Analysis of Variance

Example: Data on blood pressure reductions for patients receiving 3 different drugs.

- Six patients randomized to each drug
- Sitting diastolic pressure measured before randomization (baseline) and after 4 weeks of treatment.

Drug 1: 10, 11, 15, 11, 12, 37

Drug 2: 8, 7, 8, 10, 12, 11

Drug 3: 7, 9, 11, 9, 4, 2

Question: Any difference among the 3 drugs with respect to their effects on BP reduction?

One-Way ANOVA

• Data: $Y_{ij}, i = 1, \dots, I; j = 1, \dots, n_i$

 Y_{ij} is distributed normally with mean μ_i , and constant variance

Wish to test:

$$H_0: \mu_1 = \cdots = \mu_I$$

against the alternative $H_1: \mu_i \neq \mu_j$ for at least one pair $(i, j), i \neq j$.

One approach to model the data is to use the following formulation,

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

Under the normality assumption, the maximum likelihood estimators of the means are given by

$$\hat{\mu}_i = rac{\Sigma_j Y_i j}{n_i}$$

which also correspond to the OLS estimators obtained by minmizing

$$\sum_{ij} (Y_{ij} - \mu_i)^2$$

Decompose total sum of squares (SST) into diff sources of variation:

- Between samples (SSTrt)
- Within sample (SSE)

$$\sum_{i}\sum_{j}(Y_{ij}-\bar{Y}_{..})^{2}=\sum_{i}n_{i}(Y_{i.}-\bar{Y}_{..})^{2}+\sum_{ij}(Y_{ij}-\bar{Y}_{i.})^{2}$$

One-Way ANOVA Table

Source of		Sum of	Mean
Variation	df	Squares	Squares
Treatment	I-1	SSTrt	SSTrt/(I-1)
Error	N-I	SSE	SSE/N-I
			-
Total	N-1	SST	

A test statistic for H_o may be constructed based on the ratio

$$F = MSTrt/MSE$$

which, under H_o and model assumptions, has an $F_{I-1,N-I}$ distribution, where $N = \Sigma_i n_i$.

Implementation

R: aov() or glm()

SAS: PROC ANOVA, PROC GLM, and PROC MIXED.

```
> anov1 <- aov(Y~drug)
```

> summary(anov1)

,	Ďf	SS	MSa	F Value	Pr(F)
drug	2		•	3.16	` '
Residuals	15	621.3	41.4		

If \bar{Y}_i has a normal distribution with mean μ_i and variance σ^2/n_i ,

$$rac{n_i(ar{Y}_{i.} - \mu_i)}{\sqrt{MSE}}$$

has a t-distribution with N-I degrees of freedom. This result may be used to construct confidence interval for μ_i or the difference between two means $\mu_i - \mu_j$.

For the latter:

a $100(1-\alpha)\%$ confidence interval is given by

$$D_{12} \pm t_{\alpha/2,N-I} \sqrt{MSE(1/n_i + 1/n_j)}$$

$$D_{ij} \equiv \bar{Y}_{i.} - \bar{Y}_{j.}$$

Suppose Ho is rejected,

$$H_0: \mu_1 = \cdots = \mu_I$$

Interested in determining which means are different from which other ones.

If there are g > 2 comparisons, the probability that at least one interval not including the true difference is no longer α .

Assuming independence, the probability that at least one of the k comparisons will reject a true null hypothesis $= 1 - (1 - \alpha)^k$

k 1 2 3 4 5 ... 10
$$\alpha_{\mathcal{F}}$$
 0.05 0.10 0.14 0.19 0.23 ... 0.40

For k = 10 comparisons, there is a 40% chance that we will reject erroneously at least one true null hypothesis!

Goal: construct simultaneous confidence intervals, such that the joint or simultaneous level is at least the desired level, $1 - \alpha$

Bonferroni Method

Given g pairs of comparisons, the Bonferroni method constructs confidence intervals, each at level $\alpha' = \alpha/g$.

$$D_{ij} \pm t_{\alpha'/2,N-I} \sqrt{MSE(1/n_i + 1/n_j)}$$

Then the coverage probability of the joint or simultaneous confidence intervals is at least $1-\alpha$.

