BUAN 6312.001 Applied Econometrics and Time Series Analysis

The Effects of Concealed Gun Laws in America

Gabriel Shoaib (gxs142030)

Rahul Reddy Muppidi (rmr170430)

Shaheer Ali (sxa121530)

Lohith Pingili (Ixp171130)

Introduction:

The report analyzes the data to answer the following question, "Do shall-issues law reduce crime- or not?" The analysis provided sheds light on the statistics behind crime activity in the United States over the span of 29 years. By understanding the trends of violence, robberies, incarceration rate, and murder as well as data on the demographic the states and the wider country, one can understand the impact that concealed handgun laws have on the nation.

Background Information on Shall-Law:

Most of states currently have the Shall-law already in place, with the rest of the states having the May-law in place, with a few states not having any concealed gun laws present. Shall-law allows constituents to possess a concealed handgun license and allowing them to carry a handgun in permitted areas. Basic of requirements to obtain a license consist of passing a background check, attending a gun safety class, paying a fee, and a few other criteria set by designated States.

Data

Total Records: 1173

Total Number of Empty Variables: 0

Time Span: 1977-1999

Number of State Id: 52

Variable	Mean	Standard Deviation
vio	503.1	334.2772
mur	7.665	7.52271
rob	161.8	170.51
incarc_rate	226.6	178.8881
Pb1064	5.3362	4.885688
Pw1064	62.950	9.761527
Pm1029	16.080	9.761527
Avginc	13.725	2.554543
density	0.352	1.355472

DATA EXPLORATION

States behavior:

We performed the Data exploration to better understand the relationship between the various variables. We first tried to observe the violent crime, robbery, murder and incarceration rate behavior across different states.

As we could see from the above two plots, State 11 has a peculiar behavior. All the rates have been very high. Let's check if we could find any reasons or explanations for these high crime rates.

As we could see from the above plots percent of state population those are blacks are high in state 11 and whites is less in state 11. This could be one possible reason for a very high crime rate in state 11.

Distribution of shall law (Trend before Introduction and after Introduction)

Now let's check the distribution of shall law for all the states across all the years

From the above graph we could say there are few states which always had state law right from the year 1977 and few never had shall law. So below are the states which never had shall law and list of states which always had shall law.

States Which never had shall law	States which always had shall law
1	18
6	33
8	50
9	53
10	
11	
15	
17	
19	
20	
24	
25	
26	
27	
29	
31	
34	
35	
36	
39	
44	
55	

Excluding both, states which always and never had shall law we tried analyzing the remaining states crime rate behavior for three different consecutives years:

- Year before the introduction of shall law
- Year of the introduction of shall law
- Year after the introduction of shall law

Below are the plots which observes violence crime rate across three different years (year before introduction, year of introduction and year after introduction shall law) for each state

So for few states we can see the crime rates either increases or decreases the immediate years after the introduction of shall law. So there isn't any regularize trend here.

Trend of the dependent variables across years:

Let's check out how our dependent variables violent crime, robbery and murder rate trends across all the years for all the states.

As we could see from the above plots, all the dependent variables (violent crime, murder and robbery rate) take a huge dip between the years 85 -87.

Checking for skewness and transformation of the variables before regression:

Below are the histograms for the necessary variables used in regression and through these plots we have checked normality distribution and skewness of desired variables.

Histogram of guns\$pb1064

Histogram of guns\$pw1064

0 5 10 20 guns\$pb1064

Histogram of guns\$pm1029

Histogram of guns\$pop

Histogram of guns\$avginc

Histogram of guns\$density

Violent crime rate, murder rate, robbery rate, incarceration rate, percent of state population that is black and density variables have been transformed using the logarithmic functions.

