Unique-Solution

September 16, 2025

1 BTK Datathon 2025 - Oturum Değer Tahmini

Bu notebook, **Unique()** takımının kullanıcı oturumlarının değerini tahmin etmek için geliştirdiği çözümü içermektedir.

1.1 İçindekiler

- 1. Veri Yükleme ve Ön İşleme
- 2. Veri Keşfi ve Analizi
- 3. Veri Önişleme ve Hazırlık Görselleştirme
- 4. Özellik Mühendisliği
- 5. Veri Setini Hazırlama
- 6. Model Eğitimi ve CV
- 7. Tahmin ve Sonuç Üretimi

1.2 1. Veri Yükleme ve Ön İşleme

```
[1]: import polars as pl
     import pandas as pd
     from sklearnex import patch_sklearn
     patch_sklearn()
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
     from datetime import datetime, timedelta
     import os
     from pathlib import Path
     # Set up plotting style
     plt.style.use('seaborn-v0_8')
     sns.set_palette("crest")
     warnings.filterwarnings('ignore')
     # Configure display options
     pd.set_option('display.max_columns', None)
     pd.set_option('display.width', None)
```

Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)

1.3 2. Veri Keşfi ve Analizi

Analiz Edilen Konular: - Train ve test setlerindeki ürün dağılımları - Ortak ve farklı ürünlerin belirlenmesi

- Oturum değerlerinin analizi - Kullanıcı ve oturum ilişkilerinin incelenmesi

```
[2]: # Get unique product_ids from train and test sets
    train_products = set(train["product_id"].unique().to_list())
    test_products = set(test["product_id"].unique().to_list())

# Find products only in train, only in test, and in both
    products_only_in_train = train_products - test_products
    products_only_in_test = test_products - train_products
    products_in_both = train_products & test_products

print(f"Products only in train: {len(products_only_in_train)}")
    print(f"Products only in test: {len(products_only_in_test)}")
    print(f"Total train products: {len(train_products)}")
    print(f"Total test products: {len(test_products)}")
```

Products only in train: 11932 Products only in test: 2912 Products in both: 14538 Total train products: 26470 Total test products: 17450

Minimum oturum değerinin **5.38** olduğunu ve bu değerin oturumlar arası tekrarlandığını görebiliyoruz.

```
[3]: train.group_by("user_session").agg(
    pl.col("user_id").n_unique().alias("user_count"),
    pl.col("session_value").first()
    ).sort("session_value", descending=True)
```

[3]: shape: (70_736, 3)

user_session	user_count	session_value
str	u32	f64
SESSION_114996	1	2328.66
SESSION_038767	1	1946.93
SESSION_165310	1	1749.42
SESSION_112650	1	1691.01
SESSION_012254	1	1137.33
•••	•••	***
SESSION_187888	1	5.38
SESSION_188433	1	5.38
SESSION_188692	1	5.38
SESSION_189478	1	5.38
SESSION_189672	1	5.38

1.4 3. Veri Ön İşleme ve Hazırlık

- Train ve test verilerinin birleştirilmesi (full_raw)
- Zaman damgalarının datetime formatına çevrilmesi
- Kullanıcı-oturum eşleştirmelerinin oluşturulması
- Test ve holdout oturumlarının belirlenmesi
- Kategori ve kullanıcı ID'lerinden sayısal özelliklerin çıkarılması

```
[4]: session_target_df = train.unique(subset=["user_session", "session_value"]).

select(["user_session", "session_value"]).sort(["user_session", "

session_value"])
```

