Intrusion Detection Computer Security Peter Reiher May 10, 2016

Lecture 11 Page

Outline

- Introduction
- Characteristics of intrusion detection systems
- Some sample intrusion detection systems

Lecture 11 Page

Introduction

- Many mechanisms exist for protecting systems from intruders
 - Access control, firewalls, authentication, etc.
- They all have one common characteristic:

-They don't always work

Intrusion Detection

- Work from the assumption that sooner or later your security measures will fail
- Try to detect the improper behavior of the intruder who has defeated your security
- Inform the system or system administrators to take action

Why Intrusion Detection?

- If we can detect bad things, can't we simply prevent them?
- Possibly not:
 - May be too expensive
 - May involve many separate operations
 - May involve things we didn't foresee

For Example,

- Your intrusion detection system regards setting uid on root executables as suspicious
 - Yet the system must allow the system administrator to do so
- If the system detects several such events, it becomes suspicious
 - And reports the problem

Couldn't the System Just Have Stopped This?

- Perhaps, but -
- The real problem was that someone got root access
 - The changing of setuid bits was just a symptom
- And under some circumstances the behavior is legitimate

Intrusions

- "any set of actions that attempt to compromise the integrity, confidentiality, or availability of a resource"
- Which covers a lot of ground
 - Implying they're hard to stop

¹Heady, Luger, Maccabe, and Servilla, "The Architecture of a Network Level Intrusion Detection System," Tech Report, U. of New Mexico, 1990.

Kinds of Intrusions

- External intrusions
- Internal intrusions

Lecture 11 Page

External Intrusions

- What most people think of
- An unauthorized (usually remote) user trying to illicitly access your system
- Using various security vulnerabilities to break in
- The typical case of a hacker attack

Internal Intrusions

- An authorized user trying to gain privileges beyond those he should have
- Used to be most common case
- No longer the majority of problems
 - But often the most serious ones
- More dangerous, because insiders have a foothold and know more

Information From 2010 Verizon Report¹

- Combines Verizon data with US Secret Service data
- Indicates external breaches still most common
- But insider attack components in 48% of all cases
 - Some involved both insiders and outsiders

¹ http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf

Lecture 11 Page

Basics of Intrusion Detection

- Watch what's going on in the system
- Try to detect behavior that characterizes intruders
- While avoiding improper detection of legitimate access
- At a reasonable cost

Intrusion Detection and Logging

- A natural match
- The intrusion detection system examines the log
 - Which is being kept, anyway
- Secondary benefits of using the intrusion detection system to reduce the log

On-Line Vs. Off-Line Intrusion Detection

- Intrusion detection mechanisms can be complicated and heavy-weight
- Perhaps better to run them off-line
 - E.g., at nighttime
- Disadvantage is that you don't catch intrusions as they happen

Failures In Intrusion Detection

- False positives
 - Legitimate activity identified as an intrusion
- False negatives
 An intrusion not noticed
- Subversion errors
 - Attacks on the intrusion detection system

Desired Characteristics in Intrusion Detection

- Continuously running
- Fault tolerant
- Subversion resistant
- Minimal overhead
- Must observe deviations
- Easily tailorable
- Evolving
- Difficult to fool

Host Intrusion Detection

- Run the intrusion detection system on a single computer
- Look for problems only on that computer
- Often by examining the logs of the computer

Advantages of the Host Approach

- Lots of information to work with
- Only need to deal with problems on one machine
- Can get information in readily understandable form

Network Intrusion Detection

- Do the same for a local (or wide) area network
- Either by using distributed systems techniques
- Or (more commonly) by sniffing network traffic

Advantages of Network Approach

- Need not use up any resources on users' machines
- Easier to properly configure for large installations
- Can observe things affecting multiple machines

Network Intrusion Detection and Data Volume

- Lots of information passes on the network
- If you grab it all, you will produce vast amounts of data
- Which will require vast amounts of time to process

Network Intrusion Detection and Sensors

- Use programs called *sensors* to grab only relevant data
- Sensors quickly examine network traffic
 - Record the relevant stuff
 - Discard the rest
- If you design sensors right, greatly reduces the problem of data volume

Wireless IDS

- Observe behavior of wireless network
 - Generally 802.11
- Look for problems specific to that environment
 - E.g., attempts to crack WEP keys
- Usually doesn't understand higher network protocol layers
 - And attacks on them

Application-Specific IDS

- An IDS system tuned to one application or protocol
 - -E.g., SQL
- Can be either host or network
- Typically used for machines with specialized functions
 - Web servers, database servers, etc.
- Possibly much lower overheads than general IDS systems

