Puan: 4,00

T tipi flip floplardan oluşan bir kaydedicinin S sinyali ile set edilmesi (türn çıkışlarının 1 olması) isteniyor. Kullanılacak T tipi flip flopların uyarma işlevi ne olur? (Not: 1 bitlik tasarım yeterlidir, n bit için geçerli olacaktır.)

- A T = 5',q'
- B T = S.q"
- C T = S.q
- D T = S+q

SR tipi flip floptan JK tipi flip flop elde etmek istersek S ucunun uyarma işlevi ne olur?

Aşağıdaki gibi bir sayıcıyı 3 tane T tipi flip flop kullanarak gerçekleştirmek istersek T₂ 'nin uyarma işlevi ne olur? (Not: q₂:MSB q₀:LSB alınız. Sistemin x diye bir girişi ve z diye bir çıkışı yoktur.)

- A $T_2 = (q_2 \oplus q_0) + q_1'$
- B $T_2 = q_1'.q_0$
- $C = T_2 = q_1 \cdot q_0 \cdot q_2$
- $T_2 = q_2 + q_1.q_0$

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR€TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ←AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir SC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri	
Program Counter(PC)	0011	
InstructionRegister(IR)	0100	
Adres Register(AR)	1000	
Memory(M)	1001	
TemporaryRegister (TR)	0111	
Akümülatör (AC)	0010	
Data Register (DR)	0101	

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

T4, T5 ve T6 adımları için, ortak yol ile bağlantılı dekoderlerin girişlerine uygulanacak kontrol sinyalleri ne olmalıdır?

y3:y2:y1:y0 = (S+R):Q:Q:(Q+R) d3:d2:d1:d0 = 0:R:R:R

B y3:y2:y1:y0 = 0:R:R:(Q+R) d3:d2:d1:d0 = R:Q:Q:(Q+R)

c y3:y2:y1:y0 = S:R:R:R d3:d2:d1:d0 = Q:0:0:Q

y3:y2:y1:y0 = S:R:R:(R+S) d3:d2:d1:d0 = Q:R:R:(Q+R)

KOMUTUN M	İKRO İŞLEM ADIMLARI
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR₁←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR←TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ←AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir, SC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komutun execute (işlet) saykılında, AR'nin Load (LD) girişine uygulanacak olan kontrol sinyalleri ne olmalıdır?

A P+R+S

B P+R

C P+S

D R

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{II} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _L ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR←TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ← AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir SC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komut bellekte kaç byte yer kaplar?

A :

В 4

C

D 3

KOMUTUN MİKRO İŞLEM ADIMLARI	
P= T3* IDEC03*ADRMD2	TR _{ii} ←M[AR],AR←AR+1
Q= T4* IDEC03*ADRMD2	TR _i ←M[AR],PC←PC+1
R= T5* IDEC03*ADRMD2	AR←TR
S= T6* IDEC03*ADRMD2	DR, ←M[AR], AR ←AR+1
T= T7* IDEC03*ADRMD2	DR.←M[AR]
Y= T8* IDEC03*ADRMD2	AC← DR - AC, Zero flag güncellenir, SC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri	
Program Counter(PC)	0011	
InstructionRegister(IR)	0100	
Adres Register(AR)	1000	
Memory(M)	1001	
TemporaryRegister (TR)	0111	
Akümülatör (AC)	0010	
Data Register (DR)	0101	

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

Bu komutun opcode değeri nedir?

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir. Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

1000h	LDA #1006h
	BSR ~ 03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS
	10000

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Bu program bellekte kaç byte yer kaplar?

В

C 8

D 7

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

1000h	LDA #1006h
	BSR ~ 03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Program bitiminde, Stack bölgesinin en üst gözünde hangi bilgi vardır?

A 1005h

3 1006h

C 1010h

D 1008h

Soru₁₀

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

1000h	LDA #1006h
	BSR ~ 03h
	INCR
	INCR
	HLT
	PSH
	INCR
	RTS
	KIS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Program bitiminde, SP hangi bellek gözünü gösterir?

A 00FCh

B 0098h

C 00FDh

D 00FEh

Yığın Kaydedicisi (SP) başlangıçta 0100h değerini göstermektedir.

Aşağıdaki program ise belleğin 1000h adresinden itibaren yerleştirilmiştir.

PC'ye de 1000h değeri atanmıştır. Buna göre aşağıdaki 4 soruyu yanıtlayınız.

