## Ford GoBike System Data: Exploratory Analysis

#### Introduction

This data set includes information about individual rides made in a bike-sharing system covering the greater San Francisco Bay area for 2017. There is a total of 519,700 entries with fifteen variables accounted for and recorded.

For this project, I will conduct an exploratory analysis on data from Ford GoBike System, a bike-sharing system provider to make discoveries about the dataset. I hope to reveal interesting stories about the average trip duration for certain bike users.

#### Questions to ponder on through exploration:

- 1. How long was the average trip in 2017?
- 2. Does average trip duration depend on if an user is a subscriber or customer?
- 3. Does average trip duration vary on the age of user?
- 4. Does average trip duration depend on if user is female or male?

# **Preliminary Data Wrangling**

#### Part I: Gathering Data

```
In [1]: # Import packages needed
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

%matplotlib inline
```

```
In [2]: # Load and read dataset
    df= pd.read_csv('2017-bike-data.csv')
    df.head()
```

#### Out[2]:

|   | duration_sec | start_time                  | end_time                    | start_station_id | start_station_name                                  | start_station_la |
|---|--------------|-----------------------------|-----------------------------|------------------|-----------------------------------------------------|------------------|
| 0 | 80110        | 2017-12-31<br>16:57:39.6540 | 2018-01-01<br>15:12:50.2450 | 74               | Laguna St at Hayes<br>St                            | 37.7             |
| 1 | 78800        | 2017-12-31<br>15:56:34.8420 | 2018-01-01<br>13:49:55.6170 | 284              | Yerba Buena Center<br>for the Arts (Howard<br>St at | 37.7             |
| 2 | 45768        | 2017-12-31<br>22:45:48.4110 | 2018-01-01<br>11:28:36.8830 | 245              | Downtown Berkeley<br>BART                           | 37.8             |
| 3 | 62172        | 2017-12-31<br>17:31:10.6360 | 2018-01-01<br>10:47:23.5310 | 60               | 8th St at Ringold St                                | 37.7             |
| 4 | 43603        | 2017-12-31<br>14:23:14.0010 | 2018-01-01<br>02:29:57.5710 | 239              | Bancroft Way at<br>Telegraph Ave                    | 37.8             |
| 4 |              |                             |                             |                  |                                                     | <b>&gt;</b>      |

#### Part II: Assessing Data

```
In [3]: # Look at size of dataset and datatypes
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 519700 entries, 0 to 519699
Data columns (total 15 columns):
duration_sec
                           519700 non-null int64
start time
                           519700 non-null object
end time
                           519700 non-null object
start_station_id
                           519700 non-null int64
start station name
                           519700 non-null object
start_station_latitude
                           519700 non-null float64
start_station_longitude
                           519700 non-null float64
end_station_id
                           519700 non-null int64
end station name
                           519700 non-null object
end_station_latitude
                           519700 non-null float64
end station longitude
                           519700 non-null float64
bike_id
                           519700 non-null int64
user_type
                           519700 non-null object
member birth year
                           453159 non-null float64
                           453238 non-null object
member gender
dtypes: float64(5), int64(4), object(6)
memory usage: 59.5+ MB
```

In [4]: # Look at some descriptive statistics of dataset
 df.describe()

Out[4]:

|       | duration_sec  | start_station_id | start_station_latitude | start_station_longitude | end_station_i |
|-------|---------------|------------------|------------------------|-------------------------|---------------|
| count | 519700.000000 | 519700.000000    | 519700.000000          | 519700.000000           | 519700.00000  |
| mean  | 1099.009521   | 95.034245        | 37.771653              | -122.363927             | 92.18404      |
| std   | 3444.146451   | 86.083078        | 0.086305               | 0.105573                | 84.96949      |
| min   | 61.000000     | 3.000000         | 37.317298              | -122.444293             | 3.00000       |
| 25%   | 382.000000    | 24.000000        | 37.773492              | -122.411726             | 23.00000      |
| 50%   | 596.000000    | 67.000000        | 37.783521              | -122.398870             | 66.00000      |
| 75%   | 938.000000    | 139.000000       | 37.795392              | -122.391034             | 134.00000     |
| max   | 86369.000000  | 340.000000       | 37.880222              | -121.874119             | 340.00000     |
| 4     |               |                  |                        |                         | <b>&gt;</b>   |

#### **Quality and Tidiness Issues**

- 1. Calculate age of users with birth year
- 2. Remove null rows for columns member birth year and member gender
- 3. Remove member ages that are greater than 60
- 4. Convert bike ride duration in seconds to minutes
- 5. Remove member genders listed as "Other"

# What is the structure of your dataset?

There are 519,700 bike rides in the dataset with 15 features (duration, start time, end time, start station id, start station name, start station latitude, start station longitude, end station id, end station name, end station latitude, end station longitude, bike id, user type, member birth year, and member gender).

Most variables are numeric in nature, but the variables user type and member gender are categorical and nominal. The variables with id contains numbers that are nominal as well.

# What is/are the main feature(s) of interest in your dataset?

I am most interested in discovering what features may determine the average trip duration of bike rides among riders with consideration to their age, gender, and if they are a customer or subscriber of the bike-sharing system.

# What features in the dataset do you think will help support your investigation into your feature(s) of interest?

I think the user type will have the strongest effect on the average trip duration: I predict customers will have a longer average trip duration as they would want to make the most of their one-time ride purchase. As for subscribers, I expect that they will have a shorter average trip duration as they are not being charged extra for additional rides, they are simply making use of their subscription. I also think age and gender will have effects on the average trip duration, though to a smaller degree than the main effect of user type.

#### Part III: Cleaning Data

```
In [5]: # Create copies of original dataset
    df_clean = df.copy()

In [6]: # Check for duplicates
    df_clean.duplicated().sum()
Out[6]: 0
```

#### **Define**

Calculate age of users with birth year

#### Code

```
In [7]: # Calculate age by subtracting from the year data was taken from, 2017
df_clean['member_age'] = 2017-df_clean['member_birth_year']
```

#### **Test**

In [8]: # Check dataset
df\_clean.head()

#### Out[8]:

| start_station_la  | start_station_name                                  | start_station_id | end_time                    | start_time                  | duration_sec |   |
|-------------------|-----------------------------------------------------|------------------|-----------------------------|-----------------------------|--------------|---|
| 37.7              | Laguna St at Hayes<br>St                            | 74               | 2018-01-01<br>15:12:50.2450 | 2017-12-31<br>16:57:39.6540 | 80110        | 0 |
| 37.7              | Yerba Buena Center<br>for the Arts (Howard<br>St at | 284              | 2018-01-01<br>13:49:55.6170 | 2017-12-31<br>15:56:34.8420 | 78800        | 1 |
| 37.8 <sup>-</sup> | Downtown Berkeley<br>BART                           | 245              | 2018-01-01<br>11:28:36.8830 | 2017-12-31<br>22:45:48.4110 | 45768        | 2 |
| 37.7              | 8th St at Ringold St                                | 60               | 2018-01-01<br>10:47:23.5310 | 2017-12-31<br>17:31:10.6360 | 62172        | 3 |
| 37.8              | Bancroft Way at<br>Telegraph Ave                    | 239              | 2018-01-01<br>02:29:57.5710 | 2017-12-31<br>14:23:14.0010 | 43603        | 4 |
| <b>•</b>          |                                                     |                  |                             |                             |              | 4 |

In [9]: # Remove unnecessary columns for analysis
 df\_clean.drop(columns= ['start\_time', 'end\_time', 'start\_station\_id', 'start\_s
 tation\_name', 'start\_station\_latitude', 'start\_station\_longitude', 'end\_statio
 n\_id', 'end\_station\_name', 'end\_station\_latitude', 'end\_station\_longitude', 'b
 ike\_id', 'member\_birth\_year'], inplace = True)

### 

In [11]: # Review columns
df\_clean

# Out[11]:

|        | duration_sec | user_type  | member_gender | member_age |
|--------|--------------|------------|---------------|------------|
| 0      | 80110        | Customer   | Male          | 30.0       |
| 1      | 78800        | Customer   | Female        | 52.0       |
| 2      | 45768        | Customer   | NaN           | NaN        |
| 3      | 62172        | Customer   | NaN           | NaN        |
| 4      | 43603        | Subscriber | Female        | 20.0       |
| 5      | 9226         | Customer   | NaN           | NaN        |
| 6      | 4507         | Customer   | Female        | 26.0       |
| 7      | 4334         | Customer   | NaN           | NaN        |
| 8      | 4150         | Customer   | NaN           | NaN        |
| 9      | 4238         | Customer   | NaN           | NaN        |
| 10     | 3292         | Customer   | NaN           | NaN        |
| 11     | 3177         | Customer   | NaN           | NaN        |
| 12     | 2183         | Subscriber | Male          | 27.0       |
| 13     | 2170         | Subscriber | Male          | 27.0       |
| 14     | 2697         | Customer   | NaN           | NaN        |
| 15     | 1544         | Subscriber | Female        | 37.0       |
| 16     | 1474         | Subscriber | Male          | 38.0       |
| 17     | 1397         | Customer   | NaN           | NaN        |
| 18     | 1532         | Subscriber | Other         | 29.0       |
| 19     | 1216         | Subscriber | Male          | 46.0       |
| 20     | 386          | Subscriber | Male          | 25.0       |
| 21     | 4174         | Customer   | NaN           | NaN        |
| 22     | 422          | Subscriber | Male          | 32.0       |
| 23     | 1165         | Customer   | NaN           | NaN        |
| 24     | 1149         | Customer   | NaN           | NaN        |
| 25     | 1130         | Customer   | NaN           | NaN        |
| 26     | 1003         | Customer   | NaN           | NaN        |
| 27     | 862          | Customer   | NaN           | NaN        |
| 28     | 871          | Subscriber | Male          | 38.0       |
| 29     | 784          | Customer   | NaN           | NaN        |
|        |              |            |               |            |
| 519670 | 123          | Subscriber | Female        | 40.0       |
| 519671 | 73           | Subscriber | Male          | 35.0       |
| 519672 | 1909         | Subscriber | Male          | 33.0       |
| 519673 | 1908         | Subscriber | Male          | 28.0       |

