

Test Report

FCC ID: ZXW-WF68

Date of issue: Jun. 16, 2017

Report Number: MTi170706E052

Sample Description: Mobile Computer

Model(s): WF68, WF68S, WF88

Applicant: Widefly Ltd.

Address: Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue,

Hong Kong Science Park, Shatin, N.T., HONG KONG.

Date of Test: May. 26, 2017 to Jun. 16, 2017

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

TEST RESULT CERTIFICATION			
Applicant's name:	Widefly Ltd.		
Address:	Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Hong Kong Science Park, Shatin, N.T., HONG KONG.		
Manufacture's Name	Widefly Ltd.		
Address:	Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Hong Kong Science Park, Shatin, N.T., HONG KONG.		
Product description			
Product name	Mobile Computer		
Model and/or type reference :	WF68		
Serial Model	WF68S, WF88		
Standards:	FCC Part15.247		
Test procedure	ANSI C63.10-2013		

Tested by:	De Chai	
	Ace Chai	Jun. 15, 2017
Reviewed by:	Snottochen	
	Smith Chen	Jun. 16, 2017
Approved by:	Tom Lue	
	Tom Xue	Jun. 16, 2017

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.4 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3 . EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12 12
3.1.2 TEST PROCEDURE	13
3.1.3 DEVIATION FROM TEST STANDARD	13
3.1.4 TEST SETUP	13
3.1.5 EUT OPERATING CONDITIONS	13
3.1.6 TEST RESULTS	14
3.2 RADIATED EMISSION MEASUREMENT	16
3.2.1 RADIATED EMISSION LIMITS	16
3.2.2 TEST PROCEDURE	16
3.2.3 DEVIATION FROM TEST STANDARD	17
3.2.4 TEST SETUP 3.2.5 EUT OPERATING CONDITIONS	18 19
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	20
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	21
3.2.8 TEST RESULTS (1G-25GHZ)	22
4. 20 DB OCCUPY BANDWIDTH	33
4.1 APPLIED PROCEDURES / LIMIT	33
4.1.1 TEST PROCEDURE	33
4.1.2 DEVIATION FROM STANDARD	33
4.1.3 TEST SETUP	33
4.1.4 EUT OPERATION CONDITIONS	33
4.1.5 TEST RESULTS	34
5. CARRIER FREQUENCY SEPARATION TEST	40
5.1 APPLIED PROCEDURES / LIMIT	40

Table of Contents

	Page
5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD 5.1.3 TEST SETUP 5.1.4 EUT OPERATION CONDITIONS 5.1.5 TEST RESULTS	40 40 40 40 41
6 . NUMBER OF HOPPING CHANNEL	43
6.1 APPLIED PROCEDURES / LIMIT	43
6.1.2 DEVIATION FROM STANDARD	43
6.1.3 TEST SETUP	43
6.1.4 EUT OPERATION CONDITIONS	43
6.1.5 TEST RESULTS	43
7 . DWELL TIME	46
7.1 APPLIED PROCEDURES / LIMIT	46
7.1.2 DEVIATION FROM STANDARD	46
7.1.3 TEST SETUP	46
7.1.4 EUT OPERATION CONDITIONS	46
7.1.5 TEST RESULTS	47
8 . PEAK OUTPUT POWER TEST	54
8.1 APPLIED PROCEDURES / LIMIT	54
8.1.1 TEST PROCEDURE	54
8.1.2 DEVIATION FROM STANDARD	54
8.1.3 TEST SETUP	54
8.1.4 EUT OPERATION CONDITIONS 8.1.5 TEST RESULTS	54
8.1.3 IEST RESULTS	55
9.100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	56
9.1 DEVIATION FROM STANDARD	56
9.2 TEST SETUP	56
9.3 EUT OPERATION CONDITIONS	56
9.4 TEST RESULTS	57
10 . ANTENNA REQUIREMENT	68
10.1 STANDARD REQUIREMENT	68
10.2 EUT ANTENNA	68

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	I I I I I I I I I I I I I I I I I I I				
15.203/15.247(c)	Antenna Requirement	PASSED			
15.207	Conducted Emission	PASSED			
15.247(b)(1)	Conducted Peak Output Power	PASSED			
15.247(a)(1)	20dB Occupied Bandwidth	PASSED			
15.247(a)(1)	Carrier Frequencies Separation	PASSED			
15.247(a)(1)	Hopping Channel Number	PASSED			
15.247(a)(1)	Dwell Time	PASSED			
15.205/15.209	Spurious Emission	PASSED			
15.247(d)	Band Edge	PASSED			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen Toby Technology Co., Ltd.