REGRESSION MODELS

Model 1: Simple Linear Regression

```
Call:
plm(formula = log(vio) ~ shall, data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
                      Median
    Min.
           1st Qu.
                               3rd Qu.
-2.284771 -0.427476 0.046552 0.421717 1.845036
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
(Intercept) 6.134919 0.020717 296.130 < 2.2e-16 ***
shall
           -0.442965 0.042029 -10.539 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        488.63
Residual Sum of Squares: 446.3
R-Squared:
               0.08664
Adj. R-Squared: 0.08586
F-statistic: 111.079 on 1 and 1171 DF, p-value: < 2.22e-16
```

In the following model above, we were simply trying to determine the relationship between log(vio) – violent crimes on a logarithmic scale – and shall-law, which is an issued law that requires that governments issue concealed carry handgun permits to any applicant who meets the necessary criteria. The data that the estimate for Shall is -0.443, which means that the presence of shall law will decrease violent crime by 44%. This estimate is also very highly significant.

Model 2: Pooled Regression with Additional Variables; Dependent Variable = log(vio)

```
call:
plm(formula = log(vio) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
    Min.
          1st Qu.
                   Median
                           3rd Qu.
                                      Max.
-1.576456 -0.228143 0.024336
                          0.262894 1.115662
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
(Intercept) 4.0536260 0.2789434 14.5321 < 2.2e-16 ***
          shall
log(pb1064) 0.5522002 0.0283327 19.4898 < 2.2e-16 ***
          pw1064
pm1029
          -0.0095629 0.0089141 -1.0728
                                       0.2836
           0.0166243
                     0.0027336 6.0814 1.613e-09 ***
pop
           avginc
log(density) 0.0651087 0.0098848 6.5867 6.791e-11 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                     488.63
Residual Sum of Squares: 202.83
R-Squared:
             0.58491
Adj. R-Squared: 0.58241
F-statistic: 234.514 on 7 and 1165 DF, p-value: < 2.22e-16
```

In this model, we were observing the effect of all the variables on the rate of log(vio). The results show that all the variables are significant except for pm1029, which are the percent of males between 10 and 29 years, in each state. We also note that the implementation of Shall-law shows that when shall-law is in place, there is a decrease in violent crime by 16.4%. It is also interesting to see that avginc leads to an increase in violent crime – we were assuming that with higher income, violent crime would go down.

White Corrected Standard Errors (Cluster Robust) for Model 2:

```
Note: Coefficient variance-covariance matrix supplied: vcovHC(model1, method = "white1")
plm(formula = log(vio) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
          1st Qu.
    Min.
                    Median
                            3rd Qu.
-1.576456 -0.228143 0.024336 0.262894 1.115662
Coefficients:
             Estimate Std. Error t-value Pr(>|t|)
            4.0536260 0.3103842 13.0600 < 2.2e-16 ***
(Intercept)
           shall
           0.5522002  0.0321880  17.1555 < 2.2e-16 ***
log(pb1064)
pw1064
           0.0183648  0.0039032  4.7050  2.842e-06 ***
           -0.0095629 0.0087812 -1.0890
pm1029
                                         0.2764
            pop
avginc
log(density) 0.0651087 0.0099446 6.5472 8.772e-11 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                      488.63
Residual Sum of Squares: 202.83
R-Squared:
              0.58491
Adj. R-Squared: 0.58241
F-statistic: 255.39 on 7 and 22 DF, p-value: < 2.22e-16
```

Model 3: Random Effects (Between) Regression; Dependent Variable = log(vio)

```
plm(formula = log(vio) \sim shall + log(pb1064) + pw1064 + pm1029 +
    pop + avginc + log(density), data = guns, model = "between")
Balanced Panel: n=23, T=51, N=1173
Observations used in estimation: 23
Residuals:
                                   3rd Qu.
     Min.
             1st Qu.
                         Median
                                                 Max.
-0.0850211 -0.0190088 -0.0046837
                                 0.0201807
                                            0.0832751
Coefficients:
             Estimate Std. Error t-value Pr(>|t|)
(Intercept) -1.149418 24.056305 -0.0478 0.962522
shall
            -0.358819
                       0.471043 -0.7618 0.458017
log(pb1064) -0.362233
                        2.619270 -0.1383 0.891847
                        0.034206 2.3780 0.031135 *
pw1064
             0.081341
            -0.223431
                        0.067993 -3.2861 0.004999 **
pm1029
             0.390980 1.905974 0.2051 0.840225
pop
avginc
            -0.091104
                        0.055725 -1.6349 0.122880
log(density) -2.191579
                        6.531183 -0.3356 0.741853
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        0.27645
Residual Sum of Squares: 0.037882
R-Squared:
               0.86297
Adj. R-Squared: 0.79902
F-statistic: 13.4951 on 7 and 15 DF, p-value: 1.8941e-05
```

