L'arithmétique de Peano.

- DEDEKIND (1988) et PEANO (1889) formalisent l'arithmétique.
- ▶ En 1900, David HILBERT, lors du 2ème ICM à Paris, donne un programme et dont le 2nd problème est la cohérence de l'arithmétique.
- ▶ En 1901, Russel donne son paradoxe concernant l'« ensemble » de tous les ensembles.
- ▶ En 1930, (Hilbert) est toujours optimiste : « On doit savoir, on saura! »

La formalisation de l'arithmétique engendre deux questions :

- 1. est-ce que tout théorème est prouvable? (▷ complétude)
- 2. existe-t-il un algorithme pour décider si un théorème est prouvable? (▷ décidabilité)

Le second point est appelé « Entscheidungsproblem », le problème de décision, en 1928.

▶ En 1931, Gödel répond NON à ces deux questions.

On a donné plusieurs formalisations des algorithmes :

- \triangleright en 1930, le λ -calcul de Church;
- ▶ en 1931–34, les fonctions récursives de Herbrand et Gödel;
- ▶ en 1936, les machines de Turing.

On démontre que les trois modèles sont équivalents.

La thèse de Church–Turing nous convainc qu'il n'existe pas de modèle plus évolué « dans la vraie vie ».

1 Les axiomes.

On définit le langage $\mathcal{L}_0 = \{ (0), (\mathbf{S}), \oplus, \otimes \}$ où

- ▷ (1) est un symbole de constante;
- ▷ (S) est un symbole de fonction unaire;
- \triangleright \oplus et \otimes sont deux symboles de fonctions binaires.

On verra plus tard que l'on peut ajouter une relation binaire \leq .

Remarque 1 (Convention). La structure \mathbb{N} représente la \mathcal{L}_0 structure dans laquelle on interprète les symboles de manière habituelle :

- \triangleright pour ①, c'est 0;
- \triangleright pour **§**, c'est $\lambda n.n + 1$ (*i.e.* $x \mapsto x + 1$);
- \triangleright pour \oplus , c'est $\lambda n \, m.n + m$;
- \triangleright pour \otimes , c'est $\lambda n \, m.n \times m$.

Les axiomes de Peano.

On se place dans le cas égalitaire. L'ensemble \mathcal{P} est composé de \mathcal{P}_0 un ensemble fini d'axiomes (A1–A7) et d'un schéma d'induction (SI).

Trois axiomes pour le successeur :

- **A1.** $\forall x \neg (\widehat{\mathbf{S}}) x = \widehat{(0)}$
- **A2.** $\forall x \exists y \left(\neg (x = \bigcirc) \rightarrow x = \bigcirc y \right)$
- **A3.** $\forall x \, \forall y \, (\mathbf{S}) \, x = \mathbf{S}) \, y \to x = y)$

Deux axiomes pour l'addition :

- **A4.** $\forall x (x \oplus \bigcirc) = x$
- **A5.** $\forall x \, \forall y \, (x \oplus (\widehat{\mathbf{S}}) \, y) = (\widehat{\mathbf{S}})(x \oplus y))$

Deux axiomes pour la multiplication :

- **A6.** $\forall x (x \otimes \bigcirc) = \bigcirc)$
- **A7.** $\forall x \, \forall y \, (x \otimes (\mathbf{S}) \, y) = (x \otimes y) \oplus x)$

Et le schéma d'induction :

SI. Pour toute formule F de variables libres x_0, \ldots, x_n ,

$$\forall x_1 \cdots \forall x_n \left(\left(F(\underline{0}, \dots, x_1, \dots, x_n) \wedge \forall x \left(F(x, x_1, \dots, x_n) \rightarrow F(\underline{\$}) x, x_1, \dots, x_n \right) \right) \rightarrow \forall x F(x, x_1, \dots, x_n) \right).$$

Remarque 2. \triangleright Le schéma est le SI avec hypothèse faible, qui permet de montrer le SI avec hypothèse forte. On adopte la notation $\forall y \leq x \ F(y, x_1, \dots, x_n)$ pour

$$\forall y ((\exists z \ z \oplus y = x) \to F(y, x_1, \dots, x_n)).$$

Le SI avec hypothèse forte est :

$$\forall x_1 \cdots \forall x_n \left(\left(F(\textcircled{0}, \dots, x_1, \dots, x_n) \land \forall x \left((\forall y \leq x \, F(y, x_1, \dots, x_n)) \rightarrow F(\textcircled{S}(x, x_1, \dots, x_n)) \right) \rightarrow \forall x \, F(x, x_1, \dots, x_n) \right) \right) \rightarrow \forall x \, F(x, x_1, \dots, x_n)$$