1.4.1 3.1. Temel Veri Analizi

Oturumdaki aksiyonlar, zamansallık ve oturum değeri etiketi üzerine temel görselleştirmelerin yapılması.

```
[6]: def plot event type distribution(raw train):
         """Create event type distribution pie chart."""
         plt.figure(figsize=(10, 8))
         event_counts = raw_train['event_type'].value_counts()
         plt.pie(event_counts.values, labels=event_counts.index, autopct='%1.1f%%',__
      ⇔startangle=90)
         plt.title('Aksiyon Dağılımı', fontsize=18, fontweight='bold', pad=20)
         plt.tight layout()
         plt.show()
     def plot_event_type_counts(raw_train):
         plt.figure(figsize=(12, 8))
         event_counts = raw_train['event_type'].value_counts()
         event_counts.plot(kind='bar', edgecolor='black', linewidth=0.5)
         plt.title('Aksiyon Sayıları', fontsize=18, fontweight='bold', pad=20)
         plt.xlabel('Aksiyon', fontsize=14)
         plt.ylabel('Adet', fontsize=14)
         plt.xticks(rotation=45)
         plt.grid(axis='y', alpha=0.3)
         plt.tight_layout()
         plt.show()
     def plot_session_value_distribution(raw_train):
         plt.figure(figsize=(12, 8))
         plt.hist(raw_train['session_value'], bins=50, alpha=0.7, edgecolor='black',_
      ⇒linewidth=0.5)
         plt.title('Oturum Değer Dağılımı', fontsize=18, fontweight='bold', pad=20)
         plt.xlabel('Oturum Değeri', fontsize=14)
         plt.ylabel('Frekans', fontsize=14)
         plt.grid(axis='y', alpha=0.3)
         plt.tight_layout()
         plt.show()
     def plot daily events(raw train):
         plt.figure(figsize=(14, 8))
         daily_events = raw_train.groupby(raw_train['event_time'].dt.date).size()
         daily_events.plot(linewidth=2, marker='o', markersize=4)
         plt.title('Günlük Aksiyon Sayıları', fontsize=18, fontweight='bold', pad=20)
         plt.xlabel('Tarih', fontsize=14)
         plt.ylabel('Aksiyon Sayısı', fontsize=14)
```

```
plt.grid(True, alpha=0.3)
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
def plot_hourly_events(raw_train):
    plt.figure(figsize=(12, 8))
    hourly events = raw train.groupby(raw train['event time'].dt.hour).size()
    hourly_events.plot(kind='bar', edgecolor='black', linewidth=0.5)
    plt.title('Saatlik Aksiyon Dağılımı', fontsize=18, fontweight='bold', u
 →pad=20)
    plt.xlabel('Saat', fontsize=14)
    plt.ylabel('Aksiyon Sayısı', fontsize=14)
    plt.grid(axis='y', alpha=0.3)
    plt.tight_layout()
    plt.show()
def plot_events_by_hour(raw_train):
    plt.figure(figsize=(14, 8))
    event_hour = pd.crosstab(raw_train['event_time'].dt.hour,_
 →raw_train['event_type'])
    event_hour.plot(kind='bar', stacked=True, figsize=(14, 8))
    plt.title('Saate Göre Aksiyon Dağılımı', fontsize=18, fontweight='bold', u
 →pad=20)
    plt.xlabel('Saat', fontsize=14)
    plt.ylabel('Aksiyon Sayısı', fontsize=14)
    plt.legend(title='Aksiyon Tipi', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.grid(axis='y', alpha=0.3)
    plt.tight_layout()
    plt.show()
def plot_session_value_by_event(raw_train):
    plt.figure(figsize=(12, 8))
    session_value_by_event = raw_train.groupby('event_type')['session_value'].
 →mean().sort_values(ascending=False)
    session_value_by_event.plot(kind='bar', edgecolor='black', linewidth=0.5)
    plt.title('Aksiyon Tipine Göre Oturum Değeri', fontsize=18, L

→fontweight='bold', pad=20)

    plt.xlabel('Aksiyon Tipi', fontsize=14)
    plt.ylabel('Oturum Değeri', fontsize=14)
    plt.xticks(rotation=45)
    plt.grid(axis='y', alpha=0.3)
    plt.tight_layout()
    plt.show()
```

```
def plot_session_length_distribution(raw_train):
   plt.figure(figsize=(12, 8))
    session_lengths = raw_train.groupby('user_session').size()
   plt.hist(session_lengths, bins=50, alpha=0.7, edgecolor='black',__
 ⇒linewidth=0.5)
   plt.axvline(session_lengths.mean(), linestyle='--', linewidth=2,
               label=f'Ortalama: {session_lengths.mean():.1f}')
   plt.title('Oturum Uzunluğu Dağılımı (Oturum Başına Aksiyon Sayısı)', 🗆
 ⇔fontsize=18, fontweight='bold', pad=20)
   plt.xlabel('Aksiyon Sayısı', fontsize=14)
   plt.ylabel('Oturum Sayısı', fontsize=14)
   plt.legend(fontsize=12)
   plt.grid(axis='y', alpha=0.3)
   plt.tight_layout()
   plt.show()
def plot_log_session_value_vs_length(raw_train):
   plt.figure(figsize=(12, 8))
    session_stats = raw_train.groupby('user_session').agg({
        'session_value': 'first',
        'event_type': 'count'
   }).rename(columns={'event_type': 'event_count'})
   log session value = np.log1p(session stats['session value'])
   plt.scatter(session_stats['event_count'], log_session_value,
               alpha=0.6, s=15, edgecolors='black', linewidth=0.3)
   plt.title('Log Oturum Değeri vs Oturum Uzunluğu', fontsize=18,

¬fontweight='bold', pad=20)

   plt.xlabel('Oturum Uzunluğu (Aksiyon Sayısı)', fontsize=14)
   plt.ylabel('Log(Oturum Değeri + 1)', fontsize=14)
   plt.grid(True, alpha=0.3)
   plt.tight_layout()
   plt.show()
plot_event_type_distribution(full_raw.to_pandas())
plot_event_type_counts(full_raw.to_pandas())
plot_session_value_distribution(train.to_pandas())
plot_daily_events(full_raw.to_pandas())
plot_hourly_events(full_raw.to_pandas())
plot_events_by_hour(full_raw.to_pandas())
plot_session_value_by_event(train.to_pandas())
```

plot_session_length_distribution(full_raw.to_pandas())
plot_log_session_value_vs_length(train.to_pandas())

Aksiyon Dağılımı

Oturum Değer Dağılımı

Günlük Aksiyon Sayıları

Saatlik Aksiyon Dağılımı

<Figure size 1400x800 with 0 Axes>

Aksiyon Tipine Göre Oturum Değeri

Oturum Uzunluğu Dağılımı (Oturum Başına Aksiyon Sayısı)

Log Oturum Değeri vs Oturum Uzunluğu

1.5 4. Özellik Mühendisliği Fonksiyonları

1.5.1 4.1 Kategori Encoding

- Leave-one-out yaklaşımı ile veri sızıntısını önler
- Kategori bazında ortalama oturum değer istatistikleri hesaplar
- Event türlerine göre ayrıştırılmış özellik çıkarımı yapar

```
[7]: def calculate_value_features_optimized(train_df):
         Pre-calculate category value statistics for all sessions efficiently.
         Uses leave-one-out approach to prevent data leakage.
         Split by event_type for more granular features.
         Args:
             train_df: Training data with session_value
         Returns:
             DataFrame with session-level value features
         # Pre-calculate global statistics (session-wise aggregation first)
         session_category_values = train_df.group_by(["user_session", "category_id",_
      ⇔"event_type"]).agg([
             pl.col("session_value").first().alias("session_value")
         1)
         global_category_stats = session_category_values.group_by(["user_session", _

¬"category_id", "event_type"]).agg([
             pl.col("session_value").sum().alias("category_total_value"),
             pl.col("session_value").count().alias("category_total_count")
         ]).group_by(["category_id", "event_type"]).agg([
             pl.col("category_total_value").sum(),
             pl.col("category_total_count").sum()
         1)
         # Join global stats to session data
         session enriched = (
             train df
             .join(global_category_stats, on=["category_id", "event_type"],_
      ⇔how="left")
         )
         # Calculate leave-one-out statistics efficiently
         session_value_features = session_enriched.with_columns([
             # Category leave-one-out mean (exclude current session's contribution)
             ((pl.col("category_total_value") - pl.col("session_value")) /
              pl.max_horizontal(pl.col("category_total_count") - 1, 1)).
      →alias("category_mean_value_loo"),
```

```
# Count features (excluding current session)
        (pl.col("category_total_count") - 1).alias("category_value_count_loo")
    ]).select([
        "user_session", "category_id", "event_type", "session_value",
        "category_mean_value_loo",
        #"category_value_count_loo"
    ])
    return session_value_features
# Calculate frequencies from full_raw data (these don't contain target values_
 ⇔so no leakage)
category_freq = full_raw.group_by("category_id").agg([
    pl.col("category_id").count().alias("category_frequency")
])
# Pre-calculate value features for all sessions at once
session_value_features = calculate_value_features_optimized(train)
session_value_features.head()
```

