BS 5th Term Examination 2022

Subject: Mathematics

Paper: Algebra-II (MATH-309)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Note: Objective part is compulsory. Attempt any three questions from subjective part.

Objective Part

(Compulsory)

Write short answers of the following in 2-3 lines each on your answer sheet. 0.1.

(2*16)

- Consider the matrix ring $M_2(\mathbb{Z}_2)$. List all units in the ring. i.
- Show that kernel of homomorphism is an ideal of ring R. ii.
- Define ring with zero division and find zero divisors of Z₆. iii.
- Define module with example. iv.
- Define prime element of a ring with example. ٧.
- Define simple ring with example. vi.
- Define GCD in polynomials. vii.
- Write the units of Gaussian integers. viii.
- Show that every field is an integral domain.
- Let R be a ring with unity 1. The mapping $\alpha: \mathbb{Z} \to R$ given by $n \to n \cdot 1$ is ring homomorphism. ix. X.
- Let ϕ be a ring isomorphism from R onto S. Then show that ϕ^{-1} is an isomorphism from S onto R. xi.
- Show that cancellation laws hold in a ring R if R has no zero divisor.
- Let a and b be idempotent in a commutative ring, then show that a+b-2ab is also idempotent. xii. xiii.
- Find characteristic of the ring of polynomial $\mathbb{Z}_2[x]$. xiv.
- Define prime ideal, whether 6Z is prime ideal or not. XV.
- Define Simple Ring. xvi.

(3*16)Subjective Part

- a) Prove that a finite commutative ring R with more than one element and without zero divisors is Q.2.
 - b) Let $R = \{\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \mid a_i \in \mathbb{Z} \}$ and let I be the subset of R consisting of matrices with even entries.
- Then find factor ring R/I. a) Let R be a commutative ring with identity 1. Let M be an ideal in R, then M is maximal ideal if Q.3. and only if R/M is a Field.
 - b) Find all ideals in Z.
- a) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a principal ideal domain. Q.4.
 - b) Let F be a field, then prove that F[x] is an Euclidean domain.
- a) Consider the group $(\mathbb{Z},+)$ and the subgroups (6) and (3) of \mathbb{Z} . Then verify the Third Q.5. Isomorphism Theorem.
 - b) Prove that every prime is irreducible in an integral domain.
- a) Show that the field has no proper ideal. Q.6.
 - b) Let f be a ring homomorphism of a ring R to R'. Then Prove that Ker f is an ideal of R.

----- LK-6752 -----

BS 5th Term Examination 2022

29223

Subject: Mathematics

Paper: Real Analysis-1 (MATH-307)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Note: Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part (Compulsory)

Q.1. Write short answers of the following in 2-3 lines each on your answer sheet.

(2*16)

- i. In every ordered field, if x < 0, y < z, then xy > xz.
- ii. State the Archimedian property of real numbers.
- iii. What do you meant by monotonic sequence?
- iv. What do you meant by ordered field?
- v. Define the convergence of a sequence.
- vi. Discuss the behavior of the series $\sum_{n=1}^{\infty} 1/n$.
- vii. Write the general principle of convergence.
- viii. State the least upper bound property of a set.
- ix. Define local maximum of a function.
- x. State the intermediate value theorem for differentiable functions.
- xi. Prove that there exists an irrational number between any two real numbers.
- xii. Show that a polynomial is continuous for every value of x.
- xiii. If r is a rational and x is irrational, prove that r + x is irrational.
- xiv. Prove that every the continuous function is not differentiable.
- xv. If $\sum_{n=1}^{\infty} a_n$ converges, then prove that $\lim_{n\to\infty} a_n = 0$.
- xvi. If $\lim_{x \to c} f(x)$ exists, then it is unique.

