Теория вероятностей. Лекция двадцать седьмая Мартингалы

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

15.05.2019

Что разобрали:

- Марковские цепи с дискретным временем
- Марковские цепи с непрерывным временем
- Фильтрация и моменты остановки
- Мартингалы
- Предельные теоремы
- Примеры процессов

"Условные" свойства условного матожидания

Предполагая, что все нужные условные матожидания существуют...

$$\begin{array}{lll} 14^0 & \mathbb{E}(\xi|\mathcal{G}) = \xi \ \text{тогда} \ \text{и только тогда, когда} \ \xi \ \mathcal{G}\text{-измерима}. \\ 15^0 & \mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi, \ \text{если} \ \xi \ \text{независима относительно} \ \mathcal{G}; \\ & \text{в частности,} \ \mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi \ \text{для} \ \mathcal{G} = \{\Omega,\varnothing\}. \\ 16^0 & \mathbb{E}(\xi|\mathcal{H}) = \mathbb{E}(\mathbb{E}(\xi|\mathcal{G})|\mathcal{H}) \ \text{при} \ \mathcal{H} \subset \mathcal{G} \subset \mathcal{F}; \\ & \text{в частности,} \ \mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}(\mathbb{E}(\xi|\eta,\zeta)|\eta), \\ & \mathbb{E}\mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi, \\ & \mathbb{P}(A) = \mathbb{E}\mathbb{P}(A|\mathcal{G}) \ \text{для всех} \ A \in \mathcal{F} \\ & \text{ (формула полной вероятности),} \\ & \mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}(\xi|\mathbb{E}(\xi|\mathcal{G})) \end{array} \tag{CBОЙСТВО} \ \mathcal{L}$$

Фильтрация и моменты остановки

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, и время пробегает значения из $T = \mathbb{R}_+$ или $T = \mathbb{N} \cup \{0\}$.

Набор σ -подалгебр $(\mathcal{F}_t)_{t\in T}$ алгебры \mathcal{F} называют фильтрацией [иногда потоком алгебр], если для всех $s\leq t$ $\mathcal{F}_s\subset \mathcal{F}_t$.

Случайную величину au, принимающую значения в $T \cup \{+\infty\}$, называют моментом остановки (относительно фильтрации $\{\mathcal{F}_t\}_{t \in T}$), если для всех $t \in T$ событие $\{\tau \leq t\} = \{\omega \,|\, \tau(\omega) \leq t\}$ лежит в \mathcal{F}_t .

Пусть au — момент остановки. Введем σ -алгебру событий, произошедших до au: $\mathcal{F}_{ au} \stackrel{\triangle}{=} \{A \in \mathcal{F} : A \cap \{ au \leq t\} \in \mathcal{F}_t$ для всех $t\}$.

Мартингал

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $\{\mathcal{F}_t\}_{t \in T}$ – фильтрация.

Говорят, что согласованный с $\{\mathcal{F}_t\}_{t\in T}$ случайный процесс $(X_t)_{t\in T}$ —

ullet мартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s = \mathbb{E}(X_t | \mathcal{F}_s);$$

ullet субмартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \leq \mathbb{E}(X_t | \mathcal{F}_s);$$

ullet супермартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \geq \mathbb{E}(X_t|\mathcal{F}_s).$$

Примеры мартингалов

Пусть $Y-\mathcal{F}$ -интегрируемая случайная величина, тогда $X_s\stackrel{\triangle}{=}\mathbb{E}(Y|\mathcal{F}_s)$ является мартингалом в силу $\mathbb{E}(Y|\mathcal{F}_s)=\mathbb{E}(\mathbb{E}(Y|\mathcal{F}_t)|\mathcal{F}_s)$ при $s\leq t$.

Пусть у Вас есть две возможные плотности f и g, и выборка x_1,\dots,x_k,\dots Функция правдоподобия

$$X_n = \frac{f(x_1)}{g(x_1)} \cdot \cdot \cdot \cdot \cdot \frac{f(x_n)}{g(x_n)}$$

является мартингалом.