Tukey Method

$$D_{ij} \pm Q_{I,N-I}^{lpha} \sqrt{MSE(1/n_i + 1/n_j)}$$

where $Q_{I,N-I}^{\alpha}$ is the critical point of a Studentized range distribution with I means and N-I error degrees of freedom.

Scheffe Intervals

A procedure that results in wider intervals than the Tukey intervals, but with correct coverage, is given by

$$D_{ij} \pm \sqrt{(I-1)F_{\alpha,I,N-I}}\sqrt{MSE(1/n_i+1/n_j)}$$

Fisher's Least Significant Difference

A procedure that is often used for pre-defined comparisons, is

$$D_{ij} \pm F_{\alpha,I,N-I} \sqrt{MSE(1/n_i + 1/n_j)}$$

This procedure does not control the experimentwise error rate, and results in narrow confidence intervals.

Dunnett's Procedure

When interest lies in comparing I-1 groups against a reference group:

$$D_{ij} \pm d_{I,N-I}^{\alpha} \sqrt{MSE(1/n_i + 1/n_j)}$$

```
Reading Assignment. For p-values:
help(p.adjust)
p.adjust(p, method = p.adjust.methods)
p.adjust.methods
# c("holm", "hochberg", "hommel", "bonferroni",... "fdr", "none")
help(pairwise.t.test)
```

Departures From Assumptions

Non-normality

- Validity of the p-values suspect in small samples.
- For large samples, the F-test is generally Robust
- Accompanying loss in efficiency may be substantial
- Confidence intervals will not be accurate

Detection:

•Residual analysis: qqnorm, histograms, etc.

- hist(resid(anov1));
- qqnorm(resid(anov1)

Measures against Non-normality:

Transformations: Box-Cox

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0; \\ \log y, & \text{if } \lambda = 0. \end{cases}$$

Alternatively, one may use nonparametric or robust procedures.

The Kruskal-Wallis test

- A generalization of the Wilcoxon rank-sum test, when there are more than two groups.
- Based on the joint ranks of the observations (i.e., ranked from 1 to N= $\sum_{i=1}^{I} n_i$)
- •Let R_i. = mean of ranks for i'th group
- •R.. be the overall mean rank.
- •Then assuming no ties:

$$T_{KW} = \frac{12}{N(N+1)} \sum_{i=1}^{I} n_i (\bar{R}_{i.} - R_{..})^2$$

which under $H_0: \mu_1 = \cdots = \mu_I$ has an approximate χ_{I-1}^2 distribution.

Remarks:

- Approximation is good provided n_i > 5
- If there are ties, appropriate correction factors must be used. (Reading Assignment)
- Kruskal-Wallis test assumes ordinal or numeric data
- Also assumes the shapes of the I distributions are the same.

One also may perform multiple comparisons using the following:

$$[\bar{R}_{i.} - \bar{R}_{k.} \pm Z_{1-\alpha/2g}] \frac{N(N+1)}{12} (1/n_i + 1/n_k)]^{1/2}$$

> kruskal.test(Y,drug)

Kruskal-Wallis rank sum test

data: Y and drug

Kruskal-Wallis chi-square = 7.9476, df = 2, p-value = 0.0188

alternative hypothesis: two.sided

Departures From Assumptions

Unequal Variances

p-values may not be reliable.

effect is mor serious if the large σ_i is associated with the samller n_i 's. This typically leads to more frequent false rejections.

Test for homogeneity of variances:

- Bartlett's test
- Levene's test
- Box's test
- Hartley's max test

Bartlett's test

$$T = c^{-1}(\nu ln(\hat{\sigma}^2) - \sum_i \nu_i ln(\hat{\sigma}_i^2)$$

where $\nu_i = n_i - 1$, $\nu = \Sigma_i \nu_i$, and

$$c = 1 + \frac{1}{3(I-1)} (\sum_{i} \nu_{i}^{-1} - \nu^{-1})$$

and $\hat{\sigma}_i$ and $\hat{\sigma}$ are the i'th sample and pooled variances. The test rejects when $T > \chi_{I-1}^2$.