In this random effects model, the shall-law variable is not significant. Random effects is not an efficient model as this is a full panel-data and not a randomly generated data. The below Hausman Test proves our conjecture. Because the shall-law is not significant, this leads us to question whether or not shall-law presence actually reduces crime. Finally, the presence of endogeneity invalidates the use of random effects model; this is because *incarc_rate*, which is omitted in this mode, is endogenous with variables like *avginc*, *pop*, *density*, *pb1064*, *pm1029*.

Hausman Test

```
data: log(vio) \sim shall + log(pb1064) + pw1064 + pw1029 + pop + avginc + ... chisq = 44.539, df = 7, p-value = 1.681e-07 alternative hypothesis: one model is inconsistent
```

Model 4: Pooled OLS Regression; Dependent Variable = log(rob)

```
plm(formula = log(rob) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
    Min.
           1st Qu.
                     Median
                              3rd Ou.
                                           Max.
-1.817627 -0.280232 0.011559
                             0.305688 1.642292
Coefficients:
              Estimate Std. Error t-value
                                         Pr(>|t|)
(Intercept)
             0.7900214 0.3438109
                                 2.2978
                                           0.02175 *
shall
            -0.2442733 0.0389538 -6.2708 5.050e-10 ***
log(pb1064)
             0.0031650 8.3964 < 2.2e-16 ***
pw1064
             0.0265747
                       0.0109870 5.6881 1.624e-08 ***
pm1029
             0.0624947
             0.0312236 0.0033693
                                 9.2670 < 2.2e-16 ***
pop
             0.0534826  0.0074848  7.1455  1.577e-12 ***
avginc
log(density) 0.2198346 0.0121835 18.0436 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Total Sum of Squares:
                        1068
Residual Sum of Squares: 308.13
R-Squared:
               0.7115
Adj. R-Squared: 0.70976
F-statistic: 410.441 on 7 and 1165 DF, p-value: < 2.22e-16
```

In this Pooled OLS, the Shall-law (estimate = -0.244) is highly significant (p-value 5.05E-10), which reinforces, based on the last model, that Shall-law has a significant effect in the reduction of crime rate. In this model, we should really note that a 100% increase in density leads to a 22% increase in robbery rate.

White Corrected Standard Error for Model 4:

F-statistic: 381.728 on 7 and 22 DF, p-value: < 2.22e-16

```
Note: Coefficient variance-covariance matrix supplied: vcovHC(model5, method = "white1")
plm(formula = log(rob) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
         1st Qu.
   Min.
                  Median
                         3rd Qu.
-1.817627 -0.280232 0.011559 0.305688 1.642292
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
                                   0.01885 *
           0.7900214 0.3359219 2.3518
(Intercept)
          -0.2442733 0.0389375 -6.2735 4.968e-10 ***
shall
log(pb1064)
          pw1064
           pm1029
           pop
avginc
log(density) 0.2198346 0.0121512 18.0916 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                    1068
Residual Sum of Squares: 308.13
R-Squared:
            0.7115
Adj. R-Squared: 0.70976
```

