Matemática Atuarial II

Aula 11

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

O status último sobrevivente (Last survivor status) falha quando a última das n vidas vir a óbito.

Analogia com um circuito em paralelo

O status último sobrevivente (Last survivor status) falha quando a última de n vidas vir a óbito, ou seja, o status estará "ativo" enquanto pelo menos um elemento do grupo estiver vivo.

Considere o vetor aleatório $\{T_{x_1}, T_{x_2}, T_{x_3}, \dots, T_{x_n}\}$ composto pelas variáveis aleatórias das sobrevidas de n pessoas, então a sobrevida resultante do status último sobrevivente relacionado a esse vetor é dada por:

$$T_{x_{(n)}} = max\{T_{x_1}, T_{x_2}, T_{x_3}, \dots, T_{x_n}\}$$

E $T_{\chi_{(n)}}$ representa a sobrevida (v,a.) daquele indivíduo que mais tempo viverá dentro o conjunto.

Em particular daremos mais atenção a seguros sobre duas vidas (x e y), assim:

$$T_{\overline{x,y}} = max\{T_x, T_y\}$$

Por definição $F_{T_{\overline{x},\overline{y}}}(t)$ implica na probabilidade de que aquele que viver mais entre x ou y não sobreviver a t, ou seja:

$$F_{T_{\overline{x},\overline{y}}}(t) = P(T_{\overline{x},\overline{y}} \le t) = P(\max\{T_x, T_y\} \le t) = t q_{\overline{x},\overline{y}}$$

*A notação $T_{\overline{x},\overline{y}}$ é usada para representar as idades que compõem o estados, assim $T_{\overline{x},\overline{y}}=T_{(n)}$

A probabilidade de que o status falhe em t anos, é dada por:

$$F_{T_{\overline{x},\overline{y}}}(t) = P(T_{\overline{x},\overline{y}} \le t)$$

Se o máximo entre T_x e T_y é menor que t então ambos são menores.

$$F_{T_{\overline{x},\overline{y}}}(t) = P(T_x \le t \text{ e } T_y \le t)$$

Como T_x e T_y são independentes:

$$F_{T_{\overline{x},\overline{y}}}(t) = P(T_x \le t) P(T_y \le t)$$

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{\overline{x},\overline{y}} = {}_{t} q_{x} {}_{t} q_{y}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = P(T_{\overline{x},\overline{y}} > t) = P(\max\{T_x, T_y\} > t)$$

Se o máximo entre T_x e T_y é maior que t, então:

$$S_{T_{\overline{x},\overline{y}}}(t) = P(T_x > t \text{ ou } T_y > t)$$

$$S_{T_{\overline{x,y}}}(t) = P(T_x > t) + P(T_y > t) - P(T_x > t) P(T_y > t)$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_{t}p_{\overline{x},\overline{y}} = {}_{t}p_{x} + {}_{t}p_{y} - {}_{t}p_{x} {}_{t}p_{y}$$

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_{t} p_{x} {}_{t} p_{y} = {}_{t} p_{x,y}$$

$$_{t}q_{x,y}=1-_{t}p_{x,y}$$

Seja $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$ então:

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{\overline{x},\overline{y}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_{t}p_{x} + {}_{t}p_{y} - {}_{t}p_{x} {}_{t}p_{y} = {}_{t}p_{\overline{x},\overline{y}}$$

$$_{t}q_{\overline{x},\overline{y}}=1-_{t}p_{\overline{x},\overline{y}}$$

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - \underbrace{{}_{t} q_{x} {}_{t} q_{y}} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = \underbrace{t p_x t p_y} = t p_{x,y}$$

$$_t q_{x,y} = 1 - _t p_{x,y}$$

Seja $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$ então:

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = \underbrace{{}_{t} q_{\overline{x},\overline{y}}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_{t}p_{x} + {}_{t}p_{y} - \underbrace{{}_{t}p_{x} \, {}_{t}p_{y}} = {}_{t}p_{\overline{x},\overline{y}}$$

$$_{t}q_{\overline{x},\overline{y}}=1-_{t}p_{\overline{x},\overline{y}}$$

$$_{t}q_{x,y} = _{t}q_{x} + _{t}q_{y} - _{t}q_{\overline{x,y}}$$

$$_{t}\boldsymbol{p}_{\overline{x},\overline{y}} = _{t}p_{x} + _{t}p_{y} - _{t}\boldsymbol{p}_{x,y}$$

Exemplo 1: Seja o tempo de vida futuro T_{45} e T_{50} independentes, obtenha a probabilidade de que a última morte ocorra entre 5 e 10.

