Experiment Design & Operation

Computer Science

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Experimental Planning

Design Types

Design Types

- In this lecture we will consider design for:
 - One factor with two treatments
 - One factor with more than two treatments
 - Two factors with two treatments
 - More than two factors each with two treatments
- Note: There are many more designs, if you are truly interested in experimentation:
 - Read: "Design and Analysis of Experiments" by Douglas Montgomery
 - Take MATH 4458/5558 Experimental Design

Notation

- μ_i the mean of the dependent variable for treatment i
- $-y_{ij}$ the jth measure of the dependent variable for treatment i

Design Types

One Factor with Two Treatments

Completely Randomized Design

- Compares treatment means
- Same objects for both treatments
- Subjects randomly assigned to treatments
- Each subject uses one Treatment on one object
- Hypotheses:

-
$$H_0$$
: $\mu_1 = \mu_2$

-
$$H_A$$
: $\mu_1
eq \mu_2$, $\mu_1 < \mu_2$, $\mu_1 > \mu_2$

- Analyses:
 - t-test
 - Mann-Whitney

EX: Assigning Subjects to Treatments

	Treatment	Treatmen
Subjects	1	2
1	Х	
2		X
3		X
4	X	
5		Х
6	X	

Paired Comparison Design

- Makes comparisons on paired data
- Each subject uses both treatments on some object
- Compares difference to zero
- Hypotheses

$$-d_j = y_{1j} - y_{2j}$$

- μ_d is mean of diff
- H_0 : $\mu_d = 0$
- H_A : $\mu_d \neq 0$, $\mu_d < 0$, $\mu_d > 0$

EX: Assigning Subjects to Treatments

	Treatment	
Subjects	1	2
1	2	1
2	1	2
3	2	1
4	2	1
5	1	2
6	1	2

- Analyses
 - Paired t-test
 - Sign Test
 - Wilcoxson

Design Types

One Factor with more than Two Treatments

Completely Randomized Design

- Random order of tests
- Uniform experiment environment
- One object to all treatments
- Subjects assigned randomly to treatments
- Hypotheses:
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \ldots = \mu_A$
 - H_A : $\mu_i \neq \mu_j$ for at least one pair (i,j)

Example Assingment

Subjects	Treatment 1	Treatment 2	Treatment
1		Х	
2			Х
3	X		
4	X		
5		X	
6			X

- Analyses:
 - ANOVA
 - Kruskal-Wallis

Randomized Complete Block

- useful when variability between subjects is large
- each subject (block) uses all treatments and subjects form a homogeneous experiment unit
- one object to all treatments
- subjects order to treatments is random
- Hypotheses:
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \ldots = \mu_A$
 - H_A : $\mu_i \neq \mu_j$ for at least one pair (i,j)

Example Assingment

Subjects	Treatment 1	Treatment 2 *	*Treatmen
1	1	3	2
2	3	1	2
3	2	3	1
4	2	1	3
5	3	2	1
6	1	2	3

- Analyses:
 - ANOVA
 - Kruskal-Wallis

Design Types

Two Factor with Two Treatments

Two Factors

- A bit more complex
- Splits the single hypothesis into 3 separate hypotheses (each factor and the interaction)
- Notation
 - τ_i effect of treatment i on factor A
 - β_j effect of treatment j on factor B
 - $(\tau \beta)_{ij}$ effect of the interaction between τ_i and β_j

2x2 Factorial

- 2 Factors each with 2 Treatments
- Random assignment of subjects to treatment combos
- Analysis: ANOVA

Hypotheses

-
$$H_{1,0}$$
: $\tau_1 = \tau_2 = 0$

-
$$H_{1,A}$$
: at least one $\tau_i \neq 0$

-
$$H_{2.0}$$
: $\beta_1 = \beta_2 = 0$

-
$$H_{2,A}$$
: at least one $\beta_i \neq 0$

-
$$H_{3,0}$$
: $(\tau \beta)_{ij} = 0$ for all i, j

–
$$H_{3,A}$$
: at least one $(au eta)ij
eq 0$

Example Assignment

		Factor A	
		Treatment A1	Treatment A2
Factor B	Treatment B1	Subject 4, 6	Subject 1, 7
	Treatment B2	Subject 2, 3	Subject 5,8

