The L^2 geometry of the space of \mathbb{P}^1 vortex-antivortex pairs

Martin Speight (Leeds) joint with Nuno Romão (Göttingen)

October 31, 2014

Plan

- Gauged sigma model on Σ^2 with \mathbb{P}^1 target: two species of vortex
- Moduli space = {pairs disjoint divisors}: noncompact even if Σ compact
- Natural Riemannian metric g_{L^2} . Complete? Volume?
- Consider $\Sigma = \mathbb{C}$, then S_R^2 , focus on (1,1) case
- (Almost) explicit formula for g_{L^2} , careful numerics
- Conjecture for g_{L^2} near coincidence: **incomplete**
- Conjectures for volumes (S²)

The model

- Principal S^1 bundle $P \to \Sigma^2$, connexion A
- S^1 action on S^2 , moment map μ
- Section **n** of $P \times_{S^1} S^2$

$$\textit{E} = \frac{1}{2}\|\mathbf{d}_{\textit{A}}\mathbf{n}\|^2 + \frac{1}{2}\|\textit{F}_{\textit{A}}\|^2 + \frac{1}{2}\|\mu \circ \mathbf{n}\|^2$$

• Primarily interested in $\Sigma^2 = \mathbb{R}^2$. $\mathbf{n} : \mathbb{R}^2 \to S^2 \subset \mathbb{R}^3$, $D\mathbf{n} = d\mathbf{n} - A\mathbf{e} \times \mathbf{n}$

$$E = \frac{1}{2} \int_{\mathbb{R}^2} \left(|D\mathbf{n}|^2 + |B|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

where B = dA. Choose $\mathbf{e} = (0, 0, 1)$.

Flux quantization, vortices

• As $r \to \infty$, $\mathbf{e} \cdot \mathbf{n} \to 0$ and $D\mathbf{n} \to 0$

$$\int_{\mathbb{R}^2} B = \int_{S^1_{\infty}} A = 2\pi \deg(\mathbf{n}_{\infty} : S^1_{\infty} \to S^1_{\mathbf{e}})$$

• If $\deg \mathbf{n}_{\infty} = 1$, two ways to close off the cap:

- n_+ = number signed preimages of $\pm e$
- $\int_{\mathbb{R}^2} B = 2\pi (n_+ n_-)$

Bogomol'nyi argument

• Let $Q=({\bf e}\cdot{\bf n})A$ and assume $Q\to 0$ as $r\to \infty$ suff. fast that $\int_{S^1_\infty}Q=0$

$$(\mathbf{n} \times D\mathbf{n}) \cdot D\mathbf{n} = \mathbf{n}^* \omega + \mathrm{d} Q - (\mathbf{e} \cdot \mathbf{n}) B$$

• For all such (n, A),

$$E = \frac{1}{2} \int_{\mathbb{R}^2} \left\{ |D_1 \mathbf{n} + \mathbf{n} \times D_2 \mathbf{n}|^2 + 2(\mathbf{n} \times D_1 \mathbf{n}) \cdot D_2 \mathbf{n} + |B|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right\}$$

$$= \int_{\mathbb{R}^2} (\mathbf{n}^* \omega + dQ) + \frac{1}{2} ||D_1 \mathbf{n} + \mathbf{n} \times D_2 \mathbf{n}||^2 + \frac{1}{2} ||*B - \mathbf{e} \cdot \mathbf{n}||^2$$

$$\geq \int_{\mathbb{R}^2} \mathbf{n}^* \omega = 2\pi (n_+ + n_-)$$

with equality iff

$$D_1\mathbf{n} + \mathbf{n} \times D_2\mathbf{n} = 0, \quad *B = \mathbf{e} \cdot \mathbf{n}$$

The Taubes equation

$$u = \frac{n_1 + in_2}{1 + n_3}, \qquad h = \log|u|^2$$

- h finite except at \pm vortices, $h = \pm \infty$. $h \to 0$ as $r \to \infty$.
- BOG1 $\Rightarrow A_{\bar{z}} = -i \frac{\partial_{\bar{z}} u}{u}$
- Eliminate A from BOG2

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 0$$

away from vortex positions

• (+) vortices at z_r^+ , $r = 1, ..., n_+$, (-) vortices at z_r^- , $r = 1, ..., n_-$

$$abla^2 h - 2 anh rac{h}{2} = 4\pi \left(\sum_r \delta(z - z_r^+) - \sum_r \delta(z - z_r^-)
ight)$$

