Programación Funcional

Trabajo Práctico Nro. 12

Temas: λ -cálculo: programación con λ -cálculo. sustitución, α -equivalencia, β -reducción,

- 1. Para la representación de números naturales como numerales de Church:
 - a) Dar λ -expresiones que representen a mult y potencia.
 - b) Dar una λ -expresión que represente a isNotZero.
 - c) \otimes Dar una λ -expresión que represente a *pred*. Sugerencia: Dar antes una λ -expresión que represente a *prefn*, definida por:

$$prefn \ f \ (\underline{true}, x) = (\underline{false}, x)$$

 $prefn \ f \ (false, x) = (\overline{false}, fx)$

d) Dar una λ -expresión que represente a resta, definida por:

$$resta \ \underline{m} \ \underline{n} = \underline{m-n} \qquad \text{si} \ \underline{m} \ge n \\ = \underline{0} \qquad \text{si} \ m < n$$

Ayuda: Asumir definido pred.

- 2. Dar λ -expresiones que representen las funciones *isempty*, *head* y *tail*, para las definiciones de listas vistas en teoría.
- 3. a) Definir con λ -expresiones una representación apropiada para árboles TipTree:
 - 1) Representando los árboles explícitamente.
 - 2) (*) Representando los árboles mediante su patrón de recursión.
 - b) Para ambas representaciones, definir en λ -cálculo las siguientes operaciones:
 - leaf: construye una hoja del árbol.
 - tree: construye un nodo del árbol.
 - isNotLeaf: devuelve True sii el árbol fue construido con la operación tree.
 - *left*: devuelve el subárbol izquierdo de un árbol no vacío.
 - right: devuelve el subárbol derecho de un árbol no vacío.
- a) Indicar, para cada variable, cuáles de sus ocurrencias son libres y cuáles ligadas, en las siguientes expresiones. En caso de ser una ocurrencia ligada, indicar a qué binder lo está.

1) $(\lambda y.x(\lambda x.x) z)$

3) $(\lambda xx.xy(\lambda yy.xy)) x$

2) $(\lambda y.y(\lambda x.y) yx)$

- 4) $(\lambda xyz.(\lambda y.yz) w)(\lambda x.xy) wz$
- 5. a) Indicar cuáles de los siguientes pares de λ -expresiones son α -equivalentes y cuáles no lo son. Justificar la respuesta.
 - 1) $(\lambda xyz.x(\lambda y.yz) w) (\lambda tuv.t(\lambda z.zv)) w$
 - 2) $(\lambda xyz.x(\lambda y.yz) w) (\lambda xyw.x(\lambda y.yw) z)$
 - 3) $(\lambda xyz.x(\lambda y.yz) w) (\lambda vut.v(\lambda v.vt) x)$
 - 4) $(\lambda xyz.x(\lambda y.yz) w) (\lambda xtz.x(\lambda u.tz)) w$
 - b) Escriba en Haskell una función que dados dos términos lambda decida si son α -equivalentes o no.
 - c) Utilice la función del inciso anterior para verificar las respuestas del primero.

Ejercicios complementarios

- 6. Dadas las siguientes representaciones alternativas de números naturales en λ -cálculo, definir las funciones *succ* y *pred*, y los predicados *iszero* e *isnotzero*.
 - a) $\underline{0} = \lambda x.\underline{false}$ b) $\underline{n+1} = \underline{pair} \ \underline{true} \ \underline{n}$
 - b) $\underline{0} = \lambda x.\underline{true}$ $\underline{n+1} = pair \underline{n} false$
- 7. Demostrar que para toda variable x y λ -términos M y N, si x no ocurre libre en M entonces $M\{x\leftarrow N\}=_{\alpha}M$.
- 8. El grafo de reducción de un término M consiste en el conjunto de nodos $\{N|M \to^* N\}$ y en las aristas $\{(M,N)|M \to^* N\}$.
 - a) construya el grafo de reducción de $(\lambda x.\lambda y.x)z\Omega$, donde $\Omega =_{\text{def}} (\lambda x.xx)(\lambda x.xx)$
 - b) construya el grafo de reducción de Ω
 - c) exhiba un término cuyo grafo de reducción (donde los nodos se representan con "*") sea $* \to * \to * \to \dots$