

MATEMÁTICAS

ÁLGEBRA LINEAL II

Diagonalización

Alexander Mendoza 26 de marzo de 2024

Índice general

1	Diagonalización		
	1.1	Algunas cosas para recordar	2
	1.2	Valores propios y vectores propios	3
	1.3	Trabajando con el polinomio característico	5
	1.4	Diagonalización de una matriz	6
	1.5	Suma de subespacios	10

Capítulo 1

Diagonalización

1.1. Algunas cosas para recordar

Definition 1.1.1

Sean \mathcal{T} el conjunto de todas las transformaciones lineales de V a W, y $L(V,W)=\{T\mid T\in\mathcal{T}\}$, entonces L(V,W) es un espacio vectorial donde sus operaciones se definen como:

■ Suma de vectores. Sean $T_1, T_2 \in L(V, W)$ entonces para cada $v_1 \in V$

$$(T_1 + T_2)(v_1) = T_1(v_1) + T_2(v_1)$$

■ Multiplicación por un escalar. Sea $T \in L(V, W)$ y sea $\alpha \in F$, entonces para todo $v_1 \in V$

$$(\alpha T)(v_1) = \alpha T(v_1)$$

Definition 1.1.2

Multiplicación de matrices por la izquierda. Sea A una matriz de $m \times n$ con entradas de un campo F. Denotamos por L_A la función L_A : $F^n \to F^m$ definida por $L_A(x) = Ax$ (el producto matriz de A y x) para cada vector columna $x \in F^n$. Llamamos L_A una transformación de multiplicación por la izquierda.

Definition 1.1.3

Matriz diagonal. Una matriz se llama diagonal si todas sus entradas A_{ij} son cero excepto cuando i = j.

1.2. Valores propios y vectores propios

Definition 1.2.1

Vector propio y valores propios. Definiciones. Sea T un operador lineal en un espacio vectorial V. Un vector no nulo $v \in V$ se llama un vector propio de T si existe un escalar λ tal que $T(v) = \lambda v$. El escalar λ se llama un valor propio correspondiente al vector propio v.

Sea A en $M_{n\times n}(F)$. Un vector de longitud no nulo $v\in F^n$ se llama un vector propio de A si v es un vector propio de L_A ; es decir, si $Av=\lambda v$ para algún escalar λ . El escalar λ se llama un valor propio de A correspondiente al vector propio v.

Theorem 1.2.2

Sea T un operador lineal sobre un espacio vectorial de dimension finita V. Y sea λ un escalar, entonces las siguientes afirmaciones son equivalentes

- 1. λ es un valor propio de T
- 2. El operador $(T \lambda I)$ es singular (no tiene inversa)
- 3. $det(T \lambda I) = 0$

Definition 1.2.3

Si A es una matriz sobre un campo F, un valor propio de A en F es un escalar en F, tal que $(A - \lambda I)$ es singular.

Definition 1.2.4

Sea A una matriz cuadrada. La función $P_A: \mathbb{R} \to \mathbb{R}$ donde $P_A(\lambda) = \det(A - \lambda I)$ se llama el polinomio característico de A.

Con estos teoremas y definiciones, podemos obtener los valores propios de una matriz encontrando las raíces del polinomio característico y obtener el vector propio v definido por el valor propio λ resolviendo el sistema $(A - \lambda I)v = 0$

Example 1.2.5 Sea

$$A = \begin{bmatrix} -1 & -3 & 9\\ 0 & 5 & 18\\ 0 & -2 & -7 \end{bmatrix}$$

Para encontrar los valores propios, vectores propios y el polinomio característico, comenzamos con

$$f(\lambda) = \det(A - \lambda I)$$

Luego,

$$\det (A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} -1 & -3 & 9 \\ 0 & 5 & 18 \\ 0 & -2 & -7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} \begin{bmatrix} -1 - \lambda & -3 & 9 \\ 0 & 5 - \lambda & 18 \\ 0 & -2 & -7 - \lambda \end{bmatrix} \end{pmatrix}$$

$$= -\lambda^3 - 3\lambda^2 - 3\lambda - 1$$

Ahora, para encontrar los valores propios, necesitamos encontrar las raíces del polinomio. Se puede observar que $-\lambda^3 - 3\lambda^2 - 3\lambda - 1$ es de la forma expandida de un binomio al cubo, por lo tanto, el polinomio puede ser factorizado de la siguiente manera:

$$-(\lambda+1)^3$$

Así, al establecer $-(\lambda+1)^3=0$, podemos concluir que $\lambda_1=-1, \lambda_2=-1, \lambda_3=-1$. Ahora, vamos a encontrar los vectores propios, para esto, resolveremos el siguiente sistema homogéneo: Ax=0, donde $x=(x_1,x_2,x_3)$ y $x_1,x_2,x_3\in F$. Entonces, el sistema homogéneo para $\lambda=-1$ sería el siguiente:

$$\begin{bmatrix} 0 & -3 & 9 \\ 0 & 6 & 18 \\ 0 & -2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Al resolver el sistema, encontramos que el vector

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Es una solución para el sistema y, por lo tanto, es un vector propio para A.

