

Multicast Basic Concepts (1/4)

- Unicast
 - Point to point communication
- Broadcast
 - Packets are sent to all
 - Routers limit broadcasts to the local network or subnet, preventing broadcasts form reaching the Internet at large
- Multicast
 - Send packets to many different hosts, but not to everyone.

Multicast Basic Concepts (2/4)

- 一對多(one-to-many)的通訊方式
- 通訊程式送出的訊息可以送往指定的一群接收者
- IP的群播協定 (IP multicast protocol) 支援網際 網路上的群播,屬於 Multicast Transmission Source: 172.16.4.1 網路層的協定
- 需要作業系統的支援

Multicast Basic Concepts (3/4)

Thinking

- A real-time video stream goes to 6 million Internet user
- There is no reason to send a video stream to hosts that are not interested in it
- Multicast: think as a group
 - Like a public meeting
 - People can come and go as they please
 - Send messages to the group and all the people in the group will get the messages
 - People not in the group will not be affected

Multicast Basic Concepts (4/4)

- Most of the work is done by routers and should be transparent to application programmers.
- An application simply sends datagram packets multicast IP address. The router makes sure that the packets are delivered to all hosts in the multicast group.
- The problem
 - multicast routers are not yet ubiquitous

Network Programming

Multicast Address and Groups (1/3)

- A multicast address is the address of a group of hosts called multicast group
 - IPv4 CIDR group: 224.0.0.0/4 (224.0.0.0 to 239.255.255.255)
 - All addresses have the leading four binary digits 1110
 - IPv6 CIDR group: ffoo::/8
- Any data sent to the multicast address is relayed to all the members of the group
- Like any IP address, a multicast address can have a hostname
 - ntp.mcast.net = 224.0.1.1 (network time protocol)

Multicast Address and Groups (2/3)

- Multicast groups can be either permanent or transient
 - Permanent groups have assigned address that remain constant
 - Example: 224.0.0.1 or 224.0.0.2
 - The complete list is available from iana.org
 - Most multicast groups are transient and exist only as long as they have members.
 - Create a new multicast group address from 225.0.0.0 to 238.255.255.255

Network Programming

Multicast Address and Groups (3/3)

- Special purposes multicast group
 - all-systems.mcast.net (224.0.0.1) is a multicast group that includes all systems that support multicasting on local subnet
 - This group is commonly used for local testing
 - Also for local testing experiment.mcast.net (224.0.1.20)
 - (224.0.0.0~ 224.0.0.255) are reserved for routing protocols (gateway discovery ...)
 - Multicast routers never forward datagrams with destinations in 224.0.0.0~ 224.0.0.255
 - IANA is responsible for handing out permanent multicast addresses

Client and Server

- When a host wants to send data to a multicast group, it puts that data in multicast datagrams (UDP datagrams with an IP address in class D)
- Most multicast data is either audio or video or both. (Small data lost is fine.)
- Multicast data is sent via UDP

Network Programming

Time-To-Live (TTL) (1/2)

- Routers and hosts must decrement the TIME TO LIVE field by one and remove the datagram from the internet when TTL reaches zero.
 - The TTL acts a "hop limit"
- Two uses
 - It guarantees that datagrams cannot travel around an internet forever.
 - Source might want to intentionally limit the journey of the packet.

Time-To-Live (TTL) (2/2)

Time-To-Live (TTL) of IP: maximum number of routers that the datagram is allowed

Destinations	TTL value
The local host	0
The local subnet	1
The local campus—that is, the same side of the nearest Internet router—but on possibly different LANs	16
High-bandwidth sites in the same country, generally those fairly close to the backbone	32
All sites in the same country	48
All sites on the same continent	64
High-bandwidth sites worldwide Campus World	128
All sites worldwide	255
5 4 3 2 1 packet dies	

Router and Routing (1/2)

- With multicasting
 - A multicast socket sends one stream of data over the Internet to the clients' router.
 - The router duplicates the stream and sends it to each of the clients
- Without multicasting
 - The server sends separate but identical stream of data to the router
 - The router sends each of the stream to a client.

Network Programming

Router and Routing (2/2)

- Note that real-world routes can be much more complex, involving multiple hierarchies of redundant routers
- Goal of multicast sockets
 - No matter how complex the network, the same data should never be sent more than once over any given network
 - Programmers don't need to worry about routing issues.
- To send and receive multicast data beyond the local subnet, you need a multicast router
 - ping all-routers.mcast.net

Network Programming

Multicast Socket (1/4)

- Communication with a multicast group
 - Join a multicast group
 - Send data to the members of the group
 - Receive data from the group
 - Leave the multicast group

Receiver

Create a UDP socket

```
recvSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
recvSocket.bind(('', PORT))
```

- Join Multicast group
- Use setsockopt() to change the IP_ADD_MEMBERSHIP option

```
group = socket.inet_aton(group_addr)
mreq = struct.pack('4sL', group, socket.INADDR_ANY)
recvSocket.setsockopt(socket.IPPROTO IP, IP ADD MEMBERSHIP, mreq)
```

Receive message

```
data, (rip, rport) = recvSocket.recvfrom(BUFF_SIZE)
```

Network Programming

Multicast Socket (3/4)

- Leave Multicast group
- Use setsockopt() to change the IP_DROP_MEMBERSHIP option

```
group = socket.inet_aton(group_addr)
mreq = struct.pack('4sL', group, socket.INADDR_ANY)
recvSocket.setsockopt(socket.IPPROTO_IP, IP_DROP_MEMBERSHIP, mreq)
```


Multicast Socket (4/4)

Sender

Create UDP socket

```
sock = socket.socket(socket.AF INET, socket.SOCK DGRAM)
```

Set timeout

sock.settimeout(0.2)

Config TTL

```
ttl = struct.pack('b', 1)
sock.setsockopt(socket.IPPROTO IP, socket.IP MULTICAST TTL, ttl)
```

Send message

```
sock.sendto(message.encode('utf-8'), (group addr, port))
```

Network Programming

IP群播的原理

- IP群播位址的範圍在224.0.0.0到 239.255.255.255
- 群播的範圍
 - time-to-live scoping
 - administrative scoping
- 群播的路由(multicast routing)
 - IGMP (Internet Group Management Protocol)

IP群播路由的組成

- 一種是由所謂的邊緣主機(edge hosts)向鄰接的 路由器請求加入或離開群播群組
 - 使用標準化的IGMP(Internet Group Management Protocol)
- 另外一種是處理路由器之間的群播封包
 - 由網路管理者選用非標準化的協定

Network Programming

群播的埠號(port number)

- 由於TCP不適合用在群播中,所以群播一般都 使用UDP協定
- 一般不同的群播應用會指定不同的群播位址, 所以不需要再使用port number來做所收到的封 包的轉送依據,因為從群播位址就知道該送給 那個群播應用
- 群播應用還是可以用port number來區隔不同性 質的資料傳送