

Materialsammlung zur Vorlesung "Technische Akustik und Lärmbekämpfung"

Prof. Dr.-Ing. Bernhard U. Seeber Audio Information Processing Technische Universität München

Wintersemester 2014/15 v.0.2

Inhaltsverzeichnis

1	Einf	ührung in die Akustik und Lärmbekämpfung	4
	1.1	Was ist Lärm?	4
	1.2	Straßenverkehrslärm	4
	1.3	Fluglärm	5
	1.4	Prinzipien der Lärmminderung	5
	1.5	Schallfeldgrößen	5
	1.6	Addition von Geräuschen	8
	1.7	Wie wird Schall gemessen?	9
2	Ents	stehung und Ausbreitung von Schallen 1	١0
	2.1	Einfache Schwinger	10
	2.2	Schallfelder	11
	2.3	Ebene Wellen (plane wave)	11
	2.4	Kugelwellen (spheric wave)	11
	2.5	Strahlerarten	12
	2.6	Schwingende Luftsäulen	12
	2.7	Resonatoren	12
	2.8	Geometrische Akustik	14
	2.9	Geometrische Raumakustik	16
	2.10	Statistische Raumakustik	16
	2.11	Raumsimulationstechniken	17
	2.12	Perzeptive Aspekte in Räumen	18
	2.13	Schalldämmung	18
3	Scha	allmesstechnik und Schallwirkungen 2	22
	3.1	Bewerteter Schallpegel	22
	3.2	Äquivalenter Dauerschallpegel	22
	3.3	Schallanalyse mit konstanter, absoluter Bandbreite	22
	3.4	Schallanalyse mit konstanter, relativer Bandbreite	22
	3.5	Anwendung der Terzanalyse bei der Bestimmung des Einfügungsdämm-Maßes 2	22
	3.6	Berechnungsverfahren: Zwicker-Lautheit	23
	3.7	Psychoakustische Lautheit N [sone]	23
	3.8	Psychoakustische Lästigkeit	23
	3.9		23
4	Scha	allabwehr, Vorschriften, Normen 2	24
	4.1	·	24
	4.2		24
	4.3		24
	4.4		24
			24

4.6	Schienenlärm	24
4.7	Fluglärm	24
4.8	Freizeitlärm	24

1 Einführung in die Akustik und Lärmbekämpfung

1.1 Was ist Lärm?

Tabelle 1.1: Repräsentative Umfrage des Umweltbundesamtes "Was stört im Wohnumfeld"; 2012.

stark	mittelmäßig	etwas	
6%	20%	28%	Straßenlärm
3%	14%	25%	Nachbarschaftslärm
3%	12%	19%	Schiene
2%	11%	19%	Industrie
1%	5%	17%	Flugverkehr

Tabelle 1.2: Internetumfrage des Umweltbundesamtes; seit 2000, Stand 2011. "Wie stark fühlen Sie sich in der letzten Zeit persönlich von folgenden Lärmquellen in Ihrem Wohnfeld gestört?"

stark + äußerst stark	≥ mittel	
36%	59%	Straße
18%	32%	Nachbarn
20%	30%	Fluglärm
16%	31%	Baulärm
10%	21%	Industrie
12%	22%	Schiene
5%	11%	Sportanlage

1.2 Straßenverkehrslärm

Abbildung 1.1: "Kreislauf" des Straßenverkehrslärms.

1.3 Fluglärm

1.4 Prinzipien der Lärmminderung

Abbildung 1.2: Systemtheoretischer Ansatz der Lärmminderung.

Abbildung 1.3: Schalldämmung eines Kapsel-Gehörschutzes.

