

Exercício Avaliativo — Controle Discreto 20/03/2023 Discretização de Sistemas

Aluno: Gabriel Almeida Santos de Oliveira.

Nº de matrícula: 2021000042.

1. (Efeito da discretização) Considere o seguinte controlador avanço:

$$C(s) = 8(s + 0.5)/(s + 5)$$
 (1)

a) Discretize "na mão" o controlador considerando os métodos de Euler, Tustin (Bilinear), Mapeamentos Polos-Zeros e ZOH. Considere uma taxa de amostragem de T=0.24 segundos.

D C(s)= 8 5+0,5 " Euler para trois: 5 = z-1 Tz
T 2
T = 0,24 12
$C(z) = 8 \left(\frac{z-1}{Tz}\right) + 0,5 = 8 \frac{z-1}{Tz}$
$\left(\frac{2\cdot 1}{97}\right) + 5 \qquad \qquad 7 - 7 + 572$
Jz ;
$C(z) = 8 \ z(1+0,57) - 1 = 81,722 - 1 = 8,962 - 8$
Z(57+7)-1 2,2 $Z-1$ 2,2 $Z-1$
= Euler para frent: 5 = Z-1
T
$= (z) = 8 \left(\frac{z-1}{\tau}\right) + 0,5 = 8 \frac{z-1+0,5\tau}{\pi} = 8z + (0,5\tau-1)$
$(\frac{27}{7}) + 5$ $\frac{2-1+57}{7}$ $2+(57-7)$
C(z) = 3z - 0.88 = 8z - 7.04
z+0,2 $z+0,2$

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS

CAMPUS MANAUS - DISTRITO INDUSTRIAL

Tustin (.	Biliman): .: C(z)=	8 (= = 1) +0,5
H+(z) = 1	$\frac{1(5)}{5} = \frac{2}{7} = \frac{2-7}{7}$	$\left(\frac{2}{7}\frac{2-1}{2+1}\right)+5$
C(z) = 8	2z-2 + 0,5T(z+7)	= 1 2z-2+0,59(z+7)
	1(2+1)	22-2+57(2+7)
2	22-2 + 5T(2+7)	
	1(2+7)	
C(z) = g	22-2+0,122+0,12 =	16,96 Z - 15,07
	22-2+1,22+1,2	3,2Z - 0,8
		A

a Magramento Roloz - zeroz: Cc(5) = 8 5-25	
Zs1 = 1-0,5 S+5	
Ps7 = -5 : Z=7 = e 0,12 = 0,886	
$P_{z,1} = e^{-s\tau} = e^{-7/2} = 0,307$	
:. Cz(Z) = Ko Z+1 - não í durijada nuchun	n atrono,
Z+0,307 entais Z= -1.	
1Cc1 = 1Cz1	
lim 8(5+0,5) = KD lim Z-0,886	
Sim 8(5+0,5) = Kp lim Z-0,886 z→1 Z-0,301	
8.0,5 = Ko 0,114 = D K = 0,8 = 4,905	
5 0,699 0,163	
$C_z(z) = 4,905$, $Z - 0.886$	
2 - 0,301	

02(0)	$1 = (7 - 2^{-7}) \neq (5)$
C(s) = 185+	4 = A + B / 5(5+5)
5 (5(5+)	5) 5 5+5
8S + 4 = A(S +)	5) + B S
85 + 4 = A5 + 5A	+ BS = 85 +4 = S(A+B) + 5 A
A+B=8	
5A = 4 = DA =	0,8
B = 8-0,8 = 7,	2
· ((z)=	(1-2-1) 2 { 0,8 + 7,2 }
ibra	5 5+5

	$Z \left\{ \begin{array}{c} 0.8 \end{array} \right\} = \begin{array}{c} 0.8 \end{array} Z$, de prordo com a tabela.
	[5] Z-1
•	$Z \int \frac{7}{2} = $
	$C_{\circ}(z) = (1-z^{-1}) \int_{0.8}^{0.8} z + 7.2z$
	$= (7-2^{-1}) \left[0.82^{\circ} - 0.312 + 3.22^{\circ} - 7.22 \right] = (22) \left[82^{\circ} - 7.512 \right]$
	$= \frac{(z-1)(z-0,30)}{(3z^{2}-7,51z)}$
•	7-0,301

b) Confira os resultados no Matlab (Digite "doc c2d" para mais detalhes) 1.