[7]: shape: (5, 5)

user_session	category_id	event_type	session_value			
category_mean_value_loo						
str	str	str	f64	f64		
SESSION_000000	CAT_00144	ADD_CART	355.8	89.577562		
SESSION_000000	CAT_00114	REMOVE_CART	355.8	33.532143		
SESSION_000000	CAT_00242	ADD_CART	355.8	42.659385		
SESSION_000000	CAT_00266	ADD_CART	355.8	70.756034		
SESSION_000000	CAT_00268	ADD_CART	355.8	58.241233		

1.5.2 4.2 Session İçi Özellik Çıkarımı

- Oturum İstatistikleri: Event sayıları, süre, çeşitlilik metrikleri
- Davranışsal Özellikler: Dönüşüm oranları, sepet davranışları
- Temporal Özellikler: Saat dağılımları, yoğunluk metrikleri
- Sepet Analizi: Çoklu ürün sepetleri, kategori çeşitliliği
- Akış Verimliliği: Kullanıcı yolculuğu ve davranış skorları

Analizlerimizde oturum içindeki ürün ekleme ve alım yönündeki aksiyonların oturum değeri ile yüksek korelasyona sahip olduğunu gördük. Bunların korelasyon gücüne göre sıralı ağırlıklandırılmış bir toplam aksiyon skoru çıkardığımızda ise bunun modelimizi iyileştirdiğini farkettik. - BUY (4 puan): En değerli eylem, gerçek gelir getiren davranış - ADD_CART (2 puan): Orta değerli eylem, satın alma niyetini gösterir - VIEW (1 puan): Temel eylem, ilgi göstergesi ancak düşük değerli

```
[8]: import polars as pl
     def create_features(df: pl.DataFrame) -> pl.DataFrame:
         Basit feature engineering - tek DataFrame alıp feature'lı halini döner
             df: Raw event data (user_session, event_time, event_type, user_id, etc.)
         Returns:
             DataFrame with session-level features
         # Join product and category frequencies
         df_enriched = (
             .join(category_freq, on="category_id", how="left")
         )
         # Session bazında feature'lar
         features = df_enriched.group_by(["user_session"], maintain_order=True).agg(
             # Event sayıları
             pl.col("event_time").count().alias("session_event_count"),
             pl.col("event_time").first().alias("start_time"),
             (pl.col("event_type") == "VIEW").sum().alias("session_view_count"),
             (pl.col("event_type") == "ADD_CART").sum().
      →alias("session_add_cart_count"),
             (pl.col("event type") == "REMOVE CART").sum().
      →alias("session_remove_cart_count"),
             (pl.col("event_type") == "BUY").sum().alias("session_buy_count"),
             # Session süresi (saniye cinsinden)
             ((pl.col("event_time").max() - pl.col("event_time").min()).dt.
      ototal_seconds()).alias("session_duration_seconds"),
```

```
# İlk ve son event tipleri
      pl.col("event_type").first().alias("first_event"),
      pl.col("event_type").last().alias("last_event"),
      # Event tipi çeşitliliği
      pl.col("event_type").n_unique().alias("unique_event_types"),
      # Product feature'lari
      pl.col("product_id").n_unique().alias("unique_products"),
      pl.col("product id").count().alias("total product interactions"),
      # Category feature'lari
      pl.col("category_id").n_unique().alias("unique_categories"),
      pl.col("category_id").count().alias("total_category_interactions"),
  )
  # Join session value features (excluding session value to prevent leakage)
  session_value_features_no_leak = session_value_features.select([
       "user_session", "category_id", "event_type",
      "category_mean_value_loo",
  ])
  # Aggregate session value features by session and event_type
  session value agg = session value features no leak.

¬group_by(["user_session"], maintain_order=True).agg([
       # Category mean value aggregations by event_type
      pl.col("category_mean_value_loo").filter(pl.col("event_type") ==__

¬"VIEW").sum().alias("sum_category_mean_value_loo_view"),
      pl.col("category mean value loo").filter(pl.col("event type") ==___
→"ADD_CART").sum().alias("sum_category_mean_value_loo_add_cart"),
      pl.col("category_mean_value_loo").filter(pl.col("event_type") ==__
→"REMOVE_CART").sum().alias("sum_category_mean_value_loo_remove_cart"),
      pl.col("category mean value loo").filter(pl.col("event type") == "BUY").
→sum().alias("sum_category_mean_value_loo_buy"),
  ])
  # Net cart calculation per product within session, then summed
  net_cart_features = df_enriched.group_by(["user_session", "product_id"],__
→maintain_order=True).agg([
       (pl.col("event type") == "ADD CART").sum().alias("product add cart"),
       (pl.col("event_type") == "REMOVE_CART").sum().
⇔alias("product_remove_cart"),
  ]).with_columns([
```

```
(pl.col("product_add_cart") - pl.col("product_remove_cart")).
⇔alias("product_net_cart")
  ]).group_by("user_session").agg([
      pl.col("product net cart").sum().alias("session net cart count"),
       (pl.col("product_net_cart") > 0).sum().
⇒alias("session net cart unique products"),
  # Multi-product basket features (same timestamp BUY events)
  basket_features = df_enriched.filter(pl.col("event_type") == "BUY").
Group_by(["user_session", "event_time"], maintain_order=True).agg([
      pl.col("product id").count().alias("products in basket"),
      pl.col("category_id").n_unique().alias("categories_in_basket"),
  ]).group_by("user_session").agg([
      # Basket transaction features
      pl.col("products_in_basket").count().alias("basket_transaction_count"),
      pl.col("products_in_basket").max().alias("max_basket_size"),
      pl.col("products_in_basket").mean().alias("avg_basket_size"),
      pl.col("products_in_basket").sum().alias("total_basket_products"),
      # Multi-product basket indicators
       (pl.col("products_in_basket") > 1).sum().alias("multi_product_baskets"),
       (pl.col("products in basket") == 1).sum().
⇔alias("single_product_baskets"),
      # Category diversity in baskets
      pl.col("categories in basket").max().alias("max categories per basket"),
      pl.col("categories_in_basket").mean().
→alias("avg_categories_per_basket"),
       # Basket complexity score
       (pl.col("products_in_basket") * pl.col("categories_in_basket")).max().
→alias("max_basket_complexity"),
       (pl.col("products in basket") * pl.col("categories in basket")).mean().
⇔alias("avg_basket_complexity"),
  1)
  # Ratio feature'ları ayrı hesapla
  features = features.with columns([
