Fairness Measure & Its Justification	
	(A)
· Our fairness measure was contingent up	on 2
of the specified conditions	
· 1) No one is left out	W.
. 2) Not all water goes to I farmer	5
-	<u></u>
· Our 2 water sources are 1) Ground Wat	er Reservoir
2) Toxigation by Control Planner	
· Our Central Planner uses the moisture	
M, (t), M2(t), M3(t), M4(t) and compar	es them
to calculate which soil has the least ame	ount of
moisture. The Central Planner then sends wat	on to that
form and flags the fam too. On the nex the Central Planner does the same comparis	ion and
awards water to the lowest moisture love	I unthought
e audinas waren is the water in the fire	000
- farm. And the cycle cortinues till all far	no order
- Slagged - At that point, all flags are e	,80000
and the cycle begins anow	
- Key to note here is that famo will use their	reservous
to attain max, moisture level to keep their	
moist till the next iorigation paint	\
	6

We feel that this system is justified because no farmer occieves water trice in a month. This maintains social equilability. Each Four will seciene water propostionate to its fam size & storage (reservoir) agacity so their would be Sufficient water to maintain moisture levels in the range 0.15 - 0.8 during the Sountime of Some drawbacks of this model: -> Farms with higher moisture de cay sate would bear immense internal costs because of water pumping from reservoir which requires a lot of energy & \$\$ * A solution: Prioritze bigger farms using ELO permutation There is no backup system. Be cause the control planner is solely based on M, (+), M, (+), M3(+), M4(+) realings, a system failure world make it impossible to identify the correct farm to issigate. & Solution: Set up a feedback loop with the reservoir to maintain water levels & have backup storage for sensor data