EXAMPLES OF SMOOTH MANIFOLDS

COLTON GRAINGER (MATH 6230 DIFFERENTIAL GEOMETRY)

Assignment due 2019-01-30

[1, No. 1.18]. Given. Let M be a topological manifold.

To prove. Two smooth at lases for M determine the same smooth structure if and only if their union is a smooth at las.

Proof. (\Rightarrow) Let \mathscr{A} , \mathscr{B} be two smooth at lases on a topological manifold. Say that $\mathscr{A} \cup \mathscr{B}$ is a smooth at lase. Then the unique maximal smooth at lase $\overline{\mathscr{A} \cup \mathscr{B}}$, which certainly contains \mathscr{A} and \mathscr{B} , forces the conclusion:

$$\overline{\mathscr{A}} = \overline{\mathscr{A} \cup \mathscr{B}} = \overline{\mathscr{B}}.$$

that is, both $\mathscr A$ and $\mathscr B$ determine the same smooth structure on M.

 (\Leftarrow) Say that $\mathscr A$ and $\mathscr B$ are smooth at lases that determine the same smooth structure on M. For contradiction, suppose that $\mathscr A$ and $\mathscr B$ are not compatible, so that their union contains at least $(U,\varphi)\in\mathscr A$ and $(V,\psi)\in\mathscr B$ for which $U\cap V\neq\varnothing$ and

$$\varphi(U \cap V) \xrightarrow{\varphi^{-1}} U \cap V \xrightarrow{\psi} \psi(U \cap V)$$

is not a diffeomorphism. Now

$$(U, \varphi) \in \mathscr{A} \subset \overline{\mathscr{A}}, \text{ and}$$

 $(V, \psi) \in \mathscr{B} \subset \overline{\mathscr{B}},$

so either

- $\overline{\mathscr{A}} = \overline{\mathscr{B}}$ is not smooth, or
- $\overline{\mathscr{A}} \neq \overline{\mathscr{B}}$ are not the same smooth structures.

Both conclusions are contrary to our hypotheses, so it had better be that $\mathscr A$ and $\mathscr B$ are compatible! \square

[1, Nos. 1–6]. Given. Let M be a nonempty topological manifold of dimension $n \ge 1$.

To prove. If M has a smooth structure, then it has uncountably many distinct ones.

Proof. We construct uncountably many distinct smooth structures on M.

step of construction	justification
1. Say \mathscr{A} is a maximal smooth atlas on M .	Hypothesis.
2. Of the charts in \mathcal{A} , take a countable basis of regular coordinate balls and form the smooth	Every smooth manifold has a countable basis of regular coordinate balls. [1, p. 15]
atlas $\{(B_i, \varphi_i)\}.$	
3. Form an open, locally finite, refinement $\{V_j\}$ of	$\{B_i\}$ is an open cover of paracompact M .
the cover $\{B_i\}$.	
4. For each V_j , choose (B_i, φ_i) such that $V_j \subset B_i$	
and define $\psi_j := \varphi_i _{V_j}$.	
5. Note that $\{(V_j, \psi_j)\}$ is a smooth atlas.	$\{V_j\}$ covers M . For each pair ψ_k , ψ_ℓ , in the atlas, the transition map $\varphi_k \circ \psi_\ell^{-1}$ is (the restriction of) a diffeomorphism.

Date: 2019-01-24.

step of construction

- 6. Consider a point in M, a neighborhood of this point, and take all V_1, \ldots, V_n of $\{V_j\}$ which meet this neighborhood.
- 7. Remove an open set V_k from V_1, \ldots, V_n if V_k is not covered by $\{V_1, \ldots, \hat{V_k}, \ldots, V_n\}$.
- 8. Repeat step 7 until there's a open V from the initial n that's not covered by those open sets of the initial n remaining.
- 9. Choose a point $p \in V$ such that p is not in any other open set of those remaining after step 8. 10. Note the atlas $\{(V_j, \psi_i)\}$ from step 5, with $\{(V_1, \psi_1), \ldots, (V_n, \psi_n)\}$ removed, with $\{\text{charts remaining after step 8}\}$ adjoined, is smooth.
- 11. Moreover, the smooth atlas in step 10 has a particular chart (V, ψ) such that $p \in V$ alone.
- 12. Consider the image of V and p in \mathbf{R}^n under the map $\varphi \colon B \to \hat{B} \subset \mathbf{R}^n$, where B is the regular coordinate ball chosen in step 4 to contain V.
- 13. Diffeomorph \hat{B} to itself so that $\varphi(p) \in \hat{V}$ is mapped to the origin. Denote this diffeomorphism by g.
- 14. For all reals s > 0 such that $s \neq 1$, there's a function F_s that homeomorphs \hat{B} to itself.
- 15. The restriction of $F_s \circ g$ to the punctured unit ball $\hat{B} \setminus \{0\}$, is indeed a diffeomorphism of $\hat{B} \setminus \{0\}$.
- 16. When $s \neq 1$, $F_s \circ g$ is either not smooth at the origin or fails to have a smooth inverse.
- 16. Define ψ_s as the restriction of the composite $F_s \circ g \circ \varphi$ to V.