Styles of Intrusion Detection

- Misuse intrusion detection
 - Try to detect things known to be bad
- Anomaly intrusion detection
 - Try to detect deviations from normal behavior
- Specification intrusion detection
 - Try to detect deviations from defined "good states"

Misuse Detection

- Determine what actions are undesirable
- Watch for those to occur
- Signal an alert when they happen
- Often referred to as signature detection

Level of Misuse Detection

- Could look for specific attacks
 - −E.g., SYN floods or IP spoofing
- But that only detects already-known attacks
- Better to also look for known suspicious behavior
 - Like trying to become root
 - Or changing file permissions

How Is Misuse Detected?

- By examining logs
 - Only works after the fact
- By monitoring system activities
 - Often hard to trap what you need to see
- By scanning the state of the system
 - Can't trap actions that don't leave traces
- By sniffing the network
 - For network intrusion detection systems

Pluses and Minuses of Misuse Detection

- + Few false positives
- + Simple technology
- + Hard to fool
 - At least about things it knows about
- Only detects known problems
- Gradually becomes less useful if not updated
- Sometimes signatures are hard to generate

Lecture 11 Page

Misuse Detection and Commercial Systems

- Essentially all commercial intrusion detection systems primarily detect misuse
 Generally using signatures of attacks
- Many of these systems are very similar
 - Differing only in details
- Differentiated primarily by quality of their signature library
 - How large, how quickly updated

Anomaly Detection

- Misuse detection can only detect known problems
- And many potential misuses can also be perfectly legitimate
- Anomaly detection instead builds a model of valid behavior
 - And watches for deviations

Methods of Anomaly Detection

- Statistical models
 - User behavior
 - Program behavior
 - Overall system/network behavior
- Expert systems
- Pattern matching of various sorts
- Misuse detection and anomaly detection sometimes blur together

Pluses and Minuses of Anomaly Detection

- + Can detect previously unknown attacks
- + Not deceived by trivial changes in attack
- Hard to identify and diagnose nature of attacks
- Unless careful, may be prone to many false positives
- Depending on method, can be expensive and complex

Anomaly Detection and Academic Systems

- Most academic research on IDS in this area
 - More interesting problems
 - Greater promise for the future
 - Increasingly, misuse detection seems inadequate
- But few really effective systems currently use it
 - Not entirely clear that will ever change
 - What if it doesn't?

Specification Detection

- Define some set of states of the system as good
- Detect when the system is in a different state
- Signal a problem if it is

How Does This Differ From Misuse and Anomaly Detection?

- Misuse detection says that certain things are bad
- Anomaly detection says deviations from statistically normal behavior are bad
- Specification detection defines exactly what is good and calls the rest bad

Some Challenges

- How much state do you have to look at?
 - Typically dealt with by limiting observation to state relevant to security
 - Easy to underestimate that . . .
- How do you specify a good state?
- How often do you look?
 - Might miss attacks that transiently change the state

Protocol Anomaly Detection

- Really a form of specification intrusion detection
- Based on precise definitions of network protocols
- Can easily detect deviations
- Incorporated into some commercial systems
 - E.g., Snort and Checkpoint

Pluses and Minuses of Specification Detection

- + Allows formalization of what you're looking for
- + Limits where you need to look
- + Can detect unknown attacks
 - Only effective when one can specify correct state
 - Based on locating right states to examine
 - Maybe attackers can do what they want without changing from a "good" state

Customizing and Evolving Intrusion Detection

- A static, globally useful intrusion detection solution is impossible
 - Good behavior on one system is bad behavior on another
 - Behaviors change and new vulnerabilities are discovered
- Intrusion detection systems must change to meet needs

How Do Intrusion Detection Systems Evolve?

- Manually or semi-automatically
 - New information added that allows them to detect new kinds of attacks
- Automatically
 - Deduce new problems or things to watch for without human intervention

A Problem With Manually Evolving Systems

- System/network administrator action is required for each change
 - To be really effective, not just manual installation
 - More customized to the environment
- Too heavy a burden to change very often
- So they change slowly, akin to software updates

A Problem With Evolving Intrusion Detection Systems

- Very clever intruders can use the evolution against them
- Instead of immediately performing dangerous actions, evolve towards them
- If the intruder is more clever than the system, the system gradually accepts the new behavior
- Possible with manual changing systems, but harder for attackers to succeed

Intrusion Detection Tuning

- Generally, there's a tradeoff between false positives and false negatives
- You can tune the system to decrease one
 - Usually at cost of increasing the other
- Choice depends on one's situation

Practicalities of Operation

- Most commercial intrusion detection systems are add-ons
 - They run as normal applications
- They must make use of readily available information
 - Audit logged information
 - Sniffed packets
 - Output of systems calls they make
- And performance is very important

Practicalities of Audit Logs for IDS

- Operating systems only log certain stuff
- They don't necessarily log what an intrusion detection system really needs
- They produce large amounts of data
 - Expensive to process
 - Expensive to store
- If attack was successful, logs may be corrupted

What Does an IDS Do When It Detects an Attack?