|                   | duration_sec | user_type  | member_gender | member_age |
|-------------------|--------------|------------|---------------|------------|
| 519674            | 672          | Subscriber | Male          | 38.0       |
| 519675            | 602          | Subscriber | Male          | 48.0       |
| 519676            | 893          | Subscriber | Male          | 46.0       |
| 519677            | 1136         | Subscriber | Male          | 33.0       |
| 519678            | 268          | Subscriber | Female        | 33.0       |
| 519679            | 321          | Subscriber | Male          | 30.0       |
| 519680            | 797          | Subscriber | Male          | 44.0       |
| 519681            | 720          | Subscriber | Male          | 30.0       |
| 519682            | 484          | Subscriber | Male          | 30.0       |
| 519683            | 889          | Subscriber | Female        | 33.0       |
| 519684            | 510          | Subscriber | Male          | 51.0       |
| 519685            | 486          | Subscriber | Male          | 31.0       |
| <b>519686</b> 379 |              | Subscriber | Female        | 61.0       |
| <b>519687</b> 640 |              | Subscriber | Male          | 39.0       |
| 519688            | 410          | Subscriber | Male          | 38.0       |
| 519689            | 278          | Subscriber | Male          | 65.0       |
| 519690            | 553          | Subscriber | Male          | 44.0       |
| 519691            | 1086         | Subscriber | Male          | 59.0       |
| 519692            | 1201         | Subscriber | Male          | 32.0       |
| 519693            | 590          | Subscriber | Male          | 34.0       |
| 519694            | 730          | Subscriber | Male          | 37.0       |
| 519695            | 435          | Subscriber | Male          | 26.0       |
| 519696            | 431          | Subscriber | Male          | 44.0       |
| 519697            | 424          | Subscriber | Female        | 32.0       |
| 519698            | 366          | Subscriber | Male          | 36.0       |
| 519699            | 188          | Subscriber | Male          | 33.0       |

519700 rows × 4 columns

#### Define

Remove null rows for columns member\_birth\_year and member\_gender

#### Code

```
In [12]: # Remove null values from member_gender and member_age columns
    df_clean.dropna(inplace = True)
```

#### **Test**

```
In [13]: # Check for null values
df_clean.info()
```

memory usage: 17.3+ MB

In [14]: # Look at dataset
df\_clean.head()

#### Out[14]:

|    | duration_sec | user_type  | member_gender | member_age |
|----|--------------|------------|---------------|------------|
| 0  | 80110        | Customer   | Male          | 30.0       |
| 1  | 78800        | Customer   | Female        | 52.0       |
| 4  | 43603        | Subscriber | Female        | 20.0       |
| 6  | 4507         | Customer   | Female        | 26.0       |
| 12 | 2183         | Subscriber | Male          | 27.0       |

In [15]: # Check statistics of dataset
df\_clean.describe()

#### Out[15]:

|       | duration_sec  | member_age    |
|-------|---------------|---------------|
| count | 453159.000000 | 453159.000000 |
| mean  | 832.934014    | 36.595213     |
| std   | 2525.280717   | 10.513488     |
| min   | 61.000000     | 18.000000     |
| 25%   | 364.000000    | 29.000000     |
| 50%   | 556.000000    | 34.000000     |
| 75%   | 838.000000    | 43.000000     |
| max   | 86252.000000  | 131.000000    |

#### **Define**

Remove member ages that are greater than 60

#### Code

```
In [16]:
         # Look for the 95th percentile to remove outliers
         df clean.member age.describe(percentiles = [ .95])
Out[16]: count
                  453159.000000
         mean
                       36.595213
         std
                       10.513488
                      18.000000
         min
         50%
                       34.000000
         95%
                       56.000000
         max
                     131.000000
         Name: member_age, dtype: float64
```

For the 95th percentile, the age is 54, I will remove records of ages greater than 60. This will help with relevancy of data.

```
In [17]: # Remove member_age that is greater than 60
df_clean = df_clean.query('member_age <=60')</pre>
```

#### **Test**

```
In [18]: # Check code
         check 60 = df clean.loc[(df clean['member age'] > 60)]
         len(check 60)
Out[18]: 0
In [19]: # Look at dataset info
         df_clean.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 441267 entries, 0 to 519699
         Data columns (total 4 columns):
                          441267 non-null int64
         duration sec
         user_type
                          441267 non-null object
         member_gender
                          441267 non-null object
                          441267 non-null float64
         member age
         dtypes: float64(1), int64(1), object(2)
         memory usage: 16.8+ MB
```

In [20]: # View dataset
df\_clean

# Out[20]:

|        | duration_sec | user_type  | member_gender | member_age |
|--------|--------------|------------|---------------|------------|
| 0      | 80110        | Customer   | Male          | 30.0       |
| 1      | 78800        | Customer   | Female        | 52.0       |
| 4      | 43603        | Subscriber | Female        | 20.0       |
| 6      | 4507         | Customer   | Female        | 26.0       |
| 12     | 2183         | Subscriber | Male          | 27.0       |
| 13     | 2170         | Subscriber | Male          | 27.0       |
| 15     | 1544         | Subscriber | Female        | 37.0       |
| 16     | 1474         | Subscriber | Male          | 38.0       |
| 18     | 1532         | Subscriber | Other         | 29.0       |
| 19     | 1216         | Subscriber | Male          | 46.0       |
| 20     | 386          | Subscriber | Male          | 25.0       |
| 22     | 422          | Subscriber | Male          | 32.0       |
| 28     | 871          | Subscriber | Male          | 38.0       |
| 32     | 733          | Subscriber | Female        | 37.0       |
| 33     | 781          | Customer   | Female        | 26.0       |
| 34     | 475          | Subscriber | Male          | 39.0       |
| 35     | 152          | Subscriber | Male          | 37.0       |
| 36     | 249          | Subscriber | Male          | 24.0       |
| 39     | 243          | Subscriber | Male          | 40.0       |
| 40     | 833          | Subscriber | Male          | 33.0       |
| 41     | 820          | Subscriber | Female        | 34.0       |
| 46     | 538          | Customer   | Male          | 26.0       |
| 47     | 577          | Subscriber | Male          | 39.0       |
| 48     | 418          | Subscriber | Male          | 50.0       |
| 52     | 707          | Customer   | Male          | 23.0       |
| 54     | 1240         | Subscriber | Male          | 43.0       |
| 58     | 552          | Subscriber | Female        | 49.0       |
| 59     | 546          | Subscriber | Male          | 55.0       |
| 60     | 196          | Subscriber | Male          | 28.0       |
| 62     | 323          | Subscriber | Male          | 30.0       |
|        |              |            |               |            |
| 519668 | 124          | Subscriber | Male          | 45.0       |
| 519669 | 662          | Subscriber | Other         | 37.0       |
| 519670 | 123          | Subscriber | Female        | 40.0       |
| 519671 | 73           | Subscriber | Male          | 35.0       |

|                   | duration_sec | user_type  | member_gender | member_age |
|-------------------|--------------|------------|---------------|------------|
| 519672            | 1909         | Subscriber | Male          | 33.0       |
| 519673            | 1908         | Subscriber | Male          | 28.0       |
| 519674            | 672          | Subscriber | Male          | 38.0       |
| 519675            | 602          | Subscriber | Male          | 48.0       |
| 519676            | 893          | Subscriber | Male          | 46.0       |
| 519677            | 1136         | Subscriber | Male          | 33.0       |
| 519678            | 268          | Subscriber | Female        | 33.0       |
| 519679            | 321          | Subscriber | Male          | 30.0       |
| 519680            | 797          | Subscriber | Male          | 44.0       |
| 519681            | 720          | Subscriber | Male          | 30.0       |
| 519682            | 484          | Subscriber | Male          | 30.0       |
| <b>519683</b> 889 |              | Subscriber | Female        | 33.0       |
| <b>519684</b> 510 |              | Subscriber | Male          | 51.0       |
| <b>519685</b> 486 |              | Subscriber | Male          | 31.0       |
| 519687            | 640          | Subscriber | Male          | 39.0       |
| 519688            | 410          | Subscriber | Male          | 38.0       |
| 519690            | 553          | Subscriber | Male          | 44.0       |
| 519691            | 1086         | Subscriber | Male          | 59.0       |
| 519692            | 1201         | Subscriber | Male          | 32.0       |
| 519693            | 590          | Subscriber | Male          | 34.0       |
| 519694            | 730          | Subscriber | Male          | 37.0       |
| 519695            | 435          | Subscriber | Male          | 26.0       |
| 519696            | 431          | Subscriber | Male          | 44.0       |
| 519697            | 424          | Subscriber | Female        | 32.0       |
| 519698            | 366          | Subscriber | Male          | 36.0       |
| 519699            | 188          | Subscriber | Male          | 33.0       |

441267 rows × 4 columns

```
In [21]: # Check descriptive statistics
    df_clean.describe()
```

#### Out[21]:

|       | duration_sec  | member_age    |
|-------|---------------|---------------|
| count | 441267.000000 | 441267.000000 |
| mean  | 831.684946    | 35.775186     |
| std   | 2522.180893   | 9.225110      |
| min   | 61.000000     | 18.000000     |
| 25%   | 364.000000    | 29.000000     |
| 50%   | 554.000000    | 34.000000     |
| 75%   | 836.000000    | 42.000000     |
| max   | 86252.000000  | 60.000000     |

