Pharmakologie Skriptum

20. September 2015

Inhaltsverzeichnis

1	Pha	armakokinetik 8				
	1.1	Definitionen	8			
	1.2	Bezeichnung von Pharmaka	8			
	1.3	Pharmakokinetik/Pharmakodynamik	8			
	1.4	Biotransformation / Metabolisierung	8			
		1.4.1 Phase I: Funktionalisierungsreaktion	9			
		1.4.2 Phase II: Konjugationsreaktion	9			
		1.4.3 Bedeutung von Arzneimittelmetabolisierungsprozessen	9			
		1.4.4 Superfamilie der humanen Cytochrom P450 Monooxygenasen	10			
		1.4.5 Induktion von Cytochrom P450 Monooxygenasen	10			
		1.4.6 Arzneimittelinteraktionen durch Enzymhemmung und -induktion	10			
		1.4.7 Phase II Reaktionen	11			
		1.4.8 Bildung aktiver oder toxischer Metabolite (Beispiele)	12			
		1.4.9 First-Pass-Effekt	$\frac{12}{12}$			
		1.4.10 Pharmakogenetik / Genetisch bedingte Unterschiede in der Metabolisierung von Pharmaka (Beispiele)	12			
	1 5		13			
	1.5	Ausscheidung				
	1.0	1.5.1 Elimination von Pharmaka	13			
	1.6	Pharmakokinetische Parameter	13			
		1.6.1 Bioververfügbarkeit	13			
		1.6.2 "area under the curve" (AUC)	13			
		1.6.3 Verteilungsvolumen	14			
		1.6.4 Clearance	14			
		1.6.5 Plasmahalbwertszeit $t_{\frac{1}{2}}$	14			
2	Dhe	rmakodynamik	16			
4	2.1	Angriffsorte von Pharmaka	16			
	2.1	2.1.1 Fremdorganismus / Mikroorganismus	16			
		2.1.2 Menschlicher / tierischer Organismus (Makroorganismus)	16			
	2.2	Kanäle: Definition und Funktion	16			
	$\frac{2.2}{2.3}$	Transporter: Definition und Funktion	17			
	۷.5	2.3.1 Carrier	17			
	2.4		19			
	2.4	Enzyme				
	$\frac{2.5}{2.6}$	Rezeptor: Definition und Funktion	19			
	2.6	Rezeptortypen	20			
	2.7	G-Protein-gekoppelte Rezeptoren (GPCR)	20			
	0.0	2.7.1 Aktivierungs-/Inaktivierungs-Zyklus	20			
	2.8	G-Protein vermittelte Signalwege (ubiquitär)	20			
		2.8.1 G _s -gekoppelte Rezeptoren	20			
	2.0	2.8.2 G _{i/o} -gekoppelte Rezeptoren	20			
		Liganden-gesteuerte Ionenkanäle	21			
	2.10	Liganden-regulierte Enzyme	21			
		2.10.1 Rezeptoren mit Tyrosinkinase-Aktivität (Beispiel: Insulin-Rezeptor)	21			
		nukleäre Rezeptoren	21			
		Pharmakon-Rezeptor-Interaktion	21			
	2.13	Wirkungsauslösung	21			
		Wirksamkeit/Potenz	24			
		Agonismus	24			
	2.16	Antagonismus	25			
	2.17	Toleranzphänomene	25			
		2.17.1 Toleranz:	25			
		2.17.2. Tachymhylavia	25			

	2.18	Unerwünschte Wirkungen von Pharmaka	25
			25
			26
			26
			26
			26
		2.18.6 Unerw.Wirkungen außerhalb des pharmakodynam. Wirkprofils	27
•	Cha	linguage Crystons	28
•	3.1	9 v	28
	3.1		28
	3.2	v v	28
	ე.∠	v	28 28
			28 28
	3.3	V	$\frac{28}{28}$
	0.0		29
			29
			$\frac{25}{30}$
			30
	3.4		30
	0.1		30
			31
			31
	3.5	•	31
	3.6		32
	0.0		32
			32
		· ·	32
			32
			_
1	\mathbf{Adr}	energes System	33
		4.0.5 adrenerge Varikosität	33
		4.0.6 Hemmer der NA-Freisetzung	33
		4.0.7 indirekte Sympathomimetika	33
	4.1	adrenerge Rezeptoren	34
	4.2	β_2 -Adrenozeptor-Agonisten / β_2 -Sympathomimetika	34
	4.3	α -Adrenozeptor-Agonisten	34
	4.4	α_2 -Adrenozeptor-Agonisten	35
	4.5	1 0	35
	4.6		35
			35
			36
			36
			36
			37
		§	37
	4.7	Relative Rezeptorselektivität von Adrenozeptor-Agonisten und -Antagonisten	37
_	D A	A C / D:4:1	9.0
)			38
	5.1	9 •	38
	5.2		38
	5.3		38
	5.4		39
	5.5		39 39
	56	9	39 39
	5.6		
	5.7		40
	5.8	±	41
	5.9	1 0	42
	5.10	V I	42
	11.6	Therapie der Hypertonie	43

6	Digi	italisglykoside	44
Ū		Herzinsuffizienz	44
	6.2	Digitalisglykoside	45
_			4 =
7		iarrhythmika	47
	7.1	Mechanismen der Arrhythmieenstehung	47
	7.2	Antiarrhythmika-Klassen (Vaughan-Williams)	47
		7.2.1 Klasse I-Antiarrhythmika	47
		7.2.2 Klasse II-Antiarrhythmika	48
		v	
		7.2.3 Klasse III-Antiarrhythmika	49
		7.2.4 Klasse IV-Antiarrhythmika	49
		7.2.5 weitere als Antiarrhythmika eingesetzte Pharmaka	49
		7.2.6 weitere Kardiaka mit Wirkung auf kardiale Kanäle	49
	7.9		
	7.3	Relaxantien glatter Muskulatur	50
		7.3.1 Regulation des Tonus der glatten Muskulatur	50
		7.3.2 NO-Donatoren	50
	7.4	$\mathrm{Ca^{2+} ext{-}Kanalblocker}$	52
		7.4.1 spannungsabhängige Ca ²⁺ -Kanäle	52
	7.5	Koronare Herzkrankheit (KHK)	53
		7.5.1 Pathogenese und Klinik	53
		7.5.2 Symptomatische Behandlung der Angina pectoris (A.p.)	53
		7.5.3 Therapie des akuten Angina-pectois Anfall	54
	7.0		
		K ⁺ -Kanalöffner	54
	7.7	Phosphodiesterase(PDE)-Hemmer	54
		7.7.1 Unselektive PDE-Hemmer	54
		7.7.2 Selektive PDE-Hemmer	55
			00
8	Ant	idiabetica	56
O			
	8.1	Diabetes mellitus	56
		8.1.1 Typ I Diabetes	56
		8.1.2 Typ II Diabetes	56
		8.1.3 Sonderformen	56
	0.0		56
	8.2	Insulinsynthese/-sekretion	
		8.2.1 Insulin-Rezeptor	56
	8.3	Insulin	57
		8.3.1 Kurz-/ultrakurz-wirksame Insuline	57
		8.3.2 Mittellang-/lang-wirksame Insuline	57
		8.3.3 Kombinations-/Mischinsuline	57
		8.3.4 Insulinapplikation	57
	8.4	Sulfonylharnstoffe	57
		8.4.1 ATP-abhängiger K ⁺ -Kanal	58
	0 -		
	8.5	α -Glucosidasehemmer	58
	8.6	Biguanide	58
	8.7	Thiazolidindion-Derivate ("Glitazone")	59
	8.8	Glucagon-like-peptide-1(GLP-1)-Agonisten	59
	8.9	Dipeptidyl-Peptidase-IV(DPP-IV)-Hemmer	60
			60
	8.11	Diabets-mellitus Behandlung	60
		8.11.1 Typ I Diabetes	60
		8.11.2 Typ II Diabetes	60
		6.11.2 Typ 11 Diabetes	00
_			
9		dsenker	62
	9.1	Lipoproteinstoffwechsel	62
	9.2	Fettstoffwechselstörung	62
		9.2.1 Primäre Hyperlipoproteinämie	62
		V	
		9.2.2 Sekundäre Hyperlipoproteinämie	62
		9.2.3 Bedeutung der Therapie insb. der Hypercholesterinämie	62
		9.2.4 Therapie	63
	9.3	HMG-CoA-Reduktase-Hemmer (Statine)	63
	9.4	Cholesterol-Resorption	64
	9.5	Anionen-Austauscher-Harze	64
	9.6	Cholesterinresorptionshemmer	64
	9.7	Fibrate	65

	9.8 9.9	Nikotinsäurederivate	65 66
		- · · · · · · · · · · · · · · · · · · ·	
		nostase, Thrombose	67
		Thrombozyten-Adhäsion/-Aktivierung	67
	10.2	Fibrinbildung über Koagulationskaskade	67
		10.2.1 Antikoagulatorische Mechanismen	67
		10.2.2 Pathogenese und Zusammensetzung arterieller und venöser Thromben	67
		10.2.3 Medikamentöse Beeinflussung	67
	10.3	Throbozxtenfunktionshemmer	68
		10.3.1 Acetylsalicylsäure(ASS)	68
		10.3.2 Thienopyridine	68
		10.3.3 GPIIb/IIIa(Integrin α IIb β 3)-Rezeptor-Antagonisten	68
	10.4	Antikoagulatien	69
		10.4.1 Vitamin-K-Reduktase-Hemmer (Cumarin-Derivate)	69
		10.4.2 Antithrombin-III-Aktivatoren	70
		10.4.3 Direkte Thrombin-Inhibitoren	71
	10.5	10.4.4 Direkte Faktor Xa-Inhibitoren	71
	10.5	Fibrinolytika	71
		10.5.1 Streptokinase	71
	10.6	10.5.2 Gewebsplasminaktivator (rt-PA / Alteplase)	71
	10.0	Arterielle Thrombose, Beispiel: Akutes Koronarsyndrom	72 72
		10.6.1 Instabile Angina pectoris	12
11	Anti	iphlogistika	73
		Nicht-steroidale Antiphlogistika / Antirheumatika (NSAID, NSAR)	73
	11.1	11.1.1 Erwünschte Wirkqualitäten nicht-steroidaler Antiphlogistika	73
		11.1.2 Unerw. Wirkqualitäten nicht-steroidaler Antiphlogistika	73
		11.1.3 Salicylate	74
		11.1.4 Arylessigsäuren	74
		11.1.5 Arylpropionsäuren	75
		11.1.6 Oxicame	75
		11.1.7 Selektive COX-2 Hemmer	75
		11.1.8 Langfristig wirksame Antirheumatika (LWAR)	75
		11.1.9 Glukokortikoide	76
	11.2	Pharmakotherapie des Asthma bronchiale (Stufenschema)	77
12		lgetika	78
		Nozizeptoren	78
		Nozizeptive Synapse des Hinterhorns	78
		Deszendierendes anti-nozizeptives System	79
	12.4	Analgetika	79
		12.4.1 antiphlogistische/saure Analgetika s. "Antiphlogistika"	79
		12.4.2 Nicht-saure Analgetika	79
		12.4.3 Anilinderivate	79
		12.4.4 Pyrazolderivate	80
	105	12.4.5 narkotische / opioide Analgetika	80
		Toleranz, Abhängigkeit	82
	12.6	Koanalgetika / Adjuvantien	83
		12.6.1 Hemmer neuronaler Natrium und Calcium Kanäle	83
	10.7	12.6.2 Nicht-selektive Noradrenalin Serotonin Wiederaufnahmehemmer	83
	12.7	Chronische Schmerzkrankheiten	83
		12.7.1 Stufenplan der WHO für Behandlung chron. Tumorschmerzen	83
		12.7.2 Therapieempfehlung bei chronischen Schmerzen	84
13	Sevi	ualhormone	85
-9		Östrogene	85
		Selektive Estrogen-Rezeptor Modulatoren (SERM)	86
		Antiöstrogene	86
		Aromatase-Hemmer	86
		Gestagene	86
		13.5.1 Synthetische Gestagene	86
	13.6	Antigestagene	87
		Hormonale Kontrazeptiva (Antikonzeptiva)	87

		13.7.1 Konzepte	7
		13.7.2 Sicherheit verschiedener hormonaler Kontrazeptiva (Pearl-Index)	8
	13.8	Androgene	
		13.8.1 seynthetische Androgene	
		13.8.2 Androgenrezeptor-Antagonisten	
		13.8.3 5 α -Reduktasehemmer	8
	a 1 •	111 "	^
		Iddrüse 8 Schildrüsenhormone 8	
	14.1	14.1.1 Bildung	
	149	Therapeutische Anwendung von L-Tyroxin	
		Thioharnstoff-Derivate / Thionamide	
		India-Inston-Derivate / Thionamide	
	14.4	14.4.1 Kaliumjodid (KJ)	
	145	Iodprophylaxe	
	14.0	тобргорпутахе	1
15	Anti	ineoplastika 9	2
		Antimetabolite	2
		15.1.1 Hemmer der Dihydrofolatreduktase	2
		15.1.2 Antipurine	2
		15.1.3 Pentostatin	3
		15.1.4 Pyrimidin-Antimetabolite	3
	15.2	Alkylantien	3
		15.2.1 Stickstofflost-Derivate	3
		15.2.2 Platinfreisetzende Verbindungen	4
		15.2.3 Nitrosoharnstoffderivate	4
	15.3	Zytostatisch wirksame Antibiotika	4
		15.3.1 Anthracycline	4
	15.4	$\label{thm:mitosehemmstoffe} \mbox{Mitosehemmstoffe} \dots $	5
		15.4.1 Vinca-Alkaloide	
		15.4.2 Taxane	
		Inhibitoren der Topoisomerase	
	15.6	Hormontherapie	
		15.6.1 Hormon-sensitives Mammakarzinom	
		15.6.2 Hormonsensitives Prostatakarzinom	
		$\label{thm:eq:typosinkinase-Hemmer} Tyrosinkinase-Hemmer \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	15.8	Protease-Inhibitor	
		Antikörper	6
	15.10	Resistenzentwicklungen	6
16	Tovi	ikologie 9	7
		Behandlungsprinzipien akuter Intoxikationen	
		Gase	
	10.2	16.2.1 Reizgase	
		16.2.2 Systemisch wirkende Gase	
		16.2.3 Methämoglobinbildner	
		16.2.4 Metalle	
		16.2.5 Säuren, Laugen, Tenside, Lösungsmittel	-
		16.2.6 Halogenierte aromatische Kohlenwasserstoffe: Polychlorierte Dibenzodioxine und -furane	-
		16.2.7 Bakterielle Toxine	-
		16.2.8 Alkohole (Methanol, Ethanol)	
		16.2.9 Tabakrauch	
	16.3	Krebserzeugende Stoffe	
		16.3.1 Nitrosamine / Nitrosamide	
	16.4	Pilzgifte	
		Chemische Kampfstoffe	3
		16.5.1 Organophosphate	3
		16.5.2 Alkylatien	3
	16.6	Wichtige Intoxikationen	4
		16.6.1 Typische Vergiftungssyndrome	4

17		iinfektiva	105
	17.1	Antibakterielle Wirkstoffe	
		17.1.1 Definitionen	
		17.1.2 Hemmstoffe der Tretrahdrofolsäure-Synthese	
		17.1.3 Hemmstoffe der bakteriellen Zellwandsynthese	
		17.1.4 Hemmstoffe der bakteriellen Proteinsynthese	
		17.1.5 Resistenzmechanismen	
		17.1.6 Reserve-Antibiotika	
	17.2	Tuberkulosemittel	
		17.2.1 Kurzzeittherapie	
		17.2.2 Langzeittherapie	110
	17.3	Antimykotika	110
		17.3.1 Allylamine (Squalenepoxidase-Hemmer)	110
		17.3.2 Azol-Antimykotika (Lanosterin-Demethylase-Hemmer)	110
		17.3.3 Polyen-Antimykotika	110
	17.4	Prophylaxe und Therapie der Malaria	110
	17.5	Virustatika	111
		17.5.1 Antimetabolite	111
		17.5.2 Antiretrovirale Therapie	111
18		onotika	112
	18.1	γ-Aminobuttersäure (GABA)	
		18.1.1 GABA-Rezeptoren	
	18.2	Benzodiazipine	
		18.2.1 Zyklopyrrolone (Zopiclon); Imidazopyridine (Zolpidem); Pyrazolopyrimidine (Zaleplon)	
	18.3	Behandlung von Schlafstörungen	114
		18.3.1 Empfehlungen der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin zur Anwendung von	
		Benzodiazepinen	114
10	Man	kotika	115
19	mar.	19.0.2 Inhalationsnarkotika	
		19.0.3 Isofluran, Desfluran, Sevofluran	
	10.1	19.0.4 Lachgas / N ₂ O / Stickoxydul	
	19.1	Injektionsnarkotika	
		19.1.1 Barbiturate	
		19.1.2 Ketamin	
		19.1.3 Etomidat	
		19.1.4 Propofol	
	10.9	19.1.5 Benzodiazepine	
	19.2	Kombinationsnarkose (Beispiel)	110
20	Ant	i-Parkinsonmittel	119
		Dopaminerges System	
	20.1	20.1.1 Dopaminerge Synapse	
	20.2	Morbus Parkinson	
		Extrapyramidales System / Basalganglien	
		20.3.1 Funktionskreis	
		20.3.2 Direkter Weg	
		20.3.3 Bei M.Parkinson	
	20.4	Therapie des Morbus Parkinson	
		20.4.1 Erhöhung der striatalen Dopaminkonz. durch Gabe von L-Dopa sowie d. Hemmung des Dopaminabbaus	
		$(MAO_B/COMT ext{-Hemmer})$	120
		20.4.2 Direkte Stimulation zentraler Dopaminrezeptoren	
		20.4.3 Hemmung zentraler muscarinischer Rezeptoren	
		20.4.4 Blockade von Glutamat-Rezepotoren (NMDA-Typ)	
			I
21	Ant	iepileptika	122
		Formen der Epilepsie	122
		21.1.1 Fokal	
		21.1.2 Pimär generalisiert	
		21.1.3 Nicht klassifizierbar	122
	21.2	Pathomechanismen der Epilepsie	122
		21.2.1 Zelluläres Korrelat	
		21.2.2 Versagen der Umfeldhemmung	

		Antiepileptika	23 23 23 24
22			25
		Pharmakodynamik	
		Nicht-selektive Monoamin-"Reuptake"-Inhibitoren (NSMRI)	
		Selektive Serotonin-"Reuptake"-Inhibitoren (SSRI)	
		MAO-A-Hemer	
	22.5	Pharmaka zur Phasenprophylaxe affektiver Psychosen bzw. Therapie einer Manie	
		22.9.1 Lithium	21
23	Neu	roleptika 1	29
		"KlassicheNeuroleptika	29
		Wirkmechanismen / Nebenwirkungen klassischer Neuroleptika	
	23.3	ÄtypischeNeuroleptika	
		23.3.1 Neuroleptika mit anderem Wirkprofil	
		23.3.2 Antagonismus am Serotonien 5-HT $_{2A}$ Rezeptor	
		23.3.3 Nebenwirkungen	
		25.5.4 Rezeptorprom atypuscher Neuroleptika (Antagonismus)	91
24	Mag	gen-Darm-Pharmaka 1	32
		Regulation der Magensaftsekretion	32
		24.1.1 Regulation der H ⁺ -Produktion im Magen	
	24.2	Antazida	
		24.2.1 Schichtgitter Antazida	
		Protonenpumpenhemmer	
		H_2 -Rezeptoragonisten	
		Eradikationsbehandlung bei Helicobacter pylori-assoziierten Ulzera	
	24.6	Erbrechen	
	24.7	24.6.1 Emetika 1 Prokinetika 1	
		Diarrhoe	
	24.0	24.8.1 Ursachen	
		24.8.2 Therapie	
	24.9	Obstipation	
	-	24.9.1 Ursachen	
		24.9.2 Therapie	

Kapitel 1

Pharmakokinetik

1.1 Definitionen

Pharmakon

biologisch wirksame Substanz (ohne Wertung) auch "Wirkstoff"; Wirkung erwünscht \rightarrow Heilmittel; Wirkung unerwünscht \rightarrow Gift

Arzneistoff

Pharmakon, das zur Vorbeugung, Linderung, Heilung oder Erkennung von Erkrankungen dienen kann

Arzneimittel

zur Anwendung bei Mensch/Tier bestimmte Zubereitungsform eines Pharmakons nach der Zulassung

1.2 Bezeichnung von Pharmaka

- 1. chemischer Name, Code-Nummer 4'-Hydroxyacetanilid
- 2. internationaler Freiname "generic name" Paracetamol
- 3. Handelsname, Warenzeichen Benuron , Captin , Enelfa (25 Namen allein in Deutschl.)

1.3 Pharmakokinetik/Pharmakodynamik

Pharmakokinetik

Einflüsse des Organismus auf das Pharmakon (Resorption, Verteilung, Speicherung, Elimination)

Pharmakodynamik

Einflüsse des Pharmakon auf den Organismus (Wirkmechanismus, zelluläre und system. Wirkung)

Pharmakokinetik

Vorgänge nach oraler Applikation eines Pharmakon

Elimination

Prozesse, die zur Konzentrationsabnahme des Pharmakons im Körper führen

- 1. Biotransformation / Metabolisierung
- 2. Ausscheidung (Niere, Galle, Lunge)

1.4 Biotransformation / Metabolisierung

Problem lipophile, unpolare Pharmaka werden gut resorbiert, aber schlecht ausgeschieden.

Lösung Biotransformation zu hydrophilen Metaboliten v.a. in der Leber, Darm, Niere, Lunge u.a.

Abbildung 1.1: Pharmakokinetik/Pharmakodynamik

Abbildung 1.2: Biotransformation

1.4.1 Phase I: Funktionalisierungsreaktion

Oxidation, Reduktion, Hydrolyse u.a. Einführung oder Freisetzung funktioneller, meist polarer Gruppen

- Wirkung des Pharmakons wird beeinflusst
- meist Voraussetzung für Phase II Reaktion

1.4.2 Phase II: Konjugationsreaktion

Glucuronidierung, Acetylierung, Sulfatierung, Methylierung u.a.. Kopplung von entsprechenden Resten an funktionelle Gruppe, die häufig in Phase I geschaffen wurde \rightarrow Entstehung von meist biologisch inaktiven, gut wasserlöslichen Produkten, die problemlos ausgeschieden werden können.

1.4.3 Bedeutung von Arzneimittelmetabolisierungsprozessen

- Eliminationsmechanismus
- Arzneimittelinteraktionen durch Enzymhemmung oder Enzyminduktion
- Bildung aktiver oder toxischer Metabolite

- präsystemische Elimination oral verabreichter Pharmaka (first-pass-Effekt)
- genetisch bedingte individuelle Unterschiede der Arzneimittelelimination

1.4.4 Superfamilie der humanen Cytochrom P450 Monooxygenasen

Name	Vorkommen	typische Substrate	Induktoren	Inhibitoren	Bemerkungen
CYP1A1	intestinal pulmonal	arom. Kohlenwas- serstoffe, Paraceta- mol	arom. Kohlenwasserstoffe, via Ah-Rezeptor	Chinole	mögliche Bedeutung bei Biotoxinfizierung von Präkanzerogenen
CYP1A2	hepatisch	Coffein, Theophyllin	arom. Kohlenwasserstoffe via Ah-Rezeptor (z.B. Tabakrauch)		mögliche Bedeutung bei Biotoxinfizierung von Präkanzerogenen
CYP2B6	hepatisch	Cyclophosphamid	Cyclophosphamid, Phenobarbital		
CYP2C9/19	hepatisch intestinal	Phenytoin, Wafa- rin, Omeprazol	Barbiturate, Rifampicin	Cimetidin	ca. 20% aller Pharmaka
CYP2D6	hepatisch intestinal renal	β-Blocker Antiarrhythmika Antidepressiva Neuroleptika		Chinidin SSRI (z.B. Fluoxetin)	ca. 25% aller Pharmaka, 40% aller Allele defekt
CYP2E1	hepatisch intestinal Leukozyten	Ethanol Nitrosami- ne	Ethanol Isoniazid	Disolfiram	ca. 15% aller Pharmaka Biotoxifizierung?
CYP3A4	hepatisch intestinal	Ciclosporin Nife- dipin Terfendadin Ethindylestradiol HIV-Proteaseh. Statine	Rifampicin Carbama- zepin Phenytoin Phe- nobarbital Hyperforin (Johanniskraut)	Azol- Antimykotika Naringin (Grape- fruitsaft) HIV- Proteaseh. Makrolide	ca. 40-50% aller Pharma- ka

Tabelle 1.1: Für den Fremdstoffmetabolismus wichtige Vertreter aus der Superfamilie der humanen Cytochrom P450 Monooxygenasen (CYP)

Abbildung 1.3: CYP-Beispiele

1.4.5 Induktion von Cytochrom P450 Monooxygenasen

1.4.6 Arzneimittelinteraktionen durch Enzymhemmung und -induktion

Enzyminduktion (Beispiele)

- \bullet Induktion von CYP1A1/2 bei Rauchern \to Abbau von Theophyllin und Coffein \uparrow
- Induktion von CYP3A4 durch Rifampicin, Johanniskraut, Phenytoin u.a.
 - Abbau von Ethinylestradiol ↑ ("Pillenversager")

Abbildung 1.4: Induktion von Cytochrom P450 Monooxygenasen

Xenobiotikum Pharmakon	nukleärer Rezeptor (A/B)	induz. Enzym / Transporter	Enzymubstrate
Dioxin, aromat. Hydrocarbone (Rauchen)	Ah-Rezeptor/ARNT	CYP1A1 CYP1A2	aromat. Hydrocarbone, Coffein, Theophyllin; nicht Dioxin!
Barbiturate	CAR/RXR	CYP2B,C ABCC3	viele Pharmaka
Rifampicin, Hyperforin, Paclitaxel, u.a.	PXR/RXR	CYP3A/2C)/ MDR-1, ABCB1, C2	viele Pharmaka
Fibrate	$PPAR\alpha/RXR$	CYP4A1,3	

Tabelle 1.2: Induktion von Cytochrom P450 Monooxygenasen

- Abbau von Ciclosporin (Transplantat-Abstoßung) etc.

Enzymhemmung (Beispiele)

- Hemmung von CYP2D6 durch Selektive Serotonin-"Reuptake"-Hemmer (z.B. Fluoxetin)
 - verminderter Abbau von Antidepressiva, Neuroleptika
- Hemmung von CYP3A4 durch Azol-Antimykotika oder Grapefruitsaft u.v.a.
 - verminderter Abbau von Ciclosporin (→ Nephrotoxizität) oder Terfenadin, Cisaprid (→ Herzrhythmusstörungen) oder Statinen (→ Myopathie)

1.4.7 Phase II Reaktionen

Glucuronosyltransferasen

- ca. 40% aller Pharmaka
- Uridindiphosphat-Glucuronosyltransferasen (UGT)
- 17 Isoformen, mikrosomal; Leber, Darmepithel, Niere

Glutathion-S-Transferase (GST)

• ca. 10% aller Pharmaka

N-Acetyltransferase (NAT)

- $\bullet\,$ ca. 10% aller Pharmaka
- 2 Isoformen (NAT I und NAT II); NAT II Polymorphismus

Sulfotransferase (SULT)

- ca. 20% aller Pharmaka
- Transfer eines Sulfat-Restes aus dem Kosubstrat PAPS

Methyltransferase

• Methylgruppentransfer aus S-Adenosylmethionin

1.4.8 Bildung aktiver oder toxischer Metabolite (Beispiele)

Abbildung 1.5: Bildung aktiver oder toxischer Metabolite (Beispiele)

1.4.9 First-Pass-Effekt

enteral resorbierte Pharmaka gelangen nach Passage der Darmwand über die Pfortader zuerst in die Leber, danach in die systemische Zirkulation.

First-Pass-Effekt: Anteil eines Pharmakons, der bei Passage der Darmwand und Leber metabolisiert oder zurückgehalten wird hoher First-Pass-Effekt: z.B. Glyceroltrinitrat, Lidocain

Abbildung 1.6: First-Pass-Effekt

1.4.10 Pharmakogenetik / Genetisch bedingte Unterschiede in der Metabolisierung von Pharmaka (Beispiele)

Phase I

Aldehyd-Dehydrogenase 2: inaktive Variante bei 50% der Asiaten \rightarrow Abbau von Äthanol \downarrow CYP2D6: inaktive Variante bei 8% der Europäer "PM, poor metabolizer" vs. "EM, extensive metabolizer" Abbau von β -Blockern, Antidepressiva, Antiarrhythmika u.a. \downarrow

Phase II

N-Acetyltransferase (NAT II) "langsam Acetylierer" vs. "schnell Acetylierer (je 50% bei Europäern) \rightarrow Abbau von Isoniazid u.a. \downarrow

Abbildung 1.7: Ethanol Biotransformation

1.5 Ausscheidung

v.a. renal, biliär/intestinal, pulmonal

renal

(häufigster Ausscheidungsweg)

- $\bullet\,$ glomeruläre Filtration bis Molmasse von ca. 15.000-20.000
- tubuläre Rückresorption lipophile Stoffe: gut; hydrophile Stoffe: schlecht Basen und Säuren: pH-abhängig
- tubuläre Sekretion: aktiver Prozeß im proximalen Tubulus; Transportsystem für organische Säuren z.B. Harnsäure, Penicillin G (u.a. MRP2) Transportsystem für organische Basen z.B. Dopamin (u.a. MDR1), organ. Anionen (z.B.: Thiazide)

Allgemein: Renale Ausscheidung \downarrow bei Niereninsuffizienz und im Alter

bilär/intestinal

häufig Metabolite mit Molmassen >500 z.B. Tetracycline, Digitoxin-Metabolite. enterohepatischer Kreislauf: Intestinale Ausscheidung

pulmonal

z.B. Inhalationsanästhetika

1.5.1 Elimination von Pharmaka

1.6 Pharmakokinetische Parameter

1.6.1 Bioververfügbarkeit

Der Anteil eines Pharmakons, der unverändert ins systemische Blut (großer Kreislauf) gelangt. Bei i.v.-Gabe: 100%

Bei oraler gabe abhängig von

Wirkstofffreisetzung, Resorptionsquote, First-Pass-Effekt

1.6.2 "area under the curve" (AUC)

AUC repräsentiert die Substanzmenge, die in das systemische Blut gelangt (unabhängig von der Resorptionsgeschwindigkeit) AUC ist ein Maß für die Bioverfügbarkeit $f = \frac{AUC_x}{AUC_{i,v}} * 100[\%]$

Abbildung 1.8: Elimination

Abbildung 1.9: Bioverfügbarkeit

1.6.3 Verteilungsvolumen

fiktives Volumen, in dem sich ein Pharmakon verteilen würde, wenn es die gleiche Konzentration wie im Plasma hätte

$$V = \frac{Menge\ des\ Pharmakon\ im\ Organismus}{Plasmakonzentration} \tag{1.1}$$

Das Verteilungsvolumen ist ein Proportionalitätsfaktor zwischen der im Körper vorhandenen Menge und der Plasmakonzentration

1.6.4 Clearance

Plasmavolumen, das pro Zeiteinheit von einem Pharmakon befreit wird \rightarrow Maß für die Eliminationsleistung

$$CL = \frac{Menge\ eines\ Pharmakons,\ die\ pro\ Zeiteinheit\ eliminiert\ wird}{Plasmakonzentration} \tag{1.2}$$

1.6.5 Plasmahalbwertszeit $t_{\frac{1}{2}}$

Zeit, in der die Plasmakonzentration auf die Hälfte des ursprünglichen Wertes abfällt.

Abbildung 1.10: Clearance

(a) Kinetik 0. Ordnung: (häufig !) Eliminationsgeschwindigkeitist proportional zur jeweiligen Plasmakonzentration, Exponentialfunktion

(b) Kinetik 1. Ordung: (selten) Eliminationsgeschwindigkeit ist konstant z.B. durch Sättigung des abbauenden Enzym

Abbildung 1.11: Kinetik 0. und 1. Ordung

Kinetik nach wiederholter Gabe

Konz. im Körper abhängig von: Dosis, Dosierintervall, Eliminations-HWZ

Kumulation

Wirkstoffzunahme nach wiederholter Gabe; abhängig vom relativen Dosierintervall (ϵ) ;

$$\epsilon = \frac{Dosierintervall(\tau)}{Eliminations - HWZ}(t_{\frac{1}{2}}); \epsilon < 1 \tag{1.3}$$

 \rightarrow Gefahr der Kumulation (z.B. Pharmaka mit langer $t_{\frac{1}{2}};$ Digitoxin, Cumarine u.a.)

Kapitel 2

Pharmakodynamik

2.1 Angriffsorte von Pharmaka

2.1.1 Fremdorganismus / Mikroorganismus

(Bakterium, Virus, Pilz, Parasit)

2.1.2 Menschlicher / tierischer Organismus (Makroorganismus)

Extrazellulär

- 1. physikalisch wirksam: Laxantien, osmotische Diuretika, Plasmaexpander
- 2. chemisch wirksam: Antazida, Chelatbildner, Protaminsulfat (bindet Heparin), Ionenaustauscher wie Cholestyramin (bindet Gallensäuren)
- 3. enzymatisch wirksam: tPA (Fibrinolyse), Enzym-Substitution

Zellulär

- 1. Zytoskelett z.B.: Vincaalkoloide (Zytostatika), Colchizin
- 2. DNS z.B.: Alkylantien (Zytostatika)
- 3. Transporter z.B.: Noradrenalin-/Serotonin-Transporter (Antidepressiva) Ionentransporter (Diuretika); Protonenpumpe (Omeprazol)
- 4. Ionenkanäle z.B.: Spannungsabhängiger Na⁺-Kanal (Lokalanästhetika) Spannungsabh. Ca²⁺-Kanal (Calciumkanal-Blocker) ATP-regulierter K⁺-Kanal (Sulfonylharnstoffe)
- 5. Schlüsselenzyme (meist Inhibition) z.B.: Na⁺/K⁺-ATPase (Digitalis-Glykoside) Monoaminoxidasen (Antidepressiva, Anti-Parkinson) Acetylcholinesterase (Parasympathomimetika) Cyclooxygenase (Analgetika) Angiotensin-Konversionsenzym (ACE-Hemmer) HMG-CoA-Reduktase (Lipidsenker) Vitamin-K-Reduktase (Cumarine) Guanylyl-Cyclase (org. Nitrate, Stimulation!)
- 6. Rezeptoren (Agonismus oder Antagonismus) viele!

2.2 Kanäle: Definition und Funktion

Membranporen, die selektiv den Transport von Ionen oder Wasser entlang eines elektrochemischen Gradienten erlauben; $10^6 - 10^8 \frac{Ionen}{Sekunde}$ z.B.: Spannungs-abhängig, Liganden-operiert, d. Phosphorylierung reguliert.

Na⁺-Kanäle

(Beispiele)

- Nicht-Spannungs-abhängig (epitheliale Na⁺-Kanäle) Pharmaka: Diuretika (z.B.: Amilorid) ENac
- Spannungs-abhängige Na⁺-Kanäle (erregbare Zellen) Pharmaka: Lokalanästhetika, Klasse-I-Antiarrhythmika, Antiepileptika (z.B.: Lidocain, Phenytoin, Carbamazepin)

Abbildung 2.1: Kanäle der Zellmembran

Abbildung 2.2: Struktur des Na⁺-Kanals

Ca²⁺-Kanäle

(Beispiele)

• Spannungs-abhängige Ca²⁺-Kanäle Pharmaka: Ca²⁺-Kanalblocker (z.B. Dihydropyridine (Nifedipin))

Abbildung 2.3: Struktur des Ca²⁺-Kanals

K⁺-Kanäle

(Beispiele)

- Spannungs-abhängige K⁺-Kanäle Pharmaka: Klasse-III-Antiarrhythmika (z.B. Amiodaron, Sotalol)
- ATP-regulierte K⁺-Kanäle Pharmaka: Orale Antidiabetika (Sulfonylharnstoffe; z.B. Glibenclamid, Vasorelaxantien (z.B. Minoxidil)

2.3 Transporter: Definition und Funktion

Membranproteine, die selektiv den Transport von Molekülen entlang oder gegen einen elektrochemischen Gradienten erlauben; im Gegensatz zu den Kanälen findet eine Bindung an das Solut sowie eine umfangreiche des Transporters Konformationsänderung statt; Transportrate: $10^0 - 10^4 \frac{Moleküle}{Sekunde}$

2.3.1 Carrier

(primär nicht-aktiver Transporter), Uniporter, Kotransporter (Symporter), Antiporter (Austauscher) Beispiele:

Abbildung 2.4: Struktur des K⁺-Kanals

Abbildung 2.5: Carrier und Pumpensysteme

Na⁺/Neurotransmitter-Kotransporter

- NAT (Noradralin) *Pharmaka*: Antidepressiva (z.B.: Reboxetin, Desipramin)
- SERT (Serotonin) Pharmaka: Antidepressiva (z.B.: Fluoxetin)
- GAT (GABA) Pharmaka: Antiepileptika (z.B.: Tiagabin)
- DAT (Dopamin) Pharmaka: Cocain

Kation/Cl⁻-Kotransporter

- NKCC (Na⁺/K⁺/2Cl⁻) Pharmaka: Schleifendiuretika (z.B.: Furosemid)
- NCC (Na⁺/Cl⁻) Pharmaka: Diuretika (z.B.: Hydrochlorothiazid)

Abbildung 2.6: Carrier - Beispiele

Pumpen

(aktive, primär ATP-verbrauchende Transporter)

Ionenpumpen (Beispiele)

- Na⁺/K⁺-ATPase *Pharmaka*: Digitalisglykoside (z.B.: Digitoxin)
- \bullet H+/K⁺-ATPase *Pharmaka*: Protonen pumpenhemmer (z.B.: Omeprazol)

• MDR, MRP Multidrug resistence gene product Arzneimittelresistenz (z.B. Zytostatika)

2.4 Enzyme

Die meisten Pharmaka, die über Enzyme wirken, hemmen als Substratanaloga das Enzym kompetitiv, reversibel oder irreversibel. Eine Ausnahme stellen z.B. organ. Nitrate dar, die durch Freisetzung von NO die Guanylylcyclase stimulieren.

Körpereigene Enzyme	Substrat	Produkt	Pharmakon (Beispiel)	
Oxidoreduktasen				
HMG-CoA-Reduktase	HMG-CoA	Mevalonat	Lovastatin, Simvastatin	
VitK-Reduktase	Vitamin K	Vitamin-K-Hydrochinon	Phenprocoumon	
5α -Reduktase	Testosteron	5α -Dihydrotestosteron	Finasterid	
Cyclooxygenase	Arachidonat	Prostaglandin H2	Acetylsalicylsäure (irrev.); Diclofenac (rev.) u.a.	
Monoaminoxidase A	Abbau v. Serotonin, Noradrenalin, Dopa- min		Moclobemid (rev.)	
Monoaminoxydase B	Abbau v. Dopamin, Phenylethylamin u.a.		Selegilin (irrev.)	
Xanthinoxydase	Xanthin	Harnsäure	Allopurinol	
Peroxidase	Tyrosylreste	Iodotyrosylreste	Carbimazol	
Dihydrofolatreduktase	Dihydrofolat	Tetrahydrofolat	Methotrexat	
Transferasen				
Tyrosinkinase	Tyrosinreste	Phosphotyrosinreste	Imatinib, Gefitinib	
COMT	Catecholgruppe	Methoxycatechol	Entacapon	
GABA Transaminase	GABA	Succinatsemialdehyd	Vigabatrin	
Hydrolasen				
Phosphodiesterase	cAMP, cGMP	AMP, GMP	Theophyllin, Sildenafil	
Acetylcholinesterase	Acetylcholin	Cholin, Acetat	Tacrin, Neostigmin, Sarin(irrev.)	
Calcineurin (Phosphatase)	P-Ser/Thr/Tyr	Ser/Thr/Tyr	Ciclosporin, Tacrolimus	
α -Glucosidase	Disaccharid	Monosaccharid	Acarbose	
Renin	Angiotensinogen	Angiotensin I	Aliskiren	
ACE/Kininase II	Angiotensin I	Angiotensin II	Captopril, Lisinopril	
Thrombin (Faktor IIa)	Fibrinogen	Fibrin	Hirudin, Dabigatrann	
Enkephalinase	Enkephalin		Racecadotril	
Dipeptidylpeptidase IV	GLP-1(7-36)	GLP-1(9-36)	Sitagliptin, Vildagliptin	
Lipase	Triacylglycerine	Monoacylglycerin, FS	Orlistat	
Lyasen				
Guanylyl cyclase	GTP	cGMP	Glyceroltrinitrat, Molsidomin	
Dopamin-decarboxylase	L-Dopa	Dopamin	Benserazid, Carbidopa	

Tabelle 2.2: Ubersicht: pharmakologisch relevante Enzyme

2.5 Rezeptor: Definition und Funktion

- 1. Erkennen (hohe Spezifität) und reversibles Binden (hohe Affinität) des Wirkstoffes (physiol. Ligand oder Pharmakon)
- 2. Bindung löst Signalweiterleitungsfunktion aus

Mikrobielle Enzyme	Pharmakon (Beispiel)
Bakterien	
Peptidoglykansynthetasen	β -Laktame
Dihydrofolat-Reduktase	Trimethoprim
Dihydropteroat Synthase	Sulfonamide
bakt. Topoisomerase II	Gyrasehemmer
Pilze	
Lanosterol C14 Demethylase	Azole
Squalenepoxidase	Allylamine
Protozoen	
Dihydrofolat-Reduktase	Pyrimethamin
Viren	
HIV Reverse Transkriptase	Zidovudin, Didanosid
HIV Protease	Saquinavir
Neuraminidase	Zanamivir
abollo 2 1. Üborsicht: pharmak	ologisch relevante Enzym

Tabelle 2.4: Übersicht: pharmakologisch relevante Enzyme

Abbildung 2.7: G-Protein

2.6 Rezeptortypen

- membranär
 - G-Protein-gekoppelte Rezeptoren
 - Liganden-gesteuerte Ionenkanäle
 - Liganden-regulierte Enzyme multimere Rezeptoren
- zytosolisch/nukleär
 - nukleäre Rezeptoren

2.7 G-Protein-gekoppelte Rezeptoren (GPCR)

ca. 1500 Säugergene für G-Protein-gekoppelte Rezeptoren, davon ca. 1000 olfaktorische, gustatorische und Pheromon-Rezeptoren sowie ca. 500 Rezeptoren für Hormone, Neurotransmitter u.a.

2.7.1 Aktivierungs-/Inaktivierungs-Zyklus

2.8 G-Protein vermittelte Signalwege (ubiquitär)

2.8.1 G_s -gekoppelte Rezeptoren

 \rightarrow Adenylylcyclase $\uparrow \rightarrow$ cAMP $\uparrow \rightarrow$ PKA $\uparrow \rightarrow$ Proteinphosphorylierung

Beispiele

 $\beta_{1,2}$ -adrenerg , Histamin H_2 , Dopamin D_1,D_5 , Prostacyclin IP, Adenosin A_2 , Vasopressin V_2

2.8.2 $G_{i/o}$ -gekoppelte Rezeptoren

 \rightarrow Adenylylcyclase $\downarrow \rightarrow$ cAMP $\downarrow \rightarrow$ Spannungsabh. Ca²⁺-Kanal $\downarrow \rightarrow$ K⁺-Kanal (GIRK) $\uparrow \rightarrow$ Erregbarkeit \downarrow

Abbildung 2.8: GPCR-Zyklus

Beispiele

Opioide (μ, δ, κ) , GABA_B, Cannabinoide CB_{1,2} Dopamin D₂₋₄, mGluR2-4,6-8, α_2 4-adrenerg, muskarinerg M_{2,4}, Adenosin A₁, Somatostatin Sst₁₋₅, 5-HT₁ Chemokine CCR1-10; CXCR1-5

2.9 Liganden-gesteuerte Ionenkanäle

2.10 Liganden-regulierte Enzyme

2.10.1 Rezeptoren mit Tyrosinkinase-Aktivität (Beispiel: Insulin-Rezeptor)

- Insulin-Rezeptor Familie: Insulin, Insulin-like growth factor (IGF-1) etc.
- Pharmaka: verschiedene Insuline
- ErbB Rezeptor Familie: Epidermal growth factor (EGF), ErbB1-4 etc.
- Pharmaka: Trastuzumab (Antikörper gegen ErbB2/Her2)
- Gefitinib, Erlotinib (Tyrosinkinasehemmer mit Selekt. für ErbB1)
- Cetuximab (Antikörper gegen ErbB1)
- Platelet-derived growth factor (PDGF)- Rezeptor Familie: PDGF, CSF, SCF
- Pharmaka: Imatinib (Tyrosinkinasehemmer mit Selekt. v.a. für BCR-ABL)
- Vascular endothelial growth factor (VEGF)-Rezeptor Familie : VEGF
- Pharmaka: Bevacizumab (Antikörper gegen VEGF)
- Fibroblast growth factor (FGF)-Rezeptor Familie: FGF
- $\bullet\,$ Nerve growth factor (NGF)-Rezeptor Familie: NGF, Neurotrophins etc.
- Hepatocyte growth factor (HGF): HGF
- $\bullet\,$ Eph family receptors: Ephs, Ephrins; Axl; Tie; etc..

