lust The Ramu and Rout Tests and Strategies for chousingse,
Recuil Geometric series = a + ar + ar2 + ar3 + = { div otherwise.
(The ratio test? Assume $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{ a_{n+1} }{ a_n } = \frac{ a_{n+1} }{ a_{n+1} } = \frac{ a_{n+1} }{ a$
Supp. $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 0.7$ $\lim_{n \to \infty} \left \frac{a_{n-1}}{a_n} \right = 1.1$ $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right \approx 0.7$ for any large n .
$0.6 \le \left \frac{G_0 - 1}{G_0} \right \le 0.8$ <pre> / leage integer</pre>
$0.6[a_{n}] \leq D_{n+1} \leq 0.8[a_{n}]$ for $n \geq M$ $ a_{n+1} \leq 0.8 a_{n+1} \leq (0.8)^{2} a_{n} $ $ a_{n+2} \leq 0.8 a_{n+1} \leq (0.8)^{2} a_{n} $
$ a_{m+3} \le 0.8 a_{m+1} \le (0.8) a_{m} $ $ a_{m+3} \le (0.8) a_{m} $ $ a_{m+3} = (0.8) a_{m} $
$\sum_{i=1}^{6} a_{i} \leq \frac{6.8}{4m} a_{i} + (0.8)^{2} \cdot a_{i} + (0.8)^{3} a_{i} + \cdots$ $geo ser r=6.8 < 1, converges$
By Direct Comp Test / Sent lan Conv
Silant.com > Zarabs.cinv.

	(The root test)		
	Assume Die "Jan = L exists		
	(i) It L<1, ten & an: abs. com.		
	(ill L-1, ,		
	Fix. What due, never ter tell you about		
	$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \left(\frac{5n}{8n-1}\right)^{n}$		
	``a		
Ĉ	$L = \lim_{n \to \infty} \int a_n ^2 = \lim_{n \to \infty} a_n ^{n+1} \left(\frac{s_n}{s_{n-1}}\right)^{n+1} \left(\frac{s_n}{s_{n-1}}\right)^{n+1}$		
	= 200 - 5n - 1n -5 < 1, by the 100	+ +9+45s.conv.	
	,	Simple. Scies	
	Strategies to test Ean = conv or div	- Simples Serva (J. PSI	
	- If lim auto. Dry Tou Sandiv.	- 2 ar" genmein con XINCI	
	- If lim = 0 then we need other tests.	Direct Compayison Test	
	anzo, Needousimplifyan compailson Test	Direct Compayison Test 0 & an & bn - It Zbn: conv I than Zon conv - It Zbn: div then & bn div	
	rompae with simpler series	- Et Ean: div, then & bindiv - Limit Composition Test	
	Med to 5 Implify.	lings = L, If ochcoo, either bith Tan, Eln conv, or du.	
	Intest	al Yen	
	an is not puste A.S.T row +	tet 31	
9			

A CONTRACT OF STREET

J

Ex. 2 STN(11) 17 Con or div squeeze thermon, But he forms RESE NE By drest conp Topp Often componed meanding+ Elanlonn Santonvi 0 < | 51 n x | = 1 -1-tan-1-(12) 1-2