Contents

0.1. Prerequisites	. 2
1. Divisibility in rings	. 2
1.1. Every ED is a PID	. 2
1.2. Every PID is a UFD	. 2
2. Finite field extensions	. 3
2.1. Fields generated by elements	. 4
2.2. Norm and trace	. 4
2.3. Characteristic polynomials	. 5
3. Algebraic number fields and algebraic integers	. 6
3.1. Algebraic numbers	. 6
3.2. Algebraic integers	. 7
3.3. Quadratic fields and their integers	. 7
4. Units in quadratic rings	. 8
4.1. Proof of the main theorem	
4.2. Computing fundamental units	. 9
4.3. Pell's equation and norm equations	10
5. Discriminants and integral bases	10
5.1. Discriminant of an <i>n</i> -tuple	10
5.2. Full lattices and integral bases	12
5.3. When is $R = \mathbb{Z}[\theta]$?	13
6. Unique factorisation of ideals	14
6.1. The norm of an ideal	15
6.2. Ideals are invertible	15
7. Splitting of primes and the Kummer-Dedekind theorem	16
7.1. Properties of the ideal norm	16
7.2. The Kummer-Dedekind theorem	16

0.1. Prerequisites

Definition. $I \subset R$ is **prime ideal** if $\forall a, b \in R, ab \in I \Longrightarrow a \in I \lor b \in I$.

Definition. Ideal I is **maximal** if $I \neq R$ and there is no ideal $J \subset R$ such that $I \subset J$.

Example.

- $p \in \mathbb{Z}$ is prime iff $\langle p \rangle = p\mathbb{Z}$ is prime ideal.
- $\langle 0 \rangle$ is prime ideal iff R is integral domain.

Lemma. If I is maximal ideal, then it is prime.

Proposition. For commutative ring R, ideal I:

- $I \subset R$ is prime ideal iff R/I is an integral domain.
- I is maximal iff R/I is field.

Proposition. Let R be PID and $a \in R$ irreducible. Then $\langle a \rangle = \langle a \rangle_R$ is maximal.

Theorem. Let F be field, $f(x) \in F[x]$ irreducible. Then $F[x]/\langle f(x) \rangle$ is a field and a vector space over F with basis $B = \{1, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. That is, every element in $F[x]/\langle f(x) \rangle$ can be uniquely written as linear combination

$$\overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}}, \quad a_i \in F$$

1. Divisibility in rings

1.1. Every ED is a PID

Definition. Let R integral domain. $\varphi: R - \{0\} \to \mathbb{N}_0$ is **Euclidean function** (norm) on R if:

- $\forall x, y \in R \{0\}, \varphi(x) \le \varphi(xy)$.
- $\forall x \in R, y \in R \{0\}, \exists q, r \in R : x = qy + r \text{ with either } r = 0 \text{ or } \varphi(r) < \varphi(y).$

R is Euclidean domain (ED) if Euclidean function is defined on it.

Example.

- \mathbb{Z} is ED with $\varphi(n) = |n|$.
- F[x] is ED for field F with $\varphi(f) = \deg(f)$.

Lemma. $\mathbb{Z}[-\sqrt{2}]$ is ED with Euclidean function

$$\varphi(a+b\sqrt{-2})=N(a+b\sqrt{-2})\eqqcolon a^2+2b^2$$

Proposition. Every ED is a PID.

1.2. Every PID is a UFD

Definition. Integral domain R is unique factorisation domain (UFD) if every non-zero non-unit in R can be written uniquely (up to order of factors and multiplication by units) as product of irreducible elements in R.

Example. Let $R = \{f(x) \in \mathbb{Q}[x] : f(0) \in \mathbb{Z}\}$. Its units are ± 1 . Any factorisation of $x \in R$ must be of the form f(x)g(x) where $\deg f = 1$, $\deg g = 0$, so x = (ax + b)c, $a \in \mathbb{Q}$, $b, c \in \mathbb{Z}$. We have bc = 0 and ac = 1 hence $x = \frac{x}{c} \cdot c$. So x irreducible if

 $c \neq \pm 1$. Also, any factorisation of $\frac{x}{c}$ in R is of the form $\frac{x}{c} = \frac{x}{cd} \cdot d$, $d \in \mathbb{Z}$, $d \neq 0$. Again, neither factor is a unit when $d \neq \pm 1$. So $x = \frac{x}{c} \cdot c = \frac{x}{cd} \cdot c \cdot c = \cdots$ can never be decomposed into irreducibles (the first factor is never irreducible).

Lemma. Let R be PID. Then every irreducible element is prime in R.

Theorem. Every PID is a UFD.

Example. $\mathbb{Z}\left[\sqrt{-2}\right]$ so by the above theorem it is a UFD. Let $x, y \in \mathbb{Z}$ such that $y^2 + 2 = x^3$.

- y must be odd, since if $y = 2a, a \in \mathbb{Z}$ then $x = 2b, b \in \mathbb{Z}$ but then $2a^2 + 1 = 4b^3$.
- $y \pm \sqrt{-2}$ are relatively prime: if $a + b\sqrt{-2}$ divides both, then it divides their difference $2\sqrt{-2}$, so norm $a^2 + 2b^2 \mid N\left(2\sqrt{-2}\right) = 8$. Only possible case is $a = \pm 1, b = 0$ so $a + b\sqrt{-2}$ is unit. Other cases $a = 0, b = \pm 1, a = \pm 2, b = 0$ and $a = 0, b = \pm 2$ are impossible since y not even.
- If $a + b\sqrt{-2}$ is unit, $\exists x, y \in \mathbb{Z} : (a + b\sqrt{-2})(x + y\sqrt{-2}) = 1$. If $b \neq 0$ then $(-a^2 2b^2)y = 1 \Longrightarrow b = 0$: contradiction. If b = 0, $a = \pm 1$.

2. Finite field extensions

Definition. Let F, L fields. If $F \subseteq L$ and F and L share the same operations then F is a **subfield** of L and L is **field extension** of F (denoted L/F). L is vector space over F:

- $0 \in L$ (zero vector).
- $u, v \in L \Longrightarrow u + v \in L$ (additivity).
- $a \in F, u \in L \Longrightarrow au \in L$ (scalar multiplication).

Definition. Let L/F field extension. **Degree** of L over F is dimension of L as vector space over F:

$$[L:F]\coloneqq \dim_F(L)$$

If [L:F] finite, L/F is finite field extension.

Example. $\mathbb{Q}(\sqrt{-2}) = \{a + b\sqrt{-2} : a, b \in \mathbb{Q}\}$ is isomorphic as a vector space to \mathbb{Q}^2 so is 2-dimensional vector space over \mathbb{Q} . Isomorphism is $a + b\sqrt{-2} \longleftrightarrow (a, b)$. Standard basis $\{e_1, e_2\}$ in \mathbb{Q}^2 corresponds to the basis $\{1, \sqrt{-2}\}$ in $\mathbb{Q}(\sqrt{-2})$. $[\mathbb{Q}(\sqrt{-2}) : \mathbb{Q}] = 2$.

Example. $[\mathbb{C} : \mathbb{R}] = 2$ (a basis is $\{1, i\}$). $[\mathbb{R} : \mathbb{Q}]$ is not finite, due to the existence of transcendental numbers (if α transcendental, then $\{1, \alpha, \alpha^2, ...\}$ is linearly independent).

Definition. Let L/F field extension. $\alpha \in L$ is algebraic over F if

$$\exists f(x) \in F[x] : f(\alpha) = 0$$

If all elements in L are algebraic, then L/F is algebraic field extension.

Example. $i \in \mathbb{C}$ is algebraic over \mathbb{R} since i is root of $x^2 + 1$. \mathbb{C}/\mathbb{R} is algebraic since z = a + bi is root of $(x - z)(x - \overline{z}) = x^2 - 2ax + a^2 + b^2$.

Proposition. If L/F is finite field extension then it is algebraic.

Definition. Let L/F field extension, $\alpha \in L$ algebraic over F. Minimal polynomial $p_{\alpha}(x) = p_{\alpha,F}(x)$ of α over F is the monic polynomial f of smallest degree such that $f(\alpha) = 0$. Degree of α over F is $\deg(p_{\alpha})$.

