HW3

Carl Mueller CSCI 5254 - Convex Optimization

February 27, 2018

4.1)

minimize
$$f_0(x_1, x_2)$$

subject to $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$
 $x_1 \ge 0, x_2 \ge 0$

Make a sketch of the feasible set:

 $\mathbf{a})$

$$f_0(x_1, x_2) = x_1 + x_2$$

$$p^* = \inf \{ x_1 + x_2 \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \}$$

$$p^* = 3/5$$

$$x^* \in \{ (2/5, 1/5) \}$$

b)

$$f_0(x_1, x_2) = -x_1 - x_2$$

$$p^* = \inf \{ -x_1 - x_1 \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \}$$

No lower bound as $x \to \infty$ & $x_2 \to \infty$ is in the feasible set then $-x_1 - x_2 \to -\infty$

$$f_0(x_1, x_2) = x_1$$

$$p^* = \inf \{ x_1 \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \}$$

$$p^* = 0$$

$$x^* \in \{ (0, x_2) \}$$

d)

$$f_0(x_1, x_2) = \max(x_1, x_2)$$

$$p^* = \inf \{ \max(x_1, x_2) \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \}$$
Say $x_1 = x_2$

$$2x_1 = 1 - x_1$$

$$x_1 = 1/3$$

$$\therefore$$

$$p^* = 1/3$$

$$x^* \in \{ (1/3, 1/3) \}$$

e)

$$f_0(x_1, x_2) = x_1^2 + 9x_2^2$$

$$p^* = \inf \{ \max(x_1, x_2) \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \}$$
Let $2x_1 + x_2 = 1, x_1 + 3x_2 = 1$

$$2x_1 + x_2 = 1$$

$$x = (1/3, 1/3)$$

$$x_1 + 3x_2 = 1$$

$$x = (1/2, 1/6)$$

This gives the smallest p^* and satisfies all constraints

 \therefore $p^* = 1/2$ $x^* \in \{ (1/2, 1/6) \}$

4.3)

We use the optimality criterion:

$$\nabla_{f_0}(x^*)^T(y-x) \ge 0, \ \forall y \in x, x \in \text{feasible set}$$

$$\nabla f_0(x^*)$$

$$= ([1, 1/2, -1] \cdot \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix} + \begin{bmatrix} -22 \\ -14.5 \\ 13.0 \end{bmatrix}) \cdot \begin{bmatrix} y_1 - 1 \\ y_2 - 1/2 \\ y_3 + 1 \end{bmatrix}$$

$$= [-1, 0, 2] \cdot \begin{bmatrix} y_1 - 1 \\ y_2 - 1/2 \\ y_3 + 1 \end{bmatrix}$$

$$= -1(y_1 - 1) + 2(y_2 + 1) \ge 0$$

This statistfies the optimality condition.

4.7)

a)

$$f_0(x)$$
 is convex

Show $frac f_0(x) c^T x + d$ is quasiconvex.

$$\{x \mid fracf_0(x)c^Tx + d \leq \alpha\}$$

$$\{x \mid f_0(x) \le \alpha(c^T x + d)\}$$

$$\{x \mid f_0(x) \leq \hat{\alpha}\}$$

Since $f_0(x)$ is convex, all its level sets are convex

ċ.

$$\frac{f_0(x)}{c^T x + d}$$
 is quasiconvex.

b)

Let
$$t = \frac{1}{c^T x + d}$$
 & $y = \frac{x}{c^T x + d}$
$$g(y, t) = \frac{f_0(x)}{c^T x + d}$$

 g_i is convex since the perspective of a convex function is convex. For the constraints, the perspective still holds:

Since f_i is convex: $g_i(y,t) \leq 0, i = 1,..., m$

$$\frac{x}{t} = y$$

$$\frac{Ay}{t} = b$$

$$Ay = bt$$

$$t = \frac{1}{c^T x + d}$$

$$tc^{T}(\frac{y}{t}) + dt = 1$$

$$c^T y + dt = 1$$

4.8

a)

$$\begin{array}{ll}
\text{minimize} & c^T x\\
\text{subject to} & Ax = b
\end{array}$$

Three scenarios:

1)

$$Ax = b$$
 is infeasible, then $p^* = \infty$

2)

$$Ax = b$$
 is feasible and $c \perp Null(A)$
 $p^* = c^T x^* = c^T y^*$

3)

$$Ax = b$$
 is feasible and $c \not\perp Null(A)$
Problem is unbounded and:

