On estimating the quantum ℓ_{α} distance

Yupan Liu ¹ Qisheng Wang ²

 1 Nagoya University o École Polytechnique Fédérale de Lausanne

²University of Edinburgh

Available on arXiv:2505.00457.

European Symposium on Algorithms (ESA 2025), Warsaw

- 1 Quantum state testing with respect to the quantum ℓ_{α} distance
- Main results: Upper bounds, lower bounds, and complexity classes
- 3 Proof techniques: BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$
- Open problems

What is quantum state testing

Basic ingredients in quantum computation:

- ▶ **Quantum states.** An n-qubit quantum state $\rho \in \mathbb{C}^{N \times N}$, where $N = 2^n$, is an N-dimensional positive semi-definite (PSD) matrix such that $\mathrm{Tr}(\rho) = 1$.
 - ▶ **Pure states.** An *n*-qubit state is *pure* if $\rho = |\psi\rangle\langle\psi|$, where $|\psi\rangle \in \mathbb{C}^N$ and $\langle\psi|\psi\rangle = 1$.
 - **Purification**. For any *n*-qubit quantum state ρ on \mathcal{H}_A , there exists a 2n-qubit pure state $|\psi\rangle$ on $\mathcal{H}_A\otimes\mathcal{H}_B$ such that $\mathrm{Tr}_B(|\psi\rangle\langle\psi|)=\rho$.
- ▶ Quantum gate. Elementary quantum gates G_i (from some universal gateset) are unitary matrices act on one or two qubits, e.g., $G_i \in \{CNOT, Had, T\}$:

$$\ket{0}^{\otimes n} \stackrel{G_1}{\rightarrow} G_1 \ket{0}^{\otimes n} \stackrel{G_2}{\rightarrow} G_2 G_1 \ket{0}^{\otimes n} \rightarrow \cdots$$

▶ **Measurement**. Projective measurement in computational basis $\{|0\rangle\langle 0|, |1\rangle\langle 1|\}$:

$$|0\rangle$$
 U $b \in \{0,1\}$

Task: Closeness testing of quantum states

Given two state-preparation circuits Q_0 and Q_1 ("quantum devices") that prepare (the purification of) n-qubit quantum states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively. Decide whether $\operatorname{dist}(\rho_0, \rho_1) \geq a(n)$ or $\operatorname{dist}(\rho_0, \rho_1) \leq b(n)$.

What is quantum state testing (Cont.)

Task: Closeness testing of quantum states

Given two state-preparation circuits Q_0 and Q_1 ("quantum devices") that prepare (the purification of) n-qubit quantum states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively. Decide whether $\operatorname{dist}(\rho_0, \rho_1) \geq a(n)$ or $\operatorname{dist}(\rho_0, \rho_1) \leq b(n)$.

- Quantum devices Q_b for $b \in \{0,1\}$ can be given either as a query oracle (*black-box model*) or a sequence of poly(n) elementary quantum gates (*white-box model*).
- ▶ The most canonical choices of closeness measures are:
 - $\Rightarrow \text{ Trace distance } T(\rho_0, \rho_1) = \frac{1}{2}Tr(|\rho_0 \rho_1|).$
 - ⋄ Total variation distance $TV(D_0, D_1) = \frac{1}{2} \sum_x |D_0(x) D_1(x)|$.

Typical goal. Minimize the "complexity" of ρ_b (or its corresponding Q_b) for $b \in \{0,1\}$:

Type of query access	Complexity measure		
Black-box model	Query complexity (the number of queries)		
White-box model	Complexity class		

Generalizing the closeness measures via the Schatten α -norm

Generalization. Define the quantum ℓ_{α} distance via the Schatten norm:

$$T_{\alpha}(\rho_0, \rho_1) := \frac{1}{2} \|\rho_0 - \rho_1\|_{\alpha} = \frac{1}{2} Tr(|\rho_0 - \rho_1|^{\alpha})^{1/\alpha}.$$