Exemplo 1: Seja o tempo de vida futuro T_{45} e T_{50} independentes, obtenha a probabilidade de que a última morte ocorra entre 5 e 10.

$$P(5 < T_{\overline{45,50}} \le 10) = P(T_{\overline{45,50}} > 5) - P(T_{\overline{45,50}} > 10)$$

$$P(5 < T_{\overline{45,50}} \le 10) = {}_{5} p_{\overline{45,50}} - {}_{10} p_{\overline{45,50}}$$

$$P(5 < T_{\overline{45,50}} \le 10) = {}_{5} p_{45} + {}_{5} p_{50} - {}_{5} p_{45,50} - {}_{10} p_{45} - {}_{10} p_{50} + {}_{10} p_{45,50}$$

$$P(5 < T_{\overline{45,50}} \le 10) = {}_{5} p_{45} + {}_{5} p_{50} - {}_{5} p_{45,50} - {}_{10} p_{45} - {}_{10} p_{50} + {}_{10} p_{45,10} p_{50}$$

Exemplo 2: Considere um seguro de vida feito por um grupo de 3 pessoas de mesmo sexo, em que o benefício será pago caso todos os membros do grupo venham a falecer. Calcule a probabilidade desse seguro ser pago antes de 10 anos após o contrato. Suponha que o tempo de vida adicional de cada membro seja modelado pelas variáveis aleatórias T_x , T_y e T_z tal que $T_x \sim Exp(0,02)$, $T_v \sim Exp(0,032)$ e $T_z \sim Exp(0,025)$.

Exemplo 2: Considere um seguro de vida feito por um grupo de 3 pessoas de mesmo sexo, em que o benefício será pago caso todos os membros do grupo venham a falecer. Calcule a probabilidade desse seguro ser pago antes de anos após o contrato. Suponha que o tempo de vida adicional de cada membro seja modelado pelas variáveis aleatórias T_x , T_y e T_z tal que $T_x \sim Exp(0,02)$, $T_v \sim Exp(0,032)$ e $T_z \sim Exp(0,025)$.

$$P(T_{\overline{x,y,z}} \le 10) = P(T_x \le 10)P(T_y \le 10)P(T_z \le 10)$$

$$P(T_{\overline{x,y,z}} \le 10) = (1 - e^{-0.02 \times 10})(1 - e^{-0.032 \times 10})(1 - e^{-0.025 \times 10})$$

$$P(T_{\overline{x,y,z}} \leq 10) \approx 0.01098$$

A probabilidade de que número de anos completados pelo status seja t, é dado por:

$$t|q_{\overline{x},\overline{y}} = P(T_{\overline{x},\overline{y}} = t) = P(t < T_{\overline{x},\overline{y}} \le t + 1)$$

$$t|q_{\overline{x},\overline{y}} = P(T_{\overline{x},\overline{y}} > t) - P(T_{\overline{x},\overline{y}} > t + 1)$$

$$t|q_{\overline{x},\overline{y}} = t p_{\overline{x},\overline{y}} - t + 1 p_{\overline{x},\overline{y}},$$

$$t|q_{\overline{x},\overline{y}} = (tp_x + tp_y - tp_x tp_y) - (t+1p_x + t+1p_y - t+1p_x t+1p_y),$$

$$t|q_{\overline{x},\overline{y}} = (tp_x - t+1p_x) + (tp_y - t+1p_y) - (tp_x tp_y - t+1p_x t+1p_y),$$

. . .

