Metody Probabilistyczne i Statystyka - lista 9 do wykładu 9

Informatyka algorytmiczna (I st.) WIT – zima 2022/2023

Zadania oznaczone symbolem ★ są nieobowiązkowe ("jak starczy czasu", niekoniecznie trudne).

Zadanie 1. (do samodzielnego wykonania): Poddaj testom NIST:

1. output generatora liczb losowych z języka, który używasz. Np. C, Python, ...

2.output SHA-1(własne nazwisko)

Dla obliczenia hasza SHA-1() użyj jakiego serwisu online, np.

https://emn178.github.io/online-tools/sha1.html

Dla przeprowadzenia testów NIST użyj jakiegoś serwisu online, np. strony Zsolta Molnara:

https://mzsoltmolnar.github.io/random-bitstream-tester/

Zadanie 2. (do samodzielnego wykonania i dyskusji na ćwiczeniach): Przeczytaj opis pierwszych 4 testów NIST dla generatorów liczb losowych. Specyfikacja NIST jest dostępna online, np.:

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

Postaraj się znaleźć intuicyjne wyjaśnienie dla poszególnych kroków algorytmu, w szczególności zasad określających wynik testu.

(ps: to jeden z przypadków testów statystycznych – później zajmiemy się tym dokładniej)

Zadanie 3. Jak wygenerować najłatwiej zmienną losową o gęstości prawdopodobieństwa $f(x)=1, 5\cdot \sqrt{x}$ z wartościami na odcinku [0,100]? Masz do dyspozycji generator liczb z przedziału [0,1) z rozkładem jednostajnym. Przedstaw pseudokod.

Zadanie 4. Oszacuj złożoność obliczeniową przedstawionej na wykładzie metody generowania zmiennej losowej z rozkładem Poissona. Oczywiście, metoda ta nie ma stałego czasu obliczeń, więc oszacuj wartość oczekiwaną przyjmując jako parametr koszt każdej operacji arytmetycznej.

Zadanie 5. \bigstar Na wykładzie 10 dyskutowaliśmy metodę generowania zmiennej losowej X o dystrybuancie F_X na podstawie $F_X^{-1}(u)$ dla u z rozkładu jednostajnego.

Czy realizacja numeryczna tej metody może powodować przekłamania? W jakiej sytuacji?

Zadanie 6. (do samodzielnego wykonania): Wygeneruj losowo 5 punktów leżących pomiędzy wykresem funkcji $y = \sin(x)$ a osią x na odcinku od x0 do x0.

Do tego celu użyj Matlaba. (Składnia Matlaba jest prościutka - warto przy okazji poznać ją.)

Matlaba najprościej chyba uruchomić sobie online na

https://matlab.mathworks.com/

instrukcje na stronie Działu Informatyzacji:

https://di.pwr.edu.pl/oprogramowanie/oprogramowanie-matlab

Zadanie 7. \bigstar Transformacja Box-Muller dla zmiennych losowych U_1, U_2 ma postać

$$Z_1 = \sqrt{-2\ln(U_1)} \cdot \cos(2\pi U_2) \tag{1}$$

$$Z_2 = \sqrt{-2\ln(U_1)} \cdot \sin(2\pi U_2)$$
 (2)

Pokazano, że jeśli U_1, U_2 są niezależne i mają rozkład jednostajny na [0,1], to Z_1, Z_2 są niezależne i mają rozkład normalny. Zakładając, że powyższe stwierdzenie jest prawdziwe, porównaj złożoność generowania Z_1, Z_2 opisaną metodą do generowania np. za pomocą rejection method.