Theoretische Informatik: Blatt 4

Abgabe bis 16. Oktober 2015 Assistent: Jerome Dohrau

Patrick Gruntz, Panuya Balasuntharam

Aufgabe 10

- (a) TODO
- (b) Wir zeigen indirekt, dass, $L_2 \notin L_{EA}$. Annahme: L sei regulaer. Sei $A = (Q, \Sigma, \delta_A, q_0, F)$ ein EA mit L(A) = L.

Wir betrachten die Woerter

$$b^1, b^2, ..., b^{|Q|+1}$$

Weil die Anzahl dieser Woerter |Q|+1 ist, existieren $i, j \in \{1, 2, ..., |Q|+1\}, i < j$, so dass

$$\hat{\delta}(q_0, b_i) = \hat{\delta}(q_0, b_i)$$

Nach Lemma 3.3 gilt $b^iz \in L \iff b^jz \in L$

fuer alle $z \in \Sigma^*$. Dies gilt aber nicht , weil $z = a^{2i}$ das Wort $b^i a^2 i \in L$ und das Wort $b^j a^{2i} \not\in L$.

Weil j > i

 $\Rightarrow 2j > 2i$

 $\Rightarrow 2j > |w|_a$

 $\Rightarrow |w|_b > |w|_a$

 $\Rightarrow w \not\in L$

Also ist die Annahme falsch und L_2 ist nicht regulaer

Aufgabe 11

(a) Wir fuehren ein Widerspruchsbeweis.

Annahme: L ist regulaer. Dann ist das $Pumping\ Lemma$ anwendbar. Es existiert eine Konstante n_0 mit den in $Lemma\ 3.4$ beschriebenen Eigenschaften. Wir betrachten das Wort

$$w = 0^{n_0} 1^{n_0}$$
.

Offensichtlich gilt $|w| = 2n_0 \ge n_0$. Also muss eine Zerlegung w = yxz von w geben, die die Bedingungen (i), (ii) und (iii) erfuellt. Wegen (i) gilt $|yx| \le n_0$ also ist

$$y = 0^a$$

$$x = 0^b$$

$$z = 0^{n_0 - a - b} 1^{n_0}$$

fuer irgendwelche $a, b \in \mathbb{N}$. Wegen (ii) gilt b > 0. Da $w \notin L_3$ gilt nach (iii)

$$\{yx^k z | k \in \mathbb{N} \} = \{0^{n_0 + (k-1)b} 1^{n_0} | k \in \mathbb{N} \} \cap \emptyset$$

Dies ist aber ein Widerspruch. Fuer k=2 gilt $yx^2z=0^{n_0+kb}1^{n_0}\in L_3$. Also ist die Annahme falsch und L_3 ist nicht regulaer

(b) Es sei $L := \{w \in \{0,1\}^* | |w|_0 = |w|_1\}$. Es existiert eine Konstante n_0 . Alle Woerter in der Sprache mit einer Laenge von mindestens n_0 muss eine Zerlegung besitzen, die die Eigenschaften (i'), (ii), (iii') erfuellt. Wir waehlen fuer w=yxz die folgende Zerlegung:

$$y := \lambda$$

$$x := a$$
$$z := a^{|w|-1}$$

$$a \in \{0, 1\}$$

Offensichtlich gilt $|w| \ge n_0$.

Fall 1:

Fall 2:

Aufgabe 12

(a) Der folgende nichtdeterministische endliche Automat A akzeptiert die Sprache

 $L = \{x \in \{0,1\}^* | |x|_1 \mod 3 = 0 \text{ oder } x \text{ enthaelt ein Teilwort 1y1 fuer } y \in \{0,1\}^2\}:$

Dieser Automat besteht aus zwei Teilautomaten. Der Teilautomat mit den Zustaenden q_1, q_2 und q_3 zaehlt die Einsen in der Eingabe modulo 3 und akzeptiert wenn dies 0 ergibt. Der zweite Teilautomat mit den Zustaenden p_1, p_2, p_3 und p_4 sucht das Teilwort 1y1 fuer $y \in \{0, 1\}^2$ und akzeptiert wenn das Teilwort gefunden wurde. Im Startzustand q_{λ} verzweigt der Automat nichtdeterministisch in beiden Teilautomaten. Beim Uebergang in den ersten Teilautomaten muss die 1 mitgezaelt werden. Deshalb fuert diese Transition direkt zum Zustand q_1 . Bei der Eingabe 1 gibt es im Uebergang zum zweiten Teilautomaten zwei Moeglichkeiten. Die gelesene 1 kann der Anfang des gesuchten Teilwortes sein oder nicht. Weil auch das leere Wort die Bedingung $|\lambda|_1$ mod 3 = 0 erfuellt, ist auch q_{λ} ein akzeptierender Zustand.

(b) Aus dem NEA generieren wir mit Hilfe der Potenzmengenkonstruktion einen aequivalenten EA. Da der NEA genau einen aktzeptierenden Zustand s hat und aus diesem keine Transitionen herausgeht, koennen wir bei der Durchfuerung der Potenzmengenkonstruktion einen neuen Zustand k verwenden, die s beinhaltet.

Es ergibt sich die folgende Transitionstabelle:

Zustand	$\mid a \mid$	$\mid b \mid$
{ <i>p</i> }	$\{p,q\}$	{ <i>p</i> }
$\{p,q\}$	$\{p,q,r\}$	$\{p,r\}$
$\{p,r\}$	$\{k\}$	$\{p\}$
$\{p,q,r\}$	$\{k\}$	$\{p,r\}$
$\{k\}$	$\{k\}$	$\{k\}$

In dieser Abbildung sind zur Vereinfachung der Darstellung die Klammern in den Zustandsnamen weggelassen worden dh. p steht fuer $<\{p\}>$ und pq steht fuer $<\{p,q\}>$