2.11 nukleäre Rezeptoren

Ligand	Rezeptor A/B	Pharmaka (Beispiele)
Östrogen	ER/ER	Ethinylestradiol (Ag); Tamoxi-
		fen(Ag/Ant); Clomiphen (pAg)
Progesteron	PR/PR	Norethisteron (Ag), Mifepriston (Ant)
Androgen	AR/AR	Nandrolon (Ag), Flutamid (Ant)
Aldosteron	MR/MR	Spironolacton (Ant); Fludrocortison
		(Ag)
Glukokortikoide	GR/GR	Dexamethason (Ag)
Retinsäure	RAR/RXR	Acitretin (Ag)
Schilddrüsenhormon	TR/RXR 21	T_3 (Ag)
Vitamin D	VDR/RXR	Tacalcitol (Ag)
Gallensäuren	FXR/RXR	

Physiol. Ligand	Rezeptor	G-Protein(e)	Pharmaka (Beispiele)
Aminosäuren			
Glutamat	mGluR1,5;2-4,6-8	$G_{q/11}; G_{i/o}$	DHPG (1/5-Ag, experimentell)
GABA	$GABA_{B1} GABA_{B2}$	$G_{i/o}^{i/o}$	Baclofen (Ag)
Biogene Amine			
Acetylcholin	$M_1, M_3, M_5; M_2, M_4$	$G_{q/11}; G_{i/o}$	Atropin (Ant); Carbachol (Ag)
(Nor)Adrenalin	$\alpha_{1A}, \alpha_{1B}, \alpha_{1D}, \alpha_{2A}, \alpha_{2B}, \alpha_{2C}, \beta_1, \beta_2, \beta_3$	$G_{q/11}; G_{i/o}, G_S$	Phenylephrin (Ag); Prazosin (Ant) Clonidin (Ag); Yohimbin (Ant) Isopropanol (Ag); Propranolol (Ant)
Dopamin	$D_1,D_5; D_2,D_3,D_4$	$G_S; G_{i/o}$	Bromocriptin/Haloperidol(D_{2-4} -Ag/Ant)
Histamin	$H_1; H_2; H_3, H_4$	$G_{q/11}; G_{i/o}, G_S$	Loratadin (H1-Ant); Ranitidin (H2-Ant)
Serotonin	$5-HT_{1A/B/D/E/F}$ 5- $HT_{2A/B/C}$;5- $HT_{4/6/7}$	$G_{q/11}; G_{i/o}, G_S$	Sumatriptan(1B/D-Ag);Buspiron(1A-Ag), Risperidon (2A-Ant); Cisaprid (4-Ag)
Melatonin	MT_1, MT_2	$G_{i/o}$	Ramelteon (Ag)
Trace Amines	TA_1, TA_2	G_S	
Ionen			
Calcium	CaSR	$G_{q/11}; G_{i/o}$	Cinacalcet (Modul.)
Nukleotide / Nukleoside			
Adenosin	$A_1, A_3; A_{2A}, A_{2B}$	$G_{i/o}, G_S$	Theophyllin, Coffein (Ant)
ADP	$P2Y_{12}, P2Y_{13}$	$G_{i/o}$	Clopidogrel $(P2Y_{12}$ -Ant)
Lipide			
Endocannabinoide	CB_1, CB_2	$G_{i/o}$	Δ9-THC (Ag); Rimonabant (CB1-Ant)
LTC_4, LTD_4	CysLT1, CysLT2	$G_{q/11}$	Montelukast (Ant)
Lysophospholipide	$LPA_{1-5}, S1P_{1-5}$	$G_{q/11}, G_{12/13}, G_{i/o}$	Fingolimod (FTY720; S1P-Ag.)
Prostacyclin (PGI_2)	IP	G_s	Iloprost (Ag)
Prostaglandin E_2	$EP_1; EP_2; EP_4; EP_3$	$G_{q/11}; G_s; G_{q/11}, G_i$	Misoprostol (Ag)
Peptide / Proteine			
Angiotensin II	$AT_1; AT_2$	$G_{q/11}, G_{12/13}, G_{i/o}; ?$	Losartan (AT1-Ant)
Bradykinin	B_1, B_2	$G_{q/11}$	Icatibant(B_2 -Ant; experim.)
CGRP	CL+RAMP1	$G_{q/11}.G_S$	BIBN 4096 BS (Ant, exp.)
Chemokine	CCR1-10;CXCR1-5	$G_{i/o}$	Maraviroc (CCR5-Antag.)
Cholecyctokinin	CCK_1, CCK_2	$G_{q/11}.G_S$	
Komplem. C3a / C5a	C3a; C5a	$G_{i/o}$	
Endothelin- 1, -2, -3	$ET_A; ET_B$	$G_{q/11}, G_{12/13}, G_s$	Bosentan (ETA/B-Ant), Darusentan (ETA-Ant)
Galanil	GAL1-3	$G_{q/11}, G_{i/o}$	D (11/A)
Glucagon-like pept.	GLP1-3	G_S	Exenatid (Ag)
Glykoproteinhorm.	TSH, LH, FSH	G_s	
Melanocortine	MC1,3,4,5	G_S	
Glukagon Gonadoliberin	Glukagon GnRH	$G_{g/11}$	Buserelin (Ag)
Motilin	GPR38	$G_{q/11}$	Erythromycin (Ag)
Opioide	$\gamma, \kappa, \mu, \text{ORL1}$		Morphin (Ag), Naloxon (Ant)
Orexin A/B	OXYD, OX2	$G_{i/o}$ $G_s, G_{q/11}$	worphin (11g), redoxon (11nt)
Oxytocin	OT	$G_{q/11}, G_{i/o}$	Atosiban (Ant, experimentell)
PTH	PTH/PTHrP	$G_s, G_{q/11}$	Teriparatid (Ag)
Sekretin	Secretin	G_s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Somatostatin	SST_{1-5}	$G_{i/o}$	Octreotid (Ag)
Substance P	NK_1	$G_{q/11}$	Aprepitant (Ant)
Urotensin II	UT-II (GPR14)	$G_{q/11}^{1/2}$	
VIP, PACAP	$VPAC_{1,2}, PAC_1$	G_s	
Vasopressin	$V_{1a}, V_{1b}; V_2$	$G_{q/11};G_s$	Desmopressin $(V_2$ -Ag), Terlipressin $(V_1$ -Ag)
Proteasen (der durch pro	oteolyt. Spaltung gebildete "r	neue" N-Terminus fungier	t als interner Ligand)
Thrombin u.a.	PAR-1/2/4	$G_{q/11}, G_{12/13}, Gi/o$	
Trypsin u.a.	PAR-2	$G_{q/11}$	
"orphan"-Rezeptoren (pl	hysiologischer Ligand bisher ı	unbekannt)	
?	GRP109A (HM74a)	G_i	Nikotinsäure (Ag)
	, ,	1, 1, 1, 1, 1, 1	1 (1)

Tabelle 2.6: Übersicht: pharmakologisch relevante Enzyme

Abbildung 2.9: Liganden-regulierte Enzyme

Rezeptor	Ligand	Kanaltyp	Pharmaka(Beispiele)
Pentamere			
nikotinisch	Acetylcholin	Na^+/K^+	Curare/Muskelrelaxantien (Ant)
5-HT ₃	Serotonin	$\mathrm{Na^{+}/~K^{+}}$	Ondansetron (Ant; Antiemetika)
GABA_A	GABA_A	Cl-	Benzodiazepine (Modul.)
Glyzin-R.	Glyzin-R.	Cl^-	Strychnin (Ant)
Tetramere			
NMDA	Glutamat	${ m Na^{+}/~K^{+}/~(Ca^{2+})}$	Phencyclidin (Ant), Memantin (Modul.)
AMPA	"	Na^+/K^+	
Kainat	"	Na^+/K^+	
Trimere			
ATP	P2X	$Na^{+}/K^{+}/(Ca^{2+})$	

Tabelle 2.8: Übersicht: pharmakologisch relevante Enzyme

Abbildung 2.10: Caption here

$$P + R \underset{k_2}{\overset{k_1}{\longleftrightarrow}} PR \tag{2.1}$$

$$\frac{[P] * [R]}{[PR]} = \frac{k_2}{k_1} = K_D$$
 (2.2)

Abbildung 2.11: Pharmakon-Rezeptor-Interaktion: k1: Geschwindigkeitskonstante der Assoziation; k2: Geschwindigkeitskonstante der Dissoziation im Äquilibrium gilt gemäß Massenwirkungsgesetz: KD: Äquilibrium-Dissoziations-Konstante Maß für die Affinität KD der meisten physiologischen Rezeptoren im Bereich von: 10-9 - 10-6 M

Konzentrations- Wirkungs-Beziehung:

 EC_{50} :effektive Konzentration $50\% \neq K_D$

2.14 Wirksamkeit/Potenz

Potenz:

Maß für die Konzentration einer Substanz, die zur Erreichung der halb- maximalen Wirkung notwendig ist

Wirksamkeit:

Maß für die maximal erreichbare Wirkung

2.15 Agonismus

- unbesetzter Rezeptor hat basale Aktivität
- Agonist: Affinität zu Rezeptor + intrinsische Aktivität
 - volle/partielle Wirksamkeit \rightarrow voller/partieller Agonismus
 - negativ intrinsische Aktivität \rightarrow inverser Agonismus
- Antagonist/Blocker: Affinität zu Rezeptor, keine intrinsische Aktivität

$$P + R \xrightarrow[k_2]{k_1} PR \xrightarrow{proportional} Effekt$$
 (2.3)

Abbildung 2.12: Wirkungsauslösung: Der Effekt ist proportional der Rezeptor-Besetzung

2.16 Antagonismus

Agonist:

Affinität zum Rezeptor + intrinsische Aktivität

Antagonist:

Affinität zum Rezeptor, keine intrinsische Aktivität

kompetitiver Antagonismus

Antagonist konkurriert mit Agonist um Bindungsstelle \rightarrow Parallelverschiebung der DWK

nichtkompetitiver Antagonismus

- keine Kompetition mit Agonist, eher selten
- Beeinflussung der Rezeptor-Effektor-Kopplung
- Wirkung kann durch hohe Agonist-Konzentrationen nicht aufgehoben werden
- Maximaleffekt des Agonisten verringert

2.17 Toleranzphänomene

2.17.1 Toleranz:

abnehmende Wirkung nach wiederholter Gabe bei gleicher Dosis

pharmakokinetische Toleranz

z.B. Metabolisation \(\text{(Barbiturate, Athanol)} \)

pharmakodynamische Toleranz

z.B.: Rezeptorzahl \downarrow (β -Adrenozeptor-Agonisten)

2.17.2 Tachyphylaxie

sehr rasche Toleranzentwicklung (Minuten bis Stunden)

- indirekte Sympathomimetika
- (organische Nitrate; Stunden bis Tage)

2.18 Unerwünschte Wirkungen von Pharmaka

Hauptwirkung

therapeutisch erwünschte Wirkung

Nebenwirkung

jede Reaktion außerhalb der Hauptwirkung

Unerwünschte Wirkung

jede unerwünschte Reaktion, die auf die Verordnung eines Arzneimittels ursächlich zurückgeführt werden kann

 $erw\ddot{u}nschte\ therapeutische\ Wirkung\ (Hauptwirkung)\longleftrightarrow unerw\ddot{u}unschte\ Wirkung\ (Nebenwirkung)$ (2.4)

2.18.1 Häufigkeit unerwünschter Arzneimittelwirkungen

- 2 5% in der Praxis
- 6 20% in der Klinik

ca. 5%der Klinikaufnahmenerfolgen wegen unerw. Arzneimittelwirkungen

"Alle Dinge sind Gift und nichts ist ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist.Paracelsus"

2.18.2 Unerwünschte Wirkungen im Rahmen des pharmakodynamischen Wirkprofils

treten bei jedem Patienten dosisabhängig und spezifisch auf: "Die Dosis macht das Gift"

- bei therapeutischer Dosierung z.B.: Zytostatika
- erst bei Überdosierung: Pharmaka mit geringer therapeutischer Breite (Beispiele): Digitalisglykoside, Cumarin-Derivate, Lithium, Theophyllin

2.18.3 Ursachen dosisabhängiger unerwünschter Arzneimittelwirkungen

Absolute Überdosierung

durch Verordnungs- oder Einnahmefehler

Relative Überdosierung

durch verminderte Elimination (Metabolisierung/Ausscheidung) oder verstärkte Wirkung

2.18.4 Arzneimittel-unabhängige Faktoren, die zu einer relativen Überdosierung führen

- Alter des Patienten:
 - Kinder: Besonderh. der Pharmakokinetik (Verteilungsvolumen↑; hepat. Metabol. und renale Ausscheidung: ↓ bei Früh- /Neugeborenen; ↑ ab 1-2 Monaten) Nur bei Kindern auftretende unerwünschte Wirkungen z.B.: Tetracycline → Gelbfärbung der Zähne, Kariesanfälligkeit; Acetylsalicylsäure → Reye-Syndrom; Chloramphenicol → Grey-Syndrom
 - ältere Menschen
 - * Polymorbidität, Compliance
 - * Pharmakokinetik (hepatische Metabolisierung ↓; renale Elimination ↓)
- Einfluss der Krankheit
 - auf Pharmakokinetik (z.B.: Metabolisierungs- und Ausscheidungsstörungen bei Leber- und Nierenerkrankungen)
 - auf Pharmakodynamik (z.B.: Hypokaliämie → verstärkte Digitaliswirkung)
- Schwangerschaft und Stillzeit
 - Unerw: Wirkungen in der Schwangerschaft meist Phasen-spezifisch
 - Blastogenese bei Schädigung \rightarrow Abstoßung
 - Embryogenese/Organogenese (Tag 15 Tag 60) hohe Gefährdung durch teratogene Substanzen ! z.B.: Thalidomid → Phokomelien, Lithium → Herzmißbildungen, Alkohol → Entwicklungsverzögerung, Gesichtsmißbildungen, Phenytoin → Gaumenspalten
 - Fetalphase (Histogenese/funktionelle Reifung; 3. Monat Geburt) keine teratogene Gefährdung, aber selektive unerwünschte Wirkungen v.a. auf Funktion und Wachstum des Fetus z.B.: ACE- Hemmer: gegenüber der Mutter gesteigerte Empfindlichkeit des Fetus → RR ↓ → Nierenfunktion ↓ → Anurie → Fruchtwassermangel; Tetrazykline: Einlagerung als Ca²+-Komplex in Zahnschmelz und Knochen → Gelbfärbung der Zähne, evtl. Knochenschädigungen; Stillzeit: Im Gegensatz zur Schwangerschaft geringere Gefahr unerwünschter Wirkungen auf Kind
- ullet Pharmakogenetische Faktoren
 - Pharmakokinetik z.B.: Polymorphismen Arzneimittel-metabolisierender Enzyme
 - Pharmakodynamik z.B.: Polymorphismen von pharmakologischen Zielstrukturen

2.18.5 Unerwünschte Wirkungen durch Arzneimittelinteraktionen

Häufigkeit steigt exponentiell mit Anzahl der verabreichten Pharmaka Auftreten unerw. Wirkungen, aber auch Wirkungsabschwächung

Beispiele

Pharmakokinetisch

Resorption Effekte

 Ca^{2+} , Mg^{2+} , Al^{2+} , Fe^{2+} , + Tetracycline Tetracyclinesorption \downarrow

Colestyramin +Digitalisglyk., Thyroxin u.a. Resorption ↓

Metabolismus

CYP3A4 Induktion

Johanniskraut, Rifampicin + Ciclosporin Transplantatabstoßung

Phenytoin, Carbamazepin + Ethinylestradiol "Pillenversager"

HIV-Protease Hemmer Wirkverlust der antiviralen Therapie

CYP3A4 Hemmung

Azol-Antimykotika, + Statine Statin-Abbau $\downarrow \rightarrow$ Myopathierisiko \uparrow

HIV-Proteasehemmer, + Ciclosporin Nephrotoxizität↑

Makrolide, Grapefruitsaft + Cisaprid, Terfenadin Long-QT-S., Torsade de Pointes

CYP2C9 Induktion

Rifampicin, Phenytoin + Cumarine Thromboserisiko↑

CYP2D6 Hemmung

Fluoxetin, Paroxetin + Trizykl. Antidepressiva Kardiale Effekte

Ausscheidung

Diuretika + Lithium Lithiumausscheidung \downarrow ASS + Methotrexat Methotrexattoxizität \uparrow

Pharmakodynamisch

additive Effekte

Fibrate + Statine Myopathierisiko↑

 β -Blocker + Verapamil/Diltazem Bradykardie, AV-Block, Herzinsuff.

Aminoglykoside+ SchleifendiuretikaOto-, Nephro-Toxizität ↑PDE5-Hemmer+ organ. NitrateSchwere HypotensionMAOA-Hemmer+ SSRI (z.B.: Fluoxetin)Serotoninsyndrom

ASS, Clopidogrel + Cumarinderivate Blutungsneigung (v.a. Magen/Darm) ↑

 ${
m K}^+$ -sparende Diuretika + ACE-Hemmer/AT1-Blocker Hyperkaliämiegefahr

Benzodiazepine + Ethanol Sedation↑

Antagonistischer Effekt

cin)

NSAIDs (z.B. Ibuprofen, Indometha- + Antihypertensiva(v.a. Diuretika) Aufhebung der antihypertensiven Wir-

kın

 β -Blocker + β_2 Agonisten Antiasthmat. Effekt \downarrow

L-Dopa + klass. Neuroleptika gegenseit. Abschwächung der Effekte Ibuprofen + ASS Thrombozytenfunktionshemmung \downarrow

2.18.6 Unerw. Wirkungen außerhalb des pharmakodynam. Wirkprofils

dosisunabhängig, nicht Arzneistoff-spezifisch, meist allergisch

Arzneimittelallergie

: Arzneistoff / Metabolit bindet (als Hapten) an körpereigenes Makromolekül \rightarrow Bildung eines Vollantigens \rightarrow Bildung von Antikörpern oder sensibilisierten T-Lymphozyten \rightarrow allergische Reaktion nach Reexposition

Pseudoallergische Reaktion

: meist dosisabhängige, unspezif. Aktivierung immunologischer Prozesse, z.B. Freisetzung v. Mediatoren aus Mastzellen

Kapitel 3

Cholinerges System

3.1 cholinerge und adrenerge Übertragung im peripheren efferenten Nervensystem

3.1.1 Eigenschaften des somatomotor. und autonomen Systems

somatomotor. System autonomes System

distale Synapse Vorderhorn Ganglion

Plexusbildung nein ja (v.a. Sympathikus) Verzweigung ja (motor. Einheit) ja (Symp.>Parasymp.)

Myelinisierung Nerven myelinisiert postganglionär nicht myelinisiert

3.2 Acetylcholin

3.2.1 Cholinerge Synapse

Depolarisation \to Ca²⁺-Einstrom \to Freisetzung von Ach aus Vesikeln in den synapt. Spalt \to Bindung von Ach an post-synapt. Rezeptor \to Inaktivierung von Ach durch Acetylcholinesterase (260 kDa, $\alpha 2, \beta 2$ -Struktur, ca. 20.000/s)

3.2.2 Acetylcholinesterase

motorische Endplatte

3 x 4 enzymatische Untereinheiten über Kollagenanker an Basalmembran des synaptischen Spalts verankert extrem hohe Umsatzrate (ca. 20.000 Ach-Moleküle/s)

ZNS

1 x 4 enzymatische Untereinheiten, über Lipidrest in Plasmamembran verankert

sezernierte Form

1 x 4 enzymatische Untereinheiten, hydrophil Acetylcholin-spezifische Form: u.a. Liquor unspez. Cholinesterase (Pseudocholinesterase, Butyrylcholinesterase): v.a. in der Leber synthetisiert, hohe Aktivität im Plasma

3.3 Pharmakologische Beeinflussung cholinerger Systeme

- Nikotinischer Ach-Rezeptor (Agonisten/Antagonisten)
- \bullet Muskarinischer Ach-Rezeptor (Agonisten) \to Direkte Parasympathomimetika
- \bullet Muskarinischer Ach-Rezeptor (Antagonisten) \to Direkte Parasympatholytika
- \bullet Acetylcholinesterase-Hemmer \to Indirekte Parasympathomimetika

3.3.1 Cholinerge Rezeptoren

muskarinisch

G-Protein-gekoppelte Rezeptor	ren		
Rezeptorsubtyp	Hauptlokalisation	zellulärer Effekt	Effektorsystem
M_1	neuronal ZNS	Exzitation	
	auton. Ganglien	Magensaftsekretion \uparrow	$PLC\uparrow (G_{q/11})$
	(v.a. enteral)	MDMotilität ↑	1,
M_2	kardial Sinusknoten	diastol. Depolar. $\downarrow \Rightarrow HF \downarrow$	K ⁺ -Kanal↑
	AV-Knoten	Fortleitung ↓	Ca^{2+} -Kanal \downarrow
	Atrium (Ventrikel)	Kontraktionskraft \downarrow	A-cyclase \downarrow
	präsynaptisch	Transmitterfreisetzung \downarrow	$(G_{i/o})$
M_3	exokrine Drüsen (Pankreas,	Sekretion ↑	, ,
	Parotis)		
	glatte Muskulatur(Bronch.,	Kontraktion ↑	$PLC \uparrow (G_{q/11})$
	Darm, Harnbl.)		1,
	vaskuläres Endothel	Vasodilatation (NO-	
		Freisetz.)	
	Auge (Ziliarmuskel, M. con-	Kontraktion (Nahakko-	
	str. pupillae)	mod.), Kontraktion (Miosis)	
M_4	ZNS	?	wie M_2
M_5	weit verbreitet (low level)	?	$PLC \uparrow (G_{q/11})$

nikotinisch

ionotrope Rezeptoren, Pentamere, 2 α -Untereinheiten (α 2-10 3 β -Untereinheiten (β 2-4) α -Untereinheit bindet Ach Rezeptor bildet Na^+/K^+ -Kanal, der d. Bindung von Ach geöffnet wird \rightarrow Na⁺-Einstrom \rightarrow Depolarisation

 N_M (muskulärer Typ) $(\alpha 1)_2, \beta 1, \delta, \epsilon$ (embryonal/denerv. Muskel: γ statt ϵ) neuromuskuläre Endplatte der Skelettmuskulatur, vermittelt Kontraktion N_N (neuronaler Typ) $(\alpha 4)_2/(\beta 2)_3$ häufig im ZNS, (v.a. K^+/Na^+ permeabel) $(\alpha 7)_5$ häufig im ZNS, (auch Ca²⁺ permeabel) $(\alpha 3)_2/(\beta 4)_3$ Ganglion-Typ \rightarrow Depolarisation/Weiterleitung; NN-Mark \rightarrow Sekretion von Katecholaminen

3.3.2 Agonisten / Antagonisten des nikotinischen Ach-Rezeptor

Nikotin

(agonistische Wirkung v.a. auf neuronalen Rezeptor (N_N)

Pharmakokinetik

- rasche Aufnahme über Mundschleimhaut oder Lunge (je nach pH-Wert)
- gute Verteilung (insb. ZNS) der nicht-ionisierten Form; Plasma-HWZ: 2-3 h
- 80% hepat. metabolisiert zu Cotinin

Pharmakodynamik niedrige Dosis: Ganglien erregend \rightarrow Adrenalinfreisetzung aus NNM, RR \uparrow , hohe Dosis: Ganglien blockierend (Depol.) + zentrale Effekte \rightarrow komplexe Effekte: Durchfall, Magensaftproduktion \uparrow , RR $\uparrow \downarrow$, HF $\uparrow \downarrow$, Speichelsekretion \uparrow , Übelkeit, Tremor; Krämpfe, Atemlähmung Sucht-erzeugende Wirkung durch Aktivierung des "reward pathways Toxizität: 50 mg tödlich (1 Zigarette \simeq 10 mg)

Cytisin / Vareniclin

(partieller Agonismus an $(\alpha 4)2(\beta 2)3$ Rezeptoren Cytisin z.B. im Goldregen vorkommend, 3-4 Früchte für Kleinkinder tödlich Abkömmling Vareniclin als Raucherentwöhnungsmittel 3/07 zugelassen.

Muskelrelaxantien

(Wirkung v.a. auf muskulären Rezeptor (N_M))

- nicht-depolarisierende Muskelrelaxantien kompetitive Antagonisten am muskulären nikotinischen Ach-Rezeptor
- depolarisierende Muskelrelaxantien Agonisten am muskulären nikotinischen Ach-Rezeptor

Wirkung Motorische Lähmung, keine Bewusstseinsbeeinflussung äußere Augenmuskeln \rightarrow Zunge \rightarrow Finger \rightarrow Nacken \rightarrow Stamm \rightarrow Extremitäten \rightarrow Atemmuskulatur

Einsatz V.a. Narkose

Pharmakokinetik Quarternären Stickstoff \rightarrow schlechte Resorption nach oraler Gabe \rightarrow keine ZNS-Gängigkeit

3.3.3 nicht-depolarisierende Muskelrelaxantien

Tubocurarin: Wirkdauer 60-80 min; zusätzliche Wirkungen: Histaminfreisetzung aus Mastzellen Ganglienblockade $\to RR \downarrow$; ob-

,	Potenz (im Vergl. zu Tubo- curarin)	Wirkdauer	Wirkbeginn
Benzylisochinoline			
Atracurium	ca. 2x	20-35 min	2-4 min
Mivacurium	ca. 3x	15-25 min	2-4 min
Steroidderivate			
Pancuronium	ca. 5x	$60-120 \min$	4-6 min
Vecuronium	ca. 5x	45-90 min	2-4 min
Rocuronium	ca. $0.5x$	35-70 min	1-2 min!
	Atracurium Mivacurium Steroidderivate Pancuronium Vecuronium	curarin) Benzylisochinoline Atracurium ca. 2x Mivacurium ca. 3x Steroidderivate Pancuronium ca. 5x Vecuronium ca. 5x	Benzylisochinoline Atracurium ca. 2x 20-35 min Mivacurium ca. 3x 15-25 min Steroidderivate Pancuronium ca. 5x 60-120 min Vecuronium ca. 5x 45-90 min

Elimination spontan (Atracurium); unspez. Esterasen (Atracurium, Mivacurium) renal/hepatisch: Steroidderivate

Antidot Acetylcholinesterase-Hemmer

3.3.4 depolarisiernde Muskelrelaxantien

Suxamethonium, Succinvlcholin

Wirkung Agonismus am Rezeptor, langsamer Abbau persistierende Depolarisation \rightarrow Inaktiv. spannungsabh. Na⁺-Kanälen \rightarrow Sarcolemm elektrisch unerregbar; kein Antagonismus durch Ach-esterase-Hemmer! Wirkdauer 5-10 min, Abbau d. Esterspaltung (unspez. Cholinesterasen)

Einsatz nur noch selten eingesetzt (kurzdauernde Eingriffe)

unerwünschte Wirkungen protrahierte Apnoe (hereditärer Cholinesterase-Mangel); Muskelkater-ähnliche Symptome; Hyperkaliämie; maligne Hyperthermie

3.4 Agonisten / Antagonisten muskarinischer Rezeptoren antimuskarinerge Substanzen / Parasympatholytika

3.4.1 Belladonna-Alkaloide

- Atropin tertiäres Amin \rightarrow gute Resorption, ZNS-gängig \rightarrow Exzitation
- ullet Scopolamin tertiäres Amin \to gute Resorption, ZNS-gängig \to Dämpfung; i.G. zu Atropin stärker mydriatisch, sekretionshemmend, schwächer spasmolyt., kardial wirks.

Wirkung

- \bullet Auge: Mydriasis, Akkomodationslähmung (8–12 d), intraokularen Drucks \uparrow
- Herz: Tachykardie, AV-Überleitungszeit verkürzt
- Bronchien: Bronchodilatation, Sekretion ↓, Hemmung eines Laryngospasmus M.-D.-Trakt: Speichelsekretion ↓ (Mundtrockenheit) (0,5 mg), Magensaftsekretion ↓ (1–2 mg), Motilität↓, Darmatonie, Tonus von Darm, Gallenblase ↓
- Harnwege: Tonusabnahme, Blasenatonie
- Schweißdrüsen: Sekretionshemmung, ZNS: Atropin: Unruhe/Verwirrtheit;
- Scopolamin: Sedation/Schlaf, Temperatur
- Tropicamid Mydriatikum (gute Hornhautpenetration, Wirkdauer: 6h)
- Pirenzepin nicht ZNS-gängig, M_1 -selektiv; Magensaftsekretion \downarrow ; M_1 -Blockade an ECL-Zellen: Histaminfreisetzung \downarrow ; bei höherer Dosierung auch M_3 -Blockade an Parietalzellen

3.4.2 M3-selektiv

Solifenacin, Darifenacin

3.4.3 quarternäre Derivate

(schlecht resorbierbar, keine ZNS-Gängigkeit !!)

- N-Butylscopolamin Spasmolytikum bei Gallen-, Nierenkolik (meist i.v.-Gabe)
- Ipratropiumbromid Einsatz bei obstruktiven Atemwegserkrankungen
- Tiotropiumbromid (als Dosieraerosol) Plasma-HWZ: 4h (Ipratropiumbromid), 5d (Tiotropiumbromid)

Hauptindikationen für Parasympatholytika

- Spasmen der glatten Muskulatur (Gallen-, Nierenkolik, spast. Obstipation) v.a. N-Butylscopolamin
- chron.-obstruktive Lungenerkrankung (COPD) (Ipratropiumbromid, Tiotropiumbromid); symptomatisch wirksam, kein Einfluß auf Fortschreiten der Erkrankung, cave: kardial vorgeschädigte Patienten
- bradykarde Herzrhythmusstörungen (v.a. Atropin)
- Dranginkontinenz (Solifenacin, Darifenacin)
- Narkosevorbereitung (Schleimhautsekretion ↓, vagale Reflexe ↓) (v.a. Atropin)
- Mydriatikum (z.B. Tropicamid);
- Morbus Parkinson (Biperiden)
- Intoxikation mit Alkylphosphaten (Atropin, hohe Dosis)
- Prophylaxe von Kinetosen (Scopolamin)

unerwünschte Wirkungen (je nach erwünschter Wirkung) Mydriasis, Akkomodationsstörungen, Mundtrockenheit, Tachykardie, Obstipation

Kontraindikationen

- Glaukom (Kammerwasserabfluss ↓ unter Mydriasis)
- tachykarde Herzrhyth-musstörungen
- Prostataadenom (Kontraktion des Detrusor vesicae \(\)
- obstruktive gastrointestinale Störungen

3.5 muskarinerge Agonisten / direkte Parasympathomimetika

	Rezeptorspezifitat	Hydrolyse durch	
	muskarin.	nikotin.	durch AchE/ChE
Acetylcholin	+++	+++	+++
Carbachol	+++	+++	-
Bethanechol	+++	-	-
Pilocarpin	++	-	-

Hauptindikation für direkte Parasympathomimetika

- Glaukom (miotische Wirkung → Kammerwasserabfluß↑) z.B. Pilocarpin lokal (gute Resorption, Wirkdauer: 1 Tag)
- Darm-/Blasenatonie (z.B. postop., neurolog. Läsionen)(Carbachol, Bethanechol)

unerwünschte Wirkung (je nach erwünschter Wirkung) Schweißausbruch; Speichelfluss; Übelkeit, Erbrechen, Diarrhoe; Bradykardie, Blutdruckabfall; asthmatische Beschwerden; Harndrang; Myopie

Kontraindikationen Herzinsuffizienz, Asthma bronchiale

3.6 Cholinesterase-Hemmer/indirekte Parasympathomimetika

3.6.1 Hydrolyse von Ach durch AchE:

3.6.2 Wirkung von AchE-Hemmern:

- reversible AchE-Hemmer (nicht-kovalent bzw. Carbaminsäure-Derivate) pharmakologische Bedeutung
- irreversible AchE-Hemmer (Alkylphosphate) toxikologische Bedeutung

3.6.3 reversible AchE-Hemmer

nicht-kovalent:

- Edrophonium kurz wirksam, nur peripher zur Diagnose der Myasthenia gravis eingesetzt, nicht ZNS-gängig
- Tacrin, Donepezil gute ZNS-Gängigkeit, Einsatz bei Alzheimer-Demenz (therapeut. Nutzen fraglich)

kovalent (carbamylierend)

- Physostigmin natürlich vorkommendes Alkaloid, ZNS-gängig (tert. Amin) mittellang wirksam (1-2 h), Einsatz als Antidot bei Vergiftungen mit parasympatholytischen Substanzen
- Neostigmin, Pyridostigmin 2-4 bzw. 3-6 h wirksam, keine ZNS-Gängigkeit

Hauptindikationen für ind. Parasympathomimetika

- Myasthenia gravis (diagnostisch, therapeutisch)
- Aufhebung der neuromuskulären Blockade durch nicht-depolarisierende Muskelrelaxantien (zusammen mit Atropin)
- Demenzen, z.B. M. Alzheimer (Verlust cholinerger Neurone)
- Darm- und Blasenatonie (s.c. oder oral), Glaukom (lokal)

3.6.4 irreversible AchE-Hemmer

Insektizide

• Parathion (E605) Verstoffwechselung zur wirksamen Form Paraoxon ("Giftung"); hohe Humantoxizität

Kampfstoffe

- Tabun, Sarin, Soman extrem toxische "Nervengase" Aufnahme in den Körper: oral, inhalatorisch, transdermal! Vergiftungssymptome:
 - muskarinische Wirkung: Schweißausbruch, Speichel-, Bronchialsekretion, Bronchospasmus, Miosis, Übelkeit, Erbrechen, Diarrhoe, Bradykardie
 - nikotinische Wirkung: Muskelschwäche, evtl. Faszikulationen
 - ZNS Wirkung: Angstgefühl, Kopfschmerz, Krämpfe, Atemlähmung
- Behandlung: Atropin (kein Effekt auf neuromuskuläre Blockade) Cholinesterase-Regeneratoren:
- Pralidoxim, Obidoxim besonders gute Wirkung an neuromusk. Synapse, keine ZNS-Gängigkeit, Wirkung nur wenige Stunden nach Vergiftung (Alterungsphänomen der AchE)

Kapitel 4

Adrenerges System

Noradrenalin Adrenalin

Katecholaminsynthese

 $Tyrosin {\rightarrow} Dopa {\rightarrow} Dopamin {\rightarrow} Noradrenalin {\rightarrow} Adrenalin$

Abbau von Katecholaminen

- Monoaminoxidase A + B (MAO) Abbau vor allem im Neuron
- Catechol-O-Methyltransferase (COMT) Abbau zirkulierend. Katecholam. v.a. Leber/Niere

4.0.5 adrenerge Varikosität

das postganglionäre sympathische Neuron endet im Endorgan in Form eines Terminalretikulums, das Varikositäten aufweist Mechanismus der Freisetzung: Aktionspotential \rightarrow Depolarisation \rightarrow Einstrom von Ca²⁺ durch spannungsabhängige Ca²⁺-Kanäle \rightarrow Fusion synaptischer Vesikel mit der präsynaptischen Membran \rightarrow Freisetzung von Noradrenalin zusammen mit Kotransmittern (z.B. ATP, Neuropeptid Y) Terminierung der Wirkung von Noradrenalin durch Wiederaufnahme.

4.0.6 Hemmer der NA-Freisetzung

- Reserpin (Rauwolfia-Alkaloid) hemmt Speicherung von NA in Vesikel über vesikul. Monoamin-Transporter → Wirkung auch auf Dopamin- und Serotonin-Speicherung
 - Einsatz: Reserveantihypertensivum
 - unerwünschte Wirkungen: Depression (ZNS-Effekt), Parkinsonismus, HF↓, (RR↓)
- Guanethidin Aufnahme und Speicherung wie NA → Anreicherung in Axon → Blockade schneller Na⁺-Kanäle → Depol.↓ → NA-Freisetzung↓
- α -Methyldopa pro-drug, Umwandlung in α -Methyl-NA \rightarrow vesikuläre Speicherung als "falscher Transmitter"
 - Agonist an prä- und postsynapt. α_2 -Adrenozeptoren
 - NA-Freisetzung↓, Sympathikotonus↓ (zentraler Effekt)

4.0.7 indirekte Sympathomimetika

Amphetamin, Ephedrin: Aufnahme über NA-Carrier in Axoplasma

- Hemmung der NA-Aufnahme in Vesikel und des NA-Abbaus d. MAO
- NA-Konzentration im Axoplasma ↑
- NA-Ausschleusung über NA-Carrier (umgekehrt) + Wiederaufnahme ↓
- NA-Konzentration im synaptischen Spalt \uparrow

nach wiederholter Gabe nimmt Effekt rapide ab (Tachyphylaxie)

- periphere Wirkung: sympathomimetisch
- zentrale Wirkung: (Amphetamin>Ephedrin): Euphorie, Aufmerksamkeit\(^\), Selbstvertrauen\(^\), Appetit\(^\), Halluzinationen, Stereotypien

Effekt von Amphetamin auf die Noradrenalin (NA)-Freisetzung: Effekte auf verschied. Neurotransmittersysteme unterschiedlich stark ausgeprägt v.a. Noradrenalin, Dopamin: (Met)Amphetamin>Methylphenidat, Fenetyllin> Ephedrin v.a. Serotonin: MDA, MDMA, Fenfluramin, Sibutramin

4.1 adrenerge Rezeptoren

Tabelle 4.1

Rezeptorsubtyp	Hauptlokalisation	zellulärer Effekt	Effektor- system
$\alpha_1(\alpha_{1A,B,D})$	glatte Gefäßmuskulatur (Haut, Schleimhaut, Abdo- men, Niere)	Kontraktion	$PLC\uparrow (G_q/G_{11})$
	Blasensphinkter	Kontraktion	
	Leber	$Glycogenolyse \uparrow$	
		Gluconeogenese↑	
	Auge (M. dilatator pup.)	Mydriasis	
$\alpha_2(\alpha_{2A,B,C})$	sympathische, postgangl. präsynapt. Nervenend. (α_{2A}	NA-Freisetzung↓	K^+ -Kanal \uparrow A-cyclase \downarrow Ca^{2+} -Kanal \downarrow (G_i/G_o)
	$+ \alpha_{2C}$		
	ZNS (α_{2A})	Sympathikotonus ↓ Sedie-	
		rung	
	β -Zellen (Pankreas)	Insulin-Freisetzung \downarrow	
β_1	Herz	Inotropie↑ Chronotropie↑	A-cyclase \uparrow Ca ²⁺ -Kanal \uparrow
		$Dromotropie \uparrow$	(Herz via PKA) (G_s)
	juxtaglomeruläre Zellen	Renin-Freisetzung ↑	
eta_2	Bronchialmuskulatur	Relaxation	A-cyclase $\uparrow (G_s)$
	glatter Gefäßmuskel (Ske-	Relaxation	
	lettm.)		
	Herz	wie β_1 (weniger stark)	
	Uterusmuskulatur	Relaxation	
	Skelettmuskel	Glycogenolyse	
	Leber	Glycogenolyse, Gluconeoge-	
		nese	
β_3	Fettzellen	Lipolyse	A-cyclase? (G_s)

4.2 β_2 -Adrenozeptor-Agonisten / β_2 -Sympathomimetika

mittellang wirksam (4-6 h) lang wirksam (12 h, "LABA") ultra lang wirksam (24 h, uLABA) Fenoterol; Salbutamol; Terbutalin Formoterol; Salmeterol Akuttherapie oder 3-4 x tgl.

Indacaterol

Gabe oral oder per inhalationem (Wirkungseintritt innerhalb 5-15 min)

Indikation

- Astma bronchiale (Prävention und bedarfsorientiert b. Beschwerd.)
 - stärkste Bronchodilatatoren
 - Zilien-Flimmerbewegung $\uparrow \rightarrow$ mukoziliäre Clearance \uparrow
 - Hemmung der Mediatorfreisetzung aus Mastzellen
- Tokolyse

unerwünschte Wirkungen (v.a. bei system. Gabe)

Skelettmuskeltremor; Unruhe, Angstgefühl; Tachykardie, Herzklopfen; anabole Wirkung (v.a. Clenbuterol)

4.3 α -Adrenozeptor-Agonisten

Phenylephrin $(\alpha_1 > \alpha_2)$

Oxymetazolin($\alpha_2 > \alpha_1$)

Xylometazolin

Indikation zur lokalen Anwendung: Schleimhautabschwellung bei Konjunktivitis, Sinusitis, Rhinitis; Mydriatikum (Phenylephrin)

unerwünschte Wirkungen chron. Einnahme: Wirkungsverlust; atroph. Mukosaschäden (Rhinitis sicca); Säuglingen und Kindern: Vergiftungsgefahr durch Resorption (Koma, Atemlähmung) nur verdünnte Lösungen anwenden!

4.4 α_2 -Adrenozeptor-Agonisten

Clonidin Guanfacin Moxonidin α -Methyldopa:Umwandlung zu α -Methylnoradrenalin

Indikation

- Antihypertensivum
 - − Aktivierung postsynaptischer α_2 -Rezeptoren im Bereich des Nucl. tractus solitarii (u.a. Umschaltstelle des Barorezeptoren Reflexes) → Sympathikotonus ↓, Parasympathikotonus↑
 - Aktivierung peripherer, präsynaptischer α_2 -Rezeptoren NA-Freisetzung \downarrow
 - Hemmung der Adrenalinfreisetzung aus NNM über α_2 -Rezeptoren
 - Reservetherapeutika, Einsatz bei therapieresistenten Formen der Hypertonie oder bei Schwangerschaftshypertonus (α -Methyldopa) bzw. hypertensiver Krise (Clonidin)
- Migränetherapie (Intervallbehandlung, Tonisierung meningealer Gefäße)
- Opiat-Entzugssyndrom (überschießende Aktivität noradrenerger Neurone, die durch Opiate gehemmt wurden)
- Alkohol-Entzugssyndrom

unerwünschte Wirkungen \bullet Sedation (zentrale $alpha_2$ -Rezeptoren) \bullet Mundtrockenheit (Parasympathikotonus \downarrow , präsynaptische α_2 -Rezeptoren an cholinergen Neuronen); \bullet Potenzstörungen \bullet bei plötzlichem Absetzen: hypertensive Krise

4.5 α_1 -Adrenozeptor-Antagonisten

	Plasma-HWZ	
Prazosin	$2,5 \mathrm{h}$	
Terazosin	8-14 h	
Doxazosin	22 h	
Bunazosin	12 h	
Urapidil	3-8 h	(zusätzl 5- HT_1A Rezeptoragonist)

Indikation Hypertonie (art./ven. Vasodilatation) benigne Prostatahyperplasie Urapidil: auch hypertensive Notfälle / Krise (über zentrale 5-HT1A Rezeptoren: Sympathikotonus↓→ Reflextachykardie vermindert)

unerwünschte Wirkungen v.a. initial Hypotonie (einschleichend dosieren!), sonst selten

4.6 •

4.6.1 Wirkprofil

 β_1 -Selektivität ("Kardioselektivität")

- relative Selektivität für β_1 -Rezeptoren
- geringer ausgeprägte metabolische Effekte (β_2 -Rezeptoren) bei Diabetikern
- geringere Gefahr der Bronchokonstrikt. b. Pat. m. obstrukt. Ventilationsstörg.
- \bullet bei Schwangeren: β_2 -vermittelte Effekte nicht gehemmt
- vermindertes Risiko für periphere Durchblutungsstörungen

Tabelle 4.2

	Rezept spez.	Lipophilie	Bioverfüg- barkeit	Elimination	Plsama- HWZ (h)	Dosis (mg) KHK	$\begin{array}{c} \operatorname{Dosis}(\operatorname{mg}) \\ \operatorname{RR} \uparrow \end{array}$
unselektive							
Propranolol	$\beta_1/beta_2$	+++	30%	hepat.	3-4	3/4x10/40	2/3x40
Pindolol	$\beta_1/beta_2(pA)$	+	95%	hep./ren.	4-6	3x5/103x5	
β -selektive							
Metoprolol	$\beta_1 > \beta_2$	+	50%	hepat.	3-4	2x50/100	2x50
Bisoprolol	$\beta_1 > \beta_2$	0/+	90%	hep./ren.	10-12	1x5/10	1x2,5/5
Atenolol	$\beta_1 > \beta_2$	0	50%	renal	6-9	1x50/100	1x25/50
vasodilatieren	de					,	
Carvedilol	$\beta_1/\beta_2/\alpha_1$	++	25%	hep./ren.6-7	1x12/25	1x12/25	
Nebivolol	β_1 >	20 80%	hep./ren.	10	1x2,5/5	1x2,5/5	
	β_2 +NO-		- /		, ,	, ,	
	Freistzung						
Celiprolol	β_1 -Antag. +	0/+	30-70%	renal	5-7	1x200/400	1x200
•	$beta_2$ -Agon.	,				,	
	$beta_2$ -Agon.						

partielle agonistische Aktivität (PAA)

- früher: intrinsische sympathomimetische Aktivität (ISA); z.B. Pindolol
- Wirkungen abhängig vom Sympathikotonus
 - Tonus hoch: Überwiegen antagonistischer Effekte (z.B. HF↓)
 - Tonus niedrig: agonistische Effekte (Ruhefrequenz unbeeinflußt oder erhöht)
- klinisch kein Vorteil; bei Myokardinfarkt und Sekundärprävention geringere Mortalitätssenkung als durch β -Blocker ohne PAA

"membranstabilisierende Wirkung"

(z.B. Propranolol)

- \bullet lokalanästhetische Wirkung unabhängig von β -blockierender Wirkung
- in the rapeutischen Dosen unbedeutend

vasodilatierende Wirkung

- durch Antagonismus an α_1 -adrenergen Rezeptoren (Carvedilol), Agonismus an β_2 -adrenergen Rezeptoren (Celiporolol) oder Freisetzung von NO (Nebivolol); hepatisch gebildeter Nebivolon-Metabolit steigert NO-Bildung im Endothel
- therapeutischer Nutzen derzeit unklar

4.6.2 Pharmakokinetik

Lipophilie↑ gute Resorption
starker first-pass-Effekt
überwiegend hepatisch metabolisiert
Lipophilie↓ schlechte Resorption
geringer first-pass-Effekt
überwiegend renal eliminiert

4.6.3 Kontraindikationen

- ausgeprägte Bradykardie
- AV-Block II./III. Grades Anwendung nur mit bes. Vorsicht bei obstruktiven Atemwegserkrankungen

4.6.4 Wechselwirkungen

- \bullet Ca $^{2+}$ -Antagonsiten vom Verapamil- und Diltiazem-Typ (Kardiodepression; AV-Block)
- Herzglykoside (neg. chronotrop)
- orale Antidiabetika/Insulin (verstärkte Hypoglykämieneigung)

4.6.5 Indikation

- koronare Herzkrankheit (Anfallsprophylaxe, Sekundärprävention)
 - Blockade von β_1 -Rezeptoren am Herzen $\rightarrow O_2$ -Verbrauch des Myokards \downarrow
- Herzinsuffizienz
 - für Metoprolol, Bisoprolol und Carvedilol Wirksamkeit nachgewiesen
 - Abschwächung kardiotox. Langzeiteffekte von Katechol- aminen im Rahmen der neurohumoralen Gegenregulation
 - antiarrhythmischer, antitachykarder Effekt
- tachykarde Herzrhythmusstörungen (β_1 -selektive Blocker)
- Hypertonie (v.a. bei gleichzeitig bestehender KHK oder Herzinsuffizienz)
 - Blockade von β_1 -Rezeptoren am Herzen Abschwächung des positiv inotropen, chronotropen, dromotropen und bathmotropen Einflusses des Sympathikus
 - -Abnahme der Renin-Sekretion \rightarrow Angiotensin II \downarrow
 - zentrale Wirkung → Sympathikotonus↓
- Hyperthyreose (unselektive Blocker, z.B. Propranolol)
- Migräneprophylaxe
- Glaukom (lokale Gabe) Kammerwasserproduktion ↓ (Mechanismus unklar)
- Angstzustände, Tremor (Hemmung des Sympathikotonus)

4.6.6 unerwünschte Wirkungen

- kardiovaskulär Bradykardie, Blutdruckabfall, SA/AV-Blockieruungen (β_1 -Blockade) Verstärkung peripherer Durchblutungsstörungen; Kältegefühl (β_2 -Blockade)
- pulmonal Atemwegswiderstand \uparrow , evtl. Auslösung asthmat. Beschwerden (β_2 -Block.)
- zentralnervös Kopfschmerzen, Schwindel Müdigkeit, depressive Verstimmung, Schlafstörungen
- metabolisch Hypoglykämieneigung bei Diabetes mellitus direkte metabolische Effekte (Glykogenolyse (Mechanismus unklar)), Hemmung der sympathotonen Gegenregulation bei beginnender Hypoglykämie, Unterdrückung der Prodromi (Tachykardie, Schwitzen, Tremor)
- Potenzstörungen
- Rebound-Phänomen bei plötzlichem Absetzen

4.7 Relative Rezeptorselektivität von Adrenozeptor-Agonisten und -Antagoniste

Kapitel 5

RAAS/ Diuretika

5.1 Renin-Angiotensin-System

5.2 Renin-Inhibitoren

Aliskiren

seit 9/2007 zugelassen; Vorteile gegenüber ACE-Hemmern unklar (Reninaktivität↓)

Pharmakokinetik Bioverfügbarkeit: 2,6%; 50% metabolisiert (u.a. CYP3A4); Plasma-HWZ: 25-60h

Unerw. Wirkungen ähnlich ACE-Hemmer (weniger Husten, Angioödeme)

Einsatz essentielle Hypertonie (klinischer Stellenwert unklar; teuer!)