Definition 1.2.6

Sea T un operador lineal sobre un espacio vectorial V, y sea λ un valor propio de T. Definimos $\mathcal{E}_{\lambda} = \{x \in \mathcal{V} : \mathcal{T}(x) = \lambda x\} = \mathcal{N}(\mathcal{T} - \lambda \mathcal{I}_{\mathcal{V}})$. Al conjunto \mathcal{E}_{λ} se le llama espacio propio T correspondiente al valor propio λ . Análogamente, definimos el espacio propio de una matriz cuadrada λ correspondiente al valor propio λ como el espacio propio de \mathcal{L}_{λ} correspondiente a λ .

Continuando con el ejemplo anterior, su espacio propio E_{λ} sería

$$E_{\lambda} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

1.3. Trabajando con el polinomio característico

Vale la pena recordar algunas herramientas para encontrar los determinantes de una matriz y las raíces de un polinomio. Recordemos primordialmente la definición de determinante.

Primero estableceremos un teorema que nos ayudará a encontrar algunas partes del polinomio característico.

Theorem 1.3.1

Denotemos los n valores propios de una matriz $A \in M_n(c)$, por $\lambda_1, \lambda_2, \ldots, \lambda_n$ y su polinomio característico por

$$P_a(\lambda) = (-1)^n \lambda^n + C_{n-1} \lambda^{n-1} + \dots + C_1 \lambda + C_0$$

Entonces

$$C_0 = \det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$$

у

$$(-1)^{n-1}C_{n-1} = tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

Theorem 1.3.2

Teorema de las raíces. Todo polinomio de grado $n \ge 1$ tiene exactamente n raíces, siempre y cuando una raíz de multiplicidad k se cuente k veces.

Theorem 1.3.3

Teorema de las raíces racionales. Si el polinomio $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ tiene coeficientes enteros, entonces todos los ceros racionales de P tienen la forma

$$\frac{p}{q}$$

donde p es un factor del coeficiente constante a_0 y q es un factor del coeficiente principal a_n .

Note

Encontrando los ceros racionales de un polinomio.

- 1. Listar los ceros posibles. Enumera todos los ceros racionales posibles utilizando el teorema de los ceros racionales.
- 2. Dividir. Usa la división sintética para evaluar el polinomio en cada uno de los candidatos a ceros racionales que se encontraron en el paso 1. Cuando el residuo es 0, anota el cociente que has obtenido.
- 3. Repetir. Repite los pasos 1 y 2 para el cociente. Detente cuando alcances un cociente que es cuadrático o se puede factorizar fácilmente, y usa la fórmula cuadrática o el factor para encontrar los ceros restantes.

1.4. Diagonalización de una matriz

Multiplicidad

Definition 1.4.1

Multiplicidad geométrica de un valor propio. Sea A una matriz cuadrada con valor propio λ . La multiplicidad geométrica de λ es la dimensión de E_{λ} (el espacio generado por λ).

Por ejemplo 1.2.5, la multiplicidad geométrica de $\lambda = -1$ es 1 ya que

$$E_{\lambda} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

Definition 1.4.2

Deje que A sea una matriz cuadrada con valor propio λ . La multiplicidad algebraica de λ es el entero positivo más grande k para el cual $(t - \lambda)^k$ es un factor de f(t).

Example 1.4.3 Sea

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{pmatrix}$$

que tiene polinomio característico $f(t)=-(t-3)^2(t-4)$. Por lo tanto $\lambda=3$ es un valor propio de A con multiplicidad de 2, y $\lambda=4$ es un valor propio de A con una multiplicidad de 1.

Theorem 1.4.4

Deje que A sea una matriz cuadrada con valor propio λ . La multiplicidad algebraica de λ es el entero positivo más grande k para el cual $(t - \lambda)^k$ es un factor de f(t).

Theorem 1.4.5

La multiplicidad de una eigenvalor no excede a su multiplicidad algebraica.

Matrices similares

Definition 1.4.6

 ${\it Matrices\ similares}.$ Dos matrices cuadradas A y B se dice que son similares si existe una matriz no singular P tal que

$$B = P^{-1}AP$$

Theorem 1.4.7

Las matrices similares tienen los mismos valores propios contados con multiplicidad.

Diagonalización de una matriz

Definition 1.4.8

Diagonalización de una matriz. Un operador lineal T en un espacio vectorial de dimensional finita V se llama diagonalizable si existe una base ordenada B para V tal que $[T]_{\beta}$ es una matriz diagonal.

Una matriz cuadrada A se llama diagonalizable si \mathcal{L}_A es diagonalizable. En otras palabras decimos que una matriz cuadrada A es diagonalizable si y solo si existe una matriz invertible P tal que

$$D = P^{-1}AP$$

o

$$A = PDP^{-1}$$

Theorem 1.4.9

Si A es similar a una matriz diagonal D, entonces los elementos de D son los valores propios de A; y los valores son independientes de la forma en la cual se representa una transformación lineal.

Theorem 1.4.10

Una matriz nxn es diagonalizable si y solo si tiene vectores propios linealmente independientes.

Theorem 1.4.11

Lo siguiente son equivalentes

- 1. $T: V \to V$ es diagonalizable
- 2. Para cada valor propio λ de T, la multiplicidad geométrica de λ coincide con la multiplicidad algebraica.

Cambio de base

Definition 1.4.12

Base ordenada. Sea V un espacio vectorial de dimensional finita. Una base ordenada para tal espacio está provista de un orden específico, es decir, una base ordenada para V es una secuencia de vectores linealmente independientes en V que generan V.

Example 1.4.13 Sea $V = F^3$.

$$\beta = \{e_1, e_2, e_3\}$$

$$\alpha = \{e_2, e_1, e_3\}$$

Entonces $\beta \neq \alpha$, y β , α son bases ordenadas.

Definition 1.4.14

Sea $\beta = \{u_1, u_2, \dots, u_n\}$ una base ordenada para V. Para cada $v \in V$, dejamos que $\alpha_1, \alpha_2, \dots, \alpha_n$ sean los escalares únicos tales que

$$v = \sum_{i=1}^{n} \alpha_i u_i$$

Definimos el vector de coordenadas de v relativo a β , denotado por

$$[v]_{\beta} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Example 1.4.15 Sea $P_2(\mathbb{R})$ y sea $\beta = \{1, x, x^2\}$ y $\alpha = \{x^2, x, 1\}$ si $v = f(x) = 4 + 6x - 7x^2$.

$$[v]_{\beta} = \begin{pmatrix} 4\\6\\-7 \end{pmatrix}$$

$$[v]_{\alpha} = \begin{pmatrix} -7\\6\\4 \end{pmatrix}$$

Theorem 1.4.16

Sean $f_{\beta}: V \to \mathbb{R}^n$ y $g_{\beta}: \mathbb{R}^n \to V$ las funciones siguientes:

$$f_{\beta}(v) = [v]_b eta$$

$$g_{\beta}([v]_{\beta}) = v$$

Entonces f_{β} y g_{β} son linealments y $g_{\beta} \circ f_{\beta}$ es la identidad en V y $f_{\beta} \circ g_{\beta}$ es la identidad en \mathbb{R}^n

Example 1.4.17 Sean las siguientes fórmulas

$$f(\alpha) = A\alpha$$

$$P = [I]^{\gamma}_{\beta}$$

Donde

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\alpha = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
$$[I]_{\beta}^{\gamma} = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 3 & -1 \end{bmatrix}$$

Entonces si calculamos $f(\alpha)$ obtenemos

$$f(\alpha) = A\alpha = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 2 \\ 3 \end{bmatrix}$$

y si calculamos $Pf(\alpha)$ tenemos

$$Pf(\alpha) = [I]_{\beta}^{\gamma} f(\alpha) = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 3 & -1 \end{bmatrix} \begin{bmatrix} 12 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 \\ 6 \end{bmatrix}$$

1.5. Suma de subespacios

Definition 1.5.1

Suma de conjuntos. Supongamos que $U_1, \ldots U_m$ son subconjuntos de un espacio vectorial V. Entonces la suma de U_1, \ldots, U_m denotada por $U_1 + \cdots + U_m$ es el conjunto de todas las sumas posibles de los elementos de U_1, \ldots, U_m , más precisamente

$$U_1 + \cdots U_m = \{u_1 + \cdots u_m \mid u_1 \in U_1, \dots, u_m \in U_m\}$$

Example 1.5.2

$$U = \{(x, 0, 0) \in F^3 \mid x \in F\}$$
$$W = \{(0, y, 0) \in F^3 \mid x \in F\}$$

Entonces

$$U + W = \{(x, y, 0) \in F^3 \mid x, y \in F\}$$

Example 1.5.3

$$W_1 = \{ m(1,0) \mid m \in \mathbb{R} \}$$
$$W_2 = \{ l(0,1) \mid l \in \mathbb{R} \}$$

Entonces

$$W_1 + W_2 = \{m(1,0) + l(1,0) \mid m, l \in \mathbb{R}\}\$$

Theorem 1.5.4

La suma de subespacios también es un subespacio. Sea V_1, \ldots, V_n subespacios de un espacio vectorial V, entonces

$$V_1 + \cdots V_n$$