

Virtual Reality Display Systems

Anthony Steed

Department of Computer Science University College London

Outline

- 1. Characteristics of Immersive Displays
- 2. Stereo Rendering

Outline

- 1. Characteristics of Immersive Displays
- 2. Stereo Rendering

Two Main Ways of Doing Virtual Reality

- Near Eye Displays (head-mounted displays)
 - -Display near head (screen(s), projectors, etc.)
- Immersive projection technology (CAVE-like)
 - Display in the world (screens, projectors, etc.)
- Both require
 - -Rendering for 1st person view
 - Issues with display types
- 100s of examples of each

UCL

HMD

https://developer.oculus.com/blog/open-source-release-of-rift-dk2/

UCL

EVL CAVE (1991)

https://vrtifacts.com/cave%C2%AE-a-virtual-reality-theater-1993/

ANTERIOR: Pupil, iris & lens modelled as camera optics...

POSTERIOR: Retina modelled as distribution of photoreceptors...

https://www.moorfields.nhs.uk/content/anatomy-eye

UCL

Photoreceptors in the Retina: Rods & Cones

祝村细胞 并多图的

- Extremely sensitive to light
- Provide achromatic vision
- Work at low level (scotopic) illumination
- Large receptive fields
- Peak absorbance (sensitivity) at ~500nm

- Less sensitive to light
- Provide colour vision
- Work at high level (photopic) illumination
- Three types:

'B' peak at 437nm, 'G' peak at 533nm, 'R' peak: 564nm Much smaller receptive fields

视维姆服

Some Immersive Characteristics of Displays

- Recall that immersion is a means of quantifying the properties of the systems
- For visual display systems, many characteristics can be looked at:
 - Resolution
 - -Refresh rate
 - -Frame rate
 - -Colour gamut
 - -Field of view

https://benchmarks.ul.com/compare/best-vr-headsets

The Refresh Rate

- This is the number of times the display hardware *draws the image* per second
- It has to be sufficiently fast that the display intensity appears steady

From http://en.wikipedia.org/wiki/Refresh rate

Device Refresh Rates

- Normal screens
 - -Standard OLED/LCD panels up to 75Hz, for gaming tend to 144Hz
 - -September 2020, NVidia launches 360Hz eSports displays
- Projectors
 - -DLP can now match this (digital cinema rear projection)
- HMD screens
 - -72Hz OLED in Oculus Quest
 - -120/144Hz for Valve Index

Low Persistence Displays

- There is a very important problem on HMDs hold-type blur
- That is, if a pixel is turned on as your head moves, it creates the illusion of a spread of light in space

Flicker Fusion Threshold

- This varies across the eye
 - -Foveal vision is least sensitive
 - -Peripheral vision is most sensitive

 The consequences of this can be seen when you look at the refresh rate for different types of devices

The Frame Rate

- This is the number of times the hardware produces a unique image per second
- Dictated by the power of the graphics card
- Ideally, for VR, at the display rate
- If not, modern HMD drivers use framereprojection techniques to "extrapolate" frames

Frame Rate and Latency

- Later we will see that latency is key to performance (and preventing sickness)
- Higher display rates support lower latency
- In extreme, can "race the beam" that is, calculate pixels just before display needs them
 - –(See Sebastian Friston's work)

Human-Perceptible Colour Gamut

- Colour is the perceptible proportion of the electromagnetic spectrum
- International Commission on Illumination (CIE) Chromaticity Diagram (1931). Describes 'average' properties of human eye.
- Curve is monochromatic (single-wavelength, nm) light

International Commission on Illumination (CIE) Chromaticity Diagram (1931)

Standard Computer Display Gamut

- Only a portion of the human colour gamut is reproduced by typical computer displays.
- Image shows typical CRT/LCD display. Different devices have different gamuts: type (printer, projector, HDR display...), manufacturer, model.
- Image on previous slide describes colours outside the sRGB gamut, so depending on the display calibration, they may not be displayed properly!

Brightness & Contrast

- Brightness
 - -Projectors 2000 lumen
 - -Screen 500 nits (1 Nit = 3.426 Lumens)
 - -Luminance may be different for different colours
- Contrast Ratio
 - -Ratio between black level and white
 - -1000:1 is good
 - Very difficult to measure accurately
 - Also depends on response time (time to change between any two levels).
 Static vs Dynamic ratio.

