GGAGTACTGT	CTCAGTTTCT	AACCACTCTG
985	CTCCCCTCAC	TAAGAAGACC	CAAACCTCTG
1045	CTGTGACCCC	CAACCCTGAT	AAAAGAGATG

Fig. 2(v)

GAAGCTGCGA	AGGTGACACA	TGGCTTTTCA	684
ATATCCCAGT	GGGGGAACAA	AGGGGAGCCT	744
AGCCCAGGCA	GAAGCTGCTC	TAGGACCTGG	804
GTCTCCCTGA	GGCCATCATC	AAACAGGACA	864
GAGGGGTCAC	ATACCAGCTC	AGGGGAGAAT	924
TGCAAGTAAG	CATCTTACAA	CTGGCTCTTC	984
CATAATGGGA	TTTGGGCTTT	GGTACAAGAA	1044
GAAGGAAAAA	AAAAAAAA		1094

Fig.2(vi)

14/52	15/52
Fig. 3(i)	Fig.3(ıi)

>VEGF_HUMAN VEGF_HUMAN VASCULAR ENDOTHELIAL (VASCULAR 215 AA. LENGTH = 215

SCORE = 181 (92.4 BITS), EXPECT = 6.4e-20, IDENTITIES = 33/75 (44%), POSITIVES = 48/75

QUERY: 31 HQRKVVSWIDVYTRATCQPREVVVPLTVEL

+++ VV +DVY R+ C+P E +V \div E

SBJCT: 36 NHHEVVKFMDVYQRSYCHPIETLVDIFQEY

QUERY: 91 PTGQHQVRMQILMIR 105

PT + MQI + I +

SBJCT: 96 PTEESNITMQIMRIK 110

SCORE = 76 (38.8 BITS), EXPECT = 0.0011, IDENTITIES = 12/19 (63%), POSITIVES = 16/19

QUERY: 110 QLGEMSLEEHSQCECRPKK 128

++GEMS +H+ CECRPKK

SBJCT: 116 HIGEMSFLQHNKCECRPKK 134

SCORE = 72 (36.8 BITS), EXPECT = 0.0046, IDENTITIES = 14/21 (66%), POSITIVES = 15/21

QUERY: 202 RCQGRGLELNPDTCRCRKLRR 222

RC +R LELN TCRC K RR

SBJCT: 195 RCKARQLELNERTCRCDKPRR 215

SCORE = 46 (23.5 BITS), EXPECT = 47., IDENTITIES = 6/10 (60%), POSITIVES = 9/10

QUERY: 187 DPRTCRCRCR 196

DP+TC+C C+

SBJCT: 181 DPQTCKCSCK 190

SUBSTITUTE SHEET (RULE 26) Fig. 3 (i)

GROWTH FACTOR PRECURSOR (VEGF)

P = 6.4e-20 (64%)

MGTVAKQLVPSCVTVQRCGGCCPDDGLECV 90 + PSCV + RCGGCC D+GLECV PDEIEYIFKPSCVPLMRCGGCCNDEGLECV 95

POISSON P(2) = 9.1e-12 (84%)

POISSON P(3) = 3.6e-18 (71%)

POISSON P(4) = 7.3e-10 (90%)

Fig. 3(i)

17/52	18 /52
Fig.4(i)	Fig 4(ii)
19/52	20/52
Fig.4(iii)	Fig.4(iv)

Length Weig	ght:3.00 Average Match:1.000 ght:0.100 Average Mismatch:-0.900 ity:100.9 Length:739
Rat Percent	tio:0.175 Gaps:30 Percent
Similar	ity:69.703 Identity:69.703
28	ATGAGCCCTCTGCTCCGCCGCCTGC
17	ATGAACTTTCTGCTGTCT
68	TGCAGCTGGCCCCGCCCAGGCCCC
57	TGCTGCTCTACCTCCACCATGCCAA
118	CACCAGAGGA
106	AGAAGGAGGAGGCAGAATCATCAC
140	GTGTATACTCGC.GCTACCTGCCAG
152	GTCTATCAGCGCAGCTA.CTGCCAT
194	TGACTGTGGAGCTCAT
201	TCCAGGAGTACCCTGATGAGATCGA
235	CCCAGCTGCGTGACTGTGCAGCGCT
239	CCATCCTGTGTGCCCCTGATGCGAT
285	CCTGGAGTGTGTGCCCACTGGGCAG
289	CCTGGAGTGTGCCCACTGAGGAG

