Tightly-Secure Authenticated Key Exchange, Revisited

Tibor Jager¹, Eike Kiltz², <u>Doreen Riepel</u>², Sven Schäge²

October 14, 2021

¹Bergische Universität Wuppertal

²Ruhr-Universität Bochum

Introduction

Authenticated Key Exchange (AKE)

- Used to establish a shared session key between two parties
- One of the most widely-used cryptographic primitives, e.g. TLS

Outline

- Security model and tightness
- Comparison to previous work
- AKE from key encapsulation mechanisms (KEMs)
- Security requirements for KEM

1

- reveals secret states
- adaptively corrupts long-term keys
- reveals real session keys

AB Bob

Multiple challenge queries - with multiple challenge bits

Multiple challenge queries - with multiple challenge bits

Multiple challenge queries - with a single challenge bit

Eve

Multiple challenge queries
- with a single challenge bit

AKE Security

Single challenge bit

- Well-established notion for multi-challenge security definitions
- Equivalent to "Real-or-Random" security
- Tightly composes with symmetric primitives

Security properties

- Forward secrecy
- Resistance against key compromise impersonation attacks
- Resistance against maximal exposure attacks

Provable Security

Security is modelled as a game between a challenger and an adversary.

Security reduction

ullet We turn adversary an ${\mathcal A}$ against the scheme into an adversary ${\mathcal B}$ that solves a computationally hard problem.

A reduction is called *tight* if \mathcal{A} and \mathcal{B}

- have about the same advantage.
- run in about the same time.

Relevance: tells us how to choose system parameters

Comparison with Previous Work

	Standard Model	Tight Proof	Ephemeral State Reveal	Single Challenge Bit
BHJKL15	✓	✓	Х	×
GJ18	×	✓	X	X
CCGJJ19	×	×	X	✓
LLGW20	✓	✓	X	X
This work	×	✓	✓	✓

Our AKE Protocols

Generic Construction

Generic Construction

Main question: What security properties do we need for the KEM to achieve tightness?

Alice
$$(sk_A, pk_A)$$

$$(sk_B, pk_B)$$

$$(sk_B, pk_B)$$

$$(sk_B, pk_B)$$

$$\tilde{p}k, c_A$$

$$(c_B, K_B) \leftarrow \text{Encaps}(\tilde{p}k)$$

$$K_A = \text{Decaps}(sk_B, c_A)$$

$$(c_B, K_B) \leftarrow \text{Encaps}(pk_A)$$

$$\tilde{p}k, c_A$$

$$(c_B, K_B) \leftarrow \text{Encaps}(pk_A)$$

 $K = H(A, B, pk_A, pk_B, \tilde{pk}, c_A, c_B, \tilde{c}, K_A, K_B, \tilde{K})$

7

Security Requirements for KEM

Corruption queries

- Need to output long-term secret keys adaptively (sk_A, sk_B)
- Previously sent ciphertexts must decrypt correctly

Reveal-key vs. challenge queries

- Ciphertexts may be revealed or used in challenges
- Need to decrypt ciphertexts coming from the adversary

State reveals

- ullet Need to output ephemeral secret keys (\tilde{sk})
- Key indistinguishability even when state is compromised

Non-Committing Key Encapsulation

Non-Committing Key Encapsulation from DDH

Public parameter: group description (\mathbb{G},p,g) and $h=g^{\omega}$ for $\omega \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p$

$$\frac{\text{KeyGen}}{sk = (x_0, x_1)} \stackrel{\$}{\Leftarrow} \mathbb{Z}_p^2 \qquad \frac{\text{Decaps}(sk, c_0, c_1)}{K = \text{H}(pk, c, c_0^{x_0} c_1^{x_1})}$$

$$pk = g^{x_0} h^{x_1}$$

$$\begin{array}{ll} \frac{\mathsf{Encaps}(pk)}{r \overset{\$}{\leftarrow} \mathbb{Z}_p} & \frac{\mathsf{SimEncaps}(sk)}{(r,s) \overset{\$}{\leftarrow} \mathbb{Z}_p^2} \\ (c_0,c_1) = (g^r,h^r) & (c_0,c_1) = (g^r,h^s) \\ K = \mathsf{H}(pk,c_0,c_1,pk^r) & K = \mathsf{H}(pk,c_0,c_1,c_0^{\mathsf{x_0}}c_1^{\mathsf{x_1}}) \end{array}$$

