

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2013)

PROVA DE QUÍMICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 35 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- 3. Para cada pergunta existem quatro alternativas de resposta. Só **uma** é que está correcta. Assinale **apenas** a alternativa correcta.
- 4. Para responder correctamente, basta **marcar na alternativa e**scolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- 6. No fim da prova, entregue **apenas** a Folha de Respostas. **Não será aceite** qualquer folha adicional.
- 7. Não é permitido o uso da máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

PROVA DE QUÍMICA

Química Geral e Inorgânica

A menor porção de um elemento que pode entrar na constituição de uma molécula

	a) Substância;	b) Matéria;	c) Eletrão;	d) Átomo.	
2.	Corpúsculos elect a) Electrões;	ricamente neutros f b) Substâncias;	ormados por agregado c) Moléculas	os de átomos chamam-se: s; d) lões.	
		,	ŕ		
3.	amostra? $Ar(I) = 127,0$				
	 a) 0,25 mol de mo b) 1,5x10²³ moléc 	oléculas;	c) 0,45 mol c	de moléculas;	
	b) 1,5x10 moleculas,		a) 0,25x10 ⁻¹	d) 0.25×10^{23} mol de moléculas.	
4.	substancia?	odo existem nesta porção d	le		
	a) $6,02 \times 10^{23}$ mole	éculas;	c) 1.5×10^{-23} 1	moléculas;	
	b) $1,5 \times 10^{23}$ moléc	ulas;	d) 6,02 ⁻²³ mo	oléculas.	
5.	concentração de	0,1 mol/dm3. Cald		Sulfato de cobre (II) com uto que deves utilizar par t)=16. d) 1,6 g.	
6. Dadas as seguintes configurações eletrónicas: I. 1s², 2s¹ II. 1s², 2s² III. 1s², 2s², 2p⁶, 3s¹ IV. 1s², 2s², 2p⁶, 3s², 3p² V. 1s², 2s², 2p⁶, 3s², 3p¹ VI. 1s², 2s², 2p⁶, 3s², 3p⁶, 4s² Quais os elementos que pertencem ao mesmo grupo da tabela periódica? a) I, III e V; b) III, IV e V; c) I e V; d) V e VI.					
7.	Ainda sobre a questão anterior, quais os elementos que pertencem ao mesmo período na tabela periódica?				
	a) III e V;	b) I e IV;	c) III, IV e IV;	d) I e VI.	
8.		guintes, a incorrecta o-metal que tem brill			

- d) Os Ácidos regem com metais Magnésio e Cálcio produzindo Hidrogénio.
- 9. Qual dos elementos seguintes não pertence a família indicada?
 - a) Cálcio.....metal alcalino;

- c) Fluorhalogénio;
- b) Bário.....matal alcalino-terroso;
- d) Césio.....metal alcalino.
- 10. Considere os elementos representados pelos números I, II, III, IV e as respectivas estruturas electrónicas:
 - I. 2, 8, 1;
- II. 2, 6;
- III. 2, 8, 7;
- IV. 2, 8, 2

Seleccionar, entre os pares de elementos seguintes, aquele em que pode ocorrer ligação iónica:

- a) IeIV;
- b) II e IV;
- c) II e III;
- d) II e II.
- 11. Dos seguintes elementos o que apresenta ligação metálica é?
 - a) Enxofre;
- b) Cobre;
- c) Iodo;
- d) Fósforo.
- 12. A ligação existente entre as moléculas de água num cristal de gelo é?
 - a) Covalente polar;

c) Iónica;

b) Metálica;

- d) Pontes de Hidrogénio.
- 13. O Oxigénio é um elemento químico que existe livre e combinado na natureza. Os dois cientistas envolvidos na descoberta do Oxigénio são:
 - a) Lavoisier e Priestley;

c) Dalton e Lavoisier;

b) Cavendish e Lavoisier;

d) Lavoisier e Mendeleev.

Química Física

- 14. Seja a decomposição de água oxigenada: $2 H_2O_2 \rightarrow 2 H_2O + O_2$. Em dois minutos, observa-se uma perda de 3,4g de água oxigenada. A velocidade média dessa reacção em relação ao gás oxigénio em mol/min é igual a?
 - a) 0,025mol/min;

c) 0,075mol/min;

b) 0,050mol/min;

- d) 1,00mol/min.
- 15. Na reacção de solução de ácido clorídrico com zinco metálico, o gráfico que melhor representa o comportamento das espécies em solução é:

16. A combustão do butano é representada pela equação:

$$C_4H_{10} + \frac{13}{2}O_2 \xrightarrow{\Delta} 4CO_2 + 5H_2O$$

Se houver um consumo de 4 moles de butano a cada 20 minutos de reacção, qual o número de moles de dióxido de carbono produzido em uma hora?

17.8mol/h;

- **b)** 4mol/h;
- c) 48mol/h;
- **d)** 16mol/h.
- 17. Durante a decomposição do ácido carbónico: $H_2CO_3 \rightarrow H_2O + CO_2$. Mediu-se a concentração em quantidade de matéria de gás carbónico nos tempos 10s e 20s e obteve-se o seguinte resultado em mol/L: i)10s \rightarrow 0,2 M e 20s \rightarrow : 0,8 M.

A velocidade média dessa reacção no intervalo de 10s a 20s é:

- a) 0,04M;
- **b)** 0.4M:
- c) 0.6M;
- d) 0,06M
- 18. O magnésio (Mg) reage com o oxigénio (O2) lentamente à temperatura ambiente. Se o metal for aquecido, a reacção é extremamente rápida e observa-se a liberação de grande quantidade de energia na forma de forte luz branca. Assinale o gráfico que melhor representa a variação de energia durante a transformação ocorrida.

19. Considere as reacções químicas abaixo, todas a 25°C e 1 atm de pressão:

I.
$$C_{(grafite)} + 2S_{(r\hat{o}mbico)} \rightarrow CS_{2(l)}$$

$$\Delta H = +21 \text{ kcal}$$

II.
$$C_{(grafite)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$\Delta H = -94 \text{ kcal}$$

III. $S_{(r\hat{0}mbico)} + O_{2(g)} \rightarrow SO_{2(g)}$

$$\Delta H = -71 \text{ kcal}$$

Com base nestes dados, pode-se dizer que a entalpia de combustão do sulfeto de carbono líquido, a 25°C e 1 atm de pressão é, em kcal/mol:

- a) -144;
- **b)** +186;
- c) -257;
- d) +213.
- 20. O consumo de um certo carro a álcool é de 8,0 km/L. Sabendo-se que 23.803 kJ de energia foram necessários para o automóvel percorrer um determinado trajecto, pode-se afirmar que o comprimento desse trajecto é aproximadamente de:

(Dados: $PM_{Alcool} = 46 \text{ g/mol}$; $d_{Alcool} = 0.8 \text{ g/cm}^3$; $\Delta H_{Comb,(Alcool)} = -1.368 \text{ kJ/mol}$. (Considere 100% de rendimento do motor)

- a) 4 km;
- b) 8 km;
- c) 16 km;
- d) 24 km.

21. A cal apagada, ou hidróxido de cálcio, é preparada a partir da cal virgem através da reacção: $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(s)}$ $\Delta H = -66kJ$

A equação química que descreve esse fenómeno permite afirmar que óxido de cálcio é um óxido:

- a) ácido e a reacção é endotérmica;
- c) básico e a reacção é exotérmica;
- b) neutro e a reacção é isotérmica;
- d) anfótero e a reacção é exotérmica.
- 22. Sejam dados os processos abaixo:

I.
$$Fe(s) \rightarrow Fe(l)$$

II.
$$H2O(1) \rightarrow H2(g) + 1/2O2(g)$$

III.
$$C(s) + O2(g) \rightarrow CO2(g)$$

IV. $H2O(v) \rightarrow H2O(s)$

V. NH3(g)
$$\rightarrow$$
 1/2N2(g) + 3/2H2(g)

A opção que representa somente fenómenos químicos endotérmicos é:

a) I, II e V;

c) III e IV apenas;

b) II e V apenas;

- d) II, III e V.
- 23. Observe o gráfico abaixo, que representa o diagrama de energia potencial (entalpia) em função do caminho de uma reacção sem catalisador (I) e com catalisador (II). É correcto afirmar:
 - a) a reacção é exotérmica, e uma energia de 200 kJ é liberada;
 - b) o valor do abaixamento da energia de activação para a reacção é 600 kJ;
 - c) a reacção é endotérmica, e uma energia de 800 kJ é liberada;
 - d) a energia de activação da reacção sem catalisador é 1200 kJ.

24. O CaO misturado com a água produz Ca(OH)₂, que reage lentamente com o CO₂ da atmosfera originando calcário. Ca(OH)₂(s) + CO₂(g) → CaCO₃(s) + H₂O(g) São fornecidos:

$$H_f^0$$
 do $CaCO_3(s) = -1.206,9 \text{ Kj/mol}$
 H_f^0 do $CO_2(g) = -393,5 \text{ Kj/mol}$
 H_f^0 do $Ca(OH)_2(s) = -986,6 \text{ Kj/mol}$
 H_f^0 do $H_2O(g) = -241,8 \text{ Kj/mol}$

A variação de entalpia da reacção fornecida será igual a:

a) + 68,6 Kj/mol;

c) - 68,6 Kj/mol;

b) - 34,3 Kj/mol;

- d) + 102,9 Kj/mol;
- 25. A equação química abaixo representa a reacção entre hidrogénio e cloro, produzindo cloreto de hidrogénio.

$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) + 44.0 Kcal$$

Pode-se afirmar correctamente que:

- a) a reacção não está em equilíbrio;
- c) a reacção ocorre com alteração de volume;

- b) um catalisador afecta o equilíbrio;
- d) a reacção é exotérmica.

Química Orgânica

- 26. A ordem decrescente, isto é, de cima para baixo, no IV- GA da Tabela Periódica é:
 - a) Pb Sn Ge C Si;
- c) C Si Ge Sn Pb;
- b) C Si Sn Pb Ge;
- d) Pb Sn Ge Si C.
- 27. A principal forma de tratamento industrial do carvão mineral:
 - a) Apenas a Gaseificação;
- c) A Gaseificação e a Desgaseificação;
- b) Apenas a Desgaseificação;
- d) Apenas a Coqueificação.
- 28. Isomeria é o fenómeno:
 - a) Existência de moléculas com a mesma massa molecular;
 - b) Moléculas absorverem toda a luz;
 - c) Moléculas com a mesma composição mas diferentes estruturas;
 - d) As moléculas deferirem num segmento constituído por um átomo de carbono e dois hidrogénio.
- 29. Carbono assimétrico é:
 - a) Carbono central;

- c) Carbono com duas ligações duplas;
- b) Carbono com quatro ligações diferentes.
- d) Carbono nos heterocilos.

- 30. Glucose é:
 - a) Aldose;
- b) Cetose;
- c) Pentose;
- d) Hexocetose.

- 31. A frutose é:
 - a) Aldose;
- b) Cetose;
- c) Pentose;
- d) Hexoaldose.
- 32. Nos açucares o átomo de carbono que determina a serie D é:
 - a) O mais próximo do grupo funcional principal;
- c) O átomo central;
- b) O mais afastado do grupo funcional principal;
- d) Nenhum deles.

- 33. O nome do composto ao lado.
 - a) Metil-acetato de propila;

 - b) Propanoato de isopropila; c) Etil-isopropil cetona;

 $\begin{array}{c} O \\ H_3C - CH_2 - \overset{O}{C} - O - \underset{\overset{1}{C}}{C}H - CH_3 & \text{\'e}: \\ CH_3 \end{array}$

- **d)** Metil pentanona.
- 34. Dos compostos cujas fórmulas moleculares a seguir se apresentam, indique os que pertencem à classe dos Alcanos:

I: C_3H_6 ;

II: C_2H_2 ;

III: C_6H_{14} ; IV: C_3H_8 ;

 $V: C_{12}H_{20}$

- a) I e V;
- b) II e III:
- c) III e IV;
- d) I e II.

35. Considere os compostos orgânicos representados abaixo:

I. $CH_3 - OH$

II. CH₃ – CHO

III. $CH_2 = CH - CH_2 - CH_3$

A função química a que pertence cada um destes compostos é:

- a) Álcoois, Ácidos carboxílicos e Aldeídos;
- b) Álcoois, Aldeídos e Alcanos;
- c) Ácidos carboxílicos, Aldeídos e Alcinos;
- d) Álcoois, Aldeídos e Alcenos;

FIM