Fig.4(i)

CLIBCTITITE CHEET (Rule 26)

TGCTCGCCGCACTCC	67
TGGGTGCATTGGAGCCTTGCCT	56
TGTCTCCCAGCCTGATGCCCCTGGC	117
GTGGTCCCAGGCTGCA.CCCATGGC	105
.AAGTGGTGTCATGGATAGAT	147
GAAGTGGTGAAGTTCATGGAT	151
CCCCGGGAGGTGGTGGTGCCCT	193
CCAATCGAGACCCTGGTGGACATCT	200
GGGCACCGTGGCCAAACAGCTGGTG	234
GTACATCTTCAAG	238
GTGGTGGCTGCTGCCTGACGATGG	284
GCGGGGCTGCTGCAATGACGAGGG	288
CACCAAGTCCGGATGCAGAT	329
TCCAACATCACCATGCAGATTATGC	338

Fig.4(ii)
SUBSTITUTE SHEET (RULE 26)

330	CCTCATGATCCGGTACC
339	GGATCAAACCTCAC
369	GTCCCTGGAAGAACACAGCCAGTGT
376	GAGCTTCCTACAGCACAACAAATGT
419	GTGCTGTGAAGCCAGACAGGGCTGC
423	
469	CGTTCTGTTCCGGGCTGGGACTCTG
443	TGTGGGCCTTGCTCAGA
519	CATCACCCATCCCACTCCAGCCCCA
468	
569	GCACCACCAGCGCCC
469	GCATTTGTTTGTACAA
609	TGCCGACGCCGCAGCTTCCTCCGTT
509	TG.CAAAAACACAGACTCGCGTT
657	AACCCAGACACCTGCAGGTGCCGGA
554	AACGAACGTACTTGCAGATGTGACA
	Fia 4(iii)

CGAGCAGTCAGCTGGGGGAGAT	368
CAAGGCCAGCACATAGGAGAGAT	375
GAATGCAGACCTAAAAAAAAGGACA	418
GAATGCAGACCAAAGAAAGATA	422
CACTCCCCACCACCGTCCCCAGCCC	468
AAAATCCC	442
CCCCCGGAGCACCCTCCCCAGCTGA	518
GCGGAGAA	467
GGCCCCTCTGCCCACGCTGCACCCA	568
A	468
TGACCCCGGACCTGCCGC	608
GATCCGCAGACGTGTAAATGTTCC	508
GCCAAGGGCGGGCTTAGAGCTC	656
GCAAGGCGAGGCAGCTTGAGTTA	553
AGCTGCGAAGGTGA	695
AGCCGAGGCGGTGA	592

Fig.4(iv)

22/52	23/52	24/52
F1g 5(i)	Fig.5(ii)	Fig 5(m)
25/52	26/52	27/52
Fig.5(iv)	Fig.5(v)	Fig 5(vi)

165SOMSQ.MSF.msf MSF:687 Type: D Tuesday, June 20, 1995 Check: 3140 ATGAACTTTCTGCTGTCTTGGGTG VEGF165 ATGAGCCCTCTGCTCCGCCGCCTG SOM175 SOM175-e6 ATGAGCCCTCTGCTCCGCCGCCTG SOM175-e6&7 ATGAGCCCTCTGCTCCGCCGCCTG SOM175-e4 ATGAGCCCTCTGCTCCGCCGCCTG 81 VEGF165 CACCCATGGCAGAAGGAGGAGGGC SOM175 TGCCCCTGGCCACCAGAGGAAAGT SOM175-e6 TGCCCCTGGCCACCAGAGGAAAGT SOM175-e6&7 TGCCCCTGGCCACCAGAGGAAAGT TGCCCCTGGCCACCAGAGGAAAGT SOM175-e4 161 VEGF165 CCAATCGAGACCCTGGTGGACATC SOM175 GTGGTGCCCTTGACTG.TGGA SOM175-e6 GTGGTGCCCTTGACTG.TGGA SOM175-e6&7 GTGGTGCCCTTGACTG.TGGA SOM175-e4 GTGGTGGTGCCCTTGACTG.TGGA 241 VEGF165 GATGCGATGCGGGGGCTGCTGCAA SOM175 GCAGCGCTGTGGTGGCTGCTCCC SOM175-e6 GCAGCGCTGTGGTGGCTGCTCCC SOM175-e6&7 GCAGCGCTGTGGTGGCTGCTCCC SOM175-e4 GCAGCGCTGTGGTGGCTGCTCCC