 $p^* = -\infty$

 $\mathbf{c})$

$$\begin{array}{ll}
\text{minimize} & c^T x\\
\text{subject to} & l \leq 1 \leq u
\end{array}$$

We multiple c into the constraint to get the values for p^* :

$$p^* = \begin{cases} c^T l \leq c^T x \leq c^T u \\ c^T l; & x = l, c > 0 \\ c^T u; & x = u, c > 0 \\ c^T x; & x \in [l, u], c = 0 \end{cases}$$

4.11

b)

minimize
$$||Ax - b||_1$$

$$\sum_{i=1}^{n} |y_i - f(x_i)|$$

$$= t \cdot 1$$

For the norm given:

$$S = t \cdot 1 = \sum_{1}^{n} |Ax - b|$$

Equivalent to the linear program:

minimize
$$t \cdot 1$$

subject to $-t \leq Ax - b \leq t$

The optimal solution is when the k^{th} value is:

$$|a_i^T x - b| = t_i$$

b)

minimize
$$||Ax - b||_1$$

subject to $||x||_{\infty} \le 1$

This is equivalent to the linear program:

minimize
$$t \cdot 1$$

subject to $-t \leq Ax - b \leq t$
 $||x||_{\infty} \leq 1$

The last constraint is equivalent to:

$$max(|x_1|, |x_2|, \dots, |x_n|) \le 1$$

- $\vec{1} < x < \vec{1}$

4.12)

We want to minimuze the given cost:

$$C = \sum_{i,j=1}^{n} c_{ij} x_{ij}$$

We want to the net flow to be conserved at each node so that

$$b_i + \sum_{j=1}^n x_{ij} - \sum_{j=1}^n x_{ji} = 0, \ i = 1, \dots, n$$

Flow links are bounded as well:

$$l_{ij} \le x_{ij} \le u_{ij}$$

4.15)

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x \in \{0, 1\}, i = 1, ..., n$

Relaxation method:

minimize
$$c^T x$$

subject to $Ax \leq b$
 $0 \leq x_i \leq 1, i = 1, \dots, n$

a)

The feasible set of the relaxed problem is a superset of the feasible set of the unrelaxed problem:

$$\{x \mid Ax \leq b, x \in \{0,1\}, i = 1, \dots, n\} \supseteq \{x \mid Ax \leq b, 0 \leq x_i \leq 1, i = 1, \dots, n\}$$

This means that there exists a x^* in relaxed feasible such that:

$$f(x_{relaxed}^*) = p_{relaxed}^* \le f(x_{unrelaxed}^*) = p_{unrelaxed}^*$$

b)

If the solution to the relaxtion method is such that $x^* \in 0, 1$ then it is a solution to the boolean L.P.

4.23)

minimize
$$||Ax - b||_4$$

Note that the norm is defined as:

$$(\sum_{1}^{n} (a_i^T x - b_1)^4)^{\frac{1}{4}}$$

We solve via a change of variable metho to convert to a quadratic program:

Define:
$$y_i = a_i^T x - b_i$$

Defintion $z_i = y_i^2$

The new minimization problem is formulated as:

minimize
$$\sum_{i=1}^{n} z^{2}$$
subject to
$$y = Ax - b$$

$$y^{2} = z$$

4.40)

c)

minimize
$$(Ax + b)^T F(x)^{-1} (Ax + b)$$

We defined this via an epigraph by defining the above in terms of t-level sets: The new minimization problem is formulated as:

$$(Ax+b)^T F(x)^{-1} (Ax+b) \le t$$

For which we minimize t.

The above is equivalent to the below block matrix through Shur's complement:

$$\begin{bmatrix} F(x) & Ax+b \\ (Ax+b)^T & t \end{bmatrix} \succeq 0$$

minimize t

subject to
$$\begin{bmatrix} F(x) & Ax + b \\ (Ax + b)^T & t \end{bmatrix} \succeq 0$$

4.43)

a)

Using a property $i(x) \le t$ for some t iff $A(x) \le tI$.

minimize
$$\lambda_1(x)$$

subject to $A(x) \leq tI$

b)

Using a property $i(x) \leq t$ for some t iff $A(x) \leq tI$ and $i(x) \geq \gamma$ for some t iff $A(x) \succeq I$

minimize
$$\lambda_1(x)$$

subject to $\gamma I \leq A(x) \leq tI$