第二章 关系数据库

目录

1		:数据结				 -																1
	1.1	关系 .																				
	1.2	关系模																				
	1.3	关系数	据库			 																2
2	关系	的完整	性																			2
	2.1	实体完	整性			 																2
	2.2	参照完	整性			 																2
	2.3	用户定	义的知	宅整	性																	3
3	关系	代数																				3
	3.1	传统的	集合词	云算		 								 								3
	3.2	专门的	关系证	云算		 																3
		3.2.1	选择			 																4
		3.2.2	投影			 								 								4
		3.2.3	连接			 																5
		3.2.4	除运	算 .		 								 								6

1 关系数据结构及形式化定义

1.1 关系

- 域: 域是一组具有相同数据类型的值的集合
- **笛卡尔积**: 给定一组域 D_1, D_2, \cdots, D_n ,允许其中某些域是相同的, D_1, D_2, \cdots, D_n 的笛卡尔积为

$$D_1\times D_2\times \cdots \times D_n=\{(d_1,d_2,\cdots,d_n)|d_i\in D_i,\,i=1,2,\cdots,n\}$$

- 其中,每一个元素 (d_1, d_2, \cdots, d_n) 叫作一个 n 元组,或简称元组
- 元素中的每一个值 d_i 叫做一个分量
- 一个域允许的不同取值个数称为这个域的基数
- 若 $D_i(i=1,2,\cdots,n)$ 为有限集,其基数为 $m_i(i=1,2,\cdots,n)$,则 $D_1\times D_2\times\cdots\times D_n$ 的基数 $M=\prod_{i=1}^n m_i$
- 关系: $D_1 \times D_2 \times \cdots \times D_n$ 的子集叫做在域名 $D_1 \times D_2 \times \cdots \times D_n$ 上的关系, 表示为 $R(D_1 \times D_2 \times \cdots \times D_n)$
 - R 表示关系的名字
 - n 是关系的目或者度
- 若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码
 - 若一个关系有多个候选码,则选定其中一个为**主码**
 - 候选码的诸属性称为主属性
 - 不包含在任何侯选码中的属性称为非主属性或非码属性
 - 在简单的情况下,候选码只包含一个属性;在最极端的情况下,关系模式的所有属性组是这个 关系模式的候选码,称为全码
- 关系可以有三种类型:基本关系(基本表或基表)、查询表和视图表
 - 基本关系是实际存在的表,是实际存储数据的逻辑表示
 - 查询表是查询结果对应的表
 - 视图表是由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据
- 基本关系的性质:
 - 列是同质的,即每一列中的分量是同一类型的数据,来自同一个域
 - 不同的列可出自同一个域、称其中的每一列称为一个属性、不同的属性要给予不同的属性名
 - 列的顺序无所谓
 - 任意两个元组的候选码不能相同
 - 行的顺序无所谓
 - 分量必须取原子值

1.2 关系模式

- 关系模式是对关系的描述,关系模式是型,关系是值
- 关系的描述称为**关系模式**。可以形式化地表示为 R(U, D, DOM, F)
 - R 为关系名
 - U 为组成该关系的属性名集合
 - D 为 U 中属性所来自的域
 - DOM 为属性向域的映像集合
 - F 为属性间数据的依赖关系集合

1.3 关系数据库

- 在一个给定的应用领域中, 所有关系的集合构成一个关系数据库
- 关系数据库的型,也称关系数据库模式,是对关系数据库的描述
- 关系数据库的值,是这些关系模式在某一时刻对应的关系的集合,通常就称为关系数据库

2 关系的完整性

- 实体完整性和参照完整性
 - 关系模型必须满足的完整性约束条件称为关系的两个不变性, 应该由关系系统自动支持
- 用户定义的完整性
- 应用领域需要遵循的约束条件,体现了具体领域中的语义约束

2.1 实体完整性

- 实体完整性规则: 若属性 A 是基本关系 R 的主属性,则属性 A 不能取空值。空值就是"不知道"或"不存在"或"无意义"的值
- 对于实体完整性规则的说明:
 - 1. 实体完整性规则是针对基本关系而言的。一个基本表通常对应现实世界的一个实体集
 - 2. 现实世界中的实体是可区分的, 即它们具有某种唯一性标识
 - 3. 关系模型中以主码作为唯一性标识
 - 4. 主码中的属性即主属性不能取空值。主属性取空值,就说明存在某个不可标识的实体,即存在不可区分的实体,这与第 2 点相矛盾,因此这个规则称为实体完整性

