simNet: Stepwise Image-Topic Merging Network for Generating Detailed and Comprehensive Image Captions

Fenglin Liu¹, Xuancheng Ren²*, Yuanxin Liu¹, Houfeng Wang² and Xu Sun²

¹ Beijing University of Posts and Telecommunications, Beijing, China

² Peking University, Beijing, China

* Equal Contributions

CONTENTS

1 Introduction 2 Experiment

2 Approach Analysis

Introduction

simNet: Stepwise Image-Topic Merging Network for Generating Detailed and Comprehensive Image Captions

Soft-Attention: a open laptop computer sitting on top of a table

ATT-FCN: a dog sitting on a desk with a laptop computer and mouse

simNet: a open laptop computer and mouse sitting on a table with a dog nearby

Figure 1: Examples of using different attention mechanisms.

•Soft-Attention: Show, attend and tell: Neural image caption generation with visual attention. In PMLR 2015

•ATT-FCN: Image captioning with semantic attention. In CVPR 2016

Introduction: Soft-Attention

Soft-Attention: a open laptop computer sitting on top of a ta
ble

omitting "dog" and "mouse"

ATT-FCN: a dog sitting on a desk with a laptop computer and mouse

simNet: a open laptop computer and mouse sitting on a table with a dog nearby

encode

decode

Soft-Attention: Image

Image Features

Caption

•Soft-Attention: Show, attend and tell: Neural image caption generation with visual attention. In PMLR 2015

Introduction: ATT-FCN

Soft-Attention: a open laptop computer sitting on top of a table

ATT-FCN: a dog sitting on a desk with a laptop computer and mouse

simNet: a open laptop computer and mouse sitting on a table with a dog nearby

missing "open" and mislocating "dog"

encode

decode

ATT-FCN:

Image |

Image Keywords

Caption

•ATT-FCN: Image captioning with semantic attention. In CVPR 2016

Introduction: SimNet

Soft-Attention: a open laptop computer sitting on top of a table

ATT-FCN: a dog sitting on a desk with a laptop computer and mouse

simNet: a open laptop computer and mouse sitting on a table with a dog nearby

simNet: Image encode

Image Features

Image Keywords

Introduction: Main idea

- The visual information captured by CNN
- The topics extracted by a topic extractor
- The merging gate then adaptively adjusts the weight between visual attention and topic attention

Figure 2: Illustration of the main idea.

Contributions

- We propose a novel approach that can effectively merge the information in the image and the topics.
- The generated captions are both detailed and comprehensive.
- The proposed approach outperforms previous works in terms of SPICE, which correlates the best with human judgments.

Approach

Overview

Figure 3: Illustration of the proposed approach. In the right plot, we use ϕ, ψ, χ to denote input attention, output attention, and topic attention, respectively.

Approach: Image Encoder

Image Encoder: ResNet152

Approach: Image Encoder

Feature map: $V = W^{V,I}CNN(I)$ (1)

where I is the input image, and $W^{V,I}$ shrinks the last dimension of the output.

Approach: Topic Extractor

Topic Extractor: Multiple Instance Learning

Approach: Input Attention

Input Attention:

$$Z_{t} = \tanh(\mathbf{W}^{Z,V}\mathbf{V} \oplus \mathbf{W}^{Z,h}\underline{\mathbf{h}_{t-1}}) \qquad (2)$$

$$\alpha_{t} = \operatorname{softmax}(\mathbf{Z}_{t}\mathbf{w}^{\alpha,Z}) \qquad (3)$$

$$\alpha_t = \operatorname{softmax}(\boldsymbol{Z_t} \boldsymbol{w}^{\alpha, Z}) \tag{3}$$

$$z_t = V\alpha_t \tag{4}$$

$$\boldsymbol{h}_{t} = \text{LSTM}(\begin{bmatrix} \boldsymbol{z}_{t} \\ \boldsymbol{y}_{t-1} \end{bmatrix}, \boldsymbol{h}_{t-1})$$
 (5)

Xu et al., 2015: Show, attend and tell: Neural image caption generation with visual attention. In PMLR 2015

Approach: Output Attention

You et al., 2016: Image captioning with semantic attention. In CVPR 2016

Lu et al., 2017: Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In CVPR 2017

Approach: Visual Information

the visual information: $r_t = \tanh(\mathbf{W}^{s,z}\widetilde{\mathbf{z}}_t)$

Approach: Previous Topic Attention

Topic Attention (Previous work):

$$\boldsymbol{\beta}_t = \operatorname{softmax}(\boldsymbol{T}^\mathsf{T}\boldsymbol{U}\boldsymbol{y}_{t-1}) \tag{9}$$

Lacking the attentive visual information when selecting topic!

