

GLA University, Mathura

Department of Computer Engineering & Applications

Course: B. Tech CSE Year: 3rd Subject: TAFL (BCSE0011) Assignment: 2 (Module: 2)

Note:

- 1. You have to submit your assignment on university portal along with your class roll no. and name in each pages.
- 2. Choose your assignment set according to your Roll No.

SET:1 (Roll No. 1 to 5)

Q1: Convert the following two CFG into CNF.

G1 = {S
$$\rightarrow$$
 a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z}
G2 = {S \rightarrow a, S \rightarrow aZ, Z \rightarrow a}

Q2. Given the following ambiguous context free grammar

$$S \rightarrow Ab \mid aaB$$

$$A \rightarrow a \mid Aa$$

$$B \rightarrow b$$

- (a) Find the strings generated by the grammar that has two leftmost derivations. Show the derivations.
- (b) Show the two derivation trees for the strings.
- Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q4. State and prove pumping lemma for CFG. Prove that the given language is not context free:

i) L=
$$\{a^ib^jc^idj/i, j\geq 0\}$$

ii) L=
$$\{a^ib^ic^i/i\geq 1\}$$

Q5. Eliminate null productions

i)
$$S \rightarrow aSb/aAb/ab/a$$

$$A \rightarrow \epsilon$$

ii)
$$S \rightarrow aXbX$$

$$X \rightarrow aY/bY/\epsilon$$

$$Y \rightarrow X/d$$

.....

SET:2 (Roll No. 6 to 10)

- Q1. Prove that given grammar is ambiguous
 - $S \rightarrow 0s/1AA$
 - $A \rightarrow 0/1A/0B$
 - $B \rightarrow 1/0BB$ for string 0100110
- Q2. For the grammar $S \rightarrow aAS/a$, $A \rightarrow SbA/SS/ba$. To generate the string aabaaabbaaa find:
 - a. LMD
 - b. RMD
 - c. Parse tree
- Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.
 - $S \rightarrow 0BB$
 - $B \rightarrow 0S \mid 1S \mid 0$
- Q4. Reduce the given CFG into CNF
 - i) $S \rightarrow bA/aB$
 - $A \rightarrow bAA/aS/a$
 - $B \rightarrow aBB/bS/b$
 - ii) $S \rightarrow ASA/bA$
 - $A \rightarrow B/S$
 - $B \rightarrow a$
- Q5. Convert the grammar into GNF
 - i) $S \rightarrow AB$
 - $A \rightarrow BS/a$
 - $B \rightarrow SA/b$
 - ii) $S \rightarrow ABb/a$ $A \rightarrow aaA$
 - $B \rightarrow bAb$

SET:3 (Roll No. 11to 15)

- Q1. Eliminate unit production from the given grammar
 - $S \rightarrow AB, A \rightarrow a, B \rightarrow C/b, C \rightarrow D, D \rightarrow E E \rightarrow a$
- Q2. Remove the useless symbol from the given context free grammar:
 - $S \rightarrow aB/bX$
 - $A \rightarrow BAd/bSX/a$
 - $B \rightarrow aSB/bBX$
 - $X \rightarrow SBD/aBx/ad$
- Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.
 - $S \rightarrow 0BB$
 - $B \rightarrow 0S \mid 1S \mid 0$
- Q4. Consider a context free grammar G with the following productions:
 - $S \rightarrow 1S1/T$
 - $T \rightarrow 1 X 1 / X$

$$X \rightarrow 0 \times 0 / 1$$
.

- i) Write four strings of L(G).
- ii) Give an example of a string $w \in \{0,1\}$ such that |w| > 7 and $w \not \in L(G)$.
- Q5: Convert the following two CFG into GNF.

$$G1 = \{S \rightarrow aAlbB, B \rightarrow bBlb, A \rightarrow aAla\}$$

$$G2 = \{S \rightarrow aAlbB, B \rightarrow bBl\epsilon, A \rightarrow aAl\epsilon\}$$

.....

SET:4 (Roll No. 16 to 20)

Q1: Convert the following two CFG into CNF.

G1 = {S
$$\rightarrow$$
 a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z}
G2 = {S \rightarrow a, S \rightarrow aZ, Z \rightarrow a}

Q2: Convert the following grammar to a PDA that accepts the same language.

$$S \rightarrow 0S1 \mid A$$

$$A \rightarrow 1A0 \mid S \mid \epsilon$$

Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

- Q4. Eliminate null productions
 - i) $S \rightarrow aSb/aAb/ab/a$

$$A \rightarrow \epsilon$$

ii) $S \rightarrow aXbX$

$$X \rightarrow aY/bY/\epsilon$$

$$Y \rightarrow X/d$$

Q5. Given the following ambiguous context free grammar

$$S \rightarrow Ab \mid aaB$$

$$A \rightarrow a \mid Aa$$

$$B \rightarrow b$$

- (a) Find the strings generated by the grammar that has two leftmost derivations. Show the derivations.
- (b) Show the two derivation trees for the strings.