#### **Define**

Convert bike ride duration in seconds to minutes

#### Code

C:\Users\Cathy Moy\Anaconda3\New folder (2)\lib\site-packages\ipykernel\_launc
her.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

#### **Test**

In [23]: # Check dataset
df\_clean

# Out[23]:

|        | duration_sec | user_type  | member_gender | member_age | duration_min |
|--------|--------------|------------|---------------|------------|--------------|
| 0      | 80110        | Customer   | Male          | 30.0       | 1335.166667  |
| 1      | 78800        | Customer   | Female        | 52.0       | 1313.333333  |
| 4      | 43603        | Subscriber | Female        | 20.0       | 726.716667   |
| 6      | 4507         | Customer   | Female        | 26.0       | 75.116667    |
| 12     | 2183         | Subscriber | Male          | 27.0       | 36.383333    |
| 13     | 2170         | Subscriber | Male          | 27.0       | 36.166667    |
| 15     | 1544         | Subscriber | Female        | 37.0       | 25.733333    |
| 16     | 1474         | Subscriber | Male          | 38.0       | 24.566667    |
| 18     | 1532         | Subscriber | Other         | 29.0       | 25.533333    |
| 19     | 1216         | Subscriber | Male          | 46.0       | 20.266667    |
| 20     | 386          | Subscriber | Male          | 25.0       | 6.433333     |
| 22     | 422          | Subscriber | Male          | 32.0       | 7.033333     |
| 28     | 871          | Subscriber | Male          | 38.0       | 14.516667    |
| 32     | 733          | Subscriber | Female        | 37.0       | 12.216667    |
| 33     | 781          | Customer   | Female        | 26.0       | 13.016667    |
| 34     | 475          | Subscriber | Male          | 39.0       | 7.916667     |
| 35     | 152          | Subscriber | Male          | 37.0       | 2.533333     |
| 36     | 249          | Subscriber | Male          | 24.0       | 4.150000     |
| 39     | 243          | Subscriber | Male          | 40.0       | 4.050000     |
| 40     | 833          | Subscriber | Male          | 33.0       | 13.883333    |
| 41     | 820          | Subscriber | Female        | 34.0       | 13.666667    |
| 46     | 538          | Customer   | Male          | 26.0       | 8.966667     |
| 47     | 577          | Subscriber | Male          | 39.0       | 9.616667     |
| 48     | 418          | Subscriber | Male          | 50.0       | 6.966667     |
| 52     | 707          | Customer   | Male          | 23.0       | 11.783333    |
| 54     | 1240         | Subscriber | Male          | 43.0       | 20.666667    |
| 58     | 552          | Subscriber | Female        | 49.0       | 9.200000     |
| 59     | 546          | Subscriber | Male          | 55.0       | 9.100000     |
| 60     | 196          | Subscriber | Male          | 28.0       | 3.266667     |
| 62     | 323          | Subscriber | Male          | 30.0       | 5.383333     |
|        |              |            |               | •••        | •••          |
| 519668 | 124          | Subscriber | Male          | 45.0       | 2.066667     |
| 519669 | 662          | Subscriber | Other         | 37.0       | 11.033333    |
| 519670 | 123          | Subscriber | Female        | 40.0       | 2.050000     |
| 519671 | 73           | Subscriber | Male          | 35.0       | 1.216667     |

|        | duration_sec | user_type  | member_gender | member_age | duration_min |
|--------|--------------|------------|---------------|------------|--------------|
| 519672 | 1909         | Subscriber | Male          | 33.0       | 31.816667    |
| 519673 | 1908         | Subscriber | Male          | 28.0       | 31.800000    |
| 519674 | 672          | Subscriber | Male          | 38.0       | 11.200000    |
| 519675 | 602          | Subscriber | Male          | 48.0       | 10.033333    |
| 519676 | 893          | Subscriber | Male          | 46.0       | 14.883333    |
| 519677 | 1136         | Subscriber | Male          | 33.0       | 18.933333    |
| 519678 | 268          | Subscriber | Female        | 33.0       | 4.466667     |
| 519679 | 321          | Subscriber | Male          | 30.0       | 5.350000     |
| 519680 | 797          | Subscriber | Male          | 44.0       | 13.283333    |
| 519681 | 720          | Subscriber | Male          | 30.0       | 12.000000    |
| 519682 | 484          | Subscriber | Male          | 30.0       | 8.066667     |
| 519683 | 889          | Subscriber | Female        | 33.0       | 14.816667    |
| 519684 | 510          | Subscriber | Male          | 51.0       | 8.500000     |
| 519685 | 486          | Subscriber | Male          | 31.0       | 8.100000     |
| 519687 | 640          | Subscriber | Male          | 39.0       | 10.666667    |
| 519688 | 410          | Subscriber | Male          | 38.0       | 6.833333     |
| 519690 | 553          | Subscriber | Male          | 44.0       | 9.216667     |
| 519691 | 1086         | Subscriber | Male          | 59.0       | 18.100000    |
| 519692 | 1201         | Subscriber | Male          | 32.0       | 20.016667    |
| 519693 | 590          | Subscriber | Male          | 34.0       | 9.833333     |
| 519694 | 730          | Subscriber | Male          | 37.0       | 12.166667    |
| 519695 | 435          | Subscriber | Male          | 26.0       | 7.250000     |
| 519696 | 431          | Subscriber | Male          | 44.0       | 7.183333     |
| 519697 | 424          | Subscriber | Female        | 32.0       | 7.066667     |
| 519698 | 366          | Subscriber | Male          | 36.0       | 6.100000     |
| 519699 | 188          | Subscriber | Male          | 33.0       | 3.133333     |

441267 rows × 5 columns

```
In [24]: # Remove duration_sec column and check
df_clean.drop(columns = ['duration_sec'], inplace = True)
```

C:\Users\Cathy Moy\Anaconda3\New folder (2)\lib\site-packages\pandas\core\fra
me.py:3697: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st able/indexing.html#indexing-view-versus-copy errors=errors)

In [25]: # Check descriptive statistics
 df\_clean.describe()

Out[25]:

|       | member_age    | duration_min  |
|-------|---------------|---------------|
| count | 441267.000000 | 441267.000000 |
| mean  | 35.775186     | 13.861416     |
| std   | 9.225110      | 42.036348     |
| min   | 18.000000     | 1.016667      |
| 25%   | 29.000000     | 6.066667      |
| 50%   | 34.000000     | 9.233333      |
| 75%   | 42.000000     | 13.933333     |
| max   | 60.000000     | 1437.533333   |

#### **Define**

Remove member genders listed as "Other"

#### Code

```
In [26]: # Look for rows with member_gender = Other to remove
df_clean[df_clean['member_gender']== 'Other']
```

# Out[26]:

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 18     | Subscriber | Other         | 29.0       | 25.533333    |
| 78     | Subscriber | Other         | 29.0       | 66.016667    |
| 136    | Subscriber | Other         | 29.0       | 13.650000    |
| 218    | Customer   | Other         | 30.0       | 19.766667    |
| 313    | Subscriber | Other         | 29.0       | 10.550000    |
| 362    | Subscriber | Other         | 24.0       | 3.250000     |
| 401    | Subscriber | Other         | 49.0       | 28.033333    |
| 414    | Customer   | Other         | 25.0       | 7.416667     |
| 491    | Subscriber | Other         | 30.0       | 15.516667    |
| 656    | Subscriber | Other         | 20.0       | 7.800000     |
| 668    | Subscriber | Other         | 20.0       | 6.050000     |
| 683    | Subscriber | Other         | 43.0       | 10.316667    |
| 736    | Subscriber | Other         | 24.0       | 4.066667     |
| 752    | Subscriber | Other         | 20.0       | 7.516667     |
| 762    | Customer   | Other         | 25.0       | 8.633333     |
| 799    | Customer   | Other         | 25.0       | 11.950000    |
| 803    | Customer   | Other         | 51.0       | 14.433333    |
| 878    | Customer   | Other         | 25.0       | 29.700000    |
| 904    | Customer   | Other         | 47.0       | 9.183333     |
| 935    | Subscriber | Other         | 50.0       | 43.100000    |
| 951    | Subscriber | Other         | 49.0       | 18.083333    |
| 1037   | Customer   | Other         | 51.0       | 19.316667    |
| 1046   | Customer   | Other         | 25.0       | 42.600000    |
| 1073   | Subscriber | Other         | 43.0       | 16.416667    |
| 1084   | Subscriber | Other         | 50.0       | 40.250000    |
| 1253   | Subscriber | Other         | 49.0       | 18.600000    |
| 1330   | Subscriber | Other         | 29.0       | 11.016667    |
| 1348   | Subscriber | Other         | 24.0       | 10.683333    |
| 1492   | Customer   | Other         | 24.0       | 28.516667    |
| 1514   | Customer   | Other         | 24.0       | 28.033333    |
|        |            |               |            |              |
| 514705 | Subscriber | Other         | 42.0       | 15.300000    |
| 514863 | Subscriber | Other         | 35.0       | 6.250000     |
| 515250 | Subscriber | Other         | 41.0       | 9.200000     |
| 515284 | Customer   | Other         | 52.0       | 36.066667    |

