УПРАВЛЕНИЕ РОБОТОМ С ПОМОЩЬЮ РҮТНОN

Содержание

Arduino управления с Python

- □ Управление роботом с помощью Python
 - Управление Мотором
 - Измерение расстояния с помощью ультразвукового датчика
 - Управление RGB LED-светодиодом
 - Управление роботом через Bluetooth

Arduino управления с питоном

Arduino +

Python

Controlling Arduino with Raspberry Pi

Nanpy

- Nanpy это библиотека python
 - используйте Arduino в качестве подчиненного устройства, управляемое ведущим устройством, где вы запускаете свои скрипты, такие как ПК, Raspberry Pi и т. д.
 - управляйте Arduino через последовательное соединение через USB-кабель.
 - разрешить программирование с помощью python в Arduino

Использование Nanpy

- □ Загрузите программу Nanpy на плату Arduino
- : Откройте файл Nanpy в среде Arduino и загрузите его на плату Arduino

Использование Nanpy

- □ Записать код Python с помощью библиотеки Nanpy
 - 1. импортировать необходимые библиотеки
 - 2. создать соединение с arduino с помощью SerialManager
 - 3. инициировать объект arduino, используя ArduinoApi
 - 4. написать код arduino с объектом arduino

```
from nanpy import ArduinoApi
from nanpy import SerialManager

connection = SerialManager()

a = ArduinoApi(connection=connection)

a.pinMode(13, a.OUTPUT)

a.digitalWrite(13, a.HIGH)

...

...
```


Arduino схема подключения: светодиода

Примерный код

```
from nanpy import ArduinoApi, SerialManager
from time import sleep
connection = SerialManager()
a = ArduinoApi(connection=connection)
LED = 13
a.pinMode(LED, a.OUTPUT)
while True:
  a.digitalWrite(LED, a.HIGH)
  sleep(0.5)
  a.digitalWrite(LED, a.LOW)
  sleep(0.5)
```


Arduino схема подключения: Нажатие кнопки

Примерный код

```
from nanpy import ArduinoApi, SerialManager
from time import sleep
connection = SerialManager()
a = ArduinoApi(connection=connection)
BUTTON = 2
a.pinMode(BUTTON, a.INPUT)
while True:
  state = a.digitalRead(BUTTON)
  print("Button state is ", state)
  sleep(0.5)
```


#1 задача: кнопка и светодиод

□ Task(Задание)

- 1. Прочтите значение с pin 2 подключенного с помощью кнопки
- 2. Включите светодиод(ріп 13) при нажатии кнопки
- 3. Выключите светодиод(ріп 13) при отпускании кнопки

□ Use Tip(Использование Совет)

Flowchart	Syntax(синтаксис)	Example(пример)		
true-block false-block	<pre># ifelse if expression : statement_1 statement_2 else : statement_3 statement_4</pre>	str1 = 'Start' if 's' in str1 : print("Hello World!") else : print("Hi, There")		

Содержание

Arduino управления с Python

- □ Управление роботом с помощью Python
 - Управление Мотором
 - Измерение расстояния с помощью ультразвукового датчика
 - Управление RGB LED-светодиодом
 - Управление роботом через Bluetooth

Управление роботом с помощью Python

□ Управление DC motor, ультразвуковой датчик и светодиод

RGB c Alphabot2

Управление двигателем с ТВ6612

Arduino ↔ TB6612

5V supply → VCC

N20 motor + rubber wheel

Управление скоростью двигателя

GND → GND

Управление направлением
Digital output pin → AIN1
Digital output pin → AIN2
Analog pin → PWMA
Управление скоростью

игателя

PVVIVI	выход двигателя
0~255	0 выключен, 255 на полной скорости

□ Управление направлением мотора

Input1	Input2	Выход двигателя
LOW	HIGH	Повернуть в направлении по часовой стрелки
HIGH	LOW	Повернуть в направлении против часовой стрелке
все HIGH / LOW		Стоп

Примерный код

from nanpy import ArduinoApi, SerialManager

```
connection = SerialManager()
a = ArduinoApi(connection=connection)
```

```
PWMA = 6 # Left Motor Speed pin

AIN1 = 15 # Motor-L backward

AIN2 = 14 # Motor-L forward

PWMB = 5 # Right Motor Speed pin

BIN1 = 16 # Motor-R forward

BIN2 = 17 # Motor-R backward

SPEED = 100 # Motor speed value
```

```
a.analogWrite(PWMA,SPEED) # Set the speed on MotorA
a.digitalWrite(AIN1,a.LOW) # Move MotorA forward
a.digitalWrite(AIN2,a.HIGH) # Move MotorA forward
a.analogWrite(PWMB,SPEED) # Set the speed on MotorB
a.digitalWrite(BIN1,a.LOW) # Move MotorB forward
a.digitalWrite(BIN2,a.HIGH) # Move MotorB forward
```


#2 задача: управление мотором

- Тask(Задание)
 - 1. Напишите код для перемещения робота назад
 - 2. Напишите код, который медленно вращает робота влево или вправ
- □ Use Tip(Подсказка)
 - Правильно подайте напряжение постоянного тока на два цифровых контакта
 - Установите скорость двигателя, применяя соответствующее напряже ние для аналогового вывода

