

Quiz #5 Solutions

Problem 1.

(1) Here is a diagram representing the relation f:

This relation is not a function because c has several images, which is not allowed for a function.

(2) Here is a diagram representing the relation f:

This relation is a function because every element of the domain has exactly one image in the codomain. It is not injective because a and b have the same image. It is surjective because every element of the codomain has at least one preimage. It is not bijective because it is not injective.

Problem 2.

(1) f is not injective: for instance, f(0) = f(1/4). f is surjective because every $y \in \mathbb{Z}$ has at least one preimage $x \in \mathbb{R}$, for instance x = y/2. f is not bijective because it is not injective.

- (2) g is injective: if $g(x_1) = g(x_2)$, then $x_1 = x_2$. g is not surjective: for example, y = 1/3 has no preimage. g is not bijective because it is not surjective.
- (3) The composition $f \circ g$ is well-defined because the codomain of g, namely \mathbb{R} , is equal to the domain of f. The composition $f \circ g$ is the function:

$$f \circ g : \mathbb{Z} \to \mathbb{R}$$
$$n \mapsto n.$$

Indeed, $f(g(n)) = \lfloor 2\frac{n}{2} \rfloor = n$.

(4) The composition $g \circ f$ is well-defined because the codomain of f, namely \mathbb{Z} , is equal to the domain of g. The composition $g \circ f$ is the function:

$$g \circ f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{\lfloor 2x \rfloor}{2}$.

Indeed, $g(f(x)) = \frac{\lfloor 2x \rfloor}{2}$.

Problem 3.

- (1) u_n is decreasing and nonincreasing. It is neither increasing nor nondecreasing.
- (2) v_n is increasing and nondecreasing. It is neither decreasing nor nonincreasing.
- (3) w_n is neither increasing, nor decreasing, nor nonincreasing, nor nondecreasing.
- (4) x_n is a constant sequence $x_n = 1$, therefore it is nonincreasing and nondecreasing, and it is neither increasing nor decreasing.

Problem 4.

Here is the list of all substrings of the string b^2a^2c :

λ

b

a

C

 b^2

ba

 a^2

ac

 b^2a

 ba^2

 a^2c

 b^2a^2

 ba^2c

 b^2a^2c