```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]: df = pd.read_csv("3_Fitness-1.csv")
# .dropna(axis="columns")
df
```

Out[2]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	E	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150

In [3]: df.head()

71	1111	- 1	
w	u	_	
_	٠.	_	

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

Data cleaning and pre processing

```
In [4]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9 entries, 0 to 8
        Data columns (total 5 columns):
              Column
         #
                                   Non-Null Count
                                                    Dtype
                                   -----
              Row Labels
         0
                                   9 non-null
                                                    object
         1
              Sum of Jan
                                   9 non-null
                                                    object
         2
              Sum of Feb
                                   9 non-null
                                                    object
         3
              Sum of Mar
                                                    object
                                   9 non-null
              Sum of Total Sales 9 non-null
                                                    int64
        dtypes: int64(1), object(4)
        memory usage: 488.0+ bytes
        df.describe()
In [5]:
Out[5]:
               Sum of Total Sales
                       9.000000
         count
         mean
                     255.555556
           std
                     337.332963
                      75.000000
           min
          25%
                     127.000000
           50%
                     167.000000
          75%
                     171.000000
           max
                     1150.000000
In [6]: df.columns
Out[6]: Index(['Row Labels', 'Sum of Jan', 'Sum of Feb', 'Sum of Mar',
                'Sum of Total Sales'],
               dtype='object')
```

EDA and VISUALIZATION

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x274644ac760>

In [8]: | sns.distplot(df["Sum of Total Sales"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
Out[10]: <AxesSubplot:>
```



```
In [11]: x = df1[['Sum of Total Sales','Sum of Total Sales']]
y = df1['Sum of Total Sales']
```

split the data into training and test data

Co-efficient

```
In [12]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [13]: lr = LinearRegression()
lr.fit(x_train, y_train)
Out[13]: LinearRegression()
In [14]: lr.intercept_
Out[14]: 1.1368683772161603e-13
```

Out[15]:

Sum of Total Sales	0.5
Sum of Total Sales	0.5

```
In [16]: prediction = lr.predict(x_test)
plt.scatter(y_test, prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x27464f061c0>


```
In [17]: lr.score(x_test,y_test)
```

Out[17]: 1.0