Nur die Aufgaben mit einem ⋆ werden korrigiert.

4.1. MC Fragen: Reihen und Potenzreihen. Wählen Sie die einzige richtige Antwort.

(a) Sei $\sum_{n\geq 0} c_n z^n$ eine Potenzreihe mit Konvergenzradius $\rho\in(0,\infty)$. Sei ausserdem ρ' der Konvergenzradius der Potenzreihe $\sum_{n\geq 1} nc_n z^{n-1}$. Welche Aussage trifft zu?

- $\bigcirc \rho > \rho'$
- $\bigcap \rho < \rho'$
- $\bigcap \rho = \rho'$

O Es liegen nicht genügend Informationen vor, um dies zu entscheiden.

(b) Wir nehmen an, dass $\sum_{k\geq 1} a_k$ absolut konvergiert und dass $\sum_{k\geq 1} b_k$ konvergiert. Geben Sie die korrekte Antwort auf folgende zwei Fragen an.

- (A) Die Reihe $\sum_{k\geq 1} a_k^2$
 - O konvergiert nicht notwendigerweise.
 - O konvergiert immer, aber konvergiert nicht notwendigerweise absolut.
 - O konvergiert immer absolut.
 - O keine der obigen Aussagen trifft zu.
- (B) Die Reihe $\sum_{k>1} a_k b_k$
 - konvergiert nicht notwendigerweise.
 - () konvergiert immer, aber konvergiert nicht notwendigerweise absolut.
 - () konvergiert immer absolut.
 - keine der obigen Aussagen trifft zu.

(c) Sei $\phi \colon \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung, $\sum_{n \geq 1} a_n$ eine Reihe und $b_n = a_{\phi(n)}$ für $n \geq 1$. Welche der folgenden Aussagen stimmt?

- $\bigcirc \sum_{n\geq 1} a_n$ ist konvergent und ϕ surjektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.
- $\bigcirc \sum_{n\geq 1} a_n$ ist konvergent und ϕ injektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.
- $\bigcirc \sum_{n\geq 1} a_n$ ist absolut konvergent und ϕ surjektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.
- $\bigcirc \sum_{n\geq 1} a_n$ ist absolut konvergent und ϕ injektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.

16. März 2024

4.2. Konvergenz von Reihen. Untersuchen Sie das Konvergenzverhalten folgender Reihen (d.h. entscheiden Sie in jedem Fall ob die Reihe absolut konvergent, bedingt konvergent, oder divergent ist).

(a)
$$\sum_{k>1} \frac{3}{2k+2}$$

$$\star$$
(b) $\sum_{k>1} \frac{k^2 + k + 1}{k^5 + k^3 + 1}$

$$\star(\mathbf{c}) \sum_{k \ge 1} \frac{5k + 2^k}{3^k}$$

(d)
$$\sum_{k\geq 1} (-1)^{k+1} \left(\sqrt{k+1} - \sqrt{k}\right)$$

(e)
$$\sum_{k>1} \left(1+\frac{1}{k}\right)^{k^2} \frac{1}{2^k}$$

4.3. Konvergenzradius. Bestimmen Sie in den folgenden Teilaufgaben (a)–(d) den jeweiligen Konvergenzradius $\rho_a, \rho_b, \rho_c, \rho_d$ der gegebenen Potenzreihe und beantworten Sie jeweils die zusätzlichen Fragen rechts.

- (a) $\sum_{k\geq 0} z^k$ Zeigen Sie, dass die Potenzreihe in allen Punkten $z\in\mathbb{C}$ mit $|z|=\rho_a$ divergiert.
- (b) $\sum_{k\geq 1} \frac{1}{k} z^k$ Finden Sie $z_1, z_2 \in \mathbb{C}$ mit $|z_1| = |z_2| = \rho_b$, so dass die Potenzreihe in z_1 konvergiert und in z_2 divergiert.
- (c) $\sum_{k\geq 1} \frac{1}{k^2} z^k$ Zeigen Sie, dass die Potenzreihe in allen Punkten $z\in\mathbb{C}$ mit $|z|=\rho_c$ absolut konvergiert.
- \star (d) $\sum_{k\geq 1} \frac{(k!)^2}{(2k)!} z^k$ Hinweis: Verwenden Sie nicht die Definition des Konvergenzradius, sondern wenden Sie direkt das Quotientenkriterium an.

4.4. Wurzelkriterium vs. Quotientenkriterium. Sei $(a_n)_{n\geq 1}$ eine Folge reeller oder komplexer Zahlen mit $a_n\neq 0$ für alle $n\geq 1$. Zeigen Sie, dass Folgendes gilt:

$$\liminf_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}\leq \liminf_{n\to\infty}\sqrt[n]{|a_n|}\leq \limsup_{n\to\infty}\sqrt[n]{|a_n|}\leq \limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}.$$

Folgern Sie, dass falls der Grenzwert $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$ existiert, folgende Gleichheit gilt:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Wie interpretieren Sie die Aussagen in dieser Aufgabe im Zusammenhang mit dem Quotienten- und Wurzelkriterium?

Hinweis: Um eine der Ungleichungen zu beweisen, können Sie mit einer reellen Zahl $q > \lim\sup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}$ beginnen, und dann ähnlich wie im Beweis des Quotientenkriteriums zeigen, dass $\lim\sup_{n\to\infty}\sqrt[n]{|a_n|} \leq q$.

4.5. \star *b*-adische Brüche. Lesen Sie über *b*-adische Brüche im Buch von Königsberger (im Abschnitt 6.2.I, LINK). Stellen Sie die folgenden Zahlen als Dualbruch und als Dezimalbruch dar:

$$\frac{1}{3}$$
, $\frac{1}{4}$, $\frac{1}{5}$

Welche der Entwicklungen sind endlich?

- **4.6. Vertauschen von Limes und unendlicher Summation.** Lesen Sie die Aussage von Satz 2.7.28 im Skript.
- (a) Definiere für $j, n \in \mathbb{N}$:

$$f_n(j) := \begin{cases} 1, & \text{falls } j = n, \\ 0, & \text{falls } j \neq n. \end{cases}$$

Zeigen Sie, dass $f(j) := \lim_{n \to \infty} f_n(j)$ für alle $j \in \mathbb{N}$ existiert, dass aber

$$\sum_{j=0}^{\infty} f(j) \neq \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$$

gilt. Wieso ist Satz 2.7.28 hier nicht anwendbar?

(b) Beweisen Sie Satz 2.7.28.

Hinweis: Wählen Sie für $\varepsilon > 0$ zuerst $J \in \mathbb{N}$, so dass $\sum_{j=J}^{\infty} g(j) < \frac{\varepsilon}{4}$. Für hinreichend grosse n sind die Abstände zwischen $f_n(j)$ und f(j) für alle $0 \le j < J$ klein.