

Description

Features

- 100V, 33A
- $R_{DS(ON)}=30m\Omega$ @ $V_{GS}=10V$
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability

Application

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

Schematic Diagram

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		100	V
Vgss	Gate-Source Voltage		±20	V
ΙD	Continuous Drain Current	T _C = 25°C	33	Α
		T _C = 100°C	23	Α
I _{DM}	Pulsed Drain Current note1		110	Α
E _{AS}	Single Pulsed Avalanche Energy note2		185	mJ
PD	Power Dissipation	Tc = 25°C	130	W
R ₀ JC	Thermal Resistance, Junction to Case		1.15	°C/W
Reja	Thermal Resistance, Junction to Ambient		62	°C/W
TJ, Tstg	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$ C

Electrical Characteristics (T_C=25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	cteristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V,I _D = 250µA	100	-	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 100V,V _{GS} = 0V	-	-	1	μA
Igss	Gate to Body Leakage Current	V _{GS} = ±20V	-	-	±100	nA
On Charac	cteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = 250μA	2.0	-	4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D = 16A	-	30	44	mΩ
Dynamic (Characteristics			-	•	•
C _{iss}	Input Capacitance	\/ O5\/ \/ O\/	-	1960	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	-	250	-	pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	-	40	-	pF
Qg	Total Gate Charge	V _{DS} = 80V,	-	-	71	nC
Qgs	Gate-Source Charge	I _D =16A,	-	-	14	nC
Qgd	Gate-Drain("Miller") Charge	V _{GS} = 10V	-	-	21	nC
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	11	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 50V, I_D = 16A,$	-	35	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 5.1\Omega,$	-	39	-	ns
t _f	Turn-Off Fall Time	- V _{GS} = 10V	-	35	-	ns
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings				
Is	Maximum Continuous Drain to Source Diode Forward Current			-	33	А
Ism	Maximum Pulsed Drain to Source Diode Forward Current		-	-	110	Α
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V$, $I_{SD} = 16A$, $T_{J} = 25^{\circ}C$	-	-	1.2	V
t _{rr}	Reverse Recovery Time	T _J = 25°C, I _F = 16A,	-	115	170	ns
Qrr	Reverse Recovery Charge	di/dt =100A/µs	-	505	760	uC

Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. I_{AS} =16A, L=1.5mH, R_G =25 Ω Starting T_J = 175°C
- 3. Pulse Test: Pulse width ≤ 400µs, Duty Cycle ≤ 2%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective
Transient Thermal Impedance, Junction-to-Case
(TO-220C,TO-263)

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Figure 1. Gate Charge Test Circuit & Waveform

Figure 2. Resistive Switching Test Circuit & Waveforms

Figure 3. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 4. Peak Diode Recovery dv/dt Test Circuit & Waveforms (For N-channel)