Guillermo García Hernández 2ºDAW 25/26 IA

ML Clasificación

Con test size = 0.2

SVM: 1.0000

Naive Bayes: 0.9667

LDA: 1.0000 QDA: 1.0000

Decision Tree: 1.0000 Random Forest: 0.9667

K-Nearest: 0.9667

Neural Network: 1.0000

Resultados de precisión en el conjunto de test:

Con test size = 0.4

SVM: 0.9333

Naive Bayes: 0.9333

LDA: 0.9500 QDA: 0.9667

Decision Tree: 0.9500 Random Forest: 0.9333

K-Nearest: 0.9500

Neural Network: 0.9833

La precisión varía al cambiar el test_size. Con 0.2 la mayoría de modelos obtienen una precisión cercana a . Y con 0.4 algunas bajan.

Con n neighbors=3

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9600

K-Nearest: 0.9333

Neural Network: 0.9733

Resultados de precisión en el conjunto de test:

Con n neighbors=5

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9600

K-Nearest: 0.9600

Neural Network: 0.9867

Resultados de precisión en el conjunto de test:

Con n_neighbors=10

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9467

K-Nearest: 0.9467

Neural Network: 0.9867

Con Decision Tree (max_depth=2)

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.8933 Random Forest: 0.9333

K-Nearest: 0.9600

Neural Network: 0.9867

Resultados de precisión en el conjunto de test:

Con Decision Tree (max_depth=4)

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9467

K-Nearest: 0.9600

Neural Network: 0.9867

Resultados de precisión en el conjunto de test:

Con Decision Tree (max_depth=None):

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9467

K-Nearest: 0.9600

Neural Network: 0.9867

Con Random Forest (n estimators=50)

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9200

K-Nearest: 0.9600

Neural Network: 0.9733

Resultados de precisión en el conjunto de test:

Con Random Forest (n_estimators=100)

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9467

K-Nearest: 0.9600

Neural Network: 0.9867

Resultados de precisión en el conjunto de test:

Con Random Forest (n estimators=200)

SVM: 0.9467

Naive Bayes: 0.9467

LDA: 0.9600 QDA: 0.9600

Decision Tree: 0.9600 Random Forest: 0.9467

K-Nearest: 0.9600

Neural Network: 0.9867

Con load breast cancer

SVM: 0.9158

Naive Bayes: 0.9368

LDA: 0.9579 QDA: 0.9544

Decision Tree: 0.9263 Random Forest: 0.9439

K-Nearest: 0.9368

c:\Users\U_38010700\AppData\Local\Programs\Python\Python313\Lit

warnings.warn(

c:\Users\U_38010700\AppData\Local\Programs\Python\Python313\Lit

warnings.warn(

Neural Network: 0.9404

4. Completa esta tabla en tu cuaderno:				▷ / 🖯 … 🗓
Modelo	Idea básica	Parámetro clave	Ventaja	Limitación
Naive Bayes	Usa probabilidades para decidir a qué clase pertenece algo.	No tiene parámetros importantes.	Es muy rápido y fácil de usar.	Supone que las variables son independientes
Árbol	Separa los datos con reglas tipo "si entonces"	max_depth (qué tan profundo puede ser el árbol).	Se entiende fácilmente y se puede dibujar.	Si el árbol es muy grande, se puede pasar de memoria
Bosque Aleatorio	Combina muchos árboles y hace una votación entre ellos.	n_estimators (cuántos árboles usa).	Da muy buena precisión y evita errores de un solo árbol.	Es más lento y no se puede interpretar tan fácil.
KNN	Clasifica mirando los vecinos más cercanos.	n_neighbors (cuántos vecinos tiene en cuenta).	Es simple y no necesita entrenamiento complicado.	Es lento si hay muchos datos y depende mucho de la escala.
Red Neuronal	Imita el cerebro conectando "neuronas" que aprenden patrones	max_iter, alpha (controlan el entrenamiento).	Aprende relaciones muy complejas.	Necesita bastantes datos y tarda más en entrenar.

5. Reflexiona

¿Por qué algunos modelos funcionan mejor que otros?

Porque cada modelo aprende de forma diferente.

Algunos se adaptan mejor cuando los datos son simples o lineales (como LDA o SVM), y otros funcionan mejor cuando hay más variables o relaciones más complejas (como Random Forest o Redes Neuronales).

¿Cuál sería más adecuado si necesitas rapidez?

Modelos como Naive Bayes, LDA o KNN (con pocos vecinos) son los más rápidos, porque casi no necesitan entrenamiento y calculan resultados enseguida.

¿Y si necesitas explicabilidad?

El Árbol de Decisión es el más fácil de entender, porque muestra reglas claras del tipo "si... entonces...". También Naive Bayes y LDA son bastante interpretables.