Мартингалы в важном примере

В важном примере, в справедливой игре, выигрыш игрока за n раундов $X_n = \omega_1 + \ldots + \omega_n$ — мартингал относительно там же заданной фильтрации, а средний выигрыш игрока за n раундов

$$Y_n = \frac{\omega_1 + \ldots + \omega_n}{n}$$

даже не субмартингал.

Подумать: почему??

Подумать: в случае несправедливой, но стационарной игры, когда именно X_n — субмартингал, супермартингал(?);подберите число R>0 так, чтобы R^{X_n} стало мартингалом.

Свойства мартингалов

Из свойств условного матожидания сразу следует пара свойств. Предложение. Если X_t, Y_t — мартингалы относительно одной и той

же фильтрации, то aX_t , I_t — мартингалы относительно одной и тже фильтрации, то aX_t + bY_t тоже мартингал для любых $a,b\in\mathbb{R}$.

Подумать: верно ли это предложение для супермартингалов.

Предложение. Если X_t — мартингал, g — выпуклая функция,

 $\mathbb{E}|g(X_t)|<\infty$ для всех t, то $g(X_t)$ – субмартингал относительно той же фильтрации.

Подумать: как соотносятся эти предложения со средним выигрышем в важном примере.

[С-но; 0,5 баллов] Докажите, что супермартингал X_t является мартингалом, только если $\mathbb{E} X_t$ не зависит от времени.

[С-но; 0,5 баллов] Докажите, что у мартингала X_t $\mathbb{E} X_t$ не зависит от времени.

[С-но; 0,5 баллов] Докажите, что если X_t, Y_t — супермартингалы относительно одной и той же фильтрации, то $X_t \wedge Y_t$ — тоже супермартингал.

Разложение Дуба

Если $(X_n, \{\mathcal{F}_n\}_{n\in\mathbb{N}})$ – субмартингал, то существуют два случайных процесса M_n и A_n такие, что

- **1** $X_n = M_n + A_n$ при $n \ge 1$,
- $(M_n, \{\mathcal{F}_n\}_{n\in\mathbb{N}})$ мартингал,
- **3** $A_1 = 0$ и $A_n \mathcal{F}_{n-1}$ измеримо при $n \ge 2$,
- lacktriangledown не убывает, т.е. $A_n(\omega) \leq A_{n+1}(\omega)$ почти наверное.

Если есть другое такое разложение \overline{M}_n , \overline{A}_n , то \overline{M}_n = M_n , \overline{A}_n = A_n почти всюду.

Подумать: в важном примере в случае справедливой игры есть субмартингал X_n^2 (квадрат выигрыша); найдите его разложение.

Доказательство разложения Дуба

Пусть M_n , A_n уже построены. Для $n \ge 2$ имеем, что

$$X_{n-1} = M_{n-1} + A_{n-1}, \ X_n = M_n + A_n.$$

Для \mathcal{F}_{n-1} имеем

$$\mathbb{E}(X_n|\mathcal{F}_{n-1}) - X_{n-1} = A_n - A_{n-1}.$$

Вместе с условием A_1 = 0 это показывает, что X_n определяют A_n однозначно. Аналогично, M_n = X_n – A_n , что также говорит об однозначности определения M_n .

Теперь докажем существование. Положим $M_1\stackrel{\triangle}{=} X_1$, $A_1\stackrel{\triangle}{=} 0$,

$$A_n \stackrel{\triangle}{=} \mathbb{E}(X_n | \mathcal{F}_{n-1}) - X_{n-1} + A_{n-1}, \ M_n \stackrel{\triangle}{=} X_n - A_n.$$

Заметим, что свойства 1, 3 выполняются по определению. A_n не убывают, поскольку X_n – субмартингал. Осталось доказать, что $(M_n, \{\mathcal{F}_n\}_{n\in\mathbb{N}})$ – мартингал. Имеем, что

$$\mathbb{E}(M_n|\mathcal{F}_{n-1}) = \mathbb{E}(X_n - A_n|\mathcal{F}_{n-1}) = \mathbb{E}(X_n|\mathcal{F}_{n-1}) - A_n = X_{n-1} - A_{n-1} = M_{n-1}.$$

