Research Methods:

Nonparametric Procedures

Laurens Rook (Delft University of Technology)

Statistics Lectures 1-5

❖ All the statistics lectures thus far (*z*-score, *z*-test, *t*-test, regression) assumed that the data were normally distributed

* We even discussed a test (Shapiro-Wilk) to find out if this is the case for a variable under investigation

Chi-square distributions

- ❖ What if we have nominal (categorical) data that do not follow a normal a distribution?
- Nonparametric statistical tests: distribution-free tests on proportions or relationships within a population for nominal / categorical data (described with the chi-square test statistic)

Examples

The shape of the chi-square distribution for different values of df. As the number of categories increases, the peak (mode) of the distribution has a larger chi-square value.

Nonparametric Procedures

Nonparametric Procedures (Ch. 10, mod. 21)

- Procedures to analyze categorical data that are not normally distributed:
 - ☐ The chi-square goodness-of-fit test --> for one nominal variable / category
 - ☐ Chi-square test of independence --> for two nominal variables / categories

Chi-square in JASP

- * The chi-square goodness-of-fit
 - --> we discuss how to **manually** compute and interpret it
- * The chi-square test of independence does exist in JASP
 - --> we discuss how to **manually** compute or run it in **JASP** and how interpret it

1. Chi-square goodness-of-fit test

- **❖** What is it?
- When do you use it?
- \bullet How do the H₀ and H_a look like?
- * How to calculate & interpret the test output?

What is it?

- The chi-square goodness-of-fit test = a nonparametric procedure to determine how well an observed frequency distribution fits an expected frequency distribution (--> you look at "counts")
 - observed frequencies (the frequency with which participants fall into a category)
 - expected frequencies (the frequency expected in a category if the sample data represent the population)

Assumptions

- * The chi-square goodness-of-fit test is:
 - nonparametric (not a standard normal curve)
 - used for **one** nominal (categorical) variable
 - □ based on a random sample with independent observations
 - does not work for very small frequencies per cell (<5)

Formulation of the hypothesis

- * We compare observed frequencies to expected frequencies:
- Arr H₀ = the observed frequencies do fit the expected frequencies for the population (we have <u>no</u> sign. difference)
- Arr = the observed frequencies do NOT fit the expected frequencies for the population (we have a sign. difference)

Region of rejection

Chi-square distributions are positively skewed. The critical region is placed in the extreme tail, which reflects large chi-square values.

Calculation of the chi-square

* For one nominal variable, we first determine the observed and expected frequencies in a given distribution:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

 Σ = the sum (of O and E per category)

O = the observed frequency

E = the expected frequency

Procedure (manual calculation) – I

- 1. Determine the *E* and *O* for the "positive" occurrence in the category
- 2. Determine the *E* and *O* for the "negative" occurrence in the category
 - □--> build a contingency table with E and O per category (note that this is a 2 x 2 table)
- 3. Compute the χ^2_{obt} using the formula

Procedure (manual calculation) – II

- Next, we determine the region of rejection by looking up the critical value:
- 1. Compute the *df* (no. of categories 1)
- 2. Look up the associated χ^2_{cv} in Table A6 (book, Appendix A):

If $\chi^2_{\text{obt}} \ge \chi^2_{\text{cv}}$ --> reject H_0 (there is significant difference); if $\chi^2_{\text{obt}} < \chi^2_{\text{cv}}$ --> accept H_0 (there is <u>no</u> significant difference);

Example

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- A researcher believes that the percentage of people who exercise in California is greater than the national exercise rate. The national rate is 20%, the researcher gathers a random sample of 120 individuals from California and finds that 31 of them exercise regularly.
- What is the result of the χ^2 goodness-of-fit test, and what can be concluded from it?

TABLE A.6	Critical	Values	for the	χ^2	Distribution
-----------	----------	---------------	---------	----------	--------------

