ETALIS LANGUAGE FOR COMPLEX EVENT PROCESSING

- Data-driven with declarative semantics complex event processing
- Complex events are *derived* from simpler events by means of *deductive* rules
- Combines detection of complex events and reasoning over states
- ETALIS is implemented in Prolog and runs on XSB, YAP, SWI, and SICStus.

ETALIS LANGUAGE FOR COMPLEX EVENTS

event patterns

$$P ::= \operatorname{pr}(t_1, \dots, t_n) \mid P \text{ WHERE } t \mid q \mid (P).q \mid P \text{ BIN } P \mid \operatorname{NOT}(P).[P,P]$$

event rule

$$\mathtt{pr}(t_1,\ldots,t_n) \leftarrow p$$

Composition Operators

event stream $\varepsilon: Ground \to 2^{\mathbb{Q}^+}$ variable assignment is a mapping $\mu: Var \to Con$

interpretation
$$\mathscr{I}: Ground \to 2^{\mathbb{Q}^+ \times \mathbb{Q}^+}$$

 $q_1 \leq q_2 \text{ for every } \langle q_1, q_2 \rangle \in \mathscr{I}(g) \text{ for all } g \in Ground$

Given an event stream ε , an interpretation \mathscr{I} is called a *model* for a rule set \mathscr{R} – written as $\mathscr{I} \models_{\varepsilon} \mathscr{R}$ – if the following conditions are satisfied:

 $C1\langle q,q\rangle\in\mathscr{I}(g)$ for every $q\in\mathbb{Q}^+$ and $g\in Ground$ with $q\in\mathcal{E}(g)$ C2 for every rule $atom\leftarrow pattern$ and every variable assignment μ we have $\mathscr{I}_{\mu}(atom)\subseteq\mathscr{I}_{\mu}(pattern)$ where \mathscr{I}_{μ} is inductively defined as

pattern	$ \mathscr{I}_{\mu}(\mathrm{pattern}) $
$\mathtt{pr}(t_1,\ldots,t_n)$	$\mathscr{I}(\mathtt{pr}(\mu^*(t_1),\ldots,\mu^*(t_n)))$
p WHERE t	$\mathscr{I}_{\mu}(p)$ if $\mu^*(t) = true$
	Ø otherwise.
q	$\{\langle q,q angle\}$ for all $q{\in}\mathbb{Q}^+$
(p).q	$\mathscr{I}_{\mu}(p) \cap \{\langle q_1, q_2 \rangle \mid q_2 - q_1 = q\}$
p_1 SEQ p_2	$\{\langle q_1,q_4\rangle \mid \langle q_1,q_2\rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_3,q_4\rangle \in \mathscr{I}_{\mu}(p_2) \text{ and } q_2 < q_3\}$
p_1 AND p_2	$\big \big\{\langle \min(q_1,q_3),\max(q_2,q_4)\rangle \mid \langle q_1,q_2\rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_3,q_4\rangle \in \mathscr{I}_{\mu}(p_2)\big\}$
p_1 PAR p_2	$\left \left\{\left\langle min(q_1,q_3),max(q_2,q_4) ight angle \mid \left\langle q_1,q_2 ight angle \in \mathscr{I}_{\mu}(p_1) ight.$
	and $\langle q_3, q_4 \rangle \in \mathscr{I}_{\mu}(p_2)$ and $\max(q_1, q_3) < \min(q_2, q_4) \}$
p_1 OR p_2	$\mathscr{I}_{\mu}(p_1) \cup \mathscr{I}_{\mu}(p_2)$
p_1 EQUALS p_2	$\mathscr{I}_{\mu}(p_1)\cap\mathscr{I}_{\mu}(p_2)$
p_1 MEETS p_2	$\{\langle q_1, q_3 \rangle \mid \langle q_1, q_2 \rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_2, q_3 \rangle \in \mathscr{I}_{\mu}(p_2)\}$
p_1 during p_2	$\left \left\{ \langle q_3, q_4 \rangle \mid \langle q_1, q_2 \rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_3, q_4 \rangle \in \mathscr{I}_{\mu}(p_2) \text{ and } q_3 < q_1 < q_2 < q_4 \right\} \right $
p_1 starts p_2	$\{\langle q_1, q_3 \rangle \mid \langle q_1, q_2 \rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_1, q_3 \rangle \in \mathscr{I}_{\mu}(p_2) \text{ and } q_2 < q_3\}$
	$\{\langle q_1, q_3 \rangle \mid \langle q_2, q_3 \rangle \in \mathscr{I}_{\mu}(p_1) \text{ and } \langle q_1, q_3 \rangle \in \mathscr{I}_{\mu}(p_2) \text{ and } q_1 < q_2\}$
$NOT(p_1).[p_2,p_3]$	$ \mathscr{I}_{\mu}(p_2 \text{ SEQ } p_3) \setminus \mathscr{I}_{\mu}(p_2 \text{ SEQ } p_1 \text{ SEQ } p_3) $

Given an interpretation \mathscr{I} and some $q \in \mathbb{Q}^+$, we let $\mathscr{I}|_q$ denote the interpretation defined by $\mathscr{I}|_q(g) = \mathscr{I}(g) \cap \{\langle q1, q2 \rangle \mid q2 - q1 \leq q\}.$

Given two interpretations ${\mathscr I}$ and ${\mathscr J}$, we say that ${\mathscr I}$ is *preferred* to ${\mathscr J}$ if there exists a $q \in \mathbb{Q}^+$ with $\mathscr{I}|_q \subset \mathscr{I}|_q$.

