

40 ANOS DO CURSO DE BACHARELADO EM ESTATÍSTICA DA UFBA

TEORIA DE RESPOSTA AO ITEM

MODELOS PARA ITENS DICOTÔMICOS

Lilia Costa e Silvia Morais

20 de marco de 2024

OBJETIVO:

A PRESENTAR UMA DESCRIÇÃO DOS MODELOS DICOTÔMICOS DA TRI E DAS IMPLEMENTAÇÕES NO SOFTWARE R

MODELOS PSICOMÉTRICOS:

- Teoria Clássica dos Testes TCT
- Teoria de Resposta ao Item TRI

Os modelos TCT e TRI possuem enfoques distintos, mas eles são compatíveis. Nesse sentido, há similaridades e divergências entre esses dois modelos Psicométricos (PASQUALI, 2003).

TEORIA CLÁSSICA DOS TESTES

Modelo da Psicometria Clássica é representado por:

$$T_i = V_i + \epsilon_i$$

 T_i - escore bruto observado no i-ésimo indivíduo (a soma dos pontos obtidos no teste).

 V_i - escore verdadeiro do i-ésimo indivíduo. ϵ_i - erro de medida, $E(\epsilon_i)$ =0.

TEORIA CLÁSSICA DOS TESTES **Análise dos Itens**

Coeficiente de dificuldade dos itens

$$D_i = \frac{A_i}{n_i}$$

em que,

Item	Indivíduos				Proporção de		
	1	2	•••	10	acertos	Itam maia	
Item 1	1	0	•••	0	0,9	Item mais fácil	
Item 2	0	1	•••	1	0,6		
Item 3	0	0	•••	0	0,8		
Item 4	0	0	•••	0	0,3	Item mais	
Item 5	1	0	•••	1	0,7	difícil	

 $A_i = n^{\circ}$ indivíduos que acertaram o item i; $n_i = n^{\circ}$ indivíduos que respondera o item i,

Quanto maior for o valor de D_i , mais fácil é o item.

TEORIA CLÁSSICA DOS TESTES Análise dos Itens

Discriminação do item

É a capacidade de diferenciar indivíduos com escore altos no testes de indivíduos com escore mais baixo (Pasquali, 2003).

Coeficiente de correlação ponto-bisserial

$$\rho_{pb} = \frac{\bar{X}_A - \bar{X}_T}{S_T} \sqrt{\frac{p}{1 - p}}$$

em que,

 \bar{X}_A = média dos escores dos indivíduos que acertaram o item;

 \bar{X}_T = média global dos escores do teste;

 S_T = desvio padrão do teste;

p = proporção de respondentes que acertaram o item.

TEORIA CLÁSSICA DOS TESTES Análise dos Itens

Coeficiente de correlação ponto bisserial (ρ_{pb})

- É esperado um valor positivo e elevado para ρ_{pb} .
- Valores de ρ_{pb} negativo indica que o item precisa ser examinado. Há problema com o item, por exemplo, erro no gabarito, ter mais de uma solução, não ter solução ou ter solução, mas problema de enunciado Klein(2005).
- De forma geral, valores acima de 0,30 são considerados bons.

TEORIA CLÁSSICA DOS TESTES

Análise Gráfica do Item

- ☐ Teoria Clássica dos Testes TCT Pasquali e Primi (2003)
 - A pontuação no teste é por meio de escore brutos e dependente do conjunto de itens que compõem a prova. Por exemplo, o escore do sujeito depende e varia segundo o teste aplicado seja mais fácil ou mais difícil.
 - As comparações entre indivíduos é possível somente quando foram submetidos às mesmas provas, ou pelo menos, a formas paralelas de testes (avaliações que medem a mesma coisa, mas possuem itens diferentes).
 - O foca da análise é na prova como um todo.
- ☐ Teoria de Resposta ao Item TRI
 - Muda o foco de análise da prova como um todo para a análise de cada item que compõe a prova.
 - É possível construir uma escala de habilidade que permite acompanhar o nível de conhecimento adquirido pelo aluno ao longo do tempo.

