

3 V Stereo Headphone Power Amplifier

Overview

The LA4805V is a power IC developed for use in stereo headphones. It includes low frequency enhancement, beep function and output control circuits on-chip. Furthermore, the LA4805V realizes a high S/N ratio, a high ripple exclusion ratio, and low current drain.

Functions

- Stereo headphone power amplifier
- Low frequency enhancement (L.BOOST)
- · Beep amplifier
- Output suppression circuit (PVSS)
- · Power switch
- · Muting switch

Features

- Low current drain (8.3 mA typical)
- High S/N ratio (90 dB typical, 13 μV)
- High ripple exclusion ratio (75 dB typical)
- No output electrolytic capacitors required
- Ultra-miniature package (SSOP-30)

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		4.5	V
Allowable power dissipation	Pd max		500	mW
Operating temperature	Topr		-15 to +50	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		3.0	V
Recommended load resistance	R _L		16 to 32	Ω
Operating supply voltage range	V _{CC} op		1.8 to 3.6	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Package Dimensions

unit: mm

3191-SSOP30

Operating Characteristics at Ta = 25°C, V_{CC} = 3.0 V, f = 1 kHz, 0.775 V = 0 dBm, R_L = 10 k Ω (L.B), R_L = 16 Ω (PWR)

Parameter	Courab al	Conditions	Ratings			T
	Symbol		min	typ	max	Unit
[L.BOOST +PVSS + PWR]						
Quiescent current	I _{CCO} 1	IC off		0.05	1.0	μΑ
	I _{CCO} 2	Muting on	1.0	2.7	5.0	mA
	I _{CCO} 3	Rg = 0, L.BST/PVSS off	4.0	8.3	12.0	mA
	I _{CCO} 4	Rg = 0, L.BST/PVSS on	4.5	8.6	12.5	mA
[PWR AMP]						
Output power	PO	THD = 10%	15	25		mW
Voltage gain	VG1	$V_O = -10 \text{ dBm}$	15.7	17.7	19.7	dB
Channel balance	V _{BL}	$V_O = -10 \text{ dBm}$	-1	0	1	dB
Total harmonic distortion	THD1	V _O = 0.35 V		0.1	0.3	%
Output noise voltage	V _{NO} 1	Rg= 0, DIN AUDIO		13	25	μV
Crosstalk	CT1	$V_{O} = -10 \text{ dBm}, \text{ TUN} = 1 \text{ kHz}, \text{ Rg} = 0$	35	45		dB
Ripple exclusion ratio	SVRR1	$V_{CC} = 1.8 \text{ V}, f = 100 \text{ Hz}, V_{R} = -20 \text{ dBm},$ TUN = 100 Hz	60	75		dB
Muting attenuation	ATT _M	THD = 1%, Rg = 0 k Ω	80	90		dB
Beep output	V _{O BEEP}	V _{IN} = -16 dBm (sine wave)	1.0	3.0		mV
Output current offset	V _{DC OFF}	V _{IN} = 0 V, Rg = 0	-20	0	20	mV
Input resistance	Ri		7	10	13	kΩ
[L.BOOST]			•	1		1
Voltage gain	VG2	V _{IN} = -30 dBm, boost on/off	-3.2	-5.2	-7.2	dB
D 48	L.BTS1	$V_{IN} = -30$ dBm, f = 100 Hz, boost on	13	15	17	dB
Boost*	L.BTS2	$V_{IN} = -30$ dBm, f = 10 kHz, boost on	3	5	7	dB
Maximum output voltage	V _O max	THD = 1%, boost on	0.2	0.4	0.6	V
Total harmonic distortion	THD2	$V_O = 0.1 \text{ V, boost on}$		0.085	0.25	%
Crosstalk	CT2	$V_O = -20$ dBm, Rg = 0, boost on	25	30		dB
Output noise voltage	V _{NO} 2	Rg = 0, boost off		3	10	μV
Ripple exclusion ratio	SVRR2	Rg = 0, f = 100 Hz, $Vg = -20 \text{ dBm}$, boost on	50	60		dB
[L.BOOST + PWR]			•		•	•
Voltage gain	VG3	$V_{IN} = -30$ dBm, f = 1 kHz, boost on/off	8	10	12	dB
Output voltage	V _O 1	$V_{IN} = -30$ dBm, f = 100 Hz, boost on	0.13	0.23	0.33	V
Total harmonic distortion	THD3	$V_{IN} = -30 \text{ dBm}, f = 100 \text{ Hz}, \text{ boost on}$		0.14	0.5	%
Crosstalk	СТЗ	$V_O = -20$ dBm, $R_V = 0$ Ω , boost on	25	32.5		dB
[L.BOOST + PVSS + PWR]: When \	/ _O 1 is maximum			•		•
PVSS voltage	V _{O PVSS} 2	V _{IN} = -30 dBm, PVSS2	-32.5	-37.5	-42.5	dBm
PVSS width	V _{O PVSS} W	The input amplitude when the output is +3 dB over the starting point	25	30	35	dB
PVSS distortion	THD _{PVSS}	V _{IN} = -40 dBm, PVSS2		0.55	2.0	%
PVSS starting input	V _{IN PVSS}	PVSS2	-41	-46	-51	dBm

Pin Assignment and Block Diagram

Unit (resistance: Ω)

Sample Application Circuit

Unit (resistance: Ω , capacitance: F)