РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

6.1 Элементы линейной алгебры: матрицы, определители, системы линейных уравнений

• Условия задач

- 1. Составить две матрицы A и B третьего порядка, продолжить заданное матричное равенство и проверить его справедливость (варианты заданий см. в приложении 1).
- 2. Вычислить определитель четвертого порядка, разложив его по элементам первой строки и по элементам *пюбого* столбца. Убедиться в правильности вычислений, сопоставив результаты (см. решение примеров 1.9, 1.11. Варианты заданий приложение 2).
- 3. Решить по правилу Крамера неоднородную систему трех линейных уравнений с тремя неизвестными (см. решение примера 1.13. Варианты заданий приложение 3).
- 4. Решить систему линейных уравнений (из пункта 3) методом обратной матрицы. Сравнить полученные результаты с результатами пункта 3 (см. решение примера 1.15).

- 5. Составить и решить матричное уравнение $A \cdot X \cdot B = C$, где A и B невырожденные матрицы второго порядка. Полученное решение проверить подстановкой (см. решение примера 1.16).
- 6. Решить систему линейных уравнений (из пункта 3) методом Гаусса (см. решение примера 1.17).
- 7. Найти общее решение каждой из двух систем линейных уравнений (см. решение примера 1.22. Варианты заданий приложение 4).
- 8. Решить матричное уравнение $A \cdot X = B$ (для *нечетных* вариантов), $X \cdot A = B$ (для *четных* вариантов) или доказать, что решения не существует. (Матрицы A, B и варианты заданий приведены в приложении 5). Разбор решения задачи приводится ниже.

• Комментарий к решению задач

Задача 8. Решить матричное уравнение $A \cdot X = B$.

Решение. Метод обратной матрицы при решении матричных уравнений вида $A \cdot X = B$ невозможно использовать, если матрица A – вырожденная (т.е. A^{-1} не существует). Однако это не означает, что решить такое уравнение вообще невозможно. Воспользуемся методом Гаусса, имеющим более широкую область применения.

Пусть, например, уравнение имеет вид $A \cdot X = B$, где

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 4 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 10 \\ 8 & 0 \\ 8 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{pmatrix}.$$

Определитель матрицы A

$$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 4 & 4 \end{vmatrix} = 0,$$

следовательно, обратная матрица A^{-1} не существует.

Для решения уравнения

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 4 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{pmatrix} = \begin{pmatrix} 0 & 10 \\ 8 & 0 \\ 8 & 2 \end{pmatrix}.$$

сначала перемножим матрицы, стоящие в левой части.

$$\begin{pmatrix} x_{11} + x_{21} + x_{31} & x_{12} + x_{22} + x_{32} \\ 2x_{11} + 3x_{21} + 3x_{31} & 2x_{12} + 3x_{22} + 3x_{32} \\ 3x_{11} + 4x_{21} + 4x_{31} & 3x_{12} + 4x_{22} + 4x_{32} \end{pmatrix} = \begin{pmatrix} 0 & 10 \\ 8 & 0 \\ 8 & 2 \end{pmatrix}.$$

Равенство двух матриц эквивалентно системе шести линейных уравнений с шестью неизвестными:

$$\begin{cases} x_{11} + x_{21} + x_{31} & = 0, \\ 2x_{11} + 3x_{21} + 3x_{31} & = 8, \\ 3x_{11} + 4x_{21} + 4x_{31} & = 8, \\ & x_{12} + x_{22} + x_{32} & = 10, \\ 2x_{12} + 3x_{22} + 3x_{32} & = 0, \\ 3x_{12} + 4x_{22} + 4x_{32} & = 2, \end{cases}$$

которую решим методом Гаусса. Проведем элементарные преобразования расширенной матрицы системы:

$$\overline{A} = (A \mid B) =$$

Система решений не имеет, так как в последней строке расширенной матрицы все элементы в части A равны 0, а элемент $b_6=1\neq 0$.

Замечание. Используемая при решении расширенная матрица системы имеет особый вид, позволяющий «разбить» ее на две вспомогательные матрицы и выполнить преобразования этих матриц по отдельности, а именно:

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 3 & 3 & 0 & 0 & 0 & 8 \\
3 & 4 & 4 & 0 & 0 & 0 & 8 \\
\hline
0 & 0 & 0 & 1 & 1 & 1 & 10 \\
0 & 0 & 0 & 2 & 3 & 3 & 0 \\
0 & 0 & 0 & 3 & 4 & 4 & 2
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
2 & 3 & 3 & 8 \\
3 & 4 & 4 & 8
\end{pmatrix}
\sim
...
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 8 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 10 \\
2 & 3 & 3 & 0 \\
3 & 4 & 4 & 2
\end{pmatrix}
\sim
...
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 8 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Запишем соответствующую систему уравнений:

$$\begin{cases} x_{11} + x_{21} + x_{31} = 0, \\ x_{21} + x_{31} = 8, \\ x_{12} + x_{22} + x_{32} = 1, \\ x_{22} + x_{32} = -2, \\ 0 = 1. \end{cases}$$

Система несовместна.

Ответ: Данное матричное уравнение решений не имеет.

6.2 Векторная алгебра

• Условия задач

- 1. Пользуясь определением, показать, что векторы $\overline{m}, \overline{n}, \overline{p}$ линейно независимы, и найти координаты вектора \overline{a} в базисе $\overline{m}, \overline{n}, \overline{p}$.
- 2. Проверить коллинеарны ли векторы \overline{a} и \overline{b} .
- 3. В треугольнике ABC проведены медиана и биссектриса из вершины A. Найти их длины и угол между медианой и биссектрисой.
- 4. Вычислить площадь параллелограмма, построенного на векторах \overline{a} и \overline{b} .
- 5. Проверить, компланарны ли векторы \overline{a} , \overline{b} , \overline{c} .
- 6. Для треугольной пирамиды ABCD найти объем и длину высоты, опущенной из вершины D на грань ABC.

Условия вариантов приведены в приложении 6.

• Комментарий к решению задач

Задача 1. Показать, что векторы $\overline{m} = (-1,2,4)$, $\overline{n} = (1,0,1)$, $\overline{p} = (0,1,2)$ линейно независимы, и найти координаты вектора $\overline{a} = (-1,2,8)$ в базисе $\overline{m},\overline{n},\overline{p}$.

Решение. Векторы $\overline{m}, \overline{n}, \overline{p}$ линейно независимы, если из равенства

$$\lambda_1 \overline{m} + \lambda_2 \overline{n} + \lambda_3 \overline{p} = \overline{o} \tag{6.1}$$

следует, что $\lambda_1=\lambda_2=\lambda_3=0$. Подставляя в формулу (6.1) координаты векторов $\overline{m},\overline{n},\overline{p}$ получим:

$$\lambda_1 \cdot (-1,2,4) + \lambda_2 \cdot (1,0,1) + \lambda_3 \cdot (0,1,2) = (0,0,0)$$

или $(-\lambda_1 + \lambda_2, 2\lambda_1 + \lambda_3, 4\lambda_1 + \lambda_2 + 2\lambda_3) = (0,0,0)$. Последнее равенство равносильно однородной системе линейных уравнений:

$$\begin{cases} -\lambda_1 + \lambda_2 = 0, \\ 2\lambda_1 + \lambda_3 = 0, \\ 4\lambda_1 + \lambda_2 + 2\lambda_3 = 0, \end{cases}$$

определитель которой отличен от нуля:

$$\Delta = \begin{vmatrix} -1 & 1 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 2 \end{vmatrix} = 1 \neq 0.$$

Следовательно, система имеет единственное нулевое решение $\lambda_1 = \lambda_2 = \lambda_3 = 0 \,.$ Поэтому, векторы $\overline{m}, \overline{n}, \overline{p}$ линейно независимы и образуют базис трехмерного линейного пространства.

Найдем координаты вектора $\overline{a} = (-1, 2, 8)$ в базисе \overline{m} , \overline{n} , \overline{p} :

$$\overline{a} = \lambda_1 \overline{m} + \lambda_2 \overline{n} + \lambda_3 \overline{p} \;,$$
 или $(-1,2,8) = \lambda_1 (-1,2,4) + \lambda_2 (1,0,1) + \lambda_3 (0,1,2) \;,$
$$(-1,2,8) = (-\lambda_1 + \lambda_2, \, 2\lambda_1 + \lambda_3, \, 4\lambda_1 + \lambda_2 + 2\lambda_3) \;,$$

$$\begin{cases} -\lambda_1 + \lambda_2 = -1, \\ 2\lambda_1 + \lambda_3 = 2, \\ 4\lambda_1 + \lambda_2 + 2\lambda_3 = 8. \end{cases}$$

Последнюю систему решим по правилу Крамера: $\Delta = 1 \neq 0$,

$$\Delta_1 = \begin{vmatrix} -1 & 1 & 0 \\ 2 & 0 & 1 \\ 8 & 1 & 2 \end{vmatrix} = 5, \ \Delta_2 = \begin{vmatrix} -1 & -1 & 0 \\ 2 & 2 & 1 \\ 4 & 8 & 2 \end{vmatrix} = 4, \ \Delta_3 = \begin{vmatrix} -1 & 1 & -1 \\ 2 & 0 & 2 \\ 4 & 1 & 8 \end{vmatrix} = -8,$$

и тогда
$$\lambda_1=\frac{\Delta_1}{\Lambda}=5$$
 , $\lambda_2=\frac{\Delta_2}{\Lambda}=4$, $\lambda_3=\frac{\Delta_3}{\Lambda}=-8$.

В результате $\overline{a} = 5\overline{m} + 4\overline{n} - 8\overline{p}$. Вектор \overline{a} в разложении по базису \overline{m} , \overline{n} , \overline{p} имеет координаты $\overline{a} = (5,4,-8)$.

Задача 2. Проверить коллинеарны ли векторы $\overline{a}=3\overline{m}-\overline{n}$ и $\overline{b}=\overline{m}+2\overline{n}$, если $\overline{m}=(1;0,5;3)$, $\overline{n}=(2;1;6)$.

Решение. Найдем координаты векторов \overline{a} и \overline{b} :

$$\overline{a} = 3(1;0,5;3) - (2;1;6) = (3;1,5;9) - (2;1;6) = (1;0,5;3),$$

$$\overline{b} = (1;0,5;3) + 2(2;1;6) = (5;2,5;15).$$

Если векторы \overline{a} и \overline{b} коллинеарны, то должно выполняться равенство $\overline{a}=\lambda\overline{b}$, и поэтому координаты векторов должны быть пропорциональны. Проверим пропорциональность координат:

$$\frac{1}{5} = \frac{\frac{1}{2}}{\frac{5}{2}} = \frac{3}{15} = \lambda$$
 . Все координаты пропорциональны, поэтому век-

торы коллинеарны. Заметим, что $\lambda=0,2>0$, следовательно, векторы сонаправлены, и длина вектора \overline{a} в пять раз меньше длины вектора \overline{b} .

Задача 3. В треугольнике ABC проведены медиана и биссектриса из вершины A. Найти их длины и угол между медианой и биссектрисой, если A(1,-2,1), B(4,2,1), C(4,-2,1).

Решение. Основание биссектрисы AK — точка K делит сторону BC на отрезки BK и CK, длины которых пропорциональны длинам прилегающих к ним сторон треугольника — AB и AC,

т.е. $\frac{BK}{KC} = \frac{AB}{AC} = \lambda$. Найдем длины сторон и отношение λ .

$$\overline{AB} = (3, 4, 0);$$
 $|\overline{AB}| = \sqrt{3^2 + 4^2 + 0^2} = 5,$

$$\overline{AC} = (3,0,0);$$
 $|\overline{AC}| = \sqrt{3^2 + 0^2 + 0^2} = 3.$

Отношение $\lambda = 5/3$. Координаты точки K , которая делит отрезок BC в отношении 5:3 или $\frac{BK}{KC} = \frac{5}{3}$, можно вычислить по формулам:

$$\begin{cases} x_K = \frac{x_B + \lambda x_C}{1 + \lambda}, \\ y_K = \frac{y_B + \lambda y_C}{1 + \lambda}, \\ z_K = \frac{z_B + \lambda z_C}{1 + \lambda}, \end{cases}$$
 или
$$\begin{cases} x_K = \frac{4 + \frac{5}{3} \cdot 4}{1 + \frac{5}{3}} = 4, \\ y_K = \frac{2 - \frac{5}{3} \cdot 2}{1 + \frac{5}{3}} = -\frac{1}{2}, \\ z_K = \frac{1 + \frac{5}{3}}{1 + \frac{5}{3}} = 1. \end{cases}$$
 (6.2)

Следовательно, точка K имеет координаты K(4;-0,5;1). Теперь найдем вектор \overline{AK} и длину биссектрисы:

$$\overline{AK} = (3;1,5;0), \qquad |\overline{AK}| = \sqrt{3^2 + 1,5^2 + 0^2} = 1,5\sqrt{5}.$$

Основание медианы AM — точка M делит сторону BC на две равные части, поэтому $\lambda = \frac{BM}{MC} = 1$. Координаты точки M находим из соотношений (6.2) как координаты середины отрезка:

$$\begin{cases} x_M = \frac{x_B + x_C}{2}, \\ y_M = \frac{y_B + y_C}{2}, \\ z_M = \frac{z_B + z_C}{2}, \end{cases}$$
 T.e.
$$\begin{cases} x_M = \frac{4+4}{2} = 4, \\ y_M = \frac{2-2}{2} = 0, \\ z_M = \frac{1+1}{2} = 1. \end{cases}$$

Таким образом, точка M имеет координаты $M\left(4,0,1\right)$, вектор $\overline{AM}=\left(3,2,0\right)$, длина медианы равна $\left|\overline{AM}\right|=\sqrt{3^2+2^2+0^2}=\sqrt{13}$.

Угол между медианой AM и биссектрисой AK найдем как угол между векторами \overline{AM} и \overline{AK} .

$$\cos \varphi = \frac{\left(\overline{AM}, \overline{AK}\right)}{\left|\overline{AM}\right| \cdot \left|\overline{AK}\right|} = \frac{3 \cdot 3 + 1.5 \cdot 2 + 0 \cdot 0}{1.5\sqrt{5} \cdot \sqrt{13}} = \frac{8}{\sqrt{65}},$$
$$\varphi = \arccos \frac{8}{\sqrt{65}} \approx 7^{\circ}.$$

Задача 4. Вычислить площадь параллелограмма, построенного на векторах \overline{a} и \overline{b} , если $\overline{a}=\overline{p}+3\overline{q}$, $\overline{b}=2\overline{p}-\overline{q}$, $|\overline{p}|=1$, $|\overline{q}|=2$, $\angle(\overline{p},\overline{q})=5\pi/6$.

Решение. Площадь параллелограмма найдем как модуль векторного произведения векторов \overline{a} и \overline{b} : $S = \left| [\overline{a}, \overline{b}] \right|$. Вычислим векторное произведение:

$$[\overline{a}, \overline{b}] = [(\overline{p} + 3\overline{q}), (2\overline{p} - \overline{q})] = 2[\overline{p}, \overline{p}] + 6[\overline{q}, \overline{p}] - [\overline{p}, \overline{q}] - 3[\overline{q}, \overline{q}] =$$

$$= \overline{o} + 6[\overline{q}, \overline{p}] - [\overline{p}, \overline{q}] - \overline{o} = 6[\overline{q}, \overline{p}] + [\overline{q}, \overline{p}] = 7[\overline{q}, \overline{p}].$$

В преобразованиях использовались следующие свойства векторного произведения:

• векторное произведение $[\overline{a},\overline{a}]=\overline{o}$ для любого вектора \overline{a} , поскольку вектор \overline{a} коллинеарен самому себе;

• $[\overline{p}, \overline{q}] = -[\overline{q}, \overline{p}]$, так как перестановка сомножителей в векторном произведении влечет за собой изменение знака произведения.

Далее получим:

$$\left| [\overline{a}, \overline{b}] \right| = \left| 7[\overline{q}, \overline{p}] \right| = 7 \left| [\overline{q}, \overline{p}] \right| = 7 \left| \overline{q} \right| \cdot \left| \overline{p} \right| \cdot \sin \left(\widehat{p}, \overline{q} \right) =$$

$$= 7 \cdot 1 \cdot 2 \cdot \sin (5\pi/6) = 14 \cdot 0,5 = 7.$$

Итак, площадь параллелограмма $S = 7 \left(e \delta^2 \right)$.

Задача 5. Проверить, компланарны ли векторы \overline{a} , \overline{b} , \overline{c} , если $\overline{a} = (1,3,2)$, $\overline{b} = (2,3,4)$, $\overline{c} = (3,2,9)$.

Решение. Необходимым и достаточным условием компланарности векторов является равенство нулю их смешанного произведения.

$$(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 3 & 2 & 9 \end{vmatrix} = -9 \neq 0.$$

Векторы \overline{a} , \overline{b} , \overline{c} не компланарны.

Задача 6. Для треугольной пирамиды ABCD найти объем и длину высоты, опущенной из вершины D на грань ABC, если A(1,-3,8), B(2,2,-1), C(4,-5,3), D(1,-1,2).

Решение. Вычислим объем пирамиды с помощью смешанного произведения векторов \overline{AB} , \overline{AC} и \overline{AD} :

$$\overline{AB} = (1,5,-9), \quad \overline{AC} = (3,-2,-5), \quad \overline{AD} = (0,2,-6).$$

Объем пирамиды

$$V = \frac{1}{6} \left| \left(\overline{AB}, \overline{AC}, \overline{AD} \right) \right|.$$

Смешанное произведение

$$(\overline{AB}, \overline{AC}, \overline{AD}) = \begin{vmatrix} 1 & 5 & -9 \\ 3 & -2 & -5 \\ 0 & 2 & -6 \end{vmatrix} = 58,$$

и тогда объем пирамиды равен $V = \frac{58}{6} = 9\frac{2}{3}$.

Теперь найдем высоту пирамиды. Известно, что объем пирамиды

$$V = \frac{1}{3} H S_{ABC}$$
 , отсюда $H = \frac{3V}{S_{ABC}}$.

Площадь треугольника ABC вычислим, используя модуль векторного произведения векторов \overline{AB} и \overline{AC} :

$$\left[\overline{AB}, \overline{AC}\right] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 5 & -9 \\ 3 & -2 & -5 \end{vmatrix} = -43\overline{i} - 22\overline{j} - 17\overline{k} .$$

$$S_{ABC} = \frac{1}{2} \left| [\overline{AB}, \overline{AC}] \right| = \frac{1}{2} \sqrt{(-43)^2 + (-22)^2 + (-17)^2} \approx 25.6$$
.

В результате высота пирамиды равна $H = \frac{3 \cdot \frac{58}{6}}{25,6} \approx 1,13$.

Аналитическая геометрия.

Линейные геометрические объекты на плоскости и в пространстве

• Условия задач

- 1. Составить уравнения прямых, расположенных в плоскости Oxy, проходящих через точку P параллельно и перпендикулярно заданной прямой.
- 2. Выяснить взаимное расположение прямых, расположенных в плоскости Oxy. Если они пересекаются, найти точку пересечения и угол между прямыми.
- 3. Найти расстояние от точки M до плоскости γ , проходящей через точки A,B,C .
- 4. Составить уравнение плоскости π :
- а) содержащей точку A и перпендикулярной плоскостям α и β (для нечетных вариантов);
- b) содержащей точки A , B и перпендикулярной плоскости α (для четных вариантов).
- 5. Найти угол между плоскостями α и β .
- 6. Составить канонические уравнения прямой l линии пересечения плоскостей α и β .

- 7. Найти точку пересечения прямой l и плоскости γ , а также угол между прямой l и плоскостью γ . Данные по прямой l и плоскости γ взять из предыдущих пунктов 3 и 6.
- 8. Найти точку M_1 , симметричную точке M относительно:
- а) плоскости α (для *нечетных* вариантов);
- b) прямой l (для *четных* вариантов).

Условия вариантов приведены в приложении 7.

• Комментарий к решению задач

Задача 1. Составить уравнения прямых, расположенных в плоскости Oxy, проходящих через точку P(3,-4) параллельно и перпендикулярно заданной прямой l:2x-3y+8=0.

