Essentials of MOSFETs

Unit 1: Transistors and Circuits

Lecture 1.1: The MOSFET as a Black Box

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Side and top views of a MOSFET

Metal Oxide Semiconductor Field Effect Transistor

side view

Lundstrom: 2018

top view

Transistors

Discrete

Integrated circuits

Intel 4004 (2300 transistors) 1971

https://www.extremetech.com/computing/1050 29-intel-4004-the-first-cpu-is-40-years-old-today

The transistor as a "black box"

There are many kinds of transistors:

MOSFET

SOI MOSFET

FinFETs

SB FET

FinFET

MODFET (HEMT)

bipolar transistor

JFET

heterojunction bipolar transistor

BTBT FET

SpinFET

. . .

The bulk MOSFET

(Texas Instruments, ~ 2000)

Modern MOSFETs: The FinFET

Source: Intel

Digh Hisamoto, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, Chenming Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," *IEEE Transactions on Electron Devices*, **47**, 2320-2325, 2000.

The MOSFET as a 2-port device

MOSFET circuit symbol

current vs. voltage (IV) characteristics

$$I_D(V_G, V_S, V_D)$$

common source

 $I_Dig(V_{GS}ig)$ at a fixed V_{DS} transfer $I_Dig(V_{DS}ig)$ at a fixed V_{GS} output

IV characteristics: resistor

I = V/R Ohm's Law

Georg Ohm, 1827

IV characteristics: ideal current source

IV characteristics: transistors

IV characteristics: real current sources

IV characteristics: transistors

n-channel enhancement mode MOSFET

MOSFET IV: output characteristics

Output vs. transfer characteristics

output characteristics

transfer characteristics

Applications of MOSFETs

pymbo

Lundstrom: 2018

15

N-channel vs. P-channel MOSFETs

side view side view

Summary

- Transistors are three (or sometime four) terminal devices that control a large output current with an input voltage (or sometimes with a small input current).
- 2) Transistors can operate as a voltage controlled resistor or as a voltage controlled current course.
- 3) The shape of the IV characteristics make transistors useful in digital and analog circuits.
- 4) The shape of the IV characteristics is determined by the physics of the transistor.

Next topic: A primer on digital circuits

Device engineers assess MOSFETs in terms of a few key device metrics.

To understand these device metrics, we must first understand a little about digital and analog circuits.

18