The test is highly dependent on normality assumption.

Two-Way ANOVA

In many applications, one-way ANOVA may not be adequate.

Examples: Data on blood pressure reductions for patients receiving 3 different drugs (cont'd)

Male Female:

Drug 1: 11, 15, 11, Drug 1: 10, 12, 37

Drug 2: 8, 7, 8 Drug 2: 10, 12, 11

Drug 3: 7, 9, 11 Drug 3: 9, 4, 2

Two-Way ANOVA

A second variable included in a model to:

- Improve precision
- Reduce dependence within the levels of a factor of interest
- Reduce bias arising as a result of confounding

When the stratification variable is numeric, Analysis of Covariance (ANCOVA).

•When the variable is a factor with two or more levels, two-way ANOVA.

Two-Way ANOVA

ANOVA model is given by:

$$Y_{ijk} = \mu_{ij} + \epsilon_{ijk}$$

where $i = 1, \dots, I, j = 1, \dots, J, k = 1, \dots, n_{ij}$, and ϵ_{ijk} are typically assumed to be i.i.d. $N(0, \sigma^2)$.

OLS estimator:

$$\hat{\mu}_{ij} = ar{Y}_{ij.}$$

It is often more convenient to use the following alternative formulation

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

When the design is balanced, i.e., all $n_{ij} = n$, the least squares estimators of the unknown parameters are given as follows:

$$\hat{\mu} = ar{Y}_{...}$$
 $\hat{lpha}_i = ar{Y}_{i..} - ar{Y}_{...}$ $\hat{eta}_j = ar{Y}_{.j.} - ar{Y}_{...}$ $\hat{\gamma}_{ij} = ar{Y}_{ij.} - ar{Y}_{i..} - ar{Y}_{.j.} + ar{Y}_{...}$

Decomposition of SST for balanced 2-way designs:

$$\begin{split} SSA &= nJ \sum_{i=1}^{I} (\bar{Y}_{i..} - \bar{Y}_{...})^2 \\ SSB &= nJ \sum_{j=1}^{J} (\bar{Y}_{.j.} - \bar{Y}_{...})^2 \\ SSAB &= n \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{.j.} + \bar{Y}_{...})^2 \\ SSE &= \sum_{ijk} (Y_{ijk} - \hat{Y}_{ij.})^2 \end{split}$$

Two-Way ANOVA Table: Balanced Design

Source	df	SS	MS
A	I-1	SSA	$\overline{MSA=SSA/(I-1)}$
В	J-1	SSB	MSB=SSB/(J-1)
AB	(I-1)(J-1)	SSAB	MSAB=SSAB/(I-1)(J-1)
Error	IJ(n-1)	SSE	MSE=SSE/IJ(n-1)
Total	IJN-1	SST	

hypothesis of no treatment effect,

$$H_0: \alpha_1 = \cdots = \alpha_I$$

the normal-model test statistic is given by

$$F = \frac{MSA}{MSE}$$

which under H_o has an $F_{I-1,IJ(n-1)}$ distribution.

When there is no significant interaction, it is often advisable to work with the reduced model,

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$$

Advantages of additive model formulation:

- •More error degrees of freedom is obtained, giving more powerful F tests for the main effects.
- •Estimation of main effect parameters straightforward even when the design is unbalanced or some cells are empty .

$$\hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j$$

so that the i'th marginal mean is estimated by

$$\hat{\mu}_{i.} = \frac{\sum_{j=1}^{J} \hat{\mu}_{ij}}{J}$$

When the interaction term is significant:

Evaluate the nature and strength of the interaction.

