BASE CHANGE AND LAX KAN EXTENSIONS OF $(\infty, 2)$ -CATEGORIES.

FERNANDO ABELLÁN

ABSTRACT. We do basechange and lax kan extensions

CONTENTS

l.	Preliminaries		1
	1.1. Elementar	y definitions and models for $(\infty, 2)$ -categories	1
	1.2. Fibrations	of (∞, 2)-categories and straightening	1
	1.3. Partially la	x limits	1
	1.4. Free fibrat	ions and cofinality	3
2.	Base change		3
3.	A fibrewise criterion for Kan extensions		5

1. Preliminaries

- 1.1. Elementary definitions and models for $(\infty, 2)$ -categories.
- 1.2. Fibrations of $(\infty, 2)$ -categories and straightening.

Definition 1.2.1. Let (\mathbb{B}, E) be a marked $(\infty, 2)$ -category and let $\mathsf{FIB}^{E-\mathrm{lax}}_{(i,j)}(\mathbb{B})$ denote the wide locally full subcategory of $\mathsf{FIB}^{\mathrm{lax}}_{(i,j)}(\mathbb{B})$ where the morphisms are required to preserve *i*-cartesian morphisms over E. We denote by $\mathsf{Fun}^{E-\mathrm{cart}}_{/\mathbb{B}}(-,-)$ the mapping ∞ -category functor for $\mathsf{FIB}^{E-\mathrm{lax}}_{(1,j)}(\mathbb{B})$ and similarly $\mathsf{Fun}^{E-\mathrm{coc}}_{/\mathbb{B}}(-,-)$ for $\mathsf{FIB}^{E-\mathrm{lax}}_{(0,j)}(\mathbb{B})$.

1.3. **Partially lax limits.** In this section, we collect basic results and definitions of the theory of partially lax (co)limits which will be of use later. For a more extensive treatment (and the proofs of the statements below) we refer the reader to (CITE).

Definition 1.3.1. Let (A, E) be a marked $(\infty, 2)$ -category and let $F: A \to B$ be a functor of $(\infty, 2)$ -categories. We say that $\operatorname{colim}_A^{\diamond} F \in B$, where $\diamond \in \{E\text{-lax}, E\text{-oplax}\}$, is the \diamond -colimit of F if we have a natural equivalence of $\operatorname{CAT}_{\infty}$ -valued functors

$$\operatorname{\mathsf{Nat}}^{\diamond}_{\mathbb{A},\mathbb{B}}\left(F,\underline{(-)}\right)\simeq\mathbb{B}(\operatorname{\mathsf{colim}}^{\diamond}_{\mathbb{A}}F,-)$$

where (-): $\mathbb{B} \to \mathsf{FUN}(\mathbb{A}, \mathbb{B})^{\diamond}$ is the functor sending each object to a constant diagram. Similarly, we say that $\lim_{\mathbb{A}} F \in \mathbb{B}$, where $\diamond \in \{E\text{-lax}, E\text{-oplax}\}$, is the $\diamond\text{-limit}$ of F if we have a natural equivalence of CAT_{∞} -valued functors

$$\operatorname{\mathsf{Nat}}^{\diamond}_{\mathbb{A},\mathbb{B}}\left(\underline{(-)},F\right)\simeq\mathbb{B}(-,\lim_{\mathbb{A}}^{\diamond}F).$$

Date: May 9, 2024.