1.5 Schallfeldgrößen

Schalldruck (sound pressure)

$$p = \frac{F}{S} \left[\text{Pa} = \frac{\text{N}}{\text{m}^2} \right] \tag{1.1}$$

Schallschnelle (particle velocity)

Die Teilchenauslenkung δ ist die dem Schall zugeordnete Wechselwirkung der Fluideilchen im Schallfeld, d.h. der Schwingweg der Fluidteilchen um eine Ruhelage. Sie ist im Gegensatz zum Schalldruck eine vektorielle Größe.

$$\overrightarrow{v} = \frac{\partial \delta}{\partial t} \tag{1.2}$$

In Ausbreitungsrichtung:

$$v(x,t) = \frac{d\xi}{dt} \left[\frac{\mathbf{m}}{\sec} \right] \tag{1.3}$$

Typischer Wertebereich: 10^{-8} bis 10^{-12}

Schallgeschwindigkeit (speed of sound)

 $c\left[\frac{m}{sec}\right]$; Typischer Wertebereich: Luft 10^2 ... 10^3 Wasser

Temperaturabhängigkeit:

$$c \approx 331.5 + 0.6 \cdot T/^{\circ} \text{C} \left[\frac{\text{m}}{\text{sec}}\right]$$
 (1.4)

$$c = \sqrt{R_S \cdot T \cdot K} \left[\frac{\mathbf{m}}{\mathbf{sec}} \right] \tag{1.5}$$

Wellenlänge (wavelength)

$$\lambda = \frac{c}{f} \text{ [m]} \tag{1.6}$$

Abgeleitete Größen:

Schallintensität (sound intensity)

Die Energieflussdichte eines Schallfeldes ist das Produkt aus momentanen Schalldruck und der momentanen Schallschnelle. Sie beschreibt den Energietransport der Fluidteilchen an einem bestimmten Punkt, zu einem bestimmten Zeitpunkt und ist eine vektorielle Größe.

$$\overrightarrow{i} = p \cdot \overrightarrow{v} \tag{1.7}$$

Die Schallintensität stellt die Energieflussdichte des Schallfeldes über einen bestimmten Zeitraum dar und ist somit eine zeitlich veränderliche Größe. Sie ist ebenfalls eine vektorielle Größe, deren Richtung durch den Vektor der Schallschnelle bestimmt ist. Zur Charakterisierung nicht periodischer, stationärer (also "dauernder") Quellen wird der zeitliche Mittelwert der Energieflussdichte angegeben.

$$\overrightarrow{I} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p \cdot \overrightarrow{v} \, dt \tag{1.8}$$

In der Praxis werden meist die Effektivwerte von Schalldruck und Schallschnelle angegeben, wobei ϕ der Phasenwinkel zwischen Schalldruck und Schallschnelle ist.

$$I = \widetilde{p} \cdot \widetilde{v} \cdot \cos \phi \tag{1.9}$$

Für die Schallintensität der ebenen, fortschreitenden Welle entfällt der Phasenwinkel, da keine Phasenverschiebung zwischen Schalldruck und Schallschnelle vorliegt.

$$I = \widetilde{p} \cdot \widetilde{v} \left[\frac{\mathbf{W}}{\mathbf{m}^2} \right] \tag{1.10}$$

Schallleistung (sound power)

$$P = I \cdot S \text{ [W]} \tag{1.11}$$

Schallfeldimpedanz (sound field impedance)

DEGA Empfehlung 101: spezifische Schallimpedanz, Z_s

$$Z_s = \frac{p}{v} = \frac{F}{S \cdot v} \left[\frac{\text{N sec}}{\text{m}^3} \right]$$
 (1.12)

Schallkennimpedanz für die ebene, fortschreitende Welle, auch "Wellenwiderstand":

$$Z_0 = \rho \cdot c = 414 \left[\frac{\text{N sec}}{\text{m}^3} \right] \tag{1.13}$$

Mechanische Impedanz (mechanic impedance)

$$Z_m = Z_s \cdot S = \frac{F}{v} \left[\frac{\text{N sec}}{\text{m}} \right] \tag{1.14}$$

Schalldruckpegel (sound pressure level)

$$L_p = 20 \log \frac{\widetilde{p}}{p_0} \text{ [dB]} \tag{1.15}$$

Bezugsschalldruck:

$$p_0 = 20 \; \mu \text{Pa}$$

Schallintensitätspegel (sound intensity level)

$$L_I = 10 \log \frac{I}{I_0} \text{ [dB]}$$
 (1.16)

Bezugsschallintensität:

$$I_0 = 10^{-12} \frac{\text{W}}{\text{m}^2}$$

Schallleistungspegel (sound power level)

$$L_W = 10 \log \frac{P}{P_0} \text{ [dB]}$$
 (1.17)

Bezugsschallleistung:

$$P_0 = 10^{-12} \text{ W}$$

Abbildung 1.4: Hörfläche und Schallgrößen.

