Auctions & Mechanism Design Basics

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

- We study about a kind of science of rule-making.
- To make it simple, we first consider single-item auctions.
- We will go over some basics about first-price auctions and second-price auctions.
- Also, we will talk about
 - incentive guarantees,
 - strong performance guarantees, and
 - computational efficiency

in an auction.

• We will end the discussion with Myerson's Lemma.

Outline

- Single-Item Auctions
- Sealed-Bid Auctions
 - First-Price Auctions
 - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

Outline

- Single-Item Auctions
- Sealed-Bid Auctions
 - First-Price Auctions
 - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

- Consider a seller with a single item.
 - For example, an antiquated furniture.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.
 - v_i is private.

- Consider a seller with a single item.
 - For example, an antiquated furniture.
- Assume that there are *n* bidders who are strategic.
 - Bidders are interested in buying this furniture.
- We want to reason about bidder behavior in the auction.
- Let's say each bidder i has a nonnegative valuation v_i for this item being sold.
 - Her maximum willingness-to-pay for it.
 - v_i is private.
 - Unknown to the seller and other bidders.

• Each bidder wants to acquire the item as cheaply as possible.

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses ⇒

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.
 - If she wins \Rightarrow

- Each bidder wants to acquire the item as cheaply as possible.
- It would be great if the selling price is $\leq v_i$.
- What's the utility of bidder i?
 - If she loses \Rightarrow 0.
 - If she wins $\Rightarrow v_i p$.

Outline

- Sealed-Bid Auctions
 - - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

< ロ > < 回 > < 三 > <

Sealed-Bid Auctions

Sealed-Bid Auction

- (i) Each bidder i privately communicates a bid b_i to the seller—in a sealed envelope.
- (ii) The seller decides who gets the item (if any).
- (iii) The seller decides the selling price.

Sealed-Bid Auctions

Sealed-Bid Auction

- (i) Each bidder i privately communicates a bid b_i to the seller—in a sealed envelope.
- (ii) The seller decides who gets the item (if any).
- (iii) The seller decides the selling price.
 - Step (ii): The selection rule. We consider giving the item to the highest bidder.

Outline

Single-Item Auctions

- Sealed-Bid Auctions
 - First-Price Auctions
 - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

< ロ > < 回 > < 三 > <

First-Price auction

First-Price

The winning bidder pays her bid.

• But it's hard to reason about.

First-Price auction

First-Price

The winning bidder pays her bid.

- But it's hard to reason about.
- Why?

For a bidder:

• For a bidder: Hard to figure how to bid.

- For a bidder: Hard to figure how to bid.
- For the seller:

- For a bidder: Hard to figure how to bid.
- For the seller: Hard to predict what will happen.

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
 - Would it help to know your opponent's birthday?

- Suppose that you are participating in the first-price auction.
- Your valuation for the item: the number of your birth month + the day of your birth.
 - Your valuation is between 2 and 43.
- Suppose that there is another bidder who has the same valuation like you.
 - Would it help to know your opponent's birthday?
 - Would your answer change if you knew there were two other bidders rather than one?

Outline

- Single-Item Auctions
- Sealed-Bid Auctions
 - First-Price Auctions
 - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

eBay/Yahoo auction

• If you bid \$100 and win, do you pay \$100?

eBay/Yahoo auction

- If you bid \$100 and win, do you pay \$100?
 - eBay increases your bid on your behalf until
 - Your maximum bid is reached, or
 - You are the highest bidder whichever comes first.

eBay/Yahoo auction

- If you bid \$100 and win, do you pay \$100?
 - eBay increases your bid on your behalf until
 - Your maximum bid is reached, or
 - You are the highest bidder

whichever comes first.

- For example, if the highest other bid is \$90. You only pay $$90 + \epsilon$$ for some small increment ϵ .
- ≈ highest other bid!

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

• Is such a strategy a dominant strategy?

Second-Price auction

Second-Price/Vickrey Auction

The highest bidder wins and pays a price equal to the second-highest bid.

- Is such a strategy a dominant strategy?
 - The strategy is guaranteed to maximize a bidder's utility no matter what other bidders do.

Truthfully Bidding Is Dominant Here

Proposition (Incentives in Second-Price Auctions)

In a second-price auction, every bidder i has a dominant strategy: set the bid $b_i = v_i$, equal to her private valuation.

Proof of the Proposition

- Fix a bidder i with valuation v_i .
- b: the vector of all bids.
- b_{-i} : the vector of b with b_i removed.
- * **Goal**: Show that bidder *i*'s utility is maximized by setting $b_i = v_i$.

• Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \geq B$, then i

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \geq B$, then i wins at price

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \geq B$, then i wins at price B and receives utility

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:

- Let $B := \max_{j \neq i} b_j$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is

- Let $B := \max_{i \neq i} b_i$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = 0$.

- Let $B := \max_{i \neq i} b_i$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = 0$.
 - ⇒ Bid truthfully (and then loses).

- Let $B := \max_{i \neq i} b_i$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = 0$.
 - ⇒ Bid truthfully (and then loses).
 - If $v_i \ge B$, the maximum utility that bidder i can obtain is

- Let $B := \max_{i \neq i} b_i$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = 0$.
 - ⇒ Bid truthfully (and then loses).
 - If $v_i \ge B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = v_i B$.

- Let $B := \max_{i \neq i} b_i$ denote the highest bid by some other bidder.
- If $b_i < B$, then i loses and receive utility 0.
- If $b_i \ge B$, then i wins at price B and receives utility $v_i B$.
- Then, we consider two cases:
 - If $v_i < B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = 0$.
 - ⇒ Bid truthfully (and then loses).
 - If $v_i \ge B$, the maximum utility that bidder i can obtain is $\max\{0, v_i B\} = v_i B$.
 - ⇒ Bid truthfully (and then wins).

