Statistics for Data Analytics

Lecturer: Marina lantorno

E-mail: miantorno@cct.ie

Probabilities: Problems solved

T = The order arrives on time

S = The order meets the specifications

	Т	Ī	TOTAL
S	60 (80% of 75)	15 (60% of 25)	75
<u>S</u>	15	10	25
TOTAL	75	25	100

a)
$$P(S) = 75/100 = 0.75$$

b)
$$P(T/\underline{S}) = 15/25 = 0.60$$

P = He uses the phone (even number)

A = He uses the alarm (odd number)

S = He keeps sleeping

a)
$$P(S) = P(P \cap S) + P(A \cap S)$$

 $P(S) = 0.50 * 0.05 + 0.5 * 0.01 = 0.025 + 0.005$
 $P(S) = 0.03$

Auxiliar calculations

$$P(\underline{S}) = 1 - 0.03 = 0.97$$

$$P(P \cap \underline{S}) = 0.5 * 0.95 = 0.475$$

T = it comes up a tale (3 coins)

T T
$$\underline{T} = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$$
T \underline{T} $\underline{T} = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$
 \underline{T} T $\underline{T} = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$

P(Two Tails) = 1/8 + 1/8 + 1/8 = 0.375

X = number that shows up rolling the dice

P(X)
1/6
1/6
1/6
1/6
1/6
1/6

- a) Even number = $1/6 + 1/6 + 1/6 = \frac{0.50}{0.50}$
- b) Getting a multiple of 6 = 1/6 = 0.1666
- c) Greater than 4 = 1/6 + 1/6 = 0.3333

8 red balls 5 yellow balls 7 green balls 20 total

a)
$$P(R) = 8/20 = 0.40$$

b)
$$P(G) = 7/20 = 0.35$$

c)
$$P(Y) = 5/20 = 0.25$$

d)
$$P(R) = 1 - 8/20 = 0.60$$

e)
$$P(\underline{Y}) = 1 - 0.25 = 0.75$$

f)
$$P(G/R) = 0.35/0.6 = 0.5833$$

Being P(A) = 0.50, P(\underline{B}) = 0.30 and P(A U \underline{B}) = 0.70, Calculate P(A \cap B).

Information that we can get from the given data:

 $P(\underline{A}) = 0.50 \rightarrow Complementary probability$

 $P(B) = 0.70 \rightarrow Complementary probability$

 $P(A \cup B) = 0.70 \rightarrow What if we use the complementary probability here?$

 $P(A \cup \underline{B}) = 1 - P(A \cup \underline{B})$

 $P(\underline{A} \cap B) = 0.30 \rightarrow$ This is because if we go to the opposite values, A would be \underline{A} , Union would be intersection and \underline{B} would be B

But then, what do we do at this stage?

Why not to try a table?

Total	Α	<u>A</u>	Total
В	<mark>0.40</mark>	0.30	0.70
<u>B</u>	0.10	0.20	0.30
Total	0.50	0.50	1

Answer: $P(A \cap B) = 0.40$

Another way to look at it would be with the circles diagram (Venn diagram if you want to look for it)

 \underline{B} = everything that we have in the universe, but B.

 \underline{A} = everything that we have in the universe, but A.

If $P(A \cup B)$ is the union of A and B minus the intersection, it means that there is a part that we are discarding from this union.

If $P(\underline{A} \cap B)$ is the intersection of \underline{A} and B and it is the opposite of $P(A \cup \underline{B})$, the difference between one and another one will give me the overlap that we are missing.

$$P(A \cup B) = 0.70$$
 $P(\underline{A} \cap B) = 0.30$

Then
$$\rightarrow$$
 P(A \cap B) = 0.70 - 0.30 = 0.40

Some observations:

- $P(A \cup B)$ is not P(A) + P(B), there is an axiom that help us to calculate this.
- P(A ∩ B) is not always P(A) * P(B), we can only do this calculations if we are sure that the evets are independent.
- Complementary probabilities assume that the entire universe is 1 and we remove a probability to see what is left. It is very useful when we want to clear something, as it happened with the exercise 6.
- If you are interested in learn more about probabilities, the use, the relation to Mathematics and deepen your knowledge, you can search for the following topics: De Morgan's Laws, Bayesian Theorem (we covered this 'hidden' in the exercises, so reading it you will have a better understanding of our practice), Venn Diagram.

B = The student is a boy

G = The student is a girl

S = The student speaks another language

	В	G	TOTAL
S	3	15	18
<u>S</u>	7	15	22
TOTAL	10	30	40

a)
$$P(G) = 30/40 = 0.75$$

b)
$$P(S) = 18/40 = 0.45$$

c)
$$P(B/\underline{S}) = 7/22 = 0.3181$$

THAT'S ALL FOR TODAY

THANK YOU