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 515285 | Customer   | Other         | 43.0       | 36.650000    |
| 515346 | Customer   | Other         | 52.0       | 16.850000    |
| 515370 | Customer   | Other         | 52.0       | 28.550000    |
| 515371 | Customer   | Other         | 43.0       | 28.450000    |
| 515924 | Subscriber | Other         | 41.0       | 7.183333     |
| 516541 | Customer   | Other         | 43.0       | 14.133333    |
| 516551 | Customer   | Other         | 29.0       | 13.533333    |
| 516607 | Subscriber | Other         | 35.0       | 23.750000    |
| 516611 | Customer   | Other         | 29.0       | 26.966667    |
| 516642 | Customer   | Other         | 43.0       | 13.683333    |
| 516760 | Customer   | Other         | 29.0       | 11.566667    |
| 516776 | Customer   | Other         | 29.0       | 32.283333    |
| 516802 | Customer   | Other         | 29.0       | 21.066667    |
| 517154 | Subscriber | Other         | 47.0       | 12.633333    |
| 517593 | Subscriber | Other         | 35.0       | 7.183333     |
| 517649 | Subscriber | Other         | 35.0       | 4.383333     |
| 517905 | Subscriber | Other         | 35.0       | 7.216667     |
| 518208 | Subscriber | Other         | 37.0       | 12.283333    |
| 518581 | Subscriber | Other         | 47.0       | 4.633333     |
| 518629 | Subscriber | Other         | 35.0       | 13.516667    |
| 518677 | Subscriber | Other         | 35.0       | 12.050000    |
| 518699 | Subscriber | Other         | 37.0       | 9.366667     |
| 518830 | Subscriber | Other         | 35.0       | 6.033333     |
| 519080 | Subscriber | Other         | 35.0       | 4.783333     |
| 519129 | Subscriber | Other         | 37.0       | 12.833333    |
| 519669 | Subscriber | Other         | 37.0       | 11.033333    |

6169 rows × 4 columns

```
In [27]: # Remove the 6169 entries where member_gender is "Other"
         df_clean = df_clean.drop(df_clean[df_clean["member_gender"] == 'Other'].index)
         df_clean.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 435098 entries, 0 to 519699
         Data columns (total 4 columns):
         user_type
                          435098 non-null object
                          435098 non-null object
         member gender
         member_age
                          435098 non-null float64
                          435098 non-null float64
         duration_min
         dtypes: float64(2), object(2)
         memory usage: 16.6+ MB
```

**Test** 

In [28]: # Check dataset
df\_clean

# Out[28]:

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 0      | Customer   | Male          | 30.0       | 1335.166667  |
| 1      | Customer   | Female        | 52.0       | 1313.333333  |
| 4      | Subscriber | Female        | 20.0       | 726.716667   |
| 6      | Customer   | Female        | 26.0       | 75.116667    |
| 12     | Subscriber | Male          | 27.0       | 36.383333    |
| 13     | Subscriber | Male          | 27.0       | 36.166667    |
| 15     | Subscriber | Female        | 37.0       | 25.733333    |
| 16     | Subscriber | Male          | 38.0       | 24.566667    |
| 19     | Subscriber | Male          | 46.0       | 20.266667    |
| 20     | Subscriber | Male          | 25.0       | 6.433333     |
| 22     | Subscriber | Male          | 32.0       | 7.033333     |
| 28     | Subscriber | Male          | 38.0       | 14.516667    |
| 32     | Subscriber | Female        | 37.0       | 12.216667    |
| 33     | Customer   | Female        | 26.0       | 13.016667    |
| 34     | Subscriber | Male          | 39.0       | 7.916667     |
| 35     | Subscriber | Male          | 37.0       | 2.533333     |
| 36     | Subscriber | Male          | 24.0       | 4.150000     |
| 39     | Subscriber | Male          | 40.0       | 4.050000     |
| 40     | Subscriber | Male          | 33.0       | 13.883333    |
| 41     | Subscriber | Female        | 34.0       | 13.666667    |
| 46     | Customer   | Male          | 26.0       | 8.966667     |
| 47     | Subscriber | Male          | 39.0       | 9.616667     |
| 48     | Subscriber | Male          | 50.0       | 6.966667     |
| 52     | Customer   | Male          | 23.0       | 11.783333    |
| 54     | Subscriber | Male          | 43.0       | 20.666667    |
| 58     | Subscriber | Female        | 49.0       | 9.200000     |
| 59     | Subscriber | Male          | 55.0       | 9.100000     |
| 60     | Subscriber | Male          | 28.0       | 3.266667     |
| 62     | Subscriber | Male          | 30.0       | 5.383333     |
| 63     | Subscriber | Male          | 31.0       | 10.466667    |
|        |            |               |            |              |
| 519667 | Subscriber | Female        | 38.0       | 40.516667    |
| 519668 | Subscriber | Male          | 45.0       | 2.066667     |
| 519670 | Subscriber | Female        | 40.0       | 2.050000     |
| 519671 | Subscriber | Male          | 35.0       | 1.216667     |

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 519672 | Subscriber | Male          | 33.0       | 31.816667    |
| 519673 | Subscriber | Male          | 28.0       | 31.800000    |
| 519674 | Subscriber | Male          | 38.0       | 11.200000    |
| 519675 | Subscriber | Male          | 48.0       | 10.033333    |
| 519676 | Subscriber | Male          | 46.0       | 14.883333    |
| 519677 | Subscriber | Male          | 33.0       | 18.933333    |
| 519678 | Subscriber | Female        | 33.0       | 4.466667     |
| 519679 | Subscriber | Male          | 30.0       | 5.350000     |
| 519680 | Subscriber | Male          | 44.0       | 13.283333    |
| 519681 | Subscriber | Male          | 30.0       | 12.000000    |
| 519682 | Subscriber | Male          | 30.0       | 8.066667     |
| 519683 | Subscriber | Female        | 33.0       | 14.816667    |
| 519684 | Subscriber | Male          | 51.0       | 8.500000     |
| 519685 | Subscriber | Male          | 31.0       | 8.100000     |
| 519687 | Subscriber | Male          | 39.0       | 10.666667    |
| 519688 | Subscriber | Male          | 38.0       | 6.833333     |
| 519690 | Subscriber | Male          | 44.0       | 9.216667     |
| 519691 | Subscriber | Male          | 59.0       | 18.100000    |
| 519692 | Subscriber | Male          | 32.0       | 20.016667    |
| 519693 | Subscriber | Male          | 34.0       | 9.833333     |
| 519694 | Subscriber | Male          | 37.0       | 12.166667    |
| 519695 | Subscriber | Male          | 26.0       | 7.250000     |
| 519696 | Subscriber | Male          | 44.0       | 7.183333     |
| 519697 | Subscriber | Female        | 32.0       | 7.066667     |
| 519698 | Subscriber | Male          | 36.0       | 6.100000     |
| 519699 | Subscriber | Male          | 33.0       | 3.133333     |

435098 rows × 4 columns

```
In [29]: # Check that these were removed
    df_clean['member_gender'].str.contains('Other').value_counts()

Out[29]: False     435098
    Name: member_gender, dtype: int64

In [30]: # Look at breakdown of member gender
    df_clean['member_gender'].str.contains('Female').value_counts()

Out[30]: False     338224
    True     96874
    Name: member_gender, dtype: int64
```

From these 435,098 entries: the gender of users are 338,224 males and 96,874 females.

```
In [33]: # Look at descriptive statistics
df_clean.describe()
```

#### Out[33]:

|       | member_age    | duration_min  |
|-------|---------------|---------------|
| count | 435098.000000 | 435098.000000 |
| mean  | 35.771431     | 13.820759     |
| std   | 9.221190      | 41.840967     |
| min   | 18.000000     | 1.016667      |
| 25%   | 29.000000     | 6.050000      |
| 50%   | 34.000000     | 9.233333      |
| 75%   | 42.000000     | 13.916667     |
| max   | 60.000000     | 1437.533333   |

#### Store cleaned data

```
In [34]: # Save cleaned data
df_clean.to_csv('clean-2017-bike-data.csv', index = False)
```

#### **Visualization**

Focus on the average trip duration between different characteristics of users such as gender, age group, and user type.

The average trip duration in minutes for the whole data set is 13.82 minutes.

We have a total of 435,098 entries to account in this data analysis.

#### **Univariate Exploration**

I will begin to explore the dataset by checking the average duration of bike rides in minutes by gender, between females and males.

```
In [35]:
         # Find average trip durations for female and male
         df clean gender mean = df clean.groupby('member gender').duration min.mean()
         df clean gender mean
Out[35]: member gender
         Female
                   17.063716
         Male
                   12.891912
         Name: duration min, dtype: float64
         # Create a bar chart
In [36]:
         labels = ['Female', 'Male']
         heights = df_clean_gender_mean
         labels = df clean gender mean.index.str.replace(' ', ' ').str.title()
         plt.bar(labels, heights, tick_label = labels)
         plt.title('Average Trip Duration between Gender')
         plt.xlabel('Gender')
         plt.ylabel('Average Trip Duration in Minutes')
         mean = df_clean['duration_min'].mean()
         plt.axhline(mean, color='green', linestyle='--')
         plt.savefig('Avg Trip between Gender');
```



The dotted line in the bar plot represents its relation to the overall average trip duration for all bike riders.

```
In [37]: # Record average time duration for all mean
```

Out[37]: 13.820758541754026

# Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

Most of my points were as expected, nothing was unusual to make any major transformations.

# Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

When investigating the member\_gender variables, there were entries of 'Other'. With this, I decided to remove these 'Other' entries to be consistent with my data analysis. In doing so, I can focus on how gender may play a role in the average trip duration between females and males.

