第五章 其它底盘系统

第一节 悬架与车桥

1.1 概述

1.1.1 前悬架

本车型的前悬架采用的是麦弗逊式独立悬架, 其结构如图 5.1-1 所示。这种结构的特点是筒式 减振器作为悬架杆系的一部分兼起主销作用,滑

柱在作为主销的圆筒内上下移动,前支柱上托盘 与车身连接,取消了上摇臂。这种悬架结构简单, 布置紧凑,横向刚度高,操纵稳定性好。

图 5.1-1 前悬架

- 1-前副车架总成
- 2-前副车架前安装螺栓
- 3-摆臂总成
- 4-球头连接螺栓
- 5-球头连接杆螺母
- 6-法兰盘开口螺母
- 7-开口销
- 8-前副车架后安装螺栓

- 9-法兰盘螺母
- 10-横向稳定杆拉杆及球头总成
- 11-前横向稳定杆
- 12-前横向稳定杆连接螺栓
- 13-前横向稳定杆压板
- 14-前减振器支柱总成
- 15-全金属六角法兰面锁紧螺母
- 16-螺母压板

- 17-六角法兰面螺栓
- 18-六角法兰面螺母
- 19-六角法兰面螺栓
- 20-发动机纵梁焊接总成
- 21-六角法兰面螺栓
- 22-全金属六角法兰面防转螺母
- 23-六角法兰面螺栓
- 24-发动机纵梁焊接总成
- 25-六角法兰面螺栓
- 26-全金属六角法兰面防转螺母

注: 19-22 为 CVT 纵梁; 23-26 为 MT/AT 纵梁

1.1.2 后悬架

本车型的后悬架采用的是拖曳臂附扭力杆悬 架,如图 5.1-2 所示,拖曳臂式悬架的结构为车 身部的主轴直接结合于车身, 然后将主轴结合于 悬架系统, 再将此构件安装于车身, 弹簧与减振 器直立安装于车轴附近。悬架系统本身的运动, 支臂以垂直车身中心线的轴,亦即平行于车轴的 轴为中心进行运动,车轴不倾斜于车身,在任一

上下运动位置,车轴平行于车身,对车身外倾角 变化为零。其最大的优点乃在于左右两轮的空间 较大,而且车身的外倾角没有变化,减振器不发 生弯曲应力, 所以摩擦小, 乘坐性佳, 当其刹车 时除了车头较重会往下沉外, 拖曳臂悬架的后轮 也会往下沉平衡车身。

图 5.1-2 后悬架

- 1-后扭转梁总成
- 2-后稳定杆总成
- 3-法兰面螺栓
- 4-法兰面锁紧螺母
- 5-后扭转梁托架衬套总成
- 6-后扭转梁托架衬套总成
- 7-六角头螺栓和平垫圈组合件
- 8-六角法兰面螺母

- 9-后减振器总成
- 10-平垫圈
- 11-六角加大法兰面螺母
- 12-防尘罩与限位块
- 13-后螺旋弹簧
- 14-限位盖
- 15-减振垫
- 16-弹簧橡胶垫

- 17-左上连接支架总成
- 18-右上连接支架总成
- 19-六角法兰面螺栓
- 20-六角法兰面螺母
- 21-缓冲定位管
- 22-缓冲块
- 23-缓冲限位座
- 24-锁紧螺母

1.1.3 车轮定位参数说明

如果车轮的几何定位良好,车辆的燃油经济性和轮胎的使用寿命都会得到改善。

1.1.3.1 **主销后倾角:** 主销后倾角是从车辆侧面观察,转向轴最高点偏离垂直方向的倾角,如图 5.1-3 所示。顶点向后的倾角为正(+),而向前的倾角为负(-)。主销后倾影响转向机构的方向控制,但不影响轮胎磨损。若一个车轮较其他车轮的正主销后倾角大,会使该车轮朝车辆中心线行驶,车辆将向正主销后倾角最小的一侧偏向行驶。

图 5.1-3

1.1.3.2 **车轮外倾角**: 外倾是从车辆前方观察的。 车轮偏离垂直方向的倾角,如图 5.1-4 所示。若 车轮倾角顶点向外,则外倾为正(+);若车轮倾角 向内,则外倾为负(-)。外倾既影响方向控制,又 影响轮胎磨损。过量外倾会导致轮胎磨损,并使 车辆朝最大外倾行驶或侧偏行驶。

图 5.1-4 车轮外倾角

1.1.3.3 **车轮前束:** 车轮前束是车轮偏离几何中心线/推力线向里偏转,而负前束则是车轮向外偏转,如图 5.1-5 所示。设置前束的目的是保证车轮平行滚动。前束也可补偿车辆向前行驶时,车轮支架系统产生的少量偏移。只有车轮设置前束合适时,车辆行驶时车轮才能在路上平行滚动。

图 5.1-5 车轮前束

1.1.3.4 推力角:前轮引导或转向车辆,后车轮控制同辙。同辙作用与推力角有关。推力角(如5.1-6 所示)是后轮行驶的轨迹与车身中心线的夹角.

图 5.1-6 推力角

1.1.4 车轮定位参数标准

本车型的车轮定位规格如表 5.1-1 所示。

表 5.1-1 车轮定位规格

	前轮外倾	─0° 17	′ ± 45′
	前轮前束	总前東: -0.5~3mm(左、 单侧前束角度	右单侧 -0.25~1.5mm) : -0.02° ~0.14°
	主销内倾	销内倾 12° ± 45′	
车轮定位	主销后倾	2° 36′ ± 45′	
- 后轮外倾 —		—0.6°	± 30'
	后轮前束	1.1 =	± 3mm
	车轮最大转角	内侧 39°12′±3°	外侧 33°04′±3°

1.2 故障诊断

1.2.1 转矩转向

转矩转向指的是汽车在驱动时,发动机传给 5.1-2 所示。 驱动轮的转矩在车辆高速行驶时引起跑偏/滑移

的现象。车辆转矩转向的故障诊断步骤如表 5.1-2 所示。

表 5.1-2 转矩转向的故障诊断

	ない12 程代刊財政権 例				
步骤	操作	数 值	是	否	
1	是否进行这车辆路试?		至步骤2	车 辆 路 试	
2	检查驱动轮轮胎 驱动轮轮胎尺寸是否相同,胎面深度是否相等。		至步骤3	至 步 骤 18	
3	调整轮胎压力至规定值 操作是否完成?		至步骤4		
4	检查前悬架 前悬架是否有磨损或损坏的零件?		至 步 骤 17	至步骤5	
5	1. 在平直路面(无隆起)路面上,以64~97km/h的速度驾驶车辆 2. 将变速器挂在空档,使车辆滑行 3. 暂时松开转向盘,并注意行进过程中的方向变化 4. 在各方向重复这种道路试验,以消除逆风影响。由路面隆起和逆风引起跑偏/滑移 是正常的 变速器在空档时,车辆是否跑偏/滑移?		至步骤 16	至步骤6	
6	1. 将变速器置于前进档 2. 在平直路面(无隆起)上将车辆平稳加速至64~97km/h。暂时放开转向盘 3. 在不同方向上重复这一路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移 是正常的 行驶中车辆是否明显偏离直路?		至步骤7	车 辆 正常	

