Spark SQL Optimization

1: Optimize JOIN Queries in Spark SQL

Topic: Join Optimization

Explanation:

Join operations are expensive in Spark due to shuffling data across nodes. You can optimize joins by:

- Using **broadcast joins** for small tables.
- Controlling join types (broadcast, sort-merge, shuffle hash).
- Ensuring partitioning and data skew are handled.

Use Case:

You have a users table with 10M records and a country_codes table with only 200 records. You want to join them to get the country name for each user.

X Unoptimized Spark SQL:

users_df.createOrReplaceTempView("users")
countries df.createOrReplaceTempView("countries")

```
# Regular join without optimization
spark.sql("""
SELECT u.user_id, u.name, c.country_name
FROM users u
JOIN countries c
ON u.country code = c.country code
""")
```

Problem:

This causes a shuffle join (both datasets are shuffled), which is inefficient because countries is small and doesn't need to be shuffled.

Optimized Spark SQL: Use Broadcast Join

```
# Broadcast the smaller table
from pyspark.sql.functions import broadcast
optimized_df = users_df.join(
    broadcast(countries df),
    users df.country code == countries df.country code,
    "inner"
)
optimized_df.select("user_id", "name", "country_name").show()
```

✓ Alternate (SQL syntax):

```
spark.sql("""
SELECT /*+ BROADCAST(c) */
 u.user id, u.name, c.country name
FROM users u
JOIN countries c
ON u.country_code = c.country_code
```

Why This Works:

- **Broadcast join** sends the small table (countries) to all executors.
- Avoids shuffle faster performance, especially with large users dataset.
- Works best when one table is small (<10 MB by default) configurable.

Performance Improvement:

Metric	Unoptimized	Optimized (Broadcast)
Shuffle Read Size	High	Low
Join Time	~12s	~3s
Stage Failures	Possible	Fewer

Perfect! Let's continue with the next Spark SQL optimization case studies — following the same structure of topic explanation, use case, and optimized vs. unoptimized code.

Case Study 2: Predicate Pushdown in Spark SQL

Topic: Predicate Pushdown

Explanation:

Predicate Pushdown means applying filters at the data source level, so that Spark reads only the relevant data. This:

- Reduces I/O and network usage.
- Speeds up query execution.
- Works best with formats like **Parquet**, **ORC**, and JDBC sources.

Use Case:

You're querying a **Parquet** dataset of 1 TB of sales data, but only need records from January 2024.

X Unoptimized Spark SQL:

```
# Reading full file then filtering
df = spark.read.parquet("s3://data-lake/sales/")
filtered = df.filter("sale_date >= '2024-01-01' AND sale_date < '2024-
02-01'")
filtered.select("sale id", "amount").show()
```

Problem:

If schema inference is triggered or data is cached early, Spark may read the entire 1 TB, then filter in memory — wasting I/O and time.

Optimized Spark SQL (Pushdown Enabled):

```
# Apply filter during read itself (pushdown)
df = spark.read \
    .option("basePath", "s3://data-lake/sales/") \
    .parquet("s3://data-lake/sales/year=2024/month=01/")

df.select("sale_id", "amount").show()
```

Or, using a path and partition filter:

```
df = spark.read.parquet("s3://data-lake/sales/")
filtered = df.filter("year = 2024 AND month = 1")
filtered.select("sale_id", "amount").show()
```

Why This Works:

- Pushdown filters before loading data into Spark.
- Works best when the data is partitioned by date fields.
- Spark reads only year=2024/month=01/, skipping the rest.

Performance Improvement:

Metric	Unoptimized	Optimized (Pushdown)
Data Read	1 TB	~80 GB (Jan only)
Read Time	~90s	~12s
CPU Usage	High	Low

Case Study 3: Caching and Persistence

Topic: Caching and Persistence

Explanation:

If a DataFrame is reused multiple times in a pipeline or across queries, caching avoids recomputation.

Use .cache() or .persist(StorageLevel) to store it in memory or disk.

Use Case:

You run 5 analytics queries on a heavy transformation of a 100M row DataFrame.

X Unoptimized:

```
# Expensive transformation computed 5 times
transformed = df.withColumn("net_price", df.price * (1 - df.discount))
transformed.filter("category = 'electronics'").count()
transformed.groupBy("category").agg({"net_price": "avg"}).show()
# ... and 3 more actions
```

Optimized:

```
from pyspark import StorageLevel

# Cache after first transformation
transformed = df.withColumn("net_price", df.price * (1 -
```

```
df.discount)).cache()

# Run queries
transformed.filter("category = 'electronics'").count()
transformed.groupBy("category").agg({"net_price": "avg"}).show()
# ... other queries
```

Or use .persist(StorageLevel.MEMORY_AND_DISK)if memory is tight.

Why This Works:

- Without caching: Spark recomputes lineage for each action.
- With caching: Transformation is computed once, reused efficiently.

Performance Improvement:

Metric	Unoptimized	Optimized (Cached)
Total Time (5 queries)	~180s	~60s
CPU Load	High	Lower
Memory Usage	Low	Higher (intentional)

✓ Case Study 4: Skew Join Optimization in Spark SQL

Topic: Skew Join Handling

Explanation:

Data skew occurs when one or more keys in a join have disproportionately more rows than others. This causes:

- One executor to do most of the work.
- Long-running stages and uneven load.
- Possible out-of-memory errors.

Use Case:

You are joining a transactions table (2B records) with a merch ant table (500K records). But 60% of the transactions belong to a single merchant.

V Unoptimized Spark SQL:

```
# Skewed join on merchant id
transactions df.join(merchants df, "merchant id").select("txn id",
"merchant_name").show()
```

A Problem:

- Most merchant ids are balanced.
- One merchant id (say, M12345) appears 1.2B times.
- This causes a hot partition, poor performance, and executor OOM.

Optimized Spark SQL:

Option 1: Salting the skewed key (manual skew fix)

```
from pyspark.sql.functions import col, concat ws, lit, rand
# Add salt to transactions
salted txns = transactions df.withColumn("salt", (rand() *
10).cast("int"))
salted txns = salted txns.withColumn("skewed key", concat ws(" ",
col("merchant id"), col("salt")))
# Duplicate skewed keys in merchants 10 times (salt replication)
replicated merchants = merchants df \
    .filter(col("merchant id") == "M12345") \
    .withColumn("salt", explode(array([lit(i) for i in range(10)]))) \
    .withColumn("skewed_key", concat_ws("_", col("merchant_id"),
col("salt")))
# Normal keys remain same
normal merchants = merchants df.filter(col("merchant id") != "M12345")
# Union replicated and normal
final merchants =
rep lic at ed mer ch ant s. uni on ByN am e(n orm a l m erc ha nts .wi th Col um
ey", col("merchant_id")))
# Final join
result = salted txns.join(final merchants,
"skewed key").select("txn id", "merchant name")
```

Option 2: Set Spark skew optimization config (automatic for > Spark 3.0):

```
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
```

Why This Works:

- Salting splits the skewed key into multiple smaller keys, balancing load.
- Adaptive Skew Join (in Spark 3.0+) automatically detects and splits large partitions at runtime.

Performance Improvement:

Metric	Unoptimized	Optimized (Salting)
Runtime	~200s	~60s
Stage Failure Risk	High	Low
Executor Memory Load I	mbalanced	Balanced

✓ Case Study 5: File Format + Partition Pruning in Spark SQL

◆ Topic: File Format and Partition Pruning

Explanation:

Two key performance boosters:

- Columnar Formats: Use Parquet/ORC instead of CSV/JSON.
- Partition Pruning: Read only needed partitions based on query filters.

Use Case:

Reading product catalog data partitioned by categor yand brand.

V Unoptimized Spark SQL:

```
# CSV read, no pruning
df = spark.read.csv("/mnt/products/")
df.filter("category = 'Electronics' AND brand = 'Samsung'").show()
```

Problem:

- CSV is row-based slow read, poor compression.
- No pruning reads entire folder structure.

Optimized Spark SQL:

```
# Use Parquet and filters
df = spark.read.parquet("/mnt/products/")
# Use partition pruning with filters
result = df.filter("category = 'Electronics' AND brand = 'Samsung'")
result.select("product_id", "price").show()
```

Or, directly specify paths:

```
# Read specific partitions (best for large data)
df =
spa rk. re ad. par qu et( "/ mnt /p rod uc ts/ cat e gor y=E le ctr oni cs /br an
)
```

Why This Works:

- Parquet is a compressed, columnar format faster read and scan.
- Spark **prunes directory partitions** at read time using filter predicates.

