Devoir maison : le nombre dérivé

Première 6

1 Calcul de nombre dérivé

g est la fonction définie sur]2; $+\infty$ [par $g(x) = \frac{1}{x-2}$.

1. (a) Tout d'abord, on calcule g(3)=1. Soit $h\neq 0$ tel que 3+h appartienne à]2; $+\infty[$, on calcule $g(3+h)=\frac{1}{3+h-2}=\frac{1}{1+h}$.

Ainsi,
$$\frac{g(3+h)-g(3)}{h} = \frac{\frac{1}{1+h}-1}{h} = \frac{\frac{1-(1+h)}{1+h}}{h} = \frac{\frac{h}{1+h}}{h} =$$

- (b) En déduire g'(3).
- 2. Soit $f(x) = 2x^2 3x + 2$. Calculer f'(4) en détaillant la démarche et les calculs.

2 Tracer une courbe connaissant ses tangentes

On donne les renseignements suivants sur la fonction f.

\boldsymbol{x}	-2	0	1
f(x)	1	$\frac{1}{2}$	$\frac{-3}{2}$
f'(x)	3	-1	-2

On sait de plus que les tangentes à la courbe de f au point d'abscisse -1 et au point d'abscisse 2 sont horizontales.

- 1. Que valent f'(-1) et f'(2).
- 2. Dresser une représentation graphique compatible avec les informations ci-dessus.

3 Equations de tangentes

La courbe ci-dessus représente une fonction f définie sur l'intervalle [0;10] ainsi que cinq de ces tangentes.

- 1. Déterminer les nombres f'(0), f'(4), f'(8), f'(10).
- 2. En déduire les équations des tangentes à la courbe représentative de f en 0, 4, 8, 10.