

Lovász Convolutional Networks

Prateek Yadav¹

Madhav Nimishakavi¹

Naganand Yadati¹ Shikhar Vashisth¹

Arun Rajkumar² Partha Talukdar¹

¹Indian Institute of Science, Bangalore ²Indian Institute of Technology, Madras

{prateekyadav,madhav,naganand,shikhar,ppt}@iisc.ac.in, arunr@cse.iitm.ac.in

Problem Setting

Semi-Supervised Learning on Graph: Given a graph G(V, E), we are given the labels ($\{0,1\}$ in the case of binary classification) of a subset of nodes (m < n) of V and the goal is to predict the labels of the remaining nodes as accurately as possible.

Contributions

- Our proposed method LCN combines the power of using the Lovász embeddings with GCNs.
- We analyze various types of graphs and identify the classes of graphs where LCN performs much better than existing methods.
- We demonstrate that by keeping the optimal coloring (a global property) fixed, and increasing the number edges in the graph (local structure), LCNs outperforms traditional GCNs.
- We show significant improvement using LCNs than state of the art algorithms.

Motivation

Coloring Fraction

- Graph: G = (V, E)
- $\chi(\tilde{G})$: Optimal coloring of the complement graph.
- n_d : Number of edges in G such that the pair of nodes each edge connects have different colors w.r.t $\chi(\tilde{G})$.
- n_t : Total number of pairs of nodes in G such that the nodes in each pair have different colors w.r.t $\chi(\tilde{G})$.
- Coloring fraction: $\beta(G) = \frac{n_d}{n_t}$.

Figure 1: Variation of test accuracy for GCN and LCN - with variation in the graph structure.

Proposition

- Graph: G(V, E)
- $\beta(G)$: Coloring fraction of G.
- $|\chi(\bar{G})|$: Chromatic number of the complement of G.
- G': The graph obtained from G by removing a set of edges whose nodes have different colors w.r.t the optimal coloring of \bar{G} . Then,

$$\chi(\bar{G}') = \chi(\bar{G})$$
 whereas $\beta(G') < \beta(G)$

Lovasz Orthonormal Embeddings

Definition: An orthogonal embedding of a graph G(V, E)with |V| = n, is a matrix $\mathbf{U} = [\vec{u}_1, \dots, \vec{u}_n] \in \mathbb{R}^{d \times n}$ such that $\vec{u}_i^{\top} \vec{u}_i = 0$ whenever $(i, j) \notin E$ and $\vec{u}_i \in \mathcal{S}^{d-1} \ \forall i \in [n]$.

- Lovasz Kernel: $K_{Lov} = \mathbf{U}\mathbf{U}^{\mathsf{T}}$, where \mathbf{U} is the orthonormal Embeddings of G.
- KLS Kernel: $K_{LS} = \frac{A}{-\lambda_{min}(A)} + I$

Figure 2: Lovasz embeddings for a graph consisting of set cliques are mapped orthogonal dimensions.

Proposed Model

 We propose the use of Lovasz kernel in the conventional Graph Convolutional framework. The proposed model is as follows

$$f(\mathbf{X}, \mathbf{K}) = \operatorname{softmax}(\mathbf{K} \operatorname{ReLU}(\mathbf{K}\mathbf{X}\mathbf{W}^{(0)})\mathbf{W}^{(1)}),$$

where **K** is the Lovasz or KLS kernel.

• The model is trained using cross entropy loss function as follows.

$$\mathcal{L} = \sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}.$$

Experiments

Figure 3: Test accuracy plots for various synthetically generated graphs from stochastic block model.

Experiments

Figure 4: Embeddings learnt for settings corresponding to previous figure's (a) for n=1000

Dataset	Un-Lap	N-Lap	KS	SPORE	Kipf-GCN	GPNN	LCN
breast-cancer	88.2	93.3	92.8	96.7	97.6	95.5	97.2
diabetes	68.9	69.3	69.4	73.3	71.4	68.0	76.3
fourclass	70.0	70.0	70.4	78.0	80.5	73.9	81.7
heart	72.0	75.6	76.4	82.0	85.1	81.1	82.5
ionosphere	67.8	68.0	68.1	76.1	76.1	70.0	87.9
sonar	58.8	59.0	59.3	63.9	71.4	64.8	73.2
mnist-500 1 vs 2	75.6	80.6	79.7	85.8	98.0	96.2	99.0
mnist-500 3 vs 8	76.9	81.9	83.3	86.1	92.3	83.1	93.7
mnist-500 4 vs 9	68.4	72.0	72.2	74.9	89.4	88.5	83.3
mnist-2000 1 vs 2	83.8	96.2	95.0	96.7	99.0	97.5	99.2
mnist-2000 3 vs 8	55.2	87.4	87.4	91.4	94.7	89.6	95.7
mnist-2000 1 vs 7	90.7	96.8	96.6	97.3	98.8	96.4	98.7

Table 1: Binary Classification with Random label-to-color assignment in UCI and MNIST datasets.

Dataset	Node2vec	Kipf-GCN	GPNN	LCN
Citeseer	23.1	70.3	69.7	73.5
Cora	31.9	81.5	81.8	82.6
Pubmed	42.3	79	79.3	79.7

Table 2: Performance for SSL on Citeseer, Cora, Pubmed datasets

(n,k)	Kipf-GCN	LCN	Avg_same	Avg_dif
(50, 10)	0.92	0.93	0.83	-0.008
(75, 6)	0.77	0.80	0.80	-0.005
(100, 5)	0.71	0.73	0.79	-0.003
(100, 7)	0.81	0.81	0.80	-0.003

Table 3: Caveman graph experiment: Average test accuracy of Kipf-GCN and LCN on caveman graphs.

Figure 5: Behavior of test accuracy with increase in the heterogeneous edges in the hypergraph.

Source Code and Acknowledgement

- Codes: https://github.com/malllabiisc/lcn/.
- Contact: prateekyadav@iisc.ac.in
- This work was supported by MHRD, Govt. of India, and by gifts from Google Research and Accenture.