#### **Bivariate Exploration**

I will further explore the dataset by user type (customer or subscriber) to the gender and check the average duration of bike rides in minutes between subscribers who are female to male and customers who are female to male. I will also continue to compare the two alternatives for those variables.

```
# Check counts of Subscribers and Customers
In [38]:
         df_clean['user_type'].str.contains('Subscriber').value_counts()
                  387763
Out[38]: True
         False
                   47335
         Name: user_type, dtype: int64
In [39]: # Check counts of Subscribers and Customers
         df clean['user type'].str.contains('Customer').value counts()
Out[39]: False
                  387763
         True
                   47335
         Name: user type, dtype: int64
In [40]: # Check sum of Subscribers and Customers
         387763 + 47335
Out[40]: 435098
In [41]: # Find means by user type
         df_clean_user_mean = df_clean.groupby('user_type').duration_min.mean()
         df_clean_user_mean
Out[41]: user_type
         Customer
                       31.471878
         Subscriber
                       11.666051
         Name: duration_min, dtype: float64
```

```
In [42]: # Find customers who are females
    cond1 = df_clean["user_type"] == 'Customer'
    cond2 = df_clean["member_gender"] == 'Female'

    cust_fem = df_clean[cond1 & cond2]
    cust_fem
```

# Out[42]:

|        | user_type | member_gender | member_age | duration_min |
|--------|-----------|---------------|------------|--------------|
| 1      | Customer  | Female        | 52.0       | 1313.333333  |
| 6      | Customer  | Female        | 26.0       | 75.116667    |
| 33     | Customer  | Female        | 26.0       | 13.016667    |
| 97     | Customer  | Female        | 24.0       | 18.883333    |
| 99     | Customer  | Female        | 28.0       | 3.733333     |
| 151    | Customer  | Female        | 33.0       | 16.883333    |
| 154    | Customer  | Female        | 27.0       | 16.816667    |
| 159    | Customer  | Female        | 28.0       | 3.133333     |
| 181    | Customer  | Female        | 39.0       | 10.800000    |
| 205    | Customer  | Female        | 28.0       | 10.516667    |
| 223    | Customer  | Female        | 33.0       | 26.016667    |
| 237    | Customer  | Female        | 33.0       | 15.366667    |
| 254    | Customer  | Female        | 39.0       | 11.200000    |
| 263    | Customer  | Female        | 39.0       | 19.066667    |
| 298    | Customer  | Female        | 36.0       | 56.450000    |
| 320    | Customer  | Female        | 21.0       | 462.716667   |
| 323    | Customer  | Female        | 27.0       | 398.500000   |
| 324    | Customer  | Female        | 39.0       | 21.183333    |
| 335    | Customer  | Female        | 32.0       | 4.816667     |
| 336    | Customer  | Female        | 29.0       | 5.250000     |
| 357    | Customer  | Female        | 23.0       | 35.966667    |
| 371    | Customer  | Female        | 23.0       | 80.950000    |
| 395    | Customer  | Female        | 23.0       | 13.983333    |
| 418    | Customer  | Female        | 40.0       | 10.083333    |
| 437    | Customer  | Female        | 27.0       | 12.483333    |
| 440    | Customer  | Female        | 40.0       | 14.450000    |
| 450    | Customer  | Female        | 28.0       | 18.883333    |
| 475    | Customer  | Female        | 40.0       | 9.700000     |
| 484    | Customer  | Female        | 18.0       | 6.316667     |
| 485    | Customer  | Female        | 46.0       | 6.666667     |
|        |           |               |            |              |
| 517512 | Customer  | Female        | 27.0       | 27.250000    |
| 517525 | Customer  | Female        | 36.0       | 44.066667    |
| 517526 | Customer  | Female        | 33.0       | 51.900000    |
| 517569 | Customer  | Female        | 34.0       | 20.050000    |

|        | user_type | member_gender | member_age | duration_min |
|--------|-----------|---------------|------------|--------------|
| 517571 | Customer  | Female        | 31.0       | 20.333333    |
| 517573 | Customer  | Female        | 36.0       | 47.283333    |
| 517665 | Customer  | Female        | 48.0       | 95.633333    |
| 517670 | Customer  | Female        | 33.0       | 29.383333    |
| 517719 | Customer  | Female        | 36.0       | 19.733333    |
| 517720 | Customer  | Female        | 27.0       | 26.050000    |
| 517724 | Customer  | Female        | 23.0       | 12.983333    |
| 517906 | Customer  | Female        | 37.0       | 6.183333     |
| 518145 | Customer  | Female        | 24.0       | 9.633333     |
| 518157 | Customer  | Female        | 27.0       | 7.700000     |
| 518158 | Customer  | Female        | 24.0       | 17.883333    |
| 518233 | Customer  | Female        | 24.0       | 11.933333    |
| 518389 | Customer  | Female        | 32.0       | 13.433333    |
| 518414 | Customer  | Female        | 37.0       | 19.866667    |
| 518680 | Customer  | Female        | 37.0       | 18.650000    |
| 518689 | Customer  | Female        | 29.0       | 17.500000    |
| 518710 | Customer  | Female        | 27.0       | 15.883333    |
| 518717 | Customer  | Female        | 32.0       | 135.333333   |
| 519077 | Customer  | Female        | 29.0       | 422.733333   |
| 519121 | Customer  | Female        | 27.0       | 12.966667    |
| 519235 | Customer  | Female        | 27.0       | 21.366667    |
| 519246 | Customer  | Female        | 30.0       | 8.716667     |
| 519374 | Customer  | Female        | 30.0       | 11.583333    |
| 519471 | Customer  | Female        | 30.0       | 19.600000    |
| 519473 | Customer  | Female        | 25.0       | 23.366667    |
| 519484 | Customer  | Female        | 43.0       | 150.466667   |

14612 rows × 4 columns

In [43]: # Find statistics for females customers to obtain mean
 cust\_fem.describe()

# Out[43]:

|       | member_age   | duration_min |
|-------|--------------|--------------|
| count | 14612.000000 | 14612.000000 |
| mean  | 31.590953    | 37.016251    |
| std   | 8.362354     | 102.442378   |
| min   | 18.000000    | 1.016667     |
| 25%   | 26.000000    | 11.583333    |
| 50%   | 30.000000    | 17.516667    |
| 75%   | 35.000000    | 26.416667    |
| max   | 60.000000    | 1437.533333  |

```
In [44]: # Find customers who are males
    cond3 = df_clean["user_type"] == 'Customer'
    cond4 = df_clean["member_gender"] == 'Male'

    cust_male = df_clean[cond3 & cond4]
    cust_male
```

# Out[44]:

|        | user_type | member_gender | member_age | duration_min |
|--------|-----------|---------------|------------|--------------|
| 0      | Customer  | Male          | 30.0       | 1335.166667  |
| 46     | Customer  | Male          | 26.0       | 8.966667     |
| 52     | Customer  | Male          | 23.0       | 11.783333    |
| 98     | Customer  | Male          | 30.0       | 24.166667    |
| 100    | Customer  | Male          | 29.0       | 3.416667     |
| 123    | Customer  | Male          | 25.0       | 20.233333    |
| 141    | Customer  | Male          | 24.0       | 10.750000    |
| 155    | Customer  | Male          | 27.0       | 16.600000    |
| 160    | Customer  | Male          | 29.0       | 3.150000     |
| 173    | Customer  | Male          | 25.0       | 15.416667    |
| 182    | Customer  | Male          | 38.0       | 11.300000    |
| 206    | Customer  | Male          | 29.0       | 10.950000    |
| 225    | Customer  | Male          | 35.0       | 9.600000     |
| 253    | Customer  | Male          | 38.0       | 9.650000     |
| 264    | Customer  | Male          | 38.0       | 17.716667    |
| 292    | Customer  | Male          | 23.0       | 7.533333     |
| 294    | Customer  | Male          | 23.0       | 8.800000     |
| 300    | Customer  | Male          | 31.0       | 7.966667     |
| 310    | Customer  | Male          | 23.0       | 26.600000    |
| 314    | Customer  | Male          | 31.0       | 10.683333    |
| 318    | Customer  | Male          | 27.0       | 35.833333    |
| 319    | Customer  | Male          | 30.0       | 35.700000    |
| 321    | Customer  | Male          | 31.0       | 7.800000     |
| 325    | Customer  | Male          | 38.0       | 21.400000    |
| 337    | Customer  | Male          | 31.0       | 75.350000    |
| 345    | Customer  | Male          | 37.0       | 27.933333    |
| 367    | Customer  | Male          | 23.0       | 13.233333    |
| 389    | Customer  | Male          | 31.0       | 6.300000     |
| 396    | Customer  | Male          | 26.0       | 13.466667    |
| 416    | Customer  | Male          | 23.0       | 18.616667    |
|        |           |               |            |              |
| 518702 | Customer  | Male          | 49.0       | 10.683333    |
| 518738 | Customer  | Male          | 50.0       | 6.866667     |
| 518783 | Customer  | Male          | 29.0       | 8.316667     |
| 518786 | Customer  | Male          | 29.0       | 23.033333    |

|        | user_type | member_gender | member_age | duration_min |
|--------|-----------|---------------|------------|--------------|
| 518810 | Customer  | Male          | 23.0       | 54.700000    |
| 518938 | Customer  | Male          | 47.0       | 9.900000     |
| 518947 | Customer  | Male          | 37.0       | 13.866667    |
| 518973 | Customer  | Male          | 38.0       | 18.166667    |
| 519062 | Customer  | Male          | 43.0       | 8.633333     |
| 519089 | Customer  | Male          | 36.0       | 85.683333    |
| 519094 | Customer  | Male          | 40.0       | 7.750000     |
| 519107 | Customer  | Male          | 40.0       | 62.833333    |
| 519112 | Customer  | Male          | 54.0       | 84.200000    |
| 519115 | Customer  | Male          | 58.0       | 17.400000    |
| 519117 | Customer  | Male          | 19.0       | 55.216667    |
| 519164 | Customer  | Male          | 28.0       | 22.283333    |
| 519179 | Customer  | Male          | 51.0       | 7.266667     |
| 519186 | Customer  | Male          | 27.0       | 10.633333    |
| 519212 | Customer  | Male          | 32.0       | 5.866667     |
| 519230 | Customer  | Male          | 40.0       | 8.783333     |
| 519242 | Customer  | Male          | 53.0       | 61.816667    |
| 519265 | Customer  | Male          | 54.0       | 17.033333    |
| 519370 | Customer  | Male          | 23.0       | 15.666667    |
| 519373 | Customer  | Male          | 23.0       | 14.566667    |
| 519472 | Customer  | Male          | 31.0       | 21.466667    |
| 519476 | Customer  | Male          | 28.0       | 157.016667   |
| 519482 | Customer  | Male          | 40.0       | 14.016667    |
| 519519 | Customer  | Male          | 45.0       | 1.766667     |
| 519574 | Customer  | Male          | 28.0       | 29.966667    |
| 519636 | Customer  | Male          | 43.0       | 90.683333    |

