

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2023-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Solucionario Práctica Calificada Nº 6

1. The nonlinear system:

$$5x_1^2 - x_2^2 = 0$$
, $x_2 - 0.25(sen(x_1) + cos(x_2)) = 0$,

has a solution near $\left(\frac{1}{4},\frac{1}{4}\right)^T$. Find a function G such that $G:D\to\Re^2$ has a unique fixed point in $D=\left[0,\frac{1}{2}\right]\times\left[0,\frac{1}{2}\right]$. Use infinity norm.

Observe lo siguiente:

$$x_1 = \sqrt{\frac{x_2^2}{5}} = \frac{x_2}{\sqrt{5}}$$
 $x_2 = \frac{1}{4}(sen(x_1) + cos(x_2))$

Defina la función $G:D \to \Re^2$ como sigue:

$$G(x_1,x_2)=\left(egin{array}{c} rac{x_2}{\sqrt{5}} \ rac{1}{4}(sen(x_1)+cos(x_2)) \end{array}
ight)$$

Analicemos las hipótesis del Teorema 10.6 del Burden. Para cada $(x_1, x_2) \in D$:

$$0 \le x_1 \le \frac{1}{2}, \quad 0 \le x_2 \le \frac{1}{2},$$

luego:

$$|g_1(x_1, x_2)| = \left| \frac{x_2}{\sqrt{5}} \right| \le \frac{1}{2\sqrt{5}} \le \frac{1}{2},$$
 $|g_2(x_1, x_2)| = \left| \frac{1}{4} (sen(x_1) + cos(x_2)) \right| \le \frac{1}{4} (2) = \frac{1}{2}$

entonces:

$$G(x_1,x_2)\subset D$$
.

Se calculan ahora las derivadas parciales:

$$\begin{split} \frac{\partial g_1}{\partial x_1}(x_1,x_2) &= 0, & \frac{\partial g_1}{\partial x_2}(x_1,x_2) &= \frac{1}{\sqrt{5}} \\ \frac{\partial g_2}{\partial x_1}(x_1,x_2) &= \frac{\cos(x_1)}{4}, & \frac{\partial g_2}{\partial x_2}(x_1,x_2) &= -\frac{\sin(x_2)}{4} \end{split}$$

Luego:

$$JG(x_1,x_2)=\left(egin{array}{cc} 0 & \dfrac{1}{\sqrt{5}} \ \dfrac{cos(x_1)}{4} & -\dfrac{sen(x_2)}{4} \end{array}
ight)$$

La norma infinito de una matriz A de orden $m \times n$ viene dada por $\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$, por tanto:

$$\|JG(x_1,x_2)\|_{\infty} = \max\left\{rac{1}{\sqrt{5}}, \left|rac{cos(x_1)}{4}
ight| + \left|rac{sen(x_2)}{4}
ight|
ight\} \leq rac{1}{2} < 1.$$

observe además:

$$\left| rac{\partial g_i}{\partial x_j}(x_1, x_2)
ight| \leq rac{1}{\sqrt{5}} = rac{K}{2} \Rightarrow K = rac{2}{\sqrt{5}} < 1.$$

Por tanto, por el Teorema 10.6 se concluye que la función de iteración G considerada converge al único punto fijo "p".

- 2. Para la función de iteración del problema anterior e iniciando en $x^0 = \left(\frac{1}{4}, \frac{1}{4}\right)^T$, se pide:
 - (a) Realice una iteración en detalle.
 - (b) Estime el número de iteraciones para garantizar una tolerancia de 10^{-5} . Use la norma infinito.
 - (c) Muestre una tabla con los resultados hasta que alcance la convergencia con una tolerancia de $||x^k x^{k-1}||_{\infty} < 10^{-5}$. Adjunte la tabla y su código como evidencia.

Solución:

(a)
$$x^0 = \left(\frac{1}{4}, \frac{1}{4}\right)^T$$
, luego:

(b) Del Teorema 10.6 del Burden se tiene el siguiente resultado:

$$||x^k - p||_{\infty} \le \frac{K^k}{1 - K} ||x^1 - x^0||_{\infty} < Tol$$

donde $p \in D$ es el punto fijo, resulta:

$$k > \frac{\log(Tol(1-K)/||x^1-x^0||_{\infty})}{\log(K)} \approx 105.6,$$

por tanto, se tiene que k = 106.