Kontraindikationen wie ACE-Hemmer (Schwangerschaft etc.)

5.3 ACE-Hemmer

	Plasma-HWZ	Bioverfügbarkeit	Elimination	Tageszieldosis (mg) bei Herzin- suff.	Hypertonie
Captopril	1,7 h	60%	renal	3×50	$23 \times 12,550$
Enalapril	11 h	40%	renal	1×20	$1-2 \times 5-10$
Lisinopril	12,5 h	25%	renal	1×20	$1 \times 5 - 10$
Quinapril	2 h	35%	v.a. renal	1×20	$1-2 \times 10$
Fosinopril	12,5 h	25%	biliär+renal	1×20	$1 \times 10-20$
Ramipril	15 h	44%	renal	1×10	$1 \times 2,5-5$
Cilazapril	15-20 h	30%	renal	1×5	$1 \times 2,5$
Perindopril	6 h	19%	renal	1×4	1×4
Benazepril	10 h	30%	renal	$2 \times 5\text{-}10$	$2 \times 5\text{-}10$
Trandolapril	16-24 h	50%	renal	1×4	1×4

Pharmakokinetik

- unterschiedl. Wirkdauer (langwirks. Formen mit 1 x tägl. Gabe bevorzugen)
- pro-drugs (außer Captopril und Lisinopril); Elimination renal (außer Fosinopril)

unerwünschte Wirkungen

- trockener Reizhusten (Dosis-unabhängig, durch Kininase II-Hemmung)
- Hypotonie (v.a. zu Beginn der Behandlung; einschleichend dosieren)
- Verschlechterung einer Nierenfunktionsstörung (Nierenfunktionskontrolle)
- Muskel-/Gelenk-/Kopfschmerzen, Schwindel, Geschmacksstörungen
- angioneurotisches Ödem (sehr selten)

Indikation

- Herzinsuffizienz, indiziert in allen Stadien der chron. Herzinsuffizienz (Senkung der Mortalität durch Studien belegt)
- Hypertonie
- Zustand nach Herzinfarkt
- diabetische Nephropathie

Kontraindikationen

- Nierenarterienstenose, Hyperkaliämie, Niereninsuffizienz
- Schwangerschaft, Angioödem in der Anamnese

Wechselwirkungen

- K⁺-sparenden Diuretika vermeiden (Hyperkaliämiegefahr)
- nicht-steroidale Antirheumatika (ACE-Hemmerwirkung)

5.4 AT_1 -Rezeptor-Antagonisten

Plasma-HWZ	Bioverfügb.	Elimination	antiypert. Dosis	
Losartan	2 bzw. 6-9 h	33%	v.a. biliär	$1 \ge 100 \ \mathrm{mg}$
Valsartan	6-9 h	23%	v.a. biliär	$12 \times 80160 \text{ mg}$
Eprosartan	5-9 h	13%	v.a. renal	$12 \times 200400 \text{ mg}$
Irbesartan	11-15 h	60 - 80%	v.a. biliär	$1 \ge 150\text{-}300 \text{ mg}$
Candesartan	6-9 h	14%	v.a. renal	$1 \times 8\text{-}16 \text{ mg}$
Olmesartan	10-15 h	26%	biliär + renal	$1 \times 10\text{-}40 \text{ mg}$
Telmisartan24 h	43%	v.a. biliär	$1 \times 20\text{-}80 \text{ mg}$	

Wirkmechanismus Kompetitiver Antagonismus am AT₁-Rezeptor, Wirkungen wie ACE-Hemmer aber: fehlende Beeinflussung des Abbaus von Kininen und Substanz P sowie Hemmung der Wirkung von ACE-unabhängig gebildetem Ang II

Einsatz 2. Wahl, wenn ACE-Hemmer nicht gegeben werden können; keine Vorteile bei Kombination mit ACE-Hemmern, eher mehr UEW

5.5 Klassen von Diuretika

Klasse Wirkort

Schleifendiuretika aufsteigender Ast der Henleschen Schleife

Benzothiadiazine/Thiazide frühdistaler Tubulus

K⁺-sparende Diuretika spätdistaler Tubulus, Sammelrohr Aldosteronantagonisten spätdistaler Tubulus, Sammelrohr

osmotische Diuretika

5.5.1 Tubuloglomeruläre Feedback-Mechanismen

Regulation durch den "juxta-glomerulären Apparat" Macula densa Zellen \rightarrow ermitteln NaCl Konzentration im Tubulus Mesangiale Zellen (extraglomerulär) \rightarrow Vermittlung des Feedback ?

Juxtaglomeruläre Zellen / Vas afferens-Reninfreisetzung / Tonusregulation

Regulation der GFR des Einzelnephrons (TGF sensu stricto) GFR \rightarrow NaCl⁻Aufnahme in MD-Zellen \rightarrow ATP/Adenosin-Bildung \rightarrow Vasokonstriktion d. Vas afferens

 $\begin{array}{ll} \textbf{Regulation der Reninfreisetzung ""uber MD} & \text{z.B. drohender NaCl/Volumen-Verlust} \rightarrow \text{NaCl-Aufnahme in MD-Zellen} \rightarrow \\ \text{PGE2} \rightarrow \text{Reninfreisetzung} \\ \end{array}$

5.6 Schleifendiuretika

Furosemid Piretamid
Torasemid Bumetamid

Wirkmechanismus reversible Hemmung des Na⁺ K⁺ 2Cl⁻-Cotransporters (NKCC2) im aufsteig. Schenkel der Henleschen Schleife,rascher Venen-dilatierender Effekt (humoral über die Niere vermittelt) Wirkung ist kurz und intensiv ("high ceiling")

- maximal 25% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb 1 h nach oraler Gabe, innerhalb von Minuten nach i.v.-Gabe
- Wirkdauer: 4-6 h nach oraler Gabe, 2-3 h nach i.v.-Gabe,
- Nierendurchblutung ↑

vermehrte Ausscheidung von $Na^+, Cl^-, K^+, Mg^{2+}, Ca^{2+}$ direkt und indirekt v.a. durch erhöhte Strömungsgeschwindigkeit im distalen Tubulus und im Sammelrohr

Pharmakokinetik

- gute Resorption nach oraler Gabe, hohe Plasmaeiweißbindung
- Bioverfügbarkeit 65-90%; Plasma-HWZ: 2-4 h
- Elimination: glomerulär filtriert, proximal tubulär sezerniert → Konzentration im Tubulus 20-50 x höher als im Blut, → selektive Wirkung auf NKCC2 (NKCC1 ubiquitär)

Unerwünschte Wirkungen

- \bullet Hämokonzentration, Hypovolämie, Hypotonie, \rightarrow Thromboembolieneigung
- Elektrolyt-Störungen, insb. Hypokaliämie
- Hyperurikämie
- Glucosetoleranz ↓ (Insulinsekretion ↓ durch Hypokaliämie ?)
- Hörstörungen (bei rascher i.v.-Gabe höherer Dosen)

Einsatz

- Dauertherapie Herzinsuffizienz/Hypertonie (wenn Thiazide nicht mehr wirksam)
- kardiale, renale oder hepatogene Ödeme
- akute Herzinsuffizienz (v.a. bei Lungenödem)
- Niereninsuffizienz (akut und chronisch)
- Hyperkalzämie
- forcierte Diurese bei Intoxikationen

Interaktionen bei gleichzeitiger Gabe von Aminoglykosiden: erhöhte Oto- und Nephrotoxizität

5.7 Thiazide

	Bioverfügbark.	HWZ	max. Tagesdosis
Hydrochlorthiazid	70%	6-8 h	$75~\mathrm{mg}$
Chlortalidon	64%	50 h	200 mg
Indapamid	93%	15-18 h	2.5 mg
Xipamid	>95 $%$	7 h	40 mg

 $\label{lem:wirkmechanismus} \begin{tabular}{ll} Wirkmechanismus & Hemmung des fast ausschließlich im frühdistalen Tubulus exprimierten Na^+/Cl^--Kotransportes (NCC) \\ Wirkung weniger stark aber länger als Schleifendiuretika \\ \end{tabular}$

- maximal 10% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb von 1-2 h nach oraler Gabe
- Wirkdauer: 8-12 h (Hydrochlorthiazid)
- GFR ↓

vermehrte Ausscheidung von Na^+, Cl^-, K^+, Mg^{2+} verminderte Ausscheidung von Ca^{2+}

Pharmakokinetik

• Bioverfügbarkeit: 70-100

• Plasma-HWZ: 7-50 h

• Elimination: unverändert renal (filtriert, proximal-tubulär sezerniert)

Unerwünschte Wirkungen bei niedriger Dosierung selten!

• Hämokonzentration, Hypovolämie

• Elektrolyt-Störungen, insb. Hypokaliämie

• Hyperurikämie (kompetitive Hemmung der Harnsäureausscheidung)

• Glucosetoleranz ↓ (Insulinsekretion ↓ durch Hypokaliämie ?)

• Hyperlipoproteinämie

 $\bullet \;$ Hyperkalzämie

Einsatz

- Herzinsuffizienz (insb. bei Flüssigkeitsretention)
- akute kardiale, renale oder hepatogene Ödeme
- Hypertonie (relativ niedrige Dosen)
 - Volumenverminderung
 - direkter relaxierender Effekt auf Widerstandsgefäße (Mechanismus ?)
- renaler Diabetes insipidus (Mechanismus?)
- Hyperkalziurie

Kontraindikationen Niereninsuffizienz (Kreatinin > 2-2,5 $\frac{mg}{dl}$), bei Hypokaliämieentwicklung: Kalium-reiche Kost oder Kombination mit Kalium-sparenden Diuretika (Triamteren 50 mg, Amilorid 5 mg; keine Kombination mit ACE-Hemmern!)

$5.8 ext{ K}^+$ -sparende Diuretika

Triamteren Amilorid

Wirkmechanismus Hemmung des epithelialen Na⁺-Kanals (ENaC)im spätdistalen Tubulus und im Sammelrohr schwacher diuretischer Effekt, lange Wirkung

- maximal 2-3% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb von 1-2 h nach oraler Gabe
- Wirkdauer:10 h (Triamteren), 20 h (Amilorid)

schwacher Effekt!

Leicht vermehrte Ausscheidung von Na^+, Cl^-, HCO_3^-

Leicht verminderte Ausscheidung von: K^+, Mg^{2+}

kaum Einfluß auf Ausscheidung von Ca^{2+}

Hemmung der Na⁺-Resorption \rightarrow lumennegatives transzelluläres Potential $\downarrow \rightarrow$ passive Sekretion von K⁺ \downarrow

Pharmakokinetik Resorption nach oraler Gabe: 80% (Triamteren), 40% (Amilorid), HWZ: 6-9 h (Amilorid); 2-3 h (Triamteren), hepatische Metabolisierung von Triamteren (akt. Metabolite), glomerulär filtriert, tubulär sezerniert

Unerwünschte Wirkungen relativ geringe therapeutische Breite Hyperkaliämie, Übelkeit, Erbrechen, Diarrhoe, Schwindel, Kopfschmerzen

Einsatz kardiale, renale oder hepatogene Ödeme (meist in Kombination mit Thiaziden (ähnliche Wirkdauer, gegenläufiger Effekt auf K⁺-Ausscheidung)

Kontraindikationen Niereninsuffizienz, Hyperkaliämie

Wechselwirkungen ACE-Hemmer (Hyperkaliämiegefahr)

5.9 Mineralokortikoid-Rezeptor-Antagonisten

Spironolacton Eplerenon

Wirkung Antagonismus am Mineralokortikoid-Rezeptor (Eplerenon ist selektiver!) protrahierte, schwache Wirkung

- maximal 2% des glomerulär filtrierten Volumens
- Wirkungseintritt: 1-2 Tage nach oraler Gabe; Wirkdauer: 5-7 Tage
- keine Wirkung ohne Aldosteron (z.B. kochsalzreiche Diät, M. Addison)
- leicht vermehrte Ausscheidung von $Na^+, Cl^-, Ca^{2+}, HCO_3^-$
- $\bullet\,$ leicht verminderte Ausscheidung von ${\rm K}^+$

Pharmakokinetik Gute Resorption nach oraler Gabe. Spironolacton: Metabolisierung zu Canrenon (aktiver Metabolit), renal ausgeschieden, HWZ: 16.5 h (Canrenon) Eplerenon: CYP3A4-abh. Metabolisation in inakt. Metabolite (Plasma-HWZ: 5h)

Unerwünschte Wirkungen

- Hyperkaliämie (v.a. bei Niereninsuffizienz)
- gastrointestinal Beschw.
- \bullet Spironolacton (nicht jedoch Eplerenon) besitzt antiandrogene und progestagene Effekte \to Männer: Gynäkomastie, Potenzstörungen Frauen: Menstruationsstörungen, Amenorrhoe

Einsatz

- primärer Hyperaldosteronismus
- Ödeme bei sekundärem Hyperaldosteronismus z.B. Leberzirrhose + Aszites (Plasmavol. ↓→ RAAS ↑, Aldosteronabbau ↓)
- Herzinsuffizienz: NYHA III-IV (RALES-Studie 1999), NYHA II (EMPHASIS-HF- Studie 2011)

Interaktionen Erhöhte Gefahr v. Hyperkaliämien b. gleichz. Gabe v. ACE-Hemmern, Max. Spironolactondosis in Kombin. mit ACE-Hemmern: 25 mg

Kontrainkdikationen Niereninsuffizienz, Hyperkaliämie

5.10 Arterielle Hypertonie

Definition und Klassifikation der Hypertonie (Joint National Committee VI, 1997) Blutdruckwerte bei 3 unabhäng. Messungen

	RR syst. (mmHg)		RR diast. (mmHg)	
Optimal	<120	und	< 80	
Normal	< 130	und	< 85	
Hochnormal	130-139	oder	85-89	
Hypertonie				
Stadium 1 (Grenzwerth.)	140-159	oder	90-99	
Stadium 2	160-179	oder	100-109	
Stadium 3	≥ 180	oder	110	

Prävalenz: 15-20% (Erwachsene); Komplikationen: KHK/Herzinfarkt, Schlaganfall, Herz-/Niereninsuffizienz, Augenschäden: Ätiologie: 90-95% idiopathisch; 5-10% sekundär (renal, endokrin, Aortenisthmusstenose etc.)

Therapie der Hypertonie 5.11

Ziel

Senkung des Blutdrucks auf < 140/90 mmHg (bei Diabetes mellitus oder Nierenerkrankung auf < 130/85 mmHg)

nicht-medikamentös

bei leichter Hypertonie; regelmäßige RR-Kontrolle über mehrere Monate

- regelmäßige körperliche Aktivität
- Gewichtsreduktion, ggf. Cholesterin-senkende Diät
- kochsalzarme Diät (< 6 g / Tag)
- Beschränkung des Alkoholkonsums (< 30 g / Tag), Rauchverzicht

medikamentös

Indikationen für medikamentöse Therapie abh. von kardiovask. Gesamtrisiko:

RR hochnormal (130-139 / 85-89 mmHg) bei hohem kardiovaskulärem Risiko (hypertensive Organschäden, symptomat. kardiovask. Erkrankungen und/oder Diabetes mellitus)

Stadium 1 (140-159 / 90-99 mmHg) wenn nicht-medikamentöse Therapie nach 6-12 Monaten nicht anschlägt oder hohes kardiovaskuläres Risiko besteht

Stadium 2 und 3 ($\geq 160 / \geq 100 \text{ mmHg}$)

Stufentherapie

- 1. Stufe Monotherapie (Responder-Rate: 45-50%)
 - Diuretika (Thiazide)
 - ACE-Hemmer (z.B. bei Herzinsuff. oder diabet. Nephropathie)
 - β -Blocker (v.a. bei KHK oder Herzinsuffizienz)
 - Ca²⁺-Antagonisten (z.B. bei KHK)
- 2. Stufe Zweierkombination (Responder-Rate: 70-80%)

bei nicht ausreichender Blutdrucksenkung durch Monotherapie

- Diuretikum + β -Blocker oder
- Diuretikum + ACE-Hemmer Ca²⁺-Antag. (Dihydropyridin) + β -Blocker
- Diuretikum + Ca²⁺-Antagonist Ca²⁺-Antagonist + ACE-Hemmer
- 3. Stufe Mehrfachkombination (Responder-Rate: 90-95%), indiziert bei schwerer Hypertonieform, die mit Zweierkombination nicht zu behandeln ist (Diuretikum obligat). Nutzung der in Stufe 1 und 2 eingesetzten antihypertensiven Pharmaka plus ggf. Reserveantihypertensiva (Dihydralazin, Minoxidil, Clonidin, α_1 -Antagonist u.a.)

Kapitel 6

Digitalisglykoside

6.1 Herzinsuffizienz

Ursachen

Koronare Herzkrankheit (KHK), langjährige Hypertonie, Kardiomyopathie, Herzklappenfehler, Myokarditis, Arrhythmien, Stoffwechselerkrankungen

Pathogenese und Klinik

Kompensierte Herzinsuffizienz klinisch kompensiert durch:

- Frank-Starling-Mechanismus
- neurohumorale Gegenregulation (Sympathikotonus[†], Aktivierung d. RAAS)
- kardiale Hypertrophie

 $\textbf{Dekompensierte Herzinsuffizienz} \quad \text{,} \textbf{Umkippen" des kompensierten Systems} \rightarrow \textbf{Circulus vitiosus}$

bei der Diagnosestellung Unterscheidung in

- \bullet HF-pEF (heart failure with preserved ejection fraction ${>}50\%)$
- HF-rEF (heart failure with reduced ejection fraction <40%)

Symptome

Dyspnoe, Müdigkeit, Flüssigkeitsretention

Klassifikation

(New York Heart Association):

NYHA I keine Symptome

NYHA II Beschwerden bei mittelschwerer bis schwerer Belastung NYHA III Beschwerden bei geringer alltäglicher Belastung

NYHA IV Beschwerden in Ruhe

Prognose

10% der Patienten im Stadium NYHA II und III sowie 50% der Patienten im Stadium NYHA IV sterben im ersten Jahr nach Diagnosestellung (Prognose korreliert mit Ausmaß der neurohumoralen Gegenregulation)

Zur Behandlung der chron. Herzinsuff. eingesetzte Pharmaka

- ACE-Hemmer, β -Blocker, Mineralokortikoid-Rezeptorantagonisten
- ggf. AT₁-Antag., Digitalisglykoside, Ivabradin, Hydralazin/ISDN
- Diuretika (symptomatsich)

6.2 Digitalisglykoside

natürliche Digitalisglykoside Digoxin Digitoxin halbsynthetische Digitalisglykoside $\beta\textsc{-Acetyldigoxin}$ Metildigoxin

Wirkmechanismus

Hemmung der plasmalemmalen Na⁺-K⁺-ATPase

- kardial: Akkumulation von Na $^+$ in der Zelle \to Na $^+$ /Ca $^{2+}$ -Antiport (NCX1) \downarrow
 - Steigerung der intrazellulären Ca²⁺-Konzentration
 - positiv inotrop, positiv bathmotrop
- zentral: Erregung zentraler Vaguskerne, gesteigerte Empfindlichkeit der Barorezeptoren \rightarrow Parasympathikotonus \uparrow , Sympathikotonus \downarrow (bereits bei niedriger Dosierung) \rightarrow negativ chronotrop, negativ dromotrop
- glatte Gefäßmuskulatur: Tonisierung bei Gesunden, bei Herzinsuffizienten als Nettoeffekt allerdings Abnahme des Gefäßtonus durch Normalisierung des erhöhten Sympathikotonus

Pharmokokinetik

	Digoxin	Digitoxin
enterale Resorption	50-80%	98%
Plasma-Eiweiß-Bindung	30-40%	>95%
Metabolisation	30%	70%
Elimination	überwiegend unverändert renal	überwieg. hepatisch metabol. (entero-
		hep. Kreisl.)
Plasma-HWZ	35-50 h	5-8 d

 β -Acetyldigoxin und Metildigoxin werden sehr rasch (teils bereits in der Darmmukosa) zu Digoxin metabolisiert (Resorptionsquote 80-90%)

Unerwünschte Wirkungen

(geringe therapeutische Breite!)

- kardial (häufig): Bradykardie, AV-Überleitungsstörungen, ventrikuläre Extrasystolen, Kammerflimmern
- gastrointestinal (häufig): Inappetenz, Übelkeit, Erbrechen (durch Chemorezeptor-Aktivierung in der Area postrema der M. oblongata); selten: Diarrhoe
- ZNS: Verwirrung, Agitiertheit, Müdigkeit, Schlaflosigkeit, Depressionen, Psychosen, Sehstörungen (Halo-Phänomene, verändertes Farbensehen (Gelb-Grün)

Kontraindikationen

- Hypokaliämie, Hyperkaliämie, Hyperkalziämie
- Bradykardie, AV-Block 2./3. Grades

Interaktionen / Wechselwirkungen

- Hyperkaliämie: Wirkung ↓
- Hypokaliämie und Hyperkalziämie: Wirkung ↑
- Resorption \downarrow bei gleichzeitiger Gabe von Anionenaustauscher

Vorgehen bei Digitalisierung

1 11111111	lationsge	іані.	. germge	LHEIZ	inentisci	16: 13	nene:
	cours and	· COLLE	00-	OII C	~p = 0.010 01		TOTO.

, , ,	Digoxin	Digitoxin
Abklingquote (tägl. prozentualer	20%	7%
Wirkverlust)		
Erhaltungsdosis pro Tag	0.15-0.3 mg	0,07-0,1 mg
therapeut. Plasmakonzentration	0.5-0.8 ng/ml	10-20 ng/ml

langsame Digitalisierung tägl. 1x Erhaltungsdosis, Vollwirkspiegel erreicht: nach 7-8 Tagen (Digoxin), bzw. 3-4 Wochen (Digitoxin)

mittelschnelle Digitalisierung Digoxin: z.B. 2 Tage 2 x Erhaltungsdosis/d, dann 1 x tägl. 1x Erhaltungsdosis Digitoxin: z.B. 3 Tage 3 x Erhaltungsdosis/d, dann 1 x tägl. 1x Erhaltungsdosis

Vergiftung

Zeichen Herzrhythmusstörungen (AV-Block, Bradykardie, ventrikuläre Rhythmusstörung), gastrointestinale, neurotoxische Symptome (Übelkeit, Erbrechen, Durchfall, Verwirrtheit, Farbensehen, Kopfschmerzen)

Therapie leichte Intoxikation (chron.): Absetzen über mehrere Tage schwere Intoxikation: Magenspülung, Aktivkohle, Digitalis-Antikörper (Fab- Fragmente), ggf. K⁺-Spiegel auf hochnormale Werte anheben, ansonsten symptomatische Behandlung

Stellenwert der Digitalisglykoside

- DIG-Studie 1997: Senkung der Hospitalisierungsrate, kein Effekt auf Mortalität;
- DIG- Studie 2003:
 - unter niedriger Dosierung (0,5-0,8 ng/ml Digoxin): Mortalitätssenkung
 - unter mittlerer Dosierung (0,9-1,1 ng/ml Digoxin): kein Effekt auf Mortalität
 - unter höherer Dosierung (¿1,2 ng/ml Digoxin): Erhöhung der Mortalität
- bei Niereninsuffizienz Digoxin-Dosisreduktion oder Umsetzen auf Digitoxin
- indiziert (laut Therapierichtlinie der AKDAE, 2007) bei :
 - NYHA I + II u. tachysystolischem Vorhofflimmern (niedrige Zielserumspiegel)
 - NYHA II im Sinusrhythmus nach Besserung von schwerer Symptomatik
 - Herzinsuffizienz NYHA III + IV bei persistierenden Symptomen unter ACE Hemmer- und β -Blocker Gabe (niedrige Zielserumspiegel)

Therapie der chron. Herzinsuffizienz

nicht medikamentös

- Reduktion d. körperl. Aktivität bei hochgradiger und dekomp. Herzinsuffizienz
- Reduktion des Kochsalzkonsum ($< 6\frac{g}{d}$), Flüssigkeitsreduktion (1-2 $\frac{l}{d}$)
- ggf. Gewichtsreduktion, Nikotin- und Alkoholkarenz

medikamentös				
	NYHA I	NYHA II	NYHA III	NYHA IV
ACE-Hemmer*	+	+	+	+
β_1 -Blocker	=	+	+	+
Mineralkortikoidrezept	tor-	+	+	+
Antagonist (MRA)**				
Therapien mit weni-				
ger eindeutigem Nut-				
zen:				
Digitalisglykoside***	-	(+)	(+)	(+)
Ivabradin****	-	(+)	(+)	(+)
Hydralazin-	_	(+)	(+)	(+)
ISDN*****				. ,

Diuretika in allen Stadien zur Herstellung der Euvolämie bei Luftnot/Ödemen

Kapitel 7

Antiarrhythmika

Ströme, die an der Generierung von Ruhepotential und Aktionspotential beteiligt sind:

- Phase 0: Aktivierung eines schnellen Na⁺-Einwärtsstroms (I_{Na}), wenn Membranpotential einen bestimmten Schwellenwert erreicht (ca. -60 mV)
- Phase 2: Ca^{2+} -Einwärtsstroms (v.a. L-Typ Kanäle; I_{Ca-L}), Ca^{2+} -Einstrom stellt Ca^{2+} für elektromechan. Kopplung zur Verfügung; K^+ -Leitfähigkeit nimmt langsam zu
- Phase 3: $\operatorname{Ca^{2+}}$ -Kanäle inaktivieren \to Repolarisation; K⁺-Auswärtsstrom (I_K) über spannungsabhäng. K⁺-Kanäle mit langsamer Aktivierungskinetik \to Repolarisation
- Phase 4 (diastolische Vordepolarisation) langsame Depol., die Schrittmacherpotential erzeugt; langsamer Na⁺-Einwärtsstroms bis zur Schwelle über unspezif. Kationenkanal (I_f ; Hyperpolarisations-aktiv. Kanal), gegen Ende: langsamer Ca²⁺- Einwärtsstroms (v.a. L-Typ Kanäle, aber auch T-Typ); führt zur Depol. und Fortleitung \rightarrow Phase 0; K⁺-Leitfähigkeit \downarrow . Phase 0 (Depolarisation) überw. durch Ca²⁺-Einwärtsstrom getragen (T-/L-Typ); Phase 3 (Repolarisation) Ca²⁺- Einwärtsstrom \downarrow , K⁺-Auswärtsstrom \uparrow .

7.1 Mechanismen der Arrhythmieenstehung

abnorme Schrittmacheraktivität

Sinusknoten, AV-Knoten (Phase 4); - Arbeitsmyokard bei geschädigten Zellen \rightarrow meist durch Na⁺/Ca²⁺-Ionen getragene Depol. \rightarrow ektope Erregungsbildung

Nachdepolarisation

frühe Nachdepolarisation (EAD) Störung d. Repol.; K⁺-Strom (I_{Kr}), Verläng. d. Ca²⁺/Na⁺-Einstroms \rightarrow QT-Zeit $\uparrow \rightarrow$ Gefahr d. Entwicklung v. torsade de pointes Häufig d. Pharmaka: Klasse III Antiarrhythmika, Erythromycin, Terfenadin, Clarithromycin, Cisaprid*, Astemizol*, Sertindol* u.a. *vom Markt genommen

späte Nachdepolarisation durch Ca²⁺-Überladung der Zelle, z.B. durch Katecholamine, Digitalisglykoside, Ischämie

Blockade der Fortleitung

z.B. AV-Block

Reentry

normalerweise endet Impuls mit der Erregung des Arbeitsmyokards. Voraussetzung für "Reentry"-Phänomen: Kreisweg durch Leitungshindernis, unidirektionaler Block; Leitungszeit lang genug, daß kreisende Erregung auf nicht-refraktäres Gewebe trifft.

7.2 Antiarrhythmika-Klassen (Vaughan-Williams)

7.2.1 Klasse I-Antiarrhythmika

v.a. Blockade des schnellen Na⁺-Einstroms in Phase $0 \to \text{Hemmung der Aktionspotential-Weiterleitung Erholungszeit der Na⁺-Kanäle <math>\uparrow \to \text{Refraktärzeit} \uparrow$

Klasse I Antiarrhythmika binden bevorzugt an offenen und/oder inaktiven Zustand des Na $^+$ -Kanals \rightarrow je häufiger aktiviert, desto größer der Grad der Blockade Dissoziation vom ruhenden Kanal

Klasse Ia

Chinidin Procainamid Disopyramid Ajmalin

Wirkmechanismus mittellange Blockade von Na⁺-Kanälen (I_{Na}) im offenen Zustand \rightarrow Depolarisationsgeschwindigkeit $\downarrow \rightarrow$ Anstiegssteilheit des Aktionspotentials (Phase 0/1) $\downarrow \rightarrow$ Leitungsgeschwindigkeit, Automatie, Erregbarkeit \downarrow (auch reguläre Impulse werden beeinflusst) \rightarrow möglicher proarrhythmogener Effekt)

- Blockade von verschiedenen K⁺-Kanälen \rightarrow Repolarisation \downarrow \rightarrow Aktionspotentialdauer / Refraktärzeit \uparrow
- ullet anticholinerge Wirkung (v.a. Chinidin, Disopyramid; ggf. paradoxe Wirkung bei niedriger Dosierung o Tachykardie

Pharmakokinetik gute Bioverfügbarkeit; Plasma-HWZ: 4-7 h (Chinidin lang)

Einsatz Chinidin: Reservemittel zur Rhythmisierung bei Vorhofflimmern. Disopyramid, Procainamid: Reservemittel bei komplexen ventrikulären/ supraventrikulären Herzrhythmusstörungen. Ajmalin: Reservemittel zur Akuttherapie lebensbedrohlicher ventrikulärer Herzrhythmusstörungen.

unerwünschte Wirkungen relativ häufig (v.a. Chinidin) kardial: negativ ino-, dromotrop; potentiell arrhythmogen gastrointestinale Störungen, Mundtrockenheit (anticholinerge Wirkung) zentralnervöse Störungen (Cinchonismus): Kopfschmerzen, Schwindel, Sehstörungen, Delirien, Psychose; allergische Reaktionen

Interaktionen v.a. Chinidin: Erhöht freie Plasmakonzentration von Digitalisglykosiden; Hemmung von CYP2D6 \rightarrow Abbau einiger β -Blocker, Antidepressiva, Neuroleptika \downarrow

Klasse Ib

Lidocain Phenytoin

Wirkmechanismus kurzfristige Bindung an Na⁺-Kanäle (I_{Na}) im inaktivierten Zustand; Dissoziation und Assoziation im Rhythmus des Herzschlages \rightarrow effektive Blockade bei frühzeitiger Erregung \rightarrow binden v.a. im depolarisierten Zustand (z.B. Ischämie) \rightarrow Einsatz bei Ischämie-bedingten Arrhythmien; Frequenzfiltereffekt (je tachykarder desto wirksamer); (reguläre Impulse werden kaum beeinflusst)

Pharmakokinetik Lidocain: hoher first-pass-Effekt (nur i.v.-/i.m.-Gabe)

Plasma-HWZ ca. 1 h (meist nur akute Therapie); Phenytoin: gute Resorption n.oraler Gabe, Plasma-HWZ: 10-20/15-25 h)

Einsatz ventrikuläre Arrhythmien; z.B.: nach Herzinfarkt [akut: Lidocain(i.v.)]; durch Digitalis-Intoxikation (Phenytoin)

unerwünschte Wirkungen kardial: weniger stark ausgeprägt als bei Klasse Ia/c; schwach negativ inotrop und chronotrop, schwach arrhythmogen. zentralnervöse Störungen (bei Überdosierung): Unruhe, Tremor, Krämpfe, Koma

Klasse Ic

Flecainid Propafenon

Wirkmechanismus langfristige Bindung an Na⁺-Kanäle (langsame Dissoziation); Blockade über mehrere Herzschläge \rightarrow verringerte Erregbarkeit, Leitungsgeschwindigkeit \downarrow ; Beeinflussung regulärer Impulse (proarrhythmogener Effekt); zusätzlich: β -Adrenozeptor-Blockade durch Propafenon

unerw. Wirkungen negativ ino-/dromo-/chronotrop; arrhythmogen (CAST-Studie)

Einsatz Reservemittel b. ventrikuläre/supraventrikulären Arrhythmien; obsolet

7.2.2 Klasse II-Antiarrhythmika

β -Adrenozeptor-Blocker

Supraventrikuläre Tachykardien (Sinustachykardie, paroxysmale Tachykardie); Vorhofflimmer, -flatter; - ventrikuläre Arrhythmien (durch Belastung oder Aufregung); cave: Kombination mit Verapamil, Diltiazem

7.2.3 Klasse III-Antiarrhythmika

Amiodaron Sotalol Dronedaron

Wirkmechanismus Blockade verschiedener K⁺-Kanäle \rightarrow Aktionspotential verlängert \rightarrow Refraktärzeit verlängert; β -Adrenozeptorblockade (v.a. Sotalol) Amiodaron: zusätzlich leichte Blockade von Na⁺- und Ca²⁺-Kanälen

Pharmakokinetik Sotalol: 100% bioverfügbar, Plasma-HWZ 7-18 h Amiodaron: 22-86% bioverfügbar, Plasma-HWZ 20-100 Tage!; hohe Plasmaeiweißbindung (96%), lipophil; Anreicherung im Gewebe, Wirkungseintritt nach 4-10 Tagen

Einsatz therapieresistente supraventrikuläre und ventrikuläre Arrhythmien, Rezidivprophylaxe supraventr. Tachykardien; Vorhofflimmern, -flattern; anhalt. Kammertachykardie (Amiodaron auch bei ventrikular vorgeschädigten Pat.)

unerwünschte Wirkungen Long-QT-Syndrom, negativ inotrop (v.a. Sotalol), Sinusbradykardie (Sotalol); Amiodaron: gelbbraune Ablagerungen an der Vorderseite der Hornhaut, Schilddrüsenfunktionsstörung, phototoxische Hautreaktionen, Neuropathien, Lungeninfiltrate Dronedaron: jodfreies Amiodaron-Derivat (→ kein Einfluss auf Schilddrüsen-funkt.), hepatotoxisch; pharmadynamisch wie Amiodaron, aber weniger wirksam NICHT bei Herzinsuffizienz, permanentem VHF, AV-Block °II-III, Bradykardie

7.2.4 Klasse IV-Antiarrhythmika

Verapamil Diltiazem

Wirkmechanismus Ca^{2+} -Kanal-Blockade (L-Typ) \rightarrow Depolarisationsgeschwindigkeit in spontan-depolarisierenden Zellen $\downarrow \rightarrow z.B.$ AV-Überleitung $\downarrow \rightarrow$ pathol., Ca^{2+} -Kanal-vermittelte Depolarisationen $\downarrow \rightarrow$ Nachdepolarisationen \downarrow

Einsatz paroxysmale, supraventrikuläre Tachykardien; Vorhofflimmern, -flattern

unerwünschte Wirkungen Flush, Hitzegefühl, Obstipation; allergische Reaktion, Schwindel, Benommenheit; Bradykardie / AV-Blockierung cave: Kombination mit β -Blockern

7.2.5 weitere als Antiarrhythmika eingesetzte Pharmaka

Digitalisglykoside

(supraventrikuläre Tachykardien, Vorhofflimmern/flattern)

Atropin

Einsatz: Sinusbradykardien

Adenosin

Wirkung über Adenosin A1 Rezeptoren im Vorhof, Sinus- und AV-Knoten: Aktivierung von K^+ -Kanälen, Hemmung von Ca^{2+} -Kanälen \rightarrow Hyperpolarisation, negativ dromotrop, chronotrop

Pharmakokinetik sehr schnelle Inaktivierung (Aufnahme und Desaminierung in Erythrozyten); Plasma-HWZ: Sekunden $! \rightarrow$ Bolusinjektion

Einsatz Akutbehandlung supraventrikuläre Tachykardien

Unerw. Wirkungen AV-Block, Flush, Dyspnoe, Brustschmerzen, Übelkeit

7.2.6 weitere Kardiaka mit Wirkung auf kardiale Kanäle

Ivabradin

Blocker des atrialen Schrittmacherkanals (If; HCN2/HCN4)

Wirkung negativ chronotrop; kein Effekt auf Dromotropie und Inotropie

Einsatz - chron. stabile Angina pectoris in Komb. mit β -Blockern oder wenn Blocker nicht vertragen werden; bei Pat. mit Herzinsuff. + Tachykardie (SHIFT-Studie 2010) bzw. + VHF

7.3 Relaxantien glatter Muskulatur

7.3.1 Regulation des Tonus der glatten Muskulatur

Gefäße, Bronchien, Uterus, Magen-Darm-Trakt, Ableitende Harnwege

Regulation über Rezeptoren

Gefäß AT_1 -Blocker, α_1 -Blocker

Bronchien Parasympatholytika, β_2 -Agonisten

Uterus Oxytocin
rezeptor-Antagonisten, Prostaglandine, β_2 -

Agonisten

M.-D.-Trakt Parasympatholytika, dir./indir. Parasympathomimetika

Prokinetika (indirekt), Opiate/Opioide (indirekt)

7.3.2 NO-Donatoren

Natriummnitroprussid

Organische Nitrate

Glyceroltrinitrat Isosorbiddinitrat (ISDN) Isosorbidmononitrat (ISMN) Molsidomin

Wirkmechanismus

Toleranzentwicklung bei organischen Nitraten

- verminderte Wirkung nach wiederholter Gabe durch Erschöpfung des zellulären Metabolismus zu NO (Verfügbarkeit von SH-Gruppen ↓ 4)
- vermehrte Inaktivierung von NO zu $ONOO^-$ durch vermehrte Bildung von $O_2^- \to Intervalltherapie$ (mind. 8 h Pause / Tag)

Kardiovaskuläre Effekte von NO-Donatoren

- in the rapeutischen Dosen: Dilatation v.a. großer venöser Gefäße (Natrium-nitroprussid auch arterielle Gefäße) Vorlast $\downarrow \rightarrow$ kard. Füllungsdruck \downarrow ,
 - Wandspannung \downarrow myokardialer O_2 -Verbrauch* \downarrow
 - Abnahme der extravasalen Komponente des Koronarwiderstands → koronarer Perfusionsdruck \uparrow → Innenschichtdurchblutung \uparrow
 - Kollateraldurchblutung ↑
- v.a. unter Natriumnitroprussid und auch Molsidomin Nachlastsenkung
- direkte Koronardilatation nur bei vasospastischer Angina relevant
- Bedeutung der Thrombozytenfunktionshemmung durch NO-induzierte cGMP Bildung in Thrombozyten unklar
- * Hauptdeterminanten d. O_2 -Verbrauchs: Wandspannung (Vorlast, Nachlast), Herzfrequenz, Kontraktiliät, Myokardmasse

Pharmokokinetik

Glyceroltrinitrat

- oraler Gabe: Extrem hoher first-pass-Effekt
- sublinguale Gabe: max. Plasmakonzentration nach 4 min Plasma-HWZ: 1-3 min, Wirkdauer: 30 min
- auch transdermale Gabe (Nitratpflaster); selten i.v. (Perfusor)

ISDN / ISMN

- gute Resorption nach oraler Gabe, rasche Metabol. von ISDN zu ISMN,
- $\bullet\,$ Plasma-HWZ: ISDN 50 min, ISMN 5 h; Wirkbeginn nach oraler Gabe: 10-30 min (ISDN schneller als ISMN); Wirkdauer: 4-6 h

Natriumnitroprussid

- ullet instabil o nur i.v.-Gabe, Zerfall unter CN-Freisetzung
- Antidot: Natriumthiosulfat (Thiosulfat $(S_2O_3^{2-})+CN^-\to \text{Sulfit }(SO_3^{2-})+SCN^-$)

Molsidomin

- gute Resorption nach oral. Gabe
- hepatisch zu SIN1 metabolisiert (pro-drug), langsam. Wirkbeginn
- Plasma-HWZ: 1-2 h

Indikationen

- KHK Anfall: Glyceroltrinitrat (s.l.), evtl. ISDN (s.l.) Prophylaxe: ISDN, ISMN, Molsidomin
- therapieresistente Hypertonie (Natriumnitroprussid i.v.)

unerwünschte Wirkungen

- vasomotorische Kopfschmerzen (Verschwinden bei Dauertherapie)
- orthostatische Dysregulation (bei hohen Dosen), Reflextachykardie
- Flush, Schwindel

Kontraindikationen Kreislaufschock, symptomat. Hypotonie

Interaktionen PDE5-Hemmer

7.4 Ca²⁺-Kanalblocker

7.4.1 spannungsabhängige Ca²⁺-Kanäle

Current L-Type(long sting; high voltage activating, high conductance, inactivation)	α_1 -subunit $Ca_v 1.1 \ (\alpha_{1S})$	Localization Skeletal muscle (t-tub.)	Function/Modulation Excitation-contion- coupling (PKA ↑)	Blocker Dihydropyridines, Phenylalkylami- nes, Benzothiazepi- nes (wirksam v.a. bei $Ca_v1,2a$ und $Ca_v1,2b$)
	$Ca_v 1.2a \ (\alpha_{1C-a})$	Cardiomyocyte Smooth muscle		· , ,
	$Ca_v 1.2b \ (\alpha_{1C-b})$ $Ca_v 1.2c \ (\alpha_{1C-c})$	Neurons Neurons	Hormone release, synaptic integration	
	$Ca_v 1.3 \; (\alpha_{1D})$	neuroendocrine	-	
	$Ca_v 1.4 \; (\alpha_{1F})$	Retina	Transmitter release	
P/Q-Type (Purkinje; mod. Voltage activ., med. Conduct., very slow inactiv.)	$Ca_v 2.1 \; (\alpha_{1A})$	Nerve terminals and dendrites	Neurotransmitter release; dendritic transients $(G\beta\gamma \downarrow)$	ω -Agatoxin IVA
N-Type (neuronal; high voltage activ., med. Conduct., med. Inactiv.)	$Ca_v 2.2(\alpha_{1B})$	Nerve terminals and dendrites	Neurotransmitter release; dendritic Ca^{2+} transients $(G\beta\gamma\downarrow)$	ω -Conotoxin GVIA
R-Type	$Ca_v 2.3(\alpha_{1E})$	Neuronal cell bodies and dendrites	Repetitive firing $(G\beta\gamma)$	SNX-482
T-Type(transient; low volt. Activ., small cond., fast inact.)	$Ca_v3.1(\alpha_{1G})$	Neuronal cell bo- dies and dendrites; cardiomyocytes $(Ca_v 3.1/3.2)$	Pacemaking, repetitive firing	Mibefradil
	$Ca_v 3.2(\alpha_{1H})$ $Ca_v 3.3(\alpha_{1I})$			

Dihydropyridine

Nifedipin Amlodipin Nitrendipin Nimodipin u.a.