You et al., 2016: Image captioning with semantic attention. In CVPR 2016

Approach: Our Topic Attention

Topic Attention (Our):

$$\boldsymbol{Q}_t = \tanh(\boldsymbol{W}^{Q,T} \boldsymbol{T} \oplus \boldsymbol{W}^{Q,h} \boldsymbol{h}_t) \qquad (10)$$

$$\boldsymbol{\beta}_t = \operatorname{softmax}(\boldsymbol{Q}_t \boldsymbol{w}^{\beta,Q})$$
 (11)

$$q_t = T\beta_t \tag{12}$$

Approach: Contextual Information

Topic Attention (Our):

$$\boldsymbol{Q}_t = \tanh(\boldsymbol{W}^{Q,T} \boldsymbol{T} \oplus \boldsymbol{W}^{Q,h} \boldsymbol{h}_t) \qquad (10)$$

$$\boldsymbol{\beta}_t = \operatorname{softmax}(\boldsymbol{Q}_t \boldsymbol{w}^{\beta, Q}) \tag{11}$$

$$q_t = T\beta_t \tag{12}$$

the contextual information: $s_t = \tanh(\mathbf{W}^{s,q}\mathbf{q}_t + \mathbf{W}^{s,h}\mathbf{h}_t)$

How to make full use of the visual information and the contextual information?

Visual information (e.g., "behind", "red" is better)

Contextual information (e.g., "people", "table" is better)

$$\gamma_t = \sigma(S(\boldsymbol{s}_t) - S(\boldsymbol{r}_t))$$

$$\boldsymbol{c}_t = \gamma_t \boldsymbol{s}_t + (1 - \gamma_t) \boldsymbol{r}_t$$

(Where σ is the sigmoid function)

The scoring function S is designed to evaluate the importance of the topic attention.

$$Q_t = \tanh(\mathbf{W}^{Q,T} \mathbf{T} \oplus \mathbf{W}^{Q,h} \mathbf{h}_t)$$
(10)
$$\beta_t = \operatorname{softmax}(\mathbf{Q}_t \mathbf{w}^{\beta,Q})$$
(11)

$$\boldsymbol{\beta}_t = \operatorname{softmax}(\boldsymbol{Q}_t \boldsymbol{w}^{\beta, Q}) \tag{11}$$

Share Weights

$$oldsymbol{Q}_t = anh(oldsymbol{W}^{Q,T}oldsymbol{T} \oplus oldsymbol{W}^{Q,h}oldsymbol{h}_t)$$
 $oldsymbol{eta}_t = ext{softmax}(oldsymbol{Q}_toldsymbol{w}^{eta,Q})$

$$(10)$$

$$S(\boldsymbol{s}_t) = anh(\boldsymbol{W}^{S,h}\boldsymbol{h}_t + \boldsymbol{W}^{S,s}\boldsymbol{s}_t) \cdot \boldsymbol{w}^S$$

$$oldsymbol{h}_t + oldsymbol{W}^{S,s}$$

$$w^{S}$$
 (16)

$$oldsymbol{eta}_t = \operatorname{softmax}(oldsymbol{Q}_t oldsymbol{w}^{eta,Q})$$

$$S(\boldsymbol{r}_t) =$$

$$S(\boldsymbol{r}_t) = \tanh(\boldsymbol{W}^{S,h}\boldsymbol{h}_t + \boldsymbol{W}^{S,r}\boldsymbol{r}_t) \cdot \boldsymbol{w}^S$$

$$m{h}^{S,h}m{h}_t + m{V}$$

$$_{t})$$
 : (\boldsymbol{w}^{S})

Share Weights

Generating Words

the contextual information: $y_t \sim \boldsymbol{p}_t = \operatorname{softmax}(\boldsymbol{W}^{p,c}\boldsymbol{c}_t)$

Experiments

Experiments

Dataset

Microsoft COCO(MSCOCO) and Flickr30k

- ✓ Sparrow bird on branch, with beak inspecting leaves on branch.
- ✓ A bird sitting on the branch of a tree near leaves.
- ✓ A bird that is sitting in a tree.
- ✓ a bird sitting on a branch of a tree.
- ✓ a bird that is on a small branch of a tree.