INDLL	1.0	Cilcidat rata	7				
df	- 1	.10	.05	.025	.01	.005	
12 1		2.706	3.841	5.024	6.635	7.879	
2		4.605	5.992	7.378	9.210	10.597	
3	,	6.251	7.815	9.348	11.345	12.838	
4		7.779	9.488	11.143	13.277	14.860	
5	i	9.236	11.071	12.833	15.086	16.750	
6	i	10.645	12.592	14.449	16.812	18.548	
7	,	12.017	14.067	16.013	18.475	20.278	
8	3	13.362	15.507	17.535	20.090	21.955	
g	9	14.684	16.919	19.023	21.666	23.589	
10)	15.987	18.307	20.483	23.209	25.188	
11	1	17.275	19.675	21.920	24.725	26.757	
12	2	18.549	21.026	23.337	26.217	28.300	
13	3	19.812	22.362	24.736	27.688	29.819	
14	4	21.064	23.685	26.119	29.141	31.319	
15	5	22.307	24.996	27.488	30.578	32.801	
16	6	23.542	26.296	28.845	32.000	34.267	
17	7	24.769	27.587	30.191	33.409	35.718	
18	8	25.989	28.869	31.526	34.805	37.156	
19	9	27.204	30.144	32.852	36.191	38.582	
2	0	28.412	31.410	34.170	37.566	39.997)

Extra slide on the degrees of freedom

- Do we have df = 119 or df = 1 in the example case?
- ❖ With parametric tests (that are based on variation and standard deviations) we now would have had sample size -1 = 119
- For this nonparametric test (which looks at the frequencies expected/observed), however, we look at the number of categories (for the 1 nominal variable) -1 = 1

Interpretation of the chi-square

	Exercise	No Exercise
Observed	31	89
Expected	24	96

The column highlighted is often forgotten in the equation – but should be added for a correct outcome!

$$\chi_{obt}^2 = \Sigma \frac{(O-E)^2}{E} = \frac{(31-24)^2}{24} + \frac{(89-96)^2}{96} = \frac{49}{24} + \frac{49}{96} = 2.04 + 0.51 = 2.55$$

degrees of freedom (number of categories -1) = 2 - 1 = 1; Table A6, Appendix A - -> $\chi^2_{cv} = 3.841$

$$\chi_{obt}^2 < \chi_{cv}^2 --> H_0$$
 accepted; $\chi_{obt}^2 \ge \chi_{cv}^2 --> H_0$ rejected;

We have: 2.55 < 3.841 -->

 $\mathbf{H_0}$ accepted. The percentage of people exercising in California is not significantly greater than the national exercise rate.

2. Chi-square test of independence

- **❖** What is it?
- When do you use it?
- \bullet How do the H₀ and H_a look like?
- * How to calculate & interpret the (JASP) test output?
- --> we test how well an observed frequency distribution of two nominal variables fits an expected pattern of frequencies

Assumptions

- * The chi-square test of independence is:
 - nonparametric (not a standard normal curve)
 - used for **two** nominal (categorical) variables
 - □ based on a random sample with independent observations

Calculation of the chi-square test of independence

* For two nominal variables, we first determine the observed and expected frequencies in a given distribution:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

 Σ = the sum (of O and E per category)

O = the observed frequency

E = the expected frequency

Formulation of the hypothesis

- * For the two nominal variables, we compare observed frequencies to expected frequencies:
- $\mathbf{\Phi}$ \mathbf{H}_0 = we have <u>no</u> significant difference between the groups
- $\mathbf{H}_{\mathbf{a}}$ = we have a significant difference between the groups

Example output in JASP

Output in Exam --> How to interpret?

Contingency Tables

	BotPersonality				
Gender		0	1	Total	
0	Count	41.00	38.00	79.00	
	Expected count	40.82	38.18	79.00	
	% within row	51.9%	48.1%	100.0%	
	% within column	66.1%	65.5%	65.8%	
1	Count	21.00	20.00	41.00	
	Expected count	21.18	19.82	41.00	
	% within row	51.2%	48.8%	100.0%	
	% within column	33.9%	34.5%	34.2%	
Total	Count	62.00	58.00	120.00	
	Expected count	62.00	58.00	120.00	
	% within row	51.7%	48.3%	100.0%	
	% within column	100.0%	100.0%	100.0%	

Chi-Squared Tests				
	Value	df	р	
X ²	0.005	1	0.944	
N	120			

 χ^2 (1, N = 120) = .005, p = .944 (ns.) --> we accept H_0 that there is no difference between the groups (men and women equally interacted with a high or low personalized chatbot)

Effect size: Phi coefficient

❖ Phi coefficient = a test to determine the effect size (or strenght) for a chi-square test of a 2 x 2 contingency table

--> i.e., to what extent the two nominal variables move together (reminiscent of correlation coefficients)

- Interpreting the magnitude (rules of thumb, book):
 - \square Phi = .10 --> (very) small effect;
 - \square Phi = .30 --> medium effect
 - \square Phi = .50 --> large effect