 $_{t|}q_{\overline{x.y}} = (_{t}p_{x} - _{t+1}p_{x}) + (_{t}p_{y} - _{t+1}p_{y}) - (_{t}p_{x} _{t}p_{y} - _{t+1}p_{x} _{t+1}p_{y}),$ $t|q_{\overline{x},\overline{y}} = (t_{x} - t_{t+1}p_{x}) + (t_{y} - t_{t+1}p_{y}) - [t_{y} + t_{y} - (t_{y} + t_{y}) - (t_{y} + t_{y})],$ $|t|q_{\overline{x,y}} = (t_t p_x - t_{t+1} p_x) + (t_t p_y - t_{t+1} p_y) - |t_t p_x t_t p_y (1 - p_{x+t} p_{y+t})|,$ $q_{\overline{x},\overline{y}} = (p_x - p_x) + (p_y - p_t) - (p_x p_y q_{x+t,y+t}),$ $t|q_{\overline{x,y}} = (tp_x - t+1p_x) + (tp_y - t+1p_y) - [tp_x tp_y (q_{x+t} + q_{y+t} - q_{x+t}q_{y+t})]$

. . .

•••

$$_{t|}q_{\overline{x,y}} = (_{t}p_{x} - _{t+1}p_{x}) + (_{t}p_{y} - _{t+1}p_{y}) - [_{t}p_{x} _{t}p_{y} (q_{x+t} + q_{y+t} - q_{x+t}q_{y+t})]$$

Fazendo
$$_tp_x-_{t+1}p_x=_tp_xq_{x+t}$$
 e $_tp_y-_{t+1}p_y=_tp_yq_{y+t}$

$$t|q_{\overline{x},\overline{y}} = t p_x q_{x+t} + t p_y q_{y+t} - (t p_x t p_y q_{x+t} + t p_x t p_y q_{y+t} - t p_x t p_y q_{x+t} q_{y+t}),$$

$$_{t|}q_{\overline{x,y}} = (1 - _{t}p_{y})_{t}p_{x}q_{x+t} + (1 - _{t}p_{x})_{t}p_{y}q_{y+t} + _{t}p_{x}_{t}p_{y}q_{x+t}q_{y+t},$$

$$q_{x,y} = (q_y)_t p_x q_{x+t} + (q_x)_t p_y q_{y+t} + p_x t p_y (q_{x+t}) (q_{y+t})$$

Exemplo 3: Considerando a tábua de vida AT-49 masculina calcule

 $_{2|}q_{\overline{20,25}}$ e $_{1|}q_{\overline{20,25}}$.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8

Exemplo 3: Considerando a tábua de vida AT-49 masculina calcule $_{2|}q_{\overline{20,25}}$ e $_{1|}q_{\overline{20,25}}$.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8

$$_{2|}q_{\overline{20,25}} = (_{2}q_{25})(_{2}p_{20})q_{22} + (_{2}q_{20})(_{2}p_{25})q_{27} + (_{2}p_{20})(_{2}p_{25})q_{22}q_{27}$$

$$\approx 0,000002703523$$

$$_{1|}q_{\overline{20,25}} = (q_{25})(p_{20})q_{21} + (q_{20})(p_{25})q_{26} + (p_{20})(p_{25})q_{21}q_{26} \approx ???$$

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_t p_x {}_t p_y = {}_t p_{x,y}$$

$$_{t}q_{x,y}=1-_{t}p_{x,y}$$

Seja $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$ então:

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{\overline{x},\overline{y}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_t p_x + {}_t p_y - {}_t p_x {}_t p_y = {}_t p_{\overline{x},\overline{y}}$$

$$_{t}q_{\overline{x},\overline{y}}=1-_{t}p_{\overline{x},\overline{y}}$$

$$= ({}_{t}p_{x})({}_{t}p_{y})(q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

$$t|q_{\overline{x,y}}| = (tq_y)_t p_x q_{x+t} + (tq_x)_t p_y q_{y+t} + t p_x_t p_y (q_{x+t}) (q_{y+t})$$

$$_{t}q_{x,y} = _{t}q_{x} + _{t}q_{y} - _{t}q_{\overline{x,y}}$$

$$_{t}\boldsymbol{p}_{\overline{x},\overline{y}} = _{t}p_{x} + _{t}p_{y} - _{t}\boldsymbol{p}_{x,y}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Matemática Atuarial II