Two Stage Nested

- two factors, each with two or more treatments
- when one factor is similar, but not identical for different treatments of the other factor then the design is hierarchical
- Hypotheses and analyses are same as 2x2 factorial

Example Assignment

Factor A			
Treatment Al		Treatment A2	
Factor B		Factor B	
Treatment B1'	Treatment B2'	Treatment B1"	Treatment B2"
Subject 1, 3	Subject 6, 2	Subject 7, 8	Subject 5, 4

Design Types

Two Factor with more than Two Treatments

2K Factorial

- 2^k combinations, all are tested
- k factors where each has 2 treatments
- Subjects randomly assigned to treatment combinations
- Hypotheses and Analyses same as for 2x2 factorial

Factor A	Factor B	Factor C	Subject
A1	B1	C1	2, 3
A2	B1	C1	1, 13
A1	B2	C1	5, 6
A2	B2	C1	10, 16
A1	B1	C2	7, 15
A2	B1	C2	8, 11
A1	B2	C2	4, 9
A2	B2	C2	12, 14

2K Fractional Factorial

- ullet As k increases the number of factor combos exponentially increases
- Often higher-order interactions can be assumed to be negligible
- Thus, main effects and low-order interactions can be evaluated using only a fraction of the combos
- Based on 3 ideas:
 - Sparsity of effect principle: it is likely that the system is primarily driven by main and low-order interaction effects
 - Projection property: a stronger design can be obtained by taking a subset of significant factors from the fractional factorial design
 - Sequential experimentation: a stronger design can be obtained by combining sequential runs of two or more fractional factorial design

Instrumentation

- Experimental Instruments are of 3 types
 - Objects (i.e., specification or code documents)
 - Guidelines (i.e., process descriptions or checklists) guide the participants
 - Measurement Instruments (i.e., questionnaires or metrics) data collection
- In planning, instruments are selected
- In execution, instruments are developed
- Overall goal: provide means for performing and monitoring the experiment without affecting experimental control.

Experimental Operation

Operation

There are three steps to experimental operation:

- **1** Preparation where subjects are choose and forms are prepared
- **Execution** where subjects perform their tasks according to different treatments and data is collected
- **3 Data Validation** where the collected data is validated

Operation

Preparation

- Better preparation -> Easier experiment execution
- Two important aspects of preparation
 - Select and inform participants
 - Prepare materials such as forms and tools

Commit Participants

- Find people whose normal work tasks are similar to the experiment's tasks
- Ensure the participants are representative of the population to which you want to generalize
 - Reduces threats to external validity
- Goal: convince the right people to participate

Instrumentation Concerns

- Before execution, all instruments must be ready, including:
 - Objects
 - Guidelines
 - Measurement forms
 - Must be handed out to participants
 - Anonymous?
 - Measurement tools
- In order to facilitate random order of trials
 - provide a personal set of instruments to each participant
- Additionally, interview questionnaires should be created prior to execution

Execution

- Experiments may be executed in many ways:
 - Simple experiments may be carried out at one occasion within a single large meeting of participants
 - Limits number of communications with participants
 - Data can be collected directly
 - Can resolve questions immediately and completely
 - More complex experiments will require a longer time span
 - Experimenter cannot participate in every detail of data collection

Data Collection

- Data Collection Approaches
 - Manual via participants filling out forms
 - Reduces experimenter effort
 - Increases inconsistencies, uncertainties and flaws
 - Manual via supported tools
 - Interviews
 - Improves communication with participants
 - Requires more effort from experimenter
 - Automatically via tools

Experimental Environment

- Experiments should not affect projects more than necessary
 - This allows effects of treatments to be readily observed
 - Too many changes reduce this visibility
- Interaction with projects is necessary to ensure the protocols are being followed

Data Validation

- · All data collected must be checked for
 - reasonableness
 - correctness
- Did participants fill in the forms correctly?
- Did participants take the experiment seriously?
 - If not their data should be removed.
- Was the experiment conducted as intended?
 - Validate via seminar with participants reviewing the data collected.
 - helps build trust

Are there any questions?

