4 Computability

Encoding of a multi-tape Turing Machine: Assume our encoding of the TMs satisfy the following properties

- 1. Every string $\alpha \in \{0,1\}^*$ represents some TM (On invalid encoding α, M_{α} always reject)
- 2. Every Turing Machine is represented by infinitely many strings $TM\ M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

thm 4.1. (Universal Turing Machine)

There exists a multitape Turing Machine \mathcal{U} , s.t. $\forall x, \alpha \in \{0,1\}^*, \mathcal{U}(x,\alpha) = M_{\alpha}(x)$. Moreover, if M_{α} halts on input x within T steps, then $\mathcal{U}(x,\alpha)$ halts in $O_M(T \log T)$ steps (weaker version $O_{M_{\alpha}}(T(n))^2$)

lemma 4.2. Almost all languages are undecidable

Proof.
$$\#languages = 2^{\aleph_0} = \aleph_1$$

 $\#\{L \subseteq \{0,1\}^*\}$
 $\#TMs = \aleph_0$

thoughts: diagonalization

 $def L_{flip} = \{\alpha : M_{\alpha} does \ not \ accept \ \alpha\}$

lemma 4.3. L_{flip} is undecidable

Proof. Assume for contradiction that L_{flip} is decided by a TM M_{β} , which implies that $L(M_{\beta}) = L_{flip}$

• case1: $\beta \in L_{flip}$. By definition M_{β} does not accept β , i.e, M_{β} rejects β . So, $\beta \notin L(M_{\beta}) = L_{flip}$. Contradiction!

• case2: $\beta \notin L_{flip}$. By definition, M_{β} accepts β . So, $\beta \in L(M_{\beta}) = L_{flip}$. Contradiction!

Turing halting problem

$$L_{halt} = \{(\alpha, x), M_{\alpha} \text{ halts on } x\}$$

Fermat's Last Theorem

$$(\forall m \geq 3)(\forall a, b, c \geq 1)(a^m + b^m \neq c^m)$$

$$\begin{cases}
T = 2 \\
while true \\
T = T + 1 \\
for d = 3 to T \\
for a, b, c \in \{1, 2, ..., T\} \\
if (a^d + b^d = c^d) \rightarrow exit
\end{cases}$$

$$FLT iff (M_{\alpha}, \varepsilon) \notin I_{balt}$$

*reduction

def 4.4. Let $L_1, L_2 \subseteq \{0, 1\}^*$. Write $L_1 \leq L_2$ if there is a reduction from L_1 to L_2 that, there exists a $TM M : \{0, 1\}^* \to \{0, 1\}^*$ (On any input x, M always halts and outputs a string M(x)), s.t.

1.
$$(\forall x \in L_1)(M(x) \in L_2)$$

2.
$$(\forall x \notin L_1)(M(x) \notin L_2)$$

Let $L_1 \leq L_2$ if L_2 is decidable, then L_1 is decidable.

contrpositive: If L_1 is undecidable, then L_2 is undecidable.

If $x \in L_1$, then $M(x) \in L_2$, so M_2 accepts M(x)If $x \notin L_1$, then $M(x) \notin L_2$, so M_2 rejects M(x)

thm 4.5. L_{halt} is undecidable

Proof. we will prove $L_{flip} \leq L'_{halt}$

Assuming L_{halt} is decidable by a TM M_{halt} , we will prove L_{flip} is decidable, which would be a contradiction.

Create a TM M_{flip} as follows:

run M_{halt} on input (α, α)

- 1. If M_{halt} rejects (α, α) , let M_{flip} accept α
- 2. If M_{halt} accepts α, α , simulate M_{α} on input α (using a UTM), and flip the output

It is easy to verify M_{flip} decides L_{flip} . Contradiction!

lemma 4.6. $L_{accept} = \{(\alpha, x), M_{\alpha} \text{ accepts } x\}$ is undecidable

Proof. we will prove $L_{halt} \leq L_{accept}$. Assuming for contradiction that L_{accept} is decidable, i.e. there exists a TM M_{accept} that decides L_{accept} , we construct a TM M_{halt} that decides L_{halt} as follows:

- 1. On input (α, x) , create a new TM M_{β} , which simulates M_{α} on input x, and always accepts whenever M_a lpha halts (If M_{α} loops forever, M_{β} loops forever as well)
- 2. Run M_{accept} on input (β, x) , and forward its output. Clearly, M_{halt} decides L_{halt} . Contradiction!

decides $if(\alpha, x) \in L_{accept}$

lemma 4.7. Let $L_{empty} = \{ \langle M \rangle, M \text{ does not accept any input, i.e. } L(M) = \emptyset \}$

Proof. We will prove $L_{halt} \leq L_{empty}$. Assuming for contradiction that L_{empty} can be decided by a TM M_{empty} , we construct a TM M_{halt} as follows:

On input (α, x)

- 1. We construct a new TM M_{β} , whose input is $y \in \{0,1\}^*$, as follows
 - (a) simulate M_alpha on input x
 - (b) if step (b) halts, always accept y

Clearly, $L(M_{\beta}) = \emptyset$ if M_{α} does not halt on x. Otherwise, $L(M_{\beta}) = \{0, 1\}^*$

2. Run M_{empty} on input β and flip the output. We can verify that M_{halt} decides L_{halt} . Contradiction!

thm 4.8. Let $L_{regular} = \{ \langle M \rangle, M \text{ is a TM, s.t. } L(M) \text{ is a regular language} \}$, it is decidable

Proof. Assume for contradiction that $L_{regular}$ is decidable, i.e. \exists a TM $M_{regular}$ that decides $L_{regular}$. We will prove L_{accept} is decidable.

On input (α, x) , construct a TM as follows:

- 1. Construct a TM M_{β} , where $\beta = \beta(\alpha, x)$, and the input of M_{β} is denoted by y
 - (a) If $y \in \{0^n 1^n, n \ge 0\}$, accept
 - (b) Otherwise, simulate M_{α} on x, and accept iff M_{α} accepts x.
- 2. Run $M_{regular}$ on β , and forward its output
 - case1 (α, x) ∉ L_{accept}, i.e., M_{alpha} does not accept x
 So, L(M_β) = {0ⁿ1ⁿ, n ≥ 0}, which is not a regular language
 Thus, M_{regular} rejects β, which implies that M_{halt} rejects β
 - case2 $(\alpha, x) \in L_{accept}$. So $L(M_{\beta}) = \{0, 1\}^*$, which is regular As such, $M_{regular}$ accepts β , and so does M_{accept}

lemma 4.9. Let $L_{equal} = \{(< M_1 >, < M_2 >), M_1, M_2 \text{ are } TMs, s.t. \ L(M_1) = L(M_2)\}, it's undecidable$

Proof. Assuming for contradiction that L_{equal} is decidable, L_{equal} is decided by a TM M_{equal} On input < M > construct a TM M_{empty} as follows

1. Run M_{equal} on input $(< M >, < M_0 >)$, where M_0 rejects immediately $(L(M_0) = \emptyset)$

2. Forward the above output

 L_{flip} L_{halt} L_{accept} L_{empty}