LABORATORIUM 5, Grafy

Zespół: Zuzanna Filipkowska, Aleksandra Sypuła

Środowisko: Visual Studio Code

Link do repozytorium: https://gitlab-stud.elka.pw.edu.pl/zfilipko/aisdi_2021_104.git

Podział pracy:

W tym zadaniu bardzo ciężko nam było po równo podzielić się pracą i dodatkowo zadanie było dla nas z początku dość trudne koncepcyjnie do rozwiązania i postanowiłyśmy razem pracować nad całym projektem. Ostatecznie razem opracowałyśmy zarówno sposób przechowywania grafu jak i implementacje algorytmu Dijkstry.

Pliki:

- Graph_path.py implementacja algorytmu Dijkstry wraz z zapisywaniem znalezionej najkrótszej ścieżki do pliku
- Graph_structures.py klasy przydatne do utworzenia grafu i późniejszych opercji na nim
- Structures_prep.py wczytywanie planszy z pliku oraz konstruowanie z wczytanych danych odpowiednich struktur (macierz, lista krawędzi wraz z wagami)
- graph1/2/3.txt plansze do wyznaczania najkrótszej ścieżki
- path1/2/3.txt znalezione najktrótsze ścieżki między zerami

Uruchomienie programu: python3 Graph_path.py plik_z_planszą.txt docelowy_plik_ze_ścieżką.txt Implementacja:

Przekształcenie planszy w graf: na początku plansza przekształcana jest w macierz, która również później jest przydatna do wyświetlania najkrótszej ścieżki, a z macierzy tworzona jest lista krawędzi grafu wraz z informacjami o wadze danej ścieżki.

Do implementacji algorytmu Dijkstry i wyszukiwania najkrótszej ścieżki zostały wykorzystane klasy Edge oraz Graph potrzebne do reprezentacji grafu oraz Node używana wewnątrz algorytmu Dijkstry (do dodawania danej krawędzi wraz z jej wagą do kopca). Nasz algorytm wyszukiwania najkrótszej ścieżki został zaimplementowany tak, aby działał dla kwadratowej planszy o dowolnej wielkości, a parametrami podawanymi do funkcji są również numery początkowego i docelowego punktu do którego chcemy się dostać (aby algorytm działał dla podanych w poleceniu wartości "O" jako startu i końca, w funkcji pobierającej dane z pliku zwracane są również numery wierzchołków o wymaganych wartościach). Główna funkcja z algorytmem Dijkstry jako wynik zwraca numery wierzchołków tworzących najkrótszą ścieżkę i na koniec z wykorzystaniem tych numerów oraz wcześniej utworzonej macerzy wyświetlana jest najkrótsza ścieżka.

Zamieszczone plansze wraz z najkrótszymi ścieżkami:

1. graph1.txt, path1.txt

111122	
104122	0
941211	4
119411	1
920411	20
991111	

2. graph2.txt, path2.txt

4350154813	0
8792152838	2
1872879379	2
7661991728	1
5992922623	2
5562237451	223
5883935476	3
7167112955	1
7234103257	0
9825967659	
1.	

3. graph3.txt, path3.txt

111102	1110
114122	1
941211	4
119411	11
024411	0
991111	