Chinook database analysis

Niloofar Moosavi

Load DataFrames

DataFrames:

- df_album
- df_artist
- df_customer
- df_employee
- df_genre
- df_invoice
- df_invoiceline
- df_mediatype
- df_playlist
- df_playlisttrack
- df_track

```
conn = mysql.connector.connect(
   host = db_config['host'],
   port = db_config['port'],
   user = db_config['user'],
   password = db_config['password'],
   database = db_config['database'],
   auth_plugin='mysql_native_password'
)
```

```
query_album = """
select * from album
"""
```

Initial data review with pandas

Functions:

- Info ()
- Describe ()
- Duplicated ()
 Isnull ()

DataFrame	Num of row	Num of Column	Duplicated	Null	
Album	347	3	0	0	
Artist	275	2	0	0	
Customer	59	13	0	Company: State: Fax:	49 29 47
Employee	8	15	0	ReportTo:	1
Genre	25	2	0	0	
Invoice	412	9	0	BillingState: BillingPostalCode:	202 28
Invoiceline	2240	5	0	0	
MediaType	5	2	0	0	
Playlist	18	2	0	0	
Playlisttrack	8715	5	0	0	
track	3503	9	0	Composer:	977

numerical variables:

Total

numerical variables:

Milliseconds

numerical variables:

Bytes

numerical variables:

UnitPrice

numerical variables:

Quantity

Categorical variables:

Genreld

Categorical variables:

MediaType

Categorical variables:

Country

InvoiceDate

Others Plot

Box Plot

Others Plot

• Pie Plot

Others Plot

Scatter Plot

Total normality

```
T-statistic: 0.8367117643356323, p-value: 3.400458718848802e-20
Reject the null hypothesis. Total is not normally distributed.
```


Milliseconds normality

```
T-statistic: 0.4069346785545349, p-value: 0.0
Reject the null hypothesis. Milliseconds is not normally distributed.
```


Bytes normality

```
T-statistic: 0.27564042806625366, p-value: 0.0
Reject the null hypothesis. Bytes is not normally distributed.
```


Quantity normality

```
T-statistic: 1.0, p-value: 1.0
Fail to reject the null hypothesis. Quantity is normally distributed.
```


UnitPrice normality

```
T-statistic: 0.2536665201187134, p-value: 0.0
Reject the null hypothesis. UnitPrice is not normally distributed.
```


Outliers: Z-Score

Total Outliers

```
Original data size: (412, 10)
Cleaned data size: (347, 10)
```


Outliers: Z-Score

Milliseconds Outliers

Original data size: (3503, 10) Cleaned data size: (43, 10)

Q7-1: Find three popular genres with pandas. Check the difference between the average price of these two distributions.

Popular 3 Genres:

- Rock
- Metal
- Latin

Test: Anova

T-statistic: nan, p-value: nan

Fail to reject the null hypothesis. There is no significant difference in mean price between genre 1, genre 3 and genre 7.

Q7-2: Check independence between the length of the Tracks and its price.

Test: T-test

T-statistic: 43.42652221765946, p-value: 0.0

Reject the null hypothesis. There is no significant realation between Track lenght and Track price.

Q7-3: Check independence between the Genre and MediaType.

Test: Chi-square

Chi-square statistic: 5650.1804373219775, p-value: 0.0

Reject the null hypothesis. There is no significant realation between MediaTypeId and GenreId categories.

Q7-4: Is the average revenue from Canada and America different?

Test: T-test

T-statistic: 5650.1804373219775, p-value: [0.68671557]

Fail to reject the null hypothesis. There is no significant difference in mean Total between USA and Canada.

Q7-5: Is there a significant relationship between the genre and the country of each user?

Test: Chi-square

Chi-square statistic: 1247.948598374529, p-value: 5.32766628545981e-60

Reject the null hypothesis. There is a significant association between the genre of music and the country of the customer.

Q7-6: Is there a significant relationship between album genre and album artist?

Test: Chi-square

Chi-square statistic: 210.25000000000003, p-value: 0.4433092625431917

Fail to reject the null hypothesis. There is no association between the genre of an album and the artist of an album.

Q8-1: Is the average length of tracks in different genres the same? Compute a 95% confidence interval for the mean length of track in each genre.

Test: Anova

```
statistic: 5650.1804373219775, p-value: 0.0
Reject the null hypothesis. The average length of Tracks in genres is different from each other.
```

Genre 1: 95% Confidence interval for mean lenght track: (277.01217842040177, 290.80790793272087)

Genre 2: 95% Confidence interval for mean length track: (269.64445899973623, 313.86629484641765)

Q8-1: Is the average length of tracks in different genres the same? Compute a 95% confidence interval for the mean length of track in each genre.

Q8-2: What is the average sales in different countries? Calculate the 95% confidence interval for the mean sales in each country.

Argentina: 95% Confidence interval for mean sales: (2.193007245584535, 8.555564182986894)

Q8-3: What is the average number of Tracks purchased by each user? Calculate a 95% confidence interval for the mean number of Tracks purchased by each user.

95% Confidence interval for mean Quantity: (1.0, 1.0)