(c) Tabla de resultados:

$$k$$
 x_1 x_2 Error1 0.11180 0.30408 0.13820 2 0.13599 0.26642 0.03766 3 0.11915 0.27507 0.01684 4 0.12302 0.27032 0.00475 5 0.12089 0.27160 0.00213 6 0.12146 0.27098 0.00061 7 0.12119 0.27117 0.00027 8 0.12127 0.27109 0.00008 9 0.12123 0.27111 0.00004 10 0.12125 0.27110 0.00001 11 0.12124 0.27111 0.00000

- 3. Martha compra un boogie, por el cual paga $\sqrt[7]{17.0859375}$ ayudale en obtener cual es el monto real a pagar:
 - (a) [1 pto.] Modele el problema.
 - (b) [1 pto.] Demuestre que el método de Newton tiene la siguiente iteración.

$$x_{n+1} = rac{1}{7} \left[6x_n + rac{17.0859375}{x_n^6}
ight]$$

- (c) [1 pto.] Determine la solución aproximada usando el método de Newton.
- (d) [1 pto.] Determine el vuelto si paga con 5.00 soles.

Solución:

(a) [1 pto.] Sea x: el valor del boogie, donde

$$x = \sqrt[7]{17.0859375} \implies x^7 = 17.0859375.$$

Luego la función es:

$$f(x) = x^7 - 17.0859375 = 0.$$

(b) [1 pto.] Por el método de Newton:

$$egin{array}{lll} x_{k+1} & = & x_k - rac{f(x_k)}{f'(x_k)} \ = & x_k - rac{x_k^7 - 17.0859375}{7x_k^6} \ = \ rac{1}{7} \left[6x_k + rac{17.0859375}{x_k^6}
ight]. \end{array}$$

3

(c) [1 pto.] Por el método de Newton:

k	x_k	Error
0	2	
1	1.7524240	0.2475760
2	1.5863540	0.1660670
3	1.5128902	0.0734638
4	1.5003248	0.0125654
5	1.5000002	0.0003246

Entonces

$$x = 1.50$$

(d) [1 pto.] El vuelto que recibe Martha es:

$$5.00 - 1.50 = 3.50$$

- 4. La población activa de un país se clasifica en 3 categorías profesionales: técnicos superiores, obreros especializados y obreros no especializados. Así, en cada generación k la fuerza de trabajo del país está caracterizada por el número de personas incluidas en las 3 categorías. Supongamos que:
 - (a) Cada trabajador activo sólo tiene un hijo.
 - (b) El 50% de los hijos de los técnicos superiores lo son también, el 25% pasa a ser obrero especializado y el 25% restante es obrero no especializado.
 - (c) Los hijos de los obreros especializados se reparten entre las 3 categorías según los porcentajes 30%, 40% y 30%.
 - (d) Para los hijos de obreros no especializados las proporciones de reparto entre las categorías son 50%, 25% y 25%.
 - (a) [1 pto.] Modele el problema.
 - (b) [1 pto.] Determine el polinomio característico, usando el método de Krylov.
 - (c) [2 pts.] Determine los valores y vectores propios usando los método dados en clase.

Solución:

(a) [1 *pto.*] Sean

- x Trabajadores técnico superior
- y Trabajadores obreros especializados
- z Trabajadores obreros no especializados

Donde:

$$x^{k+1} = \left[egin{array}{cccc} 0.50 & 0.30 & 0.50 \ 0.25 & 0.40 & 0.25 \ 0.25 & 0.30 & 0.25 \ \end{array}
ight] x^k$$

Con

$$x^{(0)} = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight]$$

(b) [1 pto.] Por el método de Krylon se tiene:

$$p(A) = A^3y + b_1A^2y + b_2Ay + b_3y.$$

Luego:

$$z = Ay = A egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} = egin{bmatrix} 0.5 \ 0.25 \ 0.25 \end{bmatrix} z_1 = Az = egin{bmatrix} 0.45 \ 0.2875 \ 0.2625 \end{bmatrix} Az_1 = egin{bmatrix} 0.4425 \ 0.293125 \ 0.264375 \end{bmatrix}.$$