<u>Trace distance ($\alpha = 1$).</u> The closeness testing problem in this case is *hard*, with complexity (polynomially) depending on the rank r of the quantum states:

- The query complexity for estimating $\mathrm{T}(\rho_0,\rho_1)$ to within additive error ε is $\widetilde{O}(r/\varepsilon^2)$ [Wang-Zhang'23] and $\widetilde{\Omega}(r^{1/2})$ [Bun-Kothari-Thaler'17].
- ▶ The promise problem QUANTUM STATE DISTINGUISHABILITY (QSD[a,b]) is QSZK-complete* [Watrous'02, Watrous'05], and it is widely believed that BQP \subsetneq QSZK.
 - ♦ The QSZK containment holds only in the *polarizing regime* $a(n)^2 b(n) > 1/O(\log n)$, rather than the *natural regime* $a(n) b(n) \ge 1/\operatorname{poly}(n)$.
 - ⋄ The QSZK containment has recently been slightly improved beyond that in [L.'23].

Generalizing the closeness measures via the Schatten α -norm (Cont.)

Even $\alpha \in \{2,4,\cdots\}$. The closeness testing problem in this case is *easy*, with complexity *independent* of the rank r of the quantum states:

- ▶ The query complexity for estimating $\operatorname{Tr}(\rho_0\rho_1)$ to within additive error ε is $O(1/\varepsilon)$ via the SWAP test [Buhrman-Cleve-Watrous-de Wolf'01].
 - $\diamond \ \ \text{This directly applies to the case} \ \alpha = 2 \text{, since } \operatorname{Tr} \big((\rho_0 \rho_1)^2 \big) = \operatorname{Tr} (\rho_0^2) + \operatorname{Tr} (\rho_1^2) 2 \operatorname{Tr} (\rho_0 \rho_1).$
 - ⋄ In the white-box model, the corresponding closeness testing problem is in BQP.
- Similar techniques [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek'02] can estimate $\operatorname{Tr}(\rho_1\rho_2\cdots\rho_k)$ for integer k>1, and solve the case of even integers α .

Odd $\alpha=3$. The query complexity of deciding whether $T_3(\rho_0,\rho_1)=\frac{1}{2}Tr(|\rho_0-\rho_1|^3)^{1/3}\geq \varepsilon$ or $\rho_0=\rho_1$ is $O(1/\varepsilon^{3/2})$ [Gilyén-Li'19], but this *does not* extend to the estimation task.

 $\alpha>1$ in general. For real-valued $\alpha>1$, the query complexity for estimating $\mathrm{T}_{\alpha}(\rho_0,\rho_1)$ to within additive error ε is $\mathrm{poly}(r,1/\varepsilon)$ [Wang-Guan-Liu-Zhang-Ying'22], which polynomially depends on *the rank* of the states of interests.

Generalizing the closeness measures via the Schatten α -norm (Cont.²)

What about the complexity of estimating the classical ℓ_{α} distance?

Similarly, define the classical ℓ_{α} distance $\mathrm{TV}_{\alpha}(D_0, D_1) \coloneqq \frac{1}{2} (\sum_x |D_0(x) - D_1(x)|^{\alpha})^{1/\alpha}$.

- For real-valued $\alpha > 1$, the sample complexity of estimating $\mathrm{TV}_\alpha(D_0, D_1)$ to within additive error ε is $\mathrm{poly}(1/\varepsilon)$, which is *independent* of the support size of distributions D_0 and D_1 , and fewer samples are needed as α increases [Waggoner'14].
- ▶ Intuition: When $\varepsilon = \Theta(1)$, draw poly(n) samples from D_0 and D_1 , and compute the classical ℓ_{α} distance between the resulting empirical distributions.
- Issue: This intuition does not work in the quantum world... ©

Hope: Estimating the trace of quantum state powers is easy for real-valued q > 1.

The query complexity of estimating ${\rm Tr}(\rho^q)$ for real-valued q>1 is ${\rm poly}(1/\varepsilon)$ [L.-Wang'24].

▶ **Issue:** Since $|\rho_0 - \rho_1|$ is *not* a quantum state, this does not apply to $T_\alpha(\rho_0, \rho_1)$. \odot

Question: What is the complexity of estimating $T_{\alpha}(\rho_0, \rho_1)$ for real-valued $\alpha > 1$?

- 1 Quantum state testing with respect to the quantum ℓ_{α} distance
- 2 Main results: Upper bounds, lower bounds, and complexity classes
- 3 Proof techniques: BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$
- Open problems

Main results: Upper bounds

Theorem 1 (Quantum estimator for quantum ℓ_{α} distance).

Given quantum query access to the state-preparation circuit Q_0 and Q_1 for the n-qubit state ρ_0 and ρ_1 , for any real-valued $\alpha>1$, there is a quantum algorithm that estimates $T_{\alpha}(\rho_0,\rho_1)$ to within additive error ε , with query complexity $O(1/\varepsilon^{\alpha+1+\frac{1}{\alpha-1}})=\operatorname{poly}(1/\varepsilon)$.

- ► The corresponding closeness testing problem $QSD_{\alpha}[a(n),b(n)]$ decides whether $T_{\alpha}(\rho_0,\rho_1)$ is at least a(n) or at most b(n), e.g., a(n)=2/5 and b(n)=1/5.
- As a corollary, for any real-valued $\alpha > 1$ and all $a(n), b(n) \in [0, 1]$ satisfying $a(n) b(n) \ge 1/\text{poly}(n)$, $\text{QSD}_{\alpha}[a(n), b(n)]$ is in BQP.

 \blacksquare While the prior best result [Wang-Guan-Liu-Zhang-Ying'22] has complexity polynomially depending on the rank r of ρ_0 and ρ_1 , our work is rank-independent and thus provides an exponential improvement!

Main results: Complexity classes & lower bounds

Let $PUREQSD_{\alpha}$ be a restricted variant of QSD_{α} , where the states of interest are *pure*: **Theorem 2** (Computational hardness of QSD_{α}).

The promise problem QSD_{α} captures the computational power of the respective complexity classes, depending on the regime of α :

- **1 Easy regimes**. For any $1 \le \alpha \le \infty$, PUREQSD $_{\alpha}$ (with constant precision) is BQP-hard. Consequently, for real-valued $\alpha > 1$, QSD $_{\alpha}$ is BQP-complete.
- **2** Hard regimes. For any $\alpha \in (1, 1 + \frac{1}{n}]$, QSD $_{\alpha}$ is QSZK-complete*.
- \blacksquare A sharp phase transition occurs between the case of $\alpha = 1$ and real-valued $\alpha > 1!$

Our reductions used to establish the hardness also leads to quantitative (query & sample complexity) lower bounds for estimating $T_{\alpha}(\rho_0, \rho_1)$ to within additive error ε :

The regime of α	$1 < \alpha \le 1 + \frac{1}{n^{1+\delta}}$	$1 + \frac{1}{n^{1+\delta}} < \alpha \le 1 + \frac{1}{n}$	Real-valued $\alpha > 1$
Query complexity	$\widetilde{\Omega}(r^{1/2})$	$\Omega(r^{1/3})$	$\Omega(1/\varepsilon)$ & poly $(1/\varepsilon)$
Sample complexity	$\Omega(r/arepsilon^2)$		$\Omega(1/\epsilon^2)$ & poly $(1/\epsilon)$

- 1 Quantum state testing with respect to the quantum ℓ_{α} distance
- Main results: Upper bounds, lower bounds, and complexity classes
- 3 Proof techniques: BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$
- Open problems