- binden von extrazellulär v.a. an den inaktivierten Kanal und stabilisieren den inaktivierten Zustand, der v.a. in Zellen der glatten Muskulatur häufig auftritt
- die im glatten Gefässmuskel vorherrschende Splice-Variante α_{1C-b} zeigt eine höhere Sensitivität gegenüber Dihydropyridinen als die kardiale Variante α_{1C-a}
- Wirkung: Glatter Gefäßmuskel > Herz

Phenylalkylamine

Verapamil Gallopamil

binden an offenen Zustand des Kanals, Wirkung frequenzabhängig, blockieren Pore von innen, gute Wirkung am Herzen (Myokard und Reizleitungssystem) Wirkung: Glatter Gefäßmuskel = Herz

Benzothiazepine

Diltiazem

genauer Blockademechanismus ungeklärt. Die Gewebeempfindlichkeit entspricht weitgehend der der Phenylalkylamine

Wirkmechanismus Hemmung spannungs-abhängiger Ca^2 +-Kanäle (L-Typ)

- Herz: $[Ca^2+]_i\downarrow$? negativ inotrop, Ca^2+ -Einstrom in diastolisch depolaris. Zellen $\downarrow \rightarrow$ negativ chronotrop und dromotrop $\rightarrow O_2$ -Verbrauch \downarrow ; Verapamil \geq Diltiazem > Nifedipin
- glatte Gefäßmuskulatur: $[Ca^2+]_i\downarrow \to$ generalisierte arterielle Dilatation kein oder geringer Effekt auf Venen; Nachlastsenkung, spasmolyt. Wirkung auf Koronarien, bessere Kollateraldurchblutung (cave: Steal Effekt); Nifedipin \geq Diltiazem = Verapamil

kardiovaskuläre Effekte

	Dihydropyridine	Phenylalkylamine	Benzothiazepine
periph. Art. Widerstand	\downarrow	↓	↓
Blutdruck	\downarrow	↓	↓
Herzfrequenz	\uparrow	↓	↓
Herzkontraktionskraft	-/(↑)	(\downarrow)	(\downarrow)
AV-Überleitung	- /(↑)	\downarrow	(\downarrow)

Indikationen KHK (2. Wahl), Hypertonie (v.a. Dihydropyridine), paroxysm. Supraventrik. Arrhythmien (Phenylalkylamine, Benzothiazepine)

Unerwünschte Wirkungen alle Gruppen: Flush, Hitzegefühl, allerg. Reaktion, Schwindel, Benommenheit; v.a. Dihydropyridine: Reflextachykardie, Knöchelödeme; Verapamil: Obstipation Diltiazem, Verapamil: Bradykard., AV-Block., Inotropie ↓

Kontraindikationen Herzinsuff. (NYHA III/IV), akut. M-Infarkt, AV-Block II./III. Grades, Sick-Sinus-Syndrome (Verapamil, Diltiazem); Schwangerschaft, Stillzeit Keine gleichzeitige Gabe von Diltiazem/Verapamil und β -Blockern!

7.5 Koronare Herzkrankheit (KHK)

7.5.1 Pathogenese und Klinik

Stabile Angina pectoris

Reversible Beschwerden z.B. nach Belastung, meist atherosklerot. Verengung epikardialer Koronarien

Akutes Koronarsyndrom

Beschwerden auch in Ruhe, Infarktrisiko! Meist Ruptur atherosklerot. Plaques \rightarrow Thrombozytenadhäsion und -aggregation.

Instabile Angina pectoris

Keine Nekrosezeichen (EKG, Labor)

Nicht ST-Hebungsinfarkt

Keine ST-Streckenhebung, pos. Nekrosemarker(Troponin)

ST-Hebungsinfarkt

ST-Streckenhebung + pos. Nekrosemarker

Sonderformen

z.B. Prinzmetal-Angina: Spasmen von Koronarien

7.5.2 Symptomatische Behandlung der Angina pectoris (A.p.)

- β -Rezeptorenblocker mit β 1-Selektivität (meist 1. Wahl) negativ dromotrop, negativ chronotrop, negativ inotrop \rightarrow O_2 -Verbrauch \downarrow
- Organische Nitrate / Molsidomin (zusätzlich oder bei KI von β -Blocker) Dilatation v.a. venöser Gefäße $\rightarrow ... \rightarrow O_2$ -Verbrauch \downarrow Kollateraldurchblutung \uparrow
- Ca²⁺-Antagonisten (selten Monotherapie, nicht bei u. 4 Wochen nach Infarkt!) Dihidropyridine (fast ausnahmslos retardierte Formulierungen): Gefahr d. Reflextachykardie, sinnvoll Komb. mit β-Blocker
- Verapamil/Diltiazem: nicht bei Bradykardie, AV-Überleitungsstörung, β-Blocker

Th. von Risikofaktoren (v.a. Diab. mell., Hypertonie, Hyperlipidämie, Rauchen)

Symptomatische Therapie der A.p. je nach Begleitarkrankungen

Hypertonie β -Blocker, Ca²⁺-Antagonisten

Herzinsuffizienz β -Blocker, Nitrate (zusätzl. zu ACE-Hemmern)

Diabetes mellitus Nitrate, (Ca²⁺-Antagonisten)

Asthma bronchiale Nitrate, Ca^{2+} -Antagonisten; [cave: β -Blocker]

supraventr. Tachykardie β -Blocker, Ca²⁺-Antagonisten periph.-art. Verschl.-Krankh. Nitrate; [cave: β -Blocker]

Prognose verbessernde Pharmakotherapie (Mortalitätssenkung)

ASS Thrombozytenaggregationshemmung, ↓Rate z.B. von Rein-

farkten

Statine \times \progression atheromatöser Plaques (Koronarsklerose)

 β -Rez.-Blocker bei Postinfarktpatienten \downarrow ventr. Arrhythmien, \downarrow Reinfarkte

7.5.3 Therapie des akuten Angina-pectois Anfall

Mittel d. Wahl: Glyceroltrinitrat als Zerbeißkapseln oder sublingual als Spray (Wirkeintritt binnen weniger Minuten), ggf. Wdhlg. (RR-Kontrolle!), Isosorbiddinitrat p.o. oder sublingual als Spray (Wirkeintritt langsamer)

7.6 K⁺-Kanalöffner

ATP-abhängiger K⁺-Kanal

Aktivierung des Kanals in der glatten Gefäßmuskul. (Kir6.1/SUR2B) d. K⁺-Kanalöffner (z.B. Cromakalim) \rightarrow Relaxation v.a. arterieller Gefäße \rightarrow Gefäßwiderstand

7.7 Phosphodiesterase(PDE)-Hemmer

Isoform	Substrat	Expression	Regulation	Hemmer
PDE 1	cAMP	glatter Muskel, Ge-	$Ca^{2+}/CaM\uparrow$	
		hirn		
PDE 2	cAMP/cGMP	Thrombozyten	$cGMP\uparrow$	
PDE 3	cAMP	glatter Muskel, Herz	$\mathrm{cGMP}\!\!\downarrow$	Amrinon, Milrinon
		u.a.		
PDE 4	cAMP	Bronchien, Immunz.,	Roflumilast, Cilomilast	
		Gehirn		
PDE 5	cGMP	glatte Muskulatur	Sildenafil, Vardenafil	
PDE 6	cGMP	Retina		

7.7.1 Unselektive PDE-Hemmer

Methylxanthine

Theophyllin Coffein

Wirkmechanismus

- unselektive Hemmung von PDE (halbmax. Hemmkonz. für PDE: 400-700 μ M)
- Antagonismus an Adenosin (A_1/A_2) -Rezeptoren $(K_D: 2-10 \,\mu\text{M}) \to \text{Vermittlung z.B.}$ der psychostimulatorischen Effekte

Wirkung bei Asthma / COPD: Bronchodilatation, Anti-Inflammation (PDE4)

Pharmakokinetik

- gute Bioverfügbarkeit nach oraler Gabe
- Wirkbeginn: 5-15 Minuten, Wirkmaximum: 30 Minuten, Wirkdauer: 6-8 h
- nahezu vollständige hepatische Metabolisierung

sehr stark schwankende individuelle Plasma-Halbwertszeiten

Clearance †: Kinder, Raucher, versch. Pharmaka (Enzyminduktion; CYP1A2)

Clearance ↓: ält. Patient., Alkohol, Koffein, versch. Pharmaka (Enzymhemm.)

unerwünschte Wirkungen

PDE-Hemmung

(geringe therapeutische Breite) $A_{1/2}$ Antagonismus

Übelkeit, Erbrechen, Kopfschmerzer Unruhe, Schlafstörungen, Diurese, schwelle \downarrow

Einsatz (vorzugsweise p.o.; i.v.) Prophylaxe und Soforttherapie des Asthmaanfalls, Status asthmaticus

Kontraindikationen KHK, Tachyarrhythmie, Hyperthyreose etc.

7.7.2 Selektive PDE-Hemmer

PDE 3-Hemmer

Amrinon Milrinon

Einsatz stark eingeschränkt wegen unerwünschter Wirkungen (Arrhythmien, Progredienz einer linksventrikulären Dysfunktion u.a.) Evtl. Kurzzeittherapie bei schwerer Herzinsuffizienz, die gegenüber anderen Pharmaka refraktär ist

PDE 5-Hemmer

Sildenafil Vardenafil Tadalafil

Wirkung v.a. auf PDE 5 der glatten Gefäßmuskulatur \rightarrow Verstärkung natürlicher NO-relaxierender Effekte Einsatz: Pulmonale Hypertonie, Erektile Dysfunktion

Wirkung nur bei intakter NO-Freistzung. Im Bereich des Corpus cavernosum NO-Freisetzung aus nitrergen (NANC) parasympathischen Neuronen, daneben Endothel-vermittelt nach Aktivierung endothelialer M3-Rezeptoren.

Pharmakokinetik Bioverfügbarkeit 40%, Max. Plasmaspiegel 1 h, Plasma-HWZ: 3-5 h (Tadalafil: 18 h), Hepat. Metabolisierung

Unerw. Wirkungen RR ↓, Kopfschmerzen, Schwindel, Flush, Störungen des Blau/Grün-Sehens (PDE 6)

Wechselwirkungen NO-Donatoren $\to RR \downarrow, \to Reflextachykardie$ gleichzeitige Gabe kontrainidiziert, Gefahr v.a. bei kardial vorgeschädigten Patienten!

Kapitel 8

Antidiabetica

8.1 Diabetes mellitus

Nüchtern-Blutglukose (mg/dl) 2 h nach oraler Glukosebelastung (75g)

(mg/dl)

Normal < 110 < 140

Pathol. Glukosetoleranz 110-126 140-200 Diabetes ≥ 126 ≥ 200

8.1.1 Typ I Diabetes

 \bullet absoluter Insulinmangel, meist aufgrund autoimmunologisch zerstörter β -Zellen des Pankreas

• ca. 200.000 Patienten in Deutschland, Manifestation meist vor dem 40. Lebensjahr

8.1.2 Typ II Diabetes

- Insulinresistenz und zunehmend inadäquate kompensatorische Insulinsekretion
- Vererbungsrisiko höher als bei Typ I Diabetes Manifestation und Verlauf von exogenen Faktoren (Ernährung, Körpergewicht, Bewegung) abhängig
- ca. 4 Mio. Patienten in Deutschland, Typ IIa (Normalgewicht): 10% Typ IIb (Übergewicht): 90%; Manifestation meist nach dem 40. Lebensjahr

8.1.3 Sonderformen

- nicht-medikamentös (Diät, "lifestyle")
- \bullet medikamentös: orale Antidiabetika: Sulfonylharnstoffe, Biguanide, α -Glukosidasehemmer, Thiazolidindione Insulin

8.2 Insulinsynthese/-sekretion

Synthese in den β -Zellen der Langerhansschen Inseln

8.2.1 Insulin-Rezeptor

200.000 - 300.000 Rezeptoren pro Leber- / Fettzelle 2 α-Untereinheiten (135 kDa), 2 β -Untereinheiten (95 kDa) Bindung von Insulin führt zur Aktivierung einer Tyrosinkinase-Aktivität (β -Untereinheit) \rightarrow Autophosphorylierung sowie Phosphorylierung spezifischer zellulärer Substrate an Tyrosin-Resten (z.B. IRS-1, IRS-2 u.a., "Insulin-Rezeptor-Substrate")

- → Induktion verschiedener Signaltransduktionskaskaden (Phosphoinositid-3-Kinase "PI-3-Kinase", Ras/MAP-Kinase etc.)
- \rightarrow Auslösung zellulärer Effekte
 - Translokation von Glukosetransportern (GLUT-4) an die Plasmamembran
 - Regulation von Stoffwechselenzymen
 - Induktion von Wachstumsprozessen

8.3 Insulin

8.3.1 Kurz-/ultrakurz-wirksame Insuline

• Reguläres Insulin ("Alt-Insulin"; "Normal-Insulin")

Analoga (Stellenwert umstritten)

- Insulin lispro Austausch von Prolin 28 und Lysin 29 der B-Kette
- Austausch von Prolin 28 gegen Asparagin B-Kette. Gentechnisch hergestellte Formen des Humaninsulins mit geringerer Neigung zur Hexamer-Bildung → schnellere Resorption nach s.c.-Gabe

8.3.2 Mittellang-/lang-wirksame Insuline

- NPH-Verzögerungsinsulin (Neutral-Protamin Hagedorn) Resorptionsverzögerung durch Kristallbildung mit Protamin Analoga (Stellenwert umstritten)
- \bullet Insulin glargin Ersatz v. Asparagin 21 der A-Kette d. Glycin; Verlängerung der B-Kette C-terminal d. 2 Arginin-Reste Gentechnisch hergestellte Form des Humaninsulins mit erhöhter Neigung zur Hexamer-Bildung \rightarrow langsamere Resorption nach s.c.-Gabe
- Insulin detemir verzögerte Resorption und Ausscheidung durch Anheftung eines Myristinsäurerestes

Insulin (-Analogon)	Wirkbeginn (h)	Wirkungsmaximum (h)	Wirkdauer (h)
Kurz-/ ultrakurz-wirksame			
Insuline			
Reguläres Insulin0,5	2-4	5-8	
Insulin lispro	$0,\!25$	1	2-4
Insulin aspart	0,25	1	2-4
Mittellang-/ lang-wirksame			
Insuline			
NPH-Insulin	1-2	4-8	16-20
Insulin-Zn2 ⁺ -Suspension	2-4	6-12	18-24
Insulin glargin	2-4	5-15	20-36
Insulin detemir	1-2	5-12	20

8.3.3 Kombinations-/Mischinsuline

Kombination aus kurz-/ultrakurz-wirksamen Insulinen und Verzögerungsinsulin \rightarrow schneller Wirkeintritt, lange Wirkdauer

8.3.4 Insulinapplikation

- i.v. (Bolus, Perfusor) bei Coma diabeticum, Intensivmedizin
- s.c. (Einmalspritzen, Pen, Insulinpumpe) Standardverfahren,
 - bevorzugt Unterhautfettgewebe des Bauchs oder obere Außenfläche des Oberschenkels (Resorptionsgeschw.: Bauch
 Oberschenkel)
 - Insulinpumpe nur bei kooperativen, gut geschulten Patienten

unerwünschte Wirkungen Hypoglykämie, allergische Reaktionen (z.B. durch Konservierungsstoffe), Lipodystrophie am Injektionsort

8.4 Sulfonylharnstoffe

z.B.:	Tagesdosis	Wirkdauer	Tagesdosen
Tolbutamid (obsolet)	$500\text{-}2000~\mathrm{mg}$	6-10 h	2-3
Glibenclamid	2,5-15 mg	18-24 h	1-3
Glipizid	2,5-30 mg	16-24 h	1-3
Glimepirid	1-8 mg	1-3	

Wirkmechanismus Hemmung ATP-sensitiver K⁺-Kanäle der β -Zellen

- Insulin-Sekretion ↑
- Wirkung abhängig von endogener Insulinproduktion
- Insulinfreisetzung

8.4.1 ATP-abhängiger K⁺-Kanal

Hemmung des Kanals in β -Zellen des Pankreas (Kir6.2/SUR1) durch Sulfonylharnstoffe Isoformen des Kanals

150101111CII GC5 IValiais		
β -Zellen des Pankreas	Kir6.2	SUR1
Herz-/Skelettmuskel	Kir6.2	SUR2A
Glatter Muskel	Kir6.2	SUR2B
Glatter Gefäßmuskel	Kir6.1	SUR2B

Sulfonylharnstoffe \downarrow

Cromakalim ↑

Pharmakokinetik

- gute Bioverfügbarkeit
- hohe Plasmaeiweißbindung
- Wirkdauer > Plasma-HWZ (Anreicherung u.a. in β -Zellen)
- meist hepatisch metabolisiert; renal/biliär ausgeschieden

unerwünschte Wirkungen

- Hypoglykämien (protrahiert; v.a. alte Patienten)
- gastrointestinal (Übelkeit, Erbrechen)
- allergische Reaktionen (Haut, hämolyt. Anämien, Agranulozytosen)
- Gewichtszunahme

Interaktionen Interferenzen durch hohe Plasma-Eiweißbindung (Salicylate, Cumarin-Derivate, Phenylbutazon)

Indikationen Typ IIa Diabetes, wenn Diät nicht erfolgreich Typ IIb Diabetes, wenn Biguanide/Acarbose-Therapie erfolglos

Kontraindikationen Typ I Diabetes, Schwangerschaft / Stillzeit

8.5 α -Glucosidasehemmer

Acarbose Miglitol

Wirkmechanismus hemmen als Pseudosubstrate die Disaccharidasen im Bürstensaum des Darmepithels \rightarrow Ausmaß und Geschwindigkeit des Blutzuckeranstiegs nach Kohlehydrat-Aufnahme vermindert, keine Veränderung der Netto-Kohlehydrat-Aufnahme, keine nennenswerte Resorption

unerwünschte Wirkungen Meteorismus, Flatulenz, Tenesmen, Diarrhoe

Konratindikationen Malassimilation, Schwangerschaft

Indikation Typ I und II Diabetes, insbesondere diätetisch unzureichend behandelbarer Typ IIb; therapeutischer Nutzen wahrscheinlich gering; eventuelle Vorteile: keine Hypoglykämiegefahr

8.6 Biguanide

Metformin

Wirkmechanismus Steigerung der Insulinempfindlichkeit der Gewebe periphere Glucoseutilisation \uparrow , Insulinsensitivität \uparrow , hepatische Gluconeogenese \downarrow , aerobe Glykolyse \downarrow , enterale Glucoseresorption \downarrow , Mechanismus: Stimulation der AMP-aktivierten Proteinkinase, Hemmung der Glukagonwirkung an Hepatocyten (cAMP \downarrow)

- → keine Hypoglykämiegefahr, Fettstoffwechsel günstig beeinflusst,
- \rightarrow Appetit \downarrow

Pharmakokinetik

- Bioverfügbarkeit 50-60%
- Plasma-HWZ: 2-4 h
- unverändert renal eliminiert

unerwünschte Wirkungen

- Laktatazidose (Kontraindikationen beachten!)
- gastrointestinal (Übelkeit, Diarrhoe, Inappetenz)
- Blutbildveränderungen

Kontraindikationen

- alle Erkrankungen, die zu einer azidotischen Stoffwechsellage disponieren
 - Nierenfunktionsstörungen
 - kardiale, pulmonale, hepat. Erkrankungen
 - Infekte, Neoplasien, Alkoholismus
- Schwangerschaft
- perioperativ (ggf. absetzen)

Indikationen v.a. Typ IIb Diabetes, wenn Diät erfolglos und keine Kontraindikationen vorliegen; Vorteile: keine Hypoglykämiegefahr, eher Gewichtsabnahme

8.7 Thiazolidindion-Derivate ("Glitazone")

Pioglitazon

 $\frac{\mbox{Rosiglitazon}}{\mbox{Marktrücknahme}}$ 2010 wegen ungünstigem Nutzen-Schaden Profil)

Wirkmechanismus Aktivierung des Peroxisomen
proliferator-Aktivator-Rezeptor- γ (PPAR γ , nukleärer Rezeptor); Wirkung v.a. auf Adipozyten \to Adipozyten
differenzierung $\to \downarrow$ Freisetzung/Bildung Insulin
resistenz-fördernder Faktoren, \uparrow Insulin-Sensitivität

unerwünschte Wirkung

- Flüssigkeitsretention, Ödeme, Gewichtszunahme, Hepatotoxizität
- Frakturrisiko ↑ bei Frauen, Osteoblastendifferenzierung ↓, Blasentumorrisiko ↑
- $\bullet\,$ erhöhtes Herzinfarkt-/Herzinsuffizienzrisiko bei Langzeitgabe

Einsatz Kombination mit Metformin oder Sulfonylharnstoffen Therapeutischer Nutzen und Unbedenklichkeit nach wie vor umstritten!

8.8 Glucagon-like-peptide-1(GLP-1)-Agonisten

Exenatid(synthetisches Peptid aus 39 Aminosäuren)

Liraglutid

Wirkmechanismus Agonist am GLP-1 Rezeptor auf β -Zellen und im Magen-Darm-Trakt \rightarrow Glucose-abhängige Insulinsekretion \uparrow , Magenentleerung verzögert

unerwünschte Wirkungen Übelkeit/Erbrechen, Durchfall, Pankreatitis, Bildung inaktivierend. AK. Häufige Inzidenz von Neoplasien?

Kontraindikationen Typ-I Diabetes; Insulin-pflichtiger Typ-II Diabetes

Einsatz subkutane Gabe 2 x tägl. (morgens und abends vor den Mahlzeiten); Zusatz bei Typ-2 Diabetikern ab Therapiestufe 2 (Metforminunverträglichkeit) bzw. Stufe 3; teuer, Wirksamkeitsbelege zur Risikoreduktion klinischer Endpunkte fehlen

8.9 Dipeptidyl-Peptidase-IV(DPP-IV)-Hemmer

Sitagliptin Vildagliptin

Wirkmechanismus

Hemmt den Abbau von GLP-1 und des Glucose-dependent insulinotropic peptide (GIP)

Unerwünschte Wirkungen

Übelkeit/Erbrechen, Leberschäden

Pharmakokinetik

87% bioverfügbar; Plasma-HWZ: 12h; 80% unverändert renal ausgeschieden

Einsatz

orale Gabe, Sitagliptin: 1 x tägl., Vildagliptin: 2 x tägl.; Zusatz bei Typ-2 Diabetikern ab Therapiestufe 2 (Metforminunverträglichkeit) bzw. Stufe 3; teuer, Wirksamkeitsbelege zur Risikoreduktion klinischer Endpunkte fehlen

8.10 SGLT2-Inhibitoren

Dapagliflozin, seit 2013

Wirkmechanismus

Hemmung des SGLT2-Glukosetransporters im proximalen Tubulus $HbA1_c$ -Abfall um ca 0,6%, Gewichtsverlust (2-3 KG), geringe Blutdrucksenkung, unwirksam bei Nierenisuffizienz oder Volumenmangel (Schleifendiuretika!), UAW: Harnwegs- und Genitalinfektionen, klinischer Stellenwert noch unklar

8.11 Diabets-mellitus Behandlung

8.11.1 Typ I Diabetes

- Diät
- Insulintherapie, bevorzugt "intensivierte Insulintherapie"
- \bullet evtl. Gabe von α -Glucosidasehemmern

8.11.2 Typ II Diabetes

Nationale Versorgungsleitlinie (Sept. 2013): Festlegung individualisierter Therapieziele (Zielwerte) unter Berücksichtigung Manifestationsfördernder Faktoren (u.a. Adipositas, Dyslipoproteinämie, Hypertonie, Alter, familiäre Belastung, Komedikation sowie Lebensstilfaktoren wie Rauchen bzw. Bewegungsmangel) für:

 $\mathrm{HbA1}_{C}$ (meist 6,5%-7,5%), LDL-Cholesterin, Blutdruck und Körpergewicht

Pharmakotherapie

- bei unzureichendem Effekt lebensstilmodifizierender, nichtmedikamentöser Therapiemaßnahmen (Stufe 1)
- Stufe 2: Metformin (bei Unverträglichkeit Humaninsulin oder andere orale Antidiabetika, OAD)*
- Stufe 3: Insulintherapie oder Zweifachkombinationen, z.B. Insulin+ Metformin (bzw. Glibenclamid oder DPP4-Hemmer) oder OAD-Zweifachkombinationen*
- Stufe 4: Insulintherapie (patientenspezifisch konventionell oder intensiviert) ohne oder zusammen mit oralen Antidiabetika
- * unterschiedliche Priorisierung durch einzelne Fachgesellschaften! konventionelle Insulintherapie:
 - tägl. 2 Injektionen von Normalinsulin (1/3) und NPH-Insulin (2/3)
 - morgens (2/3) und abends (1/3), Spritz-Ess-Abstand: 30 Minuten

Nachteil starres Mahlzeiten- und Zwischenmahlzeitenschema. Patient muss essen, da er Insulin gespritzt hat

- günstige Effekte der Blutzuckersenkung bei D. mellitus Typ 2 stellen sich erst spät ein (z.B. 10 J. später; UKPDS Folgestudien)
- intensive, normnahe Blutzuckereinstellung bei älteren Typ-2 Diabetikern: Retinopathierisiko ↓, Albuminurie ↓, trotzdem kein Effekt auf Rate von Visusverlust und Niereninsuffizienz; Schaden durch schwere Hypoglykämien ↑; gefährdet durch Übersterblichkeit (ACCORD, ADVANCE)

Kapitel 9

Lipidsenker

9.1 Lipoproteinstoffwechsel

9.2 Fettstoffwechselstörung

9.2.1 Primäre Hyperlipoproteinämie

Bezeichnung	Häufigkeit	Typ	erhöht	KHK-Risiko
Hypercholesterinämie "polygene" Hypercho- lesterinämie	sehr häufig	IIa	LDL/Chol.	variabel (weitere Risi- kofaktoren)
familiäre Hyperchole-	heterozygot 1:500	IIa	LDL/Chol.	sehr hoch
sterinämie	homozygot 1:1Mio	IIa	LDL/Chol.	extrem hoch
Kombinierte Hyperlipidämie	VÜ		,	
familiäre kombin. Hy- perlipidämie	0,5-3:100	IIb	$rac{ ext{LDL/VLDL}}{ ext{Chol./TG}}$	hoch
Typ III-(Remnant-)	1:5000-10000	III	Remnants Chol./TG	hoch
Hyperlipoproteinämie Hypertriglyzeridämie				
familiäre Hypertrigly-	relativ selten	IV	VLDL / TG	gering
zeridämie Chylomikronen-	selten	I	Chylom./TG	variabel, aber: Pan-
Syndrom				kreatitisrisiko

9.2.2 Sekundäre Hyperlipoproteinämie

- Hypercholesterinämie: Fehlernährung, Hypothyreose, Schwangerschaft, nephrot. Syndrom, Cholestase
- Kombinierte Hyperlipidämie: Fehlernährung, Diabetes mellitus Typ 2, nephrot. Syndrom, Alkohol, Thiazide
- Hypertriglyzeridämie: Diabetes mellitus Typ 2, Alkohol, Niereninsuffizienz, Schwangerschaft, Arzneimittel (Thiazide, β-Blocker, Kontrazeptiva, Glukokortikoide)

9.2.3 Bedeutung der Therapie insb. der Hypercholesterinämie

Das LDL-Cholesterin ist ein hochspezifischer Parameter zur Bewertung des Atherosklerose-Risikos (v.a. KHK). Die Indikation zur Therapie wird durch Vorhandensein weiterer Risikofaktoren (vorhandene kardiovaskuläre Erkrankung, Alter, Geschlecht, art. Blutdruck, Raucher/Nichtraucher, evtl. HDL-Cholesterin-Plasmakonz.) bestimmt.

Die Wirksamkeit einer Lipid-senkenden Therapie im Rahmen der Sekundärprävention kardiovaskulärer Erkrankungen ist durch verschiedene Studien belegt.

Studie / Statin	Methode	Gesamtmortalität Placebo	Gesamtmortalität Verum	p-Wert
Sekundärprävention				
4S (1994) Simvastatin	4444 KHK, 5,4 J. LDL-C.188 \rightarrow 122 mg/dl	11,5%	8,2%	0,0003 NNT 164
CARE (1996) Pravastatin	4159 KHK, 5 J. LDL- $C.139 \rightarrow 98 \text{ mg/dl}$	9,4%	8,6%	ns
LIPID (1998) Pravastatin	9014 KHK, $6,1$ J. LDL-C.150 \rightarrow 113 mg/dl	14,1%	11,0%	<0,0001 NNT 197
HPS (2002) Simvastatin	20536 KHK,AVK,Diabetes, 5 J.,LDL-C.131 \rightarrow 92 mg/dl	14,7%	12,9%	0,0003 NNT 278
PROSPER (2002) Pravastatin	5804 Pat. /70-82 J.), vask. Risikofaktoren, LDL-C.147 \rightarrow 97 mg/dl	10,5%	10,3%	ns

Diverse große Studien, wie z.B. ALLHAT-LLT (2002), ASCOT-LLA (2003), JUPITER (2008), MEGA (2006) u.v.a. sowie eine ausführliche Metaanalyse ergaben, dass bei niedrigem kardiovask. Risiko kein Nutzen von Statinen in der Primärprävention vorhanden sind; dies ist erst sinnvoll bei hohem Ausgangsrisiko (ab 10-Jahres-Risiko von 20

9.2.4 Therapie

nicht medikamentös	Diät, körperliche Aktivität
medikamentös	HMG-CoA-Reduktase-Hemmer (Statine) Anionen-
	Austauscher-Harze, Fibrate, Nikotinsäurederivate
technische Verfahren	z.B. extrakorporale LDL-Elimination

9.3 HMG-CoA-Reduktase-Hemmer (Statine)

	Tagesdosis	syst. Bioverfügbark.	hepat. Metabol.
Lovastatin	10-80 mg	< 5%	CYP 3A4
Simvastatin	5-40 mg	< 5%	CYP 3A4
Pravastatin	10-40 mg	17%	
Atorvastatin	2,5-80 mg	30%	CYP 3A4
Fluvastatin	20-40 mg	24%	CYP $2C9$
Cerivastatin	0.1-0.3 mg	60%	CYP 3A4/2C8

Wirkmechanismus

Hemmung der Cholesterin-Synthese v.a. in der Leber \rightarrow vermehrte Bildung hepatischer LDL-Rezeptoren

- \rightarrow vermehrte Aufnahme von LDL- Cholesterin aus dem Blut
- \rightarrow LDL-C: $\downarrow\downarrow$ (20-50%), HDL-C: \uparrow (5-10%), VLDL: \downarrow ; TG: \downarrow (7-30%)
- ⇒ verminderte Progression/Ruptur von atheromatösen Plaques

Pleiotrope Wirkungen

- Verbesserung der Endothelfunktion,
- $\bullet \ \ Thrombozy tenstabilisation$
- Fibrinogenreduktion (korreliert mit TG-Abfall)
- Hemmung der mit Atherosklerose-assoziierten Entzündungsreaktion

Pharmakokinetik

- Resorption 30-98%
- Teilweise hoher first-pass-Effekt (Lovastatin, Simvastatin) mit geringer Bioverfügbarkeit. Allerdings ist die systemische Verfügbarkeit für die Lipid-senkende Wirkung weniger relevant (cave: unerwünschte Effekte)
- größtenteils hepatisch metabolisiert; renal/biliär ausgeschieden
- Plasma-HWZ: 1-3 h (Atorvastatin: 14 h)

unerwünschte Wirkungen

- gastrointestinale Störungen (v.a. unspez. Oberbauchschmerzen)
- Hepatotoxizität (Transaminasenanstieg)
- Myalgien, Myopathien, Rhabdomyolyse (CK-Anstieg)
- Kopfschmerzen, Schlafstörungen, Schwindel

Interaktionen

Lovastatin, Simvastatin + Makrolide, Azol-Antimykotika, Fibrate, Ciclosporin, Grapefruitsaft: vermehrtes Auftreten hepatotoxischer und myopathischer Effekte, v.a. bei Gabe von Lovastatin und Simvastatin (Hemmung der CYP 3A4 bei hohem first-pass-Effekt und hoher Gewebegängigkeit/Lipophilie von Lovastatin und Simvastatin) alternativ bei diesen Patienten: Fluvastatin (CYP2C9) oder Prastatin (kein Metabol. über CYP-Enzyne)

Kontraindikationen

Lebererkrankungen, Muskelerkrankungen, Kinder, Schwangerschaft / Stillzeit

9.4 Cholesterol-Resorption

9.5 Anionen-Austauscher-Harze

Colestyramin Colestipol 3×4 -8g pro Tag vor oder während der Mahlzeiten 3×5 -10g pro Tag vor oder während der Mahlzeiten

Wirkmechanismus

hohe Affinität für Gallensäuren, nicht resorbierbar

- \rightarrow erhöhte Gallensäurenausscheidung (enterohepatischer Kreislauf)
- \rightarrow Cholesterin-Konzentration in der Leber \downarrow
- \rightarrow Neusynthese von hepat. LDL-Rezeptoren \uparrow
- \rightarrow LDL-C: \downarrow (10-20%), HDL-C: -/ \uparrow (3-5%); TG: Ø

unerwünschte Wirkungen

Obstipation, Völlegefühl (häufig!); Verlust fettlöslicher Vitamine bei hoher Dosierung

Ineraktionen

Beeinflussung der Resorption verschiedener Pharmaka: Cumarine, Digitalisglykoside, Thyroxin, Thiazide, Tetrazykline \rightarrow versetzte Einnahme 1 Stunde vor oder 4 Stunden nach Anionenaustauscher-Harze

9.6 Cholesterinresorptionshemmer

Ezetimib 10mg/d

Wirkmechanismus

Hemmung der intestinalen Resorption von diätetischem sowie biliärem Cholesterin um mehr als 50% durch Blockade der Internalisation von Cholesterin durch das Protein "Niemann-Pick C1-like 1" (NPC1L1)

 \rightarrow LDL-C: ↓ (15-20%), Anstieg der Cholesterinsynthese; HDL-C: -/↑; TG: -/↓ Trotz deutlicher LDL-Senkung (auch additiv zu HMG-CoA-Reduktase Hemmer) wurde in klinischen Studien bisher kein Zusatznutzen zur Reduktion atherosklerotischer Spätschäden gezeigt

Pharmakokinetik

- Gute Resorption, intestinale und hepatische Glukuronidierung
- Ezetimib und glukuronidiertes Ezetimib unterliegen einem ausgeprägten enterohepatischen Kreislauf; biliäre Ausscheidung, Plasma HWZ: 13-21 h

Indikation

- Zusatztherapie zu Statinen bei schwerer Hypercholesterinämie (z.B. homozygote familiäre Hypercholesterinämie)
- alternativ bei unerwünschten Wirkungen unter hochdosierter Statin-Therapie

unerwünschte Wirkungen

Transaminasenanstieg

9.7 Fibrate

Bezafibrat $3 \times 200 \text{ mg oder } 1 \times 400 \text{ mg retard.}$ Fenofibrat $3 \times 100 \text{ mg oder } 1 \times 250 \text{ mg retard.}$

Etofibrat $1-2 \times 500 \text{ mg retard.}$

Gemfibrozil $2 \times 450 \text{ mg oder } 1 \times 900 \text{ mg retard.}$

Wirkmechanismus

Aktivierung des Transkriptionsfaktors Peroxisome-proliferator-activator-receptor α (PPAR α)

- \rightarrow hepat. Triglyzerid-Synthese $\downarrow \rightarrow$ VLDL-Produktion \downarrow
- \rightarrow Lipoproteinlipase-Aktivität \uparrow
- \rightarrow Abbau von VLDL in der Peripherie \uparrow
- \rightarrow TG: \downarrow (20-40%), VLDL: \downarrow , LDL-C: \downarrow (5-20%), HDL-C: \uparrow (10-20%)

Pharmakokinetik

- gute Resorption nach oraler Gabe
- \bullet Plasma-HWZ: 1,5-5 h
- überwiegend renal ausgeschieden

unerwünschte Wirkungen

- gastrointestinale Störungen
- Myalgien, Myositis (CK-Anstieg)
- Gallensteinbildung

Interaktionen

- Wirkungsverstärkung von Antikoagulantien vom Cumarin-Typ
- Verstärkung der Muskelbeschwerden bei Kombination mit Statinen

Kontraindikationen

Lebererkrankungen; Schwangerschaft / Stillzeit; Kinder

9.8 Nikotinsäurederivate

Nikotinsäure 0.45 - 3 g pro Tag Acipimox $2-3 \times 250$ mg pro Tag

Wirkmechanismus

teilweise unklar; Lipolyse-Hemmung durch Aktivierung des G_i -gekoppelten Rezeptors GPR109A auf Adipozyten; VLDL-Produktion \downarrow , LDL-Bildung \downarrow TG: \downarrow (20-40%); LDL-C: \downarrow (5-25%), HDL-C: \uparrow (20-50%)

unerwünschte Wirkungen

- Flush ausgelöst durch Aktivierung des Rezeptors GPR109A auf dermalen Immunzellen; vermittelt durch Bildung vasodilatatorischer Prostanoide, v.a. PGD₂ und PGE₂ (Hemmung des Flush durch COX-Hemmer sowie durch den PGD₂ Rezeptor (DP₁) Antagonisten Laropiprant
- gastrointestinale Beschwerden
- evtl. Schwindel
- Hyperurikämie (bei Patienten mit entsprechender Neigung)
- Glukosetoleranz \downarrow

Bei randomisierten Studien jedoch kein Vorteil von retardierter Nikotinsäure gegenüber Statinen (AIM-HIGH-Studie 2011)

9.9 Therapieindikationen bei Hypercholesterinämie

BILDUNTERTITEL dikation zur Behandlung von Gesamtrisiko-Konstellation bezüglich kardiovaskulärer Ereignisse abhängig.

Risikokonstellation Behandlungsziel (NCEP ATPIII Guideline 2004)

niedriges bis leicht erhöhtes Risiko (< 5-10%) LDL-Cholesterin: < 160 mg/dl mäßig erhöhtes Risiko (10-20%) LDL-Cholesterin: < 130 mg/dl hohes Risiko (> 20%) LDL-Cholesterin: < 130 mg/dl KHK oder ausgeprägtes Risikoprofil LDL-Cholesterin: < 100 mg/dl

Risikofaktoren: LDL-Cholesterin-Plasmakonz., Zigarettenrauchen, Hypertonie, HDL-Cholesterin (<40 mg/dl), pos. Familienanamnese, Alter, männl. Geschlecht.

Kapitel 10

Hömostase, Thrombose

10.1 Thrombozyten-Adhäsion/-Aktivierung

Vermittelt durch von Willebrand Faktor und Kollagen, die auf der subendothelialen Oberfläche deponiert bzw. exponiert vorliegen

- "Shape change", rasche Umwandlung des Thrombozyten von diskoider in runde Form unter Ausbildung von Pseudopodien
- Degranulation von Mediatoren (ADP, Serotonin), Koagulationsfaktoren (Faktor V, Fibrinogen), Wachstums-Faktoren
- "Biosynthese von Mediatoren (Thromboxan A2, "Platelet activating factor ")
- Aggregation: Aktivierung von Glykoprotein IIb/IIIa (GP IIbIIIa, integrin $\alpha_{IIb}\beta_3 \to \text{Bindung}$ von Fibrinogen und von Willebrand Faktor $\to \text{Vernetzung}$ von Thrombozyten

10.2 Fibrinbildung über Koagulationskaskade

10.2.1 Antikoagulatorische Mechanismen

Antithrombin III

hemmt unter dem Einfluß von Heparin und Heparin-ähnlichen Molekülen auf der Endotheloberfläche (z.B. Heparansulfat) verschied. aktiv. Faktoren (v.a. IIa + Xa)

Protein C

(Vitamin K-abhängige Synthese) Aktivierung an Endotheloberfläche durch Thrombin, das an das Membranprotein Thrombomodulin gebunden ist; aktiviertes Protein C (APC) führt unter Beteiligung von Protein S zur proteolytischen Inaktivierung der Kofaktoren Va und VIIIa; Mutation des Faktor V (Faktor V Leiden) mit Resistenz gegenüber APC führt zur häufigsten angeborenen Form von Thromboseneigung

10.2.2 Pathogenese und Zusammensetzung arterieller und venöser Thromben

Arterieller Thrombus (weißer Thrombus)

Z.B. auf der Basis eines atherosklerotischen Plaque: Thrombozyten + Leukozyten + Fibrinnetzwerk; meist auf der Basis einer Atherosklerose \rightarrow Ischämie, Infarkt

Venöser Thrombus (roter Thrombus)

Z.B. aufgrund von Stase: Häufig kleine "weiße" Spitze gefolgt von größerem Blutgerinsel (intravital geronnene Blutsäule) \rightarrow Embolie

10.2.3 Medikamentöse Beeinflussung

Thrombozytenfunktionshemmer, Antikoagulantien, Fibrinolytika

10.3 Throbozxtenfunktionshemmer

Acetylsalicylsäure(ASS) 10.3.1

Wirkmechanismus

Irreversible Hemmung der thrombozytären Cyclooxygenase-1 (COX-1) durch Acetylierung von Serin-530 \rightarrow Hemmung der TXA₂-Synthese über die gesamte Lebenszeit des Thrombozyten (7-10 Tage) Thrombozytäre Effekte treten in deutlich niedrigeren Konzentrationen auf (75-300 mg) als andere ASS-Effekte

- Thrombozyten sind nicht in der Lage, COX-1 nachzusynthetisieren
- ullet Acetylsalicylsäure wird bereits während der ersten Leberpassage zu einem großen Teil zu Salicylsäure deacetyliert orelativ hohe ASS-Konzentration im Pfortaderblut, die zu einer selektiven Inaktivierung von Thrombozyten führt.

unerwünschte Wirkungen

tungen v.a. im oberen GI-Trakt (selten unter niedriger Dosierung); ggf mit Protonenpumpen-Hemmern kombinieren

Kontraindikationen

Allergische Disposition; Asthma; Kinder < 12 Jahren (Reve-Syndrom)

- Sekundärprophylaxe arterieller thrombotischer Erkrankungen
- Instabile Angina pectoris, Myokardinfarkt
- Primärprophylaxe bei Patienten mit hohem Risiko für arterielle thromboembolische Erkrankungen

10.3.2 Thienopyridine

Clopidogrel Ticlopidin Prasugrel Ticagrelor

Wirkmechanismus

Nach hepatischer Biotransformation Bildung eines aktiven Metaboliten, der spezifisch den thrombozytären Purinozeptor $P2Y_12$ blockiert und dadurch den Effekt von ADP beeinflusst \rightarrow Wirkung tritt erst nach ca. 2 Tagen auf.

unerwünschte Wirkungen

Diarrhoe, Exantheme; Leukopenie (Ticlopidin), Blutungen (v.a. Prasugrel)

Einsatz

- Mittel der 2. Wahl zur Sekundärprophylaxe arterieller thrombot. Erkrankungen, wenn ASS kontraindiz.
- vorübergehend bei akutem Koronarsyndrom / koronaren Interventionen (zusätzlich zu ASS)
- Ticagrelor: reversible Hemmung von P2Y₁2: Senkung der kardiovaskulären und Gesamtmortalität stärker als bei Clopidogrel

10.3.3 GPIIb/IIIa(Integrin α IIIb β 3)-Rezeptor-Antagonisten

Fab-Fragment eines monoklonalen Antikörpers, blockiert Abciximab

auch Integrin $\alpha M\beta 2/\alpha v\beta 3$; Langanhalt.: Blockade über

mehrere Tage

niedermolekulares ringförmiges Peptid; reversibel **Eptifibatid**

Tirofiban nicht-peptidische Verbindung (parenteral); reversibel

Wirkmechanismus

Blockade der Bindung von Fibringen und von Willebrand Faktor an GP IIb/IIIa \rightarrow Hemmung des Endschrittes der Thrombozytenaggregation

unerwünschte Wirkung

Blutungen, Thrombozytopenie (seltener)

Einsatz

Akutes Koronarsyndrom, interventionelle Kardiologie

	Abciximab	Eptifibatid	Tirofiban
Molekulargewicht (Da)	50.000	800	500
Integrinselektivität α IIb β 3,	$\alpha \text{IIb}\beta 3$	$\alpha \text{IIb} \beta 3$	
$\alpha V \beta 3$			
Affinität für $\alpha IIb\beta 3$ (KD,	5	120	15
nmol/l)			
Plasma-HWZ	0,5 h	$2-2{,}5\mathrm{h}$	2 h
Wirkdauer	$12-24 \mathrm{\ h}$	$2-2{,}5\mathrm{h}$	2 h
Elimination	Proteolyse / renal	v.a. renal	v.a. renal

10.4 Antikoagulatien

- Vitamin-K-Reduktase-Hemmer (Cumarin-Derivate; Vitamin-K-"Antagonisten")
- Antithrombin-III-Aktivatoren (Heparine; synthet. Pentasaccharide)
- direkte Thrombin-/ Faktor Xa-Inhibitoren (Hirudine; niedermolek., orale Inhibitoren)

10.4.1 Vitamin-K-Reduktase-Hemmer (Cumarin-Derivate)

Wirkmechanismus

Hemmung der Reduktion von Vitamin K in der Leber \rightarrow Störung der posttranslationalen γ -Carboxylierung der Gerinnungsfaktoren II, VII, IX, X sowie von Protein C u.a.

 \rightarrow Bildung physiologisch inaktiver Gerinnungsfaktoren (fehlende Interaktion mit Ca²⁺). Effekt abhängig von HWZ der Faktoren: Protein C: 6 h; Faktor X: 40 h; Faktor VII: 6 h; Faktor II: 60 h; Faktor IX: 24 h.

