Pravděpodobnost a statistika - zkoušková písemka 22.5.2012

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Telefonní ústředna během své pracovní doby od 8:00 do 18:00 přijme průměrně 200 hovorů, z nichž průměrně každý desátý je omyl. Všechny hovory přicházejí nezávisle na sobě, jejich počet během libovolného časového okamžiku je teoreticky neomezený. Určete pravděpodobnost, že

- a) během odpoledne (tj. od 12:00) přijme ústředna maximálně 50 hovorů a přitom všechny se uskuteční do 17:00,
- b) během dopoledne (tj. do 12:00) přijme ústředna alespoň 2 hovory, které jsou omyl,
- c) doba čekání na omyl bude kratší než půl hodiny,
- d) v deseti po sobě jdoucích hovorech budou maximálně 2 omyly,
- e) v daný den bude nejpozději 7.hovor omyl.

Úloha 2. Na školním výletě 5.tříd je 108 dětí. Ty je třeba rozdělit do čtyř přibližně stejně velkých skupin. Každému dítěti je tudíž přiděleno náhodné (reálné) číslo X rovnoměrně rozdělené mezi 0 a 1, přičemž pokud je číslo menší než 1/4, patří dítě do první skupiny, pokud číslo padne do intervalu 1/4 až 1/2, přidá se dítě ke druhé skupině, děti s číslem v rozmezí 1/2 až 3/4 tvoří třetí skupinu a děti s číslem nad 3/4 tvoří skupinu čtvrtou.

- a) Určete distribuční funkci, hustotu, střední hodnotu a rozptyl náhodné veličiny X.
- b) Určete pravděpodobnost, že číslo, které je náhodně vybranému dítěti přiřazeno, je z intevalu (2/3,4/3).
- c) Jaká je pravděpodobnost, že alespoň 18 dětí je ve třetí skupině? (Použijte CLV)
- d) Jaká je pravděpodobnost, že z pěti náhodně vybraných dětí je maximálně jedno ve třetí skupině? (Počítejte bez použití CLV)
- e) Určete distribuční funkci rozdělení náhodné veličiny $Y = 2X^3 1$ (kde X je stále náhodné reálné číslo rovnoměrně rozdělené mezi 0 a 1).

Úloha 3. Na 16 místech (o stejné ploše 100m^2) byly sledovány počty výskytů dané rostliny. Tyto počty jsou uvedeny v následující tabulce:

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Určete, jaké rozdělení mají tato data, a zdůvodněte.
- c) Metodou maximální věrohodnosti určete parametr(y) rozdělení z otázky b).
- d) Spočtěte výběrový průměr z dat.
- e) Statisticky otestujte na hladině 5%, zda střední počet rostlin na ploše 100m^2 je možno považovat za roven 3. Použitý test zdůvodněte.

Úloha 4. Při 200 hodech mincí padl 110krát rub a 90krát líc.

- a) Statisticky otestujte na hladině 5%, zda je mince v pořádku.
- b) Předpokládejme, že mince je v pořádku. Jaké rozdělení má náhodná veličina X_1 udávající počet padlých rubů (v oněch 200 hodech)?
- c) Označme X_2 náhodnou veličinu udávající počet padlých líců (v oněch 200 hodech). Jsou X_1 a X_2 nezávislé? Odpověď řádně zdůvodněte.
- d) Definujte nezávislost náhodných veličin X a Y.
- e) (i) Co lze říci o náhodných veličinách X a Y, jestliže kovariance cov(X,Y)=2?
 - (ii) Co lze říci, jestliže spočteme korelaci corr(X, Y) = 2?