Add.: 10/F., A Block, Jiada R&D Bldg., No.5 Songpingshan, Road, Science&Technology Park,

Shenzhen, 518057

FCC Registration No.:811562

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power,conducted	±0.16dB	
3	Spurious emissions,conducted	±0.21dB	
4	All emissions,radiated(<1G)	±4.68dB	
5	All emissions,radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Computer		
Trade Name	Widefly		
Model Name	WF68		
Serial Model	WF68S, WF88		
Model Difference	N/A		
Product Description	User's Manual, the EUT	2402-2480MHz GFSK, π/4-DQPSK, 8-DPSK 1,2,3Mbps 79CH Please see Note 3. 4.474 dBm -0.76dbi n, features, or specification exhibited in is considered as an ITE/Computing EUT technical specification, please	
Channel List	Please refer to the Note 2.		
Adapter	Model: UT-133E- 5200ZY AC Power Input: 100-240V~50/60Hz 0.3A MAX Output :5V DC, 2000mA		
Battery	Model:EU955164PV 3.8V 4600mAh		
Connecting I/O Port(s)	Please refer to the User's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466

44/4 2回山	TV SIMI
	检测

X.					
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		
Remark: C	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.				

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
Α	N/A	N/A	integrated antenna	1	-0.76dBi	Wifi Antenna

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	GFSK CH1/CH40/CH79
Mode 2	π/4-DQPSK CH1/CH40/CH79
Mode 3	8-DPSK CH1/CH40/CH79
Mode 4	Link Mode

For Conducted Emission				
Final Test Mode	Description			
Mode 4	Link Mode			

For Radiated Emission				
Final Test Mode	Description			
Mode 1	GFSK CH1/CH40/CH79			
Mode 2	π/4-DQPSK CH1/CH40/CH79			
Mode 3	8-DPSK CH1/CH40/CH79			

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.2.1 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.3 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Rugged Smartphone	DragonKing	WF68	N/A	EUT
E-2	2 Adapter N/A		UT-133E- 5200ZY	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1.0m	
C-2	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_</code> column.

2.4 EQUIPMENTS LIST FOR ALL TEST ITEMS

For RF conducted test:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Signal Analyzer	Agilent	N9010A	MY48030494	2017/11/4
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	2017/11/4
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080019	2017/11/4
vector Signal Generator	Agilent	E4438C	US44271917	2017/11/4
vector Signal Generator	Agilent	E4438C	MY49070163	2017/11/4
Dc Power Supply	GW	GPR-6030D	/	2017/11/4
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2017/11/4
Wideband Radio Communication Tester	ROHDE&SCHWAR Z	CMW500	120909	2017/11/4

For Radiated test:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Broadband TRILOG Antenna	Schwarabeck	VULB9163	9163-872	2017/11/14
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1145	2017/11/14
Amplifier	HP	8447D	3113A06150	2017/11/4
Amplifier	Agilent	8449B	3008A02400	2017/7/4
Test Receiver	Schwarabeck	ESPI7	100314	2017/11/4
Spectrum analyzer	Agilent	E4407B	MY41441082	2017/11/4
Signal Generator	R&S	SMT 06	832080/007	2017/11/4

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	(dBuV)	Class B	Standard	
FREQUENCY (MIDZ)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting			
Attenuation	10 dB			
Start Frequency	0.15 MHz			
Stop Frequency	30 MHz			
IF Bandwidth	9 kHz			

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

EUT:	Mobile Computer	Model Name. :	WF68
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5Vfrom adapter AC 120V/60Hz	Test Mode :	Mode 4