Performance Improvement:

Metric	CSV + No Pruning	Parquet + Pruning
Load Time	~70s	~6s
Disk Read	Full Dataset	Only Needed Parts
Compression Ratio	Low	High

Great! Let's continue with the next two Spark SQL optimization case studies:

✓ Case Study 6: Delta Lake Optimization in Spark SQL

◆ Topic: Delta Lake Optimization (ZORDER, Data Skipping, Vacuum, Compaction)

Explanation:

Delta Lake is a storage layer that brings **ACID transactions** and **schema enforcement** to Spark. But to make queries faster and scalable, you must use:

- **ZORDER**: Optimizes data layout for faster filtering on specific columns.
- Data Skipping: Leverages statistics to avoid scanning unnecessary files.
- Vacuum: Cleans up stale files.
- Compaction: Merges many small files into large ones for performance.

Use Case:

You manage a Delta table /delta /ev en twith 5 years of IoT event data. Most queries filter on device_id and event_date.

X Unoptimized Delta Lake Usage:

```
# Query without ZORDER or compaction
df = spark.read.format("delta").load("/delta/events/")
df.filter("device_id = 'D1002' AND event_date = '2023-08-01'").count()
```

Problem:

- Query scans many small files (~millions).
- No data clustering → slow scans even if partitions exist.

Optimized Delta Lake Usage:

Step 1: Compaction (CoalescingFiles)

```
# Coalesce into fewer files
(
    spark.read.format("delta").load("/delta/events/")
    .repartition(10) # Tune as needed
    .write.option("dataChange", "false")
    .format("delta")
    .mode("overwrite")
    .save("/delta/events/")
)
```

Step 2: Z-Ordering on Filter Columns

```
OPTIMIZE delta.`/delta/events/` ZORDER BY (device_id, event_date)
```

Note: OPTIMIZE & Z ORD Fife **Databricks-only** features (or Delta Lake OSS 2.0+ with Photon).

Step 3: Vacuum Old Files

```
VACUUM delta.`/delta/events/` RETAIN 168 HOURS
```

Why This Works:

- ZORDER clusters column values across files to reduce file scans.
- Data skipping uses min/max stats to skip irrelevant files.
- Vacuum deletes obsolete files keeps storage clean.
- Compaction improves read performance and parallelism.

Performance Improvement:

Metric	Unoptimized	Optimized (ZORDER + Compact)
Query Time	~120s	~8s
Files Scanned	~800K	~100
Disk IO	High	Minimal

Case Study 7: Aggregation Optimization in Spark SQL

Topic: Aggregation Tuning

Explanation:

Aggregations can be costly, especially on large datasets. You can optimize them via:

- Partial aggregation (map-side combine)
- Approximate aggregations (approx_count_distinct)
- Efficient group keys (avoid high-cardinality)

Use Case:

You analyze user behavior on an e-commerce site with 5 billion click records and need to:

Count distinct users per region

Calculate total time spent per session

X Unoptimized:

```
# Heavy exact aggregation
df. gro up By( "re gi on"
). aggun(tDistinct("user_id").alias("unique_users"),
        sum("session_time").alias("total_time")
).show()
```

Optimized:

Option 1: Use Approximate Aggregation for Large Data

```
from pyspark.sql.functions import approx_count_distinct

df.groupBy("region").agg(
    approx_count_distinct("user_id").alias("unique_users"),
    sum("session_time").alias("total_time")
).show()
```

Option 2: Enable Map-Side Combine

```
spark.conf.set("spark.sql.codegen.aggregate.mapSideCombine", "true")
```

Option 3: Use Bucketed Tables if grouping by same column repeatedly

```
CREATE TABLE user_logs_bucketed
USING PARQUET
CLUSTERED BY (region) INTO 32 BUCKETS
```

Why This Works:

- Approximate methods use probabilistic data structures (like HyperLogLog++).
- Map-side combine reduces shuffle size by aggregating locally first.
- Bucketing helps Spark avoid full shuffle during grouping.

Performance Improvement:

Metric	Unoptimized	Optimized
Aggregation Time	~90s	~12s
Memory Usage	High	Lower
Shuffle Data	Large	Reduced

Summary of All Optimization Techniques So Far

Case Study	Key Technique
Join Optimization	Broadcast joins
Predicate Pushdown	Filtering during read
Caching and Persistence	Avoid recomputation
Skew Join Optimization	Salting / Adaptive skew join
File Format & Partition Pruning	Use Parquet + prune with filters
Delta Lake Optimization	ZORDER, Vacuum, Compaction
Aggregation Optimization	Map-side, approximate, bucketing

Let's build your Data **Engineering journey** together!

https://seekhobigdata.com/