1.1 Feynman diagrams are constructed out of the Standard Model vertices shown in Figure 1.4. Only the weak charged-current (W^{\pm}) interaction can change the flavour of the particle at the interaction vertex. Explaining your reasoning, state whether each of the sixteen diagrams below represents a valid Standard Model vertex.

- 1.2 Draw the Feynman diagram for $\tau^- \to \pi^- \nu_\tau$ (the π^- is the lightest d \overline{u} meson).
- 1.3 Explain why it is not possible to construct a valid Feynman diagram using the Standard Model vertices for the following processes:

(a)
$$\mu^- \rightarrow e^+e^-e^+$$
,

$$\begin{array}{ll} \text{(b)} & \nu_{\tau}+p \rightarrow \mu^{-}+n,\\ \text{(c)} & \nu_{\tau}+\underline{p} \rightarrow \tau^{+}+n, \end{array}$$

(c)
$$v_{\tau} + p \rightarrow \tau^{+} + n$$
,

(d)
$$\pi^+(u\overline{d}) + \pi^-(d\overline{u}) \rightarrow n(udd) + \pi^0(u\overline{u}).$$

Draw the Feynman diagrams for the decays: 1.4

(a)
$$\Delta^+(uud) \rightarrow n(udd) \pi^+(ud)$$
,

(b)
$$\Sigma^0(uds) \to \Lambda(uds) \gamma$$
,

(c)
$$\pi^+(u\bar{d}) \to \mu^+\nu_\mu$$

and place them in order of increasing lifetime.

- Treating the π^0 as a $u\bar{u}$ bound state, draw the Feynman diagrams for: 1.5

 - $\begin{array}{ll} \mbox{(a)} & \pi^0 \rightarrow \gamma \gamma, \\ \mbox{(b)} & \pi^0 \rightarrow \gamma e^+ e^-, \end{array} \label{eq:piperson}$
 - (c) $\pi^0 \to e^+ e^- e^+ e^-$, (d) $\pi^0 \to e^+ e^-$.

By considering the number of QED vertices present in each decay, estimate the relative decay rates taking $\alpha = 1/137$.

Particle interactions fall into two main categories, scattering processes and annihilation processes, as indicated 1.6 by the Feynman diagrams below.

Draw the lowest-order Feynman diagrams for the scattering and/or annihilation processes:

- (a) $e^-e^- \rightarrow e^-e^-$,
- (b) $e^+e^- \rightarrow \mu^+\mu^-$,
- (c) $e^+e^- \rightarrow e^+e^-$,
- (d) $e^-\nu_e \rightarrow e^-\nu_e$,
- (e) $e^-\overline{\nu}_e \rightarrow e^-\overline{\nu}_e$.

In some cases there may be more than one lowest-order diagram.