Решение. В уравнениях прямой на плоскости Oxy:

$$Ax + By + C = 0$$
 и
$$\begin{cases} x = m \cdot t + x_0, \\ y = n \cdot t + y_0, \end{cases}$$
 $t \in \mathbb{R}$,

коэффициенты A и B являются координатами вектора нормали $\overline{N}=(A,B)$ прямой, а коэффициенты m и n совпадают с координатами направляющего вектора $\overline{s}=(m,n)$ прямой. На рис. 6.2 прямая l_1 параллельна заданной прямой l:2x-3y+8=0, и поэтому ее вектор нормали \overline{N}_1 совпадает с вектором нормали $\overline{N}=(2,-3)$ прямой l:

 $\overline{N}_1=\overline{N}=(2,-3)$. Следовательно, уравнение прямой l_1 имеет вид $A(x-x_0)+B(y-y_0)=0 \quad \text{или} \quad 2(x-3)-3(y+4)=0 \ ,$ откуда получим $y=\frac{2}{3}x-6$.

Прямая l_2 перпендикулярна прямой l , и поэтому ее направляющий вектор \overline{s}_2 совпадает с вектором нормали прямой l : $\overline{s}_2 = \overline{N} = (2, -3) \text{. Составим параметрическое уравнение прямой } l_2 \text{ :}$

$$l_2: \begin{cases} x = 2t + 3, \\ y = -3t - 4, \end{cases} \quad t \in R.$$

Замечание. Если прямая l задана параметрическими уравнениями, то известен ее направляющий вектор $\bar{s}=(m,n)$, который одновременно является вектором нормали для прямой l_2 и направляющим для прямой l_1 .

Задача 2. Выяснить взаимное расположение прямых l_1 : $\begin{cases} x = 2t + 3, \\ y = -t + 1, \end{cases}$

и $l_2: x-3y+4=0$, расположенных в плоскости Oxy . Если они пересекаются, найти точку пересечения и угол между прямыми.

Решение. Направляющий вектор прямой l_1 имеет вид: $\overline{s}_1 = (2, -1)$, для прямой l_2 известен вектор нормали $\overline{N}_2 = (1, -3)$. Предполагаемое расположение прямых представлено на рис. 6.3.

Рис. 6.3

Поскольку скалярное произведение (\bar{s}_1, \bar{N}_2) = $2+3=5 \neq 0$, векторы \bar{s}_1 и \bar{N}_2 не ортогональны, поэтому прямые l_1 и l_2 не параллельны и пересекаются в какой-то точке M. Найдем координаты точки M. Для этого подставим x и y в параметрической форме записи в уравнение прямой l_2 :

$$2t+3-3(-t+1)+4=0$$
, $5t+4=0$, $\Rightarrow t=-4/5$.

Следовательно, точке M соответствует значение параметра t=-4/5 . Подставляя это значение параметра в уравнение прямой l_1 , получим координаты точки пересечения:

$$x_M = 2(-4/5) + 3 = 7/5$$
, $y_M = 4/5 + 1 = 9/5$.

В итоге M(7/5, 9/5).

В качестве направляющего вектора прямой $\,l_2\,$ можно взять любой вектор, ортогональный вектору $\,\overline{\!N}_2\,.$

Если вектор \bar{s}_2 имеет координаты $\bar{s}_2=(m_2,n_2)$, то равенство нулю скалярного произведения $(\bar{s}_2,\bar{N}_2)=0$ приводит к записи $m_2-3n_2=0$. Полагая здесь, например, $n_2=1$, получим $m_2=3$, следовательно, один из направляющих векторов прямой l_2 имеет координаты $\bar{s}_2=(3,1)$.

Найдем косинус угла между прямыми l_1 и l_2 :

$$\cos \varphi = \frac{|(\overline{s_1}, \overline{s_2})|}{|\overline{s_1}| \cdot |\overline{s_2}|} = \frac{|2 \cdot 3 + 1 \cdot (-1)|}{\sqrt{2^2 + (-1)^2} \cdot \sqrt{3^2 + 1^2}} = \frac{\sqrt{2}}{2}.$$

Прямые пересекаются под углом $\pi/4$.

OtBet: $M(7/5, 9/5), \varphi = \pi/4$.

Задача 3. Найти расстояние от точки $M\left(1,-1,2\right)$ до плоскости γ , проходящей через точки $A\left(1,-3,8\right),\ B\left(2,2,-1\right),\ C\left(4,-5,3\right)$.

Решение. Составим уравнение плоскости, содержащей точки A , B и C . Для этого найдем координаты векторов \overline{AB} , \overline{AC} :

$$\overline{AB} = (1, 5, -9), \quad \overline{AC} = (3, -2, -5).$$

Вектор $[\overline{AB},\overline{AC}]$ ортогонален плоскости γ , поэтому его можно выбрать в качестве вектора нормали \overline{N} к плоскости γ :

$$\overline{N} = [\overline{AB}, \overline{AC}] = -43\overline{i} - 22\overline{j} - 17\overline{k}$$
.

Составим уравнение плоскости γ , содержащей точки A , B и C :

$$\gamma : -43(x-1)-22(y+3)-17(z-8)=0$$

или
$$-43x-22y-17z+113=0$$
.

Расстояние от точки M(1, -1, 2) до плоскости γ равно:

$$\rho = \frac{\left|Ax_1 + By_1 + Cz_1 + D\right|}{\sqrt{A^2 + B^2 + C^2}} = \frac{\left|-43 + 22 - 17 \cdot 2 + 113\right|}{\sqrt{\left(-43\right)^2 + 22^2 + \left(-17\right)^2}} = 1,13.$$

Задача 4а. Составить уравнение плоскости π , содержащей точку A(1,-1,3) и перпендикулярной плоскостям $\alpha: x-3y+z-1=0$ и $\beta: 2x+y-z+3=0$ (для *нечетных* вариантов).

Решение. По условию плоскость π перпендикулярна плоскостям α и β (рис. 6.4), поэтому вектор векторного произведения векторов нормали \overline{N}_1 и \overline{N}_2 к плоскостям α и β будет ортогонален плоскости π (рис 6.4).

Рис. 6.4

$$\overline{N} = [\overline{N}_1, \overline{N}_2] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -3 & 1 \\ 2 & 1 & -1 \end{vmatrix} = 2\overline{i} + 3\overline{j} + 7\overline{k}.$$

Составим уравнение плоскости π : 2(x-1)+3(y+1)+7(z-3)=0 или 2x+3y+7z-20=0.

Задача 46. Составить уравнение плоскости π , содержащей точки A(1,-1,3) и B(-2,1,5) и перпендикулярной плоскости $\alpha: x-3y+z-1=0$ (для *четных* вариантов).

Решение.

Вектор нормали к плоскости π находят как векторное произведение $[\overline{N}_1, \overline{AB}]$, где \overline{N}_1 – вектор нормали к плоскости α (рис. 6.5). В итоге

$$\overline{N} = \left[\overline{N}_1, \overline{AB} \right] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -3 & 1 \\ -3 & 2 & 2 \end{vmatrix} = -9\overline{i} - 5\overline{j} - 7\overline{k} ,$$

и уравнение плоскости π имеет вид:

$$\pi: -9(x-1)-5(y+1)-7(z-3)=0$$

или
$$\pi:-9x-5y-7z+7=0$$
.

Задача 5. Найти угол между плоскостями $\alpha: x-3y+z-1=0$ и $\beta: 2x+y-z+3=0$.

Решение.

$$\cos \varphi = \frac{|(\overline{N}_1, \overline{N}_2)|}{|\overline{N}_1| \cdot |\overline{N}_2|} = \frac{|-2|}{\sqrt{66}} = \frac{2}{\sqrt{66}}, \qquad \varphi = \arccos \frac{2}{\sqrt{66}} \approx 76^{\circ}$$

Задача 6. Написать канонические уравнения прямой l — линии пересечения плоскостей $\alpha: x-3y+z-5=0$ и $\beta: 2x+3y-4z-1=0$.

Решение. Поскольку векторы нормали каждой из плоскостей \overline{N}_1 и \overline{N}_2 ортогональны любой прямой, расположенной в соответствующей плоскости, оба вектора нормали будут ортогональны прямой l (рис.6.6).

Рис. 6.6

Поэтому в качестве направляющего вектора прямой можно выбрать вектор

$$\overline{S} = [\overline{N}_1, \overline{N}_2] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -3 & 1 \\ 2 & 3 & -4 \end{vmatrix} = 9\overline{i} + 6\overline{j} + 9\overline{k} = (9,6,9)$$

или вектор $\bar{s}_0 = \frac{\overline{S}}{3} = (3,2,3)$, коллинеарный вектору \overline{S} .

Для составления уравнения прямой необходимо также найти координаты любой точки $M_0\left(x_0,y_0,z_0\right)$, принадлежащей прямой l . Эти координаты находят как одно из решений системы 1 :

$$\begin{cases} x - 3y + z - 5 = 0, \\ 2x + 3y - 4z - 1 = 0. \end{cases}$$
 (6.3)

Полагая, например, в (6.3) z = 0, получим:

$$\begin{cases} x_0 - 3y_0 = 5, \\ 2x_0 + 3y_0 = 1. \end{cases} \Rightarrow x_0 = 2, y_0 = -1,$$

 1 Система имеет бесконечно много решений, ей удовлетворяют координаты каждой точки прямой.

и точка M_0 имеет координаты M_0 (2, -1,0).

Канонические уравнения прямой, проходящей через точку \boldsymbol{M}_0 па-

раллельно вектору
$$\bar{s}_0$$
, имеют вид: $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z}{3}$.

Задача 7. Найти точку пересечения прямой l и плоскости γ , а также угол между прямой l и плоскостью γ . Данные по прямой l и плоскости γ взять из предыдущих пунктов 3 и 6.

Решение. В задаче 3 этого раздела получено уравнение плоскости γ : 43x + 22y + 17z - 113 = 0, а в задаче 6 получены канонические

уравнения прямой $l: \frac{x-2}{3} = \frac{y+1}{2} = \frac{z}{3}$. Перейдем к параметрическим уравнениям прямой

$$\begin{cases} x = 3t + 2, \\ y = 2t - 1, & t \in R. \\ z = 3t, \end{cases}$$
 (6.4)

Точке M_0 (рис.6.7) пересечения прямой и плоскости соответствует некоторое значение параметра t_0 .

Для получения t_0 подставим выражения (6.4) в уравнение плоскости:

$$43(3t_0+2)+22(2t_0-1)+17(3t_0)-113=0,$$

$$224t_0 - 49 = 0$$
, $t_0 = \frac{7}{32}$.

Подставляя t_0 в (6.4), получим координаты точки пересечения $M_0\left(\frac{85}{32},-\frac{9}{16},\frac{21}{32}\right)$.

Угол φ между прямой и плоскостью (или угол между прямой и проекцией этой прямой на плоскость) найдем как угол $\varphi = \frac{\pi}{2} - \theta$, где θ — угол между направляющим вектором прямой и вектором нормали к плоскости. Направляющий вектор прямой \overline{s} и вектор нормали к плоскости \overline{N} имеют вид: $\overline{s} = (3,2,3)$ и $\overline{N} = (43,22,17)$. Следовательно,

$$\cos\theta = \sin\varphi = \frac{|(\bar{s}, \overline{N})|}{|\bar{s}| \cdot |\overline{N}|} \approx \frac{14}{15},$$

откуда $\varphi = \arcsin \frac{14}{15} \approx 69^{\circ}$.

Задача 8а. Найти точку M_1 , симметричную точке $M\left(1,0,-2\right)$ относительно плоскости $\alpha:2x-y+z-3=0$.

Решение. Составим уравнение прямой l, проходящей через точку M перпендикулярно плоскости α (рис.6.8). В качестве направляющего вектора \overline{S} прямой можно выбрать вектор нормали $\overline{N}(2,-1,1)$ к плоскости. Полагая, что $\overline{S}=\overline{N}=(2,-1,1)$, перейдем к параметрическим уравнениям прямой:

$$\begin{cases} x = 2t + 1, \\ y = -t, \\ z = t - 2, \end{cases} \quad t \in \mathbb{R} . \tag{6.5}$$

Рис. 6.8

Найдем координаты точки $O(x_0, y_0, z_0)$ пересечения прямой и плоскости, подставив выражение (6.5) в уравнение плоскости:

$$2(2t_0+1)-(-t_0)+(t_0-2)-3=0 \implies t_0=\frac{1}{2}$$

Точка O имеет координаты $O\left(2,-\frac{1}{2},-\frac{3}{2}\right)$. Поскольку точка O является серединой отрезка MM_1 , то

$$\begin{cases} x_0 = \frac{x_M + x_{M_1}}{2}, \\ y_0 = \frac{y_M + y_{M_1}}{2}, \Rightarrow \begin{cases} x_{M_1} = 2x_0 - x_M, \\ y_{M_1} = 2y_0 - y_M, \\ z_{M_1} = 2z_0 - z_M, \end{cases} \Rightarrow \begin{cases} x_{M_1} = 2 \cdot 2 - 1 = 3, \\ y_{M_1} = 2 \cdot \left(-\frac{1}{2}\right) - 0 = -1, \\ z_{M_1} = 2 \cdot \left(-\frac{3}{2}\right) + 2 = -1. \end{cases}$$

Ответ: точка M_1 имеет координаты $M_1 (3,-1,\!-1)$.

Задача 86. Найти точку M_1 , симметричную точке $M\left(1,0,-2\right)$ относительно прямой $l:\frac{x-2}{1}=\frac{y}{2}=\frac{z+1}{-3}$.

Решение. Сначала составим уравнение плоскости α , проходящей через точку M перпендикулярно прямой l (рис. 6.9).

Вектор нормали \overline{N} к плоскости α совпадает с направляющим вектором \overline{S} прямой l — $\overline{N}=\overline{S}=(1,2,-3)$. Тогда уравнение плоскости имеет вид: 1(x-1)+2(y-0)-3(z+2)=0 или x+2y-3z=7. Найдем координаты точки $O(x_0y_0,z_0)$ пересечения прямой l и плоскости α так, как мы это делали в задаче 7.

Запишем параметрические уравнения прямой l:

$$\begin{cases} x = t + 2, \\ y = 2t, \\ z = -3t - 1, \end{cases} \quad t \in \mathbb{R}.$$

Подставим эти выражения в уравнение плоскости и найдем соответствующее значение параметра t_0 :

$$t_0 + 2 + 2(2t_0) - 3(-3t_0 - 1) = 7 \implies t_0 = \frac{1}{7}$$

Итак, точка O имеет координаты $O\left(\frac{15}{7}, \frac{2}{7}, -\frac{10}{7}\right)$.

Поскольку точка ${\it O}$ является серединой отрезка ${\it MM}_1$,

$$\begin{cases} x_0 = \frac{x_M + x_{M_1}}{2}, \\ y_0 = \frac{y_M + y_{M_1}}{2}, \Rightarrow \begin{cases} x_{M_1} = 2x_0 - x_M, \\ y_{M_1} = 2y_0 - y_M, \Rightarrow \end{cases} \begin{cases} x_{M_1} = \frac{30}{7} - 1 = \frac{23}{7}, \\ y_{M_1} = \frac{4}{7} - 0 = \frac{4}{7}, \\ z_{M_1} = 2z_0 - z_M, \end{cases}$$

Ответ: точка M_1 имеет координаты $M_1\Big(\!\frac{23}{7},\!\frac{4}{7},\!-\frac{6}{7}\Big).$

6.4. Приложение векторной алгебры и аналитической геометрии.

Расчет пирамиды

• Условия задач

- 1. Выбрать в декартовой прямоугольной системе координат четыре произвольные точки A, B, C, D так, чтобы они не лежали ни в одной из координатных плоскостей.
- Проверить, не принадлежат ли эти точки одной плоскости (если все они расположены в одной плоскости, то следует изменить координаты одной из точек).
- 1.2. Проверить, не является ли треугольник ΔABC равнобедренным (в случае утвердительного ответа измените координаты одной из точек).
- 2. Рассмотреть пирамиду DABC с вершинами в точках A,B,C,D и, выбрав в качестве основания пирамиды ΔABC , определить или составить:
- 2.1. Возможные уравнения плоскости, содержащей точки А, В, С.
- 2.2. Возможные уравнения прямой $l_{\scriptscriptstyle 1}$, проходящей через точки A и B .
- 2.3. Плошаль $\triangle ABC$.
- 2.4. В ΔABC найти высоту CE, опущенную из вершины C на сторону AB, координаты основания высоты (точки E) и составить уравнение прямой l_{CE} , содержащей эту высоту.

- 2.5. В ΔABC найти длину медианы CM и составить уравнение прямой l_{CM} , содержащей медиану CM .
- 2.6. В $\triangle ABC$ найти биссектрису CK угла $\angle ACB$ и составить уравнение прямой l_{CK} , содержащей биссектрису. Задачу решить двумя способами.
- 3. Расчеты в пирамиде *DABC*.
- 3.1. Составить уравнение прямой l_{DH} , содержащей высоту пирамиды DH и найти ее длину. Задачу решить двумя способами.
- 3.2. Найти объем пирамиды DABC (двумя способами).
- 3.3. Найти угол между гранями ABC и ADB.
- 3.4. Найти угол между ребром *DA* и основанием пирамиды.
- 4. Составить уравнения скрещивающихся прямых l_{CD} и l_{AB} .
- 4.1. Найти угол между прямыми l_{CD} и l_{AB} .
- 4.2. Найти расстояние между скрещивающимися прямыми (двумя способами).

• Комментарий к решению задач

Задача 1. Выберем четыре точки, так, чтобы они не лежали ни в одной из координатных плоскостей A(1,-1,-2), B(-1,-2,3), C(3,2,3), D(1,-3,4).

1.1. Проверим, не лежат ли точки A,B,C,D в одной плоскости. Для этого следует рассмотреть три вектора $\overline{AB}, \ \overline{AC}, \ \overline{AD}$ и если векторы компланарны, то точки будут принадлежать одной плоскости.

Так как
$$A\overline{B} = (-2,-1,5), \overline{AC} = (2,3,5), \overline{AD} = (0,-2,6)$$
 и

$$(\overline{AB}, \overline{AC}, \overline{AD}) = \begin{vmatrix} -2 & -1 & 5 \\ 2 & 3 & 5 \\ 0 & -2 & 6 \end{vmatrix} = -64 \neq 0,$$

то точки A,B,C,D в одной плоскости не лежат.

1.2. Проверим, не является ли ΔABC равнобедренным. Для этого найдем длины сторон треугольника:

$$|\overline{AB}| = \sqrt{2^2 + 1^2 + 5^2} = \sqrt{30}, \quad |\overline{AC}| = \sqrt{2^2 + 3^2 + 5^2} = \sqrt{38},$$

$$\left| \overline{AD} \right| = \sqrt{2^2 + 6^2} = \sqrt{40} \ .$$

Среди сторон нет равных, и поэтому ΔABC не является равнобедренным.

- **2.** Рассмотрим $\triangle ABC$.
- **2.1**. Составим различные уравнения плоскости π_1 , содержащей точки A,B,C.

Общее уравнение плоскости, найдем как уравнение плоскости, проходящей через три точки (условие компланарности векторов $\overline{AM}, \overline{AB}, \overline{AC}$):

$$\begin{vmatrix} x-1 & y+1 & z+2 \\ -2 & -1 & 5 \\ 2 & 3 & 5 \end{vmatrix} = 0$$

или
$$(x-1)(-20)-(y+1)(-20)+(z+2)(-4)=0$$
, или $-5x+5y-z+8=0$.

Параметрическое уравнение плоскости π_1 . Начальной точкой плоскости выберем точку A, а в качестве направляющих векторов плоскости возьмем векторы $\overline{AB}, \overline{AC}$. Параметрическое уравнение плоскости π_1 имеет вид

$$\begin{cases} x = 1 - 2t + 2\tau, \\ y = -1 - t + 3\tau, \\ z = -2 + 5t + 5\tau, \end{cases} \quad \tau \in R, t \in R.$$

Hормированное уравнение плоскости π_1 получим умножением общего уравнения плоскости на нормирующий множитель

$$\mu = \frac{-1}{\sqrt{5^2 + 5^2 + 1^2}} = -\frac{1}{\sqrt{51}}$$
.

Оно имеет следующий вид:

$$\frac{1}{\sqrt{51}}(5x-5y+z-8)=0$$

Уравнение плоскости в отрезках получим из общего уравнения:

$$\frac{x}{8/5} + \frac{y}{-8/5} + \frac{z}{1/5} = 1$$
.

2.2. Выпишем различные виды уравнения прямой l_1 , проходящей через точки A и B . Примем за начальную точку прямой точку A , а вектор $\overline{q}_1 = \overline{AB} = \left(-2, -1, 5\right)$ возьмем в качестве направляющего вектора возьмем.

