EXAMEN de Programmation linéaire

Durée: 1h30.

Tous les documents et la calculatrice sont autorisés.

Les trois premières questions du problème sont indépendantes.

Soit le programme linéaire (P) :

$$2 x_1 + x_2 \ge 4$$

$$2 x_1 + 3 x_2 \le 12$$

$$x_1, x_2 \ge 0$$

$$MAX z = 4 x_1 + 2 x_2$$

- 1) On désire résoudre (P) par la méthode des tableaux du simplexe.
 - a) Poser le premier tableau du simplexe.
 - Faire une première itération de la méthode du simplexe (il n'est pas demandé de poursuivre jusqu'à l'optimum).
- Le tableau optimal de (P) est le suivant (en désignant par x3 et x4 les variables d'écart) :

$\mathbf{c}_{\mathbf{i}}$	i	\mathbf{x}_1	X2	X 3	X4	
4	1	1	3/2 2	0	1/2	6
0	3	0	2	1	1	8
	Δj	0	-4	0	-2	z=24

- a) Donner la solution optimale de (P).
- b) On suppose que la fonction économique z dépend d'un paramètre α (α ≥ 0) et s'exprime par : z = α x₁ + 2 x₂. Déterminer l'intervalle de variation de α pour lequel la solution optimale trouvée à la question 2-a reste optimale pour la nouvelle fonction paramétrée z.
- 3) Donner le programme linéaire dual du programme initial (P).
- 4) Exprimer la solution de ce programme linéaire dual.
