

## **Functional Analysis I**

Homework Assignment 5

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 7 Points

Prove that for a normed space E the following conditions are equivalent:

- (i) E is separable.
- (ii)  $\{x \in E : ||x|| = 1\}$  is separable.
- (iii) There exists a sequence  $(x_n)_n \subset E$  such that  $\overline{\operatorname{span}((x_n)_n)} = E$ .

The aim of this task is to prove

 $E^*$  is separable  $\implies E$  is separable.

Towards this aim, assume that  $E^*$  is separable. Then  $S:=\{\ell\in E^*:\|\ell\|=1\}$  is separable. Let  $(\ell_n)_n$  be dense in S. Since  $\|\ell_n\|=1$  for all  $n\in\mathbb{N}$ , there exists some  $x_n\in E$  with  $\ell_n(x_n)\geq 1/2$  and  $\|x_n\|=1$ . Prove that  $\mathrm{span}((x_n)_n)$  is dense in E.

Exercise 2: 5 Points

Give the proof of Theorem 4.5 for the case  $\mathbb{K}=\mathbb{C}$ , i.e., prove the following statement. Given a  $\mathbb{C}$ -vector space E, a seminorm  $\rho:E\to\mathbb{R}$  on E, and a linear subspace  $F\subset E$ , every  $f\in F'$ , where F' denotes the algebraic dual space of F, with the property

$$|f(x)| \le \rho(x)$$
 for all  $x \in F$ ,

has an extension  $\ell \in E'$  such that  $\ell|_F = f$  and  $|\ell(x)| \le \rho(x)$  for all  $x \in E$ .

## **Definition:**

Let X be a vector space,  $C \subset X$ . Then the Minkowski functional of C is defined as

$$p_C: X \to [0, \infty], x \mapsto \inf\{\alpha > 0: x \in \alpha C\}.$$

If  $p_C(x) < \infty$ , then C absorbs x.

Exercise 3: 5 Points

Let X be a normed space and  $C \subset X$  be an open, convex subset of X with  $0 \in C$ . Show that

- (i)  $p_C$  is sublinear.
- (ii) C is absorbing: More precisely, there is some  $M \ge 0$  such that for all  $x \in X$  there holds  $p_C(x) \le M||x||$ .

(iii) 
$$C = \{x \in X : p_c(x) < 1\}.$$

*Remark:* The Minkowski functional plays an important role for instance in the geometric interpretation of the Hahn-Banach Theorem, which will be presented in the big exercise and which uses the statement of this task.

Exercise 4: 3 Points

Let X ne a normed space and  $F \subset X$  be a subspace. Show

$$F$$
 is dense in  $X \iff (\forall f \in X^*: f|_F = 0 \implies f = 0)$ 

Please submit your homework in the BEGINNING of the big exercise on Monday, May 20.