A model \mathcal{I} is called *minimal* if there is no other model preferred to \mathcal{I} .

Incremental Detection of Composed Events – Compiled rules in Prolog

Algorithm 5.2 Conjunction.

Input: event binary goal $ie_1 \leftarrow a$ AND b.

Output: event-driven backward chaining rules for AND operator.

```
Each event binary goal ie_1 \leftarrow a AND b. is converted into: {
        a(T_1,T_2):-for\_each(a,1,[T_1,T_2]).
         a(1,T_3,T_4): -goal(a(\_,\_),b(T_1,T_2),ie_1(\_,\_)), retract(goal(a(\_,\_),b(T_1,T_2),ie_1(\_,\_))),
                                                                                              T_5 = min\{T_1, T_3\}, T_6 = max\{T_2, T_4\},
        ie_1(T_5,T_6).
         a(2,T_1,T_2): \neg (goal(a(\_,\_),b(T_1,T_2),ie_1(\_,\_))),
         assert(goal(b(\_,\_),a(T_1,T_2),ie_{1\_,\_}^{(1)})).
        b(T_3, T_4) : -for\_each(b, 1, [T_3, T_4]).
        b(1,T_3,T_4):-goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-)),retract(goal(b(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(T_1,T_2),ie_1(-,-),a(
        a(T_1, T_2), ie_1(.,.)), T_5 = min\{T_1, T_3\}, T_6 = max\{T_2, T_4\},
        ie_1(T_5,T_6).
        b(2,T_1,T_2): \neg (goal(b(\_,\_),a(T_1,T_2),ie_1(\_,\_))), assert(goal(a(\_,\_),a(T_1,T_2),ie_1(\_,\_)))
        b(T_1,T_2),ie_1(-,-)).
```

"The Fast Flower Delivery Use Case", accompanying the book "Event Processing In Action", by Opher Etzion and Peter Niblett, Manning Publications, 2009.

http://code.google.com/p/etalis/wiki/Fast_Flower_Delivery_Use_Case

All 5 phases: bid, assignment, delivery process, ranking evaluation, activity monitoring.

% Multiplier: multiply the event "delivery request enriched" for each driver % delivery request enriched multiplied/6 delivery_request_enriched_multiplied(DeliveryRequestId,DriverId,StoreId, ToCoordinates, Delivery Time, MinRank) <delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates. DeliveryTime,MinRank) event_multiply driver_record(DriverId,_Ranking). % gps location translated/3 gps location translated(DriverId,Rank,Region)<gps_location(DriverId,coordinates(SNHemisphere,Latitude, EWHemisphere.Longitude)) where (driver_record(DriverId,Rank), gps_to_region(coordinates(SNHemisphere,Latitude, EWHemisphere, Longitude), Region)). % bid_request/5 bid request(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime)<

% Phase 1: Bid Phase

(delivery_request_enriched_multiplied(DeliveryRequestId,DriverId, StoreId,ToCoordinates,DeliveryTime,MinRank) and gps_location_translated(DriverId,Rank,Region)) where ('=<'(MinRank,Rank), gps_to_region(ToCoordinates,Region)).

% Phase 2: Assignment Phase

% startAssignment/4

 ${\bf exception Alarm (start Assignment (Delivery Request Id, Store Id, To Coordinates, Delivery Time). Time) <-}$

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime,_MinRank) where (start_assignment_time(Time)).

% start_automaticAssignment/4

 $start_automatic Assignment (Delivery Request Id, Store Id, To Coordinates, \\Delivery Time) < -$

 $start Assignment (Delivery Request Id, Store Id, To Coordinates, Delivery Time) \\ where store_record (Store Id,_MinRank, automatic).$

% start_manualAssignment/4

start_manualAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime)<-startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) where store_record(StoreId,_MinRank,manual).

 $consumable_pick_first(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,\\ MinRank)<-$

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime,MinRank) where store_record(StoreId,_MinRank,automatic).

 $assignment (Delivery Request Id, Store Id, To Coordinates, Delivery Time, Driver Id, \\Scheduled Pickup Time) < -$

((consumable_pick_first(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime,MinRank) seq

delivery_bid(DeliveryRequestId,DriverId,CurrentCoordinates, ScheduledPickupTime)) and

 $start_automatic Assignment (Delivery Request Id, Store Id, To Coordinates, \\Delivery Time)).$

•••

