BASE CHANGE AND LAX KAN EXTENSIONS OF $(\infty, 2)$ -CATEGORIES.

FERNANDO ABELLÁN

ABSTRACT. We do basechange and lax kan extensions

Contents

1.	Preliminaries on fibrations	1
	1.1. Free fibrations	1
2.	Base change	1

1. Preliminaries on fibrations

1.1. Free fibrations.

Definition 1.1.1. Let $\mathsf{AR}^{(op)lax}(\mathbb{C}) = \mathsf{FUN}^{(op)lax}([1],\mathbb{C})$ be the (op)lax arrow $(\infty,2)$ -category of \mathbb{C} and denote by $\mathsf{ev}_i : \mathsf{AR}^{(op)lax}(\mathbb{C}) \to \mathbb{C}$ the functor induced by restriction along the map $\{i\} \to [1]$. We consider a functor

$$\mathfrak{F}_{(i,j)}: \mathsf{CAT}_{(\infty,2)/\mathbb{C}} \to \mathsf{FIB}_{(i,j)}(\mathbb{C}),$$

whose action on objects is as follows:

▶ Given $p: \mathbb{X} \to \mathbb{C}$ we define $\pi: \mathfrak{F}_{(i,j)}(\mathbb{X}) \to \mathbb{C}$ as the pullback

$$\mathfrak{F}_{(i,j)}(\mathbb{X}) \longrightarrow \mathbb{X}$$

$$\downarrow \qquad \qquad \downarrow^p$$
 $\mathsf{AR}^{\epsilon \mathrm{lax}}(\mathbb{C}) \stackrel{\mathrm{ev}_i}{\longrightarrow} \mathbb{C}$

where the map π is induced by ev_{1-i} and $\epsilon = \operatorname{op}$ if $i \neq j$ and $\epsilon = \emptyset$ otherwise.

The universal property of the pullback guarantees that this construction extends to a functor of $(\infty,2)$ -categories.

2. Base Change

Definition 2.0.1. Let $\mathbb C$ be an $(\infty,2)$ -category . A *fibrational pattern* $\mathfrak p:=(\mathbb C,(i,j),E,L)$ is given by:

- ▶ A pair (i, j) where $i, j \in \{0, 1\}$ which we call the variance.
- ▶ A collection of edges E of \mathbb{C} containing all equivalences.
- ▶ A collection of 2-simplices σ : [2] $\rightarrow \mathbb{C}$ containing all commutative triangles.

Given fibrational patterns $\mathfrak{p}=(\mathbb{C},(i,j),E,L)$ and $\mathfrak{q}=(\mathbb{D},(i,j),E',L')$, we say that a functor $f:\mathbb{C}\to\mathbb{D}$ is a morphism of fibrational patterns if $f(E)\subseteq E'$ and $f(L)\subseteq L'$.

Date: April 30, 2024.

Example 2.0.2. Given an $(\infty,2)$ -category \mathbb{C} , we denote by $\mathfrak{p}_{\flat}^{(i,j)} := (\mathbb{C}, (i,j), \flat, \flat)$ the fibrational pattern with variance (i,j) where the collection of edges is given precisely by the equivalences and the collection L is given by the commuting triangles. Dually, we denote $\mathfrak{p}_{\sharp}^{(i,j)} = (\mathbb{C}, (i,j), \sharp, \sharp)$ the fibrational pattern where every edge (resp. every triangle) belongs to E (resp. L). If the variance is clear from the context we will use the abusive notation \mathfrak{p}_{\flat} and \mathfrak{p}_{\sharp} .

Definition 2.0.3. Let $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ be the locally full subcategory of $CAT_{(\infty,2)/\mathbb{C}}$ whose objects are functors $p: \mathbb{X} \to \mathbb{C}$ such that:

- ▶ There exists *i*-cartesian lifts of those 1-morphisms in $E_{\mathbb{C}}$.
- ▶ There exists *j*-cartesian lifts of 2-morphisms in $L_{\mathbb{C}}$ which are stable under composition in \mathbb{X} .

The morphisms in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ are precisely those which preserve the *i*-cartesian (resp. *j*-cartesian) 1-morphisms (resp. 2-morphisms) above. Given $\mathbb{X} \to \mathbb{C}$ and $\mathbb{Y} \to \mathbb{C}$ in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ we denote by $MAP_{/(\mathbb{C},\mathfrak{p})}(\mathbb{X},\mathbb{Y})$ the mapping ∞ -category in $CAT_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$.

Remark 2.0.4. Observe that $\mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p}_{\flat}^{(i,j)})}$ is simply given by the slice $(\infty,2)$ -category $\mathsf{CAT}_{(\infty,2)/\mathbb{C}}$ and that if $\mathfrak{p} = (\mathbb{C}, (i,j), E, \sharp)$ then $\mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$ is given by $\mathsf{FIB}_{(i,j)}^{E-\mathsf{lax}}(\mathbb{C})$.

Remark 2.0.5. Let $f: \mathbb{C} \to \mathbb{D}$ be functor inducing a map of fibrational patterns $\mathfrak{p} \to \mathfrak{q}$. Then pullback along f induces a functor of $(\infty,2)$ -categories

$$f^*: \mathsf{CAT}_{(\infty,2)/(\mathbb{D},\mathfrak{q})} \to \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$$

which we call the base change functor along f.

Definition 2.0.6. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and consider a functor $f : \mathbb{C} \to \mathbb{D}$. We define the lax basechange functor as the composite

$$f_{\mathfrak{p}}^{\mathrm{lax}}:\mathsf{CAT}_{(\infty,2)/\mathbb{D}}\to\mathsf{FIB}_{(i,j)}(\mathbb{D})\to\mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})}$$

where the first map was given in Definition 1.1.1 and the second map is base change along the map $(\mathbb{C}, (i, j), E, L) \to (\mathbb{D}, (i, j), \sharp, \sharp)$ induced by f.

Definition 2.0.7. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and consider a functor $f : \mathbb{C} \to \mathbb{D}$. Then there exists a functor

$$\mathit{Rf}_*\colon \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} \to \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{op},\mathsf{CAT}_{\infty}), \ \ (\mathbb{X} \to \mathbb{C}) \mapsto \mathsf{MAP}_{/(\mathbb{C},\mathfrak{p})}(f_{\mathfrak{p}}^{lax}(-),\mathbb{X}).$$

Proposition 2.0.8. *The functor*

$$Rf_* \colon \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} o \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{\mathrm{op}},\mathsf{CAT}_\infty)$$

factors through the composite $\mathsf{FIB}_{(i,j)}(\mathbb{D}) \to \mathsf{CAT}_{(\infty,2)/\mathbb{D}} \to \mathsf{FUN}((\mathsf{CAT}_{(\infty,2)/\mathbb{D}})^{\mathrm{op}}, \mathsf{CAT}_{\infty})$ where the second functor is the Yoneda embedding.

Definition 2.0.9. We will call the functor $f_* : \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} \to \mathsf{FIB}_{(i,j)}(\mathbb{D})$ the *fibrational* pushforward functor.

Theorem 2.0.10. Let $\mathfrak{p} = (\mathbb{C}, (i, j), E, L)$ be a fibrational pattern and let $f : \mathbb{C} \to \mathbb{D}$ be a functor. Then there exists an adjunction of $(\infty, 2)$ -categories:

$$f^* : \mathsf{FIB}_{(i,j)}(\mathbb{D}) \ \rightleftarrows \ \mathsf{CAT}_{(\infty,2)/(\mathbb{C},\mathfrak{p})} : f_*$$

Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Explain this prelim