10. XBee 命令参考表

寻址Addressing

Table 10 - 07. 寻址命令集

AT命令	名称和描述	节点支 持类型	参数范围	默认值
DH	目标地址高位。设置或者读取 64 比特目标中的高 32 比特,与 DL 一起可以定义一个完整的 64 比特教据传输地址。特殊定义,0X000000000000FFF广播地址,0X000000000000 协调器 COORDINATOR	CRE	0 - 0xFFFFFFF	0
DL	目标地址低位。设置或者读取 64 比特目标中的低 32 比特,与 DH 一起可以定义一个完整的 64 比特数据传输地址。特殊定义:0X000000000000FFFF 广播地址,0X000000000000 协调器 COORDINATOR	CRE	0 - 0xFFFFFFF	0xFFFF(Coordinator 0 (Router/End Device
MY	16 位网络地址,只读。OXFFFE 表示模块没有加入 ZIGBEE 网络	CRE	0 - 0xFFFE [只读]	0xFFFE
MP	16 位父网络地址,只读。OXFFFE 表示模块没有加入父网络	Е	0 - 0xFFFE [只读]	0xFFFE
NC	现有终端允许加入容量。返回①不允许任何设备加入	CR	0 - MAX_CHILDREN (最大可变)	只读
SH	序列号高 32 位	CRE	0 - 0xFFFFFFFF [只读]	原厂设置
SL	序列号低 32 位	CRE	0 - 0xFFFFFFFF [只读]	原厂设置
NI	节点标识,定义一个字符串定义节点(别名)。只接受可打印字符串,在 AT 命令下,不能以空格开始。 CR 结束命令。这个字符串时 ND 返回命令的一部分,也用在 ND 命令中。	CRE	20字节可打印 ASCII 字符串	ASCII 空格字符 (0x20)
DD	设备类型标识符,用来区别不同的 XBEE 设备	CRE	0 - 0xFFFFFFFF	0x30000
SE	源结束字符。设置/读取 ZIGBEE 应用层结束字符,这个字符所有传输都使用。仅支持 AT 固件,默认值 OXE8	CRE	0 - 0xFF	0xE8
DE	目标结束字符。设置读取 ZIGBEE 应用层结束字符,这个字符所有传输都使用。仅支持 AT 固件,默认值 OXEB	CRE	0 - 0xFF	0xE8
CI	族标识符。设置/读取 ZIGBEE 应用层簇 ID 值。这个字符所有传输都使用。仅支持 AT 固件,默认值 0X11	CRE	0 - 0xFFFF	0x11
NP	最大 RF 负载字节数。本值返回 RF 传输负载最大字节数 在多点到一点和源路由使用时(AR < 0xFF),或者 APS 安全使用时,字节数会减少的。注意: NP 命令返回一个 16 进制值 (例如 NP 返回 0x54,=84 字节	CRE	0 - 0xFFFF	[只读]

命令支持的节点类型: C=Coordinator, R=Router, E=End Device

Networking网络

Table 10 - 08. 网络命令集

AT命令	名称和描述	节点支 持类型	参数范围	默认值
СН	通信信道.读模块间发送和接收使用的信道,返回值0表示模块没有加入PAN网络,也不能在任何信道通信。	CRE	0, 0x0B - 0x1A (XBee) 0, 0x0B - 0x18 (XBee- PRO)	[只读]
ID	扩展的PAN ID. 设置和读取64-bit 扩展.如果设置0,协调器coordinator将会选择一个随机扩展PAN ID,路由器和终端设备将加入这个扩展PANID 。修改ID需要使用WR命令写入内部非易失内存	CRE	0- 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	0

