```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn import preprocessing
```

Loading the Dataset

First we load the dataset and find out the number of columns, rows, NULL values, etc.

```
In [2]: df = pd.read_csv('churn_modelling.csv')
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10000 entries, 0 to 9999
        Data columns (total 14 columns):
           Column
                            Non-Null Count Dtype
         0
             RowNumber
                             10000 non-null int64
            CustomerId
         1
                             10000 non-null int64
         2
            Surname
                             10000 non-null object
         3
            CreditScore
                            10000 non-null int64
            Geography
                            10000 non-null object
         5
            Gender
                            10000 non-null object
                             10000 non-null int64
         6
            Age
         7
                             10000 non-null int64
            Tenure
                             10000 non-null float64
         8
             Balance
         9 NumOfProducts 10000 non-null int64
10 HasCrCard 10000 non-null int64
         11 IsActiveMember 10000 non-null int64
```

dtypes: float64(2), int64(9), object(3)

12 EstimatedSalary 10000 non-null float64

10000 non-null int64

memory usage: 1.1+ MB

13 Exited

```
In [4]: df.head()
```

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProdu
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	
3	4	15701354	Boni	699	France	Female	39	1	0.00	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
4										•

Cleaning

```
In [5]: df.drop(columns=['RowNumber', 'CustomerId', 'Surname'], inplace=True)
```

```
In [6]: df.isna().sum()
Out[6]: CreditScore
                            0
        Geography
                            0
        Gender
                            0
        Age
                            a
        Tenure
                            0
        Balance
        NumOfProducts
        HasCrCard
        IsActiveMember
                            0
        EstimatedSalary
                            0
        Exited
        dtype: int64
```

In [7]: df.describe()

Out[7]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMembe
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.49979
min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000
4							>

Separating the features and the labels

```
In [8]: X=df.iloc[:, :df.shape[1]-1].values
                                                   #Independent Variables
        y=df.iloc[:, -1].values
                                                   #Dependent Variable
        X.shape, y.shape
Out[8]: ((10000, 10), (10000,))
```

Encoding categorical (string based) data.

```
In [9]: print(X[:8,1], '... will now become: ')
         label_X_country_encoder = LabelEncoder()
         X[:,1] = label_X_country_encoder.fit_transform(X[:,1])
         print(X[:8,1])
         ['France' 'Spain' 'France' 'France' 'Spain' 'France' 'Germany'] ... will now become:
         [0 2 0 0 2 2 0 1]
In [10]: print(X[:6,2], '... will now become: ')
         label_X_gender_encoder = LabelEncoder()
         X[:,2] = label_X_gender_encoder.fit_transform(X[:,2])
         print(X[:6,2])
         ['Female' 'Female' 'Female' 'Female' 'Male'] ... will now become:
```

```
[0 0 0 0 0 1]
```

Split the countries into respective dimensions. Converting the string features into their own dimensions.

```
In [11]: transform = ColumnTransformer([("countries", OneHotEncoder(), [1])], remainder="passthrough") #
         X = transform.fit transform(X)
Out[11]: array([[1.0, 0.0, 0.0, ..., 1, 1, 101348.88],
                 [0.0, 0.0, 1.0, \ldots, 0, 1, 112542.58],
                 [1.0, 0.0, 0.0, \ldots, 1, 0, 113931.57],
                 [1.0, 0.0, 0.0, \ldots, 0, 1, 42085.58],
                 [0.0, 1.0, 0.0, \ldots, 1, 0, 92888.52],
                 [1.0, 0.0, 0.0, ..., 1, 0, 38190.78]], dtype=object)
         Dimensionality reduction. A 0 on two countries means that the country has to be the one variable
         which wasn't included
In [12]: X = X[:,1:]
         X.shape
Out[12]: (10000, 11)
          Splitting the Dataset
          Training and Test Set
In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
          Normalize the train and test data
          ['CreditScore','Age','Tenure','Balance','NumOfProducts','EstimatedSalary']
In [14]: sc=StandardScaler()
         X_{\text{train}}[:,np.array([2,4,5,6,7,10])] = sc.fit_transform(X_{\text{train}}[:,np.array([2,4,5,6,7,10])])
         X_{\text{test}}[:,np.array([2,4,5,6,7,10])] = sc.transform(X_{\text{test}}[:,np.array([2,4,5,6,7,10])])
In [15]: sc=StandardScaler()
         X_train = sc.fit_transform(X_train)
         X_{test} = sc.transform(X_{test})
         X_train
Out[15]: array([[-0.5698444 , 1.74309049, 0.16958176, ..., 0.64259497,
                  -1.03227043, 1.10643166],
```

