

WE CLAIM:

1. A compound including resolved enantiomers, diastereomers, solvates and pharmaceutically acceptable salts thereof, said compound comprising Formula I:

wherein an A group is bonded to at least one of the carbons at the 5, 6, 7 or 8 position of the bicyclic ring, and the ring is substituted by up to three independent R³ groups;

X is N, CH, CF or C-CN;

R¹ is a substituted or unsubstituted, monocyclic or bicyclic, aryl or heteroaryl moiety;

R² is H or a substituted or unsubstituted C₁₋₈ alkyl;

R³ is hydrogen, halogen, cyano, nitro, C_{1-C₁₀} alkyl, C_{2-C₁₀} alkenyl, C_{2-C₁₀} alkynyl, C_{3-C₁₀} cycloalkyl, C_{3-C₁₀} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -NR⁴SO₂R⁵, -SO₂NR⁶R⁴, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶, -NR⁴C(O)OR⁵, -NR⁴C(O)R⁶, -C(O)NR⁴R⁶, -NR⁴R⁶, -NR⁴C(O)NR⁴R⁶, -OR⁶, -S(O)R⁵, -SO₂R⁵, where each of the above alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl portion of R³ is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR⁴SO₂R⁵, -SO₂NR⁶R⁴, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶, -NR⁴C(O)OR⁵, -NR⁴C(O)CR⁶, -C(O)NR⁴R⁶, -NR⁴R⁶, -NR⁴C(O)NR⁴R⁶, -NR⁴C(NCN)NR⁴R⁶, -OR⁶, -S(O)R⁵, -SO₂R⁵, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

A is Q or -(U)_nZ, where

n is 0 or 1, and U is C₁-C₄ alkyl, C₂-C₄ alkenyl or C₂-C₄ alkynyl; where each alkyl, alkenyl or alkynyl is optionally substituted with up to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR⁴SO₂R⁵, -SO₂NR⁶R⁴, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶, -NR⁴C(O)OR⁵, -NR⁴C(O)CR⁶, -C(O)NR⁴R⁶, -NR⁴R⁶, -NR⁴C(O)NR⁴R⁶, -NR⁴C(NCN)NR⁴R⁶, -OR⁶, -S(O)R⁵, -SO₂R⁵, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

where W, V and Y are selected independently from CR⁷R⁸, CR⁸R⁹, O, NR⁶, S, SO, SO₂, provided

if W is O, NR⁶, S, SO, SO₂, then V is CR⁸R⁹,

if V is O, NR⁶, S, SO, SO₂, then W and Y are each CR⁸R⁹, and

if Y is O, NR⁶, S, SO, SO₂, then V is CR⁸R⁹;

Z includes one or more R⁸ or R⁹ groups, wherein said R⁸ and R⁹ groups may be bonded to the same or different atoms;

R⁴ is H or C₁₋₆ alkyl;

R⁵ is trifluoromethyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl and heterocyclylalkyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR⁶,

NR^4R^6 , trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

R^6 , R^8 and R^9 are independently selected from hydrogen, trifluoromethyl, $\text{C}_1\text{-C}_{10}$ alkyl, $(\text{CH}_2)_{0-4}\text{C}_3\text{-C}_{10}$ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR^6 , NR^6R^8 , trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided if R^6 is directly bonded to Z , then R^6 is not hydrogen;

R^7 is hydrogen, halogen, cyano, nitro, $\text{C}_1\text{-C}_{10}$ alkyl, $\text{C}_2\text{-C}_{10}$ alkenyl, $\text{C}_2\text{-C}_{10}$ alkynyl, $\text{C}_3\text{-C}_{10}$ cycloalkyl, $\text{C}_3\text{-C}_{10}$ cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, $-\text{NR}^4\text{SO}_2\text{R}^5$, $-\text{SO}_2\text{NR}^6\text{R}^4$, $-\text{C}(\text{O})\text{R}^6$, $-\text{C}(\text{O})\text{OR}^6$, $-\text{OC}(\text{O})\text{R}^6$, $-\text{NR}^4\text{C}(\text{O})\text{OR}^5$, $-\text{NR}^4\text{C}(\text{O})\text{R}^6$, $-\text{C}(\text{O})\text{NR}^4\text{R}^6$, $-\text{NR}^4\text{R}^6$, $-\text{NR}^4\text{C}(\text{O})\text{NR}^4\text{R}^6$, $-\text{OR}^6$, $-\text{S}(\text{O})\text{R}^5$, $-\text{SO}_2\text{R}^5$, where each of the above alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl portion of R^3 is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, $-\text{NR}^4\text{SO}_2\text{R}^5$, $-\text{SO}_2\text{NR}^6\text{R}^4$, $-\text{C}(\text{O})\text{R}^6$, $-\text{C}(\text{O})\text{OR}^6$, $-\text{OC}(\text{O})\text{R}^6$, $-\text{NR}^4\text{C}(\text{O})\text{OR}^5$, $-\text{NR}^4\text{C}(\text{O})\text{CR}^6$, $-\text{C}(\text{O})\text{NR}^4\text{R}^6$, $-\text{NR}^4\text{R}^6$, $-\text{NR}^4\text{C}(\text{O})\text{NR}^4\text{R}^6$, $-\text{NR}^4\text{C}(\text{NCN})\text{NR}^4\text{R}^6$, $-\text{OR}^6$, $-\text{S}(\text{O})\text{R}^5$, $-\text{SO}_2\text{R}^5$, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

an R^4 group and an R^6 group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO_2 and NR^6 where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR^8 , NR^6R^8 , heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R^6 group and an R^8 group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO_2 and NR^6 where each ring carbon may be

optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R⁷ group and an R⁸ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms; and

an R⁸ group and an R⁹ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

2. The compound of claim 1, wherein R² is a C₁₋₈ alkyl having a terminal carbon atom bound to one of the ring atoms of R¹.
3. The compound of claim 1, wherein an A group is bonded to at least one of the carbons at the 6 or 7 position of the bicyclic ring.
4. The compound of claim 1, wherein R² is hydrogen, R³ is hydrogen or OR⁶, and X is N or C-CN.
5. The compound of claim 3, wherein R³ is hydrogen or OR⁶, n is 0, and X is N or C-CN.
6. The compound of claim 1, wherein R² is hydrogen.

7. The compound of claim 1, wherein Z is CR^8R^9 , W is O and X is

8. The compound of claim 5, wherein Z is CR^8R^9 , W is O and X is

9. The compound of claim 1, wherein the R^4 group and the R^6 group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO_2 and NR^6 where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR^8 , NR^6R^8 , heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

10. The compound of claim 1, wherein the R^6 group and the R^8 group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO_2 and NR^6 where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR^8 , NR^6R^8 , heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

11. The compound of claim 1, wherein the R^7 group and the R^8 group are independently joined to complete a 3 to 10 membered cyclic ring optionally

containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms

12. The compound of claim 1, wherein the R⁸ group and the R⁹ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

13. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 1 to said mammal.

14. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 2 to said mammal.

15. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 3 to said mammal.

16. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 4 to said mammal.

17. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 5 to said mammal.

18. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 6 to said mammal.
19. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 7 to said mammal.
20. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 8 to said mammal.
21. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 9 to said mammal.
22. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 10 to said mammal.
23. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 11 to said mammal.
24. A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 12 to said mammal.