The Taubes equation

- **Theorem** (Yang, 1999): For each pair of disjoint divisors $[z_1^+, \ldots, z_{n+}^+], [z_1^-, \ldots, z_{n-}^-]$ there exists a unique solution of (TAUBES), and hence a unique gauge equivalence class of solutions of (BOG1), (BOG2).
- Moduli space of vortices: $M_{n_+,n_1} \equiv (\mathbb{C}^{n_+} \times \mathbb{C}^{n_-}) \setminus \Delta_{n_+,n_-}$

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 4\pi \left(\delta(z - \varepsilon) - \delta(z + \varepsilon) \right)$$

• Regularize: $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \widehat{h}$

$$\nabla^2 \hat{h} - 2 \frac{|z - \varepsilon|^2 e^{\hat{h}} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\hat{h}} + |z + \varepsilon|^2} = 0$$

• Rescale: $z =: \varepsilon w$

$$\nabla_w^2 \hat{h} - 2\varepsilon^2 \frac{|w-1|^2 e^{\hat{h}} - |w+1|^2}{|w-1|^2 e^{\hat{h}} + |w+1|^2} = 0$$

• Solve with b.c. $\widehat{h}(\infty) = 0$

Symmetry:

• $F(\hat{h}_{ij}) = 0$, solve with Newton-Raphson

$$\varepsilon = 2$$

$$\varepsilon = 0.5$$

$$\varepsilon = 0.3$$

$$\varepsilon = 0.15$$

$$\varepsilon = 0.06$$

The $L^{\overline{2}}$ metric on \overline{M}_{n_+,n_-}

- Consider a curve $(\mathbf{n}(t), A(t))$ of vortex solutions
- Demand $(\dot{\mathbf{n}}, \dot{A})$ is L^2 orthogonal to all infinitesimal gauge transformations:

$$-\delta \dot{A} = \dot{\mathbf{n}} \cdot (\mathbf{e} \times \mathbf{n})$$

Gauss's Law

Kinetic energy

$$T = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\dot{\mathbf{n}}|^2 + |\dot{A}|^2 \right)$$

defines a Riemannian metric on M_{n_+,n_-}

- Consider a curve in M_{n_+,n_-} along which all vortex positions $z_r^{\pm}(t)$ remain distinct
- Let $u=:exp(\frac{1}{2}h+i\chi)$ and $\dot{u}=:u\eta$, so $\eta=\frac{1}{2}\dot{h}+i\dot{\chi}$
- *h* satisfies linearized (TAUBES)
- $\dot{\chi}$ determined by (GAUSS)

$$\nabla^2 \eta - \mathrm{sech}^2 \frac{h}{2} \eta = 4\pi \left(\sum_r \dot{z}_r^+ \delta(z - z_r^+) - \sum_r \dot{z}_r^- \delta(z - z_r^-) \right)$$

whence

$$\eta = \sum_{r} \dot{z}_{r}^{+} \frac{\partial h}{\partial z_{r}^{+}} + \sum_{r} \dot{z}_{r}^{-} \frac{\partial h}{\partial z_{r}^{-}}$$

• η is a very good way to characterize $(\dot{\mathbf{n}}, \dot{A})$. Why?

$$T = rac{1}{2} \int_{\mathbb{R}^2} \left(4 \partial_z ar{\eta} \partial_{ar{z}} \eta + \mathrm{sech}^2 rac{h}{2} ar{\eta} \eta
ight)$$

$$T = \lim_{\varepsilon \to 0} \frac{1}{2} \int_{\mathbb{R}^2 \setminus D_{\varepsilon}} \left(4 \partial_z \bar{\eta} \partial_{\bar{z}} \eta + \mathrm{sech}^2 \frac{h}{2} \bar{\eta} \eta \right)$$

$$T = \lim_{\varepsilon \to 0} \frac{1}{2} \int_{\mathbb{R}^2 \setminus D_{\varepsilon}} \left(4 \partial_z (\bar{\eta} \partial_{\bar{z}} \eta) - \bar{\eta} (\nabla^2 - \operatorname{sech}^2 \frac{h}{2}) \eta \right)$$

$$T = \lim_{\varepsilon \to 0} i \sum_{r} \oint_{C_r} \bar{\eta} \partial_{\bar{z}} \eta d\bar{z}$$