Pharmakokinetik

- Schnelle fast vollst. Resorption nach oraler Gabe
- Geringes Verteilungsvolumen (99
- Hepat. Metabolisierung durch P450-Monooxygenasen (v.a. CYP2C9) + Glucuronidierung
- Plasma-HWZ: Warfarin: 40 h Phenprocoumon: 6 d Wirkdauer: Warfarin: 2-6 d Phenprocoumon: 6-10 d

unerwünschte Wirkungen

- Blutungen (Magen-Darm, Harnwege, intrakraniell)
- Nekrosen der Haut / Unterhautfettgewebe durch Thrombosierung von Kapillaren/Venolen v.a. zu Beginn der Therapie(selten, ausgelöst durch Protein C-Mangel)
- Haarausfall, Leberfunktionsstörungen (selten)

Maßnahmen je nach Schweregrad: Absetzen, Gabe von Vitamin K (Wirkdauer: 8-32 h), Substitution der Gerinnungsfaktoren (sofortige Wirkung)

Interaktionen

- Verstärkung der Effekte durch verminderte hepatische Metabolisierung; z.B.: Amiodaron, Erythromycin, Metronidazol
- Verminderung der Effekte durch verstärkten hepatischen Abbau z.B.: Rifampicin, Carbamazepin, Barbiturate, Griseovulvin u.a.
- Vitamin-K-reiche Ernährung

Kontraindikationen

erhöhtes Blutungsrisiko; Schwangerschaft (teratogene Wirkung 6.-12. Woche; fetale Anomalien)

Einsatz

Prophylaxe thromboembolischer Erkrankungen z.B.: Venenthrombosen, Lungenembolie, bei Vorhofflimmern, Herzklappenersatz Probleme: Verzögerter Wirkbeginn (3-5 d); Beginn der Therapie mit Heparin; variables Ausmaß der Wirkung; geringe therapeutische Breite

Dosierung nach Thromboplastin-Zeit ("Quick-Wert" bzw. INR)

INR: International Normalized Ratio (Verhältnis von "Quick-Wert" des Patienten zu "Quick-Wert" eines Normalkollektivs); Angestrebte Werte je nach Erkrankung: INR: 2 - 3,5

10.4.2 Antithrombin-III-Aktivatoren

Unfraktioniertes Heparin

Negativ geladene sulfatierte Glucosaminoglykane, ca. 15-150 Hexose-Einheiten. Mit typ. Pentasaccharid (MW: 6.000 - 30.000 Da); Bindung der Pentasaccharid-Sequenz des Heparins an Antithrombin III

 \rightarrow Konformationsänderung des AT III Bindung und Inaktivierung von Faktor Xa Thrombin bindet an negative Bereiche des Heparins außerhalb der Pentasaccharid-Sequenz und gleitet entlang des Heparins \rightarrow Bindung und Inaktivierung durch ebenfalls Heparin-gebundenes AT III

Niedermolekulares Heparin (z.B. Enoxaparin, Nadroparin, Dalteparin)

Niedermolekulares Heparin: MW: 4.000 - 7.000 (10-25 Monosaccharideinheiten) Aktivierung von AT III \rightarrow Inaktivierung von Faktor Xa, aber kaum Effekt auf Thrombin

Synthetische Pentasaccharide (z.B. Fondaparinux)

leicht modifiziertes Pentasaccharid; Wirkung ähnlich niedermolekularem Heparin

	UnfraktioniertesHeparin	Niedermolekulare Heparine	Synthetische Pentasaccharide (Fondaparinux)
Hexoseeinheiten / Moleku- largewicht (Da)	20 - 100 / 6.000 - 30.000	10 - 15 / 3.000 - 7.000	5 / 1.728
Relative Hemmung der aktiven Gerinnungsfaktoren Xa	IIa = Xa 1:1	IIa < Xa 1:3	nur Xa
u. IIa			
Applikation	s.c. und i.v.	s.c.	s.c.
Bioverfügbarkeit (s.cGabe)	30%	> 90%	>95%
Plasma-HWZ	1-2 h	2-5 h	18 h
Elimination	v.a. durch das RES*	v.a. renal	v.a. renal
Gabe (Thromboseprophyla- xe)	2-3xtägl.	1-2xtägl.	1xtägl.

unerwünschte Wirkungen

- generell: Blutungen
- Heparine: Thrombozytopenie (seltener mit niedermolekularem Heparin)
- $\bullet\,$ Typ I: frühzeitig, leicht, reversibel; Typ II: seltener, schwerer, nach ca. 1 Woche
- Heparin-induzierte Thrombozytopenie (HIT): Antikörperbildung gegen Komplex aus Heparin und Plättchenfaktor $4 \to \text{Aktivierung}$ des thrombozytären Immunglobulinrezeptors $\to \text{Thrombozytenaktiv.}$, Thrombosen, intravaskuläre Koagulat.
- Osteoporose (bei Langzeittherapie > 6 Monate)
- Allergien
- Haarausfall (4-12 Wochen n. Therapiebeginn; Haarwurzeleinblutung?)

Maßnahmen je nach Schweregrad: Absetzen, Gabe von Protamin i.v. (bildet inaktiven Komplex mit Heparin)

Einsatz

Thromboseprophylaxe; Ther. thromboembolischer Erkrankungen

10.4.3 Direkte Thrombin-Inhibitoren

Hirudine

(Hirudin, Lepirudin; 65 Aminosäuren) Protein aus der Speicheldrüse des Blutegels Hirudo medicinalis; bildet hochaffinen 1:1 Komplex mit Thrombin \rightarrow Inhibition; hemmt i.G. zu akt. AT-III auch Fibrin-gebundenes Thrombin; Gabe: s.c. oder i.v.; Einsatz z.B. bei HIT Typ II

niedermolekulare Thrombin-Inhibitoren

Argatroban (nur pareneterale (i.v.) Gabe möglich). Einsatz bei HIT Typ II, wenn orale antithrombotische Therapie nicht möglich

Dagibatranetexilat Oraler Thrombinin-Inhibitor (Zulassung 2008). Pro-drug; gute Resorption, Umwandlung in Dabigatran Einsatz: Thromboseprophylaxe nach größeren orthopädischen Operationen, Prophylaxe von Schlaganfällen und system. Embolien bei Vorhofflimmern.

10.4.4 Direkte Faktor Xa-Inhibitoren

Rivaroxaban (Zulassung 2008) Apixaban (Zulassung 2011 gute Resorption, Plasma-HWZ: 7-11h; Metabol. u.a. über CYP3A4

pEinsatz

1) Thromboembolienprophylaxe nach elektiven Hüft- oder Kniegelenksersatz-OP, 2) Proph. von Schlaganfällen und system. Embolien bei Vorhofflimmern, 3) Akutes Koronarsyndrom, 4) Behandlung u. Proph. von tiefen Beinvenenthrombosen und Lungenembolien (3) u. 4) nur Rivaroxaban) (insbes. wenn Einstellung mit Cumarinen oder INR Kontrolle erschwert ist)

Vorteile

gegenüber Cumarinen: schneller OnSet/Offset, konstante Dosierung, kein Gerinnungsstatus-Monitoring, weniger Wechselwirkungen (Medik., Nahrung)

Nachteile

schneller OnSet/Offset (schneller Wirkverlust bei Einnahmefehlern), kein Antidot, (Kosten).

Nutzen

bisher keine Überlegenheit in Endpunktstudien

10.5 Fibrinolytika

Wirkmechanismus

Umwandlung von Plasminogen in Plasmin \rightarrow Abbau von v.a. Fibrin

10.5.1 Streptokinase

- nicht-enzymatisches Protein (MW: 46.000) aus β -hämolys. Streptokokken
- Bindung an Plasminogen → Konformationsänderung des Plasminogens
 → Streptokinase/Plasminogen-Komplex, wandelt Plasminogen in Plasmin um
- Bildung von Anti-Streptokinase-Antikörpern, Plasma-HWZ: 40-80 Minuten

10.5.2 Gewebsplasminaktivator (rt-PA / Alteplase)

- Serinprotease (MW: 70.000), die u.a. von Endothelzellen synthetisiert wird (gentechnisch hergestellt)
- Bildet Plasmin v.a. aus Fibrin-gebundenem Plasminogen \rightarrow effektive lokale Fibrinolyse Plasma-HWZ: 4 min (Gabe als Bolus + 60-90 min Infusion)
- neuere Entwicklung: Reteplase (HWZ: 18 min; Gabe: 2 Boli im Abstand v. 30 min)

unerwünschte Wirkungen

- Blutungen (entsprechende Kontraindikationen beachten)
- Allergische Reaktionen (Streptokinase)

Einsatz

- akuter Myokardinfarkt (innerhalb 12 Stunden)
- akuter thrombotischer Hirninfarkt (innerhalb 3-4 $\frac{1}{2}$ Stunden)
- periphere arterielle Thromben
- venöse Thromben

10.6 Arterielle Thrombose, Beispiel: Akutes Koronarsyndrom

10.6.1 Instabile Angina pectoris

(Troponin-Test 2 x negativ innerhalb 12 h)

- Acetylsalicylsäure (100-325 mg/d) + evtl. Clopidogrel (75 mg/d)
- Heparin 80 I.E./kg i.v. Bolus, danach effekt. Heparinis. (aPTT 1,5-2-fach $\uparrow)$
- Nitrate (z.B. 1-5 mg/h Glyceroltrinitrat i.v.)
- β_1 -Blocker (z.B. Metoprolol 2 x 25-50 mg/d)

wenn Troponin-Test positiv, aber keine ST-Streckenhebung zusätzlich

GPIIb/IIIa Rezeptorantagon. (z.B. Abciximab 0,25 mg/kg Bolus, dann 0,125 mg/kg x min.) Heparindosis ↓

bei eingetretenem Myokardinfarkt zusätzlich

- Opioid. Analgetika (z.B. Morphin 3-5 mg i.v.; Buprenorphin 2 mg s.l. (nicht i.m.!)
- O₂ (3-6 l / min per Nasensonde)
- fakultativ:
 - bei Unruhe: 5-10 mg Diazepam langsam i.v.
 - bei ventr. Arrhythmien: 50-200 mg Lidocain langsam i.v.; alternativ: Amiodaron
 - bei Bradykardie: 0,5-1 mg Atropin i.v., ggf. wiederholen
- Reperfusionstherapie (Lysetherapie, PTCA, aortocoronarer Bypass)
 - Lysetherapie
 - innerhalb von 12 Stunden
 - Heparin Bolus und Vollheparinisierung s.o.
 - tPA 50 mg Bolus, dann über 60 min 100 mg i.v.

Kapitel 11

Antiphlogistika

11.1 Nicht-steroidale Antiphlogistika / Antirheumatika (NSAID, NSAR)

Wirkung v.a. durch Hemmung der Cyclooxygenase (COX-1 und COX-2) \rightarrow verminderte Bildung von Prostaglandinen

11.1.1 Erwünschte Wirkqualitäten nicht-steroidaler Antiphlogistika

Antiphlogistische Wirkung

Entzündung: physiol. Antwort auf verschiedene Stimuli wie Infektionen, Gewebeschädigung etc.; Akute Entzündung mit lokaler und systemischer Reaktion

Lokale Reaktion Prostaglandin E2 und I2 (durch COX-1/COX-2 synthetisiert) sind wichtige Mediatoren der Entzündungsreaktion

- \bullet Erhöhte Permeabilität v.a. postkapillärer Venolen (u.a. PGE_2 , PGI_2) \rightarrow Tumor
- Vasodilatation (u.a. PGE_2 , PGI_2) \rightarrow Rubor, Calor

(Histamin, PAF, Leukotriene, C5a/C5b, Bradykinin u.a.)

- Sensibilisierung nozizeptiver Nervenendigungen (u.a. $PGE_2, PGI_2) \rightarrow Dolor$

Chronische Entzündung mit persistierender Immunantwort (pathologisch)

Systemische Reaktion Akute-Phase-Reaktion: Fieber, Leukozytose, hepat. Bildung von Akute-Phase-Proteinen (Creaktives Protein etc.), Kortisonausschüttung aus NNR Mediatoren: IL-1, IL-6, $TNF\alpha$

Analgetische Wirkung

v.a. Prostaglandin E₂ (COX-1/COX-2) sensibilisiert Nozizeptoren für schmerzauslös. Mediatoren (z.B. Bradykinin, Serotonin); Wirkung auch auf spinaler Ebene (COX-1 / COX-2); wirksam v.a. bei: Entzündungsschmerz, den meisten Formen v. Kopfschmerz, Zahnschmerzen, Dysmenorrhoe, Arthritis, deg. Erkrankungen etc.

Antipyretische Wirkung

endog. Pyrogene (IL-1, LPS, $\text{TNF}\alpha$) \rightarrow Hypothalamus \rightarrow Sollwertverstellung der Körpertemperatur unter Vermittlung von PGE2 (kein Effekt auf normale Körpertemp.)

11.1.2 Unerw. Wirkqualitäten nicht-steroidaler Antiphlogistika

Gastrointestinal (v.a. COX-1)

Magenschleinhauterosionen, Ulzera, Übelkeit, Erbrechen: physiolog.protektiver Effekt von PGE $_2$ Säureproduktion \downarrow , Schleimprodukti Regulation der Schleimhautdurchblutung, mögl. Rolle von COX-2 bei Heilungsvorgängen; Gefahr der Ulkusblutung zusätzlich durch Thrombozytenfunktionshemmung (COX-1 \rightarrow TXA $_2$ -Synthese)

Ulkusprophylaxe bei NSAID-Therapie: Misoprostol (PGE_2 -Analogon) unerw. Wirkung: Diarrhoe Zusätzlich/alternativ: z.B. Omeprazol)

Renal (COX-1 / COX-2)

(v.a. bei vorgeschädigter Niere)

Rolle von COX-1/2 bei renaler Steuerung des Salz- und Wasserhaushaltes, z.B.:

- Macula densa: Salzarme Kost \rightarrow COX-2 \uparrow \rightarrow PGE2 \rightarrow Renin \uparrow ,RR \uparrow
- Medulla: Salzreiche Kost \rightarrow COX-2 \uparrow \rightarrow PGE/I2 \rightarrow Durchblutung \uparrow , Na $^+$ -Exkretion \uparrow \rightarrow RR \downarrow

Insbes. bei vorgeschädigter Niere kann Organdurchblutung PG-abhängig sein Salz- und Wasserretention, Abschwächung der Wirkung versch. Antihypertensiva; reversibles akutes Nierenversagen; chron. Nephritis, Papillennekrose (Analgetika-Nephropathie)

Provokation von asthmatischen Beschwerden bei Asthmatikern

(Bildung bronchokonstrikt. Leukotriene↑)

erhöhtes Risiko für kardiovaskuläre Ereignisse

am niedrigsten mit Naproxen, am höchsten mit selektiven COX-2-Hemmern

11.1.3 Salicylate

Acetylsalicylsäure

Einsatz und Dosierung

100-300 mg/Tag: Thrombozytenfunktionshemmung (z.B. Sekundärprophylaxe); 1-3 g/Tag: analgetisch, antipyretisch (leichte und mittlere Schmerzen, Fieber); 3-6 g/Tag: antiphlogistisch (chron. entzündl. Erkrankungen)

Pharmakokinetik

gut resorbiert, überwiegend hepatisch metabolisiert (Deazetylierung), renal ausgeschieden; Plasma HWZ: dosisabhängig, bei übl. analgetischer Dosierung ca. 4h

Vergiftung

ab 8-10 g/Tag metabolische Azidose; Therapie: NaCO₃ zusätzl.

unerwünschte Wirkungen

Blutungsneigung (Thrombozytenfunktionshemmung); Reye-Syndrom bei Kindern und Jugendlichen (Enzephalopathie, Hepatopathie nach viralen Infektionen)

Kontraindikationen

Ulkus duodeni und ventriculi; hämorrhagische Diathese; Schwangerschaft; schwere Nierenfunktionsstörung; virale Erkrankungen bei Kindern und Jugendlichen

11.1.4 Arylessigsäuren

Diclofenac Indometacin

Einsatz und Dosierung

- akute und chron. Schmerzen (v.a. Diclofenac)Tageshöchstdosis: 200-300 mg (p.o., Supp.); 150 mg (i.m.) -
- chron. entzündl. Erkrankungen Tageshöchstdosis: 200-300 mg (Diclofenac); 150 mg (Indometacin)

Pharmakokinetik

gute, schnelle Resorption; Plasma HWZ: 2 h (Diclofenac); 3-11 h (Indometacin)

unerwünschte Wirkungen

Kopfschmerzen und psych. Reaktionen (v.a. Indometacin); Überempfindlichkeitsreaktionen (v.a. Diclofenac nach i.m.-Gabe)

11.1.5 Arylpropionsäuren

Ketoprofen Ibuprofen Naproxen

Einsatz und Dosierung

akute und chron. Schmerzen; Tageshöchstdosis: 2400 mg (p.o., Supp.); chron. entzündl. Erkrankungen; Tageshöchstdosis: 2400 mg

Pharmakokinetik

gute, schnelle Resorption; Plasma HWZ: 2 h

11.1.6 Oxicame

Piroxicam Meloxicam

Pharmakokinetik

Plasma-HWZ: 45-50 h (Piroxicam); 20 h (Meloxicam); nur bei chron. entzündl. Erkrankungen zugelassen (nicht erste Wahl)

11.1.7 Selektive COX-2 Hemmer

Celecoxib (Marktrücknahme 9/04)

Lumiracoxib (Marktrücknahme 2009)

Wirkungen

analgetisch, antipyretisch

antiphlogistische Wirksamkeit bei chronisch entzündlichen Erkrankungen vergleichbar mit nicht-selektiven COX-Hemmern; renale unerwünschte Wirkungen ähnlich wie unter nicht-selektiven COX-Hemmern, geringe Reduktion klinisch relevanter gastrointestinaler Komplikationen im Vergleich zu nicht-selektiven COX-Hemmern (herkömmliche NSAID); Komplikationsrate auf gleichem Niveau wie unter Placebo

Kardiovask. Risiko unter COX-2 Hemmung ist erhöht (Marktrücknahmen); Langzeiteffekte z. Zt. noch unklar; deutlich teurer im Vergleich zu herkömmlichen NSAID

Indikationen

(z. Zt. unklar): Chron. entzündliche Erkrankungen (Arthritis, aktiv. Arthrosen) bei Patienten mit erhöhtem Risiko für gastrointestinale unerwünschte Wirkungen von NSAID und wenn kein erhöhtes kardiovaskuläres Risiko vorliegt

11.1.8 Langfristig wirksame Antirheumatika (LWAR)

Methotrexat Leflunomid

Sulphasalazin

Unbekannter Wirkmechanismus, verändern langfristig Eigenschaften von Entzündungszellen (z.B. Sekretion von Mediatoren), langsamer Wirkungseintritt

Einsatz

Rheumatoide Arthritis, entzündliche Darmerkrankungen

$TNF\alpha/IL$ -1-Hemmstoffe

gentechnologisch hergestellte monoklonale anti-TNF α -Antikörper (Infliximab, Adalimumab), Fusionsproteine die freien TNF α binden (Etanercept) oder Interleukin-1 Rezeptorantagonisten (Anakinra)

Einsatz

aktive rheumatoide Arthritis bei Methotrexat Unverträglichkeit (Etanercept) oder in Kombination mit Methotrexat wenn NSAID erfolglos

unerwünschte Wirkung

Überempfindlichkeitsreaktionen, Infektionsgefahr↑ sehr hohe Kosten

11.1.9 Glukokortikoide

Freiname	Relative antiphlogist.	Mineralkortikoid-	Cushing-Schwellen-	Biolog. HWZ
	Potenz	Potenz	Dosis	
Cortison	0,8	0,8	30 mg	8-12 h
Hydrocortison (Corti-	1	1	30 mg	8-12 h
sol)				
Prednison	4	0,6	7.5 mg	12-36 h
Prednisolon	4	0,6	7.5 mg	12-36 h
Triamcinolon	6	0	6 mg	12-36 h
Methyl-prednisolon	5	0	6 mg	12-36 h
Fluocortolon	5	0	6 mg	12-36 h
Dexamethason	30	0	1.5 mg	36-72 h
Betamethason	30	0	1 mg	36-72 h

Inhalat. Glukokortikoide: Beclometason, Budesonid, Flunisolid, Fluticason

Entzündungshemmung durch Glukokortikoide

In hohen Dosen, unabh. von Ursache (mechan., chem., infektiös., immunol.) Hemmung von Transkriptionsfaktoren, die die Wirkung zentraler Mediatoren der Entstehung und Aufrechterhaltung von entzündlichen Vorgängen (IL-1, TNF α , LPS etc.) vermittel (NF κ B, AP-1), Synthese von Lipocortin $\uparrow \rightarrow \text{PLA}_2$ -Aktivität \downarrow

Immunsuppression

Hemmung der Funktion v.a. von Makrophagen und T-Lymphozyten durch Störung der Mediatorbildung oder -wirkung (IL-1, IL-2, INF γ , MIF etc.)

Pharmakokinetik von Glukokortikoiden

gute enterale Resorption; inhalative Glukokortikoide (Beclometason, Budesonid, Flunisolid, Fluticason) besitzen hohen firstpass-Effekt (80-99%) \rightarrow keine systemische Wirkung nach enteraler Aufnahme hepatisch metabolisiert, Cortison (inaktiv) \rightarrow Hydrocortison (Cortisol); Prednison (inaktiv) \rightarrow Prednisolon; Cortisol/Prednisolon: Glukuronidierung, Sulfatierung, renal elimin. Biologische Wirkdauer ($\frac{1}{2}$ - 3 Tage) > Plasma-HWZ ($\frac{1}{2}$ - 5 h)

Dosierung / Applikation von Glukokortikoiden

Cushing-Schwellendosis beachten, Einnahmezeit: Hauptdosis morgens 6⁰⁰-8⁰⁰. Absetzen von Glukokortikoiden: langsame Reduktion der Dosis über Wochen bis Monate nach längerer Therapie (NNR-Suppression)
Applikationsort: lokal, oral, i.v. (in Ausnahmen bei hochakuten Krankheiten), inhalativ: bei Asthma bronchiale (Prophylaxe, Behandlung)

Unerwünschte Wirkungen (Dauertherapie)

eine Einzeldosis ist in der Regel ohne Nebenwirkungen

oral, lokal

- Infektanfälligkeit † (immunsupressiv, antiphlogistisch)
- Magen-Darm-Geschwüre, Reaktivierung! (Wundheilung ↓), Pankreatitis
- Osteoporose (Eiweißabbau, Ca²⁺-Verlust, Phosphatclearance ↑), Osteoklastenaktivität ↑, Osteoblastenaktivität ↓, katabole Wirkung
- Wachstumshemmung (Kinder); Myopathie (Eiweißabbau)
- diabetogen (KH-Stoffwechsel, Gluconeogenese†), Hyperlipoproteinämie
- ZNS: Unruhe, Euphorie, Depression, Persönlichkeitsveränderungen
- Haut: Steroid-Akne, Striae, Atrophie, Teleangiektasien
- Auge: Katarakt, Glaukom
- NNR-Insuffizienz/Atrophie (Gefahr v.a. bei plötzlichem Absetzen nach Dauertherapie)
- Cushing-Syndrom (Fettverteilung, Hypertonie (mineralokortikoide Wirkung)
- Schwäche, Müdigkeit, Persönlichkeits veränderungen, Frauen: Hirsutismus, Amenorrhoe)

Relative Kontraindikationen

Ulkusanamnese, bestehende Ulzera Psychosen Glaukom Kindesalter (Wachstumshemmung) (schwere) Osteoporose Infektionen (v.a. viral) Hypertonie, Diabetes mellitus Schwangerschaft, Stillzeit

Therapeutische Anwendung von Glukokortikoiden

Substitutionstherapie 20-35 mg Cortisol (2/3 morgens, 1/3 abends) bei Belastungen (Unfall, Infektionen etc.): 5-10 fache Menge

Prim. NNR-Insuff. (M.Addison) in Komb. mit Mineralokortik. (Fludrocortison), sekundäre NNR-Insuffizienz (HVL-, Hypoth.-Insuffizienz)

"pharmakodynamische" Therapie antiallergisch, antiphlogistisch, immunsuppressiv; meist deutlich höhere Dosen als bei Substitutionstherapie; Mittel der Wahl in der Regel: Prednisolon

- rheumatische Erkrankungen (Arthritis, Karditis); Kollagenosen (SLE etc.)
- allergische Erkrankungen, autoimmunologische Erkrankungen
- Asthma bronchiale (inhalative Glukokortikoide, Prednisolon)
- Hauterkrankungen (Ekzeme etc.)
- Morbus Crohn
- Sarkoidose
- Hirnödem (Dexamethason)
- Lymphozytäre Leukämien, Lymphome Proliferationshemmung, proapoptotisch (Prednisdolon, Dexamethason)
- Transplantationen

11.2 Pharmakotherapie des Asthma bronchiale (Stufenschema)

Stufe 1

(intermittierende Beschwerden, tagsüber: ≥ 2 x pro Woche, Symptome nachts : ≥ 2 x pro Monat) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Stufe 2

(leicht persistierend, Symptome tagsüber: < 1 x pro Tag, Symptome nachts: > 2 x pro Monat)

bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Dauertherapie: Glukokortikoid in niedriger Dosierung inhalativ alternativ (bei Kindern): Degranulationshemmer

Stufe 3

(mittelgradig persistierend, Symptome tagsüber: täglich, Symptome nachts: > 1 x pro Woche)

bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Dauertherapie: Glukokortikoid in mittlerer Dosierung inhalativ lang-wirksames β_2 -Sympathikomimetikum inhalativ/oral zusätzlich evtl. retardiertes Theophyllin

Stufe 4

(schwer persistierend, Symptome tagsüber: ständig, Symptome nachts: häufig) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Dauertherapie: Glukokortikoid in hoher Dosierung inhalativ; Glukokortikoid oral (z.B. 25-50 mg Prednisolon pro Tag; langsame Dosisreduktion nach Besserung); lang-wirksames β_2 -Sympathikomimetikum inhalativ/oral; zusätzlich evtl. retardiertes Theophyllin; ab Stufe 2 können Leukotrien-Rezeptorantagonisten (z.B. Montelukast) zusätzlich gegeben werden (klinischer Nutzen fraglich). Stellenwert der lang-wirksamen β_2 -Sympathikomimetika derzeit umstritten

Kapitel 12

Analgetika

12.1 Nozizeptoren

Freie Nervenendigunger	n von nozizeptiven A δ - und C-Fasern		
Fasertyp	Funktion	Faserdurchmesser	Leitungsgeschwindigkeit
$A\alpha$	Motoneurone, primäre Mus-	$15~\mu\mathrm{m}$	70-120 m/s
	kelspindelafferenzen		
$\mathrm{A}eta$	Hautafferenzen für	$8~\mu\mathrm{m}$	30-70 m/s
	Berührung und Druck		
$\mathrm{A}\gamma$	Motorisch zu Muskelspin-	$5~\mu\mathrm{m}$	15-30 m/s
	deln		
$\mathrm{A}\delta$	Hautafferenzen für Tempe-	$<3 \mu \mathrm{m}$	12-30 m/s
	ratur und Nozizeption		
В	Sympathisch präganglionär	$3~\mu\mathrm{m}$	3-15 m/s
\mathbf{C}	Hautafferenzen für Tempe-	$1~\mu\mathrm{m}$	0.5-2 m/s
	ratur und Nozizeption	•	·
	Sympathische postgangli-	marklos!	
	onär		

- thermische Nozizeptoren (>45°C oder <5 °C) myelinisierte A δ -Fasern
- $\bullet\,$ mechanische Nozizeptoren (Druck, Berührung, Vibration) A $\delta\textsc{-}$ Fasern
- polymodale Nozizeptoren (mech., therm., chem.) micht-myelin. C-Fasern

Plasmamembran freier nozizeptiver Nervenendigungen besitzt Proteine, die thermische, mechanische oder chemische Reize in ein depolarisierendes elektrisches Potential umwandeln. Bsp.: Vanilloid aktivierter Kationenkanal (TRPV1)-Vorkommen v.a. auf C-Faser-aktiviert durch Wärme (>43 °C oder H^+ -Ionen, pH <6)

sowie Capsaicin TRPV1-homologer Kationenkanal (TRPV2) Vorkommen v.a. auf $A\delta$ -Fasern, aktiviert durch Hitze (>52 °C)

Chronifizierung des Schmerzesbei pathologischen Zuständen: Periphere Sensibilisierung

durch Bradykinin, Histamin, Serotonin, Prostaglandine, K^+ , H^+ , ATP \to Auslösung pathologischer Zustände: Hyperalgesie Allodynie, spontane Schmerzen

12.2 Nozizeptive Synapse des Hinterhorns

Transmitter exzitatorischer nozizeptiver A δ - un C-Fasern

Glutamat: Wirkung über AMPA-Rezeptoren \rightarrow schnelle synaptische Potentiale

Substanz P, Calcitonin gene related peptide (CGRP): Wirkung über G-Protein gekoppelte, modulatorische Rezeptoren (PIresponse) →langsame exzitatorische postsynaptische Potentiale

Chronifizierung des Schmerzes bei pathologischen Zuständen: Zentrale Sensibilisierung

Bei starken persistierenden peripheren Schmerzreizen kommt es zur repetitiven Aktivierung von C-Fasern \rightarrow starke, repetitive Aktivierung von AMPA- und NMDA-Rezeptoren \rightarrow Potenzierungseffekt an der glutamatergen Synapse ähnlich LTP, wobei NO und evtl. Prostaglandine als retrograde Verstärker der synaptischen Transmission fungieren. Außerdem kommt es durch starke Depolarisation zur Aufhebung des Mg^{2+} -Blocks von NMDA-Rezeptoren \rightarrow wind-up-Phänomen / chronische Schmerzen. Zentrale Sensibilisierung kommt auch bei Synapsen des Thalamus und der Grosshirnrinde vor.

12.3 Deszendierendes anti-nozizeptives System

Ursprungskerne: Periaquäduktales Grau, Locus coeruleus, Nucleus raphe magnus

Periaquäduktales Grau

u.a. durch Tractus spinomesencephalicus innerviert, besitzt selbst Opiat-Rezeptoren, außerdem beeinflußt von Cortex und Thalamus. Neurone des periaquä-duktalen Graus aktivieren serotoninerge Neurone des Nucleus raphe magnus

- → Aktivierung inhibit. opioiderger Interneurone im Hinterhorn (Laminae I,II,V)
- \rightarrow Freisetzung von Enkephalinen \rightarrow prä- und postsynaptische Hemmung nozizeptiver Synapsen

12.4 Analgetika

- nicht-opioide Analgetika / antipyretische Analgetika
 - antiphlogistische/saure Analgetika;
 - nichtsteroidaleAntiphlogistika / Antirheumatika (NSAID, NSAR)
 - nicht-saure Analgetika: Anilinderivate (z.B. Paracetamol)
- narkotische / opioide Analgetika
 - schwach/mittelstark wirksame (nicht BtM-pflichtig)
 - stark wirksame (BtM-pflichtig)
- Koanalgetika / Adjuvantien

12.4.1 antiphlogistische/saure Analgetika s. "Antiphlogistika"

Acetylsalicylsäure Diclofenac Wirkung v.a. durch Hemmung der Cyclooxygenase (COX-1 und COX-2)

erwünschte Wirkqualitäten

analgetisch v.a. Prostaglandin E sensibilisiert Nozizeptoren für schmerzauslösende Mediatoren (z.B. Bradykinin, Serotonin); Wirkung auch auf spinaler Ebene wirksam v.a. bei: Entzündungsschmerz, den meisten Formen von Kopfschmerz, Zahnschmerzen, Dysmenorrhoe, Arthritis, deg. Erkrankungen etc.

antiphlogistisch / antipyretisch

s. "Antiphlogistika"

12.4.2 Nicht-saure Analgetika

gute analget. und antipyret. Wirkung, geringe antiphlogistische Wirkung Wirkmechanismus unklar

12.4.3 Anilinderivate

Paracetamol (Acetaminophen)

Einsatz und Dosierung

- analgetisch, erste Wahl bei Säuglingen und Kindern sowie während Schwangerschaft und Stillzeit (v.a. nicht-viszerale Schmerzen)
- antipyretisch
- Dosierung Erwachsene: Einzeldosis 500-1000 mg, Tageshöchstdosis 4g Kinder: 50 mg/kg in 2-3 Einzeldosen (Saft, Supp.)

Pharmakokinetik

gut resorbiert, überwiegend hepatisch metabolisiert (Konjugation); Plasma HWZ: 2h, Wirkdauer 4-6 h

unerwünschte Wirkungen

allgemein gut verträglich; cave: Überdosierung

Vergiftung

ab 6-10 g/Tag: Erschöpfung der Inaktivierung toxischer Metabolite (N-Acetylbenzochinonimin) in der Leber durch Konjugation an Glutathion \rightarrow Bindung reaktiver Zwischenprodukte an Leberzellproteine \rightarrow Leberzellnekrosen

Klinik

Übelkeit, Erbrechen, abdominelle Schmerzen (2-14 h nach Ingestion); Leberversagen (12-36 h nach Ingestion)

Therapie

primäre Elimination (Erbrechen, Magenspülung), N-Acetylcystein (bis 12 h nach Ingestion); Kontraindikationen: Leberinsuffizienz

12.4.4 Pyrazolderivate

Metamizol

Einsatz und Dosierung

- analgetisch, bei schweren akuten und chronischen Schmerzzuständen, Koliken (spasmolyt. Effekt)
- antipyretisch (Reservemittel bei hohem Fieber)
- Dosierung: Einzeldosis 500-1000 mg (p.o., i.v., Supp.) Injektion unter Puls-, Atem- und RR-Kontrolle Tageshöchstdosis
 5 g

Pharmakokinetik

gut wasserlöslich (auch i.v.-Gabe möglich); gute Resorption, rasche Metabolisierung zu teilw. aktiven Metaboliten; Wirkdauer 4 h

unerwünschte Wirkungen

allergische Reaktionen, anaphylakt. Schock (v.a. nach i.v.-Gabe); Agranulozytose (1 Fall pro 20.000 Anwendungen)

Kontraindikationen

instabile Kreislaufsituation; Säuglinge und Kleinkinder; Schwangerschaft

12.4.5 narkotische / opioide Analgetika

Opiate Hauptalkaloide des Opiums z.B. 12% Morphin, 0,5% Codein

Opioide Endogene Substanzen (Endorphine, Dynorphine, Enkephaline) Synthetische / halbsynthetische Substanzen

Opioid-Rezeptoren

 μ -Opioidrezeptoren: Haupt-Angriffsort der meisten klinisch eingesetzten Opioide; vermittelt u.a. Analgesie, Atemdepression, Euphorie, Abhängigkeit, Miosis

 $\kappa\text{-}\textsc{Opiatrezeptoren:}$ vermitteln u.a. spinale Analgesie, Dysphorie, Sedierung

 $\delta\text{-}\textsc{Opiatrezeptoren:}$ vermitteln u.a. spinale Analgesie

Wirkungen

Zentral

- Schmerzhemmung
 - Aktivierung absteig. Schmerz-hemmender Systeme (Angriff im Bereich des periaquäduktalen Graus)
 - Unterdrückung nozizeptiver Impulse auf spinaler Ebene
 - Beeinflussung der Schmerzerlebens (limb. System)
 - Periphere Wirkung durch Hemmung nozizept. Nervenendigungen v.a. im Rahmen von Entzündungen

- Atemdepression (bei Schmerzpatienten gering!) CO2-Empfindlichkeit ↓, Hemmung des Prä-Bötzinger-Komplex (Hirnstamm)
- Sedierung; Anxiolyse, Tranquilisierung; euphorisierend; antitussiv (Hemmung des Hustenreflex); emetisch (Stim. der Chemorezeptor-Triggerzone); miotisch (Aktivierung des Edinger-Westphal-Kerns)
- Barorezeptorenreflex $\downarrow \rightarrow$ orthostatische Hypotonie

Peripher

- Magen-Darm-Trakt: Tonus ↑, Motilität ↓; spastische Obstipation (+ antisekretorisch b. Diarrhoe); Magenentleerung ↓, Gallenfluß ↓ (Konstriktion d. Sphinkter Oddi)
- Urogenital-Trakt; Harnblasenentleerung ↓ (Konstriktion des Sphinkter vesicae)
- Blutgefäßtonus ↓; Histaminfreisetzung aus Mastzellen

Kontraindikationen

Bei starken Schmerzen sind alle Kontraindikationen relativ

Opiat-Abhängigkeit in der Anamnese
Astma brochiale, andere Lungenerkrankungen
(Hustenreflex↓)
Schwangerschaft, Stillzeit

Bewusstseinsstörungen
Atemstörungen (Atemdepression)

wichtige unerwünschte Wirkungen bei Dauerschmerztherapie

100% Obstipation (dosisabhängig)

20% Übelkeit, Erbrechen (individueller Früheffekt; in den ersten 5-7 Tagen)

20% Sedierung (dosisabhängig, bei Langzeitanwendung gering)

1-2% Verwirrtheit, Halluzinationen

praktisch nie: Atemdepression, Abhängigkeit

Opiatintoxikation

Leitsymptomtrias: Bewusstseinstörung; Atemdepression; Miosis Therapie: Seitenlage, Überwachung der Vitalfunktionen; Naloxon 0,4-2 mg i.v. über 2-3 min (evtl. auch i.m. oder s.c.); ggf. wiederholen

Reine Agonisten

Morphin und seine Derivate)

 $\label{lem:morphin} \begin{tabular}{ll} Morphin & nach oraler Aufnahme hoher first-pass-Effekt (Bioverfügbarkeit 20-40\%), mäßig ZNS-gängig; v.a. Glukuronidierung an OH-Gruppen in Position 3 und 6 \\ \end{tabular}$

- \rightarrow Morphin-3-glukuronid (55%), unwirksam, renal ausgeschieden
- \rightarrow Morphin-6-glukuronid (10%), wirksam!, ZNS-gängig, renal ausgeschieden

Einsatz: Analgetikum, oral (Retardform), i.m., s.c.

Codein natürlich vorkommendes Opiat, selbst unwirksam; gute Resorption (Bioverfügbarkeit 40-60%), Methylgruppe in Position 3 schützt vor Abbau. 10% wird hepatisch durch CYP2D6 zu Morphin demethyliert (akt. Prinzip) Einsatz: Analgetikum, Antitussivum (Gabe: oral), Suchtgefahr gering

Heroin (Diacetylmorphin), synthetisches Opioid, selbst unwirksam, nach i.v.-Gabe extrem schneller Übertritt in das ZNS, dort Deacetylierung zu Morphin

Weitere reine Agonisten

(schwach wirksame Opioide der WHO Stude 2)

Tilidin und Naloxon Tilidin (Agonist): Prodrug; Bioverfügbarkeit: 60-70%, Wirkdauer 3-5 Std. Naloxon (Antagonist): Bioverfügbarkeit: 1-2%, Wirkdauer 1 Std.

Einsatz: Analgetikum (p.o.): Bei erster Leberpassage wird Tilidin aktiviert, Naloxon inaktiviert; bei parenteraler Gabe oder Überdosis hemmt Naloxon die suchterzeugende Wirkung von Tilidin.

Weitere reine Agonisten

(hohe analgetische Potenz)

Levomethadon, **Methadon** 4-fach stärker und länger wirksam als Morphin, hohe Bioverfügbarkeit (92%), Plasma-HWZ: 1-1,5 Tage; langsame Toleranzentwicklung

Einsatz: Analgetikum (p.o., s.c., i.m.); Substitutionstherapie (p.o.)

Hydromorphon 7,5-fach stärker wirksam als Morphin; Plasma HWZ: 3 Std.

Fentanyl hochpotent (100-fach stärker Wirksam als Morphin), Wirkdauer 20-30 min) Einsatz: Neuroleptanalgesie (i.v.); chron. Tumorschmerztherapie (transdermal), Wirkdauer 72 Std.

Partielle Agonisten

Buprenorphin hochpotent (30-40-fach potenter als Morphin), maximale analgetische Wirkung geringer als die des Morphins; Bioverfügbarkeit unter 20%, Wirkdauer 6-8 Std.; mäßiges Abhängigkeitspotential, durch Naloxon nicht voll antagonisierbar (cave: Atemdepression); Einsatz: Analgetikum (p.o., s.l., i.m.)

Pentazocin schwacher partieller Agonist am μ -Opioid-Rezeptor, Agonist am κ -Opioid-Rezeptor; in Deutschland nicht mehr im Handel

μ-Opioid Agonisten mit hemmender Wirkung auf NA/5-HT-Wiederaufnahme

Tramadol schwach wirksames Opioid der WHO Studie 2, Bioverfügbarkeit: 60-70% Wirkdauer: 6 h; Einsatz: Analgetikum (p.o., i.v., s.c.); Razemat hemmt NA/5-HT Wiederaufnahme; analgetische, atemdepressive und suchterzeugende Wirkungen sind deutlich geringer als bei klassischen Opioiden; häufig Übelkeit aufgrund 5-HT Wiederaufnahmehemmung

Tapentadol Wirkungsgrad gleicht stark wirksamen Opioiden, weniger Inzidenz von unerwünschten Nebenwirkungen

Antagonisten

Naloxon Antagonist an allen Opioid-Rezeptoren; Plasma-HWZ: 2 Std., Bioverfügbarkeit 2%, kein Effekt bei Normalpersonen, Entzugssyndrom bei Abhängigen; Einsatz: akute Opiat-Intoxikation, Diagnose einer Opiat-Abhängigkeit, Abhängigkeitsprophyl (Tilidin + N)

Methylnaltrexon Antagonist v.a. am μ -Opioid-Rezeptor; Plasma-HWZ: 8 Std., Bioverfügbarkeit nach oraler Gabe gering \rightarrow s.c.-Gabe; als quartäres Amin keine ZNS-Gängigkeit. Einsatz: Behandlung Opioid-induzierter Obstipation; zur Reduktion des Rückfallrisikos nach Alkoholentzug

12.5 Toleranz, Abhängigkeit

Toleranz

Abnehmende Wirkung nach wiederholter Gabe bei gleicher Dosis; bei Opiat-Toleranz v.a. pharmakodynamische Mechanismen (z.B.: Rezeptorzahl \downarrow ; Ansprechen nachgeordneter Signaltransduktionsvorgänge \downarrow)

Abhängigkeit

Körperliche Abhängigkeit

Auftreten von Entzugssymptomen (meist vegetativer Natur) bei abruptem Absetzen nach chronischer Einnahme; Entzugssymptomatik: Gänsehaut, Schweißausbruch, Tränenfluß, Unruhe, Tremor, Glieder-Muskel-Schmerzen, Muskelspasmen, Gliederschmerzen, Schlaflosigkeit, Übelkeit/ Erbrechen, Tachykardie, RR ↑; Häufig eng mit Toleranzphänomenen verknüpft

Psychische Abhängigkeit

Unstillbares Verlangen ("Craving"), Kontrollverlust. Verhaltensweisen, die zur Einnahme führen, werden verstärkt, Einnahme wird als "Belohnung" ("reward") empfunden

Reward-Systeme z.B.: im mesolimbischen dopaminergen Systems, Neurone des ventralen Tegments vermitteln "reward" Dopaminfreisetzung durch Opioide u.a. erhöht

12.6 Koanalgetika / Adjuvantien

12.6.1 Hemmer neuronaler Natrium und Calcium Kanäle

Lidocain(Pflaster, 5%) topische Hemmung peripherer Na⁺ Kanäle

Ziconitid Hemmung der spinalen nozizeptiven Übertragung durch Blockade v.a. von präsynaptischen Ca²⁺ Kanälen (Neurotransmitterfreisetzung \downarrow)

Carbamezapin

periph. Lamotrigin (s.Antikonvulsiva); hemmen Sensibilisier-ung + ektopische Erregung von Nozizeptoren durch $\mathrm{Na^{+}}$ und $\mathrm{Ca^{2\bar{+}}}$ Kanäle

Gabapentin (s. Antikolvulsiva)

Nicht-selektive Noradrenalin Serotonin Wiederaufnahmehemmer 12.6.2

Nortriptylin (s. Antidepressiva)

Hemmung der Wiederaufnahme von Noradrenalin und Serotonin im synaptischen Spalt \rightarrow erhöhte Freisetzung von Enkephalinen in Rückenmark, d.h. prä- und post-synaptische Hemmung der spinalen nozizeptiven Übertragung. Verbesserung der chronischen Schmerz-assozierten negativen Symptome wie Depression, Verlust des Selbstwertgefühls

Chronische Schmerzkrankheiten 12.7

- 1. Verlauf ohne offensichtliche periphere Pathologie: z.B. Fibromyalgie, Spannungskopfschmerzen, Migräne, zentrales Schmerzsyndrom
- 2. Verlauf mit Pathologie: Inflammatorische Schmerzen (z.B. Rheumatoide Arthritis, Morbus Bechterew, Pankreatitis), Neuropathische Schmerzen (Phantomschmerzen, Post-Herpes Neuralgie, Diabetische Neuropathie, Trigeminus-Neuralgie), Tumor-bedingte Schmerzen (Knochenmetastasen, Pankreaskarzinom)

12.7.1Stufenplan der WHO für Behandlung chron. Tumorschmerzen

Stufe 1 - Nicht-opioide Analgetika

Paracetamol/ASS	500-1000 mg	alle $4-6$ h	\max . 6000 mg
Diclofenac	25-50 mg	alle 4-8 h	$\max. 200-300 \text{ mg}$
Ibuprofen	500 mg	alle 4-8 h	$\max. 2400 \text{ mg}$
Metamizol	500-1000 mg	alle 4-6 h	\max . 6000 mg

Stufe 2 - Mittelstarke Opiate/Opioide + ggf. nicht-opioide Analgetika

Codein	30-60 mg	alle 4-6 h	\max . 360 mg
Dihydrocodein ret.	$60\text{-}120~\mathrm{mg}$	alle $8-12 \text{ h}$	\max . 360 mg
Tramadol ret.	100 mg	alle $8-12 h$	\max . 600 mg
Tilidin+Naloxon	50 + 4 mg	alle 2-4 h	max. 600 mg Tilidin

Stufe 3 - Starke Opiate/Opioide + ggf. nicht-opioide Analgetika

Morphin	5-500 mg	alle 4 h	keine Obergrenze (BtM:
			2000 mg
Morphin retard .I	10-500 mg	alle 8-12 h	
Morphin retard .II	20-500 mg	alle 12-24 h	
Buprenorphin	0,2-0,6 mg	alle 6-8 h	\max . 4 mg
Fentanyl(transdermal)	0,6-12 mg	alle 48-72 h	

Stufe 4 - Starke Opioide kontinuierlich i.v., s.c., peridural

Begleittherapie unerw. Wirkungen: Laxantien, Antiemetika, evtl. Methylnaltrexon. Koanalgetika / Adjuvantien: Antidepressiva, Glukokortikoide, Antikonvulsiva

12.7.2 Therapieempfehlung bei chronischen Schmerzen

Degenerative Gelenkerkrankungen Inflammatorische Schmerzen

 $R \ddot{u} ckenschmerzen$

Post-Herpes Neuropathie Trigeminus-Neuralgie Diabetische Neuropathie

Neuropathische Schmerzen aller Art als Mittel der 1. oder

2. Wahl

Starke, therapieresistente neuropathische Schmerzen aller

Art als Mittel der 3. oder 4. Wahl

Therapie-resistente Schmerzen wenn andere Analgetika er-

folglos

Migräne

Paracetamol (1. Wahl) NSAR (2. Wahl)

NSAR; Opioidanalgetika bei refraktären Schmerzen

Vergleichbare Wirkung bei NSAR und Paracetamol;

Opioidanalgetika bei refraktären Schmerzen Gabapentin (1. Wahl), Lidocain Pflaster (5%)

Carbamezapin (1. Wahl); Lamotrigin

Gabapentin

Desipramin; Nortriptylin

Oxycodon, Morphin, Methadon, Fentanyl (Transdermal)

Ziconitid (intrathekal)

Triptane; β -Blocker (prophylaktisch)

Kapitel 13

Sexualhormone

Wirkmechanismus

Bindung an nukleären Rezeptor \rightarrow Regulation transkriptioneller Vorgänge

Beispiel: Östrogenrezeptor

13.1 Östrogene

Natürliche Östrogene; geringe Bioverfügbarkeit

Östradiol Östriol Östron

Synthetische Östrogene

konjugiert Estradiolvalerat sulfat./glukuron. Estradiol

ethinyliert Mestranol (Vorstufe d. Ethinylestradio

ol)

vollsynthetisch Fosfestrol

Indikationen

- Bestandteil oraler Kontrazeptiva (häufig Ethinylestradiol)
- ovarielle Insuffizienz
- Substitutionstherapie bei der Frau (Klimakterium, nach Hysterektomie) meist werden natürliche Östrogene mit Gestagenen kombiniert (Estradiol, Estradiolvalerat, konj. Estradiol; oral/transdermal) bei komb. Gabe mit Gestagen ist Endometriumkarzinom-Risiko nicht erhöht alleinige Gabe von Östrogenen nur bei Frauen nach Hysterektomie
 - günstiger Effekt auf klimakterische Beschwerden
 - Prophylaxe der Osteoporose (Knochenresorption ↓, Hüftfrakturrisiko ↓)

aber: Mammakarzinomrisiko \uparrow , Herzinfarkt-/Schlaganfallrisiko \uparrow , Thromboembolierisiko $\uparrow \rightarrow$ Langzeiteinsatz obsolet (WHI-Studie 2002). Kurzfristiger Einsatz zur Linderung klimakterischer Beschwerden vertretbar.