Item	Freq	Read	LISN Factor	Preamp Factor		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.163	44.87	0.03	-9.72	0.10	54.72	65.30	-10.58	Peak
2	0.220	40.99	0.03	-9.72	0.10	50.84	62.83	-11.99	Peak
3	0.377	35.45	0.03	-9.72	0.10	45.30	58.34	-13.04	Peak
4	0.712	32.12	0.04	-9.72	0.10	41.98	56.00	-14.02	Peak
5	1.480	31.55	0.05	-9.71	0.10	41.41	56.00	-14.59	Peak
6	2.237	32.06	0.06	-9.70	0.10	41.92	56.00	-14.08	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

EUT: WF68 Mobile Computer Model Name. : 26 ℃ 54% Temperature: Relative Humidity: Ν 1010hPa Phase: Pressure: DC 5Vfrom adapter AC Test Voltage: Test Mode: Mode 4

Item	Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
 								/	
1	0.163	44.51	0.03	-9.72	0.10	54.36	65.30	-10.94	Peak
2	0.219	42.40	0.03	-9.72	0.10	52.25	62.88	-10.63	Peak
3	0.277	39.42	0.03	-9.72	0.10	49.27	60.90	-11.63	Peak
4	0.329	36.27	0.03	-9.72	0.10	46.12	59.49	-13.37	Peak
5	1.418	27.28	0.05	-9.71	0.10	37.14	56.00	-18.86	Peak
6	3.224	25.92	0.07	-9.69	0.12	35.80	56.00	-20.20	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted	4 Mile / 4 Mile for Dook 4 Mile / 40/Jefor Average	
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

微测检测

- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

EUT:	Mobile Computer	Model Name. :	WF68
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	TIASI VAHAAA .	DC 5Vfrom adapter AC 120V/60Hz
Test Mode:	TX	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m) (dB)	
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage:	DC 5Vfrom adapter
Test Mode:	TX		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dBuV/m) (dBuV/m) (dBuV/m)		(dB)	Туре	
V	119.4360	17.12	12.08	29.2	43.5	14.3	QP
V	128.1129	17.08	12.2	29.28	43.5	14.22	QP
V	170.7926	21.48	10.35	31.83	43.5	11.67	QP
V	341.9786	13.26	16.19	29.45	46	16.55	QP
V	468.8761	18.38	19.69	38.07	46	7.93	QP
V	935.5462	10.26	29.42	39.68	46	6.32	QP
Н	170.7923	28.5	10.35	38.85	43.5	4.65	QP
Н	341.9786	26.06	16.19	42.25	46	3.75	QP
Н	468.8761	22.01	19.69	41.7	46	4.3	QP
Н	726.8052	15.69	26	41.69	46	4.31	QP
Н	813.1114	15.75	26.35	42.1	46	3.9	QP
Н	854.0247	13.4	27.51	40.91	46	5.09	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level- Limit

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Factor added by measurement software automatically

3.2.8 TEST RESULTS (1G-25GHZ)

GFSK,

Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
Low Channel (2402 MHz)										
Vertical	2491.777	54.93	-11.65	43.28	74	30.72	Pk			
Horizontal	2498.247	56.09	-12.73	43.36	74	30.64	Pk			
Vertical	4804.156	56.38	-3.5	52.88	74	21.12	Pk			
Horizontal	4804. 156	56.77	-9.17	47.6	74	26.4	Pk			
Vertical	1485.838	55.03	-17.1	37.93	74	36.07	Pk			
Vertical	1636.784	56.12	-16.06	40.06	74	33.94	Pk			
Vertical	2095.928	56.86	-11.88	44.98	74	29.02	Pk			
Horizontal	1074.301	55.52	-19.69	35.83	74	38.17	Pk			
Horizontal	1483.178	56.55	-17.09	39.46	74	34.54	Pk			
Horizontal	1895.832	56.11	-14.25	41.86	74	32.14	Pk			
		Mi	d Channel	(2441 MHz)						
Vertical	2474.777	56.5	-11.65	44.85	74	29.15	Pk			
Horizontal	2474.144	57.19	-9.37	47.82	74	26.18	Pk			
Vertical	4882.539	56.57	-6.11	50.46	74	23.54	Pk			
Horizontal	4882. 539	56.57	-6.67	49.9	74	24.1	Pk			
Vertical	1433.535	63.56	-17.12	46.44	74	27.56	Pk			
Vertical	1636.784	60.89	-16.06	44.83	74	29.17	Pk			
Vertical	2284.166	54.63	-12.83	41.8	74	32.2	Pk			
Horizontal	1280.515	60.29	-17.82	42.47	74	31.53	Pk			
Horizontal	1636.784	59.12	-16.06	43.06	74	30.94	Pk			
Horizontal	1892.438	59.24	-14.28	44.96	74	29.04	Pk			
		Hig	h Channe	(2480 MHz)						
Vertical	2453.883	55.2	-12.91	42.29	74	31.71	Pk			
Horizontal	2453.839	54.72	-11.59	43.13	74	30.87	Pk			
Vertical	4960.256	54.61	-9.05	45.56	74	28.44	Pk			
Horizontal	4960.478	55.03	-3.49	51.54	74	22.46	Pk			
Vertical	1187.688	55.77	-18.27	37.5	74	36.5	Pk			
Vertical	1636.784	55.41	-16.06	39.35	74	34.65	Pk			
Vertical	2084.693	54.09	-11.99	42.1	74	31.9	Pk			
Horizontal	1534.540	55.03	-16.94	38.09	74	35.91	Pk			
Horizontal	1786.985	55.93	-15.04	40.89	74	33.11	Pk			
Horizontal	1892.438	55.32	-14.28	41.04	74	32.96	Pk			