Utilizou-se o seguinte código abaixo:

```
clc;
clear all;

Ts = 0.24;

CC = zpk(-0.5, -5, 8) % TF continua

% Euler Backward

CD_EB = tf([8.96 -8], [2.2 -1], Ts);

% Euler Foward

CD_EF = tf([8 -0.88*8], [1 0.2], Ts);

% Bilinear

CD_B = tf([16.96 -15.04], [3.2 -0.8], Ts)

% mapeamento polo zero

CD_MAPPZ = tf([4.905 -0.886*4.905], [1 -0.301], Ts)
```

% ZOH


```
CD\_ZOH = tf([8 -7.51], [1 -0.301], Ts)
CD_c2d_bilinear = c2d(CC, Ts, 'tustin')
CD_c2d_zoh = c2d(CC, Ts, 'zoh')
CD_c2d_mappz = c2d(CC, Ts, 'matched')
step(CC, '-');
hold on;
step(CD_EB, 'o');
step(CD_EF, '+');
step(CD_B, '*');
step(CD_MAPPZ, 'x');
step(CD_ZOH, 'square');
step(CD_c2d_bilinear, ':');
step(CD_c2d_zoh, '--');
step(CD_c2d_mappz, '-.');
hold off;
legend('CC','CD_EB', 'CD_EF', 'CD_B', 'CD_MAPPZ', 'CD_ZOH', 'CD_c2d_bilinear', 'CD_c2d_zoh', 'CD_c2d_mappz')
```

De onde se obteve o gráfico:

E as seguintes funções de transferência discretas:

c) O que podemos observar pelas funções de transferência de cada controlador (polos, zeros)? São similares?

É possível também observar que as funções discretizadas pelo matlab resultaram em valores muito próximos dos valores encontrados manualmente, podendo essa divergência ser atribuída a erro de aproximação.

d) Verifique a resposta frequencial de cada controlador no Matlab. (O comando bode() aceita sistemas contínuos e discretos). Qual controlador ficou mais próximo do original (por original entende-se o contínuo).

Através do mesmo código utilizado previamente mas com a adição da seguinte linha:

bode(CC, CD_EB, CD_EF, CD_B, CD_MAPPZ, CD_ZOH, CD_c2d_bilinear, CD_c2d_zoh, CD_c2d_mappz);

se obteve o gráfico abaixo:

Quanto a amplitude, o controlar discreto adquirido pelo mapeamento de polos e zeros foi o que obteve o resultado mais próximo do controlador original, enquanto na fase o controlador Bilinear foi o que melhor se aproximou até aproximadamente 2.19 rad/s, o

mapeamento de polos e zeros também tem uma resposta bastante próxima. Os controladores Bilinear e de mapeamento de polos e zeros foram os dois que mais se aproximaram, sendo a definição do melhor dependente de qual ser mais importante: a resposta da frequência ou do ganho.

e) Que conclusões podemos tirar do subitem anterior? Os controladores discretos mais adequados foram os esperados (baseado no que vimos em aula) ?

Sim, o mapeamento de polos e zeros parte da igualdade entre da formula $Z = \exp(S*Ts)$, que é uma igualdade invés de uma aproximação, levando a uma conversão mais precisa do controlador discreto, enquanto a aproximação pelo método bilinear melhor aproxima á área de cada intervalo pela utilização de uma área trapezoidal, levando a uma aproximação mais precisa.