AT命令	网络命令集 名称和描述	节点支	参数范围	默认值
		持类型	多双花园	STOCK III.
OP	使用的扩展 PAN ID. 读64-bit扩展PAN ID. OP 值反映模块使用的扩展PANID 如果OP>0,OP将等于ID	CRE	0x01 - 0xFFFFFFFFFFFFFFF	[只读]
NH	Maximum Unicast Hops.最大单播跳跃设置和读取最大跳跃限制,这个限制设置了最大广播跳跃值(BH) ,并决定了单播超时。超时计算如下: (50 * NH) + 100 ms. 默认的单播超时为1.6 秒 (NH=0x1E) 足够数据经过8个跳跃.	CRE	0 - 0xFF	0x1E
ВН	广播跳跃.设置和读取广播数据的最大跳跃数 =0 设置最大的跳跃数	CRE	0 - 0x20	0
OI	使用的 16-bit PAN ID. 读取 16-bit PAN ID. OI反映模块使用的实际 16bit PAN ID	CRE	0 - 0xFFFF	[read-only]
NT	节点搜索超时. 设置和读取节点搜索超时. 当ND命令时, 包含NT值的传输 提供给远程设备一个响应超时, 远程设备将等待一个少于NT的时间发送响应	CRE	0x20 - 0xFF [x 100 毫秒]	0x3C (60d)
NO	网络搜索操作.设置和读取网络搜索命令值bitfield 值可以根据ND网络的特性和或,接收到的ND响应参数,或者API节点识别帧进行修改选项包括: 0x01 = 增加 DD 值(到ND 响应或者API 节点识别帧) 002 = 当接收到ND命令时,本地设备发送ND响应帧	CRE	0 - 0x03 [bitfield]	0
SC	扫描信道.设置或读取扫描通道列表. Coordinator - Bit field通道列表,选择优先启动的网络. Router/End Device - Bit field 通道列表,选择加入的Coordinator/ Router 修改SC 需要使用WR 命令进行写操作以保存SC设置 Bit (Channel): 0 (0x0B) 4 (0x0F) 8 (0x13) 12 (0x17) 1 (0x0C) 5 (0x10) 9 (0x14) 13 (0x18) 2 (0x0D) 6 (0x11) 10 (0x15) 14 (0x19) 3 (0x0E) 7 (0x12) 11 (0x16) 15 (0x1A)	CRE	XBee 1 - 0xFFFF [bitfield] XBee-PRO 1 - 0x1FFE [bitfield] (bits 14, 15 不允许)	0x3FFF.
SD	扫描周期。设置和读取扫描周期. 修改SD 需要使用WR命令 Coordinator —活动周期和协调器启动使用的通道和PAN ID的能量扫描周期. Router / End Device — 每个通道的扫描周期用来定位可用的	CRE	0 - 7 [exponent]	3
ZS	ZigBee 协议栈Profile. 设置和读取ZigBee协议栈profile值。所有网络的设备需要设置一致	CRE	0-2	0
NJ	节点加入时间.设置/读取Coordinator/Router 允许节点加入的时间 可以在运行中修改而不要Coordinator or Router 重启 一旦Coordinator或Router启动,计数器启动.定时器可以上电复位或者NJ修改复位	CR	0 - 0xFF [x 1 秒]	0xFF (允许加入)
JV	信道验证。设置/读取信道验证参数. 如果 JV=1, 当router加入或者上电时验证了协调器在ROUTER的使用信道。如果没有检测到coordinator, ROUTER将离开现在使用的信道并试图加入一个新的PAN。如果JV=0, router将使用现有信道而不理会是否检测到coordinator.	R	0 - 通道验证禁止	0
JN	加入通知。设置/读取加入通知设置。如果使能,模块上电荷加入网络时将发送一个节点识别包。这个动作将使接收到发送的所有设备的Associate LED灯闪烁更大,与此同时模块将通过UART发送一个API数据包。这个特征可以被禁用在大型网络时以防止过多的数据	央 RE	0-1	0
AR	路由通知统计. 在连续路由广播消息之间设置/读取次数如果使用, AR 只能设置一个设备实现多到一路由。AR=0仅发一个广播包	CR	0 - 0xFF	0xFF

Table 10 - 08.网络命令集

AT命令	名称和描述	节点支 持类型	参数范围	默认值
AI	连接指示、读取一个关于最新节点加入请求信息: 0x00 - 成功完成 - Coordinator 已启动或Router/End Device 找到并加入父网络 0xAB - 试图加入一个没有响应的设备。 0xAC - 安全加入错误- 网络密钥接收不安全 0xAD - 安全加入错误- 网络密钥没有接收到 0xAF -安全加入错误- 加入设备没有压确的预设置连接密钥 0x21 - 扫描没有发现 PANs 0x22 - 扫描没有发现基于现有SC和ID设置的有效 PANs 0x23 - 发现有效的Coordinator或Routers,但不允许加入(NJ expired) 0x27 - 节点加入失败(典型的是由于安全设置不匹配) 0x2A - Coordinator 启动失败。 0xFF - 扫描父网络 0x2B - 检测一个存在的coordinator	CRE	0 - 0xFF [只读]	

