Table of Contents

Exersice 2 master program	. 1
Exercise 2.1	
Exercise 2.2	
Exercise 2.3	

Exersice 2 master program

```
clear all;
close all;
```

Exercise 2.1

```
% lin to dB conversion, do not modify the input signals
A1 = 2;
A2 = linspace(1,10,10);
A3 = ones(16,16);
Exe2_1_answer1 = Exe2_1(A1,1)
Exe2_1_answer2 = Exe2_1(A2,1)
Exe2_1_answer3 = Exe2_1(A3,1)
Exe2_1_answer1 =
    6.0206
Exe2_1_answer2 =
  Columns 1 through 7
             6.0206
                        9.5424 12.0412 13.9794
                                                     15.5630 16.9020
  Columns 8 through 10
   18.0618
             19.0849
                       20.0000
Exe2_1_answer3 =
  Columns 1 through 13
     0
     0
                 0
                       0
                             0
                                   0
                                         0
                                               0
                                                     0
                                                           0
                                                                 0
       0
     0
                       0
                             0
                                   0
                                         0
                                               0
                                                     0
                                                           0
                                                                 0
       0
                       0
                             0
                                   0
                                         0
                                               0
                                                     0
                                                           0
```

	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0 0	0	0	0	0	0	0	0	0	0	0
Ü	0	0	0	0	0	0	0	0	0	0	0
0	0										
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ü
	0	0	0	0	0	0	0	0	0	0	0
0	0		•			•	•			•	
0	0	0	0	0	0	0	0	0	0	0	0
U	0	0	0	0	0	0	0	0	0	0	0
0	0										
	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	U	U	U	U	U	U	U	U	U	U
	0	0	0	0	0	0	0	0	0	0	0
0	0										
0	0	0	0	0	0	0	0	0	0	0	0
0	0										

Columns 14 through 16

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Exercise 2.2

- $\mbox{\ensuremath{\$}}$ 'IR.mat' contains Impulse response vector and fs for the sample. Produce
- $\mbox{\ensuremath{\uposes}}$ working fft function which plots the frequency response of the $\mbox{\ensuremath{\uposes}}$ Impulse
- % response of the IR in frequency scale

```
load('IR.mat');
Exe2_2_answer = Exe2_2(irN,fs);
Ave2_2 = mean(Exe2_2_answer)

Ave2_2 =

16.5728
```


Exercise 2.3

This time you have to load all the data in your function. Produce one sided fft function. with dB scaling. (reference = 1). Plot the resulting fft with frequency axle. The data includes some noisy transients, so pick the data from "clean" part of the signal. Pick at least 8 heart beats from the signal.

```
filename = 'data.mat';
Exe2_3_answer = Exe2_3(filename);
Ave2_3 = mean(Exe2_3_answer)

Ave2_3 =
76.8600
```