32723 rows × 4 columns

In [45]: # Find statistics for males customers to obtain mean
 cust\_male.describe()

# Out[45]:

|       | member_age   | duration_min |
|-------|--------------|--------------|
| count | 32723.000000 | 32723.000000 |
| mean  | 33.596645    | 28.996115    |
| std   | 8.873089     | 84.136201    |
| min   | 18.000000    | 1.016667     |
| 25%   | 27.000000    | 9.316667     |
| 50%   | 32.000000    | 14.533333    |
| 75%   | 39.000000    | 22.633333    |
| max   | 60.000000    | 1432.916667  |

```
In [46]: # Find subscribers who are females
    cond5 = df_clean["user_type"] == 'Subscriber'
    cond6 = df_clean["member_gender"] == 'Female'

sub_female = df_clean[cond5 & cond6]
sub_female
```

## Out[46]:

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 4      | Subscriber | Female        | 20.0       | 726.716667   |
| 15     | Subscriber | Female        | 37.0       | 25.733333    |
| 32     | Subscriber | Female        | 37.0       | 12.216667    |
| 41     | Subscriber | Female        | 34.0       | 13.666667    |
| 58     | Subscriber | Female        | 49.0       | 9.200000     |
| 64     | Subscriber | Female        | 23.0       | 9.116667     |
| 70     | Subscriber | Female        | 34.0       | 13.283333    |
| 103    | Subscriber | Female        | 39.0       | 15.783333    |
| 137    | Subscriber | Female        | 29.0       | 11.933333    |
| 140    | Subscriber | Female        | 28.0       | 14.966667    |
| 153    | Subscriber | Female        | 30.0       | 10.633333    |
| 156    | Subscriber | Female        | 37.0       | 9.866667     |
| 163    | Subscriber | Female        | 49.0       | 6.866667     |
| 166    | Subscriber | Female        | 41.0       | 6.450000     |
| 172    | Subscriber | Female        | 25.0       | 15.683333    |
| 176    | Subscriber | Female        | 40.0       | 15.166667    |
| 192    | Subscriber | Female        | 24.0       | 28.283333    |
| 193    | Subscriber | Female        | 37.0       | 3.600000     |
| 198    | Subscriber | Female        | 23.0       | 12.916667    |
| 201    | Subscriber | Female        | 23.0       | 10.983333    |
| 202    | Subscriber | Female        | 21.0       | 4.233333     |
| 207    | Subscriber | Female        | 21.0       | 4.066667     |
| 245    | Subscriber | Female        | 31.0       | 21.316667    |
| 256    | Subscriber | Female        | 29.0       | 17.733333    |
| 257    | Subscriber | Female        | 37.0       | 2.683333     |
| 258    | Subscriber | Female        | 31.0       | 3.250000     |
| 260    | Subscriber | Female        | 49.0       | 4.216667     |
| 272    | Subscriber | Female        | 41.0       | 7.816667     |
| 273    | Subscriber | Female        | 23.0       | 4.800000     |
| 278    | Subscriber | Female        | 32.0       | 12.700000    |
|        |            |               |            |              |
| 519395 | Subscriber | Female        | 37.0       | 9.100000     |
| 519397 | Subscriber | Female        | 37.0       | 8.833333     |
| 519401 | Subscriber | Female        | 28.0       | 13.566667    |
| 519407 | Subscriber | Female        | 37.0       | 2.166667     |

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 519413 | Subscriber | Female        | 48.0       | 34.850000    |
| 519450 | Subscriber | Female        | 40.0       | 13.250000    |
| 519455 | Subscriber | Female        | 30.0       | 14.916667    |
| 519457 | Subscriber | Female        | 34.0       | 18.750000    |
| 519459 | Subscriber | Female        | 43.0       | 19.333333    |
| 519463 | Subscriber | Female        | 40.0       | 2.116667     |
| 519478 | Subscriber | Female        | 21.0       | 10.533333    |
| 519491 | Subscriber | Female        | 29.0       | 9.866667     |
| 519531 | Subscriber | Female        | 52.0       | 13.083333    |
| 519537 | Subscriber | Female        | 43.0       | 4.550000     |
| 519550 | Subscriber | Female        | 32.0       | 5.400000     |
| 519556 | Subscriber | Female        | 32.0       | 24.716667    |
| 519565 | Subscriber | Female        | 45.0       | 6.416667     |
| 519571 | Subscriber | Female        | 30.0       | 6.350000     |
| 519579 | Subscriber | Female        | 42.0       | 44.450000    |
| 519590 | Subscriber | Female        | 29.0       | 23.850000    |
| 519599 | Subscriber | Female        | 28.0       | 13.050000    |
| 519628 | Subscriber | Female        | 45.0       | 15.100000    |
| 519638 | Subscriber | Female        | 21.0       | 11.850000    |
| 519641 | Subscriber | Female        | 29.0       | 7.333333     |
| 519654 | Subscriber | Female        | 55.0       | 12.900000    |
| 519667 | Subscriber | Female        | 38.0       | 40.516667    |
| 519670 | Subscriber | Female        | 40.0       | 2.050000     |
| 519678 | Subscriber | Female        | 33.0       | 4.466667     |
| 519683 | Subscriber | Female        | 33.0       | 14.816667    |
| 519697 | Subscriber | Female        | 32.0       | 7.066667     |

82262 rows × 4 columns

In [47]: # Find statistics for females subscribers to obtain mean
 sub\_female.describe()

Out[47]:

|       | member_age   | duration_min |
|-------|--------------|--------------|
| count | 82262.000000 | 82262.000000 |
| mean  | 35.159016    | 13.519596    |
| std   | 9.014801     | 35.750348    |
| min   | 18.000000    | 1.016667     |
| 25%   | 29.000000    | 6.616667     |
| 50%   | 33.000000    | 9.983333     |
| 75%   | 40.000000    | 14.766667    |
| max   | 60.000000    | 1434.583333  |

```
In [48]: # Find subscribers who are males
    cond7 = df_clean["user_type"] == 'Subscriber'
    cond8 = df_clean["member_gender"] == 'Male'
    sub_male = df_clean[cond7 & cond8]
    sub_male
```

## Out[48]:

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 12     | Subscriber | Male          | 27.0       | 36.383333    |
| 13     | Subscriber | Male          | 27.0       | 36.166667    |
| 16     | Subscriber | Male          | 38.0       | 24.566667    |
| 19     | Subscriber | Male          | 46.0       | 20.266667    |
| 20     | Subscriber | Male          | 25.0       | 6.433333     |
| 22     | Subscriber | Male          | 32.0       | 7.033333     |
| 28     | Subscriber | Male          | 38.0       | 14.516667    |
| 34     | Subscriber | Male          | 39.0       | 7.916667     |
| 35     | Subscriber | Male          | 37.0       | 2.533333     |
| 36     | Subscriber | Male          | 24.0       | 4.150000     |
| 39     | Subscriber | Male          | 40.0       | 4.050000     |
| 40     | Subscriber | Male          | 33.0       | 13.883333    |
| 47     | Subscriber | Male          | 39.0       | 9.616667     |
| 48     | Subscriber | Male          | 50.0       | 6.966667     |
| 54     | Subscriber | Male          | 43.0       | 20.666667    |
| 59     | Subscriber | Male          | 55.0       | 9.100000     |
| 60     | Subscriber | Male          | 28.0       | 3.266667     |
| 62     | Subscriber | Male          | 30.0       | 5.383333     |
| 63     | Subscriber | Male          | 31.0       | 10.466667    |
| 65     | Subscriber | Male          | 53.0       | 18.766667    |
| 66     | Subscriber | Male          | 33.0       | 6.866667     |
| 69     | Subscriber | Male          | 33.0       | 12.266667    |
| 71     | Subscriber | Male          | 39.0       | 25.866667    |
| 72     | Subscriber | Male          | 26.0       | 26.416667    |
| 75     | Subscriber | Male          | 34.0       | 6.800000     |
| 76     | Subscriber | Male          | 37.0       | 44.100000    |
| 77     | Subscriber | Male          | 31.0       | 5.633333     |
| 86     | Subscriber | Male          | 59.0       | 32.683333    |
| 91     | Subscriber | Male          | 38.0       | 3.533333     |
| 95     | Subscriber | Male          | 38.0       | 15.283333    |
| •••    |            |               | •••        |              |
| 519659 | Subscriber | Male          | 29.0       | 3.766667     |
| 519661 | Subscriber | Male          | 28.0       | 10.683333    |
| 519662 | Subscriber | Male          | 33.0       | 10.250000    |
| 519664 | Subscriber | Male          | 46.0       | 1.200000     |