2.2 参照完整性

- 在关系模型中实体及实体间的联系都是用关系来描述的,自然存在着关系与关系间的引用
- 设 F 是基本关系 R 的一个或一组属性,但不是关系 R 的码, K_s 是基本关系 S 的主码。如果 F 与 K_s 相对应,则称 F 是 R 的外码,并称基本关系 R 为参照关系,基本关系 S 为被参照关系或目标关系
 - 其中关系 R 和 S 不一定是不同的关系
 - 目标关系 S 的主码 K_s 和参照关系的外码 F 必须定义在同一个(或一组)域上
 - 外码并不一定要与相应的主码同名
 - * 当外码与相应的主码属于不同关系时,往往取相同的名字,以便于识别

- **参照完整性规则**: 若属性(或属性组) F 是基本关系 R 的外码它与基本关系 S 的主码 K_s 相对应 (基本关系 R 和 S 不一定是不同的关系),则对于 R 中每个元组在 F 上的值必须为:
 - 或者取空值(F的每个属性值均为空值)
 - 或者等于 S 中某个元组的主码值

2.3 用户定义的完整性

用户定义的完整性是针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的数据必须满足的语义要求

• 关系模型应提供定义和检验这类完整性的机制,以便用统一的系统的方法处理它们,而不需由应用程序承担这一功能

3 关系代数

3.1 传统的集合运算

- $\not\equiv : R S = \{t | t \in R \land t \notin S\}$
- $\dot{\mathfrak{D}}$: $R \cap S = \{t | t \in R \land t \in S\}$
- 笛卡尔积: $R \times S = \{t_r t_s | t_r \in R \land t_s \in S\}$

3.2 专门的关系运算

首先引入几个记号:

- R, $t \in R$, $t[A_i]$:
 - 设关系模式为 $R(A_1, A_2, \dots, A_n)$
 - 它的一个关系设为 R
 - $-t \in R$ 表示 $t \in R$ 的一个元组
 - $-t[A_i]$ 则表示元组 t 中相应于属性 A_i 的一个分量
- A, t[A], A
 - 若 $A = \{A_{i1}, A_{i_2}, \cdots, A_{ik}\}$, 其中 $A_{i1}, A_{i_2}, \cdots, A_{ik}$ 是 A_1, A_2, \cdots, A_n 中的一部分,则 A 称为属性列或属性组
 - $-t[A]=(t[A_{i1}],t[A_{i2}],\cdots,t[A_{ik}])$ 表示元组 t 在属性列 A 上诸分量的集合
 - -A 则表示 $\{A_1, A_2, \cdots, A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, \cdots, A_{ik}\}$ 后剩余的属性组
- $t_r t_s$:
 - -R 为 n 目关系, S 为 m 目关系
 - $-t_r \in R, t_s \in S, t_r t_s$ 称为元组的连接
 - $-t_r t_s$ 是一个 n+m 列的元组,前 n 个分量为 R 中的一个 n 元组,后 m 个分量为 S 中的一个 m 元组
- 象集 Z_X
 - 给定一个关系 R(X,Z), X 和 Z 为属性组
 - 当 t[X] = x 时, x 在 R 中的象集为: $Z_X = \{t[Z] | t \in R, t[X] = x\}$
 - 它表示 R 中属性组 X 上值为 x 的诸元组在 Z 上分量的集合

下例中的学生-课程数据库如下:

Student

学号 Sno	姓名 Sname	性别 Ssex	年龄 Sage	所在系 Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

(a)

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩							
Sno	Cno	Grade							
201215121	1	92							
201215121	2	85							
201215121	3	88							
201215122	2	90							
201215122	3	80							

(c)

(b)

3.2.1 选择

- 选择又称为限制
- 选择是在关系 R 中选择满足给定条件的诸元组,记作

$$\sigma_F(R) = \{t | t \in R \land F(t) =$$
"真" }

其中 F 表示选择条件, 它是一个逻辑表达式, 取逻辑值"真"或"假"

- 逻辑表达式 F 的基本形式为 X_1 θ Y_1 ,其中 θ 表示比较运算符。在基本的选择条件上可以进一步进行逻辑运算
- 选择运算是从行角度进行的运算

例: 查询信息系 (IS 系)全体学生: $\sigma_{\text{Sdept='IS'(Student)}}$, 结果如下:

	Sno	Same	Sex	Sage	Slept
:	201215125	张立	男	19	IS

3.2.2 投影

• 投影是从 R 中选择出若干属性列组成新的关系,记作

$$\Pi_A(R)=\{t[A]|t\in R\}$$

- 投影操作主要是从列的角度进行运算
- 投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组(避免重复行)