Fig.5(i)

CATTGGAGCCTTGCCTTGCTGCTCTACC
CTGCTCGCCGCACTCCTGCAGCTGGCCC
CTGCTCGCCGCACTCCTGCAGCTGGCCC
CTGCTCGCCGCACTCCTGCAGCTGGCCC

AGAATCATCACGAAGTGGTGAAGTTCAT GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC

TTCCAGGAGTACCCTGATGAGATCGAGT GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC

TGACGAGGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT

Fig.5(ii)

80
TCCACCATGCCAAGTGGTCCCAGGCTG.
CCGCCCAGGCCCTGTCTCCCAGCCTGA
CCGCCCAGGCCCTGTCTCCCAGCCTGA
CCGCCCAGGCCCTGTCTCCCAGCCTGA
CCGCCCAGGCCCTGTCTCCCAGCCTGA
160
GGATGTCTATCAGCGCAGCTACTGCCAT
GCTACCTGC.CAGCC.CCGGGAG
GCTACCTGC.CAGCC.CCGGGAG
GCTACCTGC.CAGCC.CCGGGAG
GCTACCTGC.CAGCC.CCGGGAG
240
${\tt ACATCTTCAAGCCATCCTGTGTGCCCCT}$
TGGTGCCCAGCTGCGTGACTGT
TGGTGCCCAGCTGCGTGACTGT
TGGTGCCCAGCTGCGTGACTGT
TGGTGCCCAGCTGCGTGACTGT
320
GAGGAGTCCAACATCACCATGCAGATTA
GGGCAGCACCAAGTCCGGATGCAGATCC
GGGCAGCACCAAGTCCGGATGCAGATCC
GGGCAGCACCAAGTCCGGATGCAGATCC
GGGCAGCACCAAGTCCGGATGCAGA

Fig.5(iii)

WO 96/27007	PCT/AU96/0009
	25/52 13 17 17 17 17
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	321 TGCGGATCAAACCTCACCAAGGCC TCATGATCCGGTACCCGAGCA TCATGATCCGGTACCCGAGCA TCATGATCCGGTACCCGAGCA
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	401 AAGAAAGATAGAGCAA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	481AAGCA CTCTGCCCCCGGAGCACCCTCCCCCTCTGCCCCCGGAGCACCCTCCCC
VEGF165 SOM175 SOM175-E6 SOM175-e6&7 SOM175-e4	AGATCCGCA GCACCACCAGCGCCCTGACCCCCG GCACCACCAGCGCCCTGACCCCCG GCACCACCAGCGCCCTGACCCCCG
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	TTGAGTTAAACGAACGTACTTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA Fig.5(iv)

AGCACATAGGAGAGATGAGCTTCCTACA GTCAGCTGGGGGAGATGTCCCTGGAAGA GTCAGCTGGGGGAGATGTCCCTGGAAGA GTCAGCTGGGGGAGATGTCCCTGGAAGA
• • • • • • • • • • • • • • • • • • • •
GACAAGAAAATCCCTGTGG
GACAGGGCTGCCACTCCCCACCACCGTC GATAG
GATAG
GACAGGGCTGCCACTCCCCACCACCGTC
AGCTGACATCACCCATCCCACTCCAGCC
AGCTGACATCACCCATCCCACTCCAGCC
AGCIGACATCACCCATCCCAGCC
GACGTGTAAATGTTCCTGCAAAAAC.AC GACCTGCCGCTGCCGCTGCCGACGCCGC
GACCTGCCGCTGCCGACGCCGC
GACCTGCCGCTGCCGACGCCGC
687
GATGTGACAAGCCGAGGCGGTGA
GGTGCCGGAAGCTGCGAAGGTGA
GGTGCCGGAAGCTGCGAAGGTGA
. GTGCCGGAAGCTGCGAAGGTGA
GGTGCCGGAAGCTGCGAAGGTGA

Fig.5(v)