- \triangleright L'ensemble $\mathcal P$ est non-contradictoire car $\mathbb N$ est un modèle, appelé modèle standard.
- ▶ On peur remplacer le SI par une nouvelle règle de démonstration :

$$\frac{\Gamma \vdash F(\textcircled{\scriptsize{0}}) \qquad \Gamma \vdash \forall y \left(F(y) \to F(\textcircled{\scriptsize{\$}})y)\right)}{\Gamma \vdash \forall x \ F(x)} \ \text{rec}.$$

Exercice 1. Montrer l'équivalence entre SI et la nouvelle règle rec, *i.e.* on peut démontrer les mêmes théorèmes.

Notation. On note \widehat{w} le terme $\underbrace{\mathbb{S}\cdots\mathbb{S}}_{n \text{ fois}}$ \widehat{w} pour $n\in\mathbb{N}$.

Définition 1. Dans une \mathcal{L}_0 -structure, on dit qu'un élément est standard s'il est l'interprétation d'un terme \widehat{w} avec $n \in \mathbb{N}$.

Remarque 3. Dans \mathbb{N} (le modèle standard), tout élément est standard.

Théorème 1. Il existe des modèles de \mathcal{P} non isomorphes à \mathbb{N} .

Preuve. 1. Avec le théorème de Löwenheim-Skolem, il existe un modèle de \mathcal{P} de cardinal κ pour tout $\kappa \geq \aleph_0$, et card $\mathbb{N} = \aleph_0$.

2. Autre preuve, on considère un symbole de constante c et on pose $\mathcal{L} := \mathcal{L}_0 \cup \{c\}$. On considère la théorie

$$T := \mathcal{P} \cup \{ \neg (c = \widehat{n}) \mid n \in \mathbb{N} \}.$$

Montrons que T a un modèle. Par le théorème de compacité de la logique du premier ordre, il suffit de montrer que T est finiment satisfiable. Soit $T' \subseteq_{\text{fini}} T$: par exemple,

$$T' \subseteq \mathcal{P} \cup \{\neg(c = @_1), \neg(c = @_2), \dots, (c = @_k)\},\$$

et $n_k \geq n_1, \ldots, n_{k-1}$. On construit un modèle de T' correspondant à \mathbb{N} où c est interprété par $n_k + 1$. Ainsi, T' est satisfiable et donc T aussi avec un modèle \mathcal{M} .

Montrons que \mathbb{N} et \mathcal{M} ne sont pas isomorphes. Par l'absurde, supposons que $\varphi: \mathcal{M} \to \mathbb{N}$ soit un isomorphisme. Alors $\gamma := \varphi(c_{\mathcal{M}})$ satisfait les mêmes formules que $c_{\mathcal{M}}$, par exemple, pour tout $n \in \mathbb{N}$, $\mathcal{M} \models \neg(c = @)$. Or, on ne peut pas avoir $\mathbb{N} \models \neg(\bigcirc) = @)$ pour tout $n \in \mathbb{N}$. **Absurde.**

On a montré que tous les modèles isomorphes à $\mathbb N$ n'ont que des éléments standards.

Théorème 2. Dans tout modèle \mathcal{M} de \mathcal{P} ,

- 1. l'addition est commutative et associative;
- 2. la multiplication aussi;
- 3. la multiplication est distributive par rapport à l'addition;
- 4. tout élément est régulier pour l'addition :

$$\mathcal{M} \models \forall x \, \forall y \, \forall z \, (x \oplus y = x \oplus z \to y = z) ;$$

5. tout élément non nul est régulier pour la multiplication :

$$\mathcal{M} \models \forall x \, \forall y \, \forall z \, ((\neg(x=\bigcirc)) \land x \otimes y = x \otimes z) \rightarrow y = z) \; ;$$

6. la formule suivante définie un ordre total sur $\mathcal M$ compatible avec + et \times :

$$x \le y \text{ ssi } \exists z \ (x \oplus x = y).$$

Preuve. On prouve la commutativité de + en trois étapes.

