06

In the diagram, the shaded region is bounded by the parabola $y = x^2 + 1$, the y-axis and the line y = 5.

Find the volume of the solid formed when the shaded region is rotated about the *y*-axis.

$$y = x^{2} + 1$$

$$\therefore x^{2} = y - 1$$

$$Volume = \pi \int x^{2} dy$$

$$= \pi \int_{1}^{5} y - 1 dy$$

$$= \pi \left[\frac{y^{2}}{2} - y \right]_{1}^{5}$$

$$= \pi \left[\frac{25}{2} - 5 - (\frac{1}{2} - 1) \right]$$

$$= \pi \left[\frac{15}{2} - (-\frac{1}{2}) \right]$$

 \therefore volume of 8π unit³

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Most candidates were able to answer this volume question correctly. Common errors were leaving out the π in the integrand and incorrect limits. Since this volume of rotation is about the y-axis, the correct integrand is $V = \sqrt[5]{y}$, however, many candidates took the volume of rotation to be about the x-axis and ended with an incorrect expression.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/