Model 5: Fixed Effects (within) Regression; Dependent Variable = log(rob)

```
Oneway (individual) effect Within Model
Call:
plm(formula = log(rob) \sim shall + log(pb1064) + pw1064 + pm1029 +
    pop + avginc + log(density), data = guns, model = "within")
Balanced Panel: n=23, T=51, N=1173
Residuals:
     Min.
            1st Qu.
                       Median
                                3rd Ou.
                                             Max.
-1.644563 -0.271881 0.025831 0.298756 1.336477
Coefficients:
               Estimate Std. Error t-value Pr(>|t|)
shall
             -0.1125788 0.0406022 -2.7727 0.0056492 **
log(pb1064)
             0.7741013  0.0344055  22.4994  < 2.2e-16 ***
             0.0251656  0.0030616  8.2198  5.483e-16 ***
pw1064
pm1029
            -0.0794469 0.0207173 -3.8348 0.0001325 ***
             0.0319615  0.0032331  9.8858 < 2.2e-16 ***
pop
              0.0795505  0.0076269  10.4303  < 2.2e-16 ***
avginc
log(density) 0.1648016 0.0132680 12.4210 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         1057.5
Residual Sum of Squares: 277.68
R-Squared:
                0.73742
Adj. R-Squared: 0.73076
F-statistic: 458.569 on 7 and 1143 DF, p-value: < 2.22e-16
```

In this model, we were observing the effect of all the variables on the rate of log(rob). The results show that **all** the variables are significant. We also note that the implementation of Shall-law shows that when shall-law is in place, there is a decrease in violent crime by 11.25%. We should also note that an increase in the percentage of males in a state between the ages of 10-64 leads to an increase in robbery by 2.5%. This is not contradicted by percent males between the age of 10 and 29 (value of -0.079); rather, we can hypothesize that the amount of crimes – specifically robberies - occur at a greater rate outside of this age range.

White Corrected Standard Error for Model 5

```
Oneway (Individual) effect Within Model
Note: Coefficient variance-covariance matrix supplied: vcovHC(model9, method = "whitel")
Call:
plm(formula = log(rob) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "within")
Balanced Panel: n=23, T=51, N=1173
Residuals:
    Min.
           1st Qu.
                     Median
                              3rd Qu.
-1.644563 -0.271881 0.025831 0.298756 1.336477
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
            -0.1125788 0.0398588 -2.8244 0.004819 **
shall
log(pb1064) 0.7741013 0.0356448 21.7171 < 2.2e-16 ***
             0.0251656  0.0033467  7.5195  1.108e-13 ***
pw1064
            -0.0794469 0.0248932 -3.1915 0.001454 **
pm1029
             pop
             0.0795505  0.0069261 11.4856 < 2.2e-16 ***
avginc
log(density) 0.1648016 0.0146371 11.2592 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Total Sum of Squares: 1057.5
Residual Sum of Squares: 277.68
R-Squared:
               0.73742
Adj. R-Squared: 0.73076
F-statistic: 448.559 on 7 and 22 DF, p-value: < 2.22e-16
```

Model 6: Pooled OLS Regression; Dependent Variable = log(mur)

```
Pooling Model
call:
plm(formula = log(mur) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
    Min.
           1st Ou.
                      Median
                              3rd Ou.
                                           Max.
-2.874020 -0.240126 0.031565 0.266640 1.882769
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
             0.5085763 0.3145327
                                  1.6169 0.1061648
(Intercept)
                       0.0356366 -2.1619 0.0308293 *
shall
            -0.0770425
log(pb1064)
             0.5785314  0.0319476  18.1088 < 2.2e-16 ***
             0.0052592 0.0028955 1.8163 0.0695768 .
pw1064
             pm1029
             0.0148344 0.0030824 4.8126 1.685e-06 ***
pop
                       0.0068474 -4.2553 2.256e-05 ***
            -0.0291374
avginc
log(density) 0.0424940 0.0111460 3.8125 0.0001448 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Total Sum of Squares:
                        579.9
Residual Sum of Squares: 257.89
               0.55529
R-Squared:
Adj. R-Squared: 0.55262
```

This Pooled Regression Model shows us that presence of shall-law decreases the rate of crime by 7.7%. Additionally, we should also notice that a 100% increase in pb1064 increases the rate of murder 58%. This does not seem consistent with our previous models, and also with economic theory.

