

"Programming Massively Parallel Processors" Book and GPU Teaching Kit: New 3rd Edition

Wen-Mei Hwu (University of Illinois) and Joe Bungo (NVIDIA)

Supercomputing Conference 2016, Salt Lake City, Utah

AGENDA

Textbook Overview

New 3rd edition content

UIUC GPU Activities

NVIDIA GPU Educators Program and Teaching Kits

PROGRAMMING MASSIVELY PARALLEL PROCESSORS

3rd Edition Textbook

Learn to program heterogeneous parallel computing systems

High performance and energy-efficiency Functionality and maintainability Scalability across future generations

Technical subjects

Parallel programming API, tools and techniques Principles and patterns of parallel algorithms Application case studies Processor architecture features and constraints

Free Electronic Copy w/Teaching Kit for Educators!

https://developer.nvidia.com/educators

CHAPTER

Parallel patterns: sparse matrix computation

An introduction to data compression and regularization

CHAPTER

Application case study machine learning

Boris Ginsburg

CHAPTER

CHAPTER OUTLI

10.1 Background..

10.2 Parallel SpMV

10.3 Padding and T

10.4 Using a Hybrid 10.5 Sorting and Pa

10.6 Summary

10.7 Exercises.....

References

Parallel patterns: merge sort

An introduction to tiling with dynamic input data identification

Li-Wen Chang and Jie Lv

CHAPTER

APT

1 Ba

2 **C**c

Ct

3 **C**c

4 Re

5 cı

6 Ex

CHAPTER OUTLINE

11.1 Background 11.2 A Sequential Merge A 11.3 A Parallelization Appr 11.4 Co-Rank Function Imp 11.5 A Basic Parallel Merg 11.6 A Tiled Merge Kernel. 11.7 A Circular-Buffer Mer 11.8 Summary 11.9 Exercises.....

Reference.

Parallel patterns: graph search

Juan Gómez-Luna and Izzat El Hajj

CHARTER CUITLINE

CHAPTER OUTLINE			
12.1	Background	. 25	
12.2	Breadth-First Search	. 260	
12.3	A Sequential BFS Function	. 262	
12.4	A Parallel BFS Function	. 26	
12.5	Optimizations	. 270	
	Memory Bandwidth	270	
	Hierarchical Queues	27	
	Kernel Launch Overhead	272	
	Load Balance	273	
12.6	Summary	. 27	
12.7	Exercises	.273	
Refer	ences	.274	

Parallel programming with OpenACC

Jeff Larkin

CHAPTER

CHAPTER OUTL

19.2 OpenACC Dire

The OpenAC The OpenAC Comparison OpenACC Da

OpenACC Lo OpenACC Ro Asynchronou

19.4 Comparing O

CHAPTER

19.1 The OpenACC More on CUDA and 19.3 OpenACC by graphics processing unit computing

Mark Harris and Isaac Gelado

CHAPTER OUTLINE

20.1	Model of Host/Device Interaction	44
20.2	Kernel Execution Control	44
20.3	Memory Bandwidth and Compute Throughput	45
20.4	Programming Environment	45
20.5	Future Outlook	45
Refer	ences	45

UIUC Activities

GPU Computing

UIUC ECE408/CS483

Semester calendar, 15 weeks Uses 18 modules Lecture slides, quizzes, labs

Coursera HPP

7 weeks
Uses 10 modules
Lecture videos, lecture slides, quizzes, labs

ECE408/CS483

Around 100 students from UIUC

Around 80 students for UIUC and collaborating institutions

Summer School

Around 100 students from all over the world

Coursera HPP

Around 20,000 students worldwide

WebGPU.com

A System for Online GPU Development

- An online IDE for GPU development
- Used intensively at UIUC for the past 4 years
- Essential tool for the Coursera courses offered as well as the introductory and advanced teaching courses at UIUC and several other Universities
- Over 15,000 registered users

Published at EduPar 2016 "WebGPU: A Scalable Online Development Platform for GPU Programming Courses" - A. Dakkak, C. Pearson and W. Hwu

GPU Teaching Kit for Accelerated Computing

Available to Instructors Now! developer.nvidia.com/educators

NVIDIA GPU EDUCATORS PROGRAM

Advancing STEM Education with GPU Accelerated Computing

"What an amazing resource for educators in GPU computing! The GPU Teaching Kit has a wealth of resources that allow both experienced and new teachers in parallel computing easily incorporate GPUs into their current course or design an entirely new course."

Prof. John Owens, UC-Davis

"The GPU teaching kit covers all aspects of GPU based programming.. the epitome for educators who want to float a course on heterogeneous computing using graphics processors as accelerators."

Dr. Tajendra Singh, UCLA

"Teaching resources such as these will be invaluable in helping the next generation of scientists and engineers know how to fully harness the capability of this exciting technology." Dr. Alan Gray, University of Edinburgh

"The Teaching Kit covers all the needed content of a GPU/computing course.. The projects and quiz designs are handy, saving a lot of time and effort. Moreover, the whole structure is well organized to lead students step by step in CUDA programming. I highly recommend integrating it into a related syllabus."

Dr. Bin Zhou, University of Science and Technology of China

FLAGSHIP OFFERING: GPU TEACHING KITS

Breaking the Barriers to GPU Education in Academia

Co-develop with academic partners

Comprehensive teaching materials

Lecture slides and notes Lecture videos Hands-on labs/solutions Larger coding projects/solutions Quiz/exam questions/solution

GPU compute resource

Software tools

Textbooks and/or e-books

FLAGSHIP OFFERING: GPU TEACHING KITS

Breaking the Barriers to GPU Education in Academia

Different kits for different courses

Accelerated/parallel computing
Robotics
Machine/deep learning (Coming Soon!)
Virtual Reality
Computer vision
Computer architecture
Computational domain sciences
Etc.

Localizations/translations in progress

OTHER PROGRAM OFFERINGS

Collaborative Opportunities and Supporting Expertise

Instructor workshops, conferences, sponsorships and exhibits

Enablement web pages

Getting started guides/videos

Email updates

Feedback and enhancement requests

GPU Teaching Kit for Accelerated Computing

Available to Instructors Now! developer.nvidia.com/educators

GPU TECHNOLOGY CONFERENCE

May 8 - 11, 2017 | Silicon Valley | #GTC17 www.gputechconf.com

CONNECT

Connect with technology experts from NVIDIA and other leading organizations

LEARN

Gain insight and valuable hands-on training through hundreds of sessions and research posters

DISCOVER

See how GPU technologies are creating amazing breakthroughs in important fields such as deep learning

INNOVATE

Hear about disruptive innovations as early-stage companies and startups present their work

JOIN THE ACTION! APPLY BY NOV. 20 TO PRESENT A GTC 2017 TALK OR LAB AT WWW.GPUTECHCONF.COM

Don't miss the world's most important event for GPU developers May 8 - 11, 2017 in Silicon Valley

Meet for further discussion!

Tues. Nov. 15th, 3-4 PM <u>or</u> Wed. Nov. 16th, 10-11 AM Peery Hotel, Room Jasper, 110 West Broadway

GPU Teaching Kit – Accelerated Computing

Available to Instructors Now!

developer.nvidia.com/educators