Sensor Signal Processing

Prof. Dr.-Ing. Andreas König

Lehrstuhl Integrierte Sensorsysteme

FB Elektrotechnik und Informationstechnik Technische Universität Kaiserslautern

Fall Semester 2005

© Andreas König Slide6-1

Course Contents

- 1. Introduction
- 2. Signal Processing and Analysis
- 3. Feature Computation
- 4. Cluster Analysis
- 5. Dimensionality Reduction Techniques
- 6. Data Visualization & Analysis
- 7. Classification Techniques
- 8. Sensor Fusion
- 9. Systematic Design of Sensor Systems
- 10. Outlook

Chapter Contents

Sensor Signal Processing Data Visualization

6. Data Visualization & Analysis

- 6.1 Motivation
- **6.2** Interactive visualization
- 6.3 Component planes
- 6.4 Grid modes
- 6.5 Attributes & hierarchical access
- 6.6 Interactive Navigation
- 6.7 Mapping reliability
- 6.8 Tools
- 6.9 Applications
- 6.10 Summary

© Andreas König Slide6-3

Motivation

Sensor Signal Processing Data Visualization

➤ Design decisions at multiple steps of system design require insight into the potentially complex nature of underlying data:

Sensor Signal Processing Motivation

Data Visualization

Representation must be transparent, intuitive, and ergonomic:

This representation is not well adapted to human structure perception capabilities

© Andreas König Slide6-5

Motivation

Sensor Signal Processing Data Visualization

Better approach:

© Andreas König Slide6-6

Motivation Sensor Signal Processing Data Visualization Finding the Relevant Information – Choice of Approach Means to determine salient variables v_i that are significant redundant redundant redundant correlated Variables v_i Underlying Structure

© Andreas König Slide6-9

Sensor Signal Processing Motivation Data Visualization Finding the Relevant Information – Interactive Human-Centered Approach (Desired) Mapping effective display Ah, there is Variables DR some structure interactive, manipulation Interactive assessment of v_i : DR & multivariate visualization Underlying **Interactive** operation Structure Gives new insights Helps to ask the right questions ... Effective > 3 decades (OLPARS) © Andreas König Slide6-11

Interactive Visualization

- ➤ Dimensionality reduction and visualization by manual feature selection
- Visualization by multiple (linked) pairwise plots, six for Iris data:
- Sideviews of hypercube
- ➤ Views grow with

$$\frac{M(M-1)}{2}$$

- ➤ Limited applicability
- ➤ Gets intractable for data with *M* >> 1
- A priori knowledge required
- ➤ **Better:** Automatic feature selection or projection, e.g., NLM

Sensor Signal Processing Interactive Visualization Data Visualization Applicability of dimensionality reduction methods for visualization: Speed Ease of use Reliability > A plethora of methods can be DR Method observed in the literature & on Scalability Properties the tool market > What motivates the choice of a method (method combination) for Amenable to application? human perception

© Andreas König Slide6-13

Interactive Visualization

Sensor Signal Processing Data Visualization

➤ Interactive Data Visualization and Explorative Analysis Architecture

- ➤ Visualization standard: Static (2D-) scatter plot
- Advanced Visualization by enhanced user interaction & CAD-functionality

© Andreas König Slide6-15

Component Planes

- Generalization from SOM component planes
- The values of one feature are displayed at the projection points
- ➤ Like Hinton diagrams
- Several planes can be displayed and analysed
- Correlating and salient features can be detected
- Multicomponent plots exploit human texture perception for analysis

Component Planes

Sensor Signal Processing Data Visualization

Extension to Multi-component plot based on radar-plot concept:

© Andreas König Slide6-17

Grid Modes

- ➤ Different grid modes for auxiliary (approximated) boundary information:
- Grid modes complementing the SOM mesh
- Sequence order of data vectors can be displayed
- Voronoi tesselation give exact quantization and 1-NN classification boundaries for 2D-data
- An adequate idea is given for projection of multidimensional data

Grid Modes

- > Detection of Outliers and Identical Vectors by Visualization
- > Outliers and identical vectors are pathological cases for system design
- ➤ At high point densities mutual occlusion of points becomes a problem