In JASP

Phi = .006 --> no to (very) small effect

Contingency Tables

Contingency Tables

		BotPers		
Gender		0	1	Total
0	Count	41.00	38.00	79.00
	Expected count	40.82	38.18	79.00
	% within row	51.9%	48.1%	100.0%
	% within column	66.1%	65.5%	65.8%
1	Count	21.00	20.00	41.00
	Expected count	21.18	19.82	41.00
	% within row	51.2%	48.8%	100.0%
	% within column	33.9%	34.5%	34.2%
Total	Count	62.00	58.00	120.00
	Expected count	62.00	58.00	120.00
	% within row	51.7%	48.3%	100.0%
	% within column	100.0%	100.0%	100.0%

Chi-Squared Tests

	Value	df	р
X ²	0.005	1	0.944
N	120		

	Value
Phi-coefficient	0.006
Cramer's V	0.006

Cramer's V = phi, but it is used when you have a contingency table bigger than the 2×2

A note

- Chi-squared tests have one / two categorical variables in the lecture & book examples
- Tests of independence may also be about variables with many (for instance: 5) categories
 - □ --> i.e., 5 different colors in an M&M bag
 - □ these variables also have dichotomous outcomes, as you'd assess "color presence in the M&M bag" (yes, no)

The binomial test

The binomial test: A variation with z-score

- **❖** The binomial test has the same assumptions as the chisquare goodness-of-fit test -->
 - □ the measurement scale is dichotomous (yes/no, male/female, positive/negative, pass/fail, etc.)
 - test responses are independent
 - sample size is small, but representative of the population (but must be ≥ 10 to justify use of unit normal table for the z critical region)
- ightharpoonup Instead of the χ^2 the z-score is used

How is this even possible?

- ❖ We are discussing nominal / categorical variables with dichotomous outcomes. How can we use the (parametric) z-score?
- For the binomial test, you have a sample of X individuals, for which you count how often they are classified in category A or B (--> yes/no, pass/fail, etc.)
- This gives you a distribution of probabilities for a binomial distribution (see next slide)

The binomial distribution

A binomial distribution for the number of heads obtained in four tosses of a balanced coin.

The relationship between the binomial distribution and the normal distribution. The binomial distribution is always a discrete histogram, and the normal distribution is a continuous, smooth curve. Each X value is represented by a bar in the histogram or a section of the normal distribution.

The first figure illustrates that a binomial distribution may already begin to mimic a normal distribution after 4 runs.

The second figure nicely visualizes that collecting larger samples of (nonparametric) categorical variables eventually creates a binomial distribution that resembles the normal distribution!

Implications of using the unit normal table

- ❖ With a larger (> 10) sample size, you approximate the standard normal curve with your categorical variable --> i.e., you can run the binomial test with the z-score (instead of the chi-squared test)
- ❖ It should be noted that you then no longer work with the (observed / expected) frequencies as you did with the chi-squared tests), but with the probability that an outcome may occur (as with the z-test & t-tests!)
- For a JASP output, this implies that you now can explore the proportion and associated p-value (instead of the frequencies / counts) to evaluate the H_0/H_a !

Example:

- ❖ In 2018, Windows had a 86% market share and Apple had a 14% in the UK. Was this also true in the classroom?
- \star **H**₀ = the observed frequencies do fit the expected frequencies for the population (we have <u>no</u> sign. difference)
- \star H_a = the observed frequencies do NOT fit the expected frequencies for the population (we have a sign. difference)

Results: Testing against 86% (Windows)

Binomial Test

	Level	Counts	Total	Proportion	р
Laptop	Mac	36	89	0.404	< .001
	Windows	53	89	0.596	< .001

Note. Proportions tested against value: 0.86.

For this binomial test, you test, whether the proportion of Windows laptops in the classroom differs from the 86% UK market share (your H_a) or not (your H_0)

Results: Testing against 86% (Windows)

Students in the classroom used significantly fewer Windows laptops than expected for the UK market share (59.6%, p < .001)

Results: Testing against 14% (Mac)

	Tes			

	Level	Counts	Total	Proportion	р
Laptop	Mac	36	89	0.404	< .001
	Windows	53	89	0.596	< .001

Note. Proportions tested against value: 0.14.

