Gate Assignment

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Kunal Thorawade **EE23BTECH11035**

Question: A Spectrometer is used to detect plasma oscillations in a sample. The spectrometer can work in the range of 3 x 10^{12} rad s⁻¹ to 30 x 10¹² rad s⁻¹. The minimum carrier concentration that can be detected by using this spectrometer is n $\times 10^{21} \text{ m}^{-3}$. The value of n is . (Round off to two decimal places) (Charge on electron = $-1.6 \times 10^{-19} \text{ C}^{-1}$, mass of electron = $9.1 \times 10^{-31} \text{ kg}$ and $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2$ $N^{-1} m^{-2}$) (GATE PH 35 2022)

Solution:

Parameter	Value	Description
ω_{p1}	3 x 10 ¹² rad s ⁻¹	Lower bound of plasma frequency
ω_{p2}	30 x 10 ¹² rad s ⁻¹	Upper bound of plasma frequency
$\Delta\omega_p = \omega_{p2} - \omega_{p1}$	27 x 10 ¹² rad s ⁻¹	Plasma Frequency
n_0	n x 10 ²¹	Minimum carrier concentration
e	-1.6 x 10 ⁻¹⁹	Charge on electron
m	9.1 x 10 ⁻³¹	Mass of electron

TABLE 1 PARAMETER TABLE

$$\Delta\omega_p = \sqrt{\frac{n_0 e^2}{m\epsilon_0}} \tag{1}$$

$$\Delta\omega_p = \sqrt{\frac{n_0 e^2}{m\epsilon_0}}$$

$$\implies n_0 = \frac{\left(\Delta\omega_p\right)^2 m\epsilon_0}{e^2}$$
(2)

$$n_0 = \frac{\left(27 \times 10^{12}\right)^2 \times \left(9.1 \times 10^{31}\right) \times \left(8.85 \times 10^{-12}\right)}{\left(-1.6 \times 10^{-19}\right)^2}$$

(3)

$$\therefore n_0 = 2.83 \times 10^{21} \text{m}^{-3} \tag{4}$$

$$n = n_0 x 10^{-21} (5)$$

$$\therefore n = 2.83$$
 (6)