Lezione 2

Prodotto cartesiano

Relazioni

Definizioni

Riflessiva

Anti-Riflessiva

Simmetrica

Anti-Simmetrica

Transitiva

Equivalenza

Classe di equivalenza di "a"

Partizione di A

Insieme quoziente

Ordine stretto e largo

Ordine totale

Prodotto cartesiano

$$\mathsf{A}\,\mathsf{x}\,\mathsf{B} = \{(a,b) \mid a \in A \quad e \quad b \in B\}$$

(a,b)
eq (b,a) ightarrow Nel caso delle coppie l'ordine conta

Il prodotto cartesiano è sia riflessivo che simmetrico che transitivo, ovvero equivalente.

Relazioni

Una relazione R è un sotto insime di un prodotto cartesiano, insieme di coppie sull'insieme A.

$$R\subseteq \mathsf{A}\,\mathsf{x}\,\mathsf{A}$$

Es. 3 < 7
$$\rightarrow R_{<} = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a < b\}$$

Esempio relazione

$$A = \{1, 2, 3\} \rightarrow R = \{(1, 1), (2, 1), (3, 2)\} \subseteq A \times A$$

$$(2,1) \in R \quad (1,2) \notin R$$

- \rightarrow Poteva essere anche $R = \{(1,1)\}$
- → L'importante è capire che la relazione può essere un sotto insieme qualunque, in questo caso di A x A:

$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Definizioni

Una relazione di $R \subseteq A \times A$ può essere:

Riflessiva

Una relazione è riflessiva se $\forall a \in A((a,a) \in R)$

es.
$$A = \{1, 2, 3\} \rightarrow R_{riflessiva} = \{(1, 2), (1, 1), (2, 2), (3, 3)\}$$

Ci devono essere tutte le coppie dello stesso elemento (1,1) etc... nella Relazione R, se anche una viene tolta non è più riflessiva

Anti-Riflessiva

Una relazione è anti-riflessiva se $\forall a \in A((a,a) \notin R)$

ovvero non esiste neanche una singola coppia riflessiva (cioè mancano tutte)

es.
$$A = \{1, 2\} \rightarrow R_{anti-riflessiva} = \{(1, 2), (2, 1)\}$$

Simmetrica

$$orall a,b\in A \quad [(a,b)\in R \implies (b,a)\in R]$$

Ovvero se esiste almeno una coppia (a,b) deve esistere la coppia simmetrica (b,a)

es.
$$A = \{1, 2, 3\}$$
 $\rightarrow R_{simmetrica} = \{(1, 2), (2, 1)\}$

es.
$$A = \{1,2,3\} \to R_{non-simmetrica} = \{(1,2),(2,1),(1,3)\} \to \text{Non esiste la coppia (3,1)}$$

es.
$$A=\{1,2,3\}$$
 $\rightarrow R_{simmetrica}=\{(1,2),(2,1),(1,1)\}$ \rightarrow È simmetrica perchè la coppia degli stessi elementi (1,1) "value per due"

Anti-Simmetrica

2 Lezione 2

$$\forall a,b \ [(a,b) \in R \ \mathrm{e} \ (b,a) \in R) \implies a=b]$$

Esempio \leq è una relazione anti-simmetrica

La relazione e' antisimmetrica perche' se un numero e' maggiore od uguale ad un secondo numero ed il secondo e' maggiore uguale del primo allora i due numeri sono uguali.

Es. $A=\{1,2,3\}$ $\rightarrow R=\{(1,2),(2,3),(3,1)\}$ \rightarrow È antisimmetrica secondo l'implicazione se $(a,b)\in R$ e $(b,a)\in R$ è falsa allora indipendentemente da b l'espressione è vera. In questo caso se non esiste almeno una coppia simmetricha allora è antisimmetrica per forza.

Transitiva

$$orall a,b,c\in A \ [(a,b)\in R \ \mathrm{e} \ (b,c)\in R] \implies (a,c)\in R$$

Es. Roma, Firenze, Milano → Se da Roma posso andare a Firenze e da Firenze posso andare a Milano allora posso andare da Roma a Milano.

Es. se la retta A è parallela alla retta B e la retta B è parallela alla retta C allora A è parallela alla retta C.

Es. $A=\{1,2,3\}$ $\rightarrow R=\{(1,2),(2,3),(3,1)\}$ \rightarrow Non è transitiva perchè non ha la coppia (1,3)

Es. $A = \{1, 2, 3\} \rightarrow R = \{(1, 2), (3, 2)\} \rightarrow \dot{E}$ transitiva perchè non esiste una coppia (a,b) (b,a), quindi la premessa è falsa e allora la relazione è transitiva.

Equivalenza

Se la relazione è sia simmetrica che riflessiva che transitiva allora si dice di equivalenza

es.

Classe di equivalenza di "a"

Vale solo se c'è una relazione di equivalenza.

$$a \in A$$

 $[a]=\{x\in A\mid (a,x)\in R\}$ ightarrow Tutti gli elementi di A che sono in relazione con a es.

Lezione 2 3

[2] = $\{1,2,4\}$ \rightarrow Dato che è in relazione con 1 allora la classe di equivalenza coincide.

[3] =
$$\{3\}$$

[2] = $\{1, 2, 4\} \rightarrow //$

Partizione di A

La partizione è successione di sottoinsiemi, che non si intersecano, di classi di equivalenza disgiunte. E se faccio la loro unione ottengo l'insime di partenza.

I sottoinsiemi che determinano la partizione di un insieme si dicono classi dell'insieme.

Es.
$$[1], [3]$$

L'insieme di queste partizioni si chiama insieme quoziente $\rightarrow \{[1],[3]\}$

Insieme quoziente

L'insieme quoziente di una relazione di equivalenza è l'insieme delle sue classi di equivalenza

Es.
$$R = \{(1,1), (2,2), (3,3), (4,4)\}$$

- → È sia riflessiva che transitiva (perchè la premessa è falsa) che anti-simmetrica
- \rightarrow II suo Quoziente sarà $\rightarrow Q = \{\{1\}, \{2\}, \{3\}, \{4\}\}$
- → Ogni oggetto è in relazione solo con se stesso.

Ordine stretto e largo

Lezione 2 4

Ordine totale

Si dice di ordine totale quanto il primo è in relazione con il secondo oppure il secondo è in relazione con il primo

$$orall a,b\in A\ (a,b)\in R$$

oppure

$$orall a,b\in A\ (b,a)\in R$$

Es. a,b
$$\rightarrow a < b$$
 o $b < a$

5