Homework 5: Clulstering

กำหนดให้ training dataset X = { [2,8], [1,6], [1,8], [2,7], [8,2], [6,1], [8,1], [7,2]} ให้ใช้ K-means algorithm ในการคำนวณ cluster centroids โดยกำหนดค่า K = 2 และ cluster centroid เพิ่มต้น $\mu_1=[3,6]$ และ $\mu_2=[6,3]$

```
Repeat{    #Assign Points to Cluster Centroids for i = 1 to m: c^{(i)} = \text{index(from 1 to K)} of cluster centroids closet to x^{(i)} #Move Cluster Centroid for k = 1 to K: \mu_K = \text{average (mean)} of points assign to cluster k
```

Step 1 #Assign Points to Cluster Centroids

1.1: คำนวณหา distance ระหว่าง training dataset X และ μ_1 , μ_2 ด้วยสูตร $\|m{x}^{(i)} - m{\mu}_k\|$

$$\begin{aligned} \|x^{(1)} - \mu_1\| &= \sqrt{(2-3)^2 + (8-6)^2} = \sqrt{5} & \|x^{(5)} - \mu_1\| &= \sqrt{(8-3)^2 + (2-6)^2} = \sqrt{41} \\ \|x^{(1)} - \mu_2\| &= \sqrt{(2-6)^2 + (8-3)^2} = \sqrt{41} & \|x^{(5)} - \mu_2\| &= \sqrt{(8-6)^2 + (2-3)^2} = \sqrt{5} \end{aligned}$$

$$\|x^{(2)} - \mu_1\| &= \sqrt{(1-3)^2 + (6-6)^2} = \sqrt{4} & \|x^{(6)} - \mu_1\| &= \sqrt{(6-3)^2 + (1-6)^2} = \sqrt{34} \\ \|x^{(2)} - \mu_2\| &= \sqrt{(1-6)^2 + (6-3)^2} = \sqrt{34} & \|x^{(6)} - \mu_1\| &= \sqrt{(6-6)^2 + (1-3)^2} = \sqrt{4} \end{aligned}$$

$$\|x^{(3)} - \mu_1\| &= \sqrt{(1-3)^2 + (8-6)^2} = \sqrt{8} & \|x^{(7)} - \mu_1\| &= \sqrt{(8-3)^2 + (1-6)^2} = \sqrt{50} \\ \|x^{(3)} - \mu_2\| &= \sqrt{(1-6)^2 + (8-3)^2} = \sqrt{50} & \|x^{(7)} - \mu_2\| &= \sqrt{(8-6)^2 + (1-3)^2} = \sqrt{8} \end{aligned}$$

$$\|x^{(4)} - \mu_1\| &= \sqrt{(2-3)^2 + (7-6)^2} = \sqrt{2} & \|x^{(8)} - \mu_1\| &= \sqrt{(7-3)^2 + (2-6)^2} = \sqrt{32} \\ \|x^{(4)} - \mu_2\| &= \sqrt{(2-6)^2 + (7-3)^2} = \sqrt{32} & \|x^{(8)} - \mu_2\| &= \sqrt{(7-6)^2 + (2-3)^2} = \sqrt{2} \end{aligned}$$

#Assign Points to Cluster Centroids

1.2: หา index หรอ $\,c^{(i)}$ ของ training dataset แต่ละตัว

i	$x^{(i)}$	k	$ x^{(i)} - \mu_k $	index ($c^{(i)}$) ที่เลือก
1	[2, 8]	1	$\sqrt{5}$	1 หรือ μ_1
	[2, 8]	2	$\sqrt{41}$	
2	[1, 6]	1	$\sqrt{4}$	1 หรือ μ_1
	[1, 6]	2	$\sqrt{34}$	
3	[1, 8]	1	$\sqrt{8}$	1 หรือ μ_1
	[1, 8]	2	$\sqrt{50}$	
4	[2, 7]	1	$\sqrt{2}$	1 หรือ μ_1
	[2, 7]	2	$\sqrt{32}$	
5	[8, 2]	1	$\sqrt{41}$	2 หรือ μ ₂
	[8, 2]	2	$\sqrt{5}$	
6	[6, 1]	1	$\sqrt{34}$	2 หรือ μ ₂
	[6, 1]	2	$\sqrt{4}$	
7	[8, 1]	1	$\sqrt{50}$	2 หรือ μ ₂
	[8, 1]	2	$\sqrt{8}$	
8	[7, 2]	1	$\sqrt{32}$	2 หรือ μ ₂
	[7, 2]	2	$\sqrt{2}$	

Step 2 #Move Cluster Centroid

คำนวณหา cluster centroid ใหม่ของ μ_1 , μ_2 โดยคำนวณจากค่าเฉลี่ยของ training data ที่อยู่ภายใต้ แต่ละ cluster centroid

$$\mu_1$$
 = average ([2,8], [1, 6], [1, 8], [2, 7])
= $\frac{1}{4}$ [(2+1+1+2), (8+6+8+7)]
 μ_1 = [1.5, 7.25]

$$\mu_2$$
 = average ([8,2], [6, 1], [8, 1], [7, 2])
$$= \frac{1}{4}[(8+6+8+7), (2+1+1+2)]$$

$$\mu_2 = [7.25, 1.5]$$

ดังนั้น cluster centroid ใหม่ ได้แก่

$$\mu_1 = [1.5, 7.25]$$

ແຄະ

$$\mu_2 = [7.25, 1.5]$$