400
GCACAACAATGTGAATGCAGACCA
ACACAGCCAGTGTGAATGCAGACCTAAA
ACACAGCCAGTGTGAATGCAGACCTAAA
ACACAGCCAGTGTGAATGCAGACCTAAA
480
GCCTTGCTCAGAGCGGAGA
CCCAGCCCGTTCTGTTCCGGGCTGGGA
CCCAGCCCGTTCTGTTCCGGGCTGGGA
560
TTTGTTTGTACA
TTTGTTTGTACA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA CCAGGCCCTCTGCCCACGCTGCACCCA 640 AGACTCGCGTTGCAAGGCGAGGCAGC AGCTTCCTCCGTTGCCAAGGGCGGGGCT
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCTCTGCCCACGCTGCACCCA CCAGGCCCCTCTGCCCACGCTGCACCCA CCAGGCCCTCTGCCCACGCTGCACCCA 640 AGACTCGCGTTGCAAGGCGAGGCAGC AGCTTCCTCCGTTGCCAAGGGCGGGGCT

Fig.5(vi)

כנונוס הדינוים הדינוים מייוי מכיווים

							·		,
ם ם		· H	K K		다 다	N	· =	٠ ا	
A A	' !	· H	DA		A A	טט	· H	ល្ក	
₹ .	00	• Д	O >		< ⋅	00	· 🗗	ДØ	
Oi ·	(D)	· [-	民ら		\circ .	0 0	· E-	EH CK :	,
ω·	0 0	· 4	Ω Ω		ω .	0 0	• ₹	Z K	
× ×	00	A A	H A		Ŋ.	טט	AA	X K;	
X Q	民民	民民	K K		X O	民民	民民	UUV	Þ
A A	NO K	\Box	田内		A A	Σ \circ		വ പ്	2
田口	A P	• Д	ZQ		耳足	A L	• Д	00	T
H		・区	μA		HA	면 단	· X	以及 :	
디디		· >	田内		디디	> >	· >	ט ט	
N C	00	· 4	A L		> O	00	· 4	E E	
디디	വ വ	• W	OM		디디	വ വ	$\cdot \omega$	OR	
디디	다 다	· D	K K		디디	머머	· D	<u> 교</u>	
I K	$\bowtie \gt$	- ×	A D		AL	X >	· 🛚		
A A	디크	저 저	\bowtie Ω		A A	百五	K K	M	
디디	HO	K K	Ω Φ		디디	H O	K K	> .	
Ω .	X K	다 다	民工		ω·	Y K	다 다	[I4 ·	
M ·	田女	民民	Ω \Box		3 .	田人	民民	П· П	
田口	\vdash	00	\square \triangleleft		田口	\vdash	UU	田民	
	田田	田田	FH Q		□	田田	шш	M OM	
以民	\Box	UU	Z F		Z Z	\Box \Box	00	R 出.	
S R	日內	X O	攻定		α	日区	K O	R 用 i	
디디디	L K	ZV	Ω Ω		디디	Z K	\mathbf{z} \mathbf{v}	国2	
디디	मि म	田田	Ω \overline{U}		디디	汩 汩	日日	Ω E₁	
בי טי	$\alpha >$	O EI	UA		ਸ਼ਿ ਮ	\Diamond	OГШ	UU	
Z W	Ţī Ļī	니ഥ	X A		\mathbf{z} \mathbf{v}	ᅜ	日日	口瓦	
MM	HI	디리	CH		Z Z	ΗД	디디	0 04	
rt	LL LL	r Ct	ىد		ba.	len.		. 1	
oų	hoı	hoj	hoı		ouc	ouc	ong	ung	
.65 .5 ₀	50	65 53	65 5		$\tilde{\Gamma}_{\tilde{\Gamma}}$	$\Sigma_{ m L}^{55}$	$\Sigma_{ m L}^{\rm CS}$	$\frac{55}{L}$	
H H 1	17 17	H H H	년 17 17	:	田口	7,1	71	17	
VEGF ₁₆₅ SOM175 _{Short}	VEGF ₁₆₅ SOM175 _{Short}	VEGF ₁₆₅ SOM175 _{short}	VEGF ₁₆₅ SOM175 _{Short}	OR	VEGF ₁₆₅ SOM175 _{Long}	EG.	EG.	E H	
> W	> ÿ	> \o	> w	0	Σ	VEGF ₁₆₅ SOM175 _{Long}	VEGF ₁₆₅ SOM175 _{Long}	VEGF ₁₆₅ SOM175 _{Long}	
ער אין									