Измерение дальности с Ultrasonic

```
Ultrasonic
```

```
void setup() {
  pinMode(trigPin, OUTPUT);
                                                // sets the trigPin as output
  pinMode(echoPin, INPUT);
                                                // sets the echoPin as input
void loop() {
   float duration, distance;
   digitalWrite(trigPin, HIGH);
                                                // the trigPin is at 5 volts
   delayMicroseconds(10);
                                                // 10us delay
   digitalWrite(trigPin, LOW);
                                                // the trigPin is at ground
                                                // read the width of Echo pin
  duration = pulseIn(echoPin, HIGH);
  distance = (duration) / 58;
                                                // calculate the distance in cm
```


Примерный код: Ultrasonic измерение дальности

from nanpy import ArduinoApi, SerialManager, Ultrasonic from time import sleep

#3 задача: Ultrasonic измерение дальности

□ Task(Задание)

: В соответствии с диапазоном, управляйте мотором и покажите соответствующие сообщения в таблице ниже.

Расстояние	Мотор	Сообщения
distance ≤ 5	Стоп	Препятствие перед роботом
5 < distance ≤ 20	Медленно вперед	Внимание к переднему препятствию
distance ≥ 20	Быстро вперед	Нет препятствий

□ Use Tip(Использование Совет)

```
if distance <= 5:
...
elif 5 < distance <= 20:
...
else:
```


Управление RGB LED-светодиод ом с помощью W2812

□ RGB или Red-Green-Blue свет одиоды являются слиянием т рех светодиодов в одном кор пусе.

Покажите любой палитр цвета , делая комбинации трех цвет ов

Примерный код: управление светодиодом LED RGB

from nanpy import ArduinoApi, SerialManager, W2812

```
connection = SerialManager()
a = ArduinoApi(connection=connection)
```

```
w.setColorRGB(0, 255, 0, 0) # Red LED on 1st LED
w.setColorRGB(1, 0, 255, 0) # Green LED on 2nd LED
w.setColorRGB(2, 0, 0, 255) # Blue LED on 3rd LED
w.setColorRGB(3, 255, 255, 0) # Yellow LED on 4th LED
```


Цветовые коды RGB

□ Цветовой формат RGB

: Код RGB имеет 24-битный формат(биты 0..23)

RED[7	GREEN[7:0]				BLUE[7:0]											
23	16	15						8	7							0

□ Таблица цветов RGB

Color	HTML / CSS Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	Black	#000000	(0,0,0)
	White	#FFFFFF	(255,255,255)
	Red	#FF0000	(255,0,0)
	Lime	#00FF00	(0,255,0)
	Blue	#0000FF	(0,0,255)
	Yellow	#FFFF00	(255,255,0)
	Cyan / Aqua	#00FFFF	(0,255,255)
	Magenta / Fuchsia	#FF00FF	(255,0,255)

#4 задача: Управление RGB светодиодом

□ Task(Задание)

: Включите все 4 светодиода в соответствии с входным значением пользователя

Пользовательский ввод	Светодиод
Red	Включите Красный светодиод
Green	Включите Зеленый светодиод
Blue	Включите Синий светодиод
• • •	
•••	

□ Use Tip(Использование Совет)

Программирование Bluetooth c Python

- □ PyBluez
 - такая библиотека Python Bluetooth, написанная на С для операционных систем Windows и GNU / Linux
 - позволяет коду Python получить доступ к ресурсам Bluetooth хостмашины
- □ Программирование Bluetooth в Python следует модели программирования сокетов под названием RFCOMM
 - RFCOMM сокет это протокол, ориентированный на соединение, похожий на TCP
 - один процесс действует как сервер, принимающий соединения, другой процесс действует как клиент, запрашивающий соединение 00:12:34:56:78:9A

Примерный код: Bluetooth(клиент)

```
import bluetooth
                                   # import python bluetooth library
ADDR = "xx:xx:xx:xx:xx:xx"
                                  # address of bluetooth device
PORT = 1
                                   # port number to connect
# Create a socket for RFCOMM service
socket = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
socket.connect((ADDR, PORT))
                                  # a connection with xx:xx:xx:xx:xx:xx on port 1
socket.send("Hello World")
                                  # Send data through the socket
socket.close()
                                   # Close the connection on socket
```

[Koд Python]

Примерный код: Bluetooth(Сервер)

```
char data = 0;  // for incoming serial data

void setup() {
    Serial.begin(115200);  // opens serial port, sets data rate to 115200 bps
}

void loop() {
    if (Serial.available() > 0) {
        data = Serial.read();  // read the incoming byte:
        Serial.print(data);  // say what you got:
    }
}
```

[Код Arduino]

#5 задача: Управление Bluetooth

□ Task(Задание)

: в зависимости от Bluetooth данных, управляйте компонентами робота

Bluetooth данные	Мотор	Bluetooth данные	LED		
F	Движение вперед	r	Красный		
В	Движение назад	g	зеленый		
L	Поворот налево	b	Синий		
R	Поворот направо	у	Желтый		
S	стоп	W	Белый		

□ Use Tip(подсказка)

Напишите код Arduino для реагирования на данные Bluetooth

■ Напишите код Python для непрерывной отправки данных Bluetooth