Разложение Дуба-Мейера [без д-ва]

Теорема. Пусть $(X_t, \{\mathcal{F}_t\}_{t\geq 0})$ — субмартингал с удовлетворяющей обычным условиям фильтрацией, а для каждой ограниченной константы a>0 для множества всех моментов τ остановки, ограниченных этой константой, выполнено

$$\lim_{\lambda \to \infty} \sup_{\tau} \mathbb{E}(|X_{\tau}| | \mathbf{1}_{\{|X_{\tau}| > \lambda\}}) = 0.$$

Тогда найдутся случайные процессы M_t и A_t с непрерывными траекториями такие, что

- **1** $X_t = M_t + A_t \text{ при } t \ge 0$,
- $(M_t, \{\mathcal{F}_t\})_{t \geq 0}$ мартингал,
- $\mathbf{3}$ $A_0 = 0$, A_t согласован с \mathcal{F}_t ,
- lacktriangledown A_t не убывает, т.е. $A_s(\omega) \leq A_t(\omega)$ почти наверное для всех $s \leq t$.

Если есть другая пара процессов \overline{M}_t , \overline{A}_t , то \overline{M}_t = M_t , \overline{A}_n = A_t п.в.

Разложение Рисса [без д-ва]

Теорема. Пусть $(X_n, \{\mathcal{F}_n\})$ — супермартингал. Следующие условия эквивалентны:

- lacktriangle для некоторого субмартингала $(W_n, \{\mathcal{F}_n\})$ почти всюду выполнено $W_n \leq X_n$;
- ② для некоторого мартингала $(M_n,\{\mathcal{F}_n\})$ и неотрицательного супермартингала $(A_n,\{\mathcal{F}_n\})$ выполнено X_n = M_n + A_n и $\mathbb{E}A_n \to 0$ при $n\to\infty$.

Если есть другая пара процессов \overline{M}_t , \overline{A}_t , то \overline{M}_n = M_n , \overline{A}_n = A_n п.в.

В непрерывном случае надо потребовать от фильтрации обычных условий и ограничиться процессами, имеющими лишь cádlág траектории.

Теорема о произвольном выборе

Теорема о произвольном выборе. Пусть τ, σ — некоторые моменты остановки, $\sigma \le \tau \le k$, где k — некоторое число.

- Если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ субмартингал, то $X_{\sigma} \leq \mathbb{E}(X_{\tau} | \mathcal{F}_{\sigma})$;
- ullet если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ мартингал, то $X_{\sigma} = \mathbb{E}(X_{\tau} | \mathcal{F}_{\sigma});$
- ullet если $(X_t, \{\mathcal{F}_t\}_{t \in T})$ супермартингал, то $X_{\sigma} \geq \mathbb{E}(X_{\tau} | \mathcal{F}_{\sigma})$.

Доказательство теоремы о выборе

Докажем теорему лишь для дискретного времени. Пусть $A \in \mathcal{F}_{\sigma}$. Для всех m,n $(1 \le m \le n \le k)$ положим $A_m \stackrel{\triangle}{=} A \cap \{\sigma = m\},$

$$A_{m,n} \stackrel{\triangle}{=} A_m \cap \{\tau = n\}, \quad B_{m,n} \stackrel{\triangle}{=} A_m \cap \{\tau > n\}, \quad C_{m,n} \stackrel{\triangle}{=} A_m \cap \{\tau \geq n\}.$$