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS CAMPUS MANAUS - DISTRITO INDUSTRIAL

2. (Efeito da discretização na Malha Fechada) Considere que o controlador da questão anterior foi projetado para o seguinte sistema:

$$G(s) = 1/s2$$
 (2)

respeite os seguintes critérios de desempenho $\varsigma \ge 0.7$ e assentamento $\le 8s$.

a) Analise a resposta de malha fechada de cada um dos controladores discretizados anteriormente (continuo, Tustin, Mapeamentos Polos-Zeros, ZOH). Considere uma taxa de amostragem de T=0.24 segundos. Deve ser feito no Matlab com a planta discretizada também. Como devemos discretizar a planta?

Idealmente procura-se manter a estabilidade da planta, e dada a precisão satisfatória do método bilinear, junto ao fato de que o mesmo mantem a estabilidade da planta, este é escolhido para a discretização da FT do sistema, que pode ser observado nos cálculos abaixo.

2	6(s) = 1 : 6(z) = 6(s) 2 = 2
	$\frac{6(s) = 1}{s^2}; \frac{6(z) = 6(s)}{s^2} _{s=\frac{z-1}{z+1}}$
	$G(z) = \begin{pmatrix} 2 & z-1 \end{pmatrix}^{-2} = \begin{pmatrix} 2z-2 \end{pmatrix}^{-2} = \begin{bmatrix} 2z-2 \end{pmatrix}^{2} \end{bmatrix}^{-7}$ $= \begin{pmatrix} 2+1 \end{pmatrix} \begin{pmatrix} 7z+7 \end{pmatrix} \begin{pmatrix} 7z+7 \end{pmatrix}^{-7}$
N. S. W.	$= \left[4Z^{2} + 3.2z(3) + 4\right]^{-7} = T^{2}Z^{2} + 2T^{2}z + T^{2}$
	$[7^{2}z^{2}+2Tz.T+7^{2}]$ $4z^{2}-8z+4$
42	Recalculando o controlados para ficar un função de T:
	$C_{c}(s) = 8 + 0.5 ; C(z) = 8 \left(\frac{1}{2} \left(\frac{z-7}{z+7}\right) + 0.05\right)$
	$5+5$ $\left(\frac{2}{7}\frac{2-7}{2+7}\right)+5\right)$
_(C(z) = 8 (2z-2+0,5T(z+1))/T(z+1)
_	(22-2+5T(2+71)/T(2+1)
_	C(z) = 16z - 16 + 4Tz + 4T = z(16 + 4T) + (4T - 16)
-	2z-2+57z+5T Z(2+5T) + (5T-2)
-	* para 7 = 0,24 x:
	$G(z) = 0.24^{2} z^{2} + 2.0.24^{2} z + 7^{2} = 0.05 + 6 z^{2} + 0.715 z + 0.05 + 6$
-	$4Z^{2} - 8Z + 4 \qquad 4Z^{2} - 8Z + 4$
	G(z) = 0,014+2+0,0288 Z+0,00576
	$Z^2 - \lambda Z + 4$
	C(z) = z(16+4.0,24) + (0,24.4-16) = 16,962-15,04 = 5,3(z-0.386)
	Z(2+5.0,24) + (5.0,24-2) 3,2 Z - 0,8 Z-0,25

