碳酸钠的制备

主讲教师:李亚平 副教授 北京他工大学化学实验教学示范中心

一、实验目的

- 1. 利用盐类溶解度的差异性,通过复分解反应制备 碳酸钠;
- 2. 掌握恒温条件控制及高温灼烧的基本操作。

二、实验原理

将 NH₄HCO₃ 与 NaCl 作用制取 NaHCO₃

,再经高温灼烧,转化为碳酸钠。

$$NH_{4}HCO_{3} + NaCl = NaHCO_{3} + NH_{4}Cl$$

$$NaHCO_{3} \xrightarrow{\triangle} Na_{2}CO_{3} + CO_{2} + H_{2}O$$

三、实验内容

北京化工大学 化学实验教学中心

1. 复分解反应制取中间产物 NaHCO₃:

用小烧杯取 25ml的NaCl 恒温水浴中△

 $30 \sim 35^{\circ}C$

称取NH₄HCO₃ 固体粉末10g

不断搅拌下分批次加入到NaCl中

在 30 ~ 35°C 下反应 20min

取出蓬松 NaHCO₃晶体 ① 少量水洗晶体

② 尽量抽干母液

得NaHCO₃ 晶体

静置几分钟后 减压过滤

三、实验内容

北京化工大学 化学实验教学中心

2. 灼烧制备 Na₂CO₃:

将上述蓬松晶体 放蒸发皿上 ① 先温火

② 后强火

用玻璃棒不断搅 拌防止结块

搅拌约 30min

冷却、称重并计 算产率

得白色细粉末 Na₂CO₃

四、注意事项

- 制备 NaHCO₃ 时注意恒温水浴箱的温度控制在
 30 ~ 35℃之间;
- 2. 加入 NH₄HCO₃ 要分批次加入以防结块;
- 3. 减压抽滤中的抽滤瓶和真空泵的接法;
- 4. 灼烧 NaHCO, 时要不断搅拌。

化学实验教学中心

五. 实验数据记录及处理

实验日期: _____; 室温: ____°C

NH ₄ HCO ₃ (g)	样品 Na ₂ CO ₃ (g)	理论值 (g)	产率 %

六、思考题

- 1. 影响产品产量高低的主要因素有哪些?
- 2. 影响产品纯度,即碳酸钠、碳酸氢钠,及其它杂

质含量的主要因素有哪些?

北京化工大学 化学实验教学中心

请同学们认真预习,对实验内容有更多的认识和理解,经过实验课的学习,能得到更好的实践能力的训练。

北京化工大学化学实验教学中心

地址:北京市昌平区东关亢山路 15# 邮编:102200