Non-Committing Key Encapsulation from DDH

Public parameter: group description (\mathbb{G}, p, g) and $h = g^{\omega}$ for $\omega \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

$$\frac{\text{KeyGen}}{sk = (x_0, x_1)} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$$

$$pk = g^{x_0} h^{x_1}$$

$$\frac{\mathsf{Decaps}(\mathit{sk}, \mathit{c}_0, \mathit{c}_1)}{\mathsf{K} = \mathsf{H}(\mathit{pk}, \mathit{c}, \mathit{c}_0^{\mathsf{x}_0} \mathit{c}_1^{\mathsf{x}_1})}$$

$$\frac{\mathsf{Encaps}(pk)}{r \overset{5}{\leftarrow} \mathbb{Z}_p} \qquad \frac{\mathsf{SimEncaps}(sk)}{(r,s) \overset{5}{\leftarrow} \mathbb{Z}_p^2} \\ (c_0,c_1) = (g^r,h^r) \qquad (c_0,c_1) = (g^r,h^s) \\ K = \mathsf{H}(pk,c_0,c_1,pk^r) \qquad K = \mathsf{H}(pk,c_0,c_1,c_0^{\mathsf{X}_0}c_1^{\mathsf{X}_1})$$

$$(c_0,c_1)\in\mathcal{L}_{\mathsf{DDH}}$$

Encaps(pk)

 $r \stackrel{\$}{\leftarrow} \mathbb{Z}_n$

$$(c_0, c_1) \notin \mathcal{L}_{\mathsf{DDH}}$$

Properties

- Encaps \approx_c SimEncaps
- Holds even given sk

Non-Committing Key Encapsulation from DDH

Public parameter: group description (\mathbb{G}, p, g) and $h = g^{\omega}$ for $\omega \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

$$\frac{\text{KeyGen}}{sk = (x_0, x_1)} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$$

$$pk = g^{x_0} h^{x_1}$$

$$\frac{\mathsf{Decaps}(\mathit{sk}, \mathit{c}_0, \mathit{c}_1)}{\mathsf{K} = \mathsf{H}(\mathit{pk}, \mathit{c}, \mathit{c}_0^{\mathsf{x}_0} \mathit{c}_1^{\mathsf{x}_1})}$$

$$\frac{\mathsf{Encaps}(pk)}{r \stackrel{\xi}{\sim} \mathbb{Z}_p}$$

$$(c_0, c_1) = (g^r, h^r)$$

$$K = \mathsf{H}(pk, c_0, c_1, pk^r)$$

$$\begin{array}{ll} \frac{\mathsf{Encaps}(pk)}{r \overset{\mathsf{5}}{\leftarrow} \mathbb{Z}_p} & \frac{\mathsf{SimEncaps}(sk)}{(r,s) \overset{\mathsf{5}}{\leftarrow} \mathbb{Z}_p^2} \\ (c_0,c_1) = (g^r,h^r) & (c_0,c_1) = (g^r,h^s) \\ K = \mathsf{H}(pk,c_0,c_1,pk^r) & K = \mathsf{H}(pk,c_0,c_1,c_0^{\mathsf{x_0}}c_1^{\mathsf{x_1}}) \end{array}$$

$$(c_0,c_1)\in\mathcal{L}_{\mathsf{DDH}}$$

$$(c_0, c_1) \notin \mathcal{L}_{\mathsf{DDH}}$$

Properties

- Encaps \approx_c SimEncaps
- Holds even given sk
- Without knowledge of sk: $K \approx_{c} \$$

Summary

Contributions

- Non-committing key encapsulation from hash proof systems in the ROM
- Two tightly-secure AKE protocols
 - with state reveals
 - with a single challenge bit

ePrint: ia.cr/2020/1279

Follow-Up Work

• Tightly-secure AKE and signatures in the standard model (CRYPTO 2021)

Thank you!