PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il punto di lavoro dei transistor M_1 e M_2 ;
- 2) la potenza erogata dal generatore di corrente I_A ;
- 3) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} ;
- 4) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_i$;
- 5) il guadagno di corrente ai piccoli segnali ac $A_i = i_o/i_i$;

Dati:

 V_{DD} =12 V, V_{G2} =4 V, I_A =16 mA R_i = 10 k Ω , R_I = 500 k Ω , R_{SI} =1 k Ω , R_{D2} =1 k Ω , R_L = 1 k Ω ,

 M_{I} : k_{pI} =4 mA/V², V_{TPI} = -2 V, λ_{pI} =0 V⁻¹;

 M_3 : k_{n2} =4 mA/V², V_{TN2} = 2 V, λ_{n2} = 0 V⁻¹.

POLAR 177A TIONE

$$Av = \frac{Nb2}{NS2} \cdot \frac{Nb1}{Nc1} \cdot \frac{Nc1}{Nc} = \frac{CG}{Ave} \cdot \frac{CS+RS}{Aue} \cdot \frac{Nc1}{Nc1}$$

$$CG = \frac{Nb2}{NS2} = -\frac{8m_2Ng_{02}}{Ro2||RL} = +\frac{9m_2Ro_2||RL}{Ro2||RL}$$

$$-\frac{Ng_{02}}{NS2} = -\frac{9m_2Ng_{02}}{Ro2||RL} = +\frac{9m_2Ro_2||RL}{Ro2||RL}$$

$$-\frac{Ng_{02}}{NS2} = \frac{4}{Ng_{01}} \cdot \frac{Rc_{02}}{Ng_{01}} \cdot \frac{1}{Rc_{02}} = \frac{9m_1Rc_{02}}{4}$$

$$-\frac{9m_1Rc_{02}}{Ng_{01}} \cdot \frac{1}{Rc_{01}} = \frac{9m_1Rc_{02}}{4}$$

$$-\frac{9m_1Rc_{02$$

PROBLEMA P2

Sia dato il circuito nella figura di pagina seguente che usa amplificatori operazionali e componenti passivi ideali. Le resistenze hanno valore $R_1 = R_2 = R_3 = R_4 = R_6 = 10 \text{k}\Omega$ e $R_5 = 90 \text{k}\Omega$. Le capacità valgono: $C_1 = 10 \text{nF}$, $C_2 = 1 \mu \text{F}$, $C_3 = 100 \text{nF}$ e $C_4 = 0.1 \text{nF}$.

- 1) ricavare l'espressione della funzione di trasferimento $W(\omega)=v_o(\omega)/v_{in}(\omega)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W, usando, nel caso della fase, l'approssimazione senza discontinuità.
- 3) Modificare in modo opportuno il valore di C_1 affinché il diagramma di Bode del modulo (asintotico) calcolato in $\omega = 10^5$ rad/s sia pari a 40dB.

PROBLEMA Q1 Sia dato il circuito in figura composto da un diodo ideale D_1 ($V_{ON} = 0V$) ed uno diodo Zener D_2 ($V_{ON} = 0V$ e $V_Z = 2V$). Trovare le regioni di funzionamento dei diodi e tracciare la tensione di uscita V_{OUT} per V_{IN} compreso tra -10V e +10V.

PROBLEMA Q2 Data la seguente mappa di Karnaugh 1) Trovare una F minimizzata 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali. 01 00 11 10 ΑB 1 1 00 Х 01 X 1 1 11 1 1 Х 1 10 1 Χ Х $A\overline{c} + C(\overline{A} + D)$ F = AC+AC+CD C:D AC 4 于 C(A+D) A+D D