Proposition. $p_{\alpha}(x)$ is unique and irreducible. Also, if $f(x) \in F[x]$ is monic, irreducible and $f(\alpha) = 0$, then $f = p_{\alpha}$.

Example.

- $p_{i,\mathbb{R}}(x) = p_{i,\mathbb{Q}}(x) = x^2 + 1, \, p_{i,\mathbb{Q}(i)}(x) = x i.$
- Let $\alpha = \sqrt[7]{5}$. $f(x) = x^7 5$ is minimal polynomial of α over \mathbb{Q} , as it is irreducible by Eisenstein's criterion with p = 5 and the above proposition.
- Let $\alpha = e^{2\pi i/p}$, p prime. α is algebraic as root of $x^p 1$ which isn't irreducible as $x^p 1 = (x 1)\Phi(x)$ where $\Phi(x) = (x^{p-1} + \cdots + 1)$. $\Phi(\alpha) = 0$ since $\alpha \neq 1$, $\Phi(x)$ is monic and $\Phi(x + 1) = ((x + 1)^p 1)/x$ irreducible by Eisenstein's criterion with p = p, hence $\Phi(x)$ irreducible. So $p_{\alpha}(x) = \Phi(x)$.

2.1. Fields generated by elements

Definition. Let L/F field extension, $\alpha \in L$. The field generated by α over F is the smallest subfield of L containing F and α :

$$F(\alpha) \coloneqq \bigcap_{\substack{K \text{ field,} \\ F \subseteq K \subseteq L, \\ \alpha \in K}} K$$

Generally, $F(\alpha_1,...,\alpha_n)$ is smallest field extension of F containing $\alpha_1,...,\alpha_n$.

• We have $F(\alpha_1, ..., \alpha_n) = F(\alpha_1) \cdot \cdot \cdot (\alpha_n)$ (show $F(\alpha, \beta) \subseteq F(\alpha)(\beta)$ and $F(\alpha)(\beta) \subseteq F(\alpha, \beta)$ by minimality and use induction).

Definition. $F[\alpha] = \{\sum_{i=0}^n a_i \alpha^i : a_i \in F, n \in \mathbb{N}\} = \{f(\alpha) : f(x) \in F[x]\}.$

Lemma. Let L/F field extension, $\alpha \in L$ algebraic over F. Then $F[\alpha]$ is field, hence $F(\alpha) = F[\alpha]$.

Lemma. Let α algebraic over F. Then $[F(\alpha):F]=\deg(p_{\alpha})$.

Definition. Let K/F and L/K field extensions, then $F \subseteq K \subseteq L$ is **tower of fields**.

Theorem (Tower theorem). Let $F \subseteq K \subseteq L$ tower of fields. Then

$$[L:F] = [L:K] \cdot [K:F]$$

Example. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show $[L : \mathbb{Q}] = 4$.

- Let $K = \mathbb{Q}(\sqrt{2})$. Let $\sqrt{3} = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$ so $3 = a^2 + 2b^2 + 2ab\sqrt{2}$. So $0 \in \{a, b\}$, otherwise $\sqrt{2} \in \mathbb{Q}$. But if a = 0, then $\sqrt{6} = 2b \in \mathbb{Q}$, if b = 0 then $\sqrt{3} = a \in \mathbb{Q}$: contradiction. So $x^2 3$ has no roots in K so is irreducible over K so $p_{\sqrt{3}, K}(x) = x^2 3$.
- So [L:K] = 2 so by the tower theorem, $[L:\mathbb{Q}] = [L:K] \cdot [K:\mathbb{Q}] = 4$.

2.2. Norm and trace

• Let L/F finite field extension, n = [L : F]. For any $\alpha \in L$, there is F-linear map

$$\hat{\alpha}: L \longrightarrow L, \quad x \mapsto \alpha x$$

• With basis $\{\alpha_1, ..., \alpha_n\}$ of L over F, let $T_{\alpha} = T_{\alpha, L/F} \in M_n(F)$ be the corresponding matrix of the linear map α with respect to the basis $\{\alpha_i\}$:

$$\begin{split} \hat{\alpha}(\alpha_1) &= \alpha \alpha_1 = a_{1,1} \alpha_1 + \dots + a_{1,n} \alpha_n, \\ &\vdots \\ \hat{\alpha}(\alpha_n) &= \alpha \alpha_n = a_{n,1} \alpha_1 + \dots + \alpha_{n,n} \alpha_n \end{split}$$

with $a_{i,j} \in F$, $T_{\alpha} = (a_{i,j})$, so α is eigenvalue of T_{α} :

$$\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = T_\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Definition. Norm of α is

$$N_{L/F}(\alpha)\coloneqq \det(T_\alpha)$$

Definition. Trace of α is

$$\operatorname{tr}_{L/F}(\alpha) := \operatorname{tr}(T_{\alpha})$$

Remark. Norm and trace are independent of choice of basis so are well-defined (uniquely determined by α).

Example. Let $L = \mathbb{Q}(\sqrt{m})$, $m \in \mathbb{Z}$ non-square, let $\alpha = a + b\sqrt{m} \in L$. Fix basis $\{1, \sqrt{m}\}$. Now

$$\begin{split} \hat{\alpha}(1) &= \alpha \cdot 1 = a + b\sqrt{m}, \\ \hat{\alpha}\left(\sqrt{m}\right) &= \alpha\sqrt{m} = bm + a\sqrt{m}, \\ T_{\alpha} &= \begin{bmatrix} a & b \\ bm & a \end{bmatrix} \end{split}$$

So $N_{L/F}(\alpha)=a^2-b^2m,\, {\rm tr}_{L/F}(\alpha)=2a.$

Lemma. The map $L \to M_n(F)$ given by $\alpha \mapsto T_\alpha$ is injective ring homomorphism. So if $f(x) \in F[x]$,

$$T_{f(\alpha)}=f(T_\alpha)$$

 $(f(T_\alpha)$ is a polynomial in $T_\alpha,$ not f applied to each entry).

Proposition. Let L/F finite field extension. $\forall \alpha, \beta \in L$,

- $\bullet \ \ N_{L/F}(\alpha)=0 \Longleftrightarrow \alpha=0.$
- $\bullet \ \ N_{L/F}(\alpha\beta) = N_{L/F}(\alpha) N_{L/F}(\beta).$
- $\forall a \in F, N_{L/F}(a) = a^{[L:F]}$ and $\operatorname{tr}_{L/F}(a) = [L:F]\alpha$.
- $\forall a, b \in F, \operatorname{tr}_{L/F}(a\alpha + b\beta) = a \operatorname{tr}_{L/F}(\alpha) + b \operatorname{tr}_{L/F}(\beta)$ (so $\operatorname{tr}_{L/F}$ is F-linear map).

2.3. Characteristic polynomials

• Let $A \in M_n(F)$, then characteristic polynomial is $\chi_A(x) = \det(xI - A) \in F[x]$ and is monic, $\deg(\chi_A) = n$. If $\chi_A(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ then

$$\begin{split} \det(A) &= (-1)^n \det(0-A) = (-1)^n \chi_A(0) = (-1)^n c_0 \text{ and } \operatorname{tr}(A) = -c_{n-1}, \text{ since if } \\ \alpha_1, \dots, \alpha_n \text{ are eigenvalues of } A \text{ (in some field extension of } F), \text{ then } \\ \operatorname{tr}(A) &= \alpha_1 + \dots + \alpha_n, \\ \chi_A(x) &= (x - \alpha_1) \dots (x - \alpha_n) = x^n - (\alpha_1 + \dots + \alpha_n) x^{n-1} + \dots. \end{split}$$

• For finite extension L/F, n=[L:F], $\alpha\in L$, characteristic polynomial $\chi_{\alpha}(x)=\chi_{\alpha,L/F}(x)$ is characteristic polynomial of T_{α} . So $N_{L/F}(\alpha)=(-1)^nc_0$, $\operatorname{tr}_{L/F}(\alpha)=-c_{n-1}$. By the Cayley-Hamilton theorem, $\chi_{\alpha}(T_{\alpha})=0$ so $T_{\chi_{\alpha}(\alpha)}=\chi_{\alpha}(T_{\alpha})=0$, where $\chi_{\alpha}(x)=x^n+c_{n-1}x^{n-1}+\cdots+c_0$. Since $\alpha\to T_{\alpha}$ is injective, $\chi_{\alpha}(\alpha)=0$.

