Tọa độ (x, y) tại thời điểm t(t > 0) của một điểm P chuyển động trên mặt phẳng tọa độ xy được biểu diễn bởi $x = t^2 \cos t$, $y = t^2 \sin t$. Gọi O là gốc tọa độ và gọi \vec{v} là vector vận tốc của P tại thời điểm t.

- (1) Gọi góc giữa \overrightarrow{OP} và \overrightarrow{v} là $\theta(t)$. Tính giới hạn $\lim_{t\to\infty} \theta(t)$.
- (2) Trong các giá trị của t(t>0) sao cho \vec{v} song song với trục y thì giá trị nhỏ nhất là t_1 , giá trị nhỏ tiếp theo là t_2 . Chứng minh bất đẳng thức $t_2-t_1<\pi$

Lời giải:

(1) Với
$$P(x, y)$$
 và $x = t^2 \cos t$, $y = t^2 \sin t$ ta có: $\overrightarrow{OP} = t^2 (\cos t, \sin t)$

$$\frac{dx}{dt} = 2t \cos t - t^2 \sin t, \frac{dy}{dt} = 2t \sin t + t^2 \cos t$$

Khi đó $\vec{v} = t(2\cos t - t\sin t, 2\sin t + t\cos t)$

Ta có: $\overrightarrow{OP} \cdot \overrightarrow{v} = t^3 \left(2\cos^2 t - t\cos t\sin t + 2\sin^2 t + t\sin t\cos t \right) = 2t^3$

$$|\overrightarrow{OP}| = t^2, |\overrightarrow{v}| = t\sqrt{(2\cos t - t\sin t)^2 + (2\sin t + t\cos t)^2} = t\sqrt{t^2 + 4}$$

Với $\theta(t)$ $(0 \le \theta \le \pi)$ là góc tạo bởi \overrightarrow{OP} và \overrightarrow{v} ta có:

$$\cos\theta(t) = \frac{\overrightarrow{OP}.\overrightarrow{v}}{|\overrightarrow{OP}|.|\overrightarrow{v}|} = \frac{2t^3}{t^3\sqrt{t^2+4}} = \frac{2}{\sqrt{t^2+4}}$$

Như vậy, khi $t \to \infty$ thì $\cos \theta(t) \to 0$, $\lim_{t \to \infty} \theta(t) = \frac{\pi}{2}$

(2) Với t > 0, \vec{v} và trục y song song với nhau khi $\frac{dx}{dt} = 0$, $2\cos t - t\sin t = 0$. Có nghĩa là: $2\cos t = t\sin t$ nên với $\cos t \neq 0$ ta có: $\tan t = \frac{2}{t}$ (*)

Nghiệm của phương trình (*) được biểu diễn dưới dạng tọa độ t là giao điểm của $s = \tan t$ và $s = \frac{2}{t}$. Giá trị nhỏ nhất là t_1 , giá trị nhỏ tiếp theo là t_2 đều mang giá trị dương và được biểu diễn như hình vẽ bên.

[Giải thích]

Trên đây là bài toán cơ bản về vector vận tốc. Câu (2) có rất nhiều phương pháp giải tuy nhiên lời giải trên đây mang tính cảm tính nhất.