π/4-DQPSK

Normal Voltage

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
	ор	eration fre	quency:2402			•			
4804.428	54.17	-3.5	50.67	74	23.33	Pk			
4804.428	31.67	-3.5	28.17	54	25.83	AV			
4804.529	53.36	-3.5	49.86	74	24.14	Pk			
4804.529	32.41	-3.5	28.91	54	25.09	AV			
	ор	eration fre	quency:2441						
4882.548	52.76	-6.11	46.65	74	27.35	Pk			
4882.548	31.83	-6.11	25.72	54	28.28	AV			
4882.279	51.65	-6.11	45.54	74	28.46	Pk			
4882.279	31.67	-6.11	25.56	54	28.44	AV			
operation frequency:2480									
4960.358	53.15	-3.49	49.66	74	24.34	pk			
4960.358	31.8	-3.49	28.31	54	25.69	ÄV			
4960.591	52.23	-3.49	48.74	74	25.26	pk			
4960.591	32.35	-3.49	28.86	54	25.14	pk			
	(MHz) 4804.428 4804.529 4804.529 4804.529 4882.548 4882.548 4882.279 4882.279 4960.358 4960.358 4960.591	requency Reading (MHz) (dBuV) 4804.428 54.17 4804.428 31.67 4804.529 53.36 4804.529 32.41 op 4882.548 52.76 4882.548 31.83 4882.279 51.65 4882.279 31.67 4960.358 53.15 4960.358 31.8 4960.591 52.23	(MHz) (dBuV) (dB) 4804.428 54.17 -3.5 4804.428 31.67 -3.5 4804.529 53.36 -3.5 4804.529 32.41 -3.5 operation free 4882.548 52.76 -6.11 4882.548 31.83 -6.11 4882.279 51.65 -6.11 4882.279 31.67 -6.11 operation free 4960.358 53.15 -3.49 4960.358 31.8 -3.49 4960.591 52.23 -3.49	requency Reading Factor Level (MHz) (dBuV) (dB) (dBuV/m) operation frequency:2402 4804.428 54.17 -3.5 50.67 4804.428 31.67 -3.5 28.17 4804.529 53.36 -3.5 49.86 4804.529 32.41 -3.5 28.91 operation frequency:2441 4882.548 52.76 -6.11 46.65 4882.548 31.83 -6.11 25.72 4882.279 51.65 -6.11 45.54 4882.279 31.67 -6.11 25.56 operation frequency:2480 4960.358 53.15 -3.49 49.66 4960.358 31.8 -3.49 28.31 4960.591 52.23 -3.49 48.74	(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) operation frequency:2402 4804.428 54.17 -3.5 50.67 74 4804.428 31.67 -3.5 28.17 54 4804.529 53.36 -3.5 49.86 74 4804.529 32.41 -3.5 28.91 54 operation frequency:2441 4882.548 52.76 -6.11 46.65 74 4882.548 31.83 -6.11 25.72 54 4882.279 51.65 -6.11 45.54 74 4882.279 31.67 -6.11 25.56 54 operation frequency:2480 4960.358 53.15 -3.49 49.66 74 4960.358 31.8 -3.49 28.31 54 4960.591 52.23 -3.49 48.74 74	(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) 4804.428 54.17 -3.5 50.67 74 23.33 4804.428 31.67 -3.5 28.17 54 25.83 4804.529 53.36 -3.5 49.86 74 24.14 4804.529 32.41 -3.5 28.91 54 25.09 operation frequency:2441 4882.548 52.76 -6.11 46.65 74 27.35 4882.548 31.83 -6.11 25.72 54 28.28 4882.279 51.65 -6.11 45.54 74 28.46 4882.279 31.67 -6.11 25.56 54 28.44 operation frequency:2480 4960.358 53.15 -3.49 49.66 74 24.34 4960.358 31.8 -3.49 28.31 54 25.69 4960.591 52.23 -3.49 48.74 74 25.26			