Entonces, el sistema ha resolver es:

$$\left[egin{array}{cccc} 0.45 & 0.5 & 1 \ 0.2875 & 0.25 & 0 \ 0.2625 & 0.25 & 0 \ \end{array}
ight] \left[egin{array}{c} b_1 \ b_2 \ b_3 \ \end{array}
ight] = \left[egin{array}{c} -0.4425 \ -0.293125 \ -0.264375 \ \end{array}
ight]$$

por el método de Eliminación de Gauss, tenemos:

$$\Rightarrow \left[egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight] = \left[egin{array}{c} -0.15 \ 0.15 \ 0 \end{array}
ight].$$

Finalmente, el polinomio característico es:

$$p(\lambda) = \lambda^3 - 1.15\lambda^2 + 0.15\lambda.$$

(c) [2 pts.] Por el método de potencia se tiene, la tabla es:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	$\lambda_1(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	1.3	0.9	0.8	1.3	1	0.6923077	0.6153846	0.3846154
2	1.0153846	0.6807692	0.6115385	1.0153846	1	0.6704545	0.6022727	0.0218531
3	1.0022727	0.6687500	0.6017045	1.0022727	1	0.6672336	0.6003401	0.0032210
4	1.0003401	0.6669785	0.6002551	1.0003401	1	0.6667517	0.6000051	0.0004819
5	1.0000510	0.6667134	0.6000383	1.0000510	1	0.6666794	0.6000077	0.0000723
	:							
9	1.0000000	0.6666667	0.6000000	1.0000000	1	0.6666667	0.6000000	0.0000000

La solución del valor y vector propios son $\lambda_1 = 1$ y $x_1 = [1 \ 0.6666667 \ 0.6]^T$.

Por el método de potencia inversa desplazado con $\overline{\lambda}=-0.1,$ se tiene la tabla siguiente:

k	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	-1.0909091	1.2727273	2.5454545	2.5454545	-0.4285714	0.5000000	1.0000000	1.4285714
2	-7.1038961	1.0259740	7.0519481	-7.1038961	1.0000000	-0.1444241	-0.9926874	1.9926874
3	9.7171348	-0.4530497	-9.3887319	9.7171348	1.0000000	-0.0466238	-0.9662037	0.0978003
4	9.7086394	-0.1748338	-9.5454670	9.7086394	1.0000000	-0.0180081	-0.9831931	0.0286157
5	9.8635791	-0.0709403	-9.7937307	9.8635791	1.0000000	-0.0071921	-0.9929186	0.0108159
	:							
13	9.9999053	-0.0000474	-9.9998579	9.9999053	1.0000000	-0.0000047	-0.9999953	0.0000071

Donde el valor y vector propios son $\lambda_3 = 0.0000009$ y $x_3 = [1 - 0.0000047 - 0.9999953]^T$. Por el método de potencia inversa desplazado con $\overline{\lambda} = 0.25$, se tiene la tabla siguiente:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	4.0000000	0.00000000	0.0000000	4.0000000	1.00000000	0.0000000	0.0000000	1.0000000
2	-4.0000000	3.3333333	-0.5000000	-4.0000000	1.0000000	-0.8333333	-0.5000000	0.8333333
3	-10.6666670	7.2222222	3.0000000	-10.6666670	1.0000000	-0.6770833	-0.2812500	0.2187500
4	-9.4166667	6.9097222	2.5625000	-9.4166667	1.0000000	-0.7337758	-0.2721239	0.0566925
5	-9.8702065	7.3180924	2.5442478	-9.8702065	1.0000000	-0.7494793	-0.2505226	0.0143534
	:							
	•							
13	-9.9998931	7.4998663	2.5000267	-9.9998931	1.0000000	-0.7499947	-0.2500053	0.0000080

Donde el valor y vector propios son $\lambda_2 = \frac{1}{-9.9998931} + 0.25 = 0.149998931$ y $x_2 = [1 - 0.7499947 - 0.2500053]^T$.

Siendo la proporción de la población sanos y enfermos de 1 a 2

5. $[4\,pts.]$ Identifique su grupo de exposición y la sección donde esta matriculado.

28 de Junio del 2023