

Single LoD Dense Grid NeRF for Surface Reconstruction

Qualitative Results

Single LoD Dense Grid NeRF for Surface Reconstruction

Quantitative Results: Reconstruction Error

	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0225	0.0097	0.0104	0.0312	0.0275
Hausdorff	0.2576	0.0878	0.1020	0.3054	0.2068

Implementation Choices:

Grid: Resolution: $256 \times 256 \times 256$

MLP Structure: Input feature dimension: 3; Hidden layer feature dimension: 64; Number of hidden layers: 3

Regularization: Number of sampling points: 10000; Shifting scale: 0.15; Regularization Weight: 0.02

Training Termination Criteria: loss < 0.02, or loss < 0.05 and change of loss < 0.00001

Multiple LoD Dense Grid NeRF for Surface Reconstruction

Qualitative Results

Dragon_original

Multiple LoD Dense Grid NeRF for Surface Reconstruction

Quantitative Results: Reconstruction Error

	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0019	0.0029	0.0021	0.0021	0.0020
Hausdroff	0.0093	0.0211	0.0306	0.0195	0.0265

Implementation Choices:

Grid: Resolution: [8, 16,32, 64, 128, 256] (6 Levels)

MLP Structure: Input feature dimension: 32; Hidden layer feature dimension: 128; Number of hidden layers: 1

Regularization: Number of sampling points: 10000; Shifting scale: 0.15; Regularization Weight: 0.02

Training Termination Criteria: loss < 0.02, or loss < 0.05 and change of loss < 0.0001

Hash Grid NeRF for Surface Reconstruction

Hash Grid NeRF for Surface Reconstruction

Quantitative Results: Reconstruction Error

	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0023	0.0028	0.0023	0.0024	0.0024
Hausdroff	0.0432	0.0386	0.0707	0.0614	00363

Implementation Choices:

Grid: Resolution: [7, 8, 11, 14, 18, 23, 30, 38, 50, 64] (10 Levels), Bandwidth: 19

MLP Structure: Input feature dimension: 16; Hidden layer feature dimension: 128; Number of hidden layers: 2

Regularization: Number of sampling points: 10000; Shifting scale: 0.1; Regularization Weight: 0.02

Training Termination Criteria: loss < 0.01, or loss < 0.05 and change of loss < 0.00001

Comparison: Single LoD VS Multiple LoD

Codebook Size:

- \Rightarrow Single LoD: $256^3 \times 3 = 50,331,648$
- \diamond Multiple LoD: $(8^3 + 16^3 + 32^3 + 64^3 + 128^3 + 256^3) \times 32 = 613,564,416$
- ♦ Model Size (this is a rough estimation, as we disregard the bias terms):
 - \diamond Single LoD: $3 \times 64 + 64 \times 64 + 64 \times 64 + 64 \times 64 = 12,480$
 - \diamond Multiple LoD: $32 \times 128 + 128 \times 128 = 20,480$
- ♦ Speed (Training Time):

	Bunny	Column	Dragon	Serapis	Teapot
Single LoD	4 s	10s	4 s	6s	3s
Multiple LoD	47s	3min 45s	1min 34s	49s	1min 26s

Quality (Reconstruction Error - Chamfer):

	Bunny	Column	Dragon	Serapis	Teapot
Single LoD	0.0225	0.0097	0.0104	0.0312	0.0275
Multiple LoD	0.0019	0.0029	0.0021	0.0021	0.0020

Conclusion

- The trade-off between Single LoD and Multiple LoD Regular Grids is that:
- Single LoD grids requires fewer storage space for the codebook and the network
- ♦ Network with single LoD grids is faster to train
- ♦ Network with multiple LoD grids generates reconstruction of better quality.
- ♦ The trade-off is: Storage and Speed VS Quality

Comparison: Regular Grid VS Hash Grid

♦ Codebook Size:

- \diamond Single LoD: $256^3 \times 3 = 50,331,648$
- \diamond Multiple LoD: $(8^3 + 16^3 + 32^3 + 64^3 + 128^3 + 256^3) \times 32 = 613,564,416$
- \Leftrightarrow Hash Grid: $2^{19} \times 16 = 8,388,608$

♦ Model Size:

- \diamond Single LoD: $3 \times 64 + 64 \times 64 + 64 \times 64 + 64 \times 64 = 12,480$
- \diamond Multiple LoD: $32 \times 128 + 128 \times 128 = 20,480$
- \diamond Hash Grid: $16 \times 128 + 128 \times 128 + 128 \times 128 = 34,816$

Speed (Training Time):

	Bunny	Column	Dragon	Serapis	Teapot
Single LoD	4 s	10s	4 s	6s	3s
Multiple LoD	47s	3min 45s	1min 34s	49s	1min 26s
Hash Grid	1min 51s	5min 53s	3min 9s	1min 43s	2min 59s

Quality (Reconstruction Error - Chamfer)

	Bunny	Column	Dragon	Serapis	Teapot
Single LoD	0.0225	0.0097	0.0104	0.0312	0.0275
Multiple LoD	0.0019	0.0029	0.0021	0.0021	0.0020
Hash Grid	0.0023	0.0028	0.0023	0.0024	0.0024

Conclusion

- * Hash grids require much fewer storage space for the codebook. Although there are more network parameters, the overall storage burden for hash grids is much fewer than regular grids;
- ♦ Network with hash grids is much slow to train;
- * Network with hash grids generates far better reconstructions than single LoD regular grids. The reconstruction quality is slightly inferior to multiple LoD regular grids.

Comparison: Resolution at Reconstruction Stage

Resolution = 256			A NEW YORK OF THE REAL PROPERTY.		The Park House Services
	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0014	0.0014	0.0013	0.0016	0.0011
Hausdorff	0.0087	0.0110	0.0271	0.0155	0.0113
Resolution = 128					
	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0019	0.0029	0.0021	0.0021	0.0020
Hausdorff	0.0093	0.0211	0.0306	0.0195	0.0265
Resolution = 64					
	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0044	0.0062	0.0048	0.0044	0.0040
Hausdorff	0.0257	0.0316	0.0707	0.0322	0.0325
Resolution = 32					
	Bunny	Column	Dragon_original	Serapis	Utah_teapot
Chamfer	0.0103	0.0109	0.0119	0.0105	0.0115
Hausdorff	0.0572	0.0422	0.1589	0.0599	0.0771

Conclusion: Lower resolution at reconstruction stage leads to worsened reconstruction quality.