The stands of th

```
60
55
         121
                      191
                170
                                  60
55
                                               170
                                                      191
222
         വ വ
  ДД
                E ~
                                        N N
                                               UU
                                  ДД
  > >
         Z Z
                                 C C
                o
                                        ZZ
                                                · 山
  J >
         田田
                \rho_1
                                        田田
                                                · 14
  H >
         U U
                A U
                                 E >
                                        U U
                                                         Fig. 6 (ii.)
                                                . 0
 चि च
         Н Ц
                Оβ
                                 मि म
                                        НД
                                                · A
  HK
         HO
               > K
                                 HK
                                        HO
                                                • 4
  면면
         O O
                ٠ ٦
                                 다 다
                                        \alpha \alpha
                                                • Д
  HU
        \Omega
               ITI EI
                                 HO
                                        \Omega
                                                · [-
 00
        OLD
               μц
                                 UU
                                        ОГД
                                                · A
 >→ E→
        田
               HH
                                 ⊱⊢
                                        K H
                                                · II
 SA
        Д
               文
F
                                 SA
                                        Д
                                                ٠ 🗀
 民民
        区 民
               段 上
                                 民民
                                       以 民
                                               • 1-4
 OH
        НН
               K D
                                 OI F
                                       ΗН
                                               · 🗚
                                                     民民
 K K
        民区
               田及
                                 ××
                                       K Z
                                               . 4
                                                     民民
 > >
        I Z
              \Omega D
                                 > >
                                       Z I
                                               · A
                                                     д н
 \Omega
        HH
              \Omega \Omega
                                       HH
                                D D
                                               · 02
                                                     ZН
              0 0
                                 Z H
                                       04
                                               . 4
                                                     D K
 ΉΖ
       Z Z
              UA
                                       Z Z
                                ΉЗ
                                                     v
                                               . 4
 K W
       日民
              v
                                \bowtie \bowtie
                                       E \sim
                                               · ტ
                                                    民民
\triangleright
   \triangleright
       H >
              дд
                                  \triangleright
                                       H >
                                                    v
                                               • Д
> >
       ZO
              ZK
                                > >
                                       ZO
                                                    E
                                               . 4
 • 🔀
       SH
              田の
                                 · 🛚
                                       SH
                                                    民口
                                               · 0)
国民
       E O
              O
                                田民
                                       国
O
                                               · 0
                                                    日日
HO
       日の
              K Z
                                HO
                                       国け
                                              ٠ 3
                                                    ZZ
H
       · ტ
                                田田
                                      HH
                                              · 🖰
                                                    니
니
Z U
       дд
               ٠ ۵
                                Z O
                                       D_1
                                              ٠ 04
                                                    田田
O
       > >
               · >
                                ОГД
                                      > >
                                              · >
                                                    口口
UK
       O
              · 0
                               \mathcal{O}
                                      v
                                              · 0
                                                    o
U
D
       田田
              · 14
                               OD
                                      田田
                                             日民
                                                    民民
υд
       디디
              · A
                               υд
                                      コロ
                                             Z A
                                                    4 0
百〇日
       U U
              · 0
                    K K
                               百2
                                      8
                                             日〇日
                                                    K O
\triangleleft
      [刊 [几
              ٠ Δ,
                    K U
                               A S
                                      田口
                                             ОΙД
                                                    \overline{\mathcal{O}}
Z >
      \Omega
              · K
                    4 6
                               Z >
                                      A A
                                             民民
                                                    民民
```

82

ß

Cysteines-81

100% homology are boxed and conserved residues thought The VEGF sequence depicted includes the 26 amino acid leader of which gives rise to mature $\mathrm{VEGF}_{165})$ to be involved in homodimerisation are underlined. total length of Areas of ď

giving 191 amino acids.

including those thought to be involved in homodimerisation Homology of SOM175 to VEGF_{165} is 27% (33%) at the protein level, however within this are blocks of 100% homology In particular, many structural residues are conserved of VEGF (by comparison with PDGF).

