Analisi 3

Serie e Trasformata di Fourier

SERIE DI FOURIER

- (Relazioni di ortogonalità) Valgono le seguenti formule:
 - 1. Se m + n > 0 allora $\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{mn}$
 - 2. Se m+n>0 allora $\int_{-\pi}^{\pi}\sin(mx)\sin(nx)\,\mathrm{d}x=\pi\delta_{mn}$
 - 3. $\forall m, n \in \mathbb{N} \text{ si ha } \int_{-\pi}^{\pi} \cos(mx) \sin(nx) \, \mathrm{d}x = 0$

Ovvero seni e coseni (interi) sono ortogonali sull'intervallo $[-\pi,\pi]$

• (Serie di Fourier) Data una funzione f definiamo Serie di Fourier la serie formale seguente

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

dove si ha $a_k=\frac{1}{\pi}\int_{-\pi}^{\pi}\cos(kx)f(x)\,\mathrm{d}x$, $b_k=\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(kx)f(x)\,\mathrm{d}x$, $c_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ikx}\,\mathrm{d}x$. Ovvero gli a_k,b_k,c_n sono legati dalle seguenti relazioni: $c_k=\frac{a_k-ib_k}{2}$ e $c_{-k}=\frac{a_k+ib_k}{2}$ $\forall k>0$

NUCLEO DI DIRICHLET

- (Nucleo di Dirichlet) $D_n(z) = \sum_{k=-n}^n e^{ikz} = \frac{\sin((n+\frac{1}{2})z)}{\sin(\frac{z}{2})}$ [Raccogliere e^{-inz} e sommare la geometrica]
- (Parità ed integrale) $D_n(z)$ è pari e si ha $\int_{-\pi}^{\pi} D_n(z) = 2\pi$ [Scambiare somma con integrale]
- (Riemann-Lebesgue per i coefficienti) Se $f \in \mathcal{L}^2(\mathbb{T})$ allora si ha $\hat{f}_n \to 0$ per $|n| \to \infty$ [Considerare la norma \mathcal{L}^2 delle code]
- (Più regolarità più decrescenza) Se $f \in C^k(\mathbb{T})$ allora $|n|^k \hat{f}_n \in \ell^2(\mathbb{Z})$. In particolare $\hat{f}_n = o(|n|^{-k})$ quando $|n| \to \infty$ [Integrare per parti la precedente]
- (fC^1 convergenza assoluta) Se $f \in C^1(\mathbb{T})$ allora la Serie di Fourier converge assolutamente [Usare GM-QM sulla precedente]
- (fC^1 convergenza delle parziali) Se $f \in C^1(\mathbb{T})$ allora $S_n(f,x) \to f(x)$ per $n \to \infty$ e $\forall x \in \mathbb{T}$ [Scrivere S_n come convoluzione tra f e D_n e moltiplicare per uno. Poi stimare la differenza con RL]
- ($f\mathcal{C}^1$ a tratti, convergenza delle parziali) Se $f \in CT0$ e la derivata esiste ovunque tranne al più in un numero finito di punti, nei quali $\exists f'_{\pm}(x_0) \in \mathbb{R}$ derivate sinistre e destre, allora si ha $S_n(f,x) \to f(x)$ quando $n \to \infty$ [Usare la parità di D_n e spezzare in due pezzi per la stima con le derivate da un lato]