Lemma. Let L/F finite extension, $\alpha \in L$ with $L = F(\alpha)$. Then $\chi_{\alpha}(x) = p_{\alpha}(x)$. **Proposition**. Let $F \subseteq F(\alpha) \subseteq L$, let $m = [L : F(\alpha)]$. Then $\chi_{\alpha}(x) = p_{\alpha}(x)^m$. **Corollary**. Let L/F, $\alpha \in L$ as above, $p_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$, $a_i \in F$. Then

$$N_{L/F}(\alpha) = \left(-1\right)^{md} a_0^m, \quad \operatorname{tr}_{L/F}(\alpha) = -m a_{d-1}$$

3. Algebraic number fields and algebraic integers

3.1. Algebraic numbers

Definition. $\alpha \in \mathbb{C}$ is algebraic number if algebraic over \mathbb{Q} .

Definition. K is (algebraic) number field if $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ and $[K : \mathbb{Q}] < \infty$.

• Every element of an algebraic number field is an algebraic number.

Example. Let $\theta = \sqrt{2} + \sqrt{3}$, then $\mathbb{Q}(\theta) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ but also $\theta^3 = 11\sqrt{2} + 9\sqrt{3}$ so

$$\sqrt{2}=\frac{\theta^3-9\theta}{2},\quad \sqrt{3}=\frac{-\theta^3+11\theta}{2}$$

so $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\theta)$ hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\theta)$.

Theorem (Simple extension theorem). Every number field K has form $K = \mathbb{Q}(\theta)$ for some $\theta \in K$.

- Set of all algebraic numbers (union of all number fields) is denoted $\overline{\mathbb{Q}}$ and is a field, since if $\alpha \neq 0$ algebraic over \mathbb{Q} , $[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg(p_{\alpha}) < \infty$ so $\mathbb{Q}(\alpha)/\mathbb{Q}$ algebraic, so $-\alpha, \alpha^{-1} \in \mathbb{Q}(\alpha)$ algebraic, so $\alpha^{-1}, -\alpha \in \overline{\mathbb{Q}}$, and if $\alpha, \beta \in \overline{\mathbb{Q}}$ then $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha)(\beta)$ is finite extension of \mathbb{Q} by tower theorem so $\alpha + \beta$, $\alpha\beta \in \mathbb{Q}(\alpha, \beta)$ so are algebraic.
- $[\overline{\mathbb{Q}}:\mathbb{Q}] = \infty$ since if $[\overline{\mathbb{Q}}:\mathbb{Q}] = d \in \mathbb{N}$ then every algebraic number would have degree $\leq d$, but $\sqrt[d+1]{2}$ has degree d+1 since it is a root of $x^{d+1}-2$ which is irreducible by Eisenstein's criterion with p=2.

Definition. Let $\alpha \in \overline{\mathbb{Q}}$. Conjugates of α are roots of $p_{\alpha}(x)$ in \mathbb{C} . Example.

- Conjugate of $a + bi \in \mathbb{Q}(i)$ is a bi.
- Conjugate of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ is $a b\sqrt{2}$.

• Conjugates of θ do not always lie in $\mathbb{Q}(\theta)$, e.g. for $\theta = \sqrt[3]{2}$, $p_{\theta}(x) = x^3 - 2$ has two non-real roots not in $\mathbb{Q}(\theta) \subset \mathbb{R}$.

Notation. When base field is \mathbb{Q} , N_K and tr_K denote $N_{K/\mathbb{Q}}$ and $\operatorname{tr}_{K/\mathbb{Q}}$.

Lemma. Let K/\mathbb{Q} number field, $\alpha \in K$, $\alpha_1, ..., \alpha_n$ conjugates of α . Then

$$N_K(\alpha) = (\alpha_1 \cdots \alpha_n)^{[K:\mathbb{Q}(\alpha)]}, \quad \operatorname{tr}_K(\alpha) = (\alpha_1 + \cdots + \alpha_n)[K:\mathbb{Q}(\alpha)]$$

3.2. Algebraic integers

Definition. $\alpha \in \overline{\mathbb{Q}}$ is algebraic integer if it is root of a monic polynomial in $\mathbb{Z}[x]$. The set of algebraic integers is denoted $\overline{\mathbb{Z}}$. If K/\mathbb{Q} is number field, set of algebraic integers in K is denoted \mathcal{O}_K , $\alpha \in \mathcal{O}_K$ is called **integer in K**.

Example. $i, (1+\sqrt{3})/2 \in \mathbb{Z}$ since they are roots of x^2+1 and x^2-x+1 respectively.

Theorem. Let $\alpha \in \overline{\mathbb{Q}}$. The following are equivalent:

- $\alpha \in \overline{\mathbb{Z}}$.
- $\begin{array}{ll} \bullet & p_{\alpha}(x) \in \mathbb{Z}[x]. \\ \bullet & \mathbb{Z}[\alpha] = \{\sum_{i=0}^{d-1} a_i \alpha^i : a_i \in \mathbb{Z}\} \text{ where } d = \deg(p_{\alpha}). \end{array}$
- There exists non-trivial finitely generated abelian additive subgroup $G \subset \mathbb{C}$ such that

$$\alpha G \subseteq G$$
 i.e. $\forall g \in G, \alpha g \in G$

(αg is complex multiplication).

Remark.

- For third statement, generally we have $\mathbb{Z}[\alpha] = \{f(\alpha : f(x) \in \mathbb{Z}[x])\}$ and in this case, $\mathbb{Z}[\alpha] = \{ f(\alpha) : f(x) \in \mathbb{Z}[x], \deg(f) < d \}.$
- Fourth statement means that

$$G = \{a_1\gamma_1 + \dots + a_r\gamma_r : a_i \in \mathbb{Z}\} = \gamma_1\mathbb{Z} + \dots + \gamma_r\mathbb{Z} = \langle \gamma_1, ..., \gamma_r \rangle_{\mathbb{Z}}$$

G is typically $\mathbb{Z}[\alpha]$. E.g. if $\alpha = \sqrt{2}$, $\mathbb{Z}[\sqrt{2}]$ is generated by $1, \sqrt{2}$ and $\sqrt{2} \cdot \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{Z}[\sqrt{2}]$

Proposition. $\overline{\mathbb{Z}}$ is a ring. Also, for every number field K, \mathcal{O}_K is a ring.

Lemma. Let $\alpha \in \overline{\mathbb{Z}}$. For every number field K with $\alpha \in K$,

$$N_K(\alpha) \in \mathbb{Z}, \quad \operatorname{tr}_K(\alpha) \in \mathbb{Z}$$

Lemma. Let K number field. Then

$$K = \left\{ \frac{\alpha}{m} : \alpha \in \mathcal{O}_K, m \in \mathbb{Z}, m \neq 0 \right\}$$

Lemma. Let $\alpha \in \overline{\mathbb{Z}}$, K number field, $\alpha \in K$. Then

$$\alpha \in \mathcal{O}_K^{\times} \Longleftrightarrow N_K(\alpha) = \pm 1$$

3.3. Quadratic fields and their integers

Definition. $d \in \mathbb{Z}$ is squarefree if $d \notin \{0,1\}$ and there is no prime p such that $p^2 \mid d$.

Definition. $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field if d is squarefree. If d > 0 then it is real quadratic. If d < 0 it is imaginary quadratic.

Proposition. Let K/\mathbb{Q} have degree 2. Then $K = \mathbb{Q}(\sqrt{d})$ for some squarefree $d \in \mathbb{Z}$.