Evaluation Metrics

✓ CIDEr

✓ BLEU

✓ METEOR

✓ ROUGE

Correlates the best with human Judgments!

Experiments: Results (MSCOCO)

	COCO	SPICE	CIDEr	METEOR	ROUGE-L	BLEU-4
	HardAtt (Xu et al., 2015)	-	-	0.230	-	0.250
	ATT-FCN (You et al., 2016)	-	-	0.243	-	0.304
	SCA-CNN (Chen et al., 2017)	-	0.952	0.250	0.531	0.311
Comparable	e LSTM-A (Yao et al., 2017)	0.186	1.002	0.254	0.540	0.326
Models	SCN-LSTM (Gan et al., 2017)	-	1.012	0.257	-	0.330
Wie de die	Skeleton (Wang et al., 2017)	-	1.069	0.268	0.552	0.336
	AdaAtt (Lu et al., 2017)	0.195	1.085	0.266	0.549	0.332
	NBT (Lu et al., 2018)	0.201	1.072	0.271	-	0.347
	DRL (Ren et al., 2017b)*	_	0.937	0.251	0.525	0.304
	TD-M-ATT (Chen et al., 2018)*	-	1.116	0.268	0.555	0.336
	SCST (Rennie et al., 2017)*	-	1.140	0.267	0.557	0.342
	SR-PL (Liu et al., 2018)* †	0.210	1.171	0.274	0.570	0.358
	Up-Down (Anderson et al., 2018)*†	0.214	1.201	0.277	0.569	0.363
	simNet	0.220	1.135	0.283	0.564	0.332

Experiments: Results (MSCOCO)

_	COCO	SPICE	CIDEr	METEOR	ROUGE-L	BLEU-4
	HardAtt (Xu et al., 2015)	-	-	0.230	-	0.250
	ATT-FCN (You et al., 2016)	-	-	0.243	-	0.304
	SCA-CNN (Chen et al., 2017)	-	0.952	0.250	0.531	0.311
	LSTM-A (Yao et al., 2017)	0.186	1.002	0.254	0.540	0.326
	SCN-LSTM (Gan et al., 2017)	-	1.012	0.257	-	0.330
	Skeleton (Wang et al., 2017)	-	1.069	0.268	0.552	0.336
	AdaAtt (Lu et al., 2017)	0.195	1.085	0.266	0.549	0.332
	NBT (Lu et al., 2018)	0.201	1.072	0.271	-	0.347
	DRL (Ren et al., 2017b)*	-	0.937	0.251	0.525	0.304
	TD-M-ATT (Chen et al., 2018)*	-	1.116	0.268	0.555	0.336
	SCST (Rennie et al., 2017)*	-	1.140	0.267	0.557	0.342
	SR-PL (Liu et al., 2018)*†	0.210	1.171	0.274	0.570	0.358
Competitive	Up-Down (Anderson et al., 2018)*†	0.214	1.201	0.277	0.569	0.363
Competitiv	simNet	0.220	1.135	0.283	0.564	0.332

Analysis

Analysis: The Contributions of The Sub-modules

Analysis: Output Attention

The output attention is much more effective than the input attention

	↑										
Methods			,	SPICE	CIDE) (EFFE OF	POLICE I	DI EU 4			
	All	Objects	Attributes	Relations	Color	Count	Size	CIDEr	METEOR	ROUGE-L	BLEU-4
Baseline (Plain Encoder-Decoder Network)	0.150	0.295	0.048	0.039	0.022	0.004	0.023	0.762	0.220	0.495	0.251
Up-Down (Anderson et al., 2018)* †	0.214	0.391	0.100	0.065	0.114	0.184	0.032	1.201	0.277	0.569	0.363
Baseline + Input Att.	0.164	0.316	0.060	0.044	0.030	0.038	0.024	0.840	0.233	0.512	0.273
Baseline + Output Att.	0.181	0.329	0.094	0.053	0.089	0.184	0.044	0.968	0.253	0.534	0.301
Baseline + Input Att. + Output Att.	0.187	0.338	0.101	0.055	0.115	0.161	0.048	1.038	0.259	0.542	0.311
Baseline + Topic Att.	0.184	0.348	0.074	0.051	0.047	0.064	0.037	0.915	0.250	0.517	0.260
Baseline + Topic Att. + MGate	0.189	0.355	0.080	0.051	0.055	0.090	0.033	0.959	0.256	0.527	0.281
Baseline + Input Att. + Output Att. + Topic Att.	0.206	0.381	0.091	0.060	0.075	0.094	0.045	1.068	0.273	0.556	0.320
simNet (Full Model)	0.220	0.394	0.109	0.070	0.088	0.202	0.045	1.135	0.283	0.564	0.332

