

### Table of Contents

O1 IntroductionO2 Problem Statement

**04** Methodology

Objective

05

Result and Analysis

06

Impact to Society

07

Conclusion

## **01** Introduction

- Deforestation and forest degradation in Malaysia is a complex phenomenon with varying causes.
- Excessive growth in population and rapid urbanization have led to the encroachment of forest areas for building homes, factories, bridges etc.
- From 2002 to 2021, Malaysia lost 2.77Mha of humid primary forest, making up 33% of its total tree cover loss in the same time period. Total area of humid primary forest in Malaysia decreased by 17%.
- Malaysia is ranked ninth in the world in highest area of forest loss.
- The more common cause of deforestation is manmade. Therefore, a detection system for forest clearing activities is an initiative to better protect the forest.





## **03** Objectives



01

To design a system that detect the presence of intruders.



02

To assign different type of vehicle into two classes (car or truck)



03

To compare the performance of forest security system in different testing condition



## Software & Hardware Requirement





System Flow Chart

### Mini car



## Methodology

## Image Acquisition





Mini model for image acquisition Scale size 1/64

33cm

## Image Acquisition

| Type of Vehicle     | Car/ 4-Wheel   |
|---------------------|----------------|
|                     | Truck          |
| Time (hours)        | Morning (0700) |
|                     | Evening (1600) |
|                     | Night (2300)   |
| Position of Vehicle | А              |
|                     | В              |
|                     | С              |
|                     | D              |





Region of Interest (ROI)

Size of ROI

400 x 600





### Background Removal

Model

### Pre-Train U-2-NETp











Image Enhancement

Model

CLAHE

### Classifier

#### MobileNet v2 model

- As a base model for transfer learning stored on TensorFlow Hub.
- Basic information:
  - o Input shape: 224x224x3 (224x224 pixels, 3 chanels each, RGB format),
  - o Epoch: 10

| DATASET    |      |  |
|------------|------|--|
| Training   | 80 % |  |
| Validation | 20 % |  |



## Raw Image

TRUCK CAR MORNING 0700 **EVENING** 1600 NIGHT 2300

## Result: Pre-Processing



### Feature: Time

CAR TRUCK MORNING EVENING NIGHT

### Feature: Position of Vehicle

CAR В TRUCK C В Α

### TensorFlow Classification

#### Pre-Processed Image vs Raw Image

| Accuracy       | Detection Accuracy |
|----------------|--------------------|
|                | Training           |
| Pre-Processing | 0.7600             |
| Raw Image      | 0.5652             |

Model predictions (green: correct, red: incorrect)

Model predictions (green: correct, red: incorrect)

Truck

Truck

Truck

Truck

Car

Truck



Pre-processed dataset Original dataset

### TensorFlow Classification

#### Time of Image taken

| Accuracy | Detection Accuracy |
|----------|--------------------|
|          | Training           |
| Morning  | 0.8750             |
| Evening  | 0.7500             |
| Night    | 0.7500             |

Model predictions (green: correct, red: incorrect)

















Truck











Model predictions (green: correct, red: incorrect)















Night

Model predictions (green: correct, red: incorrect)





Morning Evening

### TensorFlow Classification

#### Position of vehicle

| Accuracy   | Detection Accuracy |
|------------|--------------------|
|            | Training           |
| Position A | 0.8333             |
| Position B | 0.8333             |
| Position C | 0.8333             |
| Position D | 0.6667             |

Model predictions (green: correct, red: incorrect)















#### Position D

Model predictions (green: correct, red: incorrect)













Position C

Model predictions (green: correct, red: incorrect)

















Model predictions (green: correct, red: incorrect)







Position A



Position B



## Impact to Society







## Thanks!

Do you have any questions? Follow the project updates addyouremail@freepik.com +91 620 421 838 yourcompany.com







#### CREDITS:

This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** 

Please keep this slide for the attribution