White Corrected Standard Error for Model 6

```
Note: Coefficient variance-covariance matrix supplied: vcovHC(model8, method = "whitel")
Call:
plm(formula = log(mur) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "pooling")
Balanced Panel: n=23, T=51, N=1173
Residuals:
    Min.
          1st Qu.
                    Median
                           3rd Qu.
-2.874020 -0.240126 0.031565 0.266640 1.882769
Coefficients:
             Estimate Std. Error t-value Pr(>|t|)
            0.5085763 0.3931969 1.2934 0.1961156
(Intercept)
           -0.0770425 0.0326498 -2.3597 0.0184558 *
shall
           log(pb1064)
            0.0052592 0.0052052 1.0104 0.3125278
pw1064
pm1029
            0.0395573  0.0101885  3.8825  0.0001092 ***
           0.0148344 0.0025194 5.8881 5.104e-09 ***
pop
           log(density) 0.0424940 0.0122811 3.4601 0.0005595 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                      579.9
Residual Sum of Squares: 257.89
R-Squared:
           0.55529
Adj. R-Squared: 0.55262
F-statistic: 269.949 on 7 and 22 DF, p-value: < 2.22e-16
```

Model 7: Fixed Effects (within) model; Dependent Variable = log(mur)

```
Oneway (individual) effect Within Model
Call:
plm(formula = log(mur) \sim shall + log(pb1064) + pw1064 + pm1029 +
    pop + avginc + log(density), data = guns, model = "within")
Balanced Panel: n=23, T=51, N=1173
Residuals:
                                3rd Qu.
     Min.
            1st Qu.
                      Median
                                            Max.
-2.887258 -0.217619 0.016267
                               0.267832 1.801066
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
shall
              0.0014325 0.0381511 0.0375
                                             0.97005
              0.6105366  0.0323285  18.8854  < 2.2e-16 ***
log(pb1064)
              0.0046600 0.0028768 1.6199
pw1064
                                            0.10554
             -0.0400614 0.0194666 -2.0580
pm1029
                                            0.03982 *
              0.0152359 0.0030379 5.0153 6.135e-07 ***
pop
             -0.0155677
                        0.0071665 -2.1723
                                            0.03004 *
avginc
log(density) 0.0124800 0.0124670 1.0010
                                            0.31702
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Total Sum of Squares:
                         567.38
Residual Sum of Squares: 245.17
R-Squared:
                0.5679
Adj. R-Squared: 0.55693
F-statistic: 214.599 on 7 and 1143 DF, p-value: < 2.22e-16
```

In this model, we can see that the effect of shall-law is not significant. As a result, we cannot conclude that shall law has no effect on crime rate (murder rate, specifically). We believe this model is not significant, and thus do not hold it to be as significant for analysis as other models.

White Corrected Standard Error for Model 7

```
Note: Coefficient variance-covariance matrix supplied: vcovHC(model9, method = "white1")
plm(formula = log(mur) \sim shall + log(pb1064) + pw1064 + pm1029 +
   pop + avginc + log(density), data = guns, model = "within")
Balanced Panel: n=23, T=51, N=1173
Residuals:
                      Median
                             3rd Qu.
    Min.
           1st Qu.
-2.887258 -0.217619 0.016267 0.267832 1.801066
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
             0.0014325 0.0358374 0.0400 0.96812
shall
log(pb1064) 0.6105366 0.0400600 15.2406 < 2.2e-16 ***
pw1064
            0.0046600 0.0051750 0.9005 0.36806
pm1029
            -0.0400614 0.0173053 -2.3150
                                         0.02079 *
            0.0152359 0.0022155 6.8769 1.005e-11 ***
pop
            -0.0155677 0.0084555 -1.8411
                                           0.06586 .
avginc
log(density) 0.0124800 0.0131762 0.9472 0.34375
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        567.38
Residual Sum of Squares: 245.17
R-Squared:
               0.5679
Adj. R-Squared: 0.55693
F-statistic: 286.621 on 7 and 22 DF, p-value: < 2.22e-16
```