- ➤ Variable-sized fields and colored class-specific VT can alleviate this problem
- > Outliers and isolated vectors in different class regions can easily be identified
- ➤ Identical vectors are marked by an hexagonal shape
- > Stacking by mouse click rotates identical or strongly occluding vectors
- > Fast troubleshooting: Pathological vectors can be tracked-back in the database

© Andreas König Slide6-19

Attributes & Hierarchical Access

Sensor Signal Processing Data Visualization

➤ Attribute Display and Hierachical Database Access

Interactive Navigation

- ➤ Interactive Navigation and Hierarchical Analysis
- > The methods described so far alleviate first insight in the data structure
- ➤ For very large data sets with considerable local density variations, analysis on a single scale will not be feasible
- Global to local analysis across scales (zoom/pan) offers superior performance:

- > Focus of interest can conveniently be shifted across scales by zooming in or out and in the same scale by shifting the navigation window
- > Descending down to local detail, mapping quality and errors become an issue

© Andreas König Slide6-21

Interactive Navigation

Sensor Signal Processing Data Visualization

➤ Different implementation in QuickCog with pop-up navigation window and drag&drop navigation

> Scale is preset from menu entry or interactively by mouse operation

Mapping Reliability

Sensor Signal Processing Data Visualization

- ➤ Assessment of Mapping Quality and Mapping Errors
- ➤ With increasing intrinsic dimension, all mapping methods will introduce mapping errors
- ➤ Visualization results may be subject to twists and distortions that can lead to invalid conclusion drawing & corrupt knowledge aquisition
- ➤ How can mapping quality be measured and mapping faults be disclosed?
- > First proposed measure: Distance preservation E with

$$E = \frac{1}{c} \sum_{j=1}^{N} \sum_{i=1}^{j} \frac{(d_{X_{ij}} - d_{Y_{ij}})^{2}}{d_{X_{ij}}}$$
(6.1)

© Andreas König Slide6-23

Mapping Reliability

Sensor Signal Processing Data Visualization

 \triangleright **Second proposed measure:** Topology preservation q_m with

$$q_m = \frac{1}{3n * N} \sum_{i=1}^{N} q_{m_i}$$
 (6.2)

- ➤ Local quality q_{mi} is computed by determining the n-nearest-neighbors NN_{ji} of the ith pattern $(i \in [1, n], j \in [1, N])$
- \triangleright Rank order of the nearest-neighbors in **X** and **Y** are compared and q_{mi} values are assigned according to the following simple assignment scheme:

$$\begin{array}{lll} \mathbf{q}_{\mathrm{mi}} = 3 & \text{if NN}_{j\mathrm{i}} \text{ in } \mathbf{X} = \mathrm{NN}_{j\mathrm{i}} \text{ in } \mathbf{Y} \\ \mathbf{q}_{\mathrm{mi}} = 2 & \text{if NN}_{j\mathrm{i}} \text{ in } \mathbf{X} = \mathrm{NN}_{j\mathrm{l}} \text{ in } \mathbf{Y} \text{ with } \quad l \in [1,n]; j \neq i \\ \mathbf{q}_{\mathrm{mi}} = 1 & \text{if NN}_{j\mathrm{i}} \text{ in } \mathbf{X} = \mathrm{NN}_{j\mathrm{t}} \text{ in } \mathbf{Y} \text{ with } \quad t \in [n,m]; n < m \\ \mathbf{q}_{\mathrm{mi}} = 0 & \text{else} \end{array}$$

 \triangleright The topology preservation measure q_m returns 1.0 for perfect preservation

Mapping Reliability

Sensor Signal Processing Data Visualization

➤ For typical parameter settings n=4 and m=10 an application example for *Iristrain* and *Mech*₁ data is given:

Data set	NLM		Visor	
	q _m	Е	q _m	E
Iristrain	0.6667	0.0098	0.6711	0.0093
Mech ₁	0.4527	0.0933	0.4207	0.1628

 \succ In addition to the global measures E and q_m , local information for each point in the projection can be computed by local distance preservation E_i and local topology preservation q_{mi}

These can be superimposed on the mapping:

- ➤ Local mapping faults can be disclosed
- \triangleright O(N²) complexity of the quality measure!
- > Consumes more time than the mapping itself
- **Remedy:** Fast interactive local alternative

