routing attacks on Bitcoin

Péter Garamvölgyi

outline

- background
- partitioning attack
- delay attack
- evaluation
- countermeasures

routing in the Internet

routing

"routing is the process of selecting a path for traffic in a network, or between or across multiple networks." *

Autonomous System (AS)

"an Autonomous System (AS) is a collection of routers whose prefixes and routing policies are under common administrative control." **

→ one or more IP prefixes (e.g. 128.6.0.0/16)

^{*} https://en.wikipedia.org/wiki/Routing

^{**} https://www.cs.rutgers.edu/~pxk/352/notes/autonomous_systems.html

routing in the Internet

- intra-AS / IGP (Interior Gateway Protocols)
 - → OSPF (Open Shortest Path First)
 - → RIP (Routing Information Protocol)
- inter-AS / EGP (Exterior Gateway Protocols):
 - → BGP (Border Gateway Protocol)

what is BGP?

- network operators establish peers over TCP connections
- routers advertise a list of network routes they have access to
- choose from alternatives based on shortest path
- preference for more specific routes

BGP hijacking

- ASes may announce IP ranges they do not own
 - e.g. AS wants to attract traffic sent to 100.0.0.0/16
 - (a) announce 100.0.0/16
 - (b) announce a more specific range, e.g. 100.0.0.0/17, 100.0.128.0/17
 - announcements more specific than /24 are usually dropped
- BGP is based on trust
- censorship, Man-in-the-Middle interception, black holes
- Pakistan's attempt to block YouTube access takes down YouTube entirely (2008)

the Bitcoin p2p protocol

- p2p broadcast/gossip network
- TCP with default port 8333
- no encryption or integrity checks
- 8 outgoing, up to 125 incoming connections by default

the Bitcoin p2p protocol

- block / transaction propagation
 - → INV "I have these blocks/transactions: ..."
 - → GETDATA request a single block or transaction by hash
 - → BLOCK send a block in response to GETDATA
- by default, nodes request block from sender of first INV containing its hash
- nodes wait for 20 minutes after GETDATA before retrying

the Bitcoin p2p protocol

- bootstrapping
 - → manually provide address (command line, database, etc.)
 - → ADDR message
 - → DNS (seed.bitcoin.sipa.be, dnsseed.bluematt.me, seed.bitcoinstats.com, ...)
 - → hardcoded default addresses / hostnames

Bitcoin network statistics

GLOBAL BITCOIN NODES DISTRIBUTION

Reachable nodes as of Wed Dec 26 2018 14:16:12 GMT+0800 (China Standard Time).

10134 NODES

24-hour charts »

Top 10 countries with their respective number of reachable nodes are as follow.

RANK	COUNTRY	NODES
1	United States	2461 (24.28%)
2	Germany	1923 (18.98%)
3	France	699 (6.90%)
4	Netherlands	486 (4.80%)
5	China	451 (4.45%)
6	Canada	406 (4.01%)
7	United Kingdom	345 (3.40%)
8	Singapore	317 (3.13%)
9	n/a	273 (2.69%)
10	Russian Federation	255 (2.52%)

More (102) »

Map shows concentration of reachable Bitcoin nodes found in countries around the world.

mining pools

- lower risk by increasing reward frequency
- Stratum protocol: JSON-RPC over TCP *
- multi-homing: multiple gateways to the network at multiple ISPs
- manager creates block template, miners find PoW for header
- inter-pool peering agreements

outline

- background
- partitioning attack
- delay attack
- evaluation
- countermeasures

partitioning attack - overview

- AS-level adversary wants to isolate a set of nodes P from the rest of the network
 - 1. divert traffic destined to P
 - 2. identify relevant traffic
 - 3. drop packets crossing partition boundary
 - 4. isolate leaking nodes

partitioning attack - overview

$$P = \{A, B, C, D, E, F\}$$

- 1. divert traffic
- 2. drop packets
- 3. isolate leaks

attack steps

- 1. divert traffic destined to P
 - → BGP hijack, announce more specific prefixes
- 2. identify relevant traffic
 - → TCP:8333, specific IP addresses, Bitcoin header (unencrypted!)
- 3. drop packets crossing partition boundary
- 4. isolate leaking nodes
 - → this is the main challenge

isolating leaks - connection types

- vulnerable connection
 - → can divert via BGP hijack
 - → uses Bitcoin protocol
- stealth connection
 - → intra-AS: cannot do BGP hijack
 - → intra-pool: unique/encrypted protocol
 - → pool-to-pool

isolating leaks - connection types

isolating leaks

- 1. include all or none of the nodes within the same AS
- 2. include <u>all or none</u> of the nodes within the same pool