TEORIA DE RESPOSTA AO ITEM

Modelo Logístico de 1 Parâmetro - Modelo de Rasch

$$P(U_{ij} = 1 | \theta_j) = \frac{1}{1 + e^{-D(\theta_i - b_i)}}, \text{ com } i = 1, 2, ..., I \ e \ j = 1, 2, ..., n.$$

 U_{ij} - variável dicotômica (1- o individuo j acerta o item i ou 0 - o indivíduo j erra item i);

 θ_j - habilidade (traço latente) do indivíduo j;

 $P(U_{ij} = 1 | \theta_j)$ - probabilidade de um indivíduo j responder corretamente o item i, dada uma habilidade θ_j responder corretamente o item i;

 b_i - parâmetro de dificuldade (parâmetro de posição) do item i;

D= valor constante (D=1 – métrica logística e D=1,7 métrica normal).

CURVA CARACTERÍSTICA DO MODELO - ICC

Logístico de 1 Parâmetro

A habilidade do indivíduo (θ_j) e o nível de dificuldade do item ($\mathbf{b_i}$) são medidos em uma mesma escala. Geralmente, nas aplicações prática usa a escala (0, 1).

CURVA CARACTERÍSTICA DO ITEM - CCI

Análise Gráfica do Item

Fonte: Pasquali (2017), p. 87

Quanto maior for o parâmetro de dificuldade (b_i), maior deve ser o nível de habilidade do indivíduo (θ_j) para que ele acerte o item i, com probabilidade de 0,5. Na prática, espera-se valores de b_i no intervalo [-3; +3].

TEORIA DE RESPOSTA AO ITEM

Modelo Logístico de 2 Parâmetros

$$P(U_{ij} = 1 | \theta_j) = \frac{1}{1 + e^{-Da_i(\theta_i - b_i)}}, \qquad i = 1, 2, ..., I \ e \ j = 1, 2, ..., n.$$

- U_{ij} variável dicotômica (1- o individuo j acerta o item i ou 0 o indivíduo j erra item i);
- θ_j habilidade (traço latente) do indivíduo j;
- $P(U_{ij} = 1 | \theta_j)$ probabilidade de um indivíduo j responder corretamente o item i, dada uma habilidade θ_j responder corretamente o item i;
- b_i parâmetro de dificuldade (parâmetro de posição) do item i;
- a_i parâmetro de discriminação (grau de inclinação) do item i;
- D= valor constante (D=1 métrica logística e D=1,7 métrica normal).

CURVA CARACTERÍSTICA DO ITEM - CCI

Análise Gráfica do Itens

Fonte: Silva (2017), p. 99.

Itens com mesma dificuldade

Fonte: Silva (2017), p. 100.

Itens com dificuldades distintas

O parâmetro discriminação o item (a_i) corresponde a inclinação da curva (ângulo) no ponto de inflexão, em que a probabilidade de acertar o item é 0,50. O valor de $a_i>0$, mas na prática espera-se valores no intervalo de [0; 2].

TEORIA DE RESPOSTA AO ITEM

Modelo Logístico de 3 Parâmetros

$$P(U_{ij} = 1 | \theta_j) = c_i + (1 - c_i) \frac{1}{1 + e^{-Da_i(\theta_i - b_i)}}, \qquad i = 1, 2, ..., I \ e \ j = 1, 2, ..., n.$$

 U_{ij} - variável dicotômica (1- o individuo j acerta o item i ou 0 - o indivíduo j erra item i);

 θ_i - habilidade (traço latente) do indivíduo j;

 $P(U_{ij} = 1 | \theta_j)$ - probabilidade de um indivíduo j responder corretamente o item i, dada uma habilidade θ_j responder corretamente o item i;

- b_i parâmetro de dificuldade (parâmetro de posição) do item i;
- a_i parâmetro de discriminação (grau de inclinação) do item i;
- c_i probabilidade de acerto casual do item i (0< c_i <1).
- D= valor constante (D=1 métrica logística e D=1,7 métrica normal).

CURVA CARACTERÍSTICA DO ITEM - CCI

Modelo Logístico de Três Parâmetros.

Fonte: Andrade, Tavares e Valle (2000), p. 11.

O parâmetro b representa a habilidade necessária para se ter uma probabilidade de acerto igual a (1+c)/2.

EXEMPLO DE ANÁLISE GRÁFICA DOS ITENS.

Exemplos de curvas associadas aos itens

Itens de um teste corrigidos como certo/errado (1=certo e 0 =errado).

Indivíduo	Item 1	Item 2	Item 3
1	1	0	0
2	0	1	0
3	0	0	0
4	0	0	1
•••	•••	•••	•••

Obs.: Item 2 apresenta um comportamento não desejável

EXEMPLO: PROBABILIDADE DE ACERTAR UM ITEM VARIANDO OS PARÂMETROS DOS ITENS E DAS HABILIDADES.