Security

Table 10 - 09.安全命令集

AT命令	名称和描述	节点支 持类型	参数范围	默认值
EE	加密使能. 设置/读取加密使能设置.	CRE	0 – 加密禁止 1 – 加密禁止	0
ЕО	加密选项.配置家买选项.不用的比特为应设为0。选项包括: 0x01 - 加入时发送不安全的密钥 0x02 - 使用可信的中心点(仅coordinator)r	CRE	0 - 0xFF	
NK	网络加密密钥.设置128-bit AES 网络加密密钥。只写。默认为0选择一个随机的 网络密钥	С	128-bit 值	0
KY	连接密钥。设置128-bit AES 连接密钥。只写。 设置KY=0将导致对加入设备而言,coordinator发送网络密钥是透明的不受阻碍的 ,也会导致设备加入时不受阻碍的获得网络密钥	CRE	128-bit 值	0

RF Interfacing RF接口

AT命令	名称和描述	节点支 持类型	参数范围	默认值
PL	功率级别. 选择/读取RF模块传送时的功率级别	CRE	XBee (BOOST增强模式禁止) 0 = -8 dBm 1 = -4 dBm 2 = -2 dBm 3 = 0 dBm 4 = +2 dBm XBee-PRO 4 = 17 dBm XBee-PRO (International Variant) 4 = 10dBm	4
PM	功率模式,设置/读取设备的功率模式使能增强模式(boost mode)将提高接受灵敏度1dB ,同时提高发送功率2dB Note: XBee-PRO使能增强模式对输出功率没有效果. Boost 增强模式在现有的图表中强迫轻微的增加。参考section 1.2 .	CRE	0-1, 0= 增强模式禁止, 1= 增强模式使能	1
DB	接收信号强度. 这个命令报告接收信号的强度。 DB 命令仅指示最后跳跃的信号强度,对多跳跃连接不提供一个精确量化的测量值 DB可以设置0以清除. DB命令以-dBm为单位. 举例:如果DB命令返回0x50,最后接收报的RSSI为-80dBm.	CRE	0 - 0xFF 范围 XBee-PRO: 0x1A - 0x58 For XBee: 0x1A - 0x5C	

^{1.} 节电类型支持命令: C = Coordinator, R = Router, E = End Device

Serial Interfacing (I/O)串行口

Table 10 - 011.串行口命令集

Table 10 - 011.串行口命令集					
AT命令	名称和描述	节点支 持类型	参数范围	默认值	
AP	API 使能.使能API 模式. AP命令仅支持使用API 固件版本: 21xx (API coordinator), 23xx (API router), 29xx (API end device).	CRE	1-2 1 = API使能 2 = API-使能 (w/采用转义字符控制	1	
AO	API 选项. 配置API选项. 现有选项选择接收API帧类型,将接收到的RF数据包通过UART 串口发送.	CRE	0 – 默认接收API 指示使能 1 – 显式Rx data 指示API帧使能 (0x91)	0	
BD	串口速率选项. 设置/读取模块的串口通信速率 任何大于0x07值将被解释为实际的波特率。当大于0X07的值发送后 最接近的接口波特率被存储在BD寄存器中	CRE	0x80 - 0xE1000 (非标速 率高达921kbps)	3	
NB	奇偶校验.设置/读取模块的串口奇偶检验	CRE	0 = 无奇偶校验 1 =偶校验 2 =奇校验 3 = 屏蔽校验Mark parity	0	
RO	打包超时,设置/读取字符数乘以打包前字符间的沉默时间 (RO=0) 发送收到的字符串而不用缓冲到RF包 RO 命令仅支持AT固件: 20xx (AT coordinator), 22xx (AT router), 28xx (AT end device).	CRE	0 - 0xFF [x 字符时间]	3	
D7	DIO7 配置.设置/读取RF模块DIO7线的选项.	CRE	0 = 禁止 1 = CTS 流控制 3 = 数字输入 4 = 数字输出 低电平 5 = 数字输出 高电平 6 = RS-485传输使能 低电平使能 7 = RS-485 传输使能 高电平使能	1	
D6	DIO6配置.设置/读取RF模块DIO7线的选项.	CRE	0 = 禁止 1 = RTS 流控制 3 = 数字输入 4 = 数字输出,低电平 5 = 数字输出,高电平	0	