      # Product ratios
       (pl.col("total_product_interactions") / pl.col("session_event_count")).
→alias("product_interaction_rate"),
       (pl.col("unique_products") / pl.col("session_event_count")).
→alias("product_diversity"),
      # Category ratios
```

```
(pl.col("total_category_interactions") / pl.col("session_event_count")).
→alias("category_interaction_rate"),
      (pl.col("unique_categories") / pl.col("session_event_count")).
⇔alias("category diversity"),
      (pl.col("unique_categories") / (pl.col("unique_products") + 1e-8)).
⇔alias("category_product_ratio"),
      # Conversion Metrics
      (pl.col("session_buy_count") / (pl.col("session_add_cart_count") +___
(pl.col("session_add_cart_count") / (pl.col("session_view_count") +___
→1e-8)).alias("view_to_cart_rate"),
      (pl.col("session_buy_count") / pl.col("session_event_count")).
→alias("overall_conversion_rate"),
      # Cart Behavior
      (pl.col("session_add_cart_count") - pl.col("session_buy_count")).
→alias("cart_abandonment_count"),
      (pl.col("session remove cart count") / (pl.

→col("session_add_cart_count") + 1e-8)).alias("cart_removal_rate"),
      # User Engagement
      ((pl.col("session_buy_count") + pl.col("session_add_cart_count")) / pl.
→col("session_event_count")).alias("goal_oriented_ratio"),
      (pl.col("session_view_count") / pl.col("session_event_count")).
⇔alias("browsing_ratio"),
      # Product/Category Patterns
      (pl.col("unique_products") / (pl.col("unique_categories") + 1e-8)).
→alias("products_per_category"),
      (pl.col("unique_categories") / (pl.col("unique_products") + 1e-8)).
⇔alias("categories_per_product"),
      # Last event indicator
      (pl.col("last_event") == "BUY").alias("last_event_is_purchase"),
      # Session positive event score
      (pl.col("session_buy_count")*4 + pl.col("session_add_cart_count")*2 +
→pl.col("session_view_count")*1).alias("session_positive_event_score"),
  ])
  # Temporal features
```

```
temporal_features = df_enriched.group_by(["user_session"],_
→maintain_order=True).agg([
      pl.col("event_time").dt.hour().first().alias("session_start_hour"),
      pl.col("event time").dt.weekday().first().
→alias("session_start_weekday"),
  1)
  # Session intensity features
  intensity_features = df_enriched.group_by(["user_session"],__
→maintain_order=True).agg([
      (pl.col("event_time").count() / ((pl.col("event_time").max() - pl.

col("event_time").min()).dt.total_seconds() / 60 + 1e-8)).
→alias("events_per_minute"),
      (pl.col("event_time").count() / ((pl.col("event_time").max() - pl.
Gool("event_time").min()).dt.total_seconds() / 3600 + 1e-8)).
⇔alias("events_per_hour"),
  ])
  # Additional simple features
  additional_features = df_enriched.group_by(["user_session"],_
→maintain_order=True).agg([
      # Session duration in minutes
      ((pl.col("event_time").max() - pl.col("event_time").min()).dt.
ototal_seconds() / 60).alias("session_duration_minutes"),
  ])
  # Event transition patterns ve flow efficiency
  transition_features = df_enriched.group_by(["user_session"],_
→maintain_order=True).agg([
      # Flow efficiency features
      pl.when(pl.col("event_type").first() == "VIEW").then(pl.lit(1))
      .when(pl.col("event type").first() == "ADD CART").then(pl.lit(2))
      .when(pl.col("event_type").first() == "BUY").then(pl.lit(3))
      .otherwise(pl.lit(0)).alias("session_start_efficiency"),
      pl.when(pl.col("event_type").last() == "BUY").then(pl.lit(3))
      .when(pl.col("event_type").last() == "ADD_CART").then(pl.lit(2))
      .when(pl.col("event_type").last() == "VIEW").then(pl.lit(1))
      .otherwise(pl.lit(0)).alias("session_end_efficiency"),
      # Session flow score (higher = more efficient)
      pl.when((pl.col("event_type").first() == "VIEW") & (pl.
.when((pl.col("event type").first() == "VIEW") & (pl.col("event type").
⇔last() == "ADD_CART")).then(pl.lit(2))
```

```
.when((pl.col("event_type").first() == "ADD_CART") & (pl.
Gool("event_type").last() == "BUY")).then(pl.lit(2))
       .when((pl.col("event_type").first() == "VIEW") & (pl.col("event_type").
⇔last() == "VIEW")).then(pl.lit(1))
       .otherwise(pl.lit(0)).alias("session_flow_score"),
       # Session depth (how deep user goes in funnel)
      pl.when((pl.col("event_type") == "BUY").sum() > 0).then(pl.lit(3))
       .when((pl.col("event_type") == "ADD_CART").sum() > 0).then(pl.lit(2))
       .when((pl.col("event_type") == "VIEW").sum() > 0).then(pl.lit(1))
       .otherwise(pl.lit(0)).alias("session_depth"),
  ])
   # Tüm feature'ları birleştir
  final features = (
      features
       .join(session_value_agg, on=["user_session"], how="left")
       .join(net_cart_features, on=["user_session"], how="left")
       .join(basket_features, on=["user_session"], how="left")
       .join(temporal_features, on=["user_session"], how="left")
       .join(intensity_features, on=["user_session"], how="left")
       .join(additional_features, on=["user_session"], how="left")
       .join(transition_features, on=["user_session"], how="left")
  )
  # Add value-based features after joining session value aggregations
  final features = final features.with columns([
       # Category value based features by event_type
       (pl.col("sum_category_mean_value_loo_view") / (pl.

¬col("session_view_count") + 1e-8)).alias("weighted_category_value_loo_view"),
       (pl.col("sum_category_mean_value_loo_add_cart") / (pl.
⇔col("session_add_cart_count") + 1e-8)).
→alias("weighted_category_value_loo_add_cart"),
       (pl.col("sum category mean value loo remove cart") / (pl.
⇒col("session remove cart count") + 1e-8)).
→alias("weighted_category_value_loo_remove_cart"),
       (pl.col("sum_category_mean_value_loo_buy") / (pl.
ocol("session_buy_count") + 1e-8)).alias("weighted_category_value_loo_buy"),
       # Basket behavior ratios
       (pl.col("multi_product_baskets") / (pl.col("basket_transaction_count")__

→+ 1e-8)).alias("multi_basket_ratio"),
       (pl.col("single_product_baskets") / (pl.col("basket_transaction_count")__

→+ 1e-8)).alias("single_basket_ratio"),
```

```
[9]: agg_df = create_features(full_raw)
```

