CVL3211 : Civil Engineering Materials Department of Civil Engineering

Abhipsa Kar Pranjal Mandhaniya Rashmisikha Behera

ITER, SoA University

September 1, 2016

Cement and its properties

Properties given below will be discussed in this chapter.

- Manufacturing of cement
- ► Chemical composition of cement
- Properties of cement components
- Laboratory testing for cement
- Working/Hydration of cement
- ► Admixtures of cement/concrete

Manufacturing of cement

Material	Chemical Formula	Proportion	
Calcareous (calcium minerals)			
Lime	CaO	60-70%	
Argillaceous (clay/silica minerals)			
Silica	SiO ₂	20-25%	
Alumina	AI_2O_3	5-10%	
Iron Oxide	Fe ₂ O ₃	5-10%	

These raw materials are mixed and heated at $1300^{0}\,C$ - $1500^{0}\,C$ causing them to fuse and form clinker, which is then powdered and packed. Gypsum ($CaSO_4.2H_2O$) in 2-4% w/w is added to clinker to act as setting time retarder.

Chemical composition of cement

Manufectured cement is called Portland Cement based on its place invention. Generally it consists of compounds given below in table with compositions.

Material	Chemical	Short	Proportion
	Formula	Formula	
Tricalcium	3CaO.SiO ₂	C ₃ S	45 to 60%
Silicate			
Dicalcium	2CaO.SiO ₂	C_2S	15 to 30%
Silicate			
Tricalcium	3 <i>CaO</i> . <i>Al</i> ₂ <i>O</i> ₃	C ₃ A	6 to 12%
Aluminate			
Tetracalcium	4 <i>CaO</i> . <i>Al</i> ₂ <i>O</i> ₃ . <i>Fe</i> ₂ <i>O</i> ₃	C ₄ AF	6 to 8%
Aluminoferrite			

Properties of cement components

Compounds given in previous table imparts some specific properties as given in table below.

Compound	Properties
C_3S	Initial strength and setting
C_2S	Ultimate strength
C ₃ A	Heat of hydration and quick set
C ₄ AF	Sulphate resistance

CVL3211 : Civil Engineering Materials

Cement and its properties

Laboratory testing for cement

Laboratory testing for cement

Laboratory test which determine engineering properties of cement are given

in table below

Test	Determined Property	Apparatus
Standard	Optimum Water content for	Vicat's Apparatus
consistency test	workability (Consistency)	
Initial & final	Time of Attainment of Plastic Vicat's Apparatus	
setting time	stage and Rigid stage	
Fineness test	Surface area of cement particles	IS90 micron sieve
Soundness	Expansion due to	Le-chatelier's
	free/unreacted lime	mould

Working/Hydration of cement

- 1. C_3S and C_2S are major constituent of cement and their hydration cause C-S-H ($CaO SiO_2 H_2O$) molecules to form.
- These molecules does not have an exact composition and hardens with time to form a neural network of bonds similar to metallic bond.
- 3. C_3A hydrates fastest to form C-A-H ($C_4O Al_2O_3 H_2O$) paste with negligible strength development. This hinders the hydration of C_3S and C_2S and reduce overall strength of paste so Gypsum is added to lower setting speed.
- 4. After setting finishes, cement keeps gaining strength for long time say months. Two kind of pores formed in cement i.e. interlayer (Major) and capillary (Minor).

Admixtures of cement/concrete

After manufacturing process if required cement/concrete properties can be altered using admixtures they are classified as given in table below.

Admixture	Effect	
Chemical Admixtures		
Retarders	Increases the setting time	
Accelerators	Decreases the setting time	
Water reducing agents	Reduces water content for hydration	
/Plasticizer /Superplasticizer		
Mineral Admixtures		
Fly ash	Extends hydration, increases	
	workability	
Slag	Increase cementing action	