When the interaction term is significant:

- Evaluate the nature and strength of the interaction.
 - Commonly used test to determine whether the interaction qualitative or quantitative: Gail-Simon test [Biometrics. Vol. 41 No. 2 (June 1985): 361-372]
 - Plot using interaction.plot(block,trt,Y)

- > fit2way <- aov(Y~drug*sex)</pre>
- > summary(fit2way)

	Df	SSq	Mean Sq	F Value	Pr(F)
drug	2	261.78	130.89	3.14	0.08
sex	1	22.22	22.22	0.53	0.48
drug:se	x 2	99.11	49.56	1.19	0.34
Residua	ls 12	2 500.0	41.67		

The Friedman rank-sum test

• Assumes a randomized block design without replication $Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$

and the null hypothesis of interest

$$H_o: \alpha_1 = \cdots = \alpha_I$$

Within each block (ie., $j = 1, \dots, J$), rank the observations separately from 1 to I. Let \bar{R}_{i} be the mean rank for the observations in the i'th group. Then under H_0 , $\bar{R}_{1} \approx \cdots \approx \bar{R}_{I}$.

$$F = \frac{12J}{I(I+1)} \sum_{i=1}^{I} (\bar{R}_{i.} - \bar{R}_{..})^2$$

which, under H_0 , is approximately χ_{I-1}^2 .

Implementation:

friedman.test(Y,groups,blocks)

SAS: PROC FREQ.

```
> tapply(Y,list(sex,drug),mean)
```

- > Ymean <- c(19.7,12.3,11,7.7,5,9)
- > Drug <-rep(c("D1","D2","D3"),c(2,2,2))
- > Sex <-c("F","M","F","M","F","M")
- > Drug <-factor(Drug)
- > Sex <-factor(Sex)

> friedman.test(Ymean,Drug,Sex)

Friedman rank sum test

data: Ymean and Drug and Sex

Friedman chi-square = 3, df = 2, p-value = 0.2231

alternative hypothesis: two.sided

Other tests in PROC FREQ

The Van Elteren test

Example: Subjects randomized to Drug or Placebo.

Data on **Blood Pressure** reduction (Y) after 4 weeks of treatment,

Baseline Blood Pressure (Base)

Ho: No Difference in Mean BP Reduction (Y) for Drug & Placebo

ID	ΥE	ase	trt
1	7.1	61	Drug
2	6.6	56	Drug
3	7.8	58	Drug
4	6.8	68	Drug
5	9.4	64	Drug
6	9.7	57	Drug
7	8.5	55	Drug
8	9.9	59	Drug
9	6.1	51	Drug
10	8.0	60	Drug
11	8.8	88 I	Placebo
12	8.5	85 I	Placebo
13	8.1	81 I	Placebo
14	8.9	89 I	Placebo
15	8.7	87 I	Placebo
16	8.4	84 I	Placebo
17	8.1	81 I	Placebo
18	7.8	78 I	Placebo
19	8.1	81 I	Placebo
20	8.5	85 I	Placebo

One-Way ANOVA:

> summary(aov(Y ~ trt))

Df SS MeanSq F Pr(F)

trt 1 0.42 0.42 0.60 0.450

Resid 18 12.68 0.70

	Base Mean	<u>Y Mean</u>
Drug	59.7	8.07
Placebo	83.6	8.34

Regression Effect
Regression to the Mean

Analysis of Covariance ANCOVA

Suppose X_{ij} is a covariate of interest, and consider the ANOCVA model

$$Y_{ij} = \mu_i + \beta X_{ij} + \epsilon_{ij}$$

Note that

$$m{Y}_i = pprox \hat{\mu}_i + eta ar{X}_i$$

Thus, comparing μ_i and μ_k based on $\bar{Y}_{i.} - \bar{Y}_{k.}$ would be inappropriate unless $\bar{X}_{i.} = \bar{X}_{k.}$. So, comparison is generally performed at a common value of X, say $\bar{X}_{..}$. For convenience, let

$$Y_{ij} = \mu_i + \beta (X_{ij} - \bar{X}_{..}) + \epsilon_{ij}$$

Adjusted mean (a.k.a. LS Mean)

