Estratégia empresarial de TI

Aula 3 – Teoria dos jogos (2)

Prof. E. A. Schmitz

Elementos de um Jogo

Modelo estratégico de um jogo contém os seguintes elementos básicos:

```
N = \{P_1, P_s, ... P_n\} (conjunto de n jogadores) (1)

S_i = \{s_{i1}, s_{i2}, ..., s_{im}\} (conjunto de estratégias para cada jogador P_i) (2)

S_p = \{S_1 \times S_2 \times ... S_n\} (conjunto de perfís estratégicos) (3)

U_i : Sp \rightarrow R (função utilidade para o jogador P_i) (4)
```

Notação prática:

S_{-i} = (conjunto de todas estratégias dos outros jogadores exceto P_i)

4

Qual a decisão de P1?

P1/P2	I	r
U	5,1	0,2
М	1,4	4,1
D	4,2	2.3

- 1-Não existe dominância!
- 2-Jogador pode usar sua crença (*a priori belief*) sobre o comportamento do adversário
- 3.Se P1 acredita que prob(l)=prob(r)=0,5 então:

Valor esperado (U,0.5,0.5)=0.5*5+0.5*0=2.5

Valor esperado(M,0.5,0.5)=0.5*1+0.5*4=2.5

Valor esperado(D,0.5,0.5)=0.5*4+0.5*2=3.0

4-A melhor resposta de P1, dada sua crença sobre P2 é D.

4

Melhor resposta

P1/P2	I control	r
U	5,1	0,2
М	1,4	4,1
D	4,2	2.3

1A melhor resposta de P1, depende da crença sobre o comportamento de P2

- 2-seja p a estimativa a priori de P2 jogar r.
- 3-Assim podemos generalizar o resultado anterior:

$$E(U,p,1-p)=(1-p)*5+(p)*0=-5p+5$$

$$E(M,p,1-p)=(1-p)*1+(p)*4=3p+1$$

$$E(D,p,1-p)=(1-p)*4+(p)*2=-2p+4$$

4-Como varia a melhor resposta de P1 em função da crença de P1?

Equilibrio de Nash

1-Uma estratégia s_i^* é a melhor resposta ao vetor estratégico dos outros jogadores se: $u_i(s_i, s_{i-i}^*) \le u_i(s_i^*, s_{i-i}^*)$ para todas as estratégias (s_i) do jogador i.

2-Um perfil estratégico $s^*=(s_1^*, s_2^*, ..., s_N^*)$ é um NE se $u_i(s_i, s_{i-i}^*) \le u_i(s_i^*, s_{i-i}^*)$ para todos jogadores e todas as suas estratégias (i e s_i).

3-Justificativa: *minimum regret* (para todos)

Exemplo 1

	R	L
U	-3,-3	0,-9
D	-9,0	-1,-1

$$S_1 = \{U,D\} S_2 = \{R,L\}$$

 $S_p = \{(U,R),(U,L),(D,R),(D,L)\}$
 $S^* = \{(U,R) \text{ pois:}$

 $U_1(D,R) \le U_1(U,R) : U \notin a \text{ melhor resposta a } R$ $U_1(D,L) \le U_1(U,L) : U \notin a \text{ melhor resposta a } L$

 $U_2(L,U) \le U_2(R,U)$: R é melhor resposta a U $U_2(L,D) \le U_2(R,D)$: R é melhor resposta a U

Exemplo 2

P1/P2	L	С	R
U	0, <u>4</u>	<u>4</u> ,0	5,3
М	<u>4</u> ,0	0, <u>4</u>	5,3
D	3,5	3,5	<u>6,6</u>

Algoritmo:

- 1-para cada ação de p2 marque a melhor resposta de 1
- 2-para cada ação de p1 marque a melhor resposta de 2
- 3-equilibrios: células onde as melhores respostas coincidem

Exemplo 3-Bertrand

	Н	М	L
Н	6,6	0,10	0,8
М	10,0	5,5	0,8
L	8,0	8,0	4,4

Exemplo 4-Batalha dos sexos

H\W	Box	Ballet
Box	3,1	0,0
Ballet	0,0	1,3

Exemplo 5-Dilema dos prisioneiros

P1/P2	Dedura	Cala
Dedura	-3,-3	0,-5
Cala	-5,0	-1,-1

Equilibrio misto de Nash

- 1-Uma estratégia mista P_i é uma randomização sobre as estratégias do jogador i. Associa uma variável aleatória P_i $S_i \rightarrow 0..1$ às estratégias S_i de P_i .
- 2-O valor esperado de uma estratégia mista P_i é o valor ponderado (por P_i) dos valores esperados de cada uma das estratégias.
- 3-Um perfil estratégico misto $(p_1^*, p_2^*, ..., p_N^*)$ é um equilibrio misto NE se para cada jogador i, p_i^* é a melhor resposta para todo p_{-i}^* .

1

Exemplo 6-Matching pennies

P1/P2	Н	Т
Н	1,-1	-1,1
Т	-1,1	1,-1

- 1-Não existe NE
- 2-Suponha que 1 joga H com prob=p e T com prob=(1-p)
- $3-E2(p2=H)=p^*-1+(1-p)^*1=1-2p$ e $E2(p2=T)=p^*1+(1-p)^*-1=2p-1$
- 4-Ambas estratégias devem ter o mesmo valor esperado (porquê?) , então E2(H)=E2(T) donde: p=1/2
- 5-O mesmo raciocínio se aplica ao jogador 2, gerando q=1/2
- 6-O equilíbrio misto de Nash é: {(0.5,0.5); (0.5,0.5)}

Exemplo 7-Batalha dos sexos

H\W	Box	Ballet
Box	2,1	0,0
Ballet	0,0	1,2

1-Quais são os equilíbrios?

Exemplo 8-Venus x Serena

V\S	r	I
R	50,50	80,20
L	90,10	20,80

1-Quais são os equilíbrios? Pay-offs são as probabilidades (%) de ganhar o ponto.