......

SET:5 (Roll No. 21 to 25)

Q1. Explain why the given grammar is ambiguous.

$$S \rightarrow 0A \mid 1B$$

$$A \rightarrow 0AA \mid 1S \mid 1$$

$$B \rightarrow 1BB \mid 0S \mid 0$$

Q2. Eliminate unit production from the given grammar and convert it into GNF.

$$E \rightarrow E+T/T$$

$$T \rightarrow T*F/F$$

$$F \rightarrow (E)/a$$

Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q4: Convert the following two CFG into CNF.

$$G1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z\}$$

$$G2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\}$$

Q5: Convert the following two CFG into GNF.

$$G1 = \{S \rightarrow aAlbB, B \rightarrow bBlb, A \rightarrow aAla\}$$

$$G2 = \{S \rightarrow aAlbB, B \rightarrow bBl\epsilon, A \rightarrow aAl\epsilon\}$$

.....

SET:6 (Roll No. 26 to 30)

Q1: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q2:Draw a PDA for the CFG given below:

$$S \rightarrow aSb$$

$$S \rightarrow a \mid b \mid \epsilon$$

Q3. State and prove pumping lemma for CFG. Prove that the given language is not context free:

i) L=
$$\{a^ib^jc^id^j/i, j\geq 0\}$$

ii) L=
$$\{a^ib^ic^i/i\geq 1\}$$

Q4: Convert the following two CFG into CNF.

G1 = {S
$$\rightarrow$$
 a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z}
G2 = {S \rightarrow a, S \rightarrow aZ, Z \rightarrow a}

Q5: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

.....

SET:7 (Roll No. 31 to 35)

Q1. Reduce the given CFG into CNF

i)
$$S \rightarrow bA/aB$$

$$A \rightarrow bAA/aS/a$$

$$B \rightarrow aBB/bS/b$$

ii)
$$S \rightarrow ASA/bA$$

$$A \rightarrow B/S$$

$$B \rightarrow a$$

Q2: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q3. Prove that given grammar is ambiguous

$$S \rightarrow 0s/1AA$$

$$A \rightarrow 0/1A/0B$$

Q4. State and prove pumping lemma for CFG. Prove that the given language is not context free:

i) L=
$$\{a^ib^jc^id^j/i, j\geq 0\}$$

ii) L=
$$\{a^ib^ic^i/i\geq 1\}$$

Q5. Convert the grammar into GNF

i)
$$S \rightarrow AB$$

$$A \rightarrow BS/a$$

$$B \rightarrow SA/b$$

ii)
$$S \rightarrow ABb/a$$

$$A \rightarrow aaA$$

$$B \rightarrow bAb$$

.....

SET:8 (Roll No. 36 to 40)

Q1: Convert the following two CFG into CNF.

G1 = {S
$$\rightarrow$$
 a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z}
G2 = {S \rightarrow a, S \rightarrow aZ, Z \rightarrow a}

Q2. Given the following ambiguous context free grammar

$$S \rightarrow Ab \mid aaB$$

$$A \rightarrow a \mid Aa$$

$$B \rightarrow b$$

- (a) Find the strings generated by the grammar that has two leftmost derivations. Show the derivations.
- (b) Show the two derivation trees for the strings.
- Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q4. State and prove pumping lemma for CFG. Prove that the given language is not context free:

i) L=
$$\{a^ib^jc^id^j/i, j\geq 0\}$$

ii) L=
$$\{a^ib^ic^i/i\geq 1\}$$

Q5. Eliminate null productions

i)
$$S \rightarrow aSb/aAb/ab/a$$

Q1. Eliminate unit production from the given grammar $S \rightarrow AB, A \rightarrow a, B \rightarrow C/b, C \rightarrow D, D \rightarrow E E \rightarrow a$ Q2. Remove the useless symbol from the given context free grammar: $S \rightarrow aB/bX$ $A \rightarrow BAd/bSX/a$