Lemma. Let $K = \mathbb{Q}(\sqrt{d}), d \equiv 1 \pmod{4}$. Then

$$\mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \left\{ \frac{r+s\sqrt{d}}{2} : r, s \in \mathbb{Z}, r \equiv s \pmod{2} \right\}$$

Theorem. Let $K = \mathbb{Q}(\sqrt{d})$ quadratic field, then

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \not\equiv 1 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

4. Units in quadratic rings

Notation. In this section, let $K = \mathbb{Q}(\sqrt{d})$ be quadratic number field, $d \in \mathbb{Z} - \{0\}$, |d| is not a square. Let $\mathcal{O}_d = \mathcal{O}_K$. Let $\overline{a + b\sqrt{d}} = a - b\sqrt{d}$. The map $x \to \overline{x}$ is a \mathbb{Q} automorphism from K to K.

Definition. S is quadratic number ring of K if $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$.

• We have

$$\alpha \in S^{\times} \Longrightarrow \exists x \in S: \alpha x = 1 \Longrightarrow N_K(\alpha)N_K(x) = 1 \Longrightarrow N_K(\alpha) = \pm 1$$

and for $\alpha \in S - \mathbb{Z}$, since $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$ and so $[K : \mathbb{Q}(\alpha)] = 1$ by the Tower Theorem,

$$N_K(\alpha)=\pm 1 \Longrightarrow \alpha\overline{\alpha}=\pm 1 \Longrightarrow \alpha \in S^\times$$

So
$$\alpha \in S^{\times} \iff N_K(\alpha) = \pm 1$$
.

Theorem. To determine the group of units for imaginary quadratic fields:

- For d < -1, $\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm 1\}$.
- $\mathcal{O}_{-1}^{\times} = \mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$

• For $d \equiv 1 \pmod{4}$ and d < -3, $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]^{\times} = \{\pm 1\}$. • $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]^{\times} = \{\pm 1, \pm \omega, \pm \omega^2\}$ where $\omega = \frac{1+\sqrt{-3}}{2} = e^{\pi i/3}$.

Theorem (Main theorem). Let d > 1, d non-square, S be quadratic number ring of $K = \mathbb{Q}(\sqrt{d})$ (i.e. $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$). Then

- S has a smallest unit u > 1 (smaller than all units except 1).
- $S^{\times} = \{ \pm u^r : r \in \mathbb{Z} \} = \langle -1, u \rangle.$

Definition. The smallest unit u > 1 above is the fundamental unit of S (or of K, in the case $S = \mathcal{O}_d$).

4.1. Proof of the main theorem

Remark. If $\alpha = a + b\sqrt{d}$ is unit in $\mathbb{Z}[\sqrt{d}]$, a, b > 0, then $N_K(\alpha) = \alpha \overline{\alpha} = \pm 1$, so

$$|\overline{\alpha}| = |a - b\sqrt{d}| = \frac{|N_K(\alpha)|}{|\alpha|} = \frac{1}{|\alpha|} < \frac{1}{b\sqrt{d}} < \frac{1}{b}$$

Define

$$A = \left\{\alpha = a + b\sqrt{d} : a, b \in \mathbb{N}_0, |\overline{\alpha}| < \frac{1}{b}\right\}$$

Lemma. $|A| = \infty$.

Lemma. If $\alpha \in A$, then $|N_K(\alpha)| < 1 + 2\sqrt{d}$.

Lemma. $\exists \alpha = a + b\sqrt{d}, \alpha' = a' + b'\sqrt{d} \in A : \alpha > \alpha', |N_K(\alpha)| = |N_K(\alpha')| =: n \text{ and }$ $\alpha \equiv \alpha' \pmod{n}, \quad b \equiv b' \pmod{n}$

Lemma. There exists a unit u in $\mathbb{Z}[\sqrt{d}]$ such that u > 1.

Lemma. Let $0 \neq \alpha = a + b\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. Then $\alpha > \sqrt{|N_K(\alpha)|}$ iff a, b > 0.

4.2. Computing fundamental units

Theorem. Let d > 1 non-square.

- If $S = \mathbb{Z}[\sqrt{d}]$ and $a + b\sqrt{d} \in S^{\times}$, a, b > 0 such that b is minimal, then $a + b\sqrt{d}$ is the fundamental unit in S.
- If $S = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ (so $d \equiv 1 \pmod{4}$), then $\frac{1+\sqrt{5}}{2}$ is the fundamental unit in \mathcal{O}_5 . If d > 5 and $\frac{s+t\sqrt{d}}{2} \in \mathcal{O}_d^{\times}$ with s, t > 0 such that t is minimal, then $\frac{s+t\sqrt{d}}{2}$ is the fundamental unit in \mathcal{O}_d .

Remark. Both $u = \frac{1+\sqrt{5}}{2}$ and $u^2 = \frac{3+\sqrt{5}}{2}$ have t minimal (equal to 1), which is why a separate case is needed for d = 5.

Example.

- $1+\sqrt{2}$ is fundamental unit in $\mathbb{Z}[\sqrt{2}]=\mathcal{O}_2$, since $N_K\left(1+\sqrt{2}\right)=-1$ so is a unit, and here b = 1, so is minimal (as b > 0).
- $2+\sqrt{5}$ is the fundamental unit in $\mathbb{Z}[\sqrt{5}]$ (since b=1 is minimal) but is not the fundamental unit in \mathcal{O}_5 .

Example. Find fundamental unit in \mathcal{O}_7 . $7 \not\equiv 1 \pmod{4}$ so $\mathcal{O}_7 = \mathbb{Z}[\sqrt{7}]$. $a + b\sqrt{7}$ is a unit iff $a^2 - 7b^2 = \pm 1$. Also, by the above theorem, it is the fundamental unit if a, b > 0 and b is minimal. We use trial and error: for each b = 1, 2, ..., check whether $7b^2 \pm 1$ is a square

b	$7b^2 - 1$	$7b^2 + 1$	a^2
1	6	8	_
2	27	29	_
3	62	64	$64 = 8^2$

So the unit with minimal b such that a, b > 0 is $8 + 3\sqrt{7}$, so is the fundamental unit.

4.3. Pell's equation and norm equations

Definition. **Pell's equation** is $x^2 - dy^2 = 1$ for nonsquare d, where solutions are $x, y \in \mathbb{Z}$. Since LHS is norm of $x + y\sqrt{d}$, solutions are given by $x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ with norm 1.

Example. Consider $x^2 - 2y^2 = \pm 1$. Fundamental unit in $\mathbb{Z}[\sqrt{2}]$ is $u = 1 + \sqrt{2}$, with norm -1. So if $x + y\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ is such that $N_{\mathbb{Z}(\sqrt{2})}(x + y\sqrt{2}) = 1$, then $x + y\sqrt{2}$ is an even power of u. Thus elements of norm ± 1 are

$$\pm u^{2n}$$
 (RHS = 1), $\pm u^{2n+1}$ (RHS = -1)

To extract solutions x, y, note that if $x + y\sqrt{2} = \pm u^r$, then $x - y\sqrt{2} = \pm \overline{u}^r$, hence

$$x = \pm \frac{u^r + \overline{u}^r}{2}, \quad y = \pm \frac{u^r - \overline{u}^r}{2\sqrt{2}}$$

Solutions when RHS = 1 are given by even r, solutions when RHS = -1 are given by odd r.