Subjective Part (4*12)

- Q.2. Prove that every bounded sequence has a convergent sub-sequence.
- **Q.3.** Prove that there is no rational number p such that $p^2 = 3$.
- Q.4. A sequence of real numbers is convergent iff it is a Cauchy sequence.
- Q.5. Show that $x_n \to p$ if $y_n \to p$ and $z_n \to p$ as $n \to \infty$ in $y_n \le x_n \le z_n$
- Q.6. Check the series $\sum \frac{1}{n} \sin^2 \frac{x}{n}$ whether converges or diverges.
- Q.7. State and prove Lagrange's Mean Value Theorem.

 LK-6779	

BS 5th Term Examination 2022

Subject: Mathematics

Paper: Topology (MATH-301)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Note: Objective part is compulsory. Attempt any three questions from subjective part.

Objective Part (Compulsory)

Q.1. Write short answers of the following in 2-3 lines each on your answer sheet. (2*16)

i. Let $X = \{a, b, c, d, e\}$ and let $A = \{\{a, b, c\}, \{c, d\}, \{d, e\}\}$. Find the topology on X generated by A.

ii. Find interior and closure of set Q.

iii. Define base for topology and write the base for discrete topological space.

iv. Define bi-continuous function.

v. Consider the topology $\tau = \{X, \phi, \{a\}\}\$ on $X = \{a, b\}$. Whether (X, τ) is T_1 space or not?

vi. Define components with example.

vii. Give an example of open set in usual topology on R which is not open interval.

viii. State Heine Boral theorem.

ix. If $X = \{a, b, c, d, e\}$ with topology $\tau_X = \{X, \varphi, \{a\}, \{a, c, d\}, \{a, b\}, \{a, b, e\}, \{a, b, c, d\}\}$ then find (i) Neighborhood system of point d (ii) closure of $\{a\}$.

x. Define convergence of sequence in topological space.

xi. What is closure of any subset of indiscrete topological space?

xii. If $A \subset B$ then $\bar{A} \subset \bar{B}$.

xiii. Write dense subset of discrete topological space.

xiv. Give example of T_1 space which is not Hausdorff space.

xv. Show that every finite T_1 space is discrete space.

xvi. Define countably compact set with example.

Subjective Part (3*16)

Q.2. a) Show that if (X, τ) is a topological space and $A \subseteq X$ then $\overline{A} = A^o \cup b(A)$. b) Show that if A is a subset of B, then every limit point of A is also a limit point of B, i.e., $A \subseteq B$

implies $A' \subseteq B'$.

Q.3. a) Let X be a topological space, show that followings are equivalent.

(i) X is disconnected (ii) there exists a non-empty subset of X which is both open and closed. b) Show that if β is the class of subsets of X, then β is a base for some topology on X if it possesses the following two properties:

i. $X = U\{B: B \in \beta\}$

ii. For any $B, B^* \in \beta$; $B \cap B^*$ is the union of member of β .

Q.4. a) Show that a function $f: X \to Y$ is continuous iff inverse image of each close subset of Y is closed subset of X.

b) Show that a function $f: X \to Y$ is continuous iff for every subset $A \subseteq X$ implies $f(\bar{A}) \subseteq \overline{f(A)}$

Q.5. a) Prove that closed set of compact set is compact.

b) Let A be any subset of a second countable space X. If U is an open cover of A, then show that U is reducible to a countable cover.

Q.6. a) Show that if A and B are connected sets and not separated then $A \cup B$ is connected.

b) Show that a completely regular space is also regular.

BS 5th Term Examination 2022

2922

Subject: Mathematics

Paper: Differential Geometry (MATH-303/MATH-311)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Note: Objective part is compulsory. Attempt any three questions from subjective part.

Objective Part

(Compulsory)

Q.1. Write short answers of the following in 2-3 lines each on your answer sheet.