Параметрические уравнения:

$$\begin{cases} x = 1 - 2t, \\ y = -1 - t, \quad t \in R, \\ z = -2 + 5t, \end{cases}$$

Каноническое уравнение:

$$\frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z+2}{5}.$$

Уравнение прямой, определяемой как линии пересечения двух непараллельных плоскостей. Прямая l_1 лежит на пересечении плоскости π_1 и π_2 , содержащей точки A,D,B. Уравнение π_2 получим из условия компланарности векторов \overline{AM} , \overline{AB} , \overline{AD}

$$\left(\overline{AM}, \overline{AB}, \overline{AD}\right) = \begin{vmatrix} x-1 & y+1 & z+2 \\ -2 & -1 & 5 \\ 0 & -2 & 6 \end{vmatrix} = 0$$

или $\pi_2: x+3y+z+4=0$, следовательно, координаты точек прямой l_1 удовлетворяют системе уравнений

$$\begin{cases} 5x - 5y + z - 8 = 0, & \pi_1(ABC), \\ x + 3y + z + 4 = 0, & \pi_2(ABD). \end{cases}$$

Можно сделать проверку. Непосредственная подстановка координат точки A(1,-1,-2) в уравнения системы дает два тождества

$$\begin{cases} 1+3(-1)+(-2)+4=0, \\ 5\cdot 1-5(-1)+(-2)-8=0, \end{cases}$$

и, значит, точка A принадлежит прямой $l_{\scriptscriptstyle 1}$.

Направляющий вектор прямой l_1 , можно найти как векторное произведение векторов нормали $\overline{n_1}$ и $\overline{n_2}$ плоскостей π_1 и π_2 соответственно

$$\overline{q}_2 = [\overline{n_1}, \overline{n_2}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 5 & -5 & 1 \\ 1 & 3 & 1 \end{vmatrix} = -8\overline{i} - 4\overline{j} + 20\overline{k}.$$

Поскольку $\overline{q}_2 = (-8, -4, 20) = 4(-2, -1, 5)$, то векторы \overline{q}_1 и \overline{q}_2 коллинеарны и оба могут служить направляющими векторами нашей прямой.

2.3. Найдем площадь $\triangle ABC$. Поскольку

$$\left[\overline{AB}, \overline{AC}\right] = (-20,20,-4),$$

то

$$S_{\Delta ABC} = \frac{1}{2} \left| \left[\overline{AB}, \overline{AC} \right] \right| = \frac{1}{2} \sqrt{816} = 2\sqrt{51}$$
.

Сначала составим уравнение высоты ΔABC , опущенной на сторону AB, и найдем ее длину.

2.4. Пусть CE искомая высота и $E(x_1,y_1,z_1)$. Точка E принадлежит прямой l_1 , поэтому существует такое $t=t_1$, что (параметрические уравнения)

$$\begin{cases} x_1 = 1 - 2t_1, \\ y_1 = -1 - t_1, \\ z_1 = -2 + 5t_1. \end{cases}$$

С другой стороны, т.к. $\overline{CE} \perp \overline{AB}$, имеем ($\overline{CE}, \overline{AB}$) = 0 или

$$-2(x_1-3)+(-1)(y_1-2)+5(z_1-3)=0$$
,

Следовательно,

$$-2(1-2t_1-3)+(-1)(-1-t_1-2)+5(-2+5t_1-3)=0 , \text{ откуда } t_1=\frac{3}{5} \text{ и},$$

$$x_1=-\frac{1}{5}, \quad y_1=-\frac{8}{5}, \quad z_1=1.$$

Таким образом,
$$E\left(-\frac{1}{5}, -\frac{8}{5}, 1\right)$$
, $\overline{CE} = \left(-\frac{16}{5}, -\frac{18}{5}, -\frac{10}{5}\right)$

и $h = \left| \overline{CE} \right| = \sqrt{\frac{16^2 + 18^2 + 10^2}{25}} = 2\frac{\sqrt{34}}{5}.$

2-ой способ. Поскольку известно, что $S_{\Delta ABC} = \frac{1}{2} h \left| \overline{AB} \right|$, а

$$S_{\Delta ABC} = 2\sqrt{51}$$
 , $\left| \overline{AB} \right| = \sqrt{30}$, To.

$$h = \frac{2S_{\Delta ABC}}{\left| \overline{AB} \right|} = 4\sqrt{\frac{51}{30}} = 2\sqrt{\frac{34}{5}} ,$$

что совпадает с ранее полученным результатом.

Уравнение высоты составим, выбрав в качестве направляющего вектора $\overline{q}_3 = -\frac{5}{2}\overline{CE} = (8,9,5)$ и в качестве начальной точки — точку C(3,2,3). Параметрическое уравнение высоты имеет следую-

щий вид
$$\begin{cases} x = 8t + 3, \\ y = 9t + 2, \quad t \in R. \\ z = 5t + 3, \end{cases}$$

2.5. Рассмотрим медиану *CM* в $\triangle ABC$ (рис.6.10).

Очевидно, что
$$\overline{CM}=\overline{CA}+\overline{AM}$$
 , где $\overline{CA}=\left(-2,-3,-5\right)$, $\overline{AM}=\frac{1}{2}\overline{AB}=\left(-1,-1/2,5/2\right)$, поэтому $\overline{CM}=\left(-3,-7/2,-5/2\right)$.

Рис. 6.10

Параметрическое уравнение медианы (направляющий вектор $\overline{q}_4 = -2\overline{CM} = (6,7,5)$, начальная точка C(3,2,3))

$$\begin{cases} x = 6t + 3, \\ y = 7t + 2, \\ z = 5t + 3, \end{cases} \quad t \in R$$

Длина медианы
$$m = \left| \overline{CM} \right| = \sqrt{3^2 + \left(\frac{7}{2}\right)^2 + \left(\frac{5}{2}\right)^2} = \frac{1}{2}\sqrt{110}$$
.

2.6. Рассмотрим биссектрису CK угла $A\widehat{C}B$, найдем ее длину и составим уравнение биссектрисы.

l-ый способ. Воспользуемся параметрическим уравнением прямой l_1 , которому удовлетворяют координаты точки $K(x_2,y_2,z_2)$ при

некотором значении
$$t_2$$
 параметра
$$\begin{cases} x_2 = -2t_2 + 1, \\ y_2 = -t_2 - 1, \\ z_2 = 5t_2 - 2. \end{cases}$$

Поскольку CK — биссектриса, то углы $\alpha = \beta$ и $\cos \alpha = \cos \beta$. Поэтому

$$\cos\alpha = \frac{(\overline{CA},\overline{CK})}{|\overline{CA}|\cdot|\overline{CK}|} = \frac{(\overline{CB},\overline{CK})}{|\overline{CB}|\cdot|\overline{CK}|} = \cos\beta \ .$$
 Сокращая здесь на $|\overline{CK}|$, получим $\frac{(\overline{CA},\overline{CK})}{|\overline{CA}|} = \frac{(\overline{CB},\overline{CK})}{|\overline{CB}|}$ или, учитывая, что $\overline{CK} = (-2-2t_2,-3-t_2,-5+5t_2)$, $\overline{CB} = (-4,-4,0)$, $\overline{CA} = (-2,-3,-5)$, придем к равенству
$$\frac{2(2+2t_2)+3(3+t_2)-5(-5+5t_2)}{\sqrt{38}} = \frac{4(2+2t_2)+4(3+t_2)}{\sqrt{32}},$$
 откуда $t_2 = \frac{76-10\sqrt{19}}{36+6\sqrt{19}} \approx 0,52^2$.

Рис. 6.11

Таким образом, $\left| \overline{CK} \right| = \left(-3.04; -3.52; -2.4 \right)$ и длина биссектрисы $b = \left| \overline{CK} \right| = \sqrt{(3.04)^2 + (3.52)^2 + (2.4)^2} \approx 5.23 \ .$

² Расчеты проводим с точностью до второго знака после запятой.

Уравнение биссектрисы (направляющий вектор $\overline{q}_{\scriptscriptstyle 5} = \overline{CK}$, начальная

точка
$$C(3,2,3)$$
) имеет вид
$$\begin{cases} x=3-t\cdot 3,04,\\ y=2-t\cdot 3,52, & t\in R.\\ z=3-t\cdot 2,4, \end{cases}$$

2-ой способ. Из элементарной геометрии известно, что точка K (основание биссектрисы) делит основание AB в отношении $\frac{\lambda}{\mu}$, где

$$\frac{\lambda}{\mu} = \frac{AK}{KB} = \frac{AC}{CB} = \frac{\sqrt{38}}{\sqrt{32}} = \frac{\sqrt{19}}{4} \approx 1,09$$
.

При этом координаты точки $K(x_2, y_2, z_2)$ вычисляются через координаты концов отрезка AB по известным формулам деления отрезка в заданном отношении (формулы 3.2). Подставляя в эти формулы соответствующие значения координат, получим

$$x_2 \approx \frac{1+1,09(-1)}{1+1,09} = -0,04;$$
 $y_2 \approx \frac{-1+1,09(-2)}{1+1,09} = -1,52;$ $z_2 \approx \frac{-2+1,09\cdot 3}{1+1,09} = 0,61.$

откуда $\overline{CK} = (-3,04; -3,52; -2,39)$. Длина биссектрисы

$$b = \left| \overline{CK} \right| = \sqrt{(3,04)^2 + (3,52)^2 + (2,39)^2} \approx 5,23$$
, что совпадает с преды-

дущими вычислениями.

- **3.** Рассмотрим теперь пирамиду *DABC*:
- **3.1.** Составим уравнение высоты, опущенной из вершины D на основание, и найдем ее длину.

1-ый способ. Высоту пирамиды найдем, подставив координаты точ-ки D(1,-3,4) в нормированное уравнение плоскости π_1

$$H = d = \frac{1}{\sqrt{51}} |5 \cdot 1 - 5(-3) + 4 - 8| = \frac{16}{\sqrt{51}}.$$

 $2\text{-}o\check{u}$ способ. Найдем сначала координаты точки $Q(x_3,y_3,z_3)$ — проекции вершины D на плоскость основания π_1 .. Очевидно, числа $x_3\,,y_3\,,z_3\,$ удовлетворяют общему уравнению плоскости π_1 — $5x_3+5y_3-z_3+8=0$,

но одного этого уравнения недостаточно для определения трех неизвестных чисел. В то же время легко заметить, что вектор

$$\overline{DQ}=\left(x_{3}-1,y_{3}+3,z_{3}-4\right)$$
 коллинеарен вектору нормали $\overline{N}=\left(-5,5,-1\right)$ плоскости π_{1} , т.е. $\overline{DQ}=\mu\overline{N}$, где $\mu\neq0$ некоторая постоянная. Последнее равенство равносильно трем соотношениям $x_{3}=1-5\mu,\quad y_{3}=-3+5\mu,\quad z_{3}=4-\mu$.

Воспользовавшись этими соотношениями, получим

$$-5(1-5\mu)+5(-3+5\mu)-(4-\mu)+8=0,$$

откуда $\mu = \frac{16}{51}$, и в результате

$$\overline{DQ} = \mu \, \overline{N} = \frac{16}{51} (-5,5,-1).$$

Высота пирамиды $H = \frac{16}{51}\sqrt{5^2 + 5^2 + 1^2} = \frac{16}{\sqrt{51}}$, что подтверждает

предыдущие вычисления.

3.2. Найдем теперь объем пирамиды DABC.

1-ый способ.

$$V_{nup} = \frac{1}{3} H S_{\Delta ABC} = \frac{1}{3} \frac{16}{\sqrt{51}} \sqrt{204} = \frac{32}{3}$$
.

2-ой способ. Вычислим теперь объем пирамиды через смешанное произведение векторов $\overline{AB}, \overline{AC}, \overline{AD}$

$$V_{nup} = \frac{1}{6} \left| \left(\overline{AB}, \overline{AC}, \overline{AD} \right) \right| = \frac{1}{6} \left| -64 \right| = \frac{32}{3}.$$

3.3. Угол между гранями пирамиды ABC и ADB это угол между плоскостями π_1 и π_2 :

$$\cos \psi = \frac{|(\overline{n_1}, \overline{n_2})|}{|\overline{n_1}||\overline{n_2}|} = \frac{|-5 \cdot 1 + 5 \cdot 3 - 1 \cdot 1|}{\sqrt{51} \cdot \sqrt{11}} = \frac{9}{\sqrt{561}} \approx 0.38, \qquad \psi \approx 68^{\circ}.$$

3.4. Угол φ между ребром пирамиды DA и ее основанием найдем, используя скалярное произведение векторов $\overline{DA} = (0,2,-6)$ и $\overline{n_1} = (-5,5,-1)$:

$$\cos \theta = \frac{|(\overline{DA}, \overline{n_1})|}{|\overline{DA}| |\overline{n_1}|} = \frac{|0 \cdot (-5) + 2 \cdot 5 + (-6) \cdot (-1)|}{\sqrt{40} \cdot \sqrt{51}} = \frac{4}{\sqrt{510}} \approx 0,18, \quad \theta \approx 80^{\circ} \text{ и}$$

 $\varphi \approx 90^0 - 80^0 = 10^0 \; .$

4. Составим уравнение прямой l_{CD} (проходит через точки C и D , направляющий вектор $\overline{q}_6=\overline{CD}=\left(-2,-5,\!1\right)$, начальная точка

$$C(3,2,3)$$
): $\frac{x-3}{-2} = \frac{y-2}{-5} = \frac{z-3}{1}$. Напомним каноническое уравнение

прямой l_{AB} (проходит через точки A и B , направляющий вектор $\overline{q}_1 = \left(-2, -1, 5\right)$):

$$\frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z+2}{5}.$$

4.1. Угол φ между угол между прямыми l_{CD} и l_{AB} .

$$\cos \varphi = \frac{|\left(\overline{q}_{1}, \overline{q}_{6}\right)|}{|\overline{q}_{1}||\overline{q}_{6}|} = \frac{|\left(-2\right)\!\left(-2\right)\!+\left(-1\right)\!\left(-5\right)\!+5\cdot 1|}{\sqrt{30}\cdot\sqrt{30}} = \frac{7}{15} \; , \; \text{откуда} \;\; \varphi \approx 62^{\circ} \; .$$

4.2. Расстояние между скрещивающимися прямыми.

$$(\overline{AB}, \overline{CD}, \overline{AC}) = \begin{vmatrix} -2 & -1 & 5 \\ -2 & -5 & 1 \\ 2 & 3 & 5 \end{vmatrix} = 64,$$

то объем параллелепипеда $V_o = \left| \left(\overline{AB} \cdot \overline{CD} \cdot \overline{AC} \right) \right| = 64$.Площадь основания параллелепипеда $S_{och} = \left| \left[\overline{AB}, \overline{CD} \right] \right|$. Вычислим векторное про-

изведение
$$\left[\overline{AB},\overline{CD}\right] = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ -2 & -1 & 5 \\ -2 & -5 & 1 \end{vmatrix} = 24\bar{i} - 8\bar{j} + 8\bar{k}$$
,

и, следовательно, $S_{och} = \left| \left[\overline{AB}, \overline{CD} \right] \right|$.

В результате расстояние между скрещивающимися прямыми равно

$$d = H = \frac{V_0}{S_{\text{OCH}}} = \frac{64}{8\sqrt{11}} = \frac{8}{\sqrt{11}}.$$

2-ой способ. Через прямую l_1 проведем плоскость π_0 , которая будет параллельна прямой l_6 . Эта плоскость содержит точку A (1,-1,2) и имеет направляющие векторы $\overline{q}_1=\overline{AB}=\left(-2,-1,5\right),$

 $\overline{q}_6 = \overline{CD} = \left(-2, -5, 1\right)$. Запишем общее уравнение этой плоскости:

$$\begin{vmatrix} x-1 & y+1 & z-2 \\ -2 & -1 & 5 \\ -2 & -5 & 1 \end{vmatrix} = 24(x-1) - 8(y+1) + 8(z-2) = 24x - 8y + 8z - 16 = 0$$

После умножения на нормирующий множитель

$$\mu = \frac{1}{8\sqrt{3^2 + 1 + 1}} = \frac{1}{8\sqrt{11}}$$

получим нормированное уравнение π_0

$$\frac{1}{\sqrt{11}}(3x-y+z-2)=0$$
.

Расстояние между скрещивающимися прямыми найдем как расстояние от точки C(3,2,3) прямой l_6 до плоскости π_0 :

$$d = \frac{1}{\sqrt{11}} |3 \cdot 3 - 2 + 3 - 2| = \frac{8}{\sqrt{11}}$$

что подтверждает полученный выше результат.

6.5. Линейные пространства.

Собственные векторы и собственные значения

• Условия задач

- 1. Найти координаты вектора \overline{x} в базисе $\{\overline{e}_i'\}$, если известны его координаты в базисе $\{\overline{e}_i\}$ и задана связь между базисами (варианты заданий приведены в приложении 8).
- 2. Найти матрицу линейного оператора в базисе $\{\overline{e}_i'\}$, если линейный оператор задан матрицей A в базисе $\{\overline{e}_i\}$ (варианты заданий приведены в приложении 9).
- 3. Привести матрицу линейного оператора к диагональному виду и указать базис пространства (не обязательно ортонормированный), в котором матрица линейного оператора имеет диагональный вид (варианты заданий приведены в приложении 10).

4.

• Комментарий к решению задач.

Задача 1. Процедура решения задачи основана на материале раздела 4.2 главы 4 (стр. 168-171). Необходимо записать матрицу перехода от базиса к базису и применить формулу (4.15).

Задача 2. Решение задачи разобрано в примере 4.16 (стр. 203).

Задача 3. Процедура решения приведена в примере 4.18 (стр. 215).

Приложение 1.

$N_{\underline{0}}$	Условие
1	$(A+B)^2 - (A^2 + 2AB + B^2) = \dots$
2	$(A-B)(A+B)-A^2+B^2=$
3	$(A+B)^2 - (A^2+B^2) = \dots$
4	$(A-B)^2 - (A^2 + B^2) = \dots$
5	$A^2 - 2AB + B^2 - (A - B)^2 = \dots$
6	$(A-2B)(A+2B)-A^2+4B^2=$
7	$9A^2 + B^2 - (3A + B)^2 = \dots$
8	$(2A - B)^2 - 4A^2 - B^2 = \dots$
9	$(3A+2B)^2-9A^2-4B^2=$
10	$A^2 + 4B^2 - (A - 2B)^2 = \dots$
11	$(A+B)^2 - 2AB - B^2 = \dots$
12	$(A-3B)^2 - (A^2-6AB+9B^2) = \dots$
13	$(A-B)^2 + 2AB = \dots$
14	$A^2 - B^2 + (B - A)(B + A) = \dots$
15	$B^2 - 4A^2 - (B - 2A)(B + 2A) = \dots$
16	$(A+B)^2-2AB=\dots$
17	$4A^2 - 8AB + 4B^2 - 4(A - B)^2 = \dots$
18	$BA + AB + (A - B)^2 = \dots$
19	$A^2 + 4AB + 4B^2 - (A+2B)^2 = \dots$
20	$(2A+B)^2 - (B^2+4AB+4A^2) = \dots$
21	$(2A-B)^2 - (4A^2 - 4AB + B^2) = \dots$
22	$A^2 - B^2 - (A+B)(A-B) = \dots$
23	$A^2 + B^2 - (A+B)^2 = \dots$

24	$A^2 + B^2 - (A - B)^2 = \dots$
25	$AB + BA - (A+B)^2 = \dots$
26	$(3A-B)^2-(9A^2+B^2)=$
27	$(B+3A)^2 - 3(AB+BA) =$
28	$\frac{(A+B)^2}{2} - AB = \dots$
29	$(A-B)^2 - (B^2 - BA) = \dots$
30	$(A+B)^2 - (AB+A^2) = \dots$

Приложение 2.