1000h	LDA #1006h BSR ~ 03h INCR INCR HLT PSH INCR RTS
	RTS

#: İvedi mod, ~: Göreceli mod

LDA: Aküye yükle, PSH: Aküyü yığına koy, INCR: Aküyü 1 arttır,

RTS: Altprogramdan geri dön, HLT: Programı sonlandır, BSR: Altprograma dallan.

Programın işletimi tamamlandığında Aküdeki değer ne olur?

C 1008h

Elektriksel olarak silinip yazılabilen ROM tipi aşağıdakilerden hangisidir?

Girişin (x) 0'dan 1'e geçişini algılayan ve çıkışında (z) 1 clock saykılı boyunca 1 sinyalini üreten Moore tipi ardışık bir devrenin D tipi flip floplarla tasarlanması isteniyor. (Not: Bu problem 3 durum ile çözülebilmektedir. A başlangıç durumudur ve bu durumda çıkışı 0 alınız. Diğer durumlar da sırasıyla B ve C durumlarıdır. A durumundayken girişin 1 olması durumunda sistem B durumuna gitmektedir.)

Aşağıdaki 2 soruyu bu bilgilere göre yanıtlayınız.

Flip flopların uyarma işlevleri ne olur? (Not: A durumuna 00, B durumuna 01 ve C durumuna 11 atayarak çözüm yapınız. q₁:MSB q₀:LSB 'dir)

- A D₁=x.q₀ D₀=x
- B D₁=x D₀=q₀'
- C D₁=0 D₀=q₀'
- D D₁=x D₀=q₀

Girişin (x) 0'dan 1'e geçişini algılayan ve çıkışında (z) 1 clock saykılı boyunca 1 sinyalini üreten Moore tipi ardışık bir devrenin D tipi flip floplarla tasarlanması isteniyor. (Not: Bu problem 3 durum ile çözülebilmektedir. A başlangıç durumudur ve bu durumda çıkışı 0 alınız. Diğer durumlar da sırasıyla B ve C durumlarıdır. A durumundayken girişin 1 olması durumunda sistem B durumuna gitmektedir.)

Aşağıdaki 2 soruyu bu bilgilere göre yanıtlayınız.

Çıkışın lojik ifadesi ne olur?

- $A = z = q_1 + q_0$
- B z= q1.q0
- C z= q1.q0
- D z= q1

0000h	01h
0001h	2Ah
0002h	00h
0003h	50h
0004h	28h
0005h	00h
0006h	52h
0007h	10h
0008h	FFh
0009h	AAh
000Ah	52h
000Bh	01h
000Ch	01h
000Dh	03h
000Eh	B0h
000Fh	00h
0010h	50h
0011h	91h
0012h	00h
0013h	50h
0014h	40h
0015h	02h
0016h	0Eh

0050h	AAh
0051h	0Fh
0052h	0Ah
0053h	F0h

Komut		Adresieme Modu							
	Açıklama	Doğal	İvedi	Direkt	Dolaylı	Indis	Göreceli		
ADD	AC ←AC+DR	-	10h	20h	30h	40h	-		
LDA	Aküye yükle		1Ah	2Ah	3Ah	4Ah	-		
OR	Lojik OR işlemi		18h	28h	38h	48h	-		
STA	Aküden belleğe yaz		-	A0h	BOh	C0h	-		
CLR	Aküyü temizle	01h	-	-		-			
BCS	Elde biti 1 ise dallan		-	-	-	-	52h		
BRA	Şartsız dallan			-		-	50h		
INCR	Akūyū 1 arttır	03h	-	-		-	-		
LDX	IX kaydedicisine yükle		91h	A1h	B1h	C1h	-		
HLT	Dur	0Eh	-	-		-	-		

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

Program sonlandığında aküdeki (AC) değer ne olur?

A 0000h

B 0001h

C AAAAh

D B59Ah

Commercia.	
0000h	01h
0001h	2Ah
0002h	00h
0003h	50h
0004h	28h
0005h	00h
0006h	52h
0007h	10h
0008h	FFh
0009h	AAh
000Ah	52h
0008h	01h
000Ch	01h
000Dh	03h
000Eh	BOh
000Fh	00h
0010h	50h
0011h	91h
0012h	ooh
0013h	50h
0014h	40h

0015h

0016h

0050h

0051h

0052h

0053h

02h 0Eh

AAh OFh

0Ah

F0h

Komut		Adresleme Modu							
	Açıklama	Doğal	İvedi	Direkt	Dolaylı	Indis	Göreceli		
ADD	AC ←AC+DR	-	10h	20h	30h	40h	-		
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-		
OR	Lojik OR işlemi	-	18h	2Bh	38h	48h	- 1		
STA	Aküden belleğe yaz			A0h	B0h	C0h			
CLR	Aküyü temizle	01h	-	-		-			
BCS	Elde biti 1 ise dallan	-		-		-	52h		
BRA	Şartsız dallan			-			50h		
INCR	Aküyü 1 arttır	03h	-	-	-	-	-		
LDIX	IX kaydedicisine yükle		91h	Alh	B1h	C1h	-		
HLT	Dur	0Eh				-	-		

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

Bellekteki program kaç komuttan oluşmaktadır?