$$\hat{\mu}_i = \hat{Y}_{i.} - \hat{eta}(ar{X}_{i.} - ar{X}_{..})$$

In the above

$$\hat{\beta} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{ij} - \bar{Y}_{i.}) (X_{ij} - \bar{X}_{i.})}{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

$$\hat{\sigma}^2 = \frac{1}{N - I - 1} \sum_{ij} (Y_{ij} - \hat{\mu}_{i.} - \hat{\beta}(\bar{X}_{i.} - \bar{X}_{..}))^2$$

$$var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

ANCOVA

```
> summary(aov(Y ~ Base+trt))

Df SS MeanSq F Pr(F)

Base 1 2.40 2.40 5.9 0.026

trt 1 3.81 3.81 9.41 0.007

Resid 17 6.89 0.41
```

	Base	<u>Y</u>	<u>LSM</u>		
Drug	59.7	8.07	9.3		
Placebo	83.6	8.34	7.1		

Nonparallel Regression Lines

Suppose now that

$$Y_{ij} = \mu_i + \beta_i (X_{ij} - \bar{X}_{..}) + \epsilon_{ij}$$

The above arises when the marginal mean differences are different for different values of X_{ii} .

•In the blood pressure example, patients may respond differently to different drugs depending on the values of their baseline blood pressure. When the lines are not parallel, different lines have to be fitted for each i.

$$\hat{\beta}_i = \frac{\sum_{j=1}^{n_i} (y_{ij} - \bar{Y}_{i.})(X_{ij} - \bar{X}_{i.})}{\sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

giving

$$\hat{\mu}_i = \hat{Y}_{i.} - \hat{eta}_i (ar{X}_{i.} - ar{X}_{..})$$

A test for parallelism may be performed by testing for the significance of treatment-by-covariate interaction

$$H_0: \beta_1 = \cdots \beta_I$$

The test statistic is given by

$$\frac{\sum_{i=1}^{I} (\hat{\beta}_{i} - \hat{\beta})^{2} \sum_{j} (X_{ij} - \bar{X}_{i.})^{2}}{(I-1)\hat{\sigma}^{2}}$$

which under H_o has an $F_{I-1,N-2I}$ distribution.

In the above

$$\hat{\beta} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})(X_{ij} - \bar{X}_{i.})}{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

Test for Parallelism

```
> summary(aov(Y ~ Base*trt))

Df SS MeanSq F Pr(F)

Base 1 2.401 2.40 5.590 0.031

trt 1 3.814 3.81 8.88 0.009

Base:trt 1 0.017 0.017 0.04 0.840
```

When Ho is rejected, inference about the marginal mean differences must be performed for each X = x

Remarks:

For non-normal data, use rank-based ANCOVA:

- •Iman and Conover: Ranks are substituted for Y and X, if both random
- •Stephen and Jacobson: Transform only Y, if X is fixed (e.g., X=Age).

Problem Set

Reading Assignment: Ramsey and Shafer; Chapters 5 (Comparing Among Several Samples), 6 (Multiple Comp),13 (ANOVA)

Consider the Diet Experiment data available at: https://www.stat.wisc.edu/~yandell/pda/data/Diet/

The experiment involved cows which were randomly assigned to one of 6 diets and followed for a number of weeks. Diets were begun after the third week, allowing the animals some initial time to adjust to their new environment. Interest focuses on the effect of diet on the average dry matter intake (dmi), the amount of food eaten by each cow. The data you have are a baseline value (covar = dmi for week 3), average dmi during subsequent weeks, the number of subsequent weeks. Randomization was blocked by time, the first 6 cows were randomly assigned among the 6 diets, and so on. (Wattiaux MA, Combs DK and Shaver RD (1994) ``Lactational responses to ruminally undegradable protein by dairy cows fed diets based on alfalfa silage", *J Dairy Science* 77, 1604-1617. Ref Brian Yandell's book Practical Data Analysis for Designed Experiments.)