Cysteine-47

Glycine-80, Valine-74 Cysteine-72, Cystein-78, Proline-91 Cysteines 127 & 124 Arginine-77, Cysteine-89, Proline-70,

34/52										
GGCCAG gtacgtgagg	aatacttaca	ATGCAG gtccgagatg	ATGCAG gtgtcaggca	AGACAG gtgagtcttt	ccccaggccc	acacctgtag	AGG TGA 3'UTR			
GGCCAG	GGAAAG	ATGCAG	ATGCAG	AGACAG	CTCCAG	ACCCAG	AGGTGA			
(dq09)	(43bp)	Exon 3 (187bp)	(13pb)	(34bb)	Exon, 6 (101bp)	7 (1.09bp)	(22bp)			
×Exon 1	Exon 2	Exon 3	Exon 4	Exon 5	Exon, 6	Exon 7	*Exon 8			
0 01A ATGAGG	tctcccacag GCCCCT	· tctgctccca TGGTGT	ctgaatacag ATCCTC	acttttcaag ACCTAA	ctcctccgta GGCTGC	cccactccag CCCCAG	ccctgctcag GTGCCG			

36/52	37/52
Fig 9(i)	Fig. 9(ii)
38/52	39/52
Fig.9(iii)	Fig. 9(iv)

-163 -103 -43	ggg	ıggc	cgc	gga	igga	ıgcc	gcc	ccc	rgcg tgc aca		
16	CGT R	'CGC R	CTG L	CTG L	CTI L	GTI V	GCA A	CTG L	CTG L	CAG Q	
76	TTT F	GAT D	GGC G			'CAC H	CAG Q	AAG K	AAA K	GTG V	
136		TGC C		CCC P	AGG R	GAG E	GTG V	GTG V	GTG V	CCT P	
196	AAA K	CAA Q		-	CCC P	AGC S	-	GTG. V	ACT(T	GTG V	
256	GGC G			TGT C		CCC. P			CAA Q	CAC H	
316	TAC Y			AGT S			GGG G	GAG. E	ATG' M	rcc s	
376	CCT.	AAA K	AAA K	AAG K	GAG. E	AGT S	GCT A	GTG. V	AGG(R	CCA P	
436	<u>CAG</u>	CCC P	CGC R	TCT S	GTT V	CCG P	<u>GGC</u> G	TGG W	<u>GAC'</u> D	<u>rct</u> s	

Fig.9(i)

ccc	gaac	cago	gtc	ccc	ggg	rtcc	gcg	сса	gga tgg	
CCC	, ggc	Lag	ggc	:ccg	M	S	P	L	CTG L	-17
СТС	GCI	'CGC	'ACC	CAG	 GCC	CCT	'GTG	TCC	CAG	
L	А	R	${ m T}$	Q	A	Р	V	S	Q	4
GTG	CCA	TGG	ATA	GAC	GTT	TAT	GCA	CGT	GCC	
V	P	M	I	D	V	Y	А	R	A	24
CTC	AGC	ים חב	C A A	ረጥረ	ΔͲG	CCC	AAT	CTC	GTC	
L	S	M	E	L	M	G	N	V	V	44
~ ~ ~	~ ~ ~		a. a				~ ~ ~	~ - ~		
							CCT			<i>C</i> 4
Q	R	С	G	G	С	С	P	D	D	64
CAA	GTC	CGA	ATG	CAG	ATC	CTC.	ATG.	ATC	CAG	
Q	V	R	M	Q	I	L	M	I	Q	84
·CTG	~~ n	~ n n	a 2 a	3 CC	C 7 7	mam	~ 7. 7. 7.	maa	7 (7)	
·CTG L	GGA G	GAA E	CAC. H	AGC S	CAA Q	TGT C	GAA E	TGU. C	aga R	104
11	1	نبد	11	۵	Q	Ç	نبل		17	104
GAC.	AG <u>G</u>	GTT	GCC.	ATA	CCC	CAC	CAC	CGT	CCC	
D	R	V	А	I	Р	Н	H	R	P	124
700	000	C Z Z	~~ *	aaa	maa		aam	~ ~ ~	7 M.C	
ACC T	<u>CCG</u> P	<u>GGA</u> G	<u>GCA</u> A	P	TCC S	<u>CCA</u> P	<u>GC 1.</u> A	<u>GAC.</u> D	ATC I	144
				.					.l.	

Fig.9(ii)

496	AT	CCA'	TCC	CAC'	TCC	AGC(ccc.	AGG!	ATC(CTC'	Г
	I	H	Р	\mathbf{T}	Р	Α	P	G	S	S	
						S	P	R	I	L	
556	СТ	GAC	CCC	CGG	ACC.	rgc(CGT'	rgc	CGC!	rgtz	A
	L	${ m T}$	Р	G	P	Α	V	A	A	V	
	P	D	P	R	T	С	R	С	R	С	
616	GG(GGC'. A	Γ <u>ΤΑ</u> *	<u>G</u> AG(CTC	AAC	CCA	GAC <i>I</i>	ACC:	rgtz	A
	R	G	L	E	L	N	P	D	Т	С	
676	ct	ttc	cag	acto	ccad	caac	gcc	caad	ctg	cttt	t
736			-		aaco		-		-		
796	_			_	ccat			-			-
856				_	cago						
916		-			tgto						
976		-			tgat						
1036		-	_		aaaa						