1.6 Addition von Geräuschen

Rechnen mit Faktoren des Schalldrucks p oder der Schallschnelle v, bzw. mit Graden der Leistung Poder der Intensität I, sowie mit Schallpegeln L bzw. Schallpegeldifferenzen ΔL .

Tabelle 1.3: Wichtige Werte zur Pegelrechnung.

I/I_0 bzw. P/P_0	L bzw. ΔL	p/p_0 bzw. v/v_0
1	0dB	1
2	$\approx 3 dB$	$\sqrt{2}$
4	$\approx 6 \mathrm{dB}$	2
10	$10\mathrm{dB}$	$\sqrt{10}$
25	$\approx 14 dB$	5
100	20dB	20
1000	30dB	≈ 31.6
10000	40dB	100

Erhöhung ΔL des Pegels L_1 eines Geräusches durch ein zweites, inkohärentes Geräusch mit dem Pegel L_2 als Funktion der Pegeldifferenz L_1-L_2 zwischen beiden Geräuschen:

$$\Delta L = 10 \cdot \log \left(1 + 10^{\frac{-(L_1 - L_2)}{10}} \right) \text{ [dB]}$$
 (1.18)

Abbildung 1.5: Pegelerhöhung in Abhängigkeit der Pegeldifferenz zweier Schalle.

Tabelle 1.4: Näherungen für die Summation inkohärenter Schalle.

$0dB \le (L_1 - L_2) \le 1dB$	$\Delta L \approx 3 \mathrm{dB}$
$ 1dB \le (L_1 - L_2) \le 4dB $	$\Delta L \approx 2 \mathrm{dB}$
$ 4dB \le (L_1 - L_2) \le 9dB$	$\Delta L \approx 1 \mathrm{dB}$
$9dB \le (L_1 - L_2)$	$\Delta L \approx 0 \mathrm{dB}$

1.7 Wie wird Schall gemessen?

2 Entstehung und Ausbreitung von Schallen

2.1 Einfache Schwinger Dichtewelle, Longitudinalwelle (longitudinal wave)

Transversal, Schub-/Scherwelle (transverse/shear wave)

Biegewelle (bending wave)

Torsionswelle (torsional wave)

2.2 Schallfelder

Elastizitätsgesetz

$$p(t) = c^2 \cdot \rho(t) \tag{2.1}$$

$$\Delta p = c^2 \cdot \Delta \rho \tag{2.2}$$

Bewegungsgesetz/Trägheitsgesetz

in x – Richtung :
$$-\frac{\partial p(x)}{\partial x} = \rho \frac{\partial v}{\partial t}$$

allgemein : $-\operatorname{grad} p = \rho \frac{\partial \overrightarrow{v}}{\partial t}$ (2.3)

Kontinuitätsgleichung

$$\rho_0 \cdot div \ \overrightarrow{v} = -\frac{\partial \rho}{\partial t} \tag{2.4}$$

Wellengleichung

$$div \ grad \ p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(2.5)

Allgemeines Kompressionsgesetz (Gase)

in x – Richtung :
$$\frac{\partial v}{\partial x} = -\frac{1}{\rho_0 c^2} \frac{\partial p}{\partial t}$$

allgemein : $div \overrightarrow{v} = -\frac{1}{\rho_0 c^2} \frac{\partial p}{\partial t}$ (2.6)

2.3 Ebene Wellen (plane wave)

$$Z_s = \frac{p}{v} = \rho \cdot c$$

2.4 Kugelwellen (spheric wave)

$$Z_{s} = \rho \cdot c \cdot \frac{j \cdot 2\pi \cdot \frac{r}{\lambda}}{1 + j \cdot 2\pi \cdot \frac{r}{\lambda}}$$
mit $k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$ [-], Wellenzahl (2.7)

$$\to Z_s = \rho \cdot c \cdot \frac{jkr}{1 + jkr} \tag{2.8}$$

2.5 Strahlerarten

Punktstrahler (point emitter)

6dB Abnahme bei Entfernungsverdopplung.

