

PERTES DANS LES RESEAUX ELECTRIQUES

ATELIER DES AUTORITES DE REGULATION ERERA/WAGPA

24 – 26 AVRIL 2012, LOME, TOGO

Prof Jorry M Mwenechanya

Sommaire de la communication

Le Système d'approvisionnement en électricité Les pertes dans le système électrique Les pertes Techniques Les pertes non Techniques Remarques d'ordre général

Le Système d'approvisonnement en électricité

Les pertes dans le système électrique

PERTES TECHNIQUES

Grands transformateurs

Lignes de transport d'énergie

Lignes d'alimentation et transformateurs

Power Loss =
$$(I^2 \times R)$$
 (W)

$$Energy = (I^2 \times R) \times \Delta t (W-sec)$$

PARAMETRES CLES

Paramètre

Unité de mesure, symbole

Voltage

Volts, V, kilovolts, kV

Courant

Amps, A, kilo-amps. kA

Résistance

Ohms, Ω

Temps

Secondes, s

Fréquence

Cycles par seconde, Hertz (Hz)

Le Courant I

If $V_1 = V_2$, then I (the current) controls power flow

<u>Note</u>: 1. Higher *l* → Higher loss

2. Loss varies as square of current; when current doubles, loss goes up 4 times

RESISTANCE, R

C'EST LA PROPRIETE DES CABLES (CONDUCTEURS) UTILISEE DANS LES TRANSFORMATEURS ET LES LIGNES

LE CHAUFFAGE DES CABLES PAR LE COURANT EST IMPUTABLE A LA RESISTANCE

L'ENERGIE ELECTRIQUE SE PERD SOUS FORME D'ENERGIE **THERMIQUE**

Perte au niveau du transformateur

Heat loss in magnetic circui

I²R loss in wind

Composante exempte de charge

Perte dans le cuivre

Appareils connectés

Toujours présent

Perte au niveau du transformateur

For large transformers, efficiency is high: $95\% \le \eta \le 99\%$

■ winding loss kW ■ core loss kW

PERTES NON-TECHNIQUES

Autres conditions

Commerciales

Administratives

Pertes pour défaut de paiement

Causes des pertes NT

Evènements extérieurs au réseau électrique

Défaut de paiement des clients

Vol d'électricité

Erreurs dans la Comptabilité et la tenue de registres

Consommation non comptée

Mauvaise classification

Non-Paiement

Mauvaise facturation

Pas de collecte

Erreurs

Remarques sur les interruptions techniques

Peu non nombreuses mais ne peuvent être éliminées

La réduction à un niveau minimal requiert de l'ingénierie

Criterion: Investment > Savings over time

Remarques sur les interruptions non techniques

Nombreuses, mais peuvent être éliminées

L'élimination requiert de la gestion + des solutions techniques

Finalement les bons payeurs subventionnent les mauvais payeurs et les voleurs

FIN