Gaussian Discriminant Analysis (GDA/QDA) 分類模型報告

一、 為何 GDA 適用於此資料集

資料集的任務是利用**地理位置(經度 longitude 與緯度 latitude)**來預測格點資料是否為有效值(0 或 1)。

這類資料通常呈現 空間上的連續與區域性分佈特徵,例如:

- 有效區域(label=1)可能集中於某一地理範圍;
- 無效區域(label=0)可能位於其他區域,且分佈形狀不規則。

由於不同類別在空間上的分佈可能具有不同的形狀與方向(共變異矩陣不同), 因此 QDA 特別適合這類具有非線性邊界與空間區域性特徵的分類任務。

二、模型訓練與評估

1. 特徵選擇:

從資料集中選取:

- 特徵 (Features): 經度 (Longitude) 與緯度 (Latitude)
- 標籤 (Label):是否為有效格點(0=無效,1=有效)

資料前處理包含:

- 若標籤不是 0/1,則自動映射為二元。
- 僅使用前兩個特徵進行可視化與訓練。
- 2. 資料分割與表現衡量

為了客觀評估模型表現,採用:

- 資料分割:
 - 。訓練集:80%
 - 。 測試集:20%

- 。 使用 train_test_split(..., stratify=y) 保持類別比例一致
- 評估指標:
 - 。 Accuracy (準確率):整體正確分類比例
 - 。 Confusion Matrix(混淆矩陣):顯示各類別預測正確與錯誤的情況
 - o Precision / Recall / F1-score:分別衡量模型對各類的精確度與召回率

3. 實驗結果:

Test accuracy: 0.8302

指標	數值
測試集準確率 (Accuracy)	約 0.83 (83%)
評估方法	測試集準確率 (80/20 split, stratified)
模型	Quadratic Discriminant Analysis (QDA)
特徵	Longitude, Latitude
標籤	有效格點 (0 or 1)

● 混淆矩陣(Confusion matrix):

[[796 113]

[160 539]]

模型在兩類之間的預測正確率接近,但仍有部分重疊區域造成誤判。

● 分類報告(Classification report):

	precision	recall	f1-score	support
0	0.8326	0.8757	0.8536	909
1	0.8267	0.7711	0.7979	699

accuracy			0.8302	1608
macro avg	0.8297	0.8234	0.8258	1608
weighted avg	0.8301	0.8302	0.8294	1608

4. 决策邊界分析:

QDA 的決策邊界如圖所示(由經緯度平面生成):

- 决策邊界並非直線,而是平滑的曲線(非線性分隔面)。
- 說明模型能捕捉空間上兩類格點區域的非線性邊界特徵。

三、結論與討論

面向	說明
模型特性	QDA 模型假設每類別資料為高斯分佈,能根據不同共變異矩 陣學習不同形狀的邊界。
優點	對非線性資料有良好表現,模型可解析、參數具統計意義。
限制	若樣本數過少或特徵間高度相關,估計的共變異矩陣可能不穩定。
在此資料集上的應用價值	經緯度與有效格點的分佈往往呈現空間群聚特性,QDA 可捕捉這種非線性分隔,有助於空間有效區域的自動識別。

以 QDA 模型,利用經度與緯度兩項特徵預測格點是否為有效值。 模型透過估計每類的高斯分佈,建立非線性決策邊界,並在測試集上達到約 83% 的準確率,顯示 GDA/QDA 能有效應用於此類空間型分類任務。