

VinMin = 10.0V VinMax = 16.0V Vout = 120.0V lout = 0.02A Device = LM5022MM/NOPB Topology = Boost Created = 2018-02-03 00:44:16.497 BOM Cost = \$5.49 BOM Count = 22 Total Pd = 0.88W

WEBENCH® Design Report

Design : 663314/53 LM5022MM/NOPB LM5022MM/NOPB 10.0V-16.0V to 120.00V @ 0.015A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbyp	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	Kemet	C2220C274J5GACTU Series= C0G/NP0	Cap= 270.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$1.85	2220 54 mm ²
3.	Ccomp2	Samsung Electro- Mechanics	CL21C751JBCNNNC Series= C0G/NP0	Cap= 750.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Ccs	Samsung Electro- Mechanics	CL05C102JB5NNNC Series= C0G/NP0	Cap= 1.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
5.	Cin	Panasonic	EEE-FK1E100R Series= FK	Cap= 10.0 uF ESR= 1.35 Ohm VDC= 25.0 V IRMS= 90.0 mA	1	\$0.08	SM_RADIAL_B 47 mm ²
3.	Cinx	Kemet	C0603C104M3VACTU Series= Y5V	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
7.	Cout	Panasonic	EEV-EB2E330SM Series= ?	Cap= 33.0 uF ESR= 400.0 mOhm VDC= 250.0 V IRMS= 560.0 mA	1	\$1.31	
							EB_K16 483 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
8. Cout1	MuRata	GRM55DR72E105KW01L Series= X7R	Cap= 1.0 uF ESR= 7.086 mOhm VDC= 250.0 V IRMS= 2.0605 A	1	\$0.29	2220_200 54 mm²
9. Css	MuRata	GRM155R71E822KA01D Series= X7R	Cap= 8.2 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
10. D1	SMC Diode Solutions	SK220ATR	VF@Io= 900.0 mV VRRM= 200.0 V	1	\$0.04	SMA 37 mm ²
11. L1	Bourns	SDR1005-681KL	L= 680.0 µH DCR= 2.6 Ohm	1	\$0.29	SDR1005 176 mm ²
12. M1	Infineon Technologies	BSZ520N15NS3 G	VdsMax= 150.0 V ldsMax= 21.0 Amps	1	\$0.55	PG-TSDSON-8 19 mm ²
13. Rcomp	Vishay-Dale	CRCW04025K90FKED Series= CRCWe3	Res= 5.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
14. Rfb1	Vishay-Dale	CRCW0402210RFKED Series= CRCWe3	Res= 210.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. Rfb2	Vishay-Dale	CRCW201020K0FKEF Series= CRCWe3	Res= 20.0 kOhm Power= 750.0 mW Tolerance= 1.0%	1	\$0.04	2010 32 mm ²
16. Rs1	Vishay-Dale	CRCW0402102RFKED Series= CRCWe3	Res= 102.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
17. Rs2	Vishay-Dale	CRCW04028K45FKED Series= CRCWe3	Res= 8.45 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
18. Rsns	Panasonic	ERJ-3RQFR22V Series= ERJ-3R	Res= 220.0 mOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.02	0603 5 mm ²
19. Rt	Vishay-Dale	CRCW040284K5FKED Series= CRCWe3	Res= 84.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
20. Ruv1	Vishay-Dale	CRCW04021K87FKED Series= CRCWe3	Res= 1.87 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
21. Ruv2	Vishay-Dale	CRCW040210K2FKED Series= CRCWe3	Res= 10.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
22. U1	Texas Instruments	LM5022MM/NOPB	Switcher	1	\$0.90	
						MUB10A 24 mm ²

Operating Values

Ope	Operating values						
#	Name	Value	Category	Description			
1.	Cin IRMS	19.497 mA	Current	Input capacitor RMS ripple current			
2.	Cout IRMS	41.921 mA	Current	Output capacitor RMS ripple current			
3.	lin Avg	267.99 mA	Current	Average input current			
4.	L lpp	67.538 mA	Current	Peak-to-peak inductor ripple current			
5.	L1 Irms	182.074 mA	Current	Inductor ripple current			
6.	M1 Irms	187.256 mA	Current	M1 MOSFET Irms			
7.	SW lpk	214.796 mA	Current	Peak switch current			
8.	BOM Count	22	General	Total Design BOM count			
9.	FootPrint	976.0 mm ²	General	Total Foot Print Area of BOM components			
10.	Frequency	200.354 kHz	General	Switching frequency			
11.	IC Tolerance	25.0 mV	General	IC Feedback Tolerance			
12.	M1 Rdson	52.0 mOhm	General	Drain-Source On-resistance			
13.	M1 ThetaJA	60.0 degC/W	General	MOSFET junction-to-ambient thermal resistance			
14.	Mode	CCM	General	Conduction Mode			
15.	Pout	1.8 W	General	Total output power			
16.	Total BOM	\$5.49	General	Total BOM Cost			
17.	D1 Tj	30.761 degC	Op_Point	D1 junction temperature			
18.	Low Freq Gain	86.124 dB	Op_Point	Gain at 1Hz			
19.	Vout Actual	121.26 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors			
20.	Vout OP	120.0 V	Op_Point	Operational Output Voltage			
21.	Cross Freq	375.655 Hz	Op_point	Bode plot crossover frequency			
22.	Duty Cycle	94.387 %	Op_point	Duty cycle			
23.	Efficiency	67.167 %	Op_point	Steady state efficiency			
24.	Gain Marg	-22.513 dB	Op_point	Bode Plot Gain Margin			
25.	IC Tj	34.197 degC	Op_point	IC junction temperature			
26.	ICThetaJA	200.0 degC/W	Op_point	IC junction-to-ambient thermal resistance			
27.	IOUT_OP	15.0 mA	Op_point	lout operating point			
28.	M1 TjOP	31.094 degC	Op_point	M1 MOSFET junction temperature			
29.	Phase Marg	69.452 deg	Op_point	Bode Plot Phase Margin			
30.	VIN_OP	10.0 V	Op_point	Vin operating point			
31.	Vout p-p	120.411 mV	Op_point	Peak-to-peak output ripple voltage			

#	Name	Value	Category	Description
32.	Cin Pd	513.162 μW	Power	Input capacitor power dissipation
33.	Cout Pd	702.951 μW	Power	Output capacitor power dissipation
34.	Diode Pd	8.65 mW	Power	Diode power dissipation
35.	IC Pd	20.984 mW	Power	IC power dissipation
36.	L Pd	103.43 mW	Power	Inductor power dissipation
37.	M1 Pd	18.239 mW	Power	M1 MOSFET total power dissipation
38.	M1 PdCond	1.918 mW	Power	M1 MOSFET conduction losses
39.	M1 PdSw	16.321 mW	Power	M1 MOSFET switching losses
40.	Rfb Pd	712.519 mW	Power	Rfb Power Dissipation
41.	Total Pd	879.892 mW	Power	Total Power Dissipation
42.	M1 Vds Act	9.737 mV		M Vds
43.	Vout Tolerance	4.023 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	15.0 m	Maximum Output Current
2.	VinMax	16.0	Maximum input voltage
3.	VinMin	10.0	Minimum input voltage
4.	Vout	120.0	Output Voltage
5.	base_pn	LM5022	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LM5022 Product Folder: http://www.ti.com/product/LM5022: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.