REPORT

Digital Image Processing « Assignments »

Summary

A	Hist	togram Equalization	1
	A.1	Problem statement	1
	A.2	Python implementation	1
	A.3	Figure 1	1
		A.3.1 Histogram	1
		A.3.2 Histogram equalization	1
	A.4	Figure 2	1
		A.4.1 Histogram	1
		A.4.2 Histogram equalization	1
В	Spa	tial enhancement methods	6
	B.1	Problem statement	6
	B.2	Python implementation	6
	B.3	Results	7
		B.3.1 Original image	7
		B.3.2 $3x3$ Laplacian $(A = 0)$	8
		B.3.3 $3x3$ Laplacian $(A = 1)$	9
		B.3.4 $3x3$ Laplacian (A = 1.7)	
			11

A. Histogram Equalization

A.1 Problem statement

- 1. Write a computer program for computing the histogram of an image.
- 2. Implement the histogram equalization technique.
- 3. Your program must be general to allow any gray-level image as its input.

A.2 Python implementation

Usage: python problem1.py [-h] image path

A.3 Figure 1

A.3.1 Histogram

Original image: A.1 | Original image's histogram: A.2

A.3.2 Histogram equalization

Enhanced image: A.3 | Enhanced image's histogram: A.4

A.4 Figure 2

A.4.1 Histogram

Original image: A.5 | Original image's histogram: A.6

A.4.2 Histogram equalization

Enhanced image: A.7 | Enhanced image's histogram: A.8

A.4 Figure 2

Figure A.1 – Original Fig1.jpg

Histogram of 'Fig1.jpg'

Figure A.2 – Histogram of Fig1.jpg

A.4 Figure 2

Figure A.3 – Enhanced Fig1.jpg

Histogram of enhanced 'Fig1.jpg'

Figure A.4 – Equalized histogram of Fig1.jpg

A.4 Figure 2

Figure A.5 – Original Fig2.jpg

Figure A.6 – Histogram of $\mathit{Fig2.jpg}$

A.4 Figure 2 5

FIGURE A.7 – Enhanced Fig2.jpg

Figure A.8 – Equalized histogram of Fig2.jpg

B. Spatial enhancement methods

B.1 Problem statement

Implement the image enhancement task of Section 3.7 (Fig 3.43) (Section 3.8, Fig 3.46 in our slides).

The image to be enhanced is *skeleton orig.tif.*

You should implement all steps in Figure 3.43.

(You cannot directly use functions of Matlab such as imfilter or fspecial, implement all functions by yourself).

B.2 Python implementation

Usage: python problem2.py [-h] [-laplacian] [-sobel] [-a A] image path

For example, to use a 3x3 Laplacian filter with A = 1.7, and then a Sobel, type:

python problem2.py -laplacian -a 1.7 -sobel skeleton orig.tif

The original image, its Laplacian, its sharpened (Laplacian) and its Sobel will be displayed.

B.3 Results

B.3.1 Original image

FIGURE B.1 – Original $skeleton_orig.tif$

B.3.2 3x3 Laplacian (A = 0)

FIGURE B.2 – Laplacian (A=0)

 ${\tt FIGURE~B.3-Sharpened~image}$

 $FIGURE\ B.4-Original\ image$

B.3.3 3x3 Laplacian (A = 1)

Figure B.5 – Laplacian (A=1)

 ${\tt FIGURE~B.6-Sharpened~image}$

 $FIGURE\ B.7-Original\ image$

B.3.4 3x3 Laplacian (A = 1.7)

FIGURE B.8 – Laplacian (A=1.7)

 ${\tt FIGURE~B.9-Sharpened~image}$

 $FIGURE\ B.10-Original\ image$

B.3.5 Sobel

 $FIGURE\ B.11-Sobel\ x\text{-}gradient$

 $FIGURE\ B.12-Sobel\ y\text{-gradient}$

 ${\tt FIGURE~B.13-Sobel~image}$

 ${\tt FIGURE~B.14-Original~image}$