|        | user_type  | member_gender | member_age | duration_min |
|--------|------------|---------------|------------|--------------|
| 519665 | Subscriber | Male          | 33.0       | 6.233333     |
| 519668 | Subscriber | Male          | 45.0       | 2.066667     |
| 519671 | Subscriber | Male          | 35.0       | 1.216667     |
| 519672 | Subscriber | Male          | 33.0       | 31.816667    |
| 519673 | Subscriber | Male          | 28.0       | 31.800000    |
| 519674 | Subscriber | Male          | 38.0       | 11.200000    |
| 519675 | Subscriber | Male          | 48.0       | 10.033333    |
| 519676 | Subscriber | Male          | 46.0       | 14.883333    |
| 519677 | Subscriber | Male          | 33.0       | 18.933333    |
| 519679 | Subscriber | Male          | 30.0       | 5.350000     |
| 519680 | Subscriber | Male          | 44.0       | 13.283333    |
| 519681 | Subscriber | Male          | 30.0       | 12.000000    |
| 519682 | Subscriber | Male          | 30.0       | 8.066667     |
| 519684 | Subscriber | Male          | 51.0       | 8.500000     |
| 519685 | Subscriber | Male          | 31.0       | 8.100000     |
| 519687 | Subscriber | Male          | 39.0       | 10.666667    |
| 519688 | Subscriber | Male          | 38.0       | 6.833333     |
| 519690 | Subscriber | Male          | 44.0       | 9.216667     |
| 519691 | Subscriber | Male          | 59.0       | 18.100000    |
| 519692 | Subscriber | Male          | 32.0       | 20.016667    |
| 519693 | Subscriber | Male          | 34.0       | 9.833333     |
| 519694 | Subscriber | Male          | 37.0       | 12.166667    |
| 519695 | Subscriber | Male          | 26.0       | 7.250000     |
| 519696 | Subscriber | Male          | 44.0       | 7.183333     |
| 519698 | Subscriber | Male          | 36.0       | 6.100000     |
| 519699 | Subscriber | Male          | 33.0       | 3.133333     |

305501 rows × 4 columns

```
In [49]: # Find statistics for males subscribers to obtain mean
    sub_male.describe()
```

### Out[49]:

|       | member_age    | duration_min  |
|-------|---------------|---------------|
| count | 305501.000000 | 305501.000000 |
| mean  | 36.369233     | 11.166949     |
| std   | 9.254223      | 28.837056     |
| min   | 18.000000     | 1.016667      |
| 25%   | 29.000000     | 5.650000      |
| 50%   | 35.000000     | 8.483333      |
| 75%   | 43.000000     | 12.466667     |
| max   | 60.000000     | 1428.050000   |

```
In [50]: # Create a bar chart for User Types

labels = ['Customer', 'Subscriber']
heights = df_clean_user_mean
labels = df_clean_user_mean.index.str.replace('_', ' ').str.title()

plt.bar(labels, heights, tick_label = labels)
plt.title('Average Trip Duration between User Types')
plt.xlabel('User Type')
plt.ylabel('Average Trip Duration in Minutes')

mean = df_clean['duration_min'].mean()

plt.axhline(mean, color='green', linestyle='--')
plt.savefig('Avg Trip between Users');
```



The dotted line in the bar plot represents its relation to the overall average trip duration for all bike riders.

```
In [51]:
         # Create a bar chart for Customers
         labels = ['Customers']
         customers = df clean["user type"] == 'Customer'
         customers = df clean[customers]
         customers mean = customers['duration min'].mean()
         heights = customers mean
         plt.bar(labels, heights, tick label = labels, color = 'blue')
         plt.title('Average Trip Duration between Customers by Gender')
         plt.xlabel('User Type')
         plt.ylabel('Average Trip Duration in Minutes')
         # Customer Mean = 31.47
         # Mean 2 = Average Duration for Customers who are Females
         mean2 = 37.02
         # Mean 3 = Average Duration for Customers who are Males
         mean3 = 29.00
         # Females in Dotted Red Line
         # Males in Dotted Black Line
         plt.axhline(mean2, color='red', linestyle='--')
         plt.axhline(mean3, color='black', linestyle='--')
         plt.savefig('Avg Trip between Customers by Gender');
```



The red dotted line in the bar plot represents female customers and their relation to the average trip duration for all customers.

The black dotted line in the bar plot represents male customers and their relation to the average trip duration for all customers.

```
In [52]:
         # Create a bar chart for Subscribers
         labels = ['Subscribers']
         subscribers = df clean["user type"] == 'Subscriber'
         subscribers = df clean[subscribers]
         subscribers mean = subscribers['duration min'].mean()
         heights = subscribers mean
         plt.bar(labels, heights, tick label = labels, color = 'b')
         plt.title('Average Trip Duration between Subscribers by Gender')
         plt.xlabel('User Type')
         plt.ylabel('Average Trip Duration in Minutes')
         # Subscriber Mean = 11.67
         # Mean 4 = Average Duration for Subscribers who are Females
         mean4 = 13.52
         # Mean 5 = Average Duration for Subscribers who are Males
         mean5 = 11.17
         # Femaes in Dotted Red Line
         # Males in Dotted Black Line
         plt.axhline(mean4, color='red', linestyle='--')
         plt.axhline(mean5, color='black', linestyle='--')
         plt.savefig('Avg Trip between Subscribers by Gender');
```



The red dotted line in the bar plot represents female subscribers and their relation to the average trip duration for all subscribers.

The black dotted line in the bar plot represents male subscribers and their relation to the average trip duration for all subscribers.

```
In [53]: # Create bar chart with subplot
plt.figure(figsize = [10, 5])

plt.subplot(1, 2, 1)

g = sns.countplot(data=df_clean, x="user_type", hue="member_gender", order=df_clean.user_type.value_counts().index)
g.set_xlabel('User Type')
g.set_ylabel('Amount of Users')
g.set_title('Bike Riders by User Type and Gender')
plt.savefig('Bike Riders by User Type and Gender');
```



This bar plot represents the breakdown of subscribers and customers by gender to obtain an idea of how they represented among bike riders for this bike-sharing system for year 2017. We can see there is significantly higher amount of subscribers than to customers and same goes for gender, there is much more males than females.

# Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

The overall average trip duration for all entries was 13.82 minutes.

Looking at the divide of gender, the average for females was 17.06 minutes and for males 12.89 minutes. Females were above overall average and males were below.

Looking at the divide of user type, the average for customers was 31.47 minutes and for subscribers 11.67 minutes. Customers were above overall average and subscribers were below.

#### **Averages**

All Customers: 31.47 minutes

Female Customers: 37.02 minutes

Male Customers: 29.00 minutes

All Subscribers: 11.67 minutes

Female Subscribers: 13.52 minutes

Male Subscribers: 11.17 minutes

Interestingly, adding the factor of user type: Female Customers & Females Subscribers were also above its average while Male Customers and Male Subscribers were below average.

# Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

Expected relationships were found in the association between user type (customer and subscriber) to average trip duration. Customers have a significantly higher average trip duration than subscribers, their average trip duration is nearly twice as long. Even with the factor of user type, females still have a higher average than males.

There also seems to be a correlation to gender to average trip duration. Females generally have a higher average trip duration than males even with disregard to their user type as a customer or subscriber.

To note: they are more entries of males and subscribers than we have for females and customers, so with this limited data, it may not be representative of findings. More entries of females and customers may offer new findings.

### **Multivariate Exploration**

I will finish exploring the dataset by adding member age to further examine the average duration of bike rides in minutes among user type and gender.

```
In [54]: # Create boxplot of member_age

plt.figure(figsize = [8, 2])
base_color = sns.color_palette()[0]

sns.boxplot(data=df_clean, x='member_age', color=base_color)
plt.savefig('BoxPlot of Member Age');
```



Most of the data entries fall under the 30-40 age range based on this boxplot.

```
In [55]: # Find entries for those between ages 0-20
         age_20 = df_clean.loc[(df_clean['member_age'] <=20)]</pre>
In [56]: # Find entries for those between ages 20-40
         age_40 = df_clean.loc[(df_clean['member_age'] > 20) & (df_clean['member_age']
         <= 40)]
In [57]:
         # Find entries for those between ages 40-60
         age_60 = df_clean.loc[(df_clean['member_age'] > 40) & (df_clean['member_age']
         <= 60)1
In [58]: # Find counts of each age group
         len(age 20), len(age 40), len(age 60)
Out[58]: (4173, 310204, 120721)
In [59]: # Find means of each age group
         mean 20 = age 20['duration min'].mean()
         mean 40 = age 40['duration min'].mean()
         mean 60 = age 60['duration min'].mean()
         mean_20, mean_40, mean_60
Out[59]: (24.61149053438777, 13.662546367336992, 13.854293094545755)
```

```
In [60]: # Record all means with their values rounded
    mean_all = 13.82
    mean_20 = 24.61
    mean_40 = 13.66
    mean_60 = 13.84
```

```
In [61]: # Create plot
labels = ['Age 0-20', 'Age 20-40', 'Age 40-60']
heights = mean_20, mean_40, mean_60

plt.bar(labels, heights, tick_label = labels, color = 'b')
plt.title('Average Trip by Age Group')
plt.xlabel('Average Trip Duration in Minutes')
plt.ylabel('Age Group')

plt.axhline(mean_all, color='black', linestyle='--')
plt.savefig('Average Trip by Age Group');
```