 $B \rightarrow aSB/bBX$

 $X \rightarrow SBD/aBx/ad$

Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA. $S \rightarrow 0BB$ $B \rightarrow 0S \mid 1S \mid 0$
Q4. Consider a context free grammar G with the following productions: $S \rightarrow 1S1 / T$ $T \rightarrow 1 X 1 / X$ $X \rightarrow 0 X 0 / 1$.
i) Write four strings of L(G).
ii) Give an example of a string $w \in \{0,1\}$ such that $ w > 7$ and $w \not\vdash L(G)$.
Q5: Convert the following two CFG into GNF. $G1 = \{S \rightarrow aAlbB, B \rightarrow bBlb, A \rightarrow aAla\}$ $G2 = \{S \rightarrow aAlbB, B \rightarrow bBl\epsilon, A \rightarrow aAl\epsilon\}$
<u>SET:11 (Roll No. 51 to 55)</u>
Q1: Convert the following two CFG into CNF.
$G1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z\}$ $G2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\}$
Q2: Convert the following grammar to a PDA that accepts the same language. $S \to 0S1 \mid A$ $A \to 1A0 \mid S \mid \epsilon$
Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA. $S \rightarrow 0BB$ $B \rightarrow 0S \mid 1S \mid 0$
Q4. Eliminate null productions i) $S \rightarrow aSb/aAb/ab/a$ $A \rightarrow \varepsilon$ ii) $S \rightarrow aXbX$ $X \rightarrow aY/bY/\varepsilon$ $Y \rightarrow X/d$ Q5. Given the following ambiguous context free grammar $S \rightarrow Ab \mid aaB$ $A \rightarrow a \mid Aa$ $B \rightarrow b$
(a) Find the strings generated by the grammar that has two leftmost derivations. Show the derivations.(b) Show the two derivation trees for the strings.

......

SET:12 (Roll No. 56 to 60)

Q1. Explain why the given grammar is ambiguous.

$$S \rightarrow 0A \mid 1B$$

$$A \rightarrow 0AA \mid 1S \mid 1$$

$$B \rightarrow 1BB \mid 0S \mid 0$$

Q2. Eliminate unit production from the given grammar and convert it into GNF.

$$E \rightarrow E+T/T$$

$$T \rightarrow T*F/F$$

$$F \rightarrow (E)/a$$

Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q4: Convert the following two CFG into CNF.

$$G1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z\}$$

$$G2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\}$$

Q5: Convert the following two CFG into GNF.

$$G1 = \{S \rightarrow aAlbB, B \rightarrow bBlb, A \rightarrow aAla\}$$

$$G2 = \{S \rightarrow aAlbB, B \rightarrow bBl\epsilon, A \rightarrow aAl\epsilon\}$$

.....

SET:13(Roll No. 61 to 65)

Q1: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Q2:Draw a PDA for the CFG given below:

$$S \rightarrow aSb$$

$$S \rightarrow a \mid b \mid \epsilon$$

- Q3. State and prove pumping lemma for CFG. Prove that the given language is not context free:
 - i) L= $\{a^ib^jc^idj/i, j\geq 0\}$
 - ii) L= $\{a^ib^ic^i/i\geq 1\}$
- Q4: Convert the following two CFG into CNF.

$$G1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z\}$$

$$G2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\}$$

Q5: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

.....

SET:14 (Roll No. 66 to 70)

- Q1. Reduce the given CFG into CNF
 - i) $S \rightarrow bA/aB$
 - $A \rightarrow bAA/aS/a$
 - $B \rightarrow aBB/bS/b$
 - ii) $S \rightarrow ASA/bA$
 - $A \rightarrow B/S$
 - $B \rightarrow a$
- Q2: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.
 - $S \rightarrow 0BB$
 - $B \rightarrow 0S \mid 1S \mid 0$
- Q3. Prove that given grammar is ambiguous
 - $S \rightarrow 0s/1AA$
 - $A \rightarrow 0/1A/0B$
- Q4. State and prove pumping lemma for CFG. Prove that the given language is not context free:
 - i) L= $\{a^ib^jc^id^j/i, j\geq 0\}$
 - ii) L= $\{a^ib^ic^i/i\geq 1\}$
- Q5. Convert the grammar into GNF
 - i) $S \rightarrow AB$
 - $A \rightarrow BS/a$
 - $B \rightarrow SA/b$
 - ii) $S \rightarrow ABb/a$
 - $A \rightarrow aaA$
 - $B \rightarrow bAb$

......

SET:15 (Roll No. 71 to 80)

- Q1. Explain why the given grammar is ambiguous.
 - $S \rightarrow 0A \mid 1B$
 - $A \rightarrow 0AA \mid 1S \mid 1$
 - $B \rightarrow 1BB \mid 0S \mid 0$
- Q2. Eliminate unit production from the given grammar and convert it into GNF.
 - $E \rightarrow E+T/T$
 - $T \rightarrow T*F/F$
 - $F \rightarrow (E)/a$
- Q3: Construct PDA for the given CFG, and test whether 0104 is acceptable by this PDA.
 - $S \rightarrow 0BB$
 - $B \rightarrow 0S \mid 1S \mid 0$
- Q4: Convert the following two CFG into CNF.

$$G1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow z\}$$

$$G2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\}$$

Q5: Convert the following two CFG into GNF. $G1 = \{S \rightarrow aAlbB, \ B \rightarrow bBlb, \ A \rightarrow aAla\}$ $G2 = \{S \rightarrow aAlbB, \ B \rightarrow bBl\epsilon, \ A \rightarrow aAl\epsilon\}$