Model 8: Time-Fixed Effects; Dependent Variable = log(vio)

. xtreg 1(vio)	avginc 1(pb	1064) pw1064	pm1029 p	op 1 (der	nsity) shall i	.year
Random-effects	GLS regress:	ion		Number	of obs =	1,122
Group variable	: stateid			Number	of groups =	51
_						
R-sq:				Obs per	group:	
within =	0.3832				min =	22
between =	0.3379				avg =	22.0
overall =	0.3034				max =	22
				Wald ch	ni2(28) =	647.44
corr(u_i, X)	= 0 (assume	i)		Prob >	chi2 =	0.0000
L.vio	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
avginc	23.74642	3.949927	6.01	0.000	16.0047	31.48813
_						
pb1064						
L1.	-23.36912	10.82551	-2.16	0.031	-44.58672	-2.151518
pw1064	-13.21648	4.475623	-2.95	0.003	-21.98854	-4.444425
pm1029	18.92872	9.653024	1.96	0.050	.0091418	37.8483
pop	10.88897	3.765967	2.89	0.004	3.507809	18.27013
density						
L1.	8065723	20.76043	-0.04	0.969	-41.49626	39.88312
shall	7.277708	11.02444	0.66	0.509	-14.3298	28.88521

year						
79	22.70301	17.75766	1.28	0.201	-12.10135	57.50738
80	75.5693	17.96731	4.21	0.000	40.35401	110.7846
81	108.4018	18.39394	5.89	0.000	72.35037	144.4533
82	115.8597	19.03111	6.09	0.000	78.55938	153.16
83	94.06965	19.99422	4.70	0.000	54.8817	133.2576
84	51.34506	21.51877	2.39	0.017	9.169048	93.52107
85	45.74026	23.26491	1.97	0.049	.1418655	91.33865
86	52.03873	25.32626	2.05	0.040	2.400171	101.6773
87	77.52609	27.48105	2.82	0.005	23.66422	131.388
88	62.38316	29.89142	2.09	0.037	3.797049	120.9693
89	85.03632	32.12902	2.65	0.008	22.06461	148.008
90	131.4953	38.54087	3.41	0.001	55.95661	207.0341
91	194.9212	40.63651	4.80	0.000	115.2751	274.5672
92	213.0732	42.71659	4.99	0.000	129.3503	296.7962
93	226.1102	44.39807	5.09	0.000	139.0916	313.1288
94	230.7076	46.3441	4.98	0.000	139.8748	321.5404
95	208.7062	48.04881	4.34	0.000	114.5322	302.8801
96	191.1261	49.69597	3.85	0.000	93.72375	288.5284
97	147.1893	51.27875	2.87	0.004	46.6848	247.6938
98	113.6424	52.98939	2.14	0.032	9.785072	217.4997
99	75.51916	54.54674	1.38	0.166	-31.39047	182.4288
_cons	661.3172	264.5255	2.50	0.012	142.8568	1179.778
sigma_u	183.42242					
sigma_e	81.693351					
rho	.83446918	(fraction	of varian	nce due 1	to u_i)	

As we can see from the following, Shall-Law is not statistically significant.

