

Predicting Heart Disease Using Machine Learning Algorithms

Group Members

Kanit Jompuk 31847447

Sharang Gupta 32196946

Abdulaziz Alkhalefah 31432298

Sarah Alharbi 31711413

17.9 million

deaths every year

(World health organization, 2020)

TABLE OF CONTENTS

1 INTRODUCTION
What is a heart disease?

3 ANALYSIS
An in-depth analysis of the features and the algorithm

? CASESTUDY

A review on research articles focused on heart diseases

CONCLUSION

A review of the results, and the inference of our study

Methodologies, methods and tools that help a data scientist or decision maker

Confusion Matrix

Case Studies

Predictive analytics to prevent and control chronic diseases (2016)

A novel optimal feature selection technique for medical data classification using ANOVA based whale optimization (2020) Effective Heart disease prediction using Hybrid Machine learning Techniques (2019)

Dataset summary

UCL Dataset with 13 features 303 patients

Effective Heart disease prediction using Hybrid Machine learning Techniques (2019)

- 1. Age
- 2. Sex
- 3. Cp (Chest pain categorized)
- 4. Trest bps (Level of blood pressure)
- 5. Chol (Serum Cholesterol)
- 6. FBS (blood sugar level on fasting)
- 7. Resting (Result of electriocardiogram)
- 8. Thali (The accomplishment of the maximum rate of heart)
- 9. Exang (Angina induced by exercise)
- 10. Oldpeak (Exercise induced ST depression in comparision with the state of rest)
- 11. Slope (ST segment measured in terms of the slope during peak exercise)
- 12. Ca (Fluoroscopy colored major vessels)
- 13. Thal (Status of heart illustrated through three distinctly)

1,190

Patients

12

Attributes

All fields numeric

The Correlation of the Independent variables and Dependent variable

The correlation of the Independent variables and Target

Age = 0.26

Sex = 0.31

Chest.pain.type =0.46

Resting.bp.s = 0.12

Cholesterol = -0.20

Fasting.blood.sugar = 0.22

Resting.ecg = 0.07

Max.heart.rate = -0.41

Exercise.angina = 0.48

Oldpeak = 0.40

ST.slope = 0.51

AGE

As evident, older people seem to be more susceptible to heart disease

Maximum Heart Rate

As evident, lower maximum heart rate indicates the presence of heart disease

Exercise ST Depression

A higher exercise induced ST depression seems to indicate the presence of heart disease

Sex

0 : female 1 : male

It appears males are more susceptible to heart diseases than females

Chest Pain Type

- 1: typical angina
- 2 : atypical angina
- 3 : non-anginal pain
- 4 : asymptomatic

Blood Sugar

0 : sugar levels < 120 mg/dl 1 : sugar levels > 120 mg/dl

A higher blood sugar level seems to indicate heart disease

Exercise Induced Angina

0 : No exercise induced angina

1: Had exercise induced angina

Presence of exercise induced angina is a strong indicator of heart disease!

ST slope

1: upsloping

2 : flat

3: downsloping

An upsloping slope of the peak exercise ST seems to indicate lower chances of heart disease!

Resting ECG

0: normal

1: ST-T wave abnormality

2: left ventricular hypertrophy

ST-T wave abnormality is the strongest indicator of heart disease amongst the above readings

Data Cleaning

- 1. Transformation of Skewed Features
- 2. Detect and Clean Outliers (~99 percentile)
- 3. $x^{1/n}$ transformations

Cholesterol before transformation

Cholesterol after transformation

Hyper Parameter Tuning

- We used GridSearchCV across 5 algorithms, in order to get the best hyperparameter settings for our algorithm.
- In our analysis, we trained both the raw, uncleaned data as well as the transformed, truncated and cleaned data in order to compare the results. From the results, we noticed a significant improvement in the performance of the model(time to train, time to predict, less hidden layers etc.) when we use the truncated dataset, with a negligible difference in accuracy.
- The random forest classifier yielded the best results, with accuracy of 95% using the following hyperparameters: (max_depth=16, n_estimators=250)
- Our analysis was done by 3 different team members, 2 of us using python, and one using R, in order to eliminate mistakes and bias, and our results were replicable across the platforms.
- The trade-off with the random forest classifier was the training and prediction time, where we observed a 10x difference in latency as compared to other models.

