

Geometry through Linear Algebra

G V V Sharma*

1

CONTENTS

1 Planes and Lines

1.1 Distance from a plane to a point

Abstract—This book provides a vector approach to analytical geometry. The content and exercises are based on William Dresden's book on solid geometry.

1 Planes and Lines

- 1.1 Distance from a plane to a point
- 1.1.1. Find the foot of perpendicular from the point

$$\mathbf{A} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} \text{ on the plane } \begin{pmatrix} 3 & 2 & -6 \end{pmatrix} \mathbf{x} = 2.$$

Solution: Consider orthogonal vectors $\mathbf{m_1}$ and $\mathbf{m_2}$ to the given normal vector \mathbf{n} . Let, $\mathbf{m} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$,

then

$$\mathbf{m}^{\mathbf{T}}\mathbf{n} = 0 \qquad (1.1.1.1)$$

$$\implies (a \quad b \quad c) \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix} = 0 \tag{1.1.1.2}$$

$$\implies 3a + 2b - 6c = 0$$
 (1.1.1.3)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Let a=1 and b=0 we get,

$$\mathbf{m_1} = \begin{pmatrix} 1\\0\\\frac{1}{2} \end{pmatrix} \tag{1.1.1.4}$$

Let a=0 and b=1 we get,

$$\mathbf{m_2} = \begin{pmatrix} 0\\1\\\frac{1}{3} \end{pmatrix} \tag{1.1.1.5}$$

Solving the equation,

$$\mathbf{M}\mathbf{x} = \mathbf{b} \tag{1.1.1.6}$$

Substituting (1.1.1.4) and (1.1.1.5) in (1.1.1.6),

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \mathbf{x} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} \tag{1.1.1.7}$$

Solving (1.1.1.7) using Singular Value Decomposition on **M** as follows,

$$\mathbf{M} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T \tag{1.1.1.8}$$

Where the columns of V are the eigen vectors of M^TM , the columns of U are the eigen vectors of MM^T and S is diagonal matrix of singular value of eigenvalues of M^TM . We

have,

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} \frac{5}{4} & \frac{1}{6} \\ \frac{1}{6} & \frac{10}{9} \end{pmatrix} \tag{1.1.1.9}$$

$$\mathbf{M}\mathbf{M}^{T} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{13}{36} \end{pmatrix}$$
 (1.1.1.10)

Substituting (1.1.1.8) in (1.1.1.6),

$$\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T}\mathbf{x} = \mathbf{b} \tag{1.1.1.11}$$

$$\implies \mathbf{x} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathbf{T}} \mathbf{b} \tag{1.1.1.12}$$

Where Σ^{-1} is Moore-Penrose Pseudo-Inverse of Σ and is obtained by inversing only non-zero elements in Σ

Calculating eigen values of $\mathbf{M}\mathbf{M}^T$,

$$\left|\mathbf{M}\mathbf{M}^{T} - \lambda \mathbf{I}\right| = 0 \quad (1.1.1.13)$$

$$\implies \begin{vmatrix} 1 - \lambda & 0 & \frac{1}{2} \\ 0 & 1 - \lambda & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{13}{36} - \lambda \end{vmatrix} = 0 \quad (1.1.1.14)$$

$$\implies \lambda^3 - \frac{85}{36}\lambda^2 + \frac{49}{36}\lambda = 0 \quad (1.1.1.15)$$

From the characteristic equation (1.1.1.15), the eigen values of $\mathbf{M}\mathbf{M}^T$ are,

$$\lambda_1 = \frac{49}{36}$$
 $\lambda_2 = 1$ $\lambda_3 = 0$ (1.1.1.16)

The eigen vectors of $\mathbf{M}\mathbf{M}^T$ are,

$$\mathbf{u_1} = \begin{pmatrix} \frac{18}{13} \\ \frac{1}{23} \\ 1 \end{pmatrix} \quad \mathbf{u_2} = \begin{pmatrix} \frac{-2}{3} \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{u_3} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{3} \\ 1 \end{pmatrix} \quad (1.1.1.17)$$

Normalizing the eigen vectors in equation (1.1.1.17)

$$\mathbf{u_1} = \begin{pmatrix} \frac{18}{7\sqrt{13}} \\ \frac{12}{7\sqrt{13}} \\ \frac{\sqrt{13}}{7} \end{pmatrix} \quad \mathbf{u_2} = \begin{pmatrix} \frac{-2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} \\ 0 \end{pmatrix} \quad \mathbf{u_3} = \begin{pmatrix} \frac{-7}{12} \\ \frac{-7}{18} \\ \frac{7}{6} \end{pmatrix}$$
(1.1.1.18)

Hence we obtain U as follows.

$$\mathbf{U} = \begin{pmatrix} \frac{18}{7\sqrt{13}} & \frac{-2}{\sqrt{13}} & \frac{-7}{12} \\ \frac{12}{7\sqrt{13}} & \frac{3}{\sqrt{13}} & \frac{-7}{18} \\ \frac{\sqrt{13}}{7} & 0 & \frac{7}{6} \end{pmatrix}$$
(1.1.1.19)