- 1. On montre $\mathcal{P} \vdash \forall x \ (\textcircled{0} \oplus x = x)$. On utilise le SI avec la formule $F(x) := (\textcircled{0} \oplus x = x)$.
 - \triangleright On a $\mathcal{P} \vdash (0) \oplus (0) = (0)$ par A4.
 - \triangleright On montre $\mathcal{P} \vdash \forall x \ F(x) \to F(\widehat{\mathbf{S}})x$, c'est à dire :

$$\forall x \left((\textcircled{0} \oplus x = x) \to (\textcircled{0} \oplus (\textcircled{S}) x) = (\textcircled{S}) x \right).$$

On peut le montrer par A5.

Questions/Remarques:

- \triangleright Pourquoi pas une récurrence normale? On n'est pas forcément dans \mathbb{N} !
- ▷ Grâce au théorème de complétude, on peut raisonner sur les modèles, donc en maths naïves.
- 2. On montre $\mathcal{P} \vdash \forall x \forall y \ \mathbf{S}(x \oplus y) = (\mathbf{S}) x) \oplus y$. On veut utiliser le schéma d'induction avec $F(x,y) := \mathbf{S}(x \oplus y) = (\mathbf{S}) x) \oplus y$. Mais ça ne marche pas. . .(Pourquoi?)

La bonne formule est $F(y,x) := (\mathbf{S})(x \oplus y) = (\mathbf{S})(x) \oplus y$.

 \triangleright On montre $\mathcal{P} \vdash F((0), x)$, c'est à dire

$$\mathcal{P} \vdash \mathbf{S}(x \oplus \mathbf{0}) = (\mathbf{S}) x) \oplus \mathbf{0}.$$

Ceci est vrai car

$$(\mathbf{S})(x \oplus \mathbf{O}) \stackrel{=}{\underset{\mathsf{A4}}{=}} (\mathbf{S}) x \stackrel{=}{\underset{\mathsf{A4}}{=}} (\mathbf{S}) x) \oplus \mathbf{O}.$$

$$\triangleright$$
 On a $\mathscr{P} \vdash F(y,x) \to F(\mathbf{\hat{S}})y,x)$ car : si $\mathbf{\hat{S}}(x \oplus y) = (\mathbf{\hat{S}})x \oplus y$, alors

$$(\widehat{\mathbf{S}}(x \oplus (\widehat{\mathbf{S}})y)) \underset{\mathrm{A5}}{=} (\widehat{\mathbf{S}})(\widehat{\mathbf{S}}(x \oplus y)) \underset{\mathrm{hyp}}{=} (\widehat{\mathbf{S}})((\widehat{\mathbf{S}})x) \oplus y) \underset{\mathrm{A5}}{(\widehat{\mathbf{S}})}(x) = \oplus (\widehat{\mathbf{S}})y).$$

3. On utilise le SI avec $F(x,y) := (x \oplus y = y \oplus x)$. D'une part, on a $F(\textcircled{0},y) = (\textcircled{0} \oplus y = y \oplus \textcircled{0})$ par 1 et A4. D'autre part, si l'on a $x \oplus y = y \oplus x$ alors $(\textcircled{S}x) \oplus y = y \oplus (\textcircled{S}x)$ par A5 et 2. Par le SI, on conclut.

Exercice 2. Finir la preuve du théorème.

2 Liens entre \mathbb{N} et un modèle \mathcal{M} de \mathcal{P} .

Définition 2. Si $\mathcal{M} \models \mathcal{P}_0$ et $\mathcal{N} \models \mathcal{P}_0$ et \mathcal{N} une sous-interprétation de \mathcal{M} , on dit que \mathcal{N} est un segment initial de \mathcal{M} , ou que \mathcal{M} est une extension finale de \mathcal{N} , si pour tous $a, b, c \in |\mathcal{M}|$ avec $a \in |\mathcal{N}|$ on a :

- 1. si $\mathcal{M} \models c \leq a \text{ alors } c \in |\mathcal{N}|;$
- 2. si $b \notin |\mathcal{N}|$ alors $\mathcal{M} \models a \leq b$.

Remarque 4. \triangleright Les points peuvent être incomparables et dans \mathcal{M} .

 \triangleright L'ensemble \mathcal{P}_0 est très faible, on ne montre même pas que \oplus commute ou que \leq est une relation d'ordre (*c.f.* TD).