Linienquellen (line source)

3dB Abnahme bei Entfernungsverdopplung, wenn unendlich lang. Beispiel: Autobahnen.

Flächenquellen (plane source)

Keine Abnahme bei Entfernungsverdopplung, wenn unendlich ausgedehnt.

Beispiel: Fassade mit vielen Fenstern eines großen Fabrikgebäudes.

2.6 Schwingende Luftsäulen

Einseitig offenes Rohr, $\frac{\lambda}{4}$ -Resonator

$$f = \frac{c \cdot (2n-1)}{4 \cdot l} \text{ [Hz]}$$

Beidseitig offenes Rohr, $\frac{\lambda}{2}$ -Resonator

$$f = \frac{c \cdot n}{2 \cdot l} \text{ [Hz]}, \tag{2.10}$$

wobei $l=l_0+\frac{d}{2}$, mit Rohrdurchmesser d und Rohrlänge l_0 , die Mündungskorrektur berücksichtigt.

2.7 Resonatoren

Helmholtzresonator

$$\omega = \sqrt{\frac{s}{m}} \left[\frac{1}{\sec} \right] \tag{2.11}$$

mit
$$s = \frac{\rho \cdot c^2 \cdot S^2}{V_{Bauch}} \left[\frac{N}{m} \right],$$
 (2.12)

$$f_{res} = \frac{c}{2\pi} \sqrt{\frac{S}{V_{Bauch} \left(l_0 + \frac{\pi}{2}r\right)}}$$
 [Hz], (2.13)

wobei $\frac{\pi}{2}r$ der Mündungskorrektur entspricht.

Plattenresonator

$$f_{res} = \frac{c}{2\pi} \sqrt{\frac{\rho_{Luft}}{\rho_{Platte} \cdot D \cdot d}} \text{ [Hz]}$$
 (2.14)

Mikroperforationsabsorber

Abbildung 2.1: Typischer Verlauf des Absorptionsgrads eines einschaligen Mikroperforationsabsorbers. Lochflächenverhältnis 0.014, Wanddicke d=3mm, Wandabstand D=50mm. (1) 2r=3.00mm, (2) 2r=0.45mm, (3) 2r=0.15mm.

Abbildung 2.2: Typischer Verlauf des Absorptionsgrads eines zweischaligen Mikroperforationsabsorbers. Wandabstände $D_1=50\mathrm{mm}$ und $D_2=18\mathrm{mm}$.

2.8 Geometrische Akustik

Reflexionsfaktor (reflection coefficient)

$$r = \frac{p_r}{p_i} = \frac{Z \cdot \cos(\alpha) - Z_0}{Z \cdot \cos(\alpha) + Z_0} [-]$$
(2.15)

Absorption

Statistischer Absorptionsgrad:

$$\alpha_s = \frac{\text{absorbierteEnergie}}{\text{einfallendeEnergie}} = \frac{|p_i^2| - |p_r^2|}{|p_i^2|} = 1 - |r|^2 [-]$$
(2.16)

Abbildung 2.3: Frequenzabhängige Absorption in Luft.

Tabelle 2.1: Absorptionsgrade verschiedener Materialien.