1. 节点支持类型: C = Coordinator, R = Router, E = End Device

I/O Commands IO命令

AT命令	2.I/O 命令集 名称和描述	节点支 持类型	参数和范围	默认值
IR	IO 采样速率,设置/读取IO采样速率以使能周期性采样。 一旦周期性采样使能, IR 必须设置为非 零值,同时模块至少有一个模拟AD或者数字功能管脚(参考D0-D8, P0-P2命令). 采样速率以毫秒计算.	CRE	0 - 0xFFFF (毫秒)	0
IC	IO 数字变化监测. 设置和读取数字IO管脚, 以监视IO状态变化 IC 命令与单独管脚设置命令(D0-D8, P0-P2)一起使用.如果管脚作为数字输入或者输出使能, 在DIO转态变化时, IC 命令用来强制IO采样传输 IC命令是个bit位屏蔽码, 在一个独立的通道中可以用来使能/禁止边沿检测, 不用的位必须设置为0 Bit (IO pin): 0 (DIO0)4 (DIO4)8 (DIO8) 1 (DIO1) 5 (DIO5) 9 (DIO9) 2 (DIO2) 6 (DIO6) 10 (DIO10) 3 (DIO3) 7 (DIO7) 11 (DIO11)	CRE	: 0 - 0xFFFF	0
P0	PWM0 配置. 选择/读取PWM0功能.	CRE	0 = 禁止 1 = RSSI PWM 3 - 数字输入,被监视, 4 - 数字输出, 默认低电平 5 - 数字输出, 默认高电平	1

Table 10 - 012.I/O 命令集

Table 10 - 012 AT命令	名字和描述	节点 类型	参数范围	默认值
P1	DIO11 配置. 配置RF模块的DIO11选项.	CRE	0 - 不监视数字输入3- 监视的数字输入4- 数字输出,默认低5- 数字输出,默认高	0
P2	DIO12配置. 配置RF模块的DIO12选项.	CRE	0 - 不监视数字输入 3-监视的数字输入 4-数字输出,默认低 5-数字输出,默认高	0
Р3	DIO13配置. 配置RF模块的DIO13选项. 目前不支持此命令	CRE	0,3-5 0-禁止 3-数字输入 4-数字输出,低 5-数字输出,高	
D0	AD0/DIO0配置. 选择/读取AD0/DIO0配置.	CRE	1 - 调试按键使能 2 - 模拟输入,单端 3 - 数字输入 4 - 数字输出,低 5 - 数字输出,高	1
D1	AD1/DIO1配置. 选择/读取AD1/DIO1配置.	CRE	0,2-5 0- 禁止 2- 模拟输入单端 3- 数字输入 4- 数字输出,低 5- 数字输出,高	0
D2	AD2/DIO2配置. 选择/读取AD2/DIO2配置.	CRE	0,2-5 0-禁止 2-模拟输入,单端 3-数字输入 4-数字输出低 5-数字输出高	0
D3	AD3/DIO3配置. 选择/读取AD3/DIO3配置.	CRE	0,2-5 0- 禁止 2- 模拟输入单端 3- 数字输入 4- 数字输出低 5- 数字输出高	0
D4	DIO4配置. 选择/读取DIO4配置.	CRE	0,3-5 0-禁止 3-数字输入 4-数字输出低 5-数字输出高	0
D5	DIO5配置. 配置模块的DIO5.	CRE	0 = 禁止 1 = 连接指示LED 3 = 数字输入 4 = 数字输出。默认低 5 = 数字输出。默认高	1