Fig.9(iii)

SUBSTITUTE SHEET (RULE 26)

							· · —			 • ——
GC	CCG	CCT	TGC	ACC	CAG	CGC	CGC	CAA	CGCC	
A			А	P	S	А	A	N	A	164
C	P	P	С	${ m T}$	Q	R	R	Q	R	130
GA	CGC	CGC	مرورة	פיייכי	ግ ጦ ረግ	~ y шг	naaa	ר מי	GGGC	
. O21	A	A	oge. A	S						104
					S	I	A	K	G	184
R	R	R	R	F	L	H	С	Q	G	150
+										
GG'	rgc(CGGZ	AAGC	CCGC	CGAZ	AAG <u>T</u>	<u>'GA</u> c	caag	gctg	
									-	186
R	С	R	K	P	R	К *	•			167
										0 ,
tat	ggg	cact	gct	tca	acag	ggga	ıgaa	ıgac	ıtgg	
									aga	
									ctc	
									catc	
								_	ittt	
									gga	
					yaı	.aaa	aya	.yaı	yya	
aac	ıaac	ıddd	aaa							

Fig.9(iv)

SUBSTITUTE SHEET (RULE 26)

41/52	42/52
Fig 10(i)	Fig 10(ii)

SUBSTITUTE SHEET (RULE 26)

A

hVRF167

mVRF186

Fig.10(i)

166 TPGPAVAAVDAAASSIAKGGA*

VSQPDAPGHQRKVVSWIDVYTRATCQPR	29
VSQFDGPSHQKKVVPWIDVYARATCQPR	29
VTVQRCGGCCPDDGLECVPTGQHQVRMQ	79
VTVQRCGGCCPDDGLECVPTGQHQVRMQ	79
ECRPKKKDSAVKPDSPRPLCPRCTQHHQ	129
: : ECRPKKKESAVRPDSPRILCPPCTQRRQ	129
GLELNPDTCRCRKLRR* 167	
: GLELNPDTCRCRKPRK* 167	
APSPADITHPTPAPGPSAHAAPSTTSAL	165
	165
186	
186	

Fig.10(ii)

44/52	45/52
Fig 11(i)	Fıg 11(iı)

mVRF167	-21	MSPLLRRLLLVALLQL
mVEGF188	-26	:: : MNFLLSWVHWTLALLLYLHH
mVRF167	25	TCQPREVVVPLSMELMGNVV
mVEGF188	24	: : :: YCRPIETLVDIFQEYPDEIE
mVRF167	75	QVRMQILMIQYPSSQ.LGEM
mVEGF188	74	: : : NITMQIMRIKPHQSQHIGEM
mVRF167	119	ILCPPC
mVEGF188	124	: QKRKRKKSRFKSWSVHCEPC
mVRF167	152	GLELNPDTCRCRKPRK
mVEGF188	173	: QLELNERTCRCDKPRR

Fig.11(i)

AR.TQAPVSQFDGPSHQKKVVPWIDVYARA	24
: : : : : : :: AKWSQAAPTT.EGEQKSHEVIKFMDVYQRS	23
KQLVPSCVTVQRCGGCCPDDGLECVPTGQH : : :: ::	74
YIFKPSCVPLMRCAGCCNDEALECVPTSES	73
SLGEHSQCECRPKKKESAVRPDSPR	118
SFLQHSRCECRPKKDRTKPEKKSVRGKGKG	123
TQRRQRPDPRTCRCRCRRRRFLHCQGR : : : : : :	151
SERRKHLFVQDPQTCKCSCKNTDS.RCKAR	172
· ·	167
	188

Fig.11(ii)

The section of the se

---- CTTTT (D.1. 76)

Fig.13

Fig.14

HEPARIN +VEGF (10ug/ml) (10"ng/ml)

HEPARIN + VEGF+ - (10ug/ml) SuM 5Fu

- (/m/gu_1)

100 ng/m/

500 ng/ml -

NGF POSITIVE CONTROL

50 ng/ml -10 ng/ml -

VEGF <

5 ng/ml

Fig. 16