例: 查询学生关系 Student 中都有哪些系,即查询关系 Student 上所在系属性上的投影: $\Pi_{\text{Sdept}}(\text{Student})$,结果如下:

Sdept	
CS	
IS	
MA	

3.2.3 连接

连接也称为θ连接,是从两个关系的笛卡尔积中选取属性间满足一定条件的元组,记作

$$R \bowtie S = \{ \overrightarrow{t_r t_s} | t_r \in R \land t_s \in S \land t_r[A] \theta t_s[B] \}$$

- 连接运算从 R 和 S 的广义笛卡尔积 $R \times S$ 中选取 R 关系在 A 属性组上的值与 S 关系在 B 属性组上的值满足比较关系 θ 的元组
- 连接运算中最为重要且最为常用的连接为等值连接和自然连接
 - θ 为 "=" 的连接运算称为等值连接
 - * 是从关系 R 与 S 的广义笛卡尔积中选取 A, B 属性值相等的那些元组,即等值连接为:

$$R \underset{A-P}{\bowtie} S = \{ \widehat{t_r t_s} | t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- 自然连接是一种特殊的等值连接
 - * 要求两个关系中进行比较的分量必须是相同的属性组
 - * 并且在结果中把重复的属性列去掉
 - * 若 R 和 S 具有相同的属性组 B, U 为 R 和 S 的全体属性集合,则自然连接可记作

$$R\bowtie S=\{t_r^{\frown}t_s[U-B]|t_r\in R\land t_s\in S\land t_r[B]=t_s[B]\}$$

- 一般的连接操作是从行的角度进行运算
- 自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

例:设下图 (a) 和 (b) 分别为关系 R 和关系 S,图 (c) 为非等值连接 $R\underset{C<E}{\bowtie}S$ 的结果,图 (d) 为等值连接 $R\underset{R.B=S.B}{\bowtie}S$ 的结果,图 (e) 为自然连接 $R\bowtie S$ 的结果

R		
A	В	C
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

(a)关系R

S	
В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

(b)关系S

A	R.B	C	S.B	E
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

(c)非等值连接

A	R.B	C	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

(d)等值连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

(e)自然连接

- 两个关系 R 和 S 在做自然连接时,关系 R 中某些元组有可能在 S 中不存在公共属性上值相等的元组,从而造成 R 中这些元组在操作时被舍弃了,这些被舍弃的元组称为**悬浮元组**
- 如果把悬浮元组也保存在结果关系中,而在其他属性上填空值 (Null),就叫做外连接,记作 $R \supset CS$
 - 如果只保留左边关系 R 中的悬浮元组,则称为**左外连接**,记作 R □ \lor S
 - 如果只保留右边关系 S 中的悬浮元组,则称为**右外连接**,记作 R⋈S

例:下图 (a) 是上例中关系 R 和关系 S 的外连接,图 (b) 是左外连接,图 (c) 是右外连接

A	В	С	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	С	Е
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
<i>N</i> ULL	b_5	NULL	2

(a)外连接

(b)左外连接

(c)右外连接

3.2.4 除运算

设关系 R 除以关系 S 的结果为关系 T,则 T 包含所有在 R 但不在 S 中的属性及其值,且 T 的元组与 S 的元组的所有组合都在 R 中

用象集定义除运算:

- 给定关系 R(X,Y) 和 S(Y,Z), 其中 X,Y,Z 为属性组
- R 中的 Y 与 S 中的 Y 可以有不同的属性名,但必须出自相同的域集
- $R \ni S$ 的除运算得到一个新的关系 P(X), $P \not = R$ 中满足下列条件的元组在 X 属性列上的投影: 元组在 X 上分量值 x 的象集 Y_x 包含 S 在 Y 上投影的集合,记作:

$$R \div S = \{t_r[X] | t_r \in R \land \Pi_Y(S) \subset Y_X\}$$

其中 Y_x 为 x 在 R 中的象集, $x = t_r[X]$

• 除是同时从行和列的角度进行运算

例: 设关系 R, S 分别为下图中的 (a) 和 (b) , $R \div S$ 的结果如图 (c)

R				
A	В	C		
a_1	b_1	c_2		
a_2	b_3	c_7		
a_3	b_4	c_6		
a_1	b_2	c_3		
a_4	b_6	c_6		
a_2	b_2	c_3		
a_1	b_2	c_1		
(a)				

$$S$$

$$\begin{array}{c|cccc}
B & C & D \\
\hline
b_1 & c_2 & d_1 \\
\hline
b_2 & c_1 & d_1 \\
\hline
b_2 & c_3 & d_2
\end{array}$$

$$R \div S$$