Proof techniques: BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$

We begin by reviewing the approach in [Wang-Zhang'23] for estimating the trace distance $(\alpha = 1)$, which uses the following key identity to decompose $T(\rho_0, \rho_1)$:

$$T(\rho_0,\rho_1) = \frac{1}{2} \text{Tr} \left(\rho_0 \text{sgn} \left(\frac{\rho_0 - \rho_1}{2} \right) \right) - \frac{1}{2} \text{Tr} \left(\rho_1 \text{sgn} \left(\frac{\rho_0 - \rho_1}{2} \right) \right) = \text{Tr}(\Pi \rho_0) - \text{Tr}(\Pi \rho_1).$$

The Holevo-Helstrom measurement $\{\Pi, I - \Pi\}$ and its approx. implementation satisfy:

$$\Pi = \frac{I}{2} + \frac{1}{2} \mathrm{sgn}\Big(\frac{\rho_0 - \rho_1}{2}\Big) \quad \text{and} \quad \widetilde{\Pi} = \frac{I}{2} + \frac{1}{2} P_d^{\mathrm{sgn}}\Big(\frac{\rho_0 - \rho_1}{2}\Big).$$

Implementing Π approximately. Using Quantum Singular Value Transformation [Gilyén-Su-Low-Wiebe'19] with a "good" polynomial approximation $P_d^{\mathrm{sgn}}(x)$ of the sign function $\mathrm{sgn}(x)$ on the interval $[-1,1]\setminus (-\delta,\delta)$, with degree $d=O\left(\frac{1}{\delta}\log\frac{1}{\epsilon}\right)$, one can approx. implement the HH measurement via the Hadamard test [Kitaev'95, Aharonov-Jones-Landau'06]:

BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$ (Cont.)

Inspired by the identity ($\alpha=1$) used in [Wang-Zhang'23], we use the following identity to decompose the *powered* quantum ℓ_{α} distance $\Lambda_{\alpha}(\rho_{0},\rho_{1})=2^{\alpha-1}T_{\alpha}(\rho_{0},\rho_{1})^{\alpha}$:

$$\begin{split} \Lambda_{\alpha}(\rho_0,\rho_1) &\coloneqq \frac{1}{2} \mathrm{Tr}(|\rho_0-\rho_1|^{\alpha}) = \frac{1}{2} \mathrm{Tr}\big(\rho_0 \cdot \mathrm{sgn}(\nu)|\nu|^{\alpha-1}\big) - \frac{1}{2} \mathrm{Tr}\big(\rho_1 \cdot \mathrm{sgn}(\nu)|\nu|^{\alpha-1}\big) \\ &= \mathrm{Tr}(\Pi_{\alpha}\rho_0) - \mathrm{Tr}(\Pi_{\alpha}\rho_1), \\ \text{where} \quad \nu = \rho_0 - \rho_1 \ \text{and} \ \Pi_{\alpha} \coloneqq \frac{I}{2} + \frac{1}{2} \mathrm{sgn}(\nu)|\nu|^{\alpha-1}. \end{split}$$

Similar to the case $\alpha=1$, we can approximately implement Π_{α} via QSVT and the Hadamard test, denoted as $\widetilde{\Pi}_{\alpha}$, using an *approximate* polynomial approximation $P_d(x)$ of the function $\operatorname{sgn}(x)|x|^{\beta}$, where $\beta=\alpha-1>0$ is a real number.

Removing the rank dependence. Now we need a $P_d(x)$ that uniformly approx $\operatorname{sgn}(x)|x|^{\beta}$. The best uniform approx of x^{β} was original investigated in [Bernstein'38], and the signed version $\operatorname{sgn}(x)|x|^{\beta}$ was listed in [Totik'06] and a *non-constructive proof* is given in [Ganzburg'08]:

$$\max_{\mathbf{x} \in [-1,1]} \left| P_{d^*}^*(\mathbf{x}) - \operatorname{sgn}(\mathbf{x}) |\mathbf{x}|^{\beta} \right| \to (1/d^*)^{\beta}, \quad \text{ as } d^* \to \infty.$$

Lastly, using the Chebyshev truncation and the de La Vallée Poussin partial sum, we can compute the coefficients of $P_{d^*}^*(x)$ efficiently with degree slightly increased to $d = 2d^* - 1$.