(2*16)

- i. Define osculating plane.
- ii. Write is intrinsic equation of a straight line.
- iii. What is meant by circle of curvature?
- iv. Define rectifying plane.
- v. What is plane of curvature?
- vi. Define radius of torsion.
- vii. Define touching plane.
- viii. For a curve $\underline{\gamma} = \underline{\gamma}(s)$, prove that $\underline{n}' = \tau \underline{b} \kappa \underline{t}$.
 - ix. Write an expression for first fundamental form.
 - x. Find first fundamental form of the surface $\sigma(u,v) = (\cos v, \sin v, u)$.
 - xi. Define an isometry.
- xii. What is curvature of a straight line?
- xiii. Write a formula for curvature of a unit speed curve.
- xiv. Define conformal map.
- xv. Define geodesic.
- xvi. Write Frenet-Serret equations.

Subjective Part (3*16)

- Prove that necessary and sufficient condition for a curve to be a plane curve is $[\gamma', \gamma'', \gamma'''] = 0$. Q.2.
- Find curvature of spherical indicatrix of unit binormal to curve $\underline{r} = \underline{r}(s)$. Q.3.
- Prove that unit speed parametrization of a regular curve $\underline{r} = \underline{r}(t)$ is regular. Q.4.
- Find curvature of the circular helix $\underline{r}(t) = (a\cos t, a\sin t, bt)$. Q.5.
- If tangent and binormal at a point of a curve make angles θ and ϕ respectively with a fixed Q.6. direction. Show that

$$\frac{\sin\theta}{\sin\phi} = \frac{d\theta}{d\phi} = -\frac{\kappa}{\tau}.$$

----- LK-6848/6849 -----

BS 5th Term Examination 2022

Subject: Mathematics

Paper: Ordinary Differential Equations (MATH-305)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Objective part is compulsory. Attempt any three questions from subjective part.

(Compulsory) **Objective Part**

(2*16)Write short answers of the following in 2-3 lines each on your answer sheet. Q.1.

i. Show that $y = xe^x$ is solution of y'' - 2y' + y = 0.

ii. Define the initial value problem.

iii. Solve $\frac{dy}{dx} = \sin 5x$.

iv. What do you mean by a first order linear differential equation?

v. Define superposition principle for homogeneous equations.

vi. What is the general solution of a non-homogeneous differential equation?

vii. What will be trial particular solution for the function $xe^x \cos bx$?

viii. When does a power series solution exist?

ix. What is an exact differential equation?

x. What is a Strum-Liouville boundary value problem?

xi. What are singular points for a differential equation?

xii. What are self adjoint operators?

xiii. Give an example of Cauchy-Euler equation.

xiv. What is meant by order of a differential equation?

xv. What is a non-trivial solution?

xvi. Find annihilator operator that annihilates the function $4e^{2x} - 10xe^{2x}$.

(3*16)Subjective part

a) Solve $(e^{2y} - y\cos xy)dx + (2xe^{2y} - x\cos xy + 2y)dy = 0 - Pg - 66$ (book) b) Solve $x\frac{dy}{dx} = y + \sqrt{x^2 - y^2}$. \rightarrow Pg 7 4 Q . 10 (Ex 2.5 b. vk) a) Use method of undetermined coefficients to find the solution of $y'' + 4y' - 2y = 2x^2 - 3x + 6$. B) Find general solution of $y'' - 4y' + 4y = (x + 1)e^{2x}$ using variation of parameter method. Q.2.

Q.3. is Pg 159 (book).

a) Solve the following initial value problem.

a) solve the following matrix $\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}$, y(0) = 2b) Find the solution of $x^2y'' - xy' + y = \ln x - \frac{p}{2}$ 167(b) $\frac{1}{2}$ (b) Solve $(x^2 + 1)y'' + xy' - y = 0$ using power series. $\frac{p}{2}$ 243 (b) $\frac{1}{2}$ 0.5.

Find eigenvalues and eigenfunctions of the following boundary value problem. Q.6. $y'' + \lambda y = 0$, y'(0) = 0, y'(L) = 0

----- LK-6722 -----