Proposition 1.3.2. Let (A, E) be a marked $(\infty, 2)$ -category and consider a functor $F: A \to \mathsf{CAT}_{(\infty, 2)}$ with corresponding (i, j)-fibration $\pi: \mathcal{F}_{i,j} \to A^{\epsilon}$ where $\epsilon \in \{\emptyset, \mathrm{op}, \mathrm{co}, \mathrm{coop}\}$. Write $L_E(\mathcal{F}_{i,j})$ for the $(\infty, 2)$ -category obtained from $\mathcal{F}_{i,j}$ by inverting the j-cartesian 2-morphisms together with those i-cartesian 1-morphisms that lie over E. Then the E-(op)lax colimits of E can be described as

$$\operatorname{colim}_{\mathbb{A}}^{E\text{-lax}} F \simeq L_E(\mathcal{F}_{0,j}), \ \, \operatorname{colim}_{\mathbb{A}}^{E\text{-oplax}} F \simeq L_E(\mathcal{F}_{1,j})$$

for j = 0, 1.

Definition 1.3.3. Let $\mathcal{F}, \mathcal{G} \in \mathsf{FIB}^{E-\mathrm{lax}}_{(i,j)}(\mathbb{A})$. If i = 0, we denote by $\mathsf{FUN}^{E-\mathrm{coc}}_{/\mathbb{A}}(\mathcal{F}, \mathcal{G})$ the $(\infty, 2)$ -category characterised by the universal property

$$\mathsf{Map}_{\mathsf{Cat}_{(\infty,2)}}(\mathbb{X},\mathsf{FUN}^{E\text{-}\mathsf{coc}}_{/\mathbb{A}}(\mathscr{F},\mathscr{G})) \simeq \mathsf{Fun}^{E\text{-}\mathsf{coc}}_{/\mathbb{A}}(\mathscr{F} \times \mathbb{X},\mathscr{G}),$$

where the right-handside was defined in Definition 1.2.1. We define $FUN_{/\mathbb{A}}^{E-cart}(\mathcal{F}, \mathcal{G})$ analogously whenever i = 1.

Proposition 1.3.4. Let (A, E) be a marked $(\infty, 2)$ -category and consider a functor $F: A \to \mathsf{CAT}_{(\infty, 2)}$ with corresponding (i, j)-fibration $\pi: \mathcal{F}_{i, j} \to A^{\epsilon}$ where $\epsilon \in \{-, \mathrm{op}, \mathrm{co}, \mathrm{coop}\}$. Then the E-(op)lax limits of F in $\mathsf{CAT}_{(\infty, 2)}$ can be described as

$$\lim_{\mathbb{A}}^{E-\text{lax}} F \simeq \mathsf{FUN}^{E-\text{coc}}_{/\mathbb{A}}(\mathbb{A}, \mathcal{F}_{0,j}), \ \lim_{\mathbb{A}}^{E-\text{oplax}} F \simeq \mathsf{FUN}^{E-\text{cart}}_{/\mathbb{A}}(\mathbb{A}, \mathcal{F}_{1,j})$$

for j = 0, 1.

Proposition 1.3.5. Let $\Lambda_1^2 = (0 \to 2 \leftarrow 1)$ denote the walking cospan and consider a functor in $F: \Lambda_1^2 \to \mathsf{CAT}_\infty$ given by $\mathsf{A} \to \mathsf{C} \leftarrow \mathsf{B}$. Then we have equivalences of ∞ -categories:

$$\lim_{E \to lax} F = (\mathsf{C}^{[1]} \times_{\mathsf{ev}_0} \mathsf{B}) \times_{\mathsf{ev}_1} \mathsf{A}, \quad \lim_{E \to \mathsf{oplax}} F = (\mathsf{C}^{[1]} \times_{\mathsf{ev}_1} \mathsf{B}) \times_{\mathsf{ev}_0} \mathsf{A},$$

where $E = (0 \rightarrow 2)$.