01		02
	-3 -3 4 -1	$ -5 \ 1 \ 2 \ -1 $
	4 4 1 5	5 1 3 1
	$\begin{bmatrix} -1 & 0 & -2 & 5 \end{bmatrix}$	0 3 6 -2
	-5 -3 0 2	$\begin{vmatrix} -3 & 0 & 1 & -4 \end{vmatrix}$
03		04
	4 -1 4 3	$\begin{vmatrix} 3 & -2 & -2 & -4 \end{vmatrix}$
	$\begin{vmatrix} 2 & -2 & -2 & 0 \end{vmatrix}$	0 4 4 1
	3 5 -1 5	4 -3 5 4
	-1 - 4 3 3	$\begin{vmatrix} -2 & -4 & 3 & -5 \end{vmatrix}$
05		06
	3 -5 -1 3	$\begin{vmatrix} -2 & 5 & -5 & 3 \end{vmatrix}$
	1 5 1 5	3 1 -1 2
	6 -1 1 2	0 5 4 5
	$\begin{vmatrix} -3 & -3 & 0 & 4 \end{vmatrix}$	-4 2 5 5

07		08
	3 -3 -4 4	-1 1 -1 -1
	5 2 1 0	2 3 4 0
	$\begin{vmatrix} 6 & 1 & 5 & -3 \end{vmatrix}$	5 0 5 6
	0 5 4 5	2 2 5 -5
09	l I	10
	-2 2 3 3	-2 -2 2 1
	$\begin{bmatrix} -2 & 0 & 3 & 1 \end{bmatrix}$	5 0 2 3
	4 3 6 -1	2 2 6 4
	$\begin{vmatrix} 4 & -2 & 0 & 2 \end{vmatrix}$	-4 3 -5 5
11	ı I	12
	-1 - 4 5 -4	2 4 -2 -3
	-2 2 1 3	4 3 4 -2
	$\begin{vmatrix} -1 & 5 & 0 & 4 \end{vmatrix}$	-1 1 3 5
	$\begin{vmatrix} -4 & -4 & -2 & -1 \end{vmatrix}$	0 3 -1 -3
13		14
	$\begin{vmatrix} 3 & -5 & 4 & -5 \end{vmatrix}$	-2 1 -5 2
	1 -1 3 4	0 4 0 5
	4 5 -2 0	-3 3 3 1
	$\begin{bmatrix} -2 & -5 & 3 & 5 \end{bmatrix}$	5 -3 2 4
15	<u> </u>	16
	$\begin{bmatrix} -5 & 5 & 5 & -3 \end{bmatrix}$	4 -4 -1 1
	4 5 3 -2	1 4 1 -1
	3 1 0 3	6 6 4 0
	-5 0 -4 1	-3 -1 5 4

17		18
	5 5 5 1	5 4 4 4
	$\begin{bmatrix} 0 & -2 & 5 & -1 \end{bmatrix}$	$\begin{vmatrix} 2 & 4 & -2 & -1 \end{vmatrix}$
	1 3 2 4	$\begin{bmatrix} -2 & -6 & -3 & -2 \end{bmatrix}$
	$\begin{vmatrix} -3 & 1 & 1 & -3 \end{vmatrix}$	$\begin{vmatrix} -1 & 1 & 0 & -3 \end{vmatrix}$
19		20
	4 4 3 5	5 2 3 5
	1 5 -1 4	1 0 -1 4
	$\begin{vmatrix} -2 & -3 & -5 & -5 \end{vmatrix}$	$\begin{vmatrix} -4 & -3 & -6 & -2 \end{vmatrix}$
	-2 4 0 2	3 -4 0 -5
21		22
	2 1 4 3	2 5 5 2
	5 1 5 0	-2 3 0 4
	$\begin{vmatrix} -2 & -4 & -3 & -2 \end{vmatrix}$	$\begin{vmatrix} -2 & -1 & -3 & -4 \end{vmatrix}$
	2 4 -2 4	4 3 5 -3
23		24
	2 1 1 3	4 4 4 2
	0 1 -1 -2	$\begin{vmatrix} -1 & 0 & -2 & -2 \end{vmatrix}$
	$\begin{vmatrix} -4 & -4 & -2 & -6 \end{vmatrix}$	$\begin{vmatrix} -3 & -3 & -2 & -1 \end{vmatrix}$
	5 5 -5 5	-3 4 3 1
25		26
	3 3 5 3	3 5 5 2
	5 2 0 2	-2 3 2 2
	$\begin{bmatrix} -5 & -6 & -5 & -6 \end{bmatrix}$	-4 -3 -6 -5
	3 -1 3 -4	-4 0 -2 0

27					28					
	5	5	4	2		1	1	4	3	
	0	2	4	3		2	3	1	0	
	- 2	-6	-6	- 4		- 4	-6	-4	-1	
	4	3	-3	5		-1	4	-4	-5	
29					30					
	1	1	3	2		1	4	3	1	
	1	3	1	2		-1	0	-2	5	
	-1	-1	-5	- 2		-6	-3	-4	- 2	
	- 3	-3	-3	0		5	-1	4	- 2	

Приложение 3.

01	02
$\int -x_1 - 5x_2 + 3x_3 = 4,$	$\int x_1 + 3x_2 - x_3 = 8,$
$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 18, \end{cases}$	$\begin{cases} 5x_1 - 2x_2 + 5x_3 = 6, \end{cases}$
$-2x_1 + 6x_2 - x_3 = 5.$	$x_1 + 2x_2 = 6.$
03	04
$\int 5x_1 - 2x_2 - 2x_3 = -16,$	$\int 5x_1 + 5x_2 + 4x_3 = 31,$
$\begin{cases} 2x_1 - x_2 = -5, \end{cases}$	$\begin{cases} 5x_1 + x_2 - x_3 = 3, \end{cases}$
$x_1 - 2x_2 + 4x_3 = 4.$	$x_1 + x_2 = 3.$
05	06
$\int x_1 + 4x_2 + x_3 = 13,$	$\int 2x_1 + 4x_2 - 2x_3 = 0,$
$\begin{cases} x_1 + x_3 = 5, \end{cases}$	$\begin{cases} 5x_1 + x_2 + 4x_3 = 9, \end{cases}$
$4x_1 - x_2 + 5x_3 = 24.$	$3x_1 - 3x_2 + x_3 = 14.$

0.7	00
07	08
$-2x_1 + 2x_2 - x_3 = 13,$	$3x_1 + 4x_2 + 3x_3 = 4,$
$\begin{cases} x_1 + 4x_2 + 4x_3 = 7, \end{cases}$	$\begin{cases} 5x_1 + x_2 - 2x_3 = 15, \end{cases}$
$2x_1 + x_2 - 3x_3 = -11.$	$2x_1 + 6x_2 - x_3 = 12.$
09	10
$\left(-x_1 + 3x_3 = -8,\right)$	$\int 4x_1 - 4x_2 - 5x_3 = -9,$
$\left\{-x_1 - 2x_2 - 2x_3 = 6,\right.$	$\begin{cases} 4x_1 + 5x_2 + 5x_3 = -30, \end{cases}$
$2x_1 - 3x_2 + x_3 = 8.$	$3x_1 - x_2 + 3x_3 = -25.$
11	12
$\int x_1 - x_2 - 3x_3 = 11,$	$\int 5x_1 - 2x_2 + 5x_3 = 23,$
$\begin{cases} 5x_1 + 3x_2 = 10, \end{cases}$	$\left\{ -x_1 + 4x_2 + x_3 = 5 \right\},$
$\left[6x_1 - 2x_2 + 6x_3 = -6\right].$	$\left(x_1 + 3x_2 - x_3 = 2\right).$
13	14
$\int x_1 + x_2 - x_3 = 3,$	$\int 2x_1 + x_2 = 5,$
$\left\{-2x_2 - x_3 = 1,\right.$	$\begin{cases} x_1 - 2x_2 + 4x_3 = 9, \end{cases}$
$2x_1 - 2x_2 - x_3 = -1.$	$5x_1 - 3x_2 + 2x_3 = 20.$
15	16
$\left[-2x_1 - 5x_2 + 5x_3 = 13,\right]$	$\int x_1 + x_2 = 2,$
$\left\{ -x_1 + 5x_2 - 2x_3 = -7 \right.$	$\begin{cases} 4x_1 + 2x_2 + 3x_3 = 9, \end{cases}$
$4x_1 + x_2 + 4x_3 = 16.$	$4x_1 + x_2 + 5x_3 = 9.$
17	18
$\int 5x_1 - 4x_2 + 5x_3 = -1,$	$\int x_1 + 5x_2 + 3x_3 = -5,$
$\begin{cases} 3x_1 - 2x_2 + x_3 = 3, \end{cases}$	$\left\{ -x_1 + 4x_2 - 2x_3 = -3, \right.$
$4x_2 + 3x_3 = -10.$	$3x_1 + 2x_2 - 2x_3 = -13.$
19	20
$\left[-2x_1 + 5x_2 - 2x_3 = -12,\right]$	$\left(-4x_1 - x_2 + x_3 = -5,\right.$
$\left\{-2x_1 + 3x_2 + 4x_3 = 22,\right.$	$\begin{cases} 2x_1 - x_2 + 4x_3 = 13, \end{cases}$
$2x_1 - 3x_2 + 4x_3 = 18.$	$2x_1 + 3x_2 - 2x_3 = 9.$

21	22
$\int 5x_1 - x_3 = 7,$	$-x_1 - 4x_2 + 4x_3 = 1,$
$\left\{-2x_1 + x_2 - 2x_3 = 5,\right.$	$\begin{cases} 4x_1 - x_2 - x_3 = 15, \end{cases}$
$4x_1 + 3x_2 - 3x_3 = 19.$	$3x_1 - 3x_2 = 15.$
23	24
$\int 5x_1 - 4x_2 + 3x_3 = 39,$	$\int x_1 + 3x_2 - 5x_3 = -14,$
$\begin{cases} 3x_1 + 2x_2 + 2x_3 = 20, \end{cases}$	$\begin{cases} 5x_1 + 4x_2 - x_3 = 17, \end{cases}$
$2x_1 + x_2 + x_3 = 12.$	$x_1 - x_2 + 2x_3 = 9.$
25	26
$\left[-5x_1 - 4x_2 + 4x_3 = 45, \right.$	$3x_1 + 5x_2 - 5x_3 = 12,$
$\begin{cases} 5x_1 - x_2 + 4x_3 = -2, \end{cases}$	$\begin{cases} x_1 + 2x_2 = 1, \end{cases}$
$2x_1 - x_2 + 3x_3 = 7.$	$\int 5x_1 + 5x_2 + 4x_3 = -8.$
27	28
$(5x_1 - 3x_2 - 3x_3 = 9,$	$\left[-2x_1 - 4x_2 + 5x_3 = 13,\right]$
$\begin{cases} 3x_1 + 2x_3 = 9, \end{cases}$	$\left\{-x_1+2x_3=3,\right.$
$5x_1 + 5x_2 - 3x_3 = 25.$	$-2x_1 + 3x_2 - 3x_3 = 7.$
29	30
$\int 3x_1 + 5x_2 + 2x_3 = 6,$	$\int -4x_1 + x_2 + x_3 = -2,$
$\begin{cases} 2x_1 - 2x_2 + 5x_3 = 24, \end{cases}$	$\left\{ -x_1 + 4x_2 + x_3 = -2, \right.$
$-x_1 + 6x_2 + 2x_3 = 1.$	$2x_1 - x_2 + 3x_3 = 12.$

Приложение 4.

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 + 2x_5 = 0, \\ -2x_1 - x_2 + 5x_3 + x_4 - 2x_5 = 0, \\ 4x_1 - 3x_3 + 3x_4 - 3x_5 = 0; \end{cases} \begin{cases} x_1 + 2x_2 + 2x_3 + 5x_4 = 2, \\ 3x_2 + 3x_3 + 3x_4 = 1, \\ x_1 + x_2 + 3x_3 + 4x_4 = 3. \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + 5x_3 + 4x_4 + 2x_5 = 0, \\ 2x_1 + 5x_2 + x_3 + 4x_4 + x_5 = 0, \\ -x_1 + 5x_2 + 3x_3 + 6x_4 - 3x_5 = 0; \end{cases} \begin{cases} 5x_1 + 5x_2 + x_3 + 4x_4 = 2, \\ 4x_1 + x_2 + x_3 = 0, \\ -x_2 - x_3 - 2x_4 = 3. \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + 4x_3 + 5x_4 + 3x_5 = 0, \\ 5x_1 - x_3 + 4x_4 + x_5 = 0, \\ 5x_1 + 3x_2 - 2x_3 - 2x_4 - x_5 = 0; \end{cases} \begin{cases} 3x_1 + 2x_2 + 5x_3 + 3x_4 = 1, \\ -x_1 + 3x_2 + 4x_3 - 2x_4 = 5, \\ -2x_1 + 6x_2 + x_3 - 3x_4 = -2. \end{cases}$$

$$\begin{cases} x_1 + 5x_2 + 5x_3 + 3x_4 + 4x_5 = 0, \\ 3x_1 + 5x_2 + 2x_3 - x_5 = 0, \\ 3x_1 - 2x_2 - x_3 + x_4 - 3x_5 = 0; \end{cases} \begin{cases} x_1 + 4x_2 + 2x_3 + 4x_4 = 2, \\ x_2 + 5x_3 - x_4 = -1, \\ 6x_1 + 2x_3 - 2x_4 = 2. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 = 0, \\ 3x_2 + 3x_3 - 2x_4 + 2x_5 = 0, \\ 2x_1 + 5x_2 + 6x_3 + 3x_5 = 0; \end{cases} \begin{cases} 5x_1 + x_2 + 3x_3 + 5x_4 = 3, \\ 4x_1 + 3x_2 + 4x_3 + 5x_4 = -1, \\ -2x_1 + 2x_2 + 5x_3 - 3x_4 = -3. \end{cases}$$

$$\begin{cases} 5x_1 + x_2 + 4x_3 + 2x_4 + 2x_5 = 0, \\ 4x_1 + 2x_2 - 2x_3 = 0, \\ 3x_1 + 3x_2 + x_3 + x_5 = 0; \end{cases} \begin{cases} 4x_1 + x_2 + x_3 + x_4 = 4, \\ 5x_1 + 5x_2 + 2x_3 + 4x_4 = 3, \\ 4x_1 - 3x_2 + 4x_3 + 2x_4 = 2. \end{cases}$$

$$\begin{cases} 5x_1 + 4x_2 + x_3 + 2x_4 + 5x_5 = 0, \\ x_1 + 4x_2 + 5x_3 - x_4 + 4x_5 = 0, \\ 4x_1 - 3x_2 - x_3 - x_4 - 3x_5 = 0; \end{cases} \begin{cases} 3x_1 + x_2 + x_3 + 4x_4 = 5, \\ x_1 - x_2 + 5x_3 - x_4 = 4, \\ -2x_1 + 5x_2 + 3x_3 - 2x_4 = 6. \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 + x_4 + 2x_5 = 0, \\ -2x_1 - 2x_2 - x_3 + x_4 - x_5 = 0, \\ -2x_1 - x_2 - 2x_4 + 4x_5 = 0; \end{cases} \begin{cases} 2x_1 + 4x_2 + x_3 + 2x_4 = 2, \\ 5x_1 + 3x_2 + 3x_3 - 2x_4 = 0, \\ -x_1 + 6x_2 - 2x_3 - 3x_4 = -1. \end{cases}$$

$$\begin{cases} 3x_1 + 4x_2 + 3x_3 + 5x_4 + x_5 = 0, \\ 3x_1 + 4x_2 + 2x_3 + 3x_4 + 5x_5 = 0, \\ 4x_1 - 3x_2 + 2x_3 + x_4 + 5x_5 = 0; \end{cases} \begin{cases} 2x_1 + 3x_2 + 5x_3 + 3x_4 = 1, \\ x_1 + x_2 + x_3 - 2x_4 = 2, \\ -3x_1 + 4x_3 + 5x_4 = 1. \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 3x_3 + x_4 + 2x_5 = 0, \\ -x_1 - 2x_3 + x_4 + 2x_5 = 0, \\ 5x_1 + 4x_2 - 2x_3 + 6x_4 - 3x_5 = 0; \end{cases} \begin{cases} 5x_1 + 4x_2 + 5x_3 + 3x_4 = 5, \\ -x_1 + 2x_2 - x_3 + x_4 = -2, \\ 4x_1 + x_2 + x_3 = 4. \end{cases}$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 + 3x_4 + 4x_5 = 0, \\ 3x_1 + 2x_2 + 4x_3 + 3x_4 + 3x_5 = 0, \\ 6x_1 - x_2 - 2x_3 + 6x_4 + x_5 = 0; \end{cases} \begin{cases} 4x_1 + 2x_2 + 5x_3 + 5x_4 = 5, \\ 5x_1 + 2x_3 - x_4 = 0, \\ x_1 + 3x_2 + x_3 + 2x_4 = -3. \end{cases}$$

$$\begin{cases} 5x_1 + 3x_2 + 5x_3 + x_4 + 3x_5 = 0, \\ 4x_1 + 2x_2 - 2x_3 + x_4 - 2x_5 = 0, \\ 3x_1 - x_2 + 4x_3 + 6x_5 = 0; \end{cases} \begin{cases} x_1 + x_2 + 4x_3 + x_4 = 1, \\ 2x_1 - 2x_2 + 4x_3 - x_4 = -2, \\ x_1 + 2x_2 + x_3 = 2. \end{cases}$$

$$\begin{cases} 2x_1 + 5x_2 + 3x_3 + 4x_4 + x_5 = 0, \\ -x_1 + 5x_2 + x_3 - 2x_5 = 0, \\ -2x_1 + 2x_2 + 6x_3 - 3x_4 + 4x_5 = 0; \end{cases} \begin{cases} 4x_1 + 3x_2 + x_3 + 4x_4 = 2, \\ x_1 - 2x_2 + 5x_4 = 1, \\ 2x_1 + x_2 + 5x_4 = 3. \end{cases}$$

$$\begin{cases} 5x_1 + x_2 + 4x_3 + x_4 + 4x_5 = 0, \\ 4x_1 + 2x_2 + 5x_4 + 4x_5 = 0, \\ 3x_1 + 4x_2 + x_3 + 3x_4 + 2x_5 = 0; \end{cases} \begin{cases} 4x_1 + 2x_2 + 4x_3 + 3x_4 = 4, \\ -x_1 - x_2 + 3x_3 + 5x_4 = 1, \\ 4x_2 + 3x_3 + 3x_4 = 5. \end{cases}$$

$$\begin{cases} 4x_1 + 4x_2 + 4x_3 + 2x_4 + 5x_5 = 0, \\ 2x_1 + 4x_2 - 2x_3 - x_4 + 4x_5 = 0, \\ 4x_1 + 3x_2 + 4x_3 + x_4 + 5x_5 = 0; \end{cases} \begin{cases} 2x_1 + 3x_2 + 4x_3 + 4x_4 = 3, \\ 2x_1 - x_2 + 5x_3 - x_4 = 5, \\ 2x_1 + 2x_2 + 4x_3 = 2. \end{cases}$$

$$\begin{cases} 4x_1 + 4x_2 + x_3 + 2x_4 + 4x_5 = 0, \\ 2x_1 + x_2 + x_3 - 2x_4 + 2x_5 = 0, \\ -x_1 + 2x_2 + 6x_3 + 4x_4 + 4x_5 = 0; \end{cases} \begin{cases} x_1 + 2x_2 + 4x_3 + x_4 = 1, \\ 4x_1 + 4x_2 - x_3 - x_4 = 0, \\ x_1 + 2x_2 + 6x_3 - x_4 = 1. \end{cases}$$

17
$$\begin{cases}
5x_1 + 3x_2 + 4x_3 + 5x_4 + x_5 = 0, \\
-x_1 - 2x_2 + 2x_3 + 2x_5 = 0, \\
6x_1 + 4x_2 - 3x_3 = 0;
\end{cases}
\begin{cases}
3x_1 + 2x_2 + 3x_3 + 2x_4 = 4, \\
3x_2 - x_3 + 4x_4 = -1, \\
4x_1 + 3x_2 + 6x_3 + 4x_4 = 6.
\end{cases}$$

18
$$\begin{cases}
2x_1 + 5x_2 + 5x_3 + 3x_4 + 4x_5 = 0, \\
x_1 + 2x_2 - x_3 - 2x_4 - x_5 = 0, \\
-2x_1 + 5x_2 - x_3 - 3x_4 + 6x_5 = 0;
\end{cases}
\begin{cases}
2x_1 + 3x_2 + 3x_3 + x_4 = 3, \\
-x_1 + 3x_2 + x_3 + 3x_4 = 0, \\
3x_1 + x_2 + 6x_3 + 2x_4 = 5.
\end{cases}$$

19
$$\begin{cases}
2x_1 + x_2 + 3x_3 + 5x_4 + 4x_5 = 0, \\
2x_2 + 5x_3 + 2x_4 + 2x_5 = 0, \\
2x_1 + 2x_2 - 3x_3 - 3x_4 + 5x_5 = 0;
\end{cases}
\begin{cases}
x_1 + 5x_2 + 1x_3 + 2x_4 = 2, \\
-x_1 + x_2 + 2x_3 = 0, \\
-x_3 + 2x_4 = 1.
\end{cases}$$

20
$$\begin{cases} 2x_1 + x_2 + 4x_3 + 5x_4 + 5x_5 = 0, \\ 5x_1 + 3x_2 - x_3 + 5x_4 - 2x_5 = 0, \\ 4x_1 + 6x_2 - x_4 + 4x_5 = 0; \end{cases} \begin{cases} 2x_1 + x_2 + 5x_3 + x_4 = 4, \\ 4x_1 + 2x_2 + 2x_3 = 3, \\ 3x_2 + x_3 - x_4 = 1. \end{cases}$$

21
$$\begin{cases}
3x_1 + 3x_2 + x_3 + 3x_4 + 2x_5 = 0, \\
x_1 + 3x_2 - x_3 - x_4 = 0, \\
-x_1 + 4x_2 + 2x_3 - x_4 + 5x_5 = 0;
\end{cases}
\begin{cases}
x_1 + 5x_2 + x_3 + 5x_4 = 3, \\
5x_1 + x_3 + 5x_4 = 4, \\
3x_1 - 2x_2 + x_3 = 0.
\end{cases}$$

$$\begin{cases} 4x_1 + 5x_2 + 5x_3 + x_4 + x_5 = 0, \\ x_2 + 3x_3 + 5x_4 - 2x_5 = 0, \\ 5x_1 + 5x_2 - 2x_3 + 5x_4 + 5x_5 = 0; \end{cases} \begin{cases} 5x_1 + 5x_2 + 5x_3 + 3x_4 = 1, \\ 4x_2 + 4x_3 + 5x_4 = 2, \\ -3x_1 + 4x_2 + 2x_3 + 5x_4 = 0. \end{cases}$$

$$\begin{cases} 5x_1 + 3x_2 + 3x_3 + x_4 + 3x_5 = 0, \\ -x_1 + 5x_2 + 3x_3 + 5x_5 = 0, \\ 6x_1 - 3x_2 - x_3 - 2x_4 + x_5 = 0; \end{cases} \begin{cases} 5x_1 + 4x_2 + 4x_3 + x_4 = 1, \\ 4x_1 + x_3 + 3x_4 = 0, \\ 3x_1 - 2x_2 + 6x_3 = 2. \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 5x_3 + 4x_4 + 2x_5 = 0, \\ -x_1 + 3x_2 - 2x_5 = 0, \\ -3x_1 + x_2 + 6x_3 = 0; \end{cases} \begin{cases} 5x_1 + x_2 + 2x_3 + x_4 = 2, \\ x_1 + x_2 + 2x_3 + x_4 = 2, \\ x_1 + x_2 + 2x_3 + 2x_4 = 0, \\ x_1 - x_2 + 3x_3 - 2x_4 = -3. \end{cases}$$

$$\begin{cases} 3x_1 + 3x_2 + 2x_3 + 4x_4 + 5x_5 = 0, \\ 2x_1 + 4x_2 - 2x_5 = 0, \\ x_2 + 6x_3 + 4x_4 - x_5 = 0; \end{cases} \begin{cases} x_1 + 5x_2 + 2x_3 + 4x_4 = 1, \\ 4x_1 - 2x_2 - x_3 - x_4 = -2, \\ 3x_1 + 6x_2 - 2x_3 = -3. \end{cases}$$

$$\begin{cases} 5x_1 + 5x_2 + x_3 + 4x_4 + 4x_5 = 0, \\ -x_1 + 5x_2 + 5x_3 + 3x_4 = 0, \\ 6x_1 - 2x_2 + x_3 + 4x_4 + 3x_5 = 0; \end{cases} \begin{cases} x_1 + 5x_2 + x_3 + x_4 = 1, \\ -2x_1 + 3x_2 - 2x_3 = 1, \\ 3x_2 + 4x_3 - x_4 = 2. \end{cases}$$

$$\begin{cases} 4x_1 + 3x_2 + 3x_3 + 3x_4 + 2x_5 = 0, \\ 2x_1 - x_2 + 2x_4 - 2x_5 = 0, \\ 3x_1 + 6x_2 + 5x_3 + x_4 - 3x_5 = 0; \end{cases} \begin{cases} 5x_1 + 2x_2 + x_3 + 5x_4 = 4, \\ -x_1 + x_2 - x_4 = 0, \\ 6x_1 + 5x_2 - 2x_3 + 6x_4 = -3. \end{cases}$$

$$\begin{cases} 5x_1 + 2x_2 + x_3 + 5x_4 + 3x_5 = 0, \\ x_1 - x_2 + x_4 + 5x_5 = 0, \\ 2x_1 + 6x_2 + 4x_3 + x_4 - x_5 = 0; \end{cases} \begin{cases} 2x_1 + 4x_2 + 2x_3 + 3x_4 = 3, \\ -x_1 + 3x_2 - x_3 - x_4 = 3, \\ -x_1 + x_3 = 6. \end{cases}$$

$$\begin{cases} x_1 + 5x_2 + x_3 + 5x_4 + 5x_5 = 0, \\ -2x_1 + x_4 = 0, \\ 4x_1 + 3x_2 + 6x_3 + 5x_5 = 0; \end{cases} \begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 = 2, \\ -2x_1 - 2x_3 + 5x_4 = 1, \\ x_1 + 6x_2 + x_3 + x_4 = 2. \end{cases}$$

$$\mathbf{30}$$

$$\begin{cases} 4x_1 + 2x_2 + x_3 + x_4 + 2x_5 = 0, \\ 3x_1 + 2x_2 + 5x_3 + 3x_4 + 4x_5 = 0, \\ x_1 + x_2 - 3x_3 + x_4 + 3x_5 = 0; \end{cases} \begin{cases} x_1 + 3x_2 + 4x_3 + 4x_4 = 4, \\ 4x_2 - x_3 - 2x_4 = 1, \\ 3x_1 - x_4 = -3. \end{cases}$$

Приложение 5.

	A	В
1	$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 4 \\ 0 & 0 \\ 0 & 6 \end{pmatrix}$
2	$\begin{pmatrix} 0 & 1 & 2 \\ -2 & 3 & 0 \\ 1 & -1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 2-4 \end{pmatrix}$
3	$ \begin{pmatrix} 2 & 1 & -1 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 \\ 4 & 0 \\ 0 & 0 \end{pmatrix}$
4	$\begin{pmatrix} 1 & 0 & -2 \\ -1 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \end{pmatrix}$

5	$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 4 & 0 \\ 9 & 0 \\ 0 & 0 \end{pmatrix}$
6	$\begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 3-1 & 0 \\ 2-2 & 4 \end{pmatrix}$
7	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$	$\begin{pmatrix} 7 & 0 \\ 1 & 0 \\ 2 & 0 \end{pmatrix}$
8	$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 0 \\ 1 & 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 8 & 3 \\ 4 & 1 & 0 \end{pmatrix}$
9	$ \begin{pmatrix} 5 & 8 & -4 \\ 6 & 9 & -5 \\ 4 & 7 & -3 \end{pmatrix} $	$ \begin{pmatrix} 11 - 22 \\ 9 - 27 \\ 13 - 13 \end{pmatrix} $
10	$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 3 & -9 \end{pmatrix}$	$\begin{pmatrix} -5-4 & 2 \\ 3 & 13 & 7 \end{pmatrix}$
11	$ \begin{pmatrix} -2 & 3 & 4 \\ 1 & -2 & 3 \\ -3 & 5 & 1 \end{pmatrix} $	$\begin{pmatrix} 2-3 \\ -3 & 4 \\ 5-7 \end{pmatrix}$

12	$\begin{pmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 6 & 1 & 2 \\ -2 & 3 & 0 \end{pmatrix}$
13	$ \begin{pmatrix} 6 & 9 & -5 \\ 5 & 8 & -4 \\ 8 & 14 & -6 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$
14	$\begin{pmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -2 & 3 & 0 \\ 6 & 1 & 2 \end{pmatrix}$
15	$ \begin{pmatrix} 5 & 1 & 2 \\ 3 & -3 & -6 \\ 1 & -2 & -4 \end{pmatrix} $	$ \begin{pmatrix} -8 & 1 \\ 3 & 1 \\ 9 & 1 \end{pmatrix} $
16	$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$\begin{pmatrix} 7 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
17	$ \begin{pmatrix} 5 & 0 & 1 \\ 2 & -3 & 1 \\ 4 & 0 & 4/5 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
18	$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ -2 & 3 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 2-4 \\ 0 & 0 & 0 \end{pmatrix}$

19	$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 0 \\ 1 & 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 4 \\ 8 & 1 \\ 3 & 0 \end{pmatrix}$
20	$\begin{pmatrix} 0 & 3 & -9 \\ 2 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 3 & 13 & 7 \\ -5 & -4 & 2 \end{pmatrix}$
21	$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 3 & -9 \end{pmatrix}$	$ \begin{pmatrix} -5 & 3 \\ -4 & 13 \\ 2 & 7 \end{pmatrix} $
22	$ \begin{pmatrix} -2 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 2-4 \\ 0 & 0 & 0 \end{pmatrix}$
23	$\begin{pmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 2 & -4 & 5 \end{pmatrix}$	$\begin{pmatrix} 7 & 6 \\ 2 & 1 \\ 0 - 3 \end{pmatrix}$
24	$\begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -2 \\ 0 & -1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$
25	$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 8 & 0 & -12 \end{pmatrix}$	$\begin{pmatrix} 1-2\\3&4\\0&0 \end{pmatrix}$

26	$\begin{pmatrix} 1 & 1 & 0 \\ 1 & -2 & 3 \\ 0 & -1 & 1 \end{pmatrix}$	$\begin{pmatrix} 2-2 & 4 \\ 3-1 & 0 \end{pmatrix}$
27	$\begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$	$\begin{pmatrix} -2 & 3 \\ 0 - 1 \\ 2 - 1 \end{pmatrix}$
28	$ \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 & 0 \\ 7 & 1 & 2 \end{pmatrix}$
29	$ \begin{pmatrix} 3 & 2 & -2 \\ 2 & -3 & 2 \\ 5 & -1 & 0 \end{pmatrix} $	$\begin{pmatrix} 1 & 4 \\ -2 & 1 \\ -1 & 0 \end{pmatrix}$
30	$\begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & -9 \\ 1 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -5-4 & 2 \\ 3 & 13 & 7 \end{pmatrix}$

Приложение 6.

01

1) $\overline{a} = (-2,3,5), \overline{m} = (0,1,2),$ $\overline{n} = (2,3,-1), \ \overline{p} = (2,0,3).$

2)
$$\overline{m} = (1,2,-3), \overline{n} = (0,1,2),$$

 $\overline{a} = 2\overline{m} + 3\overline{n}, \overline{b} = \overline{n} - \overline{m}.$

1)
$$\overline{a} = (-3,2,4), \overline{m} = (1,0,3),$$

 $\overline{n} = (2,-1,0), \overline{p} = (3,-1,5).$

$$n = (2,3,-1), p = (2,0,3).$$

$$n = (2,-1,0), p = (3,-1,3).$$

$$2) \overline{m} = (1,2,-3), \overline{n} = (0,1,2),$$

$$\overline{a} = 2\overline{m} + 3\overline{n}, \overline{b} = \overline{n} - \overline{m}.$$

$$2) \overline{m} = (3,2,5), \overline{n} = (-1,3,4),$$

$$\overline{a} = 5\overline{m} + \overline{n}, \overline{b} = \overline{n} - 2\overline{m}.$$

$$3) A(1,4,-1), B(4,4,3), C(8,4,-1).$$

$$3) A(2,-1,3), B(5,-1,7), C(9,-1,3).$$

4)
$$\overline{a} = \overline{p} + 2\overline{q}$$
, $\overline{b} = 3\overline{p} - \overline{q}$, 4) $\overline{a} = 3\overline{p} + \overline{q}$, $\overline{b} = \overline{p} - 2\overline{q}$, $|\overline{p}| = 1$, $|\overline{q}| = 2$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{6}$. $|\overline{p}| = 4$, $|\overline{q}| = 1$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{4}$.

5)
$$\overline{a} = (2,3,1), \overline{b} = (-1,0,1),$$

 $\overline{c} = (2,2,2).$

6)
$$A(1,3,6)$$
, $B = (2,2,1)$,
 $C(-1,0,1)$, $D = (-4,6,3)$.

1)
$$\overline{a} = (3,2,-1), \overline{m} = (2,3,0),$$

 $\overline{n} = (0,5,6), \overline{p} = (-1,2,3).$

2)
$$\overline{m} = (1,1,3), \overline{n} = (2,-1,4),$$

 $\overline{a} = 2\overline{m} - \overline{n}, \overline{b} = 2\overline{n} - 4\overline{m}.$

$$A(-1,2,5), B(-1,11,5), C(-1,5,9)$$

4)
$$\overline{a} = \overline{p} - 3\overline{q}$$
, $\overline{b} = \overline{p} + 2\overline{q}$,

$$|\overline{p}| = \frac{1}{5}, |\overline{q}| = 1, \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}.$$

- 5) $\overline{a} = (1,5,2), \overline{b} = (-1,1,-1),$ $\bar{c} = (1,1,1).$
- 6) A(7,2,4), B = (7,-1,-2), C(3,3,1), D = (-4,2,1).

05

1)
$$\overline{a} = (2,-1,10), \overline{m} = (-1,2,1),$$

 $\overline{n} = (0,5,7), \overline{p} = (3,2,-1).$

2)
$$\overline{m} = (5,1,-1), \ \overline{n} = (1,2,3),$$

 $\overline{a} = \overline{m} + \overline{n}, \ \overline{b} = 4\overline{m} + 2\overline{n}.$

3)
$$A(0,2,1)$$
, $B(3,2,5)$, $C(7,2,1)$.

4)
$$\overline{a} = 3\overline{p} + \overline{q}$$
, $\overline{b} = \overline{p} - 2\overline{q}$,
 $|\overline{p}| = 4$, $|\overline{q}| = 1$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{4}$.

- 5) $\overline{a} = (3,2,1), \overline{b} = (2,3,4),$ $\bar{c} = (3,1,-1).$
 - 6) A(-1,2,6,), B=(2,-3,0), C(-10,5,8), D = (-5,2,-4).

04

1)
$$\overline{a} = (5,1,-1), \overline{m} = (3,2,1),$$

 $\overline{n} = (0,5,2), \overline{p} = (-2,3,5).$

2)
$$\overline{m} = (1,2,5), \overline{n} = (3,2,1),$$

 $\overline{a} = \overline{m} + 3\overline{n}, \overline{b} = 6\overline{n} + 2\overline{m}.$

3)
$$A(3,-1,2)$$
, $B(6,-1,6)$, $C(10,-1,2)$

4)
$$\overline{a} = 3\overline{p} - 2\overline{q}$$
, $\overline{b} = \overline{p} + 5\overline{q}$,

$$|\overline{p}| = 4, |\overline{q}| = \frac{1}{2}, \angle(\overline{p}, \overline{q}) = \frac{5\pi}{6}.$$

5)
$$\overline{a} = (1,-1,-3), \overline{b} = (3,2,1),$$

 $\overline{c} = (2,3,4).$

6)
$$A(2,1,6)$$
, $B = (-1,5,-2)$,
 $C(-7,-3,2)$, $D = (-6,-3,6)$.

1)
$$\overline{a} = (5,0,-2), \overline{m} = (3,6,1),$$

 $\overline{n} = (1,-1,3), \overline{p} = (2,1,0),$

2)
$$\overline{m} = (-3,2,5), \overline{n} = (1,2,-1),$$

 $\overline{a} = 2\overline{m} - 5\overline{n}, \overline{b} = 5\overline{n} - 2\overline{m}.$

3)
$$A(1,-2,-3)$$
, $B(4,-2,1)$, $C(8,-2,-3)$.

4)
$$\overline{a} = \overline{p} - 2\overline{q}$$
, $\overline{b} = 2\overline{p} + \overline{q}$,
 $|\overline{p}| = 2$, $|\overline{q}| = 3$, $\angle(\overline{p}, \overline{q}) = \frac{3\pi}{4}$.

5)
$$\overline{a} = (3,3,1), \overline{b} = (1,-2,1),$$

 $\overline{c} = (1,1,1).$

6)
$$A(-1,-5,2)$$
, $B = (-6,0,-3)$, $C(3,6,-3)$, $D = (-10,6,7)$.

1)
$$\overline{a} = (3,3,-1), \overline{m} = (1,2,3),$$

 $\overline{n} = (-1,4,5), \overline{p} = (2,-6,1).$

2)
$$\overline{m} = (1,3,-2), \overline{n} = (4,4,3),$$

 $\overline{a} = 3\overline{m} + 2\overline{n}, \overline{b} = \overline{m} - \overline{n}.$

3)
$$A(0,5,2)$$
, $B(3,5,6)$, $C(7,5,2)$.

4)
$$\overline{a} = 2\overline{p} - \overline{q}$$
, $\overline{b} = \overline{p} + 3\overline{q}$,
 $|\overline{p}| = 3$, $|\overline{q}| = 2$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{2}$.

5)
$$\overline{a} = (4,3,1), \overline{b} = (1,-2,1),$$

 $\overline{c} = (2,2,2).$

6)
$$A(5,2,0)$$
, $B = (2,5,0)$, $C(1,2,4)$, $D = (-1,1,1)$.

1)
$$\overline{a} = (3,2,-5), \overline{m} = (1,2,3),$$

 $\overline{n} = (0,1,-8), \overline{p} = (-3,2,1).$

2)
$$\overline{m} = (2,1,0), \overline{n} = (3,2,-1),$$

 $\overline{a} = 2\overline{m} - \overline{n}, \overline{b} = 2\overline{n} - 4\overline{m}.$

3)
$$A(1,2,3)$$
, $B(1,5,7)$, $C(1,11,3)$.

4)
$$\overline{a} = \overline{p} + 3\overline{q}$$
, $\overline{b} = \overline{p} - 2\overline{q}$,
 $|\overline{p}| = 2$, $|\overline{q}| = 3$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{3}$.

5)
$$\overline{a} = (3,1,-1), \overline{b} = (-2,-1,0),$$

 $\overline{c} = (5,2,-1).$

6)
$$A(0,-1,-1)$$
, $B = (-2,3,5)$, $C(1,-5,-9)$, $D = (-1,-6,3)$.

1)
$$\overline{a} = (3,2,3), \overline{m} = (-1,3,5),$$

 $\overline{n} = (0,1,2), \overline{p} = (2,4,-7).$

2)
$$\overline{m} = (8,-1,1), \overline{n} = (2,1,0),$$

 $\overline{a} = 5\overline{m} + 2\overline{n}, \overline{b} = 2\overline{n} + 3\overline{m}.$

3)
$$A(2,-3,4)$$
, $B(2,6,4)$, $C(2,0,8)$.

4)
$$\overline{a} = 4\overline{p} + \overline{q}$$
, $\overline{b} = \overline{p} - \overline{q}$,
 $|\overline{p}| = 7, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{4}$.

5)
$$\overline{a} = (4,3,1), \overline{b} = (6,7,4),$$

 $\overline{c} = (2,0,-1).$

6)
$$A(2,-1,-2)$$
, $B = (1,2,1)$,
 $C(5,0,-6)$, $D = (-10,9,-7)$.

1)
$$\overline{a} = (1,2,-3), \overline{m} = (2,5,-1),$$

 $\overline{n} = (3,-1,4), \overline{p} = (0,5,6).$

2)
$$\overline{m} = (0,1,4), \overline{n} = (-1,2,3),$$

$$\overline{a} = 3\overline{m} + \overline{n}, \overline{b} = 3\overline{n} - 2\overline{m}.$$

3)
$$A(0,-2,5)$$
, $B(3,-2,9)$, $C(7,-2,5)$

4)
$$\overline{a} = \overline{p} - 4\overline{q}$$
, $\overline{b} = 3\overline{p} + \overline{q}$,
 $|\overline{p}| = 1$, $|\overline{q}| = 2$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{6}$.

5)
$$\overline{a} = (3,2,1), \overline{b} = (1,-3,-7),$$

 $\overline{c} = (1,2,3).$

6)
$$A(-2,0,-4)$$
, $B = (-1,7,1)$, $C(4,-8,4)$, $D = (1,-4,6)$.

4)
$$\overline{a} = \overline{p} + 4\overline{q}$$
, $\overline{b} = 2\overline{p} - \overline{q}$,
 $|\overline{p}| = 7$, $|\overline{q}| = 2$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{3}$.

5)
$$\overline{a} = (3,7,2), \overline{b} = (-2,0,-1),$$

 $\overline{c} = (2,2,1).$

6)
$$A(14,4,5)$$
, $B = (-5,-3,2)$,
 $C(-2,-6,-3)$, $D = (-2,2,-1)$.

1)
$$\overline{a} = (6,-1,7), \overline{m} = (-1,2,1),$$

 $\overline{n} = (3,5,6), \overline{p} = (-2,3,-5).$

2)
$$\overline{m} = (3,2,5), \overline{n} = (0,1,3),$$

 $\overline{a} = 2\overline{m} + \overline{n}, \overline{b} = 4\overline{n} + 2\overline{m}.$

3)
$$A(-1,0,2)$$
, $B(-1,3,6)$, $C(-1,9,2)$

4)
$$\overline{a} = 3\overline{p} + 2\overline{q}$$
, $\overline{b} = \overline{p} - \overline{q}$,
 $|\overline{p}| = 10, |\overline{q}| = 1, \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}$.

5)
$$\overline{a} = (1,-2,6), \overline{b} = (1,0,1),$$

 $\overline{c} = (2,-6,17).$

6)
$$A(1,2,0)$$
, $B = (3,0,-3)$,
 $C(5,2,6)$, $D = (8,4,-9)$.

1)
$$\overline{a} = (1,0,3), \overline{m} = (-4,3,2),$$

 $\overline{n} = (1,2,-6), \overline{p} = (5,1,0).$

2)
$$\overline{m} = (1,2,-1), \overline{n} = (0,1,5),$$

 $\overline{a} = \overline{m} - 3\overline{n}, \overline{b} = 6\overline{n} - 2\overline{m}.$

3)
$$A(-1,0,2)$$
, $B(-1,3,6)$, $C(-1,9,2)$ 3) $A(7,1,-2)$, $B(10,1,2)$, $C(14,1,-2)$.

$$\overline{a} = 3\overline{p} + 2\overline{q}, \ \overline{b} = \overline{p} - \overline{q},$$

$$|\overline{p}| = 10, |\overline{q}| = 1, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}.$$

$$4) \ \overline{a} = 4\overline{p} - \overline{q}, \ \overline{b} = \overline{p} + 2\overline{q},$$

$$|\overline{p}| = 5, |\overline{q}| = 1, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{4}.$$

5)
$$\overline{a} = (6,3,4), \overline{b} = (-1,-2,-1),$$

 $\overline{c} = (2,1,2).$

6)
$$A(2,-1,2)$$
, $B = (1,2,-1)$, $C(3,2,1)$, $D = (-4,2,5)$.

1)
$$\overline{a} = (-2,3,8), \overline{m} = (1,3,5),$$

 $\overline{n} = (4,-3,2), \overline{p} = (-2,1,7).$

2)
$$\overline{m} = (1,3,2), \overline{n} = (-3,2,0),$$

 $\overline{a} = 4\overline{m} - \overline{n}, \overline{b} = 4\overline{n} - \overline{m}.$

3)
$$A(0,-2,1)$$
, $B(0,1,5)$, $C(0,7,1)$.

4)
$$\overline{a} = 2\overline{p} + \overline{q}$$
, $\overline{b} = \overline{p} - 2\overline{q}$,

1)
$$\overline{a} = (3,-1,4), \overline{m} = (0,1,6),$$

 $\overline{n} = (2,3,-1), \overline{p} = (1,5,8).$

2)
$$\overline{m} = (-1,2,0), \overline{n} = (7,1,4),$$

 $\overline{a} = 2\overline{m} + 8\overline{n}, \overline{b} = 4\overline{n} + \overline{m}.$

3)
$$A(6,0,1)$$
, $B(9,0,5)$, $C(13,0,1)$.

4)
$$\overline{a} = 3\overline{p} - \overline{q}$$
, $\overline{b} = \overline{p} + 2\overline{q}$,

$$|\overline{p}| = 6, |\overline{q}| = 7, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{3}.$$
 $|\overline{p}| = 3, |\overline{q}| = 4, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{3}.$

- 5) $\overline{a} = (7,3,4), \overline{b} = (-1,-2,-1),$ $\bar{c} = (4,2,4).$
- 6) A(1,1,2), B = (-1,1,3), C(2,-2,4), D = (-1,0,-2).

- 1) $\overline{a} = (-1,4,3), \overline{m} = (3,2,5),$ $\overline{n} = (1, -3, 2), \ \overline{p} = (6, 7, -1).$
- 2) $\overline{m} = (-3,5,1), \overline{n} = (0,1,5),$ $\overline{a} = 2\overline{m} + 6\overline{n}, \overline{b} = 3\overline{n} + \overline{m}.$
- 3) A(1,2,-1), B(1,5,3), C(1,11,-1).
- 4) $\overline{a} = 2\overline{p} + 3\overline{q}$, $\overline{b} = \overline{p} 2\overline{q}$, $|\overline{p}| = 2, |\overline{q}| = 3, \angle(\overline{p}, \overline{q}) = \frac{\pi}{4}.$
- 5) $\overline{a} = (5,3,4), \overline{b} = (-1,0,-1),$ $\bar{c} = (4,2,4).$
- 6) A(1,1,-1), B=(2,3,1), C(3,2,1), D = (5,9,-8).

17

- 1) $\overline{a} = (2,7,5), \overline{m} = (-1,0,1),$ $\overline{n} = (3,1,5), \ \overline{p} = (0,4,7).$
- 2) $\overline{m} = (2,3,8), \overline{n} = (-1,4,1),$ $\overline{a} = 2\overline{m} + 3\overline{n}, \overline{b} = 3\overline{n} - 4\overline{m}.$
- 3) A(2,1,3), B(5,1,7), C(9,1,3).
- 4) $\overline{a} = 5\overline{p} + \overline{q}$, $\overline{b} = \overline{p} 3\overline{q}$,

$$|\overline{p}| = 3, |\overline{q}| = 4, \angle(\overline{p}, \overline{q}) = \frac{\pi}{3}$$

- 5) $\overline{a} = (2,3,2), \overline{b} = (4,7,5),$ $\bar{c} = (2,0,-1).$
- 6) A(2,3,1), B = (4,1,-2), C(6,3,7), D = (7,5,-3).

16

- 1) $\overline{a} = (0,2,3), \overline{m} = (6,1,3),$ $\overline{n} = (-5,2,1), \overline{p} = (3,-2,0).$
- 2) $\overline{m} = (0,1,4), \overline{n} = (1,2,8),$ $\overline{a} = \overline{m} - \overline{n}, \overline{b} = 3\overline{n} + 2\overline{m}.$
- 3) A(0,-6,5), B(3,-6,9), C(7,-6,5).
- 4) $\overline{a} = 2\overline{p} \overline{q}$, $\overline{b} = 3\overline{p} + \overline{q}$, $|\overline{p}| = 4, |\overline{q}| = 1, \angle(\overline{p}, \overline{q}) = \frac{\pi}{6}.$
- 5) $\overline{a} = (3,10,5), \overline{b} = (-2,-2,-3),$ $\bar{c} = (2,4,3).$
- 6) A(1,5,-7), B = (-3,6,3), C(-2,7,3(), D = (-4,8,-12).

- 1) $\overline{a} = (-3,4,6), \overline{m} = (2,1,0),$ $\overline{n} = (-1,2,5), \ \overline{p} = (3,-1,4)$.
- 2) $\overline{m} = (0,1,5), \overline{n} = (-1,4,3),$ $\overline{a} = \overline{m} - 3\overline{n}, \overline{b} = 6\overline{n} - 2\overline{m}.$
- 3) A(3,-1,2), B(6,-1,6), C(10,-1,2)
- 4) $\overline{a} = 7\overline{p} 2\overline{q}$, $\overline{b} = \overline{p} + 3\overline{q}$,

$$|\overline{p}| = 1, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{3}.$$

5)
$$\overline{a} = (-2, -4, -3), \overline{b} = (4,3,1),$$

 $\overline{c} = (6,7,4).$

6)
$$A(-3,4,-7)$$
, $B = (1,5,-4)$, $C(-5,-2,0)$, $D = (2,5,4)$.

1)
$$\overline{a} = (2,-5,7), \overline{m} = (0,5,1),$$

 $\overline{n} = (-1,3,2), \overline{p} = (3,2,-4).$

2)
$$\overline{m} = (1,3,-5), \overline{n} = (2,3,4),$$

 $\overline{a} = \overline{m} + 2\overline{n}, \overline{b} = 3\overline{n} - 5\overline{m}.$

4)
$$\overline{a} = 6\overline{p} - \overline{q}$$
, $\overline{b} = \overline{p} + \overline{q}$,
 $|\overline{p}| = 3$, $|\overline{q}| = 4$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{4}$.

5)
$$\overline{a} = (4,1,2), \overline{b} = (-3,-3,-3),$$

 $\overline{c} = (2,1,2).$

6)
$$A(4,-1,3)$$
, $B = (-2,1,0)$,
 $C(0,-5,1)$, $D = (3,2,-6)$.

1)
$$\overline{a} = (-3,4,8), \overline{m} = (2,3,-1),$$

 $\overline{n} = (1,0,2), \overline{p} = (4,-5,6).$

2)
$$\overline{m} = (-1,4,5), \overline{n} = (0,1,2),$$

 $\overline{a} = 3\overline{m} + 5\overline{n}, \overline{b} = 6\overline{m} - \overline{n}.$

3)
$$A(5,1,1)$$
, $B(5,4,5)$, $C(5,10,1)$.

4)
$$\overline{a} = 6\overline{p} - \overline{q}$$
, $\overline{b} = \overline{p} + 2\overline{q}$,

$$|\overline{p}| = \frac{1}{2}, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}.$$

5)
$$\overline{a} = (3,1,-1), \overline{b} = (1,0,-1),$$

 $\overline{c} = (8,3,-2).$

6)
$$A(-1,2,-3)$$
, $B = (4,-1,0)$, $C(2,1,-2)$, $D = (3,4,5)$.

1)
$$\overline{a} = (3,2,-7), \overline{m} = (1,3,5),$$

 $\overline{n} = (2,-3,4), \overline{p} = (0,1,6).$

2)
$$\overline{m} = (1,2,-3), \overline{n} = (4,3,2),$$

 $\overline{a} = 6\overline{m} + \overline{n}, \overline{b} = 2\overline{m} + 4\overline{n}.$

3)
$$A(-5,0,2)$$
, $B(-2,0,6)$, $C(2,0,2)$

4)
$$\overline{a} = 10\overline{p} + \overline{q}$$
, $\overline{b} = 3\overline{p} - \overline{q}$,
 $|\overline{p}| = 4, |\overline{q}| = 1, \angle(\overline{p}, \overline{q}) = \frac{\pi}{6}$.

5)
$$\overline{a} = (4,1,2), \overline{b} = (9,2,5),$$

 $\overline{c} = (1,1,-1).$

6)
$$A(1,-1,1)$$
, $B = (-2,0,3)$,
 $C(2,1,-1)$, $D = (2,-2,-4)$.

1)
$$\overline{a} = (-1,2,-3), \overline{m} = (0,1,2),$$

 $\overline{n} = (-5,-3,2), \overline{p} = (4,2,-1).$

2)
$$\overline{m} = (0,-1,5), \overline{n} = (2,4,6),$$

 $\overline{a} = \overline{m} - 2\overline{n}, \overline{b} = 4\overline{n} - 2\overline{m}.$

3)
$$A(0,-3,7)$$
, $B(3,-3,11)$, $C(7,-3,7)$

4)
$$\overline{a} = 3\overline{p} + 4\overline{q}$$
, $\overline{b} = \overline{q} - \overline{p}$,

$$|\overline{p}| = 8, |\overline{q}| = \frac{1}{2}, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{3}.$$
 $|\overline{p}| = \frac{5}{2}, |\overline{q}| = 2, \ \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}.$

- 5) $\overline{a} = (5,3,4), \overline{b} = (4,3,3),$ $\bar{c} = (9,5,8).$
- 6) A(1,2,0), B = (1,-1,2), C(0,1,-1), D = (-3,0,1).

- 1) $\overline{a} = (6,-1,3), \overline{m} = (2,0,-1),$ $\overline{n} = (-1,2,5), \ \overline{p} = (1,3,4).$
- 2) $\overline{m} = (1,3,2), \overline{n} = (5,-1,3),$ $\overline{a} = \overline{m} + 3\overline{n}$, $\overline{b} = \overline{m} - 3\overline{n}$.
- 3) A(1,-3,1), B(4,-3,5), C(8,-3,1)
- 4) $\overline{a} = 7\overline{p} + \overline{q}$, $\overline{b} = \overline{p} 3\overline{q}$,
- 5) $\overline{a} = (4,-1,-6), \overline{b} = (1,-3,-7),$ $\bar{c} = (2, -1, -4).$
- 6) A(1,2,-3), B=(1,0,1), C(-2,-1,6), D = (0,-5,-4).

25

- 1) $\overline{a} = (2,-1,10), \overline{m} = (3,2,0),$ $\overline{n} = (1,4,8), \ \overline{p} = (-4,5,6).$
- 2) $\overline{m} = (-1,1,3), \overline{n} = (2,1,4),$ $\overline{a} = \overline{m} - 2\overline{n}$, $\overline{b} = 2\overline{n} - \overline{m}$.
- 3) A(1,0,4), B(1,3,8), C(1,9,4).
- 4) $\overline{a} = 3\overline{p} + \overline{q}$, $\overline{b} = \overline{p} 3\overline{q}$, $|\overline{p}| = 7, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{4}.$ $|\overline{p}| = 5, |\overline{q}| = 3, \angle(\overline{p}, \overline{q}) = \frac{5\pi}{6}.$

$$|\overline{p}| = \frac{5}{2}, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{2}.$$

- 5) $\overline{a} = (3,4,2), \overline{b} = (1,1,0),$ $\bar{c} = (8,11,8).$
 - 6) A(1,0,2), B = (1,2,-1), C(2,-2,1), D=(2,1,0).

24

- 1) $\overline{a} = (3,1,8), \overline{m} = (0,1,2),$ $\overline{n} = (6,-1,3), \overline{p} = (5,3,-2).$
- 2) $\overline{m} = (0,1,4), \overline{n} = (1,3,5),$ $\overline{a} = \overline{m} - 4\overline{n}, \overline{b} = \overline{m} + 2\overline{n}.$
- 3) A(9,-1,1), B(12,-1,5), C(16,-1,1)
- 4) $\overline{a} = \overline{p} + 3\overline{q}$, $\overline{b} = 3\overline{p} \overline{q}$, $|\overline{p}| = 3, |\overline{q}| = 1, \ \angle(\overline{p}, \overline{q}) = \frac{3\pi}{4}.$ $|\overline{p}| = 3, |\overline{q}| = 5, \ \angle(\overline{p}, \overline{q}) = \frac{2\pi}{3}.$
 - 5) $\overline{a} = (3,1,0), \overline{b} = (-5,-4,-5),$ $\bar{c} = (4,2,4).$
 - 6) A(3,10,-1), B=(-2,3,-5), C(-6,0,-3), D = (1,-1,2).

- 1) $\overline{a} = (1,-2,3), \overline{m} = (3,4,5),$ $\overline{n} = (1,6,-3), \ \overline{p} = (0,1,2)$.
- 2) $\overline{m} = (1,2,-3), \overline{n} = (0,1,4),$ $\overline{a} = \overline{m} + 6\overline{n}$, $\overline{b} = 6\overline{m} + \overline{n}$.
- 3) A(2,1,-1), B(2,4,3), C(2,10,-1)
- 4) $\overline{a} = 5\overline{p} \overline{q}$, $\overline{b} = \overline{p} + \overline{q}$,

5)
$$\overline{a} = (3,0,3), \overline{b} = (8,1,6),$$

 $\overline{c} = (1,1,-1).$

6)
$$A(-1,2,4)$$
, $B = (-1,-2,-4)$, $C(3,0,3)$, $D = (7,-3,1)$.

1)
$$\overline{a} = (-5,2,0), \overline{m} = (1,1,3),$$

 $\overline{n} = (2,3,-1), \overline{p} = (6,0,5).$

2)
$$\overline{m} = (1,3,-2), \overline{n} = (1,4,5),$$

 $\overline{a} = 2\overline{m} - 3\overline{n}, \overline{b} = 6\overline{n} - 4\overline{m}.$

4)
$$\overline{a} = 3\overline{p} - 4\overline{q}$$
, $\overline{b} = \overline{p} + 3\overline{q}$,
 $|\overline{p}| = 2$, $|\overline{q}| = 3$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{4}$.

5)
$$\overline{a} = (6,3,4), \overline{b} = (-1,-2,-1),$$

 $\overline{c} = (2,1,2).$

6)
$$A(1,3,0)$$
, $B = (4,-1,2)$,
 $C(3,0,1)$, $D = (-4,3,5)$.

1)
$$\overline{a} = (2,4,-1), \overline{m} = (0,1,3),$$

 $\overline{n} = (1,1,4), \overline{p} = (-3,2,5).$

2)
$$\overline{m} = (0,1,-4), \overline{n} = (8,2,1),$$

 $\overline{a} = 2\overline{m} + \overline{n}, \overline{b} = 3\overline{n} + 6\overline{m}.$

3).
$$A(1,-3,0)$$
, $B(1,0,4)$, $C(1,6,0)$

4)
$$\overline{a} = 2\overline{p} + 3\overline{q}$$
, $\overline{b} = \overline{p} - 2\overline{q}$,
 $|\overline{p}| = 2$, $|\overline{q}| = 1$, $\angle(\overline{p}, \overline{q}) = \frac{\pi}{3}$.

5)
$$\overline{a} = (-3,3,3), \overline{b} = (-4,7,6),$$

 $\overline{c} = (3,0,-1).$

5)
$$\overline{a} = (1,-1,4), \overline{b} = (1,0,3),$$

 $\overline{c} = (1,-3,8).$

6)
$$A(0,-3,1)$$
, $B = (-4,1,2)$,
 $C(2,-1,5)$, $D = (3,1,-4)$.

1)
$$\overline{a} = (-6,2,1), \overline{m} = (2,2,-1),$$

 $\overline{n} = (3,-4,0), \overline{p} = (1,5,7).$

2)
$$\overline{m} = (5,-1,3), \overline{n} = (4,4,2),$$

 $\overline{a} = 3\overline{n} + 2\overline{m}, \overline{b} = 2\overline{m} - \overline{n}.$

3)
$$A(1,9,0)$$
, $B(1,12,4)$, $C(1,18,0)$.

4)
$$\overline{a} = 6\overline{p} - \overline{q}$$
, $\overline{b} = 5\overline{q} + \overline{p}$,
 $|\overline{p}| = \frac{1}{2}$, $|\overline{q}| = 4$, $\angle(\overline{p}, \overline{q}) = \frac{5\pi}{6}$.

5)
$$\overline{a} = (4,1,1), \overline{b} = (-9,-4,-9),$$

 $\overline{c} = (6,2,6).$

6)
$$A(-2,-1,-1)$$
, $B = (0,3,2)$, $C(3,1,-4)$, $D = (-4,7,3)$.

1)
$$\overline{a} = (-3,0,5), \overline{m} = (3,2,-1),$$

 $\overline{n} = (0,1,3), \overline{p} = (7,5,2).$

2)
$$\overline{m} = (-1,2,3), \overline{n} = (2,3,5),$$

 $\overline{a} = 4\overline{m} + \overline{n}, \overline{b} = 2\overline{n} + 3\overline{m}.$

3)
$$A(7,0,-1)$$
, $B(7,3,3)$, $C(7,9,-1)$

4)
$$\overline{a} = 2\overline{p} - 3\overline{q}$$
, $\overline{b} = 5\overline{p} + \overline{q}$,
 $|\overline{p}| = 1, |\overline{q}| = 2, \angle(\overline{p}, \overline{q}) = \frac{\pi}{6}$.

5)
$$\overline{a} = (-7,10,-5), \overline{b} = (0,-2,-1),$$

 $\overline{c} = (-2,4,1).$

6)
$$A(-3,-5,6)$$
, $B = (2,1,-4)$,
 $C(0,-3,-1)$, $D = (-5,2,-8)$.

6)
$$A(2,-4,-3)$$
, $B = (5,-6,0)$,
 $C(-1,3,-3)$, $D = (-10,-8,7)$.

Приложение 7.

Вариант 1.