High Dynamic Range

- Contrast ratio is determined by the lowest black level of the display (0,0,0 does not equal no light on most displays)
- Prototype HDR HMDs have been built
 - -Meta's Starburst HMD, 20,000 nits
 - Note that brightness is dangerous

Outline

1. Characteristics of Immersive Displays

2. Stereo Rendering

Virtualisation and How to Achieve It

	,		
Level of virtualization	Definition	Cues	Technology
Virtual Space	3D objects inscribed on a flat sheet	ALL PSYCHOLOGICAL CUES: Linear persp., Shading, Shadows, Aerial persp., Occlusion, Texture cues	Pen & Paper + Perspective ??
Virtual Image	Perception of objects with depth	PHYSIOLOGICAL CUES Stereoscopic disparity, Accomodation* Convergence*	"Stereoscope" 1830s Charles Wheatstone Stereo screens
Virtual Environment	Objects slaved motion parallax	All cues consistent with observer motion	Cave, HMDs ~1980s - '90s

LUCL

How do we see in stereo?

- Inter-Pupilary Distance (IPD) or binocular disparity ~ 65mm
- Each eye has different view of same object
- Perceptual fusion of two views (cyclopean union), subsequent perception of depth
- Inputs from 2 eyes converge on the same cortical neurons in visual cortex (V1)

Autostereograms

Override vergence by forcing your eyes parallel

Presenting 3D images: Ideals

- Congruence
 - L & R images should be same (except as caused by the horizontal parallax) Especially colour & brightness same for homologous points
- Vertical parallax = Zero
 If>0, uncomfortable to fuse images
- Parallax (view separation) trade off...

Wide parallax: good depth, but too wide leads to discomfort.

Parallax should be less <= IPD

Closer the homologous points...less disparity between convergence & accommodation To provide maximum depth but lowest parallax, place principal objects so that ~½ parallax values are +ve, ½ -ve

UCL

Presenting Stereo

- In a HMD each eye sees a separate screen or part of one screen
- In CAVE-like VR, both eyes see the same screen
- Various methods for separating stereo views (similar to 3D cinema)
 - –Active Stereo (shutter glasses)
 - -Passive Stereo (e.g. polarising glasses)
- There are other methods that we will not cover
 - -Wavelength separation
 - Autostereo displays

Active Stereo

- LCD alternates between transparent, and opaque when voltage is applied.
- Alternate-frame synchronising with display refresh using transmitter (IR in the CAVE).

Advantages:

- No ghosting
- Copes with head-tilting well

Disadvantages:

- Need high-refresh monitor to avoid flickering
- Dark, as they shut out light (sunglasses)
- Bespoke and expensive

Passive Stereo

- Exploits polarisation of light. Left and right images are projected through different polarising filters. Left and right lenses of glasses pass similarly polarised light and block oppositely polarised light.
- Linear or circular polarisation. Circular supports head-tilting.

Advantages:

- Cheaper than active stereo
- Lightweight glasses

Disadvantages:

- Requires fitting projector filters
- Less flexibility with displays

HMD Optics

Head Mounted Displays, Melzer & Moffitt, 1997

HMD Optical Trade-Offs

- The screen is close to the eyes, so we need to relax the focus
- Screen size and pixel density is traded with optics and field of view
- Need to consider accommodation and vergence
- Optics is expensive or bulky
- Not a trade off, but no current commercial system is variable focus (with a minor exception for an AR display

Accommodation

http://en.wikipedia.org/wiki/Accommodation %28eye%29

Convergence

http://www.sapdesignguild.org/editions/edition9/vision_physiology.asp

Accommodation and Convergence

- Usually work in conjunction with each other
- This correspondence is not physiologically determined
- Learned by experience
- Can be broken by e.g. looking at screen based stereo views

UCL

Field of View

Templeman, James & Sibert, Linda & Page, Robert & Denbrook, Patricia. (2009). Comparing Two Different Forms of Dismounted Infantry Simulators.

Comparison of Current HMDs

https://www.reddit.com/r/ValveIndex/comments/b9lp7t/comparison of the horizontal fov of different/

Aberration

Correct in software (or better optics)

http://doc-ok.org/?p=1414

Varjo Foveated Display

https://www.kguttag.com/2017/06/26/varjo-foveated-display-part-1/

UCL

Half-Dome 3

OC6 Facebook's Michael Abrash Talks New Half Dome Prototypes

UCL

Butterscotch Varifocal

https://www.meta.com/en-gb/blog/quest/reality-labs-research-display-systems-siggraph-2023-butterscotch-varifocal-flamera/

Summary

- Design of displays is a tradeoff of immersive characteristics
- Consumer VR systems follow a long tradition of similar HMDs back to the 1980s but change (e.g. varifocal) is coming
- While developments in consumer HMDs 2010-2015 was driven by smartphone screens, more recent HMDs have needed better screen technology