Itom		Parâ	D(H = 110)		
Item	\boldsymbol{a}_i	b_i	c_i	$ heta_j$	$P(U_{ij}=1 \theta_j)$
1	1,00	-3,00	0,00	1,00	1,00
2	1,500	-2,00	0,10	-2,10	0,55
3	2,00	-0,50	0,15	-1,3	0,20
4	2,5	0,00	0,20	0,50	0,91
5	2,10	1,30	0,11	1,00	0,34
6	1,80	2,10	0,25	2,05	0,60
7	1,50	3,00	0,16	2,50	0,34

Item mais fácil

Item mais difícil

Fonte: Pasquali (2017), p. 90

SUPOSIÇÕES DA TEORIA DE RESPOSTA AO ITEM

- Unidimensionalidade: indica que somente uma habilidade é responsável pela resposta a todos os itens do teste. Na prática, é suficiente admitir que exista uma habilidade dominante (fator ou traço latente dominante) responsável pelo desempenho no teste.
- Independência local: mantidas constantes as habilidades que afetam o teste, as respostas dos indivíduos a quaisquer dois itens são estatisticamente independentes. Ou seja, cada item é respondido pelo indivíduo em função da habilidade dominante.

FUNÇÃO DE INFORMAÇÃO DO ITEM

Função de informação de um item para o modelo de 3 parâmetros é dada por:

$$I_i(\theta) = D^2 a_i^2 \frac{\left[1 - P_i(\theta)\right]}{P_i(\theta)} \left[\frac{P_i(\theta) - c_i}{1 - c_i}\right]^2$$

 $I_i(\theta)$ é a "informação" fornecida pelo item i no nível de habilidade θ ;

$$P_i(\theta) = P(X_{ij} = 1 | \theta) e Q_i(\theta) = 1 - P_i(\theta).$$

O valor de $I_i(\theta)$ será maior quando:

- a) b_i se aproxima de θ ;
- b) maior for o a_i ;
- c) c_i se aproximar de 0.

FUNÇÃO DE INFORMAÇÃO DO TESTE

Função de informação de um teste para o modelo de 3 parâmetros é dada por:

$$I(\theta) = \sum_{i=1}^{I} I_i(\theta)$$

 $I_i(\theta)$ é a "informação" fornecida pelo item i no nível de habilidade θ .

 $I(\theta)$ é a "informação" fornecida pelo teste no nível de habilidade θ .

Forma alternativa de representar a função de informação do teste:

$$EP(\theta) = \frac{1}{\sqrt{I(\theta)}}$$

FUNÇÃO DE INFORMAÇÃO

Software R - Implementação dos modelos:

Modelo Logístico de 1 Parâmetro (M1P)

b_i – parâmetro de dificuldade

Modelo Logístico de 2 Parâmetro (M2P)

b_i – parâmetro de dificuldade

 a_i – parâmetro de disciminação

Modelo Logístico de 3 Parâmetros (M3P)

b_i – parâmetro de dificuldade

 a_i – parâmetro de disciminação

 c_i – parâmetro acerto casual

Funções implementadas no pacote "Itm".

rasch()	M1P
ltm()	M2P
tpm()	M3P
grm ()	Modelo de resposta gradual

Os dados usado no exemplo estão disponíveis no Software R e provêm do artigo "Fitting a Response Model for n Dichotomously Scored Items" dos autores Bock and Lieberman (1970).

O LSAT é um teste usado para admissão nas faculdades de Direito no Canadá. Neste teste, os participantes são avaliados por meio de uma redação e uma prova de múltipla escolha.

O banco de dados LSAT7 contém respostas de 1000 pessoas em 5 itens da prova objetiva.

```
Pacote e dados
#####################################
Pacote e dados
#install.packages("mirt")
library("mirt")
#install.packages("ltm")
library(ltm)
#install.packages('psych')
library(psych)
#install.packages('nFactors')
library(nFactors)
```

```
##Análise descritiva dos itens
descript(LSAT)
#Matriz de correlação tetracórica dos itens
tetrachoric(data)
```