A 9

B 17

C 8

D 11

0000h	01h
0001h	2Ah
0002h	00h
0003h	50h
0004h	2Bh
0005h	00h
0006h	52h
0007h	10h
0008h	FFh
0009h	AAh
000Ah	52h
000Bh	01h
000Ch	01h
000Dh	03h
000Eh	B0h
000Fh	00h
0010h	50h
0011h	91h
0012h	00h
0013h	50h
0014h	40h
0015h	02h
0016h	0Eh
0050h	AAh
0051h	0Fh
0052h	0Ah
0053h	F0h

Komut		Adresleme Modu							
	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli		
ADD	AC ←AC+DR		10h	20h	30h	40h			
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-		
OR	Lojik OR işlemi	+	1Bh	28h	38h	48h			
STA	Aküden belleğe yaz	-	-	A0h	B0h	C0h			
CLR	Aküyü temizle	01h	-	-	-	+	-		
BCS	Elde biti 1 ise dallan		-	-	-	-	52h		
BRA	Şartsız dallan		-	-		-	50h		
INCR	Aküyü 1 arttır	03h	-			-			
LDX	IX kaydedicisine yükle	-	91h	A1h	81h	C1h	-		
HLT	Dur	0Eh	-	-	-	-	-		

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

Belleğin AA0Fh adresinde hangi veri vardır?

A B59Ah

B 0001h

C AAAAh

D 0000h

0000h	01h
0001h	2Ah
0002h	00h
0003h	50h
0004h	28h
0005h	ooh
0006h	52h
0007h	10h
0008h	FFh
0009h	AAh
000Ah	52h
0008h	01h
000Ch	01h
000Dh	03h
000Eh	B0h
000Fh	00h
0010h	50h
0011h	91h
0012h	00h
0013h	50h
0014h	40h
0015h	02h
0016h	0Eh

0050h	AAh
0051h	0Fh
0052h	0Ah
0053h	F0h

Komut	ATT 8 1 1	Adresleme Modu							
	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli		
ADD	AC ←AC+DR		10h	20h	30h	40h			
LDA	Aküye yükle	+	1Ah	2Ah	3Ah	4Ah			
OR	Lojik OR işlemi		18h	28h	38h	48h			
STA	Aküden belleğe yaz	- :	-	A0h	B0h	C0h	-		
CLR	Aküyü temizle	01h	-	-	-	-			
BCS	Elde biti 1 ise dallan				-		52h		
BRA	Şartsız dallan	+	-	-	-	-	50h		
INCR	Aküyü 1 arttır	03h	-	-	-	-	-		
LDX	IX kaydedicisine yükle		91h	Alh	B1h	C1h	-		
HLT	Dur	0Eh	-	-	-	-	-		

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

İndis mod ADD komutu işletilirken etkin adres hesaplama birimi

hangi etkin adres değerini hesap etmiştir?

A OAFOh

B AAOFh

C 0050h

D 0052h

0000h [01h
0001h	2Ah
0002h	00h
0003h	50h
0004h	28h
0005h	00h
0006h	52h
0007h	10h
0008h	FFh
0009h	AAh
000Ah	52h
0008h	01h
000Ch	01h
000Dh	03h
000Eh	BOh
000Fh	00h
0010h	50h
0011h	91h
0012h	00h
0013h	50h
0014h	40h
0015h	02h
0016h	0Eh

0050h

0051h 0052h

0053h

AAh 0Fh

0Ah F0h

Komut		Adresleme Modu							
	Açıklama	Doğal	lvedi	Direkt	Dolaylı	Indis	Göreceli		
ADD	AC ←AC+DR	-	10h	20h	30h	40h	-		
LDA	Aküye yükle	-	1Ah	2Ah	3Ah	4Ah	-		
OR	Lojik OR işlemi		1Bh	2Bh	38h	48h			
STA	Aküden belleğe yaz			A0h	B0h	C0h			
CLR	Aküyü temizle	01h							
BCS	Elde biti 1 ise dallan		-	-		+	52h		
BRA	Şartsız dallan		-				50h		
INCR	Aküyü 1 arttır	03h	-	-		+			
LDX	IX kaydedicisine yükle	*	91h	Alh	B1h	C1h	-		
HLT	Dur	0Eh	-	-	-	-	-		

Bazı komutların opcode'ları

Not: Toplama işleminde işaretsiz sayılar kullanılmaktadır. Bellekteki programımız yan taraftaki gibi olduğuna göre aşağıdaki 5 soruyu yanıtlayınız. (PC'ye başlangıçta 0000h değeri atanmıştır.)