all independent variables (Python)

Algorithm	Function	The accuracy	The recall *	The precision
Logistic Regression (LR)	sklearn LogisticRegression	0.83	0.8	0.84
K-nearest neighbour (K-NN)	Sklearn KNeighborsClassifier	0.87	0.87	0.87
Decision Tree (DT)	DecisionTreeClassifier	0.90	0.90	0.90
Random Forest (RF)	RandomForestClassifier	0.95	0.95	0.95
Support Vector Machine (SVM)	Sklearn svm	0.82	0.92	0.92

Except Resting.bp.s and Resting.ecg (python)

all independent variables (R)

Except Resting.bp.s and Resting.ecg (R)

	precision	recall	f1-score	support
0	0.95	0.95	0.95	111
1	0.95	0.95	0.95	127
accuracy			0.95	238
macro avg	0.95	0.95	0.95	238
weighted avg	0.95	0.95	0.95	238

[[105 6] [6 121]]

0.9495798319327731

105 are the True Positives in our test data.

There are 6 type 1 error (False Positives)- predicted positive and it's false.

There are 6 type 2 error (False Negatives)- predicted negative and it's false.

121 are the True Negatives in our test data.

The Result

The top 4 significant features in the random forest model are

St slope, max heart rate, chest pain type, cholestrol

Conclusion

- Cardiovascular disease prediction is challenging and important in the medical field and it will help saving human lives. There is a huge number of machine learning algorithms in predicting cardiovascular disease and most of them have performed well in most cases. (Mohan, Thirumalai and Srivastava, 2019)
- The system was tested on HEART DISEASE DATASET (Comprehensive) with 5 different algorithms: LR, K-NN, DT, FR and SVM using R and Python.
- By analysing the results, it is clear that Random Forest has the highest accuracy rate with 0.90 in R and 0.95 in Python.

References

Deepika, K. and Seema, S., 2016. Predictive analytics to prevent and control chronic diseases. 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATTccT), pp.381-386. Available at: https://ieeexplore.ieee.org/abstract/document/7912028>

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.

Moorthy, U. and Gandhi, U., 2020. A novel optimal feature selection technique for medical data classification using ANOVA based whale optimization. *Journal of Ambient Intelligence and Humanized Computing (2020)*, [online] pp.1-12. Available at: https://link.springer.com/article/10.1007/s12652-020-02592-w#Tab7 [Accessed 7 December 2020].

Mohan, S., Thirumalai, C. and Srivastava, G., 2019. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. *IEEE Access*

(Volume: 7), [online] 7, pp.81542-81554. Available at:

https://ieeexplore.ieee.org/abstract/document/8740989/authors [Accessed 7 December 2020].

Siddhartha, M., 2020. Heart Disease Dataset (Comprehensive). [online] IEEE DataPort. Available at: https://ieee-dataport.org/open-access/heart-disease-dataset-comprehensive [Accessed 25 December 2020].

Who.int. 2020. Cardiovascular Diseases. [online] Available at: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 [Accessed 20 December 2020].

Who.int. 2020. Cardiovascular Diseases (Cvds). [online] Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Accessed 20 December 2020].

Mark split form

Agreed Mark Split

Name	Email	Distribution of work
Kanit Jompuk	kj1a20@soton.ac.uk	25%
	Date	12/30/2020
	Signature	Docusigned by: Vant Janguk A08859AD89844D8
Sharang Gupta	sdg1n20@southampton.ac.uk	25%
	Da Highlights and Notes	12/30/2020
	Signature	Docusigned by:
		ED35E29E719543D
Abdulaziz Alkhalefah	asaa1g19@soton.ac.uk	25%
	Date	12/30/2020
	Signature	DocuSigned by:
4		8D654CFC07B6452
Sarah Alharbi	sama2d19@soton.ac.uk	25%
	Date	12/30/2020
	Signature	DocuSigned by:

THANK YOU!

1	Kanit Jompuk	31847447	
_	Sharang Gupta (deputy Leader)	32196946	
_	Abdulaziz Alkhalefah (leader)	31432298	
4.	Sarah Alharbi	31711413	

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution

