

ENGR 544, Life Cycle Assessment and Management School of Engineering, Faculty of Applied Science The University of British Columbia (Okanagan)

Chapter 8, Rate of Return (ROR) Analysis: Multiple Alternatives

- 1. ROR analysis requires incremental analysis
- 2. Calculation of incremental cash flow (CF)
- 3. Interpretation of ROR (Δi^*) on incremental CF
- 4. Select alternative by Δi^* based on PW relation
- 5. Select best from several alternatives using incremental ROR method

ROR Analysis Requires Incremental Analysis

Why ROR Incremental Analysis is Necessary (1)

Assume there are two projects; must select one

- Selecting an alternative with the larger ROR may not yield the best return on available capital, if not all funds are used for the project.
- Must consider weighted average of total capital available.
- Funds not committed in a project are assumed to earn at the MARR (minimum attractive rate of return).

Example:

\$90,000 is available for investment and MARR = 16% per year. Alternative A can earn 35% per year on an investment of \$50,000. B can earn 29% per year on an investment of \$85,000. Determine the overall weighted ROR averages.

Overall
$$ROR_A = [50,000(0.35) + 40,000(0.16)] / 90,000 = 26.6\%$$

Overall $ROR_B = [85,000(0.29) + 5,000(0.16)] / 90,000 = 28.3\%$

Which investment is better economically -- A or B?

Why ROR Incremental Analysis is Necessary (2)

If selection basis is larger ROR:

Select alternative A (wrong answer)

If selection basis is larger overall ROR:

Select alternative B (correct approach)

Conclusion:

- > To use an incremental ROR analysis for a correct selection of ME alternatives.
- To conduct an incremental ROR analysis, it is necessary to calculate the incremental cash flow series over the lives of the alternatives.

Calculation of Incremental CF: Equal Lives

Incremental cash flow = cash flow_B - cash flow_A where larger initial investment is for Alternative B

Example:

Either of two cost alternatives with <u>equal expected lives</u> can be selected for a grinding process. Tabulate the incremental cash flows.

	Quiet (Q)	Whisper (W)	W - Q	
Investment, \$	-40,000	-60,000	-20,000	
Annual Operating Cost (AOC), \$/year	-25,000	-19,000	+6,000	
Salvage value, \$	+8,000	+10,000	+2,000	
Incremental CF is shown as (W - Q) column				

The (incremental) ROR on the extra \$20,000 investment in W will determine which alternative to select

Incremental ROR Evaluation Procedure

Procedure for two alternatives A and B; B has larger first cost

- 1. Order alternatives by increasing initial investment cost
- 2. Develop <u>incremental CF series</u>
- 3. Draw incremental cash flow diagram, if needed
- 4. Set up PW = 0 relation and find Δi_{B-A}^* (Can use AW or FW)
- 5. Select economically better alternative

If $\Delta i_{B-A}^* > \text{MARR}$, select B; otherwise, select A

Example: Incremental ROR Evaluation (1)

Either of the cost alternatives shown below can be used in a chemical refining process. If the MARR is 15% per year, determine which should be selected on the basis of ROR analysis

	A	В
First cost, \$	40,000	60,000
Annual cost, \$/year	25,000	19,000
Salvage value, \$	8,000	10,000
Life, years	5	5

Example: Incremental ROR Evaluation (2)

Solution, using procedure

	A	В	$\mathbf{B} - \mathbf{A}$
First cost, \$	-40,000	- 60,000	- 20,000
Annual cost, \$/year	-25,000	- 19,000	+ 6000
Salvage value, \$	+ 8,000	+ 10,000	+ 2000
Life, years	5	5	

 $PW = 0 = \Delta \text{first cost} + \Delta \text{AOC} (P/A, \Delta i^*, n) + F(P/F, i^*, n)$

Write ROR equation of incremental CF series based on PW = 0

$$0 = -20,000 + 6000(P/A, \Delta i^*, 5) + 2000(P/F, \Delta i^*, 5)$$

Solve for Δi^* and compare to MARR

Spreadsheet function: = RATE(5, 6000, -20000, 2000) displays 17.2%

$$\Delta i_{B-A}^* = 17.2\% > \text{MARR} = 15\%$$

ROR on \$20,000 extra investment is acceptable: Select B

Class Participation 25: Incremental ROR Comparison (Two Alternatives)

Polytec Chemical, Inc. must decide between two additives to improve the dry-weather stability of its low-cost acrylic paint. Additive A will have an equipment and installation cost of \$125,000 and an annual cost of \$55,000. Additive B will have an installation cost of \$175,000 and an annual cost of \$35,000. If the company uses a 5-year recovery period for paint products and a MARR of 20% per year, which process is favored on the basis of an incremental rate of return analysis? Also, write the function to display Δi^* .

Incremental ROR Analysis of Multiple (> 2) Alternatives

Incremental ROR Analysis of Multiple (> 2) Alternatives

General criteria: Select one alternative requiring the largest investment that has an extra investment over another justified alternative

Procedure for multiple ME alternatives

- 1. Order alternatives from smallest to largest initial investment
- 3. Determine incremental CF between defender and challenger (next lowest-cost alternative). Set up incremental ROR relation using PW, AW, or FW relation
- 4. Calculate Δi^* on incremental CF (using factors or IRR function)
- 5. If $\Delta i^* \geq \text{MARR}$, eliminate defender; challenger becomes new defender against next alternative. If $\Delta i^* < \text{MARR}$, remove challenger; defender remains
- 6. Repeat steps (3) through (5) until only one alternative remains. Select it.

Example: ROR for Multiple Alternatives

Five alternatives are under consideration for improving visitor safety and access to additional areas of a national park. If all alternatives are considered to <u>last 30 years</u>, determine which one should be selected on the basis of an incremental ROR analysis and $\frac{MARR}{MARR} = 10\%$

	A	В	C	D	\mathbf{E}
First cost, \$ millions	20	40	35	45	70
Annual M&O cost, \$ millions	3.0	0.5	1.0	0.3	0.5

Solution: Rank by increasing initial cost: A, C, B, D, E; lives are equal at 30; use PW basis and determine Δi^* values using

PW = 0 = Δ first cost + Δ M&O(P/A, Δi^* , 30) or the <u>RATE</u> function

C vs. A:

 $PW = 0 = -15 + 2(P/A, \Delta i^*, 30)$ or

<u>RATE</u> function: RATE(30, 2, -15) displays $\Delta i^* = 13.0\% > MARR$, So (eliminate A)

	A	В	C	D	E
First cost, \$ millions	20	40	35	45	70
Annual M&O cost, \$ millions	3.0	0.5	1.0	0.3	0.5

PW = 0 = Δ first cost + Δ M&O(P/A, Δi^* , 30) or the <u>RATE</u> function

MARR = 10%

B vs. C:

PW = $0 = -5 + 0.5(P/A, \Delta i^*, 30)$ or

<u>RATE</u> function: RATE(30, 0.5, -5) displays $\Delta i^* = 9.3\% < MARR$, So (eliminate B)

D vs. C:

 $PW = 0 = -10 + 0.7(P/A, \Delta i^*, 30)$ or

<u>RATE</u> function: RATE(30, 0.7, -10) displays $\Delta i^* = 5.7\% < \text{MARR}$, So (eliminate D)

E vs. C:

PW = $0 = -35 + 0.5(P/A, \Delta i^*, 30)$ or

<u>RATE</u> function: RATE(30, 0.5, -35) displays $\Delta i^* = -4.8\% < MARR$, So (eliminate E)

Select C

Class Participation 26: Multiple Alternative (more than Two) Evaluation

Old Southwest Canning Co. has determined that any one of four machines can be used in its chili-canning operation. The cost of the machines are estimated below, and all machines have a 5-year life. If the minimum attractive rate of return is 25% per year, determine which machine should be selected on the basis of a rate of return analysis.

Machine	First Cost, \$	AOC, \$
1	28,000	20,000
2	51,000	12,000
3	32,000	19,000
4	33,000	18,000

Okanagan Campus

Chapter Summary

Chapter Summary

1. Mutually exclusive alternatives: Determine incremental cash flows.

Incremental cash flow =
$$CF_B - CF_A$$

where alternative with *larger* initial investment is **B**

Use the relation PW = 0 to find Δi^* , the incremental ROR Eliminate B if $\Delta i^* <$ MARR; otherwise, eliminate A

- 2. For multiple (> 2) alternatives, compare two at a time and eliminate alternatives until **only** one acceptable alternative remains.
- 3. Independent projects: Compare i^* for each project against DN and select all that have $i^* \ge MARR$.

Because learning changes everything.®

www.mheducation.com