QUÍMICA NIVEL MEDIO PRUEBA 1

Martes 7 de noviembre del 2000 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

880-218 11 páginas

<u>ں</u>	
=	
7	
`	
·=	
_	
O	
_	
$\overline{}$	
_	
la p	
_	
_	
_	
_	

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75		
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 A1 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67	99
Ho	Es
164,93	(254)
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63	95
Eu	Am
151,96	(243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
*;	++

- 1. La masa de una molécula de agua (expresada en gramos) es
 - A. $3,0 \times 10^{-23}$
 - B. $1,8 \times 10^{-22}$
 - C. 3,0
 - D. 18,0
- 2. La fórmula del sulfato de molibdeno (III) es
 - A. MoSO₄
 - B. $Mo(SO_4)_3$
 - C. $Mo_3(SO_4)_2$
 - D. $Mo_2(SO_4)_3$

3.
$$wC_4H_9OH + xO_2 \rightarrow yCO_2 + zH_2O$$

Cuando esta ecuación está ajustada correctamente, el coeficiente, x, que corresponde al oxígeno es

- A. 6
- B. 9
- C. $\frac{13}{2}$
- D. 13

4.
$$H_2 + Cl_2 \rightarrow 2HCl$$

El hidrógeno y el cloro, reaccionan de acuerdo con la ecuación anterior. ¿Cuál será el resultado de la reacción de 2,0 moles de H_2 con 1,5 moles de Cl_2 ?

- A. 3,5 mol de HCl
- B. 1,5 mol de HCl y 0,5 mol de H₂
- C. 2,0 mol de HCl y 0,5 mol de Cl₂
- D. $3.0 \text{ mol de HCl y } 0.5 \text{ mol de H}_2$

5. 25,0 cm³ de solución de ácido sulfúrico reaccionan con 36,2 cm³ de solución de hidróxido de sodio de concentración 0,225 mol dm⁻³. La concentración del ácido es

A.
$$\frac{36,2\times0,225}{25,0}$$

B.
$$\frac{2\times36, 2\times0, 225}{25,0}$$

C.
$$\frac{36,2\times0,225}{2\times25,0}$$

D.
$$\frac{25,0}{2\times36,2\times0,225}$$

6. El número correcto de protones y la configuración electrónica del cloro es

<u>número de protones</u> <u>configuración electrónica</u>

- A. 17 2, 8, 7
- B. 17 2, 8, 8
- C. 18 2, 8, 7
- D. 18 2, 8, 8
- 7. Las masas relativas y las cargas de los protones, neutrones y electrones son:

	<u>masa</u>	<u>carga</u>
protón	1	+1
neutrón	1	0
electrón	casi 0	-1

Utilizando esos datos, ¿cuáles son los valores que corresponden a la masa y la carga del núcleo de helio?

	<u>masa</u>	<u>carga</u>
A.	2	+2
B.	2	0
C.	4	+2
D	4	0

8.		ál de las siguientes opciones presenta orden creciente con respecto a la energía de ionización de los nentos?
	A.	Li, Na, K
	B.	Na, K, Li
	C.	Na, Li, K
	D.	K, Na, Li
9.		ñaden igual número de moles de las siguientes sustancias a 1 dm³ de agua. ¿Cuál de ellas producira blución de menor pH?
	A.	Na_2O
	B.	MgO
	C.	Al_2O_3
	D.	SO_2
10.	La n	nayoría de los óxidos de los elementos no metálicos son
	A.	iónicos y básicos.
	B.	iónicos y ácidos.
	C.	covalentes y básicos.
	D.	covalentes y ácidos.
11.		ál es la fórmula de un compuesto que se forma entre un elemento A (perteneciente al grupo 2) y un nento B (perteneciente al grupo 5)?
	A.	AB
	B.	AB_2
	C.	A_2B_5
	D.	$\mathbf{A_3B_2}$

880-218 Véase al dorso

12. A medida que el número atómico aumenta dentro de un grupo, la electronegatividad de los								
	A.	dism	inuye porque el número atómico aumenta.					
	B.	disminuye porque el tamaño atómico aumenta.						
	C.	se el	eva porque aumenta el número de niveles energéticos.					
	D.	se el	eva porque el número atómico aumenta.					
13.	¿Cuál de las siguientes moléculas es no polar a pesar de tener enlaces polares?							
	A.	N_2						
	B.	O_3						
	C.	CO ₂						
	D.	NH ₃						
14.	¿Qué	molé	écula presenta mayor ángulo de enlace?					
	A.	BF ₃						
	B.	CF ₄						
	C.	NF ₃						
	D.	OF ₂						
15.			n de un gas aumenta cuando su temperatura se eleva a presión constante. Este hecho se puede ebido a un aumento de cuál(es) de las siguientes magnitudes					
		I.	Velocidad media de las moléculas					
		II.	Tamaño medio de las moléculas					
	A.	Sólo	I					
	B.	Sólo	II					
	C.	Amb	oas, I y II					
	D.	Ning	guna					

16.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\circ} = -393 \text{ kJ mol}^{-1}$
 $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ $\Delta H^{\circ} = -588 \text{ kJ mol}^{-1}$

De acuerdo con los datos anteriores, cuál es el valor de la variación de entalpía (expresada en kJ) para la reacción:

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. -87
- B. -99
- C. -173
- D. -220

17.
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$
 $\Delta H^{\circ} = -137 \text{ kJ}$

¿Qué enunciado sobre la información anterior es correcto?

