MA2A - teoretická otázka

dejf material

Definice

Vnitřní bod množiny

Řekneme, že bod \mathbf{x} je $vnitřní\ bod$ množiny M, jestliže existuje nějaké okolí $U(\mathbf{x})$, které je podmnožinou M (je celé uvnitř M).

Vnější bod množiny

Řekneme, že bod **x** je hraniční bod množiny M, jestliže pro každé okolí $U(\mathbf{x})$ je část tohoto okolí uvnitř množiny $(U \cap M \neq \emptyset)$ a část mimo množinu $((\mathbb{R}^n \setminus M) \cap U \neq \emptyset)$

Hromadný bod množiny

Řekneme, že bod \mathbf{x} je hromadný bod množiny M, jestliže v každém okolí $U(\mathbf{x})$ leží nekonečně mnoho prvků z M.

Izolovaný bod množiny

Řekneme, že bod \mathbf{x} je *izolovaný bod* množiny M, jestliže existuje nějaké okolí $U(\mathbf{x})$, jehož průnik s množinou M dává právě tento bod.

Derivace ve směru

Mějme otevřenou množinu $G \subset \mathbb{R}^n$, $\mathbf{x_0} \in G$ a funkci $f: G \to \mathbb{R}$. Derivace f v bodě $\mathbf{x_0}$ ve směru \mathbf{h} je $\lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{h})-f(\mathbf{x})}{t}$, jestliže tato limita existuje.

Diferenciál

Nechť $f: G \to \mathbb{R}$ je funkce na otevřené množině $G \subset \mathbb{R}^n$. Řekneme, že lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}$ je (totální) diferenciál funkce f v bodě $\mathbf{x_0} \in G$, jestliže $\lim_{\mathbf{h} \to 0} \frac{f(\mathbf{x_0} + \mathbf{h}) - f(\mathbf{x_0}) - L(\mathbf{h})}{||\mathbf{h}||} = 0$.

Sylvestrovo kritérium

Basically klasifikace lokálních extrémů, akorát minimum = kvadratická forma pos. def, maximum = neg. def., sedlový bod = indef.

Klasifikace lokálních extrémů pomocí Hessovy matice

Mějme funkci f a bod $\mathbf{x_0}$ podezřelý z extrému. Matice reprezentující $d^2 f(\mathbf{x_0})$ se nazývá Hessova matice (hessián):

$$\mathbb{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \frac{\partial^2 f}{\partial x_n x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Pak bod $\mathbf{x_0}$ je

• lokální minimum, jestliže všechny hlavní subdeterminanty $\mathbb{H} > 0$,

- $lokální \ maximum$, jestliže první hlavní subdeterminant $\mathbb{H} < 0$, druhý > 0, třetí < 0, ... (střídání znaménka subdeterminantů),
- sedlový bod, když $det(\mathbb{H}) \neq 0$ a neplatí ani jedno z předešlých kritérií.

Polární, sférické a cylindrické souřadnice

Polární souřadnice:

$$x = \rho \cos(\varphi)$$
$$y = \rho \sin(\varphi)$$
$$J = \rho$$

Cylindrické souřadnice:

$$x = \rho \cos(\varphi)$$
$$y = \rho \sin(\varphi)$$
$$z = z$$
$$J = \rho$$

Sférické souřadnice:

$$x = \rho \cos(\varphi) \sin(\vartheta)$$
$$y = \rho \sin(\varphi) \sin(\vartheta)$$
$$z = \rho \cos(\vartheta)$$
$$J = \rho^2 \sin(\vartheta)$$

Jakobián zobrazení

Mějme otevřenou množinu $G \subset \mathbb{R}^n$ a nějaké zobrazení $\Phi: G \to \mathbb{R}^n$. Jestliže všechny složky $\Phi_1, \Phi_2, \ldots, \Phi_n$ mají spojité první parciální derivace, pak jakobián zobrazení Φ je absolutní hodnota determinantu Jacobiho matice

$$\mathbb{J} = \begin{pmatrix} \frac{\partial \Phi_1}{\partial x_1} & \frac{\partial \Phi_1}{\partial x_2} & \cdots & \frac{\partial \Phi_1}{\partial x_n} \\ \frac{\partial \Phi_2}{\partial x_1} & \frac{\partial \Phi_2}{\partial x_2} & \cdots & \frac{\partial \Phi_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \Phi_n}{\partial x_1} & \frac{\partial \Phi_n}{\partial x_2} & \cdots & \frac{\partial \Phi_n}{\partial x_n} \end{pmatrix}.$$

Potenciální pole

Pole $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ se nazývá potenciální, jestliže existuje funkce f (potenciál) třídy C^1 taková, že platí $\mathbf{F} = \operatorname{grad} f$.

