Principles of Data Communications

Reference Book: Data Communications and Networking by Behrouz A. Forouzan

Source Coding

- Aim is to compress data
- Reduces size of data- Compression
- eg)ababbbcca- a occurs 3 times; b occurs 4 times; c occurs 2 times. The number of bits for encoding b should be the least.

Shannon Fano Coding

Procedure

- Messages are written in decreasing order of their probabilities.
- The message set is divided into 2 subsets of equal or nearly equal probabilities.
- 0 is assigned to each message in the subset above the partition line.
- 1 is assigned to each message in the subset below the partition line.
- The procedure is continued until each subset contains only one message.

Example 1

Apply Shannon Fano coding procedure for the following message ensemble.

$$[x] = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8]$$

$$[P] = [\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{4}, \frac{1}{16}, \frac{1}{8}]$$

Messages are written in decreasing order of their probabilities.

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25		
<i>x</i> ₆	0.25		
<i>x</i> ₂	0.125		
x ₈	0.125		
<i>x</i> ₃	0.0625		
<i>x</i> ₄	0.0625		
<i>X</i> 5	0.0625		
X7	0.0625		

The message set is divided into 2 subsets of equal or nearly equal probabilities.

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25		
<i>x</i> ₆	0.25		
<i>x</i> ₂	0.125		
<i>x</i> ₈	0.125		
<i>x</i> ₃	0.0625		
X ₄	0.0625		
<i>X</i> 5	0.0625		
X7	0.0625		

$$0.25 + 0.25 = 0.5$$

 $0.125 + 0.125 + 0.0625 + 0.0625 + 0.0625 + 0.0625 = 0.5$

0 is assigned to each message in the subset above the partition line.

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0	
<i>x</i> ₆	0.25	0	
<i>X</i> ₂	0.125		
<i>X</i> 8	0.125		
<i>X</i> ₃	0.0625		
<i>X</i> ₄	0.0625		
<i>X</i> 5	0.0625		
<i>X</i> 7	0.0625		

1 is assigned to each message in the subset below the partition line.

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0	
<i>x</i> ₆	0.25	0	
<i>X</i> ₂	0.125	1	
<i>X</i> ₈	0.125	1	
<i>X</i> ₃	0.0625	1	
<i>X</i> ₄	0.0625	1	
<i>X</i> 5	0.0625	1	
<i>X</i> 7	0.0625	1	

The procedure is continued until each subset contains only one message.

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	1	
<i>x</i> ₈	0.125	1	
<i>x</i> ₃	0.0625	1	
X4	0.0625	1	
<i>X</i> 5	0.0625	1	
x ₇	0.0625	1	

First Group is split into two (0.25 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	1 0	
<i>x</i> ₈	0.125	1 0	
<i>X</i> 3	0.0625	11	
X4	0.0625	11	
<i>X</i> 5	0.0625	11	
X7	0.0625	11	

Second Group is split into two- x2, x8 in one partition and x3, x4, x5, x7 on the other (0.25 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	100	
<i>x</i> ₈	0.125	101	
<i>X</i> 3	0.0625	11	
X ₄	0.0625	11	
<i>X</i> ₅	0.0625	1 1	
x ₇	0.0625	11	

 x_2 , x_8 split into two (0.125 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	100	
<i>x</i> ₈	0.125	101	
<i>X</i> 3	0.0625	1 1 0	
<i>X</i> ₄	0.0625	1 1 0	
<i>X</i> ₅	0.0625	111	
<i>x</i> ₇	0.0625	111	

 x_3 , x_4 , x_5 , x_7 split into two; x_3 and x_4 on one partition and x_5 , x_7 on the other (0.125 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	100	
<i>x</i> ₈	0.125	101	
<i>X</i> ₃	0.0625	1100	
<i>x</i> ₄	0.0625	1 1 0 1	
<i>X</i> 5	0.0625	111	
X7	0.0625	111	

 x_3 , x_4 split into two (0.0625 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	
<i>x</i> ₆	0.25	0 1	
<i>x</i> ₂	0.125	100	
<i>x</i> ₈	0.125	101	
<i>X</i> 3	0.0625	1100	
<i>X</i> ₄	0.0625	1 1 0 1	
<i>X</i> ₅	0.0625	1110	
X ₇	0.0625	1111	

 x_5 , x_7 split into two (0.0625 probability each; 0 above the line and 1 below the line)

Message	Probability	Encoded Message	$length(n_k)$
<i>x</i> ₁	0.25	0 0	2
<i>x</i> ₆	0.25	0 1	2
<i>x</i> ₂	0.125	100	3
<i>x</i> ₈	0.125	101	3
<i>X</i> 3	0.0625	1100	4
<i>X</i> ₄	0.0625	1 1 0 1	4
<i>X</i> ₅	0.0625	1110	4
X ₇	0.0625	1111	4

 x_5 , x_7 split into two (0.0625 probability each; 0 above the line and 1 below the line)

Efficiency

$$\eta = \frac{H(x)}{L log_2 M}$$
 where

- H(x) is the entropy
- ullet L is the average length of code
- M = 2 (2 symbols- 0,1)

•
$$H(x) = \sum_{k=1}^{8} p_k \log_2 \frac{1}{p_k}$$

• k number of messages

•
$$H(x) = \frac{1}{4}log_24 + \frac{1}{8}log_28 + \frac{1}{16}log_216 + \frac{1}{16}log_216 + \frac{1}{16}log_216 + \frac{1}{16}log_216 + \frac{1}{16}log_216 + \frac{1}{8}log_28$$

•
$$H(x) = 2.75 bits/message$$

$$L = \sum_{k=1}^{8} p_k n_k$$

•
$$L = \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + \frac{1}{16} \times 4 + \frac{1}{16} \times 4 + \frac{1}{4} \times 2 + \frac{1}{16} \times 4 + \frac{1}{8} \times 3$$

•
$$\eta = \frac{H(x)}{L} = \frac{2.75}{2.75} = 1$$

Example 2

Apply Shannon Fano coding procedure for the following message ensemble.

$$[x] = [x_1, x_2, x_3, x_4, x_5, x_6, x_7]$$

$$[P] = [0.4, 0.2, 0.12, 0.08, 0.08, 0.08, 0.04]$$

- Messages are already assigned in decreasing order of probabilities
- Two ways of partitioning:
 - $[x_1, x_2]$ & $[x_3, x_4, x_5, x_6, x_7]$ 0.6,0.4 Difference 0.2
 - $[x_1] \& [x_2, x_3, x_4, x_5, x_6, x_7]$ 0.4, 0.6 Difference 0.2
- Out of the two possibilities, choose the one with the least L value (as L is in the denominator of eff.) -Aim is to maximize efficiency.

THANK YOU