1 MSO interpretations

Definition 1. Let \mathfrak{A} be a structure. An **MSO** interpretation is $\mathcal{I} = (\varphi_{dom}(x), (\varphi_{R_i}(x_1, \dots, x_{k_i}))_{1 \leq i \leq n})$. \mathcal{I} defines the structure $\mathcal{I}(\mathfrak{A}) = (D^{\mathcal{I}(\mathfrak{A})}, (R_i^{\mathcal{I}(\mathfrak{A})})_{1 \leq i \leq n})$, where $D^{\mathcal{I}(\mathfrak{A})} = \{a \in A \mid \mathfrak{A} \models \varphi_{dom}(a)\}$ and $R_i^{\mathcal{I}(\mathfrak{A})} = \{(x_1, \dots, x_{k_i} \mid \mathfrak{A} \models \varphi_{R_i}(x_1, \dots, x_{k_i})\}$.

Definition 2. Let \mathfrak{A} be a structure. We define $MTh_2(\mathfrak{A}) = \{ \varphi \in MSO \mid \mathfrak{A} \models \varphi \}$ as the monadic second-order theory of \mathfrak{A} .

Theorem 1. Let \mathfrak{A} be a structure and let \mathcal{I} be an MSO interpretation of \mathfrak{A} . If $MTh_2(\mathfrak{A})$ is decidable, then $MTh_2(\mathcal{I}(\mathfrak{A}))$ is decidable.

2 Transferring (Un)Decidability

Theorem 2. $MTh_2(T_2)$ is decidable.

Proof: see S2S to PTA transformation

Theorem 3. $MTh_2((\mathbb{Q}, \leq))$ is decidable.

Theorem 4. Let $G_2 = (\mathbb{N} \times \mathbb{N}, (0,0), s_h, s_v)$ with $s_h(x,y) = (x+1,y)$ and $s_v(x,y) = (x,y+1)$. Then $MTh_2(G_2)$ is undecidable.

Theorem 5. Let $(\underline{T_2}, el)$ be the extension of $\underline{T_2}$ with $el = \{(u, v) \in \{0, 1\}^* \times \{0, 1\}^* \mid |u| = |v|\}$. Then $MTh_2((T_2, el))$ is undecidable.

Proof. We provide an interpretation $\mathcal{I} = (\varphi_{\text{dom}}(x), \varphi_{(0,0)}(x), \varphi_{s_h}(x,y), \varphi_{s_v}(x,y))$ for $(\underline{T_2}, \text{el})$ such that $\mathcal{I}((T_2, \text{el})) = G_2$. Then the statement follows from theorem 1.

$$\varphi_{\text{dom}}(x) = \exists y (y \sqsubseteq x \land \forall z (z \sqsubseteq x \to (y \sqsubseteq z \leftrightarrow (\exists u \, z = S_1 u))) = 0^*1^*$$

$$\varphi_{(0,0)}(x) = (x = \varepsilon)$$

 $\varphi_{s_h}(x,y) = \operatorname{el}(x,y) \land y < x \land \forall z (\operatorname{el}(x,z) \land z < x \land y < z \rightarrow \neg \varphi_{\operatorname{dom}}(z))$

$$\varphi_{s_n}(x,y) = (y = S_1 x)$$