Review Section: Statistical Inferences

Zhentao Shi

1/25/2012

1 Hypothesis Testing

When we start the investigation of hypothesis testing, we encounter a few terminologies. A hypothesis is a statement about the parameter space Θ . The null hypothesis Θ_0 is a subset of Θ that the research intends to investigate. Typically it is suggested by some scientific theory. The alternative hypothesis Θ_1 is the complement of Θ_0 , that is, $\Theta_1 = \Theta \setminus \Theta_0$. Hypothesis testing is a decision whether to accept the null hypothesis or to reject it according to the observation.

A test function is a mapping $\phi: \mathcal{X}^n \mapsto \{0,1\}$, where \mathcal{X} is the sample space. We say we accept the null if $\phi(\mathbf{x}) = 0$, and we reject it if $\phi(\mathbf{x}) = 1$. The acceptance region is defined as $A_{\phi} = \{\mathbf{x} \in \mathcal{X}^n : \phi(\mathbf{x}) = 0\}$, and the rejection region is $R_{\phi} = \{\mathbf{x} \in \mathcal{X}^n : \phi(\mathbf{x}) = 1\}$. The power function of the test ϕ is $\beta_{\phi}(\theta) = \mathbb{P}_{\theta}(\phi(\mathbf{X}) = 1) = \mathbb{E}_{\theta}(\phi(\mathbf{X}))$. It is the probability that the test function ϕ takes value 1 if the true parameter that generates the sample is θ . The size of the test ϕ is a real number $\alpha = \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta)$. The level of the test ϕ is a value $\alpha \in (0,1)$ such that $\alpha \geq \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta)$. When it is difficult to get the exact supremum of a test, we typically use level to replace size. The probability of committing Type I error is $\beta_{\phi}(\theta)$ for $\theta \in \Theta_0$. The probability of committing Type II error is $1 - \beta_{\phi}(\theta)$ for $\theta \in \Theta_1$. The introduction of the power function gives us a tool to describe the performance of the test function at each point on the parameter space.

There has been a philosophical debate for decades about the hypothesis testing framework. At present the prevailing framework in college-level statistics education is the frequentist perspective. Generally speaking, the frequentist's view about hypothesis testing is that a research should be conservative about the Type I error. Only if when overwhelming evidence is demonstrated should a researcher believes that the null hypothesis can be rejected.

1

The definition of the test function is too general to be useful. We do want to narrow down to a set of meaningful test function. Under the notion of protecting the null hypothesis, a desirable test should have a small level. Conventionally we take $\alpha = 0.01$, 0.05 or 0.1.

We define $\Psi_{\alpha} = \{\phi : \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta) \leq \alpha\}$ as the class of test functions of level smaller than α . A uniformly most powerful test $\phi^* \in \Psi_{\alpha}$ is a test function such that, for every $\phi \in \Psi_{\alpha}$

$$\beta_{\phi^*}(\theta) \ge \beta_{\phi}(\theta)$$

uniformly over $\theta \in \Theta_1$.

Example 1. Suppose a random sample of size 6 is generated from $(X_1, ..., X_6) \sim N(\theta, 1)$, where θ is unknown. We want to infer the population mean of the normal distribution. The null hypothesis is H_0 : $\theta \leq 0$ and the alternative is H_1 : $\theta > 0$. The test function $\phi(\mathbf{X}) = 1$ ($\bar{X} \geq 1.64/\sqrt{6}$) is the most powerful test among all tests of level 0.05. The power function of ϕ^* is $\beta_{\phi^*}(\theta) = \Phi(\sqrt{6}\theta - 1.64)$. (I showed it in the section.)

2 Confidence Interval

An interval estimate is a function $C: \mathcal{X}^n \mapsto \{\Theta': \Theta' \subseteq \Theta\}$ that maps a point in the sample space to a subset of the parameter space. The coverage probability of an interval estimator $C(\mathbf{X})$ is defined as \mathbb{P}_{θ} ($\theta \in C(\mathbf{X})$). Note that the interval estimate is a deterministic set on the parameter space, while the interval estimator is a random set. The coverage probability is not the probability that the true parameter falls into the interval estimate¹. Instead it is the frequency that the interval estimator captures the true parameter that generates the sample.

Exercise 1. Suppose a random sample of size 6 is generated from $(X_1, \ldots, X_6) \sim N(\theta, 1)$. Find the coverage probability of the random interval $[\bar{X} - 1.96/\sqrt{6}, \bar{X} + 1.96/\sqrt{6}]$.

Hypothesis testing and confidence interval are closely related. Sometime it is difficult to directly construct the confidence interval, but easier to test a hypothesis. One way to a construct confidence interval is by inverting a corresponding hypothesis testing problem.

¹In the Bayesian framework where the true parameter is viewed as a random variable instead of a fixed constant we can discuss this probability.

Theorem 1. Suppose $A_{\phi}(\theta)$ the acceptance region of a test ϕ whose size is α and the null is θ . If $C(\mathbf{x})$ is constructed as

$$C(\mathbf{x}) = \{\theta \in \Theta : \mathbf{x} \in A_{\phi}(\theta)\}.$$

Then the coverage probability $\mathbb{P}_{\theta}\left(\theta \in C\left(\mathbf{X}\right)\right) = 1 - \alpha$.