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

8-DPSK

Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
		ор	eration fre	quency:2402				
V	4804.428	52.23	-3.53	48.7	74	25.3	Pk	
Н	4804.529	51.15	-3.54	47.61	74	26.39	Pk	
		ор	eration fre	quency:2441				
V	4882.548	51.32	-3.64	47.68	74	26.32	Pk	
Н	4882.279	51.02	-3.64	47.38	74	26.62	Pk	
operation frequency:2480								
V	4960.358	51.21	-3.75	47.46	74	26.54	pk	
Н	4960.591	50.53	-3.74	46.79	74	27.21	pk	

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

Note: The PK value is less than the AV value, AV value is not required Factor added by measurement software automatically.

BAND EDGE(Radiated)

Condition : FCC PART 15_18G PEAK 3m

POL: HORIZONTAL

EUT Model No

Test Mode : GFSK-TX 2402

Power Test Engineer :

Remark : 24.2°C Temp Hum : 54%

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT

Model No Test Mode : GFSK-TX 2402

Power Test Engineer :

Remark Temp : 24.2°C : 54%

POL: HORIZONTAL

Condition : FCC PART 15_18G PEAK 3m

EUT Model No

Model No : Test Mode : GFSK-TX 2480

Power : Test Engineer :

Remark : 24.2°C Hum : 54%

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT

Model No

Test Mode : GFSK-TX 2480

Power Test Engineer :

Remark : 24.2°C Temp : 54%

: FCC PART 15_18G PEAK 3m Condition

EUT Model No

: GFSK-TX Hopping Test Mode

Power Test Engineer : Remark

: 24.2°C Temp Hum : 54%

Frequency (MHz)

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT Model No

Test Mode : GFSK-TX Hopping

Power Test Engineer :

Remark : 24.2°C Temp Hum : 54%

: FCC PART 15_18G PEAK 3m Condition

EUT

Model No Test Mode : GFSK-TX Hopping

Power Test Engineer : Remark

Temp : 24.2°C : 54% Hum

NOTE: The PK value is less than the AV value, AV value is not required. Note 2: All mode has been tested, and only worst data listed.

: 54%

BAND EDGE(Radiated)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Commont		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре	Comment		
	GFSK								
2390	55.04	-13.06	41.98	74	32.02	peak	Vertical		
2390	55.85	-13.06	42.79	74	31.21	peak	Horizontal		
2483.5	51.99	-12.78	39.21	74	34.79	peak	Vertical		
2483.5	53.52	-12.78	40.74	74	33.26	peak	Horizontal		
			π/4-DQPSK						
2390	54.88	-13.06	41.82	74	32.18	peak	Vertical		
2390	55.65	-13.06	42.59	74	31.41	peak	Horizontal		
2483.5	51.91	-12.78	39.13	74	34.87	peak	Vertical		
2483.5	53.02	-12.78	40.24	74	33.76	peak	Horizontal		
			8-DPSK						
2390	54.79	-13.06	41.73	74	32.27	peak	Vertical		
2390	55.23	-13.06	42.17	74	31.83	peak	Horizontal		
2483.5	51.8	-12.78	39.02	74	34.98	peak	Vertical		
2483.5	52.52	-12.78	39.74	74	34.26	peak	Horizontal		

NOTE: The PK value is less than the AV value, AV value is not required.