Důkazy

Věta: Jsou-li $\langle a_n, b_n \rangle$ do sebe vnořené uzavřené a omezené intervaly, $\langle a_{n+1}, b_{n+1} \rangle \subset \langle a_n, b_n \rangle$, pak průnik $\bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle \neq \emptyset$.

Důkaz: Mějme množiny $A = \{a_n \mid n \in \mathbb{N}\}$ a $B = \{b_n \mid n \in \mathbb{N}\}$. Položíme $\alpha = \sup A, \beta = \inf B$. Je zřejmé, že platí $\alpha \leq \beta$ a $I = \langle a, b \rangle \neq \emptyset$. Ukážeme, že I je podmnožinou hledaného průniku.

Vezměme nějaký bod $x \in I$. Pak určitě platí $\alpha \le x \le \beta$ a také $a_1 \le x \le b_1$, tj. $x \in \langle a_1, b_1 \rangle$ pro každé $x \in I$. Tudíž x je elementem průniku všech intervalů a průnik není prázdný. \square

Věta: Každá nekonečná omezená uzavřená množina v \mathbb{R}^n má hromadný bod.

Důkaz: Provedeme pro n=2.

Dostaneme posloupnost čtverců $Q_n \subset Q_{n-1} \subset \cdots \subset Q_2 \subset Q_1 \subset Q_0$ tak, že každý následující čtverec má poloviční stranu a obsahuje nekonečně mnoho bodů. Ukážeme, že $\bigcap^{\infty} Q_n \neq \emptyset$.

Označíme průmět Q_n na osu x jako $\langle a_n, b_n \rangle$. Pak $\langle a_{n+1}, b_{n+1} \rangle \subset \langle a_n, b_n \rangle$. Podle věty o vnořených intervalech existuje $\widetilde{x} \in \bigcap_{n=0}^{\infty} \langle a_n, b_n \rangle \neq \emptyset$. Analogicky nalezneme \widetilde{y} ležící ve všech průmětech na osu y. Potom $(\widetilde{x}, \widetilde{y}) \in \bigcap_{n=0}^{\infty} Q_n$. Protože v každém okolí bodu $(\widetilde{x}, \widetilde{y})$ leží nějaký čtverec Q_n , okolí obsahuje nekonečně mnoho bodů ze zadané množiny. \square

Věta: $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{h}}(\mathbf{x} + \vartheta \mathbf{h})$ pro nějaké $\vartheta \in (0, 1)$. Důkaz: Položíme $\varphi(t) = f(\mathbf{x} + t\mathbf{h}), \ t \in \langle 0, 1 \rangle$. Pak $\varphi(0) = f(\mathbf{x}), \ \varphi(1) = f(\mathbf{x} + \mathbf{h})$. Podle Rolleovy věty platí $\varphi(0)-\varphi(1)=\varphi'(v)$ pro nějaké $v\in(0,1)$. Nyní stačí rozepsat definici derivace a poté dosadit za φ :

$$\varphi(v) = \lim_{t \to 0} \frac{\varphi(v+t) - \varphi(v)}{t} = \lim_{t \to 0} \frac{f(\mathbf{x} + (v+t)\mathbf{h}) - f(\mathbf{x} + v\mathbf{h})}{t} = \lim_{t \to 0} \frac{f(\mathbf{x} + v\mathbf{h} + t\mathbf{h}) - f(\mathbf{x} + v\mathbf{h})}{t}$$
$$= \frac{\partial f}{\partial \mathbf{h}} (\mathbf{x} + v\mathbf{h})$$

Položíme $v=\vartheta$ a máme hotovo. \square

Věta: Má-li f v bodě $\mathbf{x_0} \in \mathbb{R}^n$ diferenciál, je v bodě $\mathbf{x_0}$ spojitá.

Důkaz: Potřebujeme ověřit, že $\lim_{h\to 0} f(\mathbf{x_0} + \mathbf{h} = f(\mathbf{x_0}))$. Převedeme na levou stranu a ověříme rovnost 0.

$$\lim_{\mathbf{h}\to 0} f(\mathbf{x_0} + \mathbf{h}) - f(\mathbf{x_0}) = \lim_{\mathbf{h}\to 0} \frac{f(\mathbf{x_0} + \mathbf{h}) - f(\mathbf{x_0}) - \mathrm{d}f(\mathbf{x_0})[\mathbf{h}] + \mathrm{d}f(\mathbf{x_0})[\mathbf{h}]}{||\mathbf{h}||} \cdot ||\mathbf{h}||$$

$$= \lim_{\mathbf{h}\to 0} \underbrace{\frac{f(\mathbf{x_0} + \mathbf{h}) - f(\mathbf{x_0}) - \mathrm{d}f(\mathbf{x_0})[\mathbf{h}]}{||\mathbf{h}||}}_{=0 \text{ (definice)}} \cdot ||\mathbf{h}| + \underbrace{\mathrm{d}f(\mathbf{x_0})[\mathbf{h}]}_{=0} = 0 \square$$

Věta: Má-li f v bodě $\mathbf{x_0} \in \mathbb{R}^n$ extrém a existuje-li v bodě $\mathbf{x_0}$ diferenciál, pak je roven nule. **Důkaz:** Mějme libovolný směr $\mathbf{h} \in \mathbb{R}^n$ a položme $\varphi(t) = f(\mathbf{x_0} + t\mathbf{h})$. Funkce $\varphi(t)$ má extrém v bodě 0, tudíž $\varphi'(0) = 0$. Rozepíšeme $\varphi'(0)$:

$$\varphi'(0) = \lim_{t \to 0} \frac{\varphi(0+t) - \varphi(0)}{t} = \lim_{t \to 0} \frac{f(\mathbf{x_0} + t\mathbf{h}) - f(\mathbf{x_0})}{t} = \frac{\partial f}{\partial \mathbf{h}}(\mathbf{x_0}) = \mathrm{d}f(\mathbf{x_0})[\mathbf{h}]$$

Dostáváme tedy, že diferenciál je roven $\varphi'(0) = 0$. \square

Věta: Je-li **F** potenciální vektorové pole v \mathbb{R}^n , pak integrály přes uzavřené křivky jsou nulové. **Důkaz:** Pro potenciální pole platí $\mathbf{F}=\mathrm{grad}f.$ Je-li $\varphi:\langle a,b\rangle\to C$ parametrizace uzavřené křivky C, pak $\varphi(a) = \varphi(b)$, a tím

$$\int_{(C)} \mathbf{F} \, d\mathbf{s} = \int_{a}^{b} \operatorname{grad} f(t) \cdot \varphi'(t) \, dt = \int_{a}^{b} \frac{d}{dt} f(\varphi(t)) \, dt = f(\varphi(b)) - f(\varphi(a)) = 0$$

Znění integrálních vět

Gaussova věta

Nechť $P \subset \mathbb{R}^3$ je základní těleso, jehož hranice ∂P je plocha orientovaná vnějším normálovým polem. Je-li \mathbf{F} vektorové pole třídy C^1 na P, pak

$$\iint \int_{P} \operatorname{div} \mathbf{F} = \iint_{\partial P} \mathbf{F} \, d\mathbf{S}.$$

Greenova věta

Nechť $T \subset \mathbb{R}^2$ je základní oblast, jejíž hranice ∂T je kladně orientovaná vzhledem k T. Nechť $\mathbf{F} = (F_1, F_2)$ je vektorové pole třídy C^1 na T. Pak platí

$$\int_{(\partial T)} \mathbf{F} \, d\mathbf{s} = \int \int_{T} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right).$$

Stokesova věta

Nechť vektorové pole ${\bf F}$ je třídy C^1 na otevřené množině obsahující elementární orientovanou plochu M. Předpokládejme, že kraj plochy ${\bf M}$ je uzavřená jednoduchá křivka C=K(M). Při souhlasné orientaci plochy ${\bf M}$ a křivky ${\bf C}$ platí

$$\int_{(C)} \mathbf{F} \, d\mathbf{s} = \int \int_{(M)} \text{rot} \mathbf{F} \, d\mathbf{S}.$$