[1.75486502, -0.57369368, -2.30455945, ..., 0.64259497,

[-0.5698444, -0.57369368, -1.19119591, ..., 0.64259497,

 $[-0.5698444, -0.57369368, 0.9015152, \ldots, 0.64259497,$

[-0.5698444, 1.74309049, -0.62420521, ..., 0.64259497,

[1.75486502, -0.57369368, -0.28401079, ..., 0.64259497,

Initialize & build the model

0.9687384 , -0.74866447],

-1.03227043, 1.48533467],

-1.03227043, 1.41231994],

0.9687384 , 0.84432121],

-1.03227043, 0.32472465]])

```
In [16]: from tensorflow.keras.models import Sequential
    # Initializing the ANN
    classifier = Sequential()
```

In [17]: **from** tensorflow.keras.layers **import** Dense

The amount of nodes (dimensions) in hidden layer should be the average of input and output la
This adds the input layer (by specifying input dimension) AND the first hidden layer (units)
classifier.add(Dense(activation = 'relu', input_dim = 11, units=256, kernel_initializer='uniform

```
In [18]: # Adding the hidden layer
    classifier.add(Dense(activation = 'relu', units=512, kernel_initializer='uniform'))
    classifier.add(Dense(activation = 'relu', units=256, kernel_initializer='uniform'))
    classifier.add(Dense(activation = 'relu', units=128, kernel_initializer='uniform'))
```

```
In [19]: # Adding the output layer
# Notice that we do not need to specify input dim.
# we have an output of 1 node, which is the the desired dimensions of our output (stay with the
# We use the sigmoid because we want probability outcomes
classifier.add(Dense(activation = 'sigmoid', units=1, kernel_initializer='uniform'))
```

```
In [20]: # Create optimizer with default learning rate
# sgd_optimizer = tf.keras.optimizers.SGD()
# Compile the model
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

In [21]: classifier.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	3072
dense_1 (Dense)	(None, 512)	131584
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 128)	32896
dense_4 (Dense)	(None, 1)	129

Total params: 299,009 Trainable params: 299,009 Non-trainable params: 0