Model 9: Time-Fixed Effects; Dependent Variable = log(rob)

	avgine I (pb)	L064) pw1064	pm1029 p	oop 1 (den	sity) s	hall i	.year
Random-effects	-	ion		Number			1,122
Group variable	: stateid			Number	of grou	ps =	51
R-sq:				Obs per	group:		
within =	0.1363					min =	22
between =	0.8481					avg =	22.0
overall =	0.7948					max =	22
				77-1-1 -1-	: 0 (00)		406 88
,				Wald ch			
corr(u_i, X)	= 0 (assumed	i)		Prob >	chi2	=	0.0000
L.rob	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
avginc	3.613547	1.882773	1.92	0.055	076	6201	7.303714
pb1064							
L1.	14.14093	4.782507	2.96	0.003	4.76	7384	23.51447
pw1064	3.604421	2.112938	1.71	0.088	536	8626	7.745704
pm1029	-5.084302	4.595202	-1.11	0.269	-14.0	9073	3.922129
pop	8.190532	1.465071	5.59	0.000	5.31	9045	11.06202
density							
L1.	71.76251	7.489684	9.58	0.000	57	.083	86.44202
shall	14.04603	5.509842	2.55	0.011	3.24	6939	24.84513

year						
79	3.506768	8.953656	0.39	0.695	-14.04208	21.05561
80	20.19741	9.051805	2.23	0.026	2.4562	37.93862
81	41.32776	9.234112	4.48	0.000	23.22923	59.42628
82	48.25439	9.525111	5.07	0.000	29.58551	66.92326
83	29.58245	9.952638	2.97	0.003	10.07564	49.08926
84	6.426879	10.61498	0.61	0.545	-14.3781	27.23186
85	-8.256485	11.39625	-0.72	0.469	-30.59272	14.07975
86	-11.75151	12.32911	-0.95	0.341	-35.91613	12.41311
87	-6.65991	13.31052	-0.50	0.617	-32.74806	19.42824
88	-18.68841	14.40299	-1.30	0.194	-46.91775	9.54093
89	-13.88655	15.41821	-0.90	0.368	-44.10569	16.33259
90	-14.09849	18.23822	-0.77	0.440	-49.84474	21.64776
91	-2.280938	19.22075	-0.12	0.906	-39.95291	35.39104
92	7.344133	20.15864	0.36	0.716	-32.16608	46.85435
93	1.901086	20.92541	0.09	0.928	-39.11197	42.91414
94	-1.704793	21.79974	-0.08	0.938	-44.4315	41.02191
95	-12.36414	22.5727	-0.55	0.584	-56.60582	31.87753
96	-18.55938	23.31341	-0.80	0.426	-64.25283	27.13406
97	-33.63889	24.00781	-1.40	0.161	-80.69334	13.41556
98	-51.38572	24.73659	-2.08	0.038	-99.86855	-2.90289
99	-70.66452	25.40956	-2.78	0.005	-120.4663	-20.8627
_cons	-170.4937	125.5578	-1.36	0.174	-416.5825	75.59508
sigma u	63.386608					
sigma_e	43.995019					
rho		(fraction	of varia	nce due t	to u i)	
	.07400233	(114001011	or varia	ioc duc (,, a_+,	

In this model, we can see that the effect of shall-law is significant, but it is not in line with our earlier conclusions from pooled and within-fixed effects model. This could be because across the years, the effect of shall-law might vary.

Model 10: Time-Fixed Effects Model; Dependent Variable = log(mur)