justification

 $\{V_i\}$ is locally finite, M is non-empty.

Choice.

Finite recursion.

$$p \in V$$
, yet $p \notin V_1, \dots, \hat{V}, \dots, V_n$.

WLOG, say \hat{B} is a unit ball centered at the origin. Then g is a tangent map $\hat{B} \to \mathbf{R}^n$, followed by a rigid translation in \mathbf{R}^n , finished with an inverse tangent map $\mathbf{R}^n \to \hat{B}$. $F_s : x \mapsto |x|^{s-1}x$.

Partial derivatives of all orders exist for both F_s and its inverse $F_{1/s}$.

Either F_s or F_s^{-1} fails to be of class C^{∞} on \hat{B} . There's no good linear approximation of the norm of a vector at the origin.

I claim (V, ψ_s) is *compatible* with any other chart (V', ψ') from the atlas constructed in step 10. Why? Because $V \cap V'$ does not contain p, whence the transition map $\psi' \circ \psi_s^{-1}$ where

$$\psi_s(V \cap V') \stackrel{\psi_s}{\longleftrightarrow} V \cap V' \stackrel{\psi'}{\longleftrightarrow} \psi'(V \cap V')$$

is a diffeomorphism. Yet, for distinct parameters $s, t \in \mathbf{R}^+ \setminus \{1\}$, the charts (V, ψ_s) and (V, ψ_t) are not compatible with each other. Why? Because $p \in V$. The transition map $\psi_t \circ \psi_s^{-1}$,

$$\hat{V} \stackrel{\psi_s}{\longleftarrow} V \stackrel{\psi_t}{\longrightarrow} \hat{V}$$

is not differentiable at $\psi_s(p)$. We conclude there's a unique smooth structure on the topological manifold M for each value of the parameter $s \in \mathbf{R}^+ \setminus \{1\}$. \square

[1, Nos. 1–7]. Given. Let N denote the north pole $(0, ..., 0, 1) \in S^n \subset \mathbf{R}^{n+1}$, and let S denote the south pole. Define the stereographic projection $\sigma \colon S^n \setminus \{N\} \to \mathbf{R}^n$

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}.$$

Let
$$\tilde{\sigma}(x) = -\sigma(-x)$$
 for $x \in S^n \setminus \{S\}$.

To prove.

- a. For $x \in S^n \setminus \{N\}$, $\sigma(x) = u$, where (u, 0) is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$. (There's a similar intersection for $\tilde{\sigma}$. Find it.)
- b. σ is bijective, and its inverse is

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1}.$$

- c. We compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $(S^n \setminus \{N\}, \sigma)$ and $(S \setminus \{S\}, \tilde{\sigma})$ defines a smooth structure on S^n .
- d. This smooth structure is the same as the one defined in Example 1.31 (spheres).
- [1, Nos. 1–8]. Given. By identifying \mathbf{R}^2 with \mathbf{C} , we can think of the unit circle S^1 as a subset of the complex plane. An angle function on a subset $U \subset S^1$ is a continuous map $\theta \colon U \to \mathbf{R}$ such that $e^{i\theta(z)} = z$ for all $z \in U$.

To prove.

- There exists an angle function θ on an open subset $U \subset S^1$ if and only if $U \neq S^1$.
- For any such angle function, (U, θ) is a smooth coordinate chart for S^1 with its standard smooth structure.

References

[1] J. M. Lee, Introduction to Smooth Manifolds. New York: Springer-Verlag, 2003.