Example. Consider $x^2 - 75y^2 = 1$. $75 = 3 \cdot 5^2$ is not square-free, so rewrite as

$$x^2 - 3z^2 = 1$$

where z = 5y. Fundamental unit in $\mathbb{Z}[\sqrt{3}]$ is $u = 2 + \sqrt{3}$ of norm 1 so solutions are

$$x = \pm \frac{u^n + \overline{u}^n}{2}, \quad z = \pm \frac{u^n - \overline{u}^n}{2\sqrt{3}}, \quad n \in \mathbb{Z}$$

To get solution for (x, y), we need $5 \mid z$ (which doesn't always hold). Note that

$$u^2 = 7 + 4\sqrt{3} \notin \mathbb{Z}[\sqrt{75}] = \mathbb{Z}[5\sqrt{3}], \quad u^3 = 26 + 3\sqrt{75} \in \mathbb{Z}[\sqrt{75}]$$

Thus when n=2, (x,z) is not solution, but is when n=3, and hence when n=3k for $k \in \mathbb{Z}$:

$$x = \pm \frac{u^{3k} + \overline{u}^{3k}}{2}, \quad y = \pm \frac{u^{3k} - \overline{u}^{3k}}{5 \cdot 2\sqrt{3}}, \quad k \in \mathbb{Z}$$

 u^{3k+1} and u^{3k+2} never give solutions, since if $u^{3k+1} \in \mathbb{Z}[\sqrt{75}]$, then $u \in \mathbb{Z}[\sqrt{75}]$ (since $u^{-3k} \in \mathbb{Z}[\sqrt{75}]$). Similarly, if $u^{3k+2} \in \mathbb{Z}[\sqrt{75}]$, then $u^2 \in \mathbb{Z}[\sqrt{75}]$: contradiction. Note $\mathbb{Z}[\sqrt{75}] \subset \mathbb{Z}[\sqrt{3}]$ and any unit in $\mathbb{Z}[\sqrt{75}]$ is unit in $\mathbb{Z}[\sqrt{3}]$, so is $\pm u^r$ for some $r \in \mathbb{Z}$. So by taking powers of u, eventually we find the fundamental unit in $\mathbb{Z}[\sqrt{75}]$ (as it will be smallest unit > 1 assuming we increment powers from 1).

5. Discriminants and integral bases

5.1. Discriminant of an n-tuple

Definition. Let K number field of degree n. **Discriminant** of $\gamma = (\gamma_1, ..., \gamma_n) \in K^n$ is

$$\Delta_K(\gamma) := \det(Q(\gamma))$$

where $Q(\gamma) = (\operatorname{tr}_K(\gamma_i \gamma_j))_{1 \leq i,j \leq n} \in M_n(\mathbb{Q}).$

Example. Let $K = \mathbb{Q}(\sqrt{d})$, $d \neq 1$ squarefree.

$$\begin{split} \gamma &= (1, \sqrt{d}) \Longrightarrow Q(\gamma) = \begin{bmatrix} 2 & 0 \\ 0 & 2d \end{bmatrix} \Longrightarrow \Delta_K(\gamma) = 4d \\ \gamma &= (1, \frac{1+\sqrt{d}}{2}) \Longrightarrow Q(\gamma) = \begin{bmatrix} 2 & 1 \\ 1 & \frac{1+d}{2} \end{bmatrix} \Longrightarrow \Delta_K(\gamma) = d \end{split}$$

Proposition.

- $\Delta_K(\gamma) \in \mathbb{Q}$ and if every $\gamma_i \in \mathcal{O}_K$, then $\Delta_K(\gamma) \in \mathbb{Z}$.
- Let $M \in M_n(\mathbb{Q})$, then $\Delta_K(M\gamma) = \det(M)^2 \Delta_K(\gamma)$.
- $\Delta_K(\gamma)$ is invariant under permutations of $\gamma_1, ..., \gamma_n$.

Lemma. Let $\theta_1, ..., \theta_n \in \mathbb{C}$, let

$$D = \begin{bmatrix} 1 & \theta_1 & \dots & \theta_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \dots & \theta_n^{n-1} \end{bmatrix}$$

then

$$\det(D) = (-1)^{\binom{n}{2}} \prod_{1 \leq r < s \leq n} (\theta_r - \theta_s)$$

Theorem. Let $K = \mathbb{Q}(\theta)$ be number field. Let $\theta_1, ..., \theta_n$ be roots of $p_{\theta}(x)$, let $\gamma = (1, ..., \theta^{n-1})$. Then

$$\Delta_K(\gamma) = \prod_{1 \leq i \leq j \leq n} (\theta_i - \theta_j)^2 = (-1)^{\binom{n}{2}} \prod_{i=1}^n p_{\theta}'(\theta_i) = (-1)^{\binom{n}{2}} N_K(p_{\theta}'(\theta))$$

Example.

• Let $K = \mathbb{Q}(\sqrt{d})$, d square-free, $\theta = \frac{1+\sqrt{d}}{2}$, then

$$\Delta_K((1,\theta)) = \left(\frac{1+\sqrt{d}}{2} - \frac{1-\sqrt{d}}{2}\right)^2 = d$$

• Let $\theta = \sqrt{d}$, so $p_{\theta}(x) = x^2 - d$, $p'_{\theta}(x) = 2x$, so

$$\Delta_K(1,\theta) = (-1)^{\binom{2}{2}} N_K(2\theta) = -4 N_k(\theta) = 4d$$

• Let $\theta = \sqrt[d]{3}$, so $p_{\theta}(x) = x^3 - d$, $p'_{\theta}(x) = 3x^2$ so

$$\Delta_K(1, \theta, \theta^2) = (-1)^{\binom{3}{2}} N_K(3\theta^2) = -27d^2$$

• Let θ be root of $p_{\theta}(x) = x^3 - x + 2$, so $p'_{\theta}(x) = 3x^2 - 1$.

$$\Delta_K(1, \theta, \theta^2) = (-1)^{\binom{3}{2}} N_K(3\theta^2 - 1)$$

Now $\theta^3 = \theta - 2$ so

$$N_K(3\theta^2-1) = \frac{N_K(2)N_K(\theta-3)}{N_K(\theta)} = \frac{8}{2}N_K(3-\theta) = 4(3-\theta_1)(3-\theta_2)(3-\theta_3) = 4p_\theta(3) = 104$$

so $\Delta_K(1,\theta,\theta^2) = -104$. Note: in general, this method doesn't work, and generally we have to compute matrix T_{θ} and $\det(f(T_{\theta}))$. As a generalisation,

$$N_{\mathbb{Q}(\theta)}(a-b\theta)=b^np_{\theta}(a/b)$$

Lemma.

- Roots $\theta_1, ..., \theta_n$ of $p_{\theta}(x)$ are distinct.
- $\begin{array}{ll} \bullet & \forall f \in \mathbb{Q}[x], \operatorname{tr}_K(f(\theta)) = \sum_{i=1}^n f(\theta_i). \\ \bullet & \forall f \in \mathbb{Q}[x], N_K(f(\theta)) = \prod_{i=1}^n f(\theta_i). \end{array}$

Proposition. Let $K = \mathbb{Q}(\theta)$ number field. Then $\Delta_K(\gamma) \neq 0$ iff γ is \mathbb{Q} -basis of K.

5.2. Full lattices and integral bases

Definition. Let A subgroup of \mathbb{Q} -vector space V. A is **full lattice** in V if there are $\gamma_1, ..., \gamma_n \in V$ such that

- $\{\gamma_1, ..., \gamma_n\}$ is basis for V.
- $A=\{a_1\gamma_i+\cdots+a_n\gamma_n:a_i\in\mathbb{Z}\}$ (i.e. $\gamma_1,...,\gamma_n$ generate A as a group). Note $a_1, ..., a_n$ are uniquely determined for each $a \in A$.

 $\{\gamma_1, ..., \gamma_n\}$ is **generating basis** for A.

Example. Let $K = \mathbb{Q}(\theta)$, $\theta \in \mathcal{O}_K$, $[K : \mathbb{Q}] = n$, then $\mathbb{Z}[\theta]$ has generating basis $\{1,...,\theta^{n-1}\}$ and is full lattice in K.

Example. \mathbb{Z} , $\mathbb{Z}[\sqrt{2}/2]$ are not full lattices in $\mathbb{Q}(\sqrt{2})$.

Proposition. Let K number field. Every non-zero ideal $I \subseteq \mathcal{O}_K$ is full lattice in K.

Definition. Generating basis for \mathcal{O}_K is **integral basis** for K.

Example. Let $K = \mathbb{Q}(\sqrt{d})$, then an integral basis for K is $\{1, \sqrt{d}\}$ if $d \not\equiv 1 \mod 4$, $\{1, (1+\sqrt{d})/2\}$ if $d \equiv 1 \mod 4$.