© Andreas König Slide6-25

Mapping Reliability

Sensor Signal Processing Data Visualization

> Validation of mapping quality by actual local neighborhood display

- ➤ The actual nearest neighbors in **X** are computed for an interactively chosen pattern
- The projection points corresponding to these NN in Y are threaded by a red line in the visualization
- ➤ This discloses mapping errors at low computational cost for valid conclusion drawing and knowledge acquisition
- ➤ Similar to q_{mi}
- Compatible with navigation & hierarchical analysis

Mapping Reliability

Sensor Signal Processing Data Visualization

> Alternative ALND implementations:

Diminishing linewidth with growing distance from reference point improves the visualization

➤ Instead of point threading by a polyline, a pairwise connection can be beneficial & more lucid

© Andreas König Slide6-27

Hierarchical Visualization

- ➤ None of the presented methods will return in general a satisfying global and local mapping quality
- > Three main strategies for improving mapping quality can be observed:
 - 1) Hierachical clustering and mapping of the data
 - 2) Hierarchical mapping & navigation approach:
 - Global to local shift of the mapping stress implemented by a limited or shrinking neighborhood during the mapping computation

Hierarchical Visualization

Sensor Signal Processing Data Visualization

➤ Advanced Projection and Visualization Techniques: Example of Case 2

- > Artificial 3D sphere data
- Points distributed only on the sphere shell
- ➤ Intrinsically 3D data!
- ➤ Mapping error to 2D unavoidable
- Sphere is flattended: ROI contains vectors from front & rear
- > Recomputation separates data!

Remapping of data comprised in ROI

© Andreas König Slide6-29

Hierarchical Visualization

- Advanced Projection and Visualization Techniques: Example of Case 1
- Computational effort & mapping quality can be traded-off in a hierarchical data clustering and mapping approach
- Data is first quantized by SOM, c-means, or other clustering method
- > Then, the K centroids of the quantized data are mapped by NLM
- \triangleright The complete data set is then mapped by NLM(R)
- > Considerable speed-up can be achieved:

$$SMF = \frac{SA_{complete}}{SA_{hier}}$$

$$with \quad SA_{complete} = iterations * \frac{N*(N-1)}{2}$$

$$and \quad SA_{hier} = iter_{t} * \frac{K*(K-1)}{2} + iter_{r} * N * K$$

$$(6.3)$$

- ➤ Obviously, K controls computational effort & mapping quality
- > The required computational effort for clustering must be included

Sensor Signal Processing Hierarchical Visualization Data Visualization Hierarchical Mapping of Iris Based on NLM and NLMR Database Quantization of Iris data by SOM > Optional component plane visualization Weight SOM **NLM Mapping** of 16 centroids Weight NLM NLM Weight Watcher Recall ➤ Mapping of all 150 samples by NLM(R) © Andreas König Slide6-31

Hierarchical Visualization

- Quantitative Assessment of Hierarchical Mapping
- ➤ The introduced distance & topology preservation measures are employed for quantitative comparison of three regarded data sets:

Data set	Mapping	E	q _m
Iris data	NLM	0.01439	0.6366
Iris data	NLM(R)	0.01791	0.5000
Iris data	BP	0.66365	0.4794
Mechatronic	NLM	0.02875	0.1671
Mechatronic	NLM(R)	0.05713	0.1130
Mechatronic	BP	0.75846	0.1059
RIAD	NLM	0.05116	0.2421
RIAD	NLM(R)	0.10400	0.1754
RIAD	BP	0.14935	0.1340

➤ The hierarchical mapping approach based on NLM & NLM(R) outperforms the NLM & ANN approach in terms of complexity, speed, user convenience, and results

© Andreas König Slide6-35

Hierarchical Visualization

Sensor Signal Processing Data Visualization

- Mapping Quality vs. Computational Expense in Hierarchical Mapping
- ➤ The introduced distance & topology preservation measures are employed for quantitative comparison of three regarded data sets:

➤ Gradual increase of topoloy preservation & decrease of distance preservation error can be observed for increasing K. Nonmonotonicity is due to chosen clustering procedures (single runs)

