Manufacturing process 2 TA212 LAB

Group No: 05
Year 2023-24
Semester – 2
Lab Day - Tuesday

Tutor : Dr. Niraj Sinha

Course I/C: Dr. Niraj Sinha

Guide Name: Mr.Kishan Babu Prajapati

Dhananjay Dixit 220351

Dhruv Budhedeo 220360

Dhruv Bansal 220359

Divya Choudhary 220374

Gopika Sivani K S 220411

Gorre Karthik 220412

TA212A: Manufacturing Process II

Project Title: Automatic Opening Bridge and Vehicle Barrier System

Group Number: 5 (Tuesday)

Dhruv Bansal (220359) Divya Choudhary (220374)

Gopika Sivani K S(220411) Gorre Karthik (220412)

Dhruv Budhedeo (220360) Dhananjay Dixit (220351)

Project Guide : Instructor :

Mr. Kishan Babu Prajapati Prof. Niraj Sinha

Introduction

The objective of the project is to build a split bridge, which would be perfectly coordinated with a pair of barriers which open simultaneously as the bridge is closed and falls back to the original position as the bridge swings open, all the movements occur at a steady pace. The set-up senses the upcoming ship andperform the set of actions described.

We use several gear mechanisms to achieve the coordination of barrier and split bridge, while the IR sensor senses the upcoming ship and gives off a signalfor the bridge to open and barriers to close.

Motivation

Our group is motivated by the opportunity to improve safety, efficiency, and sustainability in maritime transportation. By developing a system that coordinates the movement of a splitbridge and barriers, we aim to enhance safety for ships passing through the area while improving operational efficiency by combining gear mechanisms with sensor technology to automate bridge operations. We recognize the environmental impact of efficient transportation and strive tocontribute to reducing traffic congestion and emissions.

Moreover, this project offers valuable learning opportunities and skill development for our team members, allowing them to learn the in depth working of several gear mechanisms andwork with Arduino.

Materials List

		Machine			
Part	Part Name	Page	Material	process used	Quantity
No :		No	used		
1	Base Plate	9	Mild steel	Drilling	1
2	Angle	10	Mild steel	Drilling	10
3	Flat Type 2	11	Mild steel	Drilling	4
4	Bridge Rod	12	Mild steel	Cutting	2
5	Flat Type 1	13	Mild steel	Drilling	2
6	Bridge	14	GI Sheet	Cutting	2
7	Motor Support	15	Mild steel	Drilling	1
8	Worm	16	Mild steel	Lathe & Milling	2
9	Worm Gear	17	Mild steel	Lathe & Milling	2
10	Sprocket	18	Mild steel	Lathe & Milling	2
11	Barrier Support Column	19	Mild steel	Drilling	2
12	Barrier Support Rod	20	Mild steel	Cutting	1
13	Barrier	21	Mild Steel	Drilling	2
14	Side Column Rod Mount	22	Mild Steel	Drilling	1
15	Side Column Rod	23	Mild Steel	Cutting	2
16	Chain	-	Mild Steel	-	1
17	Motors	-	-	-	2

Calculation (Worm/Worm Gear Assembly)

No.	Item	Symbol	Formula
1	Normal Module	m _n	1.5
2	Normal Pressure Angle	(a _n)	20°
3	No. of threads, No. of teeth	Z	1 20
4	Pitch Diameter of worm	d ₁	18
5	Pitch Diameter of worm gear	d ₂	30.105
6	Reference cylinder lead Angle	Y	4.78
7	Centre Distance	а	23.84
8	Addendum	h _{a1} h _{a2}	1.5 1.287
9	whole Depth	h	3.375
10	outside Diameter	d _{a1}	21 34.178
11	Throat Diameter	dt	32.679
12	Throat Surface Radius	r ₁	7.5
13	Root Diameter	d _{f1}	14.25 25.929

Sprocket Calculations

ITEMS	CALCULATIONS
PITCH	12.7
NO OF TEETHS	9
PITCH DIAMETER	37.13
OUTSIDE DIAMETER	42.51

TORQUE CALCULATION

For 2Nm Motor:

Step 1: Determine the load inertia (IL) of the arm as:

$$JL = Jx = (1/12) \rho ABC [(A^2 + B^2) + 12r^2]$$

Step 2: Determine the torque:

$$T_a = (JL \times V)/(9.55 \times t_a)$$

V – speed in rpm, ta - acceleration/deceleration time

$$T_a = \{(392.457 \times 10^{-6}) \times (373/60)\}/(9.55 * 1) = 0.00255 \text{ N-m}\}$$

With Safey Factor (X = 2) =
$$(T_a * 2) = 0.05 \text{ N-m}$$

(As torque required is less than the rated torque of Motor it is safe to use)

For 1Nm Motor:

 $T_a = T_1$ (worm shaft & sprocket) + T_2 (Bridge + worm gear)

$$T_1 = (0.017 \times 30)/(9.55 \times 0.5) = 0.106 \text{ N-m}$$

With safety factor = 2 T1 = 0.212 N-m

$$T_2 = (0.0255 * 30*2/20)/(9.55 \times 0.5) = 0.016 \text{ N-m}$$

Total Torque = T1 + T2 = 0.123 N-m

 $T_{\text{a}}\,\text{safe} = 2*0.123 = 0.246\,\text{N-m}$ (which is less than the rated torque = $1\,\text{N-m}$)

COST CALCULATION

MATERIAL /MACHINE NAME	Time/ Amount used	Cost	Total Cost
Mild Steel	20.97 Kg	90 Rs/kg	Rs 1887.3/-
Lathe Machine	7Hrs	350Rs/hr	Rs 2450/-
3D Printer	1.5Hrs	300Rs/hr	Rs 450/-
Milling	3Hrs	450Rs/hr	Rs 1350/-
Drilling	2Hrs	100Rs/hr	Rs 200/-

TOTAL AMOUNT = Rs 6337.3/-

Drawn By Dhruv Budhedeo	Part Name Worm	
Guide Kishan Babu Prajapati	Material Used Mild Steel	
All Dimensions are in mm	Scale 1:1	Part No. 8

Drawn By	Part Name		
Dhruv Budhedeo	Worm Gear		
Guide	Material Used		
Kishan Babu Prajapati	Mild Steel		
All Dimensions are in mm	Scale 1:1	Part No. 9	

Drawn By	Part Name		
Dhruv Budhedeo	Sprocket		
Guide	Material Used		
Kishan Babu Prajapati	Mild Steel		
All Dimensions are in mm	Scale 1:1	Part No. 10	

Conclusion

In conclusion, the automatic opening bridge and vehicle barrier system project have demonstrated significant advancements in enhancing traffic flow management and security control. The implementation of automated mechanisms not only streamlines the process of bridge access but also fortifies security measures against unauthorized vehicular entry. Through meticulous design and integration of sensors and control systems, the project ensures operational efficiency and reliability. Furthermore, the system's adaptability to various environmental conditions underscores its versatility and practicality in real-world scenarios. Overall, this project marks a substantial milestone in modern infrastructure development, promising safer and more efficient transportation networks for communities.