Теперь $B_{m,n} \in \mathcal{F}_n$ из $\{ \tau > n \} = \Omega \setminus \{ \tau \leq n \} \in \mathcal{F}_n$. Для субмартингала $(X_n, \{ \mathcal{F}_n \}_{n \in \mathbb{N}})$ имеем $\mathbb{E}(X_n \mathbf{1}_{B_{m,n}}) \leq \mathbb{E}(X_{n+1} \mathbf{1}_{B_{m,n}})$. Из $C_{m,n} = A_{m,n} \cup B_{m,n}$ и $B_{m,n} = C_{m,n+1}$ следует

$$\mathbb{E}(X_n \mathbf{1}_{A_{m,n}}) \ge \mathbb{E}(X_n \mathbf{1}_{C_{m,n}}) - \mathbb{E}(X_{n+1} \mathbf{1}_{B_{m,n}}) = \mathbb{E}(X_n \mathbf{1}_{C_{m,n}}) - \mathbb{E}(X_{n+1} \mathbf{1}_{C_{m,n+1}}).$$

Суммируя по n от m до k и воспользовавшись $A_m = C_{m,m}$, получаем, что $\mathbb{E}(X_\tau \mathbf{1}_{A_m}) \geq \mathbb{E}(X_m \mathbf{1}_{A_m})$. Суммируя по m от 1 до k, получаем, что

$$\mathbb{E}(X_{\tau}\mathbf{1}_A) \geq \mathbb{E}(X_{\sigma}\mathbf{1}_A).$$

Неравенство Дуба

Если (X_n,\mathcal{F}_n) — субмартингал, то для любых $n\in\mathbb{N}$ и $\lambda\in\mathbb{R}$

$$\lambda \mathbb{P}(A_{\lambda,n}) \leq \mathbb{E}(X_n \mathbf{1}_{A_{\lambda,n}}) \leq \mathbb{E} \max\{X_n, 0\},$$

где
$$A_{\lambda,n} \stackrel{\triangle}{=} \left\{ \omega : \max_{i=\overline{1,n}} X_i(\omega) \geq \lambda
ight\}.$$

Подумать: как доказать то же неравенство в непрерывном случае для имеющих лишь cádlág траектории мартингалов.

Доказательство неравенства

Определим момент остановки σ по правилу

$$\sigma(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{l} i, \quad X_i \ge \lambda, \\ n, \quad \max_{i=1,\dots,n} X_i < \lambda. \end{array} \right.$$

Также $au \equiv n$. Имеем, что $A_{\lambda,n} \in \mathcal{F}_{\sigma}$, так как для всех m

$$A_{\lambda,n} \cap \{\sigma \le m\} = \{\max_{i=1,\dots,m} X_i \ge \lambda\} \in \mathcal{F}_m.$$

Поскольку $X_{\sigma} \geq \lambda$ на $A_{\lambda,n}$, из теоремы о произвольном выборе следует

$$\lambda \mathbb{P}(A_{\lambda,n}) \leq \mathbb{E}(X_{\sigma} \mathbf{1}_{A_{\lambda,n}}) \leq \mathbb{E}(X_{n} \mathbf{1}_{A_{\lambda,n}}) \leq \mathbb{E} \max\{X_{n}, 0\}.$$

На пять минут...

- 1. Вы решили эмулировать цепь Маркова X_t с непрерывным временем, имеющую инфинитезимальную матрицу переходных вероятностей Q, с помощью цепи Маркова $Y_n^{(\delta)}$ с дискретным временем. Вы выбрали малый шаг $\delta>0$ и желаете обеспечить $Y_n^{(\delta)} \approx X_{\delta n}$ (на самом деле даже $Y_{\lfloor t/\delta \rfloor}^{(\delta)} \stackrel{d}{\to} X_t$ при $\delta \downarrow 0$ для всех положительных t). Подберите переходную матрицу для $Y_n^{(\delta)}$. Все банально, если помнить формулу $e^t \approx (1+t/n)^n$
- 2. Всегда ли не является моментом остановки

$$\sigma'(\omega) = \min\{n : \omega_{n+1} = -1\}$$

в "важном примере"?

Будет моментом остановки, если Вы всегда можете предсказать следующий бросок, например если всегда после первого броска выпадает то же, что и в первом броске, ну или если Вы вскрыли датчик случайных чисел. Про вероятность и независимость в том примере ничего не обещалось...