####### Unidimensionalidade: Analise Fatorial

(evalues<-eigen(tetrachoric(data)\$"rho")\$values)plotnScree(nScree(evalues, model="factors"), main="Scree Plot & Parallel Analysis")


```
M1P - Ajustando o modelo 1 parâmetro
fit1=rasch(data)
summary(fit1)
coef(fit1)
  > coef(fit1)
          > coef(fit1)
        Dffclt Dscrmn
   Item.1 -1.8480726 1.01097
                                 #Grau de dificuldade dos itens: 5<1<3<2<4
   Item.2 -0.7824312 1.01097
   Item.3 -1.4451756 1.01097
   Item.4 -0.5158415 1.01097
   Item.5 -1.9713999 1.01097
```

#Grau de dificuldade dos itens: 5<1<3<2<4 #Grau de discriminação dos itens: 5<4<1<2<3

```
Scoef(fit3)

Gussng Dffclt Dscrmn

Item.1 2.846978e-06 -1.85274463 1.0070895

Item.2 2.981380e-01 -0.04140655 1.9531094

Item.3 5.032448e-04 -1.06835650 1.6657102

Item.4 3.110354e-12 -0.65527131 0.7354424

Item.5 1.406467e-04 -2.43421622 0.7676795
```

#Teste de razão de verossimilhança entre modelos M1P e M2P para verificar qual tem o #melhor ajuste.

anova(fit1, fit2)

> anova(fit1, fit2)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value
fit1 5341.80 5371.25 -2664.90

fit2 5337.61 5386.69 -2658.81 12.19 4 0.016

#Teste de razão de verossimilhança entre modelos M2P e M3P para verificar qual tem o #melhor ajuste.

anova(fit2, fit3)

> anova(fit2, fit3)

Likelihood Ratio Table
 AIC BIC log.Lik LRT df p.value
fit2 5337.61 5386.69 -2658.81
fit3 5346.11 5419.73 -2658.05 1.5 5 0.913

```
####### Curva Caracteristica do Item – CCI
plot(fit2, lwd = 2, cex = 1.2, legend = TRUE, cx = "bottomright", cex.main = 1.5, cex.lab
= 1.3, cex.axis = 1.1)
```


####### Curva de Informação do Item – CII plot(fit2, type = "IIC", lwd = 2, cex = 1.2, legend = TRUE, cx = "topright", cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.1)


```
####### Curva de Informação do Teste – CI
Tplot(fit2, type = "IIC", items = 0, lwd = 2, cex = 1.2, legend = TRUE, cx = "topright", cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.1)
```


Estimando a Habilidade (traço latente) por padrão de respostas ltm::factor.scores(fit2)

 $ltm(formula = data \sim z1)$

Scoring Method: Empirical Bayes

Factor-Scores for observed response patterns:

	Item.1	Iten	n.2 Ito	em.3	Item	.4 Item.5 Obs	Exp	z1	se.z1
1	0	0	0	0	0	12	10.089	-1.816	0.675
2	0	0	0	0	1	19	18.496	-1.495	0.650
3	0	0	0	1	0	1	4.502	-1.482	0.649
4	0	0	0	1	1	7	10.660	-1.179	0.637

REFERÊNCIAS

- ☐ ANDRADE, Dalton Francisco de; TAVARES, Heliton Ribeiro; VALLE, Raquel da Cunha. Teoria da Resposta ao Item: conceitos e aplicações. **Sinape**, 2000. 164 p.
- ☐ KLEIN, Ruben. Testes de Rendimento. In: Alberto de Mello e Souza (Org.). **Dimensões** da **Avaliação Educacional**. Petrópolis: EDITORA VOZES, 2005, p. 110-138.
- LORD, Frederic M. Applications of item response theory to practical testing problems. Routledge, 2012.
- SILVA, Eder Alencar. **Transposição da Teoria da Resposta ao Item: uma abordagem pedagógica.** Dissertação (Mestrado)- Instituto de Matemática e Estatística, Universidade Estadual de São Paulo, São Paulo, 2017
- PASQUALI, Luiz. **Psicometria: teoria dos testes na psicologia e na educação**. Editora Vozes Limitada, 2017.
- → PASQUALI, Luiz; PRIMI, Ricardo. Fundamentos da teoria da resposta ao item: TRI. Avaliação Psicológica: Interamerican Journal of Psychological Assessment, v. 2, n. 2, p. 99-110, 2003.
- RIZOPOULOS, Dimitris. Itm: An R package for latent variable modeling and item response analysis. **Journal of statistical software**, v. 17, p. 1-25, 2007.