Gabe: oral oder transdermal

unerwünschte Wirkung

- erhöhtes Thromboembolie-Risiko (u.a. Fakt. VII, VIII + Fibrinogen \uparrow ; Prot. S + AT-III \downarrow) \rightarrow kardiovaskuläre Komplikationen (insb. bei zusätzl. Risikofaktoren)
- Endometriumhyperplasie (bei Dauer-Monotherapie ohne Gestagen)
- Übelkeit, Erbrechen (zu Beginn der Therapie)
- Wasserretention ↓ Mammakarzinomrisiko ↑

Kontraindikationen

Lebererkrankungen, Thromboembolien, Mammakarzinom, Schwangerschaft

13.2 Selektive Estrogen-Rezeptor Modulatoren (SERM)

Bindung von SERMs an Östrogenrezeptor führt zu einer Konformationsänderung, die eine Interaktion mit bestimmten Koaktivatoren und Korepressoren ermöglicht.

 \rightarrow SERMs wirken Gewebe-abhängig agonistisch oder antagonistisch

Indikationen: Mamma-Ca (Tamoxifen), postmenopausale Osteoporose (Raloxifen)

Clomiphen

überwiegend antagonistisch

Indikationen: Anregung der Ovulation bei Sterilität (vermehrte Gonadotropinausschüttung durch Aufhebung der negativen Rückkopplung)

13.3 Antiöstrogene

Fulvestrant

Indikation: fortgeschrittenes Ösrogen-Rezeptor positives Mamma-Ca bei postmenopausalen Frauen

13.4 Aromatase-Hemmer

Formestan Exemestan

Anastrozol

Indikation: fortgeschrittenes Mamma-Ca

13.5 Gestagene

13.5.1 Synthetische Gestagene

Nortestosteron-Derivate Norethisteron(acetat) Desogestrel/Etonogestrel

androgen Levonorgestrel

antiandrogen Dienogest

 17α -Hydroxyprogesteron-

Derivate

antiandrogen Clormadinon(acetat) Cyproteron(acetat)

Medroxyprogesteron

Medrogeston

antiandrogen / antiminera- Drospirenon

1 .1 ·1

lokortikoid

Indikationen

- Bestandteil oraler Kontrazeptiva
- Hormongabe in der Menopause
- Dysmenorrhoe, Endometriose, Zyklusregulation, Mastopathie, prämenstruelles Syndrom (therap. Wert umstritten)
- fortgeschrittenes Mamma-, Endometrium-, Prostatakarzinom

unerwünschte Wirkungen

(selten)

Übelkeit/Erbrechen Libido-Veränderungen Blutungsunregelmäßigkeiten

evtl. Gewichtszunahme, Akne vaginale Sekretionssteigerung (Candi-

diasis)

Kontraindikationen

schwere Leberfunktionsstörungen, Schwangerschaft

13.6 Antigestagene

Mifepriston (RU486)

seit 1999 in Dtl. zugelassen zur Abortinduktion durch Luteolyse bis zum 49. Tag nach Beginn der letzten Regelblutung; orale Gabe von Mifepriston + 2 Tage später: Prostaglandin-E-Analogon (z.B. Misoprostol oral oder Gemeprost vaginal) zur Förderung der Uteruskontraktion; Wirkungsweise: Blockade wachstumsfördernder und kontraktionshemmender Effekte von Progesteron auf Endometrium und Myometrium;

unerw. Wirkungen

Blutungen, schmerzhafte Uteruskontraktionen, Übelkeit, Erbrechen, Durchfall, Kopfschmerzen

13.7 Hormonale Kontrazeptiva (Antikonzeptiva)

Verhütung der Schwangerschaft durch Zufuhr von Östrogenen und/oder Gestagenen

Östrogenkomponente Ethinylestradiol (gute orale Wirksamkeit; 20-50 μ g/d)

Gestagenkomponente Levonogestrel, Norethisteronacetat, Dienogest, Desogestrel, Norgestinat, Chlormadinonacetat

(schwach antiandrogen)

Wirkmechanismus

• Hemmung der Ovulation (Hemmung der LH/FSH-Freisetzung)

- direkter Effekt auf Follikelreifung und Gelbkörperfunktion
- Verminderung der Tubenmotilität (v.a. Gestagene)
- erhöhte Viskosität des Zervixschleimes (v.a. Gestagene)

13.7.1 Konzepte

Einstufen-Kombinationspräparat

leichbleibende Dosierung über 21 Tage und niedriger Östrogenanteil von 20-50 μ g. Ethinylöstradiol + Gestagen; sicherste Verhütungsmethode mit oralen Kontrazeptiva 3-4 Tage nach Absetzen: Abbruchblutung

Zwei-/Dreistufen-Kombinationspräparat

Zweiphasen- /Sequenzpräparat

Monopräparat ("Minipille")

kontinuierliche Gabe geringer Dosen eines Gestagens \rightarrow primär periphere Effekte zeitl. exakte Einnahme erforderlich, keine sichere Antikonzeption

Depot-Gestagene

Injektion von Gestagen i.m. alle 3 Monate oder als Implantat bei unzuverlässiger Einnahme von Kontrazeptiva.

$, postkoitale\ Kontraze ption ``$

Levonorgestrel oral 2x 750 μ g oder einmalig 1,5 mg, spätestens 72 Std. postkoital eingesetzt; hemmt Ovulation und verhindert Nidation; unerwünschte Wirkungen: Übelkeit, Erbrechen, Kopfschmerzen, Bauchkrämpfe. Progesteonrezeptormodulator Ulipristalacetat: bis zu 5 d postkoital eingesetzt

unerwünschte Wirkungen

allgemein selten bei neueren Präparaten mit niedriger Dosierung

- Thromboembolierisiko (durch Östrogenanteil); Risikofaktoren: bekannte Thromboembolieneigung; Alter > 35 Jahre, Übergewicht, Hypertonie, Rauchen
- neoplastische Erkrankungen ? evtl. Verminderung für Endometrium- und Ovarialtumoren; Lebertumoren ? Mammakarzinomrisiko nach Ergebnissen der CARE-Studie (2002) nicht erhöht

Gründe für "Pillenversager"

- Einnahmefehler
- Diarrhoe
- ullet Arzneimittelwechselwirkungen; z.B. Induktion von CYP3A durch Barbiturate, Phenytoin oder Rifampicin o vermehrter Abbau von Ethinylestradiol

Kontraindikationen

thromboembolische Erkrankungen, kardiovaskuläre Erkran-

Hypertonie > 160/100

kungen (auch anamnestisch)

Diabetes mellitus, Fettstoffwechselstörung starkes Zigarettenrauchen (> 15 / Tag) Mamma-, Korpus-, Lebertumoren

Lebererkrankungen

13.7.2 Sicherheit verschiedener hormonaler Kontrazeptiva (Pearl-Index)

Ovulationshemmer: 0,1-1.0; "Minipille": 0,5-3,0; Dreimonatsspritze (Gestagen): 0,3-1,5; Gestagen-haltiges IUP: 0,1; Subdermales Gestagenimplantat: 0; Postkoitale Kontrazeption: 1-3

13.8 Androgene

Testosteron ist gut resorbierbar, unterliegt jedoch einem sehr hohen first-pass-Effekt; Keine orale Anwendung; Wirkungsverlängerung nach i.m.-Gabe oder transdermaler Gabe durch Acylierung.

13.8.1 seynthetische Androgene

Testosteronproprionat

Testosteronenantat

Testosteronundecanoat

medizinische Indikationen: primärer (testikulärer) / sekundärer (hypothalamisch-hypophysärer) Hypogonadismus.

unerwünschte Wirkungen

(bei Überdosierung): Leberfunktionsstörungen, Akne, Seborrhoe, Alopezie, Übelkeit, Erbrechen, psych. Veränderungen (Libido, Aggressivität), Wasserretention, Hemmung der Spermatogenese; Einsatz bei Klimakterium virile: häufigere Inzidenz von unerwünschten kardiovaskulären Ereignissen!

13.8.2 Androgenrezeptor-Antagonisten

Cyproteronacetat

auch gestagene Eigenschaften) u.a. Hemmung der Gonadotropin-Ausschüttung (gestagener Effekt); fragl. Hepatotoxizität; Indikationen: Behandlung von Virilisierungserscheinungen bei der Frau; Pubertas praecox, Prostatakarzinom

Flutamid

(nicht steroidal)

Einsatz: Prostatakarzinom (nicht steroidal) Einsatz: Prostatakarzinom

13.8.3 5α -Reduktasehemmer

Finasterid

geringe Beeinflussung des Effektes von Testosteron auf Muskulatur/Knochen, negative Rückkopplung, Libido und Potenz bleiben weitestgehend erhalten.

Indikationen: ausgeprägte Prostatahyperplasie, androgenetische Alopezie (umstritten!)

Kapitel 14

Schilddrüse

14.1 Schildrüsenhormone

Thyroxin (T_4)

Prohormon

Trijodthyronin (T_3)

14.1.1 Bildung

Wirkmechanismus

v.a. T_3 gelangt in den Zellkern und bindet an nukleären Rezeptor \rightarrow direkte Rezeptor-DNA-Interaktion \rightarrow Transkriptions-regulation

Wirkung

- \bullet Wachstum, Entwicklung insbesondere ZNS und Skelettsystem; Kretinismus unter $\mathrm{T}_3/\mathrm{T}_4$ Mangel!
- kalorigene Wirkung basaler Energieumsatz ↑, O₂-Verbrauch ↑ u.a. oxidativer Abbau von Fetten und Kohlehydraten; Mechanismus ? v.a. Herz, Skelettmuskel, Leber, Niere; kein Effekt auf: Gehirn, Milz, Gonaden
- metabolische Effekte Cholesterinplasmakonz. ↓ (Abbau zu Gallensäuren ↑); Kohlenhydrat-Abbau ↑ Lipolyse ↑ (lipolyt. Effekt von Katecholaminen ↑)
- kardiovaskuläre Effekte direkte und indirekte Regulation von Chronotropie und Inotropie Beeinflussung von β -Adrenozeptordichte und -empfindlichkeit (erhöht bei Hyperthyreose); Beeinflussung der Expression myokardialer Proteine (MHC α/β , Myosin, Ca²⁺ ATPase)

14.2 Therapeutische Anwendung von L-Tyroxin

- z.B. bei Hypothyreose
- meist lebenslange Dauertherapie mit L-Thyroxin (T_4) (selten T_3)
- Dosis langsam über Wochen steigern (z.B.: 25 μ g-Schritte)
- Gabe 1 x täglich morgens (80% Resorption in nüchternem Zustand, 50-70% mit Nahrung)
- Kontrolle: Klinik, Bestimmung basaler TSH-Spiegel
- Erhaltungsdosis meist: $2 \mu g/kg/Tag$

unerwünschte Wirkungen

- Hyperthyreose (bei Überdosierung)
- bei kardiovaskulär vorbelasteten Patienten nach langer Hypothyreose: Myokardinfarktgefahr
- Glukosetoleranz ↓

kontraindikationen

frischer Myokardinfarkt Angina pectoris Myokarditis tachykarde Arrhythmien (relative KI)

Wechselwirkungen

Cumarinwirkung \uparrow , Antidiabetikawirkung \downarrow ; Cholestyramin: T₄ Resorption \downarrow

14.3 Thioharnstoff-Derivate / Thionamide

	Initialdosis	Erhaltungsdosis
Propylthiouracil	$3 \times 50\text{-}100 \text{ mg}$	$3 \ge 25\text{-}50 \ \mathrm{mg}$
Thiamazol	$2 \times 10 \text{ mg}$	$1 \times 2,5-5 \text{ mg}$
Carbimazol	$2-3 \times 10-30 \text{ mg}$	$1~\mathrm{x}$ 5-20 mg

Wirkmechanismus

Hemmung der Hormonsynthese durch Hemmung der Peroxidase in den Follikelzellen der Schilddrüse \rightarrow Iodisationshemmer. Wirkungseintritt nach Tagen bis 2 Wo. (Inkretion fertiger Hormone unbeeinflußt)

Pharmakokinetik

gute enterale Resorption; Carbimazol wird zu Thiamazol metabolisiert

unerwünschte Wirkungen

- Leukopenie, Agranulozytose (<0,5%)
- Exantheme, Pruritus
- Fieber, Gelenkschmerzen
- Cholestase, Übelkeit, Erbrechen

Kontraindikationen

Cholestase, Stillzeit; hämatopoetische Störungen

Indikationen

- primäre Behandlung der Hyperthyreose nach Erreichen der Euthyreose ggf. OP oder Radiojodtherapie
- thyreotoxische Krise, Thioharnstoffderivate, β -Blocker, Glukokortikoide, evtl. Jodid therapeut. Anwendung von Radiojod oder Iodid

14.4 Iodid-Ionen

14.4.1 Kaliumjodid (KJ)

- Physiologischer Jodid-Bedarf: 150-200 μ g/d
- Jodid-Ionen in hoher Konzentration (>5-10 mg/d) hemmen kurzfristig die Freisetzung von T_3/T_4 aus der Schilddrüse (v.a. durch Proteolyse-Hemmung)

Pharmakokinetik

gute enterale Resorption, Wirkungsbeginn: innerhalb von 24 Stunden. Wirkdauer bei Hochdosis-gabe: vorübergehend (Maximum nach 10-14 d)

unerwünschte Wirkungen

Jodismus: Schleimhautreizung im Kopf-Hals-Bereich, Bronchitis, Fieber, Magen-Darm-Störungen (Diarrhoe, Gastroenteritis)

Indikationen

- Prävention der Jodmangelstruma
- Hochdosis-Gabe: nicht Jod-induzierte thyreotox. Krise früher: präoperativ zur Herstellung einer euthyreotischen Stoffwechsellage

14.5 Iodprophylaxe

Folgen Größenzunahme durch lokale Wachstumsfaktoren wie "epidermal growth factor" (EGF) und "insulin-like growth factor I" (IGF I)

 \rightarrow Hyperplasie von Thyreozyten

 $TSH \rightarrow Hypertrophie von Thyreozyten \rightarrow endemische Struma$

normaler Jod-Bedarf: 150-200 $\mu g/d$ (50% davon werden verwertet) 5-15% der deutschen Bevölkerung (F > M) haben einen Jod
mangel

Gefahr lokale Kompressions-/Verdrängungskomplikationen Jod-induzierte Hyperthyreose Entwicklung einer funktionellen Autonomie

Prophylaxe jodiertes Speisesalz, jodhaltige Nahrung (Meeresfische). Kaliumjodid 100-200 μ g/d in Tablettenform (konst. Aufnahme)

Therapie Jodid + evtl. T_4 (100-200 $\mu g/d$) ggf.: operativ, Radiojodtherapie

Kapitel 15

Antineoplastika

Nebenwirkungen der Zytostatikatherapie

Schnell proliferierende Gewebe sind am stärksten betroffen! Frühreaktionen: Erbrechen, Übelkeit, Fieber, allergische Erscheinungen; Spätreaktionen: Knochenmarkschädigungen, gestörte Hämatopoese; gastrointestinale Wirkungen durch Beeinträchtigung der Schleimhäute; Haarausfall; Reproduktionstrakt: Infertilität, Teratogenität hepatotoxische Wirkungen; mutagene, teratogene und kanzerogene Wirkungen Indirekte Wirkungen: Immunsuppression: gehäuftes Auftreten von bakteriellen, viralen und Pilzinfektionen; Erhöhung des Harnsäurespiegels: Hyperurikämie, Harnsäurenephropathie; Paravasate: Phlebitis oder Nekrose

15.1 Antimetabolite

Hemmung der an der Nukleosid-Synthese beteiligt. Enzyme; Einbau als falsche Basen in DNA/RNA \rightarrow Hemmung v. Polymerasen und DNA-/RNA-Strangabbruch

Substanzen	Hemmung der	Falsche Base?
Folsäure-Analoga		
Methotrexat	Dihydrofolsäurereduktase	-
Purin-Analoga		
6-Mercaptopurin	Adenylosuccinatsynthetase	+
6-Thioguanin	IMP-Dehydrogenase	+
Pentostatin	Adenosindesaminase	+
Pyrimidin-Analoga		
5-Fluorouracil	Thymidilatsynthase (FdUMP)	+ (FUMP)
Cytarabin	-	+
Gemcitabin	-	+

15.1.1 Hemmer der Dihydrofolatreduktase

Methotrexat

Wirkmechanismus

Gestörte Thymidin- und Purinsynthese; Kinetik: Applikation: oral, parenteral; Intrazelluläre Umwandlung in Polyglutamat-Derivate \rightarrow Kumulation intrazellulär; Elimination renal

unerwünschte Wirkungen

Knochenmarksuppression; Schleimhautschäden; Pneumonitis; Nephro-/Hepatotoxizität

Indikation

Leukämien, Lymphome, Karzinome; Autoimmune Erkrankungen

Besonderes

Gleichzeitige Folinsäuregabe (Formyl-Tetrahydrofolsäure) zur Milderung der Wirkung auf gesundes Gewebe

15.1.2 Antipurine

6-Mercaptopurin 6-Thioguanin

Wirkmechanismus

Aktivierung zum entsprechenden Ribonukleotid (Thio-IMP, -GMP); - Hemmung der Purinsynthese (Adenylosuccinatsynthetase, IMP-Dehydrogenase); Einbau als "falsche Base" in DNA;

Indikationen

Leukämien (6-MP), Autoimmune Erkrankungen (Azathioprin, hepatisch zu 6-MP metabol.)

unerwünschte Wirkungen

Knochenmarksdepression; Hepato-/Nephrotoxizität; Dosisreduktion unter Allopurinol-Gabe (hemmt Abbau d. Xanthinoxidase)!

15.1.3 Pentostatin

Aus Streptomyces antibioticus

Wirkmechanismus

Hemmung der Adenosindeaminase \rightarrow erhöhte dATP-Spiegel \rightarrow "feedback"-Hemmung der Bildung anderer Desoxyribonukleotide.

15.1.4 Pyrimidin-Antimetabolite

5-Fluoruracil i.v.-Gabe

Wirkmechanismus

als FdUMP Hemmung der Thymidinsynthese; als FUMP Einbau als falsche Base; Wirkung bei TH4-Gabe;

Indikationen

kolorektale Tumoren, Mammakarzinom

Cytarabin i.v.-Gabe

Wirkmechanismus

Wirkmechanismus: Falsche Base

Indikationen

z.B. AML

Gemcitabin i.v.-Gabe

Wirkmechanismus

Falsche Base

Indikationen

Panreas-, Bronchial-, Blasenkarzinom

15.2 Alkylantien

Stickstofflost-Derivate

Nitrosoharnstoffderivate Platinderivate

andere

Cyclophosphamid, Ifosfamid, Trofosfamid, Melphalan, Chlorambucil Carmustin, Lomustin, Nimustin, Streptozotozin Cisplatin, Carboplatin

Procarbazin, Dacarbazin, Thiotepa, Busulfan

15.2.1 Stickstofflost-Derivate

Cyclophosphamid

Pharmakokinetik

Gabe i.v. oder oral; Aktivierung in der Leber (CYP) zu N-Lostphosporsäureamid und Acrolein (urotoxisch: hämorrhag. Zystitis, Blasen-Karzinom):

Prophylaxe der urologischen Komplikationen: Diurese + Mesna (Natrium-2-Mercaptoethansulfonat) neutralisiert Acrolein;

unerwünschte Wirkungen

hämorrhagische Zystitis, Leukopenie, Alopezie

Indikationen

Lymphome, Leukämien, Karzinome, Autoimmune Erkrankungen

15.2.2 Platinfreisetzende Verbindungen

Cisplatin

Wirkmechanismus

Intrazelluläre Aktivierung durch Abspaltung der Chlorliganden (Cisplatin) bzw. der Cyclobutandicarboxylgruppe (Carboplatin). Alkylierung von DNA, RNS und Proteinen.

unerwünschte Wirkungen

Kumulative Nephro-, Neuro- und Ototoxizität. Stark emetisch (v.a. Cisplatin), stark myelosuppressiv (v.a. Carboplatin); Alopezie, Sehstörungen, GI-Störungen, Herzrhythmusstörungen Indikationen: Keimzelltumoren, NHL, Sarkome

15.2.3 Nitrosoharnstoffderivate

Carmustin Lomustin Nimustin

Besonderheiten

Gute ZNS-Gängigkeit

unterwünschte Wirkungen

Knochenmarkdepression

- Thiotepa: v.a. lokale Anwendung (Harnblasenpapillom/-karzinom, Pleurakarzinose, Peritonealkarzinose, Meningitis leucaemica)
- Busulfan: Cave: Busulfanlunge (Pneumonitis, Fibrose)

15.3 Zytostatisch wirksame Antibiotika

15.3.1 Anthracycline

Daunorubicin Doxorubicin Epirubicin

Wirkmechanismus

Interkalation in DNA mit verminderter DNA-/RNA.Synthese, Hemmung der Topoisomerase II, DNA-Strangbrüche; Biotransformation zu freien Radikalen: Strangbruch; Bindung an Zellmembranen mit gestörter Membranfunktion

unerwünschte Wirkung

kardiotoxisch (dosisabhängig, oft irreversibel)

• Bleomycin: metallchelierender Glykoproteinkomplex, Interkalation in DNA, Bildung freier Radikalen; Unerwünschte Wirkungen: Lungenfibrose, mukokutane Veränderungen, relativ geringe Knochenmarkstoxizität

15.4 Mitosehemmstoffe

15.4.1 Vinca-Alkaloide

Vinblastin v.a. myelotoxisch Vincristin v.a. neurotoxisch Vindesin geringere Toxizität

Colchizin (Einsatz bei akutem Gichtanfall; Leukozytenmigration und

-aktivierung \downarrow)

Wirkmechanismus

Hemmung der Zellteilung durch Hemmung der Polymerisation von Mikrotubuli

15.4.2 Taxane

Paclitaxel (=Taxol) Docetaxel

Wirkmechanismus

Hemmung der Mikrotubulus-Depolymerisation; Bindung an β -Tubulin Einsatz bei metastasierenden Ovarial- und Mammakarzinomen; Unerw. Wirkungen: Myelotoxizität, periphere Neuropathie, ZNS-Nebenwirkungen

15.5 Inhibitoren der Topoisomerase

Topotectan

Hemmt Topoisomerase I welche temporäre Einzelstrangbrüche in DNA erzeugt; wichtig für DNA- und RNA-Synthese.

Etoposid

Hemmung der Topoisomerase II, welche ATP-abhängig temporäre Doppelstrangbrüche in DNA erzeugt (\rightarrow negative "Supercoils" in DNA); Unterbindung des Zusammenfügens des gespaltenen DNA-Stranges Kurzinfusion bei Ovarial-, Dick-, und Enddarmkarzinom Andere Substanzen, die die Topoisomerase II hemmen:

- Anthrazykline (s.o.)
- Actinomycin D

Hemmung der Wiederverknüpfung getrennter DNA-Stränge bei verschiedenen Neoplasien

15.6 Hormontherapie

15.6.1 Hormon-sensitives Mammakarzinom

(wächst unter Östrogeneinfluß)

- Antiöstrogene (Tamoxifen)
- Aromatasehemmer (Aminoglutethimid, Formestan)
- Östrogenentzug (Ovarektomie)
- Gestagene (Medoxyprogesteronacetat)

15.6.2 Hormonsensitives Prostatakarzinom

(wächst unter Testosteroneinfluß)

- Antiandrogene (Cyproteronacetat, Flutamid)
- Androgenentzug (Orchiektomie)
- Gestagene (Medoxyprogesteronacetat, Megestrolacetat)

Über Feed-back-Mechanismen: hypophysäre LH-/FSH-Sekretionshemmung durch Ethinylestradiol (synthet. Östrogen), Down-Regulation des GnRH-Rezeptors durch GnRH-Agonisten (Buserelin, Goserelin)

15.7 Tyrosinkinase-Hemmer

Imatinib Hemmung der ausgehend vom Philadelphia-Chromosom bei der CML gebildeten Fusionsprotein-Tyrosinkinase bcr-abl; Resistenzentwicklung!

Gefitinib Hemmung der Rezeptortyrosinkinase ErbB1 (EGF-Rezeptor)

15.8 Protease-Inhibitor

Bortezomib Einsatz: Multiples Myelom

15.9 Antikörper

nstuzumab gegen ErbB2(HER2); Einsatz bei metastas. Mammakarzinom mit ErbB2-Überexpression; met. Magen-CA; Kardioto-xizität

evacizumab gegen VEGF-A; Einsatz bei metastasiertes Kolon-, Rektum-bzw. Mamma-CA, met. oder rez. Kleinzelligen Bronchial-CA, Nierenzelll-CA, Ovarial-, Eileiter und Pertinoneal-CA

Rituximab gegen CD20 Antigen auf B-Zellen; Einsatz b. Non-Hodgkin-Lymphomen, CLL, schwere Formen der Rheumatoiden Arthritis

Cetuximab gegen ErbB1(EGF-Rezept.); Einsatz bei metastas. Kolorektalkarzinom, Plattenepithelkarzinome im Kopf- u Halsber

15.10 Resistenzentwicklungen

- 1. Überexpression des Multi-Drug-Resistence-Gens (MDR-1): Energie-abhängige Membranpumpe, beschleunigt Auswärtstranspoverschiedener Substanzen
- 2. Verminderte zelluläre Aufnahme z.B. Methotrexat
- 3. Überexpression inaktivierender Enzyme Glutathion-S-Transferase, Glutathionperoxidase bei Platinverbindungen
- 4. Verminderte metabolische Aktivierung Phosphorylierung von Antimetaboliten
- 5. Erhöhte Expression und veränderte Aktivität des Zielproteins Methotrexat, Topoisomeraseinhibitoren
- 6. Beschleunigte Reparatur von DNA-Schäden Alkylantien
- 7. Mutationen im p53 und Bcl-2 Gen

Kapitel 16

Toxikologie

16.1 Behandlungsprinzipien akuter Intoxikationen

Hemmung von Resorption

- 1. Giftzufuhr beenden
- 2. Erbrechen induzieren (Kontraindikationen: s. unten!) Ipecacuanha-Sirup: Reflex-Emetikum, wirkt durch Irritation der Magenschleimhaut. Wirkbeginn nach ca. 15 Minuten, Nebenwirkung: anhaltendes Erbrechen, Diarrhoe mechanische Reizung Rachenhinterwand Apomorphin oder Kochsalzlösung: sind obsolet
- 3. Magenspülung
- 4. Aktivkohle (während Magenspülung oder oral)

Induziertes Erbrechen nie bei

- Bewusstseinsstörung, Krampfanfall
- Vergiftung mit Säuren/Laugen, Schaumbildnern, organischen Lösungsmittel (Perforations-/Aspirationsgefahr!)

Beschleunighte Giftelimination

- renale Toxinausscheidung
 - Forcierte Diurese: Volumengabe, Schleifendiuretika, Osmodiuretika,
 - Minderung der tubulären Rückresorption durch Ansäuern oder Alkalisieren des Harnes
- Unterbrechung des enterohepatischen Kreislaufes: Aktivkohle oder Cholestyramin, z.B. bei Intoxikation mit Amitriptylin, Imipramin, Digitoxin
- Hämodialyse (Diffusion Blut gegen Dialyselösung), funktioniert umso besser,
 - je kleiner das Molekulargewicht des Toxins
 - je geringer an Plasmaproteine gebunden
 - je geringer das Verteilungsvolumen
- Hämoperfusion (Diffusion Blut gegen Aktivkohle): effektivste Methode der extrakorporalen Entgiftung, da auch lipophile, nicht dialysierbare Substanzen adsorbiert werden können

Antidote

Zur Antidottherapie eignen sich Stoffe mit geringer Eigentoxizität und hoher spezifischer Aktivität. Man unterscheidet:

- funktionelle Antidote: verdrängen das Gift vom Wirkort
- Dekorporierungsantidote: Antidot reagiert direkt mit dem Gift und wandelt es in ein weniger toxisches, gut eliminierbaren Produkt um.

16.2 Gase

Reizgase Vertreter: NO, NO2, O3, SO2, COCl2 (Phosgen), HCHO

(Formaldehyd)

Klinik: lokale Reizung bis Lungenödem (je nach Eindring-

tiefe)

Systemisch wirksame Gase Vertreter: H2S, CO, HCN

Wirkung: Störung des O2-Transportes (CO), periphere und

zentrale Atemlähmung (H2S, HCN)

16.2.1Reizgase

 $\mathrm{H}_2\mathrm{O}\text{-L\"{o}}\mathrm{slichkeit}$ Angriffsort Beispiele

NH₃, HCl, HCHO, F₂ hoch Auge, Larynx, Trachea

mittel Bronchien, Bronchiolen SO_2 , Cl_2 , Br_2 O_3 , NO_2 , $COCl_2$ Bronchiolen, Alveolen, Kapillaren gering

Toxisches Lungenödem

initial Hustenreiz, Atemnot, Unruhe

Vollbild (evtl nach beschwerdefreiem Intervall!): Zyanose, bräunlicher Schaum aus Mund und Nase, Tachykardie. Tod durch Erstickung oder Herzversagen]

Therapie Glukokortikoide (inhalativ), Oberkörper hochlagern, O2, Absaugen, Furosemid i.v., Sedierung

16.2.2 Systemisch wirkende Gase

Gas	Vorkommen	Warnung	Wirkmechanismus und Symptome	Therapie
$_{1}^{2}$ S	red. Eiweißzersetzung, (Tierhaltung, Abwasser), Erdgas	faule Eier(aber Desensitisierung)	Hemmung von Enzymen, z.B. Atmungskette (CN-ähnlich), Atemwegsreizung, Lungenödem. Symptome: Bewußtlosigkeit, zentrale und periphere Atemlähmung, Koma	symptomatisch
СО	Unvollst. Verbrennung, Mikroorganismen	Farb-, geruchlos	Konkurriert mit O ₂ um Hb (Affinität 200-300 x), Schädigung durch O ₂ -Mangel, CO ₂ -Stau, Lactatazidose. Symptome: Bewußtlosigkeit, Koma	O ₂ - u. Bicarbonat
HCN	Metallhärtung, Bittermandeln, Tabakrauch, Nitroprussid-Natrium	Bittermandelgeruch	Reversible Bindung von CN ⁻ an Fe ³⁺ der Cytochromoxidase u. anderer Metalloenzyme → Hemmung der Atmungskette → innere Erstickung. Symptome: Hyperpnoe, rote Haut Unwohlsein, Erbrechen; zentrale und periphere Atemlähmung	4-DMAP: CN→MetHb oder: Thiosulfat: CN→SCN (Rhodane- se)

16.2.3 Methämoglobinbildner

Mechanismus

Pharmaka (Sulfonamide, Primaquin) und Gifte (Nitrite, Nitrobenzol, Anilin u.a.) oxidieren Fe²⁺ in Hämoglobin zu Fe³⁺, dadurch Störung des O₂-Transports.

Klinik

wie CO-Intoxikation.

Therapie

 ${\bf Redoxfarbstoffe~(Toluidinblau,~Methylenblau)}$

16.2.4 Metalle

Metall Arsenik AS_2O_3	Vorkommen Glasindustrie, Holzschutz-mittel, Ratten-gift, Halbleiter- herstellung	Wirkweise Reaktivität an SH- Gruppen in Proteinen	Symptome akut: Kapillarwirkung (Diarrhoe, Ödem) → Hypovolämie, Schock, Nierenfunktion ↓,Tod chronisch: "Arsen- schnupfen", Melanose, Hyperkeratose, Hauttu- moren, Polyneuritis	Therapie DMSA, DMPS
Blei	Batterien, Farben, Antiklopfmittel (Te- traethylblei)	Bindet an Hb, stört Enzym-funktionen; Speicherung in Zähnen und Knochen	Erythrozyten: Hb- synthese \downarrow , δ -ALA \uparrow hypochr. Anämie, basophile Tüpfelung Glattmuskelspas- men: Bleiblässe, Bleikolik Nervensy- stem: Bleilähmung (N.radialis)	Na ₂ -Ca-EDTA, DMSA
Thallium	Rattengift, Elektroin-dustrie	Epithel- und Nervengift (Mech. unklar)	zunächst symptom- frei, dann schwere Gastroenteritis, später Polyneuropathie, psych. Veränderungen, typ. Haarausfall nach 2 Wochen	Fe-III-Hexa-cyanoferrat (Berliner Blau)
Quecksilber	Metallisch: Amalgam, Thermometer (Metall- dampf), Anorgan.: z.B. Elektrotechnik, orga- nisch: z.B. Fungizide	Reaktivität an SH-Gruppen in Proteinen	akut: erst lokale Symptome (pulmo- nal: Entzündung; oral: Verätzung), Gastro-enteritis, An- urie/Urämie; nach einigen Tagen Colitis mucomembranacea, Stomatitis mit Me- tallgeschmack chron.: ZNS-Störungen, bei Fingiziden: Schwere ZNS-Störungen (gut lipidlöslich)	DMPS Dimercaprol

andere: Eisen (Desferoxamin parenteral), Kupfer (z.B. bei M. Wilson; D-Penicillamin); Cadmium (Na2-Ca-EDTA), Mangan, Nickel, Chrom, Cobalt (alle DMPS)

16.2.5 Säuren, Laugen, Tenside, Lösungsmittel

Substanz Säuren	Beispiele Salzsäure, Schwefelsäure, Salpe- tersäure	Symptome orale Intoxikation lokale Verätzung mit Ätzschorf (Koagulationsnekrose) Schluck- beschwerden, Bluterbrechen	Therapie viel Wasser trinken (evtl Milch, Antazida); Schock- und Schmerz- behandlung
Laugen	Natronlauge, Kalilauge	Schleimhaut glasig gequol- len (Kolliquationsnekrose !); Schmerz, Erbrechen, Perforati- onsgefahr (keine Magenspülung !)	viel Wasser trinken (evtl Milch); Schock- und Schmerztherapie
Tenside	Was chmittel, Desinfektions mittel	Gastroenteritis, Diarrhoe; bei Erbrechen Aspirationsgefahr	viel Wasser oder Milch trinken, Entschäumer
Lösungsmittel	Benzol, Benzine, Chloroform	Erbrechen, Aspiration, Krämpfe, Narkose/Koma, Atemlähmung (Inhalation besonders relevant !*)	symptomatisch

andere wichtige Applikationswege: transdermal, inhalativ, Auge

16.2.6 Halogenierte aromatische Kohlenwasserstoffe: Polychlorierte Dibenzodioxine und - furane

Gruppe von Verbindungen mit $\stackrel{.}{,}$ 200 Isomeren; toxikologisch relevant ist z.B. 2,3,7,8 Tetrachlordibenzo-p-dioxin ("Seveso-Dioxin")

Entstehung

bei Verbrennungen (Hausbrand, Motoren) und metallurgischen Verfahren

Kinetik

Akkumulation, insbes. Leber u. Fettgewebe, Kaum Metabolismus und Elimination! (HWZ: 5-10 Jahre)

Wirkung

Bindung an "Ah (Arylhydrocarbon)-Rezeptor", Enzyminduktion (zB. CYP1A1 / CYP1A2) und Störung des Zellstoffwechsels

Toxische Wirkung

Akut: Übelkeit und Erbrechen, Bronchialreizung

Verzögert: Auszehrungssyndrom, Magen-Darm Blutungen, Chlorakne, Leberschäden, Kanzerogenität

$$EtOH \ im \ Blut[g/l] = \frac{EtOH \ aufgenommen[g]}{KG[kg] * VD[l/kg]}$$
(16.1)

Abbildung 16.1: Blutethanol Berechnung $\mathrm{VD}_{M\ddot{a}nner}=0{,}7~\mathrm{VD}_{Frauen}=0{,}6$

T 7 1 · · 1

16.2.7 Bakterielle Toxine

Toxin	Spezies	Mechanismus	Klinik	Therapie
Cholera	V. cholerae	Konstitutive G_s -	Gastroenteritiden, Was-	Wasser- u. Elektrolyter-
		Aktivierung = cAMP-		satz, Tetracyclin
		$Bildung \rightarrow Transport von$	l/d	
		Ionen und Wasser vom		
		Blut ins Darmlumen		
Pertussis	B. pertussis	ADP-Ribosylierung G_i	ADP-Ribosylierung Gi \rightarrow	Tetracyclin
		\rightarrow Adenylatcyclase \uparrow ,	Adenylatcyclase↑, Blocka-	
_		Blockade Kationenkanäle	de von Kationenkanälen	
Tetanus	Cl. tetani	Aufnahme über Haut-	Inmmunserum; Penicil-	
		verletzungen, retrograder	lin G, symptomatisch.	
		_	Präventiv aktive Immuni-	
		Rückenmark, Glycin und	sierung	
		GABA-Freisetzung aus		
		Interneuronen gehemmt		
		(proteolytische Spaltung		
		von SNARE-Molekülen) Tonische Kontraktionen		
		der willkürlichen Musku-		
		$latur \rightarrow Dauerkrämpfe \rightarrow$		
		Tod durch Ersticke		
Botulinus A-G, C ₁	Cl. botulinum	v.a. Lebensmittelkonser-	Lähmung	symptomatisch u. Antito-
Dotumus 11-0, C1	Ci. botuinium	ven: Hemmung der ACh-	Lammung	xin
		Freisetzung an der neuro-		XIII
		muskulären Synapse (pro-		
		teolytische Spaltung von		
		SNARE-Molekülen)		

16.2.8 Alkohole (Methanol, Ethanol)

Pharmakokinetik

- Kinetik 0. Ordnung (Abnahme σ 0.1g/kg/h; Ω 0.085g/kg/h = 0.15%/h)
- vollständige Resorption durch Diffusion nach oraler Gabe
- 1-2h nach Alkoholaufnahme ist das Maximum der Blutkonzentration erreicht
- Metabolisierung durch Alkoholdehydrogenase bzw. Aldehyddehydrogenase:
 - Methanol: via Formaldehyd zu Ameisensäure
 - Ethanol: via Acetaldehyd zu Essigsäure

akute Effekte Ethanol

- 0.3-1.0\% euphorische Phase: Enthemmung, beginnende Gangstörung, verzögerte Reaktionen, u.U. bereits beginnende D\u00e4mpfung
- 1.0-2.0% Exzitationsstadium: Erregung, Aggressivität, Enthemmung
- 2.0-2.5‰ Rauschstadium: Bewusstseinsstörung, Amnesie, Schmerzwahrnehmung↓, rosige Haut, Hypothermie, Hyperpnoe, Diurese, Hypoglykämie.
- 2.5-4.0% Narkosestadium: Bewusstlosigkeit, beginnender Schock
 - >4.0% Asphyxiestadium: tiefes Koma

chronische Effekte Ethanol

- Toleranz, psychische Abhängigkeit, physische Abhängigkeit
- neurologisch: chronischer Tremor, Korsakow-Psychose, Wernicke-Enzephalopathie, Polyneuropathie, alkoholtoxische Hirn-/Kleinhirnatrophie
- internistisch: Zungen- und Ösophaguskarzinom, Gastritis, Ulkus, Resorptionsstörungen, Anämie, Hypertonie (chronisch), Kardiomyopathie, Leberzirrhose, Pankreatitis, Hyperlipidämie

akute Effekte Methanol

Rausch gering ausgeprägt; ab 2.-3. Tag reversible Störung des Visus und schwere metabolische Azidose; ab 4.-5 Tag irreversible Sehstörungen

16.2.9 Tabakrauch

Tabakrauch

Hauptstromrauch + Nebenstromrauch

Gemisch aus Gasen und Aerosolen (ca. 1000 identifiziert):

- Reizende Substanzen: NO, NO₂, NH₃
- Bluttoxische Substanzen: CO
- Narcotoxische Substanzen: Nicotin
- Kanzerogene Substanzen: Benz(a)pyren und andere PAK, Nitrosamine, aromatische Amine, Schwermetalle wie Cr, As, Cd, V.

akute Wirkung v.a. Nikotin

- Stimulation von nAChR an autonomen Ganglien (Parasympathikus: Magensaftsekretion ↑, Darmmotilität↑; Sympathikus: Hypertonie, Tachykardie, Tachypnoe)
- zentrale Effekte
- Vasopressinausschüttung (Antidiurese)
- Abhängigkeit erzeugend

chronische Wirkung

- Tabakkrebs (Ursache in Partikelphase, "Teer") (s. krebserzeugende Stoffe)
- Kardiovaskuläres Risiko (z.B. pAVK)

16.3 Krebserzeugende Stoffe

Polycyclische aromatische Kohlenwasserstoffe: Benzo(a)pyren, Benzo(a)athracen

Entstehung

durch unvollständige Verbrennung organischen Materials, z.B. Tabakrauch, Verbrennungsmotoren

Pharmakokinetik

Starke Induktion verschiedener hepatischer Enzyme (CYP1A1/CYP1A2) über nukleären Ah-Rezeptor (ähnlich Dioxin)

Chronische Toxizität

Kanzerogenität durch Bildung von DNA-Addukten, v.a. Haut- und Lungentumoren

16.3.1 Nitrosamine / Nitrosamide

Exogene Enstehung

Tabakrauch (Lungen-CA!), Lebensmittel (Pökelfleisch, alkoholische Getränke), verschiedene Industriezweige

Endogene Entstehung

Bildung aus Aminen der Nahrung in Anwesenheit nitrosierender Agentien [Stickoxid, Nitrit (NO₂)] v.a. im Magen

Wirkung

Giftung durch Cytochrom P450-vermittelte oxidative Denitrosierung zu alkylierenden Verbindungen, Teilweise spontaner Zerfall unter Alkylantien-Bildung

Toxizität

Akut: zytotoxisch (hohe Dosen erforderlich)

Chonisch:: kanzerogen (Magen, Speiseröhre, Leber, Niere, Harnwege)

Andere krebserzeugende Substanzen

Aromatische Amine (gegrilltes Fleisch, Tabakrauch), Aflatoxine, Metalle (Ni, Cr, As)

16.4 Pilzgifte

Niedere Pilze (Ascomyceten)