	${\bf Absorptionsgrad} \ \alpha_s$							
Material	Frequenz	125	250	500	1000	2000	4000	Hz
glatter Verputz		0.01	0.01	0.02	0.02	0.03	0.04	
Holz 16mm auf Lattenrost		0.20	0.10	0.05	0.05	0.05	0.10	
Teppich mittlerer Dicke		0.05	0.08	0.20	0.30	0.35	0.40	
Vorhänge mittlerer Dicke		0.10	0.15	0.30	0.40	0.50	0.60	
geschlossene Fenster		0.10	0.04	0.03	0.02	0.02	0.02	

Tabelle 2.2: Absorptionsgrade üblicher Akustikplatten.

	Absorptions grad α_s							
Material	Frequenz	125	250	500	1000	2000	4000	Hz
Holzfaserplatten aufgeklebt		0.15	0.25	0.40	0.50	0.50	0.40	
Holzfaserplatten auf Lattenrost		0.30	0.50	0.65	0.70	0.70	0.60	
Akustikputz 10mm		0.05	0.20	0.40	0.60	0.60	0.50	
gelochte Metallplatten mit poröser Schicht		0.30	0.60	0.85	0.85	0.80	0.70	

Abbildung 2.4: Absorptionsgrad einer 45mmdicken Mineralfaserplatte bei verschiedener Abdeckung mit Holz.

2.9 Geometrische Raumakustik

Eigenfrequenzen eines quaderförmigen Raumes (eigen frequencies of box-shaped room)

$$f_{x,y,z} = \frac{c}{2} \sqrt{\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 + \left(\frac{n_z}{L_z}\right)^2}$$
[Hz] (2.17)

Anzahl Raummoden bis Frequenz f (number of room modes up to f)

$$M(f) = \frac{4\pi}{3} \left(\frac{f}{c}\right)^3 \cdot V [-] \tag{2.18}$$

Raummodendichte (room mode density)

$$\frac{\Delta M}{\Delta f} \approx \frac{dM}{df} = \frac{4\pi}{c} \left(\frac{f}{c}\right)^2 \cdot V \text{ [sec]}$$
 (2.19)

Schröder-Frequenz (Schröder frequency)

$$f_s = \sqrt{\frac{c^3 \cdot T_{60}}{4V \cdot \ln 10}} \text{ [Hz]}$$
 (2.20)

Praxisformel:
$$f_s \gg 2000 \sqrt{\frac{T_{60}}{V}}$$
 [Hz] (2.21)

Mittlere Reflexionsrate (mean reflection rate)

$$\overline{n} = \frac{c \cdot S}{4V} \left[\frac{1}{\text{sec}} \right] \tag{2.22}$$

Mittlere freie Weglänge (mean free path)

$$\bar{l} = \frac{4V}{S} \text{ [m]} \tag{2.23}$$

2.10 Statistische Raumakustik

Definition Nachhallzeit (reverberation time)

Die Nachhallzeit T₆₀ ist definiert als die Zeit, in der der Schalldruckpegel L in einem Raum nach Beenden der Schallfeldanregung auf das eintausenste der Energie bzw. um 60dB abgefallen ist.

Eyering-Formel

$$T_N = -0.163 \frac{V}{S \cdot \ln(1 - \overline{\alpha})} \text{ [sec]}$$
 (2.24)

Sabine-Formel

$$N\ddot{a}herung \ f\ddot{u}r \ \alpha \ll 1: \ T_N = 0.163 \frac{V}{\overline{\alpha}S} \ [sec]$$
 (2.25)

Offene Fensterfläche

$$\overline{\alpha}S = 0.163 \frac{V}{T_N} \text{ [m}^2] \tag{2.26}$$

Hallradius (radius of reverberation)

$$r_H = 0.14\sqrt{\overline{\alpha}S} \text{ [m]} \tag{2.27}$$

2.11 Raumsimulationstechniken

Spiegelschallquellenmethode

Abbildung 2.5: Schematik der Spiegelschallquellenmethodik mit Schalquelle (sound source), Spiegelquelle (mirror image) und Empfänger (receiver).

2.12 Perzeptive Aspekte in Räumen

2.13 Schalldämmung

Abbildung 2.6: Beispielhafte Reflexion an einer Unstetigkeitsstelle mit τ Transmissiongrad, δ Dissipationsgrad, α Absorptionsgrad und ρ Reflexionsgrad.