- Automated response
 - Shut down the "attacker"
 - Or more carefully protect the attacked service
- Alarms
 - Notify a system administrator
 - Often via special console
 - Who investigates and takes action
- Logging
 - Just keep record for later investigation

Consequences of the Choices

- Automated
 - Too many false positives and your network stops working
 - Is the automated response effective?
- Alarm
 - Too many false positives and your administrator ignores them
 - Is the administrator able to determine what's going on fast enough?
- Logging
 - Doesn't necessarily lead to any action

How Good Does an IDS Have To Be?

- Depends on what you're using it for
- Like biometric authentication, need to trade off false positives/false negatives
- Each positive signal (real or false) should cause something to happen
 - What's the consequence?

False Positives and IDS Systems

- For automated response, what happens?
- Something gets shut off that shouldn't be
 - May be a lot of work to turn it on again
- For manual response, what happens?
- Either a human investigates and dismisses it
- Or nothing happens
- If human looks at it, can take a lot of his time

Consider a Case for Manual Response

- Your web site gets 10 million packets per day
- Your IDS has a FPR of .1% on packets
 - So you get 10,000 false positives/day
- Say each one takes one minute to handle
- That's 166 man hours per day
 - You'll need 20+ full time experts just to weed out false positives

What Are Your Choices?

on a system that has high volume, this is problematic • Tune to a lower FPR tune to a lower false positive rate: cause you to have

- Usually causing more false negatives
- If too many of those, system is useless
- Have triage system for signals filter out many of the signals to

automatic system - take system to filter out the false positives

- If first step is still human, still expensive
- Maybe you can automate some of it?
- Ignore your IDS' signals
 - In which case, why bother with it at all?

no point in having this system

Intrusion Prevention Systems

- Essentially a buzzword for IDS that takes automatic action when intrusion is detected
- Goal is to quickly take remedial actions to threats
- Since IPSs are automated, false positives could be very, very bad
- "Poor man's" version is IDS controlling a firewall

automatically take an action, compared to IDS usually, you have IDS that tells firewall to close certain things

Sample Intrusion Detection Systems

- Snort
- Bro
- RealSecure ISS

Lecture 11 Page Look at packet coming in, and seeing how what it does.

Snort

- Network intrusion detection system
- Public domain
 - Designed for Linux
 - But also runs on Windows and Mac
- Designed for high extensibility
 - Allows easy plug-ins for detection
 - And rule-based description of good & bad traffic
- Very widely used

Bro

- Like Snort, public domain network based IDS
- Developed at LBL_{Text}
- Includes more sophisticated nonsignature methods than Snort
- More general and extensible than Snort
- Maybe not as easy to use

RealSecure ISS

- Commercial IDS
- Bundled into IBM security products
- Distributed client/server architecture
 - Incorporates network and host components
- Other components report to server on dedicated machine

this is for protecting an entire machine.

Is Intrusion Detection Useful?

- 69% of CIS survey respondents (2008) use one
 - 54% use intrusion prevention
- In 2003, Gartner Group analyst called IDS a failed technology
 - Predicted its death by 2005
 - They're not dead yet
- Signature-based IDS especially criticized

Text

Which Type of Intrusion Detection System Should I Use?

- NIST report¹ recommends using multiple IDSs not only run once, but run several
 - Preferably multiple types
 - E.g., host and network
- Each will detect different things
 - Using different data and techniques
- Good defense in depth

¹ http://csrc.nist.gov/publications/nistir/nistir-7007.pdf

Lecture 11
Page

The Future of Intrusion Detection?

Text

- General concept has never quite lived up to its promise
- Yet alternatives are clearly failing
 - We aren't keeping the bad guys out
- So research and development continues
- And most serious people use them
 - Even if they are imperfect

Conclusions

- Intrusion detection systems are helpful enough that those who care about security should use them
- They are not yet terribly sophisticated
 Which implies they aren't that effective
- Much research continues to improve them
- Not clear if they'll ever achieve what the original inventors hoped for