一、填空题(46分)

1、请在下面空白处画出图示电路的最简等效电路图。

2. R_{ab} = _____ Ω

4、非线性电阻元件 R 的伏安特性为 $u = 3i^2 + 2i$, i > 0。

已知 Us=20V 时, i=2A,

则静态电阻 R=____Ω

动态电阻 R_d = Ω

5、图示电路换路前已达稳态, t=0s 开关闭合, 已知 $U_s=10\varepsilon(t)V$, $u_c(0_-)=2V$, C=0.5F, L=2H, $R=2\Omega$, 请以 $i_L(t)$ 为电路变量写出电路的微分方程和初始条件(要求带入参数给出具体数值)。

该电路的过渡过程的性质为:_____(振荡、非振荡,临界非振荡)。

6、N₀为同一线性无源纯电阻网络,两次接线及测量如图所示,测得 I₁=10A, I₂=2A,

- 7、 N_s 为线性含源网络, 当 $R = 5\Omega$ 时,
 - I=1.6A; 当 $R=2\Omega$ 时, I=2A。

则当 R=______Ω时,R 获得最大功率,

此最大功率 P_{max} _____W。

$$8, \frac{u_0}{u_0} = _{---}$$

9、受控源的输出功率 P=_____W。

- 二、(12分)电路级非线性电阻 u-i 特性如图所示, 求:
 - (1)虚线框部分的戴维宁等效电路;
 - (2)非线性电阻的电压 u, 电流 i 。

- 三、(10分)换路前电路以达稳态, t=0时开关S闭合。
 - (1)分别求出u(0+), u(∞), τ。
 - (2)求 t>0 时的 u(t)。

四、(12 分)换路前电路已达稳态,已知 $u_s(t)=\begin{cases} 4V,\ t<0s\\ 10V,\ t>0s \end{cases}$ $i_s(t)=2\delta(t)(A),\ \ \mathrm{rt}\geq 0$ 时的 $\mathrm{u}_\mathrm{c}(t)$ 。 2Ω is $0.\ 1F + \mathrm{u}_\mathrm{c}$ ic ic

五、(10分)以 0 为参考点,列出 1 结点的节点电压方程;按照指定回路电流,写出 1 回路的回路电流方程。注意:如所列方程需增设电路变量,请在图中标出电路变量并写出补充方程,其余方程不必列写。