BAND EDGE(Radiated)(Hopping Mode)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
	GFSK								
2390	54.95	-13.06	41.89	74	32.11	peak	Vertical		
2390	55.89	-13.06	42.83	74	31.17	peak	Horizontal		
2483.5	52.1	-12.78	39.32	74	34.68	peak	Vertical		
2483.5	53.67	-12.78	40.89	74	33.11	peak	Horizontal		
			π/4-DQPSK						
2390	55	-13.06	41.94	74	32.06	peak	Vertical		
2390	55.52	-13.06	42.46	74	31.54	peak	Horizontal		
2483.5	52	-12.78	39.22	74	34.78	peak	Vertical		
2483.5	52.54	-12.78	39.76	74	34.24	peak	Horizontal		
			8-DPSK						
2390	54.87	-13.06	41.81	74	32.19	peak	Vertical		
2390	54.97	-13.06	41.91	74	32.09	peak	Horizontal		
2483.5	51.89	-12.78	39.11	74	34.89	peak	Vertical		
2483.5	52.58	-12.78	39.8	74	34.2	peak	Horizontal		

NOTE: The PK value is less than the AV value, AV value is not required.

4. 20 DB OCCUPY BANDWIDTH

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247a(1)	20dB bandwidth	/	2400-2483.5	PASS

4.1.1 TEST PROCEDURE

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 Bandwidth: RBW=30 kHz, VBW=100 kHz, detector= Peak

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1015 hPa	Test Voltage :	DC 5Vfrom adapter
Test Mode :	GFSK Mode /CH01, CH40, CH79		

Frequency	20dB Bandwidth (MHz)	Limit	Result
2402 MHz	0.7039	/	PASS
2441 MHz	0.6750	/	PASS
2480 MHz	0.7309	/	PASS

EUT:Mobile ComputerModel Name : WF68Temperature:25 °CRelative Humidity : 60%Pressure:1015 hPaTest Voltage : DC 5Vfrom adapterTest Mode :π/4-DQPSK, Mode /CH01, CH40, CH79

Frequency	20dB Bandwidth (MHz)	Limit	Result
2402 MHz	1.118	/	PASS
2441 MHz	1.109	/	PASS
2480 MHz	1.094	/	PASS

Min Hold

Detector

Man

Auto

#VBW 100 kHz

Total Power

OBW Power

x dB

5.24 dBm

99.00 %

-20.00 dB

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

1.0605 MHz

-2.417 kHz

1.109 MHz

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1015 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	8-DPSK Mode /CH01, CH40, CH79			

Frequency	20dB Bandwidth (MHz)	Limit	Result
2402 MHz	1.126	/	PASS
2441 MHz	1.161	/	PASS
2480 MHz	1.161	/	PASS

5. CARRIER FREQUENCY SEPARATION TEST

5.1 APPLIED PROCEDURES / LIMIT

AT LIED I ROOLDOREO / LIMIT						
	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(1)	Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth (Which is greater)	2400-2483.5	PASS		

5.1.1 TEST PROCEDURE

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 kHz, VBW=300 kHz, detector= Peak, Sweep Time =auto.
- (3) The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Test.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	Mode : GFSK Mode /CH01, CH40, CH79			

Mode	Channel	Frequency (MHz)	Test Result (KHz)	Limit (kHz)	Result
GFSK	Middle	2441	1000	554.7	Pass
π/4-DQPSK	Middle	2441	1000	744.7	Pass
8DPSK	Middle	2441	1000	774.7	Pass

Properties

Span 3.000 MHz Sweep 1.000 ms (601 pts)

#VBW 300 kHz

Center 2.441000 GHz #Res BW 100 kHz

6. NUMBER OF HOPPING CHANNEL

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(a)	Number of Hopping Channel	>15 channels	2400-2483.5	PASS

6.1.1 TEST PROCEDURE

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 kHz, VBW=300 kHz, Detector=Peak, Sweep time= Auto.
- (3) The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Test.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	GFSK, π/4-DQPSK, 8-DPSK Mode /CH01, CH40, CH79			