Theorem. If V is Q-vector space, $\dim(V) = n$, and $B \subset A \subset V$, A and B full lattices, $\{\beta_1, ..., \beta_n\}$ is generating basis for $B, \{\alpha_1, ..., \alpha_n\}$ is generating basis for A, where $\beta = M\alpha$, $M \in M_n(\mathbb{Z})$, then

- $|A/B| = |\det(M)|$ (in particular, A/B is finite)
- If V = K is number field, these satisfy **index-discriminant formula**: $\Delta_K(B) = |A/B|^2 \Delta_K(A)$.

(Note M exists since α is generating basis for A so spans B over \mathbb{Z}).

Lemma. If $A \subset K$ is full lattice and $\{\gamma_1,...,\gamma_n\},\,\{\delta_1,...,\delta_n\}$ are generating bases for A, then $\Delta_K(\gamma_1,...,\gamma_n) = \Delta_K(\delta_1,...,\delta_n)$. We define discriminant of A to be $\Delta_K(A) = \Delta_K(\gamma_1, ..., \gamma_n)$ for any generating basis $\{\gamma_1, ..., \gamma_n\}$.

Definition. Disciminant of number field K is

$$\Delta_K = \Delta_K(\mathcal{O}_K) = \Delta_K(\gamma_1,...,\gamma_n)$$

for any integral basis $\{\gamma_1, ..., \gamma_n\}$.

5.3. When is $R = \mathbb{Z}[\theta]$?

Proposition. If $S \subseteq \mathcal{O}_K$ is full lattice in $K = \mathbb{Q}(\theta)$, $\{\gamma_1, ..., \gamma_n\}$ is generating basis for S, and p prime, $p \mid |\mathcal{O}_K/S|$, then

- $p^2 \mid \Delta_K(S)$
- There exists $\alpha=m_1\gamma_1+\dots+m_n\gamma_n\in S,\,m_i\in\mathbb{Z},$ such that $\alpha/p\in\mathcal{O}_K-S$ and

$$\begin{cases} 0 \leq |m_i| < p/2 \text{ if } p \text{ is odd} \\ m_i \in \{0,1\} & \text{if } p = 2 \end{cases}$$

Example. If $K = \mathbb{Q}(\sqrt{d})$,

$$\Delta_K = \begin{cases} 4d \text{ if } d \not\equiv 1 \bmod 4\\ d \text{ if } d \equiv 1 \bmod 4 \end{cases}$$

Example. Let θ be root of $x^3 + 4x + 1$, $K = \mathbb{Q}(\theta)$. We have $\mathbb{Z}[\theta] \subseteq \mathcal{O}_K$ and $\Delta_K(\mathbb{Z}[\theta]) = \Delta_K(1, \theta, \theta^2) = 281 = |\mathcal{O}_K/\mathbb{Z}[\theta]|^2 \Delta_K(\mathcal{O}_K)$. As 281 is squarefree, $|\mathcal{O}_K/\mathbb{Z}[\theta]| = 1$ so $\mathcal{O}_K = \mathbb{Z}[\theta]$.

Example. Let $K = \mathbb{Q}(\theta)$, $\theta = \sqrt[3]{5}$. let $R = \mathcal{O}_K$, $S = \mathbb{Z}[\theta]$. $\Delta_K(S) = -3^3 \cdot 5^2$. If p prime and $p \mid |R/S|$, then $p \in \{3, 5\}$ and there is $\alpha = a + b\theta + c\theta^2$ such that $\alpha/p \in R - S$, |a|, |b|, |c| < p/2. Note $\alpha \neq 0$, as otherwise $\alpha \in S$.

• If $5 \mid |R/S|$, then $|a|, |b|, |c| \in \{0, 1, 2\}$. Then $\operatorname{tr}_{K/\mathbb{Q}}(\alpha/5) = 3a/5 \in \mathbb{Z}$ so $5 \mid a$ so a = 0. $\theta \alpha = c + (b\theta^2)/5 \in \mathcal{O}_K$ so $(b\theta^2)/5 \in \mathcal{O}_K$ so

$$N_K((b\theta^2)/5) = \frac{N_K(b)N_K(\theta)^2}{N_K(5)} = \frac{b^3}{5} \in \mathbb{Z}$$

so $5 \mid b$, so b = 0. Finally,

$$N_K\!\left(\frac{\alpha}{5}\right) = N_K\!\left(\frac{c\theta^2}{5}\right) = \frac{c^3(-5)^2}{5^3} = \frac{c^3}{5} \in \mathbb{Z} \Longrightarrow c = 0$$

Contradiction.

• If $3 \mid |R/S|$, then $|a|, |b|, |c| \in \{0, 1\}$ and can assume $a \ge 0$ (by possibly multiplying by -1). Then

$$N_K\!\left(\frac{a+b\theta+c\theta^2}{3}\right)\in\mathbb{Z}\Longrightarrow a^3+5b^3+25c^3-15abc\equiv 0(\operatorname{mod}3^3)$$

If a=0, then $5b^3+25c^3\equiv 2b+c\equiv 0 \pmod 3$ (as $b,c\in\{0,1,-1\}$), so if b=0, then $c\equiv 0 \pmod 3 \implies c=0$: contradiction. So b=1 (by possibly multiplying by -1) hence c=1. But then

$$N_K(\alpha/3) = N_K\!\left(\frac{\theta + \theta^2}{3}\right) = \frac{N_K(\theta)N_K(1+\theta)}{3^3} = \frac{5\cdot 6}{27} \not\in \mathbb{Z}$$

Contradiction. If a = 1, then

$$1 + 5b^3 + 25c^3 \equiv 1 + 2b + c \equiv 0 \pmod{3}$$

which also leads to a contradiction.

• So $5 \nmid |R/S|$, $3 \nmid |R/S|$, so |R/S| = 1, so $\mathbb{Z}[\theta] = \mathcal{O}_K$.

6. Unique factorisation of ideals

Definition. **Product** of ideals $I, J \subseteq R$ is

$$IJ \coloneqq \left\{ \sum_{i=1}^k x_i y_i : k \in \mathbb{N}, x_i \in I, y_i \in J \right\}$$

If $I = \langle a_1, ..., a_m \rangle$, $J = (b_1, ..., b_n)$ then

$$IJ = \langle a_i b_j \mid i \in [m], j \in [n] \rangle$$

Definition. I divides $J, I \mid J$, if there is ideal K such that IK = J.

Note. to divide is to contain: $I \mid J \Longrightarrow J \subseteq I$.

Example. Let $R = \mathbb{Z}[\sqrt{-6}]$, $I = \langle 5, 1 + 3\sqrt{-6} \rangle$, $J = \langle 5, 1 - 3\sqrt{-6} \rangle$, then

$$IJ = \langle 25, 5(1+3\sqrt{-6}), 5(1-3\sqrt{-6}), 55 \rangle \subseteq \langle 5 \rangle$$

But also $5 = 55 - 2 \cdot 25 \in I$, $\langle 5 \rangle \subseteq IJ$, so $IJ = \langle 5 \rangle$.

Lemma. Let I, J ideals, P prime ideal. Then

$$IJ \subset P \iff (I \subset P \lor J \subset P)$$

Example. $\langle 5, 1+3\sqrt{-6} \rangle \subset \mathbb{Z}[\sqrt{-6}]$ is prime: define $\varphi : \mathbb{Z}[\sqrt{-6}] \to \mathbb{F}_5$, $\varphi(a+b\sqrt{-6}) = a-2b$. φ is surjective homomorphism. Also, $5, 1+3\sqrt{-6} \in \ker(\varphi)$, and

$$\begin{aligned} a+b\sqrt{-6} \in \ker(\varphi) &\Longrightarrow b \equiv 3a \operatorname{mod} 5 \\ &\Longrightarrow (a+b\sqrt{-6}) - a(1+3\sqrt{-6}) = (b-3a)\sqrt{-6} \in \langle 5 \rangle \end{aligned}$$

so $\ker(\varphi) = (5, 1 + 3\sqrt{-6})$. So by first isomorphism theorem, $R/\langle 5, 1 + \sqrt{-6} \rangle \cong \mathbb{F}_5$ which is field, so $\langle 5, 3 + \sqrt{-6} \rangle$ is maximal, so prime.