$$T = \lim_{\varepsilon \to 0} i \sum_{r} \oint_{C_r} \bar{\eta} \partial_{\bar{z}} \eta d\bar{z}$$

$$T = \pi \left\{ \sum_{r} |\dot{z}_{r}^{+}|^{2} + \sum_{r} |\dot{z}_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} \dot{z}_{r}^{+} \dot{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} \dot{z}_{r}^{-} \dot{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{+}} \dot{z}_{r}^{+} \dot{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{-}} \dot{z}_{r}^{-} \dot{z}_{s}^{+} \right\}$$

where, in a nbhd of z_s^+ ,

$$h = \log|z - z_s^+|^2 + a_s^+ + \frac{1}{2}\bar{b}_s^+(z - z_s^+) + \frac{1}{2}b_s^+(\bar{z} - \bar{z}_s^+) + \cdots$$

$$T = \pi \left\{ \sum_{r} |\dot{z}_{r}^{+}|^{2} + \sum_{r} |\dot{z}_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} \dot{z}_{r}^{+} \dot{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} \dot{z}_{r}^{-} \dot{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{+}} \dot{z}_{r}^{+} \dot{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{-}} \dot{z}_{r}^{-} \dot{z}_{s}^{+} \right\}$$

$$h = \pm \log |z - z_s^{\pm}|^2 \pm a_s^{\pm} \pm \frac{1}{2} \bar{b}_s^{\pm} (z - z_s^{\pm}) \pm \frac{1}{2} b_s^{\pm} (\bar{z} - \bar{z}_s^{\pm}) + \cdots$$

$$g = 2\pi \left\{ \sum_{r} |dz_{r}^{+}|^{2} + \sum_{r} |dz_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{+} \right\}$$

$$h = \pm \log |z - z_s^{\pm}|^2 \pm a_s^{\pm} \pm \frac{1}{2} \bar{b}_s^{\pm} (z - z_s^{\pm}) \pm \frac{1}{2} b_s^{\pm} (\bar{z} - \bar{z}_s^{\pm}) + \cdots$$

$$g = 2\pi \left\{ \sum_{r} |dz_{r}^{+}|^{2} + \sum_{r} |dz_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{+} \right\}$$

$$h = \pm \log|z - z_s^{\pm}|^2 \pm a_s^{\pm} \pm \frac{1}{2}\bar{b}_s^{\pm}(z - z_s^{\pm}) \pm \frac{1}{2}b_s^{\pm}(\bar{z} - \bar{z}_s^{\pm}) + \cdots$$

$$\bullet \ \ \bar{T} = T \Rightarrow g \ \ \text{hermitian} \Rightarrow \frac{\partial b_s^+}{\partial z_r^+} = \frac{\partial \bar{b}_r^+}{\partial \bar{z}_s^+} \ \text{etc}$$

$$g = 2\pi \left\{ \sum_{r} |dz_{r}^{+}|^{2} + \sum_{r} |dz_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{+} \right\}$$

where, in a nbhd of z_s^{\pm}

$$h = \pm \log|z - z_s^{\pm}|^2 \pm a_s^{\pm} \pm \frac{1}{2}\bar{b}_s^{\pm}(z - z_s^{\pm}) \pm \frac{1}{2}b_s^{\pm}(\bar{z} - \bar{z}_s^{\pm}) + \cdots$$

• $\bar{T} = T \Rightarrow g$ hermitian $\Rightarrow \frac{\partial b_s^+}{\partial z_r^+} = \frac{\partial \bar{b}_r^+}{\partial \bar{z}_s^+}$ etc $\Rightarrow g$ kähler

$$g = 2\pi \left\{ \sum_{r} |dz_{r}^{+}|^{2} + \sum_{r} |dz_{r}^{-}|^{2} + \sum_{r,s} \frac{\partial b_{s}^{+}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{-} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{+}} dz_{r}^{+} d\bar{z}_{s}^{+} + \sum_{r,s} \frac{\partial b_{s}^{-}}{\partial z_{r}^{-}} dz_{r}^{-} d\bar{z}_{s}^{+} \right\}$$

$$h = \pm \log|z - z_s^{\pm}|^2 \pm a_s^{\pm} \pm \frac{1}{2}\bar{b}_s^{\pm}(z - z_s^{\pm}) \pm \frac{1}{2}b_s^{\pm}(\bar{z} - \bar{z}_s^{\pm}) + \cdots$$

