Logica per l'informatica Dimostrazioni inerenti alla teoria assiomatica

Andrea Malvezzi

08 ottobre 2024

Contents

1	Rifl	essività del \subseteq	
	1.1	Teorema	
	1.2	Dimostrazione	
2	Transitività del \subseteq		
	2.1	Teorema	
	2.2	Dimostrazione	
3	$\textbf{Anti-simmetria del} \subseteq$		
	3.1	Teorema	
	3.2	Dimostrazione	
4	Il vuoto è sottoinsieme di qualunque cosa		
	4.1	Teorema	
	4.2	Dimostrazione	
5	L'intersezione con il vuoto è il vuoto		
	5.1	Teorema	
		Dimostrazione	
6	L'unico sottoinsieme del vuoto è il vuoto		
	6.1	Teorema	
		Dimostrazione	

1 Riflessività del \subseteq

1.1 Teorema

$$X \subseteq X \tag{1}$$

1.2 Dimostrazione

Sia X un insieme. Dobbiamo dimostrare il teorema (1), ovvero:

$$\forall Y.Y \in X \Rightarrow Y \in X.$$

Sia Y un insieme tale che Y \in X(H). Debbo dimostrare Y \in X. Ovvio per l'ipotesi H.

2 Transitività del \subseteq

2.1 Teorema

se
$$X \subseteq Y$$
 e $Y \subseteq Z$ allora $X \subseteq Z$ (2)

2.2 Dimostrazione

Siano X, Y e Z insiemi tali che $X \subseteq Y$, ovvero $\forall A, A \in X \Rightarrow A \in Y(H_1)$ e $Y \subseteq Z$, ovvero $\forall A, A \in Y \Rightarrow A \in Z(H_2)$.

Dobbiamo dimostrare $X\subseteq Z$, ovvero $\forall B,B\in X\Rightarrow B\in Z$. Sia B un insieme t.c. $B\in X(H_3)$. Da H_3 e H_1 ho $B\in Y$. Quindi per H_2 ho $B\in Z$.

3 Anti-simmetria del \subseteq

3.1 Teorema

se
$$X \subseteq Y$$
 e $Y \subseteq X$ allora $X = Y$ (3)

3.2 Dimostrazione

Siano X e Y insiemi t.c. $X \subseteq Y$, ovvero $\forall Z, Z \in X \Rightarrow Z \in X, (H_2)$. Dobbiamo dimostrare X = Y. Per l'assioma di estensionalità, è sufficiente dimostrre $\forall Z, Z \in X \Leftrightarrow Z \in Y$. Sia Z un insieme. $Z \in X \Rightarrow Z \in Y$ vale per H_1 e $Z \in Y \Rightarrow Z \in X$ vale per H_2 .

4 Il vuoto è sottoinsieme di qualunque cosa

4.1 Teorema

$$\emptyset \subseteq X \tag{4}$$

4.2 Dimostrazione

Sia X un insieme. Dobbiamo dimostrare $\emptyset \subseteq X$, ovvero $\forall Z.Z \in \emptyset \Rightarrow Z \in X$. Sia Z un insieme t.c. $Z \in \emptyset$ (H). Per l'assioma dell'insieme vuoto $Z \in \emptyset$. Quindi per H assurdo e perciò $Z \in X$.

5 L'intersezione con il vuoto è il vuoto

5.1 Teorema

$$X \cap \emptyset = \emptyset \tag{5}$$

5.2 Dimostrazione

Sia X un insieme. Dobbiamo dimostrare $X \cap \emptyset = \emptyset$.

Per il teorema dell'estensionalità passo a dimostrare che $\forall Z.Z \in X \cap \emptyset \Leftrightarrow Z \in \emptyset$. Ora, supponendo che Z sia un insieme, $Z \in \emptyset \Rightarrow Z \in X \cap \emptyset$ lo abbiamo già dimostrato in (4).

Dimostriamo quindi l'affermazione opposta, ovvero: $Z \in X \cap \emptyset \Rightarrow Z \in \emptyset$. Supponiamo $Z \in X \cap \emptyset$. Quindi, per il teorema dell'intersezione binaria, $Z \in X(H_1)$ e $Z \in \emptyset(H_2)$. Quindi $Z \in \emptyset$.

6 L'unico sottoinsieme del vuoto è il vuoto

6.1 Teorema

$$seX \subseteq \emptyset$$
 allora $X = \emptyset$ (6)

6.2 Dimostrazione

 $X\subseteq\emptyset$ significa $\forall Z,Z\in X\Rightarrow Z\in\emptyset$ (H). Dobbiamo dimostrare $X=\emptyset$. Per l'assioma di estensionalità possiamo ridurci a dimostrare $\forall Z,Z\in X\Leftrightarrow Z\in\emptyset$. Tuttavia, prendendo un insieme Z, è stato provato in precedenza (4) che $Z\in\emptyset\Rightarrow\in X$.

Inoltre $Z \in X \Rightarrow Z \in \emptyset$ vale per H.