- A. La energía total de los enlaces que se rompen en los reactivos es **mayor** que la energía total de los enlaces que se forman en los productos.
- B. Los enlaces que se rompen y los que se forman, tienen la misma fuerza.
- C. La energía total de los enlaces que se rompen en los reactivos es **menor** que la energía total de los enlaces que se forman en los productos.
- D. No es posible extraer ninguna conclusión sobre las sumas de las entalpías de enlaces en los productos en comparación con la de los reactivos.
- **18.** Cuando se mezclan 50 cm³ de solución de HCl de concentración 1 mol dm⁻³ con 50 cm³ de solución de NaOH de concentración 1 mol dm⁻³, la temperatura de la solución resultante aumenta en 6 °C. ¿Cuál será la variación de temperatura que se producirá al mezclar 100 cm³ de cada una de dichas soluciones?
 - A. 3 °C
 - B. 6 °C
 - C. 12 °C
 - D. 24 °C

- **19.** A medida que se eleva la temperatura de una reacción entre dos gases, aumenta la velocidad de la reacción. Este hecho se debe **principalmente** a que
 - A. aumentan las concentraciones de los reactivos.
 - B. las moléculas chocan con mayor frecuencia.
 - C. la presión ejercida por las moléculas se eleva.
 - D. aumenta la fracción de moléculas que tienen la energía necesaria para reaccionar.

20.

La curva anterior se obtiene cuando se representa la reacción de un exceso de CaCO₃ con ácido clorhídrico. ¿Cómo y por qué varía la velocidad de la reacción con el tiempo?

Velocidad de reacción

Razón

- A. disminuye
 - el HCl se diluye
- B. disminuye
- los trozos de CaCO₃ se hacen más pequeños
- C. aumenta
- la temperatura aumenta
- D. aumenta
- el CO₂ que se produce actúa como catalizador

21.

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$$

El metanol se fabrica industrialmente por medio de la reacción anterior. La expresión de equilibrio para esta reacción es

- A. $\frac{[CH_3OH]}{2[H_2][CO]}$
- B. $\frac{[CH_3OH]}{[H_2]^2[CO]}$
- C. $\frac{2[H_2][CO]}{[CH_3OH]}$
- D. $\frac{[H_2]^2[CO]}{[CH_3OH]}$

22.
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -91.8 \text{ kJ}$

La síntesis industrial de amoníaco se basa en la reacción anterior. ¿Qué factor(es) producirá(n) un aumento de concentración de amoníaco en el equilibrio?

- I. Aumento de presión
- II. Aumento de temperatura
- A. Sólo I
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno
- 23. Cuando el pH de una solución varía de 2,0 a 4,0, la concentración de iones hidrógeno
 - A. aumenta en un factor igual a 100.
 - B. aumenta en un factor igual a 2.
 - C. disminuye en un factor igual a 2.
 - D. disminuye en un factor igual a 100.
- **24.** ¿Cuál(es) de las siguientes propiedades serán iguales para soluciones separadas de concentración 1 mol dm⁻³ de un ácido fuerte y un ácido débil?
 - I. Conductividad eléctrica
 - II. Concentración de iones H⁺
 - A. Sólo I
 - B. Sólo II
 - C. Ambas, I y II
 - D. Ninguna

880-218 Véase al dorso

- **25.** El número de oxidación del azufre en el ion $HS_2O_5^-$, es
 - A. -1
 - B. +3
 - C. +4
 - D. +5

26.

$$2AgNO_3(aq) + Zn(s) \rightarrow 2Ag(s) + Zn(NO_3)_2(aq)$$

 $Zn(NO_3)_2(aq) + Co(s) \rightarrow No$ se produce reacción

$$2AgNO_3(aq) + Co(s) \rightarrow Co(NO_3)_2(aq) + 2Ag(s)$$

Utilizando la información anterior, el orden creciente de actividad de los metales es

- A. Ag < Zn < Co
- B. Co < Ag < Zn
- C. Co < Zn < Ag
- D. Ag < Co < Zn
- 27. ¿Cuántos isómeros estructurales diferentes tienen la fórmula C_4H_9C1 ?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- **28.** ¿Qué producto(s) se obtendrá(n) cuando el $CH_2 = CH_2$ reccione con Br_2 en la oscuridad?
 - A. $CH_2Br CH_2Br$
 - B. $CH_3 CHBr_2$
 - C. $CH_2 = CHBr + HBr$
 - D. $CHBr = CHBr + H_2$

29.	; Oné	compuesto	puede	presentar	actividad	óntica?
4).	1,Quc	compacsio	pucuc	presentar	actividad	opuca.

- A. CH₃COOH
- B. H₂NCH₂COOH
- C. HOCH(CH₃)COOH
- D. (CH₃)₃CCOOH

30. ¿En cuál de las siguientes opciones los compuestos numerados presentan orden **decreciente** (de mayor a menor) con respecto al punto de ebullición?

- 1. etano
- 2. fluoretano
- 3. etanol
- 4. ácido etanoico

- A. 4, 3, 1, 2
- B. 4, 3, 2, 1
- C. 3, 4, 1, 2
- D. 2, 1, 3, 4