Predicting Housing Prices

March 24, 2025

1 Role of Family on Student Performance

1.1 Purpose and Questions

Predicting housing prices accurately is crucial for buyers, sellers, real estate agents, and investors. The House Prices - Advanced Regression Techniques dataset from Kaggle provides a rich collection of 79 explanatory variables describing various aspects of residential homes in Ames, Iowa. The objective is to predict the final sale price of each home.

In this project, we explore predictive modeling approaches to forecast house prices. Our goal is to build a regression model that minimizes the Root Mean Squared Logarithmic Error (RMSLE), as this metric is used by the competition to evaluate model performance.

1.1.1 Questions to Answer

- Does family income play a significant role in the performance of students?
- Does tutoring, typically only afforded by the well-off families, increase performance?
- What role does the family of a student have in their performance on exams?

I will be using a dataset from Kaggle with close to 20 features. You can access the dataset with this link https://www.kaggle.com/datasets/lainguyn123/student-performance-factors/data. I will be focusing on the role of family in student performance.

```
[4]: import pandas as pd

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
```

```
[5]: train.info() train.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64

4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	588 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
4 9	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
ΟI	Deat Composed	T-TOO HOH-HATT	11100 4

```
52
     KitchenAbvGr
                     1460 non-null
                                     int64
 53
     KitchenQual
                    1460 non-null
                                     object
 54
     TotRmsAbvGrd
                    1460 non-null
                                     int64
 55
     Functional
                    1460 non-null
                                     object
     Fireplaces
                    1460 non-null
                                     int64
 56
 57
     FireplaceQu
                    770 non-null
                                     object
 58
     GarageType
                    1379 non-null
                                     object
 59
     GarageYrBlt
                    1379 non-null
                                     float64
 60
     GarageFinish
                    1379 non-null
                                     object
     GarageCars
                    1460 non-null
                                     int64
 61
 62
     GarageArea
                    1460 non-null
                                     int64
 63
     GarageQual
                    1379 non-null
                                     object
 64
     GarageCond
                    1379 non-null
                                     object
 65
     PavedDrive
                    1460 non-null
                                     object
                                     int64
 66
     WoodDeckSF
                    1460 non-null
 67
     OpenPorchSF
                    1460 non-null
                                     int64
 68
     EnclosedPorch
                    1460 non-null
                                     int64
 69
     3SsnPorch
                    1460 non-null
                                     int64
 70
     ScreenPorch
                    1460 non-null
                                     int64
                                     int64
 71
     PoolArea
                    1460 non-null
 72
     PoolQC
                    7 non-null
                                     object
 73
     Fence
                    281 non-null
                                     object
     MiscFeature
                    54 non-null
                                     object
     MiscVal
                    1460 non-null
                                     int64
 76
    MoSold
                    1460 non-null
                                     int64
 77
    YrSold
                    1460 non-null
                                     int64
 78
     SaleType
                    1460 non-null
                                     object
 79
     SaleCondition
                    1460 non-null
                                     object
     SalePrice
                    1460 non-null
                                     int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
```

[5]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	\	
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000		
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315		
	std	421.610009	42.300571	24.284752	9981.264932	1.382997		
	min	1.000000	20.000000	21.000000	1300.000000	1.000000		
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000		
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000		
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000		
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000		
		OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1		\
	count	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000		•
	mean	5.575342	1971.267808	1984.865753	103.685262	443.639726		
	std	1.112799	30.202904	20.645407	181.066207	456.098091		
	min	1.000000	1872.000000	1950.000000	0.000000	0.000000		

25%	5.000000	1954.000000	1967.000000	0.000000	0.000000	
50%	5.000000	1973.000000	1994.000000	0.000000	383.500000	
75%	6.000000	2000.000000	2004.000000	166.000000	712.250000	
max	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	
	WoodDeckSF	OpenPorchSF	${\tt EnclosedPorch}$	3SsnPorch	ScreenPorch	\
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
mean	94.244521	46.660274	21.954110	3.409589	15.060959	
std	125.338794	66.256028	61.119149	29.317331	55.757415	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	25.000000	0.000000	0.000000	0.000000	
75%	168.000000	68.000000	0.000000	0.000000	0.000000	
max	857.000000	547.000000	552.000000	508.000000	480.000000	
	PoolArea	MiscVal	MoSold	YrSold	SalePrice	
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
mean	2.758904	43.489041	6.321918	2007.815753	180921.195890	
std	40.177307	496.123024	2.703626	1.328095	79442.502883	
min	0.000000	0.000000	1.000000	2006.000000	34900.000000	
25%	0.000000	0.000000	5.000000	2007.000000	129975.000000	
50%	0.000000	0.000000	6.000000	2008.000000	163000.000000	
75%	0.000000	0.000000	8.000000	2009.000000	214000.000000	
max	738.000000	15500.000000	12.000000	2010.000000	755000.000000	

[8 rows x 38 columns]

1.2 Preprocessing

We observe: \bullet 1460 training samples \bullet Some features have missing values \bullet Mix of numerical and categorical features

In the preprocessing stage, we began by addressing missing values and preparing the dataset for modeling. Several features such as Alley, PoolQC, Fence, and MiscFeature contained a large number of missing values and were deemed either too sparse or not useful, so they were dropped from the dataset. For numerical features with missing values like LotFrontage and GarageYrBlt, we filled them using the median of each respective column. Categorical variables were imputed with the string 'None' to indicate the absence of a feature (e.g., no alley access or no fireplace), preserving potentially meaningful structural information. Any remaining numeric columns with missing data were also filled using the median to maintain consistency. After handling missing values, we applied one-hot encoding using pd.get_dummies() to convert categorical variables into binary indicator variables, enabling them to be used effectively in regression models. We also dropped the Id column (as it is just an identifier) and separated the feature matrix X from the target variable y, which contains the sale prices. This preprocessing pipeline ensures the data is clean, fully numeric, and suitable for model training.

1.3 Visualizations

NameError: name 'np' is not defined

Before we move on, I believe it is important to understand our data's limitations, specifically when it comes to distribution between category. I believe that understanding the data on a deeper level is valuable so we'll be using some visualizations.