1	A DITE LA ALLALA III. (A-AL V. D.	ı	·	- 	I	, L.	-424
7	1. 调换前轮胎/车轮总成 2. 在平直路面(无隆起)上车辆以64~97km/h稳定加速。暂时放开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆转矩转向是否在相反方向?		至步	⇒骤8	至 12	步	骤
8	1. 用左后轮胎总成调换左前轮胎总成 2. 车辆在平直路面(无隆起)以64~97km/h稳定加速。暂时放开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至步	テ骤9	车常	辆	II
9	1. 用右后轮胎总成调换右前轮胎总成 2. 车辆在平直路面(无隆起)上以64~97kmA稳定加速。暂时放开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至 ; 10	步骤	车常	辆	Ī
10	1. 将轮胎/车轮组件装固其原来的位置 2. 测量车轮中心到翼子板(后侧围)Z向高度 左右差值是否低于规定值?	6mm	至 ; 11	步骤	至 13	步	驴
11	测量变速器驱动机构的高度 左右差值是否低于规定值?	6mm	至 : 14	步骤	至 15	步	驴
12	测量车轮中心到翼子板(后侧围)Z向高度 左右差值是否低于规定值?	6mm	至 ; 11	步骤	至 13	步	聖
13	1. 校正车轮中心到翼子板(后侧围)Z向高度 2. 校正外倾 3. 校正前束 4. 车辆在平直路面(无隆起)上以64~97km/h稳定加速。暂时松开转向盘 5. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至 ;	步骤	车常	辆	IL
14	产生扭短转向的原因可能是车轮定位超出规范 操作是否完成?		车常常	辆 正			
15	1. 通过垫片调整或更换动力系安装来校正高度差 2. 车辆在平直路面(无隆起)上以64~97km/h稳定加速。暂时松开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向。		至 ; 14	步骤	车常	辆]
16	进行跑偏/滑移的诊断 操作是否完成?		车岩常	辆 正			
17	必要时,维修前悬架部件 操作是否完成?		至步	ラ骤5			
18	安装相同尺寸、相同型号和相同胎面深度的驱动轮胎 操作是否完成?		至步	⇒骤3			

1.2.2 方向稳定性不良

方向稳定性不良是指司机不能在任何方向上

保持对车辆稳定的预想控制。方向稳定性不良的诊断如表 5.1-3 所示。

表 5.1-3 方向稳定性不良故障诊断

步骤	操作	是	否
1	车辆路面测试用于确认用户的报告 车辆是否表现为方向不稳?	至步骤2	系统正常
2	 确保所有轮胎的规格、制造厂家相同,螺线深度合适。必要时予以修理 确保所有轮胎充气到正确的压力 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳? 	至步骤3	系统正常
3	1. 检查前横向稳定杆和隔板的磨损和损坏。必要时予以修理 2. 参见前悬架中前横向稳定杆的更换 3. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤4	系统正常
4	1. 检查左、右摆臂焊接总成、球接头和转向横拉杆的磨损和损坏,必要时予以修理 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤5	系统正常
5	1. 检查车轮轴承/轮毂是否松动或有过大的径向跳动 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤6	系统正常
6	1. 检查车辆翘头高度, 必要时予以修理 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤7	系统正常
7	1. 检查车轮定位, 必要时予以调整 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤8	系统正常
8	1. 检查转向齿轮和转向管柱是否松动 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤1	系统正常

1.2.3 噪声诊断

从车辆前部或后部发出的由于车辆速度或行 悬架噪声的诊断如表 5.1-4所示。 驶路面所引起的车架有关的噪声称为悬架噪声。

表 5.1-4 悬架噪声诊断

	火 5.1 す 心水米) り切				
步骤	操作	是	否		
1	对车辆进行路试,努力再现车辆的噪声。必要时与相同的车辆进行比较, 以确定用户的报告是不是车辆正常运作特性 是否出现异常噪声?		系统正常		
2	1. 将换档杆置于空档位置 2. 关断点火 3. 上下摇动车辆前部, 再现噪声 能否听到噪声?				
3	1. 上下摇动车辆前部, 用听筒确定发出噪声的位置 2. 必要时, 维修或更换悬架部件 是否完成维修?				
4	1. 提升车辆并用合适的工具支撑 2. 检查所有前悬架部件是否有任何损坏 是否有零件损坏?		至步骤6		

5	修理所有损坏的零件 是否完成维修?	至步骤1	
6	1. 检查轮胎充气压力是否正常 2. 检查轮胎是否有不正常磨损 轮胎是否有不正常的胎面磨损?	至步骤7	至步骤9
7	1. 旋转轮胎 2. 进行车辆路试 现在噪声是否从车辆后部发出。	至步骤8	至步骤9
8	更换发出噪声的轮胎 维修是否完成?	至步骤1	
9	确保球接头和转向拉杆的润滑 维修是否完成?	至步骤1	至步骤10
10	确保所有车轮螺母锁紧到正确的规定值 是否紧固了车轮螺母?	至步骤1	至步骤11
11	确保减振器紧固件力矩达到正确的规定值 是否有松动的紧固件?	至步骤12	至步骤13
12	使用规定工具,按照力矩要求打紧紧固件 维修是否完成?	至步骤1	
13	1. 原地打方向盘 2. 上下晃动车辆 对比正常车辆,减振器是否有异响?	至步骤14	至步骤15
14	更换存在异响部位减振器 重复步骤13,判定是否存在异响?	至步骤17	至步骤1
15	按照用户报告,依25、30、40km/h的速度在颠簸路面低速行驶, 努力再现异响故障 听取减振器是否有异响?	至步骤16	至步骤1
16	更换存在异响部位减振器 重复步骤15,判定是否存在异响?	至步骤17	至步骤1
17	改变思路,从其他部位查找异响原因,排除减振器异响可能。		
18	用手推拉前横向稳定杆 前横向稳定杆是否松动?	至步骤19	至步骤23
19	1. 检查前横向稳定杆的所有紧固件, 必要时紧固 2. 用于推拉前横向稳定杆 前横向稳定杆是否松动?	至步骤22	至步骤1

20	查看前横向稳定杆松动的位置 是否查出前横向稳定杆连接松动?	至步骤21	至步骤 <mark>24</mark>
21	更换前横向稳定杆连杆 维修是否完成?	至步骤1	
22	更换前横向稳定杆隔套和托架 维修是否完成。	至步骤1	
23	检查控制臂是否松动或移动 是否查到松动或移动?	至步骤24	至步骤26
24	1. 检查左、右摆臂焊接总成紧固件是否达到正确的紧固力 2. 检查左、右摆臂焊接总成是否松动 左、右摆臂焊接总成是否松动。	至步骤25	至步骤1
25	更换磨损或松动的左、右摆臂焊接总成衬套 维修是否完成。	至步骤1	
26	1. 使驱动轮离开地面, 起动发动机 2. 挂到传动档(车速不要高于55km/h) 3. 增加传动轮的转速直到噪声达到最高水平 4. 用听筒确定噪声源的位置 是否有齿轮轴承发出噪声?	至步骤27	至步骤7
27	更换车轮轴承 维修是否完成。	至步骤1	

1.3 维修作业

1.3.1 车轮定位的调整

1.3.1.1 前轮外倾调整

前轮外倾的调整如图 5.1-7 所示。 举升车辆,从车辆上拆卸支柱。将支柱 固定在台钳上,并在侧面上锉孔。锉支 柱与转向节之间的螺栓孔可调节车轮外 倾。

图 5.1-7 前轮外倾的调整

- 1 一 外倾角
- 2 一 锉上螺栓孔
- 3 一 锉下螺栓孔

1.3.1.2. 前轮前束调整

前轮前束的调整步骤如下:

- (1) 将转向盘调整到正前位置。
- (2) 如图 5.1-8 所示,松开拉杆上的六角螺母, 旋转转向横拉杆轴以得到合适的前束角。

图 5.1-8 前轮前束的调整

- 1 一 转向横拉杆轴
- 2 一 锁紧六角螺母
- 3 一 转向横拉杆球头
- (3)确认每个转向横拉杆端的转动圈数大 致相同。
- (4) 紧固锁紧螺母。

1.3.2 零部件总成的更换

1.3.2.1 前轮毂总成的更换

- (1) 前轮毂总成的拆卸
- ① 升起并适当支撑车辆,拆卸车轮总成。
- ② 如图 5.1-9 所示,断开车轮速传感 器插接器,从托架上拆卸车轮速度 传感器。

图 5.1-9 分离车轮速度传感器

- ③ 拆卸制动钳托架及制动钳拆下制动钳体, 并将制动钳固定在车身上,使得制动管路 不会因为的制动钳重量而弯曲甚至被损坏 拆卸制动盘。
- ④ 拆卸传动轴螺母。
- ⑤ 如图 5.1-10 所示,用三颗车轮螺母将轮 载芯轴拆卸工具连接到车轮轴承 / 轮毂上 分离传动轴与车轮轴承。

图 5.1-10 分离车轮轴承

1.3.2.2 前横向稳定杆的更换

(1). 前横向稳定杆的拆卸 断开相应连接。将前副车架整体落下, 示意图如图 5.1—12 所示。

图 5.1—12

⑥ 如图 5.1-11 所示, 拆下车轮轴承。

图 5.1-11 车轮轴承的拆卸

(2) <mark>前轮毂总成</mark>的安装 <mark>前轮毂总成</mark>轴承的安装按与拆卸相 反的顺序进行。在安装前轮车速传 感器时,确保接头夹子与托架正确 啮合。 ① 拆下前横向稳定杆,如图 5.1-13:

图 5.1-13

② 安装:前横向稳定杆的安装按与拆卸相反顺序进行。

1.3.2.3 转向节的更换

转向节的更换随制动器总成一起更换,参 照制动器相关章节。

1.3.2.4 下摆臂总成的更换

- (1) 下摆臂总成的拆卸
- ① 旋转转向盘以便移动相应前轮至最小侧位置。
- ② 如图 5.1-14 所示,从球头螺柱上拆卸开口销。 拆下开槽螺母,敲动转向节使下摆臂球头销从 转向节上脱落。

图 5.1-14

③ 拆下 2 个螺栓和螺母,拆下前悬下摆臂总成,如图 5.1—15 所示。注意不要转动螺母,螺母为锁紧螺母,转动螺母会使其损坏。

图 5.1—15

④. 检查下摆臂总成

a. 如图 5.1—16 所示,在安装螺母前,前后摇动球头销螺栓 5 次。

图5.1—16

b. 用扭力扳手,以2~4s动一圈的转速连续 转动螺母,在第五圈时记下拧紧力矩读 数。拧紧力矩: 0.05~1.98Nm。

⑤ 安装

a. 临时拧紧前悬下摆臂总成。用2个螺栓和螺母,暂时紧固前悬下摆臂总成。不用打力矩,见图 5.1—17所示。

图 5.1-17

b. 用螺母将前悬下摆臂安装到转向节上,拧紧力矩: 120N。

图 5.1-18

- c. 安装开口销。注意:如果开口销的孔没有对准,应进一步紧固螺母对准开口销的孔。
- d. 充分紧固前悬下摆臂总成。用2个螺栓紧固下摆臂,如上图5.1—17所示,拧紧力矩218Nm。注意:不要转动螺母。

1.3.2.5 减振器的更换

- (1) 前减振器总成的拆卸。
- ① 拆卸前轮。
- ② 拆离制动软管。从减振器支架 (带 ABS 车型) 上拆螺栓、制动软管和 ABS 车速传感器线束夹箍。如图 5.1-19 所示。

图 5.1-19

- ③ 拆下带螺旋弹簧的前减振器。
- a 拆下前横向稳定杆连杆与前减振器总成连接的螺母。拆卸前减振器总成与转向 节连接的2个螺母和螺栓后 , 将减振器 从转向节上拆下 , 如图5.1-20 所示。

图 5.1-20

b 拆下带螺旋弹簧的前减振器 , 拆下安装悬架支架的3个螺母 , 如图5.1-21 所示。

图 5.1—21

- (2) 后减振器总成的拆卸
- ① 拆卸后轮。
- ② 拆卸左右后减振器总成。如图5.1—22
- a 用千斤顶顶起后桥车架。
- b 从后副车架上拆卸下连接后减振器总成 的加厚法兰面螺母。
- c 拆下后减振器总成连接至车身的一个螺 栓和2个螺母。
- d 将后减振器从车身上拆卸下来。

图 5.1—22

3. 检查减振器总成

压紧并拉长减振器推杆,在此期间检查有 无异常阻力或不正常响声。如有异常,更 换新的减振器。

4. 安装

安装的过程与拆卸过程相反, 拧紧力矩见 拆卸示意图上所标。

第二节 转向系统

2.1 转向系统故障诊断

2.1.1 检修注意事项

- L) 更换零件时一定要小心正确操作, 不正确 的操作更换 , 可能影响转向系统的性能并且可 能导致驾驶事故。
- 前面乘客的安全气囊。如果不按正确的次序修理, 系统故障排除如表 5.2-1 所示。

可能引起安全气囊在维修过程中意外打开,可 能导致严重的事故, 在维修之前(包括零件的 拆卸或安装、检查或更换),一定要阅读辅助保 护系统的注意事项。

2.1.2 故障排除

故障排除表有助于找到故障的原因 , 表中数 2) 安全气囊 (SRS) 系统的注意事项。本车配 字表明了引起故障的可能程序 , 按顺序检查每 备有安全气囊 (SRS), 如驾驶员的安全气囊和 一个零件。必要时, 修理或更换这些零件。转向

表 5.2-1

症状	可能原因	症状	可能原因
转向沉重	1) 轮胎(充气不当) 2) 动力转向油(少) 3) 前轮定位(不正确) 4) 转向节(磨损) 5) 悬架臂球头节(磨损) 6) 转向管柱(弯曲)	游隙过大	1)转向节(磨损) 2)悬架臂球头节(磨损) 3)中间轴、滑动节叉(磨损) 4)前轮轴承(磨损) 5)转向器(有故障)
	7) 动力转向叶片泵(有故障) 8) 转向器(有故障)		1)动力转向油(少)
回位不足	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向管柱(弯曲) 4) 转向器(有故障)	异常噪声	2)转向节(磨损) 3)动力转向叶片泵(有故障) 4)转向器(有故障)

2.1.3 转向盘自由行程的检查

检查转向盘自由行程的方法如下:

- 1) 停车且轮胎朝向正前方。
- 2) 轻摇转向盘, 检查转向盘自由行程。

如图5.2-2 所示 , 转向盘最大行程为 30mm。

图 5.2-2

2.2 转向系统维修作业

2.2.1 转向盘及转向管柱的检修

2.2.1.1 转向盘及转向管柱总成的结构,

如图5.2一3所示。

图 5.2—3

2.2.1.2 转向盘及转向管柱及万向节总成的拆装

1. 拆卸

- 1) 应遵守转向系统检修的注意事项。
- 2) 脱开蓄电池的负极端子。
- 3) 确认前轮朝向正前方。
- 4) 拆下喇叭按钮总成。
- ① 打开转向盘两侧小护盖,用套筒扳手或者螺 丝刀 ,松开两个螺钉 ,直至螺钉头周边卡在螺 钉壳体内 ,如图5.2—4所示用

图 5.2—4

② 从转向盘中拉出喇叭按钮总成 , 如图5.2

一5所示。

③使用螺丝刀 , 松开安全气囊接头的锁紧部分 , 拆下安全气囊接头。

注意: 当拆下喇叭按钮总成时,不要拖拉安全气囊线束; 当放置喇叭按钮总成时,保证其上表面向上;不要分解喇叭按钮总成。

图 5.2-5

- 5) 拆下转向盘总成。
 - ①脱开接头。
 - ②拆下转向盘固定螺母,如图5.2-6所示。

图 5.2—6

- ③在转向盘总成和转向管柱及万向节总成上做 好配合标记。
- ④使用专用工具 , 拆下转向盘总成, 如图 5.2 —7所示。

图 5.2-7

⑤ 拆下转向管柱护盖。拆下 3 个螺钉,然后 分离转向管柱上盖和转向管柱下盖。如 图5.2—8所示。

图 5.2—8

- 6) 脱开转向轴锁接线总成。 按下卡扣, 拉出接线。
- 7) 拆下时钟弹簧总成。注意: 时钟弹簧靠一个金

属卡与2个塑料的卡与安装板连接,先用螺丝刀将 金属卡从安装孔出撬出,再拆2塑料卡。结构如 图5.2—9所示。

图 5.2—9

- 8) 拆下左组合开关(前照灯变光开关总成)。如 图5.2—10所示。
- 9) 拆下右组合开关(刮水器开关总成)。

- 10) 拆下万向节防尘罩 [。
- 11) 脱开转向管柱中段,如图5.2-11 所示。
- ①在滑叉和管柱下段上做配合标记。
- ②松开螺栓 A 和 拆下螺栓 B, 然后脱开管柱中段。

图 5.2—11

- 12) 拆下转向管柱及万向节和管柱中段。 如图 5.2-12 所示。
- ①从转向管柱上脱开接头和线束卡扣。
- ②拆下 3 个安装螺栓,取下转向管柱及万向节。

图 5.2—12

- 13) 拆下转向管柱中段螺栓 A,取下转向管柱中段。
- 14) 拆下转向管柱上转向轴锁的卡板,如图5.2—13 所示。
- ①使用中心冲子 , 在两个锥形螺栓上做中心标记。
- ②使用 3~4mm 的钻头, 钻入这 2 个螺栓。
- ③使用螺丝刀, 拆下2个螺栓和转向管柱上轴锁

总成。

15) 拆下转向轴锁总成。

2. 安装

- 1) 连接转向轴锁接插件,检查转向轴锁的动作。
 - ①检查启动按下锁止时, 转向轴锁锁止。
 - ②检查启动按下解锁时,转向轴锁锁止解除。
 - ③轴向轴锁正常动作,拔下接插件。
- 2) 按拆卸的相反顺序安装轴锁总成。
- ①使用两个新的锥形螺栓临时安装转向管柱 上开关支架总成和转向管柱上卡箍。
 - ②拧紧两个锥形螺栓直至其螺栓头部断掉。
- 3) 安装转向管柱中段。安装螺栓 A , 但不打紧螺栓 A 。
 - 4) 安装转向管柱及万向节总成。
 - ①用 3 个螺栓安装转向管柱及万向节总成, 拧紧力矩:21N•m。

- ②连接接头和线束卡扣。
- 5) 连接转向管柱中段和加长轴总成。
- ①对齐加长轴总成和管柱中段滑叉上的配合标记。
- ②安装螺栓 B, 拧紧螺栓 A、B, 拧紧力矩:28 N·m。
- 6) 安装刮水器开关。安装刮水器开关总成并 且连接接头。
- 7) 安装前照灯变光开关总成。安装前照灯变光 开关总成并且连接接头。
- 8) 使前轮朝向正前方。
- 9) 安装时钟弹簧。
- 10) 安装转向管柱护盖。用 3 个螺钉安装转向管柱上盖和下盖。
- 11) 时钟弹簧对中。
- ①检查车辆未启动。
- ②检查蓄电池负极端子断开。注意 : 在拆下端 子 90s 后才可以进行操作。
- ③用手逆时针放置电缆盘 , 直到变得难以旋转为止。
- ④顺时针旋转电缆盘大约 2.5 圈 , 对齐标记。 注意 : 电缆盘可以绕中心左右双向旋转 2.5 圈。
- 12) 安装转向盘总成。
- ①对齐转向盘总成和转向管柱及万向节总成上的 配合标记。
- ② 用固定螺母安装转向盘, 拧紧力矩:50 N•m。
 - ③连接接头。
 - 13) 检查喇叭按钮总成。
 - 14) 安装喇叭按钮总成。
 - (1) 注意:
- ①不要使用另一辆汽车上拆下的安全气囊零件。 更换时,必须使用新零件。
- ②确保喇叭按钮总成是以规定力矩进行安装的。
- ③若喇叭按钮总成掉地 , 或者在壳体、接头上 有裂纹、凹坑或等其他缺陷 , 更换新总成。
- ④当安装喇叭按钮总成时 , 电线不要和其他部件有干扰 , 并且不要被夹住。

- (2) 连接安全气囊接头。
- (3) 确认螺钉周围的槽卡到螺钉盖后安装喇叭按钮。
- (4) 使用扭力套筒扳手 , 安装 2 个螺钉, 拧紧 力矩 :8.8N•m。, 装上两侧小护盖。
 - 18) 转向盘对中。
 - 19) 检查 SRS 警告灯。

图 5.2-14

2.2 动力及机械转向装置的检修

- 1 动力转向器油量的检查
- 1)将车停在平坦的地方,起动发动机之后,反复 原地转向数次,将油温提高到 50~60℃。
- 2) 在发动机运转状态,将转向盘左右满舵旋转数次。
- 3)转向贮油罐内的液体不允许有起泡、絮状沉淀物等存在。
- 4) 在发动机停机状态,检查液位与发动机运转时 是否相同。液位变化超过 5mm 时要排气。
- 2 动力转向油液的更换

如果动力转向装置出现故障,需要拆检,就 应更换动力转向液;若发现油液变质,也应及时 更换动力转向液。其步骤如下:

- 1)将前轮用千斤顶顶起或者整车用举升机举起。
- 2)卸下回油软管与动力转向贮液罐的连接。将塑料管接到回油软管上,用适当容器接油液。油液不能溅到车身或零部件上,如果不小心溅上应立即擦干净。
- 3) 使发动机怠速运转,同时反复满舵旋转转向盘, 排出油液;断续启动数次发动机,确认油液排干。
- 4)连接回油软管,用夹子固定。
- 5) 将指定油液装到动力转向转向贮油罐的最大和最小刻度线之间。

油液: 壳牌动力施ATF。

- 6) 怠速下左右满舵转动方向盘数次,以排除转向 系统中的空气。
- 7) 重新检查油位,必要时可以加注规定的转向油, 使油位升至储液罐上限。
- 3 动力转向系统的排气
 - (1)用千斤顶将前轮顶起。
 - (2) 断续启动发动机数次,同时左右满舵旋转方向盘 5~8次,使油温升高,然后将方向盘放在直行状态,记录动力转向贮油罐中液面高度。
 - (3) 使发动机熄火后,停止 3~5 分钟,再次记录 贮液罐中液面的高度,并与(2) 中液面高度比较, 若两次差值在 5mm 以下,而且油液中无气泡或乳 化现象,说明系统内空气已排净。否则,仍需重 复(4)、(5) 步骤,直至空气被排净为止。
 - (4)检查液位,根据需要可向动力贮油罐中加注油液至规定油位。

注意:

- 1) 在排气中,液体要位于转向储液罐的最小位置以上,否则要补充液体。
- 2) 在发动机运转过程中进行排气,空气就会微粒化,溶于液体中,所以必须一边起动发动机,一边排气。
- 3) 发动机停机后, 液位急剧上升, 是排气不彻底。
- 4) 如果系统排气不够彻底,会产生来自泵的震动 声和从流量控制阀传来的异常声音,会影响油泵 及其他部件的寿命。
- 3 油压的检查(见图2-15)

图 2-15

- 1)将油泵与高压软管脱开,装上专用工具。
- 2)进行排气,转动转向盘数次,使液体的油温

升到50~60℃。

- 3) 起动发动机,保持发动机转数在1000±100r/min状态。
- 4) 将压力表的断流阀全闭,检查油泵的安全压力 是否在标准值内。

标准值: 9.2MPa

- 5)偏离标准值时,更换油泵。
- 6)全开压力计的断流阀,检查无载荷时,油压是 否在标准值内。

标准值: 0.2~0.7MPa

- 7)在偏离标准值时,可以认为是油路或者转向齿不良,修正后,再次测压。
- 8) 向左或右满舵旋转转向盘状态下,检查油压是 否在标准值内。标准值: 9. 2MPa
- 9)油压比标准值小的时候,拆装转向器齿轮,比标准值大的时候,更换油泵。
- 10)卸下专用工具之后,按规定力矩拧紧高压软管。 拧紧力矩,57±7N•m
- 11)排气。

4 油液泄漏的检测

5 动力转向软管、管路的更换 安装过程中注意下列事项:

- 1) 把每根软管可靠地连接到相应的管路上, 直到软管与管路止动块接触。如图所示,在 规定距离(从软管端算起)处,安装管夹。
- 2)检查所有管夹是否老化或变形。如有必要,请更换新管夹。
- 3) 给储油罐加注推荐的动力转向油,直至规

定油面, 检查是否泄漏。

3.1 故障诊断

制动系统故障排除如表 3-1 所示 , 表中 数字代表产生故障可能性的顺序 , 依次检查各零 部件, 如必要 , 更换这些零件。

表3-1

衣3-1				
症 状	状 可能原因			
	1)制动踏板自由行程(太小),			
	2) 驻车操纵机构总成行程(调整不			
	当),			
制动拖滞	3) 驻车拉索总成 (卡滞),			
	4) 后制动蹄片间隙 (调整不当),			
	5) 制动片或衬面 (破裂或扭曲),			
	6) 活塞 (卡住或冻结),			
	7) 张紧或回位弹簧 (故障),			
	1) 活塞 (卡住),			
制动跑偏	2) 制动片或衬面 (有油污),			
	3) 活塞 (冻结),			
	4) 制动盘 (擦伤),			

	1)制动系统制动液泄漏,
	2) 制动系统有空气,
□₩±< >± /σ =\> ¬₩	3) 制动片或衬面 (磨损),
踏板过低或弹	4) 制动片或衬面 (破裂或扭曲),
脚	5) 后制动蹄片间隙 (调整不当),
	6) 制动片或衬面 (有油污),
	7) 制动片或衬面 (有硬点),
	8) 制动盘 (擦伤),
	1)制动片或衬面(破裂或扭曲)
	2) 装配螺栓 (松动)
	3) 制动盘 (擦伤)
	4) 制动片支撑片 (松动)
	5) 滑动销 (磨损)
	6) 制动片或衬面 (脏)
制动器噪声	7)制动片或衬面 (有硬点)

3.2. 制动系统的检修

3.2.1 制动液的放气

如果对制动系统进行修理或认为制动管路中存 在空气 , 则需排净空气。

注意: 不要将制动液溅到油漆表面, 否则必须立刻清洗干净。

1. 向储液罐内加注制动液 (如图3-1 所示)制动液: DOT4

图 3-1

2. 放出制动主缸空气

注意: 如果制动主缸已被拆解或储液罐变空时, 应从制动主缸排放空气。

- 1) 从制动主缸上脱开油管接头。
- 2) 慢慢踩下制动踏板并踩住不动 , 如图3-2 所示。

图 3-2

3)用手指从外侧堵孔 , 并放松制动踏板 , 如 图 3-3 所示。

图 3-3

- 4) 重复 2) 和 3) 步骤的操作 3 或 4 次。
- 3. 制动油管排气 (如图3-4 所示)

图 3-4

- 1) 把塑料管接在制动钳和分泵上。
- 2) 踩下制动踏板几次后踩住不动 , 拧松放气螺塞。
- 在制动液停止流出的一刻拧紧放气螺塞, 放松制动踏板。

- 4) 重复 2) 和 3) 步骤的操作 , 直至制动液中的空气全部流出为止。
- 5) 重复上述步骤 , 从各个制动分泵上排出空 气 , 拧紧力矩 :8.0N•m。
- 4. 检查储液罐中油液面高度 检查油液面 ,如必要需加注制动液。制动液: DOT4

3.2.2 制动踏板的检修

(一)检查与调整

1. 检查并调整制动踏板高度,如图3-5 所示。

图 3-5

- 1) 检查制动踏板高度。至地板的高
- 度:136mm~146mm。
- 2) 调整制动踏板高度。
- (1) 拆下中控台盖板。
- (2) 从制动灯开关上拆下连接器。
- (3) 松开制动灯开关锁止螺母并拆下制动灯开关。
 - (4) 松开 U 形接头锁止螺母。
 - (5) 转动踏板推杆调整踏板高度。
 - (6) 拧紧推杆锁止螺母, 拧紧力矩:26N·m。
 - (7) 安装制动灯开关。
 - (8) 插上制动灯开关接头。
- (9) 推下制动踏板 $5\sim15$ mm, 然后转动制动 灯开关直至制动灯熄灭 , 在这个位置将螺母锁 止。
- (10) 在安装后 ,踩下制动踏板 $5\sim15 \mathrm{mm}$ 后检查制动灯应亮起。

- 2. 检查踏板自由行程
 - 1) 熄灭发动机 , 反复踩制动踏板直至助力器中无真空为止。
- 2) 踩下踏板直至感到有阻力为止 , 测出如 图5.3-6 所示的距离。踏板自由行程:1~6mm。

图 3-6

如果间隙不合要求,检查制动灯开关的间隙。如果间隙正确,对制动系统进行诊断。制动灯开隙:0.5~2.4mm。

3. 检查踏板保留距离

松开驻车操纵机构总成,在发动机运转状态, 踩下制动踏板,测量如图3-7 所示踏板保留距离。 用490N的力踩下踏板时,从地板算起的保留距离, 应大于 55mm。如果距离不合要求,对制动系统进行诊断。

图 3-7

(二)零部件图(如图3-8所示)

| FI 0

(三)拆卸与安装

- 1. 拆卸
- 1) 拆下组合仪表组件。
- 2) 脱开制动主缸推杆 U 形接头。拆下卡夹和 推杆销 , 把制动主缸推杆从制动踏板上脱 开。
- 3) 拆下制动踏板支架。
- (1) 从制动踏板支架上拆下螺栓 ,如图3-9 所示。

图 3-9

- (2) 脱开制动灯连接器。
- (3) 拆下4个螺母和制动踏板支架 , 如图3-10 所示。

图3-10

- 4) 拆下制动踏板总成。
- (1) 从制动踏板支架上拆下螺栓和螺母。
- (2) 拆下制动踏板和 2 个衬套。
- 5) 拆下制动灯开关组件。
- (1) 松开制动灯开关锁止螺母。
- (2) 从制动踏板支架上拆下制动灯开关。
- 6) 拆下制动踏板垫。从制动踏板上拆下制动踏 板垫。
- 2. 安装
- 1) 安装制动踏板垫。在制动踏板上安装制动踏板垫。
- 2) 安装制动灯开关组件。把制动灯开关装到制动踏板上。
- 3) 安装制动踏板。
- (1) 在 2 个新衬套的端面和侧面涂抹锂皂基乙二醇润滑脂。
- (2) 用螺栓和螺母把制动踏板和 2 个衬套安装到制动踏板支架上 , 拧紧力矩:37N•m。
 - 4) 安装制动踏板支架。
 - (1) 用4个螺母安装制动踏板支架 (见图3-10), 拧紧力矩:13N•m。
 - (2) 连接制动灯开关接头。
 - (3) 把螺栓装入制动踏板支架 , 如图4.7-8所示拧紧力矩 :20N•m。
 - 5) 连接制动主缸推杆 U 形接头。
 - (1) 在推杆销上涂抹锂皂基乙二醇润滑脂。
 - (2) 用推杆销的卡连接制动总泵推杆。
 - 6) 安装组合仪表组件。
 - 7) 检查并调整制动踏板高度。
 - 8) 检查制动踏板自由行程。

9) 检查制动踏板保留距离。在装配后 , 检查并 调整制动踏板高度 , 自由行程和保留距离 。

3.2.3 制动主缸及真空助力器总成的检查

车上检查

- 1. 检查真空助力器
- 1) 气密性检查,如图3-11所示。

图 3-11

- (1) 起动发动机 1~2min 后停止,慢慢踩踏板数次。注意: 如果踏板在第一次踩踏时大幅下降,但第2、3次后位置逐渐上升,则气密性是好的。
- (2) 在发动机运转时踩下制动踏板,然后熄灭 发动机。注意:如果踏板在踩下 30s,保留距离 没有变化,则助力器气密性是好的。
 - 2) 操作检查。
- (1) 在点火开关 OFF 位置 , 反复踩踏板数 次后 , 检查踏板保留距离应无变化。
- (2) 踩下踏板并起动发动机。注意:如踏板轻微下沉,则操作正常。
- 2. 检查真空单向阀。
 - 1) 滑动夹子脱开真空管。
 - 2) 拆下真空单向阀。
 - 3) 检查从助力器到发动机方向应通气,相反则 不通。
 - 4) 如发现故障,更换真空单向阀。
 - 3 检查制动主缸外观有无渗漏制动液现象。
 - 4 熄火后,反复踩踏制动踏板然后保持制动力, 踏板是否向下移动,检查制动主缸是否有内 部泄压现象。如发现故障,更换制动主缸总 成。

3.2.4 行车制动系统的检修

1. 前制动器的检修(盘式)

- 1. 拆卸
- 1) 升起车辆。

- 2) 拆下前轮。
- 3) 排出制动液。注意: 不要让制动液溅到油漆表面, 否则应立刻清洗。
 - 4) 拆下前制动钳体。
 - (1) 从前制动钳体上拆下空心螺栓和紫铜垫圈, 然后脱开软管, 如图3-12所示。

图 3-12

(2) 固定住前制动钳导向销后 , 拆下 2 个螺栓 , 如图3—13所示。

图 3-13

- 5) 拆下前制动片套件。
- (1) 拆下 2 片带消音垫的制动片。
- (2) 从每块片上拆下 1 号和 2 号消音垫片。
- 6) 拆卸前制动片支持片。从前制动钳支架上拆下
- 2 个制动片。
- 7) 拆卸前制动钳导向销。从前制动钳支架上拆下导向销。
- 8) 拆卸前制动钳导向销防尘套。从前制动钳支架 上拆下 2 个防尘套,如图3—14所示。

图 3-14

- 9) 拆卸左前制动钳支架。拆下 2 个螺栓后 , 取下左前制动钳支架。
- 10)拆下前活塞防尘圈。用螺丝刀拆下拆下孔用 钢丝挡圈和前活塞防尘圈 ,如图3—15所示。

- 11) 拆下前盘式制动钳排气螺钉。
- 12) 拆下前制动钳中的活塞。
- (1) 在制动钳和活塞间放一块布或近似物。
- (2) 用压缩空气把活塞从制动分泵中吹出 ,如 图3—16 所示。注意 : 在吹压缩空气时, 手指不要放在活塞前面。

图 3-16

注意: 不要溅出制动液。

13) 拆卸活塞油封。用螺丝刀从制动钳中取下油封, 如图3-17 所示。

图 5.3—17

2. 检查

- 1) 检查制动钳和活塞。检查制动钳壁的活塞 有无生锈或划伤。
- 2) 检查制动片衬面厚度。用直尺测量衬面厚度。如图3—18所示。标准厚度:11.0mm;最小厚度:1.0mm。

图 3-18

- 3) 检查前制动摩擦报警片。确保摩擦报警片有足够的弹性、无变形破裂或磨损,对所有锈蚀、脏物和其他杂质应清除干净。
- 4) 检查制动盘厚度。用螺旋测微器测量制动盘厚度。 前制动盘标准厚度: 25.0mm,最小厚度:23.0mm。
- 5) 取下前制动盘。
- (1) 在制动盘和轮毂上作记号。
- (2) 取下制动盘。
- 6) 安装制动盘。注意 : 选择制动盘最小的位置 进行安装。
- 7) 检查制动盘摆动。
- (1) 临时紧固制动盘 , 拧紧力矩 :103N·m。
- (2) 用百分表, 在距制动盘外缘10mm处测量制动盘的摆动, 如图3—19所示。制动盘最大摆动:0.05mm。

图 3-19

- (3) 如果制动盘的摆动达到或超过极限,检查轴承的轴向间隙和轮毂的摆动,如轴承和轮毂正常,则调整制动盘摆动。
- 3. 安装
- 1) 在前制动钳上临时拧紧制动放气螺塞。
- 2) 安装前活塞密封圈。

- (1) 在新前活塞密封圈上涂抹锂皂基乙二醇润滑脂。
- (2) 把新前活塞密封圈装入制动钳。
- 3) 安装制动活塞。
- (1) 在制动活塞上涂抹锂皂基乙二醇润滑脂。
- (2) 把活塞装入制动钳。注意: 不要强行将活塞旋拧进制动钳。
- 4) 安装前活塞防尘圈。
- (1) 在新前活塞防尘圈上涂抹锂皂基乙二醇润滑脂, 并将它装入制动钳。注意: 将防尘圈靠安装在制动钳和活塞的凹槽。
- (2) 用螺丝刀装入孔用钢丝挡圈。注意: 小心不要损伤前活塞防尘圈。
- 5) 安装左前制动钳支架。用2个螺栓紧固前制动钳支架, 拧紧力矩:88N•m。
- 6) 安装导向销防尘套。
- (1) 在2个新防尘套的封表面涂抹锂皂基乙二醇 润滑脂。
- (2) 把2个防尘套装入前制动钳支架。
- 7) 安装前制动钳导向销。
- (1) 在2个导向销的滑动部分和油封表面涂抹锂 皂基乙二醇润滑脂。
- (2) 把2个导向销装入前制动钳支架。
- 8) 安装前制动片支撑片。从前制动钳支架上拆下 2个制动片支撑片。
- 9) 安装制动衬块组件。注意: 在更换磨损制动衬块时,必须同时更换消音垫片。
- (1) 在每片消音垫片的两侧涂盘式制动润滑脂,如图3—20所示。

图 3-20

- (2) 在每块制动衬块上安装消音垫片。
- (3) 摩擦报警片向上,安装内侧制动衬块,然后装入外侧制动衬块。注意:制动片和制动盘的摩擦表面不能附着机油或润滑脂。

- 10) 安装前制动钳。
- (1) 用2个螺栓安装前制动钳 , 如图3-21所示。 拧紧力矩 :34N•m。
- (2) 用空心螺栓安装新紫铜垫圈和软管 , 拧紧 力矩 :30 N•m。 注意 : 要将软管可靠地紧固在制动钳的锁止孔内。
- 11) 向储液罐加注制动液。
- 12) 排出制动钳中的空气。
- 13) 排出制动管路中的空气。
- 14) 检查储液罐的液面高度。
- 15) 检查制动液是否泄漏。
- 16) 安装前轮, 拧紧力矩:110N·m。

2. 后制动器的检修(盘式,装有时)

后制动器零件的分解图如图3-22所示。

- 1. 拆卸
- 1) 拆下后轮。
- 2) 排出制动液。注意 : 不要让制动液溅到油漆 表面 , 否则应立刻清洗。
- 3) 拆下后制动钳。
- (1) 从后制动钳上拆下空心螺栓和紫铜垫圈, 然后脱开软管,如图3—23所示。

图 3-23

(2) 固定住后盘式制动分泵滑动销后 , 拆下2 个螺栓 , 如图3—24所示。

图 3-22

(2) 固定住后制动钳导向销后 , 拆下1个螺栓 , 如图3—24所示。

图 3-24

- 4) 拆下后制动衬片套件。
 - (1) 拆下2片带消音垫的制动片。
 - (2) 从每块片上拆下1号和2号消音垫片。
- 5) 拆卸后制动片支持片。从后制动钳支架上拆下 2个弹簧垫片。
- 6) 拆卸后制动钳导向销。从后制动钳支架上拆下 导向销。
- 7) 拆卸后制动钳导向销防尘套。从后制动钳支架 上拆下2个防尘套,如图3—25所示。

- 8) 拆卸左后制动钳支架。拆下2个螺栓后,取下左 后制动钳支架。
- 9) 拆下后制动钳防尘套。用螺丝刀拆下孔用钢丝挡圈和前活塞防尘圈 ,如图3-26所示。

图 3-26

- 10) 拆下后制动钳排气螺塞。
- 11) 拆下后制动钳中的活塞。
 - (1) 在制动钳和活塞间放一块布或近似物。
- (2) 用压缩空气把活塞从制动钳中吹出,如图 3-27 所示。注意: 在吹压缩空气时,手指不要放在活塞前面。

图 3-27

注意: 不要溅出制动液。

12) 拆卸活塞油封。用螺丝刀从后制动钳中取下 活塞密封圈 ,如图3-28所示。

图 3-28

2. 检查

- 1) 检查后制动钳和活塞。检查制动钳壁的活塞 有无生锈或划伤。
- 2) 检查制动片衬面厚度。用直尺测量衬面厚度。 如图3-29所示。标准厚度:10.0mm;最小厚度: 1.0mm。
- 3) 检查后制动摩擦报警片。确保摩擦报警片有足够的弹性、无变形破裂或磨损,对所有锈蚀、脏物和其他杂质应清除干净。
 - 4) 检查制动盘厚度。用螺旋测微器测量制动盘

厚度。后制动盘标准厚度: 9.0mm, 最小厚度: 8.0mm。

图 3-29

- 5) 取下后制动盘。
 - (1) 在制动盘和轮毂上作记号。
 - (2) 取下制动盘。
- 6) 安装制动盘。注意 : 选择制动盘最小的位置 进行安装。
- 7) 检查制动盘摆动。
 - (1) 临时紧固制动盘 , 拧紧力矩 :103N·m。
- (2) 用百分表, 在距制动盘外缘10mm处测量制动盘的摆动, 如图3-30所示。制动盘最大摆动:0.05mm。

图 3-30

- (3) 如果制动盘的摆动达到或超过极限,检查 轴承的轴向间隙和轮毂的摆动,如轴承和轮毂正 常,则调整制动盘摆动。
- 3. 安装
- 1) 在后制动钳上临时拧紧制动排气螺塞。
- 2) 安装活塞油封。
- (1) 在新活塞油封上涂抹锂皂基乙二醇润滑脂。
 - (2) 把新活塞油封装入后制动钳。
- 3) 安装制动活塞。
 - (1) 在制动活塞上涂抹锂皂基乙二醇润滑脂。
- (2) 把活塞装入后制动钳。注意: 不要强行将活塞旋拧进后制动钳。
- 4) 安装后活塞防尘圈。

- (1) 在新后活塞防尘圈上涂抹锂皂基乙二醇润滑脂 , 并将它装入后制动钳。注意 : 将后活塞防尘圈靠安装在后制动钳和活塞的凹槽。
- (2) 用螺丝刀装入孔用钢丝挡圈。注意: 小心不要损伤后活塞防尘圈。
- 5) 安装左后制动钳支架。用2个螺栓紧固后制动钳支架, 拧紧力矩:88N•m。
- 6) 安装导向销防尘罩。
- (1) 在2个新防尘罩的封表面涂抹锂皂基乙二醇润滑脂。
 - (2) 把2个防尘罩装入前盘式制动分泵支架。
- 7) 安装后制动钳导向销。
- (1) 在2个导向销的滑动部分和油封表面涂抹 锂皂基乙二醇润滑脂。
 - (2) 把2个防尘罩装入后制动钳支架。
- 8) 安装后弹簧片。从后支架上拆下2个后弹簧片。
- 9) 安装制动片组件。注意: 在更换磨损制动片时,必须同时更换消音垫片。
- (1) 在每片消音垫片的两侧涂盘式制动润滑脂,如图3—31所示。

图 3-31

- (2) 在每块摩擦衬块上安装消音垫片。
- 3. 后鼓式制动器(装有时)
- (1) 组成

- (3) 报警片向上,安装内侧摩擦衬块,然后装入外侧摩擦衬块。注意:制动片和制动盘的摩擦表面不能附着机油或润滑脂。
- 10) 安装后盘式制动分泵。
- (1) 用2个螺栓安装后制动钳, 如图3—32所示。 拧紧力矩:34N•m。

图 3-32

- (2) 用空心螺栓安装新紫铜垫圈和软管, 拧紧力矩:30 N•m。 注意: 要将软管可靠地紧固在后制动钳的锁止孔内。
- 11) 向储液罐加注制动液。
- 12) 排出后制动钳中的空气。
- 13) 排出制动管路中的空气。
- 14) 检查储液罐的液面高度。
- 15) 检查制动液是否泄漏。
- 16) 安装后轮, 拧紧力矩:110N·m。

(2) 拆卸

- ① 拆卸后轮
- ② 排制动液

注意: 立即擦掉溅到任何油漆表面的制动液。

- ③ 拆卸后制动鼓
- a. 松开驻车拉杆。
- b. 用专用工具卸下螺栓和后制动鼓。

b. 用专用工具拆卸下制动蹄回位弹簧。

(3)分解

① 拆卸制动蹄总成

a. 用专用工具拆下调节齿板弹簧。

c. 用专用工具拆卸回位弹簧。

d. 用专用工具卸下驻车推板弹簧

e. 用老虎钳拆卸下制动蹄限位弹簧座、弹簧、 销钉和制动蹄总成。

② 拆卸驻车制动推杆总成

注意: 不要分解驻车制动推杆总成。 不要破坏和弯曲任何部件。

③ 拆卸制动蹄带驻车拉板总成

a. 用钳子拆卸下制动蹄限位弹簧座、弹簧、销 钉和制动蹄带驻车拉板总成。

b. 用尖嘴钳在驻车拉板上拆下驻车拉索。

④ 拆卸后轮制动缸组件

a. 用专用工具, 拆下制动管, 用容器接住制动液。

- b. 拆卸螺栓和制动轮缸。
- c. 在制动轮缸上拆卸排气螺钉帽和排气螺钉。

(4) 检查

① 检查制动鼓的内直径

用制动鼓的标准量具或者替代物测量制动鼓的内直径。

标准内直径: 230 mm 最大内直径: 231.496 mm

如果内径超出此范围, 更换制动鼓。

② 检查制动蹄摩擦片的厚度

标准厚度: 4.9 mm 最小厚度: 1.8 mm

如果厚度小于最小值或严重磨损,更换制动蹄片。

提示: 如果有一个制动蹄需要更换,所有的制动蹄都要更换。

③ 检查制动蹄与制动鼓内衬的接触是否合适

在制动鼓内表面涂上白垩,然后进行适当的摩擦。如果制动鼓与摩擦片的接触不正常,用磨具修整或者更换。

提示: 如果一个制动蹄需要更换,所有的制动蹄都需要更换。

(5) 重新装配

① 安装后轮活塞缸组件

- a. 临时拧紧排气螺钉,安上排气螺钉帽。
- b. 安装制动活塞缸的螺栓。

拧紧力矩: (6-11) N.m

c. 用专用工具,连接制动管

② 涂抹高温油脂

在支承板表面的制动蹄涂上高温油脂。

③ 安装制动蹄带驻车拉板总成

a. 用尖口钳子将驻车拉索与驻车拉杆连接上。

④ 安装驻车制动推板总成

- a. 在压板上拆下调节螺杆。
- b. 在适当的位置安装调节螺母。

调节螺母的位置在接近回位弹簧 $1{\sim}2\,$ mm 的位置。

提示:调节器并不和回位弹簧直接相连。两者间留 1 到 2 mm 的间隙,因为制动间隙能自动调节。

c. 将调节螺杆旋于压板上。

注意:调节螺母与金属簧片合理地安装在一起。

⑤ 安装驻车制动推杆总成。

注意:调节器要方向正确。

- ⑥ 安装制动蹄
- a. 用钳子安装前制动蹄、销、限位弹簧和限位弹 簧座。

b. 用专用工具安装制动蹄下侧回位弹簧。

b. 用钳子安装上制动蹄、销、支撑弹簧和支撑弹簧 座。

c. 用专用工具安装制动蹄驻车推板弹簧。

c. 用专用工具安装制动蹄驻车推板弹簧。

d. 用专用工具安装制动蹄上侧回位弹簧。

检查每个部分是否安装正确。

注意: 不要有油污沾在制动蹄或者鼓的摩擦

表面

e. 用专用工具安装驻车拉板回位弹簧。

(6) 安装

① 安装后轮鼓

用油管扳手将后制动鼓的螺栓拧好。 拧紧力矩: 5 N*m

② 储液罐里添加制动液

制动液: **DOT4**

③ 排空制动主缸

提示: 如果制动主缸被拆过或者储液罐是空的,先排空主缸内的空气。

- a. 用专用工具,将管路在制动主缸上拆下。
- b. 慢慢踩下制动踏板,保持位置(步骤 A)。
- c. 用手堵住主缸的孔, 松开踏板(步骤 B)。
- d. 重复步骤 A 和 B 3-4 次。
- e. 用专用工具装好制动管路。

拧紧力矩: 17.5 N*m

④检查储液罐里的液位

检查储液罐里的液位,如果需要,添加制动

液。

制动液: DOT4

⑤ 检查制动液是否泄漏

⑥ 调整好制动蹄和制动鼓间的间隙

注意: 不要用起子或者其他任何工具去旋转调节器。

踩下制动踏板 30 次(没有驻车),间隙将被自动调整好。

⑦ 检查制动蹄和制动鼓之间的间隙

- a. 拆下后制动鼓。
- b. 测量制动鼓的内侧直径和制动蹄的直径, 直径之差就是正确的间隙。

间隙: 0.6 mm

如果不正确, 检查后制动系统。

⑧ 安装后车轮

拧紧力矩: 110 N

3.2.5 驻车制动系统的检修

1. 故障排除

利用表 3-2 可以找出故障原因, 表中数字代表故障发生可能的顺序, 依次检查各个零件, 如有必要, 应更换。

表3-2

症状	可能原因
制动阻滞	1)驻车操纵机构行程 (失调) 2)驻车拉索总成 (卡滞) 3)驻车制动蹄片间隙 (失调) 4)驻车制动衬面 (破裂或变形) 5)回位或张紧弹簧 (损坏)

2. 调整

- 1) 拆下后轮。
- 2) 调整制动蹄片间隙。
- 3) 安装后轮 , 拧紧力矩 :110N•m
- 4) 检查驻车操纵机构行程。拉住驻车操纵机构并计算发出 "卡、卡"声的数目。驻车操纵机构总成行程:用196N拉力发出 6~9 声"卡、卡"声
- 5) 调整驻车操纵机构总成行程 ,如图3—33 所示。

图 3-33

- (1) 拆卸副仪表板本体。
- (2) 转动前段驻车拉索调整螺母,直至驻车操纵 机构行程正常为止。
- (3) 安装副仪表板本体

3. 驻车操纵机构附件

零部件的分解图如图3-34所示

图 3-34

- 1. 拆卸
- 1) 拆卸调速面板附件。
- 2) 拆卸手刹护板橡胶组件。
- 3) 拆卸换档操纵机构附件。
- 4) 拆卸副仪表板。
- 5) 拆卸前段驻车拉索总成。
- 6) 拆卸驻车操纵机构附件,如图3-35所示。
- (1) 拆下驻车制动灯开关接线。
- (2) 拆卸2个螺栓后取下驻车操纵机构。
- 7)拆卸驻车制动灯开关组件。拆下螺钉和驻车 制动灯开关组件。

图 3-35

- 2. 安装
- 1) 安装驻车制动灯开关组件。
- 2) 用螺钉装上驻车制动灯开关组件。
- (1) 把前段驻车拉索总成装到驻车操纵机构上。
- (2) 用2个螺栓紧固驻车操纵机构, 拧紧力 矩:13 N·m
- (3) 接上驻车制动灯开关接线。

- 3) 安装副仪表板附件。
- 4) 安装手刹护板橡胶组件
- 5) 安装换档操纵机构附件。
- 6) 安装调速面板附件。
- 7) 检查驻车操纵机构行程。
- 8) 调整驻车操纵机构行程。
- 3.2.5.4 **零部件分解图** (如图3—36所示)

图 3-36

1. 拆卸

拆卸左驻车拉索总成采用与右侧相同的方 法。

- 1) 拆卸调速面板组件。
- 2) 拆卸手刹护板橡胶组件。
- 3) 拆卸换档操纵机构附件。
- 4) 拆卸副仪表板本体。
 - 5) 松开前段驻车拉索调整螺母。拆卸前段驻车拉索调整螺母。
- 7) 拆卸排气管防护板。拆下 2 个螺栓 ,取下排气管防护板。
 - 8) 拆下中段排气管焊接总成。
- 9) 拆下中段排气管隔热板 II。拆下2个螺栓,取下中段排气管隔热板 II。
 - 10) 拆解左驻车拉索总成。
- (1) 拆下4个螺栓后从车身上拆左驻车拉索总成。
- (2) 从驻车制动平衡口上拆离右驻车拉索总成后,将前段驻车拉索总成拆下。
 - 11) 拆卸后轮。
 - 12) 拆卸后制动盘附件。
 - 13) 拆卸后制动蹄片总成。
 - 14) 拆卸左制动杆组合。
 - 15) 拆下后制动蹄。
 - 16) 拆卸左驻车拉索总成。拆卸螺栓后把左

驻车拉索总成从底板拆离, 如图3—37所示。

图 3-37

- 2. 安装
- 1) 安装左驻车拉索总成,如图3-38所示。
- (1) 把左驻车拉索总成接装上驻车制动平衡口。
- (2) 用4个螺栓紧固左驻车拉索总成,拧紧力矩:5.4N•m
- 2) 安装左驻车拉索总成。用螺栓把左驻车拉索总成紧固到底板上, 拧紧力矩:7.8 N•
- 3) 涂耐高温润滑脂
- 4) 安装制动蹄片。
- 5) 安装制动蹄回位弹簧。
- 6) 安装左调整器总成。
- 7) 安装前制动蹄。
- 8) 检查制动盘的安装。
- 9) 安装制动盘附件。
- 10) 调整制动蹄间隙。
- 11) 安装后轮, 拧紧力矩:103N·m
- 12) 临时紧固调整螺母。
- 13) 安装中段排气管隔热板 II。用2个螺栓紧固中段排气管隔热板 II, 拧紧力矩:5.5N•m。
- 14) 安装中段排气管焊接总成。
- 15) 安装排气管防护板。用2个螺栓安装排气管防护板。
 - 16) 检查驻车操纵机构总成行程。
 - 17) 调整驻车操纵机构总成行程。
 - 18) 检查有无排气泄漏。

图 3-38

- 19) 安装副仪表板。
- 20) 安装换档操纵机构。
- 21) 安装手刹护板橡胶组件。
- 22) 安装调速面板。