- 1) Determine whether there is a significant difference in the mean weights of the six diet groups, using a one-way ANOVA(i.e., ignoring block).
 - a) Without adjusting for Week 3 weight
 - b) Adjusting for Week 3 weight. Give the LS Means (i.e., adjusted for Week 3 weight), and compare the results with (1a).
 - c) Use a test for parallelism to evaluate the appropriateness of performing inference based the adjusted means.
 - d) Check the validity of your assumptions, including parallelism. Suggest measures that you would take if the assumptions are not satisfied.
- 2) Comment on the use of the "average dmi during subsequent weeks" as a response variable.

Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:
Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First
Wang,		He,			Tao,				
1Yicheng	Xue, Yichao	Hanming	Zhang, Tian	•	Mengyuan	Tian, Jiani	Wang, Shiyu		
		Wu,	<u> </u>	Aoyuan,		Zhang,		Gao,	Shi,
2 Li, Jingwei	Liu, Ao	Xiangyu	Yutong	Liao	Yi, Jian	Wanyi	Wang, Jia	Duanhong	Hanqing
				Xie,	Yang,			Zhang,	
³ Bai, Silvia	Cai, Weipan	Dai, Di	Han, Siqi	Tianzhao	Mengting	Zeng, Cen	Zhuang, Shiyu	ı <mark>Yifan</mark>	Huang, Rui
		Huang,Xian	Tang,Mingz					Zuo,Zhaoy	
4 Zuo, Nianyao	Chen, Jiayang	gkai	hen	He,Jin	Li,Weihan	Gao,Fei	Qin,Liwen	u	
		Chen,	Huang,				Zhang,	Yue,	
5 Yang, Chuhan	Duan, Ziying	Jinglin	Yirui	Zhu, Ming	Liu, Zhaoze	Yin, Qing	Baizheng	Wenshu	Zeng, Neng
You,		Zhou,		Bao,		Yang,			
6Guanzhong	Wang, Lu	Xingyu	Luan, Sitao	Wenhang	Liu, Chang	Tianmeng	Zhu, Feiran	Chen, Jie	
						Song,			
		Liu,		Kim,	Cho,	Hyoungmo		Wang,	
7 <mark>Zhang, Yunyi</mark>	Qin, Yunlin	Haojiang	Fei, Yang	Hayoung	Younhyuk	ok	Fan, Yang	Weitong	
								Lin, Chi-	
8Jin, Chengzhe	Liu, Youzhu	Yu, Xingzao	Zhu, Ying	You, Jiwen	Li, Linna	Lyu, Yihua	Ye, Hexiu	Heng	Jiang, Bo
	Cheng,		Wang,	Shang,					
9Wang, Suling	Tianyuan	Li, Cheng	Han	Renfei	Yao, Wei	Yu, Zhao			
		Zhou,	Chen,	Huang,					
10 Chen, Haoyang	lin	Longwei	Zachary	Biyue	Qian, Quan				
			Zhang,Xiao						
11 Nian, Yigun	An,Huilong	Lin, Zida	han	Hu, Yifei	Qin, Yu	Dai, Peijun	Gu, Kexin		
12 Gao, Chenying	Yao, Weichi								
	Zhou,	Jiang,	Teng,	Wang,					
13 Sun, Yuhan	Jingying	Chencheng	_	Yanran	Gu, Xinghao	Chen, Ying	Meng, Ziwei		
	- · ·								
		wang,		Zhang,					
14Jin, Zhaoyan	Ji, Chenlu	Wang, Jiayi		Xuan	Zhang, Chi	Lang, Yifei	Yu, Tianying		
14 Jin, Zhaoyan	Ji, Chenlu	•		-	Zhang, Chi	Lang, Yifei Zhang,	Yu, Tianying Wang,	Zhou,	

Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:
Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First
				Sun,					
16 Wang, Yiren	Li, Yanjin	Wen, Litong	Lu, Yicheng	Xuechun	Wang, Yue	Zhao, Fei			
17 Chen, Yihe	Lao, Palmer	Li, Daitong	Shuai, Ziyue	Zhang, Eric					
18Mu, Jing	Zhou, Wuge	Tao, Ye	Yu, Xiuying	Zhang, Yueqi	Feng, Lingkang	Shi, Yuchen	Chen Vanyi	Zhang, Qianyun	Min, Shengjie
10 Mu, Jilig	Zilou, vvuge		, , ,	·	Lilighalig		CHEII, Ialixi	Qiariyuri	Sileligjie
4000		<u> </u>	Feng,	Sheng,	71 0	Zhang,	71 . 01 .	v. v. l	
19Xiao, Han	Cui, Han	Danmo	Jingjing	Tian	Zhao, Ran	Yimin	Zhi, Chi	Xin, Xieke	Xue, Lifu
20Shi,Ruixiong	Meng,Bai	Shi,Yuchen	Sha,Ouwen	Tan,Xiaolu	Zhang,Shijia				
					Zhao,Pengch	Huang,Yuqin			Zhou,Wenjin
21 Qian, Chao	Wu,Lepeng	Gao,Qian	Xia, Fenglin	Sun,Yifan	eng	g	Zhang,Daqi	Wei,Chaojie	g
22Li, Rong	Su, Zijian	Gao, Qianyu	Zhou, Jiajun	Zhong, Jiayi	Jin, Zexin				
		Dai,							
23 Sun, Yating	Ru, Xiao	Minghao	Lin, Xu	Ren, Wen	Wang, Jiayu	Ye, Chen	Song, Shuli	Chen,Yeyun	
			Wang,					Wang,	
24 Wang, Zehao	Li, Chi	Liu, Yi	Siying	Jin, Yong	Wang, Yuqing	Hao, Weilin	Cai, Yanrui	Zhaoxing	
Sanchez	Diego	Campos	, 0	, 3	<i>O</i> , 1 C	, ,	,		
Azcarate, Juan	Joaquin, Juan		Setia,	Sharma,	Khilnani,	Zhang,			
25 Jose	Jose	1	Ekansha	Vrinda	Nisha	Jingya			
	Zhang,					87			
26Chen,Tianyi	Shaotian	Ni, Mengjia	Zhao Moiia	Sun Vixin					
20 011011,11011,1	Shaddan		Zhang,	Sun,		Wang,			
27Zhao, Jingdan	Yao, Mi	•	Jinglun	Haocheng	Cho Vilin	Yuanyuan			
Z7 Ziiao, Jiiiguali	iau, ivii		Jingiun	riaucheng	OHE, TIIII	_			
20 V. Linvih.	Vun Fan	Shuzhe	V: 1	An II	Coo Oibus	Fan,	Chang Mina	7hang Lu	
28 Xu, Linyihui	Kun Fan	Wu	Xi Lu	An, Ji	Gao, Qihua	Znenian	Sheng,Ming	znang, Lu	
29 Dessouky, Omai	<u> </u>								
30 William Raikes									

Presenters 10/14/2016

7:50-8:00	Group 16
8:00 -8:10	Group 7
8:10-8:20	Group 3
8:20-8:30	Group 19

16Wang, Yirei	n Li,	Yanjin	Wen, Liton	g Lu, Yich	Sun, neng Xuech	hun W	ang, Yue	Zhao	Fei	
7Zhang, Yunyi	Qin, Yunlin	Liu, Haojiang	Fei, Yang	Kim, Hayou ng	Cho, Younhyuk	Song, Hyoungi ook	n Fan, Ya		ang, eitong	
3Bai, Silvia	Cai, Weipan	Dai, Di	Han, Siqi	Xie, Tianzhad	Yang, Mengting	Zeng, C	Zhuar en Shiyu	0,	nang, fan	Hua Rui
19Xiao, Han		,	eng, Sh ingjing Tia	eng, an Zh	Zh nao, Ran Yir	<mark>ang,</mark> nin Zh	ni, Chi 🔾	(in, Xiek	e Xue, L	ifu