Comparison of Approaches to Large-Scale Data Analysis &

Hive – A Petabyte Scale Data Warehouse Using Hadoop

JENNA FICULA

10/18/2016

MAIN IDEA: HIVE

- Data processing infrastructure needs to scale along with data growth
- Map-reduce programming model requires developers to write custom programs - there must be a solution
- Hive is the an open-source data warehousing solution built on top of Hadoop
- Hive supports high level query language, HiveQL, similar to SQL which makes data analysis and compression more efficient

IMPLEMENTATION: HIVE

- The architecture and capabilities of Hive are broken down into sections including
 - The data model similar to traditional database (tables & rows)
 - Type system integer, float, string, associative arrays, lists, structs
 - Query language HiveQL subset of SQL
 - Hive file storage tables stored in a directory in hdfs, partitions, buckets
 - System architecture metastore, driver, query compiler, execution engine, server
 - Usage statistics Facebook uses hive for the simplicity of ad hoc analysis

ANALYSIS: HIVE

- Hive is a work in progress
- This paper is effective in addressing hive as a solution for scaling infrastructure to big data
- It is descriptive but only mentions preliminary experiments in the conclusion
 - the paper would be better supported with more quantitative experimentation with Hive
- The paper was motivated by a specific business interest to improve efficiency of data analytics

MAIN IDEA: COMPARISON PAPER

- Parallel database systems performed more favorable as compared to Hadoop MapReduce (MR) in executing a variety of data intensive analysis benchmarks.
- MapReduce model: a brute force solution that wastes vast amounts of energy
- Database management system (DBMS) has several advantages:
 - B-tree indices to speed the execution of selection operations
 - Novel storage mechanisms
 - Compression techniques
 - Sophisticated method for querying data

IMPLEMENTATION: COMPARISON PAPER

- Defines DBMS and MapReduce
- Discusses differences between the two and architectural tradeoffs:
 - DBMS uses high level query language, MR uses low level algorithm
 - DBMS uses rows/ columns, MR does not adhere to a schema
 - DBMS b tree index, MR no built in indexes
- Compares parallel DBMS with MapReduce with 5 performance benchmarks:
- (Grep task, Selection task, Aggregation task, Join task, UDF aggregation task)

ANALYSIS: COMPARISON PAPER

- The paper successfully examines the pros and cons of both DBMS and MapReduce
- The experiments conducted in this research were thorough and demonstrated the differences between DBMS and MR
- Two DBMSs (Vertica & system from major relational vendor) were compared to Hadoop increases validity of results as opposed to using just one DBMS
- The experiments conducted using 100 nodes are not as representative even though few data sets are in the petabyte range

COMPARISON: BOTH PAPERS

• Since SQL is a main advantage in the effectiveness and popularity of RDBMS, Hive makes MapReduce a more competitive option by simplifying queries

- Both agree hive is needed to improve the expressiveness of query capabilities for more extensive data analytics
- Both papers agree that RDBMS is an outdated solution to data storage and needs replacement

Contrast

- Hive is described whereas MapReduce
 & DBMS are compared through
 experimentation/ performance tasks in
 the second paper
- Hive paper focusses on the specific details of syntax and system logistics whereas the comparison paper is a overview of both systems
- Hive paper prompted by business interests, Comparison paper prompted by testing two data management systems

STONEBRAKER TALK

- \bullet 80s / 90s: one size fits all RDBMS traditional row stores were the solution to database needs
- 2000s: Traditional row stores are obsolete for all markets not one size fits all
 - Complex Analytics
 - Streaming market
 - Graph Analytics
- Markets are innovating to implement a diversity of engines to store data focusing in column stores
- Old legacy vendors such as Oracle will lose market share while trying to adapt to new engines while maintaining their user interface

ADVANTAGES AND DISADVANTAGES OF HIVE

Disadvantages
 Hive is new and many legacy vendors will have to compete with experimental open source database technologies.
 Relational Database Models are being phased out
 Hive has been tested and compared with a few other systems but could use further testing and
experimentation prior to implementation.
 One size no longer fits all – Hive will have to compete with a variety of engines on the market