BCS komutu işletilirken etkin adres hesaplama birimi

hangi etkin adres değerini hesap etmiştir?

A 000Ch

B 0050h

C 0000h

D 0051h

Aşağıdaki devrenin Q1 çıkışının lojik ifadesi nedir?

- $Q_1 = x'.q_0$
- $Q_1 = x'q_1 + x.q_1'.q_0$
- C Q₁ = x.q₁'.q₀'
- $Q_1 = x.q_1.q_0$

3 bitlik bir kaydedicinin ($q_2q_1q_0$) Shift sinyali (S) 0 iken durumunu koruması, Shift sinyali 1 iken; en anlamlı biti 0 ise sıfır ile sağa kaydırılması, en anlamlı biti 1 iken sıfır ile sola kaydırılması istenmektedir. T tipi flip floplarla tasarım yapıldığında en anlamlı flip flobun uyarma işlevi ne olur?

- A T2=S.q1
- B T₂=S.q₁'.q₂
- C T₂=S.(q₁+q₂)
- D T₂=S.q₀

LDAX #2000H /İndex kaydedicisine yükle

LDA #3000H /Aküye değer yükle STA 2000H / Aküden belleğe yaz

LDA #5000H

STA 3000H

ADD (2000H) / AC ←AC+DR INCR /Aküyü 1 arttır

ADD *00H

HLT /Sonlandır

#: ivedi adresleme modu

İşaret kullanılmamışsa: direkt adresleme modu

() :Dolaylı adresleme modu * : Index adresleme modu

Aşağıdaki 3 soruyu yukarıdaki programa göre yanıtlayınız.

Programın işletimi tamamlandığında, TR'nin (Temporary Register) değeri ne olur?

(TR, özellikle direkt ve dolaylı adreslemede kullanılmaktadır.)

A 5000h

B 7000h

c 2000h

D 3000h

LDAX #2000H /İndex kaydedicisine yükle

LDA #3000H /Aküye değer yükle STA 2000H / Aküden belleğe yaz

LDA #5000H

STA 3000H

ADD (2000H) / AC ←AC+DR INCR /Aküyü 1 arttır

ADD *00H

HLT /Sonlandır

Aşağıdaki 3 soruyu yukarıdaki programa göre yanıtlayınız.

Programın işletimi tamamlandığında, Aküdeki değer ne olur?

A B001h

B 8001h

C D001h

D A001h

Seçimi Boş Bırakmak İstiyorum

#: ivedi adresleme modu

İşaret kullanılmamışsa: direkt adresleme modu

() :Dolaylı adresleme modu

*: Index adresleme modu

LDAX #2000H /İndex kaydedicisine yükle

LDA #3000H /Aküye değer yükle

STA 2000H / Aküden belleğe yaz LDA #5000H

STA 3000H

ADD (2000H) / AC ←AC+DR INCR /Aküyü 1 arttır

ADD *00H

HLT /Sonlandır

#: ivedi adresleme modu

İşaret kullanılmamışsa: direkt adresleme modu

() :Dolaylı adresleme modu * : Index adresleme modu

Aşağıdaki 3 soruyu yukarıdaki programa göre yanıtlayınız.

Programın işletimi tamamlandığında, DR'nin (Data Register) değeri ne olur?

(DR, özellikle bellekten okunan bilgilerin 16 bit olarak oluşturulması için kullanılmaktadır. Aritmetik ve lojik işlemlerde karşımıza çıkmaktadır.)

A 5000h

B 3000h

C 2000h

D 7000h

Aşağıdakilerden hangisi/hangileri yanlıştır?

- 1. Statik RAM'ler dinamik RAM'lerden daha hızlıdır.
- 2. Statik RAM'ler dinamik RAM'lerden daha maliyetlidir.
- 3. Statik RAM'ler cache bellek oluşturmak için kullanılır.
- 4. Statik RAM'lerde bilgi kalıcı olarak depolanır.
- 5. Dinamik RAM'ler uçucu (volatile) yapıya sahiptir.

- A 1,2 ve 4
- B 2, 4 ve 5
- C 4
- D 5