

MODELLIERUNG UND OPTIMIERUNG CHEMISCHER REAKTOREN

Seminar 2 - Chemkin-Pro

Sophie Rodmacher – 08. November 2024 Sophie.Rodmacher@iec.tu-freiberg.de

Zielstellung

- Einführung in Chemkin → grundlegende Funktionsweise und Möglichkeiten
- Aufbau eines Festbettmodells → katalytische Methanoxidation in einem Wabenkörper-Monolith-Reaktor
- 3. Durchführung von Parameterstudien
- Zusatzaufgabe → Entwicklung eines reduzierten POX-Modells zur selbstständigen Bearbeitung

Ansys Chemkin-Pro

- Kommerzielle Software f
 ür die Reaktormodellierung
- Studenten-Lizenzen am Campus verfügbar
- Fokus auf industrielle Bedingungen und reaktive Strömungen
- Die Nutzeroberfläche erleichtert die Problemeingabe und ermöglicht die visuelle Erstellung von Reaktornetzwerkdiagrammen zur Modellierung komplexer Systeme
- Komplexe Reaktionsmechanismen k\u00f6nnen genutzt werden → umfangreiche Datenbank und verschiedene Tutorials vorhanden

Reaktormodelle und Komponenten

lcon	Reactor Model Component	Description	
5	Inlet Source	External source for inlet gas.	
	Initialization	External source of initialization.	
	Outlet	Outlet flow (product) of reactor or network of reactors — indicates no further processing of the gas.	
~	Gas Mixer	Non-reactive gas mixer, which accepts multiple inlets.	
E	Gas Flow Splitter	Splits a gas stream into multiple streams.	
<u> </u>	Equilibrium	Chemical and phase equilibrium calculations.	

lcon	Reactor Model Component	Description	
≪	Perfectly Stirred Reactor (PSR)	Transient or steady-state perfectly stirred reactor, also known as continuously stirred tank reactor (CSTR).	
①	Plasma Stirred Reactor (Plasma PSR)	Transient or steady-state well mixed plasma reactor.	
	Closed Multiphase Reactor	Transient, closed, homogeneous system or batch reactor for multiphase liquid- and gas-phase reactions.	
	Partially Stirred Reactor (PaSR)	Open, partially stirred or un-mixed reactor for determining rate limitations between mixing, kinetics, and flow.	
1	Plug-flow Reactor (PFR)	Plug-flow reactor, where convection dominates transport.	
2	Plasma Plug-flow Reactor	Plasma reactor under plug-flow conditions.	
*	Planar Shear Flow	Shear-flow reactor, which accounts for boundary-layer effects in planar channels.	
3	Cylindrical Shear Flow	Shear-flow reactor, which accounts for boundary-layer effects in cylindrical channels.	
	Honeycomb Monolith	Plug-flow fixed-bed catalyst reactor with internal surface area defined by honeycomb properties and catalyst loading.	

Nutzeroberfläche

Nutzeroberfläche

Pre-Processing, Reaktionsmechanismus

Reaktoreigenschaften und Prozessbedingungen

- Definition des Problems (Lösung der Energieerhaltungsgleichung oder – isotherme Betrachtung)
- Definition der Prozessbedingungen
 - Einlasstemperatur
 - Druck

Eigenschaften Festbett I

of 🗹 🗵 C1_ Honeycomb Monolith (Seminar2:Honeycomb_Monolith (C1)) Reactor Physical Properties Honeycomb Monolith Species-specific Properties Catalyst Honeycomb Definition der Katalysatoreigenschaften (Gewicht, Oberfläche usw.) Catalyst (Precious Metal) Weight 5.2 Metal Surface Area 1.89E6 **Metal Surface Dispersion** 70.0 **-** ☑ [△ Active Surface Area Per Unit Length

Eigenschaften Festbett II

 Definition des Festbettes (hier dargestellt als Wabenkörper) -> Länge, Durchmesser, Porosität (hier Zelldichte) usw.

Definition der Einlassbedingungen - Strömungseigenschaften

Zusammensetzung am Einlass I

- 1. Möglichkeit: Definition der Reaktanten
- 2. Möglichkeit: Definition über das Äquivalenzverhältnis $\phi =$
- Definition der Brennstoffzusammensetzung
- Definition des Oxidationsmittels
- Definition der Verbrennungsprodukte
- Auswahl oder Eintippen der Spezies mit Moloder Massenanteil

Zusammensetzung am Einlass II

- Zusammensetzung für Luft eingeben
- Durch Klick auf "Auto-Populate-Air" kann die Eingabe erleichtert werden

Zusammensetzung am Einlass III

Run Calculation

Post-Processing

r d ⊠ Select Post-Processing Variables Bei "Units of Measure" können die Data Selection Units of Measure Einheiten für die Auswertung eingestellt Species/Variables werden → SI-Einheiten werden empfohlen Top/Bottom N Values: Species ROP Get all species data including all-zero data sets **Process Solution Data** Filter selected species by mole fraction range: Maximum Select Row Variable Names Select Var Select ROP volume plug_flow_residence_time internal_surface_area_per_unit_distance external_surface_area_per_unit_distance volumetric heat b surface_heat_production surface_temperature heat loss rate Find Variable Select All All Vars All ROPs Use Excel to post-process Process Solution Data

Post-Processing II

Post-Processing III

Parameterstudie I

 Variation verschiedener Größen (Temperatur, Zusammensetzung am Einlass, Geschwindigkeit usw.)

Symbol für Parameterstudie

Parameterstudie II

Parameter Study for Honeycomb_Monolith (C1) :: C1_ Honeycomb Monolith :: Temperature Temperature :: C1_ Honeycomb Monolith :: Honeycomb_Monolith (C1) Erstellt die Nominal Value = 780.0 K Current Row Count = 0 Select Unit: K ▼ Werte Eingabe des Wertebereichs → Superimpose all parameter variations so that more than one parameter varies on each run. Vary each parameter independently so that only one parameter varies on each run In welchem Bereich soll die Parameterstudie durchgeführt Number of Empty Entries to be Added: Add Empty Entries werden? 750 End: Increment Populate Start: Eingabe der Schrittweite Remove Duplicates Select All Import Done

Parameterstudie III

Parameter Study for Honeycomb_Monolith (C1) :: C1_ Honeycomb Monolith :: Temperature × Temperature :: C1_ Honeycomb Monolith :: Honeycomb_Monolith (C1) ✓ Werte für Parameterstudie Nominal Value = 780.0 K Current Row Count = 11 erstellt Select Unit: K ▼ Number of Empty Entries to be Added: Add Empty Entries End: Increment Start: Populate Temperatur 750.0 760.0 770.0 780.0 790.0 810.0 820.0 830.0 840.0 Done Remove Duplicates Select All Delete Import Export

Parameterstudie IV

 Zuvor verwendete Einstellungen (z.B. Einheiten) können wiederwendet werden oder neu ausgewählt werden

Ergebnisse I

 Ergebnisse können für den einzelnen Parameter (RUN#x) untersucht werden

Ergebnisse II

 Untersuchung des Einflusses des variierten Parameters auf eine Größe am Austritt

Abbildung der
 Eintrittstemperatur auf die
 Gaszusammensetzung am
 Austritt

24

Ergebnisse III

Darstellung des Einfluss der Einlasstemperatur auf Produktgaszusammensetzung

Zusatzaufgabe – Reduziertes POX-Modell

- Zur Entwicklung eines reduzierten Reaktormodells müssen die wesentlichen ablaufenden Prozesse identifiziert werden
- Unterteilung des Reaktors in unterschiedliche Bereiche
- POX ist gekennzeichnet durch Verbrennungs- und Reformierungszone
- Initiierung der Reaktionen durch Zündung → ausreichend hohe Initialtemperatur im PSR

Einlassbedingungen POX

Einlass	Brennstoff	Dampf	O2+Dampf
Massenstrom [kg/s]	0.06355	0.02168	0.08014
Temperatur [K]	632.27	562.75	513.39
Zusammensetzung [Masseanteil]			
CH4	0.9527		
CO2	0.0033		
co	0.0002		
C2H6	0.0277		
H2O	0	1	0.0802
O2	0		0.9198
N2	0.0161		

Reaktionsmechanismus: GRI-Mech/
 3.0 → enthalten in der Chemkin Datenbank

Synthesegaszusammensetzung

Parameter am Austritt	Wert
H ₂ / Mol%	48.27
N ₂ / Mol%	0.65
CO / Mol%	23.79
CO ₂ / Mol%	4.19
H ₂ O / Mol%	19.33
CH ₄ / Mol%	3.76
Temperatur / °C	1200