Luftschalldämmung (airborne sound reduction)

Messung des Luftschalldämm-Maßes

Abbildung 2.7: Messung des Luftschalldämm-Maßes.

$$R = 10 \cdot \log \frac{L_S}{L_E} = 10 \cdot \log \frac{I_e}{\tau \cdot I_e} \text{ [dB]}$$
(2.28)

$$R = D + 10 \cdot \log \frac{S}{A_E} \text{ [dB]}$$
 (2.29)

 $_{
m mit}$

$$D = L_S - L_E = 20 \cdot \log \frac{p_S}{p_0} + 20 \cdot \log \frac{p_E}{p_0} \text{ [dB]}$$
 (2.30)

und Korrektur der Absorption im Empfangsraum:

$$A_E = \overline{\alpha} \cdot S_E \,\left[\mathrm{m}^2\right] \tag{2.31}$$

Sollkurve

Abbildung 2.8: Sollkurve des Luftschalldämm-Maßes nach DIN EN ISO 717-1.

Mittelwert von R im Frequenzbereich $100Hz\dots 3200Hz$:

$$\overline{R} \approx \frac{R_{100} + R_{200} + R_{400} + R_{800} + R_{1600} + R_{3200}}{6} \text{ [dB]}$$

Ein- und mehrschalige Wände

Abbildung 2.9: Mittleres Luftschalldämm-Maß einschaliger Wände in Abhängigkeit vom Wandgewicht pro m^2 .

Näherungsgerade des mittleren Luftschalldämm-Maßes:

$$\overline{R} \approx 13 \cdot \log(W_g) + 15 \text{ [dB]}$$
 (2.33)

Tabelle 2.3: Beispiele für Luftschalldämm-Maße von Wänden.

Art der Wände	Stärke		\overline{R} [dB]
Ytong Steine	10cm		38
Bimsbetonsteine	11.5cm	1 1 1 11	40
Bimshohlblocksteine	$25\mathrm{cm}$	beidseitig verputzt	47
Ziegelsteine	$25\mathrm{cm}$		55
Gipskartonplatten	1cm		26
Glasscheibe	1.2cm		34

Abbildung 2.10: Luftschalldämmung von Mehrfachwänden. a) Einfachwand aus 12mm Gipskartonplatten: $\overline{R} = 28dB$. b) Doppelwand aus 12mm Gipskartonplatten: $\overline{R} = 48dB$.

Bei einer einschaligen Wand erfordert die Erhöhung von $\overline{R}=28dB$ auf $\overline{R}=48dB$ eine Zunahme des Wandgewichtes um den Faktor 35.

Körperschalldämmung (body-borne sound reduction)

Normhammerwerk

5 Hämmer je 500g Zylinder ∅3cm Verrundet mit 50cm Radius Fallhöhe 4cm Schlagabstand max 100ms

Messung in Raum 2

$$L_N = L_{Terz} - 10 \cdot \log \left(\frac{10m^2}{\overline{\alpha} \cdot S} \right) \text{ [dB]}$$
 (2.34)

Abbildung 2.11: Sollkurve für Norm-Trittschallpegel je Terz nach DIN EN ISO 717-2.

3 Schallmesstechnik und Schallwirkungen

- 3.1 Bewerteter Schallpegel
- 3.2 Äquivalenter Dauerschallpegel
- 3.3 Schallanalyse mit konstanter, absoluter Bandbreite
- 3.4 Schallanalyse mit konstanter, relativer Bandbreite
- 3.5 Anwendung der Terzanalyse bei der Bestimmung des Einfügungsdämm-Maßes

Vorgehen:

- 1. Terzpegelanalyse $(f_m = 16 \text{Hz} \dots 16 \text{Hz})$
- 2. Berechnung des Einfügungsdämm-Maßes D_e für jede Terz:

$$D_e = L_{Terz} - L_A + k \, dB \tag{3.1}$$

 \mathcal{L}_{Terz} : gemessener Terzpegel

 L_A : gewünschter A-bewerteter Schallpegel

k: Korrekturfaktor $k = 15dB + a_{A-Bewertung}$

Tabelle 3.1: Terzpegelverteilung eines Geräusches (außen), gewünschter $L_A = 55$ dB (innen).