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

- Losers receive utility 0.
- How about the winners?

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.

Second-Price Auctions

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.
 - : bidder i wins and bids her true valuation v_i , so $p \le v_i$

Nonnegative Utility Here

Proposition 2 (Nonnegative Utility)

- Losers receive utility 0.
- How about the winners?
 - The utility is $v_i p$, where p is the 2nd highest bid.
 - : bidder i wins and bids her true valuation v_i , so $p \le v_i \Rightarrow v_i p \ge 0$.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)

An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Second-Price Single-Item Auctions are "ideal"

Definition (Dominant-Strategy Incentive Compatible)

An auction is dominant-strategy incentive compatible (DSIC) if

- truthful bidding is a dominant strategy for every bidder, and
- truthful bidders always obtain nonnegative utility.

Social Welfare

The social welfare of an outcome of a single-item auction is

$$\sum_{i=1}^n v_i x_i.$$

where $\sum_{i=1}^{n} x_i \le 1$; $x_i = 1$ if bidder i wins and 0 if she loses.

Second-Price Single-Item Auctions are "ideal" (contd.)

Social Welfare

The social welfare of an outcome of a single-item auction is

$$\sum_{i=1}^n v_i x_i.$$

where $\sum_{i=1}^{n} x_i \le 1$; $x_i = 1$ if bidder i wins and 0 if she loses.

• So such an auction is welfare maximizing if bids are truthful.

Second-Price Auctions

Second-Price Single-Item Auctions are "ideal" (contd.)

Theorem

A second-price single-item auction satisfies:

- (1) DSIC.
- (2) Welfare maximizing.
- (3) It can be implemented in polynomial time.

In fact, (3) is linear.

Second-Price Single-Item Auctions are "ideal" (contd.)

$\mathsf{Theorem}$

A second-price single-item auction satisfies:

- (1) DSIC. (strong incentive guarantees)
- (2) Welfare maximizing. (strong performance guarantees)
- (3) It can be implemented in polynomial time. (computational efficiency)

In fact, (3) is linear.

Outline

- Single-Item Auctions
- Sealed-Bid Auctions
 - First-Price Auctions
 - Second-Price Auctions
 - Case Study: Sponsored Search Auctions

Background

The Social Dilemma (2020) - Trailer

- Web search results:
 - relevant to your query (by an algorithm, e.g., PageRank).
 - pops out a list of sponsored links.
 - They are paid by advertisers.
- Every time you give a search query into a search engine, an auction is run in real time to decide
 - which advertiser's links are shown,
 - how these links are arranged visually,
 - what the advertisers are charged.

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
 - On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.

- Let's say the items for sale are k "slots" on a search results page.
- Bidders: the advertisers who have a bid on the keyword that was searched on.
 - On the keyword, "university", NTU, NYCU, NCKU, TKU, etc., might be the bidders.
 - On the keyword, "camera", Nikon, Canon, Sony, etc., might be the bidders.
 - On the keyword, "SUV", Toyota, Ford, Honda, Porsche, etc., might be the bidders.
- Let's say the items are not identical.
 - Higher slots are more valuable. What do you think?

Case Study: Sponsored Search Auctions

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \dots \alpha_k$.

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \dots \alpha_k$.
- * Each advertiser i has a quality score β_i .
 - The CTR of advertiser i in slot j: $\beta_i \alpha_j$.
 - Here we simply assume thay $\beta_i = 1$ for each i.

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \dots \alpha_k$.
- * Each advertiser i has a quality score β_i .
 - The CTR of advertiser i in slot j: $\beta_i \alpha_j$.
 - Here we simply assume thay $\beta_i = 1$ for each i.
- The expected value derived by advertiser i from slot j: $v_i \alpha_j$

- Consider the click-through-rates (CTRs) α_j of slot j.
 - The probability that the user clicks on this slot.
 - Assumption: $\alpha_1 \geq \alpha_2 \geq \dots \alpha_k$.
- * Each advertiser i has a quality score β_i .
 - The CTR of advertiser i in slot j: $\beta_i \alpha_j$.
 - Here we simply assume thay $\beta_i = 1$ for each i.
- The expected value derived by advertiser i from slot j: $v_i \alpha_j$
- The social welfare is $\sum_{i=1}^{n} v_i x_i$.
 - x_i : the CTR of the slot to which bidder i is assigned.
 - $x_i = 0$: bidder i is not assigned to a slot.
 - Each slot can only be assigned to one bidder; each bidder gets only one slot.

Our Design Approach

- Who wins what?
- Who pays what?
- The payment.

Our Design Approach

- Who wins what?
- Who pays what?
- The payment.
 - If the payments are not just right, then the strategic bidders will game the system.

Our Design Approach

Design Steps

- (a): Assume that the bidders bid truthfully. Then, how should we assign bidders to slots so that property (2) and (3) holds?
- (b): Given the answer of above, how should we set selling prices so that property (1) holds?

Step (a)

• Given truthful bids. For i = 1, 2, ..., k, assign the *i*th highest bid to the *i*th best slot.

Step (a)

- Given truthful bids. For i = 1, 2, ..., k, assign the *i*th highest bid to the *i*th best slot.
- You can prove that this assignment achieves the maximum social welfare as an exercise.

Auctions & Mechanism Design Basics Sealed-Bid Auctions Case Study: Sponsored Search Auctions

Step (b)

- There is an analog of the second-price rule.
 - DSIC.
 - * Myerson's lemma.

Step (b)

- There is an analog of the second-price rule.
 - DSIC.
 - * Myerson's lemma.
 - A powerful and general tool for implementing this second step.

