

Fahrzeugkonzept und technische Realisierung

Manzinger Stefanie

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Team: TUM Phoenix Robotics

Universität: Technische Universität München

Lehrstuhl: Lehrstuhl für Regelungstechnik,

Fakultät für Maschinenwesen

Mitglieder: 18 Mitglieder:

Maschinenbau

Informatik

Ingenieurwissenschaften

Physik

Mathematik

Robotics, Cognition, Intelligence

Fahrzeugtechnik

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Hardwarearchitektur - Fahrwerk

Hardwarearchitektur - Karosserie

Playstation Eye 2 Cam

Ultraschallsensor

Infrarotdistanzsensoren

11

Hohlwellendrehgeber

12

Hardwarearchitektur - Prozessoren

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Softwarearchitektur

Programmiersprache C++

Phoenix Framework

```
Jak;
case DOWN_MODE_POSITION_CONTROL:
    down.mode.p.vmax = control_data->control.position.max_velocity;
    down.v_mode &= ~(DOWN_MASK_SENSOR);
    down.v_mode |= control_data->control.position.target_sensor;

switch(control_data->control.position.target_sensor) {
    case DOWN_SENSOR_IR_FRONT:
        down.mode.p.value = convert_ir_front.reverse<uint8_t, float>(control_data->control_break;
    case DOWN_SENSOR_IR_REAR:
        down.mode.p.value = convert_ir_rear.reverse<uint8_t, float>(control_data->control_break;
    case DOWN_SENSOR_ENCODER:
        down.mode.p.value = convert_encoder.reverse<uint8_t, float>(control_data->control_break;
```

m.mode.v.vsoll = convert velocity.convert<float, int16 t>(control da

mode = (DOWN MODE)control data->vel mode;

down.v_mode) { WN MODE VELOCITY CONTROL:

Ubuntu 14.04 Kernel 3.10 !rvo_f = convert_servo_front.convert<float, int16_t>(control_data->st
!rvo_r = convert_servo_rear.convert<float, int16_t>(control_data->ste
mode = DOWN_MODE_VELOCITY_CONTROL;

Zykluszeit: 10ms

Softwarearchitektur

Software - Debugging & Simulation

Aufzeichnung der Sensordaten

Offline Analyse des Fahrzeugverhaltens

Reproduktion von Fehlsituationen und Systemanalyse

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Dynamische Disziplinen – Fahrbahndetektion

Dynamische Disziplinen – Fahrbahndetektion

Dynamische Disziplinen – Fahrbahndetektion

Dynamische Disziplinen – Hindernisdetektion

Kamera

Fusionierte Hinderniserkennung

Ultraschall & Infrarotdistanzsensoren

22

Dynamische Disziplinen – Hindernisdetektion

Dynamische Disziplinen – Kreuzungsdetektion

Dynamische Disziplinen – Kreuzungsdetektion

Dynamische Disziplinen – Kreuzungsdetektion

26

Dynamische Disziplinen – Parken

Dynamische Disziplinen – Parken

Trajektorie

Korrektur

28

Dynamische Disziplin - Regelpunkt

Dynamische Disziplinen - Regelung

Systemanalyse

$$\tilde{\mathbf{y}} = \begin{bmatrix} 0 & 0 \\ \mathbf{y} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} \begin{bmatrix} \varphi \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \frac{v_0}{l} & -\frac{v_0}{l} \\ 0 \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} \begin{bmatrix} \delta_f \\ \delta_r \end{bmatrix} \begin{bmatrix} \delta_f \\ \delta_r \end{bmatrix}$$

Dynamische Disziplinen - Regelung

Regelgesetz

• Zustandsregler R

Vorfilter

$$F = \left(\frac{C}{(BR - A)B}\right)^{-1}$$

$$\begin{bmatrix} \delta_f \\ \delta_r \end{bmatrix} = F \begin{bmatrix} \varphi_{soll} \\ y_{soll} \end{bmatrix} - R \begin{bmatrix} \varphi_{ist} \\ y_{ist} \end{bmatrix}$$

31

Hardwarearchitektur

Softwarearchitektur

Dynamische Disziplinen

Energiebilanz & Herstellungskosten

Energiebilanz

Herstellungskosten

Vielen Dank für Ihre Aufmerksamkeit

Dynamische Disziplinen - Regelung