- $\bar{T} = T \Rightarrow g$ hermitian $\Rightarrow \frac{\partial b_s^+}{\partial z_r^+} = \frac{\partial \bar{b}_r^+}{\partial \bar{z}_s^+}$ etc $\Rightarrow g$ kähler
- Can compute g if we know $b_r(z_1^+, \ldots, z_{n-}^-)$

The metric on $M_{1,1}$

- $M_{1,1} = (\mathbb{C} \times \mathbb{C}) \setminus \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- $M_{1,1}^0 = \mathbb{C}^{\times}$

$$g^0 = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d}{d\varepsilon} (\varepsilon b(\varepsilon))\right) (d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

where
$$b(\varepsilon) = b_+(\varepsilon, -\varepsilon)$$

- $\varepsilon b(\varepsilon) = \frac{\partial \widehat{h}}{\partial w_1}\Big|_{w=1} 1$
- Can easily extract this from our numerics

The metric on $M_{1,1}$

$$\varepsilon b(\varepsilon) = \left. \frac{\partial \widehat{h}}{\partial w_1} \right|_{w=1} - 1$$

The metric on $M_{1,1}$

$$F(\varepsilon) = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d(\varepsilon b(\varepsilon))}{d\varepsilon}\right)$$

The metric on $M_{1,1}$: conjectured asymptotics

- Suggests $\widehat{h}_{\varepsilon}(w) \approx \varepsilon f_*(\varepsilon w)$ for small ε , where f_* is fixed?
- Define $f_{\varepsilon}(z) := \varepsilon^{-1} \widehat{h}_{\varepsilon}(\varepsilon^{-1}z)$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$
- Unique solution (decaying at infinity)

$$f_*(re^{i\theta}) = \frac{4}{r}(1 - rK_1(r))\cos\theta$$

The metric on $M_{1,1}^0$

• Predict, for small ε ,

$$\widehat{h}(w_1+i0)\approx \varepsilon f_*(\varepsilon w_1)=\frac{4}{w_1}(1-\varepsilon w_1K_1(\varepsilon w_1))$$

whence we extract predictions for $\varepsilon b(\varepsilon)$, $F(\varepsilon)$

$$g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

- Conjecture: $F(\varepsilon) \sim -8\pi \log \varepsilon$ as $\varepsilon \to 0$
- $M_{1.1}$ is **incomplete**, with unbounded curvature

$$g_{S^2} = \Omega(z)dzd\bar{z} = \frac{4R^2dzd\bar{z}}{(1+|z|^2)^2} = d(2Rz)d(2R\bar{z}) + \cdots$$

• Regularized Taubes equation, (\pm) -vortex at $z = \pm \varepsilon$:

$$\nabla_{w}^{2} \widehat{h} - 2\varepsilon^{2} \Omega(\varepsilon w) \frac{|w-1|^{2} e^{h} - |w+1|^{2}}{|w-1|^{2} e^{\widehat{h}} + |w+1|^{2}} = 0$$

• Squared length of $\partial/\partial\varepsilon$

$$\begin{split} g(\partial/\partial\varepsilon,\partial/\partial\varepsilon) &= F(\varepsilon) &= 2\pi \left(2\Omega(\varepsilon) + \frac{1}{\varepsilon}\beta'(\varepsilon)\right) \\ \text{where, again,} \qquad \beta(\varepsilon) &= \varepsilon b_+(\varepsilon,-\varepsilon) = \frac{\partial \widehat{h}}{\partial w_1}\bigg|_{w=1} - 1 \end{split}$$

• Again, can solve (TAUBES) numerically for $\varepsilon \in (0,1]$ $(\varepsilon \mapsto 1/\varepsilon$ is an isometry)

Vortex-antivortex pairs on S_R^2

Note that $\beta(1) = -1 = \lim_{\varepsilon \to 0} \beta(\varepsilon)$

The planar limit $R \to \infty$

The metric on $M_{1,1}(S^2) = (S^2 \times S^2) \setminus \Delta$

- g is SO(3)-invariant, kähler, and invariant under $(z_+, z_-) \mapsto (z_-, z_+)$
- Every such metric takes the form

$$g = -\frac{A'(\varepsilon)}{\varepsilon} (d\varepsilon^2 + \varepsilon^2 \sigma_3^2) + A(\varepsilon) \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right),$$

for some smooth decreasing $A:(0,1]\to\mathbb{R}$ with A(1)=0. (Here σ_i are the usual left-invariant one-forms on SO(3))