Definition. Let K number field, $R = \mathcal{O}_K$. Fractional ideal of R is subset of K of the form

$$\lambda I = \{\lambda x : x \in I\}$$

where $\langle 0 \rangle \neq I \subseteq R$ and $\lambda \in K^{\times}$. If I = R, λI is **principal fractional ideal**. Set of fractional ideals in R is denoted $\mathcal{I}(R)$, set of principal fractional ideals is denoted $\mathcal{P}(R)$. Multiplication of fractional ideals is defined similarly to that of ideals.

Example.

- $\frac{n}{m}\mathbb{Z}$ is fractional ideal in \mathbb{Q} for all $m, n \in \mathbb{Z} \{0\}$.
- Every non-zero ideal is fractional ideal (take $\lambda = 1$).

• If λI is fractional ideal, then $\lambda^{-1}\lambda I = I$ is ideal.

Definition. A fractional ideal A is **invertible** if there is fractional ideal B such that $AB = \mathcal{O}_K$. B is the **inverse** of A. The invertible fractional ideals form a group.

Example. In $\mathbb{Z}[\sqrt{-6}] = \mathcal{O}_K$, $\langle 5, 1 + 3\sqrt{-6} \rangle \langle 5, 1 - 3\sqrt{-6} \rangle = \langle 5 \rangle$ so

$$\langle 5, 1 + 3\sqrt{-6} \rangle \cdot \frac{1}{5} \langle 5, 1 - 3\sqrt{-6} \rangle = \mathcal{O}_K$$

so inverse of $\langle 5, 1 + 3\sqrt{-6} \rangle$ is $\frac{1}{5}\langle 5, 1 - 3\sqrt{-6} \rangle$.

6.1. The norm of an ideal

Definition. Let $\langle 0 \rangle \neq I$ ideal of \mathcal{O}_K . Norm of I is

$$N(I) \coloneqq |\mathcal{O}_K/I|$$

We have $N(I) \in \mathbb{N}, N(R) = 1$, and $I \subsetneq J \Longrightarrow N(I) > N(J)$ (in fact, $N(I) = N(J) \ |J/I|$).

Proposition. Every non-zero prime ideal in \mathcal{O}_K is maximal.

Lemma. Every nonzero ideal in \mathcal{O}_K contains product of one or more non-zero prime ideals.

Proof. Consider I for which statement does not hold, with N(I) minimal, then there are $b, b' \notin I$ but $bb' \in I$.

6.2. Ideals are invertible

Theorem. Every non-zero prime ideal in \mathcal{O}_K is invertible.

Proof

- Define $A = \{x \in K : xP \subseteq \mathcal{O}_K\}$, show A is fractional ideal and $R \subseteq A$
- Show $A \neq \mathcal{O}_K$:
 - Choose $0 \neq \alpha \in P$, choose prime ideals such that $P_1 \cdots P_t \subseteq (\alpha)$ and t is minimal.

- Choose $\beta \in P_2 \cdots P_t$ and $\beta \notin (\alpha)$, show that $\frac{\beta}{\alpha} \in A R$.
- Show that $P \neq AP$, using Theorem 4.6.
- Use fact that P is maximal to conclude AP = R.

Lemma. If λI is fractional ideal and $\lambda I \subseteq \mathcal{O}_K$, then λI is ideal in \mathcal{O}_K .

Lemma. Let $J \subseteq I$ ideals in \mathcal{O}_K with I invertible. Then

- $I^{-1}J$ is ideal in \mathcal{O}_K and so $I \mid J$.
- $J \subseteq I^{-1}J$ with equality iff I = R.

Theorem. Let $I \subseteq \mathcal{O}_K$ be non-zero ideal. Then I is unique (up to reordering) product of prime ideals.

 $\begin{array}{l} \textbf{Example}. \ \ \text{In} \ \mathbb{Z}[\sqrt{-6}], \ (1+3\sqrt{-6})(1-3\sqrt{-6}) = 55 = 5 \cdot 11. \ P_5 = \langle 5, 1+3\sqrt{-6} \rangle \ \text{and} \\ \overline{P_5} = \langle 5, 1-3\sqrt{-6} \rangle \ \text{are prime, as are} \ P_{11} = \langle 11, 1+3\sqrt{-6} \rangle \ \text{and} \ \overline{P_{11}} = \langle 11, 1-\sqrt{-6} \rangle. \\ P_5\overline{P_5} = \langle 5 \rangle, \ P_{11}\overline{P_{11}} = \langle 11 \rangle, \ P_5P_{11} = \langle 1+3\sqrt{-6} \rangle, \ \overline{P_5} \ \overline{P_{11}} = \langle 1-3\sqrt{-6} \rangle \ \text{so} \end{array}$

$$(P_5P_{11})(\overline{P_5}\ \overline{P_{11}}) = (P_5\overline{P_5})(P_{11}\overline{P_{11}})$$

Corollary. Let $R = \mathcal{O}_K$.

- Every fractional ideal (and hence every nonzero ideal) in R is invertible.
- $\mathcal{I}(R)$ is abelian group under multiplication, with identity element R.

Corollary (to divide is to contain and to contain is to divide). $I \mid J \iff J \subseteq I$.

7. Splitting of primes and the Kummer-Dedekind theorem

7.1. Properties of the ideal norm

Lemma. For every non-zero ideal I of \mathcal{O}_K , $N(I) \in I$, hence $I \cap \mathbb{Z} \neq \langle 0 \rangle$.

Notation. For $0 \neq \alpha \in \mathcal{O}_K$, define $N(\alpha) := N(\langle \alpha \rangle_{\mathcal{O}_K})$.

Lemma. $\forall 0 \neq \alpha \in \mathcal{O}_K$, $N(\alpha) = |N_K(\alpha)|$.

Lemma. Ideal norm is multiplicative: for any non-zero ideals I, J in \mathcal{O}_K ,

$$N(IJ)=N(I)N(J)$$

Proof.

- Clear when I or J is \mathcal{O}_K so assume both are proper.
- Sufficient to show for when *J* is prime (why?)
- Use that $N(IP) = |R/(IP)| = |R/I| \cdot |I/(IP)|$.
- Show that |I/(IP)| = |R/P|:
 - Show I/(IP) is one-dimensional vector space over R/P:
 - Show $I \neq IP$ and choose $x \in I (IP)$.
 - Show (x, IP) = I using unique factorisation.

7.2. The Kummer-Dedekind theorem

Definition. If $p \in \mathbb{Z}$ prime, and $\langle p \rangle_{O_K} = P_1^{e_1} \cdots P_r^{e_r}$ then $P_1, ..., P_r$ are the prime ideals **lying above** p.

Remark. If $P \subset \mathcal{O}_K$ nonzero prime ideal, then $N(P) \in P \cap \mathbb{Z}$ so $P \cap \mathbb{Z} \neq \langle 0 \rangle$. But $P \cap \mathbb{Z}$ is prime ideal of \mathbb{Z} so $P \cap \mathbb{Z} = \langle p \rangle_{\mathbb{Z}}$ for some prime $p \in \mathbb{Z}$. Hence $p \in P$, $\langle p \rangle_{\mathcal{O}_K} \subseteq P$ so $P \mid \langle p \rangle_{\mathcal{O}_K}$. Hence every P lies over some prime p.

Lemma. Prime ideal P of \mathcal{O}_K lies above p iff $N(P) = p^r$ for some $1 \le r \le n = [K : \mathbb{Q}]$.

Proof. For "if" direction, use that $N(I) \in I$.

Theorem (Kummer Dedekind). Let p prime. Suppose $\mathcal{O}_K = \mathbb{Z}[\theta]$ for some $\theta \in \mathcal{O}_K$ with minimal polynomial p_{θ} . Let $\overline{f}(x)$ be reduction of $f(x) \in \mathbb{Z}[x] \mod p$, so $\overline{f}(x) \in \mathbb{F}_p[x]$. Let

$$\overline{p_{\theta}}(x) = \overline{f_1}(x)^{e_1} \cdots \overline{f_r}(x)^{e_r}$$

16

be factorisation of $\overline{p_{\theta}}$ where $\overline{f_i}$ are distinct, monic, irreducible. For each i, let $f_i(x) \in \mathbb{Z}[x]$ be monic polynomial whose reduction mod p is $\overline{f_i}(x)$. Let $P_i = (p, f_i(\theta))_{\mathcal{O}_K}$. Then P_i are distinct prime ideals, $N(P_i) = p^{\deg(f_i)}$ and

$$\left\langle p\right\rangle _{\mathcal{O}_{K}}=P_{1}^{e_{1}}\cdots P_{r}^{e_{r}}$$

Proof.