The dotted line in the bar plot represents its relation to the overall average trip duration for all bike riders.

```
In [62]: # Find counts for subscribers under age groups

subscribers_20 = age_20.loc[(age_20["user_type"] == 'Subscriber')]
subscribers_40 = age_40.loc[(age_40["user_type"] == 'Subscriber')]
subscribers_60 = age_60.loc[(age_60["user_type"] == 'Subscriber')]
len(subscribers_20), len(subscribers_40), len(subscribers_60)
```

Out[62]: (2424, 273481, 111858)

```
In [63]: # Find means for subscribers under age groups
         mean sub 20 = subscribers 20['duration min'].mean()
         mean sub 40 = subscribers 40['duration min'].mean()
         mean sub 60 = subscribers 60['duration min'].mean()
         mean sub 20, mean sub 40, mean sub 60
Out[63]: (13.578424092409211, 11.3642254854999, 12.362541794060402)
In [64]: # Find counts for customers under age groups
         customers_20 = age_20.loc[(age_20["user_type"] == 'Customer')]
         customers_40 = age_40.loc[(age_40["user_type"] == 'Customer')]
         customers 60 = age 60.loc[(age 60["user type"] == 'Customer')]
         len(customers 20), len(customers 40), len(customers 60)
Out[64]: (1749, 36723, 8863)
In [65]: # Find means for customers under age groups
         mean cust 20 = customers 20['duration min'].mean()
         mean cust 40 = customers 40['duration min'].mean()
         mean cust 60 = customers 60['duration min'].mean()
         mean cust 20 , mean cust 40 , mean cust 60
Out[65]: (39.90260148656365, 30.778443573055952, 32.68136259355377)
In [66]: # Find counts for females under age groups
         fem_20 = age_20.loc[(age_20["member_gender"] == 'Female')]
         fem 40 = age 40.loc[(age 40["member gender"] == 'Female')]
         fem_60 = age_60.loc[(age_60["member_gender"] == 'Female')]
         len(fem 20), len(fem 40), len(fem 60)
Out[66]: (1283, 73147, 22444)
In [67]: # Find means for females under age groups
         mean fem 20 = fem 20['duration min'].mean()
         mean fem 40 = fem 40['duration min'].mean()
         mean fem 60 = fem 60['duration min'].mean()
         mean fem 20 , mean fem 40 , mean fem 60
Out[67]: (29.007898155365016, 16.81219052045866, 17.20067872631126)
```

```
In [70]: # Create plot for user types by age group
         labels = ['Age 0-20', 'Age 20-40', 'Age 40-60']
         subscribers 20 = 2424
         subscribers 40 = 273481
         subscribers_60 = 111858
         customers 20 = 1749
         customers 40 = 36723
         customers 60 = 8863
         heights = subscribers 20, subscribers 40, subscribers 60
         heights2 = customers_20, customers_40, customers_60
         plt.barh(labels, heights, tick_label = labels, color = 'green')
         plt.barh(labels, heights2, tick label = labels, color = 'yellow')
         plt.title('Bike Riders by Age Group and User Type')
         plt.xlabel('Number of Bike Riders')
         plt.ylabel('Age Group')
         plt.savefig('Bike Riders by Age Group and User Type');
```



Subscribers are represented in green and Customers are represented in yellow.

```
In [71]: # Create plot for genders by age group
         labels = ['Age 0-20', 'Age 20-40', 'Age 40-60']
         fem 20 = 1283
         fem 40 = 73147
         fem 60 = 22444
         male 20 = 2890
         male_40 = 237057
         male 60 = 98277
         heights3 = fem 20, fem 40, fem 60
         heights4 = male 20, male 40, male 60
         plt.barh(labels, heights4, tick_label = labels, color = 'blue')
         plt.barh(labels, heights3, tick label = labels, color = 'red')
         plt.title('Bike Riders by Age Group and Gender')
         plt.xlabel('Number of Bike Riders')
         plt.ylabel('Age Group')
         plt.savefig('Bike Riders by Age Group and Gender');
```



Males are represented in blue and Females are represented in red.

These two bar plots above for Bike Riders provide a visual of how riders differ in age and user type, and then age and gender. To read these bar plots, the lower end of comparsion shows its proportion to the higher end. For example in the age group 20-40, there are 73,147 females to 237,057 males.

```
In [72]: # Create a bar plot for Age Group and User Type
labels = ['Age 0-20', 'Age 20-40', 'Age 40-60']

h1 = mean_sub_20 , mean_sub_40 , mean_sub_60,
h2 = mean_cust_20 , mean_cust_40 , mean_cust_60

plt.bar(labels, h2, tick_label = labels, color = 'yellow')
plt.bar(labels, h1, tick_label = labels, color = 'green')

plt.title('Average Trip Duration in Minutes by Age Group and User Type')
plt.xlabel('Age Group')
plt.ylabel('Average Trip Duration in Minutes')
plt.axhline(mean, color='black', linestyle='--')
plt.savefig('Average Trip Duration in Minutes by Age Group and User Type');
```



The dotted line in the bar plot represents its relation to the overall average trip duration for all bike riders.

Subscribers are represented in green and Customers are represented in yellow.

```
In [73]: labels = ['Age 0-20', 'Age 20-40', 'Age 40-60']

h3 = mean_male_20 , mean_male_40 , mean_male_60
h4 = mean_fem_20 , mean_fem_40 , mean_fem_60

plt.bar(labels, h4, tick_label = labels, color = 'red')
plt.bar(labels, h3, tick_label = labels, color = 'blue')

plt.title('Average Trip Duration in Minutes by Age Group and Gender')
plt.ylabel('Age Group')
plt.ylabel('Average Trip Duration in Minutes')
plt.axhline(mean, color='black', linestyle='--')
plt.savefig('Average Trip Duration in Minutes by Age Group and Gender');
```



The dotted line in the bar plot represents its relation to the overall average trip duration for all bike riders.

Males are represented in blue and Females are represented in red.

# Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

I extended my investigation of average trip duration against age in this section by looking at its impact to the other two categorical quality features of gender and user type. The multivariate exploration here showed that there is a correlation between age group with user type and gender to average trip duration. Among the three age groups, the youngest age group of Age 0-20 had the highest average trip duration as expected. However, the Age 40-60 group had a slightly higher average than Age 20-40. There is only a 0.19 of a second difference so there may be little or correlation between these age groups but interesting enough to note.

The overall average found at the start of the investigation was 13.82 minutes where the averages for the age groups of 20-40 and 40-60 are very close to. This suggest that riders from 0 to 20 in age generally have a higher average trip duration for bike rides than others of different age.

### **Averages among Age Group**

Age 0-20: 24.61 minutes

Age 20-40: 13.66 minutes

Age 40-60: 13.85 minutes

### Were there any interesting or surprising interactions between features?

Looking back on the bar plots, there seems to be some connections between the categorical features of user type, gender, age group to average trip duration. They all seem to be dependent in some sense. For more depth about age group, age 20-40 had a lower average when against user type and gender. Perhaps with life happenings, the age group for 0-20 and 40-60 may have more free time to enjoy longer bike rides. Age 20-40 may be using this bike-sharing for commute purposes rather then leisure.

### Averages for Gender based on Age Group

Females 0-20: 29.01 minutes

Females 20-40: 16.81 minutes

Females 40-60: 17.20 minutes

Males 0-20: 22.66 minutes

Males 20-40: 12.69 minutes

Males 40-60: 13.09 minutes

### Averages for User Type based on Age Group

Customers 0-20: 39.90 minutes

Customers 20-40: 30.78 minutes

Customers 40-60: 32.68 minutes

Subscribers 0-20: 13.58 minutes

Subscribers 20-40: 11.36 minutes

Subscribers 40-60: 12.36 minutes

#### Resources

- https://stackoverflow.com/questions/17578115/pass-percentiles-to-pandas-agg-function (https://stackoverflow.com/questions/17578115/pass-percentiles-to-pandas-agg-function)
- 2. <a href="https://stackoverflow.com/questions/53277718/pandas-dataframe-easier-syntax-to-drop-rows-by-condition-on-values">https://stackoverflow.com/questions/53277718/pandas-dataframe-easier-syntax-to-drop-rows-by-condition-on-values</a>)
- 3. <a href="https://stackoverflow.com/questions/31583151/count-number-of-rows-when-row-contains-certain-text">https://stackoverflow.com/questions/31583151/count-number-of-rows-when-row-contains-certain-text</a> (https://stackoverflow.com/questions/31583151/count-number-of-rows-when-row-contains-certain-text)
- https://stackoverflow.com/questions/34828701/mean-line-on-top-of-bar-plot-with-pandas-and-matplotlib/34829398 (https://stackoverflow.com/questions/34828701/mean-line-on-top-of-bar-plot-with-pandas-and-matplotlib/34829398)
- 5. <a href="https://stackoverflow.com/questions/48978550/pandas-filtering-multiple-conditions">https://stackoverflow.com/questions/48978550/pandas-filtering-multiple-conditions</a>) (https://stackoverflow.com/questions/48978550/pandas-filtering-multiple-conditions)
- 6. <a href="https://stackoverflow.com/questions/18992086/save-a-pandas-series-histogram-plot-to-file">https://stackoverflow.com/questions/18992086/save-a-pandas-series-histogram-plot-to-file</a> (<a href="https://stackoverflow.com/questions/18992086/save-a-pandas-series-histogram-plot-to-file">https://stackoverflow.com/questions/18992086/save-a-pandas-series-histogram-plot-to-file</a>)
- 7. <a href="https://stackoverflow.com/questions/17071871/select-rows-from-a-dataframe-based-on-values-in-a-column-in-pandas">https://stackoverflow.com/questions/17071871/select-rows-from-a-dataframe-based-on-values-in-a-column-in-pandas</a>)