JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year II Semester Examinations, August - 2018 **MATHEMATICS – II**

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

A s compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

- Find the Laplace transform of the function $f(t) = t^2$. 1.a) [2]
- Find Laplace transform of 4 sin b) [3]
- Show that $\Gamma(n) = 2 \int_0^\infty e^{-x}$ c) [2]
- Show that $\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$. Find the area bounded by the curves $y = x, y = x^2$. d) [3]
- e) [2]
- Evaluate $\iint_{0}^{1} x^2 y^2 dx dy$ f) [3]
- If $\phi = x^2 y^2 z^2$ then find Grad ϕ . [2] g)
- Find a unit normal vector to the surface $x^2 + y^2 + 2z^2$ h) 26 at the point (2,2,3). [3]
- Find curl \overline{F} when $\vec{F} = 3x^2i + (2xz y)j + zk$. i)
- Is the work done by a force in moving a particle from one oint to another point in an j) irrotational field is independent of the path of integration? Justily the answer.

PART-B

50 Marks)

(25 Marks)

Use Laplace transforms, solve y''(t) + 5y'(t) + 6y(t) = t, y(0) = 1, y'(0) = 12.

- OR
 Solve by using Laplace transforms $y'' + 4y' + 3y = e^{-t}$ with y(0) = y'(0) = 13.
- Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$ using $\beta \Gamma$ functions. 4.

Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ 5.a)

Prove that $\beta(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$. b) [5+5] 6. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B and C. Find the volume of the tetrahedron OABC.

OR

- 7. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^2 yz \, dz \, dy \, dx$. [10]
- 8. Prove that if \vec{r} is the position vector of any point in space then $r^n \vec{r}$ is irrotational and is solenodial if n = -3.

OR

- 9.a) Evaluate $\nabla \cdot \left(r \nabla \left(\frac{1}{r^3} \right) \right)$ where $r = \sqrt{x^2 + y^2 + z^2}$.
 - b) If $\overline{R} = x\overline{i} + y\overline{j} + z\overline{k}$, then find $\nabla \cdot \overline{R}$ and $\nabla \times \overline{R}$. [5+5]
- 10. Verify Stoke's theorem for the vector field $\vec{F} = (x^2 y^2)i + 2xyj$ integrated round the rectangle in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = b. [10]
- 11. Verify divergence theorem for $2x^2y^2 y^2j + 4xz^2k$ taken over the region of first octant of the cylinder $y^2 + z^2 = 9$ and x = 2 [10]