• Let $\varphi : \mathbb{Z}[x] \to \mathcal{O}_K/P_i$ be composition of evaluation map $\mathbb{Z}[x] \to \mathcal{O}_K$, $g(x) \mapsto g(\theta)$, and canonical map $\mathcal{O}_K \to \mathcal{O}_K/P_i$. Show that

$$\mathbb{Z}[x]/\langle p_{\theta}(x), p, f_i(x)\rangle \cong \mathcal{O}_K/P_i$$

- Deduce another isomorphism given by reduction mod p map $g(x) + \langle p_{\theta}(x), p, f_i(x) \rangle \mapsto \overline{g}(x) + \langle \overline{p_{\theta}}(x), \overline{f_i}(x) \rangle$.
- To show P_i prime, deduce that $\mathcal{O}_K/P_i \cong \mathbb{F}_p[x]/\langle \overline{f_i}(x) \rangle$.
- Deduce that $N(P_i) = p^{\deg(f_i)}$.
- $\text{ Use that } P_1^{e_1}\cdots P_r^{e_r}\subseteq \langle p,f_1(\theta)^{e_1}\cdots f_r(\theta)^{e_r}\rangle \text{ and } f_1(\theta)^{e_1}\cdots f_r(\theta)^{e_r}\equiv p_\theta(\theta) \operatorname{mod} p \text{ and } N\big(P_1^{e_1}\cdots P_r^{e_r}\big)=N(p) \text{ to show } P_1^{e_1}\cdots P_r^{e_r}=\langle p\rangle_{\mathcal{O}_K}.$

Example. Let $K=\mathbb{Q}(\sqrt{6})$, so $\mathcal{O}_K=\mathbb{Z}[\sqrt{6}]$. $p_{\theta}(x)=x^2-6$ factorises modulo small primes as:

$$\begin{split} \overline{x^2-6} &= x^2 & \text{in } \mathbb{F}_2[x] \\ \overline{x^2-6} &= x^2 & \text{in } \mathbb{F}_3[x] \\ \overline{x^2-6} &= x^2-1 = (x-1)(x+1) & \text{in } \mathbb{F}_5[x] \\ \overline{x^2-6} & \text{irreducible} & \text{in } \mathbb{F}_7[x] \\ \hline \overline{x^2-6} & \text{irreducible} & \text{in } \mathbb{F}_{11}[x] \end{split}$$

Since 6 is not square mod 7 or 11. By Kummer-Dedekind,

$$\begin{split} \left<2\right>_{\mathcal{O}_K} &= \left<2,\sqrt{6}\right>^2, \quad \left<3\right>_{\mathcal{O}_K} = \left<3,\sqrt{6}\right>^2, \\ \left<5\right>_{\mathcal{O}_K} &= \left<5,\sqrt{6}+1\right>\left<5,\sqrt{6}-1\right>, \\ \left<7\right>_{\mathcal{O}_K} &= \left<7,\sqrt{6}^2-6\right> = \left<7,0\right> = \left<7\right>, \\ \left<11\right>_{\mathcal{O}_K} &= \left<11,\sqrt{6}^2-6\right> = \left<11,0\right> = \left<11\right> \end{split}$$

Definition. When K is quadratic, Kummer-Dedekind implies there are 3 mutually exclusive possibilities for prime $p \in \mathbb{Z}$:

- If $\left\langle p\right\rangle _{\mathcal{O}_{K}}$ is prime ideal, p is $\mathbf{inert}.$
- If $\langle p \rangle_{\mathcal{O}_K} = P^2$ for prime ideal P, then p ramifies (or is ramified) (otherwise, it is unramified).
- If $\langle p \rangle_{\mathcal{O}_{\mathcal{F}}} = P_1 P_2$ for distinct prime ideals P_1, P_2 , then p splits (or is split).

Remark. If K/\mathbb{Q} is quadratic, $K = \mathbb{Q}(\sqrt{d})$, then Kummer-Dedekind always applies since $R = \mathbb{Z}[\theta]$ for some $\theta \in K$.

Notation. Let K quadratic extension. If $I \subseteq \mathcal{O}_K$ ideal, let $\overline{I} = \{\overline{x} : x \in I\}$ where $a + b\sqrt{d} = a - b\sqrt{d}$. We have I prime iff \overline{I} prime and $N(\overline{I}) = N(I)$.

Lemma. Let K quadratic number field, $p \in \mathbb{Z}$ prime, P non-zero prime ideal in \mathcal{O}_K lying above p. Then \overline{P} is prime ideal lying above p and:

- If p inert, then $P = \overline{P}$ and $N(P) = p^2$.
- If p ramifies, then $P = \overline{P}$ and N(P) = p.
- If p splits, then $\langle p \rangle_{\mathcal{O}_{\mathbb{R}}} = P\overline{P}, P \neq \overline{P} \text{ and } N(P) = N(\overline{P}) = p.$

In all cases, $P\overline{P} = \langle N(P) \rangle_{\mathcal{O}_K}$.

Example. Let $\theta^3 + 3\theta - 1 = 0$, $K = \mathbb{Q}(\theta)$. We have $\mathcal{O}_K = \mathbb{Z}[\theta]$. To factorise $\langle 5 \rangle_{\mathcal{O}_K}$ and $\langle 11 \rangle_{\mathcal{O}_K}$: -1 and 2 are roots of $x^3 + 3x - 1 \mod 5$, so we get $x^3 + 3x - 1 \equiv (x+1)(x+2)^2 \mod 5$. So by Kummer-Dedekind,

$$\langle 5 \rangle_{\mathcal{O}_{\mathcal{K}}} = \langle 5, \theta + 1 \rangle \langle 5, \theta + 2 \rangle^2$$

Only root in $\overline{p_{\theta}}$ in \mathbb{F}_{11} is -4, so $\overline{p_{\theta}}(x) = (x+4)(x^2-4x+8) \mod 11$ and $x^2-4x+8 = (x-2)^2+4$ is irreducible as -4 is not square mod 11. So by Kummer-Dedekind,

$$\langle 11 \rangle_{\mathcal{O}_{\mathcal{V}}} = \langle 11, \theta + 4 \rangle \langle 11, \theta^2 - 4\theta + 8 \rangle$$

To factorise $\langle 2\theta - 3 \rangle_{\mathcal{O}_{\mathcal{V}}}$:

$$N_K(2\theta-3) = -N_K(2)N_K\bigg(\frac{3}{2}-\theta\bigg) = -8\cdot p_\theta\bigg(\frac{3}{2}\bigg) = -8\bigg(\frac{27}{8}+\frac{9}{2}-1\bigg) = -55$$

So $\langle 2\theta - 3 \rangle = P_5 P_{11}$ where $N(P_5) = 5$, $N(P_{11}) = 11$, P_5 , P_{11} prime. So $P_5 \mid \langle 5 \rangle$, so $P_5 = \langle 5, \theta + 1 \rangle$ or $\langle 5, \theta + 2 \rangle$. Now $2\theta - 3 = 2(\theta + 1) - 5 \in \langle 5, \theta + 1 \rangle$, so $\langle 5, \theta + 1 \rangle \mid \langle 2\theta - 3 \rangle$, hence $P_5 = \langle 5, \theta + 1 \rangle$. Now $P_{11} \mid \langle 11 \rangle$ so $P_{11} = \langle 11, \theta + 4 \rangle$ or $\langle 11, \theta^2 - 4\theta + 8 \rangle$. But by Kummer-Dedekind, the latter has norm 11^2 which is a contradiction (since $11^2 \nmid N(\langle 2\theta - 3 \rangle) = 55$). So $P_{11} = \langle 11, \theta + 4 \rangle$.