Table 10 - 012 I/O 命今集

Table 10 - 01 AT命令	名称和描述	节点支 持类型	参数和范围	默认值
D8	DIO8配置. 配置RF模块的DIO8选项. 目前不支持此命令 .	CRE	0,3-5 0-禁止 3-数字输入 4-数字输出低 5-数字输出高	
LT	连接LED 闪烁时间。设置/读取连接LED闪烁时间。如果连接LED的功能打开(D5) 命令,当模块加入网络后,这个值决定LED的开关闪烁时间如果LT=0,使用默认闪烁速率(500ms coordinator, 250ms router/end device) 其他值, LT时间是LT*10ms	CRE	0x14 - 0xFF (200 - 2550 ms)	0
PR	设置/读取配置IO线的内部上拉电阻状态的比特位. "1" 使能内部上拉电阻。"0" 无上拉电阻.(上拉电阻使用30k欧) 位如下:" 0 - DIO4 (Pin 11) 1 - AD3 / DIO3 (Pin 17) 2 - AD2 / DIO2 (Pin 18) 3 - AD1 / DIO1 (Pin 19) 4 - AD0 / DIO0 (Pin 20) 5 - RTS / DIO6 (Pin 16) 6 - DTR / Sleep Request / DIO8 (Pin 9) 7 - DIN / Config (Pin 3) 8 - Associate / DIO5 (Pin 15) 9 - On/Sleep / DIO9 (Pin 13) 10 - DIO12 (Pin 4) 11 - PWM0 / RSSI / DIO10 (Pin 6) 12 - PWM1 / DIO11 (Pin 7)	CRE	0 - 0x1FFF	0 - 0x1FFF
RP	RSSI PWM 定时器. RSSI信号在最后传输后输出. 当RP =0XFF,输出常开	CRE	0 - 0xFF [x 100 ms]	0x28 (40d)
СВ	调试按键. 这个命令用来在软件中模拟调试按键按下,参数值是按下按键的次数例如:发送ATCB1 执行一个调试按键按下的连接动作	CRE		
%V	供给电压. 读取VCC管脚电压. 将电压读取至除以1024然后乘上1.2 %V读到0x900 (2304十进制)表示2700mV or 2.70V.电压= (%V*1.2/1024)	R	-	-

Diagnostics

Table 10 - 013.Diagnostics Commands

AT Command	Name and Description	Node Type1	Parameter Range	Default
	固件版本. 读取模块固件版本 固件版本返回4个16进制值(2个字节)如"ABCD". 数字ABC 是主要发布版本 ,D版本号。"B"是个可变的标号			
VR	XBee和XBee-PRO ZB 模块返回: 0x2xxx versions.	CRE	0 - 0xFFFF [只读]	原厂设置
	XBee 和 XBee-PRO ZNet 模块返回: 0x1xxx versions. ZNet 固件不兼容ZB 固件			
	硬件版本. 读取模块的硬件版本. 这个命令用来区别不同的硬件平台。 高位字节返回值是模块类型,低位字节指示硬件版本号			
HV	XBee ZB 和 XBee ZNet 模块返回值(16进制): 0x19xx - XBee 模块 0x1Axx - XBee-模块	CRE	0 - 0xFFFF [只读]	原厂设置

^{1.} 节点支持类型:C = Coordinator, R = Router, E = End Device

AT Command Options

Table 10 - 014 AT 选项命令隼

Table 10 - 014.AT 选项命令集				
AT命令	名称和描述	节点支 持类型	参数和范围	默认值
СТ	命令模式超时. 设置/读取RF模块自动从AT模式返回空闲模式的周期		2 - 0x028F [x 100 ms]	0x64 (100d)
CN	退出命令模式.	CRE		
GT	警戒时间.在AT命令序列(GT+CC+GT)之前或者之后,设置需要的沉默周期 沉默周期用来防止不小心进入AT命令模式	CRE	1 - 0x0CE4 [x 1 ms] (最大3.3 秒)	0x3E8 (1000d)
СС	命令序列字符. 设置/读取使用在AT命令模式序列(GT+CC+GT)之间警戒时间的 ASCII 字符串 AT命令模式序列使模块进入AT命令模式. CC 命令仅支持AT 固件: 20xx (AT coordinator), 22xx (AT router), 28xx (AT end device).	CRE	0 - 0xFF	0x2B ('+' ASCII)