1.
$$P(0;1)$$
, $3x-2y+5=0$.
2. $\begin{cases} x = -t+2, \\ y = 3t+1, \end{cases}$ $2x-y+5=0$.
2. $x = 3t+1, \\ y = -2t$.
2. $x = 2y+4=0, \begin{cases} x = 3t+1, \\ y = -2t. \end{cases}$

$$3 - 8$$

$$A(-3;4;-7)$$
, $B(-1;5;-4)$,

$$C(-5;-2;0)$$
,

$$M(-12;7;-1)$$
.

$$\alpha$$
: $2x + y + z - 2 = 0$,

$$\beta$$
: $2x - y - 3z + 6 = 0$.

Вариант 3.

1.
$$P(-1;4), \frac{x-3}{2} = \frac{y}{5}.$$

2.
$$3x-4y+5=0$$
, $\begin{cases} x=2t+1, \\ y=-t+3. \end{cases}$ **2.** $3x-4y+7=0$, $\begin{cases} x=4t+11, \\ y=3t-5. \end{cases}$

Вариант 2.

1.
$$P(1;2)$$
,
$$\begin{cases} x = 3t + 1, \\ y = -2t. \end{cases}$$

2.
$$x - 2y + 4 = 0$$
,
$$\begin{cases} x = 4t + 1, \\ y = 2t - 3. \end{cases}$$

$$3 - 8$$

$$A(-1;2;-3), B(4;-1;0),$$

$$C(2;1;-2) M(1;-6;-5).$$

$$\alpha$$
: $x-3y+2z+2=0$,

$$\beta$$
: $x+3y+z+14=0$.

Вариант 4.

1.
$$P(4;1)$$
, $5x-3y+4=0$.

2.
$$3x - 4y + 7 = 0$$
,
$$\begin{cases} x = 4t + 11 \\ y = 3t - 5. \end{cases}$$

3 - 8.

$$A(-3;-1;1), B(-9;1;-2),$$

 $C(3;-5;4), M(-7;0;-1).$

$$\alpha: \quad x-2y+z-4=0,$$

$$\beta$$
: $2x + 2y - z - 8 = 0$.

Вариант 5.

1.
$$P(5;0), \begin{cases} x = 3t + 1, \\ y = -t + 7. \end{cases}$$

2.
$$x+3y-5=0$$
, $2x-y+4=0$.

$$3 - 8$$
.

$$A(1;2;0), B(1;-1;2),$$

$$C(0;1;-1), M(2;-1;4).$$

$$\alpha$$
: $2x + 3y + z + 6 = 0$,

$$\beta$$
: $x-3y-2z+3=0$.

Вариант 7.

1.
$$P(-7;1)$$
, $2x + y - 3 = 0$.

2.
$$x + 5y - 35 = 0$$
,

3 - 8.

$$A(1;-1;1), B(-2;0;3), C(2;1;-1),$$

$$M(-2;4;2).$$

$$\alpha$$
: $x + y + z - 2 = 0$,

$$\beta$$
: $x-y-2z+2=0$.

Вариант 6.

1.
$$P(-1;6), \frac{x-3}{2} = \frac{y+2}{1}.$$

2.
$$\begin{cases} x = 3t - 1, \\ y = -2t + 5. \end{cases}, 3x - 2y = 0.$$

$$3 - 8$$

$$A(1;0;2), B(1;2;-1),$$

$$C(2;-2;1), M(-5;-9;1).$$

$$\alpha: 3x + y - z - 6 = 0$$
,

$$\beta$$
: $3x - y + 2z = 0$.

Вариант 8

1.
$$P(-3;8), \begin{cases} x = 2t + 1, \\ y = t. \end{cases}$$

2.
$$2x = 3y$$
,
$$\begin{cases} x = -t, \\ y = 3t + 11. \end{cases}$$

$$\begin{cases} x = -2t + 7, \\ y = 3t + 3. \end{cases}$$

$$3 - 8$$
.

$$\alpha$$
: $x+5y+2z+11=0$,
 β : $x-y-z-1=0$.

3 - 8.

$$\alpha$$
: $3x+4y-2z+1=0$,
 β : $2x-4y+3z+4=0$.

Вариант 9.

1.
$$P(9;1), \frac{x-2}{11} = \frac{y+7}{2}$$

2.
$$12x + 20y - 11, 2 = 0$$
,

$$\begin{cases} y = 9t + \frac{1}{2}, \\ x = -15t + 0, 1. \end{cases}$$

$$3 - 8$$
.

$$A(-1;2;4), B(-1;-2;-4),$$

 $C(3;0;-1), M(-2;3;5).$

$$\alpha$$
: $5x + y + 3z + 4 = 0$,
 β : $x - y + 2z + 2 = 0$.

Вариант 10.

1.
$$P(3;4)$$
, $5x-2y+4=0$.

Вариант 9. Вариант 10
1.
$$P(9;1), \frac{x-2}{11} = \frac{y+7}{2}$$
.
 $+20y-11,2=0,$ $2.\begin{cases} x=3t-1, \\ y=-2t+5, \end{cases} 2x-y+15=0.$

$$3 - 8$$
.

$$A(0;-3;1), B(-4;1;2),$$

$$C(2;-1;5), M(-3;4;-5).$$

$$\alpha: \quad x-y-z-2=0,$$

$$\beta$$
: $x-2y+z+4=0$.

Вариант 11.

1.
$$P(2;11)$$
, $\begin{cases} x = -3t + 1, \\ y = 2t + 8. \end{cases}$ **1.** $P(-3;5)$, $\frac{x - 12}{2} = \frac{y - 1}{3}$.

2.
$$3x + 5y - 4 = 0$$
,
$$\begin{cases} x = 10t - 1, \\ y = 6t + 5. \end{cases}$$
 2.
$$\begin{cases} x = t - 3, \\ y = t, \end{cases}$$
 $3x + y + 4 = 0.$

$$3 - 8$$

$$A(1;3;0), B(4;-1;2),$$

$$\alpha$$
: $4x + y - 3z + 2 = 0$,

$$\beta$$
: $2x - y + z - 8 = 0$.

Вариант 13.

1.
$$P(1;13)$$
, $2x-3y+9=0$.

2.
$$x-3y+2=0$$
,
$$\begin{cases} x=t-1, \\ y=-3t+7. \end{cases}$$
 2. $3x+5y-5=0$,
$$\begin{cases} x=3t+3 \\ y=-2t-1. \end{cases}$$

$$A(-3;-5;6), B(2;1;-4),$$

$$C(0;-3;-1), M(3;6;68).$$

$$\alpha: 6x-7y-4z-2=0$$

$$\beta$$
: $x + 7y - z - 5 = 0$.

Вариант 12.

1.
$$P(-3;5), \frac{x-12}{2} = \frac{y-1}{3}.$$

$$2. \begin{cases} x = t - 3, \\ y = t, \end{cases} 3x + y + 4 = 0$$

$$3 - 8$$
.

$$A(-2;-1;-1), B(0;3;2)$$

$$C(3;1;-4), M(-21;20;-16).$$

$$\alpha$$
: $3x + 3y - 2z - 1 = 0$,

$$\beta$$
: $2x-3y+z+6=0$.

Вариант 14.

1.
$$P(5;14)$$
,
$$\begin{cases} x = 3t + 1, \\ y = 2t - 7. \end{cases}$$

2.
$$3x + 5y - 5 = 0$$
,
$$\begin{cases} x = 3t + 3 \\ y = -2t - 1 \end{cases}$$

$$3 - 8$$
.

$$A(2;-4;-3), B(5;-6;0),$$

$$C(-1;3;-3), M(2;-10;8).$$

$$\alpha: 8x - y - 3z - 1 = 0$$

$$\beta$$
: $x + y + z + 10 = 0$.

Вариант 15.

1.
$$P(-1;2), \frac{x+3}{15} = \frac{y-1}{4}$$

2.
$$\begin{cases} x = 5t + 1, \\ y = 2t - 4, \end{cases} 5x + 2y - 26 = 0.$$

$$3 - 8$$

$$A(1;-1;2), B(2;1;2),$$

$$C(1;1;4), M(-3;2;7).$$

$$\alpha$$
: $6x-5y-4z+8=0$,

$$\beta$$
: $6x + 5y + 3z + 4 = 0$.

Вариант 17.

1.
$$P(-5;1)$$
,
$$\begin{cases} x = 17t + 10, \\ y = -2t + 3. \end{cases}$$

2.
$$3x - y + 7 = 0$$
,
$$\begin{cases} x = 2t - 8, \\ y = 5t - 14. \end{cases}$$
 2. $x - 4y + 24 = 0$,
$$\begin{cases} x = t + 1, \\ y = -4t + 2. \end{cases}$$

$$3 - 8$$
.

$$A(-4;2;6), B(2;-3;0),$$

$$C(-10;5;8), M(-12;1;8).$$

$$\alpha$$
: $2x-3y+z+6=0$,

$$\beta$$
: $-x-3y-2z+3=0$.

Вариант 16.

1.
$$P(-1;2), \frac{x+3}{15} = \frac{y-1}{4}.$$
 1. $P(-4;2), \frac{x+1}{4} = \frac{y-1}{-3}.$

2.
$$\begin{cases} x = 5t + 1, \\ y = 2t - 4, \end{cases} 5x + 2y - 26 = 0.$$
 2.
$$\frac{y - 1}{-2} = \frac{x + 1}{3}, \begin{cases} x = 6t + 0.25, \\ y = -4t + \frac{1}{6}. \end{cases}$$

$$3 - 8$$
.

$$C(-1;0;1), M(5;-4;5).$$

$$\alpha: x + 5y - z - 5 = 0$$

$$\beta$$
: $2x - 5y + 2z + 5 = 0$.

Вариант 18.

1.
$$P(18;0), \frac{x-1}{4} = \frac{y+2}{7}.$$

2.
$$x - 4y + 24 = 0$$
,
$$\begin{cases} x = t + 1, \\ y = -4t + 2. \end{cases}$$

$$A(7;2;4), B(7;-1;-2),$$

$$C(-5;-2;-1), M(10;1;8).$$

$$\alpha$$
: $5x + y + 2z + 4 = 0$,

$$\beta$$
: $x - y - 3z + 2 = 0$.

Вариант 19.

1.
$$P(-1;4)$$
, $3x+11y-1=0$.

2.5x-7y-39 = 0,
$$\begin{cases} x = 5t - 5, \\ y = -7t. \end{cases}$$
 2.2x + 4y + 7 = 0, $\frac{x - 1}{2} = y + 1$.

$$3 - 8$$
.

$$A(2;1;4), B(3;5;-2),$$

$$C(-7;-3;2)$$
, $M(-3;1;8)$.

$$\alpha$$
: $4x + y + z + 2 = 0$,

$$\beta: 2x-y-3z-8=0.$$

Вариант 21.

1.
$$P(21;-4), \frac{x}{3} = \frac{y-7}{8}.$$

2.
$$\begin{cases} x = 3t - 5, \\ y = -2t + 1, \end{cases} x + y + 5 = 0.$$

$$3 - 8$$
.

$$A(0;-1;-1), B(-2;3;5),$$

$$C(1;-5;-9), M(-4;-13;6).$$

$$\alpha: x + y - 2z - 2 = 0$$

$$\beta$$
: $x - y + z + 2 = 0$.

Вариант 20.

1.
$$P(7;-5), \begin{cases} x = 3t + 5, \\ y = 2t - 1. \end{cases}$$

2.
$$2x + 4y + 7 = 0$$
, $\frac{x-1}{2} = y + 1$

$$3 - 8$$
.

$$A(-1;-5;2), B(-6;0;-3),$$

$$C(3;6;-3), M(10;-8;-7).$$

$$\alpha: 2x + y - 3z - 2 = 0$$

$$\beta$$
: $2x - y + z + 6 = 0$.

Вариант 22.

1.
$$P(-4;8)$$
, $5x + 22y + 11 = 0$.

2.
$$\begin{cases} x = 2t - 5, \\ y = 3t + 1, \end{cases} 3x - 2y + 17 = 0.$$

3 - 8.

$$C(1;2;4), M(-3;-6;-8).$$

$$\alpha$$
: $x + 5y - z + 11 = 0$,

$$\beta$$
: $x - y + 2z - 1 = 0$.

Вариант 23.

1.
$$P(-5;4)$$
,
$$\begin{cases} x = 23t + 1, \\ y = -t + 7. \end{cases}$$

2.
$$3x-11y+8=0$$
,
$$\begin{cases} x=3t+7, \\ y=t+3. \end{cases}$$

$$3 - 8$$
.

$$A(14;4;5), B(-5;-3;2),$$

$$C(-2;-6;-3), M(-1;-8;7).$$

$$\alpha$$
: $x + 5y + 2z - 5 = 0$,

$$\beta$$
: $2x-5y-z+5=0$.

Вариант 25.

1.
$$P(-4;11)$$
, $5x - y + 25 = 0$.

1.
$$P(-4;11)$$
, $5x - y + 25 = 0$.
2. $3x - 2y + 7 = 0$,
$$\begin{cases} x = t - 3, \\ y = 2t - 1, 5. \end{cases}$$
2. $5x - 3y + 8 = 0$,
$$\begin{cases} x = 2t - 1, \\ y = -4t + 5. \end{cases}$$
2. $5x - 3y + 8 = 0$,
$$\begin{cases} x = 7t - 15, \\ y = 2t - 3. \end{cases}$$

$$A(2;-1;-2), B(1;2;1),$$

$$C(5;0;-6), M(14;-3;7).$$

Вариант 24.

1.
$$P(3;-24), \frac{x-1}{1} = \frac{y+2}{-3}.$$

2.
$$5x - 3y - 27 = 0$$
,

$$\begin{cases} x = 5t + 1, \\ y = -3t + 4. \end{cases}$$

$$3 - 8$$
.

$$A(-2;0;-4), B(-1;7;1),$$

$$C(4;-8;-4), M(-6;5;5).$$

$$\alpha$$
: $6x-7y-z-2=0$,

$$\beta$$
: $x + 7y - 4z - 5 = 0$.

1.
$$P(-3;26)$$
,
$$\begin{cases} x = 2t - 1, \\ y = -4t + 5. \end{cases}$$

2.
$$5x-3y+8=0$$
,
$$\begin{cases} x=7t-15, \\ y=2t-3. \end{cases}$$

$$3 - 8$$
.

$$\alpha$$
: $x - y + z - 2 = 0$,

$$\beta$$
: $x-2y-z+4=0$.

Вариант 27.

1.
$$P(-1;4), \frac{x-1}{2} = \frac{y-1}{27}.$$

2 27
2.
$$2x + 3y + 4 = 0$$
, $\begin{cases} x = t - 3.5, \\ y = -t + 0.5. \end{cases}$
2. $3x - y + 1 = 0$, $\begin{cases} x = 3t + 2, \\ y = -t + 1. \end{cases}$

$$3 - 8$$

$$A(2;-1;2), B(1;2;-1),$$

$$C(3;2;1), M(-5;3;7).$$

$$\alpha$$
: $2x + 3y - 2z + 6 = 0$,

$$\beta$$
: $x-3y+z+3=0$.

Вариант 29.

1.
$$P(29;0), \begin{cases} x = 29t - 1, \\ y = 3t + 5. \end{cases}$$

2.
$$x-5y+4=0$$
,
$$\begin{cases} x=3t-8, \\ y=-t+4. \end{cases}$$

$$3 - 8$$
.

$$A(2;3;1), B(4;1;-2),$$

$$C(6;3;7), M(-5;-4;8).$$

$$\alpha: \quad x-3y+z+2=0,$$

$$\beta$$
: $x+3y+2z+14=0$.

Вариант 28.

1.
$$P(-1;1)$$
, $28x - y + 4 = 0$.

2.
$$3x - y + 1 = 0$$
,
$$\begin{cases} x = 3t + 2, \\ y = -t + 1. \end{cases}$$

$$3 - 8$$
.

$$A(1;1;2), B(-1;1;3),$$

$$C(2;-2;4), M(2;3;8).$$

$$\alpha$$
: $3x + 4y + 3z + 1 = 0$,

$$\beta$$
: $2x-4y-2z+4=0$.

Вариант 30.

1.
$$P(-11;30), \frac{x-1}{2} = \frac{y+1}{-3}.$$

2.
$$x-5y+4=0$$
,
$$\begin{cases} x=3t-8, \\ y=-t+4. \end{cases}$$
 2. $5x-2y+10=0$,
$$\begin{cases} x=2t-5, \\ y=5t-7,5. \end{cases}$$

$$3 - 8$$

$$A(1;1;-1), B(2;3;1),$$

$$C(3;2;1), M(-3;-7;6).$$

$$\alpha$$
: $2x-3y-2z+6=0$,

$$\alpha: 6x-5y+3z+8=0$$

$$\beta$$
: $3x + 3y + z - 1 = 0$.

$$\beta$$
: $6x + 5y - 4z + 4 = 0$.

Приложение 8.

01
$$\overline{x} = (-1, 2, -3),$$
 $\overline{e}_1' = -\overline{e}_1 - \overline{e}_2 - \overline{e}_3,$ $\overline{e}_2' = -\overline{e}_1 + 3\overline{e}_2 + 3\overline{e}_3,$ $\overline{e}_3' = 5\overline{e}_1 + 4\overline{e}_2 + 2\overline{e}_3.$ $\overline{e}_3' = -\overline{e}_1 - 2\overline{e}_2 - 3\overline{e}_3.$ $\overline{e}_3' = -\overline{e}_1 - 4\overline{e}_2,$ $\overline{e}_1' = -\overline{e}_1 - 4\overline{e}_2,$ $\overline{e}_2' = \overline{e}_1 + 3\overline{e}_2 - 2\overline{e}_3,$ $\overline{e}_3' = 4\overline{e}_1 + 3\overline{e}_2 - \overline{e}_3.$ $\overline{e}_3' = 4\overline{e}_1 + 3\overline{e}_2 - \overline{e}_3.$ $\overline{e}_3' = 3\overline{e}_1 - \overline{e}_2 + 4\overline{e}_3,$ $\overline{e}_3' = 3\overline{e}_1 - \overline{e}_2 + 4\overline{e}_3,$ $\overline{e}_3' = 3\overline{e}_1 - \overline{e}_2 + 3\overline{e}_3.$ $\overline{e}_3' = -3\overline{e}_1 + 2\overline{e}_2 + 6\overline{e}_3.$ $\overline{e}_1' = 3\overline{e}_1 + \overline{e}_2 + 5\overline{e}_3,$ $\overline{e}_1' = 3\overline{e}_1 + \overline{e}_2 + 5\overline{e}_3,$ $\overline{e}_2' = 2\overline{e}_1 + \overline{e}_2 + 5\overline{e}_3,$ $\overline{e}_3' = 2\overline{e}_1 + 3\overline{e}_2 - \overline{e}_3.$ $\overline{e}_3' = -2\overline{e}_1 - \overline{e}_2 + \overline{e}_3.$

09	$\overline{x} = (4, -2, -3)$,	10	$\overline{x} = (-1, -5, 1)$,
	$\overline{e}_1' = 2\overline{e}_1 + 5\overline{e}_2 + 4\overline{e}_3$,		$\overline{e}_1' = 3\overline{e}_1 + \overline{e}_2 + 4\overline{e}_3,$
	$\overline{e}_2' = 4\overline{e}_2 + \overline{e}_3 ,$		$\overline{e}_2' = 2\overline{e}_1 + \overline{e}_2,$
	$\overline{e}_3' = -\overline{e}_1 + 6\overline{e}_2 - \overline{e}_3.$		$\overline{e}_3' = 5\overline{e}_1 - \overline{e}_2 - \overline{e}_3.$
11	$\overline{x}=(4,-3,-3),$	12	$\bar{x} = (-8, -2, 6)$,
	$\overline{e}_1' = 3\overline{e}_1 + 4\overline{e}_2 + \overline{e}_3,$		$\overline{e}_1' = 3\overline{e}_1 + 2\overline{e}_2 + \overline{e}_3,$
	$\overline{e}_2' = \overline{e}_1 - \overline{e}_2 + 2\overline{e}_3,$		$\overline{e}_2' = 2\overline{e}_1 + \overline{e}_2 + \overline{e}_3 ,$
	$\overline{e}_3' = \overline{e}_1 + 5\overline{e}_2$.		$\overline{e}_3' = -\overline{e}_1 + 3\overline{e}_2 + \overline{e}_3.$
13	$\bar{x} = (5, 2, -9),$	14	$\bar{x} = (-4, -2, 3),$
	$\overline{e}_1' = 4\overline{e}_1 + \overline{e}_2 + \overline{e}_3 ,$		$\overline{e}_1' = \overline{e}_1 + \overline{e}_2 + 2\overline{e}_3 ,$
	$\overline{e}_2' = 3\overline{e}_1 + 2\overline{e}_2 + \overline{e}_3 ,$		$\overline{e}_2' = -2\overline{e}_1 + \overline{e}_3 ,$
	$\overline{e}_3' = -\overline{e}_1 - 2\overline{e}_2 + \overline{e}_3.$		$\overline{e}_3' = \overline{e}_1 - 2\overline{e}_2 - 3\overline{e}_3.$
15	$\overline{x} = (-1, -2, -7)$,	16	$\bar{x} = (-2, 2, 3)$,
	$\overline{e}_1' = \overline{e}_1 + 4\overline{e}_2 + 4\overline{e}_3 ,$		$\overline{e}_1' = 4\overline{e}_1 + 2\overline{e}_2 + 3\overline{e}_3 ,$
	$\overline{e}_2' = \overline{e}_2 + 2\overline{e}_3,$		$\overline{e}_2' = \overline{e}_1 + \overline{e}_2 + \overline{e}_3,$
	$\overline{e}_3' = 5\overline{e}_1 + 6\overline{e}_2 + \overline{e}_3.$		$\overline{e}_3' = 3\overline{e}_1 + 5\overline{e}_2 + 5\overline{e}_3.$