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS

CAMPUS MANAUS - DISTRITO INDUSTRIAL

Para que fosse possível, através da simulação, facilmente alterar e observar o resultado de diferentes tempos de amostragem. O seguinte código abaixo foi utilizado para simulação:

```
clc;
clear all:
Ts = 0.24;
% FT continua
G_S = tf([1], [100])
% Controlador continuo
C_S = zpk([-0.5], [-5], 8)
% GS discreto matlab
G_c2d = c2d(G_S, Ts, 'tustin')
CD_c2d_bilinear = c2d(C_5, Ts, 'tustin') % controlador bilinear discreto matlab
CD_c2d_zoh = c2d(C_S, Ts, 'zoh') % controlador segurador de ordem zero discreto
matlab
CD_c2d_mappz = c2d(C_S, Ts, 'matched') % controlador mapeamento polos zeros
discreto matlab
% GS discreto calculado manualmente
G_Z = tf([Ts^2 2*Ts^2 Ts^2], [4-84], Ts)
% controlador discreto calculado manualmente
C_ZB = tf([(16 + 4*Ts) (4*Ts - 16)], [(2 + 5*Ts) (5*Ts - 2)], Ts)
% equações de malha fechada
FTMF = feedback(G_S*C_S, 1);
FTMF Z = feedback(G Z*C Z B, 1);
FTMF_c2d_B = feedback(G_c2d*CD_c2d_bilinear, 1);
FTMF_c2d_Z = feedback(G_c2d*CD_c2d_zoh, 1);
FTMF_c2d_M = feedback(G_c2d*CD_c2d_mappz, 1);
step(FTMF, FTMF_c2d_B, '-.', FTMF_c2d_Z, '--', FTMF_c2d_M, '--', FTMF_Z);
legend('Original', 'Controlador Bilinear', 'Controlador ZOH', 'Controlador pzmap',
'Controlador calculado manualmente')
```


de onde se obteve as equações e o gráfico:

G_Z =

0.0576 z^2 + 0.1152 z + 0.0576

4 z^2 - 8 z + 4

Sample time: 0.24 seconds

Discrete-time transfer function.

 $G_c2d =$ 0.0144 $z^2 + 0.0288 z + 0.0144$ ----- $z^2 - 2 z + 1$ Sample time: 0.24 seconds
Discrete-time transfer function.

CD_c2d_bilinear =

5.3 (z-0.8868)
.....(z-0.25)

Sample time: 0.24 seconds
Discrete-time zero/pole/gain model.

CD_c2d_zoh =

8 (z-0.9301)
----(z-0.3012)

Sample time: 0.24 seconds

Discrete-time zero/pole/gain model.

Discrete-time zero/pole/gain model.

Sample time: 0.24 seconds

Discrete-time transfer function.

Sim, há uma diferença porque as função de transferência discretas da planta e dos controladores são aproximações, fora que as mesmas são limitadas a alterar seu valores apenas nos intervalos de tempo múltiplos do tempo de amostragem 'Ts', é refeita a simulação mas com um Ts 10 vezes menor (0.0024) onde é possível se observar uma resposta muito mais aproximada da resposta continua:

Diminuindo ainda mais o tempo de amostragem resultaria em retas cada vez mais próximas da curva original. Em uma aplicação real, este tempo de amostragem será limitado pela capacidade/resolução com conversor digital-analógico (D/A), que são mais complexos e custosos, resultando em menos definição, do que os conversores analógico-digital (A/D).

3. (Efeito do Tempo de Amostragem) Considere o seguinte controlador avanço:

$$C(s) = 8(s + 0.5) / (s + 5)$$
 (3)

a) Discretize o controlador no Matlab considerando os métodos de Euler, Tustin Bilinear), Mapeamentos Polos-Zeros e ZOH. Considere uma taxa de amostragem de T=0.08 segundos.

Utilizou-se o mesmo código da questão anterior porém sem a função transferência da planta, e, alterando a variável 'Ts' para 0.008, juntamente com o cálculo realizado abaixo dos discretizadores de Euler em função de Ts:

0	
6	(3) A) x Controlador Direreto Enler
	C(s) = 8 5+0.5 « Eules grava tras: 5 = 2-7
	17
^	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	$C(z) = C(s) _{s=z-1} = C(z) = 8 \left(\frac{z-1}{\tau z}\right) + 0,5 = 8 \left(\frac{z-1}{\tau z}\right) + 5 \left(\frac{z-1}{\tau z}\right) + 5$
	$(72) \pm 0$
0	10.142 0
<u></u>	C(z) = 8z - 8 + 49z = z(8 + 47) - 8
	Z(1+57)-1 Z(1+54)-1
0	
	" Euler para frente: 5 = 2-1
	T
	$C(z) = C(s)_{s=z-1} = 8(\frac{z-1}{\tau}) + 0.5 = 8[z-1+0.5\tau]/x$
	$\frac{1}{T} \left(\frac{2-1}{T}\right) + 5 \left(2-1+5+\right) / \mathcal{F}$
0	C(Z) = 8Z - 8 + 4 + = 8Z + (4T - 8)
	Z-7+57 Z+(57-1)

