Feature Engineering (Simple Explanation)

1. Data Preparation

Before creating features, we make sure the dataset is sorted by `store`, `item`, and `date` so that time-based features are computed correctly.

2. Lag Features

Lag features represent sales from previous days.

- **lag_1**: Yesterday's sales
- **lag_7**: Sales from the same day last week
- **lag_30**: Sales from about a month ago
- These help the model remember recent patterns like short-term memory.

3. Rolling Features

Rolling features describe average or variability in sales over recent days.

- **rolling_mean_7**: Average sales over the past 7 days
- **rolling_std_7**: Variation in sales during the last 7 days
- **rolling_mean_30**: Average sales during the last 30 days
- The `.shift(1)` before `.rolling()` prevents *data leakage*, ensuring only past data is used.

4. Change-Based Features

These show how sales change over time.

- **diff_1**: The difference between today's and yesterday's sales
- **pct_change_7**: The percentage change compared to 7 days ago
- They capture direction and strength of sales movement increasing or decreasing.

--

5. Cyclical Features

Days of week (0-6) and months (1-12) are cyclical; after Sunday comes Monday, not "7."

We use sine and cosine transforms to capture this cycle:

- **dow_sin**, **dow_cos**: cyclical representation of day_of_week
- **month_sin**, **month_cos**: cyclical representation of month
- This allows the model to understand that day 0 and day 6 are close in time.

6. Handling Missing Values

Because of lag and rolling, the first few rows in each group are `NaN` (no previous data). We drop or fill them to keep the dataset clean.

7. Output

We save the resulting dataset as `features_v1.csv`.

This version includes all the new time-based and cyclical features, ready for modeling.

--

Summary Table