1. 节点支持类型: C = Coordinator, R = Router, E = End Device

Sleep Commands

Table 10 - 015 Sleen Commands休眠命今集

AT命令	名称和描述	节点支 持类型	参数和范围	默认值
SM	休眠模式设置RF模块的休眠模式	Е	0-禁止休眠 1-管脚休眠使能 4-周期休眠使能 5-周期休眠,管脚唤醒	0
SN	休眠周期数。如果终端设备没有RF数据时,设置将ON/SLEEP管脚置低的休眠周期 此命令在没有数据的时候,允许主机应用休眠一个扩展的时间,即多个休眠周期		1 - 0xFFFF	1
SP	休眠周期. 这个值决定多长时间终端设备将会休眠,高达28秒 (休眠时间可以使用SN命令扩展超过28秒。在模块的上层节点(父节点) 这个值决定对休眠设备缓冲消息的时间。 此值至少等于子节点设备的最大SP时间。	CRE	0x20 - 0xAF0 x 10ms (1/4秒分辨率)	0x20
ST	休眠之前时间。设置终端设备在休眠之前的时间.此值由串口或者RF接收数据复位 一旦定时器到达这个时间,终端设备就会进入低功耗操作。 此命令只适用于周期休眠终端设备.	Е	1 - 0xFFFE (x 1ms)	0x1388 (5秒)
SO	休眠操作.配置休眠选项.不用的位需要设置为0. 休眠选项如下: 0x02 — 总是在ST时间唤醒 0x04 — 休眠SN*SP时间 休眠选项不应在多数应用中使用. 更多参考Sleep Mode章节	Е	0 - 0xFF	0
WH	唤醒主机时间.设置/读取主机定时器值 如果唤醒主机定时器设置为非零值 ,定时器定义一个时间(ms),终端设备会从休眠模式唤醒,发送UART数据或者发送 IO采样数据.如果接收到串口数据,WH定时器立刻停止	Е	0 - 0xFFFF (x 1ms)	

Execution Commands执行命令集

大多AT命令设置或者查询寄存器值,执行命令会导致模块执行操作 执行命令会立刻执行,不会在执行中有变化

Table 10	- 01. Execution	Commands执行命令集

AT命令	名称和描述	节点类型	参数和范围	默认值
AC	应用变化. 对所有命令寄存器,会导致排队的命令寄存器值发生变化例如,改变BD命令直到AC命令串口速率才会变化	CRE	-	
	CN命令和0x08的API命令也会随着这个发生变化而变化.			

Table 10 - 01	. Execution Commands执行命令集	_		
AT命令	名称和描述	节点类型	参数和范围	默认值
WR	写操作.把参数值写到非易失性内存,这样参数在复位以后依然能保存注意:一旦写操作发生,不要发送数据到模块知道收到"OK\r"不要经常连续的使用WR命令,EM250支持有限数量的写周期	CRE	-	
RE	恢复默认值. 恢复模块参数的工厂设置 .	CRE		
FR	软件复位.。复位模块。立刻响应OK后执行软件复位, 2秒后	CRE		
NR	网络复位.在一个PAN网络的一个或者多个模块复位网络层参数立刻响应一个"OK",然后网络复位. 所有网络配置和路由信息因此丢失 NR = 0: 在执行命令的节点复位网络层参数 NR = 1: 发送广播包在PAN网络复位网络层参数	CRE	0-1	
SI	立刻休眠. 模块立刻休眠一个休眠周期而不是等待一个AT时间	Е	-	-
ND	节点搜索.搜索和报告所有找到的RF模块。找到的模块信息如下 MY <cr>SH<cr>SH<cr>SL<cr>NI-CCR>(可变长度Variable length) PARENT_NETWORK ADDRESS (2 字节)<cr>DEVICE_TYPE<cr>(1 字节: 0=Coord, 1=Router, 2=End Device) STATUS<cr>(1 字节: 备用) PROFILE_ID<cr>(2 字节) MANUFACTURER_ID<cr>(2 字节) CR> 在(NT*100)毫秒,命令终止于 <cr>. ND也接受NI参数,这个情况下匹配NI信息的模块会响应 如果ND命令通过API格式发送,每个响应返回一个独立的AT命令响应包返回数据包含上面列出的字节而不带CR,因为AT命令需要CR . NI字符结束以"0x00"字符. ND命令参数半径由BH命令设置</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr>	CRE	可选的20字节 NI 或者MY值	
DN	目标节点NI解析、解析一个NI(节点标识)字符串到物理地址 .下列事件在目标节点发现后发生:: <at 固件时=""> 1. DL & DH 设置成模块扩展的64-bit地址,需要匹配模块NI字符串 2. 返回OK(或者 ERROR)\r. 3. 命令模式退出,允许通讯 <api 固件时=""> 1. 在API命令响应帧返回16-bit网络地址和64-bit扩展地址 如果在(NT*100)时间内没有从模块收到响应,或者一个参数空了命令终止并返回"ERROR"消息 收到ERROR消息时,命令没有退出。 DN命令参数半径由BH命令设置。</api></at>	CRE	最多20字节可打印 ASCII 字符串	
IS	强制采样。强制所有使能的数字和模拟线进行一次读操作.	CRE		
1S	XBee 传感器采样.强制XBEE传感器设备进行一次采样. 此命令仅在一个XBee传感器设备使用API 远程命令时使用	RE	-	-

节点支持类型: C = Coordinator, R = Router, E = End Device