1.5.3 4.3 Geçmiş ve Genel Davranış Özellikleri

- Kümülatif Metrikler: Toplam event, görüntüleme, satın alma sayıları
- Geçmiş Ortalamalar: Oturum uzunluğu, süre, aktivite ortalamaları
- Dönüşüm Oranları: Görüntülemeden satın almaya, sepete ekleme oranları
- Davranış Tutarlılığı: Mevcut oturumun geçmiş ortalamalara oranı
- Kalite Metrikleri: Oturum akışı, derinlik, verimlilik skorları
- Sepet Geçmişi: Çoklu ürün sepeti alışkanlıkları

Veriseti sentetik olduğu için kullanıcı alışkanlıklarının durağan ve ekstrapole edilebilir olduğunu gördük. Bu yüzden ürettiğimiz bazı öznitelikler look-ahead leak içeriyor.

```
[10]: historical_feat_df = (
          agg df
          .join(session_user_df, on="user_session", how="left")
          .join(session_target_df, on="user_session", how="left")
          .sort("user_id", "start_time")
          .with_columns([
              pl.col("session_event_count").cum_sum().over("user_id").
       →alias("cumsum_session_event_count"),
              pl.col("session_view_count").cum_sum().over("user_id").
       →alias("cumsum_session_view_count"),
              pl.col("session_add_cart_count").cum_sum().over("user_id").
       →alias("cumsum_session_add_cart_count"),
              pl.col("session_remove_cart_count").cum_sum().over("user_id").
       →alias("cumsum session remove cart count"),
              pl.col("session_buy_count").cum_sum().over("user_id").
       →alias("cumsum_session_buy_count"),
```

```
pl.col("session_positive_event_score").sum().over("user_id").
→alias("sum_session_positive_event_score"),
      # Historical means
      pl.col("session_event_count").mean().over("user_id").
⇒alias("historical mean session event count"),
      pl.col("session_view_count").mean().over("user_id").
→alias("historical_mean_session_view_count"),
      pl.col("session add cart count").mean().over("user id").
→alias("historical_mean_session_add_cart_count"),
      pl.col("session_remove_cart_count").mean().over("user_id").
→alias("historical_mean_session_remove_cart_count"),
      # pl.col("session net cart count").mean().over("user id").
→alias("historical_mean_session_net_cart_count"),
      pl.col("session buy count").mean().over("user id").
→alias("historical_mean_session_buy_count"),
      # Historical conversion rates (CR) and click-through rates (CTR)
      (pl.col("session buy count").cum sum().over("user id") / pl.

¬col("session_view_count").cum_sum().over("user_id")).
→alias("historical_view_to_buy_cr"),
      (pl.col("session_add_cart_count").cum_sum().over("user_id") / pl.
⇔col("session_view_count").cum_sum().over("user_id")).
→alias("historical_view_to_cart_ctr"),
      (pl.col("session_buy_count").cum_sum().over("user_id") / pl.
⇔alias("historical_cart_to_buy_cr"),
      (pl.col("session_buy_count").cum_sum().over("user_id") / pl.
⇔col("session_event_count").cum_sum().over("user_id")).
→alias("historical_buy_to_total_rate"),
      (pl.col("session_remove_cart_count").cum_sum().over("user_id") / pl.
⇔col("session_add_cart_count").cum_sum().over("user_id")).
→alias("historical_cart_abandonment_rate"),
      # Historical session counts
      pl.int_range(pl.len()).over("user_id").
⇔alias("historical_session_count") + 1,
      # Session Momentum Features - Above average indicators
      pl.when(pl.col("session_event_count") > pl.col("session_event_count").

→mean().over("user_id")).then(pl.lit(1)).otherwise(pl.lit(0)).
→alias("above_avg_session_length"),
      pl.when(pl.col("session_duration_seconds") > pl.
-col("session duration seconds").mean().over("user id")).then(pl.lit(1)).
→otherwise(pl.lit(0)).alias("above_avg_session_duration"),
```

```
pl.when(pl.col("unique_products") > pl.col("unique_products").mean().
→over("user_id")).then(pl.lit(1)).otherwise(pl.lit(0)).
→alias("above_avg_product_diversity"),
      pl.when(pl.col("unique_categories") > pl.col("unique_categories").
→mean().over("user_id")).then(pl.lit(1)).otherwise(pl.lit(0)).
→alias("above avg category diversity"),
       # User Behavior Consistency - Ratios to historical means
       (pl.col("session_event_count") / pl.col("session_event_count").mean().
⇔over("user_id")).alias("session_length_ratio"),
       (pl.col("session duration seconds") / pl.

¬col("session_duration_seconds").mean().over("user_id")).
⇔alias("session_duration_ratio"),
       (pl.col("unique_products") / pl.col("unique_products").mean().
→over("user_id")).alias("product_diversity_ratio"),
       (pl.col("unique_categories") / pl.col("unique_categories").mean().
⇔over("user_id")).alias("category_diversity_ratio"),
       # Historical Session Quality Metrics
      pl.col("session_flow_score").mean().over("user_id").
→alias("historical_mean_session_flow"),
      pl.col("session_depth").mean().over("user_id").
→alias("historical_mean_session_depth"),
      pl.col("session_start_efficiency").mean().over("user_id").
→alias("historical_mean_session_start_efficiency"),
      pl.col("session_end_efficiency").mean().over("user_id").
→alias("historical_mean_session_end_efficiency"),
       # Historical Conversion Efficiency
       (pl.col("session_add_cart_count").cum_sum().over("user_id") / pl.

¬col("session_event_count").cum_sum().over("user_id")).
→alias("historical_cart_engagement_rate"),
       (pl.col("session_add_cart_count").sum() / pl.col("session_event_count").
sum()).alias("historical_mean_cart_engagement_rate"),
      pl.col("has_multi_product_baskets").mean().over("user_id").
→alias("historical_mean_has_multi_product_baskets"),
      pl.col("has large baskets").mean().over("user id").
→alias("historical_mean_has_large_baskets"),
      pl.col("has_multi_product_baskets").sum().over("user_id").
→alias("sum_has_multi_product_baskets"),
      pl.col("has_large_baskets").sum().over("user_id").
⇔alias("sum_has_large_baskets"),
      pl.col("max_basket_coverage").sum().over("user_id").
→alias("sum_max_basket_coverage"),
```

```
# Historical Trend Indicators
      pl.when(pl.col("session_event_count") > pl.col("session_event_count").
⇒shift(1).over("user_id")).then(pl.lit(1))
      .when(pl.col("session event count") < pl.col("session event count").</pre>
⇒shift(1).over("user_id")).then(pl.lit(-1))
      .otherwise(pl.lit(0)).alias("session_length_trend"),
      pl.when(pl.col("session_duration_seconds") > pl.
→col("session_duration_seconds").shift(1).over("user_id")).then(pl.lit(1))
      .when(pl.col("session duration seconds") < pl.</pre>
Good("session_duration_seconds").shift(1).over("user_id")).then(pl.lit(-1))
      .otherwise(pl.lit(0)).alias("session_duration_trend"),
  1)
  .select([
      "user session",
      "user_id",
      "sum_session_positive_event_score",
      # Historical means
      "historical mean session event count",

¬"historical mean session view count",
      "historical_mean_session_add_cart_count", ___
"historical_mean_session_buy_count",
      # Historical conversion rates
      "historical_view_to_buy_cr", "historical_view_to_cart_ctr",
      "historical_cart_to_buy_cr", "historical_buy_to_total_rate", __
# Session count
      "historical_session_count",
      # Behavior consistency ratios
      "session length ratio", "session duration ratio",

¬"product_diversity_ratio", "category_diversity_ratio",

      # Historical quality metrics
      "historical_mean_session_flow", "historical_mean_session_depth",

¬"historical_mean_session_start_efficiency",

# Historical efficiency
      "historical_cart_engagement_rate",
```

```
# Historical basket metrics
    "sum_has_multi_product_baskets", "sum_has_large_baskets",
    "sum_max_basket_coverage",
])
)
```

1.6 5. Veri Seti Hazırlama

- final train df: Eğitim verisi (session value hedef değişkeni ile)
- final_test_df: Test verisi (tahmin yapılacak oturumlar)

Birleştirme İşlemleri: - Temel özellikler + Geçmiş davranış özellikleri - Kullanıcı-oturum eşleştirmeleri - Hedef değişken (session_value) eklenmesi

```
final_train_df = (
    agg_df
    .filter(pl.col("user_session").is_in(train_sessions))
    .join(session_user_df, on="user_session", how="left")
    .join(historical_feat_df.drop("user_id"), on="user_session", how="left")
    .join(session_target_df, on="user_session", how="left")
)
```