For this binomial test, you test, whether the proportion of Macbooks in the classroom differs from the 14% UK market share (another H_a) or not (another H_0)

Results: Testing against 14% (Mac)

• Students in the classroom used significantly more MacBooks than expected for the UK market share (40.4%, p < .001)

Binomial test: Conclusion

- With larger samples, you may obtain a binomial distribution for your categorical outcome(s) that is technically not a normal distribution – but resembles it
- This allows you to switch from chi-squared to z-score --> and test your hypotheses using probability, proportions, and associated p-values instead of frequencies /counts)
- * As such, the binomial test behaves like t-test (which also approximates the normal distribution)

FYI: Multinomial test

- The multinomial test is an extension of the binomial test for three or more categorical variables
- \bullet Using the same H_0 and H_a formulations as before
- ... but with a larger number of descriptives for the categorical variables

In the exam

- * You may be asked to interpret the output of a binomial test
- The question to answer always is: Based on the output, do you accept or reject the H₀ for a specified categorical variable?
- Formulate the answer as shown in the Windows-Mac examples

That's all...

Common mistakes in exams

- * Building only half of the contingency table (for O, but not for E)
 - □ which gives you an incorrect chi-squared outcome
- * Mixing up the chi square versions at test

Summary of Statistics Modules

The goals of science

Jackson (Ch. 1, mod. 1) describes 3 basic goals of scientific research:

- * Description: via careful observation of behavior
- Prediction: via identification of factors impacting behavior
- * Explanation: via causes and mechanisms that explain the when and why of behavior

Experiments

- \diamond A causal relation: A \rightarrow B (with treatment & levels)
 - A₁ (low)
 - A₂ (high)
 - A₃ (none)
- In the laboratory, this brings high internal validity (but also low external validity, because the lab is an artificial environment)
- In the field, this brings higher external validity (real life situation) at the expense of internal validity

Descriptives

- Principles of descriptive statistics:
 - frequency distributions and graphs
 - measures of central tendency and variation
 - lessons learned (from prior exam rounds)
 - Kurtosis (how flat/peaked the normal distribution is)
 - Skewness (how right-peaked / left-peaked the distribution is ~ proxy for (non)normality)
 - Magnitude $\pm 0.00 \pm 2.00$
 - SW test for normality is possible but cannot be trusted (in small and big data samples)

Probability and Hypothesis Testing

- **NHST** works with two competing hypotheses*:
- \bullet H₀ (the null hypothesis): the effect does not exist
- ❖ H_a (the alternative hypothesis): an effect (a difference between two groups) exists, and is significant
 - this H_a is your research hypothesis, the statement you wish to support, whereas H_0 is the one you seek to reject

Z-test (similar for t-test)

- * We convert the z-score to the associated proportion (Table A1, Appendix A) to get the z value obtained
- ❖ We compare the z critical value (that marks the edge of the region of rejection in a sampling distribution) with the z value obtained
- **Critical value** = the edge of the region of rejection in a sampling distribution. Values equal or beyond it fall in the region of rejection for the H_0

Z-test and t-test

- * Theoretical differences for z-score, z-test, t-test
- Theoretical assumptions underlying each application (when / for what type of measures)
- * Theoretical concepts (Type I & II error, statistical power)

Correlation

- You learned, practically, to identify strong, moderate, and weak correlation coefficients, and their valence
 - Pearson's r
 - Spearman's rank-order correlation coefficient
- Understand, theoretically, how correlations allows for prediction, but not for making cause-and-effect claims

Linear & multiple regression

- * They are advanced correlational techniques using the H_0 vs. H_a logic
- ❖ You test the steepness of slope b of your regression equation
 --> and interpret results from the coefficient output table in
 JASP
- ❖ The stronger the relationships between the variables in your data, the more accurate your prediction --> as indicated in the model output in JASP)

Nonparametric Procedures

- Procedures to analyze data that are not normally distributed:
- * We discussed chi-square tests that apply to comparisons of one or two nominal (categorical) variables
 - ☐ The chi-square goodness-of-fit test --> for one nominal variable / category
 - ☐ Chi-square test of independence --> for two nominal variables / categories
- ❖ We looked at **the binomial test** as a way to test hypotheses for categorical variables in larger samples based on the z-score

These stats in exam form

- ❖ You could be asked to compute a simple z-score, chisquared, z-test or t-test (with conversion table provided)
- You could be asked to interpret a JASP output:
 - of descriptives, *z*-test/*t*-test, correlation, regression analysis, chi-square or binomial test
 - \Box be provided with a specification of H_0 and H_a
 - \square and be asked whether H_0 and H_a must be accepted / rejected based on this

Good luck!