Proof. We give the proof in the *E*-lax case since the *E*-oplax case is formally dual. Let $\mathcal{F} \to \Lambda_1^2$ be the cocartesian fibration associated to *F*. It follows from Proposition 1.3.4 that we have a natural equivalence

$${\lim}_{/\Lambda_1^2}^{E\text{-lax}} F \simeq \mathsf{FUN}_{/\Lambda_1^2}^{E\text{-}\mathrm{coc}}(\Lambda_1^2, \mathscr{F}) \simeq \mathsf{NAT}_{\Lambda_1^2, \mathsf{CAT}_\infty}(\mathscr{W}, F)$$

where $W: \Lambda_1^2 \to \mathsf{CAT}_{\infty}$ is given by $W(0) = \{1\} \to [1] = W(2) \leftarrow \{1\} = W(1)$. Given an $(\infty, 2)$ -category T, we can construct natural equivalences

$$\mathsf{Map}(\mathsf{T},\mathsf{NAT}_{\Lambda^2_1,\mathsf{CAT}_\infty}(\mathscr{W},F))\simeq \mathsf{Nat}_{\Lambda^2_1,\mathsf{CAT}_\infty}(\mathsf{T}\times\mathscr{W},F),$$

where the later space can be expressed (according to (REF)) as the limit of the following diagram

$$\begin{array}{ccc} \mathsf{Map}(\mathsf{T},\mathsf{B}) & & \mathsf{Map}(\mathsf{T},\mathsf{A}) \\ & & & \downarrow & \\ \mathsf{Map}(\mathsf{T},\mathsf{C}) \xleftarrow{ev_0^*} & \mathsf{Map}(\mathsf{T} \times [1],C) \xrightarrow{ev_1^*} & \mathsf{Map}(\mathsf{T},\mathsf{C}). \end{array}$$

It follows from the universal property of the iterated pullback $(C^{[1]} \times_{ev_0} B) \times_{ev_1} A$ that the limit of the diagram above is naturally equivalent to the mapping space $Map(T, (C^{[1]} \times_{ev_0} B) \times_{ev_1} A)$. The result now follows by the Yoneda lemma.

1.4. Free fibrations and cofinality. fff

Definition 1.4.1. Let $\mathsf{AR}^{(op)lax}(\mathbb{C}) = \mathsf{FUN}^{(op)lax}([1],\mathbb{C})$ be the (op)lax arrow $(\infty,2)$ -category of \mathbb{C} and denote by $\mathsf{ev}_i : \mathsf{AR}^{(op)lax}(\mathbb{C}) \to \mathbb{C}$ the functor induced by restriction along the map $\{i\} \to [1]$. We consider a functor

$$\mathfrak{F}_{(i,i)}: \mathsf{CAT}_{(\infty,2)/\mathbb{C}} \to \mathsf{FIB}_{(i,i)}(\mathbb{C}),$$

whose action on objects is as follows:

▶ Given $p: X \to \mathbb{C}$ we define $\pi: \mathfrak{F}_{(i,j)}(X) \to \mathbb{C}$ as the pullback

$$\mathfrak{F}_{(i,j)}(\mathbb{X}) \longrightarrow \mathbb{X}$$

$$\downarrow \qquad \qquad \downarrow^{p}$$
 $\mathsf{AR}^{\epsilon \mathrm{lax}}(\mathbb{C}) \stackrel{\mathrm{ev}_{i}}{\longrightarrow} \mathbb{C}$

where the map π is induced by ev_{1-i} and $\epsilon = \operatorname{op}$ if $i \neq j$ and $\epsilon = \emptyset$ otherwise.

The universal property of the pullback guarantees that this construction extends to a functor of $(\infty,2)$ -categories.

Theorem 1.4.2. Let \mathbb{C} be an $(\infty,2)$ -category then there exists an adjunction of $(\infty,2)$ -categories

$$\mathfrak{F}_{(i,j)}: \mathsf{CAT}_{(\infty,2)/\mathbb{C}} \ \rightleftarrows \ \mathsf{FIB}_{(i,j)}(\mathbb{C}): \mathfrak{U}_{(i,j)}$$

where $\mathfrak{U}_{(i,j)}$ denotes the forgetful functor.

