SIMULINK TO SPACEEX CONVERTER TOOL (SL2SX) (USER GUIDE)

Stefano Minopoli and Goran Frehse

December 17, 2014

EXAMPLE: DCMotor.mdl (Provided)

FIGURE: DCMotor.mdl Simulink Diagram

EXAMPLE: DCMotor.mdl (Provided)

FIGURE: Simulation Time

FIGURE: The Result of the Simulation (over 50 seconds)

STEP 1: CONVERT TO .XML

• We need the .xml version of the Diagram

```
fx >> save_system('DCMotor', 'DCMotor.xml', 'ExportToXML', true)
```

FIGURE: MATLAB command to export in .xml

• From the file DCMotor.mdl ⇒ to the file DCMotor.xml

STEP 2: RUN THE TOOL

• Double click on the file "Tool SimuLinkToSpaceEx (SL2SX).jar": a dialog box will be appear to open a file

FIGURE: Dialog Box to choose the .xml file of the Simulink Model

STEP 3: SELECT THE FILE

 Choose the file: we select DCmotor.xml (it is the file obtained after Step1)

FIGURE: Open DCMotor.xml

STEP 4: WAIT FOR THE TRANSLATION

```
>> STEP 1. Choose the Sizuliak Diagram File in .and Format...

The current version supports the following Blacks Type:
System Subjects Export control Constant dains also Monotoni Integrator Switch From Goto DeadZone Trigonometry
>> STEP 2. Starting Translation From Sizulia to Spaces format . . .
>> 2.1. Begin
>> 2.1. Desc.
>> 2.1. Desc.
>> 2.2. Desc.
>> 2.2. Desc.
>> 2.3. Desc.
>> 3.1. Desc.
>> 3.2. Desc.
>> 3.2. Desc.
```

FIGURE: Messages from the tool during the translation phase.

- We obtain:
 - 1. The SpaceEx model: SX_DCmotor.xml
 - 2. The (not-complete) configuration file: *SX_DCmotor.cfg*

STEP 5: COMPARE THE TWO MODELS

Open the obtained file by SpaceEx Editor

FIGURE: The resulting SpaceEx Model.

STEP 6: RUN SPACEEX (OPEN MODEL FILE)

FIGURE: Open the file *SX_DCmotor.xml* by the SpaceEx Web Interface.

STEP 7: RUN SPACEEX (OPEN CONFIG FILE)

FIGURE: Open the file *SX_DCmotor.cfg* by the SpaceEx Web Interface.

STEP 8: COMPLETE THE INITIAL STATES

 $\label{eq:Figure: on SPECIFICATION: set to zero all the Controlled/Uncontrolled Vars.}$

STEP 8: COMPLETE THE INITIAL STATES

FIGURE: Initial states: done.

STEP 9: CHOOSE THE OUTPUT TO SHOW

SpaceEx [Virtual Machine Server]				е
Model Specification Options Output Advanced			Console	
Output format	2D (gen) ▼	0	Model loaded.	
Output variables	t	0		
Output error	0	0		
Generate PDF file				
Echo the generated co				
Verbosity	Medium ▼	3		
			Graphics	

FIGURE: On OUTPUT: We want to see PlantOut1.

STEP 9: CHOOSE THE OUTPUT TO SHOW

FIGURE: Output: done.

STEP 10: RUN THE SIMULATION

FIGURE: The resulting SpaceEx Simulation (over 50 seconds).

FIGURE: Comparision. Left: Simulink. Right: SpaceEx

Step 11: Make Verification

FIGURE: On OPTION: choose STC Scenario.

Step 11: Make Verification

- Instead of starting from PlantOut1 == 0 & PlantOut2 == 0 (single point),
- we start from $-5 \le PlantOut1 \le 0 \& -5 \le PlantOut2 \le 0$

FIGURE: On SPECIFICATION: choose init states not just as a single point.

Step 12: Run Verification

FIGURE: Press "Start".

STEP 12: Run Verification

FIGURE: The result of the Verification.