DESIGN AND ANALYSIS OF ALGORITHMS

EXPERIMENT 1:
RUPALISAWALE CSE DS
PART A:
AIM: TO IMPLEMENT VARIOUS FUNCTIONS E.G. LINEAR, NON-LINEAR, QUADRATIC, EXPONENTIAL, ETC.
 THEORY: A function is a process or a relation that associates each element 'a' of a non-empty set A, at least to a single element 'b' of another non-empty set B. A relation f from a set A (the domain of the function) to another set B (the co-domain of the function) is called a function in math. f = {(a,b) for all a ∈ A, b ∈ B} A relation is said to be a function if every element of set A has one and only one image in set B. A function is a relation from a non-empty set B such that the domain of a function is A and no two distinct ordered pairs in f have the same first element. A function from A → B and (a,b) ∈ f, then f(a) = b, where 'b' is the image of 'a' under 'f' and 'a' is the preimage of 'b' under 'f'. If there exists a function f: A → B, the set A is called the domain of the function f, and the set B is called its co-domain.
CODE:
#include <stdio.h> #include <math.h></math.h></stdio.h>
<pre>int main(){</pre>
double x ;
double ret;
$for(x=1;x<=100;x+=10)\{ret = log(x);printf("log(%lf) = %lf\n", x,$
$ret);} // log(x)$

```
for(x=1;x<=100;x+=10)printf("%lf=%lf\t\n", x,x);
                                                                       // x
     for(x=1;x<=100;x+=10)printf("exp(%lf) = %lf\n", x, exp(x));
                                                                          //
e raise to x
    for(x=1;x<=100;x+=10)printf("1.5^{\circ}%lf=%lf \ n",x,pow(1.5,x));
3/2 raise to x
     for(x=1;x<=100;x+=10)printf("\%lf^3=\%lf\t\n",x,pow(x,3));
                                                                           //
x raise to 3
     for(x=1;x<=100;x+=10)printf(''2^{\circ}lf=\%lf(t)n'', x, pow(2,x));
                                                                          //
2 raise to x
     for(x=1;x<=100;x+=10){ret = log(x);printf(''%lf^1/2= %lf\t\n'', ret,
sqrt(ret));} // underroot of log(x)
     for(x=1;x<=100;x+=10){ret = log(x);printf(''1.41 ^ %lf= %lf\t\n'', x,
pow(1.41, ret));} // underroot of 2 raise to log(x)
     for(x=1;x<=100;x+=10)
       double v = x*pow(2,x);
       printf("%lf * \% lf = \% lf \setminus n", x, pow(2,x), v);
      // x *2^x 
     for(x=1;x<=100;x+=10)
     double r = 2*pow(2,x);
     printf(''2^{\circ}\%.2lf = \%.2lf \ '', pow(2,x), r); // 2 raise to 2 raise x
i.e(2^2^x)
     }
   return 0;
}
```

OUTPUT:

FOLLOWING ARE THE GARHS:

Х	log(x)
10	0
10	0
20	2.397895
30	3.044522
40	3.433987
50	3.713572
60	3.931826
70	4.110874
80	4.26268
90	4.394449
100	4.51086

IN this we can observe while x is increasing gardually the $\log(x)$ is increasing linearly

2)	
X	f(x)
10	10
20	20
30	30
40	40
50	50
60	60
70	70
80	80
90	90
100	100

AS X Is increasing f(x) is increasing linearly hence x=f(x)

While x was increasing the e^x function remained constant for while and then showed sudden increment in slope .

```
4)
         1.5^x
Х
10
         1.5
20
         86.497559
30
         4987.885095
40
         287626.5888
50
         16585998.48
         956432250.3
60
70
         55152703075
80
         3.18038E+12
90
         1.83397E+14
100
         1.05756E+16
```


The x was increasing while 1.5^x remained constant after some values the x was increasing slowly while at that time the 1.5^x function showed sudden increment .

5)	
X	x^3
10	1
20	1331
30	9261
40	29791
50	68921
60	132651
70	226981
80	357911
90	531441
100	753571

While x was increasing the x^3 function started increasing exponentially.

X was increasing while 2^x remained constant till end and at the end point the 2^x function'c curve increased suddenly.

```
7)
          underroot of log(x)
Х
         0
10
20
          1.548514
          1.744856
30
40
          1.853102
50
          1.927063
          1.982883
60
70
          2.027529
80
          2.064626
90
          2.096294
100
          2.123878
```


WHen x was increasing the y function was increasing linearly but the slope in start didn't touched x. axis

```
8)
          underroot of 2 raise to log(x)
Χ
10
          1
20
          2.279354
30
          2.846433
40
          3.253992
          3.582085
50
60
          3.861033
70
          4.106019
80
          4.325868
90
          4.526222
100
          4.710928
```


The graph of this funtion is exactly similar to above graph.

9) x *2^x Χ 2 10 20 22528 44040192 30 66571993088 40 50 9.0916E+14 1.14842E+17 60 70 1.40656E+20 80 1.67644E+23 90 1.95846E+26 100 2.25305E+29

X was increasing while $x*2^x$ remained constant till end and at the end point the 2^x function'c curve increased suddenly.

```
10)
         2^2^x
Х
         4
10
20
         4096
30
         4194304
40
         4294967296
50
         4.39805E+12
60
         4.5036E+15
70
         4.61169E+18
         4.72237E+21
80
90
         4.8357E+24
100
         4.95176E+27
```


X was increasing while 2^2x remained constant till end and at the end point the 2^x function'c curve increased suddenly.

11) n factorial

х	x!
0	1
2	2
4	24
6	720
8	40320
10	3628800
12	479001600
14	87178291200
16	2.09228E+13
18	6.40237E+15
20	2.4329E+18

X was increasing while x! remained constant till end and at the end point the 2^x function'c curve increased suddenly.

CONCLUSION : I learned about the 11 functions and their how they behave when ploted on the graph (learned about the slopes of graphs)

- OBSERVATION_(3) 2^(2^n): After n=8, the graph of this functions tends to infinity.
- OBSERVATION_(4) ln(ln(n)): This function has a negative value at n=2. The graph has sudden increase at first but then gradually acquires a lesser slope.
- OBSERVATION_(5) $n*(2^n)$: This function has a sudden rise in value at n=92 after which it tends to infinity.

OBSERVATION_(10)

Chart Title

2.5E+09

2E+09

1.5E+09

1E+09

500000000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CONCLUSION:

From this experiment I learnt how to implement various functions in C Programming language for values of n varying from 0 to 100, and also understood how the graph of each function is affected as value of n changes.