Definition 1.4.3. Let $f: \mathbb{X} \to \mathbb{C}$ be a functor of $(\infty, 2)$ -categories and assume further that (\mathbb{X}, E) is a marked $(\infty, 2)$ -category. Then can we view $\mathfrak{F}_{(i,j)}(\mathbb{X})$ as a marked $(\infty, 2)$ -category by declaring an morphism $e: [1] \to \mathfrak{F}_{(i,j)}(\mathbb{X})$ marked if:

- (1) The associated diagram $[1] \otimes [1] \rightarrow \mathbb{C}$ factors through $[1] \times [1]$.
- (2) The composite $[1] \to \mathfrak{F}_{(i,j)}(\mathbb{X}) \to \mathbb{X}$ belongs to E.

We denote the resulting marked $(\infty,2)$ -category by $(\mathfrak{F}_{(i,j)}(\mathbb{X}), E_{\square})$.

Definition 1.4.4. Let $f: \mathbb{X} \to \mathbb{C}$ be a functor of $(\infty,2)$ -categories and let $\mathfrak{F}_{(i,j)}(\mathbb{X}) \to \mathbb{C}$. Given $c \in \mathbb{C}$ we fix the notation \mathbb{X}_{7c}

Definition 1.4.5. Let $f:(\mathbb{C},E)\to(\mathbb{D},E')$ be a functor of marked $(\infty,2)$ -categories. We say that:

▶ The functor f is \diamond -cofinal where $\diamond \in \{\text{lax}, \text{oplax}\}$ if given a diagram $L : \mathbb{D} \to \mathbb{A}$ then the induced map

$$\operatorname{colim}_{\mathbb{D}}^{\operatorname{E-}\diamond} L \xrightarrow{\simeq} \operatorname{colim}_{\mathbb{C}}^{\operatorname{E'-}\diamond} L \circ f$$

is an equivalence whenever either those colimits is defined.

▶ The functor f is \diamond -initial where $\diamond \in \{lax, oplax\}$ if given a diagram $L : \mathbb{D} \to \mathbb{A}$ then the induced map

$$\lim_{\mathbb{C}}^{\mathrm{E}' - \diamond} L \circ f \xrightarrow{\simeq} \lim_{\mathbb{D}}^{\mathrm{E} - \diamond} L$$

is an equivalence whenever either those limits is defined.

2. Base Change

Definition 2.0.1. Let \mathbb{C} be an $(\infty,2)$ -category . A *fibrational pattern* $\mathfrak{p}:=(\mathbb{C},(i,j),E,L)$ is given by:

- ▶ A pair (i, j) where $i, j \in \{0, 1\}$ which we call the variance.
- ▶ A collection of edges E of \mathbb{C} containing all equivalences.
- ▶ A collection of 2-simplices $\sigma: [2] \to \mathbb{C}$ containing all commutative triangles.

Given fibrational patterns $\mathfrak{p}=(\mathbb{C},(i,j),E,L)$ and $\mathfrak{q}=(\mathbb{D},(i,j),E',L')$, we say that a functor $f:\mathbb{C}\to\mathbb{D}$ is a morphism of fibrational patterns if $f(E)\subseteq E'$ and $f(L)\subseteq L'$.

Example 2.0.2. Given an $(\infty,2)$ -category \mathbb{C} , we denote by $\mathfrak{p}_{\flat}^{(i,j)} := (\mathbb{C}, (i,j), \flat, \flat)$ the fibrational pattern with variance (i,j) where the collection of edges is given precisely by the equivalences and the collection L is given by the commuting triangles. Dually, we denote $\mathfrak{p}_{\sharp}^{(i,j)} = (\mathbb{C}, (i,j), \sharp, \sharp)$ the fibrational pattern where every edge (resp. every triangle) belongs to E (resp. L). If the variance is clear from the context we will use the abusive notation \mathfrak{p}_{\flat} and \mathfrak{p}_{\sharp} .