```
In [22]: classifier.fit(
            X_train, y_train,
            validation_data=(X_test,y_test),
            epochs=20,
            batch_size=32
        )
        Epoch 1/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.4378 - accuracy: 0.8163 - val
        loss: 0.3689 - val accuracy: 0.8480
        Epoch 2/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3638 - accuracy: 0.8510 - val
         _loss: 0.3509 - val_accuracy: 0.8590
        Epoch 3/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3485 - accuracy: 0.8575 - val
         _loss: 0.3412 - val_accuracy: 0.8585
        Epoch 4/20
        250/250 [============ ] - 1s 3ms/step - loss: 0.3435 - accuracy: 0.8631 - val
        _loss: 0.3468 - val_accuracy: 0.8645
        Epoch 5/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3407 - accuracy: 0.8600 - val
         _loss: 0.3440 - val_accuracy: 0.8620
        Epoch 6/20
        250/250 [============== ] - 1s 3ms/step - loss: 0.3394 - accuracy: 0.8621 - val
        _loss: 0.3385 - val_accuracy: 0.8645
        Epoch 7/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3332 - accuracy: 0.8629 - val
        _loss: 0.3372 - val_accuracy: 0.8625
        Epoch 8/20
        250/250 [============ ] - 1s 3ms/step - loss: 0.3264 - accuracy: 0.8695 - val
         _loss: 0.3410 - val_accuracy: 0.8605
        Epoch 9/20
        250/250 [========================= ] - 1s 3ms/step - loss: 0.3258 - accuracy: 0.8680 - val
         _loss: 0.3419 - val_accuracy: 0.8640
        Epoch 10/20
        250/250 [=================== ] - 1s 3ms/step - loss: 0.3226 - accuracy: 0.8700 - val
        _loss: 0.3418 - val_accuracy: 0.8630
        Epoch 11/20
        250/250 [============== ] - 1s 3ms/step - loss: 0.3198 - accuracy: 0.8700 - val
         _loss: 0.3416 - val_accuracy: 0.8650
        Epoch 12/20
        250/250 [============ ] - 1s 3ms/step - loss: 0.3154 - accuracy: 0.8725 - val
         _loss: 0.3461 - val_accuracy: 0.8580
        Epoch 13/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3122 - accuracy: 0.8749 - val
         _loss: 0.3400 - val_accuracy: 0.8615
        Epoch 14/20
        250/250 [============ ] - 1s 3ms/step - loss: 0.3094 - accuracy: 0.8739 - val
         _loss: 0.3443 - val_accuracy: 0.8620
        Epoch 15/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.3051 - accuracy: 0.8761 - val
        _loss: 0.3529 - val_accuracy: 0.8570
        Epoch 16/20
        250/250 [==================== ] - 1s 3ms/step - loss: 0.2997 - accuracy: 0.8790 - val
        _loss: 0.3541 - val_accuracy: 0.8595
        Epoch 17/20
        250/250 [============= ] - 1s 3ms/step - loss: 0.2939 - accuracy: 0.8774 - val
        _loss: 0.3487 - val_accuracy: 0.8635
        Epoch 18/20
        250/250 [============ ] - 1s 3ms/step - loss: 0.2882 - accuracy: 0.8836 - val
        _loss: 0.3876 - val_accuracy: 0.8530
        Epoch 19/20
        250/250 [========================= ] - 1s 3ms/step - loss: 0.2871 - accuracy: 0.8796 - val
         _loss: 0.3724 - val_accuracy: 0.8515
        Epoch 20/20
```

```
_loss: 0.3754 - val_accuracy: 0.8615
Out[22]: <keras.callbacks.History at 0x7f1a35f238b0>
         Predict the results using 0.5 as a threshold
In [23]: y_pred = classifier.predict(X_test)
         y_pred
         63/63 [========= ] - 0s 977us/step
Out[23]: array([[0.2910964],
                 [0.17213912],
                [0.14321707],
                [0.00948479],
                 [0.1535894],
                 [0.11742345]], dtype=float32)
In [24]: # To use the confusion Matrix, we need to convert the probabilities that a customer will leave
         # So we will use the cutoff value 0.5 to indicate whether they are likely to exit or not.
         y_pred = (y_pred > 0.5)
         y_pred
Out[24]: array([[False],
                 [False],
                [False],
                 . . . ,
                [False],
                 [False],
                 [False]])
         Print the Accuracy score and confusion matrix
In [25]: from sklearn.metrics import confusion_matrix,classification_report
         cm1 = confusion_matrix(y_test, y_pred)
Out[25]: array([[1526,
                         69],
                [ 208, 197]])
In [26]: print(classification_report(y_test, y_pred))
                                    recall f1-score
                       precision
                                                        support
                    0
                            0.88
                                      0.96
                                                0.92
                                                           1595
                            0.74
                                      0.49
                                                0.59
                                                           405
                                                0.86
                                                           2000
             accuracy
                            0.81
                                      0.72
                                                 0.75
                                                           2000
            macro avg
                                                           2000
         weighted avg
                            0.85
                                      0.86
                                                0.85
In [27]: accuracy_model1 = ((cm1[0][0]+cm1[1][1])*100)/(cm1[0][0]+cm1[1][1]+cm1[0][1]+cm1[1][0])
         print (accuracy_model1, '% of testing data was classified correctly')
         86.15 % of testing data was classified correctly
```

250/250 [=========================] - 1s 3ms/step - loss: 0.2782 - accuracy: 0.8854 - val