By computing the singular values from eigen values $\lambda_1, \lambda_2, \lambda_3$ we get Σ as,

$$\Sigma = \begin{pmatrix} \frac{49}{36} & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} \tag{1.1.1.20}$$

Calculating eigen values of $\mathbf{M}^T\mathbf{M}$,

$$|\mathbf{M}^T \mathbf{M} - \lambda \mathbf{I}| = 0 \qquad (1.1.1.21)$$

$$\implies \begin{vmatrix} \frac{5}{4} - \lambda & \frac{1}{6} \\ \frac{1}{6} & \frac{10}{9} - \lambda \end{vmatrix} = 0 \qquad (1.1.1.22)$$

$$\implies \lambda^2 - \frac{85}{36}\lambda + \frac{49}{36} = 0 \qquad (1.1.1.23)$$

From the characteristic equation, the eigen values of $\mathbf{M}^T \mathbf{M}$ are,

$$\lambda_1 = \frac{49}{36} \quad \lambda_2 = 1 \tag{1.1.1.24}$$

Hence the eigen vectors of $\mathbf{M}^T \mathbf{M}$ are,

$$\mathbf{v}_1 = \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} \frac{-2}{3} \\ 1 \end{pmatrix} \tag{1.1.1.25}$$

Normalizing the eigen vectors,

$$\mathbf{v}_1 = \begin{pmatrix} \frac{3}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} \frac{-2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} \end{pmatrix}$$
 (1.1.1.26)

Hence we obtain V as,

$$\mathbf{V} = \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{-2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix}$$
 (1.1.1.27)

From (1.1.1.6), the Singular Value Decomposition of \mathbf{M} is as follows,

$$\mathbf{M} = \begin{pmatrix} \frac{18}{7\sqrt{13}} & \frac{-2}{\sqrt{13}} & \frac{-7}{12} \\ \frac{12}{7\sqrt{13}} & \frac{3}{\sqrt{13}} & \frac{-7}{18} \\ \frac{\sqrt{13}}{7} & 0 & \frac{7}{6} \end{pmatrix} \begin{pmatrix} \frac{49}{36} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{-2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix}^{T}$$

$$(1.1.1.28)$$

And, the Moore-Penrose Pseudo inverse of Σ is given by,

$$\Sigma^{-1} = \begin{pmatrix} \frac{6}{7} & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \tag{1.1.1.29}$$

From (1.1.1.12) we get,

$$\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{-17}{7\sqrt{13}} \\ \frac{12}{\sqrt{13}} \\ \frac{7}{36} \end{pmatrix}$$
 (1.1.1.30)

$$\Sigma^{-1}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{-102}{49\sqrt{13}} \\ \frac{12}{\sqrt{13}} \end{pmatrix}$$
 (1.1.1.31)

$$\mathbf{x} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{b} = \begin{pmatrix} \frac{-114}{49} \\ \frac{120}{49} \end{pmatrix} \quad (1.1.1.32)$$

Now we verify the solution (1.1.1.32) using,

$$\mathbf{M}\mathbf{x} = \mathbf{b} \implies \mathbf{M}^T \mathbf{M}\mathbf{x} = \mathbf{M}^T \mathbf{b} \qquad (1.1.1.33)$$

On evaluating the R.H.S in (1.1.1.33) we get,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \begin{pmatrix} \frac{-5}{2} \\ \frac{7}{3} \end{pmatrix} \tag{1.1.1.34}$$

$$\implies \begin{pmatrix} \frac{5}{4} & \frac{1}{6} \\ \frac{1}{6} & \frac{10}{9} \end{pmatrix} \mathbf{x} = \begin{pmatrix} \frac{-5}{2} \\ \frac{7}{3} \end{pmatrix} \tag{1.1.1.35}$$

On solving the augmented matrix of (1.1.1.35) we get,

$$\begin{pmatrix} \frac{5}{4} & \frac{1}{6} & \frac{-5}{2} \\ \frac{1}{6} & \frac{10}{9} & \frac{7}{3} \end{pmatrix} & \stackrel{R_1 = \frac{4R_1}{5}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2}{15} & -2 \\ \frac{1}{6} & \frac{10}{9} & \frac{7}{3} \end{pmatrix} & (1.1.1.36)$$

$$& \stackrel{R_2 = R_2 - \frac{R_1}{6}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2}{15} & -2 \\ 0 & \frac{49}{45} & \frac{8}{3} \end{pmatrix} & (1.1.1.37)$$

$$& \stackrel{R_2 = \frac{45}{49}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2}{15} & -2 \\ 0 & 1 & \frac{120}{49} \end{pmatrix} & (1.1.1.38)$$

$$& \stackrel{R_1 = R_1 - \frac{2R_2}{15}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{-114}{49} \\ 0 & 1 & \frac{120}{49} \end{pmatrix} & (1.1.1.39)$$

From equation (1.1.1.39), solution is given by,

$$\mathbf{x} = \begin{pmatrix} \frac{-114}{49} \\ \frac{120}{49} \end{pmatrix} \tag{1.1.1.40}$$

From the equations (1.1.1.32) and (1.1.1.40), the solution \mathbf{x} is verified.