Definition 2.0.3. Let $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ be the locally full subcategory of $CAT_{(\infty,2)/\mathbb{C}}$ whose objects are functors $p: \mathbb{X} \to \mathbb{C}$ such that:

- ▶ There exists *i*-cartesian lifts of those 1-morphisms in $E_{\mathbb{C}}$.
- ▶ There exists *j*-cartesian lifts of 2-morphisms in $L_{\mathbb{C}}$ which are stable under composition in X.

The morphisms in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ are precisely those which preserve the *i*-cartesian (resp. *j*-cartesian) 1-morphisms (resp. 2-morphisms) above. Given $\mathbb{X} \to \mathbb{C}$ and $\mathbb{Y} \to \mathbb{C}$ in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ we denote by $MAP_{/(\mathbb{C},\mathfrak{p})}(\mathbb{X},\mathbb{Y})$ the mapping ∞ -category in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$.

Remark 2.0.4. Observe that $\mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p}_{b}^{(i,j)})}$ is simply given by the slice $(\infty,2)$ -category $\mathsf{CAT}_{(\infty,2)/\mathbb{C}}$ and that if $\mathfrak{p} = (\mathbb{C}, (i,j), E, \sharp)$ then $\mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ is given by $\mathsf{FIB}_{(i,j)}^{E-\mathsf{lax}}(\mathbb{C})$.

Remark 2.0.5. Let $f: \mathbb{C} \to \mathbb{D}$ be functor inducing a map of fibrational patterns $\mathfrak{p} \to \mathfrak{q}$. Then pullback along f induces a functor of $(\infty,2)$ -categories

$$f^*: \mathsf{CAT}_{(\infty,2)/(\mathbb{D},\mathfrak{q})} \to \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$$

which we call the base change functor along f.

Definition 2.0.6. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and consider a functor $f : \mathbb{C} \to \mathbb{D}$. We define the lax basechange functor as the composite

$$f_{\mathfrak{p}}^{\mathrm{lax}}: \mathsf{CAT}_{(\infty,2)/\mathbb{D}} \to \mathsf{FIB}_{(i,j)}(\mathbb{D}) \to \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$$

where the first map was given in Definition 1.4.1 and the second map is base change along the map $(\mathbb{C}, (i, j), E, L) \to (\mathbb{D}, (i, j), \sharp, \sharp)$ induced by f.

Definition 2.0.7. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and consider a functor $f : \mathbb{C} \to \mathbb{D}$. Then there exists a functor

$$\mathit{Rf}_* \colon \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} \to \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{op}, \mathsf{CAT}_{\infty}), \ \ (\mathbb{X} \to \mathbb{C}) \mapsto \mathsf{MAP}_{/(\mathbb{C},\mathfrak{p})}(f^{lax}_{\mathfrak{p}}(-), \mathbb{X}).$$

Proposition 2.0.8. *The functor*

$$Rf_*: \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} \to \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{\mathrm{op}}, \mathsf{CAT}_{\infty})$$

factors through the composite $\mathsf{FIB}_{(i,j)}(\mathbb{D}) \to \mathsf{CAT}_{(\infty,2)/\mathbb{D}} \to \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{\mathrm{op}}, \mathsf{CAT}_{\infty})$ where the second functor is the Yoneda embedding.

$$Proof.$$
 ss

Definition 2.0.9. We will call the functor $f_* : \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} \to \mathsf{FIB}_{(i,j)}(\mathbb{D})$ the *fibrational* pushforward functor.

Theorem 2.0.10. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and let $f : \mathbb{C} \to \mathbb{D}$ be a functor. Then there exists an adjunction of $(\infty, 2)$ -categories:

$$f^* : \mathsf{FIB}_{(i,i)}(\mathbb{D}) \ \rightleftarrows \ \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} : f_*$$

Explain this prelim

3. A fibrewise criterion for Kan extensions

Norwegian University of Science and Technology (NTNU), Trondheim, Norway