UPORABA ODVODA

1. Izračunajte odvode funkcij: $f(x) = \sqrt[3]{x}$, $g(x) = x^2 \sin x$, $h(x) = \frac{1+x}{1-x}$. Odvod funkcije h(x) poenostavite.

(8 točk)

2. Na sliki je graf funkcije $f(x) = e^{2x} - 4x$.

2.1. Izračunajte koordinati stacionarne točke funkcije f. Rezultat naj bo točen.

(4 točke)

2.2. Izračunajte ploščino lika, ki ga oklepajo graf funkcije, koordinatni osi in premica x = 1.

(3 točke)

2.3. Izračunajte kot med grafom funkcije in osjo y .

(2 točki)

2.4. Dokažite, da se premica y + 4x - 5 = 0 in graf funkcije sekata v točki z absciso $x = \frac{\log 5}{\log e^2}$.

(3 točke)

3. Izračunajte presečišči parabole in premice z enačbama $y = x^2 - x - 2$ in y = x + 1. Izračunajte še kot, pod katerim se premica in parabola sekata v prvem kvadrantu. Rezultat zaokrožite na stotinko stopinje natančno.

(8 točk)

4. Tangenta na graf funkcije $f(x) = a \ln x + x^2 - 2$ v točki z absciso $x_0 = 1$ je pravokotna na premico z enačbo 2x + 3y - 1 = 0. Izračunajte realno število a.

(7 točk)

5. Izračunajte abscisi stacionarnih točk funkcije $f(x) = \frac{2x^3}{3} - \frac{x^2}{2} - x + 5$.

(7 točk)

- 6. Dana je funkcija $f(x) = 2x^3 + 1$. Napišite enačbo tangente na graf funkcije v točki $A(1, y_1)$.

 (6 točk)
- 7. Imamo funkciji $f(x) = x^2 3x$ in $g(x) = 1 \frac{3}{x}$.
 - 7.1. Izračunajte vsa tri presečišča grafov funkcij f in g. Grafa obeh funkcij narišite v dani koordinatni sistem.

(6 točk)

7.2. Izračunajte kot, pod katerim se sekata grafa teh funkcij v presečišču z najmanjšo absciso.

(4 točke)

7.3. Izračunajte ploščino lika med grafoma funkcij f in g .

(4 točke)

7.4. Zapišite definicijsko območje funkcije h(x) = g(f(x)).

(2 točki)

8. Na sliki je graf funkcije $f(x) = \frac{x^2 + 9}{x}$.

Izračunajte odvod funkcije. V točki A doseže funkcija svoj lokalni maksimum. Zapišite razdaljo d_1 točke A od premice x=4 in razdaljo d_2 točke A od premice y=-1.

(6 točk)

9. Izračunajte odvode funkcij:

9.1.
$$f_1(x) = 2x^3 - 3x + 4$$
 (1)

9.2.
$$f_2(x) = \sqrt[3]{x}$$
 (1)

9.3.
$$f(x) = \frac{x^2}{x+1}$$
; $x \neq -1$ (2)

9.4.
$$f_4(x) = \ln(2x+1); x > -\frac{1}{2}$$
 (1)

9.5.
$$f_5(x) = (x - 1)e^x$$
 (2)

(7 točk)

10. Nalogo rešujte brez uporabe računala.

Dana je funkcija $f(x) = \frac{2x}{x^2 + 1}$.

10.1. Zapišite ničlo, enačbo asimptote, stacionarne točke in narišite graf funkcije f. Zapišite še definicijsko območje in zalogo vrednosti te funkcije.

(5 točk)

10.2. Zapišite vsa presečišča grafa funkcije f s premico, ki je dana z enačbo $y = \frac{x}{5}$. Izračunajte tangens kota med to premico in grafom funkcije f v presečišču z največjo absciso.

(5 točk)

10.3. Za katera realna števila k ima premica z enačbo y = kx z grafom funkcije f tri presečišča? Odgovor utemeljite.

(4 točke)

11. Nalogo rešite brez uporabe računala.

Dana je funkcija $f(x) = \frac{2x}{x^2 - 1}$.

11.1. Zapišite definicijsko območje in narišite graf funkcije f.

(4 točke)

11.2. Izračunajte tangens kota med grafom funkcije f in premico y = x v presečišču s pozitivno absciso.

(4 točke)

11.3. Natančno izračunajte ploščino lika, ki ga oklepajo graf funkcije f ter premice x = 1, x = 5, y = 0 in y = x.

(4 točke)

11.4. Poiščite tiste točke na grafu funkcije f, ki so od vodoravne asimptote te funkcije oddaljene za $\frac{9}{40}$.

(4 točke)

- 12. Imamo funkcijo f(x) = asinx + 2; $a \in \mathbb{R}$.
 - 12.1. Za katera števila *a* se graf funkcije *f* dotika osi *x* ? Za katera števila *a* graf funkcije *f* seka os *x* ?

(2 točki)

12.2. Določite število a, da bo tangenta na graf funkcije f v točki z absciso $\frac{\pi}{3}$ vzporedna premici 3x + 2y + 2 = 0.

(3 točke)

12.3. Število $-\frac{\pi}{6}$ je ničla funkcije f . Izračunajte število a in zapišite vse ničle te funkcije.

(4 točke)

12.4. Določite število a>0, da bo ploščina lika med grafom funkcije f in abscisno osjo na intervalu $\left[0,\frac{\pi}{3}\right]$ enaka $\frac{4\pi+15}{6}$.

(4 točke)

- 13. Dana je kvadratna funkcija s predpisom $f(x) = -\frac{x^2}{4} + x$.
 - 13.1. V koordinatni sistem narišite graf funkcije *f* . Dokažite, da sta tangenti na graf funkcije *f* v presečiščih z osjo *x* med seboj pravokotni.

(4 točke)

13.2. Krivulja z enačbo $y^2 = f(x)$ je elipsa. Zapišite njeno enačbo v obliki $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$. Zapišite njena temena in gorišči. Izračunajte prostornino telesa, ki ga dobimo tako, da to elipso zavrtimo za 360° okrog osi x.

(8 točk)

13.3. Krivulja z enačbo $y^2 = -f(x)$ je hiperbola. Zapišite njeno enačbo v obliki $\frac{\left(x-p\right)^2}{a^2} - \frac{\left(y-q\right)^2}{b^2} = 1 \text{ in izračunajte enačbi njenih asimptot.}$

(3 točke)

- 14. Dana je funkcija s predpisom $f(x) = \frac{2\sin x + \tan x}{\cos x}$.
 - 14.1. Določite definicijsko območje funkcije f in izračunajte njene ničle.

(5 točk)

14.2. Dokažite, da je funkcija f liha.

(2 točki)

14.3. Ali funkcija narašča ali pada v točki z absciso $x_0 = \frac{2\pi}{3}$? Odgovor utemeljite.

(3 točke)

14.4. Izračunajte $\int f(x)dx$.

(4 točke)

15. Tangenta na graf funkcije $f(x) = \ln(x+5) + x^2$ je vzporedna premici z enačbo y = -7x + 1 in se dotika grafa funkcije f v dveh točkah. Natančno izračunajte koordinati dotikališč D_1 in D_2 .

(8 točk)

- 16. Nalogo rešite brez uporabe računala. Dana je družina kvadratnih funkcij : $f(x) = ax^2 (a-1)x + 3$; $a \in \mathbb{R} \setminus \{0\}$.
 - 16.1. Za a = -1 zapišite funkcijski predpis, ničli in maksimum ter narišite parabolo, ki je graf funkcije f.

(3 točke)

16.2. Za a = -1 izračunajte ploščino odseka med parabolo in tetivo, ki povezuje teme in desno presečišče parabole z x osjo.

(4 točke)

16.3. Natančno izračunajte, za katero vrednost parametra a bo imela funkcija f ekstremno vrednost pri $x = -\frac{3}{2}$.

(3 točke)

16.4. Za katero vrednost parametra a je premica y = x + 1 tangenta na graf funkcije f? Izračunajte dotikališče.

(4 točke)

- 17. Dani sta realni funkciji f in g s predpisoma $f(x) = \frac{1}{2}(e^x + e^{-x})$ in $g(x) = \frac{1}{2}(e^x e^{-x})$.
 - 17.1. V preglednico zapišite definicijsko območje in zalogo vrednosti funkcij f in g.

Predpis funkcije	Definicijsko območje	Zaloga vrednosti
$f(x) = \frac{1}{2} (e^x + e^{-x})$		
$g(x) = \frac{1}{2}(e^x - e^{-x})$		

Dokažite, da za vsak $x \in \mathbb{R}$ velja f'(x) = g(x) in g'(x) = f(x).

(5 točk)

17.2. Dokažite, da je funkcija f soda in da je funkcija g naraščajoča.

(2 točki)

17.3. Dokažite, da tangenta na graf funkcije f v točki T (1, y_1) seka ordinatno os v točki z ordinato e^{-1} .

(3 točke)

17.4. Izračunajte nedoločeni integral $\int \frac{g(x)}{f(x)} dx$.

(4 točke)

REŠITVE:

1. Skupaj: 8 točk

Izračunan odvod, npr. $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$
(Le zapis $\sqrt[3]{x} = x^{\frac{1}{3}}$ 1 točka.)
Izračun odvoda, npr. $g'(x) = 2x \sin x + x^2 \cos x$ (1+1+1) 3 točke
(Le formula za odvod produkta 1 točka.)
Izračunan in poenostavljen odvod $h(x) = \frac{2}{(1-x)^2}$ (1+1+1) 3 točke
(Le formula za odvod kvocienta 1 točka.)

2. Skupaj: 12 točk

2.1. (4 točke)

Izračunani odvod $f(x) = 2e^{2x} - 4$	1 točka
Zapis enačbe, npr. $2e^{2x}$ - $4=0$	*1 točka
Stacionarna točka $T\left(\frac{\ln 2}{2}, 2-2\ln 2\right)$ (1+1) 2 točki

2.2. (3 točke)

Nastavek za ploščino $\check{n}^{(e^{2x} - e^{2x})}$	4x)dx	1 točka
0		
Izračunan nedoločeni integral	$\frac{1}{2}e^{2x}$ -	$2x^2 + C$ (lahko tudi brez C)

2.3. (2 točki)

Izračunan $k_t = f(0) = -2$ *1 to	očka
Izračunan kot, npr. $j = 90^{\circ}$ - arctan 2 \square 26,6°	očka

2.4. (3 točke)

<u>1. način</u>

Nastavek enačbe $e^{2x} = 5$. 1	točka
Logaritmiranje z osnovo 10, npr. loge ^{2x} = log5	. 1	točka
Rešitev $x = \frac{\log 5}{\log e^2}$. 1	točka

<u>2. način</u>

V	stavlja	anje x =	$=\frac{\log}{\log \theta}$	$\frac{15}{e^2}$ V	/ enačb	i pı	remice	in	grafa funkcije	1	l to	čka	а
	~					••				/4.4 . 4 \	~ .	~ .	

Izračun obeh ordinat in ugotovitev, da sta enaki.....(*1+1) 2 točki

3. Skupaj: 8 točk Nastavek enačbe za presečišče, npr. x^2 - x - $2 = x + 1 \dots 1$ točka Presečišči $T_1(3, 4)$ in $T_2(-1, 0)$*1 točka Ugotovitev $k_2 = 5$*1 točka Izračunan $tan j = \frac{2}{3}$*1 točka Skupaj: 7 točk (Pravilno izračunan odvod le dveh členov ... 1 točka.) Izračun f'(1) = a + 2*1 točka Upoštevanje, da je $k_t = -\frac{1}{k_0}$*1 točka Skupaj: 7 točk 5. (Dva pravilno odvajana člena ... 1 točka, trije pravilno odvajani členi ... 2 točki, vsi štirje pravilno odvajani členi ... 3 točke.) (Le zapis ali uporaba $f(x) = 0 \dots *1 \text{ točka.}$) Rešitvi $x_1 = 1$ in $x_2 = -\frac{1}{2}$(*1+1) 2 točki Skupaj: 6 točk Izračunan smerni koeficient tangente $k_t = 6$(*1+1) 2 točki (Le splošna enačba premice ... 1 točka.)

7. Skupaj: 16 točk

7.1. (6 točk)

Izračunana presečišča (- 1, 4), (1,- 2) in (3, 0).....(1+1) 2 točki

7.2. (4 točke)

7.3. (4 točke)

7.4. (2 točki)

8. Skupaj: 6 točk

(Le zapis ali uporaba formule za odvod kvocienta ... 1 točka.)

(Le upoštevanje $f(x) = 0 \dots *1 \text{ točka.}$)

Zapisani razdalji $d_1 = 7$ in $d_2 = 5$ (1+1) 2 točki

9. Skupaj: 7 točk

5.1. (1 točka)

5.2. (1 točka)

5.3. (2 točki)

(Le zapis ali uporaba pravila za odvod kvocienta ... 1 točka.)

5.4. (1 točka)

5.5. (2 točki)

10. Skupaj: 14 točk

10.1. (5 točk)

(Le izračunan odvod $f(x) = \frac{-2x^2+2}{(x^2+1)^2}$... 1 točka.)

Narisan graf

(potekati mora skozi koordinatno izhodišče, točki $T_{\rm 1}$ (1, 1) in $T_{\rm 2}$ (- 1,- 1) ter

10.2. (5 točk)

(Le zapisana smerna koeficienta $\frac{1}{5}$ in - $\frac{4}{25}$... *1 točka, uporaba formule za tangens kota med premicama ... 1 točka.)

10.3. (4 točke)

1. način

Izračunan smerni koeficient tangente $k_t = f\check{}(0) = 2$ (*1+1) 2 točki Zapisana rešitev $k \hat{1}(0, 2)$ (1+1) 2 točki (Preverjanja konveksnosti oz. konkavnosti funkcije ne zahtevamo.)

11. Skupaj: 16 točk

11.1. (4 točke)

(Vsaka veja grafa ... 1 točka.)

11.2. (4 točke)

..... 3 točke

11.3. (4 točke)

Zapisana ploščina, npr. $S = \overset{\sqrt{3}}{\underset{1}{\check{n}}} x dx + \overset{5}{\underset{\sqrt{3}}{\check{n}}} \frac{2x}{x^2 - 1} dx$

točki

(Izračun prvega integrala lahko kandidat nadomesti z izračunano ploščino ustreznega trapeza.)

11.4. (4 točke)

12. Skupaj: 13 točk

12.1. (2 točki)

12.2. (3 točke)

12.3. (4 točke)

(Le zapisana enačba, npr. $f\left(-\frac{p}{6}\right)=0$... 1 točka.)

Zapisane ničle, npr. $x_1 = -\frac{p}{6} + 2kp$ in $x_2 = \frac{7p}{6} + 2kp$, $k \hat{l} \square$ (1+1) 2 točki

(Le pravilno zapisani partikularni rešitvi ... 1 točka.)

12.4. (4 točke)

Izračunan *a* = 5 1 točka

13. Skupaj: 15 točk

13.1. (4 točke)

Graf funkcije f

(Le upoštevani ničli ... 1 točka. Le upoštevano teme ... 1 točka.)

(Uporaba zveze $f(x_0) = k_t \dots *1$ točka.)

13.2. (8 točk)

(Vsak člen leve strani enačbe elipse ... 1 točka.)

(Zapisana vsa temena napačno določene elipse ... *1 točka. Zapisani vsaj dve temeni pravilno določene elipse ... *1 točka.)

(Le izračunan $e = \sqrt{3}$... *1 točka.)

(Le zveza, npr. $V = p \underbrace{\check{\mathbf{p}}}_{\mathbf{r}} \underbrace{\check{\mathbf{c}}}_{\mathbf{r}} \underbrace{x^2}_{\mathbf{r}} + x \underbrace{\ddot{\mathbf{c}}}_{\mathbf{r}} \mathbf{d} x \dots 1 \text{ to} \check{\mathbf{c}} \mathbf{k} \mathbf{a}.$)

13.3. (3 točke)

Zapisani enačbi asimptot, npr. $y = \frac{x}{2}$ 1 in $y = -\frac{x}{2} + 1$ (1+1) 2 točki

(Le izračunana smerna koeficienta $\frac{1}{2}$ in - $\frac{1}{2}$... *1 točka.)

14. Skupaj: 14 točk

14.1. (5 točk)

$$D_f = \Box - \left\{ \frac{\mathbf{p}}{2} + k\mathbf{p}, \ k \ \hat{\mathbf{l}} \ \Box \right\} \dots 1$$
točka

(Zadošča le razcep števca.)

Zapisane ničle, npr. $x_1 = kp$, $x_2 = \frac{2p}{3} + 2kp$, $x_3 = -\frac{2p}{3} + 2kp$, $k \hat{1} \square$ (1+1+1) 3 točke

(Za zapis vseh parcialnih ničel 0, $\frac{2p}{3}$, $\frac{2p}{3}$ dobi kandidat 1 točko.)

(Če kandidat nikjer ne zapiše $k \hat{1} \square$, izgubi 1 točko.)

14.2. (2 točki)

$$f(-x) = \frac{2\sin(-x) + \tan(-x)}{\cos(-x)} = -\frac{2\sin x + \tan x}{\cos x} = -f(x)$$
 (1+1) 2 točki

14.3. (3 točke)

14.4. (4 točke)

15. Skupaj: 8 točk

16. Skupaj: 14 točk

16.1. (3 točke)

Zapisana funkcija $f(x) = -x^2 + 2x + 3$, ničli - 1 in 3, maksimum 4 ali teme T(1, 4)......2 točki

(Le dva pravilno navedena od treh zahtevanih podatkov ... 1 točka.)

Narisana parabola (upoštevani ničli, teme in začetna vrednost)

1 točka

16.2. (4 točke)

16.3. (3 točke)

16.4. (4 točke)

17. Skupaj: 14 točk

17.1. (5 točk)

Predpis funkcije	Definicijsko območje	Zaloga vrednosti
$f(x) = \frac{1}{2} (e^x + e^{-x})$		[1, A,)
$g(x) = \frac{1}{2}(e^x - e^{-x})$		

17.2. (2 točki)

Ugotovitev, da je f(x) = f(x) in da je g'(x) > 0 za vsak x(1 + 1) 2 točki

17.3. (3 točke)

17.4. (4 točke)

1. način

2. način

$$\check{\mathbf{n}} \frac{t^2 - 1}{t(t^2 + 1)} dt = \check{\mathbf{n}} \underbrace{\dot{\hat{\mathbf{g}}}_{t^2 + 1}^2 - \frac{1 \ddot{\mathbf{o}}}{t \ddot{\mathbf{r}}} dt}_{\mathbf{f}} = \ln \left| \frac{t^2 + 1}{t} \right| + C = \ln \left| \frac{\mathbf{e}^{2x} + 1}{\mathbf{e}^x} \right| + C \quad \dots \quad (1 + 1 + 1) \quad 3 \text{ točke}$$

(Če kandidat zamenja funkciji f in g, dobi največ 3 točke.)