R

Redes **Neurais Artificiais**

*Aula 03

THE ROAD SO FAR

UNIVERSIDADEDO ESTADO DE MINAS GERAIS

classificação

x1 - comprimento do parafuso x2 - diâmetro do parafuso

Classe A (0) e Classe B (1)

Operador E

x1	x2	Classe
0	0	0
0	1	0
1	0	0
1	1	1

Algoritmo mais simples

- erro = respostaCorreta respostaCalculada
 Os pesos são atualizados até os erros serem
 pequenos
- peso(n + 1) = peso(n) + (taxaAprendizagem * entrada * erro)

Enquanto o erro for diferente de zero

- Para cada registro
 - Calcula a saída com os pesos atuais
 - Compara a saída esperada com a saída calculada, somando o erro
 - Para cada peso da rede
 - Atualiza o peso peso(n + 1) = peso(n) + (taxaAprendizagem * entrada * erro)

- Como resolver problemas que n\u00e3o s\u00e3o linearmente separ\u00e1veis?
- Aumentar o número de neurônios resolve? Não!

A solução é aumentar o número de camadas de neurônios.

UNIDADE DIVINÓPOLIS

As redes neurais mais modernas são compostas por múltiplas camadas de neurônios e possibilitam a resolução de problemas não linearmente separáveis.

Para o modelo de neurônio a seguir temos:

- Potencial de ativação: $u = \sum_{i=1}^{n} W_i \cdot X_i$
- Função de ativação: g(). (função degrau nos exemplos anteriores)

• Assim:
$$Y = g(u) = g\left(\sum_{i=1}^{n} W_i \cdot X_i\right)$$

Função Linear

$$Y = \gamma \left(\sum_{i=1}^{n} W_{i} \cdot X_{i} \right) = \gamma u$$

Função Degrau

$$Y = \begin{cases} 1 & se(u \ge \theta) \\ & \text{onde,} \quad u = \left(\sum_{i=1}^{n} W_i \cdot X_i\right) \\ 0 & se(u < \theta) \end{cases}$$

Função Sigmoidal

$$Y = \frac{1}{1 + e^{-u}} \quad onde, u = \left(\sum_{i=1}^{n} W_i \cdot X_i\right)$$
DO ESTADO DE MINAS GERAIS

funcões de ativacão

Função Tangente Hiperbólica

$$Y = \frac{e^{u} - e^{-u}}{e^{u} + e^{-u}} \quad onde, u = \left(\sum_{i=1}^{n} W_{i} \cdot X_{i}\right)$$
DO ESTADO DE MINAS GERAIS

DO ESTADO DE MINAS GERAIS

Mapeamento de entrada para saída em um neurônio com função de ativação sigmoidal.

Uma entrada especial chamada **Bias** é utilizada para

ajustar o limiar de atuação.

classificação

x1 - comprimento do parafuso x2 - diâmetro do parafuso

Classe A (0) e Classe B (1)

Operador E

x1	x2	Classe
0	0	0
0	1	0
1	0	0
1	1	1

Algoritmo mais simples

- erro = respostaCorreta respostaCalculada
 Os pesos são atualizados até os erros serem
 pequenos
- peso(n + 1) = peso(n) + (taxaAprendizagem * entrada * erro)

Enquanto o erro for diferente de zero

- Para cada registro
 - Calcula a saída com os pesos atuais
 - Compara a saída esperada com a saída calculada, somando o erro
 - Para cada peso da rede
 - Atualiza o peso peso(n + 1) = peso(n) + (taxaAprendizagem * entrada * erro)

