Remark: The tensor spaces, $T^{r,s}(V)$ are also denoted $T^r_s(V)$. A tensor $\alpha \in T^{r,s}(V)$ is said to be *contravariant* in the first r arguments and *covariant* in the last s arguments. This terminology refers to the way tensors behave under coordinate changes. Given a basis (e_1, \ldots, e_n) of V, if (e_1^*, \ldots, e_n^*) denotes the dual basis, then every tensor $\alpha \in T^{r,s}(V)$ is given by an expression of the form

$$\alpha = \sum_{\substack{i_1, \dots, i_r \\ j_1, \dots, j_s}} a_{j_1, \dots, j_s}^{i_1, \dots, i_r} e_{i_1} \otimes \dots \otimes e_{i_r} \otimes e_{j_1}^* \otimes \dots \otimes e_{j_s}^*.$$

The tradition in classical tensor notation is to use lower indices on vectors and upper indices on linear forms and in accordance to Einstein summation convention (or Einstein notation) the position of the indices on the coefficients is reversed. Einstein summation convention (already encountered in Section 33.1) is to assume that a summation is performed for all values of every index that appears simultaneously once as an upper index and once as a lower index. According to this convention, the tensor α above is written

$$\alpha = a_{j_1,\dots,j_s}^{i_1,\dots,i_r} e_{i_1} \otimes \dots \otimes e_{i_r} \otimes e^{j_1} \otimes \dots \otimes e^{j_s}.$$

An older view of tensors is that they are multidimensional arrays of coefficients,

$$\left(a_{j_1,\ldots,j_s}^{i_1,\ldots,i_r}\right)$$
,

subject to the rules for changes of bases.

Another operation on general tensors, contraction, is useful in differential geometry.

Definition 33.14. For all $r, s \ge 1$, the contraction $c_{i,j} : T^{r,s}(V) \to T^{r-1,s-1}(V)$, with $1 \le i \le r$ and $1 \le j \le s$, is the linear map defined on generators by

$$c_{i,j}(u_1 \otimes \cdots \otimes u_r \otimes v_1^* \otimes \cdots \otimes v_s^*)$$

$$= v_j^*(u_i) u_1 \otimes \cdots \otimes \widehat{u_i} \otimes \cdots \otimes u_r \otimes v_1^* \otimes \cdots \otimes \widehat{v_j^*} \otimes \cdots \otimes v_s^*,$$

where the hat over an argument means that it should be omitted.

Let us figure our what is $c_{1,1} : T^{1,1}(V) \to \mathbb{R}$, that is $c_{1,1} : V \otimes V^* \to \mathbb{R}$. If (e_1, \ldots, e_n) is a basis of V and (e_1^*, \ldots, e_n^*) is the dual basis, by Proposition 33.17 every $h \in V \otimes V^* \cong \text{Hom}(V, V)$ can be expressed as

$$h = \sum_{i,j=1}^{n} a_{ij} e_i \otimes e_j^*.$$

As

$$c_{1,1}(e_i \otimes e_j^*) = \delta_{i,j},$$

we get

$$c_{1,1}(h) = \sum_{i=1}^{n} a_{ii} = \operatorname{tr}(h),$$