Aspergillusarten: Befall v. Lebensmitteln wie Erdnüsse, Weizen, Reis, Mais, Sojabohnen u.a.; Aflatoxine: nach enteraler Aufnahme Umwandl. in der Leber in reaktionsfäh. Epoxide \rightarrow kovalente Bindung an Makromoleküle der Zelle; akute Einnahme großer Mengen \rightarrow Leberzellnekrosen, Leberversagen; chron. Aufnahme geringer Dosen \rightarrow Leberzirrhose, Lebertumoren

Höhere Pilze (Basidiomyceten)

Knollenblätterpilze: Grüner / weißer / gelber Knollenblätterp. (Amanita phalloides / virosa / citrina);

Frühlingsknollenblätterpilz (Amanita verna); 80-90% der tödl. verlauf. Pilzvergiftung. (50-60 Fälle/Jahr in Dtl.) d. grünen Knollenblätterpilz; Amatoxine / Phallotoxine: Thermostabile zyklische Peptide; nach enteral. Aufnahme Wirkung v.a. auf Leberzellen (first-pass-Effekt, enterohepat. Kreislauf), Schädigung d. GI-Traktes und der Nieren; Wirkmechanismus: α - und β - Amanitin gelangen in den Kern und hemmen die RNA-Polymerase II \rightarrow Abnahme der mRNA-Konzentr. \rightarrow Verarmung der Zellen an Protein \rightarrow Zelltod; Phallotoxine binden an Aktin \rightarrow Hemmung d. Depolymerisation; Symptomatik der Vergiftung: v.a. durch Amatoxine bedingt: nach Latenz von 8-24 h: Erbrechen / Durchfall; nach weiteren 3-10 d: Leber- und Nierenversagen; Toxizität: tödliche Dosis: 0,1mg Amatoxin; 5-10 mg Phallotoxin; 100 g Frischpilz enthält 17 mg Amatoxine \rightarrow 1 ausgewachsener Pilz ist bereits letal; Therapie erschwert weg. Latenz der Symptomentw.: Erbrechen auslösen, Magenspülung; Aktivkohle; Dialyse, Schockbekämpfung, Ausgleich v. Elektrolyt- und Wasserverlusten; Hemmung der Aufnahme von Amatoxinen durch Penicillin, Silibinin; Lebertransplantation

Fliegenpilz (Amanita muscaria); Pantherpilz (Amanita pantherina)

 $Muscimol \rightarrow Ibotensäure;$ Auslösung einer toxischen Psychose (Pantherpilz > Fliegenpilz); Erregungszustände, Verwirrtheit, Halluzinationen, Koma Therapie: Emetika, Magenspülung, Aktivkohle, Sedativa, Tranquillantien

Risspilze (Inocybe – Arten)

enthalten große Mengen Muscarin parasympathomimetische Wirkungen bis zu Atemnot, Schock; Therapie: Atropin

16.5 Chemische Kampfstoffe

16.5.1 Organophosphate

Tabun, Sarin, Soman u.a.; s. cholinerges System

16.5.2 Alkylatien

Substanzen, die Alkylreste auf andere Verbindungen (insb. Nukleins.) übertragen können. Anwend. auch als Zytostatika. Anwendung erstmals im I. WK, eingeführt d. Lommel und Steinkopf (Lost); lipophile, hochreaktive Verbindungen, die auf allen Wegen rasch in den Organismus gelangen. Rasche Reaktion und Elimination \rightarrow Detoxifikationsmaßnahmen meist zu spät;

Symptomatik

Exposition wird nicht wahrgenommen, gelegentlich nur als Geruch (Fisch, Knoblauch, Senf), durch Verunreinigungen; nach Exposition symptomfreies Intervall von meist mehreren Stunden (je nach Dosis); langsames Einsetzen der Symptome (max. nach 2-3 Tagen); \rightarrow Jucken, Erythem/Blasenbildung, Übelkeit/Erbrechen/Durchfall, Husten/Bronchitis/Pneumonie; Konjunktivitis/Korneaerosion;

Therapie

symptomatisch

16.6 Wichtige Intoxikationen

Intoxikation mit	Mechanismus	Klinik	spezifische Thera- pie/Antidot
Antidepressiva (v.a. trizykli- sche) Atropin (+ andere Alkaloide von Nacht- schattengewächsen)	anticholinerge Wirkung, direkte Kardiotoxizität Antagonismus an musk. ACh-Rezeptoren	Arrhythmie, Exzitation anticholinerges Syndr. Anticholinerges Syndrom	Physostigmin Antiarrhyth- mika Physostigmin
Benzodiazepine	Vermehrte Wirkung von GABA am GABAA-Rez.	Bewusstseinsverlust, Atemdepression (in Komb. mit Ethanol)	Flumazenil (bei schwerer Misch-intoxikation)
Blausäure / HCN	CN- blockiert Cytochromoxidase in Atmungskette	Bewusstseinstörung bis Koma, Hyperpnoe, rote Haut	Na-Thiosulfat, Met-Hb- Bildner
Cumarine	Hemmung der Synthese von Faktor II, VII, IX, X	Blutung	Vitamin K
Heparine	Faktor X und II-Hemmung	Blutung	Protamin
Herzglykosid	Hemmung Na/K-ATPase: Elektrolytverschiebung, veränderte Erregbarkeit	Herzrhythmusstörung, ZNS- Störung, GI-Störung	$K\uparrow$, $F(ab)$ -Frag-ment, Cholestyramin
Kohlenmonoxid	Verdrängung von O_2 aus Hb-Fe ²⁺ -Bindung	Konz-abhängig leichte Dyspnoe bis Koma	O_2
Met-Hb-Bildner	Fe ²⁺ in Hämoglobin wird zu Fe ³⁺ (=Met-Hb) oxidiert O ₂ -Transport unmöglich	Bewusstseinsstörung bis Koma, blasse Haut	Methylenblau, O_2
Opioid	Agonismus an δ , κ , μ - Opioidrezeptoren	Miosis, Bewusstlosigkeit, Atemdepression	Naloxon
Organophosphate	Irreversible Hemmung der Cholinesterase	Cholinerges Syndrom	Atropin, Obidoxim
Paracetamol	Toxischer Metabolit Benzo- chinonimin	Leberversagen	N-Acetylcystein
Schwermetalle	oft Enzymhemmung	variabel	Chelatbildner

16.6.1 Typische Vergiftungssyndrome

- Narkotisches Syndrom: Koma, Hypoventilation, Hypotonie etc (typisch bei: Narkotika, Opioiden, Ethanol+Sedativa)
- Cholinerges Syndrom: Miosis, Bradykardie, Erbrechen, Urinabgang, Defäkation, Tränenfluß; bei schwerer Intox: Tachykardie, Hypertonie, Muskelfaszikulation, Lähmung, Atemlähmung (bei: Organophosphaten)
- Anticholinerges Syndrom: trockene, gerötete Haut; Schluckstörung, Fieber, Exsikkose, Mydriasis, Tachykardie, Delir, Krämpfe (bei: trizykl. Antiderpressiva, Fliegenpilz, Tollkirsche)
- Sympathomimetisches Syndrom: Hypertonie, Tachykardie, Fieber, psych. Erregung, Krämpfe (bei: Cocain, Amphetamin, Theophyllin, Coffein)

Kapitel 17

Antiinfektiva

17.1 Antibakterielle Wirkstoffe

17.1.1 Definitionen

Chemotherapeutika Chemisch-synthetisch (z.B. Sulfonamide, Chinolone)

Antibiotika Stoffwechselprodukte von Mikroorganismen, biosynthetisch (z.B. Penicilline, Cephalosporine, Makrolide), oft synthetisch modifiziert

Bakteriostase Hemmung der Proliferation (z.B. Tetracycline, Makrolide, Sulfonamide)

Bakterizidie Abtötung der Keime (z.B. Penicilline, Gyrasehemmer, Aminoglykoside)

MHK (MIC) - minimale Hemmkonzentration Minimale Konzentration zur bakteriostatischen Hemmung

MBK (MBC) - minimale bakterizide Konzentration Minimale Konzentration zur Abtötung von 99.9% der Bakterien (Wirkstoffkonzentration in vivo oft niedriger als in vitro)

PAE - Postantibiotischer Effekt Reduzierte Bakterienproliferation auch nach Absetzen des Antibiotikums (z.B. Aminoglykoside, Chinolone, Carbapeneme) - ermöglicht Pulsdosierung

17.1.2 Hemmstoffe der Tretrahdrofolsäure-Synthese

Sufonamide (Sulfamethoxazol)

Wirkmechanismus Kompetition mit p-Aminobenzoesäure bei der DHF-Synthese (Dihydropteroat-Synthetase), Bakteriostatisch.

Nebenwirkungen Allergie, Exanthem, GI-Störung, Interferenzen durch Verdrängung aus Albuminbindung, Kristalllbildung in Nierentubuli.

Diaminopyridine Trimethoprim

Wirkmechanismus Inhibition der DHF-Reduktase, bakteriostatisch

Nebenwirkungen GI-Störungen, Allergie, nephrotoxisch, Anwendung beider Substanzgruppen überwiegend in Kombination: erweitertes Wirkspektrum, weniger Resistenzen, teilw. Bakterizidie; z. B. Sulfamethoxazol + Trimethoprim = Cotrimoxazol

Indikationen Harnwegsinfektionen, Pneumocystis carinii Pneumonie, Bronchitis; zunehmend Resistenzen

17.1.3 Hemmstoffe der bakteriellen Zellwandsynthese

Alle Substanzen, die mit der Zellwandsynthese interferieren, wirken bakterizid auf proliferierende Keime

β -Lactame: Penicilline, Cephalosporine, atypische Laktame

Wirkmechanismus Inhibition d. D-Alanintranspeptidase (=PBP) Durch Strukturverwandtschaft mit d. Substrat						
Gruppe	Substanz	Säure-stabil?	Pase stabil?	Wirkung	Wirkung	Wirkung
				Gram(+)	Gram(-)	P.aerug.
Benzyl-	Penicillin G	-	-	Kokken,	Kokken	-
Penicillin	Depot-Pen.			Stäbchen,		
				Spirochaeten		
Phenoxy-	Penicillin V	+	-	Kokken,	Kokken	-
penicilline	Propicillin			Stäbchen,		
(Oral-P.)	Azidocillin			Spirochaeten		
Isoxazolyl-	Oxacillin,	+	+	Penicillinase-	=	-
Penicillin	Dicloxacillin,			bildende		
	Flucloxacillin			Staphylokok-		
				ken		
Aminopenicillin	Ampicillin,	+	-	Wie Pen G	=	
	Amoxycillin			(schwächer)		
				Stäbchen		
				(E. coli, H.		
				infl. Prot.		
				mirabilis)		
Acylamino-	Mezlocillin, Pi-	-	-	Wie Pen G	v.a. Piperacil-	
penicillin	peracillin			(schwächer)	lin	
				erweitert		

Benzylpenicilline

Benzylpenicillin (Penicillin G); 1 Mio. I.E. (1 Mega I.E.) = 0,6 g (1944)

- otpräperate Procain-Benzylpenicillin, Wirkdauer 24 h; Clemizol-Benzylpenicillin, Wirkdauer 48–72 h; Benzathin-Benzylpenicillin, Wirkdauer 21–28 d
- nakokinetik Elimination renal: 85–95% unverändert, 10% glomerulär filtriert, 90% tub. sezerniert (Hemmung durch Probenecid); HWZ: 40 min, bei Anurie 10 h (über Galle); Depotpräp.: schwerlösliche org. Salze, z.B. Procain; Verteilung ↑: Niere, Lunge, Leber, Haut/Schleimhaut; ↓: Muskel, Knochen, Gehirn, Auge; Liquorgängigkeit gering, bei Meningitis↑; keine: intrazellulär
- nwirkungen Allergische Reaktionen (0,5–2%; Anaphylakt. Schock: 0,01–0,04%, Kreuzallergie aller Penicilline!); Diarrhoe; Herxheimer-Jarisch-Reaktion; Procain-haltige Penicilline: Hoigné-Syndrom. Potentiell neurotoxisch (bei sehr hohen Dosen oder intrathekaler Gabe)
- Resistenz β -Lactamasen (Staphylok., Gonok., Enterobakterien); PBPs (Staphylok., Pneumok.); Permeabilität \downarrow (bei gramnegativen Bakt.)

Oral-Penicilline

Phenoxymethylpenicillin

Penicillin V

Vorteile Säurestabil, zuverlässige Resorption, einfache Applikationsart, keine Spritzenabszesse, geringere Allergierate; Nachteile: Geringere Serumspiegel, deshalb nicht bei schweren Infektionen anwenden, z.B. Meningitis, Endokarditis; Spektrum: wie Benzylpenicillin (nicht Penicillinase-stabil); Indikationen: leichte, ambulant erworbene Infektionen durch sensible Erreger (Tonsillitis, Erysipel, Otitis, Bronchitis)

Isoazolyl-Penicilline

Substanz	Resorption	HWZ	Besonderes
Oxacillin	40%	$25 \min$	Transaminasenanstieg
Dicloxacillin	70%	$45 \min$	Lokale Irritation nach i.m.
			und i.v. Gabe
Flucloxacillin	50%	$60 \min$	Mittel der Wahl oral und i.v.

ekspektrum Penicillinase-bildende Staphylokokken; Sonst schwächer wirksam als Benzylpenicillin (1/10); Häufig resistente Stämme (bis zu 50%)

Anwendung Infektionen mit Penicillin G-resistenten Staphylokokken, z.B. Furunkulose, Osteomyelitis → "Staphylokokken-Penicilline"; zunehmend Methicillin-resistente Staphylokokken (MRSA) mit hohem Mortalitätsrisiko bei Intensivpatienten (29% vs. 7%)

Amiopenicilline

Ampicillin (30-40% Resorptionsquote)

Amoxycillin (80–90% Resorption)

- kspektrum Verstärkt wirksam gegen gramneg. Bakterien: E. coli, Proteus mirabilis, H. influenzae (70%), Salmonellen, Shigellen; nicht β -Lactamase-stabil
- nwirkungen Wie Penicillin, häufig makulöses Exanthem
- ndikationen Unkomplizierte Harnwegsinfektionen; Gallenwegsentzündungen, Haemophilus-Meningitis, Enterokokken-Endokarditis, Listeriose.
- aindikation Penicillinallergie; infektiöse Mononukleose (M. Pfeiffer), chronische lymphatische Leukämie wegen häufiger Exantheme (50–80%)

Penicilline mit erweitertem Spektrum (Gram -)

Acylaminopenicilline Mezlocillin

Azlocillin

Piperacillin

Ähnliches Spektrum wie Aminopenicilline und zusätzliche Aktivität gegen gramnegative Bakterien, wie Serratia und Klebsiella, teilweise auch Pseudomonas aeruginosa (Piperacillin); In Kombination mit β -Lactamaseinhibitoren.

β -Lactamasehemmer Clavulansäure

Sulbactam

Tazobactam

Spaltung durch β -Laktamasen, Spaltprodukte hemmen β -Laktamasen (keine eigene antibiotische Wirkung); Kombinationen z.B.: Amoxicillin + Clavulansäure; Ampicillin + Sulbactam; Piperacillin + Tazobactam; Breiteres Wirkungsspektrum von Penicillinen, Aufhebung β -Lactamase-bedingter Resistenz

Cephalosporine

Bakterizid, Hemmung der Zellwandsynthese; breiteres Spektrum als Penicilline, penicillinasestabil (aber z.T. empfindlich gegenüber Cephalosporinasen gram-negativer Erreger); weitgehend untoxisch.

Applikation	Gruppe	Beispiel	Gram +	Gram -	Indikation
parenteral	1	Cefazolin	++++	+	Leichte, ambulant erworbene Infektionen
	2	Cefuroxim	+++	++	Mittelschwere Pneumonien, Harnwegs-Infekte
	3a	Cefotaxim	++	+++	schwerste Infektionen (Sepsis, Pneumonie)
	3b	Ceftazidim	+	++++	schwerste Infektionen (Sepsis, Pneumonie), wirkt auch
					gegen Pseudomonas, Enterobakter
oral	1	Cefalexin Cefaclor	+++	+	Leichte Harnwegs-, Atemwegs- und Weichteilinfektio-
					nen
	2	Cefuroxim-Axetil	++	++	Leichte bis mittelschwere Harnwegs-, Atemwegs- und
					Weichteilinfektionen
	3	Cefexim	+	+++	"

17.1.4 Hemmstoffe der bakteriellen Proteinsynthese

Aminoglykoside

systemisch	Gentamicin	Tobramycin	
	Netilmicin	Amikacin	
lokal	Neomycin	Paromomycin	

- Wirkung Binden an 30s-Untereinheit, induzieren mRNA-Ablesefehler; in höheren Konz. bakterizid, breites Spektrum, rascher Wirkungseintritt u. PAE; Permeation durch äußere Membran: durch Poren oder direkt; Permeation durch innere Membranen entlang Potentialgefälle; Im anaeroben Milieu schlechte Penetration
- Kinetik Schlechte Resorption, kaum metabolisiert; Applikation i.v., "Einmal-täglich-Dosierung"; Oft mit β-Lactamen kombiniert; HWZ: 2h
- onderheiten Postantibiotischer Effekt; Transitorische Resistenz bei Erregern, die die erste Gabe des Aminoglykosids überlebt haben (daher Gabe 1x/d); Resistenzen durch modifizierende Enzyme und verminderte Aufnahme
- nwirkungen Oto-, Nephro-, Neurotoxizität
- ndikationen Problemkeime, Sepsis, Peritonitis, Endokarditis, Pneumonie, Meningitis, Verbrennungen, TBC

Tetracycline

Doxycyclin Minocyclin

- Wirkung Bindung an Interphase der ribosomalen Untereinheiten u. Hemmung der Aminoacyl-tRNA-Anlagerung: Bakteriostatisch; relativ breites Spektrum aber viele Resistenzen! (z.B. modifizierter Transportmechanismus); gute Resorption; Elimination: Doxycyclin wird zu 30-50% metabolis. und v.a. über den Darm ausgesch.
- v. Wirkung GI-Störungen, Photosensibilisierung, Ablagerung in Knochen und Zähnen (daher kontraindiziert bei Schwangeren, Stillenden u. Kindern <8 Jahre)
- nselwirkung Resorption↓ d. Antazida, Eisen- und Kalziumpräparate (auch Milch- und Milchprodukte)
- ndikationen Intrazelluläre Erreger (Mycoplasmen, Chlamydien), bakterielle Atem- u. Harnwegsinfekte durch sensible Erreger, Akne vulgaris

Glycycycline

Tigecyclin

Ähnliches Wirkprinzip wie Tetracycline; Einsatz: gegen komplizierte intraabdominelle Infektionen (C. difficile); wirksam gegen grampositive, gramnegative u. MRSA.

Makrolide

	Resorptionsquote	Plasma-HWZ
Erythromycin	< 50%	2 h
Clarithromycin	65%	2,5 h
Roxithromycin	75%	10 h
Azithromycin	40%	>40 h!

echanismus Binden an ribosomale 50S Untereinheit u. verhindern Weiterrücken des Ribosoms an der mRNA (bakteriostatisch)

w.Wirkung milde GI-Störungen; Arzneimittelinterakt. (CYP3A4-Inhibition; Exantheme

ndikationen alternative zu Penicillinen, bakt. Atemwegsinfekt. u. Infekt. mit intrazellulären Erregern; Helicobacter pylori Eradikation

Chinolone - Gyrasehemmer

Gruppe I	Substanz Norfloxacin	Spektrum (Sp) und Indikation (Ind) Sp: gram(-) Stäbchen, Pseudomonas; Ind: Harnwegs- infekte
II	Ciprofloxacin Ofloxacin Fleroxacin Enoxacin	Sp: gut: Enterobakterien, H. influenzae; schwächer: gram+Keime, atypische Erreger (Mykopl., Chlamyd., Legionellen), teilweise auch Pseudomonas-Aktivität. Ind: Atemwegs-, Harnwegs-, Knochen-, Gelenkinfektionen
III	Levofloxacin	Sp: gegenüber II höhere Aktivität gegen gram+ und atyp. Erreger Ind: Atemwegs-, Harnwegs-, Knochen-, Gelenkinfektionen
IV	Moxifloxacin Gatifloxacin	Sp: gegenüber III noch höhere Aktivität gegen gram+ und atyp. Erreger, zusätzlich Anaerobier Ind: v.a. Atemwegsinfektionen, Harnwegsinfektionen (nicht Mo- xifl.)

echanismus Hemmung der bakteriellen Topoisomerase II (Gyrase) und IV \rightarrow Hemmung der Transkription und Replikation; bakterizid

nakokinetik gute enterale Resorption (70-95%); Ausnahme: Norfloxacin (30-40%); Plasma-HWZ: 6-12 h, Ciprofloxacin: 3-4 h, Spar-floxacin: 15-16 h; II-IV: gute Gewebegängigkeit (Lunge, Knorpel, Knochen, Liquor); unveränderte Aus-scheidung im Urin (Ausnahme: Moxifloxacin): Gut wirksam bei Harnwegsinfekt.

Wirkungen ZNS- Störungen (Kopfschmerzen, Schwindel, Unruhe, Verwirrtheit, Halluzinationen, Krämpfe; Übelkeit, Erbrechen, Diarrhoe; allerg. Reaktionen; selten Effekte auf Hamatopoese.

 \perp selwirkung Resorption \downarrow durch Magnesium/Aluminiumhaltige Antazida (Chelatkomplexbildung); Theophyllinclearance \downarrow

Resistenzm. Veränderungen der Zielstruktur durch Mutationen im Topoisomerase-Gen; Verringerte Penetration zum Zielort durch Porinbildung \downarrow [gram(-)]; Ausschleusung \uparrow [gram(+ und -)]

17.1.5 Resistenzmechanismen

Mechanismus

Entfernung aus der Zielzelle mittels Efflux-Pumpen

Zerstörung durch ein bakterielles Enzym Inaktivierende Modifikation durch bakteriellesEnzym

Mutation der Zielstruktur, zB der bakt. Topoisomerase

Verminderte Aufnahme / Penetration zum Zielort

Beispiele

Tetracycline, Makrolide, Chinolone

 β -Laktame Aminoglykoside Chinolone

Aminoglykoside, Chinolone, β -Laktame

17.1.6 Reserve-Antibiotika

Mit sehr breitem Spektrum

Unerwünschte Arzneiwirkun-Gruppe Hemmung der ... Spektrum

gen (UAW), Indikation (Ind),

Besonderheiten (Bes)

Carbapeneme: Imipenem, Me-Zellwand-synthese-Gram+ Gram-(breit) UAW: Neuro-/nephrotoxisch

ropenem (bakterizid)

Ind: nur bei schwersten (Misch-)nfektionen (v.a. bei Sepsis, Immunsuppression)Bes.: rascher Abbau von Imipenem durch Dehvdropeptidase I kann durch Cilastatin gehemmt werden =

fixe Arzneimittelkomb. Chloramphenicol 50S-Ribosomen-UE Gram+ Gram- (breit) UAW (schwer): tox. Knochen-

statisch)

marksschädigung mit u.U. letaler aplastischer Anämie, GI-Störungen, Neuritis, Exanthem, Gray-Syndrom Ind: schwere Salmonellosen,

Meningitiden

Fosfomycin Zellwandsynthese-(bakterizid) Gram+ Gram-Ind: schwere Infektionen; Sep-

sis, Meningitiden

Mit sehr selektivem Spektrum

Lincomycin

stin + Dalfopristin

tomycin

Nur Gram-Monobactame: Aztreonam Zellwand-synthese-Ind: Infektionen mit gram-

(bakterizid)

Glykopeptide: Vancomycin, Zellwand-synthese-Nur Gram+

Teicoplanin (bakterizid) negativen Erregern UAW: oto- und nephro-

> toxisch, Ind: schwere Staphylokokkeninfektion (MR-SA); Antibiotika-assoziierte

> > Staph-

Ind:

GI-Störungen:

Enterokolitis (oral)

Lincosamine: Clindamycin, 50S-Ribosomen-UE Gram+ Anaerobier UAW: häufig GI-

statisch)

Beschwerden, Ind: therapieresistente Staph-Infektionen (MRSA); Anaerobierinfek-

Alkoholintoleranz,

tionen

UAW:

Fusidinsäure 50S-Ribosomen-UE (bv.a. Gram+ Ind: schwere Infektionen (MRSA)

statisch)

Nitromidazole: Metronida-Nukleinsäu-resynthese (bak-Anaerobier, Protozoen

zol terizid)

Streptogramine: Quinupri-50S-Ribosomen-UE v.a. Gram+

statisch/ bakterizid)

Infektion mit MRSA oder Vancomycin-resistentem E.

faecium

infektionen

Zyklische Lipopeptide: Dap-Ausb. von Membranporen Gram+ Ind: Infektion mit MRSA.

> Bes.: stärkstes Bakterizid; Wirkung ohne Zelllyse

> Anaerobier- und Protozoen-

UAW: starke Venenreizung

> Gabe über ZVK, Ind:

17.2 Tuberkulosemittel

Isoniazid Interferenz mit Nikotinsäure, bakterizid, UAW: ZNS-/Hepatotoxizität Rifampicin hemmt bakt. RNA-Polymerase, bakterizid, UAW: Hepatotoxizität Pyrazinamid Wirk. ähnl. INH, bakterizid, UAW: Hepatotoxizität, Hyperurikämie hemmt Zellwandsynthese, bakteriostatisch, UAW: Neuritis n. optici

Streptomycin

17.2.1 Kurzzeittherapie

2-3 Monate $\,$ Isoniazid + Rifampicin + Pyrazinamid + Etambutol oder Streptomycin

4 Monate Isoniazid + Rifampicin

17.2.2 Langzeittherapie

2-3 Monate Isoniazid + Rifampicin + Etambutol oder Streptomycin

7-10 Monate Isoniazid + Rifampicin

17.3 Antimykotika

17.3.1 Allylamine (Squalenepoxidase-Hemmer)

Naftifin (lokale Therapie) Terbinafin (lokale/orale Therapie)

nakokinetik Terbinafin: Gute Resorption; Anreicherung in Haut, Hautanhangsgeb.; Plasma-HWZ: Tage

Einsatz Therapie v. Dermato-/Onycho-Mykosen

17.3.2 Azol-Antimykotika (Lanosterin-Demethylase-Hemmer)

lokale Therapie Clotrimazol Econazol Bifonazol

orale Therapie Ketoconazol Itraconazol

orale/i.v. Therapie Fluconazol

w.Wirkung Leberschäden (v.a. Ketoconazol); gastrointestinal

teraktionen CYP3A4-Hemmung (v.a. Ketoconazol)

aindikation Schwangerschaft, Stillzeit, Lebererkrankungen

17.3.3 Polyen-Antimykotika

lokale Therapie Nystatin Natamycin

system. Therapie Amphotericin B

Bindung an Ergosterol der Pilzzellmembran \rightarrow Porenbildung

 $Amphotericin \ B: parenterale \ Applikation; \ HWZ: \ 1-2 \ Tage, \ Ausscheidung \ \ddot{u}ber \ Wochen; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ allg. \ NW \ + \ Nephrotoxizit \ddot{a}t; \ diverse \ All \ A$

Einsatz: Organ-/System-Mykosen

17.4 Prophylaxe und Therapie der Malaria

Substanz	UAW	Besonderes	Indikation (P=Prophy-laxe;
			T=Therapie)
Artemether/Lumefantrin	Bei allen GI-Störungen und	QT-Verlängerung	T unkompl. Formen
Atovaquon/Proguanil	neurotoxische Wirkung		P + T unkompl. Formen
	(nicht Primaquin),		
Chinin	oft hämatologische UAW	Chinonismus	T bei Resistenz
	(nicht Mefloquin)		
Chloroquin		Keratino-/Retpathie	P+T bei sens. M. tropica
Mefloquin		Herzrhythmusstörung	P+T bei res. M. tropica
Proguanil			P (meist mit Chloroquin)

17.5 Virustatika

17.5.1 Antimetabolite

Aciclovir Ganciclovir Wirkspektrum HSV:VZV HSV, VZV, CMV Aktivierung; DNA-Polymerase-Spez. Virusinduzierte Thymidinkinasen; 30 x Virale und zelluläre Kinasen; Weniger spezifisch größer als für human DNA-Pol. Bioverf./Metabolis. 15-30%; 10% 3-7%;-Elimination 70% renal, 2% biliär 95% renal Unerwünschte Wirkungen Thrombophlebitis, Nephotoxizität Hämat.Komplikationen; Augenschäden (Kristallbildung Tubuli); (Netzhautschäden; ZNS-Störungen; He- ${\rm in}$ GI-Störungen; Langzeittherapie: neurologipatotoxizität sche Störungen

Valaciclovir/Valganciclovir: hohe orale Bioverfügbarkeit; in vivo Bioaktivierung über Esterasen

17.5.2 Antiretrovirale Therapie

Wirkmech.	Substanz	Besonderheiten
Nukleosidale Reverse-Transkriptase-Hemmer	Emtricitabin	GI-Störungen, Kopfschmerzen
(NRTI) in vivo Phosphorylierung nötig		
	Lamivudin	rasche Resistenzentwicklung
	Zidovudin	Neutropenie, Anämie
	Abacavir	Überempfindlichkeitsreaktionen, v.a. bei Vor-
		handensein des Genmarkers HLA-B*5701
Nukleotid-analoge Reverse Transkriptase Hem-	Tenofovir	GI-Störungen, selten Nierenfunktionsstörungen
mer (NTRTI)		
Nicht-nukleosidale RT-Hemmer (NNRTI)	Nevirapin	Exantheme, Leberschäden, CYP-Induktion
, ,	Delavirdin	Exantheme, CYP-Hemmung
	Efavirenz	Exantheme, ZNS-Symptome, CYP-Interaction
Integrasehemmer	Raltegravir	gute Verträglichkeit, selten lebensbedrohliche
		Haut- und Überempfindlichkeitsreaktionen
Protease-inhibitoren(bei allen starke CYP3A4-	Atazanavir(1x tgl.)	günstiges Lipidprofil, Interaktion mit Protonen-
Hemmung)		pumpenhemmer
	Darunavir	günstiges Lipidprofil, Hautreaktionen
	Saquinavir	Übelkeit, Diarrhö, (meist mild)
	Ritonavir	Übelkeit, Diarrhö, Hypertriglyzeridämie
	Lopinavir	Dyslipidämie, Lipodystrophie
	Fosamprenavir	Hautreaktionen

Beispiel Initialtherapie bei HIV

HAART: hochaktive, antiretrovirale Therapie)

- A 2 Nukleosid-Analoga (z.B. Zidovudin + Lamivudin oder Tenofovir + Emtricitabin) + 1 geboosterter Proteaseinhibitor (z.B. Lopinavir; geboostert = subtherapeutische Gabe von Ritonavir führt durch Hemmung von CYP3A4 zum verminderten Abbau des wirksamen PI-Hemmers)
- B 2 Nukleosid-Analoga + Proteaseinhibitor
- C 2 Nukleosid-Analoga + Integraseinhibitor (Raltegravir)

Mimbranfusionshemmer Enfuvirtid (bindet gp41 bei HIV)

Einsatz: Komb.therapie, Reservetherapeutikum bei HIV

Neuramidasehemmer Zanamivir; Oseltamivir (teratogen!)

Hemmung der viralen Neuraminidase, Indikation: Frühphase der Influenza A und B-Infektionen (incl. "saisonale Virusgrippe", "Schweinegrippe"); Nutzen nicht überzeugend insb. im Vergleich zu Impfung!

Hypnotika

18.1 γ -Aminobuttersäure (GABA)

- $\bullet\,$ häufigster inhibitor. Transmitter im ZNS
- v.a. Transmitter inhibitorischer Interneurone
- fast alle Neurone sind GABA-sensitiv

Synthese aus Glutamat durch Glutamat-Decarboxylase (GAD)

aktivierung durch GABA-Transaminase (GABA-T) zu Succinatsemialdehyd (SSA)

18.1.1 GABA-Rezeptoren

$GABA_A - Rezeptor$

selekt. Agonist selekt. Antagonist

Muscimol Bicucullin

Pentamer $(2 \times \alpha, 2 \times \beta, 1 \times \gamma)$, das einen Liganden-gesteuerten Chlorid-Kanal bildet

 α -Untereinheiten $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \alpha_6$

 $\begin{array}{ll} \beta\text{-Untereinheiten} & \beta_1, \ \beta_2, \ \beta_3 \\ \gamma\text{-Untereinheiten} & \gamma_1, \ \gamma_2, \ \gamma_3 \end{array}$

Wirkmechanismus der Benzodiazepine

Benzodiazepine binden an α -Untereinheit ($\alpha_1, \alpha_2, \alpha_3, \alpha_5$; nicht: α_4, α_6) im Kontaktbereich zur γ -Untereinheit \rightarrow Verstärkung der Wirkung von GABA am GABAA-Rezeptor

 \rightarrow Modulation der GABA-Wirkung am Rez.

$GABA_B$ -Rezeptor

selekt. Agonist selekt. Antagonist Baclofen CGP-35348

18.2 Benzodiazipine

kurzwirksam	Plasma-HWZ	akt. Metabolite	Standarddosis (mg)
Midazolam	2-3 h	(ja)	5
Triazolam	2-6 h	(ja)	$0,\!25$
Brotizolam	5-9 h	ja	$0,\!25$
mittellangwirksam			
Oxazepam	8-13 h	nein	10
Lormetazepam	11-12 h	nein	1
Temazepam	12-13 h	nein	10
Alprazolam	12-15 h	ja0,5	
Lorazepam	12-18 h	nein	1
langwirksam			
Chlordiazepoxid	$6\text{-}37~\mathrm{h}$	ja	30
Flunitrazepam	10-30 h	ja	2
Clobazam	12-60 h	ja	20
Bromazepam	15-28 h	(ja)	6
Tetrazepam	13-44 h	(ja)	25
Diazepam	20-50 h	$\mathbf{j}\mathbf{a}$	10
Nitrazepam	25-30 h	$_{ m ja}$	10
Clonazepam	30-40 h	nein	1

Wirkprofil

Wirkung Einsatz

beruhigend, Angst- und Spannungs-lösend (v.a. über α_2 - Anxiolytikum, Tranquilizer

Untereinheit)

sedierend, schlafanstoßend (v.a. über α_1 -Untereinheit) Sedativum, Hypnotikum

antikonvulsiv (v.a. über α_1 -Untereinheit) Antiepileptikum muskelrelaxierend (v.a. über α_2/α_3 -Untereinheit) Muskelrelaxanz

Unterschiede zwischen den einzelnen Benzodiazepinen bestehen vor allem hinsichtlich ihrer Potenz und Pharmakokinetik (z.B. Wirkdauer); keine wesentlichen pharmakodynamischen Unterschiede; meist Frage der Dosierung, welche Wirkung im Vordergrund steht.

Wirkdauer ist z.B. relevant bei der Anwendung als Schlafmittel. Kurzwirks. Benzodiazepine bei Einschlafstörungen, mittellangwirksame Benzodiazepine bei Durchschlafstörungen

Pharmakokinetik

gute Resorption, Bioverfügbarkeit ; 80 häufig Metabolisierung zu aktiven Metaboliten (Kumulationsgefahr) überwiegend renale Ausscheidung konjugierter Metabolite

unerwünschte Wirkungen

- \bullet Müdigkeit, Schläfrigkeit, Aufmerksamkeit und Reaktionsvermögen \downarrow
- paradoxe Erregungs- und Verwirrtheitszustände mit Halluzinationen (v.a. ältere Patienten)
- Gangunsicherheit (Muskelrelaxation und Sedierung)
- mnestische Störungen
- Zyklusstörungen
- Appetitsteigerung
- bei chronischem Gebrauch: affektive Verflachung, kognitive Leistungseinbußen, verringerte Initiative

Abhängigkeit und Toleranz

- psychische Abhängigkeit (Gewohnheitsbildung) häufig!! Entzugssymptomatik: Ruhelosigkeit, Schlaflosigkeit, Angst
- physische Abhängigkeit (eher selten), Entzug: Delir, Krämpfe, Störungen der visuellen Wahrnehmung
 - Verordnung nicht über einen längeren Zeitraum
 - Bei längerer Einnahme langsam absetzen

akute Vergiftung

(große therapeutische Breite!) v.a. Atemdepression (verstärkt durch gleichzeitige Äthanolintoxikation) Antidot: Flumazenil (kompetitiver Antagonist an der Benzodiazepin-Bindungsstelle des $GABA_A$ -Rezeptor)

Wechselwirkungen

Sedativa, Hypnotika, Neuroleptika, Alkohol, Muskelrelaxantien

18.2.1 Zyklopyrrolone (Zopiclon); Imidazopyridine (Zolpidem); Pyrazolopyrimidine (Zaleplon)

- gleicher Wirkmechanismus wie Benzodiazepine
- i.G. zu Benzodiazepinen geringere Beeinflussung des Tiefschlafes Einsatz: Schlafstörungen
- Plasma-HWZ: Zolpidem: 2,5 h; Zopiclon: 5 h; Zaleplon: 1h
- weniger stark muskelrelaxierend und antikonvulsiv (Zolpidem: hohe Affinität zur α_1 -Untereinheit des GABA_A-Rezeptors)
- Abhängigkeitspotential geringer?

18.3 Behandlung von Schlafstörungen

- sorgfältige Indikationsstellung
- nicht-medikamentöse Behandlung oder Einsatz pflanzlicher Präparate erwägen
- $\bullet\,$ Einsatz von Benzodiazepinen bzw. Zolpidem/Zopiclon/Zaleplon hohes Missbrauchspotential !
 - → kontrollierte Verordnung
 - Therapiedauer zunächst max. 14 Tage mit exakt festgelegtem
 - Therapieregime (Arzneimittel, Dosis, Einnahmezeitpunkt) geeignet vor allem Substanzen mit kurzer oder mittellanger HWZ
- Benzodiazepine nie abrupt absetzen, sondern ausschleichen, Dauer des Ausschleichens: 10% der Einnahmedauer

"Vier-K-Regel" (nach Borbély, 1986)

Klare Indikation, Kleine Dosis, Kurze Anwendung, Kein abruptes Absetzen

18.3.1 Empfehlungen der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin zur Anwendung von Benzodiazepinen

Hier noch Diagramm amchen und einfügen!!

Narkotika

Reversible Lähmung von Teilen des ZNS

- \rightarrow Ausschaltung von:
 - Bewusstsein (hypnotische, narkotische Wirkung)
 - Schmerzempfindung (analgetische Wirkung)
 - Muskelspannung (muskelrelax. Wirkung)

Wirkmechanismus

Beeinflussung der synaptischen Transmission:

- unspezifisch: Einlagerung in Plasmamembran (Membranvolumen †, Fluidität †)
- ullet spezifisch: Interaktion mit hydrophoben Bereichen von Membran
proteinen z.B. GABA $_A$ -/Glyzin-Rezeptor, NMDA-Rezeptor

19.0.2 Inhalationsnarkotika

Pharmakon	Struktur	analgetisch	narkotisch	muskelrelax.
Diethylether (obsolet)		+++	+++	++
Halothan (obsolet)		+	+++	+
Isofluran		+	+++	+++
Desfluran		+	+++	+++
Sevofluran		+	+++	+++
Lachgas, N2O, Stick-		+++	+	Ø
oxydul				

Pharmakokinetik

lipophile Moleküle				
Pharmakon	Verteilungskoeffizient	MAC Vol.% mittel	Verteilungskoeffizient	An-
	Öl / Gas mittel		Blut / Gas	/Abflutgeschwindigkeit
Diethylether	65	1,92	12	langsam
Halothan	224	0,75	2,4	mittel
Isofluran	91	1,15	1,4	mittel
Sevofluran	53	2,00	0,65	mittel
Desfluran	19	6,00	$0,\!45$	mittel-schnell
Distickstoffoxyd	1,4	105	0,47	schnell

Verteilungskoeffizient Öl / Gas beeinflußt:

Potenz Minimale alveoläre Narkotikumkonzentration (MAC-Wert) Narkotikumkonzentration bei der 50% der Patienten nicht mehr auf Schmerzreize (z.B. Hautinzision) reagieren; umgekehrt proportional zur Lipidlöslichkeit

Verteilung Verteilungskoeffizient Blut / Gas beeinflußt:

hwindigkeit An- und Abflutgeschwindigkeit (N2O>Desfluran> Sevo/Isofluran> Halothan>> Ether)

19.0.3 Isofluran, Desfluran, Sevofluran

nakokinetik kaum biotransformiert Sevofluran: 3-5%; Isofluran: 0,2%; Desfluran: 0,02%

- w.Wirkung Atemdepression
 - Kardiodepression (v.a. neg. inotrop)
 - Blutdruck ↓ (peripherer Widerstand ↓)
 - Katecholamin-sensibilisierende Wirkung (weniger stark als bei Halothan)

Einsatz Inhalationsnarkose (meist zusammen mit N₂O, O₂)

obsolet Halothan, Enfluran

- Halothan: stark metabolisiert; Leberschädigungen, maligne Hyperthermie
- Enfluran: i.G. zu neueren Fluranen langsames An-/Abfluten; prokonvulsiv

19.0.4 Lachgas / N₂O / Stickoxydul

- schlechte Löslichkeit im Blut
- hohe inpirator. Konzentration nötig für ausreichende Narkosetiefe
 - \rightarrow schnelles An- und Abfluten (gut steuerbar)
- stark analgetisch, schwach narkotisch, euphorisierend

Wirkmechanismus

- Aktivierung noradrenerger bulbospinaler Neurone des deszendierenden anti-nozizeptiven Systems
 - \rightarrow vermehrte Freisetzung von Noradrenalin im Hinterhorn
 - \rightarrow Hemmung nozizeptiver Signale über adrenerge α_{2B} -Rezept.
- Hemmung von NMDA-Rezeptoren

Unerwünschte Wirkungen

sehr gering!

