Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

ЭКСПЕРТНАЯ ОЦЕНКА СВОЙСТВ СИСТЕМЫ

Отчет по практической работе N $^{\circ}5$

по дисциплине «Теория систем и системный анализ»

Выполнил:	
Студент гр. 4	122-3
	К. Л. Захаров
«»	2014 г.
Проверил:	
преподавател	Ъ
	_ В. Н. Щербаков
«»	2014 г.
профессор ка	ф. АОИ, д.т.н.
	М. П. Силич
« »	 2014 г

Экспертная оценка свойств системы

Описание

Цель работы Получить практические навыки экспертного оценивания систем различными методами и обработки результатов оценивания.

Формируемые компетенции

- владение культурой мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения (OK-1)
- способность находить организационно-управленческие решения в нестандартных ситуациях и готовность нести за них ответственность (OK-4)

Самостоятельная работа Изучение методов выявления предпочтений экспертов (ранжирования, парных сравнений, непосредственной оценки, последовательного сравнения).

Ход работы

Формирование групп экспертов, выбор объектов оценивания Цель - выбор лучшего туристического логотипа Саратова, объекты выбраны из первой половины строчек голосования на 40+ вариантов.

Рис. 1. Проект 8

Рис. 3. Проект 28

Рис. 2. Проект 17

Рис. 4. Проект 38

 x_1 - Проект 8, x_2 - Проект 17, x_3 - Проект 28, x_4 - Проект 38

Ранжирование систем Каждый эксперт ранжирует объекты по отдельности. В случае, если присвоенные им ранги совпадают, вычисляется среднее значение (связанные ранги).

Таблица 1. Таблица оценок экспертов

	x_1	x_2	x_3	x_4	T
Эксперт 1	1	3.5	2	3.5	6
Эксперт 2	3	3	1	3	24
Эксперт 3	4	2	1	3	6
Сумма	8	8.5	4	9.5	36
Обобщенный ранг	2	3	1	4	-
Δ	-0.5	-1	3.5	-2	-
Δ^2	0.25	1	12.25	4	-

Оценим согласованность экспертов через коэффициент конкордации

$$K = \frac{12\sum_{j=1}^{n}\sum_{i=1}^{m}(\overline{r} - r_{ij})^{2}}{m^{2}(n^{3} - n) - m\sum_{i=1}^{m}T_{i}} = \frac{12\sum_{j=1}^{4}\sum_{i=1}^{3}(7.5 - r_{ij})^{2}}{3^{2}(4^{3} - 4) - 3*36} = 0.48$$

где

т - количество экспертов

n - количество объектов

 \overline{r} - средний ранг

 T_{i} - показатель связанных рангов в i-й ранжировке,

$$T_i = \sum_{k=1}^{H_i} {h_k}^3 - h_k$$
, где

 H_i - число групп равных рангов в i - й группе h_k - число равных рангов в k - й группе связанных рангов

На основе вычисленного K дадим качественную характеристику согласованности мнений экспертов

Таблица 2. Интервалы качественной оценки K

0.3	0.3 - 0.5	0.5 - 0.7	0.7 - 0.9	0.9
слабая	умеренная	заметная	высокая	очень высокая

Согласованность экспертов - умеренная (близка к заметной).

Парные сравнения систем Каждый эксперт составляет матрицу парных сравнений, элемент которой равен

$$w_{ij} = \begin{cases} 1, & x_i \succeq x_j \\ 0, & x_i \prec x_j \end{cases}$$

Условия согласованности:

$$\begin{array}{l} w_{ii} = 1 \\ w_{ij} = 1 \Rightarrow w_{ji} = 0 \\ w_{ij} = 1 \wedge w_{jk} = 1 \Rightarrow w_{ik} = 1 \end{array}$$

Таблица 3. Эксперт 1

	x_1	x_2	x_3	x_4
x_1	1	1	1	1
x_2	0	1	0	1
x_3	0	1	1	1
x_4	0	1	0	1

Таблица 4. Эксперт 2

	x_1	x_2	x_3	x_4
x_1	1	1	0	1
x_2	1	1	0	1
x_3	1	1	1	1
x_4	1	1	0	1

Таблица 5. Эксперт 3

	x_1	x_2	x_3	x_4
x_1	1	0	0	0
x_2	1	1	0	1
x_3	1	1	1	1
x_4	1	0	0	1

Теперь составим результирующую матрицу, элемент которой равен единице, если единица есть не менее, чем в половине таблиц экспертов (в нашем случае - в двух таблицах).

Таблица 6. Обобщенная матрица

	x_1	x_2	x_3	x_4
x_1	1	1	0	1
x_2	1	1	0	1
x_3	1	1	1	1
x_4	1	1	0	1

Непосредственная оценка систем Для удобства экспертов ведем шкалу лингвистических оценок.

Таблица 7. Шкала лингвистических оценок

0	0.25	0.5	0.625	0.75	1
плохо	посредственно	удовлетвортиельно	хорошо	очень хорошо	отлично

Для каждого эксперта примем компетентность k_i т., ч. $k_1 + k_2 + k_3 = 1$. После получения экспертных оценок расчитаем обобщенные $a_j = \sum_{i=1}^m k_i a_{ij}$

Таблица 8. Результаты непосредственной оценки

	Компетентность	x_1	x_2	x_3	x_4
Эксперт 1	0.55	0.75	0.5	0.75	0.625
Эксперт 2	0.3	0.625	0.5	0.75	0.5
Эксперт 3	0.15	0.5	0.5	0.5	1
Обобщенная оценка		0.675	0.5	0.713	0.644

Последовательное сравнение методом Черчмена-Акоффа Расположим объекты в порядке предпочтения и дадим каждому некоторую оценку из [0;1]

Далее проделаем 3 шага, на каждом из которых примем решение, будет ли текущий объект иметь оценку большую, чем сумма оставшихся справа. Соответсвенно принятому решению будем менять оценку, если потребуется.

$$\begin{array}{|c|c|c|c|c|c|}\hline x_1 & x_3 & \times & x_4 & + & x_2 \\ 1.7 & 1.4 & \times & 0.7 & + & 0.6 \\ \hline \end{array}$$

Теперь нормируем полученные оценки относительно их суммы