• Has finite total volume iff A is bounded

$$Vol(M_{1,1}) = -\int_{(0,1]\times SO(3)} A' A \mathrm{d}\varepsilon \wedge \sigma_{123} = \frac{1}{4} (4\pi)^2 \lim_{\varepsilon \to 0} A(\varepsilon)^2$$

The metric on $M_{1,1}(S^2)=(S^2\times S^2)\backslash \Delta$

For the vortex metric

$$A(\varepsilon) = 2\pi \left(\frac{4R^2}{1 + \varepsilon^2} - \beta(\varepsilon) - 2R^2 - 1 \right)$$

• Recall numerics suggest $\lim_{\varepsilon \to 0} \beta(\varepsilon) = -1$, whence

$$Vol(M_{1,1}) = (2\pi)^2 (4\pi R^2)^2$$

- Coincides with the volume of configuration space of a pair of distinct point particles of mass 2π moving on S_R^2
- Conjecture: The L^2 metric on $M_{1,1}(S_R^2)$ is incomplete, with unbounded curvature, and has finite total volume $(2\pi)^2(4\pi R^2)^2$

The volume of $M_{n,n}(S^2)$

- $M_{n,n}(S^2) = \{ \text{disjoint pairs of } n\text{-divisors on } S^2 \} = (\mathbb{P}^n \times \mathbb{P}^n) \setminus \Delta$
- Consider gauged linear sigma model:
 - fibre \mathbb{C}^2
 - gauge group $\widetilde{U}(1) \times U(1) : (\varphi_1, \varphi_2) \mapsto (e^{i(\widetilde{\theta} + \theta)}\varphi_1, e^{i\widetilde{\theta}}\varphi_2)$

$$E_{\tilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\tilde{F}|^2}{\tilde{e}^2} + |F|^2 + |d_{\tilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\tilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

• For any $\tilde{e} > 0$, has compact moduli space of (n, n)-vortices

$$M_{n,n}^{lin} = \mathbb{P}^n \times \mathbb{P}^n$$

- Baptista found a formula for $[\omega_{L^2}]$ of $M_{n_1,n_2}(\Sigma)$
- Can compute $Vol(M_{n,n}^{lin}(S^2))$ by evaluating $[\omega_{L^2}]$ on $\mathbb{P}^1 \times \{p\}$, $\{p\} \times \mathbb{P}^1$

The volume of $M_{n,n}(S^2)$

$$\begin{split} E_{\widetilde{e}} &= \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\widetilde{F}|^2}{\widetilde{e}^2} + |F|^2 + |\mathrm{d}_{\widetilde{A}} \varphi|^2 + |\mathrm{d}_{A} \varphi|^2 + |\mathrm{d}_{A} \varphi|^2 + \frac{\widetilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\} \end{split}$$

- Take formal limit $\tilde{e} \rightarrow 0$:
 - $|\varphi_1|^2 + |\varphi_2|^2 = 4$ pointwise
 - ullet \widetilde{A} frozen out, fibre \mathbb{C}^2 collapses to $S^3/\widetilde{U}(1)=\mathbb{P}^1$
 - E-L eqn for \tilde{A} is algebraic: eliminate \tilde{A} from E_{∞}

$$E_{\infty} = \frac{1}{2} \int_{\Sigma} |F|^2 + 4 \frac{|\mathrm{d}u - iAu|^2}{(1 + |u|^2)^2} + \left(\frac{1 - |u|^2}{1 + |u|^2}\right)^2$$

where
$$u = \varphi_1/\varphi_2$$

• Exactly our P¹ sigma model!

The volume of $M_{n,n}(S^2)$

Leads us to conjecture that

$$Vol(M_{n,n}(S^2)) = \lim_{\widetilde{e} \to \infty} Vol(M_{n,n}^{lin}(S^2)) = \frac{(2\pi Vol(S^2))^{2n}}{(n!)^2}$$

 More elaborate choice of linear model gives more general conjecture:

$$Vol(M_{n,m}(S^2)) = \frac{(2\pi)^{n+m}}{n!m!} (Vol(S^2) - \pi(n-m))^n (Vol(S^2) + \pi(n-m))^m$$

• Similar limit (\mathbb{C}^k fibre, U(1) gauge $\to ungauged \mathbb{P}^{k-1}$ model) studied rigorously by Chih-Chung Liu.