$f_m[\mathrm{Hz}]$	$L_{Terz}[\mathrm{dB}]$	$egin{array}{c} L_{Terz} - \ L_{[A]}[\mathrm{dB}] \end{array}$	$a_A[dB]$	k[dB]	$D_e[\mathrm{dB}]$
16	80	25	-56.7	-41.7	-16.7
20	84	29	-50.5	-35.5	-6.5
25	85	30	-44.7	-29.7	0.3
31.5	86	31	-39.4	-24.4	6.6
40	87	32	-34.6	-19.6	12.4
50	86	31	-30.2	-15.2	15.8
63	84	29	-26.2	-11.2	17.8
80	82	27	-22.5	-7.5	19.5
100	79	24	-19.1	-4.1	19.9
125	74	19	-16.1	-1.1	17.9

Tabelle 3.2: Schallschutzklassen von Fenstern.

Spalte	1	2	3
Zeile	Schall- schutz- klasse	Bewertetes Schalldämm-Maß R'_w des am Bau funktonsfähigen eingebauten Fensters, gemessen nach DIN 52210 Teil 5 in dB	Erforderliches bewertetes Schalldämm-Maß R_w des im Prfstand (P-F) nach DIN 52210 Teil 2 eingebauten funktionsfähigen Fensters in dB
1	1	25 bis 29	\geq 27
2	2	30 bis 34	≥32
3	3	35 bis 39	≥37
4	4	40 bis 44	≥42
5	5	45 bis 49	≥47
6	6	≥50	≥52

- 3.6 Berechnungsverfahren: Zwicker-Lautheit
- 3.7 Psychoakustische Lautheit N [sone]
- 3.8 Psychoakustische Lästigkeit
- 3.9 Hörschwellenverschiebung

4 Schallabwehr, Vorschriften, Normen

- 4.1 Arbeitslärm
- 4.2 Maschinenlärm
- 4.3 Gewerbelärm
- 4.4 Arbeitslärm
- 4.5 Straßenverkehrslärm
- 4.6 Schienenlärm
- 4.7 Fluglärm
- 4.8 Freizeitlärm

Abbildungsverzeichnis

1.1	Kreislauf Straßenlärm	4
1.2	Systemtheoretischer Ansatz der Lärmminderung	5
1.3	Schalldämmung eines Kapsel-Gehörschutzes	5
1.4	Hörfläche und Schallgrößen	8
1.5	Pegelerhöhung bei Pegeldifferenz	9
2.1	Verlauf Absorptionsgrad einschaliger Mikroperforationsabsorbers	13
2.2	Verlauf Absorptionsgrad zweischaliger Mikroperforationsabsorbers	13
2.3	Frequenzabhängige Absorption in Luft	14
2.4	Absorptionsgrad Mineralfaserplatte mit Holzabdeckung	15
2.5	Spiegelschallquellenmethode	17
2.6	Absorption	18
2.7	Messung des Luftschalldämm-Maßes	18
2.8	Sollkurve des Luftschalldämm-Maßes	19
2.9	Mittleres Luftschalldämm-Maß einschaliger Wände	19
2.10	Luftschalldämmung von Mehrfachwänden	20
2.11	Sollkurve Norm-Trittschallpegel	21

Tabellenverzeichnis

1.1	Repräsentative Umfrage UBA
1.2	Internetumfrage UBA
1.3	Werte zur Pegelrechnung
1.4	Näherungen Summation inkohärenter Schalle
2.1	Absorptionsgrade verschiedener Materialien
2.2	Absorptionsgrade üblicher Akustikplatten
2.3	Beispiele für Luftschalldämm-Maße von Wänden
3.1	Terzpegelverteilung eines Geräusches
3.2	Schallschutzklassen von Fenstern