Aula 12

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_t p_x {}_t p_y = {}_t p_{x,y}$$

$$_{t}q_{x,y}=1-_{t}p_{x,y}$$

Seja $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$ então:

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{\overline{x},\overline{y}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_t p_x + {}_t p_y - {}_t p_x {}_t p_y = {}_t p_{\overline{x},\overline{y}}$$

$$_{t}q_{\overline{x},\overline{y}}=1-_{t}p_{\overline{x},\overline{y}}$$

$$= ({}_{t}p_{x})({}_{t}p_{y})(q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

$$t|q_{\overline{x,y}}| = (tq_y)_t p_x q_{x+t} + (tq_x)_t p_y q_{y+t} + t p_x_t p_y (q_{x+t}) (q_{y+t})$$

$$_{t}q_{x,y} = _{t}q_{x} + _{t}q_{y} - _{t}q_{\overline{x,y}}$$

$$_{t}\boldsymbol{p}_{\overline{x},\overline{y}} = _{t}p_{x} + _{t}p_{y} - _{t}\boldsymbol{p}_{x,y}$$

Status último sobrevivente(Seguro)

O seguro de vida vitalício pago ao final do ano de falha do status último sobrevivente é aquele que somente pagará o benefício quando não restar mais nenhum sobrevivente do status...

Para a variável aleatória $T_{\overline{x},\overline{y}}=max\{T_x,T_y\}$, o cálculo do prêmio puro único para um seguro de vida vitalício com benefício(unitário) pago ao final do ano de falha , é calculado por:

$$A_{\overline{x,y}} = \sum_{t=0}^{\infty} v^{t+1} |_{t|} q_{\overline{x,y}}$$

Em que:

$$t_{t}|q_{\overline{x,y}} = t q_{y} t p_{x} q_{x+t} + t q_{x} t p_{y} q_{y+t} + t p_{x} t p_{y} q_{x+t} q_{y+t}$$

Status último sobrevivente (Seguro)

Para a variável aleatória $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$, o cálculo do prêmio puro único para um seguro de vida temporário por n anos com benefício(unitário) pago ao final do ano de falha, é calculado por:

$$A_{\overline{u}^1:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} |_{t|} q_{\overline{x},\overline{y}}$$

em que $u = \{x, y\}$ e $t \mid q_{\overline{x}, \overline{y}} = t q_y t p_x q_{x+t} + t q_x t p_y q_{y+t} + t p_x t p_y q_{x+t} q_{y+t}$

Exemplo 3: Considere a tábua de vida AT-49 masculina e uma taxa de juros anual de 5%, então calcule o valor de $A_{\overline{u}^1:\overline{3}|}$, sendo que $u=\{20,25\}$.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8

$$A_{\overline{u}^1:\overline{3}|} = \sum_{t=0}^{2} v^{t+1} |_{t|} q_{\overline{20,25}},$$

$$A_{\overline{u}^1:\overline{3}|} = v_{0|} q_{\overline{20,25}} + v^2_{1|} q_{\overline{20,25}} + v^3_{2|} q_{\overline{20,25}}$$

Em que

$${}_{0|}q_{\overline{20,25}} = ({}_{0}q_{25}){}_{0}p_{20}{}_{q_{20}} + ({}_{0}q_{20}){}_{0}p_{25}q_{25} + ({}_{0}p_{20})({}_{0}p_{25}){}_{q_{20}}q_{25} \approx 0,0000004774$$

$${}_{1|}q_{\overline{20,25}} = q_{25}{}_{p_{20}}{}_{q_{21}} + q_{20}{}_{p_{25}}{}_{q_{26}} + p_{20}{}_{p_{25}}{}_{q_{21}}{}_{q_{26}} \approx 0,0000001527771$$

$${}_{2|}q_{\overline{20,25}} = ({}_{2}q_{25})({}_{2}p_{20})q_{22} + ({}_{2}q_{20})({}_{2}p_{25})q_{27} + ({}_{2}p_{20})({}_{2}p_{25})q_{22}q_{27} \approx 0,000002703523$$

Então

$$A_{\overline{u}^1:\overline{3}|} \approx 0.000004176$$

Status último sobrevivente-Relação entre $T_{x,y}$ e $T_{\overline{x},\overline{y}}$

Se
$$T_{x,y} = T_x$$
 então $T_{\overline{x},\overline{y}} = T_y$

Se
$$T_{x,y} = T_y$$
 então $T_{\overline{x},\overline{y}} = T_x$

Consequentemente

$$T_{x,y} + T_{\overline{x,y}} = T_x + T_y$$

e

$$T_{x,y}T_{\overline{x,y}} = T_xT_y$$

Sendo assim para c um valor constante

$$c^{T_{x,y}} + c^{T_{\overline{x,y}}} = c^{T_x} + c^{T_y}$$

Status último sobrevivente-Relação entre $T_{x,y}$ e $T_{\overline{x},\overline{y}}$

Fazendo c = v, temos

$$v^{T_{x,y}} + v^{T_{\overline{x,y}}} = v^{T_x} + v^{T_y}$$

logo

$$v^{T_{x,y}+1} + v^{T_{\overline{x,y}}+1} = v^{T_x+1} + v^{T_y+1}$$

Tomando a esperança dos dois lados:

$$E(v^{T_{x,y}+1} + v^{T_{\overline{x,y}}+1}) = E(v^{T_x+1} + v^{T_y+1})$$

$$E(v^{T_{\chi,y}+1}) + E(v^{T_{\overline{\chi,y}}+1}) = E(v^{T_{\chi+1}}) + E(v^{T_{y}+1})$$

Status último sobrevivente-Relação entre $T_{x,y}$ e $T_{\overline{x},\overline{y}}$

$$E(v^{T_{x,y}+1}) + E(v^{T_{\overline{x,y}}+1}) = E(v^{T_x+1}) + E(v^{T_y+1})$$

Para o caso em que $T_x > 0$ e $T_v > 0$

$$\sum_{t=0}^{\infty} v^{t+1} P(T_{x,y} = t) + \sum_{t=0}^{\infty} v^{t+1} P(T_{\overline{x,y}} = t) = \sum_{t=0}^{\infty} v^{t+1} P(T_x = t) + \sum_{t=0}^{\infty} v^{t+1} P(T_y = t)$$

$$\sum_{t=0}^{\infty} v^{t+1} {}_{t|} q_{x,y} + \sum_{t=0}^{\infty} v^{t+1} {}_{t|} q_{\overline{x,y}} = \sum_{t=0}^{\infty} v^{t+1} {}_{t|} q_x + \sum_{t=0}^{\infty} v^{t+1} {}_{t|} q_y$$

$$A_{x,y} + A_{\overline{x,y}} = A_x + A_y$$

Status último sobrevivente-Relação entre $T_{x,y}$ e $T_{\overline{x,y}}$

$$A_{x,y} + A_{\overline{x,y}} = A_x + A_y$$

$$_{m|}A_{\overline{x,y}} + _{m|}A_{x,y} = _{m|}A_x + _{m|}A_y$$

$$A_{u^1:\bar{n}|} + A_{\bar{u}^1:\bar{n}|} = A_{x^1:\bar{n}|} + A_{y^1:\bar{n}|}$$

$$m|A_{\bar{u}^1:\bar{n}|} + m|A_{u^1:\bar{n}|} = m|A_{x^1:\bar{n}|} + m|A_{y^1:\bar{n}|}$$

em que $u = \{x, y\}$

Status último sobrevivente-Relação entre $T_{x,y}$ e $T_{\overline{x,y}}$

Entregar!!

$$A_{20,25:\overline{3}|}^{1} + A_{20,25:\overline{3}|}^{1} = A_{20:\overline{3}|}^{1} + A_{25:\overline{3}|}^{1}$$

Status último sobrevivente(Seguro Dotal puro)

Tem como característica o fato de que o benefício será pago caso pelo menos um membro do status sobreviva ao período contratado. Sendo assim:

$$A_{\overline{u}:\overline{n}|^1} = v^n \,_n p_{\overline{x},\overline{y}}$$

$$A_{\overline{u}:\overline{n}|^{1}} = v^{n} ({}_{n}p_{x} + {}_{n}p_{y} - {}_{n}p_{x} {}_{n}p_{y}) = v^{n} (1 - {}_{t}q_{x} {}_{t}q_{y})$$

em que $u = \{x, y\}.$

Exemplo 3: Qual o valor do prêmio puro de seguro feito por x e y que irá pagar \$100000,00 a ambos ou ao sobrevivente ao término de 6 anos (se ambos estiverem mortos, nada será pago)? Considere $u = \{x = 20, y = 25\}$, i = 5% e a tábua de vida AT-49 masculina para T_{20} e T_{25} .

$$Z_t = \begin{cases} 10^5 v^6, se \ T_{\overline{x},\overline{y}} = max\{T_{20},T_{25}\} > 6 \\ 0, & caso \ contr\'ario \end{cases}$$

Exemplo 3: Qual o valor do prêmio puro de seguro feito por x e y que irá pagar \$100000,00 a ambos ou ao sobrevivente ao término de 6 T_{25} .

 $(100000)A_{\overline{u}:\overline{6}|^1} \approx $74619,91.$

29 0,00095 0,99905 977766 30 0,00100 0,99900 976837,1 31 0,00107 0,99893 975860,3 32 0,00114 0,99886 974816,1

27 0,00085 0,99915 979479,3

28 0,00090 0,99910 978646,8

Status último sobrevivente(Seguro Dotal misto)

O dotal misto com cobertura de n anos para o status último sobrevivente composto por duas vidas, tal que $u = \{x, y\}$ pode ser calculado por:

$$A_{\overline{u}:\overline{n}|} = A_{\overline{u}:\overline{n}|^1} + A_{\overline{u}^1:\overline{n}|}$$

em que $u = \{x, y\}$.

Exemplo 4: Qual o valor do prêmio puro de seguro feito por x e y que irá pagar b=1 a ambos ou ao sobrevivente ao término de z anos (se ambos estiverem mortos, um terceiro irá receber)? Considere $z=\{x=20,y=25\}$, z=3% e a tábua de vida AT-49 masculina para z=10 e z=11.

* 25 '						
X	qx	рх	lx			
			984341,5			
21	0,00065	0,99935	983731,2			
22	0,00067	0,99933	983091,8			
23	0,00070	0,99930	982433,1			
24	0,00073	0,99927	981745,4			
25	0,00077	0,99923	981028,7			
26	0,00081	0,99919	980273,3			
27	0,00085	0,99915	979479,3			
28	0,00090	0,99910	978646,8			
29	0,00095	0,99905	977766			
30	0,00100	0,99900	976837,1			
31	0,00107	0,99893	975860,3			
32	0,00114	0,99886	974816,1			

$$A_{\overline{u}:\overline{2}|} = A_{\overline{u}:\overline{2}|^1} + A_{\overline{u}^1:\overline{2}|}$$

Exemplo 5: Considere um casal composto por uma pessoa de idade anos e outra de idade 21 anos, assumindo uma taxa de juros de i=3% ao ano e que T_{20} e T_{21} possam ser modelados pelas tábuas AT2000_M e AT2000_F, respectivamente. Calcule o que se pede.

\mathcal{X}	AT2000_M	l_x	AT2000_F	l_{x}
20	0,00055	989332,6	0,00028	993876,5
21	0,00057	988788,5	0,00029	993598,3
22	0,0006	988224,9	0,00031	993310,1
23	0,00063	987631,9	0,00033	993002,2
24	0,00066	987009,7	0,00035	992674,5
25	0,00069	986358,3	0,00037	992327,1
26	0,00071	985677,7	0,00039	991959,9
27	0,00074	984977,9	0,0004	991573
28	0,00076	984249	0,00042	991176,4
29	0,00077	983501	0,00044	990760,1
30	0,00078	982743,7	0,00045	990324,2

$$a)_{4|}A_{20:\overline{2}|}^{1} = v^{4}_{4}p_{20}A_{24:\overline{2}|}^{1}$$

\overline{x}	AT2000_M	l_{x}	1
20	0,00055	989332,6	
21	0,00057	988788,5	$4 A_{20:\overline{2} } - \nu 4p_{20} \int \nu (tp_{24})q_{24+t}$
22	0,0006	988224,9	$\overline{t=0}$
23	0,00063	987631,9	
24	0,00066	987009,7	/1
25	0,00069	986358,3	$A_{1}A_{2}^{1} = v^{4}\left(\frac{\iota_{24}}{\iota_{24}}\right)\left[va_{24} + v^{2}(n_{24})(a_{25})\right]$
26	0,00071	985677,7	$_{4 }A_{20:\overline{2} }^{1} = v^{4} \left(\frac{l_{24}}{l_{20}}\right) \left[vq_{24} + v^{2}(p_{24})(q_{25})\right]$
27	0,00074	984977,9	(20)
28	0,00076	984249	
29	0,00077	983501	$_{4 }A_{20:\overline{2} }^{1} \approx 0.001144112$
30	0,00078	982743,7	4 1120:2
	<u> </u>		_

b)
$$_{4|}A_{21:\overline{2}|}^{1} = v^{4} _{4}p_{21}A_{25:\overline{2}|}^{1}$$

			\sim 1 \sim \sim \sim 1
<u> </u>	AT2000_F	l_x	$_{4 }A_{21:\overline{2} }^{1} = v^{4} _{4}p_{21} \sum_{t=0}^{t} v^{t+1} (_{t}p_{25})(q_{25+t})$
20	0,00028	993876,5	t = 0
21	0,00029	993598,3	ι = 0
22	0,00031	993310,1	
23	0,00033	993002,2	$(l_{25})_{5}$
24	0,00035	992674,5	$_{4 }A_{21:\overline{2} }^{1} = v^{4} \left(\frac{l_{25}}{l_{21}}\right) \left[vq_{25} + v^{2}(p_{25})(q_{26})\right]$
25	0,00037	992327,1	$\langle l_{21} \rangle$
26	0,00039	991959,9	
27	0,0004	991573	
28	0,00042	991176,4	
29	0,00044	990760,1	$_{4 }A_{21:\overline{2} }^{1} \approx 0.0006448372$
30	0,00045	990324,2	4 1121:2 10000110072

$$\mathbf{C})_{4|}\mathbf{A}_{20,21:\overline{2}|}^{1} = v^{4}_{4}p_{20}_{4}p_{21} \sum_{t=0}^{1} v^{t+1}_{t}p_{24}_{t}p_{25}(q_{24+t} + q_{25+t} - q_{24+t} q_{25+t})$$

_ x	AT2000_M	l_{x}	AT2000_F	l_{x}
20	0,00055	989332,6	0,00028	993876,5
21	0,00057	988788,5	0,00029	993598,3
22	0,0006	988224,9	0,00031	993310,1
23	0,00063	987631,9	0,00033	993002,2
24	0,00066	987009,7	0,00035	992674,5
25	0,00069	986358,3	0,00037	992327,1
26	0,00071	985677,7	0,00039	991959,9
27	0,00074	984977,9	0,0004	991573
28	0,00076	984249	0,00042	991176,4
29	0,00077	983501	0,00044	990760,1
30	0,00078	982743,7	0,00045	990324,2

$$v^4 _4 p_{20} _4 p_{21} \approx 0.8852669$$

$$v(q_{24} + q_{25} - q_{24} q_{25}) + v^2 p_{24} p_{25} (q_{25} + q_{26} - q_{25} q_{26}) \approx 0,002016465$$

$$_{4|}A_{20,21:\overline{2}|}^{1} \approx 0.001785109$$

$$d)(10^4)_{4|}A_{\overline{20,21}:\overline{2}|}^{1} = 10^4 \left(_{4|}A_{20:\overline{2}|}^{1} + _{4|}A_{21:\overline{2}|}^{1} - _{4|}A_{20,21:\overline{2}|}^{1} \right)$$

$$(10^4)_{4|}A_{\overline{20,21}:\overline{2}|}^1 \approx 10^4(0,001144112 + 0,0006448372 - 0,001785109)$$

$$(10^4)_{4|}A_{20,21:\overline{2}|}^1 \approx 0.038402$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