3. find and exclude leaking nodes

- inspect INV messages from nodes within P
- → if they advertise blocks mined outside P, they must have a stealth connection

partitioning attack - impact

- a. targeted attack
 - → Denial-of-Service
 - → double spending
- b. network-wide attack
 - → fork => reduced mining power on both sides
 - → all blocks mined on weaker side will be discarded after the attack
 - → revenue loss for miners, risk of double spend

outline

- background
- partitioning attack
- delay attack
- evaluation
- countermeasures

delay attack - overview

- slow down block propagation
- tamper with traffic in a way that
 - 1. prevents node from receiving correct information
 - 2. but keeps connection alive

delay attack - overview

- a. intercept outgoing connection (block #42)
 - change block hash in GETDATA to #30
 - victim gets wrong block (#30); keeps waiting
 - → change another GETDATA to #42 this time
 - → victim gets #42 with a large delay
- why not just drop?
- why change the second time?

delay attack - overview

- a. intercept incoming connection
 - change data in BLOCK
 - victim drops it; keeps waiting
 - timeout after 20 minutes

outline

- background
- partitioning attack
- delay attack
- evaluation
- countermeasures

network topology

network topology

- a few ASes host most Bitcoin nodes
- a few ASes intercept the majority of Bitcoin traffic
- most Bitcoin nodes are susceptible to BGP hijacks
- mining pools are distributed and multi-homed (2-5)
- Bitcoin routing properties are stable over time

partitioning - speed

- host six Bitcoin nodes under 184.164.232.0/22
- advertise 184.164.232.0/22 using a virtual AS
- advertise 184.164.235.0/24 via another (malicious) virtual AS
- divert all traffic within 90 seconds

partitioning - speed

partitioning - impact

Isolated mining power	min. # pfxes to hijack	median # pfxes to hijack	# feasible partitions
8%	32	70	14
30%	83	83	1
40%	37	80	8
47%	39	39	1

partitioning - frequency

partitioning - recovery

31

delay - impact (single node)

% intercepted connections	50%	80%	100%
% time victim node is uniformed % total vulnerable Bitcoin nodes	63.21%	81.38%	85.45%
	67.9%	38.9%	21.7%

delay - impact (whole network)

Coalition	Realistic topology (Section VI)	Multihoming degree of pools			
		1	3	5	7
US	23.78	38.46	18.18	6.29	4.20
DE	4.20	18.88	2.10	1.40	1.40
CN	4.90	34.27	1.40	0.70	0.70

TABLE III: Orphan rate (%) achieved by different network-wide level delay attacks performed by coalitions of *all* the ASes in a country, and considering either the topology inferred in Section VI or synthetic topologies with various degrees of pool multi-homing. The normal orphan rate is $\sim 1\%$.

outline

- background
- partitioning attack
- delay attack
- evaluation
- countermeasures

countermeasures (short-term)

- increase diversity of node connections
 - → use multiple ASes (directly or through VPN)
- take routing into consideration when establishing connections
 - → use traceroute, check BGP traffic
 - → prevent a single AS from appearing in all paths
- monitor sudden change in round-trip time (RTT) and other anomalies
- prefer peers in same AS and in /24 prefixes

countermeasures (long-term)

- use encryption and/or integrity checks (BIP-151)
- use port negotiation or randomized port
- use UDP heartbeats
- request blocks on multiple connections

SABRE

references

Apostolaki, M., Zohar, A., & Vanbever, L. (2017). Hijacking Bitcoin: Routing Attacks on Cryptocurrencies https://btc-hijack.ethz.ch/files/btc_hijack.pdf

Apostolaki, M., Marti, G., Müller, J., & Vanbever, L. (2018). SABRE: Protecting Bitcoin against Routing Attacks https://arxiv.org/pdf/1808.06254