Théorème 3. Soit $\mathcal{M} \models \mathcal{P}_0$. Alors, le sous-ensemble de \mathcal{M} sui-

vant est une sous-interprétation de $\mathcal M$ qui est un segment initial et qui est isomorphe à $\mathbb N$:

$$\left\{ a \in |\mathcal{M}| \middle| \begin{array}{c} \text{il existe } n \in \mathbb{N} \text{ et } a \\ \text{est l'interprétation} \\ \text{de } @ \text{ dans } \mathcal{M} \end{array} \right\}.$$

Preuve. 1. Pour tout $n \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash (n+1) = (\mathbf{S}) \hat{w}$.

- 2. Pour tout $n, m \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash \widehat{m} \oplus \widehat{m} = \widehat{m+n}$.
- 3. Pour tout $n, m \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash m \otimes m = m \times n$.
- 4. Pour tout $n \in \mathbb{N}_{\star}$, on a $\mathcal{P}_0 \vdash \neg(\widehat{n} = \widehat{0})$.
- 5. Pour tout $n \neq m$, on a $\mathcal{P}_0 \vdash \neg (m = m)$.
- 6. Pour tout $n \in \mathbb{N}$ (admis), on a

$$\mathfrak{P}_0 \vdash \forall x \ (x \leq \underline{m} \to (x = \underline{0}) \lor x = \underline{1}) \lor \cdots \lor x = \underline{m}).$$

7. Pour tout x, on a $\mathcal{P}_0 \vdash \forall x (x \leq \emptyset) \lor \emptyset \leq x$).

3 Les fonctions représentables.

Cette section détaille un outil technique pour montrer le théorème d'incomplétude de Gödel vu plus tard. On code tout avec des entiers!

Définition 3. Soit $f: \mathbb{N}^p \to \mathbb{N}$ une fonction totale et $F(x_0, \dots, x_p)$ une formule de \mathcal{L}_0 . On dit que F représente f si, pour tout p-uplet d'entiers (n_1, \dots, n_p) on a :

$$\mathcal{P}_0 \vdash \forall y \ (F(y, \underline{n_1}, \dots, \underline{n_p}) \leftrightarrow y = (\underline{f(n_1, \dots, n_p)}).$$

On dit que f est représentable s'il existe une formule qui la représente.

Un ensemble de *p*-uplets $A \subseteq \mathbb{N}^p$ est représenté par $F(x_1, \dots, x_p)$

si pour tout p-uplet d'entiers (n_1, \ldots, n_p) , on a

- 1. si $(n_1, \ldots, n_p) \in A$ alors $\mathcal{P}_0 \vdash F(n_1, \ldots, n_p)$;
- 2. si $(n_1, \ldots, n_p) \notin A$ alors $\mathcal{P}_0 \vdash \neg F(n_1, \ldots, n_p)$.

On dit que A est représentable s'il existe une formule qui le représente.

Exercice 3. Montrer qu'un ensemble est représentable ssi sa fonction indicatrice l'est.

Exemple 1 (Les briques de base des fonctions récursives).

- ▷ La fonction nulle $f: \mathbb{N} \to \mathbb{N}, x \mapsto 0$ est représentable par $F(x_0, x_1) := x_0 = \bigcirc$.
- ▷ Les fonctions constantes $f: \mathbb{N} \to \mathbb{N}, x \mapsto n$ sont représentables par $F(x_0, x_1) := x_0 = \mathfrak{D}$, où $n \in \mathbb{N}$.
- ▷ Les projections $\pi_p^i : \mathbb{N}^p \to \mathbb{N}, (x_1, \dots, x_p) \mapsto x_i$ sont représentables par $F(x_0, x_1, \dots, x_p) := x_0 = x_i$.
- ▷ La fonction successeur $f: \mathbb{N} \to \mathbb{N}, x \mapsto x+1$ est représentable par $F(x_0, x_1) := x_0 = (\mathbf{S})x_1$.
- ▷ L'addition $f: \mathbb{N}^2 \to \mathbb{N}, (x, y) \mapsto x + y$ est représentable par $F(x_0, x_1, x_2) := x_0 = x_1 \oplus x_2$.
- ▷ La multiplication $f: \mathbb{N}^2 \to \mathbb{N}, (x, y) \mapsto x \times y$ est représentable par $F(x_0, x_1, x_2) := x_0 = x_1 \otimes x_2$.

Théorème 4. Toute fonction récursive totale est représentable.