xtreg 1 (mur) avginc 1 (pb1064) pw1064 pm1029 pop 1 (density) shall i.year							
Number of groups = 51 -sq:	. xtreg 1(mur)	avginc 1(pb	1064) pw1064	pm1029	pop 1 (den	sity) shall	i.year
Company Comp	Random-effect:	s GLS regress:	ion		Number	of obs	= 1,122
within = 0.1611	Group variable	e: stateid			Number	of groups	= 51
within = 0.1611	R-sa.				Oha ner	aroun:	
between = 0.2728	-	= 0.1611			obb per		= 22
overall = 0.2523							
Wald chi2(28) = 233.00 Prob > chi2 = 0.0000 L.mur						_	
L.mur							
L.mur Coef. Std. Err. z P> z [95% Conf. Interval] avginc 1.489501 .1278545 11.65 0.000 1.23891 1.740091 pb1064 L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907					Wald ch	i2(28)	= 233.00
avginc 1.489501 .1278545 11.65 0.000 1.23891 1.740091 pb1064 L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	corr(u_i, X)	= 0 (assume	i)		Prob >	chi2	- 0.0000
avginc 1.489501 .1278545 11.65 0.000 1.23891 1.740091 pb1064 L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	_						
pb1064 L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	L.mur	Coef.	Std. Err.	z	P> z	[95% Con	f. Interval]
L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	avginc	1.489501	.1278545	11.65	0.000	1.23891	1.740091
L19185752 .3139253 -2.93 0.003 -1.5338583032928 pw10644901172 .1427739 -3.43 0.00176994892102854 pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	pb1064						
pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	-	9185752	.3139253	-2.93	0.003	-1.533858	3032928
pm1029 .3445237 .31176 1.11 0.2692665147 .9555621 pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907							
pop2067578 .087819 -2.35 0.01937887980346358 density L17173516 .4370262 1.64 0.101139204 1.573907	pw1064	4901172	.1427739	-3.43	0.001	7699489	2102854
density L17173516 .4370262 1.64 0.101139204 1.573907	pm1029	.3445237	.31176	1.11	0.269	2665147	.9555621
L17173516 .4370262 1.64 0.101139204 1.573907	pop	2067578	.087819	-2.35	0.019	3788798	0346358
L17173516 .4370262 1.64 0.101139204 1.573907							
	density						
shall .1047491 .3864837 0.27 0.786652745 .8622431	L1.	.7173516	.4370262	1.64	0.101	139204	1.573907
shall .1047491 .3864837 0.27 0.786652745 .8622431							
	shall	.1047491	.3864837	0.27	0.786	652745	.8622431

year						
79	.2719028	.6333923	0.43	0.668	9695233	1.513329
80	1.312694	.6400185	2.05	0.040	.0582807	2.567107
81	1.548049	.6516892	2.38	0.018	.270762	2.825337
82	1.461284	.6709244	2.18	0.029	.1462968	2.776272
83	.6028768	.6986434	0.86	0.388	7664391	1.972193
84	-1.111648	.7408111	-1.50	0.133	-2.563611	.3403153
85	-2.038956	.79161	-2.58	0.010	-3.590483	4874286
86	-2.4606	.852717	-2.89	0.004	-4.131894	7893052
87	-2.23416	.9173151	-2.44	0.015	-4.032065	4362555
88	-2.863877	.9889787	-2.90	0.004	-4.80224	9255147
89	-2.816036	1.055664	-2.67	0.008	-4.885098	746973
90	-1.555129	1.236335	-1.26	0.208	-3.978302	.868043
91	6583341	1.302507	-0.51	0.613	-3.2112	1.894532
92	7658881	1.363813	-0.56	0.574	-3.438913	1.907136
93	-1.152169	1.414497	-0.81	0.415	-3.924532	1.620194
94	-1.05208	1.471547	-0.71	0.475	-3.93626	1.8321
95	-1.653041	1.522301	-1.09	0.278	-4.636696	1.330614
96	-2.370571	1.570636	-1.51	0.131	-5.448961	.7078186
97	-3.157629	1.615131	-1.96	0.051	-6.323228	.0079692
98	-4.67281	1.660683	-2.81	0.005	-7.927688	-1.417931
99	-5.541956	1.703323	-3.25	0.001	-8.880409	-2.203504
_cons	19.50553	8.536715	2.28	0.022	2.773872	36.23718
sigma u	2.8355229					
sigma_e	2.4897734					
rho	.56465335	(fraction	of varia	nce due t	o u_i)	

In this model, we can see that the effect of Shall-Law is not significant. This, as previously stated, could be because the effect of shall-law varies throughout the years.

CONCLUSION

Based on initial analysis and regression models that were run, Within Fixed Effects is the best fit model for the given panel data. It is our opinion that Shall-Law is decreasing the crime rate (violence, murder, and robbery rates). The exact magnitude of impact of Shall-Law cannot be correctly gauged from this data.