- nach Beendigung der Narkose strömt N₂O in großen Mengen in die Alveolen
 → Verdünnung des eingeatmeten O₂ → Gefahr v. Diffusionshypoxie
 kann verhindert werden durch Erhöhung der inspirarorischen O₂ Konzentration während der Narkoseausleitung
- ullet schnelle Diffusion in Luft-gefüllte Körperhöhlen o Druckanstieg in Mittelohr, Nebenhöhlen, Darm

Einsatz

- Narkoseeinleitung zusammen mit Injektionsnarkotika
- Unterhaltung der Narkose (z.B. 70% N₂O, 30% O₂, 0,5-1% Halothan)

19.1 Injektionsnarkotika

- $\bullet\,$ i.v. Gabe, sofortiger Wirkungseintritt \to psychische Schonung des Patienten
- $\bullet\,$ geringe Steuerbarkeit \rightarrow erhöhtes Risiko

	analgetisch	narkotisch	muskelrelax.
Barbiturate	Ø	+++	Ø
Ketamin	+++	+	Ø
Etomidat	Ø	+++	Ø
Propofol	Ø	+++	Ø
Benzodiazepine	Ø	++	Ø

19.1.1 Barbiturate

Methohexital Thiopental

rasche narkotische Wirkung nach i.v.Gabe (Minuten), geringe analget. und muskelrelax. Wirkung

echanismus Sensitisierung von $GABA_A$ -Rezeptoren unspezifische Unterdrückung zentralnervöser Prozesse

nakokinetik hohe Plasmaeiweißbindung, typische Verteilung, fast vollständig hepatisch metabolisiert

w.Wirkung – Atemdepression (Beatmungsmöglichkeit sollte vorhanden sein)

- negativ inotrop \rightarrow RR \downarrow , Herzfrequenz ↑ (refl.)
- Injektionsschmerz, Thrombophlebitis, paravenös \rightarrow Gewebeschäden i.a. \rightarrow Nekrose

Einsatz Narkoseeinleitung, zusammen mit analget. Substanzen bei kurzen Eingriffen

19.1.2 Ketamin

- ruft eine dissoziative Anästhesie hervor
- starke analgetische Wirkung 20-30 Minuten nach einmaliger Gabe
- Patient erscheint geistig abwesend, nicht narkotisiert (4-8 h), Amnesie, Augen bleiben weit geöffnet
- kaum Atemdepression
- verwandt mit Phencyclidin (PCP)

echanismus Blockade von Glutamat-Rezeptoren (NMDA-Typ)

nakokinetik rasche Verteilung, metabol., renal eliminiert

w.Wirkung – unangenehme Träume und Halluzinationen in der Aufwachphase (vermeidbar durch gleichzeitige Gabe von Neu-

roleptika oder Benzodiazepinen), weniger ausgeprägt bei Kindern und älteren Patienten

- Übelkeit, Schwindel, Kopfschmerzen

Einsatz Narkoseeinleitung, bei kurzen, schmerzhaften Eingriffen, Notfall-, Katastrophenmedizin

19.1.3 Etomidat

- gut narkotisch, nicht analgetisch, muskelrelaxierend
- keine Atemdepression oder Kardiodepression
- kurze Wirkdauer (3-5 Minuten), Verstärkung GABAerger Effekte

w.Wirkung Myoklonien, Dyskinesien

Einsatz Narkoseeinleitung

19.1.4 Propofol

- gut narkotisch, nicht analgetisch, muskelrelaxierend
- Atemdepression bis zur Apnoe!, Verstärkung GABAerger Effekte
- ßWirkdauer 5-10 Minuten

Einsatz Narkoseeinleitung, zusammen mit starken Analgetika bei Kurzanästhesie

19.1.5 Benzodiazepine

Diazepam Flunitrazepam Midazolam

- \bullet hypnotisch-narkotisch, ø analgetisch, geringe Muskelrelaxation
- atemdepressiv!, Antidot: Flumazenil

Einsatz Narkoseeinleitung, Kurznarkose, Kurzanästhesie

19.2 Kombinationsnarkose (Beispiel)

Prämedikation

- Tranquillantien,
- Analgetika
- Parasympathikolytika
 - \rightarrow vagale Reaktionen (RR \downarrow) \downarrow
 - \rightarrow Speichel-, Schleimproduktion \downarrow

Einleitung

- Präoxygenierung; -Injektionsnarkotikum z.B. Thiopental
- Muskelrelaxantium
- Intubation
- \bullet ${\rm O_2}$ / ${\rm N_2O}$ / Halothan, En-, Isofluran
- ggf. weitere Muskelrelaxantien

Ausleitung

- rechtzeitige Reduktion der inspirator. Konzentration von Inhalationsnarkotika
- $\bullet\,$ kurz vor Ende: Narkosegase abstellen, Beatmung mit 100% O $_2$ (Diffusionshypox.)
- Extubation
- Muskelrelaxanz-Überhang mit Pyridostigmin behandeln ("Decurarisierung")

Anti-Parkinsonmittel

Dopaminerges System 20.1

20.1.1 Dopaminerge Synapse

Dopaminerge Rezeptoren

Subtyp	Lokalisation	Effektor
D_1	weit verbreitet, Frontalkortex, limbisches System,	A-cyclase \uparrow (G _s)
	Nucleus accumbens, Amygdala, Striatum, glatter Mus-	
	kel	
D_2	weit verbreitet, Frontalkortex, limbisches System,	K^+ -Kanal \uparrow , Ca^{2+} -Kanal \downarrow , A -cyclase \downarrow $(G_{i/o})$
	Nucleus accumbens, Amygdala, Striatum, Hypophyse	,
D_3	limbisches System ,Nucleus accumbens, Amygdala	K^+ -Kanal \uparrow , Ca^{2+} -Kanal \downarrow , A -cyclase \downarrow ($G_{i/o}$)
D_4	Frontalkortex, limbisches System ,Nucleus accumbens	K^+ -Kanal \uparrow , Ca^{2+} -Kanal \downarrow , A -cyclase \downarrow ($G_{i/o}$)
	Mittelhirn, Amygdala	,
D_5	Thalamus, Hippocampus	A-cyclase \uparrow (G _s)

Ι

D_5 Mittelhirn, Thalamus,	• •	v clase $\uparrow (G_s)$
Dopaminerge Syste	me	
nigrostriatal	Subst. nigra \rightarrow Striatum	extrapyramidale Motorik
mesocortical	$Mittelhirn \rightarrow Frontalkortex$	kognitive Funktionen, Motivation, plan. Denken, Aufmerksamkeit
mesolimbisch	Mittelhirn \rightarrow limb. System Nucl. accumb Amygdala	soziales Verhalten, Emotionen, Gedächtnis? "reward system"
tuberohypo-physeal	${\bf Hypothalamus} \to {\bf Hypophyse}$	Regulation der Prolaktinfreisetzung

20.2 Morbus Parkinson

(Prävalenz: 1% > 65 Jahre; 2% > 75 Jahre)

- Akinese (Minussymptome)
- Ruhetremor, Rigor (Plussymptome)
- vegetative Störungen: Speichel- / Tränenfluss ↑; Talgproduktion ↑; Wärmeregulation gestört; Schweißproduktion gestört; RR ↓; Funktionsstörungen von Darm und Blase;
- psychische Störungen: depressive Verstimmung; später: verlangsamte Denkabläufe, Bradyphrenie, Demenz

20.3 Extrapyramidales System / Basalganglien

20.3.1 **Funktionskreis**

Thalamus - Cortex - Basalganglien

Modulation d. pyramidalen motorisch. Systems durch Basalganglienschleife; Umsetzung eines motor. Bewegungsentwurfs in einen koord. Bewegungsablauf. Gewollte Bewegungen gefördert, ungewollte Bewegungen gehemmt; Aktivierung des nigrostriatal. dopaminerg. System vermind. Inhibition thalamocortical. Neurone \rightarrow Erleichterung von im Cortex initiierten Bewegungen

20.3.2 Direkter Weg

Striatum \rightarrow Globus pallidus med. \rightarrow Thalamus

Aktivierung inhibiert Thalamus; über D2-Rezept. durch nigrostriatal. System inhibiert

Indirekter Weg: Striatum \rightarrow Globus pallidus lat. \rightarrow Ncl. Subthalam. \rightarrow Thalamus

Aktivierung inhibiert Thalamus; über D₂-Rezept. durch nigrostriatal. System inhibiert

20.3.3 Bei M.Parkinson

Degeneration nigrostriataler dopaminerger Neurone

- \rightarrow Enthemmung cholinerger striataler Interneurone
- \rightarrow Enthemmung glutamaterger striataler Interneurone
- \rightarrow Dysbalance des striatalen "output"
- \rightarrow vermehrte GABAerge Hemmung thalamocorticaler Neurone

20.4 Therapie des Morbus Parkinson

20.4.1 Erhöhung der striatalen Dopaminkonz. durch Gabe von L-Dopa sowie d. Hemmung des Dopaminabbaus (MAO_B/COMT-Hemmer)

Levodopa (L-Dopa)

Über Aminosäure-Transporter in das Gehirn aufgenommen und durch Dopa- Decarboxylase in Dopamin umgewandelt; Gabe von L-Dopa heute nur noch zusammen mit peripher wirksamen DDC-Hemmern

Dopa-Decarboxylase-Hemmer

Benserazid

Carbidopa (nicht ZNS-gängig)

- Dosisreduktion von L-Dopa
- Steigerung der zerebralen Verfügbarkeit von L-Dopa von 1% auf ca. 10%
- weniger periphere Nebenwirkungen durch Dopamin, Noradrenalin, Adrenalin (Übelkeit, Erbrechen, Arrhythmien, orthost. Dysregulationen)

Wirkung von L-Dopa + DDC-Hemmer lässt nach 3-5 Jahren nach

Wirkungseinschränkung Kürzere Wirkdauer, Wirkungsausmaß d. Einzeldosis ↓

Wirkungsfluktuation / on-off-Phänomen Plötzlicher Wirkungsverlust, nach unterschiedl. Zeitintervall abrupte Wirkungsrückkehr; Pharmakokinetik? (Puffer-Phänomen \downarrow); weniger ausgeprägt, wenn Plasmaspiegel konstant gehalten werden (Retardpräparate)

Dyskinesien Schnelle choreatische oder dystonische langsame unwillkürliche Bewegungen orofacial oder an den Extremitäten meist während der on-Phase weniger ausgeprägt bei konstanten Plasmaspiegeln

unerw. Wirkungen peripher (s.o.); paranoid-halluzin. Sympt.

Einsatz v.a. Patienten > 70 J.

Monoaminoxidase B Hemmer

Selegilin Monoaminoxidase-Isoformen (MAO)

Isoform MAO-A MAO-B

Substrate Serotonin, Noradrenalin, Adrenalin, Tyramin, Dopa- Tyramin, Dopamin

 \min

Blocker Moclobemid (revers.) Selegilin (irrevers.)

- Hemmung des Dopaminabbaus d. MAO-B (Haupt-Isoform im Striatum)
- allein gegeben ohne große Wirkung bei Morbus Parkinson
 - \rightarrow meist zusammen mit Levodopa/DDC-Hemmer \rightarrow Levodopa-Dosis \downarrow , gleichmäßige Wirkung (Verbesserung der on-off-Symtomatik)

w.Wirkung Übelkeit, Blutdruckabfall, Angst, Schlaflosigkeit

Catecho-O-Methyltransferase(COMT)-Hemmer

Entacapon Im peripheren Gewebe Hemmung der COMT, über die L-Dopa in Gegenwart von DDC-Hemmern vermehrt peripher abgebaut wird \rightarrow Erhöhung der zerebralen L-Dopa-Verfügbarkeit, geringerer L-Dopa-Bedarf; günstige Wirkung auf Fluktuationen

w.Wirkung Dyskinesien, Übelkeit, Schwindel, Diarrhoe, Urinverfärbung

Indikation in Kombination mit L-Dopa + DDC-Hemmer insbesondere bei Patienten mit Fluktuationen bei "end of dose" Akinesien; meist L-Dopa Dosisreduktion um ca. 30% nötig

20.4.2 Direkte Stimulation zentraler Dopaminrezeptoren

Dopamin-Rezeptoragonisten

Bromocriptin Lisurid Ropinirol
Pramipexol (Pergolid) (Cabergolin)

- \bullet vorwiegend Dopamin D₂ Rezeptoragonisten (Pergolid und Cabergolin auch Serotonin 5-HT_{2B}-Agonisten \rightarrow unerw. Wirkungen)
- Wirkungsgrad unabhängig vom Decarboxylierungspotential des Striatums
- Plasma HWZ mehrere Stunden (L-Dopa 1-2h)
- Einsatz als initiale Monotherapie v.a. Patienten <55 J.
- auch zur Unterdrückung der Laktation nach der Geburt bzw. zum Abstillen eingesetzt (hypophysäre D₂ Rezeptoren
 → Prolactin Freisetzung)

w.Wirkung Übelkeit, Erbrechen, orthost. Störungen, Verwirrtheit, Halluzinationen; Pergolid u. Cabergolin: Herzklappenveränderungen (daher 2. Wahl)

20.4.3 Hemmung zentraler muscarinischer Rezeptoren

Muskarinrezeptor-Antagonisten

Biperiden Trihexyphenidyl Metixen Bornaprin

- zentral wirksame Anticholinergika zur Abschwächung der Überaktivität cholinerger striataler Interneurone
- mäßige Wirkung v.a. auf Tremor, geringe Wirkung auf Rigor u. Akinese

v. Wirkung: Sedation, Verwirrtheit, Obstipation, Mundtrockenh., Harnverhalt

cave Glaukom

20.4.4 Blockade von Glutamat-Rezepotoren (NMDA-Typ)

NMDA Rezeptor-Antagonisten

Amantadin Memantin

- Blockade von Glutamat-Rezeptoren vom NMDA-Typ
- mäßige Wirkung (im Vergleich zu Levodopa/DDC-Hemmer) bei alleiniger Gabe
- Wirkung v.a. auf Akinese
- relativ geringe unerwünschte Wirkungen

Antiepileptika

Prävalenz der Epilepsie: 0.5 - 1%; meist chron. Erkrankung, die mit epilept. Anfällen einhergeht \rightarrow abnorme elektrische Entladung im Großhirn. In der Regel Sekunden bis Minuten dauernd (Ausnahme: status epilept.) Störung von: Bewusstsein, Motorik, Sensibilität, Vegetativum, Denken, Gedächtnis, Wahrnehmung, Emotion

21.1 Formen der Epilepsie

21.1.1 Fokal

(synchrone Entladung in einer Hemisphäre, oft d. erworbene Schädigung)

4% einfache fokale Anfälle (Bewußtsein erhalten)

16% komplex fokale Anfälle (Bewußtsein verändert oder aufgehoben)

33% sekundär generalisierte (fast immer tonisch-klonische Anfälle mit fokalem Beginn (Bewußtsein im Generalisationsstadium aufgehoben)

21.1.2 Pimär generalisiert

(synchrone Entladung v. Neuronen in beiden Hemisphären)

1% Absencen (Bewußtsein kurzfristig aufgehoben)

1% myoklonische Anfälle (Bewusstseinsausfall wegen kurzer Dauer kaum wahrnehmbar)

33% generalisierte ton. und/oder klon. Anfälle (Bewußtsein aufgehoben)

<1% atonische Anfälle (Bewusstseinsausfall wegen kurzer Dauer kaum wahrnehmbar),

21.1.3 Nicht klassifizierbar

< 8%

21.2 Pathomechanismen der Epilepsie

- Dysbalance zwischen inhibitorischen und exzitatorischen Einflüssen
- Elektrische Instabilität einzelner Neurone

21.2.1 Zelluläres Korrelat

paroxysmale Depolarisation hochfrequente Aktionspotentiale Nachhyperpolarisation elluläre Phänomene finden sich au Ca²⁺-Einstrom, AMPA/NMDA-Rezeptor-Aktivierung Na⁺-Einstrom

K⁺-Ausstrom, GABA-Rezeptor-Aktivierung

zelluläre Phänomene finden sich auch zwischen den Anfällen

21.2.2 Versagen der Umfeldhemmung

Erregungsausbreitung wird normalerweise durch inhibitorische, v.a. GABAerge Interneurone in der Umgebung epileptisch aktiver Zellen gehemmt Überwindung der Umfeldhemmung. \rightarrow Aktivierung umliegender Neurone; \rightarrow hochsynchrone Aktivität von Neuronenverbänden \rightarrow Epilepsie

21.3 Antiepileptika

zur symptomatischen Therapie bzw. Prophylaxe (> 1 Anfall / Jahr)

21.3.1 Hemmung der Erregbarkeit von Neuronen

Unterdrückung insbesondere der hochfrequenten Aktionspotentiale am Beginn der paroxysmalen Depolarisation, Na⁺-Kanalblocker, Ca²+-Kanalblocker

21.3.2 Verstärkung der Umfeldhemmung epileptisch aktiver Neurone

 $GABA_A$ -Rezeptor-Aktivierung: Erhöhung der GABA-Konzentration, Hemmung der Wiederaufnahme, Hemmung des Abbaus durch z.B. GABA-Transaminase

21.3.3 Pharmaka

Pheytoin

- Blockade von Na⁺ Kanälen
- Einsatz v.a. bei fokalen Anfällen (wegen unerw. Wirkungen nicht 1. Wahl)
- nakokinetik hepat. Metabolisierung; Sättigung im Bereich therapeut. Spiegel; Plasma HWZ: 10-60 h, interindividuelle Schwankungen in der Metabolisierungsfähigkeit → langsame Dosissteigerung, Spiegelbestimmung

WW multiple

w.Wirkung Schwindel, Ataxie, Nystagmus, Gingivahyperplasie, Hypertrichose, Hautverdickungen, Blutbildveränderungen, Osteoporose, Osteomalazie;

KI AV-Block II. / III. Grades, Leukopenie; Schwangerschaft (relat.)

Carbamazepin

- Blokade von Na⁺ Kanälen; Therapeutikum der 1. Wahl bei fokalen Anfällen, auch bei Trigeminusneuralgie; stimmungsaufhellend, antriebssteigernd
- nakokinetik: Enzyminduktion!; \rightarrow beschleunigter Abbau nach mehrfacher Applikation; Plasma HWZ 8-24 h (nach mehrf. Gabe);
- w.Wirkung Leukopenie, Schwindel, Sedierung, Übelkeit (neueres Derivat Oxcarbazepin hat möglicherweise weniger unerw. Wirkungen); genet. bedingte Hypersensitivitätsreaktionen (z.B. makulopapulöses Exanthem 5-10%): Genotypisierung vor Therapiebeginn empfohlen

KI AV-Block II. / III. Grades, Leberfunktionsstörungen; Schwangerschaft (relat.)

WW zahlreich (v.a. durch Enzyminduktion)

Lamotrigin

- Hemmung von Na⁺ Kanälen v.a. präsynapt. \rightarrow Freisetzung exzitatorischer Transmitter (z.B. Glutamat) \downarrow
- Therapeutikum der 1. Wahl bei fokalen E., auch Zusatzbeh. mit Carbamazepin

w.Wirkung Hautausschläge (allerg.), Schwindel, Kopfschmerz

Valproinsäure

- Hemmung von Na⁺ Kanälen, Hemmung des GABA-Abbaus (Transaminase)
- 1. Wahl bei primär generalisiert. Anfällen und unklassifizierb. Anfällen
- w.Wirkung (relativ milde): Gerinnungsstörungen, Tremor, Haarausfall, hepatotoxisch (v.a. bei Vorerkrankung), teratogen! (spina bifida)

KI Lebererkrankungen, Schwangerschaft

Ethosuximid

- Hemmung von T-Typ Ca²⁺-Kanälen; Einsatz bei Absencen; Plasma HWZ 30-40h
- w.Wirkung Kopfschmerzen, Schwindel, Übelkeit, Stimmungsveränderungen, Blutbildveränderungen

Gabapentin

achanismus Interaktion mit $\alpha_2\delta 1$ (Thrombospondin-Rezeptor; Untereinheit von Ca²⁺-Kanälen, außer T-Typ) - Blockade der Synaptogenese, möglicherweise Hemmung von Ca²⁺-Kanälen und GABA-Freisetzung

Einsatz neben antiepileptischer Therapie auch: Behandlung neuropathischer Schmerzen

Levetiracetam

Interaktion mit Vesikelprotein SV2A (Freisetzung v. GABA u. Glycin ↑); wenige Arzneimittel-wechselwirkungen;

Einsatz Monotherapie fokaler Anfälle mit u. ohne Generalisierung (Erw. u. Jugendliche); Zusatztherapie (fokal, myoklonisch, generalisierte Anfälle)

Benzodiazepine

Diazepam Clonazepam Clobazam bei status epilepticus (Diazepam, Clonazepam); 2. Wahl bei versch. Epilepsieformen

Phenobarbital, Primidon

- Verstärkung der GABAergen Inhibition
- 2. Wahl bei fokalen, generalis. ton.- klon. Anfällen und myoklon. Anfällen
- Plasma HWZ 2-10 Tage (Enzyminduktion!)

w.Wirkung Sedierung, Konzentration ↓, Verwirrtheitszusstände, Allergien

• Primidon wird zu Phenobarbital metabolisiert

Vigabatrin

Anfallsart

• GABA-Abbau \undergal d. irreversible Hemmung der GABA Transaminase

1. Wahl

• Zusatzmedikation bei fokalen Anfällen

w.Wirkung Sedierung, Verwirrtheit, Erregungszustände (bei Kindern)

21.3.4 Antiepileptika - Indikationen

fokal
einfache und komplexe Anfälle carbamazepin / Lamotrigin Phenytoin, Vigabatrin, Phenobarbital
sekundär generalisierend Carbamazepin / Valproinsäure
generalisiert
Absencen Valproinsäure / Ethosuximid Lamotrigin
myoklon. Anfälle Valproinsäure Clonazepam, Lamotrigin, Phenobarbital,
Primidon

general. klon.-ton. Anfälle Valproinsäure Carbamazepin, Clonazepam, Phenobarbi-

 tal

2. Wahl

21.4 Pharmakotherapie bei Status epilepticus

Diazepam

i.v. oder rectal

Kinder 5 mg

Erwachsene 10-20 mg

Zusätzlich bzw. wenn keine Besserung:

Phenytoin

25 mg/min langsam i.v. Gesamtdosis

Kinder 125-250 mg

Erwachsene 250-500 mg

wenn keine Besserung: Phenobarbital bzw. Narkose FDA-Warnung vor Suizidalität unter Antiepileptika (2008)

Antidepressiva

22.1 Pharmakodynamik

Antidepressiva führen zu einer Erhöhung der Konzentration von Noradrenalin und/oder Serotonin im synaptischen Spalt durch Hemmung der Wiederaufnahme aus dem synaptischen Spalt oder durch Blockade des Abbaus (Monoaminmangel-Hypothese zur Ätiologie der Depression)

Aber: Antidepressive Wirkung setzt erst mit Latenz von Tagen bis Wochen ein, obwohl die Monoaminkonzentration bereits kurz nach der Applikation ansteigt.

 \rightarrow Der antidepressiven Wirkung liegt offensichtlich ein komplexer, regulierender Eingriff in die zentrale noradrenerge und serotoninerge Neurotransmission zugrunde. Möglicherweise ist die Neubildung von synaptischen Kontakten oder gar eine Neurogenese für die antidepressiven Effekte verantwortlich.

Einige Antidepressiva besitzen antihistaminerge (H_1) Wirkungen

 \rightarrow Sedierung, Antriebshemmung

Nicht-Selektive Monoamin-Rückaufnahme-Hemmer (NSMRI) Noradrenalin- und Serotonin Wiederaufnahme ↓, Blockade verschiedener Rezeptoren

Selektive Serotonin/Noradrenalin-Rückaufnahme-Hemmer (SSNRI) Noradrenalin- und Serotonin Wiederaufnahme ↓, keine Rezeptor-Blockade

Selektive Serotonin-Rückaufnahme-Hemmer (SSRI) Serotonin-Wiederaufnahme↓, keine Rezeptor-Blockade

Selektive Noradrenalin-Rückaufnahme-Hemmer (SNRI) Noradrenalin-Wiederaufnahme↓, keine Rezeptor-Blockade

 $\alpha_2\textbf{-}\mathbf{Adrenozeptor-Antagonisten}$ Blockade verschiedener Rezeptoren (u.a. $\alpha_2\textbf{-}\mathbf{Adrenozeptoren})$

Monoamin-Oxidase-Hemmer (MAO-Hemmer)							
	Transporte	erhemmung		$R\epsilon$	ezeptorb	lockade	
	NA	5-HT	M_1	α_1	α_2	H_1	5-HT_{2A}
NSMRI (Tricyclische AD)							
anxiolytisch, dämpfend							
Amitriptylin	++	++	++	++	+	++++	+++
Doxepin	+++	++	++	+++	-	++++	+++
neutral							
Tmipramin	+++	+++	++	++	-	+++	++
Clomipramin	+++	++++	++	++	-	+++	++
antriebssteigernd							
Nortriptylin	+++	+	++	++	-	+++	+++
Desipramin	++++	++	++	+	-	++	++
SSNRI (neutral-aktivierend)							
Venlafaxin	+++	++++	-	-	-	-	-
SSRI							
Fluvoxamin	+	+++	-	-	-	-	-
Fluoxetin	+	+++	-	-	-	-	+
Paroxetin	+	++++	+	-	-	-	-
Citalopram	-	++++	-	-	-	+	-
SNRI							
Reboxetin	+++	-	-	-	-	-	-
α_2 -Adrenozeptor-Antag.							
(sedierend)							
Mianserin	+	-	+	+	++	++++	+++
Mirtazapin	-	-	+	+	+++	++++	+++

22.2 Nicht-selektive Monoamin-"Reuptake"-Inhibitoren (NSMRI)

Pharmakokinetik

- gut resorbiert, 30-80% bioverfügbar (teilweise first-pass-Effekt)
- Verteilungsvolumen hoch (Lipophilie); hepat. metabol. (CYP2D6), renal eliminiert

unerwünschte Wirkungen

(häufig nur bei hoher Dosierung)

- anticholinerge Effekte: Mundtrockenheit, Akkomodationsstörungen, Mydriasis, Obstipation, Miktionsstörungen
- kardiovaskuläre Effekte: Blutdruckabfall, Tachykardie, Herzrhythmusstörungen (teilweise durch α_1 -antiadrenerge Wirkung)
- zentralnervöse Effekte: Sedierung (antihistamin. Wirkung; z.B.: Amitriptylin/ Doxepin), Appetit ↑ mit Gewichtszunahme; Schlafstörungen, Krampfschwelle ↓, feinschlägiger Tremor

Interaktionen

- Verstärkung adrenerger Effekte v. MAO-Hemmern u.a. Sympathomimetika
- verstärkte Sedation (Benzodiazepine, Alkohol etc.)
- $\bullet\,$ anticholinerge Effekte \uparrow (Atropin, Biperiden, Neuroleptika u.a.)

akute Vergiftung

Blutdruck \downarrow , Tachykardie, Arrhythmien; Hyperthermie, Delirien, Krämpfe, Koma Therapie: symptomatisch; Physostigmin, β -Blocker, Diazepam

22.3 Selektive Serotonin-"Reuptake"-Inhibitoren (SSRI)

Fluoxetin Fluoxamin Paroxetin

Citalopram Sertralin

psychomotorisch neutral bis aktivierend kaum sedierende und vegetative (anticholinerge) Wirkungen Wirksamkeit wahrscheinlich geringer als die von NSMRIs

Pharmakokinetik

- gut resorbiert
- hepatisch metabolisiert (CYP2D6, CYP2C9/19), renal eliminiert
- Plasma-HWZ

Fluoxetin 3 Tage !! Citralopram 36 h
Fluoxamin 15-20 h
Paroxetin 8-30 h

Unerwünschte Wirkungen

- gastrointestinal: Übelkeit, Erbrechen (5-HT₃-Rez.), Obstipation, Diarrhoe
- Kopfschmerzen
- Suizidalität und Aggressivität erhöht?
- Schlaflosigkeit, Schwindel, Agitiertheit
- keine Sedierung, keine anticholinergen und kardiovaskulären unerw. Wirkungen

akute Vergiftung

gastrointestinal, Verwirrtheit, Unruhe, Tremor Letalität deutlich geringer als bei Intoxikation mit NSMRI

Wechselwirkungen

cave: MAO-Hemmer !! Gefahr eines lebensbedrohlichen zentralen Serotonin-Syndroms (Erregung, Bewußtseinsstörung, Muskeltonus \uparrow , Myoklonien) Hemmung von Cytochrom P450 Monooxygenasen (v.a. CYP2D6) \rightarrow verstärkte Wirkung anderer Pharmaka

22.4 MAO-A-Hemer

Moclobemid

nakokinetik gut resorbiert; hepatisch metabolisiert, renal eliminiert; Plasma-HWZ: 2 h

UAW Schlafstörungen, Übelkeit, Kopfschmerzen, Agitiertheit

WW cave: Wiederaufnahmehemmer

22.5 Pharmaka zur Phasenprophylaxe affektiver Psychosen bzw. Therapie einer Manie

22.5.1 Lithium

Einsatz

- Prophylaxe affektiver Psychosen (unipolar oder bipolar)
- Therapie manischer Phasen

Wirkungseintritt: nach Monaten (Prophylaktikum); nach 1-2 Wochen (Therapie)

Wirkmechanismus

Hemmung von:

- Inositolmonophosphatphosphatase
- Glykogen-Synthetase-Kinase 3

Pharmakokinetik

ähnlich Na⁺, → abhängig von Na⁺-Zufuhr

Unerwünschte Wirkungen

- gastrointestinale Störungen (Diarrhoe)
- feinschlägiger Tremor
- $(\beta$ -Blocker behandelbar)
- $\bullet \ \ Gewichtszunahme$
- euthyreote Struma (10%)
- Polyurie, Polydipsie (Hemmung d. ADH-Effekte an der Niere)

akute Vergiftung

Verstärkung der unerwünschten Wirkungen, Krampfanfälle, Koma Therapie: NaCl⁻Zufuhr, forcierte Diurese, Hämodialyse

Problem

 \Rightarrow Serum-Spiegel-Kontrolle

Wechselwirkungen

Thiazide und andere Diuretika sowie nichtsteroidale Antirheumatika hemmen die Lithium-Ausscheidung, weiterhin Antiepileptika (u.a. Carbamazepin, Lamotrigin) bzw. Neuroleptika

Kontraindikationen

Schwangerschaft, Niereninsuffizienz, Herzinfarkt

Neuroleptika

23.1 "KlassicheNeuroleptika

Phenothiazine	relative Potenz	Plasma-HWZ (h)
Chlorpromazin	1	15-30
Thioridazin	0,5	16
Promazin	0,7	4-29
Triflupromazin	4	6
Fluphenazin	50	15
Trifluperazin	10-20	12
Butyrophenone	relative Potenz	Plasma-HWZ (h)
Haloperidol	50	13-30
Melperon	5	3
Pipamperon	2	3
Benperidol	200	4
Trifluperidol	100	15-20
Diphenylbutylpiperidine	relative Potenz	Plasma-HWZ (h)
Flusprilen	30	7 Tage !!
Pimozid	30	55
Thioxanthene	relative Potenz	Plasma-HWZ (h)
Chlorprothixen	2	8-12
Flupentixol	50	30

23.2 Wirkmechanismen / Nebenwirkungen klassischer Neuroleptika

- Blockade von Dopamin D2 Rezeptoren (korreliert mit anti-psychotischer Wirkung)
 - mesolimbisch-mesokortikales System
 - * Wirksamkeit v.a. gegen produktive Symptome der Schizophrenie
 - * Wirkung manifestiert sich langsam (Tage bis Wochen)
 - nigro-striatales System: extrapyramidalmotorische unerwünschte Effekte
 - * Frühdyskinesien (1-5 Tage) Verkrampfung der mimischen Muskulatur, auch Zunge, Schlund; selten: Hals und Arme; Behandlung: zentrale Anticholinergika (Biperiden)
 - * Parkinsonoid (5-30 Tage) Rigor, Tremor, Akinese, vegetative Störungen Behandlung: zentrale Anticholinergika (Biperiden)
 - * Akathisie (5-60 Tage) Behandlung: schwierig (evtl. Benzodiazep., β -Block.)
 - * Spätdyskinesien stereotype Saug-. Schmatz-, Kau- und Zungenbewegungen; auch distale Muskelgruppen; häufig irreversibel!; Behandlung: schwierig
 - tuber-hypophyseales System
 Prolaktinfreisetzung ↑→ Galaktorrhoe, Gynäkomastie, Area postrema: antiemetisch, Hypothalamus: Hypothermie
- \bullet Blockade von Serotonin 5-HT $_{2A}$ Rezeptoren wahrscheinliche Beteiligung an antipsychotischem Effekt (insb. günstige Beeinflussung der Minussymptomatik), verringerte EPS

- Blockade von Histamin H₁ Rezeptoren Sedierung (v.a. initial), antiemetische Wirkung, Gewichtszunahme
- Blockade von α_1 -adrenergen Rezeptoren vegetative Wirkungen (Blutdruckabfall, orthostatische Regulationsstörungen)
- Blockade muskarinerger M₁ Rezeptoren vegetative Wirkungen (Obstipation, Miktionsstörungen, Mundtrockenheit, Akkomodationsstörungen), verringerte EPS
- weitere unerwünschte Wirkungen Blutbildveränderungen, evtl. depressive Syndrome, Gewichtszunahme

Neuroleptikum	Neuroleptische Potenz	Extrapyramidal rische Wirkung	moto-	Sedierende Wirkung	Vegetative Wirkungen
Thioridazin	0,5	_			
Levomepromazin	0,7				
Promazin	0,7				
Chlorpromazin	1				
Perazin	1				
Pipamperon	2				
Chlorprothixen	2				
Triflupromazin	4				
Perphenazin	4-10				
Melperon	5				
Trifluperazin	10-20				
Fluspirilen	30				
Pimozid	30				
Fluphenazin	50				
Flupentixol	50				
Haloperidol	50				
Trifluperidol	100				
Benperidol	200				

Pharmakokinetik

- $lipophil \rightarrow gute Resorption$
- \bullet präsystemische Inaktivierung in der Leber \to Bioverfügbarkeit 30-60%
- Verteilungsvolumen hoch (gute Gewebegängigkeit und Penetration ins ZNS)
- ausgeprägter v.a. hepatischer Metabolismus
- Plasma-HWZ: 10-30 h

Wechselwirkungen

- andere Sedativa
- L-Dopa, Bromocriptin (antagonisierend)
- Anticholinergika

Indikationen

- anti-psychotische Akut- und Langzeittherapie
- nicht-psychotische Angst-, Unruhe- oder Spannungszustände
- Sedierung
- manische Syndrome

Neuroleptikavergiftung

- schwere extrapyramidalmotorische Symptome
- Sedierung, Somnolenz
- Harnverhalt, Hypotension, Tachykardie, Rhythmusstörungen
- Delir, Krämpfe
- Therapie: Giftentfernung
 - Anticholinergika (b. extrapyramidalmotor. Störungen), Noradrenalin,
 - Physostigmin (b. zentral anticholinergen Effekten), Benzodiazepine
 - ansonsten symptomatisch

23.3 ÄtypischeNeuroleptika

23.3.1 Neuroleptika mit anderem Wirkprofil

insbesondere weniger stark ausgeprägte extrapyramidalmotorische Störungen möglicherweise günstigere Effekte auf Negativsymptome der Schizophrenie (Antriebsstörung, Affektverflachung, soziale Passivität, gedankl./sprachl. Verarmung).

23.3.2 Antagonismus am Serotonien 5- HT_{2A} Rezeptor

überwiegt den Antagonismus am Dopamin D_2 Rezeptor und ist wahrscheinlich für die neuroleptische Wirkung dieser Pharmaka verantwortlich; Clozapin blockiert auch den D_4 Rezeptor.

23.3.3 Nebenwirkungen

Anwendung häufig mit erheblicher Gewichtszunahme verbunden v.a. durch Appetitsteigerung. Orexigener Effekt korreliert mit Antagonismus am H_1 Rezeptor und ist v.a. bei Clozapin, Olanzapin, Zotepin und Quetiapin stark ausgeprägt.

23.3.4 Rezeptorprofil atyptischer Neuroleptika (Antagonismus)

	D_2	D_4	5-HT_{2A}	M_1	$lpha_1$	${ m H}_1$
Clozapin	+	+++	++	++	+++	+++
Olanzapin	++	+	+++	++	(+)	+++
Zotepin	++	(+)	+++	+	+++	+++
Quetiapin	+	0	+++	++	+++	+++
Risperidon	++	(+)	+++	0	++	+
Ziprasidon	++	+	+++	0	++	+
zum Vergleich						
Haloperidol	+++	+	0	0	+	0
Promazin	+	?	+	++	+++	+++

• Clozapin

so gut wie keine extrapyramidalmotorischen Störungen Sedierung, Mundtrockenheit, orthostat. Dysregulation, Gewichtszunahme Agranulozytosen!

• Olanzapin

selten extrapyramidalmotorische Störungen, Sedierung, Mundtrockenheit, Gewichtszunahme, keine Agranulozytosen

• Risperidon, Ziprasidon

extrapyramidalmot. Störungen seltener als bei klassischen Neuroleptika orthostat. Dysregulation, Schlaflosigkeit Ziprasidon: QT-Verlängerung; auch: anxiolyt.-antidepressiv

• Zotepin, Quetiapin

extrapyramidalmot. Störungen seltener als bei klassischen Neuroleptika orthostat. Dysregulation , Sedierung, Mundtrockenheit, Gewichtszunahme

Magen-Darm-Pharmaka

24.1 Regulation der Magensaftsekretion

Kephale Phase

- Geruch, Geschmack, Vorstellung, Anblick
- Zentral über N. vagus vermittelt (30-40% der max. Sekretion)

Gastrale Phase

- $\bullet\,$ Magendehnung \to lokal über N. vagus
- Eiweißabbauprodukte → Gastrinfreisetzung aus G-Zellen (50-60% der max. Sekretion)

Intestinale Phase

- mechanisch, humoral
- \bullet Eiweißabbauprodukte \to Gastrinfreisetzung aus G-Zellen
- \bullet Dünndarm pH < 4 \to Sekretin-, GIP-Freisetzung \to Somatostatin-Freisetzung aus D-Zellen \to Hemmung der Gastrinfreisetzung

24.1.1 Regulation der H⁺-Produktion im Magen

24.2 Antazida

Aluminiumhydroxid, Al $(OH)_3$ Magnesiumhydroxid Mg $(OH)_2$ Meist kombinierte Gabe 1-2 Stunden nach den Mahlzeiten

Unerwünschte Wirkungen Obstipation [Al(OH)₃]; Diarrhoe [Mg(OH)₂]

24.2.1 Schichtgitter Antazida

Magaldrat Hydrotalcit

Komplexverbindungen (Magnesium-Hydroxid-Matrix, in der Magnesiumionen zum Teil durch Aluminiumionen ersetzt sind). Hohe Pufferkapazität

Einsatz Sodbrennen, dyspept. Beschwerden, leichte Gastritis

24.3 Protonenpumpenhemmer

Dosierung (mg) (1Dosis pro Tag zur Mahlzeit)

Omeprazol 20 Lansoprazol 30 Pantoprazol 40

Esomeprazol (S-Enantiomer von Omeprazol)

Pro-drugs

Hemmung der basalen und stimulierten Sekretion (> 95%) durch kovalente Modifikation der H⁺/K⁺-ATPase

Pharmakokinetik

- Verabreichung in Magensaft-resistenter Form
- gute Resorption im Dünndarm (60-80%)
- Anreicherung in Canaliculi der Belegzellen
- Protonierung und Umwandlung in aktive Form
 - \rightarrow hohe Selektivität für Parietalzellen
- Plasma-HWZ: 1 h (hepatische Metabolisierung v.a. durch CYP2C19 und CYP3A4); Wirkdauer deutlich länger!

Unerwünschte Wirkungen

- Kopfschmerzen
- gastrointestinale Störungen (Diarrhoe, Dyspepsie, epigstr. Schmerzen)
- Langzeittherapie: Magnesiummangel (Störung des aktiven Transports im Darm?), schwere neuromuskuläre Symptome

Interaktionen

- Metabolisierung von Diazepam, Phenytoin ↓ (v.a. Omeprazol)
- Abschwächung der thrombozytenaggregationshemmenden Wirkung von Thienopyridinen (z.B. Clopidogrel); evtl. über CYP2C19-Hemmung

Einsatz

- Ulcus duodeni/ventriculi; Ulkusprophylaxe
- Refluxösophagitis

24.4 H₂-Rezeptoragonisten

Wirkmechanismus

Hemmung der basalen (ca. 90%) und der stimulierten (Nahrung, Gastrin, Vagus) Sekretion (ca. 50%)

Pharmakokinetik

- Schnelle und nahezu vollst. Resorption nach oraler Gabe
- Plasma-HWZ: 1-3 h

Unerwünschte Wirkung

- Kopfschmerzen
- Halluzinationen, Verwirrung
- Cimetidin: Gynäkomastie, Galaktorrhoe (Östrogenabbau, Antagonist am Androgen-Rezeptor)

Interaktionen

v.a. Cimetidin (Enzymhemmung), z.B. Abbau von Antikoagulantien, Antiepileptika \(\psi

Einsatz

Zunehmend durch Protonenpumpemhemmer verdrängt

24.5 Eradikationsbehandlung bei Helicobacter pylori-assoziierten Ulzera

Tripel-Therapie mit Protonenpumpenhemmer und antibakteriellen Substanzen: \rightarrow rasche Heilung, Rezidivprophylaxe Synergie: Antibakterielle Wirkung ist bei erhöhtem pH-Wert verbessert

4-6 Wochen nach Therapie: Überprüfung des H.p.-Status Erfolgsrate: >90% (zunehmende Resistenzen v.a. gegen Metronidazol, Clarithromycin; evtl. sequenzielle Triple-Therapie?)

24.6 Erbrechen

Auslösung des Brechreflexes

Zytotoxische Substanzen (Zytostatika) GI-Trakt, Chemorezeptor-Triggerzone

Bestrahlung GI-Trakt

Kinetosen, Hyperemesis gravidarum Vestibularapparat, Cerebellum

24.6.1 Emetika

Gelegentlicher Einsatz zur Auslösung von Erbrechen bei Vergiftungen von Patienten bei vollem Bewußtsein

Emetin

(aus der Brechwurzel Psychotria ipecacuanha) als Ipecacuanha-Sirup oral verabreicht; Stimulation sensor. Nervenfasern des Vagus in der Magenschleimhaut; Einsatz bei Kindern u. Erwachsenen

Apomorphin

Dopamin D₂ Rezeptor Agonist; Aktivierung des Brechzentrums über Chemorezeptor-Triggerzone und Nucl. tractus solitarii Unerwünschte Wirkungen: Atemdepression, Hypotension Indikation: sehr selten; kontraindiziert bei Kindern!

Antiemetika

Dopamin D₂-Rezeptor-Antagonisten

w.Wirkung Extrapyramidalmotorische Störungen

Einsatz Gastroenteritis, Urämie, postoperativ (keine Wirkung bei Kinetosen)

Histamin H₁-Rezeptor-Antagonisten

Promethazin Meclozin Dimenhydrinat

w.Wirkung Sedierung;

Einsatz Kinetosen, Hyperemes. gravid.

Muscarin-Rezeptor-Antagonisten

Scopolamin

w.Wirkung Sedierung, parasympatholytische Symptome Einsatz: Kinetosen

Serotonin-(5-HT₃)-Rezeptor-Antagonisten

Ondansetron Tropisetron
Granisetron Dolasetron

w. Wirkung Selten: Kopfschmerzen, Obstipation

Einsatz – Zytostatika-induz. Erbrechen v.a. in der Frühphase (1. Tag)

- Erbrechen nach Bestrahlung

Substanz-P-(NK₁)-Rezeptor-Antagonisten

Aprepitant

Wirkung über NK₁-Rezeptoren im Bereich des Nucl. Tractus solitarii Anti-emetische Effekte bei Zytostatika-induziertem Erbrechen (Früh- und Spätphase; 1.-3. Tag)

Prophylaktische antiemetische Therapie bei Chemotherapie mit hoch-emetogenen Pharmaka (z.B. Cisplatin, Cyclophosphamid (hochdosiert), Carmustin, Dacarbacin, Dactinomycin)

- 1. Tag 5-HT3 Antagonist + Dexamethason + Aprepitant
- 2./3. Tag Dexamethason + Aprepitant

Cannaboide

Nabilon (synthetisch)

Dronabinol (THC)

Anti-emetische Wirkung über Cannabinoid- (CB_1) -Rezeptoren gut belegt. Nabilon und Dronabinol sind gemäß BtMVV "verkehrsfähig und ver-schreibungsfähig"; in Dtl. zur Zeit kein entsprechendes Präparat zugelassen

24.7 Prokinetika

Stoffe zur Anregung der Magen-Darm-Mobilität, Beschleunigung der Magenentlerung und Darmpassage

Metoclopramid

Domperidon

Cisaprid

Wirkmechanismus

- Agonismus an präsynaptischen Serotonin(5-HT4)-Rezeptoren cholinerger Nerven im Magen-Darm-Trakt \rightarrow Freisetzung von Ach $\uparrow \rightarrow$ Tonus, propulsive Peristaltik \uparrow
- Antagonismus an Serotonin(5-HT₃)-Rezeptoren
- Antagonismus an Dopamin(D₂)-Rezeptoren

	Agonism./Antagonism.			Prokinet. Wirkung an		
	$5\text{-HT}_4\text{-Ag}$	5-HT ₃ -Antag.	D_2 -Antag	Ösophagus, Magen, Ileum	Kolon	
Metoclopramid	+	+	+	+	-	
Cisaprid	++	+	-	+	+	
Domperidon	-	-	++	+	-	

Pharmakokinetik

- rasche und vollständige Resorption, Metoclopramid ist ZNS-gängig
- überwiegend metabolisiert (v.a. $CYP3A4 \rightarrow Cisaprid$)

unerwünschte Wirkungen

Metoclopramid (bei hohen Dosen; v.a. nach i.v.-Gabe):

- extrapyramidalmotorische Störungen
- Hyperprolaktinämie (Gynäkomastie, Galaktorrhoe)

(Cisaprid): Herzrhythmusstörungen bei Überdosierung oder wenn Eliminaton↓ Marktrücknahme 2000; abdominelle Krämpfe, Diarrhoe

Einsatz

Funktionelle Dyspepsie, Gastroparese, Refluxkrankheit Zur Anregung der Darmperistaltik bei paralytischem Ileus (z.B. postoperativ): Direkte oder indirekte Parasympathomimetika (KI: mechan. Ileus!)

24.8 Diarrhoe

> 3 x täglich breiger/wässriger Stuhlgang

24.8.1 Ursachen

- Magen-Darm-Erkrankungen
- Infektionen invasiv (Salmonella typhi/paratyphi, Shigellen etc.)
 - nicht-invasiv (Enterotoxin-bildende Erreger; E. coli, V. cholerae,
 - Staph. aureus, Salmonellen etc.)
- Medikamente (Antibiotika, Zytostatika, Antazida, Laxantien)

24.8.2 Therapie

(Je nach zugrundeliegender Erkrankung)

Flüssigkeits- und Elektrolytersatz

Substitution von Wasser, Glukose, Elektrolyten, Elektrolyt-Glukose-Lösung oral oder i.v.

Opiate / Enkephalinase-Hemmer

Loperamid max. 6 x 2 mg

→ Tonus↑, propulsive Peristaltik↓, Flüssigkeitssekretion↓

Nicht ZNS-gängig (cav: Säuglinge und Kleinkinder)

KI: Ileus, invasive Infektionen, M. Crohn, Colitis ulcerosa; Alter < 2 J. Bei Kindern alternativ: Racecadotril (Enkephalinase-Hemmer)

Antibiotika

bei schwerem Verlauf und system. Komplikationen, Verd. auf Infektion Co-trimoxazol; Ciprofloxacin

24.9 Obstipation

Stuhlgang < 3 x pro Woche für > 6 Monate

24.9.1 Ursachen

- meist funktionelle Störung infolge fehlerhafter Ernährung / Lebensgewohnheiten
- organ. Darmerkrankungen u.a.
- Medikamente (Antazida, Psychopharmaka, Opiate, Anticholinergika, Laxantie

Strenge Indikationsstellung für Laxantien!

Ausschluss organischer Ursachen / Medikamentenabusus; kurzdauernde, einmalige Gabe ist unproblematisch

24.9.2 Therapie

Quell- und Ballaststoffe, Gleitmittel

Weizenkleie Leinsamen

Quellung unter Wasseraufnahme; Verabreichung mit ausreichender Flüssigkeitsmenge; Wirkung nach 10-20 Stunden

Osmotisch wirksame Laxantien

Nicht-resorbierbare, niedermolekulare Substanzen

Na₂SO₄ (Glaubersalz); MgSO₄ (Bittersalz) Gabe als isotone Lösung; Wirkung nach 2-4 Stunden

Lactulose, Sorbitol Wirkung nach 8-12 Stunden

Stimulierende Laxantien

	Anthrachinon-Glykoside	Umwandlung in aktive Anthrone/Anthranole (Emodine) durch Glykosidasen (Darm) und	Wirkung
		Reduktasen (Darm-Bakterien)	
	Rizinusöl	Umwandlung d. Lipasen im Darm zu Rici-	Wirkung
Colmotion in Volon & manulaire Deviateltile &		nolsäure	
Sekretion im Kolon \uparrow , propulsive Peristaltik \uparrow	Diphenole	synthetische Wirkstoffe (Bisacodyl, Natrium-	Wirkung
		picosulfat) Resorption im Dünndarm \rightarrow Glu-	
		kuronidierung in der Leber \rightarrow Ausscheidung	
		mit der Galle \rightarrow im Dickdarm Spaltung in freie	
		Diphenole	