UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO TECNOLÓGICO - CTC DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA CURSO DE ENGENHARIA ELÉTRICA E ELETRÔNICA EEL 7074 -ELETRÔNICA DE POTÊNCIA

PATRIK LOFF PERES 20103830 PEDRO AFONSO V. ROLIM 19100422

Aula 4 - Retificador Monofásico de Onda Completa, em Ponte, a Diodos

FLORIANÓPOLIS 2023

1. Introdução

Neste relatório serão apresentados os resultados teóricos, práticos e simulados da experiência de um retificador monofásico de onda completa, em ponte, a diodos com cargas R e RL. Será feita explanação da parte experimental e análise dos resultados obtidos.

2. Retificador Monofásico de Onda Completa, em Ponte, a Diodos

A figura 1 mostra o circuito retificador monofásico de onda completa, em ponte, a diodos, o funcionamento pode ser dividido em duas etapas, na primeira etapa (semiciclo positivo da fonte) os diodos D1 e D4 vão conduzir e na segunda etapa (semiciclo negativo da fonte) os diodos D2 e D3 vão conduzir, garantindo uma tensão em formato de pulsos positivos na carga.

Para os cálculos teóricos será considerado:

$$\begin{split} V_{sef} &= 110V \\ V_{sp} &= \sqrt{2}V_{sef} \\ V_{Lef} &= V_{sef} \\ V_{Lp} &= V_{sp} \\ P_{L} &= V_{Lef} I_{Lef} \end{split}$$

Para calcular a potência entregue pela fonte (rms), considera-se que a corrente de fonte é aproximadamente igual a corrente da carga (rms).

$$S = V_{sef}^{I} I_{Lef}$$

Para calcular se determinar o fator de potência, tanto teórico quanto experimental, considera-se:

$$FP = \frac{P}{S}$$

 $v(\omega t) = \begin{bmatrix} D_1 & D_2 & D_4 & D_4 & D_4 & D_4 \end{bmatrix}$

3. Carga R

Para a carga R pura foi utilizado um resistor de $82,5\Omega$, segundo o circuito da figura 2, e os resultados estão na formas de onda abaixo e também na tabela 1.

Para as previsões teóricas foi considerado que:

$$\begin{aligned} \boldsymbol{V}_{Lmed} &= 0,9 \boldsymbol{V}_{Lef} \\ \boldsymbol{I}_{Lef} &= \frac{\boldsymbol{V}_{Lef}}{R} \\ \boldsymbol{I}_{Lmed} &= \frac{\boldsymbol{V}_{Lmed}}{R} \end{aligned}$$

Figura 2 - Circuito PSIM

M Pos: 0.000s Save/Rec Action Save Image File Format Jpg About Saving Images Select Folder ² RMS 1.31A Save 1.84A RMS 107V Maximum TEK0015.JPG 150V 96.4V Maximum Mean 50.0V 2 1.00A M 2.50ms Ch1 ≠ 22.0V 120.016Hz Sep 19, 2023, 08:33 Please wait.

Figura 3 - Experimental - Tensão, Corrente e Potência na carga

Das formas de onda podemos notar que a corrente está em fase com a tensão, o que é esperado de uma carga R pura. Também, podemos ver a forma de onda em pulsos, resultado de uma retificação de onda completa, que deixa passar o ciclo positivo da fonte e inverte o ciclo negativo na carga, mantendo a tensão da carga sempre positiva.

Tabela 1 - Carga R

	Teórico	Simulação	Experimental
V _{sef}	110V	114,54V	111V
V_{sp}	155,56V	155,56V	152V
V_{Lef}	110V	114,53V	108V
$V_{_{Lp}}$	155,56V	155,56V	150V
V_{Lmed}	99,0V	104,78V	96,6V
I _{Lef}	1,33A	1,39A	1,31A
I _{Lmed}	1,20A	1,27A	1,17A
I_{Lp}	1,85A	1,88A	1,84A
S	146,3VA	159,21 VA	145,41 VA
P_L	146,3W	158,96W	137W
FP	1	0,998	0,942

4. Carga RL

Para a carga RL foi utilizado o mesmo resistor de $82,5\Omega$ além de um indutor de 100mH e posteriormente um indutor de 500mH, segundo o circuito da figura 5, e os resultados estão na formas de onda abaixo e também na tabela 2.

Para as previsões teóricos foi considerado que:

$$V_{Lmed} = 0,9V_{Lef}$$

$$Z = \sqrt{R^2 + 4\omega^2 L^2}$$

$$I_{Lef} = \sqrt{\frac{4V_{sp}^2}{\pi^2 R^2} + \frac{8V_{sp}^2}{9\pi^2 Z^2}}$$

$$I_{Lmed} = \frac{V_{Lmed}}{Z}$$

Figura 5 - Circuito PSIM

Figura 6 - Experimental - Tensão, Corrente e Potência na carga NÃO TIRAMOS FOTO

Figura 7 - Simulação - Tensão e Corrente na carga

Com a adição do indutor nota-se a condução contínua, condição alcançada quando o indutor é grande o suficiente para não terminar de descarregar antes da tensão na carga voltar a ser positiva, fazendo com que a corrente na carga nunca volte a zero.

Tabela 2 - Carga RL, L = 100 mH

	Teórico	Simulação	Experimental
V_{sef}	110V	114,53V	111V
V_{sp}	155,56V	155,56V	152V
V_{Lef}	110V	114,53V	107V
V_{Lmed}	99,0V	104,78V	95,8V
I_{Lef}	1,27A	1,30A	1,22A
I _{Lmed}	1,2A	1,24A	1,15A
S	139,7VA	148,89 VA	135,42VA
P_{L}	139,7W	143,5W	122W
FP	1	0,964	0,900

Agora a mesma experiência, mas para L = 500 mHFigura 8 - Circuito PSIM

M Pos: 0.000s Save/Rec Action Save Image File Format Jpg About Saving Images Select Folder 150V 1.15A Maximum 2 Mean Save RMS 1.16A TEK0017.JPG 108V Mean 96.4V M 5.00ms 50.0V 2 1.00A Ch1 / 64.0V 120.035Hz Sep 19, 2023, 08:44 Please wait.

Figura 9 - Experimental - Tensão, Corrente e Potência na carga

Figura 10 - Simulação - Tensão e Corrente na carga

Com a adição de um indutor maior, notamos que em regime permanente, além da condução contínua, também temos uma diminuição no ripple, o que garante a característica de corrente constante. Também, é possível observar (neste caso, com certa aproximação) que a carga se torna uma fonte de corrente.

Tabela 3 - Carga RL, L = 500mH

	Teórico	Simulação	Experimental
V_{sef}	110V	114,53V	111V
V_{sp}	155,56V	155,56V	154V
V_{Lef}	110V	114,53V	108V
V_{Lmed}	99,0V	104,78V	96,1V
I _{Lef}	1,21A	1,17A	1,15A
I Lmed	1,2A	1,16A	1,14A
S	133,1 VA	134,0VA	127,65VA
P_L	133,1 VA	122,22W	110W
FP	1	0,912	0,862

5. Conclusão

Das previsões teóricas podemos notar que o cálculo de potências está errado, pois o fator de potência deu igual a 1 para todas as configurações, resultado inconsistência e sem sentido.

Porém, os demais resultados experimentais e simulados convergiram para as previsões teóricas, demonstrando que as medições foram feitas de forma correta, assim como as simulações.