Tools

- Tools for Interactive Multivariate Data Visualization: WeightWatcher
- Research objective: Achievement of a transparent & intuitive MMI to access and analyse multivariate data for information processing
- ➤ Employment of efficient projection techniques, enhanced user interaction, and CAD-inspired functionality
- Optimum exploitation of the remarkable human perceptive and associative capabilities
- ➤ Thus, the **WeightWatcher** (WW) was conceived for visual analysis of neural networks
- The concept was generalized to arbitrary multivariate data sets
- WW is part of QuickCog, a platform for fast & transparent design of vision & cognition systems

© Andreas König Slide6-37

Tools

- > WW in QuickCog serves for feature space visualization & assessment
- ➤ All described visualization techniques are implemented by WW
- ➤ The QuickMine-Toolbox comprises projection & clustering methods with WW
- An MS-Excel-Macro allows import of arbitrary application data
- QuickMine can be employed for general data visualization & analysis tasks

Tools

Sensor Signal Processing Data Visualization

- Tools for Interactive Multivariate Data Visualization: Acoustic Navigator
 - AN is dedicated to psychoacoustics & sound engineering
 - Integrated in the processing hierarchy of PATS system
 - Combines visualization & auralization in the analysis process
 - Global & local sound data visualization
 - Search functions & directed navigation
 - Tentative edit functions for complex pattern synthesis [Sammon 69]

© Andreas König Slide6-39

Applications

Sensor Signal Processing Data Visualization

Benefits of Dimensionality Reduction and Visualization for the Rapid Design of Vision & Cognition Systems:

- > Clustering & structure in the data can be observed
- ➤ Discriminance of the computed feature set can be assessed
- Assessment of different feature computation methods is feasible
- > Open-loop parameter optimization for feature computation is feasible
- > Interactive selection of significant features by WW component planes
- > Outliers & identicals can be easily identified and eliminated from the data set
- ➤ Human errors during data acquisition, labeling & filing can be detected
- ➤ Large unlabeled or partially labeled data sets can be manually or semiautomatically according to human to the human observation of data structure and implied similarity in the projection
- > Classification errors can be spatially located in the feature space projection
- ➤ Understanding of design problems & trouble shooting is alleviated

Applications

Application Examples: BGA X-Ray Inspection in Electronics Manufacturing

© Andreas König Slide6-41

Applications

Sensor Signal Processing Data Visualization

➤ Application Example: Eye-Tracking System (s. Introduction)

FS for Eye-Shape Classification:

- FSSPEA finds best solution
- Generalization is affected!
- SFS solution for HW-design

Feature space for FSSPEA

Method	Train	Test	Features
ORG	0,992500	0,981667	24
SFS	0,997500	0,928333	3
SBS	0,989333	0,981667	12
PM	0,997500	0,959167	6
SGA	0,997333	0,969167	12
FSSPEA	0,997500	0,928333	3

Applications

Sensor Signal Processing Data Visualization

➤ Application Example: Eye-Tracking System <u>Hardware</u>

RNN Low-Power Analog Eye-Shape Classifier:

- 12-D Gabor jet reduced to 6 features by AFS
- RNN constrained to Manhattan distance, T_{RNN}=6
- 6 bit RAMDACs for weights
- AMS 0.6µm CUQ CMOS-technology
- Cell size 1595 um x 184 um (conservative)
- Power dissipation 348,9 nW, 3,5x10⁻¹⁰ J
- Classification speed: 1ms/pattern, R=100%

© Andreas König Slide6-43

Summary

- ➤ This chapter gave an introduction to and a focused survey of the principles and techniques for interactive visualization of multivariate data
- ➤ The strong relation with dimensionality reduction techniques, in particular distance preserving mappings, was pointed out
- ➤ Various auxiliary visualization modes for components, grids, attributes, hierarchical database access and outlier detection werde presented
- ➤ In particular, the issue of ubiquitous mapping errors was addressed and quantitative as well as fast visual assessment criteria were introduced
- ➤ Improvement of the concept by hierarchical approaches was introduced
- ➤ Two dedicated tools, the WeightWatcher & the Acoustic Navigator were presented
- ➤ Application examples were given, e.g., rapid prototyping and transparent design of recognition systems