Analysis: Visual Attention

A combination of the input attention and the output attention makes the results even better

	<u> </u>										
Methods			,	SPICE	arp.	METEROP	DOLLGE I	DI EU 4			
	All	Objects	Attributes	Relations	Color	Count	Size	CIDEr	METEOR	ROUGE-L	BLEU-4
Baseline (Plain Encoder-Decoder Network) Up-Down (Anderson et al., 2018)* †	0.150 0.214	0.295 0.391	0.048 0.100	0.039 0.065	0.022 0.114	0.004 0.184	0.023 0.032	0.762 1.201	0.220 0.277	0.495 0.569	0.251 0.363
Baseline + Input Att. Baseline + Output Att. Baseline + Input Att. + Output Att.	0.164 0.181 0.187	0.316 0.329 0.338	0.060 0.094 0.101	0.044 0.053 0.055	0.030 0.089 0.115	0.038 0.184 0.161	0.024 0.044 0.048	0.840 0.968 1.038	0.233 0.253 0.259	0.512 0.534 0.542	0.273 0.301 0.311
Baseline + Topic Att. Baseline + Topic Att. + MGate	0.184 0.189	0.348 0.355	0.074 0.080	0.051 0.051	0.047 0.055	0.064 0.090	0.037 0.033	0.915 0.959	0.250 0.256	0.517 0.527	0.260 0.281
Baseline + Input Att. + Output Att. + Topic Att.	0.206	0.381	0.091	0.060	0.075	0.094	0.045	1.068	0.273	0.556	0.320
simNet (Full Model)	0.220	0.394	0.109	0.070	0.088	0.202	0.045	1.135	0.283	0.564	0.332

Analysis: Topic Attention

The topic attention is better at identifying objects but worse at identifying attributes.

	<u> </u>										
Methods			;	SPICE		CIDE	METEOD	POLICE I	DI EU 4		
	All	Objects	Attributes	Relations	Color	Count	Size	CIDEr	METEOR	ROUGE-L	BLEU-4
Baseline (Plain Encoder-Decoder Network)	0.150	0.295	0.048	0.039	0.022	0.004	0.023	0.762	0.220	0.495	0.251
Up-Down (Anderson et al., 2018)* †	0.214	0.391	0.100	0.065	0.114	0.184	0.032	1.201	0.277	0.569	0.363
Baseline + Input Att.	0.164	0.316	0.060	0.044	0.030	0.038	0.024	0.840	0.233	0.512	0.273
Baseline + Output Att.	0.181	0.329	0.094	0.053	0.089	0.184	0.044	0.968	0.253	0.534	0.301
Baseline + Input Att. + Output Att.	0.187	0.338	0.101	0.055	0.115	0.161	0.048	1.038	0.259	0.542	0.311
Baseline + Topic Att.	0.184	0.348	0.074	0.051	0.047	0.064	0.037	0.915	0.250	0.517	0.260
Baseline + Topic Att. + MGate	0.189	0.355	0.080	0.051	0.055	0.090	0.033	0.959	0.256	0.527	0.281
Baseline + Input Att. + Output Att. + Topic Att.	0.206	0.381	0.091	0.060	0.075	0.094	0.045	1.068	0.273	0.556	0.320
simNet (Full Model)	0.220	0.394	0.109	0.070	0.088	0.202	0.045	1.135	0.283	0.564	0.332

Analysis: Visual Attention + Topic Attention

Combing the visual attention and the topic attention directly results in a huge boost in performance

