SECONDSEMESTER EXAMINATION, 2022 – 23 IInd Year, B.Tech. – CSE/ECE/ME/CE/EE/IT Mathematics-II

tion: 3:00 hrs Max Marks: 100

- Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing the same may be assumed and state the assumption made in the answer.

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Answer any four parts of the following.	5x4=20
a) Find the value of λ for which the differential equation	
$(xy^2 + \lambda x^2 y)dx + (x + y)x^2 dy = 0 \text{ is exact.}$	
b) Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x.$	
c) Solve by the method of variations of parameters $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$.	
d) Solve $x^2p^2 + xyp - 6y^2 = 0$	
e) Solve $xdx + ydy = \frac{a^2(xdy - ydx)}{x^2 + y^2}$	
f) Solve $\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$.	
Answer any four parts of the following.	5x4=20
a) Solve by the method of variation of parameter $\frac{d^2y}{dx^2} + y = Secx$	
b) Express the algebraic polynomial $6x^3 + 15x^2 - x + 9$ as Legendre's polynomials.	
c) Prove that $x J'_n(x) = n J_n(x) - x J_{(n+1)}(x)$ for Bessel's functions.	
d) Solve $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$ by changing the independent variable.	
e) Solve $(1 - x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$ in series.	
f)Solve $(x^2y^2 + xy + 1)ydx + (x^2y^2 - xy + 1)xdy = 0$.	
Answer any two parts of the following.	
	10x2= 20
(a) Evaluate	
$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates. Hen	

ce show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

 $\int_0^1 \int_{x^2}^{2-x} xy \, dy dx$ by changing the order of integration.

(b) Evaluate

	(c) Evaluate $\iint_S \vec{F} \cdot \hat{n} dS$, where $\vec{F} = xy \hat{\imath} - x^2 \hat{\jmath} + (x+z)\hat{k}$ and S is the region of the plane $2x + 2y + z = 6$ in the first octant.	
1	Answer any two parts of the following.	10x2= 20
	 (a) State and prove Cauchy Riemann equations in Cartesian coordinate system. (b) Prove that the functions u(x, y) = (x² - y²) and v = y/(x²+y²) are harmonic function but not harmonic conjugate. 	
	(c) Find the value of C_1 and C_2 such that the function $f(z) =$	
	$x^2 + C_1 y^2 - 2xy + i(C_2 x^2 - y^2 + 2xy)$ is analytic. Also, find	
	f'(z).	
	Answer any two parts of the following.	10x2= 20
	(a) (i) Using Cauchy integral formula to calculate $\int_C \frac{4-3z}{z(z-1)(z-2)} dz$ where C is	
	the circle $ z = \frac{3}{2}$	
	(ii) Define Poles and Residues. (b) Evaluate the integral $\int_0^{2\pi} \frac{d\theta}{a+bcos\theta}$ using Residue theorem.	
	(c) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series for (i) $1 < z < 3$ (ii) $ z > 3$	