1.7 6. Model Eğitimi ve CV

Hedef Değişken Dönüşümü Tahmin edilen değer üst sınırı olmayan bir değer. Oturum içindeki ürün sayısı arttıkça oturumun değeri de üst sınırı olmayan şekilde artacak. Üst sınırsızlık durumu ağaç temelli modeller için bir problem oluşturuyor. Ağaçlar extrapolation senaryosuna çalışmaya elverişli olmadıkları için etiket değerimizi doğrudan oturum değeri olarak değil, oturum değerinin değerle korelasyonu yüksek aksiyon sayılarına oranı olarak seçtik. Yarışma esnasında gözle görülür bir iyileşmeyi de bu değişiklik ile aldık. - Katsayı Tahmini: session_value / session_positive_event_score - Geri Dönüşüm: Tahmin × katsayı = session_value - NaN ve Inf değerler için önlem

1.7.1 6.1 CV Stratejisi

- StratifiedGroupKFold: Kullanıcı bazlı gruplamalar ile 10-fold CV
- Hedefi Düzgün Dağıtma: Katsayı değerlerin quantile'larına göre stratification
- Grup Korunumu: Aynı kullanıcıya ait oturumlar farklı foldlara dağılmıyor

```
[]: from sklearn.model_selection import GroupKFold, KFold, StratifiedGroupKFold
```

1.8 6.2 Model Eğitimi

1.8.1 6.2.1 Model Blending

VotingRegressor ile Birleştirilen Modeller: - LightGBM Model 1: Tweedie 1.11 power ile - LightGBM Model 2: Standard Tweedie ile - CatBoost Model: RMSE objektifi ile

1.9 6.3 Model Validasyonu

1.9.1 6.3.1 Model Performans Değerlendirmesi

- Fold Bazında MSE: Her fold için ayrı performans metrigi
- Overall OOF MSE: Tüm out-of-fold tahminlerin genel performansı

```
[]: import lightgbm as lgb
    from lightgbm import LGBMRegressor
    from sklearn.metrics import mean_squared_error
    from sklearn.ensemble import VotingRegressor
    import numpy as np
    from catboost import CatBoostRegressor
    from xgboost import XGBRegressor
    import pandas as pd

cat_features = [
        "first_event", "last_event",
      ]

# Define multiple parameter sets for blending
lgb_params_1 = {
        'objective': 'tweedie',
        'tweedie_variance_power': 1.11,
```

```
'metric': 'mse',
    'boosting_type': 'gbdt',
    'n_estimators': 1000,
    'max_depth': 3,
    'feature_fraction': 0.7,
    'bagging_fraction': 0.7,
    'bagging_freq': 20,
    'random_state': 1,
    'verbose': -1
}
lgb_params_2 = {
    'objective': 'tweedie',
    'metric': 'mse',
    'boosting_type': 'gbdt',
    'n_estimators': 1000,
    'max_depth': 3,
    'feature_fraction': 0.7,
    'bagging_fraction': 0.7,
    'bagging_freq': 20,
    'random_state': 1,
    'verbose': -1
}
catboost_params = {
    'iterations': 1000,
    'depth': 6,
    # 'learning_rate': 0.1,
    'loss_function': 'RMSE',
    'random_seed': 1,
    'cat_features': cat_features,
    'verbose': False
}
feature_list = [c for c in final_train_df.columns
                if c not in ["user_id", "user_session", "session_value",
 fold_scores = []
models = []
coefficients = []
oof_predictions = np.zeros(len(final_train_df))
for fold, (train_idx, val_idx) in enumerate(cv_splits):
   print(f"Fold {fold+1}...")
   train_data = final_train_df[train_idx]
   val_data = final_train_df[val_idx]
```

```
train_data = train_data.with_columns([
      pl.col("session_positive_event_score").fill_nan(1).map_elements(lambda_
ax: 1 if x == float('inf') or x == float('-inf') else x, return_dtype=pl.
→Float64).clip(lower_bound=5.3).alias("predcoeff")
  ]).fill nan(0)
  # Replace all infs with 0 in the entire dataframe
  for col in train_data.columns:
      if train_data[col].dtype in [pl.Float64, pl.Float32, pl.Int64, pl.
→Int32, pl.Int16, pl.Int8, pl.UInt64, pl.UInt32, pl.UInt16, pl.UInt8]:
          train data = train data.with columns([
              pl.col(col).map_elements(lambda x: 0 if x == float('inf') or x_
])
  val_data = val_data.with_columns([
      pl.col("session_positive_event_score").fill_nan(1).map_elements(lambda_
\rightarrow x: 1 if x == float('inf') or x == float('-inf') else x, return_dtype=pl.
→Float64).clip(lower_bound=5.3).alias("predcoeff")
  ]).fill nan(0)
  for col in val data.columns:
      if val_data[col].dtype in [pl.Float64, pl.Float32, pl.Int64, pl.Int32,
→pl.Int16, pl.Int8, pl.UInt64, pl.UInt32, pl.UInt16, pl.UInt8]:
          val_data = val_data.with_columns([
              pl.col(col).map_elements(lambda x: 0 if x == float('inf') or x_
])
  X_train = train_data[feature_list].to_pandas()
  X_val = val_data[feature_list].to_pandas()
  # Kategorikler
  if len(cat_features) > 0:
      X_train[cat_features] = X_train[cat_features].astype("category")
      X_val[cat_features] = X_val[cat_features].astype("category")
  # Target is now the coefficient (session_value /__
⇔session_positive_event_score)
  y train coeff = (train data["session value"] / train data["predcoeff"])
  y_val_coeff = (val_data["session_value"] / val_data["predcoeff"])
  model1 = LGBMRegressor(**lgb_params_1)
  model2 = LGBMRegressor(**lgb_params_2)
  model3 = CatBoostRegressor(**catboost_params)
```

```
voting_model = VotingRegressor(
         estimators=[
             ('lgb_1', model1),
             ('lgb_2', model2),
             ('catboost', model3),
        ]
    )
    # Fit the voting regressor to predict coefficient
    voting_model.fit(X_train, y_train_coeff)
    # Make predictions for coefficient
    y_pred_coeff = voting_model.predict(X_val)
    # Convert coefficient predictions back to session value for metric,
  \hookrightarrow calculation
    y_pred_session_value = y_pred_coeff * val_data["predcoeff"]
    y_val_session_value = val_data["session_value"].to_pandas()
    # Store out-of-fold predictions (in session value scale)
    oof_predictions[val_idx] = y_pred_session_value
    mse = mean_squared_error(y_val_session_value, y_pred_session_value)
    print(f"Fold {fold+1} Voting MSE (session_value): {mse:.4f}")
    fold_scores.append(mse)
    models.append(voting_model)
print(f"Mean Voting MSE: {np.mean(fold_scores):.4f}")
# Calculate overall OOF MSE
oof_mse = mean_squared_error(final_train_df["session_value"].to_pandas(),_
 →oof predictions)
print(f"Overall OOF MSE: {oof_mse:.4f}")
Fold 1...
Fold 1 Voting MSE (session_value): 163.9635
Fold 2 Voting MSE (session_value): 175.7411
Fold 3...
Fold 3 Voting MSE (session_value): 154.5049
Fold 4...
Fold 4 Voting MSE (session_value): 143.0390
Fold 5...
Fold 5 Voting MSE (session_value): 176.0720
Fold 6...
```

```
Fold 7...
     Fold 7 Voting MSE (session_value): 161.0198
     Fold 8...
     Fold 8 Voting MSE (session value): 153.4139
     Fold 9...
     Fold 9 Voting MSE (session value): 151.0912
     Fold 10...
     Fold 10 Voting MSE (session_value): 165.8822
     Mean Voting MSE: 161.5494
     Overall OOF MSE: 161.5827
[16]: fold_scores
[16]: [163.96352778719455,
       175.74114028789597,
       154.50490616446422,
       143.03902231047908,
       176.07201734941697,
       170.76613867019915,
       161.0198237459633,
       153.41390272016613,
       151.09124555804172,
       165.88219325735173]
[17]: print(f"Mean Voting MSE: {np.mean(fold_scores):.4f}")
```

Mean Voting MSE: 161.5494

1.10 7. Tahminlerin Üretilmesi

• Yarışma submission için test seti tahminleri

Fold 6 Voting MSE (session_value): 170.7661

- Tüm fold modellerinin ortalaması
- Alt sınır (5.0) uygulaması

```
pl.col(col).map_elements(lambda x: 0 if x == float('inf') or x ==_u
float('-inf') else x, return_dtype=pl.Float64)
])

for model in models:
    X_submission = final_test_df[feature_list + ["predcoeff"]].to_pandas()
    X_submission[cat_features] = X_submission[cat_features].astype("category")

    test_pred = model.predict(X_submission[feature_list]) *_u
    \[
\[
\times X_submission["predcoeff"]
    \]
    test_preds.append(test_pred)

test_preds = np.mean(test_preds, axis=0)

preds_df = final_test_df.with_columns(pl.Series(test_preds).
    \[
\times alias("session_value"))
```

```
[19]: out_df = sub.drop("session_value").join(preds_df.select("user_session",__
      # Create a mapping from session_target_df for faster lookup
     session_target_mapping = session_target_df.select("user_session",_
      \# Join with the session target values and use coalesce to prioritize target
      ⇔values
     out df = out df.join(
         session_target_mapping.rename({"session_value": "target_session_value"}),
         on="user_session",
         how="left"
     ).with_columns(
         pl.coalesce("target_session_value", "session_value").alias("session_value")
     ).drop("target_session_value").with_columns(
         pl.col("session_value").clip(lower_bound=5.0)
     out df.write csv("submission.csv")
```

1.11 9. Feature Importance

[20]:	feature	importance
54	weighted_category_value_loo_view	907
29	sum_category_mean_value_loo_view	497
55	<pre>weighted_category_value_loo_add_cart</pre>	472
45	session_start_hour	363
28	session_positive_event_score	254
30	<pre>sum_category_mean_value_loo_add_cart</pre>	228
64	sum_session_positive_event_score	226
46	session_start_weekday	205
69	historical_mean_session_buy_count	165
81	historical_mean_session_depth	157
56	weighted_category_value_loo_remove_cart	148
5	session_duration_seconds	138
47	events_per_minute	131
79	<pre>category_diversity_ratio</pre>	125
87	sum_max_basket_coverage	118
77	session_duration_ratio	115
75	historical_session_count	114
76	session_length_ratio	109
83	historical_mean_session_end_efficiency	108
78	<pre>product_diversity_ratio</pre>	106
82	historical_mean_session_start_efficiency	96
65	historical_mean_session_event_count	95
31	<pre>sum_category_mean_value_loo_remove_cart</pre>	94
67	historical_mean_session_add_cart_count	85
66	historical_mean_session_view_count	80
23	goal_oriented_ratio	80
68	historical_mean_session_remove_cart_count	73
74	historical_cart_abandonment_rate	65
16	category_diversity	63
14	product_diversity	63
33	session_net_cart_count	59
11	unique_categories	58
22 32	cart_removal_rate	52 52
52 57	sum_category_mean_value_loo_buy	52 51
80	<pre>weighted_category_value_loo_buy historical_mean_session_flow</pre>	47
84	historical_mean_session_riow historical_cart_engagement_rate	47
17	category_product_ratio	45
48	events_per_hour	43
71	historical_view_to_cart_ctr	43
49	session_duration_minutes	39
19	view_to_cart_rate	36
18	cart_to_purchase_rate	35
24	browsing_ratio	35
25	products_per_category	33
61	max_basket_coverage	31
V-1		01

51	session_end_efficiency	30
3	session_remove_cart_count	29
70	historical_view_to_buy_cr	29
72	historical_cart_to_buy_cr	28