- 1 Quantum state testing with respect to the quantum ℓ_{α} distance
- 2 Main results: Upper bounds, lower bounds, and complexity classes
- 3 Proof techniques: BQP containment of QSD $_{\alpha}$ for real-valued $\alpha > 1$
- 4 Open problems

Conclusions and open problems

Take-home messages on our work

- For the regime $\alpha \geq 1 + \Omega(1)$, estimating the quantum ℓ_{α} distance $T_{\alpha}(\rho_0, \rho_1)$ is computationally *easy* and has *rank-independent* query & sample complexities.
- ② For the regime $1 < \alpha \le 1 + \frac{1}{n}$, estimating the quantum ℓ_{α} distance $T_{\alpha}(\rho_{0}, \rho_{1})$ is computationally *hard* and the query & sample complexities are *rank-dependent*.

Discussion and open problems

While $T_{\alpha}(\rho_0, \rho_1)$ and its powered version $\Lambda_{\alpha}(\rho_0, \rho_1)$ are almost interchangeable for real-valued $\alpha > 1$, their behavior differs significantly when $\alpha = \infty$:

- $\blacktriangleright \ T_{\infty}(\rho_0,\rho_1) \text{ corresponds to the largest eigenvalue } \lambda_{max}\big(\tfrac{\rho_0-\rho_1}{2}\big).$
- $lack \Lambda_\infty(
 ho_0,
 ho_1)\in \left\{0,rac12,1
 ight\}$ for any quantum states $ho_0,
 ho_1$, and it is nonzero if and only if the states are orthogonal with at least one of them being pure.

Question: What is the computational complexity of estimating $T_{\infty}(\rho_0, \rho_1)$?

Thanks!

Proof techniques: Lower bounds via a new inequality between T and T_{α}

By carefully analyzing the properties of *orthogonal* PSD matrices ς_0 and ς_1 such that $\rho_0 - \rho_1 = \varsigma_0 - \varsigma_1$, we establish a new *rank-dependent* inequality between T and T_α :

Theorem 3 (T vs. T_{α}). For any quantum states ρ_0 and ρ_1 ,

$$\forall \alpha \in [1, \infty], \quad 2^{1-\frac{1}{\alpha}} \cdot \mathrm{T}_{\alpha}(\rho_0, \rho_1) \leq \mathrm{T}(\rho_0, \rho_1) \leq 2 \left(\mathrm{rank}(\rho_0)^{1-\alpha} + \mathrm{rank}(\rho_1)^{1-\alpha} \right)^{-\frac{1}{\alpha}} \cdot \mathrm{T}_{\alpha}(\rho_0, \rho_1).$$

- ▶ The case of $\alpha = 2$ was previously proven in [Coles'11, Coles-Cerezo-Cincio'19].
- ► The inequalities in Theorem 3 are *sharper* than those between the trace norm and the Schatten norm, such as in [Aubrun-Szarek'17]:

$$\forall \alpha \in [1, \infty], \quad \|A\|_{\alpha} \le \|A\|_1 \le \operatorname{rank}(A)^{1 - \frac{1}{\alpha}} \|A\|_{\alpha}.$$

Reductions via inequalities in Theorem 3. Consequently, we obtain:

- ▶ Reductions from the case $\alpha = 1$ (e.g., QSD) to the case $\alpha > 1$ (e.g., QSD $_{\alpha}$), with the relevant $\alpha > 1$ ranges differing between QSD $_{\alpha}$ and PUREQSD $_{\alpha}$.
- ▶ This implies that the computational hardness and lower bounds for QSD_{α} and $PUREQSD_{\alpha}$ follow from the prior works on the trace distance ($\alpha = 1$).