Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

По дисциплине

"Основы профессиональной деятельности"

Вариант: 1080

Выполнил:

Ахроров Кароматуллохон Фирдавсович

Группа: Р3110

Преподаватель:

Блохина Елена Николаевна

Содержание

АДАНИЕ	2
од работы	3
писание Программы	3
бласть представления	4
бласть допустимых значений	
асположение данных в памяти	
дреса первой и последней выполняемой команды	
аблица трассировки	5
ывод	6

Задание

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

```
3A0:
       03B4
                        7EF4
                 3AE:
3A1:
       A000
                 3AF:
                        F801
                 3B0:
3A2:
       E000
                        EEF2
3A3:
       E000
                 3B1:
                        83A2
3A4: + AF40
                 3B2:
                        CEF9
3A5:
       0680
                 3B3:
                        0100
3A6:
       0500
                 3B4:
                        0800
3A7:
       EEFB
                 3B5:
                        0000
3A8:
       AF04
                 3B6:
                        0000
3A9:
       EEF8
                 3B7:
                        F000
       AEF5
3AA:
3AB:
       EEF5
       AAF4
3AC:
3AD:
       F003
```

1. Ход работы

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий					
3A4	AF40	LD 40	Прямая загрузка 0040 в АС					
3A5	0680	SWAB	Обмен					
3A6	0500	ASL	Сдвиг влево					
3A7	EEFB	ST (IP-5)	Прямое относительное Сохранение АС в ячейку по адресу					
			IP-5(мин число)					
3A8	AF04	LD 04	Прямая загрузка 0004 в АС					
3A9	EEF8	ST (IP-8)	Прямое относительное Сохранение АС в ячейку по адресу IP+1-					
			8(Кол-во элементов массива 4)					
3AA	AEF5	LD (IP-11)	Прямая относительная загрузка в АС по адресу IP+1-11					
3AB	EEF5	ST (IP-11)	Прямое относительное Сохранение АС в ячейку по адресу					
			IP-11(B R)					
3AC	AAF4	LD (IP-12) +	Косвенная авто инкрементальная загрузка:					
			MEM(IP-12) +=1; MEM(M) -> AC (в адрес текущего элемента)					
3AD	F003	BEQ (IP+1)	Если $Z == 1$, то $IP = IP + 1 + 1 -> IP$					
3AE	7EF4	CMP (IP-12)	Флаги по результату AC-R					
3AF	F801	BLT	Если (NeV == 1 / N!=V), то IP = IP + 1 -> IP					
3B0	EEF2	ST (IP-14)	Прямое относительное Сохранение АС в ячейку по адресу					
			IP-14(BR)					
3B1	83A2	LOOP 3A2	$MEM(3A2) - 1 \rightarrow MEM(3A2)$; Если $MEM(3A2) \ll 0$, то $IP + 1 \rightarrow 0$					
			IP					
3B2	CEF9	JUMP (IP-6)	Прямой относительный прыжок IP-6+1 -> IP					
3B3	0100	HLT	Остановка					

2. Описание программы

Программа ищет **максимальный ненулевой элемент** массива из n элементов (хранящихся в памяти по некоторому указателю).

- Все элементы массива 16-битные целые (знаковые).
- В ячейке ЗАЗ хранится текущее «максимальное найденное» (изначально 0х8000 = -32768).
- Программа перебирает элементы один за другим, **пропуская** те, которые равны нулю, и сравнивая остальные с текущим «максимумом». Если элемент ≥ хранимого значения, программа обновляет 3АЗ новым элементом.
- По завершении цикла в **МЕМ(3A3)** содержится:

```
\max(\{-32768\} \cup \{x_i|x_i\neq 0\})
```

Иначе говоря, если все элементы массива были равны нулю, результат остаётся –32768.

• Счётчик n (число элементов) хранится в 3A2, автоматически уменьшается на каждой итерации. Когда он достигает 0, программа останавливается.

Формула результата

Пусть массив $x_1, x_2, ..., x_n$. Тогда

result = max($\{-32768\}$ ∪ $\{x_i|x_i\neq 0\}$) , если существует хотя бы один хі $\neq 0$,если все x_i =0.

3. Область представления

- 1. arr length (ячейка 3A2)
 - 16-разрядное целое беззнаковое (или знаковое, но программа использует только положительные значения).
 - Хранит число n количество элементов массива, которые надо обработать.
- 2. arr_ptr (ячейка 3A1)
 - 16-разрядный указатель (адрес), указывающий на первый элемент массива.
 - о В цикле автоинкрементируется, чтобы «сдвигаться» по элементам.
- 3. **result** (ячейка 3А3)
 - о 16-разрядное *знаковое* целое, в котором хранится «текущий максимум» среди уже просмотренных ненулевых элементов.
 - О Изначально 0х8000 (−32768).
- 4. arr[i]
 - о Каждый элемент массива 16-разрядное знаковое целое ([−32768.. +32767]).
 - Физически находится в памяти по адресу, который формируется из начального указателя (arr_ptr) и смещения.
- 5. **Программа** хранится в области памяти (3A4...3B3). Сами переменные 3A0...3A3 соседствуют либо внутри этой области, либо рядом, в зависимости от точной схемы размещения.

4. Область допустимых значений

- 1. $arr_{length} \in [1..N_{max}]$
 - Чтобы цикл корректно завершался и не выходил за границы памяти, п должно быть в разумном диапазоне, скажем 1≤n≤4.
 - Если n=0, программа может завершиться сразу, но тогда результат останется –32768.
- 2. $arr[i] \in [-32768..+32767]$
 - При любом значении элемент остаётся валидным, так как программа лишь проверяет «равно ли 0» и «АС ≥ result».
- 3. result (B 3A3) $\in [-32768..+32767]$

- По ходу работы это «плавающее» знаковое число в 16 битах. Изначально −32768.
- На выходе оно либо останется −32768, если все элементы были 0, либо будет равно какому-то ненулевому значению массива.
- **4. Указатель arr_ptr** (3A1) должен указывать на область памяти, где лежат nnn элементов. То есть arr_ptr+(n-1) не выходит за «легальную» зону памяти машины (например, [0x0000..0xFFFF] в 16-битной адресации).

ОДЗ включает:

- n≥0 (или >0, если хотим хотя бы один элемент),
- Любые 16-битные значения массива,
- Корректный указатель arr_ptr, чтобы не «вылететь» за границы памяти.

Программа не накладывает иных ограничений: любые элементы, отрицательные, положительные, нулевые, — обрабатываются без ошибок в пределах 16 бит.

5. Расположение данных в памяти

- 3A0, 3A2, 38A, 3B4, 3B5,3B6,3B7 исходные данные;
- 3А1 промежуточный результат;
- 3А3 итоговый результат;
- 3А4 3В3 команды

6. Адреса первой и последней выполняемой команды

• Адрес первой команды: 3А4

• Адрес последней команды: 3В3

7. Таблица трассировки

	Выполняемая Содержание регистров в процессоре после выпо лнения команды команда									Ячейка, содержимое которой изменилось после выполнения команды		
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Новый код
												,,,

8. Вывод

В ходе выполнения данной лабораторной работы познакомился с устройством БЭВМ. Изучил её структуру, принцип функционирования БЭВМ на уровне машинных команд, систему команд БЭВМ, познакомился с представлением логической информации и чисел, научился выполнять трассировку собственной программы. Проанализировал программу для базовой ЭВМ и разработал вариант с меньшим числом команд.