Mode **Quantity of Hopping** Limit Judgment Channel **PASSED** 79 GFSK, π/4-DQPSK, 8DPSK >15

E-mail: mti@51mti.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Report No.: MTi170706E052

Start 2.40000 GHz

Properties)

Stop 2.48350 GHz Sweep 8.000 ms (601 pts)

#VBW 300 kHz

Start 2.40000 GHz #Res BW 100 kHz

7. DWELL TIME

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(a)	Dwell time	0.4 sec	2400-2483.5	PASS

7.1.1 TEST PROCEDURE

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.
- (9) The EUT was set to the Hopping Mode for Dwell Time Test

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	GFSK, π/4-DQPSK, 8-DPSK Mode /CH01, CH40, CH79			

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion
	DH1	2441	0.365	0.117	<0.4	PASS
GFSK	DH3	2441	1.62	0.259	<0.4	PASS
	DH5	2441	2.875	0.307	<0.4	PASS
	DH1	2441	0.3733	0.119	<0.4	PASS
π/4 DQPSK	DH3	2441	1.63	0.261	<0.4	PASS
	DH5	2441	2.883	0.308	<0.4	PASS
o DODCK	DH1	2441	0.3733	0.119	<0.4	PASS
8- DQPSK	DH3	2441	1.62	0.259	<0.4	PASS
	DH5	2441	2.867	0.306	<0.4	PASS

Note: 1 A period time = 0.4 (s) * 79 = 31.6(s)

2 DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time

Micr©test 微测检测

Micr©test 微测检测

Micr©test 微测检测

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400-2483.5	PASS

8.1.1 TEST PROCEDURE

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz)
 RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz)
- (3) The EUT was set to continuously transmitting in the max power during the test.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa Test Voltage : DC 5Vfrom adapter		
Test Mode :	GFSK, π/4-DQPSK, 8-DPSK Mode /CH01, CH40, CH79		

TX GFSK Mode					
Test Channe	Frequency	Maximum Conducted Output Power(PK)	LIMIT		
	(MHz)	(dBm)	dBm		
CH01	2402	5.52	30		
CH40	2441	5.17	30		
CH79	2480	5.33	30		
	TX π/4-DQPSK Mode				
CH01	2402	4.73	30		
CH40	2441	4.38	30		
CH79	2480	4.55	30		
TX 8-DPSK Mode					
CH01	2402	4.77	30		
CH40	2441	4.39	30		
CH79	2480	4.66	30		

\\\\

9. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE& CONDUCTED EMISSIONS APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

9.1 DEVIATION FROM STANDARD

No deviation.

9.2 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

9.4 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter

Frequency Band	Delta Peak to band emission (dBc)	> Limit	Result		
	GFSK mode				
Left-band	61.834	20	Pass		
Right-band	61.934	20	Pass		
π/4-DQPSK mode					
Left-band	40.007	20	Pass		
Right-band	61.775	20	Pass		
8-DPSK mode					
Left-band	55.447	20	Pass		
Right-band	63.755	20	Pass		

GFSK: Band Edge, Left Side

GFSK: Band Edge, Right Side

 $\pi/4$ -DQPSK: Band Edge, Left Side

 $\pi/4$ -DQPSK: Band Edge, Right Side

8-DPSK: Band Edge, Right Side

Hopping Mode

Frequency Band	Delta Peak to band emission (dBc)	> Limit (dBc)	Result	
	GFSK mode			
Left-band	61.564	20	Pass	
Right-band	65.19	20	Pass	
π/4-DQPSK mode				
Left-band	61.889	20	Pass	
Right-band	63.266	20	Pass	
8-DPSK mode				
Left-band	60.768	20	Pass	
Right-band	63.52	20	Pass	

GFSK: Band Edge, Right Side

 $\pi/4$ -DQPSK: Band Edge, Left Side

 $\pi/4$ -DQPSK: Band Edge, Right Side

8-DPSK: Band Edge, Left Side

8-DPSK: Band Edge, Right Side

All mode has been tested, and only worst data of GFSK mode were listed.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is integrated antenna -0.76dbi). It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

END OF REPORT