A partir do qual se gerou o seguinte código:

```
clc;
clear all;

Ts = 0.008;

% Controlador continuo

C_S = zpk([-0.5], [-5], 8)

% controlador discreto Euler pra trás calculado manualmente

CD_ET = tf([(8 + 4*Ts) -8], [(1 + 5*Ts) -1], Ts)

% controlador discreto Euler pra frente calculado manualmente

CD_EF = tf([8 (4*Ts - 8)], [1 (5*Ts - 1)], Ts)

% controlador bilinear discreto matlab

CD_c2d_bilinear = c2d(C_S, Ts, 'tustin')

% controlador segurador de ordem zero discreto matlab
```

 $CD_c2d_zoh = c2d(C_S, Ts, 'zoh')$

% controlador mapeamento polos zeros discreto matlab $CD_c2d_mappz = c2d(C_S, Ts, 'matched')$

step(C_S, CD_EF, CD_ET, CD_c2d_bilinear, CD_c2d_zoh, CD_c2d_mappz); legend('Original', 'Controlador Euler p/ frente', 'Controlador Euler p/ tras', 'Controlador Bilinear', 'Controlador ZOH', 'Controlador pzmap')

E se obteve as seguintes equações discretas e o gráfico:

CD_EF = CD_ET = CD_c2d_bilinear = 7.8588 (z-0.996) 8.032 z - 8 8 z - 7.968 (z-0.9608) 1.04 z - 1 z - 0.96 Sample time: 0.008 seconds Sample time: 0.008 seconds Sample time: 0.008 seconds Discrete-time zero/pole/gain model. Discrete-time transfer function. Discrete-time transfer function. CD_c2d_zoh = CD_c2d_mappz = 8 (z-0.9961) 7.8578 (z-0.996) (z-0.9608) (z-0.9608) Sample time: 0.008 seconds Sample time: 0.008 seconds Discrete-time zero/pole/gain model. Discrete-time zero/pole/gain model.

b) Verifique a resposta frequencial de cada controlador no Matlab. (O comando "bode()" aceita sistemas contínuos e discretos). Qual controlador ficou mais próximo do original (por original entende-se o contínuo).

Utilizando o comando 'bode(C_S , CD_EF , CD_ET , $CD_c2d_bilinear$, CD_c2d_zoh , CD_c2d_mappz);' se obteve o gráfico abaixo:

c) O que podemos observar pelas funções de transferência de cada controlador? São similares?

Todos os controladores tiveram uma resposta quase idêntica ao do controlador original, isso pode ser atribuído. Porém, novamente, os controladores bilinear e mapeamento de polos e zeros parecem ser os mais próximos do original:

d) Que conclusões podemos tirar? Qual foi o efeito do tempo de amostragem?

Podemos concluir que todos os controladores, com um tempo de amostragem suficientemente pequeno, se comportam de maneira quase que idêntica a função de transferência continua.

4. (Efeito do Tempo de Amostragem II) Considere o seguinte sistema:

$$G(s) = 4/(s^2 + 1.2s + 4)$$
 (4)

Discretize o sistema (método mapeamento de zeros-polos) para as seguintes taxas de amostragem (Faça ao menos uma vez na mão, o resto pode ser no Matlab):

- a) f = 1 Hz
- b) f = 10 Hz
- c) f = 100 Hz
- \mathbf{d}) $\mathbf{f} = 1 \text{ kHz}$
- e) f = 100 kHz
- f) f = 10 MHz

g) Que conclusões podemos tirar? Qual foi o efeito do tempo de amostragem?

