Midterm 2

ECE 275

Nov 12th, 2021

(1) Your name: Student ID:

About the exam

- 1. There are total 4 problems.
- 2. Problem 1 and Problem 2 are mandatory. You have the option of doing any one of Problem 3 and Problem 4. If you do both, you will receive the best of the two.

Problem description

Design a Mealy sequential circuit which investigates an input sequence X and which will produce an output of Z=1 for any input sequence ending in 1010 provided that the sequence 001 has never occurred.

Example:

X = 101010101010Z = 00010100000

Notice that the circuit does not reset to the start state when an output of Z = 1 occurs.

Problem 1. Complete the following state diagram. You can also choose to draw state diagram from scratch. Also fill the state transition table. (20 marks)

State	Meaning		
S ₀	XXX		
S ₁	xx1		
S ₂	x10		
S₃	"101"		
S ₄	xx0		
S ₅	x00		
S ₆	"001"		

Present State	Next State		Output	
	X=0	X=1	X=0	X=1
S ₀	S ₄	S ₁		0 0
S ₁	S2			0
S ₂		S₃		0
S₃				
S ₄	S ₅			0
S ₅		S ₆		0
S ₆	S ₆	S ₆		0 0

Problem 2. Can the above some only specify which states a the state table again. (10 r	state table be reduced? Find out the equivalent states. re equivalent to each other. You do not need to write narks)

Problem 3. (State assignment).

Using the guideline method find the groups of states that should be grouped together. Draw the state assignment map. Assign a 3-bit state encoding to the states in the reduced state table derived in Problem 2. (20 marks).

Problem 4. The following state-assigned table is given. Find the boolean expressions for inputs J_0 and K_0 to a J-K flip flop that implments the transition from Present state y_0 to Next state Y_0 . Express the inputs J_0 and K_0 in terms of input X and present state y_2 , y_1 and y_0 (20 marks).

	Present sta	te	Next State			Output				
				X=0			X=1		X=0	X=1
y₂	y ₁	y _o	Y ₂	Υı	Y _o	Υ ₂	Yı	Υ _o		
	0 0	0	0	1	0	0	0	0	0	0
	0 0	1	1	1	0	1	1	1	1	0
	0 1	. 0	0	1	1	0	0	0	0	0
	0 1	. 1	0	1	1	1	1	1	0	0
	1 0	0	d	d	d	d	d	d	d	d
	1 0	1	1	0	1	1	1	1	0	0
	1 1	. 0	1	0	1	0	0	1	0	0
	1 1	1	1	1	0	1	1	1	0	0