車両制御特論レポート2

九州工業大学大学院 工学府 機械知能工学専攻 知能制御工学コース

所属: 西田研究室

学籍番号: 16344217

提出者氏名: 津上 祐典

平成28年8月10日

1 与えられたシステム

学籍番号によって決まった制御対象は,

$$\dot{x}(t) = ax^{3}(t) + b\cos 2t + c(x^{2}(t) + 1)u(t)$$
(1)

$$a = 3, b = -6, c = 2$$
 (2)

である. また理想モデルは,

$$\dot{x}_d(t) = -4x_d(t) + r_d(t) \tag{3}$$

である. ここで,

$$\tilde{x}(t) = x(t) - x_d(t) \tag{4}$$

おくと追従誤差方程式は,

$$\dot{\tilde{x}}(t) = \dot{x}(t) - \dot{x}_d(t) \tag{5}$$

$$= ax^{3}(t) + b\cos 2t + c(x^{2}(t) + 1)u(t) - \dot{x}_{d}(t)$$
(6)

となる.

2 適応追従コントローラの設計

2.1 *a, b, c* が既知のとき

エネルギー関数を $V(t)=\tilde{x}^2(t)$ とおく、エネルギー関数の時間微分を解析すると、

$$\dot{V}(t) = 2\tilde{x}(t)\dot{\tilde{x}}(t) \tag{7}$$

$$= 2\tilde{x}(t) \left[ax^{3}(t) + b\cos 2t + c \left\{ x^{2}(t) + 1 \right\} u(t) - \dot{x}_{d}(t) \right]$$
 (8)

となる. ここで入力 u(t) を

$$u(t) = -\frac{ax^3(t)}{c(x^2(t)+1)} - \frac{b\cos 2t}{c(x^2(t)+1)} + \frac{\dot{x}_d(t)}{c(x^2(t)+1)} - \delta \tilde{x}(t) \quad (\delta > 0)$$
(9)

とすれば,

$$\dot{V}(t) = -2\delta c(x^2(t) + 1)\tilde{x}^2(t) < 0 \qquad \text{for any } \tilde{x}(t) \neq 0$$
 (10)

となり、システムを漸近安定化することが出来る.

2.2 a, b, c が未知のとき

次に, a,b,c が未知な場合を考える. 入力 u(t) を

$$u(t) = -\frac{\hat{a}}{\hat{c}} \frac{x^3(t)}{x^2(t)+1} - \frac{\hat{b}}{\hat{c}} \frac{\cos 2t}{x^2(t)+1} + \frac{1}{\hat{c}} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
(11)

$$= -\hat{\alpha} \frac{x^3(t)}{x^2(t)+1} + \hat{\beta} \frac{\cos 2t}{x^2(t)+1} + \hat{\gamma} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
 (12)

とすると, 誤差追従方程式は,

$$\dot{\tilde{x}}(t) = ax^{3}(t) + b\cos 2t - \dot{x}_{d}(t) - c\hat{\alpha}x^{3}(t) - c\hat{\beta}\cos 2t + c\hat{\gamma}\dot{x}_{d}(t) - c\delta\{x^{2}(t) + 1\}\tilde{x}(t)$$
 (13)

$$= c\tilde{\alpha}x^{3}(t) + c\tilde{\beta}\cos 2t - c\tilde{\gamma}\dot{x}_{d}(t) - c\delta\{x^{2}(t) + 1\}\tilde{x}(t)$$
(14)

となる. エネルギー関数を

$$V(t) = \tilde{x}^{2}(t) + \eta_{\alpha}^{-1}c\tilde{\alpha}^{2} + \eta_{\beta}^{-1}c\tilde{\beta}^{2} + \eta_{\gamma}^{-1}c\tilde{\gamma}^{2}$$
(15)

とおく. ただし、 $\eta_{\alpha},\eta_{\beta},\eta_{\gamma}$ は推定ゲインである. 次に、エネルギー関数の時間微分を解析すると、

$$\dot{V}(t) = 2\tilde{x}(t)\dot{\tilde{x}}(t) + 2\eta_{\alpha}^{-1}c\tilde{\alpha}\dot{\tilde{\alpha}} + 2\eta_{\beta}^{-1}c\tilde{\beta}\dot{\tilde{\beta}} + 2\eta_{\gamma}^{-1}c\tilde{\gamma}\dot{\tilde{\gamma}}$$
(16)

より

$$\dot{V}(t) = 2\tilde{x}(t) \left[c\tilde{\alpha}x^3(t) + c\tilde{\beta}\cos 2t - c\tilde{\gamma}\dot{x}_d(t) - c\delta \left\{ x^2(t) + 1 \right\} \tilde{x}(t) \right]$$
(17)

$$+2\eta_{\alpha}^{-1}c\tilde{\alpha}\dot{\tilde{\alpha}} + 2\eta_{\beta}^{-1}c\tilde{\beta}\dot{\tilde{\beta}} + 2\eta_{\gamma}^{-1}c\tilde{\gamma}\dot{\tilde{\gamma}}$$

$$\tag{18}$$

となる. ここで,

$$\dot{\tilde{\alpha}} = -\dot{\hat{\alpha}} = -\eta_{\alpha}\tilde{x}(t)x^{3}(t) \tag{19}$$

$$\dot{\tilde{\beta}} = -\dot{\hat{\beta}} = -\eta_{\beta} \cos 2t \tilde{x}(t) \tag{20}$$

$$\dot{\tilde{\gamma}} = -\dot{\hat{\gamma}} = \eta_{\gamma} \tilde{x}(t) \dot{x}_d(t) \tag{21}$$

とすれば,

$$\dot{V}(t) = -2\delta c(x^{2}(t) + 1)\tilde{x}^{2}(t) \leq 0 \qquad for \ any \qquad \begin{pmatrix} \tilde{x}(t) \\ \tilde{\alpha} \\ \tilde{\beta} \\ \tilde{\gamma} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(22)

となり、システムを安定化出来る.

以上より,以下の適応追従コントローラを得る.

$$u(t) = -\hat{\alpha} \frac{x^3(t)}{x^2(t)+1} + \hat{\beta} \frac{\cos 2t}{x^2(t)+1} + \hat{\gamma} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
 (23)

$$\dot{\hat{\theta}}(t) = \begin{pmatrix} \dot{\hat{\alpha}} \\ \dot{\hat{\beta}} \\ \dot{\hat{\gamma}} \end{pmatrix} = \begin{pmatrix} \eta_{\alpha}\tilde{x}(t)x^{3}(t) \\ \eta_{\beta}\cos 2t\tilde{x}(t) \\ -\eta_{\gamma}\tilde{x}(t)\dot{x}_{d}(t) \end{pmatrix}$$
(24)

3 シミュレーション

simulink で構成したモデルを示す.

図 1. 構成したモデル

図 2. 理想モデル

図 3. 制御対象

- 3.1 $r_d(t) = 4$ の場合
- 3.2 $r_d(t) = 4 + 0.5 \sin 0.5t + \cos 3t 2 \sin 5t$ の場合

4 考察

参考文献

[1] 大屋勝敬:"車両制御特論 MATLAB+Simulink の利用法"

図 4. 入力

図 5. α

図 6. β

図 7. γ

図 8. δ