```
[]: import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

plt.figure(figsize=(8,5))
sns.histplot(train['SalePrice'], kde=True, bins=30)
plt.title('Distribution of Sale Prices')
plt.xlabel('Sale Price')
```

```
plt.ylabel('Frequency')
plt.show()
```

The distribution of sale prices is right-skewed, meaning a few expensive houses pull the average higher. This justifies using a log transformation to normalize the target variable.

1.3.1 Log-Transformed SalePrice Distribution

```
[]: plt.figure(figsize=(8,5))
    sns.histplot(np.log1p(train['SalePrice']), kde=True, bins=30)
    plt.title('Log-Transformed Sale Price Distribution')
    plt.xlabel('Log(Sale Price)')
    plt.ylabel('Frequency')
    plt.show()
```

After applying log1p, the distribution of prices becomes more normal, which improves performance for regression models that assume normality of residuals.

1.3.2 Sale Price vs GrLivArea

```
[]: plt.figure(figsize=(8,5))
    sns.scatterplot(data=train, x='GrLivArea', y='SalePrice')
    plt.title('Sale Price vs. Above Ground Living Area')
    plt.xlabel('GrLivArea')
    plt.ylabel('SalePrice')
    plt.show()
```

There is a clear positive correlation between living area and sale price—larger houses tend to be more expensive. However, some outliers (very large homes with low prices) may affect the model.

1.3.3 Score Category Breakdown by Family Income

```
[]: plt.figure(figsize=(8,5))
    sns.boxplot(data=train, x='OverallQual', y='SalePrice')
    plt.title('Sale Price by Overall Quality')
    plt.xlabel('Overall Quality')
    plt.ylabel('Sale Price')
    plt.show()
```

Overall quality is one of the most important predictors. Houses with higher quality ratings tend to have significantly higher prices.

1.3.4 Linear Regression

```
[]: from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_log_error
```

[]:

- 1.4 Summary
- 1.4.1 Bias and Limitations
- 1.5 References

[]: