

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST)

PROGRAM (S) TO BE	BS(CS)
EVALUATED	

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code Numerical Computing CS-2008

	<u> </u>
Course Title	Numerical Computing
Credit Hours	3+0
Prerequisites by Course(s) and Topics	Not Applicable
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Mid-I: 15 Mid-II: 15 Assignments: 20 Final: 50

Current Catalog Description	The Numerical computing includes: Error concept and analysis, Roots of nonlinear algebraic equations of one variable, Direct and iterative method for system of linear equations, Linear interpolation with 2nd and 3 rd dimensional, Interpolating polynomials, Differences, Operators and their relation, Numerical differentiation and integration, Numerical solution of differential equation. Iteration for non linear system of equation
Textbook (or Laboratory Manual for Laboratory Courses)	Numerical Analysis , 9 th Edition , Burden and Faires
Reference Material	Numerical Methods using MATLAB, 3rd Edition, John H.Mathews Applied Numerical Methods with Matlab for Engineers and Scientist, 3rd Edition
	Steven C, Chapra , MCcGraw Hill
Course Goals	To introduce the students to the mostly used computing methods in the different fields of
	engineering and sciences.

NCEAC

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

The emphasis will be on understanding the algorithm of the various methods for computing and on applying these to obtain the approximate solutions for various mathematical problems.

MATLAB & Excel will be used as tool for implementation and application of these computing methods.

A. Course Learning Outcomes (CLOs)

- 1. Analyze Error, different numerical methods to estimate non-linear and linear system of equations and Hypothesis testing.
- 2. Apply different numerical methods to perform polynomial interpolation, curve fitting, differentiation, integration, and estimation of algebraic nonlinear equations.
- 3. Solve ordinary differential equations and compute optimum points in optimization problems using numerical techniques.

	te below, indicate whether this attribute is covered in this e cell blank if the enablement is little or non-existent.	cours
Academic Education:	To prepare graduates as computing professionals	>
2. Knowledge for Solving Computing Problems:	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.	>
3. Problem Analysis:	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.	
4. Design/ Development of Solutions:	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	>
5. Modern Tool Usage:	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.	>

NCEAC.FORM.001-D

6. Individual and Team Work:	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.	~
7. Communication:	Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.	
8. Computing Professionalism and Society:	Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.	
9. Ethics:	Understand and commit to professional ethics, responsibilities, and norms of professional computing practice.	
10. Life-long Learning:	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.	

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)											
(CLO	. Cou	ISE LEG	PLOs								
		1	2	3	4	5	6	7	8	9	10
	1	~	>				~				
CLOs	2	~	>				>				
占	3	>	>				>				
	4		•			>	>				
	5		•		>		>				
	6		•		>		>				
	7		~				~				
	8		~			~	~				

NCEAC.FORM.001-D

Topics Covered in		
the Course, with		
Number of Lectures		
on Each Topic		
(assume 15-week		
instruction and one-		
hour lectures)		

1. Topics to be covered:			
List of Topics	No. of Weeks	Contact Hours	CLO
Chapter 1 Error analysis: Introduction of Numerical Computing ,Chopping.Roundoff and truncation error,Absulute ,relative and percentage error Significant figures in approximation, loss of significance	2	6	1,2
Chapter 2 Solution(Root) of equations in one variable: The Bisection or Binary-search method. Fixed Pointiteration. (x=g(x))			
Chapter 2 Newton's Raphson and Secant Method. Method of False position (Regula falsi).	2	6	2,3
Chapter 3 Interpolation and Polynomial approximation: Lagrange interpolation polynomial of degree one,two and three	1	3	2,3,
====== MI	D 1 =====		
Chapter 3 Divided difference table and interpolating polynomial. Newton Forward and Backward difference formula Newton centered difference (stirling) formula.	2	6	1,2
Chapter 4 Numerical differentiation: Differentiation using Forward and Backward differences 3-point Endpoint and Midpoint formula	1.5	4.5	1,2

NCEAC.FORM.001-D

	E point Endpoint and Midnoist	T		1	
	5-point Endpoint and Midpoint formula				
	Chapter 4				
	Numerical Integration:				
	Trapezoidal and Simpson's rule				
	Closed and open Newton-Cotes				
	formulas.	1.5	4.5	2	
	Composite NumericalIntegration:				
	Trapezoidal , Simpson's and			1	
	Midpoint formula				
		D 0		1	
	MIL	U 2 =====			
	Chapter 5				
	Differential Equations:				
	Euler's method , 2-RK method ,				
	Mid Point formula				
	Modify Euler and Huen's method				
	, 4-RK method				
	, i kk metrod				
	Chapter 6	0.5		0.0	
	Direct Method for solving	2.5	7.5	2,3	
	linear system:				
	LU decomposition (Dolittle and				
	Crout method)				
	Symmetric ,Singular ,Diagonally				
	dominant				
	and positive definite matrices				
	LDL ^t Factorization , cholesky				
	method				
	Chapter 7				
	Iterative Techniques:				
	Iterative methods for solving	1	3	2,3	
	linear system	•	•	_,0	
	Gauss-Siedel and Jacobi's				
	methods.				
	Difference Operator analysis:				
	$\Delta, \nabla, \delta, \mu, D$ and E operators	1	3	1,2	
	and their relations.	•	•	-,-	
		0.5	1 5		
	Review	0.5	1.5		
	Total	15	45		
Laboratory					
Projects/Experiments					
Done in the Course					
Programming					

NCEAC

National Computing Education Accreditation Council NCEAC

Assignments Done in the Course				
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues
	15	20	10	0
Oral and Written Communications	Every student is required to submit at least written report of typically pages and to make oral presentations of typically minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.			

Instructor Name	Dr. Khusro Mian
Instructor Signature	-
Date	February 4, 2022