Magnetic Boundary Conditions

April 28, 2020 2:28 PM

Magnetre Meterials

Sources of Megnetism at atomic level

Electrons orbit around Nucleus

- If loop so tates along axis of torque - wentually align with B

-> spin regretic nement: ± 9×10-24 Ami

Classifying materials

Diamagnetics	purenegnetics	fenomagnetics
-> mars + mspin =0	+ mont + mspin = small	- mspin > morb
Lospin Borbit child → Bin LBout → Sup or conductors copper, gold, Silicin	→ putassium, tungsten	Some regions align ul B
→temp. insensitive	-> reduced by temp.	Lo when B removed, don't go back to initial state :- remember regretion Fields (hyskrisis)
		From, nickel, cobult
		lost after Curie temp.

n repretie dipoles/unit volume:

motal = E mi

magnetic dipule noment / unit valure

M= hm 1 5 mi A/m -> when volume -> 0

H Amperius

- smell atenie dipole nount

- smell atomic dipole nounts contributing. - pointing out of surface

-. Total bound wrent:

integrate over path 3 add effect of each is entering highlighted sorface.

はならきれ、む

Vx m = Jb -> bound wrent density

Px Fi = J -> free current donsity

Total wount passing through highlighted surface:

IT = I6 + I

$$\vec{\beta} = p_0 \mu r \vec{H} \longrightarrow \mu r = (\chi_n + 1)$$

$$\mu = \mu_0 \mu r$$

materials Behave differently at different Fi:

Magnette Boundary Conditions