CMPSC 448 PROJECT BIKE SHARING DEMAND

Jie Zheng **Matthew Wood** Rashmi Shukla Kevin Sheeran **Kevin Chiang**

Lopsided frequencies

Lopsided frequencies

- Scatter plots of each variable vs. target variable
- Rentals by casual riders vs. registered riders

At first, it appears that people rent less frequently on very windy days, but...

...it's actually because wind speed frequencies are heavily skewed to the right

Similar issue with bike rentals during holidays

Plotted histograms of each variable

Pretty good correlation between the time of day (hour) and bike rentals

Models

- Stochastic Gradient Descent (with standard, extracted features, e.g. hour, temperature, working day, etc.)
- Decision tree (mostly based on hour of day)
- Decision tree (using DecisionTreeRegressor)

Stochastic Gradient Descent

(with existing features)

- Standardized scaling on features for SGD application
- Learning rate used: constant and eta is specified as 0.01
- Weights calculated:[-17.95317062 27.28805465 1.88975591 -2.03379066 1.56579281 16.34534945 45.56873864 -53.84663567 4.54432701] for attributes Time, season, holiday, working day, weather, temp, abs temp, humidity and wind speed
- Kaggle score of about 1.5

Models

mean squared error (MSE) for SGD=23701.73795801

Stochastic Gradient Descent

(with existing features, continued)

- If calculated separately for causal riders, Weights calculated :[-1.57859042 2.8888112 -2.55565872 -18.17153219 2.55648632 10.6053987 11.75334161 -17.1178336 0.9962883] for attributes Time, season, holiday, working day, weather, temp, abs temp, humidity and wind speed
- If calculated separately for registered riders, Weights calculated: [-1.57859042 2.8888112 -2.55565872 18.17153219 2.55648632 10.6053987 11.75334161 17.1178336 0.9962883] for attributes Time, season, holiday, working day, weather, temp, abs temp, humidity and wind speed
- All the three cases conclude that the dependence on weather is least
- Kaggle score of about 1.5

Models (SGD-casual)

Models (SGD-registered)

Decision Tree (without scikit)

Decision Tree (without scikit)

- Work day/off day
- Casual/Registered
- Hour of the day
- Predictions based on averages (overfitting)
- Weather was not a factor
- Each new feature adds significant complexity
- Score of .69313 on Kaggle

New Features

- Initial thought process: feed multiple features into a function to generate a new feature that is more linearly correlated with the target variables
- Year
- Month
- Weekday
- Hour

Feature Generation

Use Weekday instead of date, from first 20 days

we have more than 2 weeks' data to predict last 10 days' bike rent

Year feature

Month Feature

Decision Tree (using scikit-learn)

- Decision tree with 12 features
 MSE=0.130350909425
 Hour has strong correlation with count
- Decision tree without hour feature
 MSE=1006.42257334

Decision Tree (using scikit-learn)

Conclusions

- Using scikit-learn's decision tree API allowed us to use more features
- Decision tree performed better than SGD
- SGD relies on linear dependence