17	$\overline{x} = (-1, 3, -6),$	18	$\overline{x} = (-6, 8, -3)$,
	$\overline{e}_1' = 5\overline{e}_1 + 3\overline{e}_2 + \overline{e}_3,$		$\overline{e}_1' = \overline{e}_1 + 5\overline{e}_2 + 2\overline{e}_3,$
	$\overline{e}_2' = 4\overline{e}_1 - 2\overline{e}_2 + 3\overline{e}_3,$		$\overline{e}_2' = -\overline{e}_1 + 2\overline{e}_2 + 3\overline{e}_3,$
	$\overline{e}_3' = 4\overline{e}_1 + \overline{e}_2 - 2\overline{e}_3$.		$\overline{e}_3' = 5\overline{e}_2 - \overline{e}_3$.
19	$\bar{x} = (-5, 2, -9),$	20	$\bar{x} = (3, 2, -7),$
	$\overline{e}_1' = 5\overline{e}_1 + 2\overline{e}_2 + 4\overline{e}_3,$		$\overline{e}_1' = 2\overline{e}_1 + \overline{e}_2 + \overline{e}_3 ,$
	$\overline{e}_2' = \overline{e}_1 + 4\overline{e}_3$,		$\overline{e}_2' = \overline{e}_1 + 5\overline{e}_2 + 2\overline{e}_3,$
	$\overline{e}_3' = 5\overline{e}_1 - 2\overline{e}_2 + \overline{e}_3.$		$\overline{e}_{3}' = -\overline{e}_{1} + 2\overline{e}_{2}.$
			•
21	$\bar{x} = (1, -2, 3),$	22	$\overline{x} = (-6, -2, -3)$,
	$\overline{e}_1' = \overline{e}_1 + 4\overline{e}_2 + 3\overline{e}_3,$		$\overline{e}_1' = \overline{e}_1 + 5\overline{e}_2 + 5\overline{e}_3 ,$
	$\overline{e}_2' = 4\overline{e}_1 + 2\overline{e}_2 + 3\overline{e}_3,$		$\overline{e}_2' = \overline{e}_2 + \overline{e}_3$,
	$\overline{e}_3' = 6\overline{e}_1 - 3\overline{e}_2 + 2\overline{e}_3.$		$\overline{e}_3' = -2\overline{e}_1 - 3\overline{e}_2 + \overline{e}_3$.
23	$\overline{x} = (-5, 8, 3),$	24	$\overline{x} = (1, -5, -3),$
	$\overline{e}_1' = 2\overline{e}_1 + \overline{e}_2 + 3\overline{e}_3,$		$\overline{e}_1' = \overline{e}_1 + \overline{e}_2 + 5\overline{e}_3 ,$
	$\overline{e}_2' = 3\overline{e}_1 + 2\overline{e}_2 - 2\overline{e}_3,$		$\overline{e}_2' = -2\overline{e}_2 + 5\overline{e}_3 ,$
	$\overline{e}_3' = 4\overline{e}_1 + 3\overline{e}_2 + 5\overline{e}_3$.		$\overline{e}_3' = \overline{e}_1 - 2\overline{e}_2 - 2\overline{e}_3$.

25	$\overline{x}=(6,5,-3),$	26	$\bar{x} = (-9, 2, 2),$
	$\overline{e}_1' = 2\overline{e}_1 + \overline{e}_2 + 2\overline{e}_3 ,$		$\overline{e}_1' = 4\overline{e}_1 + \overline{e}_2 + 2\overline{e}_3,$
	$\overline{e}_2' = 3\overline{e}_1 + 2\overline{e}_2 + \overline{e}_3,$		$\overline{e}_2' = 3\overline{e}_1 - 2\overline{e}_2 + 2\overline{e}_3,$
	$\overline{e}_3' = 5\overline{e}_2 + \overline{e}_3$.		$\overline{e}_3' = \overline{e}_2 - \overline{e}_3$.
27	$\overline{x} = (1, -4, -1)$,	20	$\overline{x} = (-7, -2, 2),$
27		28	,
	$\overline{e}_1' = 5\overline{e}_1 + 5\overline{e}_2 + 4\overline{e}_3,$		$\overline{e}_1' = 3\overline{e}_1 + \overline{e}_2 + 5\overline{e}_3 ,$
	$\overline{e}_2' = -\overline{e}_1 + 5\overline{e}_2 + \overline{e}_3,$		$\overline{e}_2' = 3\overline{e}_1 + \overline{e}_2 - 2\overline{e}_3 ,$
	$\overline{e}_3' = -\overline{e}_1 - \overline{e}_2 + 3\overline{e}_3.$		$\overline{e}_3' = 5\overline{e}_1 + \overline{e}_2 + 2\overline{e}_3.$
29	$\overline{x} = (1, -3, -3),$	30	$\overline{x} = (6, -5, 8)$,
	$\overline{e}_1' = 3\overline{e}_1 + 5\overline{e}_2 + 3\overline{e}_3$,		$\overline{e}_1' = 2\overline{e}_1 + 5\overline{e}_2 + 3\overline{e}_3,$
	$\overline{e}_2' = \overline{e}_1 + 5\overline{e}_2 - 2\overline{e}_3 ,$		$\overline{e}_2' = 2\overline{e}_1 + 4\overline{e}_2 + 5\overline{e}_3,$
	$\overline{e}_3' = 6\overline{e}_1 - \overline{e}_2 - 2\overline{e}_3.$		$\overline{e}_3' = -\overline{e}_1 - 2\overline{e}_2 + 6\overline{e}_3.$
	3 1 2 3		
31	$\overline{x} = (8, -7, 3)$,	32	$\overline{x} = (1, -2, -3)$,
	$\overline{e}_1' = 2\overline{e}_1 + 4\overline{e}_2 + 2\overline{e}_3,$		$\overline{e}_1' = 3\overline{e}_1 + 4\overline{e}_2 + 2\overline{e}_3,$
	$\overline{e}_2' = \overline{e}_1 + 4\overline{e}_2 + 4\overline{e}_3 ,$		$\overline{e}_2' = \overline{e}_1 + 3\overline{e}_2 - 2\overline{e}_3,$
	$\overline{e}_3' = 5\overline{e}_1 + 5\overline{e}_2 + 3\overline{e}_3.$		$\overline{e}_3' = 6\overline{e}_1 - \overline{e}_2 - \overline{e}_3.$

Приложение 9.

01	$A = \begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix}$	02	$A = \begin{pmatrix} 2 & -1 \\ -3 & 5 \end{pmatrix}$
	$\overline{e}_1' = -3\overline{e}_1 + \overline{e}_2 ,$		$\overline{e}_1' = \overline{e}_1 - 3\overline{e}_2 ,$
	$\overline{e}_2' = 2\overline{e}_1 + \overline{e}_2.$		$\overline{e}_2' = 5\overline{e}_1 + 4\overline{e}_2.$
03	$A = \begin{pmatrix} 2 & -2 \\ 3 & 5 \end{pmatrix}$	04	$A = \begin{pmatrix} 1 & 3 \\ -5 & -2 \end{pmatrix}$
	$\overline{e}_1' = -4\overline{e}_1 - 5\overline{e}_2 ,$		$\overline{e}_1' = -4\overline{e}_1 + \overline{e}_2 ,$
	$\overline{e}_2' = \overline{e}_1 + 2\overline{e}_2.$		$\overline{e}_2' = -\overline{e}_1 + 3\overline{e}_2.$
05	$A = \begin{pmatrix} -3 & -2 \\ 3 & -1 \end{pmatrix}$	06	$A = \begin{pmatrix} -1 & -2 \\ -4 & -3 \end{pmatrix}$
	$\overline{e}_1' = 3\overline{e}_1 - 2\overline{e}_2,$		$\overline{e}_1' = 5\overline{e}_1 + 4\overline{e}_2 ,$
	$\overline{e}_2' = \overline{e}_1 + \overline{e}_2.$		$\overline{e}_2' = 3\overline{e}_1 + 2\overline{e}_2.$
07	$A = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}$	08	$A = \begin{pmatrix} -5 & 4 \\ 3 & -2 \end{pmatrix}$
	$\overline{e}_1' = -2\overline{e}_1 - 5\overline{e}_2,$		$\overline{e}_1' = -\overline{e}_1 + \overline{e}_2 ,$
	$\overline{e}_2' = \overline{e}_1 + 3\overline{e}_2.$		$\overline{e}_2' = 5\overline{e}_1 - 2\overline{e}_2.$
09	$A = \begin{pmatrix} 4 & -1 \\ 3 & -1 \end{pmatrix}$	10	$A = \begin{pmatrix} 4 & 1 \\ -1 & 3 \end{pmatrix}$
	$\overline{e}_1' = -\overline{e}_1 - 5\overline{e}_2 ,$		$\overline{e}_1' = -3\overline{e}_1 + 4\overline{e}_2 ,$
	$\overline{e}_2' = 2\overline{e}_1 - 3\overline{e}_2.$		$\overline{e}_2' = \overline{e}_1 + \overline{e}_2.$

11	$A = \begin{pmatrix} 4 & 5 \\ 1 & 3 \end{pmatrix}$	12	$A = \begin{pmatrix} 1 & 2 \\ -3 & -2 \end{pmatrix}$
	$\overline{e}_1' = \overline{e}_1 - 4\overline{e}_2$,		$\overline{e}_1' = -4\overline{e}_1 - 3\overline{e}_2 ,$
	$\overline{e}_2' = 5\overline{e}_1 - \overline{e}_2.$		$\overline{e}_2' = \overline{e}_1 + 2\overline{e}_2.$
13	$A = \begin{pmatrix} 1 & 5 \\ 1 & 1 \end{pmatrix}$	14	$A = \begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix}$
	$\overline{e}_1' = 2\overline{e}_1 + 3\overline{e}_2,$		$\overline{e}_1' = \overline{e}_1 + 3\overline{e}_2$,
	$\overline{e}_2' = 4\overline{e}_1 - \overline{e}_2.$		$\overline{e}_2' = 4\overline{e}_1 + 5\overline{e}_2.$
15	$A = \begin{pmatrix} 4 & -1 \\ 2 & 7 \end{pmatrix}$	16	$A = \begin{pmatrix} 3 & 1 \\ 5 & 9 \end{pmatrix}$
	$\overline{e}_1' = -3\overline{e}_1 + 5\overline{e}_2 ,$		$\overline{e}_{1}' = 4\overline{e}_{1} + 3\overline{e}_{2},$
	$\overline{e}_2' = \overline{e}_1 - 2\overline{e}_2.$		$\overline{e}_2' = \overline{e}_1 + 2\overline{e}_2.$
17	$A = \begin{pmatrix} 4 & 1 \\ 3 & 9 \end{pmatrix}$	18	$A = \begin{pmatrix} 1 & -3 \\ 4 & 8 \end{pmatrix}$
	$\overline{e}_1' = \overline{e}_1 - 5\overline{e}_2,$		$\overline{e}_1' = 4\overline{e}_1 - 3\overline{e}_2,$
	$\overline{e}_2' = 2\overline{e}_1 - 3\overline{e}_2.$		$\overline{e}_2' = -\overline{e}_1 + 4\overline{e}_2.$
19	$A = \begin{pmatrix} 3 & -7 \\ -1 & 5 \end{pmatrix}$	20	$A = \begin{pmatrix} 2 & 4 \\ 3 & -1 \end{pmatrix}$
	$\overline{e}_1' = \overline{e}_1 + \overline{e}_2$,		$\overline{e}_1' = \overline{e}_1 + \overline{e}_2$,
	$\overline{e}_2' = 2\overline{e}_1 + 5\overline{e}_2.$		$\overline{e}_2' = 5\overline{e}_1 + \overline{e}_2$.

21	$A = \begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$	22	$A = \begin{pmatrix} 1 & 5 \\ -4 & -1 \end{pmatrix}$
	$\overline{e}_1' = \overline{e}_1 - 3\overline{e}_2$,		$\overline{e}_1' = 4\overline{e}_1 + \overline{e}_2 ,$
	$\overline{e}_2' = 2\overline{e}_1 - 2\overline{e}_2.$		$\overline{e}_2' = 5\overline{e}_1 + 3\overline{e}_2.$
23	$A = \begin{pmatrix} -3 & 1 \\ 4 & 1 \end{pmatrix}$	24	$A = \begin{pmatrix} -1 & 2 \\ -5 & -3 \end{pmatrix}$
	$\overline{e}_1' = 4\overline{e}_1 - \overline{e}_2 ,$		$\overline{e}_1' = 4\overline{e}_1 + 3\overline{e}_2 ,$
	$\overline{e}_2' = \overline{e}_1 + 3\overline{e}_2.$		$\overline{e}_2' = -\overline{e}_1 - \overline{e}_2.$
25	$A = \begin{pmatrix} -1 & 5 \\ 1 & -2 \end{pmatrix}$	26	$A = \begin{pmatrix} -2 & 1 \\ -5 & 3 \end{pmatrix}$
	$\overline{e}_1' = -5\overline{e}_1 + 3\overline{e}_2 ,$		$\overline{e}_1' = \overline{e}_1 + 5\overline{e}_2$,
	$\overline{e}_2' = 4\overline{e}_1 - 2\overline{e}_2.$		$\overline{e}_2' = 2\overline{e}_1 + \overline{e}_2.$
27	$A = \begin{pmatrix} 5 & 3 \\ 4 & 5 \end{pmatrix}$	28	$A = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix}$
	$\overline{e}_1' = -\overline{e}_1 - 4\overline{e}_2 ,$		$\overline{e}_1' = -3\overline{e}_1 + 3\overline{e}_2 ,$
	$\overline{e}_2' = -2\overline{e}_1 - 3\overline{e}_2.$		$\overline{e}_2' = -2\overline{e}_1 - \overline{e}_2$.
29	$A = \begin{pmatrix} -4 & -1 \\ 1 & 3 \end{pmatrix}$	30	$A = \begin{pmatrix} -4 & 1 \\ -5 & 2 \end{pmatrix}$
	$\overline{e}_1' = \overline{e}_1 - 5 \overline{e}_2$,		$\overline{e}_1' = 2\overline{e}_1 + 3\overline{e}_2,$
	$\overline{e}_2' = 3\overline{e}_1 - 2\overline{e}_2.$		$\overline{e}_2' = -2\overline{e}_1 + 5\overline{e}_2.$
31	$A = \begin{pmatrix} 1 & 5 \\ -3 & 4 \end{pmatrix}$	32	$A = \begin{pmatrix} -3 & 2 \\ 1 & 1 \end{pmatrix}$
	$\overline{e}_1' = 2\overline{e}_1 - 3\overline{e}_2 ,$		$\overline{e}_1' = 3\overline{e}_1 + 4\overline{e}_2 ,$
	$\overline{e}_2' = -\overline{e}_1 + 5\overline{e}_2.$		$\overline{e}_2' = 5\overline{e}_1 + 3\overline{e}_2.$

Приложение 10.

	(1 2 1)	1	(1 2 6)
01	$\begin{pmatrix} 1 & -3 & 1 \\ 3 & -3 & -1 \\ 3 & -5 & 1 \end{pmatrix}$	02	$ \begin{pmatrix} -4 & -2 & 6 \\ -6 & 2 & 4 \\ -6 & -4 & 10 \end{pmatrix} $
03	$ \begin{pmatrix} -3 & -5 & 7 \\ -3 & -1 & 3 \\ 3 & -9 & 11 \end{pmatrix} $	04	$\begin{pmatrix} -4 & -1 & 3 \\ -3 & -1 & 2 \\ -3 & -2 & 3 \end{pmatrix}$
05	$\begin{pmatrix} -2 & 7 & -5 \\ -3 & 3 & 0 \\ -3 & 12 & -9 \end{pmatrix}$	06	$ \begin{pmatrix} 4 & 5 & -7 \\ 3 & 2 & -3 \\ 3 & 9 & -10 \end{pmatrix} $
07	$ \begin{pmatrix} -3 & 3 & -1 \\ -3 & 1 & 1 \\ -3 & 5 & -3 \end{pmatrix} $	08	$ \begin{pmatrix} -10 & 5 & 1 \\ -9 & 1 & 4 \\ -9 & 8 & -3 \end{pmatrix} $
09	$ \begin{pmatrix} 10 & 3 & -9 \\ 9 & 1 & -6 \\ 9 & 6 & -11 \end{pmatrix} $	10	$ \begin{pmatrix} -6 & 5 & 1 \\ -9 & 5 & 4 \\ -9 & 8 & 1 \end{pmatrix} $
11	$ \begin{pmatrix} -2 & 6 & -2 \\ -6 & 6 & 2 \\ -6 & 10 & -2 \end{pmatrix} $	12	$ \begin{pmatrix} 9 & 2 & -6 \\ 6 & 3 & -4 \\ 6 & 4 & -5 \end{pmatrix} $
13	$ \begin{pmatrix} 4 & 1 & -3 \\ 3 & 1 & -2 \\ 3 & 2 & -3 \end{pmatrix} $	14	$ \begin{pmatrix} 2 & -3 & 1 \\ 3 & -2 & -1 \\ 3 & -5 & 2 \end{pmatrix} $
15	$ \begin{pmatrix} 8 & -5 & -1 \\ 9 & -3 & -4 \\ 9 & -8 & 1 \end{pmatrix} $	16	$ \begin{pmatrix} 0 & -7 & 5 \\ 3 & -5 & 0 \\ 3 & -12 & 7 \end{pmatrix} $

		1	,
	(2 -10 6)		$\begin{pmatrix} -5 & 3 & -1 \end{pmatrix}$
17	$\begin{bmatrix} 6 & -7 & -1 \end{bmatrix}$	18	-3 -1 1
	$\begin{pmatrix} 6 & -17 & 9 \end{pmatrix}$		$\begin{pmatrix} -3 & 5 & -5 \end{pmatrix}$
	(8 3 -9)		(-12 8 0)
19	9 -1 -6	20	-12 3 5
	$(9 \ 6 \ -13)$		$\begin{pmatrix} -12 & 3 & -5 \end{pmatrix}$
	$(3 -11 \ 9)$		$(-14 \ 3 \ 7)$
21	3 -3 1	22	-15 3 8
	$\begin{pmatrix} 3 & -19 & 17 \end{pmatrix}$		$\begin{pmatrix} -15 & 4 & 7 \end{pmatrix}$
	$(14 \ 0 \ -8)$		(16 -3 -7)
23	12 1 -7	24	15 -1 -8
	$\begin{pmatrix} 12 & 1 & -7 \end{pmatrix}$		$\begin{pmatrix} 15 & -4 & -5 \end{pmatrix}$
	(8 -12 4)		$(-22 \ 1 \ 13)$
25	12 - 8 - 4	26	- 21 1 12
	$\begin{pmatrix} 12 & -20 & 8 \end{pmatrix}$		$\begin{pmatrix} -21 & 0 & 13 \end{pmatrix}$
	(12 -7 -3)		(-9 -1 11)
27	15 -6 -7	28	-15 7 9
	$\begin{pmatrix} 15 & -11 & -2 \end{pmatrix}$		(-15 -3 19)
	(-16 7 3)		(10 -8 0)
29	-15 2 7	30	12 -5 -5
	$(-15 \ 11 \ -2)$		$\begin{pmatrix} 12 & -13 & 3 \end{pmatrix}$