	<u> </u>										
Methods			,	SPICE	CIDE.	METEOD	DOLLGE I	DIELLA			
	All	Objects	Attributes	Relations	Color	Count	Size	CIDEr	METEOR	ROUGE-L	BLEU-4
Baseline (Plain Encoder-Decoder Network) Up-Down (Anderson et al., 2018)* †	0.150 0.214	0.295 0.391	0.048 0.100	0.039 0.065	0.022 0.114	0.004 0.184	0.023 0.032	0.762 1.201	0.220 0.277	0.495 0.569	0.251 0.363
Baseline + Input Att. Baseline + Output Att. Baseline + Input Att. + Output Att.	0.164 0.181 0.187	0.316 0.329 0.338	0.060 0.094 0.101	0.044 0.053 0.055	0.030 0.089 0.115	0.038 0.184 0.161	0.024 0.044 0.048	0.840 0.968 1.038	0.233 0.253 0.259	0.512 0.534 0.542	0.273 0.301 0.311
Baseline + Topic Att. Baseline + Topic Att. + MGate	0.184 0.189	0.348 0.355	0.074 0.080	0.051 0.051	0.047 0.055	0.064 0.090	0.037 0.033	0.915 0.959	0.250 0.256	0.517 0.527	0.260 0.281
Baseline + Input Att. + Output Att. + Topic Att.	0.206	0.381	0.091	0.060	0.075	0.094	0.045	1.068	0.273	0.556	0.320
simNet (Full Model)	0.220	0.394	0.109	0.070	0.088	0.202	0.045	1.135	0.283	0.564	0.332

Analysis: Full Model

Applying the merging gate is essential to the overall performance.

	1										
Made als			;	SPICE		CIDE.	METEOD	POLICE I	DI EU 4		
Methods	All	Objects	Attributes	Relations	Color	Count	Size	CIDEr	METEOR	ROUGE-L	BLEU-4
Baseline (Plain Encoder-Decoder Network) Up-Down (Anderson et al., 2018)* †	0.150 0.214	0.295 0.391	0.048 0.100	0.039 0.065	0.022 0.114	0.004 0.184	0.023 0.032	0.762 1.201	0.220 0.277	0.495 0.569	0.251 0.363
Baseline + Input Att. Baseline + Output Att. Baseline + Input Att. + Output Att.	0.164 0.181 0.187	0.316 0.329 0.338	0.060 0.094 0.101	0.044 0.053 0.055	0.030 0.089 0.115	0.038 0.184 0.161	0.024 0.044 0.048	0.840 0.968 1.038	0.233 0.253 0.259	0.512 0.534 0.542	0.273 0.301 0.311
Baseline + Topic Att. Baseline + Topic Att. + MGate	0.184 0.189	0.348 0.355	0.074 0.080	0.051 0.051	0.047 0.055	0.064 0.090	0.037 0.033	0.915 0.959	0.250 0.256	0.517 0.527	0.260 0.281
Baseline + Input Att. + Output Att. + Topic Att.	0.206	0.381	0.091	0.060	0.075	0.094	0.045	1.068	0.273	0.556	0.320
simNet (Full Model)	0.220	0.394	0.109	0.070	0.088	0.202	0.045	1.135	0.283	0.564	0.332

Analysis: Visualization

- The upper part shows the attention weights of each of 5 extracted topics. Deeper color means larger in value.
- The middle part shows the value of the merging gate.
 Determines the importance of the topic attention.
- The lower part shows the visualization of visual attention.
 The blue shade indicates the output attention.
 The red shade indicates the input attention.

Analysis: Visualization

Visual information "chair" is more important than contextual information "bed"

Analysis: Examples

Comparison of Models

Topics

woman girl baby bear kitchen

a girl

and a baby

Visual Attention

are holding a stuffed animal a woman

Topic Attention

simNet

a woman holding a teddy bear in a kitchen described by the second second

a woman and a baby are holding a stuffed animal computer

computer keyboard laptop mouse desk

a computer ke yboard sitting on top of a wooden desk

a computer keyboard and a mouse sitting on a desk

a computer keyboard and mouse on a wooden desk

pizza cheese table plate toppings

two pizzas with toppings on a table

a pizza with a lot of toppings on it

lot of error count

lacking "mouse"

missing "wooden"

Conclusion

- •Stepwise image-topic merging network can adaptively combine the visual and the semantic attention to achieve substantial improvements.
- The generated captions are both detailed and comprehensive
- Our approach outperforms previous works in terms of SPICE on COCO and Flickr datasets.

Thank you!

If you have any questions about our paper, you can send a email to Ifl@bupt.edu.cn

